

TRIGONOMETRY

Angle: (Plane Angle)

it is measure of change in direction.

Angle
$$(\theta) = \frac{Arc(s)}{Radius(r)}$$

Angels measured in anticlockwise and clockwise direction are usually taken positive and negative respectively.

9xc

0 = Ang. Seperation

0 = plane Angle

0 = Arguler displacements.

System of Measurement of an Angle

Sexagesimal system

In this system, angle is measured in degrees.

In this system, 1 right angle = 90° , 1° = 60° (arc minutes), 1° = 60° (arc seconds)

from
$$B + 0 A \rightarrow C \cdot \omega \cdot \rightarrow 0 \rightarrow -ve$$

$$I' = \left(\frac{1}{60}\right)^{\circ} \qquad I'' = \left(\frac{1}{60}\right)^{\circ} = \left(\frac{1}{60} \times \frac{1}{60}\right)^{\circ}$$

Circular system

In this system, angle is measured in radian.

if arc = radius then
$$\theta$$
=1 rad

Relation between degrees and radian

$$2\pi \operatorname{rad} = 360^{\circ}$$

$$\pi \operatorname{rad} = 180^{\circ} \Rightarrow 1 \operatorname{rad} = \frac{180^{\circ}}{\pi} = 57.3^{\circ}$$

- To convert from degree to radian multiply by $\frac{\pi}{180^{\circ}}$
- To convert from radian to degree multiply by $\frac{180^{\circ}}{\pi}$

H.W.

Illustration #7,8,9

Convert into rendian

$$\frac{\binom{6}{135}}{\frac{780}{185}} \times \frac{37}{4} \text{ rad}$$

$$\frac{8}{270} \rightarrow \frac{\pi}{180} \times 270 \rightarrow \frac{32}{2} \text{ rad}$$

convet radian into degree

$$0\frac{5\pi}{4} = \frac{5}{4} \times 18^{\circ} = 225^{\circ}$$

$$(3) 22 = 60^{\circ}$$

$$(4) \frac{39}{4} = 135^{\circ}$$

$$\frac{3}{2} = \frac{3}{2} \times \frac{3}{2}$$

⇒ 0 =

$$\frac{120^{\circ} \times \pi}{180} = \frac{\lambda_{ACB}}{5}$$

$$\frac{2\pi}{3} = \frac{\lambda_{ACB}}{5} \Rightarrow \lambda_{ACS} = \frac{10\pi}{3} m$$

20 = 4 rad

TRIGONOMETRIC RATIOS (T-RATIOS)

Following ratios of the sides of a right angled triangle are known as trigonometrical ratios.

$$\frac{B^{2} + P^{2}}{H^{2}} = \frac{H^{2}}{H^{2}}$$

$$\left(\frac{B}{H}\right)^{2}+\left(\frac{P}{H}\right)^{2}=1$$

3) true:
$$\frac{\sin \alpha}{\cos \alpha} = \frac{\beta}{\beta}$$

Trigonometric Identities 🔭

Angle(θ)	0 °	30°	379	45°	(53°)	60°	90°
sin θ	0	$\frac{1}{2}$	3 5	$\frac{1}{\sqrt{2}}$	4 5	$\frac{\sqrt{3}}{2}$	1
cos θ	1	$\frac{\sqrt{3}}{2}$	<u>4</u> 5	$\frac{1}{\sqrt{2}}$	3 5	$\frac{1}{2}$	0
tan θ	0	$\frac{1}{\sqrt{3}}$	<u>3</u>	1	4 3	$\sqrt{3}$	(S)

		•
	53°	
5		3
9220	95	
7 57	<u> </u>	
Intimité 00	not	d

324252

√3 4 3 infinité or not defined


```
Er Which of the following one are T/F
```

- 1) Sin 65 <> -> F
- ① Cut 275° >> > F
- 31 tan 210 >0 -> T
- See (290°)>> T
- Cosee (773) co > Cosee $(7x60^{\circ})$ = Cosee (420°) = Cosee $(360+60^{\circ})$ > 0
- (b) $CPS (\frac{57}{4}) > 0 \rightarrow CPS (5 × 45°) = (PS(225°) < 0)$ $CPS (\frac{57}{4}) > 0 \rightarrow CPS (5 × 45°) = (PS(225°) < 0)$

Trigonometrical Ratios of General Angles (Reduction Formulae)

Trigonometric function of an angle $2n\pi + \theta$ where n=0,1,2,3,... will remain same.

$$sin(2n\pi + \theta) = sin\theta cos(2n\pi + \theta) = cos\theta tan(2n\pi + \theta) = tan\theta$$

Trigonometric function of an angle $\left(\frac{n\pi}{2} + \theta\right)$ will remain same if n is even and sign of trigonometric (ii)

function will be according to value of that function in quadrant.
$$\sin(\pi - \theta) = + \sin\theta \quad \cos(\pi - \theta) = -\cos\theta \quad \tan(\pi - \theta) = -\tan\theta$$

$$\sin(\pi + \theta) = -\sin\theta$$
 $\cos(\pi + \theta) = -\cos\theta$ $\tan(\pi + \theta) = +\tan\theta$

$$\sin(2\pi - \theta) = -\sin\theta$$
 $\cos(2\pi - \theta) = +\cos\theta$ $\tan(2\pi - \theta) = -\tan\theta$

$$Sin(n\pi + 0) = Sina \iint heren$$

$$\cos(n_2^n + o) = \cos o \quad (1)$$

$$\tan(n_2^n + o) = \tan o \quad (1)$$

Find Sin (750)

(iii) Trigonometric function of an angle $\left(\frac{n\pi}{2} + \theta\right)$ will be changed into co-function if n is odd and sign of trigonometric function will be according to value of that function in quadrant.

$$\sin\left(\frac{\pi}{2} + \theta\right) = +\cos\theta \qquad \cos\left(\frac{\pi}{2} + \theta\right) = -\sin\theta \qquad \tan\left(\frac{\pi}{2} + \theta\right) = -\cot\theta$$

$$\sin\left(\frac{\pi}{2} - \theta\right) = +\cos\theta \qquad \cos\left(\frac{\pi}{2} - \theta\right) = +\sin\theta \qquad \tan\left(\frac{\pi}{2} - \theta\right) = +\cot\theta$$

(iv) Trigonometric function of an angle $-\theta$ (negative angles) $\sin(-\theta) = -\sin\theta\cos(-\theta) = +\cos\theta$ $\tan(-\theta) = -\tan\theta$

N - Qo	vertical angle	live
2	V C V V C C C C C C C C C C C C C C C C	
		Holizontal line
1802-7		Holizontal line $0^{\circ} 360^{\circ} = 27$
		Nosti-0 In Horizontal Angle line if we
		add or Subtreet angle 0 (0×0×90) then function will remain same
		then function will havin same
	29 4-01	
27	0° = 39 red	3 In vertical Angle line if we add or Subtract angle a (o'20290)
		or Subtract angle a (10° LOZ 90°)
		then function will Change of
		following
		S = C = C = C = C = C = C = C = C = C =
		Sin Cos. for Cot of Cosco

Find	Values	A	tollo wing	fretin
·				

- (120)
- 20 Cot (300°)
- 3) See (400)
- 3 Sec (400°)

- + See (40°) Aug
- See (450-50)
- core (50°) Ang

- D Sin(120')
 - Sin(10 +30°)
 - + 605(30)
 - 13 Arg

- Sin (180-60°)
- =+Sin (60')
- = J3 A23

2) Cot (300°)