CONICHE

Una conica e il luojo dei pruti del pieno le coi coor d'unete (x,y) soddistano un'esperatione del Tipo:

Qu (Qu, Qiz, Qzz) + (0,0,0) _ lu forms matriciale

$$\underline{X}^{t}B\underline{X} + 2\underline{X}^{t}C + d = 0$$

due
$$x=(y)$$
, $B=(a_{11}, a_{12})$ $\neq (00)$, $C=(a_{13})$, $d=a_{33}$

OSS: lu alternative, 12 (1) si può scrivere come

$$(x,9,1)$$
 $A\begin{pmatrix} X\\ 9\\ 4 \end{pmatrix} = 0$

dose
$$A = \begin{pmatrix} B & C \\ \hline C^{\frac{1}{2}} & d \end{pmatrix} = \begin{pmatrix} Q_{11} & Q_{12} & Q_{13} \\ Q_{12} & Q_{22} & Q_{23} \\ Q_{13} & Q_{23} & Q_{33} \end{pmatrix}$$

Osservisus de B e A sous simme Tricle.

Exempi:

3)
$$x^2 - y = 0$$
 (parabola.)

4)
$$x^2-y^2=0$$
 ($x=\pm y$ due rette incident:)

5)
$$x^2 + y^2 + 1 = 0$$
 (insieure vooto \emptyset)

Classificatione delle courche. Forma commica

Per semplificale l'apositione (1) applichismo de Trasformationi.

i) Trasformatione ortosonale (de disjonalitza B, cioè fa sparire il Termine 2012xy)

ii) Traslazione (Per controre opportundmente gli 255:)

Forther of autovertori d' B:

11/411=11/421=1, U. Mz=0, Bu,=21/4, Dyz=1242.

abind: la matrice di cambiamento di 6280 $M = (M_1 | M_2)$ E = Ortojonale (H-1=19t)

Se (x',y') sous le coordinate relative ella moda base (4, 142), albra, (Come 22 ppismo) il compiamento di acordinate o dato da: $\begin{pmatrix} x \\ y \end{pmatrix} = H \begin{pmatrix} x' \\ y' \end{pmatrix}$ (3) Abbieum visto de (uelle scorse letrore) de dalle (3) telve:

Abbieum visto de (uolle scorse hetrore) de dalle (3) redue: $(x,y) = (x',y')M^{t}$

direnta

MBH = H-1BH = (hy o)

ellure la ouica d'vouta:

(4)
$$\lambda_1(x')^2 + \lambda_2^2(y')^2 + 2C_1^4 \times^4 + 2C_2^2 y' + d = 0$$

dizjonalitzzione della Brusa quedretica associata e B.

ii) Una volte determinais & b form (4) corchidus una Trasbatrone

 $\begin{cases} x'' = x' + \alpha \\ y'' = y' + \beta \end{cases} \qquad \alpha, \beta \in \mathbb{R}$

in mad de climinarc, quand possibile, utteriori Termini.

Applicand la Traslatrore la (4) direnta:

(5) $\lambda_1(x'')^2 + \lambda_2(y'')^2 + 2(C_1' - \lambda_1 x) x'' + 2(C_2' - \lambda_2 \beta) y'' + d'' = 0$

Die d'=d+ /1 x2+ /2 B3-201 x-202 B.

Per procedere nell'auchis disTinjuieno alcuni cusi:

CASOI: $detB \neq 0$ Siccohe $detB = \lambda_1 \lambda_2$, allor 2 $\lambda_1 \neq 0$ e $\lambda_2 \neq 0$ - Sceptien b well (5) $x = \frac{c_1}{\lambda_1}$, $\beta = \frac{c_2}{\lambda_2}$ cioè on Siderand la Treslatrone $x = \frac{c_1}{\lambda_1}$, $\beta = \frac{c_2}{\lambda_2}$ cioè on Siderand la Treslatrone

$$\begin{cases} \lambda_0 = \lambda_1 + \frac{\sqrt{3}}{\sqrt{3}} \\ \lambda_1 = \lambda_1 + \frac{\sqrt{3}}{\sqrt{3}} \end{cases}$$

ellure 12 cource 255 une 12 forus

Per aumo Lità scrividuo

e coux derieux due ulteriori casi:

Quiu2

Q.	az	Buica	Forms collouica
+	+	Elisse	$\frac{x^2}{Q^2} + \frac{y^2}{b^2} = 1$
+		(perbole	$\frac{x^2}{Q^2} - \frac{y^2}{5^2} = 1$
		ϕ	$-\frac{\chi^2}{Q^2} - \frac{5^2}{5^2} = 1$

CASO I. 2 d=0

Abbieur l'aquatrole xix2+ la y2 = 0 e quindi de casi:

Appi suo I conat	tore pas		
λη, λη	Buica	Forms removies	Eselupi:
Sejui vjost:	vu pouts {(0,0)}	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$	x2+y2=> => (x,4)=(9)
Sejai opposti	de rette incidenti	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$	(x-y)(x+y) = 0
97	81=91+B	$x^{11}=x^1+a$	-> x= ± y

CAST: btB=0

Siccome det B= 21/2 ellors un solo sutorobre di B si sumulla.

Possiaus sempre sapporre de six lz. Allois la (4) diventa

λ1(x1)2 + 2C1x' + 2C2y'+d=0.

Applicando la Traslazione X"= x" + C4 /'09. diventa

(6) \ \(\chi_1(x11)^2 + 2 \chi_2 y' + d'' = 0

Gusideriams du l'Eriors ods ::

650 I.1 Ci \$0

Applicant allo (6) 12 Traslatrone $y'' = y' + \frac{d''}{2c'z}$ Si ottiene $\lambda_1(x'')^2 + 2c'zy'' = 0$ ossa (equatione d'una parabola.

 $C_{26} \pm 2 \quad C_{2} = 0$ $(eq. (6) \ 2 \ d \ iid) co \ 2 \quad \lambda_{1}(x^{n})^{2} + d^{n} = 0 \quad ossi) \quad (x^{n})^{2} + \frac{d^{n}}{\lambda_{1}} = 0$

· & d' so => appis di votte parellete di stinte (e.g. x'-1=0=>x=±2)

 $\mathcal{L}_{X_1} = 0 = 0 \quad \text{on } \quad \text{on }$

 $(x^{2}+4=0)$

Contro L'una Couica

Come apprison visto volte classificatione precedente, in alconi cas.

deter une comice

(I) x + B x + 2 x + C + d = 0

essure ou $x_0 \in \mathbb{R}^2$ t.c. dop la traslatione $x' = x - x_0$ (2) divente $(x')^t B x' + d' = 0$

Si dimostra [verifica] de Tate so esiste & esob se so sodd: sf2

Bx.+c = 0

Tole pour se esiste) si chieure coulo di simmetria (o centro) della comica

Si hauns (orriamente) Tre casi:

- · Sistema determinato => esiste un unico centro di simme tra (det8 #0) (Coniche 2 centro)
- SiTeura in determinate => esistem infiniti contri di simmetra
- . Sistema impossibile => non esistons centi: di simmetrià
- Esercizio: De Terminaro (& esistemo) i centi: per ofini Tipo di conici.

055: Nel mors sistem 2 rifériments x'=x-x, la conica e simmétrica

