28. a.	Explain the operation of single phase full rectifier with relevant waveforms.		-		
b.	(OR) Explain the operation of three phase uncontrolled rectifier with relevant waveforms.	10	1	3	3
29. a.	Differentiate between current source and voltage source inverts.	10	1	4	4
b.	(OR) What are inverters? Explain the operation of three phase inverters with relevant waveforms.	10	1	4	4
30. a.	Explain the working principle of BLDC.	10	1	5	5
b.	(OR) Explain the working principle of PMSM.	10	1	5	5

8. In constant frequency PWM scheme, _____ is varied. (A) V_S (B) T_{on} (C) T (D) f25NF6/7-18AUE411T Page 1 of 4 25NF6/7-18AUE411T Page 4 of 4

*								l)
Reg. No.						2		

B.Tech. DEGREE EXAMINATION, NOVEMBER 2022

			Sixth and	d Sev	enth Semester					
	1	8AU			OR ELECTRIC VEHICLE APPL ecademic year 2018-2019 to 2019-2020		ON			
Note: (i)		ove	et shoul	ld be	han	ded				
(ii)		Par	t - B should be answered in answer b	ookie	t.					
Time: 2½ Hours									ks: 75	
			$PART - A (25 \times 1)$	= 25 1	Marke)	Marks	BL	co	PO	
			Answer ALL Q							
	1		1	1	1	1				
	Loc		arrow on the symbol of MOSFF The directions of electrons	(B)	That is a N-channel MOSFET					
		(A) (C)	That is a D-channel MOSFET	. ,	The direction of conventional current flow					
							,	1	1	
	2.	The	three terminals of the IGBT are			1	1	1	1	
		(A)	Base, emitter and collector	(B)	Gate, emitter and collector					
		(C)	Gate, source and drain	(D)	Base, source and drain					
		19			ductor equipment are in range of	1	1	1	1	
	3.		1	1	1	1				
		(A)	2000 Wcm ⁻²		20 Wcm ⁻²					
		(C)	200 Wcm ⁻²	(D)	2 Wcm ⁻²					
	4.		1	1	1	1				
	١.	(A)	based inverters do not	SCR						
		(C)	GTO		PMOSFET					
		` '	ector terminal is called as the	1	1	1	1			
;	5.		1	1	1	1				
•			Drift layer							
		(C)	Collector layer	(D)	Injection layer					
	6	Wha	at is the duty cycle of a chopper?			1	1	2	1	
·	٠.		Ton/Toff	(B)	T_{on}/T					
		` /	T/T _{on}	` ′	$T_{\rm off} \times T_{\rm on}$					
		(0)	17 1 on	(2)	2011 2011					
,	7.		the expression for output voltagation of load current and α as the		a step up chopper, assume linear	1	1	2	2	
				-	V _S /α					
		(A)								
		(C)	$V_S/(1-\infty)$	(D)	V_S					
					/ ٧٧					

9.	2KF	Iz, find the value of $T_{\rm off}$.	ı, T _{on}	= $(1/4)^{T}$. if the chopping frequency	1	1	2	2
	` '	(1/8)ms	(B)	(3,8)ms				
	(C)	$(1/8)\mu s$	(D)	$(3/8)\mu s$				
10.	Whi	ch type of commutation circuit de	oes n	ot work on no load?	1	1	2	2
	(A)	Voltage commutation	(B)	Current commutation				
	(C)	Both A and B	(D)	None of the above				
11		culate the circuit turn-off time for the is 110° and supply frequency is		lly controlled rectifier if the firing	1	1	3	3
	(A)	3.8 msec	(B)	5.2 msec				
	(C)	9.3 msec	(D)	8.7 msec				
12.	A re	ctifier converts			1	1	3	3
	(A)	AC to AC	(B)	DC to DC				
	(C)	DC to AC	(D)	AC to DC				
13.	Ripp	ole factor of bridge half wave rect	ifier	is	1	1	3	3
		1.414		1.212				
	(C)	0.482	(D)	1.321				
14.		a single phase half wave rectif tant and it is.	ier, t	he rectifier efficiency is always	1	1	3	3
	(A)	$4/\pi^2$	(B)	$8/\pi^2$				
	(C)	$16/\pi$	(D)	$2/\pi^2$				
15.		a single phase half wave thyrivered to the resistive load is	stor	circuit with R load, the power	1	1	3	3
		(Average load voltage)×(average load current)		(RMS supply voltage) ² /R				
		(RMS load voltage) ² /R		(Average load voltage)/R				
16.	In pu	ulse width modulation			1	1	4	4
	-		(B)	The input voltage is modulated				
	(C)	The gate pulses are modulated	(D)	All the above				
17.	In in	verters, to make the supply voltage	ge co	nstant.	1	1	4	4
		An inductor is placed in series	_	An inductor is placed in parallel				
	((((((((((with the load		to supply				
	(C)	Capacitor is connected to parallel to the load side	(D)	Capacitor is connected in parallel to the supply				
18.	A th	ree phase bridge inverter requires	mini	mum ofswitching devices.	1	1	4	4
	(A)		(B)					
	(C)		(D)					

b. Explain in detail about construction, working principle and characteristics of 10 1 1 1 IGBT. 27. a. Explain the construction and working of push pull converter. 10 1 2 2 (OR) 10 1 2 2 b. Explain the construction and working of buck boost converter. Page 2 of 4 25NF6/7-18AUE411T Page 3 of 4 25NF6/7-18AUE411T

19. Increasing the number of pulses,

20. In a VSI (Voltage Source Inverter)

(C) No internal impedance

the

21. Half wave converters are used for controlling DC motor of

22. Induction motors are widely used in electric vehicle because of

25. The HV DC bus voltage for electric vehicles is in range of

 $PART - B (5 \times 10 = 50 Marks)$ Answer **ALL** Questions

(OR)

amplitude

efficiency

negligible

(A) Below 400W

(C) More than 4000W

(A) High efficiency

(A) Faster acceleration

Low cost

Simplicity

Reliability (IV) Good performance

(A) I, II, III and IV

(C) I, II and IV

PN junction diode.

(C) High cost

(II)

(III)

(A) 400V

(C) 200V

(C) Absence of commutators

23. Due to low inertia, BLDC motor have

24. Which are the advantages of BLDC motor?

(C) Improves

(A) Reduces the output voltage (B) Reduces the inverter frequency

(A) The internal impedance is (B) The internal impedance is high

inverter (D) All the above

(D) Impedance cannot calculated

(B) 400W - 4000W

(B) Good speed regulation

(B) Slower acceleration

(D) Any where

(D) All the above

(D) Low cost

(B) I and II

(B) 48V

(D) 100V

26. a. Explain in detail about construction, working principle and characteristics of 10 1 1 1

(D) I, III and IV

1 1 4 4

1 1 4 4

1 1 5 5

1 1 5 5

1 1 5 5

1 1 5 5

1 5 5