We can create a Turing Machine to compute g1(x) as follows:

T ="On input x, where x is < M > where M is a DFA:

- 1. If we fail the type check, output 0 and halt.
- 2. Simulate x on Edfa. If it accepts, output 0 and halt. Otherwise continue.
- 3. Evaluate w, where w is the smallest string (in the string order of Σ^*) in L(M).
- 4. Output 1 w.

However, g2(x) does not have a Turing Machine that computes it.

Proof by contradiction: suppose there exists a Turing Machine that computes g2(x). Let us consider the cases where g2(x) will output 0. Our Turing Machine must take in <M> where M is a TM and $L(M) = \emptyset$. However, when computing if $L(M) = \emptyset$ is described by the set E_{TM} , which is undecidable as well as unrecognizable. As we cannot construct a TM to compute E_{TM} , it is a contradiction that our Turing Machine can compute g2(x).

2.

a)

 $A = \Sigma^*$

 $B = HALT_{TM}^{c}$

For any input x, x is within A and F(x) is within B. This is because Σ^* mapping reduces to every language other than \emptyset . We can also see from F that even if we do not have the correct type, it is outputted correctly as F(x) as if an incorrect type was passed as a complement of HALT_{TM}, which is all the strings not in HALT_{TM}.

b)

 $C = A_{TM}$

 $D=EO_{TM}$

In the case of x failing the type check, x is not in A_{TM} , and we correctly output a string not in EQ_{TM}

In the case of x is not in A_{TM} , we output the result of M'_x with a TM that does not start with 0s, as is described by M'_x . M'_x rejects, and in step 4 we output two TMs that don't have the same language, which is not in EQ_{TM}.

In the case of x is in A_{TM} , then M'_x accepts. We then output two TMs with the same language, which is in EQ_{TM} .

c)

X=HALT_{TM}

 $Y=E_{TM}^c$

In the case of x failing the type check, x is not in HALT_{TM}, and we correctly output a string not in E_{TM}^c , which is an encoding of a machine in E_{TM} .

In the case of x is not in HALT_{TM}, we construct a TM with an empty language and output it, which is not in E_{TM}^c .

In the case of x is in HALT_{TM}, we construct a TM without an empty language and output it, which is in E_{TM}^c .

3.

a)

Define F = ``On input < M, w>, where M is a TM and w a string:

- 1. Run $HALT_{TM}$ on $\langle M, w \rangle$. If it rejects, output $\langle M, M, M \rangle$
- 2. Construct the Turing machine $M'_x =$ "On input y,
 - 1. If M is a decider, accept.
 - 2. Otherwise, reject.
- 3. Output $\langle M'_x \rangle$

We assume improperly formed inputs are assumed to map to strings outside of DEC_{TM}.

b)

Define F = "On input < M>, where M is a TM:

- 1. Construct the Turing machine $M'_x =$ "On input y,
 - 1. If L(M) is an infinite set, accept.
 - 2. Otherwise, reject.
- 2. Output $\langle M'_x \rangle$

We assume improperly formed inputs are assumed to map to strings outside of INF_{TM}.

- c) As we know A_{TM} is undecidable, and proved A_{TM} is mapping reducible to DEC_{TM} in part (a), it is evident that DEC_{TM} is undecidable.
- **d)** As we know DEC_{TM} is undecidable from part (c), and proved DEC_{TM} is mapping reducible to INF_{TM} in part (b), it is evident that DEC_{TM} is undecidable.