Day 1 - 16 July 2008

1 Let H be the orthocenter of an acute-angled triangle ABC. The circle Γ_A centered at the midpoint of BC and passing through H intersects the sideline BC at points A_1 and A_2 . Similarly, define the points B_1 , B_2 , C_1 and C_2 .

Prove that six points A_1 , A_2 , B_1 , B_2 , C_1 and C_2 are concyclic.

Author: Andrey Gavrilyuk, Russia

- 2 (i) If x, y and z are three real numbers, all different from 1, such that xyz = 1, then prove that $\frac{x^2}{(x-1)^2} + \frac{y^2}{(y-1)^2} + \frac{z^2}{(z-1)^2} \ge 1$. (With the \sum sign for cyclic summation, this inequality could be rewritten as $\sum \frac{x^2}{(x-1)^2} \ge 1$.)
 - (ii) Prove that equality is achieved for infinitely many triples of rational numbers x, y and z.

 Author: Walther Janous, Austria
- 3 Prove that there are infinitely many positive integers n such that $n^2 + 1$ has a prime divisor greater than $2n + \sqrt{2n}$.

Author: Kestutis Cesnavicius, Lithuania

Madrid, Spain

Day 2 - 17 July 2008

Find all functions $f:(0,\infty)\mapsto(0,\infty)$ (so f is a function from the positive real numbers) such that

$$\frac{(f(w))^2 + (f(x))^2}{f(y^2) + f(z^2)} = \frac{w^2 + x^2}{y^2 + z^2}$$

for all positive real numbes w, x, y, z, satisfying wx = yz.

Author: Hojoo Lee, South Korea

5 Let n and k be positive integers with $k \ge n$ and k-n an even number. Let 2n lamps labelled 1, 2, ..., 2n be given, each of which can be either on or off. Initially all the lamps are off. We consider sequences of steps: at each step one of the lamps is switched (from on to off or from off to on).

Let N be the number of such sequences consisting of k steps and resulting in the state where lamps 1 through n are all on, and lamps n + 1 through 2n are all off.

Let M be number of such sequences consisting of k steps, resulting in the state where lamps 1 through n are all on, and lamps n+1 through 2n are all off, but where none of the lamps n+1 through 2n is ever switched on.

Determine $\frac{N}{M}$.

Author: Bruno Le Floch and Ilia Smilga, France

6 Let ABCD be a convex quadrilateral with BA different from BC. Denote the incircles of triangles ABC and ADC by k_1 and k_2 respectively. Suppose that there exists a circle k tangent to ray BA beyond A and to the ray BC beyond C, which is also tangent to the lines AD and CD.

Prove that the common external tangents to k_1 and k_2 intersects on k.

Author: Vladimir Shmarov, Russia