WILDseq Library Prep v2 Protocol

Callum Malcolm

2023-11-07

Contents

Reverse Transcription		
Overview	 	
Materials	 	
RT Protocol	 	
CR Step 1		
Overview	 	
Materials	 	
PCR1 Protocol		
Bead Clean Up Overview	 	
Materials	 	
Protocol	 	
CR Step 2		
Overview	 	
Materials		
PCR2 Protocol		

Reverse Transcription

Overview

- cDNA synthesis from RNA template
- Include a -RT control if possible
 - Mix several samples and include extra H20 instead of Reverse Transcriptase
 - PCR this sample as well, checks for contamination of genomic DNA, mastermix, ect.
 - Can also use as negative control to determine product size and yield on tapestation

Materials

• For 40 samples

Component	Expected Volume/experiment	Material ID
5x SSIV Buffer	$200~\mu\mathrm{L}$	
SSIV RT	$50~\mu\mathrm{L}$	
100 mM DTT	$50~\mu\mathrm{L}$	
RNAse Out	$50~\mu\mathrm{L}$	
Thermolabile Exonuclease I	$1~\mu { m L}$	
NEBuffer r3.1*	$2~\mu { m L}$	

RT Protocol

- 1. In PCR strip tubes, prepare 1-5 μ g of RNA in a total volume of 10 μ l of RNAse/DNAase-free water.
- 2. Add 1 μ l of WS_RT_UMI_NexteraR2 primer (2 μ M stock)
- 3. Add 1 μ l dNTPs (10 mM each).
- 4. Denature at 65 C for 5 mins in the PCR machine, then straight onto ice for at least 2 mins, spin briefly to get liquid to the bottom of the tube.
- 5. Prepare mastermix of RT enzyme and buffers. 1.1x the number of samples.

Component	Volume	MM volume
5x SSIV Buffer	$4 \mu L$	
SSIV RT	$1~\mu L$	
$100~\mathrm{mM}~\mathrm{DTT}$	$1~\mu L$	
RNAse Out	$1~\mu { m L}$	

- 6. Add 7 μ l of RT MM prepared above to each sample and mix, spin briefly to get liquid to the bottom of the tube.
 - Spin briefly to get liquid to bottom of the tube
- 7. In the PCR machine incubate at 53 C for 10 mins followed by 80 C for 10 mins.
- 8. Add 1 μ l Themolabile Exonuclease I (NEB M0568) to remove excess RT primer.

Component	Volume	MM volume
Thermolabile Exonuclease I NEBuffer r3.1*	$\begin{array}{cc} 1~\mu \mathrm{L} \\ 2~\mu \mathrm{L} \end{array}$	

^{**}Most PCR buffers are compatible**

- 9. In PCR Machine: heat at 37C for 4 mins followed by 80C for 1 min
 - Spin briefly to get liquid to bottom of the tube
- 10. Add 1 μ l of RNAse H and incubate at 37 C for 20 mins.
- 11. Dilute final cDNA 1:2 with DNAse/RNAse-free water.

PCR Step 1

Overview

- Aim to keep number of cycles at a minimum.
- Forward primer is an equal mix of primers with different length spacers to generate diversity required for sequencing.

Materials

Component	Expected Volume/experiment	Material ID
10uM WS_RT-PCR1_Fwd	$70~\mu\mathrm{L}$	-
10uM WS_RT-PCR1_Rev	$70~\mu\mathrm{L}$	-
DNAse/RNAse H20	$550~\mu\mathrm{L}$	
Kapa Hifi HotStart Ready Mix (2X)	$1200~\mu\mathrm{L}$	KK2601

PCR1 Protocol

- Set up PCR reactions on ice
- One reaction per sample plus -RT control
- 1. Prepare mastermix of below reagents at 1.1x the number of samples

Component	Volume
10uM WS_RT-PCR1_Fwd 10uM WS_RT-PCR1_Rev DNAse/RNAse H20 Kapa Hifi HotStart Ready Mix (2X)	$1.5 \ \mu L$ $1.5 \ \mu L$ $12 \ \mu L$ $25 \ \mu L$
Total Master Mix volume	40 μ L
cDNA from above	$10~\mu L$

2. Perform PCR using the following parameters:

Step Name	Steps	Time
Initial Denaturation	Step 1: 95C	3mins
Denaturation	Step 2: 98C	20s
Annealing	Step 3: 60C	15s
Extension	Step 4: 72C	15s
Final Extension	Step 5: 72C	$1 \min$
Hold Step	Step 6: 12C	Hold

10-25 cycles of steps 2-4

Clean up reaction using Ampure beads and check product size and yield on tapestation

Bead Clean Up

Overview

- Clean PCR reaction by removing leftover primers
- This prevents false reads, cleaner indexing in later steps, and higher quality samples

Materials

• For 40 samples

Component	Expected Volume/experiment	Material ID
Ampure Bead Kit	$200~\mu\mathrm{L}$	

Protocol

- 1. Equilibrate Ampure beads to room temp (available from supplies cold room)
- 2. Mix well and vortex for 30sec to ensure uniform distribution.
- 3. Add 90ul (1.8X volume) to PCR reaction and mix thoroughly by pipetting.
- 4. Incubate 5min, room temp
- 5. Place on magnet for 2 min and keep on magnet until final elution
- 6. Remove supernatant and add 200ul 70% ethanol (make fresh)
- 7. Incubate 30sec and remove
- 8. Repeat 70% ethanol wash
- 9. Air dry beads 5-10min room temp. Once dry the beads will go from shiny to matt in appearance. Avoid over drying (cracked appearance).
- 10. Add 15 ul EB buffer and resuspend beads by pipetting
- 11. Incubate 2min room temp
- 12. Place on magnet and remove eluate
- 13. Assess PCR product size, contamination and concentration on tapestation. **Expected size = 165-172bp**

PCR Step 2

Overview

- PCR to index samples for sequencing by attaching UMI
- VERY IMPORTANT to accurately record which samples receive which adaptors *Guide for Index Addaptor Pooling

Materials

Component	Expected Volume/experiment	Material ID
10uM Nxxx Nextera i7 adapter	-	-
10uM Sxxx Nextera i5 adapter	-	-
DNAse/RNAse H20	$1000~\mu\mathrm{L}$	
Kapa Hifi HotStart Ready Mix (2X)	$1200~\mu\mathrm{L}$	KK2601

PCR2 Protocol

- 1. Prepare samples according to the following table:
- Keep careful note of which adaptors are added to which sample

Component	Volume
10uM Nxxx Nextera i7 adapter	$1.5~\mu L$
10uM Sxxx Nextera i5 adapter	$1.5 \ \mu L$
DNAse/RNAse H20	$21 \ \mu L$
Kapa Hifi HotStart Ready Mix (2X)	$25 \mu L$
$10 \text{ng}/\mu\text{L PCR}1$	$1 \mu L$

2. Perform PCR using the following parameters:

Step Name	Steps	Time
Initial Denaturation	Step 1: 95C	3mins
Denaturation	Step 2: 98C	20s
Annealing	Step 3: 55C	15s
Extension	Step 4: 72C	15s
Final Extension	Step 5: 72C	$2 \min$
Hold Step	Step 6: 12C	Hold

8 cycles of steps 2-4

- $3.\ \,$ Perform Ampure bead clean up as above with 90ul beads per 50ul PCR reaction.
- If you don't have a crazy number of samples you might also want to consider doing up to 4 PCR2 reactions per sample and pooling them afterwards just to make sure all your sequences are captured.
- 4. Check size and concentration on tapestation. Dilute and pool samples for sequencing.