Jaringan Komputer

Dessyanto Boedi Prasetyo, ST. MT.

- Introduction
- Layer Fisik
- Layer Data link
- MAC
- IP Packet
- IP Addressing
- IP Routing
 - Statis
 - Dinamis
 - RIP
 - OSPF

- Layer Transport
 - TCP
 - UDP
- Layer Aplikasi
 - DNS
 - DHCP
 - HTTP
 - FTP

Buku

- Jaringan Komputer
 - AS Tanenbaum
- Data & ComputerCommunication
 - Williams Stallings

Penilaian

Tugas/Kuis 30 %

■ UTS 35 %

■ UAS 35 %

Presensi CBIS min 75% tapi tidak masuk penilaian

Introduction

A Communications Model

- Source
 - generates data to be transmitted
- Transmitter
 - Converts data into transmittable signals
- Transmission System
 - Carries data
- Receiver
 - Converts received signal into data
- Destination
 - Takes incoming data

Simplified Communications Model - Diagram

Simplified Data Communications Model

Networking

- Point to point communication not usually practical
 - Devices are too far apart
 - Large set of devices would need impractical number of connections
- Solution is a communications network

Uses of Computer Networks

- Business Applications
- Home Applications
- Mobile Users
- Social Issues

Business Applications of Networks

A network with two clients and one server.

Home Network Applications

- Access to remote information
- Person-to-person communication
- Interactive entertainment
- Electronic commerce

Home Network Applications

In peer-to-peer system there are no fixed clients and servers.

Home Network Applications

Some forms of e-commerce.

Tag	Full name	Example
B2C	Business-to-consumer	Ordering books on-line
B2B	Business-to-business	Car manufacturer ordering tires from supplier
G2C	Government-to-consumer	Government distributing tax forms electronically
C2C	Consumer-to-consumer	Auctioning second-hand products on-line
P2P	Peer-to-peer	File sharing

Simplified Network Model

Local Area Networks

- Two broadcast networks
- (a) Bus
- (b) Ring

Metropolitan Area Networks

A metropolitan area network based on cable TV.

Wide Area Networks

Relation between hosts on LANs and the subnet.

Wide Area Networks (2)

Wide Area Networks

- Large geographical area
- Crossing public rights of way
- Rely in part on common carrier circuits
- Alternative technologies
 - Circuit switching
 - Packet switching
 - Frame relay
 - Asynchronous Transfer Mode (ATM)

Wireless Networks

- (a) Bluetooth configuration
- (b) Wireless LAN

Protocols

- Used for communications between entities in a system
- Must speak the same language
- Entities
 - User applications
 - e-mail facilities
 - terminals
- Systems
 - Computer
 - Terminal
 - Remote sensor

What's a protocol? retocols: network protocols:

- human protocols:
- "what's the time?"
- "I have a question"
- introductions
- ... specific msgs sent
- ... specific actions taken when msgs received, or other events

- machines rather than humans
- all communication activity in Internet governed by protocols

protocols define
format, order of
msgs sent and
received among
network entities, and
actions taken on msg
transmission receint

Protocol Architecture

- Task of communication broken up into modules
- For example file transfer could use three modules
 - File transfer application
 - Communication service module
 - Network access module

Simplified File Transfer Architecture

A Three Layer Model

- Network Access Layer
- Transport Layer
- Application Layer

Network Access Layer

- Exchange of data between the computer and the network
- Sending computer provides address of destination
- May invoke levels of service
- Dependent on type of network used (LAN, packet switched etc.)

Transport Layer

- Reliable data exchange
- Independent of network being used
- Independent of application

Application Layer

- Support for different user applications
- e.g. e-mail, file transfer

Addressing Requirements

- Two levels of addressing required
- Each computer needs unique network address
- Each application on a (multi-tasking) computer needs a unique address within the computer
 - The service access point or SAP

Protocol Architectures and Networks

Protocols in Simplified Architecture

Protocol Data Units (PDU)

- At each layer, protocols are used to communicate
- Control information is added to user data at each layer
- Transport layer may fragment user data

- Each fragment has a transport header added
 - Destination SAP
 - Sequence number
 - Error detection code
- This gives a transport protocol data unit

Operation of a Protocol Architecture

OSI Model

- Open Systems Interconnection
- Developed by the International Organization for Standardization (ISO)
- Seven layers
- A theoretical system delivered too late!
- TCP/IP is the de facto standard

OSI Layers

- Application
- Presentation
- Session
- Transport
- Network
- Data Link
- Physical

OSI v TCP/IP

Reference Models (2)

The TCP/IP reference model.

Standards Organizations

- Internet Society
- ISO
- ITU-T (formally CCITT)
- ATM forum

Reference Models

Interface Presentation protocol Presentation Presentation **PPDU** 6 Session protocol **SPDU** 5 Session Session Transport protocol Transport Transport **TPDU** Communication subnet boundary Internal subnet protocol **Packet** 3 Network Network Network Network 2 Data link Data link Data link Data link Frame **Physical Physical** Physical **Physical** Bit Host A Router Router Host B

> Network layer host-router protocol Data link layer host-router protocol Physical layer host-router protocol

Application protocol

Name of unit

exchanged

APDU

Application

The OSI reference model.

Layer

7

Application

Reference Models (3)

What's the Internet: "nuts and bolts" view

millions of connected computing devices: hosts, end-systems

pc's workstations, servers

 PDA's phones, toasters running network apps

- communication links
 - fiber, copper, radio, satellite
- routers: forward packets (chunks) of data thru network

What's the Internet: "nuts and bolts" view

- protocols: control sending, receiving of msgs
 - e.g., TCP, IP, HTTP, FTP, PPP
- Internet: "network of networks"
 - loosely hierarchical
 - public Internet versus private intranet
- Internet standards
 - RFC: Request for comments
 - IETF: Internet Engineering Task Force

What's the Internet: a service view

communication infrastructure enables distributed applications:

• WWW, email, games, e-commerce, database., voting

• more?

communication services provided:

- connectionless
- connection-oriented
- cyberspace [Gibson]:

"a consensual hallucination experienced daily by billions of operators, in every nation,"

A closer look at network structure:

- network edge: applications and hosts
- network core:
 - routers
 - network of networks
- access networks, physical media: communication links

The network edge:

- end systems (hosts):
 - run application programs
 - e.g., WWW, email
 - at "edge of network"
- client/server model
 - client host requests, receives service from server
 - e.g., WWW client (browser)/ server; email client/server
- peer-peer model:
 - host interaction symmetric
 - e.g.: teleconferencing

The Network Core

mesh of interconnected routers

the fundamental question: how is data transferred through net

> circuit switching: dedicated circuit per call: telephone net

 packet-switching: data sent thru net in discrete "chunks"

Network Core: Circuit Switching

End-end resources reserved for "call"

link bandwidth, switch capacity

- dedicated resources: no sharing
- circuit-like (guaranteed) performance
- call setup required

Network Core: Circuit Switching

network resources (e.g., bandwidth) divided into "pieces"

- pieces allocated to calls
- resource piece idle if not used by owning call (no sharing)
- dividing link bandwidth into "pieces"
 - frequency division
 - time division

suppose 8000 frames/s with 8bits slots

how much BW per connection?

Network Core: Packet Switching

each end-end data stream divided into packets

- user A, B packets share network resources
- each packet uses full link bandwidth
 Bandwidth division into resources used as
- resources used as peded bedicated allocation

 Resource reservation

resource contention:

- aggregate resource demand can exceed amount available
- congestion: packets queue, wait for link use
- store and forward: packets move one hop at a time
 - transmit over

Network Core: Packet Switching

Packet-switching versus circuit switching: human restaurant analogy

other human analogies?

Network Core: Packet Switching

Packet-switching: store and forward behavior

Circuit Switching

- Dedicated communications path established for the duration of the conversation
- e.g. telephone network

Packet Switching

- Data sent out of sequence
- Small chunks (packets) of data at a time
- Packets passed from node to node between source and destination
- Used for terminal to computer and computer to computer communications

Packet switching versus circuit switching

Packet switching allows more users to use network!

- 1 Mbit link
- each user:
 - 100Kbps when "active"
 - active 10% of time Nusers
- circuit-switching:
 - 10 users
- packet switching:
 - with 35 users, probability >
 10 active less that .004

Frame Relay

- Packet switching systems have large overheads to compensate for errors
- Modern systems are more reliable
- Errors can be caught in end system
- Most overhead for error control is stripped out

Asynchronous Transfer Mode

- ATM
- Evolution of frame relay
- Little overhead for error control
- Fixed packet (called cell) length
- Anything from 10Mbps to Gbps
- Constant data rate using packet switching technique

Protocol Architecture

- Task of communication broken up into modules
- For example file transfer could use three modules
 - File transfer application
 - Communication service module
 - Network access module