功課要求

偵測輸入照片中的皮膚區域並將其標示出。

成果

Original Image

Original Image

Original Image

Skin Mask

Skin Mask

Skin Mask

Skin Region

Skin Region

Skin Region

程式完成後的執行結果,膚色區域以紅色標記

開發環境

os	Editor	Language	OpenCV
Windows 10	Visual Studio Code	Python 3.9.16	OpenCV 4.5.4

實作

本次程式碼

使用的 libraries 如下:

```
import cv2
import matplotlib.pyplot as plt
import numpy as np
```

1/ 利用迴圈讀入三張圖片

建立一個儲存三張圖片路徑的 list ,使用迴圈搭配 cv2.imread(filename) 讀入圖片並顯示。

顯示圖片中有一點要注意, plt 使用的彩色圖片是 RGB ,而 OpenCV 讀入的圖片是以 BGR 編碼,所以必須透過 cv2.cvtColor(original_img, cv2.CoLOR_BGR2RGB) 來轉換要顯示的圖片,不然就會出現三名藍色皮膚的人。

```
images = ['img1.jpg', 'img2.jpg', 'img3.jpg']
image_count = 0
for image in images:
    print("Now processing: ", image)

# read image
    original_img = cv2.imread(image)
# show original image
    plt.subplot(3, 3, image_count * 3 + 1)
    plt.imshow(cv2.cvtColor(original_img, cv2.COLOR_BGR2RGB))
    plt.title("Original Image")
    plt.axis("off")
```

2/ 轉換圖片色域並設定膚色範圍

RGB 色域容易受到光線等因素影響,導致難以判斷顏色是否為膚色,使用 cv2.cvtColor(src, code) 轉換至 HSV 色域後就能把色相、飽和度、明度分開看。

```
# convert to HSV color space
hsv_img = cv2.cvtColor(original_img, cv2.COLOR_BGR2HSV)
# convert to YCrCb color space
ycbcr_img = cv2.cvtColor(original_img, cv2.COLOR_BGR2YCrCb)
```

創建 array 來儲存膚色的範圍,這是我採用的範圍:

- H: 0 ~ 17
- S: 50 ~ 170
- V: 0 ~ 255
- Y: 0 ~ 255
- Cr: 135 ~ 180
- Cb: 85 ~ 135

調整過後我仍舊無法避免有些非皮膚(頭髮、陰影等)處還是會被判別為膚色。

```
# create skin upper and lower bounds
lower_skin = np.array([0, 50, 0], dtype=np.uint8)
upper_skin = np.array([17, 170, 255], dtype=np.uint8)
lower_skin_ycbcr = np.array((0, 135, 85), dtype=np.uint8)
upper_skin_ycbcr = np.array((255, 180, 135), dtype=np.uint8)
```

3/ 提取膚色區域

使用 cv2.inRange(src, lowerb, upperb) 提取屬色區域,獲得一張和原尺寸相同大小的二值化 mask , 屬色區域為白色,其他地方為黑色,就如結果圖中第二個 column 顯示的那樣。

```
# find skin color in the image
skin_mask_hsv = cv2.inRange(hsv_img, lower_skin, upper_skin)
skin_mask_ycbcr = cv2.inRange(ycbcr_img, lower_skin_ycbcr, upper_skin_ycbcr)
skin_mask = cv2.bitwise_and(skin_mask_hsv, skin_mask_ycbcr)
# show skin mask
plt.subplot(3, 3, image_count * 3 + 2)
plt.imshow(skin_mask, cmap="gray")
plt.title("Skin Mask")
plt.axis("off")
```

4/ 將原圖膚色區域標示為紅色

最後在 skin_mask 不為 0 的像素,更改原圖的顏色為紅色。

參考資料

- Human Skin Detection Using RGB, HSV and YCbCr Color Models
- OpenCV 探索之路(二十七):皮膚檢測技術
- CHEREF-Mehdi/SkinDetection