```
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report, roc_auc_score, confusion_matrix
import seaborn as sns
import matplotlib.pyplot as plt
df = pd.read_csv("/content/greendestination (1) (1).csv")
print("Missing Values:\n", df.isnull().sum())
# Convert categorical variables to numerical using Label Encoding
label encoders = {}
categorical_columns = df.select_dtypes(include=['object']).columns
for col in categorical columns:
   le = LabelEncoder()
   df[col] = le.fit_transform(df[col])
   label_encoders[col] = le
# Drop columns that do not contribute to the analysis (e.g., EmployeeCount, EmployeeNumber)
df = df.drop(columns=['EmployeeCount', 'EmployeeNumber', 'Over18', 'StandardHours'])
# Standardize numerical features
scaler = StandardScaler()
numerical_columns = df.select_dtypes(include=['int64', 'float64']).columns
df[numerical_columns] = scaler.fit_transform(df[numerical_columns])
# Check the first few rows of the processed dataset
df.head()
```

\rightarrow	Missing	Values:
-7 *	LITZZTIIK	varues.

missing varues.	
Age	0
Attrition	0
BusinessTravel	0
DailyRate	0
Department	0
DistanceFromHome	0
Education	0
EducationField	0
EmployeeCount	0
EmployeeNumber	0
EnvironmentSatisfaction	0
Gender	0
HourlyRate	0
JobInvolvement	0
JobLevel	0
JobRole	0
JobSatisfaction	0
MaritalStatus	0
MonthlyIncome	0
MonthlyRate	0
NumCompaniesWorked	0
Over18	0
OverTime	0
PercentSalaryHike	0
PerformanceRating	0
RelationshipSatisfaction	0
StandardHours	0
StockOptionLevel	0
TotalWorkingYears	0
TrainingTimesLastYear	0
WorkLifeBalance	0
YearsAtCompany	0
YearsInCurrentRole	0
YearsSinceLastPromotion	0
YearsWithCurrManager	0
44	

dtype: int64

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	E
0	0.446350	2.280906	0.590048	0.742527	1.401512	-1.010909	-0.891688	-0.937414	
1	1.322365	-0.438422	-0.913194	-1.297775	-0.493817	-0.147150	-1.868426	-0.937414	
2	0.008343	2.280906	0.590048	1.414363	-0.493817	-0.887515	-0.891688	1.316673	
3	-0.429664	-0.438422	-0.913194	1.461466	-0.493817	-0.764121	1.061787	-0.937414	
4	-1.086676	-0.438422	0.590048	-0.524295	-0.493817	-0.887515	-1.868426	0.565311	

5 rows × 31 columns

```
# Overall Attrition Rate
attrition_rate = df['Attrition'].value_counts(normalize=True)
print("Overall Attrition Rate:", attrition rate)
# Age distribution by Attrition
sns.boxplot(x='Attrition', y='Age', data=df)
plt.title('Age Distribution by Attrition')
plt.show()
# Attrition by Department
sns.countplot(x='Department', hue='Attrition', data=df)
plt.title('Attrition by Department')
plt.show()
# Attrition by Job Satisfaction
sns.countplot(x='JobSatisfaction', hue='Attrition', data=df)
plt.title('Attrition by Job Satisfaction')
plt.show()
# Attrition by Years at Company
sns.boxplot(x='Attrition', y='YearsAtCompany', data=df)
plt.title('Years at Company by Attrition')
plt.show()
# Attrition by Monthly Income
sns.boxplot(x='Attrition', y='MonthlyIncome', data=df)
plt.title('Monthly Income by Attrition')
plt.show()
```

→ Overall Attrition Rate: Attrition

Name: proportion, dtype: float64

Attrition by Department

Attrition by Job Satisfaction


```
# Define features and target variable
X = df.drop(columns=['Attrition'])
y = df['Attrition'].astype(int)

# Train a Random Forest to determine feature importance
rf = RandomForestClassifier(random_state=42)
rf.fit(X, y)

# Get feature importances
importances = pd.DataFrame({'Feature': X.columns, 'Importance': rf.feature_importances_})
importances = importances.sort_values(by='Importance', ascending=False)

# Plot feature importances
sns.barplot(x='Importance', y='Feature', data=importances)
plt.title('Feature Importance')
plt.show()
```



```
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# Logistic Regression
log_reg = LogisticRegression()
log_reg.fit(X_train, y_train)
y_pred_log_reg = log_reg.predict(X_test)
# Random Forest
rf model = RandomForestClassifier(random state=42)
rf_model.fit(X_train, y_train)
y pred rf = rf model.predict(X test)
# Model Evaluation
print("Logistic Regression Performance:")
print(classification_report(y_test, y_pred_log_reg))
print(f"ROC AUC: {roc_auc_score(y_test, log_reg.predict_proba(X_test)[:, 1]):.2f}\n")
print("Random Forest Performance:")
print(classification_report(y_test, y_pred_rf))
print(f"ROC AUC: {roc_auc_score(y_test, rf_model.predict_proba(X_test)[:, 1]):.2f}")
→ Logistic Regression Performance:
                   precision
                                recall f1-score
                                                    support
                0
                        0.89
                                  0.97
                                             0.93
                                                        380
                2
                        0.54
                                   0.25
                                             0.34
                                                         61
         accuracy
                                             0.87
                                                        441
        macro avg
                        0.71
                                   0.61
                                             0.63
                                                        441
                        0.84
                                   0.87
                                             0.84
                                                        441
     weighted avg
     ROC AUC: 0.77
     Random Forest Performance:
                   precision
                                recall f1-score
                                                    support
                0
                        0.87
                                   0.98
                                             0.92
                                                        380
                2
                        0.45
                                   0.08
                                             0.14
                                                         61
                                             0.86
                                                        441
         accuracy
                                   0.53
                                             0.53
                                                        441
        macro avg
                        0.66
                                             0.81
     weighted avg
                        0.81
                                   0.86
                                                        441
     ROC AUC: 0.78
# Subset the data to include only employees who left the company
df left = df[df['Attrition'] == 1]
# Display the first few rows
df_left.head()
\rightarrow
```

Age Attrition BusinessTravel DailyRate Department DistanceFromHome Education EducationField Environ

0 rows × 31 columns

 $\overline{\mathbf{x}}$

```
# Summary statistics for employees who left
summary_stats = df_left.describe()

# Display relevant statistics
summary_stats[['Age', 'YearsAtCompany', 'MonthlyIncome', 'JobSatisfaction', 'DistanceFromHome']]
```

•		Age	YearsAtCompany	MonthlyIncome	JobSatisfaction	DistanceFromHome
	count	0.0	0.0	0.0	0.0	0.0
	mean	NaN	NaN	NaN	NaN	NaN
	std	NaN	NaN	NaN	NaN	NaN
	min	NaN	NaN	NaN	NaN	NaN
	25%	NaN	NaN	NaN	NaN	NaN
	50%	NaN	NaN	NaN	NaN	NaN
	75%	NaN	NaN	NaN	NaN	NaN
	max	NaN	NaN	NaN	NaN	NaN
	4					

```
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
# Age distribution of employees who left
sns.histplot(df_left['Age'].head(100), kde=True)
plt.title('Age Distribution of Employees Who Left')
plt.xlabel('Age')
plt.ylabel('Count')
plt.show()
# Years at Company for employees who left
sns.histplot(df_left['YearsAtCompany'], kde=True)
plt.title('Years at Company for Employees Who Left')
plt.xlabel('Years at Company')
plt.ylabel('Count')
plt.show()
# Job Satisfaction distribution for employees who left
sns.countplot(x='JobSatisfaction', data=df_left)
plt.title('Job Satisfaction of Employees Who Left')
plt.xlabel('Job Satisfaction')
plt.ylabel('Count')
plt.show()
# Monthly Income distribution for employees who left
sns.histplot(df_left['MonthlyIncome'], kde=True)
plt.title('Monthly Income of Employees Who Left')
plt.xlabel('Monthly Income')
plt.ylabel('Count')
plt.show()
```


Job Satisfaction of Employees Who Left


```
# Correlation matrix for employees who left
correlation_matrix = df_left[['Age', 'YearsAtCompany', 'MonthlyIncome', 'JobSatisfaction', 'DistanceFromHome']].
# Plot the correlation matrix
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt='.2f')
plt.title('Correlation Matrix for Employees Who Left')
plt.show()
```

/usr/local/lib/python3.10/dist-packages/seaborn/matrix.py:202: RuntimeWarning: All-NaN slice encountered vmin = np.nanmin(calc_data) /usr/local/lib/python3.10/dist-packages/seaborn/matrix.py:207: RuntimeWarning: All-NaN slice encountered vmax = np.nanmax(calc_data)

