

Boosting Fusion Reactor Performance Through Machine Learning Predictions

J. Slone, S. Mordijck, J. Loughran William & Mary, 200 Stadium Dr, Williamsburg, VA 23185, U.S. ivslone@wm.edu

Tokamaks Help Sustain Plasma

Tokamak Plasma "Moves" As Fluid

Convection(V) Moving Around 7 One "Direction"

The Strengths of D&V Determine Plasma Behavior

General Approach

Opportunity For Improvement

Data Challenges

Fusion Data Is Expensive

Additional Data Must Be Generated

Machine Learning Methodology

Machine Learning Implementation

Neural Network Architecture Used

Model Training Process

Model Performance

Results

Model Predicting Reactor Behavior

(Existing Methods' Error 10-20%)

Impacts

Better Predictions Are Very Powerful

Acknowledgements

[1]: A. B. Smith 2024, NOAA NCEI 10,25921/sktw-7w73 [2]: Denholm et al. 2022 NREL 6A40-81644 [1] S. Mordijck 2020 Nucl. Fusion 60 082006

[2] E. Stefanikova et al 2016 Rev. Sci. Instrum. 11E536

[3] A.M. Rosenthal et al 2024 Nucl. Fusion 64 036006

Poster Adapted From Poster Presented At APS DPP 2024 Work supported by US DOE under DE-FC02-04ER54698, DE-SC0019302, DE AC02-09CH11466, DE-SC0024523 and DE-SC0014264.