Practical Malware Analysis

Ch 13: Data Encoding

Revised 4-25-16

The Goal of Analyzing

Encoding Algorithms

Reasons Malware Uses Encoding

- Hide configuration information
 - Such as C&C domains
- Save information to a staging file
 - Before stealing it
- Store strings needed by malware
 - Decode them just before they are needed
- Disguise malware as a legitimate tool
 - Hide suspicious strings

Simple Ciphers

Why Use Simple Ciphers?

- They are easily broken, but
 - They are small, so they fit into spaceconstrained environments like exploit shellcode
 - Less obvious than more complex ciphers
 - Low overhead, little impact on performance
- These are obfuscation, not encryption
 - They make it difficult to recognize the data, but can't stop a skilled analyst

Caesar Cipher

 Move each letter forward 3 spaces in the alphabet

ABCDEFGHIJKLMNOPQRSTUVWXYZ DEFGHIJKLMNOPQRSTUVWXYZABC

• Example
ATTACK AT NOON
DWWDFN DW ORRO

XOR

```
0 xor 0 = 0
0 xor 1 = 1
1 xor 0 = 1
1 xor 1 = 0
```

- Uses a key to encrypt data
- Uses one bit of data and one bit of the key at a time
- Example: Encode HI with a key of 0x3c

```
HI = 0x48 0x49  (ASCII encoding)
```

Data: 0100 1000 0100 1001

Key: 0011 1100 0011 1100

Result: 0111 0100 0111 0101

A	Т	Т	Α	С	K		Α	T		Ν	0	0	N
0x41	0x54	0x54	0x41	0x43	0x4B	0x20	0x41	0x54	0x20	0x4E	0x4F	0x4F	0x4E
						7	ا						
							\sim		10000				
1	L.	L.	1	DEL	14/	EC.	1	H	EC				_
}	h	h	}	DEL	W	FS	}	Н	FS	г	s	\$	r

Figure 14-1. The string ATTACK AT NOON encoded with an XOR of 0x3C (original string at the top; encoded strings at the bottom)

XOR Reverses Itself

```
0 xor 0 = 0
0 xor 1 = 1
1 xor 0 = 1
1 xor 1 = 0
```

Example: Encode HI with a key of 0x3c

```
HI = 0x48 0x49  (ASCII encoding)
```

Data: 0100 1000 0100 1001

Key: 0011 1100 0011 1100

Encode it again

Result: 0111 0100 0111 0101

Key: 0011 1100 0011 1100

Data: 0100 1000 0100 1001

Brute-Forcing XOR Encoding

- If the key is a single byte, there are only 256 possible keys
 - Error in book; this should be "a.exe"
 - PE files begin with MZ

MZ = 0x4d 0x5a

Table 14-1. Brute-Force of XOR-Encoded Executable

XOR key value	Ini	tial	by	tes	of	file	<u>. </u>									MZ header found?
Original	5F	48	42	12	10	12	12	12	16	12	1D	12	ED	ED	12	No
XOR with 0x01	5e	49	43	13	11	13	13	13	17	13	1c	13	ec	ec	13	No
XOR with 0x02	5d	4a	40	10	12	10	10	10	14	10	1f	10	ef	ef	18	No
XOR with 0x03	5c	4b	41	11	13	11	11	11	15	11	1e	11	ee	ee	11	No
XOR with 0x04	5b	4c	46	16	14	16	16	16	12	16	19	16	e9	e9	16	No
XOR with 0x05	5a	4d	47	17	15	17	17	17	13	17	18	17	e8	e8	17	No
***																No
XOR with 0x12	4d	5a	50	88	02	99	88	88	84	99	θf	88	ff	ff	88	Yes!

Example 14-2 First bytes of the decrypted PF file

LA	am	Pic	17	-2.	1 11	ot t	,y ii	0	1 11	100	icci	y_{P}	cu	L	me	
4D	5A	50	00	02	00	00	00	04	00	0F	00	FF	FF	00	00	MZP
B8	00	00	00	00	00	00	00	40	00	1A	00	00	00	00	00	
00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00	00	00	00	00	00	00	00	00	00	00	00	00	01	00	00	
BA	10	00	0E	1F	В4	09	CD	21	В8	01	4C	CD	21	90	90	!L.!
54	68	69	73	20	70	72	6F	67	72	61	6D	20	6D	75	73	This program mus

Link Ch 13a

Tools for Examining XOR Obfuscation for Malware Analysis

2 comments Posted by Lenny Zeltser

Filed under Computer Forensics, Incident Response, Malware Analysis, Reverse Engineering

There are numerous ways of concealing sensitive data and code within malicious files and programs. Fortunately, attackers use one particular XOR-based technique very frequently, because offers sufficient protection and is simple to implement. Here's a look at several tools for deobfuscating XOR-encoded data during static malware analysis. We'll cover XORSearch, XORStrings, xorBruteForcer, brutexor and NoMoreXOR.

Brute-Forcing Many Files

 Look for a common string, like "This Program"

XOR key value	"Т	his	pr	ogr	am	"							
Original	54	68	69	73	28	70	72	6f	67	72	61	6d	20
XOR with 0x01	55	69	68	72	21	71	73	6e	66	73	60	6c	21
XOR with 0x02	56	6a	6b	71	22	72	70	6d	65	70	63	6f	22
XOR with 0x03	57	6b	6a	70	23	73	71	6с	64	71	62	6e	23
XOR with 0x04	50	6c	6d	77	24	74	76	6b	63	76	65	69	24
XOR with 0x05	51	6d	6c	76	25	75	77	6a	62	77	64	68	25

XOR with 0xFF	ab	97	96	8c	df	8f	8d	98	98	8d	9e	92	df

XOR and Nulls

- A null byte reveals the key, because
 - -0x00 xor KEY = KEY
- Obviously the key here is 0x12

NULL-Preserving Single-Byte XOR Encoding

Algorithm:

- Use XOR encoding, EXCEPT
- If the plaintext is NULL or the key itself, skip the byte

Table 14-3. Original vs. NULL-Preserving XOR Encoding Code

Original XOR	NULL-preserving XOR
buf[i] ^= key;	<pre>if (buf[i] != 0 && buf[i] != key) buf[i] ^= key;</pre>

		1														
5F	48	42	00	10	99	99	00	16	99	1D	00	ED	ED	00	00	_HB
AΑ	00	00	00	00	00	00	00	52	00	08	00	00	00	00	00	R
90	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
90	00	00	00	00	00	00	00	00	00	00	00	00	13	00	00	
48	02	00	10	0D	A6	1B	DF	33	AA	13	5E	DF	33	82	82	3^.3
16	7A	7B	61	32	62	60	7D	75	60	73	7F	32	7F	67	61	Fz{a2b'}u's.2.ga

Identifying XOR Loops in IDA Pro

- Small loops with an XOR instruction inside
 - Start in "IDA View" (seeing code)
 - 2. Click Search, Text
 - Enter xor and Find all occurrences

Occurrences of	: xor				
Edit Search					
Address	Function	Instruction			•
.text:00401230	sub_401200	33 D2	NOF	edx, edx	To the same of the
.text:00401269	sub_401200	33 C9	NOT	еск, еск	1
.text:00401277	sub_401200	33 C0	NOT	еах, еах	
.text:00401312	z_x_func	83 F2 12	10K	edx, 12h	
.text;00401395		33 C0	10K	eax, eax	
.text:00401470		32 C0	NO	al, al	
.text:004014D6		32 C0	NOF	al, al	
.text:0040151F		32 CO	NOF	al. al	~
ine 1 of 31					

Figure 14-2. Searching for XOR in IDA Pro

Three Forms of XOR

- XOR a register with itself, like xor edx, edx
 - Innocent, a common way to zero a register
- XOR a register or memory reference with a constant
 - May be an encoding loop, and key is the constant
- XOR a register or memory reference with a different register or memory reference
 - May be an encoding loop, key less obvious

Figure 14-3. Graphical view of single-byte XOR loop

Table 14-4. Additional Simple Encoding Algorithms

Encoding	Description
scheme	

scneme	
ADD, SUB	Encoding algorithms can use ADD and SUB for individual bytes in a manner that is similar to XOR. ADD and SUB are not reversible, so they need to be used in tandem (one to encode and the other to decode).
ROL, ROR	Instructions rotate the bits within a byte right or left. Like ADD and SUB, these need to be used together since they are not reversible.
ROT	This is the original Caesar cipher. It's commonly used with either alphabetical characters $(A-Z)$ and $a-z$ or the 94 printable characters in standard ASCII.
Multibyte	Instead of a single byte, an algorithm might use a longer key, often 4 or 8 bytes in length. This typically uses XOR for each block for convenience.
Chained or loopback	This algorithm uses the content itself as part of the key, with various implementations. Most commonly, the original key is applied at one side of the plaintext (start or end), and the encoded output character is used as the key for the next character.

Base64

- Converts 6 bits into one character in a 64character alphabet
- There are a few versions, but all use these
 62 characters:

```
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
0123456789
```

- MIME uses + and /
 - Also = to indicate padding

Example 14-4. Part of raw email message showing Base64 encoding

Content-Type: multipart/alternative; boundary="_002_4E36B98B966D7448815A3216ACF82AA201ED633ED1MBX3THNDRBIRD_"

MIME-Version: 1.0
--_002_4E36B98B966D7448815A3216ACF82AA201ED633ED1MBX3THNDRBIRD_

Content-Type: text/html; charset="utf-8"

Content-Transfer-Encoding: base64

SWYgeW91IGFyZSByZWFkaW5nIHRoaXMsIHlvdSBwcm9iYWJseSBzaG91bGQganVzdCBza2lwIHRoaX MgY2hhcHRlciBhbmQgZ28gdG8gdGhlIG5leHQgb25lLiBEbyB5b3UgcmVhbGx5IGhhdmUgdGhlIHRp bWUgdG8gdHlwZSB0aGlzIHdob2xlIHN0cmluZyBpbj8gWW91IGFyZSBvYnZpb3VzbHkgdGFsZW50ZW QuIE1heWJlIHlvdSBzaG91bGQgY29udGFjdCB0aGUgYXV0aG9ycyBhbmQgc2VlIGlmIH

Transforming Data to Base64

- Use 3-byte chunks (24 bits)
- Break into four 6-bit fields
- Convert each to Base64

	Α											Γ				T							
0x4 0x1							x5		0	κ4		0x5				0x4							
0	1	0	0	0	0	0	1	0	1	0	1	0	1	0	0	0	1	0	1	0	1	0	0
16					2	1					1	7					20						
		(2					٧						F	2			U					

Figure 14-4. Base64 encoding of ATT

base64encode.org base64decode.org

 3 bytes encode to 4 Base64 characters

Padding

 If input had only 2 characters, an = is appended

Padding

 If input had only 1 character, == is appended

Example

URL and cookie are Base64-encoded

Example 14-5. Sample malware traffic

GET /X29tbVEuYC8=/index.htm

User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)

Host: www.practicalmalwareanalysis.com

Connection: Keep-Alive Cookie: Ym90NTQxNjQ

GET /c2UsYi1kYWM0cnUjdFlvbiAjb21wbFU0YP==/index.htm

User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)

Host: www.practicalmalwareanalysis.com

Connection: Keep-Alive Cookie: Ym90NTQxNjQ

Cookie: Ym90NTQxNjQ

- This has 11 characters padding is omitted
- Some Base64
 decoders will fail,
 but this one just
 automatically adds
 the missing padding

Finding the Base64 Function

- Look for this "indexing string"
 ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz0123456789+/
- Look for a lone padding character (typically =) hard-coded into the encoding function

Decoding the URLs

- Custom indexing string
 aABCDEFGHIJKLMNOPQRSTUVWXYZbcdefghijk
 lmnopgrstuvwxyz0123456789+/
- Look for a lone padding character (typically
 hard-coded into the encoding function

Algorithms

Common Cryptographic

Strong Cryptography

- Strong enough to resist brute-force attacks
 - Ex: SSL, AES, etc.
- Disadvantages of strong encryption
 - Large cryptographic libraries required
 - May make code less portable
 - Standard cryptographic libraries are easily detected
 - Via function imports, function matching, or identification of cryptographic constants
 - Symmetric encryption requires a way to hide the key

Recognizing Strings and Imports

 Strings found in malware encrypted with OpenSSL

```
OpenSSL 1.0.0a

SSLv3 part of OpenSSL 1.0.0a

TLSv1 part of OpenSSL 1.0.0a

SSLv2 part of OpenSSL 1.0.0a

You need to read the OpenSSL FAQ,

http://www.openssl.org/support/faq.html

%s(%d): OpenSSL internal error, assertion failed: %s

AES for x86, CRYPTOGAMS by <appro@openssl.org>
```

Recognizing Strings and Imports

 Microsoft crypto functions usually start with Crypt or CP or Cert

Address	Ordinal	Name	Library	
0408A068		RegEnumKeyExA	ADVAPI32	
0408A0		CryptAcquireContextA	ADVAPI32	
0408A070		CryptCreateHash	ADVAPI32	
0408A074		CryptHashData	ADVAPI32	
0408A078		CryptDeriveKey	ADVAPI32	
040840		CryptDestroyHash	ADVAPI32	
0408A080		CryptDecrypt	ADVAPI32	
0408A084		CryptEncrypt	ADVAPI32	
0408A088		Reg0penKeyExA	ADVAPI32	~

Figure 14-9. IDA Pro imports listing showing cryptographic functions

Searching for Cryptographic Constants

- IDA Pro's FindCrypt2 Plug-in (Link Ch 13c)
 - Finds magic constants (binary signatures of crypto routines)
 - Cannot find RC4 or IDEA routines because they don't use a magic constant
 - RC4 is commonly used in malware because it's small and easy to implement

FindCrypt2

- Runs automatically on any new analysis
- Can be run manually from the Plug-In Menu

```
Output window

| 100062A4: found const array DES_ID (used in DES)
| 100062E4: found const array DES_ID (used in DES)
| 100063E4: found const array DES_D2: (used in DES)
| 100063F4: found const array DES_D2: (used in DES)
| 100063F4: found const array DES_D2: (used in DES)
| 100063F6: found const array DES_D2: (used in DES)
| 100065E2: found const array DES_D2: (used in DES)
| 100065E2: found const array DES_D2: (used in DES)
| Found 7 known constant arrays in total.
```

Figure 14-10. IDA Pro FindCrypt2 output

Krypto ANALyzer (PEiD Plug-in)

- Download from link Ch 13d
- Has wider range of constants than FindCrypt2
 - More false positives
- Also finds Base64 tables and crypto function imports

Figure 14-11. PEiD and Krypto ANALyzer (KANAL) output

Entropy

- Entropy measures disorder
- To calculate it, just count the number of occurrences of each byte from 0 to 255
 - Calculate Pi = Probability of value i
 - Then sum Pi log(Pi) for I = 0 to 255 (Link 13e)
- If all the bytes are equally likely, the entropy is 8 (maximum disorder)
- If all the bytes are the same, the entropy is zero

Entropy Demo

- · Put output in a file
- Use bin walk -E to analyze the file
- Multiply vertical axis by 8

```
#!/usr/bin/python
import base64, random
a = "
for i in range(0, 10000):
 a += chr(random.randint(0,255))
b = base64.b64encode(a)
c = base64.b32encode(a)
d = base64.b16encode(a)
e = 'A' * 10000
print a + b + c + d + e
```


Entropy Demo

Concatenate three images in different formats

Searching for High-Entropy Content

- IDA Pro Entropy Plugin
- Finds regions of high entropy, indicating encryption (or compression)

Figure 14-12. IDA Pro Entropy Plugin

Recommended Parameters

- Chunk size: 64 Max. Entropy: 5.95
 - Good for finding many constants,
 - Including Base64-encoding strings (entropy 6)
- Chunk size: 256 Max. Entropy: 7.9
 - Finds very random regions

Entropy Graph

- IDA Pro Entropy Plugin
 - Download from link Ch 13g
 - Use StandAlone version
 - Double-click region, then Calculate, Draw
 - Lighter regions have high entropy
 - Hover over graph to see numerical value

Custom Encoding

Homegrown Encoding Schemes

- Examples
 - One round of XOR, then Base64
 - Custom algorithm, possibly similar to a published cryptographic algorithm

Identifying Custom Encoding

```
Example 14-6. First bytes of an encrypted file

88 5B D9 02 EB 07 5D 3A 8A 06 1E 67 D2 16 93 7F .[...]:...g....
43 72 1B A4 BA B9 85 B7 74 1C 6D 03 1E AF 67 AF ....t.m...g.
98 F6 47 36 57 AA 8E C5 1D 70 A5 CB 38 ED 22 19 ...G6W...p..8.".
86 29 98 2D 69 62 9E C0 4B 4F 8B 05 A0 71 08 50 .).-ib..KO...q.P
92 A0 C3 58 4A 48 E4 A3 0A 39 7B 8A 3C 2D 00 9E ...XJH...9{.<-...
```

- This sample makes a bunch of 700 KB files
- Figure out the encoding from the code
- Find CreateFileA and WriteFileA
 - In function sub_4011A9
- Uses XOR with a pseudorandom stream

Advantages of Custom Encoding to the Attacker

- Can be small and nonobvious
- Harder to reverse-engineer

Decoding

Two Methods

- Reprogram the functions
- · Use the functions in the malware itself

Self-Decoding

- Stop the malware in a debugger with data decoded
- Isolate the decryption function and set a breakpoint directly after it
- BUT sometimes you can't figure out how to stop it with the data you need decoded

Manual Programming of Decoding Functions

Standard functions may be available

```
Example 14-7. Sample Python Base64 script
import string
import base64

example_string = 'VGhpcyBpcyBhIHRlc3Qgc3RyaW5n'
print base64.decodestring(example_string)
```

```
Example 14-8. Sample Python NULL-preserving XOR script

def null_preserving_xor(input_char,key_char):
    if (input_char == key_char or input_char == chr(0x00)):
        return input_char
    else:
        return chr(ord(input_char) ^ ord(key_char))
```

```
Example 14-9. Sample Python custom Base64 script
import string
import base64
s = ""
custom = "9ZABCDEFGHIJKLMNOPQRSTUVWXYabcdefghijklmnopqrstuvwxyz012345678+/"
Base64 = "ABCDEFGHIJKLMNOPORSTUVWXYZabcdefghijklmnopgrstuvwxyz0123456789+/"
ciphertext = 'TEgobxZobxZgGFPkb20='
for ch in ciphertext:
    if (ch in Base64):
        s = s + Base64[string.find(custom,str(ch))]
    elif (ch == '='):
        s += '='
result = base64.decodestring(s)
```

PyCrypto Library

Good for standard algorithms

```
Example 14-10. Sample Python DES script
from Crypto.Cipher import DES
import sys

obj = DES.new('password',DES.MODE_ECB)
cfile = open('encrypted_file','r')
cbuf = f.read()
print obj.decrypt(cbuf)
```

How to Decrypt Using Malware

- Set up the malware in a debugger.
- Prepare the encrypted file for reading and prepare an output file for writing.
- Allocate memory inside the debugger so that the malware can reference the memory.
- 4. Load the encrypted file into the allocated memory region.
- 5. Set up the malware with appropriate variables and arguments for the encryption function.
- 6. Run the encryption function to perform the encryption.
- 7. Write the newly decrypted memory region to the output file.

```
Example 14-12. ImmDbg sample decryption script
import immlib
def main ():
   imm = immlib.Debugger()
   cfile = open("C:\\encrypted_file", "rb") # Open encrypted file for read
   pfile = open("decrypted_file", "w")
                                           # Open file for plaintext
   buffer = cfile.read()
                                           # Read encrypted file into buffer
   sz = len(buffer)
                                           # Get length of buffer
   membuf = imm.remoteVirtualAlloc(sz)
                                           # Allocate memory within debugger
   imm.writeMemory(membuf.buffer)
                                           # Copy into debugged process's memory
   imm.setReg("EIP", 0x004011A9)
                                           # Start of function header
   imm.setBreakpoint(0x004011b7)
                                           # After function header
   imm.Run()
                                           # Execute function header
   regs = imm.getRegs()
   imm.writeLong(regs["EBP"]+16, sz)
                                           # Set NumberOfBytesToWrite stack variable
   imm.writeLong(regs["EBP"]+8, membuf)
                                           # Set lpBuffer stack variable
   imm.setReg("EIP", 0x004011f5)
                                           # Start of crypto
   imm.setBreakpoint(0x0040122a)
                                           # End of crypto loop
   imm.Run()
                                           # Execute crypto loop
   output = imm.readMemory(membuf, sz)
                                           # Read answer
   pfile.write(output)
                                           # Write answer
```