Data Analysis Індивідуальне завдання 1

Бойченко Вікторія

- 1 Завантажити данні в електронну таблицю. Скласти інтервальний статистичний ряд (таблицю частот). Кількість інтервалів групування формула Стерджесса. (1)
 - 1. Скопіювавши дані в ексель, обираємо відповідний варіант (№1)
 - 2. Складаємо варіаційний ряд (за зростанням)
 - 3. Скласти інтервальний статистичний ряд (таблицю частот)
 - (а) Розмах вибірки:

$$w = x_{max} - x_{min} = 0,843 - 0,081 = 0,762$$

(б) Число інтервалів групування за формулою Стерджесса:

$$k = 1 + \log_2 n = 7,781 \approx 8$$

(в) Довжина інтервалу групування:

$$\Delta = \frac{w}{k} = \frac{0,762}{8} = 0,09525 \approx 0,1$$

	Manual	Functions
n	110	110
max	0,843	0,843
min	0,081	0,081
w	0,762	0,762
k	7,781359714	8
Δ	0,09792633	0,1

- (г) $x_i^*=a_{i-1}+\frac{\Delta}{2}$ середина і-го інтервалу, $i=\overline{1,k}$ де $a_0=x_{min},\ a_k=x_{max}$
- (д) n_i^* кількість значень, що потрапляли у відповідний інтервал
- (е) Формуємо згруповану вибірку:

Номер інтервалу	1	2	3	4	5	6	7	8
Up.interval	0,081	0,181	0,281	0,381	0,481	0,581	0,681	0,781
down.interval	0,181	0,281	0,381	0,481	0,581	0,681	0,781	0,881
<i>x_i^*</i>	0,131	0,231	0,331	0,431	0,531	0,631	0,731	0,831
n_i^*	12	16	22	17	18	17	5	3
n_j/n	0,109090909	0,145454545	0,2	0,154545455	0,163636364	0,154545455	0,045454545	0,027272727
F^*	0,109090909	0,254545455	0,454545455	0,609090909	0,772727273	0,927272727	0,972727273	1

2 Візуалізувати дані. Побудувати полігон, гістограму, емпіричну функцію розподілу, кумулятивну криву, відмітити на ній медіану та квартилі. (2)

3 Обчислити числові характеристики центральної тенденції та розкиду: вибіркове середнє, дисперсію, середньоквадратичне відхилення, моду, медіану, коефіцієнти асиметрії та ексцесу. Для обчислення застосувати табл.1 з прикладу 1.(2)

	Manual	Functions	
quartile 1/4	0,275	0,279	
mediana	0,3975	0,3975	
quartile 3/4	0,577	0,57575	
interquart.range	0,302	0,29675	
moda	0,319	0,319	
aver	0,423018182	0,423018182	
std.dev	0,187771772	0,187771772	
var	0,035258238	0,035258238	
kursity (ексцесс)	-0,908389411	-0,85411353	
skew	0,198382546	0,203910025	

- Значення ексцесу < 3 характеризує плосковершинний розподіл.
- Коефіцієнт асиметрії є додатнім, тому це вказує на те, що розподіл має правий хвіст. Але є майже симетричним оскільки значення наближається до 0.
- За припущенням тоді вибіркове середнє має бути більше за медіану. $aver=0,423>0,3975=mediana,\ \text{тому}\ це\ \text{твердження}\ \text{виконується}$

4 Запропонувати своє бачення про природу даних і зробити висновок в предметній області. і скласти звіт. Завантажити на ДІСТЕ-ДУ.(1)

Дані варіанту №1 - можна припустити, що це система нарахування новорічної премії до заробітньої платні в компанії "Київтрансгаз оскільки вони в межах від 0 до 1, невід'ємні. Для зручності можна перевести значення в відсотковий вигляд.

(або ще можна інтепретувати як знижки в супермаркеті на товари)

Висновок предметної області

В отриманому прикладі розглядалось 110 значень нарахувань премії до заробітньої платні.

Мінімальне нарахування = 8,1%

Максимальне нарахування = 84,3%

Вибіркове середнє нарахування = $\sim 42,3\%$, медіана = $\sim 39,75\%$, що вказує на правий хвіст у розподілі.

Отримані дані було переведено в інтервальний статистичний ряд з інтервалами в 10%. Найбільша кількість працівників мали нарахування в межах 28% - 38% = 22 людей.

Найменша кількість працівників мали нарахування в межах 68% - 83% = сумарно 8 людей (5 та 3 людей у відповідних інтервалах).

Інші нарахування були розподілені майже рівномірно по своїх інтервалах = від 12 до 18 людей.

Середнє квадратичне відхилення від середнього значення нарахування до 20% = 18.8%

Значення ексцесу -0,908 < 3 характеризує плосковершинний розподіл.

Коефіцієнт асиметрії є додатнім, тому це вказує на те, що розподіл має правий хвіст.

За припущенням тоді вибіркове середнє має бути більше за медіану. aver=0,423>0,3975=mediana, тому це твердження виконується.

Це можна інтерпретувати як більшість нарахувань помірні з невеликою кількістю дуже вигідних для працівників (>68,1% нарахувань).

Міжквартильний розмах = 57.7% - 27.5% = 30.2% показує нарахування премії для людей, що потрапили в середні 50% вибірки.

Найчастішим нарахуванням до заробітньої платні стало 31,9% (мода)-тричі