MUHAMMAD JEHANZEB MIRZA

Graz, Austria. • +436603244121 • jehanzeb95@gmail.com LinkedIn: linkedin.com/in/jmiemirza • Portfolio: jmiemirza.github.io

Research Interests: Online Learning, Vision-Language Understanding, Unsupervised Representation Learning

My Ph.D. research mainly focused on learning from unlabeled data. I worked with various data modalities including images, point clouds, videos, radar signals, and natural language. I am particularly interested in self-supervised and unsupervised representation learning for uni- and multi-modal models to reduce the manual human effort spent in annotating data.

EDUCATION

Graz University of Technology

Jan 2021 - April 2024

Doctor of Philosophy in Computer Science (Computer Vision)

Supervisor: Prof. Dr. Horst Bischof | Examiner: Prof. Dr. Serge Belongie

Master of Science in Electrical Engineering and Information Technology

Graz, Austria.

Karlsruhe Institute for Technology

Oct 2017 - Aug 2020

Supervisor: Prof. Dr. Jürgen Becker

Karlsruhe, Germany.

National University of Science and Technology

Sep 2013 - June 2017

Bachelor of Science in Electrical Engineering

Islamabad, Pakistan.

WORK EXPERIENCE

Research Scientist (Intern)

May 2024 - Present

Sony Al

Tokyo, Japan

• Working on multi-modal learning with vision, language, and audio data.

Computer Vision Project Assistant

Jan 2021 - Present

Graz University of Technology

Graz, Austria

- Mainly focused on employing self-supervised and unsupervised representation learning techniques for making deep neural networks robust to distribution shifts on-the-fly, at test time.
- Along with the main research focus on online learning, I also worked extensively with large language models (LLMs) particularly focusing on multi-modal (vision-language) models.

Master ThesisJan 2020 – Jul 2020Intel LabsKarlsruhe , Germany

• Evaluated the robustness of state-of-the-art deep neural networks in degrading weather conditions in the context of Autonomous Driving. The study included evaluation of both 2D and 3D object detectors.

C++ developer (Intern)

Oct 2019 – Dec 2019

Intel Labs

Karlsruhe, Germany

• Worked on state estimation of objects detected in the environment using the Unscented Kalman Filter. The development was done by extensively using C++ and OpenCV.

Platform Application Engineer (Intern)

Mar 2019 – Aug 2019

Intel

Karlsruhe, Germany

• Designed a framework to help the team to automate some important internal tasks. The framework involved designing a PCB to interface the boards with a micro controller.

TECHNICAL SKILLS

Languages: Python, C++

Deep Learning Frameworks: PyTorch

Data Modalities: Images, Point Clouds, Videos, Natural Language

SELECTED PUBLICATIONS (LEAD AUTHOR)

LaFTer: Label-Free Tuning of Zero-shot Classifier using Language and Unlabeled Image Collections |
Neural Information Processing Systems (NeurIPS)

2023

MATE: Masked Autoencoders are Online 3D Test-Time Learners | Proceedings of the IEEE/CVF International Computer Vision Conference (ICCV)

ActMAD: Activation Matching to Align Distributions for Test-Time-Training | Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

Video Test-Time Adaptation for Action Recognition | Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

The Norm Must Go On: Dynamic Unsupervised Domain Adaptation by Normalization | Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022

An Efficient Domain-Incremental Learning Approach to Drive in All Weather Conditions | Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPR) 2022

INVITED TALKS

Center for Robotics, Paris Tech. (September, 2023)

VIS Lab, University of Amsterdam. (October, 2023)

Cohere. (October, 2023)

Technical University of Vienna. (April, 2024)

ACADEMIC SERVICES

Reviewer: CVPR, ICCV, ECCV, NeurIPS, TPAMI

Program Chair: What's next in Multi-Modal Foundation Model Workshop at CVPR 2024

STUDENT SUPERVISED PROJECTS (SELECTED)

Master Thesis: Online Test-Time Training for 3D point clouds with Masked Autoencoders (Completed)

Master Thesis: How Much are Data Augmentations Worth for 3D Representation Learning? (Completed)

Master Thesis: Online Perception System Deployment in Real-Time Scenarios (Ongoing)

Bachelor Thesis: Online Domain Incremental Learning for Driving in Adverse Weather Conditions (Completed)

Bachelor Thesis: Online Test-Time Training for Vision-Language Models (Ongoing)

REFERENCE

Ph.D. Supervisor (TU Graz): Prof. Dr. Horst Bischof (bischof@icg.tugraz.at)

Ph.D. Advisor (TU Graz): Dr. Horst Possegger (possegger@icg.tugraz.at)

Ph.D. Advisor (TU Graz): Dr. Mateusz Kozinski (mateusz.kozinski@gmail.com)

Collaborator (MIT-IBM): Dr. Rogerio Feris (rsferis@us.ibm.com)

Collaborator (MIT-IBM): Dr. Leonid Karlinsky (leonidka@ibm.com)