Question 1 - Dodelson 3.4

Solve the rate equation 1 numerically to determine the neutron fraction as a function of temperature. Ignore decays. There are (at least) two ways to perform this computation. The first is to treat it as a simple ordinary differential equation and solve it numerically. The second is to proceed analytically and reduce the problem to an evaluation of a single numerical integral. This second method, which I'll lead you through here, is based on a numerical coincidence noted by Bernstein, Brown, and Feinberg (1988).

$$\frac{\mathrm{d}X_n}{\mathrm{d}x} = \frac{x\lambda_{np}}{H(x=1)} \{e^{-x} - X_n(1+e^{-x})\}$$
 (1)

where

$$H(x=1) = \sqrt{\frac{4\pi^3 G Q^4}{45}} \cdot \sqrt{10.75} \approx 1.13 \,\text{sec}^{-1}$$
 (2)

(a) Using standard differential equation techniques, show that a formal solution to Eq. 1 is:

$$X_n(x) = \int_{x_i}^x dx' \frac{\lambda_{np}(x')e^{-x'}}{x'H(x')} e^{\mu(x')-\mu(x)}$$
(3)

where x_i is some initial, very high temperature, and

$$\mu(x) \equiv \int_{x_i}^x \frac{dx'}{x'H(x')} \lambda_{np}(x') \left[1 + e^{-x'} \right]. \tag{4}$$

(b) Use Eqs. 5 and 6

$$\lambda_{np} = \frac{255}{\tau_n x^5} \left(12 + 6x + x^2 \right) \tag{5}$$

$$\rho = \frac{\pi^2}{30} T^4 \left[\sum_{i = \text{bosons}} g_i + \frac{7}{8} \sum_{i = \text{fermions}} g_i \right] \quad (i \text{ relativistic})$$

$$\equiv g_* \frac{\pi^2}{30} T^4$$
(6)

to compute the integrating factor μ analytically. Show that it is equal to

$$\mu = -\frac{255}{\tau_n \mathcal{Q}} \left[\frac{4\pi^3 G \mathcal{Q}^2 g_*}{45} \right]^{-1/2} \cdot \left[\left(\frac{4}{x^3} + \frac{3}{x^2} + \frac{1}{x} \right) + \left(\frac{4}{x^3} + \frac{1}{x^2} \right) e^{-x} \right]_{x}^{x}. \tag{7}$$

The simple form for μ is the result of numerical coincidence alone.

(c) With the results of part (b), do the single numerical integral in (a) numerically. Compare the asymptotic result at $x = \infty$ with the result in the text, $X_n(x = \infty) = 0.15$.

Item a)

We can write the differential equation as

$$\frac{dX_n}{dx} + \frac{x\lambda_{np}}{H(x=1)}(1+e^{-x})X_n = \frac{x\lambda_{np}}{H(x=1)}e^{-x} \to \frac{dX_n}{dx} + \frac{\lambda_{np}}{xH(x)}(1+e^{-x})X_n = \frac{\lambda_{np}}{xH(x)}e^{-x},$$

which can be solved by integrating $\mu(x)$:

$$\mu(x) = \int_{x_i}^{x} \frac{\mathrm{d}x'}{x'H(x')} \lambda_{np}(x') (1 + e^{-x'}),$$

then X_n is

$$X_n(x) = \frac{1}{e^{\mu(x)}} \left(\int_{x_i}^x e^{\mu(x')} \frac{\lambda_{np}(x')e^{-x'}}{x'H(x')} \, dx' \right),$$

then we receive

$$X_n(x) = \int_{x_i}^x dx' \frac{\lambda_{np}(x')e^{-x'}}{x'H(x')} e^{\mu(x')-\mu(x)}$$

Item b)

We have that

$$H(x) = \sqrt{\frac{8\pi G\rho}{3}} = \left[\frac{8\pi G}{3} \frac{g_* \pi^2 T^4}{30}\right]^{-1/2},$$

but we know from the lecture notes that T = Q/x, then

$$H(x) = \frac{Q}{x} \left[\frac{4\pi^3 G Q^2 g_*}{45} \right]^{-1/2},$$

so, substituting H(x') and $\lambda_{np}(x')$ in $\mu(x)$, we have

$$\mu(x) = \frac{255}{\tau_n Q} \left[\frac{4\pi^3 G Q^2 g_*}{45} \right]^{-1/2} \int_{x_i}^x \frac{x'^2}{x'^5} \frac{1}{x'} (12 + 6x' + x'^2) (1 + e^{-x'}) dx'$$

$$= \frac{255}{\tau_n Q} \left[\frac{4\pi^3 G Q^2 g_*}{45} \right]^{-1/2} \left[\int_{x_i}^x \left(\frac{12}{x'^4} + \frac{6}{x'^3} + \frac{1}{x'^2} \right) dx' + \int_{x_i}^x \left(\frac{12}{x'^4} + \frac{6}{x'^3} + \frac{1}{x'^2} \right) e^{-x'} dx' \right],$$

and then

$$\mu(x) = -\frac{255}{\tau_n Q} \left[\frac{4\pi^3 G Q^2 g_*}{45} \right]^{-1/2} \cdot \left[\left(\frac{4}{x^3} + \frac{3}{x^2} + \frac{1}{x} \right) + \left(\frac{4}{x^3} + \frac{1}{x^2} \right) e^{-x} \right] \Big|_{x_i}^{x}$$

Item c)

Solving numerically (Python) for x = 10000, $\tau_n = 886.7$ s, $G = 1.545 \cdot 10^{-2}$ MeV⁻⁴ s⁻², $g_* = 10.75$ and Q = 1.293 MeV, we receive

$$X_n = 0.1481$$

which is a close answer for $X_n(x \to \infty) \to 0.15$.

Question 2 - Dodelson 3.8

Solve for the evolution of the free electron fraction. Do not compare your results with Figure 3.4 until you finish part (d). Throughout, take parameters $\Omega_m = 1, \Omega_b = 0.06, h = 0.5$.

- (a) Use as an evolution variable $x \equiv \epsilon_0/T$ instead of time in Eq. (3.39). Rewrite the equation in terms of x and the Hubble rate at $T = \epsilon_0$.
- (b) Using the methods of Section 3.4, find the final freeze-out abundance of the free electron fraction, $X_e(x=\infty)$.
- (c) Numerically integrate the equation from (a) from x = 1 down to x = 1000. What is the final frozen-out X_e ?
- (d) Peebles (1968) argued that even captures to excited states would not be important except for the fraction of times that the n=2 state decays into two photons or expansion redshifts the Lyman alpha photon so that it cannot pump up a ground-state atom. Quantitatively, he multiplied the right-hand side of Eq. 8

$$\frac{dX_e}{dt} = \{ (1 - X_e)\beta - X_e^2 n_b \alpha^{(2)} \}$$
 (8)

by the correction factor,

$$C = \frac{\Lambda_{\alpha} + \Lambda_{2\gamma}}{\Lambda_{\alpha} + \Lambda_{2\gamma} + \beta^{(2)}} \tag{9}$$

where the two-photon decay rate is $\Lambda_{2\gamma} = 8.227 \, \text{sec}^{-1}$; Lyman alpha production is $\beta^{(2)} = \beta^{3\epsilon_0/4T}$; and

$$\Lambda_{\alpha} = \frac{H(3\epsilon_0)^2}{(8\pi)^2}.\tag{10}$$

Do this and show how it changes your final answer. Now compare the freezeout abundance with the result of (c) and the evolution with Figure 3.4.

Item a)

The Equation (3.39) can be written as

$$\frac{\mathrm{d}X_e}{\mathrm{d}t} = (1 - X_e)\beta - n_b\alpha^{(2)}X_e^2,$$

where X_e is the free electron fraction, n_b is the baryon number density, $\alpha^{(2)}$ is the recombination coefficient (or the rate of recombination) and β is the ionization rate.

We can rewrite the Hubble parameter in terms of T considering the early universe, as it was matter-dominated (we're asked to consider $\Omega_m = 1$), and then

$$H(T) = H_0 \sqrt{\Omega_m} \left(\frac{T}{T_0}\right)^{3/2},$$

where H_0 is the Hubble constant, Ω_m is the matter density and T_0 is the present-day temperature of the universe.

Now, to set $x = \epsilon_0/T$, we have

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{\epsilon_0}{T} \frac{\mathrm{d}T}{\mathrm{d}t},$$

but we know that

$$H(T) = -\frac{1}{T} \frac{\mathrm{d}T}{\mathrm{d}t},$$

then

$$\frac{\mathrm{d}x}{\mathrm{d}t} = xH(T) \to \mathrm{d}t = \frac{\mathrm{d}x}{xH(T)}.$$

We can now do

$$\frac{\mathrm{d}X_e}{\mathrm{d}t} \to \frac{\mathrm{d}X_e}{\mathrm{d}x} \frac{\mathrm{d}x}{\mathrm{d}t} = (1 - X_e)\beta - n_b \alpha^{(2)} X_e^2$$
$$\frac{\mathrm{d}X_e}{\mathrm{d}x} x H(T) = (1 - X_e)\beta - n_b \alpha^{(2)} X_e^2,$$

and we receive

$$\frac{\mathrm{d}X_e}{\mathrm{d}x} = \frac{(1 - X_e)\beta - n_b \alpha^{(2)} X_e^2}{xH(T = \epsilon_0)}$$

Item b)

Considering the same (3.39) Equation from Dodelson, we understand that at freeze-out, the rate change of X_e is effectively zero, so we set

$$\frac{dX_e}{dt} = 0 \to 0 = (1 - X_e)\beta - n_b \alpha^{(2)} X_e^2,$$

and when expanding all terms, we receive

$$n_b \alpha^{(2)} X_e^2 + \beta X_e - \beta = 0,$$

which we can solve with the quadratic equation by applying

$$X_e = \frac{-\beta \pm \sqrt{\beta^2 + 4n_b\alpha^{(2)}\beta}}{2n_b\alpha^{(2)}},$$

and X_e must be positive, so we choose the positive root, which results in

$$X_e = \frac{-\beta + \sqrt{\beta^2 + 4n_b\alpha^{(2)}\beta}}{2n_b\alpha^{(2)}}.$$

 β can be written in function of x by

$$\beta = \beta^{(0)} e^{-x},$$

where $\beta^{(0)}$ is a constant. And we understand that when $x \to \infty$, $\beta \approx 0$. In these terms, we receive that

$$X_e \approx 0$$

In the freeze-out condition, the value of X_e is expected to be small, so our result is close to what we are looking.

Item c)

Item d)