FYS 1120 Obligatorisk oppgave 2: Syklotron

Kenneth Ramos Eikrehagen

31. oktober 2017

Innhold

1	Opp	ogav	e 2	2																							1
	1.1	b)																									1
	1.2	c) .																									3
	1.2 1.3	d)																									3
2	Oppgave 3 2.1 a)															3											
	2.1	a) .																									3
	2.2	$_{\rm b,c}$																									5
	2.3	d)																									5
	2.4	e) .				•				•	•				•		•		•	•		•	•	•			5
3	Oppgave 4 3.1 a)																7										
	3.1	a) .																									7
	3.2	b)																									10

1 Oppgave 2

1.1 b)

Jeg måler omløpstiden ved å se på posisjon- og hastighetsgrafen. Jeg ser at partikkelen bruker ca 1.8 ps på en runde på fig 1.

Plott av hastighet- og posisjon-grafene

$$v = (10km/s, 0, 0km/s)$$

Figur 1: Øverst: Posisjonsgraf,

Nederst: Hastighetsgraf

Figur 2: 3D-graf

Plott av hastighet- og posisjon-grafene

$$v = (5km/s, 0, 2km/s)$$

Figur 3: Øverst: Posisjonsgraf,

Nederst: Hastighetsgraf

Figur 4: 3D-graf

1.2 c)

For å vise at $\omega_c = \frac{qB}{m}$ bruker jeg at jeg har to verdier for kraften F og setter disse lik hverandre.

$$F = ma = m\frac{v^2}{r}$$

$$F = q|\vec{v} \times \vec{B}| = qvB$$

$$m\frac{v^2}{r} = qvB \Rightarrow v = \frac{qBr}{m}$$
 | Bruker at $v = \omega r$
$$\underline{\omega = \frac{qB}{m}}$$

Videre skal jeg vise at $T = \frac{2\pi m}{qB}$. For å vise dette bruker jeg denne sammenhengen:

$$Strekning = Hastighet * Tid$$

Hvor $Strekning = \Delta s = 2\pi, \; Hastighet = \Delta v = \Delta \omega = \frac{qB}{m} \text{ og } Tid = \Delta t = T$

$$2\pi = \frac{qB}{m}T \Rightarrow T = \frac{2\pi}{\left(\frac{qB}{m}\right)} = \frac{2\pi m}{qB}$$

som var det jeg skulle vise.

1.3 d)

Når jeg ser på forskjellen mellom resultatet jeg fikk ved å analysere grafen og det analytiske resultatet, er den en liten differanse. Den analytiske løsningen gir meg en periode $T \simeq 1.7889ps$ som er tilnærmet 1.8 ps. Jeg tolker det til at jeg har en god tilnærming. Jeg kan analysere T bedre numerisk ved å endre koden min til å finne perioden, da blir differansen enda mindre.

2 Oppgave 3

2.1 a)

Når vi ser på figur 5 ser vi at radiusen ikke øker like mye for hver omløp den gjør. Det tolker jeg til at siden protonet kun blir akselerert i E-feltet som er i vallay gap til syklotronen blir strekningen protonet må reise før den blir akselerert på nytt større. Vi ser at i starten er ikke radiusen så stor, som betyr at protonet derfor bli akselerert mer hyppig, men jo større hastighet blir jo større blir radien også som medfører at akselerasjonen forekommer

Plott av y(t) mot x(t)

Figur 5

sjeldnere. Hvis vi i tillegg ser på $F_b = q\vec{v} \times \vec{B}$ ser vi at kraften fra magnetfeltet øker sammen med hastigheten som gjør at den holdes til sin sirkelbane.

Plott av posisjon- og hastighets-grafene

Figur 6: Posisjonsgraf

Figur 7: Hastighetsgraf

2.2 b,c)

Hvis vi ser på figurene 6 og 7 ser vi at protonet til slutt forlater B-feltet. Den forlater B-feltet med en hastighet på 8.89 $\left[\frac{Mm}{s}\right]$

2.3 d)

For å vise at den kinetiske energien til en partikkel som går i bane i en avstand r
 fra sentrum av syklotronen kan skrives $E_k=\frac{1}{2}\frac{q^2B^2r^2}{m}$.
 Minner jeg om $E_k=\frac{1}{2}mv^2$, og $F=qvB=m\frac{v^2}{r}$

$$qvB = m\frac{v^2}{r} \Rightarrow v = \frac{qBr}{m}$$

$$E_k = \frac{1}{2}mv^2 = \frac{1}{2}m\left(\frac{qBr}{m}\right)^2 = \frac{1}{2}\frac{q^2B^2r^2}{m}$$

2.4 e)

Nå skal jeg bruke dette til å beregne energien protonet har når den forlater syklotronen

$$E_k = \frac{1}{2} \frac{q^2 B^2 r^2}{m} \simeq 0.77 \text{ [fJ]}$$

Kan sammen ligne dette med den numeriske løsningen jeg fikk for hastigheten den forlot syklotronen med.

$$E_k = \frac{1}{2}mv^2 \simeq 0.66 \text{ [fJ]}$$

Jeg ser at det skiller 0.11[fJ] fra den analytiske og den numeriske løsningene. Det er ikke så ille med tanke på at det er snakk om en størrelse på 10^{-15}

Øker vi radiusen i syklotronen $r_D = 1[m]$ blir unslippnings hastigheten $v = 9.42 * 10^6 [m/s]$. Bruker vi nå dette til å regne forskjellen mellom den numeriske og analytiske forskjellen får jeg :

$$E_k = \frac{1}{2} \frac{q^2 B^2 r^2}{m} = 3.066 * 10^{-11}$$

$$E_k = \frac{1}{2} m v^2 = 7.41 * 10^{-14}$$

Nå skiller svarene med en faktor 10^3 som er mye! Jeg tror dette kan ha noe med at når hastigheten nærmer seg 10% av lysetshastighet så bør man begynne å regne relativistisk. Det gikk bra når hastigheten var godt under 10% av lyshastigheten.

Til slutt i denne oppgaven legger jeg ved koden min: (har også lagt den ved som vedlegg i devilry)

```
import numpy as np
    import matplotlib.pyplot as plt
   from mpl_toolkits.mplot3d import Axes3D
   #from seaborn import*
5
   q = 1.6*10**(-19)
6
                           #elektronladning
   me = 9.11*10**(-31)
                            #elektronmasse
   mp = 1.67*10**(-27)
                             #protonmasse
   T = 300*10**(-9)
                                #fra t0 til T [s]
10
   \mathtt{dt} = 100 \! * \! 10 \! * \! * \! (-15)
11
                                \# t i d s s t e g
   N = int(T/float(dt))
                                #antall tidssteg
12
                                #posisjonsvektor
   r = np.zeros((3,N))
13
14
   v = np.zeros_like(r)
                                #hastighetsvektor [m/s]
   t = np.linspace(0, T-dt, N) \#array med likt fordelt tid dt
15
                                #valley gap [m]
16
   d = 90*10**(-6)
17
   r_D = 1
                                #radius [m]
18
   #initialverdier
19
   |v[:,0] = (0,0,0)
   E0 = (25*10**3)/float(d)
21
   B = np.array((0,0,2)) \#Magnetfelt
24
   omega = (q*B[2])/mp
25
```

```
#Euler-Cromer
                                                   for i in xrange(N-1):
28
29
                                                                                                         Fb \, = \, q*(\texttt{np.cross}(\texttt{v}[:,\texttt{i}],\texttt{B})) \quad \# \texttt{Magnetisk} \;\; \texttt{kraft}
                                                                                                       \mathtt{E} \, = \, \mathtt{np.zeros} \, (3)
30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            #elektriskfelt
                                                                                                         if -0.5*d < r[0, i] < 0.5*d:
31
                                                                                                                                                     E[0] = E0*np.cos(omega*t[i])
32
33
                                                                                                                                                             E = 0
34
35
                                                                                                           \hspace{.1cm} \hspace{.1
36
37
                                                                                                                                                 \mathtt{a} \,=\, \big(\,\mathtt{Fb} \!\!+\!\! \mathtt{E} \! * \! \mathtt{q}\,\big) \, \big/ \mathtt{mp}
38
39
                                                                                                       \begin{array}{l} {\tt v\,[:\,,i+1]} = {\tt v\,[:\,,i]} \; + \; {\tt a*dt} \\ {\tt r\,[:\,,i+1]} = {\tt r\,[:\,,i]} \; + \; {\tt v\,[:\,,i+1]*dt} \end{array}
40
41
42
                                               \label{eq:vu} \begin{array}{ll} \textbf{v}\_\textbf{u} = \texttt{np.linalg.norm}(\textbf{v}[:,-1]) \\ \textbf{print} & \texttt{'Unnslipps} & \texttt{hastighet} = \%.2\texttt{f'} \ \% \textbf{v}\_\textbf{u} \\ \end{array}
43
44
```

3 Oppgave 4

3.1 a)

Siden strømmene I er jevnt fordelt kan jeg forenkle Ampéres lov pga symmetri.

$$\oint_{c} \vec{B} \cdot d\vec{l} = \int Bdl = B \int dl = \underline{B2\pi r} = \mu_{0} I_{tot.gj.c}$$

Siden jeg skal finne det magnetiske feltet \vec{B} overalt må jeg dele den opp i 4 deler.

1. For r > (b + t):

Når r blir større en (b+t) vil det strømme I gjennom innerlederen og -I gjennom ytterlederen som resulterer i $I_{tot.gj.c}=0$ Dermed gir Ampéres lov oss :

$$\oint_{c} \vec{B} \cdot d\vec{l} = \mu_{0} I_{tot.gj.c} = \mu_{0} (I - I) = 0$$

$$\vec{B} = 0$$

2. For a < r < b:

I dette tilfelle er det kun strømmen i innerlederen som går gjennom integralkurven c da gir Ampéres lov meg at

$$\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{tot.gj.c} \Rightarrow B2\pi r = \mu_0 I$$

$$\vec{B} = \frac{\mu_0 I}{2\pi r} \hat{\varphi}$$

3. For b < r < (b+t):

Her velger jeg å finne strømtettheten i ytterlederen fordi den avhenger av radiusen. Strømmen i innerlederen forblir den samme og derfor bruker jeg også uttrykket jeg fikk i punkt 2 for denne strømmen.

$$I = \int_{S} \vec{J_B} \cdot d\vec{S} = J_B \int_{b}^{b+t} dS = J_b \pi ((b+t)^2 - b^2) \Rightarrow J_B = \frac{I}{\pi ((b+t)^2 - b^2)}$$

Da gir i Ampéres lov meg:

$$\oint_{c} \vec{B} \cdot d\vec{l} = \mu_{0} I_{tot.gj.c} = \mu_{0} \left(I - \int_{0}^{r} \vec{J_{B}} \cdot d\vec{S} \right) = \mu_{0} \left(I - J_{B} \int_{0}^{r} dS \right) = \mu_{0} (I - J_{B} \pi r^{2})$$

$$\Rightarrow B2\pi r = \mu_{0} (I - J_{B} \pi r^{2}) = \mu_{0} I - \frac{\mu_{0} I r^{2}}{((b+t)^{2} - b^{2})}$$

$$\Rightarrow \vec{B} = \left(\frac{\mu_{0} I}{2\pi r} - \frac{\mu_{0} I r}{2\pi ((b+t)^{2} - b^{2})} \right) \hat{\varphi} = \frac{\mu_{0} I}{2\pi} \left(\frac{1}{r} - \frac{r}{((b+t)^{2} - b^{2})} \right) \hat{\varphi}$$

4. For r < a:

Strømtettheten avhenger også av radiusen i dette tilfelle, men her kun for innerlederen. Da starter jeg med å definere en J_A

$$I = \int_{S} \vec{J}_{A} \cdot d\vec{S} = J_{A} \int_{0}^{a} dS = J_{A} \pi a^{2} \Rightarrow J_{A} = \frac{I}{\pi a^{2}}$$

$$\oint_{c} \vec{B} \cdot d\vec{l} = \mu_{0} I_{tot.gj.c} = \mu_{0} \int_{S} \vec{J}_{A} \cdot d\vec{S} = \mu_{o} J_{A} \in_{0}^{r} dS = \mu_{0} J_{A} \pi r^{2}$$

$$\Rightarrow B2\pi r = \mu_{0} J_{A} \pi r^{2} = \frac{\mu_{0} I r^{2}}{a^{2}}$$

$$\Rightarrow \vec{B} = \frac{\mu_{0} I r}{2\pi a^{2}} \hat{\varphi}$$

Da samler jeg dette sammen så det blir lettere å se hva \vec{B} blir:

$$\vec{B} = \begin{cases} 0 & (b+t) < r \\ \frac{\mu_o I}{2\pi} \left(\frac{1}{r} - \frac{r}{((b+t)^2 - b^2)}\right) \hat{\varphi} & b < r < (b+t) \\ \frac{\mu_0 I}{2\pi r} \hat{\varphi} & a < r < b \\ \frac{\mu_0 I r}{2\pi a^2} \hat{\varphi} & r < a \end{cases}$$

Når jeg skisserte grafen isolerte jeg ut for de 3 tilfellene som ga meg et B-felt(r < a, a < r < b og b < r < b + t) og summerte jeg disse for å gi meg hele $|\vec{B}|$. Skisse av grafen ser man på figur 8

Skisse av den magnetiske feltstyrken $|\vec{B}|$

Figur 8: Venstre: Skisse av hvert enkelt tilfelle for $|\vec{B}|$ Høyre: Summen av venstre siden som blir hele $|\vec{B}|$.

3.2 b)

For å vise hvem av figurene som er riktige bruker jeg eliminerings metoden. Magnet feltet biter seg selv i halen, den er også jevnt fordelt ut i fra sentrum av innerlederen pga symmetri og magnetfeltet blir også påvirket av ytterlederen. Med dette resonnementet har jeg utelukket alle unntatt figur 2, som medfører at figur 2 er korrekt. Det forteller oss også at B-feltet beveger seg utenfor ytterlederen hvis lederne blir liggende eksentrisk.