# Нейросетевые методы поиска и сегментации объектов в данных современных космических обзоров

Научные руководители:

Герасимов С. В., к.ф.-м.н. Мещеряков А. В.

Студент: Немешаева Алиса,

4 курс бакалавриата ВМК МГУ

#### Скопления галактик

- Скопления галактик играют важную роль в задачах определения параметров Вселенной.
- Скопления видимы в рентгеновском диапазоне из-за наличия в их составе горячего газа, излучающего энергию в рентгеновском диапазоне.
- В микроволновом диапазоне скопления галактик проявляются из-за эффекта Сюняева-Зельдовича.
- Скопления состоят из галактик, которые излучают энергию в видимом диапазоне, поэтому для их поиска можно использовать и <mark>оптический</mark> диапазон.
- Кроме того, скопления важны для изучения эволюции галактик.



#### Рентгеновский телескоп eROSITA

- Рентгеновский телескоп eRosita снимет всё небо и составит 8 карт неба в мягком рентгеновском излучении.
- Ожидается, что eRosita обнаружит 100 000 скоплений галактик.
- Каталоги, составленные по данным этого телескопа понадобятся, чтобы оценить полноту полученных по данным Planck каталогов.



#### Микроволновой телескоп Planck

• Planck — астрономический спутник Европейского космического агентства, созданный для изучения вариаций космического микроволнового фона реликтового излучения. Запущен 14 мая 2009 года. В период с сентября 2009 по ноябрь 2010 года «Планк» успешно закончил основную часть своей исследовательской миссии, перейдя к дополнительной, завершившейся 23 октября 2013 года.





#### Эффект Сюняева-Зельдовича

• Эффект Сюняева-Зельдовича — изменение интенсивности микроволнового излучения реликтового фона на горячих электронах межзвёздного и межгалактического газа.



## Каталоги скоплений галактик

| Каталог/<br>Свойство    | PSZ2       | ACT        | SPT        | MCXC     | eRosita  | RedMaPPer | Abell  |
|-------------------------|------------|------------|------------|----------|----------|-----------|--------|
| Диапазон                | Микроволн. | Микроволн. | Микроволн. | Рентген. | Рентген. | Оптич.    | Оптич. |
| По всему<br>небу        | Да         | Нет        | Нет        | Да       | Нет      | Да        | Да     |
| Количество<br>скоплений | 1653       | 4195       | 343        | 1743     | ~100 000 | 25325     | 4073   |
| Методы                  | MMF, PwS   | MMF        | MMF        |          |          |           |        |

#### Сравнение существующих методов

- Классические методы: MMF, PwS.
- Нейросетевые методы: CNN (ResNet, Unet).

#### Важные отличия:

- предварительная обработка данных
- применимость к различным диапазонам

#### Постановка задачи

Исследование и разработка нейросетевых методов сегментации и детекции источников Сюняева-Зельдовича в данных Planck, а также построение полного каталога скоплений галактик.

- Создание модели сегментации по данным Planck
- Создание каталога скоплений
- Анализ функции отбора каталога (z, M500)

#### Формальная постановка задачи

Для данных карт Planck в виде матриц

$$P_{n \times m \times 6} \in R_{n \times m \times 6}$$

найти преобразование в карты сегментации в виде матриц вида

$$S_{n \times m \times 1} \in R_{n \times m \times 1}$$
,

и из этих карт в список детектированных скоплений, который будет наиболее полным по сравнению с выбранными каталогами скоплений галактик.

## Обзор существующих решений

| MMF                                                                                       | PwS                                                                         | Базовая модель                                                             | CNN                                                                                 | Unet                                                               |
|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Фильтр в пространстве Фурье, для которого нужно определить условия шума и условия сигнала | Быстрый байесовский метод, позволяющий детектировать объекты скрытые в шуме | Обрабатывает у-карты параметра Комптона и находит максимумы в разных слоях | Свёрточная сеть для классификации (в статье DeepSZ используется архитектура ResNet) | Свёрточная сеть<br>для сегмантции со<br>skip-connection<br>связями |



## «Deep Learning for Sunyaev-Zel'dovich Detection in Planck», V. Bonjean



## Активное обучение



Дополнение обучающей выборки

#### **HEALPix**

- HEALPix алгоритм иерархического разбиения сферы.
- Позволяет спроектировать на сферу данные и выбрать для них подходящее разрешение.
- Данные Planck хранятся в качестве изображения сферы, проиндексированного согласно HEALPix.
- HEALPix не искажает площадь объекта, но может искажать форму.





#### Метрики

#### Метрики сегментации:

- IoU, Dice Метрики детекции:
- Recall, Precision



#### Построение решения

- 1. Предварительная обработка.
- 2. Генерация данных для обучения.
- 3. Выбор модели и алгоритма детекции.
- 4. Обучение модели.
- 5. Применение модели (создание карт сегментации), детекция (создание каталога)
- 6. Анализ функции отбора каталога.

# Генерация патчей





#### Выбор модели

• Одной из лучших нейросетевых архитектур для сегментации изображений является U-net. Eë ключевой особенностью является наличие skip-connection слоёв, таким образом часть слоёв энкодера конкатенируется со слоями декодера, и при сжатии признаков нейросеть теряет меньше информации об изображении, на котором она обучалась.



Полученные молели

обучению)

| 110719          | icilible Mogenni                  |                         |                        |              |
|-----------------|-----------------------------------|-------------------------|------------------------|--------------|
| Название модели | Координаты патчей                 | Аугмент.                | Маски                  | Dropout rate |
| pz              | PSZ2                              | Нет                     | PSZ2                   | 0.2          |
| pz_rot          | PSZ2                              | Да                      | PSZZ                   | 0.2          |
| pz_act          | PSZ2 + ACT                        | Нет                     | PSZ2 + ACT             | 0.2          |
| pz_act_jan_rot  | PSZ2 + ACT (отсеченный по z/M500) | Да PSZ2 + ACT (отсечень |                        | 0.1          |
| pz_act_feb_rot  |                                   | Да                      | по z/M500)             | 0.1          |
| pz_act_found    | PSZ2                              | Да                      | PSZ2 + ACT (отсеченный | 0.2          |
|                 |                                   |                         | по активному обучению) | 0 0          |

0.2

0.2

0.2

| ρ2_ισι         | FSZZ                                          | Да  |                                            |  |
|----------------|-----------------------------------------------|-----|--------------------------------------------|--|
| pz_act         | PSZ2 + ACT                                    | Нет | PSZ2 + ACT                                 |  |
| pz_act_jan_rot | PSZ2 + ACT (отсеченный по z/M500)             | Да  | PSZ2 + ACT (отсеченны                      |  |
| pz_act_feb_rot |                                               | Да  | по z/M500)                                 |  |
| pz_act_found   | PSZ2                                          | Да  | PSZ2 + ACT (отсеченно по активному обучени |  |
| pz_act_found2  | PSZ2 + ACT (отсеченный по                     | Да  |                                            |  |
| pz_all_found   | активному обучению)                           | Да  | PSZ2 + ACT + MCXC                          |  |
| pz_all_found2  | PSZ2 + ACT + MCXC<br>(отсеченный по активному | Да  | (отсеченный по<br>активному обучению)      |  |

## Обучение моделей

- Обучение длилось 50 эпох.
- Каждую эпоху нейросеть обучается на
- 100 000 патчах. Размер батча 20.
- Также рассчитываются метрики на патчах из валидации,
- 20000 патчей.





#### Сканирование неба моделью

- Для сканирования нужно разбить небо на патчи 64х64.
- Повторное сканирование разных областей.
- Объединение всех масок в общую.
- Новый параметр детекции «шаг».



#### Сканирование неба моделью

ullet Маска сегментации с шагом 4 ullet

• Графики recall и fp ↓







#### Детекция



# Результаты

# Выбор лучшей модели



|                             | PSZ2     | MCXC     | RM       | ACT      |
|-----------------------------|----------|----------|----------|----------|
| pz14                        | 0.901391 | 0.418818 | 0.048485 | 0.202145 |
| pz40                        | 0.909256 | 0.424555 | 0.050362 | 0.210012 |
| pz_rot_28                   | 0.916515 | 0.425129 | 0.056336 | 0.218832 |
| pz_act10                    | 0.822747 | 0.379805 | 0.040519 | 0.224076 |
| pz_act14                    | 0.737447 | 0.345382 | 0.047107 | 0.449106 |
| pz_act_rot_drop0.1_ep9      | 0.869328 | 0.391853 | 0.041017 | 0.185697 |
| pz_act_jan_rot_drop0.1_ep6  | 0.896552 | 0.405622 | 0.042970 | 0.186889 |
| pz_act_feb_rot_drop0.1_ep5  | 0.915306 | 0.433161 | 0.062464 | 0.228367 |
| pz_act_feb_rot_drop0.2_ep10 | 0.915306 | 0.430866 | 0.060281 | 0.227175 |
| pz_act_feb_rot_drop0.3_ep14 | 0.887477 | 0.426277 | 0.065566 | 0.237902 |
| pz_act_found21              | 0.921960 | 0.437177 | 0.057064 | 0.220977 |
| pz_act_found2_22            | 0.929825 | 0.432014 | 0.056681 | 0.230751 |
| pz_all_found34              | 0.922565 | 0.438325 | 0.061009 | 0.235757 |

#### Сравнение с базовой моделью

Pacпределение max\_pred pz\_all\_found и сопоставление с разными каталогами



|                | PSZ2 | MCXC | RM   | ACT  | Abell | fp    | all   |
|----------------|------|------|------|------|-------|-------|-------|
| pz_all_found34 | 0.92 | 0.44 | 0.06 | 0.24 | 0.21  | 21018 | 23352 |
| br_cat         | 0.74 | 0.38 | 0.04 | 0.19 | 0.18  | 11891 | 13689 |

#### Сравнение с eROSITA



Matrix of UNIQUE eRosita matches

|       | ancat | brcat | psz2 | redmp |
|-------|-------|-------|------|-------|
| ancat | 2355  | 1022  | 590  | 993   |
| brcat | 1020  | 1715  | 531  | 641   |
| psz2  | 589   | 533   | 593  | 227   |
| redmp | 994   | 643   | 228  | 4461  |

# Исследование функции отбора





#### Результаты

- Обучены модели для сегментации данных Planck. Использованы модели с различными параметрами (Dropout, количество слоёв) и с различными обучающими выборками (в том числе полученными с помощью активного обучения).
- Создан каталог на основе масок сегментации, исследованы его свойства. Recall на лучшем каталоге превосходит на 13% recall базового каталога по PSZ2 и на 5% по АСТ. Этот каталог важен для исследования параметров Вселенной, а также для сравнения с другими каталогами кандидатов скоплений.
- Проведён анализ функции отбора каталога. Более 70% лучшего каталога имеют M500 >  $4*10^{14}_{\odot}$ . Исследовано распределение prediction index полученных моделей и отклика на различных каталогах из разных диапазонов.

## Дальнейшие планы

- Статья о полученных каталогах.
- Перейти на детекцию скоплений в других диапазонах излучения (рентгеновский диапазон).