Information Retrieval & Text Mining

Document Clustering

Dr. Saeed UI Hassan Information Technology University

Today's Topic

Document clustering

- Why we need it?
- Meta-data representation
 - Textual, non textual (images, tables, algorithms, etc)
- Evaluation

Clustering algorithms

- Partitioning algorithms
- Hierarchical algorithms

What is clustering?

- Clustering: The process of grouping a set of objects into classes of similar objects.
 - Documents within a cluster should be similar.
 - Documents from different clusters should be dissimilar.
- The commonest form of unsupervised learning
 - Unsupervised learning = learning from raw data, as opposed to Supervised learning = where a classification of examples are available.
 - A common and important task that finds many applications in IR and other domains.

A data set with clear cluster structure

 How would you design an algorithm for finding the three clusters in this case?

A data set with clear cluster structure

- Whole corpus analysis/navigation
 - Better user interface: search without typing
- For improving recall in search applications
 - Better search results (like pseudo RF)
- For better navigation of search results
 - Effective "user recall" will be higher
- For speeding up vector space retrieval
 - Cluster-based retrieval gives faster search

Hierarchy isn't clustering but is the kind of output you want from clustering

www.yahoo.com/Science

- Whole corpus analysis/navigation
 - Better user interface: search without typing
- For improving recall in search applications
 - Better search results (like pseudo Relevance Feedback)
- For better navigation of search results
 - Effective "user recall" will be higher
- For speeding up vector space retrieval
 - Cluster-based retrieval gives faster search

- Whole corpus analysis/navigation
 - Better user interface: search without typing
- For improving recall in search applications
 - Better search results (like pseudo Relevance Feedback)
- For better navigation of search results
 - Improved navigation of high recall
- For speeding up vector space retrieval
 - Cluster-based retrieval gives faster search

- Whole corpus analysis/navigation
 - Better user interface: search without typing
- For improving recall in search applications
 - Better search results (like pseudo Relevance Feedback)
- For better navigation of search results
 - Effective "user recall" will be higher
- For speeding up vector space retrieval
 - Cluster-based retrieval gives faster search
 - Match query with median of clusters

Issues for clustering

Representation for clustering

- Document representation
- Need a notion of similarity/distance

How many clusters?

- Number of clusters
- Avoid too large or small number of clusters

Hard vs. soft clustering

- Hard clustering: Each document belongs to exactly one cluster
 - More common and easier to do
- Soft clustering: A document can belong to more than one cluster.
 - Makes more sense for applications like creating browse-able hierarchies
 - You may want to put a pair of sneakers in two clusters: (i) sports apparel and (ii) shoes
 - You can only do that with a soft clustering approach.
- We will only do hard clustering today.

Clustering Algorithms

Partitioning algorithms

- Usually start with a random (partial) partitioning
- Refine it iteratively
 - K means clustering

Hierarchical algorithms

- Bottom-up
- Top-down

Partitioning Algorithms

- Partitioning method: Construct a partition of n documents into a set of K clusters
- Given: a set of documents and the number K
- **Find**: a partition of *K* clusters that optimizes the chosen partitioning criterion
 - Globally optimal
 - Intractable for many objective functions
 - Effective heuristic methods: *K*-means algorithm

- Assumes documents are real-valued vectors e.g. with TF-IDF.
- Clusters based on *centroids* (aka the *center of gravity* or mean) of points in a cluster, *c*:

$$\vec{\mu}(\mathbf{c}) = \frac{1}{|c|} \sum_{\vec{x} \in c} \vec{x}$$

 Reassignment of instances to clusters is based on distance to the current cluster centroids.

Pick *K* random points as cluster centres (means)

Shown here for *K*=2

Iterative Step 1

Assign data points to closest cluster canter

Iterative Step 2

• Change the cluster center to the average of the assigned points

Repeat until convergence

Termination conditions

- Several possibilities, e.g.,
 - A fixed number of iterations.
 - Doc partition unchanged.

How Many Clusters?

- Number of clusters K is given
 - Partition n docs into predetermined number of clusters
- Finding the "right" number of clusters is part of the problem
 - Given docs, partition into an "appropriate" number of subsets.
 - E.g., for query results ideal value of K not known up
- Tradeoff between having more clusters (better focus within each cluster) and having too many clusters

What is a Good Clustering?

- Internal criterion: A good clustering will produce high quality clusters in which:
 - the intra-class (that is, intra-cluster) similarity is high
 - the <u>inter-class</u> similarity is low
 - The measured quality of a clustering depends on both the document representation and the similarity measure used

External criteria for clustering quality

 Quality measured by its ability to discover some or all of the hidden patterns or latent classes in gold standard data

Assesses a clustering with respect to ground truth ... requires labeled data

• Assume documents with C gold standard classes, while our clustering algorithms produce K clusters, $\omega_1, \omega_2, \ldots, \omega_K$ with n_i members.

External Evaluation of Cluster Quality

• Simple measure: <u>purity</u>, the ratio between the dominant class in the cluster ω_i and the size of cluster ω_i

$$Purity(\omega_i) = \frac{1}{n_i} \max_{j} (n_{ij}) \quad j \in C$$

- Biased because having n clusters maximizes purity
- Others are entropy of classes in clusters (or mutual information between classes and clusters)

Purity example

Cluster I: Purity = 1/6 (max(5, 1, 0)) = 5/6

Cluster II: Purity = 1/6 (max(1, 4, 1)) = 4/6

Cluster III: Purity = 1/5 (max(2, 0, 3)) = 3/5

Final words

 In clustering, clusters are inferred from the data without human input (unsupervised learning)

• However, in practice, it's a bit less clear: there are many ways of influencing the outcome of clustering: number of clusters, similarity measure, representation of documents, ...