

01	05	
INTRODUCTION	MODEL EVALUATION	
02	06	
PROBLEM STATEMENT	CONCLUSIONS	
03	07	
DATA AND PREPROCESSING	RECOMMENDATION	
04	08	
CLASSIFICATION METHODS AND MODELS	FUTURE WORK	

introduction

BRAIN TUMOR

02 PROBLEM STATEMENT

Magnetic Resonance Imaging (MRI)

Most common technique for tumor diagnosis

Limitations of MRI

-Time Consuming during MRI Analysis

-Accuracy depends on radiologists experience

Objective

Develop a Deep Learning approach to detect and classify Brain Tumor in a short time

03

DATA AND PREPROCESSING

DATA PREPROCESSING

IMAGE PROCESSING

```
SIZE Different Image Shapes (250 X 250) (130 X 130) (512 X 512) (300 X 236) 
Images Resized to 150 X15
```

```
COLOR RGB ---> GRAYSCALE
```

PIXEL VALUE Normalized to [0,1]

CLASS LABELS ['glioma', meningioma, no tumor, pituitary'] LabelEncoder() [0, 1, 2, 3

OneHotEncoding

Glioma	[1000]
Meningioma	[0100]
No Tumor	[0010]
Pituitary	[0001]

DATA PREPROCESSING

DATA AUGMENTATION

- Avoids Overfitting
- Shear Zoom Width & Height Shift Horizantal Flip Rotation

Original Image

Augmented Image

04 CLASSIFICATION METHODS AND MODELS

Multi-Class Classifiers Method

CNN Model Architecture

Layer (type)	Output	Shape	Param #
conv2d_10 (Conv2D)	(None,	150, 150, 64)	640
max_pooling2d_10 (MaxPooling	(None,	75, 75, 64)	0
conv2d_11 (Conv2D)	(None,	75, 75, 128)	73856
max_pooling2d_11 (MaxPooling	(None,	38, 38, 128)	0
conv2d_12 (Conv2D)	(None,	38, 38, 128)	147584
max_pooling2d_12 (MaxPooling	(None,	19, 19, 128)	0
conv2d_13 (Conv2D)	(None,	19, 19, 128)	147584
max_pooling2d_13 (MaxPooling	(None,	10, 10, 128)	0
conv2d_14 (Conv2D)	(None,	10, 10, 128)	147584
max_pooling2d_14 (MaxPooling	(None,	5, 5, 128)	0
flatten_2 (Flatten)	(None,	3200)	0
dense_4 (Dense)	(None,	512)	1638912
dense_5 (Dense)	(None,	4)	2052
Total params: 2.158.212			

Total params: 2,158,212 Trainable params: 2,158,212 Non-trainable params: 0

- 5 Convolutional Layer
- 5 MaxPooling Layer
- 1 Fully Connected Layer

Output Layer with 4 classes

Multi-Class Classifiers Method

Model Co	ompiling	Model Training CALLBACKS
OPTIMIZER	ADAM	EARLYSTOPPING
LEARNING RATE	0.01	Stop training when the monitored metric validation set accuracy stops improving
LOSS FUNCTION	CATEGORICAL CROSSENTROPY	MODELCHECKPOINT
METRICS	ACCURACY	Save the model weights at the maximum of the monitored quantity

Multi-Class Classifiers Method

CNN Multiclass Model Evaluation

Validation Accuracy - 0.8803 Test Accuracy - 0.8815

.....

Meningioma Binary Classifier

Model Architecture

Model Compiling

Model Training

Same architecture with Multiclass CNN Model:

5 – Convolutional Layer

5 – MaxPooling Layer

1 - Fully Connected Layer

Output Layer with 2 classes

Same paramaters with Multiclass CNN Model

Meningioma Binary Model Evaluation

Validation Accuracy - 0.8243 Test Accuracy - 0.8061

.....

Glioma Binary Classifier

Model Architecture

3 – Convolutional Layer

3 – MaxPooling Layer

1 - Fully Connected Layer

Output Layer with 2 classes

Model Compiling

Model Training

Same paramaters with Multiclass CNN Model

Glioma Binary Model Evaluation

Validation Accuracy - 0.7181 Test Accuracy - 0.7289

Multiple Binary-Classifiers Method

Pituitary Binary Classifier

Model Architecture

Model Compiling

Model Training

Same structure with Glioma Binary Model

- 3 Convolutional Layer
- 3 MaxPooling Layer
- 1 Fully Connected Layer

Output Layer with 2 classes

Same paramaters with Multiclass CNN Model

Pituitary Binary Model Evaluation

Validation Accuracy - **0.8275** Test Accuracy - **0.8675**

Ensemble Method

05

MODEL EVALUATION

Model Evaluation

Evaluation Metrics

because...

Capturing Tumor Highly Important For Treatment

PRECISION

Avoid improper treatment to a patient with no disease or differeet type of tumor

Confusion Matrices

MULTICLASS MODEL

MENINGIOMA BINARY MODEL

Confusion Matrices

PITUITARY BINARY MODEL

GLIOMA BINARY MODEL

Recall and Precision Comparisons

Validation and Test Accuracy of Models

06
CONCLUSION

CONCLUSION

The highest Prediction and Recall of each tumor:

Meningioma Tumor Classification: Recall: Model Meningioma - 0.91 Precision: Multiclass Model - 0.84

Pituitary Tumor Classification: Recall: Multiclass Model – 0.97 Precision: Model_Pituitary- 0.97

Glioma Tumor Classification: Recall: Multiclass Model – 0.82 Precision: Multiclass Model - 0.92

Almost all models with 90% precision and recall scores.

Multiclass CNN model with the highest either recall or precision score.

The highest Test Accuracy:

Multiclass CNN model with Test Accuracy 0.8815.

The Multiclass Model has the highest precision, recall and test accuracy.

07
RECOMMENDATION

RECOMMENDATION

Since Multiclass Model results almost 90% accuracy in detecting and classifying brain tumor we would recommend to use Multiclass Model.

08
FUTURE WORK

FUTURE WORK

To build more robust deep learning model by

- using more images
- applying GridSearch for hyperparameter optimization
- using GPUs to reduce training time