PRACTICE PAPER

MATHEMTICS Extended Part

Module 2 (Algebra and Calculus)

Question-Answer Book

Time allowed: 1.5 hours

Name:______/100

School:______/200

Instructions

- 1. This paper must be answered in English.
- 2. Unless otherwise specified, all working must be clearly shown.
- 3. Unless otherwise specified, numerical answers must be exact.
- 4. This paper is for **internal use** only.
- 5. All questions are collected from AL/CE/DSE past papers, reference site: https://www.dse.life/ppindex/m2/

1. (1990-HL-GEN MATHS #05)

(a) Prove by mathematical induction that for any positive integer n,

$$\sum_{r=1}^{n} r^3 = \frac{1}{4}n^2(n+1)^2$$

(b) Find $1^3 - 2^3 + 3^3 - 4^3 + \dots + (-1)^{r+1}r^3 + \dots - (2n)^3$.

(13 marks)

expansion of $(1+4x)^n$ is 180, where n is a positive	
and the coefficient of x^3 .	(10 marks

3. (2014-DSE-MATH-EP(M2) #01) In the expansion of $(1-4x)^2(1+x)^n$, the coefficient of x is 1. (a) Find the value of n. (b) Find the coefficient of x^2 . (9 marks) 4. (2015-DSE-MATH-EP(M2) #07)

- (a) Prove that $\sin^2 x \cos^2 x = \frac{1 \cos 4x}{8}$.
- (b) Let $f(x) = \sin^4 x + \cos^4 x$.
 - i. Express f(x) in the form of $A\cos Bx + C$, where A,B and C are constants.
 - ii. Solve the equation 8f(x) = 7, where $0 \le x \le \frac{\pi}{2}$.

(12 marks)

- 5. (2015-DSE-MATH-EP(M2) #08)
 - (a) Using mathematical induction, prove that

$$\sin\frac{x}{2}\sum_{k=1}^{n}\cos kx = \sin\frac{nx}{2}\cos\frac{(n+1)x}{2}$$

for all positive integers n.

(b) Using (a), evaluate $\sum_{k=1}^{567} \cos \frac{k\pi}{7}$.

		/10 1
		(13 marks

6. (2016-DSE-MATH-EP(M2) #02)Prove that

$\frac{1}{\sqrt{x}}$	$-\frac{1}{\sqrt{x+h}} =$	$= \frac{h}{(x+h)\sqrt{x} + x\sqrt{x+h}}.$	Hence, find	$\frac{d}{dx}\sqrt{\frac{3}{x}}$ from	n first
princ	iples.	(· ·) v · · · ·			(10 marks)

7. (1994-CE-A MATH 1 #04) Let $y = \tan \frac{1}{x}$.

- (a) Show that $x^2 \frac{dy}{dx} + (y^2 + 1) = 0$. (b) Hence show that $\frac{d^2y}{dx} + \frac{2(x+y)}{2} \frac{dy}{dx} = 0$.

(b) Hence show that $\frac{d}{dx^2}$	$+{x^2}$	$-\frac{1}{dx} = 0.$		
			(11 m	arks)

8. (2004-CE-A MATH #09(Modified)) Let P(a,b) be a point on the curve $C: y = x^3$ such that the tangent to C at P passes through the point (0,2). (a) Show that $b = 3a^3 + 2$. (b) Find the value of a and b. (11 marks) 9. (1992-CE-A MATH 1 #05) The curve $(x-2)(y^2+3) = -8$ cuts the y-axis at two points. Find (a) the coordinates of the two points. (b) the slope of the tangent to the curve at each of the two points. (11 marks)