

Notazione asintotica

▼ INDICE

- 2 Notazione asintotica
 - 2.1 Notazione asintotica O grande
 - 2.2 Notazione Omega
 - 2.3 Notazione Theta
 - 2.4 Calcolo della notazione asintotica tramite limiti
- 2.2 Algebra della notazione asintotica
 - 2.2.1 Regole delle costanti moltiplicative
 - 2.2.2 Regole sulla commutatività con la somma
 - 2.2.3 Regole sulla commutatività col prodotto

2 Notazione asintotica

In matematica la notazione asintotica permette di confrontare il tasso di crescita(comportamento asintotico) di una funzione nei confronti di un'altra, per esempio:

f(n)=15n+1 $g(n)=n^2$

DEFINIZIONE DI NOTAZIONE ASINTOTICA:

In informatica, invece, il calcolo asintotico viene utilizzato per analizzare la complessità di un algoritmo. Nello specifico, per stimare quanto aumenta il tempo al crescere della dimensione n nell'input.

In particolare esistono 3 tipologie di notazione asintotica e sono:

- Notazione asintotica O grande: essa va a definire il limite superiore asintotico;
- Notazione asintotica Ω : essa va a definire il limite inferiore asintotico;
- Notazione asintotica Θ: essa va a definire il limite asintotico stretto.

Per capire meglio cosa fanno queste 3 tipologie andiamole a vedere nel dettaglio.

2.1 Notazione asintotica O grande

Per comprendere al meglio cosa si intende con notazione asintotica O grande, partiamo direttamente con la sua definizione:

DEFINIZIONE DI NOTAZIONE ASINTOTICA () GRANDE:

Date 2 funzione $f(n),g(n)\geqslant 0$ si dice che $f(n)=\mathrm{O}(g(n))$ se esiste un valore c>0 tali che $0\leq f(n)\leq c\cdot g(n)$ per ogni $n\geqslant n_0$:

In O(g(n)), dunque troviamo tutte le funzioni dominate dalla funzione g(n).

Per capire meglio, quindi, O grande molto semplicemente va a definire un limite superiore asintotico che va a limitare la funzione f(n) quando la costante n_0 , dove $n \to +\infty$, supera un certo valore.

In questo modo essa rimarrà sempre sotto la funzione $c \cdot g(n)$ (dunque viene "dominata" da essa).

ESEMPI SULLA NOTAZIONE ASINTOTICA () GRANDE:

• Sia f(n)=3n+3, possiamo dire che f(n) è in $\mathrm{O}(n^2)$, perché esiste una c (ossia c=6) dove:

$$cn^2\geqslant 3n+3\ per\ ogni\ n\geqslant 1$$
 $Esempio:$
 $n=1\ e\ c=6$
 $6(1^2)\geqslant 3(1)+3$

Tuttavia possiamo dire che f(n) è in O(n), in quanto:

$$cn\geqslant 3n+3\ per\ ogni\ n\geqslant 1\ se\ c\geqslant 6$$

$$Esempio:$$

$$n=1\ e\ c=6$$

$$6(1)\geqslant 3(1)+3$$

• Sia $f(n)=n^2+4n$, tale che f(n) è in $\mathrm{O}(g(n^2))$ in quanto:

$$cn^2\geqslant n^2+4n\ per\ ogni\ n\ se\ c\geqslant 5$$
 $Esempio:$
 $n=1\ e\ c=5$
 $5(1^2)\geqslant 1^2+4(1)$

Possiamo subito notare che nel primo esempio con un polinomio di primo grado abbiamo concluso sia in O(n), mentre nel secondo esempio con un polinomio di secondo grado sia in $O(n^2)$. Per questo possiamo generalizzare la cosa nel seguente teorema:

TEOREMA DELLA NOTAZIONE ASINTOTICA O GRANDE:

Sia f(n) un polinomio di grado m, definito matematicamente come:

$$f(n) = \sum_{i=0}^m a_i \cdot n^i = a_0 + a_1 \cdot n + a_2 \cdot n^2 + ... + a_m \cdot n^m$$

allora possiamo concludere che f(n) è in $O(n^m)$.

Adesso proviamo a dimostrare questo teorema tramite induzione:

D

ESEMPIO TEOREMA DELLA NOTAZIONE ASINTOTICA () GRANDE:

- Caso base: Abbiamo m=0, per cui $f(n)=a_0\cdot n^0$, dunque è una funzione costante e di conseguenza è in $\mathrm{O}(n^0)$;
- Ipotesi induttiva: Affermiamo che

$$\sum_{i=0}^k a_i \cdot n^i$$

è un $\mathrm{O}(n^k)$ per ogni k < m, cioè esiste una costante c^1 tale che:

$$\sum_{i=0}^k a_i \cdot n^i \leq c^1 \cdot n^k$$

• Passo induttivo: Dobbiamo dimostrare che:

$$f(n) = \sum_{i=0}^m a_i \cdot n^i \; \grave{e} \; in \; \mathrm{O}(n^m)$$

cioè che esiste una costante c tale che:

$$\sum_{i=0}^m a_i \cdot n^i \leq c \cdot n^m$$

Si osservi che f(n) si può scrivere come:

$$f(n) = \sum_{i=0}^m a_i \cdot n^i = a_m \cdot n^m + \sum_{i=0}^k a_i \cdot n^i = a_m \cdot n^m + h(n)$$

 $\operatorname{\mathsf{con}} k < m$ e che , per ipotesi induttiva

$$h(n) \leq c^{\mathsf{I}} \cdot n^k$$

Ora:

$$f(n) = a_m \cdot n^m + h(n) \leq a_m \cdot n^m + c^{\mathsf{I}} \cdot n^k \leq a_m \cdot n^m + c^{\mathsf{I}} \cdot n^m$$

Ponendo $c = c^1 + a_m$ si ha la tesi.

2.2 Notazione Omega

La notazione Omega, molto semplicemente fa l'opposto della Notazione O grande ossia definisce un limite inferiore.

DEFINIZIONE DI NOTAZIONE OMEGA:

Date due funzioni $f(n),g(n)\geqslant 0$ si dice che $f(n)=\Omega(g(n))$ se esiste un valore c>0 tale che $0\leq c\cdot g(n)\leq f(n)$ per ogni $n\geqslant n_0$:

In $\Omega(g(n))$ troviamo tutte le funzioni che dominano la funzione g(n).

Per capire meglio, quindi, Omega(Ω) molto semplicemente va a definire un limite inferiore asintotico che va a limitare la funzione f(n) quando la costante n_0 , dove $n \to +\infty$, supera un certo valore.

In questo modo essa rimarrà sempre sotto la funzione $c \cdot g(n)$ (dunque viene "dominata" da essa).

ESEMPIO DI NOTAZIONE OMEGA:

Sia $f(n)=2n^2+3, f(n)$ è in $\Omega(n)$ in quanto:

$$2n^2+3\geqslant cn\ per\ qualunque\ n\ se\ c=1$$

$$Esempio: n=1\ e\ c=1 \ 2(1^2)+3\geqslant 1(1)$$

Tuttavia f(n) è anche in $\Omega(n^2)$ in quanto:

$$2n^2+3\geqslant cn^2\ per\ ogni\ n\ se\ c\leq 2 \ Esempio: \ n=1\ e\ c=2 \ 2(1^2)+3\geqslant 1(1)$$

Tuttavia f(n) è anche $\Omega(n^2)$ in quanto:

$$2n^2+3\geqslant cn^2\ per\ ogni\ n\ se\ c\leq 2 \ Esempio: \ 2(1^2)+3\geqslant 2(1)$$

La dimostrazione che f(n) è in $\Omega(n^m)$ è analoga alla dimostrazione che f(n) è in $O(n^m)$ e perciò viene lasciata come esercizio.

2.3 Notazione Theta

Avendo le definizioni di O grande e Omega, possiamo dare la definizione anche di Notazione Theta:

DEFINZIONE DI NOTAZIONE THETA:

Date 2 funzioni $f(n),g(n)\geqslant 0$ si dice che $f(n)=\Theta(g(n))$ se esistono 2 valori $c_1>0$ e $c_2>0$ tali che $0\leq c_1\cdot g(n)\leq f(n)\leq c_2\cdot g(n)$ per ogni $n\geqslant n_0$.

Dunque se f(n) è sia in O(g(n)) sia $\Omega(g(n))$, allora è anche in $\Theta(g(n))$.

La notazione Theta, quindi, rappresenta il limite stretto asintotico della funzione: una volta superata una certa n, la funzione f(n) si comporta come g(n).

ESEMPIO DI NOTAZIONE THETA:

Sia $f(n)=2n^2-5n+5$, f(n) è in $\Theta(n^2)$ ponendo ad esempio $c_1=1\ e\ c_2=3\ e\ n=1$, così avremo:

$$0 \leq 1(1^2) \leq 2(1^2) - 5(1) + 5 \leq 3(1^2)$$

2.4 Calcolo della notazione asintotica tramite limiti

Per determinare i limiti asintotici di 2 funzioni f(n) e g(n) si utilizza il metodo del limite del rapporto f(n)/g(n):

• Se il limite del rapporto f(n)/g(n) per $n \to \infty$ è 0, allora la funzione f(n) è $\mathrm{O}(g(n))$:

$$\lim_{n o\infty}rac{f(n)}{g(n)}=0\Leftrightarrow f(n)=\mathrm{O}(g(n))$$

• Se il limite del rapporto f(n)/g(n) per $n o \infty$ è infinito, allora la funzione f(n) è $\Omega(g(n))$:

$$\lim_{n o\infty}rac{f(n)}{g(n)}=\infty\Leftrightarrow f(n)=\Omega(g(n))$$

• Se il limite del rapporto f(n)/g(n) per $n \to \infty$ tende a un numero finito k, allora la funzione f(n) è $\Theta(g(n))$:

$$\lim_{n o\infty}rac{f(n)}{g(n)}=k\Leftrightarrow f(n)=\Theta(g(n))$$

ATTENZIONE:

Ovviamente, quando il limite non esiste, questo metodo non si può usare e bisogna procedere diversamente.

2.2 Algebra della notazione asintotica

Oltre al modo appena visto, ossia l'uso dei limiti, per semplificare il calcolo del costo computazionale asintotico degli algoritmi si possono utilizzare 3 regole algebriche:

- · Regola delle costanti moltiplicative;
- · Regola della commutatività con somma;
- Regola della commutatività con prodotto.

2.2.1 Regole delle costanti moltiplicative

PRIMA REGOLA DELLE COSTANTI MOLTIPLICATIVE:

Per ogni k>0 e per ogni $f(n)\geqslant 0$, se f(n) è in $\mathrm{O}(g(n))$ allora anche $k\cdot f(n)$ è in $\mathrm{O}(g(n))$.

Adesso che abbiamo la definizione della prima regola proviamo a dimostrarla:

DIMOSTRAZIONE PRIMA REGOLA DELLE COSTANTI MOLTIPLICATIVE:

Per ipotesi $f(n) \in \mathrm{O}(g(n))$ quindi esistono 2 costanti c e n_0 tali che:

$$f(n) \leq c \cdot g(n) \ per \ ogni \ n \geq n_0$$

Ne segue che:

$$k \cdot f(n) \leq k \cdot c \cdot g(n)$$

Questo prova che, prendendo $k \cdot c$ come nuova costante c^{I} e mantendo lo stesso $n_0, k \cdot f(n) \in \mathrm{O}(g(n))$.

SECONDA REGOLA DELLE COSTANTI MOLTIPLICATIVE:

Per ogni k>0 e per ogni $f(n)\geq 0$, se f(n) è in $\Omega(g(n))$ allora anche $k\cdot f(n)$ è in $\Omega(g(n))$.

Adesso che abbiamo la definizione della seconda regola proviamo a dimostrarla:

DIMOSTRAZIONE SECONDA REGOLA DELLE COSTANTI MOLTIPLICATIVE:

Per ipotesi $f(n) \in \mathrm{O}(g(n))$ quindi esistono 2 costanti c e n_0 tali che:

$$c \cdot g(n) \leq f(n) \ per \ ogni \ n \geq n_0$$

Ne segue che:

$$k \cdot c \cdot g(n) \le k \cdot f(n)$$

Questo prova che, prendendo $k\cdot c$ come nuova costante c^{I} e mantenendo lo stesso $n_0,\ k\cdot f(n)\in\Omega(g(n)).$

TERZA REGOLA DELLE COSTANTI MOLTIPLICATIVE:

Per ogni k>0 e per ogni $f(n)\geq 0$, se f(n) è in $\Theta(g(n))$ allora anche $k\cdot f(n)$ è in $\Theta(g(n))$.

Adesso che abbiamo la definizione della seconda regola proviamo a dimostrarla:

DIMOSTRAZIONE TERZA REGOLA DELLE COSTANTI MOLTIPLICATIVE:

Per ipotesi $f(n) \in \Theta(g(n))$ quindi esistono 3 costanti $c_1, c_2 \ e \ n_0$ tali che:

$$c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n) \ per \ ogni \ n \geq n_0$$

Ne segue che:

$$k \cdot c \cdot g(n) \le k \cdot c \cdot f(n) \le k \cdot c \cdot g(n)$$

Questo prova che, prendendo $k\cdot c_1\ e\ k\cdot c_2$ come nuove costanti $c_1^{
m I}$ e $c_2^{
m II}$ e mantendo lo stesso $n_0, k\cdot f(n)\in$ $\Theta(g(n))$.

In modo informale, quindi, possiamo dire che le costanti moltiplicative possono essere ignorate durante il calcolo di un qualsiasi limite asintotico.

ATTENZIONE:

Da precisare il fatto che la costante moltiplicativa non sia all'esponente della funzione:

ESEMPIO DI ERRORE:

Per esempio nella seguente funzione:

$$f(n) = 2^{k \cdot n}$$

Non possiamo ignorare la k.

2.2.2 Regole sulla commutatività con la somma

PRIMA REGOLA SULLA COMMUTATIVITÀ CON LA SOMMA:

Per ogni f(n),d(n)>0, se f(n) è in $\mathrm{O}(g(n))$ e d(n) è in $\mathrm{O}(h(n))$ allora f(n)+d(n) è in $\mathrm{O}(g(n)+d(n))$ h(n) = O(max(g(n), h(n))).

Adesso che abbiamo la definizione della prima regola proviamo a dimostrarla:

DIMOSTRAZIONE PRIMA REGOLA SULLA COMMUTATIVITÀ CON LA SOMMA:

Se $f(n) \in O(g(n))$ e $d(n) \in O(h(n))$ allora esistono 4 costanti: c^l e c^l , n_0^l e n_0^l tali che:

$$f(n) \leq c^{\mathsf{I}} \cdot g(n) \ per \ ogni \ n \geq n_0^{\mathsf{I}} \ e \ d(n) \leq c^{\mathsf{II}} \cdot h(n) \ per \ ogni \ n \geq n_0^{\mathsf{II}}$$

allora:

$$f(n) + d(n) \leq c^{\mathsf{I}} \cdot g(n) + c^{\mathsf{II}} \cdot h(n) \leq max(c^{\mathsf{I}}, c^{\mathsf{II}})(g(n) + h(n)) \ per \ ogni \ n \geq max(n_0^{\mathsf{I}}, n_0^{\mathsf{II}})$$

Da ciò segue che $f(n)+d(n)\in \mathrm{O}(g(n)+h(n)).$

Infine:

$$max(c^{\mathsf{I}}, c^{\mathsf{II}})(g(n) + h(n)) \leq 2 \cdot max(c^{\mathsf{I}}, c^{\mathsf{II}}) \cdot max(g(n)h(n))$$

Ne segue che $f(n) + d(n) \in O(max(g(n), h(n)).$

SECONDA REGOLA SULLA COMMUTATIVITÀ CON LA SOMMA:

Per ogni f(n),d(n)>0, se f(n) è in $\Omega(g(n))$ e d(n) è in $\Omega(h(n))$ allora f(n)+d(n) è in $\Omega(g(n)+1)$ $h(n) = \Omega(max(g(n), h(n))).$

Adesso che abbiamo la definizione della regola proviamo a dimostrarla:

DIMOSTRAZIONE SECONDA REGOLA SULLA COMMUTATIVITÀ CON LA SOMMA:

Se $f(n)\in\ \Omega(g(n))$ e $d(n)\in\ \Omega(h(n))$ allora esistono 4 costanti: $c^{\mathbb{I}}$ e $c^{\mathbb{I}}$, $n_0^{\mathbb{I}}$ e $n_0^{\mathbb{I}}$ tali che:

$$c^{\mathsf{I}} \cdot g(n) \leq f(n) \ per \ ogni \ n \geq n_0^{\mathsf{I}} \ e \ c^{\mathsf{II}} \cdot h(n) \leq d(n) \ per \ ogni \ n \geq n_0^{\mathsf{II}}$$

allora:

$$c^{\mathsf{I}} \cdot g(n) + c^{\mathsf{II}} \cdot h(n) \leq max(c^{\mathsf{I}}, c^{\mathsf{II}})(g(n) + h(n)) \leq f(n) + d(n) \ per \ ogni \ n \geq max(n_0^{\mathsf{I}}, n_0^{\mathsf{II}})$$

Da ciò segue che $f(n)+d(n)\in\Omega(g(n)+h(n)).$

Infine:

$$max(c^{\mathsf{l}},c^{\mathsf{ll}})(g(n)+h(n)) \leq 2 \cdot max(c^{\mathsf{l}},c^{\mathsf{ll}}) \cdot max(g(n)h(n))$$

Ne segue che $f(n)+d(n)\in\Omega(max(g(n),h(n)).$

TERZA REGOLA SULLA COMMUTATIVITÀ CON LA SOMMA:

Per ogni f(n),d(n)>0, se f(n) è in $\Theta(g(n))$ e d(n) è in $\Theta(h(n))$ allora f(n)+d(n) è in $\Theta(g(n)+1)$ $h(n) = \Theta(max(g(n), h(n))).$

Adesso che abbiamo la definizione della regola proviamo a dimostrarla:

DIMOSTRAZIONE SECONDA REGOLA SULLA COMMUTATIVITÀ CON LA SOMMA:

Se $f(n)\in\Theta(g(n))$ e $d(n)\in\Theta(h(n))$ allora esistono 6 costanti: c^{I} , c^{II} e c^{IV} , n_0^{I} e n_0^{II} tali che:

$$c^{\mathsf{I}} \cdot g(n) \leq f(n) \leq c^{\mathsf{II}} \cdot g(n) \ per \ ogni \ n \geq n_0^{\mathsf{I}} \ e \ c^{\mathsf{III}} \cdot h(n) \leq d(n) \leq c^{\mathsf{IV}} \cdot h(n) \ per \ ogni \ n \geq n_0^{\mathsf{II}}$$

allora:

$$|c| \cdot g(n) + c^{\parallel} \cdot h(n) \leq max(c^{\parallel}, c^{\parallel})(g(n) + h(n)) \leq f(n) + d(n) \ per \ ogni \ n \geq max(n_0^{\parallel}, c_0^{\parallel}) \ e \ f(n) + d(n)$$

Da ciò segue che $f(n)+d(n)\in\Theta(g(n)+h(n)).$

Infine:

$$max(c^{\mathsf{I}},c^{\mathsf{II}})(g(n)+h(n)) \leq 2 \cdot max(c^{\mathsf{I}},c^{\mathsf{II}}) \cdot max(g(n)h(n)) \ e \ max(c^{\mathsf{III}},c^{\mathsf{IV}})(g(n)+h(n)) \leq 2 \cdot max(e^{\mathsf{III}},c^{\mathsf{IV}}) = 2 \cdot max(e^{\mathsf{III}},c^{\mathsf{IV}})$$

Informalmente possiamo dire che le notazioni asintotiche mutano con l'operazione di somma.

2.2.3 Regole sulla commutatività col prodotto

PRIMA REGOLA SULLA COMMUTATIVITÀ COL PRODOTTO:

Per ogni f(n), d(n) > 0, se f(n) è in O(g(n)) allora $f(n) \cdot d(n)$ è in $O(g(n) \cdot h(n))$.

Adesso che abbiamo la definizione della regola proviamo a dimostrarla:

DIMOSTRAZIONE PRIMA REGOLA SULLA COMMUTATIVITÀ COL PRODOTTO:

Se $f(n)\in \mathrm{O}(g(n))\ e\ d(n)\in \mathrm{O}(h(n))$, allora esistono 4 costanti: $c^{\mathbb{I}}$ e $c^{\mathbb{I}}$, $n_0^{\mathbb{I}}$ e $n_0^{\mathbb{I}}$ tali che:

$$f(n) \leq c^{\mathsf{I}} \cdot g(n) \ per \ ogni \ n \geq n_0^{\mathsf{I}} \ e \ d(n) \leq c^{\mathsf{II}} \cdot h(n) \ per \ ogni \ n \geq n_0^{\mathsf{II}}$$

allora:

$$f(n) \cdot d(n) \leq c^{\parallel} \cdot c^{\parallel} \cdot g(n) \cdot h(n) \ per \ ogni \ n \geq max(n_0^{\parallel}, n_0^{\parallel})$$

Da ciò segue che $f(n) \cdot d(n) \in \mathrm{O}(g(n) \cdot h(n))$.

SECONDA REGOLA SULLA COMMUTATIVITÀ COL PRODOTTO:

Per ogni f(n), d(n) > 0, se f(n) è in $\Omega(g(n))$ allora $f(n) \cdot d(n)$ è in $\Omega(g(n) \cdot h(n))$.

Adesso che abbiamo la definizione della regola proviamo a dimostrarla:

DIMOSTRAZIONE SECONDA REGOLA SULLA COMMUTATIVITÀ COL PRODOTTO:

Se $f(n)\in\Omega(g(n))\ e\ d(n)\in\Omega(h(n))$, allora esistono 4 costanti: $c^{\mathbf{l}}$ e $c^{\mathbf{ll}}$, $n_0^{\mathbf{l}}$ e $n_0^{\mathbf{ll}}$ tali che:

$$c^{\mathsf{I}} \cdot g(n) \leq f(n) \ per \ ogni \ n \geq n_0^{\mathsf{I}} \ e \ c^{\mathsf{II}} \cdot h(n) \leq d(n) \ per \ ogni \ n \geq n_0^{\mathsf{II}}$$

allora:

$$c^{\mathsf{I}} \cdot c^{\mathsf{II}} \cdot g(n) \cdot h(n) \leq f(n) \cdot d(n) \; per \; ogni \; n \geq max(n_0^{\mathsf{I}}, n_0^{\mathsf{II}})$$

Da ciò segue che $f(n)\cdot d(n)\in\Omega(g(n)\cdot h(n)).$

TERZA REGOLA SULLA COMMUTATIVITÀ COL PRODOTTO:

Per ogni f(n), d(n) > 0, se f(n) è in $\Theta(g(n))$ allora $f(n) \cdot d(n)$ è in $\Theta(g(n) \cdot h(n))$.

Adesso che abbiamo la definizione della regola proviamo a dimostrarla:

○ DIMOSTRAZIONE TERZA REGOLA SULLA COMMUTATIVITÀ COL PRODOTTO:

Se $f(n) \in \Theta(g(n))$ e $d(n) \in \Theta(h(n))$, allora esistono 4 costanti: c^{I} , c^{II} , c^{III} e c^{IV} , n_0^{I} e n_0^{II} tali che:

$$c^{\mathsf{I}} \cdot g(n) \leq f(n) \leq c^{\mathsf{II}} \cdot g(n) \ per \ ogni \ n \geq n_0^{\mathsf{I}} \ e \ c^{\mathsf{III}} \cdot h(n) \leq d(n) \leq c^{\mathsf{IV}} \cdot h(n) \ per \ ogni \ n \geq n_0^{\mathsf{II}}$$

allora:

$$c^{\mathsf{I}} \cdot c^{\mathsf{II}} \cdot g(n) \cdot h(n) \leq f(n) \cdot d(n) \leq c^{\mathsf{III}} \cdot c^{\mathsf{IV}} \cdot g(n) \cdot h(n) \ per \ ogni \ n \geq max(n_0^{\mathsf{I}}, n_0^{\mathsf{II}})$$

Da ciò segue che $f(n) \cdot d(n) \in \Theta(g(n) \cdot h(n))$.

Informalmente possiamo dire che le notazioni cambiano con l'operazione di prodotto.

Ora che abbiamo visto tutte le regole algebriche della notazione asintotica andiamo a vedere qualche esempio sulla loro applicazione.

ESEMPIO REGOLE ALGEBRICHE DELLA NOTAZIONE ASINTOTICA 1:

Trovare il limite asintotico stretto per $f(n) = 3n2^n + 4n^4$:

$$3n2^n + 4n^4 = \Theta(n2^n) + \Theta(n^4) = \Theta(n2^n) \rightarrow Perché\ \grave{e}\ il\ max\ tra\ i\ due.$$

ESEMPIO REGOLE ALGEBRICHE DELLA NOTAZIONE ASINTOTICA 2:

Trovare il limite asintotico stretto per $f(n) = 3n^2 + 7$:

$$3n^2 + 7 = \Theta(n^2)$$

ESEMPIO REGOLE ALGEBRICHE DELLA NOTAZIONE ASINTOTICA 3:

Trovare il limite asintotico stretto per $f(n) = 2^{2n}$:

$$2^{2n} = 2^n \cdot 2^n = \Theta(2^n) \cdot \Theta(2^n) = \Theta(2^{2n})$$