Language-Agnostic Tensor Processing Exercises

Exercises aiming at improving your "vectorized"-way-of-coding.

Here we'll be dealing with N-dimensional arrays or tensors, in particular:

- N=1 vectors,
- N=2 matrices.

These might be represented as NumPy array objects, Theano or TensorFlow tensors, R atomic vectors/matrix/arrays, Matlab vectors/matrices, vector/matrix classes in C++ Eigen or Armadillo libraries etc.

Most of the functions can be implemented based on built-in, "vectorized" operations (arithmetic operators, aggregation functions, vector subsetting etc.) – no explicit for-loops required. If your library does not provide you with such operations, pick a different one.

Note that many machine learning algorithms actually take numeric matrix inputs or outputs, as real-world objects can be represented as sequences of feature vectors (if there are given as data frames, a conversion is done). Therefore, we will often assume that a matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ represents n points in \mathbb{R}^d . In such a case $\mathbf{x}_{i,\cdot}$ will refer to the i-th row (point, observation) and $\mathbf{x}_{\cdot,j}$ - the j-th column (variable, coordinate).

A missing value in a numeric vector is represented as NA_real_ in R or NaN in all other cases.

If not stated explicitly otherwise, by the term "distance" we mean the Euclidean metric, but you can play with other metrics too.

- 1. Let x be a numeric vector:
 - Print all values in $[-2, -1] \cup [1, 2]$.
 - Print the number and the proportion of nonnegative elements in x.
 - Compute the arithmetic mean of absolute values.
 - Determine elements in x which are the least and the most distant from 0.
 - Determine 3 elements in x which are the most distant from the arithmetic mean of x.
 - Create a vector x2, which is a version of x with all outliers removed, i.e., all observations x_i such that $x_i \notin [Q_1 1.5IQR, Q_3 + 1.5IQR]$, where $IQR = Q_3 Q_1$ denotes the interquartile range and Q_1 and Q_3 denote the 1st and 3rd sample quartiles, respectively.
 - Create a vector y such that y[i] is equal to "nonnegative" if the corresponding x[i]>=0 and "negative" otherwise.
 - Create a vector y such that y[i] is equal to "small" if the corresponding x[i]<-1, "large" if x[i]>1 and "medium" otherwise.

Generate x like:

```
set.seed(123)
x <- round(rnorm(20, 0, 1), 2)
or:
import numpy as np
np.random.seed(6)</pre>
```

- x = np.round(np.random.normal(size=20), 2)
- 2. Write a function which standardizes the values in a given numeric vector, i.e., rescales its elements so that the resulting vector is of mean and standard deviation of 1. Note: this is also called "Z-score computing".
- 3. Write a function which clamps all values in a given vector to the unit interval, i.e., set all values less than 0 to be equal to 0 and all values greater than 1 to be equal to 1.
- 4. Compute the inner product of two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, i.e., $\mathbf{x}^T \mathbf{y} = \sum_{i=1}^n x_i y_i$.
- 5. Compute the root-mean-squared-error between two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, RMSE $(\mathbf{x}, \mathbf{y}) = \sqrt{\frac{1}{n} \sum_{i=1}^n (y_i x_i)^2}$.
- 6. Compute the mean-absolute-error between two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $\text{MAE}(\mathbf{x}, \mathbf{y}) = \frac{1}{n} \sum_{i=1}^n |y_i x_i|$.
- 7. Compute the median-absolute-error between two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $\operatorname{MedAE}(\mathbf{x}, \mathbf{y}) = \operatorname{Median}(|y_1 x_1|, \dots, |y_n x_n|)$.
- 8. Compute the (normalized) Hamming distance between two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{Z}^n$, $\operatorname{Ham}(\mathbf{x}, \mathbf{y}) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}(x_i \neq y_i)$, where the indicator function \mathbb{I} yields 1 if a given logical condition is met and 0 otherwise.
- 9. Compute the cross-entropy loss between two vectors $\mathbf{y} \in \{0,1\}^n$ and $\hat{\mathbf{y}} \in (0,1)^n$, i.e., $\operatorname{CEnt}(\mathbf{y},\hat{\mathbf{y}}) = -\frac{1}{n} \left(\sum_{i=1}^n y_i \log(\hat{y}_i) + (1-y_i) \log(1-\hat{y}_i) \right)$.
- 10. Let x and y be two vectors of the same length, n. Compute the Pearson linear correlation coefficient, given by:

$$r(\mathbf{x}, \mathbf{y}) = \frac{1}{n-1} \sum_{i=1}^{n} \frac{x_i - \bar{x}}{s_x} \frac{y_i - \bar{y}}{s_y}.$$

11. Let x and y be two vectors of the same length, n. Compute the Spearman rank correlation coefficient, given by:

$$\varrho(\mathbf{x}, \mathbf{y}) = 1 - \frac{6\sum_{i=1}^{n} d_i^2}{n(n^2 - 1)},$$

where $d_i = R(\mathbf{x})_i - R(\mathbf{y})_i$, i = 1, ..., n, and $R(\mathbf{x})_i$ denotes the rank of x_i in \mathbf{x} .

12. Let x and y be two vectors of the same length, n. Compute the Kendall rank correlation coefficient, given by:

$$\tau(\mathbf{x}, \mathbf{y}) = \frac{2c}{n(n-1)/2} - 1,$$

where c denotes the number of concordant pairs, i.e., such that for $1 \le i < j \le n$ it either holds $x_i > x_j$ and $y_i > y_j$, or $x_i < x_j$ and $y_i < y_j$. Assume all values in x and y are unique.

- 13. Write a function that determines the mode, i.e., the most frequently occurring value in a given vector. If the mode is not-unique, return a randomly chosen one. Hint: Find a built-in function that counts the number of occurrences of each unique value in t.
- 14. Implement lead(x, n) and lag(x, n). The former function gets rid of the first n observations in x and adds n missing values at the end of the resulting vector, e.g., lead([1, 2, 3, 4, 5], 2) == [3, 4, 5, NaN, NaN], i.e., the observations are left-shifted. On the other hand, lag([1, 2, 3, 4, 5], 2) == [NaN, NaN, 1, 2, 3], i.e., we get a right-shift.
- 15. Implement cumall() and cumany() cumulative versions of all() and any(), e.g., cumall([True, True, True, False, True, False]) == [True, True, True, False, False, False] and cumany([False, False, True, False, True]) == [False, False, True, True, True].
- 16. Write a function to compute the k-moving average of a given vector \mathbf{x} of length n, where k = 2l + 1 for some l. Return a vector \mathbf{t} of length n with the l first and l last observations set to NaN. Each other t_i should be equal to the arithmetic mean of $x_{i-1}, \ldots, x_i, \ldots, x_{i+l}$.

- 17. Write a function that takes as arguments: (a) an integer n, (b) a numeric vector \mathbf{x} of length k and no duplicated elements, (c) a vector of probabilities \mathbf{p} of length k; verify that $p_i \geq 0$ for all i and $\sum_{i=1}^k p_i \simeq 1$. Based on a random number generator for the uniform distribution on the unit interval, generate n independent random variates from a distribution of a random variable X such that $\Pr(X = x_i) = p_i$ for $i = 1, \ldots, k$. Hint: to obtain a single value, (a) generate $u \in [0, 1]$, (b) find $m \in \{1, \ldots, k\}$ such that $u \in (\sum_{j=1}^{m-1} p_j, \sum_{j=1}^m p_j]$, (c) the result is then x_m .
- 18. Write a function that takes as arguments: (a) an increasingly sorted vector \mathbf{x} of length n, (b) any vector \mathbf{y} of length n, (c) a vector \mathbf{z} of length k and elements in $[x_1, x_n)$. Let f be the piecewise linear spline that interpolates the points $(x_1, y_1), \ldots, (x_n, y_n)$. Return a vector \mathbf{w} of length k such that $w_i = f(z_i)$.
- 19. Write a function that estimates the value of π . Generate m (given) random points from the square $[-1,1]^2$. Let k denote the number of points that lie in the circle of radius 1 centered at (0,0). The expected value 4k/m (the area of the square \times estimated proportion of the points in the circle) is exactly π .
- 20. Let t be vector of n integers in $\{1, \ldots, k\}$ (or $\{0, \ldots, k-1\}$ if your language relies on 0-based array indexing). Write a function to one-hot-encode each t_i . Return a 0-1 matrix R of size $n \times k$ such that $r_{i,j} = 1$ if and only if $t_i = j$. By the way, such a representation is useful when solving, e.g., a multiclass classification problem by means of k binary classifiers. For example, if t=[1, 2, 3, 2] and k=4, then:

$$R = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right].$$

- 21. Given an $n \times k$ matrix with elements in \mathbb{R} , apply the softmax function to each row, i.e., $x_{i,j} \mapsto \frac{\exp(x_{i,j})}{\sum_{l=1}^k \exp(x_{i,l})}$. Then one-hot decode the values in each row, i.e., find the column number with the value most close to 1. Return a vector of size n.
- 22. Let t be vector of n integers in $\{1, \ldots, k\}$ (or $\{0, \ldots, k-1\}$). Compute a 0-1 matrix R of size $n \times k$ such that $r_{i,j} = 1$ if and only if $j \ge t_i$. For example, if t=[1, 2, 3, 2] and k = 4, then:

$$R = \left[\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{array} \right].$$

- 23. For a given $\mathbf{X} \in \mathbb{R}^{n \times d}$, determine the bounding hyperrectangle of the n points. Return a matrix $\mathbf{B} \in \mathbb{R}^{2 \times d}$ with $b_{1,j} = \min_i x_{i,j}$ and $b_{2,j} = \max_i x_{i,j}$.
- 24. Write a function which standardizes the values in each column of a given matrix (separately).
- 25. Given a matrix with n rows and m columns (e.g., the first 4 rows from the iris dataset), compute the correlation matrix, i.e., an $m \times m$ matrix \mathbf{C} with $c_{i,j}$ denoting the Pearson coefficient for the i-th and the j-th column.
- 26. Assume that an $n \times d$ matrix **X** represents n points in \mathbb{R}^d . Write a function that determines the pairwise distances between all the points in **X** and a given $\mathbf{y} \in \mathbb{R}^d$. Return a vector $\mathbf{d} \in \mathbb{R}^n$ with $d_i = \|\mathbf{x}_{i,\cdot} \mathbf{y}\|_2$.
- 27. Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{Y} \in \mathbb{R}^{m \times d}$ represent two sets of points in \mathbb{R}^d . Return an index vector \mathbf{r} of length m such that r_i indicates the point in \mathbf{X} with the least distance to the i-th point in \mathbf{Y} , i.e., $r_i = \arg\min_j \|\mathbf{x}_{j,\cdot} \mathbf{y}_{i,\cdot}\|_2$.