lec13

Creation Date: 24/01/2020 18:12 Last Modified Date: 27/01/2020 17:19

Lec 13: Generative Models

Lecture 13: **Generative Models**

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 13 - 1 University 2017

Overview

- Unsupervised Learning
- Generative Models
 - DivalDAINI and DivalONINI

Generative Models: It is a type of Unsupervised Learning.

Supervised vs Unsupervised Learning

Supervised Learning

Supervised vs Unsupervised Learning

Supervised Learning

Supervised vs Unsupervised Learning

Supervised Learning

Supervised vs Unsupervised Learning

Supervised Learning

• Goal of Unsupervised Learning: To learn the underlying structure of the given data.

Supervised vs Unsupervised Learning
Supervised vs Unsupervised Learning
Density Estimation: Modeling the data such that the probability of the data generation is high where more points are concentrated.

•	Differences	between	Supervised	and Unsu	pervised	Learning:
---	-------------	---------	------------	----------	----------	-----------

Supervised vs Unsupervised Learning

• Solving Unsupervised Learning problems helps in understanding the structure of the visual world.

Generative Models

- Generative models address density estimation.
- ullet Explicit Density Estimation: Explicitly define and solve for $p_{model}(x)$
- Implicit Density Estimation: We learn a model that can sample from $p_{model}(x)$ without explicitly defining it.

Taxonomy of Generative Models

_. .

PixelRNN and PixelCNN:

PiyalRNN and PiyalCNN

Fully visible belief network

PixeIRNN [van der Oord et al. 2016]

PixelCNN [van der Oord et al. 2016]

• The generation depends on the value of the starting pixel, because everything else is conditioned on that initial pixel.

Generation Samples

PixelRNN and PixelCNN

Variational Autoencoders

Variational

So far...

DivalCNING define tractable density function, entimize likelihood of training data

	Some background first: Autoencoders
•	Ans: We want dimensionality reduction since we want a compact representation of x but also which represent all the important features of x .

Some background first: Autoencoders	
Same hackground first: Autoencoders	Reconstructed data

Same hackground first. Autoence	ndare	Reconstructed data
Some background first: Autoence	oders	

Some background first: Autoencoders

- So using large amount of unlabeled data we can learn a better feature representation and then use it to initialize a supervised learning problem where we only have small data.
- This approach helps because with small amount of data supervised approaches will cause overfitting.
- So using this approach we get a better initilization of the supervised model with better features.
- Features capture factors of variation in training data.

Some background first: Autoencoders

- Variational Autoencoders help us in sampling
- The intuition is that each element $z^{(i)}$ captures certain feature of x (like smile, eye color of faces).
- z is modeling using some priors, more commonly we use Gaussian priors (μ, σ) .

Variational Autoencoders

We want to estimate the true parameters θ^* of this generative model

- ullet We choose the prior p(z) to simple, like Gaussian. Because it is reasonable for latent attributes.
- The conditional p(x|z) is complex in nature since it is generating images where p(z) is just a vector so we try to model z using Gaussian.

We want to estimate the true parameters θ^* of this generative model

Variational Autoencoders

We want to estimate the true parameters θ^* of this generative model

We want to estimate the true parameters θ^* of this generative model

Variational Autoencoders: Intractability

Data likelihood: $n_0(x) = \int n_0(x) n_0(x|x) dx$

Variational Autoencoders: Intractability

Data likelihaad: $n_a(x) = \int n_a(x) n_a(x) dx$

Variational Autoencoders: Intractability

Details a discourse $(m) = \int_{-\infty}^{\infty} (x) m(m) dx$

• The integral is intractable.

Variational Autoencoders: Intractability

Data likalihaada ma(m) — [ma(m)ma(m)ma)da

Variational Autoencoders: Intractability

Variational Autoencoders Since we're modeling probabilistic generation of data, encoder and decoder networks are probabilistic.

Variational Autoencoders

Since we're modeling probabilistic generation of data, encoder and decoder networks are probabilistic

Variational Autoencoders	
Now equipped with our encoder and decoder networks, let's work out the (log) data likelihood:	

Now equipped with our encoder and decoder networks, let's work out the (log) data likelihood:

Variational Autoencoders
Now equipped with our encoder and decoder networks, let's work out the (log) data likelihoods

Now equipped with our encoder and decoder networks, let's work out the (log) data likelihood:

Variational Autoencoders	
Now equipped with our encoder and decoder networks, let's work out the (log) data likelihoods	

Now equipped with our encoder and decoder networks, let's work out the (log) data likelihood:

Putting it all together: maximizing the

Variational Autoencoders

Putting it all together: maximizing the

Putting it all together: maximizing the

Variational Autoencoders

Putting it all together: maximizing the

Maxi

 \hat{x}

Variational Autoencoders

D. His a it all to active an activities the Maximize

Variational Autoencoders:	Generating Data!

Variational Autoencoders: Generating Data!

40 40 40 40 40 40 40 40 40 40 A

Variational Autoencoders: Generating Data!

Probabilistic spin to traditional autoencoders => allows generating data

GANs:

PixelCNNs define tractable density function, optimize likelihood of training data: $\prod_{n=1}^n (n) = \prod_{n=1}^n (n-1)$

$$\pi_{-}(m) = \prod_{m=1}^{m} \pi_{-}(m) = m$$

Generative Adversarial Networks

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Training GANs: Two-player game

lan Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Training GANs: Two-player game

lan Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Training GANs: Two-player game

lan Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Training GANs: Two-player game

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Generative Adversarial Nets

lan Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Generative Adversarial Nets

Generative Adversarial Nets: Convolutional Architectures

Generative Adversarial Nets: Convolutional Architectures

128

Generative Adversarial Nets: Convolutional Architectures

Generative Adversarial Nets: Convolutional Architectures
Congrative Adversarial Note: Interpretable Vector Math
Generative Adversarial Nets: Interpretable Vector Math

Generative Adversarial Nets: Interpretable Vector Math

2017: Year of the GAN

Text -> Image Synthesis

this small bird has a pink this magnificent fellow is heast and crown and black almost all black with a red

See also: https://github.com/soumith/ganhacks for tips and tricks for trainings GANs

"The GAN Zoo"

GANs

Don't work with an explicit density function

Take game-theoretic approach: learn to generate from training distribution through 2-player

Recap

Generative Models

DivolDNINI and DivolCNINI Explicit density model, optimizes exact likelihood, good