milestone 2 00951537

June 15, 2024

1 Preamble

1.0.1 Data Download - Preferred, fully replicable to the below

Note: Due to submission size limitations, the datasets were **not** included in the repost submission. Instead, I have made them publicly downloadable from S3.

The preferred method to retrieve the data is to run dvc pull in the CLI. This will ensure that the exact same samples are retrieved to the ones used in the report. See documentation for DVC for reference. This depends on installing dvc and dvc-s3 in the environment.

1.0.2 Data Download - Alternative

Run the following line once in order to retrieve the data samples from AWS S3. Below, we pass 100000 as the sample argument. Before doing so, please ensure that boto3 and s3fs are installed. Refer to requirements.txt for further dependencies. {python} %run scripts/s3_data_retrieval/retrieve_samples_from_s3.py 100000

2 Introduction

The global digital advertising market is worth approximately \$602 billion today. Due to the increasing rate of of online participation since the COVID-19 pandemic, this number has been rapidly increasing and is expected to reach \$871 billion by the end of 2027 (eMarketer, 2024). Many of the of the major Ad platforms such as Google, Facebook and Amazon operate on a cost-per-user-engagement pricing model, which usually means that advertisers get charged for every time a user clicks on an advertisment. This means that these platforms are incentivized to make sure that the content shown to each user is as relevent as possible in order to maximize the number of clicks in the long term. Attaining accurate Click-Through Rate (CTR) prediction is a necessary first step for Ad persionalization, which is why study of CTR prediction methods have been an extremely active part of Machine Learning research over the past through years.

Initially, shallow prediction methods such as XGBoost (Cite), Factorization Machines (Cite) and Field-Aware Factorization Machines (Cite) have been used for CTR prediction. However, these methods have often been shown to be unable to capture the higher order feature interactions in the sparse multy value categorical Ad Marketplace datasets (Cite). Since then, Deep Learning methods have been shown to show superior predictive ability on these datasets. The focus of my reasearch project is therefore to explore the merits of different Deep Learning architechtures for click-through rate prediction

In the following report, I explore the relevant datasets and simulations that I will be using throughout my research project. In the first section, I perform an exploratory data analysis on three widely adopted benchmark CTR prediction datasets; the KDD12 (Aden, 2012), Avazu (Wang and Cukierski, 2014) and Criteo (Tien et al, 2014) datasets. In the second section, I then explore possible ways of simulating the ad marketplace environment in order to test the reinforcement learning framework.

3 Data Analysis and Pre-processing

I begin below by first introducting the three datasets widely used as benchmarks in CTR prediction research.

3.0.1 KDD12

The **KDD12** dataset was first released for the KDD Cup 2012 competition (Cite), with the original task being to predict the number of clicks for a given number of impressions. Each line represents a training instance derived from the session logs for the advertizing marketplace. In the context of this dataset, a "session" refers to an interaction between a user and the search engine, containing the following components; the user, a list of adverts returned by the search engine and shown (impressed) to the user and zero or more adverts clicked on by the user. Each line in the training set includes:

- Click and Impression counts: The click counts were the original target variable when the dataset was first released for the competition. As done in (Cite Song and Others), this dataset can be adapted to CTR prediction by simply calculating the CTR for each instance by dividing the Click counts by the Impression counts.
- Session features: These include session depth (the number of ads impressed in a session) as well as the tokenized query phrase that the user entered into the search engine.
- User features: Encoded gender and age group for the user, if known.
- Ad features: Display URL, ad ID, advertiser ID and encoded title, description and purchased key words.

Snapshot of KDD12 training data:

	Click	Impression		Display	JRL AdI	D Advertis	erID	Depth	\
0	0	1	120578789	990864608	353 2015709	8 2	7961	1	
1	0	1	120578789	990864608	353 2022120	8 2	7961	2	
2	0	1	120578789	990864608	353 2018370	1 2	7961	1	
3	0	1	120578789	990864608	353 2018369	0 2	7961	1	
4	0	1	30291136	359366399	912 1039701	0 2	24973	2	
	Positio	on QueryI	D KeywordID	TitleID	Description	ID UserID)		
0		1 7560	6 15055	12391	135	32 1350148	}		
1		1 297	7 1278	3054	45	61 1350148	}		
2		1 1859485	5 227	543	6	42 1350148	}		
3		1 426047	3 34048	175983	1550	50 1350148	}		
4		2 297	7 1274	2570	260	91 1350148	}		

3.0.2 Avazu

The Avazu dataset was originally released in 2014 for a CTR prediction Competition on Kaggle (Cite Avazu). The data is composed of 11 days worth mobile ad marketplace data. Much like the KDD12 dataset above, this dataset contains features ranging from user activity (clicks), user identification (device type, IP) to ad features. Notible differences to the KDD12 dataset include the fact that Avazu contains an "hour" feature (enabling the establishment of sequentiality of behaviours) and the fact that Avazu does not seem to contain query and ad texts.

Snapshot of Avazu training data:

		id	click	h	our	c1	hanne	r_pos	site	id	\
0	156741348211698		1	14102		1005	buillie	0	85f75	_	`
•			_					•			
1	156742789143628	39244	0	14102	2300	1005		0	85 f 75	1fd	
2	156745596610604	46075	0	14102	2300	1005		0	26fa1	946	
3	1567461673488792	26359	0	14102	2300	1005		0	85 f 75	1fd	
4	1567467059204478	31339	0	14102	2300	1005		0	85f75	1fd	
	site_domain site	_catego:	ry	app_id	l app	_domai	n	device_	type	\	
0	c4e18dd6	50e219	e0 e7	71aba61	23	- 347£47	'a		1		
1	c4e18dd6	50e219	e0 61	f8bcb0f	23	347f47	'a		1		
2	e2a5dc06	3e8141	30 40	cad2386	5 79	301e8d	ı a		1		
_									_		
3	c4e18dd6	50e219	e0 53	3de0284	ds	9b5648	se		1		
4	c4e18dd6	50e219	e0 a(Ofc55e5	5 23	347f47	'a		1		
	device_conn_type	c14	c15	c16	c17	c18	c19	c20	c21		
0	0	21676	320	50	2495	2	167	-1	L 23		
1	0	20476	320	50	2348	3	427	100005	5 61		
2	0	20362	320	50	2333	0	39	-1	l 157		
3	0	21611	320	50	2480	3	297	100111	L 61		
4	0	20361	300	250	2333	0	39	-1			
-	O	20001	000	200	2000	9	00	_	101		

[5 rows x 24 columns]

3.0.3 Criteo

Finally, the Criteo dataset is another benchmark CTR prediction dataset that was originally released on Kaggle for a CTR prediction compitition. The original dataset is made up of 45 Million user's click activity, and contains the click/no-click target along with 26 categorical feature fields and 13 numerical feature fields. Unlike the other two datasets however, the semintic significance of these fields is not given - they are simply labelled as "Categorical 1-26" and "Numerical 1-13" respectively.

Snapshot of Criteo training data:

	click	\mathtt{int}_1	int_2	int_3	\mathtt{int}_4	${\tt int_5}$	int_6	int_7	int_8	int_9	\
0	0	NaN	1	2.0	5.0	27586.0	32.0	2.0	14.0	21.0	
1	1	14.0	1	1.0	8.0	276.0	14.0	41.0	9.0	10.0	
2	0	NaN	1	27.0	25.0	NaN	NaN	0.0	54.0	55.0	

3		0	0.0	442	1.0	1.0	3029.0	58.0	2.0	13.0	44.0
4		0	0.0	-1	2.0	1.0	1167.0	88.0	23.0	19.0	673.0
		cat	_17	cat_1	8 ca	t_19	cat_20	cat_21	cat_22	ca	t_23 \
0		07c54	0c4	bdc0604	3	NaN	NaN	6dfd157c	NaN	32c7	478e
1		e5ba7	672	87c6f83	С	NaN	NaN	0429f84b	NaN	be7c	41b4
2		2005a	bd1	87c6f83	С	NaN	NaN	15fce809	NaN	be7c	41b4
3		d4bb7	bd8	cdfa825	9	NaN	NaN	20062612	NaN	dbb4	86d7
4		27c07	bd6	5bb2ec8	e 49b8	8041f	b1252a9d	bff87997	NaN	32c7	478e
		cat_24	(cat_25	cat_2	26					
0	ef	089725		NaN	Na	ιN					
1	c0	d61a5c		NaN	Na	ιN					
2	f9	6a556f		NaN	Na	ιN					
3	1b	256e61		NaN	Na	ιN					
4	3f	db382b	f0:	f449dd	49d6848	86					

[5 rows x 40 columns]

3.0.4 Target Variable Analysis

The figure below shows that the three datasets have vastly different average Click Through Rates per instance. The average CTR for the KDD12 dataset is only 3.4%, whereas the Criteo dataset is 25.6%.

3.0.5 Missingness

Below, I take a look at whether or not our dataset has any missing values.

Missingness matrix for KDD12 dataset:

<Axes: >

Missingness matrix for Avazu dataset:

<Axes: >

Missingness matrix for Criteo dataset:

<Axes: >

Above we see that both KDD12 and Avazu tend to be well populated. However, we also see that Criteo has some missing values. Below I proceed by imputing the missing values using Sklearn's KNN Imputer

/opt/conda/lib/python3.10/site-packages/sklearn/impute/_iterative.py:801:
ConvergenceWarning: [IterativeImputer] Early stopping criterion not reached.
 warnings.warn(

	click	int_1	int_2	int_3	int_4	${\tt int_5}$	int_6	int_7	int_8	int_9	•••	\
0	0	0	1	2	5	27586	32	2	14	21	•••	
1	1	14	1	1	8	276	14	41	9	10	•••	
2	0	0	1	27	25	251808	840	0	54	55	•••	
3	0	0	442	1	1	3029	58	2	13	44	•••	
4	0	0	-1	2	1	1167	88	23	19	673		
	cat_6_	missing	cat_1	2_missin	ıg cat	_16_miss	ing c	at_19_mi	ssing	\		
0		0			0		0		1			
1		0			0		0		1			
2		0			0		0		1			
3		0			0		0		1			
4	0 0		0	0			0					
	cat_20	_missing	g cat_	21_missi	.ng ca	t_22_mis	sing	$\mathtt{cat} _ 24 _\mathtt{m}$	issing	\		
0		-	1		0		1		0			
1		-	1		0		1		0			
2		1	1		0		1		0			
3		1	1		0		1		0			
4		()		0		1		0			

	cat_25_missing	cat_26_missing
0	1	1
1	1	1
2	1	1
3	1	1
4	0	0

[5 rows x 64 columns]

3.0.6 Sparse Multi-Value Categorical Features

As already mentioned above, ad marketplace data often contains sparse categorical features, which make signal detection extremely difficult in shallow modelling frameworks. Below I show examples from each dataset

C:\Users\marti\AppData\Local\Temp\ipykernel_14764\3506136802.py:2:
FutureWarning: The default of observed=False is deprecated and will be changed
to True in a future version of pandas. Pass observed=False to retain current
behavior or observed=True to adopt the future default and silence this warning.
 criteo_cat1 = criteo.groupby('cat_3').agg({'click':'count'}).rename(columns={'

click':'count'}).sort_values('count', ascending=False).reset_index()
C:\Users\marti\AppData\Local\Temp\ipykernel_14764\3506136802.py:3:
FutureWarning: The default of observed=False is deprecated and will be changed
to True in a future version of pandas. Pass observed=False to retain current
behavior or observed=True to adopt the future default and silence this warning.
 avazu_site_domain = avazu.groupby('device_ip').agg({'click':'count'}).rename(c
olumns={'click':'count'}).sort_values('count', ascending=False).reset_index()
C:\Users\marti\AppData\Local\Temp\ipykernel_14764\3506136802.py:4:
FutureWarning: The default of observed=False is deprecated and will be changed
to True in a future version of pandas. Pass observed=False to retain current
behavior or observed=True to adopt the future default and silence this warning.
 kdd12_advertiser_id = kdd12.groupby('TitleID').agg({'Click':'count'}).rename(c
olumns={'Click':'count'}).sort_values('count',
 ascending=False).reset_index().astype({'TitleID':str, 'count':int})

A common remidy to the above issue is to bin the categorical feature values before one-hot encoding or embedding, according to some given threshold (Cite Song, Others). This essentially means that for a given threshold t, we retain only the values for the multi-value categorical features that have more than t occurances in the dataset. (Cite Song) Reccomends usign, setting t=10,5,10 for Criteo, KDD12 and Avazu respectively. However, due to computational limitations, below I proceed by limiting the $maximum\ number\ of\ OHE\ verctor\ dimensionality$ to 20 for each dataset.

Before one-hot encoding:

KDD12 shape: (100000, 12) Avazu shape: (100000, 24) Criteo shape: (100000, 64)

After one-hot encoding: KDD12 shape: (100000, 164) Avazu shape: (100000, 345) Criteo shape: (100000, 490)

3.0.7 High Variance Numerical outliers

Below I check the distributions of the numerical features in the datasets

Due to the high variance of numerical features in the Criteo dataset, it is necessary to transform these variable in order to ease the training of deep NN's. As done be (Cite Song and Wang, and the winner of the Criteo Competition), we will proceed by applying the transform $\log^2(z)$ if z > 2, and where z is the standardized numerical value.

3.0.8 Correlation Analysis

Below I conduct a correlation analysis of the features to the Click-Through rate

C:\Users\marti\AppData\Local\Temp\ipykernel_14764\1548746507.py:6:
FutureWarning: Series.__setitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To set a value by position, use `ser.iloc[pos] = value` mask[0] = True # Keep the click column

C:\Users\marti\AppData\Local\Temp\ipykernel_14764\1548746507.py:18:
FutureWarning: Series.__setitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To set a value by position, use `ser.iloc[pos] = value` mask[0] = True # Keep the click column
C:\Users\marti\AppData\Local\Temp\ipykernel_14764\1548746507.py:23:
FutureWarning: Series.__setitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To set a value by position, use `ser.iloc[pos] = value` mask[0] = True # Keep the click column

Some very high correlations between some of the features across fields in all three datasets. This possibly points to there being potential for dimensionality reduction across this feature set.

Unfortunately, from the correlation heatmaps, there appears to be little to no correlation between the first-order features and the target click variable.

4 Modelling

In this section I will compare the perfomance of two shallow modelling approaches (Logistic Regression and Factorization Machines) to a naive DNN for CTR prediction. As with (Cite Song and Wang), I will use the **Area Under the ROC Curve** and **Logloss** measures to compare the performance of the different modelling approaches on the test set.

C:\Users\marti\AppData\Local\Temp\ipykernel_14764\1507951586.py:3: DtypeWarning: Columns (7,10) have mixed types. Specify dtype option on import or set low memory=False.

avazu_standardized = pd.read_csv('./data/avazu/avazu_normed_labels.csv')
C:\Users\marti\AppData\Local\Temp\ipykernel_14764\1507951586.py:4: DtypeWarning:
Columns (27) have mixed types. Specify dtype option on import or set
low memory=False.

criteo_standardized = pd.read_csv('./data/criteo/criteo_normed_labels.csv')

5 Simulatinons

6 Summary of findings

7 Suggested Future Research

8 References

- eMarketer. (2023). Digital advertising spending worldwide from 2021 to 2027 (in billion U.S. dollars). Statista. Statista Inc.. Accessed: June 09, 2024. https://www-statista-com.iclibezp1.cc.ic.ac.uk/statistics/237974/online-advertising-spending-worldwide/
- Aden, Yi Wang. (2012). KDD Cup 2012, Track 2. Kaggle. https://kaggle.com/competitions/kddcup2012-track2
- Steve Wang, Will Cukierski. (2014). Click-Through Rate Prediction. Kaggle. https://kaggle.com/competitions/avazu-ctr-prediction
- Jean-Baptiste Tien, joycenv, Olivier Chapelle. (2014). Display Advertising Challenge. Kaggle. https://kaggle.com/competitions/criteo-display-ad-challenge