Second Dataset

February 21, 2021

```
[12]: import numpy as np
      import pandas as pd
      import pickle
      from statsmodels import tsa
      import statsmodels.api as sm
      from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
      from statsmodels import multivariate
      from statsmodels import regression
      import scipy.stats as stats
      from statsmodels.sandbox.regression import gmm
      from statsmodels.sandbox.regression.gmm import GMM
      import statsmodels.stats.diagnostic as smd
      from statsmodels.tsa.adfvalues import mackinnonp, mackinnoncrit
      from statsmodels.tsa.stattools import adfuller
      import statsmodels.tsa.api as smt
      from statsmodels.tsa.vector_ar.hypothesis_test_results import_
       \hookrightarrowCausalityTestResults
      from statsmodels.tsa.vector_ar.var_model import VAR, VARProcess, VARResults
      from statsmodels.tsa.vector_ar.vecm import VECM, coint_johansen, select_order
      import statsmodels.tsa.arima_model as am
      from statsmodels.regression.rolling import RollingOLS
      from tabulate import tabulate
      import datetime as dt
      from dateutil.relativedelta import relativedelta
      from datetime import timedelta
      import seaborn as sns
      import matplotlib.pyplot as plt
      from matplotlib.dates import DateFormatter, MinuteLocator
      from matplotlib.ticker import PercentFormatter
      import os
      import warnings
```

```
from scipy.optimize import minimize, brute
      from arch import arch_model
      warnings.filterwarnings("ignore")
[13]: covid_data = pd.read_csv('/Users/garik/Datathon/owid-covid-data.csv')
      eu = covid_data[covid_data.continent == 'Europe']
[14]: countries = eu.location.unique()
      deaths = []
      cases = []
      dates = []
      for c in countries:
          temp df = eu[eu.location == c]
          dates.append(temp df.date.values)
          cases.append(temp_df.total_cases_per_million.values)
          deaths.append(temp_df.total_deaths_per_million.values)
[15]: ans1 = pd.DataFrame([dates[0], cases[0], deaths[0]]).T
      ans1.columns = ['Date',countries[0] + '_Cases',countries[0] + '_Deaths']
      for i in range(1,len(countries)):
          ans2 = pd.DataFrame([dates[i], cases[i], deaths[i]]).T
          ans2.columns = ['Date',countries[i] + '_Cases',countries[i] + '_Deaths']
          ans2.index = ans2['Date']
          ans1 = ans1.join(ans2,on = 'Date',rsuffix = 'r')
      ans1 = ans1.drop(['Dater'],axis = 1)
      ans1.iloc[0] = ans1.iloc[0].fillna(0)
      ans1 = ans1.ffill()
[16]: cl = ans1.iloc[:,1::2]
      import scipy.cluster.hierarchy as shc
      plt.figure(figsize=(18, 7))
      plt.title("Cases Dendograms")
      dend = shc.dendrogram(shc.linkage(cl.T, method='ward'),truncate_mode='lastp',
                            orientation='top', show_leaf_counts=True,
                           no_labels = False,labels = cl.columns,leaf_rotation =90)
      cluster_1 = [1,4,9,24,28,36,45]
      cl_1 = list(np.array(countries[cluster_1]) + "_Cases")
      cluster_2 = np.arange(0,cl.shape[1])
```

```
cluster_2= cluster_2[list(map(lambda x: x not in cluster_1,cluster_2))]
cl_2 = list(np.array(countries[cluster_2]) + "_Cases")
series_1 = ans1[list(np.array(countries[cluster_1]) + "_Cases")]
plt.figure(figsize = (15,4))
plt.plot(series_1)
plt.legend(cl_1)
plt.show()
series_2 = ans1[list(np.array(countries[cluster_2]) + "_Cases")]
plt.figure(figsize = (15,4))
plt.plot(series_2)
plt.show()
series_1.index = pd.to_datetime(ans1.Date)
series_2.index = pd.to_datetime(ans1.Date)
plt.figure(figsize = (15,4))
plt.plot(series_1.mean(axis = 1))
plt.plot(series_2.mean(axis = 1))
plt.legend(["Cluster 1","Cluster 2"])
plt.show()
```


[22]:	ans1						
[22]:		Date	Albania_Cases	Albania_Deaths	Andorra_Cases	Andorra_Deaths	\
	0	2020-03-09	0.695	0.000	12.942	0.000	
	1	2020-03-10	3.475	0.000	12.942	0.000	
	2	2020-03-11	4.170	0.347	12.942	0.000	
	3	2020-03-12	7.992	0.347	12.942	0.000	
	4	2020-03-13	11.467	0.347	12.942	0.000	
		•••	•••	•••	•••	•••	
	297	2020-12-31	20264.091	410.383	104173.947	1087.168	
	298	2021-01-01	20264.091	410.383	105054.035	1087.168	
	299	2021-01-02	20498.645	413.510	105688.216	1087.168	

300	2021-01-03	20653.972	414.553	106024.720	1087.168
301	2021-01-04	20718.257	416.638	106762.441	1087.168
					,
^	Austria_Cases	-	Belarus_Cases	-	\
0	14.545	0.000		0.000	
1	20.208	0.000		0.000	
2	27.314	0.000		0.000	
3	33.532	0.111		0.000	
4	55.960	0.111	2.857	0.000	
 297	 40062.067	 690.842	20560.631	 150.699	
298	40294.790	695.172		151.651	
299	40449.236	696.727		152.604	
300	40612.009	702.167		153.556	
301	40794.324	705.831	21359.312	154.614	
	Belgium_Cases	Sweden_Case	es Sweden_Deaths	Switzerland_C	ases \
0	20.622				.214
1	23.038				.733
2	27.093	61.39			.336
3	27.093	76.34			.336
4	48.233	91.39			.606
			0.231	101	.000
 297	 55782.349		 32 864.122	52260	654
	55937.056				
298					
299	56012.986				
300	56085.637	43307.98			
301	56161.222	43307.98	32 864.122	2 53377	. 399
	Switzerland_De	aths Ukraine_(Cases Ukraine_De	eaths United Ki	ngdom_Cases \
0	_	_	-	0.000	9.280
1				0.000	13.095
2				0.000	19.164
3				0.000	26.368
4				0.023	33.438
	1			7.020	
297	883	3.343 24854).872	36770.923
298		.161 25080		1.439	37558.390
299		3.049 25203		5.834	38410.598
300		5.129 25315		3.852	39223.092
301		.887 25418).727	40091.062
301	314	25410	3.144 430).121	40091.002
	United Kingdom	_Deaths Vatica	n_Cases Vaticar	_Deaths	
0		0.044 1	236.094	0	
1		0.103	236.094	0	
2			236.094	0	
3			236.094	0	

4	0.147	1236.094	0
	•••	•••	•••
297	1084.495	33374.536	0
298	1093.554	33374.536	0
299	1100.109	33374.536	0
300	1106.811	33374.536	0
301	1112.851	33374.536	0

[302 rows x 93 columns]

```
[67]: cl = ans1.iloc[:,2::2]
      import scipy.cluster.hierarchy as shc
      from scipy.cluster.hierarchy import fcluster
      plt.figure(figsize=(18, 7))
      plt.title("Dendogram: Deaths per Million")
      Z = shc.linkage(cl.T, method='ward')
      dend = shc.dendrogram(Z,truncate_mode='lastp',
                            orientation='top', show_leaf_counts=True,
                           no_labels = False,leaf_rotation =90,labels =_
       \rightarrowlist(map(lambda x: x[:-7],cl.columns)))
      k = 2
      names_cl = fcluster(Z, k, criterion='maxclust')
      cluster_1 = cl.columns[names_cl == 1]
      cl_1 = list(cluster_1)
      cluster_2 = cl.columns[names_cl == 2]
      cl_2 = list(cluster_2)
      series_1 = ans1[list(cluster_1)]
      plt.figure(figsize = (15,4))
      plt.plot(series_1)
      plt.legend(cl_1)
      plt.show()
      series_2 = ans1[list(cluster_2)]
      plt.figure(figsize = (15,4))
      plt.plot(series_2)
      plt.show()
      series_1.index = pd.to_datetime(ans1.Date)
      series_2.index = pd.to_datetime(ans1.Date)
```

```
plt.figure(figsize = (15,4))
plt.plot(series_1.mean(axis = 1))
plt.plot(series_2.mean(axis = 1))
plt.legend(["Cluster 1","Cluster 2"])
plt.ylabel("Total Deaaths per Million")
plt.xlabel("Date")
plt.show()
```



```
[63]: data = dict(type = 'choropleth',
                 locations = pd.Series(list(map(lambda x: x[:-7],cl.columns))),
                 locationmode = 'country names',
                 colorscale= 'Portland',
                 text= ['IND','NEP','CHI','PAK','BAN','BHU', 'MYN','SLK'],
                 z=pd.Series(names_cl),
                 colorbar = {'title':'Country Clusters', 'len':200,'lenmode':
       [56]: names_cl
```

```
[56]: array([2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2,
            2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 1, 2, 2,
            1, 2], dtype=int32)
```

```
[60]: import plotly.graph_objs as gobj
      import pandas as pd
      from plotly.offline import download_plotlyjs,init_notebook_mode,plot,iplot
      init_notebook_mode(connected=True)
```

```
[66]: data = dict(type = 'choropleth',
                 locations = pd.Series(list(map(lambda x: x[:-7],cl.columns))),
                 locationmode = 'country names',
                 colorscale= 'Portland',
                 text= ['IND','NEP','CHI','PAK','BAN','BHU', 'MYN','SLK'],
                 z=pd.Series(names_cl),
                 colorbar = {'title':'Country Clusters', 'len':200,'lenmode':
      layout = dict(geo = {'scope':'europe'})
     col_map = gobj.Figure(data = [data],layout = layout)
```

```
iplot(col_map)
```

0.0.1 -30,-29,...29,30 days, graphs

```
[68]: ans1.index = pd.to_datetime(ans1.Date)
      cases_data = ans1.iloc[:,1::2]
      cols = cases data.columns
      cols_new = list(map(lambda x: x[:-6],cols))
      cases_data.columns = cols_new
      death_data = ans1.iloc[:,2::2]
      cols = death_data.columns
      cols_new = list(map(lambda x: x[:-7],cols))
      death_data.columns = cols_new
      response = pd.read_csv('country_response_measures.csv',parse_dates=True)
      response.name = 'response'
      response.date_start = pd.to_datetime(response.date_start)
      response.date_end = pd.to_datetime(response.date_end)
      response = response[response.date_start > min(cases_data.index)]
      def compare_measures(response,by_data = death_data, m = 'MassGatherAll',du = _ _
       \rightarrow30,dd = 30):
          mass = response[response.Response_measure == m]
          mass_countries = mass.Country.unique()
          policy_matrix = pd.DataFrame(columns = mass_countries, index= pd.
       →to_datetime(by_data.index)).fillna(0)
          for c in mass_countries:
              df_temp = mass[mass.Country == c]
              try:
                  policy_matrix.loc[df_temp.date_start.iloc[0],c] = 1
              except:
                  pass
                  policy_matrix.loc[df_temp.date_end.iloc[0],c] = -1
              except:
                  pass
```

```
policy_matrix = policy_matrix.dropna()
   changes_before_after = pd.DataFrame(index = np.arange(-dd,du+1),columns =__
→policy_matrix.columns)
   for c in policy_matrix.columns:
       row = policy matrix[c]
       pdate = row[row == 1].index[0]
       temp_change = by_data.loc[pdate - relativedelta(days = du):
                                 pdate + relativedelta(days = dd),c].
→pct_change()*100
       if(temp change.shape[0] <= du+dd):</pre>
           changes_before_after.loc[0 - temp_change[:pdate].shape[0]:-1,c] = __
→temp_change[:pdate].values
           changes_before_after.loc[0: 0 + temp_change[pdate:].shape[0],c] = __
→temp_change[pdate:].values
       else:
           changes_before_after.loc[0 - temp_change[:pdate].shape[0]:
                                     -1,c] = temp_change[:
→pdate-relativedelta(days = 1)].values
           changes_before_after.loc[0: 0 + temp_change[pdate:].shape[0],c] = __
→temp_change[pdate:].values
   return changes_before_after.replace([np.inf, -np.inf], np.nan)
```



```
[103]: ev_name = 'ClosPubAnyPartial'
       title = 'Partial Closure of Public Spaces of Any Kind'
       dd = 30
       du = 30
       plt.figure(figsize = (15,4))
       md = compare_measures(response,by_data = death_data, m = ev_name)
       y = md.ffill().quantile(0.5,axis = 1)
       y.plot()
       plt.axvline(x = 0 , c = 'black')
       plt.title("Deaths and "+ title)
       plt.ylabel('Percent change in total deaths per million')
       plt.xlabel("Days & Announcement")
       plt.xticks(ticks = np.arange(-dd,du+3,3),
                  labels = list(map(lambda x: str(x)+ ' days',np.arange(-dd,du+3,3))),
                 rotation=45)
       plt.gca().set_yticklabels(['{:.0f}%'.format(x) for x in plt.gca().get_yticks()])
       #plt.legend(['10% quantile',
                  #'50% quantile',
                  #'90% quantile'])
       plt.show()
```



```
[104]: ev_name = 'EntertainmentVenues'
       title = 'Closure of Entertainment Venues'
       plt.figure(figsize = (15,4))
       md = compare_measures(response,by_data = death_data, m = ev_name)
       y = md.ffill().quantile(0.5,axis = 1)
       y.plot()
       plt.axvline(x = 0 , c = 'black')
       plt.title("Deaths and "+ title)
       plt.ylabel('Percent change in total deaths per million')
       plt.xlabel("Days & Announcement")
       plt.xticks(ticks = np.arange(-dd,du+3,3),
                  labels = list(map(lambda x: str(x)+ ' days',np.arange(-dd,du+3,3))),
                 rotation=45)
       plt.gca().set_yticklabels(['{:.0f}%'.format(x) for x in plt.gca().get_yticks()])
       #plt.legend(['10% quantile',
                  #'50% quantile',
                  #'90% quantile'])
       plt.show()
```



```
[105]: ev_name = 'ClosSec'
       title = 'Closure of Secondary School'
       plt.figure(figsize = (15,4))
       md = compare_measures(response,by_data = death_data, m = ev_name)
       y = md.ffill().quantile(0.5,axis = 1)
       y.plot()
       plt.axvline(x = 0 , c = 'black')
       plt.title("Deaths and "+ title)
       plt.ylabel('Percent change in total deaths per million')
       plt.xlabel("Days & Announcement")
       plt.xticks(ticks = np.arange(-dd,du+3,3),
                  labels = list(map(lambda x: str(x)+ ' days',np.arange(-dd,du+3,3))),
                 rotation=45)
       plt.gca().set_yticklabels(['{:.0f}%'.format(x) for x in plt.gca().get_yticks()])
       #plt.legend(['10% quantile',
                  #'50% quantile',
                  #'90% quantile'])
       plt.show()
```



```
[114]: ev_name = 'IndoorOver100'
title = 'Limitations on Gatherings of Over 100 People'

plt.figure(figsize = (15,4))
md = compare_measures(response,by_data = death_data, m = ev_name)
y = md.ffill().quantile(0.5,axis = 1)
y.plot()
```



```
[115]: ev_name = 'ClosPrim'
       title = 'Closure of Primary Schools'
       plt.figure(figsize = (15,4))
       md = compare_measures(response,by_data = death_data, m = ev_name)
       y = md.ffill().quantile(0.5,axis = 1)
       y.plot()
       plt.axvline(x = 0 , c = 'black')
       plt.title("Deaths and "+ title)
       plt.ylabel('Percent change in total deaths per million')
       plt.xlabel("Days & Announcement")
       plt.xticks(ticks = np.arange(-dd,du+3,3),
                  labels = list(map(lambda x: str(x)+ ' days',np.arange(-dd,du+3,3))),
                 rotation=45)
       plt.gca().set_yticklabels(['{:.0f}%'.format(x) for x in plt.gca().get_yticks()])
       #plt.legend(['10% quantile',
                  #'50% quantile',
                  #'90% quantile'])
```

plt.show()


```
[117]: ev_name = 'PrivateGatheringRestrictions'
       title = 'PrivateGatheringRestrictions'
       plt.figure(figsize = (15,4))
       md = compare_measures(response,by_data = death_data, m = ev_name)
       y = md.ffill().quantile(0.5,axis = 1)
       y.plot()
       plt.axvline(x = 0 , c = 'black')
       plt.title("Deaths and "+ title)
       plt.ylabel('Percent change in total deaths per million')
       plt.xlabel("Days & Announcement")
       plt.xticks(ticks = np.arange(-dd,du+3,3),
                  labels = list(map(lambda x: str(x)+ ' days',np.arange(-dd,du+3,3))),
                 rotation=45)
       plt.gca().set_yticklabels(['{:.0f}%'.format(x) for x in plt.gca().get_yticks()])
       #plt.legend(['10% quantile',
                  #'50% quantile',
                  #'90% quantile'])
       plt.show()
```



```
[119]: ev name = 'RestaurantsCafes'
       title = 'Closure of Restaurants/Cafes'
       plt.figure(figsize = (15,4))
       md = compare_measures(response,by_data = death_data, m = ev_name)
       y = md.ffill().quantile(0.5,axis = 1)
       y.plot()
       plt.axvline(x = 0 , c = 'black')
       plt.title("Deaths and "+ title)
       plt.ylabel('Percent change in total deaths per million')
       plt.xlabel("Days & Announcement")
       plt.xticks(ticks = np.arange(-dd,du+3,3),
                  labels = list(map(lambda x: str(x)+ ' days',np.arange(-dd,du+3,3))),
                 rotation=45)
       plt.gca().set_yticklabels(['{:.0f}%'.format(x) for x in plt.gca().get_yticks()])
       #plt.legend(['10% quantile',
                  #'50% quantile',
                  #'90% quantile'])
       plt.show()
```


0.1 Clusters & Measures

```
[106]: response['days_between'] = list(map(lambda x: x.

days, (response['date_end']-response['date_start'])))
[107]: | cluster_1_response = response[response['Country'].isin(c1)]
       cluster_2_response = response[response['Country'].isin(c2)]
[108]: analysis = (pd.DataFrame(cluster_1_response.Response_measure.value_counts()/
        \rightarrowlen(c1)).
        join(cluster_2_response.Response_measure.value_counts()/len(c2),rsuffix = '2'))
       analysis.columns = ['Cluster 1 av measure', 'Cluster 2 av measure']
       analysis = analysis.join(cluster_1_response.groupby('Response_measure').
       →days_between.mean())
       analysis = analysis.join(cluster_2_response.groupby('Response_measure').
        →days_between.mean(),rsuffix = '2')
       analysis.columns = ['Cluster 1 av measure', 'Cluster 2 av measure', 'Cluster 1 av_

¬days','Cluster 2 av days']

[109]: analysis = analysis.sort_values(by = 'Cluster 2 av measure',ascending = False)
       analysis['diff_measure'] = analysis['Cluster 2 av measure'] - analysis['Cluster_
        →1 av measure']
       analysis['diff_days'] = analysis['Cluster 2 av days'] - analysis['Cluster 1 av_

days'
]
[110]: display(analysis.sort_values(by = 'diff_measure',ascending = False)[:10])
       display(analysis.sort_values(by = 'diff_measure', ascending = False)[-10:])
                                     Cluster 1 av measure Cluster 2 av measure \
      IndoorOver100
                                                    0.125
                                                                        0.578947
      OutdoorOver500
                                                    0.125
                                                                       0.552632
      IndoorOver50
                                                    0.250
                                                                        0.526316
      ClosPrim
                                                    0.625
                                                                        0.894737
      MassGatherAllPartial
                                                    0.375
                                                                        0.578947
      ClosHigh
                                                    0.750
                                                                        0.921053
      StavHomeGen
                                                    0.250
                                                                        0.421053
      MassGather50Partial
                                                    0.250
                                                                       0.368421
      BanOnAllEventsPartial
                                                    0.125
                                                                       0.236842
      PrivateGatheringRestrictions
                                                    0.875
                                                                        0.973684
                                     Cluster 1 av days Cluster 2 av days \
      IndoorOver100
                                             19.000000
                                                                46.100000
```

OutdoorOver500	123.000000	44.578947	
IndoorOver50	74.000000	53.933333	
ClosPrim	98.600000	82.615385	
MassGatherAllPartial	66.333333	81.312500	
ClosHigh	116.333333	89.000000	
StayHomeGen	8.000000	40.785714	
MassGather50Partial	26.500000	57.400000	
BanOnAllEventsPartial			
	23.000000	55.833333	
PrivateGatheringRestrictions	98.333333	56.550000	
	1: ££ 1: ££	3	
T d	diff_measure diff	•	
IndoorOver100		00000	
OutdoorOver500	0.427632 -78.4		
IndoorOver50	0.276316 -20.0		
ClosPrim	0.269737 -15.9		
MassGatherAllPartial	0.203947 14.9		
ClosHigh	0.171053 -27.3	33333	
StayHomeGen	0.171053 32.7	85714	
MassGather50Partial	0.118421 30.9	00000	
BanOnAllEventsPartial	0.111842 32.8	33333	
${\tt PrivateGatheringRestrictions}$	0.098684 -41.7	83333	
	Cluster 1 av measu	re Cluster 2 av measure	\
MasksMandatoryClosedSpaces	0.6		,
OutdoorOver1000	0.5		
MasksVoluntaryClosedSpaces	0.3		
BanOnAllEvents	0.8		
NonEssentialShopsPartial	0.8		
SocialCircle	0.5		
StayHomeOrder	0.8		
Teleworking	1.0		
${ t Stay Home Order Partial}$	0.8	75 0.289474	
${\tt RegionalStayHomeOrderPartial}$	0.2	50 NaN	
	Cluster 1 av days	Cluster 2 av days \	
${ t MasksMandatoryClosedSpaces}$	24.000000	119.333333	
OutdoorOver1000	95.000000	73.000000	
${ t MasksVoluntaryClosedSpaces}$	34.666667	81.500000	
BanOnAllEvents	78.500000	78.818182	
NonEssentialShopsPartial	26.200000	51.625000	
SocialCircle	NaN	NaN	
StayHomeOrder	47.428571	42.250000	
Teleworking	70.250000	72.875000	
StayHomeOrderPartial	27.666667	16.000000	
RegionalStayHomeOrderPartial	26.500000	NaN	
Ç ,			
	diff_measure diff	_days	
MasksMandatoryClosedSpaces	-	33333	
V 1			

```
OutdoorOver1000
                                        -0.236842 -22.000000
      MasksVoluntaryClosedSpaces
                                        -0.243421 46.833333
      BanOnAllEvents
                                        -0.322368
                                                    0.318182
      NonEssentialShopsPartial
                                        -0.348684 25.425000
      SocialCircle
                                        -0.421053
                                                         NaN
      StayHomeOrder
                                        -0.480263 -5.178571
      Teleworking
                                        -0.552632
                                                    2.625000
      StayHomeOrderPartial
                                        -0.585526 -11.666667
      RegionalStayHomeOrderPartial
                                                         NaN
                                              NaN
[111]: | display(analysis.sort_values(by = 'diff_days', ascending = False)[:10])
       display(analysis.sort_values(by = 'diff_days',ascending = False)[-10:])
                                        Cluster 1 av measure Cluster 2 av measure \
      {\tt MasksMandatoryClosedSpaces}
                                                       0.625
                                                                           0.421053
      IndoorOver1000
                                                       0.250
                                                                           0.263158
      ClosureOfPublicTransportPartial
                                                       0.125
                                                                           0.157895
      MasksVoluntaryClosedSpaces
                                                       0.375
                                                                           0.131579
      BanOnAllEventsPartial
                                                       0.125
                                                                           0.236842
      StayHomeGen
                                                       0.250
                                                                           0.421053
      MassGather50Partial
                                                       0.250
                                                                           0.368421
      RegionalStayHomeOrder
                                                       0.125
                                                                           0.052632
      IndoorOver100
                                                       0.125
                                                                           0.578947
      MassGatherAll
                                                       1.000
                                                                           0.947368
                                        Cluster 1 av days Cluster 2 av days \
                                                24.000000
      MasksMandatoryClosedSpaces
                                                                  119.333333
      IndoorOver1000
                                                 7.000000
                                                                   65.800000
      ClosureOfPublicTransportPartial
                                                28.000000
                                                                   78.000000
      MasksVoluntaryClosedSpaces
                                                34.666667
                                                                    81.500000
      BanOnAllEventsPartial
                                                23.000000
                                                                   55.833333
      StavHomeGen
                                                 8.000000
                                                                   40.785714
      MassGather50Partial
                                                26.500000
                                                                   57.400000
      RegionalStayHomeOrder
                                                16.000000
                                                                   46.000000
      IndoorOver100
                                                19.000000
                                                                   46.100000
      MassGatherAll
                                                53.000000
                                                                   79.350000
                                        diff_measure diff_days
      MasksMandatoryClosedSpaces
                                           -0.203947
                                                      95.333333
      IndoorOver1000
                                            0.013158 58.800000
      ClosureOfPublicTransportPartial
                                            0.032895 50.000000
      MasksVoluntaryClosedSpaces
                                           -0.243421 46.833333
      BanOnAllEventsPartial
                                            0.111842 32.833333
      StayHomeGen
                                            0.171053 32.785714
      MassGather50Partial
                                            0.118421 30.900000
      RegionalStayHomeOrder
                                           -0.072368
                                                      30.000000
      IndoorOver100
                                            0.453947 27.100000
      MassGatherAll
                                           -0.052632 26.350000
```

```
Cluster 1 av measure Cluster 2 av measure \
      ClosPubAnyPartial
                                                       1.000
                                                                          1.078947
      PlaceOfWorshipPartial
                                                       0.500
                                                                          0.394737
      OutdoorOver500
                                                       0.125
                                                                          0.552632
      StayHomeGenPartial
                                                       0.125
                                                                          0.131579
      TeleworkingPartial
                                                       0.375
                                                                          0.263158
      AdaptationOfWorkplacePartial
                                                      0.250
                                                                          0.105263
      MasksVoluntaryAllSpacesPartial
                                                       0.125
                                                                          0.105263
      SocialCircle
                                                       0.500
                                                                          0.078947
      StayHomeRiskGPartial
                                                       0.125
                                                                          0.026316
                                                      0.250
      RegionalStayHomeOrderPartial
                                                                               NaN
                                       Cluster 1 av days Cluster 2 av days
      ClosPubAnyPartial
                                                    141.0
                                                                   71.875000
      PlaceOfWorshipPartial
                                                    119.0
                                                                   46.750000
      OutdoorOver500
                                                    123.0
                                                                   44.578947
      StayHomeGenPartial
                                                    112.0
                                                                   28.750000
      TeleworkingPartial
                                                    151.0
                                                                   16.000000
      AdaptationOfWorkplacePartial
                                                    115.0
                                                                         NaN
      MasksVoluntaryAllSpacesPartial
                                                      NaN
                                                                   70.666667
      SocialCircle
                                                     NaN
                                                                         NaN
      StayHomeRiskGPartial
                                                     26.0
                                                                         {\tt NaN}
      RegionalStayHomeOrderPartial
                                                    26.5
                                                                         NaN
                                       diff_measure
                                                      diff_days
      ClosPubAnyPartial
                                           0.078947 -69.125000
      PlaceOfWorshipPartial
                                          -0.105263 -72.250000
      OutdoorOver500
                                           0.427632 -78.421053
      StayHomeGenPartial
                                           0.006579 -83.250000
      TeleworkingPartial
                                          -0.111842 -135.000000
      AdaptationOfWorkplacePartial
                                          -0.144737
                                                             NaN
      MasksVoluntaryAllSpacesPartial
                                          -0.019737
                                                             NaN
      SocialCircle
                                          -0.421053
                                                             NaN
      StayHomeRiskGPartial
                                          -0.098684
                                                             NaN
      RegionalStayHomeOrderPartial
                                                NaN
                                                             NaN
[120]: ev_name = 'MasksMandatoryClosedSpaces'
       title = 'Mandatory Masks'
       dd = 30
       du = 30
       plt.figure(figsize = (15,4))
       md = compare_measures(response,by_data = death_data, m = ev_name)
       y = md.ffill().quantile(0.5,axis = 1)
       y.plot()
```

