

Отбор признаков (Feature Selection)

нахождение оптимального подмножества признаков, в соответствии с некоторым критерием

- процесс удаления избыточных и нерелевантных признаков

Отбор признаков (Feature Selection)

Причины

- интерпретация (от чего и как зависит ответ)
- скорость работы алгоритмов (часто O(n))
- борьба с переобучением (л/з для линейных методов)
- повышения качества (если много шума)
- удешевление решения (если добыча признаков что-то стоит)
- моделирование (хотим, чтобы решение зависело от определённых признаков)

Отбор признаков – не путать с

• извлечением признаков (feature extraction)

создание новых признаков

• сокращением размерности (dimensionality reduction)

уменьшение п (вообще говоря, переход к новому признаковому пространству)

Отбор признаков (Feature Selection)

типичные ошибки в селекции

- надеяться на селекцию идеальной процедуры отбора не существует!
- попытки автоматизировать селекцию признаков (в отрыве от решения основной задачи) может зависеть от модели / признаков / предобработки данных и т.п.
 - не обращать внимание на особенности данных надо совмещать и с генерацией
 - выбрасывание информации

Классификация методов

Фильтры (filter methods)

по отдельному признаку и, возможно, целевому признаку получают оценку его качества

не ориентированы на конкретные модели алгоритмов ML обычно считают статистики признаков

Обёртки (wrapper methods)

получают оценки качества признаков с помощью анализа работы алгоритмов машинного обучения на подмножествах признакового пространства

ориентированы на конкретные модели алгоритмов ML

Встроенные (embedded / intrinsic methods)

являются частью методов ML

качество признаков получается автоматически параллельно настройке модели

Фильтры: дискретные признаки

(принимают конечное число значений)

Энтропия:

$$H(X) = -\sum_{x_i \in X} p(x_i) \log p(x_i)$$

Условная энтропия (conditional entropy)

Энтропии, вычисленные для фиксированных значений признаков: $H(Y \mid X) = \sum_{x_i \in X} p(x_i) H(Y \mid X = \{x_i\}) = \\ = \sum_{x_i \in X} p(x_i) \sum_{x_i} p(y_i \mid x_i) \log(p(y_i \mid x_i))$

Свойства

$$H(Y) \ge H(Y \mid X) \ge 0$$

$$H(X,Y) = H(Y | X) + H(X) = H(X | Y) + H(Y)$$

если
$$X$$
 и Y независимы
$$H(Y \mid X) = H(Y)$$

$$H(X \mid X) = 0$$

Фильтры: дискретные признаки

1) Взаимная информация (Information Gain, Mutual Information)

Насколько более чётко определена Y, если знаем X

$$MI(Y,X) = H(Y) - H(Y | X) = \sum_{y_j \in Y} \sum_{x_i \in X} p(x_i, y_j) \log \frac{p(x_i, y_j)}{p(x_i) p(y_j)}$$

Свойства:

$$MI(Y,X) = MI(X,Y)$$
$$0 \le MI(Y,X) \le \min[H(X),H(Y)]$$

левая граница – когда Y, X независимы, правая – когда одна с.в. детерминированная функция другой

Для независимых признаков = 0 Предпочитает выбирать признаки с большим числом значений

Фильтры: дискретные признаки

2) хи-квадрат

	Y=0	Y=1	
X=0	6	4	Σ=10
X=1	14	16	Σ=30
	∑=20	Σ=20	Σ=40

expected =
$$\frac{10}{40} \cdot \frac{20}{40} \cdot 40 = 5$$

Ожидаемая вероятность в предположении независимости:

$$P(A \cap B) = P(A) \cdot P(B)$$

$$\chi^2 = \sum \frac{\text{(observed - expected)}^2}{\text{expected}}$$

в общем случае

$$\chi^2 = \sum_{i} \sum_{j} \frac{(m_{ij} - \mu_{ij})^2}{\mu_{ij}}, \ \mu_{ij} = \frac{\sum_{t} m_{it} \sum_{t} m_{tj}}{m}$$

Фильтры: статистики признаков

3) низкая оценка дисперсии – почти константный признак

```
sel = VarianceThreshold(threshold=(.8 * (1 - .8)))
sel.fit_transform(X)
```

4) t-оценка (для задачи с 2 классами) / t-критерий Стьюдента

в предположениях о нормальности распределений

$$\frac{|\mu_{1} - \mu_{2}|}{\sqrt{\frac{\sigma_{1}^{2} + \frac{\sigma_{2}^{2}}{m_{1}} + \frac{\sigma_{2}^{2}}{m_{2}}}}$$

в общем случае – ANOVA (ANalysis Of VAriance)

Фильтры: статистики признаков

ANOVA F-test

$$\frac{m_1 \sum_{i \in K_1} (\mu - \mu_1)^2 + m_2 \sum_{i \in K_2} (\mu - \mu_2)^2}{\frac{1}{m - 2} \left(\sum_{i \in K_1} (x_i - \mu_1)^2 + \sum_{i \in K_2} (x_i - \mu_2)^2 \right)}$$

«explained variance» / «between-group variability»

Фильтры: статистики признаков

5) Корреляция между признаками

корреляция с целевым \Rightarrow хороший корреляция с другим \Rightarrow один можно удалить

Оценка линейной зависимости – корреляционный коэффициент Пирсона (Pearson) Оценка монотонной зависимости – корреляционный коэффициент Спирмена (Spearman)

коэффициент Кендалла (Kendall rank correlation coefficient) для выборки с двумя признаками $\{(x_i, y_i)\}_{i=1}^m$

$$\frac{|\{(i,j) | \operatorname{sgn}(x_i - x_j) = \operatorname{sgn}(y_i - y_j)\}| - |\{(i,j) | \operatorname{sgn}(x_i - x_j) \neq \operatorname{sgn}(y_i - y_j)\}|}{C_m^2}$$

6) Использование других мер качества

ex: AUC-ROC-признака

или строим простой алгоритм на этом признаке (но это уже похоже на обёртку)

Минутка кода: фильтры

```
from sklearn.datasets import load breast cancer
from sklearn.feature selection import GenericUnivariateSelect, chi2
from sklearn.feature selection import SelectKBest
X, y = load breast cancer(return X y=True)
X.shape
(569, 30)
transformer = GenericUnivariateSelect(chi2, \# как оценивать качество f(x[:,j], y)
                                      mode='k best', # стратагия отбора
                                      рагат=20) # здесь - сколько признаков
X new = transformer.fit transform(X, y)
X new.shape
(569, 20)
X new = SelectKBest(chi2, k=20).fit transform(X, y) # или можно было так...
```

Фильтры

Copyright @ MachineLearningMastery.com

https://machinelearningmastery.com/feature-selection-with-real-and-categorical-data/

Минутка кода: фильтры

sklearn.feature_selection: Feature Selection

The sklearn.feature_selection module implements feature selection algorithms. It currently includes univariate filter selection methods and the recursive feature elimination algorithm.

User guide: See the Feature selection section for further details.

```
feature selection.GenericUnivariateSelect([...])
                                                     Univariate feature selector with configurable strategy.
feature_selection.SelectPercentile([...])
                                                     Select features according to a percentile of the highest scores.
feature_selection.SelectKBest([score_func, k])
                                                     Select features according to the k highest scores.
feature_selection.SelectFpr([score_func, alpha])
                                                     Filter: Select the pvalues below alpha based on a FPR test.
feature selection.SelectFdr([score_func, alpha])
                                                     Filter: Select the p-values for an estimated false discovery rate.
                                                     Meta-transformer for selecting features based on importance weights.
feature selection.SelectFromModel(estimator, *)
feature_selection.SelectFwe([score_func, alpha])
                                                     Filter: Select the p-values corresponding to Family-wise error rate.
feature_selection.SequentialFeatureSelector(...)
                                                     Transformer that performs Sequential Feature Selection.
feature_selection.RFE(estimator, *[, ...])
                                                     Feature ranking with recursive feature elimination.
                                                     Recursive feature elimination with cross-validation to select the number of
feature selection.RFECV(estimator, *[, ...])
                                                     features.
                                                    Feature selector that removes all low-variance features.
feature_selection.VarianceThreshold([threshold])
feature_selection.chi2(X, y)
                                                     Compute chi-squared stats between each non-negative feature and class.
feature selection.f classif(X, y)
                                                     Compute the ANOVA F-value for the provided sample.
                                                     Univariate linear regression tests returning F-statistic and p-values.
feature_selection.f_regression(X, y, *[, center])
feature selection.r regression(X, y, *[, center])
                                                     Compute Pearson's r for each features and the target.
feature_selection.mutual_info_classif(X, y, *)
                                                     Estimate mutual information for a discrete target variable.
feature_selection.mutual_info_regression(X, y, *)
                                                     Estimate mutual information for a continuous target variable.
```

Фильтры

- + сложность линейно зависит от числа признаков
- + быстрые
- не учитываем алгоритм
- оцениваем отдельные признаки

ещё называют «одномерными методами»

Jundong Li, et al. «Feature Selection: A Data Perspective»

Обёртки: умный перебор признаковых подпространств

1	1	1	1	0	1	1
3	1	1	1	0	2	1
2	1	2	2	3	1	1
1	1	2	2	2	0	2
0	2	1	3	1	1	1
1	2	1	3	1	1	1
1	2	2	1	1	0	1

1. Выбираем модель алгоритмов

- 2. Выбираем способ оценки качества модели на признаковом подпространстве (например, скользящий контроль + MSE)
 - 3. Запускаем алгоритм на различных (основной момент как их перебирать) признаковых подпространствах, оцениваем качество

$$Q(\{f_1,...,f_k\}) = Q(A(X[:,[f_1,...,f_k]],y))$$

4. Выбираем подпространство с тах качеством

Например, если решаем задачу с одним признаком неглубокими лесами

можем выявить нелинейные закономерности

Последовательное удаление признаков – Backward Stepwise Selection / Del

включить все и по одному исключать – см. качество каждый раз делается «самое выгодное исключение»

Последовательное добавление признаков – Forward Stepwise Selection / Add

Начать с модели без признаков (null model) и по одному добавлять делается самое выгодное добавление

stepwise selection / stepwise regression

Add-Del – комбинация предыдущих стратегий

совет из практики k×[add t random] + r×[del s random]

Subset Selection

перебрать подмножества признаков мощности <= k выбрать модель с лучшим качеством

Минутка кода: Sequential Feature Selection

реализует стратегии Add / Del

```
from sklearn.feature selection import SequentialFeatureSelector
from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import load iris
X, y = load iris(return X y=True)
knn = KNeighborsClassifier(n neighbors=3)
sfs = SequentialFeatureSelector(knn, n features to select=3)
sfs.fit(X, y)
SequentialFeatureSelector(estimator=KNeighborsClassifier(n neighbors=3),
                          direction='forward', # как выбирать, есть ещё
                          cv=5,
                          n features to select=3) # сколько признаков выбрать
sfs.get support()
array([ True, False, True, True])
sfs.transform(X).shape
(150, 3)
```

sklearn.feature_selection.RFECV – Recursive feature elimination + CV (для моделей с коэффициентами или важностями)

Эксперименты с линейной закономерностью

Lasso

RF

На что смотрят при селекции

- 1. Качество решения задачи
 - 2. Штраф за сложность

(CV, Cp – AIC, BIC и т.п.)

- 3. Стабильность признакового пространства
 - 4. Зависимости признаков

Штраф за сложность

Информационный критерий Акаике

(для моделей, которые максимизируют правдоподобие)

$$AIC = -2\log L + 2n$$

$$C_p = \frac{1}{m} (RSS + 2n\hat{\sigma}^2)$$

Байесовский информационный критерий

$$BIC = n \log m - 2 \log L$$

$$C_p = \frac{1}{m} (RSS + \log(m) n\hat{\sigma}^2)$$

Нестабильность признакового пространства

- качество решения задачи разделения выборки на обучение и тест «Adversarial validation»

Исходная задача

Новая задача

AUC ROC

- получаем оценку схожести обучения и контроля
- важности признаков оценки их нестабильности
- отбор признаков поиск стабильного признакового пространства

Зависимость (выводимость) признака

- качество решения задачи вывода признака

Исходная задача

Новая задача

Функционал?

- получаем оценку зависимости признака от остальных
- можно анализировать специальные зависимости (ех: линейные)
 - можем последовательно удалять лишние признаки
 - можно добавлять признаки к базовым

Отбор признаков как задача глобальной оптимизации

1	1	1	1	0	1	1
3	1	1	1	0	2	1
2	1	2	2	3	1	1
1	1	2	2	2	0	2
0	2	1	3	1	1	1
1	2	1	3	1	1	1
1	2	2	1	1	0	1

1

0

1

Максимизация функции

$$f:\{0,1\}^n\to\mathbb{R}$$

Заведомо нет лучшего алгоритма

пример функции с точечным носителем

Три группы методов:

- 1. Перебор
- 2. Направленный поиск
- 3. Стохастическая оптимизация

Полный / квазиполный перебор

- может не завершиться
- + можно грамотно организовать
- сначала потенциально лучшие точки
 - устанавливать свойства функции

(монотонность, несущественность, эквивалентность переменных и т.п.)

Пример

- перебор всех троек признаков
- удалить те, которые не попали в хорошие подпространства

Направленный поиск

точки для перебора выбираем из окрестности уже исследованных точек

- градиентный (жадный) алгоритм
 - симуляция отжига
 - метод луча (beam search)
 - локальный поиск

Направленный поиск: градиентный (жадный) алгоритм

- 1. Начинаем со случайной точки
- 2. Ищем в окрестности текущей точки наибольшее значение
- 3. Переходим в соответствующую точку

Останавливаемся в локальном максимуме

Направленный поиск: улучшения градиентного алгоритма

- 1. Перезапуски
- 2. Параллельные запуски с переключением на перспективные ветки
- 3. Продолжать движение в локальных максимумах симуляция отжига

$$\exp([f(\tilde{z}^t) - f(\tilde{z})]/T)$$

- 4. Идти в сторону k лучших (запоминать, что посетили)
- 5. Также собирать информацию о функции

Направленный поиск: метод луча (beam search)

Храним к лучших точек

Направленный поиск: локальный поиск

1. Стартуем с {(0,0,...,0)}

2. Среди соседей текущего множества выбираем к лучших соседей верхнего уровня

Стохастическая оптимизация: генетический алгоритм

- 1. Инициализация.
- 2. Селекция.
- 3. Скрещивание (размножение).
- 4. Мутации.
- **5.** Переход к п. 2.

1010101110010 011010010111

1010101101011

Стохастическая оптимизация: улучшения генетического алгоритма

Селекция

- смерть от старения
- отбор по вероятности (оценка ~ вероятность смерти)
- смерть в боях (турниры)
- приход чужаков
- параллельно живущие популяции

Скрещивание

- разные схемы кроссовера
- разный выбор для скрещивания (все по парам, с вероятностями)
- алгоритм с постоянным числом индивидов (дети вместо родителей)
- конвейерная версия (0.1 выживает, 0.9 случайная пара переносит потомков)

Стохастическая оптимизация: улучшения генетического алгоритма

Мутация

- лучшие не мутируют (элитаризм)
- вероятность мутации выше, если нет улучшений
- генетика + градиент

Кодирование особей

Число	Стандартный код	Код Грея
0	000	000
1	001	001
2	010	011
3	011	010
4	100	110
5	101	111
6	110	101
7	111	100

Стохастическая оптимизация: роевой алгоритм

$$f:\mathbb{R}^n\to\mathbb{R}$$

- К своему максимуму
- К максимуму роя
- К максимуму подруги

$$x_{t+1}^{i} = x_{t}^{i} + \alpha(m^{i} - x_{t}^{i}) + \beta(m - x_{t}^{i}) + \gamma(m^{j} - x_{t}^{i})$$

Стохастическая оптимизация

Полный перебор	высокая точность при экспоненциальном времени работы	
+ приемлемая точность		
Стохастический перебор	- не полный перебор пространства - подбор гиперпараметров важен + простая реализация + простые модификации + нет проблемы локальных минимумов	

Sean Luke Essentials of Metaheuristics. — Lulu, 2009. — 235 p.

Дилемма исследования-использования «Exploration vs. Exploitation»

задача исследования

просмотреть как можно больше (новых) точек из всего пространства поиска

задача использования

не пропустить хорошее решение и по максимуму использовать уже полученную информацию

часто регулируется параметрами:

- радиус окрестности в градиентном алгоритме
 - вероятность мутации

Встроенные методы: коэффициенты в регрессии

Линейная регрессия

$$Xw = y$$

Решение линейной регрессии

$$||Xw - y||^2 \rightarrow \min$$

Регуляризация по Тихонову

$$||Xw - y||^2 + \lambda ||w||^2 \rightarrow \min$$

LASSO

$$||Xw - y||^2 + \lambda_1 ||w|| \rightarrow \min$$

from sklearn.linear_model import Ridge
clf = Ridge(alpha=1.0)
clf.fit(X, y)

Нормализация признаков!

Встроенные методы: признаки в деревьях

Решающие деревья автоматически выбирают признаки.

Оценка важности в случайном лесе

1) Насколько уменьшает ошибку леса

$$Q(R, \theta) = \frac{|R|}{m} \left(H(R) - \frac{|R_{\text{left}}|}{|R|} H(R_{\text{left}}) - \frac{|R_{\text{right}}|}{|R|} H(R_{\text{right}}) \right)$$

2) Ухудшение на ООВ при перемешивании значений конкретного признака

Минутка кода

```
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.datasets import load iris
from sklearn.feature selection import SelectFromModel
X, y = load iris(return X y=True)
X.shape
(150, 4)
clf = ExtraTreesClassifier(n estimators=50)
clf = clf.fit(X, y)
clf.feature_importances_
array([ 0.04..., 0.05..., 0.4..., 0.4...])
model = SelectFromModel(clf, prefit=True) # тут есть параметр threshold
                                          # и max features
X new = model.transform(X)
X new.shape
(150, 2)
```

SelectFromModel – выбираем по порогу на основе весов или важностей

Эксперименты с линейной закономерностью

Эксперименты с линейной закономерностью

Lasso

Проблемы селекции

1 проблема – как оценивать качество (было)

Важное замечание:

2 проблема – селекция – тоже подгонка под выборку!

```
clf = Pipeline([
    ('feature_selection', SelectFromModel(LinearSVC(penalty="l1"))),
    ('classification', RandomForestClassifier())
])
clf.fit(X, y)
```

Отдельная тема – «важности признаков»

Литература

Дэн Саймон «Алгоритмы эволюционной оптимизации», 2020.

Sean Luke «Essentials of Metaheuristics» — Lulu, 2009. — 235 p. https://cs.gmu.edu/~sean/book/metaheuristics/Essentials.pdf

Дьяконов, А. Г. «Анализ данных, обучение по прецедентам, логические игры, системы WEKA, RapidMiner и MatLab (практикум на эвм кафедры математических методов прогнозирования)» — МАКСПресс, 2010. — 278 с. http://www.machinelearning.ru/wiki/images/7/7e/dj2010up.pdf

Подмена задачи

https://dyakonov.org/2019/03/22/подмена-задачи-в-ml/