

Addition of aluminium alkyl for improved metallocene catalyst.

Patent Number: EP0426638, A3, B1
Publication date: 1991-05-08
Inventor(s): EWEN JOHN A (US); ELDER MICHAEL J (US)
Applicant(s): FINA TECHNOLOGY (US)
Requested Patent: JP3207704
Application Number: EP19900870175 19901009
Priority Number (s): US19890419222 19891030
IPC Classification: C08F4/602 ; C08F4/608 ; C08F10/00
EC Classification: C08F10/00
Equivalents: CA2027122, CN1037685B, CN1037686B, CN1051365, CN1111641, DE69026679D, ES2086397T, JP2939321B2, KR196613

Abstract

The invention is for a catalyst system for polymerization of olefins using an ionic metallocene catalyst with aluminum alkyl. The metallocene catalyst is an ion pair formed from a neutral metallocene compound and an ionizing compound. The invention can be used in any method of producing ionic metallocene catalyst. Use of aluminum alkyl with an ionic metallocene catalyst eliminates the need for using methylaluminoxane (MAO). Catalysts produced by the method of this invention have high activity. The invention reduces catalyst poisons which cause low activity, no activity or uncontrolled polymerizations. Polymerizations using this catalyst system are reproducible and controllable.

Data supplied from the esp@cenet database - I2

⑨ 日本国特許庁 (JP) ⑩ 特許出願公開
 ⑪ 公開特許公報 (A) 平3-207704

⑫ Int. Cl. 5 識別記号 庁内整理番号 ⑬ 公開 平成3年(1991)9月11日
 C 08 F 10/00 8619-4H
 C 07 F 17/00 8016-4J
 C 08 F 4/602 MFG
 審査請求 未請求 請求項の数 2 (全12頁)

⑪ 発明の名称 オレフィン重合触媒

⑫ 特 願 平2-288600

⑬ 出 願 平2(1990)10月29日

優先権主張 ⑪ 1989年10月30日 ⑬ 米国(US)⑪ 419222

⑪ 発明者 ジョン・ユーエン アメリカ合衆国テキサス州77058ヒューストン・ケントウツドアベニュー 16615

⑪ 発明者 マイケル・ジェイ・エルダー アメリカ合衆国テキサス州77546フレンズウッド・ストーンレフジ706

⑪ 出願人 フイナ・テクノロジー・インコーポレーテッド アメリカ合衆国テキサス州75221ダラス・ビーオーボックス 410

⑪ 代理人 弁理士 小田島 平吉

明細書

1. 【発明の名称】

オレフィン重合触媒

2. 【特許請求の範囲】

1. a) アルミニウムアルキルをオレフィンと混合し、

b) メタロセン触媒を製造し、

c) この触媒をアルミニウムアルキル-オレフィン混合物と混合する、但し

アルミニウムアルキルが一般式

ASR_n

【式中、Rはハロゲン、酸素、ヒドリド、アルキル、アルコキシ又はアリールであり、但し各Rは同一でも異なつてもよく且つ少くとも1つのRはアルキルである】

のものであり、またメタロセンが中性メタロセン化合物及びイオン化化合物から生成されるイオン対である、

ことを含んでなるオレフィンの重合法。

2. a) メタロセン触媒、及び

b) アルミニウムアルキル、
を含んでなり、但し

アルミニウムアルキルが一般式

ASR_n

【式中、Rはハロゲン、酸素、ヒドリド、アルキル、アルコキシ又はアリールであり、但し各Rは同一でも異なつてもよく且つ少くとも1つのRはアルキルである】

のものであり、またメタロセン触媒が一般式

[Cp₂MR²R'-]⁺[A]⁻

【式中、[Cp₂MR²R'-]⁺はメタロセンカチオンであり、但しCp₂はシクロペンタジエニル又は置換シクロペンタジエニルであり、各Cp₂は同一でも異なつてもよく、R²が第Ⅲ、Ⅳ、Ⅴ又はⅥ族の金属であり、R²はヒドリド、ハロゲン、アミド又はヒドロカルビル基であり、各R²は同一でも異なつてもよく、但し1つのR²だけはヒドリドであり、R²が1～4であり、そして[A]⁻はアニオンである】

のイオン対である、

ことを含んでなる触媒系。

3. [発明の詳細な説明]

本発明は、一般に改良された触媒系及び特にアルミニウムアルキルを添加することによるオレフィンの重合のための改良されたメタロセン触媒系及びそのような触媒の使用法に関する。

要するに本発明は、イオン性メタロセン触媒をアルミニウムアルキルと共に用いるオレフィンの重合に対する触媒系に関するものである。メタロセン触媒は中性メタロセン化合物及びイオン化化合物から生成されるイオン対である。本発明はイオン性メタロセン触媒を製造するいずれかの方法で使用することができる。アルミニウムアルキルをイオン性メタロセン触媒と共に用いると、メチルアルミニノキサン (MAO) を用いる必要性がなくなる。本発明の方法で製造される触媒は高活性である。本発明は低活性、無活性又は制御できない重合を引き起こす触媒を除する。本触媒系を用いる重合は再現性があり、制御することができる。

反復単位の立体配置が規則的でない重合体はアタクチック重合体である。商業的な用途において、典型的にはアタクチック重合体のある割合はアイソタクチック形を含んで製造される。

オレフィンの重合は基本的にはチーグラー-ナツタ触媒を用いる。チーグラー-ナツタ触媒のある種はメチルアルミニノキサンを共触媒とする第IV族のメタロセン化合物である。オレフィンの重合に対するチーグラー-ナツタ触媒が第IV族のメタロセン化合物をイオン性化合物と一緒にすることによって製造しうることが示されている。

【式中、 Cp^*_2 - ベンタメチルシクロペンタジエニル、

M - 第IV族金属

R - アルキル

L - 配位子

[C] - カチオン

[A] - アニオン】。

オレフィン、特にプロピレンは重合して種々の形態、即ちアイソタクチック、シンジオタクチック及びアタクチックのポリオレフィンを生成する。アイソタクチックポリプロピレンは、主に同一の立体配置の及び少しだけの無規則な短い反転の反復単位を主軸中に含む。アイソタクチックポリプロピレンは構造的に

として表現される。

アイソタクチックポリプロピレンは、非晶（非結晶）状態の重合体とかなり異なる結晶融点及び他の望ましい物理性を有する非常に結晶性の重合体である。

シンジオタクチック重合体は主に正確に交互の立体異性体の単位を含み、構造式

によつて表わされる。

得られる化合物は触媒として作用するメタロセンカチオンである。イオン性化合物のカチオン [C] はメタロセンと反応してイオン対を生成する。アニオン [A] は配位しておらず、或いはカチオンメタロセンと強くにだけ配位している。

次の反応は上記反応を行なうために使用された。
 1 電子離化 - この方法は「カチオン性ジシクロペンタジエニルジエニルジルコニウム (IV) アルキル錯体」、M. ボフマン (Bochmann)、L. M. ウィルソン (Wilson)、J. ケム・ソク・コミニュン (Chem. Soc. Common.)、1610-1611 (1985) ;
 「カチオン性アルキルビス (シクロペンタジエニル) チタニウム錯体」、M. ボフマン、L. ウィルソン (Wilson)、オルガノメタリックス (Organometallics)、6、2556-2563 (1987) ;
 カチオン性アルキルビス (シクロペンタジエニル) チタン錯体における挿入反応、M. ボフマン (Bochmann)、L. ウィルソン (Wilson)、オルガノメタリックス、7、1147-1154 (1987) によつて例示されている。

ヨーロッパ 許第 277,003 号は、ターナー (Turner) の、プロトン化法によつて製造される触媒についての研究に関する。ビス (シクロペンタジエニル) 金属化合物は、プロトンを供与しうるカチオン及び複数のホウ素原子を有するアニオンをもつ化合物と組合せられる。例えは次の反応はこの発明を例示する：

ビス (シクロペンタジエニル) ハフニウムジメチル + N,N-ジメチルアニリニウムビス (7,8-ジカルバウンデカボレート) コバルトート (III) → [Cp₂HfMe][B] + CH₄ + N,N-ジメチルアミン。

但し [B] は 7,8-ジカルバウンデカボランである。

ヨーロッパ特許第 277,004 号は、ターナーの、プロトン化法によつて製造される触媒についての研究に関する。ビス (シクロペンタジエニル) 金属化合物は、金属化合物の配位子と不可逆的に反応するカチオン及び金属又は金属性イオンの周囲に複数の親油性基をもつアニオンを有する

温度 (100°C 以上) と短い重合期間は、短い重合時間と低分子量に帰結する。

メタロセン触媒は捕捉剤例えはメチルアルミニノキサンの不存在下に毒物に対して敏感である。重合は高濃度のカチオンを必要とし、しばしば無制御反応として停止し或いは重合体を全然生成しない。

従つて本発明の目的は、オレフィンの重合におけるメタロセン触媒の活性を改良する方法を提供することである。

また本発明の目的は、メタロセン触媒の活性を減ずる毒物の捕捉剤としてアルミニウムアルキルを使用することである。

更に本発明の目的は、プロトン化、カルボニウムイオン化学、又は一電子酸化法によつて作られる触媒のメタロセン触媒活性を改良するために、アルミニウムアルキルを使用することである。

更に本発明の目的は、メタロセン触媒系の価格を減ずることである。

更に本発明の目的は、プロピレンの重合における

イオン性化合物と一緒にされる。例えは次の反応がこの発明を例示する：

トリ (n-ブチル) アンモニウムテトラ (ベンタフルオロフェニル) ホウ素 + ビス (シクロペンタジエニル) ジルコニウムジメチル →

[Cp₂ZrMe][BPh₄] + CH₄ + トリ (n-ブチル) N₂ プロトン化反応の副生物はルイス塩基 (アミン) であり、そのいくつかはカチオンに配位することができ、従つて触媒活性を妨害する。出発物質は触媒となる特別なアミンが生成するのを避けるために注意深く選択しなければならない。

カルボニウムイオン化学—この方法は「多重金属—炭素結合」、R.R. シュロック (Schrock)、P.R. シャープ (Sharp)、J. アム・ケム・ソク (Am. Chem. Soc.) 100 (8)、2389~2399 (1978年4月) に例示されている。カルボニウムイオン化学法及びプロトン化法の双方がもつ問題は、それらがオレフィン及び溶媒中に見出される塩基性不純物によって被毒され、しばしば無制御の反応をもたらすことである。高い反応

る共触媒としてメチルアルミニノキサン (MAO) を排除することである。

また本発明の目的は、メチルアルミニノキサン触媒を用いずにオレフィンの重合を制御して行なうメタロセン触媒を製造することである。

これらの及び他の目的は、アルミニウムアルキルをオレフィンと混合し、メタロセン触媒を製造し、次いでこの触媒を、メチルアルミニノキサン共触媒を用いずに、アルミニウムアルキル-オレフィン複合物と混合することによって達成される。メタロセン触媒は中性メタロセン化合物及びイオン化合物から生成せしめられるイオン対である。

本発明は、メチルアルミニノキサン共触媒を使用しないオレフィンの重合法及びそのような方法に用いる触媒系に関する。アルミニウムアルキルをオレフィンと混合し、次いで中性メタロセン化合物のイオン化剤との混合によつて製造されるイオン性メタロセン触媒の存在下にこれを導入する。メタロセン：イオン化合物：アルミニウムアルキルのモル比は 0.5 : 1 : 0.5~5 : 1 : 3.5

0、好ましくは0.625:1:1.5~1:5:1:77、最も好ましくは1:1:1の範囲である。

メタロセン触媒の新規な合成法の一例において、イオン化イオン性化合物例えばトリフェニルカルベニウムテトラキス(ベンタフルオルフェニル)ボレートを一般式 Cp_2MRp のメタロセンの中性メチル誘導体と混合して、次の反応を行なう：

但し C_p はシクロペンタジエニル又は置換シクロペンタジエニルであり、Mは第Ⅲ、Ⅳ、Ⅴ又はⅥ族の金属であり、Rはヒドリド、ハロゲン、アミド又はハイドロカルビル基であり、 α は1~4グループであり、 C^* はカルボニウム、オキソニウム、又はスルホニウムカチオンであり、 A^* は配位していない或いはメタロセンのカチオンにゆるく配位しているだけであるアニオンを示し、そして $[C^*][A^*]$ は活性プロトンを含まないイオン化剤である。各 C_p は同一でも異なつてもよい。各Rは同一でも異なつてもよい。Mは好ましくは

ンは好ましくはプロピレンである。この方法は、本明細書に参考文献として引用される米国特許第号(代理人登録番号COS 574)に包含される。

触媒の合成法の他の例において、第1がプロトンと反応しうる置換基を少くとも1つ含むメタロセンの中性メチル誘導体であり、そして第2がプロトンを供与しうるカチオン及び複数の親油性基及び金属の配位錯体であるアニオンを有するイオン性化合物である2成分が使用される。アニオンはかさ高、易動性であり、2成分間の反応の結果として生成する金属カチオンを安定化しうる。カチオンによつて与えられるプロトンはメタロセンの配位子と反応する。活性な触媒は反応の直接的な生成物又は分解生成物として回収される。この上述した方法は本明細書に参考文献として引用されるヨーロッパ特許第277,004号に開示される。

メタロセンの中性誘導体は一般式

チタン、ジルコニウム、又はハフニウムである。Rは好ましくは炭素数20までのアルキル、アリール、アルケニル、アルキルアリール又はアリールアルキル基であり、最も好ましくはメチルである。 Cp_2MRp は好ましくはエチレンビス(テトラヒドロインデニル)ジルコニウムジメチル、エチレンビス(インデニル)ハフニウムジメチル、エチレンビス(インデニル)ジルコニウムジメチル又はイソプロピリデン(シクロペンタジエニル-1-フルオレニル)ジルコニウムジメチル、最も好ましくはエチレンビス(インデニル)ジルコニウムジメチルである。各反応物は配位しない或いはメタロセンカチオンにゆるくしか配位しない溶媒例えば塩化メチレン又はトルエン中に導入される。好適な溶媒はトルエンである。

同一の溶媒に別々に溶解した2つの反応物を一緒に室温で混合する。イオン化化合物はメタロセンをイオン化してイオン対を生成し、このメタロセンカチオンが触媒として働く。混合後、混合物を重合条件下にオレフインに添加する。オレフィ

【式中、 C_p はシクロペンタジエニル又は置換シクロペンタジエニル基であり、各 C_p は同一でも異なつてもよく、Mは第Ⅲ、Ⅳ、Ⅴ又はⅥ族の金属であり、R'はヒドロカルビル基であり、各R'は同一でも異なつてもよく、そして α は1~3である】

のものである。Mは好ましくはチタン、ジルコニウム又はハフニウム、最も好ましくはジルコニウムである。R'は好ましくは炭素数20までのアルキル、アリール、アルケニル、アルキルアリール又はアリールアルキルである。メタロセンの中性誘導体は好ましくはエチレンビス(テトラヒドロインデニル)ジルコニウムジメチル又はエチレンビス(インデニル)ジルコニウムジメチルであり、最も好ましくはエチレンビス(インデニル)ジルコニウムジメチルである。イオン性化合物は好ましくはN,N-ジメチルアニリニウムテトラキス(ベンタフルオルフェニル)ボロネートである。

触媒の合成法の他の例において、 C_p がシクロ

ペンタジエニル又は置換シクロペンタジエニルであり、Mが第Ⅲ、Ⅳ、Ⅴ又はⅦ族の金属であり、Xがハロゲンであり、そしてR"がアルキルである一般式 $Cp_2MR''_2$ 又は $Cp_2MR''X$ のメタロセンの中性誘導体、例えばシクロペンタジエニル金属化合物を、テトラフェニルボレート金属化合物と組合せる。X"又はR"はテトラフェニルボレート金属化合物の金属によつてメタロセンから引き抜かれ、一般式 $[Cp_2MR''_2]^{+} [BPh_4]^{-}$ のイオン対が生成する。ここに BPh_4 はテトラフェニルボレートアニオンである。

アルミニウムアルキルをオレフインと混合し、反応温度にもつていく。アルミニウムアルキルは、Rが炭素数6までのアルキルである一般式 AlR_3 のものであり、好ましくはトリメチルアルミニウム(TMA)又はトリエチルアルミニウム(TEA)であり、最も好ましくはトリエチルアルミニウムである。オレフインはオレフイン類のいずれであつてもよいが、好ましくはプロピレン又はエチレンであり、最も好ましくはプロピ

は炭素数10までのアリールである。Mは好ましくは第Ⅶ族の金属、例えばチタン、ジルコニウム及びハフニウムであり、最も好ましくはジルコニウム又はハフニウムである。メタロセンカチオンはエチレンビス(テトラヒドロインデニル)ジルコニウムジメチル、エチレンビス(インデニル)ジルコニウムジメチル、エチレンビス(インデニル)ハフニウムジメチル及びイソプロピリデン(シクロペンタジエニル-1-フルオレニル)ジルコニウムジメチルであり、最も好ましくはエチレンビス(テトラヒドロインデニル)ジルコニウムジメチルである。アニオンは好ましくはテトラキス(ペンタフルオルフェニル)ボレートである。アルミニウムは上述の通りであり、好ましくはTMA又はTMA⁺、最も好ましくはTEA⁺である。

次のメタロセン-イオン化剤の系をアルミニウムアルキルを添加して又は添加しないで評価した。

1. $Et(Ind)_2ZrMe_2/[Ph_3C][BPh_4]$
2. $Et(Ind)_2HfMe_2/[Ph_3C][BPh_4]$
3. $Et(Ind)_2ZrMe_2/[Me_2PbN][BPh_4]$

ンである。アルミニウムアルキル及びオレフインの混合物をメタロセン触媒と接触させる。触媒は上述の方法を含め、但しこれに限定されない公知の方法のいずれかによつて製造することができる。

触媒系は一般式

[式中、 $[Cp_2MR''_2]^{+}$ はメタロセンカチオンであり、但しC_pはシクロペンタジエニル又は置換シクロペンタジエニルであり、各C_pは同一でも異なるつてもよく、Mが第Ⅲ、Ⅳ、Ⅴ又はⅦ族の金属であり、R"はヒドリド、ハロゲン、アミド又はヒドロカルビル基であり、各R"は同一でも異なるつてもよく、但し1つのR"だけはヒドリドであり、pが1～4であり、そして[A]⁻はアニオンである]のイオン性メタロセン触媒である。R"は好ましくはヒドロカルビル基、例えば炭素数20までのアルキル、アリール、アルケニル、アルキルアリール、又はアリールアルキルであり、最も好ましくは炭素数6までのアルキル又はアルコキシ或い

4. $iPr(Cp-1-Flu)2rMe_2/[Ph_3C][BPh_4]$
5. $Et(H_4Ind)_2ZrMe_2/[Ph_3C][BPh_4]$
6. $Et(H_4Ind)_2ZrMe_2/[Me_2PbN][BPh_4]$

$Et(Ind)_2ZrMe_2$ はエチレンビス(インデニル)ジルコニウムジメチル、
 $iPr(Cp-1-Flu)2rMe_2$ はイソプロピリデン(シクロペンタジエニル-1-フルオレニル)ジルコニウムジメチル、
 $Et(H_4Ind)_2ZrMe_2$ はエチレンビス(テトラヒドロインデニル)ジルコニウムジメチル、
 $[Ph_3C][BPh_4]$ はトリフェニルカルベニウムテトラキス(ペンタフルオルフェニル)ボレート、
 $[Me_2PbN][BPh_4]$ はN,N-ジメチルアリニウムテトラキス(ペンタフルオルフェニル)ボレートである。

本発明を一般的に記述してきたが、次の実施例は本発明の特別な例として且つその実施と利点を示すために与えられる。従つて実施例は例示のために与えられ、いずれの場合にも本明細書又は特許請求の範囲を限定する意図をもたないことが理

解される。

グループ I :

実施例 I

トリフエニルカルベニウムテトラキス(ベンタフルオルフェニル)ポロネート100mgをトルエン10mlに溶解した。Et(Ind)₂ZrMe₂ 60mgをトルエン10mlに溶解した。この2つの溶液を室温で5分間一緒に混合した。

反応器の温度を50℃に設定し、プロピレン1lをポンプで反応器中へ送入した。触媒混合物を、各端にボールバルブを備えた40mlのステンレス鋼製ポンベに添加した。プロピレン400mlをポンベを通して反応器にポンプで送入した。反応器の温度は50℃のまゝであり、反応器の内容物を60分間攪拌した。重合反応の終りに、反応器を冷却し、未反応のプロピレンを反応器から放出させた。

反応生成物を真空下に約40℃で12時間乾燥した。次いで重合体を秤量し、融点について分析した。融点は示差掃査熱量計(DSC)によつた。

0mlのステンレス鋼製ポンベに添加した。プロピレン400mlを、ポンベを通してポンプで反応器に送入した。反応器の温度は70℃のまゝであり、反応器の内容物を60分間攪拌した。重合の終りに、反応器を冷却し、未反応のプロピレンを反応器から放出させた。

反応器の生成物を真空下に約40℃で12時間乾燥させた。次いで重合体を秤量し、融点について分析した。融点は示差掃査熱量計(DSC)によつた。結果を第I表に示す。

実施例 II

トリエチルアルミニウム(TEA₂)0.33ミリモルを用い且つ反応器の内容物を10分間攪拌することによつて実施例Iの方法を繰返した。結果を第I表に示す。

実施例 III

トリエチルアルミニウム(TEA₂)0.33ミリモル、トリフエニルカルベニウムテトラキス(ベンタフルオルフェニル)ポロネート50mg及びEt(Ind)₂ZrMe₂ 30mgを用いる以外実施例Iの

結果を第I表に示す。

実施例 IV

反応器の内物を30分間攪拌する以外実施例Iの方法に従つた。結果を第I表に示す。

実施例 V

反応器の内容物を設定温度70℃にする以外実施例Iの方法に従つた。結果を第I表に示す。

実施例 VI

トリメチルアルミニウム(TMA)0.32ミリモルをトルエン5mlに溶解し、2lのジップバケーレープ(Zipperclave)反応器に窒素5psigで添加した。反応器の温度を70℃に設定し、プロピレン1lをポンプで反応器に送入した。混合物を1200rpmで10分間攪拌した。

トリフエニルカルベニウムテトラキス(ベンタフルオルフェニル)ポロネート100mgをトルエン10mlに溶解した。Et(Ind)₂ZrMe₂ 60mgをトルエン10mlに溶解した。この2つの混合物を室温で一緒に5分間攪拌した。

触媒混合物を、各端にボールバルブを備えた4

方法に従つた。反応器の内容物を5分間攪拌した。結果を第I表に示す。

実施例 VII

トリエチルアルミニウム(TEA₂)0.33ミリモル、トリフエニルカルベニウムテトラキス(ベンタフルオルフェニル)ポロネート16mg及びEt(Ind)₂ZrMe₂ 10mgを用いる以外実施例IIの方法に従つた。反応器の内容物を10分間攪拌した。結果を第I表に示す。

実施例 VIII

トリエチルアルミニウム(TEA₂)0.66ミリモル、トリフエニルカルベニウムテトラキス(ベンタフルオルフェニル)ポロネート8mg及びEt(Ind)₂ZrMe₂ 2.5mgを用いる以外実施例IIIの方法に従つた。反応器の内容物を60分間攪拌した。結果を第I表に示す。

実施例 IX

トリエチルアルミニウム(TEA₂)0.66ミリモル、トリフエニルカルベニウムテトラキス(ベンタフルオルフェニル)ポロネート8mg及び

特開平3-207704 (7)

$\text{Et}(\text{Ind})_2\text{ZrMe}_2$ 1.25 mgを用いる以外実施例Ⅱの方法に従つた。反応器の内容物を60分間攪拌した。結果を第Ⅰ表に示す。

実施例 X

トリエチルアルミニウム (TEA 2) 0.66 ミリモル、トリフエニルカルベニウムテトラキス(ベンタフルオルフェニル)ボロネット 8 mg及び $\text{Et}(\text{Ind})_2\text{ZrMe}_2$ 2.5 mgを用いる以外実施例Ⅱの方法に従つた。反応器の内容物を30分間攪拌した。結果を第Ⅰ表に示す。

実施例 XI

トリエチルアルミニウム (TEA 2) 0.66 ミリモル、トリフエニルカルベニウムテトラキス(ベンタフルオルフェニル)ボロネット 8 mg及び $\text{Et}(\text{Ind})_2\text{ZrMe}_2$ 2.5 mgを用いる以外実施例Ⅱの方法に従つた。反応器の内容物を40分間攪拌した。結果を第Ⅰ表に示す。

実施例 XII

トリエチルアルミニウム (TEA 2) 0.33 ミリモル、トリフエニルカルベニウムテトラキス

$\text{Et}(\text{Ind})_2\text{ZrMe}_2$ 2.5 mg、 $[\text{Ph}_2\text{C}][\text{BPh}_4]$ 4 mg、トリエチルアルミニウム 0.99 ミリモル、そして反応時間30分を用いて実施例Ⅲの方法を繰返した。結果を第Ⅰ表に示す。

実施例 XIII

$\text{Et}(\text{Ind})_2\text{ZrMe}_2$ 2.5 mg、 $[\text{Ph}_2\text{C}][\text{BPh}_4]$ 2.4 mg、トリエチルアルミニウム 0.66 ミリモル、そして反応時間30分を用いて実施例Ⅲの方法を繰返した。結果を第Ⅰ表に示す。

実施例 XIV

$\text{Et}(\text{Ind})_2\text{ZrMe}_2$ 2.5 mg、 $[\text{Ph}_2\text{C}][\text{BPh}_4]$ 2.4 mg、トリエチルアルミニウム 2.00 ミリモル、そして反応時間30分を用いて実施例Ⅲの方法を繰返した。結果を第Ⅰ表に示す。

グループ 2 :

実施例 XV

$\text{Et}(\text{Ind})_2\text{ZrMe}_2$ 2.0 mg、 $[\text{Ph}_2\text{C}][\text{BPh}_4]$ 8.0 mg、トリエチルアルミニウム 0.42 ミリモル、そして反応時間30分を用いて実施例Ⅲの方法を繰返した。結果を第Ⅰ表に示す。

(ベンタフルオルフェニル)ボロネット 8 mg及び $\text{Et}(\text{Ind})_2\text{ZrMe}_2$ 5 mgを用いる以外実施例Ⅲの方法に従つた。反応器の内容物を30分間攪拌した。結果を第Ⅰ表に示す。

実施例 XV

$\text{Et}(\text{Ind})_2\text{ZrMe}_2$ 5 mg、 $[\text{Ph}_2\text{C}][\text{BPh}_4]$ 8 mg、トリエチルアルミニウム 0.66 ミリモル、そして反応時間20分を用いて実施例Ⅲの方法を繰返した。結果を第Ⅰ表に示す。

実施例 XVI

$\text{Et}(\text{Ind})_2\text{ZrMe}_2$ 2.5 mg、 $[\text{Ph}_2\text{C}][\text{BPh}_4]$ 8 mg、トリエチルアルミニウム 0.66 ミリモル、そして反応時間60分を用いて実施例Ⅲの方法を繰返した。結果を第Ⅰ表に示す。

実施例 XVII

$\text{Et}(\text{Ind})_2\text{ZrMe}_2$ 2.5 mg、 $[\text{Ph}_2\text{C}][\text{BPh}_4]$ 4 mg、トリエチルアルミニウム 0.66 ミリモル、そして反応時間30分を用いて実施例Ⅲの方法を繰返した。結果を第Ⅰ表に示す。

実施例 XVIII

グループ 3 :

実施例 XIX

$\text{Et}(\text{Ind})_2\text{ZrMe}_2$ 2.5 mg、 $[\text{Me}_2\text{PhN}][\text{BPh}_4]$ 7 mg、そして反応時間60分を用いて実施例Ⅱの方法を繰返した。結果を第Ⅰ表に示す。

実施例 XX

$\text{Et}(\text{Ind})_2\text{ZrMe}_2$ 2.5 mg、 $[\text{Me}_2\text{PhN}][\text{BPh}_4]$ 7.0 mg、トリエチルアルミニウム 0.66 ミリモル、そして反応時間5分を用いて実施例Ⅲの方法を繰返した。結果を第Ⅰ表に示す。

実施例 XXI

トリエチルアルミニウム (TEA 2) 0.66 ミリモル、N,N-ジメチルアニリニウムテトラキス(ベンタフルオルフェニル)ボロネット 7.0 mg及び $\text{Et}(\text{Ind})_2\text{ZrMe}_2$ 2.5 mgを用いる以外実施例Ⅲの方法に従つた。反応器の内容物を25分間攪拌した。結果を第Ⅰ表に示す。

実施例 XXII

トリエチルアルミニウム (TEA 2) 0.66 ミリモル、N,N-ジメチルアニリニウムテトラ

特開平3-207704 (8)

キス(ベンタフルオロエニル)ボロネート 3.5 mg 及び Et(Ind)₂ZrMe₂ 1.25 mg を用いる以外実施例Ⅲの方法に従つた。反応器の内容物を 30 分間攪拌した。結果を第Ⅰ表に示す。

実施例XXXIV

Et(Ind)₂ZrMe₂ 1.25 mg, [Me₂PhN][BPh⁴⁻]₂ 3.5 mg, トリエチルアルミニウム 0.66 ミリモル、そして反応時間 60 分を用いて実施例Ⅲの方法を繰返した。結果を第Ⅰ表に示す。

実施例XXXV

Et(Ind)₂ZrMe₂ 0.625 mg, [Me₂PhN][BPh⁴⁻]₂ 1.75 mg, トリエチルアルミニウム 0.66 モリモル、そして反応時間 60 分を用いて実施例Ⅲの方法を繰返した。結果を第Ⅰ表に示す。

グループ4:

実施例XXXVI

iPr(Cp-1-Flu)ZrMe₂ 4.0 mg, [Ph₃C][BPh⁴⁻]₂ 6.0 mg、及び反応時間 60 分を用いて実施例Ⅰの方法を繰返した。結果を第Ⅰ表に示す。

実施例XXXVII

Et(H,Ind)₂ZrMe₂ 1.5 mg, [Ph₃C][BPh⁴⁻]₂ 3.0 mg、及び反応時間 60 分を用いて実施例Ⅰの方法を繰返した。結果を第Ⅰ表に示す。

実施例XXXVIII

Et(H,Ind)₂ZrMe₂ 2.0 mg, [Ph₃C][BPh⁴⁻]₂ 4.0 mg、及び反応時間 60 分を用いて実施例Ⅰの方法を繰返した。結果を第Ⅰ表に示す。

実施例XXXIX

Et(H,Ind)₂ZrMe₂ 2.0 mg, [Ph₃C][BPh⁴⁻]₂ 4.0 mg、及び反応時間 5 分を用いて実施例Ⅰの方法を繰返した。結果を第Ⅰ表に示す。

実施例XXXIV

Et(H,Ind)₂ZrMe₂ 2.5 mg, [Ph₃C][BPh⁴⁻]₂ 8.0 mg, TEA & 0.06 ミリモル及び反応時間 60 分を用いて実施例Ⅰの方法を繰返した。結果を第Ⅰ表に示す。

グループ6:

実施例XXXV

Et(H,Ind)₂ZrMe₂ 5.0 mg, [Me₂PhN][BPh⁴⁻]₂ 4.0 mg、及び反応時間 120 分を用いて実施例Ⅲ

iPr(Cp-1-Flu)ZrMe₂ 6.0 mg, [Ph₃C][BPh⁴⁻]₂ 1.00 mg、及び反応時間 60 分を用いて実施例Ⅰの方法を繰返した。結果を第Ⅰ表に示す。

実施例XXXV

iPr(Cp-1-Flu)ZrMe₂ 6.0 mg, [Ph₃C][BPh⁴⁻]₂ 1.00 mg, トリエチルアルミニウム 0.16 ミリモル及び反応時間 30 分を用いて実施例Ⅲの方法を繰返した。結果を第Ⅰ表に示す。

実施例XXXVI

iPr(Cp-1-Flu)ZrMe₂ 6.0 mg, [Ph₃C][BPh⁴⁻]₂ 1.00 mg, トリエチルアルミニウム 0.48 ミリモル及び反応時間 60 分を用いて実施例Ⅲの方法を繰返した。結果を第Ⅰ表に示す。

実施例XXXVII

iPr(Cp-1-Flu)ZrMe₂ 2.0 mg, [Ph₃C][BPh⁴⁻]₂ 6.0 mg, トリエチルアルミニウム 0.16 ミリモル及び反応時間 60 分を用いて実施例Ⅲの方法を繰返した。結果を第Ⅰ表に示す。

グループ5:

実施例XXXVIII

の方法を繰返した。結果を第Ⅰ表に示す。

実施例XXXIX

Et(H,Ind)₂ZrMe₂ 2.9 mg, [Me₂PhN][BPh⁴⁻]₂ 9.2 mg, TEA & 0.66 ミリモル及び反応時間 60 分を用いて実施例Ⅲの方法を繰返した。結果を第Ⅰ表に示す。

次の結果は本発明の方法による上述した実験からのものである。

第1表

実験番号	重合温度(°C)	収量(g)	融点(°C)	1,4-ジ(1-アリモルト)ブチル		1,4-ジ(1-アリモルト)ブチル	
				[Ph,Cl][BPA*] ₁	TMA	[Ph,Cl][BPA*] ₁	TMA
1	150(60)	109(100)	0	0	0	0	0
2	150(60)	109(100)	0	0	0	0	0
3	150(60)	109(100)	0	0	0	0	0
4	150(60)	109(100)	TMA 0.32	0	0	0	0
5	150(60)	109(100)	TEAO 0.33	10	0	0	0
6	80(30)	54(50)	0.33	5	0	0	0
7	26.5(10)	17.3(16)	0.33	10	0	0	0
8	6.63(2.5)	8.84(8)	0.88	60	0	0	0
9	3.38(1.25)	8.84(8)	0.88	60	0	0	0
10	6.63(2.5)	8.84(8)	0.88	30	0	0	0
11	6.63(2.5)	8.84(8)	0.88	40	0	0	0
12	13.3(5)	8.66(8)	0.33	30	0	0	0
13	13.3(5)	8.66(8)	0.88	30	0	0	0
14	6.63(2.5)	8.64(8)	0.88	60	0	0	0
15	6.63(2.5)	4.3(4)	0.88	30	0	0	0
16	6.63(2.5)	4.3(4)	0.98	30	0	0	0
17	6.63(2.5)	26(24)	0.68	30	0	0	0
18	6.63(2.5)	26(24)	2.00	30	0	0	0
19	53(20)	85(80)	TMA 0.42	30	0	0	0
			[Ph,Cl][BPA*] ₁				
20	5.6(2.5)	8.7(7.0)	0	80	0	0	0
21	6.6(2.5)	8.7(7.0)	TEAO 0.66	5	0	0	0
22	6.6(2.5)	8.7(7.0)	0.66	25	0	0	0
23	3.3(1.25)	4.35(3.5)	0.66	30	0	0	0
24	3.3(1.25)	4.35(3.5)	0.66	60	0	0	0
25	1.65(0.65)	2.175(1.75)	0.66	60	0	0	0
			[Ph,Cl][BPA*] ₁				
26	102(40)	65(60)	0	60	0	0	0
27	154(60)	109(100)	0	60	0	0	0
28	154(60)	109(100)	TMA 0.16	60	0	0	0
29	51(20)	85(60)	0.48	60	0	0	0
30			0.16	60	0	0	0
			[Ph,Cl][BPA*] ₁				
31	40(15)	53(30)	0	60	0	0	0
32	53(20)	44(40)	0	60	0	0	0
33	80(30)	67(60)	0	5	0	0	0
34	7(2.5)	8.8(8.0)	TEAO 0.66	60	0	0	0
			[Ph,Cl][BPA*] ₁				
35	133(50)	44(40)	0	120	0	0	0
36	7(2.5)	109(2)	TMA 0.66	60	0	0	0

実験番号	重合温度(°C)	収量(g)	融点(°C)
1	50	19	137
2	50	11	125
3	70	8	126
4	70	270	124
5	70*	340	126
6	70*	432	融點せず
7	70*	260	118
8	70	319	129
9	70	89	132
10	70	117	30
11	70*	377	131
12	70	22	132
13	70	51	131
14	70*	357	127
15	70	9	132
16	70	11	134
17	70	149	131
18	70	62	130
19	70	51	131

* 発熱: 反応温度が10°C以上だけ上昇。

本発明によつて記述した方法は、オレフインの重合における触媒として使用される。本発明による触媒の製造法は、高活性を有する触媒を生成し、そして触媒活性を禁止しうる副生物を減ずる。この新規な合成法は触媒活性を禁止する溶媒中に見出される触媒毒を減ずる。

アルミニウムアルキルのイオン性メタロセン触媒系への添加は、再現性のある、制御しうる、高効率の重合反応をもたらすことが発見された。アルキルアルミニウムの添加は触媒毒に対する捕捉剤を提供する。添加されるアルミニウムアルキルは比較的少量であり、またアルミニウムアルキルは比較的安価である。メタロセンカチオン/アルミニウムアルキルの組合せは、カチオン单独よりも良好な触媒系をもたらし、一貫して高活性を提供する。

明らかに本発明の多くの改変及び変化は上記の教示を参考にして可能である。それ故に特許請求の範囲において、本発明は本明細書に特に記述したもの以外にも実施しうることを理解すべきで

3. メタロセン：イオン化化合物：アルミニウムアルキルのモル比が0.5:1:0.5~5:1:350の範囲にある上記2の方法。

4. メタロセン：イオン化化合物：アルミニウムアルキルのモル比が0.625:1:1.5~1.5:1:77の範囲にある上記3の方法。

5. メタロセン：イオン化化合物：アルミニウムアルキルのモル比が1:1:1である上記4の方法。

6. アルミニウムアルキルがトリエチルアルミニウム又はトリメチルアルミニウムからなる群から選択される上記5の方法。

7. アルミニウムアルキルがトリエチルアルミニウムである上記6の方法。

8. 触媒が

- a) イオン化イオン性化合物をメタロセンの中性メチル誘導体と混合し、そして
- b) イオン化イオン性化合物とメタロセンの中性メチル誘導体を接触させてイオン対を生成せしめ、このメタロセンカチオンを触媒

ある。

本発明の 装及び触媒は以下の通りである：

1. a) アルミニウムアルキルをオレフインと混合し、
- b) メタロセン触媒を製造し、
- c) この触媒をアルミニウムアルキル-オレフイン混合物と混合する、但しアルミニウムアルキルが一般式

AaR_3

【式中、Rはハログン、酸素、ヒドリド、アルキル、アルコキシ又はアリールであり、但し各Rは同一でも異なるてもよく且つ少くとも1つのRはアルキルである】

のものであり、またメタロセンが中性メタロセン化合物及びイオン化化合物から生成されるイオン対である、

ことを含んでなるオレフインの重合法。

2. Rが炭素数6までのアルキル又はアルコキシ或いは炭素数10までのアリールである上記1の方法。

として作用させる、

ことを含んでなる工程によつて製造される、但しメタロセンの中性誘導体が一般式

Cp_2MR^p

【式中、Cpはシクロペンタジエニル又は置換シクロペンタジエニル基であり、各Cpは同一でも異なるてもよく、Mは第III、IV、V又はVI族の金属であり、R²はヒドリド、ハログン、アミド又はヒドロカルビル基であり、各R²は同一でも異なるてもよく、但し1つのR²だけはヒドリドであり、そしてpは1~4である】

のものであり、

イオン化イオン性化合物が活性プロトンを含まず且つカルボニウム、オキソニウム又はスルホニウムカチオンを含み、そして

イオン化イオン性化合物がメタロセン化合物に配位せず又はゆるくしか配位せず且つ化学的にメタロセン化合物と反応しない、
上記1の方法。

9. オレフィンがプロピレンである上記8の方法。

10. Rが炭素数20までのアルキル、アリール、アルケニル、アルキルアリール及びアリールアルキルからなる群から選択される上記7の方法。

11. Mがチタン、ジルコニウム及びハフニウムからなる群から選択される第IV族の金属である上記10の方法。

12. Mがハフニウム又はジルコニウムである上記11の方法。

13. メタロセンの中性メチル誘導体がエチレンビス(テトラヒドロインデニル)ジルコニウムジメチル、エチレンビス(インデニル)ジルコニウムジメチル、エチレンビス(インデニル)ハフニウムジメチル及びイソプロピリデン(シクロベントジエニル-1-フルオレニル)ジルコニウムジメチルからなる群から選択される上記12の方法。

14. イオン化イオン性化合物がトリフェニカルベニウムテトラキス(ペンタフルオルフェニル)の方法。

15. オレフィンがプロピレンである上記15の方法。

16. メタロセンの中性メチル誘導体が一般式

[式中、Cpはシクロベンタジエニル又は置換シクロベンタジエニル基であり、各Cpは同一でも異なるてもよく、Mは第II、IV、VI又はVII族の金属であり、R'はヒドロカルビル基であり、各R'は同一でも異なるてもよく、そしてDは1~3である]

のものである上記16の方法。

17. Mがチタン、ジルコニウム及びハフニウムからなる群から選択される第IV族の金属である上記17の方法。

18. Mがジルコニウムである上記18の方法。

19. R'が炭素数20までのアルキル、アリール、アルケニル、アルキルアリール及びアリールアルキルからなる群から選択される上記7の方法。

ル) ポロネートである上記13の方法。

15. 熱媒が

a) 適当な溶媒又は希釈剤中において、プロトンと反応しうる少くとも1つの置換基を含有し且つチタン、ジルコニウム及びハフニウムからなる群から選択される金属を含むメタロセンの中性メチル誘導体からなる少くとも1つの第1の化合物及びプロトンを供与しうるカチオン及び2つの化合物間での反応の結果として生成するアニオンを含んでなる少くとも1つの第2の化合物を一緒にし、

b) 第2の化合物のカチオンによって提供されるプロトンを第1の化合物の配位子と反応させるのに十分な期間工程a)での接触を維持し、そして

c) 活性熱媒を、工程b)からの直接的な生成物として或いは直接的な生成物の1つ又はそれ以上の分解生成物として回収する、ことを含んでなる工程によつて製造される上記1

21. メタロセンの中性メチル誘導体がエチレンビス(テトラヒドロインデニル)ジルコニウムジメチル及びエチレンビス(インデニル)ジルコニウムジメチルからなる群から選択される上記10の方法。

22. 第1の化合物がエチレンビス(インデニル)ジルコニウムジメチルである上記21の方法。

23. 第2の化合物がN,N-ジメチルアニリウムテトラキス(ペンタフルオルフェニル)ポロネートである上記22の方法。

24. 熱媒が

a) 一般式

[式中、Cpはシクロベンタジエニル又は置換シクロベンタジエニルであり、Mは第II、IV、VI又はVII族の金属であり、Xはハロゲンであり、そしてR''はアルキルである]

のシクロベンタジエニル金属化合物を、テトラフェニルボレート金属化合物と一緒にし、

b) テトラフェニルボレート金属化合物の金属

特開平3-207704 (12)

によるシクロベンタジエニル金属化合物からのX-又はR-イオンの引き抜きを可能にするのに十分な期間工程a)での接触を維持し、そして

c) 一般式

のイオン対を生成せしめる、ことを含んでなる工程によつて製造される上記1の方法。

25. a) メタロセン触媒、及び
b) アルミニウムアルキル、
を含んでなり、但し

アルミニウムアルキルが一般式

〔式中、Rはハロゲン、酸素、ヒドリド、アルキル、アルコキシ又はアリールであり、但し各Rは同一でも異なつてもよく且つ少くとも1つのRはアルキルである〕

のものであり、またメタロセン触媒が一般式

〔式中、 $[Cp_2MR^{p-1}]^+$ はメタロセンカチオンであり、但しCpはシクロベンタジエニル又は置換シクロベンタジエニルであり、各Cpは同一でも異なつてもよく、Mが第III、IV、V又はVI族の金属であり、R^pはヒドリド、ハロゲン、アミド又はヒドロカルビル基であり、各R^pは同一でも異なつてもよく、但し1つのR^pだけはヒドリドであり、pが1～4であり、そして[A]⁻はアニオンである〕のイオン対である、

ことを含んでなる触媒系。

26. Rが炭素数20までのアルキル、アリール、アルケニル、アルキルアリール及びアリールアルキルからなる群から選択される上記13の触媒。

27. Rが炭素数8までのアルキル又はアルコキシ或いは炭素数10までのアリールである上記26の触媒。

28. Mがチタン、ジルコニウム及びハフニウムからなる群から選択される第IV族の金属である

上記27の触媒。

29. メタロセンの中性メチル誘導体がエチレンビス(テトラヒドロインデニル)ジルコニウムジメチル、エチレンビス(インデニル)ジルコニウムジメチル、エチレンビス(インデニル)ハフニウムジメチル及びイソプロピリデン(シクロベンタジエニル-1-フルオレニル)ジルコニウムジメチルからなる群から選択される上記28の触媒。

30. イオン化イオン性化合物がトリフェニルカルベニウムテトラキス(ベンクフルオルフェニル)ボロネートである上記29の触媒。

31. アルミニウムアルキルがトリエチルアルミニウム又はトリメチルアルミニウムからなる群から選択される上記30の触媒。

32. アルミニウムアルキルがトリエチルアルミニウムである上記31の触媒。

特許出願人 フイナ・テクノロジー・インコーポレーテッド

代理人 弁理士 小田島 平吉

