2SK2084L, 2SK2084S-

Silicon N Channel MOS FET

Application

High speed power switching

Features

- Low on-resistance
- High speed switching
- Low drive current
- 4 V gate drive device can be driven from 5 V source
- Suitable for Switching regulator, DC DC converter

Table 1 Absolute Maximum Ratings ($Ta = 25^{\circ}C$)

Item	Symbol	Ratings	Unit
Drain to source voltage	V _{DSS}	20	V
Gate to source voltage	V_{GSS}	±20	V
Drain current	I_{D}	7	А
Drain peak current	I _{D(pulse)} *	28	А
Body-drain diode reverse drain current	I _{DR}	7	Α
Channel dissipation	Pch**	20	W
Channel temperature	Tch	150	°C
Storage temperature	Tstg	-55 to +150	°C

^{*} PW $\leq 10 \,\mu s$, duty cycle $\leq 1 \,\%$

^{**} Value at Tc = 25 °C

Table 2 Electrical Characteristics ($Ta = 25^{\circ}C$)

Item	Symbol	Min	Тур	Max	Unit	Test conditions
Drain to source breakdown voltage	V _{(BR)DSS}	20	_	_	V	$I_D = 10 \text{ mA}, V_{GS} = 0$
Gate to source breakdown voltage	V _(BR) GSS	±20	_	_	V	$I_{G} = \pm 100 \ \mu A, \ V_{DS} = 0$
Gate to source leak current	I _{GSS}	_	_	±10	μA	$V_{GS} = \pm 16 \text{ V}, V_{DS} = 0$
Zero gate voltage drain current	I _{DSS}	_	_	100	μΑ	V _{DS} = 16 V, V _{GS} = 0
Gate to source cutoff voltage	V _{GS(off)}	1.0	_	2.5	V	I _D = 1 mA, V _{DS} = 10 V
Static drain to source on state resistance	R _{DS(on)}	_	0.04	0.053	Ω	I _D = 4 A V _{GS} = 10 V *
		_	0.058	0.075	Ω	I _D = 4 A V _{GS} = 4 V *
Forward transfer admittance	y _{fs}	5	9	_	S	I _D = 4 A V _{DS} = 10 V *
Input capacitance	Ciss	_	800	_	pF	V _{DS} = 10 V
Output capacitance	Coss	_	680	_	pF	$V_{GS} = 0$
Reverse transfer capacitance	Crss	_	165	_	pF	f = 1 MHz
Turn-on delay time	t _{d(on)}	_	15	_	ns	I _D = 4 A
Rise time	t _r	_	60	_	ns	V _{GS} = 10 V
Turn-off delay time	t _{d(off)}	_	100	_	ns	$R_L = 5 \Omega$
Fall time	t _f	_	80	_	ns	
Body-drain diode forward voltage	V _{DF}	_	0.9	_	V	I _F = 7 A, V _{GS} = 0
Body-drain diode reverse recovery time	t _{rr}	_	80	_	ns	I _F = 7 A, V _{GS} = 0, diF / dt = 20 A / μs

^{*} Pulse Test

