เฉลยข้อที่ 1 (12 คะแนน)

1.1

6	
ส่วนร้อยละโดยมวลของ	
ลอะตอมของ	
5.28 : 9.80 : 0.753	(0.5 คะแหห)
= 7.01 : 13.0 : 1.00	(0.5 คะแหห)
= 132.6 = มวลโมเลกล	
	ส่วนร้อยละโดยมวลของ คอะตอมของ 5.28 : 9.80 : 0.753 = 7.01 : 13.0 : 1.00

คอนฟอร์เมชันที่เสถียรที่สุดของสาร A ต้องตรงกับคำตอบที่กำหนดเท่านั้น (1 คะแนน) คอนฟอร์เมชันที่เสถียรที่สุดของสาร B ต้องตรงกับคำตอบที่กำหนดเท่านั้น (1 คะแนน)

สูตรโครงสร้างพร้อมสเตอริโอเคมีของ	
สาร E (พร้อมระบุคอนพิกุเรชันของแต่	OHC. A A CHa
ละไครัลคาร์บอน)	(1 คะแนน)
สูตรโครงสร้างพร้อมสเตอริโอเคมีของ	(1110007070)
ข สาร F (พร้อมระบุคอนฟีกุเรชันของแต่	OHC CH ₃
ละไครัลคาร์บอน)	сно
	หรือ
	OHC (S) H
	CHO
	(1.5 คะแหห)
	เขียนโครงสร้างถูก = 1 คะแนน
	เขียน configuration ถูก = 0.5 คะแนน

เฉลยข้อที่ 2 (12 คะแนน)

2.1

โครงสร้างอย่างย่อของเพนตะเพปไทด์ 🗛	Asp-His-Phe-Arg-Ser	ต้องถูกต้องทั้งหมด	
		(2 คะแา	นน)

2.2

จำนวนโครงสร้างปฐมภูมิของเพนตะเพปไทด์ที่สังเคราะห์ได้จาก	3125	(1 คะแนน)		
กรดอะมิโน 5 ชนิด				
จำนวนโครงสร้างของเพนตะเพปไทด์ที่มีกรดอะมิโนไม่ซ้ำกันเลย	120	(1 คะแหห)		
คำอธิบาย: จำนวนของเพนตะเพปไทด์ที่ได้จากกรดอะมิโน 5 ชนิด = 5^5 = $3\dot{1}25$				
จำนวนของเพนตะเพปไทด์ที่มีกรดอะมิโนไม่ซ้ำกันเลย = 5 x 4 x 3 x 2 x 1 = 120				

2.3

ประเภทสารชีวโมเลกุลที่เป็นสาร	กรดนิวคลีอิก หรือ กรดดีออกซีไรโบนิวคลีอิก (DNA)
กำหนดลำดับกรดอะมิโน	(1 คะแนน)

2.4

คำอธิบาย: เพปไทด์จะตกตะกอนเมื่อมีประจุรวมเป็นศูนย์ หรือที่ pH = pI ของเพปไทด์ ซึ่งคำนวณได้จาก ค่าเฉลี่ยของ p K_1 ของหมู่ที่จะแตกตัวให้โปรตอนแล้วทำให้เพปไทด์มีประจุรวมเปลี่ยนจาก +1 เป็น 0 และ จาก 0 เป็น -1 ซึ่งในที่นี้ก็คือ p K_1 ของหมู่ R ของ His และ \mathbf{C} -NH, $^+$ ของ Asp

เพปไทด์ที่จะเคลื่อนที่ไปที่ขั้วบวก	เพปไทด ์ B				
	(1 คะแนน)				
คำอธิบาย: เพปไทด์ที่จะเคลื่อนไปที่ขั้วบว	คำอธิบาย: เพปไทด์ที่จะเคลื่อนไปที่ขั้วบวกจะต้องมีประจุรวมของโมเลกุลเป็นลบ หรือมี pI < pH				
เพปไทด์ A คือ Asp-His-Phe-Arg-Ser มีค่า pI = 7.9					
เพปไทด์ B คือ Asp-His-Phe มีค่า pI = 4.95					
เพปไทด์ C คือ Arg-Ser มีค่า pI = 11					
เพปไทด์ D คือ Asp-His-Phe-Arg มีค่า pI = 7.9					
ที่ pH 6.5 เพปไทด์ B ซึ่งมีค่า p	I < pH จะมีประจุรวมเป็นลบ จึงเคลื่อนที่ไปที่ขั้วบวก				

เฉลยข้อที่ 3 (6 คะแนน)

3.1

3.2

มวลโมเลกุลเฉลี่ยของไตรกลีเซอไรด์ : 886 (0.5 คะแนน)

แสดงวิธีการคำนวณ ไตรกลีเซอไรด์ 1 โมลจะทำปฏิกิริยาพอดีกับ KOH 3 โมล

ดังนั้น
$$\frac{1}{3} = \frac{250.0 \times 10^{-3} \ / MW_{lตรกลีเซอไรด์}}{47.5 \times 10^{-3} \ 56.1}$$
 $MW_{lตรกลีเซอไรด์} = 886$ (1 คะแนน)

3.3

จำนวนของพันธะคู่ในไตรกลีเซอไรด์ในน้ำมันถั่วเหลือง
$$A:3$$
 (0.5 คะแนน)

แสดงวิธีการคำนวณ ไตรกลีเซอไรด์ 1 โมลที่มีพันธะคู่ N พันธะจะทำปฏิกิริยาพอดีกับ I_2 N โมล

ดังนั้น $\frac{1}{N} = \frac{680 \times 10^{-3} / 886}{578 \times 10^{-3} / 253.8}$
จำนวนของพันธะคู่ในไตรกลีเซอไรด์ $N=2.967$ เมื่อปัดให้เป็นเลขจำนวนเต็มจะได้ 3 พันธะ (1 คะแนน)

Iodine Number ของน้ำมันถั่วเหลือง A : 85
 (0.5 คะแนน)

 แสดงวิธีการคำนวณ
 น้ำมัน 680 x 10⁻³ กรัมทำปฏิกิริยาพอดีกับไอโอดีน 578 x 10⁻³ กรัม

 น้ำมัน 100 กรัมจะทำปฏิกิริยาพอดีกับไอโอดีน =
$$\frac{578 \times 10^{-3} \times 100}{680 \times 10^{-3}} = 85 = \text{Iodine Number}$$
 (แสดงวิธีคิด 1 คะแนน)

เฉลยข้อที่ 4 (8 คะแนน)

4.1

ชื่อปฏิกิริยา : การขจัด (0.5 คะแนน)

4.2

4.3

ี ไม่เป็น เป็นปฏิกิริยา spontaneous : 🔲 เป็น (0.5 คะแนน) เพราะ $\Delta extsf{G}^\circ$ เป็นบวก เหตุผล : (0.5 คะแนน)

(ก) สูตรของสารเคลือบฟันใหม่ที่เกิดขึ้น : [Ca₅(PO₄)₃F] **(0.5 คะแนน)**(ข) เหตุผลที่สารเคลือบฟันชนิดใหม่จึงมีความทนทานต่อการสลายได้ดีกว่าเดิม
เนื่องจาก [Ca₅(PO₄)₃F] เป็นเบสที่อ่อนกว่า [Ca₅(PO₄)₃OH] จึงทำปฏิกิริยากับน้ำลายในสภาวะที่เป็น
กรดได้ชัากว่า **(1 คะแนน)**

เฉลยข้อที่ 5 (9 คะแนน)

5.1 (3 คะแนน)

สมการการแตกตัวของกรดฟอสฟอริก (H ₃ PO ₄)	ค่าคงที่การแตกตัว		
สมการ : $H_3PO_4(aq) + H_2O \Rightarrow H_3O^+(aq) + H_2PO_4^-(aq)$	K ₁ = 7.1 x10 ⁻³ (2x0.5 คะแนน)		
สมการ : $H_2PO_4^-(aq) + H_2O \Rightarrow H_3O^+(aq) + HPO_4^{-2}-(aq)$	K ₂ = 6.2 x10 ⁻⁸ (2x0.5 คะแนน)		
สมการ : $HPO_4^{2-}(aq) + H_2O \Rightarrow H_3O^+(aq) + PO_4^{3-}(aq)$	K ₃ = 4.5 x10 ⁻¹³ (2x0.5 คะแนน)		

5.2

ชนิดของคู่กรด-เบสในบัฟเฟอร์	H ₂ PO ₄ (aq) และ HPO ₄ ²⁻ (aq)
	(0.5คะแนน x 2คำตอบ =1 คะแนน)
<u>แสดงวิธีการคำนวณ</u> สัดส่วนความเข้มข้นสารที่ใช้	$K_a = 6.2 \times 10^{-8} = 3.1 \times 10^{-8} \frac{[HPO_4^{2-}]}{[H_2PO_4^{-}]}$
	[HPO4-] = 2.0 /1 (2.0) (แสดงวิธีคิด = 1 คะแนน)

เฉลยข้อที่ 6 (9 คะแนน)

6.1

[CaCl2] = 0.020 mol/dm3	[Na ₂ CO ₃]= 0.010	mol/dm ³	$[OH_{1}] = 1.00 \times 10^{-2} \text{ mol/dm}^{3}$
(0.5 คะแนน)	(0.5 คะแนน)		(0.5 คะแหน)
แสดงวิธีการคำนวณความเข้มข้น	ของ CaCl ₂		
[CaCl ₂] = —	$\frac{0x10x1.11}{2x111} = 0.020$	mol/dm	³ (1 คะแหห)
แสดงวิธีการคำนวณความเข้มข้น	ของ Na ₂ CO ₃		
$[Na_2CO_3] = $	$\frac{0 \times 10 \times 1.06}{2 \times 106} = 0.010$	mol/dm ³	(1 คะแหน)
แสดงวิธีการคำนวณความเข้มขัน	ของ OH ์		
pOH = 2.00			
$[OH^{-}] = 1.0 \times 1$	0 ⁻² mol/dm ³		(0.5 คะแนน)

เฉลยข้อที่ 7 (14 คะแนน)

7.1

7.2

(ก) สมการแสดงปฏิกิริยา :	
$C_6H_5COOH + NaOH \rightarrow C_6H_5COONa + H_2O$	(1 คะแนน)
(ข) pH ของสารละลายหลังผสม : 8.498 หรือ 8.50	
	(0.5 คะแหน)
แสดงวิธีการคำนวณ	
Mole C_6H_5COOH = $\frac{0.100 \times 50.00}{1000} = 5.00 \times 10^{-3}$	(0.5 คะแหห)
Mole NaOH = $\frac{0.100 \times 50.00}{1000} = 5.00 \times 10^{-3}$	(0.5 คะแหห)
C ₆ H₅COOH กับ NaOH ทำปฏิกิริยาพอดีกัน เกิดเกลือขึ้น	
Mole C ₆ H ₅ COONa รวม = $\frac{0.0500 \times 50.00}{1000} + 5.00 \times 10^{-3}$	
$= 2.50 \times 10^{-3} + 5.00 \times 10^{-3} = 7.50 \times 10^{-3}$	(1 คะแหห)
$[C_6H_5COONa] = \frac{7.50 \times 10^{-3}}{100.00} \times 1000 = 0.0750 \text{ mol/dm}^3$	(0.5 คะแนน)
(ปริมาตรรวม = 100.00 cm ³)	
$[OH^{-}] = \sqrt{\frac{1.00 \times 10^{-14} \times 0.0750}{7.6 \times 10^{-5}}} = 3.15 \times 10^{-6} \text{ mol/dm}^{3}$	(1 คะแหน)
pOH = 5.502 (หรือ 5.50)	(0.5 คะแนน)
pH = 8.498 (หรือ 8.50)	

เฉลยข้อที่ 8 (15 คะแนน)

8.1 (2.75 คะแหน, คำตอบละ 0.25 คะแหน)

ค่าสัมประสิทธิใน	а	b	С	d	е	f
สมการที่ 1	4	8	1	2	4	4
ค่าสัมประสิทธิใน	g	h	i	j	k	
สมการที่ 2	2	1	1	2	4	

8.2 (2 คะแนน)	ที่ละ 0.2	5 คะแนน				
	์ ธาตุที่ถูก	เลขอ	อกซิเดชัน /	ธาตุที่ถูก	เลขออ	กซิเดชัน
	_ ออกซิไดส์	เดิม	ใหม่ /	รีดิวซ์	เดิม	ใหม่
สมการที่ 1	Au	9	+1	O_2	0	-2
สมการที่ 2	Zn	0	+2	Au	+1	0

8.3

ปริมาตร NaCN ที่ใช้ : 25.7 dm³

แสดงวิธีการคำนวณปริมาตรในหน่วย dm³ ของสารละลายโซเดียมไซยาไนด์
หิน 1000 kg มีทองคำ 0.0190% :
มวลของทองคำในก้อนหิน = 0.190 kg = 190 g) = 190/197 = 0.964 mol
ทอง 1 mol ใช้ CN 2 mol : ทอง 0.964 mol ใช้ NaCN = 20.964 mol
NaCN 0.0750 M : ปริมาตร NaCN ที่ใช้ = 20.964/0.0750
= 25.7 dm³ (ที่ละ 0.5 = 2 คะแนน)

8.4

(ก) เหตุผลสั้นๆ : (1 คะแนน)
ทองมีค่า E⁰ (+1.52) สูงกว่า Cl₂ (+1.36) แต่ Ag (+0.80) และ Zn(-0.76) มีค่า E⁰ ต่ำกว่า
(ข) น้ำหนักของทองคำบริสุทธิ์ 99.50% ที่ได้ : 192 g (0.5 คะแนน)

<u>แสดงวิธีการคำนวณ</u>
ทองคำ 100 % หนัก = 190 g
ทองคำ 99.5 % หนัก = 190×100/99.5 = 192 g
(0.5 คะแนน)

8.6

คำตอบสั้นๆ :

นำ CN จากสมการที่ 2 ไปใช้ในการแยกทองคำใหม่ตามสมการที่ 1

(1 คะแนน)

เฉลยข้อที่ 9 (9 คะแนน)

9.1

สมการนิวเคลีย	ร์ :	
ขั้นที่ 1	$^{226}_{88}$ Ra \rightarrow $^{222}_{86}$ Rn $^{4}_{+}$ $^{2}_{2}$ He	(0.5 คะแนน)
ขั้นที่ 2	$^{222}_{86}$ Rn \rightarrow $^{218}_{84}$ Po $^{4}_{+}$ $^{2}_{2}$ He	(0.5 คะแนน)
ขั้นที่ 3	$^{218}_{84}$ Po \rightarrow $^{214}_{82}$ Pb $^{4}_{+}_{2}$ He	(0.5 คะแนน)
ขั้นที่ 4	$^{214}_{82}$ Pb \rightarrow $^{214}_{83}$ Bi $^{0}_{-1}$ e	(0.5 คะแนน)
ขั้นที่ 5	$^{214}_{83}$ Bi $\rightarrow ^{214}_{84}$ Po + $^{0}_{-1}$ e	(0.5 คะแหห)
ขั้นที่ 6	$^{214}_{84}$ Po \rightarrow $^{210}_{82}$ Pb $^{4}_{+}$ $^{2}_{2}$ He	(0.5 คะแหน)

9.2

จำนวนอะตอมของฮีเล็	รียมที่เกิดขึ้น : 1.90 x 10 ¹⁷ อะตอม	(0.5 คะแหห)
แสดงวิธีการคำนวณ		
N_{He}	= $4 \times 3.42 \times 10^{10} \times 0.179 \times 90.0 \times 24 \times 3600$	
	= 1.90 x 10 ¹⁷ อะตอม	
		(1.5 คะแหห)

เลขอาโวกาโดรที่ได้จากการทดลองนี้ :
$$6.06 \times 10^{23}$$
 (0.5 คะแนน)

แสดงวิธีการคำนวณ

N เลขอาโวกาโดร (L) = $\frac{1.90 \times 10^{17}}{7.02 \times 10^{-6} / 22.4}$

= 6.06×10^{23} (1.5 คะแนน)

เวลาครึ่งชีวิตในหน่วยปี: 1720 ปี	(0.5 คะแหห)
แสดงวิธีการคำนวณ	
คำนวณเวลาครึ่งชีวิต (t _{1/2})	
จำนวนอนุภาค Ra = $\frac{1.00}{$	(0.5 คะแหน)
226	
3.42 x 10 ¹⁰	
ค่าคงที่ k = $\frac{3.42 \times 10^{10}}{2.68 \times 10^{21}}$ = 1.28 x 10 ⁻¹¹	(0.5 คะแนน)
	6 -
$t_{1/2} = \frac{\ln 2}{k} = \frac{0.693}{1.28 \times 10^{-11}} = 5.41 \times 10^{10}$ วินาที = 1720 ปี	(0.5 คะแหน)

เฉลยข้อที่ 10 (11 คะแนน)

10.1

สารประกอบเชิงซ้อน	เลขออกซิเดชัน	วิธีคำนวณ
	ของโลหะ	
(I) [CoBr ₄] ²⁻	+2	$-2 = (-1 \times 4) + \times \therefore \times = +2$
	(0.25 คะแหห)	(0.25 คะแนน)
(II) [Co(CO) ₆] ³⁺	+3	$+3 = (0 \times 6) + \times \therefore \times = +3$
	(0.25 คะแหห)	(0.25 คะแนน)
(III) [Co(CN) ₆] ⁴⁻	+2	-4 = (-1 x 6) + x ∴ x = +2
	(0.25 คะแหห)	(0.25 คะแนน)

สารประกอบเชิงซ้อน	ภาพแสดงการจัดเรียงอิเล็กตรอนตามทฤษฎี crystal field		
(I) [CoBr ₄] ²⁻	จำนวน d^n ถูก = 0.5 จัดเรียงอิเล็กตรอนถูก = 0.5 ลักษณะการ split ออร์บิทอลถูก = 0.25 ชื่อออร์บิทอลถูก = 0.25 $column{c} column{c} c$		
	(1.5 คะแนน)		
(II) [Co(CO) ₆] ³⁺	$\begin{array}{c c} & & & \\ & d_{x^2-y^2}, \ d_{z^2} \\ \\ \hline \\ \text{Co}^{3^+} \ (\text{d}^6), \ \text{CO} = \text{strong field ligand} & \therefore & \\ \end{array}$		
	(1.5 คะแนน)		
(III) [Co(CN) ₆] ⁴⁻	$\begin{array}{c c} & & \\ \hline & \\ d_{x^2-y^2}, d_{z^2} \end{array}$		
	Co^{2+} (d ⁷), CN^{-} = strong field ligand \therefore d_{xy}, d_{xz}, d_{yz}		
	(1.5 คะแหน)		

10.4

เฉลยข้อที่ 11 (7 คะแนน)

11.1

สูตรเคมีของ XZ₄	CCI ₄	(0.5 คะแนน)
สูตรเคมีของ YZ ₄	SiCl ₄	(0.5 คะแหน)

11.2

โครงสร้างลิวอิสของ XZ ₄	;;; ;;;—;;;	
	:ċi:	(0.5 คะแหห)
โครงสร้างลิวอิสของ YZ ₄	:Cl : 	(0 F Occupant)
โครงสร้างลิวอิสของ COCl ₂	· Ö.	(0.5 คะแหห)
	C	
	; či , , či ;	(0.5 คะแนน)

11.3

เหตุผล : เพราะ C มี valence shell เต็มแล้ว (2s, 2p) และไม่มี d orbital ที่สามารถใช้ในการเกิด พันธะได้ ส่วน Si มี 3d orbital ว่างอยู่ที่สามารถเกิดพันธะกับน้ำได้อีก (0.5 คะแหน)

11.4

สารประกอบออกไซด์ของ	ประกอบออกไซด์ของ สูตรอย่างง่าย		ĵ	ครงสร้าง
х	CO ₂	(0.5 คะแหน)	Linear	(0.5 คะแหห)
Y	SiO ₂	(0.5 คะแหห)	Tetrahedral	(0.5 คะแหห)

11.5

สมการแสดงการเกิดปฏิกิริยาเคมี : $SiO_2(s) + Na_2CO_3(s) \rightarrow Na_2SiO_3(s) + CO_2(g)$ (1 คะแนน)

ชนิดของไฮบริดออร์บิทอลที่ใช้ในการสร้างพันธะใน YZ4 :	sp ³	(0.5 คะแหห)
ชนิดของไฮบริดออร์บิทอลที่ใช้ในการสร้างพันธะใน YZ ₆ ²-:	sp ³ d ²	(0.5 คะแนน)

เฉลยข้อที่ 12 (8 คะแนน)

12.1

เลขโคออร์ดิเนชันของ M ["]	:	4	(0.5 คะแหน)
เลขโคออร์ดิเนชันของ M	:	6	(0.5 คะแหน)

12.2

ร้อยละของช่องว่างทรงเหลี่ยมแปดหน้าที่ถูกบรรจุด้วยไอออน M ^{III} : 50 %	(0.5 คะแนน)
แสดงวิธีการคำนวณ	
จำนวนของ O ²⁻ ในหนึ่งหน่วยลูกบาศก์ = (1/8 x 8) + (1/2 x 6) = 4	(1 คะแหห)
ดังนั้นจำนวน octahedral hole = 1 x 4 = 4 ช่อง	(0.5 คะแหห)
จำนวน M ^{III} (AI ^{III}) = 2,	
เพราะฉะนั้นร้อยละการบรรจุ = (2/4) x 100% = 50%	

12.3

ความหนาแน่นของหน่วยเซลล์ : 3.10 g/cm ³	(0.5 คะแหห)
แสดงวิธีการคำนวณ	
เนื่องจาก ความยาวหน่วยเซลล์ = 912 pm = 912 x 10 ⁻¹⁰ cm	
ฉะนั้น ปริมาตรหน่วยเซลล์ = (912 x 10 ⁻¹⁰) ³ cm ³ = 7.59 x 10 ⁻²² cm ³	(0.5 คะแหห)
ี่ น้ำหนักของอะตอมทั้งหมดในหนึ่งหน่วยเซลล์ = [AW(Co) + 2AW(AI) + 4AW(O)]x8	
= [58.9 + (2x27.0) + (4x16.0)]x8 = 1415.2 g	/mol
= 1415.2 g/mol / $6.02 \times 10^{23} = 23.5 \times 10^{-22}$	(0.5 คะแหห)
ฉะนั้น $\rho = \text{M/V} = \frac{23.5 \times 10^{-22}}{7.59 \times 10^{-22}} = 3.10 \text{ g/cm}^3$	(0.5 คะแนน)

ร้อยละโดยปริมาตรของที่ว่าง : 48%	(0.5 คะแนน)
แสดงวิธีการคำนวณ	
ปริมาตรลูกบาศก์ = (2r) ³	(0.5 คะแนน)
จำนวนทรงกลมในลูกบาศก์ = (1/8 x 8) = 1 ลูก	(0.5 คะแหห)
คิดเป็นปริมาตร = 4/3 π r 3	(0.5 คะแหห)
และปริมาตรที่บรรจุ = [(4/3 πr^3) / $8r^3$] x 100% = 52% ดังนั้น %Vของที่ว่าง = 100 -	- 52 = 48%

เฉลยข้อสอบภาคทฤษฎี เคมีโอลิมปิก สอวน ครั้งที่ 321