Дискретная модель колебания длины низкоприоритетной очереди в тандеме систем обслуживания при циклическом алгоритме с продлением

Кочеганов Виктор Михайлович¹, Зорин Андрей Владимирович²

- ¹ Нижегородский госуниверситет им. Н. И. Лобачевского, e-mail: kocheganov@gmail.com
- 2 Нижегородский госуниверситет им. Н. И. Лобачевского, e-mail: zoav1602@gmail.com

В настоящее время при построении математических моделей сетей массового обслуживания, и тандемов в частности, применяется описательный подход. При таком подходе задание входных потоков и алгоритмов обслуживания производится на содержательном уровне, законы распределения длительностей обслуживания требований считаются известными и задаются с помощью интегральной функции распределения времени обслуживания произвольного требования. При этом не удается решить проблему изучения выходящих потоков из узлов, а также рассмотреть сети с не мгновенным перемещением требований между узлами и с зависимыми, разнораспределенными длительностями обслуживания требований.

В настоящей работе применяется новый подход к построению вероятностных моделей тандемов конфликтных систем массового обслуживания с различными алгоритмами управления в узлах. В рамках этого подхода удается решить проблему выбора описаний ω элементарных исходов случайного эксперимента и математически корректно определить случайный процесс, описывающий эволюцию системы, а также решить перечисленные выше частные задачи.

Постановка задачи на содержательном уровне

Рассмотрим систему массового обслуживания следующего вида. Пусть в систему с одним обслуживающим устройством поступают потоки Π_1 , Π_2 , Π_3 и Π_4 . Требования по потоку Π_j становятся в соответствующую очередь O_j с неограниченной вместимостью, $j \in \{1,2,3,4\}$. Для $j \in \{1,2,3\}$ дисциплина очереди O_j , поддерживаемая устройством δ_j , имеет тип FIFO (First In First Out). Таким образом, для обслуживания из соответствующей очереди выбирается то требование, которое пришло раньше. Дисциплина очереди будет описана ниже. Входные потоки Π_1 и Π_3 формируются внешней средой, которая, будем предполагать, имеет только одно состояние, то есть вероятностная структура потоков не меняется с течением времени. Требования потоков Π_1 и Π_3 формируют независимые между собой неординарные пуассоновские

потоки, то есть стационарные, без последействия и ординарные потоки групп требований. Интенсивности соответствующих простейших потоков для Π_1 и Π_3 будем обозначать λ_1 и λ_3 , а распределение числа заявок в группе по потоку Π_j будем описывать производящей функцией $f_j(z) = \sum_{\nu=1}^\infty p_\nu^{(j)} z^\nu$, $j \in \{1,3\}$, которая предполагается аналитической при любом z из внутренности круга $|z| < (1+\varepsilon)$, $\varepsilon > 0$. Величина $p_\nu^{(j)}$ определяет вероятность того, что по потоку Π_j число требований в группе равно ν . Обслуженные требования потока Π_1 поступают на повторное обслуживание, формируя при этом поток Π_4 . Потоки Π_2 и Π_3 являются конфликтными, что означает запрет на одновременное обслуживание требований этих потоков и, следовательно, исследование системы не может быть сведено к задаче с меньшим числом потоков. В каждый момент времени обслуживающее устройство находится в одном из конечного множества состояний $\Gamma = \{\Gamma^{(k,r)} \colon k = 0,1,\ldots,d; r = 1,2,\ldots n_k\}$ с заданными натуральными числами d, n_0 , n_1 , ..., n_d . В каждом состоянии $\Gamma^{(k,r)}$ обслуживающее устройство находится в течение времени $T^{(k,r)}$.

Для задания информации о системе введем следующие величины и элементы, а также укажем множества их возможных значений. Пусть \mathbb{Z}_+ — множество целых неотрицательных чисел. В качестве дискретной временной шкалы выберем последовательность $\tau_0=0,\,\tau_1,\,\tau_2,\,\ldots$ моментов смены состояний обслуживающего устройства. Обозначим Γ_i из множества Γ состояние обслуживающего устройства в течение времени $(\tau_{i-1};\tau_i]$, количество $\varkappa_{j,i}\in\mathbb{Z}_+$ требований в очереди O_j в момент времени τ_i , количество $\eta_{j,i}\in\mathbb{Z}_+$ требований, поступивших в очередь O_j по потоку Π_j в течение времени $(\tau_i;\tau_{i+1}]$, количество $\xi_{j,i}\in\mathbb{Z}_+$ требований по потоку насыщения Π_j^{hac} в течение времени $(\tau_i;\tau_{i+1}]$, количество $\bar{\xi}_{j,i}\in\mathbb{Z}_+$ реально обслуженных требований по потоку Π_j в течение времени $(\tau_i;\tau_{i+1}],\,j\in\{1,2,3,4\}$.

Закон изменения состояния обслуживающего устройства будем предполагать заданным соотношением $\Gamma_{i+1} = h(\Gamma_i, \varkappa_{3,i})$, где вид отображения $h(\cdot, \cdot)$ определен в работе [...]. Для определения длительности T_{i+1} состояния обслуживающего устройства в течение времени $(\tau_i; \tau_{i+1}]$ удобно ввести функцию $h_T(\cdot, \cdot)$:

$$T_{i+1} = h_T(\Gamma_i, \varkappa_{3,i}) = T^{(k,r)},$$
 где $\Gamma^{(k,r)} = \Gamma_{i+1} = h(\Gamma_i, \varkappa_{3,i}).$

Функциональная зависимость

$$\overline{\xi}_{j,i} = \min\{\varkappa_{j,i} + \eta_{j,i}, \xi_{j,i}\}, \quad j \in \{1, 2, 3\},$$
(3)

между величиной $\overline{\xi}_{j,i}$ и величинами $\varkappa_{j,i}$, $\eta_{j,i}$, $\xi_{j,i}$ реализует стратегию механизма обслуживания требований. Далее, поскольку $\varkappa_{j,i+1} = \varkappa_{j,i} + \eta_{j,i} - \overline{\xi}_{j,i}$,

для $j \in \{1, 2, 3\}$, то из (3) следует соотношение

$$\varkappa_{j,i+1} = \max\{0, \varkappa_{j,i} + \eta_{j,i} - \xi_{j,i}\}, \quad j \in \{1, 2, 3\}.$$
(4)

Из формулировки поставленной задачи также следуют соотношения для потока Π_4 :

$$\eta_{4,i} = \min\{\xi_{1,i}, \varkappa_{1,i} + \eta_{1,i}\}, \quad \varkappa_{4,i+1} = \varkappa_{4,i} + \eta_{4,i} - \eta_{2,i}, \quad \xi_{4,i} = \varkappa_{4,i}.$$
(5)

Введем функцию $\varphi_j(\cdot,\cdot)$ из разложения

$$\sum_{\nu=0}^{\infty} z^{\nu} \varphi_j(\nu, t) = \exp\{\lambda_j t (f_j(z) - 1)\}, \quad j \in \{1, 3\}.$$

Функцию $\psi(\cdot,\cdot,\cdot)$ зададим формулой $\psi(k;y,u)=C_y^ku^k(1-u)^{y-k},\,k,y\in Z_+,\,u\in[0;1].$

Пусть $a=(a_1,a_2,a_3,a_4)\in\mathbb{Z}_+^4$ и $x=(x_1,x_2,x_3,x_4)\in\mathbb{Z}_+^4$. Тогда из постановки задачи на содержательном уровне следует, что при фиксированном значении $(\Gamma_i;\varkappa_i)$ вероятность $\varphi(a,k,r,x)$ одновременного выполнения равенств $\eta_{1,i}=a_1,\,\eta_{2,i}=a_2,\,\eta_{3,i}=a_3,\,\eta_{4,i}=a_4$ есть

$$\varphi_1(a_1, h_T(\Gamma^{(k,r)}, x_3)) \times \psi(a_2, x_4, p_{\tilde{k}, \tilde{r}}) \times \varphi_3(a_3, h_T(\Gamma^{(k,r)}, x_3)) \times \delta_{a_4, \min\{\ell(\tilde{k}, \tilde{r}, 1), x_1 + a_1\}},$$

Пусть $b=(b_1,b_2,b_3,b_4)\in\mathbb{Z}_+^4$. Из содержательной постановки задачи также следует, что вероятность $\zeta(b,k,r,x)$ одновременного выполнения равенств $\xi_{1,i}=b_1,\,\xi_{2,i}=b_2,\,\xi_{3,i}=b_3,\,\xi_{4,i}=b_4$ при фиксированном значении $(\Gamma_i;\varkappa_i)$ есть

$$\delta_{b_1,\ell(\tilde{k},\tilde{r},1)} \times \delta_{b_2,\ell(\tilde{k},\tilde{r},2)} \times \delta_{b_3,\ell(\tilde{k},\tilde{r},3)} \times \delta_{b_4,x_4}$$

В статье [...] построено вероятностное пространство, на котором могут быть реализованы сформулированные выше функциональные связи и вероятностные свойства введенных объектов. Также в веденных обозначениях верна следующая теорема о марковости последовательности $\{(\Gamma_i, \varkappa_{3,i}); i \geq 0\}$.

Теорема 1. Пусть $\Gamma_0 = \Gamma^{(k,r)} \in \Gamma$ и $\varkappa_{3,0} = x_{3,0} \in \mathbb{Z}_+$ фиксированы. Тогда последовательность $\{(\Gamma_i, \varkappa_{3,i}); i \geqslant 0\}$ является однородной счетной цепью Маркова.

Теорема 2. Пусть x_3 , $\tilde{x}_3 \in \mathbb{Z}_+$ и $\Gamma^{(k,r)}$, $\Gamma^{(\tilde{k},\tilde{r})} = h(\Gamma^{(k,r)},x_3) \in \Gamma$. Тогда переходные вероятности $\mathbf{P}(\Gamma_{i+1} = \Gamma^{(\tilde{k},\tilde{r})},\varkappa_{3,i+1} = \tilde{x}_3|\Gamma_i = \Gamma^{(k,r)},\varkappa_{3,i} = x_3)$

однородной счетной марковской цепи $\{(\Gamma_i, \varkappa_{3,i}); i \geqslant 0\}$ вычисляются по следующей формуле:

$$(1 - \delta_{\tilde{x}_3,0})\varphi_3(\tilde{x}_3 + \ell(\tilde{k},\tilde{r},3) - x_3, h_T(\Gamma^{(k,r)},x_3)) + \delta_{\tilde{x}_3,0} \sum_{a=0}^{\ell(\tilde{k},\tilde{r},3)-x} \varphi_3(a,h_T(\Gamma^{(k,r)},x_3))$$

Пусть

$$S_{0,r}^3 = \{ (\Gamma^{(0,r)}, x_3) \colon x_3 \in Z_+, L \geqslant x_3 > L - \max_{k=1,2,\dots,d} \{ \sum_{t=0}^{n_k} \ell_{k,t,3} \} \}, \quad 1 \leqslant r \leqslant n_0$$

И

$$S_{k,r}^3 = \{ (\Gamma^{(k,r)}, x_3) \colon x_3 \in Z_+, x_3 > L - \sum_{t=0}^{r-1} \ell_{k,t,3} \} \}, \quad 1 \leqslant k \leqslant d, \quad 1 \leqslant r \leqslant n_k,$$

тогда верна также и следующая теорема.

Теорема 3. Множествами существенных состояний марковской цепи $\{(\Gamma_i, \varkappa_{3,i}); i \geqslant 0\}$ являются множества $\bigcup_{1 \leqslant r \leqslant n_0} S_{0,r}^3, \bigcup_{\substack{1 \leqslant k \leqslant d \\ 1 \leqslant r \leqslant n_k}} S_{k,r}^3$ и только они.

Список литературы

[1]