חלוקה ללא קנאה Envy-Free Division

אראל סגל-הלוי

קנאה

האלגוריתמים שראינו לא מבטיחים שהחלוקה תהיה ללא קנאה.

קנאה זה דבר מעצבן – ולא רק בני אדם -

https://www.youtube.com/results?search_query=monkey+envy+experi ment

אז איך מוצאים חלוקה ללא קנאה?

חלוקה ללא קנאה ל-3 שותפים

Selfridge – אלגוריתם Conway, 1963

- חתר 3 חתיכות שוות בעיניו. >
 - אם א, י מעדיפים חתיכות שונות – סיימנו. אחרת -
 - מקצץ את החתיכה הטובה מקצץ את החתיכה בעיניו. ביותר ו**משווה** לשניה בעיניו.
- א, י, כ בוחרים חתיכה. י חייב לבחור את זו שקיצץ, אם לא נבחרה קודם.
 - קיבלנו חלוקה עם שארית

חלוקה ללא קנאה ל-3 שותפים

Selfridge – אלגוריתם ב – Conway, 1963

או י בחרו את החתיכה• המקוצצת; במקרה זה א]. שלא בחר את החתיכה • • המקוצצת) מחלק את השארית לשלוש חתיכות שוות בעיניו.

סלפרידג'-קונוויי

משפט: אלגוריתם סלפרידג'-קונוויי נותן חלוקה ללא קנאה - כל שחקן המשחק לפי הכללים מקבל חתיכה טובה לפחות כמו שתי האחרות.

הוכחה: נבנה גרף דו"צ שבו:

• הצמתים - שחקנים מצד אחד וחתיכות מצד שני.

• הקשתות - מכל שחקן לחתיכות הטובות בעיניו.

שידוך מושלם בגרף זה = חַלוקה ללא קנאה!

:אחרי החלוקה הראשונה של כ יש שני מקרים

סלפרידג'-קונוויי – המשך הוכחה

בוחרים לפי הסדר א, י, כ. לא משנה מה א בוחר -ל-י נשאר מה לבחור. הוא חייב לבחור את 3 אם היא קיימת, לכן גם ל-כ נשאר מה לבחור.

חלק ב: נניח ש-א לקח את החתיכה המקוצצת. אז י חותך; א, כ, י בוחרים. א בוחר ראשון; ל-י יש שלוש חתיכות לבחור; ו-כ לא יקנא ב-א אפילו אם א

ייקח את כל השארית!

חלוקה ללא קנאה

שאלות:

- מה קורה כשיש 4 שותפים או יותר?
- איך מוצאים חלוקה ללא קנאה עם חתיכות **קשירוֹת**?
- (כזכור, האלגוריתמים לפרופורציונליות מוצאים חלוקה **קשירה** לכל מספר של שותפים).

חלוקה ללא קנאה ל-n שותפים

1963: אלג' סלפרידג'-קונוויי ל-3 אנשים. 5 שאילתות 1996: אלג' בראמס-טיילור. #שאילתות לא חסום. 1998: אלג' רוברטסון-ווֶב. #שאילתות לא חסום. 2000: אלג' פיקהורקו. #שאילתות לא חסום. 2009: אלג' פרוקצ'יה: #שאילתות לפחות n² משפט פרוקצ'יה: #שאילתות לפחות n² אלג' עזיז-מקנזי ל-4. #שאילתות חסום (200). 2016: אלג' עזיז-מקנזי ל-n. #שאילתות חסום:

$$O(n^{n^{n^{n^{n^{n^{n}}}}}})$$

עדיין לא ידוע כמה שאילתות באמת צריך – האם אפשר למצוא אלגוריתם הדורש n² שאילתות?

n-חלוקה קשירה ללא קנאה ל

• נסתכל על *כל* החלוקות הקשירות ל-n חתיכות. • כל חלוקה מוגדרת ע"י *n* מספרים שסכומם קבוע.

$$l_1 + l_2 + l_3 = 1$$

מרחב החלוקות הקשירות הוא:

- עבור n=2 **קטע**.
- עבור n=3 **משולש**
- . עבור n=4 טטראדר
- באופן כללי **סימפלקס**.

n-חלוקה קשירה ללא קנאה ל

• חלוקה כמעט-ללא-קנאה = סימפלקסון שבו אפשר לחלק קודקוד לכל שחקן, כך שכל שחקן כתב על הקודקוד שלו מספר אחר.

אלגוריתם סימונס (Su 1999)

 $F_1 = (1,0,0)$

A/1

A:1

B/2

A:1

.B:3

₿:1

C:1

A:3

B:3

- נותנים כל צומת לשחקן, כך שבכל סימפלקסון, כולם מיוצגים.
 - כל שחקן כותב, בכל צומת שלו, את מספר החתיכה הכי טובה בעיניו.
 - מחפשים **סימפלקס-n מלא** = נ:3. עם n מספרים שונים =
 - חלוקה כמעט-ללא-קנאה.
 - נוכיח באינדוקציה על n שקיים
 מספר איזוגי של סימפלקס-n-מלא.

(Sperner's Lemma) הלמה של ספרנר

התנאי הזה תמיד מתקיים אצלנו, כי כל שחקן מעדיף פרוסה לא ריקה!

 $_2$ בסיס: $_1$ ל- $_2$. הצלע בין $_1$ ל- $_2$. המספרים מתחילים ב-1 ומסתיימים ב-2, ולכן מספר המעברים הוא איזוגי.

(Sperner's Lemma) הלמה של ספרנר

- תלא. n-מלא. הגענו לסימפלקס
- יש עוד סימפלקס-(n-1)-מלא. נצא דרכו ונמשיך לטייל בסוף, או שנגיע לסימפלקס-n-מלא, או שנצא החוצה דרך סימפלקס-(n-1)-מלא אחר.
- לכן, יש גם מספר איזוגי של סימפלקס-n-מלאים. ***

חלוקה קשירה ללא קנאה

1980: משפט סטרומקוויסט: תמיד קיימת חלוקה.

.1980-1998 אלגוריתמי סכינים, לשלושה אנשים.

.1999: אלגוריתם סימונס, #שאילתות אינסופי.

2008: משפט סטרומקוויסט: #שאילתות תמיד

אינסופי!

 $\Theta(n \log n)$

שחקנים

"קַשָּה כִשְאוֹל קּנְאָה"		
חלוקה	חלוקה	חלוקה
בשורה ללע	ללע הנעה	סכוסוכעוונלום

2 שאילתות

200

 $\Omega(n^2)$

קנאה

!אינסוף