AP® PHYSICS 2 TABLE OF INFORMATION

CONSTANTS AND CONVERSION FACTORS

Proton mass, $m_p = 1.67 \times 10^{-27} \text{ kg}$

Neutron mass, $m_n = 1.67 \times 10^{-27} \text{ kg}$

Electron mass, $m_e = 9.11 \times 10^{-31} \text{ kg}$

Avogadro's number, $N_0 = 6.02 \times 10^{23} \text{ mol}^{-1}$

Universal gas constant, $R = 8.31 \text{ J/(mol \cdot K)}$

Boltzmann's constant, $k_B = 1.38 \times 10^{-23} \text{ J/K}$

Electron charge magnitude, $e = 1.60 \times 10^{-19} \text{ C}$

1 electron volt, $1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$

Speed of light, $c = 3.00 \times 10^8$ m/s

Universal gravitational

constant,

due to gravity

Acceleration due to gravity at Earth's surface,

 $g = 9.8 \text{ m/s}^2$

 $G = 6.67 \times 10^{-11} \text{ m}^3/\text{kg} \cdot \text{s}^2$

1 unified atomic mass unit,

 $1 \text{ u} = 1.66 \times 10^{-27} \text{ kg} = 931 \text{ MeV}/c^2$

Planck's constant,

$$h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s} = 4.14 \times 10^{-15} \text{ eV} \cdot \text{s}$$

 $hc = 1.99 \times 10^{-25} \text{ J} \cdot \text{m} = 1.24 \times 10^3 \text{ eV} \cdot \text{nm}$

$$nc = 1.39 \times 10$$
 J·m = 1.24

Vacuum permittivity,

$$\varepsilon_0 = 8.85 \times 10^{-12} \,\mathrm{C}^2/\mathrm{N} \cdot \mathrm{m}^2$$

Coulomb's law constant, $k = 1/4\pi\epsilon_0 = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$

$$\mu_0 = 9.0 \times 10^{-7} \text{ (T·m)/A}$$

Vacuum permeability,

Magnetic constant,
$$k' = \mu_0/4\pi = 1 \times 10^{-7} \text{ (T-m)/A}$$

1 atmosphere pressure,

$$1 \text{ atm} = 1.0 \times 10^5 \text{ N/m}^2 = 1.0 \times 10^5 \text{ Pa}$$

UNIT SYMBOLS	meter,	m	mole,	mol	watt,	W	farad,	F
	kilogram,	kg	hertz,	Hz	coulomb,	С	tesla,	Т
	second,	S	newton,	N	volt,	V	degree Celsius,	°C
	ampere,	A	pascal,	Pa	ohm,	Ω	electron volt,	eV
	kelvin,	K	joule,	J	henry,	Н		

PREFIXES				
Factor	Prefix	Symbol		
10 ¹²	tera	T		
10 ⁹	giga	G		
10 ⁶	mega	M		
10 ³	kilo	k		
10^{-2}	centi	С		
10^{-3}	milli	m		
10^{-6}	micro	μ		
10 ⁻⁹	nano	n		
10^{-12}	pico	p		

VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES							
θ	0°	30°	37°	45°	53°	60°	90°
$\sin \theta$	0	1/2	3/5	$\sqrt{2}/2$	4/5	$\sqrt{3}/2$	1
$\cos \theta$	1	$\sqrt{3}/2$	4/5	$\sqrt{2}/2$	3/5	1/2	0
$\tan \theta$	0	$\sqrt{3}/3$	3/4	1	4/3	$\sqrt{3}$	∞

The following conventions are used in this exam.

- I. The frame of reference of any problem is assumed to be inertial unless otherwise stated.
- II. In all situations, positive work is defined as work done on a system.
- III. The direction of current is conventional current: the direction in which positive charge would drift.
- IV. Assume all batteries and meters are ideal unless otherwise stated.
- V. Assume edge effects for the electric field of a parallel plate capacitor unless otherwise stated.
- VI. For any isolated electrically charged object, the electric potential is defined as zero at infinite distance from the charged object

AP® PHYSICS 2 EQUATIONS

MECHANICS

$v_x = v_{x0} + a_x t$	a = acceleration
1 2	A = amplitude
$x = x_0 + v_{x0}t + \frac{1}{2}a_xt^2$	d = distance
2	E = energy
$v_r^2 = v_{r0}^2 + 2a_r(x - x_0)$	F = force
$v_x - v_{x0} + 2u_x(x - x_0)$	f = frequency
$\sum \vec{E} = \vec{E}$	I = rotational inertia
$\vec{a} = \frac{\sum \vec{F}}{m} = \frac{\vec{F}_{net}}{m}$	K = kinetic energy
m m	k = spring constant
$ \vec{F}_f \le \mu \vec{F}_n $	L = angular momentum
$ If = \mu In $	$\ell = \text{length}$
2	m = mass
$a_c = \frac{v^2}{r}$	P = power
r	-
$\vec{p} = m\vec{v}$	p = momentum
•	r = radius or separation
$\Delta \vec{p} = \vec{F} \Delta t$	T = period
	t = time
$K = \frac{1}{2}mv^2$	U = potential energy
2	v = speed
$\Delta E = W = F_{\parallel}d = Fd\cos\theta$	W = work done on a
$\Delta E = W = I \parallel a = I = 0.000$	system
ΔE	x = position
$P = \frac{\Delta E}{\Delta t}$	y = height
	α = angular acceleration
$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$	μ = coefficient of friction
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	θ = angle
$\omega = \omega_1 + \alpha t$	$\tau = \text{torque}$
$\omega = \omega_0 + \alpha t$	-
$x = A\cos(\omega t) = A\cos(2\pi ft)$	ω = angular speed
	$U_s = \frac{1}{2}kx^2$
$\sum m_i x_i$	3 2
$x_{cm} = \frac{\sum m_i x_i}{\sum m_i}$	$\Delta U_{g} = mg \Delta y$
— ·	
$\vec{\alpha} = \frac{\sum \vec{\tau}}{I} = \frac{\vec{\tau}_{net}}{I}$	$T = \frac{2\pi}{\omega} = \frac{1}{f}$
$\alpha - I - I$	ω f
$z = v E = vE \sin \theta$	l m
$\tau = r_{\perp}F = rF\sin\theta$	$T_{\rm S} = 2\pi \sqrt{\frac{m}{k}}$
$L = I\omega$	V K
	$T_p = 2\pi \sqrt{\frac{\ell}{g}}$
$\Delta L = \tau \Delta t$	$T_p = 2\pi \sqrt{g}$
_K 1 _{L-2}	$ \vec{r} \sim m_1 m_2$
$K = \frac{1}{2}I\omega^2$	$\left \vec{F}_g \right = G \frac{m_1 m_2}{r^2}$
1=1 -13	, 1
$\left \vec{F}_s \right = k \vec{x} $	$\vec{g} = \frac{\vec{F}_g}{m}$
	$\delta - m$
	Gm_1m_2
	$U_G = -\frac{Gm_1m_2}{r}$
	,

ELECTRICITY AND MAGNETISM

ELECTRICITY AND	D MAGNETISM
$ \vec{F}_{E} = \frac{1}{4\pi\varepsilon_{0}} \frac{ q_{1}q_{2} }{r^{2}}$ $ \vec{E} = \frac{\vec{F}_{E}}{q}$ $ \vec{E} = \frac{1}{4\pi\varepsilon_{0}} \frac{ q }{r^{2}}$ $\Delta U_{E} = q\Delta V$ $V = \frac{1}{4\pi\varepsilon_{0}} \frac{q}{r}$ $ \vec{E} = \left \frac{\Delta V}{\Delta r}\right $ $\Delta V = \frac{Q}{C}$ $C = \kappa\varepsilon_{0} \frac{A}{d}$ $E = \frac{Q}{\varepsilon_{0}A}$	D MAGNETISM $A = \text{ area}$ $B = \text{ magnetic field}$ $C = \text{ capacitance}$ $d = \text{ distance}$ $E = \text{ electric field}$ $\mathcal{E} = \text{ emf}$ $F = \text{ force}$ $I = \text{ current}$ $\ell = \text{ length}$ $P = \text{ power}$ $Q = \text{ charge}$ $q = \text{ point charge}$ $R = \text{ resistance}$ $r = \text{ separation}$ $t = \text{ time}$ $U = \text{ potential (stored)}$ $energy$ $V = \text{ electric potential}$ $v = \text{ speed}$ $\kappa = \text{ dielectric}$ $constant$ $\rho = \text{ resistivity}$ $\theta = \text{ angle}$ $\Phi = \text{ flux}$
$I = \frac{\Delta Q}{\Delta t}$ $R = \frac{\rho \ell}{A}$ $P = I \Delta V$ $I = \frac{\Delta V}{R}$ $R_s = \sum_i R_i$ $\frac{1}{R_p} = \sum_i \frac{1}{R_i}$ $C_p = \sum_i C_i$ $\frac{1}{C_s} = \sum_i \frac{1}{C_i}$ $B = \frac{\mu_0}{2\pi} \frac{I}{r}$	$\vec{F}_{M} = q\vec{v} \times \vec{B}$ $ \vec{F}_{M} = q\vec{v} \sin\theta \vec{B} $ $\vec{F}_{M} = I\vec{\ell} \times \vec{B}$ $ \vec{F}_{M} = I\vec{\ell} \sin\theta \vec{B} $ $\Phi_{B} = \vec{B} \cdot \vec{A}$ $\Phi_{B} = \vec{B} \cos\theta \vec{A} $ $\mathcal{E} = -\frac{\Delta\Phi_{B}}{\Delta t}$ $\mathcal{E} = B\ell\nu$

FLUID MECHANICS AND THERMAL PHYSICS

$$\rho = \frac{m}{V}$$

$$P = \frac{F}{A}$$

$$P = P_0 + \rho g h$$

$$F_b = \rho V g$$

$$A_1 v_1 = A_2 v_2$$

$$P_1 + \rho g y_1 + \frac{1}{2} \rho v_1^2$$

$$= P_2 + \rho g y_2 + \frac{1}{2} \rho v_2^2$$

$$\frac{Q}{\Delta t} = \frac{kA \, \Delta T}{L}$$

$$PV = nRT = Nk_BT$$

$$K = \frac{3}{2}k_BT$$

$$W = -P\Delta V$$

$$\Delta U = Q + W$$

A = area

F = force

h = depth

k =thermal conductivity

K = kinetic energy

L =thickness

m = mass

n = number of moles

N = number of molecules

P = pressure

Q = energy transferred to asystem by heating

T = temperature

t = time

U = internal energy

V = volumev = speed

W =work done on a system

y = height

 ρ = density

MODERN PHYSICS

$$E = hf$$

$$K_{\max} = hf - \phi$$

$$\lambda = \frac{h}{p}$$

$$E = mc^2$$

E = energy

f = frequency

K = kinetic energy

m = mass

p = momentum

 λ = wavelength

 ϕ = work function

WAVES AND OPTICS

$$\lambda = \frac{v}{f}$$

 $n = \frac{c}{a}$

d = separation

$$f =$$
frequency or focal length

h = heightL = distance

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

$$M =$$
 magnification $m =$ an integer

$$\frac{1}{s_i} + \frac{1}{s_o} = \frac{1}{f}$$

$$n = index of$$

refraction

$$|M| = \left| \frac{h_i}{h_o} \right| = \left| \frac{s_i}{s_o} \right|$$

$$s = \text{distance}$$

 $v = \text{speed}$

$$M| = \left| \frac{1}{h_o} \right| = \left| \frac{1}{s_o} \right|$$

$$\lambda$$
 = wavelength

$$\Delta L = m\lambda$$

$$\theta$$
 = angle

$$d\sin\theta = m\lambda$$

GEOMETRY AND TRIGONOMETRY

$$A = bh$$

$$A = area$$

$$A = bh$$

C = circumference

Triangle

$$V = \text{volume}$$

 $S = \text{surface area}$

$$A = \frac{1}{2}bh$$

$$b = base$$

$$h = \text{height}$$

 $\ell = \text{length}$

Circle
$$A = \pi r^2$$

$$w =$$
width $r =$ radius

$$C = 2\pi r$$

Rectangular solid

$$V = \ell w h$$

$$V = \ell w h$$

Sphere

$$V = \pi r^2 \ell$$

$$S = 2\pi r\ell + 2\pi r^2$$

$$\sin \theta = \frac{1}{2}$$

$$V = \frac{4}{3}\pi r^3$$

$$S=4\pi r^2$$

 $c^2 = a^2 + b^2$

$$\sin\theta = \frac{a}{c}$$

Right triangle

$$\cos\theta = \frac{b}{c}$$

$$\tan\theta = \frac{a}{b}$$

