몇가지 재료에서 중성자차페특성에 대한 모의

박호남, 한금혁

경애하는 최고령도자 김정은동지께서는 다음과 같이 말씀하시였다.

《우리는 위대한 장군님의 우주강국건설업적을 만년로대로 하여 우주과학기술을 더욱 발전시켜 첨단기술의 집합체이며 정수인 실용위성들을 더 많이 제작, 발사하여야 합니다.》 (《조선로동당 제7차대회에서 한 중앙위원회사업총화보고》단행본 39~40폐지)

우주기술분야에서 일어난 사고의 39%는 인공위성내부에 설치된 전자요소들이 우주 복사환경에서 그 기능을 잃기때문에 나타난것이라고 평가되였다.[1] 따라서 방사선으로부 터 CPU를 비롯한 반도체집적소자들을 보호하는 문제는 우주환경에서 동작하는 실용위성 과 같은 인공지구위성의 동작안전성을 높이는데서 매우 중요하다.

론문에서는 알루미니움의 밀도 (2.7g/cm³) 보다 훨씬 작은 밀도 (2g/cm³이하) 를 가지는 중성자차폐재료를 선정하기 위하여 다층차폐모의도구 mulassis를 리용한 모의결과에 대하여 서술하였다.

1. 두께가 일정한 몇가지 재료에 대한 모의

물질속에서 MeV정도의 중성자산란은 명백히 비등방성산란으로 된다.[1] 중성자의 비등방성산란에서 에네르기전달미분자름면적은 다음과 같이 표시된다.

$$K(E_n, E) = \frac{\sigma_s}{\Lambda E_n} \left[1 + a_l \left(1 - \frac{2E}{\Lambda E_n} \right) \cos \phi \right]$$

여기서 E_n 은 중성자의 에네르기, σ_s 는 미분자름면적으로서 원자핵의 반경에 관계된다. a_l 은 산란의 비등방성정도를 반영하는데 중성자의 에네르기가 낮을 때에는 령으로 본다. 즉 등방성산란으로 된다. ϕ 는 산란각, $\Lambda=\frac{4A}{(1+A)^2}(A$ 는 원자량)이다.

웃식에서 보는바와 같이 중성자의 에네르기가 클수록 에네르기전달미분자름면적은 작다. 이것은 입사하는 중성자의 에네르기가 클수록 차폐하기가 더 힘들다는것을 말해 준다.

이로부터 우주환경을 고려하여 쪼임중성자원천재료인 Po-Be를 리용하였다. Po-Be중 성자원천의 에네르기스펙트르는 그림 1과 같다.

그림 1에서 보는바와 같이 Po-Be원천으로부터 복사되는 중성자의 에네르기는 ~0.5MeV로부터 11MeV까지의 넓은 구간에 분포되여있으며 이 중성자원천으로부터 복사되는 중성자의 총개수는 근사적으로 10⁶개이다.

선행연구[2-5]들에서는 방사선차폐재료로서 월프람, 탄탈과 같은 고밀도재료와 폴리에 틸렌과 같은 저밀도재료들을 합리적으로 리용하면 비행체안의 전자요소들을 효과적으로 차 페할수 있으며 두께에 따르는 특성들에 대하여 제기하였다.

중성자차폐효과가 큰 재료를 선택하기 위하여 두께가 각각 2mm인 B_4C , SiC, Al_2O_3 , WC, Al, W, 에폭시수지, 흑연에 대하여 다충차폐모의도구인 mulassis로 중성자투과특성을 모의하였다.

이때 B₄C재료에서 투과된 중성자의 에네르기분포는 그림 2와 같다.

그림 2에서 보는바와 같이 대부분의 중성자들이 B_4 C재료에 의하여 차폐되였으며 특히 에네르기가 큰 대역에서의 차폐가 보다 효과적이라는것을 알수 있다. 또한 2MeV와 3MeV의 에네르기근방에서의 차폐특성이 제일 나쁘다는것을 알수 있다.

다른 재료에 대한 모의결과들도 류사한 특성을 나타낸다.

각이한 재료들의 중성자차폐에 대한 모의결과들은 표 1과 같다.

표 1에서 보는바와 같이 2mm 두께의 각이한 재료를 뚫고나온 중성자의 총개수는 원천중성자총개수의 1/100미만이며 고찰하는 에네르기범위에서는 밀도가 작은 즉 가벼운 원소일수록 차폐효과가 더 좋다는것을 알수 있다.

재료	밀도/(g·cm ⁻³)	중성자의 수/개
B_4C	2.51	938.78
SiC	2.5	919.11
WC	15.7	1 151.60
\mathbf{W}	19.3	1 219.11
Al_2O_3	3.97	974.10
Al	2.7	920.39
흑연	2.26	919.35
Pb	11.336	1 071.03
에폭시수지	0.6	891.62

표 1. 각이한 재료들의 중성자차페에 대한 모의결과(두께 2mm)

한편 같은 재료인 경우 두께에 따라서 차폐효과가 달리 나타난다.

Al의 두께변화에 따르는 투과중성자의 수는 표 2와 같다. 모의에서 투과중성자의 개수는 면적이 1cm^2 인 재료를 투과한 개수를 표시한다.

표 2에서 보는바와 같이 두께가 두꺼울수록 투과한 중성자의 개수는 증가한다. 이것

은 중성자가 물질속을 투과할 때 핵과 충돌하면서 새로운 중성자를 발생시킨다는것을 의미한다. 이때 (n,n)반응 또는 (n,2n)반응을 일으킬수 있다.[1]

반응과정에 중성자의 에네르기는 감소된다. $\frac{\text{H}}{2}$ 이것을 립증하기 위하여 $\frac{1}{2}$ 에서 투과중성자의 개수를 비교하였다.

Al의 두께 25mm와 50mm를 비교하면 25mm 인 경우 투과한 중성자의 개수는 404.04이며 20 50mm인 경우에는 396.97로서 두께가 큰 경우가

표 2.Al의 두께변화에 따르는 투과중성자의 :		
두께/mm	투과중성자의 수/개	
2	920.39	
5	964.76	
10	1 103.54	
20	1 194.05	

1 453.13

더 적었으며 보다 큰 에네르기구간에서는 그 차이가 더 심하다는것을 모의결과를 통하여 알수 있다.

2. 다층구조재료에 대한 모의

앞에서 고찰한 모의결과들로부터 다층재료로는 B_4C , SiC, Al_2O_3 , 흑연과 에폭시를 선택하였다. 여기서 에폭시를 전체 질량의 50%로, 다음 흑연과 SiC나노수염결정을 상대적으로 많이 첨가하였으며 B_4C 와 Al_2O_3 은 적게 첨가한 다층재료와 같은 두께의 Al을 대비분석하였다.

다층재료와 Al에서의 투과중성자의 수는 표 3과 같다.

구분 3mm인 경우 5mm인 경우 다층재료 Al 다층재료 Al 투과중성자의 수/개 921.56 931.78 926.46 971.33

표 3. 다층재료와 Al에서의 투과중성자의 수

표 3에서 보는바와 같이 다층재료는 Al보다 차페효과가 더 좋다. 이때 다층재료의 층구조는 다음과 같다. 총두께가 5mm인 경우 1층(B₄C)-0.3mm, 2층(Al₂O₃)-0.2mm, 3층(SiC)-1mm, 4층(흑연)-1mm, 5층(에폭시)-2.5mm이며 총두께가 3mm인 경우 1층(B₄C)-0.15mm, 2층(Al₂O₃)-0.15mm, 3층(SiC)-0.6mm, 4층(흑연)-0.6mm, 5층(에폭시수지)-1.5mm이다.

한편 에폭시수지재료충두께가 1.5mm인 경우 첫층(0.7mm)과 마지막층(0.8mm)에 갈라서 배치하면 투과된 중성자의 수가 915.39개로서 에폭시수지를 마지막층에만 배치한 경우 (921.56)보다 차폐효과가 더 좋았다. 이것은 차폐재료를 제작할 때 혼합된 재료의 립도를 매우 작게 하여 골고루 혼합하면 보다 특성이 개선될수 있다는것을 말해준다.

계산결과에 의하면 선택한 차폐재료의 밀도는 평균 1.6g/cm³이하로서 Al(2.7g/cm³)보다 훨씬 작다.

맺 는 말

다층재료에 대한 중성자차폐모의를 통하여 그 차폐률이 99.2%로서 현재 리용하고있는 알루미니움보다 더 좋을뿐아니라 밀도도 더 작기때문에 우주비행선의 전자요소보호재료로서 가치가 있다고 평가할수 있다.

참 고 문 헌

- [1] 고병춘; 재료의 방사선쪼임효과, 외국문도서출판사, 180~182, 주체105(2016).
- [2] Omid Zeynali et al.; Advances in Applied Science Research, 3, 1, 446, 2012.
- [3] Veli Capali et al.; EPJ Web of Conferences, 100, 02002, 2015.
- [4] Vishwanath P. Singh et al.; Indian Journal of Pure & Applied Physics, 54, 443, 2016.
- [5] C. Jumpee et al.; International Nuclear Science and Technology Conference 1, 2014.

주체107(2018)년 9월 5일 원고접수

Simulation for Neutron Shielding Property in Some Materials

Pak Ho Nam, Han Kum Hyok

The neutron shielding effect of $SiC/Al_2O_3/B_4C/C/Epoxy$ resin material was simulated using multilayer shielding simulation software (mulassis) in this paper. The simulation result showed that the multilayer material was better than aluminium.

Key words: neutron shied, material