

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра системного анализа

Курсовая работа. Часть 1

«Исследование динамических систем с дискретным временем»

Студент 315 группы А. А. Владимиров

Научный руководитель Д. А. Алимов

Содержание

1	Постановка задачи	2
2	Анализ первой системы 2.1 Неподвижные точки и их устойчивость	
3	Анализ второй системы 3.1 Неподвижные точки	12 12

1 Постановка задачи

Перед нами одномерная дискретная динамическая система

$$u_{t+1} = r\sqrt{u_t}(1 - u_t), \quad 0 < u_t < 1, \ t \in \mathbb{N},$$
 (1)

и дискретная динамическая система с запаздыванием

$$u_{t+1} = r\sqrt{u_t}(1 - u_{t-1}), \quad 0 < u_t < 1, \ t \in \mathbb{N}.$$
 (2)

Требуется провести качественный анализ предложенных систем.

Для удобства дальнейшего изложения отметим, что система (1) и, с некоторыми оговорками (о которых позже), система (2) являются частными случаями такого объекта, как однопараметрическая дискретная динамическая система, определяемая отображением f:

$$u \mapsto f(u) = f(u; r), \quad u \in U \subset \mathbb{R}^n, \ r \in \mathbb{R}, \quad f: U \to U.$$
 (3)

Здесь множество U – фазовое пространство, r – параметр.

2 Анализ первой системы

Для системы (1) отображение $f: U \to U$ имеет вид:

$$f(u;r) = r\sqrt{u}(1-u), \quad U = (0,1), \ r \in \mathbb{R}.$$
 (4)

Перейдем к её анализу.

2.1 Неподвижные точки и их устойчивость

В случае дискретной динамической системы элементарно вводится

Определение 1 ([1]). *Неподвижными точками* системы (3) называются такие точки фазового пространства $u^* \in U$, что $f(u^*) = u^*$.

Таким образом, чтобы найти все неподвижиные точки системы (1) достаточно решить уравнение

$$r\sqrt{u}(1-u) = u$$
, на интервале $(0,1)$,

что мы и сделаем. В условиях $u \in (0,1)$ справедливо

$$r\sqrt{u}(1-u) = u \Leftrightarrow$$

 $\Leftrightarrow r(1-u) = \sqrt{u}.$

Заметим, что левая часть уравения принадлежит интервалу (0,r), правая — интервалу (0,1), следовательно решения существуют лишь при $r \in (0,1)$. Наложив это допольнительное ограничение имеем

$$r(1-u) = \sqrt{u} \Leftrightarrow$$

$$\Leftrightarrow r^2u^2 - (1+2r^2)u + r^2 = 0.$$

Полученное квадратное уравнение имеет решения

$$u_{1,2} = \frac{1 + 2r^2 \pm \sqrt{1 + 4r^2}}{2r^2}.$$

Нетрудно проверить, что наложенным нами ограничениям удовлетворяет лишь решение

$$u^* = \frac{1 + 2r^2 - \sqrt{1 + 4r^2}}{2r^2},\tag{5}$$

причем для всех r из (0,1).

Перейдем к исследованию вопроса устойчивости единственной неподвижной точки u^* (5), существующей при значениях параметра $r \in (0,1)$.

Определение 2 ([1]). Неподвижная точка u^* системы (3) называется устойчивой по Ляпунову, если для любого $\varepsilon > 0$ существует такое $\delta > 0$, что для любых начальных данных u_0 из δ -окрестности точки u^* вся траектория системы u_t , $t = 0, 1, 2 \dots$ содержится в ε -окрестности точки u^* .

Если, кроме того,

$$\lim_{t \to \infty} f(u_t) = u^*,$$

то точка u^* называется acumnmomuчecku ycmoйчивой.

В дальнейшем нам пригодится следующее полезное

Утверждение 1 ([1]). Пусть u^* — неподвижная точка одномерной системы (3), и пусть f обратима в малой окрестности u^* . Тогда u^* асимптотически устойчива, если $|f_u(u^*)| < 1$, и неустойчива, если $|f_u(u^*)| > 1$.

Таким образом, «в первом приближении» вопрос об устойчивости неподвижной сводится к рассмотрению её мультипликатора¹.

 $^{^{1}}$ Величину $|f_{u}(u^{*})|$ называют собственным значением или мультипликатором неподвижной точки одномерной динамической системы с дискретным временем (см. [1] п.3.4, стр. 77).

Итак,

$$f_u(u^*;r) = \left(r\sqrt{u^*}(1-u^*)\right)_u = r\left(\frac{1}{2\sqrt{u^*}} - \frac{3}{2}\sqrt{u^*}\right) = r\left(\frac{1-3u^*}{2\sqrt{u^*}}\right) = r\left(\frac{1-3\frac{1+2r^2-\sqrt{1+4r^2}}{2r^2}}{2\sqrt{\frac{1+2r^2-\sqrt{1+4r^2}}{2r^2}}}\right). (6)$$

Довольно тяжелый анализ выражения (6) предоствим компьютеру. Тем не менее, далее нам понадобятся значения $r \in (0,1)$, на которых фунция $\mu(r) = f_u(u^*;r)$ обращается в нуль, которые мы вычислим аналитически.

$$\mu(r) = 0 \Leftrightarrow f_u(u^*; r) = 0 \Leftrightarrow r\left(\frac{1 - 3u^*}{2\sqrt{u^*}}\right) = 0 \Leftrightarrow u^* = \frac{1}{3} \Leftrightarrow \frac{1 + 2r^2 - \sqrt{1 + 4r^2}}{2r^2} = \frac{1}{3} \Leftrightarrow 3 + 6r^2 - 3\sqrt{1 + 4r^2} = 2r^2 \Leftrightarrow 3 + 4r^2 = 3\sqrt{1 + 4r^2} \Leftrightarrow 9 + 24r^2 + 16r^4 = 9 + 36r^2 \Leftrightarrow 46r^4 - 12r^2 = 0 \Leftrightarrow r^2(4r^2 - 3) = 0 \Leftrightarrow r = \frac{\sqrt{3}}{2}.$$

Единственное полчученное значение обозначим за

$$r_0 = \frac{\sqrt{3}}{2}.\tag{7}$$

Наконец, приведём график мультипликатора неподвижной точки u^* , $\mu(r) = f_u(u^*; r)$, построенный в среде MatLab^2 .

Рис. 1: Зависимость величины мультипликатора от параметра.

Так

$$\mu(r) \in (0,1),$$
 при $r \in (0,r_0),$ $\mu(r) = 0,$ при $r = r_0,$ $\mu(r) \in (-1,0),$ при $r \in (r_0,1),$

что, как следует из утв. 1, говорит об асимптотической устойчивости точки u^* .

Подведём итог. При значениях параметра 0 < r < 1 в системе (1) существует одна неподвижная точка $u^* = \frac{1+2r^2-\sqrt{1+4r^2}}{2r^2}$, при всех прочих r неподвижных точек нет. В случае существования

 $^{^2}$ Подробнее со всеми вычислениями проведёнными в MatLab и использованными в работе вы можете ознакомится в приложенном .mlx файле.

неподвижной точки, она является асимптотически устойчивой для всех 0 < r < 1. Мультипликатор точки u^* знакопеременен и обращается в нуль при $r_0 = \frac{\sqrt{3}}{2}$, а потому устойчивость точки имеет разный характер в зависимости от значения r. При $r \in (0, r_0]$ u^* неподвижная точка устойчива монотонно, когда же $r \in (r_0, 1)$, близкие орбиты сходятся к неподвижной точке колебательным образом 3 . Этот эффект можно наблюдать на рис.2.

Рис. 2: Харктер сходимости к неподвижной точке.

Теперь, считая вопрос о неподвижных точках в достаточной степени исчерпанным, мы можем перейти к исследованию системы (1) на наличие циклов, их длину и устойчивость.

2.2 Циклы

Определение 3 ([1]). Циклом длины k дискретной динамической системы

$$u_{t+1} = f(u_t), \quad u_t \in \mathbb{R},$$

называется множество различных точек u_1, u_1, \ldots, u_k таких, что

$$u_2 = f(u_1), \dots, u_k = f(u_{k-1}), u_1 = f(u_k).$$

Замечание ([1]). В силу определения цикла, каждая из точек $u_i, i = 1, 2, \dots, k$, является неподвижной точкой k-ой итерации отображения

$$f^k(u) = \underbrace{f \circ \ldots \circ f}_{k}.$$

Таким образом, вопрос об устойчивости цикла сводится к вопросу об устойчивости неподвижных точек отображения f^k , которые состовляют цикл длины k.

Итак, для нахождения циклов длины k нам потребуется найти k различных решений задачи

$$f^k(u) = u, (8)$$

удовлетворяющих определению 3. В общем случае это довольно тяжелая задача, поэтому решение ищут численно. Как известно, любой численный алгоритм «адекватно» работает на корретно поставленных, а значит устойчивых задачах. Следовательно, на нашу задачу придется наложить еще одно условие

$$\frac{df^k(u,r)}{du} < 1,\tag{9}$$

³см. [1] п.3.4, стр.77.

которое (см. зам. 2.2) гарантирует устойчивость искомого цикла. Так, наша задача сводится к нахождению устойчивых циклов (8), (9). Решим её для k = 2, 3.

Перед поиском циклов сделаем ещё пару наблюдений. Первое — до сих пор, ввиду ненадобности мы не уточняли область R допустимых параметров r, при которых динамическая система на очередной итерации не может покинуть фазовое пространство U=(0,1), а значит остаётся корректно заданной. Нетрудно показать, что область R представляет из себя интервал $\left(0,\frac{3\sqrt{3}}{2}\right)$.

Для этого рассмотрим функцию

$$g(u) = \sqrt{u(1-u)}, \quad u \in (0,1).$$

Её производная равна

$$g'(u) = \frac{1}{2\sqrt{u}} - \frac{3}{2}\sqrt{u},$$

И обращатся в ноль лишь при $u=\frac{1}{3},\ u\in(0,1)$. Более того, вторая производная функции

$$g''(u) = -\frac{1}{4\sqrt{u}}\left(\frac{1}{u} + 3\right) < 0$$

на всём интервале (0,1). Отсюда, очевидно, следует, что в точке $u=\frac{1}{3}$ фунция g(u) достигает максимума на (0,1), и

$$0 < g(u) < g\left(\frac{1}{3}\right) = \frac{2}{3\sqrt{3}}, \quad u \in U.$$

Как нетрудно заметить, функция f(u;r) = rg(u), а значит, для того, чтобы $\forall u \in U$, выполнялось $f(u;r) \in U$, необходимо и достаточно, чтобы $r \in R = (0,r_{max})$, где $r_{max} = \frac{3\sqrt{3}}{2}$.

Теперь, второе наблюдение. Функция f(u;r), определяющая динамическую ситему (1) непрерывно зависит от параметра r^4 , что позволяет нам ожидать непрерывной зависимости траекторий системы от параметра 5 . Далее, производная по u отображения $f^k(u;r)$, характеризующая (2.2) устойчивость цикла (в случае, разумеется его существования) по теореме о производной сложной функции равна

$$f^{k}(u;r)'_{u} = \underbrace{f'_{u}(u;r) \cdot \dots \cdot f'_{u}(u;r)}_{k} = (f'_{u}(u;r))^{k} \stackrel{(6)}{=} r^{k} \left(\frac{1}{2\sqrt{u}} - \frac{3}{2}\sqrt{u}\right)^{k} = \frac{r^{k}}{2^{k}u^{\frac{k}{2}}}(1 - 3u)^{k},$$

и, следовательно, является монотонно возрастающей по r на R. Это, в частности, означает, что локально csoucmso ycmouusocmu coxpansemcs npu ymensumenuu r.

Наконец, учитывая вышесказанное, для нахождения усточивых циклов, вместо решения задачи (8) с «тяжёлым» ограничением (9), мы можем решить систему в «пограничном» случае

$$f^{k}(u;r) = u,$$

 $f^{k}(u;r)'_{u} = 1;$ (10)

и немного уменьшая r ожидать сохранения существования устойчивого решения. Следуя такой логике, получим k различных решений, подозрительных на образование цикла, выберём наименьшее r_0 , перерешаем уравнение

$$f^k(u; r_0) = u,$$

⁴более того, $f(u;r) \in C^{\infty}(U,R)$.

⁵Доказательство такого смелого утверждения выходит за рамки курса [2], впрочем, автор предполагает его справедливость, так как иначе многие техники, используемые в курсе, и, как следствие вынужденные быть использованными в данной работе, были бы попросту неправомерны.

и, наконец, вероятно получим устойчивый цикл длины k. Так мы и поступим.

Следуя обсуждённому алгоритму, для k=2 получим набор решений

$$\begin{pmatrix} u_1 \\ r_1 \end{pmatrix} \approx \begin{pmatrix} 0,284 \\ 2,268 \end{pmatrix}, \begin{pmatrix} u_2 \\ r_2 \end{pmatrix} \approx \begin{pmatrix} 0,398 \\ 2,056 \end{pmatrix}, \begin{pmatrix} u_3 \\ r_3 \end{pmatrix} \approx \begin{pmatrix} 0,449 \\ 1,218 \end{pmatrix}.$$

И действительно при $r_0 = 2 < r_1, r_2$ получим устойчивый цикл длины 2 в точках

$$\hat{u}_1 \approx 0,451, \hat{u}_2 \approx 0,737,$$

что и иллюстрирует рис. 3.

Рис. 3: Устойчивый цикл длины 2 $(r = 2, u_0 = 0, 5)$.

Подобной ситуации в случае k=3 не наблюдается. Даже достаточно плотная выборка начальных значений и высокая точность вычислительного алгоритма не даёт нужных результатов. Поэтому, с достаточной степенью уверенности можно утверждать что устойчивого цикла длины 3 системе (1) не возникает. В качестве иллюстрации происходящего при увеличении r приводём график на рис. 4.

Помимо прочего, об отсутствии устойчивого цикла длины 3 можно судить по бифуркационной диаграмме системы (1), представляющей собой классический каскад удвоения периода. На рис. 5 изображены последовательные бифуркации системы (1), полученные с помощью компьютерного итерирования отображения (4).

В дополнение, исследуем динамику *показателя Ляпунова* некоторой траектории, что даст некоторое представление об устойчивости системы и изменении этого свойства в зависимости от параметра 6 .

Определение 4 ([1]). Пусть $f: \mathbb{R} \to \mathbb{R}$ — гладкое отображение. Показателем Ляпунова траектории $u_1, u_2, \ldots, u_n, \ldots$ называется величина

$$h(u_1) = \lim_{n \to \infty} \frac{\ln|f'(u_1)| + \ln|f'(u_2)| + \dots + \ln|f'(u_n)|}{n}, \qquad (\ln 0 := -\infty)$$

если этот предел существует.

Следующий график (рис. 6) демонстрирует зависимость показателя Ляпунова траекторий, выпущенных из точек сетки u1 = 0:0.1:1, от параметра r.

⁶Подробнее см.[1], п.3.6, стр. 86.

Рис. 4: Потеря устойчивости $(r=2,5,u_0=0,5)$.

Рис. 5: Каскад удвоения периода в дискретной динамической системе (1). $r \in (0, r_{max})$.

Рис. 6: Показатель Ляпунова. $u_0=0,5,r\in(0,r_{max}).$

Как видно из графика, распределение показателя Ляпунова не зависит от начальной точки траектории (графики, построенные в разных точках сетки наложились друг на друга), что позволяет в данном конкретном случае говорить о показателе Ляпунова, как о xapaxmepucmuxe cucmemu b uenom. Также отметим, что в окрестности r_{max} показатель Ляпунова становиться положительным, т.е. система становится неустойчивой и, более того, хаотичной, что подтверждается бифуркационной диаграммой (рис. 5) и соответствует нашим представлениям о смысле показателя Ляпунова⁷.

Итак, на определенном промежутке значений параметра в системе (1) наблюдается возникновение устойчивого цикла длины 2 (рис. 3). Судя по бифуркационной диаграмме (рис. 5) и динамике показателя Ляпунова (рис. 6), при дальнейшем увеличении параметра можно предположить появление устойчивых циклов большего периода (но не периода 3 (рис.4)), после чего, поведение системы становится хаотическим.

На этом мы заканчиваем исследование системы (1) и переходим к системе (2).

3 Анализ второй системы

Для удобства, повторно приведем вид рассматриваемой системы (2)

$$u_{t+1} = r\sqrt{u_t}(1 - u_{t-1}), \quad 0 < u_t < 1, \ t \in \mathbb{N},$$

которая, как было отмечено в пункте 1, является частным случаем системы вида (3). Действительно, тривиальной заменой переменных

$$u_1(t+1) = r\sqrt{u_1(t)}(1-u_2(t)),$$

$$u_2(t+1) = u_1(t),$$
(11)

система с запаздыванием (2) приводится к обыкновенной двумерной динамической системе (3).

Впрочем, некоторые особенности у многомерной дискретной динамической системы, сводимой к системе с запаздыванием всё же имеются. Так, например, неподвижные точки такой системы являются решениями уравнения

$$u^* = f(u^*, \dots, u^*), \quad u^* \in \mathbb{R}, \tag{12}$$

где $f(u_t, u_{t-1}, \dots, u_{t-T})$ — функция задающая систему с запаздыванием⁸.

Перед тем как перейти к анализу системы, напомним, что фазовое пространство имеет вид U=(0,1) в записи (2), и вид $U=(0,1)\times(0,1)$ в записи (11). Также, вид (2) позволяет *при первом рассмотрении* полагать, что, аналогично (1), область допустимых параметров предстваляет из себя интервал $R=(0,r_{max})$, где $r_{max}=\frac{3\sqrt{3}}{2}$.

3.1 Неподвижные точки

Уравнение (12) для системы (2) имеет вид

$$u^* = r\sqrt{u^*}(1 - u^*), \quad u^* \in U, r \in R.$$

Анализ 10 решений этого уравнения, позволяет сделать вывод о существовании единственной неподвижной точки

$$u^* = \frac{(\sqrt{4r^2 + 1} - 1)^2}{4r^2},\tag{13}$$

 $^{^7}$ см. там же.

⁸см. [1] п.9.4, стр.224-225.

 $^{^{9}{}m O}$ том, почему именно при $nepsom\ paccмompenuu\ -$ позже.

¹⁰При исследовании систем 2 и 3, с целью сокращения технических выкладок в тексте работы, бо́льшая часть аналитических вычислений произведена посредством пакета символьных вычислений MatLab. Ознакомится с ними можно, по прежнему, в прикрепленных .mlx файлах.

причем для всех $r \in R$.

Рис. 7: Положение неподвижной точки системы (2) в зависимостие от параметра.

Для разрешения вопроса об устойчивости неподвижной точки (13) нам понадобится

Теорема ([1]). Пусть задана динамическая система с дискретным временем (3):

$$u \mapsto f(u), \quad u \in \mathbb{R}^n,$$

где f— гладкое отображение из \mathbb{R}^n в \mathbb{R}^n . Предположим, что отображение имеет неподвижную точку $u^*: f(u^*) = u^*$. Тогда неподвижная точка u^* устойчива (асимптотически), если все собственные значения μ_1, \ldots, μ_n матрицы Якоби вектор-функции f(u), вычисленной в точке u^* , удовлетворяют условию $|\mu_i| < 1$. Если же хоть одно собственное значение удовлетворяет условию $|\mu_i| > 1$, то положение равновесия u^* неустойчиво.

Итак, рассмотрим матрицу Якоби $J(u) = (j_{ik})$ функции $f(u_1, u_2)$, задающей нашу систему в записи (11), в точке u^* .

$$J(u)|_{u^*} = \begin{pmatrix} \frac{\partial f_1}{\partial u_1} & \frac{\partial f_1}{\partial u_2} \\ \frac{\partial f_2}{\partial u_1} & \frac{\partial f_2}{\partial u_2} \end{pmatrix} \Big|_{u^*} = \begin{pmatrix} \frac{r(1-u_2)}{2\sqrt{u_1}} & -r\sqrt{u_1} \\ 1 & 0 \end{pmatrix} \Big|_{u^*} = \begin{pmatrix} \frac{r(1-u^*)}{2\sqrt{u^*}} & -r\sqrt{u^*} \\ 1 & 0 \end{pmatrix}$$

Упростим элементы j_{11} и j_{12} .

$$\begin{split} j_{11} &= \frac{r(1-u^*)}{2\sqrt{u^*}} = \frac{r\left(1-\frac{(\sqrt{4r^2+1}-1)^2}{4r^2}\right)}{2\sqrt{\frac{(\sqrt{4r^2+1}-1})^2}} = \frac{r^{\frac{4r^2-(\sqrt{4r^2+1}-1)^2}{4r^2}}}{2^{\frac{\sqrt{4r^2+1}-1}}} = \\ &= \frac{\frac{4r^2-(\sqrt{4r^2+1}-1)^2}{4r}}{\frac{4r}{r}} = \frac{4r^2-(\sqrt{4r^2+1}-1)^2}{4(\sqrt{4r^2+1}-1)} = \frac{4r^2-(4r^2+1)+2\sqrt{4r^2+1}-1}{4(\sqrt{4r^2+1}-1)} = \\ &= \frac{2(\sqrt{4r^2+1}-1)}{4(\sqrt{4r^2+1}-1)} = \frac{1}{2}, \quad \text{при } r \in R. \end{split}$$

$$j_{12} = -r\sqrt{u^*} = -r\frac{(\sqrt{4r^2+1}-1)^2}{4r^2} = -\frac{(\sqrt{4r^2+1}-1)^2}{4r}, \quad \text{при } r \in R. \end{split}$$

Таким образом

$$J(u^*) = \begin{pmatrix} \frac{1}{2} & -\frac{(\sqrt{4r^2+1}-1)^2}{4r} \\ 1 & 0 \end{pmatrix}$$

Собственные значения вычисляются символьно и равны

$$\mu_{1,2} = \frac{1 \mp \sqrt{1 - \frac{4(\sqrt{4r^2 + 1} - 1)^2}{r}}}{4}.$$

Графический анализ зависимости μ_1 и μ_2 от параметра (см. рис. 8–10) показывает, что начиная с некоторого \hat{r} собственные значения становятся чисто мнимыми и комплексно сопряжёнными¹¹.

Рис. 8: Действительная часть собственных значений.

Рис. 9: Мнимая часть собственных значений.

При этом

$$\left\{ \begin{array}{l} |\mu_{1,2}|<1, \ \text{при } r\in(0,r_0); \\ |\mu_{1,2}|=1, \ \text{при } r=r_0; \\ |\mu_{1,2}|>1, \ \text{при } r\in(r_0,r_{max}). \end{array} \right.$$

 $^{^{11}}$ что так же, очевидно, следует из того, что элементы матрицы $J(u^*)$ суть вещественные числа, для любых допустимых значений параметра r.

Граничное значение r_0 вычисляется численно и составляет приблизительно 1.755.

Рис. 10: Модуль собственных значений.

Таким образом, пользуясь теоремой 3.1, мы можем заключить, что система (2) при всех $r \in R$ имеет единственную неподвижную точку (13), устойчивую при значениях r из интервала $(0, r_0)$, и неустойчивую при r из (r_0, r_{max}) .

3.2 Инвариантная кривая и бифуркация Неймарка-Сакера I

Казалось бы, изученное в предыдущем пункте поведение неподвижной точки u^* говорит о том, что в системе (2) происходит бифуркация Неймарка-Сакера. Об этом свидетельствует

Определение 5 ([1]). Рассмотрим двумерную динамическую систему с дискретным временем

$$u \mapsto f(u, \alpha), \ u = (u_1, u_2) \in \mathbb{R}^2, \ \alpha \in \mathbb{R}.$$
 (14)

Бифуркация положения равновесия в системе (14), соответствующая появлению мультипликаторов $|\mu_1| = |\mu_2| = 1$, $\mu_1 = \overline{\mu_2}$, называется бифуркацией Неймарка-Сакера или дискретной бифуркацией Хопфа.

Однако, как было отмечено непосредственно перед п. 3.1, мы допускали, возможно, менее строгие, чем того требует система (2), ограничения на параметр r.

3.3 Снова об области допустимых параметров

Действительно, рассмотрим $f(u_1, u_2) = r\sqrt{u_1}(1 - u_2) = r g(u_1, u_2)$ — правую часть первого уравнения системы (11). Графический анализ (см. рис. 11) функции $g(u_1, u_2)$ показывает, что уже при r > 0 её значения могут превышать единицу, вследствие чего переменные покидают фазовое пространство¹². Таким образом, область допустимых параметров R системы (2) суть есть (0,1).

 $^{^{12}}$ Может показаться, что этим явлением можно пренебречь, и, например, естественным образом расширить фазовое пространство. Однако, в случае данной системы, подобное поведение приводит не только к выходу из $U = (0,1) \times (0,1)$, но и вообще из \mathbb{R}^2 .

Рис. 11: $g(u_1, u_2) = \sqrt{u_1}(1 - u_2)$.

Так, поскольку предполагаемая точка бифуркации r_0 не входит в R, никакой бифуркации Неймарка-Сакера в системе (2), строго говоря, не происходит. Фазовый портрет системы на R не меняется и имеет всего одну особенность — точку устойчивого равновесия u^* .

Ввиду вышесказанного, следующий пункт носит скорее иллюстративный характер.

3.4 Инвариантная кривая и бифуркация Неймарка-Сакера II

Допустим, что рассматриваемая система может быть корректно задана в области параметра r, где должна происходить бифуркация например посредством сужения её фазового пространства до множества точек $U' \subset U$, орбиты которых не покидают U^{13} . В таком, случае мы получим, вообще говоря, другую систему. В частности, точка бифуркации r_0 может изменится, что, судя по результатам компьютерного моделирования, и происходит. Ниже приведены графики¹⁴ орбиты точки $u_0 = (0.7 \ 0.7)^T$, при различных значениях параметра r.

Полученные изображения дают основания заключить, что в «скорректированной» системе наблюдается суперкритическая бифуркация Неймарка-Сакера — устойчивая неподвижная точка сменяется устойчивой замкнутой инвариантной кривой.

¹³Если такое множество вообще непусто, устойчиво к малым изменениям параметра около точки бифуркации и т.д. Впрочем исследование этого вопроса явно выходит за рамки данной работы.

 $^{^{14}}$ возможность построения которых, говорит о том, что u_0 , вероятно, принадлежит U'.

¹⁵Подробнее см. [1] п. 7.3, п. 9.6.

Рис. 12: Потеря устойчивости.

Рис. 13: Рост инвариантной кривой.

Рис. 14: Диссипация(?) инвариантной кривой.

Список литературы

- [1] Братусь А. С., Новожилов А. С., Платонов А. П. Динамические системы и модели биологии. М.: ФИЗМАТЛИТ, 2010.
- [2] Алимов Д. А. кафедральный курс Динамические системы и биоматематика, 2021.