Восстановление 3D модели ландшафта для восстановления точного ортофотоплана по фотографиям с БПЛА

Полярный Николай, группа М3439, руководитель Ковалев А. С.

Цели работы

- Разработка всех шагов восстановления 3D ландшафта по фотографиям
- Реализация в виде отказоустойчивого сервера
- Интеграция с остальными компонентами наземного пункта управления:
 - Клиентское толстое GUI-приложение
 - Сервер хранения фотоснимков
 - Радиомодуль, транслирующий данные с БПЛА в реальном времени
- Проведение тестовых испытаний

Входные данные

Входные данные.

Ошибки направлений камер более 20 градусов.

Разными цветами отображены разные кадры.

После обработки.

Все кадры взаимно сопоставлены, хорошее сопоставление со спутниковым снимком.

Разными цветами отображены разные кадры.

Необходимость создания сервера

- Требовался как часть комплекса наземного пункта управления БПЛА
- Анализ текущей ситуации в регионе пролета БПЛА (в реальном времени)
- Анализ, надежное хранение и просмотр ранее совершенных пролетов
- Процесс обработки должен быть автоматизирован
- Аналоги:
 - о готового аналога на российском вооружении не состоит
 - о существующие аналоги с гражданского рынка (Agisoft Photoscan, Pix4D и другие):
 - не решают некоторых специфичных задач
 - проприетарность, сложность интеграции и расширения
 - не полностью автоматические, сложный интерфейс
 - не проходили сертификацию
 - дорогие

Требования к алгоритму

- Устойчивость к существенным ошибкам телеметрии:
 - GPS положение с ошибками в сотни метров
 - о ориентация фотокамеры с ошибкой в десятки градусов
- Возможность предпросмотра в реальном времени
- Восстановление 3D ландшафта
- Масштабируемость до десятков квадратных километров и тысяч фотоснимков
- Получение ортофотоплана
- Привязка ортофотоплана опорными точками
- Многоракурсность по региону интереса

Требования к серверной реализации

- Отказоустойчивость
 - о в случае внезапного перезапуска сервера
 - о в случае потери соединения с одним из других компонент системы НПУ
- Низкие задержки в случае предпросмотра данных с летящего БПЛА
- WMTS сервис (расширенный с учетом изменчивости данных)
- Накопление множества слоев (ограничено лишь хранилищем)

Общий алгоритм уточнения положения камер

Общий алгоритм восстановления 3D ландшафта

Особенности реализации

- Придумана идея быстро генерировать грубую модель путем минимизации полной вариации
- Было придумано улучшить результат SURF-сопоставления ключевых точек (был применен методом оптического потока)
- Масштабируемость путем подразбиения задач на области (обработка по квадратным подрегионам)
- Узкие места реализованы на видеокарте OpenCL
- Отказоустойчивость достигается атомарным сохранением состояния:
 без риска оставить состояние в несогласованном виде при внезапном выключении

Полученная точность

Точность в горизонтальной плоскости: без дополнительной информации ошибки входных данных (координат камер) устранить невозможно. Поэтому пользователь имеет возможность указать опорные точки с эталонными координатами.

Точность высот: проведение тестов на множестве наборов данных показало, что точность высот достаточна для генерации ортофотоплана.

Точность репроекции ключевых точек после оптимизации: эквивалентна точности выделения ключевых точек методом SURF (субпиксельная).

Результаты

- Все шаги обработки были разработаны
- Реализован масштабируемый и отказоустойчивый сервер
- Сервер интегрирован с остальными компонентами комплекса
- Проведено тестирование на множестве реальных данных:
 - о тысячи фотографий на пролет
 - разрешения фотоснимков достигают 50 мегапикселей
 - пролеты покрывают десятки квадратных километров
- Сервер успешно внедрен в СЧ ОКР "Орион-НПО"

Примеры 3D модели ландшафта.

Спасибо за внимание!