

Design and Analysis of Algorithms Sorting

Si Wu

School of Computer Science and Engineering

E-mail: cswusi@scut.edu.cn

TA: Wenhao Wu (1565865638@qq.com) Yi Liu (1337545838@qq.com)

The problem of sorting

Input: sequence $\langle a_1, a_2, ..., a_n \rangle$ of numbers.

Output: permutation $\langle a'_1, a'_2, ..., a'_n \rangle$ such that $a'_1 \le a'_2 \le \cdots \le a'_n$.

Example:

Input: 8 2 4 9 3 6

Output: 2 3 4 6 8 9

Overview

Goals:

- Start using frameworks for describing and analyzing algorithms.
- Examine two algorithms for sorting: insertion-sort and merge-sort.
- Seehow to describe algorithms in pseudocode.
- Begin using asymptotic notation to express running-time analysis.
- Learn the technique of "divide and conquer" in the context of merge-sort.

Insertion Sort

Sorting a hand of cards using insertion sort.

Insertion sort

INSERTION-SORT (A, n) $\triangleright A[1 ... n]$ for $j \leftarrow 2$ to n**do** $key \leftarrow A[j]$ $i \leftarrow j - 1$ "pseudocode" while i > 0 and A[i] > key**do** $A[i+1] \leftarrow A[i]$ $i \leftarrow i - 1$ A[i+1] = keynA: sorted

Insertion Sort (another example)

```
INSERTION-SORT (A, n) 
ightharpoonup A[1 . . n]

1 for j \leftarrow 2 to n

2 do key \leftarrow A[j]

3 i \leftarrow j - 1

4 while i > 0 and A[i] > key

5 do A[i + 1] \leftarrow A[i]

6 i \leftarrow i - 1

7 A[i + 1] = key
```


Running time

- •The running time depends on the input: an already sorted sequence is easier to sort.
- •Parameterize the running time by the size of the input, since short sequences are easier to sort than long ones.
- •Generally, we seek upper bounds on the running time, because everybody likes a guarantee.

Θ-notation

Math:

```
\Theta(g(n)) = \{ f(n) : \text{there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}
```

Engineering:

- Drop low-order terms; ignore leading constants.
- Example: $3n^3 + 90n^2 5n + 6046 = \Theta(n^3)$

Asymptotic performance

When *n* gets large enough, a $\Theta(n^2)$ algorithm *always* beats a $\Theta(n^3)$ algorithm.

- We shouldn't ignore asymptotically slower algorithms, however.
- Real-world design situations often call for a careful balancing of engineering objectives.
- Asymptotic analysis is a useful tool to help to structure our thinking.


```
INSERTION-SORT (A, n) \triangleright A[1 . . n]
                                                                 times
                                                    cost
   for j \leftarrow 2 to n
                                                                  n - 1
                                                       C_1
         do key \leftarrow A[j]
                                                                n - 1
                                                       C_2
3
            i \leftarrow j - 1
                                                                  n-1
                                                      c_3
             while i > 0 and A[i] > key
                    do A[i + 1] \leftarrow A[i]
5
                    i \leftarrow i - 1
6
             A[i + 1] = kev
```



```
INSERTION-SORT (A, n) \triangleright A[1 . . n]
                                                                  times
                                                     cost
   for j \leftarrow 2 to n
                                                                   n - 1
                                                        C_1
          do key \leftarrow A[j]
                                                                   n - 1
                                                        C_2
             i \leftarrow j - 1
                                                                    n-1
                                                        c_3
              while i > 0 and A[i] > key
                                                        C_4
                    do A[i + 1] \leftarrow A[i]
5
                     i \leftarrow i - 1
6
             A[i + 1] = key
```



```
INSERTION-SORT (A, n) \triangleright A[1 . . n]
                                                                    times
                                                       cost
   for j \leftarrow 2 to n
                                                                      n -1
                                                         C_1
          do key \leftarrow A[j]
                                                                     n-1
                                                         C_2
              i \leftarrow j - 1
                                                                     n-1
                                                         c_3
              while i > 0 and A[i] > key
                                                         c_4
                     do A[i + 1] \leftarrow A[i]
5
                                                         C_5
                       i \leftarrow i - 1
6
              A[i + 1] = key
```



```
INSERTION-SORT (A, n) \triangleright A[1 . . n]
                                                                           times
                                                             cost
                                                                             n - 1
    for j \leftarrow 2 to n
                                                                C_1
           do key \leftarrow A[j]
                                                                             n-1
                                                                C_2
               i \leftarrow j - 1
                                                                             n-1
                                                               c_3
                while i > 0 and A[i] > key
                                                               c_4
                       do A[i + 1] \leftarrow A[i]
                                                                              \sum_{j=2}^{n} (t_j - 1)
5
                                                                C_5
                       i \leftarrow i - 1
                                                                              \sum_{i=2}^{n} (t_j - 1)
6
                                                                c_6
               A[i + 1] = key
```


THE TOTAL OF THE PARTY OF THE P

	INSERTION-SORT (A, n) \triangleright A[1 n]	cost	times
1	for $j \leftarrow 2$ to n	c_1	n - 1
2	do key $\leftarrow A[j]$	c_2	n - 1
3	i ← j - 1	c_3	n - 1
4	while $i > 0$ and $A[i] > key$	c_4	$\sum\nolimits_{\rm j=2}^n t_j$
5	do $A[i + 1] \leftarrow A[i]$	c_5	$\sum_{j=2}^{n} (t_j - 1)$
6	i ← i - 1	c_6	$\sum_{j=2}^{n} (t_j - 1)$ $n - 1$
7	A[i + 1] = key	c_7	n'-1

INSERTION—SORT (A, n)
$$\triangleright$$
 A[1 . . n] cost times

1 for $j \leftarrow 2$ to n

2 do key \leftarrow A[j]
3 $i \leftarrow j - 1$
4 while $i > 0$ and A[i] $>$ key

5 do A[i + 1] \leftarrow A[i]

6 $\sum_{j=2}^{n} (t_j - 1)$
7 A[i + 1] = key

$$c_1 \quad n - 1 \\ c_2 \quad n - 1 \\ c_3 \quad n - 1 \\ c_4 \quad \sum_{j=2}^{n} (t_j - 1)$$

Let T(n) = running time of **INSERTION-SORT**.

$$T(n) = c_1 (n-1) + c_2(n-1) + c_3(n-1) + c_4 \sum_{j=2}^n t_j + c_5 \sum_{j=2}^n (t_j - 1) + c_6 \sum_{j=2}^n (t_j - 1) + c_7(n-1)$$

INSERTION—SORT (A, n)
$$\triangleright$$
 A[1 . . n] cost times

for j \leftarrow 2 to n

do key \leftarrow A[j]

while i \triangleright 0 and A[i] \triangleright key

to n and A[i] \triangleright key

to and A[i] \triangleright A[i] and A[i] \triangleright key

to and A[i] \triangleright A[i] and A[i] \triangleright A[i] and A[i] \triangleright A[i] and A[i] a

Best-case: The array is already sorted.

- Always find that A[i] ≤ key upon the first time the while loop test is run (when i = j -1).
- All t_i are 1.
- Running time is

$$T(n) = c_1 (n-1) + c_2 (n-1) + c_3 (n-1) + c_4 (n-1) + c_7 (n-1)$$

= $(c_1 + c_2 + c_3 + c_4 + c_7)n - (c_1 + c_2 + c_3 + c_4 + c_7)$

Can express T(n) as an + b for constants a and b (that depend on the statement costs c_i) $\Rightarrow T(n)$ is a linear function of $n. \Rightarrow T(n) = \Theta(n)$

INSERTION—SORT (A, n)
$$\triangleright$$
 A[1 . . n] cost times

1 for j \leftarrow 2 to n

2 do key \leftarrow A[j]

3 i \leftarrow j - 1

4 while i \triangleright 0 and A[i] \triangleright key

5 do A[i + 1] \leftarrow A[i]

6 \vdots i \leftarrow i - 1

7 A[i + 1] = key

cost
times

cost

 $times$
 t

$$T(n) = c_1(n-1) + c_2(n-1) + c_3(n-1) + c_4 \sum_{j=2}^n t_j + c_5 \sum_{j=2}^n (t_j - 1) + c_6 \sum_{j=2}^n (t_j - 1) + c_7(n-1)$$

Always find that A[i] > key in while loop test.

INSERTION—SORT (A, n) > A[1 . . n] cost times

1 for j
$$\leftarrow$$
 2 to n

2 do key \leftarrow A[j]

3 i \leftarrow j - 1

4 while i > 0 and A[i] > key

5 do A[i + 1] \leftarrow A[i]

6 i \leftarrow i - 1

7 A[i + 1] = key

cost
times

 c_1
 c_2
 n^{-1}
 c_3
 n^{-1}
 c_4

$$\sum_{j=2}^{n} t_j$$
 c_5

$$\sum_{j=2}^{n} (t_j - 1)$$
 c_6
 c_7
 c_7

$$T(n) = c_1(n-1) + c_2(n-1) + c_3(n-1) + c_4 \sum_{j=2}^n t_j + c_5 \sum_{j=2}^n (t_j - 1) + c_5 \sum_{j=2}^n (t_j - 1) + c_7(n-1)$$

Have to compare *key* with all elements to the left of the *j*th position \Rightarrow compare with *j* − 1 elements.

INSERTION—SORT (A, n) > A[1 . . n] cost times

1 for j
$$\leftarrow$$
 2 to n

2 do key \leftarrow A[j]
3 i \leftarrow j - 1
4 while i > 0 and A[i] > key

5 do A[i + 1] \leftarrow A[i]
6 i \leftarrow i - 1
7 A[i + 1] = key

cost times

$$T(n) = c_1(n-1) + c_2(n-1) + c_3(n-1) + c_4 \sum_{j=2}^n t_j + c_5 \sum_{j=2}^n (t_j - 1) + c_5 \sum_{j=2}^n (t_j - 1) + c_7(n-1)$$

Since the while loop exits because i reaches 0, there's one additional test after the j-1 tests $\Rightarrow t_i = j$.

INSERTION-SORT (A, n) > A[1 . . n] cost times

1 for j
$$\leftarrow$$
 2 to n

2 do key \leftarrow A[j]

3 i \leftarrow j - 1

4 while i > 0 and A[i] > key

5 do A[i + 1] \leftarrow A[i]

6 i \leftarrow i - 1

7 A[i + 1] = key

cost times

cost times

cost times

times

cost times

$$c_1 \quad n^{-1}$$

$$c_2 \quad n^{-1}$$

$$c_3 \quad \sum_{j=2}^{n} t_j$$

$$c_4 \quad \sum_{j=2}^{n} (t_j - 1)$$

cost times

$$T(n) = c_1(n-1) + c_2(n-1) + c_3(n-1) + c_4 \sum_{j=2}^n t_j + c_5 \sum_{j=2}^n (t_j - 1) + c_6 \sum_{j=2}^n (t_j - 1) + c_7(n-1)$$

$$\sum_{j=2}^{n} (t_j - 1) = \sum_{j=2}^{n} (j - 1)$$

INSERTION—SORT (A, n)
$$\triangleright$$
 A[1 . . n] cost times

1 for j \leftarrow 2 to n

2 do key \leftarrow A[j]
3 i \leftarrow j - 1
4 while i \triangleright 0 and A[i] \triangleright key

5 do A[i + 1] \leftarrow A[i]
6 i \leftarrow i - 1
7 A[i + 1] = key

cost times

cost n-1

cost times

times

$$c_1 \quad n-1 \\ c_2 \quad n-1 \\ c_3 \quad n-1 \\ c_4 \quad \sum_{j=2}^{n} t_j \\ c_4 \quad \sum_{j=2}^{n} (t_j-1) \\ c_6 \quad \sum_{j=2}^{n} (t_j-1) \\ c_7 \quad n-1$$

$$T(n) = c_1(n-1) + c_2(n-1) + c_3(n-1) + c_4 \sum_{j=2}^n t_j + c_5 \sum_{j=2}^n (t_j - 1) + c_6 \sum_{j=2}^n (t_j - 1) + c_7(n-1)$$

Worst-case: The array is in reverse sorted order. Running time:

$$T(n) = c_1(n-1) + c_2(n-1) + c_3(n-1) + c_4 \left(\frac{n(n+1)}{2} - 1\right) + c_5 \left(\frac{n(n-1)}{2} - 1\right) + c_5 \left(\frac{n(n-1)}{2} - 1\right) + c_6 \left(\frac{n(n-1)}{2} - 1\right) + c_7(n-1)$$

$$= \frac{c_4}{2} + \frac{c_5}{2} + \frac{c_6}{2} \quad n^2 + \left(c_1 + c_2 + c_3 - \left(\frac{c_4}{2} + \frac{c_5}{2} + \frac{c_6}{2}\right) + c_7\right) n - (c_1 + c_3 + c_4 + c_7)$$

$$T(n) = c_1(n-1) + c_2(n-1) + c_3(n-1) + c_4 \sum_{j=2}^n t_j + c_5 \sum_{j=2}^n (t_j - 1) + c_5 \sum_{j=2}^n (t_j - 1) + c_7(n-1)$$

- Can express T (n) as $an^2 + bn + c$ for constants a, b, c
- T(n) is a quadratic function of $n. \Rightarrow T(n) = \Theta(n^2)$

Order of Growth

We will only consider order of growth of running time:

- We can ignore the lower-order terms, since they are relatively insignificant for very large n.
- We can also ignore leading term's constant coefficients, since they are not as important for the rate of growth in computational efficiency for very large n.
- For the insertion-sort algorithm, we just said that best case was linear to n and worst/average case quadratic to n.

Designing Algorithms

- We discussed insertion sort
 - -- Can we design better than n² sorting algorithms?
 - -- We will do so using one of the most powerful algorithm design techniques.

Divide - and - Conquer

- To solve problem P:
 - -- Divide P into smaller problems $P_1, P_2, ..., P_k$.
- -- Conquer by solving the (smaller) subproblems recursively.
- -- Combine the solutions to $P_1, P_2, ..., P_k$ into the solution for P.

Merge-Sort Algorithm

- Using divide-and-conquer, we can obtain a merge-sort algorithm
- -- Divide: Divide the n elements into two subsequences of n/2 elements each.
 - -- Conquer: Sort the two subsequences recursively.
 - -- Combine: Merge the two sorted subsequences to produce the sorted answer.

NA PL STORESTO OF THE STORESTO

Merge-Sort (A, p, r)

- INPUT: a sequence of n numbers stored in array A
- OUTPUT: an ordered sequence of n numbers

```
MERGE-SORT (A, p, r)

1 if p < r

2 then q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGE-SORT(A, p, q)

4 MERGE-SORT(A, q+1, r)

5 MERGE(A, p, q, r)
```


Merge (A, p, q, r)

```
MERGE(A, p, q, r)
1 n_1 \leftarrow q - p + 1
2 n_2 \leftarrow r - q
3 create arrays L[1..n_1 + 1] and R[1..n_2 + 1]
4 for i \leftarrow 1 to n_1
                                                                     20 12
   do L[i] \leftarrow A[p + i - 1]
6 for j \leftarrow 1 to n_2
                                                                     13 11
7 do R[j] \leftarrow A[q+j]
8 L[n_1+1] \leftarrow \infty
                                                                             9
9 L[n_2+1] \leftarrow \infty
10 i ← 1
11 j ← 1
12 for k ← p to r
13
         do if L[i] \leq R[j]
                then A[k] \leftarrow L[i]
14
                       i ← i + 1
15
16
                 else A[k] \leftarrow R[j]
                       j ← j + 1
17
```


20 12

13 11

7 9

2 1


```
20 12
```

13 11

7 9


```
    20
    12

    13
    11

    7
    9

    2
    1

20
12
13
11
7
9
2
```


Time = $\Theta(n)$ to merge a total of n elements (linear time).

Analyzing Merge-Sort

- How long does merge-sort take?
 - -- Bottleneck = merging (and copying).
 - >> merging two files of size n/2 requires n comparisons
 - -- T(n) = comparisons to merge sort n elements.
 - >>to make analysis cleaner, assume n is a power of 2

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ 2T(n/2) + \Theta(n) & \text{otherwise} \end{cases}$$

$$Sorting both halves & merging$$

- •Claim. $T(n) = n \log_2 n$
 - -- Note: same number of comparisons for ANY file.
 - >> even already sorted

A PY 2 Y WAY OF THE PARTY OF TH

Recursion tree

THE THE PARTY OF T

Recursion tree

Solve
$$T(n) = 2T(n/2) + cn$$
, where $c > 0$ is constant.
$$T(n)$$

$$T(n/2)$$
 Cn $T(n/2)$

Conclusions

- Θ (nlgn) grows more slowly than $\Theta(n^2)$
- Therefore, merge sort asymptotically beats insertion sort in the worstcase.
- In practice, merge sort beats insertion sort for
 n > 30.

