Analysis Integralrechnung

David Jäggli

15. November 2022

Inhaltsverzeichnis

1	Das unbestimmte Integral		
	1.1	Multiplikation von Funktionen	2
	1.2	Integration von weiteren Elementen	3
2	Das bestimmte Integral		
	2.1	Die Berechnung des bestimmten Integrals	4

Das unbestimmte Integral

Bei der Integralrechnung haben wir die umgekehrte Aufgabenstellung als bei der Differenzialrechnung. Anstatt Ableitung (quasi Aufleitung).

Fragenstellung: welche Funktion F'(x) gibt abgeleitet f(x).

Beispiel:

$$f(x) = x^3 + 2x^2 + 5x - 6$$
$$F(x) = \frac{1}{4}x^4 + \frac{2}{3}x^3 + \frac{5}{2}x^2 - 6x + c$$

$$\int \sqrt[5]{x^4} \, dx = \int x^{\frac{4}{5}} = \frac{x^{\frac{4}{5}+1}}{\frac{4}{5}+1} = \frac{x^{\frac{9}{5}}}{\frac{9}{5}} = \frac{9}{5} \cdot x^{\frac{5}{9}}$$

Wobei: $F(x) = \int f(x) dx$

Weil Konstante c fehlt ist es ein unbestimmtes Integral.

Nicht jede Funktion hat eine Stammfunktion.

Man bezeichnet:

als Integrand = Funktion die hinter/unter dem Integral steht

 $\int f(x) dx$ als unbestimmtes Integral F(x) + c als Stammfunktion x die Integrationsvariable

cals Integrationskonstante

1.1 Multiplikation von Funktionen

Ein Produkt von Funktionen kann nicht einfach voneinander getrennt werden wie bei der Summe

Heisst:

$$\int f(x) \cdot g(x) \, dx \neq \int f(x) \, dx \cdot \int g(x) \, dx$$

1.2 Integration von weiteren Elementen

Exponentielle Funktionen:

E_1	$\int e^x dx = e^x + c$
E_2	$\int e^{ax+b} dx = \frac{1}{a} \cdot e^{ax+b} + c$
E_3	$\int a^x dx = \frac{a^x}{\ln(a)} + c$

 ${\bf Logarithmische\ Funktionen:}$

L_1	$\int \ln(x) dx = x \cdot \ln(x) - x + c \text{ für } x \in \mathbb{R}_+^*$
L_2	$\int \ln(ax+b) dx = \frac{1}{a} [(ax+b) \cdot \ln(ax+b) - (ax+b)] + c$
L_3	$\int \log_a x dx = \frac{1}{\ln(a)} (x \cdot \ln(x) - x) + c \text{ für } x \in \mathbb{R}_+^*$

- 2 Das bestimmte Integral
- 2.1 Die Berechnung des bestimmten Integrals