CS 228 : Logic in Computer Science

Krishna, S

Recap

- Started looking at FO nondefinability
- Defined maximal quantifier depth or quantifier rank of a formula
- For a finite set of variables V, showed that there are finitely many FO formulae of rank r over V
- Introduced some new notations for words, mimicking assignments of values to free variables

Notational Semantics Recap

- \blacktriangleright $(a_1,\emptyset)\dots(a_n,\emptyset)\models \exists x\varphi$ iff
- ► There is some position *i* such that $(a_1, \emptyset) \dots (a_i, \{x\}) \dots (a_n, \emptyset) \models \varphi$

Notational Semantics Recap

- \blacktriangleright $(a_1,\emptyset)\dots(a_n,\emptyset)\models \exists x\varphi$ iff
- ► There is some position i such that $(a_1, \emptyset) \dots (a_i, \{x\}) \dots (a_n, \emptyset) \models \varphi$
- ▶ For a formula $\varphi(x_1, ..., x_m)$, $L(\varphi)$ is the set of all $\{x_1, ..., x_m\}$ structures satisfying φ

Notational Semantics Recap

- \blacktriangleright $(a_1,\emptyset)\dots(a_n,\emptyset)\models \exists x\varphi$ iff
- ► There is some position *i* such that $(a_1, \emptyset) \dots (a_i, \{x\}) \dots (a_n, \emptyset) \models \varphi$
- ▶ For a formula $\varphi(x_1, ..., x_m)$, $L(\varphi)$ is the set of all $\{x_1, ..., x_m\}$ structures satisfying φ
- ▶ For a sentence φ , $L(\varphi)$ is the set of all \emptyset structures satisfying φ
- ► Example : $L(Q_a(x))$ consists of all x-structures of the form $(\Sigma, \emptyset)^*(a, \{x\})(\Sigma, \emptyset)^*$.

▶ Let w_1 , w_2 be two \mathcal{V} -structures and let $r \ge 0$.

- ▶ Let w_1 , w_2 be two \mathcal{V} -structures and let $r \ge 0$.
- Write w₁ ∼_r w₂ iff w₁, w₂ satisfy the same set of FO formulae of rank r.

- ▶ Let w_1 , w_2 be two \mathcal{V} -structures and let $r \ge 0$.
- ▶ Write $w_1 \sim_r w_2$ iff w_1, w_2 satisfy the same set of FO formulae of rank r.
- ▶ $(a,\emptyset)(b,\emptyset) \sim_0 (a,\emptyset)(b,\emptyset)(a,\emptyset)$
- $(a,\emptyset)(b,\emptyset) \sim_2 (a,\emptyset)(b,\emptyset)(a,\emptyset)$

- ▶ Let w_1 , w_2 be two \mathcal{V} -structures and let $r \ge 0$.
- Write w₁ ∼_r w₂ iff w₁, w₂ satisfy the same set of FO formulae of rank r.
- $(a,\emptyset)(b,\emptyset) \sim_0 (a,\emptyset)(b,\emptyset)(a,\emptyset)$
- $(a,\emptyset)(b,\emptyset) \sim_2 (a,\emptyset)(b,\emptyset)(a,\emptyset)$
- $ightharpoonup \sim_r$ is an equivalence relation

- ▶ Let w_1 , w_2 be two \mathcal{V} -structures and let $r \ge 0$.
- Write w₁ ∼r w₂ iff w₁, w₂ satisfy the same set of FO formulae of rank r.
- $(a,\emptyset)(b,\emptyset) \sim_0 (a,\emptyset)(b,\emptyset)(a,\emptyset)$
- $(a,\emptyset)(b,\emptyset) \sim_2 (a,\emptyset)(b,\emptyset)(a,\emptyset)$
- $ightharpoonup \sim_r$ is an equivalence relation
- ► Finitely many equivalence classes : each class consists of words that behave the same way on formulae of rank *r*

Non-Expressibility in FO: The Game Begins

▶ Given two V-structures w_1 , w_2 , lets play a game on the pair of words w_1 , w_2

- ▶ Given two V-structures w_1 , w_2 , lets play a game on the pair of words w_1 , w_2
- ▶ There are 2 players : Spoiler and Duplicator

- ▶ Given two V-structures w_1 , w_2 , lets play a game on the pair of words w_1 , w_2
- ► There are 2 players : Spoiler and Duplicator
- ▶ Play for r-rounds, $r \ge 0$

- ► Given two V-structures w_1 , w_2 , lets play a game on the pair of words w_1 , w_2
- ► There are 2 players : Spoiler and Duplicator
- ▶ Play for r-rounds, $r \ge 0$
- ▶ Spoiler wants to show that w_1 , w_2 are different ($w_1 \sim_r w_2$)

- ► Given two V-structures w_1 , w_2 , lets play a game on the pair of words w_1 , w_2
- ► There are 2 players : Spoiler and Duplicator
- ▶ Play for r-rounds, $r \ge 0$
- ▶ Spoiler wants to show that w_1 , w_2 are different ($w_1 \nsim_r w_2$)
- ▶ Duplicator wants to show that they are same $(w_1 \sim_r w_2)$

- ► Given two V-structures w_1 , w_2 , lets play a game on the pair of words w_1 , w_2
- ► There are 2 players : Spoiler and Duplicator
- ▶ Play for r-rounds, $r \ge 0$
- ▶ Spoiler wants to show that w_1 , w_2 are different $(w_1 \sim_r w_2)$
- ▶ Duplicator wants to show that they are same $(w_1 \sim_r w_2)$
- ▶ Each player has r pebbles z_1, \ldots, z_r

▶ At the start of each round, spoiler chooses a structure.

- ▶ At the start of each round, spoiler chooses a structure.
- Duplicator gets the other structure

- At the start of each round, spoiler chooses a structure.
- Duplicator gets the other structure
- Spoiler places his pebble say z_i on one of the positions of his chosen word

- At the start of each round, spoiler chooses a structure.
- Duplicator gets the other structure
- Spoiler places his pebble say z_i on one of the positions of his chosen word
- Duplicator must keep the pebble z_i on one of the positions of her word

- At the start of each round, spoiler chooses a structure.
- Duplicator gets the other structure
- Spoiler places his pebble say z_i on one of the positions of his chosen word
- Duplicator must keep the pebble z_i on one of the positions of her word
- ► A pebble once placed, cannot be removed

- At the start of each round, spoiler chooses a structure.
- Duplicator gets the other structure
- Spoiler places his pebble say z_i on one of the positions of his chosen word
- Duplicator must keep the pebble z_i on one of the positions of her word
- A pebble once placed, cannot be removed
- ► The game ends after r rounds, when both players have used all their pebbles

• $w_1 = (a, \emptyset)(b, \emptyset)$ and $w_2 = (a, \emptyset)(b, \emptyset)(a, \emptyset)$

- $w_1 = (a, \emptyset)(b, \emptyset)$ and $w_2 = (a, \emptyset)(b, \emptyset)(a, \emptyset)$
- ▶ 2 rounds, so 2 pebbles : z_1, z_2

- $w_1 = (a, \emptyset)(b, \emptyset)$ and $w_2 = (a, \emptyset)(b, \emptyset)(a, \emptyset)$
- ▶ 2 rounds, so 2 pebbles : z_1, z_2
- ▶ Spoiler picks *w*₂, duplicator picks *w*₁

- $w_1 = (a, \emptyset)(b, \emptyset)$ and $w_2 = (a, \emptyset)(b, \emptyset)(a, \emptyset)$
- \triangleright 2 rounds, so 2 pebbles : z_1, z_2
- ▶ Spoiler picks w₂, duplicator picks w₁
- ► Round 1:
 - Spoiler : (a, {z₁})(b, ∅)(a, ∅)

- $w_1 = (a, \emptyset)(b, \emptyset)$ and $w_2 = (a, \emptyset)(b, \emptyset)(a, \emptyset)$
- \triangleright 2 rounds, so 2 pebbles : z_1, z_2
- ▶ Spoiler picks w₂, duplicator picks w₁
- ► Round 1:
 - Spoiler : (a, {z₁})(b, ∅)(a, ∅)
 - ▶ Duplicator : $(a, \{z_1\})(b, \emptyset)$

- $w_1 = (a, \emptyset)(b, \emptyset)$ and $w_2 = (a, \emptyset)(b, \emptyset)(a, \emptyset)$
- ▶ 2 rounds, so 2 pebbles : z_1, z_2
- ► Spoiler picks w₂, duplicator picks w₁
- ► Round 1:
 - Spoiler : (a, {z₁})(b, ∅)(a, ∅)
 - ▶ Duplicator : $(a, \{z_1\})(b, \emptyset)$
 - After round 1, we have two $\{z_1\}$ structures (w'_1, w'_2)

- $w_1 = (a, \emptyset)(b, \emptyset)$ and $w_2 = (a, \emptyset)(b, \emptyset)(a, \emptyset)$
- ▶ 2 rounds, so 2 pebbles : z_1, z_2
- ► Spoiler picks w₂, duplicator picks w₁
- ► Round 1:
 - Spoiler : (a, {z₁})(b, ∅)(a, ∅)
 - ▶ Duplicator : $(a, \{z_1\})(b, \emptyset)$
 - ▶ After round 1, we have two $\{z_1\}$ structures (w'_1, w'_2)
- ▶ Round 2:

- $w_1 = (a, \emptyset)(b, \emptyset)$ and $w_2 = (a, \emptyset)(b, \emptyset)(a, \emptyset)$
- ▶ 2 rounds, so 2 pebbles : z_1, z_2
- ► Spoiler picks w₂, duplicator picks w₁
- ► Round 1:
 - Spoiler : (a, {z₁})(b, ∅)(a, ∅)
 - Duplicator : (a, {z₁})(b, ∅)
 - ▶ After round 1, we have two $\{z_1\}$ structures (w'_1, w'_2)
- ▶ Round 2:
 - Spoiler continues on the structure w₂'

- $w_1 = (a, \emptyset)(b, \emptyset)$ and $w_2 = (a, \emptyset)(b, \emptyset)(a, \emptyset)$
- ▶ 2 rounds, so 2 pebbles : z_1, z_2
- ▶ Spoiler picks w₂, duplicator picks w₁
- ► Round 1:
 - ▶ Spoiler : $(a, \{z_1\})(b, \emptyset)(a, \emptyset)$
 - Duplicator : (a, {z₁})(b, ∅)
 - ▶ After round 1, we have two $\{z_1\}$ structures (w'_1, w'_2)
- ▶ Round 2:
 - Spoiler continues on the structure w₂'
 - Duplicator gets w₁ to play

- $w_1 = (a, \emptyset)(b, \emptyset)$ and $w_2 = (a, \emptyset)(b, \emptyset)(a, \emptyset)$
- ▶ 2 rounds, so 2 pebbles : z_1, z_2
- ▶ Spoiler picks w₂, duplicator picks w₁
- ► Round 1:
 - Spoiler : (a, {z₁})(b, ∅)(a, ∅)
 - ▶ Duplicator : $(a, \{z_1\})(b, \emptyset)$
 - After round 1, we have two $\{z_1\}$ structures (w'_1, w'_2)
- Round 2:
 - Spoiler continues on the structure w₂'
 - Duplicator gets w₁ to play
 - ▶ Spoiler : $(a, \{z_1\})(b, \emptyset)(a, \{z_2\})$

- $w_1 = (a, \emptyset)(b, \emptyset)$ and $w_2 = (a, \emptyset)(b, \emptyset)(a, \emptyset)$
- ▶ 2 rounds, so 2 pebbles : z₁, z₂
- ▶ Spoiler picks w₂, duplicator picks w₁
- ► Round 1:
 - Spoiler : (a, {z₁})(b, ∅)(a, ∅)
 - ▶ Duplicator : $(a, \{z_1\})(b, \emptyset)$
 - After round 1, we have two $\{z_1\}$ structures (w'_1, w'_2)
- Round 2:
 - Spoiler continues on the structure w₂'
 - Duplicator gets w₁ to play
 - ▶ Spoiler : $(a, \{z_1\})(b, \emptyset)(a, \{z_2\})$
 - ▶ Duplicator : $(a, \{z_1, z_2\})(b, \emptyset)$ or $(a, \{z_1\})(b, \{z_2\})$

Winner

► Start with two ∅ structures (w₁, w₂)

Winner

- Start with two ∅ structures (w₁, w₂)
- ▶ *r*-round game, pebble set $V = \{z_1, ..., z_r\}$

- Start with two ∅ structures (w₁, w₂)
- ▶ *r*-round game, pebble set $V = \{z_1, ..., z_r\}$
- ► Each round changes the structures

- Start with two ∅ structures (w₁, w₂)
- ▶ *r*-round game, pebble set $V = \{z_1, ..., z_r\}$
- ► Each round changes the structures
- ▶ At the end of *r*-rounds, we have two V-structures (w'_1, w'_2)

- Start with two ∅ structures (w₁, w₂)
- ▶ *r*-round game, pebble set $V = \{z_1, ..., z_r\}$
- ► Each round changes the structures
- ▶ At the end of *r*-rounds, we have two V-structures (w'_1, w'_2)
- ▶ Duplicator wins iff for every atomic formula α , $w'_1 \models \alpha$ iff $w'_2 \models \alpha$

- Start with two ∅ structures (w₁, w₂)
- ▶ *r*-round game, pebble set $V = \{z_1, ..., z_r\}$
- Each round changes the structures
- ▶ At the end of *r*-rounds, we have two V-structures (w'_1, w'_2)
- ▶ Duplicator wins iff for every atomic formula α , $w'_1 \models \alpha$ iff $w'_2 \models \alpha$
- ▶ That is, $w'_1 \sim_0 w'_2$

- Start with two ∅ structures (w₁, w₂)
- ▶ *r*-round game, pebble set $V = \{z_1, ..., z_r\}$
- ► Each round changes the structures
- ▶ At the end of *r*-rounds, we have two V-structures (w'_1, w'_2)
- ▶ Duplicator wins iff for every atomic formula α , $w'_1 \models \alpha$ iff $w'_2 \models \alpha$
- ▶ That is, $w'_1 \sim_0 w'_2$
- Spoiler wins otherwise.

Given two word structures (w_1, w_2) , duplicator wins on (w_1, w_2) if for every atomic formula α , $w_1 \models \alpha$ iff $w_2 \models \alpha$

Play continues

- Who won in the earlier play?
- We had
 - $(a, \{z_1\})(b, \emptyset)(a, \{z_2\})$ and $(a, \{z_1, z_2\})(b, \emptyset)$
 - $(a, \{z_1\})(b, \emptyset)(a, \{z_2\}) \models (z_1 < z_2)$
 - $(a, \{z_1, z_2\})(b, \emptyset) \nvDash (z_1 < z_2)$ or

Play continues

- Who won in the earlier play?
- We had

```
• (a, \{z_1\})(b, \emptyset)(a, \{z_2\}) and (a, \{z_1, z_2\})(b, \emptyset)

• (a, \{z_1\})(b, \emptyset)(a, \{z_2\}) \models (z_1 < z_2)

• (a, \{z_1, z_2\})(b, \emptyset) \nvDash (z_1 < z_2) or

• (a, \{z_1\})(b, \emptyset)(a, \{z_2\}) and (a, \{z_1\})(b, \{z_2\})

• (a, \{z_1\})(b, \emptyset)(a, \{z_2\}) \models Q_a(z_2)

• (a, \{z_1\})(b, \{z_2\}) \nvDash Q_a(z_2)
```

Spoiler wins in two rounds

Play continues

- Who won in the earlier play?
- We had

```
• (a, \{z_1\})(b, \emptyset)(a, \{z_2\}) and (a, \{z_1, z_2\})(b, \emptyset)

• (a, \{z_1\})(b, \emptyset)(a, \{z_2\}) \models (z_1 < z_2)

• (a, \{z_1, z_2\})(b, \emptyset) \nvDash (z_1 < z_2) or

• (a, \{z_1\})(b, \emptyset)(a, \{z_2\}) and (a, \{z_1\})(b, \{z_2\})

• (a, \{z_1\})(b, \emptyset)(a, \{z_2\}) \models Q_a(z_2)

• (a, \{z_1\})(b, \{z_2\}) \nvDash Q_a(z_2)
```

- Spoiler wins in two rounds
- If the game was played only for one round, who will win?

Unique Winner

Given structures w_1 , w_2 , and a number of rounds r, exactly one of the players win.

Let w_1, w_2 be \mathcal{V} -structures and let $r \ge 0$. Then $w_1 \sim_r w_2$ iff Duplicator has a winning strategy in the r-round game on (w_1, w_2) .

Assume $w_1 \sim_r w_2$, and induct on r

▶ Base : r = 0 and $w_1 \sim_0 w_2$. Duplicator wins, since by assumption, w_1 , w_2 agree on all atomic formulae.

Assume $w_1 \sim_r w_2$, and induct on r

- ▶ Base : r = 0 and $w_1 \sim_0 w_2$. Duplicator wins, since by assumption, w_1 , w_2 agree on all atomic formulae.
- Assume for r-1: $w_1 \sim_{r-1} w_2 \Rightarrow$ Duplicator has a winning strategy in a r-1 round game

- Now, let $w_1 \sim_r w_2$, and assume spoiler wins the *r*-round game on (w_1, w_2) .
 - Assume spoiler starts on w_1 , places a pebble z_1 somewhere on w_1

- Now, let $w_1 \sim_r w_2$, and assume spoiler wins the r-round game on (w_1, w_2) .
 - Assume spoiler starts on w_1 , places a pebble z_1 somewhere on w_1
 - ▶ The resultant structure is w'_1

- Now, let $w_1 \sim_r w_2$, and assume spoiler wins the *r*-round game on (w_1, w_2) .
 - Assume spoiler starts on w_1 , places a pebble z_1 somewhere on w_1
 - ► The resultant structure is w¹
 - ▶ In response, duplicator places her pebble somewhere on w_2

- Now, let $w_1 \sim_r w_2$, and assume spoiler wins the r-round game on (w_1, w_2) .
 - Assume spoiler starts on w_1 , places a pebble z_1 somewhere on w_1
 - ► The resultant structure is w₁'
 - ▶ In response, duplicator places her pebble somewhere on w_2
 - ▶ The resultant structure is w_2'

- Now, let $w_1 \sim_r w_2$, and assume spoiler wins the r-round game on (w_1, w_2) .
 - Assume spoiler starts on w_1 , places a pebble z_1 somewhere on w_1
 - ► The resultant structure is w₁'
 - ► In response, duplicator places her pebble somewhere on w₂
 - The resultant structure is w₂
 - ▶ By assumption, spoiler wins the r-1 round game on (w'_1, w'_2)

- Now, let $w_1 \sim_r w_2$, and assume spoiler wins the r-round game on (w_1, w_2) .
 - Assume spoiler starts on w_1 , places a pebble z_1 somewhere on w_1
 - ► The resultant structure is w₁'
 - ► In response, duplicator places her pebble somewhere on w₂
 - ► The resultant structure is w₂'
 - ▶ By assumption, spoiler wins the r-1 round game on (w'_1, w'_2)
 - ▶ By inductive hypothesis, $w'_1 \sim_{r-1} w'_2$

- Now, let $w_1 \sim_r w_2$, and assume spoiler wins the r-round game on (w_1, w_2) .
 - Assume spoiler starts on w₁, places a pebble z₁ somewhere on w₁
 - ► The resultant structure is w₁'
 - ► In response, duplicator places her pebble somewhere on w₂
 - The resultant structure is w₂
 - ▶ By assumption, spoiler wins the r-1 round game on (w'_1, w'_2)
 - ▶ By inductive hypothesis, $w'_1 \sim_{r-1} w'_2$
 - Let ψ be the conjunction of all formulae of rank r-1 in normal form that are satisfied by w_1'

- Now, let $w_1 \sim_r w_2$, and assume spoiler wins the r-round game on (w_1, w_2) .
 - Assume spoiler starts on w_1 , places a pebble z_1 somewhere on w_1
 - ► The resultant structure is w₁'
 - ► In response, duplicator places her pebble somewhere on w₂
 - The resultant structure is w₂
 - ▶ By assumption, spoiler wins the r-1 round game on (w'_1, w'_2)
 - ▶ By inductive hypothesis, $w'_1 \sim_{r-1} w'_2$
 - Let ψ be the conjunction of all formulae of rank r-1 in normal form that are satisfied by w_1'
 - ▶ Then $\mathbf{w}_1' \models \psi, \mathbf{w}_2' \nvDash \psi$

- Now, let $w_1 \sim_r w_2$, and assume spoiler wins the r-round game on (w_1, w_2) .
 - Assume spoiler starts on w₁, places a pebble z₁ somewhere on w₁
 - The resultant structure is w₁'
 - ► In response, duplicator places her pebble somewhere on w₂
 - The resultant structure is w₂
 - ▶ By assumption, spoiler wins the r-1 round game on (w'_1, w'_2)
 - ▶ By inductive hypothesis, $w'_1 \sim_{r-1} w'_2$
 - Let ψ be the conjunction of all formulae of rank r-1 in normal form that are satisfied by w'_1
 - ▶ Then $w'_1 \models \psi, w'_2 \nvDash \psi$
 - We thus have

$$w_1 \models \exists z_1 \psi, w_2 \nvDash \exists z_1 \psi$$

contradicting $w_1 \sim_r w_2$

Assume Duplicator wins r-round game on (w_1, w_2) and induct on r

▶ Base : r = 0 and Duplicator wins. Then w_1 , w_2 agree on all atomic formulae, and hence $w_1 \sim_0 w_2$

Assume Duplicator wins r-round game on (w_1, w_2) and induct on r

- ▶ Base : r = 0 and Duplicator wins. Then w_1 , w_2 agree on all atomic formulae, and hence $w_1 \sim_0 w_2$
- ► Assume for r-1: Duplicator has a winning strategy in a r-1 round game $\Rightarrow w_1 \sim_{r-1} w_2$

- ▶ Now, let duplicator win in the *r* round game, but $w_1 \nsim_r w_2$.
 - $w_1 \sim_r w_2 \Rightarrow$ there is some formula ψ , $c(\psi) = r$ such that $w_1 \models \psi$, $w_2 \nvDash \psi$

- Now, let duplicator win in the r round game, but $w_1 \sim_r w_2$.
 - $w_1 \nsim_r w_2 \Rightarrow$ there is some formula ψ , $c(\psi) = r$ such that $w_1 \models \psi$, $w_2 \nvDash \psi$
 - Assume $\psi = \exists z_1 \varphi$. Then $c(\varphi) = r 1$

- Now, let duplicator win in the *r* round game, but $w_1 \sim_r w_2$.
 - ▶ $w_1 \nsim_r w_2 \Rightarrow$ there is some formula ψ , $c(\psi) = r$ such that $w_1 \models \psi$, $w_2 \nvDash \psi$
 - ▶ Assume $\psi = \exists z_1 \varphi$. Then $c(\varphi) = r 1$
 - Since w₁ ⊨ ∃z₁φ, spoiler can keep pebble z₁ somewhere in w₁ obtaining w₁ satisfying φ

- Now, let duplicator win in the r round game, but $w_1 \sim_r w_2$.
 - $w_1 \nsim_r w_2 \Rightarrow$ there is some formula ψ , $c(\psi) = r$ such that $w_1 \models \psi$, $w_2 \nvDash \psi$
 - ▶ Assume $\psi = \exists z_1 \varphi$. Then $c(\varphi) = r 1$
 - Since w₁ ⊨ ∃z₁φ, spoiler can keep pebble z₁ somewhere in w₁ obtaining w₁ satisfying φ
 - ▶ In reply, duplicator keeps pebble z_1 on w_2 obtaining w_2'

- Now, let duplicator win in the *r* round game, but $w_1 \sim_r w_2$.
 - ▶ $w_1 \nsim_r w_2 \Rightarrow$ there is some formula ψ , $c(\psi) = r$ such that $w_1 \models \psi$, $w_2 \nvDash \psi$
 - ▶ Assume $\psi = \exists z_1 \varphi$. Then $c(\varphi) = r 1$
 - Since w₁ ⊨ ∃z₁φ, spoiler can keep pebble z₁ somewhere in w₁ obtaining w₁ satisfying φ
 - ▶ In reply, duplicator keeps pebble z_1 on w_2 obtaining w_2'
 - ▶ By assumption, $w_2' \nvDash \varphi$

- Now, let duplicator win in the *r* round game, but $w_1 \sim_r w_2$.
 - ▶ $w_1 \nsim_r w_2 \Rightarrow$ there is some formula ψ , $c(\psi) = r$ such that $w_1 \models \psi$, $w_2 \nvDash \psi$
 - ▶ Assume $\psi = \exists z_1 \varphi$. Then $c(\varphi) = r 1$
 - Since w₁ ⊨ ∃z₁φ, spoiler can keep pebble z₁ somewhere in w₁ obtaining w₁ satisfying φ
 - ▶ In reply, duplicator keeps pebble z_1 on w_2 obtaining w_2'
 - ▶ By assumption, $w_2' \nvDash \varphi$
 - Also, by assumption, duplicator wins the r-1 round game on (w'_1, w'_2) : this by inductive hypothesis says that $w'_1 \sim_{r-1} w'_2$

- Now, let duplicator win in the *r* round game, but $w_1 \sim_r w_2$.
 - ▶ $w_1 \nsim_r w_2 \Rightarrow$ there is some formula ψ , $c(\psi) = r$ such that $w_1 \models \psi$, $w_2 \nvDash \psi$
 - Assume $\psi = \exists z_1 \varphi$. Then $c(\varphi) = r 1$
 - Since w₁ ⊨ ∃z₁φ, spoiler can keep pebble z₁ somewhere in w₁ obtaining w₁ satisfying φ
 - ▶ In reply, duplicator keeps pebble z_1 on w_2 obtaining w_2'
 - ▶ By assumption, $w_2' \nvDash \varphi$
 - Also, by assumption, duplicator wins the r-1 round game on (w'_1, w'_2) : this by inductive hypothesis says that $w'_1 \sim_{r-1} w'_2$
 - ▶ That is, either both w'_1 , w'_2 satisfy φ , or both dont, a contradiction.

Assume *L* is FO-definable, and $L = L(\varphi)$ with rank of φ being *k*.

Assume *L* is FO-definable, and $L = L(\varphi)$ with rank of φ being *k*.

▶ Let $L = \{v_1, v_2, v_3, ...\}$ and $\overline{L} = \{w_1, w_2, w_3, ...\}$

Assume *L* is FO-definable, and $L = L(\varphi)$ with rank of φ being *k*.

- ▶ Let $L = \{v_1, v_2, v_3, ...\}$ and $\overline{L} = \{w_1, w_2, w_3, ...\}$
- ▶ Play a k round game on $v_i \in L$ and $w_j \notin L$. Let ψ_{v_i,w_j} be the formula of rank k that distinguishes the two words.

Assume *L* is FO-definable, and $L = L(\varphi)$ with rank of φ being *k*.

- ▶ Let $L = \{v_1, v_2, v_3, ...\}$ and $\overline{L} = \{w_1, w_2, w_3, ...\}$
- ▶ Play a k round game on $v_i \in L$ and $w_j \notin L$. Let ψ_{v_i,w_j} be the formula of rank k that distinguishes the two words.
- Consider the formula

$$[\psi_{v_1,w_1} \wedge \psi_{v_1,w_2} \wedge \cdots \wedge \psi_{v_1,w_n} \wedge \ldots]$$

$$\vee$$

$$[\psi_{v_2,w_1} \wedge \psi_{v_2,w_2} \wedge \cdots \wedge \psi_{v_2,w_n} \wedge \ldots]$$

$$\vee$$

$$\vdots$$

$$\psi_L = \bigvee_{v \in L} \bigwedge_{w \notin L} \psi_{vw}$$

$$\psi_L = \bigvee_{v \in L} \bigwedge_{w \notin L} \psi_{vw}$$

▶ Each ψ_{vw} has rank atmost k

$$\psi_L = \bigvee_{v \in L} \bigwedge_{w \notin L} \psi_{vw}$$

- ▶ Each ψ_{vw} has rank atmost k
- ▶ Upto equivalence, there are finitely many formulae of rank k

$$\psi_L = \bigvee_{\mathbf{v} \in L} \bigwedge_{\mathbf{w} \notin L} \psi_{\mathbf{v}\mathbf{w}}$$

- ▶ Each ψ_{vw} has rank atmost k
- ▶ Upto equivalence, there are finitely many formulae of rank *k*
- ▶ Hence the disjunction and conjunction are finite

$$\psi_L = \bigvee_{\mathbf{v} \in L} \bigwedge_{\mathbf{w} \notin L} \psi_{\mathbf{v}\mathbf{w}}$$

- ▶ Each ψ_{vw} has rank atmost k
- ▶ Upto equivalence, there are finitely many formulae of rank *k*
- ▶ Hence the disjunction and conjunction are finite
- ψ_L is a proper formula (of finite size)

$$\psi_L = \bigvee_{v \in L} \bigwedge_{w \notin L} \psi_{vw}$$

- ▶ Each ψ_{VW} has rank atmost k
- ▶ Upto equivalence, there are finitely many formulae of rank *k*
- ▶ Hence the disjunction and conjunction are finite
- ψ_L is a proper formula (of finite size)
- ▶ ψ_L captures L since each $v \in L$ satisfies $\bigwedge_{w \notin L} \psi_{vw}$ while none of the $w \notin L$ satisfy $\bigwedge_{w \notin L} \psi_{vw}$

Given a property \mathcal{K} , if for any pair $v \in \mathcal{K}$ and $w \notin \mathcal{K}$, spoiler has a winning strategy in the k-round EF game on v and w, then there is a rank k FO formula $\varphi_{\mathcal{K}}$ that defines the property \mathcal{K} .

$$\varphi_{\mathcal{K}} = \bigvee_{\mathbf{v} \in \mathcal{K}} \bigwedge_{\mathbf{w} \notin \mathcal{K}} \psi_{\mathbf{v}\mathbf{w}}$$

where ψ_{vw} is as explained in the previous slide.

Note that k is fixed in the above, and is independent of the choices of the words.

Implications of the Game on FO definability

FO Definability

L is FO definable \Rightarrow there exists an *r* such that for every (w_1, w_2) pair, such that $w_1 \in L$, $w_2 \notin L$, spoiler wins in *r* rounds

Implications of the Game on FO definability

FO Definability

L is FO definable \Rightarrow there exists an *r* such that for every (w_1, w_2) pair, such that $w_1 \in L$, $w_2 \notin L$, spoiler wins in *r* rounds

Non FO Definability

For all $r \ge 0$, there exists a (w_1, w_2) pair with $w_1 \notin L$, $w_2 \in L$, duplicator wins in r rounds $\Rightarrow L$ is not FO definable

Non FO[<] definability

- FO[<, S] ⊆ FO[<]</p>
- ▶ Non definability in *FO*[<] implies non definability in *FO*[*S*,<]

- Assume that there is a sentence φ that defines words of even length, with $c(\varphi) = r$.
- ▶ Then, $a^i \models \varphi$ iff i is even
- ▶ Show that for all r > 0, $a^{2^r} \sim_r a^{2^r-1}$

- ▶ Base case : $(a, \emptyset)(a, \emptyset)$ and (a, \emptyset) for r = 1
- ▶ In one round, duplicator wins on $(a, \emptyset)(a, \emptyset)$ and (a, \emptyset)

- Show that for all $k \ge 2^r 1$, duplicator has a winning strategy for the *r*-round game in (a^k, a^{k+1}) , for all $r \ge 0$
- ▶ Induct on *r*
- ▶ If r = 1, then on (a, aa) duplicator wins in one round
- ▶ Assume now that the claim is true for $\leq r 1$

▶ Let $k \ge 2^r - 1$, and consider the structures

$$(a^{k}, a^{k+1})$$

 \triangleright Spoiler puts pebble z_1 in one of the words obtaining

$$(a,\emptyset)^s(a,\{z_1\})(a,\emptyset)^t$$

▶ Let $k \ge 2^r - 1$, and consider the structures

$$(a^k, a^{k+1})$$

▶ Spoiler puts pebble z_1 in one of the words obtaining

$$(a,\emptyset)^s(a,\{z_1\})(a,\emptyset)^t$$

▶ $s \leqslant \frac{k-1}{2}$ or $t \leqslant \frac{k-1}{2}$

Assume $s \leq \frac{k-1}{2}$. Duplicator puts her pebble z_1 on the (s+1)th letter of the other word obtaining

$$(a,\emptyset)^s(a,\{z_1\})(a,\emptyset)^{t'}$$

where t' = t + 1 or t' = t - 1.

Assume $s \leq \frac{k-1}{2}$. Duplicator puts her pebble z_1 on the (s+1)th letter of the other word obtaining

$$(a,\emptyset)^s(a,\{z_1\})(a,\emptyset)^{t'}$$

where
$$t' = t + 1$$
 or $t' = t - 1$.

The structures after round 1 are thus

$$(a,\emptyset)^{s}(a,\{z_{1}\})(a,\emptyset)^{t},(a,\emptyset)^{s}(a,\{z_{1}\})(a,\emptyset)^{t'}$$

▶ Assume $s \leq \frac{k-1}{2}$. Duplicator puts her pebble z_1 on the (s+1)th letter of the other word obtaining

$$(a,\emptyset)^s(a,\{z_1\})(a,\emptyset)^{t'}$$

where t' = t + 1 or t' = t - 1.

The structures after round 1 are thus

$$(a,\emptyset)^{s}(a,\{z_{1}\})(a,\emptyset)^{t},(a,\emptyset)^{s}(a,\{z_{1}\})(a,\emptyset)^{t'}$$

▶ We have $2^r - 1 \le k = min(t, t') + s + 1 \le min(t, t') + \frac{k-1}{2} + 1$

▶ Assume $s \leq \frac{k-1}{2}$. Duplicator puts her pebble z_1 on the (s+1)th letter of the other word obtaining

$$(a,\emptyset)^s(a,\{z_1\})(a,\emptyset)^{t'}$$

where t' = t + 1 or t' = t - 1.

The structures after round 1 are thus

$$(a,\emptyset)^{s}(a,\{z_{1}\})(a,\emptyset)^{t},(a,\emptyset)^{s}(a,\{z_{1}\})(a,\emptyset)^{t'}$$

- ▶ We have $2^r 1 \le k = min(t, t') + s + 1 \le min(t, t') + \frac{k-1}{2} + 1$
- ▶ Hence $min(t, t') \ge \frac{k-1}{2} \ge 2^{r-1} 1$

▶ Assume $s \leq \frac{k-1}{2}$. Duplicator puts her pebble z_1 on the (s+1)th letter of the other word obtaining

$$(a,\emptyset)^s(a,\{z_1\})(a,\emptyset)^{t'}$$

where t' = t + 1 or t' = t - 1.

The structures after round 1 are thus

$$(a,\emptyset)^{s}(a,\{z_{1}\})(a,\emptyset)^{t},(a,\emptyset)^{s}(a,\{z_{1}\})(a,\emptyset)^{t'}$$

- ▶ We have $2^r 1 \le k = min(t, t') + s + 1 \le min(t, t') + \frac{k-1}{2} + 1$
- ► Hence $min(t, t') \ge \frac{k-1}{2} \ge 2^{r-1} 1$
- ▶ By inductive hypothesis, duplicator has a winning strategy for the r-1 round game on $(a^t, a^{t'})$.

▶ Use the duplicator's winning strategy for the r-1 round game on $(a^t, a^{t'})$, to obtain a winning strategy in r-1 rounds on

$$(a, \emptyset)^{s}(a, \{z_{1}\})(a, \emptyset)^{t}, (a, \emptyset)^{s}(a, \{z_{1}\})(a, \emptyset)^{t'}$$

▶ Use the duplicator's winning strategy for the r-1 round game on $(a^t, a^{t'})$, to obtain a winning strategy in r-1 rounds on

$$(a, \emptyset)^{s}(a, \{z_{1}\})(a, \emptyset)^{t}, (a, \emptyset)^{s}(a, \{z_{1}\})(a, \emptyset)^{t'}$$

▶ Whenever spoiler plays on a structure on letter $i \le s + 1$, duplicator plays on the same position on the other structure

▶ Use the duplicator's winning strategy for the r-1 round game on $(a^t, a^{t'})$, to obtain a winning strategy in r-1 rounds on

$$(a, \emptyset)^{s}(a, \{z_{1}\})(a, \emptyset)^{t}, (a, \emptyset)^{s}(a, \{z_{1}\})(a, \emptyset)^{t'}$$

- ▶ Whenever spoiler plays on a structure on letter $i \le s + 1$, duplicator plays on the same position on the other structure
- When spoiler plays at a position i > s + 1 in either word, duplicator plays in the part of the other word > s + 1 using her winning strategy in (a^t, a^{t'})

- ▶ At the end of r rounds, we have structures w'_1 , w'_2 .
- ► For $i \le s+1$, pebble z_j appears at position i of w'_1 iff pebble z_j appears at position i of w'_2
- Lets erase the first s + 1 letters in w'_1, w'_2 , obtaining v'_1, v'_2
- v_1', v_2' are the words that result after $r' \le r 1$ rounds of play on $(a^t, a^{t'})$. Recall that duplicator won this.
- ▶ Show that w'_1, w'_2 satisfy the same atomic formulae

- ▶ Atomic Formulae : $Q_a(z_i)$: Both w'_1, w'_2 satisfy this.
- \triangleright $W'_1 \models Z_i < Z_i$.
- ▶ If z_i, z_j are in the first s + 1 letters, then $w'_2 \models z_i < z_j$.
- ▶ If z_i, z_j occur in the last $|w_1'| s 1$ positions, then $v_1' \models z_i < z_j$. By duplicator's win in $(a^t, a^{t'}), v_2' \models z_i < z_i$
- ▶ If z_i appears among the first s + 1 letters and z_j after the first s + 1 letters of w'_1 , same is true in w'_2 .

Historically Speaking

The games that we saw are due to Ehrenfeucht and Fraissé

Reference: Finite Automata, Formal Logic and Circuit Complexity, by Howard Straubing.