Universidad de la República - Facultad de Ingeniería - IMERL. Matemática Discreta 2

Examen - 9 de febrero de 2017. Duración: 4 horas.

N° de examen	Cédula	Apellido y nombre					

Ejercicio 1. Hallar el menor entero positivo congruente a $7^{217^{38}}$ (mód 34).

Ejercicio 2.

- a. ¿Qué es una ecuación diofántica lineal? Decidir cuándo tiene solución y qué forma tiene ésta cuando existe. Probar ambas propiedades.
- b. ¿Qué podemos decir sobre la existencia y el número de soluciones de la ecuación de congruencia:

$$ax \equiv b \pmod{m}$$
? Justificar.

c. Hallar todas las soluciones (módulo 64) de la ecuación de congruencia: $28x \equiv 44 \pmod{64}$.

Ejercicio 3. Hallar todas las soluciones en \mathbb{Z} del sistema:

$$\begin{cases} 3x & \equiv 10 \pmod{11} \\ 2x & \equiv 7 \pmod{9} \\ x & \equiv 8 \pmod{15} \\ 5x & \equiv 10 \pmod{12} \\ x & \equiv 18 \pmod{20}. \end{cases}$$

Ejercicio 4.

- a. Describir el método de Diffie Hellman para acuerdo de clave.
- b. Donald y Mickey, para garantizar la seguridad del gobierno de su país, se ponen de acuerdo en utilizar Diffie Hellman y fijan el primo p=73 y g=11. Donald elige el número secreto n=71 y Mickey le envía $g^m=23$. ¿Cuál es la clave secreta que acuerdan Donald y Mickey?
- c. Asignamos valores a algunos caracteres según la tabla siguiente:

A	В	С	D	E	J	L	M	N	О	P	\mathbf{S}	R
0	1	2	3	4	5	6	7	8	9	10	11	12

Definimos el criptosistema afín de la siguiente manera: para $a, b \in \mathbb{Z}$, con $1 \le a \le 12$, y $0 \le b \le 12$, consideramos la función de encriptado $E : \mathbb{Z}_{13} \to \mathbb{Z}_{13}$ tal que $E(x) = ax + b \pmod{13}$. Sea $0 \le W < 73$ la clave acordada por Donald y Mickey. Escribamos $W = a \cdot 13 + b \pmod{9} \le a < 13$ y $0 \le b < 13$. El encriptado se hace letra a letra usando la función E definida arriba. Encriptar la palabra DJNP.

- d. Supongamos que somos espías rusos y que Donald le envió a Mickey un mensaje encripado según el criptosistema anterior (desconociendo los valores de a y b de la función de encriptado). Espías ayudantes han descubierto que el mensaje original (sin encriptar) tiene como segunda letra A y como cuarta letra E. El mensaje encriptado es OCEJM.
 - i) Hallar la función de encriptado (o sea hallar los valores de a y b) que usan Donald y Mickey.
 - ii) Desencriptar el mensaje OCEJM.

Ejercicio 5.

- a. Sea p un primo y k un entero positivo. Si g es un número par y raíz primitiva de p^k , probar que $g + p^k$ es raíz primitiva de $2p^k$.
- b. Hallar explícitamente todos los homomorfismos de U(54) en el grupo dihedral D_{12} .