AA203: Optimal and Learning-based Control Course Notes

James Harrison*

April 25, 2019

4 Indirect Methods

4.1 Calculus of Variations

We will begin by restating the optimal control problem. We will to find an admissible control sequence u^* which causes the system

$$\dot{\boldsymbol{x}} = f(\boldsymbol{x}(t), \boldsymbol{u}(t), t) \tag{1}$$

to follow an admissible trajectory x^* that minimizes the functional

$$J = c_f(\boldsymbol{x}(t_f), t_f) + \int_{t_0}^{t_f} c(\boldsymbol{x}(t), \boldsymbol{u}(t), t) dt.$$
 (2)

To find the minima of functions of a finite number of real numbers, we rely on the first order optimality conditions to find candidate minima, and use higher order derivatives to determine whether a point is a local minimum. Because we are minimizing a function that maps from some n dimensional space to a scalar, candidate points have zero gradient in each of these dimensions. However, in the optimal control problem, we have a cost functional, which maps functions to scalars. This is immediately problematic for our first order conditions — we are required to check the necessary condition at infinite points. The necessary notion of optimality conditions for functionals is provided by calculus of variations.

Concretely, we define a functional J as a rule of correspondence assining each function x in a class Ω (the domain) to a unique real number. The functional J is linear if and only if

$$J(\alpha_1 \boldsymbol{x}_1 + \alpha_2 \boldsymbol{x}_2) = \alpha_1 J(\boldsymbol{x}_1) + \alpha_2 J(\boldsymbol{x}_2)$$
(3)

for all $\mathbf{x}_1, \mathbf{x}_2, \alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2$ in Ω . We must now define a notion of "closeness" for functions. Intuitively, two points being close together has an immediate geometric interpretation. We

^{*}Contact: jharrison@stanford.edu

first define the norm of a function. The norm of a function is a rule of correspondence that assigns each $\boldsymbol{x} \in \Omega$, defined over $t \in [t_0, t_f]$, a real number. The norm of \boldsymbol{x} , which we denote $\|\boldsymbol{x}\|$, satisfies:

- 1. $\|\boldsymbol{x}\| \ge 0$, and $\|\boldsymbol{x}\| = 0$ iff $\boldsymbol{x}(t) = 0$ for all $t \in [t_0, t_f]$
- 2. $\|\alpha \boldsymbol{x}\| = |\alpha| \|\boldsymbol{x}\|$ for all real numbers α
- 3. $\|\boldsymbol{x}_1 + \boldsymbol{x}_2\| \le \|\boldsymbol{x}_1\| + \|\boldsymbol{x}_2\|$.

To compare the closeness of two functions \mathbf{y}, \mathbf{z} , we let $\mathbf{x}(t) = \mathbf{y}(t) - \mathbf{z}(t)$. Thus, for two identical functions, $\|\mathbf{x}\|$ is zero. Generally, a norm will be small for "close" functions, and large for "far apart" functions. However, there exist many possible definitions of norms that satisfy the above conditions.

4.1.1 Extrema for Functionals

A functional J with domain Ω has a local minimum at $\boldsymbol{x}^*(t) \in \Omega$ if there exists an $\epsilon > 0$ such that $J(\boldsymbol{x}(t)) \geq J(\boldsymbol{x}^*(t))$ for all $\boldsymbol{x}(t) \in \Omega$ such that $\|\boldsymbol{x}(t) - \boldsymbol{x}^*(t)\| < \epsilon$. Maxima are defined similarly, just with $J(\boldsymbol{x}(t)) \leq J(\boldsymbol{x}^*(t))$.

Analogously to optimization of functions, we define the variation of the functional as

$$\Delta J(\boldsymbol{x}(t), \delta \boldsymbol{x}(t)) := J(\boldsymbol{x}(t) + \delta \boldsymbol{x}(t)) - J(\boldsymbol{x}(t))$$
(4)

where $\delta x(t)$ is the variation of x(t). The increment of a functional can be written as

$$\Delta J(\boldsymbol{x}, \delta \boldsymbol{x}) = \delta J(\boldsymbol{x}, \delta \boldsymbol{x}) + g(\boldsymbol{x}, \delta \boldsymbol{x}) \|\delta \boldsymbol{x}\|$$
(5)

where δJ is linear in $\delta \boldsymbol{x}$. If

$$\lim_{\|\delta \boldsymbol{x}\| \to 0} \{g(\boldsymbol{x}, \delta \boldsymbol{x})\} = 0 \tag{6}$$

then J is said to be differentiable on \boldsymbol{x} and δJ is the variation of J at \boldsymbol{x} . We can now state the fundamental theorem of the calculus of variations.

Theorem 4.1 (Fundamental Theorem of CoV). Let $\mathbf{x}(t)$ be a vector function of t in the class Ω , and $J(\mathbf{x})$ be a differentiable functional of \mathbf{x} . Assume that the functions in Ω are not constrained by any boundaries. If \mathbf{x}^* is an extremal, the variation of J must vanish at \mathbf{x}^* , that is $\delta J(\mathbf{x}^*, \delta \mathbf{x}) = 0$ for all admissible $\delta \mathbf{x}$ (i.e. such that $\mathbf{x} + \delta \mathbf{x} \in \Omega$).

Proof. [Kir12], Section 4.1.
$$\Box$$

We will now look at how calculus of variations may be leveraged to approach practical problems. Let \boldsymbol{x} be a continuous function in C^1 . We would like to find a function \boldsymbol{x}^* for which the functional

$$J(\boldsymbol{x}) = \int_{t_0}^{t_f} g(\boldsymbol{x}(t), \dot{\boldsymbol{x}}(t), t) dt$$
 (7)

has a relative extremum. We will assume $g \in C^2$, that t_0, t_f are fixed, and x_0, x_f are fixed. Let \boldsymbol{x} be any curve in Ω , and we will write the variation δJ from the increment

$$\Delta J(\boldsymbol{x}, \delta \boldsymbol{x}) = J(\boldsymbol{x} + \delta \boldsymbol{x}) - J(\boldsymbol{x})$$
(8)

$$= \int_{t_0}^{t_f} g(\boldsymbol{x} + \delta \boldsymbol{x}, \dot{\boldsymbol{x}} + \delta \dot{\boldsymbol{x}}, t) dt - \int_{t_0}^{t_f} g(\boldsymbol{x}, \dot{\boldsymbol{x}}, t) dt$$
(9)

$$= \int_{t_0}^{t_f} g(\boldsymbol{x} + \delta \boldsymbol{x}, \dot{\boldsymbol{x}} + \delta \dot{\boldsymbol{x}}, t) - g(\boldsymbol{x}, \dot{\boldsymbol{x}}, t) dt.$$
 (10)

Expanding via Taylor series, we get

$$\Delta J(\boldsymbol{x}, \delta \boldsymbol{x}) = \int_{t_0}^{t_f} g(\boldsymbol{x}, \dot{\boldsymbol{x}}, t) + \underbrace{\frac{\partial g}{\partial \boldsymbol{x}}}_{g_{\boldsymbol{x}}}(\boldsymbol{x}, \dot{\boldsymbol{x}}, t) \delta \boldsymbol{x} + \underbrace{\frac{\partial g}{\partial \dot{\boldsymbol{x}}}}_{g_{\boldsymbol{x}}}(\boldsymbol{x}, \dot{\boldsymbol{x}}, t) \delta \dot{\boldsymbol{x}} + o(\delta \boldsymbol{x}, \delta \dot{\boldsymbol{x}}) - g(\boldsymbol{x}, \dot{\boldsymbol{x}}, t) dt \quad (11)$$

which yields the variation

$$\delta J = \int_{t_0}^{t_f} g_{\mathbf{x}}(\mathbf{x}, \dot{\mathbf{x}}, t) \delta \mathbf{x} + g_{\dot{\mathbf{x}}}(\mathbf{x}, \dot{\mathbf{x}}, t) \delta \dot{\mathbf{x}} dt.$$
 (12)

Integrating by parts, we have

$$\delta J = \int_{t_0}^{t_f} \left[g_{\boldsymbol{x}}(\boldsymbol{x}, \dot{\boldsymbol{x}}, t) - \frac{d}{dt} g_{\dot{\boldsymbol{x}}}(\boldsymbol{x}, \dot{\boldsymbol{x}}, t) \right] \delta \boldsymbol{x} \delta t + \left[g_{\dot{\boldsymbol{x}}}(\boldsymbol{x}, \dot{\boldsymbol{x}}, t) \delta \boldsymbol{x}(t) \right]_{t_0}^{t_f}.$$
(13)

We have assumed $\boldsymbol{x}(t_0), \boldsymbol{x}(t_f)$ given, and thus $\delta \boldsymbol{x}(t_0) = 0$, $\delta \boldsymbol{x}(t_f) = 0$. Considering an extramal curve, applying the CoV theorem yields

$$\int_{t_0}^{t_f} \left[g_{\boldsymbol{x}}(\boldsymbol{x}, \dot{\boldsymbol{x}}, t) - \frac{d}{dt} g_{\dot{\boldsymbol{x}}}(\boldsymbol{x}, \dot{\boldsymbol{x}}, t) \right] \delta \boldsymbol{x} \delta t.$$
(14)

We can now state the fundamental lemma of CoV.

Lemma 4.2 (Fundamental Lemma of CoV). If a function h is continuous and

$$\int_{t_0}^{t_f} h(t)\delta \boldsymbol{x}(t)dt = 0 \tag{15}$$

for every function δx that is continuous in the interval $[t_0, t_f]$, then h must be zero everywhere in the interval $[t_0, t_f]$.

Proof. [Kir12], Section 4.2.
$$\Box$$

Applying the fundamental lemma, we find that a necessary condition for $m{x}^*$ being an extremal is

$$g_{\mathbf{x}}(\mathbf{x}, \dot{\mathbf{x}}, t) - \frac{d}{dt}g_{\dot{\mathbf{x}}}(\mathbf{x}, \dot{\mathbf{x}}, t) = 0$$
(16)

for all $t \in [t_0, t_f]$, which is the *Euler equation*. This is a nonlinear, time-varying second-order ordinary differential equation with split boundary conditions (at $\boldsymbol{x}(t_0)$ and $\boldsymbol{x}(t_f)$).

4.1.2 Generalized Boundary Conditions

In the previous subsection, we assumed that $t_0, t_f, \boldsymbol{x}(t_0), \boldsymbol{x}(t_f)$ were all given. We will now relax that assumption. In particular, t_f may be fixed or free, and each component of $\boldsymbol{x}(t_f)$ may be fixed or free.

We begin by writing the variation around x^*

$$\delta J = \left[g_{\dot{\boldsymbol{x}}}(\boldsymbol{x}^*(t_f), \dot{\boldsymbol{x}}^*(t_f), t_f) \right] \delta \boldsymbol{x}(t_f) + \left[g(\boldsymbol{x}^*(t_f), \dot{\boldsymbol{x}}^*(t_f), t_f) \right] \delta t_f$$

$$+ \int_{t_0}^{t_f} \left[g_{\boldsymbol{x}}(\boldsymbol{x}^*, \dot{\boldsymbol{x}}^*, t) - \frac{d}{dt} g_{\dot{\boldsymbol{x}}}(\boldsymbol{x}^*, \dot{\boldsymbol{x}}^*, t) \right] \delta \boldsymbol{x} \delta t$$

$$(17)$$

by using the same integration by parts approach as before. Note that for fixed t_f and $\boldsymbol{x}(t_f)$, the variations δt_f and $\delta \boldsymbol{x}(t_f)$ vanish, and so we are left with (14). Because δt_f and $\delta \boldsymbol{x}(t_f)$ do not vanish in this case, we are left with additional boundary conditions that must be satisfied. Note that

$$\delta \boldsymbol{x}_f = \delta \boldsymbol{x}(t_f) + \dot{\boldsymbol{x}}^*(t_f) \delta t_f \tag{18}$$

and substituting this, we have

$$\delta J = \left[g_{\dot{\boldsymbol{x}}}(\boldsymbol{x}^*(t_f), \dot{\boldsymbol{x}}^*(t_f), t_f)\right] \delta \boldsymbol{x}_f + \left[g(\boldsymbol{x}^*(t_f), \dot{\boldsymbol{x}}^*(t_f), t_f) - g_{\dot{\boldsymbol{x}}}(\boldsymbol{x}^*(t_f), \dot{\boldsymbol{x}}^*(t_f), t_f) \dot{\boldsymbol{x}}^*(t_f)\right] \delta t_f$$

$$+ \int_{t_0}^{t_f} \left[g_{\boldsymbol{x}}(\boldsymbol{x}^*, \dot{\boldsymbol{x}}^*, t) - \frac{d}{dt} g_{\dot{\boldsymbol{x}}}(\boldsymbol{x}^*, \dot{\boldsymbol{x}}^*, t)\right] \delta \boldsymbol{x} \delta t.$$

$$(19)$$

Stationarity of this variation thus requires

$$g_{\dot{\boldsymbol{x}}}(\boldsymbol{x}^*(t_f), \dot{\boldsymbol{x}}^*(t_f), t_f) = 0 \tag{20}$$

if \boldsymbol{x}_f is free, and

$$g(\mathbf{x}^*(t_f), \dot{\mathbf{x}}^*(t_f), t_f) - g_{\dot{\mathbf{x}}}(\mathbf{x}^*(t_f), \dot{\mathbf{x}}^*(t_f), t_f) \dot{\mathbf{x}}^*(t_f) = 0$$
(21)

if t_f is free, in addition to the Euler equation being satisfied. For a complete reference on the boundary conditions associated with a variety of problem specifications, we refer the reader to Section 4.3 of [Kir12].

4.1.3 Constrained Extrema

Previously, we have not considered constraints in the variational problem. However, constraints (and in particular, dynamics constraints) are central to most optimal control problems. Let $\boldsymbol{w} \in \mathbb{R}^{n+m}$ be a vector function in C^1 . As previously, we would like to find a function \boldsymbol{w}^* for which the functional

$$J(\boldsymbol{w}) = \int_{t_0}^{t_f} g(\boldsymbol{w}(t), \dot{\boldsymbol{w}}(t), t) dt$$
 (22)

has a relative extremum, although we additionally introduce the constraints

$$f_i(\boldsymbol{w}(t), \dot{\boldsymbol{w}}(t), t) = 0, \quad i = 1, \dots, n.$$
(23)

We will again assume $g \in C^2$ and that $t_0, \boldsymbol{w}(t_0)$ are fixed. Note that as a result of these n constraints, only m of the n+m components of \boldsymbol{w} are independent.

One approach to solving this constrained problem is re-writing the n dependent components of \boldsymbol{w} in terms of the m independent components. However, the nonlinearity of the constraints typically makes this infeasible. Instead, we will turn to Lagrange multipliers. We will write our *augmented functional* as

$$\hat{g}(\boldsymbol{w}(t), \dot{\boldsymbol{w}}(t), \boldsymbol{p}(t), t) := g(\boldsymbol{w}(t), \dot{\boldsymbol{w}}(t), t) + \boldsymbol{p}^{T}(t)\boldsymbol{f}(\boldsymbol{w}(t), \dot{\boldsymbol{w}}(t), t)$$
(24)

where p(t) are Lagrange multipliers that are functions of time. Based on this, a necessary condition for optimality is

$$\hat{g}_{\boldsymbol{w}}(\boldsymbol{w}^*(t), \dot{\boldsymbol{w}}^*(t), \boldsymbol{p}^*(t), t) - \frac{d}{dt}\hat{g}_{\dot{\boldsymbol{w}}}(\boldsymbol{w}^*(t), \dot{\boldsymbol{w}}^*(t), \boldsymbol{p}^*(t), t) = 0$$
(25)

with

$$\mathbf{f}(\mathbf{w}^*(t), \dot{\mathbf{w}}^*(t), t) = 0. \tag{26}$$

- 4.2 Indirect Methods for Optimal Control
- 4.3 Pontryagin's Maximum Principle
- 4.4 Numerical Aspects of Indirect Optimal Control
- 4.5 Further Reading

References

[Kir12] Donald E Kirk. Optimal control theory: an introduction. Courier Corporation, 2012.