ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ

(НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Эссе Crystals-Dilithium

1 Введение

Широко используемые на сегодняшний день ассиметричные системы шифрования основаны на двух типах задач теории чисел:

- факторизация целых чисел (RSA, схема Эль-Гамаля);
- дискретное логарифмирование (семейство алгоритмов Дефи-Хелмана).

Обращение этих задач считалось носуществивым за разумное время по причине отсутствия полиноминальных алгоритмов по времени выполнения. Но начиная с 1995-го года начинается период "квантовой революции" в теории алгоритмов.

В 1995 г. Питер Шор продемонстрировал полиномиальные алгоритмы обращения описанных выше задач на квантовых компьютерах [1]. В 1996 г. Гровер продемонстрировал общий метод поиска в базе дан- ных со сложностью $O(\sqrt{N})$, позволяющий реализовывать расшифровку симметричных алгоритмов шифрования эквивалентную двукратному у- меньшению ключа шифра [2]. На практике работа алгоритма была провере- на на 2-х кубитном квантовом компьютере, состоящем из полумиллитра смеси изотопа карбона-13 помеченного хлороформом, находящегося в ацетоне-D6 [3].

Так, получается, что используемые на практике системы ассиметричного шифрования, как и основная стадия шифрования - хеширование перестали быть сложными для обращения. Как следствие, возникла потребность поиска задач и алгоритмов, основанных на этих задачах, решение и расшифрование которых не было бы возможно с помощью квантовых компьютеров.

2 SVP, NTRU

Такой задачей стала SVP (shortest vector problem). Это задача о нахождении кратчайшего вектора в дискретной целочисленной решётке, которая может быть представлена как множество векторов заданных целочисленными линейно независимыми базовыми векторами (все компоненты каждого вектора вычисляются по модулю некоторого целого числа). Основные преимущества этой задачи:

- возможность построить одностороннюю функцию с секретом, быстро обращаемую при наличии дополнительных сведений (trapdoor function);
- не разрешима за полиноминальное время даже на квантовых вычислителях;
- SVP является NP-полной задачей.

Первое свойство позволяет значительно ускорить генерацию ключей и вычисление подписей на решётках (скорость генерации ключа и подписи (проверки подписи) улучшается с $O(n^2)$ до O(n)). Второе и третье свойства гарантируют сложность взлома алгоритмов, построенных SVP.

Разновидностью SVP является CVP (closest vector problem). Это задача о нахождении вектора в решётке, ближайшего к выбранному (Найти вектор \boldsymbol{x} такой, что он даёт минимальное расстояние до выбранного вектора \boldsymbol{v} в выбранно решётке \boldsymbol{L}). Алгоритм Crystalls-Dilithium использует в своей основе как раз CVP. Кроме того, в этом алгоритме используется алгоритм, аналогичный NTRU.

NTRU - это система шифрования, основанная на задаче NTRU-свёртки модулярных решёток, которая является частным случаем CVP-задачи (итог - частный случай частного случая). Основой шифрования является опе- рация свертки на кольце модулярных многочленов (с целыми коэффициен- тами). Под сверткой многочленов в данном случае понимают, их умноже- нием, с заданным правилом свертки $x^i=1$, где i=const. Например, $x^5=1$: $(2x^4-3x^3+2)(4x^5+2x-2)=-2x^4-6x^3+4x+8$

Под модулярным многочленом $Z[x]/(x^n-1)\ modk$, понимают многочлен $P_k(x)=b_{n-1}x^n-1+...+b_1x+b_0$ коэффициенты которого являются остатком от деления, коэффициентов исходного многочлена

 $P(x) = b_{n-1}x^n - 1 + ... + b_1x + b_0$ на k и принадлежащие некоторому промежутку: $c_1 \le b_i \le c_2$. Обратным многочленом $P_k(x)$ по модулю k явялется многчлен $P_k^{-1}(x): P_k^{-1}(x) * P_k(x) = 1 \ modk$.

Тогда процесс шифрования будет заключаться в:

- выборе простого n, показателя степени для правила свертки, малого и большого взаимно простых модулей q и p;
- выборе многочленов $f(x), g(x) \in R$ с «малыми коэффициентами»;
- вычислении обратных многочленов $F_q(x) = f^{-1}(x) \mod q$

Публичным ключом является многочлен $h(x) = g(x) * F_q \ mod q$, приватным - многочлен f(x).

Шифрование

Для шифрования текста, представляемого многочленом $m(x) \mod p$ выбирается "малый"многочлен r(x). Тогда сообщение шифруется по формуле $e = p * r * h + m \mod q$.

Расшифровка

Для расшифровки вычисляется $a(x) = e(x)*f(x) \mod q$, коэффициента этого многочлена будут $A \leq a_i < A+q$. Тогда исходное сообщение восстанавливается по формуле $m(x) = F_p*a \mod p$.

3 Fiat-Shamir heuristic

Ещё один протокол, который нужен для построения алгоритма Crystalls-Dilithium - это протокол Фиата-Шамира с прерываниями. На примере доказательства знания дискретного логарифма какого-то числа покажем поэтапную работу протокола:

- 1. Алиса хочет доказать, что знает число x, которое является дискретным логарифмом у, $y = g^x(modn)$, также стороны заранее договариваются о выбранном простом числе q.
- 2. Алиса берёт случайное число из кольца по модулю $q\left(\mathbf{Z}_{\mathbf{q}}^{*}\right)$ и вычисляет $t=g^{v}.$
 - 3. Алиса вычисляет хеш-функцию $c = \mathbf{H}(g, y, t)$.
- 4. Алиса вычисляет $r = v cx \mod \lambda(q)$, здесь $\lambda(q)$ это количество простых чисел от 1 до q. Результатом является доказательство (ключ) пара (t,r).
- 5. Теперь, имея эту пару, кто угодно, знающий x, может доказать знание Алисы, вычислив истинность выражения $t=g^ry^c$.

Знание хеш-функции, числа q и случайного числа v считаются открытыми, тогда проверку сможет осуществить любой, имеющий эти знания, знания о значении x и знания о паре-доказательстве, выданному Алисой.

Кроме этого, важно, чтобы значение хэщ-функции зависело от значения y, так как иначе атакующий может подобрать любое подходящее значение y, так чтобы узнать значение cx. На практике применяется раундовый (итеративный) протокол Фиата-Шамира: проводится несколько раундов (пункты 1-5), и если все арунды завершаются подтверждением, то знание считается доказанным.

В алгоритме Crystalls-Dilithium используется протокол Фиата-Шамира с прерываниями. Дело в том, что задача(svp), на которой основан этот алгоритм решается приближённым методом, поэтому невозможно всегда гарантировать нахождение правильного решения. Для таких случаев используется протокол Фиата-Шамира с отбрасываниями. Его идея заключается в том, чтобы дока-

зать истинность знания не во всех раундах проверки, а только в части из них (например, в $\frac{2}{3}$ всех раундов проверки). Кроме того, может случиться и так, что вычисления займут слишком много времени. Чтобы не тратить лишние ресурсы, используются отбрасывания некоторых раундов.

4 Crystals-Dilithium, упрощённая схема

Здесь будут рассмотрены три этапа урощённой схемы алгоритма Crystals-Dilithium - генерация ключей, подпись и верификация.

Ниже приведена схема упрощённого алгоритма, а ещё ниже приведено подробное объяснение каждого шага алгоритма.

```
01 \mathbf{A} \leftarrow R_q^{k \times \ell}
02 (\mathbf{s}_1, \mathbf{s}_2) \leftarrow S_{\eta}^{\ell} \times S_{\eta}^{k}
03 \mathbf{t} := \mathbf{A}\mathbf{s}_1 + \mathbf{s}_2
04 return (pk = (A, t), sk = (A, t, s_1, s_2))
Sign(sk, M)
05 z := \bot
06 while z = \bot do
07 \mathbf{y} \leftarrow S_{\gamma_1-1}^{\ell}
08 \mathbf{w}_1 := \mathsf{HighBits}(\mathbf{Ay}, 2\gamma_2)
09 c \in B_{\tau} := H(M \parallel \mathbf{w}_1)
          z := y + cs_1
          if \|\mathbf{z}\|_{\infty} \geq \gamma_1 - \beta or \|\mathsf{LowBits}(\mathbf{Ay} - c\mathbf{s}_2, 2\gamma_2)\|_{\infty} \geq \gamma_2 - \beta, then \mathbf{z} := \bot
12 return \sigma = (\mathbf{z}, c)
Verify(pk, M, \sigma = (\mathbf{z}, c))
13 \mathbf{w}_1' := \mathsf{HighBits}(\mathbf{Az} - c\mathbf{t}, 2\gamma_2)
14 if return [\![\|\mathbf{z}\|_{\infty} < \gamma_1 - \beta]\!] and [\![c = H(M \parallel \mathbf{w}_1')]\!]
```

- Генерация ключей происходит в 4 этапа:
 - генерация случайной матрицы **A** размера $k \times l$. Эта матрица состоит из полиномов в кольце $R_q = \mathbf{Z_q}[X]/(X^n+1)$;
 - генерация двух случайных секретных ключей векторов $\mathbf{s_1}$ и $\mathbf{s_2}$. Каждый коэффициент этих векторов (множитель перед базисным вектором) это элемент R_q , не больший заранее выбранного η . Размерность $\mathbf{s_1}$ l, размерность $\mathbf{s_2}$ k;
 - на следующем шаге генерируется вторая часть открытого ключа как $\mathbf{t} = \mathbf{A}\mathbf{s_1} + \mathbf{s_2};$

— открытым ключом является набор (\mathbf{A}, \mathbf{t}) , закрытым - набор $(\mathbf{A}, \mathbf{t}, \mathbf{s_1}, \mathbf{s_2})$.

• Подпись:

- алгоритм подписания генерирует вектор-маску из полиномов с коэффициентами меньше, чем γ_1 . Параметр γ_1 выбран так, что он достаточно большой, чтобы не раскрыть секретный ключ(алгоритм с нулевым знанием или zero-knowledge algorithm), но достаточно маленький, чтобы подпись нелегко было подделать;
- после этого подписывающий вычисляет $\mathbf{A}\mathbf{y}$ и "биты высших порядков" (самые старшие биты этого произведения) записываются в \mathbf{w}_1 . В самом деле, каждый коэффициет w в $\mathbf{A}\mathbf{y}$ может быть записан как $w=w1*2\gamma_2+w_0$, где $|w_0|\leq \gamma_2$. Тогда интуитивно понятно, что \mathbf{w} это вектор, собирающий в себе все w_1 ;
- тогда "испытание" c создаётся как хэш исходного сообщения и \mathbf{w} . Результатом будет многочлен в R_q с кожффициентами равными ± 1 или 0, причём количество \pm обозначим как τ (на будущее). Это сделано для того, чтобы c имеет малую норму и размером от 128 до 256;
- после этого потенциальная подпись вычисляется как $\mathbf{z} = \mathbf{y} + c\mathbf{s_1};$

Если бы **z** сразу выводился, до схема подписи была бы небезопасной, так как в этом случае происходила бы утечка секретного ключа. Чтобы избежать зависимости **z** от секретного ключа, мы используем подбор с отказом (как в разобранном протоколе Фиата-Шамира). Требуется обозначить условие условие, когда мы отбрасываем подпись и вычисляем новую.

Пусть параметр β - это максимально возможный коэффициет в $c\mathbf{s_i}$. Так как c содержит в себе ровно τ 1 и -1, то $\beta \leq \tau * \eta$. Если какой-то коэффициент \mathbf{z} больше, чем $\gamma_1 - \beta$, то процедура подписи начинается заново. Кроме этого условия, есть ещё одно: если какой-то коэффициент младших битов $\mathbf{Az} - c\mathbf{t}$ больше, чем $\gamma_2 - \beta$.

Первое условие важно только для безопасности подписи, тогда как второе - и для безопасности, и для правильности алгоритма. Параметры кольца q и п позволяют добиться правильной подписи за небольшое число итераций (примерно 4 итерации для $q = s^3 3 - 2^1 3 + 1, n = 256$).

• Проверка подписи:

— проверющий вычисляет вектор \mathbf{w}_1' - вектор старших битов от $\mathbf{Az}-c\mathbf{t}$ и подтверждает подпись, если все коэффиуиенты \mathbf{z} меньше, чем $\gamma_1-\beta$ и

c - это результат хэш-функции сообщения и $\mathbf{w}_{\mathbf{1}}^{'}$

5 Улучшения упрощённой схемы

Самое заметное (но легко исправляемое) улучшение - это замена матрицы $r \times l$, состоящей из многочленов, в публичном ключе, так как её представление занимает очень много места в памяти. Решение: заменить матрицу ${\bf A}$ на семя ρ , с помощью которого алгоритм SHAKE-128 генерирует нужную нам матрицу. Тогда открытый ключ - это набор $(\rho, {\bf t})$, и его размер продиктован, в основном, размером ${\bf t}$.

Кроме этого, Dilithium уменьшает размер битового представления \mathbf{t} немного больше, чем в два раза ценой увеличения подписи почти на сто байтов. При подтверждении подписи, \mathbf{w}_1' не сильно зависит от младших битов \mathbf{t} , потому что \mathbf{t} умножен на на очень "незначительный" (малые весса у коэффициентов) многочлен c. В приведённой схеме некоторые младшие биты \mathbf{t} не включены в публичный ключ, и проверяющий не может всегда правльно посчитать старише биты $\mathbf{Az} - c\mathbf{t}$. Для этого подписывающий добавляет "подсказки"как часть подписи, которые существенно помогают, добавляя в произведение с c недостающие младшие биты \mathbf{t} . С этой подпаской можно правильно посчитать \mathbf{w}_1' .

Также можно рассмотреть улучшение общего случая умножения матрицы ${\bf A}$. Её элементы - полиномы в ${\bf Z_q}[X]/(X^{256}+1)$, которые умножаются на вектор у таких же многочленов. Как и во многих алгоритмах, основанных на решётках, кольцо можно выбрать так, чтобы умножение производилось очень эффективной операцией с помощью дискретного преобразовани Фурье. Для этого нужно выбрать простое q так, чтобы группа ${\bf Z_q}^*$ обладала элементом порядка 2n=512, или (что то же самое) q=1 mod512. Если г такой элемент, то $X^{256}+1=(X-r)(X_r^3)...(X-r^511)$ и следовательно, возможно эквивалентное представление любого полинома $a\in {\bf Z_q}[X]/(X^{256}+1)$ с помощью китайской теоремы об остатках в форме $(a(r),a(r^3),...,a(r^{2n-1}))$. Преимущество этого представления в том, что произведение двух полиномов происходит покоординатно (как в скалярном произведении двух векторов). Таким образом, самая дорогая часть перемножения многочленов - это преобразование $a\to \hat{a}$ и обратное преобразование $\hat{a}\to a$, а это известные и быстрые дискретные преобразования Фурье.

Источники Источники

Источники

[1] Shor P.W., Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Com., 1997, 26:5, ctp. 1484-1509.

- [2] Grover L. K., A fast quantum mechanical algorithm for database search, Proceedings of the 28th ACM STOC, 1996, cmp. 212–219.
- [3] Chuang I. L., Gershenfeld N., Kubinec M., Experimental Implementation of Fast Quantum Searching, Physical Review Letters, 1998, 80:15, cmp. 3408–3411.