4.7.2 Эффект Поккельса

Александр Романов Б01-107

1 Введение

1.1 Цель работы

Исследовать интерференцию рассеянного света, прошедшего кристалл; наблюдать изменение характера поляризации света при наложении на кристалл электрического поля.

1.2 В работе используются

гелий-неоновый лазер, поляризатор, кристалл ниобата лития, матовая пластинка, экран, источник высоковольтного переменного и постоянного напряжения, фотодиод, осциллограф, линейка.

Рис. 1: Схема для наблюдения интерференционной картины

Рис. 2: Схема для изучения двойного лучепреомления в электрическом поле

2 Работа

2.1 Измерение радиусы тёмных колец на экране

Измерив радиусы тёмных колец на экране получим значения:

#	1	2	3	4	5	6
r, cm	2.9	4.3	5.3	6.1	6.7	7.2

Иземерим расстояние L от серидины кристалла до экрана:

$$L = 84 \ cm$$

2.2 Определение полуволнового напряжения ниобата лития

Убедимся что направление лазерного луча совпадает с направлением на центр интерференционной картины.

Подключим разъём блока питания на постоянное напряжение, установим регулятор на минимальное напряжение и включим блок питания в сеть.

Увеличивая напряжение на кристале определим полуволновое напряжение по максимальной яркости пятна на экране:

$$U_{\lambda/2} = 435 V \tag{1}$$

И по положению следующего минимума - волновое напряжение

$$U_{\lambda} = U_{\lambda/2} = 960 \ V$$

Проделаем всё то же самое для параллельной поляризации лазера и анализатора:

$$U_{\lambda/2} = 900 V$$

$$U_{\lambda} = U_{\lambda/2} = 1440 V$$

2.3 Круговая поляризация

Выставим четвертьволновое напряжение и вращая поляризатор убедимся что свет имеет круговую поляризацию. (Яркость не изменяется).

2.4 Фигуры Лиссажу

Установим вместо экрана фотодиод (Рис. $\ref{Puc. 1}$) и подключим его к Y-входу осциллографа. Убрав напряжение до нуля, переключим разъём блока питания на переменное напряжение. С трёхвольтового выхода БП подадим сигнал на X-канал осциллографа. Таким образом, отклонение луча осциллографа по оси X будет пропорционально напряжению U на кристалле, а по оси Y - интенсивности прошедшего через анализатор сигнала I_{out}

Постепенно повышая напряжение на кристалле, будем наблюдать на экране фигуры Лиссажу, соответсвующие зависимости I_{out} для скрещенных поляризаций лазера и анализатора. объ1мся от фигуры Лиссажу симметричности.

Рис. 3: Фигура Лиссажу

Наблюдая за фигурой Лиссажу, определим (по вольтметру на источнике питания) полуволновое напряжение $U_{\lambda/2}$ как ΔU , соответствующее переходу от макимума к минимуму на осциллограмме.

$$U_{\lambda/2} = \Delta U = 480V$$

Это значение довольно точно совпадает со значением $U_{\lambda/2}$ для поперечной поляризации, полученным в (1).

2.5 Изменение фигуры Лиссажу

Рис. 4: Фигура Лиссажу при $U=U_{\lambda/2}$

Рис. 5: Фигура Лиссажу при $U=U_{\lambda}V$

Рис. 6: Фигура Лиссажу при $U=U_{3\lambda/2}$

3 Выводы

В ходе лабораторной работы:

- 1. Было произведено ознакомление с эффектом Поккельса (Зависимости показателя преломления света в кристалле под действием электрического поля и пропорциональности этого изменения от напряжения)
- 2. Было измерено полуволновое напряжение для скрещенных поляризаций лазера и поляризатора/анализатора. Полученные значения в пунктах: 2.2 $U_{\lambda/2}=435~V$ и 2.4 $U_{\lambda/2}=480~V$ оказались достаточно близки и укладываются в приемлимы диапазон (несколько сотен вольт).