Instituto Mauá de Tecnologia Núcleo de Sistemas Eletrônicos Embarcados - NSEE

Especificação do Produto - CubeSat IMT

Vanderlei Parro & Rodrigo Romano & Sergio Ribeiro & Rafael Corsi rafael.corsi@maua.com

December 10, 2014

Contents

1	Introdução					
	1.1	Finalidade	4			
	1.2	Visão geral	4			
		Comunicação entre módulos	4			
2	Descrição Geral do Projeto					
	2.1	Estrutura	6			
	2.2	Potência	6			
		2.2.1 Linhas de alimentação	7			
			7			
		2.2.3 Sync	7			
	2.3	Comunicação	7			
		Controle	8			
	2.5	Modo de operação	8			
	2.6		8			

Revision History

Revision	Date	Author(s)	Description
0.0.1	24.6.14	Corsi	Criação do documento

1 Introdução

1.1 Finalidade

Especificar as principais características do sistema CubeSat proposto no NSEE-IMT. O projeto é composto a princípio de 3 unidades, uma para cada subsistema (controle, potência e comunicação).

1.2 Visão geral

A comunicação entre os módulo possuirá a conexão ilustrada na Fig 1.1, onde compartilharão um barramento de comunicação (CAN), as linhas de alimentação e o sinal de sincronismo.

Os subsistemas funcionaram de forma independente e serão gerenciadas por uma unidade de processamento geral (DPU) ainda a ser definida (pode ser interna a outro subsistema)

Cada módulo deve propagar pela rede a cada sinal de sincronismo um housekeeping de seu status interno, essa informação será coletada pelo módulo de comunicação e esse deverá salvar e enviar quando pertinente uma telemetria com essas informações.

1.3 Comunicação entre módulos

A comunicação escolhida entre os módulos (e PCBs) é o protocolo CAN (devido a sua característica multi-mestre e robustez)

Figure 1.1:

Figure 1.2:

2 Descrição Geral do Projeto

2.1 Estrutura

A estrutura proposta é modular e deve possibilitar a montagem de n-unidades (1U, 2U ...), uma chapa externa de fixação será responsável por unir as diferentes unidades. As placas eletrônicas (PCBs) serão fixas nas faces do cubo e não empilhadas em seu interior *, a ideia surgiu na analise do projeto do satélite COROT. Com essa ideia visamos uma maior facilidade na etapa de montagem e testes †.

O projeto da estrutura deve abranger os seguintes itens e vai impactar no projeto de todos os subsistemas :

- Cubo
- PCB
- Placa universal de fixação
- Passagem de fio entre módulos
- Placa externa de fixação
- Painel Solar
- Deploy antena
- Deploy painel-solar
- Gatinho de identificação de lançamento

criar uma secção para cada item e fazer uma descrição detalhada

2.2 Potência

O módulo de potência é responsável pela geração e transmissão de energia no sistema, deve ser capaz de armazenar a energia elétrica em baterias e lidar com n-painéis

^{*}A grande maioria dos projetos encontrados em levantamento bibliográfico possuem as placas empilhadas no cubo, projetos mais sofisticados utilizam uma espécie de barramento para a conexão entre as placas, salve esse: http://tyvak.com/intrepid-suite-1-1/

[†]Devemos fazer uma analise térmica, fomos questionados se isso não tornaria uma das faces extremamente quente e as outras frias

solares. Quatro tensões diferentes devem ser geradas para alimentar os mais diversos módulos, cada uma contendo um terra diferenciado. O módulo irá mensurar parâmetros importantes que podem ser utilizados para estimar seu status. Além de gerar, armazenar energia elétrica será o módulo deve gerar um sinal de sincronismo de 1 segundo para os demais subssistemas.

2.2.1 Linhas de alimentação

O subsistema deve fornecer as seguintes tensões com terras independentes entre elas :

- 12V para o sistema de controle
- 12V para o sistema de comunicação
- 3,3V Digital
- 3.3V Analógico

2.2.2 Status

O módulo deve possuir uma interface microcontrolada para fornecer informações de status interno (house-keeping- HK) para os demais subsistemas, ele deve ser capaz de mensurar :

- As tensões e correntes em cada linha
- Tensão na bateria
- Temperatura na bateria
- Temperatura no módulo de carregamento
- Temperatura nos painéis solares

2.2.3 Sync

Gerar um sinal analógico de sincronismo (sync) que será utilizado pelos demais subsistemas, esse sinal de sincronismo deve ser de 1s.

2.3 Comunicação

Deve ser capaz de receber e enviar telemetria lidando com todas as camadas de comunicação (protocolo, modulação, RF, antena, ...). As telemetrias deveram ser disponibilizadas no barramento CAN,

- 2.4 Controle
- 2.5 Modo de operação
- 2.6 Barramentos