Revisões e Funcionamento da UC

Estatística II - 2024/2025 ISCTE-IUL

Afonso Moniz Moreira¹²

¹ISCTE-IUL, Departamento de Métodos Quantitativos para a Economia e Gestão ²CMVM - Comissão do Mercado de Valores Mobiliários, Departamento de Supervisão de Mercados

- A FUC da cadeira está online aqui:
- Link da Ficha de Unidade Curricular

- A FUC da cadeira está online aqui:
- Link da Ficha de Unidade Curricular
- Está disponível no Moodle um planeamento completo das aulas incluindo, os exercícios que vão ser resolvidos nas aulas, os exercícios de trabalho autónomo e as páginas da bibliografia que devem ser estudadas em cada aula.
- As minhas regras de funcionamento da cadeira são apenas duas:

- A FUC da cadeira está online aqui:
- Link da Ficha de Unidade Curricular
- Está disponível no Moodle um planeamento completo das aulas incluindo, os exercícios que vão ser resolvidos nas aulas, os exercícios de trabalho autónomo e as páginas da bibliografia que devem ser estudadas em cada aula.
- As minhas regras de funcionamento da cadeira são apenas duas:
 - N°1 Não pode haver barulho na sala sob pena da aula terminar com a matéria dada.

- A FUC da cadeira está online aqui:
- Link da Ficha de Unidade Curricular
- Está disponível no Moodle um planeamento completo das aulas incluindo, os exercícios que vão ser resolvidos nas aulas, os exercícios de trabalho autónomo e as páginas da bibliografia que devem ser estudadas em cada aula.
- As minhas regras de funcionamento da cadeira são apenas duas:
 - N°1 Não pode haver barulho na sala sob pena da aula terminar com a matéria dada.
 - Nº2 Não são autorizadas fotografias ao quadro, sem expressa autorização do docente para esse efeito.

 Este conjunto de slides não são, nem pretendem ser uma substituição à bibliografia principal da cadeira de estatística II.

- Este conjunto de slides não são, nem pretendem ser uma substituição à bibliografia principal da cadeira de estatística II.
- Este conjunto de slides não são, nem pretendem ser uma fonte rigorosa de estudo dos tópicos da cadeira.

- Este conjunto de slides não são, nem pretendem ser uma substituição à bibliografia principal da cadeira de estatística II.
- Este conjunto de slides não são, nem pretendem ser uma fonte rigorosa de estudo dos tópicos da cadeira.
- O único propósito destes slides é ajudar o autor a guiar as aulas da forma mais coloquial possível sem ter de carregar formalismos desnecessários.

- Este conjunto de slides não são, nem pretendem ser uma substituição à bibliografia principal da cadeira de estatística II.
- Este conjunto de slides não são, nem pretendem ser uma fonte rigorosa de estudo dos tópicos da cadeira.
- O único propósito destes slides é ajudar o autor a guiar as aulas da forma mais coloquial possível sem ter de carregar formalismos desnecessários.
- Assim sendo, o formalismo estatístico é eliminado sempre que possível para agilizar uma primeira aprendizagem por parte dos estudantes.

Tipos de Amostra

- A larga maioria dos tópicos ensinados em Estatística II, fazem uso de uma amostra aleatória.
- Define-se a população de estudo X que tem uma determinada distribuição $f_X(x)$ e que é caracterizada por um ou mais parâmetros comummente designados por θ .
- Por definição, as variáveis aleatórias que constituem a amostra aletória são idênticamente distribuidas e são independentes entre si, respectivamente:
 - Provêem da mesma distribuição: $X_i \sim f_X(x), \forall i = 1, ..., n$
 - São independentes entre si: $f_{X_1,...,X_n}(x_1,...,x_n) = \prod_{i=1}^n f_{X_i}(x_i)$

Estatísticas, Estimadores e Estimativas

• Quer uma estatística, quer um estimador são funções da amostra, $T_1 = T(X_1, ..., X_n)$. No entanto um estimador, $\hat{\theta} = f(X_1, ..., X_n)$, é um caso especial de uma estatística porque permite obter uma estimativa de um parâmetro desconhecido mas fixo, θ , quando se utiliza uma amostra concreta, ou seja quando se utiliza uma realização da amostra aleatória $(x_1, ..., x_n)$. Este processo, chamado de **inferência**, dá origem a um valor concreto para o parâmetro $\theta^* = \hat{\theta}(x_1, ..., x_n)$.

Estatísticas, Estimadores e Estimativas

- Quer uma estatística, quer um estimador são funções da amostra, $T_1 = T(X_1,...,X_n)$. No entanto um estimador, $\hat{\theta} = f(X_1,...,X_n)$, é um caso especial de uma estatística porque permite obter uma estimativa de um parâmetro desconhecido mas fixo, θ , quando se utiliza uma amostra concreta, ou seja quando se utiliza uma realização da amostra aleatória $(x_1,...,x_n)$. Este processo, chamado de **inferência**, dá origem a um valor concreto para o parâmetro $\theta^* = \hat{\theta}(x_1,...,x_n)$.
- O ChatGPT faz a mesma coisa quando alguém faz um prompt, só que o estimador dele é muito, muito, muito, muito, mais complicado!

 No fundo, queremos desenvolver métodos que nos permitam tirar conclusões da população, sem conhecer todos os seus elementos.

- No fundo, queremos desenvolver métodos que nos permitam tirar conclusões da população, sem conhecer todos os seus elementos.
- Queremos portanto, extrapolar da amostra para a população, porque conhecer toda a população é um processo demasiado oneroso!

- No fundo, queremos desenvolver métodos que nos permitam tirar conclusões da população, sem conhecer todos os seus elementos.
- Queremos portanto, extrapolar da amostra para a população, porque conhecer toda a população é um processo demasiado oneroso!
- Amostra Aleatória $(X_1,...,X_n) \longrightarrow \text{Estimador } (\hat{\theta}) \longrightarrow \text{Estimativa } \theta^*.$

- No fundo, queremos desenvolver métodos que nos permitam tirar conclusões da população, sem conhecer todos os seus elementos.
- Queremos portanto, extrapolar da amostra para a população, porque conhecer toda a população é um processo demasiado oneroso!
- Amostra Aleatória $(X_1,...,X_n) \longrightarrow \text{Estimador } (\hat{\theta}) \longrightarrow \text{Estimativa } \theta^*.$
- Esta forma de conhecimento de uma população ou um fenómeno é utilizado em várias áreas científicas... da economia à medicina.

- Na sequência do anteriormente mencionado... Qual é a diferença entre ?
 - μ e $\bar{X}=\sum_{i=1}^n \frac{1}{n} X_i$ e σ^2 e $S^2=\sum_{i=1}^n \frac{1}{n} (X_i-\bar{X})^2$

 Na sequência do anteriormente mencionado... Qual é a diferença entre ?

•
$$\mu$$
 e $\bar{X}=\sum_{i=1}^n \frac{1}{n}X_i$ e σ^2 e $S^2=\sum_{i=1}^n \frac{1}{n}(X_i-\bar{X})^2$

•
$$\underbrace{\mu}_{\text{M\'edia Populacional}} \text{ e } \underbrace{\bar{X} = \sum_{i=1}^n \frac{1}{n} X_i}_{\text{M\'edia Amostral}} \text{ e } \underbrace{\sigma^2}_{\text{Variância Populacional}} \text{ e } \underbrace{\sigma^2}_{\text{Variância}} \text{ e } \underbrace{\sigma^2}_{\text{Variância}$$

$$S^{2} = \sum_{i=1}^{n} \frac{1}{n} (X_{i} - \bar{X})^{2}.$$
Variância Amostral

<ロ > ← □

 Na sequência do anteriormente mencionado... Qual é a diferença entre ?

•
$$\mu$$
 e $\bar{X} = \sum_{i=1}^n \frac{1}{n} X_i$ e σ^2 e $S^2 = \sum_{i=1}^n \frac{1}{n} (X_i - \bar{X})^2$

•
$$\underbrace{\mu}_{\text{M\'edia Populacional}} \text{ e } \underbrace{\bar{X} = \sum_{i=1}^n \frac{1}{n} X_i}_{\text{M\'edia Amostral}} \text{ e } \underbrace{\sigma^2}_{\text{Variância Populacional}} \text{ e } \underbrace{\sigma^2}_{\text{Variância}} \text{ e } \underbrace{\sigma^2}_{\text{Variância Populacional}} \text{ e } \underbrace{\sigma^2}_{\text{Variância}} \text{ e } \underbrace{\sigma^2}_{\text{Variância}$$

$$S^{2} = \sum_{i=1}^{n} \frac{1}{n} (X_{i} - \bar{X})^{2}.$$

Variância Amostral

• Então e qual é exatamente a diferença entre S^2 e $(S')^2$?

- Na sequência do anteriormente mencionado... Qual é a diferença entre ?
 - μ e $\bar{X}=\sum_{i=1}^n \frac{1}{n} X_i$ e σ^2 e $S^2=\sum_{i=1}^n \frac{1}{n} (X_i-\bar{X})^2$
 - μ Média Populacional

 e $\bar{X} = \sum_{i=1}^{n} \frac{1}{n} X_i$ e Variância Populacional

 Média Amostral

$$S^{2} = \sum_{i=1}^{n} \frac{1}{n} (X_{i} - \bar{X})^{2}.$$
Variância Amostral

- Então e qual é exatamente a diferença entre S^2 e $(S')^2$?
- Em que circunstância, usar S^2 como estimador é igual a usar $(S')^2$?

