REINFORCEMENT LEARNING

Nguyen Do Van, PhD

Reinforcement Learning

- Introduction
- Markov Decision Process
- Dynamic Programming

REINFORCEMENT LEARNING INTRODUCTION

Intelligent agents learning and acting Sequence of decision, reward

Reinforcement learning: What is it?

- Making good decision to do new task: fundamental challenge in Al, ML
- Learn to make good sequence of decisions
- Intelligent agents learning and acting
 - Learning by trial-and-error, in real time
 - Improve with experience
 - Inspired by psychology:
 - Agents + environment
 - Agents select action to maximize cumulative rewards

Characteristics of Reinforcement Learning

- What makes reinforcement learning different from other machine learning paradigms?
 - □ There is no supervisor, only a reward signal
 - Feedback is delayed, not instantaneous
 - □ Time really matters (sequential, non i.i.d data)
 - Agent's actions affect the subsequent data it receives

RL Applications

- Multi-disciplinary Conference on Reinforcement Learning and Decision Making (RLDM2017)
 - Robotics
 - Video games
 - Conversational systems
 - Medical intervention
 - Algorithm improvement
 - Improvisational theatre
 - Autonomous driving
 - Prosthetic arm control
 - Financial trading
 - Query completion

Robotics

https://www.youtube.com/watch?v=ZBFwe1gF0FU

Gaming

RL vs supervised and unsupervised learning

Practical and technical challenges:

- Need to access to the environment
- Jointly learning AND planning from correlated sample
- Data distribution changes with action choice

Rewards

- A reward R_t is a scalar feedback signal
- Indicates how well agent is doing at step t
- The agent's job is to maximize cumulative reward
- Example:
 - Robot Navigation: (-) Crash wall, (+) reaching target...
 - Control power station: (+) producing power, (-) exceeding safety thresholds
 - Games: (+) Wining game, Killing enemy, collecting bloods, (-) mine

Agent and Environment

- At each step t the agent:
 - Executes action A_r
 - □ Receives observation O_t
 - Receives scalar reward R_t
- The environment:
 - □ Receives action A_t
 - \square Emits observation O_{t+1}
 - Emits scalar reward R_{t+1}
- t increments at environment step

History and State

 History is the sequence of observations, actions and rewards

$$H_{t} = O_{1}, R_{1}, A_{1}, ..., A_{t-1}, O_{t}, R_{t}$$

- State: the information to determine state in a trajectory
 - \Box $S_t = f(H_t)$
 - Environment State: private representation of the environment
 - Agent State: agent internal representation
 - Information State (Markov Property): useful information from the history

Fully and Partially Observable Environments

- Full observation:
 - Agent fully observes environment state

$$O_t = S_t^a = S_t^e$$

- Agent State = environment state = information state
- Markov Decision Process (detail later)
- Partially observability: agent indirectly or partially observes environment
 - Robot with first view cameras
 - Agent state differ from environment state
 - Agent must construct its own state representation

Major Component of an RL agent

- Policy maps current state to action
- Value function prediction of value for each state and action
- Model agent's representation of the environment.

Policy

- Policy: agent's behavior, how is act in the environment
- Map from state to action
- Deterministic policy $a = \pi(s)$
- Stochastic: $\pi(a|s) = \mathbb{P}[A_t = a|S_t = s]$

Value Function

- Value Function: a prediction of future reward (how many, how much future reward the agents expect)
- Used to evaluate the goodness/badness of state
- Agent select action to chose the best state based on value function (with maximized expected reward)

Model

- To model environments, predict what the environments will do
- P: to predict the next state

$$\mathcal{P}_{ss'}^{a} = \mathbb{P}[S_{t+1} = s' \mid S_t = s, A_t = a]$$

R: to predict immediate (not future) reward

$$\mathcal{R}_s^a = \mathbb{E}\left[R_{t+1} \mid S_t = s, A_t = a\right]$$

VIASI

Maze Example

Rewards: -1 per time-step

Actions: N, E, S, W

States: Agent's location

Policy

Value function

Categorizing Reinforcement Learning Agents

- Agents Action:
 - Value Based: Value function, no policy
 - Policy Based: Policy, no value function
 - Actor Critic: Both Policy and Value Function
- Modelling environment
 - Model Free: interacting directly environments
 - Model Based: Learn and model environments

Policy

Learning and Planning

Sequence Decision Making

- Reinforcement Learning
 - Environments is initially unknown
 - Agent interacts with the environment
 - Agent improves policies
- Planning
 - Models of environment are known
 - Action by functional computation
 - Agent improve policies

Exploration and Exploitation

- Solve problem in trial-error learning
- Agents must learn to have good policies
- Agents learn from acting with their environments
- Reward may not response each step, it may be at the end of games
- Exploration: discovering the environment
- Exploitation: planning with maximal reward
- Trading between exploration and exploitation

Recap on RL introduction

- Sequence of decision, reward
- State, fully observation, partially observation
- Main components: Policy, Value Function, Model
- Categorizing RL agents
- Learning and Planning

MARKOV DECISION PROCESS

Markov decision process: Model of finite-state environment
Bellman Equation
Dynamic Programming

Markov Decision Process (Model of the environment)

Terminologies:

In a Markov Decision Process:

s, s' states a action r reward s set of all nonterminal states s^+ set of all states including the

S⁺ set of all states, including the terminal state

A(s) set of all actions possible in state s

R set of all possible rewards

t discrete time step

T,T(t) final time step of an episode, or of the episode including time t

 A_t action at time t

 S_t state at time t, typically due, stochastically, to S_{t-1} and A_{t-1}

probability of transition to state s' with reward r, from state s and action a probability of transition to state s', from state s taking action a

Markov Decision Process

 Markov property: The distribution over future states depends only on the present state and action, not on any other previous event.

$$p(s', r|s, a) \doteq \Pr\{S_{t+1} = s', R_{t+1} = r \mid S_t = s, A_t = a\},\$$

- Maximize return
 - Episodic task: consider return over finite horizon (e.g. games, maze).

$$U_t = r_t + r_{t+1} + r_{t+2} + \dots + r_T$$

• Continuing task: consider return over infinite horizon (e.g. juggling, balancing).

$$U_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} \dots = \sum_{k=0: \infty} \gamma^k r_{t+k}$$

How we get good decision?

- Defining behavior: the policy
 - Policy: defines the action-selection strategy at every state

```
\pi policy, decision-making rule \pi(s) action taken in state s under deterministic policy \pi \pi(a|s) probability of taking action a in state s under stochastic policy \pi
```

Goals: finds the policy that maximizes expected total reward

$$argmax_{\pi} E_{\pi} [r_0 + r_1 + ... + r_T | s_0]$$

Value functions

The expected return of a policy for a state is call value function

$$V^{\pi}(s) = E_{\pi} [r_t + r_{t+t} + ... + r_T | s_t = s]$$

- Strategy to find optimal policy
 - Enumerate the space of all policies
 - Estimate the expected return of each one
 - Keep the policy that has maximum expected return

Gridworld example

- Reward to Off grid: -1
- Reward to On grid: 0
- Reward exception at A, B

Value functions

Value of a policy

$$V^{\pi}(s) = E_{\pi} \left[r_{t} + r_{t+1} + \ldots + r_{T} \mid s_{t} = s \right]$$

$$V^{\pi}(s) = E_{\pi} \left[r_{t} \right] + E_{\pi} \left[r_{t+1} + \ldots + r_{T} \mid s_{t} = s \right]$$

$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a) R(s, a) + E_{\pi} \left[r_{t+1} + \ldots + r_{T} \mid s_{t} = s \right]$$

$$Immediate \ reward \qquad Future \ expected \ sum \ of \ rewards$$

$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a) R(s, a) + \sum_{a \in A} \pi(s, a) \sum_{s' \in S} T(s, a, s') E_{\pi} \left[r_{t+1} + \ldots + r_{T} \mid s_{t+1} = s' \right]$$

$$Expectation \ over \ 1-step \ transition$$

$$Note: \ T(s, a, s') = p(s'|s, a)$$

 $V^{\pi}(s) = \sum_{a \in A} \pi(s, a) R(s, a) + \sum_{a \in A} \pi(s, a) \sum_{s' \in S} T(s, a, s') \ V^{\pi}(s')$

Bellman's equation

State value function (for a fixed policy with discount)

$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a) \left[R(s, a) + \gamma \sum_{s' \in S} T(s, a, s') V^{\pi}(s') \right]$$
Immediate Future expected sum of rewards

State-action value function (Q-function)

$$Q^{\pi}(s,a) = R(s,a) + \gamma \sum_{s'} T(s,a,s') [\sum_{a' \in A} \pi(s',a') Q^{\pi}(s',a')]$$

- When S is a finite set of states, this is a system of linear equations (one per state)
- Belman's equation in matrix form: $V^{\pi} = R^{\pi} + \gamma T^{\pi} V^{\pi}$

$$Q^{\pi}(s, a) = r(s, a) + \gamma \sum_{s' \in S} p(s'|a, s) V^{\pi}(s')$$

Optimal Value, Q and policy

- Optimal V: the highest possible value for each s under any possible policy
- Satisfies the bellman Equation $V^*(s) = \max_{a} \left[r(s, a) + \gamma \sum_{s' \in S} p(s'|a, s) V^*(s') \right]$
- $lacksquare ext{Optimal Q-function} Q^*(s,a) = r(s,a) + \gamma \sum_{s' \in S} p(s'|a,s) V^*(s')$
- Optimal policy: $\pi^*(s, a) = \arg \max_a Q^*(s, a)$

Dynamic Programming (DP)

- Assuming full knowledge of Markov Decision Process
- It is used for planning in an MDP
- For prediction
 - □ Input: MDP (S,A,P,R,γ) and policy π
 - $lue{}$ Output: value function v_{π}
- For controlling
 - □ Input: MDP (S,A,P,R,γ) and policy π
 - $lue{}$ Output: Optimal value function v_* and optimal policy π_*

DP: Iterative Policy Evaluation

- Main idea of Dynamic Programming: turn Bellman equations to update rules
- Problem: evaluate a given policy π
- Iterative policy evaluation: Fix policy

Iterative policy evaluation

```
Input \pi, the policy to be evaluated

Initialize an array V(s) = 0, for all s \in \mathbb{S}^+

Repeat

\Delta \leftarrow 0

For each s \in \mathbb{S}:

v \leftarrow V(s)

V(s) \leftarrow \sum_a \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]

\Delta \leftarrow \max(\Delta,|v-V(s)|)

until \Delta < \theta (a small positive number)

Output V \approx v_{\pi}
```

Bellman eq: $V^{\pi} = R^{\pi} + \gamma P^{\pi} V^{\pi}$

DP: Improving a Policy

Finding a good policy: Policy

$$\pi_0 \xrightarrow{\mathrm{E}} v_{\pi_0} \xrightarrow{\mathrm{I}} \pi_1 \xrightarrow{\mathrm{E}} v_{\pi_1} \xrightarrow{\mathrm{I}} \pi_2 \xrightarrow{\mathrm{E}} \cdots \xrightarrow{\mathrm{I}} \pi_* \xrightarrow{\mathrm{E}} v_*,$$

- Start with an initial policy π_0 (e.g. random)
- Repeat:
 - Compute V^{π} , using iterative policy evaluation.
 - Compute a new policy π' that is greedy with respect to V^{π}
- Terminate when $\pi = \pi'$

Policy iteration (using iterative policy evaluation)

1. Initialization

 $V(s) \in \mathbb{R}$ and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$

2. Policy Evaluation

Repeat

 $\Delta \leftarrow 0$

For each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s))[r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$ (a small positive number)

3. Policy Improvement

 $policy\text{-}stable \leftarrow true$

For each $s \in S$:

 $old\text{-}action \leftarrow \pi(s)$

 $\pi(s) \leftarrow \operatorname{arg\,max}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$

If $old\text{-}action \neq \pi(s)$, then $policy\text{-}stable \leftarrow false$

If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

Gridworld example

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

R = -1 on all transitions

Greedy Policy w.r.t. v_k

Gridworld example

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

R = -1 on all transitions

Greedy Policy w.r.t. V_k

DP:Value Iteration

- Finding a good policy: Value iteration
 - Drawback of policy iteration: evaluate policy also needs iteration
 - Main idea: Turn the Bellman optimality equation into an iterative update rule (same policy evaluation)

$$\begin{aligned} v_{k+1}(s) &= \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s') \right) \\ \mathbf{v}_{k+1} &= \max_{a \in \mathcal{A}} \mathcal{R}^a + \gamma \mathcal{P}^a \mathbf{v}_k \end{aligned}$$

DP: Pros and Cons

- Rarely use Dynamic programming in real applications
 - □ To calculate we must access environment model, fully observe with knowledge of environment.
 - Extending to continues actions and state
- However:
- Mathematically exact, expressible and analyzable
 - Good deals for small problem.
 - Stable, simple and fast

Visualization and Codes

https://cs.stanford.edu/people/karpathy/reinforcejs/index.html

Recap on Reinforcement Learning

- Introduction on RL
 - Intelligent agents learning and acting
 - Sequence of decision, reward
- Markov Decision Process
 - Model of finite-state environment
 - Bellman Equation
 - Dynamic Programming
- Next:
 - Online Learning

Questions?

THANK YOU!

