Redes Neurais e Deep Learning

Aula 03 – Principal Components Analysis (PCA)

Prof. Érick T. Yamamoto

Motivação

A Análise de Componentes Principais (PCA) é uma técnica estatística amplamente utilizada para simplificar conjuntos de dados complexos, especialmente aqueles com muitas variáveis correlacionadas. A motivação para o uso do PCA inclui:

- Redução da Dimensionalidade: Ao transformar variáveis correlacionadas em um conjunto menor de componentes principais não correlacionados, o PCA facilita a visualização e análise dos dados, mantendo a maior parte da variância original;
- Eliminação da Multicolinearidade: O PCA aborda a multicolinearidade transformando variáveis correlacionadas em componentes independentes, melhorando a performance de modelos estatísticos;
- Visualização de Dados Complexos: Projetando dados multidimensionais em espaços de menor dimensão, o PCA permite identificar padrões, tendências e outliers que seriam difíceis de detectar em altas dimensões;
- **Pré-processamento para Aprendizado de Máquina**: Ao reduzir a dimensionalidade e eliminar redundâncias, o PCA diminui a complexidade dos modelos de aprendizado de máquina, mitigando problemas como o sobreajuste e a "maldição da dimensionalidade".

Em resumo, o PCA é uma ferramenta poderosa para tornar conjuntos de dados complexos mais manejáveis e informativos, facilitando análises mais eficazes e eficientes.

O que é necessário para entender o PCA?

O "O que" e "Para que" já vimos na Motivação. Mas Como funciona?

Como visto em Matemáticas para Redes Neurais, precisamos de alguns elementos fundamentais para nos auxiliar no entendimento:

- Variância: Mede o quanto os dados se dispersam em relação à média;
- Covariância: Indica o grau de variação conjunta entre duas variáveis;
- Autovalores e Autovetores: Associados a matrizes quadradas, são fundamentais para determinar as direções principais (componentes) nos dados.

Estatística

A mudança entre variáveis

Mas Como funciona a Variância?

Variância: a **variância** mede o grau de dispersão dos dados em torno da média. Para uma variável X com n observações, a variância σ^2 é calculada como:

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Onde:

- $\rightarrow x_i$ são os valores individuais da variável;
- $\rightarrow \bar{x}$ é a média dos valores de X.

Mas Como funciona a Covariância?

Covariância: A covariância indica o grau de variação conjunta entre duas variáveis. Para duas variáveis X e Y, a covariância cov(X,Y) é dada por:

$$cov(X,Y) = \frac{1}{n} \sum_{i=0}^{n-1} (x_i - \bar{x}) (y_i - \bar{y}) \leftarrow \text{Populacional}$$

$$cov(X,Y) = \frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x}) (y_i - \bar{y}) \leftarrow \text{Amostral}$$

Onde:

- $\rightarrow x_i$ são os valores individuais da variável X;
- $\rightarrow \bar{x}$ é a média dos valores de X;
- $\rightarrow y_i$ são os valores individuais da variável Y;
- $\rightarrow \bar{y}$ é a média dos valores de Y.

Importância da Correção de Bessel: Ao utilizar uma amostra para estimar a covariância, a média amostral (\overline{X} e \overline{Y}) pode não corresponder exatamente às médias populacionais (μ_X e μ_Y). Dividir por n-1 em vez de n compensa essa potencial subestimação da variabilidade, proporcionando uma estimativa mais precisa da covariância populacional.

Mas Como funciona a Covariância?

A covariância mede o grau de interdependência entre duas variáveis aleatórias, indicando como as variações de uma influenciam as variações da outra. Para duas variáveis X e Y, a covariância é calculada como:

$$cov(X,Y) = E[(X - E(X))(Y - E(Y))]$$

Onde:

→ E é denotado como Esperança ou valor esperado.

Expandindo esse conceito para um conjunto de n variáveis aleatórias, a matriz de covariância é uma matriz $n \times n$ que generaliza a covariância para múltiplas dimensões. Cada elemento (i,j) dessa matriz representa a covariância entre as variáveis Xi e Xj:

$$\sum_{i,j} = cov(X_i, Y_j) = E[(X_i - E(X_i))(Y_j - E(Y_j))]$$

Mas Como funciona a Matriz de Covariância?

A matriz de covariância é simétrica, com as variâncias das variáveis na diagonal principal e as covariâncias fora da diagonal. Ela é fundamental em diversas áreas, como estatística multivariada e análise de componentes principais (PCA), pois captura a estrutura de dependência e é representada por C. Supondo que tenhamos 3 variáveis x, y e z, a matriz de covariância ficará da seguinte maneira:

$$C = \begin{pmatrix} conv(x,x) & conv(y,x) & conv(z,x) \\ conv(x,y) & conv(y,y) & conv(z,y) \\ conv(x,z) & conv(y,z) & conv(z,z) \end{pmatrix}$$

Mas Como funciona a Matriz de Covariância?

Esta matriz pode ser construído também, através da seguinte relação:

$$C = \frac{1}{n-1}B^T * B$$

Onde:

- ⇒ B é a matriz os dados são centralizados, definido por: $B = \begin{pmatrix} x_1 x_1 & \cdots & x_n \overline{x_n} \\ \vdots & \ddots & \vdots \\ x_m \overline{x_1} & \cdots & x_m \overline{x_n} \end{pmatrix}$;
- $\rightarrow n$ é o número de observações (linhas ou quantidade de amostras) e;
- $\rightarrow B^T$ é a transposta da matriz B.

Vamos colocar na prática!

Suponha que temos um conjunto de dados referente a três variáveis: Altura (em metros), Peso (em kg) e Idade (em anos) de cinco indivíduos. Construa a matriz de covariância e encontre as variâncias das três a variáveis. Os dados são apresentados na tabela abaixo:

Indivíduo	Altura (X₁)	Peso (X ₂)	Idade (X ₃)
1	1,7	65	25
2	1,85	72	32
3	1,78	68	28
4	1,8	70	30
5	1,75	66	27

Resolução

Passo 1: Calcular as Médias de Cada Variável;

Passo 2: Centralizar os Dados (Subtrair as Médias);

Passo 3: Construir a Matriz de Dados Centralizados (B);

Passo 4: Calcular a Matriz de Covariância (C);

Passo 5: Interpretação da Matriz de Covariância.

Álgebra Linear

Transformações lineares afetam direções específicas em um espaço vetorial.

Os autovalores e autovetores são conceitos fundamentais na álgebra linear, especialmente no contexto do PCA. Para uma matriz quadrada A, um autovalor λ e um autovetor v satisfazem a equação:

$$Av = \lambda v$$

No contexto do PCA, A é a matriz de covariância C. Os autovetores determinam as direções dos componentes principais, enquanto os autovalores indicam a magnitude da variância em cada uma dessas direções.

Em **Álgebra Linear**, os conceitos de **autovalores** e **autovetores** são fundamentais para entender como certas transformações lineares afetam vetores em um espaço vetorial.

Definição Formal:

- \rightarrow Autovetor: Dado um operador linear A que atua em um espaço vetorial V, um vetor não nulo v é chamado de autovetor de A se, ao ser transformado por A, o resultado é um múltiplo escalar de v. Matematicamente, isso é expresso como: $Av = \lambda v$ onde λ é um escalar;
- \rightarrow Autovalor: O escalar λ na equação acima é denominado autovalor correspondente ao autovetor v.

Interpretação Geométrica:

Geometricamente, os autovetores de uma transformação linear A são direções no espaço que, quando A é aplicada, não são alteradas, exceto possivelmente em magnitude e sentido. O autovalor associado indica o fator pelo qual o autovetor é escalado durante a transformação.

Se quiserem ver essa interpretação podem utilizar o seguinte link:

https://www.geogebra.org/m/abkykjmm (Desenvolvido no app geogebra pela IGM)

Como calculamos os autovetores e autovalores?

Primeiro, temos que interpretar a equação apresentada:

$$Av = \lambda v$$

Onde para uma matriz A, um vetor não nulo v é chamado de autovetor se, ao ser multiplicado por A, o resultado é o próprio vetor escalado por um valor escalar λ (autovalor).

Rearranjando a equação, obtemos:

$$Av - \lambda v = 0$$

Como calculamos os autovetores e autovalores?

Primeiro, temos que interpretar a equação apresentada:

$$Av = \lambda v$$

Onde para uma matriz A, um vetor não nulo v é chamado de autovetor se, ao ser multiplicado por A, o resultado é o próprio vetor escalado por um valor escalar λ (autovalor).

Rearranjando a equação, obtemos:

$$Av - \lambda v = 0$$

Como calculamos os autovetores e autovalores?

Rearranjando novamente a equação, obtemos:

$$(A - \lambda I)v = 0$$

Aqui, I é a matriz identidade de mesma dimensão que A. E para que essa equação homogênea possua soluções não triviais (ou seja, **vetores v não nulos**), o determinante da matriz coeficiente deve ser zero:

$$det(A - \lambda I) = 0$$

Portanto, esta é chamada de **equação característica**. As soluções para **λ** que satisfazem essa equação são os autovalores da matriz **A**.

Vamos colocar na prática!

Exemplo 1: Considere a matriz $A = \begin{pmatrix} 4 & 1 \\ 2 & 3 \end{pmatrix}$. Determine os autovalores e autovetores de A.

Vamos colocar na prática!

Exemplo 2: Com a matriz de covariância abaixo, determine os autovetores e autovalores de C.

$$C = \begin{pmatrix} 0,00293 & 0,153 & 0,163 \\ 0,153 & 9,7 & 10,3 \\ 0,163 & 10,3 & 10,8 \end{pmatrix}$$

Principal Component Analysis (PCA)

A técnica de redução de dimensionalidade.

Chegamos na parte que nos interessa!

A técnica estatística utilizada para reduzir a dimensionalidade de conjuntos de dados, transformando variáveis correlacionadas em um conjunto de variáveis ortogonais chamadas de componentes principais, facilitando a visualização e a análise dos dados.

Karl Pearson é creditado pelo desenvolvimento da PCA em 1901.

Como funciona o PCA na nossa realidade? Existe passos a serem seguidos?

Passos para desenvolver o PCA

Sim, é possível seguintes os seguintes passos:

- → Passo 1: Padronizar o conjunto de dados;
- → Passo 2: Calcule a matriz de covariância para os recursos no conjunto de dados;
- → Passo 3: Calcule os autovalores e autovetores para a matriz de covariância;
- → Passo 4: Classifique os autovalores e seus autovetores correspondentes;
- → Passo 5: Escolha k autovalores e forme uma matriz de autovetores;
- → Passo 6: Transforme a matriz original.

Suponha que temos o conjunto de dados abaixo, que tem 4 recursos e um total de 5 exemplos de treinamento.

F1	F2	F3	F4
1	2	3	4
5	5	6	7
1	4	2	3
5	3	2	1
8	1	2	2

Iremos padronizar o conjunto de dados e, para isso, precisamos calcular a média e o desvio padrão para cada característica.

$$x_{novo} = \frac{x - \mu}{\sigma}$$

F1	F2	F3	F4
1	2	3	4
5	5	6	7
1	4	2	3
5	3	2	1
8	1	2	2

Iremos padronizar o conjunto de dados e, para isso, precisamos calcular a média e o desvio padrão para cada característica.

$$x_{novo} = \frac{x - \mu}{\sigma}$$

Estátistica Aplicada	F1	F2	F3	F4
μ	4	3	3	3.4
σ	3	1.58114	1.73205	2.30217

$$F1_{novo} = \frac{F_1 - 4}{3}$$
 $F2_{novo} = \frac{F_2 - 3}{1.58114}$ $F3_{novo} = \frac{F_3 - 3}{1.73205}$ $F4_{novo} = \frac{F_4 - 3.4}{2.30217}$

F1	F2	F3	F4
1	2	3	4
5	5	6	7
1	4	2	3
5	3	2	1
8	1	2	2

F1	F2	F3	F4
-1	-0.63246	0	0.26062
0.33333	1.26491	1.73205	1.56374
-1	0.63246	-0.57735	-0.17375
0.33333	0	-0.57735	-1.04249
1.33333	-1.26491	-0.57735	-0.60812

$$F1_{novo} = \frac{F_1 - 4}{3} \qquad F2_{novo} = \frac{F_2 - 3}{1.58114} \qquad F3_{novo} = \frac{F_3 - 3}{1.73205} \qquad F4_{novo} = \frac{F_4 - 3.4}{2.30217}$$

Passo 2: Calcule a matriz de covariância para os recursos no conjunto de dados

	F1	F2	F3	F4
F1	var(F1)	cov(F1,F2)	cov(F1,F3)	cov(F1,F4)
F2	cov(F2,F1)	var(F2)	cov(F2,F3)	cov(F2,F4)
F3	cov(F3,F1)	cov(F3,F2)	var(F3)	cov(F3,F2)
F4	cov(F4,F1)	cov(F4,F2)	cov(F4,F2)	var(F4)

Passo 2: Calcule a matriz de covariância para os recursos no conjunto de dados

	F1	F2	F3	F4
F1	0.8	-0.25298	0.03849	-0.14479
F2	-0.25298	0.8	0.51121	0.4945
F3	0.03849	0.51121	0.8	0.75236
F4	-0.14479	0.4945	0.75236	0.8

Passo 3: Calcule os autovalores e autovetores para a matriz de covariância

$$Av = \lambda v \in det(A - \lambda I) = 0$$

Como já sabemos que v é um vetor diferente de zero, então ao aplicarmos na matriz C, temos:

	F1	F2	F3	F4
F1	0.8 - λ	-0.25298	0.03849	-0.14479
F2	-0.25298	0.8 - λ	0.51121	0.4945
F3	0.03849	0.51121	0.8 - λ	0.75236
F4	-0.14479	0.4945	0.75236	0.8 - λ

Resolvendo a equação acima = $0 \rightarrow \lambda$ = 2,51579324, 1,0652885, 0,39388704, 0,02503121

Passo 3: Calcule os autovalores e autovetores para a matriz de covariância

$$Av = \lambda v \in det(A - \lambda I) = 0$$

Resolvendo a equação $(A - \lambda I)v = 0$ para o vetor v com diferentes valores de λ :

$$\begin{pmatrix} 0.80000 - \lambda & -0.252982 & 0.038490 & -0.144791 \\ -0.252982 & 0.80000 - \lambda & 0.511208 & 0.494498 \\ 0.038490 & 0.511208 & 0.80000 - \lambda & 0.752355 \\ -0.144791 & 0.494498 & 0.752355 & 0.80000 - \lambda \end{pmatrix} x \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix} = 0$$

Para λ = 2,51579324, resolvendo a equação acima usando a regra de Cramer, os valores para o vetor v são:

v1 = 0,16195986, v2 = -0,52404813, v3 = -0,58589647 e v4 = -0,59654663

Passo 4: Classifique os autovalores e seus autovetores correspondentes

Utilizando o python como nossa ferramenta de aprendizado e desenvolvimento, temos os seguinte resultado dos autovetores:

```
Os autovetores são:

[[ 0.16195986 -0.91705888 -0.30707099  0.19616173]

[-0.52404813  0.20692161 -0.81731886  0.12061043]

[-0.58589647 -0.3205394  0.1882497 -0.72009851]

[-0.59654663 -0.11593512  0.44973251  0.65454704]]
```

Como os autovalores já estão classificados neste caso, não há necessidade de classificálos novamente.

Passo 5: Escolha k autovalores e forme uma matriz de autovetores

Se escolhermos os 2 autovetores superiores, a matriz ficará assim:

```
Os au vetores são

[[ 0.16195986 -0.91705888 -0.30707099  0.19616173]
[-0.52404813  0.20692161 -0.81731886  0.12061043]
[-0.58589647 -0.3205394  0.1882497 -0.72009851]
[-0.59654663 -0.11593512  0.44973251  0.65454704]]
```



```
As duas colunas selecionadas:

[[ 0.16195986 -0.91705888]

[-0.52404813  0.20692161]

[-0.58589647 -0.3205394 ]

[-0.59654663 -0.11593512]]
```

Passo 6: Transforme a matriz original

Matriz de características * principais k autovetores = Dados transformados

Matriz Padronizado

F1	F2	F3	F4
-1.000000	-0.632456	0.000000	0.260623
0.333333	1.264911	1.732051	1.563740
-1.000000	0.632456	-0.577350	-0.173749
0.333333	0.000000	-0.577350	-1.042493
1.333333	-1.264911	-0.577350	-0.608121

Autovetores Selecionados

PC1	L PC2
0.014003	0.755975
-2.556534	-0.780432
-0.051480	1.253135
1.014150	0.000239
1.579861	-1.228917

Descanso...

Para o Professor =)

Exercícios

- 1 Considere o conjunto de dados: [4, 8, 6, 5, 3]. Calcule a variância amostral desses dados. (R: 3,7)
- 2 Considere os seguintes conjuntos de dados para as variáveis X e Y:

$$\rightarrow$$
 X: [2, 4, 6, 8];

Calcule a covariância amostral entre X e Y. (R: 3,67)

3 - Utilize os conjuntos de dados das variáveis X e Y da Atividade 2 para construir a matriz

de covariância. (R:
$$C = \begin{pmatrix} 6,67 & 3,67 \\ 3,67 & 2,92 \end{pmatrix}$$
)

Exercícios

4 - Dada a matriz de covariância obtida na Atividade 3. Calcule os autovalores e autovetores $\begin{bmatrix} 0.7071 & -0.7071 \end{bmatrix}$

dessa matriz. (R:
$$\lambda = \begin{bmatrix} 2 & 0 \end{bmatrix}$$
 e v = $\begin{bmatrix} 0.7071 & -0.7071 \\ 0.7071 & 0.7071 \end{bmatrix}$)

5 - Considere o seguinte conjunto de dados bidimensionais:

X	Y
2	3
3	3
4	5
5	8
6	8

Aplique a Análise de Componentes Principais (PCA) para transformar esses dados em um novo sistema de coordenadas.

Copyright © 2025 Prof. Érick T. Yamamoto- FIAP

Todos direitos reservados. Reprodução ou divulgação total ou parcial deste documento é expressamente proíbido sem o consentimento formal, por escrito, do Professor (autor).