Notes from Sankar Meeting

Last Modified: 08/11/2021 08:34 AM

This weeks TODO:

- For the 6 bad plots in the thirds_1to1 plot:
 - Lower third, train and test, upstream and downstream. Middle third, train and test, upstream
 - Check if the poor performance is due to bias or variance
 - Can look at correlation between modeled and actual values and bias as an alternative to the above
 - This should be done at the reservoir level, not the aggregate level
 - * (i.e.) with in each third, look at bias/variance/correlation for all the samples for each reservoir in that third
 - * Train Bins: (0, 2.58], (2.58, 16.78], (16.78, 844.6]
 - * Test Bins: (0, 1.91], (1.91, 18.8], (18.8, 870.6]

Reservoir	Bin	Model	Group	NSE	Bias	Corr.	#
Pickwick	0	downstream	test	-1274684.617	24.653	-0.555	8
Cherokee	0	upstream	train	-5936.453	1.681	0.042	1794
WattsBar	0	downstream	test	-1818.707	11.746	-0.238	3
Wheeler	0	downstream	train	-473.781	31.670	-0.587	5
Douglas	0	upstream	test	-181.109	3.353	0.154	19
Guntersville	0	downstream	train	-156.428	23.465	-0.097	27
Norris	0	upstream	test	-140.395	1.827	0.003	661
Fontana	0	upstream	train	-61.862	1.510	0.099	658
Nikajack	0	downstream	test	-54.291	5.801	0.354	29
Wilson	0	downstream	train	-49.917	9.512	-0.862	7
Chikamauga	0	downstream	train	-44.006	12.572	0.202	13
Cherokee	1	upstream	train	-29.409	2.458	0.273	1347
Hiwassee	0	upstream	train	-24.277	1.047	0.043	726
SHolston	0	upstream	train	-14.498	0.445	0.232	3006
TimsFord	0	upstream	test	-13.513	0.563	0.096	5479
Douglas	1	upstream	test	-10.221	3.032	0.302	2546
Fontana	1	upstream	train	-9.483	1.347	0.441	1441
FtLoudoun	0	downstream	train	-9.285	5.246	0.268	227
Watauga	0	upstream	train	-6.913	0.345	0.253	3952
Hiwassee	1	upstream	train	-3.153	0.694	0.417	2506
Norris	1	upstream	test	-1.497	1.141	0.570	3580
Chatuge	0	upstream	train	-1.263	0.165	0.474	5490
MeltonH	0	downstream	train	-1.023	0.780	0.477	3476
Nottely	0	upstream	train	-0.832	0.146	0.530	5870
BlueRidge	0	upstream	test	-0.177	0.148	0.600	6117
TimsFord	1	upstream	test	-0.154	-0.607	0.551	3051
SHolston	1	upstream	train	-0.149	-0.059	0.498	4569

Reservoir	Bin	Model	Group	NSE	Bias	Corr.	#
Boone	0	downstream	train	-0.144	0.272	0.586	6636
Watauga	1	upstream	train	-0.055	-0.169	0.561	4562
Nottely	1	upstream	train	0.042	-0.270	0.675	3320
Chatuge	1	upstream	train	0.208	-0.253	0.737	3700
BlueRidge	1	upstream	test	0.259	-0.304	0.757	3084
Ocoee1	0	downstream	train	0.681	0.036	0.836	8765
FtPatrick	0	downstream	train	0.744	0.143	0.892	6567
Ocoee3	0	downstream	test	0.821	0.010	0.911	7117
Apalachia	0	downstream	train	0.869	0.040	0.935	8041
Wilbur	0	downstream	test	0.983	0.007	0.991	8179

- Bias and correlation are highly negatively correlated (-7.14)
- NSE is negatively correlated with bias and positivily with corr though they are not perfect, (-0.46 and 0.35, respectively).
- In general, it seems that we capture correlation better than bias.
- Spatially-varying parameters
 - Rather than grouping reservoirs when fitting models, we can use each reservoir as its own group
 - Given the current setup this will basically be fitting a model for each reservoir.
 - We can either:
 - * vary intercepts for each reservoir
 - · This should help with bias
 - * vary slopes for each reservoir and each covariate
 - · This should help with variance
 - * Vary both
 - · Improving bias and variance.
 - Results (because bias and correlation are bad when the score is bad, I vary slopes and intercepts)
 - * Thirds score correlated with RT and MStL

Bin	Pearson's r (RT)	Pearson's r (MStL)
0	-0.423	-0.063
1	-0.764	0.021
2	-0.750	0.077

* Regress parameters against categorical variables (provide insight into important reservoir characteristics and release parameterizations)

```
 \left| \left| \text{Intercept} \right| \left| \text{Inflow} \right| \text{Pre. Storage} \right| \text{Pre. Release} \left| \right| \text{7 Day Storage} \left| \right| \text{7 Day Inflow} \left| \right| \text{7 Day Release} \left| \right| S_{t-1} \times I_t \left| \right| \right| \\ \text{Parameter} \left| \text{Coef.} \right| \text{P-value} \left| \text{Coef.} \right| \text{Coef.} \right| \text{P-value} \left| \text{Coef.} \right| \text{P-value} \right| \text{P-value} \left| \text{Coef.} \right| \text{P-value} \left| \text{Coef.} \right| \text{P-value} \right| \text{P-value} \left| \text{Coef.} \right| \text{P-value} \left| \text{Coef.} \right| \text{P-value} \right| \text{P-value} \left| \text{Coef.} \right| \text{P-value} \left| \text{Coef.} \right| \text{P-value} \right| \text{P-value} \left| \text{Coef.} \right| \text{P-value} \left| \text{Coef.} \right| \text{P-value} \right| \text{P-value} \left| \text{Coef.} \right| \text{P-value} \right| \text{P-value} \left| \text{Coef.} \right| \text{P-v
```

- Thirds Model (spatial model is still bad for small release values)
 - Fit a model for the lower, middle, and upper thirds (based on all release values, not reservoir specific)

Parameter	(-0.001, 2.311]	(2.311, 17.595]	(17.595, 870.587]
Intercept	-0.172	0.129	0.043
Net Inflow	-0.030	0.189	0.340
Previous Storage	0.099	0.186	0.177
Previous Release	0.451	0.520	0.556
Ave. Storage (7 day)	-0.074	-0.160	-0.137
Ave. Inflow (7 day)	0.026	-0.038	-0.079
Ave. Release (7 day)	0.180	0.171	0.111
Storage and Inflow	0.074	0.130	0.078
Jan	-0.055	0.037	0.047
Feb	-0.098	-0.023	0.034
Mar	-0.145	-0.084	-0.008
Apr	-0.165	-0.161	-0.078
May	-0.127	-0.140	-0.055
Jun	-0.029	-0.114	-0.043
Jul	0.008	-0.082	-0.042
Aug	0.099	-0.018	-0.035
Sep	0.025	-0.010	-0.017
Oct	0.032	0.034	0.005
Nov	-0.024	0.052	0.027
Dec	-0.026	0.063	0.059

- This model is worse than the spatial model for all thirds
- · Seasonal bias for each reservoir.
 - Take the monthly bias plots and break them out in to each reservoir
 - Maybe reservoirs on the y axis, months on the x axis, and color bias
 - (i.e.) a heat map
- I also need to write down the model formulation mathematically

$$\begin{split} R_{r,t} &= \Gamma_g \times [R_{r,t-1}, S_{r,t-1}, I_{r,t}, S_{r,t-1} \times I_{r,t}, \bar{R}_{7,r,t}, \bar{S}_{7,r,t}, \bar{I}_{7,r,t}] + M_{g,t} + \epsilon_{r,t} \\ & t \in [10/23/1990 - 12/31/2015] \ (9,201 \ \text{days}) \end{split}$$

 $r \in 27$ reservoirs in Tennessee River Basin

 $g \in \{Groups\}$ These groups can be characteristic, tree, reservoir, or quantile based

- · Reach out to committee members to set up a date for my preliminary exam during the first week of October
 - October 4th 8th