C++

Обзор. Стандартная библиотека. Нововведения стандартов C++11 и C++14

Кафедра ИВТ и ПМ

2018

План

Основы С++

Типы

Операторы

Функции

Лямбда-функции

Обработка исключительных ситуаций

Стандартная библиотека шаблонов

Стандарты

Нововведения

Определение типа

Ссылки на правосторонние значения

Операторы управления динамической памятью

IDE и компиляторы

- Qt Creator (с компилятором MinGW)
 Кроссплатформенный, лаконичный, свободный, устанавливается вместе с фреимворком Qt
- ► Visual Studio
- CodeBlocks
- ► JetBrains CLion Кроссплатформеный, нет бесплатной версии

Outline

Основы С++

Типы

Операторы

Функции

Лямбда-функции

Обработка исключительных ситуаций

Стандартная библиотека шаблонов

Стандарты

Нововведения

Определение типа

Ссылки на правосторонние значения

Операторы управления динамической памятью

Outline

Основы С++

Типы

Операторы

Функции

Лямбда-функции

Обработка исключительных ситуаций

Стандартная библиотека шаблонов

Стандарты

Нововведения

Определение типа

Ссылки на правосторонние значения

Операторы управления динамической памятьк

Типы данных

Объявление переменных и констант

```
int n; // можно не задавать значение float x = -47.039; // можно задавать... // но константе задавать значение обязательно const unsigned N = 24; n = N; N = n; // Ошибка! Константу поменять нельзя
```

Типы данных Производные типы

- ▶ Указатель (pointer)
- Ссылка
- Массив
- Структура
- Перечисление

Вывод данных

cout - объект предназначенный для вывода на стандартный вывод

« - оператор вывода данных данных.

Левый операнд - объект cout;

Правый операнд - выводимые данные.

cout объявлен в заголовочном файле **iostream**, пространстве имён **std**;

Вывод данных

```
#include <iostream>
using namespace std;
cout << "Hello, World!";</pre>
// endl - вывод символ конца строки и очистка буфера вывода
cout << "Hello, Wordl!" << endl;</pre>
// Вывод переменной
float x;
cout << x << endl;
```


Вывод данных

```
// Установка формата вывода:
// (без использования экспоненциальной формы)
// установка 2 знаков после запятой
cout << fixed << setprecision(2);

// Вывод строки и перменной одновременно
cout << "X = " << x << endl;
```


Ввод данных

cin - объект предназначенный для чтения данных с клавиатуры.

» - оператор чтения данных с клавиатуры.Левый операнд - объект cin;Правый операнд - переменная.

cin объявлен в заголовочном файле **iostream**, пространстве имён **std**;

Ввод данных

```
#include <iostream>
using namespace std;

float x;
cout << "Введите число ";
cin >> x;
```


Outline

Основы С++

Типы

Операторы

Функции

Лямбда-функции

Обработка исключительных ситуаций

Стандартная библиотека шаблонов

Стандарты

Нововведения

Определение типа

Ссылки на правосторонние значения

Операторы управления динамической памятьк

Условный оператор

```
if (условие)
оператор1
else
оператор2
```

Условный оператор. Пример.

Поиск максимального из двух чисел.

```
float x, y, max;
// ...
cout << "Определение максимального из двух чисел: "
cout << x << " w " << y << endl;
if (x > y)
    max = x;
else
    max = y;
cout << "Максимальное число: " << max;
```

```
Цикл со счётчиком
          for (действие до цикла;
               условие;
               действия в конце итерации) {
           оператор1
           оператор2
           оператор
  Тело цикла выполняется пока условие истинно
```

Цикл со счётчиком. Примеры.

Печать чисел от 0 до 10

```
for (int i = 0; i<11; i++) {
   cout << i << endl; }</pre>
```

Заполнение массива случайными числами

```
const int N = 10;
int a[N]
for (int i = 0; i<N; i++) {
   a[i] = rand(); }</pre>
```


Цикл со счётчиком. Примеры.

Печать элементов массива

```
const int N = 10;
int a[N]
cout << "Набор чисел: ";
for (int i = 0; i<N; i++) {
  cout << a[i] << " "; }
```


Цикл с предусловием

Цикл с предусловием. Пример. Печать строки посимвольно.

```
char s[] = "Prnt Me!";
unsigned i = 0;
while (s[i]!=0){
   cout << s[i];
   i++;}</pre>
```

В C++ каждая строка заканчивается символом с нулевым кодом.

```
    Цикл с постусловием
    do {
    Тело цикла;
    }
    while (Условие)
```

Цикл с постусловием. Пример. Контроль входных данных

```
float x;
do {
    cout << "Введите положительное число > " << endl;
    cin >> x;
}
while ( x <= 0);
```



```
► Совместный цикл (нововведение C++11)

for (type item : set) {

// мело цикла

//использование item
}
```

В начале каждой итерации цикла в переменную item будет записано значение из последовательности set.

set - массив или любым другим типом имеющим итератор (например list), т.е. тип должен допускать перебор элементов.

Совместный цикл. Примеры

```
int my_array[5] = {1, 2, 3, 4, 5};
for(int x : my_array)
    cout << x << " ":
// в X записывается только значение.
// Этот цикл ничего не изменит в vec1
for (auto x: vec1) x *= 2;
// а этот изменит
for (auto& x: vec1) x *= 2:
```

Outline

Основы С++

Типы

Операторы

Функции

Лямбда-функции

Обработка исключительных ситуаций

Стандартная библиотека шаблонов

Стандарты

Нововведения

Определение типа

Ссылки на правосторонние значения

Операторы управления динамической памятьк

Общий вид определения (definition) функции.


```
// Возврат значения из функции
float foo( int x ) {
    return rand()/x; }

// Функция не возвращающая ничего
void bar( int x) {
    cout << x*rand() << endl; }
```



```
void print_array(int *a, unsigned n){
    for (int i = 0; i < n; i++)
        cout << a[i] << " ":
int main(){
    const unsigned M = 4;
    int b1[M] = \{1, 2, 3, 4\};
    int b2[M] = \{10, 20, 30, 40\};
    cout << "Набор чисел #1:" << endl;
    print_array(b1,M);
    cout << endl;</pre>
    cout << "Набор чисел #2:" << endl;
    print_array(b2,M);
                                       ←□ → ←□ → ← □ → ← □ → □ □
    cout << endl;</pre>
```

Функции. Параметры-ссылки и параметры-значения

Для фактического параметра переданного "*по значению*"внутри функции создаётся локальная копия. Изменение этой копии (формального параметра) не влияет на фактический параметр.

```
int a = 42;

// x - формальный параметр-переменная void foo ( int x ) { x = 123; }

foo( a ); // a - фактический параметр cout << a; // 42

// переменная а не изменилась
```


Функции. Параметры-ссылки и параметры-значения

Для фактического параметра переданного в функцию "*по ссылке* на самом деле передаётся его *адрес*. Значит изменения формального параметра внутри функции означают изменения фактического параметра.

```
int a = 42;

// x - формальный параметр-ссылка

void foo ( int &x ) { x = 123; }

foo( a ); // a - фактический параметр

cout << a; // 123

// переменная а изменилась
```

Функции. Значения параметров по умолчанию

Когда параметр необходим, но функция часто вызывается с определённым его значением, то можно задать для него значение по умолчанию.

```
void foo( int x = 42 ) {cout << x;}
foo( 123 ); // 123
foo() // 42</pre>
```

Формальные параметры со значению по умолчанию должны быть последними.

Функции. Перегрузка

Функциям выполняющие одинаковую работу с разными по типу наборами данных можно давать одинаковые имена. Компилятор определит по набору фактических параметров, какая функция должна быть вызвана.

```
void foo(int x){ cout << "1";}

void foo(float x){ cout << "2";}

void foo(int x, int y){ cout << "3";}

foo(20);  // 1
foo(20.0);  // 2
foo(1, 2);  // 3
foo(1, 2.0)  // 3</pre>
```


- Функции делают возможным алгоритмическую декомпозицию
- Функции делают возможным повторное использование кода

- Для того чтобы пользоваться функцией не нужно обладать минимальными знаниями о её внутреннем устройстве
- Легче повторно использовать функцию служащую одной цели
- Следует стремится к чистоте функций
- Стоит избегать использования глобальных переменных в функциях
- Параметры, которые дорого копировать следует передавать по ссылке
- ▶ Параметры, переданные по ссылке, но не изменяющиеся в теле функции нужно делать константными.

Outline

Основы С++

Типы

Операторы

Функции

Лямбда-функции

Обработка исключительных ситуаций

Стандартная библиотека шаблонов

Стандарты

Нововведения

Определение типа

Ссылки на правосторонние значения

Операторы управления динамической памятьк

Лямбда-функции

```
[захват](параметры) mutable исключения атрибуты -> возвращаемый _ тип {тело}
```

Захват - глобальные переменные используемые функцией (по умолчанию не доступны),

параметры - параметры функции; описываются как для любой функции,

mutable - указывается, если нужно поменять захваченные переменные,

исключения - которые может генерировать функция, **атрибуты** - те же что и для обычных функций.


```
Возведение аргумента в квадрат
```

```
[](auto x) {return x*x;}
```

Сумма двух аргументов

```
[](auto x, auto y) {return x + y;}
```

функции

```
Возведение аргумента в квадрат
[](auto x) {return x*x;}
Сумма двух аргументов
[] (auto x, auto y) {return x + y;}
Вывод в консоль числа и его квадрата
[](float x) {cout << x << " " << x*x << endl;}
Тело лямбда-функции описывается также как и обычной
```

[](int x) { if (x % 2) cout << "H"; else cout << "Y";}}

Использование захвата.

- = захватить все переменные.
- захватить переменную по ссылке.

Чтобы изменять переменную захваченную по ссылке нужно добавить *mutable* к определению функции.

```
float k = 1.2;
float t = 20;

[k](float x) {return k*x;}

[k,&c](float x) mutable {if (k*x > 0) c = 0; else c=k*x;}
```

Когда использовать лямбда функции?

Когда не требуется объявлять функцию заранее.

Функция очень короткая.

Функция нужна один раз.

Функцию лучше всего описать там, где она должна использоваться.

Ссылки на функции

Основы С++

Типы

Операторы

Функции

Лямбда-функции

Обработка исключительных ситуаций

Стандартная библиотека шаблонов

Стандарты

Нововведения

Определение типа

Ссылки на правосторонние значения

Операторы управления динамической памятьк

Обработка исключительных ситуаций

```
trv {
защищенный блок кода
... тут может возникнуть исключение ...
... в любом месте ...
... любого вида ...}
catch (тип переменная) {
обработчик исключения
код обрабатывающий исключение }
catch (тип переменная) { // обработка остальных исключений .
catch (тип переменная) { // обработка остальных исключений
catch (...) { // Поймать все исключения }
// остальной код
```

<□ > <週 > <夏 > <夏 > □ ≥ □

Основы С++

Типы

Операторы

Функции

Лямбда-функции

Обработка исключительных ситуаций

Стандартная библиотека шаблонов

Стандарть

Нововведения

Определение типа

Ссылки на правосторонние значения

Операторы управления динамической памятью

Стандартная библиотека шаблонов

Контейнеры

Некоторые контейнеры

- ▶ list двусвязный список
- vector динамический массив
- тар ассоциативный массив (словарь)
- stack стэк
- ► queue очередь
- pair пара

Классы контейнеров объявлены в заголовочных файлах с соответствующими именами. Например класс list объявлен в заголовочном файле list.

```
# include <list>
```


vector

vector имитирует динамический массив.

```
#include <vector>
using std::vector;

// nycmoй вектор типа int
vector<int> myVector;
// зарезервировали память под 10 элементов
myVector.reserve(10);
```


vector

```
typedef vector<float> vectorf; // лучше создать синони
   unsigned n = 128;
   vector<float> v; // можно не указывать размер
   vector<float> v2(n); // а можно указывать
   vectorf v3(128, 0); // легко инициализировать нулём
   vectorf v4 = \{1, 2, 3, 4\}; // легко инициализировать масс
   v4.resize(10, 9):
// cout << v3 << endl; // Так печатать нельзя :(
   // вывод значений на экран
   for (auto i=0; i<v4.size(); i++)
        cout << v4[i] << " ";
   cout << endl;</pre>
```

←□ → ←□ → ← □ → ← □ → □ □

vector. методы

методы и операторы класса vector

- ▶ at(индекс) возвращает элемент по индексу
- индекс возвращает элемент по индексу
- ▶ empty() возвращает true если вектор пуст
- ▶ size() возвращает размер вектора
- ▶ clear() очищает вектор
- рор_back() возвращает последний элемент; элемент удаляется из вектора
- ▶ push_back(значение) добавляет значение в конец вектора
- ► Resize(п, нач_значение) -изменяет размер вектора
- ▶ front() возвращает первый элемент
- ▶ back() возвращает последний элемент

Основы С++

Типы

Операторы

Функции

Лямбда-функции

Обработка исключительных ситуаций

Стандартная библиотека шаблонов

Стандарты

Нововведения

Определение типа

Ссылки на правосторонние значения

Операторы управления динамической памятью

Стандарты языка

- 1. 1983 г. появление языка.
- 2. C++89/99 (C++ версии 2.0)
- 3. C++98
- 4. C++03
- 5. C++11
- 6. С++14 (небольшие изменения)
- 7. C++17
- 8. ... 2020 г.

Основы С++

Типы

Операторы

Функции

Лямбда-функции

Обработка исключительных ситуаций

Стандартная библиотека шаблонов

Стандарты

Нововведения

Определение типа

Ссылки на правосторонние значения

Операторы управления динамической памятьк

Основы С++

Типы

Операторы

Функции

Лямбда-функции

Обработка исключительных ситуаций

Стандартная библиотека шаблонов

Стандарты

Нововведения

Определение типа

Ссылки на правосторонние значения

Операторы управления динамической памятью

Определение типа во время компиляции

Указание **auto** вместо типа заставляет компилятор самостоятельно подставить тип ориентируясь на задаваемое значение.

Рекомендуется использовать auto везде, где не требуется строгого задания типа. Например если необходим тип unsigned, но auto выводит int.

Определение типа во время компиляции

decltype объявляет тип, беря тип другой переменной или выражения.

```
int my_v;
decltype(my_v) v = 100; // v umeem mun int
```


Информация о типе

```
#include <typeinfo>
auto y = 123.8;
cout << typeid(x).name() << endl; // печатает тип

typeid(x) == typeid(xx); // типы можно сравнивать

cplusplus.com: type info</pre>
```

Основы С++

Типы

Операторы

Функции

Лямбда-функции

Обработка исключительных ситуаций

Стандартная библиотека шаблонов

Стандарты

Нововведения

Определение типа

Ссылки на правосторонние значения

Операторы управления динамической памяты

rvalue и lvalue - правосторонние и левосторонние значений

Выражения, которым можно присваивать, называются **lvalue** (left value, т. е. слева от знака равенства). Остальные выражения называются **rvalue**.

Ссылки на rvalue и rvalue

rvalue references – ссылки на правосторонние значения.

Синтаксис

Основы С++

Типы

Операторы

Функции

Лямбда-функции

Обработка исключительных ситуаций

Стандартная библиотека шаблонов

Стандарты

Нововведения

Определение типа

Ссылки на правосторонние значения

Операторы управления динамической памятью

Операторы управления динамической памятью

new delete

Ссылки и литература

- 1. Stepik: Программирование на языке C++
- 2. **Б. Страуструп Язык программирования С++.** 2013. 350 страниц. Учебник по языку. Шаблоны. ООП. Проектирование.
- 3. Эффективный и современный C++: 42 рекомендации по использованию C++ 11 и C++14. 2016. 300 страниц. Просмотреть. Изучить. Использовать как справочник. Неформальный стиль. Много примеров. Хорошее знание C++.
- 4. ru.cppreference.com информация по языку и стандартной библиотеке C++
- 5. www.stackowerflow.com система вопросов и ответов

Ссылки и литература

```
Ссылка на слайды github.com/VetrovSV/ООР (C++.pdf)
```