

TEMA: RADICAIS. GEOMETRIA NO PLANO.

TIPO: FICHA DE REVISÕES N°I

LR MAT EXPLICAÇÕES

 Na figura estão representados dois quadrados, um com 1 cm de lado e outro com 3 cm de lado, e o retângulo [ABCD].

- [AB] é uma diagonal do quadrado menor.
- [BC] é uma diagonal do quadrado maior.

O perímetro, em cm, do retângulo [ABCD] é:

- **(A)** $8\sqrt{2}$
- **(B)** $4\sqrt{3}$
- (C) $2\sqrt{3}$
- **(D)** $5\sqrt{2}$

2. Sejam a e b dois números reais positivos.

A expressão $\frac{\left(a^{-1}\sqrt{b}\right)^3\cdot\left(\sqrt{a^3b^{-2}}\right)}{\sqrt{b^4\sqrt{a^{-2}}}}$ é equivalente a:

- (A) $\sqrt[4]{a^{-7}}$
- (B) $b\sqrt[4]{a^{-7}}$
- (C) $\sqrt[4]{b^{-1}}$
- (D) $\sqrt[4]{a^{-5}}$

- 3. O valor da expressão $\frac{\left(1-\sqrt{3}\right)^2-4}{1-\sqrt{3}}$ é igual a:
 - (A) $\frac{-3+\sqrt{3}}{2}$
- **(B)** $\frac{3+\sqrt{3}}{3}$
- (C) $3 + \sqrt{3}$
- (D) $-\frac{3+\sqrt{3}}{3}$

4. Racionaliza o denominador das seguintes frações:

4.1)
$$\frac{2}{\sqrt[3]{3}}$$

4.2)
$$\frac{\sqrt{7}}{5\sqrt{3}}$$

4.3)
$$\frac{\sqrt{7}+\sqrt{3}}{\sqrt{7}-\sqrt{3}}$$

5. Considera o triângulo [ABC], retângulo em C, tal que $\overline{CA}=3+\sqrt{27}$ e $\overline{CB}=3-\frac{1}{\sqrt{3}}$. Determina a área do triângulo [ABC], apresentando o resultado na forma $a+b\sqrt{c}$, com $a,b,c\in\mathbb{R}$.

6. Simplifica:

6.1)
$$(2\sqrt{5}-3)(2\sqrt{5}+3)-(\sqrt{5}-1)^2$$

6.2)
$$\frac{\sqrt[4]{3\sqrt[3]{2}}}{\sqrt[6]{12}}$$

7. Resolve a seguinte inequação, apresentando a resposta com denominador racional.

$$x\sqrt{8} - 4 = x\sqrt{3} - 2$$

8. Na figura estão representados o retângulo [ABCD] e o quadrado [AEFG].

O ponto E pertence ao segmento da reta [AB] e o ponto G pertence ao segmento de reta [AD].

- $\overline{CD} = \sqrt{5} + 1$
- $\overline{BC} = \sqrt{5} 1$
- $\bullet \quad \overline{AE} = \frac{1}{\sqrt{3}+1}$

Determina o valor da área da figura sombreada.

Apresenta o resultado na forma $a + b\sqrt{c}$, $a, b \in \mathbb{R}$ e $c \in \mathbb{R}^+$.

- 9. Considera, num plano munido de um referencial o.n. x0y, os pontos de coordenadas A(-1,2), B(-3,6) e C(2,-3).
 - 9.1 Determina o valor exato do perímetro do triângulo cujos vértices são A, B e C.
 - **9.2** O triângulo [ABC] é retângulo? Justifica a tua resposta.
 - 9.3 Determina as coordenadas do ponto D, sabendo que o ponto médio de [AD] é C.
 - **9.4** Escreve a equação reduzida da mediatriz do segmento de reta [BC].
 - **9.5** Escreve a equação reduzida da reta *AC* e determina os pontos de interseção da reta com os eixos coordenados.
- **10.** Relativamente a um dado referencial o. n. Oxy, tem-se que A(-1,0) e B(1,-2).

Determine o número real k tal que:

- **10.1** o ponto D(-2, k-5) pertença à reta horizontal que passa pelo ponto A.
- **10.2** o ponto E(3-k,0) pertença à reta que passa pelo ponto B e é paralela à reta x=-3.
- **10.3** o ponto F(2-k, -2k) pertença à bissetriz dos quadrantes ímpares.
- 11. Considera os pontos M(-3,2) e N(-2,1).
 - 11.1 Verifica se o ponto (1,5) pertence à mediatriz de [MN], sem escrever a equação reduzida da mediatriz.
 - 11.2 Escreve uma equação da mediatriz do segmento de reta [MN].
 - 11.3 Determina k de modo que o ponto P(2k, k-1) pertença à mediatriz de [MN].
 - 11.4Determina os pontos de interseção da mediatriz com os eixos coordenados.

12. Na figura está representado, em referencial o. n. Oxy, um triângulo [ABO], tal que $\overline{AB} = \overline{BO}$. O ponto A tem coordenadas (5,0) e o perímetro do triângulo é igual a 18.

- **12.1** Determine as coordenadas do ponto B.
- 12.2 Calcule a área do triângulo [ABO]..
- **12.3**Escreva uma condição que defina a reta que passa em B e é paralela ao eixo Ox.
- 12.4 Determine uma equação da mediatriz do segmento de reta [AB].
- 13. Num plano munido de um referencial ortonormado considera os pontos:

$$A(3,4)$$
, $B(3,-6)$, $C(0,4)$

- 13.1 Determina a equação reduzida da mediatriz de:
 - (a) [AB]
- (b) [BC]
- 13.2 Relativamente à circunferência que contém os pontos A, B e C, determina:
 - (a) as coordenadas do centro;
 - (b) o raio;
 - (c) a equação reduzida.
- 14. Num plano munido de um referencial ortonormado x0y considera os pontos A(1,0), B(2,5) e C(3,4).
 - 14.1 Escreve a equação reduzida da circunferência que tem por diâmetro o segmento de reta:
 - (a) [*AB*]
- (b) [*BC*]
- 14.2 Escreve a equação reduzida da circunferência que tem centro em C e raio \overline{AB} .
- 15. Num plano munido de um referencial ortonormado considera o conjunto de pontos definidos pela condição $x^2 + 2x + y^2 1 = 0$. Mostra que se trata de uma circunferência de centro C(-1,0) e raio $\sqrt{2}$.
- **16.** Num plano munido de um referencial ortonormado considera os pontos E e F, sendo E(-2,2) e F(0,4).
 - **16.1** Determina as coordenadas do ponto interseção da mediatriz de [*EF*] com o eixo:
 - (a) das abcissas;
 - (b) das ordenadas.
 - **16.2**Determina k de modo que $\left(\frac{k}{2}, k+1\right)$ pertença à mediatriz de [EF].

- **17.** Escreve a equação reduzida da circunferência que, num plano munido de um referencial ortonormado, satisfaz as condições seguintes.
 - 17.1 Centro no ponto (2,2) e é tangente aos eixos coordenados.
 - **17.2**Centro no ponto (3, -2) e passa pela origem do referencial.
 - 17.3 Centro no ponto (-4,3) e é tangente à reta de equação x=-2.
- **18.** Num plano munido de um referencial ortonormado, considera a circunferência de equação $x^2 + y^2 2x 2y 6 = 0$ e um quadrado inscrito nessa circunferência.

Mostra que a área da parte colorida da figura é $(8\pi-16)$ u.a.

- 19. Num referencial ortonormado 0xy considerada as equações do tipo: $x^2 + y^2 6y = k, k \in \mathbb{R}$
 - 19.1 Para que valor de k a equação dada representa uma circunferência?
 - 19.2 Determina k de modo que a circunferência seja tangente ao eixo das abcissas.
 - **19.3** Considera k = 16.

Escreve as equações das retas que contêm os lados do quadrado circunscrito à circunferência obtida.

20. Na figura está representada num referencial ortonormado x0y a reta de equação 5x + 4y = 20. Os pontos A e B pertencem ao eixo 0x e ao eixo 0y, respetivamente. O valor exato do perímetro do triângulo [0AB] é:

(A)
$$9 + \sqrt{41}$$

(B)
$$9 + \sqrt{50}$$

(D)
$$10 + \sqrt{41}$$

21. Na figura está representada uma circunferência que passa na origem do referencial e que tem o centro num ponto da bissetriz do quarto quadrante.

(A)
$$(x-1)^2 + (y+1)^2 = 2$$

(B)
$$(x-1)^2 + (y+1)^2 = \sqrt{2}$$

(C)
$$(x+1)^2 + (y-1)^2 = 2$$

(D)
$$(x-1)^2 + (y+1)^2 = 1$$

- **22.** Considera, num referencial ortonormado xOy, os pontos A(2, -4), B(10,0) e C(3,4).
 - **22.1** Determina a equação reduzida da mediatriz do segmento de reta [AB].
 - **22.2** Determina as coordenadas do ponto M, ponto médio de [AB].
 - **22.3** Verifica que o ponto C pertence à mediatriz de [AB].
 - 22.4 Justifica que o triângulo [ABC] é isósceles.
 - **22.5** Determina a área do triângulo [ABC].

- 23. Considera, num referencial ortonormado x0y, os pontos A(7,3), B(1,11) e C(-2,15).
 - **23.1** Determina \overline{AB} e \overline{BC} .
 - 23.2 Mostra que o ponto C pertence à reta AB.
 - 23.3 Determina a equação reduzida da mediatriz do segmento de reta [AB].
 - **23.4** Seja D o ponto do eixo Oy equidistante de A e B.
 - (a) Indica as coordenadas de D.
 - (b) Escreve a equação reduzida da circunferência C_1 , de centro D e raio \overline{DA} .
 - (c) Justifica, sem fazer cálculos, que o ponto B é um ponto da circunferência \mathcal{C}_1 mas que o ponto C não lhe pertence.

- (a) Escreve a equação reduzida da circunferência C_2 , de centro D e raio \overline{DM} .
- (b) Justifica que a reta AB é tangente à circunferência no ponto M.
- **23.6** Determina a área da coroa circular definida pelas circunferências C_1 e C_2 .

• a reta horizontal que passa pelo ponto (0,5).

Define por uma condição o conjunto de pontos assinalado a sombreado.

D

- **25.** Na figura seguinte estão representados num referencial ortonormado x0y:
 - a reta AB e a reta AC, sendo A(3,3), B(1,0) e C(0,3).
 - o ponto de interseção da reta AB com o eixo 0y, ponto D.
 - **25.1** Define, por meio de uma condição, o conjunto de pontos assinalados a sombreado na figura.

- (a) a área do trapézio [OBAC];
- (b) a área do triângulo [CDA].

- **26.** Na figura seguinte estão representadas em referencial ortonormado x0y:
 - a circunferência de centro C(-1, -3) e que passa pelo ponto O(0,0);
 - a reta AB, sendo A(5,0) e B o ponto de interseção da circunferência com o eixo Oy.

Define por meio de uma condição o conjunto de pontos assinalados a sombreado na figura.

27. Na figura está representada, em referencial ortonormado x0y, uma circunferência de centro no ponto $\mathcal{C}(2,1)$ e que passa pela origem do referencial. Qual das condições seguintes define o conjunto de pontos a sombreado, incluindo a fronteira?

(A)
$$(x-2)^2 + (y-1)^2 \le 5 \land y \le 0 \land x \le 0$$

(B)
$$[(x-2)^2 + (y-1)^2 \le 5 \land y \le 0] \lor [(x-2)^2 + (y-1)^2 \le 5 \land x < 0]$$

(C)
$$(x-2)^2 + (y-1)^2 \le 5 \land x \le 0 \lor y \le 0$$

(D)
$$(x-2)^2 + (y-1)^2 \le 5 \land (x \le 0 \lor y \le 0)$$

- 28. Na figura ao lado, está representada, num referencial o.n. x0y, a reta AB. Sabe-se que:
 - o ponto A pertence ao semieixo negativo Ox e o ponto B pertence ao semieixo positivo 0y;
 - a reta AB tem equação y = 2x + 4.

Seja M o ponto médio do segmento de reta [AB].

Quais são as coordenadas do ponto M?

(A)
$$\left(-\frac{1}{2}, 2\right)$$

(A)
$$\left(-\frac{1}{2}, 2\right)$$
 (B) $(-1,2)$ (C) $\left(-\frac{1}{4}, \frac{1}{2}\right)$ (D) $(-2,4)$

29. Considera a condição $(x+1)^2 + (y-1)^2 \le 2 \land x \ge 0$.

Em qual das opções seguintes está representado, em referencial o.n. x0y, o conjunto de pontos definido por esta condição?

