PROVA FINAL DE TERMODINÂMICA Prof. Frederico W. Tavares

1) (30 pontos) 2) Uma corrente de 3 kmol/min de metanol a 1 atm e 100 °C é alimentada num trocador de calor, cuja saída tem fração vaporizada de 60%. **Calcule a taxa de calor**, considerando que o processo opera em estado estacionário e o metanol, em fase gasosa, é descrito pela equação de estado do virial truncada.

$$Z = 1 + \frac{BP}{RT}$$

$$B = 4.4. \ 10^{-4} - \frac{0.34}{T} \ (B \ cm \ \frac{m^3}{mol}, T \ cm \ K)$$

$$H^K = BP - PT \frac{dB}{dT} \ S^K = -P \frac{dB}{dT}$$

$$\frac{C_p^{gi}}{R} = 2.2 + 1.2. \ 10^{-2} \ T \ (T \ cm \ K) \ \ln(P^{sat}) = 17 - \frac{3600}{T - 33} \ (P^{sat} \ cm \ kPa, T \ cm \ K)$$

2) (40 pontos) A reação química A ↔ 2 B ocorre num reator cuja saída está em equilíbrio a 100 °C e contém uma fase líquida (solução ideal) e uma fase vapor (gás ideal). Calcule a pressão e a composição de cada fase em equilíbrio. Dados:

	ΔG _f a 100 °C (kJ/mol)	P_i^{sat} em bar, T em K
A (1)	-46,3	$ln(P_A^{sat}) = 4.4 - \frac{1570}{T}$
B (g)	-21,9	$ln(P_{y}^{sat}) = 4.6 - \frac{1310}{T}$

- 3) (30 pontos) O ciclo de Rankine é usado para produzir 1000 Btu/min de taxa de trabalho útil. Dados: **Corrente 1**: 400 °F e 20 psia; **Corrente 2** (saída da turbina): 5 psia; **Corrente 3** (saída do condensador): 132 °F. Sabendo-se que a turbina trabalha com 80% de eficiência, calcular:
 - a) As propriedades termodinâmicas das correntes.
 - b) A taxa de calor envolvida na caldeira.

ABS PRESS PSIA		SAT WATER	SAT STEAM	TEMPERATURE, 200	DEG F 250	300	350	400	450	500
(SAT TEMP) 1 (101.74)	VUHS	0.0161 69.73 69.73 0.1326	333.60 1044.1 1105.8 1.9781	392.5 1077.5 1150.2 2.0509	422.4 1094.7 1172.9 2.0841	452.3 1112.0 1195.7 2.1152	482.1 1129.5 1218.7 2.1446	511.9 1147.1 1241.8 2.1722	541.7 1164.9 1265.1 2.1985	571.5 1182.8 1288.6 2.2237
(162.24)	V UHS	0.0164 130.18 130.20 0.2349	73.532 1063.1 1131.1 1.8443	78.14 1076.3 1148.6 1.8716	84.21 1093.8 1171.7 1.9064	90.24 1111.3 1194.8 1.9369	96.25 1128.9 1218.0 1.9664	102.2 1146.7 1241.3 1.9943	108.2 1164.5 1264.7 2.0208	114.2 1182.6 1288.2 2.0460
10 (193.21)	Y UHS	0.0166 161.23 161.26 0.2836	38.420 1072.3 1143.3 1.7879	38.84 1074.7 1146.6 1.7928	41.93 1092.6 1170.2 1.8273	44.98 1110.4 1193.7 1.8593	48.02 1128.3 1217.1 1.8892	51.03 1146.1 1240.6 1.9173	54.04 1164.1 1264.1 1.9439	57.04 1182.2 1287.8 1.9692
14.696 (212.00)	Y U H S	0.0167 180.12 180.17 0.3121	26.799 1077.6 1150.5 1.7568		28.42 1091.5 1168.8 1.7833	30.52 1109.6 1192.6 1.8158	32.60 1127.6 1216.3 1.8460	34.67 1145.7 1239.9 1.8743	36.72 1163.7 1263.6 1.9010	38.77 1181.9 1287.4 1.9265
15 (213.03)	VUHS	0.0167 181.16 181.21 0.3137	26.290 1077.9 1150.9 1.7552		27.84 1091.4 1168.7 1.7809	29.90 1109.5 1192.5 1.8134	31.94 1127.6 1216.2 1.8436	33.96 1145.6 1239.9 1.8720	35.98 1163.7 1263.6 1.8988	37.98 1181.9 1287.3 1.9242
20 (227.96)	V U H S	0.0168 196.21 196.27 0.3358	20.087 1082.0 1156.3 1.7320	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	20.79 1090.2 1167.1 1.7475	22.36 1108.6 1191.4 1.7805	23.90 1126.9 1215.4 1.8111	25.43 1145.1 1239.2 1.8397	26.95 1163.3 1263.0 1.8666	28.46 1181.6 1286.9 1.8921

$K = \exp\left(\frac{-\Delta G^{0}}{RT}\right) = \prod_{i} \hat{a}_{i}^{\nu_{i}}$ $\left(\frac{\partial \frac{G}{T}}{\partial T}\right)_{P} = -\frac{H}{T^{2}}$	$R = 1,987 \frac{cal}{gmolK}$ $144 \text{ Btu} = 778 \text{ psia ft}^3$	$\begin{split} \hat{\mathbf{f}}_{i} &= \mathbf{x}_{i} \stackrel{\diamond}{\phi_{i}} \mathbf{P} = \mathbf{x}_{i} \gamma_{i} \mathbf{f}_{i}^{0} \\ \mathbf{y}_{i} \mathbf{P} &= \mathbf{x}_{i} \gamma_{i} \mathbf{P}_{i}^{\mathrm{SAT}} \qquad \hat{\mathbf{a}}_{i} = \stackrel{\hat{\mathbf{f}}_{i}}{f_{i}^{0}} \\ \Delta S_{n}^{\mathrm{LV}} &= 8 + 1,987 \ ln(T_{n}) \ (\Delta S_{n}^{\mathrm{LV}} \ em \ \frac{cal}{mol \ K}, T_{n} \ em \ K) \end{split}$
---	---	--