

Περιεχόμενα του μαθήματος

- Κρυσταλοδίοδος
- 7 Ηλεκτρικά Χαρακτηριστικά
- Θεωρητικό μοντέλο
- Μοντέλα λειτουργίας
 - 1δανική δίοδος
 - **7** Τυπική Δίοδος
 - **7** Πραγματική δίοδος
- **7** Πρακτικά

Δίοδος: συνδυασμός ημιαγωγών τύπου p & n

Τομή μιας διόδου επαφής

Σχηματικό σύμβολο της διόδου και πραγματική δίοδος

- Η υλοποίηση μιας επαφής p-n σε διακριτή ή ολοκληρωμένη μορφή ονομάζεται κρυσταλλοδίοδος ή απλά δίοδος (diode)
- Την ονομασία της την οφείλει στο γεγονός ότι μια επαφή p-n επιτρέπει, γενικά, τη διέλευση του ρεύματος κατά την ορθή φορά ενώ την απαγορεύει κατά την ανάστροφη
- Διάταξη που ελέγχει τη διέλευση (τη δίοδο) του ηλεκτρικού ρεύματος

- Οι περισσότερες εφαρμογές των διόδων βασίζονται στην ιδιότητα αυτή
- Ο όρος κρυσταλλοδίοδος χρησιμοποιείται για να αντιδιαστείλει την δίοδο στερεάς κατάστασης που βασίζει τη λειτουργία της στην επαφή *p-n* με τη δίοδο ηλεκτρονική λυχνία, μια διάταξη με παρόμοια συμπεριφορά που λειτουργεί με βάση τις αρχές της αγωγιμότητας στο κενό
- Οι ηλεκτρονικές λυχνίες κενού (electronic vacuum tubes) έτυχαν ευρύτατης εφαρμογής στην εποχή πριν την εμφάνιση των διατάξεων ημιαγωγών, έχουν όμως σχεδόν εγκαταλειφθεί για πολλούς λόγους, οι κυριότεροι από τους οποίους είναι ο όγκος τους & οι υψηλές τάσεις τροφοδοσίας που απαιτούν για τη λειτουργία τους

- 7 Οι δίοδοι είναι ασύμμετρες ηλεκτρονικές διατάξεις με δύο ακροδέκτες
- Η ασυμμετρία αυτή πηγάζει από το γεγονός ότι, ως **επαφές** *p-n*, οι δίοδοι συμπεριφέρονται με άλλον τρόπο στην ορθή και με άλλον τρόπο στην ανάστροφη πόλωση
- 7 Το άκρο μιας διόδου που αντιστοιχεί στο τμήμα **τύπου ρ** της επαφής ονομάζεται **άνοδος,** ενώ το άκρο που αντιστοιχεί στο τμήμα **τύπου n** καλείται **κάθοδος**

Γενικά (2)

- Η κάθοδος σε μια διακριτή δίοδο σημειώνεται με μια γραμμή (που παριστάνει το σημείο «-») στο αντίστοιχο άκρο
- Το ηλεκτρονικό σύμβολο μιας διόδου αποτελείται από ένα βέλος που δείχνει την επιτρεπτή φορά του ρεύματος και μια κάθετη γραμμή που συμβολίζει την κάθοδο
- Η αγωγιμότητα της **επαφής** *p-n* στην ορθή της πόλωση εξασφαλίζεται όταν η τάση που εφαρμόζεται στα άκρα της είναι μεγαλύτερη από τον φραγμό δυναμικού V₀

Τυπική διακριτή δίοδος & κυκλωματικό σύμβολο

Χωρίς πόλωση η ένωση απογυμνώνεται

από φορτία: ζώνη αραίωσης ή περιοχή

απογύμνωσης

Μεταξύ *p* **&** *n* το φράγμα δυναμικού 0,6-0,7 V

για Si Συνολικό φορτίο διόδου= 0

Τα ηλεκτρόνια κοντά στην επαφή εξουδετερώνουν τις οπές στην p- πλευρά

Η περιοχή απογύμνωσης δρά σα μονωτής

Ορθή πόλωση

Ανάστροφη πόλωση

Ορθή πόλωση: ο θετικός πόλος συνδέεται με **άνοδο,** ο αρνητικός πόλος με **κάθοδο**

Ανάστροφη πόλωση: ο θετικός πόλος της πηγής συνδέεται με κάθοδο, ενώ ο αρνητικός με άνοδο

Κατανομή φορτίου διόδου κατά την ανάστροφη πόλωση

Ορθή πόλωση: μικρή αντίσταση (~50-100Ω)

Ανάστροφη πόλωση: μεγάλη αντίσταση (> 10 kΩ)

Η δίοδος πολώνεται ορθά & δρα σαν κλειστός διακόπτης

Η δίοδος πολώνεται ανάστροφα και δρα σαν ανοιχτός διακόπτης

- Το όριο (κατώφλι) της εξωτερικής τάσης πάνω από το οποίο μια ορθά πολωμένη δίοδος θα επιτρέπει τη διέλευση του ηλεκτρικού ρεύματος θα είναι ίσο με την τιμή του φραγμού δυναμικού
- Το όριο αυτό ονομάζεται τάση κατωφλίου (threshold voltage) & συμβολίζεται συνήθως με V_T
- 7 Μια τυπική τιμή για την τάση κατωφλίου μιας διόδου πυριτίου (Si) είναι 0.7Volts
- 7 Για διόδους γερμανίου (Ge) η τιμή αυτή είναι μικρότερη (0.2Volts)

Θεωρητικό μοντέλο διόδου (1)

Στην πραγματικότητα η δίοδος επαφής p-n είναι στοιχείο μη γραμμικό, η τάση δηλαδή μεταξύ των ακροδεκτών της δεν είναι ανάλογη του ρεύματος που τη διαρρέει

Χαρακτηριστική Ι-V πραγματικής διόδου

Θεωρητικό μοντέλο διόδου (2)

- Για τέτοιες διόδους, ο λόγος της αντίστασης στην ανάστροφη πόλωση προς την αντίσταση στην ορθή είναι πολύ μεγαλύτερος από 1000 ÷ 1
- Στο σημείο αυτό αξίζει να παρατηρήσουμε πως όταν η ανάστροφη τάση ξεπεράσει μια συγκεκριμένη τιμή (τάση κατάρρευσης breakdown voltage V_{br}) το ανάστροφο ρεύμα που διαρρέει τη δίοδο γίνεται εξαιρετικά μεγάλο
- Η δίοδος έχει εισέλθει στην περίπτωση αυτή στην περιοχή κατάρρευσης (breakdown region)
- 🐬 Όταν συμβαίνει αυτό μια κοινή δίοδος καταστρέφεται
- Σε ειδικούς τύπους διόδων γίνεται εκμετάλλευση της μεγάλης τιμής του ρεύματος στην περιοχή κατάρρευσης

Χαρακτηριστική εξίσωση της διόδου

Η εξίσωση αυτή, που προκύπτει από τη θεωρητική μελέτη μιας επαφής p-n & ονομάζεται & νόμος της επαφής p-n, έχει ως εξής:

$$I_D = I_S \left(e^{\frac{V_D}{nV_{\theta}}} - 1 \right),$$

όπου

 V_D η τάση στα άκρα της διόδου,

 $I_{\scriptscriptstyle D}$ το ρεύμα που διαρρέει τη δίοδο,

 I_{S} το ανάστροφο ρεύμα κόρου (το μέγιστο δηλαδή ρεύμα στην περιοχή ανάστροφης λειτουργίας),

 V_{θ} η θερμική τάση που υπολογίζεται από τη σχέση $V_{\theta}=kT/q$ (k η σταθερά του Boltzmann, q το στοιχειώδες φορτίο και T η απόλυτη θερμοκρασία) και ισούται περίπου με 26mV στους 25°C,

n ο συντελεστής ιδανικότητας της διόδου που εξαρτάται από το υλικό της και τυπικά παίρνει τιμές μεταξύ 1 και 2.

Χαρακτηριστικά λειτουργίας-Ευθεία φόρτου (1)

- Όταν η δίοδος βρίσκεται σε ορθή πόλωση τότε η τάση αγωγής (V_D) στα άκρα της είναι σχετικά ανεξάρτητη από το ρεύμα (D) που διαρρέει τη δίοδο, όπως προκύπτει από τη μεγάλη κλίση της χαρακτηριστικής στην περιοχή ορθής λειτουργίας
- 7 Η τάση αυτή είναι περίπου ίση με την τάση κατωφλίου της διόδου, δηλαδή 0.7V για μια δίοδο πυριτίου & 0.3V για μια δίοδο γερμανίου

Χαρακτηριστικά λειτουργίας-Ευθεία φόρτου (2)

- **7** Έστω το απλό κύκλωμα με δίοδο του Σχήματος
- Η ευθεία φόρτου συσχετίζει το ρεύμα & την τάση στα σημεία του κυκλώματος που είναι συνδεμένη η δίοδος
- Το σημείο τομής της ευθείας φόρτου & της χαρακτηριστικής καμπύλης της διόδου καθορίζει το σημείο λειτουργίας (ή ηρεμίας)

Χαρακτηριστικά λειτουργίας - Ευθεία φόρτου (3)

Χαρακτηριστική της Διόδου: $I_D = I_s exp \left(\frac{V_D}{\eta V_T} \right)^{\prime\prime}$

Ευθεία φόρτου:
$$V_{DD}=I_DR+V_D\Rightarrow I_D=rac{V_{DD}-V_D}{R}$$

Το σημείο λειτουργίας **Q** βρίσκεται από τη λύση του συστήματος.

Χαρακτηριστικά λειτουργίας - Ευθεία φόρτου (3)

Η στατική αντίσταση (ή DC αντίσταση - R_{DC}) μιας διόδου σε κάποιο σημείο ηρεμίας προσδιορίζεται από τον λόγο της τάσης V_{DQ} στα άκρα της διόδου στο σημείο αυτό & του ρεύματος I_{DQ} που διαρρέει τη δίοδο, δηλαδή

$$R_{DC} = \frac{V_{DQ}}{I_{DQ}}$$

Χαρακτηριστικά λειτουργίας - Ευθεία φόρτου (4)

- Αν στο κύκλωμα του Σχήματος προσθέσουμε και μια ΑC πηγή σήματος σχετικά μικρού πλάτους η δυναμική αντίσταση (ή ΑC αντίσταση r_{AC}) της διόδου μπορεί να προσδιοριστεί από την εφαπτομένη της χαρακτηριστικής της καμπύλης στο σημείο ηρεμίας του κυκλώματος
- Η εφαπτομένη αυτή μπορεί να προσεγγιστεί λαμβάνοντας μικρές αποκλίσεις γύρω από το σημείο αυτό, οπότε η τιμή της δυναμικής αντίστασης μπορεί να προκύψει με βάση τη σχέση:

$$r_{AC} = \frac{\Delta V_{DQ}}{\Delta I_{DQ}}.$$

Στατική (DC) αντίσταση διόδου

Χαρακτηριστικά λειτουργίας - Ευθεία φόρτου (4)

Μεταβολή Αντίστασης

Μοντέλα λειτουργίας

- Υπάρχουν πολλές προσεγγίσεις οι οποίες μπορούν να περιγράψουν τη λειτουργία μιας διόδου
- 7 Η επιλογή μιας από αυτές τις εναλλακτικές προσεγγίσεις εξαρτάται από την ακρίβεια της περιγραφής που απαιτούμε
- Μερικά μοντέλα για την περιγραφή μιας διόδου:
 - 7 Ιδανική δίοδος
 - 🖊 Τυπική δίοδος
 - Τυπική δίοδος με αντίσταση (πραγματική)

Ιδανική δίοδος - 1η Προσέγγιση

- 7 Ως ιδανική θεωρούμε μια δίοδο **με μηδενική τάση κατωφλίου & μηδενική** αντίσταση κατά την ορθή πόλωση
- Στο μοντέλο αυτό η δίοδος θεωρείται ως βραχυκύκλωμα όταν η εφαρμοζόμενη τάση είναι ορθής φοράς & ως ανοικτό κύκλωμα στην ανάστροφη πόλωση

Ιδανική δίοδος - 1η Προσέγγιση

- Με βάση τις υποθέσεις αυτές, προκύπτει η χαρακτηριστική I-V του Σχήματος
- Τια ανάστροφες (αρνητικές) τάσεις το **ρεύμα Ι** είναι μηδενικό, ενώ για **ορθές (θετικές)** τάσεις το ρεύμα γίνεται άπειρο (εξαιτίας της μηδενικής αντίστασης της ιδανικής διόδου)
- Μια ιδανική δίοδος λειτουργεί, ουσιαστικά, ως μια βαλβίδα ρεύματος, επιτρέποντας τη ροή κατά τη μία μόνο κατεύθυνση

Σύμβολο & χαρακτηριστική Ι-V ιδανικής διόδου

Τυπική δίοδος - 2η Προσέγγιση

7 Ως τυπική θεωρούμε μια δίοδο με **τάση κατωφλίου (V_T) διάφορη του μηδενός** & μηδενική αντίσταση κατά την ορθή πόλωση

Ισοδύναμο κύκλωμα

Τυπική δίοδος - 2η Προσέγγιση

- Μια τυπική δίοδος μπορεί να θεωρηθεί ως μία ιδανική δίοδος συνδεμένη σε σειρά με μια ιδανική πηγή σταθερής τάσης με τιμή ίση με την τάση κατωφλίου της διόδου
- Κατά την ανάστροφη πόλωση είναι προφανές πως το ρεύμα που θα διαρρέει το ισοδύναμο κύκλωμα θα είναι μηδενικό
- Κατά την ορθή πόλωση της τυπικής διόδου, όσο η τάση στα άκρα της είναι μικρότερη της τάσης V_T της πηγής η ιδανική δίοδος θα είναι πολωμένη ανάστροφα & το ρεύμα που θα διαρρέει το ισοδύναμο κύκλωμα θα είναι μηδενικό

Τυπική δίοδος - 2η Προσέγγιση

Όταν η τάση στα άκρα της τυπικής διόδου υπερβεί την τάση V_T της πηγής, η ιδανική δίοδος θα είναι πολωμένη ορθά & το ρεύμα που θα διαρρέει το ισοδύναμο κύκλωμα θα είναι άπειρο, μιας & οι αντιστάσεις της ιδανικής διόδου &ι της πηγής τάσης είναι μηδενικές

Χαρακτηριστική Ι-V τυπικής διόδου

Τυπική δίοδος με αντίσταση - 3η Προσέγγιση

- 7 Το μοντέλο αυτό αποτελεί τροποποίηση του προηγούμενου μοντέλου προκειμένου να ληφθεί υπόψη & η πτώση τάσης στη δίοδο λόγω της αντίστασής της
- **7** Η αντίσταση αυτή, εδώ, θεωρείται σταθερή και αντιπροσωπεύεται από την αντίσταση R_d

Ισοδύναμο κύκλωμα & χαρακτηριστική I-V τυπικής διόδου με αντίσταση

Τυπική δίοδος με αντίσταση - 3η Προσέγγιση

Προσεγγίσεις

Μπορούμε να χρησιμοποιήσουμε τρεις προσεγγίσεις (μοντέλα) για να κατασκευάσουμε το ισοδύναμο κύκλωμα μιας διόδου. Αυτές είναι:

1η προσέγγιση

Η δίοδος θεωρείται ιδανική δηλαδή, δεν υπάρχει πτώση τάσης στα άκρα της & η αντίστασή της είναι μηδενική. Ισοδυναμεί με κλειστό (όταν άγει) ή ανοιχτό (όταν δεν άγει) διακόπτη

2^η προσέγγιση

Λαμβάνει υπόψη την πτώση τάσης των 0,7 V στα άκρα της διόδου

3^η προσέγγιση

Λαμβάνει υπόψη της & τη δυναμική αντίσταση r ποι παρουσιάζει η δίοδος

Προσεγγίσεις

Πρακτικά

Διάφορες συσκευασίες διόδων

Δίοδοι διαφόρων μεγεθών

Πρακτικά

Εάν πολώσουμε με το ωμόμετρο τη δίοδο ανάστροφα, δηλ. το θετικό ακροδέκτη του οργάνου στην κάθοδο & τον αρνητικό στην άνοδο η ένδειξη του ωμομέτρου πρέπει να είναι πολύ μεγαλύτερη (έως άπειρη) από την προηγούμενη

Πρακτικά - Τεχνικά χαρακτηριστικά

Τεχνικά χαρακτηριστικά της διόδου 1Ν4001 όπως δίνονται από τον κατασκευαστή

Χαρακτηριστικό μέγεθος	Σύμβολο	Τιμή	Μονάδα
Working peak reverse voltage (Μέγιστη ανάστροφη τάση λειτουργίας)	V_{RWM}	50	V
Peak repetitive reverse voltage (Επαναληπτική ανάστροφη τάση κορυφής)	V_{RRM}	50	V
Average forward current (Μέγιστη μέση τιμή ρεύματος ορθής φοράς)	I _{FO}	1	А
Nonrepetitive peak surge current (Μη επαναληπτικό μέγιστο ρεύμα έξαρσης)	I _{FSM}	30	А
Operating ambient temperature (Μέγιστη θερμοκρασία περιβάλλοντος για σωστή λειτουργία)	T_{amb}	65 έως +17	°C

Πρακτικά - Τεχνικά χαρακτηριστικά

1N4001 - 1N4007

Features

- · Low forward voltage drop.
- High surge current capability.

General Purpose Rectifiers

DO-41
COLOR BAND DENOTES CATHOL

Absolute Maximum Ratings*

T_A = 25°C unless otherwise noted

Symbol	Parameter	Value							Units
		4001	4002	4003	4004	4005	4006	4007	
V _{RRM}	Peak Repetitive Reverse Voltage	50	100	200	400	600	800	1000	V
I _{F(AV)}	Average Rectified Forward Current, .375" lead length @ T _A = 75°C	1.0							Α
I _{FSM}	Non-repetitive Peak Forward Surge Current 8.3 ms Single Half-Sine-Wave	30							А
T _{stg}	Storage Temperature Range	-55 to +175							°C
TJ	Operating Junction Temperature	-55 to +175						°C	

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

Thermal Characteristics

Symbol	Parameter	Value	Units	
PD	Power Dissipation	3.0	W	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	50	°C/W	

Electrical Characteristics T_A = 25°C unless otherwise noted

Symbol	Parameter	Device							Units
		4001	4002	4003	4004	4005	4006	4007	
V _F	Forward Voltage @ 1.0 A	1.1							V
l _n	Maximum Full Load Reverse Current, Full Cycle T _A = 75°C	30						μА	
I _R	Reverse Current @ rated V _R T _A = 25°C T _A = 100°C	5.0 500							μA μA
C _T	Total Capacitance V _R = 4.0 V, f = 1.0 MHz	15							pF

Παράδειγμα

Να υπολογισθεί το ρεύμα I_D στο κύκλωμα, όταν (α) V+=10 V και (β) V+=1 V. Να χρησιμοποιηθούν & οι τρεις προσεγγίσεις. Η εσωτερική αντίσταση της διόδου είναι 200 Ω .

Λύση (1)

(α): Όταν V⁺=10 V

1η προσέγγιση:

$$V_D$$
=0 και $I_D = \frac{V^+}{R} = \frac{10V}{10k\Omega} = 1$ m/

2^η προσέγγιση: V_D=0,7 V και

$$I_D = \frac{V^+ - V_D}{R} = \frac{(10 - 0.7)V}{10k\Omega} = 0.93 \text{ mA}$$

3η προσέγγιση:

$$I_D = \frac{V^+ - 0.7V}{R + r} = \frac{(10 - 0.7)V}{(10 + 0.2)k\Omega} = 0.912 \quad \text{m/s}$$

$$V_D = 0.7 + I_D r = 0.88 \quad V$$

Λύση (2)

1η προσέγγιση:

$$V_D=0$$
 και $I_D=\frac{V^+}{R}=\frac{1V}{10k\Omega}=0.1$ mA

2^η προσέγγιση:

$$I_D = \frac{V^+ - V_D}{R} = \frac{(1 - 0.7)V}{10k\Omega} = 0.03 \text{ mA}$$

3^η προσέγγιση:

$$I_D = \frac{V^+ - 0.7V}{R + r} = \frac{(1 - 0.7)V}{(10 + 0.2)k\Omega} = 0.029$$
 mA

$$V_D = 0.7 + I_D r = 0.7058$$
 V