

#### Computer Architecture

A Quantitative Approach, Sixth Edition



#### Chapter 4

Data-Level Parallelism in Vector, SIMD, and GPU Architectures



#### Introduction

- SIMD architectures can exploit significant datalevel parallelism for:
  - Matrix-oriented scientific computing
  - Media-oriented image and sound processors
- SIMD is more energy efficient than MIMD
  - Only needs to fetch one instruction per data operation
  - Makes SIMD attractive for personal mobile devices
- SIMD allows programmer to continue to think sequentially



#### **SIMD Parallelism**

- Vector architectures
- SIMD extensions
- Graphics Processor Units (GPUs)
- For x86 processors:
  - Expect two additional cores per chip per year
  - SIMD width to double every four years
  - Potential speedup from SIMD to be twice that from MIMD!



#### **Vector Architectures**

- Basic idea:
  - Read sets of data elements into "vector registers"
  - Operate on those registers
  - Disperse the results back into memory
- Registers are controlled by compiler
  - Used to hide memory latency
  - Leverage memory bandwidth



# **Memory Banks**

- Memory system must be designed to support high bandwidth for vector loads and stores
- Spread accesses across multiple banks
  - Control bank addresses independently
  - Load or store non sequential words (need independent bank addressing)
  - Support multiple vector processors sharing the same memory

#### Example:

- 32 processors, each generating 4 loads and 2 stores/cycle
- Processor cycle time is 2.167 ns, SRAM cycle time is 15 ns
- How many memory banks needed?
  - 32x(4+2)x15/2.167 = ~1330 banks



#### **Stride**

Consider:

```
for (i = 0; i < 100; i=i+1)

for (j = 0; j < 100; j=j+1) {

A[i][j] = 0.0;
for (k = 0; k < 100; k=k+1)
A[i][j] = A[i][j] + B[i][k] * D[k][j];
}
```

- Must vectorize multiplication of rows of B with columns of D
- Use non-unit stride
- Bank conflict (stall) occurs when the same bank is hit faster than bank busy time:
  - #banks / LCM(stride,#banks) < bank busy time</p>



#### **Scatter-Gather**

Consider:

```
for (i = 0; i < n; i=i+1)

A[K[i]] = A[K[i]] + C[M[i]];
```

Use index vector:

| vsetdcfg | 4*FP64     | # 4 64b FP vector registers |
|----------|------------|-----------------------------|
| vld      | v0, x7     | # Load K[]                  |
| vldx     | v1, x5, v0 | # Load A[K[]]               |
| vld      | v2, x28    | # Load M[]                  |
| vldi     | v3, x6, v2 | # Load C[M[]]               |
| vadd     | v1, v1, v3 | # Add them                  |
| vstx     | v1, x5, v0 | # Store A[K[]]              |
| vdisable |            | # Disable vector registers  |



# Programming Vec. Architectures

- Compilers can provide feedback to programmers
- Programmers can provide hints to compiler

| Benchmark<br>name | Operations executed<br>in vector mode,<br>compiler-optimized | Operations executed<br>in vector mode,<br>with programmer aid | Speedup<br>from hint<br>optimization |
|-------------------|--------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------|
| BDNA              | 96.1%                                                        | 97.2%                                                         | 1.52                                 |
| MG3D              | 95.1%                                                        | 94.5%                                                         | 1.00                                 |
| FLO52             | 91.5%                                                        | 88.7%                                                         | N/A                                  |
| ARC3D             | 91.1%                                                        | 92.0%                                                         | 1.01                                 |
| SPEC77            | 90.3%                                                        | 90.4%                                                         | 1.07                                 |
| MDG               | 87.7%                                                        | 94.2%                                                         | 1.49                                 |
| TRFD              | 69.8%                                                        | 73.7%                                                         | 1.67                                 |
| DYFESM            | 68.8%                                                        | 65.6%                                                         | N/A                                  |
| ADM               | 42.9%                                                        | 59.6%                                                         | 3.60                                 |
| OCEAN             | 42.8%                                                        | 91.2%                                                         | 3.92                                 |
| TRACK             | 14.4%                                                        | 54.6%                                                         | 2.52                                 |
| SPICE             | 11.5%                                                        | 79.9%                                                         | 4.06                                 |
| QCD               | 4.2%                                                         | 75.1%                                                         | 2.15                                 |



#### **SIMD Extensions**

- Media applications operate on data types narrower than the native word size
  - Example: disconnect carry chains to "partition" adder
- Limitations, compared to vector instructions:
  - Number of data operands encoded into op code
  - No sophisticated addressing modes (strided, scattergather)
  - No mask registers



# **SIMD** Implementations

- Implementations:
  - Intel MMX (1996)
    - Eight 8-bit integer ops or four 16-bit integer ops
  - Streaming SIMD Extensions (SSE) (1999)
    - Eight 16-bit integer ops
    - Four 32-bit integer/fp ops or two 64-bit integer/fp ops
  - Advanced Vector Extensions (2010)
    - Four 64-bit integer/fp ops
  - AVX-512 (2017)
    - Eight 64-bit integer/fp ops
  - Operands must be consecutive and aligned memory locations



# **Example SIMD Code**

#### Example DXPY:

| fld          | f0,a        | # Load scalar a        |
|--------------|-------------|------------------------|
| splat.4D     | fO,fO       | # Make 4 copies of a   |
| addi         | x28,x5,#256 | # Last address to load |
| Loop: fld.4D | f1,0(x5)    | # Load X[i] X[i+3]     |
| fmul.4D      | f1,f1,f0    | # a x X[i] a x X[i+3]  |
| fld.4D       | f2,0(x6)    | # Load Y[i] Y[i+3]     |
| fadd.4D      | f2,f2,f1    | # a x X[i]+Y[i]        |
|              |             | # a x X[i+3]+Y[i+3]    |
| fsd.4D       | f2,0(x6)    | # Store Y[i] Y[i+3]    |
| addi         | x5,x5,#32   | # Increment index to X |
| addi         | x6,x6,#32   | # Increment index to Y |
| bne          | x28,x5,Loop | # Check if done        |



#### **Roofline Performance Model**

- Basic idea:
  - Plot peak floating-point throughput as a function of arithmetic intensity
  - Ties together floating-point performance and memory performance for a target machine
- Arithmetic intensity
  - Floating-point operations per byte read





# **Examples**

 Attainable GFLOPs/sec = (Peak Memory BW × Arithmetic Intensity, Peak Floating Point Perf.)







# **Graphical Processing Units**

- Basic idea:
  - Heterogeneous execution model
    - CPU is the host, GPU is the device
  - Develop a C-like programming language for GPU
  - Unify all forms of GPU parallelism as CUDA thread
  - Programming model is "Single Instruction Multiple Thread"



#### **Threads and Blocks**

- A thread is associated with each data element
- Threads are organized into blocks
- Blocks are organized into a grid

GPU hardware handles thread management, not applications or OS



#### **NVIDIA GPU Architecture**

- Similarities to vector machines:
  - Works well with data-level parallel problems
  - Scatter-gather transfers
  - Mask registers
  - Large register files

#### Differences:

- No scalar processor
- Uses multithreading to hide memory latency
- Has many functional units, as opposed to a few deeply pipelined units like a vector processor



# **Example**

- Code that works over all elements is the grid
- Thread blocks break this down into manageable sizes
  - 512 threads per block
- SIMD instruction executes 32 elements at a time
- Thus grid size = 16 blocks
- Block is analogous to a strip-mined vector loop with vector length of 32
- Block is assigned to a multithreaded SIMD processor by the thread block scheduler
- Current-generation GPUs have 7-15 multithreaded SIMD processors



# **Terminology**

- Each thread is limited to 64 registers
- Groups of 32 threads combined into a SIMD thread or "warp"
  - Mapped to 16 physical lanes
- Up to 32 warps are scheduled on a single SIMD processor
  - Each warp has its own PC
  - Thread scheduler uses scoreboard to dispatch warps
  - By definition, no data dependencies between warps
  - Dispatch warps into pipeline, hide memory latency
- Thread block scheduler schedules blocks to SIMD processors
- Within each SIMD processor:
  - 32 SIMD lanes
  - Wide and shallow compared to vector processors



# **Example**





# **GPU Organization**





#### **NVIDIA Instruction Set Arch.**

- ISA is an abstraction of the hardware instruction set
  - "Parallel Thread Execution (PTX)"
    - opcode.type d,a,b,c;
  - Uses virtual registers
  - Translation to machine code is performed in software
  - Example:



# **Conditional Branching**

- Like vector architectures, GPU branch hardware uses internal masks
- Also uses
  - Branch synchronization stack
    - Entries consist of masks for each SIMD lane
    - I.e. which threads commit their results (all threads execute)
  - Instruction markers to manage when a branch diverges into multiple execution paths
    - Push on divergent branch
  - ...and when paths converge
    - Act as barriers
    - Pops stack
- Per-thread-lane 1-bit predicate register, specified by programmer



## **Example**

```
if (X[i] != 0)

X[i] = X[i] - Y[i];

else X[i] = Z[i];
```

Id.global.f64 RD0, [X+R8] ; RD0 = X[i]

setp.neq.s32 P1, RD0, #0 ; P1 is predicate register 1

@!P1, bra ELSE1, \*Push ; Push old mask, set new mask bits

; if P1 false, go to ELSE1

Id.global.f64 RD2, [Y+R8] ; RD2 = Y[i]

sub.f64 RD0, RD0, RD2 ; Difference in RD0

st.global.f64 [X+R8], RD0 ; X[i] = RD0

@P1, bra ENDIF1, \*Comp ; complement mask bits

; if P1 true, go to ENDIF1

ELSE1: Id.global.f64 RD0, [Z+R8]; RD0 = Z[i]

st.global.f64 [X+R8], RD0 ; X[i] = RD0

ENDIF1: <next instruction>, \*Pop ; pop to restore old mask



# **NVIDIA GPU Memory Structures**

- Each SIMD Lane has private section of off-chip DRAM
  - "Private memory"
  - Contains stack frame, spilling registers, and private variables
- Each multithreaded SIMD processor also has local memory
  - Shared by SIMD lanes / threads within a block
- Memory shared by SIMD processors is GPU Memory
  - Host can read and write GPU memory



#### **Pascal Architecture Innovations**

- Each SIMD processor has
  - Two or four SIMD thread schedulers, two instruction dispatch units
  - 16 SIMD lanes (SIMD width=32, chime=2 cycles), 16 load-store units, 4 special function units
  - Two threads of SIMD instructions are scheduled every two clock cycles
- Fast single-, double-, and half-precision
- High Bandwith Memory 2 (HBM2) at 732 GB/s
- NVLink between multiple GPUs (20 GB/s in each direction)
- Unified virtual memory and paging support



### Pascal Multithreaded SIMD Proc.





#### Vector Architectures vs GPUs

- SIMD processor analogous to vector processor, both have MIMD
- Registers
  - RV64V register file holds entire vectors
  - GPU distributes vectors across the registers of SIMD lanes
  - RV64 has 32 vector registers of 32 elements (1024)
  - GPU has 256 registers with 32 elements each (8K)
  - RV64 has 2 to 8 lanes with vector length of 32, chime is 4 to 16 cycles
  - SIMD processor chime is 2 to 4 cycles
  - GPU vectorized loop is grid
  - All GPU loads are gather instructions and all GPU stores are scatter instructions



#### SIMD Architectures vs GPUs

- GPUs have more SIMD lanes
- GPUs have hardware support for more threads
- Both have 2:1 ratio between double- and single-precision performance
- Both have 64-bit addresses, but GPUs have smaller memory
- SIMD architectures have no scatter-gather support



- Focuses on determining whether data accesses in later iterations are dependent on data values produced in earlier iterations
  - Loop-carried dependence

Example 1:

for (i=999; i>=0; i=i-1)  
$$x[i] = x[i] + s;$$

No loop-carried dependence



Example 2:

- S1 and S2 use values computed by S1 in previous iteration
- S2 uses value computed by S1 in same iteration



Example 3:

- S1 uses value computed by S2 in previous iteration but dependence is not circular so loop is parallel
  - Transform to:

```
A[0] = A[0] + B[0];

for (i=0; i<99; i=i+1) {

B[i+1] = C[i] + D[i];

A[i+1] = A[i+1] + B[i+1];

}

B[100] = C[99] + D[99];
```



Example 4:

```
for (i=0;i<100;i=i+1) {
    A[i] = B[i] + C[i];
    D[i] = A[i] * E[i];
}
```

Example 5:

```
for (i=1;i<100;i=i+1) {
    Y[i] = Y[i-1] + Y[i];
}
```



- Assume indices are affine:
  - $\bullet$  a x i + b (i is loop index)

- Assume:
  - Store to  $a \times i + b$ , then
  - Load from  $c \times i + d$
  - *i* runs from *m* to *n*
  - Dependence exists if:
    - Given j, k such that  $m \le j \le n$ ,  $m \le k \le n$
    - Store to  $a \times j + b$ , load from  $a \times k + d$ , and  $a \times j + b = c \times k + d$



- Generally cannot determine at compile time
- Test for absence of a dependence:
  - GCD test:
    - If a dependency exists, GCD(c,a) must evenly divide (d-b)

#### Example:

```
for (i=0; i<100; i=i+1) {
    X[2*i+3] = X[2*i] * 5.0;
}
```



Example 2:

```
for (i=0; i<100; i=i+1) {
    Y[i] = X[i] / c; /* S1 */
    X[i] = X[i] + c; /* S2 */
    Z[i] = Y[i] + c; /* S3 */
    Y[i] = c - Y[i]; /* S4 */
}
```

 Watch for antidependencies and output dependencies



Example 2:

```
for (i=0; i<100; i=i+1) {
    Y[i] = X[i] / c; /* S1 */
    X[i] = X[i] + c; /* S2 */
    Z[i] = Y[i] + c; /* S3 */
    Y[i] = c - Y[i]; /* S4 */
}
```

 Watch for antidependencies and output dependencies



#### Reductions

Reduction Operation:

```
for (i=9999; i>=0; i=i-1)

sum = sum + x[i] * y[i];
```

Transform to...

```
for (i=9999; i>=0; i=i-1)

sum [i] = x[i] * y[i];

for (i=9999; i>=0; i=i-1)

finalsum = finalsum + sum[i];
```

Do on p processors:

```
for (i=999; i>=0; i=i-1)
finalsum[p] = finalsum[p] + sum[i+1000*p];
```

Note: assumes associativity!



#### **Fallacies and Pitfalls**

- GPUs suffer from being coprocessors
  - GPUs have flexibility to change ISA
- Concentrating on peak performance in vector architectures and ignoring start-up overhead
  - Overheads require long vector lengths to achieve speedup
- Increasing vector performance without comparable increases in scalar performance
- You can get good vector performance without providing memory bandwidth
- On GPUs, just add more threads if you don't have enough memory performance

