

一元线性回归参数估计

一元线性回归可用来分析自变量x取值与因变量Y取值的内在联系,不过这里的自变量x是确定性的变量,因变量Y是随机性的变量。 进行n次独立试验,测得数据如下:

X	x_1	x_2	 x_n
Y	y_1	y_2	 \mathcal{Y}_n

程请长按下方

一元线性回归

力图建立回归方程的估计式或经验回归方程

$$\widehat{y} = \widehat{\alpha} + \widehat{\beta}x$$
, $\widehat{\alpha} = a$, $\widehat{\beta} = b$ 及 $\widehat{y}_i = a + bx_i$ 使

使用最小二乘法进行参数估计

$$Q = \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 = \sum_{i=1}^{n} [y_i - (a + bx_i)]^2$$

的值最小,所求出的a称为经验截距,简称为截距,b称为经验回归系数,简称为回归系数。

完整课程请长按下方二维码

一元线性回归

根据最小二乘法的要求由

$$\frac{\partial Q}{\partial a} = 0, \frac{\partial Q}{\partial b} = 0,$$

$$a = \overline{Y} - b\overline{x}, b = \frac{l_{xy}}{l_{xx}}, \quad l_{xy} = \sum (x - \overline{x})(y - \overline{y})$$

$$l_{xy} = \sum (x - \overline{x})^2$$

一元回归方程检验

(1) Figure $\frac{SSE}{\sigma^2} \sim \chi^2(n-2)$,

当
$$\mathbf{H}_0$$
为真时, $\frac{SSE}{\sigma^2} \sim \chi^2(1)$;

且SSR与SSE相互独立;因此,当H。为真时,

$$F = \frac{SSR}{SSE/(n-2)} \sim F(1, n-2),$$

当 $F ≥ F_{1,a}(1,n-2)$ 时应该放弃原假设 H_0 。

$$: b \sim N(\beta, \frac{\sigma^2}{l_{rr}}), \frac{SSE}{\sigma^2} \sim \chi^2(n-2),$$

当H。为真时,

$$t = b\sqrt{\frac{l_{xx}}{SSE/(n-2)}} \sim T(n-2),$$

当|t|≥ $t_{1-0.5a}$ (n-2)时应该放弃原假设 H_0 。

根据x与Y的观测值的相关系数

$$r=rac{l_{xy}}{\sqrt{l_{xx}l_{yy}}}$$
, $r^2=rac{l_{xy}^2}{l_{xx}l_{yy}}$,

$$r^2 = \frac{SSR}{SST}.$$

当H。为真时,

$$F = \frac{r^2}{(1-r^2)/(n-2)} \sim F(1, n-2),$$

整课程请长按下方二维

一元线性回归

当 $F \ge F_{1-\alpha}(1,n-2)$ 或 $|r| \ge r_{\alpha}(n-2)$ 时应该放弃原假设 H_0 ,式中的

$$r_{\alpha}(n-2) = \sqrt{\frac{F_{1-\alpha}(1, n-2)}{F_{1-\alpha}(1, n-2) + (n-2)}}$$

可由r检验用表中查出。

$$:: r^2 = \frac{SSR}{SST},$$

因此,r常常用来表示x与Y的线性关系在x与Y的全部关系中所占的百分比,又称为x与Y的观测值的决定系数。

一元线性回归 利用回归方程进行点预测和区间预测

若线性回归作显著性检验的结果是放弃 H_0 ,也就是放弃回归系数 β =0的假设,便可以利用回归方程进行点预测和区间预测,这是人们关注线性回归的主要原因之一。

(1) 当 $x=x_0$ 时,用 $\hat{y}_0=a+bx_0$ 预测 Y_0 的观测值 y_0 称为点预测。

由于
$$E(\hat{y}_0) = \alpha + \beta x_0 = E(Y_0)$$
,

 Y_0 的观测值 y_0 的点预测是无偏的。

美国数学建模竞赛) 県程请长按下方二维で

一元线性回归

(2) 当 $x = x_0$ 时,用适合不等式 $P\{Y_0 \in (G, H)\}$

 $\geq 1-\alpha$ 的统计量G和H所确定的随机区间(G,H)预测 Y_0 的取值范围称为区间预测,而(G,H)称为 Y_0 的 $1-\alpha$ 预测区间。

若Y与样本中的各Y相互独立,则根据 $Z=Y_0$ -

 $(a+bx_0)$ 服从正态分布,E(Z)=0,

$$D(Z) = \sigma^{2}(1 + \frac{1}{n} + \frac{(x_{0} - \bar{x})^{2}}{l_{xx}}),$$

及 $\frac{SSE}{\sigma^2} \sim \chi^2(n-2)$, **Z与SSE相互独立**,

完整课程请长按下方二维码

一元线性回归

可以导出

$$t = \frac{Z}{\sqrt{\frac{SSE}{n-2}(1+\frac{1}{n}+\frac{(x_0-\bar{x})^2}{l_{xx}})}} \sim t(n-2).$$

因此, Y_0 的1- α 预测区间为 $a+bx_0$ $\pm \Delta(x_0)$,

$$\Delta(\mathbf{x}_0) = \mathbf{t}_{1-0.5\alpha}(\mathbf{n}-2)\sqrt{\frac{SSE}{\mathbf{n}-2}(1+\frac{1}{\mathbf{n}}+\frac{(\mathbf{x}_0-\overline{\mathbf{x}})^2}{\mathbf{l}_{rr}}}).$$

《美国数学建模竞赛》 完整课程请长按下方二维码

一元线性回归

例《吸附方程》某种物质在不同温度下可以吸附另一种物质,如果温度x(单位: °C)与吸附重量Y(单位: mg)的观测值如下表所示:

温度x 1.5 1.8 2.4 3.0 3.5 3.9 4.4 4.8 5.0

重量y 4.8 5.7 7.0 8.3 10.9 12.4 13.1 13.6 15.3

解: 根据上述观测值得到n=9,

run;

```
/*代码以及结果的解释见教材*/
data ex;
input x y@@;
cards;
1.5 4.8 1.8 5.7 2.4 7 3 8.3 3.5 10.9 3.9 12.4 4.4 13.1 4.8
13.6 5 15.3 2
proc gplot;plot y*x;symbol i=rl v=dot;proc
reg;model y=x/cli;
```

《美国数学建模竞赛》 完整课程请长按下方二维码

一元线性回归

The SAS System

23:52 Tuesday, March 13, 2007

The REG Procedure Model: MODEL1 Dependent Variable: y

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	112.48368	112.48368	387.52	<.0001
Error	7	2.03188	0.29027		
Corrected Total	8	114.51556			

Root MSE	0.53877	R-Square	0.9823
Dependent Mean	10.12222	Adj R-Sq	0.9797
Coeff Var	5.32260		

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > [t]
Intercept	1	0.25695	0.53235	0.48	0.6441
×	1	2.93028	0.14886	19.69	<.0001

《美国数学建模竞赛》 完整课程请长按下方二维码

一元线性回归

The REG Procedure Model: MODEL1 Dependent Variable: y

Output Statistics

Obs	Dep Var	Predicted Value	Std Error Mean Predict	95% CL P	redict	Residual
10	200	20.000000000000000000000000000000000000	200 200 200	100000000000000000000000000000000000000	outside the same	101401762000
1	4.8000	4.6524	0.3308	3.1574	6.1474	0.1476
2	5.7000	5.5315	0.2943	4.0797	6.9832	0.1685
2	7.0000	7.2896	0.2301	5.9043	8.6749	-0.2896
4	8.3000	9.0478	0.1877	7.6987	10.3969	-0.7478
4 5	10.9000	10.5129	0.1807	9.1692	11.8566	0.3871
6	12.4000	11.6850	0.1964	10.3291	13.0410	0.7150
7	13,1000	13.1502	0.2365	11.7589	14.5415	-0.0502
8	13.6000	14.3223	0.2789	12.8878	15.7568	-0.7223
8	15.3000	14.9083	0.3023	13.4476	16.3691	0.3917
10		6.1175	0.2714	4.6911	7.5440	
	S	Cum of Residua	ls	0		
	Sum of Squared Residuals Predicted Residual SS (PRESS)			2.03188		
				3.13772		

