Differentialregning UNF København

Ungdommens Naturvidenskabelige Forening

14. september 2023

Program

Differentialkvotienten

2 Afledte af vigtige funktioner

Regneregler for differentialkvotienter

Program

Differentialkvotienten

- 2 Afledte af vigtige funktioner
- Regneregler for differentialkvotienter

Sekanten

Definition

Lad en funktion f være defineret på et åbent interval (a,b), og lad to punkter x_0 og x_1 ligge i (a,b). Sekanten tilhørende f mellem x_0 og x_1 er den rette linje, der går gennem $f(x_0)$ og $f(x_1)$.

Sekanten

Definition

Lad en funktion f være defineret på et åbent interval (a,b), og lad to punkter x_0 og x_1 ligge i (a,b). Sekanten tilhørende f mellem x_0 og x_1 er den rette linje, der går gennem $f(x_0)$ og $f(x_1)$.

Bemærkning

Hældningen for sekanten er givet ved

$$\frac{f(x_1) - f(x_0)}{x_1 - x_0},$$

som er veldefineret, så længe $x_1 \neq x_0$ (ellers får vi division med nul).

UNF Differential regning 14. september 2023 4 / 22

Sekanten

Definition

Lad en funktion f være defineret på et åbent interval (a,b), og lad to punkter x_0 og x_1 ligge i (a,b). Sekanten tilhørende f mellem x_0 og x_1 er den rette linje, der går gennem $f(x_0)$ og $f(x_1)$.

Bemærkning

Hældningen for sekanten er givet ved

$$\frac{f(x_1)-f(x_0)}{x_1-x_0}$$
,

som er veldefineret, så længe $x_1 \neq x_0$ (ellers får vi division med nul).

Tegning på tavlen.

Differenskvotienten

Betragt hældningen af sekanten

$$\frac{f(x_1)-f(x_0)}{x_1-x_0}$$

Differenskvotienten

Betragt hældningen af sekanten

$$\frac{f(x_1)-f(x_0)}{x_1-x_0}$$
.

Lader vi $\Delta x = x_1 - x_0$, kan vi omskrive ovenstående til

$$\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Differenskvotienten

Betragt hældningen af sekanten

$$\frac{f(x_1)-f(x_0)}{x_1-x_0}$$
.

Lader vi $\Delta x = x_1 - x_0$, kan vi omskrive ovenstående til

$$\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Denne størrelse kaldes differenskvotienten i x_0 . Vi er interesseret i denne størrelse, som Δx nærmer sig 0.

Grænseværdier

Hvis g(x) er en funktion, da skal grænseværdien

$$\lim_{x\to a}g(x)$$

forstås som den værdi, g(x) nærmer sig, idet x nærmer sig a (fra en vilkårlig retning). Nogle gange findes grænseværdier, og andre gange gør de ikke.

Eksempler på grænseværdier

$$\lim_{x\to 0} f(x), \quad f(x) = x + 3.$$

Eksempler på grænseværdier

•

$$\lim_{x\to 0} f(x), \quad f(x) = x + 3.$$

•

$$\lim_{x \to 0} g(x), \quad g(x) = \begin{cases} -1 & \text{for } x < 0 \\ 0 & \text{for } x = 0 \\ 1 & \text{for } x > 0 \end{cases}$$

Eksempler på grænseværdier

•

$$\lim_{x\to 0} f(x), \quad f(x) = x + 3.$$

q

$$\lim_{x \to 0} g(x), \quad g(x) = \begin{cases} -1 & \text{for } x < 0 \\ 0 & \text{for } x = 0 \\ 1 & \text{for } x > 0 \end{cases}$$

0

$$\lim_{x \to 0} h(x), \quad h(x) = \begin{cases} 1 & \text{for } x \neq 0 \\ 0 & \text{for } x = 0 \end{cases}$$

Differentialkvotienten

Definition

Lad f være en funktion defineret på et åbent interval (a,b), og lad x_0 ligge i (a,b). Såfremt grænseværdien

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

eksisterer, kaldes denne for differentialkvotienten i x_0 og betegnes $f'(x_0)$. $f'(x_0)$ udtales "f mærke af x_0 " og kaldes også for den afledte af f i x_0 . Hvis differentialkvotienten eksisterer i x_0 , siger vi, at f er differentiabel i x_0 .

UNF Differential regning

• f(x) = a (en konstant funktion).

• f(x) = a (en konstant funktion). f'(x) = 0.

- f(x) = a (en konstant funktion). f'(x) = 0.
- $f(x) = x^2$.

•
$$f(x) = a$$
 (en konstant funktion). $f'(x) = 0$.

•
$$f(x) = x^2$$
. $f'(x) = 2x$.

Sætning

Lad f og g være funktioner, der begge er differentiable i x_0 . Da gælder

$$(f+g)'(x_0) = f'(x_0) + g'(x_0).$$

UNF

Bevis: Husk, at funktionen f + g er defineret ved (f + g)(x) = f(x) + g(x).

Bevis: Husk, at funktionen f + g er defineret ved (f + g)(x) = f(x) + g(x). Vi opstiller differenskvotienten

$$\begin{split} \frac{(f+g)(x_0 + \Delta x) - (f+g)(x_0)}{\Delta x} &= \frac{f(x_0 + \Delta x) + g(x_0 + \Delta x) - (f(x_0) + g(x_0))}{\Delta x} \\ &= \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} + \frac{g(x_0 + \Delta x) - g(x_0)}{\Delta x}, \end{split}$$

Bevis: Husk, at funktionen f + g er defineret ved (f + g)(x) = f(x) + g(x). Vi opstiller differenskvotienten

$$\begin{split} \frac{(f+g)(x_0 + \Delta x) - (f+g)(x_0)}{\Delta x} &= \frac{f(x_0 + \Delta x) + g(x_0 + \Delta x) - (f(x_0) + g(x_0))}{\Delta x} \\ &= \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} + \frac{g(x_0 + \Delta x) - g(x_0)}{\Delta x}, \end{split}$$

og ved at tage grænseværdien $\Delta x
ightarrow 0$ på begge sider af lighedstegnet får vi

$$(f+g)'(x_0) = f'(x_0) + g'(x_0)$$

som ønsket.

Bemærkning

Med et fuldstændigt analogt bevis kan man vise, at $(f - g)'(x_0) = f'(x_0) - g'(x_0)$.

Bemærkning

Med et fuldstændigt analogt bevis kan man vise, at $(f - g)'(x_0) = f'(x_0) - g'(x_0)$.

Eksempel

Lad $f(x) = x^2 + 5$. Vi ved, at differentialkvotienten af 5 er 0. Vi ved også fra tidligere, at x^2 har differentialkvotienten 2x. Dermed fås per ovenstående sætning, at f'(x) = 2x + 0 = 2x.

Opgaver

Lad os tage en opgavepause, inden vi fortsætter med nogle vigtige eksempler. Arbejd med opgave $1.1\ {\rm til}\ 1.4.$

Program

Differentialkvotienten

- 2 Afledte af vigtige funktioner
- 3 Regneregler for differentialkvotienter

Polynomier

Før så vi, at $(x^2)' = 2x$. I har også vist i opgaverne, at x' = 1. Er der et generelt mønster for polynomier?

Polynomier

Før så vi, at $(x^2)' = 2x$. I har også vist i opgaverne, at x' = 1. Er der et generelt mønster for polynomier?

Sætning

Funktionen $f(x) = x^n$ for et heltal $n \ge 1$ har den afledte $f'(x) = nx^{n-1}$.

Polynomier

Før så vi, at $(x^2)' = 2x$. I har også vist i opgaverne, at x' = 1. Er der et generelt mønster for polynomier?

Sætning

Funktionen $f(x) = x^n$ for et heltal $n \ge 1$ har den afledte $f'(x) = nx^{n-1}$.

Eksempel

Lad $f(x) = 5x^4 - 3x^2 + 8x + 10$. Første led har den afledte $5 \cdot 4x^{4-1} = 20x^3$. Andet led har den afledte $3 \cdot 2x^{2-1} = 6x$, mens tredje led har den afledte 8, og sidste led er en konstant, som dermed har den afledte 0. Alt i alt fås

$$f'(x) = 20x^3 - 6x + 8.$$

Differential regning 14. september 2023 15 / 22

Andre vigtige funktioner

Sætning

Funktionerne cos og sin er begge differentiable i alle punkter med

$$cos'(x) = -sin(x)$$
 og $sin'(x) = cos(x)$.

Andre vigtige funktioner

Sætning

Funktionerne cos og sin er begge differentiable i alle punkter med

$$cos'(x) = -sin(x)$$
 og $sin'(x) = cos(x)$.

Et bevis bygger på nogle fundamentale resultater for grænseovergange involverende cosinus og sinus. Se en mere uddybende forklaring i materialet.

Andre vigtige funktioner

Sætning

Funktionerne cos og sin er begge differentiable i alle punkter med

$$cos'(x) = -sin(x)$$
 og $sin'(x) = cos(x)$.

Et bevis bygger på nogle fundamentale resultater for grænseovergange involverende cosinus og sinus. Se en mere uddybende forklaring i materialet.

Sætning

Vi har

$$(e^x)' = e^x$$
 og $\ln'(x) = \frac{1}{x}$.

Program

Differentialkvotienten

2 Afledte af vigtige funktioner

Regneregler for differentialkvotienter

Regneregler: produktreglen

UNF

Hvordan udregner man differentialkvotienten af et produkt af funktioner?

Regneregler: produktreglen

Hvordan udregner man differentialkvotienten af et produkt af funktioner?

Sætning (Produktreglen)

Lad f og g være funktioner, der begge er differentiable i et punkt x_0 . Da gælder

$$(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0).$$

Regneregler: produktreglen

Hvordan udregner man differentialkvotienten af et produkt af funktioner?

Sætning (Produktreglen)

Lad f og g være funktioner, der begge er differentiable i et punkt x_0 . Da gælder

$$(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0).$$

Vi gennemgår beviset på tavlen. Derefter gennemgår vi et eksempel med $f(x) = x^3 \cos(x)$.

18 / 22

14. september 2023

UNE Differentialregning

Kvotientreglen

Hvordan differentierer man en brøk af to funktioner?

Kvotientreglen

Hvordan differentierer man en brøk af to funktioner?

Sætning (Kvotientreglen)

Lad f og g være funktioner, der begge er differentiable i punktet x_0 . Antag, at $g(x_0) \neq 0$. Da gælder

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g(x_0)^2}.$$

Kvotientreglen

Hvordan differentierer man en brøk af to funktioner?

Sætning (Kvotientreglen)

Lad f og g være funktioner, der begge er differentiable i punktet x_0 . Antag, at $g(x_0) \neq 0$. Da gælder

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g(x_0)^2}.$$

Idéen i beviset minder om den for produktreglen. Vi gennemgår eksemplet $f(x) = \cos(x)/x$.

Kædereglen

Hvordan differentierer man en sammensat funktion, altså en funktion på formen g(f(x))?

Kædereglen

Hvordan differentierer man en sammensat funktion, altså en funktion på formen g(f(x))?

Sætning (Kædereglen)

Lad f være en funktion, der er differentiabel i punktet x_0 , og antag, at g er en funktion, som er differentiabel i punktet $f(x_0)$. Da er sammensætningen $g \circ f$ differentiabel i x_0 med differentialkvotient

$$(g \circ f)'(x_0) = g'(f(x_0))f'(x_0).$$

Kædereglen

Hvordan differentierer man en sammensat funktion, altså en funktion på formen g(f(x))?

Sætning (Kædereglen)

Lad f være en funktion, der er differentiabel i punktet x_0 , og antag, at g er en funktion, som er differentiabel i punktet $f(x_0)$. Da er sammensætningen $g \circ f$ differentiabel i x_0 med differentialkvotient

$$(g \circ f)'(x_0) = g'(f(x_0))f'(x_0).$$

Se beviset i materialet. Vi gennemgår eksemplet $f(x) = \sin(4x^2)$.

Opgaver

Resten af workshoppen er opgaveregning. Undervejs skal I ikke tøve med at stille spørgsmål. Opgaverne er 2.1 til 2.8 på side 12 og 13.

Bemærk: Der er nyttige tabeller på side 11.

Skulle nogle blive hurtigt færdige, er der et anvendelsesafsnit omkring optimering i materialet.

Tak for denne gang

Andre arrangementer (foredrag, workshops og andet) i UNF København kan ses her: https://unf.dk/aktiviteter/?department=kbh

Information om vores sommer-sciencecamps kan ses her: https://unf.dk/sciencecamps/

