# Facial Expression Recognition

CIS 730 Term Project Ishitaa Sayal

#### Introduction

- Facial emotion recognition is an AI technology used to analyze a person's face and interpret their expressions
- It conveys nonverbal communication cues that play a very important role in interpersonal relations.
- Nonverbal cues complements speech by helping the listener to understand the intended meaning of the spoken words.
- Emotion recognition can be done using texts, images, videos, speeches, and conversations.

### What is emotion recognition used for today?

- Security Measure
- HR assistance
- Customer Services
- Differently abled children
- Audience engagement
- Video Game testing

### Goal

- To develop an artificial agent that will detect various facial expressions in real time.
- In This project we are taking 7 universal facial expressions:
  - Neutral
  - o Sad
  - Happy
  - o Fear
  - o Angry
  - Disgust
  - Surprised







Angry



Sad



Happy



Disgusted



Surprised

https://algorithmia.com/blog/introduction-to-emotion-recognition

#### Dataset

- Source : Kaggle<sup>1</sup>
- It comprises pre-cropped, 48-by-48-pixel grayscale images of faces each labeled with one of the 7 emotion classes: anger, disgust, fear, happiness, sadness, surprise, and neutral.
- Dataset has a training set of 35887 facial images with facial expression labels.

<sup>&</sup>lt;sup>1</sup> https://www.kaggle.com/sionehoghen/facial-expression

### Methodology

- Performing data processing and data augmentation to make data more robust
  - Resizing the images
  - o Random flip
  - o Random rotation
  - Random zoom
- Creating a Convolution Neural Network Model (CNN model)
  - Creating EfficientNetB2 model
- Training and testing the data, which is done in two phases
  - o Phase I: entire data is trained
  - Phase II: we freeze the initial layers and perform training in last few layers

#### EfficientNetB2

- As the name suggest efficientnet models are more efficient and produce better results as compared to results produced by state-of-art-models.
- Generally, the models are made to wide, deep, or with a very high resolution
- Increasing these characteristics helps the model initially but it quickly saturates and the model made just has more parameters and is therefore not efficient.
- In EfficientNet they are scaled in a more principled way i.e. gradually everything is increased. Therefore making these models more efficient as compared to other models.

| Layer (type)                                                      | Output Shape       | Param # |
|-------------------------------------------------------------------|--------------------|---------|
| efficientnetb2 (Functional)                                       | (None, 3, 3, 1408) | 7768569 |
| <pre>global_average_pooling2d (C<br/>lobalAveragePooling2D)</pre> | G (None, 1408)     | 0       |
| dropout (Dropout)                                                 | (None, 1408)       | 0       |
| dense (Dense)                                                     | (None, 128)        | 180352  |
| dense_1 (Dense)                                                   | (None, 7)          | 903     |
|                                                                   |                    |         |

Total params: 7,949,824
Trainable params: 7,882,249
Non-trainable params: 67,575

### **Evaluation**

• Precision , Recall, Accuracy

As we can see accuracy is around 60 percent, as it is a very noisy dataset

# Expression Recognition Results (1)



Agent detecting neutral expressions

# Expression Recognition Results (2)



Agent detecting happy expressions

## Expression Recognition Results (3)



Agent detecting surprise expressions

### Tools Used

- Python
- Tensorflow
- Keras
- Open CV
- Google Colab
- Jupyter Notebook









### Various Approaches to Improve Training (1)

- Performing face detection and cropping face images in our training dataset.
  - Although we have closely cropped faces in our dataset, they are very noisy.
  - By filtering out all images which were not detected by face detection algorithm we can make our model more robust.

### Various Approaches to Improve Training (2 & 3)

- Increase Number of phases and Decrease number of epochs per phase while training.
  - **For example:** You can train a model using a phase 1 with 6 epochs repeated by phase 2 with 4 epochs for 2 times

- Try out a better version of EfficientNet.
  - There are even better versions of EfficientNet such as B3 to B7.
  - We have used EfficientNetB2 just to keep it less computationally intensive.
  - So that it can be executed even on Low hardware specification. .

### **Future Plans**

- Perform more data augmentation to improve the accuracy of the model
- Convert it into a live project for a good social cause.

# **DEMO**

# THANK YOU