ESEMPIO CONESTIONARIO - SOLUZIONI

Nella città di Torino si deve organizzare la raccolta giornaliera dei tamponi per il Covid-19. Sono predisposti cinque ambulatori: Molinette, Amedeo di Savoia, Città della Salute, San Giovanni Bosco e Regina Margherita. Sono altresì predisposti tre laboratori di analisi. Nella giornata di oggi i cinque ambulatori M, AS, CS, SGB, RM hanno raccolto rispettivamente 85, 21, 19, 77, 40 tamponi, che devono essere analizzati. I tre laboratori L_1 , L_2 , L_3 sono in grado di analizzare al più 100, 90, 52 tamponi rispettivamente, entro i termini prestabiliti.

Il costo di trasporto di ogni singolo tampone è dato dalla tabella seguente:

	L_1	L_2	L_3
M	12	7	2
AS	3	2	8
CS	10	4	9
SGB	5	11	7
RM	9	1	2

	11	
> Cij	(Mua i)	(BLANNA)

- Formulare il programma lineare che serva al comune di Torino per garantire l'analisi di tutti i tamponi al minimo costo giornaliero.
- Supponendo che l'ospedale San Giovanni Bosco SGB disponga di soli due mezzi dedicati al trasporto dei tamponi, modificare il modello affinché i tamponi collezionati nel suo ambulatorio possano essere trasportati al più in due laboratori.

Min
$$\neq \equiv \sum_{i,s} C_{i,s} \times_{i,s}$$
 s.t.

 $Z_i \times i_s = T_i$
 $Z_i \times i_$

Risolvere il seguente modello di Programmazione Lineare, in due variabili $x_1 \ge 0$ e $x_2 \ge 0$, col metodo grafico; poi rispondere alle domande.

max
$$z = -\frac{1}{2}x_1 + \frac{1}{2}x_2$$

soggetto a:

$$3x_1 + \frac{3}{2}x_2 \ge 4$$

$$-2x_1 + 3x_2 \le 3$$

$$x_1 + \frac{3}{2}x_2 \le 2$$

1	o non ammette soluzione.	Ī
	$x_1 = 1, x_2 = \frac{2}{3}$	L
-	$x_1 = 2, x_2 = 0$	-
	$x_1 = \frac{8}{9}, x_2 = \frac{5}{7}$	
-	O problema illimitato	
	O nessuna tra quelle indicate / non ammette soluzione	Ĺ
_		
	Ott 140. (X1=1, X2=3) Z=-15	_
	×161, ×263) 4256	_
	Quale delle seguenti rappresenta la trasformazione in forma standard del problema?	_
	• [a] $\max z = -\frac{1}{2}x_1 + \frac{1}{2}x_2$	_
	soggetto a:	_
	$\max z = -\frac{1}{2}x_1 + \frac{1}{2}x_2$ soggetto a: $-3x_1 + \frac{3}{2}x_2 + x_3 = 4$ $2x_1 - 3x_2 + x_4 = 3$ $-x_1 - \frac{3}{2}x_2 + x_5 = 2$ • [b] $\max z = -\frac{1}{2}x_1 + \frac{1}{2}x_2$ soggetto a: $3x_1 + \frac{3}{2}x_2 - x_3 = 4$ $-2x_1 + 3x_2 + x_4 = 3$ $x_1 + \frac{3}{2}x_2 + x_5 = 2$ • [c] $\max z = -\frac{1}{2}x_1 + \frac{1}{2}x_2$ soggetto a:	
	$2x_1 - 3x_2 + x_4 = 3$	_
	$2x_1 - 3x_2 + x_4 = 3$ $-x_1 - \frac{3}{2}x_2 + x_5 = 2$	_
	• [b]	_
	$\max z = -\frac{1}{2}x_1 + \frac{1}{2}x_2$	_
	soggetto a:	
	$3x_1 + \frac{3}{2}x_2 - x_3 = 4$	_
	$ \begin{array}{rcl} -2x_1 & + & 3x_2 & + & x_4 & = & 3 \\ x_1 & + & \frac{3}{2}x_2 & + & x_5 & = & 2 \end{array} $	_
	• [c]	_
	$\max z = -\frac{1}{2}x_1 + \frac{1}{2}x_2$	
	soggetto a:	
	$-3x_1 - \frac{3}{2}x_2 - x_3 = 4$	_
	$2x_1 - 3x_2 - x_4 = 3$	_
	$-x_1 - \frac{3}{2}x_2 + x_5 = 2$ • [d]	
	$\max z = -\frac{1}{2}x_1 + \frac{1}{2}x_2$	_
	soggetto a:	_
	$3x_1 + \frac{3}{2}x_2 + x_3 = 4$	_
	$2x_1 + 3x_2 + x_4 = 3$	_
	$x_1 - \frac{3}{2}x_2 - x_5 = 2$	
	O a 🗴 b O c O d O nessuna tra quelle indicate	_
	$m \geq \chi \geq = -\frac{1}{2}\chi_1 + \frac{1}{2}\chi_2$	_
	$m \geq \chi \geq = -\frac{1}{2}\chi_1 + \frac{1}{2}\chi_2$	
		_
	$3X_1+\frac{1}{2}X_2-X_3=4$	_
		_
	$-2x_1+3x_2+4x_3=3$	
		_
	X1 + 7 X2 + X5 = 2	
		_
	$X_1 \longrightarrow X_5 > 0$	_

Se esiste una soluzione ottima, a quale dei seguenti punti corrisponde? In caso contrario, dire se il problema risulta illimitato

```
Associare a ciascuno dei seguenti punti la corrispondente base del problema in forma standard.
                                             · X1= 3, X2 = 17 , K5 = 3
                                                                                                          (A)
(x_1 = \frac{4}{3}, x_2 = 0)
                                           V KSSUMA
(x_1 = \frac{2}{7}, x_2 = \frac{6}{7})
                                        V X_1=2, X_3=2, X_4=7
(x_1 = 2, x_2 = 0)
                                          V X,=1, X2= 23, X3=3
                                                                                                            (B)
(x_1 = 1, x_2 = \frac{2}{3})
                                             NESSUNA
(x_1 = \frac{7}{2}, x_2 = \frac{1}{2})
 Considerare il sequente modello di Programmazione Lineare, con variabili x_1, x_2, x_3, x_4, x_5 \ge 0, in forma standard.
                               \max z =
                                         \frac{1}{2}x_1 + 2x_2
                             soggetto a:
                                           2x_1 + x_3
                                                + \frac{3}{2}x_2 - x_4 = 1
                                         -\frac{1}{2}x_1 + \frac{3}{2}x_2
 Quale delle seguenti rappresenta la riformulazione del problema nella base (x_2, x_3, x_4)?
  • [a]
                                              \max z = -\frac{4}{3} + \frac{1}{2}x_1 + \frac{9}{5}x_5
                                            soggetto a:
                                                 x_2 = 8 + \frac{9}{4}x_1 + 2x_5
                                                x_3 = 6 + \frac{1}{4}x_1 + \frac{2}{3}x_5
                                                x_4 = \frac{5}{6} - 4x_1 - \frac{1}{5}x_5
  • [b]
                                              \max z = -6 + \frac{5}{7}x_1 - x_5
                                            soggetto a:
                                                x_2 = 0 + \frac{1}{5}x_1 - \frac{8}{9}x_5
                                                 x_3 = 0 + \frac{1}{2}x_1 + 2x_5
```

 $x_4 = 8 - 7x_1 + \frac{2}{3}x_5$

 $x_2 = 2 + \frac{1}{3}x_1 + \frac{2}{3}x_5$

 $x_4 = 2 + \frac{1}{2}x_1 + x_5$

 $x_2 = \frac{8}{3} - \frac{4}{3}x_1 + \frac{1}{3}x_5$ $x_3 = \frac{4}{7} + \frac{7}{4}x_1 + \frac{5}{9}x_5$ $x_4 = 0 + x_1 + \frac{2}{3}x_5$

 $\max z = 1 - \frac{4}{3}x_1 - \frac{8}{9}x_5$

nessuna tra quelle indicate

 $\max z = 4 + \frac{7}{6}x_1 + \frac{4}{3}x_5$

 $x_3 = 5 - 2x_1$

soggetto a:

soggetto a:

O d

• [c]

• [d]

mx Z = 4 + 2 × 1 + 3 × 5 5. + c X2= 2 + 1-3 ×1 + 2 ×5 X3 = S - 2 ×1 ×4 = 2 + 1 ×1 + ×5

Considerando la riformulazione al punto precedente, si risponda alle seguenti domande dopo aver eseguito una singola iterazione dell'algoritmo del simplesso come visto a lezione.

Quale valore assume la funzione obiettivo?

$$0 z = -\frac{9}{7}$$

$$O z = \frac{3}{4}$$

$$z = +\infty$$

 \bigcirc z=-1 \bigcirc $z=-\frac{9}{7}$ \bigcirc z=2 \bigcirc $z=\frac{3}{4}$ \bigcirc $z=+\infty$ \bigcirc nessuna tra quelle indicate

171 HUTAT

Quale valore assumono invece le variabili in base?

$$(x_1 = \frac{1}{4}, x_2 = \frac{1}{8}, x_3 = \frac{4}{7})$$

$$(x_1 = \frac{7}{8}, x_2 = \frac{4}{9}, x_3 = \frac{4}{5})$$

$$(x_2 = 1, x_4 = 2, x_5 = \frac{8}{9})$$

$$(x_1 = \frac{1}{2}, x_3 = \frac{5}{4}, x_4 = \frac{9}{2})$$

problema illimitato

nessuna tra quelle indicate

Al termine dell'iterazione del simplesso, l'algoritmo...

- ...ha eseguito un cambio di base, facendo uscire di base x3 e facendo entrare x1.
- ...ha eseguito un cambio di base, facendo uscire di base x4 e facendo entrare x1.
- ...ha eseguito un cambio di base, facendo uscire di base x2 e facendo entrare x5.
- ...termina, verificando la condizione di base ottima.
- ...termina, verificando la condizione di base illimitata.

VARIABILE UNTRANTE: LE

Risolvere il seguente sistema di equazioni lineari con il metodo di Gauss-Jordan.

$$\begin{cases} \frac{1}{2}x_1 & = 2\\ -x_2 - 2x_3 = 5\\ x_1 + x_2 + \frac{3}{2}x_3 = 4 \end{cases}$$

Indicare la risposta corretta. Il sistema:

- O ammette infinite soluzioni ammette una soluzione unica non ammette soluzione Tra le soluzione indicate, individuare quella corretta.
- O $x_1 = -\frac{1}{2}$ O $x_1 = -\frac{2}{5}$ O $x_1 = -\frac{1}{3}$ messuna tra quelle indicate / non ammette soluzione Tra le soluzione indicate, individuare quella corretta.
- $\bigcirc x_3 = -\frac{1}{2} \bigcirc x_3 = \frac{5}{4} \bigcirc x_3 = -\frac{5}{4}$ nessuna tra quelle indicate / non ammette soluzione

