CS60021: Scalable Data Mining

Sourangshu Bhattacharya

COURSE BACKGROUND

What is Data Mining?

- Given lots of data
- Discover patterns and models that are:
 - Valid: should hold on new data with some certainty
 - Useful: should be possible to act on the item
 - Unexpected: non-obvious to the system
 - Understandable: humans should be able to interpret the pattern

Data Mining: Cultures

- Data mining overlaps with:
 - Databases: Large-scale data, simple queries
 - Machine learning: Small data, Complex models
 - CS Theory: (Randomized) Algorithms
- Different cultures:

To a DB person, data mining is an extreme form of analytic processing – queries that examine large amounts of data

- Result is the query answer
- To a ML person, data-mining is the inference of models
 - Result is the parameters of the model
- In this class we will do both!

Need for Computing Frameworks

- To extract knowledge, data needs to be:
 - Stored
 - Managed
 - Analyzed
- For Big Data Computation: Spark
- For Deep Learning: Pytorch / Tensorflow

This Course

- This class overlaps with machine learning, statistics, artificial intelligence, databases but more stress on
 - Algorithms
 - Online / Streaming
 - Optimization
 - Computing architectures

Pre-requisites

Algorithms.

 Machine Learning / Data Analytics / Information Retrieval.

What will we learn?

- We will learn to mine different types of data:
 - Data is high dimensional
 - Data is a graph
 - Data is infinite/never-ending
 - Data is labeled
- We will learn to use different models of computation:
 - MapReduce
 - Streams and online algorithms
 - Single machine in-memory
 - Distributed computation

What will we learn?

- We will learn various "tools":
 - Map-reduce, pytorch, tensorflow
 - Optimization (stochastic gradient descent)
 - Hashing (LSH, Bloom filters)

EXAMPLE APPLICATIONS

Word Count Distribution

- Compute word-bigram count distribution for wikipedia corpus.
- 5 million documents
- 1.9 million unique words, ? bigrams

- Problem: Input, output and intermediate results are large.
- Algorithm is simple.

Large Scale Machine Learning

- Train Massive deep learning models on massive datasets.
- Dataset too large:
 - Speed up train by speeding up optimization
 - Acceleration techniques
 - Distributed optimization.
- Model size too big:
 - Reduce redundant parameters using LSH
 - Change model architecture.

Distinct items

- Count number of distinct IP addresses passing through a server.
- Streaming model.
- Problem: 128^4 IP addresses

We want only an estimate - FM sketch.

Locality Sensitive Hashing

- Active learning / Subset selection
 - Calculate pairwise similarity between examples
 - Select examples which provide highest improvement in loss function and are most similar to other non-selected examples.
- Compute similarity to all existing examples in dataset and pick the top ones.
 - Fast nearest neighbor seach.

Syllabus

Software paradigms:

- Big Data Processing: Motivation and Fundamentals. Mapreduce framework. Functional programming and Scala.
 Programming using map-reduce paradigm. Case studies: Finding similar items, Page rank, Matrix factorisation.
- Deep Learning Framework (Tensorflow / Pytorch):
 Motivation, Tensors, Operations, Computation graphs,
 Example programs.

Syllabus

- Optimization and Machine learning algorithms:
 - Optimization algorithms: Stochastic gradient descent,
 Variance reduction, Momentum algorithms, ADAM. Dual-coordinate descent algorithms.
 - Algorithms for distributed optimization: Stochastic gradient descent and related methods. ADMM and decomposition methods, Federated Learning.

Syllabus

Algorithmic techniques:

- Finding similar items: Shingles, Minhashing, Locality
 Sensitive Hashing families.
- Stream processing: Motivation, Sampling, Bloom filtering,
 Count-distinct using FM sketch, Estimating moments using
 AMS sketch.
- Dimensionality reduction: Random projections, Johnson-Lindenstrauss lemma, JL transforms, sparse JL-transform.

COURSE DETAILS

Venue

- Classroom: MS Teams (Scalable Data Mining 2021)
- Slots:
 - Monday (8:00 9:55)
 - Tuesday (12:00 12:55)
- Website:

http://cse.iitkgp.ac.in/~sourangshu/coursefiles/cs60021 2021a.html

Moodle (for assignment submission):

https://10.5.18.110/moodle

Teaching Assistants

- Soumi Das
- Kiran Purohit

Evaluation

- Grades:
 - Tests + Quiz: 50
 - Term Project: 30
 - Assignment: 20

- Number of Assignments: 2 4
- Both Term Project and assignment will require you to write code.