mi-bildbalken

Parallele Sortierung

Björn Rathjen Patrick Winterstein Freie Universität Berlin

Proseminar Algorithmen, SS14

Inhalt

Motivation

Grundlage des Sortierens Komparator

Sortiernetzwerk

Aufbau Korrektheit

Laufzeit

Herleitung Vergleich mit Software sortieren

Gegenüberstellung

Zusammenfassung

Ausblick

Hybercube

Anhang

Motivation

Grundlage des Sortierens

Sortiernetzwerk

Laufzeit

Gegenüberstellung

Zusammenfassung

Ausblick

Motivation: Allgemein

ist Basis für:

- Suche
- ► (Sortierung)
 - Listen
 - Wörterbücher
 - ٠..
- ▶ Ist dies auch in Hardware möglich?

Motivation

Grundlage des Sortierens Komparator

Sortiernetzwerk

Laufzeit

Gegenüberstellung

Zusammenfassung

Ausblick

Aufbau

FULogo_R GB

- ▶ 2 Eingänge
- ► vergleichender Baustein
- ▶ 2 Ausgänge

Vergleichender Baustein (ii)

```
void comp(chan in1, in2, out1 out2){
    a = <- in1;
    b = <- in2;

if (a < b){
    out1 <- a;
    out2 <- b;
    return void;
}
    out1 <- b;
    out2 <- a;
    return void;
}</pre>
```

Motivation

Grundlage des Sortierens

Sortiernetzwerk Aufbau Korrektheit

Laufzeit

Gegenüberstellung

Zusammenfassung

Ausblick

Erweiterung: Aufbau

- mehrere Eingabeleitungen
- Vergleichende Schritte müssen dazwischen laufen
- mehrere Ausgabeleitungen sortierte Ausgabe

nativ: Aufgabe

Aufgabe

▶ Resultat soll sortierte Eingabe sein

nativ : Aufgabe

Aufgabe

- ► Resultat soll sortierte Eingabe sein grundlegendes Prinzip
 - ▶ intuitiver Einsatz von Vergleichen
 - ► Schrittweises sortieren

nativ : grundlegendes Prinzip

Demonstration

0,1-Prinzip

FULogo_R GB

Theorem

Wenn es eine Folge A gibt, die ein Sortiernetzwerk nicht sortiert, so existiert auch eine 0,1-Folge, die von diesem Netzwerk nicht sortiert wird.

Proof.

fill

man kann jede Zahlenfolge durch eine 0,1 Folge repräsentieren

$$f(c) = \begin{cases} 0, & \text{if } c < k \\ 1, & \text{if } c \ge k \end{cases}$$

0,1- Beispiel

0,1- Beispiel

Beispiel an der Tafel ?

effektiveres Netzwerk

FULogo_R GB

[fontfamily=ucs]

effektiveres Netzwerk

```
FULogo<sub>R</sub> GB
```

```
[fontfamily=ucs] Aufgabe :
```

- ▶ Resultat soll sortierte Eingabe sein
- ▶ soll effizient sein


```
[fontfamily=ucs] Aufgabe :
```

- ▶ Resultat soll sortierte Eingabe sein
- ▶ soll effizient sein

grundlegendes Prinzip:

- ▶ intuitiver Einsatz von Vergleichen
 - + Einbezug von Teile und Herrscher

Aufteilung

Biton -Sortierer : Aufbau

Demonstration

FULogo_R GB

Bild kleiner Zahlenfolge 4-8-16 Beispiel Motivation

Grundlage des Sortierens

Sortiernetzwerk

Laufzeit Herleitung Vergleich mit Software sortieren

Gegenüberstellung

Zusammenfassung

Ausblick

$$\frac{1}{2} \cdot \log_2 n \ (\log_2 n + 1)$$

1

$$\frac{1}{2} \cdot \log_2 n \ (\log_2 n + 1)$$

1

$$1+2$$

$$\frac{1}{2} \cdot \log_2 n \ (\log_2 n + 1)$$

$$1+2$$

$$1+2+\ldots+k-1+k=\sum_{i=1}^{k}i$$

$$\frac{1}{2} \cdot \log_2 n \ (\log_2 n + 1)$$

$$1 + 2$$

$$1 + 2 + \dots + k - 1 + k = \sum_{i=1}^{k} i$$

$$\frac{k \cdot (k+1)}{2} | n = 2^{k}$$

$$\frac{1}{2} \cdot \log_{2} n \ (\log_{2} n + 1)$$

- Unterschiedliche Betrachtungen Schritte gegen Vergleiche, Versuch der Darstellung
- Abhängigkeit von der Eingabe
- Bezug zum vorherigen Vergleich

wo ist das Pivot Element? Wo ist nun das größte Element?

Motivation

Grundlage des Sortierens

Sortiernetzwerk

Laufzeit

Gegenüberstellung

Zusammenfassung

Ausblick

- Geschwindigkeit vs Variabilität
 - hohe Geschwindigkeit durch direkte Hardware Implementriegung
 - starre Struktur , bildet Rahmen der Möglichkeiten
 - stark typisierte Eingabe
- Hardwareaufwand vs Softwareaufwand
 - Software zur Auswertung keine zum sortieren
 - geringe Skalierbarkeit
 - hoher Aufwand wenn Eingabelimit überschritten wird
 - nur lokal
 - Hardware Konzeption eventuell aufwendiger

Motivation

Grundlage des Sortierens

Sortiernetzwerk

Laufzeit

Gegenüberstellung

Zusammenfassung

Ausblick

Zusammenfassung

- paralleles sortieren ist schnell und effizient
- problemabhängige Lösung
- starr, nicht universell

Motivation

Grundlage des Sortierens

Sortiernetzwerk

Laufzeit

Gegenüberstellung

Zusammenfassung

Ausblick Hybercube Anhang

Ausblick

weiter

Hyprecube

FULogo_R GB

?¿

Aufbau

structur

Funktion

Ende

Fragen, Anregungen? (keine Liederwünsche)

For Further Reading I

A. Author.

Taschenbuch der Algorithmen. Springer Verlag, 2008.

Tom Leighton.

Einführung in Parallele Algorithmen und Architekturen Gitter, Bäume und Hypercubes.

Thomsom Publisching, 1997.

S. Someone.

http://www.iti.fh-

flensburg.de/lang/algorithmen/sortieren/networks/nulleins.htm