AD-A252 968

DEMONSTRATION AT THE NAVAL BAT-TALION CONSTRUCTION CENTER, GULFPORT, MISSISSIPPI - VOL VIII: DELISTING

D. J. HALEY

EG&G IDAHO, INC. P. O. BOX 1625 **IDAHO FALLS ID 83415**

JULY 1991

FINAL REPORT

SEPTEMBER 1986 - FEBRUARY 1989

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

AIR FORCE ENGINEERING & SERVICES CENTER **ENGINEERING & SERVICES LABORATORY** TYNDALL AIR FORCE BASE, FLORIDA 32403

NOTICE

The following commercial products (requiring Trademark*) are mentioned in this report. If it becomes necessary to reproduce any segment of this document containing any of these names, this notice must be included as part of that reproduction.

Eagle One® Lotus® Ziploc® XAD• Molylub• Gunnite•

PRONIS

Mention of the products listed above does not constitute Air Force or EG&G, Idaho, Inc. endorsement or rejection of this product, and use of information contained herein for advertising purposes without obtaining clearance according to existing contractual agreement is prohibited.

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE					
REPORT D	OCUMENTATIO	N PAGE			Form Approved OMB No. 0704-0138
1a. REPORT SECURITY CLASSIFICATION		1b. RESTRICTIVE	MARKINGS		
Za. SECURITY CLASSIFICATION AUTHORITY			I/AVAILABILITY O		
2b. DECLASSIFICATION / DOWNGRADING SCHEDU	LE		d for Public oution Unlim		ise
4. PERFORMING ORGANIZATION REPORT NUMBE	R(S)	5. MONITORING	ORGANIZATION R	EPORT NU	JMBER(S)
•		ESL-	TR-89-39, Vo	olume V	7III
6a. NAME OF PERFORMING ORGANIZATION	6b. OFFICE SYMBOL (If applicable)	7a. NAME OF M	ONITORING ORGA	NIZATION	
EG&G Idaho, Inc.					
6c. ADDRESS (City, State, and ZIP Code)		7b ADDRESS (City, State, and ZIP Code)			
P. 0. Box 1625 Idaho Falls, ID 83415					
8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION (If applicable)					ION NUMBER
HQ AFESC 8c. ADDRESS (City, State, and ZIP Code)	ADVIII	10 SOURCE OF	FUNDING NUMBER		
		PROGRAM	PROJECT	TASK	WORK UNIT
HQ AFESC/RDVW Tyndall AFB FL 32403-6001		ELEMENT NO.	NO.	NO.	ACCESSION NO.
11. TITLE (Include Security Classification) Full-Scale Incineration System Gulfport, Mississippi, Volume			Battalion (onstru	ction Genter,
12 PERSONAL AUTHOR(S) D.J. Haley					
13a. TYPE OF REPORT 13b. TIME CO Final FROM Se	OVERED 0 86 TO Feb 89	14. DATE OF REPO July 19	ORT (Year, Month, 991	Day) 15.	. PAGE COUNT 81
16. SUPPLEMENTARY NOTATION					
17. COSATI CODES	18. SUBJECT TERMS (C		e if necessary and	l identify	by block number)
FIELD GROUP SUB-CROUP	Herbicide Ora	inge			
	Incineration				
19. ABSTRACT (Continue on reverse if necessary of This technical report is divided Volume VIII; Delisting. This	ed into eight vo	lumes. This			
concerning disposition of soil					
also documents the data collect project consisted of three phase		or soll disposit stration of			
incinerator to process the soil					
meet Resource Conservation and	Recovery Act re	quirements	(Destruction	and R	emoval
Efficiency of 99.999T), and (3)					
incinerator on a long-term base reliability and cost effectives					
soil contaminated with dickins					
20. DISTRIBUTION / AVAILABILITY OF ABSTRACT MUNCLASSIFIED/UNLIMITED SAME AS RE	PT. DTIC USERS	21. ABSTRACT SE	CURITY CLASSIFICA	ATION	
22a NAME OF RESPONSIBLE INDIVIDUAL MICHAEL L. SHELLEY, Major, USA		22b. TELEPHONE (1904) 283		•	FICE SYMBOL RDV
DD Form 1473, JUN 86	Previous editions are o				ATION OF THIS PAGE

EXECUTIVE SUMMARY

The Naval Construction Battalion Center Demonstration Project was conducted as part of the research, test, and evaluation phase of the U.S. Air Force Installation Restoration Program and was sponsored by the Air Force Engineering and Services Center (AFESC). The overall goal of the project was to determine the reliability and cost effectiveness of a 100 ton/day rotary kiln incinerator in processing soil contaminated with dioxins and other hazardous constituents of Herbicide Orange.

The demonstration project consisted of three phases. The first phase, the verification test burn, demonstrated the effectiveness of the 100 ton/day incinerator to process soil contaminated with constituents of Herbicide Orange, in particular 2,3,7,8-tetrachlorinated dibenzo dioxin.

The second phase demonstrated the ability of the incinerator to meet the requirements of the Resource Conservation and Recovery Act (RCRA), which specifies that the incinerator must meet or exceed a Destruction and Removal Efficiency of 99.9999%.

The third phase determined the cost and reliability of using the incinerator on a long-term basis.

This report is the last of eight volumes. Volume VIII documents the regulatory and technical lessons learned concerning disposition of soil after treatment. The report also documents the data collected in support of soil disposition.

Following the Section I introduction, Section II outlines the initial regulatory interaction for soil disposition between AFESC and the Environmental Protection Agency (EPA). It explains EPA's use of the Vertical Horizontal Spread/Organic Leachate Model (VHS/OLM) to show the health risk of a hazardous waste site. Comments and criticisms of VHS/OLM are presented.

Sections III and IV explain the field operations and subsequent analyses that were undertaken to support delisting of the soil, including the

verification test burn, a RCRA trial burn, and data collected during routine operations.

Section V presents conclusions that can be drawn from the delisting process. It examines problems with EPA's Practical Quantitation Limits and VHS/OLM, the cost and level of effort, the technical complexity, the required concentrations needed for delisting, and the Air Force response to EPA's implied delisting denial.

Section VI offers six recommendations to anyone considering submission of a delisting petition for a hazardous waste.

PREFACE

This report was prepared by EG&G Idaho, Inc., P. O. Box 1625, Idaho Falls, ID 83415, under Job Order Number (JON) 2103 9027, for the Air Force Engineering and Services Center, Engineering and Services Laboratory, Tyndall Air Force Base, Florida 32403-6001.

This report summarizes work done between September 1989 and February 1989 Major Terry Stoddart and Major Michael L. Shelley were the AFESC/RDVS Project Officers.

This report has been reviewed by the Public Affairs Office (PA) and is releasable to the general public, including foreign nationals.

This report has been reviewed and is approved for publication.

MICHAEL L SHELLEY, Maj, USAF, BSC Chief, Environmental Actions R&D

FRANK P. GALLAGHER III, Co1, USAF Director, Engineering and Services Laboratory

NEIL J. LAMB, Lt Col, USAF, BSC Chief, Environics Division

Acces	sion For				
MTIS	GRARI	12			
DTIC	TAB	ā			
Unannounced					
Justi	fication	· · · · · · · · · · · · · · · · · · ·			
Ву					
Distr	ibution/				
ISVA	lability	Codes			
	Avail an	1/or			
Dist	Specia	l			
N'					
•					

(The reverse of this page is blank.)

TABLE OF CONTENTS

Section	on	Title	Page
I I	INTRODU	CTION	1
-		ECTIVEKGROUND	1 2
	1. 2.	Former Use of Herbicide Orange (HO)	2
C	c. sco	PE/APPROACH	4
II I	INITIAL	REGULATORY INTERACTION FOR SOIL DISPOSITION	8
8	3. AFE C. VER	D DISPOSAL RESTRICTIONS SC RESPONSE TO LAND DISPOSAL RESTRICTIONS TICAL HORIZONTAL SPREAD (VHS) MODEL TINUED USE OF VHS/OLM FOR DELISTING	8 9 11 14
	1. 2. 3. 4. 5. 6. 7. 8.	Conservativeness and Appropriateness of VHS/OLM Site Specific Use of VHS/OLM Use of Other Models Sorption Mechanisms Data Basis for VHS/OLM Receptor Water Consumption Conservation of Mass Toxicity Characteristic Leachate Procedure Modeling	15 15 15 16 16 16 17
III F	IELD O	PERATIONS TO SUPPORT DELISTING	18
A	. VER	IFICATION TEST BURN	18
	1. 2. 3.	Test Plan and Test Conditions	18 20 20
В	. RCR	A TRIAL BURN	23
	1. 2. 3.	Need for Trial Burn	23 24 24

Secti	on	Title	Page
		TABLE OF CONTENTS (Concluded)	
Secti	ion	Title	Page
	C.	DATA COLLECTION DURING ROUTINE OPERATIONS	25
		 Sample Collection	25 26 26
IV	DAT	A PRESENTATION AND ANALYSIS	37
	A.	RESOURCE CONSERVATION AND RECOVERY ACT (RCRA) TRIAL BURN	37
	В.	VERIFICATION TEST BURN AND MONTHLY COMPREHENSIVE SAMPLES	37
		1. Dioxins and Furans 2. Metals and EP Toxicity 3. Reactivity 4. Herbicides, Pesticides, and Polynuclear Aromatics 5. PCBs 6. Semivolatiles 7. Toxicity Characteristic Leachate Procedure (TCLP) Data	37 46 51 51 61 61
	c.	VHS/OLM EQUATION AND APPLICATION TO NCBC PROCESS ASH	63
		 Application of VHS Equation to Metals Data Application of VHS/OLM Equations to Herbicide and PAH Data Application of VHS/OLM Equation to Dioxin/Furan Data 	63 63 64
٧	CON	CLUSIONS	72
	A. B. C. D. E. F.	PRACTICAL QUANTITATION LIMITS VHS/OLM COST AND LEVEL OF EFFORT TECHNICAL COMPLEXITY REQUIRED CONCENTRATIONS FOR DELISTING AIR FORCE RESPONSE TO EPA'S IMPLIED DELISTING DENIAL	72 73 74 74 75 75
٨I	REC	OMMENDATIONS	76
U T T	055	TERENCES	70

Sect	ion Title	Page
	LIST OF FIGURES	
Figu	re Title	Page
1	NCBC Vicinity Map	5
2	NCBC and Location of Former Herbicide Orange Storage Site	6
3	HO Drum Stacks in NCBC Storage Zones B and C	7
4	Sampling Locations During Verification Test Burn	21

r	_	_	٠	2	_	_
•	p	C	T.	1	0	п

Title

Page

LIST OF TABLES

Table	e Title	Page
1	SUMMARY OF INCINERATOR OPERATING CONDITIONS DURING VERIFICATION TEST BURNS	19
2	VERIFICATION TEST BURN ANALYTICAL METHODS	22
3	PROCESS ASH AND FEEDSTOCK SAMPLE CROSS-REFERENCE LIST	28
4	ANALYTICAL METHODOLOGIES USED	32
5	MONTHLY FEEDSTOCK DIOXIN/FURAN AND HERBICIDE DATA	38
6	HIGH RESOLUTION DIOXIN/FURAN DATA SUMMARY	40
7	TOTAL METAL ANALYSIS FOR MONTHLY COMPREHENSIVE AND VERIFICATION TEST BURN SAMPLES	47
8	EP TOXICITY DATA	49
9	VHS-PREDICTED MAXIMUM ALLOWABLE METAL CONCENTRATIONS	50
10	EP TOXICITY DATA AND TOTAL WEIGHT ANALYSIS FOR CYANIDES AND SULFIDES	52
11	HERBICIDE AND PESTICIDE DATA SUMMARY WITH VHS/OLM CALCULATION	54
12	POLYNUCLEAR AROMATIC HYDROCARBON DATA SUMMARY WITH VHS/OLM CALCULATION	57
13	HIGH RESOLUTION TOXICITY CHARACTERISTIC LEACHATE PROCEDURE (TCLP) DATA	62
14	HIGH RESOLUTION DIOXIN/FURAN EQUIVALENT CALCULATION DATA SUMMARY	65

Section

Title

Page

LIST OF ABBREVIATIONS

AA	atomic absorption
AFESC	Air Force Engineering and Services Center
CLP	Contract Laboratory Program
DOD	Department of Defense
DKE	Destruction and Removal Efficiency
EC	electron capture
EP	Extraction Procedure
EPA	Environmental Protection Agency
GC	gas chromatograph
GFAA	gas flame/atomic absorption
HCE	hexachloroethane
НО	Herbicide Orange
HPLC	high performance liquid chromatography
HRGC	high resolution gas chromatography
HRMS	high resolution mass spectrometry
HxCDD	hexachlorodibenzodioxin
INEL	Idaho National Engineering Laboratory
ITAS	International Technologies Analytical Services
MDL	minimum detection limit
MS	mass spectrometry
NCBC	Naval Construction Battalion Center
OLM	Organic Leachate Model
OSW	EPA Office of Solid Waste
PAH	polynuclear aromatic hydrocarbon
PCB	polychlorinated biphenyl
PCDD	polychlorinated dibenzodioxin
PCDF	polychlorinated dibenzofuran
PeCDD	pentachlorodibenzodioxin
PIC	product of incomplete combustion
POHC	principle organic hazardous constituent
ppb	parts per billion

Title

Page

ppm	parts per million
ppq	parts per quadrillion
ppt	parts per trillion
PQL	practical quantitation limit
RCRA	Resource Conservation and Recovery Act
RD&D	Research, Development, and Demonstration
SAIC	Science Application International Corporation
SCC	secondary combustion chamber
SOW	statement of work
TCB	1,2,4-trichlorobenzene
TCDD	tetrachlorodibenzo-p-dioxin
TCLP	Toxicity Characteristic Leachate Procedure
UV	ultraviolet
VHS	Vertical Horizontal Spread
VOST	volatile organic sampling train

Section

SECTION I

A. OBJECTIVE

The purpose of the Full-Scale Incinerator System Demonstration Project was to show the reliability/maintainability and cost effectiveness of a mobile rotary kiln incinerator system for soil cleanup and restoration at a Herbicide Orange (HO)-contaminated site. The mobile waste incineration system, Model MWP-2000, manufactured and operated by Environmental Services Company (now known as ENSCO) of Little Rock, Arkansas, was selected for the project. The selected location was a former HO storage site at the Naval Construction Battalion Center (NCBC) in Gulfport, Mississippi. This project was under the sponsorship of the Air Force Engineering and Services Center (AFESC), Tyndall Air Force Base, Florida.

The field demonstration of the program was organized in three phases to meet U.S. Environmental Protection Agency (EPA) requirements for a Research, Development, and Demonstration (RD&D) permit:

- 1. A preoperational test burn to verify technical performance and provide data for a range of soil feed rates.
- 2. A trial burn to ensure conditions of a Resource Conservation and Recovery Act (RCRA) permit can be met.
- 3. Continuous operation to provide reliability and maintainability data.

Additionally, a fourth phase, disposition of the process ash resulting from the test burns and continuous operation, was required by the EPA Office of Solid Waste (OSW) under RCRA regulations. This report discusses the activities associated with the fourth phase. The other phases are reported separately in References 1 through 7.

The objective of this report is to describe:

1. The regulatory process for disposition of incinerator residues.

- 2. The actions taken by the U.S. Air Force and its contractors to dispose of the process residues and the rationale for those actions.
- 3. The data collected to support incinerator residue disposition.
- 4. The conclusions, recommendations, and lessons learned from the disposition activities.

B. BACKGROUND

1. Forrer Use of Herbicide Orange (HO)

HO is primarily composed of two compounds, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4-5-trichlorophenoxyacetic acid (2,4,5-T), and various esters of these two compounds. It was sprayed as a defoliant in Vietnam during the 1960s and at Eglin Air Force Base, Florida, between 1962 and 1970. NCBC served as a temporary storage site for the HO-filled drums while awaiting loading of those drums for ocean shipping to Vietnam. Early in 1970, the herbicide 2,4,5-T was reported to be a teratogen in mice and rats (Reference 8). More specifically, studies identified an unwanted by-product, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which is contained in 2,4,5-T, as the reason for the teratogenic effects (Reference 9). The Department of Defense (DOD) discontinued the use of HO in 1970 (Reference 10). At that time, the remaining continental U.S. stockpile (850,000 gallons) was stored at NCBC, and the 1,370,000 gallons located in South Vietnam were shipped to Johnston Island in the central Pacific Ocean (Reference 11).

During the summer of 1977, the entire 2.2 million gallon HO stockpile was disposed of at sea by high temperature incineration (Project PACER HO, Reference 11). However, spills during the storage and handling of HO left the soil at the storage area contaminated with dioxin. The Air Force Logistics Command Plan and EPA permits for the disposal of bulk quantities of HO committed the Air Force to a followup storage site reclamation and environmental monitoring program (Reference 11). Immediately following the at-sea incineration, the U.S. Air Force Occupational and Environmental Health

Laboratory initiated site monitoring studies of chemical residues in nearby soil, drainage water, and drainage ditch sediment at the former NCBC HO storage site (References 11 and 12).

In 1984, AFESC requested the services of EG&G Idaho, Inc., at the Idaho National Engineering Laboratory (INEL) to characterize the extent of soil contamination (Reference 12). Subsequently, in 1985 EG&G Idaho managed two small-scale technology demonstration projects to determine the feasibility of decontaminating soil containing dioxins (References 13 and 14). Although those demonstrations were successful, the technologies were not sufficiently developed to process large quantities of soil. Therefore, AFESC continued with the technology demonstration using a full-scale rotary kiln incinerator. This demonstration was conducted under an RD&D permit granted by EPA Region IV.

The incinerator system was owned and operated by ENSCO and arrived onsite in September 1986. The verification test burn was performed in December 1986 (Reference 2) followed by a RCRA trial burn in May 1987 (Reference 7). Routine operations began in November 1987 and continued until November 1988. The incinerator was decontaminated and removed from the NCBC site in February 1989.

In November 1988 the Air Force submitted a petition to EPA requesting that the processed soil be excluded from the EPA's list of hazardous waste (Reference 15). That petition included data from the verification test burn, the RCRA trial burn, and operational data that was collected from the start of operations until July 1988. Subsequently, in March 1989 an addendum report was submitted that included operational data collected between August 1988 and the end of the routine operations in November 1988 (Reference 16).

At the time of this writing, EPA has not made a formal determination concerning the disposition of the processed ash.

2. Storage Site Location

NCBC is a fenced, limited-access military installation (see Figure 1). It is a land area of several square miles located approximately 2 miles from the Gulf of Mexico and is approximately 20 feet above sea level.

Approximately 18 acres at NCBC served as an HO storage site. During the temporary storage phase, the HO drums were stacked within three zones (A, B, and C), shown as shaded areas in Figure 2. The stacks in Zones B and C covered 40-foot-wide by 1200-foot-long strips along the indicated roadways (Figure 3). The storage of filled drums during 1970-1977 occurred only in Zone A. Because of the arrangement of the drums, approximately 31 acres of land were left unusable. The storage site within the perimeter of Zones A, B, and C is a restricted area and is not used. The soil processed during the one year of operation is stored entirely in Zone A.

C. SCOPE/APPROACH

The scope of this report is to document the regulatory and technical lessons learned concerning disposition of soil that is considered hazardous after treatment. This report also documents the data collected in support of soil disposition.

Figure 1. NCBC Vicinity Map.

Figure 2. NCBC and Location of Former Herbicide Orange Storage Site.

7-3327

Figure 3. HO Drum Stacks in NCBC Storage Zones B and C.

SECTION II INITIAL REGULATORY INTERACTION FOR SOIL DISPOSITION

A. LAND DISPOSAL PESTRICTIONS

According to EPA regulations described in 40 CFR 260.20, waste containing 2,3,7,8-TCDD or 2,3,7,8-tetrachlorinated dibenzofuran is classified as an F027 waste. On 7 November 1986, OSW promulgated regulations that effectively banned the land disposal of waste containing dibxins in excess of 1.0 parts per billion (ppb) (Reference 17). The regulations permitted disposal of dioxin-containing waste in approved landfills if the dioxin concentration was less than 1.0 ppb; however, at the time of project commencement, there were no approved landfills in the United States accepting any dioxin-contaminated waste. This effectively meant that disposal of dioxin-containing waste required processing. However, when such a waste is processed in an EPA-approved treatment device, the resulting waste is still considered hazardous and is defined as an F028 waste.

Because the FO28 waste is still considered hazardous, it must either be disposed of as hazardous waste in an approved Subtitle C landfill or be excluded as a hazardous waste. The exclusion process is called "delisting." Delisting is a procedure by which a waste generator may petition EPA to review applicable data that could be used to determine if a waste meets the regulatory definitions of a hazardous waste. A petition mechanism to EPA is described in 40 CFR 260.20 and 260.22. That procedure allows persons to demonstrate that a specific waste from a particular site or generating facility should not be regulated as a hazardous waste under 40 CFR 261. To be excluded from regulation, petitioners must show that the waste does not meet any of the listing criteria, and must also demonstrate that the waste does not exhibit any of the hazardous waste characteristics and does not contain any other toxicants at hazardous levels (Reference 18). If EPA determines that the waste is no longer hazardous, it will remove that particular waste from its list of hazardous wastes, hence the name "delisting."

Once an FO28 waste is delisted, it may be placed in a Subtitle D type landfill (e.g., a permitted municipal solid waste landfill), or with EPA permission it may be placed back upon the original site. The most economical option for the process ash appeared to be delisting followed by onsite disposal. Therefore, AFESC pursued the delisting option.

B. AFESC RESPONSE TO LAND DISPOSAL RESTRICTIONS

As with most regulatory petitions, the delisting process undergoes a very long and detailed review cycle. At the time of project initiation in early 1986, OSW expected the delisting process to take up to 2 years and it would not grant delisting of the waste prior to processing and analysis of the processed soil. Due to the unavailability of certified landfills that could accept FO28-listed waste and the potential enormous costs of land disposal, AFESC was unwilling to commit to processing large quantities of contaminated soil without some assurances that delisting could be obtained. Therefore, prior to commencing routine soil processing, AFESC decided to perform a verification test burn.

The purpose of the verification test burn was to demonstrate that the MWP-2000 incinerator could process soil contaminated with polychlorinated dibenzodioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and other constituents of HO and produce no hazardous effluents. AFESC project personnel were particularly concerned that the incinerator residue could meet the apparent EPA headquarters criteria for delisting, and that the incinerator would not produce any hazardous off-gases. EPA Region IV, which had permitting authority for this project, was particularly concerned about potential production of hazardous off-gases. Therefore, it required successful completion of a verification test burn prior to granting permission to commence routine soil processing and data gathering.

The delisting authority, which differs from the RD&D permitting authority, could influence the sampling and analysis planning for the verification test burns. Therefore, AFESC and EG&G Idaho project personnel obtained guidance early in the project from both OSW and EPA Region IV to improve the possibility of delisting petition approval when submitted later.

A draft delisting petition was submitted 22 January 1986 to OSW in Washington, D.C. Included was a list of constituents possibly present in the untreated soil at the former HO storage site. The recommended analytical methods and associated detection limits for each constituent were also listed. In response to a verbal request, additional NCBC sample data were submitted 14 April 1986. Because the revised RD&D application included a revised sampling and analysis matrix plan, a copy of this plan was also transmitted to OSW seeking verification that the revised plan was acceptable for the purpose of pursuing delisting. OSW did not respond during the period of the RD&D application review by EPA Region IV.

On 11 September 1980, OSW responded. The OSW letter:

- Identified PCDD/PCDF congeners, chlorinated benzenes, and chlorinated phenols to be on the analysis list.
- Recommended a list of only 9 metals; whereas, the EG&G Idaho list showed 14 metals.
- Added three polycyclic aromatic hydrocarbons not on the submitted list.
- 4. Added 2,4-D and 2,4,5-T to the analysis list.
- 5. Deleted coal tar and creosote from the analysis list.

A meeting was held with OSW in Washington, D.C., 19 September 1986 to clarify certain details regarding the letter. A representative from Versar, Inc., the company performing the verification sampling for the project, also attended. Versar transmitted a modified sampling and analysis matrix plan to OSW on 15 October 1986. This plan included all analyses requested by OSW and several additional analyses to ensure that comprehensive analytical data would be available. The letter also included discussion about methods to achieve low detection limits for PCDDs/PCDFs and organics. On 12 December 1986, USW confirmed that data collected in accordance with the modified sampling and analysis plan would be sufficient for the purposes of evaluating a delisting petition (i.e., OSW implicitly agreed not to request additional analyses after

the verification test burn was completed when additional data collection would have been impractical).

C. VERTICAL HORIZONTAL SPREAD (VHS) MODEL

On 27 November 1985, EPA proposed the Vertical Horizontal Spread (VHS) model in the Federal Register (Reference 19). The equation is a non-site-specific groundwater transport model that attempts to predict the fate of a given contaminant in a drinking water aquifer as it moves off of a hazardous waste site toward a drinking water well. Presumably, if the model showed that the health risk to nearby human receptors was within the range of acceptability, then EPA could grant delisting. If the model showed the risk to be unacceptable, then EPA would most likely deny delisting.

The model uses the following expression to determine a concentration of the contaminant in drinking water arbitrarily set 500 feet down gradient from a waste pit:

$$C_y = C_0 \operatorname{erf} \left[\left(\frac{Y'}{4Y} \right)^{0.5} \right] \operatorname{erf} \left[\frac{X}{4(\alpha_t y) \ 0.5} \right]$$
 (1)

where

- C_y = Predicted groundwater concentration at a hypothetical receptor well located a distance Y down gradient (ppm)
- C_o = Leachate concentration obtained from Extraction Procedure (EP) toxicity data or the Organic Leachate Model (ppm)
- Y' = Width of hypothetical waste trench, fixed at 12.2 meters
- Y Distance to the receptor well, fixed at 152.4 meters
- α_t = Transverse dispersivity, fixed at 2 meters

X = Length of the hypothetical trench, in meters, calculated from the waste volume assuming a trench 12.2 meters (40 feet) wide and 2.4 meters (8 feet) deep.

The only variables in the equation that are not previously fixed by EPA are X, the length of the hypothetical trench, and the two concentrations C_{γ} and C_{o} . If the volume of waste exceeds 6116 cubic meters (8000 cubic yards), where X would equal 206 meters, then the second error function in the equation approaches unity. Substituting the aforementioned values into Equation 1, one obtains:

$$C_y = C_o \times (0.1585)$$
 (2)

Normally, C_o is determined through analysis using the EP Toxicity Test or the Oily Waste EP Toxicity Test. For organics, however, EPA considered those tests inaccurate, therefore, at the time the VHS model was promulgated, EPA also proposed an empirical model for predicting C_o , the concentration of an organic in leachate as it enters the aquifer (Reference 20). Based on that proposed equation, EG&G Idaho ran the two models and determined that if the soil was processed and achieved a cleanup standard of less than 0.1 ppb, then delisting was plausible. Those calculations assumed a solubility of dioxin in water of 100 parts per trillion (ppt) and a pseudo-drinking water standard of 0.2 parts per quadrillion (ppq or parts per 10^{-15}).

Because there was no maximum concentration level for 2,3,7,8-TCDD in either the National Primary Drinking Water Standard or the National Secondary Drinking Water Standard, EPA adopted a pseudo-drinking water standard based on a cancer risk specific dose estimate of 6.4×10^{-12} mg/kg body weight-day (Reference 21). That risk estimate was based on a plausible upper-bound increased cancer risk of one in a million (10^{-6}) when exposed to the carcinogen at the dose rate for a lifetime; EPA assumed that a 70-kg person residing near the waste site consumed 2 liters of water per day from a

^{*} After 25 September 1990, the EP Toxicity Test was changed to the Toxicity Characteristic Leachate Procedure (TCLP). See <u>Federal Register</u>, 29 March 1990, p. 11798.

potentially contaminated drinking water well for 70 years. This resulted in a pseudo-drinking water standard of 0.2 ppq * (i.e., 2 x 10^{-4} ppt).

On 29 July 1986, EPA proposed a revised Organic Leachate Model (OLM) equation in the Federal Register (Reference 22). That model, which became final 13 November 1986 (Reference 23), is given by:

$$C_o = 0.00211 \ C_u^{0.678} \ S^{0.373}$$
 (3)

where

- $C_o = leachate entering the aquifer (mg/L)$
- $C_u = concentration of organic in the waste residue (mg/L)$
- S = the solubility of the organic (mg/L).

By combining Equations 2 and 3, one obtains

$$C_{\nu} = C_{\nu}^{-678} S^{-373} (0.0003344)$$
 (4)

Rearranging and solving for Cu, one obtains

$$c_{w} = \left(\frac{c_{y}}{(s^{.373})(0.0003344)}\right)^{\frac{1}{0.678}}.$$
 (5)

It is interesting to note that the only volume-dependent term in Equation 1 is in the second err r function term. From this, it can be seen that the larger the waste volume, the lower the allowed concentration of organic contaminant in the waste. Equation 5 shows that if the drinking water standard is used for C_{γ} and if the waste volume exceeds 6116 cubic

^{*} It is important to note that this pseudo-drinking water standard is more than two orders of magnitude below the best available analytical detection limits of 0.035 ppt observed for clean tap water during the verification test burn (Reference 2).

meters, such that the second error function in Equation 1 approaches unity, then the cleanup standard, C_u , remains fixed and independent of waste volume.

In 1986, both EG&G Idaho and EPA used 100 ppt for the solubility and 0.224 ppq for the compliance point concentration, C_y . This resulted in an allowed waste concentration, C_w , of 0.124 ppt. Because the analytical detection limits of the incinerator residue were projected to be approximately 5 ppt, the delistability of the incinerator residue became uncertain.

Closer examination of EPA's use of the OLM equation revealed that the 100 ppt solubility term, S, was based on pure 2,3,7,8-TCDD in pure deionized and distilled water. Additional research by the Monsanto Company revealed that the actual solubility of 2,3,7,8-TCDD in soil was 7.96×10^{-6} ppm (7.96 ppt), or two orders of magnitude lower than the previously used solubility (Reference 24). This correction to the solubility was submitted to EPA on 25 February 1987. Using this solubility and a pseudo-drinking water standard of 0.224 ppq (Reference 21), a delisting criteria, C., of 0.499 ppt of 2,3,7,8-TCDD in the soil was obtained. This level, however, is still below the best achievable detection limit using high resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS). Fortunately, EPA recognized this dilemma when it promulgated the OLM equation in 51 FR 41082-41100 (Reference 23); it stated: "Where hazardous constituents in a waste are determined to be nondetectable using appropriate analytical methods, the Agency will, as a matter of policy, not regulate the waste as hazardous." This simply meant that the waste analysis had to show nondetectable concentrations of 2,3,7,8-TCDD using HRGC/HRMS techniques to potentially obtain delisting. The verification test burn data clearly showed that neither 2,3,7,8-TCDD nor total TCDD was detected in the incinerator ash, thus delisting appeared probable.

D. CONTINUED USE OF VHS/OLM FOR DELISTING

Since promulgation of the VHS/OLM for evaluation of delisting, EPA has received an abundance of criticism. Most of the criticism has centered on the extraordinary conservatism of the model. Nevertheless, EPA believes the

VHS/OLM represents a "reasonable worst case" management scenario and therefore has continued to use the model.

On 2 June 1988, OSW answered many of the criticisms in response to public comment on a proposed delisting petition by Syntax Agribusiness, Inc., for certain solid wastes that were to be generated at the Denny Farm site in McDowell, Missouri, by the EPA mobile incinerator system (Reference 25). Some of the most significant comments are addressed below:

1. Conservativeness and Appropriateness of VHS/OLM

Several commentators expressed concern regarding the EPA's use of the OLM and VHS model as factors in setting the delisting levels; they criticized the conservative assumptions and parameters of the models. EPA responded by restating its need to maintain a "reasonable worst case" conservative approach to not incorrectly release a waste from the control of RCRA Subtitle C.

2. Site Specific Use of VHS/OLM

Other commentators criticized the choice of the VHS/OLM because its generic nature does not permit site specific factors to be considered. However, EPA believed that since the waste to be delisted would be removed from RCRA control and it could be put anywhere, it had to take a conservative approach and assume that it would be placed in any landfill. EPA apparently did not have the authority to specify the location of final waste disposal following delisting.

3. Use of Other Models

One commentator suggested that the model used by the Centers for Disease Control (Reference 26) be used instead of the VHS/OLM. However, that model only modeled the dermal and direct ingestion pathway and did not consider ingestion of groundwater as does the VHS/OLM. EPA considered use of other models that were under development by the EPA Office of Research and Development, however, those models were not sufficiently developed or peer reviewed for regulatory use.

4. Sorption Mechanisms

One commentator criticized the lack of attenuative mechanisms within the VHS/OLM that would significantly reduce the predicted concentration of highly attenuative compounds such as dioxin. EPA acknowledged that sorption effects can play an important part in the migration of contaminants through groundwater. However, it maintained that sorption effects are site specific and, therefore, chose to maintain a "reasonable worst case" position and not include them at all.

5. Data Basis for VHS/OLM

One commentator criticized the data on which the OLM was based. In particular, the commentator stated that the OLM is inappropriate for predicting the leacning capacity of highly insoluble compounds (such as dioxin) because highly insoluble compounds are not well represented in the data base on which the OLM was based. The commentator also stated that the insoluble compounds that are represented in the data base show a very poor correlation with the adopted model and that the actual leaching data from municipal incinerator ash show that the OLM overpredicts dioxin leaching by a factor of 100.

In response, EPA explained that the OLM was constructed by using a variety of soluble and insoluble organic compounds in a variety of matrices. EPA agreed that the variability of leaching data is partly responsible for the low correlation. Additionally, EPA stated that in general, any time a correlation is developed from a subset of data, the correlation will naturally be lower. Nevertheless, EPA continued to maintain a "reasonable worst case" position and did not permit the use of additional data from municipal incinerator ash from which to develop different correlation coefficients.

6. Receptor Water Consumption

One commentator criticized the highly conservative assumptions that the receptor lives only 500 feet down gradient from the disposal site and

that the receptor obtains all of his/her drinking water (2 liters per day) from that well for an entire lifetime. However, because the commentator did not submit supporting data, EPA rejected the commentator's suggestion that alternative assumptions would be appropriate.

7. Conservation of Mass

Because of its simplicity, the VHS/OLM assumes no conservation of mass. In essence, the model implicitly fixes the source term of the model as infinite with respect to time; there are no decay terms or terms that account for eventual depletion of the contamination source. This assumption, which has become one of the most discussed assumptions within the VHS/OLM, would most likely underestimate the dilution of a contaminant that may occur in an aquifer. Although EPA acknowledged this flaw and that models do not always predict factual values accurately, EPA believes that the VHS model provides a useful analytical tool for the evaluation of the hazards posed by hazardous wastes.

8. Toxicity Characteristic Leachate Procedure Modeling

The promulgation of the Toxicity Characteristic Leachate Procedure (TCLP) for organics and metals may cause some changes in EPA policy. In development of the TCLP, EPA used the Composite Model for Landfills (Reference 27). The model is considerably more sophisticated than the VHS/OLM and removes some of the overconservatism inherent in the VHS/OLM. At the time of this writing, OSW has not approved the use of Composite Model for Landfills for the purposes of delisting.

SECTION III FIELD OPERATIONS TO SUPPORT DELISTING

A. VERIFICATION TEST BURN

The verification test burn was conducted to demonstrate the feasibility of obtaining delisting and to demonstrate to EPA Region IV that no hazardous effluents were being emitted as a result of the waste incineration. To achieve those goals, a series of incinerator performance tests was conducted in which native contaminated soil was processed while a variety of effluent and feedstock samples were collected. This section summarizes the results of those tests (see Reference 2 for additional detailed information).

1. Test Plan and Test Conditions

Six tests were conducted at different feed rates. The first was a clean soil test in which soil was fed to the incinerator at a 5 ton/hour rate for 8 consecutive hours. The purpose of this test was to ensure that all equipment was functional prior to processing contaminated soil; repairs or modifications would be more difficult to implement after the incinerator became potentially contaminated.

Five contaminated soil tests were run in December 1986. The feed rate ranged from 2.8 to 6.3 ton/hour. As indicated in Table 1, the thermal conditions for all tests were nearly the same; the kiln temperature ranged from 1355 to 1645°F and the secondary combustion chamber (SCC) temperature ranged from 2097 to 2174°F. The lowest kiln temperature was observed on Test 6 that also had the highest mass feed rate; therefore, Test 6 represents the most severe conditions observed during the verification test burn.

TABLE 1. SUMMARY OF INCINERATOR OPERATING CONDITIONS DURING VERIFICATION TEST BURNS.

12/06/86 12/06/86 76 76 76 1830 1661 1661 1663 1645 9.64b 9.0.15 -2.11 2184 2161 2171 -2.15 -2.15 -2.00	,		
me (min) oil feed rate (ton/h) ted (ton) ted (ton) temp. ('F) temp. ('F) pressure (in. H ₂ 0) pressure (in. H ₂ 0) pressure (in. H ₂ 0) temp. ('F) pressure (in. H ₂ 0) 2184 2184 2184 2184 2218 22184 2218 22184	3	2	9
76 76 77 3.6 3.6 1661 1661 1645 1645 1645 1645 1645 164	12/01/86	12/15/86	12/15/86
76 76 3.6 1661 1661 1645 1645 1645 1645 1645 1645 1645 1647 1647 1648	0945	1455	09201145
/h) 2.82 3.6 1661 1661 1630 1645 1645 1645 1645 1645 1645 1646 1646	1100	1605	10301255
7h) 2.82 3.6 1661 1661 1630 1645 -9.64 -0.15 -2.1 2184 2161 2171 2171 2171 2171 2171 2171 2171	70	70	70
3.6 1661 1661 1630 1645 -9.64b -0.15 -2.1 2184 2161 2171 -2.15 -2.15 -2.00	3.71	5.22	6.31
1661 1630 1645 1645) -9.64 b -0.15] -2.1 2184 2184 2181 2171 2171 -2.15 -1.68 -2.00	4.3	6.1	7.4
1630 1645 1645 1646 10.15 10.15 12.16 12.16 1.08 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1642	1624	1418
1645 -9 64 b -0.15 -2.1 -2.18 -2.15 -2.15 -1.68 -2.00	1440	1391	1315
2.46 -0.15 -0.15 -2.1 -2.16 2.161 2.171 -2.15 -1.68 -2.00	1552	1485	1355
-0.15 -2.1 -2.1 2184 2161 2171 -2.15 -1.68 -2.00	-0.44	-0.43	-0.39
2184 2184 2161 2171 -2.15 -1.68 -2.00.	-0.14	-0.36	-0.23
2184 2161 2171 -2.15 -1.68 -2.00	-0.25	-0.39	-0.33
2161 2171 -2.15 -1.68 -2.00	2187	2168	2118
2171 -2.15 -1.68 -2.00	2140	2090	2081
-2.15 -1.68 -2.00	2174	2113	2097
-1.68 -2.00 -1.00 (x) 3.68	-2.37	-2.70	-2.51
-2.00.	-1.95	-2.36	-2.12
3 68	-2.09	-2.51	-2.26
,	5.68	10.58	5.41
Avg. combustion efficiency Invalid ^c 99.9584	99.9481	99.9585	99.9811
$(x)^{2}(x)$			

a. Test Burn 4 is not shown because of similarity to Test Burn 3 and the samples were not analyzed.

b. During the test burn the kiln pressure normally operated between zero and -1 inch of water except for two readings: -8.4 inches at 0715 and -9.64 inches at 0745, which were both ahead of the stack sampling period.

c. The combustion efficiency for Test 1 was invalid due to a CO₂ monitor failure. The instrument was repaired and subsequent tests are valid.

2. Sampling

Samples were collected from a variety of locations as shown in Figure 4. Most notably, the ash drag, kiln solids, and soil feedstock samples were collected every 15 to 20 minutes. The kiln solids were sampled because the ash drag cooling water had the potential of introducing contamination to the ash drag. The kiln solids samples were to be analyzed only if contamination was found in the ash drag samples. As discussed in Section IV (B), no contamination was found in the ash drag samples.

Stack gas samples were taken during each test burn. A volatile organic sampling train (VOST) was used to collect any volatile products of incomplete combustion (PICs). A Modified Method 5 sampling train was also used to sample the stack gas during each test to collect particulate and semivolatile compounds including PCDDs.

Soil residence time in the kiln was calculated to be approximately 20 minutes. Therefore, all sample collection began approximately 30 minutes after the contaminated soil feed to the incinerator started. This ensured that the collected samples represented the conditions that were anticipated during normal operations.

All samples collected were placed in their appropriate containers and preserved as required (with ice, if necessary) and were analyzed within the time constraints and according to procedures in Reference 28.

3. Sample Analysis

The methods used to analyze the samples collected during the verification test burn are summarized in Table 2. These methods were reviewed by OSW prior to the verification test burn and deemed appropriate for purposes of delisting the treated soil.

International Technologies Analytical Services (ITAS) performed all analyses for the verification test burn. ITAS used a VG/70-250F high resolution mass spectrometer for dioxin and furan analyses. The method used was an

Figure 4. Sampling Locations During Verification Test Burn.

TABLE 2. VERIFICATION TEST BURN ANALYTICAL METHODS.

Description	U.S. EPA CLP ^b plus Method 8280 ^G modified for HRGC/HRNS U.S. EPA CLP ^b plus Method 8280 ^G modified for HRGC/HRNS U.S. EPA CLP ^b plus Method 8280 ^G modified for HRGC/HRNS	U.S. EPA CLP ^b plus Method 8280 ^c modified for HRGC/HRMS U.S. EPA CLP ^b plus Method 8280 ^c modified for HRGC/HRMS U.S. EPA CLP ^b plus Method 8280 ^c modified for HRGC/HRMS	L/L extraction, GC/MS analysis Sonification extraction, GC/MS analysis L/L and Soxhlet extraction, combine extracts and analyze per CLP	L/L extraction, HPLC analysis Soxhlet or sonification extraction, HPLC analysis L/L and Soxhlet extraction, combine extracts, HPLC analysis	L/L extraction, GC/MS analysis Sonification extraction, GC/MS analysis L/L and Soxhlet extraction, combine extracts and analyze per CLP	Extraction, methylation, GC/EC Extraction, methylation, GC/EC L/L and Soxhlet extraction, combine and methylate extracts, GC/EC	Digestion, AA or GFAA analysis Digestion, AA or GFAA analysis	Thermal disorption, GC/MS L/L and Soxhlet extraction, combine extracts and analyze per CLP
Method	17AS SOP® 17AS SOP® 17AS SOP®	17AS SOP® 17AS SOP® 17AS SOP®	U.S. EPA CLP SOM ^d U.S. EPA CLP SOM ^d Methods 3510, 3540 ^c U.S. EPA CLP SOM ^d	Method 8310 ^c Methods 3540, 3550 and 8310 ^c Methods 3510, 3540 and 8310 ^c	U.S. EPA CLP SON ^d U.S. EPA CLP SON ^d Methods 3510, 3540 ^c U.S. EPA CLP SON ^d	Method 8150 ⁶ Method 8150 ⁶ Methods 3510, 3540 and 8150 ⁶	U.S. EPA CLP SOUR	Method 3720 Methods 3510, 3540 ⁶ and U.S. EPA CLP SOM
Matrix	Water Soil Stack gas	Water Soil Stack gas	Water Soil Stack gas	Water Soil Stack gas	Water Soil Stack gas	Water Soil Stack gas	Vater Soil	VOST MHS
Analyte	2,3,7,8-1000	PCDD/PCDF (total)	Extractable organics (acid and base/ neutral)	PAHS	Toxaphene/PCBs	Herbicides	Metals	PICs

a. See Appendix R for ITAS SOPs.

b. See Appendix S for U.S. EPA CLP required detection limits.

c. Methods from EPA SW-846 (Reference 19).

d. Statement of Work, "Organic Analysis, Multi-Media, Multi-Concentration," July 1985 Revision.

e. Statement of Work, "Inorganic Analysis, Multi-Wedia, Multi-Concentration," SOW No. 785, July 1985.

adaptation of EPA SW-846 8280 (Reference 28); the adaptation provided for high resolution mass spectrometry (HRMS) analyses. The adapted method is nearly identical to the method that is now called EPA SW-846 8290 for high resolution analysis. During the preparation of the delisting petition, the ITAS method was informally reviewed and approved by Science Application International Corporation (SAIC) that was on contract to OSW as a delisting petition reviewer. SAIC concurred that the two methods are very similar and sufficient for purposes of delisting petition evaluation.

B. RCRA TRIAL BURN

1. Need for Trial Burn

A RCRA trial burn was performed in May 1987 to demonstrate compliance with EPA hazardous waste incinerator operating requirements (Reference 7). Specifically, the trial burn was designed to demonstrate that the MWP-2000 incinerator could process materials, called principle organic hazardous constituents (POHCs), that are considered more difficult to destroy than 2,3,7,8-TCDD with a Destruction and Removal Efficiency (DRE) of 99.999% or greater as specified in 40 CFR 264.343. The trial burn was needed because the aforementioned verification test burns did not show compliance with the DRE standard; those tests were not designed to demonstrate DRE compliance.

The performance criteria specified in 40 CFR 264.343 were part of the RD&D permit for the MWP-2000 incinerator operation at NCBC. However, EPA Region IV had previously agreed that a RCRA trial burn to demonstrate 99.9999% DRE would not be necessary for the MWP-2000 unit located at NCBC. That agreement was predicated on the premise that an identical ENSCO-owned MWP-2000 incinerator located in El Dorado, Arkansas, had already demonstrated compliance with the 99.9999% DRE requirement. The verification test burns at NCBC in December 1986 were only intended to demonstrate to EPA that the MWP-2000 could process native NCBC soil without producing hazardous effluents.

The MWP-2000 incinerator located in El Dorado underwent a RCRA trial burn in the spring of 1986. In late autumn, shortly before the December 1986 verification test burn at NCBC, EPA Ragion VII notified ENSCO that the RCRA trial burn at El Dorado failed to demonstrate the required 99.9999% DRE. ENSCO did not

notify the Air Force, EG&G Idaho, or EPA Region IV of this shortcoming. As a result, the verification tests proceeded as planned and achieved the Air Force goal to demonstrate that the treated soil PCDD/PCDF congener sum (tetra, penta, and hexa) be less than 1.0 ppb. However, due to the low concentration of TCDD in the native soil, the DRE requirement could not be demonstrated even though HRMS was used to achieve the lowest possible detection levels. Additionally, the data results indicated that delisting was plausible.

After careful examination of all available data and extensive discussions with EPA Region IV, it was determined that the data were not sufficient to satisfy the POHC performance 99.9999% DRE requirement; a trial burn of the MWP-2000 incinerator system was required to demonstrate this capability before full-scale soil restoration could proceed at NCBC.

2. Relevance of Trial Burn to Delisting

The data collected from the RCRA trial burn did not have a direct or significant effect on EPA's delisting decision. The purpose of the trial burn was to demonstrate compliance with the DRE requirements specified in 40 CFR 264.343; the trial burn did not provide any data regarding the waste classification of the processed native NCBC soil. The trial burn did, however, add data to support the Air Force claim that difficult-to-incinerate waste could be processed without producing any additional hazardous waste. The trial burn is mentioned herein to provide the reader a generalized view of the testing efforts needed for incinerator demonstration. Additional information is found in Reference 7.

3. Surrogate Soil and POHC Selection

Because the concentrations of contaminating constituents were not sufficiently high in the native soil to achieve the desired analytical sensitivity, a surrogate POHC feed was necessary. Two POHCs were selected as surrogates for the HO-contaminated soil: hexachloroethane (HCE) and 1,2,4-trichlorobenzene (TCB). Those two compounds were selected because they were considered to be more difficult to destroy than 2,3,7,8-TCDD according to the heat of combustion ranking system (Reference 29). Additional rationale for their selection can be found in Reference 7.

EPA Region IV denied permission to use native NCBC soil for the trial burns. As a result, clean builders sand was selected as a surrogate for the native NCBC soil.

The trial burn was conducted in May 1987, and after extensive review by EPA Region IV, permission to operate was granted 25 November 1987. Routine operations began 27 November 1987 and continued until 19 November 1988.

C. DATA COLLECTION DURING ROUTINE OPERATIONS

1. Sample Collection

Once routine operations began in November 1987, routine sampling commenced to support the delisting petition. Each month, a 24-hour composite sample was collected and analyzed for a variety of Appendix VII compounds. Monthly samples included feedstock soil (untreated soil) and treated soil. Feedstock soil samples were obtained from the conveyor belt that transports the soil from the shredder to the feed hopper.

Between November 1987 and April 1988, treated soil samples were obtained as grab samples from the five to six roll-off boxes filled during a 24-hour period. The treated soil samples were taken by collecting six grab samples from different locations in each roll-off box (i.e., a total of 30 to 36 samples) and compositing all grab samples to form a composite sample. The 24-hour sampling episode was arbitrarily chosen to take place between the 14th and 17th of each month because the first sampling episode occurred 15 December 1987. The decision to collect samples on a monthly basis, rather than weekly or daily, for example, was somewhat arbitrary, but based partly on the need to collect sufficient data to support delisting while retaining control over analytical costs.

Beginning in April 1988, samples of treated soil were collected in a similar manner. Each hour, a 16-ounce sample jar was filled with treated soil collected as it fell from the ash drag conveyor into the ash drag bin. To facilitate collection, a sampling tool was used that held the sample jar so it could be positioned to collect the soil as it fell into the ash drag bin. After

all 24 samples had been collected, a composite sample was made by homogenizing the contents of all the jars in a large clean container. Precautions were also taken to perform the mixing in a "clean" area (one of the sample trailers located on the site) to minimize the chance of any cross-contamination since the analysis would look for concentrations in the low parts per trillion (ppt) range.

The changes to the sampling procedures in April 1988 were made because the ash collection system was modified to mitigate the possibility of cross-contamination due to intermittent high winds. The treated soil was being analyzed at detection limits near 1 ppt, and even very small amounts of cross-contamination could bias the results and contaminate the clean processed soil. For that reason, the ash collection system was completely enclosed in April 1988.

2. Sample Handling

Both the feedstock soil and treated soil samples were placed in I-Chem sample jars that had been certified as clean. All samples were shipped by Federal Express so analysis could be performed as quickly as possible and within the specified holding times. All sample containers were labeled with a specially coded sample number that indicated the date the sample was collected and the type of sample obtained (i.e., feedstock or treated soil sample). Each sample was tracked using a chain-of-custody form.

3. Sample Analysis During Routine Operations

The analyses of the routine operation samples were performed in accordance with the same or more stringent methodologies used for the verification test burn. The list of constituents was agreed upon by OSW.

The methods used to analyze the monthly samples for comprehensive analysis are summarized in Tables 3 and 4. Table 3 presents the analyte list for each sample collected while Table 4 presents the analytical method used for each analyte with respect to the laboratory employed.

Two laboratories were used for the monthly comprehensive samples. ITAS of Knoxville, Tennessee, performed the analyses of samples collected from November 1987 to March 1988. Beginning in April 1988, [win Cities Testing in St. Paul,

Minnesota, was used. The switch in laboratories was primarily a cost-saving effort; additionally, it provided a second laboratory to act as a verification of the first laboratory. Both laboratories provided excellent services.

TABLE 3. PROCESS ASH AND FEEDSTOCK SAMPLE CROSS-REFERENCE LIST.

			Hi Res				Poty-			Aumendad
Sample			Dioxins &		Cyanides		Nuclear	Pesticides	Pesticides Semicolities	
Number	Description	1 9	furans	Hetals	Sulfides	Metals Sulfides Herbicides Aromatics	Aromatics	# PCP	(see notes)	Er Toxicity
SBCH121687A	Dec 16, '87 ash bin	=	×	×	×	×	×	×	×	×
SBSH121687	Dec 16, '87 ash bin duplicate of SBCH121687	2	×			×				
SBCL 121687	Dec. 16, '87 ash bin	=		×	×	×	×	×	×	
SBJH121687C	Dec 16, '87 ash drag EPA Collected	=	×	×	×	×	×	×	×	×
\$JSH1216 8 7	Dec 16, '88 ash drag duplicate of SBJH121687 EPA collected	2	×			×				
SBCH011688	Jan 16, '88 ash bin	=	×	×	×	×	×	×	×	×
SDCH01168 8 7C	Jan 16, '88 ash bin duplicate of SBCH011686	5					×			ı
SBCL011688B	Jan 16, '88 ash bin	1		×	×	×	×	×	×	
SВСН021688	feb 16, '88 ash bin	=	×	×	×	×	×	×	×	×
SBCL 021668	Feb 16, '88 ash bin	=		×	×	×	*	×	×	×
SBCH031688	Nar 16, '86 ash bin	=	×	×	×	×	×	×	×	×
CH0316881C	SDC11031688TC Mar 16, '88 ash bin chplicate of SBCH031688	5					×			

TABLE 3. PROCESS ASH AND FEEDSTOCK SAMPLE CROSS-REFERENCE LIST (CONTINUED).

Sample			Hi Res		Cumpledon		Poly-			Annended
Number	Description	Leb	Furens	Metals		Lyanides Nuclear Sulfides Merbicides Aromatics	Muclear Aromatics	Pesticides 2 PCP	Pesticides Semivolitiles 2 PCP (see notes)	EP Toxicity
SBCL031688	Mar 16, '88 ash bin	=		×	×	×	×	×	×	×
SJSH041488	Apr 14, '88 ash drag	=	×							×
SBC00414881C	SBCO0414881C April 14, '88 ash bin duplicate of SBCL041488	2 .					×			
SRC0042188	Apr 21, '88 kith solids	2	×			×				
SRC042188	Apr 21, '88 kiln solids	=	×			×				
\$100042888	Apr 28, '88 esh drag	70	×			×				
SRC0042888	Apr 28, '88 kiln solids	2	×			×				
SRC04288B	Apr 28, '88 kiln solids	=	×			×				
SJSH051388	May 13, '88 ash dreg	5	×			×				
SBCL061788TC	June 17, '88 ash bin	2		×	×	×	×	×		
SBCL082688TC Aug 26,	Aug 26, '88 ash bin	2		×	×	×	×	×	×	
\$JSH082688TC Aug 26,	Aug 26, '88 ash drag	22	×			×				
SJSHOBZ688TC Aug 26, Duplical	Aug 26, '88 ash drag Duplicate	5	×			×				
SBCL092288TC Sept 22,	Sept 22, '88 ash bin	10		×	×	×	×	×	×	
\$JSII092288TC Sept 22,	Sept 22, '88 ash drag	21	×			×				

TABLE 3. PROCESS ASH AND FEEDSTOCK SAMPLE CROSS-REFERENCE LIST (CONTINUED).

Sample Number		Sag	Description	<u>s</u>	rep	Hi Res Dioxins & Furans	Metals	Cyanides Sulfides	ferbicides	Poly- Nuclear Aromatics	Hi Res Dioxins & Cyanides Nuclear Pesticides Furans Metals Sulfides Nerbicides Aromatics & PCP	Poly- Muclear Pesticides Semivolitiles EP Iromatics & PCP (see notes) Toxicity	Amended EP Toxicity
S8CL1019881C Oct 19, '86 ash bin	Oct 19	•	86 ash	čia	71		*	×	×	×	,	,	
SJSH1019881C Oct 19, '88 ash drag	Oct 19	·.	88 ash	drag	2	×			×	ī	•	×	
SBCL1116881C Nov 16, '68 esh bin	Nov 16		38 esh	bin	70		×	×	×	*	,	;	
SBCL111688IC Nov 16, '88 ash bin Duplicate	Nov 16, '	,	88 #Sh	bin	2		,		×	•	< ж	*	
\$JSH11168BIC Nov 16, '88	Nov 16,	٠ ف		sh drag	5	×			×				
SJSHili688IC Nov 16, '88 Duplicate	Nov 16, '	8		ash drag	5				×				

TABLE 3. PROCESS ASH AND FEEDSTOCK SAMPLE CROSS-REFERENCE LIST (CONCLUDED).

Sample Number	Description	3	Hi Res Dioxins & Furans	Hetals	Ni Res Poly- Dioxins & Cyanides Nuclear Pesticides Furans Metals Sulfides Herbicides Aromatics & PCP	Poly- Nuclear Aromatics	Pesticides & PCP	Poly- Muclear Pesticides Semivolitiles EP Iromatics & PCP (see notes) Toxicity	Ammended EP Toxicity
FBCL0826881C Aug 28,	Aug 28, '86 feedstock	5	(1)X		×				
FBCL0922881C Sept 22,	Sept 22, 83 feedstock	2	X(I)		×				
FBCL101908TC Oct 19, Duplical	Oct 19, '88 feedstock Duplicate	5	XCO		×				
FBCL1116551C Nov 11,	Nov 11, '88 feedstock	2	K(1)		×				
FBCL111688IC Nov 11, Duplicat	Nov 11, '&& feedstock Duplicate	5	X(1)		×				

Note: X indicates sample was analyzed for the category of constitutent indicated if indicates sample analyzed by International Technologies Analytical Services. It indicates sample analyzed by Iwin Cities Testing, Inc.

TABLE 4. ANALYTICAL METHODOLOGIES USED.

Phanol 8is(2-chloroethyl)ether 2-chlorophenol 1.3-dichlorobenzene 1.4-dichlorobenzene 2-nitrophenol 2dichlorobenzene 3 analyzed by 3 analyzed by 4 contract 4 contract 4 contract 4 contract 5 contract 5 contract 6 contract 6 contract 1 contr	Compound Name	Twin Cities <u>Testing Methods</u>	ITAS
Bis(2-chloropthyl)ether 2-chlorophenol 1,3-dichlorobenzene 1,4-dichlorobenzene 1,4-dichlorobenzene 2-methylphenol 1,2-dichlorobenzene 2-methylphenol Bis(2-chloroisopropyl)ether 4-methlyphenol M-nitroso-di-b-propylamine Hexachloroethane 1sophorone 2-nitrophenol 2,4-dimethylphenol Benzole acid Bis(2-chloroisopropyl)ethane 2,4-dichologphenol* 1,2,4-trichlorobenzene Napthalene 4-chlorophidadiene 4-chlorophidadiene 4-chlorophidadiene 1,2,4-fichlorophenol 2-methylnaphthalene Hexachlorocyclopentadiene 1,4,5-trichlorophenol 2-nitrophenol 2-nitrophenol 2-nitrophenol 3-nitrophenol 4-nitrophenol 4-nitrophenol 4-nitrophenol 5-nitrophenol 4-nitrophenol 4-nitrophenol 5-nitrophenol 4-nitrophenol 6-nitrophenol 6-nitropheno	Semivolatiles:		rest_Hernods
Diethylphthalate 4-chlorophenyl-phenylether	Phanol Bis(2-chloroethyl)ether 2-chlorophenol 1,3-dichlorobenzene 1,4-dichlorobenzene 1,2-dichlorobenzene Benzyl alcohol 1,2-dichlorobenzene 2-methylphenol Bis(2-chloroisopropyl)ether 4-methlyphenol N-nitroso-di-b-propylamine Hexachloroethane Nitrobenzene Isophorone 2-nitrophenol 2,4-dimethylphenol Benzoic acid Bis(2-chloroethoxy)methane 2,4-dichologphenol* 1,2,4-trichlorobenzene Napthalene 4-chloro-3-methylphenol 2-methylnaphthalene Hexachlorocyclopentadiene 2,4,5-trichlorophenol* 2,1-trichlorophenol 2-nitroaniline Dimethl phthalate* Acenaphthylene 2,6-dinitrotoluene* 3-nitroaniline Acenaphthene 2,4-dinitrophenol 4-nitrophenol 0-ibensofuran	Semivolatiles analyzed by EPA Contract Laboratory Protocol 8/87 revision, with methylene chloride/Saxhlet	analyzed by EPA Contract Laboratory Protocol
Fluorene 4-nitroaniline	4-chlorophenyl-phenylether Fluorene		

TABLE 4. ANALYTICAL METHODOLOGIES USED (CONTINUED).

Compound Name Semivolatiles (continued): 4,6-dinitro-2-methylpheno N-nitrosodiphenylamine (1) 4-bromophenyl-phenylether Hexach lorobenzene Pentach loropheno 1 Phenanthrene Anthracene Di-n-butylphthalate Fluoranthene Pyrene Buty | benzy | phtha | ate 3,3'-dichlorobenzidine Benzo(a)anthracene Chrysene bis(2-ethylhexyl)phthalate Di-n-octyl phthalate Benzo(b)Fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)pyrene 2,6-dichlorophenol* 2,5-dichlorophenol* 1.2.3.5-tetrachlorobenzene and/or 1,2,4,5-tetrachlorobenzene* 2.3.4.6-tetrachlorophenol and/or 2,3,4,5-tetrachlorophenol* M-creso!* Benzidine* Acetic acid, 1-methylethyl E* 2-pentanone, 4-hydroxy-4-met* Heptane, 2,3-dimethyl-* 2-pentanone, 4-hydroxy-4-met* Heptane, 2.3-dimethyl-* Octane, 4-methyl-*

Undecane, 2,5-dimethy1-*

Twin Cities Testing Methods

Semivolatiles analyzed by EPA Contract Laboratory Protocol 8/87 revision, with methylene chloride/Soxhlet extraction

Semivolatiles analyzed by EPA Contract Laboratory Protocol 8/87 revision

ITAS

Test Methods

TABLE 4. ANALYTICAL METHODOLOGIES USED (CONTINUED).

Compound Name	Twin Cities Testing Methods	ITAS Test Methods
Dioxin/Furan Analysis by High Resolution GC/Low Resolution MS		
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)	SW846-8290	Modified SW846-8280
Total tetrachlorodibenzo-p-dioxins	SW846-8290	Modified SV846-8280
2.3,7.8-substituted pentachlorinated benzodioxins	SW846-8290	Modified SW846-8280
Total pentachlorodibenzo-p-dioxins	SW846-8290	Modified SW846-8280
2,3,7,8-substituted hexachlorodibenzo-p-dioxins	SW846-8290	Modified SW846-8280
Hexach lorod ibenzo-p-d tox ins	SW846-8290	Modified SW846-8280
2.3.7.8-substituted heptachlorinated dibenzodioxins		
Total heptachlorinated dibenzodioxins	SW846-8290	Modified SW846-8280
Total octachlorinated dibenzodioxins	SW846-8290	Modified SV846-8280
2,3,7,8-tetrachlorodibenzofuran	SW846-8290	Modified SW846-8280
Total tetrachlorodibenzofuran	SW846-8290	Modified SW846-8280
2,3,7,8-substituted pentachloro dibenzofurans	SW846-8297	Modified SW846-8280
Total pentachlorinated dibenzofurans	SW846-8290	Modified SW846-8280
2,3,7,8-substituted hexachlorodibenzofurans	SW846-8290	Modified SW846-8280
Total hexachlorodibenzofurans	SW846-8290	Modified SW846-8280
2,3,7,8-substituted heptachlorodibenzofurans		
Total heptachlorinated dibenzofurans	SW846-8290	Modified SW846-8280
Total octachlorinated dibenzofurans	SW846-8290	Modified SW846-8280
lioxin/Furan Analysis by High Resolution		
GC/Low Resolution MS		
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)	Modified SW846-820	SW846-820
Total tetrachlorodibenzo-p-dioxins	Modified SW846-820	SW846-820
2,3,7,8-substituted pentachlorinated benzodioxins	Modified SV846-820	Not reported
Total pentachlorodibenzo-p-dioxins	Modified SW846-820	SW846-820
2,3,7,8-substituted hexachlorodibenzo-p-dioxins	Modified SW846-820	Not reported
Total hexachlorodibenzo-p-dioxins	Modified SW846-820	SW846-820
2,3,7,8-substituted heptachlorinated dibenzodioxins	Modified SW846-820	Not reported
Total heptachlorinated dibenzodioxins	Modified SW846-820	SW846-820
Total octachlorinated dibenzodioxins	Modified SW846-820	SW846-820
2,3,7,8-tetrachlorodibenzofuran	Modified SW846-820	SW846-820
Total tetrachlorodibenzofuran	Modified SW846-820	SW846-820
2,3,7,8-substituted pentachlorodibenzofurans	Modified SW846-820	Not reported
Total pentachlorinated dibenzofurans	Modified SW846-820	SW846-820
2.3.7.8-substituted hexachlorodibenzofurans	Modified SW846-820	Not reported
Total hexachlorodibenzofurans	Modified SW846-820	SW846-820
2,3,7,8-substituted heptachlorodibenzofurans	Modified SW846-820	Not reported
Total heptachlorinated dibenzofurans	Modified SW846-820	SW846-820
Total octachlorinated dibenzofurans	Modified SW846-820	SW846-820

TABLE 4. ANALYTICAL METHODOLOGIES USED (CONTINUED).

Compound Name	Twin Cities	ITAS Test Methods
Pesticides and PCBs		
Toxaphene		
Aroclor 1016		
Aroclor 1221	EPA-600/4-79-020	EP Contract
Aroclor 1232	Method 608,	Laboratory protocol
Aroclor 1242	March 1983	8/87
Aroclor 1248		
Aroclor 1254		
Aroclor 1260		
derbicides		
2,4,5-trichlorophenoxyacetic acid (2,4,5-7)	SW846-8150	SW846-8150 modified
2,4-dichlorophenoxyacetic acid (2,4-D)	SW846-8150	to more closely
2,4,5-TP (Silvex)	SW846-8150	approximate the 7,87
		CLP protocol for
		herbicides.
yanides and Sulfides		
EP toxicity extraction for cyanide analysis	Not analyzed	Fed. Register Vol 45,
·		No. 98. p 33127
Total cyanide	SW846-9010	EPA CLP protocol 7/87
		revision
pH	Not analyzed	SW846-9040
Total sulfide	SW846-9030 or	SW846-9030
	EPA/CE-81-1,	
	May 1981,	
	Method 3-243	
eta is		
Antimony	SW846-7041	EPA CLP rev. 7/87
Arsenic	C1/0.40 3mm	inductively coupled
Barium	SW846-7060	Argon plasma spectroscopy
	SW846-6010	for all metals unless indicated below
Beryllium	SW846-6010	
Cadmium	SW846-7130 or 6010	
Chromium	SW846-7190 or 6010	
Hexavalent chromium	Sw846-7197	
Copper	Sw846-6010 or 7210	
Lead	SW846-6010 or 7420	
Magnesium	Not analyzed	

TABLE 4. ANALYTICAL METHODOLOGIES USED (CONCLUDED).

Compound Name	Twin CitiesTesting Methods	ITAS Test Methods
etals (continued)		
Mercury	SW846-7471	EPA CLP 7/87 cold vapor atomic absorption
Nickel	SW846-6010 or 7520	
Se len ium	SV846-7740	
Silver	SW846-7760	
Thaillium	SW846-7841	
Vanadium	SW846-6010	
Zinc	SW846-7950 or 8010	
olymuclear Aromatic Hydrocarbons		
Fluoranthene	•	SV-8310
Benzo(a)anthracene	Analyzed as	SW-8310
Chrysene	semivolatiles	SV-8310
Benzo(b)fluoranthene	23 / 40 / 100 / 100	SW-8310
Benzo(a)fluoranthene		SV-8310
Dibenzo(a,h)anthracene		SV-8310
Indeno(1,2,3-cd)pyrene		SV-8310

Indicates compound not reported by Twin Cities Testing.

SECTION IV DATA PRESENTATION AND ANALYSIS

A. RESOURCE CONSERVATION AND RECOVERY ACT (RCRA) TRIAL BURN

The RCRA trial burn successfully showed that the MWP-2000 incinerator can process highly refractory waste while meeting the requirements of 40 CFR 264.343. The DRE was demonstrated to be a minimum of 99.99997%. Additionally, POHC was not detected in any of the samples collected. Because the trial burn data does not directly influence the delistability of the process ash, they will not be discussed further (see Reference 7 for more information).

B. VERIFICATION TEST BURN AND MONTHLY COMPREHENSIVE SAMPLES

The results for the verification test burn are combined with the monthly comprehensive data for simplicity because the same analyte list was used for both. Only the ash drag results are presented herein because that waste stream is the only one that required delisting. Reference 2 contains data for the other waste streams.

1. Dioxins and Furans

The complete dioxin/furan analytical results for both the feedstock and the ash drag soils are presented in Tables 5 and 6, respectively. In certain cases, the 2,3,7,8-substituted homolog for a particular isomer was not analyzed. Those cases are indicated by an "NA" in the tables. In other cases, the total isomer and the 2,3,7,8-substituted homolog were both analyzed. The non-2,3,7,8-substituted homologs were then calculated by subtracting the 2,3,7,8-substituted homolog from the total isomer concentrations. The calculation assumes a zero value for any nondetectable concentrations. If the constituent was not detected, then an "ND" is indicated, followed by the observed method detection limit. The method detection limit specified is either 2.5 times the background noise observed on the chromatogram or the highest chromatogram peak observed at the appropriate retention time.

TABLE 5. MONTHLY FEEDSTOCK DIOXIN/FURAN AND HERBICIDE DATA. (units in ppb)

							(add in chin)	(od	
	DEC 16 '87	JAN 16 '88	FEB 16 '88	MAR 16 '88	APR 14 '88	APR 21 '88	APR 28 '88	MAY 13 '88	JUNE 17 '88
CONST1 TUENT	FBCL121687A	f801011688	FB0J021688	F80J031688	FBCL041488	FBCL042188	FBC1042888	FBCL051388	FBCLO617881C
2378 1CD0 TOTAL 1CD0	NO @ 0.089	7.3	1.9	11.46	17.90	11.2	4.2	2 :	1.3
2378 PecDO TOTAL PecDD	87.0 NN	# F	ž <u>I</u>	3 5	NN 8 0.066	NN 8 0.096	MA OB OM	15 WD & 0.64	. 6.8 80 0 0 11
2378 HXCDD TOTAL HXCDD	NN 0.54	# # #	# #	2 3	NH NO 8 0.013	NH NO 8 0.10	NN ND 8 0.092	NO 8 0.025	MO & 0.034
2378 1CDF 101AL 1CDF	MISSING 3.7	NN ND 8 1.0	MW GB 1.0	MH & 0.99	No a 0.17	0.28	0.17	0.26	0.018
2378 Pecdf Total Pecdf	NH 3.2	3 3	MR MR	3 5	75.0	1 5	9.0 79.0	0.2	NO 8 0.046
2378 NACDF TOTAL NACDF	NH 2.4	N N	3 3	5 5	NN NO 10 0.035	MA 8 0.11	M 04	NO 8 0.048 0.024	NO 8 0.062
2,4-0	13000	ī	ī	š	00007	24000	45000	280000	950000
7.6,5.T	3600	5	I	Ī	81000.00	*	170000	4 10000	1900000
	0.000.0	3	5	3	009) B QN		ND 8 30.0	ND 8 40000	MD & 4000

MOTE: MM IMDICATES CONSTITUENT NOT MEASURED
MR IMDICATES VALUE NOT REPORTED DUE TO AMALYTICAL INTERFERENCES

TABLE 5. MONTHLY FEEDSTOCK DIOXIN/FURAN AND HERBICIDE DATA (CONCLUDED).

	JULY 15 '88	Aug 26 '88	Sept 22 '88	Oct 19 '88	Nov 16, '88
COMSTITUENT	FBCL071588TC	FBCL082688	FBCL09228BTC	FBCL 101986TC	FBCL11168BTC
2378 1000	2.34	3.5	3.2	7.1	35 6
TOTAL TCDD	2.34	3.5	3.3	: :	0.55
2378 PeCD0	ND 8 0.021	ND @ 0.072	ND 8 0.130	2 4 5	6
TOTAL Pecoo	960.0	NO 8 0.072	MD & 0.130	NO 9 1.2	NO 8 0.017
2378 HXCD0	WD & 0.019	ND & 0.061	NO 8 0.059	NO 9 0.044	MD @ 0.017
TOTAL MACDO	MO @ 0.019	NO 8 0.061	690.0 B ON	NO 8 0.044	NO 8 0.017
2378 ICOF	ND 8 0.047	NO 8 0.140	0.058	0.012	0.012
TOTAL TCDF	NO 8 0.047	NO 8 0.140	0.18	0.021	0.033
2378 PeCDF	ND @ 0.012	NO 8 0.053	MO 0 0.082	400 c a	6
TOTAL PECDF	NO @ 0.012	NO & 0.053	MD & 0.082	ND 8 0.021	0.0073
2378 HXCDF	ND 8 0.013	ND 8 0.043	ND 8 0.045	M 0 0 0.016	9
TOTAL HXCDF	MO @ 0.013	NO 8 0.043	MD 8 0.045	310.0 e	MD 8 0.069
2,4-0	38000	7800	1900	4000	34000
2,4,5-1	38000	14000	32000	12000	38000
2,4,5-19	0.4 G OM	0.4 G ON	MD 49 15.0	0 25 G	9

TABLE 6. HIGH RESOLUTION DIOXIN/FURAN DATA SUNMARY. (units in ppb)

Constituent	Practical 2378 TCDD Quantitation equivalence Limi: (PQL) factor	2378 TCDD equivalence factor	Verification Test 1	n Verification 1 Test 2	n Verification 2 Fest 3	n Verification 1 Test 5	Verification Verification Verification Verification Test 1 Test 2 Test 3 Test 5 Test 6	n Dec 16 '87 6 Ash Bin		Dec 16 '87 Dec 16 ' 87 Duplicate of Ash Drag SBCH121687A EPA Collected
	8					SAMPLE MUMBER:	UMBER:	\$BCN121687A	SBSH121687	S& JH 121687A
23/8 1CDD 101AL 1CDD NOM 2378-1CDD	0.015	0.01	NO & 0.0011 ND & 0.0048	ND & 0.0044 ND & 0.0015	ND & 0.0017	MD & 0.0026 MD & 0.0022	NO & 0.0018 NO & 0.0525	0.010	ND @ 0.0024 ND @ 0.0024	0.16
2378 PecDD TOTAL PECDD NON 2378-PECDD •	0.015	0.5	NN NO @ 0.00180	NN & 0.0029	NM 8 0.00028		NN	NH NG 8 0.0017	ND & 0.0037	MM W 0.0016
2378 HXCDD TOTAL HXCDD NOM 2378-HXCDD •	0.037	0.000	NN & 0.00540	NM 0.00140	МИ NM NM NM NM B 0.00220 B 0.00220 0 0 0 0 0 0 0 0 0	NM ND @ 0.00014	NM NO 6 0.0007	*** CH	0,00.0 & OM	NN 0.012
2378 TCDF TOTAL TCDF NON 2378-TCDF +	0.015	0.1	ND 8 0.00220 ND 8 0.00085	0.0049 0.0129 0.008	0.0054 0.016 0.0106	0.0021 0.0067 0.0066	0.0038 0.0108	ND 8 0.0058 ND 8 0.0040	MD & 0.0017	MO 8 0.0085 NO 8 0.013
2378 Pecof TOTAL PECOF NOW 2378-PECOF •	0.015	0.001	NA & 9.00018	NA 8 0.00069	MM & 0.00129	MD & 0.00048	MM 8 0.00059	910 0 G GN		NAM 0.000 GM
2378 HXCDF TOTAL HXCDF MON 2378-HXCDF •	0.037	0.00	M6 & 0.00031	MU M		NO 8 0.00065 1	NH NO 20 0.00053 N	MM 8 0.0039		M & 0.0071

Note: * indicates a calculated value, see text

TABLE 6. HIGH RESOLUTION DIOXIN/FURAN DATA SUMMARY (CONTINUED).

feb 16 Early feb '88 Late feb '88 sh Bin Ash Bin Ash Bin ilicate Composite Composite	488 SSAF041488	0.0049 ND 8 0.0046 0.0028 " 0.0064 0.0028 0.0064	NH 026 0.011 0 0	0.015 0.017	89 ND @ 0.0052 022 0.00089 022 0.00089	NM 563 ND @ 0.00098 0 0	NN 900000 B ON 2
Early Feb '88 Ash Bin Composite	SSBF041488	0 QX	NM 0.0026	¥ .0	ND & 0.0089 0.0022	NN ND @ 0.00063	NN ND @ 0.0017
Feb 16 Ash Bin Duplicate	\$85H021688TC	0.0049 ND 8 0.00078 0.0049 ND 8 0.00078 0.0049	M ND @ 0.00095 0.0039 ND @ 0.00095 0	0.014 ND @ 0.0029 0.048 ND @ 0.0029 0.034	013 ND @ 0.00055 0.066 ND @ 0.00055 0.066 0	0.0037 ND & 0.0013	0.004 ND 8 0.0016
Fub 16 Ash Bin	\$8CH021688	ND & 0.014 0.0049	NM 0.0039	0.014 0.048 0.034	ND 8 0.013 0.066	. 0.0037	MH 0.004 N
Jan 16 Ash Bin	\$8CH011688A	MD & 0.013	NM & 0.0019	NN 0.032 0	ND & 0.013 ND & 0.0074	MM MD & 0.0010	NM ND & 0.0015
Late Dec '87 Ash Bin Composite	\$\$AD041488	ND @ 0.0039 0.0035 0.0035	AM 6.0046	NN ND & 0.020	ND 8 0.0060 0.0021 0.0021	NM ND & 0.0020	NM & 0.0019
Dec 16 '87 Early Dec '87 Late Dec '87 uplicate of Ash Bin Ash Bin H121687 Composite Composite	\$280041488	ND & 0.0071 0.068 0.0068	NH 0.0084	NN 0.02	ND a 0.0039 0.004 0.004	NM ND & 0.0011	NM ND io 0.0016
Dec 16 '87 Duplicate of SBJH121687	SJSH121687	ND & 0.0027 0.019 0.019	ND & 0.0033	0 0.0047	ND @ 0.00094	ND @ 0.0024 ND @ 0.0024	NO 8 0.0025 NO 8 0.0025
2378 TCD0 equivalence factor		0.01	0.00	0.0004	0.001	0.001	0.001
Practical 2378 TCDO Quantitation equivalence Limit (PQL) factor	92	0.015	0.015	0.037	0.015	9.115	0.037
Coris t i tuent		2378 1CDD 107AL 1CDD NOW 2378-1CDD	2378 PecDD TOTAL PecDD NOW 2378-PecDD	2376 HXCDD TOTAL HXCDD NON 2378-HXCDD •	2378 TCDF 101AL TCDF NON 2378-TCDF	2378 PecDF TOTAL PECDF NON 2378-PECDF **	2378 HXCDF TOTAL HXCDF NON 2378-HXCDF *

Note: * indicates a calculated value, see text

TABLE 6. HIGH RESOLUTION DIOXIN/FURAN DATA SUMMARY (CONTINUED).

April 28 In Solids ICT	5.5	2 2		003	90 S	`	, 33.
2	\$8C00426	MD 80 0.001	NO 9 0.0057	100 0 0 000 M	000.0 G ON	MO & 0.0027	40 0 0 0064 40 0 0 0064
April 28 Ash Orag	\$JSH042888 \$JC0042888-TC \$RC0042888-TC	MD 8 0.0012 MD 8 0.0012	ND 2 0.0039	MD 8 0.0074	MO 3 0.0007	NO 8 6.0028	
April 28 Ash Brag	ı	MD & 0.030 MD & 0.0074	MD 10 0.0042	0.0049 0.038 0.0331	6.0046 5.0046	M 60 60 60 60 60 60 60	M 6 6 0012
April 21 April 21 Kiin Solida Kiin Solida 1CT IIAS	\$RC042168	6.0 8 0.0017 NO 8 0.0028 NO 8 0.0017 NO 8 0.0017 NO 9 0.0017	MA NO.00.0 G OM	7.0.3 6.017	0.0039 0.0044 0.0025	M 0.0031	6 0.0019 • 0.0019
April 21 Kiin Solid s 1CT	\$J\$H042188 \$RC0042188-1C	1.0 0 0.0017 MO 0 0.0017	MD & 0.004	1600.0 G GM	ND B 0.0011 ND B 0.0011	ND 8 0.0037	MO & 0.011
April 21 Ash Drag	1	MO B 0.0033	MM & 0.0029	0.029 0	ND & 0.0027 0.0036 0.0036	M	9.016
April 16 Kiin solida	SRC0041488	ND 8 0.0641 ND 8 0.0424	MV & 0.0021	MO 8 0.011 0.056 0.056	MD & 0.010 MD & 0.0045	MD to 0.0037 M	M
April 16 Ash Drag	\$35H041488	NO 8 0.0074 0.004 0.004	0.0072	0.024	NO 8 0.6057 0.008 0.008	MM MD & 0.0032	MI 6 0.0048
Norch 16 Ash Bin	SBCH031688	NO 8 0.010	0700't) e car	1600.0 0.0094	MD & 0.010 0.0035 0.0035	MM & 0.0017	30 to 0.0014
2378 TCDD equivalence factor		0.01	0.8	9.0	0.1	0.00	6.0001
Practical 2378 1000 Quantitation equivalence Limit (PQL) Jactor	g.	0.015	0.015	0.037	0.015	0.015	0.037
Constituent		2378 1CDD 101AL 1CDD HOM 2378-1CDD	2378 PeCDO TOTAL PECDO NON 2378-PECDO •	2378 NACDO 101AL NACDO NOM 2378-NACDO •	2378 1CDF 101AL 1CDF WOM 2378-1CDF	2378 PecDF TOTAL PecDF NOM 2378-PecDF •	2378 NACDF TOTAL HACDF WOR 2378-NACDF •

Notes . Indicates a calculated value, see text

TABLE 6. HIGH RESOLUTION DIOXIN/FURAN DATA SUMMARY (CONTINUED).

Ppb 78 1CD0 0.015 1AL 1CD0 1A 2378-1CD0 1 78 PeCD0 0.015 1AL PeCD0 1 4 2378-PeCD0 1 78 HXCD0 1 78 HXCD0 1 78 1378-PeCD0 1 78 1378-PeCD0 1 790 78 12378-HXCD0 1	Wountitation equivalence Limit (PQL) factor	Kiin Solids ITAS	n Solids Ash Dreg	May 13 Kiln Solids	June B Ash Drag	June 9 Ash Drag	D ASH DRAG	July 15 Ash Dreg	August 26 Ash Drag
• • • • • • • • • • • • • • • • • • • •		SRC0042888	SJSH051388-7C	SRC0042888 SJSH051388-1C SRSH051388-1C SJSH0608881C	SJSH0608881C	\$JSH060988TC	\$JSH060988TC \$JSH061788TC \$JSH071588TC	SJSH071588TC	\$J\$H0826881C
• 003	0.01	ND & 0.0019 ND & 0.0017	ND & 0.0045 0.006 0.006	ND & 0.0033 ND & 0.0033	ND & 0.00071	ND & 0.0011 ND & 0.0011	ND 8 0.00013 ND 8 0.00013	ND @ 0.0083 ND @ 0.0083	ND & 0.00029 ND & 0.00029
• 00	0.00	NN 8900.0 & QN 0	ND 8 0.0031 ND 8 0.0031	NO 2 0.0056 ND 2 0.0056	0.0026 80.0026	ND & 0.0020 ND & 0.0020	ND 8 0.00021 ND 8 0.00021	ND B 0.0041 ND B 0.0041	ND & 0.00022
	0.0004	ии 7600.0 © ON	ND & 0.0098 ND & 0.0098	ND & 0.007 ND & 0.007	ND & 0.0019 ND & 0.0019	ND & 0.0043 ND & 0.0043	ND & 0.00040 ND & 0.00040	ND & 0.0071	ND 8 0.00050
2378 1CDF 0.015 TOTAL 1CDF NOW 2378-1CDF •	0.1	0.0029 0.005 0.0021	ND & 0.0021 ND & 0.0021	ND 20 0.0018 ND 20 0.0018	ND 8 0.00036 ND 8 0.00097 ND 8 0.00036 ND 8 0.00097 0	8 0.00036 ND 8 0.00097 8 0.00036 ND 8 0.00097 0	ND & 0.00022 NO & 0.00022	ND & 0.0031 ND & 0.0031	NO 8 0.00009 ND 8 0.00009
2378 PecDF 0.015 TOTAL PECDF NON 2378-PECDF *	0.001	NM & 0.00085	ND @ 0.0028 ND @ 0.0028	ND 8 0.0034 ND 8 0.0034	ND 20 0.0014 ND 20 0.0019 ND 20 0.0014 ND 20 0.0019 O	0 a 0.0019 0 a 0.0019	ND & 0.00024 ND & 0.00024	ND 0 0.0042 ND 0 0.0042	ND & 0.00013 ND & 0.00013
2378 HxCDF 0.037 TOTAL HxCDF NOW 2378-HxCDF *	0.01	MM & 0.0034	ND & 0.0056 ND @ 0.0056	ND a 0.006 ND a 0.006	ND & 0.0016 ND & 0.0025 ND & 0.0016 ND & 0.0025 0	•	ND & 0.00031 ND & 0.00031	0 0,0046. I	ND- 8- 0.00017 NO 8- 0.00017

Note: * indicates a calculated value, see text

TABLE 6. HIGH RESOLUTION DIOXIN/FURAN DATA SUMMARY (CONCLUDED).

	Practical 2378 TCDD Quantitation equivalence Limit (PQL) factor	ca/6 1000 equivalence factor	Ash Oreg	Ash Orag	Ash Drag
	g		\$J\$H092288TC	\$J\$H1019991C	SJSH111686
2378 1CDD TOTAL 1CDD	0.015	1.0	NO 8 0.00029	MD & 0.00098	MD & 0.0020
NOW 2378-1CDD	•	0.01	9 0.00029	0.0013	MD & 0.0020
2378 Pecbo	0.015	0.5	NO 8 0.0019		NO 9 0.00052
NON 2378-Pecob *	•	0.005	9100.00 g QM	MD & 0.00063	ND & 0.00052
2378 HXCLU TOTAL HXCDD	0.037	7.0	ND 8 0.0021	ND 8 0.0014	MD @ 0.00058
NON 2378-HKCDD	•	0.0004	10 a 0.0021	MD & 0.0014	MD & 0.00058
1006	0.015	0.1	MD & 0.00086	NO 9 0.00043	MO 80 0,0010
MOK 2378-TCDF	•	0.001	NO 2 0.00086	MD & 0.00043	NO & 0.0019
2378 Pecor	0.015	0.1	MO & 0.0011	ND 8 0.00052	ND 8 0.00020
NON 2378-PecDF		0.001	MO & 0.0011	MD & 0.00052	MD 8 0.00020
2378 NXCDF TOTAL NXCDF	0.037	0.01		ND 8 0.00071	MD 8 0.00064
NON 2378-HKCDF *		0.0001	6.0019 6.0019	ND & 0.00071	ND 8 0.00064

One sample shown in Table 6 is higher in dioxin concentration than any other observed concentration. That sample was collected by an EPA Region IV subcontractor 16 December 1987 during the initial startup operational phase of the project. The EPA-collected sample (SBJH121687A) was obtained from the ash drag chute by compositing 24 hourly grab samples. During sample collection, the stainless steel bucket used for temporary storage and compositing was covered with aluminum foil and stored in the trunk of the sampler's automobile located adjacent to the incineration area. The EPA subcontractor split the sample with the ENSCO sampling crew which then submitted the sample to ITAS for analysis along with other samples collected on the same day.

The ENSCO collected sample (SBCH121687A) was collected during the same time period from the ash storage boxes located approximately 40 yards to the south of the ash drag chute. The sampling procedures described in Section III (C) were employed. Both sampling episodes were intended to characterize the same batch of treated soil.

One of the ENSCO-collected samples (SBCH121687A) and the EPA-collected sample (SBJH121687A) were analyzed using high resolution techniques while a second ENSCO-collected sample was analyzed using low resolution techniques. Neither of the ENSCO-collected samples showed contamination at the levels observed in the EPA-collected sample. The ENSCO-collected sample analyzed by low resolution GCMS showed no dioxins or furans, although that data are not included in this report.

In an effort to determine the potential source of contamination in the EPA-collected samples, split samples from the original EPA- and ENSCO-collected samples were removed from onsite archive storage and were reanalyzed by Twin Cities Testing. The results are also shown in Table 6 as sample numbers SJSH121687 and SBSH121687A, respectively. The analysis of the archived splits shows that no dioxins or furans were observed in the ENSCO-collected sample and only 19 ppt of non-2,3,7,8-TCDD substituted TCDD were detected in the EPA-collected sample. Because the EPA subcontractor also obtained a split sample of the feedstock, it is believed that the feedstock sample was mislabeled as the ash drag sample; the observed concentration of the feedstock was in the same range as the original EPA-collected ash drag sample.

To further characterize the potential for cross-contamination, a composite was made that consisted of equal portions of processed soil obtained from 8 days of operations before 16 December and 8 days after 16 December. The results of those samples are listed in Table 6 as samples SSBD041488 and SSAD041488, respectively. Those data indicated that the process ash dioxin/furan concentration is well below the practical quantitation limits. Those data also indicate the 200 ppt TCDD concentration observed in the 16 December EPA-collected sample was either a unique occurrence of cross-contamination of the ash drag sample with contaminated native NCBC soil, or, more likely, feedstock and treated soil samples that were mislabeled.

Because AFESC and its subcontractors had no quality control over the EPA-collected sample and because subsequent analysis shows the processed soil to be at least one order of magnitude below the original sample concentration, AFESC believes the data obtained from sample SBJH121687A and its archived sister sample SJSH121687 are in error.

2. Metals and EP Toxicity

Table 7 shows the data summary of the total metal analysis for the monthly comprehensive samples. Table 8 shows the EP toxicity analysis data for the same samples, in addition to some other samples collected for routine operation. Table 9 shows the predicted leachate concentration limits using the VHS equation assuming a waste soil volume of more than 8000 cubic yards and drinking water limits as indicated in the table. The EP toxicity data in Table 8 clearly show that the waste exceeds neither the limits specified in 40 CFR 261.24 nor the VHS-predicted leachate concentrations that are shown in Table 9. Therefore, the waste can be considered nonhazardous with respect to metals.

TABLE 7. TOTAL METAL ANALYSIS FOR MONTHLY COMPREHENSIVE AND VERIFICATION TEST BURN SAMPLES. (units in mg/kg, i.e., ppm)

					ŭ	Constituent	2								
Description Sample #	#	Vs.	2	2	3	۵	3	ą.	15	=	a	γb	4	۸	Tu.
Verification Test #1		3.6	30.0		4 0.2	Ţ		3.4	< 0.02	4 2.0	6.2	₹ 9.05			
Verification Test #2		2.7	24.0		¢ 9.5	6 .		?;	₹ 0.05	1.8	6.2	< 0.02			•
Verification Test #3		3.9	0.84		× 0.2	5.6		6.0	0.03	2.6 8	< 0.2	♦ 0.02			
Verification Test #5		3.6	27.0		4 0.2	2.		4.5	₹ 0.05	2.0 8	₹ 0.2	₹ 0.05			
Verification Test 86	-	3.5	12.0		0.17	2.0		6.2	< 0.02	2.4 8	< 0.2	< 9.02			
Dec 16, '87 ash bin SBCN121687C	- ' - 2	13.20	24.4	0.2	4 1.0	3.	2.4 8	6.0	¢ 0.02	٠ 6.0	< 12.0	. 1.0	• 6.0	11.40	8.8
Dec 16, '87 ash drag SejulZi687C EPA Collected	- <u>*</u>	13.60	36.5	9.3	4 1.0	9.9	3.3	6.0	< 0.02	0.4 .	< 12.0	4 1.0	6.0	12.90	7.10
Jan 16, '66 ash bin \$8CH0116486C	- * .	6.30	24.0 8	0.3	1.0	5.20	2.7	4.4.0	₹ 6.05	6.6.0	4 12.0	1.80	0.4	9.20	6.9
feb 16, '88 ash bin 58CH021688	. <u>*</u> .	6.20	29.0	29.0 % 4 0.2	9.1.	3	4 2.0	¢ \$.0	¢ 0.03	. 4.0	< 12.0	1.0	6.6	12.00	5.50
Har 16, '58 ash bin SBCH031688	- <u>*</u> .	4	21.6	21.6 8 < 0.2	1.0	8	4 2.0	. 6.0	₹ 0.05	6.6.0	¢ 12.0	• 1.0	6.0	9.00	10.00
Apr 14, '88 ash drag SBCL041488	. <u>*</u> .	9 .0	20.0	20.0 8 < 0.2	4 1.0	5.0	3.0 8	6.0	< 0.02	٠ 4.0	< 12.0	• 1.0	6.0	8.0 B	7.0
May 14, '88 ash drag SBCL051388	- -	3.0	34.0	• 0.1	1.0	7.6	5.4	30.0	*0.00	6.9	. 0.7	0.50	¢ 0.5	14.0	34.0
June 17, '88 ash bin \$8CLO617881C	10 0.2	2.0	45.0	9.6	-0.2	7.3	9.8	6.0	4 9.03	6.3	4 0.07	4 0.2	4 2.0	11.0	0.0
July 15, '66 ash bin \$8CL0715681C	FC < 0.2	5.5	31.0	9.6	°.	19.0	9.0	9.0	4 0.03	4.0	₹ 0.3	1.0	Ç	10.0	15.0

TABLE 7. TOTAL METAL ANALYSIS FOR MONTHLY COMPREHENSIVE AND VERIFICATION TEST BURN SAMPLES (CONCLUDED).

		-														
Beaceloston							Constituent	juar 1	-							
		2 	As	4	=	3	5	3	2		3					
• Bac 14 ans										•	:	2	•	2	٤	Ę
ie, 'e/ 448 bin 54CL121687	Sect 121687	4 6.0	6.6	27.1		0.3 8 < 1.0	5.5	2.7	4 6.0	2.7 6 < 6.8 < 8.02	,					
* Jan 16, '88 ask bin sect 011600g	SBC1.0116888	6.0	6.0	26.3		0.4 4 4 0					•	8.71	• •	•	11.7	6.9
· feb 16. '88 ash him correction	407.60.000	,				2	:	8 8.2	9.	< 0.020 < 4.0	4.6	< 12.0	4 1.0	6.6	9.7.6	7.7
	1001 JULY 1001	0.9	0.9 ×	27.0		0.2 8 4 1.0	7.7	2.2	. 6.0	6 0 0	9	:	•		,	:
* Mar 16, '88 ash bin sact031668	\$8CL031688	6.0	6.0	19.5	19.5 B c 0 2						•	9.31	9. - -	۰ 6.0	0.1	į. 9. 7
Aus 26 '58 ark his case					•	•	•	0.× ×	6.6.	× 0.02	0.4 .	4 12.0	4 1.0	6.0	0	•
	219992pn 1284	× 0.2	2.0	31.0	4.0.2	0.5	9.0	£0.0	9 91	č	;	,				•
Sept 22, '66 ash bin sact 0922681C <	58CL 0922881C	. 0.2	5.6	34.0	**	9.55	•	•			:	• · · · · · · · · · · · · · · · · · · ·	6.5	4.2.	10.0	22.0
Oct 19, '88 ask bin sact1019661C <	19CL 1019661C	₹	·	,	;	,		•	Ð.	· 0.03	2.0	4 2.0	0.65	4 2.0	15.0 2	23.0
Nov 16, '86 ash bin sacrititation	200111111			3	Ç.	, ,	2.¢	2.2	7.	◆ 0.02	3.0	4 2.0	¢ 0.5	< 0.2	0.0	A. 3
	21000111	7.0.	7.	21.0	< 0.25	< 0.5	7	;	6.5	• 0.03	•	¢ 0.2	× 0.5	4.2.0		: :
		MOJE: 18.	fer the water to the													٧.٧

MOIE: The value indicated for the "less than" values is the observed detection limit.

D - Detected. Value prester than the instrument detection lavel, but lower than the contract required detection level.

-<u>`</u>.

TABLE 8. EP TOXICITY DATA. (units in mg/L, i.e., ppm)

	Dec 16 '87 ash bin	Dec 16 '87 ash bin EPA collection	Jan 16 '88 ash bin	Feb 16 '88 ash bin	Feb 16 '88 ash bin	Mar 16 '88 ash bin	Nar 16 '88 esh bin	Apr 14 '88 esh dreg
	SBCH121687A	SBJH1216878	SBCH011688B	SBCH021688	SBCL021688	\$8CH031688	\$8CL031688	\$35H041488
rsenic	<0.03	<0.03	<0.03	<0.03	<0.03	6 6	8	10 0
Barium	0.12	0.15	0.17	0.14	0.17	0.16	6.63	6.0
admicm	<0.005	<0.005	<0.005	<0.005	<0.005	<0.00\$	*0°0°	\$0.00\$
hromium	٠٥.01	*0.01	•0.01	٠٥.0١	<0.01	*0.0	<0.01	<0.03
ercury	<0.001	<0.001	c 0.001	<0.001	<0.001	*0.001	<0.001	<0.001
elenium	*0.0	*0.0	*0.0	*0.0	<0.0	40.08	\$0.0¢	\$0.0°
lver	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
nt (mony	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
eryllium	0.005	0.005	0.003	0.005	0.003	0.003	0.003	0.003
obber	0.01	0.05	0.03	0.05	0.02	0.05	0.05	0.01
agnes i um	1.8	2.5	3.4	1.8	2.0	2.8	3.0	2.6
ickel	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.05	<0.02
hallica	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	************************************
enadium	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.0 ¹	\$0.03 10.03
in in	0.052	0.050	0.040	0.037	0.040	0.046	0.036	0.031
per	<0.03	<0.03	<0.03	£0 0>	20 07	60 0		4

< - Less than values indicate the observed detection limit.

TABLE 9. VHS-PREDICTED MAXIMUM ALLOWABLE METAL CONCENTRATIONS.

Constituent	Drinking Water Standard (mg/L)	VHS-Predicted Maximum Allowable Concentration in Leachate (mg/L)
Arsenic	0.05	0.32
Barium	1	6.31
Cadmium	0.01	0.06
Chromium	0.05	0.32
Lead	0.05	0.32
Mercury	0.002	0.01
Selenium	0.01	0.06
Silver	0.05	0.32

3. Reactivity

Table 10 shows the total weight and EP toxicity values for cyanides and sulfides. Because no detectable cyanides and low concentrations of sulfides were found in the samples, the data indicate that the waste is nonhazardous with respect to reactivity as spec. Fied in 40 CFR 261.23.

4. Herbicides, Pesticides, and Polynuclear Aromatics

Table 11 summarizes the concentrations of herbicides and pesticides found in the process ash while Table 12 summarizes the polynuclear aromatic hydrocarbons (PAHs) observed. Tables 11 and 12 also show the maximum allowed waste concentrations predicted by the VHS/OLM equation. That calculation uses the solubilities of the particular organic species and the drinking water standards (Reference 30) listed near the top of the table in addition to an assumed waste volume of more than 8000 cubic yards.

As indicated in Table 12, the analyses for several samples were determined to be invalid. EG&G Idaho Chemical Sciences Branch reexamined the raw analytical data and determined that certain PAH analyses of the ash samples exhibit poor reproducibility and poor recovery of the PAHs spiked to the samples. This is caused primarily by the analytical technique used, SW-846 8130. The extraction and subsequent analysis of PAHs and other compounds from ash matrices are notoriously difficult. Low level analysis for PAHs is typically done using high performance liquid chromatography (HPLC) with ultraviolet (UV) detection. These techniques (SW-846 8130) were used for the invalidated samples listed in Table 12. That procedure required that the samples be relatively free from interferences since HPLC is not as efficient as gas chromatography (GC). Because HPLC is not as efficient, chromatographic resolution is not as good and more selective detectors must be used, such as the UV detection. Detection by UV spectroscopy at a single wavelength also has considerable problems because most molecular absorption bands in the UV range are very broad. Additionally, many types of compounds such as many metals, metal complexes, some cations and anions, and most organic species with conjugated double bonds systems (such as the PAHs analyzed for the

TABLE 10. EP TOXICITY DATA AND TOTAL WEIGHT ANALYSIS FOR CYANIDES AND SULFIDES. (units in mg/kg,i.e., ppm)

		EP Toxicity - 3		Total Weig	ght Analysis	
Description	Sample Number	Cyanide	Cyanide	Sulfide	Hexavalent Cr	рн
Verification Test #1		 NA	<0.50	110	NA	11.55
Verification Test #2) HA	<0.50	93	NA	10.74
Verification Test #3		<0.01	1	70	AK	11.1
Verification Test お		<0.01	0.7	110	N.A.	11.99
Verification Test #6		 <0.01	0.7	34	NA	10.82
Dec. 16, '87 ash bin	SBCH121687C	 <0.01	<0.6	45	<0.2	11.26
Dec 16, '87 ash drag	SBJH121687C	 <0.01 	<0.6	74	<0.2	11,14
Jan 16, 188 ash bin	SBCH011688C	 <0.01	<0.6	69	<0.2	12.34
Feb 16, '88 ash bin	\$8CH021688	0.01	<0.6	<25	<0.2	12.53
Mar 16, '88 ash bin	SBCH031688	<0.01	<1,1	<22	. ≪0.2	12.09
Apr 14, '88 ash drag	S8CL041488	< 0.02	<0.6	<22	. <0.2	10.45
May 14, '88 ash bin	SBCL051388	AK	NA	4.3	S NA	MA
June 17, 188 ash bin	SBCL0617887C	i NA	< 2.50	< 2.15	i MA	10.2
July i5, 188 ash bin	SBCL071588TC	HA	0.14	. z	S NA	10.5
0ec 16, 187 ash bin	SBCL121687	(< 0.01	< 0.6	68	< 0.5	11.05
Jan 16, '88 ash bin	S8CL0116888	< 0.01	< 0.6	220	< 0.2	12.35
Feb 16, '88 ash bin	S8CL021688	< 0.01	< 0.6	360	< 0.2	12.77
Mar 16, '88 ash bin	SBCL031688	 < 0.01	< 1.1	< 23	< 0.2	10.04

TABLE 10. EP TOXICITY DATA AND TOTAL WEIGHT ANALYSIS FOR CYANIDES AND SULFIDES (CONCLUDED).

		EP Toxicity - 3	·.	Total Wei	ght Analysis	
Description	Sample Number	Cyanide	Cyanide	Sulfide	Hexavalent Cr	рH
Aug 26, '88 ash bin	SBCL082688TC	I I AA	0.08	< 3.2	< 0.1	10.5
Sept 22, '88 ash bin	SBCL092288TC	I NA	0.15	< 3.7	***	10.8
Oct 19, /88 ash bin	SBCL 101988TC	I NA	< 0.04	< 2.5	***	9.4
Nov 15, '88 ash bin	SECL11168870	l NA	0.04	9.4	***	10.3

Note: 1. NA indicates that the constituent was not analyzed

^{2.} Less than values indicate the observed detection limits.

^{3.} Concentration observed in extract

TABLE 11. HERBICIDE AND PESTICIDE DATA SUMMARY WITH VHS/OLM CALCULATION. (units in ppm)

Description	Sample Number		Herbicides	3	Pesticide
		2,4-0	2,4,5-1	2,4,57-P	Toxaphene
Solubility (ppm):		890	238	140	(See note 3
Drinking Water Limit (ppm)		0.10	0.01	0.01	
VHS Predicted Weste Limit (ppm)		106.9	7.4	9.9	(See note 3
Apr 14, '88 ash drag	\$9CL041488	0.29	< 0.080	0.054	< 0.180
Apr 14, 188 ash drag	\$J\$H041488	< 0.06	< 0.008	< 0.001	HA
Apr 21, 188 kiln solids	SRC0042188 (TCT)	< 0.024	< 0.004	< 0.004	NA
Apr 21, 188 kiln solida	sRC0042188 (1T)	< 0.002	< 0.001	< 0.001	на
Apr 28, 188 ash drag	SJC0042888 (TCT)	< 0.024	< 0.004	< 0.004	NA
Apr 28, 188 kiln solids	SRC042888 (TCT)	< 0.024	< 0.004	< 0.004	NA
lpr 28, ′88 kiln solids	SRC042588 (1T)	< 0.002	< 0.001	< 0.001	NA
lay 13, '88 ash bin	SBCL051388	< 0.240	< 0.034	< 0.040	< 0.020
ley 13, '88 ash drag	\$4\$H051388	0.46	0.5	< 0.040	NA.
une 17, /88 ash bin	SBCL061788TC	< 0.024	< 0.004	< 0.004	< 0.020
uly 15, '88 ash bin	SBCL071588TC	< 0.024	< 0.004	< 0.004	< 0.020
ug 26, '88 esh bin	\$8CL082688TC	< 0.024	< 0.004	< 0.004	< 0.030
ug 26, '88 ash drag	SJSH082688TC	< 0.024	< 0.004	< 0.004	NA
ug 26, '88 ash drag	\$J\$H082688TC- DUP	< 0.024	< 0.004	< 0.004	NA
ept 22, 188 ash bin	\$80109228810	< 0.060	< 0.015	< 0.015	< 0.040
ept 22, 188 ash drag	SJSH092288TC	< 0.060	< 0.015	< 0.015	NA
ct 19, '85 ash bin	SBCL101988TC	< 0.024	< 0.004	< 0 004	< 0.010

TABLE 11. HERBICIDE AND PESTICIDE DATA SUMMARY WITH VHS/OLM CALCULATION (CONTINUED).

Description S	ample Number		Herbicide	B	Pesticide
		2,4-0	2,4,5-T	2,4,51-P	Toxaphene
Solubility (ppm):		890	238	140	(See note 3
Drinking Water Limit (ppm)		0.10	0.01	0.01	
VHS Predicted Waste Limit (ppm)		106.9	7.4	9.9	(See note 3
Verification Test #1		< 0.020	< 0.002	NA	< 200
Verification Test #2		< 0.020	< 0.002	KA	< 210
Verification Test #3		< 0.020	< 0.002	МА	∢ 210
Verification Test #5		< 0.020	< 0.002	NA	< 210
Verification Test #6		< 0.020	< 0.002	NA	< 210
Dec. 16, 187 ash bin S	BCH121687C	< 0.02	0.022	< 0.,02	< 0.180
Dec. 16, 187 ash bin S	BCL121687	< 0.02	< 0.02	< 0.02	< 0.180
Dec 16, '87 ash drag Si EPA Collected	BJH121687C	< 0.02	< 0.02	< 0.02	< 0.200
Dec 16, '88 ash bin Si (duplicate of SBCH121687)	BSH12168 <i>7</i>	< 0.024	< 0.004	< 0.004	HA
Dec 16, '88 ash drag S. (duplicate of SBJH121687)		< 0.024	< 0.004	< 0.004	NA
Jan 16, 188 ash bin Si	BCH011688C	< 0.02	< 0.02	< 0.02	< 0.180
Jan 16, 188 ash bin Si	BCL011688	< 0.02	< 0.035	< 0.02	< 0.180
Feb 16, 188 ash bin Si	BCH021688	< 0.02	< 0.01	< 0.01	< 0.180
Feb 16, 188 ash bin Si	BCL021688	< 0.02	< 0.01	< 0.01	< 0.181
Mar 16, 188 ash bin Si	3CH031688	< 0.004	0.002	< 0.001	< 0.180
Mer 16, 188 ash bin Si	BCL031688	< 0.004	< 0.001	< 0.001	< 0.180

TABLE 11. HERBICIDE AND PESTICIDE DATA SUMMARY WITH VHS/OLM CALCULATION (CONCLUDED).

Description	Sample Number		Herbicides		Pesticide
		2,4-0	2,4,5-1	2,4,51-P	Toxaphene
Solubility (ppm):		890	238	140	(See note 3
Orinking Water Limit (ppm)		0.10	0.01	0.01	
VMS Predicted Waste Limit (ppm)		106.9	7.4	9.9	(See note 3
Oct 19, 188 ash drag	SJSH101988TC	< 0.024	0.0044	< 0.004	NA
How 16, 188 ash bin	SBCL111688TC	< 0.025	< 0.005	< 0.005	< 0.010
Nov 16, 188 ash bin	SBCL1116887C -OUP	< 0.025	< 0.005	< 0.005	NA
Nov 16, '88 ash drag	SJSH111688TC	< 0.025	< 0.005	< 0.005	NA
Nov 16, 188 ash drag	SJSH111688TC -DUP	< 0.025	< 0.005	< 0.005	N.A

Notes: 1. WA indicates that the constituent was not analyzed

^{2.} Less than values indicate the observed detection limits.

^{3.} Solubility data for toxaphene was not available.

TABLE 12. POLYNUCLEAR AROMATIC HYDROCARBON DATA SUNMARY WITH VHS/OLM CALCULATION. (units in ppm)

Description	Sample Number	fluoranthene	Benzo(a)- anthracene	Chrysene	Benzo(b)- Chrysene fluoranthene	Benzo(a)pyrene	Olbenzo(ah)- anthracene	Indeno(123-cd) pyrene
Solubility (ppm):		2.65E-01	5.70E-03	1.80E-03	1.406-02	1.205-03	5.00E-04	5.30E-04
Drinking Water Limit (ppm)	(udd)	0.2	1.10E-05	2.00E-04	2.00E-05	3.00£-06	7.106-07	2.006-03
VHS Predicted Waste Limit (pym)	mit (ppm)	25871.5	0.112	15.16	0.164	0.039	0.0075	1:988
Verification Test #1		0.0023 #	< 0.002	0.0017	< 0.002	< 0.002	< 0.003	< 0.003
Verification Test #2		0.0027 #	< 0.002	< 0.001	< 0.002	< 0.002	0.0076	< 0.003
Verification Test #3		0.0021	< 0.002	0.0021	< 0.002	< 0.002	0.0069	₹ 0.003
Verification Test #5		0.0037	< 0.002	< 0.001	< 0.001	< 0.001	0.0021	< 0.001
Verification Test #6		0.0063	0.0012	< 0.001	< 0.001	◆ 0.001	0.0034	< 0.001
Dec. 16, '87 ash bin	SBCH121687C	0.0089	0.016	0.03	0.0017	0.0097	invalid	0.0018
Dec 16, '87 ash drag EPA Collected	SBJH121687C	0.016	0.014	0.032	0.0011	0.0047	invalid	0.082
Dec. 16, '87 ash bin	SBCL 121687	9700.0	0.089	0.058	0.0019	99000	hilevalid	0.00076
Jan 16, '88 ash bin	SBCH011688 C	0.011	0.014	0.023	0.0042	0.0012	finatid	0.0014
Jan 16, '88 ash bin	SBCL0116888	0.011	0.014	0.025	0.000	0.005	finatid	0.00081
Jan 16, '88 ash bin duplicate of SBCH011698	\$DСИ011688ГС 3	< 0.200	< 0.200	◆ 0.200	< 0.200	◆ 0 .200	< 0.200	< 0.200

POLYNUCLEAR AROMATIC HYDROCARBON DATA SUMMARY WITH VHS/OLM CALCULATION (CONTINUED). TABLE 12.

Solubility (ppm): Drinking Water Limit (ppm) VMS Predicted Waste Limit (ppm) VMS Predicted Waste Limit (ppm) Feb 16, '88 ash bin SBCL021688 Mar 16, '88 ash bin SBCL031688 Mar 16, '88 ash bin SBCL031688 Apr 16, '88 ash drag SBCL041488 Apr 14, '88 ash drag SBCL041488 Apr 14, '88 ash bin SBC0041488	2.65E-01	Fluoranthene anthracene	Chrysene	Chrysene fluoranthene	Benzo(a)pyrene	anthracene	Indeno(123-cd)
5 4		5.70E-03	1.80E-03	1.40E-02	1.206-03	5.00E-04	5 305-04
	0.2	1.10E-05	2.00E-04	2.006-05	3.006-06	7, 106-07	
•	25871.5	0.112	15.16	0.164	0.039	0.0075	886.7
40	0.014	0.019	0.028	0.0024	0.0083	0.0072	5100 0
	0.014	0.013	0.029	0.036	0.013	◆ 0.0018	< 0.00072
•	0.01	0.02	0.032	0.00064	0.0025	bilevuj	0.00072
· •o	0.0046	0.023	0.643	0.00097	0.005	◆ 0.0018	02,000
	< 0.190	< 0.190	< 0.190	< 0.190	< 0.190	< 0.190	< 0.190
	Dilevni	inval id	final fd	bi Jewij	bilevol	b) lawi	1
	Y	M	≨	¥	*	4	
	< 0.130	< 0.130	< 0.130	< 0.130	< 0.130	< 0.130	× 0.130
May 14, '88 ash drag SBCL051388	< 0.17n	× 0.170	< 0.170	< 0.170	× 0.170	< 0.170	< 0.170
June 17, '88 ash bin SBCL0617861C	< 0.160	< 0.160	◆ 0.160	< 0.160	< 0.160	4 0.160	× 0.160

TABLE 12. POLYNUCLEAR AROMATIC HYDROCARBON DATA SUMMARY WITH VHS/OLM CALCULATION (CONCLUDED).

Description	Sample Number	Fluoranthene	Benzo(a)- anthracene	Chrysena	Benzo(b)- Chrysena fluoranthene	Benzo(a)pyrene	Oibenzo(ah)- anthracene	Indeno(123-cd) pyrene
Solubility (ppm):		2.65E-01	5.706-03	1.80E-03	1.406-02	1.206-03	5.00E-04	5.30E-04
Drinking Water Limit (ppm)	(udd)	0.2	1.106-05	2.00€-04	2.00E-05	3.00E-06	7.10E-07	2.00E-03
VHS Predicted Waste Limit (ppm)	imit (ppm)	25871.5	0.112	15.16	0.164	0.039	0.0075	886.7
July 15, '88 esh bin	SBCL 071588TC	< 0.160	< 0.160	4 0.160	< 0.160	< 0.160	< 0.160	< 0.160
Aug 26, '88 esh bin	\$8CL082688TC	< 0.290	< 0.290	< 0.290	< 0.290	< 0.290	< 0.290	< 0.290
Sept 22, '88 ash bin	SBCL 092288TC	< 0.180	< 0.180	< 0.180	< 0.160	< 0.160	< 0.180	< 0.180
Oct 19, '88 ash bin	SBCL 1019881C	< 0.140	< 0.140	< 0.140	< 0.140	< 0.140	< 0.140	< 0.140
Nov 16, '88 ash bin	SBCL111688TC	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200

Notes: 1. NA indicates that the constituent was not analyzed 2. Less than values indicate the observed detection limits.

delisting petition) will absorb the UV light in the detector. Many of the compounds that cause interferences are soluble in the typical solvents used for extraction and elution from the HPLC with the possible exceptions of the metals, cations, and anions.

Very poor recovery of the PAHs and poor reproducibility were particularly apparent for sample SBCL041498 where matrix spike and matrix spike duplicate samples showed PAH concentrations for dibenzo-(ah)-anthracene that were 610 ppb in the original sample, 6.4 ppb in the matrix spike, and nondetectable at 1.8 ppb in the matrix spike duplicate. Similar results were obtained for all other PAHs in this analysis.

Several possibilities exist that may explain these results including:

(a) the sample was very inhomogeneous or inhomogeneously contaminated explaining the very high original result, (b) the original sample was contaminated or mislabeled during the analysis procedure, or (c) an incorrect dilution factor was used to calculate the results of the original sample. The latter possibility was determined not to be the case; ITAS recalculated the results from the original laboratory data and obtained similar results. Difficulty with extracting from the soil/ash matrix was also apparent since the matrix spike duplicate was reported as a nondetectable. Similar results were obtained for the matrix spike. Matrix spike duplicate analyses are reported with samples SBCH121687B and SBJH121687B, SBCL011688B and SBCH011688B, and SBCL021688 and SBCH021688.

Overlapping interfering peaks were also apparent on many chromatograms [e.g., SBCH121687B and SBJH121687B have significant overlapping peak for dibenzo-(ah)-anthracene]. Overlapping interference may have caused the reported concentration for this analyte to be significantly overestimated. Two questions arise when overlapping interferences occur in a chromatogram: (1) Can the peak of the analyte of interest be positively identified? and (2) Where should a base line be drawn to most accurately quantitate the analyte if it can be tenably identified?

The analyses performed by Twin Cities Testing used the standard Contract Laboratory Program (CLP) protocols (August 1987 revision). Those

analyses have a significantly higher detection limit than the detection limits allegedly provided by the HPLC method described above.

Both PAH analyses employed have problems. HPLC is unreliable while CLP analyses does not provide sufficiently low detection limits to confirm compliance with the VHS/OLM equation.

5. PCBs

Each sample was analyzed for Arochlors 1016, 1221, 1232, 1242, 1248, 1254, and 1260, but none were detected. There is no record of PCB storage at the former HO storage area at NCBC.

6. Semivolatiles

The semivolatile compounds listed in Table 4 were routinely analyzed. However, as expected from high temperature incineration, none were found in any sample analyzed.

7. Toxicity Characteristic Leachate Procedure (TCLP) Data

In an effort to demonstrate that the process ash waste can be considered nonhazardous, several samples were split and extracted in accordance with the TCLP protocol proposed in the 7 November 1986 Federal Register (40 CFR 260). The resulting extractant was then analyzed using the same high resolution GC/MS techniques (proposed EPA Method 8290) as were used on the other soil samples. The resulting data are presented in Table 13. The extractant contained no dioxins or furans at detection levels approaching the low part per quadrillion range. This indicates an extremely low potential for any dioxins or furans to migrate into a groundwater aquifer.

TABLE 13. HIGH RESOLUTION TOXICITY CHARACTERISTIC LEACHATE PROCEDURE (TCLP) DATA.

	Practical Quantitation			APRI ASH	DRAG TCLP			APRIL 21 ASH DRAG TCLP TRACTION			JUNE 17 ASH DRAG TCLP EXTRACTION			JULY 15 ASH DRAG TCLF
CONSTITUENT	Limit (PQL) ppb	factor	_	SJTC01	1488		5.	ITC042188		JI	rC061788TC	5.	JTC	07158810
2378 TC00	0.015	1.0	KO	2 0.000	066	NO	a	0.000021	ND	a	0.0000047	NO	9	0.000036
TOTAL TODD			NO	a 0.000	025	NO	9	0.000028	ND	a	0.0000047	ND	a	0.000036
NON 2378-TCDD	•	0.01			0			0			0			(
2378 PeCDD	0.015	0.5		NM				XX	MO	9	0.0000095	ND	a	0.000042
TOTAL PECDO			NO	a 0.000	022	NO	a	0.000012	NO	9	0.0000095	ND	9	0.000042
NON 2378-PeCD	D *	0.005			0			0			0			(
2378 H×CDD	0.037	0.4		NM				MM	NO	2	0.000027	NO	2	0.00003
TOTAL HXCDD			ND	a 0.000	016	NO	9	0.000008	ND	a	0.000027	NO	9	0.00003
NON 2378-HXCD	0 •	0.0004			0			0			0			(
2378 TCDF	0.015	0.1	MD	a 0.000	042	MD	2	0.000015	ND	2	0.0000025			0.00002
TOTAL TODE				a 0.000			_				0.0000025			0.00002
NON 2378-TCDF	•	0.001			0		_	0		_	0			1
2378 PeCDF	0.015	0.1		М				MM	KO	3	0.0000048			0.000
TOTAL PECOF			ND	a 0.000	0075	NO	9	0.000008	NO	9	0.0000048			0.0003
NON 2378-PeCD	F •	0.001			0			0			0			0.0002
2378 HxCDF	0.037	0.01		NM				NM	NO	a	0.0000083			0.0003
TOTAL HXCDF			ND	a 0.000	016	ND	9	0.000016	NO	3	0.0000083			0.000
NON 2378-HXCD	F *	0.0001			0			0			0			0.0000

At the time of publication of this report, EPA did not recognize the TCLP data in lieu of the VHS/OLM. Therefore, as a cost savings effort, only four samples were extracted and analyzed using the TCLP protocols.

C. VHS/OLM EQUATION AND APPLICATION TO NCBC PROCESS ASH

The VHS and OLM equations were presented previously in Section II (C) as Equations 3 and 4.

1. Application of VHS Equation to Metals Data

The drinking water standards for metals are listed in Table 9. By using those standards for C_y and solving for C_o in Equation 3, one can obtain the maximum VHS-predicted concentration of metals in the initial waste leachate; those predicted leachate concentrations are also listed in Table 9. By comparing the observed EP toxicity data given in Table 8 with the VHS-predicted maximum, one can see that no samples exceeded the maximum VHS-predicted leachate concentration.

2. Application of VHS/OLM Equations to Herbicide and PAH Data

For organics, $\mathrm{C_o}$ in Equation 3 is given by the OLM equation (Equation 4) and is presented again below:

$$C_y = C_u^{0.678} S^{0.373} 0.0003344$$
 (4)

The drinking water standards as listed in Tables 11 and 12 for herbicides and PAHs were then substituted into Equation 4 for C_y . The equation was then solved for C_w which is also shown in those tables.

The observed concentrations of herbicides and PAHs were below the VHS-predicted waste limits for all valid samples; therefore, the waste can be considered nonhazardous with respect to herbicides and PAHs.

3. Application of VHS/OLM Equation to Dioxin/Furan Data

For dioxins and furans, a solubility of 7.96 x 10⁻⁶ ppm and a pseudo-drinking water standard of 0.224 ppq were used to calculate the VHS-predicted 2,3,7,8-TCDD equivalent waste limit of 0.499 ppt.

The solubility for TCDD is given in Referen \ni 30. The pseudo-drinking water standard was calculated based on a dioxin potency factor for dioxin of 1.56 x 10^5 kg-day/mg. The dioxin potency factor is the slope of the dose response curve for dioxin. Based on a 1 x 10^{-6} risk factor, the risk specific dose is:

$$(1 \times 10^{-6})(1.56 \times 10^{5} \text{ kg-day/mg}) = 6.41 \times 10^{-12} \text{ mg/kg-day}$$
 (6)

The pseudo drinking-water standard is then calculated by assuming that a 70-kg human ingests 2 liters of water per day, or

$$(6.41 \times 10^{-12} \text{ mg/kg-day}) \times (70 \text{ kg})/(2 \text{ liters/day}) = 0.224 \text{ ppq}$$
 (7)

To determine the compliance of the observed samples with the VHS-predicted limit, one must first calculate the 2,3,7,8-TCDD equivalent for each sample. Because of the varying toxicity between the different dioxin and furan isomers, each isomer is given a weighing value by EPA to normalize it with respect to the most toxic dioxin homolog, 2,3,7,8-TCDD.

Table 14 shows a spreadsheet that calculates the 2,3,7,8-TCDD equivalent concentration for the tetra, penta, and hexa isomers of dioxin and furans. As mentioned previously, the 2,3,7,8-homolog concentrations were not always analyzed. When the 2,3,7,8-homolog concentration was analyzed, the non-2,3,7,8-homolog concentration was calculated by subtracting the 2,3,7,8-homolog concentration from the total isomer concentration. Then the analyzed 2,3,7,8-homolog concentration and the calculated non-2,3,7,8-homolog concentration were evaluated against the appropriate practical quantitation limits (PQLs) that were presented by EPA in the 11 March 1988 Federal

TABLE 14. HIGH RESOLUTION DIOXIN/FURAN EQUIVALENT CALCULATION DATA SUMMARY (Units in ppm)

CONSTITUENT	Practical 2378 TCDD Quantitation equivalence Limit (PQL) factor	2378 1CDD equivalence factor	VERIFICATION TEST 1	VERIFICATION TEST 2	VERIFICATION TEST 3	VERIFICATION VERIFICATION VERIFICATION VERIFICATION VERIFICATION 1EST 1 1EST 2 1EST 3 1EST 5 1EST 6	VERIFICATION TEST 6	DEC. 16, '87 ASH BIN	DEC 16, '07 ASH BIN DUPLICATE OF SBCH121687A	DEC. 16, '87 ASH DRAG COLLECTED BY EPA
	g d					SAMPLE MUMBER:	MBER:	\$BCH121687A	\$85H121687	S8JH121687A
2378 1CDD	0.015	1.0	0	0	0	0	0	v Pol.	0	. 0.2
NON 2378-1CDD	•	0.01	0	0	•	0	•	6	0	
2378 Pecbo	0.015	0.5	ć	•					•	
NOW 2378-PecDD *	•	0.005	•	9	•	•	0	0	0	•
2378 HxCDD	0.037	7.0							a	
TOTAL HXCDD NOW 2378-HXCDD	•	0.0004	0	0	•	•	•	•	• •	→
2378 TCDF	0.015	0.1	0	< Pal	→ Pol	→	< POL	•	•	•
NON 2378-TCDF	•	0.001	٥	< Pal	₽	< Pal	* PQL	•	0	•
2378 PecDF	0.015	0.1	Č	Ġ	ć		,		0	
VON 2378-PeCDF	æ u.	0.001	•	•	3	3	•	•	•	•
3378 HXCDF	0.037	0.01	,						0	
ION 2378-HXCDF *	•	0.0001	0	•	•	•	•	•	•	•
otal 2,3,7,8-	otal 2,3,7,8-TCDD equivalent (ppt)	ıt (ppt)	0	0	0	0	0	•	0	900

TABLE 14. HIGH RESOLUTION DIOXIN/FURAN EQUIVALENT CALCULATION DATA SUMMARY (CONTINUED).

	Practical 2378 1000 Quantitation equivalence	2378 TCDD equivalence	DEC. 16, '87 ASH DRAG 1 DUPLICATE OF SBJH121687	EARLY DEC '87 ASH BIN COMPOSITE	LATE DEC '87 ASH BIN COMPOSITE	JAN 16 ASH BIN	FEB 16 ASH BIN	FEB 16 E ASK BIN DUPLICATE	FEB 16 EARLY FEB '88 ISM BIN ASH BIN	LATE FEB '88 ASH BIN COMPOSITE
CONSTITUENT	CIBIC (PUL)	ractor	SJSH121687	\$580041488	\$\$AD041488	SBCH011688A	SBCH021588	\$85H0216881C	SSBF041488	SSAF041488
2378 1C00	0.015	1.0	0	0	0	0	0	0	0	
TOTAL TCDD NON 2378-1CDD	•	0.01	0.00019	o Pol	\ POL	0	< P9L	0	< Pol.	◆ POL
2378 PeCDD	0.015	0.5	0	Š	Š	ć	\$	0	ĕ	10d >
TOTAL PecDD NON 2378-PecDD **	•	0.002	0	Į.	Ž	•	<u>.</u>	•	.	
2378 HxCDD	0.037	9.0	0	į	•		< P0€	٥	3	ŏ v
TOTAL NACOD NOW 2378-HACDO	•	0.0004	O	₹	9	Ž.	0.0000136		į,	,
2378 TCDF	0.015	0.1	o	0	•	•	0	•	•	•
TOTAL TOOF NOW 2378-TCDF	•	0.001	•	₽ 01	· Poi	•	9.00006	•	Š	70d →
2378 PeCDF	0.015	0.1	•	•	•	•	Š	•	٥	•
TOTAL PECOF HON 2378-PeCDF	•	0.001	0	•	•	•		•	•	
2378 HxCDF	0.037	0.01	•	•	•	•	7	•	6	•
TOTAL HXEDF NOW 2378-HXEDF *	•	0.0001	•	•	•	•		0		
Total 2,3,7,8-TCDD equivalent (ppt)	TCDD equivale	nt (ppt)	0.19	0	0	0	0.0796	0	•	•

TABLE 14. HIGH RESOLUTION DIOXIN/FURAN EQUIVALENT CALCULATION DATA SUMMARY (CONTINUED).

	Practical 2378 1000 Quantitation equivalence	2378 1000 equivatence	MAR 16 ASH BIN	APRIL 14 Ash orag	APRIL 14 KILN SOLIDS	APRIL 21 ASH DRAG	AFRIL 21 KILM SOLIDS RCT	APRIL 21 KILN SOLIDS ITAS	APRIL 28 ASH DRAG	APRIL 28 ASH DRAG	APRIL 28 KILK SOLIDS
CONSTITUENT	Limit (POL) Prb	(actor	SBCH031688	\$371 YOMSES	SRC0041488	\$ 3811042188 \$	\$JSH042188 \$RC0042188-TC	SRC042188	\$ 15H042688	\$JSH042888 \$JC0042888-TC \$RC0142888-TC	\$RCON42888-1C
2378 1000	0.015	1.0	0	0	0	0	0	0	•	0	0
TOTAL TC00 WOM 2378-TC00		0.01	0	· POL	•	•	•	•	٠	•	. •
2378 Pec00	0.015	0.5	•	;	,		•			•	•
MON 2378-PeCD0 *	• 00	0.005	•	io⊿ •	•	•	•	•	•	•	۰
2378 BXC00	0.037	9.0	į		•		•		ğ	•	•
NOW 2378-16×CD0 *	• 8	0.0004	ਰੂ . •	₹ •	0.0000224	₽	•	ъ У	4	•	•
2378 TCDF	0.015	6.1	9	•	•	•	•	, PQ.	B	•	•
NON 2378-TCDF	•	0.001	, 194	, Pol		7	•	P	•	•	•
2376 Pecof	0.015	6 .1	•	•	,		•			•	۰
HOW 2378-PeCDF *	•	0.001	9	•	9	0		•	•	•	•
2378 NXCDF	0.037	0.01	•	•			•			٠	•
MON 2378-BxCDF	1€ •	0.0001	•	•	9	ਰ •	•	•	•	•	•
1 2,3,7,4	Total 2,3,7,8-1CDO equivalent (ppt)	nt (ppt)	•	0	9720.0	•	•	•	•	•	•

TABLE 14. HIGH RESOLUTION DIOXIN/FURAN EQUIVALENT CALCULATION DATA SUMMARY (CONTINUED).

	Practical Quantitation	Practical 2378 1CDD Quantitation equivalence	APRIL 28 KILN SOLIDS 11AS	MAY 13 ASH DRAG	MAY 13 KILN SOLIDS	JUNE &	JUNE 9 ASH DRAG	JUNE 17 ASH DRAG	JULY 15 ASH DRAG	AUGUST 26 ASH DRAG
CONSTITUENT	Limit (POL) PPb	factor	SRC:0042888 S	JSH051398-1C	SRC.0042888 \$JSH051338-1C SRSH051388-1C \$JSH0608881C	JSH0608881C	SJSH0609881C	\$J\$H0617881C \$J\$H0715881C	JSH0715881C	\$JSH0826881C
2378 1000	0.015	1.0	0	0	0	0	0	0	0	0
TOTAL TC00 NOW 2378-TC00	•	0.01	0	◆ Pot	0	0	0	•	•	
2378 PeCD0	0.015	0.5		0	0	•	0	•	0	0
TOTAL PECDD WON 2378-PECDD	•	0.00\$	0	•	0	0	o	0	•	0
2378 HxCD0	0.037	9.0		•	•	6	0	•	0	0
TOTAL HXCDD NOW 2378-HXCDD *	•	9.0004	0	•	•	0	0		0	•
2378 TCDF	0.015	0.1	, PQL	0	0	0	•	•	0	•
TOTAL TCDF NON 2378-TCDF	•	0.001	16d >	•	0	•	0	•	•	0
2378 Pec0f	0.015	0.1	•	0	0	•	•	•	•	•
TOTAL PECDF NOW 2378-PECDF *		0.001	0	•	•	0	•	•	0	•
2378 HACDF	0.037	10.0	•	•	•	0	•	•	0	•
TOTAL HACDF NON 2378-HACDF	* 14.	0.0001	9	•	e	•	0	0	c	6
Total 2,3,7,8	Total 2,3,7,8-1CDD equivalent (ppt)	ent (ppt)	0	0	0	e	0	0	6	•

TABLE 14. HIGH RESOLUTION DIOXIN/FURAN EQUIVALENT CALCULATION DATA SUMMARY (CONCLUDED).

TCDD Ppb 5.15H109228BTC 5.15H1116B TCDD TCDF T	COWSTITUENT	Practical 2378 ICDO Quantitation equivalence Limit (PQL) factor	2378 TCD0 equivalence factor	SEPTEMBER 22 ASH DRAG	OCTOBER 19 ASH DRAG	NUVEMBER 16 ASH DRAG
1CDD 0.015 1.0 0 0 1CDD 0.015 0.01 0 < Pol. PeCDD 0.015 0.5 0 0 PeCDD 0.015 0.05 0 0 PeCDD 0.0037 0.4 0 0 HXCDD 0.015 0.1 0 0 1CDF 0.015 0.1 0 0 1CDF 0.015 0.1 0 0 PECDF 0.015 0.1 0 0 PECDF 0.001 0.001 0 0 HXCDF 0.037 0.01 0 0 HXCDF 0.0001 0 0 0		qdd		\$JSH092288TC	\$JSH101999TC	SJSH111688
TCDO	2378 1000	0.015	1.0	0	0	0
PecCDD 0.015 0.5 0 0 PeCCDD 0.0005 0 0 0 HXCDD 0.037 0.4 0 0 HXCDD 0.0004 0 0 0 TCDF 0.015 0.1 0 0 TCDF 0.001 0 0 0 FCDF 0.015 0.1 0 0 FECDF 0.001 0.001 0 0 HXCDF 0.037 0.01 0 0 HXCDF 0.0001 0 0 0	OTAL TCD0 ION 2378-TCD0		0.01	0	v Pol	0
• 0.005 0 0 • 0.037 0.4 0 0 • 0.0004 0 0 0 • 0.0015 0.1 0 0 0 • 0.015 0.1 0 0 0 • 0.001 0 0 0 • 0.001 0 0 0 • 0.0001 0 0 0 • 0.0001 0 0 0	378 Pecob	0.015	0.5	•	•	•
 0.037 0.0004 0.0015 0.001 0.0015 0.001 0.0015 0.001 0.001 0.001 0.0001 0.0001	OTAL PECOD ION 2378-PECO	• 00	0.005	•	0	0
. 0.0004 0 0.015 0.1 0 0.001 0.001 0.0015 0.1 0 0.0015 0.1 0 0.0001 0 0.0001 0	378 HXCDD	0.037	7.0	0	0	•
TCDF 0.015 0.1 0 0 1 1 CDF	IOIAL HXCDO ION 2378-HXCC	* 00	0.0004	0	0	•
TCDF	378 TCDF	0.015	0.1	0	0	•
Pecof 0.015 0.1 0 Pecof 178-Pecof 0.001 0.001 0 Pecof 178-Pecof 0.001 0 Pecof 178-Pecof 0.001 0 Pecof 0.0001 0	OTAL TCDF ION 2378-TCDI	a	0.001	0	•	0
PecDF	378 PecoF	0.015	0.1	0	0	0
HXCDF 0.037 0.01 0 HXCDF 378-HXCDF • 0.0001 0	OTAL PECDF ION 2378-PECI	0F *	0.001		0	•
• 0.0001 0		0.037	0.01	0	0	•
	IOIAL BXLUF ION 2378-HXCI	• • •	0.0001	0		0

Register. If either of the two homologs exceeded the PQL, the spreadsheet multiplied the observed concentration by the appropriate equivalence factor. The result of those calculations is shown in Table 14.

When the 2,3,7,8-homolog was <u>not</u> analyzed, the spreadsheet assumes that <u>all</u> of the measured total isomers are 2,3,7,8 substituted and thus uses the higher dioxin equivalence factor.

PQLs represent the upper bound of acceptable detection limits and are 10 times the minimum detection limit (MDL). PQLs are used in this calculation because they provide a greater degree of certainty that true values are represented than do false negatives or false positives. The concept of PQLs has been successfully used in other dioxin delisting petitions (Reference 31).

For the initial sample obtained 16 February 1988 (Sample SBCH021688) a conservative adjustment was made to the 2,3,7,8-TCDD equivalent calculation. When the 2,3,7,8-hexachlorodibenzodioxin (HxCDD) homolog is subtracted from the total HxCDD isomer concentrations, both the 2,3,7,8-HxCDD and the total HxCDD concentrations fall below the PQL. The calculation would normally assume that the concentrations were equivalent to a nondetectable concentration. To err on the conservative side, the calculation assumes that the total HxCDD concentration is greater than the 37 ppt PQL, is not-2,3,7,8-substituted, and calculates the 2,3,7,8-TCDD equivalence accordingly. The February sample is the only case in which an observed concentration bordered on the PQL such that an additional data interpretation was necessary. Nevertheless, the resulting equivalent calculations falls far below the 0.499 requirement.

By examining Table 14, one can see that the highest 2,3,7,8-TCDD equivalence of 0.0796 ppt was observed 16 February 1988.* Only one other valid sample showed a nonzero 2,3,7,8-TCDD equivalence; that sample had an observed 2,3,7,8-TCDD equivalence of 0.022 ppt and was collected on April 14

^{*} Sample SBJH121687 and its duplicate SJSH121687A were invalidated [see Section IV(B)(1)].

from the kiln exit just upstream of the ash drag. No other valid ash sample showed any detectable 2,3,7,8-TCDD equivalent. Therefore, the dioxin and furan data clearly show that the waste does not meet the criteria that cause it to be listed as a hazardous waste. Additionally, the 2,3,7,8-TCDD equivalent calculations show that the waste does not exceed the allowable waste levels predicted by the VHS/OLM equation and therefore is not a hazard to a hypothetical drinking water aquifer. It can therefore be considered nonhazardous.

SECTION V CONCLUSIONS

The task of characterizing a waste stream so it can be removed from the EPA list of hazardous waste is complex, costly, and time-consuming. Delisting of the NCBC process ash was pursued because, at the beginning of the project, it was the only viable disposal option. Following the verification test burn, the Air Force made a decision to continue the research project based on data that clearly showed the MWP-2000 incinerator could decontaminate F027 waste to a level that passed the models used by EPA.

In 1986, at the time of project commencement, EPA would not evaluate a delisting petition that contained only the verification test burn data. EPA specifically requested that the characterization data for the processed soil be included in the petition.*

A. PRACTICAL QUANTITATION LIMITS

At the time of publication of this report, EPA had not made a final decision regarding the fate of the NCBC processed soil. Despite the detailed planning, testing, and analysis, and the extraordinary low levels of contaminants, the probability of obtaining delisting for the NCBC process ash appears to be very low. The petition was submitted on 9 November 1988 (Reference 15), and amended on 27 March 1989 (Reference 16). EPA contacted the Air Force in the autumn of 1989 and verbally requested that the Air Force withdraw the petition. EPA implied that the dioxin concentration was unsatisfactorily high. EPA considers that any dioxin concentration above the practical quantitation limits (PQLs) to be unacceptable. EPA indicated that the use of the 15 part per trillion (ppt) PQL for TCDD and pentachlorodibenzodioxin (PeCDD) and 37 ppt for HxCDD was inappropriate for the Air Force petition.

^{*} Since that time, however, EPA has modified its position to allow for upfront testing followed by testing of each batch of soil processed. If the batch of soil processed is analyzed and determined to be free of contamination, then it may be delisted.

PQLs used for the Air Force delisting petition were the same ones used for a petition submitted by EPA for the Denny Farm site in McDowell, Missouri (Reference 32). Rather than using those PQLs, EPA instead desired to have PQLs for the Air Force petition based upon the quality assurance data that were submitted with the NCBC delisting petition.

By examining the data shown in Table 13, one can see that there are numerous samples that contained dioxin at concentrations just below the PQLs shown in the table. The Air Force maintains that those data are more likely to be false positive data rather than true dioxin concentrations.

Individual PQLs based upon the quality assurance data would probably have been lower than the ones used in Table 13; typically the sample specific PQLs were in the range of 10 ppt. Delisting of the NCBC process ash would not have been possible if individual PQLs were used in lieu of the EPA PQLs because many of the samples collected would have had dioxin concentrations slightly greater than the individual PQLs. Nevertheless, the Air Force maintains that PQLs established for the EPA petition are appropriate for the NCBC petition because of the precedent set by EPA and because of the inexact nature of analytical chemistry when detection levels in the low part per trillion range are attempted.

B. VHS/OLM

The VHS/OLM is an extraordinarily conservative groundwater model that does not truly represent the flow of contaminants in the groundwater. EPA has continued to use the model because it is the only one that has been peer reviewed. Although EPA has received much criticism for its use, until another model is peer reviewed and adopted, EPA is likely to continue its conservative stance.

The data in the NCBC delisting petition pass the VHS/OLM criteria if one uses the higher PQLs as described above. If lower PQLs are used, the criteria are met for approximately half of the samples collected; the remaining half are just slightly above the criteria. If the VHS/OLM is replaced with a less conservative model, then it is very likely that the criteria would be met, despite which PQLs are used.

On 29 March 1990, EPA stated that it would begin using a different groundwater transport model for the delisting program (Reference 32). That model was less conservative than the VHS/OLM and is the same model used for promulgation of the Toxic Characteristic Leachate Procedures (TCLPs). Nevertheless, EPA continues to use the VHS/OLM for delisting petitions; EPA finalized a delisting ruling for Allegan Metal Finishing Company on 17 September 1990, which used the VHS/OLM as a primary tool for petition evaluation (Reference 33). No explanation was given for not using the model described in Reference 32 for the TCLP. Similarly, a second delisting petition was to be evaluated using the VHS/OLM (Reference 34); again, no explanation was given for the continued use of that model.

C. COST AND LEVEL OF EFFORT

The technical complexity of sampling and analysis required for developing a delisting petition is extraordinary. The NCBC petition involved the services of numerous managers, technicians, chemists, statisticians, computer modelers, and environmental regulatory experts. The overall cost for collecting, analyzing, and reporting the data exceeded \$1 million. Nevertheless, this cost was significantly lower than the estimated \$5 million needed for disposal of the process ash in a hazardous waste landfill. Therefore, the attempt to delist was justified. If, however, EPA denies the delisting petition and requires the incinerator ash to be disposed in a hazardous waste landfill, then the cost of delisting will be to no avail.

D. TECHNICAL COMPLEXITY

The technical complexity of producing a delisting petition required services from a variety of disciplines. Chemical analysts who were subcontracted performed the actual analysis of the samples. EG&G Idaho employed one Ph.D. chemist and several other chemists with B.S. and M.S. degrees to validate the data received from the analytical laboratories and to interpret any unusual results. Two hazardous waste engineers with advanced degrees coordinated the collection of data, interpretation of the regulations, and wrote the petition. EG&G Idaho also utilized the services of numerous clerical and data-tracking personnel. The preparation of this delisting petition would not have been possible without such resources.

E. REQUIRED CONCENTRATIONS FOR DELISTING

The TCDD equivalent concentration needed for obtaining delisting as calculated by the VHS/OLM is 0.499 ppt. This concentration is below the currently available detection limit; therefore, EPA allows the use of PQLs. Samples with TCDD equivalent concentration in excess of the PQL are deemed to be unacceptable. If the measured concentration is below the PQL, then delisting is possible. As described in Part A above, the PQL for TCDD is in the range of 10 to 15 ppt.

To truly appreciate the minute concentrations required to obtain delisting for the volume of process ash at NCBC, one must compare the required concentrations to more common human experiences. The required concentration for delisting--0.499 ppt--is comparable to the thickness of a penny in a stack of pennies that extends from New York City to Los Angeles, California, and back 533 times! Additionally, if one conservatively assumed that the entire 15,000 cubic yards of process ash was contaminated to a level of 10 ppt, then the total inventory of TCDD in the process ash would be only 0.20 grams of TCDD equivalent.

F. AIR FORCE RESPONSE TO EPA'S IMPLIED DELISTING DENIAL

At the time of this report's publication, there was at least one hazardous waste disposal site that could accept the NCBC process ash. The cost for transportation disposal of the ash, however, would be in excess of \$5 million. Due to the extremely low concentrations of TCDD equivalent in the processed soil and the enormous cost for disposal in a hazardous waste site, the Air Force denied the EPA request to withdraw the petition. The Air Force appropriately contends that delisting is not only a more appropriate use of limited Government funding, but is also protective of the environment and human health.

SECTION VI RECOMMENDATIONS

Listed below are several recommendations to anyone who is considering submission of a delisting petition for a hazardous waste:

- Be certain that you consider all alternative disposal options. A
 detailed cost estimate should be prepared for each option. Because
 the delisting option is costly, alternative options may ultimately be
 more advantageous.
- 2. If you choose to pursue delisting, be certain you understand the application of the models that EPA will use to evaluate the waste stream. If the EPA continues to use the VHS/OLM, then the petitioner should be prepared for very conservative delisting limits. The VHS/OLM has the advantage of simplicity; the delisting limits can usually be easily determined through the use of a hand-held calculator within a few hours. The proposed new model is considerably more complex and requires the use of a personal computer and someone capable of learning and running the model.
- 3. Obtain all of the pertinent guidance documents necessary to prepare the petition. The list of references to this report provides a good starting point; Reference 18 is particularly valuable. The references within Reference 18 should also be consulted.
- 4. Establish communication with an authority within OSW early in the delisting process. There is no substitute for personal face-to-face communications to determine the exact requirements for delisting. The EPA relies heavily upon subcontractors for review of delisting petitions. Therefore, the petitioner should also establish direct contact with the subcontractor to obtain technical guidance. Policy decisions should always be left to responsible persons within the EPA itself.

- 5. The delisting process can be a very long one; if disposition is needed quickly for the waste stream, then alternatives to delisting should be sought.
- 6. Many petitions are rejected by EPA because insufficient information was provided or because the information was poorly communicated. Therefore, when writing the delisting petition, be certain to provide all of the information requested. Take extra care in presenting the information so that the reviewers can easily find and understand the information. It is incumbent upon the petitioner to make the review of the petition as easy as possible.

SECTION VII REFERENCES

- 1. Cook, J.A., and Haley, D.J., <u>Full-Scale Incinerator System Demonstration</u> at the Naval Construction Battalion Center, <u>Gulfport</u>, <u>Mississippi</u>, <u>Volume I: Project Summary for the USAF Installation Restoration Program</u>, ESL-TR-89-39, Headquarters, Air Force Engineering and Services Center, Tyndall Air Force Base, Florida, (in press).
- 2. Haley, D.J., Thomas, R.W., and Derrington, D.B., <u>Full-Scale Incinerator System Demonstration Verification Test Burns at the Nava! Construction Battalion Center, Gulfport, Mississippi, Volume II, ESL-TR-89-39, Headquarters, Air Force Engineering and Services Center, Tyndall Air Force Base, Florida, (in press).</u>
- 3. Haley, D.J., and Thomas, R.W., <u>Full-Scale Incinerator System Demonstration at the Naval Construction Battalion Center, Gulfport, Mississippi, Volume III: Trial Burns for the USAF Installation Restoration Program, ESL-TR-89-39, Headquarters, Air Force Engineering and Services Center, Tyndall Air Force Base, Florida, (in press).</u>
- 4. Cook, J.A., <u>Full-Scale Incinerator System Demonstration at the Naval Construction Battalion Center, Gulfport, Mississippi, Volume IV: Incinerator Operations for the USAF Installation Restoration Program, ESL-TR-89-39, Headquarters, Air Force Engineering and Services Center, Tyndall Air Force Base, Florida, (in press).</u>
- 5. Cook, J.A., <u>Full-Scale Incinerator System Demonstration at the Naval Construction Battalion Center, Gulfport, Mississippi, Volume V: Incinerator Availability</u>, ESL-TR-89-39, Headquarters, Air Force Engineering and Services Center, Tyndall Air Force Base, Florida, (in press).
- 6. Deiro, S.W., <u>Full-Scale Incinerator System Demonstration at the Naval Construction Battalion Center, Gulfport, Mississippi, Volume VI: Soil Excavation</u>, ESL-TR-89-39, Headquarters, Air Force Engineering and Services Center, Tyndall Air Force Base, Florida, (in press).
- 7. Cook, J.A., and Haley, D.J., <u>Full-Scale Incinerator System Demonstration at the Naval Construction Battalion Center, Gulfport, Mississippi, Volume VII: Project Management and Site Services, ESL-TR-89-39, Headquarters, Air Force Engineering and Services Center, Tyndall Air Force Base, Florida, (in press).</u>
- 8. Courtney, K.D., Gaylor, D.W., Hogan, M.D., Falk, H.L., Bates, R.R., and Mitchell, I., "Teratogenic Evaluation of 2,4,5-7," <u>Science</u>, Vol. 168, 1970, pp. 864-866.
- 9. Courtney, K.D., and Moore, J.A., "Teratology Studies with 2,4,5-Trichlorophenoxyacetic Acid and 2,3,7,8-Tetrachlorodibenzo-p-dioxin," <u>Toxicology and Applied Pharmacology</u>, Vol. 20, 1971, pp. 396-403.

- 10. Hughes, B.M., et al., <u>Analytical Methodology for Herbicide Órange, Vol. 1:</u>
 <u>Determination of Chemical Composition</u>, AD-A011 597, Aerospace Research Laboratories, Wright Patterson Air Force Base, Ohio, May 1975.
- 11. Ackerman, D., Fisher, H., and Johnson, R., <u>At-Sea Incineration of Herbicide Orange Onboard the M/T Vulcanus</u>, TRW Inc., EPA Office of Research and Development, Research Triangle Park, North Carolina, April 1976.
- 12. Crockett, A.B., and Kimes, T., <u>Herbicide Orange Site Characterization</u>
 <u>Study Naval Construction Battalion Center</u>, ESL-TR-86-21, Headquarters, Air Force Engineering and Services Center, Tyndall Air Force Base, Florida, April 1987.
- 13. Helsel, R.W., and Thomas, R.W., Thermal Desorption/Ultraviolet Photolysis Process Technology Research Test and Evaluation Performed at the Naval Construction Battalion Center, Gulfport, Mississippi, for the USAF Installation Restoration Program, ESL-TR-87-28, Headquarters, Air Force Engineering and Services Center, Tyndall Air Force Base, Florida, (in press).
- 14. Boyd, J., Derrington, D.B., Jr., and Thomas, R.W., <u>High-Temperature</u>
 <u>Fluid-Wall Reactor Technology Research Test, and Evaluation Performed at the Naval Construction Battalion Center, Gulfport, Mississippi, for the USAF Installation Restoration Program, ESL-TR-87-06, Headquarters, Air Force Engineering and Services Center, Tyndall Air Force Base, Florida (in press).</u>
- 15. Versar, Inc., and EG&G Idaho, Inc., <u>Petition for Final Exclusion of FO28</u>
 <u>Residues Generated During Incineration of FO27 Contaminated Soils at the Naval Construction Battalion Center, Gulfport, Mississippi</u>, Revision 9
 Final, Idaho Falls, Idaho, 9 November 1988.
- 16. EG&G Idaho, Inc., and Versar, Inc., <u>Addendum Report: Petition for Final Exclusion of FO28 Residues Generated During Incineration of FO27 Contaminated Soils at the Naval Construction Battalion Center, Gulfport, Mississippi</u>, Idaho Falls, Idaho, 27 March 1989.
- 17. Federal Register, Vol. 51, No. 216, Part II, Environmental Protection Agency, on 40 CFR 260 et al., Hazardous Waste Management System; Land Disposal Restrictions; Final Rule, 7 November 1986, pp. 40472 to 40654.
- 18. The Cadmus Group, Inc., <u>Petitions to Delist Hazardous Wastes: A Guidance Manual</u>, EPA/530-SW-85-003, Environmental Protection Agency Office of Solid Waste, Washington, D.C. Also available from National Technical Information Service, PB85-194488, April 1985.
- 19. Federal Register, Vol. 50, No. 229, Part II, Environmental Protection Agency, on 40 CFR 261, Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusions and Final Vertical and Horizontal Spread Model (VHS), 27 November 1985.
- 20 <u>Federal Register</u>, Vol. 50, No. 229, Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Exclusions and Proposed Organics Model, 27 November 1985, pp. 48943-48967.

- 21. Environmental Protection Agency, <u>Health Assessment Document for Polychlorinated Dibenzo-p-dioxin</u>, Office of Health and Environmental Assessment, Washington, D.C., 1985.
- 22. <u>Federal Register</u>, Vol. 51, No. 145, Hazardous Waste: Identification and Listing, Leachate, 29 July 1986, pp. 27061-27064.
- 23. <u>Federal Register</u>, Vol. 51, No. 219, Hazardous Waste Management System Identification and Listing of Hazardous Waste, Final Exclusion and Final Organic Leachate Model (OLM), 13 November 1986, pp. 41082-41100.
- 24. "Modeling the Transport of 2,3,7,8-TCDD and Other Low Volatility Chemicals in Soils," <u>Environmental Progress</u>, Vol. 5, No. 1, February 1986, pp. 28-33.
- 25. <u>Federal Register</u>, Vol. 53, No. 106, Hazardous Waste Management System Identification and Listing of Hazardous Waste; Final Exclusion Rule, 2 June 1988, p. 20103.
- 26. Kimbrough, R.D., Falk, H., and Stehr, P., "Health Implications of ^,3,7,8-Tetrachlorodibenzodioxin (TCDD) Contamination of Residential Soil," <u>Journal of Toxicology and Environmental Health</u>, Vol. 14, pp. 47-93.
- 27. Environmental Protection Agency Office of Solid Waste, <u>Composite Model for Landfills</u>, Washington, D.C., February 1990.
- 28. Environmental Protection Agency, <u>Test Methods for Evaluating Solid Waste Physical/Chemical Methods</u>, SW-846, 3rd ed., 1982.
- 29. Mitre Corporation, <u>Guidance Manual for Hazardous Waste Incineration</u>
 <u>Permits</u>, prepared for the U.S. Environmental Protection Agency Office of
 Solid Waste and Emergency Response, McLean, Virginia, July 1983.
 Available from National Technical Information System, PB84-100577.
- 30. Science Applications International Corporation, <u>Docket Report on Health-Based Regulatory Levels and Solubilities Used in the Evaluation of Delisting Petitions</u>, <u>Submitted Under 40 CFR 260.20 and 260.22</u>, prepared for U.S. Environmental Protection Agency Office of Solid Waste, Variances Section, Washington D.C., 8 June 1988.
- 31. <u>Federal Register</u>, Vol. 53, No. 48, Hazardous Waste Management System: Identification and Listing of Hazardous Waste; Final Exclusion Rule, 11 March 1988, p. 7903.
- 32. <u>Federal Register</u>, Vol. 55, No. 61, Hazardous Waste Management System: Identification and Listing of Hazardous Waste; Toxicity Characteristics Revisions, 29 March 1990, p. 11833.
- 33. <u>Federal Register</u>, Vol. 55, No. 180, Hazardous Waste Management System: Identification and Listing of Hazardous Waste; Final Denial, Agency's Use of VHS Model, 17 September 1990, p. 38060.

34. <u>Federal Register</u>, Vol. 55, No. 152, Hazardous Waste Management System: Identification and Listing of Hazardous Waste; Proposed Denial, 19 September 1990, p. 38565.

☆ U.S. GOVERNMENT PRINTING OFFICE 1992-635-208