Probabilità e Statistica (Informatica) 2021/22, Foglio III

23 novembre 2021 (aggiornato al 30 novembre 2021)

Esercizio 1. Siano $X,\ Y,\ Z,\ \xi$ variabili aleatorie definite su (Ω,\mathbf{P}) con le seguenti proprietà:

- X, Y, Z sono a valori in \mathbb{Z} ;
- ξ è di Bernoulli di parametro 1/2;
- P(X < Y) = 1;
- (X,Y), Z, ξ sono indipendenti.

Definiamo una variabile aleatoria M tramite

$$M(\omega) \doteq \begin{cases} Y(\omega) & \text{se } \xi(\omega) = 1, \\ X(\omega) & \text{altrimenti,} \end{cases} \quad \omega \in \Omega,$$

e introduciamo l'evento

$$A \doteq \{\xi = 1, M \ge Z\} \cup \{\xi = 0, M < Z\}.$$

- (i) Si calcoli la probabilità di A in termini delle distribuzioni marginali di X, Y, Z.
- (ii) Si mostri che $\mathbf{P}(A) \ge 1/2$.
- (iii) Si mostri che $\mathbf{P}(A)>1/2$ se $\mathbf{P}\left(Z=k\right)>0$ per ogni $k\in\mathbb{Z}$. La densità discreta viene data dalla somma delle densità discrete di X e Y singolarmente prese. Essendo in termini discreti, si ha che la densità è data dalla somma data dal discreto. Possiamo porre ad esempio p(x)=1/2 e p(y)=1/3, a quel punto la legge di x è data dalla $p(x)^*X$, per esempio X=2 e Y=3. Posti dei valori di esempio, l'esercizio viene risolto. **Esercizio 2.** Siano X, Y variabili aleatorie reali su (Ω,\mathbf{P}) discreto. Supponiamo

Esercizio 2. Siano X, Y variabili aleatorie reali su (Ω, \mathbf{P}) discreto. Supponiamo che X, Y siano indipendenti. Si calcoli allora la densità discreta di X + Y in termini delle densità discrete di $X \in Y$.

Esercizio 3. Sia Ω l'insieme delle permutazioni dei numeri da 1 a 52:

$$\Omega \doteq \{\sigma \colon N_{52} \to N_{52} : \sigma \text{ bijettiva}\},$$

dove $N_{52} \doteq \{1, \dots, 52\}$. Sia **P** la distribuzione uniforme discreta su Ω . Sia E l'insieme dei sottoinsiemi di N_{52} di cardinalità uguale a 13:

$$E \doteq \{A \subset N_{52} : |A| = 13\}.$$

Definiamo variabili aleatorie $X_i, Y_i, i \in \{1, ..., 4\}$, a valori in E mediante

$$X_i(\sigma) \doteq \{\sigma(13(i-1)+j) : j \in \{1,\dots,13\}\},\$$

 $Y_i(\sigma) \doteq \{\sigma(i+4(j-1)) : j \in \{1,\dots,13\}\}.$

Si calcolino la distribuzione congiunta di X_1, \ldots, X_4 e quella di Y_1, \ldots, Y_4 . Come si può interpretare il risultato?

Valgono le regole della disuguaglianza triangolare. In poche parole è metrica se valgono le 3 proprietà della dis. triang. Si vede analiticamente. Essendo al più numerabile, quindi discreta, per il secondo punto viene ottenuto andando a prendere i due valori (p maggiore rispetto a q) e dimostrando sempre con la dis. triangolare che vale la cosa detta $\mathbf{Esercizio} \ \mathbf{4.} \ \mathrm{Sia} \ (\Omega, \mathcal{F}) \ \mathrm{uno} \ \mathrm{spazio} \ \mathrm{misurabile}, \ \mathrm{e} \ \mathrm{sia} \ \mathcal{M}_1 = \mathcal{M}_1(\Omega, \mathcal{F}) \ \mathrm{l'insieme}$

Esercizio 4. Sia (Ω, \mathcal{F}) uno spazio misurabile, e sia $\mathcal{M}_1 = \mathcal{M}_1(\Omega, \mathcal{F})$ l'insieme delle misure di probabilità su \mathcal{F} . Definiamo una funzione $d_{TV}: \mathcal{M}_1 \times \mathcal{M}_1 \to [0, \infty)$ tramite

$$d_{TV}(P,Q) \doteq \sup_{A \in \mathcal{F}} |P(A) - Q(A)|.$$

- (a) Si mostri che d_{TV} è una metrica su \mathcal{M}_1 .
- (b) Supponiamo ora che Ω sia al più numerabile e che $\mathcal{F}=\mathcal{P}(\Omega)$. Si mostri allora che

 $d_{TV}(P,Q) = \frac{1}{2} \sum_{\omega \in \Omega} |p(\omega) - q(\omega)|,$

dove p, q sono le densità discrete rispettivamente di P e di Q. [Suggerimento: considerare l'evento $B \doteq \{\omega \in \Omega : p(\omega) \geq q(\omega)\}$.]

In poche parole si usa l'approssimazione di Poisson alla binomiale e si approssimano i singoli limiti.

Con questo si vede che la probabilità è positiva e tende a 0. Si deve usare la dis. triangolare applicata ai limiti e si verifica che ogni limite è minore/uguale ai precedenti, per questo tende a 0 perché più piccolo

Esercizio 5. Consideriamo la situazione dell'Esercizio 4. Sia $(p_n)_{n\in\mathbb{N}}\subset(0,1)$ una successione tale che $\lim_{n\to\infty} n\cdot p_n=\lambda$ per un $\lambda\in(0,\infty)$. Per $n\in\mathbb{N}$, sia P_n la distribuzione binomiale di parametri n e p_n , e sia Q_n la distribuzione di Poisson di parametro $\lambda_n \doteq n\cdot p_n$. Sia infine Q la distribuzione di Poisson di parametro λ . Possiamo interpretare tutte queste misure come elementi di $\mathcal{M}_1=\mathcal{M}_1(\Omega,\mathcal{F})$ con $\Omega\doteq\mathbb{N}_0$, $\mathcal{F}\doteq\mathcal{P}(\mathbb{N}_0)$.

- (i) Si mostri che $\lim_{n\to\infty} d_{TV}(P_n, Q_n) = 0.$
- (ii) Si mostri che $\lim_{n\to\infty} d_{TV}(Q_n, Q) = 0$.
- (iii) Si concluda che $\lim_{n\to\infty} d_{TV}(P_n, Q) = 0$.

Esercizio 6. Siano $N, X_i, i \in \mathbb{N}$, variabili aleatorie indipendenti su uno spazio di probabilità $(\Omega, \mathcal{F}, \mathbf{P})$ con N poissoniana di parametro $\lambda > 0$ e le X_i bernoulliane di parametro $p \in [0, 1]$. Poniamo

$$Y \doteq \sum_{i=1}^{N} X_i,$$

cioè

$$Y(\omega) = \begin{cases} 0 & \text{se } N(\omega) = 0, \\ \sum_{i=1}^{n} X_i(\omega) & \text{se } N(\omega) = n \text{ per un } n \in \mathbb{N}, \end{cases} \quad \omega \in \Omega.$$

Si determini la distribuzione di Y

Per dimostrare (a) si deve usare l'integrale tra 0 ed inf di (x-lambda)*e^-lambda(x), per esempio con lambda=1, 2, ecc. A quel punto possiede questi momenti perché minore di infinito

A quel punto, si risolve la seconda con Markov/Chebyshev (quindi $X>=c \le E(x)/c$)

Esercizio 7. Sia X una variabile aleatoria non-negativa definita su uno spazio di probabilità $(\Omega, \mathcal{F}, \mathbf{P})$ tale che, per un $\lambda > 0$, $\mathbf{E}\left[e^{\lambda X}\right] < \infty$.

- a) Si mostri che X possiede momenti di ogni ordine, cioè $\mathbf{E}\left[X^k\right]<\infty$ per ogni $k\in\mathbb{N}.$
- b) Si mostri che esiste una costante $K \in (0, \infty)$ tale che

$$\mathbf{P}(X \ge c) \le K \cdot e^{-\lambda c}$$
 per ogni $c > 0$.

[Suggerimento: disuguaglianza di Markov-Chebyshev.]

Qui si usa il magico Markov-Chebyshev, andando a porre: P(X >= C+1) <= E(X)/(C+1)

Esercizio 8. Un'azienda offre un servizio di manutenzione di frigoriferi industriali. Si osserva che di un certo pezzo di ricambio costoso e ingombrante ne servono in media quattro unità alla settimana. L'azienda può rifornirsi di quel pezzo di ricambio solo a inizio settimana. Quante unità ne deve avere il lunedì per non trovarsi sprovvista nel corso della settimana con probabilità maggiore del 95%?

Esercizio 9. Siano $X, Y \in L^2(\Omega, \mathcal{F}, \mathbf{P})$ con var(X) > 0, var(Y) > 0. Si dimostri che per ogni $a, b \in \mathbb{R}$,

$$\mathbf{E}\left[\left(Y - (a \cdot X + b)\right)^{2}\right] \ge \operatorname{var}(Y)\left(1 - \rho(X, Y)^{2}\right),\,$$

dove $\rho(X,Y)$ indica il coefficiente di correlazione tra X e Y:

$$\rho(X,Y) \doteq \frac{\mathrm{cov}(X,Y)}{\sqrt{\mathrm{var}(X)} \cdot \sqrt{\mathrm{var}(Y)}}.$$

Suggerimento: Si definisca una funzione $\phi \colon \mathbb{R}^2 \to [0, \infty)$ mediante

$$\phi(a,b) \doteq \mathbf{E} \left[(Y - (a \cdot X + b))^2 \right],$$

e si mostri che il minimo di ϕ viene assunto in (a_*, b_*) con

$$a_* = \frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}, \qquad b_* = \mathbf{E}[Y] - \frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)} \mathbf{E}[X].$$

Esercizio 10. Siano $X, Y \in L^2(\Omega, \mathcal{F}, \mathbf{P})$. Supponiamo che X, Y siano indipendenti e identicamente distribuite. Si mostri che allora

$$\operatorname{var}(X) = \operatorname{var}(Y) = \frac{1}{2} \mathbf{E} \left[(X - Y)^2 \right].$$

Esercizio 11. Sia ξ una variabile aleatoria reale su $(\Omega, \mathcal{F}, \mathbf{P})$ con distribuzione uniforme continua su [0,1]. Si trovia una funzione misurabile $\phi \colon [0,1] \to \mathbb{N}$ tale che la variabile aleatoria $Y \doteq \phi(\xi)$ abbia la seguente distribuzione discreta:

$$\mathbf{P}(Y=n) = \begin{cases} 1/12 & \text{se } n=1, \\ 1/6 & \text{se } n=2, \\ 1/4 & \text{se } n=3, \\ 1/12 & \text{se } n=4, \\ 1/4 & \text{se } n=5, \\ 1/6 & \text{se } n=6, \\ 0 & \text{altrimenti,} \end{cases} \quad n \in \mathbb{N}.$$

Esercizio 12 (Esercizio 3.9 in CD). Sia $f:[0,1] \to \mathbb{R}$ una funzione continua. Per $n \in \mathbb{N}$, sia X_n una variabile aleatoria con distribuzione uniforme su $\{1,\ldots,n\}$. Poniamo

$$m_n \doteq \mathbf{E}\left[f\left(\frac{X_n}{n}\right)\right].$$

Si identifichi il limite

$$\lim_{n\to\infty} m_n.$$

Contatto: Markus Fischer (fischer@math.unipd.it)