•	Today	Introduction	
		- classical physics	
		- quantum physics	
		- Example 1 april 2	- State 14sters
		l S	tern-Gerlach expt.
			et j.
1	Fundamente	ul Concepte	
1.1	Introduc	tian	
•	Theoretico	I framework of classical physics	
	* 51	rate (at Gixeds t) is dept fixed by a po Xi, pi3 in phase space (flat space, sym (XIVIZ DX D. PZ)	int
		'X', Pi3 in phase space (flat space, sym	generally a prectic infld)
		- 111-11-11-11-11-11-11-11-11-11-11-11-1	7X. D. 121
	* F	oisson brucket & Xi, p; 3 = Si	1" \$x, py3=0
		Poisson brucket $\S \times i$, $P_i \S = \S_i$ $\Rightarrow \S F, G \S = \Xi \left(\frac{\partial F}{\partial x^i} \frac{\partial G}{\partial P_i} - \frac{\partial G}{\partial F} \right)$	= 26
	* (Observables: functions on phase spa	
		O(xi, Pi)	1
	R	eg. <u>Pr+py+pz</u> = KE	evol.
		$U(x_1y_1z) = \frac{k}{2}(x^2+y^2+z^2)$	phye
		H= U+ KE	
	* H		
		aniltonian H(x,p) befines dynamics	
		(g)= \(\frac{2}{9}, H\)\(\frac{3}{5}\)\(\frac{1}{9}\)\(\text{any Fm o}\)	- Phone
st ord			-1-
OPE		Dhase	
		Phase	

Describes all of mechanics E8M includes floids, materials, --Simple, intuitive frame work Deterministic Time - reversible Example: classical SHO ID H= 2 X2 + p2 $\dot{x} = \{x, H\} = \frac{P}{m}$ coordinate, X, P p = [p, H] = - Kx (=+m x") observable: X, P H, KE=P2 f(xp)= {1, x >0 " NORHS observable" in class. Physics: if you know the state (xi, pi)

=> every observable has a fixed value O(x,p)

1.1 Intro (contined)

Theoretical framework of quantum physics

- * State defined by vector (V) in (romplex) vector space H [really, a ray (magn. 8 phase unimputant); H often idealized as as din Hilbert space.]
- * Observables are Hermitian operators (motives) 9 = (9T) = 0
- * Dynamics: IV(t)>= e -iHt/k IV(0)> [H hemiter, h contor]
- * "Collapse postulate" (Simple version) subtleties; degeneracy, ets spectrum

If $|\psi\rangle = Z \propto |\lambda\rangle$, $A |\lambda\rangle = \pi |\lambda\rangle$, $\lambda \neq \lambda$; (assume $Z |\alpha\rangle^2 = 1$)

Hen with prob. $|\mathbf{k}_i|^2$, measure $A = \lambda_i$, $|47 = |\lambda_i|^2$ after neasure

This framework describes all quantum systems and all experiments to date that do not involve gravitational forces.

- atomic spectra (quantization of E)
- semiconductors, transisters (quantum turneling)
- thermodynamics (OM -> entropy S -> temp T)
- Quantum Info system (quantum communication, q. competing...)