```
In [1]: import numpy as np
In [4]: | X=np.array([[1],[2],[3],[4],[5]]) #this is used to create the array(column)
         Y=np.array([[1],[3],[2],[3],[5]])
In [5]: X
Out[5]: array([[1],
                [2],
                [3],
                [4],
                [5]])
In [6]: mx=X.mean() #calculates mean here (1+2+3+4+5)/5
In [7]: my=Y.mean() #calculates mean of Y values
In [8]: mx #mean of all values in X array prints
Out[8]: 3.0
In [9]: my
             #prints mean of all values in Y array
Out[9]: 2.8
In [11]: Z=np.array([1,2,3,4,5]) #this is used to create the array(row)
Out[11]: array([1, 2, 3, 4, 5])
In [12]: F=np.array([[1,2,3],[4,5,6],[7,8,9]])
Out[12]: array([[1, 2, 3],
                [4, 5, 6],
                [7, 8, 9]])
```

```
In [13]: vx=mx-X
                     \#vx = mean - ActualValueIn(X) \ OR \ bar(x) - X
                     #vy=mean-ActualValueIn(Y)
         vy=my-Y
In [14]: xy=vx*vy
                      \#(meanOf\ X-X)*(meanOf\ Y-Y)
                      #adds all the values('-' inclusive)
In [15]: sum(xy)
Out[15]: array([8.])
In [16]: | m=sum(xy)/sum(np.square(vx)) #division by square of values of X
Out[16]: array([0.8])
In [17]: | #LINEAR REGRESSION
         from sklearn.linear_model import LinearRegression
         obj=LinearRegression(fit intercept=True) #if intercept is false no intercept used in calculations
In [19]: model=obj.fit(X,Y) #used to fit the linear model
In [20]: model
Out[20]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None,
                  normalize=False)
         model.predict([[1]]) #predict using linear model
In [22]:
Out[22]: array([[1.2]])
In [25]: model.predict([[4]])
Out[25]: array([[3.6]])
```

```
In [27]: model.predict([[5]])
Out[27]: array([[4.4]])
In [26]: model.coef_
Out[26]: array([[0.8]])
In [28]: model.intercept_
Out[28]: array([0.4])
In [30]: Ya=Y #X
Yp=model.predict(X)
In [31]: #matplotLib is a plotting library in python programming language #and it's numerical extension is numpy
from matplotlib import pyplot as plt
```

```
In [32]: plt.plot(X,Ya,color="red",marker="*")
    plt.plot(X,Yp,color="blue",marker="o")
    plt.xlabel("Input")
    plt.ylabel("Youtput")
    plt.legend(["Ya","Yp"]) #here whatever is written before is set to plotted in red with marker'*'
    plt.show()
```



```
In [36]: plt.plot(X,Ya,'ro') #this consist of ro 'r' indicates red color and 'o' marker
         plt.plot(X,Yp,'g*') #this means green color and '*' marker
         plt.xlabel("Input")
         plt.ylabel("Youtput")
         plt.legend(["Ya","Yp"])
         plt.show()
            4.0
            3.5
          Youtput
            2.5
            2.0
            1.5
```

```
In [37]: #Finding mean squared error
                 #Actual values
         Ya
Out[37]: array([[1],
                [3],
                [2],
                [3],
                [5]])
In [38]: Yp
                #predicted values
Out[38]: array([[1.2],
                [2.],
                [2.8],
                [3.6],
                [4.4]])
```

1.0

1.0

1.5 2.0 2.5

3.0

Input

3.5

4.0 4.5

```
In [40]: #s1=np.square(Ya)
         #s2=np.square(Yp)
                       #ActualValue-PredictedValue
         s=Ya-Yp
In [41]: #s=s1-s2
         S
Out[41]: array([[-0.2],
                 [ 1. ],
                [-0.8],
                [-0.6],
                [ 0.6]])
In [45]: np.sqrt(sum(np.square(s))) # contains error
Out[45]: array([1.54919334])
In [46]: #it is used to find the mean squared error
         from sklearn.metrics import mean squared error
In [47]: #yp=.8x+.4+.69
         me=mean_squared_error(Ya,Yp)
         np.sqrt(me)
Out[47]: 0.692820323027551
In [50]: #recorrected above calculations
         np.sqrt(sum(np.square(s))/len(s))
                                               #(1/n)sigma square(Ya-Yp)
Out[50]: array([0.69282032])
In [51]: #pandas is used for data Analysis
         import pandas as pd
In [52]: #this is used to read the file
         mydata=pd.read csv(r"E:\BOOKS pdf\EXTRA STUFFS\Internships\DataSets-master\data brain own model design.csv")
```

In [53]: mydata

Out[53]:

	Gender	Age Range	Head Size(cm^3)	Brain Weight(grams)
0	1	1	4512	1530
1	1	1	3738	1297
2	1	1	4261	1335
3	1	1	3777	1282
4	1	1	4177	1590
5	1	1	3585	1300
6	1	1	3785	1400
7	1	1	3559	1255
8	1	1	3613	1355
9	1	1	3982	1375
10	1	1	3443	1340
11	1	1	3993	1380
12	1	1	3640	1355
13	1	1	4208	1522
14	1	1	3832	1208
15	1	1	3876	1405
16	1	1	3497	1358
17	1	1	3466	1292
18	1	1	3095	1340
19	1	1	4424	1400
20	1	1	3878	1357
21	1	1	4046	1287
22	1	1	3804	1275
23	1	1	3710	1270
24	1	1	4747	1635

	Gender	Age Range	Head Size(cm^3)	Brain Weight(grams)
25	1	1	4423	1505
26	1	1	4036	1490
27	1	1	4022	1485
28	1	1	3454	1310
29	1	1	4175	1420
207	2	2	3995	1296
208	2	2	3318	1175
209	2	2	2720	955
210	2	2	2937	1070
211	2	2	3580	1320
212	2	2	2939	1060
213	2	2	2989	1130
214	2	2	3586	1250
215	2	2	3156	1225
216	2	2	3246	1180
217	2	2	3170	1178
218	2	2	3268	1142
219	2	2	3389	1130
220	2	2	3381	1185
221	2	2	2864	1012
222	2	2	3740	1280
223	2	2	3479	1103
224	2	2	3647	1408
225	2	2	3716	1300
226	2	2	3284	1246
227	2	2	4204	1380

	Gender	Age Range	Head Size(cm ³)	Brain Weight(grams)
228	2	2	3735	1350
229	2	2	3218	1060
230	2	2	3685	1350
231	2	2	3704	1220
232	2	2	3214	1110
233	2	2	3394	1215
234	2	2	3233	1104
235	2	2	3352	1170
236	2	2	3391	1120

237 rows × 4 columns

In [54]: mydata[:2] #upto 1 index print

Out[54]:

	Gender	Age Range	Head Size(cm ³)	Brain Weight(grams)
0	1	1	4512	1530
1	1	1	3738	1297

In [55]: X_input=mydata.iloc[:,0:3] #contains Gender,AgeRange,HeadSize
Y_out=mydata.iloc[:,3] #only contains BrainWeight

In [56]: type(X_input)

Out[56]: pandas.core.frame.DataFrame

In [57]: type(Y_out)

Out[57]: pandas.core.series.Series

In [58]: X_input

Out[58]:

	Gender	Age Range	Head Size(cm^3)
0	1	1	4512
1	1	1	3738
2	1	1	4261
3	1	1	3777
4	1	1	4177
5	1	1	3585
6	1	1	3785
7	1	1	3559
8	1	1	3613
9	1	1	3982
10	1	1	3443
11	1	1	3993
12	1	1	3640
13	1	1	4208
14	1	1	3832
15	1	1	3876
16	1	1	3497
17	1	1	3466
18	1	1	3095
19	1	1	4424
20	1	1	3878
21	1	1	4046
22	1	1	3804
23	1	1	3710
24	1	1	4747

	Gender	Age Range	Head Size(cm^3)
25	1	1	4423
26	1	1	4036
27	1	1	4022
28	1	1	3454
29	1	1	4175
207	2	2	3995
208	2	2	3318
209	2	2	2720
210	2	2	2937
211	2	2	3580
212	2	2	2939
213	2	2	2989
214	2	2	3586
215	2	2	3156
216	2	2	3246
217	2	2	3170
218	2	2	3268
219	2	2	3389
220	2	2	3381
221	2	2	2864
222	2	2	3740
223	2	2	3479
224	2	2	3647
225	2	2	3716
226	2	2	3284
227	2	2	4204

	Gender	Age Range	Head Size(cm ³)
228	2	2	3735
229	2	2	3218
230	2	2	3685
231	2	2	3704
232	2	2	3214
233	2	2	3394
234	2	2	3233
235	2	2	3352
236	2	2	3391

237 rows × 3 columns

```
In [59]: Y_out
Out[59]: 0
                1530
                1297
                1335
                1282
                1590
         5
                1300
                1400
                1255
                1355
                1375
         9
         10
                1340
         11
                1380
         12
                1355
         13
                1522
         14
                1208
         15
                1405
         16
                1358
         17
                1292
         18
                1340
         19
                1400
         20
                1357
         21
                1287
         22
                1275
         23
                1270
         24
                1635
         25
                1505
         26
                1490
         27
                1485
         28
                1310
         29
                1420
                . . .
         207
                1296
         208
                1175
         209
                 955
         210
                1070
         211
                1320
         212
                1060
         213
                1130
         214
                1250
         215
                1225
```

```
216
                1180
         217
                1178
         218
                1142
         219
                1130
         220
                1185
         221
                1012
         222
                1280
         223
                1103
         224
                1408
         225
                1300
         226
                1246
         227
                1380
         228
                1350
         229
                1060
         230
                1350
         231
                1220
         232
                1110
         233
                1215
         234
                1104
         235
                1170
         236
               1120
         Name: Brain Weight(grams), Length: 237, dtype: int64
In [60]: mydata.shape #In columns except index number
Out[60]: (237, 4)
In [61]: XA=X_input.values
         YA=Y_out.values
In [62]: print(type(XA))
         print(type(YA))
         <class 'numpy.ndarray'>
         <class 'numpy.ndarray'>
```

```
In [63]: XA #2D array
Out[63]: array([[
                         1, 4512],
                         1, 3738],
                         1, 4261],
                         1, 3777],
                   1,
                         1, 4177],
                         1, 3585],
                         1, 3785],
                         1, 3559],
                         1, 3613],
                         1, 3982],
                    1,
                         1, 3443],
                    1,
                         1, 3993],
                         1, 3640],
                         1, 4208],
                         1, 3832],
                         1, 3876],
                         1, 3497],
                    1,
                         1, 3466],
                         1, 3095],
                   1,
```

```
In [64]: YA
              #1D array
Out[64]: array([1530, 1297, 1335, 1282, 1590, 1300, 1400, 1255, 1355, 1375, 1340,
                1380, 1355, 1522, 1208, 1405, 1358, 1292, 1340, 1400, 1357, 1287,
                1275, 1270, 1635, 1505, 1490, 1485, 1310, 1420, 1318, 1432, 1364,
                1405, 1432, 1207, 1375, 1350, 1236, 1250, 1350, 1320, 1525, 1570,
                1340, 1422, 1506, 1215, 1311, 1300, 1224, 1350, 1335, 1390, 1400,
                1225, 1310, 1560, 1330, 1222, 1415, 1175, 1330, 1485, 1470, 1135,
                1310, 1154, 1510, 1415, 1468, 1390, 1380, 1432, 1240, 1195, 1225,
                1188, 1252, 1315, 1245, 1430, 1279, 1245, 1309, 1412, 1120, 1220,
                1280, 1440, 1370, 1192, 1230, 1346, 1290, 1165, 1240, 1132, 1242,
                1270, 1218, 1430, 1588, 1320, 1290, 1260, 1425, 1226, 1360, 1620,
                1310, 1250, 1295, 1290, 1290, 1275, 1250, 1270, 1362, 1300, 1173,
                1256, 1440, 1180, 1306, 1350, 1125, 1165, 1312, 1300, 1270, 1335,
                1450, 1310, 1027, 1235, 1260, 1165, 1080, 1127, 1270, 1252, 1200,
                1290, 1334, 1380, 1140, 1243, 1340, 1168, 1322, 1249, 1321, 1192,
                1373, 1170, 1265, 1235, 1302, 1241, 1078, 1520, 1460, 1075, 1280,
                1180, 1250, 1190, 1374, 1306, 1202, 1240, 1316, 1280, 1350, 1180,
                1210, 1127, 1324, 1210, 1290, 1100, 1280, 1175, 1160, 1205, 1163,
                1022, 1243, 1350, 1237, 1204, 1090, 1355, 1250, 1076, 1120, 1220,
                1240, 1220, 1095, 1235, 1105, 1405, 1150, 1305, 1220, 1296, 1175,
                 955, 1070, 1320, 1060, 1130, 1250, 1225, 1180, 1178, 1142, 1130,
                1185, 1012, 1280, 1103, 1408, 1300, 1246, 1380, 1350, 1060, 1350,
                1220, 1110, 1215, 1104, 1170, 1120], dtype=int64)
In [65]: | #split
         X train=XA[:168]
                            #first training and than testing
         X test=XA[168:]
         Y train=YA[:168]
         Y test=YA[168:]
         #training using train data
In [66]:
         from sklearn.linear model import LinearRegression
In [67]:
         model=obj.fit(X train,Y train)
         #Testing for prediction
In [73]:
         Yaa=Y test
         Ypp=model.predict(X test)
```

```
In [74]: model.coef
Out[74]: array([-18.60685691, -30.44156273,
                                               0.237676081)
In [76]: Ypp
Out[76]: array([1331.87019264, 1275.54096211, 1175.47933319, 1260.56736918,
                1276.7293425 , 1313.09378246, 1287.18708994, 1189.26454573,
                1285.76103347, 1274.35258172, 1373.7011824 , 1267.69765153,
                1304.77511973, 1178.56912221, 1379.88076044, 1184.03567201,
                1254.86314331, 1293.60434405, 1291.22758327, 1126.97438852,
                1204.21911393, 1277.66102209, 1149.79129203, 1194.71207081,
                1110.57473913, 1273.85820484, 1242.7226386 , 1056.62226938,
                1124.35995166, 1192.33531002, 1227.74904567, 1181.16453435,
                1196.13812727, 1164.76488495, 1176.41101279, 1312.83708167,
                1126.49903637, 1275.04658523, 1206.12052256, 1347.06243692,
                1186.15573199, 1044.02543723, 1095.6011462 , 1248.42686448,
                1096.07649836, 1107.96030227, 1249.85292095, 1147.65220732,
                1169.04305436, 1150.97967242, 1174.27192808, 1203.03073354,
                1201.12932492, 1078.25079249, 1286.45503699, 1224.42158058,
                1264.35116171, 1280.75081111, 1178.07474533, 1396.73673727,
                1285.2666566 , 1162.38812417 , 1273.38285269 , 1277.89869817 ,
                1161.43741986, 1204.21911393, 1165.95326534, 1194.23671865,
                1203.5060857 ])
In [78]: #accuracy biased calculation
         model.intercept
Out[78]: 495.64334383936534
In [79]: from sklearn.metrics import mean squared error
In [80]: error=mean squared error(Yaa, Ypp)
In [81]: | error
Out[81]: 3971.5387326225064
```

```
In [82]: np.sqrt(error)
Out[82]: 63.0201454506613
 In [2]: from matplotlib import pyplot as plt
 In [3]: #plot graph between ActualHeight vs weight and predicted height vs weight
         plt.plot(X,Yaa,'ro')
         plt.plot(X,Ypp,'g*')
         plt.xlabel("ActualHeight")
         plt.ylabel("Weight")
         plt.legend(["Yaa","Ypp"])
         plt.show()
         NameError
                                                   Traceback (most recent call last)
         <ipython-input-3-f569b4969215> in <module>
               1 #plot graph between ActualHeight vs weight and predicted height vs weight
         ----> 2 plt.plot(X,Yaa,'ro')
               3 plt.plot(X,Ypp,'g*')
               4 plt.xlabel("ActualHeight")
               5 plt.ylabel("Weight")
         NameError: name 'X' is not defined
 In [ ]:
```