

Instituto Federal de Educação da Paraíba (IFPB) Campus Campina Grande Curso de Engenharia da Computação

Turma: 2025.2

Componente curricular: Técnicas de Prototipagem

Docente: Moacy Pereira da Silva

AQUAFLOW – SISTEMA INTELIGENTE DE CONSUMO DE ÁGUA

Discentes:

Andreza Costa dos Santos

Geovana Stefani Lopes Bezerra

Nivaldo Pereira da Silva Neto

Vinícius Cavalcante Barbosa

Campina Grande - PB

1. Descrição Geral do Projeto

O AquaFlow é um sistema inteligente de monitoramento e previsão de consumo de água desenvolvido com foco em sustentabilidade e uso racional dos recursos hídricos. A proposta consiste na criação de um protótipo funcional (prova de conceito) capaz de medir, em tempo real, a vazão de água em diferentes pontos de uma instalação hidráulica, registrando o volume consumido e comparando-o com a quantidade total de entrada de água.

Essa abordagem permite identificar desperdícios, vazamentos e irregularidades com maior precisão, fornecendo ao usuário informações quantitativas que auxiliam na tomada de decisões conscientes sobre o uso da água. O sistema integra também um módulo de análise preditiva, baseado em técnicas de aprendizado de máquina, que realiza estimativas de consumo futuro a partir de padrões históricos de utilização.

A incorporação de soluções inteligentes em sistemas residenciais acompanha a evolução das **casas inteligentes** e das **cidades inteligentes**, onde o monitoramento e a automação contribuem para uma gestão mais eficiente dos recursos. Nesse contexto, o **AquaFlow** busca atuar como uma ferramenta de apoio à **gestão hídrica doméstica**, promovendo maior eficiência, economia e sustentabilidade no ambiente urbano.

Justificativa

O desperdício de água representa um dos principais desafios ambientais e econômicos contemporâneos. Estima-se que grande parte das perdas decorre de vazamentos não detectados e do consumo descontrolado em ambientes residenciais e comerciais. A ausência de mecanismos de medição detalhada e de análise preventiva dificulta o controle do consumo e a identificação de anomalias.

O **AquaFlow** propõe-se a preencher essa lacuna por meio de um sistema de **monitoramento inteligente**, de baixo custo e fácil implementação, capaz de registrar dados em tempo real e fornecer indicadores úteis à gestão eficiente da água. Além de contribuir para a **redução do desperdício**, o projeto busca fomentar uma **cultura de uso consciente**, aproximando tecnologia, sustentabilidade e comportamento social responsável.

Impacto e Visão de Futuro

O conceito do **AquaFlow** está alinhado às diretrizes de **cidades inteligentes**, nas quais o uso de dados, sensores e sistemas automatizados permite aprimorar a **infraestrutura urbana** e promover a **sustentabilidade dos recursos naturais**. O controle inteligente de água, nesse contexto, deixa de ser um diferencial e passa a ser uma **necessidade estratégica** para o planejamento urbano sustentável.

O sistema proposto tem potencial para ser aplicado em **residências, condomínios e pequenas empresas**, oferecendo suporte técnico à detecção de vazamentos, previsão de consumo e identificação de irregularidades. Em médio e longo prazo, soluções como o AquaFlow podem integrar **plataformas maiores de gestão ambiental urbana**, contribuindo para a consolidação de **redes inteligentes de monitoramento hídrico**.

Assim, o **AquaFlow** representa a convergência entre **engenharia**, **ciência de dados e sustentabilidade**, evidenciando o papel da tecnologia na promoção de práticas mais eficientes e responsáveis de uso da água em contextos domésticos e urbanos.

2. Objetivo Geral (Define a meta principal do projeto, ou seja, o que se pretende alcançar com o desenvolvimento da prova de conceito do sistema AquaFlow)

Desenvolver um **protótipo funcional de sistema inteligente de monitoramento e previsão de consumo de água**, utilizando sensores de vazão e uma placa ESP32, com interface de visualização e análise preditiva de consumo.

3. Objetivos Específicos

- Implementar a **leitura de sensores de vazão** instalados em diferentes ramais de um sistema hidráulico.
- Criar uma interface de monitoramento em tempo real (via serial, display ou dashboard básico).
- Registrar e analisar o volume de água consumido em cada ponto.
- Comparar a **entrada total de água** com o volume final consumido, detectando possíveis perdas.
- Desenvolver um **modelo preditivo simples** para estimar o consumo futuro com base em dados históricos.

4. Requisitos Funcionais

Será descrito **o que o sistema deve fazer**, ou seja, suas **funções e comportamentos essenciais**. Nesta seção, são apresentados os recursos obrigatórios do AquaFlow, como medição da vazão de água, registro de consumo, exibição dos dados e geração de alertas de uso excessivo ou vazamento. Esses requisitos garantem que o sistema atenda plenamente aos objetivos propostos e cumpra suas funções de monitoramento e análise.

	Requisitos Funcionais			
Código	Requisito Funcional	Descrição		
RF01	Leitura de sensores de vazão	O sistema deve realizar a leitura contínua dos sensores instalados nos diferentes ramais e na entrada principal, obtendo a vazão instantânea de cada ponto.		
RF02	Cálculo de volume consumido	O sistema deve converter a vazão medida em volume acumulado (litros) e registrar o consumo individual e total.		
RF03	Comparação entre entrada e saída de água	O sistema deve comparar o volume de entrada com o volume total consumido, identificando diferenças que possam indicar vazamentos ou perdas.		
RF04	Registro de dados em tempo real	O sistema deve armazenar as leituras de vazão e volume em intervalos regulares, permitindo análise temporal do consumo.		
RF05	Exibição das informações coletadas	O sistema deve disponibilizar as informações de consumo por meio de um display local ou dashboard conectado via serial.		
RF06	Geração de alertas de anomalia	O sistema deve emitir alertas visuais ou textuais quando for detectada uma discrepância significativa entre entrada e consumo (possível vazamento).		
RF07	Análise preditiva de consumo	O sistema deve executar um modelo preditivo simples (como regressão linear ou média móvel) para estimar o consumo futuro com base nos dados coletados.		
RF08	Geração de recomendações	O sistema deve fornecer mensagens básicas de recomendação sobre uso racional da água, com base no histórico de consumo.		
RF09	Reset e reinicialização de dados	O sistema deve permitir a reinicialização dos dados armazenados para novos ciclos de medição.		

5. Requisitos Não Funcionais

Define-se nessa seção **como o sistema deve operar**, abrangendo características de desempenho, confiabilidade, usabilidade e eficiência energética. Nesta seção, são descritos aspectos como tempo de resposta do sistema, precisão das medições, facilidade de uso da

interface e baixo consumo de energia. Esses requisitos asseguram a **qualidade técnica e a experiência do usuário**, garantindo que o protótipo seja funcional, estável e adequado ao contexto de uso em residências e ambientes inteligentes.

	Requisitos Não Funcionais			
Código	Requisito Não Funcional	Descrição		
RNF01	Precisão das medições	O sistema deve garantir precisão mínima de ±5% nas leituras de vazão e volume, considerando as limitações dos sensores utilizados.		
RNF02	Tempo de resposta	O sistema deve atualizar as medições em intervalos inferiores a 2 segundos, assegurando leitura quase em tempo real.		
RNF03	Confiabilidade operacional	O sistema deve operar continuamente por pelo menos 24 horas sem falhas críticas ou perda de dados.		
RNF04	Usabilidade	A interface deve apresentar informações de forma clara e legível, permitindo fácil interpretação por usuários não técnicos.		
RNF05	Eficiência energética	O consumo elétrico total do sistema deve ser compatível com o uso contínuo em ambiente doméstico (<5 W).		
RNF06	Modularidade	O sistema deve permitir a substituição ou adição de sensores sem necessidade de grandes alterações no código principal.		
RNF07	Manutenibilidade	O código-fonte deve ser documentado e organizado para permitir futuras modificações e expansão das funcionalidades.		
RNF08	Escalabilidade experimental	O sistema deve possibilitar, em versões futuras, a ampliação para múltiplos pontos de medição sem comprometer o desempenho geral.		

6. Escopo Positivo

Delimita o que será efetivamente desenvolvido e entregue durante o projeto. Especifica as funcionalidades, componentes e resultados que fazem parte da prova de conceito. No escopo positivo desse projeto se encontram:

- Montagem física de um protótipo com sensores de vazão e controle por ESP32.
- Medição em tempo real de consumo de água.
- Registro e comparação entre entrada e saída do sistema.
- Geração de alertas básicos em caso de discrepância nos dados.
- Implementação de um modelo preditivo inicial com machine learning.
- Interface de exibição dos dados (display ou dashboard).

7. Escopo Negativo

Definição claramente o que não será abordado nesta fase, evitando interpretações equivocadas e assegurando que o foco permaneça nas funcionalidades essenciais e viáveis para o protótipo. Escopo negativo:

- Desenvolvimento de aplicativo mobile dedicado: a interface será limitada a monitoramento local ou via serial, sem aplicativo próprio para smartphones.
- Integração com sistemas de concessionárias de água: não haverá comunicação direta com sistemas externos de fornecimento ou faturamento de água.
- Previsão de consumo de longo prazo ou análise de grandes volumes de dados históricos: a análise preditiva será restrita a dados coletados no curto período de testes do protótipo.
- Automação de válvulas ou controle automático do fluxo de água: o protótipo não atuará na modificação física do sistema hidráulico.
- Integração com assistentes virtuais ou plataformas de nuvem IoT: a conectividade será local, sem envio de dados para serviços externos ou sistemas de automação residencial.
- Escalabilidade completa para múltiplas residências: o protótipo é restrito a uma instalação hidráulica de teste, sem implementação em larga escala.

8. Planejamento de Atividades

Apresentação da sequência de etapas do projeto, descrevendo as tarefas principais, os responsáveis e os resultados esperados em cada fase de desenvolvimento.

Prova de Conceito (Versão 1 do protótipo)			
Etapa	Descrição da Atividade	Responsáveis	Resultados Esperados
1.Definição técnica	Aquisição de tecnologias e sensores de vazão compatíveis com ESP32.	[Toda a equipe]	Lista de componentes e suas especificações (Ver seção 8. Lista de Materiais (Bill of Materials – BoM)
2. Montagem do protótipo físico	Integração dos sensores com a placa e circuitos auxiliares.	[Toda a equipe]	Estrutura física.
3. Programação e integração	Desenvolvimento do código em C/Arduino para leitura e transmissão de dados.	[Geovana e Vinícius]	Sistema capaz de medir e registrar dados em tempo real.
4. Criação do Dashboard	Criação de um dashboard	[Geovana]	Visualização gráfica dos dados lidos

Versão 2				
Etapa	Descrição da Atividade	Responsáveis	Resultados Esperados	
1. Implementação do modelo preditivo	Criação de algoritmo de previsão simples (regressão linear ou média móvel).	[Responsáveis a Definir]	Previsão de consumo (dia, semana e mês)	
2. Ampliação da estrutura física	Adicionar sensores, aumentar a estrutura física e do circuito.	[Responsáveis a Definir]	Estrutura física ampliada e funcional.	
3. Testes e integração dos dados dos novos sensores	Programação e integração dos novos sensores ao sistema.	[Responsáveis a Definir]	Visualização do funcionamento e recebimento dos dados dos novos sensores.	
4. Refinamento do sistema preditivo	Testes da atuação do sistema preditivo com os novos sensores.	[Responsáveis a Definir]	Sistema preditivo mais robusto. 1. Previsão de consumo (dia, semana e mês)	

			Prever qual local com maior consumo
5. Refinamento do Dashboard	Ampliação do dashboard	[Responsáveis a Definir]	 Relatório de consumo de água (dia, semana, mês). Visualização gráfica do consumo de água registrado por cada sensor. Dicas de como economizar água Alertas sobre possíveis falhas e vazamentos no sistema hidráulico.
6. Documentação e relatório final	Produção do relatório técnico, diagramas e análise de resultados.	[Responsáveis a Definir]	Documento final para apresentação.

9. Cronograma

Organiza o projeto no tempo, mostrando prazos e marcos de entrega de cada etapa do desenvolvimento, desde a pesquisa inicial até a apresentação final do protótipo.

	Cronograma		
Período	Atividade / Marco de Entrega		
02/09/2025	Pesquisa concluída e definição final dos sensores		
03/09/2025	Recebimento dos materiais		
17/09/2025	Montagem da estrutura física do protótipo e início da programação para leitura de dados do sensor		
08/10/2025	Início dos testes no circuito elétrico		
10/10/2025	Continuação dos testes no circuito elétrico		
14/10/2025	Finalização do protótipo físico e programação de leitura de dados		

21/10/2025 à 27/10/2025	Programação do dashboard e documentação para a prova de conceito	
29/10/2025	Entrega da prova de conceito	
04/11/2025 e 05/11/2025	Implementação do modelo preditivo	
04/11/2025 e 05/11/2025	Ampliação da estrutura física	
11/11/2025 e 12/11/2025	Testes e integração dos dados dos novos sensores	
18/11/2025 e 19/11/2025	Refinamento do sistema preditivo	
25/11/2025 e 26/11/2025	Refinamento do Dashboard	
2/12/2025 e 3/12/2025	Documentação e relatório final	
09/12/2025	Entrega do protótipo final	

10. Lista de Materiais

Relaciona todos os componentes e materiais necessários para a montagem do protótipo, incluindo quantidades, função de cada item e observações sobre uso ou montagem.

Prova de conceito				
Item	Quantidade	Descrição / Observação		
Placa ESP32	1	Microcontrolador com Wi-Fi e Bluetooth		
Sensor de vazão (modelo YF-S201 ou similar)	1	3 ramais + 1 entrada principal		
Conectores/adaptadores	2+	Conexão entre sensores e mangueiras		
Abraçadeiras plásticas	10	Fixação dos sensores		
Torneirinhas / válvulas de registro	1	Simulação de controle de fluxo		
Balde ou galão	2	Coleta e medição de saída de água		
Protoboard	1	Montagem de testes		
Jumpers	1 kit	Conexões elétricas		
Resistores $2k2\Omega / 1k2\Omega$	1 kit	Ajustes e proteção		

Fonte 5V 2A	1	Alimentação do sistema
-------------	---	------------------------

Versão final do protótipo				
Item	Quantidade	Descrição / Observação		
Placa ESP32	1	Microcontrolador com Wi-Fi e Bluetooth		
Sensor de vazão (modelo YF-S201 ou similar)	4	3 ramais + 1 entrada principal		
Conectores/adaptadores	8+	Conexão entre sensores e mangueiras		
Abraçadeiras plásticas	10	Fixação dos sensores		
Torneirinhas / válvulas de registro	4	Simulação de controle de fluxo		
Balde ou galão	2	Coleta e medição de saída de água		
Protoboard	1	Montagem de testes		
Jumpers	1 kit	Conexões elétricas		
Resistores $2k2\Omega / 1k2\Omega$	4 kits	Ajustes e proteção		
Fonte 5V 2A	1	Alimentação do sistema		
Display LCD 16x2 (opcional)	1	Exibição local dos dados		

11. Diagrama de Blocos

Representa graficamente os principais módulos do sistema (entrada, processamento e saída de dados), facilitando a compreensão da estrutura e do funcionamento geral do AquaFlow. O sistema pode ser representado pelos seguintes módulos principais:

Entrada de Dados → Processamento → Análise → Saída de Informações

- 1. Entrada de água → entrada de água no sistema hidráulico
- 2. Sensores de Vazão → Captam a vazão de água em tempo real
- 3. **ESP32** → Processa, soma volumes e compara dados
- 4. **Módulo Preditivo (ML)** → Analisa histórico e gera previsões
- 5. **Interface de Exibição** → Mostra consumo e alertas
- 6. Fonte de Alimentação → Mantém o sistema energizado

(Diagrama de Blocos - Funcionamento geral do sistema)

12. Diagrama de Atividades - UML e Diagrama de Estados

Aqui será demonstrado o comportamento dinâmico do sistema, ilustrando os estados operacionais: como inicialização, leitura, análise e alerta e as transições entre eles.

Representa o comportamento do sistema de monitoramento:

Diagrama de Atividades - Estados principais:

- 1. Inicialização Configuração dos sensores e comunicação
- 2. Leitura Contínua Coleta de dados em tempo real
- 3. **Processamento** Cálculo de volume e comparação entre entradas e saídas
- 4. **Análise Preditiva** Geração de estimativas futuras de consumo
- 5. Alerta / Notificação Emissão de aviso de vazamento ou anomalia
- 6. **Encerramento / Reset** Finalização da medição e gravação dos dados

Descrição dos Estados do Sistema no Diagrama de Atividades - UML

Tabela de descrição do Diagrama de Atividades			
Estado UML		Descrição Detalhada	
Inicialização Sistema	do	O sistema é energizado (Fonte 5V → circuito elétrico). O ESP32 configura portas, sensores e comunicação serial. É o ponto de partida de todo o ciclo de medição.	
Leitura Contínua Vazão	de	Os sensores de vazão captam a passagem da água nos encanamentos e geram pulsos elétricos proporcionais ao fluxo.	

Aquisição e Conversão de Dados	O módulo ESP32 converte os sinais recebidos dos sensores (via divisor de tensão) em dados digitais interpretáveis.
Processamento Local	O ESP32 soma o volume de água medido, compara entrada e saída do sistema e detecta diferenças anômalas (indicando possíveis vazamentos).
Análise Preditiva (ML)	Os dados são enviados para o módulo de análise (em um notebook ou microcontrolador adicional), onde um algoritmo simples de <i>machine learning</i> prevê o consumo futuro e detecta padrões.
Geração de Alertas e Envio de Dados	Caso sejam detectadas anomalias (ex: consumo excessivo), o sistema envia alertas ao dashboard e atualiza as previsões.
Visualização no Dashboard	Os resultados são exibidos em uma interface visual (display LCD ou dashboard no notebook), permitindo ao usuário acompanhar consumo e previsões.
Tomada de Decisão / Ação do Usuário	O usuário interpreta as informações e decide suas ações — por exemplo, fechar uma torneira, consertar vazamentos ou ajustar o consumo.
Encerramento / Reset do Ciclo	O sistema pode ser desligado manualmente ou reiniciar automaticamente o processo de leitura (loop contínuo de monitoramento).

Relação entre o Diagrama de Blocos e o Diagrama de Atividades:

Elemento do Diagrama de Blocos	Função / Papel no Ciclo de Estados
Fonte 5V / Circuito elétrico / Divisor de tensão	Atuam na Inicialização do Sistema , fornecendo energia e adaptando o sinal dos sensores.
Sensores de Vazão	Entram em ação no estado Leitura Contínua , convertendo vazão física em pulsos elétricos.
Módulo de Aquisição e Conversão (ESP32)	Responsável pelos estados Aquisição, Conversão de Dados e Processamento Local.
Módulo de Análise Preditiva (ML)	Atua no estado Análise Preditiva , aplicando algoritmos para gerar previsões.
Notebook e Dashboard	Representam o estado Visualização / Saída , exibindo resultados e gráficos.
Usuário	Surge no estado Tomada de Decisão , interagindo com o sistema e ajustando hábitos de consumo.

Interpretação no Contexto do AquaFlow

O **AquaFlow** é um sistema *reativo e cíclico*: ele nunca "para", apenas reinicia seu ciclo de leitura e análise. Isso significa que após o estado final, ele retorna ao estado de **Leitura Contínua**, mantendo o monitoramento ativo — um comportamento típico de sistemas inteligentes embarcados.

Descrição dos Estados do Sistema no Diagrama de Estados

Descrição dos Estados do Sistema			
Estado	Transição	Destino	Descrição detalhada
Inicialização do Sistema	Vazia	Válvula Fechada	O ponto de partida, onde o sistema é ligado e configurado.
Inicialização do Sistema	Vazia	Válvula Aberta	O ponto de partida, onde o sistema é ligado e configurado.

Válvula Fechada	Abrir Válvula	Válvula Aberta	Fluxo de água bloqueado. Transiciona para a abertura da válvula mediante comando.
Válvula Fechada	Vazia	Esperando Ação	Fluxo de água bloqueado. Aguardando uma ação ou condição para prosseguir.
Válvula Aberta	Fechar Válvula	Válvula Fechada	Fluxo de água permitido. Transiciona para o fechamento da válvula mediante comando.
Válvula Aberta	Passagem da água	Fluxo da água	Fluxo de água permitido. A detecção da passagem da água inicia o estado de fluxo.
Válvula Aberta	Vazia	Esperando Ação	Fluxo de água permitido. Aguardando uma ação ou condição para prosseguir.
Esperando Ação	Fechar Válvula	Válvula Fechada	Aguardando uma condição ou ação. Uma ação de "Fechar Válvula" interrompe o fluxo.
Esperando Ação	Passagem da água	Fluxo da água	Aguardando uma condição ou ação. A detecção de "Passagem da água" inicia o fluxo.
Fluxo da água	Água passa pela válvula	Leitura do Sensor	Passagem física da água. Os sensores iniciam a leitura ao detectar o fluxo.
Fluxo da água	Água passa pela válvula	Fluxo interrompido	Passagem física da água. A interrupção do fluxo leva a este estado.
Fluxo da água	Abrir Válvula	Válvula Aberta	Passagem física da água. Transição de retorno à Válvula Aberta (possivelmente para realinhar o estado.

Fluxo interrompido	Abrir Válvula	Válvula Aberta	A passagem de água cessou. Um comando para "Abrir Válvula" retoma o fluxo.
Leitura do Sensor	Produção de pulsos em 5v	Circuito divisor de tensão	O sensor detecta o fluxo. Os pulsos de 5V são enviados para o divisor de tensão.
Circuito divisor de tensão	Tensão dos pulsos reduzidas a 3.3v	Recepção dos dados pelo ESP32	Converte a tensão dos pulsos. Os pulsos de 3.3V são enviados para o ESP32.
Recepção dos dados pelo ESP32	Cabo	Passagem dos dados do ESP32 para o notebook	O ESP32 recebe os dados. Os dados são enviados via cabo para o notebook.
Passagem dos dados do ESP32 para o notebook	Vazia	Amostragem dos dados na tabela no notebook	Os dados são transferidos para o notebook para serem organizados.
Amostragem dos dados na tabela no notebook	Dados para processamento	Uso dos dados para análise preditiva	Dados organizados no notebook. São enviados para o módulo de análise preditiva.
Amostragem dos dados na tabela no notebook	Envio dos resultados do monitoramento	Visualização no Dashboard	Dados organizados no notebook. Os resultados são enviados para exibição no dashboard.
Uso dos dados para análise preditiva	Vazia	Geração de Alertas e Envio de Dados	Módulo processa dados para previsões. O resultado é a geração de alertas e envio de dados.
Geração de Alertas e Envio de Dados	Vazia	Visualização no Dashboard	Alertas e dados são gerados. São enviados para exibição no dashboard.
Visualização no Dashboard	Vazia	Aguardando ação do usuário	Dados e alertas exibidos na interface. O sistema espera uma decisão do usuário.

Aguardando ação do usuário	Vazia	Decisão do usuário	Sistema em espera. O usuário toma uma decisão com base nas informações.
Decisão do usuário	Vazia	Encerramento / Reset do Ciclo	Usuário decide a ação. O ciclo atual é encerrado, podendo resetar o sistema.
Encerramento / Reset do Ciclo	Vazia	Leitura do Sensor	Fim do ciclo atual. O sistema pode retornar para uma nova leitura, reiniciando o monitoramento contínuo.

Relação entre o Diagrama de Blocos e o Diagrama de Estados		
Elemento no Diagrama de Blocos	Função / Papel no Ciclo de Estados	
Encanamentos / Entrada de água	Representam o ambiente onde ocorrem os estados "Válvula Aberta", "Válvula Fechada" e "Fluxo da água".	
Fonte 5V/ Circuito elétrico	Fornecem a energia para a "Inicialização do Sistema" e todos os estados subsequentes.	
Sensores	Corresponde diretamente ao estado "Leitura do Sensor", que é ativado pela "Passagem da água" e produz os pulsos de 5V.	
Divisor de tensão	É representado pelo estado "Circuito divisor de tensão", responsável por converter os pulsos de 5V para 3.3V.	
Módulo de Aquisição e Conversão (ESP32)	Corresponde aos estados "Recepção dos dados pelo ESP32" e "Passagem dos dados do ESP32 para o notebook".	
Módulo de Análise Preditiva (ML)	É representado pelo estado "Uso dos dados para análise preditiva", que processa os dados e leva à "Geração de Alertas".	

Notebook	Atua como o ambiente de execução para vários estados: "Amostragem dos dados", "Uso dos dados para análise preditiva" e "Visualização no Dashboard".
Saída: Dashboard	Corresponde ao estado "Visualização no Dashboard", que é a interface final para o usuário.
Usuário (Mencionado na p. 14)	No Diagrama de Estados, o usuário é o ator principal nos estados "Aguardando ação do usuário" e "Decisão do usuário".

13. Desenhos CAD e imagens do protótipo físico

Serão apresentados nessa seção os esquemas técnicos e estruturais do protótipo assim como as imagens do protótipo físico.

Os desenhos CAD incluirão:

• Esquema hidráulico simplificado do sistema de medição (entrada, ramais e sensores).

Este diagrama apresenta o esquema físico e dimensional do protótipo hidráulico do projeto AquaFlow. Ele foi concebido para simular um ramal de consumo, integrando componentes hidráulicos (tubulações, conexões e válvulas) e o posicionamento de um componente de sensoriamento eletrônico (sensor de vazão).

Vistas Apresentadas

O diagrama utiliza um formato de documentação técnica padrão, incluindo três vistas ortogonais (projeções 2D) e uma vista isométrica (perspectiva 3D) para detalhar a montagem:

- Vista Superior/Frontal (Superior Direita): Apresenta as dimensões principais do layout. Ela delimita a altura total da estrutura em 88.9 cm e a extensão horizontal máxima do ramal em 60.4 cm.
- Vista Lateral (Superior Esquerda): Mostra o perfil vertical do sistema. É possível observar a entrada de água (tubo superior), a conexão com a válvula de registro (identificada pela alavanca) e a tubulação vertical principal.
- Vista Frontal (Inferior Esquerda): Exibe a projeção frontal do conjunto, destacando a orientação da alavanca da válvula de registro em relação ao cano vertical.
- Vista Isométrica (Inferior Direita): Esta vista ilustra a montagem tridimensional completa. Ela permite visualizar claramente a sequência: a entrada de água (vertical), a conexão angular, a válvula de registro para controle de fluxo, a conexão em "T", o posicionamento do sensor de vazão (componente cilíndrico) no ramal horizontal e a descida final do tubo.

(Protótipo CAD)

Foto 1: Protótipo do sistema de vazão montado.

Foto 2: Enchendo o recipiente do protótipo para a realização de um teste.

Foto 3: Demonstração da captação e contagem de pulsos no notebook.

Foto 4: Saída do fluxo da água em direção ao balde após a passagem pela estrutura.

14. Dashboard

O dashboard foi desenvolvido com o objetivo de monitorar e analisar o consumo de água de forma prática e intuitiva, utilizando os dados coletados pelos sensores instalados. Na fase inicial do projeto, foram utilizados dados simulados representando um período de um ano de consumo, com medições registradas a cada 15 minutos. Em um cenário real de operação, entretanto, o dataset é atualizado em tempo real, com novas leituras sendo recebidas a cada segundo.

Tela de Configuração: permite personalizar o sistema, possibilitando o cadastro e a
edição dos nomes dos sensores, além do upload da planta da residência para melhor
visualização dos pontos de consumo.

Tela de Configuração

• Tela de Monitoramento: apresenta um mapa de calor que indica, em tempo real, o uso das torneiras e demais pontos de consumo. Essa visualização facilita a identificação de quais áreas estão sendo mais utilizadas no momento.

Tela de Monitoramento

• **Gráficos de Consumo:** exibem dados históricos de uso de água em diferentes níveis de detalhe anual, mensal, semanal e diário, permitindo identificar padrões e tendências de consumo ao longo do tempo.

Gráficos de Consumo

• **Tela de Predição:** realiza projeções de gastos futuros, auxiliando no planejamento e controle do consumo de água.

Tela de Predição

• **Tela de Alertas:** sinaliza possíveis vazamentos ou comportamentos anômalos no uso, contribuindo para uma resposta rápida a desperdícios.

Tela de Alertas

• Exibição do Dataset: apresenta todos os dados brutos coletados pelos sensores, permitindo consultas e análises detalhadas.

Exibição do Dataset

15. Links de acesso

Repositório GitHub:

https://github.com/Andreza-S/AquaFlow-Sistema-Inteligente-de-Consumo-de-Agua.git (link do repositório)

O repositório conterá:

- Código principal (ESP32)
- Modelos de dados de teste
- Documentação com as especificações do projeto

Vídeos demonstrativos de funcionamento

Para abertura dos vídeos, por favor utilize e-mail vinculado ao IFPB. Qualquer dúvida ou dificuldade de acesso entre em contato.

Protótipo Físico:

https://drive.google.com/file/d/1D4kT7WUdAIWsBev69BVE98oXHBmBIm7LL/view?usp=sharing

Protótipo Dashboard:

https://drive.google.com/file/d/1hXQBGguxG6b9WQMCNsW9GLbLVzai8XTH/view?usp=s haring

16. Considerações Finais

Este projeto representa uma **prova de conceito funcional** de um sistema sustentável, acessível e tecnologicamente relevante, que alia **engenharia eletrônica, programação embarcada e análise de dados**. A proposta busca demonstrar como a **prototipagem rápida** pode gerar soluções reais para problemas ambientais e sociais, unindo tecnologia e consciência ecológica.