2020年普通高等学校招生全国统一考试 理科数学

注意事项:

- 1. 答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上.
- 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.
- 3. 考试结束后,将本试卷和答题卡一并交回.
- 一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.

符合题目要求的	•			
1.已知集合 A □ {(x	$(x,y) x,y \square \mathbf{N}^*, y \square x \}, B$	$\square \{(x,y) \mid x \square y \square 8\}, \square A$	$\Box B$ 中元素的个数为()	
A. 2	B. 3	C. 4	D. 6	
1 2.复数 1 □ 3i	'是()			
\Box 3	□ 1	1	3	
A 10	B. 10	C. 10	10 D.	
3.在一组样本数据。	中,1,2,3,4出现的频	率分别为 p_1, p_2, p_3, p_4 , 且	$\bigcup_{i=1}^4 p_i \Box 1$	
,则下面四种情形	中,对应样本的标准差最	大的一组是()		
A. $p_1 \square p_4 \square 0.1, p_5$ B.	$_2 \square p_3 \square 0.4$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccc} p & \Box & p & \Box \\ _2 & _3 & 0.1 \end{array} $	
C. $p_1 \square p_4 \square 0.2, p_5$ D.	$_2 \square p_3 \square 0.3$	$\begin{array}{cccc} p & \square & p & \square \\ & & 4 & 0.3, \end{array}$		
4.Logistic模型是常	用数学模型之一,可应用	于流行病学领城.有学者村	艮据公布数据建立了某地区	新冠肺炎
累计确诊病例数I(t))(t的单位:天)的 <i>Logistic</i> 机	I	其中 <i>K</i> 为最大确诊病例数.░	*
		<i>t</i> 1 □ e		t
)=0.95K时,标志着	已初步遏制疫情,则 <i>t*</i> 约	勺为()(ln19≈3)		
A. 60	B. 63	C. 66	D. 69	
5.设 <i>O</i> 为坐标原点,	直线x=2与抛物线C: y²=	·2px(p>0)交于D,E两点,表	告OD⊥OE,则C的焦点坐板	示为(
)				
1 A. (0) 关注公众号"一个高中僧	1 B. (0) "获取更多高中资料	C. (1, 0)	D. (2, 0)	

6.已知向量a, b满足|a| \square 5 , |b| \square 6 , a \square b \square \square 6 , 则 $\cos a$, a \square b = ()

二、填空题: 本题共4小题, 每小题5分, 共20分.

15.已知圆锥的底面半径;	为1,母线长为3,则	该圆锥内半径最大的	内球的体积为	·
$\sin x$ 16.关于函数 $f(x) =$	<u>1</u>	命题:		
①f(x)的图像关于y轴对	対称 .			
②f(x)的图像关于原点	对称.			
③f (x) 的图像关于直线	□ ;x= 对称 . 2			
④f(x)的最小值为2.				
其中所有真命题的序号是	<u>=</u>			
三、解答题: 共70分.	解答应写出文字词	说明、证明过程或	演算步骤.第17~2]	1题为必考题,每个
试题考生都必须作答.	第22、23题为选为	考题,考生根据要	求作答.	
(一) 必考题: 共60:	分.			
17.设数列 $\{a_n\}$ 满足 a_1 =3,	$a_{n\Box 1} \Box 3a_n \Box 4n$.			
(1) 计算a2, a3, 猜想{	$\{a_n\}$ 的通项公式并加	以证明;		
(2) 求数列{2 ⁿ a _n }的前n	项和 S_n .			
18.某学生兴趣小组随机记	周查了某市100天中台	写 天的空气质量等级	和当天到某公园锻炼	的人次,整理数据得
到下表(单位:天):				
锻炼人次	- 50 - 2003	(200 4003		
空气质量等级	[0, 200]	(200, 400]	(400, 600]	
1 (优)	2	16	25	
2 (良)	5	10	12	
3(轻度污染)	6	7	8	
4(中度污染)	7	2	0	•
(1) 分别估计该市一天	的空气质量等级为1	, 2, 3, 4的概率;		

- (2) 求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);
- (3) 若某天的空气质量等级为1或2,则称这天"空气质量好";若某天的空气质量等级为3或4,则称这天"空气质量不好".根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?

人次≤400

人次>400

空气质量好	
空气质量不好	

2	$n(ad \Box bc)$

附:

LIA.		,		
K				
	$(a \square b)(c \square d)$	$(a \square c)(b \square d)$		
$P(K^2 \ge k)$		0.050	0.010	0.001
k		3.841	6.635	10.828

(1) 证明:点 C_1 在平面AEF内;

- (1) 求*C*的方程;
- (2) 若点P在C上,点Q在直线x \square 6 上,且|BP| $\square |BQ|$,BP \square BQ ,求AAPQ 的面积 .
- 21.设函数 $f(x) \square x^3 \square bx \square c$,曲线 $y \square f(x)$ 在点(1 ,f(-))处的切线与y轴垂直 .

1 2 2

- - (2) 若 f(x) 有一个绝对值不大于1的零点,证明: f(x) 所有零点的绝对值都不大于1.

(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题 计分.

[选修4-4: 坐标系与参数方程] (10分)

 $(t为参数且<math>t \neq 1)$, C与坐标轴交于A、B两点 .

- (1) 求| AB |;
- (2) 以坐标原点为极点, x轴正半轴为极轴建立极坐标系, 求直线AB的极坐标方程.

[选修4-5:不等式选讲] (10分)

23.设a, b, $c \square R$, a+b+c=0, abc=1.

- (1) 证明: *ab+bc+ca*<0;
- (2) 用 $\max\{a, b, c\}$ 表示a, b, c中的最大值,证明: $\max\{a, b, c\} \ge 3$ 4 .