Supporting Information for

Amino Functionalization of Carbon Dots Leads to Red Emission Enhancement

Evgeny V. Kundelev,^{†,*} Nikita V. Tepliakov,[†] Mikhail Yu. Leonov,[†] Vladimir G. Maslov,[†] Alexander V. Baranov,[†] Anatoly V. Fedorov,[†] Ivan D. Rukhlenko,^{‡,†} Andrey L. Rogach^{¶,†,*}

†Information Optical Technologies Centre, ITMO University, St. Petersburg 197101, Russia

[‡]Institute of Photonics and Optical Science (IPOS), School of Physics, The University of Sydney, Camperdown 2006, NSW, Australia

[¶]Department of Materials Science and Engineering and Centre for Functional Photonics, City University of Hong Kong, Hong Kong SAR, China

E-mail: kundelev.evg@gmail.com, andrey.rogach@cityu.edu.hk

Figure S1. Geometry of perylene optimized within DFT/B3LYP/DZ approach.

Table S1. Energy, weights, and symmetry of molecular orbitals of perylene.

No	Energy (eV)	Weights	Type
4	-0.793	41(P:z-1C) 36(P:z-9C) 31(P:z-8C)	π^*
3	-0.976	32(P:z-9C) 30(P:z-1C) 23(P:z-3C) 13(P:z-7C);	π^*
2	-1.258	36(P:z-8C) 32(P:z-7C) 21(P:z-10C) 21(P:z-3C)	π^*
1	-2.752	39(P:z-9C); 36(P:z-7C); 23(P:z-1C)	π^*
0	-5.822	39(P:z-9C) 32(P:z-7C) 23(P:z-1C) 7(P:z-8C)	π
-1	-7.422	33(P:z-8C) 30(P:z-7C) 18(P:z-3C) 18(P:z-10C)	π
-2	-7.568	34(P:z-7C) 30(P:z-8C) 18(P:z-3C) 18(P:z-10C)	π
-3	-7.645	34(P:z-9C); 34(P:z-1C); 31(P:z-8C)	π

Table S2. Energies, oscillator strengths, and weights of electronic transitions for perylene in toluene.

№	Energy (eV)	Oscillator strength	Weights
1	2.7937	0.566	0.99 (0→1)
2	3.7562	0	$0.63(0 \rightarrow 2) \ 0.34(-1 \rightarrow 1)$
3	4.0544	0.244×10^{-1}	$0.65(-2 \rightarrow 1) \ 0.33(0 \rightarrow 5)$
4	4.0894	0	$0.50(0 \rightarrow 3) \ 0.36(-1 \rightarrow 1)$
5	4.1619	0	$0.57(-4 \rightarrow 1) \ 0.26(0 \rightarrow 3)$
6	4.2697	0	$0.65(-3 \rightarrow 1) \ 0.34(0 \rightarrow 4)$
7	4.5697	0	$0.39(-4 \rightarrow 1) \ 0.23(-1 \rightarrow 1)$
8	4.6470	0	$0.62(0 \rightarrow 4) \ 0.31(-1 \rightarrow 3)$
9	4.8219	0.717	$0.62(0 \rightarrow 5) \ 0.31(-2 \rightarrow 1)$
10	5.5296	0.244×10^{-3}	$0.51(-4 \rightarrow 2) \ 0.44(-1 \rightarrow 3)$

Figure S2. Geometry of pyrene optimized within DFT/B3LYP/DZ approach.

Table S3. Energy, weights, and symmetry of molecular orbitals of pyrene.

No	Energy (eV)	Weights	Type
4	-0.240	$59(p_z - 2C) 41(p_z - 7C) 11(p_z - 1C)$	π^*
3	-0.865	$63(p_z-1C) 42(p_z-4C)$	π^*
2	-1.436	$38(p_z-11C) \ 33(p_z-2C) \ 18(p_z-4C) \ 12(p_z-7C)$	π^*
1	-2.325	$57(p_z - 7C) 34(p_z - 1C) 15(p_z - 2C)$	π^*
0	-6.152	$54(p_z - 7C) 33(p_z - 1C) 14(p_z - 2C)$	π
-1	-7.082	$36(p_z-11C) \ 30(p_z-2C) \ 16(p_z-4C) \ 12(p_z-7C)$	π
-2	-7.728	$61(p_z-1C) 37(p_z-4C)$	π
-3	-8.216	$54(p_z-2C) 37(p_z-7C) 9(p_z-1C)$	π

Table S4. Energies, oscillator strengths, and weights of electronic transitions for pyrene in toluene.

№	Energy (eV)	Oscillator strength	Weights
1	3.6396	0.546	$0.95 (0 \rightarrow 1) 0.04(-1 \rightarrow 2)$
2	3.8118	0.501×10^{-3}	$0.53(0\rightarrow 2)\ 0.46(-1\rightarrow 1)$
3	4.4769	0	$0.85(0 \rightarrow 3) \ 0.15(-2 \rightarrow 1)$
4	4.5678	0.510	$0.51(-1 \rightarrow 1) \ 0.44(0 \rightarrow 2)$
5	4.6881	0	$0.84(-2 \rightarrow 1) \ 0.14(0 \rightarrow 3)$
6	5.1159	0	$0.47(0 \rightarrow 4) \ 0.46(-3 \rightarrow 1)$
7	5.3328	0	$0.50(-1 \rightarrow 3) \ 0.43(-2 \rightarrow 2)$
8	5.3701	1.231	0.94(-1→2)
9	5.7772	0	$0.45(-3 \rightarrow 1) \ 0.45(0 \rightarrow 4)$
10	6.9733	0	$0.50(-2 \rightarrow 2) \ 0.42(-1 \rightarrow 3)$

Figure S3. Geometry of Pe1 subunit optimized within DFT/B3LYP/DZ approach.

Table S5. Parameters of molecular orbitals of Pe1 subunit.

N₂	Energy (eV)	Weights	Type
4	-0.488	$16(p_z - 1C) \ 14(p_z - 9C) \ 13(p_z - 4C) \ \dots \ 3(p_z - 21N)$	a_{π}
3	-0.744	$18(p_z - 5C) \ 16(p_z - 13C) \ 14(p_z - 2C) \ 12(p_z - 16C)$	a_{π}
2	-0.999	$11(p_z - 3C) \ 11(p_z - 17C) \ 11(p_z - 19C) \ 11(p_z - 15C)$	a_{π}
1	-2.595	$13(p_z-16C) \ 11(p_z-9C) \ 11(p_z-14C) \dots \ 4(p_z-21N)$	a_{π}
0	-5.092	$12(p_z - 4C) \ 11(p_z - 13C) \ 11(p_z - 21N) \ 10(p_z - 11C)$	l
-1	-6.710	20 (p_z -21N) 12(p_z -1C) 12(p_z -9C) 10(p_z -19C)	l
-2	-7.289	$16(p_z-10C) \ 16(p_z-6C) \ 15(p_z-12C) \ 15(p_z-11C)$	l
-3	-7.434	$16(p_z - 5C) \ 16(p_z - 13C) \ 15(p_z - 2C) \ 14(p_z - 16C)$	l

Table S6. Parameters of transitions for Pe1 subunit in toluene.

No	Energy (eV)	Oscillator strength	Weights
1	2.5156	0.5424	0.98(0→1)
2	3.5215	0.815×10^{-2}	$0.85(0 \rightarrow 2) \ 0.08(0 \rightarrow 3)$
3	3.7723	0.420×10^{-1}	0.91(-1→1)
4	3.9206	0.998×10^{-1}	$0.84(0 \rightarrow 3) \ 0.07(-2 \rightarrow 1)$
5	3.9810	0.204×10^{-1}	$0.43(0 \rightarrow 5) \ 0.19(-4 \rightarrow 1) \ 0.19(-2 \rightarrow 1)$
6	4.1934	0.313×10^{-2}	$0.29(0 \rightarrow 4) \ 0.26(-3 \rightarrow 1) \ 0.20(0 \rightarrow 5)$
7	4.3781	0.174×10^{-1}	$0.45(0 \rightarrow 4) \ 0.21(-2 \rightarrow 1) \ 0.16(-3 \rightarrow 1)$
8	4.5501	0.846×10^{-1}	$0.53(-3 \rightarrow 1) \ 0.23(-2 \rightarrow 1)$
9	4.6545	0.518	$0.61(-4 \rightarrow 1) \ 0.25(0 \rightarrow 5)$
10	5.0653	0.129	0.88(-1→2)

Figure S4. Geometry of Py1 subunit optimized within DFT/B3LYP/DZ approach.

Table S7. Parameters of molecular orbitals of Py1 subunit.

N₂	Energy (eV)	Weights	Type
4	-0.039	$18(p_z - 5C) \ 15(p_z - 14C) \ 14(p_z - 9C) \ \dots \ 3(p_z - 17N)$	a_{π}
3	-0.549	$22(p_z - 6C) 18(p_z - 4C) 18(p_z - 12C) \dots 3(p_z - 17N)$	a_{π}
2	-1.341	$21(p_z-11C) 17(p_z-15C) 13(p_z-4C) 9(p_z-8C)$	a_{π}
1	-2.144	$16(p_z-7C) \ 15(p_z-10C) \ 12(p_z-13C) \ \dots \ 2(p_z-17N)$	a_{π}
0	-5.639	$21(p_z-3C)$ 18 (p_z-17N) 14 (p_z-14C) 12 (p_z-13C)	l
-1	-6.734	$15(p_z - 6C) 14(p_z - 12C) 14(p_z - 17N) 2(p_z - 2C)$	l
-2	-7.088	$15(p_z-4C) \ 13(p_z-15C) \ 12(p_z-16C) \ \dots \ 5(p_z-17N)$	l
-3	-8.065	$15(p_z - 2C) \ 13(p_z - 10C) \ 12(p_z - 8C) \ \dots \ 2(p_z - 17N)$	l

Table S8. Parameters of transitions for Py1 subunit in toluene.

№	Energy (eV)	Oscillator strength	Weights
1	3.1627	0.307	$0.93(0 \rightarrow 1) \ 0.03(-1 \rightarrow 1)$
2	3.5884	0.431×10^{-1}	$0.83(0\rightarrow 2)\ 0.09(-1\rightarrow 1)$
3	4.1212	0.315	$0.83(-1 \rightarrow 1) \ 0.06(0 \rightarrow 2)$
4	4.3392	0.105	$0.70(-2 \rightarrow 1) \ 0.16(-1 \rightarrow 2)$
5	4.4422	0.474×10^{-1}	$0.93(0 \rightarrow 3)$
6	4.8644	0.992×10^{-1}	$0.51(-1 \rightarrow 2) \ 0.23(0 \rightarrow 4)$
7	5.0465	0.387	$0.53(0 \rightarrow 4) \ 0.17(-1 \rightarrow 2)$
8	5.3714	0.602	$0.58(-2 \rightarrow 2) \ 0.18(-1 \rightarrow 3)$
9	5.4461	0.316	$0.51(-3 \rightarrow 1) \ 0.16(-2 \rightarrow 2)$
10	5.5806	0.203×10 ⁻¹	$0.83(-4 \rightarrow 1) \ 0.24(-1 \rightarrow 3)$

Figure S5. Geometry of Pe2 subunit optimized within DFT/B3LYP/DZ approach.

Table S9. Parameters of molecular orbitals of Pe2 subunit.

№	Energy (eV)	Weights	Type
4	-0.494	$24(p_z-1C) 23(p_z-9C) 15(p_z-12C) \dots 3(p_z-22N)$	a_{π}
3	-0.565	$22(p_z - 8C) 21(p_z - 3C) 19(p_z - 11C) 17(p_z - 10C)$	a_{π}
2	-1.066	$20(p_z - 3C) \ 20(p_z - 10C) \ 19(p_z - 8C) \ 17(p_z - 12C)$	a_{π}
1	-2.347	$26(p_z - 9C) 21(p_z - 7C) 16(p_z - 1C) \dots 5(p_z - 22N)$	a_{π}
0	-4.932	20 (p_z -22N) 17(p_z -4C) 15(p_z -13C) 13(p_z -11C)	l
-1	-6.483	$34(p_z - 22N) 23(p_z - 12C) 20(p_z - 4C) 7(p_z - 8C)$	l
-2	-6.889	$22(p_z - 9C) 19(p_z - 1C) 16(p_z - 22N) 14(p_z - 7C)$	l
-3	-7.253	$34(p_z - 22N) 23(p_z - 12C) 20(p_z - 4C) 7(p_z - 8C)$	l

Table S10. Parameters of transitions for Pe2 subunit in toluene.

№	Energy (eV)	Oscillator strength	Weights
1	2.2439	0.458	$0.98(0 \rightarrow 1)$
2	3.2623	0.206×10^{-2}	$0.94(0 \rightarrow 2)$
3	3.5994	0.755×10^{-2}	0.92(-1→1)
4	3.7944	0.113	$0.83(0 \rightarrow 3) \ 0.14(-4 \rightarrow 1)$
5	3.9435	0.111×10^{-2}	$0.90(0 \rightarrow 4)$
6	3.9524	0.389	$0.86(0 \rightarrow 5)$
7	4.0049	0.378×10^{-1}	$0.83(-2 \rightarrow 1) \ 0.12(-3 \rightarrow 1)$
8	4.4006	0.456×10^{-2}	$0.53(-3 \rightarrow 1) \ 0.09(-2 \rightarrow 1)$
9	4.5662	0.306	$0.65(-4 \rightarrow 1) \ 0.19(-2 \rightarrow 1)$
10	4.8928	0.421	$0.78(-1 \rightarrow 2) \ 0.16(-4 \rightarrow 1)$

Figure S6. Geometry of Py2 subunit optimized within DFT/B3LYP/DZ approach.

Table S11. Parameters of molecular orbitals of Py2 subunit.

N₂	Energy (eV)	Weights	Type
4	0.303	$18(p_z - 2C) \ 13(p_z - 10C) \ 12(p_z - 3C) \ \dots \ 6(p_z - N)$	a_{π}
3	-0.448	$21(p_z - 4C) 18(p_z - 16C) 17(p_z - 6C) \dots 3(p_z - 17N)$	a_{π}
2	-1.224	$21(p_z - 15C) \ 15(p_z - 11C) \ 13(p_z - 6C) \ 11(p_z - 9C)$	a_{π}
1	-1.913	$15(p_z-14C) \ 15(p_z-13C) \ 14(p_z-7C) \dots \ 4(p_z-N)$	a_{π}
0	-5.057	14 (p_z - 18N) 14 (p_z - 17N) 12(p_z -1C) 10(p_z -10C)	l
-1	-6.600	29 (p_z -17N) 14(p_z -16C) 13(p_z -4C) 2(p_z -18N)	l
-2	-6.795	$24(p_z-11C) 17(p_z-1C) 11(p_z-18N) \dots 4(p_z-17N)$	l
-3	-7.395	$18(p_z-18N)$ 17(p_z -13C) 16(p_z -9C) 15(p_z -8C)	l

Table S12. Parameters of transitions for Py2 subunit in toluene.

No	Energy (eV)	Oscillator strength	Weights
1	2.8240	0.369	0.95(0→1)
2	3.2284	0.835×10^{-1}	0.94(0→2)
3	3.9713	0.599×10^{-1}	0.95(0→3)
4	4.1259	0.146	0.93(-1→1)
5	4.3237	0.169	$0.75(-2 \rightarrow 1) \ 0.11(-1 \rightarrow 2)$
6	4.6557	0.565×10^{-2}	$0.51(-1 \rightarrow 2) \ 0.26(-3 \rightarrow 1) \ 0.13(0 \rightarrow 4)$
7	4.9371	0.267	$0.32(0 \rightarrow 4) \ 0.27(-2 \rightarrow 2) \ 0.20(-1 \rightarrow 2)$
8	4.9954	0.191	$0.43(0 \rightarrow 4) \ 0.25(-3 \rightarrow 1) \ 0.12(-2 \rightarrow 2)$
9	5.1735	0.198×10^{-2}	0.98(0→5)
10	5.2627	0.882	$0.53(-2 \rightarrow 2) \ 0.23(-3 \rightarrow 1) \ 0.12(-1 \rightarrow 2)$

Figure S7. Geometry of Pe3 subunit optimized within DFT/B3LYP/DZ approach.

Table S13. Parameters of molecular orbitals of Pe3 subunit.

№	Energy (eV)	Weights	Type
4	-0.357	$15(p_z-13C) \ 14(p_z-5C) \ 11(p_z-2C) \dots \ 5(p_z-N)$	a_{π}
3	-0.467	$17(p_z-15C) \ 15(p_z-8C) \ 11(p_z-18C) \ \dots \ 1(p_z-21N)$	a_{π}
2	-0.935	$15(p_z - 10C) \ 14(p_z - 12C) \ 14(p_z - 6C) \ 14(p_z - 7C)$	a_{π}
1	-2.279	$13(p_z - 9C) 11(p_z - 16C) 10(p_z - 7C) \dots 5(p_z - N)$	a_{π}
0	-4.769	$13(p_z - 21N) \ 13(p_z - 20C) \ 8(p_z - 4C) \dots \ 13(p_z - N)$	l
-1	-5.861	$23(p_z - 23N) \ 15(p_z - 18C) \ 9(p_z - 22N) \ \dots \ 6(p_z - 21N)$	l
-2	-6.707	$17(p_z - 22N) \ 12(p_z - 3C) \ 11(p_z - 12C) \dots 5(p_z - N)$	l
-3	-6.870	$18(p_z - 17C) \ 18(p_z - 14C) \ 14(p_z - 21N) \ \dots \ 3(p_z - N)$	l

Table S14. Parameters of transitions for Pe3 subunit in toluene.

N₂	Energy (eV)	Oscillator strength	Weights
1	2.1388	0.387	$0.98(0 \rightarrow 1)$
2	3.0927	0.706×10^{-1}	$0.94(-1 \rightarrow 1)$
3	3.2706	0.548×10^{-2}	$0.90(0 \rightarrow 2)$
4	3.6984	0.211×10^{-1}	$0.66(0 \rightarrow 3) \ 0.24(-2 \rightarrow 1)$
5	3.8611	0.237	$0.84(0 \rightarrow 4)$
6	3.9097	0.217	$0.69(-2 \rightarrow 1) \ 0.15(0 \rightarrow 3)$
7	3.9903	0.270×10^{-1}	$0.74(0 \rightarrow 5) \ 0.10(-3 \rightarrow 1)$
8	4.2337	0.153	0.60(-3→1)
9	4.2921	0.598×10^{-1}	$0.57(-1 \rightarrow 2) \ 0.22(-4 \rightarrow 1)$
10	4.6103	0.415	$0.48(-4 \rightarrow 1) \ 0.32(-1 \rightarrow 2)$

Figure S8. Geometry of Py3 subunit optimized within DFT/B3LYP/DZ approach.

Table S15. Parameters of molecular orbitals of Py3 subunit.

№	Energy (eV)	Weights	Type
4	0.348	$17(p_z - 5C) \ 12(p_z - 2C) \ 12(p_z - 13C) \dots 5(p_z - N)$	a_{π}
3	-0.345	$22(p_z - 6C) \ 19(p_z - 4C) \ 16(p_z - 12C) \dots 6(p_z - N)$	a_{π}
2	-1.147	$19(p_z - 11C) 17(p_z - 15C) 11(p_z - 8C) 10(p_z - 9C)$	a_{π}
1	-1.806	$16(p_z - 13C) \ 13(p_z - 7C) \ 13(p_z - 10C) \ \dots 5(p_z - N)$	a_{π}
0	-4.771	$17(p_z - 17N) \ 16(p_z - 1C) \ \dots \ 12(p_z - 19N) \ 7(p_z - 18N)$	l
-1	-6.046	$18(p_z - 19N) 17(p_z - 18N) 17(p_z - 5C) \dots 4(p_z - 17N)$	l
-2	-6.574	$17(p_z - 2C) \ 13(p_z - 10C) \ 12(p_z - 6C) \ 11(p_z - 17N)$	l
-3	-7.270	$18(p_z - 7C) \ 18(p_z - 8C) \ 16(p_z - 9C) \ \dots \ 11(p_z - 18N)$	l

Table S16. Parameters of transitions for Py3 subunit in toluene.

N₂	Energy (eV)	Oscillator strength	Weights
1	2.5924	0.592	$0.96(0 \rightarrow 1)$
2	3.0196	0.895×10^{-1}	$0.96(0 \rightarrow 2)$
3	3.6955	0.175	$0.92(-1 \rightarrow 1)$
4	4.0300	0.583×10^{-1}	$0.75(0 \rightarrow 3) \ 0.16(-2 \rightarrow 1)$
5	4.1427	0.118	$0.43(-2 \rightarrow 1) \ 0.31(-1 \rightarrow 2) \ 0.17(0 \rightarrow 3)$
6	4.3842	0.253×10^{-2}	$0.98(0 \rightarrow 5)$
7	4.4285	0.195	$0.52(-1 \rightarrow 2) \ 0.28(-2 \rightarrow 1)$
8	4.6669	0.251	$0.50(0 \rightarrow 4) \ 0.16(-3 \rightarrow 1) \ 0.15(-2 \rightarrow 2)$
9	4.7857	0.265	$0.32(0 \rightarrow 4) \ 0.28(-2 \rightarrow 2) \ 0.27(-3 \rightarrow 1)$
10	5.1718	0.553	$0.43(-2\rightarrow 2)\ 0.37(-3\rightarrow 1)$