Algorithmic Trading, COMP0051, 2022/23

Coursework 1. Cohort 2022/23. This assignment is worth 40% of the overall mark.

Standard and non-standard calculators are permitted

Time series [10 Points]

- 1. Download a price time series using an API. The length of the time series T, with T = 300. The resolution could be any, from tick data to months.
- 2. Plot the price time series

Moving averages [20 Points]

- 3. Define mathematically the moving average of the price time series with an arbitrary time-window τ
- 4. Compute three moving averages of the price time series, with time-windows $\tau = 10, 20, 30$
- 5. Plot the moving averages against the price time series
- 6. Compute the linear and log-return of the price time series
- 7. Plot the linear return against the log-return time series

Time Series Analysis [20 Points]

- 8. Define the auto-correlation function (for a stationary time-series)
- 9. Compute the auto-correlation function (ACF) of the price time series
- 10. Plot the price ACF
- 11. Compute the partial auto-correlation function (PACF) of the price time series
- 12. Plot the price PACF
- 13. Compute the auto-correlation function (ACF) of the return time series

- 14. Plot the return ACF
- 15. Compute the partial auto-correlation function (PACF) of the return time series
- 16. Plot the return PACF

ARMA models [30 Points]

- 17. Define mathematically an ARMA(p,q) model
- 18. Define a training and test set and fit an ARMA model to the price time series
- 19. Display the parameters of the model and its Mean Squared Error (MSE) in the training set and in the test set
- 20. Plot the price time series vs the ARMA forecast in the test set
- 21. Fit an ARMA model to the return time series
- 22. Display the parameters of the model and its Mean Squared Error (MSE) in the training set and in the test set
- 23. Plot the return time series vs the ARMA forecast in the test set

Gaussianity and Stationarity test [20 Points]

- 24. Introduce mathematically a Gaussianity test
- 25. Perform a Gaussianity test of the return time series
- 26. Introduce mathematically a stationarity test
- 27. Perform a stationarity test of the return time series

Written report Write a report clearly providing an answer to each of the numbered instructions.

A single written report in pdf (maximum 10 pages) structured into

• Time Series,

- Moving averages,
- ARMA models,
- Gaussianity and Stationarity test,

will need to be submitted to Moodle before the deadline of 20/02/2023.

Coding and Editing Students are allowed to use any programming language and any editing software for the report. The code will need to be uploaded as well (you can choose your preferred format).

Marking The marking will be based on the following criteria:

- Clarity of presentation;
- Validity of results;
- Consistency of language and mathematical notation;

COMP0051 3 END OF PAPER