

SEQUENCE LISTING

<110> BML, INC.

<120> Method of Detecting Risk Factor for Onset of Diabetes

<130> PBM37

<140>

<141>

<160> 23

<170> PatentIn Ver. 2.0

<210> 1

<211> 1305

<212> DNA

<213> Hominidae

<220>

<221> CDS

<222> (1)..(900)

<400> 1

-103 aaa cagaagggga ggtgcagttt cagaaccagg ccagcctctc -61

tcttgctgcc tagcctcctg ccggcctcat cttcgccag ccaacccgc ctggagccct -1

atg gcc aac tgc gag ttc agc ccg gtg tcc ggg gac aaa ccc tgc tgc 48
Met Ala Asn Cys Glu Phe Ser Pro Val Ser Gly Asp Lys Pro Cys Cys
1 5 10 15

cgg ctc tct agg aga gcc caa ctc tgt ctt ggc gtc agt atc ctg gtc 96
Arg Leu Ser Arg Arg Ala Gln Leu Cys Leu Gly Val Ser Ile Leu Val
20 25 30

ctg atc ctc gtc gtg ctc gcg gtg gtc gtc ccg agg tgg cgc cag 144
Leu Ile Leu Val Val Leu Ala Val Val Val Pro Arg Trp Arg Gln
35 40 45

cag tgg agc ggt ccg ggc acc acc aag cgc ttt ccc gag acc gtc ctg 192
Gln Trp Ser Gly Pro Gly Thr Thr Lys Arg Phe Pro Glu Thr Val Leu
50 55 60

gcg cga tgc gtc aag tac act gaa att cat cct gag atg aga cat gta 240

Ala Arg Cys Val Lys Tyr Thr Glu Ile His Pro Glu Met Arg His Val			
65	70	75	80
gac tgc caa agt gta tgg gat gct ttc aag ggt gca ttt att tca aaa			288
Asp Cys Gln Ser Val Trp Asp Ala Phe Lys Gly Ala Phe Ile Ser Lys			
85	90	95	
cat cct tgc aac att act gaa gaa gac tat cag cca cta atg aag ttg			336
His Pro Cys Asn Ile Thr Glu Glu Asp Tyr Gln Pro Leu Met Lys Leu			
100	105	110	
gga act cag acc gta cct tgc aac aag att ctt ctt tgg agc aga ata			384
Gly Thr Gln Thr Val Pro Cys Asn Lys Ile Leu Leu Trp Ser Arg Ile			
115	120	125	
aaa gat ctg gcc cat cag ttc aca cag gtc cag cggt gac atg ttc acc			432
Lys Asp Leu Ala His Gln Phe Thr Gln Val Gln Arg Asp Met Phe Thr			
130	135	140	
ctg gag gac acg ctg cta ggc tac ctt gct gat gac ctc aca tgg tgt			480
Leu Glu Asp Thr Leu Leu Gly Tyr Leu Ala Asp Asp Leu Thr Trp Cys			
145	150	155	160
ggt gaa ttc aac act tcc aaa ata aac tat caa tct tgc cca gac tgg			528
Gly Glu Phe Asn Thr Ser Lys Ile Asn Tyr Gln Ser Cys Pro Asp Trp			
165	170	175	
aga aag gac tgc agc aac aac cct gtt tca gta ttc tgg aaa acg gtt			576
Arg Lys Asp Cys Ser Asn Asn Pro Val Ser Val Phe Trp Lys Thr Val			
180	185	190	
tcc cgc agg ttt gca gaa gct gcc tgt gat gtg gtc cat gtg atg ctc			624
Ser Arg Arg Phe Ala Glu Ala Ala Cys Asp Val Val His Val Met Leu			
195	200	205	
aat gga tcc cgc agt aaa atc ttt gac aaa aac agc act ttt ggg agt			672
Asn Gly Ser Arg Ser Lys Ile Phe Asp Lys Asn Ser Thr Phe Gly Ser			
210	215	220	
gtg gaa gtc cat aat ttg caa cca gag aag gtt cag aca cta gag gcc			720
Val Glu Val His Asn Leu Gln Pro Glu Lys Val Gln Thr Leu Glu Ala			
225	230	235	240
tgg gtg ata cat ggt gga aga gaa gat tcc aga gac tta tgc cag gat			768
Trp Val Ile His Gly Gly Arg Glu Asp Ser Arg Asp Leu Cys Gln Asp			
245	250	255	
ccc acc ata aaa gag ctg gaa tcg att ata agc aaa agg aat att caa			816
Pro Thr Ile Lys Glu Leu Glu Ser Ile Ile Ser Lys Arg Asn Ile Gln			

260

265

270

ttt tcc tgc aag aat atc tac aga cct gac aag ttt ctt cag tgt gtg 864
 Phe Ser Cys Lys Asn Ile Tyr Arg Pro Asp Lys Phe Leu Gln Cys Val
 275 280 285

aaa aat cct gag gat tca tct tgc aca tct gag atc tgagccagtc 910
 Lys Asn Pro Glu Asp Ser Ser Cys Thr Ser Glu Ile
 290 295 300

gctgtggttg ttttagtcc ttgactccctt gtggtttatg tcatcataca tgactcagca 970

tacctgctgg tgcagagctg aagattttgg agggcctcc acaataaggt caatgccaga 1030

gacggaagcc ttttccccca aagtcttaaa ataacttata tcatcagcat acctttattg 1090

tgatctatca atagtcaaga aaaattattg tataagatta gaatgaaaat tgtatgttaa 1150

gttacttcac tttaattctc atgtgatcct tttatgttat ttatatattg gtaacatcct 1210

ttctattgaa aaatcaccac accaaacctc tcttattaga acaggcaagt gaagaaaaagt 1270

gaatgctcaa gttttcaga aagcattaca tttcc 1305

<210> 2

<211> 300

<212> PRT

<213> Hominidae

<400> 2

Met Ala Asn Cys Glu Phe Ser Pro Val Ser Gly Asp Lys Pro Cys Cys
 1 5 10 15

Arg Leu Ser Arg Arg Ala Gln Leu Cys Leu Gly Val Ser Ile Leu Val
 20 25 30

Leu Ile Leu Val Val Leu Ala Val Val Val Pro Arg Trp Arg Gln
 35 40 45

Gln Trp Ser Gly Pro Gly Thr Thr Lys Arg Phe Pro Glu Thr Val Leu
 50 55 60

Ala Arg Cys Val Lys Tyr Thr Glu Ile His Pro Glu Met Arg His Val
 65 70 75 80

Asp Cys Gln Ser Val Trp Asp Ala Phe Lys Gly Ala Phe Ile Ser Lys
 85 90 95

His Pro Cys Asn Ile Thr Glu Glu Asp Tyr Gln Pro Leu Met Lys Leu
 100 105 110
 Gly Thr Gln Thr Val Pro Cys Asn Lys Ile Leu Leu Trp Ser Arg Ile
 115 120 125
 Lys Asp Leu Ala His Gln Phe Thr Gln Val Gln Arg Asp Met Phe Thr
 130 135 140
 Leu Glu Asp Thr Leu Leu Gly Tyr Leu Ala Asp Asp Leu Thr Trp Cys
 145 150 155 160
 Gly Glu Phe Asn Thr Ser Lys Ile Asn Tyr Gln Ser Cys Pro Asp Trp
 165 170 175
 Arg Lys Asp Cys Ser Asn Asn Pro Val Ser Val Phe Trp Lys Thr Val
 180 185 190
 Ser Arg Arg Phe Ala Glu Ala Ala Cys Asp Val Val His Val Met Leu
 195 200 205
 Asn Gly Ser Arg Ser Lys Ile Phe Asp Lys Asn Ser Thr Phe Gly Ser
 210 215 220
 Val Glu Val His Asn Leu Gln Pro Glu Lys Val Gln Thr Leu Glu Ala
 225 230 235 240
 Trp Val Ile His Gly Gly Arg Glu Asp Ser Arg Asp Leu Cys Gln Asp
 245 250 255
 Pro Thr Ile Lys Glu Leu Glu Ser Ile Ile Ser Lys Arg Asn Ile Gln
 260 265 270
 Phe Ser Cys Lys Asn Ile Tyr Arg Pro Asp Lys Phe Leu Gln Cys Val
 275 280 285
 Lys Asn Pro Glu Asp Ser Ser Cys Thr Ser Glu Ile
 290 295 300

<210> 3
 <211> 61
 <212> DNA
 <213> Hominidae

<400> 3
 cgcccgccgc gccccgccc cgtccccgccc atcttcgccc agccaaacccc 60

<210> 4
<211> 21
<212> DNA
<213> Hominidae

<400> 4
accgggtgcgc cttagtcgca a 21

<210> 5
<211> 21
<212> DNA
<213> Hominidae

<400> 5
tagactgcat gtttagacgag a 21

<210> 6
<211> 62
<212> DNA
<213> Hominidae

<400> 6
cgcccgccgc gccccgcgcc cgtccccgccccg ccccccggcccg tttggaccta tgaattgtta 60
cc 62

<210> 7
<211> 21
<212> DNA
<213> Hominidae

<400> 7
gacatgctaa attgatctca g 21

<210> 8
<211> 60
<212> DNA
<213> Hominidae

<400> 8
cgcccgccgc gccccgcgcc cgtccccgccccg ccccccggcccg cagcagaagt cactctgttc 60

<210> 9
<211> 21
<212> DNA
<213> Hominidae

<400> 9
ccattctcca gcctccgtct t 21

<210> 10
<211> 62
<212> DNA
<213> Hominidae

<400> 10
cgcccgccgc gccccgcgcc cgtcccgccg ccccccgcgg caagcactga ctgagtaacg 60
tc 62

<210> 11
<211> 22
<212> DNA
<213> Hominidae

<400> 11
aaactgctgg aggatggtga tt 22

<210> 12
<211> 63
<212> DNA
<213> Hominidae

<400> 12
cgcccgccgc gccccgcgcc cgtcccgccg ccccccgcgg ttcactgtga tatttgcaac 60
agg 63

<210> 13
<211> 23
<212> DNA
<213> Hominidae

<400> 13
ggttgatgtt tggggttctt tgt 23

<210> 14
<211> 64
<212> DNA
<213> Hominidae

<400> 14
cgcccgccgc gccccgccc cgtcccgccg ccccccggccg tgtggattct tttgtggact 60
gatt 64

<210> 15
<211> 61
<212> DNA
<213> Hominidae

<400> 15
cgcccgccgc gccccgccc cgtcccgccg ccccccggccg ttgtccaggg cgtgctacaa 60
a 61

<210> 16
<211> 21
<212> DNA
<213> Hominidae

<400> 16
agattcacac agccctccaa g 21

<210> 17
<211> 62
<212> DNA
<213> Hominidae

<400> 17
cgcccgccgc gccccgccc cgtcccgccg ccccccggccg ttagcgaatt ggacgacaga 60
tg 62

<210> 18
<211> 22
<212> DNA
<213> Hominidae

<400> 18
tctggcattg accttattgt gg 22

<210> 19
<211> 22
<212> DNA
<213> Hominidae

<400> 19
ctccgccact ctctgcaca ca 22

<210> 20
<211> 20
<212> DNA
<213> Hominidae

<400> 20
gggcctccag cagaagtcac 20

<210> 21
<211> 21
<212> DNA
<213> Hominidae

<400> 21
ttgtccaggg cgtgctacaa a 21

<210> 22
<211> 66
<212> DNA
<213> Hominidae

<400> 22
ttagcgaatt ggacgacaga tgtatcctac ggtcttttga tttcctttt tgcttttttg 60
tcatac 66