(51) Int CL.		裁別記号	1 (24		(神論) 十-12-4
H04N	9//9		H04N	5/76	E 5C052
	1/387			1/387	5C076

審査額次 未確求 請求項の数8 〇1 (全16頁)

(54)【発明の名称】 画像処理装置、方法及びコンピュータ競み取り可能な記憶媒体

[24] [新約]

に、不鮮明なフレームが有る場合でも、良好に合成でき 動画像の複数ファームを合成して一枚の商解 **像度静止面を作成する場合に、誤差を少なくすると共** るようにする。

【解決手段】 選択部102は、格納部101に格納さ れたm~ (m+n) フレームの運搬した (n+1) 枚分 の動画像情報の中かのエッジ情報等に基心に 1 枚の基 草静止画を選択し、この基準静止画を配置部105がメ は、基準静止画以外のn枚の静止画について、それぞれ 基準静止画に対する動きベクトルを演算する。配置部1 07は、上記演算結果に基づいて、上記メモリ内の基準 **静止画の配置点とは異なる位置に、上記n 枚の静止画を** モリ内に配置する。次に、動きベクトル演算的104 それぞれ配置する。合成部108は、配置後の(n+ 1) 枚の画像を合成して一枚の画像を生成する。

作許請求の範囲

エフレーム目から (m+m) フレーム目 数)の画像情報の中から第1の画像情報を選択する選択 ミでの連続した (n+1) 枚分 (m, nは任意の自然

上記(n+1)枚の画像情報を配置して記憶するための 印象手段と、 E記第1の画像情報以外のn枚の画像情報について、そ **れぞれ第1の画像情報に対する動きベクトルを演算する** 質算手段と、

を形成する合成手段とを設けたことを特徴とする画像処 L記配置後の(n+1)枚の画像を合成して一枚の画像 L記演算結果に基づいて、上記n+1枚の画像情報をそ れぞれ配置する配置手段と

(請求項2) 上記選択手段は、上記(n+1)枚の画 像の特徴量をそれぞれ評価する評価手段を有し、その評 **西結果に基づいて、(n+1)枚の中から1枚を避択す**

請求項3】 上記等後量は、画像のエッジ情報である 5ことを特徴とする請求項1記載の画像処理装置。 ことを特徴とする請求項2記載の画像処理装置。

るフィルタ手段を有し、そのフィルタリング後のエッジ (請求項4] 上記評価手段は、画像のエッジを抽出す **抽出情報に基づいて評価することを特徴とする請求項2** 記載の画像処理装置。

【開水項5】 上記選択手段は、上記(n+1)枚の画 象の入力順に基づいて選択することを特徴とする請求項 1 記載の画像処理装置。

こ相当するフレームを選択することを特徴とする請求項 (請求項6) 上記選択手段は、上記入力順の中間時刻 5 記載の画像処理装置。

mフレーム目から (m+n) フレーム目 数)の画像情報の中から第1の画像情報を選択する選択 までの連続した(n+1)枚分(m,nは任意の自然 |請水項7]

れぞれ第1の画像情報に対する動きベクトルを演算する 上記第1の画像情報以外のn枚の画像情報にしいた、 や

上記演算結果に基づいて、上記n+1枚の画像情報をそ*

+i · j · D · · · · (1)

(但し、画案間距離を1とした場合に、Aから水平方向 に1、垂直方向にjの距離があるとする (i≦1、j≦

などから、SINC関数で表現される補間関数を近似し 50 【0004】また、古くからサンプリング定理で表され ているように、サンプリングされた離散信号を連続信号 に変換する手段として、SINC関数で要現できる理想 氐城ろ波器を通過することによって再現することができ 5。SINC関数を演算するのは処理時間がかかること

特開2000-244851

3

* 九ぞれ配置する配置手順と、

を形成する合成手順とを設けたことを特徴とする画像処 上記配置後の (n+1) 枚の画像を合成して一枚の画像

数)の画像情報の中から第1の画像情報を選択する選択 mフレーム目から (m+n) フレーム目 までの連続した (n+1) 枚分 (m, nは任意の自然 [請求項8] 処理と、

上記第1の画像情報以外のn枚の画像情報について、そ れぞれ第1の画像情報に対する動きベクトルを演算する 質算処理と、 2

上記資算結果に基づいて、上記n+1枚の画像情報をそ れぞれ配置する配置処理と、

上記配置後の (n+1) 枚の画像を合成して一枚の画像 を形成する合成処理とを実行するためのプログラムを記 **懲したコンピュータ読み取り可能な記憶媒体。**

[発明の詳細な説明] [000]

情報を、拡大変倍して出力するプリンタ等の画像出力装 解像情報に解像度変換する場合に用いて好適な画像処理 装置、方法及びそれらに用いられるコンピュータ読み取 置や、解復度の異なる機種間通信で、低解像情報から高 [発明の属する技術分野] 本発明は、特に入力した画像 り可能な記憶媒体に関するものである。 ន

[0002]

高解愴情報に解像度変換する方法として、様々な方法が 像、疑似中間調により2値化された2値画像、固定閾値 **提案されている。これらの従来方法は、対象となる画像** [従来の技術] 従来より、入力した画像の低解像情報を の種類(例えば、各画繋ごとに階調情報の持つ多値画

により2値化された2値画像、文字画像等)によって、 その変換処理方法が異なっている。 8

【0003】従来の内挿方法として、図12に示すよう な、内挿点に最も近い同じ画菜値を配列する最近接内挿 方法、図13に示すような内挿点を囲む4点(4点の画 森値をA, B, C, Dとする)の距離により、以下の資 算によって画案値Eを決定する共1次内挿法等が一般的

$E = (1-i) \cdot (1-j) \cdot A + i \cdot (1-j) \cdot B + (1-i) \cdot j \cdot C$

に用いられている。

て、簡単な積和演算のみで補間値を算出する方法があ

【0005】「画像解析ハンドブック:髙木幹雄、下田 陽久監修東京大学出版会」によると、3次畳み込み内挿 符(Cubic Convolution inter polation)において、補間関数の近似が実現で きる。内挿したい点の周囲の観測点16点の画像データ

を用いて、水める画像データを次の式で示される3次母 み込み関数を用いて内挿する。

(2) * * (数1) P1 P1 P1 P1 P1 P2 P2 P2 P3 P3 P4 P4 P4 P4 * [4] P - [f(y1) f(y2) f(y3) f(y4)]]

[0000]

$$\begin{cases} \{ 0.00.7.1 \} \\ \{ (1) = \sin(\pi t) / (\pi t) \} \\ \{ 1 - 2\mu|^2 + \mu|^2 \end{cases} = \begin{cases} 0 = \mu|<1 \} \\ 4 - 6\mu| + 5\mu|^2 - \mu|^2 \end{cases} (1 = \mu|<2) ... (3)$$

$$\begin{cases} 0 = (2 + \mu) \end{cases}$$

2

[
$$\{3\}$$
]
 $x_1 = 1 + (u - [u])$ $y_1 = 1 + (v - [v])$
 $x_2 = (u - [u])$ $y_2 = (v - [v])$
 $x_3 = 1 - (u - [u])$ $y_3 = 1 - (v - [v])$
 $x_4 = 2 - (u - [u])$ $y_4 = 2 - (v - [v])$

3

([]はガウス配号で整数部分をとる)

[0009] 尚、式 (2) のPn~P44は周辺画寮値 を示し、図14に配置を示す。

が作成できなかった。そこで、本出願人は、低解做情報 [0010]しかし、上述した3種類の従来例では、い たプロンク状のジャギーが発生し、高画質の高解像情報 から高解像情報の作成において、補間処理による補間が 平1-107268号公報、特開平1-105359号 ケもなく、また、ジャギーが発生することなく解像度変 煥ができる方法を、特開平1-93531号公報、特開 げれも補間時に補間によるボケ及び入力低解像に依存し 公報等により提案した。

は低くなる。

方法である。入力解像度の依存性を取り除く手段として り実現可能である。高解像情報の推測は補間後の情報を 単純2値化して、"1"に分類された画案と"0"に分 状態の中で新たな解像度に見合う情報を推測し作成する [0011] これらの提案の基本的な考え方は、入力し で、画菜数を出力解像度相当まで増加させ、増加させた は、LPFによる平滑化、画素数の増加は線形補間によ 頃された画繋とに対してそれぞれ異なる処理を行うこと た原僧報から解像度依存成分を除去し、除去した状態 により、出力する画衆値を算出する。

を作成する方法もある。この公報では、低解像度注目画 森の周辺画案よりm点 (m≥1)の画案 (但し、m点中 【0012】また、特開平9-252400号公報で붶 案したように、 画案値の連続性が保たれた良好なエッジ の観測点nにおける画楽値をP (n) とする)を検出

し、注目画案を複数画案分に補間した各補間点kにおけ **る前配補関値C(k)を基に、出力値h (k)を以下の** 式により演算している。

(2) ... $h(k) = \sum_{i=1}^{n} \alpha(n) P(n) + \beta C(k)$ [0013] [数4]

(a(n), Bは任意の係数, ただしβ +0)

・発明が解決しようとする課題】しかしながら、上記従 くら高解像情報の作成を行っても、高画質化には限度が かなように、入力解像度のナイキスト限界以上の情報は 来例では、以下に述べるような欠点があった。即ち、い あるという点である。当然、サンプリング定理より明ら 入力画像には存在しないため、ナイキスト周波数以上の 情報作成は全て推測によるものになる。

化は難しい。即ち、いかなる方法を用いたとしても、低 南解像情報を入力した画像と比較すると、明らかに画質 イラスト画像、アニメーション画像のような平坦な人工 自然画像のナイキスト限界以上の情報推測による高画質 解像情報を入力して商解像に変換した画像は、もともと **内画像をジャギーレスに変換することは容易であるが、** 【0015】そのため、あまり複雑ではないCG画像、

【0016】一方、近年、デジタルビデオカメラ等の普 にコンピュータに入力できる手段が増えてきている。た だ、プリンタの出力解像度は年々増加しているが、极像 系の入力解復度は増加傾向にあるとはいっても、プリン 及により、撮影した動画像を、連続した1フレーム単位 タ解像度に比べると、まだまだ低いのが現状である。

枚の低解像静止画から、1枚の高解像静止画を作成する 判により提案する。従来、複数の静止画から、より広範 囲のパノラマ画像の作成方法としては、「動画像のパニ ングを考慮した背景画像の合成:吉沢、花村、笛永、信 最優によるパノラマ画像の生成法:中村、金子、林、信 学春季全大予箱集7-165(1991)」等による提 のではなく、動画から取り込んだ連続した複数の低解像 静止画から、1枚の高解像静止画を作成する技術を本発 学春季全大予稿集1-51(1990)」、及び「分割 [0017] そこで、従来例の技術で述べたような、

【0018】しかし、1枚の静止画よりも操像範囲を拡 大したパノラマ画像を作成するのではなく、撮像範囲は

ည

同一で、複数の静止画の情報を合成させて、内挿により

して、2種画像の差異から、アフィン変換、及び平行移 [0019] このような低解像の動画から高解像の静止 **よる提案がある。この提案は、連続した画像同士を比較** 動のパラメータを検出して、2種画像を合成するもので ある。上記提案の第2の実施例に、合成を補間に利用す 画作成の技術として、特開平5-260264号公報に 画像の解像度を向上させる技術の提案は数少ない。 る室にして下消べのれている。

示している。

を作成するものではないために、合成する座標の正確な は、前述した図12から図14に示した補間方法により 拡大した連続画像同士を比較することにより、前述した ものである。しかし、補間演算自体が新たな高解像情報 パラメータを算出して補間位置を決定し、合成していく 【0020】しかし、上記提案では以下の問題点があ る。即ち、上記公報の第2の実施例に記載された方法 央定も困難である。

する時に入力解像度の画案間の情報がない。 簡単に言い 【0021】補間するということは、画案間を内挿する 画像Aの画案間のどの位置に画像Bの画案を内挿するか ということである。上記方法では、連続画像同士を比較 換えると、2種の画像を画像A、画像Bと仮定すると、 という決定が、単なる拡大画像間の比較では困難であ

の低解像静止画から1枚の商解像静止画への作成の場合 用いて補間する効果は薄れ、前記従来例で述べた、1枚 がないという点に起因している。即ち、ベクトルの分解 能が画楽間以下の精度を持たなければ、複数の静止画を [0022] これは、動きペクトルのペクトル量の最小 単位が画素単位であり、画素間距離よりも細かい分解能 と、画質的にほとんど変わりなくなる。

幸、渡辺裕コロナ社」には、各種動き検出法について規 異なるため、細かい検出精度が不必要であり、これらの 画禁間距離よりも細かい分解能を持つベクトルの算出方 【0023】「国際標準画像符号化の基礎技術:小野文 つかの方法の説明がある。しかし、この説明の何れの方 法も、動き補償を目的とした検出方法であり、複数の画 像から1枚の画像を作成しようとする本発明の目的とは 立したものではなく、画像間の空間的座標の関連付けが 【0024】そこで本出願人は、直交変換を利用して、 技術を利用しても良好な複数画像の合成は困難である。

されない。

法を提案した。この方法により、複数の静止画が各々独 可能になった。しかし、動きベクトルの分解能が画案間 **西離よりも細かく類出されたとしても、画像間の相対位** 置が正しく把握できるのみで、まだ問題点は数多く残っ 【0025】その一つが、合成する際の観差が画質劣化 を引き起こすという問題である。即ち、合成する画像の

女数が多くなればなるほど、動きベクトルの観差が蓄積

序を示した図である。図において、時刻mフレームから 殿、 (m+1) フレーム目の画像情報、 (m+2) フレ ーム目の画像情報、 (m+3) フレーム目の画像情報を 【0026】図15は従来の動きベクトルを算出する順 (m+3) フレームまでの連続した4ンレーム分の画像 1503、1504はそれぞれ、mフレーム目の画像情 を合成する例について説明する。1501、1502、

年期2000-244851

3

+1) フレーム目と (m+2) フレーム目、続いて (m +2) フレーム目と (m+3) フレーム目という3回の 補償と同様に、1フレーム進行後の動き量を逐次算出す る方法である。この場合、動きベクトルを算出する基準 となるフレーム(基準フレームと称す)は、常に、対象 となるフレーム(対象フレームと称す)と1フレーム分 【0027】動きベクトルを算出する順序としては、ま ベクトル算出になる。即ち、従来の動画像符号化の動き ず田フレーム目と (四十1) フレーム目、続いて、 しか時間的には聞きがない。 2

【0028】しかし、この方法では、動き補償の目的に は最適な方法でも、本発明の目的としている複数画像の 合成では幾つかの問題がある。その一つが、上記の斟楚 の若積である。即ち、1フレーム分の移動量が正確に算 出されないと、時間的にそれ以降の動きベクトル算出で とになってしまう。画像枚数が多ければ多いほど、その 蓄積される誤差が増加し、本来の配置位置とは大きく異 は、製楚が生じた画像に対して新たに移動量を求めるこ なる結果になる場合がある。 20

や、対象物の移動等により、不鮮明な画像のフレームも を用いると、結果として動きベクトルを大きく闘ったも 【0029】また、もう一つの問題としては、複数枚の 単統画像の途中に動きベクトルの算出困難なフレームが 存在した場合の対処である。当然、複数枚の連続画像の 中では、撮像途中のビデオカメラ等の入力機器側のぶれ 存在してくる。その場合に、図15のような従来の方法 のにする恐れもあり、1度ベクトル算出を間違えば、前 述したようにそれ以降のフレームに対しても観差は解消 8

ならない。それは、画像毎の相対位置に相当する"ずら 後述する本発明の実施の形態の場合は、画像毎の相対位 【0030】このような、動きベクトル算出の順序の問 題は、例えば現在、既に市販されているビデオカメラに おける、CCDの画素ずらしの技術を用いて高解像化す る用途では、いかなる順序で複数枚を合成しても問題に 置は全く制御されていない。そのため、助きペクトルを し畳"が機器側で制御されているためである。しかし、 算出する順序が画質向上に大きな要因をもたらす。

[0031]また、本発明者は、先に複数の画像の合成 を、ただ単に複数フレームの画案値を配置する方法では を加工して配置合成する方法を提案した。画像データを なく、基準のフレームに適合させるように、画像データ 20

いくかという良好なフレームの制御方法が提案されてい どの画像同士を比較して動き畳を求め、合成につなげて ちらの画像を基準ファームにするかで画質は異なってく る。即ち、従来では、複数枚の画像を合成する場合に、 なかった。

【0032】従って、本発明は、複数枚の画像を合成し て、一枚の高解像度の画像を得る場合におけるフレーム 制御方式を提案するものである。

[0033]

選択された第1の静止画を上記記憶手段内に配置する第 1) 枚分 (m, nは任意の自然数)の動画像情報の中か 1の配置手段と、上配第1の静止回以外のn枚の静止画 について、それぞれ第1の静止画に対する動きベクトル 枚の動画像を配置して記憶するための記憶手段と、上記 を演算する演算手段と、上記演算結果に基づいて、上記 記憶手段内の上記第1の静止画の配置位置とは異なる位 **置に、上記n枚の静止画をそれぞれ配置する第2の配置** 手段と、上記配置後の(n+1)枚の画像を合成して一 【맺躍を解決するための手段】上記の目的を達成するた **めに、本発明による画像処理装置においては、Hフレー** ら第1の静止画を選択する選択手段と、上記 (n+1) **ム目から (m+n) フレーム目までの連続した (n+ 牧の画像を得る合成手段とを設けている。**

した (n+1) 枚分の動画像情報の中から第1の静止画 する動きベクトルを演算する演算手順と、上記演算結果 【0034】また、本発明による画像処理方法において 位置とは異なる位置に、上記n枚の静止画をそれぞれ配 **置する配置手順と、上記配置後の(n+1)枚の画像を** は、mファーム目から(m+n)ファーム目までの逆続 記憶手段内に配置する配置手段と、上記第1の静止画以 外のn枚の静止画について、それぞれ第1の静止画に対 に基分いて、上記記憶手段内の上記第1の静止画の配置 を選択する選択手順と、上配選択された第1の静止画を [0035] さらに、本発明による記憶媒体において 合成して一枚の画像を得る合成手順とを設けている。

は、mファーム目から(m+n)ファーム目までの連続 位置とは異なる位置に、上記n枚の静止画をそれぞれ配 を選択する選択処理と、上記選択された第1の静止画を 記憶手段内に配置する配置処理と、上記第1の静止画以 **外のn枚の静止画にしいて、それぞれ第1の静止画に対** する動きベクトルを演算する演算処理と、上記演算結果 に描んにん、上記記憶手段内の上記第1の静止画の配置 置する配置処理と、上記配置後の(n + 1)枚の画像を 合成して一枚の画像を得る合成処理とを実行するための した(n + 1)枚分の動画像情報の中から第1の静止画 プログラムを記憶している。

処理装置を示すプロックである。尚、本実施の形態にお くはビデオカメラと直接、あるいはコンピュータを介し て接続されるプリンタやビデオプリンタ等の画像出力装 置内部に具備することが効率的であるが、ビデオカメラ 発明の実施の形態】以下、本発明の実施の形態を図面 と共に説明する。図1は本発明の実施の形態による画像 ける画像処理装置は、主として、動画像を撮像するアナ ログアデオカメラやデジタルアデオカメラの内部、もし とプリンタとの接続で中間アダプタとなる画像処理装

置、又はホストコンピュータ内のアプリケーションソン ト、あるいはプリンタに出力するためのプリンタドライ パソフトとして内蔵することも可能である。

をコンピュータに送信して、コンピュータ内のアプリケ ーションソフトにより、プリンタ相当の解像度まで変換 【0037】図1の画像処理装置の構成及び動作につい て説明する。図1において、100はビデオカメラで撮 像された動画像が入力される入力端子を示している。本 実施の形態では、デジタルビデオカメラで撮像した画像 **する室にしこた消ぐる。**

取り込み命令を送る。この取り込み命令に同期して、コ した複数フレームの画像情報を格納する。いま、取り込 み命令を時刻mフレーム目とし、mフレーム目から(m 【0038】 デジタルビデオで撮影した動画像を記録媒 ンピュータ内の格納部101に取り込み命令直後の連続 +n) フレーム目までの (n+1) 枚の画像情報が格絶 体から再生して、ユーザは自分の欲するシーンで画像の されるものとする。

フレームとして設定するのかを判断する。いま、判定結 る。103は、フレーム制御部を示し、処理対象である は、一つが基準フレームであるフレームGであり、もう 1) フレーム分の画像情報から、どの時刻の画像を基準 果により設定された基準フレームを仮にフレームGとす 2種の画像を選出するための手段である。 2種の画像と **−しは、ソフー4G以外に格徴されたいるn枚のソフー** 【0039】102は避択部を示し、格納した (n+ 4中の一つのフレー4である (フレー4Hとする)。 ಜ

ームGと、フレームHの2種画像の差異を基に、部分的 【0040】104は動きベクトル演算部を示し、フレ に移動した移動量をベクトルとして計測する手段であ

メモリは、(入力したフレーム画衆数)×(垂直方向拡 **った画案の配置を実行していく。例えば、拡大率が水平** [0041] 105は配置処理部Aを示し、撮像したフ レームGの画像をメモリ内に配置する手段である。この 大率)×(水平方向拡大率)以上のアドレス空間を有し ている。そこで配置処理部Aでは、所定の拡大率に見合 方向、垂直方向ともに2倍の時には、垂直方向、水平方 向ともに 1 画葉おきにファームGの画業を配置していく

の画像情報にうまく適合するようにフレームHの画衆値 [0042] 106はデータ加工部を示し、フレームG こ加工を施す手段である。

トル演算、データ加工、配置の各処理工程を実行するこ **【0043】107は配置処理部Bを示し、フレーム制** り、新たなフレームに対して前述した同様の処理を繰り **返す。但し、2回目以降の処理においては、フレームG** は固定であり、またフレームGの画像情報は、既に配置 されているため、新たに配置する必要はない。 フレーム **卸的103で貸出したフレームGとフレームHとの柏첟** Hのみが新たなフレームに更新され、前述した動きベク **わなペクトル量に応じて、配置処理部A105と同一メ** モリ内に配置する手段である。格納したフレーム数が3 牧以上ある場合には、再びフレーム制御部103に戻

109は合成した画像がまだ、所望の解像度までの内挿* 【0044】108は合成部であり、同一メモリ内に配 置した複数枚の画像を合成して1枚の画像情報にする。

 k_s (x, y) = f_s (x-1, y-1) + f_s (x, y-1) + f_s (x+ f_{s} (x+1, y) + f_{s} (x-1, y+1) + f_{s} (x, 1, y-1) + f_s (x-1, y) -8 f_s (x, y) + $y+1)+f_S(x+1, y+1)\cdots$ (6) [0047]

208はそれぞれ、エッジ袖度評価部を示し、エッジ抽 出部201~204により抽出されたエッジの強度を画 [0048] 図2において、205、206、207、

※繋数をV、横画棄数をHとすると、 (m+s) フレーム 目のエッジ強度Psは以下のように算出する。 [0049]

億℃

(th は予め設定した関値) k,(x,y)|≥hの時 k', (x, y) = [k, (x, y)]

上記以外の時 $k'_{t}(x,y)=0$

した複数枚の画像の中で、画像全体に渡って最もエッジ [0050] 209は最大エッジ強度決定部を示し、エ ッジ強度評価部205~208でそれぞれ求めたPsが 即ち、エッジ強度という独自の評価関数を設定し、格納 の強度が大きいと評価されたフレームを選択するもので 最大となるフレームsを基準フレームとして決定する。

として設定するということは、後述する動きペクトルを 算出する時にも、また、他の対象フレームのデータ加工 をする時にも有利になる。エッジ強度による評価は、格 国像であると仮定することもできる。そのため、基準フ 質に付加価値を付けていく役割になり、最低でも基準フ 【0051】エッジの強度が大きい画像を基準フレーム 約した複数枚の中で、最も焦点がはっきりと撮影された レーム以外の対象ファームの画像は、基準ファームの画

レーム単独以上の画質向上が保証される。

ks' (x, y) の算出をks (x, y) の絶対値を用 [0052]また、図2の構成は、説明を容易にするた いていたが、当然、ks (x, y)の2乗を用いて複算 が、当然、エッジ抽出的、エッジ強度評価部は単一で、 めに、全フレームを並列に処理する例について述べた 垂直に処理する構成でもよい。また、式 (7) では

から様々な方法が提案されているが、従来方法では、画 補間を施して低解像の動画を高解像度の静止画に変換す [0053] 枚に、動きベクトル資料的104について 説明する。動きペクトルを算出する方法としては、古く **報問距離以下のベクトルの分解能がないために、合成、** することも可能である。

【0054】図4に本実施の形態による動きベクトル演

5月途には適さない。 အ

9

特限2000-244851

*点の情報が埋まっていない場合に、埋まっていない内挿 1 1 0 は出力端子を示し、髙解像度化した画像情報がブ 点の情報を補間演算により算出する補間演算部である。

1、202、203、204は、それぞれエッジ抽出部 フィルタの例を示す。いま、 (m+s) フレーム目 (但 し、0≤s≤3)の画像上の座標 (x, y) における画 [0045] 図2は、本実施の形態の特徴である選択部 は、エフレーム目の画像から (m+3) フレーム目の画 像までの計4枚の運網した画像を格納したとする。20 10 を示し、格納した4枚の画像情報を基に、画像中に含ま 【0046】図3に一般的なラプラシアンのエッジ抽出 102の構成を示す。いま例として、格納部101で 衆値をf s (x, y)、エッジ抽出処理後の値をk れるエッジ情報を抽出する手段である。 リンタ等に送信される。

s (x, y) とすると、図3のエッジ抽出フィルタでは

以下の積和液算になる。

像全体にわたって積算する手段である。画像全体の縦画※ $P_1 = \sum_{i=1}^{n} \sum_{j=1}^{n} k'_{-j}(x,y)$

(1)

*て、プロックAの直交変換を演算する。直交変換の種類 は限定しないが、高速で容易に演算できるアダマール変 微、及びJPEG (Joint Photografi c Expert Group) で採用されているDC T (離散コサイン変換) 等が一般的である。いま、DC

1から動きベクトル演算部104に送信される2種の画 像は、基準フレームであるフレームGと対象フレームと 閏8104の評価プロック図を示す。図1の格巻810 なるフレームHである。

仮にプロックAと称す。次に、直交変換部402におい* [0055] 図4において、プロック化街401は、フ 5。Nの値は様々考えられるが、例としてN=8を想定 する。いま、この作成した8×8画案の注目プロックを レームHの画像情報をN×N画珠単位にプロック化す

Tを例にすると、N×N画案の2な元DCTの変換係数

 $F(u,v) = (2/N)C(u)C(v)\sum_{k=1}^{N+\ell+1} f(m,n)\cos((2m+1)\mu\pi/2N)\cos((2n+1)\nu\pi/2N)$ [教6]

[0056]

(8) ...

 $C(p) = 1/f^2$

(0=0)

(b ± 0) C (b) = 1

H内の、プロックAと同一座標のN×N画案のプロック M=M'=Nの場合を除く)になる。いま、M=M'= [0058] 一方、基準フレームGは、M×M′ ブロッ ク化部403によりM×M′画寮単位にプロック化され 0×20のプロックをフレームG内に用意することにな る。この時、M×M' 画紫単位のプロックは、フレーム を包括し、大小関係は、M≧N、かつM'≧N (但し、 20と仮定する。即ち、ブロックAと同一座標を含む2 [0057] で求められる。

また、M×M' ブロックの始から頃に初めてもよい。い 30 ま、フレームG内で作成したN×N画菜のブロックを仮 20×20画株のブロック内で、ブロックAと同サイズ は、プロックAと同一座標からスタートしてもよいし、 [0059] 女に、N×Nブロック化密404により、 のN×N画案のプロックを作成する。プロックの作成 にプロック日と称する。

 $R(a,b) = \sum_{n=0}^{n-1} \sum_{n=0}^{n-1} (W(u,v) \times [F_n(u,v) - F_n(a,b)(u,v)])$

Fu(n,n) はプロックAの直交収換係数

Fe(a,b)(u,v) は配点 (a、b) の時のプロック目の直交契約係数

近いプロック同士の低周波域の変換係数は非常に相関が 高いため、式(9)では、プロック同士の空間的な位置 た、式 (9) では絶対値を用いているが、差分の2乗で 関係を変換係数の類似性に置き換えて評価している。ま [0064] 高周波域になるほど、隣接ブロック間の変 換係数の相関が低くなるため、高周波域ほど重み付け係 数W(n、 n)の値を小さく設定する。座標が空間的に も同様の評価は可能である。 (0063)で類出する。

20 Bの原点 (a, b) を1画繋移動して、新たにブロック [0065] 女に、プロック勘御街407は、プロック

※【0060】直交変換部405は、作成したプロックB をプロックAと同様に直交変換する。当然、直交変換部 402、405の直交変換は同一の変換手段でなくては ブロックBの直交変換係数を基に、その変換係数の類似 流) 成分と、AC (交流) 成分の主に低周波域の成分を **基に、それぞれの係数の差分に、成分に応じた重み付け** ならない。 直交変換係数評価部406は、ブロックA、 性を評価する。類似性の評価は、プロックのDC(直 係数を乗じた値の和で評価する。

気と称する)。即ち、図5に示すように、プロックBの 【0061】いま、説明を容易にするために、プロック の座標を、ブロックを形成する左上の画案の座標で管理 することにする(以下、この画案の座標をプロックの原 と、ブロックAとブロックBとの類似性の評価関数は、 原点 (斜線部の画業に相当する) を (a, b) とする

(6) :: [0062]

W(u,v) は成分(u,v)の重み付け係数

M'=20を例にすると、8×8画寮のプロックは20 め、そのブロック数分に対して繰り返し類似性を演算す 40 を作成し、同様の処理を繰り返す。即ち、N=8、M= ×20 画衆のブロック中に13×13個作成できるた ることになる。

55最小になる座標(a', b')を判定する。即ち、類 以性R (a, b) はプロックAB間の観整成分と見なせ [0066] フレームG内において、全てブロックBの (この時のブロックをブロックB'と称する) が、空間 走査を終了すると、前述の評価関数であるR(a, b) るため、R (a, b) の最小値をとる時のプロックB

的にもプロックAと最も近いプロックと見なし、プロッ [0067] ただ、これだけでは従来例と回様、動きべ クトルの分解能は1画衆単位であり、画案間距離以下の ベクトルが判定できない。そこで、本実施の形態では、 クAの移動した先と判断する。

画案間距離よりも短い分解能で動きベクトルを推測す

とし、また、前述したR(a, b)の最小値をとろフレ 【0068】以下にベクトルの推測方法を説明する。上 述の方法において、対象フレームであるフレームH上の **注目プロックであるプロックAの原点を(a 0, b 0)** 変換係数評価部406において、ブロックB゚の検案は ームGのプロックB'の原点を(a',b')とする。 大まかな画案単位の検索であったが、今度はプロック

【0070】図6は、上記2段階目の推測の動作手順を 空間的に最も近いと思われるブロックB'の検索、次に [0069] 即ち、変換係数評価部406では、まず、 **求めたプロックB'からの後小なずれ気の推測という、** 2段階の構成の異なる評価を実施することになる。 B' 周辺に絞った細かい距離の推測をする。

ロックと1画来右に作成したプロックの式 (7) の評価 ステップ略) は、プロックB'の1画素左に作成したブ 関数結果をそれぞれ比較する。即ち、ブロックB,の原 点は (a', b') であるため、R (a'+1, b') ボすフローチャートである。ステップS601 (以下、 (a'+1, b')、R (a'-1, b') について は、第1段階の類似性評価の際に算出しているため、 とR (a' -1, b')の大小を評価する。このR 算結果を配憶、保持しておくのが好ましい。

価されるとS603に移動する。次にS602では、原* [0071] S601において、もし、R(a'+1, b')が小さいと評価されるとS602に、また否と評

1, 0)) (10)

また、S609では、変数V×はV×=0に設定され

[0076] 同様に、S610では、プロックAの直交 * (0, 1) と、ブロックB、及びブロックDの直交変 機係数中の水平方向のAC基本彼成分であるFB 変換係数中の垂直方向のAC基本波成分であるF

(0, 1)、F_D (0, 1) の3種の大小関係を評価す※

0, 1)) · · · · (11) また、S612では、変数VyはVy=0と設定され

[0078] S613代, 共(10)、共(11) に より質出したVx, Vyを基に、プロックAから真に移 への動きベクトルAB"を以下のように散定して終了す 動したと判断されるブロック (ブロックB"と称する)

特限2000-244851

8

*点R (a' +1, b') より構成されるプロックをプロ 1, b') より構成されるプロックをプロックCと設定 する。それと同時に、S602では変数。をc=1と設 ックCと設定し、また、S603では、原点R (a'ー 定し、また、S603では、c=-1と設定する。

ため、R (a', b'+1) とR (a', b'-1) の 大小を評価する。この類似性の評価関数に関しても、第 たプロックの式 (7) の評価関数結果をそれぞれ比較す る。即ち、ブロックB'の原点は(a', b')である 1段階の類似性評価の際に算出しているため、演算結果 B' の1 画衆上に作成したプロックと1 画寮下に作成し [0012] 次にS604において、今度はプロック を配憶、保持しておくのが好ましい。

点R (a', b'+1) より構成されるブロックをブロ b'ー1)より構成されるプロックをプロック口と設定 する。それと同時に、S605では、変数 4を 4=1と +1)が小さいと評価されるとS605に、また否と評 価されるとS606に移動する。次にS605では、原 [0073] S604において、もし、R (a', b' ックDと設定し、また、S606では、原点R(a' 設定し、また、S606ではd=-1と設定する。

る。即ち、F_A (1,0)の値が、F_B' (1,0)の 値と ${f F}_{f C}$ (1, 0)の値との間に存在するか否かを判断 [0014] 太にS601では、ブロックAの直交変換 0) と、ブロックB,、及びブロックCの直交変換係数 している。もし、存在していれば、5608へ 否なら 0)、 ${f F}_{f C}$ (1,0)の3権の値の大小関係を評価す 係数中の水平方向のAC基本波成分であるFA (1, 中の水平方向のAC基本被成分であるFB' (1,

[0075] S608では、変数V×が以下の式 (1 8609へ物型する。 0) で算出される。 8

 $V_{x} = (F_{A} (1, 0) - F_{B}' (1, 0)) / (F_{C} (1, 0) - F_{B}')$ (

%る。即ち、 F_A (0, 1)の値が、 F_B ' (0, 1)の している。もし、存在していれば、5611へ、否なら 値と F_D (0, 1)の値との間に存在するか否かを判断 S 6 1 2 へ物製する。

【0011】S611では、変数Vyが以下の式 (1 40 1) で類出される。

 $V_{y} = (F_{A} (0, 1) - F_{B}' (0, 1)) / (F_{D} (0, 1) - F_{B}' ($

[0079]

[0080] 即ち、ブロックAかちブロックB, への動 [数8] $AB = (a' + c \times V_X - a0, b' + d \times V_Y - b0)$ … (12) きペクトルは、

[0081]

S

9

特限2000-244851

 $\overline{AB'} = (a' - a0, b' - b0) \cdots (1.3)$

[0082] となるので、式 (12) のc×V×、及び d×Vyの項が画案間距離よりも分解能の高いベクトル

実施の形態では、2段階とも直交変換係数を用いた推測 ばべたが、上述したように、本実施の形態の動きベクト **小演算部104は2段階の処理になっている。まず、空** 間的に最も近いと思われるブロックの検索、吹に、求め をしているが、処理の簡略化、萬速化等により、第1段 たプロックからの微小なずれ母の推測である。上述した **格目のブロック検索は直交変換係数を用いずに、ブロッ 【0083】以上、動きペクトル演算部104について** ク内の画案値の比較により推測する方法を用いてもよ

って、対象フレームであるフレームHのブロックが、基 【0084】次に、データ加工部106について図7を 動きベクトル資質部104から算出されたペクトルに従 **陣フレームであるフレームGのどの位置に相当するかを** (9) の評価関数が最小であったアドレスが出力され 用いて説明する。図7において、座標管理部701は、 管理する。この座標管理部701からは、前述した式

ていれば、改めてデータ加工部106内部で行う必要は 【0085】N×Nブロック化售102は、ファームH は、前段の動きベクトル演算部104内部で使用したブ ロック(注目ブロックと称する)の画装値情報を保持し の画像をN×N画衆単位でプロック化する。この手段

 $T_A = 1/N^2 \times \sum_{j=0}^{10.N-1500N-1} \int_{j=0}^{N-1} f_{ii}(x,y)$

(x, y) とする ※離する手段である。分離後の値を gH と、以下の式 (15) で算出される。 画森から、算出した平均値TA を減算することにより分※ [0091] 平均値分離部705は、プロックA内の各

出する。ブロックB'の原点座標を(a', b')とす のブロックB'、C、D、Eの各ブロックの平均値を算 【0092】 一方、平均値算出售106は、フレー4G

段も前段の動きベクトル演算部104内部で作成、評価 *【0086】同様に、N×Nブロック化部103は、座 の周辺に位置するプロック(周辺プロックと称する)の 棋管理部101から受けたアドレスに基づいて、フレー ムGのN×N画繋単位のブロック化を実行する。この手 (観差最小プロックと称する) 、及び観差最小プロック 画楽値情報を保持していれば、改めてデータ加工部10 したプロックのうち、評価国数が最小になったプロック 6 内部で行う必要はない。

ックA、フレームG上でブロックAに対する靱差最小ブ **箱のブロックのうち、評価関数が小さいと評価されたブ** て水平方向の左右1 画鰲毎にずらしてブロック化した2 ロックをプロックC、同様に、プロックB)を基準にし て垂直方向に上下1 画素毎にずらしてブロック化した2 【0087】いま、フレームH上の注目プロックをプロ 種のブロックのうち、評価関数が小さいと評価されたフ ロックをブロックB'、また、ブロックB'を基準にし ロックをブロックDとする。 2

ックEとする。プロックEはプロックB,とは水平垂直 プロックDの原点のy座標を原点とするプロックをプロ [0088]また、ブロックCの原点の×座標、及び、 ともに1画繋づつずれていることになる。

[0089] 平均値算出部104は、注目ブロックであ る。プロックAの原点座標を(a 0, b 0)とすると、 るプロックA内の画楽値の平均値を算出する手段であ プロックAの平均値 T_A を以下のように算出する。

[数10]

(但し、fi(x,y)はフレーム H の座標(x 、y)の画素値)

それぞれ以下のように算出される。 $g_{H}(x, y) = f_{H}(x, y) - T_{A} \cdot \cdot \cdot \cdot (15)$ [数11]

ると、各ブロックの平均値TB'、T_C 、T_D 、T_E は

特限2000-244851 (16) 9

(17)

(18)

(61) ...

(但し、fo(x,y)はフレームGの座標(x、 y)の画条値)

ន れた場合には c=1、逆に左方向にずらしたプロックが [0094] 但し、c, dは図6のフローチャートの説 司徴に、<u>垂直方向の比較で下方向の場合には d = 1、上</u> 明で述べたように、水平方向に左右 1 画衆毎ずらしてブ ロック化した場合に、右方向にずらしたブロックがブロ ックAとの類似性を示す評価関数結果が小さいと評価さ **評価関数結果が小さいと評価された場合には c = − 1、** 方向の場合には d = -1 である。

 h_{H} (x, y) = g_{H} (x, y) + (1- V_{X} ') · (1- V_{Y} ') · T_{B} +

(0097] LIT, Vx', Vy' (1702/B' 0) 5。 即ち、前述した式 (10)、式 (11) により算出 したVx、Vyの座標が、所望の内挿点上に完全に合致 する場合は極めて少ない。実際には、算出したN×、V **頁点(a', b') から内挿点までの距離を示してい** yの値に基づいて、それに最も距離の近い内挿点V x'、Vy'上に内挿することになる。

(a' + V x'、 b' + V y') となる。この内挿点が により算出した N x 、 V y だけ離れた点、O 印が解像度 を増加させるために、真に内挿すべき内挿点である。い [0098] 図8にV×、Vy、V×、、Vy'の位置 場係の例を図示する。●印がフレームGの標本点、×印 が原点座標 (a', b') から式 (10)、式 (11) ま、c=1、及びd=1の場合、この内挿点の座標は、 プロックAの原点となり、配置点である。

【0099】式 (20) は、ブロックAの平均値を、ブ 均値に置換していることを意味している。しかも、置換 B'、プロックC、プロックD、プロックEに適合する ロックB'、ブロックC、ブロックD、ブロックEの平 する平均値は、プロックAの内挿位置に依存して、4ブ と、プロックAのDC成分を基準フレーム上のプロック ように変更して、ブロックAのAC成分のみを利用しよ ロックの平均値の線形演算となっている。言い換える うとするものである。

クロ、ブロックEの4ブロックは、ブロックの重なりが * [0095] また、プロックB'、プロックC、プロッ 大きいため、4ブロックのうち、一つのブロックのみを は、質出したプロックの平均値から、プロックの非重な 平均値算出して、残りの3プロックの平均値に関して

[0096] 次に、平均値置換部107においては、 り画衆のみを加減算して算出してもよい。

下の演算が行われる。

 $\mathbf{V}_{\mathbf{X}}^{'}, \cdot \cdot (\mathbf{1} - \mathbf{V}_{\mathbf{Y}}^{'}) \cdot \mathbf{T}_{\mathbf{C}} + (\mathbf{1} - \mathbf{V}_{\mathbf{X}}^{'}) \cdot \mathbf{V}_{\mathbf{Y}}^{'} \cdot$ ·TE ···· (20) $T_{D} + V_{X} \cdot V_{y}$

Eの重なりが大きいため、算出するそれぞれの平均値は B'の平均値 T_B 'のみを g_H $(x,\ y)$ に加算する簡 【0100】以上、ゲータ加工街106について沿くた い。プロックB'、プロックC、プロックD、プロック 大差がない場合も考えられる。その場合には、プロック が、本実施の形態においては、上述した例には限らな

を含めた、特に3枚以上の複数フレームを使用した時の まず始めに、5901により、格納したmフレーム目か ら (m+n) フレーム目までの (n+1) 枚で、各フレ **一ム毎にエッジ強度を評価する。そしてS902で、そ** 【0101】図9は、以上述べてきた、ファーム制御街 106を中心にして動きベクトル算出、配置までの処理 繰り返し処理の動作手順を示すフローチャートである。 易的な方法も可能である。

有する (m+p) フレーム目をフレームGとして設定す 5。これが基準フレームである。次にS904では、変 変数5がpに等しいか否かを判断する。これは現在処理 しようとしているフレームが基準フレームなのか、否か [0102] 続いて、S903で、最大のエッジ強度を 数s、及び変数9を0に初期化する。 衣にS905で、

れらを相互比較する。

【0103】もし、いま処理するフレームsが基準フレ **一ムでなければ、5906において、qが0に等しいか**

*も同様の処理工程を繰り返す。格納した全てのフレーム に対して配置が終了すると、1枚の画像情報に合成され 【0105】以上、本実施の形態の一連の処理を説明し てきたが、本発明の特徴は選択部102にある。そのた 記置処理部107等の内容は限定しない。動きベクトル

の場合は、まだ処理していないフレームが格納されてい ペクトルを算出する。 吹に、S910で、フレームHを データ加工した後に、S911で、配置を行う。S91 繰り返し回数がn回になっているか否かを判断する。否 5906で否と判定された場合には、処理が2回目以降 [0104] 続いて、S909では、フレームGと (m と判定され、既に基準フレームであるフレームGは配置 否かを判定する。これは、現在処理している繰り返し回 数が1回目なのか否かを判定するものである。もし、4 されているため、5907、5908はジャンプする。 +s) フレーム目 (フレームHとする) との間で、敷き せ、S908で、瓷数4をカウントアップする。もし、 2で、変数sをカウントアップした後に、S913で、 がのに等しければ、S907で、フレームGを配置さ

ると判断され、S905に戻り、他のフレームに対して* $P_{i} = \sum_{i=0}^{n} \sum_{j=0}^{n} k'_{i}(x, y)$

(21)[数12]

【0106】また、式(7)のエッジ強度の評価関数は

一ムの画案値を配置するだけの構成も考えられる。

これに限るものではない。式 (7)の変形例として以下

n式 (21) も考えられる。

[0107]

し、対象フレームのデータも加工しないで、各対象フレ

寅算は、直交変換を用いない方法でも当然可能である

め、動きベクトル演算部104、データ加工部106、

高い。

(th は予め設定した関値) |k,(x,y)|| = th の時 k', (x, y) = 1

k', (x, y) = 0

が、ある閾値以上になった画菜数をカウントすることを の強度は把握できる。また、エッジ抽出フィルタも図3 に限るものではなく、よりノイズ耐性の強いフィルタを 飮味している。式(21)でも十分に画像全体のエッジ 【0108】この場合は、エッジ抽出フィルタ後の値

の変換係数を基に判定する方式も考えられる。その場合 には、どのフレームが高周波域の電力が大きいかを評価 し、最も電力が大きいと判断されたフレームを基準フレ イルタを用いない方式、例えば、直交変換の高周波成分 【0109】また、エッジ強度の評価は、エッジ抽出フ

【0110】また、本実施の形態では、画像の特徴量に エッジ情報を利用したが、これに限るものではなく、他 の画像の特徴量を用いて評価してもよい。 ームとして設定する。

[0111] 図10は、本発明の第2の実施の形態によ る動作手順を示すフローチャートである。本実施の形態 は、図1の選択部102による選択方法が異なっている のみで、他の各部に関しては同一である。また、図10 のフローチャートは、エフレーム目から (エキロ) フレ ーム目までの (n+1) 枚の画像情報を基に1枚の高解 像の静止画像を作成する例を示している。

002で、(m+p) フレーム目を基準フレームである 50 【0112】S1001は除算工程を示し、nの値を2 で除算した場合の整数部分をpとして代入する。実際の 処理上では、ピットシフトで実現できる。続いて、S1

変数sがpに等しいか否かを判断する。これは現在処理 フレームGとして設定する。 太にS1003では、 変数 しようとしているフレームが基準フレームなのか、否か s、及び変数qを0に初期化する。次にS1004で、 上記以外の時

を判定するものである。 4が0であるならば、S100 カウントアップする。S1005で、否と判定された場 【0113】もし、いま処理するフレームSが基準フレ **一ムでないならば、S1005において、9が0か否か** を判定する。これは、いま処理する回数が1回目か否か 6で、フレームGを配置させ、S1001で、変数qを 合は、処理が2回目以降と判定され、既に基準フレーム であるフレームGは配置されているため、S1006、 S1007はジャンプされる。 を判定することになる。 8

動きベクトルを算出し、S1009で、フレームHをデ lで、変数 s をカウントアップした後に、繰り返し回数 がn回になっているか否かを判断する。まだ、処理して いないフレームが格納されている場合には、S1004 **一夕加工した後に、S1010で、配置する。S101** に戻り、他のフレームに対しても同様の処理工程を繰り (m+s) フレーム目 (フレームHとする) との間で、 [0114] 続いて、S1008では、フレームGと

【0115】格納した全てのフレームに対して配置が終 る。以上のように、本実施の形態は、基準フレームの選 **了すると、単一の画像として合成されて処理は完了す**

(12)

沢を、入力されたフレーム順により決定するのが特徴で

【0116】図11は、5フレーム分格納した場合の基 ームが基準フレームである。格納画像が5フレーム分の 場合、n=4になるので、2で除算することにより、p =2となり、(m+2)フレーム目の中間フレームが基 **草フレームの決定を示した図である。斜線で示したフレ 準フレームとして設定される。この基準フレームを他の** 4フレームとそれぞれ比較して処理することになる。

nを2で除算した結果が非整数になるため、正しく中間 にはなり得ないが、中間前後のフレームを基準フレーム **に設定して構わない (但し、図10のフローチャートで** は、中間より前になる)。即ち、前述した図9のフロー チャートの実施の形態では、基準ファームの選択を"画 像の特徴"に基心に、設定する方法であった。 画像の特 徴量が、最も顕著に表せる評価関数としてエッジの強度 を評価した。確かに画像の特徴で選択すれば、画質的に 最適な画像を基準フレームとして設定できる可能性があ 【0117】もし、格納フレーム数が偶数の場合には、

【0118】しかし、連続画像を扱うため、時間的には 必ずしも最適とは言えない。そこで、図10のフローチ ャートの実施の形態では、"時間的な画像の相関性"を 重視して選択している。時間軸において中間の画像を用 いるということは、格納画像中の各フレームと比較した 場合に、画像の連続性を考えると、画像の相関性が最も 高い中心的な画像と仮定することができる。即ち、時間 的ずれが最小であるため、各フレームと基準画像との差 異が少なくて済む。

であるフレームが画質的に不鮮明であった場合でも、総 図9及び図10の各フローチャートの折衷案も考えられ る。即ち、画像の特徴量、及び時間軸上での位置を考慮 して新たな評価関数を作成し、基準フレームを決定する ことも可能である。その場合には、例え時間軸上で最適 [0119]以上、本発明の実施の形態を説明したが、 合的に最適な画像を選択することができる。

メモリとで構成されるコンピュータシステムで達成する 憶媒体をシステムや装置で用い、そのシステムや装置の ための、ソフトウェアのプログラムコードを記憶した記 [0120] 次に本発明の他の実施の形態としての記憶 媒体について説明する。本発明の目的は、ハードウェア 構成により違成することも可能であり、また、CPUと 上述した各実施の形態において説明した動作を実行する CPUが上記記憶媒体に格納されたプログラムコードを 熱み出し、実行することにより、本発明の目的を選成す 上記メモリは本発明による記憶媒体を構成する。即ち、 こともできる。コンピュータシステムで構成する場合、 ることができる。

ය [0121]また、この記憶媒体としては、ROM、R 4M毎の半導体メモリ、光ディスク、光磁気ディスク、

磁気媒体等を用いてよく、これらをCD-ROM、フロ ッピィディスク、磁気媒体、磁気カード、不揮発性メモ 特開2000-244851

リカード等に構成して用いてよい。

ステムあるいはコンピュータがこの配像媒体に格納され 【0122】従って、この配憶媒体を図1等に示したツ ステムや装置以外の他のシステムや装置で用い、そのシ たプログラムコードを読み出し、実行することによって に、同等の効果を得ることができ、本発明の目的を違成 も、上記各実施の形態と同等の機能を実現できると共

することができる。

【0123】また、コンピュータ上で稼働しているOS 等が処理の一部又は全部を行う場合、あるいは配憶媒体 から割み出されたプログラムコードが、コンピュータに **挿入された拡張機能ボードやコンピュータに接続された 拡張機能ユニットに備わるメモリに苦き込まれた後、そ** のプログラムコードの指示に基づいて、上記拡張機能が ードや拡張機能ユニットに備わるCPU等が処理の一部 又は全部を行う場合にも、上記各実施の形態と同等の機 能を実現できると共に、同等の効果を得ることができ、 本発明の目的を違成することができる。

格納した複数フレームの中から各フレームとの比較の基 な相関性を基に設定することにより、ベクトル算出時の **犂となる単一の基準フレームを、画像の特徴量や時間的 製差の蓄積を生じず、不鮮明なフレームが存在していた** [発明の効果] 以上説明したように、本発明によれば、 場合でも問題なく良好な合成を可能にする。 [0124]

挿、補間技術に比べて格段に高画質化した画像情報を作 [0125]また、本発明によれば、従来提案されてい た、1枚の低解像静止画からの高解像静止画作成の内

報を容易に作成できるため、入出力の解像度の異なる機 [0126] さらに、 本発明によれば、ビデオカメラ **髄間通信や、拡大変倍して高画質な画像を出力するビデ** で撮影した低解像静止画情報から1枚の髙解像静止画情 オカメラ、プリンタ等を提供することができる。 成することができる。

[図1] 本発明の実施の形態による画像処理装置を示す [図面の簡単な説明]

【図2】図1の選択部を示すプロック図である。 ブロック図である。

【図4】図1の動きベクトル演算部を示すブロック図で 【図3】エッジ抽出フィルタの例を示す構成図である。

[図6] 図4の変換係数評価部の動作手順を示すフロー [図5] 動きベクトルを説明する構成図である。

[図7] 図1のデータ加工部を示すプロック図である。 [図8] ブロック内の配置位置を説明する構成図であ チャートである。

【図9】本発明の第1の実施の形態による選択部を含め

[図15]

(m+3)75-4

(m+2) フレーム

(m+1)7b-4

カーリケー

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.