누적 합과 구간 합

누적 합

- 배열 {1,2,3,4,5}가 주어졌을 때
- 누적 합을 구하는 방법

누적 합 완전 탐색

누저 합 완전 탐색

무적 합 누적 합 알고리즘

• 누적 합이란 각 인덱스 (a_i) 까지의 합을 구하는 것.

누적 합 누적 합 알고리즘

• 누적 합이란 각 인덱스 (a_i) 까지의 합을 구하는 것.

배열 a 가 주어졌을 때, $\sum_{k=1}^{i-1} a_k + a_i$ 이다.

무적 합 무적 합 알고리즘

배열의 각 원소 a_i

$$i$$
 까지의 누적 합
$$\sum_{k=1}^{i} a_k = A_i$$

완전탐색

i		2	3	4	5
sum	$\sum_{i=1}^{1} a_i$	$\sum_{i=1}^{2} a_i$	$\sum_{i=1}^{3} a_i$	$\sum_{i=1}^{4} a_i$	$\sum_{i=1}^{5} a_i$

시간복잡도: $O(N^2)$

누적 합

i	1	2	3	4	5
SUM	a_1	$\sum_{i=1}^{1} a_i + a_2$	$\sum_{i=1}^{2} a_i + a_3$	$\sum_{i=1}^{3} a_i + a_4$	$\sum_{i=1}^{4} a_i + a_5$

누적 합 알고리즘

배열의 각 원소 a_i

$$i$$
 까지의 누적 합
$$\sum_{k=1}^{i} a_k = A_i$$

완전탐색

i	1	2	3	4	5
sum	a_1	$a_1 + a_2$	$a_1 + a_2 + a_3$	$a_1 + a_2 + a_3 + a_4$	$a_1 + a_2 + a_3 + a_4 + a_5$

시간복잡도: $O(N^2)$

누적 합

i		2	3	4	5
sum	a_1	$A_1 + a_2$	$A_2 + a_3$	$A_3 + a_4$	$A_5 + a_5$

무적 합 무적 합 알고리즘

배열의 각 원소 a_i

$$i$$
 까지의 누적 합
$$\sum_{k=1}^{i} a_k = A_i$$

완전탐색

i	1	2	3	4	5
sum	1	1 + 2	1 + 2 + 3	1 + 2 + 3 + 4	1+2+3+4+5

시간복잡도: $O(N^2)$

누적 합

i		2	3	4	5
sum	1	1+2	3 + 3	6+4	10 + 5

누적 합 누적 합 알고리즘

배열의 각 원소 a_i

$$i$$
 까지의 누적 합
$$\sum_{k=1}^{i} a_k = A_i$$

완전탐색

i	1	2	3	4	5
sum	1	3	6	10	15

시간복잡도: $O(N^2)$

누적 합

i	1	2	3	4	5
sum	1	3	6	10	15

- 구간 합이란 누적 합과 동일하지만
- 누적 합은 처음부터 현재 원소까지의 합을 구하는 반면
- 구간 합은 일정 구간에 대한 합만을 구한다는 점이 다르다.

• 구간 합이란 i 부터 j 까지의 합을 구하는 것.

배열 a 가 주어졌을 때,i 부터 j 까지의 합은 $\sum_{k=1}^{j} a_k - \sum_{k=1}^{i-1} a_k$ 이다.

구간 합 알고리즘

구간 합

