CHOW RING AND BP-THEORY OF THE EXTRASPECIAL 2-GROUP OF ORDER 32

N.YAGITA

ABSTRACT. We write down the mod 2 Chow ring of the classifying space of $G = 2^{1+4}_+ = D_8 \cdot D_8$, which has nilpotent elements.

1. Introduction

Let p be a prime number. Let G be a p-group and BG its classifying space. Let us write simply by $H^*(G; \mathbb{Z}/p) = H^*(BG; \mathbb{Z}/p)$ the mod p cohomology of the group G, and by $CH^*(G) = CH^*(BG)$ the Chow ring of the classifying space BG over the complex number field \mathbb{C} .

In this paper, we write down the (most ease) case where $CH^*(G)/2$ has nonzero nilpotent elements (but $H^*(G; \mathbb{Z}/2)$ has not). Note that Chow rings $CH^*(G)/p$ for all G with $|G| \leq p^4$ are still computed by Totaro in [To2]. Let $D(2) = 2_+^{1+4} = D_8 \cdot D_8$ be the extraspecial 2-group (of order 2^5) which is the central product of two dihedral groups D_8 .

Theorem 1.1. There are ring isomorphisms

$$CH^*(D(2))/2 \cong (H^*(D(2); \mathbb{Z}/2))^2 \oplus \mathbb{Z}/2[c_4]\{t''\}$$

$$\cong (\mathbb{Z}/2[y_1, y_2, y_3, y_4]/(q'_0, q'_1) \oplus \mathbb{Z}/2\{t''\}) \otimes \mathbb{Z}/2[c_4]$$
where $deg(y_i) = 1$, $deg(c_4) = 4$, $deg(t'') = 2$, and $q'_0 = y_1y_2 + y_3y_4$,
$$q'_1 = Sq^2(q'_0) = y_1^2y_2 + y_1y_2^2 + y_3^2y_4 + y_3y_4^2.$$

The multiplications are given $(t'')^2 = y_i t'' = 0$ for all $1 \le i \le 4$.

Let $BP^*(G) = BP^*(BG)$ be the Brown-Peterson theory with the coefficient $BP^* = \mathbb{Z}_{(p)}[v_1, v_2, ...]$ and $|v_i| = -2(p^i - 1)$ (for details of the BP-theory, see [Ha] or [Ra]). We also show the mod 2 Totaro conjecture ([To1]);

Theorem 1.2. The mod 2 Totaro conjecture holds for D(2), that is

$$CH^*(D(2))/2 \cong BP^*(D(2)) \otimes_{BP^*} \mathbb{Z}/2.$$

²⁰⁰⁰ Mathematics Subject Classification. 55N20, 55R12, 55R40. Key words and phrases. Chow ring, BP-theory, extraspecial 2-group.

Let us write by $\Omega^*(G)$ the BP-version $\Omega^*(BG) \otimes_{MU^*} BP^*$ of the algebraic cobordism $\Omega^*(BG) = MGL^{2*,*}(BG)$ ([Vo1,2], [Le-Mo1,2]). Let $t_{\mathbb{C}}: \Omega^*(X) \to BP^{2*}(X(\mathbb{C}))$ be the realization map. There is a conjecture such that ;

Conjecture 1.3. The realization map $t_{\mathbb{C}}$ is an isomorphism for each algebraic group G, e.g. $\Omega^*(BG) \cong BP^*(BG)$.

It is known the above conjecture is true for connected groups ([To1], [Ya2,3]); O_n , SO_n , PGL_p , G_2 , $Spin_7$. As for finite groups G, the above conjecture is known to be true for abelian groups and the extraspecial p-groups of order p^3 , i.e. p_+^{1+2} , p_-^{1+2} for all primes [Ya4]. While the author can not see this conjecture for D(2), in the last section, we add some notes for groups satisfying the above conjecture.

2. The Chow ring of D(2)

The group D(2) is isomorphic to the extraspecial 2-group 2^{1+2}_+ , which has the central extension

$$1 \to N \to D(2) \to Q \to 1$$
, $N \cong \mathbb{Z}/2$, $Q \cong (\mathbb{Z}/2)^4$.

We use notations such that $N \cong \langle c \rangle, Q \cong \langle a_1, a_2, a_3, a_4 \rangle$ and

$$D(2) \cong \langle a_1, ..., a_4, c | a_1^2 = ... = a_4^2 = c^2 = 1,$$

 $[a_1, a_2] = [a_3, a_4] = c = (a_1 a_2)^2 = (a_3 a_4)^2 \rangle.$

The mod 2 cohomology is given by Quillen [Qu1]

$$H^*(D(2); \mathbb{Z}/2) \cong \mathbb{Z}/2[x_1, x_2, x_3, x_4]/(q_0, q_1) \otimes \mathbb{Z}/2[w_4]$$

where $q_0 = x_1x_2 + x_3x_4$ and $q_1 = Sq^1q_0 = x_1^2x_2 + x_1x_2^2 + x_3^2x_4 + x_3x_4^2$. Here x_i (and w_4) are Stiefel-Whitney classes for some real representations, and hence the powers are Chern classes, that is,

$$y_i = x_i^2 = c_1(e_i), \quad e_i : D(2) \to \langle a_i \rangle \to \mathbb{C}^{\times}$$

where e_i is the nonzero linear representation, and

$$c_4 = (w_4)^2 = c_4(\eta); \quad \eta = Ind_H^D(e),$$

where $H = \langle c, a_1, a_3 \rangle$ is the maximal elementary abelian 2-subgroup of D(2) and $e: H \to \langle c \rangle \to \mathbb{C}^{\times}$ is a nonzero linear representation. We note that $H^*(D(2); \mathbb{Z}/2)$ has no nonzero nilpotent elements ([Qu1]).

It is well known (e.g., [Qu1]) that each irreducible representation of an extraspecial p-group P is a linear representation or just one induced representation of a linear representation of a maximal elementary abelian p-group of P. Hence the Chern subring (the subring of $H^*(D(2); \mathbb{Z}/2)$ multiplicatively generated by Chern classes) is

$$Ch(H^*(D(2); \mathbb{Z}/2)) \cong H^*(D(2); \mathbb{Z}/2)^2$$

$$\cong \mathbb{Z}/2[y_1,...,y_4]/(q'_0,q'_1)\otimes \mathbb{Z}/2[c_4]$$

where $q'_0 = y_1y_2 + y_3y_4$ and $q'_1 = Sq^2q'_0 = y_1^2y_2 + y_1y_2^2 + y_3^2y_4 + y_3y_4^2$.

Now we start to consider the Chow ring of BD(2). In this paper we write $CH^*(BD(2))$ by $CH^*(D(2))$ (we also write $BP^*(BD(2))$ by $BP^*(D(2))$).

Moreover we note following facts (see [To1] for details). By the Rieman-Roch theorem without denominator, $CH^2(D(2))/2$ is generated by 2nd Chern classes (of some representations), that means, it is generated by y_iy_j and $c_2(\eta)$.

Lemma 2.1. We have
$$q'_0 = y_1y_2 + y_3y_4 = 0 \in CH^2(D(2))/2$$
 and

$$CH^2(D(2))/2 \cong \mathbb{Z}/2\{y_iy_j|1 \le i, j \le 4\}/(q_0') \oplus \mathbb{Z}/2\{c_2(\eta)\}$$

where $A\{a,b,...\}$ means the free A-module generated by a,b,....

Proof. By Totaro (Corollary 3.5 in [To1] or Lemma 15.1 in [To2]), the integral cycle map

$$cl_{int}: CH^2(X)_{(2)} \to H^4(X; \mathbb{Z}_{(2)})$$

is injective. The higher 2-torsion of the integral cohomology of extraspecial 2-groups are studied by Harada-Kono ([Ha-Ko], [Sc-Ya1]). Let $C(2)^* = H^*(D(2))/J_Q$ where J_Q is the ideal generated by the image of $H^*(Q)$ in $H^*(D(2))$ (for $Q \cong (\mathbb{Z}/2)^4$). Then Harada-Kono show that

$$\mathbb{Z}/2^{s(*)} \cong C(2)^* \subset H^*(D(2)),$$

and when * = 4m, we have $C(2)^* \cong \mathbb{Z}/8$. Let w_4 be a generator of $C(2)^4$. Then it is known

$$w_4|N = u^2 \quad (w_4|N' = (u')^2 \text{ for } N' = \langle a_1 a_2 \rangle \cong \mathbb{Z}/4)$$

identifying $H^*(N) \cong \mathbb{Z}[u]/(2u)$ and $H^*(N') \cong \mathbb{Z}[u']/(4u')$.

On the other hand, all elements in J_Q are just 2-torsion. Moreover q'_0 is (zero or) just 2-torsion (since so are y_i). Therefore we get

$$cl_{int}(q'_0) = 4\lambda w_4$$
 for some $\lambda \in \mathbb{Z}/8$.

Let $c(\eta) = \sum c_i(\eta)$ is the total Chern class. Then we see

$$c(\eta)|_{N'} = (1+u')^4 = 1 + 4u' + 6(u')^2 + \dots \mod(8).$$

Hence
$$c_2(\eta)|_{N'} = -2(u')^2$$
 and so $q'_0 = -2\lambda c_2(\eta)$.

We recall a theorem of Totaro.

Theorem 2.2. (Theorem 11.1 in [To2]) Let P be a p-group such that P has a faithful complex representation of dimension at most p+2. Then the mod p Chow ring of BP consists of transferred Euler classes.

First note that Euler classes of $CH^*(D(2))$ are (multiplicatively) generated by $y_1, ..., y_4$ and $c_4(\eta)$. Next we consider the transfer images. Each proper maximum subgroup M of D(2) is isomorphic to $D_8 \oplus \mathbb{Z}/2$, and let it be $\langle a_1, a_2, c, a_3 \rangle$. The Chow ring $CH^*(M)/2$ is generated by Chern classes

$$y_1, y_2, y_3,$$
 and $c_2 = c_2(\eta')$

where $\eta' = Ind_H^M(e)$ and recall that $e: H = \langle c, a_1, a_3 \rangle \to \mathbb{C}^{\times}$. Let us write the transfer $t_2 = Tr_M^{D(2)}(c_2)$. We note (by the double coset formula) $t_2|_{N'=\langle a_1a_2\rangle} = 2(u')^2$ identifying $CH^*(N') \cong \mathbb{Z}[u']/(4u')$ where $N' \cong \mathbb{Z}/4$. Therefore $t_2 = c_2(\eta) \mod(y_iy_j)$ in $CH^*(D(2))/2$ from Lemma 2.1. Of course $Tr_M^{D(2)}(y_ic_2) = y_it_2$ for all $1 \leq i \leq 4$.

For an other proper maximal subgroup \tilde{M} , we similarly have the transfer \tilde{t}_2 . However we have

$$\tilde{t}_2 = c_2(\eta) = t_2 \mod(y_i y_j).$$

From the Totaro theorem (Theorem 2.2), we have;

Lemma 2.3. The mod 2 Chow ring $CH^*(D(2))$ is multilpicatively generated by $y_1, ..., y_4, c_4 = c_4(\eta)$ and t_2 (or $c_2(\eta)$).

Next we study the nilpotent elements. Let us write by cl the mod 2 cycle map

$$cl: CH^*(D(2))/2 \to H^*(D(2); \mathbb{Z}/2).$$

Recall that the Chern subring of $H^*(D(2); \mathbb{Z}/2)$ is generated by y_i and $c_4(\eta)$. Since t_2 is a Chern class, we can take $y \in \mathbb{Z}[y_1, ..., y_4]$ such that $cl(t_2) = y \in H^*(D(2); \mathbb{Z}/2)$.

Let $t'' = t_2 - y$ in $CH^*(D(2))$ so that cl(t'') = 0 and t'' is a (nonzero) nilpotent element in $CH^*(D(2))$ because $Ker(t_{\mathbb{C}})$ is nilpotent, since $t_{\mathbb{C}}$ is F-isomorphic from the Quillen theorem for Chow rings [Ya2]. (Note t'' is nonzero in $CH^*(D(2))/2$ because $t''|_{N'} = 2(u')^2$ and $CH^2(D(2))|_{N'}$ is generated by $2(u')^2$.)

Lemma 2.4. $y_4t'' = 0$ in $CH^*(D(2))/2$.

Proof. Note that

$$y_4t'' = y_4(t_2 - y) = tr_M^{D(2)}(y_4|_M \cdot c_2) - y_4y = -y_4y,$$

where we used $y_4|_M = 0$. Note y_4t'' is nilpotent but $H^*(D(2); \mathbb{Z}/2)$ has no nonzero nilpotent element. Hence $y_4y \in (q'_0, q'_1)$ and also zero in $CH^*(D(2))/2$. Thus $y_4t'' = 0$ in $CH^*(D(2))/2$. (Since $CH^*(X)$ has the reduced power operation Sq^2 , we have $q'_1 = Sq^2(q'_0) = 0$ also in $CH^*(D(2))/2$ [Vo3].)

Lemma 2.5. For all $1 \le i \le 4$, we have $y_i t'' = 0$.

Proof. In $CH^2(D(2))/2$, nilpotent elements generate just one dimensional $\mathbb{Z}/2$ -space $\mathbb{Z}/2\{t''\}$. Hence t'' is invariant under an action of the outer automorphism Out(D(2)). This outer automorphism contains

$$f: a_3 \leftrightarrow a_4, c \mapsto c, \qquad g: a_1 \mapsto a_3, \ a_2 \mapsto a_4, \ c \mapsto c.$$

We have
$$0 = f^*(y_4t'') = y_3t''$$
 and $0 = g^*(y_4t'') = y_2t''$.

Lemma 2.6. $(t'')^2 = 0$ in $CH^*(D(2))/2$.

Proof. We compute

$$(t'')^2 = t''(tr_M^{D(2)}(c_2) - y) = t''tr_M^{D(2)}(c_2) = tr_M^{D(2)}(t''|_M \cdot c_2) = 0,$$

since $t''|_M$ is nilpotent but $CH^*(M)/2$ has no non zero nilpotent element.

From the above lemmas, we get Theorem 1.1 in the introduction.

Remark. From Theorem in [To2], we see the topological nilpotency is $d_0(CH^*(D(2))/2) \leq 3$. This means $y_iy_jt'' = 0$. So we see a bit stronger result $d_0(CH^*(D(2))/2) = 2$ in the above lemma.

3. BP-THEORY

By Schuster-Yagita [Sc-Ya2], it is known that the Morava K-theory $K(n)^*(BD(2))$ is generated by even dimensional elements (see also Schuster [Sc] or Bakladze-Jibradze [Ba-Ji]) for all $n \geq 0$. This implies that $BP^*(D(2))$ is generated by even dimensional elements, and satisfies the condition of the Landweber exact functor theorem.

Moreover D(2) is $K(n)^*$ -good, namely, $K(n)^*(D(2))$ is generated by transferred Euler classes for all n. It is known ([Ra-Wi-Ya]) that it implies that D(2) is BP^* -good, i.e., $BP^*(D(2))$ is generated also by transferred Euler classes.

Recall the exact sequence

(*)
$$0 \to M \cong D_8 \oplus \mathbb{Z}/2 \to D(2) \to \mathbb{Z}/2 \to 0$$

Here we use notations $M = \langle a_1, a_2, c, a_3 \rangle$ and $\mathbb{Z}/2 \cong \langle a_4 \rangle$ in the following proof.

Proof of Theorem 1.2. The cycle map is decomposed as

$$cl: CH^*(X)/2 \stackrel{cl_{BP}}{\to} BP^*(X) \otimes_{BP^*} \mathbb{Z}/2 \stackrel{\rho}{\to} H^*(X; \mathbb{Z}/2)$$

where cl_{BP} is the Totaro cyle map and ρ is the Thom map.

By the BP^* -goodness of D(2), we see that cl_{BP} is surjective. Moreover it is known ([Ya2]) that cl_{BP} is an F-isomorphism. Hence $Ker(cl_{BP})$ is nilpotent. Thus it is only need to show

$$\mathbb{Z}/2[c_4]\{t''\} \subset BP^*(D(2)) \otimes_{BP^*} \mathbb{Z}/2.$$

(Note that t'' exists in $BP^*(D(2))$, but we need to see $t'' \neq 0$ and t'' generates a $\mathbb{Z}/2[c_4]$ -free module.)

Note $t''|_{N'}=2(u')^2$ and so $t''|_M$ is not a BP^* -module generator of $BP^*(M)$ but $c_2(\eta') \not\in BP^*(M)^{\langle a_4 \rangle}$. Hence $t''|_M$ is a BP^* -module generator of $BP^*(M)^{\langle a_4 \rangle}$. Then we have

$$BP^*(D(2)) \otimes_{BP^*} \mathbb{Z}/2 \stackrel{res}{\to} BP^*(M)^{\langle a_4 \rangle} \otimes_{BP^*} \mathbb{Z}/2 \supset \mathbb{Z}/2[c_4]\{t_2''|_M\}.$$

The last inclusion follows from the restriction to $N' = \langle a_1 a_2 \rangle \cong \mathbb{Z}/4$,

$$BP^*[c_4](t'')|_{N'} = BP^*[(u')^4]\{2u'\} \subset BP^*(N') \cong BP^*[u']([4](u')).$$

Thus we have the theorem.

In this paper, we do not explicitly use the following lemma and corollary, but we note them.

Lemma 3.1. The restriction map

$$res: BP^*(G) \to Lim_{G \supset A:abelian}BP^*(A)$$

is an F-isomorphism (i.e., its kernel and cokernel are nilpotent).

Proof. We can define the Evens norm for BP^* -theory. Hence res is F-surjective from the arguments in the proof of Lemma 2.4 in [Qu2]. The F-injective follows from the arguments (3.10) in page 371 in [Qu2].

Note that A ranges all abelian subgroups of G for the F-injectivity. In fact, the kernel of $BP^*(\mathbb{Z}/4) \cong BP^*[u']/([4](u')) \to BP^*(\mathbb{Z}/2)$ is the ideal [2](u') which is not nilpotent.

Corollary 3.2.
$$BP^*(D(2)) \subset Lim_{D(2) \supset A:abel.}BP^*(A)$$
.

4. Algebraic cobordism $\Omega^*(P)$

Let p be a fixed prime number. For a smooth variety X over the complex field \mathbb{C} , let us write by

$$\Omega^*(X) = MGL^{2*,*}(X) \otimes_{MU^*} BP^* \cong ABP^{2*,*}(X)$$

the $(BP^*$ -version of) algebraic cobordism defined by Voevodsky ([Vo1,2]) and Levine-Morel ([Le-Mo1,2]). There is a conjecture (Conjecture 1.3) such that the realization map induces the isomorphism $t_{\mathbb{C}}: \Omega^*(BG) \cong BP^*(BG)$ for the classifying space BG of each algebraic group G.

It is known that this conjecture is true for connected groups [Ya2,3] O_n , SO_n , PGL_p , G_2 , $Spin_7$. As for finite groups G, it is known that the conjecture is true for abelian groups and the extraspecial p-groups p_+^{1+2} , p_-^{1+2} for all primes [Ya4]. In this section, we show the conjecture for other p-groups.

We consider a p-group G and its subgroup M of index p^s , namely, there is the extension

$$(*)$$
 $1 \to M \to G \to \mathbb{Z}/p^s \to 0$

and consider the induced spectral sequence

$$E_2^{*,*'} \cong H^*(\mathbb{Z}/p^s; BP^*(M)) \Longrightarrow BP^*(G).$$

Let the right hand side group \mathbb{Z}/p^s in (*) be generated by a. Let $N=1+a^*+\ldots+(a^{p^s-1})^*$ and recall that

$$E_2^{*,*'} \cong \begin{cases} Ker(1-a^*) \cong BP^*(M)^{\langle a \rangle} & * = 0 \\ Ker(1-a^*)/Im(N) & * = even > 0 \\ KerN/Im(1-a^*) & * = odd. \end{cases}$$

We consider the cases that $E_2^{odd,*'} \cong 0$.

Lemma 4.1. Let G be a p-group with the extension (*) such that $E_2^{odd,*'}=0$. Moreover we assume ;

(1) The mod(p) Totaro conjecture holds for G, i.e.

$$CH^*(G)/p \cong BP^*(G) \otimes_{BP^*} \mathbb{Z}/p$$
,

(2) The conjecture 1.3 holds for M, i.e. $t_{\mathbb{C}}: \Omega^*(M) \cong BP^*(M)$. Then Conjecture 1.3 holds for G, namely, $t_{\mathbb{C}}: \Omega^*(G) \cong BP^*(G)$.

Proof. Let y be the first Chern class of a nonzero linear representation for $G : G \to \langle a \rangle \to \mathbb{C}^*$. Then from $E_2^{odd,*'} \cong 0$, we see

$$E_{\infty}^{*,*'} \cong E_{\infty}^{even,*'} \cong E_{2}^{even,*'}.$$

Hence we get

$$grBP^*(G) \cong BP^*(M)^{\langle a \rangle} \oplus (BP^*(M)^{\langle a \rangle}/N)[y]^+.$$

On the other hand, from (1), the algebraic cobordism $\Omega^*(G)$ is also generated by $BP^*(M)^{\langle a \rangle} (\cong \Omega^*(M)^{\langle a \rangle})$ and $y \in \Omega^2(G)$. We consider the filtration defined by the $ideal(y) \subset \Omega^*(M)$.

For $x \in \Omega(M)^{\langle a \rangle}$, take $\tilde{x} \in \Omega^*(G)$ with $\tilde{x}|_M = x$ (which is only decided with modulo Ideal(y)). (Note we can take $\tilde{N}x = Tr_M^G(x)$.) Then $\Omega^*(G)$ is additively generated by \tilde{x} and $\tilde{x}y^i$. Hence we have

$$gr\Omega^*(G) \cong BP^*(M)^{\langle a \rangle} \oplus \oplus_{i \ge 1} (BP^*(M)^{\langle a \rangle}/N_i) \{y^i\}$$

where $N_1 \subset N_2 \subset ...$ Note $N_i \subset Im(N)$, since we have the cycle map $gr\Omega^*(G) \to grBP^*(G)$. Hence we only need to prove $N_1 = Im(N)$. For $x \in \Omega^*(M)$, we see

$$y\tilde{N}(x) = yTr_M^G(x) = Tr_M^G((y|_M) \cdot x) = 0$$
 in $\Omega^*(G)$.

Thus $Im(N) \subset N_1$ and we see $N_i = Im(N)$ for all i.

8

For G = D(2), we consider the exact sequence (*) in §3, and the induced spectral sequence converging to $BP^*(D(2))$.

Corollary 4.2. If $E_2^{odd,*'} = 0$ for the above spectral sequence, then Cojecture 1.3 holds for D(2).

Next we consider groups P with $rank_p = 2$ and $p \ge 3$. At first, we consider a split metacyclic group. It is written

$$P = M(\ell, m, n) = \langle a, b | a^{p^m} = b^{p^n} = 1, [a, b] = a^{p^{\ell}} \rangle$$

for $m > \ell \ge max(m-n,1)$. Consider the extension

$$1 \to \langle a \rangle \to P \to \langle b \rangle \to 1.$$

Then this extension satisfies the assumption in Lemma 4.1 except for (1) ([Te-Ya2]) and $BP^*(P) \otimes_{BP^*} \mathbb{Z}_{(p)} \cong H^{even}(P; \mathbb{Z}_{(p)})$. Moreover when $m - \ell = 1$, Totaro showed the above cohomology is isomorphic to the Chow ring $CH^*(P)$ [To2]. Therefore we have

Corollary 4.3. Conjecture 1.3 holds for $M(m, \ell, n)$ with $m - \ell = 1$.

We consider the other $rank_pP = 2$ groups. For $p \geq 5$, groups P with $rank_pP = 2$ are classified by Blackburn (see [Ya1]). They are metacyclic groups, and some groups C(r), G(r', e). The group C(r), $r \geq 3$ is defined by

$$C(r) = \langle a, b, a | a^p = b^p = c^{p^{r-2}} = 1, [a, b] = c^{p^{r-3}} \rangle$$

for $r \geq 3$ so that $C(3) = p_+^{1+2}$. The group $G = G(r,e), r \geq 4$ (and $e \neq 0$ is a quadratic nonresidue mod p) is defined as

$$\langle a, b, c | a^p = b^p = c^{p^{r-2}} = [b, c] = 1, [a, b^{-1}] = c^{ep^{r-3}}, [a, c] = b \rangle.$$

The subgroup $\langle a, b, c^p \rangle$ is isomorphic to C(r-1).

Corollary 4.4. Conjecture 1.3 holds for C(r), D(r+1, e).

Proof. It is known $CH^*(P)/p \cong H^{even}(P; \mathbb{Z})/p \cong BP^*(P) \otimes_{BP^*} \mathbb{Z}/p$. Here the first isomorphism is proved in [To2] and the second is shown in [Ya1]. The extension

$$1 \to \langle c, a \rangle \to (r) \to \langle b \rangle \to 1$$

satisfies [Ya1] the assumption Lemma 4.1 for C(r) The extension

$$1 \to \langle a, b, c^p \rangle \to G(r+1, e) \to \langle c \rangle \to 1$$

satisfies [Ya1] the assumption of Lemma 4.1 for G(r+1,e).

We write down the result for p-Sylow subgroups $\mathbb{Z}/p \wr ... \wr \mathbb{Z}/p$ of symmetric groups. Here $\mathbb{Z}/p \wr X = \mathbb{Z}/p \rtimes (X)^{\times p}$ is the p-th wreath product.

Corollary 4.5. Conjecture 1.3 holds for $\mathbb{Z}/p \wr ... \wr \mathbb{Z}/p$.

Proof. Totaro's conjecture is still proved in [To1]. We consider the extension

$$1 \to (G')^p \to \mathbb{Z}/p \wr G' \to \mathbb{Z}/p \to 1$$

and induced spectral sequence converging to $BP^*(\mathbb{Z}/p\wr G')$. It is proved in Lemma 5.3 in [Te-Ya2] that if there exist BP^* -module generators $\{x_i\}$ of $BP^*(G')$ such that $\{\rho(x_i)\}$ is a subset of \mathbb{Z}/p -basis of $H^*(G')/p$, then $E_2^{odd,*'}=0$. By induction on the number of the wreath product, we can show the corollary.

References

- [Ba-Ji] M.Bakuradze and M. Jibradze. Morava K-theory rings for groups $G_{38}, ..., G_{41}$ of order 32. J. K-theory. 13 (2014), 171-198.
- [Ha-Ko] M. Harada and A. Kono, On the integral cohomology of extraspecial 2-groups. J. Pure and Applied Algebra. 44 (1987), 215-219.
- [Ha] M.Hazewinkel, Formal groups and applications, *Pure and Applied Math.* 78, Academic Press Inc. (1978), xxii+573pp.
- [Le-Mo 1] M. Levine and F. Morel, Cobordisme algébrique I, C. R. Acad. Sci. Paris 332 (2001), 723-728.
- [Le-Mo 2] M. Levine and F. Morel, Cobordisme algébrique II, C. R. Acad. Sci. Paris 332 (2001), 815-820.
- [Qu1] D. Quillen, The mod 2 cohomology rings of extra-special 2-groups and the spinor groups, *Math. Ann.* **194** (1971), 197-212.
- [Qu2] D. Quillen, A cohomological criterion for p-nilpotence. J. of Pure and Applied Algebra. 1 (1971), 361-372.
- [Ra] D.Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics, 121. Academic Press (1986).
- [Ra-Wi-Ya] D.Ravenel, S.Wilson and N.Yagita. Brown-Peterson theory from Morava K-theory. 15 (1998), 147-199.
- [Sc] B. Schuster. Morava K-theory of groups of order 32. Algebraic & Geometric Toplogy. $\underline{1}1$ (2011), 503-521.
- [Sc-Ya1] B. Schuster and N. Yagita, Transfers of Chern classes in BP-cohomology and Chow rings, Trans. Amer. Math. Soc. 353 (2001), 1039-1054.
- [Sc-Ya2] B. Schuster and N. Yagita, Morava K-theory of extraspecial 2-groups. Proc. Amer. Math. Soc. **132** (2003), 1229-1239..
- [Te-Ya1] M.Tezuka and N.Yagita, Cohomology of finite groups and Brown-Peterson cohomology, Algebraic Topology (Arcata, CA, 1986), 396-408, Lect. Notes in Math. 1370 (1989).
- [Te-Ya2] M.Tezuka and N.Yagita, Cohomology of finite groups and Brown-Peterson cohomology II, *Homotopy theory and related topics (Kinosaki, 1988), 57-69, Lect. Notes in Math.* **1418** (1990).
- [To1] B. Totaro, The Chow ring of classifying spaces, *Proc. of Symposia in Pure Math. "Algebraic K-theory" (1997: University of Washington, Seattle)* **67** (1999), 248-281.
- [To2] B. Totaro, Group cohomology and algebraic cycles, Cambridge tracts in Math. (Cambridge Univ. Press) 204 (2014).

- [Vo1] V. Voevodsky, The Milnor conjecture, www.math.uiuc.edu/K-theory/0170 (1996).
- [Vo2] V. Voevodsky, Motivic cohomology with $\mathbb{Z}/2$ coefficient, *Publ. Math. IHES* **98** (2003), 59-104.
- [Ya1] N. Yagita, Chomology for groups of $rank_pG = 2$ and Brown-Peterson cohomology, J. Math. Soc. Japan 45 (1993), 627-644.
- [Ya2] N. Yagita, Chow ring of classifying space of extraspecial *p*-groups. *Contemp. Math.* **293** (2002), 397-400.
- [Ya3] N. Yagita, Coniveau filtration of cohomology of groups. Proc. London Math. Soc. 101 (2010), 179-206.
- [Ya4] N. Yagita, Chow rings of nonabelian p-groups of order p^3 , J. Math. Soc. Japan. **64** (2012), 507-531.

FACULTY OF EDUCATION, IBARAKI UNIVERSITY, MITO, IBARAKI, JAPAN *E-mail address*: yagita@mx.ibaraki.ac.jp,