Multiple Integrals

MATH 104 Rüzgar ERİK

Contents

1	Double and Iterated Integrals over Rectangles	2
	1.1 Double Integrals	2
	1.2 Double Integrals as Volumes	3
	1.3 Fubini's Theorem for Calculating Double Integrals	3
2	Double Integrals over General Regions	4
	2.1 Double Integrals over Bounded, Nonrectangular Regions	4
	2.2 Finding the Limits of Integration	4
	2.3 Properties of Double Integrals	5
3	Area by Double Integration	5
	3.1 Areas of Bounded Regions in the Plane	5
	3.2 Average Value	6
4	Double Integrals In Polar Form	6
	4.1 Integrals In Polar Coordinates	6
	4.2 Finding Limits of Integration	7
	4.3 Changing Cartesian Integrals into Polar Integrals	8
5	Triple Integrals in Rectangular Coordinates	8
6	Volume of a Region in Space	8
	6.1 Finding limits of Integration in the order dz dy dx	8
	6.2 Average Value of a Function in Space	Q

1 Double and Iterated Integrals over Rectangles

1.1 Double Integrals

We begin our investigations of double integrals by considering the simplest type of region, a rectangle. We consider a function f(x, y) defined on a rectangular region R,

$$R: \quad a \le x \le b, \ c \le y \le d$$

.

We subdivide R into small rectangles using a network of lines parallel to the x- and y-axes. The lines divide R into n rectangular pieces, where the number of such pieces n gets large as the width and height of each piece gets small. These rectangles form a **partition** of R. A small rectangular piece of width Δx and height Δy has area $\Delta A = \Delta x \Delta y$. If we number the small pieces partitioning R in some order, then their areas are given by numbers $\Delta A_1, \Delta A_2, \ldots, \Delta A_n$ where ΔA_k is the area of the kth small rectangle.

To form a Riemann sum over R, we choose a point (x_k, y_k) in the kth small rectangle, multiply the value of f at that point by the area ΔA_k , and add together the products:

$$S_n = \sum_{k=1}^n f(x_k, y_k) \Delta A_k.$$

Depending on how we pick (x_k, y_k) in the kth small rectangle, we may get different values for S_n .

We are interested in what happens to these Riemann sums as the widths and heights of all the small rectangles in the partition of R approach zero. The **norm** of a partition P is written ||R||, is the largest width or height of any rectangle in the partition. If ||R|| = 0.1 then all the rectangles in the partition of R have width at most 0.1 and height at most 0.1. Sometimes the Riemann sums converge as the norm of R goes to zero, written $||P|| \to 0$.

The resulting limit is written as

$$\lim_{\|P\| \to 0} \sum_{k=1}^{n} f(x_k, y_k) \Delta A_k$$

as $||P|| \to 0$ and the rectangles get narrow and short, their number n increases, so we can also write the limit as

$$\lim_{n \to \infty} \sum_{k=1}^{n} f(x_k, y_k) \Delta A_k$$

with understanding that $||P|| \to 0$, and hence $\Delta A_k \to 0$ as $n \to \infty$.

When a limit of the sums S_n exists, giving the same limiting value no matter what choices are made, then the function f is said to be **integrable** and the limit is called the **double integral** of f over R, written as

$$\int \int_{R} f(x, y) dA \quad \text{or} \quad \int \int_{R} f(x, y) dx dy$$

1.2 Double Integrals as Volumes

When f(x, y) is a positive function over a rectangular area R in the xy-plane, we may interpret the double integral of f over R as the volume of the 3-dimensional solid region over the xy-plane bounded below by R and above by the surface z = f(x, y). Each term $f(X_K, y_k)\Delta A_k$ in the sum $S_n = \sum f(x_k, y_k)\Delta A_k$ is the volume of a vertical rectangular box that approximates the volume of the portion of the solid that stands directly above the base ΔA_k . The sum S_n thus approximates what we want to call the total volume of the solid that stands directly above the base ΔA_k .

1.3 Fubini's Theorem for Calculating Double Integrals

Suppose that we wish to calculate the volume under the plane z=4-x-y over the rectangular region $R:0\leq x\leq 2, 0\leq y\leq 1$ in the xy-plane. If we apply the method of slicing, with slices perpendicular to the x-axis, then the volume is

$$\int_{x=0}^{x=2} A(x) \mathrm{d}x$$

,

where A(x) is the cross-sectional area at x. For each value of x, we may calculate A(x) as the integral

$$A(X) = \int_{y=0}^{y=1} (4 - x - y) dy$$

which is the area under the curve in the plane of the cross-section at x. In calculating A(x), x is held fixed and the integration takes place with respect to y. Combining the equations the volume of the entire solid is

Volume =
$$\int_{0}^{2} \int_{0}^{1} (4 - x - y) dy dx$$

.

Fubini's Theorem First Form

If f(x,y) is continuous throughout the rectangular region $R: a \le x \le b, c \le y \le d$ then

$$\iint_{B} f(x,y)dA = \int_{a}^{d} \int_{a}^{b} f(x,y)dxdy = \int_{a}^{b} \int_{a}^{d} f(x,y)dydx$$

Rüzgar Erik

2 Double Integrals over General Regions

2.1 Double Integrals over Bounded, Nonrectangular Regions

Fubini's Theorem (Stronger Form)

Let f(x, y) be continuous on a region R.

1. If R is defined by $a \le x \le b$, $g_1(x) \le yg_2(x)$, with g_1 and g_2 continuous on [a, b] then,

$$\iint_R f(x,y)dA = \int_a^b \int_{q_1(x)}^{g_2(x)} f(x,y)dydx.$$

2. If R is defined by $c \leq y \leq d$, $h_1(y) \leq x \leq h_2(y)$, with h_1 and h_2 continuous on [c,d], then

$$\iint_R f(x,y)dA = \int_c^d \int_{h_1(y)}^{h_2(y)} f(x,y)dxdy$$

2.2 Finding the Limits of Integration

Using Vertical Cross-Sections

- 1. Sketch. Sketch the region of integration and label the bounding curves.
- 2. Find the y-limits of integration. Imagine a vertical line cuttting through R in the direction of increasing y. Mark the y-values where L enters and leaves. These are y-limits of integration and are usually functions of x.
- 3. Find the x-limits of the integration. Choose x-limits that include all the vertical lines through R. The integral shown in the figure is

2.3 Properties of Double Integrals

If f(x, y) and g(x, y) are continuous on the bounded region R, then the following properties hold.

1. Constant Multiple:

$$\iint_{R} cf(x,y) dA = c \cdot \iint_{R} f(x,y) dA$$

2. Sum and difference:

$$\iint_{R} (f(x,y) \pm g(x,y)) dA = \iint_{R} f(x,y) dA \pm \iint_{R} g(x,y) dA$$

3. Domination:

a)

$$\iint_R f(x,y) dA \ge 0 \quad \text{if} \quad f(x,y) \ge 0 \text{ on } R$$

b)

$$\iint_{R} f(x,y) dA \ge \iint_{R} g(x,y) dA \quad \text{if} \quad f(x,y) \ge g(x,y) \text{ on } R$$

4. Additivity: If R is the union of two non overlapping Regions R_1 and R_2 , then

$$\iint_{R} f(x,y) dA = \iint_{R_1} f(x,y) dA + \iint_{R_2} f(x,y) dA$$

3 Area by Double Integration

3.1 Areas of Bounded Regions in the Plane

If we take f(x,y) = 1 in the definition of the double integral over a region R in the preceding section, the Riemann sums reduce to

$$S_n = \sum_{k=1}^n f(x_k, y_k) \Delta A_k = \sum_{k=1}^n \Delta A_k.$$

DEFINITION(S)

The **area** of a closed, bounded plane region R is

$$A = \iint_R \mathrm{d}A$$

3.2 Average Value

Average Value of f over R

$$\frac{1}{\text{area of R}} \iint_R f dA$$

4 Double Integrals In Polar Form

4.1 Integrals In Polar Coordinates

When we defined the double integral of a function over a region R in the xy-plane, we began by cutting R into rectangles whose sides were parallel to the coordinate axes. These were the natural shapes to use because their sides have either constant x-values or constant y-values. In polar coordinates, the natural shape is "polar rectangle" whose sides have constant r- and θ -values. To avoid ambiguities when describing the region of integration with polar coordinates, we use polar coordinate points (r, θ) where $r \geq 0$.

Suppose a function $f(r,\theta)$ is defined over a region R that is bounded by the rays $\theta = \alpha$ and $\theta = \beta$ and by the continuous curves $r = g_1(\theta)$ and $r = g_2(\theta)$. Suppose also that $0 \le g_1(\theta) \le g_2(\theta) \le \alpha$ for every value of θ between α and β . Then R lies in a fan shaped region Q defined by the inequalities $0 \le r \le a$ and $\alpha \le \theta \le \beta$ where $0 \le \beta - \alpha \le 2\pi$

We cover Q by a grid of circular arcs and rays. The arcs are cut from circles centered at the origin, with radii $\Delta r, \Delta 2r, \dots, m\Delta r$ where $\Delta r = \frac{a}{m}$. The rays are given by

$$\theta = \alpha, \quad \theta = \alpha + \Delta\theta, \quad \theta = \alpha + 2\Delta\theta, \quad \dots, \theta = \alpha + m'\Delta\theta = \beta$$

where $\Delta\theta = (\beta - \alpha)/m'$. The arcs and rays partition Q into smaller patches called called "polar rectangles"

We number the polar rectangles that lie inside R, calling their areas $\Delta A_1, \Delta A_2, \ldots, \Delta A_n$ where ΔA_n . We let (r_k, θ_k) be any point in the polar rectangle whose area is ΔA_k . We form the sum

$$S_n = \sum_{k=1}^n f(r_k, \theta_k) \Delta A_k$$

If f is continuous throughout R, this sum will approach a limit as we define the grid to make Δr and $\Delta \theta$ go to zero. The limit is called the double integral of f over R. In symbols,

$$\lim_{n \to \infty} S_n = \iint_R f(r, \theta) dA$$

To evaluate this limit, we first have to write the sum S_n in a way that expresses ΔA_k in terms of ΔR and $\Delta \theta$. For convenience we choose r_k to be the average of the radii of the inner and outer arcs bounding the kth polar rectangle ΔA_k . The radius of the inner arc bounding ΔA_k is then $r_k - (\Delta r/2)$. The radius of the outer arc is $r_k + (\Delta r/2)$

The area of a wedge-shaped sector of a circle having radius r and angle θ is

$$A = \frac{1}{2}\theta r^2$$

as can be seen by multiplying πr^2 , the area of the circle, by $\theta/2\pi$, the fraction of the circle's area contained in the wedge. So the areas of the circular sectors subtended by these arcs at the origin are

Inner Radius:
$$\frac{1}{2} \left(r_k - \frac{\Delta r}{2} \right)^2 \Delta \theta$$

Inner Radius:
$$\frac{1}{2} \left(r_k + \frac{\Delta r}{2} \right)^2 \Delta \theta$$

Therefore

 ΔA_k = area of the large sector – area of the small sector

$$= \frac{\Delta \theta}{2} \left[\left(r_k + \frac{\Delta r}{2} \right)^2 - \left(r_k - \frac{\Delta r}{2} \right)^2 \right] = \frac{\Delta \theta}{2} \left(2r_k \Delta r \right) = r_k \Delta r \Delta \theta.$$

A version of Fubini's Theorem says that the limit approached by these sums can be evaluated by repeated single integrations with respect tot r and θ as

$$\iint_{R} f(r,\theta) dA = \int_{\theta=\alpha}^{\theta=\beta} \int_{r=g_{1}(\theta)}^{g_{2}(\theta)} f(r,\theta) r dr d\theta$$

4.2 Finding Limits of Integration

- 1. Sketch. Sketch the region and label the bounding curves.
- 2. Find the r limits of the integration.
- 3. Find θ -limits of the integration. Find the smallest and largest θ -values that bound R.

Area in Polar Coordinates

The area of a a closed and bounded region R in the polar coordinate plane is

$$A = \iint_{R} r dr d\theta$$

4.3 Changing Cartesian Integrals into Polar Integrals

The procedure for changing a Cartesian integral into a polar integral has two steps. First substitute $x = r \cos \theta$ and $y = r \sin \theta$ and replace dxdy by $rdrd\theta$ in the cartesian integral. Then supply polar limits of integration for the boundry of R. The cartesian integral becomes

$$\iint_{R} f(x,y)dxdy = \iint_{G} f(r\cos\theta, r\sin\theta)rdrd\theta$$

5 Triple Integrals in Rectangular Coordinates

6 Volume of a Region in Space

If F is the constant function whose value is 1, then the sums reduce to

$$S_n = \sum_{k=1}^n F(x_k, y_k, z_k) \Delta V_k = \sum_{k=1}^n 1 \cdot \Delta V_k = \sum_{k=1}^n \Delta V_k$$

As Δx_k , Δy_k , and Δz_k approach zero, the cells ΔV_k become small and more numerous and fill up more and more of D. We therefore define the volume of D to be the triple integral.

$$\lim_{n \to \infty} \Delta V_k = \iiint_D dV$$

DEFINITION(S)

The **volume** of a solid region D in space is

$$V = \iiint_D \mathrm{d}V$$

6.1 Finding limits of Integration in the order dz dy dx

We evaluate a triple integral by applying a three-dimensional version of Fubini's Theorem to evaluate it by three repeated single integrations. As with double integrals, there is a geometric procedure for finding the limits of the integration for these integrals.

To evaluate

$$\iiint_D F(x, y, z) dV$$

over a region D, integrate first with respect to z, then with respect to y, and finally with respect to x. The limits of integration are found by projecting D onto the xy-plane and then projecting the resulting region onto the x-axis.

- 1. Sketch. Sketch the region D along with its shadow R in the xy-plane. Label the upper and lower bounding surfaces of D and the bounding curves of R.
- 2. Find the z-limits of the integration. Draw a line M passing through a typical point (x, y) in R parallel to the z-axis. As z increases, M enters D at $z = f_1(x, y)$ and leaves at $z = f_2(x, y)$. These are the z-limits of integration.

- 3. Find the y-limits of the integration. For each value of x, the line segment in R that lies above x is bounded below by the curve $y = g_1(x)$ and above by $y = g_2(x)$. These are the y-limits of integration.
- 4. Find the x-limits of the integration. Choose x-limits that include all the vertical lines through R. The integral is

$$\int_{x=a}^{x=b} \int_{y=g_1(x)}^{y=g_2(x)} \int_{z=f_1(x,y)}^{z=f_2(x,y)} F(x,y,z) dz dy dx$$

6.2 Average Value of a Function in Space

The average value of a function F(x, y, z) over a solid region D is

$$\frac{1}{\text{Volume of D}} \iiint_D F(x, y, z) dV$$