Homework #3

John Devivo

September 24, 2014

Due: Tuesday, September 23

Collaborators: None

E-1.20

For each of the following languages, give two strings that are members and two strings that are *not* members- a total of four strings for each part. Assume the alphabet $\Sigma = \{a, b\}$ in all parts.

a. a*b*

Answer: Members: [aab, abbbb] NonMembers: [aba, baa]

b. a(ba)*b

Answer: Members: [abab, ababab] NonMembers: [aaaa, bbbbbb]

c. $a^* \cup b^*$

Answer: Members: [aabb, aaaa] NonMembers: [ba, bababa]

d. (aaa)*

Answer: Members: [aaa, aaaaaaaaa] NonMembers: [a, abababbb]

E-1.46

Prove that the following languages are not regular. You may use the pumping lemma and the closure of the class of regular languages under union, intersection, and complement.

a. $\{0^n 1^m 0^n | m, n \ge 0\}$

Answer: Let B be the language $\{0^n1^n|n \geq 0\}$. We use the pumping lemma to prove that B is not regular. The proof is by contradiction.

Assume to the contrary that B is regular. Let p be the pumping length given by the pumping lemma. Choose s to be the string 0^p10^p . Because s is a member of B and s has a length more than p, the pumping lemma states that s can be split into three pieces, s = xyz, where for any $i \ge 0$ the string xy^iz is in B.

When dividing s into xyz we know the pumping lemma that $|xy| \le p$. As such, since the first p elements in the string s are 0's, we know that both x and y must be composed entirely of 0's. Knowing this we can show the string s cannot be pumped. Since x and y must be composed entirely of 0's, we can express $x = 0^{p-a}$, $y = 0^a$, and $z = 10^p$, making $xyz = 0^{p-a}0^a10^p$. Pumping up, the string $xyyz = 0^{p+a}10^p$ has more 0's on the left hand side of the 1, than the right making $xyyz \notin B$. If s were a regular language then s would be an element of s, but since it isn't we reach a contradiction, s is not a regular language.

c. $\{w|w \in \{0,1\}^* \text{ is not a palindrome}\}$

Answer: Let A be the language $\{w|w\in\{0,1\}^*\text{ is not a palindrome}\}$. We use closure of regular languages under compliment and the pumping lemma to prove that A is not regular. The proof is by contradiction.

Assume for sake of contradiction that A is regular. Since regular languages are closed under compliment, we know that the compliment of the set A, $B = \{w | w \in \{0,1\}^* \text{ is a palindrome}\}$ is a regular language.

Let p be the pumping length of B. Choose s to be the string 0^p10^p . Because s is a member of B, and |s| is greater than p, the pumping lemma states that s can be split into three pieces s=xyz where for any $i \ge 0$, the string $xy^iz \in B$. Since the pumping lemma states $xy \le p$, we know that y is composed entirely of 0's. Knowing this we can express $xyz = 0^{p-a}0^a10^p$

with $x = 0^p - a$, $y = 0^a$, and $z = 10^p$. According to the first condition of the pumping lemma, $xyyz \in B$, however we know that $xyyz = 0^{p+a}10^p$ and $0^{p+a}10^p \notin B$ because it is not a palindrome. Here is where we find our contradiction that shows our assumption that A is regular is false. A is not a regular language.

d. $\{wtw|w,t\in\{0,1\}^+\}$

Answer: Let A be the language $\{wtw|w,t\in\{0,1\}^+\}$. We will use the pumping lemma to prove that A is not regular. To do this we will assume for sake of contradiction that A is regular.

Let p be the pumping length of A. Choose s to be the string $0^p110^p1 \in A$. By the pumping lemma we know that s can be split into three parts xyz. We also know from the pumping lemma's second condition that $|xy| \le p|$ and knowing this we can say that $y = 0^a$ for some a > 0. By the pumping lemma we know that $xy^iz \in A$ for some $i \ge 0$. However when we pump up $xyyz = 0^{p+a}110^p1 \notin A$. This provides our contradiction. A is not a regular language.

E-1.49

- a. Let $B = \{1^k y | y \in \{0, 1\}^* \text{ and } y \text{ contains at least } k \text{ 1s, for } k \geq 1\}$. Show that B is a regular language. **Answer:** We can prove that B is a regular language by constructing a regular expression that describes the language. The regular expression $1 \circ 0^* \circ 1 \circ (0 \cup 1)^*$
- b. Let $C = \{1^k y | y \in \{0, 1\}^* \text{ and } y \text{ contains at most } k \text{ 1s, for } k \geq 1\}$. Show that C isn't a regular language. **Answer:** Assume for sake of contradiction that C is a regular language.

Let p be the pumping length of C. Let s be the string $1^p0^p1^p \in C$. The pumping lemma states that s can be split into three sections xyz where $xy \leq p$. With this we know that $x = 1^{p-k}$, $y = 1^k$, and $z = 0^p1^p$ so we see $xyz = 1^p0^p1^p \in C$. The pumping lemma also states that $xy^iz \in C$ for all $i \geq 0$. However if we pump down we see that $xz = 1^{p-k}0^p1^p \notin C$ providing our contradiction. C is not a regular language.

E-1.53

Let $\Sigma = \{0, 1, +, =\}$ and

 $ADD = \{x = y + z | x, y, z \text{ are binary integers, and } x \text{ is the sum of } y \text{ and } z\}.$

Show that ADD is not regular.

Answer: Assume for sake of contradiction that ADD is regular.

Let p be the pumping length of ADD. Let s be as string such that $s=1^p=1^{p-1}0+1\in ADD$. The pumping lemma states that s can be broken down into three portions $xyz=1^p=1^{p-1}0+1$ and since, from the pumping lemma, we know $|xy|\leq p$ and $|y|\geq 1$ we can say $x=1^{p-k}$, $y=p^k$, and $z==1^{p-1}0+1$. We know from the pumping lemma that $xy^iz\in ADD$ for all $i\geq 0$. However $xy^2z=p^{p+k}=1^{p-1}0+1\notin ADD$. This provides our contradiction. ADD is not regular.

E-1.57 (Extra Credit)

If A is any language, let $A_{\frac{1}{2}}$ be the set of all first halves of strings in A so that

$$A_{\frac{1}{2}-} = \{x | \text{ for some } y, |x| = |y| \text{ and } xy \in A\}.$$

Show that if A is regular, then so is $A_{\frac{1}{2}}$.

Answer: