ILASセミナー 2022年6月

RNAシーケンシング(RNA-seq)基礎

ゲノム情報はDNAに書き込まれている

ゲノム上に遺伝子は多数ある

遺伝子A

遺伝子B

遺伝子C 遺伝子D

ゲノム

生物種	遺伝子数
ヒト	26,000 遺伝子
シロイヌナズナ	27,000 遺伝子
イネ	37,000 遺伝子
コムギ	120,000 遺伝子

遺伝子発現量は個体ごとに異なる

部位、時間でも発現量は異なる

RNA-seqは発現遺伝子の配列を得る方法

RNA-seqをすると何がうれしいのか? (1)

遺伝子配列情報から、 塩基の違いを見つけられる

遺伝子1の塩基配列

サンプルA AGTTCCACTTCCC サンプルB AGTTCAACTTCCC サンプルC AGTTCCACTTGCC

RNA-seqをすると何がうれしいのか? (2)

遺伝子発現量の違いを調べられる

RNA-segで調べてみよう

ヤブガラシ

ねじれ部位 - ねじれなし部位

カイヅカイブキ

ネズ葉 - ヒノキ葉

水草

水上葉 - 水中葉

コムギ近縁野生種

芒あり穂 - 芒なし穂

どんな遺伝子に違いがあるのか?

形質の違いを決めている遺伝子は何か?

RNA-seqまで手順

発現遺伝子上の多数の短い塩基配列データが得られる

発現遺伝子上の多数の短い塩基配列データが得られる

RNA-segデータ解析①

リードを参照配列にアライメント

リードデータ ファイル

CTACCTAGCTCA CTACCTAGCTCA

AGCTAGCTACCT

CTCCCAGCTAGC

CCGCCTCCCAGC

CCTCCCGCCTCC TCCTCCTCCCGC

TCCTCCTCCCGCCTTCCAGCTAGCTACCTAGCTCA

TATTAATTCCGT
ACTCGTATTAAT
AACTCGTATTAA
CCACACCAACTC
AGCCCACACCAA

AGCCCACACCAACTCGTATTGATTCCGT

参照配列 (リファレンス)

参照配列が利用できない場合は?

TATTAATTCCGT
ACTCGTATTAAT
AACTCGTATTAA
CCACACCAACTC
AGCCCACACCAA

AGCCCACACCAACTCGTATTGATTCCGT

RNA-segデータ解析①

リードから参照配列をつくる

CTACCTAGCTCA CTACCTAGCTCA

AGCTAGCTACCT

CTCCCAGCTAGC

CCGCCTCCCAGC

CCTCCCGCCTCC TCCTCCTCCCGC

TCCTCCTCCCGCCTCCCAGCTAGCTACCTAGCTCA

TATTAATTCCGT
ACTCGTATTAAT
AACTCGTATTAA
CCACACCAACTC
AGCCCACACCAA

AGCCCACACCAACTCGTATTAATTCCGT

リードから作った参照配列

RNA-seqデータ解析のファーストステップ

○参照配列をつくる

CTACCTAGCTCA CTACCTAGCTCA

AGCTAGCTACCT

CTCCCAGCTAGC

CCGCCTCCCAGC

CCTCCCGCCTCC TCCTCCTCCCGC

TCCTCCTCCCGCCTCCCAGCTAGCTACCTAGCTCA

① アライメント

CTACCTAGCTCA CTACCTAGCTCA

AGCTAGCTACCT

CTCCCAGCTAGC

CCGCCTCCCAGC

CCTCCCGCCTCC

TCCTCCTCCCGC

TCCTCCTCCCGCCTCCCAGCTAGCTACCTAGCTCA

解析1)塩基配列を比べる→SNPを見つける

遺伝子1 TCCTCCTCCCGCCTCCCAGCTAGCTACCTAGCTCA

解析2) リード数を数える→発現量を得る

解析2) リード数を数える→発現量を得る

RNA-seq解析で出来ること

差がある遺伝子を発見した後、出来ることは?

実習1)データベースから類似遺伝子を探してみよう

相同性検索 (BLAST検索)

>gene1

TTCATCAGAG cagtgaacaccatgaacatactccctccgttccgaattacttgtcgcaggtatcaagatgtattttaattctagatacatccattttacgacgagtaatttggaacgaagggagtacaagcTTACAAGTACAGATCAAGAACAGAACTGAACAAAGCTCAGCTCAGTTTTGGACGTGCCTTGCGTACAAAATTCATTTCATTG GAGCTGCTAACAAAGTCCGGCCCGCGCTTATTTTGATATGAGCGATTGGAGGAATTACACATA GCAATAATAGACATTTAaacatagtagtagtagtagtagtaatagggCTTGGGAGTTTTACGGGTGATC ATGGAGGCGTGGAGAACTGGGGACGAAGAAGGGATTACATTACTACATGCCGGTGGTCGG GATCGTAGCCGGTCGCAATTCAGCGCTCACTGACATGACAtttagcttcttcttcttcaagtGGGT GCGTGCGTGCGCGGAGAGCCGGGGGCGGCCGCGGGGTTGTGTCGTCCTCCATGCTCACGAT GTGTACTTACAGCGTTCAAAACTCGCGCGATCACGGCGCGGCCAGGCGCCACGCCGAGGTGG CGTCGCCGCCGGCGAAGAGCGCCAGCAGCGTGCTCGCCTGCTTGTAGGCATTGGACCCCAGG TGGACGGTCTCGAACCCGGCGTTGCCCAGGCGGTTCCGCCACTGCCCCAGGGTCTCGTGGCG GGACATGACCTGGTCCGTGCCGGCCGGCAGGAGCGGCAGCCGGCCCCGATGAGACTTCG GATGGGCCGCCGCGGAGCTGCCGCCCTCCAGAGAATCGAACATGGTGGAGTAGTAGTGCA GGGACTCGGTGAAGCGGTCCAGGAATGTGCCGGAGTTGTGGTTGGCCTCCTGCTCCACCACG GTGACGATCCTCGGCCGCACGGCGCGCACGGTGCCCAGGACCTTCTCCAGGG

遺伝子配列

NCBIのタンパク質 データベース

実習2) どういう遺伝子かより詳しくを調べてみよう

関連論文を検索してみよう

Google Scholar

キーワード(遺伝子名や生物名など)を入力

Q

● すべての言語 ● 英語 と 日本語のページを検索

巨人の肩の上に立つ

実習3)遺伝子機能の情報も集めてみよう

データベース上の遺伝子

タンパク質には GOterm が付いている

Gene Ontology term

(遺伝子の機能に関するタグ)

実習3)遺伝子機能の情報も集めてみよう

The mission of UniProt is to provide the scientific community with a comprehensive, high-quality and freely accessible resource of protein sequence and functional information.

GOtermを調べると、頻出termがわかる

http://bioinformatics.sdstate.edu/go/

実習4) 100遺伝子のBLAST検索&GOterm検索

100遺伝子に対して、 実習1と3の作業をおこなってください。

実習4) 100遺伝子のBLAST検索&GOterm検索

100遺伝子に対して、 実習1と3の作業をおこなってください。

単純な繰り返し作業は コンピュータにやらせよう!