CSL407-Machine Learning

HW4(Jaskaran Singh and Vishwash Batra)

(Refer to ReadMe for individual contributions.)

Ans2a)

Let the training set be $X = \{x_t, r_t\}_t$ where $r^t = \{+1 \text{ if } x^t \in C_1 \text{ or } -1 \text{ if } x^t \in C_2 \}$

Find w and w_0 such that

$$r^t(w^Tx^t + w_0) \ge 1 - \varepsilon_t$$

where $\varepsilon_t = 0$ for correctly classified example far from the margin $0 < \varepsilon_t < 1$ for a correctly classified example but inside the margin and $\varepsilon_t \ge 1$ for an incorrectly classified example.

Soft Error= $\sum \varepsilon_t$

We have to

$$\min \frac{1}{2} ||w||^2 + C \sum \varepsilon_t \text{ subject to } r^t (w^T x^t + w_0) \ge 1 - \varepsilon_t \ \forall \ t$$

Where $\varepsilon_t \geq 0 \ \forall \ t$

Using Lagrange multipliers $\alpha^t \ge 0$ and $\beta^t \ge 0$

The primal problem is then

$$L_p = argMin_{w,w_0,\varepsilon_t} Max_{\alpha^t,\beta^t} \frac{1}{2} \big| \big| w \big| \big|^2 + C \sum_t \varepsilon_t - \sum_t \alpha^t \big(r^t (w^T x^t + w_0) - 1 + \varepsilon_t \big) - \sum_t \beta^t \varepsilon^t$$

Applying KKT conditions, (n is the number of training examples)

$$1)\frac{\delta L_p}{\delta w} = 0$$

$$w = \sum_{t=1}^{n} \alpha^t r^t x^t$$

$$2)\frac{\delta L_p}{\delta w_a} = 0$$

$$\sum_{t=1}^{n} \alpha^t r^t = 0$$

$$3)\frac{\delta L_p}{\delta \varepsilon_t} = 0$$

$$C = \alpha^t + \beta^t$$

Substituting 1),2),3) in Lp we get the dual problem

$$L_d = -\frac{1}{2} \sum_{\substack{1 \le t \le n \\ 1 \le s \le n}} \alpha^t \alpha^s r^t r^s (x^t)^T x^s + \sum_{t=1}^n \alpha^t + (C - \alpha^t - \beta^t) \sum_{t=1}^n \varepsilon^t$$
$$= -\frac{1}{2} \sum_{\substack{1 \le t \le n \\ 1 \le s \le n}} \alpha^t \alpha^s r^t r^s (x^t)^T x^s + \sum_{t=1}^n \alpha^t$$

Where

$$\sum_{t=1}^{n} \alpha^t r^t = 0$$

Since $\beta^t = C - \alpha^t$ and $\beta^t > 0$

Thus, $C - \alpha^t \ge 0$

Thus, $0 \le \alpha^t \le C$ for all $1 \le t \le n$

Since, Φ is the feature transformation function that transforms x^t into a high dimensional data point.

The dual problem in the transformed feature space is

$$L_d = -\frac{1}{2} \sum_{\substack{1 \le t \le n \\ 1 \le s \le n}} \alpha^t \alpha^s r^t r^s (\Phi(x^t))^T \Phi(x^s) + \sum_{t=1}^n \alpha^t$$

The inner product $(\Phi(x^t))^T \Phi(x^s)$ is equal to the kernel function $K(x^t, x^s)$.

Thus,

$$L_d = -\frac{1}{2} \sum_{\substack{1 \le t \le n \\ 1 \le s \le n}} \alpha^t \alpha^s r^t r^s K(x^t, x^s) + \sum_{t=1}^n \alpha^t$$

Where

$$\sum_{t=1}^{n} \alpha^t r^t = 0$$

Ans2

c)

Classification accuracy using linear kernel=51.899749

Classification accuracy using polynomial kernel=99.50

Time taken for training linear kernel=0.217371secs(keeps changing even when running with the same seed)

Time taken for training polynomial kernel=0.225488secs(keeps changing even when running with the same seed)

In general, time taken for linear kernel is less than a polynomial kernel.

a)

Box Constraint Parameter C	Gaussian Kernel function width	Average Cross Validation
	q	Accuracy(in %)
c=0.001000	g=0.001000	cv=69.860000
c=0.001000	g=0.010000	cv=75.320000
c=0.001000	g=0.100000	cv=75.460000
c=0.001000	g=1.000000	cv=13.140000
c=0.001000	g=10.000000	cv=40.020000
c=0.001000	g=100.000000	cv=44.460000
c=0.001000	q=1000.000000	cv=10.820000
c=0.010000	g=0.001000	cv=69.860000
c=0.010000	g=0.010000	cv=75.340000
c=0.010000	g=0.100000	cv=75.460000
c=0.010000	g=1.000000	cv=13.140000
c=0.010000	g=10.000000	cv=15.180000
c=0.010000	g=100.000000	cv=44.600000
c=0.010000	g=1000.000000	cv=10.900000
c=0.100000	g=0.001000	cv=73.000000
c=0.100000	g=0.010000	cv=89.320000
c=0.100000	g=0.100000	cv=88.760000
c=0.100000	g=1.000000	cv=13.140000
c=0.100000	g=10.000000	cv=14.180000
c=0.100000	g=100.000000	cv=44.800000
c=0.100000	g=1000.000000	cv=10.940000
c=1.000000	g=0.001000	cv=88.820000
c=1.000000	g=0.010000	cv=93.800000
c=1.000000	g=0.100000	cv=96.540000
c=1.000000	g=1.000000	cv=38.040000
c=1.000000	g=10.000000	cv=11.880000
c=1.000000	g=100.000000	cv=35.340000
c=1.000000	g=1000.000000	cv=10.960000
c=10.000000	q=0.001000	cv=92.620000
c=10.000000	q=0.010000	cv=95.500000
c=10.000000	q=0.100000	cv=96.620000
c=10.000000	g=1.000000	cv=41.420000
c=10.000000	g=10.000000	cv=12.260000
c=10.000000	g=100.000000	cv=35.420000
c=10.000000	q=1000.000000	cv=10.960000
c=100.000000	g=0.001000	cv=93.760000
c=100.000000	g=0.010000	cv=95.320000
c=100.000000	g=0.100000	cv=96.620000
c=100.000000	g=1.000000	cv=41.420000
c=100.000000	g=10.000000	cv=12.260000
c=100.000000	g=100.000000	cv=12.260000 cv=35.420000
c=100.000000 c=100.000000	ŭ	
c=100.000000 c=1000.000000	g=1000.000000	cv=10.960000
	g=0.001000	cv=92.740000
c=1000.000000	g=0.010000	cv=95.320000

c=1000.000000	g=0.100000	cv=96.620000
c=1000.000000	g=1.000000	cv=41.420000
c=1000.000000	g=10.000000	cv=12.260000
c=1000.000000	g=100.000000	cv=35.420000
c=1000.000000	g=1000.000000	cv=10.960000

The models giving the highest cross validation accuracy for the *mnist* dataset are

c=10.000000,g=0.100000,cv=96.62%(Taking this model for comparison with neural network from hw3)

c=100.000000,g=0.100000,cv=96.62%

c=1000.000000,g=0.100000,cv=96.62%

b)

One can use Micro averaged F-measure to compare between the best models of ANN and SVM.

One having the higher F-measure is a better classifier.

In case of SVM, we take the best model to be c=10,g=0.1

In case of ANN, we take the best model to be H=500.

On the same validation set:

Fsvm=.962376

Fmlp=.929703

Thus, SVM performs better than MLP on the validation set.