Habitat Fragmentation

Connectivity/ Landscape Genetics

- Genetic connectivity
- Demographic connectivity

Key themes:

- 1. Infer underlying ecological processes, such as dispersal or disease transmission.
- 2. Understanding how landscape characteristics affect evolutionary processes

Connectivity - definitions

- 1. Genetic connectivity Degree to which gene flow affects evolutionary processes
- 2. Demographic connectivity Degree to which individual movements influence demography.

Useful References

Genetic variation and a hierarchy of biodiversity

Research themes

Biogeography / speciation (species and above)

genetic structure
/phylogeography

Paternity / relatedness (individual / social groups)

Different analyses address different time scales

- 1/ Genotypic analyses are based on DNA 'signatures' of individual organisms that are reshuffled in every generation of a sexual species
- 2/ *Genic analyses*, where the focus is on frequencies of genetic variants in grouped samples, not individuals. Gene frequencies change more slowly than the generational shuffling of genotypes measures ongoing restriction of mobility and gene flow
- 3/ Genealogical analyses, A new variant arises at a point in time and space, and will come to be distributed over landscapes according to gene flow, drift and extinction slow process and therefore can detect processes far back in time

Analyzing groups of individuals

Within Patches

- Levels of genetic variation
- Level of inbreeding
- Effective population size (N_e)

Between Patches

- Degree of genetic differentiation
- Measures of gene flow and/or dispersal

F-statistics

Inbreeding and drift both decrease heterozygosity and increase homozygosity. But:

- inbreeding impacts at the individual level
- drift impacts at the group level (population)

Total population variation can be partitioned into differentiation among individuals within populations and differences among populations

F-statistics measure level of heterozygosity relative to HWE expectations at different hierarchical levels:

 F_{IS} : within patches

 F_{ST} : among patches

 F_{IS} is a measure of inbreeding 'within a patch'

- 1 Ho (within pop)/He (all samples)
- ranges from -1 to +1
- positive: excess of homozygotes
- negative: excess of heterozygotes
- At HWE F_{IS} is 0

F_{ST} is a measure of genetic subdivision

- 1- He (of fragment)/He (Total)
- ranges from -1 to +1 \bigcirc
- measures the proportional reduction in heterozygosity of the entire network of subpopulations relative to HWE (due to differentiation among subpopulations)
- large: at least some subpopulations have different allele frequencies
- small or 0: subpopulations have similar allele frequencies

F_{ST} contributions of the subpops A, B, C, D to this would be...
A. Large - subpop A has very different allele freqs. compared to the others
B. Little - subpop B has similar allele freqs. to C & D C. Little - same reasons as B despite inbreeding in C D. Little - same reasons as B despite two inbred groups in D

F_{ST} and F_{IS} can operate separately...

Scenario 1

F IS low, because each subpop is not far from HWE.

F_{ST} is high, because the allele freqs. in each subop are very different:

- A is fixed for red
- B has high freq blue
- C has equal freqs
- D is fixed for blue

F_{ST} and F_{IS} can operate separately...

Scenario 2

F_{IS} very high, because the reds and blues appear not to interbreed - there are no heterozygotes even though reds and blues live together

F_{ST} very low, because there are few differences among the subpops A, B, C, D. All have reds and blues

The importance of the spatial scale of sampling ...

"Wahlund Effect"
reduction of heterozygosity in a population caused by genetic structure

	F_{IS}	Contribution to F_{ST}
Sampling scale		<u>•</u>
D as one unit	large +(ve)	very little
D split into 2	~ 0	very large

Relationship between F_{ST} and Ne

Interpreting F-statistics

Generalizations about the biological meaning of F_{ST}

Table 2 Definitions for three types of genetic connectivity. The values for m, Nm, and F_{ST} are the approximate values associated with each type of connectivity with the island model of migration. The actual values for each parameter will differ with other models of population structure

	Adaptive connectivity	Inbreeding connectivity	Drift connectivity	
Criterion	Sufficient gene flow to spread advantageous alleles	Sufficient gene flow to avoid harmful effects of local inbreeding	Sufficient gene flow to maintain similar allele frequencies	
m	?	?	?	
Nm	>0.1	>1.0	>10	
F_{ST}	< 0.35	< 0.20	<0.02	

Lowe and Allendorf 2010

Fig. 14.12 Isolation by distance. Relationship between degree of genetic differentiation (F_{ST}) at microsatellite loci and geographic distance among bighorn sheep, brown bear and gray wolf populations in North America (after Forbes & Hogg 1999). F_{ST} increases with distance in all three species.

Measuring landscape effects on gene flow

Can be characterised as:

Least Cost Path: A distance measure of the path of 'least resistance' i.e. the easiest

Resistance: degrees to which the environment impedes movement – accumulates with geographic distance

Balkenhol et al. landscape Genetics 2016

Demographic Connectivity

Measuring dispersal at the scales required can be problematic

Genotypic Approaches

Direct Measures of Migration Rate Between Fragments

Assignment Tests

likelihood-based technique

- 1. assume HWE
- 2. calculate population allele frequencies
- 3. compute the likelihood of an individual multi-locus genotype belonging to each population in a candidate set of populations
- 4. assigns that individual to the population where the likelihood of its genotype is the highest

		Same Location	Movement > 11m	Median distance (Range)
Parentage*	Sib	184	1	48m
	Father	17	3	70m (22-170)
	Mother	33	0	-
Recapture	Imm	85	2	20m (18-22)
_	3	16	7	43m (15-200)
	2	17	1	40m

If sampling is sufficient then dispersal can be characterized by the distribution of parent-offspring pairs

Next – maintaining genetic variation

