

Malware Antivirus Scan Pattern Mining via Tensor Decomposition

Robert

UMBC

Prajna Bhandary, Colin Vieson, Auguste Kiendrebeogo, Iman Adetunji, Robert J. Joyce, Maksim E. Eren, and Charles Nicholas
University of Maryland Baltimore County

Objectives

- Consistent and accurate malware naming conventions are important for malware detection and classification
- Anti-virus (AV) vendors use different labels in malware reports.
- Our work is the **first** to discover hidden patterns using tensor decomposition method with unsupervised Machine Learning represented with **3-dimensional tensors**.
- Identified similar labeling patterns across different AV vendors.

Methodology

- Multi-modal approach
- Combined **AV Scan labeling** dataset and **Motif** dataset^[1] w.r.t MD5
- Data Cleaning: removing noisy tokens
- Build a 3-dimensional count tensor

 $X \in \mathbb{R}$ AV x Tokens x Imported Function

- AV dimension for each AV vendor,
 Tokens dimension for each individual token in alias, and Imported Function dimension for Windows API function imported by the sample.
- An entry X a,t,f for number of times AV vendor 'a' used the token 't' for each function 'f' across each scanned malware in our dataset.
- We decompose X using pyCP-APR,
 Python implementation of CP-APR with GPU capability [2]

Canonical Polyadic Decomposition (CPD)

AV Scan Labels Example

- 1. Win32. Trojan-qqpass. Qqrob. Aljf
- 2. P2P-Worm.Win32.Darby.gen (v)
- 3. HEUR:Trojan.Win32.Generic
- 4. Malware-Cryptor.VB.gen.1
- 5. BehavesLike.Win32.Malware.tsc (mx-v)

Antivirus Vendors

NANO-Antivirus

TrendMicro-HouseCall

TrendMicro^{Jiangmin}

AegisLab <u>In</u>

Imported Functions

<u>Tokens</u>

advapi32.dll:cryptgenrandom

ole32.dll:coinitializeex
kernel32.dll:createdirectoryw user32.dll:dispatchmessagea

shell32.dll:shellexecuteexw

kernel32.dll:expandenvironmentstringsw=

kernel32.dll:movefileexw

mpr.dll:wnetopenenumw shlwapi.dll:strstrw

kernel32.dll:lstrcatw

kernel32.dll:terminatethread

crypt32.dll:createfilemappingw

Results

- Most tensor components had generic tokens
- Component 7 clustered tokens "maze", "ransom", "locky", "wannacry", "spora", "petya", "sage" based on similarity
 - all of which suggests ransomware
- Clustered similar vendors like
 "TrendMicro-Housecall" and "TrendMicro",
 together
 - Use the same naming convention
- Imported functions: Top 30 Windows API functions used by malware
 -"cryptstringtobinarya", "cryptgenrandom" -

Future Work

- Try the experiment on EMBER dataset
- Try other features on the tensor

indicative of ransomeware

References

- Robert J. Joyce, Dev Amlani, Charles Nicholas and Edward Raff, "MOTIF: A Large Malware Reference Dataset with Ground Truth Family Labels. In The AAAI-22 Workshop on Artificial Intelligence for Cyber Security (AICS). Arxiv-2111.15031v1 https://github.com/boozallen/MOTIF
- 2. Maksim E. Eren, Juston S. Moore, Erik Skau, Elisabeth Moore, Manish Bhattarai, Gopinath Chennupati, and Boian S. Alexandrov. 2022. General-Purpose Unsupervised Cyber Anomaly Detection via Non-Negative Tensor Factorization. Digital Threats, (February 2022). https://doi.org/10.1145/3519602