In Class Activity

Mandeep Kaur

November 7, 2015

Question1

a) $\{0, 2, 4, 6, 8\}$ Ans : $P \setminus A_9$

b) {11, 13, 15, 17,, 101}

Ans : $I_{11} \cap A_{101}$

c) Ø

Ans: $P \cap I$

d) {1,10}

Ans: $(B_1 \cap A_{10}) - (B_2 \cap A_9)$

e) $\{n, n + 1,m\}$, where n <= m

Ans:

Question2

a) $\forall n \exists m (n^2 < m)$

Ans: True because for all n we can choose $n^2 < m$.

b) $\exists n \forall m (n < m^2)$

Ans: True because for all m we can choose $n < m^2$.

c) $\forall n \exists m (n + m = 0)$

Ans: True because for all n we can choose value of m and make this predicate true.

d) $\exists n \forall m (nm = m)$

Ans: True by putting n=1, this predicate is always true and make it true we need only one magic value of n for all values of m.

e) $\exists n \exists m (n^2 + m^2 = 5)$

Ans: True because n=1 and m=2 we can get our solution and here we need only one set which makes it true.

 $f) \exists n \exists m (n^2 + m^2 = 6)$

 ${\bf Ans}:$ False because we do not get any solution for it not even a single set which makes it true.

g) $\exists n \exists m (n+m=4 \land n-m=1)$

Ans: False because this predicate do not have any solution not even a single.

h) $\exists n \exists m (n+m=4 \land n-m=2)$

Ans: True. Here we need only one solution to make it true and one solution is n=3, m=1.

i) $\forall n \forall m \exists p (p = (m+n)/2)$

Ans: False . counter example is that when sum of m and n is not divisible by 2 . example m=2 and n=5.