

Ecological Dynamic Regimes

Identification, characterization, and comparison

Martina Sánchez-Pinillos

Ecological Dynamic Regimes (EDR)

Natural fluctuations of ecosystem states around some trend or average resulting from an intricate mix of internal processes and external forces that push the system towards specific domains of attraction

Ecological Dynamic Regimes and Resilience

Theoretically...

Holling (1973)

Ecological Dynamic Regimes and Resilience

Population X

- > Identify EDR
- > Characterize EDR
- > Compare EDR

... from empirical data

The EDR framework

Received: 15 February 2023

Revised: 19 June 2023

Accepted: 21 June 2023

DOI: 10.1002/ecm.1589

ARTICLE

Ecological dynamic regimes: Identification, characterization, and comparison

Martina Sánchez-Pinillos | Sonia Kéfi | Miquel De Cáceres | Vasilis Dakos¹

OPEN ACCESS https://doi.org/10.1002/ecm.1589

The R package 'ecoregime'

Analysis of Ecological Dynamic Regimes

A toolbox for implementing the Ecological Dynamic Regime framework

CRAN: https://CRAN.R-project.org/package=ecoregime

Website: https://mspinillos.github.io/ecoregime/

```
# Install and load ecoregime
install.packages("ecoregime")
library(ecoregime)
```

WARNING!

There is no universal rule to perform the EDR framework.

Some analyses depend on the data characteristics and the objectives pursued.

Raw data

Inventory data

	Site	Obs.	sp1	sp2	sp3
1	А	1	0.8	0.2	0
2	А	2	0.6	0.4	0
3	А	3	0.2	0.8	0
4	В	1	0.1	0.3	0.6
5	В	2	0.1	0.1	0.8
:	:	:	:	:	:
N	M	n	0	1	0

State dissimilarities

Inventory data

	Site	Obs.	sp1	sp2	sp3
1	Α	1	0.8	0.2	0
2	Α	2	0.6	0.4	0
3	А	3	0.2	0.8	0
4	В	1	0.1	0.3	0.6
5	В	2	0.1	0.1	0.8
:	:	:	:	÷	:
N	M	n	0	1	0

State dissimilarities

State space

State dissimilarities

State space

Trajectory space

Raw data

Inventory data

	Site	Obs.	sp1	sp2	sp3
1	А	1	0.8	0.2	0
2	Α	2	0.6	0.4	0
3	Α	3	0.2	0.8	0
4	В	1	0.1	0.3	0.6
5	В	2	0.1	0.1	0.8
:	:	:	:	:	÷
N	M	n	0	1	0

State dissimilarities

State dissimilarities

State space

Trajectory space

Trajectory space

```
# Trajectory dissimilarities
dTraj <- trajectoryDistances(d = dStates,</pre>
                                 sites = abun$ID,
                                 surveys = abun$state,
                                 distance.type = "DSPD") *
# Trajectory space (PCoA)
pcoa_traj <- cmdscale(dTraj, k = nrow(as.matrix(dTraj)) - 1, add = T)</pre>
traj_coord <- pcoa_traj$points</pre>
# Plot the trajectory space
plot(x = traj_coord[, 1], y = traj_coord[, 2],
     xlab = "Axis 1", ylab = "Axis 2",
     main = "Trajectory space")
```


How do we identify EDRs from empirical data?

Identifying subsets of ecological trajectories with more similar geometric patterns between each other than with any other trajectory in the same state space

Identifying subsets of ecological trajectories with more similar geometric patterns between each other than with any other trajectory in the same state space

Clustering algorithms

Sánchez-Pinillos et al. (2023) Ecol. Monogr.

Trajectory space


```
# Clustering analysis (e.g., HDBSCAN) 🗶
library(dbscan)
EDR \leftarrow hdbscan(x = dTraj, minPts = 10)
EDR_cluster <- data.frame(ID = unique(abun$ID),</pre>
                             EDR_cluster = EDR$cluster)
# Plot the trajectory space
plot(x = traj_coord[, 1], y = traj_coord[, 2],
    xlab = "Axis 1", ylab = "Axis 2",
    main = "Trajectory space",
    col = EDR_cluster$EDR_cluster + 1)
# Plot trajectories in the state space
trajectoryPCoA(d = dStates,
              sites = abun$ID,
              surveys = abun$state,
              traj.colors = EDR_cluster$EDR_cluster + 1)
```

Trajectory space

State space

Can we summarize the main dynamical patterns of an EDR?

RETRA-EDR: REpresentative TRAjectories in EDRs

Look for dense regions in the EDR

Identify representative segments of each dense region

Merge representative segments

```
# Select the EDR
ID_EDR <- which(abun$EDR == 1)</pre>
# Apply RETRA-EDR
RT <- retra_edr(d = as.matrix(dStates)[ID_EDR, ID_EDR],</pre>
                trajectories = abun[ID_EDR]$traj,
                states = abun[ID_EDR]$state,
                minSegs = 5) *
# Plot representative trajectories
plot(x = RT, d = as.matrix(dStates)[ID_EDR, ID_EDR],
     trajectories = abun[ID_EDR]$traj,
     states = abun[ID_EDR]$state,
     main = "Representative trajectories")
```



```
# Extract field data for representative trajectories
seg_components <- strsplit(gsub("\\]", "", gsub("\\[", "-", RT$T2$Segments)), "-")</pre>
RT_data <- do.call(rbind, lapply(seg_components, function(iseg){</pre>
  data.frame(traj = rep(iseg[[1]], 2),
             state = c(iseg[[2]], iseg[[3]]))
}))
RT_data \leftarrow merge(RT_data, abun[EDR == 1], all.x = T, sort = F)
# Plot changes in species abundances
plot(x = 1:nrow(RT_data), y = RT_data\$sp1, type = "l",
     xlab = "RT state", ylab = "Species abundance",
     main = "Species abundances in RT")
lines(x = 1:nrow(RT_data), y = RT_data$sp2, col = 2)
lines(x = 1:nrow(RT_data), y = RT_data$sp3, col = 3)
lines(x = 1:nrow(RT_data), y = RT_data$sp4, col = 4)
legend("topleft", paste0("sp", 1:4), lty = 1, col = 1:4)
```


How is the distribution of individual trajectories in an EDR?

Dynamic dispersion (dDis)

$$dDis = \frac{\sum_{i=1}^{m} d_{i\alpha}}{m}$$

Average distance to a trajectory of reference

Dynamic evenness (dEve)

$$dEve = \frac{\sum_{l=1}^{m-1} \min\left(\frac{d_{ij}}{\sum_{l=1}^{m-1} d_{ij}}, \frac{1}{m-1}\right) - \frac{1}{m-1}}{1 - \frac{1}{m-1}}$$

Regularity with which the EDR is filled by the individual trajectories

Dynamic beta diversity (dBD)

$$dBD = \frac{\sum_{i=1}^{m-1} \sum_{j=i+1}^{m} d_{ij}^2}{m(m-1)}$$

Overall variation of ecological trajectories belonging to the same EDR

Distribution of the trajectories in the EDR

Distribution of the trajectories in the EDR

Distribution of the trajectories in the EDR

```
# Dynamic dispersion
dDis <- dDis(d = as.matrix(dStates)[ID_EDR, ID_EDR], d.type = "dStates",</pre>
             trajectories = abun[ID_EDR]$traj,
             states = abun[ID_EDR]$state,
             reference = 28)
# Dynamic evenness
dEve <- dEve(d = as.matrix(dStates)[ID_EDR, ID_EDR], d.type = "dStates",</pre>
           trajectories = abun[ID_EDR]$traj,
           states = abun[ID_EDR]$state)
# Dynamic beta diversity
dBD <- dBD(d = as.matrix(dStates)[ID_EDR, ID_EDR], d.type = "dStates",
           trajectories = abun[ID_EDR]$traj,
           states = abun[ID_EDR]$state)
```

Can we compare multiple EDRs?

Compare EDRs

Dynamic regime dissimilarity (D_{DR})

$$D_{DR}(R_1, R_2) = \frac{1}{m_1} \sum_{i=1}^{m_1} D_{DSP}(T_{1i}, R_2)$$

$$D_{DSP}(T_{1i}, R_2) = \min \{D_{DSP}(T_{1i}, T_{21}), \dots, D_{DSP}(T_{1i}, T_{2m_2})\}$$

Compare EDRs

What are the applications and challenges of the EDR framework?

Applications and challenges

Applications

- ✓ Ecological resilience
- ✓ Ecosystem dynamics
- ✓ Space-for-time substitution

Challenges

- Trajectory dissimilarity
- Clustering analyses
- "Curse of dimensionality"

Coming soon...

- Ecological dynamic regimes: A key concept for assessing ecological resilience
 M. Sánchez-Pinillos, V. Dakos, S. Kéfi (under review)
- Resiliencia forestal post-incendio en base a trayectorias sucesionales al nicho climático de las especies
 G. Codina, E. Batllori, F. Lloret, M. Sánchez-Pinillos (in progress)

To know more...

The publication

Received: 15 February 2023 Revised: 19 June 2023 Accepted: 21 June 2023

DOI: 10.1002/ecm.1589

ARTICLE

Ecological dynamic regimes: Identification, characterization, and comparison

Martina Sánchez-Pinillos ¹ | Sonia Kéfi ¹ | Miquel De Cáceres ² | Vasilis Dakos ¹

https://doi.org/10.1002/ecm.1589

Appendix S2

Appendix S2

Additional technical information

Ecological Monographs

Ecological Dynamic Regimes: Identification, characterization, and comparison

Martina Sánchez-Pinillos 1*, Sonia Kéfi 1, Miquel De Cáceres 2, Vasilis Dakos 1

¹ISEM, CNRS, Univ. Montpellier, IRD, EPHE, Montpellier, France ²CREAF, Bellaterra (Cerdanyola del Vallès), Spain

Appendix S2. Additional technical information

To know more...

The publication

ARTICLE

Ecological dynamic regimes: Identification, characterization, and comparison

Martina Sánchez-Pinillos¹ | Sonia Kéfi¹ | Miquel De Cáceres² | Vasilis Dakos¹

https://doi.org/10.1002/ecm.1589

The R package 'ecoregime'

CRAN: https://CRAN.R-project.org/package=ecoregime

Website: https://mspinillos.github.io/ecoregime/

Appendix S2

Appendix S2

Additional technical information

Ecological Monographs

Ecological Dynamic Regimes: Identification, characterization, and comparison

Martina Sánchez-Pinillos 1*, Sonia Kéfi 1, Miquel De Cáceres 2, Vasilis Dakos 1

¹ ISEM, CNRS, Univ. Montpellier, IRD, EPHE, Montpellier, France ² CREAF, Bellaterra (Cerdanyola del Vallès), Spain

Appendix S2. Additional technical information

To know more...

The publication

 Received: 15 February 2023
 Revised: 19 June 2023
 Accepted: 21 June 2023

 DOI: 10.1002/ecm.1589
 Accepted: 21 June 2023

ARTICLE

Ecological dynamic regimes: Identification, characterization, and comparison

Martina Sánchez-Pinillos¹ | Sonia Kéfi¹ | Miquel De Cáceres² | Vasilis Dakos¹

https://doi.org/10.1002/ecm.1589

The R package 'ecoregime'

CRAN: https://CRAN.R-project.org/package=ecoregime

Website: https://mspinillos.github.io/ecoregime/

Appendix S2

Appendix S2

Additional technical information

Ecological Monographs

Ecological Dynamic Regimes: Identification, characterization, and comparison

Martina Sánchez-Pinillos 1*, Sonia Kéfi 1, Miquel De Cáceres 2, Vasilis Dakos 1

¹ ISEM, CNRS, Univ. Montpellier, IRD, EPHE, Montpellier, France ² CREAF, Bellaterra (Cerdanyola del Vallès), Spain

Appendix S2. Additional technical information

The corresponding author

martina.sanchez.pinillos@gmail.com

@MartinaPinillos

MSPinillos

martina.sanchez.pinillos@gmail.com

@MartinaPinillos

MSPinillos

¡Muchas gracias! Eskerrik asko! Moitas grazas! Moltes gràcies!

Co-authors:

Vasilis Dakos Sonia Kéfi Miquel De Cáceres

