E2-212 MATRIX THEORY: ASSIGNMENT 9

Question 1. Let $\mathbf{M}_{n \times n}$ be a matrix which when multiplied with a vector $\mathbf{x}_{n \times 1}$ produces zeros on components [k+1:n]. Further, let $x_k \neq 0$ and \mathbf{e}_k be the k-th column of \mathbf{I}_n . (6 points)

- (a) Write down the elements of the M in terms of the elements of x.
- (b) Verify that \mathbf{M} can be written as $\mathbf{I}_n \mathbf{t}\mathbf{e}_k^T$. What are the elements of \mathbf{t} ?
- (c) Obtain an expression for \mathbf{M}^{-1} .

$$\left(\text{Hint : Verify that } (\mathbf{I}_n + \mathbf{u}\mathbf{v}^T)^{-1} = \mathbf{I}_n - \frac{\mathbf{u}\mathbf{v}^T}{1 + \mathbf{v}^T\mathbf{u}}, \ 1 + \mathbf{v}^T\mathbf{u} \neq 0\right)$$

Question 2. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a normal matrix and $\mathbf{B} \in \mathbb{R}^{n \times n}$ be a nilpotent matrix. If $\mathbf{A} + \mathbf{B} = \mathbf{I}_n$, then show that $\mathbf{A} = \mathbf{I}_n$.