重庆理工大学本科生课程考试试卷

2020 ~ 2021 学年第 1 学期

	考试时间 <u>120</u> 分钟	_A 卷	共	3	页第	1	_页
	考生姓名	考生班级	考生	学号_			
一、 选择题(本大題共 10 小題,每小題 3 分,总计 30 分) 1. 函数 $y = \ln(1-x) + \arccos \frac{x+1}{2}$ 的定义域是(
	(A) $x < 1$ (B) $-3 \le 1$	(x<1) (C) $-3 < x$	r≤1 (D) {x	$ x \le 1 $	$I \left\{ x \middle -3 \right\}$	≤ <i>x</i> ≤	1}
2.	对函数 $f(x)$,已知 $f(1)$:	$=2$, $f'(1)=-2$, \emptyset	$\lim_{x\to 1} f(x) = ($)			
	(A) -2 (B)	2 (C)	1 (D)	0			
3.	函数 $f(x) = \frac{\ln(x^2)}{x^3 - x}$ 有()个可去间断点					
	(A) 0 (B)	1 (C) 2	(D)	3			
4.	设函数 $f(x)$ 在点 a 满足:	$\lim_{x \to a} \frac{f(x) - f(a)}{(x - a)^{2020}} = 20$	021,则 <i>f(x</i>) 在	点a划	2 ()	
	(A) 不可导 (B) 可	导且 f'(a) = 2021	(C) 取得极小值	i (D) 取得	极大值	直
5.	对函数 $f(x)$,已知 $f(0)$	=1, $f'(0)=-1$, 则	$\lim_{n\to\infty} n \left[f(\frac{1}{n}) - 1 \right]$	= ()		
	(A) -1 (B)	0 (C) 1	(D) ∞				
6.	设函数 $f(x) = (e^x - 1)(e^{2x}$	-2)···(e ^{nx} -n), 其中	n为正整数,则	f'(0)	=())	
	(A) $(-1)^n(n-1)!$	(B) $(-1)^{n-1}(n-1)!$	(C) $(-1)^n n!$	(D) (-1)	$n^{n-1}n!$	
7.	设 $f(x) = e^{2-x}$,则其 n 阶	·导数 f ⁽ⁿ⁾ (x)= ()				
	(A) e^{2-x} (B) ($(-1)^n e^{2-x}$ (C)	$-e^{2-x}$	(D) ($(-2)^n e^{2-x}$		
8.	设 $y = f(x^2)$, 其中函	数 $f(x)$ 可导,则 $\frac{dy}{dx}$	=()				
	$(A) f'(x^2) \qquad (B)$	f'(2x) (C)	$2xf'(x^2)$	(D) x	$^2f'(x^2)$		
9.	函数 $f(x) = \sqrt{x}$ 按 $(x-4)$	的幂展开的带有佩亚	诺余项的2阶	彰公	式是()	
	(A) $2+\frac{1}{4}(x-4)-\frac{1}{32}(x-4)$	$-4)^2 + o((x-4)^2)$	(B) $2 + \frac{1}{4}(x-4)$	$-\frac{1}{32}$ ($(x-4)^2 +$	•((x-	4) ⁿ)

重庆理工大学本科生课程考试试卷

2020 ~ 2021 学年第 1 学期

开课学院	课程名称高等数学	【(1) 机电】 2	半期		考核方式		卷
考试时间 120 分钟	_A 卷		共	3	页第	2	页
考生姓名	考生班级		者生学	经			

(C)
$$2 + \frac{1}{4}(x-4) - \frac{1}{64}(x-4)^2 + o((x-4)^2)$$
 (D) $2 + \frac{1}{4}(x-4) - \frac{1}{64}(x-4)^2 + o((x-4)^n)$

10. 函数
$$f(x) = \frac{x^2 - x}{x^2 - 1}$$
 的铅直渐近线方程为()

- (A) y=0 (B) y=1 (C) x=1
- (D) x = -1

二、填空题 (本大题共 5 小题,每小题 4 分,总计 20 分)

11. 极限
$$\lim_{x\to\infty} \left(\frac{x+2}{x-1}\right)^x = \underline{\qquad}$$

12. 函数
$$f(x) = \begin{cases} \frac{4}{x^2 + 1}, & x \le 1 \\ -x + k, & x > 1 \end{cases}$$
 在 $x = 1$ 处连续,则 $k =$ ______.

13. 设
$$f(x)$$
 是可导函数,且 $f'(x) = \sin^2 \left[\ln(x+1) + \frac{\pi}{4} \right]$, $f(0) = 3$, $f(x)$ 的反函数是

$$y = \varphi(x)$$
, $\emptyset \varphi'(3) =$ ______

15. 抛物线
$$y = x^2 - 4x + 3$$
 在其顶点处的曲率为______

三、解答题(本大题共5小题,每小题10分,总计50分)

16. 求极限:

(1)
$$\lim_{x\to 0} \left[\frac{1}{e^x - 1} - \frac{1}{\ln(1+x)} \right];$$
 (2) $\lim_{x\to 0} \frac{\sin x + x^2 \sin \frac{1}{x}}{\sqrt{1+x} - 1}$.

重庆理工大学本科生课程考试试卷

2020 ~ 2021 学年第 1 学期

开课学院_	理学院

课程名称_高等数学【(1) 机电】 半期_

考核方式 闭卷_

考试时间 120 分钟

_A 卷

共 3 页第 3 页

考生姓名

考生班级

考生学号

- 18. 设曲线 $y=x^2+ax+b$ 和 $2y=-1+xy^3$ 在点 (1,-1) 处相切,其中 a,b 为常数.
 - (1) 求a,b 的值;
 - (2) 求曲线 $y=x^2+ax+b$ 和 $2y=-1+xy^3$ 在点(1,-1)处的公切线与法线方程
- 19. 函数 $f(x) = a \sin x + \frac{1}{3} \sin 3x$ 在 $x = \frac{\pi}{3}$ 处取得极值.
 - (1) 求a的值;
 - (2) 求此极值,并说明是极大值还是极小值.
- 20. 设函数 f(x) 在 $[0,+\infty)$ 上可导, f(0)=0 ,且 $\lim_{x\to+\infty} f(x)=2$,证明:
 - (1) 存在a > 0, 使得f(a) = 1;
 - (2) 对 (1) 中的a,存在 $\xi \in (0,a)$,使得 $f'(\xi) = \frac{1}{a}$.