Tutorato Architettura degli Elaboratori Modulo 1 Lezione 3

Francesco Pelosin

4 Novembre 2019

1 Algebra di Boole

L'aritmetica binaria è stata adottata perché i bit sono rappresentabili naturalmente tramite elementi elettronici, codificando lo 0 con uno stato di potenziale elettrico basso e l'1 con uno stato di potenziale elettrico alto. Il funzionamento dei circuiti elettronici può essere modellato tramite l'algebra di Boole dove:

- Valore logico False $(0) \rightarrow$ livello di potenziale basso.
- $\bullet\,$ Valore logico True (1) \to livello di potenziale alto.

Le operazioni logiche dell'algebra Booleana sono:

- Somma OR (+)
- Prodotto AND (·)
- Inversione NOT (\sim)

		A + B			$A \cdot B$		
0	0	0	0	0	0	A	$\sim A$
0	1	1	0	1	0	0	1
1	0	1	1	0	0	1	1 0
1	1	0 1 1 1	1	1	0 0 0 1		

Infine ricordiamo le proprietà dell'algebra di Bool:

• Identità:

$$A + 0 = A$$
$$A \cdot 1 = A$$

• Nullo:

$$A + 1 = 1$$
$$A \cdot 0 = 0$$

• Idempotente:

$$A + A = A$$
$$A \cdot A = A$$

• Inverso:

$$A + (\sim A) = 1$$
$$A \cdot (\sim A) = 0$$

• Commutativa:

$$A + B = B + A$$
$$A \cdot B = B \cdot A$$

• Associativa:

$$A + (B + C) = (A + B) + C$$
$$A \cdot (B \cdot C) = (A \cdot B) \cdot C$$

• Distributiva:

$$A \cdot (B+C) = (A \cdot B) + (A \cdot C)$$
$$A + (B \cdot C) = (A+B) \cdot (A+C)$$

• DeMorgan:

$$\sim (A+B) = (\sim A) \cdot (\sim B)$$
$$\sim (A \cdot B) = (\sim A) + (\sim B)$$

1.1 Esercizi

Verificare le seguenti uguaglianze Booleane:

1.
$$A + (B \cdot C) = (A + B) \cdot (A + C)$$

2.
$$\sim (A + C \cdot D + A \cdot (\sim B)) = \sim A \cdot (\sim C + \sim D)$$

3.
$$A \cdot (B+C) + \sim (A+\sim C) = A \cdot B + C$$

Semplificare le seguenti espressioni Booleane:

4.
$$F = A \cdot (B+C) + \sim B \cdot (A+C)$$

5.
$$F = \sim (\sim (A + B) \cdot C)$$

6.
$$F = \sim A \cdot B + A \cdot \sim B + \sim (A + B \cdot C)$$

1.2 Soluzioni

1. Verifichiamo l'uguglianza confrontando le tablelle di verità di $X=A+(B\cdot C)$ e $Y=(A+B)\cdot (A+C)$:

				(X)			(Y)
A	В	C	$\mathbf{B} \cdot C$	$(A + B \cdot C)$	A+B	A+C	$(A+B)\cdot (A+C)$
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

Essendo la tabella di verità di X uguale a quella di Y possiamo affermare che l'uguaglianza X=Y è vera. Verifichiamo ora l'uguaglianza applicando le proprietà dell'algebra di Bool:

$$\begin{split} Y &= (A+B) \cdot (A+C) \overset{Distributiva}{=} A \cdot A + A \cdot C + B \cdot A + B \cdot C \overset{Idempotenza}{=} \\ &= A + A \cdot C + B \cdot A + B \cdot C \overset{Distributiva}{=} A \cdot (1+C+B) + B \cdot C \overset{Nullo}{=} \\ &= A \cdot 1 + B \cdot C \overset{Identità}{=} A + B \cdot C = X \end{split}$$

2. Verifichiamo l'uguglianza confrontando le tablelle di verità di:

$$X = \sim (A + C \cdot D + A \cdot (\sim B))$$

$$Y = \sim A \cdot (\sim C + \sim D)$$

							(X)
A	В	С	D	$C \cdot D$	$A \cdot (\sim B)$	$A + C \cdot D + A \cdot (\sim B)$	$\sim (A + C \cdot D + A \cdot (\sim B))$
0	0	0	0	0	0	0	1
0	0	0	1	0	0	0	1
0	0	1	0	0	0	0	1
0	0	1	1	1	0	1	0
0	1	0	0	0	0	0	1
0	1	0	1	0	0	0	1
0	1	1	0	0	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	0	1	1	0
1	0	0	1	0	1	1	0
1	0	1	0	0	1	1	0
1	0	1	1	1	1	1	0
1	1	0	0	0	0	1	0
1	1	0	1	0	0	1	0
1	1	1	0	0	0	1	0
1	1	1	1	1	0	1	0

						(Y)
A	В	С	D	$\sim A$	$\sim C + \sim D$	$\sim A \cdot (\sim C + \sim D)$
0	0	0	0	1	1	1
0	0	0	1	1	1	1
0	0	1	0	1	1	1
0	0	1	1	1	0	0
0	1	0	0	1	1	1
0	1	0	1	1	1	1
0	1	1	0	1	1	1
0	1	1	1	1	0	0
1	0	0	0	0	1	0
1	0	0	1	0	1	0
1	0	1	0	0	1	0
1	0	1	1	0	0	0
1	1	0	0	0	1	0
1	1	0	1	0	1	0
1	1	1	0	0	1	0
1	1	1	1	0	0	0

le proprietà dell'algebra di Bool:

$$\begin{split} X = & \sim \left(A + C \cdot D + A \cdot (\sim B)\right) \stackrel{Distributiva}{=} \sim \left(A \cdot (1 + \sim B) + C \cdot D\right) \stackrel{Nullo}{=} \\ = & \sim \left(A \cdot 1 + C \cdot D\right) \stackrel{Identità}{=} \sim \left(A + C \cdot D\right) \stackrel{DeMorgan}{=} \sim A \cdot \sim \left(C \cdot D\right) \stackrel{DeMorgan}{=} \\ = & \sim A \cdot \left(\sim C + \sim D\right) = Y \end{split}$$

3. Verifichiamo l'uguglianza confrontando le tablelle di verità di:

$$X = A \cdot (B + C) + \sim (A + \sim C)$$

$$Y = A \cdot B + C$$

							(X)
A	В	С	B+C	$A \cdot (B + C)$	$A+\sim C$	$\sim (A + \sim C)$	$A \cdot (B+C) + \sim (A+\sim C)$
0	0	0	0	0	1	0	0
0	0	1	1	0	0	1	1
0	1	0	1	0	1	0	0
0	1	1	1	0	0	1	1
1	0	0	0	0	1	0	0
1	0	1	1	1	1	0	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	0	1

				(Y)
A	В	С	$A \cdot B$	$A \cdot B + C$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	0
0	1	1	0	1
1	0	0	0	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Essendo la tabella di verità di X uguale a quella di Y possiamo affermare che l'uguaglianza X=Y è vera. Verifichiamo ora l'uguaglianza applicando le proprietà dell'algebra di Bool:

$$\begin{split} X &= A \cdot (B+C) + \sim (A+\sim C) \stackrel{Distributiva}{=} A \cdot B + A \cdot C + \sim (A+\sim C) \stackrel{DeMorgan}{=} \\ &= A \cdot B + A \cdot C + \sim A \cdot \sim \sim C = A \cdot B + A \cdot C + \sim A \cdot C \stackrel{Distributiva}{=} \\ &= A \cdot B + C \cdot (A+\sim A) \stackrel{Inverso}{=} A \cdot B + C \cdot 1 \stackrel{Identita}{=} A \cdot B + C = Y \end{split}$$

4. Seplifichiamo $F = A \cdot (B+C) + \sim B \cdot (A+C)$ usando le proprietà dell'algebra di Bool:

$$\begin{split} F &= A \cdot (B+C) + \sim B \cdot (A+C) \overset{Distributiva}{=} \\ &= A \cdot B + A \cdot C + \sim B \cdot A + \sim B \cdot C \overset{Distributiva}{=} \\ &= A \cdot (B+\sim B) + A \cdot C + \sim B \cdot C \overset{Inverso}{=} \\ &= A \cdot 1 + A \cdot C + \sim B \cdot C \overset{Distributiva}{=} \\ &= A \cdot (1+C) + \sim B \cdot C \overset{Nullo}{=} \\ &= A + \sim B \cdot C \end{split}$$

5. Seplifichiamo $F = \sim (\sim (A+B) \cdot C)$ usando le proprietà dell'algebra di Bool:

$$F = \sim (\sim (A+B) \cdot C) \stackrel{DeMorgan}{=}$$

$$= \sim (\sim A \cdot \sim B \cdot C) \stackrel{Distributiva}{=}$$

$$= \sim \sim A + \sim \sim B + \sim C \stackrel{Distributiva}{=}$$

$$= A + B + \sim C$$

6. Seplifichiamo $F=\sim A\cdot B+A\cdot \sim B+\sim (A+B\cdot C)$ usando le proprietà dell'algebra di Bool:

$$\begin{split} F &= {} \sim A \cdot B + A \cdot \sim B + \sim (A + B \cdot C) \overset{DeMorgan}{=} \\ &= {} \sim A \cdot B + A \cdot \sim B + \sim A \cdot \sim (B \cdot C) \overset{DeMorgan}{=} \\ &= {} \sim A \cdot B + A \cdot \sim B + \sim A \cdot (\sim B + \sim C) \overset{Distributiva}{=} \\ &= {} \sim A \cdot B + A \cdot \sim B + \sim A \cdot \sim B + \sim A \cdot \sim C \overset{Distributiva}{=} \\ &= A \cdot \sim B + A \cdot (B + \sim B + \sim C) \overset{Inverso}{=} \\ &= A \cdot \sim B + \sim A \cdot (1 + \sim C) \overset{Nullo}{=} \\ &= A \cdot \sim B + \sim A \cdot 1 \overset{Identità}{=} \\ &= A \cdot \sim B + \sim A \overset{Distributiva}{=} \\ &= (A + \sim A) \cdot (\sim B + \sim A) \overset{Inverso}{=} \\ &= \sim B + \sim A \end{split}$$

2 Forme canoniche e Minimizzazione

Ogni funzione logica può essere rappresentata come tabella di verità o come equazione logica. È possibile ricavare quest'ultima a partire dalla tabella di verità tramite l'uso degli operatori AND, OR e NOT. Un'equazione logica può essere espressa nei seguenti due modi:

- Somma di prodotti: per ogni entry uguale ad 1 dell'output della tabella di verità generiamo un prodotto (mintermine) degli input, dove gli input uguali a 0 appaiono negati. Infine sommiamo tutti i prodotti ottenuti.
- Prodotto di somme: per ogni entry uguale ad 0 dell'ouput della tabella di verità generiamo una somma (maxtermine) degli input, dove gli input uguali a 1 appaiono negati. Infine moltiplichiamo tutti le somme ottenute.

2.1 Mappe di Karnaugh

Per minimizzare a mano funzioni di poche variabili, si possono rappresentare le tabelle di verità con le mappe di Karnaugh in cui:

- Ogni quadrato (cella) della mappa individua una combinazione di variabili in input.
- Il valore contenuto in una cella corrisponde al valore in output per quella particolare combinazione di variabili di input.
- Le combinazioni delle variabili in input che etichettano i due assi delle mappe differiscono di un singolo bit tra combinazioni consecutive.

Infine, raggruppando i valori 1 delle mappe di Karnaugh è possibile individuare facilmente insiemi di variabili DON'T CARE. Ricordiamo che i gruppi devono essere composti da $2^i \forall i \geq 0$ valori uguali uguali ad 1.

2.2 Esercizi

Per ogni esercizio definire la tabella delle verità della funzione logica, riportare la forma canonica in somme di prodotti e prodotti di somme e minimizzare attraverso le Mappe di Karnaugh.

- 1. Si vuole costruire un circuito combinatorio con le seguenti caratteristiche:
 - Tre input A, B, C e un output Y.
 - Funzione di output così definita: $Y=A\iff C=0, Y=B\iff C=1.$
- 2. Si vuole costruire un circuito combinatorio con le seguenti caratteristiche:
 - Quattro input A, B, C, D e un output Y.
 - Dato N = ABCD numero binario a quattro cifre, definiamo Y come segue: Y = 1

 N contiene un numero di 1 maggiore o uguale a 2, 0 altrimenti.

- 3. Si vuole costruire un circuito combinatorio con le seguenti caratteristiche:
 - Quattro input A, B, C, D e un output Y.
 - Dato N = ABCD numero binario a quattro cifre espresso in complemento a due, definiamo Y come segue: $Y = 1 \iff N \le -2$, 0 altrimenti.
- 4. Rappresentare le precedenti funzioni logiche con un multiplexer.

2.3 Soluzioni

1. Cominciamo scrivendo la tabella di verità della funzione:

A	В	$\mid C \mid$	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Per prima cosa esprimiamo l'equazione logica associata alla tabella di verità nelle due forme canoniche (somma di prodotti e prodotto di somme):

$$Y_{SP} = \sim A \cdot B \cdot C + A \cdot \sim B \cdot \sim C + A \cdot B \cdot \sim C + A \cdot B \cdot C$$

$$Y_{PS} = (A + B + C) \cdot (A + B + \sim C) \cdot (A + \sim B + C) \cdot (\sim A + B + \sim C)$$

Procediamo ora a minimizzare le due funzioni tramite mappe di Karnaugh:

		BC					
		00	01	11	10		
A	0	0	0	1	0		
А	1	1	0	1	1		

Osservando i raggruppamenti possiamo minimizzare la funzione come segue:

•
$$Y_{SP} = A \cdot \sim C + B \cdot C$$

Osservando i raggruppamenti possiamo minimizzare la funzione come segue:

•
$$Y_{PS} = (A+C) \cdot (B+\sim C)$$

Si lascia agli studenti come esercizio il compito di disegnare i circuiti corrispondenti.

2. Cominciamo scrivendo la tabella di verità della funzione:

A	В	С	D	Y
0	0	0	0	0
0	0	0	1	0
0	0	1	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	0
0	0	1	1	1
0	1 1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Per prima cosa esprimiamo l'equazione logica associata alla tabella di verità nelle due forme canoniche (somma di prodotti e prodotto di somme):

$$\begin{split} Y_{SP} = & \sim A \cdot \sim B \cdot C \cdot D + \sim A \cdot B \cdot \sim C \cdot D + \sim A \cdot B \cdot C \cdot \sim D + \\ & + \sim A \cdot B \cdot C \cdot D + A \cdot \sim B \cdot \sim C \cdot D + A \cdot \sim B \cdot C \cdot \sim D + \\ & + A \cdot \sim B \cdot C \cdot D + A \cdot B \cdot \sim C \cdot \sim D + A \cdot B \cdot \sim C \cdot D + \\ & + A \cdot B \cdot C \cdot \sim D + A \cdot B \cdot C \cdot D \end{split}$$

$$Y_{PS} = (A+B+C+D) \cdot (A+B+C+\sim D) \cdot (A+B+\sim C+D) \cdot (A+\sim B+C+D) \cdot (\sim A+B+C+D)$$

Procediamo ora a minimizzare le due funzioni tramite mappe di Karnaugh:

		CD					
		00	01	11	10		
	00	0	0	1	0		
AB	01	0	1	1	1		
AD	11	1	1	1	1		
	10	0	1	1	1		

Osservando i raggruppamenti possiamo minimizzare la funzione come segue:

•
$$Y_{SP} = C \cdot D + A \cdot B + B \cdot D + A \cdot D + B \cdot C + A \cdot C$$

		CD						
		00	01	11	10			
AB	00	0	0	1	0			
	01	0	1	1	1			
	11	1	1	1	1			
	10	0	1	1	1			

Osservando i raggruppamenti possiamo minimizzare la funzione come segue:

•
$$Y_{PS} = (A + B + C) \cdot (A + C + D) \cdot (A + B + D) \cdot (B + C + D)$$

Si lascia agli studenti come esercizio il compito di disegnare i circuiti corrispondenti.

3. Cominciamo scrivendo la tabella di verità della funzione:

A	В	C	D	Y
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

Per prima cosa esprimiamo l'equazione logica associata alla tabella di verità nelle due forme canoniche (somma di prodotti e prodotto di somme):

$$\begin{split} Y_{SP} &= A \cdot \sim B \cdot \sim C \cdot \sim D + A \cdot \sim B \cdot \sim C \cdot D + A \cdot \sim B \cdot C \cdot \sim D + \\ &\quad + A \cdot \sim B \cdot C \cdot D + A \cdot B \cdot \sim C \cdot \sim D + A \cdot B \cdot \sim C \cdot D + \\ &\quad + A \cdot B \cdot C \cdot \sim D \end{split}$$

$$\begin{split} Y_{PS} &= (A + B + C + D) \cdot (A + B + C + \sim D) \cdot (A + B + \sim C + D) \cdot \\ &\quad \cdot (A + B + \sim C + \sim D) \cdot (A + \sim B + C + D) \cdot (A + \sim B + C + \sim D) \cdot \\ &\quad \cdot (A + \sim B + \sim C + D) \cdot (A + \sim B + \sim C + \sim D) \cdot \\ &\quad \cdot (\sim A + \sim B + \sim C + \sim D) \end{split}$$

Procediamo ora a minimizzare le due funzioni tramite mappe di Karnaugh:

		CD					
		00	01	11	10		
AB	00	0	0	0	0		
	01	0	0	0	0		
	11		1	0	1		
	10	1	1	1	1		

Osservando i raggruppamenti possiamo minimizzare la funzione come segue:

•
$$Y_{SP} = A \cdot \sim B + A \cdot \sim C + A \cdot \sim D$$

		CD					
		00	01	11	10		
AB	00	0	0	0	0		
	01	0	0	0	0		
	11	1	1	0	1		
	10	1	1	1	1		

Osservando i raggruppamenti possiamo minimizzare la funzione come segue:

•
$$Y_{PS} = A \cdot (\sim B + \sim C + \sim D)$$

Si lascia agli studenti come esercizio il compito di disegnare i circuiti corrispondenti.

4. Per rappresentare la funzione logica del primo esercizio dobbiamo utilizzare un multiplexer 8:1:

Per rappresentare la funzione logica del secondo esercizio dobbiamo utilizzare un multiplexer 16:1:

Per rappresentare la funzione logica del terzo esercizio dobbiamo utilizzare un multiplexer 16:1:

In generale, gli ingressi del multiplexer sono i valori della funzione da rappresentare. Ogni ingresso del multiplexer viene selezionato dalla corrispondente combinazione delle variabili di input della funzione, che diventano quindi i segnali di controllo del multiplexer. Ad esempio la linea 5 del terzo multiplexer viene selezionata da: A=0, B=1, C=0, D=1 (valori di ingresso della funzione logica) a cui deve corrispondere Y=0 (valore di uscita nella corrispettiva tabella di verità). Di conseguenza l'ingresso 5 del multiplexer deve essere collegato al valore fisico corrispondente allo 0 (massa).