

Datasheet

cks32f103x8 cks32f103xb

# 32-bit ARM core-based standard microcontrollers with 64 or 128K bytes of flash memory

# functionality

### **■Core:** ARM 32-bit Cortex<sup>TM</sup>-M3 core

- Up to 72MHz operating frequency, up to
   1.25DMips/MHz at 0 wait-cycle memory access (Dhrystone2.1)
- Single-cycle multiplication and hardware division

### ■ memory (unit)

- 64KB or 128KB Program Flash
- 20KB SRAM

### ■Clock, reset and power management

- 2.0 to 3.6 volt power supply and I/O pins
- Power On/Power Off Reset (POR/PDR),
   Programmable Voltage Monitor (PVD)
- 4∼16MHz Crystal Oscillator
- Embedded factory-tuned 8MHz high-speed
   RC oscillator
- Embedded 40kHz low-speed RC oscillator with calibration
- PLL for generating CPU clock
- 32kHz RTC oscillator with calibration function

# ■Two 12-bit ADCs with 1µs conversion time (up to 16 input channels)

- Conversion range: 0 to 3.6V
- Dual sample and hold function
- temperature sensor

#### ■DMA:

- 7-Channel DMA Controller
- Supported peripherals: Timer, ADC, SPI, I2C and USART

#### ■low power

- Sleep, shutdown and standby modes
- vbat supplies power to the RTC and backup registers



#### ■Up to 80 fast I/O ports

 26/37/51/80 I/O ports, all I/O ports can be mapped to 16 external interrupts; almost all ports can withstand 5V signals

### debug mode

- Serial Single Wire Debug (SWD) and JTAG interfaces

#### ■7 timers

- Three 16-bit timers, each with up to four channels for input capture/output compare/PWM or pulse counting and incremental encoder inputs
- 1 x 16-bit PWM Advanced Control Timer with Deadband Control and Emergency Brake for motor control
- 2 watchdog timers (standalone and windowed)
- System time timer: 24-bit self-subtracting counter

#### ■ Up to 9 communication interfaces

- Up to 2 I2C interfaces (SMBus/PMBus support)
- Up to 3 USART interfaces (supports ISO7816 interface, LIN.
  - IrDA interface and modem control)
- Up to 2 SPI interfaces (18M bits/sec)
- CAN interface (2.0B active)
- USB 2.0 Full Speed Interface

# ■ CRC calculation unit, 96-bit chip unique

# CETC 中科芯集成电路有限公司 CHINA KEY SYSTEM & INTEGRATED CIRCUIT CO.,LTD

### identifier

CKS32F103x8 and CKS32F103xB, a series of 32-bit MCUs from Semiconductor Manufacturing Corp.



# Device

# Compari

# CKS32F103x8(B) Product Features and Peripheral Configuration

| SOn Product Model<br>Peripheral Interface |                                  | CKS32F1 | 03T8/TB CK       |                | KS32F103C8/CB                  |                     | CKS32F103R8/RB                                                        |                         | CKS32F103VB   |                            |
|-------------------------------------------|----------------------------------|---------|------------------|----------------|--------------------------------|---------------------|-----------------------------------------------------------------------|-------------------------|---------------|----------------------------|
| Flash memory -<br>K bytes                 |                                  |         | 64               | 64             |                                | 64                  | 128                                                                   | 64                      | 128           | 128                        |
| SRAM- K bytes                             |                                  |         | 20               | )              |                                | 20                  |                                                                       |                         | 20            | 20                         |
| timed                                     | general                          |         | 3                |                |                                | 3                   |                                                                       |                         | 3             | 3                          |
| (of                                       | purpose                          |         |                  |                |                                |                     |                                                                       |                         |               |                            |
| explosi                                   | Advance                          | d       | 1                |                |                                | 1                   |                                                                       |                         | 1             | 1                          |
| ve etc)                                   | Controls                         | ;       |                  |                |                                |                     |                                                                       |                         |               |                            |
| tool                                      |                                  |         |                  |                |                                |                     |                                                                       |                         |               |                            |
|                                           | SPI                              |         | 1                |                |                                | 2                   |                                                                       |                         | 2             | 2                          |
| com                                       | I2C                              |         | 1                |                |                                | 2                   |                                                                       |                         | 2             | 2                          |
| mu                                        | USART                            |         | 2                |                |                                | 3                   |                                                                       |                         | 3             | 3                          |
| nica                                      | USB                              |         | 1                |                |                                | 1                   |                                                                       |                         | 1             | 1                          |
| tion                                      | CAN                              |         | 1                |                |                                | 1                   | 1,                                                                    | $\langle \cdot \rangle$ | 1             | 1                          |
| S                                         |                                  |         |                  |                |                                |                     |                                                                       |                         |               |                            |
| inte                                      |                                  |         |                  |                |                                |                     | 1                                                                     |                         |               |                            |
| rfac                                      |                                  |         |                  |                | 1. **                          |                     |                                                                       |                         |               |                            |
| e CDIO r                                  | 2011                             |         | 26               | -              | 1                              | 27                  |                                                                       |                         | 51            | 80                         |
| GPIO p                                    |                                  |         | 20               | )              |                                | )31                 |                                                                       | J1                      |               | 80                         |
| chann                                     |                                  |         | 19               |                |                                | \                   |                                                                       |                         |               |                            |
|                                           | Synchronoi                       | 1S      | 2                | d's            | r -                            | 2                   |                                                                       |                         | 2             | 2                          |
|                                           | r <del>M</del> g Inf<br>umber of | - 1     | mativi           | nnels          | 10 channels                    |                     | ls                                                                    | 16 channels             |               | 16 channels                |
| Produ                                     | <b>ct Model</b>                  | CV      | ackage           | Numbe          | r of                           | boxed               | Ŋuņ                                                                   | ber of                  | boxed         | cartons                    |
| 01                                        | nerating                         | Су      | form             | trays          | S                              | tray                |                                                                       | oxes,                   |               |                            |
| CKS32                                     | F103T8T6<br>oltage               |         | QFN36            | 490PCS/        |                                | 10<br>travs/box     |                                                                       | PCS/box                 |               | on 29400PCS/Carton         |
|                                           | CKS32P103T1BTg6 temperature      |         | QFN36            | Amb<br>490PCS/ | — Ambient<br>490PCS/Tray<br>Ju |                     | t temperature: -/<br>  10   4900 <br> Inction temperal<br>  trays/box |                         | 6 boxes/carte | 05 C<br>on 29400PCS/Carton |
| CKS321<br>Sea                             | F103C8T6<br>al inside            |         | LQFP48<br>QFN    | 250PCS/<br>36  | Tray                           | LQFP48<br>trays/box | 25001                                                                 | PCS/box <sub>L</sub>    | 6 boxes/carto | on 15000PCS/Carton         |
| CKS32F103CBT6                             |                                  | ]       | LQFP48           | 250 PCS/       | /tray                          | 10<br>trays/box     | 25001                                                                 | PCS/box                 | 6 boxes/carte | on 15000 PCS/box           |
| CKS32F103R8T6                             |                                  | ]       | LQFP64           | 160 PCS/       | plate                          |                     |                                                                       | PCS/box                 | 6 boxes/carte | on 9600 PCS/box            |
|                                           |                                  |         |                  |                |                                | trays/box           |                                                                       |                         |               |                            |
| CKS32I                                    | F103RBT6                         | ]       | LQFP64           | 160 PCS/       | disk'                          | 10                  | 1600                                                                  | PCS/box                 | 6 boxes/carte | on 9600 PCS/box            |
|                                           |                                  |         |                  |                |                                | trays/box           |                                                                       |                         |               |                            |
|                                           | F103VBT6                         |         | QFP100           | 90 PCS/p       |                                | 10                  |                                                                       | PCS/box                 | 6 boxes/carte | on 5400 PCS/box            |
| CKS32F103>                                | <b>«8</b> and <b>CKS32F</b>      | .03x    | B, a series of 3 | 2-bit MCU      | s fror                         | trays/box           |                                                                       |                         |               |                            |

SMIC



# catalogs

| 1. | Present  | tation                                                                                   | 1 |
|----|----------|------------------------------------------------------------------------------------------|---|
| 2. | Specific | ation                                                                                    | 2 |
|    | 2.1 Over | view                                                                                     | 2 |
|    | 2.1.1    | ARM® 's Cortex™-M3 core with embedded Flash and SRAM                                     | 2 |
|    | 2.1.2    | Built-in flash memory.                                                                   | 2 |
|    | 2.1.3    | CRC (Cyclic Redundancy Check) calculation unit                                           | 3 |
|    | 2.1.4    | Internal SRAM                                                                            | 3 |
|    | 2.1.5    | Nested Vectorized Interrupt Controller (NVIC)                                            | 3 |
|    | 2.1.6    | External Interrupt/Event Controller (EXTI)                                               | 3 |
|    | 2.1.7    | Clock and startup.                                                                       | 3 |
|    | 2.1.8    | Clock and startup  Bootstrap mode  Power supply program  Power supply monitor  Regulator | 4 |
|    | 2.1.9    | Power supply program                                                                     | 4 |
|    | 2.1.10   | Power supply monitor                                                                     | 4 |
|    | 2.1.11   | Regulator                                                                                | 4 |
|    | 2.1.12   | Low Power ModeDMA                                                                        | 5 |
|    | 2.1.13   | DMA                                                                                      | 5 |
|    | 2.1.14   | RTC (Real Time Clock) and Backup Registers                                               | 5 |
|    | 2.1.15   | Timers and Watchdogs                                                                     | 6 |
|    | 2.1.16   | I2C Bus                                                                                  | 7 |
|    | 2.1.17   | Universal Synchronous/Asynchronous Transceiver (USART)                                   | 7 |
|    | 2.1.18   | Serial Peripheral Interface (SPI)                                                        | 7 |
|    | 2.1.19   | Controller Area Network (CAN)                                                            | 8 |
|    | 2.1.20   | Universal Serial Bus (USB)                                                               | 8 |
|    | 2.1.21   | General Purpose Input/Output Interface (GPIO)                                            | 8 |
|    | 2.1.22   | ADC (Analog/Digital Converter)                                                           | 8 |
|    | 2.1.23   | Temperature Sensors                                                                      |   |
|    | 2.1.24   | Serial Single Wire JTAG Debug Port (SWJ-DP)                                              | 9 |
| 3. | Pin Def  | inition                                                                                  |   |



| 4. Memor    | ry Image                                         | 20 |
|-------------|--------------------------------------------------|----|
| 5. Electric | cal Characteristics                              | 21 |
| 5.1 Tes     | t Conditions                                     | 21 |
| 5.1.1       | Minimum and maximum values                       | 21 |
| 5.1.2       | Typical values                                   | 21 |
| 5.1.3       | Typical Curve                                    | 21 |
| 5.1.4       | Load Capacitance                                 | 21 |
| 5.1.5       | Pin Input Voltage                                | 22 |
| 5.1.6       | Power Supply Solutions                           | 23 |
| 5.1.7       | Current consumption measurement                  | 23 |
| 5.2 A       | bsolute Maximum Ratings                          | 24 |
| 5.3 Wo      | rking conditions                                 |    |
| 5.3.1       | General operating conditions                     | 25 |
| 5.3.2       | Operating conditions at power-up and power-down  | 25 |
| 5.3.3       | Embedded Reset and Power Control Module Features |    |
| 5.3.4       | Built-in reference voltage                       | 26 |
| 5.3.5       | Supply Current Characteristics                   | 27 |
| 5.3.6       | External Clock Source Characteristics            | 31 |
| 5.3.7       | Internal Clock Source Characteristics            | 35 |
| 5.3.8       | PLL Characterization.                            | 36 |
| 5.3.9       | Storage Characteristics                          | 36 |
| 5.3.10      | EMC Characterization                             | 37 |
| 5.3.11      | Absolute maximum (electrical sensitivity)        | 38 |
| 5.3.12      | I/O Port Characteristics                         | 39 |
| 5.3.13      | NRST Pin Characteristics                         | 42 |
| 5.3.14      | TIM Timer Characteristics                        | 43 |
| 5.3.15      | Communication Interface                          | 43 |
| 5.3.16      | CAN (Controller Area Network) Interface          | 48 |
| 5.3.17      | 12-Bit ADC Characterization                      | 48 |
| 5.3.18      | Temperature Sensor Characteristics               | 52 |
| 6. Packag   | ge Characteristics                               | 53 |



CHS WAR THE STATE OF THE STATE



# 1. present (sb for a job etc)

This document gives the device characteristics of the CKS32F103x8 and CKS32F103xB standard MCU products.

The CKS32F103x8 and CKS32F103xB datasheets must be read in conjunction with their associated reference manuals.

For information about the Cortex<sup>TM</sup>-M3 core, please refer to the Cortex-M3 Technical Reference Manual, available for download from ARM's website:

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/.





# 2. Specification

The CKS32F103x8 and CKS32F103xB standard MCU series utilize a high-performance ARM® Cortex<sup>TM</sup>-M3 32-bit RISC core operating at 72MHz, with built-in high-speed memories (up to 128K bytes of Flash and 20K bytes of SRAM), a rich set of enhanced I/O ports, and peripherals connected to two APB buses. Two 12-bit ADCs, three general-purpose 16-bit timers, and a PWM timer are included, along with standard and advanced communication interfaces: up to two I2C and SPI interfaces, three USART interfaces, a USB interface, and a CAN interface.

The CKS32F103x8 and CKS32F103xB standard MCUs are available with supply voltages from 2.0V to 3.6V, an operating temperature range of -40°C to +85°C, and an extended temperature range of -40°C to +105°C, with a range of power-saving modes to ensure that low-power applications are required.

The CKS32F103x8 and CKS32F103xB standard series are available in four different packages ranging from 36 pins to 100 pins; the peripheral configurations in the devices vary depending on the package. A basic description of all the peripherals in this family is given below.

These extensive peripheral configurations enable the CKS32F103x8 and CKS32F103xB standard series microcontrollers to be used in a wide variety of applications:

- Motor drives and application control
- Medical and handheld devices
- PC gaming peripherals and GPS platforms
- Industrial applications: programmable logic controllers (PLCs), inverters, printers and scanners
- Alarm systems, video intercom and HVAC systems, etc.

### 2.1 summarize

# 2.1.1 ARM® 's Cortex<sup>TM</sup>-M3 core with embedded Flash and SRAM

ARM's Cortex™-M3 processor is the latest generation of embedded ARM processors, providing the low-cost platform, reduced pin count and reduced system power consumption needed to implement MCUs, while delivering superior computational performance and advanced interrupt system response.

ARM's Cortex™-M3 is a 32-bit RISC processor that provides additional code efficiency, utilizing the high performance of the ARM core in the storage space typically found in 8- and 16-bit systems.

The CKS32F103x8 and CKS32F103xB standard series have a built-in ARM core, so it is compatible with all ARM tools and software. **Error! Unrecognized switch parameters.** This is the functional block diagram of this series.



# 2.1.2 internal flash memory

 $64 K \ \text{or} \ 128 K$  bytes of internal flash memory for programs and data.



# 2.1.3 CRC (Cyclic Redundancy Check) calculation unit

The CRC (Cyclic Redundancy Check) calculation unit uses a fixed polynomial generator to produce a CRC code from a 32-bit data word. In numerous applications, CRC-based techniques are used to verify the consistency of data transmission or storage. Within the scope of the EN/IEC 60335-1 standard, which provides a means of detecting errors in flash memory, the CRC calculation unit can be used to compute the signature of software in real time and compare it with the signature generated at the time of linking and generating that software.

### 2.1.4 Internal SRAM

20K bytes of internal SRAM that can be accessed (read/write) by the CPU with 0 wait cycles.

### 2.1.5 Nested Vectorized Interrupt Controller (NVIC)

The CKS32F103x8 and CKS32F103xB standard models have a built-in nested vectorized interrupt controller capable of handling up to 43 maskable interrupt channels (excluding 16 Cortex<sup>TM</sup>-M3 interrupt lines) and 16 priority levels.

- Tightly coupled NVICs enable low-latency interrupt response processing
- Interrupt vector entry address directly into the kernel
- Tightly Coupled NVIC Interface
- Allow early processing of interrupts
- Handling late arriving higher priority interrupts
- Support for interrupting the tail link function
- Automatic saving of processor state
- Auto-resume on return from interrupt, no additional instruction overhead required

The module provides flexible interrupt management capabilities with minimal interrupt latency.

# 2.1.6 External Interrupt/Event Controller (EXTI)

The external interrupt/event controller contains 19 edge detectors for generating interrupt/event requests. Each interrupt line can be independently configured with its trigger event (rising or falling edge or double edge) and can be individually masked; a pending register maintains the status of all interrupt requests. EXTI can detect pulses with a width less than the clock period of the internal APB2. Up to 80 general-purpose I/O ports are connected to 16 external interrupt lines.

# 2.1.7 Clock and startup

#### CKS32F103x8 and CKS32F103xB



Datash Prie selection of the system clock is done at startup, the internal 8MHz RC oscillator is selected as the default CPU clock at reset, then an external 4-16MHz clock with failure monitoring can be selected; when an external clock failure is detected, it is isolated and the system automatically switches to the internal RC oscillator, and if interrupts are enabled, the software receives the corresponding interrupts. Similarly, the PLL clock can be fully isolated when needed.



of interrupt management (e.g., when an external oscillator used during a period fails).

Multiple prescalers are used to configure the frequency of the AHB, the high speed APB (APB2), and the low speed APB (APB1) regions. the maximum frequency of the AHB and high speed APB is 72MHz, and the maximum frequency of the low speed APB is 36MHz. refer to the Clock Driver Block Diagram as shown in Figure 2.

### 2.1.8 bootstrap model

At startup, one of three bootstrap modes can be selected via the bootstrap pin:

- Bootstrap from program flash memory
- Bootstrap from system memory
- Bootstrap from internal SRAM

The bootloader is stored in system memory and can be reprogrammed to flash memory via USART1.

# 2.1.9 Power supply program

- VDD = 2.0 to 3.6V: The VDD pin powers the I/O pins and the internal regulator.
- VSSA, VDDA = 2.0 to 3.6V: Provides power to the analog portion of the ADC, reset module, RC oscillator, and PLL. Using the ADC
   VDDA must not be less than 2.4 V. VDDA and VSSA must be connected to VDD and VSS respectively.
- VBAT = 1.8 to 3.6V: When VDD is turned off, power is supplied (via the internal power switcher) to the RTC, external 32kHz oscillator, and back-up registers.

For more information on how to connect the power supply pins, see Figure 10 Power Supply Scheme.

## 2.1.10 Power supply monitor

A power-on reset (POR)/power-down reset (PDR) circuit is integrated into the device, which is always active to ensure that the system operates when the power supply exceeds 2V; when VDD falls below the set threshold (VPOR/PDR), the device is placed in reset without the need for an external reset circuit. The device also includes a programmable voltage monitor (PVD) that monitors the VDD/VDDA supply and compares it to the threshold VPVD, generating an interrupt when VDD falls below or rises above the threshold VPVD, which can be used by the interrupt handler to issue a warning message or to transfer the microcontroller to a safe mode The PVD function needs to be programmed to enable it. Refer to Table 8 for VPOR/PDR and VPVD values.

# 2.1.11 regulator

The regulator has three modes of operation: main mode (MR), low power mode (LPR) and shutdown





- Main mode (MR) for normal runtime operation
- Low power mode (LPR) for CPU shutdown mode
- Shutdown mode is used in standby mode of the CPU: the output of the regulator is high-resistance, the power supply to the core circuitry is cut off, and the regulator is in a zero-consumption state (but the contents of the registers and SRAM will be lost).

The regulator is always active after reset and shuts down in standby mode at the high resistance output.



### 2.1.12 Low Power Mode

The CKS32F103x8 and CKS32F103xB standard products support three low-power modes that provide an optimal balance between the requirement for low power consumption, short start-up times and multiple wake-up events.

### • sleep mode

In sleep mode, only the MCU is stopped and all peripherals are active and can wake up the MCU in case of an interrupt/event.

#### shutdown mode

The shutdown mode achieves the lowest power consumption while maintaining no loss of SRAM and register contents. In shutdown mode, all internal 1.5V sections are de-energized, the PLL, the HSI's RC oscillator, and the HSE crystal oscillator are turned off, and the regulator can be placed in either normal mode or low-power mode.

The microcontroller can be woken up from shutdown mode by any signal configured as EXTI, which can be one of the 16 external I/O ports, the output of the PVD, an RTC alarm, or a USB wake-up signal.

### standby mode

Minimal power consumption can be achieved in standby mode. The internal voltage regulator is switched off, so that all internal 1.5V sections are disconnected; the PLL, the RC oscillator of the HSI and the HSE crystal oscillator are also switched off; by entering the standby mode, the contents of the SRAM and the registers are lost, but the contents of the backup registers remain, and the standby circuits are still working.

Exiting from standby mode is conditional on an external reset signal on NRST, an IWDG reset, a rising edge on the WKUP pin or a

RTC when the alarm occurs.

NOTE: *The RTC*, *IWDG* and their corresponding clocks are not stopped when entering shutdown or standby mode.

#### 2.1.13 DMA

Flexible 7-way general-purpose DMA manages memory-to-memory, device-to-memory, and memory-to-device data transfers; the DMA controller supports ring buffer management, avoiding interrupts when controller transfers reach the end of the buffer.

Each channel has dedicated hardware DMA request logic, while each channel can be triggered by software; the length of the transmission and the source and destination addresses of the transmission can be set individually by software.

DMA can be used for the main peripherals: SPI, I2C, USART, as well as the general purpose, basic and advanced control timers TIMx and ADC.



# 2.1.14 RTC (Real Time Clock) and Backup Registers

The RTC and Backup Registers are powered by a switch that selects  $_{VDD\ when\ VDD}$  is active, otherwise they are powered by  $_{the\ VBAT}$  pin. The back-up registers (10 16-bit registers) can be used to hold 20 bytes of user application data when  $_{VDD}$  is turned off. The RTC and back-up registers are not reset by the system or power reset source; nor are they reset when woken up from standby mode.

The real time clock has a set of continuously running counters, a calendar clock function that can be provided by appropriate software, and an alarm interrupt and phase interrupt function. The RTC's drive clock can be a 32.768kHz oscillator using an external crystal, an internal low-power RC oscillator, or a high-speed external clock divided by 128. The internal low-power RC oscillator has a typical frequency of 40kHz. To compensate for deviations from the natural crystal, the RTC can be calibrated by outputting a 512Hz signal. The internal low-power RC oscillator has a typical frequency of 40kHz, and the RTC's clock can be calibrated by outputting a 512Hz signal to compensate for deviations in the natural crystal.



for long time measurements. There is a 20-bit prescaler for the time base clock, which by default generates a 1-second long time reference when the clock is 32.768kHz.

### 2.1.15 Timers and Watchdogs

The CKS32F103x8 and CKS32F103xB standard series include 1 advanced control timer, 3 general timers, and

2

The watchdog timer and 1 system timer.

The following table compares the functions of the Advanced Control

Timer, Normal Timer, and Basic Timer:

Table 1 Comparison of Timer Functions

|   | timers             | Counter                         | Counter            | presharing               | Generate DMA please | Capture/Compa         | compleme    | Ì        |
|---|--------------------|---------------------------------|--------------------|--------------------------|---------------------|-----------------------|-------------|----------|
|   |                    | Resolution                      | Туре               | factor                   | look for            | re Channel            | ntary       |          |
|   |                    |                                 |                    |                          |                     |                       | output      | I        |
|   | TIM1               | 16-bit                          | Incremental count/ | Between 1 and 65536      | possible            | 4                     | there are   | Ì        |
|   |                    |                                 | count              | any integer              | XX                  |                       |             |          |
|   | \ <del></del>      | od Control Ti                   | down               | of                       | ZZ X 3              |                       |             | ı        |
| F |                    | ed Control Ti                   | mer (11M1)         | Anyinteger               |                     |                       |             | Ì        |
|   | ттмыеа             | dvan <b>&amp;&amp;dit</b> ontro | l timer (TIM1      | ) can be thought         | of as &Mree-ph      | ase <b>PWM</b> genera | torhassigne | d to     |
|   | TIM4 <sub>ch</sub> | annels with cor                 | nplementary        | de <b>adbás53ín</b> sert | ion.                |                       |             | Ī        |
| 1 | he PWM             | output can also                 |                    | complete genera          | l-purpose timer.    | 4 independent c       | hannels are | <u> </u> |
| а | vailable:          |                                 | ental              |                          |                     |                       |             |          |

- İnput Capture
- Output Comparison
- Generate PWM (edge or center alignment mode)
- Single pulse output

When configured as a 16-bit standard timer, it has the same function as TIMx timer. When configured as a 16-bit PWM generator, it has full modulation capability (0~100%).

In debug mode, the counter can be frozen while the PWM outputs are disabled, thus cutting off the switches controlled by these outputs.

Many of the functions are the same as the standard TIM timer and the internal structure is the same, so the Advanced Control Timer can operate in concert with the TIM timer through the Timer Link function to provide synchronization or event linking functions.

### **Universal Timer (TIMx)**

Up to three standard timers (TIM2, TIM3, and TIM4) that can run synchronously are built into the CKS32F103x8 and CKS32F103xB standard models. Each timer has a 16-bit auto-loading increment/decrement counter, a 16-bit prescaler, and four independent channels, each of which can be used for input capture, output compare, PWM, and single-pulse mode outputs,

#### CKS32F103x8 and CKS32F103xB



pates filling up to twelve input capture, output compare, or PWM channels in the largest package configuration.

They can also work with advanced control timers through the timer linking feature, providing synchronization or event linking. The counters can be frozen in debug mode. Any of the standard timers can be used to generate PWM outputs. Each timer has an independent DMA request mechanism.

These timers are also capable of handling signals from incremental encoders, as well as digital outputs from 1 to 3 Hall sensors.



### **Independent Watchdog**

The Standalone Watchdog is based on a 12-bit decrement counter and an 8-bit prescaler, which is clocked by an internal independent 40kHz RC oscillator; since this RC oscillator is independent of the main clock, it can operate in shutdown and standby modes. It can be used as a watchdog to reset the entire system in the event of a problem, or as a free timer to provide timeout management for applications. The option byte can be configured to be a software or hardware initiated watchdog. In debug mode the counter can be frozen.

### **Windows Watchdog**

The window watchdog contains a 7-bit decrement counter that can be configured to run freely. When used as a watchdog, it can reset the entire system in the event of a problem. It is driven by the master clock and has an early warning interrupt; the counter can be frozen in debug mode.

### system time base timer

This timer can be used exclusively for real-time operating systems or as a standard decrementing counter. It has the following characteristics:

- 24-bit Decrement Counter
- Auto Reload Function
- Generates a maskable system interrupt when the counter is 0.
- Programmable Clock Source

### 2.1.16 I2C bus

Up to 2 I<sup>2</sup> C bus interfaces, capable of operating in multi-master or slave mode, supporting standard and fast modes.

The I2C interface supports 7-bit or 10-bit addressing, and the 7-bit slave mode supports dual slave address addressing. A hardware CRC generator/checker is built-in. The interface can be operated using DMA and supports SMBus bus version 2.0/PMBus bus.

## 2.1.17 Universal Synchronous/Asynchronous Transceiver (USART)

The USART1 interface communicates at rates up to 4.5 Mb/s, while the other interfaces communicate at rates up to Mb/s. The USART interface has hardware CTS and

RTS signal management, support for IrDA SIR ENDEC transmission codecs, ISO7816-compatible smart cards and LIN master/slave functionality. All USART interfaces can be operated using DMA.

## 2.1.18 Serial Peripheral Interface (SPI)

#### CKS32F103x8 and CKS32F103xB



Datash to 2 SPI interfaces, configurable in slave or master mode, with full- and half-duplex communication rates up to 18 Mb/s. 3-bit prescaler generates 8 master mode frequencies, configurable in 8- or 16-bit data frame format. Hardware CRC generation/checksum support for basic SD card and MMC modes.

DMA operation is available for all SPI interfaces.



### 2.1.19 Controller Area Network (CAN)

The CAN interface is compatible with specifications 2.0A and 2.0B (active) at bit rates up to 1 Mb/s. It can receive and send standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has 3 transmit mailboxes and 2 receive FIFOs with 3 stages and 14 adjustable filters.

### 2.1.20 Universal Serial Bus (USB)

The CKS32F103x8 and CKS32F103xB standard series embed a full-speed USB-compatible device controller that follows the full-speed USB device (12 Mb/s) standard, with software-configurable endpoints and standby/wakeup functionality. The USB-specific 48 MHz clock is generated directly from the internal master PLL (clock source must be an HSE crystal oscillator). The 48MHz clock dedicated to USB is generated directly from the internal master PLL (clock source must be an HSE crystal oscillator).

## 2.1.21 General Purpose Input Output Interface (GPIO)

Each GPIO pin can be configured by software as an output (push-pull or open-drain), an input (pull-up or pull-down or float), or a multiplexed peripheral function port. Most GPIO pins are shared with digital or analog multiplexed peripherals. In addition to having analog input capabilities, all GPIO pins allow high currents to pass.

Where required, the peripheral functions of the I/O pins can be locked by a specific operation to avoid accidental write operations to the I/O registers. The I/O pins on the APB2 can be flipped at speeds up to 18MHz.

# 2.1.22 ADC (analog/digital converter)

The CKS32F103x8 and CKS32F103xB standard models incorporate two 12-bit analog/digital converters (ADCs), each of which shares up to 16 external channels, and can perform either single conversion or scan mode conversion. In scan mode, conversion can be performed automatically on a selected set of analog input pins.

Other logic functions on the ADC interface include:

- Synchronized sample and hold
- Cross sampling and hold
- Single Sampling

The ADC can be operated using DMA.

The analog watchdog is able to monitor one, multiple or all selected channels with great precision, and generates an interrupt when the monitored signal exceeds a preset threshold.

Events generated by the standard timer (TIMx) and the advanced control timer (TIM1) can CKS32F103x8 and CKS32F103xB, a series of 32-bit MCUs from Semiconductor Manufacturing Corp.

### CKS32F103x8 and CKS32F103xB



Beinternally cascaded to the ADC's Start Trigger and Injection Trigger, respectively, and the application program can synchronize the AD conversion with the clock.



### 2.1.23 temperature sensor

The temperature sensor generates a voltage that varies linearly with temperature over a conversion range of 2V < VDDA< 3.6V. The temperature sensor is internally connected to the input channel of ADC12 IN16, which is used to convert the sensor output to a digital value.

### 2.1.24 Serial Single Wire JTAG Debug Port (SWJ-DP)

Embedded ARM's SWJ-DP interface, which is a combination of JTAG and serial single-wire debugging interface that enables the connection of either the serial single-wire debugging interface or the JTAG interface. the TMS and TCK signals of the JTAG share the same pins as the SWDIO and SWCLK, respectively, and a special sequence of signals on the TMS pin is used to toggle between the JTAG-DP and the SW-DP.







peripheral function pin

- I. Operating temperature:  $-40^{\circ}$ C to  $+105^{\circ}$ C, junction temperature up to  $125^{\circ}$ C.
- 2. AF: I/O port that can be used as a

# CKS32F103x8 and CKS32F103xB Fig. 1 Block diagram of system modules





Figure 2 Clock tree

- 1. When the HSI is used as an input to the PLL clock, the maximum system clock frequency can only be 64MHz.
- 2. When using the USB function, both HSE and PLL must be used and the CPU frequency must be 48MHz or 72MHz.
- 3. When an ADC sampling time of 1µs is required, APB2 must be set at 14MHz, 28MHz, or 56MHz.



# 3. Pin Definitions



Figure 3CKS32F103xx Standard LQFP100 Pinouts





Figure 4CK\$32F103xx Standard LQFP64 Pinout





Figure 5CKS32F103xx Standard LQFP48 Pinouts





# Figure 6CKS32F103xx Standard QFN36 Pinouts



### Table 2CKS32F103xx Pin Definitions

|        | Pin Number          |         |       | Pin Name                           | ty                 | 1/O 5                                       | Main                                    | Ontiona                                                                       | l multiplexing     |
|--------|---------------------|---------|-------|------------------------------------|--------------------|---------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------|--------------------|
| LQFP48 | LQFP64              | LQFP100 | QFN36 | r III Maine                        | ty<br>p<br>o<br>gy | p<br>o<br>wer<br>le<br>ve<br>l (e<br>le c.) | Function s <sup>(3)</sup> (after reset) | function                                                                      | 1 0                |
| -      | -                   | 1       | -     | PE2                                | I/O                | FT                                          | PE2                                     | TRACECK                                                                       |                    |
| -      | -                   | 2       | -     | PE3                                | I/O                | FT                                          | PE3                                     | TRACED0                                                                       |                    |
| -      | -                   | 3       | -     | PE4                                | I/O                | FT                                          | PE4                                     | TRACED1                                                                       |                    |
| -      | -                   | 4       | -     | PE5                                | I/O                | FT                                          | PE5                                     | TRACED2                                                                       |                    |
| -      | -                   | 5       | -     | PE6                                | I/O                | FT                                          | PE6                                     | TRACED3                                                                       |                    |
| 1      | 1                   | 6       | -     | VBAT                               | S                  |                                             | VBAT                                    |                                                                               |                    |
| 2      | 2                   | 7       | -     | PC13-TAMPER-<br>RTC <sup>(4)</sup> | I/O                |                                             | PC13                                    | TAMPER-RTC                                                                    |                    |
| 3      | 3                   | 8       | -     | PC14-<br>OSC32_IN <sup>(4)</sup>   | I/O                |                                             | PC14                                    | OSC32_IN                                                                      |                    |
| 4      | 4                   | 9       | -     | PC15-<br>OSC32_OUT <sup>(4)</sup>  | I/O                |                                             | PC15                                    | OSC32_OUT                                                                     |                    |
| -      | -                   | 10      | -     | VSS_5                              | S                  | 7                                           | VSS_5                                   |                                                                               |                    |
| -      | -                   | 11      | -     | VDD_5                              | S                  |                                             | VDD_5                                   |                                                                               |                    |
| 5      | 5                   | 12      | 2     | OSC_IN_                            | I                  |                                             | OCS_IN                                  |                                                                               | PD0 <sup>(7)</sup> |
| 6      | 6                   | 13      | 3     | OSC_OUT                            | 0                  |                                             | OSC_OUT                                 |                                                                               | PD1 <sup>(7)</sup> |
| 7      | 7                   | 14      | 4     | NRST                               | I/O                |                                             | NRST                                    |                                                                               |                    |
| -      | 8                   | 15      | -     | PC0                                | I/O                |                                             | PC0                                     | ADC12_IN10                                                                    |                    |
| -      | 9                   | 16      | -     | PC1                                | I/O                |                                             | PC1                                     | ADC12_IN11                                                                    |                    |
| -      | 10                  | 17      | -     | PC2                                | I/O                |                                             | PC2                                     | ADC12_IN12                                                                    |                    |
| -      | 11                  | 18      | -     | PC3                                | I/O                |                                             | PC3                                     | ADC12_IN13                                                                    |                    |
| 8      | 12                  | 19      | 5     | VSSA                               | S                  |                                             | VSSA                                    |                                                                               |                    |
| -      | -                   | 20      | -     | VREF-                              | S                  |                                             | VREF-                                   |                                                                               |                    |
| -      | -                   | 21      | -     | VREF+                              | S                  |                                             | VREF+                                   |                                                                               |                    |
| 9      | 13                  | 22      | 6     | VDDA                               | S                  |                                             | VDDA                                    |                                                                               |                    |
| 10     | 14                  | 23      | 7     | PA0-WKUP                           | I/O                |                                             | PA0                                     | WKUP/USART2_C<br>TS <sup>(6)</sup> /ADC12_IN0/<br>TIM2_CH1_ETR <sup>(6)</sup> |                    |
| 11     | 15                  | 24      | 8     | PA1                                | I/O                |                                             | PA1                                     | USART2_RTS <sup>(6)</sup> / ADC12_IN1/ TIM2_CH2 <sup>(6)</sup>                |                    |
| 12     | 16                  | 25      | 9     | PA2                                | I/O                |                                             | PA2                                     | USART2_TX <sup>(6)</sup> /AD<br>c12_in2/tim2_ch 3 <sup>(6)</sup>              |                    |
|        | 3x8 and<br>du&for i |         |       | series of 32-bit MCU<br>Corp. PA3  | s from<br>I/O      |                                             | PA3                                     | USART2_RX <sup>(6)</sup> /AD<br>C12_IN3/TIM2_CH                               |                    |



| Datasheet |            |         |       |          |                 | ı                                |                                              |                                                                |                |  |
|-----------|------------|---------|-------|----------|-----------------|----------------------------------|----------------------------------------------|----------------------------------------------------------------|----------------|--|
|           | Pin Number |         |       |          | 4               | I/C                              |                                              |                                                                |                |  |
| LQFP48    | LQFP64     | LQFP100 | QFN36 | Pin Name | ty<br>pæo<br>gy | I/O po vs) er le ve l (e le c. ) | Main Function s <sup>(3)</sup> (after reset) | Optiona<br>functior                                            | l multiplexing |  |
|           |            |         |       |          |                 |                                  |                                              | 4(6)                                                           |                |  |
| -         | 18         | 27      | -     | VSS_4    | S               |                                  | VSS_4                                        |                                                                |                |  |
| -         | 19         | 28      | -     | VDD_4    | S               |                                  | VDD_4                                        |                                                                |                |  |
| 14        | 20         | 29      | 11    | PA4      | I/O             |                                  | PA4                                          | spi1_nss <sup>(6)</sup> / usart2_ck / <sup>(6)</sup> ADC12_IN4 |                |  |
| 15        | 21         | 30      | 12    | PA5      | I/O             |                                  | PA5                                          | SPI1_SCK / <sup>(6)</sup> ADC12_IN5                            |                |  |
| 16        | 22         | 31      | 13    | PA6      | I/O             |                                  | PA6                                          | SPI1_MISO <sup>(6)</sup> / ADC12_IN6/ TIM3_CH1 <sup>(6)</sup>  | TIM1_BKIN      |  |
| 17        | 23         | 32      | 14    | PA7      | I/O             |                                  | PA7                                          | SPI1_MOSI <sup>(6)</sup> / ADC12_IN7/ TIM3_CH2 <sup>(6)</sup>  | TIMI_CHIN      |  |
| -         | 24         | 33      | -     | PC4      | I/O             | /                                | PC4                                          | ADC12_IN14                                                     |                |  |
| -         | 25         | 34      | -     | PC5      | I/O             | ·X                               | PC5                                          | ADC12_IN15                                                     |                |  |
| 18        | 26         | 35      | 15    | PB0      | I/O             | A.                               | PB0                                          | ADC12_IN8/<br>TIM3_CH3 <sup>(6)</sup>                          | TIM1_CH2N      |  |
| 19        | 27         | 36      | 16    | PB1      | J/O             | \                                | PB1                                          | ADC12_IN9/<br>TIM3_CH4 <sup>(6)</sup>                          | TIM1_CH3N      |  |
| 20        | 28         | 37      | 17    | PB2      | I/O             | FT                               | PB2/<br>BOOT1                                |                                                                |                |  |
| -         | -          | 38      | -     | PE7      | I/O             | FT                               | PE7                                          |                                                                | TIM1_ETR       |  |
| -         | -          | 39      | -     | PE8      | I/O             | FT                               | PE8                                          |                                                                | TIM1_CH1N      |  |
| -         | -          | 40      | -     | PE9      | I/O             | FT                               | PE9                                          |                                                                | TIM1_CH1       |  |
| -         | -          | 41      | -     | PE10     | I/O             | FT                               | PE10                                         |                                                                | TIM1_CH2N      |  |
| -         | -          | 42      | -     | PE11     | I/O             | FT                               | PE11                                         |                                                                | TIM1_CH2       |  |
| -         | -          | 43      | -     | PE12     | I/O             | FT                               | PE12                                         |                                                                | TIM1_CH3N      |  |
| -         | -          | 44      | -     | PE13     | I/O             | FT                               | PE13                                         |                                                                | TIM1_CH3       |  |
| -         | -          | 45      | -     | PE14     | I/O             | FT                               | PE14                                         |                                                                | TIM1_CH4       |  |
| -         | -          | 46      | -     | PE15     | I/O             | FT                               | PE15                                         |                                                                | TIM1_BKIN      |  |
| 21        | 29         | 47      | -     | PB10     | I/O             | FT                               | PB10                                         | I2C2_SCL/<br>USART3_TX <sup>(6)</sup>                          | TIM2_CH3       |  |
| 22        | 30         | 48      | -     | PB11     | I/O             | FT                               | PB11                                         | I2C2_SDA/<br>USART3_RX <sup>(6)</sup>                          | TIM2_CH4       |  |

 CKS32F103x8 and CKS32F103xB

 Data如此
 31
 49
 18
 VSS\_1
 S
 VSS\_1

 24
 32
 50
 19
 VDD\_1
 S
 VDD\_1

CETC 中科芯集成电路有限公司

Datasheet Pin Number O/Ity pdo Main p Pin Name Optional multiplexing LQFP100 LQFP48 LQFP64 QFN36 Function function VV3 er gy  $S^{(3)}$ le ve l (after (e le reset) c. SPI2 NSS/ I2C2 SMBAI/ PB12 I/O PB12 25 33 51 FT USART3 CK /(6) TIM1 BKIN(6) SPI2\_SCK/ 34 52 **PB13** I/O FT**PB13** 26 USART3 CTS(6) /  $TIM1\_CH1N^{(6)}$ SPI2 MISO/ 27 35 53 PB14 I/O FT PB14 USART3 CTS(6) /  $TIM1\_CH2N^{(6)}$ SPI2 MOSI/ 28 36 54 **PB15** I/O FT **PB15** TIM1 CH3N(6) PD8 I/O FT PD8 USART3 TX 55 PD9 56 PD9 I/O FT USART3 RX PD10 -57 -PD10 I/O FT USART3\_CK \_ I/O FT PD11 58 PD11 USART3 CTS TIM4\_CH1/ I/O FT 59 PD12 PD12 USART3 RTS PD13 I/O FT PD13 TIM4\_CH2 60 \_ 1/0 61 PD14 FT PD14 TIM4 CH3 \_ \_ PD15 62 I/O FT PD15 TIM4 CH4 37 63 PC6 I/O FT PC6 TIM3 CH1 38 64 PC7 I/O FT PC7 TIM3\_CH2 39 65 PC8 I/O FT PC8 TIM3 CH3 40 66 PC9 I/O FT PC9 TIM3 CH4 USART1 CK/ I/O 29 41 67 20 PA8 FT PA8 TIM1 CH1(6)/MCO USART1 TX /(6) 42 I/O FTPA9 30 68 21 PA9 TIM1 CH2(6) USART1\_RX /(6) 43 31 69 22 PA10 I/O FT PA10 TIM1 CH3(6) USART1\_CTS/ 32 70 23 I/O FT 44 PA11 PA11 USBDM/CANRX(6) /TIM1 CH4(6)

| CKS32F  | CKS32F103x8 and CKS32F103xB CEIC 中科心集成电路有限公司 CKS32F103xB CEINa Rey System & INTEGRATED CIRCUIT CO.,LT |    |    |      |     |    |      |                         |  |  |  |  |
|---------|-------------------------------------------------------------------------------------------------------|----|----|------|-----|----|------|-------------------------|--|--|--|--|
| Datashe | et                                                                                                    |    |    |      |     |    |      | usart1_rts/             |  |  |  |  |
| 33      | 45                                                                                                    | 71 | 24 | PA12 | I/O | FT | PA12 | usbdp/cantx /(6)        |  |  |  |  |
|         |                                                                                                       |    |    |      |     |    |      | TIM1_ETR <sup>(6)</sup> |  |  |  |  |

Datasheet



| Datasheet  |        |         |       |          |                 |                         | -                                            |                                                      |                                        |
|------------|--------|---------|-------|----------|-----------------|-------------------------|----------------------------------------------|------------------------------------------------------|----------------------------------------|
| Pin Number |        |         |       | ts7      | I/O             |                         |                                              |                                                      |                                        |
| LQFP48     | LQFP64 | LQFP100 | QFN36 | Pin Name | ty<br>Pdo<br>Sy | power le ve l (e e c. ) | Main Function s <sup>(3)</sup> (after reset) | Optional multiplexing function                       |                                        |
| 34         | 46     | 72      | 25    | PA13     | I/O             | FT                      | JTMS/SWD<br>IO                               |                                                      | PA13                                   |
| -          | -      | 73      | -     |          |                 |                         | unconne                                      | cted                                                 |                                        |
| 35         | 47     | 74      | 26    | VSS_2    | S               |                         | VSS_2                                        |                                                      |                                        |
| 36         | 48     | 75      | 27    | VDD_2    | S               |                         | VDD_2                                        |                                                      |                                        |
| 37         | 49     | 76      | 28    | PA14     | I/O             | FT                      | JTCK/<br>SWCLK                               |                                                      | PA14                                   |
| 38         | 50     | 77      | 29    | PA15     | I/O             | FT                      | JTDI                                         |                                                      | TIM2_CH1_ETR PA15/SPI1_NSS             |
| -          | 51     | 78      | -     | PC10     | I/O             | FT                      | PC10                                         |                                                      | USART3_TX                              |
| -          | 52     | 79      | -     | PC11     | I/O             | FT                      | PC11                                         |                                                      | USART3_RX                              |
| -          | 53     | 80      | -     | PC12     | I/O             | FT                      | PC12                                         |                                                      | USART3_CK                              |
|            |        | 81      | 2     | PD0      | I/O             | FT                      | OSC_IN(8)                                    | <b>&gt;</b>                                          | CANRX                                  |
|            |        | 82      | 3     | PD1      | I/O             | FT                      | OSC_OUT <sup>(8</sup>                        |                                                      | CANTX                                  |
| -          | 54     | 83      | -     | PD2      | I/O             | FT                      | PD2                                          | TIM3_ETR                                             |                                        |
| -          | -      | 84      | -     | PD3      | I/Q             | FT                      | PD3                                          |                                                      | USART2_CTS                             |
| -          | -      | 85      | -     | PD4      | I/O             | FT                      | PD4                                          |                                                      | USART2_RTS                             |
| -          | -      | 86      | -     | PD5      | I/O             | FT                      | PD5                                          |                                                      | USART2_TX                              |
| -          | -      | 87      | -     | PD6      | I/O             | FT                      | PD6                                          |                                                      | USART2_RX                              |
| -          | -      | 88      | -     | PD7      | I/O             | FT                      | PD7                                          |                                                      | USART2_CK                              |
| 39         | 55     | 89      | 30    | PB3      | I/O             | FT                      | JTDO                                         |                                                      | pb3/traceswo/<br>tim2_ch2/<br>SPI1_SCK |
| 40         | 56     | 90      | 31    | PB4      | I/O             | FT                      | JNTRST                                       |                                                      | PB4/TIM3_CH1/<br>SPI1_MISO             |
| 41         | 57     | 91      | 32    | PB5      | I/O             |                         | PB5                                          | I2C1_SMBAI                                           | TIM3_CH2/<br>SPI1_MOSI                 |
| 42         | 58     | 92      | 33    | PB6      | I/O             | FT                      | PB6                                          | I2C1_SCL / <sup>(6)</sup><br>TIM4_CH1 <sup>(6)</sup> | USART1_TX                              |
| 43         | 59     | 93      | 34    | PB7      | I/O             | FT                      | PB7                                          | I2C1_SDA / <sup>(6)</sup><br>TIM4_CH2 <sup>(6)</sup> | USART1_RX                              |
| 44         | 60     | 94      | 35    | BOOT0    | I               |                         | BOOT0                                        |                                                      |                                        |
| 45         | 61     | 95      | -     | PB8      | I/O             | FT                      | PB8                                          | TIM4_CH3 <sup>(6)</sup>                              | I2C1_SCL/<br>CANRX                     |

 CKS32F103x8 and CKS32F103xB

 Datasheet 46
 62
 96
 P89
 I/O
 FT
 P89
 TIM4\_CH4(6)
 I2C1\_SDA/CANTX

Datasheet



|        | Pin    | Numb    | er    |          | <b>t</b> 7           | I/O              |                                              |                     |                 |
|--------|--------|---------|-------|----------|----------------------|------------------|----------------------------------------------|---------------------|-----------------|
| LQFP48 | LQFP64 | LQFP100 | QFN36 | Pin Name | ty<br>pol<br>o<br>gy | powerle ve le c. | Main Function s <sup>(3)</sup> (after reset) | Optiona<br>function | nl multiplexing |
| -      | -      | 97      | -     | PE0      | I/O                  | FT               | PE0                                          | TIM4_ETR            |                 |
| -      | -      | 98      | -     | PE1      | I/O                  | FT               | PE1                                          |                     |                 |
| 47     | 63     | 99      | 36    | VSS_3    | S                    |                  | VSS_3                                        |                     |                 |
| 48     | 64     | 100     | 1     | VDD_3    | S                    |                  | VDD_3                                        |                     |                 |

- 1. I = Input, O = Output, S = Supply
- 2. FT: 5V Voltage Tolerance
- 3. The PC13, PC14 and PC15 pins are powered by a power switch that can only absorb a limited amount of current (3mA). Therefore, these three pins have the following limitations when used as output pins: when used as output pins, they can only be operated in 2MHz mode, the maximum drive load is 30pF, and they cannot be used as a current source (e.g., to drive LEDs).
- 4. These pins are in the primary functional state when the backup area is first powered up, after that, even if reset, the state of these pins is controlled by the backup area registers (these registers are not reset by the primary reset system) For specific information on how to control these IO ports, refer to the relevant sections of the CKS32F103x8 and CKS32F103xB Reference Manuals for the Battery Backup Area and BKP registers.
- 5. This type of multiplexing can be configured by software to other pins (if available for the corresponding package model), for details please refer to CKS32F103x8 and
  - The Multiplexing Functions I/O chapter and the Debug Setup chapter of the CKS32F103xB Reference Manual.
- 6. Pins 2 and 3 for the QFN36 package, and pins 5 and 6 for the LQFP48 and LQFP64 packages are configured as OSC\_IN and OSC\_OUT function pins by default after a chip reset. Software can reset these pins to function as PD0 and PD1. However, for LQFP100 package, since PD0 and PD1 are intrinsic functional pins, there is no need to reimage them by software. For more details, please refer to the Multiplexed Function I/O section and Debug Setup section of the CKS32F103x8 and CKS32F103xB Reference Manuals. In output mode, PD0 and PD1 can only be configured for 50MHz output mode.
- 7. ADC12\_INx (x represents an integer between 0 and 15), which appears in the pin name labeling in the table, indicates that this pin can be ADC1\_INx or ADC2\_INx. e.g. ADC12\_IN9 indicates that this pin can be configured as ADC1\_IN9 or ADC2\_IN9.
- 8. TIM2\_CH1\_ETR in the multiplexing function corresponding to pin PA0 in the table indicates that the function can be configured as TIM2\_TI1 or TIM2\_ETR. Similarly, PA15
  - The name of the corresponding remapping multiplexing function, TIM2 CH1 ETR, has the same meaning.



## 4. memory image



Figure 7 Memory MAP Diagram



### 5. Electrical Characteristics

### 5.1 test condition

All voltage's are referenced to vss unless otherwise noted.

#### 5.1.1 Minimum and maximum values

Unless otherwise stated, all minimum and maximum values are guaranteed at the worst case ambient temperature, supply voltage and clock frequency conditions by testing 100% of the product on the production line at an ambient temperature of TA=25°C and  $_{TA}$ =TAmax (TAmax matches the selected temperature range).

In the notes below each table, it is stated that the data obtained through comprehensive evaluation, design simulation and/or process characterization will not be tested on the production line; on the basis of the comprehensive evaluation, the minimum and maximum values are obtained by taking the average of the samples tested plus or minus three times the standard distribution (mean  $\pm 3\Sigma$ ).

## 5.1.2 Typical values

Typical data is based on TA=25°C and  $_{VDD}$  =3.3V (2V  $\leq$   $_{VDD}$   $\leq$  3.3V voltage range) unless otherwise noted. These data are for design guidance only and have not been tested.

Typical ADC accuracy values are obtained by sampling a standardized batch, tested over all temperature ranges, with 95% of the products having an error less than or equal to the value given ( $\pm 2\sum$  on average).

## 5.1.3 typical curve

Typical curves are for design guidance only and are untested unless otherwise noted.

## 5.1.4 load capacitance

The load conditions for measuring the pin parameters are shown in Figure 8.





Figure 8 Load Conditions for Pins

## 5.1.5 Pin Input Voltage

The measurement of the input voltage on the pins is shown in Figure 9.



Figure 9 Pin Input Voltage



# 5.1.6 Power supply program



Figure 10 Power supply scheme

Note: The  $4.7\mu F$  capacitor in the above diagram must be connected to VDD3.

## 5.1.7 Current consumption measurement



Figure 11 Current consumption measurement scheme



VDD +4.0

vss-0.3

## 5.2 Absolute maximum rating

Loads applied to the device in excess of the values given in the Absolute Maximum Ratings lists (Tables 3, 4, 5) may cause permanent damage to the device. The fact that only the maximum loads that can be withstood are given does not imply that the device operates functionally without error under these conditions. Prolonged operation of the device at the maximum value will affect the reliability of the device.

| notation  | descriptive                                         | minimum | maximum | unit |
|-----------|-----------------------------------------------------|---------|---------|------|
|           |                                                     | value   | values  | (of  |
|           |                                                     |         |         | meas |
|           |                                                     |         |         | ure) |
| VDD - VSS | External mains supply voltage                       | -0.3    | 4.0     |      |
|           | (including <sub>VDDA</sub> and <sub>VDD</sub> ) (1) |         |         | V    |

Table 3 Voltage Characteristics

1. All power (vdd, vdd) and element (est) vssa) pins must always be connected to the external permissible range power supply system. Input voltage on other pins (2) vss -0.3 4.0

Input voltage on pins with 5V

2. IINJ(PIN) must provided Woltage (differblace), between different bes not exceed its not inverse is not exceed its not inverse inverse inverse inverse inverse inverse inverse inverse inverse injection current; when vinverse inverse injection current.

| VESD (HBM) | ESD Electrostatic distralage Cultaget ( | haract&est&  | exction 5.3 | .11. |
|------------|-----------------------------------------|--------------|-------------|------|
| notation   | (human body modelescriptive             |              | maximu      | unit |
|            | <b>* * * * * * * * * *</b>              |              | m           | (of  |
|            | 15                                      |              | values      | meas |
|            |                                         |              |             | ure) |
| IVDD       | Total current (supply current) throug   | gh the       | 150         |      |
|            | VDD/VDDA power supply line (1)          |              |             |      |
| IVSS       | Total current (outgoing current) thro   | ough the vss | 150         |      |
|            | ground (¹)                              |              |             | mA   |
|            |                                         |              |             |      |

- 1. All power (VDD 1180DA) an Output sink surpristrous and I/O land control pins extern 5 per missible range power supply system.

  Output current on arbitrary I/O and control pins -25
- 2. Independent of the state of
- 3. Reverse current injection can interfere with the analog performance of the device. See Section 5.3.17.
- 4. When several I/O ports have injected currents at the same time, the maximum value of  $\sum_{\text{IINJ(PIN)}}$  is the sum of the instantaneous absolute values of the forward injection current and the reverse injection current. This result is based on the characterization of the maximum value of  $\sum_{\text{IINJ(PIN) on the}} 4$  I/O ports of the device.



Table 5 Temperature Characteristics

|          |             | i atare craracteriot |                   |
|----------|-------------|----------------------|-------------------|
| notation | descriptive | numerical value      | unit (of measure) |
| TSTG     | Storage     | -65~+150             | °C                |
|          | temperature |                      |                   |
|          | range       |                      |                   |
| TJ       | Maximum     | 150                  | °C                |
|          | Junction    |                      |                   |
|          | Temperature |                      |                   |



# 5.3 working conditions

# 5.3.1 General working conditions

Table 6 General working conditions

|         | notation                | parameters                                                                                          | pr                  | erequisite                                                                  |                            | maximu<br>m values | unit<br>(of<br>meas          |           |
|---------|-------------------------|-----------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------|----------------------------|--------------------|------------------------------|-----------|
|         | fHCLK                   | Internal AHB clock frequency                                                                        |                     |                                                                             | 0                          | 72                 | ure)                         |           |
|         | fPCLK1                  | Internal APB1 clock frequency                                                                       |                     |                                                                             | 0                          | 36                 | MHz                          |           |
|         | fPCLK2                  | Internal APB2 clock frequency                                                                       |                     |                                                                             | 0                          | 72                 |                              |           |
|         | VDD                     | Standard Operating Voltage                                                                          |                     |                                                                             | 2                          | 3.6                |                              |           |
|         | V <sub>BbA</sub>        | Analog section operating voltage (without ADC)                                                      | mus<br>as V<br>same | - / ·                                                                       | 2                          | 3.6                | V                            |           |
|         |                         | Analog section operating voltage (using ADC)                                                        | ~                   |                                                                             | 2.4                        | 3.6                |                              |           |
|         | VBAT                    | Backup section operating voltage                                                                    | 分                   |                                                                             | 1.8                        | 3.6                |                              |           |
|         |                         |                                                                                                     |                     | Standard I/O                                                                | -0.3                       | VDD+0.3            |                              |           |
|         | VIN                     | I/O Input Voltage                                                                                   | FT I/O              | 2V <vdd<3.6v< td=""><td>-0.3</td><td>5.5</td><td></td><td></td></vdd<3.6v<> | -0.3                       | 5.5                |                              |           |
|         |                         |                                                                                                     |                     | VDD=2V                                                                      | -0.3                       | 5.2                |                              |           |
|         |                         | O'                                                                                                  |                     | BOOT0                                                                       | 0                          | 5.5                |                              |           |
|         |                         |                                                                                                     | I                   | LQFP100                                                                     |                            | 434                |                              |           |
|         | PD                      | power dissipation                                                                                   |                     | LQFP64                                                                      |                            | 444                |                              |           |
|         | 10                      | Temperature scale 6: T = 85°C                                                                       |                     | LQFP48                                                                      |                            | 363                | mW                           |           |
| 1 3371  |                         | Temperature scale 7: T = 105°C                                                                      |                     | QFN36                                                                       |                            | 1000               |                              |           |
|         | _                       | ADC, see Table 43.                                                                                  | od to may           |                                                                             | wp. tollow                 |                    | OmV dif                      | foronco   |
| be      | tween <sub>voo</sub> ar | nded that the same power supply № us<br>Ambient temperature<br>Id vdda during power-up and normal o | pera <b>ti</b> jog  | sipation                                                                    | vdda <b>,2<b>4U</b>IOW</b> | ing uggsto 30      | om v an                      | referice  |
| 3. If t | he TA is lower          | (temperature scale 6)<br>higher povalues are allowed as long a                                      | is the ∄d           | ovesprontvexceed ™                                                          | max (S <b>AO</b> SeC       | ion <b>1105</b>    |                              |           |
| 4. In   | states with l           | ower power dissipation, TA can be ext                                                               | ended <b>d</b> ig   | s <b>shipatang</b> eas lon                                                  | g as 11 does               | not exceed         | °C<br>I <sub>TJmax</sub> (se | e Section |
| 1).     |                         | Ambient temperature                                                                                 | dis                 | aximum power<br>ssipation                                                   | -40                        | 105                |                              |           |
| 5.3.    | 2 Opeı                  | rating conditions at pov                                                                            |                     |                                                                             | er- <b>d</b> ow            | <b>n</b> 125       |                              |           |
|         | -                       |                                                                                                     |                     | ssipation <sup>(4)</sup>                                                    |                            |                    |                              |           |
| 7       | The param               | eters given in the following table<br>Junction temperature range                                    | were te             | <b>este de mather</b> eger<br>cale 6                                        | iera#0per                  | atin <b>g5</b> con | ditions                      |           |
|         |                         | S32F103xB, a series of 32-bit MCUs from nufacturing Corp.                                           |                     | emperature<br>cale 7                                                        | -40                        | 125                |                              | 38        |



39

Table 7 Operating conditions at power-up and power-down

| notati | parameters               | conditional | minimum | maximu   | unit (of |
|--------|--------------------------|-------------|---------|----------|----------|
| on     |                          |             | value   | m values | measu    |
|        |                          |             |         |          | re)      |
| tVDD   | <sub>VDD</sub> Rise Rate |             | 0       | $\infty$ | ug/V     |
| ***==  | <sub>VDD</sub> Rate of   |             | 20      | $\infty$ | μs/V     |
|        | Descent                  |             |         |          |          |

#### Embedded reset and power control module features 5.3.3

The parameters given in the following table are based on tests at ambient temperature and VDD supply voltage as listed in Table 6.

Table 8 Embedded Reset and Power Control Module Characteristics notation parameters prerequisite minimu typical maximu unit (of m value value m values measu re) PLS[2:0]=000 (rising edge) 2.10 2.18 2.26 V 2.00 2.07 2.16 V PLS[2:0]=000 (falling edge) 2.19 PLS[2:0]=001 (rising edge) 2.28 2.37 V 2.09 2.27 V PLS[2:0]=001 (falling edge) 2.17 PLS[2:0]=010 (rising edge) 2.28 2.38 2.48 V V PLS[2:0]=010 (falling edge) 2.18 2.27 2.38 PLS[2:0]=011 (rising edge) 2.38 2.47 2.58 V Programma VPVD PLS[2:0]=011 (falling edge) 2.28 V ble Voltage 2.37 2.48 Detector 2.47 V PLS[2:0]=100 (rising edge) 2.57 2.69 level PLS[2:0]=100 (falling edge) 2.37 2.46 2.59 V selection 2.57 2.79 V PLS[2:0]= 101 (rising edge) 2.67 2.47 2.56 2.69 V PLS[2:0]=101 (falling edge) PLS[2:0]= 110 (rising edge) 2.66 2.77 2.90 V PLS[2:0]=110 (falling edge) 2.56 2.66 2.80 V V PLS[2:0]=111 (rising edge) 2.76 2.86 3.00 2.66 2.76 2.90 V PLS[2:0]=111 (falling edge) VPVDhyst (2) 100 **PVD** hysteresis mV The characteristics of the product are guiling teetley design to a minimus on value of 850 RPP. V 1.96 Guaranteed by design partiested in producting (of a mountain 1.84 1.92 2.0 V range) reset Built-in reference voltage 5.3.4 value CKS32F103x8 and CKS32F103xB, a series of 32-bit MCUs from VPVDhyst 40 mV TRSTTEMPO $^{(2)}$ 1 2.5 4.5 Reset Duration





Datasheet parameters given in the following table are based on tests at ambient temperature and  $v_{DD}$  supply voltage as listed in Table 6.



Table 9 Built-in reference voltage

| notatio     | parameters                             | prerequisite                                             | minimu  | typical | maximu              | unit  |
|-------------|----------------------------------------|----------------------------------------------------------|---------|---------|---------------------|-------|
| n           |                                        |                                                          | m value | value   | m values            | (of   |
|             |                                        |                                                          |         |         |                     | measu |
|             |                                        |                                                          |         |         |                     | re)   |
| VREFINT     | Built-in reference                     | $-40^{\circ}\text{C} < \text{TA} < +105^{\circ}\text{C}$ | 1.16    | 1.20    | 1.26                | V     |
|             | voltage                                | -40°C < TA< +85°C                                        | 1.16    | 1.20    | 1.24                | V     |
| TS_vref (1) | When the internal reference voltage is |                                                          |         | 5.1     | 17.1 <sup>(2)</sup> | μs    |
|             | read                                   |                                                          |         |         |                     |       |
|             | ADC Sampling Time                      |                                                          |         |         |                     |       |

- 1. The characteristics of the product are guaranteed by design to a minimum value of VPOR/PDR.
- 2. Guaranteed by design, not tested in production.

## 5.3.5 Supply Current Characteristics

Current consumption is a combination of a number of parameters and factors including operating voltage, ambient temperature, load on I/O pins, software configuration of the product, operating frequency, flip-flop rate of I/O pins, location of the program in memory, and code executed.

See Figure 11 for a description of how current consumption is measured.

All of the current consumption measurements given in this section for the operating modes are obtained by executing a streamlined set of codes that are able to

Dhrystone2.1 code equivalent results.

## Maximum current consumption

The microcontroller is in the following conditions:

- All I/O pins are in input mode and connected to a static level VDD or VSS (no load).
- All peripherals are off unless otherwise noted.
- The flash memory access time is adjusted to the frequency of fHCLK (0 wait cycle for 0~24MHz, 1 wait cycle for 24~48MHz, and 2 wait cycles for more than 48MHz).
- Command prefetch is turned on (hint: this parameter must be set before setting the clock and bus divider).
- When the peripheral is turned on: fPCLK1 = fHCLK/2, fPCLK2 = fHCLK.

The parameters given in Tables 10, 11, and 12 are based on tests at the ambient temperatures and VDD supply voltages listed in Table 5.

Table 10 Maximum Current Consumption in Run Mode with Data Processing Code Running from Internal

| CKS32F103x<br>Semicondu | notati<br>8 and cks3<br>on<br>ictor Manu | 1 | Fla<br>prerequisite<br>f32-bit MCUs from |       | Maximur<br>TA= 85°C | n value <sup>(1)</sup><br>TA= 105°C | unit<br>(of<br>meas<br>ure) | 41 |
|-------------------------|------------------------------------------|---|------------------------------------------|-------|---------------------|-------------------------------------|-----------------------------|----|
|                         |                                          |   |                                          | 72MHz | 50                  | 50.2                                |                             |    |

Datasheet



|  | 36MHz | 19.8 | 19.9 |  |
|--|-------|------|------|--|
|  | 24MHz | 13.9 | 14.2 |  |
|  | 16MHz | 10.7 | 11   |  |
|  | 8MHz  | 6.8  | 7.1  |  |

- 1. Derived from a comprehensive assessment and not tested in production.
- 2. External clock is 8MHz, PLL is enabled when fHCLK>8MHz.

Table 11 Maximum Current Consumption in Run Mode with Data Processing Code Running from Internal

| notati<br>on | paramet<br>ers       | prerequisite                | RAM   | Maximui<br>TA= 85°C | m value <sup>(1)</sup> TA= 105°C | unit<br>(of  |
|--------------|----------------------|-----------------------------|-------|---------------------|----------------------------------|--------------|
|              |                      |                             |       |                     |                                  | meas<br>ure) |
|              |                      |                             | 72MHz | 48                  | 50                               |              |
|              |                      |                             | 48MHz | 31.5                | 32                               |              |
|              |                      | External                    | 36MHz | 24                  | 25.5                             |              |
|              |                      | clock <sup>(2)</sup> tomble | 24MHz | 17.5                | 18                               |              |
|              | 0 1                  | all                         | 16MHz | 12.5                | 13                               |              |
| IDD          | Supply               | peripherals                 | 8MHz  | 7.5                 | 8                                | mA           |
|              | current in operating | 113                         | 72MHz | 29                  | 29.5                             |              |
|              | mode                 |                             | 48MHz | 20.5                | 21                               |              |
|              | 111040               | External                    | 36MHz | 16                  | 16.5                             |              |
|              |                      | alaala?tturra               | I     |                     |                                  |              |

1. Derived from a comprehensive evaluation and tested 24 Metauction with 5 VDD max and 2 HCLK max as conditions.

2. External clock is 8MHz, PLL is enabled when fHCLK 8MH6MHz 8.5 9 peripherals 8MHz 5.5 6

Table 12 Maximum current consumption in sleep mode with code running in Flash or RAM

|            | notati<br>on                   | paramet<br>ers                                | conditional                                                  | fHCLK | Maximur<br>TA= 85°C | n value (1)<br>TA= 105°C | unit<br>(of |
|------------|--------------------------------|-----------------------------------------------|--------------------------------------------------------------|-------|---------------------|--------------------------|-------------|
|            |                                |                                               |                                                              |       |                     |                          | meas        |
|            |                                |                                               |                                                              |       |                     |                          | ure)        |
|            |                                |                                               |                                                              | 72MHz | 30                  | 32                       |             |
|            |                                |                                               |                                                              | 48MHz | 20                  | 20.5                     |             |
|            |                                |                                               | External                                                     | 36MHz | 15.5                | 16                       |             |
|            |                                | Supply                                        | clock <sup>(2)</sup> to                                      | 24MHz | 11.5                | 12                       |             |
|            | IDD                            | current in                                    | enable all                                                   | 16MHz | 8.5                 | 9                        | mA          |
|            |                                | sleep                                         | peripherals                                                  | 8MHz  | 5.5                 | 6                        |             |
|            |                                | mode                                          | External -                                                   | 72MHz | 7.5                 | 8                        |             |
|            |                                |                                               |                                                              | 48MHz | 6                   | 6.5                      |             |
| CKS32F103x | and <b>cks3</b> :<br>ctor Manu | <b>2F103xB,</b> a series o<br>facturing Corp. | clock <sup>(2)</sup> to<br>f32-bit MCUs from<br>turn off all | 36MHz | 5                   | 5.5                      |             |
|            |                                |                                               | peripherals                                                  |       |                     |                          |             |



| 24MHz | 4.5 | 5   |
|-------|-----|-----|
| 16MHz | 4   | 4.5 |
| 8MHz  | 3   | 4   |

- 1. Derived from a comprehensive evaluation, tested in production with VDDmax and with fHCLKmax enabling the peripheral as a condition.
- 2. External clock is 8MHz, PLL is enabled when fHCLK>8MHz.

Table 13 Typical and Maximum Current Consumption in Stop and Standby Modes

|        | <i>J</i> 1 |                                      |          | 1        |      |       |      |
|--------|------------|--------------------------------------|----------|----------|------|-------|------|
|        |            |                                      | typical  | value    | ma   | ximum |      |
| notati | paramet    | prerequisite                         |          |          | val  | ues   | unit |
| on     | ers        |                                      | VDD/VBAT | VDD/VBAT | TA=  | TA=   | (of  |
|        |            |                                      | = 2.4V   | = 3.3V   | 85°C | 105°C | meas |
|        |            |                                      |          |          |      |       | ure) |
|        |            | Regulator is in run mode, low and    |          |          |      |       | urc) |
|        |            | high speeds                          | 22.7     | 23.4     | 200  | 370   |      |
|        | Supply     | Internal RC oscillator and           | 22.1     | 23.4     | 200  | 3/0   |      |
|        | current in | high-speed oscillator off (no        |          |          |      |       |      |
|        | shutdown   | independent watchdog)                |          |          |      |       |      |
|        | mode       | The regulator is in low-power        |          |          |      |       |      |
| IDD    | inode      | mode with low and high               | 9.1      | 10.3     | 180  | 340   |      |
|        |            | The internal RC oscillator           | 9.1      | 10.5     | 100  | 340   |      |
|        |            | and high-speed oscillator are        | XX       |          |      |       | μА   |
|        |            | off (no independent                  | ZXX      |          |      |       |      |
|        |            | watchdog).                           |          |          |      |       |      |
|        |            | Low-speed internal RC                |          |          |      |       |      |
|        |            | oscillator and independent           | 2.4      | 2.06     | -    | -     |      |
|        |            | watchdog                             |          |          |      |       |      |
|        | Supply     | in the on state                      |          |          |      |       |      |
|        | current in | 1                                    |          |          |      |       |      |
|        | standby    | Low-speed internal RC oscillator on  | 2.3      | 2.81     | -    | -     |      |
|        | mode       |                                      |          |          |      |       |      |
|        |            | state, independent watchdog is       |          |          |      |       |      |
|        |            | in off state                         |          |          |      |       |      |
|        |            | Low-speed internal RC                | _        |          |      |       |      |
|        |            | oscillator and independent           | 1.5      | 3.17     | 4    | 5     |      |
|        |            | watchdog                             |          |          |      |       |      |
|        |            | is off, the low-speed oscillator and |          |          |      |       |      |
|        |            | RTC                                  |          |          |      |       |      |
|        |            | stalled                              |          |          |      |       |      |

| CKS32F103                   | 3x8 and CKS32F10 | 3xB                          |     | CEIC |        | 果似电路行 |  |
|-----------------------------|------------------|------------------------------|-----|------|--------|-------|--|
| Da <b>te</b> b <u>l</u> vet | The backup       | Low-speed oscillator and RTC | 11  | 14   | 1 9(2) | 2.2   |  |
| AT                          | area of the      | 1                            | 1.1 | 1.4  | 1.5    | 2.2   |  |
|                             | Supply           | on                           |     |      |        |       |  |
|                             | current          |                              |     |      |        |       |  |

- 内科女生成中的方明八字

- 1. Typical values are tested at TA=25°C.
- 2. Derived from a comprehensive assessment and not tested in production.

### **Typical Current Consumption**

The MCU is under the following conditions:

- All I/O pins are in input mode and connected to a static level VDD or VSS (no load).
- All peripherals are off unless otherwise noted.
- The flash memory access time is adjusted to the frequency of fHCLK (0 wait cycle for 0~24MHz, 1 wait cycle for 24~48MHz, and 2 wait cycles for more than 48MHz).
- Ambient temperature and VDD supply voltage conditions are listed in Table 6.
- Command prefetch is turned on (hint: this parameter must be set before setting the clock and bus divider). When the peripheral is turned on:
  - fPCLK1= fHCLK/4, fPCLK2= fHCLK/2, and fADCCLK = fPCLK2/4.



Table 14 Typical Current Consumption in Run Mode with Data Processing Code Running from Internal Flash

|            | notat     | paramet<br>ers           | prereq<br>uisite    | fHCLK             | Typical<br>Enable all<br>peripherals <sup>(2)</sup> | value <sup>(1)</sup><br>Turn off all<br>peripherals | unit<br>(of<br>meas<br>ure) |        |
|------------|-----------|--------------------------|---------------------|-------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------|--------|
|            |           | C                        |                     | 72MHz             | 32.46                                               | 21.7                                                |                             |        |
| 1. Typical | values a  | re tested at TA=         | 2 <b>EX</b> te¥DD   | =3. <b>4</b> 8MHz | 21.96<br>to the APC <sub>1</sub> for each           | 14.73                                               | mΛ                          |        |
| 2. An add  | tional 0. | 8mA of current           | comsulmpt           | ion is added      | to the APC <sub>1</sub> f3r each                    | analog sec <del>t</del> ion. In                     | the applic                  | ation  |
| enviro     | hment, t  | his current is o<br>Mode | nlyd <b>l</b> ggrea | sed when the      | ADC is turned on (se                                | tting the ADON bi                                   | t of the <b>AI</b>          | DC_CR2 |
| registe    | r).       |                          | ks <sup>(3)</sup>   |                   |                                                     |                                                     |                             |        |

<sup>3.</sup> External clock is 8MHz, PLL is enabled when fHCLK>8MHz.

Table 15 Typical Current Consumption in Run Mode with Data Processing Code Running from Internal RAM

|            | notat    | paramet                    | prereg               | fHCLK             | Typical                    | value <sup>(1)</sup> | unit       |        |
|------------|----------|----------------------------|----------------------|-------------------|----------------------------|----------------------|------------|--------|
|            | ion      | 1                          | uisite               |                   | Enable all                 | Turn off all         | (of        |        |
|            | 1011     | ers                        | uisite               |                   | peripherals <sup>(2)</sup> | peripherals          | ,          |        |
|            |          |                            |                      |                   |                            |                      | meas       |        |
|            |          |                            |                      |                   |                            |                      | ure)       |        |
|            |          | Sunnly                     |                      | 72MHz             | 24.84                      | 14.21                |            |        |
| 1. Typical | values a | Supply<br>re tested at TA= | 2 <b>EX</b> te¥DD    | =3. <b>48</b> MHz | 17.17                      | 10.05                | mΛ         |        |
| 2. An addi | tional 0 | 8mA of current             | comsulmpt            | ionziemelded      | to the ADG for each        | analog şestion. In   | the applic | ation  |
| enviro     | hment, t | his current is o           | nlyc <b>ilo</b> crea | sed when the      | ADC is turned on (see      | tting the ADON bi    | of the AI  | DC_CR2 |
| registe    | r).      | 1,10 40                    | ks <sup>(3)</sup>    |                   |                            |                      |            |        |

<sup>3.</sup> External clock is 8MHz, PLL is enabled when fHCLK>8MHz.

Table 16 Typical Current Consumption in Sleep Mode with Data Processing Code Running from Internal

#### Flash or RAM

| notation | parameters                  | prere<br>quisit<br>e                      | fHCLK | Typical<br>Enable all<br>peripherals <sup>(2)</sup> | value <sup>(1)</sup><br>Turn off all<br>peripherals | unit<br>(of<br>meas<br>ure) |
|----------|-----------------------------|-------------------------------------------|-------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------|
| IDD      | Supply currentin sleep mode | Exter<br>nal<br>cloc<br>ks <sup>(3)</sup> | 72MHz | 17.57                                               | 17.61                                               | mA                          |

<sup>1.</sup> Typical values are tested at TA=25°C, VDD=3.3V.

<sup>2.</sup> An additional 0.8mA of current consumption is added to the ADC for each analog section. In the application environment, this current is only increased when the ADC is turned on (setting the ADON bit of the ADC CR2



3. External clock is 8MHz, PLL is enabled when fHCLK>8MHz.

## Built-in peripheral current consumption

The current consumption of the built-in peripherals is listed in Table 17, and the operating conditions of the MCU are as follows:

• All I/O pins are in input mode and connected to a static level - VDD or VSS (no load).



- All peripherals are off unless otherwise noted.
- The values given are calculated by measuring current consumption
  - Turn off the clock for all peripherals
  - Turn on the clock for only one peripheral
- $\bullet$  Ambient temperature and  $_{V\!D\!D}\!$  supply voltage conditions are listed in Table 4.

Table 17 Current consumption of built-in peripherals<sup>(1)</sup>

|        |                | lt-in                                         | Typical power                       | unit    | bı                  | uilt-in                   | Typical work at 25°C          | unit    |
|--------|----------------|-----------------------------------------------|-------------------------------------|---------|---------------------|---------------------------|-------------------------------|---------|
|        | per            | ripherals                                     | consumption at 25°C                 | (of     | ре                  | eripherals                | dilly-dally                   | (of     |
|        |                |                                               |                                     | meas    |                     |                           |                               | meas    |
|        |                |                                               |                                     | ure)    |                     |                           |                               | ure)    |
|        |                | TIM2                                          | 1.2                                 |         |                     | GPIOA                     | 0.47                          |         |
|        |                | TIM3                                          | 1.2                                 |         |                     | GPIOB                     | 0.47                          |         |
|        |                | TIM4                                          | 0.9                                 |         |                     | GPIOC                     | 0.47                          |         |
|        |                | SPI2                                          | 0.2                                 |         |                     | GPIOD                     | 0.47                          |         |
|        | APB1           | USART2                                        | 0.35                                | mA      | APB2                | GPIOE                     | 0.47                          | mA      |
|        |                | USART3                                        | 0.35                                |         | 7 (                 | ADC1 <sup>(2)</sup>       | 1.81                          |         |
|        |                | I2C1                                          | 0.39                                | , X     | 1                   | ADC2                      | 1.78                          |         |
| 1. гнс | $c_{LK} = 72M$ | Hz, <u>I2C2</u><br>Hz, <sub>fapb1</sub> = fHC | 0.39 CLK/2, fAPB2 = fHCLK, and the  | prescal | er coeffic          | TIM1<br>cients for each   | peripheral are default        | values. |
| 2. Sp  | ecial co       | nditions for A                                | 0.65<br>ADC: fhclk = 56MHz, fapb1 = | fHCLK/2 | $\int_{fAPB2} = fH$ | SPI1<br>CLK, fADCCLK = fA | 0.43<br>APB2/4, and ADON=1 in | ADC_CR  |
| re     | gister.        | CAN                                           | 0.72                                | *       |                     | USART1                    | 0.85                          |         |

## 5.3.6 External Clock Source Characteristics

High-speed external user clock generated from an external oscillator source

The characterization parameters given in the following table were measured using a high-speed external clock source with ambient temperature and supply voltage in accordance with the conditions in Table 6.

Table 18 High-Speed External User Clock Characteristics

|     |               | Table 18 High-Speed Exte                 | ernar Oser Cro | K Gharac | teristics |        |       |
|-----|---------------|------------------------------------------|----------------|----------|-----------|--------|-------|
|     | notation      | parameters                               | prerequisite   | minimu   | typical   | maximu | unit  |
|     |               |                                          |                | m value  | value     | m      | (of   |
|     |               |                                          |                |          |           | values | measu |
|     |               |                                          |                |          |           |        | re)   |
|     | fHSE_ext      | User External Clock                      |                | 1        | 8         | 25     | MHz   |
|     |               | Frequency <sup>(1)</sup>                 |                |          |           |        |       |
|     | VHSEH         | OSC_IN Input pin high voltage            |                | 2.2      |           | 3.3    | v     |
|     | VHSEL         | OSC_IN Input pin low level               |                | 0        |           | 2.2    | ·     |
| CKS | 2F103x8 and C | KS32F103xB, a series of 32-bit MCUs from |                |          |           |        |       |
| Sem | tw (HSE)      | anufacturing Corp.                       |                |          |           |        |       |
|     | tw (HSE)      | OSC_IN High or low time <sup>(1)</sup>   |                | 5        |           |        |       |
|     | tr(HSE)       |                                          |                |          |           |        | ns    |
|     |               | OCC IN Time of rice or foll(1)           |                |          |           | 20     |       |



| Data | sheet      |                              |             |    |     |    |    |
|------|------------|------------------------------|-------------|----|-----|----|----|
|      | DuCy (HSE) | duty cycle                   |             | 45 | 50  | 55 | %  |
|      | IL         | OSC_IN Input leakage current | VSS≤VIN≤VDD |    | 0.3 | ±1 | μΑ |

<sup>1.</sup> Guaranteed by design, not tested in production.

### Low-speed external user clock generated from an external oscillator source

The characterization parameters given in the following table were measured using a low-speed external clock source with ambient temperature and supply voltage in accordance with the conditions in Table 6.



Fig. 12 AC Timing Diagram of External High-Speed Clock Source





Figure 13 AC Timing Diagram for External Low Speed Clock Source

### High-speed external clock generated using a crystal/ceramic resonator

The High Speed External Clock (HSE) can be generated using an oscillator consisting of a 4 to 16 MHz crystal/ceramic resonator. The information given in this section is based on a comprehensive characterization using typical external components listed in the table below. In the application, the resonator and load capacitance must be placed as close as possible to the oscillator pins to minimize output distortion and stabilization time at startup.

| Table 20 HSE 4~16MHz | Oscillator | · Characteristics <sup>(1)(2)</sup> |
|----------------------|------------|-------------------------------------|

|    | notation           | parameters                                            | prerequisite                | minimu             | typical   | maximu     | unit (of  | l  |
|----|--------------------|-------------------------------------------------------|-----------------------------|--------------------|-----------|------------|-----------|----|
|    |                    |                                                       | (C)                         | m value            | value     | m values   | measure   | l  |
|    |                    |                                                       |                             |                    |           |            | )         |    |
|    | fOSC_IN            | oscillator frequency                                  | ) >                         | 4                  | 8         | 16         | MHz       |    |
|    | RF                 | Feedback resistance                                   |                             |                    | 200       |            | kΩ        |    |
|    | CL1                | Recommended load                                      | D 200                       |                    | 20        |            | F         |    |
|    | CL2 <sup>(3)</sup> | capacitance with                                      | $Rs=30\Omega$               |                    | 30        |            | pF        |    |
|    |                    | corresponding                                         |                             |                    |           |            |           |    |
|    |                    | The crystal serial                                    |                             |                    |           |            |           |    |
| 1. | Resonator c        | impedance (RS) of the<br>naracterization parameters a | re given by the crystal/cer | amic reson         | ator manu | facturer.  |           |    |
| 2. | Derived from       | n a comprehensive assessme                            | nt and not tested in produ  | ction.             |           |            |           |    |
| 3  | For Ga and         | curitistrecommended to                                | Use high quality cerami     | l<br>Ic dielectric | capacito  | rs between | 5pE and 2 | 5r |

- 3. For cm and cl2, His is Defrommended to use high quality versamic dielectric capacitors between 5pFmand 25pF (typical) designed for high frequency applicately a
- 4. Relatively low RF resistance values can provide protection against problems associated with use in humid environments where leakage and bias conditions change. However, this parameter needs to be taken into account when designing MCUs for use in harsh, humid conditions.

#### CKS32F103x8 and CKS32F103xB



Betasheet is the startup time, which is the period of time from when the software enables HSE until a stable 8MHz oscillation is obtained. This value is measured on a standard crystal resonator and may vary greatly depending on the crystal manufacturer.





Figure 14 Typical Application Using 8MHz Crystals

1. The  $_{REXT}$  value is determined by the characteristics of the crystal. Typical values are 5 to 6 times  $_{RS}$ .

### Low-speed external clock generated using a crystal/ceramic resonator

The Low Speed External (LSE) clock can be generated using an oscillator consisting of a 32.768kHz crystal/ceramic resonator. The information given in this section is based on a comprehensive characterization using typical external components listed in Table 21. In the application, the resonator and load capacitance must be placed as close as possible to the oscillator pins to minimize output distortion and stabilization time at startup.

Note: For  $_{CLI}$  and  $_{CL2}$ , it is recommended to use high quality ceramic dielectric capacitors between 5pF and 15pF, and select a crystal or resonator that meets the requirements. Usually  $_{CLI}$  and  $_{CL2}$  have the same parameters. Crystal manufacturers usually give the load capacitance parameters as a serial combination of  $_{CLI}$  and  $_{CL2}$ .

The load capacitance  $_{CL}$  is calculated by the following formula:  $_{CL} = _{CL1}x$   $_{CL2}/(_{CL1} + _{CL2}) + _{Cstray}$ , where  $_{Cstray}$  is the capacitance of the pins and the capacitance associated with the PCB board or PCB, and its typical value is  $_{DCB}$  between  $_{DCB}$  and  $_{DCB}$ .

WARNING: To avoid exceeding the maximum values of  $_{CL1}$  and  $_{CL2}$  (15pF), it is strongly recommended to use a resonator with a load capacitance  $_{CL} \leq 7pF$ , and not one with a load capacitance of 12.5pF.

For example, if a resonator with load capacitance CL=6pF and Cstray=2pF is selected, then CL1=CL2=8pF.

|                    | Table 21 LSE OSCIII | ator characteristics   | (ILSE=32. | /00K11Z) ( |        |       |
|--------------------|---------------------|------------------------|-----------|------------|--------|-------|
| notation           | parameters          | prerequisite           | minimu    | typical    | maximu | unit  |
|                    |                     |                        | m value   | value      | m      | (of   |
|                    |                     |                        |           |            | values | measu |
|                    |                     |                        |           |            |        | re)   |
| RF                 | Feedback resistance |                        |           | 5          |        | ΜΩ    |
| CL1                | Recommended load    | DS- 201 <sub>2</sub> O |           |            | 15     | nE    |
| CL2 <sup>(2)</sup> | capacitance with    | $RS=30k\Omega$         |           |            | 15     | pF    |
|                    | corresponding       |                        |           |            |        |       |

Table 21 LSE oscillator characteristics (fLSE=32.768kHz) (1)

| 1 100A0 ana 0.          | 110021 10011          |                                                                                   |                                                                                                                       |                                                                                                                                                                            | CHINA KEY SYSTEM & IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TEGRATED CIRCUIT CO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------|-----------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| eet                     | The crystal serial    |                                                                                   |                                                                                                                       |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                         | impedance (RS) of the |                                                                                   |                                                                                                                       |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                         | (3)                   |                                                                                   |                                                                                                                       |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| I2                      | LSE Drive Current     | VDD=3.3V, VIN=VSS                                                                 |                                                                                                                       |                                                                                                                                                                            | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | μА                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| gm                      | Transconductance of   |                                                                                   | 5                                                                                                                     |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | μA/V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                         | the oscillator        |                                                                                   |                                                                                                                       |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| tSU(LSE) <sup>(4)</sup> | activation time       | <sub>VDD</sub> stabilization                                                      |                                                                                                                       | 3                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ī                       | 12 gm                 | impedance (RS) of the  (3)  LSE Drive Current  Transconductance of the oscillator | The crystal serial impedance (RS) of the (3)  LSE Drive Current VDD=3.3V, VIN=VSS  Transconductance of the oscillator | The crystal serial impedance (RS) of the (3)  LSE Drive Current VDD=3.3V, VIN=VSS  Transconductance of the oscillator  The crystal serial impedance (RS) of the oscillator | The crystal serial impedance (RS) of the (3)  LSE Drive Current VDD=3.3V, VIN=VSS  Transconductance of the oscillator  The crystal serial impedance (RS) of the crystal serial impedance (RS) of the crystal serial impedance (S) of the crystal serial impedance (S) of the crystal serial impedance (RS) of the c | The crystal serial impedance (RS) of the (3)  LSE Drive Current VDD=3.3V, VIN=VSS  Transconductance of the oscillator  The crystal serial impedance (RS) of the crystal serial impedance (RS) of the crystal serial impedance (S) of the crystal serial impedance (S) of the crystal serial impedance (RS) of the c |

- 1. Derived from a comprehensive assessment and not tested in production.
- 2. See the Notes and Warnings paragraph at the top of this form.
- 3. Current consumption can be optimized by choosing a high quality oscillator with a small  $_{RS}$  value (e.g. MSIV-TIN32.768kHz).
- 4. <sub>ISU(HSE)</sub> is the startup time, measured from the time the software enables HSE until a stable 8MHz oscillation is obtained. This value is measured on a standard crystal resonator and may vary greatly depending on the crystal manufacturer.





Figure 15 Typical Application Using 32.768kH Crystals

## 5.3.7 Internal Clock Source Characteristics

The characteristics given in the following table were measured using ambient temperatures and supply voltages in accordance with Table 6.

### **High Speed Internal**

(HSD RC Oscillator

Table 22 HSI Oscillator Characteristics<sup>(1)(2)</sup>

| (1151) 1     | C OSCIII                  | 201                                                   |                   | -///     |          |                   |       |
|--------------|---------------------------|-------------------------------------------------------|-------------------|----------|----------|-------------------|-------|
|              | notation                  | parameters                                            | conditional       | minimu   | typical  | maximu            | unit  |
|              |                           |                                                       | . 🛇               | m value  | value    | m values          | (of   |
|              |                           |                                                       |                   | ۱ ۱      |          |                   | measu |
|              |                           |                                                       |                   |          |          |                   | re)   |
|              | fHSI                      | frequency                                             |                   |          | 8        |                   | MHz   |
|              |                           |                                                       | TA= -40~105°C     | -2       |          | 2.5               | %     |
|              | ACCHSI                    | HSI Oscillator                                        | TA= -10~85°C      | -1.5     |          | 2.2               | %     |
|              |                           | Accuracy                                              | TA= 0~70°C        | -1.3     |          | 2                 | %     |
| 1. vpp = 3.3 | 3V TA=-40                 | to 105°C, unless otherwise                            | TA= 25°C          | -1.1     |          | 1.8               | %     |
| 2. Guarai    | tSU (HSI)<br>nteed by des | HSI Oscillator Startup<br>sign, not tested in product | ion.              | 1        |          | 2                 | μs    |
|              |                           | Time                                                  |                   |          |          |                   |       |
| Low St       | IDD (HSI)  peed Into      | HSI Oscillator Power                                  |                   |          | 80       | 100               | μΑ    |
|              |                           | Consumption T                                         | able 23LSI Oscill | ator Cha | acterist | CS <sup>(1)</sup> |       |

#### (LSI) RC Oscillator

|                     | notation                   | parameters                                | minimu     | typical | maximu | unit (of |
|---------------------|----------------------------|-------------------------------------------|------------|---------|--------|----------|
|                     |                            |                                           | m value    | value   | m      | measu    |
|                     |                            |                                           |            |         | values | re)      |
|                     | fLSI (2)                   | frequency                                 | 30         | 40      | 60     | kHz      |
|                     |                            | less Just Oscillated.                     |            |         | 85     | μs       |
| 2. Derived from a c | omprehensiv                | Startup Time<br>e assessment and not test | ed in prod | uction. |        |          |
| 3. Guaranteed by d  | JDD(LSI)<br>esign, not tes | LSI Oscillator Power and in production.   |            | 0.65    | 1.2    | μА       |
| •                   |                            | Consumption                               |            |         |        |          |

## Wake-up time from low-power mode



The wake-up times listed in Table 24 were measured during the wake-up phase of an 8MHz HSI RC oscillator. The clock source used for wake-up depends on the current operating mode:

- Stop or standby mode: clock source is an RC oscillator
- Sleep mode: the clock source is the clock used when entering sleep mode

All times were measured using ambient temperatures and supply voltages in accordance with Table 6.

Table 24 Wake-up times for low-power modes

|      |                         |             |       |                      | Table 24 Wake-                                           | up   | times for I                            | ow-power                              | modes                            |           |                  |              |
|------|-------------------------|-------------|-------|----------------------|----------------------------------------------------------|------|----------------------------------------|---------------------------------------|----------------------------------|-----------|------------------|--------------|
|      |                         | notati      | on    |                      | parameters                                               |      | pr                                     | erequisite                            |                                  | typical   | unit             |              |
|      |                         |             |       |                      |                                                          |      |                                        | _                                     |                                  | value     | (of              |              |
|      |                         |             |       |                      |                                                          |      |                                        |                                       |                                  |           | meas             |              |
|      |                         |             |       |                      |                                                          |      |                                        |                                       |                                  |           | ure)             |              |
|      |                         | tWUSLEE     | (1)   | Wak                  | te from sleep                                            |      | Wake-up                                | with HSI R                            | C Clock                          | 1.7       | ,                |              |
|      |                         |             |       | mod                  | le                                                       |      |                                        |                                       |                                  |           |                  |              |
|      |                         |             |       | Wal                  | ke-up from                                               |      | uci pc ol                              | ock wakeı                             | ın – 2                           | 2.6       |                  |              |
| 1.   | Wa                      | keWipTOF    | ne is | shu<br>measi<br>(vol | tdown mode<br>ured from the start of<br>tage regulation) | the  | e wake-up ev                           | ent until the                         | ıp — 2µs<br>e user progra<br>ı   | m reads t | μs<br>he first i | nstruction.  |
| 5.3  | 5.3.8 PLL Characterizat |             |       | device is in run     |                                                          | ~    |                                        |                                       |                                  |           |                  |              |
|      | Th                      | e paran     | nete  | rs list              | ke-up from<br>ted in Table 25 wer<br>tdown mode          | e r  | HSI RC cl<br>neasured u<br>Regulator v | ock wakeu<br>Ising ambi<br>Wake-up ti | ıp = 2μs<br>ent tempe<br>me from | ratures a | nd sup           | ply voltages |
|      | in a                    | ccorda      | nce   | withı                | Tableregulation)                                         |      | ( A )                                  | wer mode                              |                                  |           |                  |              |
|      |                         |             |       | The                  | device is in Table                                       | 251  | PLL Charac                             | teristics                             |                                  |           |                  |              |
|      |                         |             | n     | Weg                  | er mode)<br>meters                                       | )    | nu                                     | merical va                            | lue                              | unit      |                  |              |
|      |                         | +W/I ISTIND |       |                      | te up from                                               |      |                                        | odkrivate                             | 1                                | (off2     |                  |              |
|      |                         | twosibb     | 1 0.  |                      | dby mode                                                 | Re   | gu <b>latoe</b> wa                     | 1 *                                   | enfrontuess                      |           |                  |              |
|      |                         |             |       | Starr                | aby mode                                                 |      | m                                      | $ode = 38\mu s$                       |                                  | meas      |                  |              |
|      |                         |             |       |                      |                                                          |      |                                        |                                       |                                  | ure)      |                  |              |
|      |                         |             |       |                      | PLL Input Clock                                          | (2)  | 1                                      | 8.0                                   | 25                               | MHz       |                  |              |
|      |                         |             |       | L_IN                 | PLL Input Clocl                                          |      | 40                                     | 50                                    | 60                               | %         |                  |              |
| 1. I | )eriv                   | ed from a   | a con | nprehe               | ensive <b>Datysfiyot</b> and                             | d no | t tested in pr                         | oduction.                             |                                  | , •       |                  |              |
| 2. ( | Care                    | needs to    | be ta | ıken to              | us <b>eptuticleresed</b> dia                             | øe f | actor so that                          | fPLL_OUT IS WI                        | thin the allo                    | wable ran | ge based         | on the PLL   |
| i    | nput                    | clock fre   | eque: | ncy.                 | comparison and "-                                        | er   |                                        |                                       |                                  |           |                  |              |
|      |                         |             |       |                      | than")                                                   |      |                                        |                                       |                                  |           |                  |              |
| 5.3  | .9                      | Stor        | age   | e Ch                 | aracteristics                                            |      | 16                                     |                                       | 72                               | MHz       |                  |              |
|      |                         |             |       |                      | Output Clock                                             |      |                                        |                                       |                                  |           |                  |              |
| fla  | sh :                    | memo        | ry tL | OCK                  | PLL phase-lock tii                                       | ne   |                                        | 43                                    | 200                              | μs        |                  |              |
|      |                         |             | -     |                      |                                                          |      |                                        |                                       |                                  |           |                  |              |

Unless otherwise noted, all characteristics are obtained at TA=-40~105°C.



Table 26 Flash memory characteristics

|               |                                    | bic 20 i iasii ilicilioi y ciiai                           |            |         |      |                |                          |
|---------------|------------------------------------|------------------------------------------------------------|------------|---------|------|----------------|--------------------------|
| notatio       | parameters                         | conditional                                                | minii      | mu typ  | ical | maximu         | unit                     |
| n             |                                    |                                                            | m val      | lue va  | lue  | m              | (of                      |
|               |                                    |                                                            |            |         |      | values         | measu                    |
|               |                                    |                                                            |            |         |      |                | re)                      |
| tprog         | 16-bit programming                 | TA= -40~105°C                                              | -          |         | -    | 20             | μѕ                       |
|               | time                               |                                                            |            |         |      |                |                          |
| tERASE        | Page (1K bytes) Erase              | TA= -40~105°C                                              | -          |         |      | 2              |                          |
|               | Time                               |                                                            |            |         |      |                | ms                       |
| tME           | Whole chip erase                   | TA= -40~105°C                                              | -          |         |      | 10             |                          |
| 1. Guaran     | teed by des <del>ign</del> enot    |                                                            |            |         |      |                |                          |
| tested in pro |                                    | ab <b>k-27</b> dFlashememory life                          |            |         |      |                |                          |
| n             | tati parameters                    | fHCLK=72MHz, 2 wait                                        | minimu     | typical | ma   | xim21.6un      |                          |
| IDD           | on Supply Current                  | 1                                                          | m value    | value   | um   | (o             | f mA                     |
|               |                                    | Write/erase mode.                                          |            |         | val  | ues mea        | lsu                      |
|               |                                    | fHCLK=72MHz, VDD=3.3                                       | V          |         |      | 3 re           |                          |
| 1. Derived N  | from a comprehensive ass           | essmentand colfested in pro                                | duction.   |         |      | ithou          | ISA <sub>LI</sub> A      |
|               |                                    | Standby mode, $A = -40$ to $105$ °C (with a 7 VDD=3.3~3.6V |            |         |      | l l no         | [ ] [                    |
| 5.3.10        | <b>EMC Characteri</b>              |                                                            |            |         |      |                |                          |
|               |                                    |                                                            |            |         |      | tim            |                          |
| Sensiti       | vity testing is performe<br>period | TA = 40-85°C<br>ed on a sample of products                 | s during a | a comp  | ehe: | nsive eva<br>m | na  <br>lluation of<br>e |
| produ         | ct.                                | 115                                                        |            |         |      | Nia            | an                       |

## Functionality EMS (Electromagnetic Sensitivity)

When running a simple application (2 LEDs blinking through the I/O port), the test sample is subjected to 2 types of electromagnetic interference until an error is generated, which is indicated by the blinking of the LEDs.

- **Electrostatic discharge (ESD)** (positive and negative discharge) is applied to all pins of the chip until a functional error is generated. This test complies with the IEC61000-4-2 standard.
- **FTB:** A pulse train of transient voltages (forward and reverse) is applied across <sub>VDD</sub> and <sub>VSS</sub> through a 100pF capacitor until a functional error is generated. This test complies with the IEC61000-4-4 standard.

A chip reset restores the system to normal operation. The test results are listed in the table below.

|                   |                                         | Table 28 EMS (                                                                                                                                           | Characteristics                                                                                  |                      | _  |
|-------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------|----|
|                   | notatio<br>n                            | parameters                                                                                                                                               | prerequisite                                                                                     | Level/class<br>model |    |
| <b>CKS</b><br>Ser | VFESD<br><b>32F103x8</b> a<br>niconduct | applied to any I/O pin, which results in and CKS32F103xB, a series of 32-bit MCUs from a functionally incorrect cor Manufacturing Corp.  Voltage Limits. | $_{ m VDD}$ = 3.3V, $_{ m TA}$ = +25 °C. $_{ m fHCLK}$ = 72MHz. in accordance with IEC61000-4-2. | 2В                   | 55 |
|                   | VEFTB                                   | Transient pulse group voltage limits on vDD and vSS applied through a 100pF                                                                              | $_{\rm VDD}$ = 3.3V, $_{\rm TA}$ = +25 °C. $_{\rm fHCLK}$ = 72MHz. in accordance with            | 4A                   |    |



### Designing robust software to avoid noise problems

Evaluation and optimization of EMC at the device level is performed in a typical application environment. It should be noted that good EMC performance is closely related to the user application and specific software.

Therefore, it is recommended that the user optimizes the software for EMC and performs EMC-related certification tests.

#### **Software Recommendations**

The flow of the software must include controls for the program to run and fly, for example:

- Destroyed program counters
- Unexpected reset
- Critical data destroyed (control registers, etc. .....)

#### **Pre-certification tests**

Many common failures (accidental resets and corrupted program counters) can be reproduced by artificially introducing a low level on NRST or a low level on the crystal pins that lasts 1 second.

During ESD testing, voltages in excess of the application requirements can be applied directly to the chip, and where unexpected actions are detected, the software section needs to be enhanced to prevent unrecoverable errors.

## **Electromagnetic interference (EMI)**

The EMF emitted by the chip is monitored while running a simple application (blinking 2 LEDs through the I/O port). This emission test complies with SAE J1752/3, which specifies the loads on the test board and pins.

Table 29 EMI Characteristics

| notat<br>ion | para<br>mete | prerequisite      | Frequency bands | (fHSE/fHCLI | Maximum (fHSE/fHCLK) 8/48MHz 8/72MHz |      |
|--------------|--------------|-------------------|-----------------|-------------|--------------------------------------|------|
|              | rs           |                   | monitored       | 0, 101,112  | 077211111                            | meas |
|              |              |                   |                 |             |                                      | ure) |
|              |              |                   | 0.1~30MHz       | 12          | 12                                   |      |
|              |              | VDD= 3.3 V, TA=   | 30~130MHz       | 22          | 19                                   | dBμV |
| SEMI         | peak         |                   | 130MHz~1GHz     | 23          | 29                                   |      |
|              | value        | package according | SAM EMI Class   | 4           | 4                                    | _    |
|              |              | to IEC 61967-2    | pin             | 7           | <b>T</b>                             |      |

## 5.3.11 Absolute maximum (electrical sensitivity)



Datash Based on three different tests (ESD, LU), using specific measurements, the chip is strength tested to determine its performance in terms of electrical sensitivity.

### **Electrostatic Discharge (ESD)**

An electrostatic discharge (a positive pulse followed by a negative pulse one second later) is applied to all pins of all samples, the size of which is related to the number of power supply pins on the chip (3 slices x (n+1) power supply pins). This test complies with the JESD22-A114/C101 standard.



#### Table 30 ESD Absolute Maximum Values

|    |   | notation                   | parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | prerequisite                                   | typolo            | Maximum                    | unit     |           |
|----|---|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------|----------------------------|----------|-----------|
|    |   |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                | gy                | value (1)                  | (of      |           |
|    |   |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |                   |                            | meas     |           |
|    |   |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |                   |                            | ure)     |           |
| 1. |   | VESD (HBM)<br>ed from a co | Electrostatic discharge<br>mprehensive assessment and not<br>voltage (human model)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T=+25°C, tester indireduction Hop JESD22- A114 | . 2               | 2000                       | V        |           |
|    | • | For each p                 | ting performance, 2 complements ower supply pin, discharge supply | pply yoltage that e                            | g tests<br>xceeds | on 6 sampl<br>the 1990 it. | es are 1 | required: |
|    | • | Current is                 | inglaged charging aquipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | it, and<br>Hon IESD22-                         |                   |                            |          |           |

configurable I/O pin. This the the mplies with the C101 EIA/JESD 78A integrated circuit latch standard.

Table 31 Electrical sensitivity

|          |        | 1 4510       | 51 Electrical scriptcivity |         |
|----------|--------|--------------|----------------------------|---------|
|          | notati | parameters   | prerequisite               | typolog |
|          | on     |              |                            | У       |
|          | LU     | Static bolts | T = +105 °C according to   | Categor |
| I/O Port | Cha    | racteristic  | S JESD78A                  | y II A  |

## **Generalized Input/Output Characteristics**

Unless otherwise noted, the parameters listed in the following table were measured according to the conditions in Table 6. All I/O ports are CMOS-compatible and

TTL.

5.3.12

Table 32 I/O Static Characteristics

|        |                                                                 | 1 able 3                                        | 2 I/O Static Characteristi | .CS     |                    | 1        |
|--------|-----------------------------------------------------------------|-------------------------------------------------|----------------------------|---------|--------------------|----------|
| notati | parameters                                                      | prerequisite                                    | minimum value              | typical | maximum values     | unit     |
| on     |                                                                 |                                                 |                            | value   |                    | (of      |
|        |                                                                 |                                                 |                            |         |                    | measu    |
|        |                                                                 |                                                 |                            |         |                    | re)      |
|        |                                                                 | Standard I/O Pin,                               |                            |         | 0.28×(VDD-2V)+0.8V |          |
|        | VII. Low Level Input Voltage                                    | Input                                           | -                          | _       | 0.28^(VDD-2V)+0.8V |          |
| VIL    |                                                                 | Low Level                                       |                            |         |                    |          |
|        |                                                                 | Voltage                                         |                            |         |                    |          |
|        |                                                                 | FT I/O <sup>(1)</sup> pin,                      |                            |         | 0.32 x (VDD-2V)    |          |
|        |                                                                 | input                                           |                            |         | +0.75V             | v        |
|        |                                                                 | Low Level                                       |                            |         |                    | <b>,</b> |
|        |                                                                 | Voltage                                         |                            |         |                    |          |
|        |                                                                 | All I/O ports                                   |                            |         | 0.25               | _        |
|        |                                                                 | except                                          |                            |         | $0.35_{ m VDD}$    |          |
| 0.00   | 32F103x8 and CKS32F103xB                                        | -                                               | - f                        |         |                    | F0       |
| Sen    | <del>32F103x8 and CKS32F103xB</del><br>niconductor Manufacturin | , a series of 32-bit MCU<br>g Standard I/O Pin, |                            |         |                    | - 58     |
|        |                                                                 | Input                                           | 0.41×(VDD-2V)+1.3V         |         |                    |          |
| VIH    | High Level Input                                                | High Level                                      |                            |         |                    |          |
| VIII   | riigii Levei iiiput                                             | Voltage                                         |                            |         |                    |          |



| L    | asheet                    |                         |                      |    | 1  |      |
|------|---------------------------|-------------------------|----------------------|----|----|------|
|      | Trigger voltage           |                         |                      |    |    |      |
|      | hysteresis <sup>(2)</sup> |                         |                      |    |    |      |
|      | 5V Tolerant to I/O        |                         |                      |    |    |      |
|      | Pin Schmitt               |                         | 5%VDD <sup>(3)</sup> |    |    |      |
|      | Trigger Voltage           |                         |                      |    |    |      |
|      | Hysteresis                |                         |                      |    |    |      |
|      | (2)                       |                         |                      |    |    |      |
|      |                           | $VSS \le VIN \le VDD$   |                      |    | ±1 |      |
| Ilkg | Input Leakage             | Standard I/O            |                      |    | -1 | μА   |
|      | Current <sup>(4)</sup>    | Ports                   |                      |    |    | μ. ι |
|      | Guitent                   | $_{VIN} = 5V$ .         |                      |    | 3  |      |
|      |                           | <b>5V</b> Tolerance     |                      |    | 3  |      |
|      |                           | Port                    |                      |    |    |      |
| RPU  | Weak pull-up              | $_{ m VIN} = _{ m VSS}$ | 30                   | 44 | 50 | 1.0  |
|      | equivalent                |                         |                      |    |    | kΩ   |
|      | resistance <sup>(5)</sup> |                         |                      |    |    |      |
| RPD  | Weak pull-down            | $_{ m VIN} = _{ m VDD}$ | 30                   | 44 | 50 |      |
|      | equivalent                |                         |                      |    |    |      |
|      | resistance <sup>(5)</sup> |                         |                      |    |    |      |
| CIO  | I/O Pin                   |                         |                      | 5  |    | pF   |
|      | Capacitance               |                         |                      |    |    |      |

- 1. FT = 5V Tolerance.
- 2. Hysteresis voltage of the Schmitt trigger switching level. Derived from a comprehensive evaluation and not tested in production.
- 3. The voltage is at least 100mV.
- 4. The leakage current may be higher than the maximum value if there is a reverse current back-up at an adjacent pin.
- 5. The pull-up and pull-down resistors are designed as a true resistor in series with a switchable PMOS/NMOS implementation. The resistance of this PMON/NMOS switch is very small (about 10%).

All I/O ports are CMOS- and TTL-compatible (no software configuration required), and their characteristics take into account most of the stringent CMOS process or

#### TTL parameters:

- For VIH:
  - If <sub>VDD</sub> is between [2.00V~3.08V]; use CMOS characteristics but include TTL.
  - If VDD is between [3.08V~3.60V]; use TTL characteristics but include CMOS.
- For VIL:
  - If vDD is between [2.00V~2.28V]; use TTL characteristics but include CMOS.
  - If vDD is between [2.28V~3.60V]; use CMOS characteristics but include TTL.

### Output drive current

The GPIOs (General Purpose Input/Output Ports) can absorb or output up to +/-8mA and



Datashab sorb +20mA (not strictly V). In user applications, the number of I/O pins must be such that the drive current does not exceed the absolute maximum ratings given in section 5.2:

- The sum of the currents drawn by all I/O ports from V, plus the maximum operating current drawn by the MCU on V, must not exceed the absolute maximum rating, IVDD (see Table 4).
- The sum of the currents absorbed by all I/O ports and flowing off of V, plus the maximum operating current flowing off of V by the MCU, must not exceed the absolute maximum rating of IVSS (see Table 4).

### output voltage

Unless otherwise noted, the parameters listed in Table 33 were measured using ambient temperatures and  $_{\rm VDD}$  supply voltages in accordance with Table 6. All The I/O ports are CMOS and TTL compatible.



Table 33 Output Voltage Characteristics

| notati                   | parameters                                                                                                      | prerequisite               | minimu               | maximu           | unit         |
|--------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------|----------------------|------------------|--------------|
| on                       |                                                                                                                 |                            | m value              | m                | (of          |
|                          |                                                                                                                 |                            |                      | values           | meas         |
|                          |                                                                                                                 |                            |                      |                  | ure)         |
| VOL (1)                  | Output low, when all 8 pins draw                                                                                | CMOS port, IIO=            |                      | 0.4              |              |
|                          | current at the same time                                                                                        | +8mA                       |                      |                  |              |
| Ven                      | Output high, when all 8 pins output                                                                             | 2.7V < VDD< 3.6V           | VDD-0.4              |                  |              |
|                          | current at the same time                                                                                        |                            |                      |                  | v            |
| VOL (1)                  | Output low, when all 8 pins draw                                                                                | TLL Port, IIO = +8mA       |                      | 0.4              | ·            |
| 1. The curre             | ent 110 absorbed by the chip must always follow                                                                 | w the 2absolute maximum ra | ings given           | in Table 4       | , while the  |
| VOH<br>SUM of the        | Output high, when all 8 pins output                                                                             | eed ivss.                  | 2.4                  |                  | ´            |
| The curre                | current at the same time ent no output from the chip must always follo                                          | w the absolute maximum ra  | tings giver          | in Table 4       | whileth      |
| VOL<br>Sum of the        | Output low, when all 8 pins draw all 1/0 pins and control pins) must not exc                                    | $_{\rm IIO}$ = +20mA       | 111163 61 ( )        | 1.3              | , willie til |
| 1 Dorivod f              | current at the same time                                                                                        | 2.7V < VDD < 3.6V          |                      |                  |              |
| VOH                      | current at the same time<br>rom a comprehensive assessment and not teste<br>Output high, when all 8 pins output | ed in production.          | 2.4                  |                  |              |
| <br>Input/Oเ             | tput Ac Characteristics ime                                                                                     |                            |                      |                  |              |
|                          | efinitions and values of the input and o                                                                        | output AC characteristic   | s are give           | 0.4<br>n in Figu | re 16 and    |
| Table                    | 34, respectively.                                                                                               | 2V < VDD< 2.7V             |                      | 1                |              |
| vo <sub>H</sub><br>Unles | Output high, when all 8 pins output<br>s otherwise specified, the listed parame                                 | ters were measured usir    | VDD-0.4<br>ig ambier | ıt temper        | atures a     |
| supply                   | current at the same time voltages in accordance with Table 6.                                                   |                            |                      |                  |              |

Table 34 Input/Output AC Characteristics<sup>(1)</sup>

| MODEx[1:0]                         | notation    | parameters                                    | prerequisite               | minimu  | maxim  | unit      |
|------------------------------------|-------------|-----------------------------------------------|----------------------------|---------|--------|-----------|
|                                    |             |                                               |                            | m value | um     | (of       |
|                                    |             |                                               |                            |         | values | meas      |
|                                    |             |                                               |                            |         |        | ure)      |
| 10                                 | fmax(IO)out | Maximum frequency <sup>(2)</sup>              | CL= 50 pF,VDD=<br>2~3.6V   |         | 2      | MHz       |
| (2MHz)                             | tf(IO)out   | Output high to low level fall time            | CL= 50 pF,VDD= 2~3.6V      |         | 125(3) | ns        |
|                                    | tr(IO)out   | Output low-to-high rise time                  |                            |         | 125(3) |           |
| 01                                 | fmax(IO)out | Maximum frequency <sup>(2)</sup>              | CL= 50 pF,VDD=<br>2~3.6V   |         | 10     | MHz       |
| (10MHz)                            | tf(IO)out   | Output high to low level fall time            | CL= 50 pF,VDD= 2~3.6V      |         | 25(3)  | ns        |
|                                    | tr(IO)out   | Output low-to-high rise time                  |                            |         | 25(3)  |           |
| CKS32F103x8 and<br>Semiconductor N |             | a series of 32-bit MCUs from<br>Corp. Maximum | CL= 30 pF,VDD=<br>2.7~3.6V |         | 50     | 61<br>MHz |
|                                    |             | frequency <sup>(2)</sup>                      | CL= 50 pF,VDD=<br>2.7~3.6V |         | 30     | 1411.12   |
| 11                                 |             |                                               | CL=50 pF,VDD= 2~2.7V       |         | 20     |           |
| 1 11                               |             |                                               | 01 00 DIVER                |         | =(2)   |           |





1. The speed of the I/O port can be configured via MODEx[1:0]. See the CKS32F103x8 and CKS32F103xB reference manuals for a description of the GPIO port configuration registers.

Pulse width of No.

- 2. The maximum frequency is defined in Figure 16.
- 3. Guaranteed by design, not tested in production.



If  $(t_r + t_f) \le 2/3T$ , and the duty cycle is (45-55%) Maximum frequency is reached when the load is 50pF

Fig. 16 Definition of Input and Output AC Characteristics

#### **NRST Pin Characteristics** 5.3.13

The NRST pin input driver uses a CMOS process which connects a pull-up resistor, RPU, that cannot be disconnected (see Table 32). Unless otherwise noted, the parameters listed in Table 35 were measured using ambient temperature and VDD supply voltage in accordance with Table 6.

parameters

Table 35NRST Pin Characteristics

conditio minimu typical maximu unit

|           |                                  | I                                                              |              |           | -J I      |           |          | 1             |
|-----------|----------------------------------|----------------------------------------------------------------|--------------|-----------|-----------|-----------|----------|---------------|
|           |                                  |                                                                | nal          | m value   | value     | m values  | (of      |               |
|           |                                  |                                                                |              |           |           |           | measu    |               |
|           |                                  |                                                                |              |           |           |           | re)      |               |
|           | VIL(NRST) <sup>(1)</sup>         | NRST Input Low Level                                           |              | -0.5      |           | 0.8       | V        |               |
|           |                                  | Voltage                                                        |              |           |           |           | V        |               |
|           | VIH (NRST (1)                    | NRST Input High Voltage                                        |              | 2         |           | VDD+0.5   |          |               |
|           | (1)                              | NRST Schmitt Trigger                                           |              |           | 200       |           | m V      |               |
| 1. Guara  | whys(NRST)(*)<br>Inteed by desig | gn, not test of tage duction.                                  |              |           | 200       |           | mV       |               |
| 2. The p  | ull-up resisto                   | r is designed <b>shaggish</b> resistor in se                   | eries with a | switchabl | e PMOS in | plementat | ion. The | resistance of |
| this P    | MON/RPMOS sv                     | vitdWeakepudhub(equivalent                                     | VIN=VSS      | 30        | 40        | 50        | kΩ       |               |
|           |                                  | resistance <sup>(2)</sup>                                      |              |           |           |           |          |               |
|           | VF (NRST) (1)                    | NRST Input Filter Pulse                                        |              |           |           | 100       | ns       |               |
| CV\$22E10 | (1)<br>VNF (NRST)                | NRST Input Unfiltered Pulse 03xB, a series of 32-bit MCUs from |              | 300       |           |           | ns       | 62            |
| 02        |                                  |                                                                |              |           |           |           |          |               |

notation





Figure 17 Recommended NRST Pin Protection

- 1. The reset network is designed to prevent parasitic resets.
- 2. The user must ensure that the potential of the NRST pin can fall below the maximum VIL(NRST) listed in Table 35, otherwise the MCU cannot be reset.

#### **TIM Timer Features** 5.3.14

The parameters listed in Table 36 are guaranteed by design.

For details on the characteristics of the input/output multiplexing function pins (output compare, input capture, external clock, PWM output), refer to Section 5.3.12.

Sections.

| Table 36TIMx <sup>(1)</sup> Characteristics |                  |                                                 |                                |                |                             |                      |  |
|---------------------------------------------|------------------|-------------------------------------------------|--------------------------------|----------------|-----------------------------|----------------------|--|
|                                             | notation         | parameters                                      | prerequisite                   | minimu maximum |                             | unit (of             |  |
|                                             |                  |                                                 |                                | m value        | values                      | measure              |  |
|                                             |                  |                                                 |                                |                |                             | )                    |  |
|                                             | tres(TIM)        | Timer Resolution C                              | \                              | 1              |                             | tTIMxCLK             |  |
|                                             | ues(11.11)       | Time Time                                       | fΓIMxCLK= 72MHz                | 13.9           |                             | ns                   |  |
|                                             |                  | · · ·                                           |                                |                | (TY) 1 (3) 17 (2)           |                      |  |
|                                             | fEXT             | Timers for CH1 to                               |                                | 0              | fTIMxCLK/2                  | MHz                  |  |
|                                             |                  | CH4                                             | $_{\rm fTIMxCLK} = 72 \rm MHz$ | 0              | 36                          | MHz                  |  |
|                                             |                  | External Clock                                  |                                |                |                             |                      |  |
|                                             |                  | Frequency                                       |                                |                |                             |                      |  |
| 1. TIM:                                     | x is a generic i | naTimeraResoltstionTIM1                         | ~TIM4.                         |                | 16                          | bit                  |  |
|                                             | tCOUNTER         | When the internal                               |                                | 1              | 65536                       | tTIMxCLK             |  |
| 5.3.15                                      |                  | nunications inte                                | f <b>face</b> CLK= 72MHz       | 0.0139         | 910                         | μs                   |  |
|                                             |                  | 16-bit Counter Clock                            |                                |                |                             |                      |  |
| I2C In                                      | terface Fe       | atures                                          |                                |                |                             |                      |  |
| Un                                          | lessotherw       | l<br>ise noted, the paramet<br>Maximum possible | ers listed in Table            | 50 and Ta      | a167536x65536 <sub>11</sub> | tTIMxCLK<br>neasured |  |

ambient temperature, iPCLK1 frequency, a fall with Table 6. The I2C interface of the CKS32F103x8 and CKS32F103xB standard models conforms to the standard I2C CKS32F103x8 and CKS32F103xB, a series of 32-bit MCUs from 63



 $\ensuremath{^{\text{Datasheet}}}$  communication protocol with the following limitations: SDA and

SCL is not a "true" open-drain pin; when configured as an open-drain output, the PMOS tube between the pin and  $_{\mbox{\scriptsize VDD}}$  is turned off but still present.

The I<sup>2</sup> C interface characteristics are listed in Table 37 and see Section 5.3.12 for details on the characteristics of the input/output multiplexing function pins (SDA and SCL).



### Table 37I<sup>2</sup> C Interface Characteristics

|                             | notatio                   | parameters                                                   |                     | Standard Fast I2C <sup>(1)</sup> |                       | $C^{(1)(2)}$  | unit                      |                |
|-----------------------------|---------------------------|--------------------------------------------------------------|---------------------|----------------------------------|-----------------------|---------------|---------------------------|----------------|
|                             | n                         |                                                              | maximu              | minimu                           | maximum               | minimu        | (of                       |                |
|                             |                           |                                                              | m values            | m value                          | values                | m value       | meas                      |                |
|                             |                           |                                                              |                     |                                  |                       |               | ure)                      |                |
|                             | tw(SCLL)                  | SCL Clock Low Time                                           | 4.7                 |                                  | 1.3                   |               |                           |                |
|                             | twSCLH)                   | SCL Clock High Time                                          | 4.0                 |                                  | 0.6                   |               | μs                        |                |
|                             | tsu (SDA)                 | SDA build-up time                                            | 250                 |                                  | 100                   |               |                           |                |
|                             | th (SDA)                  | SDA Data Hold Time                                           | 0(3)                |                                  | 0(4)                  | 900(3)        |                           |                |
|                             | tr(SDA)<br>tr(SCL)        | SDA and SCL Rise Time                                        |                     | 1000                             | 20+0. <sub>1Cb</sub>  | 300           | ns                        |                |
|                             | tfSDA)<br>tfSCL)          | SDA and SCL downtime                                         |                     | 300                              |                       | 300           |                           |                |
|                             | th (STA)                  | Start condition hold time                                    | 4.0                 | - X                              | 0.6                   |               |                           |                |
|                             | tsu (STA)                 | Repeat start condition                                       | 4.7                 |                                  | 0.6                   |               | μs                        |                |
| 1. Guarai                   | teed by desi              | establishment time<br>gn, not tested in production.          |                     | (>),                             |                       |               |                           |                |
| 2. To ach                   | tsu (SŤO)<br>ieve the max | Stop condition standard                                      | 4.0<br>l mode I² C, | fPCLK1 must                      | 0.6<br>be greater th  | an 2 MHz.     | μs<br><sub>PCLK1</sub> mu | st be greater  |
|                             | MHz to achie              |                                                              | or fast mod         | e I <sup>2</sup> C.              |                       |               |                           |                |
| 3. If an e                  | lo₩gææetsci               | Timę from stop                                               | 1 1 1 1             |                                  | hold <b>ti3</b> ne fo | r the start o | on <b>ds</b> tio          | h is required. |
| 4. In orde                  | er to cross th            | condition to start e undefined region of the falli condition | ng edge of S        | CL, a holo                       | l time of at lea      | ast 300ns or  | the SD                    | A signal must  |
| be gua                      | ranteed with              | condition<br>hin the MCU.<br>Interval (Bus Idle)             | VDD 12C             |                                  |                       |               |                           |                |
|                             | Cb                        | Tolerance load per bus                                       | <u> </u>            | 400                              |                       | 400           | pF                        |                |
| $Rp \geqslant Rp \geqslant$ |                           |                                                              |                     |                                  |                       |               |                           |                |
|                             |                           | •                                                            |                     | Rs .                             | SDA                   |               |                           |                |
|                             |                           |                                                              |                     |                                  |                       |               |                           |                |





Figure 18 I2C Bus AC Waveform and Measurement Circuitry(1)

The measurement points are set at CMOS levels: 0.3 VDD and 0.7 VDD.



Table 38SCL frequency ( $_{\text{PPCLK1}} = 36\text{MHz}$ ,  $_{\text{VDD}} = 3.3\text{V}$ ) ( $^{1)(2)}$ 

| 1 5       |                |  |  |  |
|-----------|----------------|--|--|--|
| fSCL(kHz) | I2C_CCR Values |  |  |  |
|           | RP=4.7 kΩ      |  |  |  |
| 400       | 0x801E         |  |  |  |
| 300       | 0x8028         |  |  |  |
| 200       | 0x803C         |  |  |  |
| 100       | 0x00B4         |  |  |  |
| 50        | 0x0168         |  |  |  |
| 20        | 0x0384         |  |  |  |

- 1. RP= external pull-up resistor, fSCL=I<sup>2</sup> C speed.
- 2. For speeds around 200kHz, the error in speed is  $\pm 5\%$ . For other speed ranges, the error in speed is  $\pm 2\%$ . These variations depend on the accuracy of the external components in the design.

#### **SPI Interface Features**

ta(SO)

Data output access

Unless otherwise noted, the parameters listed in Table 39 were measured using the ambient temperature, fPCLKx frequency, and vDD supply voltage in accordance with the conditions in Table 6.

For details on the characteristics of the input/output multiplexing function pins (NSS, SCK, MOSI, MISO), see Section 5.3.12.

Table 39SPI Characteristics(1) conditional notation minimu maximu parameters unit m value m (of values | measu re) fSCK Master Mode 18 SPI Clock Frequency MHz 1/tc(SCK) 18 modal tr(SCK) SPI Clock Up and Load capacitance: C = ns tf(SCK) Down 30pF timing Ducy (SCK) Slave Input Clock 70 % modal 30 Duty Cycle tsu(NSS) 4tPCLCK **NSS** Establishment modal Time 2tPCLCK  $th \left(NSS\right)^{(2)}$ NSS Hold Time modal tw(SCKH (2 Master mode, fPCLK = SCK high and low 50 60 36MHz, preshunt tw(SCKL)<sup>(2)</sup> time factor = 4 $tsu(MI)^{(2)}$ Master Mode 5 Data Entry tsu(SI) (2) Establishment Time, modal 5 ns Main paradigm CKS32F103x8 and CKS32F103xB, a series of 32-bit MCUs Data Entry Hold Time, Semiconductor Manufacturing Corp. Master Mode 5 Semiconductor Manufacturi th(SI)<sup>(2)</sup> Main 4 modal paradigm

Slave mode,  $_{fPCLK} = 20MHz$ 

3tPCLCK

0



- 1. The SPI1 characterization of the remapping needs to be further determined.
- 2. Derived from a comprehensive assessment and not tested in production.
- 3. The minimum value indicates the minimum time to drive the output, and the maximum value indicates the maximum time to get the data correctly.
- 4. The minimum value indicates the minimum time to turn off the output, and the maximum value indicates the maximum time to place the data line in a high resistance state.



1. The measurement points are set at CMOS levels: 0.3VDD and 0.7VDD.





1. The measurement points are set at CMOS level\$i@.3VDD and 0.7VDD.

**USB Characteristics** 

The USB (Full Speed) interface is

Table 40USB Startup Time

notation parameters maximum unit (of values measure)

1. Guaranteed by designs, thet USB Transceiver 1 
tested in production. Startup Tine 1 
notation parameters prefer USB DC Characteristics

|             |                        |                                    | touture Time                           |                         |                |             |
|-------------|------------------------|------------------------------------|----------------------------------------|-------------------------|----------------|-------------|
| teste       | in product<br>notation | parameters                         | tartup Tipe 1USB DC Ch<br>prerequisite | aracteristic<br>Minimum | cs<br>(Maximum | unit (of    |
|             |                        |                                    |                                        | 1)                      | value (1)      | measur      |
|             |                        |                                    |                                        |                         |                | e)          |
|             | Input lev              | el                                 |                                        |                         |                |             |
|             | VDD                    | USB Operating                      |                                        | 3.0(3)                  | 3.6            | V           |
|             |                        | Voltage <sup>(2)</sup>             |                                        |                         |                |             |
|             | VDI (4)                | Differential                       | I(USBDP,USBDM)                         | 0.2                     |                |             |
|             |                        | Input Sensitivity                  |                                        |                         |                | $\rfloor$ V |
|             | VCM <sup>(4)</sup>     | Differential                       | Includes <sub>VDI</sub> scopes         | 0.8                     | 2.5            |             |
| 1. All volt | age measur             | common mode<br>ements are based on | the ground at the equipmen             | t end.                  |                |             |

- 2. For compatibility with the USB 2.0 full-speed electrical specification, the USBDP (D+) pin must be connected to a voltage of  $3.0 \sim 3.6 \text{V}$  through a 1.5k $\Omega$  resistor.
- 3. The correct USB functionality of the CKS32F0103xx is guaranteed at 2.7V instead of the degraded electrical characteristics in the 2.7~3.0V voltage range.

| CKS32F103:<br>Semicond | <b>ĸ8</b> an <b>∀Œĸs32F</b><br>uctor Manufa | <b>193½H</b> ièsGiftSpff€2-bit<br>cturing Corp.<br>low level | MCV:5fronRL to 3.6V(5)         |     | 0.3 | V |
|------------------------|---------------------------------------------|--------------------------------------------------------------|--------------------------------|-----|-----|---|
|                        | VOH                                         | Static Output<br>High                                        | 15kΩ RL to V <sup>(5)</sup> ss | 2.8 | 3.6 |   |

68



- 4. Assured by comprehensive evaluation, not tested in production.
- 5. RL is the load connected to the USB drive.



Figure 22USB Timing: Data Signal Rise and

#### Fall Time Definitions Table

| notation | parameters                  | conditional<br>2USB Full Speed E          | minimum<br>lectrical | maximum<br>values | unit (of measure) |
|----------|-----------------------------|-------------------------------------------|----------------------|-------------------|-------------------|
|          |                             |                                           | varue                | varues            | measure)          |
| tr       | rising time <sup>(2)</sup>  | CL≤50pF<br>Characteristics <sup>(1)</sup> | 4                    | 20                | ns                |
| tf       | descent time <sup>(2)</sup> | CL ≤ 50pF                                 | 4                    | 20                | ns                |
| trfm     | Rise and fall time          | tr / tf                                   | 90                   | 110               | %                 |
|          | matching                    |                                           |                      |                   |                   |
| VCRS     | Output Signal Cross         |                                           | 1.3                  | 2.0               | V                 |
|          | Voltage                     |                                           | VA                   |                   |                   |

- 1. Guaranteed by design, not tested in production.
- 2. Measurement data signal from 10% to 90%.

## 5.3.16 CAN (Controller Area Network) interface

See Section 5.3.12 for details on the characteristics of the input/output multiplexing function pins (CAN\_TX and CAN\_RX).

## 5.3.17 12-Bit ADC Characterization

Unless otherwise noted, the parameters in Table 43 are measured using ambient temperature,  $_{\text{fPCLK2}}$  frequency, and  $_{\text{VDDA}}$  supply voltage that meet the conditions in Table 6.

### NOTE: It is recommended that a calibration be performed at each power-up.

|       | Table 43ADC Characteristics         |                                                              |             |         |         |        |          |
|-------|-------------------------------------|--------------------------------------------------------------|-------------|---------|---------|--------|----------|
|       | notation                            | parameters                                                   | conditional | minimum | typical | maximu | unit (of |
|       |                                     |                                                              |             | value   | value   | m      | measur   |
|       |                                     |                                                              |             |         |         | values | e)       |
|       | VDDA                                | Supply Voltage                                               | -           | 2.4     | -       | 3.6    | V        |
|       | VREF+                               | Positive reference                                           | -           | 2.4     | -       | VDDA   | V        |
|       |                                     | voltage                                                      |             |         |         |        |          |
| CKS32 | IVREF<br><b>F103x8</b> and <b>C</b> | Voltage at V input pin<br>(\$32F103xB, a series of 32-bit MC | Us from     | -       | 160(1)  | 220(1) | μΑ       |
|       |                                     | n <b>ADC</b> COCKFrequency                                   | -           | 0.6     | -       | 14     | MHz      |
|       | fS (2)                              | sampling rate                                                | -           | 0.05    | -       | 1      | MHz      |
|       | (2)                                 | External Trigger                                             | fADC=14MHz  | -       | -       | 823    | kHz      |
|       | fTRIG <sup>(2)</sup>                | External Higger                                              |             |         |         | 1.7    | 1/fADC   |

Datasheet



| sneet .              |                     |               |                           |           |       |        |
|----------------------|---------------------|---------------|---------------------------|-----------|-------|--------|
| VAIN <sup>(3)</sup>  | Conversion voltage  | -             | 0 (vssa or vref-          | -         | VREF+ | V      |
|                      | range               |               | Connect to                |           |       |        |
|                      | range               |               | ground)                   |           |       |        |
| RAIN (2)             | External Input      |               | -                         | -         | 50    | kΩ     |
|                      | Impedance           |               |                           |           |       |        |
| RADC <sup>(2)</sup>  | Sampling Switch     |               | -                         | -         | 1     | kΩ     |
|                      | Resistor            |               |                           |           |       |        |
| CADC <sup>(2)</sup>  | Internal sample and |               |                           |           | 8     | pF     |
|                      | hold capacitance    |               |                           |           |       |        |
| (2)                  | calibration time    | fADC=14MHz    |                           | 5.9       | •     | μs     |
| tC AL                | Cambration time     |               | 83                        |           |       | 1/fADC |
| (2)                  | Injection Trigger   | fADC=14MHz    |                           |           | 0.214 | μs     |
| tla t <sup>(2)</sup> | ,                   |               |                           |           | 3(4)  | 1/fADC |
|                      | Conversion Delay    |               |                           |           |       |        |
| tla tr               | Regular Trigger     | fADC=14MHz    |                           |           | 0.143 | μs     |
| tia tr 1             | Transition Delay    |               |                           |           | 2(4)  | 1/fADC |
|                      | Transmon Delay      | 21.5.2.1.5.55 |                           |           |       |        |
| ts <sup>(2)</sup>    | sampling time       | fADC=14MHz    | 0.107                     |           | 17.1  | μs     |
|                      |                     |               | 1.5                       |           | 239.5 | 1/fADC |
| tSTAB (2)            | power-on time       |               | 0                         | 0         | 1     | μs     |
| tCONV <sup>(2)</sup> | Total conversion    | fADC=14MHz    | 1                         |           | 18    | μs     |
| tCONV`'              | time                |               | 14~252 (samp              | oling tS+ |       | 1/fADC |
|                      | (including          |               | progressively approaching |           | hing  |        |
|                      | sampling time)      |               | 12.5)                     |           |       |        |

- 1. Assured by a comprehensive assessment, not tested in production.
- 2. Guaranteed by design, not tested in production.
- 3. In QFN36, LQFP48, and LQFP64 packages,  $v_{REF+is}$  internally connected to  $v_{DDA}$  and  $v_{REF-is}$  internally connected to  $v_{SSA}$ . see Table 2 for details.
- 4. For external triggering, a delay 1/IPCLK2 must be added to the delays listed in Table 43.

### Formula 1:

Maximum RAIN

$$_{\text{RAIN}} < \frac{\text{TS}}{f_{\text{ADC}} \times C_{\text{ADC}} \times \text{In}(2N+2)}$$
 - RADO

#### **Formula**

The above equation (Equation 1) is used to determine the maximum external impedance that will allow an error of less than 1/4 LSB, where N=12 (for 12-bit resolution).

Table 44fADC = Maximum RAIN at 14MHz (1)

|                           | 1 abic 441A                | DC WIGHTINGTH KAIN  | AC 1 11V1112               |
|---------------------------|----------------------------|---------------------|----------------------------|
|                           | тs (cycle)                 | t <sub>S</sub> (μs) | Maximum $_{RAIN}(k\Omega)$ |
|                           | 1.5                        | 0.11                | 0.4                        |
|                           | 7.5                        | 0.54                | 5.9                        |
| CKS32F103x8 and CKS32F103 | хв, a series 3f \$2-bit MC | Us from 0.96        | 11.4                       |
| Semiconductor Manufactu   |                            | 2.04                | 25.2                       |
|                           | 41.5                       | 2.96                | 37.2                       |
|                           | 55.5                       | 3.96                | 50                         |

CKS32F103x8 and CKS32F103xB Datasheet



1. Guaranteed by design, not tested in production.

1. The I

1. The D



### Table 45ADC Accuracy - Restricted Test Conditions(1)(2)

| _      |                        |                    |                                                                                                                             |                  |                   |             |  |  |
|--------|------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|-------------|--|--|
|        | notatio<br>n           | parameters         | test condition                                                                                                              | typical<br>value | Maximu<br>m value | unit<br>(of |  |  |
|        |                        |                    |                                                                                                                             |                  | (3)               | meas        |  |  |
|        |                        |                    |                                                                                                                             |                  |                   | ure)        |  |  |
|        | ET                     | Aggregate error    | - 57 MIL-                                                                                                                   | ±1.3             | ±2                |             |  |  |
|        | ЕО                     | offset error       | <sub>fPCLK2</sub> = 56 MHz                                                                                                  | ±1               | ±1.5              |             |  |  |
| D<br>D | E <b>G</b><br>C accura | cy væde of the ADC | <sub>fADC</sub> = 14 MHz, RAIN< 10 kΩ, <sub>VDDA</sub><br>is measure <b>g</b> a <b>ften</b> an int <b>ern</b> accalibration | n. ±0.5          | ±1.5              | LSB         |  |  |
| - 1    |                        |                    | 1 3 3 3 V 1 A 2 2 3 C                                                                                                       |                  |                   |             |  |  |

2. ADC Accuracy vs. Referential ent Injection: It is important to avoid injecting verse cuttent on any standard analog input pin, linear entropy ignificantly degrade the accuracy of a conversion being performed after ADC calibration analog input pin. It is referenced that a Schottky diode be added to the standard analog pin (between the pin and ground) where rentest aljection current may be generated.

±0.8 ±1.5

The ADC accuracy wear Hyt Exercised if the forward injection current, as long as it is within the INJUENN) and EINJUENN ranges given in Section 5.3.12.

3. Assured by comprehensive evaluation, not tested in production.

| Table 46ADC Accuracy(1)(2)(3) |                 |                                                                                         |         |         |      |  |  |  |  |
|-------------------------------|-----------------|-----------------------------------------------------------------------------------------|---------|---------|------|--|--|--|--|
| notatio                       | parameters      | test condition                                                                          | typical | Maximu  | unit |  |  |  |  |
| n                             |                 |                                                                                         | value   | m value | (of  |  |  |  |  |
|                               |                 |                                                                                         |         | (3)     | meas |  |  |  |  |
|                               |                 |                                                                                         |         |         | ure) |  |  |  |  |
| ET                            | Aggregate error |                                                                                         | ±2      | ±5      |      |  |  |  |  |
| ЕО                            | offset error    | $_{\rm fPCLK2}$ = 56 MHz<br>$_{\rm fADC}$ = 14 MHz, RAIN< 10 k $\Omega$ , $_{\rm VDDA}$ | ±1.5    | ±2.5    |      |  |  |  |  |
| EG<br>C. accurac              | gain error      | s measured aft@i4ar3i6Vernal calibrati                                                  | ±1.5    | ±3      | LSB  |  |  |  |  |
| , EDc                         | differential    |                                                                                         | ±1.     | ±2      |      |  |  |  |  |

2. Optimal performance can be achieved exercise the tree frequency of the performance can be achieved exercised the frequency of the performance can be achieved exercised to the performance can be achieved to the performa

3. ADC Accuracy vs. Reverse current Injection: It is important to avoid injecting reverse current on any standard after ADC calibration analog input pin, as this can significantly degrade the accuracy of a conversion being performed on another analog input pin. It is recommended that a Schottky diode be added to the standard analog pin (between the pin and ground) where nearly injection current may be generated.

The ADC accuracy will not be affected if the forward injection current, as long as it is within the  $_{IINJ(PIN)}$  and  $_{\Sigma IINJ(PIN)}$  ranges given in Section 5.3.12.

4. Assured by comprehensive evaluation, not tested in production.





Figure 23ADC Accuracy Characteristics

- (1) Example of an actual ADC conversion curve
- (2) Ideal Conversion Curve
- (3) Actual conversion point connection

ET Combined error: the maximum deviation between the actual conversion curve and the ideal conversion curve.

Eo offset error: the difference between the first leap on the actual conversion curve and the first leap on the ideal conversion curve.

EG Gain error: the difference between the last leap on the actual conversion curve and the last leap on the ideal conversion curve.

 $_{\rm ED}$  Differential Linearity Error: The difference between the actual step on the conversion curve and the ideal step (1LSB). Where 1LSBIDEAL=VREF+/4096 (or VDDA/4096, depending on the package)

EL Integral linearity error: Maximum deviation of the actual conversion curve from the endpoint line.



Figure 24 Typical Connection Diagram Using ADCs

1. See Table 46 for RAIN, RADC, and CADC values.

### CKS32F103x8 and CKS32F103xB



2. Cparasitic represents the parasitic capacitance (about 7pF) of the PCB (related to the quality of soldering and PCB layout) with respect to the pads. Larger Cparasitic values will reduce the accuracy of the conversion and the solution is to reduce the fadc.



## **PCB Design Recommendations**

Depending on whether  $_{VREF+\,is}$  connected to  $_{VDDA}$  or not, the decoupling of the power supply must be connected according to Figure 25 or Figure 26. The 10nF capacitors shown must be dielectric capacitors and should be placed as close as possible to the MCU chip.



Figure 25 Supply and reference  $\overline{p}$ ower supply decoupling lines (vREF+ not connected to vDDA)

 $1.\,_{\text{VREF+}}$  and  $_{\text{VREF-}}$  inputs are only found on products with 100 feet or more.



Figure 26 Supply and reference power supply decoupling lines ( $_{VREF^+}$  connected to  $_{VDDA}$ ) 1. The  $_{VREF^+}$  and V  $_{REF^-}$  inputs are only found on products with more than 100 pins.

# 5.3.18 Temperature Sensor Characteristics

Table 47 Temperature Sensor Characteristics

|         | notation                   | parameters                                      | minimum      | typical    | maximu                 | unit (of |
|---------|----------------------------|-------------------------------------------------|--------------|------------|------------------------|----------|
|         |                            |                                                 | value        | value      | m values               | measur   |
|         |                            |                                                 |              |            |                        | e)       |
|         | (1)<br>TL                  | vsense Linearity with respect to                |              | ±1         | ±2                     | ° C      |
|         |                            | temperature                                     |              |            |                        |          |
|         | Avg_Slope <sup>(1)</sup>   | average slope                                   | 4.0          | 4.3        | 4.6                    | mV/°C    |
| 1. Assı | ured bygomprehe            | nsive evalu <b>atiohtapetaested</b> in producti | on. 1.61     | 1.62       | 1.63                   | V        |
| 2. Gua  | rant <b>ęg laky</b> design | , not test <b>ed tallife have are</b> time      | 4            |            | 10                     | μs       |
| 3. The  | minimum(2%2mpli            | ng ti <b>ndcasamphingninne by klen</b> appli    | cation progr | am through | mul <b>ţip</b> ile cyc | les.µs   |
|         |                            | reading temperature                             |              |            |                        |          |



# 6. Package Characteristics

# 6.1 Encapsulated mechanical data



Figure 27QFN36 Package Diagram

Table 48QFN36 Package Mechanical Data

| grade | .41     | millimetre    |         |  |
|-------|---------|---------------|---------|--|
| grade | minimum | typical value | maximum |  |
|       | value   |               | values  |  |
| A     | 0.70    | 0.75          | 0.80    |  |
| A1    | 0       | 0.02          | 0.05    |  |
| A3    |         | 0.203 REF     |         |  |
| b     | 0.20    | 0.25          | 0.30    |  |
| D     |         | 6 BSC         |         |  |
| Е     |         | 6 BSC         |         |  |
| e     |         | 0.5 BSC       |         |  |
| D2    | 4.05    | 4.15          | 4.25    |  |
| E2    | 4.05    | 4.15          | 4.25    |  |
| K     |         | 0.375 REF     |         |  |
| L     | 0.45    | 0.55          | 0.65    |  |
| aaa   |         | 0.1           |         |  |
| ccc   | 0.1     |               |         |  |
| eee   | 0.08    |               |         |  |
| bbb   | 0.1     |               |         |  |
| fff   |         | 0.1           |         |  |





Figure 28LQFP100, 100-pin low-profile

square flat package diagram Table

| arothi OEI | millimetre<br>P <del>100, 100-pin low-profile square flat</del> |               |         |  |  |  |
|------------|-----------------------------------------------------------------|---------------|---------|--|--|--|
| granneQFF  | minimum                                                         | typical value | maximum |  |  |  |
|            | valpackas                                                       | ge data       | values  |  |  |  |
| A          |                                                                 |               | 1.60    |  |  |  |
| A1         | 0.05                                                            | -             | 0.15    |  |  |  |
| A2         | 1.35                                                            | 1.40          | 1.45    |  |  |  |
| A3         | 0.59                                                            | 0.64          | 0.69    |  |  |  |
| b          | 0.18                                                            | -             | 0.26    |  |  |  |
| b1         | 0.17                                                            | 0.20          | 0.23    |  |  |  |
| c          | 0.13                                                            | -             | 0.14    |  |  |  |
| D          | 15.80                                                           | 16.00         | 16.20   |  |  |  |
| D1         | 13.90                                                           | 14.00         | 14.10   |  |  |  |
| Е          | 15.80                                                           | 16.00         | 16.20   |  |  |  |
| E1         | 13.90                                                           | 14.00         | 14.20   |  |  |  |
| eB         | 15.05                                                           | -             | 15.35   |  |  |  |
| e          |                                                                 | 0.50BSC       |         |  |  |  |
| L          | 0.45                                                            | -             | 0.75    |  |  |  |
| L1         |                                                                 | 1.00REF       |         |  |  |  |
| θ          | 0                                                               | -             | 7°      |  |  |  |





Figure 29 LQFP64, 64-pin low-profile

square flat package diagram Table 50

| gradeFP64            |                            | millimetre                       |         |  |  |  |
|----------------------|----------------------------|----------------------------------|---------|--|--|--|
| 81 <b>42(9)</b> FP64 | , 64-pin low-pi<br>minimum | rofile square f<br>typical value | maximum |  |  |  |
| nackag               | value<br>e data            |                                  | values  |  |  |  |
| — packag<br>A        | -                          | -                                | 1.60    |  |  |  |
| A1                   | 0.05                       | -                                | 0.15    |  |  |  |
| A2                   | 1.35                       | 1.40                             | 1.45    |  |  |  |
| A3                   | 0.59                       | 0.64                             | 0.69    |  |  |  |
| b                    | 0.18                       | -                                | 0.26    |  |  |  |
| b1                   | 0.17                       | 0.20                             | 0.23    |  |  |  |
| c                    | 0.13                       | -                                | 0.17    |  |  |  |
| D                    | 11.80                      | 12.00                            | 12.20   |  |  |  |
| D1                   | 9.90                       | 10.00                            | 10.10   |  |  |  |
| Е                    | 11.80                      | 12.00                            | 12.20   |  |  |  |
| eB                   | 11.25                      | -                                | 11.45   |  |  |  |
| E1                   | 9.90                       | 10.00                            | 10.10   |  |  |  |
| e                    |                            | 0.50BSC                          |         |  |  |  |
| θ                    | 0°                         | -                                | 7°      |  |  |  |
| L                    | 0.45                       | -                                | 0.75    |  |  |  |
| L1                   |                            | 1.00REF                          |         |  |  |  |





Figure 30LQFP48, 48-pin low-profile

square flat package Diagram 51LQFP48,

| gradonin | millimetre  |                                            |         |
|----------|-------------|--------------------------------------------|---------|
| grææpin  | minimum     | <del>uare flat pack</del><br>typical value | maximum |
| data     | value       |                                            | values  |
| A        | _           | -                                          | 1.60    |
| A1       | 0.05        | -                                          | 0.15    |
| A2       | 1.35        | 1.40                                       | 1.45    |
| A3       | 0.59        | 0.64                                       | 0.69    |
| b        | 0.18        | -                                          | 0.26    |
| b1       | 0.17        | 0.20                                       | 0.23    |
| c        | 0.13        | -                                          | 0.17    |
| c1       | 0.12        | 0.13                                       | 0.14    |
| D        | 8.80        | 9.00                                       | 9.20    |
| D1       | 6.90        | 7.00                                       | 7.10    |
| Е        | 8.80 9.00   |                                            | 9.20    |
| E1       | 6.90 7.00 7 |                                            | 7.20    |
| eB       | 8.10 - 8.25 |                                            | 8.25    |
| e        | 0.50BSC     |                                            |         |
| L        | 0.40        | -                                          | 0.65    |



| L1 | 1.00REF |   |    |
|----|---------|---|----|
| k  | 0       | - | 7° |

# 6.2 thermal property

The maximum junction temperature (TJmax) of the chip must not exceed the range of values given in Table 6.

The maximum junction temperature (TJmax) of the chip is expressed in Celsius and can be calculated by the following formula:

$$TJmax = TAmax + (PDmax \times \Theta JA)$$

Among them:

- TAmax is the maximum ambient temperature, expressed in °C.
- <sub>OJA</sub> is the thermal impedance of the junction to ambient in the package, labeled in °C/W.
- PDmax is the sum of PINTmax and PI/Omax (PDmax = PINTmax + PI/Omax).
- PINTmax is the product of IDD and VDD, expressed in watts, and is the maximum internal power consumption of the chip.

PI/Omax is the maximum power consumption of all output pins:

$$PI/Omax = \Sigma(VOL \times IOL) + \Sigma((VDD - VOH) \times IOH).$$

Consider the actual VOL/IOL and VOH/IOH that are low and high on the I/O in the application.

Table 52 Thermal Characteristics of Packages

|       | Tuble 52 Thermal Gharacteriongs of Facinages          |                                                                                |           |       |        |  |
|-------|-------------------------------------------------------|--------------------------------------------------------------------------------|-----------|-------|--------|--|
|       | notatio                                               | parameters                                                                     | numerical | unit  |        |  |
|       | n                                                     |                                                                                | value     | (of   |        |  |
|       |                                                       |                                                                                |           | measu |        |  |
|       |                                                       | 19                                                                             |           | re)   |        |  |
|       |                                                       | Thermal Impedance to Environment - LQFP100 -                                   | 46        |       |        |  |
|       | ΘЈА                                                   | 14×14mm/0.5mm Pitch                                                            |           | 9C /W |        |  |
| 6.2.1 | reference documentnce of Junction to Environment - 45 |                                                                                |           |       |        |  |
|       |                                                       | LQFP64 - 10×10mm/0.5mm Pitch                                                   |           |       |        |  |
| JE    | SD51-2 En                                             | vTibermentur poddusere for Thiemtal Mexisurements of Integested Circuits-Natur |           |       | itural |  |
| С     | onvection                                             | (AQFR48-57) 7500 (W.W. Pitchorg                                                |           |       |        |  |
|       |                                                       | Thermal impedance of junction to environment -                                 | 18        |       |        |  |
|       |                                                       | QFN36-6×6mm/0.5mm pitch                                                        |           |       |        |  |



# 7. Model Naming





# 8. Version History

| dates      | releases      | revised part                                                  |
|------------|---------------|---------------------------------------------------------------|
| 2018.01.18 | Initial draft |                                                               |
| 2018.04.20 | 1.0           | Modify the pin definitions for pin 80 and pin 81 in Figure 3; |
|            |               | Typical values with 48MHz clock are added in Table 14;        |
|            |               | Add Table 15 Typical Current Consumption in Run Mode,         |
| 2018.08.11 | 1.1           | Data Processing Code from Internal                            |
|            |               | Running in <b>RAM</b> ;                                       |
|            |               | Modify the clock in Table 16 to the typical value at          |
|            |               | 72MHz;                                                        |
|            |               | Revise the maximum value                                      |
| 2018.10.10 | 1.2           | of <sub>fLSE_ext</sub> in Table 18; revise                    |
|            |               | the <sub>IDD</sub> unit μA to mA in Table                     |
|            |               | 26;                                                           |
|            |               | Modify the minimum, typical, and maximum values               |
|            |               | for v <sub>25</sub> in Table 47.                              |
| 2018.10.15 | 1.3           | Add sections on device comparison/ordering                    |
|            |               | information/model designation, etc.                           |
| 2020.03.17 | 1.4           | Added package QFN36 related content                           |