5. Übung zur Komplexen Analysis

- 1. Sei $G \subseteq \mathbb{C}$ ein Gebiet und $u: G \to \mathbb{R}$ eine harmonische Funktion, d.h. u ist zweimal reell stetig differenzierbar in G mit $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$. Ferner sei $f: K \to \mathbb{C}$ auf einer Kreisscheibe $K \subseteq G$ holomorph, Zeigen Sie: Falls u in K der Realteil von f ist, kann f längs eines jeden Weges in G analytisch fortgesetzt werden.
- 2. Es sei $f(z) = \sum_{n=0}^{\infty} a_n z^n$ die Potenzreihenentwicklung einer ganzen Funktion. Für jedes $n \in \mathbb{Z}$ bestimme man das Residuum

$$\operatorname{Res}_0 \frac{f(z) + f\left(\frac{1}{z}\right)}{z^n}.$$

- 3. Welche Werte kann das Integral $\int_{\gamma} \frac{dz}{z^2+a^2}$, $a\in\mathbb{C}$, für geschlossene Kurven in $\mathbb{C}\setminus\{\pm ia\}$ annehmen?
- 4. Berechnen Sie $\int \frac{\sinh z}{z^2} dz$ für γ laut Skizze:

5. Es sei $f: G \to f(G)$ biholomorph auf einem Gebiet G, d.h. f ist bijektiv und f, f^{-1} sind holomorph. Weiters sei $B := \{z: |z - z_0| < r\}$ mit $\overline{B} \subseteq G$ für gewisse $z_0 \in \mathbb{C}$ und r > 0. Zeigen Sie, dass für $w \in f(B)$ gilt:

$$f^{-1}(w) = \frac{1}{2\pi i} \int_{\partial B} \frac{zf'(z)}{f(z) - w} dz.$$

- 6. Sei f holomorph in \mathbb{C} mit Ausnahme endlich vieler isolierter Singularitäten. Zeigen Sie: Die Funktion $g(z) := z^{-2} f(z^{-1})$ ist in einer punktierten Umgebung von 0 holomorph, und es gilt $\operatorname{Res}_0 g = \sum_{a \in \mathbb{C}} \operatorname{Res}_a f$.
- 7. Zeigen Sie: $\int_{0}^{\infty} \frac{x^{m-1}}{1+x^n} dx = \frac{\pi}{n} (\sin \frac{m}{n} \pi)^{-1}, \ m, n \in \mathbb{N}, \ 0 < m < n, \text{ indem Sie } f(z) = \frac{z^{m-1}}{1+z^n} \text{ über } \gamma \text{ (siehe Skizze unten links) integrieren}$

8. Zeigen Sie: $\int_{0}^{\infty} \frac{\log x}{1+x^2} dx = 0$, indem Sie $\frac{l(z)}{1+z^2}$, wobei l ein geeigneter Zweig des Logarithmus ist, über γ laut Skizze (oben rechts) integrieren.