

銀河系 OB星的快篩法

作者:洪辰亞

指導老師:李文禮老師

黃國斌老師

大綱

結果與結論

研究方法

動機與目的

摘要

Εύρηκα

摘要

簡單來說

紅外光/可見光星等值

Εύρηκα

研究動機及目的

研究動機

銀河系形狀

造父變星

Science 雜誌

研究目的

分析光譜特徵 建立快篩法

Εύρηκα

研究方法

資料庫

Εύρηκα

已知OB星

Tycho

GOSSS

未知星

Gaia

Panstarrs

APASS

ALLWISE

Dist

驗證用

COSSC

研究使用之濾鏡、波段

濾鏡名稱	波段(nm)	濾鏡名稱	波段(nm)
В	400-500	Н	1500-2000
V	500-600	K	2000-3000
g	400-500	W1	3000-4000
r	600-700	W2	4000-8000
i	750-1000	W3	8000-15000
J	1000-1500	W4	15000-30000

EUPNKO

研究工具

Εύρηκα

資料庫

VisieR

Gaia

Pan-Starrs

程式

Python

TopCat

數據處理

Notepad

Excel

輸入A資料庫的星點位置

輸入A資料庫的星點位置

導入B資料庫的星點位置

輸入A資料庫的星點位置

導入B資料庫的星點位置

設定適當的範圍

輸入A資料庫的星點位置

導入B資料庫的星點位置

設定適當的範圍

得出候選星

Εύρηκα

Εύρηκα

有光譜資料的OB星

有光譜資料 的OB星

已知OB星分析—繪圖

太陽為中心 -5000 5000 雙圓錐形?

Panstarrs 星等資料缺失

問題-Panstarrs

解釋

Εύρηκα

有光譜資料的OB星

有光譜資料 的OB星

有光譜、距離資料 的OB星

SED(光譜能量分布)

Εύρηκα

模仿SED圖

Εύρηκα

絕對星等值

星等SED圖

找出特徵

機器學習法

數據正規化 規整至[0,1]

全連接 神經網路

Εύρηκα

與路徑上的權重相乘

建立模型

Εύρηκα

正規化赤經、赤緯

正規化 絕對星等值

PyTorch 套件

全連接 神經網路

適合的訓練速度

訓練模型

消光效應

- Εύρηκα
- 消光效應與恆星及觀測者距離成一定關係
- 已知OB星分布接近觀測者 >> 不考慮

何謂消光

Εύρηκα

研究結果與結論

恆星光譜特徵分類

Εύρηκα

模型正確率

- · 在OB星分辨上尚有很大的進步空間
- ·非OB星分辨可達7成7

	OB星	非OB星		OB星	非OB星
正確數	6587	26443	正確率	25.67%	77.52%
錯誤數	19075	7670	錯誤率	74.33%	22.48%

機器學習模型正確率(資料來源:星等)

- · OB星判別正確率高
- 細部特徵放大

	OB星	非OB星		OB星	非OB星
正確數	3606	9206	正確率	72.11%	98.40%
錯誤數	1395	150	錯誤率	27.89%	0.60%

機器學習模型正確率(資料來源:星等差)

- · OB星判別正確率提高
- 非OB星判別正確率降低

	OB星	非OB星		OB星	非OB星
正確數	3242	9137	正確率	79.21%	91.37%
錯誤數	851	863	錯誤率	10.79%	8.63%

銀河OB星分布與快篩法適用範圍之關係

靠近太陽的 銀盤面分布 適用接近 太陽之範圍 分析消光 與距離關係

х-у

y-z

X-Z

討論

Εύρηκα

- 以機器學習辨識不同光譜型的恆星
- · Gaia 距離參數的準確度
- 以造父變星或OB星描繪銀河系形狀之差異

Εύρηκα

感謝

感謝

- 指導老師 黃國斌老師
- 專題老師 李文禮老師
- 班級導師 高君陶老師 姚志鴻老師
- 默默付出的父母
- 一起努力的地科組好夥伴
- 全體數理資優班同學們

Εύρηκα

參考資料

Thesis

- Εύρηκα
- G. A. Gontcharov (2007). OB stars in the Tycho-2 and 2MASS Catalogues. Astronomy Letters, Vol. 34, No. 1, pp. 7–16.
- HAI-JUN TIAN, PRASHANSA GUPTA, BRANIMIR SESAR, HANS-WALTER RIX, NICOLAS F. MARTIN, CHAO LIU, BERTRAND, GOLDMAN, IMANTS PLATAIS, ROLF-PETER KUDRITZKI, CHRISTOPHER Z. WATERS(2017). A GAIA-PS1-SDSS (GPS1) PROPER MOTION CATALOG COVERING 3/4 OF THE SKY. (Unpublished doctoral dissertation).
- Dorota M. Skowron, Jan Skowron, Przemek Mr´oz, Andrzej Udalski, Paweł Pietrukowicz, Igor Soszy´nski, Michał K. Szyma´nski, Radosław Poleski, Szymon Kozłowski, Krzysztof Ulaczyk, Krzysztof Rybicki, Patryk Iwanek(2019). A three-dimensional map of the Milky Way using classical Cepheid variable stars. Science, Vol. 365, Issue 6452, pp. 478-482.
- V.V. Bobylev1 and A.T. Bajkova(2019). Galactic Rotation Based on OB Stars from the Gaia DR2 Catalogue.
 Astronomy Letters, Vol. 45, No 6, pp. 331–340.
- Ledrew, Glenn(2001). The Real Starry Sky. Journal of the Royal Astronomical Society of Canada, Vol. 95, p.32
- Cutri, R. M.(2013). VizieR Online Data Catalog: AllWISE Data Release. VizieR On-line Data Catalog: II/328.
- Henden, Arne A., Levine, Stephen, Terrell, Dirk, Welch, Douglas L.(2015). APASS The Latest Data Release.
 American Astronomical Society, AAS Meeting #225, id.336.16
- Bailer-Jones, C. A. L., Rybizki, J., Fouesneau, M., Mantelet, G., Andrae R. (2018). Estimating Distance from Parallaxes. IV. Distances to 1.33 Billion Stars in Gaia Data Release 2. The Astronomical Journal, Volume 156, Issue 2, article id. 58, 11 pp.

Εύρηκα

謝謝各位

