数据的表示和运算

1. 数制&码制

1.1. 1/8/10/16进制及抓换

不必多说

1.2. 真值和机器数

1 真值:带有正负的数字

2数字化: 计算机用0/1代表正负

3 机器数:结果数字化的真值

1.3. BCD码(二进制编码的十进制)

十进制数	8421码	2421码	余3码
0	0000	0000	0011
1	0001	0001	0100
2	0010	0010	0101
3	0011	0011	0110
4	0100	0100	0111
5	0101	1011	1000
6	0110	1100	1001
7	0111	1101	1010
8	1000	1110	1011
9	1001	1111	1100

1.3.1.8421码(默认BCD码=8421码)

1规则

1. 数的表示: 将十进制数的每1位, 转化为4位的二进制数

2. 正负的表示: 十六进制的C(1100)表示正, D(1101)表示负, 均放数字串的最后

2 注意事项

1. 当十进制数是偶数位时,要在高位补4个0

2.8421BCD遇1001就要进位

3 示例

表 2-2 8421 BCD 码示例一

+325	0011	0010	0101	1100
-325	0011	0010	0101	1101

表 2-3 8421 BCD 码示例二

+56	0000	0101	0110	1100
-56	0000	0101	0110	1101

1.3.2. 其余BCD编码

1 余3码: 8421码+0011(二进制3)

2 当十进制数≥5时四位2421码的最高位为1, <5时, 四位2421码的最高位为0, 是有权码

1.4. 字符串和字符

1字符代码:对字符就行编码的二进制代码,最常用的为ASCII码

2 字符串的大小端存放:

1. 字符串: 内存中占用连续字节, 每字节放一个字符

2. 当字符串占2or4字节时,字符串可以按照从低到高or从高到低字节摆放

1.5. 校验码

详见计算机网络,数据链路层笔记

2. 定点数的表示和运算

2.1. 定点数的表示

1 无符号数表示:全部二进制位均为数值位,没有符号位,相当于绝对值

2 有符号数的表示

1. 计算原则

- 。 三种码最高位都是符号位
- 。 真值是正数时, 三种码形式相同(符号位都为0, 数值部分为真值)
- 真值是负数时,符号位都为1,原码的数值部分仍为真值,反码数值部分为原码取反,补码数值为原码取反+1

2. 注意事项

○ 0的原码和反码都有两种(+0/-0), 补码只有一种

$$\circ$$
 $[x]$ $^{}$ $\xrightarrow{}$ 连通符号位在内每位取反 末尾+1 \longrightarrow $[-x]$ $^{}$ \rightarrow

 \circ n位机器字长的计算机中,补码表示范围为 $-2^n \to 2^n - 1$

3. 补码特点

- 。 不论多少位, -1的补码都是111111......111, 0的补码都是00000....0000
- 最小负数的补码永远是1000.....0000

3 有/无符号数范围区别:有符号数因为有一位被拿去表示正负,所以能表示的最大值砍半,但 是范围大小不变

4 移码

1. 补码的缺点: 计算机内部会得出 $[-21]_{\uparrow h}=1,01011>[21]_{\uparrow h}=0,10101$ 的比较,与事实不符

2. 移码规则: 对n位的真值加上 2^n

[21] * = 10101 + 100000 = 110101 > [-21] * = -10101 + 100000 = 001011 符合事实

3. 表示范围: 机器字长为n, 范围为 $0 \rightarrow 2^{n+1} - 1$

4. 速算: 移码就是补码的符号位取反

5 小数的表示: $S = 2^{E}(M_0, M_1 M_2 \dots M_n)$ 其中 M_0 是符号位

1. E为阶码:为顶点整数,用移码/补码表示

 $2. - \pm M$ 为尾数:为定点小数,用原码/补码表示

情形	含义	真值	阶码表示
E = 0	纯小数	-0.1111	1.1111
E = n	纯整数	+1111	01111
E = m < n	浮点数	+100.100	2 ³ (0.100100)

2.2. 定点数的运算

2.2.0. 计算机为何要采用补码

- **1**补码能够使 $[x]_{i}$ + $[-x]_{i}$ = 0
- 2 0的表示只有一种(0元不唯一时运算不可逆),且可以多表示一个最小负数
- 3 符号位可以和数值位一起参加运算
- ▶ 补码可以将正数+负数,转化为正数+正数,将减法转化为加法方便加法器设计
- 5 方便扩充,例如8位二进制数扩展为16位时只需在高位补上8个符号位

2.2.1. 定点数的移位运算

1 逻辑位移

位移类型	高位	低位
逻辑左移	丟弃	补0
逻辑右移	补0	丢弃

2 算数位移: 左移补0, 右移补符号位

	码制	添补代码
正数	原码、补码、反码	0
负数	原码	0
	ALTO	左移添0
	补码	右移添1
	反码	1

这其实基于补码/反码的性质:补码中必定存在一个1,使得这个1右边与原码相同,左边与 反码相同

1 原码: 11010<1>000 2 补码: 10101<1>000 3 反码: 10101<0>111

3 移位对解读的影响

1. 正数原码/反码/补码+负数原码: 左移丢掉高位1→直接出错, 右移丢掉低位1→影响精度

2. 负数反码: 左移丢掉高位0→直接出错,右移丢掉低位0→影响精度 3. 负数补码: 左移丢掉高位0→直接出错,右移丢掉低位1→影响精度

2.2.2. 原码定点数的加减

对于 $[x]_{\mathbb{R}} = x_0 x_1 \dots x_n, [y]_{\mathbb{R}} = y_0 y_1 \dots y_n$

1加法

x,y符号位相同	x,y符号位不同
绝对值相加,符号位不变	绝对值相减,符号与绝对值大的数相同

2减法:将被减数符号位取反,x-y转化为x+(-y)

2.2.3. 补码定点数的加减

1加法: $[x+y]_{\mbox{\tiny{$\mathbb{A}$}}}=[x]_{\mbox{\tiny{$\mathbb{A}$}}}+[y]_{\mbox{\tiny{$\mathbb{A}$}}}$

2 减法: $[x-y]_{\mbox{\tiny{$\frac{1}{4}$}}}=[x]_{\mbox{\tiny{$\frac{1}{4}$}}}+[-y]_{\mbox{\tiny{$\frac{1}{4}$}}}$

2.2.4. 溢出及判定

1 溢出原因:两补码相加大于上界(正溢出)/小于下界(下溢出),两定点小数相加大于1(上溢)/小于-1(下溢)

2 溢出的后果:数值位跑到符号位来了,结果与预期不同

3 加减法溢出判定法(减法化为加法)

1. 正数+正数=负数,负数+负数=正数时溢出

2. 看符号位&最高有效位

是否溢出	数值最高位(最高有效位)	符号位
否	有进位	有进位
否	无进位	无进位
是	无进位	有进位
是	有进位	无进位

左边最高有效位无进位/符号位有进位→溢出,右边最高位有效位&符号位都进位→不 溢出

$$[x+y]_{\$}=[x]_{\$}=1.0101$$
 $[x+y]_{\$}=[x]_{\$}=1.1000$
 $+[y]_{\$}=\frac{1.1001}{0.1110}$ $+[y]_{\$}=\frac{1.1000}{1.0000}$

- 4 两位符号位(变形补码)判定溢出
 - 1. 双符号位运算规则: 连通数值部分一起参加运算+高位符号位产生进位直接丢掉
 - 2. 溢出判断原则:结果的高/低两符号位不同时就溢出,01表示正溢出/10表示负溢出,以下为负溢出示例

$$[x+y]_{*}=[x]_{*}=11.0101$$

+ $[y]_{*}=\frac{11.1001}{110.1110}$ (高符号位的 1 丢掉)

2.2.5. 定点数的乘法

2.2.5.1. 原码一位乘:以x=0.1101,y=1.1011为例

1 对于符号位的处理: 负负得正, 所以x, y的符号位异或(相同为0/不同为1)即得到新的符号位

只要是原码运算,符号位通通单独处理(异或操作)

- 2 对于数值位:先抛开符号位符号位全部设为0,称x为乘数/y为被乘数
 - 1. x, y为n位时, 共需n次加法和n次移位
 - 2. 乘数最后一位为0时执行+0位移一位的操作,最后一位为1时执行+x位移一位的操作,操作完后次低位更新为低位
 - 3. 每次加法仅将原来的部分积高位+x
 - 4. 整数原码和小数原码都适用这个规则, 小数对应. 整数对应,

乘积寄存 器	y寄存 器	当前所需执行的操作
0.0000	1011	y低位为1,乘积寄存器+x(0.1101)
0.110 <mark>1</mark>	1011	乘积寄存器右移1位; y寄存器接收这一位, 然后也右移 1位(舍低位)
0.0110	<mark>1</mark> 101	y低位为1,乘积寄存器+x(0.1101)

乘积寄存 器	y寄存 器	当前所需执行的操作
1.001 <mark>1</mark>	1101	乘积寄存器右移1位; y寄存器接收这一位, 然后也右移 1位(舍低位)
0.1001	<mark>1</mark> 110	y低位为0,乘积寄存器+0(0.0000)
0.100 <mark>1</mark>	1110	乘积寄存器右移1位; y寄存器接收这一位, 然后也右移 1位(舍低位)
0.0100	<mark>1</mark> 111	y低位为1,乘积寄存器+x(0.1101)
1.000 <mark>1</mark>	1111	乘积寄存器右移1位; y寄存器接收这一位, 然后也右移 1位(舍低位)
0.1000	<mark>1</mark> 111	乘数所有位数都用完了,当前红色的就是结果

原色位初始状态

将每行的红色数字拼接, 就是当前的**中间结果**

绿色代表当前的乘数

高亮代表乘积寄存器低位的流向

- 3 注意事项:
 - 1. 上述所有移位均是逻辑移位操作,即在高位+0
 - 2. 考虑一位溢出, 部分积一般用n+1位寄存器

2.2.5.2. 补码一位乘

- 1 校正法: 对于x * y

 - 2. y为负数时,按照原码乘来算,移位也是高位补符号位,<mark>最后结果还要加上 $[-x]_*$ 校正</mark>

注意符号位不参与运算,原码一位乘同理

- 2 比较法(booth法): 对于*x* * *y*
 - 1. x与部分积取双符号位,符号位参与运算,采用补码算数位移(但只有次高位参与位移)

 - 3. y尾部加上附件位 y_{n+1} 初始值设为0,根据 y_ny_{n+1} 判断下一步运算(如下表)

y _n y _{n+1}	y _{n+1} -y _n	操作
00	0	部分积右移一位
01	1	部分积加[x]*, 再右移一位
10	-1	部分积加[-x]+, 再右移一位
11	0	部分积右移一位

4. 按照上述算法执行n步,到n+1步时不再位移,只判断是否要加减[x]补

3 比较法示例: $[x]_{
eal}=1.0101$, $[y]_{
eal}=1.0011$, 求 $[xy]_{
eal}$

先全取反末尾+1得 $[-x]_{\text{}}=0.1011$,然后需要执行4+1步运算

乘积寄存 器	y寄存 器	当前所需执行的操作
00.000	100110	$y_n y_{n+1} = 10$,部分积+ $[-x]$ $_{ eftrightarrow} = 00.1011$
00.1011	100110	执行右移, 乘积寄存器低位塞给y寄存器, y寄存器挤掉 自己低位
00.0101	110011	$y_ny_{n+1}=11$,右移一位即可
00.0010	111001	$y_n y_{n+1} = 01$,部分积+ $[x]_{rac{\lambda}{1}} = 11.0101$
11.0111	111001	执行右移, 乘积寄存器低位塞给y寄存器, y寄存器挤掉 自己低位
11.1011	111100	$y_n y_{n+1} = 00$,右移一位即可
11.1101	111110	$y_n y_{n+1} = 10$,部分积+ $[-x]_{lpha} = 00.1011$
00.1000	111110	最后一步不再右移了,此时的部分积就是 $[xy]$

原色位初始状态

将每行的红色数字拼接,就是当前的**中间结果**

绿色代表当前的乘数

紫色代表附加位

2.2.5.3. 补码二位乘

- 1 XY均用补码表示,符号位都参加运算,乘积的符号位由运算过程自动产生
- 2 部分积采用三位符号位运算,初值为0
- 3 设乘数数值部分为n位
 - 1. n为奇数,乘数设1位符号位,做(n+1)/2次运算和移位,最后一步右移1位
 - 2. n为偶数, 乘数设2位符号位, 做(n/2)+1次运算, n/2次移位, 最后一步不移位
- \mathbf{Q} 根据 $y_{n-1}y_ny_{n+1}$ 的值来决定运算,如下

 $y_{n-1} \ y_n \ y_{n+1} = 000 \ \mathbf{H}$, $[Z_{i+2}]_{\stackrel{}{N}} = [Z_i]_{\stackrel{}{N}} + 0$, 算术右移2位; $y_{n-1} \ y_n \ y_{n+1} = 001 \ \mathbf{H}$, $[Z_{i+2}]_{\stackrel{}{N}} = [Z_i]_{\stackrel{}{N}} + [X]_{\stackrel{}{N}}$, 算术右移2位; $y_{n-1} \ y_n \ y_{n+1} = 010 \ \mathbf{H}$, $[Z_{i+2}]_{\stackrel{}{N}} = [Z_i]_{\stackrel{}{N}} + 2[X]_{\stackrel{}{N}}$, 算术右移2位; $y_{n-1} \ y_n \ y_{n+1} = 100 \ \mathbf{H}$, $[Z_{i+2}]_{\stackrel{}{N}} = [Z_i]_{\stackrel{}{N}} + 2[X]_{\stackrel{}{N}}$, 算术右移2位; $y_{n-1} \ y_n \ y_{n+1} = 101 \ \mathbf{H}$, $[Z_{i+2}]_{\stackrel{}{N}} = [Z_i]_{\stackrel{}{N}} + [-X]_{\stackrel{}{N}}$, 算术右移2位; $y_{n-1} \ y_n \ y_{n+1} = 110 \ \mathbf{H}$, $[Z_{i+2}]_{\stackrel{}{N}} = [Z_i]_{\stackrel{}{N}} + [-X]_{\stackrel{}{N}}$, 算术右移2位; $y_{n-1} \ y_n \ y_{n+1} = 111 \ \mathbf{H}$, $[Z_{i+2}]_{\stackrel{}{N}} = [Z_i]_{\stackrel{}{N}} + [-X]_{\stackrel{}{N}}$, 算术右移2位;

5 运算完成后 $y_{n-1}y_ny_{n+1}$ 全部清0

2.2.6. 定点数的除法运算

2.2.6.1. 原码恢复余数法: $[x/y]_{\mathbb{R}}$ 为例

1运算前的处理:

- 1. 符号位单独处理,取x,y绝对值运算
- 2. 判断是否满足0<|x|<|y|,不满足的话必定溢出

2 运算规则:被除数x也可以看成余数

1. 第一次: 先将x减去被除数即 $x = x + [-y]_{\uparrow h}$

第1次运算结 果	商低位 塞?	需要恢复余数?	下一步操作(得到第二次结 果)
x > 0	0	不需要	x左移1位, $x=x+[-y]$ 补
x < 0	0	恢复 $x=x+[y]$	x左移1位, $x=x+[-y]$ 补

2. 以后若干次,参考第二次结果

第2次运算结 果	商低位 塞?	需要恢复余数?	下一步操作
x > 0	1	不需要	x左移1位, $x=x+[-y]$ 补
x < 0	0	恢复 $x=x+[y]_{lpha}$	x左移1位, $x=x+[-y]$ 补

- 3. 重复以上步骤n次,设置一个计数器来控制次数
- 4. 完成最后一次的运算,如果x < 0则恢复余数 $x = x + \lceil y \rceil$ $_{\mbox{\tiny h}}$,否则不需要
- 3 运算示例: x=-0.10110, y=0.11111, 计算 $[x/y]_{f eta}$

先求出 $[y]_{*}=00.11111$, $[-y]_{*}=11.00001$

步数(conut)	被除数/余 数/x	商	当前所需执行的操作
初始状态	00.10110	XXXXXX	执行 $x=x+[-y]_{rak{l}}$,进入第一步
第一步 (count=5)	11.10111 < 0	XXXXXX	商低位一律塞 0 ,恢复 $x=x+[y]_{\rm ih}$
第一步 (count=5)	00.10110	0xxxxx	<i>x</i> 左移1位(上商)
第一步 (count=5)	01.01100	0xxxxx	执行 $x=x+[-y]_{rac{\lambda}{1}}$,进入下 一步
第二步 (count=4)	00.01101 > 0	0xxxxx	商低位塞1,无需恢复余数
第二步 (count=4)	00.01101	01xxxx	x左移1位(上商)
第二步 (count=4)	00.11010	01xxxx	执行 $x=x+[-y]_{rac{\lambda}{2}}$,进入下 一步
第三步 (count=3)	11.11011 < 0	01xxxx	商低位塞0,恢复 $x=x+[y]$
第三步 (count=3)	00.11010	010xxx	x左移1位(上商)
第三步 (count=3)	01.10100	010xxx	执行 $x=x+[-y]_{rac{\lambda}{1}}$,进入下 一步
第四步 (count=2)	00.10101 > 0	010xxx	商低位塞1,无需恢复余数
第四步 (count=2)	00.10101	0101xx	x左移1位(上商)
第四步 (count=2)	01.01010	0101xx	执行 $x=x+[-y]_{rac{\lambda}{1}}$,进入下 一步
第五步 (count=1)	00.01011 > 0	0101xx	商低位塞1,无需恢复余数
第五步 (count=1)	00.01011	01011x	x左移1位(上商)
第五步 (count=1)	00.10110	01011x	执行 $x=x+[-y]_{rac{\lambda}{1}}$,进入下 一步
第六步 (count=0)	11.10111 < 0	01011x	商低位塞 0 ,恢复 $x=x+[y]$
第六步 (count=0)	00.10110	010110	count=0终止

- 1. 加上符号商结果为-0.10110
- 2. 全过程逻辑左移了n=5次,所以余数为 $x*2^{-n}$ 为**0.0000010110**

4 总结:

- 1. n位尾数的合法除法,需要逻辑移位n次,上商n+1次
- 2. 缺点在于不知道要恢复多少次余数, 会使电路设计复杂

2.2.6.2. 原码不恢复余数法(加减交替法): $[x/y]_{\mathbb{R}}$ 为例

① 步骤:第一步先执行x=x+[-y] $_{
eftarrow}$,然后循环以下步骤

运算结果	商低位塞?	移位	下一步操作
x > 0	1	左移1位	$x=x+[-y]_{ eqh}$
x < 0	0	左移1位	$x=x+[y]_{r,h}$

最后一步: x < 0时再x = x + [y]补恢复

2示例: x=-0.10110, y=0.11111, 计算 $[x/y]_{\mathbb{R}}$

先求出[y] lpha = 00.11111, [-y] lpha = 11.00001

	被除数/余		
步数(conut)	数/x	商	当前所需执行的操作
初始状态	00.10110	XXXXXX	执行 $x=x+[-y]_{rac{\lambda}{1}}$,进入第一步
第一步 (count=5)	11.10111 < 0	XXXXXX	商低位塞0,左移一位
第一步 (count=5)	11.01110	0xxxxx	$x=x+[y]_{ otan}$
第二步 (count=4)	00.01101 >	0xxxxx	商低位塞1,左移一位
第二步 (count=4)	00.11010	01xxxx	$x=x+[-y]_{ eqn}$
第三步 (count=3)	11.11011 < 0	01xxxx	商低位塞0,左移一位
第三步 (count=3)	11.10110	010xxx	$x=x+[y]_{\nmid \! \mid}$
第四步 (count=2)	00.10101 >	010xxx	商低位塞1,左移一位
第四步 (count=2)	01.01010	0101xx	$x=x+[-y]_{\nmid\!\!\mid}$
第五步 (count=1)	00.01011 >	0101xx	商低位塞1,左移一位

步数(conut)	被除数/余 数/x	商	当前所需执行的操作
第五步 (count=1)	00.10110	01011x	$x=x+[-y]_{ ext{?}}$
第六步 (count=0)	11.10111 < 0	01011x	商低位塞0,但由于count=0所以 不左移
第六步 (count=0)	11.10111	010110	x <0所以还要恢复一次, $x=x+[y]_{rak{h}}$
第六步 (count=0)	00.10110	010110	这便是结果

3. 浮点数的表示和运算

3.1. 浮点数的表示

3.1.1. 浮点数的一般表示 $N=r^Est M$

- 1 阶码
 - 1. 为定点整数, 常用补码/移码表示
 - $2.e_s$ 为其符号位
 - 3. k反应了浮点数表示范围+小数点位置
- 2 尾数
 - 1. 为定点小数(一般是纯小数), 常用原码/补码表示
 - 2. m_s 为其符号位(决定了整个浮点数的符号)
 - 3. n反应了浮点数的精度
- **3** 底*r*省略

3.1.2. IEEE754标准表示

1基本结构&常用浮点数

S	阶码 (含阶符)	尾数
t 数符	小数,	t 点的位置

	符号位 S	阶码	尾数	总位数	最大指数	最小指数	指数偏移组
短实数	1	8	23	32	+127	-126	+127
长实数	1	11	52	64	+1023	-1022	+1023
临时实数	1	15	64	80	+16383	-16382	+16383

1. S数符表示了浮点数的正负

- 2. 尾数使用原码表示, 阶码使用移码表示
- 2 示例: x的IEEE754表示是 41360000H , 求x的十进制表示

 - - 。 数符:为 0表示正数
 - 指数: e = 阶码10000010 127 = 3 , 即为 2^3
 - 3. 综上所述: x = +1011.011 = 11.375

3.2. 浮点数的加减运算

3.2.1. 浮点数的规格化

- 1 什么是规范化数:基数为2,尾数W满足 $\frac{1}{2} \leq |W| < 1$ 时,其所代表浮点数就是规范化的
- 2 特殊情况:
 - 1. 原码表示尾数/补码表示尾数(正数): 形式必定为 0.1xxx...x 或者 1.1xxx...x
 - 2. 补码表示尾数(负数): 形式必定为 0.0xxx...x 或者 1.0xxx...x

采用双符号位时为: 00.0xxx...x 或者 11.0xxx...x

3 特殊情况: -1/2 不是规范化数, -1 特别规定为规范化数

3.2.2. 浮点数加减的步骤

- 1对阶:小数点对齐,一定是低阶向高阶对齐。以1100100+1010为例
 - 1 2 47 * 00.1100100 (尾数采用补码表示)
 - 2 2/4 * 00.1010000 (尾数采用补码表示)
 - 3 向高阶对齐
 - 4 2^7 * 00.1100100
 - 5 2^7 * 00.0001010
- 2 尾数求和:
 - 1 2^7 * 00.1101110
- 3 规格化:以下所说的移位都是补符号位
 - 1. 左规: 尾数求和后, 出现 00.0xxx...x 或者 11.1xxx...x , 则一直执行左移直到满足补码规格化
 - 2. 右规: 尾数求和后, 出现 01.xxxx...x 或者 10.xxxx...x , 右移一次即可
- 会入:为提高精度,要考虑右移时丢弃的数值位
 - 1.0舍1入: 尾数右移时, 末位为0则直接移除, 末位为1时则移除后再加回1
 - 2. 恒置1法:不论右移移除的是0还是1,都移除后强行加1
- 5 检查溢出: 假设用补码+双符号位判断溢出,则01为上溢/10为下溢/其余为正常

4. 算数逻辑单元

4.1. 串行/并行加法器

4.1.1. 全加器: 求和单元+进位链

- 1 \sum_{i} 是三者相加的结果: $A_{i}B_{i}C_{i-1}$ =100/010/001/111时 $\sum_{i}=1$
- **2** C_i 存放进位: $A_iB_iC_{i-1}$ =110/101/011/111是 $C_i=1$

4.1.2. 串行加法器

1 结构

- 1. 只含有一个加法器
- 2. 有两个移位寄存器,通过移位将操作数压入加法器,其中一个存储最终计算结果
- 3. 用一位触发器来纪录进位信息
- 2 缺点: n位操作数就需要n次串行计算, 太慢

4.1.3. 并行加法器: 串行进位链

1 改进的点: 一位一位的加→所有位同时加

2缺点:进位是低位向高位传递的,还是太慢

4.1.4. 并行加法器: 并行进位链

- ① 进位逻辑: $C_i = G_i + P_i C_{i-1}$ 其中⊕表示异或
 - 1. 本地进位 $G_i = A_i B_i$: 记录本地的进位,与低位无关
 - 2. 进位条件 $P_i = A_i \oplus B_i$: 只有当 $P_i = 1$ 时低位的进位才能向上传递
 - 3. 串行进位的逻辑

$$C_1=G_1+P_1C_0$$
 $C_2=G_2+P_2C_1$
 $C_3=G_3+P_3C_2$
 $C_4=G_4+P_4C_3$

2 单重分组跳跃进位链:组内并行

- 1. 结构: 所有全加器分组, 每组同时产生进位, 组与组间串行进位
- 2. 代入法解析: 以第一组为例,只要 C_0 生成后, C_1,C_2,C_3,C_4 便可以同时生成

$$\begin{pmatrix} C_1 \\ C_2 \\ C_3 \\ C_4 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ P_2 & 1 & 0 & 0 \\ P_3 P_2 & P_3 & 1 & 0 \\ P_4 P_3 P_2 & P_4 P_3 & P_4 & 1 \end{pmatrix} \begin{pmatrix} G_1 \\ G_2 \\ G_3 \\ G_4 \end{pmatrix} + \begin{pmatrix} P_1 \\ P_2 P_1 \\ P_3 P_2 P_1 \\ P_4 P_3 P_2 P_1 \end{pmatrix} C_0 : three:$$

3双重分组跳跃进位链:组内/组间都并行,所有加法器分为大组/大组又分为小组

- 1. 每个小组会产生两种进位,最高位进位和其他位进位,但是最高位进位会有一定延迟 (虽然并行)
- 2. 大组内各个小组的最高位进位同时产生
- 3. 大组与大组之间串行进位

4.2.1. 组合/时序逻辑电路

1 组合逻辑电路:无记忆,此时的输出只取决于此时的输入,结果要立马送寄存器,**比如** ALU

2 时序逻辑电路:有记忆,由此时输入+电路原来状态共同决定输出,**比如触发器/CPU**

4.2.2. ALU概述

1 功能:执行+-*/算术运算,执行与或非异或逻辑运算,执行并行进位

2 锁存器: 其实就是存储多位的触发器,临时存放数据,ALU的AB端都必须连接内容不变的锁存器

3 电路框架: $A_i, B_i \xrightarrow[\stackrel{K_i$ 控制信号}]{K_i 控制信号} F_i

4.2.3. 算术逻辑运算74181芯片

1 结构:实质上是4位的ALU电路

2组合:4片74181芯片拼在一起,构成16位全加器(按4位一组的单重分组跳跃进位链)

3 功能:

1.4片74181,组内并行组间串行,可完成16种算数/16种逻辑运算

2. 将组件串行变为组间并行:有请74182芯片

4.2.4. 先行进位74812芯片

1 结构:

1.74181可以看作双重分组跳跃进位链的小组,74182可以看作大组

2. 2片74182芯片+8片74181芯片就可组成32位的双重分组跳跃进位链

2 位数: 74181的位数*4