Analyse Approfondie Chapitre 3: Intégrale de Riemann, à la Darboux.

Table des matières

1. Subdivisions.	1
2. Sommes de Darboux.	1
3. Intégrales.	2
4. Critère d'intégrabilité.	2

1. Subdivisions.

Définition 1.1 (Subdivision): Une Subdivision P d'un segment [a,b] est la donnée d'une suite finie de [a,b] qui est strictement croisssante, dont le premier élément est a et dont le dernier élément est b. On note une subdivision de la facon suivante: $P = \{a = x_0 < x_1 < ... < x_n = b\}$.

Définition 1.2 (plus fine que): Soit P et Q deux subdivision de [a,b]. On dit que Q est plus fine que P si $P \subset Q$.

2. Sommes de Darboux.

Définition 2.1 (Somme de Darboux supérieure): Soit $f:[a,b]\to\mathbb{R}$ une fonction bornée et $P=\{a=x_0< x_1< ...< x_n=b\}$ une subdivision de [a,b]. On définit la somme de Darboux supérieure de f selon P par :

$$U_{p(f)} = \sum_{k=1}^{n} \Biggl((x_k - x_{k-1}) \sup_{[x_{k-1}, x_k]} f \Biggr).$$

Définition 2.2 (Somme de Darboux inférieure): Soit $f:[a,b]\to\mathbb{R}$ une fonction bornée et $P=\{a=x_0< x_1< ...< x_n=b\}$ une subdivision de [a,b]. On défnit la somme de Darboux inférieure de f selon P par :

$$L_{p(f)} = \sum_{k=1}^{n} \biggl((x_k - x_{k-1}) \inf_{[x_{k-1}, x_k]} f \biggr).$$

Proposition 2.1: Soit P et Q deux subdivisions de [a,b]. Si Q est plus fine que P,

$$U_Q(f) \leq U_P(f) \text{ et } L_Q(f) \geq L_P(f).$$

Démonstration: Soit P, Q deux subdivisions de [a, b] telles que Q plus fine que P. Soit $c \in]x_{k-1}, x_{k[}, alors$

$$\begin{split} (x_k - x_{k-1}) \sup_{[x_{k-1}, x_k]} f &= (x_k - c + c - x_{k-1}) \sup_{[x_{k-1}, x_k]} f \\ &= (c - x_{k-1}) \sup_{[x_{k-1}, x_k]} f + (x_k - c) \sup_{[x_{k-1}, x_k]} f \\ &\geq (c - x_{k-1}) \sup_{[x_{k-1}, c]} f + (x_k - c) \sup_{[c, x_k]} f \end{split}$$

Proposition 2.2: Soit P et Q deux subdivisions de [a,b], alors $L_{p(f)} \leq U_{Q(f)}$.

Démonstration: En effet si on pose $R:=P\cup Q$ alors R est plus fine que P et que Q, donc $L_{P(f)}\leq L_{R(f)}\leq U_{R(f)}\leq U_{Q(f)}$.

3. Intégrales.

Définition 3.1 (intégrale inférieure): Soit $f:[a,b]\to\mathbb{R}$ une fonction bornée. On définit l'intégrale inférieure de f par $\int_{a}^{b}f:=\sup\Bigl\{L_{p(f)}:P\text{ subdivision de }[a,b]\Bigr\}$.

Définition 3.2 (intégrale supérieure): Soit $f:[a,b]\to\mathbb{R}$ une fonction bornée. On définit l'intégrale supérieure de f par $\overline{\int}_a^b f:=\inf \left\{ U_{p(f)}: P \text{ subdivision de } [a,b] \right\}$.

Définition 3.3: Soit $f:[a,b]\to\mathbb{R}$ une fonction bornée. On dit que f est intégrable si $\overline{\int}_a^b f=\underline{\int}_a^b f$. Alors on dénote cette quantité par :

$$\int_{a}^{b} f(x) \, \mathrm{d}x := \int_{\underline{a}}^{b} f = \overline{\int_{a}^{b}} f.$$

4. Critère d'intégrabilité.

Théorème 4.1: Soit $f:[a,b]\to\mathbb{R}$ une fonction bornée. Alors f est intégrable si et seulement si $\forall \varepsilon>0, \exists \text{ une subdivision } P \text{ de } [a,b] \text{ telle que } U_{P(f)}-L_{P(f)}\leq \varepsilon$

Démonstration: \Rightarrow : Supposons que f soit intégrable, i.e $\int_a^b f = \overline{\int}_a^b f$.

Soit $\varepsilon>0$. Alors il existe une subdivision P_1 de [a,b] telle que $U_{p_1}(f)<\overline{\int}_a^b f+\frac{\varepsilon}{2}$ et une subdivision P_1 de [a,b] telle que $U_{p_1}(f)<\underline{\int}_a^b f-\frac{\varepsilon}{2}$.

Posons $P\coloneqq P_1\cup P_2.$

Alors
$$U_{P(f)} < U_{P_1}(f) < \overline{\int}_a^b f + \frac{\varepsilon}{2}$$
 et $L_{P(f)} > L_{P_1}(f) > \underline{\int}_a^b f - \frac{\varepsilon}{2}$. Donc $U_{P(f)} - L_{P(f)} < \overline{\int}_a^b f + \frac{\varepsilon}{2} - \left(\underline{\int}_a^b f + \frac{\varepsilon}{2}\right) = \varepsilon$.

 \leq : Soit $\varepsilon>0$. Alors il existe une subdivision P de [a,b] telle que $U_{P(f)}-L_{P(f)}\leq \varepsilon$. Ainsi,

$$L_{P(f)} \leq \underbrace{\int_{a}^{b} f} \leq \overline{\int_{a}^{b} f} \leq U_{P(f)}$$

d'où $0 \leq \overline{\int}_a^b f - \underline{\int}_a^b f \leq U_{p(f)} - L_{p(f)} \leq \varepsilon$. On a montré que $\forall \varepsilon > 0, 0 \geq \overline{\int}_a^b f - \underline{\int}_a^b f \leq \varepsilon$ d'où, $\underline{\int}_a^b f = \overline{\int}_a^b f \text{ d'où } f \text{ intégrable.}$

Théorème 4.2 (relation de Chasles): Soit $f:[a,b] \to \mathbb{R}$ et $c \in [a,b]$.

Alors f est intégrable si et seulement si $f|_{[a,c]}$ et $f|_{[c,b]}$ sont intégrables, dans ce cas, on a légalité suivante:

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx.$$

Corollaire 4.1: Si $f:[a,b]\to\mathbb{R}$ est intégrable et si $[c,d]\subset [a,b]$ alors $f|_{[c,d]}\to\mathbb{R}$ est intégrable.

Théorème 4.3: Soit $f:[a,b] \to \mathbb{R}$ une fonction telle que $[a,b] \setminus f^{-1}(\{0\})$