

Lecture 03 Regression

Prof. Ph.D. Woo Youn Kim

Contents

Linear regression

Multivariate linear regression

Classification

Logistic regression

Softmax regression

모두를 위한 머신러닝/딥러닝 강의 https://hunkim.github.io/ml/

Andrew Ng lecture note@Standford

Supervised learning

Several types of learning algorithms

Supervised learning

• Teach the computer how to do something, then let it use it's new found knowledge to do it

Unsupervised learning

 Let the computer learn how to do something, and use this to determine structure and patterns in data

Reinforcement learning

Linear regression

Regression

Let us start by talking about a few examples of supervised learning problems.

It can also be

Living area (feet 2)	Price (1000\$s)
2104	400
1600	330
2400	369
1416	232
3000	540
i i	:

Molecular structure	Solubility
	Energy
	HOMO-LUMO gap
	Photo Voltaic Efficiency
	Biological activity

How to fit the data?

training set

Living area (feet 2)	Price (1000\$s)
2104	400
1600	330
2400	369
1416	232
3000	540
÷	:

Living area $(x^{(i)})$ = input features Price $(y^{(i)})$ = output or target A pair $(x^{(i)}, y^{(i)})$: training example

Hypothesis for best fit

When the target variable that we're trying to predict is continuous, such as in our housing example, we call the learning problem a **regression** problem.

Regression (linear hypothesis)

X	У
1	1
2	2
3	3

Cost function

How fit the line to our (training) data numerically?

$$\frac{(H(x^{(1)}) - y^{(1)})^2 + (H(x^{(2)}) - y^{(2)})^2 + (H(x^{(3)}) - y^{(3)})^2}{3}$$

$$cost = \frac{1}{m} \sum_{i=1}^{m} (H(x^{(i)}) - y^{(i)})^{2}$$

Cost minimization

$$H(x) = Wx + b$$

$$cost(W, b) = \frac{1}{m} \sum_{i=1}^{m} (H(x^{(i)}) - y^{(i)})^2$$

 $\underset{W,b}{\operatorname{minimize}} \operatorname{cost}(W,b)$

Simplified hypothesis

$$H(x) = Wx + b$$

$$cost(W, b) = \frac{1}{m} \sum_{i=1}^{m} (H(x^{(i)}) - y^{(i)})^2$$

$$H(x) = Wx$$

$$H(x) = Wx$$

$$cost(W) = \frac{1}{m} \sum_{i=1}^{m} (Wx^{(i)} - y^{(i)})^{2}$$

What cost looks like?

$$cost(W) = \frac{1}{m} \sum_{i=1}^{m} (Wx^{(i)} - y^{(i)})^2$$

• W=1, cost(W)=0

$$\frac{1}{3}((1*1-1)^2 + (1*2-2)^2 + (1*3-3)^2)$$

• W=0, cost(W)=4.67 $\frac{1}{3}((0*1-1)^2 + (0*2-2)^2 + (0*3-3)^2)$

. . .

Gradient descent algorithm

- Minimize cost function using gradient descent algorithm
- Start with initial guesses
 - Start at 0,0 (or any other value)
 - Keeping changing W and b a little bit to try and reduce cost(W, b)
- Each time you change the parameters, you select the gradient which reduces cost(W, b) the most possible

$$W := W - \alpha \frac{\partial}{\partial W} cost(W)$$
 = ω (= ΔW): updating rate (or learning rate)

- the larger, the faster

- but may cause ill-convergence

- but may cause ill-convergence

• Repeat until you converge to a local minimum (i.e., the gradient = 0)

$$cost(W) = \frac{1}{m} \sum_{i=1}^{m} (Wx^{(i)} - y^{(i)})^2$$

Least Mean Squares (LMS)

$$cost(W) = \frac{1}{m} \sum_{i=1}^{m} (Wx^{(i)} - y^{(i)})^2$$

$$cost(W) = \frac{1}{2m} \sum_{i=1}^{m} (Wx^{(i)} - y^{(i)})^2$$

$$W := W - \alpha \frac{\partial}{\partial W} \frac{1}{2m} \sum_{i=1}^{m} (Wx^{(i)} - y^{(i)})^2$$

$$W := W - \alpha \frac{1}{2m} \sum_{i=1}^{m} 2(Wx^{(i)} - y^{(i)})x^{(i)}$$

$$W := W - \alpha \frac{1}{m} \sum_{i=1}^{m} (Wx^{(i)} - y^{(i)})x^{(i)}$$

The resulting equation is called the LMS update rule (LMS stands for "least mean squares")

Convex function

Note that the optimization problem here has only one global, and no other local optima.

Thus gradient descent always converges assuming the learning rate α is not too large to the global minimum.

www.holehouse.org/mlclass/

Gradient descent algorithm

Batch gradient descent

```
Repeat until convergence { \theta_j := \theta_j + \alpha \sum_{i=1}^m \left( y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)} \qquad \text{(for every } j\text{)}. }
```

scan through the entire training set before taking a single step

Stochastic gradient descent (also incremental gradient descent)

```
Loop {  \text{for i=1 to m, } \{ \\ \theta_j := \theta_j + \alpha \left( y^{(i)} - h_\theta(x^{(i)}) \right) x_j^{(i)} \qquad \text{(for every } j\text{)}.  }
```


start making progress right away, and continues to make progress with each example it looks at. much faster convergence than batch gradient descent.

Multivariate linear regression

LMS with multivariables

multi-variable/feature

x¹ (quiz 1)	x² (quiz 2)	x³ (midterm 1)	Y (final)
73	80	75	152
93	88	93	185
89	91	90	180
96	98	100	196
73	66	70	142

Hypothesis and cost function

$$H(x) = Wx + b$$

$$H(x_1, x_2, x_3) = w_1 x_1 + w_2 x_2 + w_3 x_3 + b$$

$$cost(W, b) = \frac{1}{m} \sum_{i=1}^{m} (H(x_1^{(i)}, x_2^{(i)}, x_3^{(i)}) - y^{(i)})^2$$

Hypothesis using matrix

$$H(x_1, x_2, x_3, ..., x_n) = w_1x_1 + w_2x_2 + w_3x_3 + ... + w_nx_n + b$$

$$(x_1 \quad x_2 \quad x_3) \cdot \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} = (x_1 w_1 + x_2 w_2 + x_3 w_3)$$

$$H(X) = XW \xrightarrow{\text{vector, n}}$$
?

Matrix, m x n

Probabilistic interpretation

Why is the least-squares cost function a reasonable choice?

$$\frac{(H(x^{(1)})-y^{(1)})^2+(H(x^{(2)})-y^{(2)})^2+(H(x^{(3)})-y^{(3)})^2}{3}$$

$$cost = \frac{1}{m} \sum_{i=1}^{m} (H(x^{(i)}) - y^{(i)})^{2}$$

Gaussian noise

Suppose that the target variables and the inputs are related via the equation.

$$y^{(i)} = \theta^T x^{(i)} + \epsilon^{(i)}$$

where $\varepsilon(i)$ is an error term that captures either unmodeled effects or random noise.

If ε (i) is independently and identically distributed according to a Gaussian distribution (also called a Normal distribution) with mean zero and some variance σ^2 ,

$$p(\epsilon^{(i)}) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(\epsilon^{(i)})^2}{2\sigma^2}\right)$$

Thus,

$$p(y^{(i)}|x^{(i)};\theta) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - \theta^T x^{(i)})^2}{2\sigma^2}\right)$$

The notation "p(y⁽ⁱ⁾|x⁽ⁱ⁾; θ)" indicates that this is the distribution of y⁽ⁱ⁾ given x⁽ⁱ⁾ and parameterized by θ .

Likelihood

Given a data set, X ($\{x(i)\}$), and a ML model θ , what is the distribution of target, Y ($\{y(i)\}$)?

The probability of the data is given by $p(Y|X; \theta)$, which is viewed a function of Y for a fixed value of θ .

It can be instead called the likelihood function.

$$L(\theta) = L(\theta; X, \vec{y}) = p(\vec{y}|X; \theta)$$

$$L(\theta) = \prod_{i=1}^{m} p(y^{(i)} \mid x^{(i)}; \theta)$$
$$= \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - \theta^{T} x^{(i)})^{2}}{2\sigma^{2}}\right)$$

Lecture01-Likelihood

What is a reasonable way of choosing our best guess of the parameters θ or training the machine learning model?

Maximum likelihood

The principal of **maximum likelihood** says that we should choose θ so as to make the data as high probability as possible.

That is, we should choose θ to maximize L(θ).

$$L(\theta) = \prod_{i=1}^{m} p(y^{(i)} \mid x^{(i)}; \theta)$$
$$= \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - \theta^{T} x^{(i)})^{2}}{2\sigma^{2}}\right)$$

Maximum likelihood

Instead of maximizing $L(\theta)$, we can also maximize any strictly increasing function of $L(\theta)$.

For example, maximize the log likelihood $l(\theta)$:

$$\ell(\theta) = \log L(\theta)$$

$$= \log \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - \theta^{T} x^{(i)})^{2}}{2\sigma^{2}}\right)$$

$$= \sum_{i=1}^{m} \log \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - \theta^{T} x^{(i)})^{2}}{2\sigma^{2}}\right)$$

$$= m \log \frac{1}{\sqrt{2\pi}\sigma} - \frac{1}{\sigma^{2}} \cdot \frac{1}{2} \sum_{i=1}^{m} (y^{(i)} - \theta^{T} x^{(i)})^{2}$$

Note that the final θ has no dependence on σ .

Maximizing $l(\theta)$ gives the same answer as minimizing

$$\frac{1}{2} \sum_{i=1}^{m} (y^{(i)} - \theta^T x^{(i)})^2$$
 which is the original LMS cost function.

Summary

Under the previous probabilistic assumptions on the data, least-squares regression corresponds to finding the maximum likelihood estimate (MLE) of θ .

This is thus one set of assumptions under which least-squares regression can be justified as a very natural method that's just doing MLE.

Classification

Classification

Classification problem: the values y we now want to predict take on only a small number of discrete values.

Binary classification problem: y can take on only two values, 0 and 1.

0 or -: the negative class,

1 or + : the positive class,

Decision boundary

Binary classification:

For 2D, the dimension of θ will be one.

Thus, the decision boundary will be a linear line.

Problem of linear regression

Let's try to predict y given $z = \theta^T x$ using the linear regression algorithm

It performs very poorly!

Simply it doesn't make sense for $h_{\theta}(x)$ to take values larger than 1 or smaller than 0 when we know that $y \in \{0, 1\}$.

Logistic function

change $h_{\theta}(x)$ as

$$h(x) = \sum_{i=0}^{n} \theta_i x_i = \theta^T x$$
 $h_{\theta}(x) = g(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}}$

$$h_{\theta}(x) = g(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}}$$

logistic function or the sigmoid function.

$$g(z) = \frac{1}{1 + e^{-z}}$$

- ✓ It becomes 0.5 as a data point is on the decision boundary (z = 0).
- ✓ It goes to 1 as $z \to \infty$ and to 0 as $z \to -\infty$.
- ✓ It is always bounded between 0 and 1.

Logistic function

A useful property of the derivative of the sigmoid function,

$$g'(z) = \frac{d}{dz} \frac{1}{1 + e^{-z}}$$

$$= \frac{1}{(1 + e^{-z})^2} (e^{-z})$$

$$= \frac{1}{(1 + e^{-z})} \cdot \left(1 - \frac{1}{(1 + e^{-z})}\right)$$

$$= g(z)(1 - g(z)).$$

Maximum likelihood

Assuming that

$$P(y = 1 \mid x; \theta) = h_{\theta}(x)$$

$$P(y = 0 \mid x; \theta) = 1 - h_{\theta}(x)$$

More compactly

$$p(y \mid x; \theta) = (h_{\theta}(x))^{y} (1 - h_{\theta}(x))^{1-y}$$

Maximum likelihood

For m training examples, the likelihood of the parameters

$$L(\theta) = p(\vec{y} \mid X; \theta)$$

$$= \prod_{i=1}^{m} p(y^{(i)} \mid x^{(i)}; \theta)$$

$$= \prod_{i=1}^{m} (h_{\theta}(x^{(i)}))^{y^{(i)}} (1 - h_{\theta}(x^{(i)}))^{1 - y^{(i)}}$$

The corresponding log likelihood

$$\ell(\theta) = \log L(\theta)$$

$$= \sum_{i=1}^{m} y^{(i)} \log h(x^{(i)}) + (1 - y^{(i)}) \log(1 - h(x^{(i)}))$$

Maximizing via the gradient ascent.

$$\theta := \theta + \alpha \nabla_{\theta} \ell(\theta)$$

for the maximization

Cost function

The log likelihood → one has to maximize it

$$\ell(\theta) = \log L(\theta)$$

$$= \sum_{i=1}^{m} y^{(i)} \log h(x^{(i)}) + (1 - y^{(i)}) \log(1 - h(x^{(i)}))$$

Cost function = -log likelihood → one has to minimize it

$$Cost = -\sum_{i=1}^{m} [y^{(i)} \ln h(x^{(i)}) + (1 - y^{(i)}) \ln(1 - h(x^{(i)}))]$$

 $y^{(i)}$: true value in the training data \rightarrow true probablity of being in class 1 $h(x^{(i)})$: predicted value by the classifier \rightarrow predicted probability of being in class 1

 $1 - y^{(i)}$: true probablity of being in class 2

 $1 - h(x^{(i)})$: predicted probability of being in class 2

Cost function

$$Cost = -\sum_{i=1}^{m} [y^{(i)} \ln h(x^{(i)}) + (1 - y^{(i)}) \ln(1 - h(x^{(i)}))]$$

Two important properties:

- 1. Non-negative because $0 \le prob \le 1$
- 2. For all training data (m), if $h(x^{(i)})$ is close to $y^{(i)}$, cost goes to zero.

if
$$y^{(i)} = 0$$
, $h(x^{(i)}) \rightarrow 0$: 1st term = 0 and ln1=0 in the 2nd term; therefore Cost $\rightarrow 0$

if
$$y^{(i)} = 1$$
, $h(x^{(i)}) \rightarrow 1$: ln1=0 in the 1st term and 2nd term =0; therefore Cost $\rightarrow 0$

Indeed, it can play a role as a cost function.

Maximum likelihood

Let us take derivatives to derive the stochastic gradient ascent rule:

$$\frac{\partial}{\partial \theta_{j}} \ell(\theta) = \left(y \frac{1}{g(\theta^{T}x)} - (1 - y) \frac{1}{1 - g(\theta^{T}x)} \right) \frac{\partial}{\partial \theta_{j}} g(\theta^{T}x)
= \left(y \frac{1}{g(\theta^{T}x)} - (1 - y) \frac{1}{1 - g(\theta^{T}x)} \right) g(\theta^{T}x) (1 - g(\theta^{T}x) \frac{\partial}{\partial \theta_{j}} \theta^{T}x
= \left(y (1 - g(\theta^{T}x)) - (1 - y) g(\theta^{T}x) \right) x_{j}
= \left(y - h_{\theta}(x) \right) x_{j}$$

$$g'(z) = g(z) (1 - g(z))$$

The stochastic gradient ascent rule

$$\theta_j := \theta_j + \alpha \left(y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)}$$

Maximum likelihood

The stochastic gradient ascent rule

$$\theta_j := \theta_j + \alpha \left(y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)}$$

Difference between the true and predicted values

The derivative becomes zero as the difference becomes zero.

In other words, the classifier perfectly predicts the class of input data!

Cross entropy

$$Cost = -\sum_{i=1}^{m} \left[y^{(i)} \ln h(x^{(i)}) + (1 - y^{(i)}) \ln(1 - h(x^{(i)})) \right]$$

$$Cost = -\sum_{i=1}^{m} p_{true}(x^{(i)}) \ln p_{pred}(x^{(i)})$$
 VS

It is also called the cross entropy

Gibbs entropy formula

$$S = -k_{
m B} \, \sum_i p_i \ln \, p_i$$

Entropy in information theory

$$S = -\sum_{i=1} p_i \ln p_i$$

Example

Logistic regression measures the relationship between the Y "Label" and the X "Features" by estimating probabilities using a logistic function.

Wisconsin Diagnostic Breast Cancer (WDBC) Data Set which categorizes breast tumor cases as either benign or malignant based on 9 features to predict the diagnosis.

Softmax classification

Multinomial classification

Multi-class classification:

We need 3 decision boundaries!

For 2D, 3 lines:

$$\theta_1^T x + b_1 = 0$$
, $\theta_2^T x + b_2 = 0$, $\theta_3^T x + b_3 = 0$

Softmax function

The softmax function

$$\phi_i = \frac{e^{\eta_i}}{\sum_{j=1}^k e^{\eta_j}} \quad \Longrightarrow \quad \sum_{i=1}^k \phi_i = 1$$

→ Probability of having the k-th label.

If k = 2 like the binary classification (y = 0 or 1),

$$\emptyset_1 = \frac{e^{z1}}{e^{z1} + e^{z2}} = \frac{1}{1 + e^{z2 - z1}}$$
 Prob. for k = 1
 $\emptyset_2 = 1 - \emptyset_1$ Prob. for k = 2

logistic function!!

Generalization of the logistic function for multinomial problems

Softmax classification

The softmax regression

Dog Cat Rabbit

Probability of being in each class

The hypothesis function

$$h_{\theta}(x) = \begin{bmatrix} \frac{\exp(\theta_1^T x)}{\sum_{j=1}^k \exp(\theta_j^T x)} \\ \frac{\exp(\theta_2^T x)}{\sum_{j=1}^k \exp(\theta_j^T x)} \\ \vdots \\ \frac{\exp(\theta_{k-1}^T x)}{\sum_{j=1}^k \exp(\theta_j^T x)} \end{bmatrix}$$
each class

One has to determine the parameters $\{\theta\}$ with a given training set \Rightarrow cost function

One-hot encoding

The input data is labeled the class 1

$$\mathsf{Dog} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathsf{Cat} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

Rabbit =
$$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Cost function

As the generalization of the logistic regression, we use the cross entropy

$$Cost = -\sum_{i=1}^{m} y^{(i)} \ln h(x^{(i)})$$
 element-wise product

where

$$y^{(i)} = \begin{bmatrix} y_1^{(i)} \\ y_2^{(i)} \\ y_3^{(i)} \end{bmatrix} \qquad h(x^{(i)}) = \begin{bmatrix} \frac{\exp \theta_1^T x_1^{(i)}}{\sum_{k=1}^3 \exp \theta_k^T x_k^{(i)}} \\ \frac{\exp \theta_2^T x_2^{(i)}}{\sum_{k=1}^3 \exp \theta_k^T x_k^{(i)}} \\ \frac{\exp \theta_2^T x_2^{(i)}}{\sum_{k=1}^3 \exp \theta_k^T x_k^{(i)}} \\ \frac{\exp \theta_3^T x_1^{(i)}}{\sum_{k=1}^3 \exp \theta_k^T x_k^{(i)}} \end{bmatrix} \qquad y^{(i)} \ln h(x^{(i)}) = \begin{bmatrix} y_1^{(i)} \ln \frac{\exp \theta_1^T x_1^{(i)}}{\sum_{k=1}^3 \exp \theta_k^T x_k^{(i)}} \\ y_2^{(i)} \ln \frac{\exp \theta_2^T x_2^{(i)}}{\sum_{k=1}^3 \exp \theta_k^T x_1^{(i)}} \\ y_3^{(i)} \ln \frac{\exp \theta_3^T x_1^{(i)}}{\sum_{k=1}^3 \exp \theta_k^T x_3^{(i)}} \end{bmatrix}$$

Summary

The principal of **maximum likelihood** says that we should choose θ so as to make the data as high probability as possible.

New terms

- Supervised learning
- Unsupervised learning
- Reinforcement learning
- Hypothesis
- Least Mean Square (LMS)
- Maximum Likelihood Estimate (MLE)
- Regression
- Gradient descent
- Classification
- Decision boundary
- Logistic or sigmoid function
- Cost function
- Softmax classification
- Cross entropy
- One-hot encoding

Likelihood

Bayes' Rule

$$P(\theta|x) = \frac{P(x|\theta)P(\theta)}{P(x)} = \frac{P(x|\theta)P(\theta)}{\sum_{\theta} P(x|\theta)P(\theta)}$$

Posterior probability =
$$\frac{\text{(likelihood)} \times \text{(prior probability)}}{\text{(evidence)}}$$

Prior probability (사전확률) $P(\theta)$: probability of a parameter set θ .

Posterior probability (사후확률) $P(\theta|x)$: $P(\theta)$ given an observation x.

Evidence (증거) P(x): probability of the observation.

Likelihood (가능도) $L(\theta|x) = P(x|\theta)$: P(x) given the parameters θ

 θ = disease

x = test result (T or F)

P(x): probability of T and F

 $P(\theta)$: probability of having a disease

 $P(\theta|x)$: probability of having the disease given the test result

P(x): probability of T and F.