Team: Martin Liu, Giuseppe Peronda

Descriptive Title: Determining bikeability of census tract regions below 400% poverty line

Introduction

The premise of the project is based around Assembly Bill 117, which will allocate \$10 million dollars in E-bike vouchers to households at 400% of the federal poverty level. That's \$51,000 for a single person and \$106,000 for a family of four. Purchasable bikes include Class 1 and 2 e-bikes.

The project aims to evaluate the bikeability of census tracts that fall under this income level bracket and determine if the area around them are bike friendly as this would be a factor in determining how effective this bill would be.

We currently have census tract data from the US Census Bureau and bike street data from OSMNX. Census data is used to determine which census tracts the project will be focusing on. OSMNX will used to determine various factors about the bike network as explained in Data and Methods

Research Papers

The Missing Link, Bicycle Infrastructure Networks and Ridership in 74 US Cities
This paper aims to develop a standard methodology for measuring bicycle facility network
quality of 74 US cities.

Some things to note about the paper. Firstly, only cities that had a population greater than 100,000 were chosen, second, trips that would involve traveling within the city were selected. We will use two indices that were used as metrics for evaluating bike network in the city, including

$$\beta = edges/vertices \tag{1}$$

Beta index; a low β suggests an increased chance that any given route requires leaving dedicated bike infrastructure to ride with mixed traffic

$$y = edges/3*(vertices-2)$$
 (1)

Gamma index; edges vs theoretical edges. A Higher gamma values indicate greater internal connectivity and increased redundancy.

Mapping bikeability: a spatial tool to support sustainable travel

In this paper, Winters et al. survey Vancouver residents to see what factors are important in determining bikeability. They then collect the objective data behind these factors, and as seen in Figure 3, they weight each of these factors in accordance to its importance as determined by the survey, and assign a bikeability score to the whole city. We plan on using many of the same factors as Winters et al.; all of the factors shown, with the exception of bike route separation can be found via OSMNX. Additionally, the examples provided by Geoff Boeing give the code necessary to extract these statistics.

Figure 1: Map describing bikeability depending on the region of Vancouver

Data and Methods (3pts)

Census Data

Census data are collected using the cenpy package, which allows us to query the census api to find both ACS and decennial census data. We query the 2019 ACS at the census census tract level, fetching the variables corresponding to total population, population in poverty, and number of people without access to a vehicle. Additionally, cenpy gives geometric data, giving us the polygons that define the area covered by each tract. The resulting data structure from the query is a geopandas GeoDataFrame, and some statistics can be called on this geometric data, such as the area, which we use to then calculate the population density of each tract. We can also calculate the poverty rate by dividing the number of people in poverty by the tract population.

We then select the top 25th percentile of the tracts by poverty rate, and filter out tracts in the bottom 25% by population density. This leaves us with poor urban tracts, which would receive the bulk of the money given by AB 117. Plots showing the poverty rates of the census tracts we selected in Los Angeles and the Bay Area are shown in Figure 2 and 3 below, and the one showing every tract in California we selected is in the Appendix.

Figure 2: Map of Southern California counties showing Urban Poverty Tracts

Figure 3: Map of San Francisco counties showing Urban Poverty Tracts

Points of Interest Data

Another factor we used to evaluate the bikeability of our census tracts was the number of points of interest (POIs) they contained. Via OSMNX, we were able to query the 2km by 2km region around the center of each census tract for buildings and facilities that could serve as destinations for cyclists. These included most commercial, civic, and sports buildings, as well as several amenities, including bicycle parking, and bike share facilities. An example of what this looks like can be seen in Figure 4 below. Following the logic of Winters et al., we believe that neighborhoods with greater POI density are more bikeable.

Figure 4: 2km by 2km Map of Berkeley's POI locations

Bike Street Network

Bike street network data is used for the project. The bike network data comes from OpenStreetMaps and the Python package OSMNX. The nodes are intersections while the edges are the bike paths. The graphs generated are undirected and weighted based on distance. Depending on the network location the graph may or may not have a small-world property.

Basic Network Statistics

The project aims to use certain network statistics as a means of grading the bikeability of the various census tracts. These statistics are broken down into the following factors

- Number of nodes
- Number of edges
- Average degree
- Beta Index
- Gamma Index
- Highest betweenness
- Average length of edges

Using the data and statistics outlined above, we will adopt an approach similar to that described by Winters et al. We will also incorporate max betweenness centrality of each node as a measure. We argue that tracts with a few nodes of high betweenness (like the one shown to the right) are less bikeable, as this implies a less permeable tract, giving longer travel times, which are especially impactful to cyclists, who tend to travel at lower speeds and over shorter distances than drivers. An example of this can be seen in Figure 5 which shows a map that has a high betweenness and is shown by the bright yellow dot.

Figure 5: Map of network with a node with high betweenness

Results (8 pts)

To begin with, we look at various cities, capturing a point of interest with radius 2km. Cities with higher density as that has been shown to likely lead to a better bike network. (Schoner et.al, 2014). These cities are sampled based on data from the Decennial Census by Decade.

Table 1 shows basic statistics of various densely populated census tract regions. These statistics will serve as a benchmark when evaluating other census tract regions.

Table 1: Basic Statistics of densely populated census tract region

	friendship_village	bellerose_terrace	walnut_park	loch_lomond	ewa_gentry	rollingwood	isla_vista	east_los_angeles
node	1340.000000	750.000000	1271.000000	688.000000	470.000000	1253.000000	2114.000000	1113.000000
edges	3587.000000	1863.000000	3308.000000	1690.000000	979.000000	2920.000000	4696.000000	2852.000000
k_avg	5.354000	4.968000	5.205000	4.913000	4.166000	4.661000	4.443000	5.125000
edge_length_total	244275.200000	149287.518000	247872.199000	110011.806000	93250.301000	170305.732000	167193.499000	217801.448000
edge_length_avg	68.100000	80.133000	74.931000	65.096000	95.251000	58.324000	35.603000	76.368000
streets_per_node_avg	3.004000	3.092000	2.910000	2.814000	2.440000	2.808000	2.351000	2.868000
intersection_count	1198.000000	668.000000	1116.000000	582.000000	312.000000	1042.000000	1359.000000	918.000000
street_length_total	129985.544000	87713.257000	129753.314000	62037.753000	52712.986000	96882.460000	89866.441000	118016.756000
street_segment_count	1948.000000	1101.000000	1773.000000	939.000000	535.000000	1715.000000	2474.000000	1525.000000
street_length_avg	66.728000	79.667000	73.183000	66.068000	98.529000	56.491000	36.324000	77.388000
circuity_avg	1.056000	1.023000	1.033000	1.145000	1.066000	1.111000	1.087000	1.042000
self_loop_proportion	0.007000	0.001000	0.003000	0.006000	0.002000	0.008000	0.006000	0.003000
beta	2.676866	2.484000	2.602675	2.456395	2.082979	2.330407	2.221381	2.562444
gamma	0.893622	0.830214	0.868926	0.821186	0.697293	0.778044	0.741162	0.855686

Filtering out the census tracts using the methodology in Census Tracts, we get around 2000-3000 unique census tracts. As a starting point, we decided to take a sample of 50 census tracts, graph out their network of 2km and collate the following statistics.

Table 2: Basic Statistics of densely populated low income census tracts (8 tracts shown)

	Census Tract 1895, Los Angeles County	Census Tract 4623.01, Los Angeles County	Census Tract 26.01, Fresno County	Census Tract 414.04, Riverside County	Census Tract 1852.02, Los Angeles County	Census Tract 91.09, Sacramento County	Census Tract 46.01, Sacramento County	Census Tract 62.02, Sacramento County
node	960.000000	1912.000000	1021.000000	739.000000	620.000000	927.000000	1451.000000	688.000000
edges	2354.000000	4529.000000	2956.000000	1817.000000	1654.000000	2433.000000	3805.000000	1660.000000
k_avg	4.904000	4.737000	5.790000	4.917000	5.335000	5.249000	5.245000	4.826000
edge_length_total	180358.791000	275557.346000	255125.728000	138125.687000	162026.796000	192396.524000	259102.384000	111640.578000
edge_length_avg	76.618000	60.843000	86.308000	76.019000	97.961000	79.078000	68.095000	67.253000
streets_per_node_avg	2.678000	2.612000	3.379000	2.812000	2.834000	2.819000	2.810000	2.709000
intersection_count	762.000000	1416.000000	981.000000	615.000000	531.000000	795.000000	1230.000000	556.000000
street_length_total	93728.600000	148330.780000	141198.424000	76151.716000	82557.344000	99405.835000	134020.982000	58682.389000
street_segment_count	1232.000000	2424.000000	1663.000000	1004.000000	846.000000	1254.000000	1990.000000	889.000000
street_length_avg	76.078000	61.193000	84.906000	75.848000	97.586000	79.271000	67.347000	66.009000
circuity_avg	1.138000	1.062000	1.018000	1.107000	1.105000	1.095000	1.097000	1.099000
self_loop_proportion	0.007000	0.004000	0.001000	0.002000	0.001000	0.004000	0.008000	0.006000
median_income	54265.000000	57898.000000	31982.000000	84286.000000	64623.000000	83620.000000	41047.000000	37031.000000
agg_travel_time_min	67505.000000	75885.000000	30110.000000	56270.000000	60850.000000	66240.000000	83460.000000	34165.000000
pct_workers_who_commute	0.516000	0.502000	0.329000	0.476000	0.497000	0.465000	0.372000	0.369000
beta	2.452083	2.368724	2.895201	2.458728	2.667742	2.624595	2.622329	2.412791
gamma	0.819068	0.790401	0.966961	0.821800	0.892125	0.876757	0.875316	0.806608

As can be seen from Table 1 and Table 2. The values for most of the statistics are relatively similar, making it difficult to determine if the network is bike friendly or not.

The main way to counteract this issue was by looking at bike lanes that had cycleways as OSM classified any lane that could be biked on a bike lane. Doing so greatly reduced the number of nodes and edges, as seen in the figures below.

Fig 6: Map of Berkeley, 2km bounded box, all nodes and edges

Fig 7: Map of Berkeley, 2km bounded box, cycleway only nodes and edges

Fig 8: Map of Detroit, 2km bounded box, all nodes and edges

Fig 9: Map of Detroit, 2km bounded box, cycleway only nodes and edges

When looking at Detroit, which was known to not be bike friendly (Candiloro. T, 2022), we noticed that there were still recognizable grid lines and patterns which represent that the city was well connected albeit not for bikes.

Hence moving forward with our analysis we decided to ratio the cycleway network (red nodes) with the bike lane network (white nodes) as this can give us a better idea of how much more connectivity an area should provide to be more bike friendly.

Due to the small nature of cycleway networks, we decided to measure other statistics such as Degree, Beta index, and Gamma index solely based off the cycleway network (red nodes)

Table 3: Table of average statistics for bike friendly cities, non-bike friendly cities and census tracts

	Bike friendly cities	Non- bike friendly cities	Census tracts (sample size 50)	
Bike node ratio	1.95%	0.59%	0.75%	
Bike edge ratio	1.7%	0.47%	0.58%	
Total edge length ratio			5.74%	
Degree	3.13	2.97	2.83	
Beta index	1.56	1.48	1.41	
Gamma index	Gamma index 0.52		0.51	
POI	2287	417	159	

From Table 3: we noticed that bike friendly cities on average have three times more cycleway lanes than non bike friendly cities. The degree, beta index and gamma index unfortunately are not distinguishable between the bike friendly and non bike-friendly cities. In terms of the number of relevant POI, bike friendly cities have about 5 times more than non-bike friendly cities.

For the averaged census tract sample, cycleway infrastructure is slightly higher than non-bike friendly cities. Degree, beta and gamma index are relatively similar and POI is significantly lower than the rest.

We noticed that for some census tracts there would be as low as 2 POIs or have barely any cycleway nodes. Therefore we decided to take a look at the top 6 census tracts sorted based on the number of cycleway nodes. In addition, due to the alpha and beta index being

indistinguishable between different city types, we decided to exclude them from the analysis and instead used max betweenness. Since betweenness measures how the percentage amount of times a node is present in a shortest path this helps us gauge if there are multiple routes a cyclist can take in that area or just one.

Census Name	Bike nodes	Bike edges	Average degree	POIs	Betweenness	Median Income
Census Tract 2949, LA	190	456	4.8	62	6%	42150
Census Tract 2655.10, LA	175	346	3.95	770	8%	54847
Census Tract 4623.01, LA	129	264	4.09	416	9%	57898
Census Tract 4020.01, LA	117	185	3.162	188	3.5%	83409
Census Tract 231.02, SF	108	127	2.35	239	.0.5%	37981
Census Tract 1104, SC	94	181	3.85	107	33%	59750

Nodes, edges and average degree follow similar patterns as their values generally go down with the number of nodes. The goal of this table is to highlight certain anomalies, For instance Census Tract 1104 has a higher max betweenness compared to the other tracts. A closer look at the network can be seen in Figure 10 below.

Figure 10: Network of Census Tract 1104 highlighting betweenness of nodes Figure 10 above shows the max betweenness relative to the other nodes. The yellow node has the highest max betweenness as it connects many bike routes together. Hence a potential fix for this census tract could be to build or retrofit cycleways outside of the yellow node to free up congestion in that node.

Future Work and Conclusions (2 pts)

Due to computational and time constraints an analysis on all 2000 census tracts proved to be extremely difficult. However a reasonable alternative would be to only select tracts that have a certain number of nodes as this would suggest that there is a reasonable bike network and more importantly there is data on OSM about this census tract. This selection can be further streamlined using other factors like median income. From there further analysis regarding what type of bike infrastructure, how much to build and where to build it can be analyzed. In terms of this paper, the POI count and ratios of cycle lanes to bike lanes for bike friendly cities can serve as a reasonable benchmark that these neighborhoods can aim for.

In addition, it was also difficult to conduct our analysis on larger samples of the data, which would have been necessary to create a bikeability map in the style of Winters et al. The main bottleneck in this regard were the queries to OSMNX, whose speed is unlikely to improve due to the large amount of data we request. A possible workaround would be to query fewer building types, however, this would introduce some bias, as some tracts could have more of one type of building than others, so some deeper analysis would have to be done before this measure was taken. Another idea would be to only query some sample of the buildings matching our filters within a census tract, but we have not found a way to do this via OSMNX.

Lastly, another factor to take into consideration would be the quality of cycling infrastructure to our calculations. As it stands, there is no categorization of bike lanes and cycleways in our project, they are simply included or excluded. But the degree of protection from vehicular traffic likely plays an important role in determining how willing people are to bicycle in these neighborhoods.

References:

Schoner, J.E., Levinson, D.M. The missing link: bicycle infrastructure networks and ridership in 74 US cities. *Transportation* 41, 1187–1204 (2014). https://doi.org/10.1007/s11116-014-9538-1

T. Candiloro (2022) https://anytimeestimate.com/research/most-bike-friendly-cities-us-2022/

Winters, M., Brauer, M., Setton, E. M., & Teschke, K. (2013). Mapping Bikeability: A Spatial Tool to Support Sustainable Travel. Environment and Planning B: Planning and Design, 40(5), 865–883. https://doi.org/10.1068/b38185

https://www.census.gov/programs-surveys/decennial-census/decade.2010.html

We would also like to thank Jackson Herron for sharing his cenpy code with us!

Github Repository:

Our code can be found here: https://github.com/g-perona/CE-263-Final-Project

For network analysis:

Main -> notebooks -> Project_martin.ipynb

For POI analysis

Main -> Giuseppe Work -> poi_exploration.ipynb

For mapping analysis

Main -> Giuseppe Work -> census_data_collection.ipynb

Appendix:

