TD11 – Cinématique

Exercice 1 : Accident de voiture

Lorsqu'une voiture subit un choc violent par l'avant, elle se déforme progressivement sur une longueur d pour encaisser le choc.

- 1. En estimant des valeurs raisonnables relatives à un choc frontal lors d'un trajet en ville, estimer la décélération subie par la voiture et donc par ses occupants.
- 2. Même question pour un choc frontal sur l'autoroute.
- 3. Commenter sur l'intérêt de construire des voitures pas trop solides

Exercice 2 : Un piéton traverse la rue

Une voiture de largeur L suit un mouvement rectiligne à vitesse constante $\vec{V}=V\vec{e_x}$. À une distance D de la voiture, un piéton décide de traverser la rue en marchant suivant une ligne droite formant un angle φ par rapport à l'axe Oy à une vitesse constante \vec{v} .

- 1. Dans le cas où $\varphi = 0$ (le piéton traverse perpendiculairement au trottoir) quelle doit être la vitesse v du piéton pour que la collision soit évitée?
- 2. Dans le cas où l'angle φ est quelconque, exprimer les coordonnées (x,y) du piéton en fonction du temps. En déduire une condition sur L, D, v, V et φ pour que la collision soit évitée.
- 3. En déduire quelle est l'angle optimal que doit choisir le piéton pour traverser la rue. (Pour qu'il puisse traverser avec la vitesse la plus faible possible)

Exercice 3: Temps de chute

On lâche, sans vitesse initiale, un objet du sommet de la tour Eiffel (hauteur : $h=324\,\mathrm{m}$). L'objet subit une accélération égale à $\vec{g}=-9.8\,\mathrm{m/s^2}\vec{e_z}$ avec le vecteur $\vec{e_z}$ dirigé verticalement vers le haut.

- 1. Déterminer la vitesse de l'objet en fonction du temps.
- 2. Déterminer la position de l'objet en fonction du temps. En déduire le temps au bout duquel l'objet touchera le sol et la vitesse atteinte.
- 3. Discuter la réalité physique du modèle utilisé.
- 4. Comment déterminer la profondeur d'un puits en y jetant un caillou. Expliciter et discuter les hypothèses faites pour trouver le résultat.

Exercice 4: LA CENTRIFUGEUSE

Pour entraîner les astronautes aux fortes accélérations subies lors du décollage et lors de la rentrée dans l'atmosphère, on les place dans un siège situé à l'extrémité d'un bras en rotation. Un point M du sujet (par exemple son œil gauche) décrit dans le référentiel lié au sol un cercle de rayon R=5.0 m à la vitesse angulaire ω .

- 1. Pourquoi l'énoncé précise-t-il un point du sujet, et non pas simplement le sujet?
- 2. Quelle est la valeur de la vitesse angulaire $\omega = \omega_0$ (en tour/seconde) pour laquelle l'accélération du point M dans le référentiel lié au sol est égale à 30 m/s²?
- 3. Quelle est alors la vitesse du point M dans le référentiel lié au sol? (Donner la valeur en m/s et en km/h)
- 4. Quelle est alors l'accélération du point M dans le référentiel lié au siège ?
- 5. Partant de la vitesse nulle, la valeur ω_0 est atteinte au bout de 10 s, et on suppose que entre t=0 et t=10 s, la vitesse angulaire est une fonction linéaire du temps. Déterminer le vecteur accélération à la date $t_1=5$ s.

Exercice 5: Tourne-disque

Un tourne-disque, posé sur une table fixe (choix du référentiel du laboratoire \mathcal{R}) comporte un plateau de centre O, de rayon R=16 cm tournant à la vitesse de 33 tours.min⁻¹ supposée constante.

- 1. Quel est le mouvement, dans \mathcal{R} , d'un point M du plateau tel que $OM = r = 10 \, \text{cm}$?
- 2. Quelle est la vitesse angulaire ω_0 de rotation du point M en rad.s⁻¹ ou en °.s⁻¹ dans \mathcal{R} ?
- 3. Quelle est la vitesse instantanée du point M et celle d'un point P de la périphérie du plateau dans \mathcal{R} ?
- 4. Quelle est la distance parcourue par le point M en t_1 =2min30s dans \mathcal{R} ? Quelle est la valeur de l'angle balayé par le rayon OM pendant ces 2min30s?
- 5. Quel est le vecteur accélération du point M à la date t_1 dans \mathcal{R} ?
- 6. A l'instant t_1 , une phase de freinage débute et le plateau s'immobilise à t_2 =2min40s. Dans cette phase, ω est donné par $\omega = \alpha \beta t$. Déterminer les paramètres de freinage α et β .
- 7. Quels sont la vitesse instantanée du point M et le vecteur accélération en fonction de t durant la période de freinage dans $\mathcal R$?

Exercice 6 : Course poursuite

Quatre chiens sont placés aux sommets A, B, C et D d'un carré de centre O, selon la configuration représentée ci-contre. On note a=OA la demi-diagonale de ce carré. A partir de l'instant t=0 s, chaque chien court vers son voisin avec une vitesse de norme v_0 constante. On repère la position d'un chien M initialement en A par ses coordonnées polaires $(r(t),\theta(t))$. Pour des raisons de symétrie, on admettra que les quatres chiens forment à tout instant $t\geq 0$ un carré.

- 1. Exprimer en fonction de v_0 les composantes du vecteur vitesse \vec{v} du chien M dans la base polaire $(\vec{u}_r, \vec{u}_\theta)$.
- 2. En déduire les deux équations différentielles faisant intervenir r(t) et $\theta(t)$ sont :

$$\dot{r} = -\frac{v_0}{\sqrt{2}}$$
 et $r \dot{\theta} = \frac{v_0}{\sqrt{2}}$

- 3. Etablir les lois horaires r(t) et $\theta(t)$ en fonction de a et v_0 . A quelle date t_f les quatres chiens se rejoignent-ils?
- 4. Déterminer l'équation polaire $r(\theta)$ de la trajectoire suivie. Dessiner son allure.

TSI1 – Physique-chimie

Exercice 7 : ÉCHELLE DOUBLE

Une double échelle OAB (OA=AB=l) est posée sur le sol, le point O restant constamment en contact avec le coin d'un mur. La position de l'échelle à l'instant t est repéré par l'angle $\alpha(t)$ formé par la portion OA de l'échelle avec le mur. L'extrémité B de l'échelle glisse sur le sol.

- 1. On repère le point A dans la base polaire $(\vec{u}_r\,,\vec{u}_\theta)$ de centre O et d'axe Ox. Déterminer la relation entre α et θ .
- 2. Déterminer les composantes des vecteurs vitesse \vec{v}_A et accélération \vec{a}_A du point A dans la base polaire $(\vec{u}_r, \vec{u}_\theta)$ de centre O et d'axe Ox, en fonction de l, α , $\dot{\alpha}$, $\ddot{\alpha}$.
- 3. Déterminer les coordonnées du point B en fonction de l et α .
- 4. En déduire, dans la base cartésienne (\vec{u}_x, \vec{u}_y) , les composantes des vecteurs vitesse \vec{v}_B et accélération \vec{a}_B du point B, en fonction de l, α , $\dot{\alpha}$.

2017–2018 page 2/2