RNA-Seq Library Preparation

Josh Granek

Ethernet

Lanes

Rna-Seq Applications

- Transcriptome: "Which genes are expressed in this sample?"
 - Differential Expression
 - Genome Annotation
- SNPs
- Gene Fusions

RNA-Seq

- Bulk RNA-Seq
- Single-Cell RNA-Seq (scRNA-Seq)

Overview

• From Cells to Library

RNA-Seq: Major Components

Sample Collection

2.RNA Extraction

3. Library Preparation

RNA-Seq: Major Components

Sample Collection

2.RNA Extraction

3. Library Preparation

Growth and Sample Collection

- Avoid Confounding Factors!
- System Specific
- Experiment Specific
- Avoid RNA response to sample collection!

Sample Collection Options

- Flash freeze
- RNA stabilizers
 - RNA protect
 - RNAlater
- Phenol (hot acid phenol, trizol, etc)

RNA Extraction: Why?

Have cells, need RNA

RNA Extraction Options

- Kits
 - Qiagen RNeasy Mini Kit
 - Etc
- Phenol (hot acid phenol, trizol, etc)

Our Samples

- I. Collect cells (centrifuge liquid culture)
- 2. Flash freeze
- 3. Lyophilize overnight
- 4. Bead beating to break open cells
- 5. Qiagen RNEasy: "Purification of Total RNA from Plant Cells and Tissues and Filamentous Fungi"

RNA-Seq: Major Components

- Sample Collection
- 2.RNA Extraction
- 3.mRNA Enrichment/rRNA Depletion
- 4. Library Preparation

rRNA Depletion: Why?

rRNA Depletion: Why?

rRNA Depletion: How?

- Selection for desired RNA
- *** poly(A) mRNA enrichment
 - Selective polyadenylation of mRNAs
 - Antibody capture of RNAs that interact with a specific protein
 - Non-random priming
 - Selection against non-desired RNA
 - DNA targeted RNaseH degradation of rRNA
 - Ribosomal RNA capture
 - Duplex-specific nuclease (DSN) normalization
 - Degradation of processed RNA

rRNA Depletion: How?

rRNA Depletion: How?

DNA Targeted RNaseH Degradation of rRNA

rRNA-depleted RNA

RNA-Seq: Major Components

- Sample Collection
- 2.RNA Extraction
- 3.mRNA Enrichment/rRNA Depletion
- 4. Library Preparation

Library Preparation: Key Steps

- . RNA Fragmentation
- 2. cDNA Synthesis
- 3. Adapter Ligation
- 4. Size Selection
- 5. PCR Enrichment

Library Prep Workflow

NEBNext® UltraTM Directional RNA Library Prep Kit for Illumina®Instruction Manual, Revision 4.0

Library Preparation: Key Steps

- . RNA Fragmentation
- 2. cDNA Synthesis
- 3. Adapter Ligation
- 4. Size Selection
- 5. PCR Enrichment

Fragmentation

Fragmentation: Why?

- Efficient cluster generation and sequencing
- Distribution of reads across mRNA

Differential Splicing

Splicing

Differential Splicing

Library Prep Fragmentation: Why?

Library Prep Fragmentation: Why?

Fragmentation: How?

 Heat with divalent metal cation (Chemical)

Library Prep Fragmentation: Alternatives?

- Degraded RNA
- Small RNAs
- DNA Fragmentation uses Physical or Enzymatic methods
- Needs to be Random!!!

Library Preparation: Key Steps

- RNA Fragmentation
- 2.cDNA Synthesis
- 3. Adapter Ligation
- 4. Size Selection
- 5.PCR Enrichment

cDNA Synthesis: Why?

Have RNA, need DNA

cDNA Synthesis

cDNA Synthesis: How?

- First Strand:
 - Reverse Transcriptase
 - Random Primers
 - dNTPs
- Second Strand:
 - RNaseH: generate RNA primers
 - DNA polymerase I: DNA synthesis
 - DNA ligase: ligate fragments
 - dNTPs

Library Preparation: Key Steps

- RNA Fragmentation
- 2.cDNA Synthesis
- 3. Adapter Ligation
- 4. Size Selection
- 5.PCR Enrichment

Library Preparation

Adapter Ligation

Library Preparation

- . RNA Fragmentation
- 2. cDNA Synthesis
- 3. Adapter Ligation
 - End-Repair and dA-Tailing
 - 2. Adapter Ligation
 - 3. U Excision
- 4. Size Selection
- 5. PCR Enrichment

End-Repair and dA-Tailing

Prepare fragments for adapter ligation:

- Generate blunt ends
- Then generate 3' A overhang

DNA Ligation

DNA Ligation: What

Join two or more fragments of DNA into a single continuous strand

*Do not confuse with hybridization

DNA Ligation: How

- Requirements:
 - two or more DNA fragments
 - DNA Ligase
 - Phosphate/Energy

DNA Ligation: Basics

```
5'-CTGATCTGACTGA-3'
3'-GACTAGACTGACT-5'
+
5'-TGCGTATGCTAGT-3'
3'-ACGCATACGATCA-5'
+
Ligase + ATP
```

```
5'-CTGATCTGACTGATGCGTATGCTAGT-3'
3'-GACTAGACTGACTACGCATACGATCA-5'
```

Blunt End Ligation

```
5'-CTGATCTGACTGA-3'
3'-GACTAGACTGACT-5'
+
5'-TGCGTATGCTAGT-3'
3'-ACGCATACGATCA-5'
+
Ligase + ATP
```

```
5'-CTGATCTGACTGATGCGTATGCTAGT-3'
3'-GACTAGACTGACTACGCATACGATCA-5'
```

Sticky End Ligation

```
5'-CTGATCTGACT -3'
3'-GACTAGACTGACTAC-5'
+
5'-GATGCGTATGCTAGT-3'
3'- GCATACGATCA-5'
+
Ligase + ATP
```

```
5'-CTGATCTGACTGATGCGTATGCTAGT-3'
3'-GACTAGACTGACTACGCATACGATCA-5'
```

End Repair

End Repair: What

Fix overhanging ends so they are doublestranded

End Repair: What

```
5'-CTGATCTGACT -3'
3'-GACTAGACTGACTAC-5'
```


5'-CTGATCTGACTGATG-3'
3'-GACTAGACTGACTAC-5'

Why are ends NOT blunt?

End Repair: What

```
5'-CTGATCTGACT -3'
3'-GACTAGACTGACTAC-5'
```


5'-CTGATCTGACTGATG-3'
3'-GACTAGACTGACTAC-5'

End Repair: Why

Allow blunt end ligation

End Repair: How

```
5'-CTGATCTGACT -3'
3'-GACTAGACTGACTAC-5'

+

?

5'-CTGATCTGACTGATG-3'
3'-GACTAGACTGACTAC-5'
```

End Repair: How

```
5'-CTGATCTGACT -3'
3'-GACTAGACTGACTAC-5'

+

DNA Polymerase

=

5'-CTGATCTGACTGATG-3'
3'-GACTAGACTGACTAC-5'
```

End Repair: How

- Requirements:
 - DNA with overhanging end
 - DNA Polymerase
 - dNTPs

dA-Tailing

dA-Tailing: What

Add a 3'"A" to blunt end fragments

dA-Tailing: What

```
5'-CTGATCTGACTGATG-3'
3'-GACTAGACTGACTAC-5'
```



```
5'- CTGATCTGACTGATGA-3'
3'-AGACTAGACTGACTAC -5'
```

dA-Tailing: Why

dA-Tailing: Why

Allow sticky-end ligation to a "universal fragment"

dA-Tailing: Why

```
5'- GATGATTGCTGAAGA-3'
   3'-ACTACTAACGACTTC -5'
  5'- AGTACTGTTCTTTATA-3'
  3'-ATCATGACAAGAAATA -5'
        5'- CCATG-3'
        3'-TGGTAC-5'
5'- GATGATTGCTGAAGACCATG-3'
3'-ACTACTAACGACTTCTGGTAC-5'
5'- AGTACTGTTCTTTATACCATG-3'
```

3'-ATCATGACAAGAAATATGGTAC-5'

dA-Tailing: Why?

dA-Tailing: How

- Requirements:
 - Blunt-end DNA Fragment
 - Taq DNA Polymerase
 - ATP

Adapter Ligation

U Excision

U Excision

Why?

U Excision

Strand-Specific Library

• Why Bother?

Strand-Specific Library

Strand-specific libraries

Joshua Levin and Moran Yassour

Strand Specific Prep

NEBNext® UltraTM Directional RNA Library Prep Kit for Illumina®Instruction Manual, Revision 4.0

Library Preparation: Key Steps

- RNA Fragmentation
- 2. cDNA Synthesis
- 3. Adapter Ligation
- 4. Size Selection
- 5. PCR Enrichment

Clean Up and Size Selection: Why?

- Remove regents from previous step
- Eliminate unwanted fragments
 - Unligated adapter
 - adapter dimers
 - fragments without adapter
- Efficient cluster generation and sequencing

Sample Clean Up

Size Selection

Clean Up and Size Selection: How?

Solid Phase Reversible Immobilisation
 (SPRI) beads

 Carboxylate-Modified
 Polymer Coating

 Polystrene Core

Magnetite

Clean Up and Size Selection: How?

Size Selection: How?

Size Selection: How?

Option 2: Double-Sided SPRI

By implementing a combination of good shearing with SPRI and "reverse" SPRI, one can select a fairly tight size range with no gel:

Clean Up and Size Selection: Alternatives

- Spin Columns
- Gel Purification
- DIY SPRI

Library Preparation: Key Steps

- RNA Fragmentation
- 2. cDNA Synthesis
- 3. Adapter Ligation
- 4. Size Selection
- 5. PCR Enrichment

PCR Enrichment: Why?

- I. Extend adapter to full length
 - A. add barcodes
 - B. add priming sites
- 2. Amplify library
 - A. Make more of the good fragments
 - B. Leave the garbage in the dust

Extend Adapters

PCR Enrichment

Barcodes: Why?

Multiplexing: Combine multiple samples in a lane

Barcodes

Barcodes

Sample_Name	I7_Index_ID	index
1_A	P49-E1	AAGACCGT
2_A	P50-E2	TTGCGAGA
3_A	P51-E3	GCAATTCC
4_A	P52-E4	GAATCCGT
5_A	P53-E5	CCGCTTAA
6_A	P54-E6	TACCTGCA
7_B	P55-E7	GTCGATTG
8_B	P56-E8	TATGGCAC
9_B	P57-E9	CTCGAACA
10_B	P58-E10	CAACTCCA

Barcodes: Dual Index

Barcodes: Dual Index

	BC1: A	BC1: B	BC1: C
BC2: W	Sample 1	Sample 2	Sample 3
	A,W	B,W	C,W
BC2: X	Sample 4	Sample 5	Sample 6
	A,X	B,X	C,X
BC2: Y	Sample 7	Sample 8	Sample 9
	A,Y	B,Y	C,Y
BC2: Z	Sample 10	Sample 11	Sample 12
	A,Z	B,Z	C,Z

Nasty Stuff

- Sodium Azide
- Actinomycin D

Library Preparation: Alternatives

- Illumina Kits
- 2.Other Kits
- 3.DIY

Extra Stuff

Multiplexing (Barcodes)

STRUCTURE DETAILS

Uracil DNA glycosylase and DNA lyase

Uracil DNA glycosylase: What

Remove Uracil base from DNA

Uracil DNA glycosylase: What

```
5'-CTGATCUGACTGATG-3'
```

3'-GACTAGACTGACTAC-5'


```
5'-CTGATC-GACTGATG-3'
```

3'-GACTAGACTGACTAC-5'

Uracil DNA glycosylase: What

DNA Lyase: What

Cleave DNA backbone at abasic site

DNA Lyase: What

```
5'-CTGATC-GACTGATG-3'
3'-GACTAGACTGACTAC-5'
```



```
5'-CTGATC GACTGATG-3'
3'-GACTAGACTGACTAC-5'
```

RNA Quality?

• RIN: RNA Integrity Number

Ratio of 28S to 18S ribosomal RNA

Electropherogram

RNA Library Size Distribution

Assessment of RNA/DNA Quantity and Quality

- Advanced Analytical: Fragment Analyzer
- PerkinElmer: LabChip GX Touch
- Agilent: Bioanalyzer
- Agilent: TapeStation

Barcode Combinations

- Excitation Frequency
 - Red: A and C
 - Green: G and T
- Need both frequencies in each cycle for image registration

Barcode Combinations

	GOOD																
PRIMER			IND	EX S	EQU	JENC	CE		PRIMER	R INDEX SEQUENCE							
P1-A1	Т	Т	A	C	C	G	A	C	P41-D5	G	A	C	G	Т	C	A	Т
P2-A2	A	G	Т	G	A	C	C	Т	P42-D6	C	Т	Т	A	C	A	G	C
P3-A3	Т	C	G	G	A	Т	Т	C	P43-D7	Т	C	C	A	Т	Т	G	C
P4-A4	C	A	A	G	G	Т	A	C	P44-D8	A	G	C	G	A	G	A	Т
	✓	/	/	/	/	/	/	✓		✓	/	/	/	/	/	✓	✓

	BAD																
PRIMER]	INDI	EX S	EQU	ENC	CE		PRIMER	INDEX SEQUENCE							
P9-A9	C	G	C	A	A	C	Т	A	P56-E8	Т	A	Т	G	G	C	A	C
P10-A10	C	G	Т	A	Т	C	Т	C	P57-E9	C	Т	C	G	A	A	C	A
P11-A11	G	Т	A	C	A	C	C	Т	P58-E10	C	A	A	C	Т	C	C	A
P12-A12	C	G	G	C	A	Т	Т	A	P59-E11	G	Т	C	A	Т	C	G	Т
	/	×	✓	×	/	/	/	✓		✓	/	✓	/	/	×	/	/