

Subscribe (Full Service) Register (Limited Service, Free) Login

Search: • The ACM Digital Library C The Guide

US Patent & Trademark Office

32316333

THE ACM DIGITAL LIBRARY

Feedback Report a problem Satisfaction survey

Performance analysis of a synchronous, circuit-switched interconnection cached network

Full text

爾ဥ盧 (1.08 MB)

Source

International Conference on Supercomputing archive

Proceedings of the 8th international conference on Supercomputing lable of contents

Manchester, England Pages: 246 - 255

Year of Publication: 1994

ISBN:0-89791-665-4

Authors

Vipul Gupta

Eugen Schenfeld

Sponsor

SIGARCH: ACM Special Interest Group on Computer Architecture

Publisher ACM Press New York, NY, USA

Additional Information: abstract references index terms collaborative colleagues

Tools and Actions:

Review this Article **Discussions** Find similar Articles

Save this Article to a Binder Display in BibTex Format

DOI Bookmark:

Use this link to bookmark this Article: http://doi.acm.org/10.1145/181181.181540

What is a DOI?

♠ ABSTRACT

In many parallel applications, each computation entity (process, thread etc.) switches the bulk of its communication between a small group of other entities. We call this phenomenon switching locality. The Interconnection Cached Network (ICN) is a reconfigurable-network especially suited for exploiting switching locality. It consists of many small, fast crossbars interconnected by a large, slow switching crossbar. The large crossbar is used for topology reconfiguration and the smaller crossbars for circuit switching. For a large class of communication patterns displaying switching locality (this includes meshes, tori, trees, rings, pyramids, etc.), it is possible to choose appropriate ICN configurations and assignments of processes to processors such that all communication paths pass through two or less switching components. Much of the previous work on performance analysis of networks has assumed random, uniformly distributed communication and is inapplicable to many real-life parallel applications that lack this uniformity. We develop a methodology to analyze the performance of synchronous, circuit switched networks under different communication traffic patterns. We employ this methodology to study the performance of the ICN in comparison to more popular reconfigurable networks: the delta and the crossbar. We choose two different communication patterns—a 2-D torus representing a high degree of switching locality and a fully connected graph representing complete absence of such locality. We show that in the presence of locality, the ICN comes very close to matching the crossbar's performance. This, together with the shorter network cycle period of the ICN, makes it more desirable. In the absence of switching locality, the reconfigurability of the ICN allows for a graceful degradation in performance.

♠ REFERENCES

BEST AVAILABLE COPY