1 Equazioni differenziali

Sia

$$y'(x) = g(x) \quad \forall x \in [a, b]$$

dove g(x) è una funzione di una variabile reale, continua in un intervallo $[a,b] \in \mathbb{R}$.

Per il **teorema fondamentale del calcolo integrale** sappiamo trovare una **primitiva** G(x) di g(x) nell'intervallo [a, b], data da:

$$G(x) = \int_{x_0}^{x} g(t) dt$$

dove x_0 è un numero reale fissato in [a, b].

Quindi possiamo rappresentare ogni soluzione dell'equazione differenziale

$$y'(x) = g(x) \quad \forall x \in [a, b] \quad (\star)$$

Integrando entrambi i membri di (\star) tra x_0 e x otteniamo:

$$y(x) - y(x_0) = \int_{x_0}^x y'(t) dt = \int_{x_0}^x g(t) dt$$

e rappresentiamo la soluzione nella forma:

$$y(x) = y(x_0) + \int_{x_0}^x g(t) dt \quad x \in [a, b]$$

Questo è un esempio molto particolare di equazione differenziale, si dice che y(x) è soluzione del **problema di Cauchy**:

$$\begin{cases} y'(x) = g(x) \\ y(x_0) = y_0 \end{cases}$$

in quanto y(x) è soluzione ed inoltre soddisfa la **condizione iniziale** nel punto $x=x_0$:

$$x = x_0$$
 $y(x_0) = y_0 + \int_{x_0}^{x_0} g(t) dt = y_0$

1.1 Osservazione

L'equazione differenziale considerata si dice del **primo ordine**, poichè l'ordine massimo di derivazione che compare nell'equazione è il primo.

1.2 Ulteriore esempio di equazione differenziale del primo ordine

Sia

$$y'(x) = \lambda y(x) \quad \forall x \in \mathbb{R}$$

dove λ è un parametro reale fissato.

Dobbiamo trovare una soluzione di questa equazione differenziale, cioè una funzione y=y(x), derivabile in \mathbb{R} , tale che

$$y'(x) = \lambda y(x) \quad \forall x \in \mathbb{R}$$

Una soluzione è data da:

$$y(x) = ce^{\lambda x} \qquad \forall x \in \mathbb{R}$$

dove c è una costante arbitrariamente fissata in \mathbb{R} .

Si verifica subito che è soluzione, infatti derivando si ottiene:

$$y'(x) = c\lambda e^{\lambda x} = \lambda y(x)$$

1.2.1 Domanda

Tutte le possibile soluzoni sono della forma $y(x) = ce^{\lambda x}$? Sì, ma non lo dimostriamo.

1.3 Esempio di equazione differenziale del secondo ordine: equazione del moto armonico

$$y''(x) + \omega^2 y = 0 \quad \forall x \in \mathbb{R}$$

dove $\omega \neq 0$ è un parametro reale fissato. Una famiglia di soluzioni è data da:

$$y(x) = c_1 \cos \omega x + c_2 \sin \omega x$$

con $c_1, c_2 \in \mathbb{R}$ costanti in \mathbb{R} .

Verifica:

$$y'(x) = -c_1 \omega \sin \omega x + c_2 \omega \cos \omega x$$
$$y''(x) = -c_1 \omega^2 \cos \omega x - c_2 \omega^2 \sin \omega x = -\omega^2 (c_1 \cos \omega x + c_2 \sin \omega x) = -\omega^2 y(x)$$
$$\implies y''(x) + \omega^2 y(x) = 0$$

Tutte le soluzioni dell'equazione differenziale del moto armonico sono nella forma $y(x) = c_1 \cos \omega x + c_2 \sin \omega x$? Sì, ma non lo dimostriamo.

1.4 Equazioni differenziali lineari ordine n, di tipo normale

$$y^{n} + a_{n-1}(x)y^{n-1} + \ldots + a_{1}(x)y' + a_{0}(x)y = g(x) \quad (1)$$

dove $a_0(x), a_1(x), \ldots, a_{n-1}(x)$ sono coefficienti e g(x) è il termine noto. (funzioni continue in un intervallo $[a, b] \in \mathbb{R}$). Se g(x) = 0 l'equazione (1) si dice **omogenea**.

$$y^{n} + a_{n-1}(x)y^{n-1} + \ldots + a_{1}(x)y' + a_{0}(x)y = 0 \quad (2)$$

1.5

Una soluzione dell'equazione differenziale (1) o (2) è una funzione y = y(x), derivabile n volte in [a,b], che soddisfa la condizione (1) o (2) $\forall x \in [a,b]$. Le soluzioni delle equazioni differenziali lineari sono dette anche **integrali** e l'insieme di tutte le soluzione è detto **integrale generale**.

1.6 Rappresentazione dell'integrale generale di un'equazione differenziale lineare

L'integrale generale di un'operazione differenziale **non omogenea** è dato dall'insieme delle soluzione dell'equazione omogenea, sommate ad una soluzione particolare dell'equazione non omogenea.

1.7 Equazioni differenziali lineari del secondo ordine

$$y''(x) + a(x)y'(x) + b(x)y = g(x)$$

con a(x), b(x), g(x) funzioni continue in un intervallo [a, b]. Consideriamo inizialmente l'equzione omogenea associata:

$$y''(x) + a(x)y'(x) + b(x)y = 0$$

Una soluzione è una funzione y = y(x), derivabile due volte in [a, b], che soddisfa l'equazione differenziale. Considereremo equazioni differenziali di questo tipo, a coefficienti costanti.

1.8 Equazioni differenziali lineari omogenee a coefficienti costanti

$$y''(x) + ay'(x) + by(x) = 0$$

con $a, b \in \mathbb{R}$ costanti.

Associamo l'equazione caratteristica

$$\lambda^2 + a\lambda + b = 0$$

equazione di secondo grado dove:

$$\lambda_1, \lambda_2 = \frac{-a \pm \sqrt{a^2 - 4b}}{2} \quad \Delta > 0$$
$$\lambda_1 = \lambda_2 = \frac{-a}{2} \quad \Delta = 0$$

E se il discriminante è negativo?

Ricordiamoci come si calcola la radice quadrata di un numero negativo:

$$\sqrt{\Delta} \operatorname{con} \ \Delta < 0$$

$$\sqrt{\Delta} = \sqrt{-1(-\Delta)} = \pm i\sqrt{-\Delta}$$

e quindi le soluzioni complesse nel caso $\Delta < 0$ sono:

$$\lambda_1, \lambda_2 = \frac{-a \pm \sqrt{\Delta}}{2} = \frac{-a \pm i\sqrt{-\Delta}}{2}$$

cioè
$$\lambda_1, \lambda_2 = -\frac{a}{2} \pm i \frac{\sqrt{-\Delta}}{2}$$

 $\lambda_1 = \alpha - i\beta$
 $\lambda_2 = \alpha + i\beta$
 $\alpha = -\frac{a}{2}$
 $\beta = \frac{\sqrt{-\Delta}}{2}$

1.9 Integrale generale delle equazioni lineari omogenee a coefficienti costanti

$$y''(x) + ay'(x) + by(x) = 0$$

Tutte le soluzioni sono date da:

•
$$c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$$
 $\Delta > 0$

$$\bullet (c_1 + c_2 x) e^{\lambda_1 x} \quad \Delta = 0$$

•
$$e^{\alpha x}(c_1 \cos \beta x + c_2 \sin \beta x)$$
 $\Delta < 0$

Al variare delle costanti c_1, c_2 .

1.9.1 Esempio

Risolvere l'equazione differenziale omogenea:

$$y'' - 6y' + 5y = 0$$

L'equazione differenziale ha come equazione caratteristica, l'equazione di secondo grado:

$$\lambda^2 - 6\lambda + 5 = 0$$

$$\Delta = 36 - 20 = 16 > 0 \implies \lambda_1 = \frac{6-4}{2} = 1 \quad \lambda_2 = \frac{6+4}{2} = 5$$

 \implies L'integrale generale è dato da:

$$y(x) = c_1 e^x + c_2 e^{5x}$$

1.9.2 Esempio 2

Risolvere l'eqazione differenziale omogenea:

$$y'' - 2y' + 2y = 0$$

L'equazione caratteristica è data da:

$$\lambda^2 - 2\lambda + 2 = 0$$

$$\Delta = 4 - 8 = -4 < 0$$

Posso trovare i α e β , ma mi conviene utilizzare direttamente la formula del Δ :

$$\lambda_{1,2} = \frac{2 \pm i\sqrt{4}}{2} = 1 \pm i \implies \lambda_1 = 1 - i \quad \lambda_2 = 1 + i$$

L'integrale generale è dato da:

$$y(x) = e^x(c_1 \cos x + c_2 \sin x)$$

1.10 Esempio 3

Risolvere l'equazione differenziale omogenea:

$$y'' - 2y' + y = 0$$

L'equazione caratteristica è data da:

$$\lambda^2 - 2\lambda + 1 = 0$$

$$\Delta = 4 - 4 = 0 \implies \lambda_1 = \lambda_2 = 1$$

e l'integrale generale è dato da:

$$y(x) = (c_1 + c_2 x)e^x$$

1.11 Equazioni differnziali lineari non omogenee

$$y''(x) + ay'(x) + by(x) = g(x)$$

L'integrale generale delle soluzioni è dato da:

$$c_1y_1(x) + c_2y_2(x) + \bar{y}(x)$$

al variare delle costanti c_1 e c_2 . $y_1(x)$ e $y_2(x)$ sono due soluzioni dell'omogenee associata in [a, b], $\forall x \in [a, b]$, (che abbiamo visto nel caso di coefficienti costanti) e $\bar{y}(x)$ è una soluzione particolare dell'equazione non omogenea.

Ci sono casi particolari in cui è possibile ricavare una soluzione in modo diretto (nel caso di equazioni del secondo ordine a coefficienti costanti).

1.11.1 Esempio

Determinare l'integrale generale dell'equazione differenziale

$$y'' + 2y' + y = x^2 + 4x - 1 \quad (\star)$$

Come primo passo consideriamo l'omogenea associata e quindi, essendo a coefficienti costanti, consideriamo l'equazione caratteristica:

$$\lambda^2 + 2\lambda + 1 = 0$$

$$\Delta = 4 - 4 = 0 \implies \lambda_1 = \lambda_2 = -1$$

per cui l'integral generale dell'omogenea associata è dato da:

$$(c_1 + c_2 x)e^{-x}$$

al variare delle costanti c_1 e c_2 .

Ora ricerchiamo una soluzione particolare $\bar{y}(x)$ e poichè il termine noto dell'equazione differenziale è una equazione di secondo grado, la ricerchiamo nella forma:

$$\bar{y}(x) = ax^2 + bx + C$$

Sostituendo $\bar{y}(x)$ nell'equazione differenziale (\star) otteniamo:

$$\bar{y}'' + 2\bar{y}' + \bar{y} = x^2 + 4x - 1 \implies \bar{y}(x) = ax^2 + bx + c \quad \bar{y}' = 2ax + b \quad \bar{y}'' = 2a$$

$$2a + 4ax + 2b + ax^{2} + bx + c = x^{2} + 4x - 1 \implies ax^{2} + (4a + b)x + 2a + 2b + c = x^{2} + 4x - 1$$

Quindi occorre che:

$$\begin{cases} a=1\\ 4a+b=4\\ 2a+2b+c=-1 \end{cases}$$

da cui a = 1, b = 0, c = -3.

Quindi una soluzione particolare è:

$$\bar{y}(x) = x^2 - 3$$

Quindi l'integrale generale dell'equazione differenziale iniziale è dato da:

$$(c_1 + c_2 x)e^{-x} + x^2 - 3$$

1.11.2 Esempio 2

Risolvere l'equazione differenziale non omogenea:

$$y'' - 3y' + 2y = 2x^3 - x^2 + 1$$

⇒ l'integrale generale dell'omogenea associata è dato quindi da:

1.11.3 Osservazione

Abbiamo visto un metodo per trovare una soluzione, quando il termine noto è un polinomio. Ora vediamo un esempio, in cui:

$$g(x) = a\sin x + b\cos x$$

1.11.4 Esempio

Determinare l'integrale generale dell'equazione differenziale:

$$y'' + y' + 2y = 2\cos x$$

Consideriamo prima l'equazione caratteristica dell'omogenea associata:

$$\lambda^2 + \lambda + 2 = 0$$

$$\Delta = 1 - 8 = -7 < 0 \implies \lambda_1 = -\frac{1}{2} + i\frac{\sqrt{7}}{2} \quad \lambda_2 = -\frac{1}{2} - i\frac{\sqrt{7}}{2}$$

$$\alpha = -\frac{1}{2}$$
$$\beta = \frac{\sqrt{7}}{2}$$

 $\begin{array}{l} \alpha = -\frac{1}{2} \\ \beta = \frac{\sqrt{7}}{2} \\ \text{L'integrale generale è dato da:} \end{array}$

$$c_1 e^{-\frac{x}{2}} \cos \frac{\sqrt{7}}{2} x + c_2 e^{-\frac{x}{2}} \sin \frac{\sqrt{7}}{2} x$$