CusToM Workshop

XSENS Force prediction

Charles Pontonnier, Pierre Puchaud

Pre-work

1. Go in Examples /2 Tennis Force Prediction

What is XSENS?

Full body motion capture

Motions to analyse – Tennis Service

XSENS provide the motion What if we want to predict external forces?

https://content.xsens.com/motion-data

Force prediction: what does this mean?

Sometimes, you want to do dynamics without force platforms

It is therefore necessary to generate - predict the external forces on the whole motion capture to make consistent inverse dynamics

Motion-based external forces prediction [Muller2019a, Muller 2019b]

Motivation : are we able to compute relevant dynamical information without any force measure ? on-site ergonomics evaluation

A few methods exist

Machine learning [Oh2013]

Analytical [Koopman1995, Dijkstra2015]

Optimisation based [Fluit2014,Skals2017]

Only for Ground Reaction Forces

What about hand contact forces?

employsure.co.nz

GenerateParameters

>> GenerateParameters

Subject's height: 1.80m Subject's weight: 70 kg

Model: Full Body

Markerset: not important

Muscle set: no muscles

AnalysisParameters

AnalysisParameters

AnalysisParameters

Generate Analysis Parameters

- Open Options
- Add contact points: « Rfoot » and select all the « RfootPrediction » points
- Add contact points: « RightToe » and select all the « RightToe Prediction » points
- Add contact points: « Lfoot » and select all the « LfootPrediction » points
- Add contact points: « LeftToe » and select all the « RfootPrediction » points

Use Crtl+Click or Shift+Click to select multiple points

RUN

External Forces Prediction (ChgtDirection04) ...
... External Forces Prediction (ChgtDirection04) done
Inverse dynamics (ChgtDirection04) ...
... Inverse dynamics (ChgtDirection04) done
Forces Computation (ChgtDirection04) ...
... Forces Computation (ChgtDirection04) done

What are the points?

Anatomical points defined on the feet as contact points

See ...\Functions\Models\Osteoarticular\Leg\ModelParts\foot.m

R. Fluit, M. S. Andersen, S. Kolk, N. Verdonschot, and H. F. Koopman, "Prediction of ground reaction forces and moments during various activities of daily living," Journal of biomechanics vol. 47, no. 10, pp. 2321–2329, 2014

S. Skals, M. K. Jung, M. Damsgaard, and M. S. Andersen, "Prediction of ground reaction forces and moments during sports-related movements," Multibody system dynamics, vol. 39, no. 3,pp. 175–195, 2017

Muller A., Pontonnier C., Dumont G. Motion-based prediction of hands and feet contact efforts during asymmetric handling tasks, in review

You can add contact points on any segment of the model!

What are the tresholds?

Contact is allowed (force is allowed to be generated on the considered point) if thresholds are reached and maximal force per point is constrained to 0.4 BW. Coulombs law links normal and tangential components of the force

Motion-based external forces prediction

 DE_{ref}

Handling tasks

Contact zones mapping

$$\min_{F} \sum_{i=1}^{2N_f} ||F_i||^2$$

$$s.t. \begin{cases} M_s(q)\ddot{q} + C_s(q,\dot{q}) + G_s(q) + E_s = \mathbf{0} \\ M_l(q)\ddot{q} + C_l(q,\dot{q}) + G_l(q) + E_l = \mathbf{0} \\ \forall i \in [1,2(N_f + N_h)], F_i < F_{i_{max}} \end{cases}$$

Motion-based external forces prediction

Good enough to predict forces for standardized tasks (not much variability in the handling)

What CusToM is doing?

$$\min_{(\boldsymbol{\alpha},\boldsymbol{\beta},\boldsymbol{\gamma})} \quad \sum_{i=1}^{2N_f} \left(\alpha_i^2 + \beta_i^2 + \gamma_i^2\right)$$
 s.t.
$$M_s(q)\ddot{q} + C_s(q,\dot{q}) + G_s(q) + \lambda_s + E_s = 0;$$
 Equations of motion
$$\forall i \in [\![1,2N_f]\!], (\alpha_i,\beta_i,\gamma_i) \in [-1,1]^3$$
 (Newton-Euler and sum at pelvis)

$$\mathbf{F_i} = \alpha_i \, F_{i,x}^{max} \, \mathbf{x} + \beta_i \, F_{i,y}^{max} \, \mathbf{y} + \gamma_i \, F_{i,z}^{max} \, \mathbf{z}$$

Each contact point has a minimal contribution to the global equilibrium

Postprocessing

Run The analysis

And the postProcessing to visualize the predicted ground reaction forces

Animation

Video

Workshop CusToM - 4