In what follows, all varieties-schemes are defined over \mathbb{C}

1 Principal bundles

Let X be a algebraic variety and G an affine algebraic group.

Definition 1.0.1. A G-principal bundle is a variety is a morphism $\pi: P \to X$ and a right G-action on P preserving π . Moreover, we require that every $x \in X$ has an étale neighborhood U such that we have a G-equivariant isomorphism $P_{|U} \xrightarrow{\sim} G \times U$ making the following diagram commute:

$$P_{|_{U}} \xrightarrow{\sim} G \times U$$

The following proposition allows us to work with zariski locally trivial bundles instead of étale, whenever the base scheme is a smooth scheme and G is a connected reductive group.

Proposition 1.0.2 (Borel-springer, Steinberg). If X is a smooth curve and G is a connected reductive group, then any principal G-bundle on X is Zariski locally trivial.

Let $Bun_G(X)$ denote the moduli stack of G-principal bundles on X.

Proposition 1.0.3. The pseudofunctor $Bun_G(X)$ defined by

$$\mathbb{C} - alg \ni A \mapsto \operatorname{Bun}_G(X)(A) \in \mathbf{Grpd}$$

where $\operatorname{Bun}_G(X)(A)$ is the groupoid whose objects are $\{\operatorname{principal} G\operatorname{-bundles} P \to X \times \operatorname{Spec}(A)\}$ and whose morphisms are isomorphisms of $G\operatorname{-bundles}$, is an algebraic stack.

We now restrict our attention to the $\operatorname{Bun}_G^{\circ}(X) \subset \operatorname{Bun}_G(X)$ defined as the substack of stable G-bundles. It will turn out to be represented by a nonsingular variety. We start by looking only at the case $G = GL_n$.

2 The case of $G = GL_n$

Recall that a vector bundle E on a curve X is said to be stable if it is slope stable. This means:

Definition 2.0.1. A vector bundle E on a curve X is said to be **slope stable** if for every subbundle $F \subset E$ we have

$$\frac{\deg(F)}{\operatorname{rank} F} < \frac{\deg(E)}{\operatorname{rank} E}.$$

Remark. Suppose E is stable, then $Hom_X(E, E) = 0$. Indeed, suppose $0 \neq \phi \in Hom_X(E, E)$ then $\phi(E)$ is a subbundle of E, which has slope \leq that of E. To see this last, use the basic fact that the existence of a nonzero map of line bundles $L_1 \to L_2$ implies that $deg(L_1) < deg(L_2)$.

Lemma 2.0.2. Suppose E is stable, then $Hom_X(E, E) = \mathbb{C}$.

Proof. Suppose $0 \neq \phi \in Hom_X(E, E)$, then $\phi(E)$ is a sub-bundle of E and we get a short exact sequence

$$0 \to K \to E \to \phi(E) \to 0$$
.

Now we claim that $deg(K) \geq 0$. Indeed, by assumption we have

$$0 \le \mu(E) - \mu(\phi(E)) \le \frac{\deg(E)}{\operatorname{rk} \phi(E)} - \frac{\deg(\phi(E))}{\operatorname{rk} \phi(E)} = \frac{\deg(K)}{\operatorname{rk} \phi(E)}.$$

Now since the degree function is additive on short exact sequences, we conclude that $deg(\phi(E)) \ge deg(E)$, giving

$$\mu(\phi(E)) \ge \mu(E)$$
.

From this we conclude that $\phi(E) = E$. It remains to show that ϕ is multiplication by a scalar. For this, let $x \in X$ be a point and $\lambda \in \mathbb{C}$ an eigenvalue of

$$\phi_{|_x}: E_{|_x} \to E_{|_x}$$

then by choice of λ we know that $\phi - \lambda$ is not an isomorphism on E. Therefore by the previous part of this proof, we conclude that $\phi - \lambda = 0$.

It is well know that the substack $\operatorname{Bun}_G^{\circ}(X) \subset \operatorname{Bun}_G(X)$ of stable bundles is representable by a smooth variety. Our next goal is to calculate the dimension of this variety. Since $\operatorname{Bun}_G^{\circ}(X)$ is smooth, we only need to calculate the dimension of the tangent spaces at an arbitrary point [E].

Proposition 2.0.3. $\dim_{\mathbb{C}} T_{[E]} \operatorname{Bun}_G^{\circ}(X) = Ext_X^1(E, E) = (g-1)(\operatorname{rk} E)^2 + 1$, where g is the genus of the curve X.

Proof. The first equality follows by the basic theory of infinitesimal deformations, the second equality follows from **Riemann-Roch** applied to $E \otimes E^*$, combined with Lemma 2.0.2.