

Walking Motion Control in Partial Immersion

CENTRALELYON

Context

Biomechanical simulation of human swimming [Si2014]

A dancing crowd [coros2010]

Previous works

Physic-based controller

Example of physic-based controller [Geijtenbeek2012]

Example of human model

SIMBICON

SIMple Biped CONtroller [Yin2007]

Finite state machine for forward walk [Yin2007]

Proportional Derivative (PD)- controller:

$$\tau = k_p(\theta_d - \theta) + k_v(\dot{\theta_d} - \dot{\theta})$$

SIMBICON

Stable state combiner [Coros2009]

Fine scale velocity tuning (left) and gravity compensation (right). [Coros2010]

IPM [Coros2010]

- Gravity compensation [Coros2010]
- Inversed pendulum Model (IPM) [Coros2010]
- Fine scale velocity and balance control [Coros2010]

SIMBICON

Physic based controllers in fluids

Human swimming driven by motion capture [Kwatra2010]

Human walking under constant wind force [Lentine2011]

Navier-Stokes equations in Eulerian space

Limits and contributions

Limits	Contributions
liquid interactions not in real time	Simplified liquid model
Gait specifications limited	Smart IPM usage State combiner
Unable to follow desired speed	IPM alteration Intra-step speed variation consideration
Unable to handle immersion	Immersion aware gravity compensation.

Contributions

Controller overview

Liquid model

Liquid drag:

$$F_D = \frac{1}{2}\rho v^2 A_n$$

Friction:

$$F = F_D * \mu$$

Buoyancy:

$$F_{PA} = -V_i \rho g$$

Physic model of our character

Gait Specification: States combiner

- Goals:
 - Define main characteristic of the gait
 - Define conditions specific gaits

- Can be enable on selected joints
- Interpolation following a square law

Gait Specification: IPM

- Used in the descending phase of each step
- User defined swing foot trajectory for ascending phase

IPM override user defined trajectory if the balance is lost

Speed Control

- IPM result alteration
 - Next step nearer → accelerate character
 - Next step further → slow character
 - Principle:
 - \blacksquare Add a \triangle to the IPM result.
 - Adapt the Δ depending on speed at the end of each step

Speed Control

- Based on fine scale control from (coros2010)
- Goal:
 - adapt virtual force to intra-step speed variations.

Speed curve learning process

Gravity compensation

- Virtual force applied to each rigid body composed of:
 - Weight compensation $F_W = -mg$
 - Buoyancy compensation $F_B = \rho V_{im}$

Final force may be positive in liquid with high density

Optimization

Evaluation formula:

$$f_{eval} = \sum_{t} (\alpha f_{energ} + \beta f_{drag} + \gamma f_{acc}) * (1 + 0.1 * R_{ipm_alt}) + f_{speed} + f_{balance}$$

- $= f_{energ} : consumed energy$
- $= f_{drag} : opposition of liquid$
- $= f_{acc} :$ sum of desired and observed angular acceleration
- R_{imp_alt} : ipm alteration utilization $R_{imp_alt} = \frac{\Delta(x,y)}{max(\Delta(x,y))}$
- $f_{balance}$: maintains stable motion
- Covariant Matrix Adaptation (CMA)

Results

Analyze optimization results

■ 10 reference states (5 liquid levels, 2 speed)

Final controller

Conclusion

Contributions:

- Simple liquid through basic hydrodynamics
- States combiner and Balance strategy activated on need only
- Learning strategies to obtains the desired velocity

Limits:

- Static Thresholds based systems
- Unstable contact between foot and ground.
- Simplified liquid model may create unrealistic results

Future works:

- More realistic liquid model
- Extension to more motions and more environments

Questions?

References

- [Coros2009] Coros, S., Beaudoin, P., van de Panne, M.: Generalized biped walking control. In: ACM Transactions on Graphics (TOG). vol. 29, p. 130. ACM (2010)
- [Coros2010] Coros, S., Beaudoin, P., van de Panne, M.: Robust task-based control policies for physics-based characters. In: ACM Transactions on Graphics (TOG). vol. 28, p. 170. ACM (2009)
- [Geijtenbeek2012] Geijtenbeek, T., Pronost, N.: Interactive character animation using simulated physics: A state-of-the-art review. In: Computer Graphics Forum. vol. 31, pp. 2492–2515. Wiley Online Library (2012)
- [Kwatra2010] Kwatra, N., Wojtan, C., Carlson, M., Essa, I., Mucha, P.J., Turk, G.: Fluid simulation with articulated bodies. Visualization and Computer Graphics, IEEE Transactions on 16(1), 70–80 (2010)
- [Lentine2011] Lentine, M., Gretarsson, J.T., Schroeder, C., Robinson-Mosher, A., Fedkiw, R.: Creature control in a fluid environment. Visualization and Computer Graphics, IEEE Transactions on 17(5), 682–693 (2011)
- [Si2014] Si, W., Lee, S.H., Sifakis, E., Terzopoulos, D.: Realistic biomechanical simulation and control of human swimming. ACM Transactions on Graphics (TOG) 34(1), 10 (2014)
- [Yin2007] Yin, K., Loken, K., van de Panne, M.: Simbicon: Simple biped locomotion control. In: ACM Transactions on Graphics (TOG). vol. 26, p. 105. ACM (2007)

