

Limites. Continuité en un point

Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice 1 ***I

Soit f une fonction réelle d'une variable réelle définie et continue sur un voisinage de $+\infty$. On suppose que la fonction f(x+1)-f(x) admet dans $\mathbb R$ une limite ℓ quand x tend vers $+\infty$. Etudier l'existence et la valeur eventuelle de $\lim_{x\to +\infty}\frac{f(x)}{x}$.

Correction ▼ [005382]

Exercice 2 ***

Soit f une fonction définie sur un voisinage de 0 telle que $\lim_{x\to 0} f(x) = 0$ et $\lim_{x\to 0} \frac{f(2x) - f(x)}{x} = 0$. Montrer que $\lim_{x\to 0} \frac{f(x)}{x} = 0$. (Indication. Considérer $g(x) = \frac{f(2x) - f(x)}{x}$.)

Correction ▼ [005383]

Exercice 3 **I

Soient f et g deux fonctions continues en $x_0 \in \mathbb{R}$. Montrer que $Min\{f,g\}$ et $Max\{f,g\}$ sont continues en x_0 .

[005384]

Exercice 4 ***I Distance d'un point à une partie

Soit *A* une partie non vide de \mathbb{R} . Pour $x \in \mathbb{R}$, on pose $f(x) = \text{Inf}\{|y - x|, y \in A\}$. Montrer que f est continue en tout point de \mathbb{R} .

Correction ▼ [005385]

Exercice 5 **T

Montrer en revenant à la définition que $f(x) = \frac{3x-1}{x-5}$ est continue en tout point de $\mathbb{R} \setminus \{5\}$.

Correction ▼ [005386]

Exercice 6 **IT

Montrer que la fonction caractéristique de $\mathbb Q$ est discontinue en chacun de ses points.

Correction ▼ [005387]

Exercice 7 ****

Etudier l'existence d'une limite et la continuité éventuelle en chacun de ses points de la fonction définie sur $]0,+\infty[$ par f(x)=0 si x est irrationnel et $f(x)=\frac{1}{p+q}$ si x est rationnel égal à $\frac{p}{q}$, la fraction $\frac{p}{q}$ étant irréductible.

Exercice 8 **IT

Etudier en chaque point de \mathbb{R} l'existence d'une limite à droite, à gauche, la continuité de la fonction f définie par $f(x) = xE(\frac{1}{x})$ si $x \neq 0$ et 1 si x = 0.

Correction ▼ [005389]

Exercice 9 **

Trouver f bijective de [0,1] sur lui-même et discontinue en chacun de ses points.

Correction ▼ [005390]

Exercice 10 ***

Soit f une fonction continue et périodique sur \mathbb{R} à valeurs dans \mathbb{R} , admettant une limite réelle quand x tend vers $+\infty$. Montrer que f est constante.

Correction ▼ [005391]

Correction de l'exercice 1 A

Il existe a > 0 tel que f est définie et continue sur $[a, +\infty[$. 1er cas. Supposons que ℓ est réel. Soit $\varepsilon > 0$.

$$\exists A_1 \geq a/ \ \forall X \in [a, +\infty[, \ (X \geq A_1 \Rightarrow \ell - \frac{\varepsilon}{2} < f(X+1) - f(X) < \ell + \frac{\varepsilon}{2}).$$

Soit $X \ge A_1$ et $n \in \mathbb{N}^*$. On a :

$$\sum_{k=0}^{n-1} (\ell - \frac{\varepsilon}{2}) < \sum_{k=0}^{n-1} (f(X+k+1) - f(X+k)) = f(X+n) - f(X) < \sum_{k=0}^{n-1} (\ell + \frac{\varepsilon}{2}),$$

et on a donc montré que

$$\forall \varepsilon > 0, \ \exists A_1 \geq a / \ \forall X \geq A_1, \ \forall n \in \mathbb{N}^N *, \ n(\ell - \frac{\varepsilon}{2}) < f(X + n) - f(X) < n(\ell + \frac{\varepsilon}{2}).$$

Soit de nouveau $\varepsilon > 0$. Soit ensuite $x \ge A_1 + 1$ puis $n = E(x - A_1) \in \mathbb{N}^*$ puis X = x - n. On a $X = x - E(x - A_1) \ge x - (x - A_1) = A_1$ et donc $n(\ell - \frac{\varepsilon}{2}) < f(x) - f(x - n) < n(\ell - \frac{\varepsilon}{2})$ ou encore

$$\frac{f(x-n)}{x} + \frac{n}{x}(\ell - \frac{\varepsilon}{2}) < \frac{f(x)}{x} < \frac{f(x-n)}{x} + \frac{n}{x}(\ell + \frac{\varepsilon}{2}).$$

Ensuite,

$$1 - \frac{A_1 + 1}{x} = \frac{x - A_1 - 1}{x} \le \frac{n}{x} = \frac{E(x - A_1)}{x} \le \frac{x - A_1}{x} = 1 - \frac{A_1}{x},$$

et comme $1 - \frac{A_1 + 1}{x}$ et $1 - \frac{A_1}{x}$ tendent vers 1 quand x tend vers $+\infty$, on en déduit que $\frac{n}{x}$ tend vers 1 quand x tend

Puis, puisque f est continue sur le segment $[A_1,A_1+1]$, f est bornée sur ce segment. Or $n \le x-A_1 < n+1$ s'écrit encore $A_1 \le x - n < A_1 + 1$ et donc, en posant $M = \sup\{|f(t)|, t \in [A_1, A_1 + 1]\}$, on a $\left|\frac{x-n}{x}\right| \le \frac{M}{x}$ qui tend vers 0 quand x tend vers $+\infty$. En résumé, $\frac{f(x-n)}{x} + \frac{n}{x}(\ell - \frac{\varepsilon}{2})$ et $\frac{f(x-n)}{x} + \frac{n}{x}(\ell + \frac{\varepsilon}{2})$ tendent respectivement vers $\ell - \frac{\varepsilon}{2}$ et $\ell + \frac{\varepsilon}{2}$ quand x tend vers $+\infty$. On peut donc trouver un réel $A_2 \ge a$ tel que $x \ge A_2 \Rightarrow \frac{f(x-n)}{x} + \frac{n}{x}(\ell + \frac{\varepsilon}{2}) > 0$ $(\ell - \frac{\varepsilon}{2}) - \frac{\varepsilon}{2} = \ell - \varepsilon \text{ et un réel } A_3 \ge a \text{ tel que } x \ge A_2 \Rightarrow \frac{f(x-n)}{x} + \frac{n}{x}(\ell + \frac{\varepsilon}{2}) < \ell + \varepsilon.$ Soit $A = \operatorname{Max}(A_1, A_2, A_3)$ et $x \ge A$. On a $\ell - \varepsilon < \frac{f(x)}{x} < \ell + \varepsilon$. On a montré que $\forall \varepsilon > 0$, $(\exists A \ge a / \forall x \ge A, \ell - \varepsilon < \frac{f(x)}{x}) < \ell + \varepsilon$.

 $\frac{f(x)}{x} < \ell + \varepsilon$ et donc $\lim_{x \to +\infty} = \ell$.

2ème cas. Supposons $\ell = +\infty$ (si $\ell = -\infty$, remplacer f par -f).

Soit B > 0. $\exists A_1 \ge a / \forall X \ge A_1, \ f(X+1) - f(X) \ge 2B$.

Pour $X \ge A_1$ et $n \in \mathbb{N}^*$, on a : $f(X+n) - f(X) = \sum_{k=0}^{n-1} (f(X+k+1) - f(X+k)) \ge 2nB$. Soient $x \ge 1 + A_1$, $n = E(x - A_1)$ et X = x - n. On a $f(x) - f(x - n) \ge 2nB$ et donc,

$$\frac{f(x)}{x} \ge \frac{f(x-n)}{x} + \frac{2nB}{x},$$

qui tend vers 2B quand x tend vers $+\infty$ (démarche identique au 1er cas).

Donc $\exists A \ge A_1 > a$ tel que $x \ge A \Rightarrow \frac{f(x-n)}{x} + \frac{2nB}{x} > B$.

Finalement : $(\forall B > 0, \exists A > a / (\forall x \ge A, \frac{f(x)}{x} > B \text{ et donc, } \lim_{x \to +\infty} \frac{f(x)}{x} = +\infty.$

Correction de l'exercice 2 A

Pour $x \neq 0$, posons $g(x) = \frac{f(2x) - f(x)}{x}$. f est définie sur un voisinage de 0 et donc il existe a > 0 tel que $] - a, a[\subset a]$ D_f . Mais alors, $]-\frac{a}{2},\frac{a}{2}[\setminus\{0\}\subset D_g]$. Soit $x \in]-\frac{a}{2}, \frac{a}{2}[\setminus \{0\}]$ et $n \in \mathbb{N}^*$.

$$f(x) = \sum_{k=0}^{n-1} \left(f\left(\frac{x}{2^k}\right) - f\left(\frac{x}{2^{k+1}}\right) \right) + f\left(\frac{x}{2^n}\right) = \sum_{k=0}^{n-1} \frac{x}{2^{k+1}} g\left(\frac{x}{2^{k+1}}\right) + f\left(\frac{x}{2^n}\right).$$

Par suite, pour $x \in]-\frac{a}{2}, \frac{a}{2}[\setminus \{0\} \text{ et } n \in \mathbb{N}^*, \text{ on a : }$

$$\left| \frac{f(x)}{x} \right| \le \sum_{k=0}^{n-1} \frac{1}{2^{k+1}} \left| g(\frac{x}{2^{k+1}}) \right| + \left| \frac{f(x/2^n)}{x} \right|.$$

Soit $\varepsilon > 0$. Puisque par hypothèse, g tend vers 0 quand x tend vers 0,

$$\exists \alpha \in]0, \frac{a}{2}[/ \forall X \in]-\alpha, \alpha[, |g(X)| < \frac{\varepsilon}{2}.$$

Or, pour $x \in]-\alpha, \alpha[\setminus\{0\}]$ et pour k dans $N*, \frac{x}{2k}$ est dans $]-\alpha, \alpha[\setminus\{0\}]$ et par suite,

$$\sum_{k=0}^{n-1} \frac{1}{2^{k+1}} \left| g(\frac{x}{2^{k+1}}) \right| \leq \frac{\varepsilon}{2} \sum_{k=0}^{n-1} \frac{1}{2^{k+1}} = \frac{\varepsilon}{2} \frac{1}{2} \frac{1 - \frac{1}{2^n}}{1 - \frac{1}{2}} = \frac{\varepsilon}{2} (1 - \frac{1}{2^n}) < \frac{\varepsilon}{2},$$

et donc, $\left| \frac{f(x)}{x} \right| \le \frac{\varepsilon}{2} + \left| \frac{f(x/2^n)}{x} \right|$. On a ainsi montré que

$$\forall x \in]-\alpha, \alpha[\setminus\{0\}, \ \forall n \in \mathbb{N}^*, \ \left|\frac{f(x)}{x}\right| \leq \frac{\varepsilon}{2} + \left|\frac{f(x/2^n)}{x}\right|.$$

Mais, à x fixé, $\frac{f(x/2^n)}{x}$ tend vers 0 quand n tend vers $+\infty$. Donc, on peut choisir n tel que $\frac{f(x/2^n)}{x} < \frac{\varepsilon}{2}$ et on a alors $\left| \frac{f(x)}{x} \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. On a montré que

$$\forall \varepsilon > 0, \ \exists \alpha > 0 / \ (\forall x \in D_f, \ 0 < |x| < \alpha \Rightarrow \left| \frac{f(x)}{x} \right| < \varepsilon,$$

ce qui montre que (f est dérivable en 0 et que) $\lim_{x\to 0} \frac{f(x)}{x} = 0$.

Correction de l'exercice 3 A

 $\overline{\text{Min}(f,g) = \frac{1}{2}(f+g-|f-g|)}$ et $\text{Max}(f,g) = \frac{1}{2}(f-g+|f-g|)$ sont continues en x_0 en vertu de théorèmes généraux.

Correction de l'exercice 4 A

Soit $(x,y) \in \mathbb{R}^2$ et $z \in A$. $|x-z| \le |x-y| + |y-z|$. Or, $forall z \in A$, $|x-z| \ge d(x,A)$ et donc d(x,A) - |x-y| est un minorant de $\{|y-z|, z \in A\}$. Par suite, $d(x,A) - |x-y| \le d(y,A)$. On a montré que

$$\forall (x,y) \in \mathbb{R}^2, \ d(x,A) - d(y,A) \le |y - x|.$$

En échangeant les roles de x et y, on a aussi montré que $\forall (x,y) \in \mathbb{R}^2, \ d(y,A) - d(x,A) \leq |y-x|$. Finalement, $\forall (x,y) \in \mathbb{R}^2, \|f(y) - f(x)\| \leq |y-x|$. Ainsi, f est donc 1-Lipschitzienne et en particulier continue sur \mathbb{R} .

Correction de l'exercice 5

Soit $x_0 \in \mathbb{R} \setminus \{5\}$. Pour $x \neq 5$,

$$|f(x) - f(x_0)| = \left| \frac{3x - 1}{x - 5} - \frac{3x_0 - 1}{x_0 - 5} \right| = \frac{14|x - x_0|}{|x - 5|.|x_0 - 5|}$$

Puis, pour $x \in]x_0 - \frac{|x_0 - 5|}{2}, x_0 + \frac{|x_0 - 5|}{2}[$, on a $|x - 5| > \frac{|x_0 - 5|}{2}[$ (> 0), et donc,

$$\forall x \in]x_0 - \frac{|x_0 - 5|}{2}, x_0 + \frac{|x_0 - 5|}{2}[, |f(x) - f(x_0)| = \frac{28}{(x_0 - 5)^2}|x - x_0|.$$

Soient $\varepsilon > 0$ puis $\alpha = \min\{\frac{|x_0 - 5|}{2}, \frac{(x_0 - 5)^2 \varepsilon}{28}\}(> 0)$.

$$|x-x_0| < \alpha \Rightarrow |f(x)-f(x_0)| \le \frac{28}{(x_0-5)^2}|x-x_0| < \frac{28}{(x_0-5)^2}\frac{(x_0-5)^2\varepsilon}{28} = \varepsilon.$$

On a monté que $\forall \varepsilon > 0$, $\exists \alpha > 0 / (\forall x \in \mathbb{R} \setminus \{5\}, |x - x_0| < \alpha \Rightarrow |f(x) - f(x_0)| < \varepsilon)$. f est donc continue sur $\mathbb{R} \setminus \{5\}.$

Correction de l'exercice 6

Soit χ la fonction caractéristique de \mathbb{Q} . Soit x_0 un réel. On note que

$$x_0 \in \mathbb{Q} \Leftrightarrow \forall n \in \mathbb{N}^*, \ x_0 + \frac{1}{n} \in \mathbb{Q}Q \Leftrightarrow \forall n \in \mathbb{N}^*, \ x_0 + \frac{\pi}{n} \notin \mathbb{Q}.$$

Donc, $\lim_{n\to +\infty}\chi(x_0+\frac{1}{n})$ existe, $\lim_{n\to +\infty}\chi(x_0+\frac{\pi}{n})$ existe $\mathrm{etlim}_{n\to +\infty}\chi(x_0+\frac{1}{n})\neq \lim_{n\to +\infty}\chi(x_0+\frac{\pi}{n})$ (bien que $\lim_{n\to +\infty}x_0+\frac{1}{n}=\lim_{n\to +\infty}x_0+\frac{\pi}{n}=x_0$. Ainsi, pour tout réel $x_0\in\mathbb{R}$, la fonction caractéristique de \mathbb{Q} n'a pas de limite en x_0 et est donc discontinue en x_0 .

Correction de l'exercice 7

Soit a un réel streitement positif. On peut déjà noter que $\lim_{x\to a, x\in\mathbb{R}\setminus\mathbb{Q}} f(x) = 0$. Donc, si f a une limite quand x tend vers a, ce ne peut être que 0 et f est donc discontinue en tout rationnel strictement positif.

a désigne toujours un réel strictement positif fixé. Soit $\varepsilon > 0$.

Soit x un réel strictement positif tel que $f(x) \ge \varepsilon$.

x est nécessairement rationnel, de la forme $\frac{p}{q}$ où p et q sont des entiers naturels non nuls premiers entre eux vérifiant $\frac{1}{p+q} \ge \varepsilon$ et donc

$$2 \le p + q \le \frac{1}{\varepsilon}.$$

Mais il n'y a qu'un nombre fini de couples d'entiers naturels non nuls (p,q) vérifiant ces inégalités et donc, il n'y a qu'un nombre fini de réels strictement positifs x tels que $f(x) > \varepsilon$.

Par suite, $\exists \alpha > 0$ tel que aucun des réels x de $[x_0 - \alpha, x_0 + \alpha]$ ne vérifie $f(x) \ge \varepsilon$. Donc,

$$\forall a > 0, \forall \varepsilon > 0, \exists \alpha > 0 / \forall x > 0, (0 < |x - a| < \alpha \Rightarrow |f(x)| < \varepsilon),$$

ou encore

$$\forall a > 0, \lim_{x \to a, x \neq a} f(x) = 0.$$

Ainsi, f est continue en tout irrationnel et discontinue en tout rationnel.

Correction de l'exercice 8 A

Donnons tout d'abord une expression plus explicite de f(x) pour chaque réel x.

Si
$$x > 1$$
, alors $\frac{1}{x} \in]0, 1[$ et donc, $f(x) = 0$.
Si $\exists p \in \mathbb{N}^* / x \in]\frac{1}{p+1}, \frac{1}{p}], f(x) = px$.

f(0) = 1 (et plus généralement, $\forall p \in \mathbb{Z}^*, f(\frac{1}{p}) = 1$).

Si $x \le -1$, alors $\frac{1}{x} \in [-1,0[$ et donc, f(x) = -x. Enfin, si $\exists p \in \mathbb{Z} \setminus \{-1\}$ tel que $x \in]\frac{1}{p+1}, \frac{1}{p}]$, alors $\frac{1}{p+1} < x \le \frac{1}{p} (<0)$ fournit, par décroissance de la fonction $x \mapsto \frac{1}{x} \text{ sur }] - \infty, 0[, \ p \le \frac{1}{x} Etude en 0. <math>\forall x \in \mathbb{R}^*, \ \frac{1}{x} - 1 < E(\frac{1}{x}) \le \frac{1}{x} \text{ et donc } 1 - x < f(x) \le 1 \text{ si } x > 0 \text{ et } 1 \le f(x) < 1 - x \text{ si } x < 0.$ Par suite,

$$\forall x \in \mathbb{R}, |f(x) - 1 \le |x|,$$

et $\lim_{x\to 0} f(x) = 1$. f est donc continue en 0.

f est affine sur chaque intervalle de la forme $]\frac{1}{p+1},\frac{1}{p}]$ pour p élément de $\mathbb{Z}\setminus\{-1,0\}$ et donc est continue sur ces intervalles et en particulier continue à gauche en chaque $\frac{1}{p}$. f est affine sur $]-\infty,-1]$ et aussi sur $]1,+\infty[$ et est donc continue sur ces intervalles. Il reste donc à analyser la continuité à droite en $\frac{1}{p}$, pour p entier relatif non nul donné. Mais,

$$f(\frac{1}{p}^{+}) = \lim_{x \to \frac{1}{p}, x > \frac{1}{p}} (x(p-1)) = 1 - \frac{1}{p} \neq 1 = f(\frac{1}{p}).$$

f est donc discontinue à droite en tout $\frac{1}{p}$ où p est un entier relatif non nul donné. Graphe de f:

Correction de l'exercice 9

 $\text{Soit } f(x) = \left\{ \begin{array}{l} x \operatorname{si} x \in (\mathbb{Q} \cap [0,1]) \setminus \{0,\frac{1}{2}\} \\ 1 - x \operatorname{si} x \in (\mathbb{R} \setminus \mathbb{Q}) \cap [0,1] \\ 0 \operatorname{si} x = \frac{1}{2} \operatorname{et} \frac{1}{2} \operatorname{si} x = 0 \end{array} \right. . f \text{ est bien une application définie sur } [0,1] \text{ à valeurs dans } [0,1].$

De plus, si $x \in (\mathbb{Q} \cap [0,1]) \setminus \{0,\frac{1}{2}\}$, alors f(f(x)) = f(x) = x.

Si $x \in (\mathbb{R} \setminus \mathbb{Q}) \cap [0,1]$, alors $1-x \in (\mathbb{R} \setminus \mathbb{Q}) \cap [0,1]$ et donc f(f(x)) = f(1-x) = 1 - (1-x) = x. Enfin, $f(f(0)) = f(\frac{1}{2}) = 0$ et $f(f(\frac{1}{2})) = f(0) = \frac{1}{2}$. Finalement, $f \circ f = Id_{[0,1]}$ et f, étant une involution de [0,1], est une permutation de [0,1].

Soit a un réel de [0,1]. On note que $\lim_{x\to a,\,x\in(\mathbb{R}\setminus\mathbb{Q})}f(x)=1-a$ et $\lim_{x\to a,\,x\in\mathbb{Q}}f(x)=a$. Donc, si f a une limite en a, nécessairement 1-a=a et donc $a=\frac{1}{2}$. Mais, si $a=\frac{1}{2}$, $\lim_{x\to a,\,x\in\mathbb{Q},\,x\neq a}f(x)=a=\frac{1}{2}\neq 0=f(\frac{1}{2})$ et donc f est discontinue en tout point de [0,1].

Correction de l'exercice 10 ▲

Soit T une période strictement positive de f. On note ℓ la limite de f en $+\infty$. Soit *x* un réel. $\forall n \in \mathbb{N}, f(x) = f(x + nT)$ et quand *n* tend vers $+\infty$, on obtient :

$$f(x) = \lim_{n \to +\infty} f(x + nT) = \ell.$$

Ainsi, $\forall x \in \mathbb{R}$, $f(x) = \ell$ et donc, f est constante sur \mathbb{R} .