חלוקה הוגנת של חפצים בדידים Fair Indivisible Item Allocation

אראל סגל-הלוי

חלוקה הוגנת בקירוב

מקרה פשוט:

- **.** 99 חפצים זהים.
- 2 שחקנים עם זכויות שוות.

מה הן החלוקות שאפשר לקרוא להן "הוגנות בקירוב"?

- .49:50 או 50:49 •
- בכל חלוקה אחרת, יש חוסר-הגינות
 שאי-אפשר להצדיק בכך שהחפצים בדידים.

חלוקה הוגנת בקירוב - הכללות

א. חפצים זהים – זכויות שונות.

ב. חפצים שונים – זכויות שוות.

ג. חפצים שונים – זכויות שונות.

חלוקה הוגנת בקירוב

הגדרה: חלוקה נקראת "ללא קנאה מלבד 1" Envy Free except 1, **EF1**) אם לכל שני משתתפים א,ב, קיים חפץ כלשהו, שאם נוריד מהסל של ב, אז שחקן א לא יקנא בו.

חלוקה הוגנת בקירוב

הגדרה: חלוקה נקראת "ללא קנאה מלבד 1" Envy Free except 1, **EF1**) אם לכל שני משתתפים א,ב, קיים חפץ כלשהו, שאם נוריד מהסל של ב, אז שחקן א לא יקנא בו.

המשמעות: רמת-הקנאה ניתנת להצדקה בהתחשב בעובדה שהחפצים בדידים.

?**EF1** האם תמיד קיימת חלוקה

(round robin) אלגוריתם הסֶבֶב

- .1 מסדרים את השחקנים בסדר שרירותי כלשהו.
 - 2.כל שחקן לוקח, מבין החפצים שנשארו, את החפץ שהוא הכי רוצה.
 - .2 אם נשארו חפצים חוזרים לשלב.
 - משפט. אלגוריתם הסבב מחזיר חלוקה EF1.
- הוכחה. נוכיח את תנאי EF1 לכל שני שחקנים א,ב; נניח בה"כ ששחקן א מופיע בסבב לפני שחקן ב.
- א לא מקנא כלל: על כל חפץ ש-ב בחר, א בחר לפניו.
- עכשיו נניח שמורידים מהסל של א את החפץ הראשון
 שבחר. על כל חפץ שנשאר בסל של א, ב בחר לפניו.
 לכן החלוקה EF1 גם עבור שחקן ב.

חלוקה הוגנת בקירוב - הכללות

א. חפצים זהים – זכויות שונות.

ב. חפצים שונים – זכויות שוות.

ג. חפצים שונים – זכויות שונות.

דוגמה: חלוקת תיקים בממשלה בין מפלגות.

חפצים שונים – זכויות שונות

הגדרה: רמת הקנאה המשוקללת בין שני משתתפים \pm , \pm עם זכויות \pm , \pm , \pm היא:

$$V_{i}(X_{j})/w_{j}-V_{i}(X_{i})/w_{i}$$

- רמת (WEF) רמת (WEF) רמת הקנאה המשוקללת היא 0 (לכל היותר).
- בחלוקה EF1, כשהמשקלים 1 רמת הקנאה $∇_{\pm}(g)$, כאשר $∀_{\pm}(g)$, כאשר $∀_{\pm}(g)$ החפץ עם הערך הגדול ביותר אצל $∀_{\pm}(g)$.
- מה רמת הקנאה המותרת ב"חלוקה *ללא קנאה*

חפצים שונים – זכויות שונות

הגדרה: רמת הקנאה המשוקללת בין שני משתתפים $\pm i$, עם זכויות $\pm i$, היא:

$$V_{i}(X_{j})/w_{j}-V_{i}(X_{i})/w_{i}$$

- . בסל של ביותר בסל של =: g •
- מה רמת הקנאה המותרת ב"חלוקה ללא קנאה
 משוקללת עד-כדי חפץ אחד" ("WEF1")?
 - $\mathbf{?}$ יַ של פאר מהסל של פאר הסרת חפץ מהסל של ל $\mathbf{-}$ -
 - ?יבפול חפץ לסל של - $V_{i}(g)/w_{i}$ –

אלגוריתם סֶבֶב משוקלל

•אתחול: כל שחקן מקבל 0 נבחר פונקציה כלשהי f, מחשבים, לכל שחקן: המייחסת לכל מספר שלם s,

מספר ממשי

.[s, s+1]

כלשהו בתחום

(מספר החפצים נוכחי)

• השחקן, שהמנה שלו גדולה ביותר, בוחר, מבין החפצים שנשארו, את החפץ שהוא הכי רוצה.

חפצים שונים – זכויות שונות

משפט: אלגוריתם הסבב המשוקלל עם פונקציית-מחלק f(s)=s+y מחזיר חלוקה שבה לכל שני משתתפים \pm , \pm , עם זכויות \pm , \pm , \pm , במת הקנאה המשוקללת היא לכל היותר:

$$y*V_{i}(g)/w_{i} + (1-y)*V_{i}(g)/w_{j}$$

- f(s) = s + הסרת חפץ מהסל של
 - ;i שיכפול חפץ לסל של \sim f(s)=s+1
 - ממוצע שני הביטויים. $\sim f(s) = s + 0.5$
 - אי אפשר להבטיח שני תנאים יחד. •