

8	Z [4	2	ż	3 9 1	300	gan
class () pa D. Matrices Th (x)	matiplication La Silvery 12 m	ia verrablele, XX, 16K&M, S.M.	L(x, >10, +x/12 -> /x sh co.	pertur noua fuerelle.	John La gang & fort de introduce a will no purche of a mortariant a. T.	Resperteur metoda multiplicator los lui de granze
(3) $\frac{\partial a_1}{\partial L}(a,\lambda) = g_1(a) = 0, 1 \le 1 \le m$	$\left(\frac{\partial L}{\partial L}(a, \lambda) = 0, 1 \leq L \leq n\right)$	15 K = 112 6 millione consiste of 1, 2, E 1 1/2, E 1		Doca m=n, ateue det Jh K) In	Shange (x) "xe (x) "ye	1 (2) (2h, (x) 2h, (x)

Lagrangianul lus f: L(x, y,))= F(x,y)+ & 5(x, y) (== Obs: Un princt (a, x) E A x M m con soligree (3) Sin. Salutu Prahlung 1 1/4,4)= x++>2, (4,4) € 1/2. 72 efirme a puedele de extreu local ardiput als luit sout puiel stationare ardiboral alche l Elk, b, x)= x+y2+x/x2+x9+y2-1) Exterminación pot Flationais els les 1 $\frac{10L}{2n} = 2n + \lambda(2n + 4) = 0$ 0=1-9+6x+x = 10 34 = 23 + 2/x+24) = 0 (- x-= K (= 1)= (+ hx tx (0= 1+x (- 1)=x 10)) $(\frac{3}{3},\frac{1}{5})$, $(-\frac{13}{3})$ $(\frac{13}{3},\frac{1}{5})$, $(-\frac{13}{3})$ $(\frac{13}{3},\frac{1}{5})$ Decideur notur ponter talmar el luit. Daca S=0 -> N=-2, 1=-2. Doca S =0 -> X=4=0 can me worth is ultima route. X=1=) X=±1=> (1,-1); (-1,1)ppt. stationer Primel 2 ecrée princes un sollie linia si 4 1 = 1 +4x+xx (2+2)x+ >4=0 \n + (2+2) \+=0 $= \left| \begin{array}{ccc} 2+1\lambda & \lambda \\ \lambda & 2+2\lambda \end{array} \right| = \left(2+2\lambda\right)^2 - \left(\frac{2}{3}+2+\lambda\right)\left(2+3\lambda\right)$

Daca de Lla, \ \ /k) ish melegente & a mi the punct de extrem local conditionet al les f.