1. Exercise 5.1.1: Compute the PageRank of each page in Fig. 5.7, assuming no taxation.

	a	b	c
a	1/3	1/2	0
b	1/3	0	1/2
c	1/3	1/2	1/2

$$r = \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{2} \end{bmatrix}$$

Na T iteraties
$$r*M$$
 te berekenen krijgen we $\lambda = \begin{bmatrix} \frac{3}{13} \\ \frac{1}{13} \\ \frac{6}{13} \end{bmatrix}$

2. Exercise 5.1.2: Compute the PageRank of each page in Fig. 5.7, assuming $\beta = 0.8$.

$$A = \beta * M + (1 - \beta) * \begin{bmatrix} \frac{1}{N} \end{bmatrix}_{NxN}$$

$$A = 0.8 * \begin{bmatrix} 1/3 & 1/2 & 0 \\ 1/3 & 0 & 1/2 \\ 1/3 & 1/2 & 1/2 \end{bmatrix} + 0.2 * \begin{bmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \end{bmatrix}$$

We voeren vervolgens T keer r * A uit en krijgen
$$\lambda = \begin{bmatrix} \frac{7}{25} \\ \frac{25}{81} \\ \frac{35}{81} \end{bmatrix}$$

3. Exercise 5.1.3: Suppose the Web consists of a clique (set of nodes with all possible arcs from one to another) of n nodes and a single additional node that is the successor of each of the n nodes in the clique. Figure 5.8 shows this graph for the case n=4. Determine the PageRank of each page, as a function of n and β .

Voor iedere node geldt dat deze een connectie heeft naar de andere nodes met een waarde van $\frac{1}{N}$ behalve de successor node, deze heeft in de matrix een kolom die enkel uit nullen bestaat. voor bijvoorbeeld n = 4 zoals figuur 5.8 krijgen we:

$$\beta * \begin{bmatrix} 0 & 1/4 & 1/4 & 1/4 & 0 \\ 1/4 & 0 & 1/4 & 1/4 & 0 \\ 1/4 & 1/4 & 0 & 1/4 & 0 \\ 1/4 & 1/4 & 1/4 & 0 & 0 \\ 1/4 & 1/4 & 1/4 & 1/4 & 0 \end{bmatrix} + (1-\beta) * \begin{bmatrix} 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \end{bmatrix}$$

4. Exercise 5.2.2 (a): Using the method of Section 5.2.1, represent the transition matrices of the following graphs: (a) Figure 5.4.

source	degree	destinations
A	3	B,C,D
В	2	A,D
C	1	E
D	2	В,С

5. **Exercise 5.3.1 :** Compute the topic-sensitive PageRank for the graph of Fig. 5.15, assuming the teleport set is: $(\beta = 0.8)$

$$\begin{bmatrix} 0 & 1/2 & 1 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{bmatrix}$$

$$0.8 * \begin{bmatrix} 0 & 1/2 & 1 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{bmatrix} + 0.2 * \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

start T iteraties beginnende van $\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$ geeft ons $v = \begin{bmatrix} 3/7\\4/21\\4/21\\4/21 \end{bmatrix}$

(b) A and C

$$0.8 * \begin{bmatrix} 0 & 1/2 & 1 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{bmatrix} + 0.2 * \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \\ 0 \end{bmatrix}$$

(b) A and C $0.8 * \begin{bmatrix} 0 & 1/2 & 1 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{bmatrix} + 0.2 * \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \\ 0 \end{bmatrix}$ start T iteraties beginnende van $\begin{bmatrix} 1/2 \\ 0 \\ 1/2 \\ 0 \end{bmatrix}$ geeft ons v = $\begin{bmatrix} 19/50 \\ 17/100 \\ 27/100 \\ 17/100 \end{bmatrix}$

- 6. Exercise 5.4.1: In Section 5.4.2 we analyzed the spam farm of Fig. 5.16, where every supporting page links back to the target page. Repeat the analysis for a spam farm in which:
 - (a) Each supporting page links to itself instead of to the target page.
 - (b) Each supporting page links nowhere.
 - (c) Each supporting page links both to itself and to the target page.
- 7. Exercise 5.4.2: For the original Web graph of Fig. 5.1, assuming only B is a trusted page:
 - (a) Compute the TrustRank of each page.

$$0.8 * \begin{bmatrix} 0 & 1/2 & 1 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{bmatrix} + 0.2 * \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \\ 0 \end{bmatrix}$$

 $0.8 * \begin{bmatrix} 0 & 1/2 & 1 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{bmatrix} + 0.2 * \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \\ 0 \end{bmatrix}$ start T iteraties beginnende van $\begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$ geeft ons v = $\begin{bmatrix} 27/100 \\ 9/25 \\ 4/25 \\ 21/100 \end{bmatrix}$

(b) Compute the spam mass of each page.

$$0.8 * \begin{bmatrix} 0 & 1/2 & 1 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{bmatrix} + 0.2 * \begin{bmatrix} 1/4 & 1/4 & 1/4 & 1/4 \\ 1/4 & 1/4 & 1/4 & 1/4 \\ 1/4 & 1/4 & 1/4 & 1/4 \end{bmatrix}$$

$$T \text{ iteraties geeft ons } v = \begin{bmatrix} 3/9 \\ 2/9 \\ 2/9 \\ 2/9 \end{bmatrix}$$

T iteraties geeft ons
$$v = \begin{bmatrix} 3/9\\2/9\\2/9\\2/9 \end{bmatrix}$$

spam ma	ass formule = ¹	$\frac{pagerank-trustrank}{pagerank}$
node	spam mass	
a	0.19	
b	-0.62	
c	0.28	
d	0.055	

8. Exercise 5.5.1: Compute the hubbiness and authority of each of the nodes in our original Web graph of Fig. 5.1.

$$L = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix}, L^T = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

in de slides staat dat we h en a moeten initialiseren op $1/\sqrt{N}$, maar in het boek staat initialiseer op 1. Na het berekenen van h en a moet men steeds normaliseren, de maximum waarde in de kolom is 1.

$$h = La$$
$$a = L^T h$$

$$h = \begin{bmatrix} 0,2891\\1\\1\\0.8136 \end{bmatrix}$$

$$a = \begin{bmatrix} 1\\ 0.3919\\ 0.1027\\ 0.7108 \end{bmatrix}$$