Test di Calcolo Numerico

Ingegneria Informatica 14/06/2014

COGNOME NOME		
Μ	ATRICOLA	
RISPOSTE		
1)		
2)		
3)		
4)		
5)		

N.B. Le risposte devono essere giustificate e tutto deve essere scritto a penna con la massima chiarezza.

Test di Calcolo Numerico

Ingegneria Informatica 14/06/2014

1) Siano $x \in [2,3], y \in [1,2]$ e si consideri la funzione

$$f(x,y) = x y.$$

Determinare il massimo errore assoluto commesso introducendo i due valori x e y con massimo errore assoluto $|\delta_x|, |\delta_y| \leq 10^{-2}$ e arrotondando il risultato della operazione alla terza cifra decimale.

2) È data l'equazione

$$x\log(x) - 2 = 0.$$

Determinare quante sono le soluzioni reali di tale equazione. Indicare un intervallo di separazione per ogni soluzione.

3) La matrice

$$A = \left(\begin{array}{ccc} 2 & -1 & 8 \\ 0 & 1 & 0 \\ 5 & 2 & 3 \end{array}\right)$$

risulta riducibile.

Indicare una matrice di permutazione P che la riduce.

4) È data la tabella di valori

Per quali valori reali α il polinomio di interpolazione risulta di grado minimo?

5) Per approssimare l'integrale $I = \int_0^2 f(x) dx$ si utilizza la formula di quadratura

$$J_2(f) = \frac{1}{3}f(0) + \frac{4}{3}f(1) + \frac{1}{3}f(2)$$
.

Determinare il grado di precisione m della formula data.

SOLUZIONE

1) È noto che con $D = [2,3] \times [1,2]$ risulta

$$|\delta_f| \le |\delta_a| + A_x |\delta_x| + A_y |\delta_y|$$

 $\begin{array}{l} \operatorname{con}\,A_x \geq \sup_D \left|\frac{\partial f}{\partial x}\right| \, \operatorname{e}\,A_y \geq \sup_D \left|\frac{\partial f}{\partial y}\right|. \\ \operatorname{Risultando}\,A_x = 2 \, \operatorname{e}\,A_y = 3 \, \operatorname{si}\,\operatorname{ha} \end{array}$

$$|\delta_f| \le \frac{1}{2} 10^{-3} + 2 \cdot 10^{-2} + 3 \cdot 10^{-2} = 5.05 \cdot 10^{-2}.$$

- 2) Con una seplice separazione grafica (per esempio $g(x) = \log(x)$ e h(x) = 2/x) si deduce che l'equazione ha una sola soluzione reale α con $\alpha \in [2, 3]$.
- 3) Costruendo il grafo orientato associato alla matrice A si nota che il secondo nodo non risulta collegato agli altri due nodi per cui una matrice che riduce la matrice data è

$$P = (e^{(2)}|e^{(1)}|e^{(3)}) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

- 4) Escludendo la coppia di valori $(0, \alpha)$ si costruisce il polinomio di interpolazione relativo alle altre tre coppie di valori ottenendo $P_2(x) = x^2 1$. Ne segue che per non aumentare il grado del polinomio di interpolazione di deve scegliere $\alpha = P_2(0) = -1$.
- 5) La formula data non è altro che la formula di Simpson applicata all'intervallo [0,2] per cui il suo grado di precisione è m=3.