Contents

1	Wee	Week 2 Module 2:				
	1.1	Vector	Spaces	1		
		1.1.1	Operationl Definitions	2		
		1.1.2	Some Examples	2		
		1.1.3	Hilbert Space	3		
		1.1.4	Signal Spaces	3		
		1.1.5	TODO Vecotor Bases	3		
		1.1.6	TODO Subspace Approximations	3		

1 Week 2 Module 2:

1.1 Vector Spaces

Vector Space

Vector spaces build among others a common framework to work with the four classes of signals:

- Finite Length Signal
- Infinte Length Signal
- Periodic Signal
- Finite Support Signal

Finite length and periodic signal, i.e. the "practical signal processing" live in the \mathbb{C}^N Space. To represent infinite length signals we need something more. We require sequences to be square-summabe

$$\sum_{n=-\infty}^{\infty} |x[n]|^2$$

\mathbb{R}^2 , \mathbb{R}^3	Euclidean space, geomtery
$\mathbb{R}^n,\mathbb{C}^n$	Linear algebra
$\ell_2(\mathbb{Z})$	Square-Summable infinite sequences
$L_2([a,b])$	Square-integrable functions over an interval

1.1.1 Operation Definitions

Measure of similarity between vectors

Inner Product
$$\langle \mathbf{x}, \mathbf{y} \rangle := \sum_{n=0}^{N-1} x_n y_n$$

A vector space with an inner product is called an **inner product space**

Inner Product in
$$\mathbb{R}^2$$
 $\langle \mathbf{x}, \mathbf{y} \rangle = x_0 y_0 + x_1 y_1 = \mathbf{x} + \mathbf{y} cos(\alpha)$

Inner Product in
$$\mathbb{L}_{[-1,1]}$$
 $\langle \mathbf{x}, \mathbf{y} \rangle = \int_{-1}^{1} x(t)y(t)dt$

Norm of a Vector
$$\mathbf{v} := \langle \mathbf{v}, \mathbf{v} \rangle = ||\mathbf{v}||^2$$

self inner product

Orthogonal
$$\langle \mathbf{p}, \mathbf{q} \rangle = 0$$

maximal different vectors

inner product = 0

Distance
$$d(x,y) = \mathbf{x} - \mathbf{y}_2$$

1.1.2 Some Examples

Not all vector spaces have got a graphical representation. The following table shows the graphical representation of vector spaces

graphical representation	no graphical respresentation
\mathbb{R}^2	\mathbb{C}^N for N>1
\mathbb{R}^3	\mathbb{R}^N for N>3
$\mathbb{L}_{[-1,1]}$	

Scalar Multiplication in $\mathbb{L}_2[-1,1]$

Summation of two Vectors in $\mathbb{L}_2[-1,1]$

Inner Product in $\mathbb{L}_2[-1,1]$ - The Norm: with $x=\sin(\pi\backslash t)$

$$\langle \mathbf{x}, \mathbf{x} \rangle = ||\mathbf{x}||^2$$

= $\int_{1}^{1} sin^2(\pi) dt = 1$

1.1.3 Hilbert Space

A hilbert space is an **inner product space** which fulfills completeness.

1.1.4 Signal Spaces

Finite length signal live in \mathbb{C}^N

- all operations well defined and intuitive
- space of N-periodic signals sometimes indicated by $\tilde{\mathbb{C}}^N$

1.1.5 TODO Vecotor Bases

1.1.6 **TODO** Subspace Approximations

1. Least-Square Approximation Consider a orthonormal basis for subspace S, called S of K

$$s-(k)_{k=0,1..,k-1}$$
 orthonormal basis for S

orthonormal projection is defined as follows:

$$\hat{x} = \sum_{k=0}^{k-1} \langle s^{(k)}, x \rangle s^{(k)}$$

• orthogonal projection has minimum-norm error:

$$arg \ min||x - y|| = \hat{x}$$

• :

$$\langle x - \hat{x}, \hat{x} \rangle = 0$$