Decision True Classifier

- a) Entropy and aini Index -> Purity Split
- b) Information Gain -> features to select for DT construction

if (age <15):

Print (1) The purion is in School)

elif (age >15 and age <21):

Print ("The purion may be college)

clse:

Print (1) The person has passed)

Ho

Yes

Ho

Yes

Datant

Binary Clanification

Day	Outlook	Temperature	Humidity	Wind	Play Tennis
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast <	Hot	High	Weak	Yes
4	Rain 🗸	Mild	High	Weak	Yes Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

1 Punty -> Pure or Impure Spift

L) Entropy }
L) Lini Impunity

2) What france you need school for

Splitting -> Information Gain }

0

{Binary clamification}

1) Entropy

$$H(C_1) = -P_+ \log_2 P_+ - P_- \log_2 P_-$$

$$= -\frac{3}{6} \log_2 \frac{3}{6} - \frac{3}{6} \log_2 \frac{3}{6}$$

2 Coni Impunity

$$H(c_2) = -\frac{3}{3} \log_2 \frac{3}{3} - O\log_2 O$$

= $-1 \log_2 1 \Rightarrow O \Rightarrow Pun Splan$

$$G = 1 - \frac{2}{2} (p)^{2}$$

$$= 1 - ((p_{+})^{2} + (p_{-})^{2})$$

$$= 1 - ((\frac{1}{2})^{2} + (\frac{1}{2})^{2})$$

$$= 0.5 =) Impur Split$$

14 = 97/5H (f) Entropy of the mode Gain $(s,f_1) = H(s) - E |Sv| H(sv) 8 = 64124 C1$

H(s)= -P+ log2P+ -P- log2P-

$$= -\frac{9}{14} \log_2 \frac{9}{14} - \frac{5}{14} \log_2 \frac{5}{14}$$

$$|1(c_1) = -\frac{6}{8} \log_2 \frac{6}{8} - \frac{2}{8} \log_2 \frac{2}{8}$$

$$|1(c_1) = 0.81$$

$$|1(c_2) = 1$$

(<u>ai</u>h

Information is Basically Calculated

Entropy Vs Gini Impunity

$$M(s) = -P_{+} \log_{2} P_{+} - P_{-} \log_{2} P_{-}$$
 GI = $1 - \sum_{i=1}^{n} (P)^{2} = 1$

O/P = 3 care gonces

Whener datant 15 small -> Entropy ?

large -> Girl Impursty