Relatividade

Flaviano Williams Fernandes

Instituto Federal do Paraná Campus Irati

19 de Outubro de 2020

Sumário

- Abordagem histórica
- 2 A relatividade restrita
- 3 Aplicações
- 4 Apêndice

O conceito de referenciais inerciais

Referenciais inerciais são aqueles que não estão sujeitos a aceleração.

Exemplos de referencial inercial e não-inercial em um trem [2].

Corollary

O estado do movimento de um objeto depende do referencial adotado.

Prof. Flaviano W. Fernandes IFPR-Irati

Abordagem histórica

•0

Independência da velocidade da luz com o referencial

Uma análise mais cuidadosa das equações de Maxwell mostra que a luz é uma onda eletromagnética que viaja no vácuo a uma velocidade de $c=\frac{1}{\sqrt{\mu_0 \epsilon_0}}=3$ × $10^8 \ m/s$, independente do movimento do observador ou da fonte.

Onda eletromagnética produzido pela oscilação de uma carga q.

Prof. Flaviano W. Fernandes IFPR-Irati

Abordagem histórica

Postulados da teoria da relatividade especial

As leis físicas são as mesmas para quaisquer observadores em movimento uniforme:Todo movimento é relativo, ou seja, não existe na natureza algum referencial privilegiado (como o Éter).

A velocidade da luz no vácuo possui sempre o mesmo valor para quaisquer observador: A luz possui a mesma velocidade ($c = 3 \times 10^8 \ m/s$) independente do movimento da fonte emissora ou da direção de propagação.

Espaco-tempo de Minkowski.

Corollary

Qualquer evento que pode ocorrer no tempo deve estar inserido no cone de luz.

Princípio da simultaneidade dos raios de luz

Os feixes de luz devem chegar simultaneamente ao observador independente do movimento das fontes.

Carros A e B parados.

Carro A parado e B em movimento.

Contração da distância

Pela mecânica Newtoniana, o feixe B deveria chegar no observador com uma velocidade v' = v + c, enquanto que o feixe A chegaria a velocidade c, o que violaria os postulados da relatividade restrita. Para igualar as velocidades, sabendo que $v = \frac{\Delta S}{\Delta t}$, podemos dizer que haveria uma contração na distância $\Delta S'$ percorrida pelo carro B em relação a distância ΔS percorrida pelo carro A afim de ajustar a velocidade do feixe B para um valor igual a c.

Corollary

A contração do espaço sempre ocorre na direção da velocidade.

Dilatação do tempo

Como a velocidade c deve ser a mesma, independente do referencial, e pela relação $c = \frac{\Delta S}{\Delta t}$, tanto no referencial do carro A quanto no referencial do carro B, os feixes A ou B deveriam chegar ao mesmo tempo no observador. Podemos dizer que isso seria possível se o carro B percebese que o tempo marcado no relógio do carro A andasse mais rápido que o tempo marcado no seu relógio, ou seja, o tempo no carro A andaria mais rápido enquanto que o tempo no carro B andaria mais devagar.

Corollary

Não existe referencial absoluto, ou seja, todo movimento é relativo.

Cinemática relativística

Einstein percebeu que a única maneira de dois observadores, com um movimento relativo entre si, consequirem medir o mesmo valor para a velocidade da luz, seria se um deles achasse que a réqua ou o relógio do outro não estava coincidindo com o seu.

O observador parado irá ver o comprimento L do objeto em movimento contraído por um valor $L = \frac{L'}{2}$, onde L' é o seu comprimento próprio.

O objeto em movimento irá ver o tempo do observador andar mais rápido que o seu, segundo a relação $\Delta t = \gamma \Delta t'$.

Fator de Lorentz

$$\gamma = rac{1}{\sqrt{1 - rac{v^2}{c^2}}}, \quad \gamma \geq 1$$

Dinâmica relativística

Na mecânica newtoniana, o momento de um objeto é definido por $\vec{p}=m\vec{v}$, onde \vec{v} é a velocidade e m a massa. Porém, cálculos da velocidade relativa mostra que para a conservação do momento seja satisfeita na relatividade restrita, a massa deve mudar com a velocidade do objeto,

$$m(v) = \gamma(v)m_0,$$

onde m_0 representa a massa do objeto

no seu estado de repouso. Portanto, a expressão que define o momento do objeto também muda, na forma

$$\vec{p} = \gamma(v) m_0 \vec{v}.$$

Na relatividade, a expressão da energia também depende do fator de Lorentz, na forma

$$E = \gamma(v)mc^2$$
.

Equação geral da relatividade

$$ho^2 = \left(rac{1}{\sqrt{1 - rac{v^2}{c^2}}}
ight)^2 m_0^2 v^2, \
ho^2 = rac{c^2}{(c^2 - v^2)} m_0^2 v^2.$$

Somando e subtraindo o lado direito por

$$\frac{m_0^2c^2}{c^2-v^2}$$
 nos fornece

Considere o momento de um objeto dado pela equação
$$p=\frac{m_0 v}{\left(1-\frac{v^2}{c^2}\right)}$$
. Elevando ao quadrado temos
$$p^2=\left(\frac{1}{\sqrt{1-\frac{v^2}{c^2}}}\right)^2 m_0^2 v^2, \qquad p^2=c^2\left(\frac{m_0^2 v^2}{c^2-v^2}+\frac{m_0^2 c^2}{c^2-v^2}-\frac{m_0^2 c^2}{c^2-v^2}\right),$$

$$p^2=c^2\left(-m_0^2+\gamma^2 m_0^2\right).$$

$$p^2=c^2\left(-m_0^2+\gamma^2 m_0^2\right).$$

$$p^2=c^2\left(-m_0^2+\gamma^2 m_0^2\right).$$
 Mas $\gamma^2 m_0^2=\frac{E^2}{c^4}$, portanto

Mas
$$\gamma^2 m_0^2 = \frac{E^2}{c^4}$$
, portanto

$$p^2 = -m_0^2 c^2 + \frac{E^2}{c^2}.$$

Equivalência entre massa e energia

Considere a relação $p^2 = -m_0^2 c^2 + \frac{E^2}{c^2}$, se o objeto está em repouso, ou seja v=0, temos p=0, portanto

$$\frac{E^2}{c^2} = m_0^2 c^2,$$

$$E = \pm m_0 c^2.$$

A solução $E = -m_0c^2$ revela que toda matéria de massa m_0 possui a sua versão antimatéria, cuja massa tem a mesma quantidade m_0 .

Energia de repouso

$$E=m_0c^2$$

Corollary

A combinação de matéria e antimatéria acarretaria na transformação de toda massa $2m_0$ numa quantidade de energia equivalente a $E = 2m_0c^2$.

Pressão de radiação

Se um objeto se move a velocidade da luz (v=c), temos $\gamma \to \infty$. Sabendo que $E_c=(\gamma-1)\,m_0c^2$, necessitaríamos de uma energia infinita para levar um objeto de massa m a velocidade da luz.

No caso da luz temos m = 0, portanto

$$p^2 = \frac{E^2}{c^2} - m_0^2 c^2,$$

$$p = \pm \frac{E}{c}.$$

Sistema de posicionamento global

Distância entre satélites e receptor [3].

O sistema GPS funciona através do método chamado "trilateração" de no mínimo três satélites que orbitam ao redor da Terra a velocidades elevadas. Para isso, os satélites enviam sinais de rádio para a Terra informando a sua localização e a distância da pessoa até o satélite através da fórmula $\Delta S = c \cdot \Delta t$ Como eles estão em alta velocidade, cálculos relativísticos são necessários afim de corrigir o tempo de seus relógios internos, antes de serem enviados para a terra.

Buraco de verme

Buraco de verme ou buraco de minhoca.

Buraço de verme é uma conexão entre dimensões diferentes de uma dobra ou curva do mesmo espaço-tempo em que estamos, que é como um atalho e não uma máquina do tempo, o que há dentro dessa curva, podemos chamar de transespaço e o que há dentro do wormhole, podemos chamar de hiperespaço.

Transformar um número em notação científica

Corollary

- Passo 1: Escrever o número incluindo a vírgula.
- Passo 2: Andar com a vírgula até que reste somente um número diferente de zero no lado esquerdo.
- Passo 3: Colocar no expoente da potência de 10 o número de casas decimais que tivemos que "andar"com a vírgula. Se ao andar com a vírgula o valor do número diminuiu, o expoente ficará positivo, se aumentou o expoente ficará negativo.

Exemplo

6 590 000 000 000 000, $0 = 6.59 \times 10^{15}$

Conversão de unidades em uma dimensão

$$1 \text{ mm} = 1 \times 10^{(-1) \times \textcolor{red}{2}} \text{ dm} \rightarrow 1 \times 10^{-2} \text{ dm}$$

$$2,5~g=2,5\times 10^{(1)\times 3}~mg \rightarrow 2,5\times 10^{3}~mg$$

10
$$\mu$$
C = 10 × 10^[(-3)×1+(-1)×3] C \rightarrow 10 × 10⁻⁶ C

Conversão de unidades em duas dimensões

$$1 \text{ mm}^2 = 1 \times 10^{(-2) \times 2} \text{ dm}^2 \rightarrow 1 \times 10^{-4} \text{ dm}^2$$

$$2,5 \text{ m}^2 = 2,5 \times 10^{(2) \times 3} \text{ mm}^2 \rightarrow 2,5 \times 10^6 \text{ mm}^2$$

10
$$\mu\text{m}^2 = 10 \times 10^{[(-6)\times 1 + (-2)\times 3]} \text{ m}^2 \rightarrow 10 \times 10^{-12} \text{ m}^2$$

Conversão de unidades em três dimensões

$$1 \text{ mm}^3 = 1 \times 10^{(-3) \times 2} \text{ dm}^3 \rightarrow 1 \times 10^{-6} \text{ dm}^3$$

$$2,5 \text{ m}^3 = 2,5 \times 10^{(3) \times 3} \text{ mm}^3 \rightarrow 2,5 \times 10^9 \text{ mm}^3$$

10
$$\mu \text{m}^3 = 10 \times 10^{[(-9) \times 1 + (-3) \times 3]} \text{ m}^3 \rightarrow 10 \times 10^{-18} \text{ m}^3$$

Alfabeto grego

Alfa	Α	α	Ni	Ν
Beta	В	β	Csi	Ξ
Gama	Γ	γ	ômicron	0
Delta	Δ	δ	Pi	П
Epsílon	Ε	ϵ , ε	Rô	Ρ
Zeta	Z	ζ	Sigma	Σ
Eta	Η	η	Tau	Τ
Teta	Θ	θ	Ípsilon	Υ
lota	1	ι	Fi	Φ
Capa	K	κ	Qui	Χ
Lambda	Λ	λ	Psi	Ψ
Mi	Μ	μ	Ômega	Ω

Prof. Flaviano W. Fernandes

 ϕ, φ

 ω

Referências

- A. Máximo, B. Alvarenga, C. Guimarães, Física. Contexto e aplicações, v.1, 2.ed., São Paulo, Scipione (2016)
- http://fisicacomentada.blogspot.com/2012/05/introducao-teoria-darelatividade.html
- http://www.opensat.com.br/blog/outros/como-rastrear-um-celular.html

Esta apresentação está disponível para download no endereço https://flavianowilliams.github.io/teaching