PREPARATION PHASE PRIOR KNOWLEDGE

DATE	22 AUGUST 2022
TEAM ID	PNT2022TMID02261
PROJECT NAME	EARLY DETECTION OF CHRONIC KIDNEY DISEASE USING MACHINE LEARNING

PRIOR KNOWLEDGE:

Machinelearning:

Machinelearningisdefinedasmakingmachineslearnandact ashumansbyfeedingthem withdata.

Therearetwotypesoflearninginmachinelearning:

1. Supervisedlearning:

Supervised Learning

Supervisedlearningisdonewiththe helpofalabelleddataset.

Types of Supervised Learning

DSimplilearn. All rights reserved.

Therearetwotypes of supervised learning:

- a) Classification
- b) Regression

Applications of supervised learning:

Applications of Supervised Learning

©Simplilearn. All rights reserved.

2. Unsupervisedlearning:

Unsupervised Learning

Simplilearn. All rights reserved.

Unsupervised learning is defined as using unlabeled data to train themodel.

Types of unsupervised learning:

- a) Clustering
- b) Association

Types of Unsupervised Learning

DSimplilearn. All rights reserved.

simplilearn

Applicationsofunsupervisedlearning:

Applications of Unsupervised Learning

©Simplilearn. All rights reserved.

Classification:

Introduction to Machine Learning

Classification Problem

Goal: predict category of new observation

DataCamp

Introduction to Machine Learning

Classification Applications

- Medical Diagnosis
- Animal Recognition

Important:

- Qualitative Output
- Predefined Classes

Regression:

Introduction to Machine Learning

Regression

REGRESSION FUNCTION

- Relationship: Height Weight?
- Predict: **Weight** → **Height**

DataCamp

Introduction to Machine Learning

Regression Model

Fitting a linear function

Weight Predictor:

Height $\approx \beta_0 + \beta_1 \times \text{Weight}$

Response: Height

Coefficients: β_0, β_1

Estimate on previous input-output

> lm(response ~ predictor)

Regression Applications

- Time Subscriptions
- Grades

 Landing a Job
- Quantitative Output
- Previous input-output observations

Clustering:

Introduction to Machine Learning

Clustering

- Clustering: grouping objects in clusters
 - Similar within cluster
 - Dissimilar between clusters
- **Example:** Grouping similar animal photos
 - No labels
 - No right or wrong
 - Plenty possible clusterings

