Física Geral I • FIS0703

Aula 18 10/11/2015

Transferência de energia: convecção

- ► Convecção é o movimento dum fluido em que partes mais quentes sobem e são substituídos por partes mais frias.
- ► Convecção natural: o movimento do fluido quente é causado pela diferença de densidade com fluido mais frio.
- ► Convecção forçada: o movimento do fluido quente é causado por uma bomba ou ventoinha, ou por outro mecanismo artificial.

Visualização de correntes de convecção

Água com corante e uma lâmpada como fonte de calor.

Transferência de energia: radiação

► Devido ao movimento térmico dos átomos e das moléculas, todos os objetos emitem radiação eletromagnética.

Energia radiada pela área A por unidade de tempo.

$$\mathcal{P} = \sigma A e T^4$$

Lei de Stefan-Boltzmann

$$\sigma = 5.6696 \times 10^{-8} \text{ W/m}^2 \cdot \text{K}^4$$

e

e=1 para um corpo negro

Temperatura da superfície

Constante de Stefan-Boltzmann

emissividade (entre 0 e 1); igual à absorbância

Radiação vindo do Sol: 1370 J/m².s (acima da atmosfera)

Um corpo não apenas radia energia mas também absorve radiação de outros objetos da vizinhança.

$$\mathcal{P}_{\mathrm{total}} = \sigma A e (T^4 - T_0^4)$$
 ______ Temperatura média do ambiente

Teoria cinética dos gases

Um modelo molecular do gás ideal

Objetivo: desenvolver um modelo microscópico para explicar o comportamento do gás ideal.

Pressupostos desta teoria cinética:

- ► Um grande número de moléculas com distâncias grandes entre si (em média).
- ► As partículas movimentam-se de acordo com as leis de Newton. A distribuição das posições e velocidades em qualquer instante é aleatória.
- ► Interação entre as moléculas apenas durante colisões (forças de alcance curto). Estas colisões são elásticas (energia cinética não é convertida em energia de rotação ou vibração, ou outras formas de energia)
- ► As partículas sofrem colisões elásticas com as paredes.
- ► As moléculas são idênticas.

A pressão dum gás ideal

Oconsideremos N moléculas dum gás ideal num contentor de volume V.

O contentor é cúbico com arestas de comprimento d.

A molécula i (massa m) tem a velocidade \mathbf{v}_i , com componente x v_{xi} .

Colisão elástica com a parede \perp eixo-x: $v_{xi} \rightarrow -v_{xi}$

Alteração do momento linear (componente x):

$$\Delta p_{xi} = -mv_{xi} - (mv_{xi}) = -2mv_{xi}$$

Da 2^a lei de Newton:

Intervalo de tempo entre duas colisões com a mesma parede:

$$\Delta t = \frac{2d}{v_{xi}}$$

A alteração do momento linear durante Δt é igual à durante $\Delta t_{\rm col}$, porque ocorre exatamente uma colisão.

$$ar{F}_i \Delta t = -2 m v_{xi}$$
 Força média durante $\varDelta t$ (ou múltiplos de $\varDelta t$)

A pressão dum gás ideal

$$\Delta t = \frac{2d}{v_{xi}} \qquad \bar{F}_i \Delta t = -2mv_{xi}$$

Força média durante um intervalo longo:
$$\bar{F}_i = \frac{-2mv_{xi}}{\Delta t} = \frac{-2mv_{xi}^2}{2d} = -\frac{mv_{xi}^2}{d}$$

Força sobre a parede = — Força sobre a molécula : $\bar{F}_{i,\text{parede}} = -\bar{F}_i = \frac{mv_{xi}^2}{J}$

$$\bar{F}_{i,\text{parede}} = -\bar{F}_i = \frac{mv_x^2}{d}$$

Média da força total do gás sobre a parede:

$$\bar{F} = \sum_{i=1}^{N} \frac{mv_{xi}^2}{d} = \frac{m}{d} \sum_{i=1}^{N} v_{xi}^2 = F$$

A força é praticamente constante (porque $N \sim N_A$)

$$\overline{v_x^2} = \frac{\sum_{i=1}^N v_{xi}^2}{N} \qquad \longrightarrow \qquad F = \frac{m}{d} N \overline{v_x^2}$$

 $v_i^2 = v_{xi}^2 + v_{yi}^2 + v_{zi}^2$ Para a velocidade da molécula i :

 $\overline{v^2} = \overline{v_x^2} + \overline{v_y^2} + \overline{v_z^2}$ Média sobre todas as moléculas:

 $\overline{v_x^2} = \overline{v_y^2} = \overline{v_z^2}$ \longrightarrow $\overline{v^2} = 3\overline{v_x^2}$ O movimento é aleatório:

$$F = \frac{N}{3} \left(\frac{m\overline{v^2}}{d} \right)$$

A pressão dum gás ideal

$$F = \frac{N}{3} \left(\frac{m\overline{v^2}}{d} \right)$$

Com isso podemos escrever a pressão do gás sobre a parede:

$$P = \frac{F}{A} = \frac{F}{d^2} = \frac{1}{3} \left(\frac{N}{d^3} m \overline{v^2} \right) = \frac{1}{3} \left(\frac{N}{V} \right) m \overline{v^2}$$

$$P = \frac{2}{3} \left(\frac{N}{V} \right) \left(\frac{1}{2} m \overline{v^2} \right)$$

Número de moléculas por volume —

— Energia cinética média duma molécula do gás

Esta expressão da pressão do gás ideal estabelece uma relação entre grandezas macroscópicas (que podem ser medidas diretamente) e uma grandeza microscópica!

Também implica correctamente:

- ▶ Quando o volume aumenta, a pressão diminui.
- ▶ Quando o número de moléculas no contentor aumenta, a pressão aumenta.

Interpretação microscópica da temperatura

$$P = \frac{2}{3} \left(\frac{N}{V} \right) \left(\frac{1}{2} m \overline{v^2} \right) \qquad \longrightarrow \qquad PV = \frac{2}{3} N \left(\frac{1}{2} m \overline{v^2} \right)$$

Compare com a equação de estado do gás ideal $PV = Nk_BT$

$$PV = Nk_BT$$

$$T = \frac{2}{3k_B} \left(\frac{1}{2} m \overline{v^2} \right)$$

$$\frac{1}{2}m\overline{v^2} = \frac{3}{2}k_BT$$

A temperatura é uma medida da energia cinética média das moléculas

A energia cinética média por molécula

$$\overline{v_x^2} = \frac{1}{3}\overline{v^2} \longrightarrow \frac{1}{2}m\overline{v_x^2} = \frac{1}{2}k_BT$$
 Da mesma forma: $\frac{1}{2}m\overline{v_y^2} = \frac{1}{2}m\overline{v_z^2} = \frac{1}{2}k_BT$

Isto é um caso particular dum teorema mais geral: O teorema de equipartição

Num sistema em equilíbrio, cada grau de liberdade tem em média a energia $\frac{1}{2}k_BT$.

Grau de liberdade: cada modo independente em que uma partícula pode possuir energia.

Por exemplo: três graus de liberdade de translação (v_x , v_y , v_z), rotação em torno de eixos diferentes, modos diferentes de vibração.

Velocidade rms

Agora é fácil escrever a energia cinética total dum gás ideal com N moléculas:

$$K_{\text{total}} = N\left(\frac{1}{2}m\overline{v^2}\right) = \frac{3}{2}Nk_BT = \frac{3}{2}nRT$$

Num gás ideal, a energia cinética total depende apenas da temperatura.

* A velocidade rms (root-mean-square) — a raiz da velocidade quadrática média

$$v_{\rm rms} = \sqrt{\overline{v^2}} \, = \sqrt{\frac{3k_BT}{m}} \, = \sqrt{\frac{3RT}{M}} \qquad \qquad {\rm com~a~massa~molar} \quad M = mN_A$$

Moléculas mais leves são mais rápidas à mesma temperatura.

Atenção: $v_{\rm rms}$ não é igual à velocidade média!

Exemplos:

Some Root-Mean-Square (rms) Speeds

Gas	Molar Mass (g/mol)	$v_{ m rms}$ at $20^{\circ}{ m C~(m/s)}$	Gas	Molar Mass (g/mol)	$v_{ m rms}$ at $20^{\circ}{ m C~(m/s)}$
H_2	2.02	1902	NO	30.0	494
He	4.00	1352	\mathbf{O}_2	32.0	478
$\mathrm{H_{2}O}$	18.0	637	$\overline{\mathrm{CO}}_{9}$	44.0	408
Ne	20.2	602	SO_2	64.1	338
N_2 or CO	28.0	511	-		

Calor específico molar dum gás ideal

Consideremos um gás ideal sujeito a vários processos em que $T_i \rightarrow T_f$.

 $\Delta T = T_f - T_i$ é igual para todos estes processos

→ eles acabam todos na mesma ioterma.

$$\Delta E_{\mathrm{int}} = W + Q$$
 também é igual para todos estes processos

Por outro lado, W varia (área abaixo da curva) $\to Q$ também varia Isso implica que não existe um único valor Q associado com ΔT

Em particular:

► Processos isocóricos:

► Processos isobáricos:

 $Q = nC_V \Delta T$

 $Q = nC_P \Delta T$

Calor específico molar

a volume constante

a pressão constante

- Eint aumenta e trabalho (negativo) é realizado

$$\longrightarrow C_P > C_V$$

O calor específico molar dum gás ideal

Caso mais simples:

gases mono-atómicos (e.g., He, Ne, Ar), têm apenas graus de liberdade de translação

$$E_{\rm int} = K_{\rm total} = \frac{3}{2}Nk_BT = \frac{3}{2}nRT$$

Transferência de energia a volume constante $(i \rightarrow f)$:

$$W = 0$$

$$W = 0$$
 $Q = \Delta E_{\text{int}} = nC_V \Delta T$

$$\Delta E_{\rm int} = nC_V \Delta T$$

Para diferenças infinitesimais podemos escrever

$$C_V = \frac{1}{n} \frac{dE_{\rm int}}{dT}$$

$$\frac{dE_{\text{int}}}{dT} = \frac{d}{dT} \left(\frac{3}{2} nRT \right) = \frac{3}{2} nR \qquad \longrightarrow \boxed{C_V = \frac{3}{2} R}$$

Calor específico molar a volume constante previsto para todos os gases ideais mono-atómicos.

* Transferência de energia a pressão constante ($i \rightarrow f$ '): $W = -P\Delta V$ $Q = nC_P\Delta T$

$$\Delta E_{\mathrm{int}} = Q + W = nC_P \Delta T - P\Delta V$$
 $PV = nRT \xrightarrow{\mathrm{pressão}} P\Delta V = nR\Delta T$

$$\Delta E_{\mathrm{int}} = nC_P \Delta T - nR\Delta T = n(C_P - R)\Delta T$$
 mas também $\Delta E_{\mathrm{int}} = nC_V \Delta T$ (porque ΔT é igual para $i \rightarrow f$ e $i \rightarrow f'$)

$$C_P - C_V = R$$

Esta expressão é válida para todos os gases ideais

Calor específico molar dum gás ideal

$$C_V = \frac{3}{2}R \qquad C_P = \frac{5}{2}R$$

$$C_V = 12.5 \text{ J/mol}\cdot\text{K}$$
 $C_P = 20.8 \text{ J/mol}\cdot\text{K}$

$$C_P = 20.8 \text{ J/mol} \cdot \text{K}$$

$$\gamma = \frac{C_P}{C_V} = \frac{5}{3} = 1.67$$

 $\gamma = \frac{C_P}{C_V} = \frac{5}{3} = 1.67$ A razão dos calores específicos molares

Molar Specific Heats of Various Gases

	Molar Specific Heat (J/mol·K) ^a				
Gas	C_P	C_V	$C_P - C_V$	$\gamma = C_P/C_V$	
Monatomic gases					
Не	20.8	12.5	8.33	1.67	
Ar	20.8	12.5	8.33	1.67	
Ne	20.8	12.7	8.12	1.64	
Kr	20.8	12.3	8.49	1.69	
Diatomic gases					
H_{2}	28.8	20.4	8.33	1.41	
N_2	29.1	20.8	8.33	1.40	
O_2	29.4	21.1	8.33	1.40	
CO	29.3	21.0	8.33	1.40	
Cl_2	34.7	25.7	8.96	1.35	
Polyatomic gases					
CO_2	37.0	28.5	8.50	1.30	
SO_2	40.4	31.4	9.00	1.29	
H_9O	35.4	27.0	8.37	1.30	
$\widetilde{\mathrm{CH}_{4}}$	35.5	27.1	8.41	1.31	
^a All values except that for	water were obtaine	ed at 300 K.			

concordam muito bem com os valores medidos para gases mono-atómicos.

