National Grid: Smart Meter Installation Analysis and Operational Optimization

Project Overview: This comprehensive project delves into the deployment of smart meter installations, encompassing both electric and gas modules., as well as a combination of both. The analysis is conducted at the OP Centre and Route levels, offering detailed insights into households that are required to be equipped with these advanced meters. The project addresses the unique categorization of houses based on their energy sources—electric only, gas only, or dual-fuel (both electric and gas). Additionally, a key focus lies on optimizing operational efficiency by mitigating the occurrences of "Unable to Complete" instances, where installation activities face impediments.

Meter Type by OP Centre

Key Objectives:

- **1. Smart Meter Deployment Analysis:** Investigate the distribution and installation trends of smart meters, emphasizing variations in meter types across different counties and cities.
- **2. Household Energy Classification:** Classify households into distinct categories based on their energy sources—electric only, gas only, or dualfuel, facilitating targeted insights into energy consumption patterns.
- **3. Operational Optimization:** Address and minimize instances of "Unable to Complete" scenarios, employing strategies to overcome obstacles that hinder successful installations.

Overall Energy Classification

Count of different meter types by OP Centre

This graphical representation illustrates the meter classification across various OP (Operating) Centres, categorized into three types: Electric Only, Gas Only, and Dual Fuel (houses with both electric and gas meters). This categorization informs our strategic approach to installations at OP Centres. The analysis suggests that prioritizing OP Centres with a predominant number of Electric Only meters may be the optimal starting point for installations. It is important to note that our decision-making process incorporates additional layers of data, particularly related to routes and bill cycles, introducing a nuanced dimension that influences our strategic decisions.

Energy Classification & Cost Estimation - OP Centre/Route/Bill Cycle

OP_CENTER \times \tag{TROY}

Select an OP Center to see the Meter Distribution by Route

This table represents the number of meters of different types for each Bill Cycle by Route and OP Centre.

Route Analysis by OP Centre

Count of ROUTE by OP_CENTER

OP CENTER

ROUTE	OUTE Count of Combined_Meter_Type						
220	150386						
231	103465						
234	70904						
227	44671						
237	39834						
265	35880						
267	25063						
256	3938						
257	1923						
199	752						
197	145						
993	138						
198	109						
Total	477310						

The graph provides a breakdown of routes based on OP Centre, revealing that Syracuse, Saratoga, and Gloversville have the highest route prevalence. In contrast, Saranac Lake, Batavia, Dunkirk/Fredonia, Gouverneur, Lowville, and Potsdam experience the least traffic in terms of routes passing through them.

The presented tables meticulously categorizes routes based on Electric, Dual Fuel, and Gas Only meters. Importantly, this analysis narrows its focus to routes where Electric meter values surpass 100, providing a more refined perspective on meter distribution. Additionally, the table provides the count of each meter type on every route. Routes exclusively featuring Electric meters (exceeding 100) should be prioritized, ensuring an economical approach.

Unable To Complete : Analysis

Month

The graph at the top offers a sweeping perspective on the **UTC** trends across **OP Centres,** spotlighting Syracuse as the front-runner with the highest UTC count. Simultaneously, the lower line chart provides a granular breakdown, presenting the UTC count based on the top three codes for each OP Centre, categorized by month. Notably, the data for the year 2023 highlights October as the month with the predominant share of reported UTCs.

Unable To Complete: Zip Codes by OP Centre Count of UTC Code by ZIP Richland Lake Pl Oswego 13076 13069 13036 Fulto 13135 13029 Lee Center 13042na Williamson Irondequoit 104 Rome 13030 Rochester 13137 13212 13205 13211 Utica Dolgeville Fairport 13112 Kirkland Lyons 13203 13210 Herkimer 13088 13215 Joh Mendon 13021 13408 Farmington Aubur 13153 13204 Fort Plain Waterloo Canandaigua 13159 13152 13035 Hamilton 13084 13061 Sharon Center 13063 1307 Seneca Seward Army Cooperstown Depot 13118 Penn Yan 13141 Cortland Dansville Norwich

© 2024 TomTom, © 2024 Microsoft Corporation, @ OpenStfeetMap

This map shows the distribution of count of UTC codes based on the Zip Codes in an OP Centre.

13

Microsoft Bing

OP_CENTER	Dual Fuel	ELE	GAS	Total ▼
□ ALBANY	12523	1266	347	14136
□ ALBANY	10592	874	255	11721
± 12206	2745	139	76	2960
± 12203	1713	76	28	1817
± 12210	1453	112	45	1610
± 12208	1473	79	7	1559
± 12202	1232	126	40	1398
± 12205	697	155	21	873
± 12209	786	17	10	813
± 12207	239	89	16	344
± 12204	223	44	10	277
± 12211	31	36	2	69
± 12222		1		1
RENSSELAER	793	60	23	876
E LATHAM	302	73	5	380
⊞ DELMAR	199	19	4	222
EAST GREENBUSH	116	18	4	138
EXECUTE CASTLETON	78	40	3	121
H LOUDONVILLE	107	11	2	120
UVOORHEESVILLE	54	27	3	84
GLENMONT	64	12	4	80
SLINGERLANDS	39	30	1	70
Total	12523	1266	347	14136

OP_CENTER	Dual Fuel	ELE	GAS	Total ▼
□ ALBANY	91669	43619	6340	141628
□ ALBANY	50026	18015	3639	71680
± 12203	11404	3251	500	15155
± 12205	8986	2700	590	12276
± 12208	9095	1966	346	11407
± 12206	6290	2226	667	9183
± 12210	3748	2895	466	7109
± 12202	3364	1956	371	5691
± 12209	4297	480	139	4916
± 12204	1469	1328	271	3068
± 12207	787	1024	207	2018
± 12211	586	184	51	821
± 12222		2	21	23
± 12226			6	6
± 12242		1	2	3
± 12288		1	1	2
± 12223		1		1
± 12240			1	1
H RENSSELAER	8377	2768	337	11482
DELMAR	6808	1471	147	8426
± LATHAM	5242	1482	371	7095
EAST GREENBUSH	2452	2051	79	4582
Total	91669	43619	6340	141628