

Dipartimento di Scienze Fisiche, Informatiche e Matematiche

8bis. ESERCIZI d'esame Rappresentazione dell'Informazione e Reti Logiche

Architettura dei calcolatori [MN1-1143]

Corso di Laurea in INFORMATICA (D.M.270/04) [16-215] Anno accademico 2022/2023 Prof. Alessandro Capotondi a.capotondi@unimore.it

È vietata la copia e la riproduzione dei contenuti e immagini in qualsiasi forma.

È inoltre vietata la redistribuzione e la pubblicazione dei contenuti e immagini non autorizzata espressamente dall'autore o dall'Università di Modena e Reggio Emilia.

[1] (2, -.5) Nel formato IEEE 754, il numero $(-0,5)_{10}$ in singola precisione si rappresenta come:

- d) Nessuna delle precedenti

3

[1] (2, -.5) Nel formato IEEE 754, il numero $(-0,5)_{10}$ in singola precisione si rappresenta come:

- d) Nessuna delle precedenti

$$-0.5_{(10)} = \frac{1}{2} = -2^{-1} = -0.1_{(2)} = -1.0 \times 2^{-1}_{(2)}$$

Ricordando di sommare il BIAS 127 all'esponente

$$-1+127 = 126$$

otteniamo, in notazione binaria (single precision)

31	30	80	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1bi					8	bits				•							23	bits														•

[2] Il numero OxDEADBEEF

- b) Equivale al numero BCD 33 653 337 357
- c) Equivale al numero ottale 33 653 337 357
- d) Nessuna delle precedenti

5

[2] Il numero OxDEADBEEF

- b) Equivale al numero BCD 33 653 337 357
- c) Equivale al numero ottale 33 653 337 357
- d) Nessuna delle precedenti

6

[3] (7 pt) Si progetti un automa a stati finiti capace di mandare ad 1 il segnale di uscita Z tutte le volte che viene rilevata la stringa 0010 in una sequenza di bit sull'ingresso X (1 bit della sequenza per ciclo di clock). L'automa rileva ogni occorrenza della stringa target, anche quelle innestate (cioè per cui alcune cifre sono condivise tra istanze successive), per esempio:

Χ	0	0	1	0	0	1	0	0	0	0	1	1	0	0	1	0
Z	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	1

Si scelga l'automa più adatto tra Mealy e Moore, si disegni il diagramma delle transizioni (2pt) e tramite metodologia di Karnaugh si minimizzino le reti di stato futuro e di uscita (3pt). Si disegni la rete logica finale (2pt).

[3] (7 pt) SOLUZIONE

Prima cosa da fare è determinare numero e significato degli stati. In questo caso è più conveniente un automa di Mealy, perché mi consente di specificare il valore alto dell'uscita direttamente sugli archi del grafo, senza bisogno di avere stati dedicati per mandare alta l'uscita

Nome	Significato	Codifica
stato		binaria
N	Stato di reset. Non ho ancora riconosciuto niente.	00
А	Ho riconosciuto il primo "0"	01
В	Ho riconosciuto "00"	11
С	Ho riconosciuto "001"	10

8

[3] (7 pt) SOLUZIONE

DIAGRAMMA DI TRANSIZIONE E TABELLA DI VERITA'

S	s1s0	X	S	S1S0	Z
N	00 00	0 1	A N	01 00	0
Α	01 01	0	B N	11 00	0
В	11 11	0	B C	11 10	0
С	10 10	0 1	A N	01 00	1

[3] (7 pt) SOLUZIONE

SINTESI CON MAPPE DI KARNAUGH

$$S_1 = S_0 X' + S_1 S_0$$

$$S_0 = X'$$

$$Z = s_1 s_0' X'$$

[4] (2, -.5) Nel formato IEEE 754, il numero $(10,25)_{10}$ in singola precisione si rappresenta come:

- d) Nessuna delle precedenti

[4] (2, -.5) Nel formato IEEE 754, il numero $(10,25)_{10}$ in singola precisione si rappresenta come:

- d) Nessuna delle precedenti

$$10,25_{(10)} = 8 + 2 + \frac{1}{4} = 2^{3} + 2^{1} + 2^{-2} = 1010,01_{(2)} = 1,01001 \times 2^{3}_{(2)}$$

Ricordando di sommare il BIAS 127 all'esponente

$$3+127 = 130$$

otteniamo, in notazione binaria (single precision)

[5] Il numero 0x40400000

- a) Se interpretato come numero BCD non rappresenta una codifica valida
- b) Se interpretato come numero intero signed vale $(2^{30}+2^{22})_{10}$
- c) Se interpretato come numero intero unsigned vale (10 020 000)₈
- d) Se interpretato come numero floating point IEEE 754 vale $(3.0)_{10}$

[5] Il numero 0x40400000

- a) Se interpretato come numero BCD non rappresenta una codifica valida
- b) Se interpretato come numero intero signed vale $(2^{30}+2^{22})_{10}$
- c) Se interpretato come numero intero unsigned vale (10 020 000)₈
- d) Se interpretato come numero floating point IEEE 754 vale $(3.0)_{10}$

[6] Data la seguente espressione booleana:

$$Z = x3x1'x0' + x3x2x1' + x2x1'x0 + x3'x2x0 + x3'x1$$

Dire quali affermazioni sono vere.

- a) Ha forma minima SP pari a Z = x3'x1
- b) La forma minima SP ha quattro implicanti
- c) La forma minima SP nella mappa di Karnaugh contiene solo implicanti essenziali
- d) La forma minima PS contiene meno implicati degli implicanti della forma minima SP

[6] Data la seguente espressione booleana:

$$Z = x3x1'x0' + x3x2x1' + x2x1'x0 + x3'x2x0 + x3'x1$$

Dire quali affermazioni sono vere.

- a) Ha forma minima SP pari a Z = x3'x1
- b) La forma minima SP ha quattro implicanti
- c) La forma minima SP nella mappa di Karnaugh contiene solo implicanti essenziali
- d) La forma minima PS contiene meno implicati degli implicanti della forma minima SP

[7] (5 pt) Una FSM ha un segnale di ingresso X e un segnale di uscita Z entrambi a un bit, e codifica lo stato interno con due flip flop D (stato presente: s1s0; stato futuro: S1SO). Date le seguenti espressioni minime per i segnali di stato futuro e di uscita:

$$S1 = s0X' + s1s0$$

 $S0 = X'$
 $Z = s1s0'X'$

Si ricavi la tabella di verità [2 pt] e il diagramma di transizione degli stati [2 pt]. Si dica se si tratta di un automa di Mealy o di Moore, e che funzione svolge la FSM [1 pt].

[7] (5 pt) SOLUZIONE

Si può usare una Mappa di Karnaugh per visualizzare tutti i mintermini, che poi possono essere inseriti nelle righe della tabella di verità. Per Z c'è un solo mintermine (non serve la mappa).

$$S_1 = S_0 X' + S_1 S_0$$

$$S_0 = X'$$

$$Z = s_1 s_0' X'$$

[7] (5 pt) SOLUZIONE

DIAGRAMMA DEGLI STATI E TABELLA DI VERITA'

S	s1s0	Х	S	S1S0	Z
Z	00 00	0 1	A N	01 00	0 0
Α	01 01	0 1	B N	11 00	0
В	11 11	0	B C	11 10	0
С	10 10	0 1	A N	01 00	1 0

La FSM è un automa di Mealy, visto che l'uscita varia in corrispondenza degli archi del suo diagramma di stato. È un riconoscitore della stringa 0010.

[8] (5 pt) Si consideri la seguente rete sequenziale:

Si dica se si tratta di un automa di Mealy o di Moore [1 pt]

stato futuro, e si determinino le espressioni logiche relative a Z, S₁ ed S₀ in funzione dei bit di stato presente (s₁, s₀) e di ingresso (X) [2 pt]

Si ricavi la tabella di verità completa[2 pt]

d) Si disegni il diagramma di transizione degli stati [2 pt]

[8] (5 pt) SOLUZIONE

- a. La rete delle uscite usa anche il bit di ingresso, quindi è un automa di Mealy
- b. Z=s1+s0X; S1=s0X'+s0's1'X; S0=s1X+s0's1'X'
- d. Dalla tabella di verità si può notare che lo stato D non è mai raggiunto.

s	s1s0	X	S	S1S0	Z
Α	00 00	0	вС	01 10	0
В	01 01	0	C A	10 00	0
С	11 11	0	A B	00 01	1
D	10 10	0	СВ	10 01	1

21

[9] Il numero 0x000B AD00

- a) Non è rappresentabile in forma BCD
- b) In ottale vale 2726400
- c) Se interpretato come istruzione RISC-V ha il campo opcode nullo
- d) Nessuna delle precedenti

- [9] Il numero 0x000B AD00
- a) Non è rappresentabile in forma BCD
- b) In ottale vale 2726400
- c) Se interpretato come istruzione RISC-V ha il campo opcode nullo
- d) Nessuna delle precedenti

[10] Data la seguente espressione booleana: Z = x3x1'x0' + x3 x2x1' + x2x1'x0 + x3'x2x0 + x3'x1

Dire quali affermazioni sono vere.

- a) Ha forma minima SP pari a Z = x3x1'x0' + x2x1'x0 + x3'x1
- b) Ha forma minima PS pari a Z = (x0+x1+x3)(x0'+x1+x2)(x1'+x3')
- c) La forma minima SP nella mappa di Karnaugh contiene solo implicanti essenziali
- d) La forma minima PS contiene tanti implicati quanti gli implicanti della forma minima SP

[10] Data la seguente espressione booleana: Z = x3x1'x0' + x3 x2x1' + x2x1'x0 + x3'x2x0 + x3'x1Dire quali affermazioni sono vere.

- a) Ha forma minima SP pari a Z = x3x1'x0' + x2x1'x0 + x3'x1
- b) Ha forma minima PS pari a Z = (x0+x1+x3)(x0'+x1+x2)(x1'+x3')
- c) La forma minima SP nella mappa di Karnaugh contiene solo implicanti essenziali
- d) La forma minima PS contiene tanti implicati quanti gli implicanti della forma minima SP

[11] (2, -.5) Nel formato IEEE 754, il numero $(23,75)_{10}$ in singola precisione si rappresenta come:

- d) Nessuna delle precedenti

[11] (2, -.5) Nel formato IEEE 754, il numero $(23,75)_{10}$ in singola precisione si rappresenta come:

- d) Nessuna delle precedenti

[12] La parola 0x4000 0033

- a) Se interpretata come formato BCD non rappresenta una codifica valida
- b) Se interpretata come numero è equivalente a $(2^{30}+2^5+2^4+2^1+2^0)_{10}$
- c) Se interpretata come numero è equivalente a (10 000 000 063)₈
- d) Se interpretata come istruzione RISC-V può rappresentare una SUB

[12] La parola 0x4000 0033

- a) Se interpretata come formato BCD non rappresenta una codifica valida
- b) Se interpretata come numero è equivalente a $(2^{30}+2^5+2^4+2^1+2^0)_{10}$
- c) Se interpretata come numero è equivalente a (10 000 000 063)₈
- d) Se interpretata come istruzione RISC-V può rappresentare una SUB

```
0100 0000 0000 0000 0000 0000 0011 0011
01 000 000 000 000 000 000 000 000 110 011
1 0 0 0 0 0 0 0 0 0 6 3
```

[13] (6 pt) SETA SpA sta riprogettando le macchine per l'erogazione dei titoli di viaggio a bordo della sua flotta di autobus. Il nuovo prezzo del biglietto orario è 1,50€, e la macchina deve accettare monete da 50 centesimi, 1 euro e 2 euro. La macchina nuova, come già quelle attuali, non sarà in grado di erogare il resto, ma terrà memoria dell'eventuale credito residuo per un utilizzo successivo. A differenza delle macchine attuali, se verrà raggiunto un importo pari al doppio del costo del titolo di viaggio verranno erogati due biglietti.

- Si richiede di progettare la macchina a stati per la macchina di SETA, scegliendo opportunamente tra un automa di Mealy o di Moore al fine di minimizzare il numero di stati necessari (suggerimento: sono sufficienti tre stati). Specificamente:
- 1. Pianificare il numero di stati, gli ingressi e le uscite. Darne una spiegazione testuale e la codifica binaria. [1 pt]
- Specificare se si è scelta una macchina di Mealy o di Moore e disegnare il diagramma di transizione degli stati. [1 pt]
- 3. Scrivere la tabella di verità. [2 pt]
- 4. Trovare le forme SP o PS minime tramite mappe di Karnaugh. [1 pt]
- 5. Disegnare il circuito finale. [1 pt]

[13] (6 pt) SOLUZIONE

[1] Per codificare gli stati, gli ingressi e le uscite servono due bit

s0s1	significato
00 (A)	Credito 0 €
01 (B)	Credito 0,50 €
10	inutilizzato
11 (C)	Credito 1 €

STATO

x0x1	significato
00	0,50 €
01	1€
10	inutilizzato
11	2€

INGRESSI

zOz1	significato
00	No erogazione
01	Eroga 1 biglietto
10	inutilizzato
11	Eroga 2 biglietti

USCITE

[13] (6 pt) SOLUZIONE

[2] Con una macchina di Mealy si minimizza il numero di stati

[13] (6 pt) SOLUZIONE

[3] La tabella di verità è la seguente

stato	input	stato	uscite
presente		futuro	
s0s1	x0x1	SOS1	zOz1
00	00	01	00
00	01	11	00
00	10	XX	XX
00	11	01	01
01	00	11	00
01	01	00	01
01	10	XX	XX
01	11	11	01
10	XX	XX	XX
11	00	00	01
11	01	01	01
11	10	XX	XX
11	11	00	11

[13] (6 pt) SOLUZIONE

[4-5] Le mappe di Karnaugh e il circuito

- 1. [3, -0.5] Si consideri un certo programma con 70% di istruzioni di tipo aritmetico, 10% load/store e 20% branch. Si assuma che le istruzioni aritmetiche eseguano in due cicli. Il sistema ha un solo livello di cache, con hit rate pari al 90% (hit=1ciclo, miss=50 cicli). Il sistema usa dynamic branch prediction, con misprediction rate del 10% (predizione corretta=1 ciclo; predizione scorretta = 5 cicli). Qual è il CPI medio?
- a) 1,2
- b) 2,6
- c) 3,7
- d) Nessuna delle precedenti

- 1. [3, -0.5] Si consideri un certo programma con 70% di istruzioni di tipo aritmetico, 10% load/store e 20% branch. Si assuma che le istruzioni aritmetiche eseguano in due cicli. Il sistema ha un solo livello di cache, con hit rate pari al 90% (hit=1ciclo, miss=50 cicli). Il sistema usa dynamic branch prediction, con misprediction rate del 10% (predizione corretta=1 ciclo; predizione scorretta = 5 cicli). Qual è il CPI medio?
- a) 1,2
- b) 2,6
- c) 3,7
- d) Nessuna delle precedenti

Coi dati forniti si ottiene
$$L = \frac{100}{90 * 1 + 10 * 50} = \frac{100}{590} \frac{istr}{cicli}; \quad B = \frac{100}{90 * 1 + 10 * 5} = \frac{100}{140} \frac{istr}{cicli}$$

$$CPI_{medio} = \frac{70 \ istr}{100 \ istr} * 2 \frac{cicli}{istr} + \frac{10 \ istr}{100 \ istr} * \frac{590 \ cicli}{100 \ istr} + \frac{20 \ istr}{100 \ istr} * \frac{140 \ cicli}{100 \ istr}$$

$$= \frac{140 + 59 + 28 \ cicli}{100 \ istr} = 2,27 \frac{cicli}{istr}$$

- 3. **[3, -0.5]** L'istruzione blt x2, x3, 0x7F0
- a) Si codifica in binario come 0111 1110 0011 0001 0100 0000 1110 0111
- b) Si codifica in binario come 0111 1110 0010 0001 1100 1000 0110 0111
- c) Si codifica in esadecimale come 0x7E21C867
- d) Nessuna delle precedenti

- 3. **[3, -0.5]** L'istruzione blt x2, x3, 0x7F0
- a) Si codifica in binario come 0111 1110 0011 0001 0100 0000 1110 0111
- b) Si codifica in binario come 0111 1110 0010 0001 1100 1000 0110 0111
- c) Si codifica in esadecimale come 0x7E21C867
- d) Nessuna delle precedenti

segue...

3. **7. [6 pt]** Progettare una rete sequenziale che comanda il circuito sonoro di un giocattolo per bambini capace di emettere due diverse sequenze di tre note (DO, MI, SOL) selezionabili tramite un interruttore I tale che:

```
- se I = 0 le tre note suonano individualmente, una dopo l'altra, cambiando ad ogni ciclo del segnale di clock che governa il circuito:
(ciclo 0) DO
(ciclo 1) MI
(ciclo 2) SOL
(ciclo 3) DO
(ciclo 4) MI
...
- se I = 1 la melodia è armonizzata a bicordi (ovvero, suonano due note contemporaneamente per volta), sempre in sequenza secondo il segnale di clock:
(ciclo 0) DO MI
(ciclo 1) MI SOL
(ciclo 2) SOL DO
(ciclo 3) DO MI
(ciclo 4) MI SOL
...
```

Architettura dei calcolatori

39

Ad ogni pressione dell'interruttore la sequenza selezionata ricomincia a suonare da capo.

Dire se conviene utilizzare un automa di Mealy o di Moore, motivando chiaramente la risposta. Ricavare la specifica degli stati, il diagramma di transizione, le tabelle di verità e le forme minime per le reti di stato futuro e delle uscite.