Reinforcement learning (cont)

- Deep Q-Net works (PQN) (still value-Based)
 - what it door: using Neural Namorks to approximate the a function (instad of a table which breaks down in big / continuous envoirments)
 - · Key inoration (2015, prophine): Apply deep learning + a-function)
 - · Ex: instrad of storing all possible board states in memory
 on atable (action is states 20 Grid) which is impossible

 The DRN learns affrahms of the game to predict Q values
 - . 50 Q-learning : tabular (small problems), DON = alrarning + drep NN (big 1 complex problems)
 - Policy Gradients (Poicly Based)
 - What it dosp: Directly learn Mrs poilicy Ti(als) (Probability

 Of taking each action in a giren state)
 - . Use gradient asent to adjust policy parameters to maximize expected award
 - Example: in a continous action (like steering angle for car) its
 easier to directly learn "how much to them" instead of ossigning Q-halung
 to infinitely many actions
 - Actor Critic Melhod (combines bolk)
 - . What it doss: actor = [parks policy (decides which action to take critic = learns the ralur function (estimates how good the action aras).
 - · They work together: actor suggests action a critic judges it and gives
 Feedback (9002 orbas) & Actor updates policy based on This feedback
 - · Why usefull: more stable that PG, your for continual complex action spaces

· Ex: A3L, ppo