Lemma 1. Let
$$k' \ge \log n$$
 and $d' = \frac{\log n}{3(\log 2k' - \log\log n + 2)}$, then $\binom{k' + d'}{d'} < n.$

Proof. First note that the denominator is at least 2 and so $d' \leq k'$. Recall that $\binom{r}{s} \leq 2^{H(s/r)r}$ where H stands for the binary entropy function. In addition for $x \leq 0.5$ it holds that $H(x) \leq 2x \log \frac{1}{x}$. If we combine all these, we obtain:

$$\log \binom{k' + d'}{d'} \le H\left(\frac{d'}{k' + d'}\right) (k' + d') \le 2d' \log \frac{k' + d'}{d'} \le 2d' (\log 2k' - \log d') = \dots$$

Let's make things simpler by substituting $a := \frac{\log n}{d'} = 3(\log 2k' - \log \log n + 2)$.

$$\dots = 2 \frac{\log n}{a} \left(\log 2k' - \log \log n + \log a \right) \le 2 \log n \cdot \left(\frac{a/3 - 2 + \log a}{a} \right) \le \dots$$

By using calculus we see that the fraction is maximal for a = 4e.

$$\dots \le 2\log n \cdot \left(\frac{1}{3} + \frac{-2 + 2 + \log e}{4e}\right) < \log n \cdot \left(\frac{2}{3} + \frac{\log e}{2e}\right) < \log n$$

The proof can handle a little better constants: it works with $k' \ge \log n$ and $d' = \frac{\log n}{(2+\delta)(\log 2k' - \log\log n + c)}$ where $\delta > 0$ and $c \ge 1 + \log \frac{(2+\delta)\log e}{\delta e}$.