

Aprendizaje No Supervisado - TP4

Grupo 11

Francisco Pérez Sammartino & Gabriel Silvatici

1 Análisis de Datos Europa

¿Cómo son los datos?

- 8 variables -> 7 numéricas
- 28 registros

Country	Area	GDP	Inflation	Life.expect	Military	Pop.growth	Unemployment
Austria	83871	41600	3.5	79.91	0.8	0.03	4.2
Belgium	30528	37800	3.5	79.65	1.3	0.06	7.2
Bulgaria	110879	13800	4.2	73.84	2.6	-0.8	9.6
Croatia	56594	18000	2.3	75.99	2.39	-0.09	17.7
Czech Republic	78867	27100	1.9	77.38	1.15	-0.13	8.5
Denmark	43094	37000	2.8	78.78	1.3	0.24	6.1
Estonia	45228	20400	5	73.58	2	-0.65	12.5

Boxplot

Standardized Data

a Red de Kohonen

Implementación

- Estandarización de datos
- Función vecinos
 Decreciente con un porcentaje.
 Comenzando en (²/₃) *
 Alto
- Coeficiente de aprendizaje decreciente con un porcentaje.
 Comienza en 0.9

- Mapa rectangular
- Variación del tamaño del mapa

500 épocas

Resultados Grilla Rectangular 5x5

Resultados Grilla Rectangular 6x6

Resultados

	Comp.1
Luxembourg	-3.41575532
Switzerland	-3.22245361
Norway	-2.06855257
Netherlands	-1.80689657
Ireland	-1.77632183
Iceland	-1.55518187
Austria	-1.06225512
Denmark	-0.93797874
Sweden	-0.86915616
Italy	-0.83784930
Belgium	-0.66882110
Germany	-0.58171902
United Kingdom	-0.33467796
Finland	-0.20676891
Czech Republic	-0.16419646
Spain	-0.16081596
Slovenia	0.06632628
Portugal	0.51700619
Slovakia	0.76885732
Greece	0.98244396
Croatia	1.24726141
Hungary	1.37172691
Poland	1.44525321
Lithuania	1.50252828
Latvia	2.26450539
Estonia	2.44290749
Bulgaria	2.56285012
Ukraine	4.49773395

Kohonen Grupos

Resultados Grilla Rectangular 7x7

Grilla Rectangular 7x7 vs 6x6

NUEVO GRUPO

SOM 7x7

Red Neuronal con Regla de Oja

Implementación

- Perceptron simple lineal.
- Estandarización de los datos de entrada.
- Inicialización de pesos aleatorios.

- Tasa de aprendizaje adaptativa.
- Condicion de corte: vector de pesos estacionario y norma de W oscila en 1

Convergencia a la primer componente

Entrenando los datos con la red de Oja comparando el vector de pesos con la primer componente pre calculada con PCA

 $\eta_0 = 0.0001$

Convergencia a la primer componente

Evolución del módulo del vector de pesos.

Cálculo de la primer componente principal

Calcula**ndo** el primer autovector de la matriz de correlaciones

λ: 3.2271657

Area	0.1248739	
GDP	-0.5005059	
Inflation	0.4065182	
Life.exped	-0.4828733	-
Military	0.1881116	-
Pop.growth	-0.4757036	-
Unemploym€	0.2716558	-

Entrenando los datos con la rèd de Oja

Area	-0.1248739
GDP	0.5005059
Inflation	-0.4065182
Life.exped	0.4828733
Military	-0.1881116
Pop.growth	0.4757036
Unemploym∈	-0.2716558

Interpretando los datos

Entrenando los datos con la red de Oja obtenemos el autovector de autovalor más grande, es decir, la primer componente, este autovector estará en alguno de los 2 posibles sentidos, que estará arbitrado en función de cómo queremos ordenar los datos obtenidos

	Comp.1
Luxembourg	-3.41575532
Switzerland	-3.22245361
Norway	-2.06855257
Netherlands	-1.80689657
Ireland	-1.77632183
Iceland	-1.55518187
Austria	-1.06225512
Denmark	-0.93797874
Sweden	-0.86915616
Italy	-0.83784930
Belgium	-0.66882110
Germany	-0.58171902
United Kingdom	-0.33467796
Finland	-0.20676891
Czech Republic	-0.16419646
Spain	-0.16081596
Slovenia	0.06632628
Portugal	0.51700619
Slovakia	0.76885732
Greece	0.98244396
Croatia	1.24726141
Hungary	1.37172691
Poland	1.44525321
Lithuania	1.50252828
Latvia	2.26450539
Estonia	2.44290749
Bulgaria	2.56285012
Ukraine	4.49773395

2 Red de Hopfield

Implementación

- Orden Aleatorio
- Selección de mejores y peores grupos.
- Ruido de 0,10,30,50 y
 70% para testeo.

Elección de Patrones

Suma de valor absoluto de producto escalar.

0-X-D-G:100.0

$\sum_{i eq j} |\overline{letra_i} \overline{letra_j}|$

Z-M-0-R:8.0 B-E-F-P:90.0 M-0-T-R:8.0 0-C-D-Q:92.0 T-B-W-V:8.0 0-X-Y-D:94.0 I-L-Y-F:10.0 0-X-B-D:94.0 I-L-Y-P:10.0 0-C-Q-G:94.0 H-V-S-Q:10.0 R-E-F-P:94.0 L-X-T-R:10.0 0-X-Y-G:96.0 L-Y-W-V:10.0 0-B-D-G:96.0 L-Y-W-F:10.0 0-D-0-G:96.0 L-Y-W-P:10.0 B-R-F-P:96.0 L-Y-V-F:10.0 0-C-D-G:98.0 L-T-W-V:10.0 0-U-D-G:98.0 L-W-V-A:10.0

Z:

M:

0:

R:

1 1 1

1 1 1

1 1 1

0:

X:

D:

G:

1 1 1

1 1 1

20

Entrenamiento y Reconocimiento Z - M - O -R

30% alterado

```
\begin{array}{c} 1 \\ 1 \ 1 \ 1 \ 1 \ 1 \end{array}
   1 1 1
11111
   1 1 1 1
1 1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
11111
```

	7	۲	,	ш	U	
1 1 1	1	1 1 1	1	1		1
1	_	1	1	1 1		1
1 1 1	1	2	1	1		
1	1	1	1	1 1		1 1
1	1	-	1	1		
1 1 1 1	1	1	1	1 1		1
1	1		1	1		1
1 1 1 1	1	1	1	1		1
1 1	1		1	1		1 1 1
1 1 1 1	1	1	1	1		
	1		1	1		1 1 1
1 1 1 1	1	1	1 1	1		1
	1	1	1	1		1
1 1 1	1	1	1 1	1		1 1 1

Transition of the second	1	1			
1 1	1			1	
ı	1	1	1		
	1	1			
1 1				1	
Ť	1	1	1		
	1	1			
1 1				1 1	
Ť	1	1	1	1	
1	1	1			
1 1 1				1 1	
Ī	1	1	1	•	
1	1	1	1		
1 1 1				1 1	
	1	1	1	•	
1_	1	1	1	1_	
1 1 1				1 1 1	
	1	1	1		

Mas del 50% alterado -Patrones Espúreos

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1
		1 1

1 1 1 1 1 1 1 1 1 1 1 1	1 11111 11111 1 111 1 111 1 111	1
11111	1 111	

1 1 1	1 1	1 1 1		1 1	1	1	1
1 1	1 1 1	1	1	1		1 1	

Entrenamiento y Reconocimiento Z - M - O -R

70% de R alterada


```
1 1 1 1
```

70% de Z alterada

1	1 1	1 1	1 1	1
1	1	1	1	1
1		1 1	1 1	1
1	1 1	1	1	1
1		1	1 1	1
1	1	1	1	1

Entrenamiento y Reconocimiento O-X-D-G

0

10% alterado

```
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
```

1 1 1

Patrones Espúreos

Patrones Aprendidos (Sin los espúreos)

```
1 1 1
1 1 1
```

Conclusiones

- La red funciona con patrones más o menos ortogonales.
- En el caso de O-X-D-G la red solo aprende el patrón O y su patrón invertido.