$$\lim_{x\to 0}\frac{1}{x}=$$

$$\lim_{x\to 0}\frac{1}{x} \text{ neexistuje!}$$

$$\lim_{x\to 0}\frac{1}{x} \text{ neexistuje!}$$

Budeme se dívat na funkci jen z "jedné strany".

Budeme se dívat na funkci jen z "jedné strany".

Jednostranná okolí

Pro $c \in \mathbb{R}$ definujeme pravé prstencové ε -okolí $P_+(c;\varepsilon) = (c;c+\varepsilon)$ a levé prstencové ε -okolí $P_-(c;\varepsilon) = (c-\varepsilon;c)$.

Budeme se dívat na funkci jen z "jedné strany".

Jednostranná okolí

Pro $c \in \mathbb{R}$ definujeme pravé prstencové ε -okolí $P_+(c;\varepsilon) = (c;c+\varepsilon)$ a levé prstencové ε -okolí $P_-(c;\varepsilon) = (c-\varepsilon;c)$.

Definice

Řekneme, že funkce f má v bodě $c \in \mathbb{R}$ limitu zprava rovnu $A \in \mathbb{R}^*$, pokud platí

$$\forall \varepsilon \in \mathbb{R}, \varepsilon > 0 \ \exists \delta \in \mathbb{R}, \delta > 0 \ \forall x \in P_{+}(c; \delta) \colon f(x) \in B(A; \varepsilon).$$

Budeme se dívat na funkci jen z "jedné strany".

Jednostranná okolí

Pro $c \in \mathbb{R}$ definujeme pravé prstencové ε -okolí $P_+(c;\varepsilon) = (c;c+\varepsilon)$ a levé prstencové ε -okolí $P_-(c;\varepsilon) = (c-\varepsilon;c)$.

Definice

Řekneme, že funkce f má v bodě $c \in \mathbb{R}$ limitu zprava rovnu $A \in \mathbb{R}^*$, pokud platí

$$\forall \varepsilon \in \mathbb{R}, \varepsilon > 0 \ \exists \delta \in \mathbb{R}, \delta > 0 \ \forall x \in P_{+}(c; \delta) \colon f(x) \in B(A; \varepsilon).$$

Zapisujeme to $\lim_{x\to c_+} f(x) = A$.

A ještě jednou...

A ještě jednou...

Definice

Řekneme, že funkce f má v bodě $c \in \mathbb{R}$ limitu zleva rovnu $A \in \mathbb{R}^*$, pokud platí

 $\forall \varepsilon \in \mathbb{R}, \varepsilon > 0 \ \exists \delta \in \mathbb{R}, \delta > 0 \ \forall x \in P_{-}(c; \delta) \colon f(x) \in B(A; \varepsilon).$

A ještě jednou...

Definice

Řekneme, že funkce f má v bodě $c \in \mathbb{R}$ limitu zleva rovnu $A \in \mathbb{R}^*$, pokud platí

$$\forall \varepsilon \in \mathbb{R}, \varepsilon > 0 \ \exists \delta \in \mathbb{R}, \delta > 0 \ \forall x \in P_{-}(c; \delta) \colon f(x) \in B(A; \varepsilon).$$

Zapisujeme to $\lim_{x\to c} f(x) = A$.

$\frac{1}{x}$ podruhé

$\frac{1}{x}$ podruhé

$\frac{1}{x}$ podruhé

$$\lim_{x\to\pi/2_-} \operatorname{tg} x = \infty;$$

Odmocnina

Odmocnina

$$\lim_{x \to 0_{-}} \sqrt{x}$$
 neexistuje;

Odmocnina

$$\lim_{x\to 0_{-}} \sqrt{x}$$
 neexistuje;

$$\lim_{x\to 0_+} \sqrt{x} = 0.$$

$$\lim_{x\to 0_-} x^x$$
 neexistuje;

 $\lim_{x\to 0_-} x^x$ neexistuje;

 $\lim_{x\to 0_+} x^x = 1.$

"Signum"

"Signum"

$$\lim_{x \to 0_-} \frac{|x|}{x} = -1;$$

"Signum"

$$\lim_{x\to 0_-}\frac{|x|}{x}=-1; \qquad \lim_{x\to 0_+}\frac{|x|}{x}=1.$$

$$\lim_{x \to 0_{\perp}} \frac{|x|}{x} = 1$$

$$\lim_{x \to 0_{-}} 2^{1/x} = 0;$$

$$\lim_{x\to 0_-}2^{1/x}=0; \qquad \lim_{x\to 0_+}2^{1/x}=\infty.$$

Věta

Věta

Věta

$$\lim_{x \to 0_{-}} \frac{1}{x^{2}} = \infty \wedge \lim_{x \to 0_{+}} \frac{1}{x^{2}} = \infty$$

Věta

$$\lim_{x\to 0_-}\frac{1}{x^2}=\infty \ \land \ \lim_{x\to 0_+}\frac{1}{x^2}=\infty \quad \Leftrightarrow \quad \lim_{x\to 0}\frac{1}{x^2}=\infty$$

Věta

Věta

$$\lim_{x \to 0_{-}} \frac{1}{x} = -\infty \wedge \lim_{x \to 0_{+}} \frac{1}{x} = \infty$$

Věta

$$\lim_{x\to 0_-}\frac{1}{x}=-\infty \ \land \ \lim_{x\to 0_+}\frac{1}{x}=\infty \quad \Rightarrow \quad \lim_{x\to 0}\frac{1}{x} \text{ neexistuje}$$

Mějme dvě funkce f, g, které mají v bodě $c \in \mathbb{R}$ limity zprava:

$$\lim_{x\to c_+} f(x) = A, \qquad \lim_{x\to c_+} g(x) = B.$$

Mějme dvě funkce f, g, které mají v bodě $c \in \mathbb{R}$ limity zprava:

$$\lim_{x\to c_+} f(x) = A, \qquad \lim_{x\to c_+} g(x) = B.$$

Potom:

• Limita zprava funkce f + g v bodě c existuje a je rovna A + B, je-li A + B definováno.

Mějme dvě funkce f, g, které mají v bodě $c \in \mathbb{R}$ limity zprava:

$$\lim_{x\to c_+} f(x) = A, \qquad \lim_{x\to c_+} g(x) = B.$$

- Limita zprava funkce f + g v bodě c existuje a je rovna A + B, je-li A + B definováno.
- Limita zprava funkce $f \cdot g$ v bodě c existuje a je rovna $A \cdot B$, je-li $A \cdot B$ definováno.

Mějme dvě funkce f, g, které mají v bodě $c \in \mathbb{R}$ limity zprava:

$$\lim_{x\to c_+} f(x) = A, \qquad \lim_{x\to c_+} g(x) = B.$$

- Limita zprava funkce f + g v bodě c existuje a je rovna A + B, je-li A + B definováno.
- Limita zprava funkce $f \cdot g$ v bodě c existuje a je rovna $A \cdot B$, je-li $A \cdot B$ definováno.
- Limita zprava funkce $\frac{f}{g}$ v bodě c existuje a je rovna $\frac{A}{B}$, je-li $\frac{A}{B}$ definováno.

Mějme dvě funkce f, g, které mají v bodě $c \in \mathbb{R}$ limity zprava:

$$\lim_{x\to c_+} f(x) = A, \qquad \lim_{x\to c_+} g(x) = B.$$

- Limita zprava funkce f + g v bodě c existuje a je rovna A + B, je-li A + B definováno.
- Limita zprava funkce $f \cdot g$ v bodě c existuje a je rovna $A \cdot B$, je-li $A \cdot B$ definováno.
- Limita zprava funkce $\frac{f}{g}$ v bodě c existuje a je rovna $\frac{A}{B}$, je-li $\frac{A}{B}$ definováno.

$$\lim_{x \to c_+} (f(x) + g(x)) = \lim_{x \to c_+} f(x) + \lim_{x \to c_+} g(x),$$

$$\lim_{x \to c_+} (f(x) \cdot g(x)) = \left(\lim_{x \to c_+} f(x)\right) \cdot \left(\lim_{x \to c_+} g(x)\right),$$

$$\lim_{x \to c_+} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c_+} f(x)}{\lim_{x \to c_+} g(x)}$$

Počítání s limitami počtvrté

Mějme dvě funkce f, g, které mají v bodě $c \in \mathbb{R}$ limity zleva:

$$\lim_{x\to c_{-}} f(x) = A, \qquad \lim_{x\to c_{-}} g(x) = B.$$

- Limita zleva funkce f+g v bodě c existuje a je rovna A+B, je-li A+B definováno.
- Limita zleva funkce $f \cdot g$ v bodě c existuje a je rovna $A \cdot B$, je- $li A \cdot B$ definováno.
- Limita zleva funkce $\frac{f}{g}$ v bodě c existuje a je rovna $\frac{A}{B}$, je-li $\frac{A}{B}$ definováno.

$$\lim_{x \to c_{-}} (f(x) + g(x)) = \lim_{x \to c_{-}} f(x) + \lim_{x \to c_{-}} g(x),$$

$$\lim_{x \to c_{-}} (f(x) \cdot g(x)) = \left(\lim_{x \to c_{-}} f(x)\right) \cdot \left(\lim_{x \to c_{-}} g(x)\right),$$

$$\lim_{x \to c_{-}} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c_{-}} f(x)}{\lim_{x \to c_{-}} g(x)}$$