УДК 681.3

## МОДЕЛИРОВАНИЕ ПРОЦЕССА ФЛУД-АТАКИ НА ПОЧТОВЫЙ СЕРВЕР: ИСПОЛЬЗОВАНИЕ ВРЕДОНОСНОЙ ПРОГРАММЫ EMAIL-FLOODER

## В.В. Бутузов, П.А. Паринов

В работе на основе аппарата теории сетей Петри-Маркова производиться моделирование процесса реализации флуд-атаки на почтовый сервер, с использованием вредоносной программы Email-flooder Ключевые слова: флуд-атака, Email-flooder, сети Петри-Маркова

Рассмотрим флуд-атаку на почтовый сервер, c использованием вредоносной

программы Email-flooder [1, 2]. Смоделируем данную атаку с помощью

сети Петри-Маркова [3], где  $S_i$  - позиции,  $t_i$ 

переходы процесса. В частности:  $S_1$  — злоумышленник имеет информацию

для формирования команды вредоносной программе Email-flooder;

 $S_2$  – хост злоумышленника готов; формирование комадны для управляющего сервера;

 $S_3$  –команда для управляющего сервера готова:

 $S_4$  – управляющий сервер готов принять команду; *t*<sub>2</sub> – отпрака команды управляющему

серверу;  $S_{5}$ управляющий сервер принял команду для дальнейшей ее пересылке;

 $S_6$ 

устройство вредоносной cпрограммой Email-flooder готово принять команду от управляющего сервера;  $t_3$  – отправка команды устройствам с

 $S_7$  – устройства вредоносной cпрограммой приняли команду;  $t_4$  – обработка принятой команды;

t<sub>6</sub> - настройка вредоносной программы

 $t_7$  — отправка сообщений и помещение

 $S_8$  - команда обработана; формирование сообщений,

соответствии с принятой командой; сообщения для отправки сформированы;

Email-flooder;  $S_{10}$  - вредоносная программа Emailflooder настроена и готова к атаке;

 $S_{11}$  - атакуемый почтовый сервер готов принять сообщения;

их в очередь почтового сервера;

 $S_{12}$  — сообщения помещены в очередь почтового сервера;  $t_8$  – переполнение очереди почтового

сервера;  $S_{13}$ пользователь не может обрабатывать поступающие сообщения. Вид данной сети представлен на рис. 1



Рис. 1. Вид сети Петри-Маркова для флуд-атаки на почтовый сервер, с использованим вредоносной программы Email-flooder

e-mail: manc@comch.ru Паринов Павел Александрович – ВГТУ, студент, e-mail: manc@comch.ru

Бутузов Владимир Вячеславович – ВГТУ, аспирант,

| могут быть записаны (без учета $\frac{t_1}{S_1} = \frac{t_2}{S_1} = \frac{t_3}{S_1} = \frac{t_4}{S_1} = \frac{t_5}{S_1} = \frac{t_7}{S_1} = \frac{t_7}{S_1$                                                                                                                                                         | едующим   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| $ \frac{t_1}{S_1}  \frac{t_2}{1}  0  0  0  0  0  0  0  0  0  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |
| $ S_1 = \begin{cases} S_1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ S_2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ S_3 & S_1t_1 \cap S_2t_1 & 1 & 0 & 0 & 0 & 0 & 0 \\ S_4 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ S_5 & 0 & S_3t_2 \cap S_4t_2 & 1 & 0 & 0 & 0 & 0 \\ S_5 & 0 & S_3t_2 \cap S_4t_2 & 1 & 0 & 0 & 0 & 0 \\ S_7 & 0 & 0 & S_5t_3 \cap S_6t_3 & 1 & 0 & 0 & 0 \\ S_8 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ S_9 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ S_9 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ S_{10} & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ S_{11} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ S_{12} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ S_{13} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ S_{13} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ S_{13} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ S_{13} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ S_{14} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ S_{15} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ S_{11} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ S_{11} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ S_{11} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ S_{11} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ S_{11} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ S_{11} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ S_{11} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ S_{11} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ S_{11} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ S_{11} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ S_{11} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ S_{11} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| $V_{S_1t_8} = \begin{cases} S_2 \\ S_3 \\ S_4 \\ S_5 \\ S_6 \\ S_7 \\ S_8 \\ S_9 \\ S_9 \\ S_{10} \\ S_{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $t_8$     |
| $S_{11}$ 0 0 0 0 0 0 0 0 1 $S_{10}t_7 \cap S_1$ $S_{12}$ 0 0 0 0 0 0 0 0 $S_{10}t_7 \cap S_1$ $S_{13}$ 0 0 0 0 0 0 0 0 0 $S_{10}t_7 \cap S_1$ Для данной сети Петри-Маркова имеет интегрально-дифференциальны уравнений: $\Phi_{S_1t_1}(t) = \pi_{11} \int_0^t f_{S_1t_1}(\tau) d\tau, \qquad \Phi_{S_2t_1}(t) = \pi_{21} \int_0^t f_{S_1t_1}(\tau) d\tau, \qquad \Phi_{S_2t_1}(t) = \pi_{21} \int_0^t f_{S_1t_1}(\tau) d\tau, \qquad \Phi_{S_3t_2}(t) = \pi_{32} \int_0^t f_{S_3t_2}(\tau) \Phi_1(t-\tau) d\tau, \qquad \Phi_{S_4t_2}(t) = \pi_{32} \int_0^t f_{S_4t_2}(\tau) d\tau, \qquad \Phi_{S_4t_2}(t) = \pi_{42} \int_0^t f_{S_4t_2}(\tau) d\tau, \qquad \Phi_{S_5t_3}(t) = \pi_{53} \int_0^t f_{S_5t_3}(\tau) \Phi_2(t-\tau) d\tau, \qquad \Phi_{S_6t_3}(t) = \pi_{63} \int_0^t f_{S_6t_3}(\tau) d\tau, \qquad \Phi_{S_6t_3}(t) = \pi_{63} \int_0^t f_{S_7t_4}(\tau) \Phi_{S_7t_4}(t) + f_{S_6t_3}(\tau) \Phi_{S_7t_4}(t) + f_{S_6t_3}(\tau) \Phi_{S_7t_4}(t) = \pi_{74} \int_0^t f_{S_7t_4}(\tau) \Phi_3(t-\tau) d\tau, \qquad \Phi_{S_9t_6}(t) = \pi_{96} \int_0^t f_{S_9t_6}(\tau) \Phi_{S_9t_5}(t-\tau) d\tau, \qquad \Phi_{S_9t_6}(t) = \pi_{96} \int_0^t f_{S_9t_6}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_1t_7}(\tau) \Phi_{S_1t_$ | 0         |
| $S_{11}$ $O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0         |
| $S_{11}$ 0 0 0 0 0 0 0 0 1 $S_{10}t_7 \cap S_1$ $S_{12}$ 0 0 0 0 0 0 0 0 $S_{10}t_7 \cap S_1$ $S_{13}$ 0 0 0 0 0 0 0 0 0 $S_{10}t_7 \cap S_1$ Для данной сети Петри-Маркова имеет интегрально-дифференциальны уравнений: $\Phi_{S_1t_1}(t) = \pi_{11} \int_0^t f_{S_1t_1}(\tau) d\tau, \qquad \Phi_{S_2t_1}(t) = \pi_{21} \int_0^t f_{S_1t_1}(\tau) d\tau, \qquad \Phi_{S_2t_1}(t) = \pi_{21} \int_0^t f_{S_1t_1}(\tau) d\tau, \qquad \Phi_{S_3t_2}(t) = \pi_{32} \int_0^t f_{S_3t_2}(\tau) \Phi_1(t-\tau) d\tau, \qquad \Phi_{S_4t_2}(t) = \pi_{32} \int_0^t f_{S_4t_2}(\tau) d\tau, \qquad \Phi_{S_4t_2}(t) = \pi_{42} \int_0^t f_{S_4t_2}(\tau) d\tau, \qquad \Phi_{S_5t_3}(t) = \pi_{53} \int_0^t f_{S_5t_3}(\tau) \Phi_2(t-\tau) d\tau, \qquad \Phi_{S_6t_3}(t) = \pi_{63} \int_0^t f_{S_6t_3}(\tau) d\tau, \qquad \Phi_{S_6t_3}(t) = \pi_{63} \int_0^t f_{S_7t_4}(\tau) \Phi_{S_7t_4}(t) + f_{S_6t_3}(\tau) \Phi_{S_7t_4}(t) + f_{S_6t_3}(\tau) \Phi_{S_7t_4}(t) = \pi_{74} \int_0^t f_{S_7t_4}(\tau) \Phi_3(t-\tau) d\tau, \qquad \Phi_{S_9t_6}(t) = \pi_{96} \int_0^t f_{S_9t_6}(\tau) \Phi_{S_9t_5}(t-\tau) d\tau, \qquad \Phi_{S_9t_6}(t) = \pi_{96} \int_0^t f_{S_9t_6}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_1t_7}(\tau) \Phi_{S_1t_$ | 0         |
| $S_{11}$ 0 0 0 0 0 0 0 0 1 $S_{10}t_7 \cap S_1$ $S_{12}$ 0 0 0 0 0 0 0 0 $S_{10}t_7 \cap S_1$ $S_{13}$ 0 0 0 0 0 0 0 0 0 $S_{10}t_7 \cap S_1$ Для данной сети Петри-Маркова имеет интегрально-дифференциальны уравнений: $\Phi_{S_1t_1}(t) = \pi_{11} \int_0^t f_{S_1t_1}(\tau) d\tau, \qquad \Phi_{S_2t_1}(t) = \pi_{21} \int_0^t f_{S_1t_1}(\tau) d\tau, \qquad \Phi_{S_2t_1}(t) = \pi_{21} \int_0^t f_{S_1t_1}(\tau) d\tau, \qquad \Phi_{S_3t_2}(t) = \pi_{32} \int_0^t f_{S_3t_2}(\tau) \Phi_1(t-\tau) d\tau, \qquad \Phi_{S_4t_2}(t) = \pi_{32} \int_0^t f_{S_4t_2}(\tau) d\tau, \qquad \Phi_{S_4t_2}(t) = \pi_{42} \int_0^t f_{S_4t_2}(\tau) d\tau, \qquad \Phi_{S_5t_3}(t) = \pi_{53} \int_0^t f_{S_5t_3}(\tau) \Phi_2(t-\tau) d\tau, \qquad \Phi_{S_6t_3}(t) = \pi_{63} \int_0^t f_{S_6t_3}(\tau) d\tau, \qquad \Phi_{S_6t_3}(t) = \pi_{63} \int_0^t f_{S_7t_4}(\tau) \Phi_{S_7t_4}(t) + f_{S_6t_3}(\tau) \Phi_{S_7t_4}(t) + f_{S_6t_3}(\tau) \Phi_{S_7t_4}(t) = \pi_{74} \int_0^t f_{S_7t_4}(\tau) \Phi_3(t-\tau) d\tau, \qquad \Phi_{S_9t_6}(t) = \pi_{96} \int_0^t f_{S_9t_6}(\tau) \Phi_{S_9t_5}(t-\tau) d\tau, \qquad \Phi_{S_9t_6}(t) = \pi_{96} \int_0^t f_{S_9t_6}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_1t_7}(\tau) \Phi_{S_1t_$ | 0         |
| $S_{11}$ 0 0 0 0 0 0 0 0 1 $S_{10}t_7 \cap S_1$ $S_{12}$ 0 0 0 0 0 0 0 0 $S_{10}t_7 \cap S_1$ $S_{13}$ 0 0 0 0 0 0 0 0 0 $S_{10}t_7 \cap S_1$ Для данной сети Петри-Маркова имеет интегрально-дифференциальны уравнений: $\Phi_{S_1t_1}(t) = \pi_{11} \int_0^t f_{S_1t_1}(\tau) d\tau, \qquad \Phi_{S_2t_1}(t) = \pi_{21} \int_0^t f_{S_1t_1}(\tau) d\tau, \qquad \Phi_{S_2t_1}(t) = \pi_{21} \int_0^t f_{S_1t_1}(\tau) d\tau, \qquad \Phi_{S_3t_2}(t) = \pi_{32} \int_0^t f_{S_3t_2}(\tau) \Phi_1(t-\tau) d\tau, \qquad \Phi_{S_4t_2}(t) = \pi_{32} \int_0^t f_{S_4t_2}(\tau) d\tau, \qquad \Phi_{S_4t_2}(t) = \pi_{42} \int_0^t f_{S_4t_2}(\tau) d\tau, \qquad \Phi_{S_5t_3}(t) = \pi_{53} \int_0^t f_{S_5t_3}(\tau) \Phi_2(t-\tau) d\tau, \qquad \Phi_{S_6t_3}(t) = \pi_{63} \int_0^t f_{S_6t_3}(\tau) d\tau, \qquad \Phi_{S_6t_3}(t) = \pi_{63} \int_0^t f_{S_7t_4}(\tau) \Phi_{S_7t_4}(t) + f_{S_6t_3}(\tau) \Phi_{S_7t_4}(t) + f_{S_6t_3}(\tau) \Phi_{S_7t_4}(t) = \pi_{74} \int_0^t f_{S_7t_4}(\tau) \Phi_3(t-\tau) d\tau, \qquad \Phi_{S_9t_6}(t) = \pi_{96} \int_0^t f_{S_9t_6}(\tau) \Phi_{S_9t_5}(t-\tau) d\tau, \qquad \Phi_{S_9t_6}(t) = \pi_{96} \int_0^t f_{S_9t_6}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_1t_7}(\tau) \Phi_{S_1t_$ | 0         |
| $S_{11}$ 0 0 0 0 0 0 0 0 1 $S_{10}t_7 \cap S_1$ $S_{12}$ 0 0 0 0 0 0 0 0 $S_{10}t_7 \cap S_1$ $S_{13}$ 0 0 0 0 0 0 0 0 0 $S_{10}t_7 \cap S_1$ Для данной сети Петри-Маркова имеет интегрально-дифференциальны уравнений: $\Phi_{S_1t_1}(t) = \pi_{11} \int_0^t f_{S_1t_1}(\tau) d\tau, \qquad \Phi_{S_2t_1}(t) = \pi_{21} \int_0^t f_{S_1t_1}(\tau) d\tau, \qquad \Phi_{S_2t_1}(t) = \pi_{21} \int_0^t f_{S_1t_1}(\tau) d\tau, \qquad \Phi_{S_3t_2}(t) = \pi_{32} \int_0^t f_{S_3t_2}(\tau) \Phi_1(t-\tau) d\tau, \qquad \Phi_{S_4t_2}(t) = \pi_{32} \int_0^t f_{S_4t_2}(\tau) d\tau, \qquad \Phi_{S_4t_2}(t) = \pi_{42} \int_0^t f_{S_4t_2}(\tau) d\tau, \qquad \Phi_{S_5t_3}(t) = \pi_{53} \int_0^t f_{S_5t_3}(\tau) \Phi_2(t-\tau) d\tau, \qquad \Phi_{S_6t_3}(t) = \pi_{63} \int_0^t f_{S_6t_3}(\tau) d\tau, \qquad \Phi_{S_6t_3}(t) = \pi_{63} \int_0^t f_{S_7t_4}(\tau) \Phi_{S_7t_4}(t) + f_{S_6t_3}(\tau) \Phi_{S_7t_4}(t) + f_{S_6t_3}(\tau) \Phi_{S_7t_4}(t) = \pi_{74} \int_0^t f_{S_7t_4}(\tau) \Phi_3(t-\tau) d\tau, \qquad \Phi_{S_9t_6}(t) = \pi_{96} \int_0^t f_{S_9t_6}(\tau) \Phi_{S_9t_5}(t-\tau) d\tau, \qquad \Phi_{S_9t_6}(t) = \pi_{96} \int_0^t f_{S_9t_6}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_1t_7}(\tau) \Phi_{S_1t_$ | 0         |
| $S_{11}$ $O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0         |
| $S_{11}$ 0 0 0 0 0 0 0 0 1 $S_{10}t_7 \cap S_1$ $S_{12}$ 0 0 0 0 0 0 0 0 $S_{10}t_7 \cap S_1$ $S_{13}$ 0 0 0 0 0 0 0 0 0 $S_{10}t_7 \cap S_1$ Для данной сети Петри-Маркова имеет интегрально-дифференциальны уравнений: $\Phi_{S_1t_1}(t) = \pi_{11} \int_0^t f_{S_1t_1}(\tau) d\tau, \qquad \Phi_{S_2t_1}(t) = \pi_{21} \int_0^t f_{S_1t_1}(\tau) d\tau, \qquad \Phi_{S_2t_1}(t) = \pi_{21} \int_0^t f_{S_1t_1}(\tau) d\tau, \qquad \Phi_{S_3t_2}(t) = \pi_{32} \int_0^t f_{S_3t_2}(\tau) \Phi_1(t-\tau) d\tau, \qquad \Phi_{S_4t_2}(t) = \pi_{32} \int_0^t f_{S_4t_2}(\tau) d\tau, \qquad \Phi_{S_4t_2}(t) = \pi_{42} \int_0^t f_{S_4t_2}(\tau) d\tau, \qquad \Phi_{S_5t_3}(t) = \pi_{53} \int_0^t f_{S_5t_3}(\tau) \Phi_2(t-\tau) d\tau, \qquad \Phi_{S_6t_3}(t) = \pi_{63} \int_0^t f_{S_6t_3}(\tau) d\tau, \qquad \Phi_{S_6t_3}(t) = \pi_{63} \int_0^t f_{S_7t_4}(\tau) \Phi_{S_7t_4}(t) + f_{S_6t_3}(\tau) \Phi_{S_7t_4}(t) + f_{S_6t_3}(\tau) \Phi_{S_7t_4}(t) = \pi_{74} \int_0^t f_{S_7t_4}(\tau) \Phi_3(t-\tau) d\tau, \qquad \Phi_{S_9t_6}(t) = \pi_{96} \int_0^t f_{S_9t_6}(\tau) \Phi_{S_9t_5}(t-\tau) d\tau, \qquad \Phi_{S_9t_6}(t) = \pi_{96} \int_0^t f_{S_9t_6}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \qquad \Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_1t_7}(\tau) \Phi_{S_1t_$ | 0         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0         |
| $S_{12} \atop S_{13} \mid 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0         |
| $S_{13}$   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Для данной сети Петри-Маркова имеет уравнений: $\Phi_{S_1t_1}(t) = \pi_{11} \int_0^t f_{S_1t_1}(\tau) d\tau, \\ \Phi_{S_2t_1}(t) = \pi_{21} \int_0^t f_{S_1t_1}(\tau) d\tau, \\ \Phi_{S_2t_1}(t) = \pi_{21} \int_0^t f_{S_1t_1}(\tau) d\tau, \\ \Phi_{S_1t_1}(t) = \pi_{21} \int_0^t f_{S_1t_1}(\tau) d\tau, \\ \Phi_{S_1t_2}(t) = \pi_{32} \int_0^t f_{S_3t_2}(\tau) \Phi_1(t-\tau) d\tau, \\ \Phi_{S_4t_2}(t) = \pi_{42} \int_0^t f_{S_4t_2}(\tau) d\tau, \\ \Phi_{S_2t_3}(t) = \pi_{53} \int_0^t f_{S_5t_3}(\tau) \Phi_2(t-\tau) d\tau, \\ \Phi_{S_5t_3}(t) = \pi_{63} \int_0^t f_{S_5t_3}(\tau) d\tau, \\ \Phi_{S_6t_3}(t) = \pi_{63} \int_0^t f_{S_5t_3}(\tau) d\tau, \\ \Phi_{S_7t_4}(t) = \pi_{74} \int_0^t f_{S_7t_4}(\tau) \Phi_{S_7t_4}(t-\tau) d\tau, \\ \Phi_{S_9t_6}(t) = \pi_{96} \int_0^t f_{S_9t_6}(\tau) \Phi_{S_8t_5}(t-\tau) d\tau, \\ \Phi_{S_1t_0t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \\ \Phi_{S_1t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \\ \Phi_{S_1t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \\ \Phi_{S_1t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \\ \Phi_{S_1t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \\ \Phi_{S_1t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \\ \Phi_{S_1t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \\ \Phi_{S_1t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \\ \Phi_{S_1t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \\ \Phi_{S_1t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \\ \Phi_{S_1t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \\ \Phi_{S_1t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \\ \Phi_{S_1t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \\ \Phi_{S_1t_7}(t) = \pi_{10} \tau \int_0^t f_{S_1t_7}(\tau) \Phi_{S_1t_7}(\tau) \Phi_{S_1t_7}(\tau)$                      | •         |
| Для данной сети Петри-Маркова имеет уравнений: $\Phi_{S_1t_1}(t) = \pi_{11} \int_0^t f_{S_1t_1}(\tau) d\tau,$ $\Phi_{S_2t_1}(t) = \pi_{21} \int_0^t f_{S_1t_1}(\tau) d\tau,$ $\Phi_{S_2t_1}(t) = \pi_{21} \int_0^t f_{S_1t_1}(\tau) d\tau,$ $\Phi_{1}(t) = \int_0^t f_{S_1t_1}(\tau) \Phi_{S_2t_1}(t) + f_{S_1t_1}(\tau) \Phi_{S_1t_1}(t),$ $\Phi_{S_3t_2}(t) = \pi_{32} \int_0^t f_{S_3t_2}(\tau) \Phi_{1}(t-\tau) d\tau,$ $\Phi_{S_4t_2}(t) = \pi_{42} \int_0^t f_{S_4t_2}(\tau) d\tau,$ $\Phi_{2}(t) = \int_0^t f_{S_3t_2}(\tau) \Phi_{S_4t_2}(t) + f_{S_4t_2}(\tau) \Phi_{S_3t_2}(t),$ $\Phi_{S_5t_3}(t) = \pi_{53} \int_0^t f_{S_5t_3}(\tau) \Phi_{2}(t-\tau) d\tau,$ $\Phi_{S_6t_3}(t) = \pi_{63} \int_0^t f_{S_6t_3}(\tau) d\tau,$ $\Phi_{3}(t) = \int_0^t f_{S_5t_3}(\tau) \Phi_{S_6t_3}(t) + f_{S_6t_3}(\tau) \Phi_{S_5t_3}(t),$ $\Phi_{S_7t_4}(t) = \pi_{74} \int_0^t f_{S_7t_4}(\tau) \Phi_{3}(t-\tau) d\tau,$ $\Phi_{S_8t_5}(t) = \pi_{85} \int_0^t f_{S_8t_5}(\tau) \Phi_{S_7t_4}(t-\tau) d\tau,$ $\Phi_{S_9t_6}(t) = \pi_{96} \int_0^t f_{S_9t_6}(\tau) \Phi_{S_8t_5}(t-\tau) d\tau,$ $\Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_{10}t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 1       |
| место следующая система уравнений: $\Phi_{S_1t_1}(t) = \pi_{11} \int_0^t f_{S_1t_1}(\tau) d\tau,$ $\Phi_{S_2t_1}(t) = \pi_{21} \int_0^t f_{S_1t_1}(\tau) d\tau,$ $\Phi_{1}(t) = \int_0^t f_{S_1t_1}(\tau) \Phi_{S_2t_1}(t) + f_{S_1t_1}(\tau) \Phi_{S_1t_1}(t),$ $\Phi_{S_3t_2}(t) = \pi_{32} \int_0^t f_{S_3t_2}(\tau) \Phi_{1}(t-\tau) d\tau,$ $\Phi_{S_4t_2}(t) = \pi_{42} \int_0^t f_{S_4t_2}(\tau) d\tau,$ $\Phi_{2}(t) = \int_0^t f_{S_3t_2}(\tau) \Phi_{S_4t_2}(t) + f_{S_4t_2}(\tau) \Phi_{S_3t_2}(t),$ $\Phi_{S_5t_3}(t) = \pi_{53} \int_0^t f_{S_5t_3}(\tau) \Phi_{2}(t-\tau) d\tau,$ $\Phi_{S_6t_3}(t) = \pi_{63} \int_0^t f_{S_6t_3}(\tau) d\tau,$ $\Phi_{3}(t) = \int_0^t f_{S_5t_3}(\tau) \Phi_{S_6t_3}(t) + f_{S_6t_3}(\tau) \Phi_{S_5t_3}(t),$ $\Phi_{S_7t_4}(t) = \pi_{74} \int_0^t f_{S_7t_4}(\tau) \Phi_{3}(t-\tau) d\tau,$ $\Phi_{S_8t_5}(t) = \pi_{85} \int_0^t f_{S_8t_5}(\tau) \Phi_{S_7t_4}(t-\tau) d\tau,$ $\Phi_{S_9t_6}(t) = \pi_{96} \int_0^t f_{S_9t_6}(\tau) \Phi_{S_8t_5}(t-\tau) d\tau,$ $\Phi_{S_{10}t_7}(t) = \pi_{10} \tau \int_0^t f_{S_{10}t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X         |
| $\begin{split} \Phi_{S_{1}t_{1}}(t) &= \pi_{11} \int_{0}^{t} f_{S_{1}t_{1}}(\tau) d\tau, \\ \Phi_{S_{2}t_{1}}(t) &= \pi_{21} \int_{0}^{t} f_{S_{1}t_{1}}(\tau) d\tau, \\ \Phi_{1}(t) &= \int_{0}^{t} f_{S_{1}t_{1}}(\tau) \Phi_{S_{2}t_{1}}(t) + f_{S_{1}t_{1}}(\tau) \Phi_{S_{1}t_{1}}(t), \\ \Phi_{S_{3}t_{2}}(t) &= \pi_{32} \int_{0}^{t} f_{S_{3}t_{2}}(\tau) \Phi_{1}(t-\tau) d\tau, \\ \Phi_{S_{4}t_{2}}(t) &= \pi_{42} \int_{0}^{t} f_{S_{4}t_{2}}(\tau) d\tau, \\ \Phi_{2}(t) &= \int_{0}^{t} f_{S_{3}t_{2}}(\tau) \Phi_{S_{4}t_{2}}(t) + f_{S_{4}t_{2}}(\tau) \Phi_{S_{3}t_{2}}(t), \\ \Phi_{S_{5}t_{3}}(t) &= \pi_{53} \int_{0}^{t} f_{S_{5}t_{3}}(\tau) \Phi_{2}(t-\tau) d\tau, \\ \Phi_{S_{6}t_{3}}(t) &= \pi_{63} \int_{0}^{t} f_{S_{6}t_{3}}(\tau) d\tau, \\ \Phi_{3}(t) &= \int_{0}^{t} f_{S_{5}t_{3}}(\tau) \Phi_{S_{6}t_{3}}(t) + f_{S_{6}t_{3}}(\tau) \Phi_{S_{5}t_{3}}(t), \\ \Phi_{S_{7}t_{4}}(t) &= \pi_{74} \int_{0}^{t} f_{S_{7}t_{4}}(\tau) \Phi_{3}(t-\tau) d\tau, \\ \Phi_{S_{8}t_{5}}(t) &= \pi_{85} \int_{0}^{t} f_{S_{8}t_{5}}(\tau) \Phi_{S_{7}t_{4}}(t-\tau) d\tau, \\ \Phi_{S_{9}t_{6}}(t) &= \pi_{96} \int_{0}^{t} f_{S_{9}t_{6}}(\tau) \Phi_{S_{8}t_{5}}(t-\tau) d\tau, \\ \Phi_{S_{10}t_{7}}(t) &= \pi_{10} \tau \int_{0}^{t} f_{S_{10}t_{7}}(\tau) \Phi_{S_{9}t_{6}}(t-\tau) d\tau, \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |
| $\begin{split} \Phi_{S_2t_1}(t) &= \pi_{21} \int_0^t f_{S_1t_1}(\tau) d\tau, \\ \Phi_1(t) &= \int_0^t f_{S_1t_1}(\tau)  \Phi_{S_2t_1}(t) + f_{S_1t_1}(\tau) \Phi_{S_1t_1}(t), \\ \Phi_{S_3t_2}(t) &= \pi_{32} \int_0^t f_{S_3t_2}(\tau) \Phi_1(t-\tau) d\tau, \\ \Phi_{S_4t_2}(t) &= \pi_{42} \int_0^t f_{S_4t_2}(\tau) d\tau, \\ \Phi_2(t) &= \int_0^t f_{S_3t_2}(\tau)  \Phi_{S_4t_2}(t) + f_{S_4t_2}(\tau) \Phi_{S_3t_2}(t), \\ \Phi_{S_5t_3}(t) &= \pi_{53} \int_0^t f_{S_5t_3}(\tau) \Phi_2(t-\tau) d\tau, \\ \Phi_{S_6t_3}(t) &= \pi_{63} \int_0^t f_{S_6t_3}(\tau) d\tau, \\ \Phi_3(t) &= \int_0^t f_{S_5t_3}(\tau)  \Phi_{S_6t_3}(t) + f_{S_6t_3}(\tau) \Phi_{S_5t_3}(t), \\ \Phi_{S_7t_4}(t) &= \pi_{74} \int_0^t f_{S_7t_4}(\tau) \Phi_3(t-\tau) d\tau, \\ \Phi_{S_8t_5}(t) &= \pi_{85} \int_0^t f_{S_8t_5}(\tau) \Phi_{S_7t_4}(t-\tau) d\tau, \\ \Phi_{S_9t_6}(t) &= \pi_{96} \int_0^t f_{S_9t_6}(\tau) \Phi_{S_8t_5}(t-\tau) d\tau, \\ \Phi_{S_10t_7}(t) &= \pi_{107} \int_0^t f_{S_10t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| $\begin{split} \Phi_{1}(t) &= \int_{0}^{t} f_{S_{1}t_{1}}(\tau)  \Phi_{S_{2}t_{1}}(t) + f_{S_{1}t_{1}}(\tau) \Phi_{S_{1}t_{1}}(t), \\ \Phi_{S_{3}t_{2}}(t) &= \pi_{32} \int_{0}^{t} f_{S_{3}t_{2}}(\tau) \Phi_{1}(t-\tau) d\tau, \\ \Phi_{S_{4}t_{2}}(t) &= \pi_{42} \int_{0}^{t} f_{S_{4}t_{2}}(\tau) d\tau, \\ \Phi_{2}(t) &= \int_{0}^{t} f_{S_{3}t_{2}}(\tau)  \Phi_{S_{4}t_{2}}(t) + f_{S_{4}t_{2}}(\tau) \Phi_{S_{3}t_{2}}(t), \\ \Phi_{S_{5}t_{3}}(t) &= \pi_{53} \int_{0}^{t} f_{S_{5}t_{3}}(\tau) \Phi_{2}(t-\tau) d\tau, \\ \Phi_{S_{6}t_{3}}(t) &= \pi_{63} \int_{0}^{t} f_{S_{6}t_{3}}(\tau) d\tau, \\ \Phi_{3}(t) &= \int_{0}^{t} f_{S_{5}t_{3}}(\tau)  \Phi_{S_{6}t_{3}}(t) + f_{S_{6}t_{3}}(\tau) \Phi_{S_{5}t_{3}}(t), \\ \Phi_{S_{7}t_{4}}(t) &= \pi_{74} \int_{0}^{t} f_{S_{7}t_{4}}(\tau) \Phi_{3}(t-\tau) d\tau, \\ \Phi_{S_{8}t_{5}}(t) &= \pi_{85} \int_{0}^{t} f_{S_{8}t_{5}}(\tau) \Phi_{S_{7}t_{4}}(t-\tau) d\tau, \\ \Phi_{S_{9}t_{6}}(t) &= \pi_{96} \int_{0}^{t} f_{S_{9}t_{6}}(\tau) \Phi_{S_{8}t_{5}}(t-\tau) d\tau, \\ \Phi_{S_{10}t_{7}}(t) &= \pi_{10} \tau \int_{0}^{t} f_{S_{10}t_{7}}(\tau) \Phi_{S_{9}t_{6}}(t-\tau) d\tau, \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |
| $\begin{split} \Phi_{S_3t_2}(t) &= \pi_{32} \int_0^t f_{S_3t_2}(\tau) \Phi_1(t-\tau) d\tau, \\ \Phi_{S_4t_2}(t) &= \pi_{42} \int_0^t f_{S_4t_2}(\tau) d\tau, \\ \Phi_2(t) &= \int_0^t f_{S_3t_2}(\tau) \Phi_{S_4t_2}(t) + f_{S_4t_2}(\tau) \Phi_{S_3t_2}(t), \\ \Phi_{S_5t_3}(t) &= \pi_{53} \int_0^t f_{S_5t_3}(\tau) \Phi_2(t-\tau) d\tau, \\ \Phi_{S_6t_3}(t) &= \pi_{63} \int_0^t f_{S_6t_3}(\tau) d\tau, \\ \Phi_3(t) &= \int_0^t f_{S_5t_3}(\tau) \Phi_{S_6t_3}(t) + f_{S_6t_3}(\tau) \Phi_{S_5t_3}(t), \\ \Phi_{S_7t_4}(t) &= \pi_{74} \int_0^t f_{S_7t_4}(\tau) \Phi_3(t-\tau) d\tau, \\ \Phi_{S_8t_5}(t) &= \pi_{85} \int_0^t f_{S_8t_5}(\tau) \Phi_{S_7t_4}(t-\tau) d\tau, \\ \Phi_{S_9t_6}(t) &= \pi_{96} \int_0^t f_{S_9t_6}(\tau) \Phi_{S_8t_5}(t-\tau) d\tau, \\ \Phi_{S_{10}t_7}(t) &= \pi_{107} \int_0^t f_{S_{10}t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| $\begin{split} \Phi_{S_3t_2}(t) &= \pi_{32} \int_0^t f_{S_3t_2}(\tau) \Phi_1(t-\tau) d\tau, \\ \Phi_{S_4t_2}(t) &= \pi_{42} \int_0^t f_{S_4t_2}(\tau) d\tau, \\ \Phi_2(t) &= \int_0^t f_{S_3t_2}(\tau) \Phi_{S_4t_2}(t) + f_{S_4t_2}(\tau) \Phi_{S_3t_2}(t), \\ \Phi_{S_5t_3}(t) &= \pi_{53} \int_0^t f_{S_5t_3}(\tau) \Phi_2(t-\tau) d\tau, \\ \Phi_{S_6t_3}(t) &= \pi_{63} \int_0^t f_{S_6t_3}(\tau) d\tau, \\ \Phi_3(t) &= \int_0^t f_{S_5t_3}(\tau) \Phi_{S_6t_3}(t) + f_{S_6t_3}(\tau) \Phi_{S_5t_3}(t), \\ \Phi_{S_7t_4}(t) &= \pi_{74} \int_0^t f_{S_7t_4}(\tau) \Phi_3(t-\tau) d\tau, \\ \Phi_{S_8t_5}(t) &= \pi_{85} \int_0^t f_{S_8t_5}(\tau) \Phi_{S_7t_4}(t-\tau) d\tau, \\ \Phi_{S_9t_6}(t) &= \pi_{96} \int_0^t f_{S_9t_6}(\tau) \Phi_{S_8t_5}(t-\tau) d\tau, \\ \Phi_{S_{10}t_7}(t) &= \pi_{107} \int_0^t f_{S_{10}t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| $\Phi_{2}(t) = \int_{0}^{t} f_{S_{3}t_{2}}(\tau)  \Phi_{S_{4}t_{2}}(t) + f_{S_{4}t_{2}}(\tau) \Phi_{S_{3}t_{2}}(t),$ $\Phi_{S_{5}t_{3}}(t) = \pi_{53} \int_{0}^{t} f_{S_{5}t_{3}}(\tau) \Phi_{2}(t - \tau) d\tau,$ $\Phi_{S_{6}t_{3}}(t) = \pi_{63} \int_{0}^{t} f_{S_{6}t_{3}}(\tau) d\tau,$ $\Phi_{3}(t) = \int_{0}^{t} f_{S_{5}t_{3}}(\tau)  \Phi_{S_{6}t_{3}}(t) + f_{S_{6}t_{3}}(\tau) \Phi_{S_{5}t_{3}}(t),$ $\Phi_{S_{7}t_{4}}(t) = \pi_{74} \int_{0}^{t} f_{S_{7}t_{4}}(\tau) \Phi_{3}(t - \tau) d\tau,$ $\Phi_{S_{8}t_{5}}(t) = \pi_{85} \int_{0}^{t} f_{S_{8}t_{5}}(\tau) \Phi_{S_{7}t_{4}}(t - \tau) d\tau,$ $\Phi_{S_{9}t_{6}}(t) = \pi_{96} \int_{0}^{t} f_{S_{9}t_{6}}(\tau) \Phi_{S_{8}t_{5}}(t - \tau) d\tau,$ $\Phi_{S_{10}t_{7}}(t) = \pi_{107} \int_{0}^{t} f_{S_{10}t_{7}}(\tau) \Phi_{S_{9}t_{6}}(t - \tau) d\tau,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
| $\Phi_{S_5t_3}(t) = \pi_{53} \int_0^t f_{S_5t_3}(\tau) \Phi_2(t-\tau) d\tau,$ $\Phi_{S_6t_3}(t) = \pi_{63} \int_0^t f_{S_6t_3}(\tau) d\tau,$ $\Phi_3(t) = \int_0^t f_{S_5t_3}(\tau) \Phi_{S_6t_3}(t) + f_{S_6t_3}(\tau) \Phi_{S_5t_3}(t),$ $\Phi_{S_7t_4}(t) = \pi_{74} \int_0^t f_{S_7t_4}(\tau) \Phi_3(t-\tau) d\tau,$ $\Phi_{S_8t_5}(t) = \pi_{85} \int_0^t f_{S_8t_5}(\tau) \Phi_{S_7t_4}(t-\tau) d\tau,$ $\Phi_{S_9t_6}(t) = \pi_{96} \int_0^t f_{S_9t_6}(\tau) \Phi_{S_8t_5}(t-\tau) d\tau,$ $\Phi_{S_{10}t_7}(t) = \pi_{107} \int_0^t f_{S_{10}t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |
| $\Phi_{S_5t_3}(t) = \pi_{53} \int_0^t f_{S_5t_3}(\tau) \Phi_2(t-\tau) d\tau,$ $\Phi_{S_6t_3}(t) = \pi_{63} \int_0^t f_{S_6t_3}(\tau) d\tau,$ $\Phi_3(t) = \int_0^t f_{S_5t_3}(\tau) \Phi_{S_6t_3}(t) + f_{S_6t_3}(\tau) \Phi_{S_5t_3}(t),$ $\Phi_{S_7t_4}(t) = \pi_{74} \int_0^t f_{S_7t_4}(\tau) \Phi_3(t-\tau) d\tau,$ $\Phi_{S_8t_5}(t) = \pi_{85} \int_0^t f_{S_8t_5}(\tau) \Phi_{S_7t_4}(t-\tau) d\tau,$ $\Phi_{S_9t_6}(t) = \pi_{96} \int_0^t f_{S_9t_6}(\tau) \Phi_{S_8t_5}(t-\tau) d\tau,$ $\Phi_{S_{10}t_7}(t) = \pi_{107} \int_0^t f_{S_{10}t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |
| $\Phi_{S_{6}t_{3}}(t) = \pi_{63} \int_{0}^{t} f_{S_{6}t_{3}}(\tau) d\tau,$ $\Phi_{3}(t) = \int_{0}^{t} f_{S_{5}t_{3}}(\tau) \Phi_{S_{6}t_{3}}(t) + f_{S_{6}t_{3}}(\tau) \Phi_{S_{5}t_{3}}(t),$ $\Phi_{S_{7}t_{4}}(t) = \pi_{74} \int_{0}^{t} f_{S_{7}t_{4}}(\tau) \Phi_{3}(t - \tau) d\tau,$ $\Phi_{S_{8}t_{5}}(t) = \pi_{85} \int_{0}^{t} f_{S_{8}t_{5}}(\tau) \Phi_{S_{7}t_{4}}(t - \tau) d\tau,$ $\Phi_{S_{9}t_{6}}(t) = \pi_{96} \int_{0}^{t} f_{S_{9}t_{6}}(\tau) \Phi_{S_{8}t_{5}}(t - \tau) d\tau,$ $\Phi_{S_{10}t_{7}}(t) = \pi_{107} \int_{0}^{t} f_{S_{10}t_{7}}(\tau) \Phi_{S_{9}t_{6}}(t - \tau) d\tau,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |
| $\Phi_{3}(t) = \int_{0}^{t} f_{S_{5}t_{3}}(\tau)  \Phi_{S_{6}t_{3}}(t) + f_{S_{6}t_{3}}(\tau) \Phi_{S_{5}t_{3}}(t),$ $\Phi_{S_{7}t_{4}}(t) = \pi_{74} \int_{0}^{t} f_{S_{7}t_{4}}(\tau) \Phi_{3}(t-\tau) d\tau,$ $\Phi_{S_{8}t_{5}}(t) = \pi_{85} \int_{0}^{t} f_{S_{8}t_{5}}(\tau) \Phi_{S_{7}t_{4}}(t-\tau) d\tau,$ $\Phi_{S_{9}t_{6}}(t) = \pi_{96} \int_{0}^{t} f_{S_{9}t_{6}}(\tau) \Phi_{S_{8}t_{5}}(t-\tau) d\tau,$ $\Phi_{S_{10}t_{7}}(t) = \pi_{107} \int_{0}^{t} f_{S_{10}t_{7}}(\tau) \Phi_{S_{9}t_{6}}(t-\tau) d\tau,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| $ \Phi_{S_7 t_4}(t) = \pi_{74} \int_0^t f_{S_7 t_4}(\tau) \Phi_3(t - \tau) d\tau,  \Phi_{S_8 t_5}(t) = \pi_{85} \int_0^t f_{S_8 t_5}(\tau) \Phi_{S_7 t_4}(t - \tau) d\tau,  \Phi_{S_9 t_6}(t) = \pi_{96} \int_0^t f_{S_9 t_6}(\tau) \Phi_{S_8 t_5}(t - \tau) d\tau,  \Phi_{S_{10} t_7}(t) = \pi_{10 7} \int_0^t f_{S_{10} t_7}(\tau) \Phi_{S_9 t_6}(t - \tau) d\tau, $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| $ \Phi_{S_8t_5}(t) = \pi_{85} \int_0^t f_{S_8t_5}(\tau) \Phi_{S_7t_4}(t-\tau) d\tau,  \Phi_{S_9t_6}(t) = \pi_{96} \int_0^t f_{S_9t_6}(\tau) \Phi_{S_8t_5}(t-\tau) d\tau,  \Phi_{S_{10}t_7}(t) = \pi_{107} \int_0^t f_{S_{10}t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau, $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |
| $\Phi_{S_9t_6}(t) = \pi_{96} \int_0^t f_{S_9t_6}(\tau) \Phi_{S_8t_5}(t-\tau) d\tau,$ $\Phi_{S_{10}t_7}(t) = \pi_{107} \int_0^t f_{S_{10}t_7}(\tau) \Phi_{S_9t_6}(t-\tau) d\tau,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
| 10 / 10 / 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
| $\Phi_{S_{11}t_7}(t) = \pi_{117} \int_0^t f_{S_{11}t_7}(\tau) d\tau,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |
| $\Phi_4(t) = \int_0^t f_{S_{10}t_7}(\tau)  \Phi_{S_{11}t_7}(t) + f_{S_{11}t_7}(\tau) \Phi_{S_{10}t_7}(t),$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
| $\Phi_{S_{12}t_8}(t) = \pi_{128} \int_0^t f_{S_{12}t_8}(\tau) \Phi_4(t-\tau) d\tau,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |
| где $f_{S_it_j}(t)$ – плотность вероятности распределения; $\pi_{ij}$ – ве                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | роятностн |
| времени перемещения из состояния $S_i$ к срабатывания перехода. переходу $t_j$ ; $\Phi_{S_it_j}(t)$ соответствующий закон Входящие сообщения                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | носят     |
| переходу $t_j$ ; $\Phi_{S_it_j}(t)$ соответствующий закон входящие сообщения пуассоновский характер:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |

- сообщения поступают с постоянной интенсивностью, т.е. поток стационарен; - события прихода сообщений на сервер независимы друг от друга. Т.е. причины обусловившие приход отдельного именно в тот, а не в другой сообщения правило, не связаны момент, как аналогичными причинами для сообщений. Т.е. поток без последействия; -сообщения приходят по одному, а не парами, тройками и т.д, так как сервер в один момент времени способен обработать T.e. только одно сообщение. сообщений приходящий на сервер является ординарным. Таким образом, даже, если брать по отдельности разные каналы коммутации, из которых идут ординарные сообщений на почтовую систему, и даже, если они имеют последействие, то при их сложении получится поток, в котором последействие ослабевает. Результирующий входящий поток также будет ординарным и без последействия, то есть, относиться к типу пуассоновского [4]. Полагаем, что плотности распределения вероятностей являются экспоненциальными зависимостями и имеют вид:  $f_{S_i t_i} = \alpha_{ij} e^{-\alpha_{ij} t},$ где  $\alpha_{ij} = 1/\tau_{ij}$  i = 1,...,13; j = 1,...,8. Согласно предельной теореме, для редеющих событий при последовательном разрежении стационарного ординарного результирующий поток увеличением числа разрежений приближается к простейшему. образом, результирующий поток является экспоненциальным, так экспоненциальный поток и есть простейший [3]. Расчет с применением прямого обратного преобразования Лапласа получается весьма громоздким, поэтому целесообразно применять пуассоновское приближение для плотностей распределения вероятностей времени перемещения переходы сети Петри-Маркова. Применяя пуассоновское приближение, среднее время au перемещения по сети Петри-

 $\tau_1 = \frac{\tau_{11}^2 + \tau_{11}\tau_{21} + \tau_{21}^2}{\tau_{11} + \tau_{21}},$  $\tau_2 = \tau_1 + \tau_{32}$  $\tau_3 = \frac{\tau_{42}^2 + \tau_{42}\tau_2 + \tau_2^2}{\tau_{42} + \tau_2}$  $\tau_4 = \tau_3 + \tau_{53}$  $\tau_5 = \frac{\tau_{63}^2 + \tau_{63}\tau_4 + \tau_4^2}{\tau_{63} + \tau_4},$ 
$$\begin{split} \tau_{6=} \tau_5 + \tau_{74} + \tau_{85} + \tau_{96} + \tau_{10\,7}, \\ \tau_7 &= \frac{\tau_{11\,7}^2 + \tau_{11\,7}\tau_6 + \tau_6^2}{\tau_{11\,7} + \tau_6}, \end{split}$$
 $\tau = \tau_7 + \tau_{128}.$  $P(t) = 1 - e^{-\frac{1}{\tau}t},$ где исходные параметры принимают следующие значения:  $\lambda$  – интенсивность атаки (количество сообщений/с); т - количество сообщений, которое требуется отправить жертве;  $\tau_{11}$  = 0,2 с – среднее время формирования команды;  $\tau_{21} = 3,1$  с – среднее время подготовки хоста злоумышленника,  $\tau_{32} = 0.5$ с – среднее время отправки команды управляющему серверу;  $\tau_{42} = 3 \, \text{с} - \text{среднее}$ подготовки управляющего сервера;  $\tau_{53} = 5.5$  с – среднее время рассылки команды устройствам с вредоносной программой Email-flooder;  $\tau_{63} = 3$  с – среднее время подготовки устройств с вредоносной программой Email-flooder;  $\tau_{74} = 1.2$  с – среднее время обработки принятой команды;  $au_{85} = 13,1 \, \, \mathrm{c} - \mathrm{c}$ реднее время формирования сообщений;  $\tau_{96} = 1,7$  с – среднее время настройки вредоносной программы Emailflooder;  $\tau_{10.7} = 0.5$ - среднее время на отправку сообщений жертве;  $\tau_{117} = 3 \text{ c}$  – среднее время на подготовку атакуемого почтового сервера принять сообщение;  $\tau_{12.8}$ = m/ $\lambda$  c - среднее время переполнения очереди почтового сервера. Рассмотрим зависимость вероятности реализации атаки otвремени интенсивности атаки, примем количество сообщений, которое требуется отправить жертве m = 100000. Зависимость вероятности реализации флуд-атаки на почтовый сервер, использованием вредоносной программы

Email-flooder от времени и интенсивности

Маркова из начальной позиции до конечного

перехода и вероятность этого перемещения:

атаки

И

атаки приобретает вид, представленный на рис



Рис. 2. Зависимость вероятности реализации флуд-атаки на почтовый сервер, с использованием вредоносной программы Email-flooder, от времени и интенсивности атаки

вредоносной программы Email-flooder.
Таким образом, полученные данные демонстрируют, что среднее время

атаки на почтовый сервер с использованием

обобщенной моделью проведения

реализации флуд-атаки и затраты на нее

является

флуд-

Следовательно, для

уменьшения опасности реализации флудатаки необходимо использовать

модель,

сообщений.

незначительны.

Представленная

Литература

программные или программно-аппаратные

средства для фильтрации нежелательных

1 Информационный портал по безопасности http://www.securelist.com/

2 Касперски К.. Записки исследователя компьютерных вирусов. - Издательство: Питер, 2005. – 316 с.

3 Радько Н.М., Скобелев И.О. Рискмодели информационнотелекоммуникационных систем при реализации угроз удаленного инепосредственного доступа. - М: РадиоСофт.

2010. - 232 с.
4. Гмурман В.С. Теория вероятностей и математическая статистика. – М.: Высшая школа, 2003. – 479 с.

Воронежский государственный технический университет Voronezh state technical university

## MODELING FLOOD ATTACKS ON MAIL SERVERS USING MALWARE EMAIL-FLOODER

## V.V. Butuzov, P.A. Parinov

In this paper is modeling process implementation of flood attacks on the mail server, using malware Email-flooder, which resulted in the dependence of the probability of an attack on the time Key words: flood attack, Email-flooder, Petri net and Markov chains