Advanced Machine Learning

Course Outline

Course Details and Topics

Course Structure

Lectures

- * 15:00 Tuesday 35/1001
- * 11:00 Wednesday 02/1089
- * 15:00 Friday (was 02A/2077—needs to be changed)

Assessment

- ★ 80% exam
- ★ 20% Problem Sheets

Course Structure

Lectures

- ★ 15:00 Tuesday 35/1001
- ★ 11:00 Wednesday 02/1089
- ★ 15:00 Friday (was 02A/2077—needs to be changed)

Assessment

- ★ 80% exam
- * 20% Problem Sheets

- I am changing the assessment from a group project to problem sheets
- I will give out two problem sheets each worth 10%
- They will help you understand the mathematical material
- They should prepare you for the exam

- I am changing the assessment from a group project to problem sheets
- I will give out two problem sheets each worth 10%
- They will help you understand the mathematical material
- They should prepare you for the exam

- I am changing the assessment from a group project to problem sheets
- I will give out two problem sheets each worth 10%
- They will help you understand the mathematical material
- They should prepare you for the exam

- I am changing the assessment from a group project to problem sheets
- I will give out two problem sheets each worth 10%
- They will help you understand the mathematical material
- They should prepare you for the exam

- This course is going to cover the core principles and mathematics behind machine learning
- It is not going to explicitly teach different machine learning algorithms
- We are not looking at advanced algorithms but cover the principles
- There are very good implementation available (e.g. scikit-learn)
- Along the way though we will meet (often many times) particular algorithms

- This course is going to cover the core principles and mathematics behind machine learning
- It is not going to explicitly teach different machine learning algorithms
- We are not looking at advanced algorithms but cover the principles
- There are very good implementation available (e.g. scikit-learn)
- Along the way though we will meet (often many times) particular algorithms

- This course is going to cover the core principles and mathematics behind machine learning
- It is not going to explicitly teach different machine learning algorithms
- We are not looking at advanced algorithms but cover the principles
- There are very good implementation available (e.g. scikit-learn)
- Along the way though we will meet (often many times) particular algorithms

- This course is going to cover the core principles and mathematics behind machine learning
- It is not going to explicitly teach different machine learning algorithms
- We are not looking at advanced algorithms but cover the principles
- There are very good implementation available (e.g. scikit-learn)
- Along the way though we will meet (often many times) particular algorithms

- This course is going to cover the core principles and mathematics behind machine learning
- It is not going to explicitly teach different machine learning algorithms
- We are not looking at advanced algorithms but cover the principles
- There are very good implementation available (e.g. scikit-learn)
- Along the way though we will meet (often many times) particular algorithms

- Learning Theory
 - ⋆ Bias-Variance
 - ★ Overfitting, structure and regularisation
 - ★ Ensembling, bagging and boosting
- Mathematics
 - * Function Spaces: Kernel Methods and Gaussian Processes
 - Linear Algebra, embeddings, positive definiteness, subspace, determinants

- Learning Theory
 - ⋆ Bias-Variance
 - * Overfitting, structure and regularisation
 - ★ Ensembling, bagging and boosting
- Mathematics
 - * Function Spaces: Kernel Methods and Gaussian Processes
 - Linear Algebra, embeddings, positive definiteness, subspace, determinants

- Learning Theory
 - ⋆ Bias-Variance
 - ★ Overfitting, structure and regularisation
 - * Ensembling, bagging and boosting
- Mathematics
 - * Function Spaces: Kernel Methods and Gaussian Processes
 - Linear Algebra, embeddings, positive definiteness, subspace, determinants

- Learning Theory
 - ⋆ Bias-Variance
 - ★ Overfitting, structure and regularisation
 - ★ Ensembling, bagging and boosting
- Mathematics
 - * Function Spaces: Kernel Methods and Gaussian Processes
 - Linear Algebra, embeddings, positive definiteness, subspace, determinants

- Learning Theory
 - ⋆ Bias-Variance
 - ★ Overfitting, structure and regularisation
 - ★ Ensembling, bagging and boosting
- Mathematics
 - * Function Spaces: Kernel Methods and Gaussian Processes
 - Linear Algebra, embeddings, positive definiteness, subspace, determinants

- Optimisation
 - * Newton/Quasi-Newton Methods: convergence rates
 - ⋆ SGD, momentum, ADAM
- Constrainted Optimisation
 - KKT conditions
 - ⋆ Duality Linear/Quadratic Programming
 - ⋆ SVMs
- Convexity
 - ★ Convex sets: linear constraints, PD matrices
 - Convex functions
 - ★ SVMs, Lasso
 - ★ Jensen's inequality

- Optimisation
 - ⋆ Newton/Quasi-Newton Methods: convergence rates
 - * SGD, momentum, ADAM
- Constrainted Optimisation
 - KKT conditions
 - ⋆ Duality Linear/Quadratic Programming
 - ⋆ SVMs
- Convexity
 - ★ Convex sets: linear constraints, PD matrices
 - Convex functions
 - ★ SVMs, Lasso
 - ★ Jensen's inequality

- Optimisation
 - ⋆ Newton/Quasi-Newton Methods: convergence rates
 - SGD, momentum, ADAM
- Constrainted Optimisation
 - * KKT conditions
 - ⋆ Duality Linear/Quadratic Programming
 - ⋆ SVMs
- Convexity
 - ★ Convex sets: linear constraints, PD matrices
 - Convex functions
 - ★ SVMs, Lasso
 - ★ Jensen's inequality

- Optimisation
 - ⋆ Newton/Quasi-Newton Methods: convergence rates
 - ⋆ SGD, momentum, ADAM
- Constrainted Optimisation
 - KKT conditions
 - * Duality Linear/Quadratic Programming
 - ⋆ SVMs
- Convexity
 - ★ Convex sets: linear constraints, PD matrices
 - Convex functions
 - ★ SVMs, Lasso
 - ★ Jensen's inequality

- Optimisation
 - ⋆ Newton/Quasi-Newton Methods: convergence rates
 - ⋆ SGD, momentum, ADAM
- Constrainted Optimisation
 - KKT conditions
 - ⋆ Duality Linear/Quadratic Programming
 - ★ SVMs
- Convexity
 - ★ Convex sets: linear constraints, PD matrices
 - Convex functions
 - ★ SVMs, Lasso
 - ★ Jensen's inequality

- Optimisation
 - ⋆ Newton/Quasi-Newton Methods: convergence rates
 - ⋆ SGD, momentum, ADAM
- Constrainted Optimisation
 - KKT conditions
 - ⋆ Duality Linear/Quadratic Programming
 - ⋆ SVMs
- Convexity
 - * Convex sets: linear constraints, PD matrices
 - Convex functions
 - ★ SVMs, Lasso
 - ★ Jensen's inequality

- Optimisation
 - ⋆ Newton/Quasi-Newton Methods: convergence rates
 - ⋆ SGD, momentum, ADAM
- Constrainted Optimisation
 - KKT conditions
 - ⋆ Duality Linear/Quadratic Programming
 - ⋆ SVMs
- Convexity
 - ★ Convex sets: linear constraints, PD matrices
 - ⋆ Convex functions
 - ★ SVMs, Lasso
 - ★ Jensen's inequality

- Optimisation
 - ⋆ Newton/Quasi-Newton Methods: convergence rates
 - ⋆ SGD, momentum, ADAM
- Constrainted Optimisation
 - KKT conditions
 - ⋆ Duality Linear/Quadratic Programming
 - ⋆ SVMs
- Convexity
 - ★ Convex sets: linear constraints, PD matrices
 - Convex functions
 - ⋆ SVMs, Lasso
 - ★ Jensen's inequality

- Optimisation
 - ⋆ Newton/Quasi-Newton Methods: convergence rates
 - SGD, momentum, ADAM
- Constrainted Optimisation
 - KKT conditions
 - ⋆ Duality Linear/Quadratic Programming
 - ⋆ SVMs
- Convexity
 - ★ Convex sets: linear constraints, PD matrices
 - Convex functions
 - ★ SVMs, Lasso
 - ★ Jensen's inequality

- Probability
 - ⋆ Naive Bayes
 - ⋆ Gaussian Processes
 - ⋆ Dependencies and Graphical Models
 - ★ Expectations and MCMC
- Variational Methods
 - ⋆ Divergences: KL and Wasserstein
 - VAEs and GANs
 - Variational Approximation

- Probability
 - ⋆ Naive Bayes
 - ⋆ Gaussian Processes
 - ⋆ Dependencies and Graphical Models
 - ★ Expectations and MCMC
- Variational Methods
 - ⋆ Divergences: KL and Wasserstein
 - VAEs and GANs
 - Variational Approximation

- Probability
 - ⋆ Naive Bayes
 - ⋆ Gaussian Processes
 - * Dependencies and Graphical Models
 - ★ Expectations and MCMC
- Variational Methods
 - ⋆ Divergences: KL and Wasserstein
 - VAEs and GANs
 - Variational Approximation

- Probability
 - ⋆ Naive Bayes
 - ⋆ Gaussian Processes
 - ⋆ Dependencies and Graphical Models
 - ★ Expectations and MCMC
- Variational Methods
 - ⋆ Divergences: KL and Wasserstein
 - VAEs and GANs
 - Variational Approximation

- Probability
 - ⋆ Naive Bayes
 - ⋆ Gaussian Processes
 - ⋆ Dependencies and Graphical Models
 - ★ Expectations and MCMC
- Variational Methods
 - * Divergences: KL and Wasserstein
 - VAEs and GANs
 - Variational Approximation

- Probability
 - ⋆ Naive Bayes
 - ⋆ Gaussian Processes
 - ⋆ Dependencies and Graphical Models
 - ★ Expectations and MCMC
- Variational Methods
 - ⋆ Divergences: KL and Wasserstein
 - ⋆ VAEs and GANs
 - Variational Approximation

- Probability
 - ⋆ Naive Bayes
 - ⋆ Gaussian Processes
 - ⋆ Dependencies and Graphical Models
 - ★ Expectations and MCMC
- Variational Methods
 - ⋆ Divergences: KL and Wasserstein
 - VAEs and GANs
 - ★ Variational Approximation