Performance Evaluation Experiments of Bitcoin SV Scaling Test Network

Akihiro Fujihara and Takaaki Yanagihara

Abstract The Bitcoin SV Scaling Test Network (STN) is an experimental network for solving the scalability problem of Bitcoin with On-chain technology. A large amount of transactions are always transmitted on P2P networks, and experiments are conducted to generate huge blocks. In this study, by constructing the STN node, the occupancy rate of transaction processing and the branch probability of the blockchain are estimated. As a result, the estimated occupancy rate was about 1.04 and the estimated branch probability was 8.5%. In addition, the transaction processing performance was experimentally evaluated by transferring transactions including the OP_RETURN script at a high frequency of once per minute for a period of one week. As a result, the probability of the transaction being processed into BC was 98%. It was also confirmed that the latency distribution taken for transactions to be processed in tended to follow a power-law distribution at the tail. From the above, the consideration by the queueing theory with priority seems to be effective even in STN.

1 Introduction

ブロックチェーンは 1990 年代に Haber と Stornetta によって発表された電子書類の分散タイムスタンプ・サービスに関する理論研究に起源がある [1,2,3]. 当時はインターネットが十分に発達しておらず,提案システムの実環境での利用は困難であった.2008 年にビットコイン [7] が登場する頃には実環境が整っており,翌 2009 年 1 月 3 日には提案システムの稼働も始まった.これ以降,ビッ

Akihiro Fujihara

Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, JAPAN, e-mail: akihiro.fujihara@p.chibakoudai.jp

Takaaki Yanagihara

Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, JAPAN, e-mail: s1522313qq@s.chibakoudai.jp

トコインは稼働し続けている.このビットコインの実績と共に,分散タイムスタンプ・サービスと本質的に同じ技術がブロックチェーン(Blockchain, BC)という言葉に変わり,注目を集めるようになった.

ビットコインによって誕生した新アイデアは,BCではなく,Nakamoto Consensus と呼ばれる,ネットワークに参加する不特定多数のノードがBCについて合意形成を行う仕組みにあった.合意形成によって同じ状態を持ち合う技術は,ビットコインの登場以前から知られていたが,仲基合意は作業証明(Proof of Work, PoW)[4,5],最長チェーン規則,インセンティブ機構といった複数の仕組みを組み合わせることにより,インターネット規模での不特定多数のノード間で合意形成が可能な仕組みを生み出した点で斬新であった.

Bitcoin の本質的に新しい利用価値は、取引にかかる手数料を極度に安くする事によって実現できる、1円や1セント以下の Micropayment にある.このことによってインターネット上の様々なサービスの利用時に、ほぼ0に近い(人々が支払いを行ったことを気にしないレベルの)課金を沢山のユーザから集めることができる.つまり超少額決済は、これまでにない新しい分散型経済の仕組みを作ることができる潜在能力を持っている.しかし、現時点で Bitcoin Core (BTC) [8] は電子貨幣システムとして普段の支払いに利用されるわけではなく、投機目的の価値の貯蔵システムと化してしまった.その背景には、現状のビットコインでは多数の超少額決済の実行が事実上困難であるという理由がある.

BTC のブロックサイズの上限は 1MB に決まっている.これより大きなサイ ズのブロックは不当なものとみなされ,マイナーに拒否される.またビットコ インの平均ブロック生成時間は 10 分になるように難易度調整アルゴリズムに よって制御されている. 従って, 平均 10分に 1MB 以下のブロックに取り込め るだけの取引しか処理することができない.これは1秒あたり5~7取引しか 処理できない計算になる.単純に平均ブロック生成時間を10分より短くした り,ブロックサイズの上限を 1MB より大きくすれば,この問題が解決するよ うに思われる.しかし,ブロックサイズを大きくすると,ブロックを P2P ネッ トワーク上の全ノードに転送して共有する過程により時間がかかってしまう. 従って, 平均ブロック生成時間を 10 分より長くしないとブロックが P2P ネッ トワーク全体に行き渡る前に別のブロックが生成される確率が上がる.従って, 単純にブロックサイズを大きくしても BC の分岐を引き起こすことになる.分 岐が起こると Proof of Work (PoW) を行ってブロックを生成するノードのハッ シュレートが二種類のブロックの生成に分断されてしまう、これは将来的に排 除されてしまうブロックの生成に大量のハッシュパワーをかけてしまうことを 意味し,ネットワーク全体のブロック生成効率も下がる.平均ブロック生成時 間を 10 分よりも短くしても,同じく BC の分岐が起こりやすくなり,同様の 困難が生じる、これらの理由により、単位時間あたりの取引処理性能を向上す ることには技術的な困難がある、この技術的な課題のことをスケーラビリティ 問題と呼ぶ.

ビットコインのスケーラビリティ問題を解決する方法も様々なものが提案されている [6,9,10,11,12,13]. その中でも Lightning network[14] のように, BC 外で多量の取引をまとめて実行し, その最終結果のみを BC に書き込むことで,ブロックに取り込む取引量を減らす手法に注目が集まっている.この手法は BC 外の仕組みを駆使してスケーラビリティ問題を回避することから, Off-chain のスケーリング技術と呼ばれる. Off-chain 技術は一見良いように見

えるが、個々の取引処理が BC に残らない、従って、Off-chain で処理した取引の改ざんが可能になってくる。

またビットコインは、ダークネット・マーケットにおける違法な取引を行う手段として利用されてきた歴史がある.しかし、近年これらのマーケットの支配人や利用者が逮捕される事例が数多く報告されている [15, 16, 17].これらの逮捕はビットコインが全取引を改ざん耐性を持たせて公開している為に、法的な証拠として利用可能であることに起因する.この観点から考えると、Off-chain技術が普及するほど、政府等が追跡して監査することが不可能な取引が増えてしまい、ダークネット・マーケットにおける違法な取引の取り締まりが難しくなったり、マネーロンダリングの温床となりうる.法と倫理とのバランスを考えた時、究極的には BC 上で全取引を処理する On-chain 技術によってスケーラビリティ問題を解決することが求められる.

On-chain でスケーラビリティ問題を解決する為には,BC が分岐しないようにうまく制御しながら平均ブロック生成時間を短くするか,ブロックサイズを大きくする必要がある.bloXroute[18] は,Blockchain Distribution Network (BDN) という名称の,より大きなブロックをより短時間で伝搬させることが可能なネットワーク層を P2P ネットワークに接続することで,プロック伝搬速度を改善しようとする提案である.

ブロックサイズを拡大する取り組みは Bitcoin SV (BSV) [19] Scaling Test Network (STN) で実験的な取り組みが行われている [20] . 上述の通り , BTC のブロックサイズの上限は 1MB であるのに対し , BSV ではブロックサイズの上限を撤廃した . これにより 2021 年 2 月 9 日時点で , 24 時間あたりの平均取引処理数が 1,059 Transactions Per Second (TPS) , これまでに採掘された中で最も大きなブロックサイズは 2.9GB と報告されている .

本研究では STN のノードを構築することで,ブロックサイズの上限を撤廃した環境における取引処理に関するデータ分析や性能評価実験を行った結果について報告する.本研究の貢献を以下に示す.

- 待ち行列理論を用いることで取引処理の稼働率の時間変化を調べた.その 結果,推定稼働率は殆どの時間帯で1を超えていることが分かった.
- bitcoin-cli の機能を用いることで,BC の分岐確率の推定を行った.その結果,BTC では分岐確率が約2%であることが計算されているが,BSV STNでは約8.5%に増加していることが分かった.このことから,P2Pネットワークのノード全体にブロックを転送する時間は約53秒となることも計算により推定できた.
- OP_RETURN スクリプトを含む取引を1分に1回の高頻度で転送した時に BCに取り込まれるまでにかかる時間を実測した.その結果,取引がBCに 取り込まれる確率は98%であり,その時間分布は冪分布に従うような傾向 が確認できた.また優先権付き待ち行列の理論と矛盾しない3/2の冪指数に 従う傾向も確認できた.

2 Related Works

2.1 BC の分岐確率の計算

ビットコインのブロック生成時間は指数分布に従うことが知られている.

$$F(t) = P(T \le t) = \int_0^t \lambda e^{-\lambda t'} dt' = 1 - e^{-\lambda t}.$$
 (1)

ここでパラメータ λ は平均ブロック生成時間の逆数である. ビットコインの場合, 平均ブロック生成時間は $1/\lambda=10$ 分 =600 秒と決まっている.

また BTC の P2P ネットワークの 90%のノードにブロックが拡散されるまでにかかる時間は , Compact Block Relay を適用する以前の場合で $t=\tau_{fork}=12$ 秒であることが実測されている [18] . あるブロックがネットワーク全体に拡散される前に , 別のブロックが生成された時に BC が分岐してしまう . 従って , ビットコインの BC が分岐する確率は以下のように計算できる .

$$F(\tau_{fork}) = P(T \le \tau_{fork}) = 1 - e^{-\lambda \tau_{fork}} = \lambda \tau_{fork} = 12/600 = 0.02.$$
 (2)

以上より, BTC の BC の分岐確率は約2%であることが導かれる.

2.2 優先権付き待ち行列の理論

優先権の高い客に対して先にサービスを行う優先権付き待ち行列において,稼働率 $0 < \rho \le 1$ の時,優先権の低い客の待ち時間が冪指数 3/2 の冪分布に従い,その裾野が指数分布のカットオフを持つことが理論解析の結果から知られている [21].

$$P(\tau) = \frac{A}{\tau^{3/2}} \exp(-\tau/\tau_0),$$
 (3)

$$\tau_0 = \frac{1}{\mu (1 - \sqrt{\rho})^2},\tag{4}$$

$$\rho = \lambda/\mu. \tag{5}$$

ただし,A は確率分布の規格化定数, λ は客の平均到着率, μ は平均サービス率である.

また稼働率が超臨界状態 $\rho>1$ をとる時も同じ冪分布に従うことが報告されている. $0<\rho\le 1$ の場合と異なる点は, $1-1/\rho$ の割合で待ち時間が無限,つまりサービスを永遠に受けることができない客が現れる.

ビットコインにおける取引が BC に取り込まれるまでにかかる時間は取引手数料に依存した優先権付き待ち行列理論で説明できることが先行研究によって分かっている [22]. このことから, BSV STN においても取引が BC に取り込まれるまでにかかる時間分布も同様の性質を持つことが期待される.

Fig. 1 STN の未確認取引件数の時間変化

3 Bitcoin Scaling Test Network

ビットコインのスケーラビリティ問題を On-chain 技術で解決する為の実験場として, BSV は RegTest, Testnet 以外の第 3 のテストネットとして STN を立ち上げた. Testnet では取引数が少ない為,ブロックサイズは小さい傾向にあるが, STN では巨大ブロックを作るために大量の取引が定期的に送信されている. STN の未確認 (=BC に取り込まれていない)取引件数の時間変化を図1 に示す.

この図を作成する元となったデータは whatsonchain[23] で報告されているものを収集して利用している。図 1 より, 定常的に 1,000,000 以上の取引が Transaction pool に存在していることが分かる。また時々, 取引数が 10,000,000以上に達することも分かる。BSV では OP_RETURN スクリプトの利用をサポートしているが,取引内容の大半は単純にアドレス間の送金になっている。

STN のネットワークは一般に公開されており,誰でもノードを構築して P2P ネットワークに参加することができる.ただしノード構築の為のシステム要求として,CPU は $8\sim16$ コア,メモリは 64GB(+64GB Swap),ハードディスクは 3TB 以上,インターネット接続は上り下りとも 1Gbit 以上の性能が要求されている.BC の総容量は 2021 年 2 月 9 日時点で 2.4TB となっている.BSV の Testnet では 22GB,Mainnet でも 284GB 程度である為,比較すると BC の容量が非常に大きいことが分かる.また STN の BC のブロック高は 2021 年 2 月 9 日時点で 15,216 となっており,小さい.これは過去に BC の再編成(=ブロック高を下げて再開)を何度か実施している為である.BSV の github の情報では 2020 年 4 月と 11 月に BC の再編成が行われたことが記録されている.

またシステム要求からも分かるが, STN は CPU によるブロック採掘が可能になっている.ブロック採掘の難易度の時間変化を図2に示す.難易度は1~

Fig. 2 ブロック採掘の難易度の時間変化

数十の範囲で変化しており,容易に採掘が可能となっている.

STN では最大ブロックサイズが 10GB になるように設定することが推奨されている。また Bitcoin script が使用可能なメモリの上限も 2GB に設定することが推奨されている。これまでに採掘されたブロックのサイズ分布を調べた結果を図 3 に示す。STN のブロックサイズ分布は指数分布に従っているように見える。またこれまでに採掘された最大ブロックサイズは 2.9GB になっている。一方,図 3 の下図は Mainnet でのブロックサイズ分布になるが,興味深いことに指数分布よりも冪分布に従っているように見える。また冪指数の傾向からPareto-Zipf 則(=冪指数 2 の冪分布)に従っているようにも見える。STN のコインには市場価値はないが,Mainnet では市場価値を持つ。分布にこのような差が生まれる理由については,よく分かっていないが,市場価値を持つコインが入手できる場合,何らかの経済原理が働くことが影響していると考えられる.

BSV は採掘者の評判を評価する観点から採掘したブロックに採掘者 ID を記録することを推奨している.この採掘者 ID を参考にしてブロック採掘頻度のランキングを計算した結果を図 5 に示す.こちらは STN と Mainnet の両方とも冪分布に従っていることが確認できる.

4 Performance Evaluation Experiments

4.1 Experiment 1: STN の稼働率

図 1 における未確認取引件数の時間変化から,STN の稼働率を推定した.待ち行列理論に基づいて,STN の推定稼働率 ilde
ho の時間変化を計算した結果を図

Fig. 3 Bitcoin SV におけるブロックサイズ分布 (上図は STN, 下図は Mainnet)

6 に示す.推定稼働率は殆どの時間帯で 1 を超えていることが分かる.この結果は BC に取り込まれない取引が存在することを示唆している.また 2020 年 2021 日本での結果より,2021 の確率で BC に取り込まれない取引が出現していると考えられる.

Fig. 4 採掘者 ID を参考にして計算したブロック採掘頻度ランキング (STN)

Fig. 5 採掘者 ID を参考にして計算したブロック採掘頻度ランキング (Mainnet)

4.2 Experiment 2: BC の分岐確率の推定

STN のノードを構築して P2P ネットワークに接続すると分かるが,大きなブロックが生成されたと思われるタイミングで BC の大きな分岐が起きて Safe mode となり, bitcoin-cli コマンドを使って送金ができなくなることがある.また一度大きな分岐が起こると解消までに半日近くかかる場合もある.そこで

Fig. 6 STN の推定稼働率 $ilde{
ho}$ の時間変化

bitcoin-cli getinfo の errors の値を取得することで分岐が起きている時間から分岐確率を推定する実験を行った.

2020年11月4日~2021年1月13日の期間において,10秒に1回の頻度で errors の値を収集した(合計594,880回). またBC が分岐している警告が出た回数を数えた.その結果,以下の2種類の警告が出た.

- Warning: The network does not appear to fully agree! We received headers of a large fork. Still waiting for block data for more details. (出現頻度は 32,724 回, 全体に占める割合は約 5.5%)
- Warning: The network does not appear to fully agree! Some miners appear to be experiencing issues. A large valid fork has been detected. (出現頻度は 17,782回,全体に占める割合は約3%)

以上の結果より , 分岐確率は約 (5.5+3=)8.5% と推定することができる . これは BTC の約 2%の 4 倍超であることが分かる . ちなみに同じ手法で BSV Mainnet の分岐確率を評価すると 0% となった . また , 式 (1) において F(t)=0.085 と $\lambda=1/600$ を代入した時 , $t= au_{fork}=53$ 秒となることから , STN における平均 ブロック転送時間は約 53 秒になっていると推定することができる .

4.3 Experiment 3: 取引処理性能の評価実験

常に沢山の取引が Transaction pool にある状況で,取引が BC に取り込まれるまでにどの程度の時間がかかるかを実験により性能評価した.実験期間を 2021 年 1 月 $7 \sim 14$ 日の 1 週間に設定し,期間中に分岐による取引送信ができない場合を除いて常に 1 分に 1 回の頻度で,前の 1 分間に Flightradar 24 [24] の ADS-B

Fig. 7 経過時間と取引が取り込まれたブロック番号の対応関係

データの収集ノードから千葉工業大学のある津田沼周辺を飛行する民間航空機の位置情報を収集し,OP_RETURN スクリプトとしてデータを含めた取引の送信を行った.1 取引あたりのサイズは 63KB 未満になるようにした.また取引手数料は 0.001BSV に固定した.ちなみに BSV の取引手数料は 1 satoshi/byte 以上となっている.昼間は民間航空機が多く飛行する為,取引データのサイズが大きくなるが,夜間は殆ど飛行がない為,書き込むデータが無かった場合は取引の送信は行わなかった.実験結果に関するその他の詳細情報は Github に掲載した 1 .

実験期間の経過時間と取引が取り込まれたブロック番号の対応関係を図7に示す.経過時間と共に取引が定期的にブロックに取り込まれていることが確認できる.一方,たまになかなかBCに取り込まれない取引があることも確認できる.

実験期間中に合計 6,828 取引を送信したが , そのうち 104 取引は BC に取り込まれなかった . このことより , 取引が BC に取り込まれない確率が (104/6828=)0.02 と計算できる . この結果は 4.1 節で計算した $1-1/\tilde{\rho}=0.0387$ の確率で BC に取り込まれない取引が出現していると推定した結果とほぼ同じ値になっていることが確認できる .

次に取引送信から BC に取り込まれるまでにかかる時間のヒストグラムを図8 に示す.プロック生成時間分布が指数分布に従うことから,半日程度の短期間では BC に取り込まれる時間は指数分布に従うが,1 週間程度の長期間になると指数分布から外れてくる.実際に図8のとおり両対数プロットで直線的な傾向が現れる為,冪分布に従う傾向が現れていることが確認できる.また冪指数を両対数プロットの傾きから見積もると 3/2 に近いことが分かる.これらの結果は優先権付き待ち行列の理論解析結果と矛盾しない.このことから手数料の低い取引が優先度が低くなり,BC に取り込まれるまでに時間がかかっていることが予想される.

¹ https://github.com/cit-fujihalab/stn_experiments

Fig. 8 取引送信から BC に取り込まれるまでにかかる時間のヒストグラム

 ${f Fig.\,9}$ 取引サイズに対する取引手数料の割合と取引が BC に取り込まれるまでにかかった時間の関係

取引サイズに対する取引手数料の割合と取引が BC に取り込まれるまでにかかった時間の関係を図 9 に示す.割合 (fee rate) が低いと BC に取引が取り込まれるまでに時間がかかっていることが分かる.このことから STN においても優先権付き待ち行列理論による考察は有効であると考えられる.

5 Conclusion

本研究では Bitcoin STN のノードを構築し,ブロックサイズの上限を撤廃した環境における取引処理に関するデータ分析や性能評価実験を行った.取引処理の稼働率の時間変化を調べた結果,推定稼働率は殆どの時間帯において 1 を超えていることが分かった.bitcoin-cli の機能を用いて BC の分岐確率の推定も行った結果,STN では約8.5%となり,BTC の4 倍超の確率となっていることが分かった.また P2P ネットワークの平均ブロック転送時間も約53 秒と推定できた.OP_RETURN スクリプトを含む取引を1 分に 1 回の高頻度で 1 週間の期間,転送することで取引処理性能を実験的に評価した.その結果,取引がBC に取り込まれる確率は98%であり,その時間分布は長期的には冪分布に従うような傾向が確認できた.また優先権付き待ち行列の理論と矛盾しない3/2の冪指数に従う傾向も確認できた.このことから3/2 の冪指数に従う傾向も確認できた.このことから3/2 の平均であると言える.

今後の課題としては,より大量な数の取引を長期間に渡って送信し続けた 時の処理性能について確認することが挙げられる.

Acknowledgements This work was partially supported by the Japan Society for the Promotion of Science (JSPS) through KAKENHI (Grants-in-Aid for Scientific Research) Grant Number 20K11797.

References

- S. Haber and W. S. Stornetta, "How To Time-Stamp a Digital Document," J. Cryptology, 3, 99-111 (1991)
- D. Bayer, S. Haber, and W. S. Stornetta, "Improving the Efficiency and Reliability of Digital Time-Stamping," Sequences II: Methods in Communication, Security, and Computer Sicence, pp. 329-334 (1993).
- 3. S. Haber and W. S. Stornetta, "Secure Names for Bit-Strings," CCS'97: Proceedings of the 4th ACM conference on Computer and communications security, pp. 28-35 (1997).
- 4. C. Dwork and M. Naor, "Pricing via Processing or Combatting Junk Mail," Advances in Cryptology (CRYPTO'92), Lecture Notes in Computer Science, vol. 740, Springer (1993).
- M. Jakobsson and A. Juels, "Proofs of Work and Bread Pudding Protocols (Extended Abstract)," In: Preneel B. (eds) Secure Information Networks, The International Federation for Information Processing, vol 23, Springer (1999).
- Q. Zhou, et al., "Solutions to Scalability of Blockchain: A Survey" IEEE Access, Vol. 8, pp.16440-16455, IEEE, 2020.
- 7. S. Nakamoto, "Bitcoin: A Peer-to-Peer Electronic Cash System" (White paper), 2008
- 8. Bitcoin Core https://github.com/bitcoin/bitcoin
- A. Fujihara, "Proposing a System for Collaborative Traffic Information Gathering and Sharing Incentivized by Blockchain Technology," The 10th International Conference on Intelligent Networking and Collaborative Systems (INCoS-2018), pp.170-182 (2018) https://link.springer.com/chapter/10.1007/978-3-319-98557-2_16
- 10. A. Fujihara , "PoWaP: Proof of Work at Proximity for a crowdsensing system for collaborative traffic information gathering," Internet of Things, 100046, Elsevier (2019). https://www.sciencedirect.com/science/article/pii/S254266051830177X

- A. Fujihara, "Proposing a Blockchain-Based Open Data Platform and Its Decentralized Oracle," Advances in Intelligent Networking and Collaborative Systems (INCoS2019), Advances in Intelligent Systems and Computing, Vol. 1035, pp. 190–201, Springer (2020). https://link.springer.com/chapter/10.1007/978-3-030-29035-1_19
- 12. T. Yanagihara and A. Fujihara, "Considering Cross-Referencing Method for Scalable Public Blockchain," Advances in Internet, Data and Web Technologies, Lecture Notes on Data Engineering and Communications Technologies, Vol. 65, pp. 220-231, Springer (2021). https://link.springer.com/chapter/10.1007/978-3-030-70639-5_21
- T. Yanagihara and A. Fujihara, "Cross-Referencing Method for Scalable Public Blockchain," Internet of Things, Vol. 15, 100419 (2021). https://www.sciencedirect.com/science/article/pii/S2542660521000639
- 14. J. Poon and T. Dryja, "The Bitcoin Lightning Network: Scalable Off-Chain Instant Payments," (2016) https://lightning.network/lightning-network-paper.pdf
- 15. FBI, "Manhattan U.S. Attorney Announces Seizure of Additional \$28 Million Worth of Bitcoins Belonging to Ross William Ulbricht, Alleged Owner and Operator of "Silk Road" Website, " 2013. https://archives.fbi.gov/archives/newyork/press-releases/2013/manhattan-u.s.-attorney-announces-seizure-of-additional-28-million-worth-of-bitcoins-belonging-to-ross-william-ulbricht-alleged-owner-and-operator-of-silk-road-website
- 16. The US Department of Justice, "AlphaBay, the Largest Online 'Dark Market,' Shut Down," 2017. https://www.justice.gov/opa/pr/alphabay-largest-online-dark-market-shut-down
- 17. The US Department of Justice, "South Korean National and Hundreds of Others Charged Worldwide in the Takedown of the Largest Darknet Child Pornography Website, Which was Funded by Bitcoin," 2019. https://www.justice.gov/opa/pr/south-korean-national-and-hundreds-others-charged-worldwide-takedown-largest-darknet-child
- 18. U. Klarman, et al., "bloXroute: A Scalable Trustless Blockchain Distribution Network" (White paper), 2018. https://bloxroute.com/wp-content/uploads/2018/03/bloXroute-whitepaper.pdf
- 19. Bitcoin SV (Satoshi Vision) https://github.com/bitcoin-sv/bitcoin-sv
- 20. Bitcoin Scaling Test Network https://bitcoinscaling.io/
- J. G. Oliveira and A.-L. Barabási, "Darwin and Einstein correspondence patterns," Nature 437, 1251, 2005.
- S. Kasahara and J. Kawahara, "Effect of Bitcoin fee on transaction-confirmation process," Journal of Industrial and Management Optimization, 15 (1): 365-386, 2019.
- 23. WhatsOnChain.com, BSV Explorer STN, https://stn.whatsonchain.com/
- 24. Flight Tracker Flightradar24 Track Planes in Real-time, https://www.flightradar24.com/