

Regularizing Neural Networks via Minimizing Hyperspherical Energy

Rongmei Lin, Weiyang Liu, Zhen Liu, Chen Feng, Zhiding Yu, James Rehg, Li Xiong, Le Song

Hyperspherical Energy and Motivation

Neurons in one layer:

Hyperspherical energy: $(\hat{m{w}}_i = \frac{m{w}_i}{\|m{w}_i\|})$

$$\begin{split} \boldsymbol{E}_{s,d}(\hat{\boldsymbol{w}}_i|_{i=1}^N) &= \sum_{i=1}^N \sum_{j=1,j\neq i}^N f_s \big(\left\| \hat{\boldsymbol{w}}_i - \hat{\boldsymbol{w}}_j \right\| \big) \\ &= \left\{ \begin{array}{l} \sum_{i\neq j} \left\| \hat{\boldsymbol{w}}_i - \hat{\boldsymbol{w}}_j \right\|^{-s}, \ s > 0 \\ \sum_{i\neq j} \log \big(\left\| \hat{\boldsymbol{w}}_i - \hat{\boldsymbol{w}}_j \right\|^{-1} \big), \ s = 0 \end{array} \right. \end{split}$$

Minimizing the hyperspherical energy promotes the **diversity** of neurons on a hypersphere.

Minimum hyperspherical energy (MHE):

[1] shows that minimum hyperspherical energy leads to **better generalization**.

Naively minimizing hyperspherical energy in [1]:

- Higher neuron dimension makes the optimization difficult.
- Highly non-linear and non-convex objective leads to many bad local minima.
- Deterministic gradients from naive MHE is sub-optimal to run away from bad local minima.

Compressive Minimum Hyperspherical Energy (CoMHE)

Overview of CoMHE:

CoMHE uses projections to reduce the neuron dimension and perform MHE in the projected space.

- Stochastic and dynamic regularization (CoMHE gradients also have stochasticity)
- Low neuron dimension benefits the optimization

Random Projection CoMHE:

The projection matrices **P** are randomly initialized every certain number of iterations:

$$oldsymbol{E}_s^R(\hat{oldsymbol{W}}_N) := rac{1}{C} \sum_{c=1}^C \sum_{i=1}^N \sum_{j=1, j
eq i}^N f_s \Big(\left\| rac{oldsymbol{P}_c \hat{oldsymbol{w}}_i}{\|oldsymbol{P}_c \hat{oldsymbol{w}}_i\|} - rac{oldsymbol{P}_c \hat{oldsymbol{w}}_j}{\|oldsymbol{P}_c \hat{oldsymbol{w}}_j\|}
ight).$$

Angle-preserving Projection CoMHE:

The projections are learned to preserve angles:

$$egin{aligned} oldsymbol{E}_s^A(\hat{oldsymbol{W}}_N, oldsymbol{P}^\star) &:= \sum_{i=1}^N \sum_{j=1, j
eq i}^N f_sig(\left\| rac{oldsymbol{P}^\star \hat{oldsymbol{w}}_i}{\|oldsymbol{P}^\star \hat{oldsymbol{w}}_i\|} - rac{oldsymbol{P}^\star \hat{oldsymbol{w}}_j}{\|oldsymbol{P}^\star \hat{oldsymbol{w}}_i\|}
ight) \ & ext{s.t.} \quad oldsymbol{P}^\star = rg \min_{oldsymbol{P}} \sum_{i
eq j} (heta_{(\hat{oldsymbol{w}}_i, \hat{oldsymbol{w}}_j)} - heta_{(oldsymbol{P}\hat{oldsymbol{w}}_i, oldsymbol{P}\hat{oldsymbol{w}}_j)})^2 \end{aligned}$$

Adversarial Projection CoMHE:

The projections are learned adversarially:

$$\min \max_{\hat{oldsymbol{W}}_N} oldsymbol{E}_s^V(\hat{oldsymbol{W}}_N, oldsymbol{P}) \! := \sum_{i=1}^N \sum_{j=1, j
eq i}^N \! f_s \Big(\left\| rac{oldsymbol{P} \hat{oldsymbol{w}}_i}{\|oldsymbol{P} \hat{oldsymbol{w}}_i\|} - rac{oldsymbol{P} \hat{oldsymbol{w}}_j}{\|oldsymbol{P} \hat{oldsymbol{w}}_j\|}
ight)$$

Theoretical Guarantees for RP-CoMHE:

$$\frac{\cos(\theta_{(\boldsymbol{w}_1,\boldsymbol{w}_2)}) - \epsilon}{1 + \epsilon} < \cos(\theta_{(\boldsymbol{P}\boldsymbol{w}_1,\boldsymbol{P}\boldsymbol{w}_2)}) < \frac{\cos(\theta_{(\boldsymbol{w}_1,\boldsymbol{w}_2)}) + \epsilon}{1 - \epsilon}$$

It holds with probability $(1-2\exp(-\frac{k\epsilon^2}{8}))^2$

Experiments and Results

Convolutional neural networks (CNN):

Method	C-10	C-100
ResNet-110 [1]	6.61	25.16
ResNet-1001 [60]	4.92	22.71
Baseline	5.19	22.87
Orthogonal [29]	5.02	22.36
SRIP [9]	4.75	22.08
MHE [12]	4.72	22.19
HS-MHE [12]	4.66	22.04
RP-CoMHE	4.59	21.82
AP-CoMHE	4.57	21.63

Method	Res-18	Res-34	Res-50
baseline	32.95	30.04	25.30
Orthogonal [29]	32.65	29.74	25.19
Orthnormal [32]	32.61	29.75	25.21
SRIP [9]	32.53	29.55	24.91
MHE [12]	32.50	29.60	25.02
HS-MHE [12]	32.45	29.50	24.98
RP-CoMHE	31.90	29.38	24.51
AP-CoMHE	31.80	29.32	24.53

CIFAR-10/100

ImageNet-2012

Point cloud networks (PointNet):

Method	PN	PN (T)	PN++	-
Original	87.1	89.20	90.07	_
MHE [12]	87.31	89.33	90.25	
HS-MHE [12]	87.44	89.41	90.31	ModelNet-40
RP-CoMHE	87.82	89.69	90.52	
AP-CoMHE	87.85	89.70	90.56	

Graph convolution networks (GCN):

Method	Citeseer	Cora	Pubmed
GCN Baseline	70.3	81.3	79.0
HS-MHE [12]	71.5	82.0	79.0
RP-CoMHE	72.1	82.7	79.5
AP-CoMHE	72.0	82.6	79.5

Hyperspherical energy:

Different network configurations:

	Depth	CNN-6	CNN-9	CNN-15
	Baseline	32.08	28.13	N/C
]	MHE [12]	28.16	26.75	26.90
HS	S-MHE [12]	27.56	25.96	25.84
R	P-CoMHE	26.73	24.39	24.21
A	P-CoMHE	26.55	24.33	24.55

CoMHE can effectively minimize hyperspherical energy and can improve different types of neural networks. (i.e., CoMHE is architecture-agnostic.)

Thank you!

 For any question, please feel free to send emails to <u>rongmei.lin@emory.edu</u> or <u>wyliu@gatech.edu</u>

Welcome to try CoMHE! The code is made available at https://github.com/rmlin/CoMHE

❖ For our full paper and related material, please visit https://wyliu.com/