BAHRIA UNIVERSITY

+ 92 21 924 0002-6

Fax: + 92 21 924 0351

⊕bukc.bahria.edu.pk

TEACHING PLAN

Course Title:	Data Structures And Algorithms		
Course Code:	CSC-221		
Credit Hours:	3		
Contact Hours:	3 hours lecture per week		
Prerequisite(s):	Computer Programming (CSC-113)		
Semester:	3		
Instructor(s):	Lubna Siddiqui		
Course material	University LMS		
available			
Objectives:	The primary objective of the course is to help students understand the importance designed algorithms for efficient management of computing resources while program linear and nonlinear data structures are described from the perspective of their sp implementation. Several sorting and searching techniques are also discussed to be solutions for real life problems. Basic knowledge of algorithm's complexity are identification of time costly processes.	mming. Pope ecification, a elp students nalysis is als	ularly employed application, and design efficient so provided for
Course Learning	After successful completion of this course, the students should be able to:	PLO	BT Level
Outcomes	Explain and compare different data structures and their applications Apply appropriate data structures according to the given scenarios and application domain	2	C2 C3
	3.Analyze time complexity of different algorithms	2	C4
	4.Design efficient algorithm(s) to solve real-world problems.	4	C6

Course Contents:	Abstract Data Types (ADTs), Linear data structures (Stacks, Queues, Linked list), Non-linear data structures
	(Trees, Graphs), Recursion and recursive algorithms, Sorting Algorithms (Bubble, Insertion, Selection, Quick,
	Merge, Shell, Heap), Searching (Linear, Binary, Depth First, Breadth First, Shortest Path, Minimum Spanning
	Trees), Hashing and Collision resolution techniques (Open Addressing, Separate Chaining, Double Hashing),
	Data Compression (Huffman's Code), Complexity Analysis of Algorithms (Big-O notation)

Lecture Plan

WEEK	TOPICS/SUBTOPICS	Lab	QUIZZES/ASSIGNMENTS	REMARKS
01	Introduction Class	Lab 1:Array insertion,		
	Course overview	Deletion and Traversing		
	Linear array			
	Operations (Insertion, Deletion,			
	Traversing)			
02	Searching algorithm	Lab:2 Implementation		
	Linear Search	of linear search and		
	Binary Search	Binary search		
03	Sorting algorithms	Lab:3Implementation of		
	Insertion Sort	sorting algorithms		
	Selection Sort			
	Bubble Sort			
04	Algorithm Analysis	Lab:4Algorithm	Quiz 1	
	Computational And Asymptotic	analysis	Assignment01	
	Complexity			
	BIG-O Notation			
	Big-O Properties			
	Omega and Theta Notations			
	Abstract Data Types	Lab:5Implementation of		
05	• Stack	Stack		
	Stack concepts and its applications			
	Infix to post fix conversion			

	Post fix evaluation			
06	Abstract Data Types Queue Queue concepts and its applications Circular Queue	Lab:6 Implementation of Queue	Quiz 2	
07	Abstract Data Types Single Link list Concepts and its applications Single Linked list operations Concept of circular queue	Lab 7:Implementation of single link list	Assignment 2	
08	Abstract Data Types Double Link list Concepts and its applications Double Link list operations	Lab Exam 1		
09	I	Midterm Exam		15 to 21 Apr 24
10	Recursion Concepts Type of Recursion Merge sort Quick sort	Lab 8:Implementation of double link list		
11	Binary Tree Expression tree Depth first traversal Breadth first traversal Introduction to binary search tree- Insertion ,traversal	Lab 9:Implementation Merge sort & Quick sort		Labour Day 1-May-24 Wednesday

12	Binary Search Tree	Lab 10:Implementation	Assignment03	
	Deletion,	of binary search tree		
	Balanced Tree			
	AVL Tree			
	Single rotation			
	Double rotation			
13	Heap	Lab 11:Implementation	Quiz 3	
	Min heap & max heap	of Heap		
	Heap sort			
14	<u>Hashing</u>	Lab 12:Implementation		
	Hash function	of Hashing		
	Hash Table			
	Collision Resolution			
	 Separate Chaining 			
	 Open Addressing 			
15	<u>Graph</u>	Lab 13:Implementation	Quiz 4	
	• Introduction	of Graphs		
	 Graph representation 			
	 Adjacency Matrix 			
	 Adjacency List 			
	Undirected Graph			
	 Breadth First Search 			
16	Directed Graph	Open Ended Lab		
	 Topological sort 			
	Depth First Search			
	Single source Shortest path	Project Submission		
17	 Dijikstra Algorithm 			
	Minimum spanning tree			
	Prim's Algorithm			
18		Final Exam		21 Jun to 03 Jul 24

COURSE EVALUATION:

Type of Assessment	Percentage (%)	Remarks
Quizzes & Assignments	30	4 Quizzes (10 Marks)
		3 Assignments (20 Marks)
Mid-Term Exam	20	
Final Exam	50	

TEXT BOOKS:

Main	Data Structures and Algorithms in C++, by Drozdek Adam, 6th Edition, 2020.	
Reference	 Data Structures and Algorithm Analysis in C++, by Mark Allen Weiss, 7th Edition, Published by Addison-Wesley, 2019. Data Structures and Algorithms using C & C++, Augenstein & Tenenbaum, 2019. C++ Plus Data Structures, 7th Edition, Nell Dale, Jones and Bartlett Learning, 2020. Data Structures using C++, Varsha H. Patil, 6th Edition, Oxford University Press, 2018. 	

GRADING SCHEME:

Grade	Grade Point	LL %	UL %
Α	4.00	≥ 85	-
A-	3.67	≥ 80	< 85
B+	3.33	≥ 75	< 80
В	3.00	≥ 71	< 75
B-	2.67	≥ 68	< 71
C+	2.33	≥ 64	< 68
С	2.00	≥ 60	< 64
C-	1.67	≥ 57	< 60
D+	1.33	≥ 53	< 57
D	1.00	≥ 50	< 53
F	0.00	-	< 50
W	Withdrawn		

COURSE POLICY:

Homework	Late homework will not be accepted,
(Assignments)	All works have to be done independently,
	• Students handing in similar homework will receive a grade of 0 (ZERO) and face possible disciplinary actions.
Makeup Exams	In accordance with university regulations, i.e. students should bring a valid excuse authenticated through valid channels immediately within first week after the exam. Otherwise they will be considered absent and no makeup exam for them.
Attendance	 Students are expected to attend all classes Attendance is compulsory and will be taken regularly. Attendance for less than 75% of the lectures will result in students being barred from taking the Final Exam.
Code of Conduct	Copying of another student's work or code, even if changes are subsequently made, is inappropriate, and such work or code will not be accepted . The University has very clear guidelines for academic misconduct, and they will be enforced in this class.
Cell Phone	Cell phones are restricted during class. Cell phones must be turned off during the lecture. If your cell phone rings during class, you may be asked to leave.