ĐÁP ÁN – THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2012 Môn: TOÁN; Khối A và khối A1

 $(\Theta$ áp án – thang điểm gồm 04 trang)

Câu	Đáp án	Điểm
1 (2,0 điểm)	a) (1,0 điểm)	
	Khi $m=0$, ta có: $y=x^4-2x^2$. • Tập xác định: $D=\mathbb{R}$. • Sự biến thiên: - Chiều biến thiên: $y'=4x^3-4x$; $y'=0 \Leftrightarrow x=0$ hoặc $x=\pm 1$.	0,25
	Các khoảng nghịch biến: $(-\infty; -1)$ và $(0; 1)$; các khoảng đồng biến: $(-1; 0)$ và $(1; +\infty)$. - Cực trị: Hàm số đạt cực tiểu tại $x = \pm 1$, $y_{\text{CT}} = -1$; đạt cực đại tại $x = 0$, $y_{\text{CD}} = 0$. - Giới hạn: $\lim_{x \to -\infty} y = \lim_{x \to +\infty} y = +\infty$.	0,25
	- Bảng biến thiên:	0,25
	• Đồ thị:	0,25
	b) (1,0 điểm)	
	Ta có $y' = 4x^3 - 4(m+1)x = 4x(x^2 - m - 1)$. Đồ thị hàm số có 3 điểm cực trị khi và chỉ khi $m+1>0 \iff m>-1$ (*).	0,25
	Các điểm cực trị của đồ thị là $A(0; m^2)$, $B(-\sqrt{m+1}; -2m-1)$ và $C(\sqrt{m+1}; -2m-1)$. Suy ra: $\overrightarrow{AB} = (-\sqrt{m+1}; -(m+1)^2)$ và $\overrightarrow{AC} = (\sqrt{m+1}; -(m+1)^2)$.	0,25
	Ta có $AB = AC$ nên tam giác ABC vuông khi và chỉ khi $\overrightarrow{AB}.\overrightarrow{AC} = 0$	0,25
	$\Leftrightarrow (m+1)^4 - (m+1) = 0. \text{ K\'et hợp (*), ta được giá trị } m \text{ cần tìm là } m = 0.$	0,25

Câu	Đáp án	Điểm
2	Phương trình đã cho tương đương với $(\sqrt{3}\sin x + \cos x - 1)\cos x = 0$.	0,25
(1,0 điểm)	• $\cos x = 0 \Leftrightarrow x = \frac{\pi}{2} + k\pi \ (k \in \mathbb{Z}).$	0,25
	• $\sqrt{3}\sin x + \cos x - 1 = 0 \Leftrightarrow \cos\left(x - \frac{\pi}{3}\right) = \cos\frac{\pi}{3}$	0,25
	$\Leftrightarrow x = k2\pi \text{ hoặc } x = \frac{2\pi}{3} + k2\pi \ (k \in \mathbb{Z}).$	0,25
	Vậy nghiệm của phương trình đã cho là $x = \frac{\pi}{2} + k\pi$, $x = k2\pi$ và $x = \frac{2\pi}{3} + k2\pi$ $(k \in \mathbb{Z})$.	0,20
3 (1,0 điểm)	Hệ đã cho tương đương với: $\begin{cases} (x-1)^3 - 12(x-1) = (y+1)^3 - 12(y+1) & (1) \\ \left(x - \frac{1}{2}\right)^2 + \left(y + \frac{1}{2}\right)^2 = 1. & (2) \end{cases}$	0,25
	Từ (2), suy ra $-1 \le x - \frac{1}{2} \le 1$ và $-1 \le y + \frac{1}{2} \le 1 \Leftrightarrow -\frac{3}{2} \le x - 1 \le \frac{1}{2}$ và $-\frac{1}{2} \le y + 1 \le \frac{3}{2}$. Xét hàm số $f(t) = t^3 - 12t$ trên $\left[-\frac{3}{2}; \frac{3}{2} \right]$, ta có $f'(t) = 3(t^2 - 4) < 0$, suy ra $f(t)$ nghịch biến.	0,25
	Do $\hat{do}(1) \Leftrightarrow x - 1 = y + 1 \Leftrightarrow y = x - 2$ (3).	
	Thay vào (2), ta được $\left(x - \frac{1}{2}\right)^2 + \left(x - \frac{3}{2}\right)^2 = 1 \Leftrightarrow 4x^2 - 8x + 3 = 0 \Leftrightarrow x = \frac{1}{2} \text{ hoặc } x = \frac{3}{2}.$	0,25
	Thay vào (3), ta được nghiệm của hệ là $(x; y) = (\frac{1}{2}; -\frac{3}{2})$ hoặc $(x; y) = (\frac{3}{2}; -\frac{1}{2})$.	0,25
4 (1,0 điểm)	Đặt $u = 1 + \ln(x+1)$ và $dv = \frac{dx}{x^2}$, suy ra $du = \frac{dx}{x+1}$ và $v = -\frac{1}{x}$.	0,25
	$I = -\frac{1 + \ln(x+1)}{x} \Big _{1}^{3} + \int_{1}^{3} \frac{dx}{x(x+1)}$	0,25
	$= \frac{2 + \ln 2}{3} + \int_{1}^{3} \left(\frac{1}{x} - \frac{1}{x+1} \right) dx = \frac{2 + \ln 2}{3} + \ln \left \frac{x}{x+1} \right _{1}^{3}$	0,25
	$= \frac{2}{3} + \ln 3 - \frac{2}{3} \ln 2.$	0,25
5 (1.0.#:3)	Ta có \widehat{SCH} là góc giữa SC và \widehat{ABC} , suy ra $\widehat{SCH} = 60^{\circ}$.	
(1,0 điểm)	Gọi D là trung điểm của cạnh AB . Ta có: $HD = \frac{a}{6}$, $CD = \frac{a\sqrt{3}}{2}$, $HC = \sqrt{HD^2 + CD^2} = \frac{a\sqrt{7}}{3}$, $SH = HC$.tan $60^\circ = \frac{a\sqrt{21}}{3}$.	0,25
	$V_{S.ABC} = \frac{1}{3}.SH.S_{\Delta ABC} = \frac{1}{3}.\frac{a\sqrt{21}}{3}.\frac{a^2\sqrt{3}}{4} = \frac{a^3\sqrt{7}}{12}.$	0,25
	Kẻ $Ax//BC$. Gọi N và K lần lượt là hình chiếu vuông góc	
	của H trên Ax và SN . Ta có $BC//(SAN)$ và $BA = \frac{3}{2}HA$ nên	
	$d(SA,BC) = d(B,(SAN)) = \frac{3}{2}d(H,(SAN)).$	0,25
	Ta cũng có $Ax \perp (SHN)$ nên $Ax \perp HK$. Do đó $HK \perp (SAN)$. Suy ra $d(H,(SAN)) = HK$.	
	$AH = \frac{2a}{3}, HN = AH \sin 60^{\circ} = \frac{a\sqrt{3}}{3}, HK = \frac{SH.HN}{\sqrt{SH^2 + HN^2}} = \frac{a\sqrt{42}}{12}. \text{ Vậy } d(SA, BC) = \frac{a\sqrt{42}}{8}.$	0,25

Câu	Đáp án	Điểm
6	Ta chứng minh $3^t \ge t+1, \forall t \ge 0$ (*).	
(1,0 điểm)	Xét hàm $f(t) = 3^t - t - 1$, có $f'(t) = 3^t \ln 3 - 1 > 0$, $\forall t \ge 0$ và $f(0) = 0$, suy ra (*) đúng.	0,25
	Áp dụng (*), ta có $3^{ x-y } + 3^{ y-z } + 3^{ z-x } \ge 3 + x-y + y-z + z-x $.	
	Áp dụng bất đẳng thức $ a + b \ge a+b $, ta có:	
	$(x-y + y-z + z-x)^2 = x-y ^2 + y-z ^2 + z-x ^2 + x-y (y-z + z-x) + y-z (z-x + x-y)$	0,25
	$+ z-x (x-y + y-z) \ge 2(x-y ^2+ y-z ^2+ z-x ^2).$	
	Do đó $ x-y + y-z + z-x \ge \sqrt{2(x-y ^2+ y-z ^2+ z-x ^2)} = \sqrt{6x^2+6y^2+6z^2-2(x+y+z)^2}$.	0,25
	Mà $x+y+z=0$, suy ra $ x-y + y-z + z-x \ge \sqrt{6x^2+6y^2+6z^2}$.	
	Suy ra $P=3^{ x-y }+3^{ y-z }+3^{ z-x }-\sqrt{6x^2+6y^2+6z^2} \ge 3$.	0,25
7.a	Khi $x = y = z = 0$ thì dấu bằng xảy ra. Vậy giá trị nhỏ nhất của P bằng 3. Gọi H là giao điểm của AN và BD . Kẻ đường thẳng qua H	
(1,0 điểm)	và song song với AB , cắt AD và BC lần lượt tại P và Q .	
	A Dặt $HP = x$. Suy ra $PD = x$, $AP = 3x$ và $HQ = 3x$. Ta có $QC = x$, nên $MQ = x$. Do đó $\triangle AHP = \triangle HMQ$, suy ra	0,25
	$AH \perp HM$.	
	Hơn nữa, ta cũng có $AH = HM$.	
	Do đó $AM = \sqrt{2}MH = \sqrt{2}d(M,(AN)) = \frac{3\sqrt{10}}{2}$.	0,25
	Q $A \in AN$, suy ra $A(t; 2t-3)$.	
	$D \stackrel{\searrow}{\longrightarrow} C$ $MA = \frac{3\sqrt{10}}{2} \Leftrightarrow \left(t - \frac{11}{2}\right)^2 + \left(2t - \frac{7}{2}\right)^2 = \frac{45}{2}$	0,25
	$\Leftrightarrow t^2 - 5t + 4 = 0 \Leftrightarrow t = 1 \text{ hoặc } t = 4.$	0,25
_	Vậy: $A(1;-1)$ hoặc $A(4;5)$.	0,23
8.a (1,0 điểm)	Véc tơ chỉ phương của d là $\overrightarrow{a} = (1; 2; 1)$. Gọi H là trung điểm của AB , suy ra $IH \perp AB$. Ta có $H \in d$ nên tọa độ H có dạng $H(t-1; 2t; t+2) \Rightarrow \overrightarrow{IH} = (t-1; 2t; t-1)$.	0,25
	$IH \perp AB \Leftrightarrow \overrightarrow{IH} \cdot \overrightarrow{a} = 0 \Leftrightarrow t - 1 + 4t + t - 1 = 0 \Leftrightarrow t = \frac{1}{3} \Rightarrow \overrightarrow{IH} = \left(-\frac{2}{3}; \frac{2}{3}; -\frac{2}{3}\right).$	0,25
	Tam giác <i>IAH</i> vuông cân tại <i>H</i> , suy ra bán kính mặt cầu (<i>S</i>) là $R = IA = \sqrt{2}IH = \frac{2\sqrt{6}}{3}$.	0,25
	Do đó phương trình mặt cầu cần tìm là (S) : $x^2 + y^2 + (z-3)^2 = \frac{8}{3}$.	0,25
9.a (1,0 điểm)	$5C_n^{n-1} = C_n^3 \Leftrightarrow 5n = \frac{n(n-1)(n-2)}{6}$	0,25
	$\Leftrightarrow n = 7 \text{ (vì } n \text{ nguyên dương)}.$	0,25
	Khi đó $\left(\frac{nx^2}{14} - \frac{1}{x}\right)^n = \left(\frac{x^2}{2} - \frac{1}{x}\right)^7 = \sum_{k=0}^7 C_7^k \left(\frac{x^2}{2}\right)^{7-k} \left(-\frac{1}{x}\right)^k = \sum_{k=0}^7 \frac{(-1)^k C_7^k}{2^{7-k}} x^{14-3k}.$	0,25
	Số hạng chứa x^5 tương ứng với $14-3k=5 \Leftrightarrow k=3$.	1
	Do đó số hạng cần tìm là $\frac{(-1)^3 \cdot C_7^3}{2^4} x^5 = -\frac{35}{16} x^5$.	0,25

Câu	Đáp án	Điểm
7.b (1,0 điểm)	Phương trình chính tắc của (E) có dạng: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, với $a > b > 0$ và $2a = 8$. Suy ra $a = 4$.	0,25
	Do (E) và (C) cùng nhận Ox và Oy làm trục đối xứng và các giao điểm là các đỉnh của một hình vuông nên (E) và (C) có một giao điểm với tọa độ dạng $A(t;t)$, $t>0$.	0,25
	$O \qquad 2 \qquad x \qquad A \in (C) \Leftrightarrow t^2 + t^2 = 8, \text{ suy ra } t = 2.$	0,25
	$A(2;2) \in (E) \Leftrightarrow \frac{4}{16} + \frac{4}{b^2} = 1 \Leftrightarrow b^2 = \frac{16}{3}.$ Phương trình chính tắc của (E) là $\frac{x^2}{16} + \frac{y^2}{\frac{16}{3}} = 1.$	0,25
8.b (1,0 điểm)	M thuộc d , suy ra tọa độ của M có dạng $M(2t-1; t; t+2)$.	0,25
	MN nhận A là trung điểm, suy ra $N(3-2t; -2-t; 2-t)$.	0,25
	$N \in (P) \iff 3 - 2t - 2 - t - 2(2 - t) + 5 = 0 \iff t = 2$, suy ra $M(3; 2; 4)$.	0,25
	Đường thẳng Δ đi qua A và M có phương trình Δ : $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-2}{2}$.	0,25
9.b (1,0 điểm)	Đặt $z = a + bi(a, b \in \mathbb{R}), z \neq -1.$ Ta có $\frac{5(\overline{z} + i)}{z + 1} = 2 - i \Leftrightarrow (3a - b - 2) + (a - 7b + 6)i = 0$	0,25
	$\Leftrightarrow \begin{cases} 3a - b - 2 = 0 \\ a - 7b + 6 = 0 \end{cases} \Leftrightarrow \begin{cases} a = 1 \\ b = 1. \end{cases}$	0,25
	Do đó $z=1+i$. Suy ra $w=1+z+z^2=1+1+i+(1+i)^2=2+3i$.	0,25
	Vậy $ w = 2+3i = \sqrt{13}$.	0,25

----- HÉT -----