Problem Set 7

D. Zack Garza

November 14, 2019

Contents

1	roblem 1	1
	1 Part a	 1
	2 Part b	 2
2	roblem 2	3
	1 Part a:	 3
	2 Part b:	 4
3	roblem 3	5
	1 Part a	 5
	2 Part b	 5
4	roblem 4	6
	1 Part a	 6
	4.1.1 i	 6
	4.1.2 ii	7
	2 Part b	 7
	4.2.1 i	 7
	4.2.2 ii	 8
5	roblem 5	8
	1 Part 1	 8
	2 Part b	 9
	3 Part c	10

1 Problem 1

1.1 Part a

We want to show that $\ell^2(\mathbb{N})$ is complete, so let $\{x_n\} \subseteq \ell^2(\mathbb{N})$ be a Cauchy sequence, so $\|x^j - x^k\|_{\ell^2} \to 0$. We want to produce some $\mathbf{x} := \lim_{n \to \infty} x^n$ such that $x \in \ell^2$.

To this end, for each fixed index i, define

$$\mathbf{x}_i \coloneqq \lim_{n \to \infty} x_i^n.$$

This is well-defined since $\|x^j - x^k\|_{\ell^2} = \sum_i \left|x_i^j - x_i^k\right|^2 \to 0$, and since this is a sum of positive real numbers that approaches zero, each term must approach zero. But then for a fixed i, the sequence $\left|x_i^j - x_i^k\right|^2$ is a Cauchy sequence of real numbers which necessarily converges by completeness of \mathbb{R} .

We also have $\|\mathbf{x} - x^j\|_{\ell^2} \to 0$ since

$$\|\mathbf{x} - x^j\|_{\ell^2} = \|\lim_{k \to \infty} x^k - x^j\|_{\ell^2} = \lim_{k \to \infty} \|x^k - x^j\|_{\ell^2} \to 0$$

where the limit can be passed through the norm because the map $t \mapsto ||t||_{\ell^2}$ is continuous. So $x^j \to \mathbf{x}$ in ℓ^2 as well.

It remains to show that $\mathbf{x} \in \ell^2(\mathbb{N})$, i.e. that $\sum_i |\mathbf{x}_i|^2 < \infty$. To this end, we write

$$\|\mathbf{x}\|_{\ell^{2}} = \|\mathbf{x} - x^{j} + x^{j}\|_{\ell^{2}}$$

$$\leq \|\mathbf{x} - x^{j}\|_{\ell^{2}} + \|x^{j}\|_{\ell^{2}}$$

$$\to M < \infty,$$

where $\lim_{j} \|\mathbf{x} - x^{j}\|_{\ell^{2}} = 0$ by the previous argument, and the second term is bounded because $x^{j} \in \ell^{2} \iff \|x^{j}\|_{\ell^{2}} := M < \infty$.

1.2 Part b

Let H be a Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and induced norm $\| \cdot \|$.

Lemma: For any complex number z, we have

$$\Im(z) = \Re(-iz),$$

and as a corollary, since the inner product on H takes values in \mathbb{C} , we have

$$\Re(\langle x, iy \rangle) = \Re(-i\langle x, y \rangle) = \Im(\langle x, y \rangle).$$

We can compute the following:

$$||x + y||^{2} = ||x||^{2} + ||y||^{2} + 2 \Re(\langle x, y \rangle)$$

$$||x - y||^{2} = ||x||^{2} + ||y||^{2} - 2 \Re(\langle x, y \rangle)$$

$$||x + iy||^{2} = ||x||^{2} + ||y||^{2} + 2 \Re(\langle x, iy \rangle)$$

$$= ||x||^{2} + ||y||^{2} + \Im(\langle x, y \rangle)$$

$$||x - iy||^{2} = ||x||^{2} + ||y||^{2} - 2 \Re(\langle x, iy \rangle)$$

$$= ||x||^{2} + ||y||^{2} + \Im(\langle x, y \rangle)$$

and summing these all

$$||x + y||^2 - ||x - y||^2 + i||x + iy||^2 - i||x + iy|| = 4 \Re(\langle x, y \rangle) + 4i \Im(\langle x, y \rangle)$$

= $4\langle x, y \rangle$.

To conclude that a linear map U is an isometry iff U is unitary, if we assume U is unitary then we can write

$$||x||^2 := \langle x, x \rangle = \langle Ux, Ux \rangle := ||Ux||^2.$$

Assuming now that U is an isometry, by the polarization identity we can write

$$\langle Ux, \ Uy \rangle = \frac{1}{4} \left(\|Ux + Uy\|^2 + \|Ux - Uy\|^2 + i\|Ux + Uy\|^2 - i\|Ux + Uy\|^2 \right)$$

$$= \frac{1}{4} \left(\|U(x+y)\|^2 + \|U(x-y)\|^2 + i\|U(x+y)\|^2 - i\|U(x+y)\|^2 \right)$$

$$= \frac{1}{4} \left(\|x + y\|^2 + \|x - y\|^2 + i\|x + y\|^2 - i\|x + y\|^2 \right)$$

$$= \langle x, \ y \rangle.$$

2 Problem 2

Lemma: The map $\langle \cdot, \cdot \rangle : H \times H \to \mathbb{R}$ is continuous.

Proof:

Let $x_n \to x$ and $y_n \to y$, then

$$\begin{aligned} |\langle x_n, y_n \rangle - \langle x, y \rangle| &= |\langle x_n, y_n \rangle - \langle x, y_n \rangle + \langle x, y_n \rangle - \langle x, y \rangle| \\ &= |\langle x_n - x, y_n \rangle + \langle x, y_n - y \rangle| \\ &\leq ||x_n - x|| ||y_n|| + ||x|| ||y_n - y|| \\ &\to 0 \cdot M + C \cdot 0 < \infty, \end{aligned}$$

where $||y_n|| \to M$ since $y_n \to y$ implies that $||y_n||$ is bounded.

2.1 Part a:

We want to show that sequences in E^{\perp} converge to elements of E^{\perp} . Using the lemma, letting $\{e_n\}$ be a sequence in E^{\perp} , so $y \in E \implies \langle e_n, y \rangle = 0$. Since H is complete, $e_n \to e \in H$; we can show that $e \in E^{\perp}$ by letting $y \in E$ be arbitrary and computing

$$\langle e, y \rangle = \left\langle \lim_{n} e_{n}, y \right\rangle = \lim_{n} \left\langle e_{n}, y \right\rangle = \lim_{n} 0 = 0,$$

so $e \in E^{\perp}$.

2.2 Part b:

Let $S := \operatorname{span}_H(E)$; then the smallest closed subspace containing E is \overline{S} , the closure of S. We will proceed by showing that $E^{\perp \perp} = \overline{S}$.

$$\overline{S} \subseteq E^{\perp \perp}$$
:

Let $\{x_n\}$ be a sequence in S, so $x_n \to x \in \overline{S}$.

First, each x_n is in $E^{\perp \perp}$, since if we write $x_n = \sum a_i e_i$ where $e_i \in E$, we have

$$y \in E^{\perp} \implies \langle x_n, y \rangle = \left\langle \sum_i a_i e_i, y \right\rangle = \sum_i a_i \langle e_i, y \rangle = 0 \implies x_n \in (E^{\perp})^{\perp}.$$

It remains to show that $x \in E^{\perp \perp}$, which follows from

$$y \in E^{\perp} \implies \langle x, y \rangle = \left\langle \lim_{n} x_{n}, y \right\rangle = \lim_{n} \left\langle x_{n}, y \right\rangle = 0 \implies x \in (E^{\perp})^{\perp},$$

where we've used continuity of the inner product.

$$E^{\perp\perp}\subseteq \overline{S}$$
:

For notation convenience, we'll just write S for \overline{S} . Let $x \in E^{\perp \perp}$. Noting that S is closed, we can define P, the operator projecting elements onto S, and write

$$x = Px + (x - Px) \in S \oplus S^{\perp}$$

But since $\langle x, x - Px \rangle = 0$ because $x - Px \in E^{\perp}$ and $x \in (E^{\perp})^{\perp}$, we can rewrite the first term in this inner product to obtain

$$0 = \langle x, x - Px \rangle = \langle Px + (x - Px), x - Px \rangle = \langle Px, x - Px \rangle + \langle x - Px, x - Px \rangle,$$

where we can note that the first term is zero because $Px \in S$ and $x - Px \in S^{\perp}$, and the second term is $||x - Px||^2$.

But this says $||x - Px||^2 = 0$, so x - Px = 0 and thus $x = Px \in S$, which is what we wanted to show.

3 Problem 3

3.1 Part a

We compute

$$||e_0||^2 = \int_0^1 1^2 dx = 1$$

$$||e_1||^2 = \int_0^1 3(2x - 1)^2 = \frac{1}{2}(2x - 1)^2 \Big|_0^1 = 1$$

$$\langle e_0, e_1 \rangle = \int_0^1 \sqrt{3}(2x - 1) dx = \frac{\sqrt{3}}{4}(2x - 1) \Big|_0^1 = 0.$$

which verifies that this is an orthonormal system.

3.2 Part b

We first note that this system spans the degree 1 polynomials in $L^2([0,1])$, since we have

$$\begin{bmatrix} 1 & 0 \\ 2\sqrt{3} & \sqrt{3} \end{bmatrix} [1, x]^t = [e_0, e_1]$$

which exhibits a matrix that changes basis from $\{1, x\}$ to $\{e_0, e_1\}$ which is invertible, so both sets span the same subspace.

Thus the closest degree 1 polynomial f to x^3 is given by the projection onto this subspace, and since $\{e_i\}$ is orthonormal this is given by

$$\begin{split} f(x) &= \sum_{i} \left\langle x^{3}, \ e_{i} \right\rangle e_{i} \\ &= \left\langle x^{3}, \ 1 \right\rangle 1 + \left\langle x^{3}, \ \sqrt{3}(2x-1) \right\rangle \sqrt{3}(2x-1) \\ &= \int_{0}^{1} x^{2} \ dx + \sqrt{3}(2x-1) \int_{0}^{1} \sqrt{3}x^{2}(2x-1) \ dx \\ &= \frac{1}{3} + \sqrt{3}(2x-1) \frac{\sqrt{3}}{6} \\ &= x - \frac{1}{6}. \end{split}$$

We can also compute

$$||f - g||_2^2 = \int_0^1 (x^2 - x + \frac{1}{6})^2 dx$$

$$= \frac{1}{180}$$

$$\implies ||f - g||_2 = \frac{1}{\sqrt{180}}.$$

4 Problem 4

4.1 Part a

4.1.1 i

We can first note that $\langle 1/\sqrt{2}, \cos(2\pi nx) \rangle = \langle 1/\sqrt{2}, \sin(2\pi mx) \rangle = 0$ for any n or m, since this involves integrating either sine or cosine over an integer multiple of its period.

Letting $m, n \in \mathbb{Z}$, we can then compute

$$\begin{aligned} \langle \cos(2\pi nx), \ \sin(2\pi mx) \rangle &= \int_0^1 \cos(2\pi nx) \sin(2\pi mx) \ dx \\ &= \frac{1}{2} \int_0^1 \sin(2\pi (n+m)x) - \sin(2\pi (n-m)x) \ dx \\ &= \frac{1}{2} \int_0^1 \sin(2\pi (n+m)x) - \frac{1}{2} \int_0^1 \sin(2\pi (n-m)x) \ dx \\ &= 0, \end{aligned}$$

which again follows from integration of sine over a multiple of its period (where we use the fact that $m + n, m - n \in \mathbb{Z}$).

Similarly,

$$\langle \cos(2\pi nx), \cos(2\pi mx) \rangle = \int_0^1 \cos(2\pi nx) \cos(2\pi mx) \, dx$$

$$= \frac{1}{2} \int_0^1 \cos(2\pi (m+n)x) + \cos(2\pi (m-n)x) \, dx$$

$$= \begin{cases} \frac{1}{2} \int_0^1 \cos(4\pi nx) + 1 \, dx = 1 & m = n \\ 0 & m \neq n \end{cases}.$$

$$\langle \sin(2\pi nx), \sin(2\pi mx) \rangle = \int_0^1 \sin(2\pi nx) \sin(2\pi mx) \, dx$$

$$= \frac{1}{2} \int_0^1 \cos(2\pi (m-n)x) + \cos(2\pi (m+n)x) \, dx$$

$$= \begin{cases} \frac{1}{2} \int_0^1 1 + \cos(4\pi nx) \, dx = 1 & m=n \\ 0 & m \neq n \end{cases}.$$

Thus each pairwise combination of elements are orthonormal, making the entire set orthonormal.

4.1.2 ii

We have

$$\left\langle e^{2\pi kx}, \ e^{-2\pi i \ell x} \right\rangle = \int_0^1 e^{2\pi i kx} \overline{e^{2\pi i \ell x}} \ dx$$

$$= \int_0^1 e^{2\pi i kx} e^{-2\pi i \ell x} \ dx$$

$$= \int_0^1 e^{2\pi i (k-\ell)x} \ dx$$

$$(= \int_0^1 1 \ dx = 1 \quad \text{if } k = \ell, \text{ otherwise:})$$

$$= \frac{e^{2\pi i (k-\ell)x}}{2\pi i (k-\ell)} \Big|_0^1$$

$$= \frac{e^{2\pi i (k-\ell)}}{2\pi i (k-\ell)} = 0,$$

since $e^{2\pi ik} = 1$ for every $k \in \mathbb{Z}$, and $k - \ell \in \mathbb{Z}$. Thus this set is orthonormal.

4.2 Part b

4.2.1 i

By the Weierstrass approximation theorem for functions on a bounded interval, we can find a polynomials $P_n(x)$ such that $||f - P_n||_{\infty} \to 0$, i.e. the P_n uniformly approximate f on [0, 1].

Letting $\varepsilon > 0$, we can thus choose a P such that $||f - P||_{\infty} < \varepsilon$, which necessarily implies that $||f - P||_{L^1} < \varepsilon$ since we have

$$\int_0^1 |f(x) - P(x)| \ dx \le \int_0^1 \varepsilon \ dx = \varepsilon.$$

Thus we can write

$$f(x) = P(x) + (f(x) - P(x))$$

where h(x) := f(x) - P(x) satisfies $||h||_{L^1} < \varepsilon$. It only remains to show that $P \in L^2([0,1])$, but this follows from the fact that any polynomial on a compact interval is uniformly bounded, say $|P(x)| \le M < \infty$ for all $x \in [0,1]$, and thus

$$||P||_{L^2}^2 = \int_0^1 |P(x)|^2 dx \le \int_0^1 M^2 dx = M^2 < \infty.$$

It follows that we can let g = P and h = f - P to obtain the desired result.

4.2.2 ii

By part (i), the claim is that it suffices to show this is true for $f \in L^2$. In this case, we can identify

$$\int_0^1 f(x)\cos(2\pi kx) \ dx := \Re(\hat{f}(k))$$
$$\int_0^1 f(x)\sin(2\pi kx) \ dx := \Im(\hat{f}(k)),$$

the real and imaginary parts of the kth Fourier coefficient of f respectively.

By Bessel's inequality, we know that $\{\hat{f}(k)\}_{k\in\mathbb{N}}\in\ell^1(\mathbb{N})$, and so $\sum_k |\hat{f}(k)| < \infty$. But this is a convergent sequence of real numbers, which necessarily implies that $|\hat{f}(k)| \to 0$. In particular, this also means that its real and imaginary parts tend to zero, which is exactly what we wanted to show.

5 Problem 5

5.1 Part 1

We use the following algorithm: given $\{v\}_i$, we set

- $e_1 = v_1$, and then normalize to obtain $\hat{e_1} = e_1/\|e_1\|$
- $e_i = v_i \sum_{k \le i-1} \langle v_i, \hat{e}_i \rangle \hat{e}_i$

The result set $\{\hat{e}_i\}$ is the orthonormalized basis.

We set $e_1 = 1$, and check that $||e_1||^2 = 2$, and thus set $\hat{e}_1 = \frac{1}{\sqrt{2}}$.

We then set

$$e_2 = x - \langle x, \hat{e}_1 \rangle \hat{e}_1$$

$$= x - \langle x, 1 \rangle 1$$

$$= x - \int_{-1}^1 \frac{1}{\sqrt{2}} x \, dx$$

$$= x - \int \text{odd function}$$

$$= x,$$

and so $e_2 = x$. We can then check that

$$||e_2|| = \left(\int_{-1}^1 x^2 dx\right)^{1/2} = \sqrt{\frac{2}{3}},$$

and so we set $\hat{e}_2 = \sqrt{\frac{3}{2}}x$.

We continue to compute

$$\begin{aligned} e_3 &= x^2 - \left\langle x^2, \ \hat{e}_1 \right\rangle \hat{e}_1 - \left\langle x^2, \ \hat{e}_2 \right\rangle \hat{e}_2 \\ &= x^2 - \frac{1}{2} \int_{-1}^1 x^2 \ dx - \frac{3}{2} x \int_{-1}^1 x^3 \ dx \\ &= x^2 - \left(\frac{1}{6} x^3\right) \Big|_{-1}^1 + \frac{3}{2} x \int_{-1}^1 \text{odd function} \\ &= x^2 - \frac{1}{3}. \end{aligned}$$

We can then check that $\|e_3\|^2 = \frac{8}{45}$, so we set

$$\hat{e}_3 = \sqrt{\frac{45}{8}}(x^2 - \frac{1}{3})$$

$$= \frac{1}{2}\sqrt{\frac{45}{2}}\frac{1}{3}(3x^2 - 1)$$

$$= \frac{1}{3}\sqrt{\frac{45}{2}}\left(\frac{3x^2 - 1}{2}\right).$$

In summary, this yields

$$\hat{e}_1 = \frac{1}{\sqrt{2}}$$

$$\hat{e}_2 = x$$

$$\hat{e}_3 = \frac{1}{3}\sqrt{\frac{45}{2}} \left(\frac{3x^2 - 1}{2}\right),$$

which are scalar multiples of the first three Legendre polynomials.

5.2 Part b

Let $p(x) = a + bx + cx^2$, we are then looking for p such that $||x^3 - p(x)||_2^2$ is minimized. Noting that

$$p(x) \in \text{span}\left\{1, x, x^2\right\} = \text{span}\left\{P_0(x), P_1(x), P_2(x)\right\},$$

we can conclude that p(x) will be the projection of x^3 onto this subspace of $L^2([0,1])$. Thus $p(x) = \sum_{i=0}^{2} \langle x^3, \hat{e}_i \rangle \hat{e}_i$.

Proceeding to compute the terms in this expansion, we can note that $\langle x^3, f \rangle$ for any f that is even will result in integrating an odd function over a symmetric interval, yielding zero. So only one term doesn't vanish:

$$\langle x^3, x \rangle x = x \int_{-1}^1 \int_{-1}^1 x^4 dx = \frac{2}{5}x$$

And thus $p(x) = \frac{2}{5}x$ is the minimizer.

5.3 Part c