Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-222. Вариант 24

- 1. Пусть $z=\frac{3\sqrt{3}}{2}-\frac{3i}{2}$. Вычислить значение $\sqrt[6]{z^2}$, для которого число $\frac{\sqrt[6]{z^2}}{1-\sqrt{3}i}$ имеет аргумент $\frac{17\pi}{18}$.
- 2. Решить систему уравнений:

$$\begin{cases} x(-5-5i) + y(2-7i) = -40 - 41i \\ x(-6+2i) + y(7+12i) = -41 + 234i \end{cases}$$

- 3. Найти корни многочлена $x^6 + 8x^5 9x^4 116x^3 + 670x^2 + 4236x + 5200$ и разложить его на множители над \mathbb{R} и \mathbb{C} , если известны корни $x_1 = -5 i$, $x_2 = 4 3i$, $x_3 = -2$.
- 4. Даны 3 комплексных числа: 22-27i, 22-7i, 28+7i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = \frac{3}{2} \frac{3\sqrt{3}i}{2}$, $z_2 = \frac{3\sqrt{3}}{2} \frac{3i}{2}$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z+4+2i| < 1\\ |arg(z+6+3i)| < \frac{\pi}{4} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (3, 1, -7), b = (-5, -1, 8), c = (7, 0, -4). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(-3,12,1) и плоскость P:-6x+52y-4z+740=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(5,8,2), $M_1(1,-10,9)$, $M_2(37,-1,9)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} 8x - y + 3z - 106 = 0 \\ 17x + 8y + 10z - 140 = 0 \end{cases} \qquad L_2: \begin{cases} -9x - 9y - 7z + 1511 = 0 \\ x - 19y + 10z + 308 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.