(2010 年度後期 担当:佐藤)

□ 復習(行列の転置)

問題 **5.4.** 次の行列 A, B に対して,(i) tA ,(ii) tB ,(iii) AB,(iv) ${}^t(AB)$,(v) tB tA を 計算しなさい*¹.

$$(1) A = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 3 \\ 2 & -1 & 1 \end{pmatrix}, B = \begin{pmatrix} 0 & 3 & -2 \\ 2 & -1 & 1 \\ 3 & 0 & 2 \end{pmatrix}$$

$$(2) A = \begin{pmatrix} 2 & -1 & 1 \\ 0 & 3 & 1 \\ 1 & 2 & -2 \end{pmatrix}, B = \begin{pmatrix} 1 & -3 & 2 \\ 2 & -1 & 0 \\ 4 & 1 & -1 \end{pmatrix}$$

問題 5.5. 次の問に答えなさい.

(1) 次のベクトル \vec{a} , \vec{b} , \vec{c} に対し、ベクトルの長さ $|\vec{a}|^2$, $|\vec{b}|^2$, $|\vec{c}|^2$, および内積 $\vec{a} \cdot \vec{b}$, $\vec{b} \cdot \vec{c}$,

(a)
$$\vec{a} = \begin{pmatrix} 5 \\ 1 \\ -2 \end{pmatrix}$$
, $\vec{b} = \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix}$, $\vec{c} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$
(b) $\vec{a} = \begin{pmatrix} 3 \\ 0 \\ -2 \end{pmatrix}$, $\vec{b} = \begin{pmatrix} 5 \\ -1 \\ 1 \end{pmatrix}$, $\vec{c} = \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix}$

(2) 次の行列
$$A$$
 に対し*2, 行列の積 tAA を求めなさい.

(a) $A = \begin{pmatrix} 5 & 0 & 1 \\ 1 & -2 & -1 \\ -2 & 1 & 1 \end{pmatrix}$ (b) $A = \begin{pmatrix} 3 & 5 & 0 \\ 0 & -1 & 2 \\ -2 & 1 & 2 \end{pmatrix}$

$${}^{t}AA = \begin{pmatrix} |\vec{a}|^{2} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{a} \cdot \vec{b} & |\vec{b}|^{2} & \vec{b} \cdot \vec{c} \\ \vec{a} \cdot \vec{c} & \vec{b} \cdot \vec{c} & |\vec{c}|^{2} \end{pmatrix}$$

が成り立っていることを確かめなさい。

18 5.2

^{*1} 一般に ${}^{t}(AB) = {}^{t}B {}^{t}A$ が成り立つ.

 $^{*^2}$ (2) の行列 A は (1) のベクトル \vec{a} , \vec{b} , \vec{c} を並べてできる行列である.

(2010 年度後期 担当:佐藤)

□ 直交行列

問題 **5.6.** 次の行列 A に対し, ${}^t\!\!AA=A{}^t\!\!A=E_3$ が成り立つこと を計算して確かめなさ い. また A の行列式 を求めなさい.

(1)
$$A = \begin{pmatrix} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$

(2) $A = \begin{pmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{pmatrix} *3$

問題 **5.7.** (鏡映変換を与える行列について)*4 行列

$$S_{\theta} = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix} *5$$

が定める線形変換について、以下の問に答えなさい。

- (1) S_{θ} が直交行列であることを確かめなさい.
- (2) $\vec{p} = \begin{pmatrix} X \\ Y \end{pmatrix}$ に対し、線形変換 S_{θ} による像 $S_{\theta}\vec{p}$ を X, Y, θ を用いて表しなさい。
- (3) \vec{p} と $S_{\theta}\vec{p}$ の中点 \vec{m} を X, Y, θ を用いて表しなさい.
- (4) \vec{m} は直線 $y = \left(\tan \frac{\theta}{2}\right) x$ 上の点であることを示しなさい.
- (5) ベクトル

$$\vec{p} - S_{\theta} \vec{p}$$

は直線 $y=\left(\tan\frac{\theta}{2}\right)x$ の方向ベクトル $\left(\begin{array}{c}1\\\tan\frac{\theta}{2}\end{array}\right)$ と直交することを示しなさ V) *6

19

^{*3} y 軸を回転軸とする θ-回転.

^{**3} y 軸で凹戦物に y る い 口に **4 発展問題. ぜひチャレンジしてください. **5 回転変換を与える行列 $R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ との成分の符号の違いに注意せよ.

 $^{^{*6}}$ (4)(5) の結果から, $S_{ heta}$ は直線 $y=\left(anrac{ heta}{2}
ight)x$ に関する対称変換を与える