Санкт - Петербургский государственный университет Математико - механический факультет

Отчёт по практике №8

Сеточные методы для задачи теплопроводности

Выполнил: Розыков Б.

451 группа

1 Предисловие

Для решения задач теплопроводности существуют аналитические методы, однако решение некоторых неоднородных и нелинейных задач теплопроводности получить аналитическими методами не представляется возможным. Решение такого рода задач проводится с использованием численных методов. Это позволяет решать многие практические задачи. Появление высокопроизводительной вычислительной техники поспособствовало решению нестационарные пространственные задач.

2 Постановка задачи

Рассмотрим простейший случай уравнения теплопроводности

$$u_t(x,t) = ku_{xx}(x,t) + f(x,t),$$
 (1)

где k — положительная константа, а $x \in (0, a), t \in (0, T)$.

В качестве дополнительных условий зададим одно начальное и два граничных

$$u(x,0) = \mu(x), \ x \in [0,a];$$

$$u(0,t) = \mu_1(t) \\ u(a,t) = \mu_2(t) \quad t \in [0,T].$$

Решать эту задачу будем двумя сеточными методами явным и неявным.

2.1 Преобразование для применения двухслойных схем

Преобразуем исследуемое уравнение теплопроводности в $\frac{du}{dt} = \Lambda u + f$, где Λ — трёхдиагональная матрица с элементами: $a_{ii} = -\frac{2k}{h^2}, a_{i,i\pm 1} = \frac{k}{h^2}, \ i = 1, ..n-1, \ n$ — количество узлов координатной сетки.

Решение \hat{u} на следующем узле временной сетки можно найти через известное решение на текущем узле u с помощью одностадийной схемы Розенброка.

$$(E - \sigma \tau \Lambda)w = \Lambda u + f \tag{2}$$

Решая относительно w, получаем $\hat{u} = u + \tau Re(w)$.

2.2 Явная схема

Один из примеров явной схемы — это схема Розенброка с $\sigma=0$. Традиционная формула записи имеет следующий вид

$$\frac{\hat{u_n} - u_n}{\tau} = \frac{k}{h^2} (u_{n-1} - 2u_n + u_{n+1}) + f(x_n, \hat{t}); \tag{3}$$

Данная схема является лишь условно устойчивой, для устойчивости должно выполняться условие $2k\tau \leq h^2$. Явная схема непригодна для вычислений на больших временных интервалах.

2.3 Неявная схема

Для получения неявной схемы нужно положить $\sigma = \frac{1+i}{2}$. Такая схема называется комплексной схемой Розенброка. Мы уже с ней сталкивались, разбирали принцип её работы, поэтому остановимся на её свойствах. Эта схема

- Безусловно устойчива по начальным данным
- Устойчива равномерно
- Устойчива по правой части
- Имеет полную погрешность аппроксимации $O(\tau^2+h^2)$
- Асимптотически безусловно устойчива

3 Описание численного эксперимента

Будем брать решение u(x,t) подставлять его в исходное уравнение, а так же в начальное и краевые условия, чтобы получить функции f, μ, μ_1, μ_2 . Будем засекать время работы программ и выводить графики отклонения от точного решения. Дополнительно посмотрим, что будет выдавать явный метод при не соблюдении условия устойчивости. Во всех тестах берем a=1, T=0.5, h=0.01.

4 Тесты

4.1 Tect 1

В этом тесте возьмём решение $u(x,t) = x^3 + t^2$. Тогда

$$f(x,t) = -2x^2 + 3t^3 + xt; \ \mu(x) = x^3; \ \mu_1(x) = t^2; \ \mu_2(x) = 1 + t^2;$$
 (4)

При $au=\frac{h^2}{2k}$ явный метод срабатывает за 0.021 секунды, неявный метод – за 0.287 секунды.

Макимальное отклонение для неявного метода составляет 0.260.

Рис. 1: График точного решения

Рис. 2: График численного решения явным методом

Рис. 3: График численного решения неявным методом

Рис. 4: График откланения для явного Рис. 5: График откланения для неявметода ного метода

4.2 Tect 2

В этом тесте возьмём решение $u(x,t) = \sin(t-3)\cos(x/2)$. Тогда

$$f(x,t) = 1/4\cos(x/2)(\cos(t-3) + 2\sin(t-3));$$

$$\mu(x) = \sin(-3)\cos(x/2); \ \mu_1(x) = \sin(t-3); \ \mu_2(x) = \sin(t-3)\cos(a/2);$$
(5)

При $\tau=\frac{h^2}{2k}$ явный метод срабатывает за 0.018 секунды, неявный метод – за 0.670 секунды.

Рис. 6: График точного решения

Макимальное отклонение для неявного метода составляет 0.070.

Рис. 7: График численного решения явным методом

Рис. 8: График численного решения неявным методом

Рис. 9: График откланения для явного Рис. 10: График откланения для неявметода ного метода

5 Вывод

По полученным результатам можно сделать заключение о том, что в случае выполнения условия устойчивости явный метод срабатывает быстрее, однако с меньшей точностью. К тому же, если это условие не выполняется, то явный метод расходится, а неявный все еще выдает близкие к точному результаты решения.