AEV: Séance 8

Benjamin Van Ryseghem

12 novembre 2012

1 Exercice 1 : Performances

1.1 Question 1

$$1024 \times 2 + 2 \times \frac{1024 \times 1025}{2} = 1024 \times 1027$$

1.2 Question 2

Le dernier processeur est celui qui exécutera les dernières instructions (de 993 ¹ à 1024).

Facteur d'accélération :

$$2 \times \frac{1024 \times 1027}{1024 \times 1025 - 992 \times 993}.$$

1.3 Question 3

C'est pareil.

1.4 Question 4

Il faut distribue en zig-zag.

p_1	p_2		$p_{3}1$	p_32
1	2		31	32
64	63		34	33
65	66		95	96
'				

 $1. \ 1024-32+1$

1.5 Question 5

Le temps d'exécution si l'algorithme est bien équilibré est le temps séquentiel divisé par le nombre de processeurs.

Le facteur d'accélération est égal au nombre de processeurs.

2 Exercice 2

FIGURE 1 – Graphe de multiplication de deux matrices [2x2]

2.1 Question 2

Séquentiel

$$8 \times 101 + 7 \times 8 = 864$$

8 processeurs 761

4 processeurs 650

2 processeurs

$$212 + 4 \times 8 + 4 \times 101 = 648$$

3 Exercice 3

3.1 Question 1

L'execution d'un programme se déroule comme suit :

$$T_{seq} T_{seq} T_{seq} T_{par}$$

De plus, 1 A est execute par T_{seq} , quand 9 A sont exécutés par T_{par} . En tout, sur 12 A, 9A sont exécutés en parallèle, soit 75%.

De plus, en instaurant du parallelisme, on passe de 12T à 4T, soit un speedup de 3.

3.2 Question 2

Ici, on passe de 12T à 3,5 T, soit un speedup de 3.428571429.

3.3 Question 3

D'après la loi d'Amdhal,

$$sup = \frac{1}{(1-x) + \frac{x}{\text{unites_parallele}}}$$

pour conserver un gain de $\frac{24}{7}$, il faut

$$\frac{24}{7} = \frac{1}{(1-x) + \frac{2}{3}}$$

$$\frac{24}{7} = \frac{1}{\frac{9-9x+x}{9}}$$

$$\frac{24}{7} = \frac{9}{9-8x}$$

$$24 \times (9-8x) = 7 \times 9$$

$$(24-7) \times 9 = (8 \times 24)x$$

$$x = \frac{153}{192}$$

Benjamin Van Ryseghem