ACM Transactions on Information Systems (January 1996)

An Extension of Ukkonen's Enhanced Dynamic Programming ASM Algorithm

Hal Berghel

University of Arkansas

David Roach

Acxiom Corporation

Outline

- Introduction
 - Problem definition
 - Classic dp approach
- Observations
- Algorithms
- Analysis
- Conclusion

Introduction

- Problem definition
- Classic dp approach

Problem Definition

Approximate string matching ASM

 A class of techniques that associate strings of symbols with one another on the basis of some criterion of similarity. Positional, ordinal, material...

Edit distance

 the minimum number of basic editing operations that can transform one string into the other

- Edit operations
 - Deletion
 - Insertion
 - Substitution
 - Transposition

	λ	Α	В	С	D	Ε
λ	0	1	2	3	4	5
Χ	1	1	2	3	4	5
Α	2	1	2	3	4	5
Χ	3	2	2	3	4	5
Ε	4	3	3	3	4	4
D	5	4	4	4	3	4

- Edit operations
 - Deletion
 - Insertion
 - Substitution
 - Transposition

	λ	Α	В	С	D	Ε
λ	0	1	2	3	4	5
Χ	1	1	2	3	4	5
Α	2	1	2	3	4	5
Χ	3	2	2	3	4	5
Ε	4	3	3	3	4	4
D	5	4	4	4	3	4

- Edit operations
 - Deletion
 - Insertion
 - Substitution
 - Transposition

	λ	Α	В	С	D	Ε
λ	0	1	2	3	4	5
Χ	1	1_	2	3	4	5
Α	2	1	2	3	4	5
Χ	3	2	2	3	4	5
E	4	3	3	3	4	4
D	5	4	4	4	3	4

- Edit operations
 - Deletion
 - Insertion
 - Substitution
 - Transposition

	λ	Α	В	С	D	Ε
λ	0	1	2	3	4	5
Χ	1	1_	2	3	4	5
Α	2	1	2	3	4	5
Χ	3	2	2	3	4	5
E	4	3	3	3	4	4
D	5	4	4	4	3-	4

- Edit operations
 - Deletion
 - Insertion
 - Substitution
 - Transposition

	λ	Α	В	С	D	Ε
λ	0	1	2	3	4	5
Χ	1	1	2	3	4	5
Α	2	1	2	3	4	5
Χ	3	2	2	3	4	5
Е	4	3	3	3.	4	4
D	5	4	4	4	3	4

- Edit operations
 - Deletion
 - Insertion
 - Substitution
 - Transposition

	λ	Α	В	С	D	Ε
λ	0	1	2	3	4	5
Χ	1	1_	2	3	4	5
Α	2	1	2	3	4	5
Χ	3	2	2	3	4	5
E	4	3	3	3	4	4
D	5	4	4	4	3	4

- Edit operations
 - Deletion
 - Insertion
 - Substitution
 - Transposition
- 10/36 numbers actually contribute to edit path

	λ	Α	В	С	D	Е
λ	0	1	2	3	4	5
Χ	1	1_	2	3	4	5
Α	2	1_	2	3	4	5
Χ	3	2	2	3	4	5
Е	4	3	3	3	4	4
D	5	4	4	4	3	>4

Diagonal

	λ	Α	В	С	D	Ε
λ						
Χ						
Α						
Χ						
Ε						
D						

Diagonal

- Diagonal
 - k-th diagonal k = j-i

- Diagonal
 - k-th diagonal k = j-i
- Observations

- Diagonal
 - k-th diagonal k = j-i
- Observations
 - Nondecreasing

- Diagonal
 - k-th diagonal k = j-i
- Observations
 - Nondecreasing

$$d(i,j) - 1 \le d(i-1,j-1) \le d(i,j)$$

- Diagonal
 - k-th diagonal k = j-i
- Observations
 - Nondecreasingd(i,j) 1 ≤ d(i-1,j-1) ≤ d(i,j)
 - Cross diagonal cost

Cost increases by 1 when edit path goes cross from a diagonal to an adjacent diagonal

- Diagonal
 - k-th diagonal k = j-i
- Observations
 - Nondecreasingd(i,j) 1 ≤ d(i-1,j-1) ≤ d(i,j)
 - Cross diagonal cost

Cost increases by 1 when edit path goes cross from a diagonal to an adjacent diagonal

- Diagonal
 - k-th diagonal k = j-i
- Observations
 - Nondecreasingd(i,j) 1 ≤ d(i-1,j-1) ≤ d(i,j)
 - Cross diagonal cost

Cost increases by 1 when edit path goes cross from a diagonal to an adjacent diagonal

- Diagonal
 - k-th diagonal k = j-i
- Observations
 - Nondecreasingd(i,j) 1 ≤ d(i-1,j-1) ≤ d(i,j)
 - Cross diagonal cost

$$d' \ge d + |k' - k|$$

- Diagonal
 - k-th diagonal k = j-i
- Observations
 - Nondecreasing $d(i,j) - 1 \le d(i-1,j-1) \le d(i,j)$
 - Cross diagonal cost $d' \ge d + |k' - k|$

$$d \ge d + |0 - -2|$$
$$\ge d + 2$$

- Diagonal
 - k-th diagonal k = j-i
- Observations
 - Nondecreasing $d(i,j) 1 \le d(i-1,j-1) \le d(i,j)$
 - Cross diagonal cost
 d' ≥ d + |k' k|

- Diagonal
 - k-th diagonal k = j-i
- Observations
 - Nondecreasing $d(i,j) 1 \le d(i-1,j-1) \le d(i,j)$
 - Cross diagonal cost
 d' ≥ d + |k' k|

- Diagonal
 - k-th diagonal k = j-i
- Observations
 - Nondecreasing $d(i,j) 1 \le d(i-1,j-1) \le d(i,j)$
 - Cross diagonal cost
 d' ≥ d + |k' k|

- Diagonal
 - k-th diagonal k = j-i
- Observations
 - Nondecreasing $d(i,j) 1 \le d(i-1,j-1) \le d(i,j)$
 - Cross diagonal cost
 d' ≥ d + |k' k|

- Diagonal
 - k-th diagonal k = j-i
- Observations
 - Nondecreasing $d(i,j) 1 \le d(i-1,j-1) \le d(i,j)$
 - Cross diagonal cost
 d' ≥ d + |k' k|

- Diagonal
 - k-th diagonal k = j-i
- Observations
 - Nondecreasingd(i,j) 1 ≤ d(i-1,j-1) ≤ d(i,j)
 - Cross diagonal cost
 d' ≥ d + |k' k|

- Diagonal
 - k-th diagonal k = j-i
- Observations
 - Nondecreasingd(i,j) 1 ≤ d(i-1,j-1) ≤ d(i,j)
 - Cross diagonal cost
 d' ≥ d + |k' k|

- Diagonal
 - k-th diagonal k = j-i
- Observations
 - Nondecreasing $d(i,j) 1 \le d(i-1,j-1) \le d(i,j)$
 - Cross diagonal cost
 d' ≥ d + |k' k|

- Diagonal
 - k-th diagonal k = j-i
- Observations
 - Nondecreasing $d(i,j) 1 \le d(i-1,j-1) \le d(i,j)$
 - Cross diagonal cost
 d' ≥ d + |k' k|

Algorithms

- Basic Idea
 - Way of storing

Basic Idea

Way of storing

f(k,d) the row of the last appearance of a value d on the k-th diagonal, which tells where the value increases.

Basic Idea

Way of storing

f(k,d) the row of the last appearance of a value d on the k-th diagonal, which tells where the value increases.

• Basic Idea

Way of storing

f(k,d) the row of the last appearance of a value d on the k-th diagonal, which tells where the value increases.

• Basic Idea

Way of storing

f(k,d) the row of the last appearance of a value d on the k-th diagonal, which tells where the value increases.

Basic Idea

Way of storing

f(k,d) the row of the last appearance of a value d on the k-th diagonal, which tells where the value increases.

Basic Idea

Way of storing

f(k,d) the row of the last appearance of a value d on the k-th diagonal, which tells where the value increases.

Basic Idea

Way of storing

f(k,d) the row of the last appearance of a value d on the k-th diagonal, which tells where the value increases.

Basic Idea

Way of storing

f(k,d) the row of the last appearance of a value d on the k-th diagonal, which tells where the value increases.

Basic Idea

Way of storing

f(k,d) the row of the last appearance of a value d on the k-th diagonal, which tells where the value increases.

Basic Idea

Way of storing

f(k,d) the row of the last appearance of a value d on the k-th diagonal, which tells where the value increases.

Basic Idea

Way of storing

f(k,d) the row of the last appearance of a value d on the k-th diagonal, which tells where the value increases.

Basic Idea

Way of storing

f(k,d) the row of the last appearance of a value d on the k-th diagonal, which tells where the value increases.

- Basic Idea
 - Way of storing

f(k,d) the row of the last appearance of a value d on the k-th diagonal, which tells where the value increases.

Calculate f(k,d) in dp style

$$f(n-m,d) = m$$

9/11/2013 50

- Basic Idea
 - Way of storing

f(k,d) the row of the last appearance of a value d on the k-th diagonal, which tells where the value increases.

Calculate f(k,d) in dp style

$$f(n-m,d) = m$$

$$f(0,4) = 5$$

• f(k,d)

$$f(0,2) = {?}$$

• f(k,d)

$$f(0,2) = \{f(0,1) + 1$$

• f(k,d)

$$f(0,2) = \begin{cases} f(0,1) + 1 \\ f(-1,1) \end{cases}$$

• f(k,d)

$$i=\max \left\{ \begin{array}{l} f(k,d-1)+1 \\ f(k-1,d-1) \end{array} \right.$$

$$f(0,2) = \begin{cases} f(0,1) + 1 \\ f(-1,1) \end{cases}$$

• f(k,d)

$$\operatorname{i=max} \left\{ \begin{array}{l} f(k,d-1)+1 \\ f(k-1,d-1) \end{array} \right.$$

$$f(0,4) = {?}$$

• f(k,d)

$$i=\max \left\{ \begin{array}{l} f(k,d-1)+1 \\ f(k-1,d-1) \end{array} \right.$$

$$f(0,4) = \{f(-1,3)\}$$

• f(k,d)

i=max
$$\begin{cases} f(k, d-1) + 1/2 \\ f(k-1, d-1) \end{cases}$$

$$f(0,4) = \begin{cases} f(-1,3) \\ f(0,3) + 2 \end{cases}$$

• f(k,d)

i=max
$$\begin{cases} f(k, d-1) + 1/2 \\ f(k-1, d-1) \end{cases}$$

59

$$f(-1,1) = \{?$$

• f(k,d)

i=max
$$\begin{cases} f(k, d-1) + 1/2 \\ f(k-1, d-1) \\ (k+1, d-1) + 1 \end{cases}$$

$$f(-1,1) = \{f(0,0) + 1\}$$

• f(k,d)

$$f(-1,1) = 1$$
?

• f(k,d)

$$f(-1,1) = 1$$
?

• f(k,d)

$$\begin{aligned} & \inf \left\{ \begin{array}{l} f(k,d-1) + 1/2 \\ f(k-1,d-1) \\ f(k+1,d-1) + 1 \end{array} \right. \\ & \text{while} \big(\mathsf{A}_{\mathsf{i+1}} = \mathsf{B}_{\mathsf{i+1+k}} \big) \\ & \text{i++;} \end{aligned}$$

f(-1,1) = 2?

• f(k,d)

$$f(-1,1) = 2$$
?

• f(k,d)

$$i=\max \begin{cases} f(k,d-1)+1/2\\ f(k-1,d-1)\\ f(k+1,d-1)+1 \end{cases}$$
 while (A_{i+1}=B_{i+1+k})
 i++;
 f(k,d) = i

$$f(-1,1) = 2$$

• f(k,d)

$$i=\max \begin{cases} f(k,d-1)+1/2\\ f(k-1,d-1)\\ f(k+1,d-1)+1 \end{cases}$$
 while (A_{i+1}=B_{i+1+k})
 i++;
 f(k,d) = i

dp

dp

$$f(k,d): \begin{cases} f(k,d-1) \\ f(k-1,d-1) \\ f(k+1,d-1) \end{cases}$$

• dp

$$f(k,d): \begin{cases} f(k,d-1) \\ f(k-1,d-1) \\ f(k+1,d-1) \end{cases}$$

+2

+1

0

-1

-2

• dp

$$f(k,d): \begin{cases} f(k,d-1) \\ f(k-1,d-1) \\ f(k+1,d-1) \end{cases}$$

+2

+1

0

-1

-2

dp

$$f(k,d): \begin{cases} f(k,d-1) \\ f(k-1,d-1) \\ f(k+1,d-1) \end{cases}$$

+2	f(+2,0)	f(+2,1)	f(+2,2)	f(+2,3)	f(+2,4)
+1	f(+1,0)	f(+1,1)	f(+1,2)	f(+1,3)	f(+1,4)
0	f(0,0)	f(0,1)	f(0,2)	f(0,3)	f(0,4)
-1	f(-1,0)	f(-1,1)	f(-1,2)	f(-1,3)	f(-1,4)
-2	f(-2,0)	f(-2,1)	f(-2,2)	f(-2,3)	f(-2,4)
	d=0	d=1	d=2	d=3	d=4

dp

$$f(k,d): \begin{cases} f(k,d-1) \\ f(k-1,d-1) \\ f(k+1,d-1) \end{cases}$$

+2	f(+2,0)	f(+2,1)			
+1	f(+1,0)				
0					
-1	f(-1,0)				
-2	f(-2,0)	f(-2,1)			
	d=0	d=1	d=2	d=3	d=4

dp

$$f(k,d): \begin{cases} f(k,d-1) \\ f(k-1,d-1) \\ f(k+1,d-1) \end{cases}$$

+2	f(+2,0)	f(+2,1)			
+1	f(+1,0)				
0	f(0,0)				
-1	f(-1,0)				
-2	f(-2,0)	f(-2,1)			
	d=0	d=1	d=2	d=3	d=4

73

dp

$$f(k,d): \begin{cases} f(k,d-1) \\ f(k-1,d-1) \\ f(k+1,d-1) \end{cases}$$

+2	f(+2,0)	f(+2,1)			
+1	f(+1,0)				
0	f(0,0)	f(0,1)			
-1	f(-1,0)				
-2	f(-2,0)	f(-2,1)			
	d=0	d=1	d=2	d=3	d=4

dp

$$f(k,d): \begin{cases} f(k,d-1) \\ f(k-1,d-1) \\ f(k+1,d-1) \end{cases}$$

+2	f(+2,0)	f(+2,1)			
+1	f(+1,0)				
0	f(0,0)	f(0,1)			
-1	f(-1,0)	f(-1,1)			
-2	f(-2,0)	f(-2,1)			
	d=0	d=1	d=2	d=3	d=4

75

dp

$$f(k,d): \begin{cases} f(k,d-1) \\ f(k-1,d-1) \\ f(k+1,d-1) \end{cases}$$

+2	f(+2,0)	f(+2,1)			
+1	f(+1,0)	f(+1,1)			
0	f(0,0)	f(0,1)			
-1	f(-1,0)	f(-1,1)			
-2	f(-2,0)	f(-2,1)			
	d=0	d=1	d=2	d=3	d=4

• dp

$$f(k,d): \begin{cases} f(k,d-1) \\ f(k-1,d-1) \\ f(k+1,d-1) \end{cases}$$

+2	f(+2,0)	f(+2,1)			
+1	f(+1,0)	f(+1,1)			
0	f(0,0)	f(0,1)	f(0,2)		
-1	f(-1,0)	f(-1,1)			
-2	f(-2,0)	f(-2,1)			
	d=0	d=1	d=2	d=3	d=4

• dp

$$f(k,d): \begin{cases} f(k,d-1) \\ f(k-1,d-1) \\ f(k+1,d-1) \end{cases}$$

+2	f(+2,0)	f(+2,1)			
+1	f(+1,0)	f(+1,1)			
0	f(0,0)	f(0,1)	f(0,2)		
-1	f(-1,0)	f(-1,1)	f(-1,2)		
-2	f(-2,0)	f(-2,1)			
	d=0	d=1	d=2	d=3	d=4

dp

$$f(k,d): \begin{cases} f(k,d-1) \\ f(k-1,d-1) \\ f(k+1,d-1) \end{cases}$$

+2	f(+2,0)	f(+2,1)			
+1	f(+1,0)	f(+1,1)	f(+1,2)		
0	f(0,0)	f(0,1)	f(0,2)		
-1	f(-1,0)	f(-1,1)	f(-1,2)		
-2	f(-2,0)	f(-2,1)			
	d=0	d=1	d=2	d=3	d=4

• dp

$$f(k,d): \begin{cases} f(k,d-1) \\ f(k-1,d-1) \\ f(k+1,d-1) \end{cases}$$

+2	f(+2,0)	f(+2,1)			
+1	f(+1,0)	f(+1,1)	f(+1,2)		
0	f(0,0)	f(0,1)	f(0,2)	f(0,3)	
-1	f(-1,0)	f(-1,1)	f(-1,2)		
-2	f(-2,0)	f(-2,1)			
	d=0	d=1	d=2	d=3	d=4

• dp

$$f(k,d): \begin{cases} f(k,d-1) \\ f(k-1,d-1) \\ f(k+1,d-1) \end{cases}$$

+2	f(+2,0)	f(+2,1)			
+1	f(+1,0)	f(+1,1)	f(+1,2)		
0	f(0,0)	f(0,1)	f(0,2)	f(0,3)	
-1	f(-1,0)	f(-1,1)	f(-1,2)		
-2	f(-2,0)	f(-2,1)	f(-2,2)		
	d=0	d=1	d=2	d=3	d=4

• dp

$$f(k,d): \begin{cases} f(k,d-1) \\ f(k-1,d-1) \\ f(k+1,d-1) \end{cases}$$

+2	f(+2,0)	f(+2,1)	f(+2,2)		
+1	f(+1,0)	f(+1,1)	f(+1,2)		
0	f(0,0)	f(0,1)	f(0,2)	f(0,3)	
-1	f(-1,0)	f(-1,1)	f(-1,2)		
-2	f(-2,0)	f(-2,1)	f(-2,2)		
	d=0	d=1	d=2	d=3	d=4

• dp

$$f(k,d): \begin{cases} f(k,d-1) \\ f(k-1,d-1) \\ f(k+1,d-1) \end{cases}$$

+2	f(+2,0)	f(+2,1)	f(+2,2)		
+1	f(+1,0)	f(+1,1)	f(+1,2)		
0	f(0,0)	f(0,1)	f(0,2)	f(0,3)	
-1	f(-1,0)	f(-1,1)	f(-1,2)	f(-1,3)	
-2	f(-2,0)	f(-2,1)	f(-2,2)		
	d=0	d=1	d=2	d=3	d=4

dp

$$f(k,d): \begin{cases} f(k,d-1) \\ f(k-1,d-1) \\ f(k+1,d-1) \end{cases}$$

+2	f(+2,0)	f(+2,1)	f(+2,2)		
+1	f(+1,0)	f(+1,1)	f(+1,2)	f(+1,3)	
0	f(0,0)	f(0,1)	f(0,2)	f(0,3)	
-1	f(-1,0)	f(-1,1)	f(-1,2)	f(-1,3)	
-2	f(-2,0)	f(-2,1)	f(-2,2)		
	d=0	d=1	d=2	d=3	d=4

dp

$$f(k,d): \begin{cases} f(k,d-1) \\ f(k-1,d-1) \\ f(k+1,d-1) \end{cases}$$

+2	f(+2,0)	f(+2,1)	f(+2,2)		
+1	f(+1,0)	f(+1,1)	f(+1,2)	f(+1,3)	
0	f(0,0)	f(0,1)	f(0,2)	f(0,3)	f(0,4)
-1	f(-1,0)	f(-1,1)	f(-1,2)	f(-1,3)	
-2	f(-2,0)	f(-2,1)	f(-2,2)		
	d=0	d=1	d=2	d=3	d=4

• dp

$$f(k,d): \begin{cases} f(k,d-1) \\ f(k-1,d-1) \\ f(k+1,d-1) \end{cases}$$

+2	f(+2,0)	f(+2,1)	f(+2,2)		
+1	f(+1,0)	f(+1,1)	f(+1,2)	f(+1,3)	
0	f(0,0)	f(0,1)	f(0,2)	f(0,3)	f(0,4)
-1	f(-1,0)	f(-1,1)	f(-1,2)	f(-1,3)	
-2	f(-2,0)	f(-2,1)	f(-2,2)		
	d=0	d=1	d=2	d=3	d=4

• f(k,d) entries \Rightarrow space and time complexity

• f(k,d) entries \Rightarrow space and time complexity

	-1	0	1	2	3	4	5
3	-∞	-∞	-∞	-1			
2	-∞	-∞	-1				
1	-∞	-1					
0	-1						
-1	-∞	0					
-2	-∞	-∞	1				
-3	-∞	-∞	-∞	2			

• f(k,d) entries \Rightarrow space and time complexity

	-1	0	1	2	3	4	5
3	-∞	-∞	-∞	-1			
2	-∞	-∞	-1	0	1		
1	-∞	-1	0	1	2	3	
0	-1	0	1	2	3	4	5
-1	-∞	0	1	2	3	4	
-2	-∞	-∞	1	2	3		
-3	-∞	-∞	-∞	2			

• f(k,d) entries \Rightarrow space and time complexity

	-1	0	1	2	3	4	5
3	-∞	-∞	-∞	-1			
2	-∞	-∞	-1	0	1		
1	-∞	-1	0	1	2	3	
0	-1	0	1	2	3	4	5
-1	-∞	0	1	2	3	4	
-2	-∞	-∞	1	2	3		
-3	-∞	-∞	-∞	2			

	λ	F	G	Н	I	J
λ	0	1	2			
Α	1	1	2	3		
В	2	2	2	3		
С		3	3	3	4	
D				4	4	
Ε						5

$$D = 5$$

$$K = 0$$

• f(k,d) entries \Rightarrow space and time complexity

	-1	0	1	2	3	4	5	
3	-∞	-∞	-∞	-1				
2	-∞	-∞	-1	0	1			
1	-∞	-1	0	1	2	3		
0	-1	0	1	2	3	4	5	M
-1	-∞	0	1	2	3	4		
-2	-∞	-∞	1	2	3			
-3	-∞	-∞	-∞	2				

f(k,0) upto f(k,D)

$$M = D + 1$$
 $D = 5$ $K = 0$

• f(k,d) entries \Rightarrow space and time complexity

f(k,1) upto f(k,D-1)

$$M = D + 1$$
 $D = 5$ $K = 0$

• f(k,d) entries \Rightarrow space and time complexity

	λ	F	G	Н	I	J
λ	0	1	2			
Α	1	1	2	3		
В	2	2	2	3		
С		3	3	3	4	
D				4	4	
Ε						5

$$f(k,2)$$
 upto $f(k,D-2)$

$$M = D + 1$$
 $D = 5$ $K = 0$

• f(k,d) entries \Rightarrow space and time complexity

	-1	0	1	2	3	4	5	
3	-00	-∞	-∞	-1				
2	-∞	-∞	-1	0	1			M-2-2
1	-∞	-1	0	1	2	3		M-2
0	-1	0	1	2	3	4	5	M
-1	-00	0	1	2	3	4		M-2
-2	-00	-∞	1	2	3			M-2-2
-3	-∞	-∞	-∞	2				

 λ
 F
 G
 H
 I
 J

 λ
 0
 1
 2

 A
 1
 1
 2
 3

 B
 2
 2
 2
 3

 C
 3
 3
 3
 4

 D
 4
 4

 E
 5

$$M = D + 1$$
 $D = 5$ $K = 0$

• f(k,d) entries \Rightarrow space and time complexity

	-1	0	1	2	3	4	5	
3	-00	-∞	-∞	-1				
2	-∞	-∞	-1	0	1			M-2-2
1	-∞	-1	0	1	2	3		M-2
0	-1	0	1	2	3	4	5	M
-1	-00	0	1	2	3	4		M-2
-2	-00	-∞	1	2	3			M-2-2
-3	-∞	-∞	-∞	2				

	λ	F	G	Н	1	J
λ	0	1	2			
Α	1	1	2	3		
В	2	2	2	3		
С		3	3	3	4	
D				4	4	
Е						5

$$M = D + 1$$
 $D = 4$ $K = 0$

• f(k,d) entries \Rightarrow space and time complexity

	-1	0	1	2	3	4	5	
3	-∞	-∞	-∞	-1				
2	-00	-∞	-1	0	1			M-2-2
1	-∞	-1	0	1	2	3		M-2
0	-1	0	1	2	3	4	5	M
-1	-00	0	1	2	3	4		M-2
-2	-00	-∞	1	2	3			M-2-2
-3	-∞	-∞	-∞	2				

What if $k \neq 0$?

$$M = D + 1$$
 $D = 4$ $K = 0$

• f(k,d) entries \Rightarrow space and time complexity

	-1	0	1	2	3	4	5
3	-∞	-∞	-∞	-1			
2	-∞	-∞	-1				
1	-∞	-1					
0	-1						
-1	-∞	0					
-2	-00	-00	1				
-3	-∞	-∞	-∞	2			

What if $k \neq 0$?

M = D = K = 1

• f(k,d) entries \Rightarrow space and time complexity

	-1	0	1	2	3	4	5
3	-∞	-∞	-∞	-1			
2	-∞	-∞	-1	3			
1	-∞	-1	1	2	5		
0	-1	0	1	2			
-1	-00	0	1				
_	-∞		1				

What if $k \neq 0$?

$$D = 3$$

$$K = 1$$

• f(k,d) entries \Rightarrow space and time complexity

f(k, K) upto f(k, D)

	λ	G	Α	R	V	Ε	Υ
λ	0						
Α	1	1	1				
V			2	2			
Ε						2	
R							
Υ							3

$$M = D - K + 1D = 3$$

= 3 $K = 1$

• f(k,d) entries \Rightarrow space and time complexity

$$M = D - K + 1D = 3$$

= 3 $K = 1$

• f(k,d) entries \Rightarrow space and time complexity

$$0^{th} - K^{th} : (K + 1) M$$

$$M = D - K + 1D = 3$$

= 3 $K = 1$

• f(k,d) entries \Rightarrow space and time complexity

f(k,k) upto f(k,D-|K-k|)

$$M = D - K + 1D = 3$$

= 3 $K = 1$

• f(k,d) entries \Rightarrow space and time complexity

	-1	0	1	2	3	4	5	
3	-∞	-∞	-∞	-1				
2	-∞	-∞	-1	3				M-2
1	-∞	-1	1	2	5			М
0	-1	0	1	2				М
-1	-00	0	1					M-2
-2	-∞	-∞	1					
-3	-∞	-∞	-∞	2				

$$M = D - K + 1D = 3$$

= 3 $K = 1$

• f(k,d) entries \Rightarrow space and time complexity

$$- M = D - K + 1$$

- Compare with Ukkonen's algorithm
 - f(k,d) entry
 - ≤ Ukkonen

- Compare with Ukkonen's algorithm
 - f(k,d) entry
 - ≤ Ukkonen

- Compare with Ukkonen's algorithm
 - f(k,d) entry
 - ≤ Ukkonen


```
3
С
D
```

9/11/2013

108

- Compare with Ukkonen's algorithm
 - f(k,d) entry

9/11/2013

• ≤ Ukkonen

		F	G	Н	I	J			G	Α	R	٧	E	Υ
	0	1	2		÷			0						-
Α	1	1	2	3		-	Α	1	1	1		-	-	-
В	2	2	2	3	.,	-	V			2	2	-	-	-
С		3	3	3	4	-	Ε			-		-	2	-
D	₽	- 1	· fi	4	4		R			-		-	-	-
E	۲.		<i>31</i>		,	5	Υ	-	-	-	-	-	-	3

- Compare with Ukkonen's algorithm
 - f(k,d) entry
 - ≤ Ukkonen
 - Time efficiency
 - ≤ Ukkonen O(t·min(m,n))

- Compare with Ukkonen's algorithm
 - f(k,d) entry
 - ≤ Ukkonen
 - Time efficiency
 - ≤ Ukkonen O(t·min(m,n))
 - Space efficiency
 - (distance only) ≥ Ukkonen O(min(t,m,n))
 - (path recoverable) ≤ Ukkonen O(min(t,m,n))

- Thanks for listening
- Thanks for your patience

Any question ?