人工智慧概述

周哲維 2020/09/16

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

人類設定好的天生本能

- e.g. You want to build a Chat-bot....
 - if there is "turn off" in the input, then "turn off the music" (hand-crafted rule)
 - You can say "Please turn off the music" or "Can you turn off the music?". Smart?
 - What if someone says "Please don't turn off the music"
- Weakness of hand-crafted rules
 - Hard to consider all possibilities
 - 永遠無法超越創造者
 - Lots of human efforts (not suitable for small industry)

人類設定好的天生本能

• AI?

What is Machine Learning

What is Machine Learning

Machine Learning ≈ Looking for a Function

Speech Recognition

$$f($$
 $) = 'How are you'$

Image Recongintion

$$) = 'Cat$$

• Playing Go

$$f($$
 $) = '5 - 5'$

Dialogue System

$$f('Hi') = 'Hello'$$

Framework

Image Recongintion f() = 'Cat'

A set of function

Model

$$f_1, f_2 \dots \dots$$

$$f_1($$

$$) = 'Cat'$$

$$) = 'monkey'$$

 $f_1($

$$) = 'dog'$$

$$f_2($$

$$) =' snake'$$

Framework

Image Recongintion

$$=$$
 'Cat'

$$f_1, f_2 \dots \dots$$

$$f_1($$

$$f_2($$

) =' monkey'

$$f_1($$

$$)='dog'$$

$$f_2($$

) =' snake'

function input:

function output: "monkey"

Framework

Machine Learning is so simple.....

就好像把大象放進冰箱.....

Supervised Learning

Semi-supervised Learning

Unsupervised Learning

Reinforcement Learning

Regression

Classification

Structured Learning

Task - Regression

The output of the target function *f* is a "scalar"

預測 PM2.5

Training Data:

input:

input:

Output:

$$09/03$$
 上午 PM2.5 = 100

Output:

$$09/14$$
 上午 PM2.5 = 20

Task - Classification

Binary Classification

Multi-class Classification

Yes or No

Function f

input

Class 1, Class 2, ..., Class N

Function f

input

Binary Classification

Spam Filter

Multi-class Classification

Function *f*

Classification – Deep Learning

Image Recognition

Training Data

Classification – Deep Learning

Playing Go

Training Data

一堆棋譜

進藤光 v.s. 社清春

Classification – Deep Learning

Playing Go

Training Data

一堆棋譜

進藤光 v.s. 社清春

黑:5之五 → 白:天元 → 黑:五之5

input:

黑:5之五

output:
天元

Supervised Learning

- Training Data: input / output pair of target function
- Function output = label

• Hard to collect a large amount of labelled data

Semi-supervised Learning

For example, recognizing cats and dogs

labelled data

unlabelled data

(images of cats and dogs)

Machine Reading: Machine learns the meaning of words

from reading a lot of documents

Machine Reading: Machine learns the meaning of words from reading a lot of documents

Training data is a lot of text

Draw something!

Machine Drawing

Training data is a lot of images

Reinforcemnt Learning

Supervised v.s. Reinforcement

Supervised

Learning from teacher

say "Hi"

say "Good bye"

Reinforcement

Bad

Supervised v.s. Reinforcement

Supervised

next move: "5-5"

next move: "3-3"

Reinforcement

First move

..... many moves

Win!

Alpha Go is supervised learning + reinforcement learning.

AI 即將取代部份工作?

AI訓練師

機器不是會自己學嗎? 為什麼需要 AI 訓練師

戰鬥是寶可夢在打 為什麼需要寶可夢訓練師?

Step 1: define a set of function

Step 2: goodness of function

Step 3: pick the best function

寶可夢訓練師

- 要挑選適合的寶可夢來戰鬥
 - 寶可夢有不同屬性

AI 訓練師

- 要挑選合適的 model 與 loss function
 - 不同的 model 與 loss function 適合解決不同的問題

Step 1: define a set of function

Step 2: goodness of function

Step 3: pick the best function

寶可夢訓練師

- 要挑選適合的寶可夢來戰鬥
 - 寶可夢有不同屬性
- 召喚出來的寶可夢不一定聽話
 - e.g. 小智的噴火龍
 - 需要有經驗的寶可夢訓練師

AI 訓練師

- 要挑選合適的 model 與 loss function
 - 不同的 model 與 loss function 適合解決不同的問題
- 不一定能找出 best function
 - · e.g. Deep Learning
 - 需要有經驗的 AI 訓練師

Thanks!