

Service Manual

ORDER NO.
ARP2131

TWIN-TRAY COMPACT DISC PLAYER

PD-Z74T PD-Z570T

MODEL PD-Z74T AND PD-Z570T HAVE FOLLOWING VERSIONS:

Type	Applicable model		Power requirement	Export destination
	PD-Z74T	PD-Z570T		
HEM	○	○	AC220V, 240V (switchable)*	European continent
HEMXJ	○	-	AC220V, 240V (switchable)*	European continent
HB	○	-	AC220V, 240V (switchable)*	United kingdom
HBXJ	○	-	AC220V, 240V (switchable)*	United kingdom
SD	○	○	AC110V, 120V-127V, 220V, 240V (switchable)	Kingdom of Saudi Arabia and general market
HPW	○	-	AC220V, 240V (switchable)*	Australia

* Change the position of the jumper of the mother board assembly.

- This manual is applicable to the PD-Z74T/HEM, HEMXJ, HB, HBXJ, SD, HPW, PD-Z570T/HEM and SD types.
- As to the PD-Z74T/HEMXJ, HB, HBXJ, SD, HPW and PD-Z570T/SD types, refer to pages 73-79.
- PD-Z74T/HEMXJ and HBXJ types, manufactured in singapore, are identical with PD-Z74T/HEM and HB types respectively.
For identification, "MADE IN SINGAPORE" is shown on the rear panel of the product.
- As to the mechanism description, refer to PD-Z74T SERVICE GUIDE ARP2144.
- Ce manuel pour le service comprend les explications de réglage en français.
- Este manual de servicio trata del método ajuste escrito en español.

PIONEER ELECTRONIC CORPORATION

4-1, Meguro 1-Chome, Meguro-ku, Tokyo 153, Japan

PIONEER ELECTRONICS SERVICE INC. P.O. Box 1760, Long Beach, California 90801 U.S.A.

PIONEER ELECTRONICS OF CANADA, INC. 505 Cochrane Drive, Markham, Ontario L3R 8E3 Canada

PIONEER ELECTRONIC [EUROPE] N.V. Keetberglaan 1, 2740 Beveren, Belgium

PIONEER ELECTRONICS AUSTRALIA PTY. LTD. 178-184 Boundary Road, Braeside, Victoria 3195, Australia TEL: [03] 580-9911

© PIONEER ELECTRONIC CORPORATION 1991

SO JAN. 1991 Printed in Japan

CONTENTS

1. SAFETY INFORMATION	2
2. REMOVING AND MOUNTING OF EACH BLOCK	3
3. EXPLODED VIEWS, PACKING AND PARTS LIST	5
4. LINE VOLTAGE SELECTION FOR HEM, HEMXJ, HB, HPW AND HBXJ TYPES	12
5. SCHEMATIC DIAGRAM	16
6. P.C. BOARDS CONNECTION DIAGRAM	21
7. P.C. B's PARTS LIST	27
8. ADJUSTMENTS	30
8. RÉGLAGE	44
8. AJUSTE	58
9. IC INFORMATION (TC9237N)	72
10. FOR PD-Z74T/HEMXJ, HB, HBXJ, SD, HPW AND PD-Z570T/SD TYPES	73
11. PANEL FACILITIES	77
12. SPECIFICATIONS	79

1. SAFETY INFORMATION

(FOR EUROPEAN MODEL ONLY)

VARO!
AVATTAESSA JA SUOJALUKITUS OHITETTAESSA OLET ALTTINA NÄKYMÄTTÖMÄLLE LASERSÄTEILYLLE.
ÄLÄ KATSO SÄTEESEEN.

LASER
Kuva 1
Lasersateilyn varoitusmerkki

ADVERSEL:
USYNLIG LASERSTRÅLING VED ÅBNING NÄR SIKKERHEDSAFTRYDRE ER UDE AF FUNKTION UNDGÅ UDSAETTELSE FOR STRÅLING.

WARNING!
DEVICE INCLUDES LASER DIODE WHICH EMITS INVISIBLE INFRARED RADIATION WHICH IS DANGEROUS TO EYES. THERE IS A WARNING SIGN ACCORDING TO PICTURE 1 INSIDE THE DEVICE CLOSE TO THE LASER DIODE.

LASER
Picture 1
Warning sign for laser radiation

VARNING!
OSYNLIG LASERSTRÅLING NÄR DENNA DEL ÄR ÖPPNAD OCH SPÄRREN ÄR URKOPPLAD. BETRAKTA EJ STRÅLEN.

IMPORTANT
THIS PIONEER APPARATUS CONTAINS LASER OF HIGHER CLASS THAN 1. SERVICING OPERATION OF THE APPARATUS SHOULD BE DONE BY A SPECIALLY INSTRUCTED PERSON.

LASER DIODE CHARACTERISTICS
MAXIMUM OUTPUT POWER: 5 mw
WAVELENGTH: 780-785 nm

LABEL CHECK (TWIN type)

HEM, HEMXJ, HB and HBXJ types

CLASS 1 LASER PRODUCT
VRW-328

HEM, HEMXJ, HB and HBXJ types

ADVERSEL
USYNLIG LASERSTRÅLING VED ÅBNING NÄR SIKKERHEDSAFTRYDRE ER UDE AF FUNKTION. UNDGÅ UDSAETTELSE FOR STRÅLING.
VORSICHT!
UNSICHTBARE LASERSTRÄHLUNG TRITT AUF, WENN DECKEL (ODER KLAPE) GEÖFFNET IST. NICHT DEN STRAHL AUSSETZEN!
VRW1094

HEM and HEMXJ types

VARO!
Avattaessa ja suojalukitus ohittetessä olet alttina näkymättömälle lasersäteilylle. Älä katso sääteen.
WARNING!
Osynlig laserstrålning när denna del är öppnad och spärren är urkopplad. Betrakta ej strålen.
PRW1233

HEM and HEMXJ types

CAUTION
INVISIBLE LASER RADIATION WHEN OPEN, AVOID EXPOSURE TO BEAM
PRW1018

HB and HBXJ types

2. REMOVING AND MOUNTING OF EACH BLOCK

● REMOVAL OF TRAY I AND TRAY II

1. Open the tray I.
2. Insert the flat blade screwdriver into the slit in the left of tray I. Pull out the tray I by pushing the screwdriver.

* When remove the tray II, open it first, insert the flat blade screwdriver into the slit in the right of tray II, and pull out the tray by pushing the screwdriver.

Fig. 1

● MOUNTING OF TRAY I

1. Set the disc II to the clamp position and open the tray I.
2. Align the 1st tooth of tray I to ungrooved portion of gear I, and insert the tray I.

Fig. 2

● MOUNTING OF TRAY II

1. Set the disc I to the clamp position and open the tray II.
2. Align the 1st tooth of tray II to □ marked position of gear II, and insert the tray II.

Fig. 3

● MOUNTING AND POSITIONING OF MAIN CAM, FOLLOW GEAR, GEAR I AND GEAR II

Set the following gears to the position as shown by arrows.

Fig. 4

● MOUNTING OF CLAMPER ASSEMBLY

Mount the clamper assembly by aligning the protrusion portion as shown in the figure.

Fig. 5

3. EXPLODED VIEWS, PACKING AND PARTS LIST

3.1 EXTERIOR

TWIN-TRAY MECHANISM
(See page 8)

REAR BASE SECTION
FOR PD-Z570T

43 NOTE : Use it separately.

NOTES:

- Parts without part number cannot be supplied.
- The \triangle mark found on some component parts indicates the importance of the safety factor of the part. Therefore, when replacing, be sure to use parts of identical designation.
- Parts marked by "○" are not always kept in stock. Their delivery time may be longer than usual or they may be unavailable.

Parts List

Mark	No.	Symbol & Description	Part No.	Mark	No.	Symbol & Description	Part No.
	1	SCREW	BBZ30P060FMC	26	ANGLE		
	2	SCREW	BBZ30P080FCC	27	FUNCTION PANEL	PNW1865	
	3		28	TRAY NAME PLATE 1	PNW1866	
	4	SCREW	BBZ30P080FZK	(For PD - Z74T)			
	5	SCREW	BBZ30P100FMC	TRAY NAME PLATE 1	PNW1874	(For PD - Z570T)	
\triangle	6	SCREW	BBZ30P120FMC	29	TRAY NAME PLATE 2	PNW1867	
	7	STRAIN RELIEF	CM - 22B	(For PD - Z570T)			
	8	SCREW	IBZ30P150FMC	TRAY NAME PLATE 2	PNW1875		
	9	DISC BUTTON (For PD - Z74T)	PAC1522	30	PCB SPACER		
		DISC BUTTON (For PD - Z570T)					
B	10	POWER BUTTON (For PD - Z74T)	PAC1525	31	INSTRUCTION MANUAL PRE1136 (For PD - Z74T)		
		POWER BUTTON (For PD - Z570T)		INSTRUCTION MANUAL PRE1139 (For PD - Z570T)			
	11	PLAY BUTTON (For PD - Z74T)	PAC1523	32	POWER TRANSFORMER	PTT1125	
		PLAY BUTTON (For PD - Z570T)		MOTHER BOARD ASS'Y	PWM1350		
	12	WINDOW (For PD - Z74T)	PAC1526	33	(For PD - Z74T)		
		WINDOW (For PD - Z570T)		MOTHER BOARD ASS'Y	PWM1345		
	13	30P F • F • C / 30V	PAM1450	(For PD - Z570T)			
	14	CORD WITH MINI PLUG PDE - 319	PAM1451	34	(For PD - Z74T)	PWX1142	
		(For PD - Z74T)		SUB BOARD ASS'Y	PWX1141		
	15	CORD WITH PIN PLUG PDE1065	PDD1049	(For PD - Z570T)			
		(For PD - Z74T)		FOOT ASS'Y	PXA1201		
C	16	CORD WITH CONNECTOR (For PD - Z74T)	PDE1067	35	(For PD - Z74T)		
		CORD WITH CONNECTOR (For PD - Z570T)		INSULATOR ASS'Y	PXA1343		
	17	AC POWER CORD	PDE1114	(For PD - Z74T)			
	18	SCREW	PDG1008	PIONEER BADGE			
	19	PDZ30P050FMC	SHEET	Z23 - 022		
	20	PROTECTOR F (For PD - Z74T)	PHA1141	FUNCTION PANEL	PEA1129		
		PROTECTOR F (For PD - Z570T)		ASS'Y (For PD - Z570T)			
D	21	PROTECTOR R (For PD - Z74T)	PHA1142	40		
		PROTECTOR R (For PD - Z570T)		OPTICAL FIBER CABLE	AKX1031		
	22	PACKING CASE (For PD - Z74T)	PHA1144	(For PD - Z570T)			
		PACKING CASE (For PD - Z570T)		FL PLATE	PAM1452		
	23	BONNET CASE	PHG1578	STOPPER	PNM1070		
	24	UNDER BASE	PHG1579	INSULATOR	PNW1573		
	25	REAR BASE	PYY1146	INSULATOR	PNW1574		
				(For PD - Z570T)			
				PANEL NAME PLATE	PNW1876		
				SUB PANEL	PNW1877		
				TRACK BUTTON	PAC1527		
				SCREW	IBZ30P200FMC		

● Servo Mechan

3.3 MECHANISM SECTION

● Servo Mechanism Assembly Section

● How to install the disc table

- 1 Use nippers or other tool to cut the two sections marked Ⓐ in figure 1. Then remove the spacer.
- 2 While supporting the spindle motor shaft with the stopper, put spacer on top of the motor base (angled so it doesn't touch section Ⓑ), and stick the disc table on top (takes about 9kg pressure). Take off the spacer.

6. P.C. BOARDS CONNECTION DIAGRAM

P.C.B. pattern diagram indication	Corresponding part symbol	Part name	P.C.B. pattern diagram indication	Corresponding part symbol	Part name
		Transistor			Ceramic capacitor
					Mylar capacitor
		FET			Styrol capacitor
					Electrolytic capacitor (Non polarized)
		Diode			Electrolytic capacitor (Noisless)
					Electrolytic capacitor (Polarized)
		Zenner diode			Electrolytic capacitor (Polarized)
		LED			Power capacitor
		Varactor			Semi-fixed resistor
		Tact switch			Resistor array
		Inductor			Resistor
		Coil			Resonator
		Transformer			Thermistor
		Filter			

- This P.C.B. connection diagram is viewed from the parts mounted side.
- The parts which have been mounted on the board can be replaced with those shown with the corresponding wiring symbols listed in the above Table.
- The capacitor terminal marked with shows negative terminal.
- The diode marked with shows cathode side.
- The transistor terminal marked with shows emitter.

Power Supply Section for SD Type.

SUB PCB ASSEMBLY
(PWX1141 : PD-Z570T SERIES)
(PWX1142 : PD-Z74T SERIES)

MECHA PCB ASSEMBLY

Parts List of Mechanism Section

Mark	No.	Symbol & Description	Part No.	Mark	No.	Symbol & Description	Part No.
1	Clamp spring	PBH1103		101	Yoke		
2	Lever spring	PBH1104		102	Magnet		
3	Belt	PEB1106		103	Clamper holder		
4	Motor pulley	PNW1634		104	Clamper S		
5	Tray 1	PNW1839		105	Mechanism P.C.B assembly		
6	Tray 2	PNW1840		106	Servo mechanism assembly		
7	Sub tray	PNW1841		107	Connector assembly (GP)		
8	Loading base	PNW1842		108	Mechanism chassis		
9	Main cam	PNW1843		109	Motor base		
10	Follow gear	PNW1844		110	Mechanism base		
11	Gear 1	PNW1845		111	Actuator cover		
12	Gear 2	PNW1846		112	Sub plate		
13	Idler gear	PNW1847					
14	Clamper arm U	PNW1850					
15	Clamper arm B	PNW1851					
16	Clamp cam	PNW1852					
17	Float base	PNW1853					
18	Lock lever	PNW1854					
19	Motor (LOADING)	PXM1010					
20	Floating rubber	PEB1014					
21	Floating rubber	PEB1132					
22	Screw	PBA1048					
23	Screw	IPZ30P080FMC					
24	Screw	IPZ20P080FMC					
25	Chip capacitor	CKSYF105Z16					
26	Screw	JFZ20P025FMC					
27	Drive spring	PBH1084					
28	Plate spring	PBK1057					
29	Belt	PEB1072					
30	Drive screw	PLA1003					
31	Guide bar	PLA1071					
32	Half nut	PNW1605					
33	Disc table	PNW1608					
34	Pulley	PNW1634					
35	Earth spring	PBH1009					
36	Push switch	DSG1014					
37	Spindle motor assembly (with oil)	PEA1028					
38	Pick - up assembly	PEA1030					
39	Screw	BPZ20P080FZK					
40	Screw	PMZ20P030FMC					
41	Motor (CARRIAGE)	PXM1013					
42	Screw	PBZ30P080FMC					
43	Semi - fixed resistor	PCP1008					
44	Screw	PMZ26P040FMC					
45	Gear pulley	PNW1848					
46	Push spring	PBH1105					
47	Screw	IPZ30P200FMC					
48	Pulley	PNW1066					
49	Screw	IBZ30P120FMC					

4. LINE VOLTAGE SELECTION FOR HEM, HEMXJ, HB, HPW AND HBXJ TYPES

1. Disconnect the AC power cord.
2. Remove the bonnet.
3. Change the position of the jumper \textcircled{A} as follows.

Voltage	Jumper A position
220V	①
240V	②

4. Stick the line voltage label on the rear panel.

Description	Part No.
220V label	AAX-193
240V label	AAX-192

1. RESISTORS:

Indicated in Ω , $\frac{1}{4}W$, $\frac{1}{8}W$, $\pm 5\%$ tolerance unless otherwise noted $k : k\Omega$,
 $M : M\Omega$, (F) : $\pm 1\%$, (G) : $\pm 2\%$, (K) : $\pm 10\%$ (M) : $\pm 20\%$ tolerance

2. CAPACITORS:

Indicated in capacity (μF)/voltage (V) unless otherwise noted p : pF
 Indication without voltage is 50V except electrolytic capacitor.

3. VOLTAGE, CURRENT:

 : DC voltage (V) at no input signal

4. OTHERS:

 : Signal route.

 : Adjusting point.

The mark found on some component parts indicates the importance of the safety factor of the part. Therefore, when replacing, be sure to use parts of identical designation.

* marked capacitors and resistors have parts numbers.

This is the basic schematic diagram, but the actual circuit may vary due to improvements in design.

5. SWITCH

MECHA PCB Assembly

S601 U
S602 S
S603 L

SUB PCB Assembly

S717 +10	S701 O/C D1
S718 0/10	S702 O/C D2
S719 ≥ 20	S703 D1
S720 5	S704 D2
S721 9	S705 ()
S722 8	S706 COMPU
S723 4	S707 PGM
S724 3	S708 ()
S725 7	S709
S726 6	S710 TIME
S727 2	S711 REP
S728 1	S712 AUTO EJECT
(S717-S728:PD-Z570T SERIRS ONLY)	S713 HI LITE
	S714 RND
	S715 STOP
	S716 PAUSE
	S801 POWER

The following corresponds with PD4309A.

PD4305A	PD4309A
1pin 27pin	
2pin 28pin	
38pin 64pin	
39pin 1pin	
63pin 25pin	
64pin 26pin	

List of semiconductor terminal voltage

Note: All terminal voltages are measured in the PLAY mode.

The PD-Z570T uses optical output, thus there is no IC401 (TC9237N), IC404(op Amp), Q403-Q405.

IC151

CXA1372S

Pin No.	Volts	Pin No.	Volts
1	0	2 5	-5
2	0	2 6	5
3	0	2 7	5
4	0	2 8	5
5	0	2 9	5
6	0	3 0	5
7	0	3 1	5
8	0	3 2	0
9	0	3 3	5
10	0	3 4	0
11	-1	3 5	0
12	0	3 6	N. C
13	0. 2	3 7	2. 5
14	0	3 8	2. 5
15	0	3 9	5
16	5	4 0	-1. 5
17	0	4 1	-1. 7
18	0	4 2	5
19	0	4 3	-0. 7
20	0. 2~0. 8	4 4	-1. 6
21	0	4 5	0
22	-4	4 6	0. 8
23	1. 3	4 7	-5
24	0	4 8	0

IC101

CXA1471S

Pin No.	Volts	Pin No.	Volts
1	N. C	1 6	0
2	2. 9	1 7	0
3	-4. 7	1 8	0. 8
4	0	1 9	0
5	0	2 0	5
6	-5	2 1	5
7	0	2 2	N. C
8	0		
9	N. C		
10	0		
11	N. C		
12	N. C		
13	-0. 9		
14	-0. 7		
15	0		

D-Z74T, PD-Z570T

IC20

M529P

Pin No.	Volts
1	-8.2
2	N. C
3	-5
4	0
5	-8.2
6	N. C
7	N. C
8	N. C
9	5
10	N. C
11	0.7
12	5
13	8
14	5
15	1.2
16	8

IC201

LA6520

Pin No.	Volts
1	0
2	0
3	-0.7
4	0
5	0
6	0
7	1.7
8	1.7
9	0.7
10	0
11	0
12	8
FIN	-8.2

IC351

PD4305A

Pin No.	Volts						
1	-10	17	1.8	33	0	49	-22
2	-13.5	18	0	34	5	50	0
3	-5.5	19	5	35	0	51	5
4	-10.5	20	0.5	36	0	52	0
5	2.1	21	5	37	0	53	0
6	4.8	22	0	38	0	54	-26
7	4.5	23	0	39	5	55	-26
8	3.9	24	0	40	-22	56	-26
9	2.3	25	5	41	-22	57	-5
10	0	26	5	42	-22	58	-9
11	5	27	5	43	-22	59	-11
12	2.5	28	5	44	-22	60	5
13	5	29	5	45	-22	61	-2.5
14	5	30	2.5	46	-22	62	2
15	5	31	2.5	47	-22	63	-2.5
16	0	32	0	48	-22	64	5

IC301

CXD2500Q

Pin No.	Volts	Pin No.	Volts	Pin No.	Volts
1	5	31	N. C	61	N. C
2	N. C	32	2.5	62	N. C
3	5	33	5	63	0
4	2.6	34	2.5	64	N. C
5	N. C	35	2.5	65	0
6	5	36	N. C	66	3.3~4.6
7	N. C	37	N. C	67	5
8	N. C	38	N. C	68	0
9	0	39	N. C	69	2.1~3
10	0	40	N. C	70	5
11	N. C	41	N. C	71	5
12	0	42	5	72	5
13	N. C	43	N. C	73	5
14	N. C	44	N. C	74	5
15	N. C	45	N. C	75	5
16	N. C	46	4.4	76	0
17	0	47	0	77	5
18	2.5	48	0	78	5
19	2.4	49	0~0.3	79	5
20	2.4	50	N. C	80	0
21	0	51	N. C		
22	2.5	52	0		
23	5	53	2.5		
24	2.5	54	N. C		
25	N. C	55	0		
26	0	56	N. C		
27	2.5	57	N. C		
28	0	58	N. C		
29	N. C	59	0		
30	0	60	N. C		

IC404

NJM4558D-D

Pin No.	Volts
1	-0.2
2	1
3	1
4	-5
5	1
6	1
7	-0.2
8	5

IC401

TC9237N

Pin No.	Volts
1	5
2	0
3	5
4	5.5
5	2.5
6	2.5
7	0
8	0
9	2.5
10	2.5
11	5
12	0
13	N. C
14	0
15	0
16	1.9
17	1.9
18	5
19	2
20	0
21	0
22	0
23	0
24	5
25	2.5
26	2.5
27	2.5
28	5

ection for SD Type.

POWER PCB ASSEMBLY

Note:
PD-Z570T TYPE ONLY
PD-Z74T TYPE ONLY

MECHA PCB ASSEMBLY

MOTHER PCB ASSEMBLY
(PWM1345:PD-Z570T/HEM)
(PWM1347:PD-Z570T/SD)
(PWM1348:PD-Z74T/SD)
(PWM1350:PD-Z74T/HEM,HB,HPW)

A
Q382
Q381
Q101

B
IC101
Q404
Q403

C
IC30 Q62
IC404
IC20 Q405
VR102
VR151
Q202
Q203 Q204
VR103
VR152
Q201
IC401

D
IC151 IC301
IC201
IC351
Q351

OTHER PCB ASSEMBLY
WM1345 (PD-2520T(HEM))
WM1347 (PD-2520T(SD))
WM1348 (PD-2524T(SD))
WM1350 (PD-2524T(HEM,HB))

note:
D-2744 TYPE ONLY
D-2740 TYPE ONLY

This diagram shows the layout of the LHER PCB Assembly. It includes various components and connection points:

- VOLTAGE SELECTOR:** A circular component labeled "VOLTAGE SELECTOR" with pins labeled "PSB100S".
- POWER CORD:** A terminal block labeled "1003 POWER CORD" with pins labeled "110VAC", "115VAC", "120VAC", and "125VAC".
- PCB:** The main printed circuit board with various tracks, pads, and component mounting areas.
- Labels:** Various labels are present, such as "LHER PCB ASSEMBLY", "PSB100S", "1003", "110VAC", "115VAC", "120VAC", "125VAC", and "C105".
- Wiring:** Numerous wires connect the power source to the PCB, and various components on the PCB are interconnected.

ECHA PCB ASSEMBLY

This PCB layout diagram for PNP11832-A shows the physical arrangement of components and interconnects. Key components include:

- Two surface-mount packages labeled "PNP11832-A" at the bottom right.
- A central integrated circuit package labeled "TQFP-44" with various pins labeled.
- Surface-mount resistors (S101, S102, S103, S104) and capacitors (C101, C102, C103, C104).
- Through-hole components like diodes (D101, D102, D103, D104), transistors (T101, T102, T103, T104), and a zener diode (Z101).
- Surface-mount connectors labeled "S2108", "S2110", and "S2111".
- Through-hole connectors labeled "COMIN", "COMOUT", "PEM", and "CN101".

The diagram illustrates the routing of signals between these components, including power distribution, signal lines, and ground planes.

e. P.C. BOARDS CONNECTION DIAGRAM

This P.C.B. connection diagram is viewed from the foil side.

TC9237N

5. SCHEMATIC DIAGRAM

5.1 WAVEFORMS

Note: The encircled numbers denote measuring points in the schematic diagram.

- *1 50T-JUMP: After switching to the pause mode, press the manual search key.
- *2 FOCUS-IN: Press the key without loading a disc.

PD-Z74T, PD-Z570T

5.2 SCHEMATIC DIAGRAM

TYPE	D54
PD-Z74 T/HEM, HPW, HB, SD	MTZJ16B
PD-Z74 T/HEM, HBXJ	
PD-Z570 SERIES	MTZJ18B

Note :
PD-Z74T SERIES : PD-Z74T/HEM, HB, HEMXJ, SD, HPW TYPES.
PD-Z570T SERIES : PD-Z570T/HEM, SD TYPES.

7. P.C.B's PARTS LIST

NOTES:

- Parts without part number cannot be supplied.
- Parts marked by “◎” are not always kept in stock. Their delivery time may be longer than usual or they may be unavailable.
- The △ mark found on some component parts indicates the importance of the safety factor of the part. Therefore, when replacing, be sure to use parts of identical designation.
- When ordering resistors, first convert resistance values into code form as shown in the following examples.

Ex.1 When there are 2 effective digits (any digit apart from 0), such as 560 ohm and 47k ohm (tolerance is shown by J=5%, and K=10%)

$560 \Omega \rightarrow 56 \times 10^1 \rightarrow 561$	RD1/4PS [5] [6] [1] J
$47k \Omega \rightarrow 47 \times 10^3 \rightarrow 473$	RD1/4PS [4] [7] [3] J
$0.5 \Omega \rightarrow 0R5$	RN2H [0] [R] [5] K
$1 \Omega \rightarrow 010$	RS1P [0] [1] [0] K

Ex.2 When there are 3 effective digits (such as in high precision metal film resistors).

$5.62k \Omega \rightarrow 562 \times 10^3 \rightarrow 5621$	RN1/4SR [5] [6] [2] [1] F
---	---------------------------

Mark	No.	Symbol & Description	Part No.	Mark	No.	Symbol & Description	Part No.
◎ MOTHER BOARD ASSEMBLY (PWM1350)(For PD-Z74T/HEM)							
		SEMICONDUCTORS					
△	IC20 REGULATOR IC	M5298P		C60	ELECTR. CAPACITOR	CEAS010M50	
△	IC30 IC PROTECTOR	ICP-N10		C101	ELECTR. CAPACITOR	CEAS471M6R3	
	IC101 PRE AMP IC	CXA1471S		C102	ELECTR. CAPACITOR	CEAS101M10	
	IC151 SERVO IC	CXA1372S		C103	CERAMIC CAPACITOR	CCCCH180J50	
△	IC201 POWER OP-AMP, IC	LA6520		C104	ELECTR. CAPACITOR	CEAS101M10	
	IC301 EFM DEMODULATION IC	CXD2500Q		C110	CERAMIC CAPACITOR	CKCYF103Z50	
	IC351 MICROCOMPUTER	PD4305B		C153	ELECTR. CAPACITOR	CEAS101M10	
	IC401	TC9237N		C155	MLYOR FILM CAPACITOR	CQMA182J50	
	IC404 OP-AMP IC	NJM4558D-D		C156	MLYOR FILM CAPACITOR	CQMA333K50	
	Q62 TRANSISTOR	2SC1740S		C157	MLYOR FILM CAPACITOR	CQMA103K50	
	Q101 TRANSISTOR	2SA854S		C158, 159	MLYOR FILM CAPACITOR	CQMA104K50	
	Q201 TRANSISTOR	2SC3581		C160	ELECTR. CAPACITOR	CEAS4R7M50	
	Q202 TRANSISTOR	2SA1399		C161	MLYOR FILM CAPACITOR	CQMA104K50	
	Q203 TRANSISTOR	2SC3581		C162	ELECTR. CAPACITOR	CEAS010M50	
	Q204 TRANSISTOR	2SA1399		C163	MLYOR FILM CAPACITOR	CQMA104K50	
	Q381, 382 TRANSISTOR	2SC1740S		C164	MLYOR FILM CAPACITOR	CQMA103K50	
	Q403, 404 TRANSISTOR	2SD2144S		C167	CERAMIC CAPACITOR	CKCYF103Z50	
	Q405 TRANSISTOR	DTC124ES		C168	MLYOR FILM CAPACITOR	CQMA333K50	
△	D11-14 DIODE	11ES2		C169	MLYOR FILM CAPACITOR	CQMA103K50	
△	D52 DIODE	11ES2		C170	MLYOR FILM CAPACITOR	CQMA332J50	
	D54 ZENNER DIODE	MTZJ16B		C171	MLYOR FILM CAPACITOR	CQMA472J50	
	D211 ZENNER DIODE	MTZJ6.2B		C172	MLYOR FILM CAPACITOR	CQMA472K50	
	D381-385 DIODE	1SS254		C202	CERAMIC CAPACITOR	CKCYF103Z50	
	L381 AXIAL INDUCTOR	LAU010K		C212	MLYOR FILM CAPACITOR	CQMA103K50	
	L401 AXIAL COIL	LAUR22K		C216, 217	ELECTR. CAPACITOR	CEAS330M16	
	L402, 403 AXIAL INDUCTOR	LAU010K		C301	MLYOR FILM CAPACITOR	CQMA104K50	
COILS/TRANSFORMERS							
	C11-14 CERAMIC CAPACITOR	CKCYF103Z50		C306	CERAMIC CAPACITOR	CKCYB152K50	
	C25 ELECTR. CAPACITOR	CEAS332M16		C307	MLYOR FILM CAPACITOR	CQMA473J50	
	C26 ELECTR. CAPACITOR	CEAS222M16		C308	MLYOR FILM CAPACITOR	CQMA103K50	
	C27 ELECTR. CAPACITOR	CEAS471M6R3		C309	ELECTR. CAPACITOR	CEASR47M50	
	C28 ELECTR. CAPACITOR	CEAS101M10		C351	ELECTR. CAPACITOR	CEAS471M6R3	
	C52 ELECTR. CAPACITOR	CEAS101M35		C353	CERAMIC CAPACITOR	CKCYF103Z50	
				C355	CERAMIC CAPACITOR	CKCYF103Z50	
				C361	CERAMIC CAPACITOR	CKCYF103Z50	
				C383, 384	CERAMIC CAPACITOR	CKCYF103Z50	
				C401	CERAMIC CAPACITOR	CKCYF103Z50	
				C403, 404	CERAMIC CAPACITOR	CCCCH470J50	
				C410, 411	CERAMIC CAPACITOR	CCCSL560J50	

Mark	No.	Symbol & Description	Part No.
C412-415		CERAMIC CAPACITOR	CCCCH390J50
C420		ELECTR. CAPACITOR	CEAS330M16
C421		CERAMIC CAPACITOR	CKCYF473Z50
C422		CERAMIC CAPACITOR	CKCYF103Z50
C429, 430		ELECTR. CAPACITOR	CEAS220M25
C431, 432		MYLOR FILM CAPACITOR	CQMA104K50
C433, 434		MYLOR FILM CAPACITOR	CQMA103K50
C435		CERAMIC CAPACITOR	CKCYF103Z50
C441, 442		MYLOR FILM CAPACITOR	CQMA152J50
RESISTORS			
R51-53		CARBONFILM RESISTOR	RD1/6PM□□□J
R61, 62		CARBONFILM RESISTOR	RD1/6PM□□□J
R101-110		CARBONFILM RESISTOR	RD1/6PM□□□J
R153-158		CARBONFILM RESISTOR	RD1/6PM□□□J
R160		CARBONFILM RESISTOR	RD1/6PM□□□J
R201-203		CARBONFILM RESISTOR	RD1/6PM□□□J
R205, 206		CARBONFILM RESISTOR	RD1/6PM□□□J
R208-212		CARBONFILM RESISTOR	RD1/6PM□□□J
R221-224		CARBONFILM RESISTOR	RD1/6PM□□□J
R301-312		CARBONFILM RESISTOR	RD1/6PM□□□J
R352, 353		CARBONFILM RESISTOR	RD1/6PM□□□J
R356-360		CARBONFILM RESISTOR	RD1/6PM□□□J
R366-369		CARBONFILM RESISTOR	RD1/6PM□□□J
R381-396		CARBONFILM RESISTOR	RD1/6PM□□□J
R401-413		CARBONFILM RESISTOR	RD1/6PM□□□J
R443, 444		CARBONFILM RESISTOR	RD1/6PM□□□J
R447, 448		CARBONFILM RESISTOR	RD1/6PM□□□J
R495-498		CARBONFILM RESISTOR	RD1/6PM□□□J
VR102 VR			RCP1046
VR103 VR			RCP1044
VR151, 152 VR			RCP1046
OTHERS			
CN101		CONNECTOR	52045-1610
CN351		CONNECTOR	HLEM30S-1
CN381		CONNECTOR (4P)	KPE4
JA391		JACK/12V	PKN1004
JA401		JACK	PKB1009
X351		CERAMIC RESONATOR	VSS1014
X401		XTAL RES (OSC)	PSS1006

Mark	No.	Symbol & Description	Part No.
C12		CERAMIC CAPACITOR	CCCCH390J50
SEMICONDUCTORS			
△		IC20 REGULATOR IC	M5298P
△		IC30 IC PROTECTOR	ICP-N10
		IC101 PRE AMP IC	CXA1471S
		IC151 SERVO IC	CXA1372S
△		IC201 POWER OP-AMP, IC	LA6520
		IC301 EFM DEMODULATION IC	CXD2500Q
		IC351 MICROCOMPUTER	PD4305B
		Q62 TRANSISTOR	2SC1740S
		Q101 TRANSISTOR	2SA854S
		Q201 TRANSISTOR	2SC3581
		Q202 TRANSISTOR	2SA1399
		Q203 TRANSISTOR	2SC3581
		Q204 TRANSISTOR	2SA1399
		Q381, 382 TRANSISTOR	2SC1740S
△		D11-14 DIODE	11ES2
△		D52 DIODE	11ES2
		D54 ZENNER DIODE	MTZJ18B
		D211 ZENNER DIODE	MTZJ6. 2B
		D381-385 DIODE	1SS254
COILS/TRANSFORMERS			
		L381 AXIAL INDUCTOR	LAU010K
CAPACITORS			
		C11-14 CERAMIC CAPACITOR	CKCYF103Z50
		C25 ELECTR. CAPACITOR	CEAS332M16
		C26 ELECTR. CAPACITOR	CEAS222M16
		C27 ELECTR. CAPACITOR	CEAS471M6R3
		C28 ELECTR. CAPACITOR	CEAS101M10
		C52 ELECTR. CAPACITOR	CEAS101M35
		C60 ELECTR. CAPACITOR	CEAS010M50
		C101 ELECTR. CAPACITOR	CEAS471M6R3
		C102 ELECTR. CAPACITOR	CEAS101M10
		C103 CERAMIC CAPACITOR	CCCCH180J50
		C104 ELECTR. CAPACITOR	CEAS101M10
		C110 CERAMIC CAPACITOR	CKCYF103Z50
		C153 ELECTR. CAPACITOR	CEAS101M10
		C155 MYLOR FILM CAPACITOR	CQMA182J50
		C156 MYLOR FILM CAPACITOR	CQMA333K50
		C157 MYLOR FILM CAPACITOR	CQMA103K50
		C158, 159 MYLOR FILM CAPACITOR	CQMA104K50
		C160 ELECTR. CAPACITOR	CEAS4R7M50
		C161 MYLOR FILM CAPACITOR	CQMA104K50
		C162 ELECTR. CAPACITOR	CEAS010M50
		C163 MYLOR FILM CAPACITOR	CQMA104K50
		C164 MYLOR FILM CAPACITOR	CQMA103K50
		C167 CERAMIC CAPACITOR	CKCYF103Z50
		C168 MYLOR FILM CAPACITOR	CQMA333K50
		C169 MYLOR FILM CAPACITOR	CQMA103K50
		C170 MYLOR FILM CAPACITOR	CQMA332J50
		C171 MYLOR FILM CAPACITOR	CQMA472J50
		C172 MYLOR FILM CAPACITOR	CQMA472K50
		C202 CERAMIC CAPACITOR	CKCYF103Z50

Mark	No.	Symbol & Description	Part No.	Mark	No.	Symbol & Description	Part No.
C212		MYLOR FILM CAPACITOR	CQMA103K50	◎	SUB BOARD ASSEMBLY (PWX1142)(For PD-Z74T/HEM)		
C216, 217		ELECTR. CAPACITOR	CEAS330M16	SEMICONDUCTORS			
C301		MYLOR FILM CAPACITOR	CQMA104K50	D701-704		DIODE	1SS254
C304, 305		CERAMIC CAPACITOR	CCCCH150J50	SWITCHES			
C306		CERAMIC CAPACITOR	CKCYB152K50	S701-716		SWITCH	PSG1006
C307		MYLOR FILM CAPACITOR	CQMA473J50	S801		SWITCH	PSG1007
C308		MYLOR FILM CAPACITOR	CQMA103K50	OTHERS			
C309		ELECTR. CAPACITOR	CEASR47M50	CN701		CONNECTOR	HLEM30R-1
C321		CERAMIC CAPACITOR	CKCYF103Z50	V701		FL INDICATOR TUBE	PEL1049
C323		CERAMIC CAPACITOR	CKCYF103Z50	◎	SUB BOARD ASSEMBLY (PWX1141)(For PD-Z570T/HEM)		
C351		ELECTR. CAPACITOR	CEAS471M6R3	SEMICONDUCTORS			
C353		CERAMIC CAPACITOR	CKCYF103Z50	D701-707		DIODE	1SS254
C355		CERAMIC CAPACITOR	CKCYF103Z50	SWITCHES			
C361		CERAMIC CAPACITOR	CKCYF103Z50	S701-728		SWITCH	PSG1006
C401		CERAMIC CAPACITOR	CKCYF103Z50	S801		SWITCH	PSG1007
C422		CERAMIC CAPACITOR	CKCYF473Z50	OTHERS			
RESISTORS				CN701		CONNECTOR	HLEM30R-1
R51-53		CARBONFILM RESISTOR	RD1/6PM□□□J	V701		FL INDICATOR TUBE	PEL1049
R61, 62		CARBONFILM RESISTOR	RD1/6PM□□□J	MECHANISM P.C.B ASSEMBLY			
R101-110		CARBONFILM RESISTOR	RD1/6PM□□□J	SWITCHES			
R153-158		CARBONFILM RESISTOR	RD1/6PM□□□J	S601-603		PUSH SWITCH	DSG1017
R160		CARBONFILM RESISTOR	RD1/6PM□□□J				
R201-203		CARBONFILM RESISTOR	RD1/6PM□□□J				
R205, 206		CARBONFILM RESISTOR	RD1/6PM□□□J				
R208-212		CARBONFILM RESISTOR	RD1/6PM□□□J				
R221-224		CARBONFILM RESISTOR	RD1/6PM□□□J				
R301-309		CARBONFILM RESISTOR	RD1/6PM□□□J				
R321		CARBONFILM RESISTOR	RD1/6PM□□□J				
R352		CARBONFILM RESISTOR	RD1/6PM□□□J				
R356-360		CARBONFILM RESISTOR	RD1/6PM□□□J				
R366-369		CARBONFILM RESISTOR	RD1/6PM□□□J				
R381-395		CARBONFILM RESISTOR	RD1/6PM□□□J				
VR102	VR		RCP1046				
VR103	VR		RCP1044				
VR151, 152	VR		RCP1046				
OTHERS							
CN101		CONNECTOR	52045-1610				
CN351		CONNECTOR	HLEM30S-1				
CN381		CONNECTOR(4P)	KPE4				
JA301		OPTICAL OUTPUT JACK	TOTX178				
X301		XTAL RES (OSC)	PSS1006				
X351		CERAMIC RESONATOR	VSS1014				

8. ADJUSTMENTS

1. Adjustment Methods

If a disc player is adjusted incorrectly or inadequately, it may malfunction or not work at all even though there is nothing at all wrong with the pickup or the circuitry. Adjust correctly following the adjustment procedure.

1-1 Adjustment items/verification items and order

Step	Item	Test point	Adjustment location
1	Focus offset adjustment	TP1, Pin 6 (FCS. ERR)	VR103 (FCS. OFS)
2	Grating adjustment	TP1, Pin 2 (TRK. ERR)	Grating adjustment slit
3	Tracking error balance adjustment	TP1, Pin 2 (TRK. ERR)	VR102 (TRK. BAL)
4	Pickup radial/tangential direction tilt adjustment	TP1, Pin 1 (RF)	Radial tilt adjustment screw, Tangential tilt adjustment screw
5	RF level adjustment	TP1, Pin 1 (RF)	VR1 (RF level)
6	Focus servo loop gain adjustment	TP1, Pin 5 (FCS. IN) TP1, Pin 6 (FCS. ERR)	VR152 (FCS. GAN)
7	Tracking servo loop gain adjustment	TP1, Pin 3 (TRK. IN) TP1, Pin 2 (TRK. ERR)	VR151 (TRK. GAN)
8	Focus error signal verification	TP1, Pin 6 (FCS. ERR)	—

● Abbreviation table

- FCS. ERR : Focus Error
- FCS. OFS : Focus Offset
- TRK. ERR : Tracking Error
- TRK. BAL : Tracking Balance
- FCS. IN : Focus In
- TRK. IN : Tracking In

1-2 Measuring instruments and tools

1. Dual trace oscilloscope (10:1 probe)
2. Low-frequency oscillator
3. Test disc (YEDS-7)
4. 12-cm disc (with at least about 70 minutes of recording)
5. Low-pass filter ($39 \text{ k}\Omega + 0.001 \mu\text{F}$)
6. Resistor ($100 \text{ k}\Omega$)
7. Hexagonal wrench (M3 mm)
8. Standard tools

1-3 Test point and adjustment variable resistor positions

Figure 1 Adjustment Locations

1-4 Notes

1. Use a 10:1 probe for the oscilloscope.
2. All the knob positions (settings) for the oscilloscope in the adjustment procedures are for when a 10:1 probe is used.

1-5 Test mode

These models have a test mode so that the adjustments and checks required for service can be carried out easily. When these models are in test mode, the keys on the front panel work differently from normal. Adjustments and checks can be carried out by operating these keys with the correct procedure. For these models, all adjustments are carried out in test mode.

[Setting these models to test mode]

How to set this model into test mode.

1. Turn off the power switch.
2. Short the test mode jumper wires. (See Figure 1.)
3. Turn on the power switch.

When the test mode is set correctly, the display is different from what it usually is when the power is turned on. If the display is still the same as usual, test mode has not been set correctly, so repeat Steps 1-3.

D-Z74T, PD-Z570T

[Release from test mode]

Here is the procedure for releasing the test mode:

1. Press the STOP key and stop all operations.
2. Turn off the power switch on the front panel.

[Operations of the keys in test mode]

Code	Key name	Function in test mode	Explanation
	PGM (PROGRAM)	Focus servo close	If Disc Tray 1 is closed, Disk Tray 1 is moved to the play position. Then the laser diode is lit up and the focus actuator is lowered, then raised slowly and the focus servo is closed at the point where the objective lens is focused on the disc. With the player in this state, if you lightly rotate the stopped disc by hand, you can hear the sound the focus servo. If you can hear this sound, the focus servo is operating correctly. If you press this key with no disc mounted, the laser diode lights up, the focus actuator is pulled down, then the actuator is raised and lowered twice and returned to its original position.
▶	PLAY	Spindle servo ON	Starts the spindle motor in the clockwise direction and when the disc rotation reaches the prescribed speed (about 500 rpm at the inner periphery), sets the spindle servo in a closed-loop. Be careful. Pressing this key when there is no disc mounted makes the spindle motor run at the maximum speed. If the focus servo does not go correctly into a closed loop or the laser light shines on the mirror section at the outermost periphery of the disc, the same symptom is occurred.
■	PAUSE	Tracking servo close/open	Pressing this key when the focus servo and spindle servo are operating correctly in closed loops puts the tracking servo into a closed loop, displays the track number being played back and the elapsed time on the front panel, and outputs the playback signal. If the elapsed time is not displayed or not counted correctly or the audio is not played back correctly, it may be that the laser is shining on the section with no sound recorded at the outer edge of the disc, that something is out of adjustment, or that there is some other problem. This key is a toggle key and open/close the tracking servo alternately. This key has no effect if no disc is mounted.
◀◀/ ◀◀	TRACK/ MANUAL SEARCH REV	Carriage reverse (inwards)	Moves the pickup position toward the inner periphery of the disc. When this key is pressed with the tracking servo in a closed loop, the tracking servo automatically goes into an open loop. Since the pickup does not automatically stop at the mechanical end point in test mode, be careful with this operation.
▶▶/ ▶▶	TRACK/ MANUAL SEARCH FWD	Carriage forward (outwards)	Moves the pickup position toward the outer periphery of the disc. When this key is pressed with the tracking servo in a closed loop, the tracking servo automatically goes into an open loop. Since the pickup does not automatically stop at the mechanical end point in test mode, be careful with this operation.
■	STOP	Stop	Switches off all the servos and initializes. The pickup remains where it was when this key was pressed.
▲	OPEN/CLOSE DISC 1	Disc tray open/close	Opens/closes the disc tray. This key is a toggle key and open/close tray alternately.

[How to play back a disc in test mode]

In test mode, since the servos operate independently, playing back a disc requires that you operate the keys in the correct order to close the servos.

Here is the key operation sequence for playing back a disc in test mode.

Wait at least 2-3 seconds between each of these operations.

1. Focus offset adjustment

● Objective	Sets the DC offset for the focus error amp.		
● Symptom when out of adjustment	The player does not focus in and the RF signal is dirty.		
● Measurement instrument connections	Connect the oscilloscope to TP1, Pin 6 (FCS ERR). [Settings] 5 mV/division 10 ms/division DC mode	● Player state ● Adjustment location ● Disc	Test mode, stopped (just the Power switch on) VR103 (FCS OFS) None needed

[Procedure]

Adjust VR103 (FCS OFS) so that the DC voltage at TP1, Pin 6 (FCS ERR) is -50 ± 50 mV.

2. Grating adjustment

● Objective	To align the tracking error generation laser beam spots to the optimum angle on the track		
● Symptom when out of adjustment	Play does not start, track search is impossible, tracks are skipped.		
● Measurement instrument connections	<p>Connect the oscilloscope to TP1, Pin 2 (TRK ERR) via a low pass filter. (See Figure 2)</p> <p>[Settings] 50 mV/division 5 ms/division DC mode</p>	<ul style="list-style-type: none"> ● Player state ● Adjustment location ● Disc 	<p>Test mode, focus and spindle servos closed and tracking servo open</p> <p>Pickup grating adjustment slit</p> <p>12 cm disc. (YEDS-7 can not be used.)</p>

[Procedure]

1. Move the pickup to the outer edge of the disc with the TRACK/MANUAL SEARCH FWD $\blacktriangleright/\blacktriangleright\blacktriangleright$ or $\blacktriangleleft/\blacktriangleleft\blacktriangleleft$ key so that the grating adjustment slit is at the outer edge of the disc where it can be adjusted.
2. Press the PGM key, then the PLAY \blacktriangleright key in that order to close the focus servo then the spindle servo.
3. Insert an ordinary screwdriver into the grating adjustment slit and adjust the grating to find the null point. For more details, see the next page.
4. If you slowly turn the screwdriver counterclockwise from the null point, the amplitude of the wave gradually increases, then if you continue turning the screwdriver, the amplitude of the wave becomes smaller again. Turn the screwdriver counterclockwise from the null point and set the grating to the first point where the wave amplitude reaches its maximum.

Reference: Figure 3 shows the relation between the angle of the tracking beam with the track and the wave form.

Note: The amplitude of the tracking error signal is about 3 Vp-p (when a 39 k Ω + 0.001 μ F low pass filter is used). If this amplitude is extremely small (2 Vp-p or less), the objective lens may be dirty or the pickup malfunctioning. If the difference between the amplitude of the error signal at the innermost edge and outermost edge of the disc is more than 10%, the grating is not adjusted to the optimum point, so adjust it again.

5. Return the pickup to more or less midway across the disc with the TRACK/MANUAL SEARCH REV $\blacktriangleleft/\blacktriangleleft\blacktriangleleft$ key, press the PAUSE \blacksquare key and check that the track number and elapsed time are displayed on the front panel. If they are not displayed at this time or the elapsed time changes irregularly, check the null point and adjust the grating again.

Figure 2

Adjustment Locations

[How to find the null point]

When you insert the regular screwdriver into the slit for the grating adjustment and change the grating angle, the amplitude of the tracking error signal at TP1 Pin 2 changes. Within the range for the grating, there are five or six locations where the amplitude of the wave reaches a minimum. Of these five or six locations, there is only one at which the envelope of the wave form is smooth. This location is where the three laser beams divided by the grating are all right above the same track. (See Figure 3.)

This point is called the null point. When adjusting the grating, this null point is found and used as the reference position.

Figure 3

3. Tracking error balance adjustment

<ul style="list-style-type: none"> ● Objective ● Symptom when out of adjustment 	<p>To correct for the variation in the sensitivity of the tracking photodiode</p> <p>Play does not start or track search is impossible</p>		
<ul style="list-style-type: none"> ● Measurement instrument connections 	<p>Connect the oscilloscope to TP1, Pin 2 (TRK ERR). This connection may be via a low pass filter.</p> <p>[Settings] 50 mV/division 5 ms/division DC mode</p>	<ul style="list-style-type: none"> ● Player state ● Adjustment location ● Disc 	<p>Test mode, focus and spindle servos closed and tracking servo open</p> <p>VR102 (TRK BAL)</p> <p>YEDS-7</p>

[Procedure]

1. Move the pickup to midway across the disc ($R = 35$ mm) with the TRACK/MANUAL SEARCH FWD $\blacktriangleright\blacktriangleright$ or $\blacktriangleleft\blacktriangleleft$ key.
2. Press the PGM key, then the PLAY \blacktriangleright key in that order to close the focus servo then the spindle servo.
3. Line up the bright line (ground) at the center of the oscilloscope screen and put the oscilloscope into DC mode.
4. Adjust VR102 (TRK BAL) so that positive amplitude and negative amplitude of the tracking error signal at TP1 Pin 2 (TRK ERR) are the same (in other words, so that there is no DC component).

4. Pickup radial/tangential tilt adjustment

● Objective	To adjust the angle of the pickup relative to the disc so that the laser beams are shone straight down into the disc for the best read out of the RF signals.		
● Symptom when out of adjustment	Sound broken; some discs can be played but not others.		
● Measurement instrument connections	<p>Connect the oscilloscope to TP1, Pin 1 (RF).</p> <p>[Settings] 20 mV/division 200 ns/division AC mode</p>	<ul style="list-style-type: none"> ● Player state ● Adjustment location ● Disc 	<p>Test mode, play</p> <p>Pickup radial tilt adjustment screw and tangential tilt adjustment screw</p> <p>12 cm disc. (YEDS-7 can not be used.)</p>

[Procedure]

- Move the pickup to the outer edge of the disc with the TRACK/MANUAL SEARCH FWD $\blacktriangleright\blacktriangleright$ or $\blacktriangleleft\blacktriangleleft$ key so that the radial/tangential tilt screws can be adjusted.
Press the PGM key, the PLAY \blacktriangleright key, then the PAUSE \blacksquare key in that order to close the focus servo then the spindle servo and put the player into play mode.
- First, adjust the radial tilt adjustment screw with an M3 mm hexagonal wrench so that the eye pattern (the diamond shape at the center of the RF signal) can be seen the most clearly.
- Next, adjust the tangential tilt adjustment screw with an M3 mm hexagonal wrench so that the eye pattern (the diamond shape at the center of the RF signal) can be seen the most clearly (Figure 5).
- Adjust the radial tilt adjustment screw and the tangential tilt adjustment screw again so that the eye pattern can be seen the most clearly. As necessary, adjust the two screws alternately so that the eye pattern can be seen the most clearly.

Note: Radial and tangential mean the directions relative to the disc shown in Figure 4.

Figure 4

Figure 5 Eye Pattern

5. RF level adjustment

● Objective	To optimize the playback RF signal amplitude		
● Symptom when out of adjustment	No play or no search		
● Measurement instrument connections	Connect the oscilloscope to TP1, Pin 1 (RF). [Settings] 50 mV/division 10 ms/division AC mode	● Player state ● Adjustment location ● Disc	Test mode, play VR1 (laser power) YEDS-7

[Procedure]

1. Move the pickup to midway across the disc ($R = 35$ mm) with the TRACK/MANUAL SEARCH FWD $\blacktriangleright\blacktriangleright$ or $\blacktriangleleft\blacktriangleleft$ key, then press the PGM key, then the PLAY \blacktriangleright key in that order to close the respective servos and put the player into play mode.
2. Adjust VR1 (laser power) so that the RF signal amplitude is 1.2 Vp-p ± 0.1 V.

6. Focus servo loop gain adjustment

● Objective	To optimize the focus servo loop gain		
● Symptom when out of adjustment	Playback does not start or focus actuator noisy		
● Measurement instrument connections	<p>See Figure 6. [Settings]</p> <p>CH1 CH2 20 mV/division 5 mV/division X-Y mode</p>	<ul style="list-style-type: none"> ● Player state ● Adjustment location ● Disc 	<p>Test mode, play</p> <p>VR152 (FCS GAN)</p> <p>YEDS-7</p>
[Procedure]			
<ol style="list-style-type: none"> 1. Set the AF generator output to 1.2 kHz and 1 Vp-p. 2. Press the TRACK/MANUAL SEARCH FWD $\blacktriangleright/\blacktriangleright\!\!$ or $\blacktriangleleft/\blacktriangleleft\!\!$ key to move the pickup to halfway across the disc ($R = 35$ mm), then press the PGM key, the PLAY \blacktriangleright key, then the PAUSE $\blacksquare\!\!$ key in that order to close the corresponding servos and put the player into play mode. 3. Adjust VR152 (FCS GAN) so that the Lissajous wave form is symmetrical about the X axis and the Y axis. 			
Figure 6			
<p>Focus Gain Adjustment</p>			
<p>Higher gain Optimum gain Lower gain</p>			

7. Tracking servo loop gain adjustment

● Objective	To optimize the tracking servo loop gain		
● Symptom when out of adjustment	Playback does not start, during searches the actuator is noisy, or tracks are skipped.		
● Measurement instrument connections	<p>See Figure 7. [Settings]</p> <p>CH1 CH2 50 mV/division 50 mV/division X-Y mode</p>	<ul style="list-style-type: none"> ● Player state ● Adjustment location ● Disc 	<p>Test mode, play</p> <p>VR151 (TRK GAN)</p> <p>YEDS-7</p>

[Procedure]

1. Set the AF generator output to 1.2 kHz and 2 Vp-p.
2. Press the TRACK/MANUAL SEARCH FWD $\blacktriangleright/\blacktriangleright$ or $\blacktriangleleft/\blacktriangleleft$ key to move the pickup to halfway across the disc ($R = 35$ mm), then press the PGM key, the PLAY \blacktriangleright key, then the PAUSE \blacksquare key in that order to close the corresponding servos and put the player into play mode.
3. Adjust VR151 (TRK GAN) so that the Lissajous wave form is symmetrical about the X axis and the Y axis.

Figure 7

Tracking Gain Adjustment

8. Focus error signal (focus S curve) verification

● Objective	To judge whether the pickup is ok or not by observing the focus error signal. The pickup is judged from the amplitude of the tracking error signal (as discussed in the section on adjusting the tracking error balance) and the wave form for the focus error signal.		
● Symptom when out of adjustment			
● Measurement instrument connections	Connect the oscilloscope to TP1, Pin 6 (FCS ERR). [Settings] 100 mV/division 5 ms/division DC mode	● Player state ● Adjustment location ● Disc	Test mode, stop None YEDS-7

[Procedure]

1. Connect TP1 Pin 5 to ground.
2. Mount the disc.
3. While watching the oscilloscope screen, press the PGM key and observe the wave form in Figure 8 for a moment. Verify that the amplitude is at least 2.5 Vp-p and that the positive and negative amplitude are about equal. Since the wave form is only output for a moment when the PGM key is pressed, press this key over and over until you have checked the wave form.

Figure 8

[Judging the pickup]

Do not judge the pickup until all the adjustments have been made correctly. In the following cases, there may be something wrong with the pickup.

1. The tracking error signal amplitude is extremely small (less than 2 Vp-p).
2. The focus error signal amplitude is extremely small (less than 2.5 Vp-p).
3. The positive and negative amplitudes of the focus error signal are extremely asymmetrical (2:1 ratio or more).
4. The RF signal is too small (less than 0.8 Vp-p) and even if VR1 is adjusted (laser power), the RF signal can not be brought up to the standard level.

8. RÉGLAGE

1. Méthodes de réglage

Si le lecteur CD est mal réglé, il risque de ne plus fonctionner normalement, voire ne plus fonctionner du tout, même si le capteur et la circuiterie en présentent aucune anomalie. Par conséquent, ajuster le lecteur correctement en suivant les démarches de réglage.

1-1 Points de réglage/Point et ordre de vérification

Etape	Point	Point d'essai	Emplacement du réglage
1	Réglage du décalage de la mise au point	TP1, Broche 6 (FCS. ERR)	VR103 (FCS. OFS)
2	Réglage du réseau de diffraction	TP1, Broche 2 (TRK. ERR)	Fente de réglage du réseau de diffraction
3	Réglage d'équilibrage d'erreur d'alignement	TP1, Broche 2 (TRK. ERR)	VR102 (TRK. BAL)
4	Réglage d'inclinaison radiale/tangentielle du capteur	TP1, Broche 1 (RF)	Vis de réglage d'inclinaison radiale, Vis de réglage d'inclinaison tangentielle
5	Réglage du niveau RF	TP1, Broche 1 (RF)	VR1 (niveau RF)
6	Réglage de gain de boucle asservie de la mise au point	TP1, Broche 5 (FCS. IN) TP1, Broche 6 (FCS. ERR)	VR152 (FCS. GAN)
7	Réglage de gain de boucle asservie de l'alignement	TP1, Broche 3 (TRK. IN) TP1, Broche 2 (TRK. ERR)	VR151 (TRK. GAN)
8	Vérification du signal d'erreur de la mise au point	TP1, Broche 6 (FCS. ERR)	—

● Tableau des abréviations

- FCS. ERR : erreur de mise au point
- FCS. OFS : décalage de mise au point
- TRK. ERR : erreur d'alignement
- TRK. BAL : équilibrage d'erreur d'alignement
- FCS. IN : mise au point correcte
- TRK. IN : alignement correct

1-2 Instruments de mesure et outils

1. Oscilloscope cathodique à deux faisceaux (sonde 10:1)
2. Oscillateur de basse fréquence
3. Disque d'essai (YEDS-7)
4. Disque de 12 cm (avec au moins 70 minutes d'enregistrement)
5. Filtre passe-bas ($39 \text{ k}\Omega + 0,001 \mu\text{F}$)
6. Résistance ($100 \text{ k}\Omega$)
7. Clé hexagonale (M3 mm)
8. Outils conventionnels

1-3 Point d'essai et positions de réglage de la résistance variable

Figure 1 Emplacement des Réglages

1-4 Remarques

1. Utiliser une sonde 10:1 pour l'oscilloscope.
2. Toutes les positions (réglages) des boutons de l'oscilloscope, dans les démarches de réglage, sont conçues pour l'usage d'une sonde 10:1.

1-5 Mode d'essai

Ces modèles sont munis d'un mode d'essai, de façon que les réglages requis à la réparation puissent être effectués aisément. Quand ces modèles sont en mode d'essai, les touches du panneau avant ne fonctionnent pas comme à l'ordinaire. Les réglages et les vérifications peuvent s'effectuer par l'enclenchement de ces touches, à conditions de suivre les démarches requises. Dans le cas de ces modèles, tous les réglages sont réalisés en mode d'essai.

[Mise en mode d'essai]

Voici la manière de mettre le modèle en mode d'essai.

1. Commuter l'interrupteur d'alimentation sur arrêt.
2. Court-circuiter les fils de liaison du mode d'essai. (voir Figure 1.)
3. Commuter l'interrupteur d'alimentation sur marche.

Quand le mode d'essai est correctement réglé, l'affichage est différent de celui qui apparaît généralement à la mise sous tension. Si l'affichage reste le même, le mode d'essai n'a pas été réglé correctement. Dans ce cas, répéter les étapes 1 à 3.

[Pour sortir du mode d'essai]

Voici la procédure pour sortir du mode d'essai.

1. Appuyer sur la touche STOP pour arrêter toutes les opérations.
2. Sur le panneau avant, commuter l'interrupteur d'alimentation sur arrêt.

[Fonctionnement des touches en mode d'essai]

Code	Nom de la touche	Fonction en mode d'essai	Explications
	PGM (PROGRAMME)	Fermeture du circuit asservi de la mise au point	<p>Si le plateau n° 1 est fermé, il se place en mode de lecture. Ensuite la diode laser s'allume et l'actuateur de la mise au point s'abaisse, puis se relève lentement et le circuit servo de la mise au point se ferme au point où la lentille de l'objectif se focalise sur le disque.</p> <p>Quand l'appareil est dans cet état, si l'on fait légèrement tourner à la main le disque arrêté, le bruit produit par le circuit servo de la mise au point sera audible. Si ce bruit est perçu, le circuit servo de la mise au point fonctionne correctement. Si cette touche est enclenchée et qu'aucun disque n'est installé, la diode laser s'allume, l'actuateur de la mise au point s'abaisse, se relève, puis s'abaisse une deuxième fois et enfin, revient à sa position de départ.</p>
►	PLAY	Asservissement de rotation en service	<p>Démarre le moteur de rotation dans le sens des aiguilles d'une montre, quand la rotation du disque atteint la vitesse prescrite (environ 500 tours/min à la circonference interne) et place le circuit servo de rotation dans une boucle fermée.</p> <p>Attention. Si cette touche est enfoncée et qu'un disque n'est pas installé, le moteur de rotation va tourner à la vitesse maximum.</p> <p>Si le circuit servo de la mise au point ne passe pas comme prévu dans une boucle fermée ou que la diode laser brille dans le miroir à la périphérie externe du disque, le même symptôme se produit.</p>
■	PAUSE	Ouverture/Fermeture du circuit servo de l'alignement	<p>Le fait d'appuyer sur cette touche quand le circuit servo de la mise au point et de la rotation fonctionnent correctement en boucles fermées, place le circuit servo de l'alignement dans une boucle fermée, fait apparaître, sur le panneau avant, le numéro de la piste en cours de lecture et la durée écoulée, puis sort le signal de lecture.</p> <p>Si la durée écoulée n'est pas affichée ou n'est pas correctement calculée, ou si la reproduction sonore est anormale, il se peut que la diode laser s'active dans la section dépourvue de signaux enregistrés, au bord externe du disque, qu'un ajustement quelconque soit déréglé, ou qu'un autre problème se manifeste.</p> <p>Cette touche est de type à bascule et ouvre/ferme alternativement le circuit servo de l'alignement. Cette touche est inopérante si un disque n'est pas installé.</p>
◀ / ▶	TRACK/MANUAL SEARCH REV	Inversion du chariot (vers l'intérieur)	<p>Déplace le capteur vers la périphérie interne du disque.</p> <p>Quand cette touche est enclenchée et que le circuit servo de l'alignement travaille en boucle fermée, celui-ci change automatiquement dans une boucle ouverte.</p> <p>Comme le capteur ne s'arrête pas automatiquement au point de fin mécanique du mode d'essai, effectuer cette démarche avec précaution.</p>
▶ / ▶	TRACK/MANUAL SEARCH FWD	Inversion du chariot (vers l'extérieur)	<p>Déplace le capteur vers la périphérie externe du disque.</p> <p>Quand cette touche est enclenchée et que le circuit servo de l'alignement travaille en boucle fermée, celui-ci change automatiquement dans une boucle ouverte.</p> <p>Comme le capteur ne s'arrête pas automatiquement au point de fin mécanique du mode d'essai, effectuer cette démarche avec précaution.</p>
■	STOP	Arrêt	<p>Met tous les circuits servo hors service et les initialise.</p> <p>Le capteur reste là où il était quand cette touche a été enclenchée.</p>
▲	OPEN/CLOSE DISC 1	Ouverture/Fermeture	Cette touche est de type à bascule et ouvre/ferme alternativement le plateau. Le fait d'enfoncer cette touche quand le plateau est ouvert le ferme et vice versa.

[Lecture de disque en mode d'essai]

En mode d'essai, comme les circuits servo fonctionnent de manière indépendante, la lecture d'un disque exige que les touches soient enclenchées dans l'ordre prescrit, afin de fermer les circuits servo.

Voici l'ordre d'enclenchement des touches pour reproduire un disque en mode d'essai.

Attendre 2 à 3 secondes entre chaque opération.

1. Réglage du décalage de la mise au point

● Objectif	Règle le décalage CC de l'amplificateur d'erreur de mise au point.		
● Symptôme quand déréglé	Le lecteur ne procède plus à la mise au point et le signal RF n'est pas clair.		
● Raccordement des instruments de mesure	Raccorder l'oscilloscope à TP1, broche 6 (FCS ERR). [Réglages] 5 mV/division 10 ms/division mode CC	● Etat du lecteur	Mode d'essai, arrêté (juste l'interrupteur d'alimentation commuté sur marche)
		● Emplacement du réglage	VR103 (FCS OFS)
		● Disque	Aucun requis

[Marche à suivre]

Ajuster VR103 (FCS OFS) de façon que la tension à TP1 broche 6 (FCS ERR) soit -50 ± 50 mV.

2. Réglage du réseau de diffraction

● Objectif	Pour aligner les points du rayon laser producteur d'erreur d'alignement sur l'angle optimum de la piste		
● Symptôme quand déréglé	La lecture ne commence pas, la recherche de piste est impossible, les pistes sont sautées.		
● Raccordement des instruments de mesure	Raccorder l'oscilloscope à TP1, broche 2 (TRK ERR) via un filtre passe-bas. (Voir Figure 2) [Réglages] 50 mV/division 5 ms/division mode CC	● Etat du lecteur ● Emplacement du réglage ● Disque	Mode d'essai, circuits servo de la mise au point et de la rotation fermés, circuit servo de l'alignement ouvert Fente de réglage du réseau de diffraction du capteur Disque de 12 cm. (Il est impossible d'employer le disque YEDS-7).

[Marche à suivre]

1. Déplacer le capteur sur le bord externe du disque par la touche TRACK/ MANUAL SEARCH FWD $\blacktriangleright/\blacktriangleright$ ou la touche $\blacktriangleleft/\blacktriangleleft$, de façon que la fente de réglage du réseau de diffraction se situe sur bord extérieur du disque, où elle peut être réglée.
2. Appuyer sur la touche PGM, puis sur la touche PLAY \blacktriangleright , dans cet ordre, pour fermer le circuit servo de la mise au point, puis celui de la rotation.
3. Insérer un tournevis ordinaire dans le réseau de diffraction pour trouver le point zéro. Pour plus de détails, voir page suivante.
4. Si l'on tourne lentement le tournevis dans le sens contraire des aiguilles d'une montre à partir du point zéro, l'amplitude de l'onde augmente graduellement et si l'on continue à tourner le tournevis, l'amplitude de l'onde diminue de nouveau. Tourner le tournevis dans le sens contraire des aiguilles d'une montre à partir du point zéro et régler le réseau de diffraction au premier point où l'amplitude de l'onde atteint son maximum.

Référence: La Figure 3 illustre la relation entre l'angle du faisceau de l'alignement et la piste et la forme d'onde.

Remarque: L'amplitude du signal d'erreur d'alignement se situe aux environs de 3 Vc-c (quand un filtre passe-bas de $39 \text{ k}\Omega + 0,001 \mu\text{F}$ est utilisé). Si cette amplitude est extrêmement petite (2 Vc-c ou moins), la lentille de l'objectif risque alors de s'enfoncer ou le capteur risque de mal fonctionner. Si la différence entre l'amplitude du signal d'erreur au bord le plus intérieur et au bord le plus extérieur du disque est supérieure à 10%, ceci signifie que le réseau de diffraction n'est pas réglé à son point optimum. Dans ce cas, recommencer le réglage.

5. Replacer le capteur plus ou moins à mi-chemin sur le disque par la touche TRACK/ MANUAL SEARCH REV $\blacktriangleleft/\blacktriangleleft$, appuyer sur la touche PAUSE \blacksquare et vérifier que le numéro de piste et la durée écoulée sont affichés sur le panneau avant. Si ces paramètres n'apparaissent pas ce moment, ou que la durée écoulée change de manière irrégulière, vérifier le point zéro et recommencer le réglage du réseau de diffraction.

Figure 2

Emplacement des Réglages

[Repérage du point zéro]

Quand le tournevis est introduit dans la fente de réglage du réseau de diffraction et que l'angle du réseau de diffraction est modifié, l'amplitude du signal d'erreur d'alignement à TP1, broche 2, change. Dans les limites de la plage du réseau de diffraction, il existe six emplacements où l'amplitude de l'onde atteint le minimum. Mais l'enveloppe de la forme d'onde n'est régulière qu'à un seul de ces emplacements. Ce point se situe à l'endroit où les trois rayons laser, divisés par le réseau de diffraction, se situent exactement sur la même piste (voir Figure 3).

Ce point s'appelle le point zéro. Lors du réglage du réseau de diffraction, ce point zéro est repéré et utilisé comme position de référence.

Figure 3

3. Réglage d'équilibrage d'erreur d'alignement

● Objectif	Pour corriger la variation de sensibilité de la photodiode d'alignement		
● Symptôme quand déréglé	La lecture ne commence pas, la recherche de piste est impossible.		
● Raccordement des instruments de mesure	Raccorder l'oscilloscope à TP1, broche 2 (TRK ERR). [Réglages] 50 mV/division 5 ms/division mode CC	● Etat du lecteur ● Emplacement du réglage ● Disque	Mode d'essai, circuits servo de la mise au point et de la rotation fermés, circuit servo de l'alignement ouvert VR102 (TRK BAL) YEDS-7

[Marche à suivre]

1. Déplacer le capteur à mi-chemin sur le disque ($R = 35$ mm) par la touche TRACK/ MANUAL SEARCH FWD $\blacktriangleright/\blacktriangleright\blacktriangleright$ ou $\blacktriangleleft/\blacktriangleleft\blacktriangleleft$.
2. Appuyer sur la touche PGM, puis sur la touche PLAY \blacktriangleright , dans cet ordre, pour fermer le circuit servo de la mise au point, puis celui de la rotation.
3. Aligner la ligne lumineuse (masse) au centre de l'écran de l'oscilloscope et placer celui-ci en mode CC.
4. Ajuster VR102 (TRK BAL) de façon que l'amplitude positive et l'amplitude négative du signal d'erreur d'alignement à TP1, broche 2 (TRK ERR) soient identiques (c'est-à-dire, qu'il n'y ait aucun composant CC).

4. Réglage d'inclinaison radiale/tangentielle du capteur

● Objectif	Pour régler l'angle du capteur par rapport au disque, de façon que les rayons laser frappent verticalement le disque et permettre ainsi la lecture optimum des signaux RF.		
● Symptôme quand déréglé	Son interrompu; certains disques peuvent être lus et pas d'autres.		
● Raccordement des instruments de mesure	Raccorder l'oscilloscope à TP1, broche 1 (RF). [Réglages] 20 mV/division 200 ns/division mode CA	● Etat du lecteur ● Emplacement du réglage ● Disque	Mode d'essai, lecture Vis de réglage d'inclinaison radiale Vis de réglage d'inclinaison tangentielle Disque de 12 cm. (Il est impossible d'employer le disque YEDS-7).

[Marche à suivre]

1. Déplacer le capteur sur le bord externe du disque par la touche TRACK/ MANUAL SEARCH FWD ➤/➤ ou ➤/➤, de façon que les vis de réglage d'inclinaison radiale et tangentielle puissent être réglées.
2. Appuyer sur la touche PGM, PLAY ➤ et PAUSE ■ dans cet ordre, afin de fermer le circuit servo de la mise au point, puis celui de la rotation et placer le lecteur en mode de lecture.
3. D'abord, ajuster la vis d'inclinaison radiale à l'aide d'une clé hexagonale M de 3 mm, de façon que le motif en oeil (c'est-à-dire, le diamant au centre du signal RF) soit le plus clairement visible.
4. Ensuite, ajuster la vis d'inclinaison tangentielle à l'aide d'une clé hexagonale M de 3 mm, de façon que le motif en oeil (c'est-à-dire, le diamant au centre du signal RF) soit le plus clairement visible (Figure 5).
5. Ajuster de nouveau la vis d'inclinaison radiale et la vis d'inclinaison tangentielle de façon que le motif en oeil soit le plus clairement visible. Le cas échéant, régler les deux vis de façon que le motif en oeil soit le plus clairement visible.

Remarque: "Radial" et "tangential" se rapportent aux sens par rapport au disque illustré à la Figure 4.

Déréglé

Réglage optimum

Déréglé

Déréglé

Déréglé

Réglage optimum

Figure 5 Motif en oeil

5. Réglage du niveau RF (niveau RF)

● Objectif	Pour optimiser l'amplitude du signal RF de lecture		
● Symptôme quand déréglé	Pas de lecture ni de recherche		
● Raccordement des instruments de mesure	Raccorder l'oscilloscope à TP1, broche 1 (RF) [Réglages] 50 mV/division 10 ms/division mode CA	● Etat du lecteur ● Emplacement du réglage ● Disque	Mode d'essai, lecture VR1 (alimentation du laser) YEDS-7

[Marche à suivre]

1. Placer le capteur à mi-chemin sur le disque ($R = 35$ mm) à l'aide de la touche TRACK/ MANUAL SEARCH FWD $\blacktriangleright\blacktriangleright$ ou $\blacktriangleleft\blacktriangleleft$. Ensuite, appuyer sur la touche PGM puis sur la touche PLAY \blacktriangleright , dans cet ordre, pour fermer les circuits servo respectifs et mettre le lecteur en mode de lecteur.
2. Ajuster VR1 (alimentation du laser) de façon que l'amplitude du signal RF atteigne $1,2 \text{ Vc-c} \pm 0,1\text{V}$.

6. Réglage de gain de boucle asservie de la mise au point

● Objectif	Pour optimiser le gain de la boucle d'asservissement de la mise au point.		
● Symptôme quand déréglé	La lecture ne commence pas ou l'actuateur de la mise au point est parasité.		
● Raccordement des instruments de mesure	Voir Figure 6 [Réglages] CAN. 1 CAN. 2 20 mV/division 5 mV/division Mode X-Y	● Etat du lecteur ● Emplacement du réglage ● Disque	Mode d'essai, lecture VR152 (FCS GAN) YEDS-7

[Marche à suivre]

1. Régler la sortie du générateur AF sur 1,2 kHz et 1 Vc-c.
2. Appuyer sur la touche TRACK/ MANUAL SEARCH FWD ►►/► ou la touche ◀◀/◀ pour placer le capteur à mi-chemin sur le disque ($R = 35$ mm). Ensuite, appuyer sur la touche PGM, la touche PLAY ►, puis sur la touche PAUSE ■, dans cet ordre, pour fermer les circuits servo respectifs et placer le lecteur en mode de lecture.
3. Ajuster VR152 (FSC GAN) de façon que la forme d'onde de Lissajous soit symétrique aux alentours de l'axe X et l'axe Y.

Figure 6

Adjustment de gain de mise au point

7. Réglage de gain de boucle asservie de l'alignement

● Objectif	Pour optimiser le gain de la boucle d'asservissement de l'alignement.		
● Symptôme quand déréglé	La lecture ne commence pas, l'actuateur est parasité pendant la recherche, ou des pistes sont sautées.		
● Raccordement des instruments de mesure	Voir Figure 7 [Réglages] CAN. 1 CAN. 2 50 mV/division 50 mV/division Mode X-Y	● Etat du lecteur ● Emplacement du réglage ● Disque	Mode d'essai, lecture VR151 (TRK GAN) YEDS-7

[Marche à suivre]

1. Régler la sortie du générateur AF sur 1,2 kHz et 1 Vc-c.
2. Appuyer sur la touche TRACK/ MANUAL SEARCH FWD ►► / ►► ou la touche ►◄ / ◀◄ pour placer le capteur à mi-chemin sur le disque ($R = 35$ mm). Ensuite, appuyer sur la touche PGM, la touche PLAY ►, puis sur la touche PAUSE ■, dans cet ordre, pour fermer les circuits servo respectifs et placer le lecteur en mode de lecture.
3. Ajuster VR151 (TRK GAN) de façon que la forme d'onde de Lissajous soit symétrique aux alentours de l'axe X et l'axe Y.

Figure 7

Adjustment de gain d'alignement

8. Vérification du signal d'erreur de la mise au point

● Objectif	Pour juger si le capteur est bon ou pas, en observant le signal d'erreur de la mise au point. L'état du capteur s'évalue à partir de l'amplitude du signal d'erreur d'alignement (comme décrit dans le paragraphe relatif à l'équilibrage d'erreur d'alignement), ainsi qu'à partir de la forme d'onde du signal d'erreur de mise au point.		
● Symptôme quand déréglé			
● Raccordement des instruments de mesure	Raccorder l'oscilloscope à TP1, broche 6 (FCS ERR). [Réglages] 100 mV/division 5 ms/division mode CC	● Etat du lecteur	Mode de test, arrêt
		● Emplacement du réglage	Aucun
		● Disque	YEDS-7

[Marche à suivre]

1. Raccorder TP1, broche 5 à la masse.
2. Installer le disque.
3. Tout en regardant l'écran de l'oscilloscope, appuyer sur la touche PGM et observer la forme d'onde de la Figure 8, pendant quelques instants. Vérifier que l'amplitude atteint au moins 2,5 Vc-c et que les amplitudes positive et négatives soient égales. Comme la forme ne sort que pour un moment, quand la touche PGM est enclenchée, appuyer sur à plusieurs reprises sur cette touche, jusqu'à ce que la forme d'onde ait été vérifiée.

Figure 8

[Evaluation du capteur]

Ne pas tenter d'évaluer l'état du capteur tant que tous les réglages ne sont pas corrects. Les cas suivants témoignent de l'anomalie du capteur.

1. L'amplitude du signal d'erreur d'alignement est extrêmement petite (inférieure à 2 Vc-c).
2. L'amplitude du signal d'erreur de mise au point est extrêmement petite (inférieure à 2,5 Vc-c).
3. Les amplitudes positive et négative du signal d'erreur de mise au point sont extrêmement asymétriques (taux 2:1 ou plus).
4. Le signal RF est trop petit (inférieur à 0,8 Vc-c) et même si VR1 (alimentation du laser) est ajustée, le signal RF ne peut être élevé au niveau standard.

8. AJUSTE

1. Métodos de ajuste

Si un reproductor de discos compactos se ajusta incorrecta o inadecuadamente, puede funcionar mal o no trabajar incluso aunque no exista ningún problema en el captor ni en los circuitos. Ajuste correctamente siguiendo el procedimiento de ajuste.

1-1 Ítems de ajuste/verificación y orden

Paso	Ítem	Punto de prueba	Lugar de ajuste
1	Ajuste del descentramiento de enfoque	TP1, Patilla 6 (FCS. ERR)	VR103 (FCS. OFS)
2	Ajuste de retícula	TP1, Patilla 2 (TRK. ERR)	Ranura de ajuste de retícula
3	Ajuste del equilibrio de ajuste de seguimiento	TP1, Patilla 2 (TRK. ERR)	VR102 (TRK. BAL)
4	Ajuste de la inclinación en sentido radial/tangencial del captor	TP1, Patilla 1 (RF)	Tornillo de ajuste de la inclinación radial Tornillo de ajuste de la inclinación tangencial
5	Ajuste del nivel de RF	TP1, Patilla 1 (RF)	VR1 (Nivel de RF)
6	Ajuste de la ganancia del bucle del servo de enfoque	TP1, Patilla 5 (FCS. IN) TP1, Patilla 6 (FCS. ERR)	VR152 (FCS. GAN)
7	Ajuste de la ganancia del bucle del servo de seguimiento	TP1, Patilla 3 (TRK. IN) TP1, Patilla 2 (TRK. ERR)	VR151 (TRK. GAN)
8	Verificación de la señal de error de enfoque	TP1, Patilla 6 (FCS. ERR)	—

● Tabla de abreviaturas

- FCS. ERR : Error de enfoque
- FCS. OFS : Descentramiento de enfoque
- TRK. ERR : Error de seguimiento
- TRK. BAL : Equilibrio de seguimiento
- FCS. IN : Entrada de enfoque
- TRK. IN : Entrada de seguimiento

1-2 Instrumentos y herramientas de medición

1. Osciloscopio de doble traza (Sonda de 10:1)
2. Oscilador de baja frecuencia
3. Disco de prueba (YEDS-7)
4. Disco de 12 cm (con 70 minutos de grabación por lo menos)
Para el tipo de reproducción múltiple de disco compacto, emplee solamente el disco de prueba YEDS-7.
5. Filtro de paso bajo ($39 \text{ k}\Omega + 0,001 \mu\text{F}$)
6. Resistor ($100 \text{ k}\Omega$)
7. Llave hexagonal (M3 mm)
8. Herramientas estándar

1-3 Ubicación de los puntos de prueba y los resistores variables de ajuste

Figura 1 Lugares de Ajuste

1-4 Notas

1. Emplee una sonda de 10:1 para el osciloscopio.
2. Todas las posiciones de los mandos (ajustes) para el osciloscopio de los procedimientos de ajuste son para cuando se emplee la sonda de 10:1.

1-5 Modo de prueba

Estos modelos poseen un modo de prueba que permite realizar fácilmente los ajustes y las comprobaciones requeridos para el servicio. Cuando estos modelos estén en el modo de prueba, las teclas del panel frontal trabajarán de forma diferente a la normal. Los ajustes y las comprobaciones podrán realizarse accionando estas teclas de acuerdo con el procedimiento correcto. Para estos modelos, todos los ajustes se realizarán en el modo de prueba.

[Puesta de estos modelos en el modo de prueba]

A continuación se indica cómo poner estos modelos en el modo de prueba.

1. Ponga en OFF el interruptor de alimentación.
2. Cortocircuite los hilos de puenteado de modo de prueba. (Consulte la figura 1.)
3. Ponga en ON el interruptor de alimentación.

Cuando haya ajustado correctamente el modo de prueba, la visualización será diferente a la obtenida normalmente al conectar la alimentación. Si la visualización sigue siendo la normal, el modo de prueba no se habrá ajustado normalmente, por lo que tendrá que repetir los pasos 1 a 3.

[Desactivación del modo de prueba]

A continuación se indica el procedimiento para desactivar el modo de prueba.

1. Presione la tecla STOP y cese todas las operaciones.
2. Ponga en OFF el interruptor de alimentación del panel frontal.

[Operaciones de teclas en el modo de prueba]

Código	Nombre de la tecla	Función en el modo de prueba	Explicación
	PGM (PROGRAMA)	Cierre del servo de enfoque	<p>Si la bandeja de disco 1 está cerrada, ésta se moverá hasta la posición de reproducción. Despues el diodo láser se encenderá y el actuador de enfoque descenderá, despues se elevará lentamente, y el servo de enfoque se cerrará en el punto en el que el objetivo se enfoque sobre el disco.</p> <p>Con el reproductor en este estado, si gira ligeramente con la mano el disco parado podrá oír el sonido del servo de enfoque.</p> <p>Si puede oír este sonido, el servo de enfoque estará funcionando correctamente. Si presiona esta tecla sin disco montado, el diodo láser se encenderá, el actuador de enfoque se verá empujado hacia abajo, y despues se levantará y descenderá dos veces, y volverá a su posición original.</p>
►	PLAY	Activación del servo del eje	<p>Pondrá en marcha el motor del eje haciéndolo girar hacia la derecha y despues la rotación del disco alcanzará la velocidad prescrita (unas 500 rpm en la periferia interior), y pondrá el servo del eje en un bucle cerrado.</p> <p>Tenga cuidado. Si presiona esta tecla cuando no haya disco montado, el motor del eje girará a la velocidad máxima.</p> <p>Si el servo de enfoque no pasa correctamente a un bucle cerrado, o si el haz lasérico incide en la sección del espejo en la periferia del disco, ocurrirá el mismo síntoma.</p>
	PAUSE	Apertura/cierre del servo de seguimiento	<p>Si presiona esta tecla cuando el servo de enfoque y el servo del eje están funcionando correctamente en bucles cerrados, el servo de seguimiento se pondrá en bucle cerrado, en el panel frontal se visualizarán el número de canción que esté reproduciéndose y el tiempo transcurrido, y se producirá la salida de la señal de reproducción.</p> <p>Si el tiempo transcurrido no se visualiza o no se cuenta correctamente, o si el sonido no se reproduce correctamente, es posible que el rayo lasérico esté incidiendo en la sección sin sonido grabado en el borde exterior del disco, o que exista algún otro problema.</p> <p>Esta tecla es basculante (de acción alternativa) y abre/cierra el servo de seguimiento alternativamente. Esta tecla no funcionará cuando no haya disco montado.</p>
◀◀ / ▶▶	TRACK/ MANUAL SEARCH REV	Retroceso del carro (hacia adentro)	<p>Moverá la posición del captor hacia el diámetro interior del disco.</p> <p>Si presiona esta tecla con el servo de seguimiento en bucle cerrado, dicho bucle pasará automáticamente a bucle abierto. Como el captor no se para automáticamente en el punto final mecánico en el modo de prueba, tenga cuidado cuando realice esta operación.</p>
▶▶ / ▶▶	TRACK/ MANUAL SEARCH FWD	Avance del carro (hacia afuera)	<p>Moverá la posición del captor hacia la periferia del disco.</p> <p>Si presiona esta tecla con el servo de seguimiento en bucle cerrado, dicho bucle pasará automáticamente a bucle abierto. Como el captor no se para automáticamente en el punto final mecánico en el modo de prueba, tenga cuidado cuando realice esta operación.</p>
■	STOP	Parada	<p>Desactivará todos los servos e inicializará la unidad.</p> <p>El captor permanecerá donde estaba cuando se presionó esta tecla.</p>
▲	OPEN/CLOSE DISC1	Apertura/cierre de la bandeja del disco	Abrirá/cerrará la bandeja del disco. Esta tecla es basculante (de acción alternativa) y abre/cierra la bandeja alternativamente.

[Cómo reproducir un disco en el modo de prueba]

En el modo de prueba, como los servos funcionan independientemente, la reproducción de un disco requiere el que usted emplee las teclas en el orden correcto para cerrar los servos.

A continuación se indica la secuencia de operación de teclas para reproducir un disco en el modo de prueba.

PGM

Hará que se encienda el diodo láser y cerrará el servo de enfoque.

PLAY ►

Pondrá en marcha el motor del eje y hará que se cierre el servo del eje.

PAUSE ■■

Cerrará el servo de seguimiento.

Espere de 2 a 3 segundos por lo menos entre cada una de estas operaciones.

1. Ajuste del descentramiento del enfoque

● Objetivo	Ajuste de la tensión de CC para el amplificador de error de enfoque.		
● Síntomas en caso de desajuste	El reproductor no enfoca y la señal de RF contiene perturbaciones.		
● Conexión de los instrumentos de medición	<p>Conecte el osciloscopio a TP1, patilla 6, (FCS ERR).</p> <p>[Ajustes] 5 mV/división 10 ms/división modo de CC</p>	<ul style="list-style-type: none"> ● Estado del reproductor ● Lugar de ajuste ● Disco 	<p>Modo de prueba, parado (con el interruptor de alimentación en ON)</p> <p>VR103 (FCS OFS)</p> <p>No es necesario</p>

[Procedimiento]

Ajuste VR103 (FCS OFS) de forma que la tensión de CC de TP1, patilla 6, (FCS ERR) sea de -50 ± 50 mV.

2. Ajuste de retícula

● Objetivo	Alineación de los puntos del haz láserico de generación de error de seguimiento al ángulo óptimo en la pista		
● Síntomas en caso de desajuste	La reproducción no se inicia, la búsqueda de canciones es imposible, las pistas se saltan.		
● Conexión de los instrumentos de medición	<p>Conecte el osciloscopio a TP1, patilla 2, (TRK ERR) a través de un filtro de paso bajo. (Consulte la figura 2)</p> <p>[Ajustes] 50 mV/división 5 ms/división modo de CC</p>	<p>● Estado del reproductor</p> <p>● Lugar de ajuste</p> <p>● Disco</p>	<p>Modo de prueba, servos de enfoque y del eje cerrados, y servo de seguimiento abierto</p> <p>Ranura de ajuste de retícula del captor</p> <p>Disco de 12 cm. (El disco YEDS-7 no podrá emplearse.)</p>

[Procedimiento]

- Mueva el captor hasta el borde exterior del disco con la tecla TRACK/MANUAL SEARCH FWD $\gg\gg$ o $\gg\gg\gg$ de forma que la ranura de ajuste de la retícula quede en el borde exterior del disco, donde puede ajustarse.
- Presione la tecla PGM, y después la tecla PLAY \blacktriangleright , por este orden, a fin de cerrar el servo de enfoque y después el servo del eje.
- Inserte un destornillador normal en la ranura de ajuste de la retícula y ajuste la retícula hasta encontrar el punto nulo. Para más detalles, consulte la página siguiente.
- Si gira lentamente el destornillador hacia la izquierda desde el punto nulo, la amplitud de la onda aumentará gradualmente. Después, si continúa girando el destornillador, la amplitud de la onda se volverá otra vez más pequeña. Gire el destornillador hacia la izquierda desde el punto nulo y ajuste la retícula al primer punto en el que la amplitud de la onda alcance su valor máximo.

Referencia: En la figura 3 se muestra la relación entre el ángulo del haz de seguimiento con la pista y la forma de onda.

Nota: La amplitud de la señal de error de seguimiento será de aproximadamente 3 Vp-p (cuando se emplee un filtro de paso bajo de $39 \text{ k}\Omega$, $0,001 \mu\text{F}$). Si esta amplitud es extremadamente pequeña (2 Vp-p o menos), es posible que el objetivo esté sucio o que el captor esté funcionando mal. Si la diferencia entre la amplitud de la señal de error en el borde interior y exterior del disco es superior al 10%, la retícula no estará ajustada al punto óptimo, por lo que tendrá que volver a ajustarla.

- Devuelva el captor hasta la mitad más o menos del disco con la tecla TRACK/MANUAL SEARCH REV $\ll\ll$ o $\ll\ll\ll$, presione la tecla PAUSE \blacksquare , y vuelva a comprobar si en el panel frontal se visualizan el número de canción y el tiempo transcurrido. Si no se visualizan esta vez, o si el tiempo transcurrido cambia irregularmente, vuelva a comprobar el punto nulo y ajuste otra vez la retícula.

Figura 2

Lugares de Ajuste

[Cómo encontrar el punto nulo]

Cuando inserte el destornillador normal en la ranura para el ajuste de la retícula y cambie el ángulo de la misma. La amplitud de la señal de error de seguimiento de TP1, patilla 2, cambiará. Dentro del margen para la retícula existen cinco o seis lugares en los que la amplitud alcanza el valor mínimo. De estos cinco o seis lugares, solamente hay uno en el que la envolvente de la forma de onda es uniforme. Este lugar es donde los tres haces lásericos divididos por la retícula se encuentran exactamente sobre la misma pista. (Consulte la figura 3.) Este punto se denomina punto nulo. Cuando ajuste la retícula, este punto se encontrará y empleará como posición de referencia.

Figura 3

3. Ajuste del equilibrio de error de seguimiento

● Objetivo	Corrección de la variación de la sensibilidad del fotodiodo de seguimiento		
● Síntomas en caso de desajuste	La reproducción no se inicia o la búsqueda de canciones es imposible.		
● Conexión de los instrumentos de medición	<p>Conecte el osciloscopio a TP1, patilla 2, (TRK ERR). Esta conexión puede realizarse a través de un filtro de paso bajo.</p> <p>[Ajustes] 50 mV/división 5 ms/división modo de CC</p>	<p>● Estado del reproductor</p> <p>● Lugar de ajuste</p> <p>● Disco</p>	<p>Modo de prueba, servos de enfoque y del eje cerrados, y servo de seguimiento abierto</p> <p>VR102 (TRK BAL)</p> <p>YEDS-7</p>

[Procedimiento]

- Mueva el captor hasta la mitad del disco ($R = 35$ mm) con la tecla TRACK/MANUAL SEARCH FWD $\gg/\gg\triangleright$ o $\ll/\ll\leftarrow$.
- Presione la tecla PGM, y después la tecla PLAY \blacktriangleright , por este orden, a fin de cerrar el servo de enfoque y después el servo del eje.
- Haga coincidir la línea brillante (masa) del centro de la pantalla del osciloscopio y ponga éste en el modo de CC.
- Ajuste VR102 (TRK BAL) de forma que la amplitud positiva y la negativa de la señal de error de seguimiento de TP1, patilla 2, (TRK ERR) sean iguales (en otras palabras, de forma que no haya componente de CC).

Cuando hay componente de CC

Cuando no hay componente de CC

4. Ajuste de la inclinación en sentido radial/tangencial del captor

● Objetivo	Ajustar el ángulo del captor en relación con el disco de forma que los haces lásericos incidan perpendicularmente sobre el mismo a fin de poder leer con la mayor exactitud las señales de RF.		
● Síntomas en caso de desajuste	Sonido quebrado, algunos discos pueden reproducirse pero otros no.		
● Conexión de los instrumentos de medición	Conecte el osciloscopio a TP1, patilla 1, (RF). [Ajustes] 20 mV/división 200 ns/división modo de CA	● Estado del reproductor ● Lugar de ajuste ● Disco	Modo de prueba, reproducción Tornillo de ajuste de la inclinación radial y tornillo de ajuste de la inclinación tangencial Disco de 12 cm. (El disco YEDS-7 no podrá emplearse.)

[Procedimiento]

1. Mueva el captor hasta el borde exterior del disco con la tecla TRACK/MANUAL SEARCH FWD $\blacktriangleright\blacktriangleright$ o $\blacktriangleleft\blacktriangleleft$ de forma que puedan ajustarse los tornillos de inclinación radial/tangencial.
Presione la tecla PGM, la tecla PLAY \blacktriangleright , y después la tecla PAUSE \blacksquare , por este orden, a fin de cerrar el servo de enfoque, después el servo del eje, y por último para poner el reproductor en el modo de reproducción.
2. En primer lugar, gire el tornillo de ajuste de inclinación radial con una llave hexagonal M 3 mm hasta que el patrón ocular (la forma de diamante del centro de la señal de RF) pueda verse con la mayor claridad.
3. A continuación, ajuste el tornillo de ajuste de inclinación tangencial con una llave hexagonal M 3 mm hasta que el patrón ocular (la forma de diamante del centro de la señal de RF) pueda verse con la mayor claridad (figura 5).
4. Vuelva a girar el tornillo de ajuste de inclinación radial y el tornillo de inclinación tangencial hasta que el patrón ocular pueda verse con la mayor claridad. Si es necesario, ajuste alternativamente los dos tornillos hasta que el patrón ocular pueda verse con la mayor claridad.

Nota: Radial y tangencial significan las direcciones en relación con el disco mostrado en la figura 4.

Figura 5 Patron Optico

5. Ajuste del nivel de RF

<ul style="list-style-type: none"> ● Objetivo ● Síntomas en caso de desajuste 	<p>Optimización de la amplitud de la señal de RF de reproducción</p> <p>La reproducción no se inicia o la búsqueda de canciones es imposible.</p>		
<ul style="list-style-type: none"> ● Conexión de los instrumentos de medición 	<p>Conecte el osciloscopio a TP1, patilla 1, (RF).</p> <p>[Ajustes] 50 mV/división 10 ms/división modo de CA</p>	<ul style="list-style-type: none"> ● Estado del reproductor ● Lugar de ajuste ● Disco 	<p>Modo de prueba, reproducción</p> <p>VR1 (potencia de láser)</p> <p>YEDS-7</p>

[Procedimiento]

1. Mueva el captor hasta la mitad del disco ($R = 35$ mm) con la tecla TRACK/MANUAL SEARCH FWD $\blacktriangleright\blacktriangleright$ o $\blacktriangleleft\blacktriangleleft$, presione la tecla PGM, después la tecla PLAY \blacktriangleright , por este orden a fin de cerrar los servos respectivos, y ponga el reproductor en el modo de reproducción.
2. Ajuste VR1 (potencia de láser) de forma que la amplitud de la señal de RF sea de $1,2$ Vp-p $\pm 0,1$ V.

6. Ajuste de la ganancia del bucle del servo de enfoque

● Objetivo	Optimización de la ganancia del bucle del servo de enfoque		
● Síntomas en caso de desajuste	La reproducción no se inicia o el actuador de enfoque produce ruido.		
● Conexión de los instrumentos de medición	<p>Consulte la figura 6. [Ajustes]</p> <p>CH1 CH2 20 mV/división 5 mV/división Modo X-Y</p>	<ul style="list-style-type: none"> ● Estado del reproductor ● Lugar de ajuste ● Disco 	<p>Modo de prueba, reproducción</p> <p>VR152 (FCS GAN)</p> <p>YEDS-7</p>

[Procedimiento]

1. Ajuste la salida del generador de AF a 1,2 kHz y 1 Vp-p.
2. Presione la tecla TRACK/MANUAL SEARCH FWD $\blacktriangleright/\blacktriangleright\blacktriangleright$ o $\blacktriangleleft/\blacktriangleleft\blacktriangleleft$ para mover el captor hasta la mitad del disco ($R = 35$ mm), y después presione la tecla PGM, la tecla PLAY \blacktriangleright , y después la tecla PAUSE \blacksquare , por este orden, a fin de cerrar los servos correspondientes y poner el reproductor en el modo de reproducción.
3. Ajuste VR152 (FCS GAN) hasta que la forma de onda de Lissajous sea simétrica alrededor del eje X y el eje Y.

Figura 6

Ajuste de la ganancia de enfoque

Ganancia superior

Ganancia óptima

Ganancia inferior

7. Ajuste de la ganancia del bucle del servo de seguimiento

● Objetivo	Optimización de la ganancia del bucle del servo de seguimiento		
● Síntomas en caso de desajuste	La reproducción no se inicia, el actuador de enfoque produce ruido, o se saltan pistas.		
● Conexión de los instrumentos de medición	<p>Consulte la figura 7. [Ajustes] CH1 CH2 50 mV/división 50 mV/división Modo X-Y</p>	<ul style="list-style-type: none"> ● Estado del reproductor ● Lugar de ajuste ● Disco 	Modo de prueba, reproducción VR151 (TRK GAN) YEDS-7

[Procedimiento]

1. Ajuste la salida del generador de AF a 1,2 kHz y 1 Vp-p.
2. Presione la tecla TRACK/MANUAL SEARCH FWD $\blacktriangleright\blacktriangleright$ o $\blacktriangleleft\blacktriangleleft$ para mover el captor hasta la mitad del disco ($R = 35$ mm), y después presione la tecla PGM, la tecla PLAY \blacktriangleright , y la tecla PAUSE $\blacksquare\blacksquare$, por este orden, a fin de cerrar los servos respectivos y poner el reproductor en el modo de reproducción.
3. Ajuste VR151 (TRK GAN) hasta que la forma de onda de Lissajous sea simétrica alrededor del eje X y el eje Y.

Figura 7

Ajuste de la ganancia de seguimiento

8. Verificación de la señal de error de enfoque (curva S de enfoque)

● Objetivo	Juzgar si el captor está bien o no observando la señal de error de enfoque. El captor se juzga por la amplitud de la señal de error de seguimiento (como se ha indicado en la sección sobre el ajuste del equilibrio de error de seguimiento) y la forma de onda de la señal de error de enfoque.		
● Síntomas en caso de desajuste			
● Conexión de los instrumentos de medición	<p>Conecte el osciloscopio a TP1, patilla 6, (FCS ERR).</p> <p>[Ajustes] 100 mV/división 5 ms/división modo de CC</p>	<p>● Estado del reproductor</p> <p>● Lugar de ajuste</p> <p>● Disco</p>	<p>Modo de prueba, parada</p> <p>Ninguno</p> <p>YEDS-7</p>

[Procedimiento]

1. Conecte TP1, patilla 5, a masa.
2. Coloque el disco.
3. Contemplando la pantalla del osciloscopio, presione la tecla PGM y observe durante un momento la forma de onda de la figura 8. Verifique si la amplitud es de 2,5 Vp-p por lo menos y si la amplitud de las partes positiva y negativa son iguales. Como la forma de onda solamente sale durante un momento cuando se presiona la tecla PGM, presione una y otra vez esta tecla hasta que logre comprobar la forma de onda.

Figura 8

[Juicio sobre el captor]

No juzgue el captor hasta haber finalizado correctamente todos los ajustes. En los casos siguientes es posible que haya algo erróneo en el captor.

1. La amplitud de la señal de error de seguimiento es extremadamente pequeña (menos de 2 Vp-p).
2. La amplitud de la señal de error de enfoque es extremadamente pequeña (menos de 2,5 Vp-p).
3. Las amplitudes de las partes positiva y negativa de la señal de error de enfoque son extremadamente asimétricas (relación de 2:1 o superior).
4. La señal de RF es demasiado pequeña (menos de 0,8 Vp-p) y aunque se ajuste VR1 (potencia de láser), la señal de RF no puede aumentarse hasta el nivel estándar.

9. IC INFORMATION (TC9237N)

● TC9237N (DIGITAL FILTER & D/A CONVERTER)

Pin Function

Pin No.	Pin Name	I/O	Function	Remarks															
1	M/L	I	MSB First/LSB First select terminal for input data "H" : MSB First, "L" : LSB First	Pull-up															
2	MUTE	I	Muting terminal "H" : mutes output signal																
3	AT	I	Normally "H"																
4	VDA	-	Power input for DA converter (R channel)																
5	RO	O	R channel data output terminal																
6	\overline{RO}	O	R channel data output terminal																
7	GNDA	-	Ground terminal for DA converter (R channel)																
8	GNDA	-	Ground terminal for DA converter (L channel)																
9	\overline{LO}	O	L channel data output terminal																
10	LO	O	L channel data output terminal																
11	VDA	-	Power input for DA converter (L channel)																
12	C	I	Fix to "L".																
13	TEST	I	Test terminal Normally "H" or open	Pull-up															
14	GND	-	Ground terminal for logic section																
15	GNDX	-	Ground terminal for oscillator output section																
16	XI	I	Crystal oscillator input Generates clock necessary for the system. 384fs																
17	XO	O																	
18	VDX	-	Power input for oscillator output																
19	MCK	O	System clock output terminal 384fs																
20	EM1	I	44.1 kHz/32 kHz/48 kHz mode select terminal for deemphasis filter																
21	EM2	I	<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>EM1</td><td>L</td><td>L</td><td>H</td><td>H</td></tr> <tr> <td>EM2</td><td>L</td><td>H</td><td>H</td><td>L</td></tr> <tr> <td>Mode</td><td>44.1 kHz</td><td>32 kHz</td><td>48 kHz</td><td></td></tr> </table>	EM1	L	L	H	H	EM2	L	H	H	L	Mode	44.1 kHz	32 kHz	48 kHz		
EM1	L	L	H	H															
EM2	L	H	H	L															
Mode	44.1 kHz	32 kHz	48 kHz																
22	R/L	I	R/L select terminal "H" : LRCK signal ("H" : R channel data input, "L" : L channel data input) "L" : LRCK signal ("H" : L channel data input, "L" : R channel data input)	Pull-up															
23	EMP	I	Deemphasis filter ON/OFF select terminal "H" : ON, "L" : OFF																
24	HS	I	Normal/high speed select terminal "H" : normal operation, "L" : high speed																
25	DATA	I	Data input terminal																
26	BCK	I	Bit clock input terminal																
27	LRCK	I	LR clock input terminal																
28	VDD	-	Power input for logic section																

10. FOR PD-Z74T/HEMXJ, HB, HBXJ, SD, HPW AND PD-Z570T/SD TYPES

CONTRAST OF MISCELLANEOUS PARTS

NOTES:

- Parts without part number cannot be supplied.
- The **▲** mark found on some component parts indicates the importance of the safety factor of the part. Therefore, when replacing, be sure to use parts of identical designation.
- Parts marked by “**◎**” are not always kept in stock. Their delivery time may be longer than usual or they may be unavailable.

10.1 FOR PD-Z74T/HEMXJ, HB, HBXJ, SD AND HPW TYPES

The PD-Z74T/HEMXJ, HB, HBXJ, SD and HPW types are the same as the PD-Z74T/HEM type with the exception of the following section.

Mark	Symbol & Description	Part No.						Remarks
		PD-Z74T/ HEM type	PD-Z74T/ HEMXJ type	PD-Z74T/ HB type	PD-Z74T/ HBXJ type	PD-Z74T/ SD type	PD-Z74T/ HPW type	
◎	MOTHER BOARD ASSEMBLY	PWM1350	PWM1347	PWM1350	PWM1347	PWM1348	PWM1350	
▲	AC power cord	PDG1008	PDG1008	PDG1021	PDG1021	RDG1003	PDG1011	
▲	Power transformer (AC220/240V)	PTT1125	PTT1125	PTT1125	PTT1125	PTT1125	
▲	Power transformer (AC110/120-127/220/240V)	PTT1126	
▲	Voltage selector	PSB1002	
	Operating instructions (English, French, German, Italian, Dutch, Spanish, Portuguese, Swedish)	PRE1136	PRE1136	
	Operating instructions (English)	PRB1135	PRB1135	PRB1135	PRB1135	
	Operating instructions (Spanish)	PRC1021	
	Packing case	PHG1578	PHG1590	PHG1578	PHG1590	PHG1578	PHG1578	

◎ MOTHER BOARD ASSEMBLY (PWM1347 and PWM1348)

The mother board assemblies (PWM1347) and (PWM1348) are the same as the mother board assembly (PWM1350) with the exception of the following section.

Mark	Symbol & Description	Part No.			Remarks
		PWM1350	PWM1347	PWM1348	
	IC351 VR102, VR151, VR152 VR103	PD4305B RCP1046 RCP1044	PD4309A VRTB6VS223 VRTB6VS102	PD4305B VRTB6VS223 VRTB6VS102	

10.2 FOR PD-Z570T/SD TYPE

The PD-Z570T/SD type is the same as the PD-Z570T/HEM type with the exception of the following section.

Mark	Symbol & Description	Part No.		Remarks
		PD-Z570T/ HEM type	PD-Z570T/ SD type	
◎	MOTHER BOARD ASSEMBLY	PWM1345	PWM1346	
△	AC power cord	PDG1008	RDG1003	
△	Power transformer	PTT1125	
△	Power transformer	PTT1126	
△	Voltage selector	PSB1002	
	Operating instructions (English, French, German, Italian, Dutch, Spanish, Portuguese, Swedish)	PRE1139	
	Operating instructions (English)	PRB1147	
	Operating instructions (Spanish)	PRC1021	

Note: The components of the mother board assembly are the same between the two types.

10.3 PACKING FOR PD-Z74T/HEMXJ AND HBXJ TYPES

PD-Z74T / HEMXJ, HB, HBXJ, SD, HPW PD-Z570T / SD

10.4 P.C. BOARD PATTERNS

MOTHER PCB ASSEMBLY PWM1347

A	CMKS-81X ♂m ▲	Q382
	ETC HEM	Q381
B	CMKS-81X ♂m ▲	Q101
	IC101	IC101
	VR102	IC30 Q62
	VR151	IC404
	VR103	IC20 Q405
	VR152	Q202
C	IC101	Q203 Q204
	IC151	Q201
	IC301	IC401
	IC201	IC351
D	IC201	Q351

10.4 P.C. BOARD PATTERNS

This P.C.B. connection diagram is viewed from the foil side.

11. PANEL FACILITIES

FRONT PANEL

- ① Power switch (POWER STANDBY/ON)
- ② Disc trays (DISC I, DISC II)
- ③ OPEN/CLOSE buttons (I, II)
- ④ Disc select buttons (DISC I, DISC II)
- ⑤ AUTO EJECT button
- ⑥ REPEAT button
- ⑦ TIME button
- ⑧ Program button (PGM)

- ⑨ Computer allocated program editing button (COMPU PGM)
- ⑩ Track/Manual search buttons (◀◀/◀, ▶▶/▶▶)
- ⑪ PLAY button (▶)
- ⑫ PAUSE button (■■)
- ⑬ Random play button (RANDOM)
- ⑭ HI-LITE SCAN button
- ⑮ Stop/Clear button (STOP ■)

DISPLAY

- ① Lights during use of computer allocated program editing.
- ② Lights during auto eject.
- ③ Lights during program input.
- ④ Lights during playback pause.
- ⑤ Lights during playback. (DISC I or DISC II)
- ⑥ Indicates disc number (I or II) during playback or search.
- ⑦ Indicates track number (01—99) during playback or search.
- ⑧ Lights during repeat playback. (During single-track repeat, the [1▶] indicator also lights).

- ⑨ Indicates the minutes digit of the track playing time and remaining time.
- ⑩ Lights during random playback.
- ⑪ Lights during HI-LITE scan on DISC I or DISC II.
- ⑫ Indicates the seconds digit of the track playing time and remaining time.
- ⑬ Indicates the track number on DISC I. Also indicates the track numbers for editing on side A of a cassette tape.
- ⑭ Indicates the track number on DISC II. Also indicates the track numbers for editing on side B of a cassette tape.

D-Z74T, PD-Z570T

FRONT PANEL

- ① Power switch (POWER STANDBY/ON)
- ② Disc trays (DISC I, DISC II)
- ③ OPEN/CLOSE buttons (I, II)
- ④ Disc select buttons (DISC I, DISC II)
- ⑤ AUTO EJECT button
- ⑥ REPEAT button
- ⑦ TIME button
- ⑧ Program button (PGM)
- ⑨ Computer allocated program editing button (COMPU PGM)

- ⑩ Track/Manual search buttons (◀◀/◀◀, ▶▶/▶▶)
- ⑪ PLAY button (▶)
- ⑫ Track number buttons (1—0/10, +10, ≥20)
- ⑬ PAUSE button (■■)
- ⑭ Random play button (RANDOM)
- ⑮ HI-LITE SCAN button
- ⑯ Stop/Clear button (STOP ■)

DISPLAY

- ① Lights during use of Computer allocated program editing.
- ② Lights during auto eject.
- ③ Lights during program input.
- ④ Lights during playback pause.
- ⑤ Lights during playback. (DISC I or DISC II)
- ⑥ Indicates disc number (I or II) during playback or search.
- ⑦ Indicates track number (01—99) during playback or search.
- ⑧ Lights during repeat playback. (During single-track repeat, the [1>] indicator also lights).

- ⑨ Indicates the minutes digit of the track playing time and remaining time.
- ⑩ Lights during random playback.
- ⑪ Lights during HI-LITE scan on DISC I or DISC II.
- ⑫ Indicates the seconds digit of the track playing time and remaining time.
- ⑬ Indicates the track number on DISC I.
Also indicates the track numbers for editing on side A of a cassette tape.
- ⑭ Indicates the track number on DISC II.
Also indicates the track numbers for editing on side B of a cassette tape.

12. SPECIFICATIONS

PD-Z74T

1. General

Type	Compact disc digital audio system
Power requirements	
European models	AC 220V, 50/60Hz
U.K., Australian models	AC 240V, 50/60Hz
U.S., Canadian models	AC 120V, 60Hz
Other models	AC 110/120—127/220/240V (switchable), 50/60Hz
Power consumption	10W
Operating temperature	+5°C—+35°C (+41°F—+95°F)
Weight	3.4kg (7lb, 8oz)
External dimensions	360(W) × 290(D) × 105(H)mm 14-3/16(W) × 11-13/32(D) × 4-1/8(H) in.

2. Audio section

Frequency response	2Hz—20kHz
S/N	100dB or more (EIAJ)
Dynamic range	94dB or more (EIAJ)
Channel separation	93dB or more (EIAJ)
Wow and flutter	Limit of measurement (±0.001% W.PEAK) or less (EIAJ)
Number of channels	2 channels (stereo)

3. Output terminal

- Audio line output terminal
- Control output terminal

4. Functions

- Play
- Pause
- Track search
- Manual search
- Programmed playback
- Programmed repeat
- Pause program
- Computer allocated program editing
- Single track repeat
- Sequential disc all track repeat
- Relay playback
- Random relay play
- Auto eject play
- Auto eject random play
- Random play
- Random repeat
- Hi-LITE scan
- Display of a particular track

5. Accessories

- Remote control cord
- Output cable
- Operating instructions

NOTE:

The specifications and design of this product are subject to change without notice, due to improvements.

PD-Z570T

1. General

Type	Compact disc digital audio system
Power requirements	
European models	AC 220V, 50/60Hz
U.K., Australian models	AC 240V, 50/60Hz
U.S., Canadian models	AC 120V, 60Hz
Other models	AC 110/120—127/220/240V (switchable), 50/60Hz
Power consumption	10W
Operating temperature	+5°C—+35°C (+41°F—+95°F)
Weight	3.5kg (7lb, 12oz)
External dimensions	360(W) × 285(D) × 121(H)mm 14-3/16(W) × 11-7/32(D) × 4-25/32(H) in.

2. Output terminal

- Optical digital output terminal

3. Functions

- Play
- Pause
- Track search
- Manual search
- Programmed playback
- Programmed repeat
- Pause program
- Computer allocated program editing
- Single track repeat
- Sequential disc all track repeat
- Relay playback
- Random relay play
- Auto eject play
- Auto eject random play
- Random play
- Random repeat
- HI-LITE scan
- Display of a particular track

4. Accessories

- Optical fiber cable
- Operating instructions

NOTE:

The specifications and design of this product are subject to change without notice, due to improvements.