<u>34.6)</u>
Object 0.6 cm fall placed 16.5 cm Jeff of the vertex of
a convex spherical mirror having a radius of curvature
of 22.0cm.
0.6 cm Ty:=0.24cm C=22cm f=-1/cm S=16.5cm S'=-6.6cm
C=22cm f=-11cm
S=16.5can S'=-6.6cm
f = -11.0 cm
5 = 16.5 cm b) y'= -5' y
$\frac{a}{5! = \frac{1}{2} \cdot \frac{1}{5}} = -\frac{\left(-6.6\right)}{16.5} \cdot 0.6$
16.5
$5' = \frac{1}{-11 - 16.5}$ $y' = 0.24 cm$
S'=-6.6 cm D : Upright S' (i) real Comments of minor
c) (: real) right of minor

34.14) Consider a convex spherical nimor w/ focal length f= -9.00 cm. What is the distance of an object from the misson's vertex if the height of the image is half the height of the object? f=-9.00 cm y = -5 y 5 $\frac{1}{-9} = \frac{1}{5} + \frac{1}{5}$ $\frac{1}{-9} = \frac{1}{-1/2} + \frac{1}{5}$ 25 = -51 $\frac{1}{-9} = \frac{-2}{5} + \frac{1}{5}$ 5=-25' 1-9= - 1 5=9 1= 1+3, 5'= 1 - 1 - 9 1 = - + - /

M= - (-4.5) = /2

34.78)	
A converging less w focal length of 120 cm	forms a visual
image 8.00mm tall, 17.0 cm to the right of	
Ty = 0.57 cm	51=17.0caz
f=/2.0cm S=7.03cm	y'= 0.80 cm
a) 1 1 1	
$\frac{1}{f} = \frac{1}{5} + \frac{1}{5'}$	
1 = 1 - 51 1	
12 17.0	
S= 1/5'	
5= 1/120m 170 cm	
5= 1/2	- (-12)
(5 = 40.799 cm)	
5= 4.03cm	-
b) $y = -\frac{y's}{s'}$	
5'	
y = - (0.8 cm) 7.03 cm () Veright or	inverted?
y = - (0.8 cm) 7,03 cm	771.
y = 0.33	

34.39
A diverging loss w/ a focal leagth of -47.0 cm forms a virtual
image 7.50 man fall, 17.5 cm to the right of the less.
f47
y=1.20can y'= 7.5mm
F
S'= -17.5com
5= 29.9cm
$=\frac{1}{1-\frac{t}{1-t}}$
$y = \frac{y'5}{5'}$
(5 = 27.9 cm)
y= (0. Ken) (27.9cm)
-(-17.5cm)
(y=1.195)

34,43) Two thin leases of a focal length of 120cm, the first siverging I the second converging, are 9.00 cm apart. An object 2.00 man tall is 20.0 cm to the left of the first (diverging lens). f=12cm f=12 cm 4=0.2 cm 9.0 cm S= Joca 5 = 20 $y'_{1}=\frac{-S_{1}}{5}y_{1}$ = - 7.5 - 0.2 cm 5,'=_/ <u>/</u> - <u>/</u> 20 4, = 0.075 cm 51=-7.5cm y' = - 52/52 52 = 9+7.5 52 = 16.5 car = - <u>44</u> 0.875 $\frac{S_2^1 = \frac{1}{\frac{1}{S_2} - \frac{1}{S_2}}}{\frac{1}{S_2} - \frac{1}{S_2}}$ y=-0.2 cm $=\frac{1}{12-\frac{1}{165}}$

(: real)
(: real)
from 1st low: 53 cm
<i>/</i> ·