rk was done, the name and hort title (not more than 55 ight-hand printed page. An d. It should be typed on a hould be included. Finally, a w page, should be included. tracts, particular care being

f symbols, be left to them.

ract and need not be divided

ings should include a fairly nvolves some duplication of antities used in the labels of

n be printed normally and tracters that can be printed paces. Wider tables can be gant.

b, etc.) should be placed such a footnote as "a From

s, should be carefully drawn ble paper of about the same

lar frame, with scale marks ole and no textual material ated into the figure legend.

ould be submitted to one of complete with labels and vo complete typescripts.

The Journal, authors are as introduced above and as y publication of the paper; n accepted on its scientific

roof stage, especially when

he understanding that if it assigned to the Publisher. supply 50 offprints of each age. The Publisher will not rial contained in the paper

G. O'HARE tional Laboratory chnology Division rgonne ois 60439 J.S.A.

Enthalpy of solution of ammonium iodide in water

ROBERT WEINTRAUB," ABRAHAM TAMIR, and ALEXANDER APELBLAT

Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva, Israel

(Received 13 September 1982)

New molar enthalpies of solution of NH₄I in water at 298.15 K were measured in an LKB calorimeter. So as to prevent decomposition of ammonium iodide, hydroxylamine sulfate and sodium hydroxide were added in two different quantities. The molar enthalpies of solution extrapolated to infinite dilution are: $(13877 \pm 37) \text{ J} \cdot \text{mol}^{-1}$ and $(13871 \pm 41) \text{ J} \cdot \text{mol}^{-1}$ absence of hydroxylamine sulfate and sodium hydroxide, values of (13940±35) J·mol⁻¹ (Alfa) and $(13983 \pm 12) \text{ J} \cdot \text{mol}^{-1}$ (Merck) were obtained.

1. Introduction

There is no reliable enthalpy of solution of NH₄I in water. The apparent reason for this lack is the rapid decomposition of NH₄I in water, seen by the appearance of a red color. In this work, the enthalpies of solution of NH₄I in water at 298.15 K are reported for samples from four different preparations. So as to prevent the oxidation of NH₄I, NH₂H₂SO₄ and NaOH were added to the solid in an amount estimated to be 0.01 per cent by mass.(1) The crystals and aqueous solutions prepared in this way were found to remain free of any red color. Variations of this method of working with NH₄I have been employed previously in the preparation of NH₄I crystals.(1) and in the study of the equilibrium between (NH4I+KI) in aqueous and solid solutions. (2) As a check of the effect of the NH2H2SO4 and NaOH addition on the measured enthalpy of solution, a set of measurements was performed in which the samples were prepared by using twice the amount of NH2H2SO4 and NaOH. Two sets of experiments were also performed with samples of NH₄I as obtained from commercial suppliers. The calorimetric procedure used here has been tested by measuring the molar enthalpy of solution of three samples of KCl from Alfa, Merck, and the NBS. The Merck sample was measured by two different operators.

0021-9614 83 050403 + 05 S02.00 0

c 1983 Academic Press Inc. (London) Limited

To whom correspondence should be addressed.

2. Experimental

folle

g·n

Th

 ΔH

fin:

of:

KC

adj

 Δh

dil

KC

KC

K

K(

SAMPLE PREPARATION

Approximately 0.25 g of NH₂H₂SO₄ and 0.12 g of NaOH were added to 200 cm³ of boiling doubly distilled water. NH₄I from the freshly opened reagent bottle was added in sufficient quantity to prepare a solution whose concentration approximately corresponded to that of a saturated solution at 353 K. The NH₄I was Riedel–de Haen catalog number 03101, labelled chemically pure. Heating was continued until all of the solid dissolved. This solution at 353 K had a faint yellow tint. This solution was placed into a bath at around 273 K to precipitate the solid. The solution and precipitate at this temperature and in all subsequent manipulations were white.

The solid was collected on a fritted-glass suction filter. The crystals were then patted dry several times between layers of filter paper. The filtrate was placed in an oven at 383 K for 20 h. It was then removed, gently crushed with an agate mortar and pestle, and then returned to the oven for another 3 h. This is referred to as sample set A.

A sample returned to the oven was found to lose 0.005 mass per cent after 18 h at 383 K and a further 0.003 after an additional 24 h.

A second set of samples was prepared in an analogous manner except that approximately double the amounts of $\mathrm{NH_2H_2SO_4}$ and of NaOH were employed. This is referred to as sample set B.

Two sets of experiments were performed without addition of NH₂H₂SO₄ and NaOH. NH₄I from Alfa Chemicals (catalog number 300920) and Merck (catalog number 1173) were each gently crushed and then dried for 2 d at 393 K. In contrast to the untreated Riedel–de Haen NH₄I for which a red color appears during the solution process, the solutions resulting from samples from Alfa and Merck remained free of any red color during the time required to complete each experiment.

So as to test for absence of calorimetric bias, potassium chloride from three separate sources was employed, as follows: Merck cat. No. 4933; Alfa Inorganics, Ultrapure, cat. No. 87626; U.S. National Bureau of Standards Reference Material 918. Each sample was gently crushed and then dried for 5 h at 773 K.

All of the ampoules were filled in the air immediately upon cooling of the sample after removal from the oven. The calorimetric system and procedure were essentially the same as previously reported.⁽³⁾

In spite of the correction for the enthalpy of evaporation of water to fill the air space in the ampoule being very small, it was erroneously taken in our last work⁽³⁾ as 0.0531 J·cm³. This value relates to the energy of evaporation instead of the enthalpy of evaporation, which should be 0.0561 J·cm⁻³.⁽⁴⁾ So as to keep our present results consistent with our previous ones, we make the assumption that 5 per cent less water vapor is absorbed into the air space. This is acceptable because the fraction of the escaping air from the ampoule which is actually saturated with water vapor during the main period of the experiment is not known.⁽⁵⁾

The molar masses M and the densities ρ used throughout this study are as

_

re added to 200 cm³ d reagent bottle was hose concentration at 353 K. The NH₄I y pure. Heating was K had a faint yellow precipitate the solid. in all subsequent

e crystals were then ate was placed in an vith an agate mortar his is referred to as

per cent after 18 h at

manner except that OH were employed.

of NH₂H₂SO₄ and and Merck (catalog at 393 K. In contrast appears during the m Alfa and Merck I to complete each

chloride from three 333; Alfa Inorganics, 3tandards Reference for 5 h at 773 K. cooling of the sample dure were essentially

f water to fill the air in our last work⁽³⁾ ation instead of the So as to keep our is assumption that 5 s acceptable because tually saturated with nown.⁽⁵⁾

at this study are as

follows: KCl, $M = 74.5513 \text{ g} \cdot \text{mol}^{-1}$, $\rho = 1.988 \text{ g} \cdot \text{cm}^{-3}$; NH₄I, $M = 144.943 \text{ g} \cdot \text{mol}^{-1}$, $\rho = 2.514 \text{ g} \cdot \text{cm}^{-3}$.

3. Results and discussion

The results obtained for KCl and NH₄I are shown in tables 1 and 2, respectively. ΔH is the enthalpy change in the experiment at $\langle T \rangle$, the average of the initial and final temperatures of the solution experiment; $\Delta H(298.15~{\rm K})$ is the molar enthalpy of solution of the solute, after corrections for sample impurities in the case of Merck KCl, enthalpy of vaporization of water into the air space in the ampoule, and adjusted to 298.15 K. These adjustments were carried out as described previously. $\Delta H^{\infty}(298.15~{\rm K})$ is the enthalpy of solution calculated to conditions of infinite dilution. (5)

TABLE 1. Calorimetric results for enthalpies of solution of KCl

Run	$\frac{m_s}{g}$	$\frac{m}{\text{mol} \cdot kg^{-1}}$	$\frac{\Delta H}{J}$	$\frac{\langle T \rangle}{K}$	ΔH(298.15 K) J·mol ⁻¹	$\frac{\Delta H'(298.15 \text{ K})}{\text{J} \cdot \text{mol}^{-1}}$
1	0.44956	0.06054	105.632	298.19	17517	17216
2	0.45036	0.06065	105.676	298.21	17496	17195
2 3	0.51825	0.06979	121.610	298.20	17496	17186
4	0.53087	0.07149	124.837	298.21	17535	17221
5	0.59119	0.07961	138.962	298.22	17530	17208
6	0.59377	0.07996	139.037	298.22	17463	17140
7	0.61511	0.08283	144.306	298.23	17498	17171
						17191 ± 21
KCl (Me	rck, operator A	A)				
1	0.60053	0.08087	140.957	298.10	17498	17176
	0.62315	0.08391	146.592	298.22	17557	17230
2 3 4	0.63126	0.08501	148.218	298.21	17522	17196
4	0.64919	0.08742	152.004	298.06	17499	17172
						17194 ± 26
KCl (Me	rck. operator	B)				
1	0.57286	0.07714	134.729	298.25	17557	17239
2	0.60511	0.08148	142.223	298.22	17541	17219
2 3 4 5	0.62105	0.08363	146.119	298.25	17564	17238
4	0.64016	0.08620	150.060	298.22	17495	17168
5	0.72509	0.09764	170.617	298.24	17565	17231
						17219 ± 26
KCl (NB	S. operator B)				
1	0.56942	0.07668	134.029	298.26	17560	17242
2 3 4 5	0.58946	0.07938	138.175	298.20	17479	17157
3	0.63106	0.08498	148.409	298.27	17547	17221
4	0.65524	0.08824	154.258	298.20	17555	17228
5	0.95350	0.12840	224.611	298.33	17588	17237
						17217 ± 31

[&]quot;Twice the standard deviation of the mean.

TABLE 2. Calorimetric results for enthalpies of solution of $\mathrm{NH_4I}$

Run	<u>m,</u> g	$\frac{m}{\text{mol} \cdot \text{kg}^{-1}}$	$\frac{\Delta H}{J}$	$\frac{\langle T \rangle}{K}$	$\frac{\Delta H(298.15 \text{ K})}{\text{J} \cdot \text{mol}^{-1}}$	$\frac{\Delta H^{s}(298.15 \text{ K})}{\text{J} \cdot \text{mol}^{-1}}$
1	0.58677	0.04064	57.274	298.14	14136	720
2	0.62457	0.04326	61.183	298.15	14189	13885
2 3 4 5	0.63956	0.04430	62.707	298.15	14202	13934
4	0.67232	0.04657	65.426	298.17	14099	13947
5	0.68690	0.04758	66.834	298.15	14095	13839
6	0.69145	0.04789	67.408	298.15		13835
7	0.74200	0.05139	72.031	298.17	14122	13859
		0.00100	72.0.71	290.17	14066	13798
NH₄I, se	• R					13871±41
		0.0				
1	0.59709	0.04136	58.109	298.14	14095	13844
2 3 4 5	0.60190	0.04169	58.745	298.14	14135	13880
.,	0.61903	0.04288	60.390	298.14	14129	13874
4	0.63331	0.04386	61.515	298.14	14068	13813
3	0.63821	0.04420	62.499	298.07	14174	13918
6	0.71773	0.04971	70.340	298.15	14197	13934
NH ₄ I (Al	fa)					13877 ± 37
1	0.55342	0.03833	54.200	222 (22		
2	0.61086		54.299	298.13	14207	13960
2 3	0.67496	0.04231	60.031	298.17	14237	13981
1	0.72330	0.04675	66.043	298.21	14182	13923
5	0.74923	0.05010	70.944	298.24	14221	13956
4 5 6	0.75872	0.05189	73.650	298.17	14243	13971
7		0.05255	74.465	298.15	14218	13946
8	0.76162	0.05275	74.809	298.14	14228	13956
8	0.78253	0.05420	76.134	298.18	14099	13823
NH ₄ I (M	erck)					13940 ± 35*
1	0.63513	0.04399	62 507	200 14		
2	0.63540	0.04399	62.507	298.14	14254	13995
2 3	0.68480	0.04743	62.406	298.13	14224	13968
4	0.68966		67.319	298.14	14239	13979
7	0.00900	0.04777	67.819	298.21	14254	13991
						13983 + 12"

^a Twice the standard deviation of the mean.

Literature values of $C_{\phi,m}$. (6) $C_{p,m}$. (7) and of $\Delta_{\rm dil}H$. (6) were employed. The values relating to aqueous NH₄I solutions were estimated.

The analysis of KCl samples was performed as a check against calorimetric bias in our measurements. The results obtained were adjusted to the standard test-reaction conditions as recommended by IUPAC⁽⁸⁾ and are as follows: KCl(c)+200H₂O(l) = KCl·200H₂O(l); $\Delta H(298.15~{\rm K})/({\rm J\cdot mol}^{-1})$ = (recommended IUPAC value) (17550±40); (Alfa) (17530±21); (Merck, Operator A) (17533±26); Merck, Operator B) (17558±26); (NBS RM 918) (17556±31), the uncertainties in our measurements being twice the standard deviation of the mean.

The val IUPAC The valuatitic concent enthalp The without sample, yield er Becaliteratu

The au

REFEF

Chem
 Wein
 Wein

Gunr
 Vand
 Parke

N! 7. JAN / 8. Herit on of NH4I

H(298.15 K)	ΔH^{∞} (298.15 K)		
J·mol ⁻¹	J·mol ⁻¹		
14136	13885		
14189	13934		
14202	13047		
14099	13839		
14095	13835		
14122	13859		
14066	13798		
	13871 ± 41 °		
14095	13844		
14135	13880		
14129	13874		
14068	13813		
14174	13918		
14197	13934		
	13877±37°		
14207	13960		
14237	13981		
14182	13923		
14221	13956		
14243	13971		
14218	13946		
14228	13956		
14099	13823		
	13940±35°		
14254	13995		
14224	13968		
14239	13979		
14254	13991		
	13983 ± 12°		

employed. The values(6)

against calorimetric bias \pm to the standard testand are as follows: $(J \cdot \text{mol}^{-1}) = (\text{recom}; (\text{Merck}, \text{Operator A})$ 1 918) (17556 \pm 31), the deviation of the mean.

The values obtained are within the limits of error for the value recommended by IUPAC.

The values obtained for our NH_4I sets A and B, corresponding to two different quantities of the additives, are in agreement with one another. Thus, in the concentration range of $NH_2H_2SO_4$ and NaOH studied, there is no effect on the enthalpy of solution of ammonium iodide.

The NH₄I samples obtained from Alfa and Merck were in excellent condition without visible evidence of decomposition, in contrast to the Riedel-de Haen sample. Therefore it is not surprising that both sets, with and without additives, yield enthalpies of solution that are so close to each other.

Because no modern investigation of comparable accuracy exists for NH₄I in the literature, these values can be taken as the "best values".

The authors are indebted to Miss Luna Benhamu for her fine technical assistance.

REFERENCES

- 1. Chem. Abstr. 1968, 68, 5915, entry 61074C.
- 2. Weintraub, R. Ph.D. Thesis, Massachusetts Institute of Technology. 1974.
- 3. Weintraub, R.; Apelblat, A.; Tamir, A. J. Chem. Thermodynamics 1982, 14, 887.
- 4. Gunn, S. R. J. Phys. Chem. 1965, 69, 2902.
- 5. Vanderzee, C. E. J. Chem. Thermodynamics 1981, 13, 947.
- Parker, V. B. Thermal Properties of Aqueous Uni-Univalent Electrolytes. Nat. Bur. Stand. (U.S.): NSRDS-NBS-2. 1965.
- 7. JANAF Thermodynamic Tables. Dow Chemical Co.: Midland, Michigan. 1965 and 1975.
- 8. Herington, E. F. G.; Cox, J. D. Pure Appl. Chem. 1974, 40, 399.