Machine Learning: Multivariate Linear Regression

Sidharth Baskaran

June 2021

Multiple Features

- Notation usage
 - -n number of features
 - -m number of training examples
 - $-x^{(i)}$ input features of ith training example -> is a vector with dimension n
 - $-x_i^{(i)}$ number of feature j in ith training example
- Hypothesis is of the form $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + ... + \theta_n x_n$
 - Define $x_0 := 1$ as coefficient of θ_0

* Let
$$x = \begin{bmatrix} x_0 \\ \vdots \\ x_n \end{bmatrix}$$
 and $\theta = \begin{bmatrix} \theta_0 \\ \vdots \\ \theta_n \end{bmatrix}$

- * Both are in \mathbb{R}^{n+1}
- Thus $h_{\theta}(x) = \theta^T x$ where θ is transposed to allow multiplication with matrix x

Gradient descent with multiple features

- Let θ be the n+1-dimensional parameter vector
- $\begin{array}{l} \bullet \ \ \text{Perform} \ \theta_j := \theta_j \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta\left(x^{(i)}\right) y^{(i)}\right) x_j^{(i)} \\ \ \ \text{Simultaneous update of} \ \theta_j \ \text{for} \ j = 0, \dots, n \end{array}$

repeat until convergence:

$$\begin{aligned} & \theta_0 \coloneqq \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta \left(x^{(i)} \right) - y^{(i)} \right) \cdot x_0^{(i)} \\ & \theta_1 \coloneqq \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta \left(x^{(i)} \right) - y^{(i)} \right) \cdot x_1^{(i)} \\ & \theta_2 \coloneqq \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta \left(x^{(i)} \right) - y^{(i)} \right) \cdot x_2^{(i)} \end{aligned}$$

Feature Scaling

- Make sure features are on similar scale or interval
 - Contours will become more like circles -> gradient descent is less complicated
- Get feature into approx. $-1 \le x_i \le 1$ range
- Mean normalization
 - Replace x_i with $x_i \mu_i$ to make features have an approximately zero mean (except $x_0 = 1$)
- Thus formula for feature scaling with mean normalization is $x_i \to \frac{x_i \mu_i}{s_i}$ where s_i can be range of values in training set or the std. dev

Learning rate

• Debugging gradient descent

- Plot $\min J(\theta)$ as gradient descent runs over # of iterations
- Should show decrease as iterations progress
- Automatic convergence test
 - Ex: Declare convergence if $J(\theta)$ decreases by less than 10^{-3} in 1 iteration
- For sufficient small $\alpha J(\theta)$ decreases on every iteration
 - If too small -> slow to converge

Features and Polynomial Regression

- Can define a feature in terms of others -> combining features
- Fitting polynomial model
 - Define each feature to be square, cubed, etc.
 - Apply regular linear Regression
 - Feature scaling is important -> exponential values increase scale

Normal Equation

- Method to solve for $\theta_0, \dots, \theta_n$ through derivative of J with respect to θ_j , set to 0, and minimization
- Construct a design matrix X that is of dimension $m \times (n+1)$ and contains all of the training data Each feature vector $x^{(i)} \in \mathbb{R}^{n+1}$ is transposed to constitute a row of X
- Construct vector y which contains the result/expected output and is m-dimensional
- Optimum θ is given by $(X^TX)^{-1}X^Ty$
- Feature scaling not required
- Gradient descent comparison
 - Gradient descent -> need to choose α and needs mamy iterations
 - * Works well for a large n
 - Normal equation -> no need to choose α and don't need to iterate
 - * Slow if n is very large -> need to compute $(X^TX)^{-1}$)
 - · Inversion is $O(n^3)$
- X^TX can be noninvertible
 - pinv works regardless of invertibility and inv will throw error in octave
 - Redundant features (i.e. linear dependence)
 - Too many features means $m \leq n$