#### Modeling of Hydraulics Systems

Dr. Ing. Rodrigo Gonzalez

rodralez@ingenieria.uncu.edu.ar

Control y Sistemas

Facultad de Ingeniería, Universidad Nacional de Cuyo



#### Summary

- Introduction
  - Introduction to Hydraulics and Pneumatics Systems
- Conservation of mass
  - Mass Density
  - Pressure
  - Conservation of mass
- Fluid capacitance and resistance
  - Fluid systems in terms of electrical circuits
  - Fluid symbols and sources
  - Steady-state flow-pressure relation for a centrifugal pump
  - Capacitance relations
  - Fluid Resistance

#### Introduction

#### Introduction to Hydraulics and Pneumatics Systems

- A fluid might be either a liquid or a gas.
- Fluid systems can be divided into hydraulics and pneumatics.
- Hydraulics is the study of systems in which the fluid is incompressible.
- Density stays approximately constant over a range of pressures.
- Pneumatics is the study of systems in which the fluid is compressible.
- Hydraulics and pneumatics share a common modeling principle: conservation of mass.
- Type of hydraulics and pneumatics systems:
  - Hydraulic and pneumatic actuators to provide forces that supplement the passive spring and damping elements.
  - Liquid-level systems.

#### Conservation of mass Mass Density

- For incompressible fluids, conservation of mass is equivalent to conservation of volume, because the fluid density is constant.
- If we know the mass density and the volume flow rate, we can compute the mass flow rate.
- Mass density  $\rho$ . The units for mass density are slug/ft3 and kg/m3 .
- The mass density of fresh water near room temperature is 1.94 slug/ft3, or 1000 kg/m3.
- Mass flow rate  $q_m$ . The FPS and SI units for mass flow rate are slug/sec and kg/s, respectively.
- **Volume flow rate**  $q_v$ . The units for volume rate are ft3/sec and m3/s, respectively.
- $q_m = \rho \cdot q_v$ .

### Conservation of mass Pressure

- Pressure is the force per unit area that is exerted by the fluid.
- The FPS and SI units of pressure are lb/ft2 and the Pascal (1 Pa = 1 N/m2), respectively.
- At sea level near room temperature, atmospheric pressure, usually abbreviated pa, is 14.7 psi (2117 lb/ft2) or 1.0133x105 pa.
- Gage pressure is the pressure difference between the absolute pressure and atmospheric pressure, and is often abbreviated as psig.
- Hydrostatic pressure is the pressure that exists in a fluid at rest. It is caused by the weight of the fluid.
- For example, the hydrostatic pressure at the bottom of a column of fluid of height h is  $\rho$  g h. If the atmospheric pressure above the column of liquid is pa, then the total pressure at the bottom of the column is  $\rho$  g h + pa.

### Conservation of mass Conservation of mass

For a container holding a **mass of fluid** m, the time rate of change of mass  $\dot{m}$  in the container must equal the total mass inflow rate minus the total mass outflow rate. That is,

$$\dot{m} = q_{mi} - q_{mo} \tag{1}$$

where  $q_{mi}$  is the mass inflow rate and  $q_{mo}$  is the mass outflow rate.

The fluid mass *m* is related to the container volume *V* by

$$m = \rho V \tag{2}$$

For an incompressible fluid,  $\rho$  is constant, and thus  $\dot{m} = \rho \dot{V}$ .

Let  $q_{vi}$  and  $q_{vo}$  be the total volume inflow and outflow rates. Thus,  $q_{mi} = \rho q_{vi}$ , and  $q_{mo} = \rho q_{vo}$ . Substituting these relationships into Eq. 1 gives

$$\rho \dot{V} = \rho q_{vi} - \rho q_{vo} \tag{3}$$

$$\dot{V} = q_{vi} - q_{vo} \tag{4}$$

This is a statement of conservation of volume for the fluid, and it is equivalent to conservation of mass, Eq. 1, when the fluid is incompressible.

### Fluid capacitance and resistance Fluid systems in terms of electrical circuits

Table 7.2.1 Analogous fluid and electrical quantities.

| Fluid quantity             | Electrical quantity       |
|----------------------------|---------------------------|
| Fluid mass, m              | Charge, Q                 |
| Mass flow rate, $q_m$      | Current, i                |
| Pressure, p                | Voltage, v                |
| Fluid linear resistance, R | Electrical resistance, R  |
| $R = p/q_m$                | R = v/i                   |
| Fluid capacitance, C       | Electrical capacitance, C |
| C = m/p                    | C = Q/v                   |
| Fluid inertance, I         | Electrical inductance, L  |
| $I = p/(dq_m/dt)$          | L = v/(di/dt)             |

# Fluid capacitance and resistance Fluid symbols and sources







$$p_1$$
  $p_2$   $p_2$ 

 $p_s = \underbrace{p_2} - p_1$ 

Ideal pressure source



Ideal flow source



Pump

### Fluid capacitance and resistance

#### Steady-state flow-pressure relation for a centrifugal pump

- $q_m$  is the mass flow rate produced by the pump when the pressure difference across the pump is  $\Delta p$ .
- When the outlet pressure is greater than the inlet pressure,  $\Delta p > 0$ .
- Curves depend on the pump speed, labeled s1, s2, and so on.
- To determine the operating condition of the pump for a given speed, we need the load connected to the pump outlet.



# Fluid capacitance and resistance Capacitance relations

Fluid capacitance is the relation between stored fluid mass and the resulting pressure caused by the stored mass. At a particular reference point (pr, mr) the slope is C, where

$$C = \left. \frac{dm}{dp} \right|_{p=pr} \tag{5}$$

Thus, fluid capacitance C is the ratio of the change in stored mass to the change in pressure.



### Fluid capacitance and resistance Capacitance relations

$$m = \rho \cdot V = \rho \cdot A \cdot h$$
, liquid mass in the tank (6)

$$p = \rho \cdot g \cdot h$$
 , pressure by liquid mass (7)  
 $p_t = \rho \cdot g \cdot h + pa$ , total pressure at the botton of the tank (8)

 $p_t = \rho \cdot g \cdot h + pa$ , total pressure at the botton of the tank



## Fluid capacitance and resistance Fluid Resistance

The mass flow rate  $\hat{q}_m$  through a resistance is related to the pressure difference  $\hat{p}$  across the resistance.

The fluid resistance R is define as,

$$R_{r} = \frac{d\hat{p}}{d\hat{q}_{m}} \bigg|_{\hat{q}_{m} = \hat{q}_{mr}} \tag{9}$$



## Fluid capacitance and resistance Fluid Resistance

An approximate linear model of the pressure-flow rate relation using Taylor series expansion to linearize the expression,

$$\hat{p} = p_r + \left(\frac{d\hat{p}}{d\hat{q}_m}\right)(q_m - q_{mr}) = p_r + R_r(q_m - q_{mr})$$
(10)



## Fluid capacitance and resistance Fluid Resistance

$$R_r = \frac{\text{small pressure change}}{\text{small change in mass flow rate}}$$
 (11)

In a limited number of cases, such as pipe flow under certain conditions, the relation of  $\hat{p}$  versus  $\hat{q}_m$  is linear so that  $\hat{p} = R\hat{q}_m$ .



#### **Bibliography**

• William Palm III. Systems Dynamics. Third Edition. McGraw-Hill. 2014. Chapter 7, Part I.