Deep Optimal Isolation Forest with Genetic Algorithm for Anomaly Detection

DOIForest Implementation:

- 1. Start with a normal isolation forest (iForest/LSHiForest).
- 2. Apply **genetic algorithm** with two mutations:
 - Outer mutation (new sampling → bigger search space).
 - Inner mutation (local structural tweaks).
- 3. Use **isolation efficiency** (n) to select the best trees.
- Repeat layer by layer → evolve toward optimal forest.
- 5. Result: A **deep optimal isolation forest** that is more accurate and robust for anomaly detection.

Steps of DOIForest Implementation

Step 1: Pre-training (Initial Forest Creation)

- Start with a normal **Isolation Forest** (or LSHiForest).
- Build a set of trees using random subsets of the data.
- This acts as the **initial population** of trees for further optimization.
- Intuition: you need a baseline forest before you can improve it.

Step 2: Define Fitness (Isolation Efficiency)

For each tree, calculate its isolation efficiency (η):

$$oldsymbol{\eta} = rac{oldsymbol{\psi}}{oldsymbol{v} \cdot oldsymbol{d}}$$

where:

- \circ ψ = number of data points in the tree,
- v = branching factor,
- d = average depth.
- This value tells how well a tree isolates anomalies.
- Think of η as the "score" of each tree: **higher = better**.

Step 3: Apply Genetic Algorithm

• To improve the forest, use two mutation strategies inspired by **genetic evolution**:

1. Outer Mutation

- \circ Change the training sample \rightarrow rebuild a tree with a new subset of data.
- Purpose: Explore new structures and avoid getting stuck in local optima.

2. Inner Mutation

- Modify the internal structure of an existing tree (like tweaking a subtree split).
- Purpose: Fine-tune trees by making small adjustments.
- After mutations, evaluate all trees again using **isolation efficiency**.

Step 4: Selection

- From the mutated trees, keep only those with the **highest η**.
- This ensures that the forest gradually **evolves toward more optimal trees**.
- Just like "survival of the fittest" in biology.

Step 5: Layer-by-Layer Evolution

- Repeat mutation + selection for several layers (like training epochs).
- Each layer = one "generation" of trees.
- After many layers, the forest becomes a **deep, optimized isolation forest**.

Step 6: Testing/Scoring

- Once training is done, use the optimized forest to score new data points.
- The score is based on the **path length**:
 - Anomalies → short paths (easy to isolate).
 - \circ Normal points \rightarrow long paths.
- Higher anomaly score = more suspicious data point.

Optimized Deep Isolation Forest

Context:

Anomaly Detection (AD) is vital for tasks like cybersecurity, fraud detection, healthcare monitoring, and industrial fault detection.

Traditional Isolation Forest (IF) is efficient but limited to axis-parallel splits.

Deep Isolation Forest (DIF) improves IF using neural network–based data transformations but is computationally heavy.

Solutions proposed in paper:

Optimized Deep Isolation Forest (ODIF) \rightarrow an improved version of DIF. Optimization Idea:

Instead of transforming all training samples, ODIF:

- Samples elements *before* transformation.
- Only transforms those used for building trees.
- Removes subsampling during tree construction.

This leads to **lower computational and memory complexity** while preserving accuracy.

Solution details:

DIF Mechanism:

- Uses a random-weight deep neural network (CERE) to generate multiple data representations. Builds isolation forests for each representation.
- Builds isolation forests for each representation.
- Uses Deviation-Enhanced Anomaly Scoring (DEAS) combining path length + deviation degree.

ODIF Mechanism:

- Reduces transformation to only t × n samples (trees × samples per tree).
- Complexity reduced to:

Time: O(tnar+rtlogn)O(tna r + rt \log n)O(tnar+rtlogn) **Memory:** O(tnrb+rtlogn)O(tnr b + rt \log n)O(tnrb+rtlogn)

Results:

• Detection Performance (PR AUC):

ODIF ≈ DIF (no statistical difference).
ODIF > IF, ECOD, and SGAE (statistically significant).

• Training Time:

CPU: ODIF ~1.5× faster than DIF. **GPU:** ODIF ~150× faster than DIF.

Much faster than SGAE; competitive with IF/ECOD.

Memory Usage:

RAM: ~18% lower than DIF. VRAM: ~55% lower than DIF.

Stable across dataset sizes → suitable for resource-constrained devices.

Conclusions:

- ODIF matches DIF in accuracy but with much lower execution time and memory usage.
- Outperforms other baselines (IF, ECOD, SGAE).
- More practical for large-scale or limited-resource anomaly detection applications.

Future add ons:

- Instead of random weights, we can use trainable representation networks.
- Extending ODIF idea to other anomaly detection algorithms.

Deep Isolation Forest for Anomaly Detection

Flowchart of Deep Isolation Forest (DIF) Implementation

Perfect — here's a crisp, copy-pasteable **step-by-step explanation of the DIF flowchart**, aligned to the paper.

Phase 1: Training (build the forest)

Step 1 — Input data.

Start with the training set D\mathcal D.

Step 2 — Generate random representations with CERE.

Pass D\mathcal D through the CERE module to produce rr different representation spaces {X1,...,Xr}\{\mathcal X_1,\ldots,\mathcal X_r\}. CERE vectorises the forward pass so all ensemble members are computed in one

batched operation (no training/optimisation), enabling efficient parallel generation of representations.

Step 3 — Build isolation trees on each representation.

For every representation Xu\mathcal X_u, build tt iTrees exactly like iForest: (a) take a random subsample P1P_1 (size nn) as the root; (b) while a node can split and the depth <J< J, choose a random feature jkj_k and a random split $\eta k = k$ between the min/max of that feature in the node; (c) send points left/right by testing $x(jk) \le \eta kx^{(j_k)} \le teta_k$; (d) recurse until a single point is isolated or depth limit is hit. The forest then contains $T=r\times tT=r \le t$

Typical paper settings (for reference): r=50r=50, t=6t=6, n=256n=256.

Phase 2: Scoring (anomaly detection)

Step 4 — New point arrives.

Given a new object o\mathbf o, compute its rr representations $\{x1,...,xr\}\$ \\ x 1,\\\ ldots,\\\ mathbf x r\\\ using the same CERE parameters as in training.

Step 5 — Traverse all trees & record path statistics.

For each representation xu\mathbf x_u and each of its tt trees ti\tau_i:

- Record **path length** |p(xu | ti)||p(\mathbf x_u\!\mid\!\tau_i)| (number of splits from root to the terminal node).
- Accumulate deviation along the path: β+=|xu(jk)-ηk|\beta \mathrel{+}= \big|x_u^{(j_k)} \eta_k\big| at every visited node kk.
- Convert to average deviation for that path:
 g(xu | Ti)=1|p(xu | Ti)|∑k∈p(xu | Ti)|xu(jk)-ηk|g(\mathbf x_u\!\mid\!\tau_i)=\frac{1}{|p(\mathbf x_u\!\mid\!\tau_i)|}\sum_{k\in p(\mathbf x_u\!\mid\!\tau_i)}\big|x_u^{(j_k)}-\eta_k\big|
 (captures local density/hardness of isolation).

Step 6 — Average over the forest.

Aggregate **mean path length** and **mean deviation** across all TT trees for the point. (This is implemented directly in the paper's Algorithm 2.)

Step 7 — Compute the DEAS score.

Combine both signals to get the final anomaly score:

 $FDEAS(o \mid T)=2- E[\mid p \mid]/C(T)\times E[g(xu \mid \tau i)]F_{\text{DEAS}}(\mathbb{T})=2^{-\cdot},\mathbb{E}[g(xu \mid \tau i)]F_{\text{DEAS}}(\mathbb{T})=2^{-\cdot}$

Here C(T)C(T) is the iForest normalisation constant; the first term is the classic path-length score, and the second term amplifies anomalies by their average deviation to split thresholds. Higher is more anomalous.

Output.

Return a single scalar score per point; rank or threshold as needed.

Why this works (one-liner)

Random (untrained) neural-net representations + random partitioning let simple axis-parallel cuts act like non-linear separators in the original space, reducing false negatives and removing "ghost regions."

Want this formatted as **pseudocode** for your report (Algorithm block with inputs/outputs and variables r,t,n,Jr,t,n,J)?