

Algoritmos Genéticos

Sistemas de Inteligencia Artificial ITBA 2022 - 1C

Integrantes:

- Serpe, Octavio (60076)
- Quesada, Francisco (60524)
- Arca, Gonzalo (60303)

Dado un conjunto de mediciones

$$\xi^{1} = \begin{bmatrix} 4.4793 \\ -4.0765 \\ -4.0765 \end{bmatrix} \rightarrow \zeta^{1} = 0$$

$$\xi^{2} = \begin{bmatrix} -4.1793 \\ -4.9218 \\ 1.7664 \end{bmatrix} \rightarrow \zeta^{2} = 1$$

$$\xi^{3} = \begin{bmatrix} -3.9429 \\ -0.7689 \\ 4.8830 \end{bmatrix} \rightarrow \zeta^{3} = 1$$

Se busca aproximar salidas para otras entradas usando F tal que

$$F(W, w, w_0, \xi) = g\left(\sum_{j=1}^{2} W_j g\left(\sum_{k=1}^{3} w_{jk} \xi_k - w_{0_j}\right) - W_0\right)$$

con

$$W \in \mathbb{R}^3$$
 $\xi \in \mathbb{R}^3$ $w \in \mathbb{R}^{2 \times 3}$ $g(x) = \frac{e^x}{1 + e^x}$ $w_0 \in \mathbb{R}^2$

Se necesita optimizar valores de entrada de F tal que el error E sea mínimo para entradas ξ^1 , ξ^2 , ξ^3

$$E(W, w, w_0) = \sum_{\mu=1}^{3} (\zeta^{\mu} - F(W, w, w_0, \xi^{\mu}))^2$$

Estructura de cromosoma

Dados W, w, w_o tal que

$$W = \begin{bmatrix} W_1 \\ W_2 \\ W_3 \end{bmatrix} \qquad w = \begin{bmatrix} w_{11}w_{12}w_{13} \\ w_{21}w_{22}w_{23} \end{bmatrix} \qquad w_0 = \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}$$

Definimos al cromosoma X:

$$X = \begin{bmatrix} W_0 & W_1 & W_2 & w_{11} & w_{12} & w_{13} & w_{21} & w_{22} & w_{23} & w_{0_1} & w_{0_2} \end{bmatrix}$$

Función de aptitud

Dado un individuo con cromosoma X tal que

$$X = \left[\underbrace{W_0 \ W_1 \ W_2}_{W} \ \underbrace{w_{11} \ w_{12} \ w_{13} \ w_{21} \ w_{22} \ w_{23}}_{w} \ \underbrace{w_{0_1} \ w_{0_2}}_{w_0} \right]$$

y un conjunto S de m muestras realizadas tal que

$$S = \left\{ \begin{bmatrix} \xi^1 \\ \zeta^1 \end{bmatrix}, \begin{bmatrix} \xi^2 \\ \zeta^2 \end{bmatrix}, \dots, \begin{bmatrix} \xi^m \\ \zeta^m \end{bmatrix} \right\}$$

Definimos la función de aptitud f:

$$f: \mathbb{R}^{11} \to \mathbb{R} / f(X) = m - E(W, w, w_0)$$

Métodos de cruza implementados

- Método de Cruza Simple
- Método de Cruza Múltiple
- Método de Cruza Uniforme

Métodos de selección implementados

- Muestreo Directo Elite
- Ruleta
- Rank
- Torneo probabilístico
- Boltzmann
- Truncada
- Uniforme

Métodos de mutación implementados

$$X_i' = X_i + r$$

 $X_i' = X_i + r \\ \hline \bullet \quad \text{Mutacion normal:} \\ \circ \quad \text{Se itera por cada alelo y se mutan aleatoriamente con distribución normal} \\ \bullet \quad \text{Mutación con distribución uniforme} \\ \circ \quad \text{So itera para elemente de la positional de la p$

o Se itera por cada alelo y se mutan aleatoriamente con distribución uniforme

Mutación swap

Se itera por cada alelo y se intercambia con otro aleatoriamente con distribución uniforme

Criterios de corte implementados

- Invariancia de valor de aptitud máximo de población
- Aptitud máxima de población acotada
- Número de generaciones acotado
- Tiempo de ejecución acotado

Aclaraciones

1. La elección de los padres se realizó de manera uniforme a lo largo de la población (sin sacar a los mismos).

Experimento #1: Selection Benchmark

- Probar todos los métodos de selección, partiendo de una misma población inicial.
- Graficar el fitness máximo en función del número de generaciones.

Experimento #1: Selection Benchmark

Parámetros fijos

Cruza

• *Método*: Simple

Mutación

- Método: Variación normal
- p = 0.1
- $\sigma = 0.5$

Condición de corte

- *Método*: Cantidad de generaciones
- t = 1000

Generales

- P = 50
- Min. valor real = -1
- Máx. valor real = 1

Experimento #1: Selection Benchmark

Parámetros

- $T_o = 100$
- \bullet $T_c = 1$
- Tasa de decaimiento k = 0.01
- u = 0.7
- Tamaño selección truncada = 35
- p = 0.1
- $\sigma = 0.5$
- t = 1000
- P = 50
- Mín. valor real = -1
- Máx. valor real = 1

Experimento #1: Selection Benchmark

Tabla de resultados

Métod o	Tiemp o de ejecuci ón	Fitness	W_1	W_2	W_3	w_1	w_2	w_3	w_4	w_5	w_6	w_0_1	w_0_2	error	F_1	F_2	F_3
Roulett																	
е	66.466	2.9994	3.9670	4.5651	-4.0884	-4.7549	4.2185	5.6743	0.7196	-4.2651	4.1530	1.8057	1.8665	0.0006	0.0186	0.9887	0.9897
Tourna			20.814	21.954													
ment	3.726	3.0000	4	6	4.3517	-1.7360	-0.5462	8.5411	-3.6838	-4.2247	-4.2952	-1.3950	4.4594	0.0000	0.0000	1.0000	1.0000
			-22.465	-19.760													
Elite	1.726	3.0000	9	1	-1.5227	8.7532	2.7855	-8.1351	1.5948	0.3160	4.2515	-6.9179	0.4269	0.0000	0.0000	1.0000	1.0000
Boltzm																	
ann	69.716	2.9999	5.1536	4.9344	-2.6158	-0.0653	-1.4264	8.8434	-2.8854	2.6991	-0.9488	0.9835	-1.8299	0.0001	0.0057	0.9929	0.9929
			-19.411	-20.962													
Rank	57.031	3.0000	6	8	1.6354	7.2167	0.6011	1.2273	-3.4909	-0.7618	-6.9583	1.2112	4.5904	0.0000	0.0000	1.0000	1.0000
Truncat			22.140	19.585													
е	1.790	3.0000	7	8	-6.4561	-6.0053	1.4538	1.4493	-1.6860	-4.8887	-1.2579	-2.0121	0.6956	0.0000	0.0000	1.0000	1.0000
																	10

Experimento #2: Mutation Benchmark

- Probar todos los métodos de mutación, partiendo de una misma población inicial.
- Graficar el fitness máximo en función del número de generaciones.

Experimento #2: Mutation Benchmark

Parámetros fijos

Cruza

• *Método*: Simple

Selección

• *Método*: Ranking

Condición de corte

- *Método*: Cantidad de generaciones
- *t* = 700

Generales

- P = 50
- *Min. valor real* = -2
- Máx. valor real = 2

Experimento #2.1: Mutation Benchmark

Parámetros

- p = 0.05
- \bullet a = 1
- $\sigma = 0.5$

Experimento #2.1: Mutation Benchmark

Tabla de resultados

Método	Fitness	W_1	W_2	W_3	w_1	w_2	w_3	w_4
Uniform Mutation	3.0000	-21.4640	-21.8851	-1.8992	3.2071	1.5675	-4.3280	1.5486
Swap Mutation	2.9338	1.7457	1.7457	-1.6444	-1.6444	-0.7866	1.7457	-1.6444
Normal Mutation	3.0000	-21.2699	-20.5982	4.6042	8.2968	1.4085	-1.5239	3.9868
Método	w_5	w_6	w_0_1	w_0_2	error	F_1	F_2	F_3
Uniform Mutation	4.2601	-4.4382	-1.3922	-2.2861	0.0000	0.0000	1.0000	1.0000
Swap Mutation	-1.6444	1.7457	0.3681	1.7457	0.0662	0.1486	0.8514	0.8514
Normal Mutation	-0.0791	-2.6900	2.0417	0.2526	0.0000	0.0000	1.0000	1.0000

Experimento #2.2: Mutation Benchmark

Parámetros

- p = 0.1
- \bullet a = 1
- \bullet $\sigma = 0.5$

Experimento #2.2: Mutation Benchmark

Tabla de resultados

Método	Fitness	W_1	W_2	W_3	w_1	w_2	w_3	w_4
Uniform Mutation	3.0000	-25.4901	-21.5787	0.2613	4.3282	-1.3802	-2.2896	3.7191
Swap Mutation	2.9562	-1.9847	-1.9847	1.9803	1.9803	-0.8872	-1.9847	1.9803
Normal Mutation	3.0000	-22.0014	-24.6875	1.5547	6.8954	0.0114	-3.9284	-2.5892
Método	w_5	w_6	w_0_1	w_0_2	error	F_1	F_2	F_3
Uniform Mutation	-2.8160	-1.6945	0.9539	3.3793	0.0000	0.0000	1.0000	1.0000
Swap Mutation	1.9803	-1.9847	1.9803	-1.9847	0.0438	0.1208	0.8792	0.8792
Normal Mutation	3.3319	-4.3721	4.7904	1.2017	0.0000	0.0000	1.0000	1.0000

Experimento #2.3: Mutation Benchmark

Parámetros

- p = 0.15
- \bullet a = 1
- \bullet $\sigma = 0.5$

Experimento #2.2: Mutation Benchmark

Tabla de resultados

Método	Fitness	W_1	W_2	W_3	w_1	w_2	w_3	w_4
Uniform								
Mutation	3.0000	-25.2793	-19.7202	5.6084	9.7044	-4.5562	-3.1652	-1.7659
Swap Mutation	2.9478	-1.8844	-1.8844	-1.8844	1.7781	1.7781	-1.8844	1.7781
Normal Mutation	3.0000	21.1055	19.2499	0.3343	-5.8275	1.9196	-0.3411	-3.7559
Método	w_5	w_6	w_0_1	w_0_2	error	F_1	F_2	F_3
Uniform Mutation	8.4160	-10.5167	-2.5894	2.3526	0.0000	0.0000	1.0000	1.0000
Swap Mutation	1.7781	-1.8844	-1.8844	-1.8844	0.0522	0.1319	0.8681	0.8681
Normal Mutation	0.4103	-1.8952	-3.5601	4.4247	0.0000	0.0000	1.0000	1.0000

Experimento #3: Crossover Benchmark

- Probar todos los métodos de cruza, partiendo de una misma población inicial.
- Graficar el fitness máximo en función del número de generaciones.

Experimento #3: Crossover Benchmark

Parámetros fijos

Mutación

- Método: Variación normal
- p = 0.05
- $\sigma = 0.5$

Selección

• *Método*: Ranking

Condición de corte

- *Método*: Cantidad de generaciones
- *t* = 500

Generales

- P = 50
- Min. valor real = -1
- Máx. valor real = 1

Experimento #3: Crossover Benchmark

Parámetros

- Cantidad de puntos para cruza múltiple: 3, 6 y 8
- p = 0.05
- $\sigma = 0.5$
- t = 500
- \bullet P = 50
- *Min. valor real* = -1
- Máx. valor real = 1

Experimento #3: Crossover Benchmark

Tabla de resultados

Método	Fitn								_							
de cruza	ess	W_1	W_2	W_3	w_1	w_2	w_3	w_4	w_5	w_6	w_0_1	w_0_2	error	F_1	F_2	F_3
Multiple																
point 3	3	-21.3706	-19.4915	1.2087	1.7469	-0.4891	-4.7992	-0.2716	0.8559	-2.4582	2.5173	0.2667	0.0000	0.0000	1.0000	1.0000
Multiple																
point 6	3	-19.6661	-20.1138	0.3387	5.0219	-2.2219	-5.8481	-2.7387	3.6942	0.4579	0.8214	-1.0575	0.0000	0.0000	1.0000	1.0000
Multiple																
point 8	3	20.7012	19.3321	0.7105	-2.6755	0.7887	1.7757	-3.1550	0.8569	1.0065	-0.0201	0.2139	0.0000	0.0000	1.0000	1.0000
Single				-0.974												
point	3	-20.7941	-18.8356	4	6.4263	0.8908	-0.4954	-0.3804	0.5264	-0.9213	2.0000	1.0038	0.0000	0.0000	1.0000	1.0000
				-3.754												
Uniform	3	21.1536	18.7520	9	-2.5871	-3.3000	4.9482	1.2241	0.4788	1.0939	0.8314	0.3807	0.0000	0.0000	1.0000	1.0000

Experimento #4: Cut Condition Benchmark

Probar todas las condiciones de corte, partiendo de una misma población inicial.

Experimento #4: Cut Condition Benchmark

Parámetros fijos

Mutación

- Método: Variación normal
- p = 0.1
- $\sigma = 0.5$

Selección

• Método: Ranking

Cruza

• *Método*: Simple

Generales

- P = 50
- Min. valor real = -1
- Máx. valor real = 1

Experimento #4: Cut Condition Benchmark

t = 1000 Min. fitness = -1 Differencia entre fitness: 5×10^{-5}

Generaciones consecutivas que cumplen con la diferencia: 15 Tiempo máximo (s): 10

Condic ión	Tiempo de ejecució n	Fitne ss	W_1	W_2	W_3	w_1	w_2	w_3	w_4	w_5	w_6	w_0_1	w_0_2	error	F_1	F_2	F_3
Max generat ions	55.8220	3.000 0	-28.004 2	-20.270 9	-6.3476	1.3243	1.2534	-5.3038	5.0653	1.7152	-5.4736	-1.6826	0.3627	0.0000	0.0000	1.0000	1.0000
Fitness value	6.3580	3.000 0	7.0547	6.3996	-0.1036	-2.6958	-0.2662	0.4813	-1.6485	-1.1741	3.2987	0.2217	-0.9737	0.0000	0.0009	0.9983	0.9983
Fitness variatio n	4.2030	2.999 9	5.9570	5.1345	-0.6177	-2.7318	0.3247	0.4402	-0.7585	-0.8406	1.1665	-0.5776	0.3337	0.0001	0.0026	0.9941	0.9941
Max time	10.0340	3.000 0	11.670 7	13.308 0	0.7155	-1.8548	-0.2014	3.3515	0.4908	1.1454	0.8592	-0.7335	-1.5417	0.0000	0.0000	1.0000	1.0000

Experimento #5: Initial Bounds Benchmark

- Probar diferentes cotas para el rango de valores iniciales.
- Graficar el fitness máximo en función del número de generaciones.

Experimento #5: Initial Bounds Benchmark

Parámetros fijos

Cruza

• *Método*: Simple

Mutación

- Método: Variación normal
- *p*: 0.1
- *σ*: 0.5

Selección

• *Método*: Ranking

Condición de corte

- *Método*: Cantidad de generaciones
- *t* = 500

Generales

• P = 50

Experimento #5: Initial Bounds Benchmark

Parámetros

- p = 0.1
- $\sigma = 0.5$
- t = 500
- P = 50

Resultados

-19.117

-44.222

[-50, 0]

3.0000

-39.873

4.8394

Experimento #5: Initial Bounds Benchmark

-15.028

-51.420

Rango	F :4	VA . 4	W 0	\\\\ \O	4	0	2	4		0	0 4	0 0		F 4	- 0	- 0
inicial	Fitness	VV_1	W_2	W_3	w_1	w_2	w_3	w_4	w_5	w_6	w_0_1	w_0_2	error	F_1	F_2	F_3
					-20.255	-21.342		-26.459								
[-50, 50]	3.0000	32.1000	49.3840	43.6522	1	6	19.9217	9	9.6371	37.8628	18.2384	35.2823	0.0000	0.0000	1.0000	1.0000
					-17.434			-20.899	-11.982		-12.235					
[-20, 20]	3.0000	20.8140	22.0538	15.2995	9	6.2051	0.9245	7	3	17.6758	2	15.2183	0.0000	0.0000	1.0000	1.0000
[-10, 10]	3.0000	19.5089	20.2792	-8.3623	-7.8751	-5.3692	6.0255	-4.4771	1.9238	1.9326	-0.3090	-5.7031	0.0000	0.0000	1.0000	1.0000
[-5, 5]	3.0000	19.2188	21.3755	-6.4705	-3.8969	1.2395	3.8896	-0.3262	3.4408	7.4707	-4.6497	-0.6712	0.0000	0.0000	1.0000	1.0000
		-21.674	-20.882													
[-1, 1]	3.0000	0	3	0.5313	4.4372	1.0155	-1.9176	6.3460	2.5519	-3.1438	-1.5436	-0.5899	0.0000	0.0000	1.0000	1.0000
[0, 10]	3.0000	18.2274	19.4651	7.3568	0.8517	-3.4637	12.2640	-2.0171	2.1340	10.6510	2.5585	4.1826	0.0000	0.0000	1.0000	1.0000
[0, 30]	3.0000	19.9007	33.5525	20.1127	3.3116	2.2597	28.3764	-5.7912	5.7778	21.9874	2.3600	4.5132	0.0000	0.0000	1.0000	1.0000
[0, 50]	2.7500	23.0947	38.4702	39.7101	-4.2139	3.4573	41.3413	30.1246	32.1430	37.1628	4.3852	6.1143	0.2500	0.0000	0.5000	1.0000
		-19.297	-21.596				-14.324									
[-10, 0]	3.0000	8	7	-5.4458	-0.0464	2.1174	4	-3.8018	-1.8020	-3.1335	5.3934	1.4236	0.0000	0.0000	1.0000	1.0000
		-37.127	-18.185	-11.061			-20.336	-11.842	-13.281	-22.808		-23.245				
[-30, 0]	3.0000	9	4	7	-1.5256	-0.9509	9	6	2	6	3.9292	9	0.0000	0.0000	1.0000	1.0000

-19.560

0.3327

-34.837

1.8601

-41.923

0.0000

0.0000

1.0900

1.0000

Conclusiones

Conclusiones

- Se deben tener en cuenta una gran cantidad de variables para obtener una optimización adecuada.
- La población inicial tiene un peso significativo sobre el resultado obtenido.
- Es útil tener una población variada, es decir, que no consista de individuos elitistas en su totalidad.
- Un rango de valores iniciales "simétrico" suele converger al máximo global
- Un rango de valores iniciales de mayor amplitud suele converger más rápido
- Una cruza suele converger más rápido cuando se intercambian alelos de a grupos ni muy reducidos ni muy amplios en cantidad.

Gracias por su atención