Name: Brad Hall

ISDS 7024 Homework 1

Instructions: Use JMP and/or the formula sheet to calculate the answers (40 pts.)

Data file: Payroll.xlsx

Variables:

Salary = Monthly pay

Tenure = Years worked

Awards = Performnace based awards

Efficiency = Efficiency score

Union = 1 if union member 0 if not

1) Calculate means, medians, modes, and standard deviations for Awards and Efficiency.

Variable	Mean	Median	Standard Deviation
Awards	40.226	35	17.172
Efficiency	18.177	13	14.004

2) With Awards as the dependent variable and Efficiency as the independent variable, calculate the following statistics. Describe each statistic (i.e., what is represents).

Statistic	Value for this sample	Description (what does it represent?)			
s_y	17.172	Sample standard deviation of the dependent variable			
R	0.333	Pearson correlation coefficient			
β_0	32.795	y-intercept of linear model			
β_1	0.409	Slope of linear model			
s.e. $(\widehat{\beta_1})$	0.149	Standard error of slope estimate			

3) With Salary as the dependent variable and Tenure as the independent variable, fill in the missing information in the tables below.

Variable	Mean	Std Dev	Std Error	Variance	N	Corrected SS
Salary	54.82	9.71	1.23	94.21	62	5746.6
Tenure	6.79	4.28	0.54	18.30	62	1116.3

Analysis of Variance						
Source	DF	Sum of Squares	Mean Square	F Value	PR > F	
Model	1	2123.588	2123.59	35.1681	0.01	
Error	60	3623.032	60.38			
Corrected Total	61	5746.620				

Root MSE	7.771	R-Square	0.370
Dependent Mean	54.82	Adj R-Sq	0.359

Parameter Estimates							
Variable	DF	Parameter Estimate	Standard Error	<i>t</i> -Value	Is $p < 0.05$?		
Intercept	1	45.45	1.86	24.41	Yes		
Tenure	60	1.38	0.23	5.93	Yes		

For questions 4-5, use Salary as the Dependent variable (DV) and Tenure as the Independent variable (IV).

4) What is the 95% Prediction Interval for Tenure = 7?

Solution: From JMP, we obtain $\widehat{\beta}_0 = 45.45$ and $\widehat{\beta}_1 = 1.379$. This allows us to set up the linear model for Salary and predict Salary for Tenure = 7.

Salary =
$$45.45 + 1.379 *$$
 Tenure
= $45.45 + 1.379 *$ 7
= 55.103 .

Additionally, we can determine the critical t-value by using Table A.2 from the Appendix.

$$t\left(\frac{\alpha}{2}, n-2 \text{ df}\right) = t(0.025, 60) = 2.00.$$

Finally, we determine the standard error of $\widehat{y_0}$:

s.e.
$$(\widehat{y_0}) = \widehat{\sigma} \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{SSX}}$$

= $7.771 \sqrt{1 + \frac{1}{62} + \frac{(7 - 6.790)^2}{1116.274}}$
= 7.834 .

We can use the calculated three values to determine the 95% prediction interval for the distribution of \hat{y}_7 .

95% CI =
$$55.103 \pm 2.00 * 7.834$$

= 55.103 ± 15.668
= $(39.435, 70.771)$.

5) Is the statistical power adequate for testing the relationship between Salary and Tenure? Explain why or why not.

Solution: The statistical power is adequate for testing the relationship between Salary and Tenure. Given $|\rho| = .607895$, $\alpha = .05$, and a sample size of 62, the power value computed by GPower is .9999640, which is well above the described threshold of .8.

- 6) Complete this sentence: In null hypothesis significance testing, the alternative hypothesis represents the alternative explanation or claim about the population parameter that is being tested.
- 7) Why are p-values less useful with large sample sizes (n > 1000) than with small sample sizes?

Solution: The problem is that a larger sample size leads to a smaller p-value. A consequence of this is that the p-value converges to zero, which may indicate rejection of the null hypothesis when a change may not be prevalent among the data.

8) What is the Pearson correlation between Tenure and Union?

Solution: The Pearson correlation between Tenure and Union is r = -0.20959.