

Учебно-тренировочные сборы по астрономии и астрофизике $8\ u$ юля $2019\ z$.

Практический тест

1. Кривая вращения (20 баллов)

А. Веселова

Вам дана кривая вращения Млечного Пути в предположении цилиндрического вращения объектов диска (Huang et al., 2016), по оси абсцисс шкала логарифмическая. Авторы статьи предполагали расстояние от Солнца до центра Галактики $R_0 = 8.34$ кпк.

Предположим, что в диске Галактики возникла радиально вытянутая тонкая структура из объектов диска протяжённостью от 5 до 12 кпк. Как эта структура (расположение тех же объектов) будет выглядеть спустя 50 млн лет и 100 млн лет? Изобразите положение объектов для заданных моментов времени в проекции на диск Галактики, если мы наблюдаем картину из того полупространства, в котором находится северный полюс Галактики. Через какое время разность галактоцентрических долгот краев получившейся структуры станет равной 360°?

2. Азимутальная кривая (20 баллов)

Е. Бойцов

Вам дан график зависимости азимута звезды от текущего звездного времени. Определите экваториальные координаты этой звезды и широту места наблюдения. Что это за звезда?

3. Кривая горения (20 баллов)

Перед вами схема горения углерода, происходящего в звёздах массой $\mathfrak{M}>8\,\mathfrak{M}_{\odot}$. В результате взаимодействия образуется возбуждённое ядро атома магния, которое может распасться по одному из возможных каналов. Для каждого из них определите продукты реакций распада и величины энергетического выхода в МэВ.

Приложение: таблица масс изотопов различных элементов (на оборотной стороне листа).

В. Григорьев

Z	Изотоп	А, а. е. м.	Z	Изотоп	А, а. е. м.	Z	Изотоп	А, а. е. м.
0	1 n	1.00866491574	6	¹⁵ C	15.010599256	10	¹⁶ Ne	16.025761262
1	$^{1}\mathrm{H}$	1.00782503207	6	¹⁶ C	16.014701252	10	¹⁷ Ne	17.017671504
1	^{2}H	2.01410177785	6	¹⁷ C	17.022586116	10	¹⁸ Ne	18.005708213
1	³ H	3.01604927767	6	¹⁸ C	18.026759354	10	¹⁹ Ne	19.001880248
1	4 H	4.027806424	6	¹⁹ C	19.034805018	10	²⁰ Ne	19.99244017542
1	⁵ H	5.035311488	6	²⁰ C	20.040319754	10	²¹ Ne	20.993846684
1	⁶ H	6.044942594	6	²¹ C	21.049340	10	²² Ne	21.991385113
1	⁷ H	7.052749	6	²² C	22.057200	10	²³ Ne	22.994466904
2	³ He	3.01602931914	7	¹⁰ N	10.041653674	10	²⁴ Ne	23.993610779
2	⁴ He	4.00260325415	7	¹¹ N	11.026090956	10	²⁵ Ne	24.997736888
2	⁵ He	5.012223624	7	^{12}N	12.018613197	10	²⁶ Ne	26.000461206
2	⁶ He	6.018889124	7	^{13}N	13.005738609	10	²⁷ Ne	27.007589903
2	⁷ He	7.028020618	7	^{14}N	14.00307400478	10	²⁸ Ne	28.012071575
2	⁸ He	8.033921897	7	¹⁵ N	15.00010889823	10	²⁹ Ne	29.019385933
2	⁹ He	9.043950286	7	^{16}N	16.006101658	10	³⁰ Ne	30.024801045
2	¹⁰ He	10.052398837	7	^{17}N	17.008450261	10	³¹ Ne	31.033110
3	³ Li	3.030775	7	¹⁸ N	18.014078959	10	³² Ne	32.040020
3	⁴ Li	4.027185558	7	¹⁹ N	19.017028697	10	³³ Ne	33.049380
3	⁵ Li	5.0125378	7	^{20}N	20.023365807	10	³⁴ Ne	34.057028
3	⁶ Li	6.015122794	7	^{21}N	21.02710824	11	¹⁸ Na	18.025969
3	⁷ Li	7.016004548	7	²² N	22.034394934	11	¹⁹ Na	19.013877499
3	⁸ Li	8.022487362	7	²³ N	23.041220	11	²⁰ Na	20.007351328
3	⁹ Li	9.026789505	7	²⁴ N	24.051040	11	²¹ Na	20.997655206
3	¹⁰ Li	10.035481259	7	²⁵ N	25.060660	11	²² Na	21.994436425
3	¹¹ Li	11.043797715	8	¹² O	12.034404895	11	²³ Na	22.98976928087
3	¹² Li	12.053780	8	¹³ O	13.024812213	11	²⁴ Na	23.990962782
4	⁵ Be	5.040790	8	¹⁴ O	14.00859625	11	²⁵ Na	24.989953968
4	⁶ Be	6.019726317	8	¹⁵ O	15.003065617	11	²⁶ Na	25.992633
4	⁷ Be	7.016929828	8	¹⁶ O	15.99491461956	11	²⁷ Na	26.994076788
4	⁸ Be	8.005305103	8	¹⁷ O	16.999131703	11	²⁸ Na	27.998938
4	⁹ Be	9.012182201	8	¹⁸ O	17.999161001	11	²⁹ Na	29.002861
4	¹⁰ Be	10.013533818	8	¹⁹ O	19.00358013	11	³⁰ Na	30.008976
4	¹¹ Be	11.021657749	8	²⁰ O	20.004076742	11	³¹ Na	31.013585452
4	¹² Be	12.026920737	8	²¹ O	21.008655886	11	³² Na	32.02046656
4	¹³ Be	13.035693007	8	²² O ²³ O	22.009966947	11	³³ Na	33.026719756
4	¹⁴ Be	14.04289292	8		23.015687659	11	³⁴ Na	34.035170
4	¹⁵ Be	15.053460	8	²⁴ O ²⁵ O	24.020472917	11	³⁵ Na	35.042493
4	¹⁶ Be	16.061920	8	_	25.029460	11	³⁶ Na	36.051480
5	⁶ B	6.046810	8	²⁶ O	26.038340	11	³⁷ Na	37.059340
5	⁷ B	7.029917901	8	²⁷ O	27.048260	12	¹⁹ Mg	19.03547
5	⁸ B ⁹ B	8.024607233	8	²⁸ O ¹⁴ F	28.057810	12	²⁰ Mg	20.018862545
5	¹⁰ В	9.013328782	9	15 _F	14.035060	12	²¹ Mg	21.01171291
5	¹¹ B	10.012936992	9	16 _F	15.018009103	12	²² Mg	21.999573843
5	¹² В	11.009305406	9	17 _F	16.011465724	12	²³ Mg	22.994123669
5	¹³ B	12.014352104	9	18 _F	17.002095237	12	²⁴ Mg	23.985041699
5	¹⁴ В	13.017780217	9	19 _F	18.000937956	12	²⁵ Mg	24.985836917
5	¹⁵ В	14.025404009	9	²⁰ F	18.998403224	12	²⁶ Mg ²⁷ Mg	25.982592929
5	¹⁶ В	15.031103021	9	²¹ F	19.999981315	12	²⁸ Mg	26.984340585
5	¹⁷ В	16.039808829		²² F	20.999948951	12	-	27.983876825
5	¹⁷ В	17.046989906	9	²² F ²³ F	22.002998815	12	²⁹ Mg ³⁰ Mg	28.9886
5 5	¹⁹ B	18.056170	9	²³ F ²⁴ F	23.003574631	12	³¹ Mg	29.990434
5	₈ C	19.063730	9	²⁵ F	24.008115485 25.012101747	12	³² Mg	30.996546
6	⁹ С	8.037675025	9	²⁶ F		12	³³ Mg	31.998975
6	¹⁰ С	9.031036689	9	²⁷ F	26.019615555	12	³⁴ Mg	33.005254
6	11C	10.016853228	9	²⁸ F	27.026760086	12	³⁵ Mg	34.009456424 35.017340
6	¹² C	11.011433613 12.	9	²⁹ F	28.035670 29.043260	12	³⁶ Mg	36.023000
6 6	¹³ C	12. 13.00335483778	9	30F	29.043260 30.052500	12 12	³⁷ Mg	37.031400
6	¹⁴ C	14.0032419887	9	31 _F	31.060429	12	³⁸ Mg	38.037570
U	C	17.003441700/	フ	1,	J1.000447	14	ivig	30.03/3/0

4. Кривая блеска (20 баллов)

М. Волобуева

Вам дана кривая блеска кометы C/1995 O1 (Хейла – Боппа) и её эфемериды для того же периода времени (на оборотной стороне листа). Видимый блеск кометы зависит от её геоцентрического d и гелиоцентрического r расстояний:

$$m = A + B \lg d + C \lg r$$
.

- (a) Опираясь на физический смысл и приведённые в задаче наблюдательные данные, определите значения коэффициентов A, B и C.
- (b) Считая, что создаваемая кометой освещённость $\propto r^n$, вычислите n с точностью в две значащие цифры.

День	<i>d</i> , a. e.	r, a. e.	День	<i>d</i> , a. e.	<i>r</i> , a. e.	День	<i>d</i> , a. e.	r, a. e.	День	<i>d</i> , a. e.	r, a. e.
32	6.31	6.81	282	3.99	4.48	532	2.36	1.60	782	3.07	2.77
37	6.34	6.77	287	3.86	4.43	537	2.27	1.54	787	3.09	2.82
42	6.38	6.73	292	3.74	4.38	542	2.18	1.48	792	3.10	2.88
47	6.42	6.69	297	3.62	4.33	547	2.08	1.42	797	3.12	2.94
52	6.46	6.64	302	3.51	4.28	552	1.99	1.36	802	3.14	3.00
57	6.50	6.60	307	3.40	4.23	557	1.89	1.30	807	3.16	3.06
62	6.55	6.55	312	3.30	4.17	562	1.79	1.24	812	3.18	3.12
67	6.59	6.51	317	3.20	4.12	567	1.69	1.19	817	3.21	3.17
72	6.63	6.47	322	3.12	4.07	572	1.60	1.13	822	3.23	3.23
77	6.67	6.42	327	3.04	4.02	577	1.52	1.09	827	3.26	3.29
82	6.70	6.38	332	2.97	3.96	582	1.45	1.04	832	3.29	3.34
87	6.73	6.33	337	2.91	3.91	587	1.39	1.00	837	3.32	3.40
92	6.76	6.29	342	2.86	3.85	592	1.34	0.97	842	3.36	3.46
97	6.79	6.24	347	2.81	3.80	597	1.32	0.94	847	3.39	3.51
102	6.81	6.20	352	2.78	3.75	602	1.32	0.93	852	3.43	3.57
107	6.83	6.16	357	2.76	3.69	607	1.33	0.92	857	3.48	3.62
112	6.84	6.11	362	2.74	3.64	612	1.37	0.92	862	3.52	3.68
117	6.85	6.06	367	2.73	3.58	617	1.42	0.92	867	3.57	3.73
122	6.85	6.02	372	2.73	3.53	622	1.48	0.94	872	3.62	3.79
127	6.84	5.97	377	2.74	3.47	627	1.56	0.96	877	3.67	3.84
132	6.83	5.93	382	2.75	3.42	632	1.64	0.99	882	3.73	3.89
137	6.82	5.88	387	2.77	3.36	637	1.72	1.03	887	3.78	3.95
142	6.79	5.84	392	2.79	3.30	642	1.80	1.07	892	3.84	4.00
147	6.76	5.79	397	2.82	3.25	647	1.89	1.12	897	3.90	4.05
152	6.72	5.74	402	2.85	3.19	652	1.98	1.17	902	3.97	4.11
157	6.68	5.70	407	2.87	3.13	657	2.06	1.23	907	4.03	4.16
162	6.63	5.65	412	2.90	3.07	662	2.14	1.28	912	4.09	4.21
167	6.57	5.60	417	2.93	3.02	667	2.21	1.34	917	4.16	4.26
172	6.51	5.56	422	2.96	2.96	672	2.29	1.40	922	4.23	4.31
177	6.44	5.51	427	2.98	2.90	677	2.36	1.46	927	4.29	4.37
182	6.36	5.46	432	3.00	2.84	682	2.42	1.52	932	4.36	4.42
187	6.28	5.42	437	3.02	2.78	687	2.48	1.59	937	4.43	4.47
192	6.19	5.37	442	3.04	2.72	692	2.54	1.65	942	4.50	4.52
197	6.10	5.32	447	3.05	2.66	697	2.59	1.71	947	4.57	4.57
202	6.00	5.27	452	3.05	2.60	702	2.64	1.78	952	4.63	4.62
207	5.90	5.23	457	3.05	2.54	707	2.69	1.84	957	4.70	4.67
212	5.79	5.18	462	3.05	2.48	712	2.73	1.90	962	4.77	4.72
217	5.67	5.13	467	3.04	2.42	717	2.77	1.97	967	4.83	4.77
222	5.55	5.08	472	3.02	2.36	722	2.81	2.03	972	4.90	4.82
227	5.43	5.03	477	3.00	2.29	727	2.84	2.09	977	4.96	4.87
232	5.31	4.98	482	2.98	2.23	732	2.87	2.15	982	5.03	4.92
237	5.18	4.93	487	2.94	2.17	737	2.90	2.22	987	5.09	4.97
242	5.05	4.88	492	2.90	2.11	742	2.92	2.28	992	5.15	5.02
247	4.92	4.83	497	2.85	2.04	747	2.94	2.34	997	5.21	5.07
252	4.79	4.79	502	2.80	1.98	752	2.97	2.40	1002	5.27	5.11
257	4.65	4.74	507	2.74	1.92	757	2.99	2.46	1007	5.33	5.16
262	4.52	4.69	512	2.68	1.85	762	3.00	2.52	1012	5.38	5.21
267	4.38	4.63	517	2.61	1.79	767	3.02	2.59	1017	5.44	5.26
272	4.25	4.58	522	2.53	1.73	772	3.04	2.65	1022	5.49	5.31
277	4.12	4.53	527	2.45	1.67	777	3.05	2.71	1027	5.54	5.35

5. Кривая шаровика (20 баллов)

А. Акиньщиков

В данной задаче рассматривается эволюция шарового звёздного скопления со звёздной массой $\mathfrak{M}=10^6\mathfrak{M}_{\odot}$. Будем полагать, что все звёзды в скоплении образовались одновременно, а их распределение по массам в момент образования выражалось начальной функцией масс Р. Kroupa (2002):

$$N(\mathfrak{M}) d\mathfrak{M} = \begin{cases} \left(\frac{\mathfrak{M}}{\mathfrak{M}_{\odot}}\right)^{-1.3} d\left(\frac{\mathfrak{M}}{\mathfrak{M}_{\odot}}\right), & 0.08 \,\mathfrak{M}_{\odot} < \mathfrak{M} < 0.5 \,\mathfrak{M}_{\odot}; \\ 2\left(\frac{\mathfrak{M}}{\mathfrak{M}_{\odot}}\right)^{-2.3} d\left(\frac{\mathfrak{M}}{\mathfrak{M}_{\odot}}\right), & 0.5 \,\mathfrak{M}_{\odot} < \mathfrak{M} < 50 \,\mathfrak{M}_{\odot}. \end{cases}$$

Для широкого диапазона масс построены таблицы параметров звёзд:

 \mathfrak{M} — масса звезды;

 L_{MS} — светимость звезды на главной последовательности;

 R_{MS} — радиус звезды на главной последовательности;

B-V — показатель цвета;

 $T_{
m eff}$ — эффективная температура.

Для каждой из двух зависимостей постройте график и аппроксимируйте аналитическим выражением:

- (а) зависимость интегральной светимости скопления от его возраста;
- (b) зависимость интегрального показателя цвета B-V скопления от его возраста.

Испарением скопления пренебречь. Учитывать только звёзды, находящиеся на стадии главной последовательности.

(с) Оцените, как изменятся результаты при учёте звёзд на более поздних этапах эволюции.

$\lg \frac{\mathfrak{M}}{\mathfrak{M}_{\odot}}$	$\lg rac{L_{MS}}{L_{\odot}}$	$\lg rac{R_{MS}}{R_{\odot}}$		Класс	B-V	$T_{ m eff}$, $10^3~{ m K}$	_]	Класс	B-V	$T_{ m eff}$, $10^3~{ m K}$
-1.0	-2.9	-0.90	-	O5-7	-0.32	38		F5	0.43	6.54
-0.8	-2.5	-0.70		O8-9	-0.31	35		F8	0.54	6.20
-0.6	-2.0	-0.50		O9.5	-0.30	31.9		G0	0.59	5.92
-0.4	-1.5	-0.30		B0	-0.30	30.0		G2	0.63	5.78
-0.4 -0.2	-1.3 -0.8	-0.30 -0.14		B0.5	-0.28	27.0		G5	0.66	5.61
0.0	-0.0	0.00		B1	-0.26	24.2		G8	0.74	5.49
0.0	0.8	0.10		B2	-0.24	22.1		K0	0.82	5.24
0.2	1.6	0.10		В3	-0.20	18.8		K2	0.92	4.78
0.4		0.32		B5	-0.16	16.4		K5	1.15	4.41
	2.3			B6	-0.14	15.4		K7	1.30	4.16
0.8	3.0	0.58		B7	-0.12	14.5		M0	1.41	3.92
1.0	3.7	0.72		В8	-0.09	13.4		M1	1.48	3.68
1.2	4.4	0.86		В9	-0.06	12.4		M2	1.52	3.50
1.4	4.9	1.00		A0	0.00	10.8		M3	1.55	3.36
1.6	5.4	1.15		A2	0.06	9.73		M4	1.56	3.23
1.8	6.0	1.30		A5	0.14	8.62		M5	1.61	3.12
				A7	0.19	8.19		M6	1.72	2.98
				F0	0.31	7.24		M7	1.84	2.84
				F2	0.36	6.93		M8	2.00	2.66

6. Кривая поляризации (20 баллов)

К. Васильев

Спекл-поляриметр используется для получения поляриметрических изображений со сверх-высоким угловым разрешением и состоит из трёх основных частей: корректора атмосферной дисперсии, поляризатора (полуволновой пластинки) и высокоскоростной ССD-камеры. При планировании наблюдений с помощью этого прибора необходимо учитывать паразитные поляризационные эффекты, возникающие в оптической системе телескопа. Для учёта этих эффектов объект снимается дважды за ночь на одной высоте, так, чтобы ориентации объекта в поле зрения прибора оказались взаимно перпендикулярными. Длительность одной экспозиции составляет 8 минут.

Телескоп расположен на горе Шатджатмаз (44 с. ш., 43 в. д.), на высоте 2100 м. Зенитное расстояние объекта при наблюдениях не может быть меньше 5 градусов (ограничения альтазимутальной монтировки) и больше 60 градусов (предел возможностей корректора дисперсии).

В таблице приведён список объектов, предложенных для наблюдений в течение ночи 18-19 октября 2019 года, в порядке уменьшения приоритета. Пользуясь этим списком, составьте программу наблюдений.

Звезда	α	δ	m_V
RY Tau	04^h21^m	+28°26′	9.3 ^m
RW Aur	$05^{\mathrm{h}}07^{\mathrm{m}}$	$+30^{\circ}24'$	9.6 ^m
CQ Tau,	$05^{\rm h}35^{\rm m}$	$+24^{\circ}44'$	10.0^{m}
MWC 349	$20^{h}32^{m}$	$+40^{\circ}39'$	13.1^{m}
MWC 361	21^h01^m	$+68^{\circ}09'$	7.4^{m}
V645 Cyg	$21^{\rm h}39^{\rm m}$	$+50^{\circ}14'$	10.3 ^m
VY Mon	$06^{\rm h}31^{\rm m}$	$+10^{\circ}26'$	13.7^{m}
μ Cep	21^h43^m	$+58^{\circ}46'$	$4.08^{\rm m}$

Программа должна содержать время начала каждой экспозиции для каждого из объектов.