ASTR 400B HW3 Table & Questions

Bennett Neil Skinner

January 2023

1 Table

Galaxy Name	Halo Mass	Disk Mass	Bulge Mass	Total	f_{bar}
	$10^{12} M_{\odot}$	$10^{12} M_{\odot}$	$10^{12} M_{\odot}$	$10^{12} M_{\odot}$	
Milky Way	1.975	0.075	0.01	2.06	0.041
Andromeda	1.921	0.12	0.019	2.06	0.067
Triangulum	0.187	0.009	0	0.196	0.046

2 Questions

- 1. Milky Way and Andromeda have the same total mass. Both galaxies' total masses are dominated by their dark matter halos.
- Andromeda has disk and bulge stellar masses ≈twice that of the Milky Way. Assuming both galaxies have comparable stellar populations and gas extinctions, this means that Andromeda should be about twice as luminous as the Milky Way.
- 3. Milky Way and Andromeda have very similar dark matter halo masses despite stellar masses varying by a factor of two. This is surprising, as it implies that dark matter and stellar masses are not strongly correlated (at least in this N=2 sample).
- 4. Milky Way, Andromeda, and Triangulum all have baryon fractions significantly below the universal average. This implies either that the local group has a baryon fraction significantly below the universal average or that the non-spiral-galaxy universe (dwarf galaxies, elliptical galaxies, circumgalactic medium, etc.) is less dark matter rich than spiral galaxies.