International Rectifier

20L15T 20L15TS

SCHOTTKY RECTIFIER

20 Amps

$$I_{F(AV)} = 20Amp$$

 $V_R = 15V$

Major Ratings and Characteristics

Cha	racteristics	Values	Units
I _{F(AV)}	Rectangular waveform	20	А
V _{RRM}	1	15	V
I _{FSM}	@ tp = 5 µs sine	700	Α
V _F	@19 Apk, T _J =125°C (Typical)	0.25	V
T _J	range	-55 to 125	°C

Description/ Features

The Schottky rectifier module has been optimized for ultra low forward voltage drop specifically for the OR-ing of parallel power supplies. The proprietary barrier technology allows for reliable operation up to 125 °C junction temperature. Typical applications are in parallel switching power supplies, converters, reverse battery protection, and redundant power subsystems.

- 125°C T_J operation (V_R < 5V)
- Single diode configuration
- Optimized for OR-ing applications
- Ultra low forward voltage drop
- Guard ring for enhanced ruggedness and long term reliability
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance

International TOR Rectifier

Voltage Ratings

	Part number		Values
V_R	Max. DC Reverse Voltage (V)	@ T _J = 100 °C	45
V _{RWM} Max. Working Peak Reverse Voltage (V) @ T _J = 100 °C			15

Absolute Maximum Ratings

	Parameters	Values	Units	Conditions			
I _{F(AV)}	Max. Average Forward Current	20	Α	50% duty cycle @ $T_C = 85^{\circ}C$,	rectangular wave form		
` ′	* See Fig. 5						
I _{FSM}	Max. Peak One Cycle Non-Repetitive	700	Α	5μs Sine or 3μs Rect. pulse	Following any rated load condition and with		
	Surge Current *See Fig. 7	330		10ms Sine or 6ms Rect. pulse	rated V _{RRM} applied		
E _{AS}	Non-Repetitive Avalanche Energy	10	mJ	$T_J = 25 ^{\circ}\text{C}, I_{AS} = 2 \text{Amps}, L = 6$	SmH		
I _{AR}	Repetitive Avalanche Current	2	Α	Current decaying linearly to zero in 1 µsec			
				Frequency limited by T _J max.	$V_A = 1.5 \times V_R$ typical		

Electrical Specifications

Parameters		Val	ues	Units	C	Conditions
		Тур.	Max.			
V_{FM}	Forward Voltage Drop	-	0.41	V	@ 19A	T,= 25 °C
	* See Fig. 1 (1)	-	0.52	V	@ 40A	1, 20 0
		0.25	0.33	V	@ 19A	T ₁ = 125 °C
		0.37	0.50	V	@ 40A	1 _J = 125 0
I _{RM}	Reverse Leakage Current	-	10	mA	$T_J = 25 ^{\circ}\text{C}$	$V_p = \text{rated } V_p$
	* See Fig. 2 (1)	-	600	mA	T _J = 100 °C	V _R rated V _R
V _{F(TO}	Threshold Voltage	0.1	82	V	$T_J = T_J \text{ max.}$	
r _t	Forward Slope Resistance		.6	mΩ		
C_T	Max. Junction Capacitance	-	2000	pF	$V_R = 5V_{DC}$, (test signal range 100Khz to 1Mhz) 25°C
L _s	Typical Series Inductance		-	nΗ	Measured le	ad to lead 5mm from package body
dv/dt	dv/dt Max. Voltage Rate of Change		000	V/ µs	(Rated V _R)	

Thermal-Mechanical Specifications

(1) Pulse Width < 300 μ s, Duty Cycle <2%

	Darameters		\/aluaa	Linita	Conditions
	Parameters		Values	Units	Conditions
T _J	Max. Junction Temperature Range		-55 to 125	°C	
T _{stg}	Max. Storage Temperature Range		-55 to 150	°C	
R _{thJC}			1.5	°C/W	DC operation *See Fig. 4
R _{thCS}	Case to Heatsink		0.50	°C/W	Mounting surface , smooth and greased For TO-220
R _{thJA}	JA Max. Thermal Resistance Junction to Ambient		40	°C/W	DC operation For D ² Pak
wt	Approximate Weight		2 (0.07)	g (oz.)	
T	Mounting Torque	Min.	6 (5)	Kg-cm	Non-lubricated threads
		Max.	12 (10)	(lbf-in)	
	Marking Device		20L15T		Case Style TO-220
			20L15TS		Case Style D ² Pak

Fig. 1 - Maximum Forward Voltage Drop Characteristics

Fig. 3 - Typical Junction Capacitance Vs. Reverse Voltage

Fig. 4 - Maximum Thermal Impedance $Z_{th,IC}$ Characteristics

Fig. 5 - Maximum Allowable Case Temperature Vs. Average Forward Current

Fig. 6 - Forward Power Loss Characteristics

Fig. 7 - Maximum Non-Repetitive Surge Current

(2) Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$; $Pd = Forward Power Loss = I_{F(AV)} \times V_{FM} @ (I_{F(AV)} / D)$ (see Fig. 6); $Pd_{REV} = Inverse Power Loss = V_{R1} \times I_R (1 - D)$; $I_R @ V_{R1} = 80\%$ rated V_R

Outline Table

Part Marking Information

Tape & Reel Information

Ordering Information Table

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309
Visit us at www.irf.com for sales contact information. 06/06