Exercise 4. Let $f: A \to B$ be a surjective function. Let us define a relation on A by setting $a_0 \sim a_1$ if

$$f(a_0) = f(a_1)$$

- (a) Show that this is an equivalence relation
- (b) Let A^* be the set of equivalence classes. Show there is a bijective correspondence of A^* with B

Proof.

- (a) The fact that every $x \in A$ has a unique image by f, and that equality is an equivalence relation, imply that \sim is an equivalence relation on A.
- (b) Let $x^* \in A^*$. By definition of \sim , for all $y, z \in x^*$, we have f(y) = f(z). So the following definition uniquely associates an image to an element, and is thus a function:

$$\phi: A^* \to B$$
$$x^* \mapsto f(x)$$

The function ϕ is surjective: f being surjective, $\forall y \in B$, $\exists z \in A$, f(x) = y. Since \sim is an equivalence relation on A, $x \sim x$, from which we deduce that $\phi(x^*) = y$, which is the surjectivity of ϕ .