

CPSC 131

Data Structures

AVL Trees

Tree Height and BST Issue

Depth

```
□ Depth of a node: number of ancestors (between the
  node and the root)
    Root has depth 0
☐ Depth of p's node is recursively defined:
    if (p.isRoot()) return 0;
                                         // root has depth 0
    else return 1 + depth(p.parent()); // 1 + (depth of
    parent)
map<int, string> ds;
                                             What is the
ds[5] = "Monday";
                                             depth at each
ds[15] = "Tuesday";
                                             node?
ds[25] = "Wednesday";
ds[11] = "Thursday";
```

Height

- □ Height of a node p in a tree T is defined recursively:
 If p is the external node, then the height of p is 0
 Otherwise, the height of p is 1 + the maximum height of children of p
- Height of a tree == maximum depth of its external nodes

Height of a tree T is the height of the root of T

```
map<int, string> ds;
ds[5] = "Monday";
ds[15] = "Tuesday";
ds[25] = "Wednesday";
ds[11] = "Thursday";
```

What is the height at each node?

Issue with Binary Search Tree Performance

- ☐ A binary search tree (BST) with *n* items
 - The space used is O(n)
 - Methods find, insert and erase take O(height) time
 - height = n, worst case long skinny tree
 - Example: insert 2, 4, 6, 8, 10 into a BST
 - What is the issue? Lack of balance!
 - height = log n, best case p balanced tree

Self-Balancing Trees

☐ Always ensure that BST is balanced

IF an insert (or delete) makes the BST not balanced, then *rearrange* the nodes so that the tree stays balanced

Challenge: the node rearrangement should not take too long!

Otherwise, lose the search speed benefit

Node rearrangement still keeps the same nodes in sorted order but in a different layout

Many types of balanced trees

AVL trees

- The first self-balancing tree
- Invented in 1962 by Russian mathematicians Georgy Adelson-Velsky and Evgenii Landis

Red-Black trees -

Splay trees

(2,4) trees

AVL Trees

- balanced binary search trees such that for every internal node v of T, the heights of left and right subtrees of v can differ by at most 1
 - $H = 1 + \max of$ height(left subtree) and height(right subtree)
- **Balance factor** calculated at each node
 - Treat an empty tree (nullptr) as height = -1BF = height(left) subtree) good enough" balance but not perfectly subtree)

Insertion

- Inserting a new key-value same as in a binary search tree
 - Always done by expanding an external node.
- ☐ Example: insert key 54

before insertion

after insertion

Trinode Restructuring

Focus on only three nodes

4 combinations: Y and X can be left/right child of Z

Trinode Restructuring

4 combinations: Y and X can be left/right child of Z

Insert with restructuring

- Insert as usual for a BST
 At an external node
- 2. Check for imbalance starting from new external node, up to root If no imbalance, then done
- 3. Identify the three "problem nodes"

 First imbalanced node (call this z)

 "Tallest" child of x (call this y)

 "Tallest" child of y (call this x)
- Refer to trinode restructuring handout and identify which rotation to do Single left rotation, Single right rotation, Double left rotation, or Double right rotation
- 5. Perform the rotation below **z**Keep the rest of the tree as it is

AVL Tree Trinode Restructuring

Restructuring – as Single Rotations

Restructuring – as Double Rotations

zyBook Annimations

Trinode Restructuring (cont)

Focus on only three nodes

newly inserted node

after rotation (balanced)

Removal

Removal begins as in a binary search tree, which means the node removed will become an empty external node. Its parent, w, may cause an imbalance

before deletion of 32

after deletion

Rebalancing after a Removal

- Let z be the first unbalanced node encountered while travelling up the tree from w. Also, let y be the child of z with the larger height, and let x be the child of y with the larger height
- \Box We perform restructure(x) to restore balance at z
- If this restructuring upsets the balance of another node higher in the tree, we would continue checking for balance

Time complexity of insert

Insert operations	BST	AVL
Insert as external node	O(height)	O(height)
Check for balance (at every node from new node up to root)	-	O(height)
Trinode restructuring	-	O(1)
Total in worst-case	O(height) = O(n)	$O(h + egb) = O(\log n)$

Height of an AVL Tree

☐ If an AVL tree contains n nodes (i.e., n key-value pairs), what is its height?

☐ Can show that:

The maximum height of an AVL tree storing n keys is 2*log(n) = O(log n).

AVL Tree Performance

- a single restructure takes O(1) time using a linked-structure binary tree
- ind takes O(log n) time
 height of tree is O(log n), no restructures needed
- put takes O(log n) time
 initial find is O(log n)
 Restructuring up the tree, maintaining heights is O(log n)
- erase takes O(log n) time initial find is O(log n) Restructuring up the tree, maintaining heights is O(log n)