MLL 100

Introduction to Materials Science and Engineering

Lecture-8 (January 19, 2022)

Dr. Sangeeta Santra (<u>ssantra@mse.iitd.ac.in</u>)

Topics covered

☐ X-ray diffraction

What is an XRD used for?

☐ Distinguishing between amorphous and crystalline solids

Amorphous

Monoatomic gas

What is an XRD used for?

How does a crystal scatter these X-rays to give a diffraction pattern? \rightarrow Bragg's equation

- Identification of crystalline materials
 - ☐ Determination of the structure of crystalline solids
 - Determination of lattice parameter
 - Determination of Bravais lattice

What determines the intensity of the XRD peaks? → Motif (Many other factors also contribute to the intensity of a given peak)

What determines the position of the XRD peaks? \rightarrow Characteristics of lattice.

Phase identification

What is the symmetry on XRD pattern?

- CubicLattice parameter = a (a = b = c)
- Tetragonal
 Lattice parameter: a and c (a = b ≠ c)
- Orthorhombic
 Lattice parameter: a, b, c (a ≠ b ≠ c)

- Peak position
- Peak splitting

202

Which Bravais lattice may produce the first XRD peaks?

Atomic arrangement also dictates whether the peak will appear or not!

Systematic absence

Diffraction angle 20

Structure factor

Systematic absences (Extinction rules)

■ Even if Bragg's equation is satisfied, 'reflections may go missing' \rightarrow this is due to the presence of additional atoms in the unit cell.

Bravais Lattice	Allowed reflections	Necessarily absent reflections	
Simple	all	None	
Body centred	(h + k + l) even	(h + k + I) odd	
Face centred	h, k and l unmixed (all even or all odd)	h, k and I mixed	
End centred (C-centred)	h and k unmixed	h and k mixed	

Suppose an unknown sample is irradiated using the monochromatic X-ray produced from the Cu target ($\lambda_{Cu_{K_{\alpha_1}}}$ = 1.5418 Å)

- Determine the crystal structure.
- Determine the lattice parameter.

$$\lambda = 2dSin\theta$$

$$d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$

• Rearranging the terms:

$$\lambda^2 = \frac{4a^2 \sin^2 \theta}{h^2 + k^2 + l^2}$$

• The LHS of the equation is a constant, and therefore, the RHS should also be a constant:

$$\frac{\lambda^2}{4a^2} = \frac{\sin^2 \theta}{h^2 + k^2 + l^2}$$

You will get
the 2θ value

Generate a set of sin²θ values

Normalize the $\sin^2\theta$ values by generating $\frac{sin^2\theta_2}{sin^2\theta_1}$

Clear fractions from normalized values

Speculate the h,k,l values such that $(h^2+k^2+l^2)$ = clear fraction column

		_	
_	U		

44.48

51.83

76.35

92.9

98.4

121.87

144.54

155.51

$$\frac{\lambda^2}{4a^2} = \frac{\sin^2 \theta}{h^2 + k^2 + l^2}$$

$$\lambda_{Cu_{K_{\alpha_1}}}$$
 = 1.5418 Å

You will get the 2θ values	Generate a set of sin²θ values	Normalize the $\sin^2\theta$ values by generating $\frac{sin^2\theta_2}{sin^2\theta_1}$	Clear fractions from normalized values	Speculate the h,k,l values such that $(h^2+k^2+l^2) = clear$ fraction column	
2θ	sin²θ	$\frac{sin^2 \mathbf{\theta}_2}{sin^2 \mathbf{\theta}_1}$	(h ² +k ² +l ²)	(h k l)	$\frac{sin^2\theta}{(h^2+k^2+l^2)}$
44.48	0.143	1	3	111	0.0477
51.83	0.191	1.34	4	200	0.0478
76.35	0.382	2.67	8	220	0.0477
92.9	0.525	3.67	11	311	0.0477
98.4	0.573	4.01	12	222	0.0477
121.87	0.764	5.34	16	400	0.0477
144.54	0.907	6.34	19	3 3 1	0.0477
155.51	0.955	6.68	20	4 2 0	0.0477

$$\frac{\lambda^2}{4a^2} = \frac{\sin^2 \theta}{h^2 + k^2 + l^2}$$

$$\lambda_{Cu_{K_{\alpha_1}}}$$
 = 1.5418 Å

Allowed reflections in SC, BCC, FCC and DC crystals

Cannot be expressed as $(h^2+k^2+l^2)$

$\mathbf{h}^2 + \mathbf{k}^2 + \mathbf{l}^2$	SC	FCC	BCC	DC
1	100			
2	110		110	
3	111	111		111
4	200	200	200	
5	210			
6	211		211	
(7)				
8	220	220	220	220
9	300, 221			
10	310		310	
11	311	311		311
12	222	222	222	
13	320			
14	321		321	
(15)				
16	400	400	400	400
17	410, 322			
18	411, 330		411, 330	
19	331	331		331

Determination of lattice parameter of a crystal

- \Box Lower the symmetry of the crystal, more the number of peaks (e.g., in tetragonal crystal the 100 peak will lie at a different 2 θ as compared to the 001 peak).
- ☐ Lattice type ➤ in SC we will get more peaks as compared to (say) FCC
- ☐ Smaller the wavelength of the X-rays, more will be the number of peaks possible.

Peak characteristics in XRD

Peak Position

How can the peak position be changed for a given material?

Polymorphism

rutile

anatase

Forensic Sciences

- Paint chips are transferred in car accidents, either from one car to another or, in the case of a hit-and-run, from the car to the victim.
- Chemical identity of the various layers of the paints

