PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶: C12N 15/29, 5/04, 15/82, A01H 4/00, 5/00

(11) International Publication Number:

WO 99/31243

(43) International Publication Date:

24 June 1999 (24.06.99)

(21) International Application Number:

PCT/US98/26784

A1

(22) International Filing Date:

16 December 1998 (16.12.98)

(30) Priority Data:

08/991,677

16 December 1997 (16.12.97) US

Published

Before the expiration of claims and to be republis.

(71) Applicant (for all designated States except US): INTERNA-TIONAL PAPER COMPANY [US/US]; 2 Manhattanville Road, Purchase, NY 10577-2196 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): CHIANG, Vincent, L. [US/US]; 1104 Birch Street, Hancock, MI 49930 (US). CARRAWAY, Daniel, T. [US/US]; 1910 Rich Street, Bainbridge, GE 31717 (US). SMELTZER, Richard, H. [US/US]; 5036 Valley Farm Road, Tallahassee, FL 32303 (US).

(74) Agents: GRAHAM, Mark, S.; Luedeka, Neely & Graham, P.C., P.O. Box 1871, Knoxville, TN 37901 (US) et al.

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(81) Designated States: BR, CA, CN, FI, ID, MX, NO, NZ, PL, RU, SE, US, European patent (AT, BE, CH, CY, DE, DK,

ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(54) Title: PRODUCTION OF SYRINGYL LIGNIN IN GYMNOSPERMS

(57) Abstract

The present invention relates to a method for producing syringyl lignin in gymnosperms. The production of syringyl lignin in gymnosperms is accomplished by genetically transforming a gymnosperm genome, which does not normally contain genes which code for enzymes necessary for production of syringyl lignin, with DNA which codes for enzymes found in angiosperms associated with production of syringyl lignin. The expression of the inserted DNA is mediated using host promoter regions in the gymnosperm. In addition, genetic sequences which code for gymnosperm lignin anti-sense mRNA may be incorporated into the gymnosperm genome in order to suppress the formation of the less preferred forms of lignin in the gymnosperm such as guaiacyl lignin.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ.	New Zealand		
CM	Cameroon		Republic of Korea	PL.	Poland		
CN	China	KR	Republic of Korea	PΤ	Portugal		
CU	Cuba	ΚZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

PRODUCTION OF SYRINGYL LIGNIN IN GYMNOSPERMS

Field of the Invention

5

10

15

20

25

30

This application claims the benefit of U.S. Provisional Application number 60/033,381, filed December 16, 1996. The invention relates to the molecular modification of gymnosperms in order to cause the production of syringyl units during lignin biosynthesis and to production and propagation of gymnosperms containing syringyl lignin.

Background of the Invention

Lignin is a major part of the supportive structure of most woody plants including angiosperm and gymnosperm trees which in turn are the principal sources of fiber for making paper and cellulosic products. In order to liberate fibers from wood structure in a manner suitable for making many grades of paper, it is necessary to remove much of the lignin from the fiber/lignin network. Lignin is removed from wood chips by treatment of the chips in an alkaline solution at elevated temperatures and pressure in an initial step of papermaking processes. The rate of removal of lignin from wood of different tree species varies depending upon lignin structure. Three different lignin structures have been identified in trees: p-hydroxyphenyl, guaiacyl and syringyl, which are illustrated in Fig. 1.

Angiosperm species, such as Liquidambar styraciflua L. [sweetgum], have lignin composed of a mixture of guaiacyl and syringyl monomer units. In contrast, gymnosperm species such as Pinus taeda L. [loblolly pine] have lignin which is devoid of syringyl monomer units. Generally speaking, the rate of delignification in a pulping process is directly proportional to the amount of syringyl lignin present in the wood. The higher delignification rates associated with species having a greater proportion of syringyl lignin result in more efficient pulp mill operations since the mills make better use of energy and capital investment and the environmental impact is lessened due to a decrease in chemicals used for delignification.

It is therefore an object of the invention to provide gymnosperm species which are easier to delignify in pulping processes.

Another object of the invention is to provide gymnosperm species such as loblolly pine which contain syringyl lignin.

An additional object of the invention is to provide a method for modifying genes involved in lignin biosynthesis in gymnosperm species so that production of syringyl lignin is increased while production of guaiacyl lignin is suppressed.

Still another object of the invention is to produce whole gymnosperm plants containing genes which increase production of syringyl lignin and repress production of guaiacyl lignin.

Yet another object of the invention is to identify, isolate and/or clone those genes in angiosperms responsible for production of syringyl lignin.

A further object of the invention is to provide, in gymnosperms, genes which produce syringyl

35

lignin.

Another object of the invention is to provide a method for making an expression cassette insertable into a gymnosperm cell for the purpose of inducing formation of syringyl lignin in a gymnosperm plant derived from the cell.

Definitions

5

10

15

20

25

30

35

The term "promoter" refers to a DNA sequence in the 5' flanking region of a given gene which is involved in recognition and binding of RNA polymerase and other transcriptional proteins and is required to initiate DNA transcription in cells.

The term "constitutive promoter" refers to a promoter which activates transcription of a desired gene, and is commonly used in creation of an expression cassette designed for preliminary experiments relative to testing of gene function. An example of a constitutive promoter is 35S CaMV, available from Clonetech.

The term "expression cassette" refers to a double stranded DNA sequence which contains both promoters and genes such that expression of a given gene is achieved upon insertion of the expression cassette into a plant cell.

The term "plant" includes whole plants and portions of plants, including plant organs (e.g. roots, stems, leaves, etc.)

The term "angiosperm" refers to plants which produce seeds encased in an ovary. A specific example of an angiosperm is *Liquidambar styraciflua* (L.)[sweetgum]. The angiosperm sweetgum produces syringyl lignin.

The term "gymnosperm" refers to plants which produce naked seeds, that is, seeds which are not encased in an ovary. A specific example of a gymnosperm is *Pinus taeda* (L.)[loblolly pine]. The gymnosperm loblolly pine does not produce syringyl lignin.

Summary of the Invention

With regard to the above and other objects, the invention provides a method for inducing production of syringyl lignin in gymnosperms and to gymnosperms which contain syringyl lignin for improved delignification in the production of pulp for papermaking and other applications. In accordance with one of its aspects, the invention involves cloning an angiosperm DNA sequence which codes for enzymes involved in production of syringyl lignin monomer units, fusing the angiosperm DNA sequence to a lignin promoter region to form an expression cassette, and inserting the expression cassette into a gymnosperm genome.

Enzymes required for production of syringyl lignin in an angiosperm are obtained by deducing an amino acid sequence of the enzyme, extrapolating an mRNA sequence from the amino acid sequence, constructing a probe for the corresponding DNA sequence and cloning the DNA sequence which codes for the desired enzyme. A promoter region specific to a gymnosperm lignin biosynthesis

gene is identified by constructing a probe for a gymnosperm lignin biosynthesis gene, sequencing the 5' flanking region of the DNA which encodes the gymnosperm lignin biosynthesis gene to locate a promoter sequence, and then cloning that sequence.

An expression cassette is constructed by fusing the angiosperm syringyl lignin DNA sequence to the gymnosperm promoter DNA sequence. Alternatively, the angiosperm syringyl lignin DNA is fused to a constitutive promoter to form an expression cassette. The expression cassette is inserted into the gymnosperm genome to transform the gymnosperm genome. Cells containing the transformed genome are selected and used to produce a transformed gymnosperm plant containing syringyl lignin.

In accordance with the invention, the angiosperm gene sequences bi-OMT, 4CL, P450-1 and P450-2 have been determined and isolated as associated with production of syringyl lignin in sweetgum and lignin promoter regions for the gymnosperm loblolly pine have been determined to be the 5' flanking regions for the 4CL1B, 4CL3B and PAL gymnosperm lignin genes. Expression cassettes containing sequences of selected genes from sweetgum have been inserted into loblolly pine embryogenic cells and presence of sweetgum genes associated with production of syringyl lignin has been confirmed in daughter cells of the resulting loblolly pine embryogenic cells.

The invention therefore enables production of gymnosperms such as loblolly pine containing genes which code for production of syringyl lignin, to thereby produce in such species syringyl lignin in the wood structure for enhanced pulpability.

Brief Description of the Drawings

5

10

15

20

25

30

35

The above and other aspects of the invention will now be further described in the following detailed specification considered in conjunction with the following drawings in which:

- Fig. 1 illustrates a generalized pathway for lignin synthesis; and
- Fig. 2 illustrates a bifunctional-O-methyl transferase (bi-OMT) gene sequence involved in the production of syringyl lignin in an angiosperm (SEQ ID 5 and 6);
- Fig. 3 illustrates a 4-coumarate CoA ligase (4CL) gene sequence involved in the production of syringyl lignin in an angiosperm (SEQ ID 7 and 8);
- Fig. 4 illustrates a P450-1 gene sequence involved in the production of syringyl lignin in an angiosperm (SEQ ID 1 and 2);
- Fig. 5 illustrates a P450-2 gene sequence involved in the production of syringyl lignin in an angiosperm (SEQ ID 3 and 4);
- Fig. 6 illustrates nucleotide sequences of the 5' flanking region of the loblolly pine 4CL1B gene showing the location of regulatory elements for lignin biosynthesis (SEQ ID 10);
- Fig. 7 illustrates nucleotide sequences of the 5' flanking region of the loblolly pine 4CL3B gene showing the location of regulatory elements for lignin biosynthesis (SEQ ID 11);
 - Fig. 8 illustrates nucleotide sequences of the 5' flanking region of loblolly pine PAL gene

showing the location of regulatory elements for lignin biosynthesis (SEQ ID 9);

Fig. 9 illustrates a PCR confirmation of the sweetgum P450-1 gene sequence in transgenic loblolly pine cells.

Detailed Description of the Invention

5

10

In accordance with the invention, a method is provided for modifying a gymnosperm genome, such as the genome of a loblolly pine, so that syringyl lignin will be produced in the resulting plant, thereby enabling cellulosic fibers of the same to be more easily separated from lignin in a pulping process. In general, this is accomplished by fusing one or more angiosperm DNA sequences (referred to at times herein as the "ASL DNA sequences") which are involved in production of syringyl lignin to a gymnosperm lignin promoter region (referred to at times herein as the "GL promoter region") specific to genes involved in gymnosperm lignin biosynthesis to form a gymnosperm syringyl lignin expression cassette (referred to at times herein as the "GSL expression cassette"). Alternatively, the one or more ASL DNA sequences are fused to one or more constitutive promoters to form a GSL expression cassette.

15

The GSL expression cassette preferably also includes selectable marker genes which enable transformed cells to be differentiated from untransformed cells. The GSL expression cassette containing selectable marker genes is inserted into the gymnosperm genome and transformed cells are identified and selected, from which whole gymnosperm plants may be produced which exhibit production of syringyl lignin.

20

To suppress production of less preferred forms of lignin in gymnosperms, such as guaiacyl lignin, genes from the gymnosperm associated with production of these less preferred forms of lignin are identified, isolated and the DNA sequence coding for anti-sense mRNA (referred to at times herein as the "GL anti-sense sequence") for these genes is produced. The DNA sequence coding for anti-sense mRNA is then incorporated into the gymnosperm genome, which when expressed bind to the less preferred guaiacyl gymnosperm lignin mRNA, inactivating it.

25

Further features of these and various other steps and procedures associated with practice of the invention will now be described in more detail beginning with identification and isolation of ASL DNA sequences of interest for use in inducing production of syringyl lignin in a gymnosperm.

I. Determination of DNA Sequence For Genes Associated with Production of Syringyl Lignin

30

35

The general biosynthetic pathway for production of lignin has been postulated as shown in Fig. 1. From Fig. 1, it can be seen that the genes CCL, OMT and F5H (which is from the class of P450 genes) may play key roles in production of syringyl lignin in some plant species, but their specific contributions and mechanisms remain to be positively established. It is suspected that the CCL, OMT and F5H genes may have specific equivalents in a specific angiosperm, such as sweetgum.

Accordingly, one aim of the present invention is to identify, sequence and clone specific genes of

interest from an angiosperm such as sweetgum which are involved in production of syringyl lignin and to then introduce those genes into the genome of a gymnosperm, such as loblolly pine, to induce production of syringyl lignin.

Genes of interest may be identified in various ways, depending on how much information about the gene is already known. Genes believed to be associated with production of syringyl lignin have already been sequenced from a few angiosperm species, viz, CCL and OMT.

5

10

15

20

25

30

35

DNA sequences of the various CCL and OMT genes are compared to each other to determine if there are conserved regions. Once the conserved regions of the DNA sequences are identified, primers homologous to the conserved sequences are synthesized. Reverse transcription of the DNA-free total RNA which was purified from sweetgum xylem tissue, followed by double PCR using gene-specific primers, enables production of probes for the CCL and OMT genes.

A sweetgum cDNA library is constructed in a host, such as lambda ZAPII, available from Stratagene, of LaJolla, CA, using poly(A) +RNA isolated from sweetgum xylem, according to the methods described by Bugos et al. (1995 Biotechniques 19:734-737). The above mentioned probes are used to assay the sweetgum cDNA library to locate cDNA which codes for enzymes involved in production of syringyl lignin. Once a syringyl lignin sequence is located, it is then cloned and sequenced according to known methods which are familiar to those of ordinary skill.

In accordance with the invention, two sweetgum syringyl lignin genes have been determined using the above-described technique. These genes have been designated 4CL and bi-OMT. The sequence obtained for the sweetgum syringyl lignin gene, designated bi-OMT, is illustrated in Fig. 2 (SEQ ID 5 and 6). The sequence obtained for the sweetgum syringyl lignin gene, designated 4CL, is illustrated in Fig. 3 (SEQ ID 7 and 8).

An alternative procedure was employed to identify the F5H equivalent genes in sweetgum. Because the DNA sequences for similar P450 genes from other plant species were known, probes for the P450 genes were designed based on the conserved regions found by comparing the known sequences for similar P450 genes. The known P450 sequences used for comparison include all plant P450 genes in the GenBank database. Primers were designed based on two highly conserved regions which are common to all known plant P450 genes. The primers were then used in a PCR reaction with the sweetgum cDNA library as a template. Once P450-like fragments were located, they were amplified using standard PCR techniques, cloned into a pBluescript vector available from Stratagene of LaJolla, CA and transformed into a DH5 α E. coli strain available from Gibco BRL of Gaithersburg, MD.

After E. coli colonies were tested in order to determine that they contained the P450-like DNA fragments, the fragments were sequenced. Several P450-like sequences were located in sweetgum using the above described technique. One P450-like sequence was sufficiently different from other

known P450 sequences to indicate that it represented a new P450 gene family. This potentially new P450 cDNA fragment was used as a probe to screen two full length clones from the sweetgum xylem cDNA library. These putative hydroxylase clones were designated P450-1 and P450-2. The sequences obtained for P450-1 and P450-2 are illustrated in Fig. 4 (SEQ ID 1 and 2) and Fig. 5 (SEQ ID 3 and 4).

II. Identification of GL Gene Promoter Regions

5

10

15

20

25

30

35

In order to locate gymnosperm lignin promoter regions, probes are developed to locate lignin genes. After the gymnosperm lignin gene is located, the portion of DNA upstream from the gene is sequenced, preferably using the GenomeWalker Kit, available from Clontech. The portion of DNA upstream from the lignin gene will generally contain the gymnosperm lignin promoter region.

Gymnosperm genes of interest include CCL-like genes and PAL-like genes, which are beleived to be involved in the production of lignin in gymnosperms. Preferred probe sequences are developed based on previously sequenced genes, which are available from the gene bank. The preferred gene bank accession numbers for the CCL-like genes include U39404 and U39405. A preferred gene bank accession number for a PAL-like gene is U39792. Probes for such genes are constructed according to methods familiar to those of ordinary skill in the art. A genomic DNA library is constructed and DNA fragments which code for gymnosperm lignin genes are then identified using the above mentioned probes. A preferred DNA library is obtained from the gymnosperm, *Pinus taeda* (L.)[Loblolly Pine], and a preferred host of the genomic library is Lambda DashII, available from Stratagene of LaJolla, CA.

Once the DNA fragments which code for the gymnosperm lignin genes are located, the genomic region upstream from the gymnosperm lignin gene (the 5'flanking region) was identified. This region contains the GL promoter. Three promoter regions were located from gymnosperm lignin biosynthesis genes. The first is the 5'flanking region of the loblolly pine 4CL1B gene, shown in Fig. 6 (SEQ ID 10). The second is the 5' flanking region of the loblolly pine gene 4CL3B, shown in Fig. 7 (SEQ ID 11). The third is the 5' flanking region of the loblolly pine gene PAL, shown in Fig. 8 (SEQ ID 9).

III. Fusing the GL Promoter Region to the ASL DNA Sequence

The next step of the process is to fuse the GL promoter region to the ASL DNA sequence to make a GSL expression cassette for insertion into the genome of a gymnosperm. This may be accomplished by standard techniques. In a preferred method, the GL promoter region is first cloned into a suitable vector. Preferred vectors are pGEM7Z, available from Promega, Madison, WI and SK available from Stratagene, of LaJolla, CA. After the promoter sequence is cloned into the vector, it is then released with suitable restriction enzymes. The ASL DNA sequence is released with the same restriction enzyme(s) and purified.

The GL promoter region sequence and the ASL DNA sequence are then ligated such as with T4 DNA ligase, available from Promega, to form the GSL expression cassette. Fusion of the GL and ASL DNA sequence is confirmed by restriction enzyme digestion and DNA sequencing. After confirmation of GL promoter-ASL DNA fusion, the GSL expression cassette is released from the original vector with suitable restriction enzymes and used in construction of vectors for plant transformation.

IV. Fusing the ASL DNA Sequence to a Constitutive Promoter Region

5

10

15

20

25

30

35

In an alternative embodiment, a standard constitutive promoter may be fused with the ASL DNA sequence to make a GSL expression cassette. For example, a standard constitutive promoter may be fused with P450-1 to form an expression cassette for insertion of P450-1 sequences into a gymnosperm genome. In addition, a standard constitutive promoter may be fused with P450-2 to form an expression cassette for insertion of P450-2 into a gymnosperm genome. A constitutive promoter for use in the invention is the double 35S promoter.

In the preferred practice of the invention using constitutive promoters, a suitable vector such as pBI221, is digested by XbaI and HindIII to release the 35S promoter. At the same time the vector pHygro, available from International Paper, was digested by XbaI and HindIII to release the double 35S promoter. The double 35S promoter was ligated to the previously digested pBI221 vector to produce a new pBI221 with the double 35S promoter. This new pBI221 was digested with SacI and SmaI, to release the GUS fragment. The vector is next treated with T4 DNA polymerase to produce blunt ends and the vector is self-ligated. This vector is then further digested with BamHI and XbaI, available from Promega. After the pBI221 vector containing the constitutive promoter region has been prepared, lignin gene sequences are prepared for insertion into the pBI221 vector.

The coding regions of sweetgum P450-1 or P450-2 are amplified by PCR using primer with restriction sites incorporated in the 5' and 3' ends. In one example, an XbaI site was incorporated at the 5' end and a BamHI site was incorporated at the 3' end of the sweetgum P450-1 or P450-2 genes. After PCR, the P450-1 and P450-2 genes were separately cloned into a TA vector available from Invitrogen. The TA vectors containing the P450-1 and P450-2 genes, respectively, were digested by XbaI and BamHI to release the P450-1 or P450-2 sequences.

The p35SS vector, described above, and the isolated sweetgum P450-1 or P450-2 fragments were then ligated to make GLS expression cassettes containing the constitutive promoter.

V. Inserting the Expression Cassette into the Gymnosperm Genome

There are a number of methods by which the GSL expression cassette may be inserted into a target gymnosperm cell. One method of inserting the expression cassette into the gymnosperm is by micro-projectile bombardment of gymnosperm cells. For example, embryogenic tissue cultures of loblolly pine may be initiated from immature zygotic embryos. Tissue is maintained in an undifferentiated state on semi-solid proliferation medium. For transformation, embryogenic tissue is

suspended in liquid proliferation medium. Cells are then sieved through, a preferably 40 mesh screen, to separate small, densely cytoplasmic cells from large vacuolar cells.

After separation, a portion of the liquid cell suspension fraction is vacuum deposited onto filter paper and placed on semi-solid proliferation medium. The prepared gymnosperm target cells are then grown for several days on filter paper discs in a petri dish.

A 1:1 mixture of plasmid DNA containing the selectable marker expression cassette and plasmid DNA containing the P450-1 expression cassette may be precipitated with gold to form microprojectiles. The microprojectiles are rinsed in absolute ethanol and aliquits are dried onto a suitable macrocarrier such as the macrocarrier available from BioRad in Hercules, CA.

Prior to bombardment, embryogenic tissue is preferably desiccated under a sterile laminar-flow hood. The desiccated tissue is transferred to semi-solid proliferation medium. The prepared microprojectiles are accelerated from the macrocarrier into the desiccated target cells using a suitable apparatus such as a BioRad PDS-1000/HE particle gun. In a preferred method, each plate is bombarded once, rotated 180 degrees, and bombarded a second time. Preferred bombardment parameters are 1350 psi rupture disc pressure, 6 mm distance from the rupture disc to macrocarrier (gap distance), 1 cm macrocarrier travel distance, and 10 cm distance from macrocarrier stopping screen to culture plate (microcarrier travel distance). Tissue is then transferred to semi-solid proliferation medium containing a selection agent, such as hygromycin B, for two days after bombardment.

Other methods of inserting the GSL expression cassette include use of silicon carbide whiskers, transformed protoplasts, *Agrobacterium* vectors and electroporation.

VI. Identifying Transformed Cells

5

10

15

20

25

30

35

In general, insertion of the GSL expression cassette will typically be carried out in a mass of cells and it will be necessary to determine which cells harbor the recombinant DNA molecule containing the GSL expression cassette. Transformed cells are first identified by their ability to grow vigorously on a medium containing an antibiotic which is toxic to non-transformed cells. Preferred antibiotics are kanamycin and hygromycin B. Cells which grow vigorously on antibiotic containing medium are further tested for presence of either portions of the plasmid vector, the syringyl lignin genes in the GSL expression cassette; e.g. the angiosperm bi-OMT, 4CL, P450-1 or P450-2 gene, or by testing for presence of other fragments in the GSL expression cassette. Specific methods which can be used to test for presence of portions of the GSL expression cassette include Southern blotting with a labeled complementary probe or PCR amplification with specific complementary primers. In yet another approach, an expressed syringyl lignin enzyme can be detected by Western blotting with a specific antibody, or by assaying for a functional property such as the appearance of functional enzymatic activity.

VII. Production of a Gymnosperm Plant from the Transformed Gymnosperm Cell

5

10

15

20

25

30

35

Once transformed embryogenic cells of the gymnosperm have been identified, isolated and multiplied, they may be grown into plants. It is expected that all plants resulting from transformed cells will contain the GSL expression cassette in all their cells, and that wood in the secondary growth stage of the mature plant will be characterized by the presence of syringyl lignin.

Transgenic embryogenic cells are allowed to replicate and develop into a somatic embryo, which are then converted into a somatic seedling.

VIII. Identification, Production and Insertion of a GL mRNA Anti-Sense Sequence

In addition to adding ASL DNA sequences, anti-sense sequences may be incorporated into a gymnosperm genome, via GSL expression cassettes, in order to suppress formation of the less preferred native gymnosperm lignin. To this end, the gymnosperm lignin gene is first located and sequenced in order to determine its nucleotide sequence. Methods for locating and sequencing amino acids which have been previously discussed may be employed. For example, if the gymnosperm lignin gene has already been purified, standard sequencing methods may be employed to determine the DNA nucleic acid sequence.

If the gymnosperm lignin gene has not been purified and functionally similar DNA or mRNA sequences from similar species are known, those sequences may be compared to identify highly conserved regions and this information used as a basis for the construction of a probe. A gymnosperm cDNA or genomic library can be probed with the above mentioned sequences to locate the gymnosperm lignin cDNA or genomic DNA. Once the gymnosperm lignin DNA is located, it may be sequenced using standard sequencing methods.

After the DNA sequence has been obtained for a gymnosperm lignin sequence, the complementary anti-sense strand is constructed and incorporated into an expression cassette. For example, the GL mRNA anti-sense sequence may be fused to a promoter region to form an expression cassette as described above. In a preferred method, the GL mRNA anti-sense sequence is incorporated into the previously discussed GSL expression cassette which is inserted into the gymnosperm genome as described above.

IX. Inclusion of Cytochrome P450 Reductase (CPR) to Enhance Biosynthesis of Syringyl Lignin in Gymnosperms

In the absence of external cofactors such as NADPH (an electron donor in reductive biosyntheses), certain angiosperm lignin genes such as the P450 genes may remain inactive or not acheive full or desired activity after insertion into the genome of a gymnosperm. Inactivity or insufficient activity can be determined by testing the resulting plant which contains the P450 genes for the presence of syringyl lignin in secondary growth. It is known that cytochrome P450 reductase (CPR) may be involved in promoting certain reductive biochemical reactions, and may activate the desired

expression of genes in many plants. Accordingly, if it is desired to enhance the expression of the angiosperm syringyl lignin genes in the gymnosperm, CPR may be inserted in the gymnosperm genome. In order to express CPR, the DNA sequence of the enzyme is ligated to a constitutive promoter or, for a specific species such as loblolly pine, xylem-specific lignin promoters such as PAL, 4CL1B or 4CL3B to form an expression cassette. The expression cassette may then be inserted into the gymnosperm genome by various methods as described above.

X. Examples

5

10

15

20

25

30

The following non-limiting examples illustrate further aspects of the invention. In these examples, the angiosperm is Liquidambar styraciflua (L.)[sweetgum] and the gymnosperm is Pinus taeda (L.)[loblolly pine]. The nomenclature for the genes referred to in the examples is as follows:

Genes	Biochemical Name
4CL (angiosperm)	4-coumarate CoA ligase
bi-OMT (angiosperm)	bifunctional-O-methyl transferase
P450-1 (angiosperm)	cytochrome P450
P450-2 (angiosperm)	cytochrome P450
PAL (gymnosperm)	phenylalanine ammonia-lyase
4CL1B (gymnosperm)	4-coumarate CoA ligase
4CL3B (gymnosperm)	4-coumarate CoA ligase

Example 1 - Isolating and Sequencing bi-OMT and 4CL Genes from an Angiosperm

A cDNA library for Sweetgum was constructed in Lambda ZAPII, available from Stratagene, of LaJolla, CA, using poly(A) +RNA isolated from Sweetgum xylem tissue. Probes for bi-OMT and 4CL were obtained through reverse transcription of their mRNAs and followed by double PCR using gene-specific primers which were designed based on the OMT and CCL cDNA sequences obtained from similar genes cloned from other species.

Four primers were used for amplifying OMT fragments. One was an oligo-dT primer. One was a bi-OMT primer, (which was used to clone gene fragments through modified differential display technique, as described below in Example 2) and the other two were degenerate primers, which were based on the conserved sequences of all known OMTs. The two degenerate primers were derived based on the following amino acid sequences:

- 5'- Gly Gly Met Ala Thr Tyr Cys Cys Ala Thr Thr Tyr Ala Ala Cys Ala Ala Gly Gly Cys-3' (primer #22) and
 - 3'-Ala Ala Ala Gly Ala Gly Ala Gly Asn Ala Cys Asn Asn Ala Asn Ala Asn Gly Ala-5'

(primer #23).

5

15

20

25

30

35

A 900 bp PCR product was produced when oligo-dT primer and primer #22 were used, and a 550 bp fragment was produced when primer numbers 22 and 23 were used.

Three primers were used for amplifying CCL fragments. They were derived from the following amino acid sequences:

5'-Thr Thr Gly Gly Ala Thr Cys Cys Gly Gly Ile Ala Cys Ile Ala Cys Ile Gly Gly Ile Tyr Thr Ile Cys Cys Ile Ala Ala Arg Gly Gly-3' (primer R1S)

5'-Thr Thr Gly Gly Ala Thr Cys Cys Gly Thr Ile Gly Thr Ile Gly Cys Ile Cys Ala Arg Cys
Ala Arg Gly Thr Ile Gly Ala Tyr Gly Gly-3' (primer H1S) and

3'-Cys Cys Ile Cys Thr Tyr Thr Ala Asp Ala Cys Arg Thr Ala Asp Gly Cys Ile Cys Cys Ala Gly Cys Thr Gly Thr Ala-5' (primer R2A)

R1S and H1S were both sense primers. Primer R2A was an anti-sense primer. A 650 bp fragment was produced if R1S and R2A primers were used and a 550 bp fragment was produced when primers H1S and R2A were used. The sequence of these three primers were derived from conserved sequences for plant CCLs.

The reverse transcription-double PCR cloning technique used for these examples consisted of adding 10 μ g of DNA-free total RNA in 25 μ l DEPC-treated water to a microfuge tube. Next, the following solutions were added:

- a. 5x Reverse transcript buffer 8.0μl,
- b. 0.1 M DTT $4.0 \mu l$
- c. 10 mM dNTP 2.0 μl
- d. $100 \mu M$ oligo-dT primers $8.0 \mu l$
- e. Rnasin 2.0 μl
 - f. Superscript II 1.0 μl

After mixing, the tube was incubated at a temperature of 42° C for one (1) hour, followed by incubation at 70° C for fifteen (15) minutes. Forty (40) μ I of 1N NaOH was added and the tube was further incubated at 68° C for twenty (20) minutes. After the incubation periods, 80 μ I of 1N HCl was added to the reaction mixture. At the same time, 17 μ I NaOAc, 5 μ I glycogen and 768 μ I of 100% ethanol were added and the reaction mixture was maintained at -80° C for 15 minutes in order to precipitate the cDNA. The precipitated cDNA was centrifuged at high speed at 4° C for 15 minutes. The resulting pellet was washed with 70% ethanol and then dried at room temperature, and then was dissolved in 20 μ I of water.

The foregoing procedure produced purified cDNA which was used as a template to carry out first round PCR using primers #22 and oligo-dT for cloning OMT cDNA and primer R1S and R2A for

cloning 4CL cDNA. For the first round PCR, a master mix of $50\mu l$ for each reaction was prepared. Each $50\mu l$ mixture contained:

a. 10x buffer 5μ l

5

10

15

20

25

30

35

- b. 25 mM MgCl₂ 5μl
- c. 100 μ M sense primer 1μ l (primer #22 for OMT and primer R1S for CCL).
- d. 100 μ l anti-sense primer 1 μ l (oligo-dT primer for OMT and R2A for CCL).
- e. $10 \text{ mM dNTP } 1 \mu l$
- f. Taq. DNA polymerase 0.5 μl

Of this master mix, 48 μ l was added into a PCR tube containing 2 μ l of cDNA for PCR. The tube was heated to 95° C for 45 seconds, 52°C for one minute and 72° C for two minutes. This temperature cycle was repeated for 40 cycles and the mixture was then held at 72° C for 10 minutes.

The cDNA fragments obtained from the first round of PCR were used as templates to perform the second round of PCR using primers 22 and 23 for cloning bi-OMT cDNA and primer H1S and R2A for cloning 4CL cDNA. The second round of PCR conditions were the same as the first round.

The desired cDNA fragment was then sub-cloned and sequenced. After the second round of PCR, the product with the predicted size was excised from the gel and ligated into a pUC19 vector, available from Clonetech, of Palo Alto, CA, and then transformed into DH5α, an *E. coli* strain, available from Gibco BRL, of Gaithersburg, MD. After the inserts had been checked for correct size, the colonies were isolated and plasmids were sequenced using a Sequenase kit available from USB, of Cleveland, OH. The sequences are shown in Fig. 2 (SEQ ID 5 and 6) and Fig. 3 (SEQ ID 7 and 8).

Example 2 - Alternative Isolation Method of Angiosperm bi-OMT gene

As previously mentioned, one bi-OMT clone was produced via modified differential display technique. This method is another type of reverse transcription-PCR, in which DNA-free total RNA was reverse transcribed using oligo-dT primers with a single base pair anchor to form cDNA. The oligo-dT primers used for reverse transcription of mRNA to synthesize cDNA were:

TIIA: TTTTTTTTTTA,

T11C: TTTTTTTTTC, and

TIIG: TTTTTTTTTTG,

These cDNAs were then used as templates for radioactive PCR which was conducted in the presence of the same oligo-dT primers as listed above, a bi-OMT gene-specific primer and 35S-dATP. The OMT gene-specific primer was derived from the following amino acid sequence: 5'-Cys Cys Asn Gly Gly Asn Gly Gly Ser Ala Arg Gly Ala-3'.

The following PCR reaction solutions were combined in a microfuge tube:

- a. H₂O 9.2μl,
- b. Taq Buffer 2.0µl
- c. $dNTP (25\mu M) 1.6\mu l$

PCT/US98/26784

- d. Primers (5 μ M) 2 μ l, for each primer
- e. ^{35}S -dATP 1μ l
- f. Taq. pol. 0.2µ1
- g. cDNA 2.0μl.

5

10

15

20

25

30

35

The tube was heated to a temperature of 94° C and held for 45 seconds, then at 37° C for 2 minutes and then 72°C for 45 seconds for forty cycles, followed by a final reaction at 72°C for 5 minutes.

The amplified products were fractionated on a denaturing polyacrylamide sequencing gel and autoradiography was used to identify and excise the fragments with a predicted size. The designed OMT gene-specific primer had a sequence conserved in a region toward the 3'-end of the OMT cDNA sequence. This primer, together with oligo-dT, was amplified into a OMT cDNA fragment of about 300 bp.

Three oligo-dTs with a single base pair of A, C or G, respectively, were used to pair with the OMT gene-specific primer. Eight potential OMT cDNA fragments with predicted sizes of about 300 bp were excised from the gels after several independent PCR rounds using different combinations of oligo-dT and OMT gene-specific oligo-nucleotides as primers.

The OMT cDNA fragments were then re-amplified. A Southern blot analysis was performed for the resulting cDNAs using a 360 base-pair, ³²P radio-isotope labeled, aspen OMT cDNA 3'-end fragment as a probe to identify the cDNA fragments having a strong hybridization signal, under low stringency conditions. Eight fragments were identified. Out of these eight cDNA fragments, three were selected based on their high hybridization signal for sub-cloning and sequencing. One clone, LsOMT3'-1, (where the "Ls" prefix indicates that the clone was derived from the Liquidambar styraciflua (L.) genome) was confirmed to encode bi-OMT based on its high homology to other lignin-specific plant OMTs at both nucleotide and amino acid sequence levels.

A cDNA library was constructed in Lambda ZAP II, available from Stratagene, of LaJolla, CA, using 5µg poly(A)+RNA isolated from sweetgum xylem tissue. The primary library consisting of approximately 0.7 x 10⁶ independent recombinants was amplified and approximately 10⁵ plaque-forming-units (pfu) were screened using a homologous 550 base-pair probe. The hybridized filter was washed at high stringency (0.25 x SSC, 0.1% SDS, 65° C) conditions. The colony containing the bi-OMT fragment identified by the probe was eluted and the bi-OMT fragment was produced. The sequence as illustrated in Fig. 2 (SEQ ID 5 and 6) was obtained.

Example 3 - Isolating and Producing the DNA which codes for the Angiosperm P450-1 Gene

In order to find putative P450 cDNA fragments as probes for cDNA library screening, a highly degenerated sense primer based on the amino acid sequence of 5'-Glu, Glu, Phe, Arg, Pro, Glu, Arg-3' was designed based on the conserved regions found in some plant P450 proteins. This conserved domain was located upstream of another highly conserved region in P450 proteins, which had an amino

acid sequence of 5'-Phe Gly Xaa Gly Xaa Xaa Cys Xaa Gly-3'. This primer was synthesized with the incorporation of an XboI restriction site to give a 26-base-pair oligomer.

This primer and the oligo-dT-Xhol primer were then used to perform PCR reactions with the sweetgum cDNA library as a template. The cDNA library was constructed in Lambda ZAPII, available from Stratagene, of LaJolla, CA, using poly(A) +RNA isolated from Sweetgum xylem tissue. Amplified fragments of 300 to 600 bp were obtained. Because the designed primer was located upstream of the highly conserved P450 domain, this design distinguished whether the PCR products were P450 gene fragments depending on whether they contained the highly conserved amino acid domain.

10

15

20

25

30

35

5

All the fragments obtained from the PCR reaction were then cloned into a pUC19 vector, available from New England Biolab, Beverly, MA, and transformed into a DH5 α E. coli strain, available from Gibco BRL, of Gaithersburg, MD.

Twenty-four positive colonies were obtained and sequenced. Sequence analysis indicated four groupings within the twenty-four colonies. One was C4H, one was an unknown P450 gene, and two did not belong to P450 genes. Homologies of P450 genes in different species are usually more than 80%. Because the homologies between the P450 gene families found here were around 40%, the sequence analysis indicated that a new P450 gene family was sequenced. Moreover, since this P450 cDNA was isolated from xylem tissue, it was highly probable that this P450 gene was P450-1.

The novel sweetgum P450 cDNA fragment was used as a probe to screen a full length cDNA encoding for P450-1. Once the P450-1 gene was located it was sequenced. The length of the P450-1 cDNA is 1707 bp and it contains 45 bp of 5' non-coding region and 135 bp of 3' non-coding region. The deduced amino acid sequence also indicates that this P450 cDNA has a hydrophobic core at the N-terminal, which could be regarded as a leader sequence for c-translational targeting to membranes during protein synthesis. At the C-terminal region, there is a heme binding domain that is characteristic of all P450 genes. The P450-1 sequence, as illustrated in Fig. 4 (SEQ ID 1 and 2), was produced, according to the above described methods.

Example 4 - Isolating and Producing the DNA which codes for the Angiosperm P450-2 Gene

By using similar strategy of synthesizing PCR primers from the published literature for hydroxylase genes in plants, another full length P450 cDNA has been isolated that shows significant similarity with a putitive F5H clone from Arabidopsis (Meyers et al. 1996: PNAS 93, 6869-6874). This cloned cDNA, designated P450-2, contains 1883 bp and encodes an open reading frame of 511 amino acids. The amino acid similarity shared between Arabidopsis F5H and the P450-2 sweetgum clone is about 75%.

To confirm the function of the FA5H-2 gene, it was expressed in *E.coli*, strain, DH5 alpha, via pQE vector preparation, according to directions available with the kit. A CO-Fe²⁺ binding assay was

also performed to confirm the expression of P450-2 as a functional P450 gene. (Omura & Sato 1964, J. of Biochemistry 239: 2370-2378, Babriac et.al. 1991 Archives of Biochemistry and Biophysics 288:302-309). The CO-Fe²⁺ binding assay showed a peak at 450nm which indicates that P450-2 has been overexpressed as a functional P450 gene.

The P450-2 protein was further purified for production of antibodies in rabbits, and antibodies have been successfully produced. In addition, Western blots show that this antibody is specific to the membrane fraction of sweetgum and aspen xylem extract. When the P450-2 antibody was added to a reaction mixture containing aspen xylem tissue, enzyme inhibition studies showed that the activity of FA5H in aspen was reduced more than 60%, a further indication that P450-2 performs a P450-like function. Recombinant P450-2 protein co-expressed with Arabidopsis CPR protein in a baculovirus expression system hydroxylated ferulic acid (specific activity: 7.3 pKat/mg protein), cinnamic acid (specific activity: 25 pKat/mg protein), and p-coumaric acid (specific activity: 3.8 pKat/mg protein). The P450-2 enzyme which may be referred to as C4C3F5-H appears to be a broad spectrum hydroxylase in the phenylproponoid pathway in plants. Fig. 5 (SEQ ID 3 and 4) illustrates the P450-2 sequence.

Example 5 - Identifying Gymnosperm Promoter Regions

5

10

15

20

25

30

35

In order to identify gymnosperm promoter regions, sequences from loblolly pine PAL and 4CL1B and 4CL3B lignin genes were used as primers to screen the loblolly pine genomic library, using the GenomeWalker Kit. The loblolly pine PAL primer sequence was obtained from the GenBank, reference number U39792. The loblolly pine 4CL1B primer sequences were also obtained from the gene bank, reference numbers U39404 and U39405.

The loblolly pine genomic library was constructed in Lambda DashII, available from Stratagene, of LaJolla, CA. 3 x 10° phage plaques from the genomic library of loblolly pine were screened using both the above mentioned PAL cDNA and 4CL (PCR clone) fragments as probes. Five 4CL clones were obtained after screening. Lambda DNAs of two 4CL of the five 4CL clones obtained after screening were isolated and digested by EcoRV, Pstl, Sall and Xbal for Southern analysis. Southern analysis using 4CL fragments as probes indicated that both clones for the 4CL gene were identical. Results from further mapping showed that none of the original five 4CL clones contained promoter regions. When tested, the PAL clones obtained from the screening also did not contain promoter regions.

In a second attempt to clone the promoter regions associated with the PAL and 4CL a Universal GenomeWalker(TM) kit, available from Clontech, was used. In the process, total DNA from lobloily pine was digested by several restriction enzymes and ligated into the adaptors (libraries) provided with the kit. Two gene-specific primers for each gene were designed (GSP1 and 2). After two rounds of PCR using these primers and adapter primers of the kit, several fragments were amplified from each

library. A 1.6 kb fragment and a 0.6 kb fragment for PAL gene and a 2.3 kb fragment (4CL1B) and a 0.7 kb fragment (4CL3B) for the 4CL gene were cloned, sequenced and found to contain promoter regions for all three genes. See Fig. 6 (SEQ ID 10), 7 (SEQ ID 11) and 8 (SEQ ID 9).

Example 6 - Fusing the ASL DNA Sequence to A Constitutive Promoter Region and Inserting the Expression Cassette Into a Gymnosperm Genome

5

10

15

20

25

30

35

As a first step, a ASL DNA sequence, P450-1, was fused with a constitutive promoter region according to the methods described in the above Section IV to form an P450-1 expression cassette. A second ASL DNA sequence, P450-2, was then fused with a constitutive promoter in the same manner to form a P450-2 expression cassette. The P450-1 expression cassette was inserted into the gymnosperm genome by micro-projectile bombardment. Embryogenic tissue cultures of loblolly pine were initiated from immature zygotic embryos. The tissue was maintained in an undifferentiated state on semi-solid proliferation medium, according to methods described by Newton et al. TAES Technical Publication "Somatic Embryogenesis in Slash Pine", 1995 and Keinonen-Mettala et al. 1996, Scand, J. For, Res, 11: 242-250.

After separation, 5 ml of the liquid cell suspension fraction which passes through the 40 mesh screen was vacuum deposited onto filter paper and placed on semi-solid proliferation medium. The prepared gymnosperm target cells were then grown for 2 days on filter paper discs placed on semi-solid proliferation medium in a petri dish. These target cells were then bombarded with plasmid DNA containing the P450-1 expression cassette and an expression cassette containing a selectable marker gene encoding the enzyme which confers resistance to the antibiotic hygromycin B. A 1:1 mixture of of selectable marker expression cassette and plasmid DNA containing the P450-1 expression cassette is precipitated with gold (1.5-3.0 microns) as described by Sanford et al. (1992). The DNA-coated microprojectiles were rinsed in absolute ethanol and aliquots of $10 \mu l$ (5 μg DNA/3mg gold) were dried onto a macrocarrier, such as those available from BioRad (Hercules, CA).

Prior to bombardment, embryogenic tissue was desiccated under a sterile laminar-flow hood for 5 minutes. The desiccated tissue was transferred to semi-solid proliferation medium. The microprojectiles were accelerated into desiccated target cells using a BioRad PDS-1000/HE particle gun.

Each plate was bombarded once, rotated 180 degrees, and bombarded a second time. Preferred bombardment parameters were 1350 psi rupture disc pressure, 6 mm distance from the rupture disc to macrocarrier (gap distance), 1 cm macrocarrier travel distance, and 10 cm distance from macrocarrier stopping screen to culture plate (microcarrier travel distance). Tissue was then transferred to semi-solid proliferation medium containing hygromycin B for two days after bombardment.

The P450-2 expression cassette was inserted into the gymnosperm genome according to the same procedures.

Example 7 - Selecting Transformed Target Cells

5

10

15

20

25

30

35

After insertion of the P450-2 expression cassette and the selectable marker expression cassette into the gymnosperm target cells as described in Example 6, transformed cells were selected by exposure to an antibiotic that causes mortality of any cells not containing the GSL expression cassette. Forty independent cell lines were established from cultures co-bombarded with an expression cassette containing a hygromycin resistance gene construct and the P450-1 construct. These cell lines include lines Y2, Y17, Y7 and O4, as discussed in more detail below.

PCR techniques were then used to verify that the P450-1 gene had been successfully integrated into the genomes of the established cell lines by extracting genomic DNA using the Plant DNAeasy kit, available from Qiagen. 200 ng DNA from each cell line were used for each PCR reaction. Two P450-1 specific primers were designed to perform a PCR reaction with a 600bp PCR product size. The primers were:

LsP450-im1-S primer: ATGGCTTTCCTTCTAATACCCATCTC, and LsP450-im1-A primer: GGGTGTAATGGACGAGCAAGGACTTG.

Each PCR reaction (100 μ l) consisted of 75 μ l H₂O, 1 μ l MgCl₂ (25 mM), 10 μ l PCR buffer 1 μ l 10mM dNTPs, and 10 μ l DNA. 100 μ l oil was layered on the top of each reaction mix. Hot start PCR was done as follows: PCR reaction was incubated at 95 degrees C for 7 minutes and 1 μ l each of both LsP450-im1-S and LsP450-im1-A primers (100 μ M stock) and 1 μ l of Taq polymerase were added through oil in each reaction. The PCR program used was 95 degrees C for 1.5 minutes, 55 degrees C for 45 seconds and 72 degrees C for 2 minutes, repeated for 40 cycles, followed by extension at 72 degrees C for 10 minutes.

The above PCR products were employed to determine if gymnosperm cells contained the angiosperm lignin gene sequences. With reference to Fig. 9, PCR amplification was performed using template DNA from cells which grew vigorously on hygromycin B-containing medium. The PCR products were electrophoresed in an agarose gel containing 9 lanes. Lanes 1-4 contained PCR amplification of products of the Sweetgum P450-1 gene from a non-transformed control and transgenic loblolly pine cell lines. Lane 1 contained the non-transformed control PT52. Lane 2 contained transgenic line Y2. Lane 3 contained transgenic line Y17 and Lane 4 contained the plasmid which contains the expression cassette pSSLsP450-1-im-s. Lanes 2 through 4 all contain an amplified fragment of about 600 bp, indicating that the P450-1 gene has been successfully inserted into transgenic cell lines Y2 and Y17.

Lane 5 contained a DNA size marker Phi 174/HaeIII (BRL). The top four bands in this lane indicate molecular sizes of 1353, 1078, 872 and 603 bp.

Lanes 6-9 contained PCR amplification products of hygromycin B gene from non-transformed control and transgenic loblolly pine cell lines. Lane 6 contained the non-transformed control line

referenced to as PT52. Lane 7 contained transgenic line Y7. Lane 8 contained transgenic line O4. Lane 9 contained the plasmid which includes the expression cassette containing the gene encoding the enzyme which confers resistance to the antibiotic hygromycin B. Lanes 7-9 all show an amplified fragment of about 1000bp, indicating that the hygromycin gene has been successfully inserted into transgenic lines Y7 and O4.

5

10

15

20

25

These PCR results confirmed the presence of P450-1 and hygromycin resistance gene in transformed loblolly pine cell cultures. The results obtained from the PCR verification of 4 cell lines, and similar tests with the remaining 36 cell lines, confirm stable integration of the P450-1 gene and the hygromycin B gene in 25% of the 40 cell lines.

In addition, loblolly pine embryogenic cells which have been co-bombarded with the P450-2 and hygromycin B expression cassettes, are growing vigorously on hygromycin selection medium, indicating that the P450-2 expression cassette was successfully integrated into the gymnosperm genome.

Although various embodiments and features of the invention have been described in the foregoing detailed description, those of ordinary skill will recognize the invention is capable of numerous modifications, rearrangements and substitutions without departing from the scope of the invention as set forth in the appended claims. For example, in the case where the lignin DNA sequence is transcribed and translated to produce a functional syringyl lignin gene, those of ordinary skill will recognize that because of codon degeneracy a number of polynucleotide sequences will encode the same gene. These variants are intended to be covered by the DNA sequences disclosed and claimed herein. In addition, the sequences claimed herein include those sequences with encode a gene having substantial functional identity with those claimed. Thus, in the case of syringyl lignin genes, for example, the DNA sequences include variant polynucleotide sequences encoding polypeptides which have substantial identity with the amino acid sequence of syringyl lignin and which show syringyl lignin activity in gymnosperms.

What is claimed is:

1. A method for modifying the genome of a gymnosperm which comprises cloning one or more angiosperm DNA sequences which code for genes necessary for production of angiosperm syringyl lignin monomer units, fusing one or more of the angiosperm DNA sequences to a promoter region associated with a gene to form an expression cassette and inserting the expression cassette into the gymnosperm genome to thereby produce a modified genome in the gymnosperm containing genes which code for enzymes which produce syringyl lignin monomer units.

- 2. The method of claim 1, further comprising incorporating a genetic sequence which codes for anti-sense mRNA into the gymnosperm genome in order to suppress formation of guaiacyl lignin monomer units.
- 3. A gymnosperm plant containing an expression cassette produced according to the method of claim 1.
- 4. A loblolly pine containing an expression cassette produced according to the method of claim 1.
- 5. The method of claim 1 wherein the angiosperm DNA sequences are selected from the class consisting of 4-coumarate CoA ligase (4CL), bifunctional-O-methyl transferase (bi-OMT) and P450-1 and P450-2.
- 6. The method of claim 1 wherein the promoter region is selected from the class consisting of the 5' flanking region of phenylalanine ammonia-lyase (PAL) and the 5' flanking region of 4-coumarate CoA ligase (4CL1B and 4CL3B).
- 7. The method of claim 1 wherein the expression cassette is inserted into the gymnosperm genome by way of the transformation vector Agrobacterium.
- 8. The method of claim 7 wherein the Agrobacterium is Agrobacterium tumefaciens EH101.
- 9. The method of claim 1 wherein the expression cassette is inserted into the gymnosperm genome via direct DNA delivery to a target cell.
- 10. The method of claim 1 wherein the expression cassette is inserted into the gymnosperm genome by micro-projectile bombardment of a gymnosperm cell.
- 11. The method of claim 1 wherein the expression cassette is inserted into the gymnosperm genome by electroporation of a gymnosperm cell.
 - 12. The method of claim 1 wherein the expression cassette is inserted into the

gymnosperm genome via silicon carbide whiskers.

13. The method of claim 1 wherein the expression cassette is inserted into the gymnosperm genome via transformed protoplast.

- 14. The method of claim 1 further comprising inserting a selectable marker into the expression cassette.
- 15. The method of claim 14 wherein the selectable marker is selected from the group consisting of kanamycin and hygromycin B.
- 16. The method of claim 2 wherein the anti-sense mRNA is a gymnosperm genetic sequence which codes for the 4-coumarate CoA ligase (4CL) gene.
- 17. The method of claim 1 wherein the promoter region is a DNA sequence which includes the 5' flanking region of the gymnosperm loblolly pine PAL gene.
- 18. The method of claim 1 wherein the promoter region is a DNA sequence which includes the 5' flanking region of the gymnosperm loblolly pine 4CL1B gene.
- 19. The method of claim 1 wherein the promoter region is a DNA sequence which includes the 5' flanking region of the gymnosperm loblolly pine 4CL3B gene.
 - 20. The method of claim 1 wherein the promoter region includes a constitutive promoter.
- 21. An isolated P450-1 DNA sequence which encodes an enzyme involved in the biosynthesis of syringyl lignin monomer units, wherein said DNA is as shown in SEQ ID. No. 1 and 2.
- 22. An isolated P450-2 DNA sequence which encodes an enzyme involved in the biosynthesis of syringyl lignin monomer units, wherein said DNA is as shown in SEQ ID. No. 3 and 4.
- 23. An isolated bi-OMT DNA sequence which encodes an enzyme involved in the biosynthesis of syringyl lignin monomer units, wherein said DNA is as shown in SEQ ID No. 5 and 6.
- 24. An isolated 4CL DNA sequence which encodes an enzyme involved in the biosynthesis of syringyl lignin monomer units, wherein said DNA is as shown in SEQ ID No. 7 and 8.
- 25. An isolated DNA, wherein said DNA encodes for an enzyme involved in the biosynthesis of one or more syringyl lignin monomer units.
- 26. An isolated DNA sequence which includes the 5' flanking region of the gymnosperm loblolly pine PAL gene, containing the lignin promoter region and regulatory elements for

gymnosperm lignin biosynthesis as shown in SEQ ID No. 9.

5

10

27. An isolated DNA sequence which includes the 5' flanking region of the gymnosperm loblolly pine 4CL1B, containing the lignin promoter region and regulatory elements for gymnosperm lignin biosynthesis as shown in SEQ ID No. 10.

- 28. An isolated DNA sequence which includes the 5' flanking region of gymnosperm loblolly pine 4CL3B, containing the lignin promoter region and regulatory elements for gymnosperm lignin biosynthesis as shown in SEQ ID No. 11.
- 29. An isolated DNA, wherein said DNA includes the promoter region of a gymnosperm gene involved in lignin biosynthesis.
- 30. A method for modifying the genome of loblolly pine which comprises cloning one or more angiosperm DNA sequences which code for enzymes necessary for production of syringyl lignin monomer units, fusing one or more of the angiosperm DNA sequences to a promoter region to form an expression cassette, and inserting the expression cassette into the loblolly pine genome to thereby produce a modified genome in the loblolly pine containing genes which code for enzymes which produce syringyl lignin monomer units.
 - 31. The method of claim 30 wherein the promoter region is a constitutive promoter.
 - 32. A loblolly pine containing an expression cassette produced according to claim 30.
- 33. The method of claim 30 wherein the angiosperm DNA sequence is selected from the class consisting of 4-coumarate CoA ligase (4CL), bifunctional-O-methyl transferase (bi-OMT) and P450-1 and P450-2.
 - 34. A loblolly pine containing one or more of the DNA sequences of claim 33.
- 35. A loblolly pine containing the angiosperm DNA sequence inserted by the method of claim 30.
- 36. A method for modifying the genome of loblolly pine which comprises cloning the sweetgum P450-1 gene, fusing it to a constitutive promoter to form an expression cassette, and inserting the expression cassette into the loblolly pine genome.
 - 37. A loblolly pine containing the P450-1 gene.
- 38. A method for modifying the genome of loblolly pine which comprises cloning the sweetgum P450-2 gene, fusing it to a constitutive promoter to form an expression cassette, and inserting the expression cassette into the loblolly pine genome.
 - 39. A loblolly pine containing the P450-2 gene.
 - 40. A method for modifying the genome of a gymnosperm which comprises cloning the

sweetgum P450-1 gene, fusing it to a constitutive promoter to form an expression cassette, and inserting the expression cassette into the gymnosperm genome.

- 41. A method for modifying the genome of a gymnosperm which comprises cloning the sweetgum P450-2 gene, fusing it to a constitutive promoter to form an expression cassette, and inserting the expression cassette into a gymnosperm genome.
 - 42. A gymnosperm containing the P450-1 gene.
 - 43. A gymnosperm containing the P450-2 gene.
- 44. A gymnosperm containing a DNA sequence selected from the class consisting of the P450-1 DNA sequence of SEQ ID No. 1 and 2, the P450-2 DNA sequence of SEQ ID No. 3 and 4, the bi-OMT DNA sequence of SEQ ID No. 5 and 6, and the 4CL DNA sequences of SEQ ID No. 7 and 8.
 - 45. The gymnosperm of Claim 38, further comprising syringyl lignin.

FIG. 1

SUBSTITUTE SHEET (RULE 26)

<400> 5																
cgg	cacq	jagc	ccta	cctc	ct t	tett	ggaa	a aa	tttc	ccca	tto	gate	aca	atcc	gggcct	60
сааа	aaa	-				-	-	-	_	=	_	_	agt Ser	-	-	108
-	-	_	-	-	-	λla		-		-	Met		tta Leu		•	156
-		-			-	-				λla			ctc Leu	-	-	204
	-		-	Λla		-			Gly				tcc Ser 60			252
-		-	Ser	_	_			Lys			-	-	ηcc	-	•	300
	-	Λrg	_		-		Leu	-				Val	cta Leu		-	348
											Λrg		tac Tyr			396
-		_	-			-		_		Λsp	_		gtc Val			441
													gag Glu 140			492
						-		Glu					ttt Phe		_	540

Fig. 2A

		r Gl					e Glu					. Vat			ttc Phe	588
	Thi					Gly					s Ser				atg Met 190	636
					ı Thi	tac Tyr				Glu					Val	684
				/ G13		act Thr			llis					Ile		732
			Met			ggc Gly										780
						cct Pro 245										828
						gga Gly										876
						cac										924
						ggg Gly										972
						agc Ser										1020
						cat His 325										1068
aag Lys	gag Glu	ttt Phe	gag Glu	gcc Ala	ttg Leu	gcc Ala	aag Lys	ggg Gly	gct Nla	gga Gly	ttt Phe	gaa Glu	ggt Gly	ttc Phe	cga Arg	1116

Fig. 2B

335					340					345					350	
,	-	-	tcg Ser	•	-							-		-	-	1164
aag Lys		tga	igtect	ta o	eteg	gettt	ig ag	taca	ntaat	aco	caacı	cct	ttt	ggtti	ttc	1220
gaga	ittgt	ga	ttgtg	gatte	gt ga	attgl	ctct	ctt	tcgc	cagt	tygo	ectta	atg	atata	aatgta	1280
tegl	taac	ctc	gatea	acaga	ıa gı	igcaa	aaga	caq	gtgaa	itgt	acad	ctgct	ttt	ataaa	aataaa	1340
aatt	ttaa	aga	ttttc	atto	a to	gtaaa	aaaa	aaa	aaaa	aaaa						1380

<400> G Het Gly Ser Thr Ser Glu Thr Lys Met Ser Pro Sem Glu Ala Ala Ala Ala Glu Glu Glu Ala Phe Val Phe Ala Met Gln Leu Thr Ser Ala Ser Val Leu Pro Met Val Leu Lys Ser Ala Ile Glu Leu Asp Val Leu Glu Ile Met Ala Lys Ala Gly Pro Gly Ala His Ile Ser Thr Ser Asp Ile Ala Ser Lys Leu Pro Thr Lys Asn Pro Asp Ala Ala Val Met Leu Asp Arg Met Leu Arg Leu Leu Ala Ser Tyr Ser Val Leu Thr Cys Ser Leu Arg Thr Leu Pro Asp Gly Lys Ile Glu Arg Leu Tyr Gly Leu Ala Pro Val Cys Lys the Leu Thr Arg Asn Asp Asp Gly Val Ser Ile Ala Ala Leu Ser Leu Met Asn Gln Asp Lys Val Leu Met Glu Ser Trp Tyr His Leu Thr Glu Ala Val Leu Glu Gly Gly Ile Pro Phe Asn Lys Ala Tyr Gly Met Thr Ala Phe Glu Tyr His Gly Thr Asp Pro Arg Phe Asn Thr Val Phe Asn Asn Gly Mct Ser Asn His Ser Thr Ile Thr Met Lys Lys Ile Leu Glu Thr Tyr Lys Gly Phe Glu Gly Leu Gly Ser Val Val Asp Val Gly Gly Thr Gly Ala His Leu Asn Met Ile Ile Ala Lys Tyr Pro Met Ile Lys Gly Ile Asn Phe Asp Leu Pro His Val Ile Glu Glu

Fig. 2D

Λla	Pro	Ser	Tyr	Pro 245	∉Gly	Val	Glu	llis	Val 250	Gly	Gly	Λsp	Met	Phe 255	Val
Ser.	Val	Pro	Lys 260	Gly	Λsp	Ala	Ile	Phe 265	Met	Lys	Trp	lle	Cys 270	llis	Λsp
Trp	Ser	Λsp 275	Glu	llis	Cys	Leu	Lys 280	Phe	Leu	Lys	Lys	Cys 285	Tyr	Glu	Λla
Leu	Pro 290	Thr	Λsn	Gly	Lys	Val 295	Ile	Leu	Λla	Glu	Cys 300	Ile	Leu	Pro	Val
Λla 305	Pro	Λsp	Λla	Ser	Leu 310	Pro	Thr	Lys	Λla	Val 315	Val	llis	Ile	λsp	Val 320
Ile	Met	Leu	Λla	llis 325	Λsn	Pro	Gly	Gly	Lys 330	Glu	Λrg	Thr	Glu	Lys 335	Glu
Phe	Glu	Λla	Leu 340	Λla	Lys	G).y	Λla	Gly 345	Phe	Glu	Gly	Phe	Arg 350	Val	Val
Λla	Ser	Cys		_	Λsn		-	Ile				Leu 365		Lys	Ile

Fig. 2E

<10	00> 7	7														
cgç	geac	gagc	teat	.tttc	cca c	ttet	.ggll	.t ga	tete	etgea	att	ctto	cat	cagt	ccct	a 59
	Glu	g acc			Lys					lle			-			10
		atc Ile		Ile					Pro			_		Cys		155
		atc Ile 35											Λsn			203
		aag Lys														251
		tcc Ser														299
		ttg Leu														347
		tac Tyr														395
		gag Glu 115														443
		cat His														491
		gcc N la														539

Fig. 3A

160

								\						
	-	G1 y	-			Val		ag _' , Nrg		•	-	•	-	1163
					Val			cct Pro	-					1211
							-	aaa Lys 395					-	1259
						Λsp		gaa Glu						1307
								gag Glu						1355
								ttt Phe						1403
								aac Asn			-	-	-	1451
								gag Glu 475			-			1499
								gag Glu						1547
								aga Arg			-			1595
								ggc Gly					aag Lys	1643
-				Leu			Leu	ccc Pro g. 3C	Λsn 540	taat	tctc	at		1689
							• •	₀ .						

tegetaceet	cetttetett	atcatacgcc	aacacgaacg	aagaggetea	attaaacgct	1749
gotoattoya	ageggeteaa	ttaaagetge	tcattcatgt	ccaccgagtg	ggcagcctgt	1809
cttgttggga	tgttctttca	tttgattcag	ctgtgagaag	ccagaccctc	attatttatt	1869
gtgaaattca	caagaatgtc	tgtaaatcga	tgttgtgagt	gatgggtttc	aaaacacttt	1929
tgacattgtt	tacgttgtat	ttcctgctgt	tgaaaataac	tactttgtat	gacttttatt	1989
tgggaagata	acctttcaaa	aaaaaaaaa	aaaaaa	٠		2025

<400> 8

Met Glu Thr Gln Thr Lys Gln Glu Glu Ile Ile Tyr Arg Ser Lys Leu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Pro Asp Ile Tyr Ile Pro Lys His Leu Pro Leu His Ser Tyr Cys Phe
20 25 30

Glu Asn Ile Ser Gln Phe Gly Ser Arg Pro Cys Leu 11e Asn Gly Ala 35 40 45

Thr Gly Lys Tyr Tyr Thr Tyr Ala Glu Val Glu Leu Ile Ala Arg Lys
50 55 60

Val Ala Ser Gly Leu Asn Lys Leu Gly Val Arg Gln Gly Asp Ile Ile 65 70 75 80

Met Leu Leu Pro Asn Ser Pro Glu Phe Val Phe Ser Ile Leu Gly
85 90 95

Ala Ser Tyr Arg Gly Ala Ala Ala Thr Ala Ala Asn Pro Phe Tyr Thr 100 105 110

Pro Ala Glu Ile Arg Lys Gln Ala Lys Thr Ser Asn Ala Arg Leu Ile 115 120 125

Ile Thr His Ala Cys Tyr Tyr Glu Lys Val Lys Asp Leu Val Glu Glu 130 135 140

Asn Val Ala Lys Ile Ile Cys Ile Asp Ser Pro Pro Asp Gly Cys Leu 145 150 155 160

His Phe Ser Glu Leu Ser Glu Ala Asp Glu Asn Asp Met Pro Asn Val 165 170 175

Glu Ilc Asp Prc Asp Asp Val Val Ala Leu Pro Tyr Ser Ser Gly Thr 180 185 190

Thr Gly Leu Pro Lys Gly Val Met Leu Thr His Lys Gly Gln Val Thr
195 200 205

Ser Val Ala Gln Gln Val Asp Gly Glu Asn Pro Asn Leu Tyr Ile His 210 215 220

Ser Glu Asp Val Val Leu Cys Val Leu Pro Leu Phe His Ile Tyr Ser 225 230 235 240

Fig. 3E

12 / 32

SEQ ID 8

Met Asn Val Met Phe Cys Gly Leu Arg Val Gly Ala Ala Ile Leu Ile Met Gln Lys Phc Glu Ile Tyr Gly Leu Leu Glu Leu Val Arg Scr Thr Gly Asp His His Ala Tyr Arg Thr Pro Ile Val Leu Ala Ile Scr Lys Thr Pro Asp Leu His Asn Tyr Asp Val Ser Ser Ile Arg Thr Val Met Ser Gly Ala Ala Pro Leu Gly Lys Glu Leu Glu Asp Ser Val Arg Ala Lys Phe Pro Thr Ala Lys Lou Gly Gln Gly Tyr Gly Met Thr Glu Ala Gly Pro Val Leu Ala Met Cys Leu Ala Phe Ala Lys Glu Gly Phe Glu Ile Lys Ser Gly Ala Ser Gly Thr Val Leu Arg Asn Ala Gln Met Lys Ile Val Asp Pro Glu Thr Gly Val Thr Leu Pro Arg Asn Gln Pro Gly Glu Ile Cys Ile Arg Gly Asp Gln Ile Met Lys Gly Tyr Leu Asn Asp Pro Glu Ala Thr Glu Arg Thr Ile Asp Lys Glu Gly Trp Leu His Thr Gly Asp Val Gly Tyr Ile Asp Asp Asp Thr Glu Leu Phe Ile Val Asp Arg Leu Lys Glu Leu Ile Lys Tyr Lys Gly Phe Gln Val Ala Pro Ala Glu Leu Glu Ala Met Leu Leu Asn His Pro Asn Ile Ser Asp Ala Ala Val Val Pro Met 1,ys Asp Asp Glu Ala Gly Glu Leu Pro Val Ala Phe

Fig. 3F

Val Val Arg Ser Asp Gly Ser Gln Ile Ser Glu Ala Glu Ile Arg Gln 485 490 495

Tyr lle Ala Lys Glm Val Val Phe Tyr Lys Arg Ile His Arg Val Phe 500 500 510

Phe Val Glu Ala Ile Pro Lys . to Pro Ser Gly Lys Ile Leu Arg Lys 515 520 525

Asp Leu Arg Ala Lys Leu Ala Ser Gly Leu Pro Asn 530 535 540

Fig. 3G

cygo	acga	igg a	aacc	ctaa	na ac	etcac	ctcl	ctt	acco	ettt	ctet	tca	atg Met 1		56
													tac Tyr		104
													cca Pro		152
													cgg Nrg		200
			Ser					Pro					tgg Trp		248
			55					60					65		
	-	_					_			-	_	-	aag Lys	_	296
	-	•		-			_	-	-				agt Ser		344
-	-												gct Nl a		392
													gag Glu		440
		_			-	-		-			_	_	gat Asp 145		488
	-	-	-						-				cct Pro	-	536

Fig. 4A

	agt Ser			-	-								584
	aca Thr	-	-			-	-						632
	ysb		_		-								680
	ctt Leu 215												728
	atg Met			-						_			776
	gac Nsp			-				-	-				824
	aag Lys										-	-	872
	caa Gln												920
	gat Asp 295			Λla		Met							968
	gcc Nl a												1016
	gag Glu				-					_	-	-	1064

Fig. 4B

	-	-	gac Nsp													1112
			agg Arg													1160
-		-	aac Asn 375													1208
	-		gta Val													1256
-	_		cta Leu	-												1304
-	_		ggt Gly													1352
			ccc Pro													1400
			cta Leu 455	ttg					tgg							1448
aaa Lys	cca Pro	gag Glu 470	gag Glu	att Ile	gac Nsp	atg Met	tca Ser 475	gag Glu	aat Nsn	cca Pro	gga Gly	ttg Leu 480	Val	acc Thr	tac Tyr	1496
atg Met	cga Arg 485	Thr	ccg Pro	gtg Val	caa Gln	gct Ala 490	gtt Val	CCC	act Thr	cca Pro	agg Arg 495	Leu	cct Pro	gct Ala	cac His	1544
	Tyr		cgt Arg			Val				ttct	tag	tttg	ttat	ta		1591

Fig. 4C

ttcatgetet	taaggitiig	gactttgaac	ttatgatgag	atttgtaaaa	ttccaagtga	1651
tcaaatgaag	aaaagaccaa	ataaaaaygc	ttgacgattt	000000000	aaaaaa	1708

Met Ala Phe Leu Leu Ile Pro Ile Ser Ile Ile Phe Ile Val Leu Ala Tyr Gln Leu Tyr Gln Arg Leu Arg Phe Lys Leu Pro Pro Gly Pro Arg Pro Trp Pro Ile Val Gly Asn Leu Tyr Asp Ile Lys Pro Val Arg Phe Arg Cys Phe Ala Glu Trp Ser Gln Ala Tyr Gly Pro Ile Ile Ser Val Trp Phe Gly Ser Thr Leu Asn Val Ile Val Scr Asn Ser Glu Leu Ala Lys Glu Val Leu Lys Glu Lys Asp Gln Gln Leu Ala Asp Arg His Arg Ser Arg Ser Ala Ala Lys Phe Ser Arg Asp Gly Gln Asp Leu Ile Trp Ala Asp Tyr Gly Pro His Tyr Val Lys Val Thr Lys Val Cys Thr Leu Glu Leu Phe Thr Pro Lys Arg Leu Glu Ala Leu Arg Pro Ile Arg Glu Asp Glu Val Thr Ala Met Val Glu Ser Ile Phe Asn Asp Thr Ala Asn Pro Glu Asn Tyr Gly Lys Ser Met Leu Val Lys Lys Tyr Leu Gly Ala Val Ala Phe Asn Asn Ile Thr Arg Leu Ala Phe Gly Lys Arg Phe Val Asn Ser Glu Gly Val Met Asp Glu Gln Gly Leu Glu Phe Lys Glu Ile Val Ala Asn Gly Leu Lys Leu Gly Ala Ser Leu Ala Met Ala Glu His Ile Pro Trp Leu Arg Trp Met Phe Pro Leu Glu Glu Gly Ala Phe Ala

Fig. 4E

lvys	s His	s Gl	y Nia	245		g As _l) Λε	y Let	250		g Λla	ılle	. Met	. Glu 255	Glu
His	Thi	: 11.	260		j Lys	. Lys	s Ser	: Gly 265		/ N12	Glu	Gln	llis 270		Val
Λsp	Al.a	Let 275		Thi	Leu	Glo	Glu 280		Tyr	. Vsb	Leu	Ser 285		Asp	Thr
Ile	11c		/ Leu	ı Let	Trp	Λsp 295		. Ile	Thr	· Nla	Gly 300		Λsp	Thr	Thr
Λ1.a 305		s Ser	: Val	Glu	310		Met	Λla	Glu	Leu 315		Lys	Asn	Pro	Λ rg 320
Val	Gln	Glr	Lys	Λla 325		Glu	Glu	Leu	Դ sp		Val	Leu	Gly	Ser 335	Glu
Λrg	Val	Leu	Thr 340		Leu	Λsp	Phe	Ser 345		Leu	Pro	Tyr	Leu 350	Gln	Cys
Val	Λla	Lys 355		Λla	Leu	Λrg	Leu 360	llis	Pro	Pro	Thr	Pro 365	Leu	Met	Leu
Pro	llis 370	Λrg	Λla	Asn	Λla	Λsn 375	Val	Lys	Ile	Gly	Gly 300	Tyr	Λsp	Ile	Pro
Lys 385	Gly	Ser	Λsn	Val	His 390	Val	Λsn	Val	Тгр	Λla 395	Val	Λla	Λrg	Λsp	Pro 400
Λla	Val	Trp	Λrg	Asp 405	Pro	Leu	Glu	Phe	Λrg 410	Pro	Glu	Λrg	Phe	Ser 415	Glu
Лsр	Λsp	Val	Λsp 420	Met	Lys	Gly	llis	Λsp 425	Tyr	Λrg	Leu	Leu	Pro 430	Phe	Gly
Λla	Gly	Λrg 435	Λrg	Val	Cys	Pro	Gly 410	Λla	Gln	Leu	Gly	Ile 445	Λsn	Leu	Val
Thr	Ser 450	Met	Met	Gly	llis	Leu 455	Leu	llis	His	Phe	Туг 4 60	Trp	Ser	Pro	Pro
Lys 465	Gly	Val	Lys	Pro	Glu 470	Glu	Ile	Λsp	Met	Ser 475	Glu	Λsn	Pro	Gly	Leu 480

Fig. 4F

Val Thr Tyr Met Arg Thr Pro Val Gln Ala Val Pro Thr Pro Arg Leu 485 490 495

Pro Ala His Leu Tyr Lys Arg Val Ala Val Asp Met 500 505

Fig. 4G

									5	IEQ I	D3					
< 4	00>	3														
t g	caaa	cctg	cac	aaac	aaa	gaga	gaga	ag a	agaa	aaag	g aa	gaga	ggag	aga	gagaga	y 60
agı	agag	agaa	åcc	atg Met 1	gat Asp	tct Ser	tct Ser	ctt Leu S	cat His	gaa Glu	gcc Ala	ttg Leu	caa Gln 10	cca	cta Leu	109
Pro	at Me	g ac t Th 19	r per	y Llo y Pho	e tto	e att	: ata : Ilo 20	Pro	: tto	g eta Lei	a cte	c tta u Lea 25	u Lei	g gg 1 Gl:	c cta y Leu	157
gta Val	tict Sei 30	Λr	g ctt g Leu	cgc Arg	cag Gln	aga Arg 35	cta Leu	cca Pro	tac Tyr	cca Pro	cca Pro	Gly	cca Pro	aaa Lys	ggc Gly	205
tta Leu 45	Pro	gtg Val	atc lle	gga Gly	aac Asn 50	atg Met	ctc Leu	atg Met	atg Met	gat Asp 55	caa Gln	ct c	act	cac	cga Arg 60	253
			aaa Lys													301
			tta Leu 80													349
			caa Gln													397
			agc Ser													415
cac His 125	tac Tyr	Gly ggc	ccg Pro	Phe	tgg Trp 130	cgt Arg	cag Gln	atg Met	cgt Arg	aaa Lys 135	ctc Leu	tgc Cys	gtc Val	atg Met	aaa Lys 140	493
			Λrg										Λrg			541
gtc Val .	gac Asp	tcg Ser	gса Л1а 160	gta Val	cga Nrg	gtg Val	Val	gcg Λ1a 165	tcc Ser	aat Asn	att Ile	Gly	tcg Ser 170	acg Thr	gtg Val	589

Fig. 5A

				-	-			_		_			act Thr			637
	-			-									ttc Phe			685
	_												ata Ile	-	-	733
													gtc Val			781
	-	-	-		_		-				-	•	atc Ile 250		-	829
-													gat Asp		-	877
-	-	-									_	-	aaa Lys	-	-	925
-		-	-										gac Asp			973
	-		-	-	-	-					-	-	gtg Val			1021
-			-										gaa Glu 330			1069
_	-	_						-	-				gac Nsp		-	1117

Fig. 5B

gto Val	gaa Glu 350	Glu	a a a Lys	gac Nsp	tto Phe	gaç Glu 355	Lys	cto Leu	aco Thr	tac Tyr	: ttg 1.eu 360	lys	tgc Cys	gta Val	cty Leu	1165
aag Lys 365	Glu	gtc Val	Leu	λrg	ctc Leu 370	cac His	Pro	Pro	ato	e cca Pro 375	Leu	Leu	ctc Leu	cac	gag Glu 380	1213
act Thr	gcc Ala	gag Glu	gac N sp	gcc Ala 385	gag Glu	glc Val	ggc Gly	G1 y	tac Tyr 390	tac Tyr	att Ile	ecg Pro	gcy Nla	aaa Lys 395	tcg Ser	1261
λrg	gtg Val	atg Met	atc Ile 400	aac Nsn	gcg Ala	tgc Cys	gcc Ala	atc Ile 405	ggc Gly	cgg Nrg	gac Nsp	aag Lys	aac Asn 410	tcg Ser	tgg Trp	1309
										ttt Phe			gac			1357
										atc Ile						1405
cgt Arg 445	C gg	tct Ser	tuc Cys	ccc Pro	ggt G1y 450	atg Met	caa Gln	ctc Leu	gga Gly	ctc Leu 455	tac Tyr	gcg Ala	cta Leu	gag Glu	acg Thr 460	1453
										tgg Trp						1501
		Pro					Met			gt g Val						1549
						Thr				agt Ser						1597
Pro			tgat	cgaa	tg a	ttgg	ggga	g ct	ttgt	ggag	ggg	cttt	tat			1646

Fig. 5C

ggagacteta tatatagaty ggaagtgaaa caacgacagg tgaatgettg gattettggt 1706
atatattggg gagggagggg aaaaaaaaaa taatgaaagg aaagaaaaga gagaatttga 1766
atttetette etetgtggat aaaageeteg titttaattg titttatgtg gagatatttg 1826
tytttgttta titttatete tittttgea ataacactea aaaataaaaa aaaaaaa 1883

. WO 99/31243 PCT/US98/26784

SEQ ID 4

<400> 4

Met Asp Ser Ser Leu His Glu Ala Leu Gln Pro Leu Pro Met Thr Leu

Phe Phe Ile Ile Pro Leu Leu Leu Leu Gly Leu Val Ser Arg Leu

Arg Gln Arg Leu Pro Tyr Pro Pro Gly Pro Lys Gly Leu Pro Val Ile

Gly Asn Met Leu Met Met Asp Gln Leu Thr His Arg Gly Leu Ala Lys

Leu Ala Lys Gln Tyr Gly Gly Leu Phe His Leu Lys Met Gly Phe Leu

His Met Val Ala Val Ser Thr Pro Asp Met Ala Arg Gln Val Leu Gln

Val Gln Asp Asn lie Phe Ser Asn Arg Pro Ala Thr Ile Ala Ile Ser

Tyr Leu Thr Tyr Asp Arg Ala Asp Met Ala Phe Ala His Tyr Gly Pro

Phe Trp Arg Gln Met Arg Lys Leu Cys Val Met Lys Leu Phe Ser Arg

Lys Arg Ala Glu Ser Trp Glu Ser Val Arg Asp Glu Val Asp Ser Ala

Val Arg Val Val Ala Ser Asn Ile Gly Ser Thr Val Asn Ile Gly Glu

Leu Val Phe Ala Leu Thr Lys Asn Ile Thr Tyr Arg Ala Ala Phe Gly

Thr Ile Ser His Glu Asp Gln Asp Glu Phe Val Ala Ile Leu Gln Glu

The Ser Gln Leu Phe Gly Ala Phe Asn Ile Ala Asp Phe Ile Pro Trp

Leu Lys Trp Val Pro Gln Gly Ile Asn Val Arg Leu Asn Lys Ala Arg

Fig. 5E

Gly	Λla	Leu	ı Λsp	Gly 245		llc	- Λsp	Lys	11e 250		Λsp	ηsΛ	llis	11e 255	Gln
Lys	Gly	Ser	Lys 260		Ser	Glu	G) u	Va 1 265		Thr	Λsp	Met	Val 270	Λsp	Vab
Leu	Leu	Λ1.a 275	Phe	Tyr	Gly	Glu	Glu 280	Λla	Lys	Va).	Ser	Glu 285	Ser	Λsp	σι
Leu	G] n 290	Λsn	Ser	Ile	Lys	Leu 295	Thr	Lys	Λsp	Λsn	Ile 300	liys	Λla	lle	Met
Λsp 305	Val	Met	Phe	Gly	Gly 310	Thr	Glu	Thr	Val	Λla 315	Ser	Λla	Ile	Glu	Trp 320
Λla	Met	Thr	Glu	Leu 325	Met	Lys	Ser	Pro	Glu 330	Λsp	Leu	Lys	Lys	Val 335	Gln
Gln	Glu	Leu	Λ1a 340	Val	Val	Val	Gly	Leu 345	Λsp	Λrg	Λrg	Val	Glu 350	Glu	Lys
Λsp	Phe	Glu 355	Lys	Leu	Thr	Туг	Leu 360	Lys	Cys	Val	Leu	Lys 365	Glu	Val	Leu
Λrg	Leu 370	His	Pro	Pro	Ile	Pro 375	Leu	Leu	Leu	llis	Glu 380	Thr	Λla	Glu	Λsp
Λ1a 385	Glu	Val	Gly	Gly	Tyr 390	Tyr	Ile	Pro	Λla	Lys 395	Ser	Λrg	Val	Met	Ile 400
Λsn	Λla	Cys	Λla	11e 405	Gly	Λrg	Λsp	Lys	Λsn 410	Ser	Trp	Λla	Λsp	Pro 415	Λsp
Thr	Phe	Λrg	Pro 420	Ser	Λrg	Phe	Leu	Lys 425	Λsp	Gly	Val	Pro	Λsp 430	Phe	Lys
Gly	Λsn	Asn 435	Phe	Glu	Phe	Ile	Pro 440	Phe	Gly	Ser	Gly	λrg 445	Λrg	Ser	Cys
Pro	Gly 450	Met	Gln	Leu	Gly	Leu 455	Tyr	Λla	Leu	Glu	Thr 460	The	Val	Λla	llis
Leu 465	Leu	llis	Cys	Phe	Thr 470	Trp	Glu	Leu	Pro	Λsp 475	Gly	Met	Lys	Pro	Ser 480

Fig. 5F

Glu Leu Glu Met Asn Asp Val Phe Gly Leu Thr Ala Pro Arg Ala Ile 485 490 495

Ang Leu Thr Alm Val Pro Sen Pro Ang Leu Leu Cys Pro Leu Tyr 500 500 510

Fig. 5G

<400> 10
aaacaccaat ttaatggat ttcagati g tateccatge tattggctaa ggcattttte 60

ttattgtaat claaccaatt ctaattteca ceetggtgtg aactgactga caaatgcgyt 120

ccgaaaacag cgaatgaaat gtctgggtga tcggtcaaac aagcggtggg cgagagagcg 180

cgggtgttgg cctagccggg atgggggtag gtagacggcg tattaccggc gagttgtccg 240

aatggagttt tcggggtagg tagtaacgta gacgtcaatg gaaaaagtca taatctccgt 300

caaaaatcca accgctcctt cacatcgcag agttggtgg cacgggaccc tccacccact 360

cactcaatcg atcgcctgcc gtggttgccc attattcaac catacgccac ttgactcttc 420

accaacaatt ccaggccggc tttctataca atgtactgca caggaaaatc caatataaaa 480

agccggcctc tgcttccttc tcagtagccc ccagctcatt caattcttcc cactgcaggc 540

tacatttgtc agacacgttt tccgccattt ttcgcctgtt tctgcggaga atttgatcag 600

gttcggattg ggattgaatc aattgaaagg tttttatttt cagtatttcg atcgccatg 659

Fig. 6

. WO 99/31243 PCT/US98/26784

SEQ ID II

<400> 11 ggccgggtgg tgacatttat tcataaattc atctcaaaac aagaaggatt tacaaaaata 60 aaagaaaaca aaattttcat olttaacata attataattg tgttcacaaa attcaaactt 120 aaaccettaa tataaagaat tietticaae aatacaetti aateaeaaet tetteaatea 180 caacctcctc caacaaaatt aaaatagatt aataaataaa taaacttaac tatttaaaaa 240 adaatattat acaaaattta ttaadactto adaataaaca aactttttat acaaaattca 300 teaaaaettt anaataaage taaacaetga aaatgtgagt acatttaaaa qqaeqetgat 360 cacaaaaatt tigaanacat aaacaaactt gaaactctac ciillaagaa igagiitigic 420 gueteatuaa eteatuagut tuataguteg aateeaatua aeguatetut tatutuatgg 400 aataagggig iittaataag igatittiggg attittittag taatitatit gigatatgit 540 atggagtttt taaaaatata tatatatata tatatttttg ggttgagttt acttaaaatt 600 tggaaaaggt tggtaagaac tataaattga gttgtgaatg agtgttttat ggatttttta 660 agalgilana titatataig taattaaaat titattiiga ataacaaaaa tiataatigg 720 ataaaaaatt qttttqttaa atttagagta aaaatttcaa aatctaaaat aattaaacac 780 tattatttt aaaaaatttg ttggtaaatt ttatcttata titaagttaa aatttagaaa 840 aaattaattt taaattaata aacttttgaa gtcaaatatt ccaaatattt tccaaaatat 900 taaatotatt tigoattoaa aatacaatit aaataataaa aoticalgga atagattaas 960 caatttgtat aaaaaccaaa aatctcaaat aaaatttaaa ttacaaaaca ttatcaacat 1020 tatgatttca agaaagacaa taaccagttt ccaataaaat aaaaaacctc atggcccgta 1080 attaagatot cattaattaa ttottattit ttaattitti tacatagaaa atatottiat 1140 attgtatcca agaaatatag aatgttctcg tccagggact attaatctcc aaacaagttt 1200 caaaatcatt acattaaagc tcatcatgtc atttgtggat tggaaattat attgtataag 1260 agaaatatag aatgitictig tictagggact attaatilice aaacaaatit caaaatiatt 1320

Fig. 7A

acattaaago teateatgte attigiggal iggaaattag acaaaaaaaa teecaaatat 1380 ttototoaat otoocaaant atagttogaa otooatattt tiggaaattg agaattittt 1440 tacccaataa tatattitti tatacattiti agagattitic cagacatatt tgctctggga 1500 tttattggaa tqaaqqttga gttataaact ttcagtaatc caagtatctt cggtttttqa 1560 agatactaaa tooattatat aataaaaaca cattttaaac accaatttaa tgggatttca 1620 gatttgtate ceatgetatt ggetaaggea tttttettat tgtaatetaa eeaattetaa 1680 tttccaccct ggtgtgaact gactgacaaa tgcggtccga aaacagcgaa tgaaatgtct 1740 gggtgatcgg tcaancaagc ggtgggcgag agagcgcggg tgttggccta gccqqqatqq 1800 gggtaggtag acggcgtatt accggcgagt tgtccgaatg gagttttcgg ggtaggtagt 1860 aacgtagacg tcaatggaaa aagtcataat ctccgtcaaa aatccaaccg ctccttcaca 1920 tegeagagit ggiggecacg ggaeceteca eccaeteact egategeetg eegiggitge 1980 ccattattca accatacgee acttgactet teaceaacaa tteccaggeeg getttetata 2040 caatgtactg cacaggaaaa tocaatataa aaagooggoo totgottoot totcagtago 2100 coccagetea themattett eccaetigeag getacatitig teagacacgt titteegeeat 2160 ttttcgcctg tttctgcgga gaatttgatc aggttcggat tgggattgaa tcaattgaaa 2220 ggtttttatt ttcagtattt cgatcgccat g 2251

<400> 9 aaagataata tatgtgtaty ootaotaola cacattgttt tgaagtytgt aaacataytg 60 caacactagg aggacticaca atgagicactt gttgacatga aactagetaa atgeecaaca 120 atal ragiga adgetagita aactaaceee titigaetitie aagaigatat attitatatee 180 cractacyte treetettt tyrettrete trytgarraa acerreetry aaacaarret 240 caaatqtaaa attaaacctt gaaacttgta gagaccaaac ttccctagga gaaaccacat 300 ttatgacaac atatatacac caacccattg catactataa tattggaatt acctgcageg 360 aacgaaagaa acgetgtete accaactegt geactacate eegaaactta acctteeeet 420 gatacagatt gangageega aaaaagegtg catecaaatt tetggtatgg tgaggageeg 480 aaaaacgcgt gcgcctaatt tiitigagat gggccggaaa ataatgcgtg catctaaatt 540 ttcacgtyte gegtattgge gaggttgege tgaatgtgat eetgtgegtg agecacatte 600 attecattgg ttgaccegec ggtacegega ggacegtggg gteteacaga taegeggatg 660 gtggatcage actgagaaga ttagatgatg accaggeggg catttgaagt aaaaacttgg 720 gggtggttgg caagtacgcg acaaagaggg gtagtgcgca aggaagcgag ttggatgcaa 780 ataatattac aaagtgggtt ggtgggcatg agcatcaacc agaatgatgt tgttgctggt 840 leegigeaaa tieigaeeag tagittigaae aataetaeee aactigititi tiggiaaaaea 900 tgaagtgggt aaggagaatt gaacttacgt ctcatggtaa agggcaaggg caaatgactt 960 aacacatacc tttaactaat aaaaataccc ctaacaaata cgaaaacgaa tgagttatca 1020 cagacettea actaataaga tageeateag acceaeatet eetgaetgae caaaaacaaa 1080 tgacticaac caactaagat acccatcaaa gctaacccac aacccaattc ctcacttccc 1140 ettaccagae caaccaagca gacctacgee attaactact ttaggacgtg ggaattgggg 1200 gtgccaccgt tgaagaatgg cactcagggt tggtaatccc tccacgtgta tgtagcagtc 1260 gtttggtgga gacggcgtgt ttgaatgtcc accttccagt ttggagaaca aggaaattgg 1320

Fig. 8A

gcttatatta	ggcctggatc	tcttgtttca	gugcaggagt	agttcaggac	aggaactage	. 1380
attcaagaat	tcaattgccc	tgccctgctc	tgctctgctt	tgctcaactt	attgatccct	1110
getetggttt	gttcaatttc	ttgacccctg	ctgggttctg	ctctggtttg	cacactttct	1500
cgattatata	agtcattttg	gatecttgea	aggaagagaa	tatg		1544

Fig. 8B

WO 99/31243 PCT/US98/26784

SEQUENCE LISTING

<110>	Chiang	, Vi	ncen	t L											
	Carraw	аy,	Dani	el T	•										
	Smeltz	er,	Rich	ard	Н										
<120>	Produc	tion	of	Syri	ngyl	Lig	nin	in G	ymno	sper	m <i>s</i>				
<130>	50617														
<140>	US 08/	991,	677												
<141>	1997-1	2-16													
<150>	US 60/	033.	381												
	1996-1														
11517	1000 1														
<160>	11														
1200	••			•											
<170>	Patent	In V	/er	2 0											
11102	racenc	11. V	ÇI.	2.0											
<210>	1														
<211>															
<212>															
	Liquid	lamba	r et	urac	rifl:	ıa									
(213/	prquro	ambe	11 30	yrac	,1110										
<220>															
<221>	CDS														
	(48)	(157	1)												
<400>	1														
cggca	cgagg a	aaco	ctaa	aa ac	ctcac	ctct	ctt	acco	ttt	ctct	tca	atg	gct	ttc	56
												Met	Ala	Phe	
												1			
ctt c	ta ata	ccc	atc	tca	ata	atc	ttc	atc	qtc	tta	qct	tac	caq	ctc	104
	eu Ile														
	5				10					15		•			
	_									•					
tat c	aa cgg	ctc	aga	+++	aag	ctc	cca	CCC	aac	cca	cat	cca	taa	cca	152
	ln Arg		-												
20	9	200	9	25	2,5	200		110	30		•••			35	
20				23					30					33	
ata a	tc gga	220	att	t 20	a 2 a	2+2	222	~~~	at a	200	++0	000	tat	ttc	200
_	al Gly				-			-					_		200
TTE A	ar Grà	V311	40	TÄT	νah	116	пуз	45	AGT	nr y	FILE	ary	50	1116	
			-3 U					43					50		
acc a	ag tgg	tica	caa	aca	tac	aat	cca	atc	ata	tea	ata	taa	ttc	gat	248
	lu Trp						_			_					0
						- 3						- E-		- 2	

			55			60			65			
					gta Val							296
	-	_			caa Gln 90							344
					gat Asp							392
					gtt Val							440
					gct Ala							488
	_	_			att Ile							536
					gtg Val 170							584
				_	gca Ala							632
					gga Gly						Asn	680
				Gly			Met			Pro	tgg Trp	728
	_		Met			Glu			a Lys		ggg Gly	77(
											ata : Ile	824

	245					250					255					
-	-		-	-	ggt Gly 265		-						-	-	-	872
					aaa Lys		-		-	- •	-					920
			_	-	atc Ile		-		-	-			-			968
-	_		•	_	gcc Ala				-							1016
	-		• -		cta Leu	-		-				-	_	-	-	1064
	-	-	-		tca Ser 345	-						-	-	-	_	1112
	-			_	cac His						-				-	1160
_		-		_	aaa Lys					-			_	• -		1208
	-		_		gtc Val		-		-	_	_		-			1256
					ttt Phe								-	_	-	1304
					gat Asp 425											1352
					gca Ala			_			_	-			_	1400

. WO 99/31243 PCT/US98/26784

450 445 440 atg ggt cac cta ttg cac cat ttc tat tgg agc cct cct aaa ggt gta 1448 Met Gly His Leu Leu His His Phe Tyr Trp Ser Pro Pro Lys Gly Val 465 455 aaa cca gag gag att gac atg tca gag aat cca gga ttg gtc acc tac 1496 Lys Pro Glu Glu Ile Asp Met Ser Glu Asn Pro Gly Leu Val Thr Tyr 480 470 475 atg cga acc ccg gtg caa gct gtt ccc act cca agg ctg cct gct cac 1544 Met Arg Thr Pro Val Gln Ala Val Pro Thr Pro Arg Leu Pro Ala His 495 490 485 ttg tac aaa cgt gta gct gtg gat atg taattcttag tttgttatta 1591 Leu Tyr Lys Arg Val Ala Val Asp Met 505 500 ttcatgctct taaggttttg gactttgaac ttatgatgag atttgtaaaa ttccaagtga 1651 1708 tcaaatgaag aaaagaccaa ataaaaaggc ttgacgattt aaaaaaaaa aaaaaaa <210> 2 <211> 508 <212> PRT <213> Liquidambar styraciflua <400> 2 Met Ala Phe Leu Leu Ile Pro Ile Ser Ile Ile Phe Ile Val Leu Ala 10 Tyr Gln Leu Tyr Gln Arg Leu Arg Phe Lys Leu Pro Pro Gly Pro Arg 30 25 20 Pro Trp Pro Ile Val Gly Asn Leu Tyr Asp Ile Lys Pro Val Arg Phe 40 35 Arg Cys Phe Ala Glu Trp Ser Gln Ala Tyr Gly Pro Ile Ile Ser Val 60 55 50 Trp Phe Gly Ser Thr Leu Asn Val Ile Val Ser Asn Ser Glu Leu Ala 75 70 65 Lys Glu Val Leu Lys Glu Lys Asp Gln Gln Leu Ala Asp Arg His Arg 85 Ser Arg Ser Ala Ala Lys Phe Ser Arg Asp Gly Gln Asp Leu Ile Trp

100 105 110

Ala Asp Tyr Gly Pro His Tyr Val Lys Val Thr Lys Val Cys Thr Leu 115 120 125

- Glu Leu Phe Thr Pro Lys Arg Leu Glu Ala Leu Arg Pro Ile Arg Glu 130 135 140
- Asp Glu Val Thr Ala Met Val Glu Ser Ile Phe Asn Asp Thr Ala Asn 145 150 155 160
- Pro Glu Asn Tyr Gly Lys Ser Met Leu Val Lys Lys Tyr Leu Gly Ala 165 170 175
- Val Ala Phe Asn Asn Ile Thr Arg Leu Ala Phe Gly Lys Arg Phe Val 180 185 190
- Asn Ser Glu Gly Val Met Asp Glu Gln Gly Leu Glu Phe Lys Glu Ile 195 200 205
- Val Ala Asn Gly Leu Lys Leu Gly Ala Ser Leu Ala Met Ala Glu His 210 215 220
- Ile Pro Trp Leu Arg Trp Met Phe Pro Leu Glu Glu Gly Ala Phe Ala 225 230 235 240
- Lys His Gly Ala Arg Arg Asp Arg Leu Thr Arg Ala Ile Met Glu Glu 245 250 255
- His Thr Ile Ala Arg Lys Lys Ser Gly Gly Ala Gln Gln His Phe Val 260 265 270
- Asp Ala Leu Leu Thr Leu Gln Glu Lys Tyr Asp Leu Ser Glu Asp Thr 275 280 285
- Ile Ile Gly Leu Leu Trp Asp Met Ile Thr Ala Gly Met Asp Thr Thr 290 295 300
- Ala Ile Ser Val Glu Trp Ala Met Ala Glu Leu Ile Lys Asn Pro Arg 305 310 315 320
- Val Gln Gln Lys Ala Gln Glu Glu Leu Asp Asn Val Leu Gly Ser Glu
 325 330 335
- Arg Val Leu Thr Glu Leu Asp Phe Ser Ser Leu Pro Tyr Leu Gln Cys 340 345 350
- Val Ala Lys Glu Ala Leu Arg Leu His Pro Pro Thr Pro Leu Met Leu

		355					360					365				
Pro	His 370	Arg	Ala	Asn	Ala	Asn 375	Val	Lys	lle	Gly	Gly 380	Tyr	Asp	Ile	Pro	
Lys 385	Gly	Ser	Asn	Val	His 390	Val	Asn	Väl	Trp	Ala 395	Val	Ala	Arg	Asp	Pro 400	
Ala	Val	Trp	Arg	Asp 405	Pro	Leu	Glu	Phe	Arg 410	Pro	Glu	Arg	Phe	Ser 415	Glu	
Asp	Asp	Val	Asp 420	Met	Lys	Gly	His	Asp 425	Tyr	Arg	Leu	Leu	Pro 430	Phe	Gly	
Ala	Gly	Arg 435	Arg	Val	Cys	Pro	Gly 440	Ala	Gln	Leu	Gly	Ile 445	Asn	Leu	Val	
Thr	Ser 450	Met	Met	Gly	His	Leu 455	l.eu	His	His	Phe	Tyr 460	Trp	Ser	Pro	Pro	
Lys 465	-	Val	Lys	Pro	Glu 470	Glu	Ile	Asp	Met	Ser 475		Asn	Pro	Gly	Leu 480	
Val	Thr	Tyr	Met	Arg 485	Thr	Pro	Val	Gln	Ala 490		Pro	Thr	Pro	Arg 495		
Pro	Ala	His	Leu 500	Tyr	Lys	Arg	Val	Ala 505		Asp	Met					
<21 <21 <21		883 NA iqui	damb	ar s	tyra	cifl	ua									
<22	22> ((74).	. (16	(66												
	-		caca	aaca	aa g	agag	agaa	ıg aa	igaaa	aaag	g aaq	gagad	ggag	aga	gagagag	60
aga	agaga	agaa	gcc	atg Met 1	gat Asp	tct Ser	tct Ser	ctt Leu 5	cat His	gaa Glu	gcc Ala	ttg Leu	caa Gln 10	cca Pro	cta Leu	109

WO 99/31243

Pro Met Thr Leu Phe Phe Ile Ile Pro Leu Leu Leu Leu Gly Leu

ccc atg acg ctg ttc ttc att ata cct ttg cta ctc tta ttg ggc cta 157

		1.5					20					25				
,	Ser			-	-	•			tac Tyr		Pro					205
tta	30 ccg	gtg	atc	gga	aac	35 atg	ctc	atg	atg	gat	40 caa	ctc	act	cac	cga	253
Leu 45	Pro	Val	Ile	Gly	Asn 50	Met	Leu	Met	Met	Asp 55	Gln	Leu	Thr	His	Arg 60	
									ggc Gly 70							301
									tcc Ser							349
	-			-		-			ttc Phe					-		397
	_		-				Tyr	-	cga Arg	-	-	_	-		-	445
									cgt Arg							493
									tgg Trp 150							541
							Val		tcc Ser							589
				-	-		gct	-	acg Thr	-						637
									gac Asp			Glu				685
									ggt Gly							733

205					210					215					220	
							-		_				gtc Val			781
	-	-	-				-				-	-	atc Ile 250		-	829
-			_	-		-			-			-	gat Asp		-	877
-	-	-	-			_					_	-	aaa Lys	-	_	925
-		-	-										gac Asp			973
													gtg Val	-		1021
		-		-	-	-		_	-		-		gaa Glu 330	-		1069
													gac Asp		_	1117
	-			-			_				-		tgc Cys	-	-	1165
													ctc Leu			1213
													gcg Ala			1261
															tgg Trp	1309

WO 99/31243 PCT/US98/26784

405 400 410 gcc gac cca gat acg ttt agg ccc tcc agg ttt ctc aaa gac ggt gtg Ala Asp Pro Asp Thr Phe Arg Pro Ser Arg Phe Leu Lys Asp Gly Val 415 420 ccc gat ttc aaa ggg aac aac ttc gag ttc atc cca ttc ggg tca ggt 1405 Pro Asp Phe Lys Gly Asn Asn Phe Glu Phe Ile Pro Phe Gly Ser Gly 430 435 cgt cgg tct tgc ccc ggt atg caa ctc gga ctc tac gcg cta gag acg 1453 Arg Arg Ser Cys Pro Gly Met Gln Leu Gly Leu Tyr Ala Leu Glu Thr 450 445 act gtg gct cac ctc ctt cac tgt ttc acg tgg gag ttg ccg gac ggg 1501 Thr Val Ala His Leu Leu His Cys Phe Thr Trp Glu Leu Pro Asp Gly 470 atg aaa ccg agt gaa ctc gag atg aat gat gtg ttt gga ctc acc gcg Met Lys Pro Ser Glu Leu Glu Met Asn Asp Val Phe Gly Leu Thr Ala 480 485 490 cca aga gcg att cga ctc acc gcc gtg ccg agt cca cgc ctt ctc tgt Pro Arg Ala Ile Arg Leu Thr Ala Val Pro Ser Pro Arg Leu Leu Cys 495 500 cct ctc tat tgatcgaatg attgggggag ctttgtggag gggcttttat 1646 Pro Leu Tyr 510 ggagactcta tatatagatg ggaagtgaaa caacgacagg tgaatgcttg gatttttggt 1706 atatattggg gagggaggg aaaaaaaaaa taatgaaagg aaagaaaaga gagaatttga 1766 atttctcttc ctctgtggat aaaagcctcg tttttaattg tttttatgtg gagatatttg 1826 tgtttgttta tttttatctc tttttttgca ataacactca aaaataaaaa aaaaaaa <210> 4 <211> 511 <212> PRT <213> Liquidambar styraciflua . 1. <400> 4 Met Asp Ser Ser Leu His Glu Ala Leu Gln Pro Leu Pro Met Thr Leu 10 15

Phe Phe Ile Ile Pro Leu Leu Leu Leu Leu Gly Leu Val Ser Arg Leu 20 25 30

- Arg Gln Arg Leu Pro Tyr Pro Pro Gly Pro Lys Gly Leu Pro Val Ile 35 40 45
- Gly Asn Met Leu Met Met Asp Gln Leu Thr His Arg Gly Leu Ala Lys
 50 55 60
- Leu Ala Lys Gln Tyr Gly Gly Leu Phe His Leu Lys Met Gly Phe Leu 65 70 75 80
- His Met Val Ala Val Ser Thr Pro Asp Met Ala Arg Gln Val Leu Gln 85 90 95
- Val Gln Asp Asn Ile Phe Ser Asn Arg Pro Ala Thr Ile Ala Ile Ser 100 105 110
- Tyr Leu Thr Tyr Asp Arg Ala Asp Met Ala Phe Ala His Tyr Gly Pro 115 120 125
- Phe Trp Arg Gln Met Arg Lys Leu Cys Val Met Lys Leu Phe Ser Arg 130 135 140
- Lys Arg Ala Glu Ser Trp Glu Ser Val Arg Asp Glu Val Asp Ser Ala 145 150 155 160
- Val Arg Val Val Ala Ser Asn Ile Gly Ser Thr Val Asn Ile Gly Glu 165 170 175
- Leu Val Phe Ala Leu Thr Lys Asn Ile Thr Tyr Arg Ala Ala Phe Gly
 180 185 190
- Thr Ile Ser His Glu Asp Gln Asp Glu Phe Val Ala Ile Leu Gln Glu 195 200 205
- Phe Ser Gln Leu Phe Gly Ala Phe Asn Ile Ala Asp Phe Ile Pro Trp 210 215 220
- Leu Lys Trp Val Pro Gln Gly Ile Asn Val Arg Leu Asn Lys Ala Arg 225 230 235 240
- Gly Ala Leu Asp Gly Phe Ile Asp Lys Ile Ile Asp Asp His Ile Gln
 245 250 255
- Lys Gly Ser Lys Asn Ser Glu Glu Val Asp Thr Asp Met Val Asp Asp 260 265 270

WO 99/31243 PCT/US98/26784

Leu Leu Ala Phe Tyr Gly Glu Glu Ala Lys Val Ser Glu Ser Asp Asp 275 280 285

Leu Gln Asn Ser Ile Lys Leu Thr Lys Asp Asn Ile Lys Ala Ile Met 290 295 300

Asp Val Met Phe Gly Gly Thr Glu Thr Val Ala Ser Ala Ile Glu Trp 305 310 315 320

Ala Met Thr Glu Leu Met Lys Ser Pro Glu Asp Leu Lys Lys Val Gln 325 330 335

Gln Glu Leu Ala Val Val Gly Leu Asp Arg Arg Val Glu Glu Lys 340 345 350

Asp Phe Glu Lys Leu Thr Tyr Leu Lys Cys Val Leu Lys Glu Val Leu 355 360 365

Arg Leu His Pro Pro Ile Pro Leu Leu His Glu Thr Ala Glu Asp 370 375 380

Ala Glu Val Gly Gly Tyr Tyr Ile Pro Ala Lys Ser Arg Val Met Ile 385 390 395 400

Asn Ala Cys Ala Ile Gly Arg Asp Lys Asn Ser Trp Ala Asp Pro Asp 405 410 415

Thr Phe Arg Pro Ser Arg Phe Len Lys Asp Gly Val Pro Asp Phe Lys 420 425 430

Gly Asn Asn Phe Glu Phe Ile Pro Phe Gly Ser Gly Arg Arg Ser Cys 435 440 445

Pro Gly Met Gln Leu Gly Leu Tyr Ala Leu Glu Thr Thr Val Ala His 450 455 460

Leu Leu His Cys Phe Thr Trp Glu Leu Pro Asp Gly Met Lys Pro Ser 465 470 475 480

Glu Leu Glu Met Asn Asp Val Phe Gly Leu Thr Ala Pro Arg Ala Ile 485 490 495

Arg Leu Thr Ala Val Pro Ser Pro Arg Leu Leu Cys Pro Leu Tyr 500 505 510

<210> 5 <211> 1380

WO 99/31243 PCT/US98/26784

212/	DIVI	`														
213>	Lic	quida	ambaı	r sty	yrac	iflua	a									
(220) (221) (222)	CD:	S 7)	(117)	0)												
:400> :ggca		gc co	ctac	ctcc	t tt	cttg	gaaa	aat	ttcc	cca	ttcga	atcac	ca at	ccg	ggcct	60
caaaa		tg go et Gi								et S						108
		gca (Ala (156
		gtt Val														204
		atc Ile														252
		gcc Ala 65														300
		cgt Arg														348
		cgc Arg														396
		gtt Val								Asp						444
		ctg Leu							Lys					Ser		492
		ttg Leu														540

		145	•				150)			·	155				
		Gly				ttt Phe 165	Glu									588
	Thr					gga Gly										636
					Thr	tac Tyr										684
				Gly		act Thr										732
						ggc Gly										780
gag Glu	gag Glu 240	gct Ala	ccc Pro	tcc Ser	tat Tyr	cct Pro 245	ggt Gly	gtg Val	gag Glu	cat His	gtt Val 250	ggt Gly	gga Gly	gat Asp	atg Met	828
						gga Gly										876
						cac His										924
						999 999										972
ccc Pro	gtg Val	gcg Ala 305	cca Pro	gac Asp	gca Ala	agc Ser	ctc Leu 310	ccc Pro	act Thr	aag Lys	gca Ala	gtg Val 315	gtc Val	cat His	att Ile	1020
Asp	Val 320	Ile	Met	Leu	Ala	cat His 325	Asn	Pro	Gly	Gly	Lys 330	Glu	Arg	Thr	Glu	1068
aag Lys	gag Glu	ttt Phe	gag Glu	gcc Ala	ttg Leu	gcc Ala	aag Lys	ggg Gly	gct Ala	gga Gly	ttt Phe	gaa Glu	ggt Gly	ttc Phe	cga Arg	1116

. WO 99/31243 PCT/US98/26784

340 345 350 335 gta gta gcc tcg tgc gct tac aat aca tgg atc atc gaa ttt ttg aag Val Val Ala Ser Cys Ala Tyr Asn Thr Trp Ile Ile Glu Phe Leu Lys 355 aag att tgagteetta eteggetttg agtacataat accaacteet tttggtttte 1220 Lys Ile gagattgtga ttgtgattgt gattgtctct ctttcgcagt tggccttatg atataatgta 1280 1380 <210> 6 <211> 368 <212> PRT <213> Liquidambar styraciflua Met Gly Ser Thr Ser Glu Thr Lys Met Ser Pro Ser Glu Ala Ala Ala 1 5 10 15 Ala Glu Glu Glu Ala Phe Val Phe Ala Met Gln Leu Thr Ser Ala Ser 20 25 Val Leu Pro Met Val Leu Lys Ser Ala Ile Glu Leu Asp Val Leu Glu 35 40 Ile Met Ala Lys Ala Gly Pro Gly Ala His Ile Ser Thr Ser Asp Ile Ala Ser Lys Leu Pro Thr Lys Asn Pro Asp Ala Ala Val Met Leu Asp 70 75 Arg Met Leu Arg Leu Leu Ala Ser Tyr Ser Val Leu Thr Cys Ser Leu

Arg Thr Leu Pro Asp Gly Lys Ile Glu Arg Leu Tyr Gly Leu Ala Pro 100 105 110

90

85

Val Cys Lys Phe Leu Thr Arg Asn Asp Asp Gly Val Ser Ile Ala Ala 115 120 125

Leu Ser Leu Met Asn Gln Asp Lys Val Leu Met Glu Ser Trp Tyr His 130 135 140 Leu Thr Glu Ala Val Leu Glu Gly Gly Ile Pro Phe Asn Lys Ala Tyr 145 150 155 160

- Gly Met Thr Ala Phe Glu Tyr His Gly Thr Asp Pro Arg Phe Asn Thr 165 170 175
- Val Phe Asn Asn Gly Met Ser Asn His Ser Thr Ile Thr Met Lys Lys 180 185 190
- Ile Leu Glu Thr Tyr Lys Gly Phe Glu Gly Leu Gly Ser Val Val Asp 195 200 205
- Val Gly Gly Gly Thr Gly Ala His Leu Asn Met Ile Ile Ala Lys Tyr 210 215 220
- Pro Met Ile Lys Gly Ile Asn Phe Asp Leu Pro His Val Ile Glu Glu 225 235 240
- Ala Pro Ser Tyr Pro Gly Val Glu His Val Gly Gly Asp Met Phe Val 245 250 255
- Ser Val Pro Lys Gly Asp Ala Ile Phe Met Lys Trp Ile Cys His Asp 260 265 270
- Trp Ser Asp Glu His Cys Leu Lys Phe Leu Lys Lys Cys Tyr Glu Ala 275 280 285
- Leu Pro Thr Asn Gly Lys Val Ile Leu Ala Glu Cys Ile Leu Pro Val 290 295 300
- Ala Pro Asp Ala Ser Leu Pro Thr Lys Ala Val Val His Ile Asp Val 305 310 315 320
- Ile Met Leu Ala His Asn Pro Gly Gly Lys Glu Arg Thr Glu Lys Glu 325 330 335
- Phe Glu Ala Leu Ala Lys Gly Ala Gly Phe Glu Gly Phe Arg Val Val 340 345 350
- Ala Ser Cys Ala Tyr Asn Thr Trp Ile Ile Glu Phe Leu Lys Lys Ile 355 360 365

<210> 7

<211> 2025

<212> DNA

<213> Liquidambar styraciflua

	.> CI	os 60)	. (16	79)												
<400 cggc		agc t	catt	ttco	ca ct	tctç	ggttt	gat:	ctct	gca	atto	ttcc	at c	agto	ccta	59
-							gaa Glu	_					_			107
	,						cac His					_		-		155
				_			tcc Ser 40	-		-	-				-	203
_		-					gct Ala						-		-	251
-	-						ctc Leu		-	-			-			299
-		-				-	ccg Pro									347
-			-		-	-	gcc Ala		-	-		-				395
	-				-		gcc Ala 120					-				443
							gag Glu									491
							ata Ile				Pro	_		-	_	539

		-	-	_	-		-	-			-	-	ccc Pro			587
													tca Ser 190			635
_				-			-				-		caa Gln		_	683
_				_		_				_		-	tat Tyr			731
-		-		-	-	-		_		-			atc Ile		-	77 9
_		-	_		-			_	-				att Ile	-		827
_	_			-				_			-	-	aga Arg 270	_		875
	-			-		-				-	_	-	atc Ile		_	923
	_	-					_						act Thr	-	_	971
			-		-		-	-		-	-		gtc Val	-	-	1019
								-				_	acg Thr	-	-	1067
													ggg G1y 350			1115

ata aa Ile L		r Gly	-				-				-	_	•	-	1163
att g Ile Va			-			-				-					1211
gag at Glu II 385	_			-											1259
cct ga		-	-	-			-	-	-						1307
ggt g	_				-	-	-						-	•	1355
cgg t Arg L	-	s Glu	-							_		_		_	1403
gag c Glu L 4	_		_									_	-		1451
		a atg o Met		_	_	_	_		-			-	-		1499
		a tca g Ser							Glu	-	-			Gln	1547
	_	a aaa a Lys 500	_		-				_			_	-		1595
_	_	a gcc u Ala 5										-			1643
Asp L		a gcc g Ala										ttct	cat		1689

tegetacect cetttetett ateatacgee aacacgaacg aagaggetea attaaacget 1749
geteattega ageggeteaa ttaaagetge teatteatgt ceaecgagtg ggeageetgt 1809
cttgttggga tgttettea tttgatteag etgtgagaag eeagaceete attattatt 1869
gtgaaattea caagaatgte tgtaaatega tgttgtgagt gatgggtte aaaacacett 1929
tgacattgtt taegttgtat tteetgetgt tgaaaataac taetttgtat gaettttatt 1989
tgggaagata acettteaaa aaaaaaaaaa aaaaaaa

<210> 8

<211> 540

<212> PRT

<213> Liquidambar styraciflua

<400> 8

Met Glu Thr Gln Thr Lys Gln Glu Glu Ile Ile Tyr Arg Ser Lys Leu $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Pro Asp Ile Tyr Ile Pro Lys His Leu Pro Leu His Ser Tyr Cys Phe 20 25 30

Glu Asn Ile Ser Gln Phe Gly Ser Arg Pro Cys Leu Ile Asn Gly Ala 35 40 45

Thr Gly Lys Tyr Tyr Thr Tyr Ala Glu Val Glu Leu Ile Ala Arg Lys 50 55 60

Val Ala Ser Gly Leu Asn Lys Leu Gly Val Arg Gln Gly Asp Ile Ile 65 70 75 80

Met Leu Leu Pro Asn Ser Pro Glu Phe Val Phe Ser Ile Leu Gly
85 90 95

Ala Ser Tyr Arg Gly Ala Ala Ala Thr Ala Ala Asn Pro Phe Tyr Thr 100 105 110

Pro Ala Glu Ile Arg Lys Gln Ala Lys Thr Ser Asn Ala Arg Leu Ile 115 120 125

Ile Thr His Ala Cys Tyr Tyr Glu Lys Val Lys Asp Leu Val Glu Glu 130 135 140

Asn Val Ala Lys Ile Ile Cys Ile Asp Ser Pro Pro Asp Gly Cys Leu 145 150 155 160

His Phe Ser Glu Leu Ser Glu Ala Asp Glu Asn Asp Met Pro Asn Val Glu Ile Asp Pro Asp Asp Val Val Ala Leu Pro Tyr Ser Ser Gly Thr Thr Gly Leu Pro Lys Gly Val Met Leu Thr His Lys Gly Gln Val Thr Ser Val Ala Gln Gln Val Asp Gly Glu Asn Pro Asn Leu Tyr Ile His Ser Glu Asp Val Val Leu Cys Val Leu Pro Leu Phe His Ile Tyr Ser Met Asn Val Met Phe Cys Gly Leu Arg Val Gly Ala Ala Ile Leu Ile Met Gln Lys Phe Glu Ile Tyr Gly Leu Leu Glu Leu Val Arg Ser Thr Gly Asp His His Ala Tyr Arg Thr Pro Ile Val Leu Ala Ile Ser Lys Thr Pro Asp Leu His Asn Tyr Asp Val Ser Ser Ile Arg Thr Val Met Ser Gly Ala Ala Pro Leu Gly Lys Glu Leu Glu Asp Ser Val Arg Ala Lys Phe Pro Thr Ala Lys Leu Gly Gln Gly Tyr Gly Met Thr Glu Ala Gly Pro Val Leu Ala Met Cys Leu Ala Phe Ala Lys Glu Gly Phe Glu Ile Lys Ser Gly Ala Ser Gly Thr Val Leu Arg Asn Ala Gln Met Lys Ile Val Asp Pro Glu Thr Gly Val Thr Leu Pro Arg Asn Gln Pro Gly Glu Ile Cys Ile Arg Gly Asp Gln Ile Met Lys Gly Tyr Leu Asn Asp

Pro Glu Ala Thr Glu Arg Thr Ile Asp Lys Glu Gly Trp Leu His Thr

Gly Asp Val Gly Tyr Ile Asp Asp Thr Glu Leu Phe Ile Val Asp 420 425 430

Arg Leu Lys Glu Leu Ile Lys Tyr Lys Gly Phe Gln Val Ala Pro Ala 435 440 445

Glu Leu Glu Ala Met Leu Leu Asn His Pro Asn Ile Ser Asp Ala Ala 450 455 460

Val Val Pro Met Lys Asp Asp Glu Ala Gly Glu Leu Pro Val Ala Phe 465 470 475 480

Val Val Arg Ser Asp Gly Ser Gln Ile Ser Glu Ala Glu Ile Arg Gln 485 490 495

Tyr Ile Ala Lys Gln Val Val Phe Tyr Lys Arg Ile His Arg Val Phe 500 505 510

Phe Val Glu Ala Ile Pro Lys Ala Pro Ser Gly Lys Ile Leu Arg Lys 515 520 525

Asp Leu Arg Ala Lys Leu Ala Ser Gly Leu Pro Asn 530 535 540

<210> 9

<211> 1544

<212> DNA

<213> Pinus taeda

<400> 9

aaagataata tatgtgtatg cctactacta cacattgttt tgaagtgtgt aaacatagtg 60 caacactagg aggactcaca atgagcactt gttgacatga aactagctaa atgcccaaca 120 atattagtga aagctagtta aactaacecc tttgactttc aagatgatat atttatatcc 180 ctactacgtc ttcctcttt tgtctttctc ttgtgattaa accttccttg aaacaattct 240 caaatgtaaa attaaacctt gaaacttgta gagaccaaac ttccctagga gaaaccacat 300 ttatgacaac atatatacac caacccattg catactataa tattggaatt acctgcagcg 360 aacgaaagaa acgctgtctc accaactcgt gcactacatc ccgaaactta accttccct 420 gatacagatt gaagagccga aaaaagcgtg catccaaatt tctggtatgg tgaggagccg 480

aaaaacqcqt qcqcctaatt tttttqagat gggccggaaa ataatqcqtq catctaaatt 540 ttcacqtqtc gcgtattggc gaggttgcgc tgaatgtgat cctgtgcgtg agccacattc 600 attocattgg ttgacccgcc ggtaccgcga ggaccgtggg gtctcacaga tacgcggatg 660 gtggatcage actgagaaga ttagatgatg accaggeggg catttgaagt aaaaacttgg 720 qqqtqqttgq caagtacgcg acaaagaggg gtagtgcgca aggaagcgag ttggatgcaa 780 ataatattac aaagtgggtt ggtgggcatg agcatcaacc agaatgatgt tgttgctggt 840 tccgtgcaaa ttctgaccag tagtttgaac aatactaccc aacttgtttt tggtaaaaca 900 tqaaqtqqqt aaggagaatt gaacttacgt ctcatggtaa agggcaaggg caaatgactt 960 aacacatacc tttaactaat aaaaataccc ctaacaaata cgaaaacgaa tgagttatca 1020 cagacettea actaataaga tageeateag acceacatet eetgactgae caaaaacaaa 1080 tgacttcaac caactaagat acccatcaaa gctaacccac aacccaattc ctcacttccc 1140 cttaccagac caaccaagca gacctacgcc attaactact ttaggacgtg ggaattgggg 1200 gtgccaccgt tgaagaatgg cactcagggt tggtaatccc tccacgtgta tgtagcagtc 1260 gtttggtgga gacggcgtgt ttgaatgtcc accttccagt ttggagaaca aggaaattgg 1320 qcttatatta qqcctqqatc tcttqtttca gagcaggagt agttcaggac aggaactagc 1380 attcaaqaat tcaattqccc tqccctqctc tqctctqctt tqctcaactt attgatccct 1440 getetggttt gtteaattte ttgaceeetg etgggttetg etetggtttg caeaetttet 1500 cgattatata agtcattttg gatccttgca aggaagagaa tatg 1544

<400> 10

aaacaccaat ttaatgggat ttcagatttg tatcccatge tattggctaa ggcattttte 60 ttattgtaat ctaaccaatt ctaatttcca eeetggtgtg aactgactga caaatgeggt 120 eegaaaacag egaatgaaat gtetgggtga teggtcaaac aageggtggg egagagageg 180

<210> 10

<211> 659

<212> DNA

<213> Pinus taeda

<210> 11 <211> 2251

<212> DNA <213> Pinus taeda

<400> 11

ggccgggtgg tgacattat tcataaattc atctcaaaac aagaaggatt tacaaaatta 60
aaagaaaaca aaatttcat ctttaacata attataattg tgttcacaaa attcaaactt 120
aaacccttaa tataaagaat ttctttcaac aatacactt aatcacaact tcttcaatca 180
caacctcctc caacaaaatt aaaatagatt aataaataaa taaacttaac tatttaaaaa 240
aaaatattat acaaaattta ttaaaacttc aaaataaaca aacttttat acaaaattca 300
tcaaaacttt aaaataaagc taaacactga aaatgtgagt acatttaaaa ggacgctgat 360
cacaaaaatt ttgaaaacat aaacaaactt gaaactctac cttttaagaa tgagtttgtc 420
gtctcattaa ctcattagtt ttatagttcg aatccaatta acgtatctt tatttatgg 480
aataagggtg ttttaataag tgattttggg attttttag taatttatt gtgatatgtt 540
atggaaaaggt tggtaagaac tataaattga gttgtgaatg agtgtttat ggattttta 660
agatgttaaa tttaatatg taattaaaat tttatttga ataacaaaaa ttataattgg 720

ataaaaaatt gttttgttaa atttagagta aaaatttcaa aatctaaaat aattaaacac 780 tattattttt aaaaaatttg ttggtaaatt ttatcttata tttaagttaa aatttagaaa 840 aaattaattt taaattaata aacttttgaa gtcaaatatt ccaaatattt tccaaaatat 900 taaatctatt ttgcattcaa aatacaattt aaataataaa acttcatgga atagattaac 960 caatttgtat aaaaaccaaa aatctcaaat aaaatttaaa ttacaaaaca ttatcaacat 1020 tatgatttca agaaagacaa taaccagttt ccaataaaat aaaaaacctc atggcccgta 1080 attaagatct cattaattaa ttcttatttt ttaattttt tacatagaaa atatctttat 1140 attgtatcca agaaatatag aatgtteteg teeagggaet attaatetee aaacaagttt 1200 caaaatcatt acattaaagc tcatcatgtc atttgtggat tggaaattat attgtataag 1260 agaaatatag aatgttctcg tctagggact attaatttcc aaacaaattt caaaatcatt 1320 acattaaagc tcatcatgtc atttgtggat tggaaattag acaaaaaaa tcccaaatat 1380 ttctctcaat ctcccaaaat atagttcgaa ctccatattt ttggaaattg agaatttttt 1440 tacccaataa tatattttt tatacatttt agagattttc cagacatatt tgctctggga 1500 tttattggaa tgaaggttga gttataaact ttcagtaatc caagtatctt cggtttttga 1560 agatactaaa tooattatat aataaaaaca cattttaaac accaatttaa tgggatttca 1620 gatttgtatc ccatgctatt ggctaaggca tttttcttat tgtaatctaa ccaattctaa 1680 tttccaccct ggtgtgaact gactgacaaa tgcggtccga aaacagcgaa tgaaatgtct 1740 gggtgategg teaaacaage ggtgggegag agagegeggg tgttggeeta geegggatgg 1800 gggtaggtag acggcgtatt accggcgagt tgtccgaatg gagttttcgg ggtaggtagt 1860 aacgtagacg tcaatggaaa aagtcataat ctccgtcaaa aatccaaccg ctccttcaca 1920 tegeagagtt ggtggceaeg ggacceteca eccaeteaet egategeetg eegtggttge 1980 ccattattca accatacgcc acttgactct tcaccaacaa ttccaggccg gctttctata 2040 caatgtactg cacaggaaaa tccaatataa aaagccggcc tctgcttcct tctcagtagc 2100 ccccagetea tteaattett cccaetgeag getacatttg teagacacgt ttteegeeat 2160

ttttcgcctg	tttctgcgga	gaatttgatc	aggttcggat	tgggattgaa	tcaattgaaa	2220
ggtttttatt	ttcagtattt	cgatcgccat	g			225]

INTERNATIONAL SEARCH REPORT

International application No. PCT/US98/26784

A. CLASSIFICATION OF SUBJECT MATTER IPC(6):C12N 15/29, 5/04, 15/82; A01H 4/00, 5/00 US CL:536/23.6; 435/69.1, 411, 419; 800/278, 295, 284, 319 According to International Patent Classification (IPC) or to both in B. FIELDS SEARCHED Minimum documentation searched (classification system followed U.S.: 536/23.6; 435/69.1, 411, 419; 800/278, 295, 284, 319 Documentation searched other than minimum documentation to the NONE Electronic data base consulted during the international search (nat AGRICOLA, MEDLINE, CAPLUS	by classification symbols) extent that such documents are included in the fields searched					
C. DOCUMENTS CONSIDERED TO BE RELEVANT						
Category* Citation of document, with indication, where app	propriate, of the relevant passages Relevant to claim No.					
X DWIVEDI et al. Modification of Ligni Nicotiana Through Expression of an A	ntisense O-Methyltransferase					
Y Gene from Populus. Plant Molecular I 26, No. 1, pages 61-71, see the entire	,					
Y STOMP et al. Transient Expression from DNA Transfer in Pinus Taeda. Plant Ono. 4, pages 187-190, see the entire d	Cell Reports. 1991, Vol. 10, 32,36-37,40,42,44					
Further documents are listed in the continuation of Box C	. See patent family annex.					
* Special categories of cited documents: *A* document defining the general state of the art which is not considered	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention					
E earlier document published on or after the international filing date	*X* document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step					
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	when the document is taken alone 'Y' document of particular relevance; the claimed invention cannot be					
O document referring to an oral disclosure, use, exhibition or other means *P* document published prior to the international filing date but later than	considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art					
P document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search	'A' document member of the same patent family					
18 MARCH 1999	Date of mailing of the international search report 15 APR 1999					
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231	OUSAMA M-FAIZ ZAGIIMOUT					
Facsimile No. (703) 305-3230	Telephone No. (703) 308-0196					

INTERNATIONAL SEARCH REPORT

International application No. PCT/US98/26784

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
·
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. X No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-15, 17-21, 30-32, 36-37, 40, 42, 44
Remark on Protest The additional search fees were accompanied by the applicant's protest.
No protest accompanied the payment of additional search fees.

