

Adapted from material by Philipp Koehn

Machine Translation

Computational Linguistics: Jordan Boyd-Graber University of Maryland

who 0.05	das	
that 0.15 which 0.075 who 0.05	e	t(e f)
	that which who	0.15 0.075

7744	3
е	t(e f)
house	0.8
building	0.16
home	0.02
household	0.015
shell	0.005

Harre

e	t(e f)
is	0.8
's	0.16
exists	0.02
has	0.015
are	0.005

e	t(e f)
small little short minor petty	0.4 0.4 0.1 0.06 0.04

klein

$$p(\mathbf{e}, a | \mathbf{f}) = \frac{\epsilon}{(I_f + 1)^{I_e}} \prod_{j=1}^{I_e} t(e_j | f_{a(j)})$$

$$\frac{1.0}{(4+1)^4}.7\cdot.8\cdot.8\cdot.4 = \tag{1}$$

$$\frac{1.0}{(4+1)^4}.7 \cdot .8 \cdot .8 \cdot .4 = 0.00029 \tag{1}$$

B)

B)
$$\frac{1.0}{(4+1)^4}.7 \cdot .8 \cdot .8 \cdot .4 = \tag{1}$$

$$\frac{1.0}{(4+1)^4}.7 \cdot .8 \cdot .8 \cdot .4 = 0.00029 \tag{1}$$

$$\frac{1.0}{(4+1)^4}.7 \cdot .8 \cdot .8 \cdot .4 = \tag{1}$$

$$\frac{1.0}{(4+1)^4}.7 \cdot .8 \cdot .8 \cdot .4 = 0.00029 \tag{1}$$

D)

$$\frac{1.0}{(4+1)}.7 \cdot .8 \cdot .8 \cdot .4 = \tag{1}$$

D)
$$\frac{1.0}{(4+1)}.7 \cdot .8 \cdot .8 \cdot .4 = 0.14$$

(1)