growth-value_comparison_visualization

October 18, 2019

In [3]: import matplotlib.pyplot as plt
 import numpy as np
 import pandas as pd

```
import seaborn as sns
In [4]: ##create dataframe of percent increases
                      df_five = pd.read_csv("five_yr_data.csv", index_col=0)
                      df_ten = pd.read_csv("ten_yr_data.csv", index_col=0)
                      df_twenty = pd.read_csv("twenty_yr_data.csv", index_col=0)
                       #convert final monetary value data to percent gained
                      df_five = df_five.div(10).mul(100)
                      df_five = df_five.round(3)
                      df_{ten} = df_{ten.div}(10).mul(100)
                      df_ten = df_ten.round(3)
                      df_twenty = df_twenty.div(10).mul(100)
                      df_twenty = df_twenty.round(3)
0.1 mean, st dev, and distribution of returns (% growth) across 5yr rolling periods
In [5]: df_five_avg = pd.DataFrame([df_five.mean(), df_five.std()], index=['mean', 'standard description of the content o
                      df five avg
Out [5]:
                                                                                                  lcg
                                                                                                                                    lcv
                                                                                                                                                                      mcg
                                                                               174.183582 170.506091 174.748415 180.707681
                      mean
                      standard deviation
                                                                             72.389526
                                                                                                                   51.916374
                                                                                                                                                    58.521626
                                                                                                                                                                                       46.192580
                                                                                                  scg
                                                                                                                                    scv
                                                                               154.467532 172.639667
                      mean
                                                                                 49.004799
                                                                                                                45.160530
                      standard deviation
In [6]: df_five.plot.box(figsize = (8,8), rot=90, fontsize=13)
                      plt.ylabel("percent growth", fontsize=14)
                      plt.xlabel("index", fontsize=14)
                      plt.title("Percent growth of indices over five year rolling periods", fontsize=14)
```

Out[6]: Text(0.5, 1.0, 'Percent growth of indices over five year rolling periods')

0.2 mean, st dev, and distribution of returns (% growth) across 10yr rolling periods

Out[7]: Text(0.5, 1.0, 'Percent growth of indices over ten year rolling periods')

In [8]: df_ten_avg = pd.DataFrame([df_ten.mean(), df_ten.std()], index=['mean', 'standard devidf_ten_avg Out[8]: lcg lcv mcg mcv273.969908 276.056823 281.610961 310.494738 mean 159.059154 113.468559 129.252220 89.871488 standard deviation scg scv 216.267667 286.279465 mean

85.996082

79.928810

standard deviation

0.3 mean, st dev, and distribution of returns (% growth) across 20yr rolling periods

Out[9]: Text(0.5, 1.0, 'Percent growth of indices over 20 year rolling periods')


```
standard deviation 117.520562 208.719511 146.452491 234.881874

scg scv

mean 376.837605 768.938259
standard deviation 65.150640 202.743909
```

1 distribution of return data around the average

```
In [11]: fig, (axes) = plt.subplots(1,6, sharex='row', sharey=True, figsize=(25,5))
         fig.suptitle("Distribution of Returns over Five Year Rolling Periods", fontsize=14)
         axes[0].set_ylabel("Frequency", fontsize=14)
         axes[0].hist(df_five['lcg'])
         axes[0].axvline(df five['lcg'].mean(), color = 'orange')
         axes[0].set_title('Large Cap Growth', fontsize=14)
         num= str(df_five['lcg'].std())
         ind= num.index('.')
         st_dev="st dev: " + num[:ind+3]
         axes[0].annotate(xy=(0.6,.95), s=st_dev, xycoords='axes fraction')
         axes[1].hist(df_five['lcv'], color='green')
         axes[1].axvline(df_five['lcv'].mean(), color = 'orange')
         axes[1].set_title('Large Cap Value', fontsize=14)
         num= str(df_five['lcv'].std())
         ind= num.index('.')
         st dev="st dev: " + num[:ind+3]
         axes[1].annotate(xy=(0.6,.95), s=st_dev, xycoords='axes fraction')
         axes[2].hist(df_five['mcg'])
         axes[2].axvline(df_five['mcg'].mean(), color = 'orange')
         axes[2].set_title('Mid Cap Growth', fontsize=14)
         num= str(df_five['mcg'].std())
         ind= num.index('.')
         st_dev="st dev: " + num[:ind+3]
         axes[2].annotate(xy=(0.6,.95), s=st_dev, xycoords='axes fraction')
         axes[3].hist(df_five['mcv'], color='green')
         axes[3].axvline(df five['mcv'].mean(), color = 'orange')
         axes[3].set_title('Mid Cap Value', fontsize=14)
```

```
num= str(df_five['mcv'].std())
ind= num.index('.')
st_dev="st dev: " + num[:ind+3]
axes[3].annotate(xy=(0.6,.95), s=st_dev, xycoords='axes fraction')
axes[4].hist(df five['scg'])
axes[4].axvline(df_five['scg'].mean(), color = 'orange')
axes[4].set_title('Small Cap Growth', fontsize=14)
num= str(df_five['scg'].std())
ind= num.index('.')
st_dev="st dev: " + num[:ind+3]
axes[4].annotate(xy=(0.6,.95), s=st_dev, xycoords='axes fraction')
axes[5].hist(df_five['scv'], color='green')
axes[5].axvline(df_five['scv'].mean(), color = 'orange')
axes[5].set_title('Small Cap Value', fontsize=14)
num= str(df five['scv'].std())
ind= num.index('.')
st dev="st dev: " + num[:ind+3]
axes[5].annotate(xy=(0.6,.95), s=st_dev, xycoords='axes fraction')
```

Out[11]: Text(0.6, 0.95, 'st dev: 45.16')


```
In [12]: fig, (axes) = plt.subplots(1,6, sharex='row', sharey=True, figsize=(25,5))
    fig.suptitle("Distribution of Returns over Ten Year Rolling Periods", fontsize=14)

axes[0].set_ylabel("Frequency", fontsize=14)

axes[0].hist(df_ten['lcg'])
    axes[0].axvline(df_ten['lcg'].mean(), color = 'orange')
    axes[0].set_title('Large Cap Growth', fontsize=14)

num= str(df_ten['lcg'].std())
    ind= num.index('.')
```

```
st_dev="st dev: " + num[:ind+3]
axes[0].annotate(xy=(0.6,.95), s=st_dev, xycoords='axes fraction')
axes[1].hist(df_ten['lcv'], color='green')
axes[1].axvline(df_ten['lcv'].mean(), color = 'orange')
axes[1].set title('Large Cap Value', fontsize=14)
num= str(df ten['lcv'].std())
ind= num.index('.')
st_dev="st dev: " + num[:ind+3]
axes[1].annotate(xy=(0.6,.95), s=st_dev, xycoords='axes fraction')
axes[2].hist(df_ten['mcg'])
axes[2].axvline(df_ten['mcg'].mean(), color = 'orange')
axes[2].set_title('Mid Cap Growth', fontsize=14)
num= str(df_ten['mcg'].std())
ind= num.index('.')
st dev="st dev: " + num[:ind+3]
axes[2].annotate(xy=(0.6,.95), s=st dev, xycoords='axes fraction')
axes[3].hist(df_ten['mcv'], color='green')
axes[3].axvline(df_ten['mcv'].mean(), color = 'orange')
axes[3].set_title('Mid Cap Value', fontsize=14)
num= str(df_ten['mcv'].std())
ind= num.index('.')
st_dev="st dev: " + num[:ind+3]
axes[3].annotate(xy=(0.6,.95), s=st_dev, xycoords='axes fraction')
axes[4].hist(df_ten['scg'])
axes[4].axvline(df ten['scg'].mean(), color = 'orange')
axes[4].set_title('Small Cap Growth', fontsize=14)
num= str(df_ten['scg'].std())
ind= num.index('.')
st dev="st dev: " + num[:ind+3]
axes[4].annotate(xy=(0.6,.95), s=st_dev, xycoords='axes fraction')
axes[5].hist(df_ten['scv'], color='green')
axes[5].axvline(df_ten['scv'].mean(), color = 'orange')
axes[5].set_title('Small Cap Value', fontsize=14)
num= str(df_ten['scv'].std())
```

```
ind= num.index('.')
st_dev="st dev: " + num[:ind+3]
axes[5].annotate(xy=(.6,.95), s=st_dev, xycoords='axes fraction')
```

Out[12]: Text(0.6, 0.95, 'st dev: 85.99')


```
In [13]: fig, (axes) = plt.subplots(1,6, sharex='row', sharey=True, figsize=(25,5))
         fig.suptitle("Distribution of Returns over Twenty Year Rolling Periods", fontsize=14)
         axes[0].set_ylabel("Frequency", fontsize=14)
         axes[0].hist(df_twenty['lcg'])
         axes[0].axvline(df_twenty['lcg'].mean(), color = 'orange')
         axes[0].set_title('Large Cap Growth', fontsize=14)
         num= str(df_twenty['lcg'].std())
         ind= num.index('.')
         st_dev="st dev: " + num[:ind+3]
         axes[0].annotate(xy=(0.6,.95), s=st_dev, xycoords='axes fraction')
         axes[1].hist(df_twenty['lcv'], color='green')
         axes[1].axvline(df_twenty['lcv'].mean(), color = 'orange')
         axes[1].set_title('Large Cap Value', fontsize=14)
         num= str(df_twenty['lcv'].std())
         ind= num.index('.')
         st_dev="st dev: " + num[:ind+3]
         axes[1].annotate(xy=(0.6,.95), s=st dev, xycoords='axes fraction')
         axes[2].hist(df_twenty['mcg'])
         axes[2].axvline(df_twenty['mcg'].mean(), color = 'orange')
         axes[2].set_title('Mid Cap Growth', fontsize=14)
         num= str(df_twenty['mcg'].std())
         ind= num.index('.')
```

```
st_dev="st dev: " + num[:ind+3]
         axes[2].annotate(xy=(0.6,.95), s=st_dev, xycoords='axes fraction')
         axes[3].hist(df_twenty['mcv'], color='green')
         axes[3].axvline(df_twenty['mcv'].mean(), color = 'orange')
         axes[3].set title('Mid Cap Value', fontsize=14)
         num= str(df twenty['mcv'].std())
         ind= num.index('.')
         st_dev="st dev: " + num[:ind+3]
         axes[3].annotate(xy=(0.6,.95), s=st_dev, xycoords='axes fraction')
         axes[4].hist(df_twenty['scg'])
         axes[4].axvline(df_twenty['scg'].mean(), color = 'orange')
         axes[4].set_title('Small Cap Growth', fontsize=14)
         num= str(df_twenty['scg'].std())
         ind= num.index('.')
         st dev="st dev: " + num[:ind+3]
         axes[4].annotate(xy=(0.6,.95), s=st dev, xycoords='axes fraction')
         axes[5].hist(df_twenty['scv'], color='green')
         axes[5].axvline(df_twenty['scv'].mean(), color = 'orange')
         axes[5].set_title('Small Cap Value', fontsize=14)
         num= str(df_twenty['scv'].std())
         ind= num.index('.')
         st_dev="st dev: " + num[:ind+3]
         axes[5].annotate(xy=(0.6,.95), s=st_dev, xycoords='axes fraction')
Out[13]: Text(0.6, 0.95, 'st dev: 202.74')
                      Large Cap Value
        Large Cap Growth
                                                             Small Cap Growth
                                                                          Small Cap Value
                                   Mid Cap Growth
                                       st dev: 146.45
```

In [14]: df_twenty.head()

```
Out[14]:
                                   lcg
                                             lcv
                                                                          scg \
                                                       mcg
                                                                 mcv
        date
                                                                      413.594
                              754.907 1093.577
                                                   961.646
                                                            1363.023
         1/1/1986 - 12/30/2005
        2/1/1986 - 1/31/2006
                               762.002
                                        1120.973 1000.006
                                                            1386.887
                                                                      443.363
        3/1/1986 - 2/28/2006
                               704.743
                                        1049.739
                                                   907.668
                                                            1302.415
                                                                      410.706
        4/1/1986 - 3/31/2006
                               673.302
                                        1016.957
                                                   880.185
                                                            1272.941
                                                                      411.961
        5/1/1986 - 4/28/2006
                               671.524 1067.215
                                                   874.377
                                                            1308.596 400.952
                                    scv
        date
         1/1/1986 - 12/30/2005
                               1088.763
        2/1/1986 - 1/31/2006
                               1168.640
        3/1/1986 - 2/28/2006
                               1092.060
        4/1/1986 - 3/31/2006
                               1088.825
        5/1/1986 - 4/28/2006
                               1086.251
```

In [15]: df_twenty.plot()

Out[15]: <matplotlib.axes._subplots.AxesSubplot at 0x7f046727b320>

In []: