PHÒNG GD&ĐT THỊ XÃ PHÚ THỌ

ĐỀ THAM KHẢO

Kỳ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2023-2024

Môn: TOÁN

Thời gian làm bài: 120 phút, không kể thời gian giao đề (Đề thi có 02 trang)

Thí sinh làm bài (cả phần trắc nghiệm và tự luận) vào tờ giấy thi.

		• • /	,
PHÀN I. TRẮC NGHIỆM	I KHÁCH QUAN (3,0	điểm)	
Câu 1. Kết quả rút gọn của	biểu thức $\sqrt{(4-3\sqrt{2})^2}$	là	
A. $3\sqrt{2} - 4$.	B. $4 - 3\sqrt{2}$.	C. $\sqrt{2} - 2$.	D. $2 - \sqrt{2}$.
Câu 2. Trong các hàm số sa			
A. $y = x^2$.	B. $y = 1 - (x + 2)$.	C. $y = x + 3$.	D. $y = 2022 - x$.
Câu 3. Giá trị của a để đư	$\dot{\text{o}} \text{ng th} \dot{\tilde{\text{a}}} \text{ng } y = 2x - 3 \text{ c} \dot{\tilde{\text{a}}}$	t đường thẳng $y = ax - 2$	tại điểm có tung
độ bằng 1 là			
A. −1.	B. 1.	C. -5.	D. 2.
Câu 4. Hệ phương trình $\begin{cases} m \\ - \end{cases}$	x - 3y = 3 $x + y = 1$ có nghiệm du	ıy nhất khi	
	B. <i>m</i> ≠ 3		D. $m \ne 1$
Câu 5. Cho một số có hai ch số đã cho là 63. Tổng của số			
A. 9	B. 8	C. 7	D. 6
Câu 6. Cho hàm số y = ax ² A. Hàm số đồng biến kl B. Hàm số đồng biến kl	hi $a > 0$ và $x < 0$ ni $a > 0$ và $x > 0$	sau đây là đúng.	
C. Hàm số đồng biến kl			
D. Hàm số đồng biến kl		² 712 0 Vhi đá /	7(
Câu 7. Cho x_1, x_2 là hai ngh:	iệm của phương trinh –	x - /x + 12 = 0. Kill do	$(x_1 + x_2) - 4x_1x_2$
bằng	B. −1.	C 07	D 07
			D. 97.
Câu 8. Cho phương trình (n	(m-1)x + 2(m+1)x + m-1	-3 = 0 voi gia tri nao cua	in un phuong
trình có nghiệm duy nhất:	1	1	1
A. $m = 1$.	B. $m = \frac{1}{3}$.	C. $m = 1$ hoặc $m = \frac{1}{3}$.	D. $m = 1 \text{ và } m = \frac{1}{3}$.
Câu 9. $\triangle ABC$ có $A^{\mu} = 90^{\circ}$,	AB = 6, AC = 8, BC = 10.	Độ dài đường cao AH t	òằng
A. 4,8.	B. 8,4.	C. 4.	D. 8.
Câu 10. Cho góc nhọn α , t	piết $\sin \alpha = \frac{3}{5}$. Khi đó co	ot $lpha$ bằng	

A. $\frac{3}{4}$	B. $\frac{4}{5}$	C. $\frac{5}{4}$	D. $\frac{2}{3}$
11. Cho tứ giác	MNPQ nội tiếp đường tròn.	Biết góc $MNP = 60^{\circ}$ và góc	$PMQ = 40^{\circ}.$

Câu 11. Cho tứ giác MNPQ nội tiếp đường tròn. Biết góc $MNP = 60^{\circ}$ và góc $PMQ = 40^{\circ}$. Số đo góc MPQ là

A. 20° . **B.** 25° . **C.** 30° . **D.** 40° .

Câu 12. Cho đường tròn tâm O bán kính R=2 và dây cung AB=3,2. Vẽ một tiếp tuyến song song với AB cắt các tia OA,OB lần lượt tại M và N. Diện tích tam giác OMN bằng

A. $\frac{8}{3}$ **B.** $\frac{3}{8}$ **C.** $\frac{16}{3}$ **D.** $\frac{3}{16}$

PHẦN II. TỰ LUẬN (7,0 điểm) Câu 1. (1,5 điểm).

Cho hai biểu thức $A = \frac{\sqrt{x}}{\sqrt{x+6}}$ và $B = \frac{4}{x-1} + \frac{\sqrt{x+3}}{\sqrt{x+1}} - \frac{5}{1-\sqrt{x}}$ (với $x \ge 0, x \ne 1$).

- a) Tính giá trị của A khi x = 4.
- b) Rút gọn B.
- c) Với P = A.B, tìm các giá trị của x để P < 0.

Câu 2. (2,0 điểm). Cho Parabol (P): $y = x^2$ và đường thắng $d: y = -4x + m^2 - 4$.

- a) Viết phương trình đường thẳng đi qua A thuộc Parabol (P) có hoành độ x=1 và song song với đường thẳng $\Delta: y=2x+2022$.
 - b) Tìm m để đường thẳng d cắt Parabol (P) tại hai điểm phân biệt có hoành độ x_1 , x_2 thoả mãn $x_2 = x_1^3 + 4x_1^2$.

Câu 3. (3,0 điểm). Cho hai điểm A,B cố định. Một điểm C khác B di chuyển trên đường tròn O đường kính AB sao cho AC > BC. Tiếp tuyến của đường tròn D tại D cắt tiếp tuyến tại D0, cắt D1, cắt D2, cắt D3 ở D4, cắt D5, cắt D6 ở D7, cắt D8 ở D8, cắt D9, cắt

- a) Chứng minh rằng tứ giác ADCO nội tiếp một đường tròn.
- b) Chứng minh rằng $OD.BC = \frac{AB^2}{2}$.
- c) Chứng minh EF = 2.EG
- d) Chứng minh rằng trực tâm tam giác GIF là một điểm cố định.

Câu 4. (0,5 điểm). Giải hệ phương trình sau: $\begin{cases} x + \sqrt{x^2 + 1} = 2y + 1 \\ y + \sqrt{y^2 + 1} = 2x + 1 \end{cases}$

.....Hết.....

Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm.

ĐÁP ÁN – THANG ĐIỂM DỰ KIẾN

PHÀN I. TRẮC NGHIỆM KHÁCH QUAN (3,0 điểm)

Mỗi câu đúng được 0,25 điểm.

Câu	1	2	3	4	5	6	7	8	9	10	11	12
Đáp án	A	C	В	В	A	В	A	С	A	D	A	С

PHẦN II. TỰ LUẬN (7,0 điểm)

Đáp án	Điểm
Câu 1 (1,5 điểm). Cho hai biểu thức $A = \frac{\sqrt{x}}{\sqrt{x} + 6}$ và $B = \frac{4}{x - 1} + \frac{\sqrt{x} + 3}{\sqrt{x} + 1} - \frac{5}{1 - \sqrt{x}}$	
$(\text{v\'oi } x \ge 0, x \ne 1).$	
a) Tính giá trị của A khi $x = 4$.	
b) Rút gọn B.	
c) Với $P = A.B$, tìm các giá trị của x để $P < 0$.	
a) Ta có $x = 4$ thoả mãn điều kiện thay vào A ta có $A = \frac{\sqrt{4}}{\sqrt{4} + 6} = \frac{1}{4}$.	0,5
b) Ta có: $B = \frac{4}{x-1} + \frac{\sqrt{x}+3}{\sqrt{x}+1} - \frac{5}{1-\sqrt{x}} = \frac{4+(\sqrt{x}+3)(\sqrt{x}-1)+5(\sqrt{x}+1)}{(\sqrt{x}-1)(\sqrt{x}+1)}$	0,25
$=\frac{x+7\sqrt{x}+6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+6}{\sqrt{x}-1}.$	0,25
Vậy $B = \frac{\sqrt{x}}{\sqrt{x} - 1}$ (với $x \ge 0, x \ne 1$).	
c) Ta có $P = A.B = \frac{\sqrt{x}}{\sqrt{x} + 6} \cdot \frac{\sqrt{x} + 6}{\sqrt{x} - 1} = \frac{\sqrt{x}}{\sqrt{x} - 1}$.	0,25
$P < 0 \Leftrightarrow \frac{\sqrt{x}}{\sqrt{x-1}} < 0 \Leftrightarrow 0 < \sqrt{x} < 1 \Leftrightarrow 0 < x < 1.$	0,25
$V_{ay} 0 < x < 1 \text{ thi } P < 0.$	
Câu 2 (2 điểm). Cho Parabol (P) : $y = x^2$ và đường thẳng $d: y = -4x + m^2 - 4$.	

Câu 2 (2 điểm). Cho Parabol (P): $y = x^2$ và đường thẳng $d: y = -4x + m^2 - 4$.

- a) Viết phương trình đường thẳng đi qua A thuộc Parabol (P) có hoành độ x=1 và song song với đường thẳng $\Delta: y=2x+2022$.
- **b)** Tìm m để đường thẳng d cắt Parabol $\left(P\right)$ tại hai điểm phân biệt có hoành độ x_1 , x_2 thoả mãn $x_2 = x_1^3 + 4x_1^2$.
- **a)** Gọi đường thẳng cần tìm là $d': y = ax + b(a \neq 0)$. 0,25

$ \operatorname{Vi} d' / / \Delta \Rightarrow \begin{cases} a = 2 \\ b \neq 2022 \end{cases}. $	0,25
Vì điểm $A \in (P) \Rightarrow A(1;1)$. Do điểm $A \in d$ ' nên $1 = 2 + b \Leftrightarrow b = -1$ (T/M)	0,25
Vậy đường thẳng d ' cần tìm là d ': $y = 2x - 1$.	0,25
b) Xét phương trình hoành độ giao điểm của đường thẳng d và Parabol (P) $x^2 = -4x + m^2 - 4 \Leftrightarrow x^2 + 4x - m^2 + 4 = 0 (*)$	0,25
Để đường thẳng d cắt Parabol (P) tại hai điểm phân biệt thì (*) phải có hai nghiệm phân biệt $\Leftrightarrow \Delta' > 0 \Leftrightarrow m^2 > 0 \Leftrightarrow m \neq 0$.	0,25
Theo định lí Viét, ta có $\begin{cases} x_1 + x_2 = -4 \\ x_1 x_2 = -m^2 + 4 \end{cases}$	
Thay $x_2 = x_1^3 + 4x_1^2$ vào $x_1 + x_2 = -4$ ta được $x_1 + x_1^3 + 4x_1^2 = -4 \Leftrightarrow x_1 + 4 + x_1^2 (x_1 + 4) = 0 \Leftrightarrow (x_1 + 4)(x_1^2 + 1) = 0$ $\Leftrightarrow x_1 = -4 \Rightarrow x_2 = 0$. Thay $x_1 = -4$, $x_2 = 0$ vào $x_1 = -4 \Rightarrow -m^2 + 4 \Rightarrow -m^2 + 4 = 0 \Rightarrow m = \pm 2$ (thoả mãn).	0,25
Vậy $m = \pm 2$ thoả mãn yêu cầu bài toán.	0,25

Câu 3 (3,0 điểm). Cho hai điểm A, B cố định. Một điểm C khác B di chuyển trên đường tròn (O) đường kính AB sao cho AC > BC. Tiếp tuyến của đường tròn (O) tại C cắt tiếp tuyến tại A ở D, cắt AB ở E. Đường thẳng đi qua E, vuông góc với AB cắt AC, BD lần lượt tại F, G. Gọi I là trung điểm AE.

- a) Chứng minh rằng tứ giác ADCO nội tiếp một đường tròn.
- b) Chứng minh rằng $OD.BC = \frac{AB^2}{2}$.
- c) Chứng minh EF = 2.EG
- d) Chứng minh rằng trực tâm tam giác GIF là một điểm cố định.

	т	
Chỉ ra được $EC^2 = EB.EA = 2EB.EI$. Do đó $EB.EI = EF.EG \Leftrightarrow \frac{EB}{EF} = \frac{EG}{EI}$		
Từ đó suy ra $\Delta EBF \sim \Delta EGI$ (c-g-c)		
\Rightarrow FBE = EGK \Rightarrow FBE + BFE = EGK + BFE \Leftrightarrow 90° = EGK + BFE	0,25	
Hay $FK \perp IG$. Mặt khác $IE \perp FG$. Do đó B là trực tâm của ΔGIF mà B cố định		
⇒đpcm.		
Câu 4. (0,5 điểm). Giải hệ phương trình sau: $\begin{cases} x + \sqrt{x^2 + 1} = 2y + 1 \\ y + \sqrt{y^2 + 1} = 2x + 1 \end{cases}$		
$\begin{cases} x + \sqrt{x^2 + 1} = 2y + 1 & (1) \\ y + \sqrt{y^2 + 1} = 2x + 1 & (2) \end{cases}$		
$y + \sqrt{y^2 + 1} = 2x + 1 (2)$		
Trừ theo vế các phương trình (1) và (2) ta được:		
$\left(\sqrt{x^2 + 1} - \sqrt{y^2 + 1}\right) + 3(x - y) = 0 \Leftrightarrow (x - y) \left(\frac{x + y}{\sqrt{x^2 + 1} + \sqrt{y^2 + 1}} + 3\right) = 0$		
$\Leftrightarrow x - y = 0 \text{ hoặc } \frac{x + y}{\sqrt{x^2 + 1} + \sqrt{y^2 + 1}} + 3 = 0$ (*)		
Trường hợp 1: $x - y = 0 \Leftrightarrow x = y$.		
Thay $y = x$ vào (1) ta được phương trình:		
$\sqrt{x^2 + 1} = x + 1 \Leftrightarrow \begin{cases} x^2 + 1 = (x + 1)^2 \\ x \ge -1 \end{cases}$	0,25	
Giải hệ ta được: $x = 0 \Rightarrow x = y = 0$.	0,23	
Trường hợp 2: $\frac{x+y}{\sqrt{x^2+1}+\sqrt{y^2+1}}+3=0$.		
Xét $A = \frac{x+y}{\sqrt{x^2+1}+\sqrt{y^2+1}} + 3 = \frac{\left(3\sqrt{x^2+1}+x\right)+\left(3\sqrt{y^2+1}+y\right)}{\sqrt{x^2+1}+\sqrt{y^2+1}}.$		
Ta có: $3\sqrt{x^2 + 1} + x > 3\sqrt{x^2} + x = 3 x + x = 2 x + (x + x) \ge 0$.	0.27	
Turong tur: $3\sqrt{y^2 + 1} + y > 0$	0,25	
Suy ra: $A > 0$. Trường hợp 2 không xảy ra.		
Vậy hệ có nghiệm duy nhất: $x = y = 0$.		

Lưu ý:

- HS làm theo cách khác mà đúng vẫn cho điểm tối đa.
- HS vẽ hình sai hoặc không vẽ hình thì không chấm điểm bài hình. HS làm đúng đến đâu thì cho điểm đến đó.