Università degli Studi di Bergamo, Facoltà di Ingegneria, Dalmine Laurea Specialistica in Ingegneria Edile

Fondamenti di Dinamica e Instabilità delle Strutture a.a. 2005/2006

I ELABORATO

Si consideri una struttura in C.A. portante una macchina con rotore. La soletta, rettangolare, è sostenuta da quattro pilastri d'angolo. Si considerino la soletta infinitamente rigida e i pilastri assialmente rigidi e privi di massa con altezza h=4 m e sezione quadrata 80 cm x 80 cm

Dati:

- numero di giri al minuto del rotore in azione: n=1000+10 (N-C) (N=numero lettera iniziale del nome, C= numero lettera iniziale del cognome); ottenere la pulsazione angolare mediante la relazione ω =2 π n/60 rad/s;
- eccentricità di progetto della massa rotante: e=1 mm;
- modulo di elasticità del C.A.: E=30000 MPa;
- peso totale soletta + macchina: 150 t, peso del solo rotore: 10 t (assumere accelerazione di gravità g=981 cm/s ²).

Richieste:

- Determinare e rappresentare la risposta non forzata del sistema a condizioni iniziali non nulle $u_0 = 1$ cm, $\dot{u}_0 = 2$ cm/s per i seguenti fattori di smorzamento $\zeta = 0, 5\%, 10\%$.
- Assumendo $\zeta=5\%$, determinare e rappresentare la risposta dovuta alla forzante armonica F cos ωt indotta dalla massa rotante m_r del rotore con eccentricità e (F=e m_r ω^2) per c.i. nulle $u_0=\dot{u}_0=0$. Verificare se spostamento e velocità orizzontale max della soletta risultano rispettivamente inferiori a 1 cm e 2 cm/s.
- Determinare analiticamente l'espressione della risposta forzata con c.i. nulle a partire dall'Integrale di Duhamel.
- Rappresentare il Diagramma di Argand relativo alle risposte z(t), ż(t), ż(t), ż(t) a forzante F(t)=F e^{iot} e a tutte le forze in gioco: forzante F e^{iot}, forza elastica F_e=k z, forza smorzante F_d=c ż (F_e e F_d positive se opposte a z e ż), forza d'inerzia F_i= m ż. Indicare il valore dello sfasamento tra risposta e forzante e il modulo di tutte le forze sopra indicate.