Агентный мониторинг ОС Linux

Перейдем к агентному мониторингу серверов с ОС Linux. В роли объекта мониторинга будет выступать виртуальная машина с ОС РЕД ОС и установленным на ней Zabbix-сервером.

Перейдите в консоль виртуальной машины и установите Zabbix-агент.

sudo apt-get install zabbix-agent

Откройте конфигурационный файл агента для редактирования.

sudo nano /etc/zabbix/zabbix_agentd.conf

Исправьте всего один параметр — предоставить демону права root для сбора данных:

AllowRoot=1

После этого перезапустите сервис агента.

sudo /etc/init.d/zabbix-agent restart

На этом установка Zabbix-агента завершена.

Перейдите в систему мониторинга, и создайте Шаблон опроса Agent Linux Monitor (в группе User Templates). В Группе узлов сети Agent Monitoring Sevrers создайте новый узел сети host.linux.home (с IP-адресом 127.0.0.1), присоедините к нему Шаблон опроса Agent Linux Monitor.

После этого заполните Шаблон элементами данных, триггерами, графиками и обнаружениями. С одной стороны, шаблон для мониторинга ОС Linux похож на шаблон для ОС Windows, и почти все элементы будут повторяться. С другой стороны, возможности Zabbix-агента по предоставлению различных данных для Linux гораздо шире, и элементов данных будет значительно больше.

Начните с элементов данных для инвентаризации (см. Таблицу 7.2):

Таблица 2 - Элементы данных для инвентаризации ОС Linux

Пользовательское название элемента данных	Использованный ключ	Тип информации	Назначение		
Архитектура <u>ПО</u> (инвентаризация)	system.sw.arch	Символ	Выполнение команды uname		
Время работы системы (инвентаризация)	system.uptime	Целое положительное	Время работы в секундах (используйте Единицу измерения «uptime»)		
Идентификация системы (инвентаризация)	system.uname	Символ	Возвращает архитектуру ЦПУ		
Информация о ЦПУ (инвентаризация)	system.hw.cpu[0,curfreq]	Целое положительное	Возвращает значение в ГГц (используйте Единицу измерения «Hz»)		
Информация о ЦПУ подробно (инвентаризация)	system.hw.cpu[0,full]	Символ	Возвращает полную информацию о ЦПУ		
Информация об ОС (инвентаризация)	system.sw.os[full]	Символ	Информация об ОС (подробная информация от разработчиков, размещенная в ОС)		

Поскольку при создании элементов данных, не удалось подобрать определения-аналоги в списке «Заполнение поля инвентаря узла сети» - были выбраны либо подходящие под описание, либо просто незадействованные. После создания элементов данных и просмотра инвентаризации, у Вас должно получиться следующее (рис. 18 – 19):

Элементы данных								
Все шаблоны /	Agent Linux Monitor	Элементы данных 6 Триггерь	і Графики К	(омплексные эк	раны Прав			
Мастер	Имя 🛦	Ключ	Интервал	История	Динамика			
_ ···	Архитектура ПО (инвентаризация)	system.sw.arch	24h	0				
_ ···	Время работы системы (инвентаризация)	system.uptime	15m	0	0			
_ ···	Идентификация системы (инвентаризация)	system.uname	24h	0				
_ ···	Информация о ЦПУ (инвентаризация)	system.hw.cpu[0,curfreq]	24h	0	0			
_ ···	Информация о ЦПУ подробно (инвентаризация)	system.hw.cpu[0,full]	24h	0				
•••	Информация об ОС (инвентаризация)	system.sw.os[full]	24h	0				

Рисунок 18 – Созданные элементы данных для инвентаризации

Рисунок 19 – Результат инвентаризации виртуальной машины с ОС Linux

Если необходимо сопоставлять данные от разных серверов, необходимо распределить самые важные опрашиваемые параметры инвентаризации между полями Имя, Тип, ОС, Серийный номер А, Этикетка, МАС адрес А. Zabbix в сводной таблице инвентаризации выводит только эти параметры (Рис. 20):

Обзор Узлы сети							zabbix-branch
Инвентарные	данные узла сет	M				Группа все	~
							Фильтр 🍸
Узел сети ▲	Группа	Имя	Tim	ос	Серийный номер А	Этикетка	МАС адрес А
host.linux.home	Agent Monitoring Sevrers		Linux zabbix_machine 4.15.0-34-generic #37-Ubuntu SMP Mon Aug 27			01:50:04	
host.windows.home	Agent Monitoring Sevrers	BEE-PC		Windows BEE-PC 10.0.17134 Майкрософт Windows 10 Pro x64		2 days, 20:26:38	

Рисунок 20 – Поля инвентаризации, доступные для сравнения

Важно! Элементы данных, предназначенные для сбора инвентарной информации, должны иметь большой интервал обновления (повторного опроса). Значения, в зависимости от задачи, могут варьироваться от 1 часа до суток, и даже больше. Однако, время хранения таких данных может быть от очень большого (если необходимо отслеживать изменение программно-аппаратной части), до нулевого (если нужно просто владеть текущей информацией).

При создании Вашего первого шаблона, в процессе отладки, можно использовать короткие интервалы опроса, например, в 30 или 60 секунд. Впоследствии для инвентарных данных увеличьте интервал опроса. Это снизит и нагрузку на систему мониторинга, и размер базы данных.

При просмотре инвентарных данных, есть удобный способ сортировать выдачу данных, запрашивая для группы устройств только одно инвентаризационное поле (Инвентаризация — Обзор — Сгруппировать по). Данный подход очень удобен при анализе информации о большой группе однотипных устройств. Например, нужно быстро узнать и предоставить серийные номера или модели коммутаторов, использующихся на предприятии (например, когда их 50-500 единиц). При условии, что сбор такой информации предусмотрен в соответствующих шаблонах (а в Инвентарных данных выводятся собранные сведения со всех опрошенных Узлов сети, независимо от Шаблона опроса), это делается в «несколько кликов мышью».

Перейдем непосредственно к мониторингу системы, созданию элементов данных, триггеров и графиков. Следующая группа элементов данных в таблице 3:

Таблица 3 - Элементы данных для мониторинга OC Linux

Пользовательское название элемента данных	Использованный ключ	Тип информации	Назначение		
Доступность хоста	См. главу 4	Числовой	Проверка доступности хоста		
Доступность агента	agent.ping График, триггер	Числовой	Проверка доступности агента (не хоста, не интерфейса сетевой карты)		
Использование ЦПУ системой (в %) Использование ЦПУ Zabbix (в %)	proc.cpu.util[,root] proc.cpu.util[zabbix_server,zabbix] Отобразить на одном графике	Числовой (с плавающей точкой)	Использование ЦПУ системой или процессом (не утилизация ЦПУ)		
Количество процессов	proc.num График	Числовой	Количество процессов, запущенных в системе		
Нагруженность процессора	system.cpu.load[,avg1] system.cpu.load[,avg5] system.cpu.load[,avg15] Отобразить на одном графике, триггер	Числовой (с плавающей точкой)	Load Average		
Утилизация процессора	system.cpu.util[,system,avg1] График, тригтер	Числовой (с плавающей точкой)	Загруженность, или утилизация процессора (в процентах)		
Использование файла подкачки, (<u>в</u> %)	system.swap.size[,pfree] График	Числовой (с плавающей точкой)	Доля свободных ресурсов файла подкачки		
Оперативная память, всего / используется	vm.memory.size[total] vm.memory.size[used] Отобразить на одном графике	Числовой	Размер оперативной памяти. Под доступной памятью понимается сумма inactive + cached + free		

В результате создания всех элементов данных, графиков и триггеров к ним — у Вас должно получиться следующее (Рис. 21-22):

Элег	иенть	ы данных								
Все ша	аблоны л	/ Agent Linux Monitor	Группы элементов данных	Элементы данных 17	Триггеры	Графики 6	Комплексные з	краны Пр	авила обнаруж	ения 2
M	астер	№ В В В В В В В В В В В В В В В В В В В		Триггеры	Ключ			Интервал	История	Динами
		Архитектура ПО (инв	ентаризация)		system.sv	w.arch		24h	0	
_ ·		Время работы систе	мы (инвентаризация)		system.uj	otime		15m	0	0
_ ·	••	Доступность агента			agent.pin	g		1m	60d	60d
_ ·	••	Доступность узла			icmpping	[,3,,,]		1m	60d	60d
_ ·	••	Идентификация сист	темы (инвентаризация)		system.ui	name		24h	0	
_ ·	••	Информация о ЦПУ	(инвентаризация)		system.h	w.cpu[0,curfre	q]	24h	0	0
_ ·	••	Информация о ЦПУ	подробно (инвентаризация)		system.h	w.cpu[0,full]		24h	0	
_ ·	••	Информация об ОС	(инвентаризация)		system.sv	w.os[full]		24h	0	
	••	Использование ЦПУ	/ Zabbix		proc.cpu.i	util[zabbix_ser	ver,zabbix]	1m	60d	60d
_ ·	••	Использование фай	ла подкачки, (в %)		system.sv	wap.size[,pfre	e]	1m	60d	60d
_ ·	••	Количество процесс	ОВ		proc.num			1m	60d	60d
_ ·	••	Нагруженность проц	цессора за 1 минуту		system.cr	ou.load[,avg1]		1m	60d	60d
		Нагруженность проц	цессора за 5 минут		system.cp	ou.load[,avg5]		1m	60d	60d
	••	Нагруженность проц	цессора за 15 минут		system.cp	ou.load[,avg15	5]	1m	60d	60d
_ ·	••	Оперативная памят	ь, всего		vm.memo	ory.size[total]		1m	60d	60d
	••	Оперативная памят	ь, используется		vm.memo	ory.size[used]		1m	60d	60d
		Утилизация процесс	сора		system.cp	ou.util[,system	avg1]	1m	60d	60d

Рисунок 21 – Созданные элементы данных для шаблона опроса ОС Linux

Графики							
Все шаблоны / Agent Linux Monitor	Элементы данных 17	Триггеры	Графики 6				
■ RMN							
Load Average CPU							
Доступность узла и агента							
Использование CPU Zabbix							
Количество процессов							
Оперативная память							
Утилизация процессора							

Рисунок 22 — Созданные графики для шаблона опроса OC Linux

Создайте триггеры на свое усмотрение, по аналогии с шаблоном для мониторинга ОС Windows (обязательно используйте и протестируйте комплексный триггер с использованием nodata).

Теперь необходимо <u>создать два низкоуровневых обнаружения</u> – для обнаружения жестких дисков и сетевых интерфейсов. Воспользуйтесь шаблоном опроса ОС Windows, но для обнаружения жестких дисков внесите несколько отличий.

Для обнаружения жестких дисков, используйте 2 прототипа элементов данных - vfs.fs.size[{#FSNAME},used] и vfs.fs.size[{#FSNAME},total], и поместите их на один прототип графика. Для прототипа триггера, сигнализирующего об отсутствии свободного места на жестком диске, используйте конструкцию

{Agent Linux Monitor:vfs.fs.size[{#FSNAME},used].last()}/{Agent Linux Monitor:vfs.fs.size[{#FSNAME},total].last()}>0.9

По сути, прототип триггера будет вычислять отношение занятого места к общему, и сравнивать с пороговым значением срабатывания 0.9, то есть сигнализировать о том, что занято более 90% свободного места.

После обнаружения жестких дисков, Zabbix отображает все директории корневого каталога, нам же интересна только директория «/». Создайте фильтр и исключение для всех букв алфавита (директория / будет обнаруживаться, а папки нет). Регулярное выражение для фильтра — Результат ЛОЖЬ = [a-z]

<u>Шаблон готов</u> — удостоверьтесь, что обнаружения, прототипы триггеров и графиков работают корректно. Для просмотра доступны графики и инвентарные данные, настроены триггеры и обнаружения — используйте комплексный экран для представления результатов.

Рисунок 23 – Пример комплексного экрана для хоста host.linux.home