# 清华大学软件学院本科生 "专业专题训练"实习报告

| 专业专题训练       |
|--------------|
| 林武桃          |
| 孙子平          |
| 2015013249   |
| 软件 62 班      |
| 微软 STCA      |
| 2019.7.9-8.9 |
|              |

2019年8月28日

## 1 实习任务

我们在微软 STCA 实习的目标是代码搜索,也就是用自然语言查询代码。具体来说,它包含以下几个步骤: 1) 收集 Python 和 JavaScript(下简称 py 和 js)的代码库, 2) 建立代码搜索的模型(又分为数据预处理、编写模型、训练调参这 3 个步骤), 3) 提供 Web 服务端以查询 py 和 js 的代码, 4) 编写 VS Code 插件搜索代码。我们起初也根据搜索语言的不同分组,即 py 和 js 两组。但实际上这两个语言的差别仅仅是数据处理,模型是一样的,因而我们两个组是混在一起工作、互相协作的。上述的第 4 个任务由李超老师完成,而前 3 个任务就交给了我们。

我们选出冯昊作为我们两个组的共同组长,由他分配任务。我被派的任务是复现 CO-DEnn 模型,其他人则负责复现 Baseline 和 Code2Vec 模型。而第个任务,即收集代码库也交给了其他人,这是实习第一周完成的任务,而我第一周主要在阅读论文。而后的几乎所有时间几乎都花在了第 2 个任务,这也是我们这次实习的重点。第 3 个任务被派给了谭新宇,我和他商量将搜索的请求转发给我,我再返回结果。第 3 个任务的工作量不大,是在最后一周花费几小时完成的。

除了分配的任务之外,我对代码还有更高的要求,希望代码能更具扩展性,进而实现一个很方便地处理数据、训练评测模型的框架。

## 2 完成情况

#### 2.1 数据预处理

每个数据集(即代码库)大致会经历提取代码片段、清洗、切分和转化为输入格式这 4 个阶段。不同的模型的数据预处理可能只有转化阶段不同,不同数据集的数据预处理又可能 只有提取阶段不同,有些数据预处理还可能跳过阶段,这种数据预处理的交互错杂使得维护 清晰的数据处理层次变得相对困难。

为了维护清晰的数据处理层次,我经历了1次大重构。最开始我将数据预处理的不同阶段放在不同的目录里,用 Makefile 自动处理数据。很快地,由于数据集日益复杂, Makefile 就很冗长被弃用,进而导致数据处理混乱,不知道上阶段和下阶段数据的位置。此外各个服务器之间同步数据集也是个问题。之后,我重构了整个系统,改用自己写的脚本替代 Makefile来批量处理数据,它还可根据参数自动下载处理过或未处理的数据集、根据需要运行依赖。数据集也只分配到了3个目录下面:原始数据集、预处理的、最终用于训练的数据集。数据集的命名也很规范,可以体现上下游阶段的数据集。

#### 2.2 编写模型

CODEnn 相较于 BaseLine 是一个简单模型,它只需要单步训练。其原理大致是将代码特征映射到一个向量,再将描述文字也映射到一个向量,将其 cos 距离作为 loss 训练。对于代码特征,原论文提取了函数名、调用 API 序列和 token 集;对于描述文字,通常选取 docstring (Python)或函数上方或内部注释 (JavaScript)。对于函数名、token 集,会按照 驼峰命名和下划线命名进一步划分成更小的词法单元,而 API 序列则保留不再分割。对于 token 集,不同于其他 3 种数据 (方法名、API 序列和描述),我们认为它是无序的 (BOW, bag of words),因而进行了去重。所有的这些词素,对于有序的会使用 RNN 或其变种处理,再将 RNN 每一个词的输出进行池化;对于无序的,会用 MLP (多层感知机,但是论文作者其实只用了单层)处理再进行池化。所有的代码特征池化得到的特征向量再经过一层全连层,使其维度与描述向量的维度一致,最后以 cos 距离作为 loss。为了便于 batch 处理这些变长的数据,这些数据会被截断或者填充到某一个长度,截断截尾,填充填后。

我重新实现了 CODEnn 的代码,从而更好地支持了多卡训练、断点、可视化,并适应了我们的数据集。

#### 2.3 训练调参

CODEnn 有很多超参可以调,如 RNN 的选取 LSTM 还是 GRU (原作选取 LSTM), 池化的选取 Max 还是 Average (原作选取 Max)、激活的选取 RELU 还是 Tanh (原作选取 Tanh)、双向还是单向 RNN (原作选取双向)、各种变长数据截断或填充的最后长度、 vocabulary 大小、embedding 大小、representing 大小。

由于大数据集上的调参需要较大的时间和资源,我相信在小数据集上表现较好的模型在大数据集上也会表现得很好。所以我选用了 GitHub 上的 Numpy 代码作为测试数据集。图 1是各个调参后训练的结果,这里有两条蓝线,起初在下方后来在上方的是无 bidirectional,另一条是原版,improved 是指使用了 mean 池化、GRU 和 RELU 激活,横坐标是 epoch。可以看出使用 mean 池化、GRU、RELU 激活都能对模型有所帮助,而 bidirectional 很难说有没有帮助。

接着,我们想知道 Vocabulary 的大小会不会影响模型性能,但小数据集本来就没多少 Vocabuary,所以我们就在大数据集上测试,测试结果如图 2,这里 10000vocabulary 的是分成 2 段训练的,分别是蓝色和绿色,其他则是 20000vocabulary 的,分成 4 段,横坐标是 epoch。可以看出 Vocabulary 的选取没有太大的影响,这说明出现频率很低的那些词确实不那么重要。后来为了尝试模型的性能是否会有最高点,我又继续训练 20000vocabulary,确实发现模型的性能存在最高点,这提示我们需要加入 Regularization 方法或者提前终止训练。我们选择 800epoch 的模型作为最终模型。

表 1是该模型的性能。就 acc@top k 的性能指标而言, CODEnn 性能远远优于 Baseline 和 Code2Vec 以及后来周展平实现的 CodeNet。



图 1: Numpy 数据集下对模型参数的调整



图 2: py\_github 数据集下不同词汇大小参数的调整

# 3 收获

#### 3.1 深度学习

最大的收获可以说是深度学习领域的技能得到很大的长进,主要是 2 个方面: 1) Pytorch 的编程能力, 2) NLP 领域的理论能力。

| dataset                   | acc@top 5 | acc@top 10 |
|---------------------------|-----------|------------|
| validation set (pool=200) | 0.806875  | 0.884375   |
| validation set (pool=800) | 0.621563  | 0.726250   |
| test set (pool=200)       | 0.780667  | 0.860333   |
| test set (pool=800)       | 0.596250  | 0.711250   |

表 1: lr=1e-3, epoch=800 时, CODEnn Improved 的性能

在参加微软实习的一年多以前,我在龙明盛手下做过一会儿的活,主要是研究迁移学习和哈希(也就是 embedding),使用过 PyTorch 和 Tensorflow。由于很长时间没有再在深度学习领域写代码,我已经将 PyTorch 和 Tensorflow 忘的一干二净了,而且它们的 API 也发生了一些改动。另外,由于自己一直在迁移学习和哈希的领域研究,很多其他的神经网络模型并没有接触过,比如循环神经网络,以及在这之上做的 Seq2Seq 模型等等。这一切就导致了我在实习前,上面提到的两个能力是极度匮乏的。

这次实习,我又重温了 PyTorch,而且也发现了原来设计的一些 API 发生了改变,比如 Variable 这个类被 deprecated 了、出现了 DataParallel 这个新的类。当然这些改变也是喜闻乐见的,它们使得 PyTorch 的 API 看起来更加优美。

此外,我用 PyTorch 复现了 CODEnn 这个模型,它让我知道了 RNN 及其变体 LSTM、GRU 的实现方式和工作原理。为了复现 Baseline,我还写了个 Code Summarizer 的模型,这个模型将输入的代码 token 流转化为总结的文本流,从中我学习了 Seq2Seq 模型以及带 attention 的变种的原理及实现方法。总而言之,我的 NLP 领域的知识和实践能力都得到了很大的长进。

#### 3.2 团队合作

微软的团队管理还是很先进的,甚至让刚实习的我有些惊叹。在这之前,我们只有在软件工程的课堂上,而这是我们第一次实践这些。主要有 3 个方面: 1) 冲刺管理, 2) PAI 分配 (GPU 服务器), 3) Teams 协同。

我们会有每日的站立会议(实际上是坐着的)来汇报完成的工作和将要完成的工作。我们经历了1次冲刺,在这1次冲刺里,有很多的任务,任务再分配到每个人。通过这种方式我们分配任务并且管理进度。此外,通过各种图表(如燃尽图),我们可以查看到当前的进度。

还有 PAI 的 GPU 管理也是很先进的,虽然我觉得有些不便利,因为之前的我都是在实验室里想用多少 GPU 就和其他人商谈好,而后占用。但考虑到要多人使用,一些任务需要等待,那就需要个很好的调度系统,PAI 就是为此而生的。但我也觉得它有些不便利,比如很难和提交的任务交互、无法在运行时改变 GPU 数目和无法改变端口映射(这是 docker 限制的)。总的而言,PAI 还是不错的。当然最后也要感谢微软给我们提供了充足的运算资

源。

Teams 也是一个很方便的软件。我之前在 Pony.ai 实习使用的是 slack。个人觉得这两个软件在功能上相仿,而且也处于同样的生态地位。在 Teams 上交流相比微信便利很多,降低了沟通的瓶颈。

## 4 感谢体会

首先我要谢谢我的各位导师们,包括但不限于李超、林武桃,它们给予了我很大的帮助。然后我要感谢我的同学们,感谢他们与我协作完成了这个项目。接着我要感谢我在微软的同写字间的其他两个室友,他们为我解答了很多困惑。最后我要感谢微软和学校,微软为我们提供了很多很好的设备,而学校则为我们提供了这么好的一次机会。

除了上面说的这些收获,我也有遗憾,那就是时间太过仓促。我还想尝试很多其他模型,并将它们集成进我的仓库。但时间不允许。总的而言微软的实习是很有意义的它让我学到了很多。

指导教师批阅意见: (要有具体的评阅意见)

指导教师签字:

年 月 日