Reinforcement Learning

An Introductory Note

Jingye Wang

wangjy5@shanghaitech.edu.cn

Spring 2020

Contents

1	Intr	Introduction					
2	Revi	iew of Basic Probability	5				
	2.1	Interpretation of Probability	5				
	2.2	Transformations	5				
	2.3	Limit Theorem	5				
	2.4	Sampling & Monte Carlo Methods	6				
	2.5	Basic Inequalities	8				
	2.6	Concentration Inequalities	10				
	2.7	Conditional Expectation	12				
3	Ban	dit Algorithms	14				
	3.1	Bandit Models	14				
	3.2	Stochastic Bandits	14				
	3.3	Greedy Algorithms	15				
	3.4	UCB Algorithms	16				
	3.5	Thompson Sampling Algorithms	17				
	3.6	Gradient Bandit Algorithms	18				
4	Mar	kov Chains	20				
	4.1	Markov Model	20				
	4.2	Basic Computations	20				
	4.3	Classifications	21				

CONTENTS	2

CC	CONTENTS				
	4.4	Stationary Distribution			
	4.5	Reversibility			
	4.6	Markov Chain Monte Carlo			
5	Markov Decision Process				
	5.1	Markov Reward Process			
	5.2	Markov Decision Process			
	5.3	Dynamic Programming			
6	Mod	el-Free Prediction			
	6.1	Monte-Carlo Policy Evaluation			
	6.2	Temporal-Difference Learning			
7	Model-Free Control				
	7.1	On Policy Monte-Carlo Control			
	7.2	On Policy Temporal-Difference Control: Sarsa			
	7.3	Off-Policy Temporal-Difference Control: Q-Learning			
8	Valu	e Function Approximation			
	8.1	Semi-gradient Method			
	8.2	Deep Q-Learning			
9	Polic	cy Optimization			
	9.1	Policy Optimization Theorem			
	9.2	REINFORCE: Monte-Carlo Policy Gradient			
	9.3	Actor-Critic Policy Gradient			
	9.4	Extension of Policy Gradient			

9 Policy Optimization

For value-based reinforcement learning, deterministic policy is generated directly from the value function using greedy $a = \arg\max_{a'} q(a',s)$. Now instead we can parameterize the policy function as $\pi_{\theta}(a|s)$ where θ is the learnable policy parameter and the output is a probability over the action set.

Value-based v.s. Policy-based

- Value-based methods: solve RL problems through dynamic programming
 - related to classic RL and control theory;
 - learn value function;
 - generate an implicit policy based on the value function;
 - learn a deterministic policy based on the estimated action values;
 - developed by Richard Sutton, David Silver, DeepMind;
- Policy-based methods: solve RL problems mainly through learning
 - related to machine learning and deep learning;
 - do not require value function for action selection;
 - learn a stochastic policy;
 - developed by Pieter Abbeel, Sergey Levine, OpenAI, Berkeley;

The two methods can also be combined together. A popular algorithm called *Actor-Critic* entails learning both policy and value function.

Pros and cons of Policy-based

- Advantages:
 - can converge on a local optimum (worst case) or global optimum (best case);
 - is effective in high-dimensional action space;
- Disadvantages:
 - typically converges to a local optimum;
 - the policy is of high variance;

9.1 Policy Optimization Theorem

Objective of Optimization Policy: Given a policy approximator $\pi(s, a)$ with parameter θ , find the θ^* that gives us the optimal policy.

One thing we care is how do we measure the quality of a policy π_{θ} ? Let τ be a trajectory sampled from the policy function π_{θ} , then we defined the value of policy π_{θ} as

$$J(\theta) = \mathbb{E}_{\tau} \left[\sum_{t} r(s_t, a_t^{\tau}) \right].$$

Thus we have the goal of policy-based methods as

$$heta^* = rg \max_{ heta} \mathbb{E}_{ au} \left[\sum_t r(s_t, a_t^ au)
ight].$$

However, such $J(\theta)$ may not available or handy. Hence a trick is using approximation. For example,

• In the episodic environment with discrete space, we can use the value of the starting state s_0 :

$$J(\theta) \approx v^{\pi_{\theta}}(s_0) = \mathbb{E}_{\pi_{\theta}}[v(s_0)],$$

• In the environment with continuous space, we can use the average reward:

$$J(\theta) \approx \sum_{s} d^{\pi_{\theta}}(s) v^{\pi_{\theta}}(s) = \sum_{s} d^{\pi_{\theta}} \sum_{a \in \mathcal{A}} \pi_{\theta}(a|s) q^{\pi_{\theta}}(s, a),$$

where $d^{\pi_{\theta}}$ is the stationary distribution of Markov chain for π_{θ} .

Depends on the form of $J(\theta)$, we have different methods to maximize it

- If $J(\theta)$ is differentiable, we can use gradient-based methods:
 - Gradient Ascend;
 - Conjugate Gradient;
 - Quasi-newton.
- If $J(\theta)$ is non-differentiable or hard to compute the derivative, we can use some derivative-free black-box optimization methods:
 - Cross-entropy Method (CEM);
 - Hill Climbing;
 - Evolution Algorithm;
 - Approximate Gradients by Finite Difference.

In this note, we mainly focus on gradient-based methods.

Policy Gradient Theorem: For a policy π_{θ} with parameter θ , we have the gradient as

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \ln \pi(a|s;\theta) q^{\pi}(s,a)].$$

The proof is available in the Section 12.1 of *Reinforcement Learning: An Introduction* [1]. A detailed proof is also given in the blog [10]. The following *proof* is just for personal interest.

Proof:

For simplicity, we leave it implicit in all cases that π is a function of θ and all gradients are also implicitly

with respect to θ . Notice that the gradient of the state-value function:

$$\begin{split} \nabla v^{\pi}(s) &= \nabla \left(\sum_{a} \pi(a|s) q^{\pi}(s,a) \right) \\ &= \sum_{a} \left(\nabla \pi(a|s) q^{\pi}(s,a) + \pi(a|s) \nabla q^{\pi}(s,a) \right) & \text{(Product rule of calculus)} \\ &= \sum_{a} \left(\nabla \pi(a|s) q^{\pi}(s,a) + \pi(a|s) \nabla \left(R^{a}_{s} + \sum_{s'} \mathcal{P}^{a}_{ss'} v^{\pi}(s') \right) \right) & \text{(Sec 5.2 MDP)} \\ &= \sum_{a} \left(\nabla \pi(a|s) q^{\pi}(s,a) + \pi(a|s) \nabla \sum_{s'} \mathcal{P}^{a}_{ss'} v^{\pi}(s') \right) & \text{(R^{a}_{s} is irrevalent to θ)} \\ &= \sum_{a} \left(\nabla \pi(a|s) q^{\pi}(s,a) + \pi(a|s) \sum_{s'} \mathcal{P}^{a}_{ss'} \nabla v^{\pi}(s') \right), \end{split}$$

which gives us a nice recursive form of the gradient. Therefore the future state value function $v^{\pi}(s')$ can be repeated unrolled by following the same equation.

Before unrolling, we define the probability of transitioning from state s to state s' in k steps under policy π as $\rho^{\pi}(s \to s', k)$. Thus it follows that

- when k=0: obviously, we have $\rho^{\pi}(s \to s, k=0)=1$;
- when k=1, it is easy to get the probability from the transition matrix as $\rho^{\pi}(s \to s', k=1) = \sum_a \pi(a|s)\mathcal{P}^a_{ss'}$;
- for other cases such as going from state s to s' in k+1 steps, we can consider a middle state x where it takes k steps from s to x, thus we have a recursively expression as $\rho^{\pi}(s \to s', k+1) = \sum_{x} \rho^{\pi}(s \to x', k) \rho^{\pi}(s \to s', 1)$.

We now consider unrolling the recursive representation of $\nabla v^{\pi}(s)$. For simplicity, let $\phi(s) = \sum_{a} \nabla \pi(a|s) q^{\pi}(s,a)$. Then it follows that

$$\begin{split} \nabla v^\pi(s) &= \phi(s) + \sum_a \pi(a|s) \sum_{s'} \mathcal{P}^a_{ss'} \nabla v^\pi(s') \\ &= \phi(s) + \sum_{s'} \sum_a \pi(a|s) \mathcal{P}^a_{ss'} \nabla v^\pi(s') \\ &= \phi(s) + \sum_{s'} \rho^\pi(s \to s', 1) \nabla v^\pi(s') \\ &= \phi(s) + \sum_{s'} \rho^\pi(s \to s', 1) \left(\phi(s') + \sum_{s''} \rho^\pi(s' \to s'', 1) \nabla v^\pi(s'') \right) \\ &= \phi(s) + \sum_{s'} \rho^\pi(s \to s', 1) \phi(s') + \sum_{s''} \rho^\pi(s \to s'', 2) \nabla v^\pi(s'') \\ &= \phi(s) + \sum_{s'} \rho^\pi(s \to s', 1) \phi(s') + \sum_{s''} \rho^\pi(s \to s'', 2) \phi(s'') + \sum_{s'''} \rho^\pi(s \to s''', 3) \nabla v^\pi(s''') \\ &= \dots \\ &= \sum_{s' \in \mathcal{S}} \sum_{k=0}^\infty \rho^\pi(s \to s', k) \phi(s'), \end{split}$$

which finally arrives at

$$\nabla v^{\pi}(s) = \sum_{s} \sum_{k=0}^{\infty} \rho^{\pi}(s \to s', k) \sum_{a} \nabla \pi(a|s') q^{\pi}(s', a).$$

Thus for the $J(\theta)$ of the episodic environment, we have

$$\begin{split} \nabla J(\theta) &= \nabla v^\pi(s_0) \\ &= \sum_s \sum_{k=0}^\infty \rho^\pi(s_0 \to s, k) \sum_a \nabla \pi(a|s) q^\pi(s, a) \\ &= \sum_s \eta(s) \sum_a \nabla \pi(a|s) q^\pi(s, a) \qquad (\eta(s) = \sum_{k=0}^\infty \rho^\pi(s_0 \to s, k)) \\ &= \left(\sum_s \eta(s)\right) \sum_s \frac{\eta(s)}{\sum_s \eta(s)} \sum_a \nabla \pi(a|s) q^\pi(s, a) \\ &\propto \sum_s d^\pi(s) \sum_s \nabla \pi(a|s) q^\pi(s, a) \end{split}$$

as $\sum_s \eta(s)$ is a constant and $d^{\pi}(s)$ is exactly the stationary distribution. Further, such deriving also shows the connection between the two different $J(\theta)$ we defined above. Now we rewrite the gradient as

$$\nabla J(\theta) \propto \sum_{s} d^{\pi}(s) \sum_{a} \nabla \pi(a|s) q^{\pi}(s, a)$$

$$= \sum_{s} d^{\pi}(s) \sum_{a} q^{\pi}(s, a) \pi(a, s) \frac{\nabla \pi(a|s)}{\pi(a|s)}$$

$$= \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \ln \pi(a|s; \theta) q^{\pi}(s, a)].$$

For other general forms of policy gradient methods, one can refer to the paper [11] and the note [12] (again, many thanks to lilianweng's blog [10]).

9.2 REINFORCE: Monte-Carlo Policy Gradient

We now consider the policy gradient for the case where we can get complete episodes. According to the *policy gradient theorem*, it follows that

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \ln \pi(a|s;\theta) q^{\pi}(s,a)]$$
$$= \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \ln \pi(a|s;\theta) G_t]$$

as $q^{\pi}(s, a) = \mathbb{E}_{\pi}[G_t|S_t = s, A_t = a]$. Thus it is similar to *Monte-Carlo policy evaluation*, we can measure G_t from real complete sample episodes and use that to update our policy gradient.

Monte-Carlo Policy Gradient: Starting from the state s_0 sampled from a distribution d(s), we denote one episode as

$$\tau = (s_0, a_0, r_1, ..., s_{T-1}, a_{T-1}, r_T) \sim (\pi_\theta, \mathcal{P}^a_{s_t s_{t+1}}).$$

Then we update the parameter in the rule:

$$\theta \leftarrow \theta + \alpha \gamma^t G_t \nabla_{\theta} \ln \pi(a|s;\theta).$$

Algorithm 20 REINFORCE: Monte-Carlo Policy-Gradient Control

- 1: initialize policy parameter $\theta \in \mathbb{R}^d$;
- 2: **input** a differentiable policy parameterization $\pi(a|s;\theta)$; the step size α ;
- 3: for true do:
- 4: Generate an episode $(s_0, a_0, r_1, ..., s_{T-1}, a_{T-1}, r_T)$;
- for each step of the episode t = 0, 1, ..., T 1 do:
- 6: $G \leftarrow \sum_{k=t+1}^{T} \gamma^{k-t-1} r_k;$
- 7: $\theta \leftarrow \theta + \alpha \gamma^t G \nabla \ln \pi(a_t | s_t; \theta);$
- s: end for
- 9: end for

The analysis for REINFORCE requires us to consider the episode level. We define the sum of rewards over the trajectory τ (for G_t baseline, the case is quite similar) as

$$R(\tau) = \sum_{t=1}^{T} r_t.$$

Let $\mathcal{D}(\tau;\theta) = d(s_0) \prod_{t=0}^{T-1} \pi(a_t|s_t;\theta) \mathcal{P}_{s_ts_{t+1}}^{a_t}$ denote the probability over trajectories when executing the policy π_{θ} . Then the policy gradient of $J(\theta)$ is equivalent to

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \mathbb{E}_{\pi_{\theta}} \left[\sum_{t=0}^{T} r_{t} \right]$$

$$= \sum_{\tau} \nabla_{\theta} \mathcal{D}(\tau; \theta) R(\tau)$$

$$= \sum_{\tau} \mathcal{D}(\tau; \theta) R(\tau) \frac{\nabla_{\theta} \mathcal{D}(\tau; \theta)}{\mathcal{D}(\tau; \theta)}$$

$$= \sum_{\tau} \mathcal{D}(\tau; \theta) R(\tau) \nabla_{\theta} \ln \mathcal{D}(\tau; \theta)$$

$$\approx \frac{1}{m} \sum_{i=1}^{m} R(\tau_{i}) \nabla_{\theta} \ln \mathcal{D}(\tau; \theta),$$

where we suppose there are m episodes and refer to MC thought to approx the expectation. Such approximation is reasonable as long as $m \to \infty$.

We now show that such method does not need the dynamics of the model. Considering the term that

matters in the gradient we got above, it follows that

$$\begin{split} \nabla_{\theta} \ln \mathcal{D}(\tau; \theta) &= \nabla_{\theta} \ln \left[\mu\left(s_{0}\right) \prod_{t=0}^{T-1} \pi\left(a_{t} \middle| s_{t}; \theta\right) \mathcal{P}_{s_{t} s_{t+1}}^{a_{t}} \right] \\ &= \nabla_{\theta} \left[\ln \mu\left(s_{0}\right) + \sum_{t=0}^{T-1} \ln \pi\left(a_{t} \middle| s_{t}; \theta\right) + \ln \mathcal{P}_{s_{t} s_{t+1}}^{a_{t}} \right] \\ &= \sum_{t=0}^{T-1} \nabla_{\theta} \ln \pi\left(a_{t} \middle| s_{t}; \theta\right), \end{split}$$

and thus

$$\nabla_{\theta} J(\theta) \approx \frac{1}{m} \sum_{i=1}^{m} R(\tau_i) \left(\sum_{t=0}^{T-1} \nabla_{\theta} \ln \pi(a_t^i | s_t^i; \theta) \right).$$

It shows that the dynamics, *i.e.* the transition matrix, of the model is not needed, which means policy gradient is a model-free method.

9.3 Actor-Critic Policy Gradient

Recall that in section 8 we use $\hat{v}(s; \boldsymbol{w}) \approx v^{\pi}(s)$. Now we combine the value approximation with policy approximation, then we will get the Actor-Critic method.

Actor: Actor is actually a policy parameterization $\pi(a|s;\theta)$ to generate actions; it updates parameter θ in direction suggested by critic.

Critic: Critic is actually a value approximation $\hat{v}(s; w)$ to evaluate the reward of a state under current actor (policy); it needs to update parameter w to make accurate evaluation.

Algorithm 21 Actor-Critic

- 1: initialize policy parameter θ ; initialize the state-value function parameter w;
- 2: **input** a differentiable policy parameterization $\pi(a|s;\theta)$; a differentiable state-value function parameterization $\hat{v}(s; \boldsymbol{w})$, the step size $\alpha_{\boldsymbol{w}}, \alpha_{\theta}$;
- 3: for true do:
- 4: Generate a start state *s*;
- 5: $I \leftarrow 1$
- 6: **while** s is not terminal **do**:
- 7: Choose action $a \leftarrow \pi(a|s;\theta)$;
- 8: $r, s' \leftarrow environment(s, a);$
- 9: $\delta \leftarrow r + \gamma \hat{v}(s'; \boldsymbol{w}) \hat{v}(s; \boldsymbol{w});$
- 10: $\boldsymbol{w} \leftarrow \boldsymbol{w} + \alpha_{\boldsymbol{w}} \delta \nabla \hat{v}(s; \boldsymbol{w});$
- 11: $\theta \leftarrow \theta + \alpha_{\theta} I \delta \nabla \ln \pi(a|s;\theta);$
- 12: $I \leftarrow \gamma I$;
- 13: $s \leftarrow s'$;
- 14: end while
- 15: end for

As we can see, the critic is solving a familiar problem *policy evaluation*, while the actor is doing *policy improvement*.

9.4 Extension of Policy Gradient

Nowadays, State-of-the-art RL methods are almost all policy-based.

A2C, A3C: Asynchronous Methods for Deep Reinforcement Learning, ICML' 16. Representative high-performance actor-critic algorithm.

TRPO: Trust region policy optimization: deep RL with natural policy gradient and adaptive step size. **PPO**: Proximal policy optimization algorithms: deep RL with importance sampled policy gradient.