South-Eastern Finland University of Applied Sciences Jari Kortelaine

Matrices and Graphs

Exercises 1

Problems

- 1. Let $V = \mathbb{R}^2$ be a vectorspace and $S_1 = \{\mathbf{u}, \mathbf{v}\} \subseteq V$ such that $\mathbf{u} = (4, 2)$ and $\mathbf{v} = (-2, 3)$. Determine an example vector \mathbf{x} such that it is a linear combination $(\neq \mathbf{0})$ of the vectors in S_1 . Does S_1 form a linearly independent set?
- 2. Let $V = \mathbb{R}^2$ be a vectorspace and $S_1 = \{\mathbf{u}, \mathbf{v}\} \subseteq V$ such that $\mathbf{u} = (4, 2)$ and $\mathbf{v} = (-2, 3)$. Find scalars $s, k \in \mathbb{R}$ (if they exist) such that $\mathbf{x} = (6, 7)$ is a linear combination of \mathbf{u} and \mathbf{v} .
- 3. Let $\mathbf{u} = (4, -1, 5, 1)$ and $\mathbf{v} = (3, 7, 0, 8)$ be vectors in \mathbb{R}^4 . Give an example vector \mathbf{x} such that it is a linear combination $(\neq \mathbf{0})$ of \mathbf{u} and \mathbf{v} . Does $S_2 = \{\mathbf{u}, \mathbf{v}\}$ form a linearly independent set?
- 4. Let $\mathbf{u} = (4, -1, 5, 1)$ and $\mathbf{v} = (3, 7, 0, 8)$ be vectors in \mathbb{R}^4 . Find scalars $s, k \in \mathbb{R}$ (if they exist) such that the vector $\mathbf{x} = (6, -3, 10, 9)$ is a linear combination of \mathbf{u} and \mathbf{v} .
- 5. Show that vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^5$ does not form a linearly independent set $\{\mathbf{u}, \mathbf{v}\}$ ("are not linearly independent") if $\mathbf{u} = (-1, 0, 8, 5, 2)$, and $\mathbf{v} = (-6, 0, 48, 30, 12)$.
- 6. Let V be a vectorspace over a field \mathscr{F} . A subset $B \subseteq V$ is a base for V if B is a linearly independent set and for all $\mathbf{x} \in V$, \mathbf{x} is a linear combination of vectors in B. Let S_1 and S_2 be given in the previous exercises. Does S_1 form a base for \mathbb{R}^2 ? Does S_2 form a base for \mathbb{R}^4 ?