Part1

Question 1:

NMOS Charts

PMOS Charts

Question 2:

ID vs VGS Plots for NMOS that has gm/ID = 10, gm/gds = 50, VDS = VDD/3, VSB = 0, and W = 5u.

Question 3:

Matlab Results

MATLAB	VGS=0.67v	ID=95.2u
ADT	VGS=0.67v	ID=99u

This slight difference in Id Because of using Different LUT in Each Program as ADT Uses LTSpice Generated LUT While Matlab Uses Hspice Generated LUT.

Question 4:

Input Pair Sizing

Used Some Hand analysis to get Gm and with the Assumptions got the above points , Vgs Determined to Add CM to bias The devices.

Tail Current Source Sizing

Gm/id assumptions	For the input stage we used
	large gm/id as its gm
	Contributes at The gain and less
	random mismatch , while for the
	load and tail cs we used small
	gm/id as there gm doesn't
	Contribute at Gain and to have
	smaller area to get small
	capacitances from them and to
	have a less effect of VDS on
	Current As Va increase.
Ro assumptions	We used 5ro for The load To
	have A Less VDS Effect at the
	current from The load
Tail Current Source L	As L increase Ro tail cs increase
assumptions	so Cm gain decrease and cm
	rejection ratio increase , and
	have an accurate current Value
	as VDS Effect Decrease as Ro
	increase .

Question 5:

```
%OTA Synthesis Function
function OTA = designOTA(specs)
                         load 180nch.mat;
load 180pch.mat;
10

11 - 12

13 - 14 - 15

16 - 17

18 - 19 - 20 - 21

22 - 23 - 25

26 - 28 - 29

30 - 31 - 32 - 32 - 32 - 32 - 32 - 32 - 33 - 32 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 
                         %input Pair

OTA.Mi.gm = specs.GBW * specs.CL * 2 * pi;
% assume ro(load) = 5 * ro(input) --> ro(input) = 6/5 R_total

DC_Gain_mag = 10^(specs.AVDC / 20); % Convert from dB to mag

Rout = DC_Gain_mag / OTA.Mi.gm; % Compute the equivalent output resistance of OTA (Rout)
                          OTA.M1.ro =(6/5)*Rout; % Complete the line to compute the ro of M1
                         OTA.Ml.gds = 1 / OTA.Ml.ro;

OTA.Ml.VDS = VDD/3;

OTA.Ml.gm_gds = OTA.Ml.gm / OTA.Ml.gds;

OTA.Ml.gm_ID = 15; % assumption
                          OTA.M1.ID =(OTA.M1.gm/OTA.M1.gm_ID);% Complete the line to get the current of M1
                            % Search for the minimum L that gives gm / gds > specified value
                         % Search for the minimum L that gives gm / gds > specified value
L_vector = noh.L;
gm_gds_vector = look_up(nch, 'GM_GDS', 'GM_ID', OTA.Ml.gm_ID, 'VDS', OTA.Ml.VDS, 'L', L_vector);
OTA.Ml.L =min(L_vector(gm_gds_vector >= OTA.Ml.gm_gds));
% Compute the line to get the minimum L that gives gm/gds >= OTA.Ml.gm_gds
% Compute ID/W to get the W value
                                                                                                                                                     , 'GM_ID', OTA.M1.gm_ID, 'VDS', OTA.M1.VDS, 'L', OTA.M1.L);
                              \label{line complete} $$ {\tt Complete}$ the line to get the minimum L that gives $$ gm/gds >= OTA.M1.gm\_gds $$
                         % Compute ID/W to get the W value
OTA.M.I.D W = look up(nch, '1D W', 'GM_ID', OTA.MI.gm_ID, 'VDS', OTA.MI.VDS, 'L', OTA.MI.L);
OTA.M.I.Z = OTA.MI.I.D / OTA.MI.I.D W;
OTA.M3.ro =(5*OTA.M1.ro); %Complete the line to get the ro of the CM load
                     OTA.M3.gds = 1 / OTA.M3.ro;
OTA.M3.gds = 1 / OTA.M3.ro;
OTA.M3.gm_ID = 10;
OTA.M3.gm_ID = 10;
OTA.M3.gm_ID = 10;
OTA.M3.gm_Gds = OTA.M3.gm_ID * OTA.M3.ID;
OTA.M3.gm_gds = OTA.M3.gm_ID * OTA.M3.gds;
gm_gds vector = look_up(pch, 'OM_GB', 'CM_ID', OTA.M3.gm_ID, 'VDS', OTA.M3.VDS, 'L', L_vector);
OTA.M3.L = min(L_vector(gm_gds_vector > OTA.M3.gm_gds));
OTA.M3.LD w = look_up(pch, 'ID w', 'GM_ID', OTA.M3.gm_ID, 'VDS', OTA.M3.VDS, 'L', OTA.M3.L); *Complete the line to get the ID/W of M3
                         % Tail bias

OTA.M5.L = 1; %assumption

OTA.M5.TD = 2 * OTA.M1.ID;

OTA.M5.VDS = VDD/3;

OTA.M5.VDS = VDD/3;

OTA.M5.gm_ID = 10; %assumption
% Get ID/W to compute W
                         % Get ID/# to Compute W
OTA.MS.ID_W = look_up(nch, 'ID_W', 'GM_ID', OTA.MS.gm_ID, 'VDS', OTA.MS.VDS, 'L', OTA.MS.L);
OTA.MS.W = OTA.MS.ID_V OTA.MS.ID_W;
                      $ get CMIN bias value
OTA.Mi.VGS =look_upVGS(nch, 'GM_ID', OTA.Mi.gm_ID, 'VDS', OTA.Mi.VDS, 'L',OTA.Mi.L);
                       %Complete the line to get the VGS of M1
OTA.M1.VG =OTA.M1.VGS + OTA.M5.VDS;
                          %Complete the line to get the DC CM input of OTA
```

Question 6:

Test Script

```
Desktop → Analog Tasks → Lab4 → gm_UD_starter_kit_v2.3

Desktop → Analog Tasks → Lab4 → gm_UD_starter_kit_v2.3

Desktop → Analog Tasks → Lab4 → gm_UD_starter_kit_v2.3 designOTA_test.m

Desktop → Analog Tasks → Lab4 → gm_UD_starter_kit_v2.3 designOTA_test.m

Desktop → Analog Tasks → Lab4 → gm_UD_starter_kit_v2.3 designOTA_test.m

Desktop → Analog Tasks → Lab4 → gm_UD_starter_kit_v2.3 designOTA_test.m

Desktop → Analog Tasks → Lab4 → gm_UD_starter_kit_v2.3 designOTA_test.m

Desktop → Analog Tasks → Analog Tasks
```

Matlab Results (No Parasitic Caps)

```
Command Window

>> designOTA_test

**** OTA Design ****

Input Pair:

L = 0.28 um

W=3.01 um

ViCM=1.1928 V

Id=20.9440 um

CM Load:

L = 1.70 um

W=31.44 um

Id=20.9440 um

Tail Current Source:

L = 1.00 um

W=9.06 um

Id=41.8879 um
```

Question 7:

Netlist & Simulation Results (No Parasitic Caps)

	<u>Specs</u>	Spice Results
<u>GBW</u>	100 Mega hz	1.77*Mega*51.2
		= 92 Mega hz
DC Gain	34 db	34.3db

The Dc Gain Is Achieved but there is an error at the GBW this is due neglecting the parasitic caps, but it will effect the GBW as there order of magnitude is the same as Cl (Femto).

PART 2:

Question 1

Input Pair Sizing While Taking Parasitic Caps in calculations

Current load Sizing While Taking Parasitic Caps in calculations

Tail Current Source Sizing While Taking Parasitic Caps in calculations

The Methodology I Used Was Calculating Both CDD for Input and Current Mirror Load Then Calculating Gm From GBW Equation And Continue Design As usual.

Question 2:

Matlab Function

The Function Takes The Effect of Parasitic Caps in Consideration it Iterates Until it Founds The best Sizing values With 8% Percent tolerance to stop at the gm Value.

ADT	MATLAB Part1	MATLAB Part2
With Parasitic	No Parasitic Caps	With Parasitic Caps
Caps		
Input Pair: W= 3.2u L=280n Current Mirror Load: W= 37.24u L=1.9u Tail Current Source:	Command Window >> designOTA_test **** OTA Design **** Input Pair: L = 0.28 um W=3.01 um ViCM=1.1928 V CM Load: L = 1.70 um W=31.44 um Tail Current Source: L = 1.00 um W=9.06 um	Command Vindow >> designOTA_test2 **** OTA Design With Parastics and Tolarence 8 percent **** Input Pair: L = 0.28 um W=3.06 um VicM=1.1928 V Id=21.2358 um CM Load: L = 1.70 um W=31.88 um Id=21.2358 um Tail Current Source: L = 1.00 um W=9.19 um Id=42.4717 um
W=9.598u	fx; >>	fx >>
L=1u		

There Are Difference Between ADT And Matlab Results As Matlatb LUTs Are made on Hspice While ADT LUTs are made on LTspice, MATLAB Function 2 Has Tolerance 8% Stoping Iterations Condition, When The gm is changed while Calculating it from The GBW as Adding caps in calculations.

Question 3:

	<u>Specs</u>	Spice Results
GBW	100 Mega hz	1.89*Mega*51.286
		= 97 Mega hz
DC Gain	34 db	34.2db

As we took the Parasitic Caps Into Consideration We Have A better Accuracy for the specs as the error become 3% only .