Filth model: K blocks
J 2 3 K
Model split: Ko blocks @ device: 1,2,, Ko
KE blocks @ ES: K, K-1, K-KE+1
Spec: 1~k性知 block n 对意明 (entropy Ek(水)
Bkel compatation &: Ck
comp. resource [device : Up
Bk carpat hidden nep. 4 size: Sk
offlooding: O computing resource 21/27
@ entropy - confidence
3 Energy 12 XIET (compating + comm.)
device > ES offlooding & layer: St) E < K-KE, K-KE+1,, K>
推 劉 layer: le(t) ∈ (lp(f)+1,···· , K >
offleoding indicator: b(t) < (0,2)
Objective O Delay minimization
(Entropy minimization (Entropy minimization)
3 composition resource 12.

Problem Lo

- · image it B, on south feet channel hat it is also another feeting
- · Decision: Up(t), lp(t), b(t), le(t), P(t)

· Delay:
$$\frac{Sh(t)}{\sum_{k=1}^{K-1} C_k} + b(t) \cdot \left[\frac{Sh(t)}{Sh(t)} + \frac{Sh(t)}{\sum_{k=1}^{K-1} C_k} \right] = \sum_{k=1}^{K-1} C_k$$

• Energy:
$$E(t) = E_c(up(t), lo(t)) + E_t(P(t))$$

$$\begin{array}{cccc}
\text{min} & & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
&$$

S.t.
$$\lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^{N} \mathbb{E} \left[H_{J_{\mathbf{E}(n)}}(X_n) \right] \leq H_0$$
 occurracy

 $\lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^{N} \mathbb{E} \left[E(n) \right] \leq E_0$
 $\lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^{N} \mathbb{E} \left[E(n) \right] \leq E_0$
 $\lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^{N} \mathbb{E} \left[E(n) \right] \leq E_0$
 $\lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^{N} \mathbb{E} \left[E(n) \right] \leq E_0$
 $\lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^{N} \mathbb{E} \left[E(n) \right] \leq E_0$
 $\lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^{N} \mathbb{E} \left[E(n) \right] \leq E_0$
 $\lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^{N} \mathbb{E} \left[E(n) \right] \leq E_0$
 $\lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^{N} \mathbb{E} \left[E(n) \right] \leq E_0$
 $\lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^{N} \mathbb{E} \left[E(n) \right] \leq E_0$
 $\lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^{N} \mathbb{E} \left[E(n) \right] \leq E_0$
 $\lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^{N} \mathbb{E} \left[E(n) \right] \leq E_0$
 $\lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^{N} \mathbb{E} \left[E(n) \right] \leq E_0$
 $\lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^{N} \mathbb{E} \left[E(n) \right] \leq E_0$
 $\lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^{N} \mathbb{E} \left[E(n) \right] \leq E_0$
 $\lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^{N} \mathbb{E} \left[E(n) \right] \leq E_0$
 $\lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^{N} \mathbb{E} \left[E(n) \right] \leq E_0$
 $\lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^{N} \mathbb{E} \left[E(n) \right] \leq E_0$
 $\lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^{N} \mathbb{E} \left[E(n) \right] \leq E_0$

0 < P(+) < P

$$C(t) = \langle 0, 1, \dots, V_0 \rangle$$

$$C(t) = \langle 0, 1, \dots$$

0 < P(+) < P6

