LUNGHELP

OPTIMIZANDO EL DIAGNÓSTICO PULMONAR CON MULTIPLES MODELOS DE IA

Group 9 – Hermanos Pedrosa

AGENDA

Objetivo
Solución con Al
Aplicación

20XX

TEAM

Ezequiel Rivero, PhD

Data Scientist

Jordi Solé

Senior Data Scientist

Jan Solé

Data Engineering Student

Santiago Alajarín

Clinical Trial Manager

Pablo Pertusa

Data Science Student

OBJETIVO

Ayudar a pacientes y profesionales sanitarios por igual

PORQUE ESTAN IMPORTANTE?

La Fibrosis Pulmonar Idiopática (FPI) se define como un tipo específico de neumonía intersticial fibrosante crónica y progresiva, limitada al pulmón, de causa desconocida

Baja incidencia – (<5casos /10.000habitantes) 7.000-12.000 pacientes en España l

Lentitud en el diagnostico – entre 6 meses y 2 años desde el inicio de síntomas²

Mal pronóstico (peor que en la mayoría de tipos de cáncer) supervivencia media entre 2-5 años³

Por todo lo anterior, la FPI supone para el clínico un auténtico reto y su sospecha clínica y diagnóstico precoz resultan de especial relevancia⁴

NUESTRA SOLUCIÓN

LungHelp es una app que <u>se integra en los sistemas del hospital</u> para:

AHORRO DETIEMPO

Acelerar el diagnostico en fases iniciales con IA

INTEGRACIÓN

Recoger automáticamente los datos de la historia médica

MEJOR PRONÓSTICO

Diagnóstico precoz con IA que mejora el pronóstico del paciente

Soporte al profesional sanitario acelerando el diagnóstico sin requerir tiempo adicional gracias a la integración en el sistema del hospital

Paciente

Mejor pronóstico para el paciente gracias a un diagnóstico precoz

Negocio

Software as a Service (SaaS) con un modelo de suscripción con constantes mejoras

SOLUCIÓN CON INTELIGENCIA ARTIFICIAL

Solución hecha por personas para personas

INPUT DATA (KAGGLE) 5

Información • Sexo • Sexo • Fumador/Ex-fumador/No fumador • FVC – Espirometría • FVC – Espirometría

AI SOLUTION

MÁS INFORMACIÓN EN EL README (GITHUB)

- Descripción del proyecto
- Tutorial de instalación y deployment

T README

Asistente de Diagnóstico para Fibrosis Pulmonar Idiopática

Haz clic en la imagen a continuación para ver una demostración de la aplicación en YouTube:

Descripción del Proyecto

Los médicos clínicos enfrentan una alta carga de trabajo al tratar de identificar y manejar pacientes con posible enfermedades pulmonares como la Fibrosis Pulmonar Idiopática (FPI). Este proyecto tiene como objetivo proporcionar una herramienta basada en data-driven decision-making que los ayude a tomar decisiones más y fundamentadas. La herramienta puede analizar datos clínicos e imágenes para determinar si un paciente debe

- · Ser seguido más de cerca.
- · Derivado a un especialista.
- · Continuar con el seguimiento habitual.

Al utilizar esta solución, se busca optimizar el tiempo de diagnostico, priorizar los casos más urgentes y mejora manejo clínico de los pacientes.

o Objetivo del Proyecto

- Asistir a los médicos en la priorización de pacientes mediante análisis de datos clínicos y de imágenes.
- · Identificar patrones sutiles que indiquen mayor riesgo de FPI.
- Generar recomendaciones basadas en el riesgo para apoyar la toma de decisiones clínicas.
- Mejorar la eficiencia y precisión en la identificación de pacientes que necesitan seguimiento intensivo o derivación.

🗱 Enfoque y Solución

La solución implementada es una aplicación web construida con **Gradio** que integra modelos de aprendizaje profundo y machine learning para analizar imágenes y datos clínicos del paciente.

K Enfoque y Solución

La solución implementada es una aplicación web construida con **Gradio** que integra modelos de a profundo y machine learning para analizar imágenes y datos clínicos del paciente.

***** Componentes Clave

- Modelos de Visión por Computadora Pre-entrenados: Se utilizaron modelos como ResNet34,
 DenseNet121 para extraer características de las imágenes de tomografías computarizadas.
- Modelo LightGBM: Un modelo de LightGBM se entrenó utilizando las probabilidades de los m características clínicas para predecir la probabilidad de FPI.
- Llama 3 Model: Modelo LLM que se usa para agrupar todos los outputs en un mensaje en lengue paciente y medico se entiendan.
- Generación de Animaciones: Se creó la clase Animatescans para generar animaciones GIF de facilitando la visualización dinámica de las imágenes.

Estructura del Proyecto

- gradio_app.py : Script principal que ejecuta la aplicación Gradio.
- utils.py: Módulo que contiene la clase Animatescans para procesar las imágenes DICOM y ganimaciones.
- models/: Carpeta que contiene los modelos pre-entrenados y el modelo LightGBM.
- data/: Carpeta con datos de muestra de pacientes.
- dicom/: Directorio con las imágenes DICOM de los pacientes, organizadas por ID de paciente.
- animations/: Carpeta donde se guardan las animaciones GIF generadas.

Requisitos Previos

- Python 3.8 o superior.
- Conda o Miniconda instalado en el sistema.

Instalación

Clonar el repositorio:

git clone https://github.com/jordisc97/team9_boehringer.git
cd team9 boehringer

Crear y activar el entorno conda:

conda env create -f environment.yml

APP PARA PERSONAL MEDICO

De datos a acciones

APP

VISIÓN GENERAL

Centralización de datos

Priorización rápida de los peores diagnósticos

Listado de pacientes

Patient	Age	Weeks	FVC	Sex	SmokingStatus	Min_FVC	Max_FVC	Prob_IPF
ID00358637202295388077032	65.0	62	2151.0	1	2	1823.0	2151.0	100%
ID00111637202210956877205	72.0	36	2083.0	1	2	2083.0	2419.0	99%
ID00048637202185016727717	70.0	61	1370.0	2	0	1370.0	1466.0	93%
ID00015637202177877247924	71.0	69	2585.0	1	2	2585.0	3120.0	93%
ID00335637202286784464927	74.0	56	2467.0	1	2	2467.0	3043.0	86%
ID00290637202279304677843	75.0	51	1814.0	1	0	1814.0	2315.0	86%
ID00255637202267923028520	62.0	55	1607.0	2	0	1315.0	1647.0	84%
ID00273637202271319294586	60.0	60	2962.0	1	2	2708.0	3020.0	80%
ID00124637202217596410344	60.0	100	3146.0	1	2	3146.0	3661.0	78%
ID00275637202271440119890	62.0	102	1648.0	2	0	1481.0	2167.0	64%
ID00241637202264294508775	66.0	56	1188.0	2	0	1188.0	1399.0	63%
ID00264637202270643353440	76.0	51	2021.0	2	0	1931.0	2239.0	17%
ID00082637202201836229724	49.0	79	2875.0	2	5	2837.0	2975.0	11%
ID00115637202211874187958	77.0	52	2446.0	1	2	2134.0	2548.0	11%
ID00400637202305055099402	55.0	85	3874.0	1	2	3797.0	4014.0	10%
ID00197637202246865691526	65.0	57	3283.0	1	5	1941.0	3399.0	9%
ID00218637202258156844710	81.0	75	2600.0	1	2	2439.0	2888.0	7%
ID00117637202212360228007	68.0	60	3037.0	1	5	2788.0	3037.0	7%

VISIÓN ESPECIFICA

Probabilidad que el paciente desarrolle la enfermedad

Explicación de los resultados en lenguaje natural

Animación del TAC

CV + LGBM

LLM

TAC GIT

SIGUIENTES PASOS

- Integrar las visiones generales y específicas en un enfoque unificado.
- 2. Ajustar el modelo de visión por computadora (CV) para delimitar con precisión las zonas afectadas.
- 3. Obtener más imágenes para mejorar el entrenamiento del modelo.
- 4. Hacer más fine-tunning al LLM con más tiempo para conseguir informes más

SOURCES

- [1] M. Demetds, A.U. Wells, J.M. Antó, et al. Interstitial lung diseases: An epidemiological overview. Eur Respir J, 18 (2001), pp. 2S-16S
- [2] Early diagnosis of idiopathic pulmonary fibrosis. J. Ancocheaa, , A. Xaubetb. Servicio de Neumología, Hospital Universitario de la Princesa, Madrid, España. Servicio de Neumología, Hospital Clinic, Barcelona, España. Elsevier Vol. 40. Núm. 3. Páginas 119-120
- [3] K.R. Flaherty, A.C. Andrei, T.E. King, et al. Idiopathic interstitial pneumonia: Do community and academic physicians agree on diagnosis?. Am J RespirCrit Care Med, 175 (2007), pp. 1054-1060
- [4] A. Xaubet, J. Ancochea, E. Bollo, et al. Normativa sobre el diagnóstico y tratamiento de la fibrosis pulmonar idiopática. Arch Bronconeumol, 49 (2013), pp. 319-320
- [5] https://www.kaggle.com/competitions/osic-pulmonary-fibrosis-progression/data

MUCHAS GRACIAS!

Jordi Solé
Ezequiel Rivero
Pablo Pertusa
Jan Solé
Santiago Alajarín

