TP3: Algoritmos de Vectores de Soporte

•••

Dey, Patrick Lombardi, Matías Vázquez, Ignacio

Tecnologías utilizadas

Ejercicio 1: Perceptrón y SVM

Generación de puntos

- Se generan N puntos (x,y) en un plano de [0,5]x[0,5] de manera aleatoria con distribución uniforme
- Para separarlos, se genera una recta a partir de 2 puntos. La misma se obtiene como:

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
 $b = y_1 - m \cdot x_1$

Luego clasificamos los puntos generados

$$1 \operatorname{si} y_{i} \geq m \cdot x_{i} + b \qquad -1 \operatorname{si} y_{i} < m \cdot x_{i} + b$$

• Para generar un dataset que no es linealmente separable, tomamos N puntos más cercanos a la recta separadora e invertimos su clase con una probabilidad del 50%.

Perceptrón

Ejercicio 1: primera parte

- Mediante el uso de un perceptrón simple escalón se desea hallar el hiperplano que permite separar un conjunto de datos linealmente separables
- Función de activación:

$$y_{pred} = sign(X_i * W_i)$$

Implementación: Perceptrón

- Se inicializa el perceptrón con DIM pesos w_i utilizando valores al azar con distribución uniforme entre -0.5 y 0.5 (en este caso DIM = 2 + 1)
- Entrenamos al perceptrón utilizando el siguiente algoritmo (se repiten n iteraciones)
 - 1. Tomamos un ejemplo al azar del conjunto de entrenamiento
 - 2. Le agregamos el sesgo 1 a dicha instancia $\xi_i = (x, y, 1)$
 - 3. Calculamos Δw utilizando y actualizamos los pesos con la siguiente función

$$\Delta w = \eta \cdot (y_i - y_{pred}) \cdot \xi_i$$

4. Calculamos el error utilizando la siguiente ecuación

$$Error = \sum_{i}^{P} (y_{i} - y_{pred})^{2}$$

Implementación: Perceptrón

4. Calculamos el error utilizando la siguiente ecuación

$$Error = \sum_{i}^{P} (y_{i} - y_{pred})^{2}$$

- 5. Si el error es menor al mínimo hasta el momento, nos quedamos con estos pesos
- 6. Retornamos los pesos que minimizan el error

Obtención del plano óptimo

- Una vez obtenido el hiperplano clasificador, obtenemos
 - 2 puntos más cercanos de la clase que se encuentra por debajo del hiperplano. Los llamamos P y Q.
 - El punto más cercano de la clase que se encuentra por encima del hiperplano. Lo llamamos S.
- Calculamos el punto medio entre P y Q. Lo llamamos M.
- Luego calculamos el punto medio entre M y S. Lo llamamos H
- Hallamos el hiperplano que pasa por P y Q y lo trasladamos utilizando la misma pendiente hacia H

Resultados

- Cantidad de puntos en el plano: 30, 60, 120
- Cantidad de épocas utilizadas: 1000, 10.000, 100.000
- Learning rates (η) utilizados: 0.1, 0.01, 0.001

• 10.000 épocas y learning rate = 0.01, 60 puntos

- 10.000 épocas y learning rate = 0.01
- Variando cantidad de puntos

- 60 puntos y learning rate = 0.01
- Variando cantidad de épocas

- 60 puntos y 10.000 épocas
- Variando learning rate (η)

TP3-1: Hiperplano óptimo

• 30 puntos y 10.000 épocas y $\eta = 0.01$

TP3-1: Hiperplano óptimo

• 60 puntos y 10.000 épocas y $\eta = 0.01$

TP3-1 vs TP3-2

• 30 puntos y 10.000 épocas y $\eta = 0.01$

TP3-1 vs TP3-2

• 60 puntos y 10.000 épocas y $\eta = 0.01$

Implementación SVM

Ejercicio 1: segunda parte

- Mediante el uso de un SVM se desea hallar el hiperplano que permite separar un conjunto de datos linealmente separables.
- Para obtener el hiperplano, se utiliza una función de pérdida, en donde se buscan minimizar los errores, sujetos a una tolerancia (C).
- Clasificación:

$$y_{pred} = sign(X_i * W_i + b)$$

Implementación: SVM

- Se inicializa el SVM con DIM pesos w_i utilizando valores al azar con distribución uniforme entre -0.5 y 0.5 (en este caso DIM = 2) y el valor de b = 0.
- Entrenamos el utilizando el siguiente algoritmo (se repite N iteraciones):
 - 1. Tomamos una instancia al azar del conjunto de entrenamiento.

2. Calculamos
$$t = y_i \cdot (X_i \cdot w_i + b)$$

a. Si $t < 1$

$$w = w - \eta \cdot (w - C \cdot y_i \cdot X_i)$$

$$b = b + \eta \cdot (C \cdot y_i)$$
b. Si $t \ge 1$

$$w = w - \eta \cdot w$$

Implementación: SVM

3. Computamos el error.

$$Error = \sum_{i}^{P} (y_{i} - y_{pred})^{2}$$

- 4. Si el error es menor al guardado, actualizamos los mejores w, el mejor b y el error mínimo.
- 5. Calculamos el nuevo valor de ŋ

 $\eta = \eta \cdot e^{-p \cdot k}$, donde k es el número de época y p es el valor inicial de η

Elección del factor C

- Factor C: valor constante que controla el equilibrio entre el error y la maximización del margen.
 - Mayor C: márgenes más chicos y mejor clasificación
 - Menor C: márgenes más grandes y peor clasificación
- Se utiliza validación cruzada 90/10 para determinar el mejor factor C.
 - $\circ \quad C \in [0.1, 2] \text{ con paso } 0.2.$
 - Calculamos la precisión para cada caso y nos quedamos con la que mayor media nos da.

Resultados

- Cantidad de puntos en el plano: 30, 60, 120
- Cantidad de épocas utilizadas: 100, 1.000, 10.000
- Learning rates (η) utilizados: 0.1, 0.01, 0.001
- Todos utilizan el C óptimo

TP3-1: SVM

- 10.000 épocas y learning rate = 0.01
- Variando cantidad de puntos

TP3-1: SVM

- 60 puntos y learning rate = 0.01
- Variando cantidad de épocas

TP3-1: SVM

- 60 puntos y 10.000 épocas
- Variando learning_rate (η)

TP3-1 vs TP3-2

• 30 puntos y 10.000 épocas y $\eta = 0.1$

TP3-1 vs TP3-2

• 60 puntos y 10.000 épocas y $\eta = 0.01$

Comparación Perceptrón vs SVM

• 30 puntos y 10.000 épocas y $\eta = 0.01$

Perceptrón SVM

3(

Comparación Perceptrón vs SVM

• 60 puntos y 10.000 épocas y $\eta = 0.01$

Perceptrón SVM

31

Ejercicio 2: SVM

Ejercicio 2

- En base un conjunto de imágenes acerca de una vaca, queremos utilizar SVM para clasificar los píxeles de las mismas
- Se utilizan distintos kernels y valores de C
 - Kernel: funciones matemáticas para aumentar la dimensionalidad del input y ayudan a separar linealmente datos que pueden no serlo.
 - Factor C: valor constante que controla el equilibrio entre el error y la maximización del margen.
 - A mayor C: márgenes más chicos y mejor clasificación
 - A menor C: márgenes más grandes y peor clasificación
- Se utiliza validación cruzada 80/20

Transformación de inputs

- Cada imagen es transformada a un conjunto de 3 matrices R, G y B con los valores para cada píxel.
- A cada píxel (de cada imagen) le asignamos un valor clasificatorio
 - Cielo = -1
 - \circ Pasto = 0
 - \circ Vaca = 1

Cielo

Pasto

Vaca

Entrenamiento

- Utilizamos sklearn.svm.SVC()
- Entrenamos el modelo utilizando distintos valores de C y distintos kernels.
- Generamos la matriz de confusión comparando los valores predichos con los valores de testeo.
- Kernels: linear, polynomial, rbf, sigmoid
- $C \in [0.2, 2]$ con paso 0.2.

Clasificación de nuevas imágenes

- Utilizamos sklearn.svm.SVC()
- Entrenamos el modelo utilizando distintos valores de C y distintos kernels.
- Una vez entrenado el modelo le presentamos una nueva imagen y predecimos la imagen de salida con la información aprendida
- Cada clase (cielo, pasto, vaca) se representa con un color
- Kernels: linear, polynomial, rbf, sigmoid
- $C \in [0.2, 2]$ con paso 0.2.

Kernel lineal

Kernel Radial Basis Function (RBF)

Kernel Polinómico

Kernel Sigmoid

Clasificación con parámetros óptimos

• Luego de obtener las matrices de confusión, clasificamos las imágenes con los

parámetros óptimos

• Kernel: Rbf

• C: 1.6

Clasificación de otra imagen

• Clasificamos la otra imagen con los mismos parámetros.

Kernel Lineal

Kernel RBF

Kernel Polinomico

Kernel Sigmoid

Comparativa kernels, C = 1.6

¡Muchas gracias!

Dey, Patrick Lombardi, Matías Vázquez, Ignacio