Convex Functions Part 1: Linear Algebra Review

Korea University

Spring Semester

Linear Algebra review

- Vector space
- Basis/Dimension
- Nullspace
- Range
- Rank
- Determinant
- ... and more to cover as we move on

Vector Space

3/125

Vector space

- ullet a vector space ${\mathcal V}$ consists of
 - A set of vectors
 - Addition operator
 - multiplication with scalar
 - special element 0 vector

4/125

Vector space

- ullet a vector space ${\cal V}$ consists of
 - A set of vectors
 - Addition operator
 - multiplication with scalar
 - special element 0 vector
- Example:
 - $V_1 = \mathbb{R}^n$
 - $V_2 = \{0\}$
 - $V_3 = \operatorname{span}(v_1, \dots, v_k)$ with $v_1, \dots, v_k \in \mathbb{R}^n$ where

$$span(v_1,...,v_k) = \{c_1v_1 + \cdots + c_kv_k | c_1,...,c_k \in \mathbb{R}\}$$

Subspace

- Subspace of a vector space is i) subset of a vector space and ii) itself is a vector space
- V_1, V_2, V_3 are subspaces

independent set of vectors

• we say vectors v_1, \ldots, v_k are linearly independent when

$$c_1v_1+\cdots+c_kv_k=0\Rightarrow c_1=\cdots=c_k=0$$

 The only way to make the linear combinations of linearly independent vectors is to make all the coefficients zero

independent set of vectors

• we say vectors v_1, \ldots, v_k are linearly independent when

$$c_1v_1+\cdots+c_kv_k=0\Rightarrow c_1=\cdots=c_k=0$$

- The only way to make the linear combinations of linearly independent vectors is to make all the coefficients zero
- No vector v_i , $1 \le i \le k$, can be expressed as linear combination of other vectors

independent set of vectors

• we say vectors v_1, \ldots, v_k are linearly independent when

$$c_1v_1+\cdots+c_kv_k=0 \Rightarrow c_1=\cdots=c_k=0$$

- The only way to make the linear combinations of linearly independent vectors is to make all the coefficients zero
- No vector v_i , $1 \le i \le k$, can be expressed as linear combination of other vectors
- Not to be confused with orthogonality of vectors
 - If v_1, \ldots, v_k are mutually orthogonal, they are linearly independent
 - · converse is not necessarily true

- set of vectors $\{v_1, \dots, v_k\}$ is a basis of vector space \mathcal{V} if
 - $\mathbf{0}$ $\{v_1,\ldots,v_k\}$ spans \mathcal{V} , or

$$\mathcal{V} = \operatorname{span}(v_1, \ldots, v_k)$$

- v_1, \ldots, v_k are linearly independent
- Any point $x \in \mathcal{V}$ can be uniquely expressed as

$$c_1 v_1 + \cdots + c_k v_k$$

for some c_1, \ldots, c_k

- set of vectors $\{v_1, \dots, v_k\}$ is a basis of vector space \mathcal{V} if
 - $\{v_1,\ldots,v_k\}$ spans \mathcal{V} , or

$$\mathcal{V} = \operatorname{span}(v_1, \dots, v_k)$$

- v_1, \ldots, v_k are linearly independent
- Any point $x \in \mathcal{V}$ can be uniquely expressed as

$$c_1 v_1 + \cdots + c_k v_k$$

for some c_1, \ldots, c_k

- ullet For given vector space ${\mathcal V}$ and any of its basis, the number of vectors in the basis is fixed
- The number of basis vectors is called **dimension** of \mathcal{V} , denoted by $\dim(\mathcal{V})$

• By default, we let $dim(\{0\}) = 0$ (in other mathematical definition of dimensions, a single point other than 0 is also defined to have 0 dimension)

8/125

- By default, we let dim({0}) = 0 (in other mathematical definition of dimensions, a single point other than 0 is also defined to have 0 dimension)
- Examples: consider $V_1 = \{\alpha v | \alpha \in \mathbb{R}\}$ for some $v \in \mathbb{R}^n$
 - V_1 represents a line going through origin, and is parallel to v
 - V_1 is a subspace of \mathbb{R}^n : it is a subset of \mathbb{R}^n , and is vector space, and contains $\{0\}$
 - Dimension of V_1 is 1, although it contains a point from $\mathbb{R}^n!$

- By default, we let $\dim(\{0\}) = 0$ (in other mathematical definition of dimensions, a single point other than 0 is also defined to have 0 dimension)
- Examples: consider $V_1 = \{\alpha v | \alpha \in \mathbb{R}\}$ for some $v \in \mathbb{R}^n$
 - V_1 represents a line going through origin, and is parallel to v
 - V_1 is a subspace of \mathbb{R}^n : it is a subset of \mathbb{R}^n , and is vector space, and contains $\{0\}$
 - Dimension of V_1 is 1, although it contains a point from \mathbb{R}^n !
- Consider $v_1, v_2 \in \mathbb{R}^3$ where v_1, v_2 are linearly independent. Plane $V_2 = \{\alpha_1 v_1 + \alpha_2 v_2 | \alpha_1, \alpha_2 \in \mathbb{R}\}$ goes through the origin and is a subspace with dimension 2

- By default, we let $\dim(\{0\}) = 0$ (in other mathematical definition of dimensions, a single point other than 0 is also defined to have 0 dimension)
- Examples: consider $V_1 = \{\alpha v | \alpha \in \mathbb{R}\}$ for some $v \in \mathbb{R}^n$
 - V_1 represents a line going through origin, and is parallel to v
 - V_1 is a subspace of \mathbb{R}^n : it is a subset of \mathbb{R}^n , and is vector space, and contains $\{0\}$
 - Dimension of V_1 is 1, although it contains a point from \mathbb{R}^n !
- Consider $v_1, v_2 \in \mathbb{R}^3$ where v_1, v_2 are linearly independent. Plane $V_2 = \{\alpha_1 v_1 + \alpha_2 v_2 | \alpha_1, \alpha_2 \in \mathbb{R}\}$ goes through the origin and is a subspace with dimension 2
- But note the same plane can be expressed as $\{v \in \mathbb{R}^3 | c^T v = 0\}$ using some vector $c \in \mathbb{R}^n$ orthogonal to vectors on the plane!

Matrix vector multiplication

- Useful things to know
- Let $A \in \mathbb{R}^{m \times n}$ and

$$A = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix}$$

where a_i is the *i*th column of A and $x = (x_1, \dots, x_n)$ then

$$Ax = x_1 a_1 + \cdots + x_n a_n = \sum_{i=1}^n x_i a_i$$

That is, it is linear combination of columns

Matrix vector multiplication

• Let $A \in \mathbb{R}^{m \times n}$ and

$$A = egin{bmatrix} a_1^T \ a_2^T \ \dots \ a_m^T \end{bmatrix}$$

where a_i^T is the *i*th row of A and

$$x^{T}A = x_{1}a_{1}^{T} + \cdots + x_{m}a_{m}^{T} = \sum_{i=1}^{m} x_{i}a_{i}^{T}$$

That is, it is linear combination of rows

Matrix matrix multiplication

• Let $A \in \mathbb{R}^{m \times r}$ and $B \in \mathbb{R}^{r \times n}$

$$AB = A \begin{bmatrix} b_1 & b_2 & \dots & b_n \end{bmatrix} = \begin{bmatrix} Ab_1 & Ab_2 & \dots & Ab_n \end{bmatrix}$$

or

$$AB = \begin{bmatrix} a_1^T \\ a_2^T \\ \dots \\ a_m^T \end{bmatrix} B = \begin{bmatrix} a_1^T B \\ a_2^T B \\ \dots \\ a_m^T B \end{bmatrix}$$

Range

• Range of a matrix $A \in \mathbb{R}^{m \times n}$, denoted by $\mathcal{R}(A)$ is defined as

$$\mathcal{R}(A) = \left\{ Ax | x \in \mathbb{R}^n \right\}$$

- $\mathcal{R}(A)$ is equivalent to $\mathrm{span}(a_1,\ldots,a_n)$ where $a_i\in\mathbb{R}^m$ are columns of A
- That is, $\mathcal{R}(A)$ is the subspace (subset of \mathbb{R}^M) spanned by columns of A
- set of vectors 'hit' by linear mapping y = Ax
- set of vectors such that, for given y in $\mathcal{R}(A)$, equation Ax y = 0 w.r.t. x has solution

Range: interpretation

- let $v \in \mathcal{R}(A)$ and $w \notin \mathcal{R}(A)$
- let y = Ax output of a sensor to input x
 - y = v is possible/consistent output
 - y = w is impossible/inconsistent
- $\mathcal{R}(A)$ represents achievable outputs
- R(A) is subspace
- suppose $\mathcal{R}(A) = \mathbb{R}^m$
 - any output $y \in \mathbb{R}^m$ is possible

Range examples

•

$$A_1 = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$

• For any $v \in \mathbb{R}^2$, we have

$$Av = (v_1 + 2v_2, 2v_1 + 4v_2) = c(1, 2)$$

for some constant c Thus, $\mathcal{R}(A) = \{c(1,2) | c \in \mathbb{R}\}$ and is a subspace with dimension of 1

$$A_2 = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

- it turns out that whole \mathbb{R}^2 can be mapped onto with Ax for $x \in \mathbb{R}^2$
- Thus $\mathcal{R}(A) = \mathbb{R}^2$ and has dimension 2

Nullspace

• Nullspace of a matrix $A \in \mathbb{R}^{m \times n}$, denoted by $\mathcal{N}(A)$ is defined as

$$\mathcal{N}(A) = \left\{ x \in \mathbb{R}^n | Ax = 0 \right\}$$

- N(A) is set of vectors that is mapped to 0, under linear transformation A
- vectors in $\mathcal{N}(A)$ are orthogonal to the rows of A
- $\mathcal{N}(A)$ gives the ambiguity of system A
 - for any $v \in \mathcal{N}(A)$, we have A(x + v) = Ax
 - conversely, if we have $Ax = A\tilde{x}$ then $\tilde{x} = x + v$ for some $v \in \mathcal{N}(A)$
- $\mathcal{N}(A)$ is a subspace

Interpretation of Nullspace

- Suppose A is a system measures (sensor) input signal x and outputs y, so that y = Ax
- suppose $z \in \mathcal{N}(A)$
 - z is undetectable from sensor A
 - That is, a signal x and a mixture x + z looks same at the output of sensor A

$$Ax = A(x + z)$$

- $\mathcal{N}(A)$ characterizes ambiguity
 - the 'smaller' $\mathcal{N}(A)$, the less ambiguity

Interpretation of Nullspace

- Suppose A is a system measures (sensor) input signal x and outputs y, so that y = Ax
- suppose $z \in \mathcal{N}(A)$
 - z is undetectable from sensor A
 - That is, a signal x and a mixture x + z looks same at the output of sensor A

$$Ax = A(x + z)$$

- $\mathcal{N}(A)$ characterizes ambiguity
 - the 'smaller' $\mathcal{N}(A)$, the less ambiguity
- suppose A such that there is **no ambiguity** for y = Ax, that is, by looking at y = Ax we can uniquely find x!

Interpretation of Nullspace

- Suppose A is a system measures (sensor) input signal x and outputs y, so that y = Ax
- suppose $z \in \mathcal{N}(A)$
 - z is undetectable from sensor A
 - That is, a signal x and a mixture x + z looks same at the output of sensor A

$$Ax = A(x + z)$$

- $\mathcal{N}(A)$ characterizes ambiguity
 - the 'smaller' $\mathcal{N}(A)$, the less ambiguity
- suppose A such that there is **no ambiguity** for y = Ax, that is, by looking at y = Ax we can uniquely find x!
 - In that case $\mathcal{N}(A) = \{0\}$
 - equivalent to state that the mapping A is unique

Nullspace examples

•

$$A_1 = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$

- let v = (2, -1), then for any c we have A(cv) = 0.
- it turns out that $\mathcal{N}(A_1) = \{cv | c \in \mathbb{R}^n\}$
- $\mathcal{N}(A_1)$ is 1-dimensional subspace

0

$$A_2 = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

- it turns out that $\mathcal{N}(A_2) = \{0\}$; that is, there is no $v \neq 0$ such that $A_2v = 0$
- for $y = A_2 x$, if we know y, x can be uniquely determined (in this case $(A_2)^{-1}y$)

Rank

• Rank of matrix $A \in \mathbb{R}^{m \times n}$ is defined as

$$\text{rank}(\textit{A}) = \text{dim}(\mathcal{R}(\textit{A}))$$

- R(A) is a subspace spanned by columns of A, so rank is the number of independent columns of A
- One can show that number of independent columns and rows are same for any matrix $A \in \mathbb{R}^{m \times n}$
- Rank of A is the number of independent rows/columns
- This implies $rank(A) = rank(A^T)$

Rank

we have

$$rank(A) \leq min(m, n)$$

- Why? Suppose $m \le n$.
 - $\mathcal{R}(A)$ is subspace spanned by vectors in \mathbb{R}^m , so $\mathbf{rank}(A) \leq m \leq n$
- Why? Suppose m > n.
 - $\mathcal{R}(A)$ is subspace spanned by n vectors in \mathbb{R}^m , so the basis of $\mathcal{R}(A)$ have at most n basis: $\operatorname{rank}(A) \leq n < m$
- Rank can be considered as degree of freedom (information) preserved by going through linear system A
- y = Ax. x has DoF n: going through A, output y has DoF at most m but this cannot exceed n!

rank of matrix products

we have

$$rank(BC) \le min(rank(B), rank(C))$$

- So if A = BC with $B \in \mathbb{R}^{m \times r}$, $C \in \mathbb{R}^{r \times n}$ then
- y = BCx = B(Cx) first DoF reduces to no more than rank(C), but going through B again reduces rank no more than rank(B)
- conversely if $\mathbf{rank}(A) = r$ then $A \in \mathbb{R}^{m \times n}$ can be factorized to A = BC with $B \in \mathbb{R}^{m \times r}$, $C \in \mathbb{R}^{r \times n}$
- Here *r* can be considered as the width of information bottleneck

Full Rank

if

$$rank(A) = min(m, n)$$

we say A has full rank

- for square matrices, full rank means nonsingular (invertible)
- for skinny matrices $(m \ge n)$ full rank means all the columns are independent
- for fat matrices $(m \le n)$ full rank means all the rows are independent

Full rank: case $\mathcal{R}(A) = \mathbb{R}^m$

statement $\mathcal{R}(A) = \mathbb{R}^m$ (rank(A) = m) is equivalent to the following:

- columns of A spans \mathbb{R}^m
- the rows of A are independent
- $A^T c = 0$ implies that c = 0
- $\det(AA^T) \neq 0$
- A has right inverse, that is, there exists B such that

$$AB = I$$

with
$$B = A^T (AA^T)^{-1}$$

Full rank: Case $\mathcal{N}(A) = \{0\}$

0 is the only element of the nullspace of A:

$$Ac = 0$$
 implies $c = 0$

A has zero nullspace or A is one-to-one (rank(A) = n)

- linear transformation y = Ax has unique x for each output y
- columns of A are independent (they form basis for a span)
- $\det(A^TA) \neq 0$
- A has a left inverse, that is, there exists B such that BA = I with $B = (A^T A)^{-1} A^T$

Full rank: Inverse

- $A \in \mathbb{R}^{n \times n}$ is invertible or nonsinglar if $\det A \neq 0$
- columns of A are independent.
- rows of A are independents
- columns/rows of A are basis of \mathbb{R}^n
- y = Ax has unique solution x for any y
- A has inverse A^{-1} where $AA^{-1} = A^{-1}A = I$
- $\mathcal{R}(A) = \mathbb{R}^n$

Determinant

Determinant

- Determinant is a function that maps a square matrix to a real number: $\det : \mathbb{R}^{n \times n} \to \mathbb{R}$
- Def: signed volume of parallelepiped formed by columns of A
- properties:
 - multilinear

$$\det \begin{bmatrix} a_1 & a_2 & \dots & v_1 + v_2 & \dots & a_n \end{bmatrix}$$

$$= \det \begin{bmatrix} a_1 & \dots & v_1 & \dots & a_n \end{bmatrix} + \det \begin{bmatrix} a_1 & \dots & v_2 & \dots & a_n \end{bmatrix}$$

scaling

$$\det \begin{bmatrix} a_1 & \dots & ca_i & \dots & a_n \end{bmatrix} = c \det \begin{bmatrix} a_1 & \dots & a_i & \dots & a_n \end{bmatrix}$$

exchange of columns

$$\det \begin{bmatrix} a_1 & \dots & a_i & a_j & \dots & a_n \end{bmatrix} = -\det \begin{bmatrix} a_1 & \dots & a_j & a_i & \dots & a_n \end{bmatrix}$$

Determinant properties

multilinear: additive in columns (while fixing other columns)

$$\det \begin{bmatrix} a_1 & a_2 & \dots & v_1 + v_2 & \dots & a_n \end{bmatrix}$$

$$= \det \begin{bmatrix} a_1 & \dots & v_1 & \dots & a_n \end{bmatrix} + \det \begin{bmatrix} a_1 & \dots & v_2 & \dots & a_n \end{bmatrix}$$

Determinant properties

$$\begin{vmatrix} a & s \cdot b \\ c & s \cdot d \end{vmatrix} = s \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

scaling of columns

$$\det \begin{bmatrix} a_1 & \dots & ca_i & \dots & a_n \end{bmatrix} = c \det \begin{bmatrix} a_1 & \dots & a_i & \dots & a_n \end{bmatrix}$$

Determinant properties

determinant is zero if two columns are same

$$\det\begin{bmatrix} a_1 & \dots & a_i & a_i & \dots & a_n \end{bmatrix} = 0$$

•
$$\det(I) = 1$$

0

$$\det(cA) = c^n \det(A)$$

• If any row or column of A is 0, then det(A) = 0

•
$$\det(I) = 1$$

•

$$\det(cA) = c^n \det(A)$$

- If any row or column of A is 0, then det(A) = 0
- If there exist linearly dependent rows/columns, det(A) = 0

 determinant of triangular (either upper or lower) matrix A is the product of diagonal elements

$$\prod_{i=1}^n a_{ii}$$

 determinant of triangular (either upper or lower) matrix A is the product of diagonal elements

$$\prod_{i=1}^n a_{ii}$$

 For any matrix B and triangular matrix T, we have det(AT) = det(A)det(T)

• For square matrices A and B,

$$\det(AB) = \det(A)\det(B)$$

32/125

• For square matrices A and B,

$$\det(AB) = \det(A)\det(B)$$

 $det(A) = det(A^T)$

• For square matrices A and B,

$$\det(AB) = \det(A)\det(B)$$

- $det(A) = det(A^T)$
- For invertible A,

$$\det(A^{-1}) = \det(A)^{-1}$$

- |det(A)| represents the volume of parallelogram formed by columns of A
- can be shown using
 - volume of B where columns b_1, \ldots, b_n are orthogonal, is $|\det(B)|$
 - Gram-Schmidt orthogonalization combined with multilinear property of det
- very useful geometric fact

$$\begin{vmatrix} a_1 & a_2 \end{vmatrix} = \begin{vmatrix} a_1 & a_1^{\perp} + a_1^{\parallel} \end{vmatrix} = \begin{vmatrix} a_1 & a_1^{\perp} \end{vmatrix}$$

$$\Rightarrow a_1^{\perp}$$

$$\Rightarrow a_1^{\perp}$$

$$\Rightarrow a_1^{\perp}$$

- Set a₁ as reference vector
- Divide a_2 into sum of components parallel (a_1^{\parallel}) and orthogonal (a_1^{\perp}) to a_1
- $\det([a_1 \ a_1^{\perp}]) = |\det(A)|$: equal to the volume of parallelogram formed by columns of A

 Suppose I have set S with volume vol(S). Consider linear transformation

$$T = \{Ax | x \in S\}$$

Then vol(T) = |det(A)|vol(S)

• Can find the volume of an image of mapping T

Eigenvalues and Symmetric Matrices

• Definition: consider square matrix A and if we have for some scalar λ and n-dim vector $v \neq 0$ such that

$$Av = \lambda v$$

we call λ eigenvalue and ν eigenvector of A.

 Eigenvalues can be found by considering A's characteristic equation

$$\det(A - \lambda I) = 0$$

- This is polynomial equation of order n: n roots exist; they can be real or complex
- roots $\lambda_1, \ldots, \lambda_n$ are eigenvalues of A
- If entries of *A* are real, the complex eigenvalues come in pairs with conjugate

Eigenvalues: symmetric matrices

- Suppose A is real and symmetric,
 - eigenvalues are real
 - eigenvectors are orthogonal to each other

39/125

Eigenvalues: symmetric matrices

• symmetric A can be decomposed as

$$A = U \wedge U^T$$

where Λ is diagonal matrix with λ_i at its *i*-th diagonal, the columns of U are orthonormal; that is, if

$$U = \begin{bmatrix} u_1 & u_2 & \dots & u_n \end{bmatrix}$$

then $||u_i|| = 1$ and $u_i^T u_i = 0$ for $i \neq j$

Eigenvalues: symmetric matrices

• Eigenvectors are mutually orthogonal, so

$$U^TU = UU^T = I$$

and

$$U^T = U^{-1}$$

- columns of U form orthonormal basis of \mathbb{R}^n
- $A = U \wedge U^T$ is called spectral decomposition of A

• for real symmetric A and its spectral decomposition $U \wedge U^T$ we have

$$A = U \wedge U^T = \sum_{i=1}^n \lambda_i u_i u_i^T$$

that is, sum of rank-1 matrices

• Now, since u_i are basis, for any $x \in \mathbb{R}^n$ we can write

$$x = \sum_{i=1}^{n} \hat{x}_i u_i$$

Thus

$$Ax = \sum_{i=1}^{n} \lambda_i \hat{x}_i u_i$$

• λ_i as gains to the direction u_i

- A is positive definite iff all of its eigenvalues are positive
 - consider

$$x^T A x = \sum_{i=1}^n \lambda_i \hat{x}_i^2$$

- A is positive semi-definite iff all of its eigenvalues are non-negative
- A is invertible iff its eigenvalues are nonzero
- $A^k = U \wedge U^T U \wedge U^T \cdots = U \wedge^k U^T$. So eigenvalues of A^k are λ_i^k 's

Consider ellisoid defined as

$$\left\{ x | x^T Q x \leq 1 \right\}$$

for some positive definite Q

• The eigenvectors of Q comprise the principal axes of the ellipsoid

$$x^{T}Qx = \sum_{i} \lambda_{i} \hat{x}_{i}^{2} = \sum_{i} \frac{\hat{x}_{i}^{2}}{\left(\frac{1}{\sqrt{\lambda_{i}}}\right)^{2}}$$

In 2-D this is like

$$\frac{x_1^2}{(1/\sqrt{\lambda_1})^2} + \frac{x_2^2}{(1/\sqrt{\lambda_2})^2} \le 1$$

• if $Q \succeq 0$, $x^T Q x$ can be used as norm (induced norm): 2-norm is special case of Q = I

• Quadratic function: $f : \mathbb{R} \to \mathbb{R}$ is $f(x) = ax^2$.

46/125

- Quadratic function: $f : \mathbb{R} \to \mathbb{R}$ is $f(x) = ax^2$.
- **Quadratic form:** a function that maps length n vector to scalar, that is $f : \mathbb{R}^n \to \mathbb{R}$ such that

$$f(x) = x^T A x$$

where $A \in \mathbb{S}^n$

• This is vector version of quadratic functions

- Quadratic function: $f : \mathbb{R} \to \mathbb{R}$ is $f(x) = ax^2$.
- **Quadratic form:** a function that maps length n vector to scalar, that is $f : \mathbb{R}^n \to \mathbb{R}$ such that

$$f(x) = x^T A x$$

where $A \in \mathbb{S}^n$

- This is vector version of quadratic functions
- If x is scalar, $f(x) = x^T a x = a x^2$

Examples

• Let $x = (x_1, x_2)$ and $A = \begin{bmatrix} 4 & 0 \\ 0 & 3 \end{bmatrix}$. Then

$$\mathbf{x}^T A \mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 4x_1 \\ 3x_2 \end{bmatrix}$$

which gives $f(x) = 4x_1^2 + 3x_2^2$

Examples

•
$$A = \begin{bmatrix} 3 & -2 \\ -2 & 7 \end{bmatrix}$$
. Then

$$\mathbf{x}^{T} A \mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 3 & -2 \\ -2 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 3x_1 - 2x_2 \\ -2x_1 + 7x_2 \end{bmatrix}$$

which gives
$$f(x) = 3x_1^2 - 4x_1x_2 + 7x_2^2$$

• If A = I, then $f(x) = x^T x = x_1^2 + x_2^2 = ||x||^2$

• Why is A symmetric? Suppose A is nonsymmetric, then

$$f(x) = x^T A x = f(x)^T = x^T A^T x$$

This means

$$f(x) = \frac{x^T A x}{2} + \frac{x^T A x}{2} = \frac{x^T A x}{2} + \frac{x^T A^T x}{2} = x^T \frac{(A + A^T)}{2} x$$

Note $Q = \frac{(A+A^T)}{2}$ is symmetric. This means, we can always replace A by Q, and have the same function.

• So it is sufficient to use only symmetric A.

Quadratic Form: examples

- *Q* is **positive definite** if $x^T Qx > 0$ for all $x \in \mathbb{R}^n \setminus \{0\}$
- Q is positive semidefinite if $x^T Q x \ge 0$ for all $x \in \mathbb{R}^n$
- *Q* is **negative definite** if $x^T Q x > 0$ for all $x \in \mathbb{R}^n \setminus \{0\}$
- Q is negative semidefinite if $x^TQx \ge 0$ for all $x \in \mathbb{R}^n$
- If the sign of x^TQx differs by x, Q is **indefinite**.
- postive definiteness is the notion of positiveness of a number extended to matrix
- a is positive $\Rightarrow ax^2 > 0$ for all $x \in \mathbb{R} \setminus \{0\}$

• If $Q \succ 0$, then

$$\left\{x|x^TQx=c\right\}$$

is an ellipse

• special case: if Q = I, then

$$\left\{x|x^Tx=c\right\}$$

is a sphere

Let

$$Q = \begin{bmatrix} \frac{1}{a^2} & 0\\ 0 & \frac{1}{b^2} \end{bmatrix}$$

then

$$x^{T}Qx = \frac{x_1^2}{a^2} + \frac{x_2^2}{b^2}$$

• Plot of $x^T Q x = 1$

Let

$$Q = \begin{bmatrix} 5 & -2 \\ -2 & 5 \end{bmatrix}$$

- $x^T Q x = 5x_1^2 4x_1x_2 + 5x_2^2$: Q is pd
- Plot of $x^T Q x = 48$: also an ellipse!

• Why $x^T Q x = 1$ is ellipse? If $Q = U \Lambda U^T$

$$x^T U \wedge U^T x = y^T \wedge y$$

here $y = U^T x$ which is change of coordinates

In y-coordinate

$$y^T \Lambda y = 1 \Rightarrow \frac{y_1}{\left(\sqrt{\frac{1}{\lambda_1}}\right)^2} + \frac{y_2}{\left(\sqrt{\frac{1}{\lambda_2}}\right)^2} + \dots + \frac{y_n}{\left(\sqrt{\frac{1}{\lambda_n}}\right)^2} = 1$$

this is ellipse with axis lengths

$$\frac{1}{\sqrt{\lambda_1}}, \dots, \frac{1}{\sqrt{\lambda_n}}$$

- Thus $x^TQx = 1$ is simply an ellipse going through rotation and reflections, i.e., change of coordinates x = Uy
- This shows that, for ellipse $x^T Q x = 1$
 - 1 The axis directions are eigenvectors of Q
 - 2 The lengths of axis are square-root of inverse of eigenvalues of Q

$$\frac{1}{\sqrt{\lambda_1}}, \dots, \frac{1}{\sqrt{\lambda_n}}$$

- Because axis e_1, \ldots, e_n in y-coordinate are mapped to u_1, \ldots, u_n which are eigenvectors of Q
- Eigenvectors with larger eigenvalue: shorter axis length

$$Q = \begin{bmatrix} 5 & -2 \\ -2 & 5 \end{bmatrix}$$

so
$$x^T Q x = 5x_1^2 - 4x_1x_2 + 5x_2^2$$

• $Q = U \Lambda U^T$ where

$$u_1 = 1/\sqrt{2}(1,1), u_2 = 1/\sqrt{2}(-1,1)$$

with $\lambda_1 = 3$, $\lambda_2 = 7$

- $x^TQx = 1$: axis directions are (1,1) and (-1,1), and the axis lengths are $1/\sqrt{3}$ and $1/\sqrt{7}$
- longer axis length to smaller eigenvalue direction (1,1)

(Korea University)

Suppose A is symmetric.

$$R(A,x) = \frac{x^T A x}{x^T x}$$

is called the Rayleigh quotient

- Suppose $A \succ 0$. What x maximizes R(A, x)?
- Let us fix $x^Tx = 1$: that is, consider x whose distance from origin is 1
- At what x

$$x^T A x$$

is maximized?

- Answer: the direction of the shortest axis length
- Eigenvector with the largest eigenvalue

60/125

• This can be seen by looking at contours of the set

$$x^T A x = c$$

for various c

• For fixed $x^T x$, the eigenvector with *maximum* eigenvalue **maximizes** $x^T A x$

• For fixed x^Tx , the eigenvector with *minimum* eigenvalue **minimizes** x^TAx

Maximum and minimum eigenvalues

• Consider symmetric matrix A. Its maximum eigenvalue, denoted by $\lambda_{\max}(A)$, is given by

$$\max_{x \neq 0} \frac{x^T A x}{x^T x}$$

that is, x which maximizes R(A, x)

Maximum and minimum eigenvalues

• Consider symmetric matrix A. Its maximum eigenvalue, denoted by $\lambda_{\max}(A)$, is given by

$$\max_{x \neq 0} \frac{x^T A x}{x^T x}$$

that is, x which maximizes R(A, x)

• Why? Since $A = Q \wedge Q^T$. Assume $x = \sum_{i=1}^n x_i q_i$, then

$$\max_{x \neq 0} \frac{\sum_{i=1}^n \lambda_i x_i^2}{\sum_{i=1}^n x_i^2} \leq \frac{\lambda_{\max} \sum_{i=1}^n x_i^2}{\sum_{i=1}^n x_i^2} = \lambda_{\max}$$

• This maximum value is achievable by setting x to the eigenvector q_i corresponding to λ_{max} .

Maximum and minimum eigenvalues

- One can make similar arguments for the minimum eigenvalue of A
- $\lambda_{\min}(A)$, is given by

$$\min_{x \neq 0} \frac{x^T A x}{x^T x}$$

or
$$\min_{x\neq 0} R(A, x)$$

Try to show it by yourself!

Notation: Positive Definiteness

- Set of positive (semi)definite matrices is denoted by $\mathbb{S}_{++}^n(\mathbb{S}_+^n)$
- We write for positive definite A

$$A \succ 0$$

Here 0 on the right is $n \times n$ matrix of zeros

• for positive semidefinite A

$$A \succ 0$$

• similar for $A \prec 0$ and $A \preceq 0$ for negative definite and negative semidefinite matrix

Positive Definiteness: properties

• every positive definite matrix A is nonsingular

$$Ax = 0 \Rightarrow x^T Ax = 0 \Rightarrow x = 0$$

every positive definite matrix A has positive diagonal elements

$$e_i^T A e_i > 0$$

 every positive semidefinite matrix A has nonnegative diagonal elements

$$e_i^T A e_i \geq 0$$

Quadratic form and Eigenvalues

- For $A \in \mathbb{S}^n$, A is
 - positive definite iff all the eigenvalues are positive
 - negative definite iff all the eigenvalues are negative
 - indefinite iff there are both positive and negative eigenvalues

69/125

Quadratic form and Eigenvalues

Since

$$A = \lambda_1 u_1 u_1^T + \lambda_2 u_2 u_2^T + \dots + \lambda_n u_n u_n^T$$

we have $x^T A x = \sum_{i=1}^n c_i^2 \lambda_i$ where $x_i = \sum_{i=1}^n c_i u_i$.

- $\lambda_i > 0$, $i = 1, \dots, n$ implies $x^T A x > 0$.
- $\lambda_i < 0$, $i = 1, \dots, n$ implies $x^T A x < 0$.

Quadratic form and Eigenvalues

- Indefiniteness means that, there exist vector x which can make $x^T A x$ to ∞ or $-\infty$
- for example

$$x = tu_i, \ \lambda_i > 0$$

and let $t \to \infty$, $x^T A x \to \infty$. But

$$x = tu_j, \ \lambda_j < 0$$

and let $t \to \infty$, $x^T A x \to -\infty$.

- Examples: Let $A = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$
- To get eigenvalues, we have

$$\det(A - \lambda I) = 0 \Rightarrow (\lambda - a)(\lambda - c) - b^2 = 0$$

We have quadratic equation

$$\lambda^2 - (a+c)\lambda + ac - b^2 = 0$$

characteristic equation

$$\lambda^2 - (a+c)\lambda + ac - b^2 = 0$$

• firstly, are roots always real? discriminant

$$(a+c)^2-4(ac-b^2)=(a-c)^2+4b^2\geq 0$$

• If A > 0, we must have two positive solutions:

$$a+c>0, \ ac-b^2>0$$

condition is:

$$a > 0$$
, $c > 0$, $ac - b^2 > 0$

- diagonal elements are positive and determinant is positive
- Make sense, because quadratic form

$$x^{T}Ax = x^{T}\begin{bmatrix} a & b \\ b & c \end{bmatrix}x = ax_1^2 + 2bx_1x_2 + cx_2^2$$

to be strictly positive, a > 0 and c > 0 and discriminant of quadratic equation

$$ax^2 + 2bx + c = 0$$

must be negative

Positive definite and inverse

- Suppose $A \succ 0$.
- Does A^{-1} exist?
 - Yes,

$$A^{-1} = QD^{-1}Q^T$$

where D^{-1} has $1/\lambda_i$ on its diagonals

- Is A^{-1} pd?
 - Yes, its eigenvalues are positive
- Suppose A, B are pd. Is A + B > 0?
 - Yes

A^TA is positive (semi)definite

- Consider $m \times n$ matrix A.
- $A^T A$ is positive semidefinite (psd).
- Why?

$$x^{T}A^{T}Ax = (Ax)^{T}Ax = ||Ax||^{2} \ge 0$$

- If A has independent columns, A^TA is positive definite (pd).
- AA^T is also psd (pd if A has independent rows)

A^TA is positive (semi)definite

- rank-1 matrix of form vv^T is psd
- projection matrix

$$\frac{vv^T}{v^Tv}$$

is psd

• Given set of vectors u_1, \ldots, u_k

$$A = \sum_{i=1}^k c_i u_i u_i^T$$

is psd iff $c_i \geq 0$.

A^TA is positive (semi)definite

- difference between A^2 and A^TA (or AA^T):
- A² is only defined for square A
- A^TA or AA^T can be defined for arbitrary A
- A² is **not** guaranteed to be psd, whereas A^TA and AA^T are always psd
 - If A is symmetric, then A2 is also symmetric and psd

Part 2: Convex Functions

Definition of convex functions

• $f: \mathbb{R}^n \to \mathbb{R}$ is convex if $\mathcal{D}(f)$ is convex set and

$$f(\theta x_1 + (1 - \theta)x_2) \le \theta f(x_1) + (1 - \theta)f(x_2)$$

for all $x_1, x_2 \in \mathcal{D}(f)$ and some $0 \le \theta \le 1$

- f is concave if -f is convex
- $f: \mathbb{R}^n \to \mathbb{R}$ is strictly convex if $\mathcal{D}(f)$ is convex set and

$$f(\theta x_1 + (1 - \theta)x_2) < \theta f(x_1) + (1 - \theta)f(x_2)$$

for all $x_1, x_2 \in \mathcal{D}(f)$ for $x_1 \neq x_2$ for some $0 < \theta < 1$

Examples on $\mathbb R$

- convex functions
 - affine: ax + b
 - exponential: e^{ax} for any $a \in \mathbb{R}$
 - powers: x^{α} on \mathbb{R}_{++} for $\alpha \leq 0$ or $\alpha \geq 1$
 - powers of absolute value: $|x|^p$ for $p \ge 1$
 - negative entropy: $x \log x$ on \mathbb{R}_{++}
- concave functions
 - affine: *ax* + *b*
 - powers: x^{α} on \mathbb{R}_{++} for $0 \leq \alpha \leq 1$
 - logarithm: $\log x$ on \mathbb{R}_{++}

Examples on \mathbb{R}^n and $\mathbb{R}^{m \times n}$

- Examples for functions $\mathbb{R}^n \to \mathbb{R}$
 - Affine functions: $f(x) = a^T x + b$ for some $a \in \mathbb{R}^n$, $b \in \mathbb{R}$
 - p-norms: $||x||_p := (\sum_i |x_i|^p)^{1/p}$, for $p \ge 1$, $||x||_{\infty} = \max_i |x_i|$
 - can be shown using triangular inequality, $||x + y|| \le ||x|| + ||y||$

Examples on \mathbb{R}^n and $\mathbb{R}^{m \times n}$

- Examples for functions $\mathbb{R}^{m \times n} \to \mathbb{R}$
 - affine functions

$$f(X) = \mathbf{tr}(A^T X) + b = \sum_{i=1}^m \sum_{j=1}^n A_{ij} X_{ij} + b$$

for
$$A \in \mathbb{R}^{m \times n}$$
 $b \in \mathbb{R}$

- tr(B) is the sum of the diagonals of a square matrix B
- $tr(A^TX)$ is defined as the inner product of A and X
 - Using informal notations: $A(:)^T B(:)$

Examples on \mathbb{R}^n and $\mathbb{R}^{m \times n}$

Matrix norm (spectral norm):

$$||A||_2 = \max_{x} \frac{||Ax||_2}{||x||_2} = \sigma_{\max}(A)$$

• triangular inequality holds, because

$$||A + B|| = \max_{x} \frac{||(A + B)x||}{||x||} \le \max_{x} \frac{||Ax|| + ||Bx||}{||x||}$$
$$\le \max_{x} \frac{||Ax||}{||x||} + \max_{x} \frac{||Bx||}{||x||} = ||A|| + ||B||$$

Restriction to line

• f(x) is convex iff $g: \mathbb{R} \to \mathbb{R}$ defined as

$$g(t) = f(a + bt)$$

is convex in t where $a, b, a + bt \in \mathcal{D}(f)$

• determine convexity of 1-D function can be simpler

- Consider a function f(x) with $f: \mathbb{R}^n \to \mathbb{R}$
- When n = 1, we know the derivative

$$\frac{df(x)}{dx}$$

or f'(x), is the rate of change in function f

- This can be viewed also as "slope" of line tangent to f
- Or, the first-order approximation of f around $x = x_0$ is given by

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0)$$

Partial derivative

- now consider case n > 1: we consider multivariate function
- Given a multivariate function f(x, y)

$$\frac{\partial f}{\partial x} = \lim_{\epsilon \to 0} \frac{f(x + \epsilon, y) - f(x, y)}{\epsilon}$$
$$\frac{\partial f}{\partial y} = \lim_{\epsilon \to 0} \frac{f(x, y + \epsilon) - f(x, y)}{\epsilon}$$

are the partial derivative of f with respect to x and y

- Rate of change of f in only one direction
- For $x \in \mathbb{R}^n$, $f(x) = f(x_1, x_2, \dots, x_n)$, $\frac{\partial f}{\partial x_i}$ similarly defined

Partial derivative

- Finding partial derivative: treat other variables as constant
- Example: $f(x, y) = x^2 + xy$

$$\frac{\partial f}{\partial x} = 2x + y, \frac{\partial f}{\partial y} = x$$

- want to define rate of change in f, but in what direction?
- consider 1st approximation of f(x) with small change $\Delta x \in \mathbb{R}^n$
- By chain rule,

$$f(x + \Delta x) \approx f(x) + \frac{\partial f}{\partial x_1} \Delta x_1 + \dots + \frac{\partial f}{\partial x_n} \Delta x_n$$

= $f(x) + \nabla f(x)^T \Delta x$

Here

$$\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \dots, \frac{\partial f(x)}{\partial x_n}\right)$$

is called gradient of f at x

Gradient is a vector

- For vector v, $\nabla f(x)^T v$ is the directional derivate of f along vector v at point x. This is the rate of change of f to the direction of v at point x
- Equivalent to

$$\left. \frac{d}{dt} f(x+tv) \right|_{t=0}$$

Now consider vectors v with size 1 such that

$$\max_{\|v\|=1} \nabla f^T v$$

- One that maximizes $\nabla f^T v$: parallel to ∇f
- Thus gradient is the direction at which the rate of change is maximum

Multivariate Calculus

- Let $f(x) = c^T x$. Find ∇f
- Since $f(x) = \sum_{i=1}^{n} c_i x_i$, we have $\frac{\partial f}{\partial x_i} = c_i$ thus

$$\nabla f = (c_1, c_2, \ldots, c_n) = c$$

Multivariate Calculus

- Let $f(x) = x^T Q x$. Find ∇f
- For any i, we have

$$f(x) = \sum_{i=1}^{n} Q_{i,i} x_i^2 + 2 \sum_{i \neq j} x_i x_j Q_{i,j}$$

So

$$\frac{\partial f}{\partial x_i} = 2Q_{i,i}x_i + 2\sum_{j\neq i}x_jQ_{i,j} = 2\sum_jQ_{i,j}x_j$$

thus

$$\nabla f = 2Qx$$

Multivariate functions: Hessian

Consider second order approximation of function f in one dimension

$$f(x + \Delta x) \approx f(x) + f'(x)\Delta x + \frac{1}{2}f''(x)\Delta x^2$$

• How about in higher dimension?

$$f(x + \Delta x) \approx f(x) + \nabla f(x)^T \Delta x + \frac{1}{2} \Delta x^T \nabla^2 f(x) \Delta x$$

• the Hessian $\nabla^2 f(x) \in S^n$ is defined as

$$\left[\nabla^2 f(x)\right]_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \ i, j = 1, \dots, n$$

Jacobian

• Consider vector function $f(x) = (f_1(x), f_2(x), \dots, f_m(x))$. Consider small change Δx .

•

$$f(x + \Delta x) = \begin{bmatrix} f_1(x + \Delta x) \\ \dots \\ f_m(x + \Delta x) \end{bmatrix} \approx f(x) + \begin{bmatrix} \nabla f_1(x)^T \Delta x \\ \dots \\ \nabla f_m(x)^T \Delta x \end{bmatrix}$$
$$= f(x) + \begin{bmatrix} \nabla f_1(x)^T \\ \dots \\ \nabla f_m(x)^T \end{bmatrix} \Delta x$$

The Jacobian of f at x is

$$J_f = \begin{bmatrix} \nabla f_1(x)^T \\ \dots \\ \nabla f_m(x)^T \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \frac{\partial f_1}{\partial x_n} \\ \dots & \dots & \dots & \dots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \dots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

lacksquare So the first order change is $J_f \Delta x$

Jacobian

- Let f(x) = Ax. Find the Jacobian J_f .
- We have

$$f(x) = \begin{bmatrix} a_1^T x \\ a_2^T x \\ \vdots \\ a_m^T x \end{bmatrix}$$

$$J_f = \begin{bmatrix} \nabla f_1(x)^T \\ \vdots \\ \nabla f_m(x)^T \end{bmatrix} = \begin{bmatrix} a_1^T \\ a_2^T \\ \vdots \\ a_m^T \end{bmatrix} = A$$

Hessian

Second-order derivative: rate of change of gradient, that is

$$\nabla f(x + \Delta x) \approx \nabla f(x) + J_{\nabla f}(x) \Delta x$$

• $J_{\nabla f}(x)$, Jacobian of gradient of f, is called Hessian

$$\nabla^2 f = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \cdots & \cdots & \cdots \\ \frac{\partial^2 f}{\partial x_1 \partial x_n} & \frac{\partial^2 f}{\partial x_2 \partial x_n} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$$

Thus

$$\nabla f(x + \Delta x) \approx \nabla f(x) + \nabla^2 f(x) \Delta x$$

Hessian is square matrix and is symmetric

Hessian

- Let $f(x) = \frac{1}{2}x^T Qx$. Find the Hessian.
- We have

$$\nabla f = Qx$$

So

$$J_{\nabla f} = Q$$

First-order condition of convexity

- $\mathcal{D}(f)$ denotes the domain of f: set over which f is defined
- f is differentiable if is open and the gradient ∇f exists at each
 x ∈D(f)
- 1st-order condition: differentiable f with convex domain is convex iff

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

for all $x, y \in \mathcal{D}(f)$.

First-order approximation of f is a global underestimator

Second-order condition of convexity

- f is twice differentiable if $\mathcal{D}(f)$ is open and the Hessian $\nabla^2 f(x) \in S^n$ exists at each $x \in \mathcal{D}(f)$
- 2nd-order condition: for twice differentiable f with convex domain
 - f is convex iff

$$\nabla^2 f(x) \succeq 0$$

for all $x, y \in \mathcal{D}(f)$.

• if $\nabla^2 f(x) > 0$ for all $x \in \mathcal{D}(f)$, then f is strictly convex.

Examples

quadratic function:

$$f(x) = (1/2)x^T P x + q^T x + r$$

with $P \in S^n$, then Convex if $P \succ 0$

Note

$$\nabla f(x) = Px + q, \ \nabla^2 f(x) = P$$

Examples

• least-squares objective: $f(x) = ||Ax - b||_2^2$

$$\nabla f(x) = 2A^T(Ax - b), \ \nabla^2 f(x) = 2A^TA$$

• quadratic-over-linear: $f(x, y) = x^2/y$, convex for y > 0

$$\nabla^2 f(x,y) = \frac{2}{y^3} \left[\begin{array}{c} y \\ -x \end{array} \right] \left[\begin{array}{c} y \\ -x \end{array} \right]^T$$

log-sum-exponential function

log-sum-exp: $f(x) = \log \sum_{k=1}^{n} \exp x_k$ is convex

$$\nabla^2 f(x) = \frac{1}{1^T z} \operatorname{diag}(z) - \frac{1}{(1^T z)^2} z z^T$$
 $(z_k = \exp x_k)$

to show $\nabla^2 f(x) \succeq 0$, we must verify that $v^T \nabla^2 f(x) v \geq 0$ for all v:

$$v^{T} \nabla^{2} f(x) v = \frac{(\sum_{k} z_{k} v_{k}^{2})(\sum_{k} z_{k}) - (\sum_{k} v_{k} z_{k})^{2}}{(\sum_{k} z_{k})^{2}} \ge 0$$

since $(\sum_k v_k z_k)^2 \leq (\sum_k z_k v_k^2)(\sum_k z_k)$ (from Cauchy-Schwarz inequality)

- Log-sum-exp is "smooth-max" function
- Convexity can be shown using Hölder's inequality

Epigraph and sublevel set

• α -sublevel set of $f: \mathbb{R}^n \to \mathbb{R}$:

$$C_{\alpha} = \{ x \in \mathcal{D}(f) | f(x) \le \alpha \}$$

sublevel sets of convex functions are convex sets (converse is false)

• Epigraph of $f: \mathbb{R}^n \to \mathbb{R}$:

epi(
$$f$$
) := {(x , t) $\in \mathbb{R}^{n+1} | x \in \mathcal{D}(f), f(x) \le t$ }

• f is convex iff **epi**f is convex

Jenson's inequality

• Basic inequality: $f: \mathbb{R}^n \to \mathbb{R}$ is convex if

$$f(\theta x_1 + (1 - \theta)x_2) \le \theta f(x_1) + (1 - \theta)f(x_2)$$

for some $0 < \theta < 1$.

• Extension: For any random variable *z*, if *f* is convex, then

$$f(\mathbb{E}[z]) \leq \mathbb{E}[f(z)]$$

• Basic inequality is a special case for a random variable z such that

$$z = \begin{cases} x_1 & \text{w.p. } \theta \\ x_2 & \text{w.p. } 1 - \theta \end{cases}$$

Here w.p. stands for 'with probability'.

It is useful to consider simple case to remember the inequality.

Operations that preserve convexity

- practical methods for establishing convexity of a function
 - verify definition
 - of for twice differentiable functions, show $\nabla^2 f(x) \succeq 0$.
 - Show that f is obtained from simple convex functions by operations that preserve convexity:
 - nonnegative weighted sum
 - composition with affine function
 - pointwise maximum and supremum
 - composition
 - minimization

Positive weighted sum & composition with affine function

- nonnegative multiple: af is convex if f is convex, $a \ge 0$
- sum: f₁ + f₂ convex if f₁, f₂ convex (extends to infinite sums, integrals)
- composition with affine function: f(Ax + b) is convex if f is convex
- examples
 - log barrier for linear inequalities

$$f(x) = -\sum_{i=1}^{n} \log(b_i - a_i^T x), \ \mathcal{D}(f) = \{x | a_i^T x < b_i, i = 1, ..., m\}$$

- f(x) is defined on the interior of the polyhedron, and get to infinity as points move to the polyhedron boundary
- (any) norm of affine function: $f(x) = ||Ax + b||_{D}$

Log determinant

- Let $A \in \mathbb{S}^n_{++}$ be positive definite n by n matrix
- $f(A) = \log \det(A)$ is concave

Pointwise maximum

- if f_1, \ldots, f_m are convex, then $f(x) = \max\{f_1(x), \ldots, f_m(x)\}$ is convex
- examples
 - piecewise-linear function: $f(x) = \max_{i=1...m} (a_i^T x + b_i)$ is convex
 - Sum of r largest components of $x \in \mathbb{R}^n$:

$$f(x) = x_{[1]} + x_{[2]} + \cdots + x_{[r]}$$

is convex $(x_{[i]})$ is ith largest component of x)

proof:
$$f(x) = \max\{x_{i_1} + x_{i_2} + \dots + x_{i_r} | 1 \le i_1 < i_2 < \dots < i_r \le n\}$$

Pointwise supremum

• if f(x, y) is convex in x for each $y \in A$, then

$$g(x) = \sup_{y \in A} f(x, y)$$

is convex, proof:

$$\theta g(x_1) + (1 - \theta)g(x_2) = \sup_{y \in A} \theta f(x_1, y) + \sup_{y \in A} (1 - \theta)f(x_2, y)$$

$$\geq \sup_{y \in A} \{ \theta f(x_1, y) + (1 - \theta)f(x_2, y) \}$$

$$\geq \sup_{y \in A} \{ f(\theta x_1 + (1 - \theta)x_2, y) \}$$

$$= g(\theta x_1 + (1 - \theta)x_2)$$

• Note f(x, y) need **NOT** be convex both in x and y (example: $f(x, y) = x^2 \log(1 + y)$, for x, y > 0 f(x, y) is convex in x for any given y, but is not overall convex.

Pointwise supremum: examples

- support function of a set C: $S_C(x) = \sup_{v \in C} y^T x$ is convex
- ② distance to farthest point in a set C: $f(x) = \sup_{y \in C} ||x y||$
- **3** maximum eigenvalue: let $f: \mathbb{S}^n \to \mathbb{R}$ such that

$$f(A) = \sup_{X} \frac{X^{T}AX}{X^{T}X}$$

Composition with scalar functions

• composition of $g: \mathbb{R}^n \to \mathbb{R}$ and $h: \mathbb{R} \to \mathbb{R}$:

$$f(x)=h(g(x))$$

f is convex if

g convex, h convex, h nondecreasing g concave, h convex, h nonincreasing

proof: (for n = 1, differentiable g, h)

$$f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x)$$

- Note the result is general, and holds without differentiability assumption
- examples
 - $\exp g(x)$ is convex if g is convex
 - 1/g(x) is convex if g is concave and positive

Vector composition

• composition of $g: \mathbb{R}^n \to \mathbb{R}^k$ and $h: \mathbb{R}^k \to \mathbb{R}$

$$f(x) = h(g(x)) = h(g_1(x), g_2(x), ..., g_k(x))$$

- f is convex if
 - g_i convex, h convex, h nondecreasing in each argument
 - g_i concave, h convex, h nonincreasing in each argument
- proof (for n = 1, differentiable g, h)

$$f''(x) = g'(x)^T \nabla^2 h(g(x)) g'(x) + \nabla h(g(x))^T g''(x)$$

- examples
 - $\sum_{i=1}^{n} \log g_i(x)$ is concave if g_i are concave and positive
 - $\log \sum_{i=1}^{n} \exp g_i(x)$ is convex if g_i are convex

Minimization

• if f(x, y) is convex in (x, y) and for a convex set C, then

$$g(x) = \inf_{y \in C} f(x, y)$$

is convex, proof:

$$\theta g(x_1) + (1 - \theta)g(x_2) = \theta f(x_1, y^*(x_1)) + (1 - \theta)f(x_2, y^*(x_2))$$

$$\geq f(\theta x_1 + (1 - \theta)x_2, \theta y^*(x_1) + (1 - \theta)y^*(x_2))$$

$$\geq \inf_{y \in C} f(\theta x_1 + (1 - \theta)x_2, y)$$

$$= g(\theta x_1 + (1 - \theta)x_2)$$

• Note how convexity condition on f(x, y) has been **strengthened** compared to supremum case.

Minimization examples

- examples

$$\left[\begin{array}{cc} A & B \\ B^T & C \end{array}\right] \succeq 0, C \succ 0$$

minimizing over y gives

$$g(x) = \inf_{y} f(x, y) = x^{T} (A - BC^{-1}B^{T})x$$

Since g is convex, Schur complement $A - BC^{-1}B^T \succeq 0$.

② distance to a set: $\operatorname{dist}(x, S) = \inf_{y \in S} ||x - y||$ is convex if S is convex

Perspective

• the perspective of $f: \mathbb{R}^n \to \mathbb{R}$ is function $g: \mathbb{R}^{n+1} \to \mathbb{R}$ such that

$$g(x,t) = tf(x/t), \quad t > 0$$

g is convex if f is convex

- examples:
 - $f(x) = x^T x$ is convex; $g(x, t) = x^T x/t$ is convex
 - $f(x) = -\log x$ is convex; the relative entropy $g(x, t) = t \log t t \log x$ is convex
 - if f is convex, then

$$g(x) = (c^T x + d) f\left((Ax + b)/(c^T x + d)\right)$$

is convex

Quasiconvex functions

 $f: \mathbb{R}^n \to \mathbb{R}$ is *quasiconvex* if $\mathcal{D}(f)$ is convex and the sublevel set

$$S_{\alpha} = \{ x \in \mathcal{D}(f) | f(x) \le \alpha \}$$

is a convex set for any $\alpha \in \mathbb{R}$

- f is quasiconcave if -f is quasiconvex.
- f is quasilinear if it is quasiconvex and quasiconcave

Examples

- $\sqrt{|x|}$ is quasiconvex on \mathbb{R}
- $\operatorname{ceil}(x) = \inf \{ z \in \mathbb{Z} | z \ge x \}$ is quasilinear
- log(x) is quasilinear on \mathbb{R}_{++}
- $f(x_1, x_2) = x_1 x_2$ is quasiconcave on \mathbb{R}^2_{++}
- linear-fractional function

$$f(x) = \frac{a^T x + b}{c^T x + d}, \quad \mathcal{D}(f) = \left\{ x | c^T x + d > 0 \right\}$$

is quasilinear

distance ratio

$$f(x) = \frac{||x - a||_2}{||x - b||_2}, \qquad \mathcal{D}(f) = \{x|||x - a||_2 \le ||x - b||_2\}$$

is quasiconvex

Properties

modified Jensen's inequality for quasiconvex f

$$0 \le \theta \le 1 \Rightarrow f(\theta x + (1 - \theta)y) \le \max\{f(x), f(y)\}\$$

• first-order condition differentiable f with convex domain is quasiconvex iff

$$f(y) \le f(x) \Rightarrow \nabla f(x)^T (y - x) \le 0$$

(Note that this relates to the level sets and the direction of ∇f)

Sum of quasiconvex functions are not necessarily quasiconvex

Operations that preserve quasi-convexity

Nonnegative weighted maximum

$$f = \max\{w_1 f_1, \dots, w_m f_m\}$$

and

$$f = \sup_{y \in C} w(y)g(x,y)$$

where $w(y) \ge 0$ and g(x, y) is quasiconvex in x for each y

- $g: \mathbb{R}^n \to \mathbb{R}$ is q.c. and h in nondecreasing, h(g()) is q.c.
- f(x, y) is quasiconvex jointly in x and y, then for convex set C,

$$g(x) = \inf_{y \in C} f(x, y)$$

is q.c.

Log-concave and log-convex

a positive function f is log-concave if log f is concave.

$$f(\theta x_1 + (1-\theta)x_2) \ge f(x_1)^{\theta} f(x_2)^{1-\theta}$$

f is log-convex if log f is convex.

- powers: x^a on \mathbb{R}_+ log-convex for $a \leq 0$, log-concave for $a \geq 0$
- many probability densities are log-concave, e.g., normal

$$f(x) = \frac{1}{\sqrt{(2\pi)^n \text{det}\Sigma}} e^{-\frac{1}{2}(x-\bar{x})^T \Sigma^{-1}(x-\bar{x})}$$

• cumulative Gaussian distribution Φ is log-concave

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{u^2}{2}} du$$

Log-concave and log-convex

- log-convexity ⇒ convexity ⇒ quasi-convexity
 - If f is convex then exp f is convex
- concavity ⇒ log-concavity ⇒ quasi-concavity
 - If f is concave then logf is concave
- log-convex and log-concave functions can be optimized due to quasi-convex/concavity

Properties of log-concave functions

• twice differentiable f with convex domain is log-concave iff

$$f(x)\nabla^2 f(x) \preceq \nabla f(x)\nabla f(x)^T$$

for all $x \in \mathbf{dom} f$

- product of log-concave function is log-concave
- sum of log-concave function is not always log-concave
- integration: if $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ is log-concave, then

$$g(x) = \int f(x, y) dy$$

is log-concave.

Consequences of integration property

• convolution f * g is log-concave functions of f, g is log-concave

$$f*g(x)=\int f(x-y)g(y)dy$$

• if $C \subseteq \mathbb{R}^n$ convex and y is a random variable with log-concave pdf then

$$f(x) = \mathbb{P}(x + y \in C)$$

is log-concave

• proof: write f(x) as integral of product of log-concave functions

$$f(x) = \int g(x+y)p(y)dy, \ g(u) = \begin{cases} 1 & u \in C \\ 0 & u \notin C, \end{cases}$$

p is pdf of y

Example: yield function

$$Y(x) = \mathbb{P}(x + \omega \in S)$$

- $x \in \mathbb{R}^n$: nominal parameter values for product
- $\omega \in \mathbb{R}^n$: random variations of parameters in manufactured product
- S: set of acceptable values

if S is convex and ω has a log-concave pdf, then

- Y is log-concave
- yield regions $|\{x|Y(x)\geq\alpha\}|$ are convex
- log-concave functions can be optimized (maximized)