高等微积分

邹文明

第三章:导数

回顾: 微分-求导

• 函数 f 在点 x_0 处可微当且仅当 f 在该点处可导. 此时 $\mathrm{d}f(x_0) = f'(x_0)\,\mathrm{d}x$.

1. 导数的四则运算法则: 假设 $f,g:(a,b) \to \mathbb{R}$ 在点 $x_0 \in (a,b)$ 处可导, 则

- $(\lambda f + \mu g)'(x_0) = \lambda f'(x_0) + \mu g'(x_0), \ \lambda, \mu \in \mathbb{R}.$
- $(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$.
- $\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) f(x_0)g'(x_0)}{(g(x_0))^2}$, 其中 $g(x_0) \neq 0$.
- $\left(\frac{1}{q}\right)'(x_0) = -\frac{g'(x_0)}{(g(x_0))^2}$, 其中 $g(x_0) \neq 0$.

- 2. 复合求导: $(f \circ g)'(x_0) = f'(g(x_0))g'(x_0)$.
- 3. 反函数求导: $(f^{-1})'(y) = \frac{1}{f'(x)}$.
- 4. 对数求导: $(\log |f(x)|)' = \frac{f'(x)}{f(x)}$.

第3章总复习

- •定义:导数,左、右导数,微分.
- •导数存在当且仅当左、右导数存在且相等.
- 可导蕴含着连续, 但反过来不成立.
- •导数的应用: 曲线的切线与法线.
- •基本初等函数的导数表.
- 可微=可导且 df(x) = f'(x) dx.

- (高阶) 求导法则: 四则运算, 复合函数求导, 反函数求导, 隐函数求导, 由参数方程定义 函数的求导, 对数求导及其应用.
- · 初等函数在其定义域的内部可导, 其导函数 也为初等函数.
- 高阶导数的定义, $\mathscr{C}^{(n)}$ 类 (n) 阶导数连续), $\mathscr{C}^{(1)}$ 类 (连续可导); 连续函数为 $\mathscr{C}^{(0)}$ 类.
- $\mathscr{C}^{(\infty)}$ 类: 具有任意阶导数 (无穷可导).
- •初等函数在其定义域的内部无穷可导.

回顾: 基本的高阶求导公式

设 $n \ge 1$ 为整数, $\alpha \in \mathbb{R}$, 则我们有

$$(\alpha^{\alpha})^{(n)} - \alpha(\alpha - 1)$$
 $(\alpha - n + 1)$

• $(x^{\alpha})^{(n)} = \alpha(\alpha - 1) \cdots (\alpha - n + 1) x^{\alpha - n}$, • $(e^{\alpha x})^{(n)} = \alpha^n e^{\alpha x}$, 其中 α 可以为复数,

•
$$\left(\log(1+x)\right)^{(n)} = (-1)^{n-1}(n-1)!(1+x)^{-n}$$
,
• $\sin^{(n)}(x) = \sin(x + \frac{n\pi}{2})$, $\cos^{(n)}(x) = \cos(x + \frac{n\pi}{2})$.

注: 由函数方程(隐函数、反函数)或者参变量 表示的函数, 也可以计算它们的高阶导数。

综合练习

例 1. 求函数 $y = \sqrt{a^2 - x^2}$ 的导数.

解:
$$y' = \frac{1}{2}(a^2 - x^2)^{-\frac{1}{2}} \cdot (a^2 - x^2)' = -\frac{x}{\sqrt{a^2 - x^2}}$$
.

综合练习

例 2. 求函数 $y = x^{a^a} + a^{x^a} + a^{a^x}$ 的导数.

解:
$$y' = a^a x^{a^a - 1} + (e^{x^a \log a})' + (e^{a^x \log a})'$$

 $= a^a x^{a^a - 1} + e^{x^a \log a} (x^a \log a)' + e^{a^x \log a} (a^x \log a)'$
 $= a^a x^{a^a - 1} + (\log a) a^{x^a} (ax^{a - 1}) + a^{a^x} \cdot a^x (\log a)^2$
 $= a^a x^{a^a - 1} + (\log a) a^{x^a + 1} x^{a - 1} + (\log a)^2 a^{a^x + x}$.

例 3. 设 $y = f(\sin^2 x) f(\cos x^2)$, 其中 f 为可导函数, 求 y'.

解: $y' = (f(\sin^2 x))' f(\cos x^2) + f(\sin^2 x) (f(\cos x^2))'$ $= f'(\sin^2 x) (\sin^2 x)' f(\cos x^2)$ $+ f(\sin^2 x) f'(\cos x^2) (\cos x^2)'$ $= f'(\sin^2 x) (2 \sin x \cdot (\sin x)') f(\cos x^2)$ $+ f(\sin^2 x) f'(\cos x^2) (-\sin x^2 \cdot (x^2)')$

$$= f'(\sin^2 x) (2\sin x \cos x) f(\cos x^2)$$
$$+ f(\sin^2 x) f'(\cos x^2) (-\sin x^2 \cdot (2x))$$
$$= f'(\sin^2 x) f(\cos x^2) \sin 2x$$

 $-2x\sin x^2 f(\sin^2 x) f'(\cos x^2).$

例 4. 求 $xy = 1 + xe^y$ 确定的隐函数的导数 $\frac{dy}{dx}$.

解: 将方程对 x 求导, 则 $y + xy' = e^y + xe^y \cdot y'$. 由此立刻可得 $y' = \frac{e^y - y}{x(1 - e^y)}$.

例 5. 己知 $x = \cos t$, $y = at \sin t$. 求 $\frac{dy}{dx}$. 解: 由于 $x' = -\sin t$, $y' = a\sin t + at\cos t$, 则

 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y'}{x'} = \frac{a\sin t + at\cos t}{-\sin t} = -a - at\cot t.$

例 6. 若由函数方程 $x^2 + xy + y^2 = 1$ 所确定的 隐函数 y = y(x) 为二阶可导, 求 y''.

解: 将方程对 x 求导得 2x + y + xy' + 2yy' = 0, 则 $y' = -\frac{2x+y}{x+2y}$. 于是我们有

$$y'' = -\frac{(2+y')(x+2y) - (2x+y)(1+2y')}{(x+2y)^2} = \frac{3(xy'-y)}{(x+2y)^2}$$

 $3(-x \cdot \frac{2x+y}{x+2y} - y)$ 3(x(2x+y) + y(x+2y)) $\frac{(x+2y)^2}{(x+2y)^2}$ $(x+2y)^3$

例 7. 设 $y = x^{x^{x^x}}$, 求 y'.

解:
$$y' = (e^{x^x \log x})' = x^{x^x} (x^x \log x)'$$

 $= x^{x^x} (x^{x^x - 1} + (x^x)' \log x)$
 $= x^{x^x} (x^{x^x - 1} + (e^{x^x \log x})' \log x)$
 $= x^{x^x} (x^{x^x - 1} + (x^x (x^x \log x)') \log x)$
 $= x^{x^x} (x^{x^x - 1} + x^x (x^{x^x - 1} + (x^x)' \log x) \log x)$
 $= x^{x^x} (x^{x^x - 1} + x^x (x^{x^x - 1} + (e^{x \log x})' \log x) \log x)$

$$= x^{x^{x}} (x^{x^{x-1}} + x^{x}(1 + \log x) \log x) \log x)$$

$$= x^{x^{x^{x}} + x^{x}} (x^{-1} + x^{x}(1 + \log x) \log x) \log x)$$

$$= x^{x^{x^{x}} + x^{x}} (x^{-1} + x^{x}(x^{-1} + \log x + \log^{2} x) \log x)$$

$$= x^{x^{x^{x}} + x^{x}} (x^{-1} + x^{x} \log^{2} x + x^{x} \log^{3} x).$$

例 8. 求 a, b 使 $f(x) = \begin{cases} \sin ax, & \exists x \leq 0 \\ \log(1+x) + b, & \exists x > 0 \end{cases}$ 在 ℝ 上可导. 解: 由于 f 在 $(0,+\infty)$ 和 $(-\infty,0)$ 上均为初等 函数,则 f 在 $\mathbb{R} \setminus \{0\}$ 上可导.又 f(0-0)=0, f(0+0) = b, 故 f 在点 x = 0 处连续当且仅当

b = 0. 现假设 b = 0, 则 $f'_{-}(0) = \lim_{x \to 0^{-}} \frac{\sin ax}{x} = a$,

 $f'_{+}(0) = \lim_{x \to 0^{+}} \frac{\log(1+x)}{x} = 1$, 故 f 在点 x = 0 可导

当且仅当 a=1, b=0, 此时 f 在 \mathbb{R} 上可导.

例 9. 设 $k \in \mathbb{Z}$. $\forall x \in \mathbb{R}$, 令

$$f(x) = \begin{cases} x^k \sin \frac{1}{x}, & \stackrel{\text{ZF}}{=} x \neq 0, \\ 0, & \stackrel{\text{ZF}}{=} x = 0. \end{cases}$$

请问 k 取何值时, 函数 f 在点 x = 0: (1) 连续; (2) 可导; (3) 连续可导.

解: (1) 如果 $k \ge 1$, 那么 $\forall x \in \mathbb{R}$, $|f(x)| \le |x^k|$. 由夹逼原理可知 $\lim_{x\to 0} f(x) = 0 = f(0)$. 此时 f 在

原点处连续.

18/29

现假设 $k \leq 0$. $\forall n \geq 1$, $\diamondsuit x_n = \frac{1}{2n\pi}$, $y_n = \frac{1}{2n\pi + \frac{\pi}{2}}$. 那么有 $f(x_n) = 0$, $f(y_n) = y_n^k \geqslant 1$. 则 $\{x_n\}$, $\{y_n\}$ 均收敛到 0, 但 $\{f(x_n)\}$, $\{f(y_n)\}$ 却不收敛到同一个极限. 这表明 f 在原点间断. 综上所述可知 f 在原点连续当且仅当 $k \ge 1$.

(2) 若 f 在原点可导,则它在该点连续. 故只需讨论 $k \ge 1$ 的情形. 若 $k \ge 2$,由夹逼原理可知 $\lim_{x\to 0} \frac{f(x)-f(0)}{x} = \lim_{x\to 0} x^{k-1} \sin \frac{1}{x} = 0$,

故 f 在点 x = 0 处可导且 f'(0) = 0.

若 k=1, 则由极限 $\lim_{x\to 0} \sin \frac{1}{x}$ 不存在可知 f'(0)

不存在. 于是 f 在原点可导当且仅当 $k \ge 2$.

(3) 由前面的讨论可假设 $k \ge 2$. 当 $x \ne 0$ 时,

$$f'(x) = kx^{k-1} \sin \frac{1}{x} + x^k \cos \frac{1}{x} \cdot (-\frac{1}{x^2})$$
$$= kx^{k-1} \sin \frac{1}{x} - x^{k-2} \cos \frac{1}{x}.$$

若 $k \ge 3$, 由夹逼原理可知 $\lim_{x\to 0} f'(x) = 0 = f'(0)$.

若 k=2 时, $\forall n \geq 1$, $f'(x_n)=-1$, $f'(y_n)=ky_n$.

则 $\{f'(x_n)\}$, $\{f'(y_n)\}$ 不收敛到同一极限, 故 f'

在原点间断. 则 f' 在原点连续当且仅当 $k \ge 3$

例 10. 设 $f(x) = |x - \sin x|$, 求 f'(0).

解: $f'(0) = \lim_{x \to 0} \frac{|x - \sin x|}{x} = \lim_{x \to 0} \frac{\left|\frac{1}{6}x^3\right|}{x} = \lim_{x \to 0} \frac{x^2}{6} \operatorname{sgn} x = 0.$

例 11. 判断函数 $f(x) = \frac{1}{1-e^{\frac{x}{1-x}}}$ 在点 x=1 处的 间断点的类型.

解: 由于 $\lim_{x\to 1^-} \frac{1}{1-e^{\frac{x}{1-x}}} = 0$, $\lim_{x\to 1^+} \frac{1}{1-e^{\frac{x}{1-x}}} = 1$, 因此 点 x=1 为 f 的第一类间断点 (跳跃间断点).

例 12. 设 $f(x) = xe^x$. 求 $f^{(n)}$ $(n \ge 1)$.

解: $f^{(n)}(x) = \sum_{k=0}^{n} {n \choose k} x^{(k)} (e^x)^{(n-k)} = xe^x + ne^x$.

例 13. 假设 $f: \mathbb{R} \to \mathbb{R}$ 为二阶可导且 $\forall x \in \mathbb{R}$, $f'(x) \neq 1$. 若隐函数 y = y(x) 可由 y = f(x + y)来确定, 求 y', y".

解: 将方程对 x 求导, 则 y' = f'(x+y)(1+y'). 于是 $y' = \frac{f'(x+y)}{1-f'(x+y)}$. 同时我们也有

 $y'' = f''(x+y)(1+y')^2 + f'(x+y)y'',$ 曲此可得 $y'' = \frac{f''(x+y)(1+y')^2}{1-f'(x+y)} = \frac{f''(x+y)}{(1-f'(x+y))^3}$.

例 14. 假设参数方程 $x = 2t + \sin t$, $y = \cos t$ 可确定可导函数 y = f(x). 求 f'(0).

解: 由题设可知 $f'(0) = \frac{dy}{dx}|_{x=0} = \frac{-\sin t}{2+\cos t}|_{t=0} = 0.$

例 15. 设 $y = x^x$, 求微分 dy 以及 dy(1).

解: 因 $y' = (e^{x \log x})' = x^x (x \log x)' = x^x (\log x + 1)$, 故 $dy = x^x (\log x + 1) dx$, 进而可知 dy(1) = dx.

例 16. 假设函数 $f:(-1,1)\to\mathbb{R}$ 在点 x=0 处 可导. 如果 $\forall x \in (-1,1)$, 均有 $|f(x)| \leq |\sin x|$.

求证: $|f'(0)| \leq 1$. 证明: 由题设立刻可知 $|f(0)| \leq |\sin 0| = 0$, 于是

我们有 f(0) = 0, 进而可得

 $|f'(0)| = \left| \lim_{x \to 0} \frac{f(x) - f(0)}{x} \right| = \lim_{x \to 0} \left| \frac{f(x) - f(0)}{x} \right|$

$$\leqslant \lim_{x \to 0} \left| \frac{\sin x}{x} \right| = 1.$$

17. 假设 f 可导且函数 $y = f(\sin x)$ 存在可导的反函数, 求 $\frac{dx}{dy}$.

解: 由于 $\frac{dy}{dx} = f'(\sin x) \cos x$, 故 $\frac{dx}{dy} = \frac{1}{f'(\sin x) \cos x}$.

27 / 29

18. 函数 y = y(x) 由参数方程 $\begin{cases} x = t - \sin t \\ y = t - \cos t \end{cases}$ 给出. 求其微分 dy.

解: 由参数方程求导法则可知 $\frac{dy}{dx} = \frac{1+\sin t}{1-\cos t}$, 则 $dy = \frac{1+\sin t}{1-\cos t} dx$.

谢谢大家!