Previously:

Add polynomials
$$(2x^{2}-7)+$$
 $3x^{2}-10x+4$ $(x^{2}-3x+4)$

Multiply polynomials $(2x-7)(x+2)$
 $2x^{2}-3x+14$

Factor out GCF $2x^{2}+4x$
 $2x(x+2)$

Solve factored polynomials $(x+2)(2x-4)=0$
 $x+2=0$ $2x-4=0$
 $x=-2$ or $x=2$

Factoring
$$x^2 + bx + c$$
: \rightarrow $(x+p)(x+q)$

How to factor: $x^2 + bx + c$: \rightarrow (x+p)(x+q)

How to know the signs of *p* and *q*:

$$x^2 + bx + c \rightarrow (x+p)(x+q)$$

<i>b</i> (<i>p</i> + <i>q</i>)	c (pq)	p	q
+	+	+	+
	+	_	
)	opposi	He
+		0 PP 05	k

Use the signs of b and c to determine the signs of p and q

$$x^{2} + 2x + 3$$
 $-1(x^{2} - 2x - 1)$
 $x^{2} - 6x + 11$
 $x^{2} - 4x - 7$
 $x^{2} - 4x - 7$
 $x^{2} - 4x - 7$

Factor the trinomial.

4.
$$p^2 + 10p + 25$$
 $(x+5)^2$
 $p = b(p+q) \cdot (p+q)$
 $1 = 25 = 26 = 25$
 $5 = 10 = 25$
 $(x+5)(x+5)$

Factor the trinomial.

1.
$$x^{2} + 8x + 7$$

2. $\frac{b^{2} - 7b + 10}{x^{2} + x^{2} + 7}$

2. $\frac{b^{2} - 7b + 10}{x^{2} + x^{2} + 7}$

3. $w^{2} - 12w - 13$

4. $y^{2} + 10p + 25$

7. $y^{2} + \frac{b(p+q)}{a} < \frac{(p+q)}{a} > \frac{(p+q$

Solve a polynomial equation: $ax^2 + bx + c=0$

$$x(x+17) = -60$$

$$x^{2} + 17x = -60$$

$$x^{3} + 17x = -60$$

$$x^{4} +$$

Simplify and rearrange the

> equation so that is in the format shown above

Factor the resulting polynomial

X+P (X+Q)

Use the zero-products property

$$X+p=0$$
 $X+q=0$

28.
$$n(n+6)=7$$

$$n^{2}+6n=7$$
 $-7-7$
 $n^{4}+6n-7=0$
 $(n+7)(n-1)=0$
 $n+7=0$
 $n-1=0$
 $n=-7-n=1$

29.
$$s^2 - 3(s+2) = 4$$

$$5^{3}-3s-6=4$$
 $-4-4$
 $5^{3}-3s-10=0$
 $(s+2)(s-5)=0$
 $5+2=0$
 $s=5$
 $5-2$
 $s=5$
 $5-2$

30.
$$d^2 + 18(d+4) = -9$$
 $d^2 + 18d + 72 = -9$
 $+9 + 9$
 $d^2 + 18d + 81 = 6$
 $(d+9) + 9 = 0$
 $d+9 = 0$
 $d=-9$

What does a solution to a polynomial look like?

Finding "zeros" of a polynomial function:

$$f(x) = x^2 - 5x - 36$$

"
$$f(x)$$
" means y

$$x^{2}-5x-36=0$$

$$(x+4)(x-9)=0$$

3. Solve (use
$$zpp$$
)
 $X+4=0$ $x-9=0$

To solve a polynomial means to
$$\frac{4}{5}$$
 find where y = 0 (in other words, find the x-intercept)

So: set
$$f(x) = 0$$
, then solve the resulting equation (THIS IS WHAT WE JUST DID!!)

$$x^2 - (5x) - 36$$

22.
$$f(x) = x^{2} + 11x + 28$$
23. $g(x) = x^{2} + 11x - 12$
24. $h(x) = x^{2} + 3x - 18$

$$(x + 4)(x + 7)$$

$$(x + 12)(x - 1) = 0$$

$$(x$$

24.
$$h(x) = x^2 + 3x - 18$$

Patio Area A community center is building a patio area along two sides of its pool. The pool is rectangular with a width of 50 feet and a length of 100 feet. The patio area will have the same width on each side of the pool.

- **a.** Write a polynomial that represents the combined area of the pool and the patio area.
- **b.** The combined area of the pool and patio area should be 8400 square feet. How wide should the patio area be?

Homework:

p. 586, 20-28 all; 31-41 odd; 59, 60