Package 'Vdgraph'

February 9, 2012

Title This package creates variance dispersion graphs for response surface designs

Type Package

Version 2.0-1

2 Vdgraph-package

Index 15

Vdgraph-package This package creates variance dispersion graphs for response surface designs
--

Description

The **Vdgraph** package provides a function for creating Variance Dispersion Graphs of a standardized response surface design stored in a matrix.

The function Vdgraph (des) creates the graph of the response surface design stored in the matrix des. Useful response surface designs are also included as matricies in the package. These include the hexagonal design for two factors Hex2, the small composite designs for 3 to 6 factors and Roquemore's hybrid designs for 3 to 6 factors.

Details

Package: Vdgraph
Type: Package
Version: 1.0-1
Date: 2011-03-22
License: GPL2.0

Dependencies:

LazyLoad: yes

Packaged: 2011-03-22 19:54:07 UTC; Lawson

Built: R 2.11.1; i386-pc-mingw32; 2011-03-22 19:54:08 UTC; windows

Index:

D310	Roquemore (1976) Hybrid design D310
D311A	Roquemore (1976) Hybrid design 311A
D311B	Roquemore (1976) Hybrid design D311B
D416A	Roquemore (1976) Hybrid design 416A
D416B	Roquemore (1976) Hybrid design D416B
D416C	Roquemore (1976) Hybrid design D416C
D628A	Roquemore (1976) Hybrid design D628A
Hex2	Hexagonal design for two factors
SCDDL5	Draper and Lin's Small Composite Design for
	five factors
SCDH2	Hartley's Small Composite Design for two
	factors
SCDH3	Hartley's Small Composite Design for three
	factors
SCDH4	Hartley's Small Composite Design for four
	factors
SCDH5	Hartley's Small Composite Design for five
	factors
SCDH6	Hartley's Small Composite Design for six
	factors
Vardsgr	Loads compiled fortran in shared file vdg

Compare2Vdg 3

Vdgraph this function makes a Variance Dispersion Graph of a response surface design

Author(s)

John Lawson lawson@byu.edu

Maintainer: John Lawson lawson@byu.edu

Compare 2Vdg this function compares Variance Dispersion Graph of two response surface designs with the same number of factors on the same scale

Description

This function calls the function Vardsgr which uses Vining's (1993) fortran code to get the coordinates of a two variance dispersion graph, and then makes the plot.

Usage

Compare2Vdg(name1, des, name2, des2)

Arguments

name1	name1 is a character string containing a descriptive name for the first design. This descriptive name should be no more than 40 characters in order to fit in the space for a legend.
des	des is a matrix or a data frame containing the first response surface design to be compared in coded or uncoded units. There should be one column for each factor in the design, and one row for each run in the design. The maximum number of rows allowed is 99, and the maximum number of columns is 7.
name2	name2 is a character string containing a descriptive name for the second design. This descriptive name should be no more than 40 characters in order to fit in the space for a legend.
des2	des2 is a matrix or a data frame containing the second response surface design to be compared in coded or uncoded units. There should be one column for each factor in the design, and one row for each run in the design. The maximum number of rows allowed is 99, and the maximum number of columns is 7.

Value

vdgpl

vdgpl This is a graph containing the two Variance Dispersion Graphs, one for each design

Note

This function calls the function Vardsgr to get the coordinates for the plot.

Author(s)

 ${\bf John~S.~Lawson~ \verb| lawson@byu.edu| >}$

D310

References

1. Vining, G. "A Computer Program for Generating Variance Dispersion Graphs" Journal of Quality Technology, Vol 25, No. 1, pp. 45-58, 1993. 2. Vining, G. "Corrigenda" Journal of Quality Technology, Vol 25, No. 4, pp 333-335. 1993.

Examples

```
data(SCDH5)
data(SCDDL5)
Compare2Vdg("Hartley's Small Composite-5 fac",SCDH5,"Draper and Lin's Small Composite-5 f
```

D310

Roquemore (1976) Hybrid design D310

Description

A This is an .rda file containing the design in a matrix.

Usage

```
data(D310)
```

Format

Three columns of independent variables

Source

source

References

D311A 5

D311A

Roquemore (1976) Hybrid design 311A

Description

This is an .rda file containing the design in a matrix.

Usage

data(D311A)

Format

Three columns of independent variables

Source

source

References

Myers, R. H. and Montgomery D. C. *Response Surface Methodology* 2nd Ed., John Wiley and Sons NY, 2002. p.386

D311B

Roquemore (1976) Hybrid design D311B

Description

This is an .rda file containing the design in a matrix.

Usage

data(D311B)

Format

Three columns of independent variables

Source

source

References

6 D416B

D416A

Roquemore (1976) Hybrid design 416A

Description

This is an .rda file containing the design in a matrix.

Usage

data(D416A)

Format

Four columns of independent variables

Source

source

References

Myers, R. H. and Montgomery D. C. *Response Surface Methodology* 2nd Ed., John Wiley and Sons NY, 2002. p.386

D416B

Roquemore (1976) Hybrid design D416B

Description

this is an .rda file containing the design in a matrix.

Usage

data(D416B)

Format

Four columns of independent variables

Source

source

References

D416C 7

D416C

Roquemore (1976) Hybrid design D416C

Description

This is an .rda file containing the design in a matrix.

Usage

data(D416C)

Format

Three columns of independent variables

Source

source

References

Myers, R. H. and Montgomery D. C. *Response Surface Methodology* 2nd Ed., John Wiley and Sons NY, 2002. p.386

D628A

Roquemore (1976) Hybrid design D628A

Description

This is an .rda file containing the design in a matrix.

Usage

data(D628A)

Format

Three columns of independent variables

Source

source

References

8 Hex2

f

Calculate column means of design

Description

This function calculates means of design.

Usage

f(x)

Arguments

X

This is a design matrix

Value

mean

mean

This is the mean of the design x

Note

This function is called by the function Vdgraph.

Author(s)

John S. Lawson <lawson@byu.edu>

Hex2

Hexagonal design for two factors

Description

This is an .rda file containing the design in a matrix.

Usage

data(Hex2)

Format

Two columns of independent variables

Source

source

References

SCDDL5

SCDDL5

Draper and Lin's Small Composite Design for five factors

Description

This is an .rda file containing the design in a matrix.

Usage

data(SCDDL5)

Format

Five columns of independent variables

Source

source

References

Myers, R. H. and Montgomery D. C. *Response Surface Methodology* 2nd Ed., John Wiley and Sons NY, 2002. p.386

SCDH2

Hartley's Small Composite Design for two factors

Description

This is an .rda file containing the design in a matrix.

Usage

data(SCDH2)

Format

Two columns of independent variables

Source

source

References

10 SCDH4

SCDH3

Hartley's Small Composite Design for three factors

Description

This is an .rda file containing the design in a matrix.

Usage

data(SCDH3)

Format

Three columns of independent variables

Source

source

References

Myers, R. H. and Montgomery D. C. *Response Surface Methodology* 2nd Ed., John Wiley and Sons NY, 2002. p.386

SCDH4

Hartley's Small Composite Design for four factors

Description

This is an .rda file containing the design in a matrix.

Usage

data(SCDH4)

Format

Four columns of independent variables

Source

source

References

SCDH5

SCDH5

Hartley's Small Composite Design for five factors

Description

This is an .rda file containing the design in a matrix.

Usage

data(SCDH5)

Format

Five columns of independent variables

Source

source

References

Myers, R. H. and Montgomery D. C. *Response Surface Methodology* 2nd Ed., John Wiley and Sons NY, 2002. p.386

SCDH6

Hartley's Small Composite Design for six factors

Description

This is an .rda file containing the design in a matrix.

Usage

data(SCDH6)

Format

Six columns of independent variables

Source

source

References

12 Vardsgr

Vardsgr	Loads compiled fortran in shared file vdg

Description

This function loads and runs the compiled fortran code vdg. vdg is Vining's 1999 JQT fortran code for producing variance dispersion graphs.

Usage

```
Vardsgr(ndpts, kvar1, kdv1, rdes)
```

Arguments

ndpts	This is the number of runs in the response surface design (maximum=99).
kvar1	This is the number of factors in the design matrix (maximum=6).
kdv1	This is the product of ndpts and kvar1.
rdes	This is the response surface design matrix stored as a vector of the concatenated columns of the design matrix, one column for each factor in the design.

Value

vdgr

vdgr

This is the matrix of coordinates for the variance dispersion graph. It is stored as a vector of concatenated columns. Each column is of length 20, and there are four columns in the matrix. The first column is the radius from the center of the response surface design. The second column is the maximum variance of a predicted value, the third column is the minimum variance of a predicted value, and the fourth column is the average variance of a predicted value.

Note

This function is called by the function Vdgraph.

Author(s)

```
John S. Lawson <lawson@byu.edu>
```

References

1. Vining, G. "A Computer Program for Generating Variance Dispersion Graphs" Journal of Quality Technology, Vol 25, No. 1, pp. 45-58, 1993. 2. Vining, G. "Corrigenda" Journal of Quality Technology, Vol 25, No. 4, pp 333-335. 1993.

Vdgraph 13

Vdgraph this function mak design	tes a Variance Dispersion Graph of a response surface
-------------------------------------	---

Description

This function calls the function Vardsgr which uses Vining's (1993) fortran code to get the coordinates of a variance dispersion graph, and then makes the plot.

Usage

```
Vdgraph (des)
```

Arguments

des

des is a matrix or a data frame containing a response surface design in coded or uncoded units. There should be one column for each factor in the design, and one row for each run in the design. The maximum number of rows allowed is 99, and the maximum number of columns is 7.

Value

vdgpl

vdgpl

This is a graph containing the Variance Dispersion Graph

Note

This function calls the function Vardsgr to get the coordinates for the plot.

Author(s)

```
John S. Lawson <lawson@byu.edu>
```

References

1. Vining, G. "A Computer Program for Generating Variance Dispersion Graphs" Journal of Quality Technology, Vol 25, No. 1, pp. 45-58, 1993. 2. Vining, G. "Corrigenda" Journal of Quality Technology, Vol 25, No. 4, pp 333-335. 1993.

Examples

```
data(D310)
Vdgraph(D310)
library(rsm)
bbhrsm<-bbd(4,n0=3)
des<-bbhrsm[,2:5]
des<-as.matrix(des)
Vdgraph(des)
dat<-ccd(~A+B,generators=B~A,n0=c(1,1),alpha=1.212,wbreps=1)</pre>
```

14 Vdgraph

des2<-dat[,2:3]
Vdgraph(des2)</pre>

Index

```
*Topic package
   Vdgraph-package, 1
Compare2Vdg, 2
D310,4
D311A, 4
D311B, 5
D416A,5
D416B,6
D416C,6
D628A, 7
f, 7
Hex2,8
SCDDL5,8
SCDH2,9
SCDH3,9
SCDH4, 10
SCDH5, 10
SCDH6, 11
Vardsgr, 11
Vdgraph, 12
Vdgraph-package, 1
```