Рабцевич К.Р. ИУ5-21М

Вариант 13

Каждая задача предполагает использование набора данных.

Набор данных выбирается Вами произвольно с учетом следующих условий:

- Вы можете использовать один набор данных для решения всех задач, или решать каждую задачу на своем наборе данных.
- Набор данных должен отличаться от набора данных, который использовался в лекции для решения рассматриваемой задачи.
- Вы можете выбрать произвольный набор данных (например тот, который Вы использовали в лабораторных работах) или создать собственный набор данных (что актуально для некоторых задач, например, для задач удаления псевдоконстантных или повторяющихся признаков).
- Выбранный или созданный Вами набор данных должен удовлетворять условиям поставленной задачи. Например, если решается задача устранения пропусков, то набор данных должен содержать пропуски.

Номер задачи №1 - 13

Номер задачи №2 - 33

Задача №13.

Для набора данных проведите нормализацию для одного (произвольного) числового признака с использованием функции "обратная зависимость - 1 / X".

Задача №33.

Для набора данных проведите процедуру отбора признаков (feature selection). Используйте метод обертывания (wrapper method), алгоритм полного перебора (exhaustive feature selection).

Дополнительные требования:

Для пары произвольных колонок данных построить график "Диаграмма рассеяния".

Загрузка и первичный анализ данных

In [1]:

import numpy as np
import pandas as pd
import seaborn as sns

:	instant	dteday	season	mnth	hr	holiday	weekday	workingday	weathersit	temp	atemp	hu
C	1	01-01- 2011	1	1	0	0	6	0	1	0.24	0.2879	0.
1	1 2	01-01- 2011	1	1	1	0	6	0	1	0.22	0.2727	0.
2	2 3	01-01- 2011	1	1	2	0	6	0	1	0.22	0.2727	0.
3	3 4	01-01- 2011	1	1	3	0	6	0	1	0.24	0.2879	0.
4	i 5	01-01- 2011	1	1	4	0	6	0	1	0.24	0.2879	0.
	4											•

Датасет

Информация об атрибутах:

- instant: индекс записи
- dteday: дата
- season: Сезон (1: зима, 2: весна, 3: лето, 4: осень)
- mnth: месяц (от 1 до 12)
- hour: час (от 0 до 23)
- holiday: выходной или нет
- weekday: день недели
- workingday: если день не является ни выходным, ни праздничным 1, в противном случае 0.
- weathersit:
 - 1: Ясно, Небольшая облачность, Небольшая облачность,
 - 2: Туман + Облачно, Туман + Разбитые облака, Туман + Несколько облаков, Туман
 - 3: слабый снег, легкий дождь + гроза + рассеянные облака, легкий дождь + рассеянные облака
 - 4: сильный дождь + ледяные поддоны + гроза + туман, снег + туман
- temp: нормализованная температура в градусах Цельсия

- atemp: нормализованная температура ощущения в градусах Цельсия
- hum: нормализованная влажность
- windspeed: нормализованная скорость ветра
- casul: количество случайных прохожих
- cnt: общее количество взятых напрокат велосипедов

```
In [4]:
```

```
data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8645 entries, 0 to 8644
Data columns (total 15 columns):

#	Column	Non-Null	Count	Dtype
0	instant	8645 non-	null	int64
1	dteday	8645 non-	null	object
2	season	8645 non-	null	int64
3	mnth	8645 non-	null	int64
4	hr	8645 non-	null	int64
5	holiday	8645 non-	null	int64
6	weekday	8645 non-	null	int64
7	workingday	8645 non-	null	int64
8	weathersit	8645 non-	null	int64
9	temp	8645 non-	null	float64
10	atemp	8645 non-	null	float64
11	hum	8645 non-	null	float64
12	windspeed	8645 non-	null	float64
13	casual	8645 non-	null	int64
14	cnt	8645 non-	null	int64
dtype	es: float64(4), int64((10),	object(1)

memory usage: 1013.2+ KB

In [5]:

data.describe()

Out[5]:

	instant	season	mnth	hr	holiday	weekday	workingday	
count	8645.000000	8645.000000	8645.000000	8645.000000	8645.000000	8645.000000	8645.000000	8
mean	4323.000000	2.513592	6.573973	11.573626	0.027646	3.012724	0.683748	
std	2495.740872	1.105477	3.428147	6.907822	0.163966	2.006370	0.465040	
min	1.000000	1.000000	1.000000	0.000000	0.000000	0.000000	0.000000	
25%	2162.000000	2.000000	4.000000	6.000000	0.000000	1.000000	0.000000	
50%	4323.000000	3.000000	7.000000	12.000000	0.000000	3.000000	1.000000	
75%	6484.000000	3.000000	10.000000	18.000000	0.000000	5.000000	1.000000	
max	8645.000000	4.000000	12.000000	23.000000	1.000000	6.000000	1.000000	

Задача №13.

Для набора данных проведите нормализацию для одного (произвольного) числового признака с использованием функции "обратная зависимость - 1 / X".

Нормализацию будем проводить для поля cnt

```
import matplotlib.pyplot as plt
import scipy.stats as stats
def diagnostic_plots(df, variable):
    plt.figure(figsize=(15,6))
    # zucmozpamma
    plt.subplot(1, 2, 1)
    df[variable].hist(bins=30)
    ## Q-Q plot
    plt.subplot(1, 2, 2)
    stats.probplot(df[variable], dist="norm", plot=plt)
    plt.show()
```

```
In [7]:
    data['cnt_reciprocal'] = 1 / (data['cnt'])
    diagnostic_plots(data, 'cnt_reciprocal')
```



```
In [8]:
    c = pd.DataFrame({'cnt':data['cnt'], 'cnt_reciprocal':data['cnt_reciprocal']})
    c
```

Out[8]:		cnt	cnt_reciprocal
	0	16	0.062500
	1	40	0.025000
	2	32	0.031250
	3	13	0.076923
	4	1	1.000000
	•••		
	8640	92	0.010870
	8641	71	0.014085
	8642	52	0.019231
	8643	38	0.026316

```
        cnt
        cnt_reciprocal

        8644
        31
        0.032258
```

8645 rows × 2 columns

Задача №33.

Для набора данных проведите процедуру отбора признаков (feature selection). Используйте метод обертывания (wrapper method), алгоритм полного перебора (exhaustive feature selection).

```
In [9]:
          data = pd.read_csv('WineQT.csv', sep=",")
In [10]:
         data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1143 entries, 0 to 1142
         Data columns (total 13 columns):
            Column
          #
                                Non-Null Count Dtype
                                  -----
            fixed acidity
                                 1143 non-null float64
          1 volatile acidity 1143 non-null float64
                                  1143 non-null float64
          2
             citric acid
             residual sugar 1143 non-null float64

residual sugar 1143 non-null float64
          3
          4
            chlorides
                                  1143 non-null float64
          5 free sulfur dioxide 1143 non-null float64
          6 total sulfur dioxide 1143 non-null float64
                                  1143 non-null float64
          7
            density
                                  1143 non-null float64
          8
             рΗ
          9
             sulphates
                                  1143 non-null float64
          10 alcohol
                                  1143 non-null float64
          11 quality
                                  1143 non-null int64
                                   1143 non-null int64
         dtypes: float64(11), int64(2)
         memory usage: 116.2 KB
In [11]:
         from mlxtend.feature_selection import ExhaustiveFeatureSelector as EFS
         from sklearn.neighbors import KNeighborsClassifier
          from sklearn.datasets import load iris
          knn = KNeighborsClassifier(n neighbors=3)
In [12]:
          data_x = data.drop('quality', 1).values
          data_y = data["quality"]
         /tmp/ipykernel_3101147/3300780049.py:1: FutureWarning: In a future version of pandas
         all arguments of DataFrame.drop except for the argument 'labels' will be keyword-onl
           data x = data.drop('quality', 1).values
In [14]:
         efs = EFS(knn,
                    min_features=1,
                    max features=3,
                    scoring='accuracy',
                    print_progress=True,
```

```
cv=5)

efs = efs.fit(data_x, data_y)

print('Best accuracy score: %.2f' % efs.best_score_)
print('Best subset (indices):', efs.best_idx_)
print('Best subset (corresponding names):', efs.best_feature_names_)
```

```
Features: 298/298

Best accuracy score: 0.52

Best subset (indices): (2, 9, 10)

Best subset (corresponding names): ('2', '9', '10')
```

Дополнительное задание

Для пары произвольных колонок данных построить график "Диаграмма рассеяния".

Построим диаграмму рассеяния, демонстрирующую зависимость температуры от месяца года

```
In [15]: data = pd.read_csv('bike-hour.csv', sep=",")

In [16]: data.plot(x='mnth', y='temp', kind='scatter', figsize=(25, 15));
plt.title(f'Распределение температуры по месяцам', fontsize=15);
plt.ylim(0,1);
plt.ylabel('Нормированная температура');
plt.xlabel('Месяцы');
plt.grid(True);
```



```
In [ ]:
```