Линейные диофантовы уравнения

Линейными диофантовыми называются уравнения вида ax + by = c, где a, b, c — заданные целые коэффициенты, а x, y — целочисленные переменные. Ясно, что, если c не делится на HOД(a,b), то уравнение ax + by = c не имеет целых решений, поэтому, в дальнейшем будем считать, что HOД(a,b) = 1. Разберём два способа их решения.

1. Решаем явно:

- (a) Рассмотрим для примера уравнение 5x + 3y = 7. Понятно, что оно сводится к поиску всех целых чисел x, для которых число 7 5x делится на 3. Опишите все такие значения x и запишите все решения уравнения.
- (b) Докажите, что так получится решить любое уравнение вида ax + by = c, где HOД(a,b) = 1, и опишите, как будет выглядеть решение в общем виде.

2. Используем линейность:

- (а) Пусть пара (x_0, y_0) является решением уравнения ax + by = c. Докажите, что пара (x_1, y_1) тоже является решением тогда и только тогда, когда $x_1 x_0 = kb$ и $y_1 y_0 = -ka$, где k некоторое целое число.
- (b) Опишите, как найти одно (частное) решение (x_0, y_0) уравнения ax + by = c.

Сравнения по модулю

Действия с остатками удобно записывать на языке сравнений по модулю. Вместо "числа a и b дают одинаковые остатки при делении на число n" пишут кратко: " $a \equiv b \pmod n$ " (читается как "a сравнимо с b по модулю n"). Сравнение $a \equiv b \pmod n$ равносильно $a-b \ni n$.

- 3. Пусть заданы целые числа a, b, x, y, n, m такие, что $a \equiv b \pmod n$ и $x \equiv y \pmod n$. Докажите следующие свойства сравнений:
 - (a) $a \pm x \equiv b \pm y \pmod{n}$;
 - (b) $ma \equiv mb \pmod{n}$ и, даже, $ma \equiv mb \pmod{mn}$;
 - (c) если $a \cdot m \equiv x \cdot m \pmod{nm}$, то $a \equiv x \pmod{n}$;
 - (d) $a \cdot x \equiv b \cdot y \pmod{n}$;
 - (e) если HOД(m, n) = 1, то из $ma \equiv mx \pmod{n}$ следует $a \equiv x \pmod{n}$, причём в общем случае условие HOД(m, n) = 1 нельзя опустить.

Из предыдущих задач можно сделать вывод: операция взятия по модулю перестановочна с операциями сложения, вычитания, умножения и возведения в степень — этим удобно пользоваться, поскольку остатки всегда меньше самих чисел.

Признаки делимости

- 4. Признаки делимости, связанные с цифрами, зависят от системы счисления. Докажите следующие признаки делимости десятичной системы счисления:
 - (а) число даёт тот же остаток при делении на 3, что и сумма его цифр;
 - (b) число даёт тот же остаток при делении на 9, что и сумма его цифр;
 - (c) число даёт тот же остаток при делении на 2^n , что и число, записанное его последними n цифрами.
 - (d) число даёт тот же остаток при делении на 11, что и разность между суммой цифр, стоящих на нечётных местах, и суммой цифр, стоящих на чётных местах (разряды нумеруются справа налево).

Упражнения

- 5. Докажите, что степень двойки не может оканчиваться четырьмя равными цифрами.
- 6. Докажите, что число $2222^{5555} + 5555^{2222}$ делится на 7. 7. Найдите последнюю цифру числа $2017^{2017^{2017}}$.
- 8. Из числа 20182018 вычитают учетверённую сумму цифр, с результатом проводят такую же операцию, потом снова и т. д., пока не получится отрицательное число или нуль. Найдите последнее положительное число.
- 9. Придумайте 100-значное число без нулевых цифр, делящееся на сумму своих цифр.
- 10. Докажите, что уравнения $x^2 2y^2 = 3$ и $5x^2 7 = 11y$ не имеют решений в целых числах x и y.
- 11. Верно ли, что все числа вида $p_1p_2\dots p_n+1$, где $p_1 < p_2 < \dots < p_n$ первые n простых чисел, простые?
- 12. В прямоугольнике $a \times b$ на клетчатой плоскости провели одну из главных диагоналей. Сколько клеток она пересекла?
- 13. Числа a и b взаимно просты. Докажите, что для каждого натурального числа c существует ровно одна пара (x, y) целых чисел такая, что $0 \le x \le b - 1$ и c = ax + by.

Задачи

- 14. Докажите, что не существует бесконечной арифметической прогрессии, состоящей из степеней (больше первой) натуральных чисел.
- 15^{1} Докажите, что число для любых взаимно простых натуральных чисел a и b число c = ab - a - b является наибольшим, для которого уравнение ax + by = c не имеет решений в целых неотрицательных x, y.
- 16. На числовой прямой красным цветом отметили все точки вида 81x + 100y, где x и у — натуральные числа. Остальные целочисленные точки отметили синим цветом. Докажите, что на прямой есть точка такая, что любые симметричные относительно неё целочисленные точки отмечены разным цветом.
- 17. Последовательность a_0, a_1, \ldots натуральных чисел задана при всех $n \geqslant 0$ условиями

$$a_{n+1} = \begin{cases} \sqrt{a_n}, & \text{если число } \sqrt{a_n} \text{ целое;} \\ a_n + 3, \text{ в противном случае.} \end{cases}$$

Найдите все значения $a_0>1$ при которых найдётся число a такое, что $a_n=a$ для бесконечного количества n.

¹Это утверждение называется **теоремой Сильвестра**.