

alternative characterization of ultrafilter

 ${\bf Canonical\ name} \quad {\bf Alternative Characterization Of Ultrafilter}$

Date of creation 2013-03-22 14:42:20 Last modified on 2013-03-22 14:42:20

Owner yark (2760) Last modified by yark (2760)

Numerical id 13

Author yark (2760) Entry type Theorem Classification msc 54A20 Let X be a set. A filter \mathcal{F} over X is an ultrafilter if and only if it satisfies the following condition: if $A \coprod B = X$ (see disjoint union), then either $A \in \mathcal{F}$ or $B \in \mathcal{F}$.

This result can be generalized somewhat: a filter \mathcal{F} over X is an ultrafilter if and only if it satisfies the following condition: if $A \cup B = X$ (see union), then either $A \in \mathcal{F}$ or $B \in \mathcal{F}$.

This theorem can be extended to the following two propositions about finite unions:

- 1. A filter \mathcal{F} over X is an ultrafilter if and only if, whenever A_1, \ldots, A_n are subsets of X such that $\coprod_{i=1}^n A_i = X$ then there exists exactly one i such that $A_i \in \mathcal{F}$.
- 2. A filter \mathcal{F} over X is an ultrafilter if and only if, whenever A_1, \ldots, A_n are subsets of X such that $\bigcup_{i=1}^n A_i = X$ then there exists an i such that $A_i \in \mathcal{F}$.