体論 (第7回)

分離拡大

議論を簡単にするために、以後、体は全て $\mathbb C$ の部分体を考える.一般的な場合は参考文献 [1] を参照のこと.

定義 7-1 (共役)

体 K を $\mathbb C$ の部分体とし, $\alpha \in \mathbb C$ が K 上代数的とする. このとき, α の K 上の最小多項式の根を α の K 上共役という.

[**補足**] $\alpha \in K$ のとき, α の K 上の最小多項式は $f(x) = x - \alpha$ である. 従って, α の K 上共役は α のみである.

例 7-1

 $\alpha = \sqrt[4]{2} \, \, \mathsf{LL}, \, K = \mathbb{Q}(\sqrt{2}) \, \, \mathsf{LTS}.$

- (1) α の \mathbb{Q} 上共役全体は $\{\pm \alpha, \pm \alpha i\}$.
- (2) α の K 上共役全体は $\{\pm \alpha\}$.
- (3) α の $\mathbb{Q}(\alpha)$ 上共役全体は $\{\alpha\}$.

[証明]

(1) α の \mathbb{Q} 上の最小多項式は $f(x) = x^4 - 2$ であり、

$$f(x) = x^4 - \alpha^4 = (x - \alpha)(x + \alpha)(x - \alpha i)(x + \alpha i).$$

従って, α の $\mathbb Q$ 上共役は $\pm \alpha$, $\pm \alpha i$.

$$[K(\alpha):K] = [\mathbb{Q}(\alpha):K] = 2$$

であるから, $g(x)=x^2-\sqrt{2}\in K[x]$ が α の K 上の最小多項式となる. 従って α の K 上共役は $\pm\alpha$ である.

copyright ⓒ 大学数学の授業ノート

(3) $\alpha \in \mathbb{Q}(\alpha)$ より, α の $\mathbb{Q}(\alpha)$ 上共役は α のみである.

問題 7-1 $\alpha = \sqrt{-3 + \sqrt{3}}$ と置く.

- (1) αの ℚ上の最小多項式を求めよ.
- (2) αの ℚ 上共役を求めよ.
- (3) α の $\mathbb{Q}(\sqrt{3})$ 上共役を求めよ.

定理 7-1

K, M を $\mathbb C$ の部分体とし, $K \subseteq M$ とする. $\alpha \in \mathbb C$ は K 上代数的とし, f(x) をその K 上の最小多項式とする. このとき,

- (1) β が α の K 上共役ならば, β の K 上の最小多項式も f(x) である.
- (2) γ が α の M 上共役ならば, γ は α の K 上共役でもある.

[証明]

- (1) β が α の K 上共役より $f(\beta)=0$. また f(x) は α の K 上の最小多項式より, モニックかつ K 上既約である. よって, 定理 3-2 より f(x) は β の K 上の最小多項式である.
- (2) g(x) を α の M 上の最小多項式とする. $f(\alpha)=0$ かつ $f(x)\in K[x]\subseteq M[x]$ に注意すると、定理 3-1 から f(x)=g(x)h(x) となる $h(x)\in M[x]$ が存在する. よって

$$f(\gamma) = g(\gamma)h(\gamma) = 0$$

であるから, γ は α の K 上共役である.

定義 7-2 (分離拡大)

L/K を代数拡大とする. 任意の L の元の K 上の最小多項式が重根を持たないとき, L/K を分離拡大という.

L/K を分離拡大とし、 $\alpha \in L$ をとる.このとき、 α の K 上の最小多項式 f(x) は重根を持たないから、 α の K 上共役の個数は f(x) の次数と一致する.よって

 $\#\{\beta \mid \beta \text{ は } \alpha \text{ o } K \text{ 上共役 }\} = \deg f = [K(\alpha) : K].$

分離拡大の例を紹介する.

例 7-2

ℂ/ℝ は分離拡大である.

[証明]

 $\alpha \in \mathbb{C}$ をとり、その \mathbb{R} 上の最小多項式を f(x) とする.

- (i) $\alpha \in \mathbb{R}$ のときは $f(x) = x \alpha$ である.
- (ii) $\alpha \notin \mathbb{R} \cap \mathcal{E}$,

$$f(x) = (x - \alpha)(x - \bar{\alpha}) = x^2 - (\alpha + \bar{\alpha})x + \alpha\bar{\alpha} \in \mathbb{R}[x].$$

ただし, $\bar{\alpha}$ は α の複素共役. また $\alpha \notin \mathbb{R}$ より $\alpha \neq \bar{\alpha}$ に注意する.

- (i)(ii) のどちらのケースでも, f(x) は重根をもたない. よって, \mathbb{C}/\mathbb{R} は分離拡大である.
 - 一般的に C 内に含まれる代数拡大はすべて分離拡大となる.

定理 7-2

K, L を \mathbb{C} の部分体とする. L/K が代数拡大ならば, L/K は分離拡大でもある.

[証明]

 $\alpha \in L$ とし、その K 上の最小多項式を

$$f(x) = x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0}$$

とする. 仮に f(x) が重根 β を持つとすると,

$$f(x) = (x - \beta)^2 h(x)$$

となる $h(x) \in \mathbb{C}[x]$ が存在する. β は α の K 上共役より, 定理 7-1 (1) から β の K 上の最小多項式も f(x) となる. f(x) を微分すると,

$$f'(x) = 2(x - \beta)h(x) + (x - \beta)^2 h'(x).$$

 $3 \cot f'(\beta) = 0 \cot \beta$, $3 \cot \beta$

$$f'(x) = nx^{n-1} + (n-1)a_{n-1}x^{n-2} + \dots + a_1 \in K[x]$$

から $\deg f' < \deg f$. これは, f(x) が β の K 上の最小多項式に矛盾する. よって, f(x) は重根を持たない. 従って, L/K は分離拡大である.

問題 7-2 3以上の素数 p に対して, $\alpha=e^{\frac{2\pi i}{p}},\ \beta=\cos\left(\frac{2\pi}{p}\right)$ と置く.

- (1) α の \mathbb{Q} 上共役を α の式で表せ.
- (2) $\beta \in \mathbb{Q}(\alpha)$ を示せ.
- (3) α の $\mathbb{Q}(\beta)$ 上共役を α の式で表せ.

問題 7-3 L/K を分離拡大とし、 $\alpha \in L$ とする. また $\alpha_1,....,\alpha_n$ を α の K 上共役全体とする. このとき、 $\beta_1 = \alpha_1 + \alpha_2 + \cdots + \alpha_n$ と $\beta_2 = \alpha_1 \cdot \alpha_2 \cdots \alpha_n$ は K の元であることを示せ.

参考文献

[1] 雪江明彦, 代数学 2 環と体とガロア理論, 日本評論社.