1 61: 1 :		2.00 × 1.08 m
speed of light	С	$2.99 \times 10^8 \frac{m}{s}$
elementary charge	e	$1.60 \times 10^{-19} C$
gravitational constant	G	$6.67 \times 10^{-11} \frac{m^3}{kg \cdot s^2}$
universal gas constant	R	$8.31 \frac{J}{mol \cdot K}$
Avogadro's number	N_A	$6.022 \times 10^{23} \frac{atoms}{mol}$
Boltzman constant	k	$1.38 \times 10^{-23} \frac{J}{K}$
		$8.62 \times 10^{-5} \frac{eV}{K}$
Stefan- Boltzman constant	σ	$5.67 \times 10^{-8} \frac{W}{m^2 \cdot K^4}$
permittivity constant	$arepsilon_0$	$8.85 \times 10^{-12} \frac{F}{m}$
permeability constant	μ_0	$1.26 \times 10^{-6} \frac{H}{m}$
fine structure constant	α	7.297×10^{-3}
Bohr radius	a_0	$5.29 \times 10^{-11} m$
Ryberg constant	R_{∞}	$1.10\times10^7\frac{1}{m}$
Bohr magneton	μ_B	$9.27 \times 10^{-24} \frac{J}{T}$
		$5.788 \times 10^{-5} \frac{eV}{T}$
nuclear magneton	μ_N	$5.05\times10^{-27}\frac{J}{T}$
		$3.152 \times 10^{-8} \frac{eV}{T}$
Planck	h	$6.626 \times 10^{-34} J \cdot s$
constant		$4.136 \times 10^{-15} eV \cdot s$
	, h	
	$\hbar = \frac{n}{2\pi}$	$1.055 \times 10^{-34} J \cdot s$
		$6.582 \times 10^{-16} eV \cdot s$
Faraday constant	F	$9.65 \times 10^4 \frac{C}{mol}$

Electron		
mass	m_e	$9.109 \times 10^{-31} kg$
		5.486×10^{-4} amu
		0.511 <i>MeV</i>
Compton	λ_{c}	$1.321 \times 10^{-12} m$
wavelength		1.521 × 10 m
classical	$\alpha^2 a_0$	$2.818 \times 10^{-15} m$
radius	$= r_e$	2.010 × 10 m
Thomson	$(8\pi/3)r_e^2$	$0.665 \times 10^{-28} m^2$
cross section	$=\sigma_e$	0.003 A 10 III
magnetic	μ_e	$-928.48 \times 10^{-26} J/7$
moment	<u>ге</u>	
g factor	${g}_{e}$	-2.002
Proton		
mass	m_p	$1.673 \times 10^{-27} kg$
		1.007~amu
		938.27 MeV
Compton	$\lambda_{\mathcal{C},p}$	$1.321 \times 10^{-15} m$
wavelength	νс,р	1.341 × 10 III
magnetic	и	$1.411 \times 10^{-26} J/T$
moment	μ_p	1.711 \ 10
Neutron		
mass	m_N	$1.675 \times 10^{-27} kg$
		1.009 amu
		939.57 <i>MeV</i>
Compton	$\lambda_{C,N}$	$1.320 \times 10^{-15} m$
wavelength	NC,N	1.540 × 10 m
Deuteron		
mass	m_d	$3.344 \times 10^{-27} kg$
		2.014 amu
		1875.6 MeV
magnetic	μ_d	$0.433 \times 10^{-26} I/T$
moment		0.433 × 10
Alpha particle	e	
mass	m_{lpha}	$6.645 \times 10^{-27} kg$
		3727.38 MeV
Muon		
mass	m_{μ}	$1.884 \times 10^{-28} kg$
		0.113 amu
		105.66 MeV
magnetic	"	$-4.49 \times 10^{-26} I/T$
moment	μ_{μ}	-4.49 × 10 J/1
-		

 g_{μ}

 $m_{ au}$

-2.002

 $3.168 \times 10^{-27} kg$ $1.908 \ amu$

1776.99 MeV

g factor **Tau**

mass

Length	
1 km	0.6215 miles
1 m	1.0936 yds
	3.281 ft
	39.37 in
1 in	2.54 cm
1 mile	5280 ft
1 rod	16.5 ft
1 fathom	6 ft
1 nautical mile	6076.1 ft
1 angstrom	0.1 nm
1 light year	$9.467 \times 10^{15} m$
1 par – sec	$3.084 \times 10^{13} km$

Area	
$1 km^2$	$0.3861 mi^2$
	247.1 acres
1 hectare	$10^4 m^2$
1 acre	$43560 ft^2$
1 barn	$10^{-28}m^2$

Volume	
1 <i>L</i>	$1000 \ cm^3$
1 gallon	3.786 <i>L</i>
	4 qt
	8 pt
	128 <i>oz</i>
	$231 in^2$
$1 ft^3$	28.32 <i>L</i>
	$2.832 \times 10^4 \ cm^3$

Speed	
1 knot	1 nautical mile/hour

Angle	
1 rad	57.30°
1 rad/sec	9.549 rev/min

Mass	
1 metric ton	1000~kg
1 amu	$1.6606 \times 10^{-27} \ kg$
	$931.50 \ MeV/c^2$
1 slug	14.59 <i>kg</i>

Density	
$1 g/cm^3$	$1000 kg/m^3$
	1kg/L
$(1 g/cm^3)g$	$62.4 lb/ft^3$

Force	
1 N	0.2248 <i>lb</i>
	$10^5 dyn$
(1 kg)g	2.2046 <i>lb</i>
1 <i>lb</i>	32.17 poundal

Pressure	
1 Pa	$1 N/m^2$
1 atm	101.325 <i>kPa</i>
	1.01325 <i>bars</i>
	$1.013 \times 10^6 dyn/cm^2$
	$14.7 lb/in^2$
	760~mm~Hg
	29.9 in Hg
	$33.8 ft H_2O$
1 lb/in²	6.895 <i>kPa</i>
1 torr	1mmHg
	133.32 Pa
1 bar	100 kPa

Energy	
$1 \ kW \cdot hr$	3.6 <i>MJ</i>
1 cal	4.184 <i>J</i>
$1 ft \cdot lb$	1.356 <i>J</i>
	$1.286\times10^{-3}btu$
$1 L \cdot atm$	101.325 <i>J</i>
	24.217 <i>cal</i>
1 btu	252 <i>cal</i>
1 <i>eV</i>	$1.602 \times 10^{-19} J$
$1 u \cdot c^2$	931.50 <i>MeV</i>
1 erg	1 dyne · cm
	$10^{-7} J$
1 <i>J</i>	3.725×10^{-7}
	$horsepower \cdot hr$

	horsepower · hr	
Power		
1 horsepower	$550 ft \cdot lb/s$	
	745.7 <i>W</i>	
1 btu/min	17.58 W	
1 W	1 <i>J/s</i>	
	1.341×10^{-3}	
	horsepower	
	$0.7376ft\cdot lb/s$	

Magnetic vector H	
$1 amp \cdot turn/m$	1.257×10^{-2} oersted

Magnetic field B	
1 T	10 ⁴ Gauss
	64.52 kiloline/in²

Magnetic flux	
1 <i>Wb</i>	10 ⁸ maxwell
	$10^5 kiloline$
1 esu	2.998 <i>Wb</i>

Magnetomotive forc	е
$1~amp \cdot turn$	1.257 gilbert
1 paragilbert	4π amp \cdot turn
1 esu	2.665×10^{-11}
	$amp \cdot turn$

Electric charge	
1 C	$0.10\ abcoulomb$
	$2.778 \times 10^{-4} amp \cdot hr$
	$1.036 \times 10^{-5} faradav$

Length	Meter	m
Mass	Kilogram	kg
Time	Second	S
Electric current	Ampere	Α
Thermodynamic temperature	Kelvin	K
Amount of substance	Mole	mol
Luminous intensity	Candela	cd

SI prefixes	S							
prefix	factor	symbol	prefix	factor	symbol	prefix	factor	symbol
yotta-	10^{24}	Υ	Kilo-	10^{3}	k	nano-	10^{-9}	n
zetta-	10^{21}	Z	hecto-	10 ²	h	pico-	10^{-12}	р
exa-	10^{18}	E	deka-	10^{1}	da	femto-	10^{-15}	f
peta-	10^{15}	Р	deci-	10^{-1}	d	atto-	10^{-18}	а
tera-	10^{12}	T	centi-	10^{-2}	С	zepto-	10^{-21}	Z
giga-	10 ⁹	G	milli-	10^{-3}	m	yocto-	10^{-24}	У
mega-	10 ⁶	М	micro-	10^{-6}	μ			

Area	Square meter	m^2	
Volume	Cubic meter	m^3	
Velocity	Meter per second	$m \cdot s^{-1}$	
Acceleration	Meter per second squared	$m \cdot s^{-2}$	
Wave number	Reciprocal meter	m^{-1}	
Mass density	Kilogram per cubic meter	$kg \cdot m^{-3}$	
Specific volume	Cubic meter per kilogram	$m^3 \cdot kg^{-1}$	
Current density	Ampere per square meter	$A\cdot m^{-2}$	
Magnetic field strength	Ampere per meter	$A \cdot m^{-1}$	
Amount of substance concentration	Mole per cubic meter	$mol \cdot m^{-3}$	
Luminance	Candela per square meter	$cd \cdot m^{-2}$	

Plane angle	Radian	Rad		
Solid angle	Steradian	Sr		
Frequency	Hertz	Hz		s^{-1}
Force	Newton	N		$m \cdot kg \cdot s^{-1}$
Pressure	Pascal	Pa	$N \cdot m^{-2}$	$m^{-1} \cdot kg \cdot s^{-2}$
Energy	Joule	J	$N \cdot m$	$m^2 \cdot kg \cdot s^{-2}$
Power	Watt	W	$J \cdot s^{-1}$	$m^2 \cdot kg \cdot s^{-3}$
Electric charge	Coulomb	С		$A \cdot s$
Electric potential difference	Volt	V	$W \cdot A^{-1}$	$m^2 \cdot kg \cdot s^{-3} \cdot A^{-1}$
Capacitance	Farad	F	$C \cdot V^{-1}$	$m^{-2} \cdot kg^{-1} \cdot s^4 \cdot A^2$
Electric resistance	Ohm	Ω	$V \cdot A^{-1}$	$m^2 \cdot kg \cdot s^{-3} \cdot A^{-2}$
Electric conductance	Siemens	S	$A \cdot V^{-1}$	$m^{-2} \cdot kg^{-1} \cdot s^3 \cdot A^2$
Magnetic flux	Weber	Wb	$V \cdot s$	$m^2 \cdot kg \cdot s^{-2} \cdot A^{-1}$
Magnetic flux density	Tesla	Т	$Wb \cdot m^2$	$kg \cdot s^{-2} \cdot A^{-1}$
Inductance	Henry	Н	$Wb \cdot A^{-1}$	$m^2 \cdot kg \cdot s^{-2} \cdot A^{-2}$
Luminous flux	Lumen	Lm	cd · sr	cd
Illuminance	Lux	Lx	$lm \cdot m^{-2}$	$cd \cdot m^{-2}$
Activity of a	Becquerel	Bq		s^{-1}
radionuclide				S
Absorbed dose	Gray	Gy	$J \cdot kg^{-1}$	$m^2 \cdot s^{-2}$
Dose equivalent	Sievert	Sv	$J \cdot kg^{-1}$	$m^2 \cdot s^{-2}$
Catalytic activity	Katal	Kat		$mol \cdot s^{-1}$

Pascal second	$Pa \cdot s$
Newton meter	$N\cdot m$
Newton per meter	$N \cdot m^{-1}$
Radian per second	$rad \cdot s^{-1}$
Radian per second squared	$rad \cdot s^{-2}$
Watt per square meter	$W\cdot m^{-2}$
Joule per Kelvin	$J \cdot K^{-1}$
Joule per kilogram Kelvin	$J \cdot kg^{-1} \cdot K^{-1}$
Joule per kilogram	$\frac{J \cdot kg^{-1}}{W \cdot m^{-1} \cdot K^{-1}}$
Watt per meter Kelvin	$W \cdot m^{-1} \cdot K^{-1}$
Joule per cubic meter	$J \cdot m^{-3}$
Volt per meter	$V \cdot m^{-1}$
Coulomb per cubic meter	$C \cdot m^{-3}$
Coulomb per square meter	$C \cdot m^{-2}$
Farad per meter	$F \cdot m^{-1}$
Henry per meter	$H \cdot m^{-1}$
Joule per mole	$J \cdot mol^{-1}$
Joule per mole Kelvin	$J \cdot mol^{-1} \cdot K^{-1}$
Coulomb per kilogram	$C \cdot kg^{-1}$
Gray per second	$Gy \cdot s^{-1}$
Watt per steradian	$W \cdot sr^{-1}$
Watt per square meter steradian	$W \cdot m^{-2} \cdot sr^{-1}$
Katal per cubic meter	$kat \cdot m^{-3}$
	Newton meter Newton per meter Radian per second Radian per second squared Watt per square meter Joule per Kelvin Joule per kilogram Kelvin Joule per kilogram Watt per meter Kelvin Joule per cubic meter Volt per meter Coulomb per cubic meter Coulomb per square meter Farad per meter Henry per meter Joule per mole Joule per mole Kelvin Coulomb per kilogram Gray per second Watt per square meter steradian Watt per square meter steradian