

Department of Humanities and Applied Sciences

APPLIED CHEMISTRY (Semester I)

Dr. Priyanka Badani Assistant Professor

CHAPTER: INTRODUCTION TO COMPOSITE MATERIALS

Composite Materials

CONTENTS

- A) Definition, Characteristics of Composites,
- B) Constituents of Composites Matrix Phase and Dispersed Phase (Definition and Functions)
- A) Particle reinforced composites
 - 1)Large-particle reinforced composites
 - 2) Dispersion-strengthened composites
- B) Fibre reinforced composites
 - 1)Continuous- (long) aligned
 - 2)Discontinuous
- C) Structural Composites

DEFINITION OF COMPOSITE MATERIALS

Composite materials are made up of a matrix phase and a dispersed phase. The matrix phase is the continuous base material, while the dispersed phase is the reinforcing material embedded within the matrix. Together, they create a synergistic material with improved strength, stiffness, and other desirable properties.

https://youtu.be/6HVYX8FRSGA

CHARACTERISTICS OF COMPOSITE MATERIALS

- ? High specific strength
- ? High Specific stiffness
- ? Low density
- ? Corrosion resistance
- ? Wear resistance
- ? Fatigue resistance
- ? Creep resistance

Link:

https://www.youtube.com/watch?v=04K0bLwCDdM

CONSTITUENTS OF COMPOSITES MATERIALS

What are the constituents constituents in a composite composite material?

- 1. Reinforcement fibre: discontinuous stronger harder
- 2. Matrix: Continuous

FUNCTIONS OF A REINFORCEMENT FIBRE

- Contribute desired properties
- Load carrying
- Transfer the strength to matrix

FUNCTIONS OF & MATRIX

- Holds the fibres together
- Protects the fibres from environment
- Protects the fibres from abrasion (with each other)
- Helps to maintain the distribution of fibres
- Distributes the loads evenly between fibres
- Enhances some of the properties of the resulting material and structural component
- Provides better finish to final product

Composite materials

Functions of Matrix Phase and Dispersed Phase

Matrix Phase

The matrix phase transfers loads, protects the dispersed phase, and keeps the components of the composite together.

Dispersed Phase

The dispersed phase provides strength, stiffness, and other desired properties to the composite, enhancing its overall performance.

CLASSIFICATION OF COMPOSITES

A) PARTICLE -REINFORCED COMPOSITES

1)Large -particle

- Particle-matrix interactions cannot be treated at atomic if molecular level
- > Particle size : 1-50 μM
- > Concentration: 15-40 % by volume.
- The particulate phase is harder and stiffer than the matrix.
- The cost is moderate as the particles as less expensive than the matrix.

A) PARTICLE -REINFORCED COMPOSITES

Reinforced Plastics

- Reinforcement Particles: Glass fibers or mineral fillers like talc or calcium carbonate.
- Matrix: Various polymers such as epoxy, polyester, or vinyl ester.

Concrete (Cement-Based Composites)

- Reinforcement Particles: Aggregate particles like sand, gravel, or crushed stone.
- Matrix: Cement paste.

B) DISPERSION-REINFORCED COMPOSITES

- In this composite, particles are of 0.01-0.1 μm in size. Strengthening occurs as a result of dislocation motion hindrance.
- It is similar to that of precipitation hardening in metals.
- Matrix bears the major portion of the applied load,
 while dispersoids obstruct the motion of dislocations.

A) DISPERSION-REINFORCED COMPOSITES

Aluminium-Based Dispersion-Strengthened Composite

Matrix: Aluminum or an aluminum alloy

Dispersed Particles: Fine ceramic particles such as aluminum oxide (Al₂O₃), silicon carbide (SiC), or thorium oxide (ThO₂)

Steel-Based Dispersion-Strengthened Composites

Matrix: Various steel alloys

Dispersed Particles: Oxides (e.g., Al₂O₃, Y₂O₃), carbides (e.g., WC, TiC), or nitrides (e.g., TiN)

FIBRE REINFORCED COMPOSITE

What are the constituents constituents in a composite material?

TYPES OF FIBRE REINFORCED COMPOSITE

TYPES OF DISCONTINUOUS FIBRE REINFORCED COMPOSITE

Aligned

Randomly oriented

TYPES OF STRUCTURAL COMPOSITE

Laminates

Is composed of two-dimensional sheets or panels that have a preferred high strength direction.

Such as is found in wood and continuous and aligned fiber-reinforced plastics.

The layers are stacked and cemented together such that the orientation of the

high-strength direction varies with each successive layer.

TYPES OF STRUCTURAL COMPOSITE

Sandwich panel

- ☐ Consist of 2 strong outer sheets which are called face sheets and may be made of aluminum alloys, fiber reinforced plastics, titanium alloys, steel.
- ☐ Face sheets carry most of the loading and stress
- ☐ Core may be a honeycomb structure which has less density than the face sheets and resists perprigidity.

REFERENCE BOOKS

- > Engineering Chemistry, Jain and Jain, Dhanpat Rai Publication
- > A textbook of Engineering Chemistry, S. S. Dara, S. Chand and Company

Conclusion

1

2

3

Versatility

Composites can be tailored to meet a wide range of design requirements, making them a versatile choice for various applications.

Advancements

Ongoing research and development in composite materials continue to drive innovation and expand their use in diverse industries.

Future Potential

As the demand for lightweight, high-performance materials grows, composites are poised to play an increasingly important role in the future.

QUESTIONS

- 1. Define composite material.
- 2. What is the need for composite material?
- 3. Mention important characteristics of composite material.
- 4. What is the use of matrix phase in a composite material?
- 5. Explain the importance of fibre in a composite material.