Chapter	2.3.	biffie- Hellman	Key	Exchange
•				

111111111111111

Alice

Bob

sk: a

b

pk: ga

gh (Alice and Bob agree on a large prime p.)

3a

3b

computes (gb)a = gab

computes (ga)b = gab

Chapter 2.4. The ElGanal Public Key Cryptosystem

- Key Gen (1ⁿ); chooses a large prime p and an element $g \in \mathbb{Z}p^{+}$.

 chooses a secret key $1 \le a \le p-1$ and computes $A = g^a \mod P$ pk = (p, g, A) sk = (a)
- Enc(pk, m); chooses a roundom r.

 computes $c_1 := g^r \mod p$ $c_2 := m \cdot A^r \mod p$ output (c_1, c_2)
- Dec(sk, 2); computes $(a^n)^{-1} \cdot c_n = :m' \mod p$ autput m'
- Multi(ct2, ct2); let $C_1 = (g^{r_1}, m_1 \cdot A^{r_1})$ and $C_2 = (g^{r_2}, m_2 \cdot A^{r_2})$ Then, $C_1 \cdot C_2 = (g^{r_1} \cdot g^{r_2}, m_1 \cdot A^{r_1} \cdot m_2 \cdot A^{r_2})$ $= (g^{r_1 \cdot r_2}, m_1 \cdot m_2 \cdot A^{r_1 + r_2})$.

Think thing