MATHEMATICS OLYMPIAD TRAINING SESSIONS

2023 Senior Mathematics Contest Problems

- 1. For a string of As and Bs, define the substring replacement operation: $AB \longrightarrow BBAA$. Starting from any string of As and Bs, is it always possible to perform a sequence of such replacement operations to obtain a string where all Bs are to the left of all the As.
- 2. A positive integer m is given to Alice and Bob. Alice and Bob play a game:

Alice goes first, writing a non-zero digit on the board.

Then Bob and Alice alternate,

appending a digit to the front or back of the current number on the board, except that a digit appended at the front of the number must be non-zero.

Bob wins if at any time the number on the board is divisible by m.

- (i) Find the least m such that Alice can prevent Bob from winning.
- (ii) Same problem as (i), except Alice can write any $n \in \mathbb{N}$ at the start.
- 3. Points A, B, C, D lie on sides EF, FG, GH, HE, respectively, of a parallelogram EFGH. Also $AC \perp EF, BD \perp FG, ABCD$ is cyclic, and Q is the point on AC such that $FQ \parallel BC$. Prove that $EQ \parallel DC$.
- 4. Counters are placed, one at a time, in the unit squares of an $n \times n$ grid such that:
 - (i) a counter can only be placed in an empty unit square,
 - (ii) the first counter can be placed in any unit square,
 - (iii) each subsequent counter can only be placed in a unit square S if the sum of the number of counters already in the same row as S and the number of counters already in the same column as S is odd.

For each $n \ge 2$, find the smallest possible number of empty unit squares remaining after a sequence of such counter placements.

5. Let a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n be (not necessarily positive) real numbers, where $n \ge 2$. Let K, L be the maximum and minimum, respectively, of b_1, b_2, \ldots, b_n . Prove that $\sum_{i < j} a_i a_j |b_i - b_j| \le \frac{1}{2} (K - L) (a_1 + a_2 + \cdots + a_n)^2$, where $\sum_{i < j}$ denotes the summing over all pairs (i, j) such that $1 \le i < j \le n$.