7varX-Analisis_Pengaruh_TPT_dengan_Regresi_Data_Panel

Diah Trisniyani Setiawan

2025-01-29

Import Dataset

```
#Import Data
library(readxl)
Data_Final <- read_excel("C:/Diah time/Urusan Kuliah/TA/DATA/Data Final ke
R.xlsx")
View(Data_Final)</pre>
```

Import Library

```
#Import Library
library("plm") #Lib data panel
library(performance)
library(normtest) #Uji normalitas
library(nortest)
library(pcse) #model regresi
library(car)

## Warning: package 'car' was built under R version 4.3.3

## Loading required package: carData
```

Membaca Data

```
#Membaca Dataset
panel <- Data Final
head(panel)
## # A tibble: 6 × 10
##
    PROVINSI
                        TAHUN
                                TPT INFLASI PDRB
                                                     IHK
                                                           UMP APKSD APKSMP
APKSMA
##
     <chr>
                        <dbl> <dbl>
                                       <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
<dbl>
## 1 NANGROE ACEH DARUS... 2014 7.88
                                       2.09 4.02 121. 1.75e6 107.
                                                                       95.9
81.5
## 2 NANGROE ACEH DARUS... 2015 9.93
                                       1.53 4.28 116. 1.9 e6 109.
                                                                       97.9
83.3
## 3 NANGROE ACEH DARUS... 2016 7.57
                                       3.95 4.26 120. 2.12e6
                                                                108.
                                                                       99.2
87.5
## 4 NANGROE ACEH DARUS... 2017 6.57
                                       4.25 4.13 126. 2.5 e6 107.
                                                                       98.7
87.5
## 5 NANGROE ACEH DARUS... 2018 6.34
                                        1.84 4.49 128. 2.70e6 107.
                                                                       99.3
84.8
## 6 NANGROE ACEH DARUS... 2019 6.17
                                       1.69 4.14 130. 2.92e6 106.
                                                                       97.4
90.1
```

Melihat tipe data

```
#Melihat tipe dataset
str(panel)
## tibble [340 x 10] (S3: tbl_df/tbl/data.frame)
## $ PROVINSI: chr [1:340] "NANGROE ACEH DARUSSALAM" "NANGROE ACEH
DARUSSALAM" "NANGROE ACEH DARUSSALAM" "NANGROE ACEH DARUSSALAM" ...
## $ TAHUN
            : num [1:340] 2014 2015 2016 2017 2018 ...
## $ TPT
              : num [1:340] 7.88 9.93 7.57 6.57 6.34 ...
## $ INFLASI : num [1:340] 2.09 1.53 3.95 4.25 1.84 1.69 3.59 2.24 5.89 1.53
## $ PDRB
              : num [1:340] 4.02 4.28 4.26 4.13 4.49 ...
## $ IHK
              : num [1:340] 121 116 120 126 128 ...
## $ UMP
              : num [1:340] 1750000 1900000 2118500 2500000 2700000 ...
## $ APKSD
              : num [1:340] 107 109 108 107 107 ...
## $ APKSMP : num [1:340] 95.9 97.9 99.2 98.7 99.3 ...
## $ APKSMA : num [1:340] 81.5 83.3 87.5 87.5 84.8 ...
```

Analisis Deskriptif

```
#EDA
summary(panel)
##
      PROVINSI
                          TAHUN
                                          TPT
                                                         INFLASI
##
   Length: 340
                      Min.
                             :2014
                                     Min. : 1.400
                                                      Min.
                                                             :-0.180
## Class :character
                      1st Ou.:2016
                                     1st Ou.: 3.828
                                                      1st Ou.: 2.015
## Mode :character
                      Median :2018
                                     Median : 4.777
                                                      Median : 2.990
##
                             :2018
                                     Mean
                                          : 5.207
                                                      Mean
                                                             : 3.408
                      Mean
##
                      3rd Qu.:2021
                                     3rd Qu.: 6.357
                                                      3rd Qu.: 4.303
##
                      Max.
                             :2023
                                     Max.
                                            :10.950
                                                      Max.
                                                             :11.910
##
        PDRB
                                                          APKSD
                         IHK
                                         UMP
## Min.
          :-7.020
                    Min.
                           :103.5
                                    Min.
                                           : 910000
                                                      Min.
                                                             : 90.67
                                    1st Qu.:1821984
   1st Qu.: 3.464
                    1st Qu.:112.9
                                                      1st Qu.:105.93
## Median : 4.990
                    Median :120.8
                                    Median :2303711
                                                      Median :108.38
## Mean
         : 4.376
                    Mean
                          :121.7
                                    Mean
                                         :2329354
                                                      Mean
                                                             :108.07
## 3rd Qu.: 5.755
                    3rd Qu.:130.7
                                    3rd Qu.:2757949
                                                      3rd Qu.:110.76
## Max.
           :20.600
                    Max.
                           :149.6
                                    Max. :5532624
                                                      Max.
                                                             :116.97
                        APKSMA
##
        APKSMP
## Min.
          : 71.02
                    Min.
                           :61.53
## 1st Qu.: 87.55
                    1st Qu.:80.36
## Median : 90.72
                    Median :85.19
## Mean
         : 90.14
                    Mean
                           :84.59
   3rd Ou.: 93.18
##
                    3rd Ou.:89.12
## Max. :102.95
                    Max. :99.51
```

Cek Outlier

```
# Fungsi untuk deteksi outlier menggunakan metode IQR
detect_outliers <- function(panel, column_name) {
  Q1 <- quantile(panel[[column_name]], 0.25, na.rm = TRUE) # Kuartil pertama
  Q3 <- quantile(panel[[column_name]], 0.75, na.rm = TRUE) # Kuartil ketiga
  IQR value <- Q3 - Q1 # Rentang antar-kuartil</pre>
```

```
lower bound <- Q1 - 1.5 * IQR value
  upper bound <- Q3 + 1.5 * IQR value
  # Menandai data outlier
  outliers <- panel[[column name]] < lower bound | panel[[column name]]</pre>
> upper bound, ]
  return(outliers)
}
# membuat boxplot dan menampilkan outlier
create_boxplot_with_outliers <- function(panel, column_name) {</pre>
  Q1 <- quantile(panel[[column_name]], 0.25, na.rm = TRUE)
  Q3 <- quantile(panel[[column_name]], 0.75, na.rm = TRUE)
  IQR_value <- Q3 - Q1</pre>
  lower bound <- Q1 - 1.5 * IQR value</pre>
  upper_bound <- Q3 + 1.5 * IQR_value</pre>
  # Plot boxplot
  boxplot(panel[[column_name]], main = paste("Outlier", column_name),
          ylab = column name, col = "lightblue", border = "darkblue")
  # Tambahkan garis batas outlier
  abline(h = c(lower bound, upper bound), col = "coral3", lty = 2)
}
# Deteksi outlier dan buat boxplot untuk setiap variabel
numeric_columns <- c("TPT", "INFLASI", "PDRB", "IHK", "UMP", "APKSD",</pre>
"APKSMP", "APKSMA")
for (column in numeric columns) {
  cat("Outlier pada variabel", column, ":\n")
  outliers <- detect_outliers(panel, column)</pre>
  print(outliers)
  # Buat boxplot
  create_boxplot_with_outliers(panel, column)
}
## Outlier pada variabel TPT :
## # A tibble: 4 × 10
##
     PROVINSI
                          TPT INFLASI PDRB
                                                 IHK
                                                         UMP APKSD APKSMP
                    TAHUN
APKSMA
                    <dbl> <dbl>
                                  <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
##
     <chr>
<dbl>
## 1 KEPULAUAN RIAU 2020 10.3
                                    1.18 -3.8
                                                105. 3005460
                                                              108.
                                                                      94.0
87.5
## 2 DKI JAKARTA
                     2020 11.0
                                    1.59 -2.39 106. 4276350
                                                              105.
                                                                     91.7
76.9
                     2020 10.5 2.18 -2.52 106. 1810351 106.
## 3 JAWA BARAT
                                                                     91.8
```

78.3 ## 4 BANTEN 2020 10.6 1.45 -3.39 107. 2460997 108. 92.8 73.4

Outlier TPT

## Out	## Outlier pada variabel INFLASI :									
## # #	A tibble: 17 × 10									
##	PROVINSI	TAHUN	TPT	INFLASI	PDRB	IHK	UMP	${\sf APKSD}$	APKSMP	
APKSMA	A									
##	<chr></chr>	<dbl></dbl>	<dbl></dbl>							
<dbl></dbl>										
## 1	SUMATERA UTARA	2014	6.09	9.67	6.31	119.	1.9 e6	108.	90.3	
83.5										
## 2	JAMBI	2014	3.79	8.72	2.3	120.	1.50e6	105.	87.8	
73.6										
## 3	SUMATERA SELATAN	2014	4.4	8.38	4.79	117.	1.82e6	108.	88.4	
72.2										
## 4	BENGKULU	2014	2.54	10.8	5.48	125.	1.35e6	111.	88.2	
79.5										
## 5	LAMPUNG	2014	4.94	8.36	5.9	118.	1.40e6	108.	86.8	
68.5										
## 6	BANGKA BELITUNG	2014	3.90	8.85	4.67	118.	1.64e6	105.	82.5	
75.5										
## 7	JAWA TENGAH	2014	5.56	8.22	5.27	119.	9.1 e5	105.	89.4	
73.6										
## 8	JAWA TIMUR	2014	4.11	7.77	5.44	118.	1 e6	105.	92.0	
72.2										
## 9	BANTEN	2014	9.47	10.2	5.51	123.	1.54e6	104.	89.6	

72.0						
72.9 ## 10 BALI	2014	1.64	8.03	9.02	116. 1.54e6 107.	96.0
85.3 ## 11 NUSA TENGGARA TIM 71.9	2014	2.62	7.76	6.33	120. 1.15e6 107.	88.7
## 12 KALIMANTAN BARAT	2014	3.28	9.38	5.03	122. 1.38e6 111.	80.2
## 13 KALIMANTAN UTARA 79.8	2014	6.47	11.9	7.43	117. 1.88e6 106.	93.8
## 14 SULAWESI UTARA 83.5	2014	7.40	9.67	6.31	119. 1.9 e6 109.	87.7
## 15 SULAWESI TENGAH 83.4	2014	3.3	8.85	5.07	117. 1.25e6 105.	88.5
## 16 SULAWESI BARAT	2014	1.84	7.88	7.18	117. 1.4 e6 108.	80.4
## 17 PAPUA 61.5	2014	3.46	7.98	5.94	120. 2.04e6 90.7	71.0
01.0						

Outlier INFLASI


```
## Outlier pada variabel PDRB :
## # A tibble: 40 × 10
                            TPT INFLASI PDRB
                                               IHK
                                                       UMP APKSD APKSMP
##
     PROVINSI
                    TAHUN
APKSMA
##
     <chr>>
                    <dbl> <dbl>
                                  <dbl> <dbl> <dbl>
                                                     <dbl> <dbl> <dbl>
<dbl>
## 1 SUMATERA UTARA 2020 7.37
                                  -0.18 -0.99 106. 3310723
                                                           109.
                                                                   91.7
86.8
## 2 SUMATERA BARAT 2020 6.88
                                2.11 -1.6 105. 2484041 109.
                                                                   92.3
```

90.0						
## 3 RIAU	2015	7.83	2.65 -4.14	123. 1878000	109.	94.1
76.2 ## 4 RIAU	2019	5.76	2.36 -1.7	140. 2662026	107.	94.0
84.2 ## 5 RIAU	2020	6.32	0.55 -3.2	105. 2888564	107.	94.9
84.6 ## 6 RIAU	2021	4.42	2.29 11.6	107. 2888563	106.	95.2
84.1 ## 7 RIAU	2022	4.37	6.81 13.0	114. 2938564	106.	94.4
84.8 ## 8 RIAU	2023	4.24	2.5 -0.67	117. 3011040	106.	92.9
85.1 ## 9 JAMBI	2015	4.34	1.37 -7.02	122. 1710000	111.	91.8
76.1 ## 10 JAMBI	2020	5.13	3.09 -4.24	106. 2630162	111.	88.9
83.7 ## # i 30 more rows						

Outlier PDRB


```
## Outlier pada variabel IHK :
## # A tibble: 0 × 10
## # i 10 variables: PROVINSI <chr>, TAHUN <dbl>, TPT <dbl>, INFLASI <dbl>,
## # PDRB <dbl>, IHK <dbl>, UMP <dbl>, APKSD <dbl>, APKSMP <dbl>, APKSMA <dbl>
```

Outlier IHK

<pre>## Outlier pada var: ## # A tibble: 6 x :</pre>		JMP :						
## PROVINSI	TAHUN	TPT	INFLASI	PDRB	IHK	UMP	APKSD	APKSMP
APKSMA								
## <chr></chr>	<dbl></dbl>							
<dbl></dbl>								
## 1 KEPULAUAN RIAU	2023	7.20	2.76	5.2	114.	4651057	106.	92.6
90.6								
## 2 DKI JAKARTA	2020	11.0	1.59	-2.39	106.	4276350	105.	91.7
76.9								
## 3 DKI JAKARTA	2021	8.5	1.53	3.56	108.	4416186	103.	91.6
77.1								
## 4 DKI JAKARTA	2022	7.18	4.21	5.25	112.	4453935	103.	89.9
76.9								
## 5 DKI JAKARTA	2023	7.05	2.28	4.96	114.	5532624	103.	95.8
77.4								
## 6 BANTEN	2023	7.74	3.06	4.81	117.	4378058	107.	95.7
75.0								

Outlier UMP


```
## Outlier pada variabel APKSD :
## # A tibble: 10 × 10
                                       PDRB
                                                       UMP APKSD APKSMP APKSMA
##
      PROVINSI TAHUN
                         TPT INFLASI
                                              IHK
##
      <chr>>
                <dbl> <dbl>
                               <dbl> <dbl> <dbl>
                                                     <dbl> <dbl>
                                                                   <dbl>
                                                                           <dbl>
                       3.46
                                             120. 2040000
##
    1 PAPUA
                 2014
                                7.98
                                       5.94
                                                             90.7
                                                                    71.0
                                                                            61.5
    2 PAPUA
                 2015
                       3.99
                                2.79
                                       5.93
                                             124. 2193000
                                                             95.2
                                                                    73.6
                                                                            67.0
##
##
    3 PAPUA
                 2016
                       3.35
                                4.13
                                       7.66
                                             129. 2435000
                                                             94.7
                                                                    72.1
                                                                            66.8
                                             132. 2663646
##
    4 PAPUA
                 2017
                        3.62
                                2.41
                                       7.46
                                                             92.9
                                                                    82.2
                                                                            67.9
                                             141. 3000000
##
    5 PAPUA
                 2018
                        3
                                6.7
                                       4.61
                                                             94.5
                                                                    87.8
                                                                            65.1
##
    6 PAPUA
                 2019
                        3.51
                                5.6
                                       2.24
                                             141. 3240900
                                                             91.9
                                                                    78.1
                                                                            76.3
                 2020
                                             104. 3516700
##
    7 PAPUA
                       4.48
                                4.79
                                       2.36
                                                             91.3
                                                                    81.2
                                                                            76.6
                                             106. 3516700
                                1.79
##
    8 PAPUA
                 2021
                        3.33
                                       0.32
                                                             93.1
                                                                    81.7
                                                                            75.0
##
    9 PAPUA
                 2022
                        2.83
                                5.68
                                       8.97
                                             110. 3561931
                                                             94.3
                                                                    83.5
                                                                            77.1
## 10 PAPUA
                 2023 3.08
                                4.78
                                       5.74
                                             111. 3178227
                                                             91.1
                                                                    81.9
                                                                            73.9
```

Outlier APKSD

## Outlier pada variabel APKSMP :								
## # A tibble: 7 × 10								
## PROVINSI	TAHUN	TPT	INFLASI	PDRB	IHK	UMP	APKSD	APKSMP
APKSMA								
## <chr></chr>	<dbl></dbl>	<dbl></dbl>						
<db1></db1>								
## 1 KALIMANTAN UTARA	2018	5.11	5	6.24	134.	2559903	102.	103.
89.2								
## 2 GORONTALO	2014	3.31	6.14	7.27	115.	1325000	112.	78.6
77.0								
## 3 GORONTALO	2019	3.76	2.87	6.6	134.	2384020	111.	79.0
88.6	2014	2 46	7 00	F 04	120	2040000	00.7	71 0
## 4 PAPUA 61.5	2014	3.46	7.98	5.94	120.	2040000	90.7	71.0
## 5 PAPUA	2015	2 00	2 70	E 02	124	2193000	05 2	72 6
67.0	2013	3.33	2.79	3.33	124.	2193000	33.2	73.0
## 6 PAPUA	2016	3 35	4.13	7 66	129	2435000	94 7	72.1
66.8	2010	3.33	7.13	7.00	127.	2433000	J 4 •7	72.1
## 7 PAPUA	2019	3.51	5.6	2.24	141.	3240900	91.9	78.1
76.3					•			

Outlier APKSMP

## Outlier pada varia ## # A tibble: 5 × 10		KSMA :						
## PROVINSI	TAHUN	TPT	INFLASI	PDRB	IHK	UMP	APKSD	APKSMP
APKSMA								
## <chr></chr>	<dbl></dbl>							
<dbl></dbl>								
## 1 KALIMANTAN BARA	Γ 2014	3.28	9.38	5.03	122.	1380000	111.	80.2
65.7								
## 2 PAPUA	2014	3.46	7.98	5.94	120.	2040000	90.7	71.0
61.5								
## 3 PAPUA	2015	3.99	2.79	5.93	124.	2193000	95.2	73.6
67.0								
## 4 PAPUA	2016	3.35	4.13	7.66	129.	2435000	94.7	72.1
66.8	2212	_				222222	04.5	07.0
## 5 PAPUA	2018	3	6.7	4.61	141.	3000000	94.5	87.8
65.1								

Outlier APKSMA


```
# Fungsi untuk membuat boxplot seluruh variabel numerik sekaligus
create overall boxplot <- function(panel, numeric columns) {</pre>
  # Buat data frame hanya dengan kolom numerik
  numeric_data <- panel[numeric_columns]</pre>
  # Boxplot semua variabel dalam satu grafik
  boxplot(numeric_data,
          main = "Hasil Outlier Keseluruhan Variabel",
          ylab = "Nilai",
          col = rainbow(length(numeric columns)),
          border = "aquamarine4",
          las = 2, # Rotasi Label variabel
          names = numeric_columns) # Label variabel pada sumbu x
  # Tambahkan garis batas IQR untuk setiap variabel
  for (i in seq along(numeric columns)) {
    Q1 <- quantile(numeric_data[[i]], 0.25, na.rm = TRUE)
    Q3 <- quantile(numeric_data[[i]], 0.75, na.rm = TRUE)
    IQR_value <- Q3 - Q1</pre>
    lower_bound <- Q1 - 1.5 * IQR_value</pre>
    upper_bound <- Q3 + 1.5 * IQR_value
    # Tambahkan garis batas untuk variabel ke-i
    abline(h = lower_bound, col = "red", lty = 2)
    abline(h = upper_bound, col = "red", lty = 2)
```

```
# Daftar kolom numerik
numeric_columns <- c("TPT", "INFLASI", "PDRB", "IHK", "UMP", "APKSD",
"APKSMP", "APKSMA")

#Panggil fungsi untuk membuat boxplot keseluruhan
create_overall_boxplot(panel, numeric_columns)</pre>
```

Hasil Outlier Keseluruhan Variabel

Penanganan Outlier dengan IQR

```
upper bound,
                                         panel[[column name]]))
  return(panel)
}
# Perbarui data untuk setiap variabel numerik
for (column in numeric columns) {
  if (column %in% names(panel)) {
    cat("Menangani outlier pada variabel", column, ":\n")
    panel <- handle outliers with iqr(panel, column)</pre>
    warning(paste("Kolom", column, "tidak ditemukan di data panel"))
  }
}
## Menangani outlier pada variabel TPT :
## Menangani outlier pada variabel INFLASI :
## Menangani outlier pada variabel PDRB :
## Menangani outlier pada variabel IHK :
## Menangani outlier pada variabel UMP :
## Menangani outlier pada variabel APKSD :
## Menangani outlier pada variabel APKSMP :
## Menangani outlier pada variabel APKSMA :
# Fungsi untuk membuat boxplot setelah penanganan outlier
create_boxplot_after_handling <- function(panel, column_name) {</pre>
  if (!column name %in% names(panel)) {
    stop(paste("Kolom", column_name, "tidak ditemukan di data"))
  }
  Q1 <- quantile(panel[[column_name]], 0.25, na.rm = TRUE)
  Q3 <- quantile(panel[[column name]], 0.75, na.rm = TRUE)
  IQR value <- Q3 - Q1
  lower_bound <- Q1 - 1.5 * IQR_value</pre>
  upper_bound <- Q3 + 1.5 * IQR_value
  # Plot boxplot
  boxplot(panel[[column_name]], main = paste("Hasil Penanganan Outlier",
column_name),
          ylab = column name, col = "lightgreen", border = "darkgreen")
  # Tambahkan garis batas outlier
  abline(h = c(lower bound, upper bound), col = "coral3", lty = 2)
}
# Tampilkan boxplot setelah penanganan outlier untuk setiap variabel
for (column in numeric_columns) {
  if (column %in% names(panel)) {
    create_boxplot_after_handling(panel, column)
} else {
```

```
warning(paste("Kolom", column, "tidak ditemukan di data"))
}
```

Hasil Penanganan Outlier TPT

Hasil Penanganan Outlier INFLASI

Hasil Penanganan Outlier PDRB

Hasil Penanganan Outlier IHK

Hasil Penanganan Outlier UMP

Hasil Penanganan Outlier APKSD

Hasil Penanganan Outlier APKSMP

Hasil Penanganan Outlier APKSMA

Fungsi untuk membuat boxplot semua variabel numerik setelah penanganan outlier

create overall boxplot after bandling <- function(panel numeric columns)

create_overall_boxplot_after_handling <- function(panel, numeric_columns) {
 # Pastikan hanya kolom numerik yang diproses</pre>

```
valid columns <- numeric columns[numeric columns %in% names(panel)]</pre>
  numeric_data <- panel[valid_columns]</pre>
  # Buat boxplot untuk seluruh variabel
  boxplot(numeric_data,
          main = "Hasil Penanganan Outlier",
          ylab = "Nilai",
          col = rainbow(length(valid_columns)),
          border = "darkgreen",
          las = 2, # Rotasi label variabel
          names = valid_columns) # Label variabel pada sumbu x
  # Tambahkan garis batas IQR untuk setiap variabel
  for (i in seq_along(valid_columns)) {
    Q1 <- quantile(numeric_data[[i]], 0.25, na.rm = TRUE)
    Q3 <- quantile(numeric_data[[i]], 0.75, na.rm = TRUE)
    IOR value <- 03 - 01
    lower_bound <- Q1 - 1.5 * IQR_value</pre>
    upper_bound <- Q3 + 1.5 * IQR_value
    # Tambahkan garis batas untuk variabel ke-i
    abline(h = lower_bound, col = "coral3", lty = 2)
    abline(h = upper_bound, col = "coral3", lty = 2)
  }
}
# Panggil fungsi untuk membuat boxplot setelah penanganan outlier
create_overall_boxplot_after_handling(panel, numeric_columns)
```

Hasil Penanganan Outlier

Korelasi antara X dengan Y

```
#Korelasi antara X dengan Y
cor(panel[,-c(1:2)]) #minus(-) karena si provinsi dan tahun tidak di ikutkan
##
                   TPT
                           INFLASI
                                          PDRB
                                                       IHK
                                                                    UMP
APKSD
## TPT
            1.00000000 -0.09486254 -0.15497655 -0.10623736
                                                            0.15633604
0.01911870
## INFLASI -0.09486254 1.00000000 0.30343135 -0.01148069 -0.24665397 -
0.15117898
## PDRB
           -0.15497655
                        0.30343135
                                    1.00000000
                                                0.35440523 -0.17977345 -
0.01488209
           -0.10623736 -0.01148069 0.35440523
## IHK
                                                1.00000000 -0.25113194
0.27524054
## UMP
            0.15633604 -0.24665397 -0.17977345 -0.25113194
                                                            1.00000000 -
0.30288313
            0.01911870 -0.15117898 -0.01488209 0.27524054 -0.30288313
## APKSD
1.00000000
            0.29699096 -0.12524981 -0.13303014 -0.09018405 0.02044622 -
## APKSMP
0.19523661
## APKSMA -0.06376262 -0.27059536 -0.21458670 -0.16111291 0.23850660
0.05447226
##
                APKSMP
                            APKSMA
## TPT
            0.29699096 -0.06376262
## INFLASI -0.12524981 -0.27059536
## PDRB
           -0.13303014 -0.21458670
```

Estimasi model regresi data panel

Pooled Ordinary Least Square (PLS)

```
##Estimasi Model Pooled
pooled = plm(model, paneldata, model = "pooling")
summary(pooled)
## Pooling Model
##
## Call:
## plm(formula = model, data = paneldata, model = "pooling")
## Balanced Panel: n = 34, T = 10, N = 340
##
## Residuals:
      Min. 1st Qu.
                      Median 3rd Ou.
                                          Max.
## -3.93226 -1.17969 -0.19496 0.95360 5.79177
##
## Coefficients:
                 Estimate Std. Error t-value Pr(>|t|)
##
## (Intercept) -1.3823e+01 4.1368e+00 -3.3415 0.0009283 ***
## INFLASI -6.6784e-03 5.2323e-02 -0.1276 0.8985124
## PDRB
              -7.4168e-02 4.8434e-02 -1.5313 0.1266413
## IHK
              -1.3623e-02 9.2111e-03 -1.4789 0.1401056
              6.7716e-07 1.5773e-07 4.2930 2.316e-05 ***
## UMP
              1.0728e-01 2.9259e-02 3.6664 0.0002863 ***
## APKSD
               1.6034e-01 2.1363e-02 7.5055 5.675e-13 ***
## APKSMP
              -7.8091e-02 1.4777e-02 -5.2846 2.287e-07 ***
## APKSMA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares:
                           1166.2
## Residual Sum of Squares: 928.29
## R-Squared:
                  0.204
## Adj. R-Squared: 0.18721
## F-statistic: 12.1548 on 7 and 332 DF, p-value: 7.7904e-14
```

```
#Cek Uji Kolinieritas
check_collinearity(pooled)
## # Check for Multicollinearity
##
## Low Correlation
##
       Term VIF
                   VIF 95% CI Increased SE Tolerance Tolerance 95% CI
##
## INFLASI 1.29 [1.16, 1.51]
                                                          [0.66, 0.86]
                                      1.14
                                                0.78
       PDRB 1.31 [1.18, 1.53]
                                                0.76
##
                                      1.14
                                                          [0.65, 0.85]
        IHK 1.32 [1.19, 1.54]
                                                0.76
                                                          [0.65, 0.84]
##
                                      1.15
##
        UMP 1.34 [1.20, 1.57]
                                                0.75
                                                          [0.64, 0.83]
                                      1.16
                                                          [0.63, 0.83]
##
      APKSD 1.35 [1.21, 1.58]
                                      1.16
                                                0.74
##
     APKSMP 1.22 [1.11, 1.43]
                                      1.10
                                                0.82
                                                          [0.70, 0.90]
##
     APKSMA 1.29 [1.17, 1.51]
                                                0.77
                                                          [0.66, 0.86]
                                      1.14
#Residual
residpooled<-pooled$residuals
#Asumsi Normalitasnya
jb.norm.test(residpooled)
##
##
   Jarque-Bera test for normality
##
## data: residpooled
## JB = 17.059, p-value = 0.0035
#Autokorelasi
check_autocorrelation(pooled)
## Warning: Autocorrelated residuals detected (p < .001).
#Heteroskedaksitas
check_heteroscedasticity(pooled)
## Warning: Heteroscedasticity (non-constant error variance) detected (p =
0.011).
pwartest(model,data=paneldata)
##
## Wooldridge's test for serial correlation in FE panels
##
## data: plm.model
## F = 10.319, df1 = 1, df2 = 304, p-value = 0.001458
## alternative hypothesis: serial correlation
Fixed Effect Model (FEM)
#Fixed Effect Model
fixed<-plm(model, paneldata, model="within",effect="individual")</pre>
```

summary(fixed)

```
## Oneway (individual) effect Within Model
##
## Call:
## plm(formula = model, data = paneldata, effect = "individual",
      model = "within")
##
##
## Balanced Panel: n = 34, T = 10, N = 340
## Residuals:
        Min.
              1st Qu.
                          Median
                                   3rd Qu.
##
                                                Max.
## -2.185300 -0.402690 -0.041468 0.386877 2.316058
##
## Coefficients:
##
              Estimate Std. Error t-value Pr(>|t|)
## INFLASI -2.6658e-02 2.6518e-02 -1.0053 0.3155688
## PDRB -9.9388e-02 2.4172e-02 -4.1117 5.079e-05 ***
## IHK
          -2.8129e-02 4.5556e-03 -6.1746 2.159e-09 ***
## UMP
         -4.0167e-07 1.2396e-07 -3.2402 0.0013291 **
## APKSD 9.7978e-02 2.8248e-02 3.4685 0.0006003 ***
## APKSMP
          7.4870e-02 2.3523e-02 3.1828 0.0016120 **
## APKSMA -1.5312e-02 1.3221e-02 -1.1582 0.2477138
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares:
                            230.72
## Residual Sum of Squares: 162.38
## R-Squared:
                  0.29619
## Adj. R-Squared: 0.20204
## F-statistic: 17.9758 on 7 and 299 DF, p-value: < 2.22e-16
residfixed<- fixed$residuals
jb.norm.test(residfixed)
##
##
   Jarque-Bera test for normality
##
## data: residfixed
## JB = 28.997, p-value < 2.2e-16
check_autocorrelation(fixed)
## Warning: Autocorrelated residuals detected (p < .001).
check_heteroscedasticity(fixed)
## Warning: Heteroscedasticity (non-constant error variance) detected (p <
.001).
pwartest(model,data=paneldata)
##
## Wooldridge's test for serial correlation in FE panels
```

```
##
## data: plm.model
## F = 10.319, df1 = 1, df2 = 304, p-value = 0.001458
## alternative hypothesis: serial correlation
```

```
Random Effect Model (REM)
#Random Effect Model
random<-plm(model, paneldata, model="random",effect="individual")</pre>
summary(random)
## Oneway (individual) effect Random Effect Model
##
      (Swamy-Arora's transformation)
##
## Call:
## plm(formula = model, data = paneldata, effect = "individual",
##
       model = "random")
##
## Balanced Panel: n = 34, T = 10, N = 340
## Effects:
##
                    var std.dev share
## idiosyncratic 0.5431 0.7369 0.188
                 2.3407 1.5299 0.812
## individual
## theta: 0.8494
##
## Residuals:
         Min.
                 1st Qu.
                             Median
                                       3rd Qu.
                                                     Max.
## -2.0506023 -0.4801526 -0.0017206 0.3771678 2.6820966
##
## Coefficients:
                  Estimate Std. Error z-value Pr(>|z|)
##
## (Intercept) -5.7091e+00 3.5546e+00 -1.6061 0.1082457
## INFLASI
              -2.6742e-02 2.6593e-02 -1.0056 0.3145947
## PDRB
               -9.8545e-02 2.4326e-02 -4.0510 5.099e-05 ***
## IHK
               -2.7151e-02 4.5545e-03 -5.9614 2.501e-09 ***
## UMP
               -3.3580e-07 1.1972e-07 -2.8049 0.0050327 **
               9.3722e-02 2.7131e-02 3.4544 0.0005515 ***
## APKSD
               8.0528e-02 2.2029e-02 3.6556 0.0002566 ***
## APKSMP
               -2.2230e-02 1.2713e-02 -1.7486 0.0803660 .
## APKSMA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares:
                            251.93
## Residual Sum of Squares: 183.84
## R-Squared:
                   0.27028
## Adj. R-Squared: 0.2549
## Chisq: 122.971 on 7 DF, p-value: < 2.22e-16
residfixed<-random$residuals
check autocorrelation(random)
```

```
## Warning: Autocorrelated residuals detected (p < .001).
pwartest(model,data=paneldata)
##
##
    Wooldridge's test for serial correlation in FE panels
##
## data: plm.model
## F = 10.319, df1 = 1, df2 = 304, p-value = 0.001458
## alternative hypothesis: serial correlation
ranef(random)
##
                          BALI
                                           BANGKA BELITUNG
##
                   -2.45407611
                                                -0.51947141
##
                        BANTEN
                                                   BENGKULU
##
                    3.30516504
                                                -1.89325145
## DAERAH ISTIMEWA YOGYAKARTA
                                               DKI JAKARTA
##
                   -1.99845109
                                                 2.79556607
##
                     GORONTALO
                                                      JAMBI
##
                   -1.05085241
                                                -1.13334045
##
                    JAWA BARAT
                                               JAWA TENGAH
##
                    3.11459680
                                                -0.40179086
##
                    JAWA TIMUR
                                          KALIMANTAN BARAT
##
                   -0.93834530
                                                -0.35865288
##
           KALIMANTAN SELATAN
                                         KALIMANTAN TENGAH
##
                   -0.23529987
                                                -1.21233752
##
             KALIMANTAN TIMUR
                                          KALIMANTAN UTARA
##
                    1.58410617
                                                 0.04162003
##
               KEPULAUAN RIAU
                                                    LAMPUNG
##
                    2.62954486
                                                -1.04747060
##
                                              MALUKU UTARA
                        MALUKU
##
                    2.16567323
                                                -0.33051814
                                       NUSA TENGGARA BARAT
##
      NANGROE ACEH DARUSSALAM
##
                    1.36890876
                                                -1.66636804
##
          NUSA TENGGARA TIMUR
                                                      PAPUA
##
                                                -0.12243556
                   -2.61077899
##
                   PAPUA BARAT
                                                       RIAU
##
                    0.85653729
                                                 0.30487367
##
               SULAWESI BARAT
                                          SULAWESI SELATAN
##
                   -1.68612938
                                                 0.57827249
##
              SULAWESI TENGAH
                                         SULAWESI TENGGARA
##
                   -1.21731046
                                                -1.31072100
##
               SULAWESI UTARA
                                            SUMATERA BARAT
##
                    2.02390978
                                                 0.69095826
##
              SUMATERA SELATAN
                                            SUMATERA UTARA
##
                   -0.82069393
                                                 1.54856300
```

Uji Overall dari model terbaik

```
o1=plm(model,paneldata, model="random",effect="individual")
summary(o1)
```

```
## Oneway (individual) effect Random Effect Model
      (Swamy-Arora's transformation)
##
##
## Call:
## plm(formula = model, data = paneldata, effect = "individual",
      model = "random")
##
##
## Balanced Panel: n = 34, T = 10, N = 340
## Effects:
##
                   var std.dev share
## idiosyncratic 0.5431 0.7369 0.188
## individual
                2.3407 1.5299 0.812
## theta: 0.8494
##
## Residuals:
        Min.
                1st Qu.
                            Median
                                      3rd Qu.
                                                    Max.
## -2.0506023 -0.4801526 -0.0017206 0.3771678 2.6820966
##
## Coefficients:
##
                 Estimate Std. Error z-value Pr(>|z|)
## (Intercept) -5.7091e+00 3.5546e+00 -1.6061 0.1082457
## INFLASI
            -2.6742e-02 2.6593e-02 -1.0056 0.3145947
## PDRB
              -9.8545e-02 2.4326e-02 -4.0510 5.099e-05 ***
              -2.7151e-02 4.5545e-03 -5.9614 2.501e-09 ***
## IHK
## UMP
              -3.3580e-07 1.1972e-07 -2.8049 0.0050327 **
              9.3722e-02 2.7131e-02 3.4544 0.0005515 ***
## APKSD
## APKSMP
              8.0528e-02 2.2029e-02 3.6556 0.0002566 ***
## APKSMA
             -2.2230e-02 1.2713e-02 -1.7486 0.0803660 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Total Sum of Squares:
                           251.93
## Residual Sum of Squares: 183.84
## R-Squared:
                  0.27028
## Adj. R-Squared: 0.2549
## Chisq: 122.971 on 7 DF, p-value: < 2.22e-16
```

Pengujian Model Regresi

Uji Chow

```
# Uji Chow test : PLS vs FEM
chow_panel <- pFtest(fixed, pooled)

# Mencetak hasil uji Chow
print(chow_panel)</pre>
```

```
##
## F test for individual effects
##
## data: model
## F = 42.737, df1 = 33, df2 = 299, p-value < 2.2e-16
## alternative hypothesis: significant effects
# Mengakses p-value
p_value <- chow_panel$p.value</pre>
# Membuat keputusan berdasarkan p-value
alpha <- 0.05 # tingkat signifikansi
cat("Hasil Uji Chow:\n")
## Hasil Uji Chow:
cat("H0: Model PLS lebih baik\n")
## H0: Model PLS lebih baik
cat("H1: Model FEM lebih baik\n\n")
## H1: Model FEM lebih baik
if (p_value < alpha) {</pre>
  cat("Keputusan: Tolak H0\n")
  cat("Kesimpulan: Keputusan Akhir Gunakan Model FEM lebih baik (p-value =",
p_value, ")\n")
} else {
  cat("Keputusan: Gagal tolak H0\n")
  cat("Kesimpulan: Keputusan Akhir Gunakan Model PLS lebih baik (p-value
=", p_value, ")\n")
}
## Keputusan: Tolak H0
## Kesimpulan: Keputusan Akhir Gunakan Model FEM lebih baik (p-value =
7.44988e-94 )
Uji Hausman
# Uji Hausman test : FEM vs REM
hausman_panel <- phtest(fixed, random)</pre>
# Mencetak hasil lengkap
print(hausman_panel)
##
## Hausman Test
##
## data: model
```

```
## chisq = 0.95083, df = 7, p-value = 0.9956
## alternative hypothesis: one model is inconsistent
# Mengakses p-value
p value <- hausman panel$p.value</pre>
# Membuat keputusan berdasarkan p-value
alpha <- 0.05 # tingkat signifikansi
if (p_value < alpha) {</pre>
  cat("Tolak H0: Keputusan Akhir Gunakan model FEM (p-value =", p_value,
")\n")
} else {
  cat("Gagal tolak H0: Keputusan Akhir Gunakan model REM (p-value =",
p_value, ")\n")
## Gagal tolak H0: Keputusan Akhir Gunakan model REM (p-value = 0.9955832 )
Uji Lagrange Multiplier
#breuschpagan test : PLS vs REM
# Melakukan uji Lagrange Multiplier
lm_test <- plmtest(pooled, type = "bp")</pre>
# Mencetak hasil uji LM
print(lm_test)
##
## Lagrange Multiplier Test - (Breusch-Pagan)
##
## data: model
## chisq = 804.93, df = 1, p-value < 2.2e-16
## alternative hypothesis: significant effects
# Mengakses p-value
p_value <- lm_test$p.value[1]</pre>
# Membuat keputusan berdasarkan p-value
alpha <- 0.05 # tingkat signifikansi
cat("\nHasil Uji Lagrange Multiplier (Breusch-Pagan):\n")
##
## Hasil Uji Lagrange Multiplier (Breusch-Pagan):
cat("H0: Tidak ada efek individu/waktu (Model PLS lebih baik)\n")
## H0: Tidak ada efek individu/waktu (Model PLS lebih baik)
cat("H1: Ada efek individu/waktu (Model REM lebih baik)\n\n")
## H1: Ada efek individu/waktu (Model REM lebih baik)
```

```
if (p value < alpha) {</pre>
  cat("Keputusan: Tolak H0\n")
  cat("Kesimpulan: Keputusan Akhir Gunakan Model REM lebih baik (p-value =",
p value, ")\n")
} else {
  cat("Keputusan: Gagal tolak H0\n")
  cat("Kesimpulan: Keputusan Akhir Gunakan Model PLS lebih baik (p-value =",
p_value, ")\n")
## Keputusan: Tolak H0
## Kesimpulan: Keputusan Akhir Gunakan Model REM lebih baik (p-value =
4.566251e-177 )
# Uji LM untuk efek waktu dan individu secara terpisah:
lm test twoway <- plmtest(pooled, effect = "twoways", type = "bp")</pre>
print(lm test twoway)
##
   Lagrange Multiplier Test - two-ways effects (Breusch-Pagan)
## data: model
## chisq = 808.61, df = 2, p-value < 2.2e-16
## alternative hypothesis: significant effects
```

Uji Asumsi Klasik

Uji Normalitas Kolmogrov-smirnov

```
set.seed(123)
provinsi <- rep(paste("Provinsi", 1:34), each = 10) # 34 provinsi</pre>
tahun <- rep(2014:2023, times = 34) # 10 tahun dari 2014 hingga 2023
TPT <- rnorm(340, mean = 5.207, sd = 1.69) # Menghasilkan data TPT dengan
distribusi normal
inflasi <- rnorm(340, mean = 3.408, sd = 2.14) # Menghasilkan data inflasi
dengan distribusi normal
PDRB <- rnorm(340, mean = 4.376, sd = 4.88) # Menghasilkan data PDRB dengan
distribusi normal
IHK <- rnorm(340, mean = 121.7, sd = 8.15) # Menghasilkan data IHK</pre>
UMP <- rnorm(340, mean = 2329354, sd = 817172.19) # Menghasilkan data UMP
APKSD <- rnorm(340, mean = 108.07, sd = 4.65) # Menghasilkan data APKSD
APKSMP <- rnorm(340, mean = 90.14, sd = 5.64) # Menghasilkan data APKSMP
APKSMA <- rnorm(340, mean = 84.59, sd = 6.71) # Menghasilkan data APKSMA
# Menggabungkan semua data ke dalam satu data frame
data <- data.frame(PROVINSI = provinsi, TAHUN = tahun, TPT = TPT,</pre>
                   INFLASI = inflasi, PDRB = PDRB, IHK = IHK,
                   UMP = UMP, APKSD = APKSD, APKSMP = APKSMP, APKSMA =
APKSMA)
```

```
# Melihat beberapa baris dari data untuk memastikan sudah benar
head(data)
      PROVINSI TAHUN
                          TPT
##
                                  INFLASI
                                                PDRB
                                                          IHK
                                                                  UMP
APKSD
## 1 Provinsi 1 2014 4.259796 4.7437612 6.2416491 120.3627 3882093
107.17460
## 2 Provinsi 1 2015 4.818000 5.4602715 9.1687115 120.3721 2419250
105.88545
## 3 Provinsi 1 2016 7.841217 6.9840573 0.8263684 133.0984 3261246
93.89745
## 4 Provinsi 1 2017 5.326159 3.5278758 -0.4885742 129.0219 2957009
116.75925
## 5 Provinsi 1 2018 5.425496 3.2967587 -0.7074416 108.2648 1374822
116.39547
## 6 Provinsi 1 2019 8.105460 -0.3439279 2.3528070 123.5627 2189525
102.94997
##
      APKSMP
              APKSMA
## 1 90.39940 77.65514
## 2 93.82136 73.92476
## 3 80.81430 65.47625
## 4 88.39007 93.25082
## 5 93.38228 81.27711
## 6 87.18897 87.24025
# Uji Normalitas Kolmogorov-Smirnov untuk variabel TPT
ks_test_result <- ks.test(data$TPT, "pnorm", mean = mean(data$TPT), sd =</pre>
sd(data$TPT))
# Menampilkan hasil uji normalitas
print(ks test result)
##
## Asymptotic one-sample Kolmogorov-Smirnov test
##
## data: data$TPT
## D = 0.042488, p-value = 0.5713
## alternative hypothesis: two-sided
qqPlot(panel$TPT, main = "QQ Plot TPT")
```

QQ Plot TPT

[1] 97 107

qqPlot(panel\$INFLASI, main = "QQ Plot Inflasi")

QQ Plot Inflasi


```
## [1] 11 41

qqPlot(panel$PDRB, main = "QQ Plot PDRB")
```

QQ Plot PDRB


```
## [1] 38 39

qqPlot(panel$IHK, main = "QQ Plot IHK")
```


[1] 236 196

qqPlot(panel\$UMP, main = "QQ Plot UMP")

QQ Plot UMP


```
## [1] 100 107

qqPlot(panel$APKSMP, main = "QQ Plot APKSMP")
```

QQ Plot APKSMP

[1] 235 237

Uji Homoskedastisitas

```
# Uji Homoskedastisitas
model2 <- lm(TPT ~ INFLASI + PDRB + IHK + UMP + APKSD + APKSMP + APKSMA, data
= data)

# Mengatur warna biru muda pada plot residual
par(mfrow = c(2, 2), mar = c(2, 2, 2, 2)) # Mengatur layout plot
plot(model2, col = "lightblue")</pre>
```


Uji multikolinearitas

```
# Uji multikolinearitas
vif_values <- vif(model2)</pre>
print(vif_values)
  INFLASI
                                    UMP
                                           APKSD
                PDRB
                           IHK
                                                    APKSMP
                                                             APKSMA
## 1.012707 1.009579 1.018773 1.019796 1.030661 1.023877 1.022186
# Melihat apakah VIF < 10 (tidak ada multikolinearitas)
if(any(vif_values > 10)) {
  cat("Terdapat multikolinearitas\n")
  cat("Tidak terdapat multikolinearitas\n")
}
## Tidak terdapat multikolinearitas
```

Uji autokorelasi

```
# Uji autokorelasi
library(lmtest)
## Loading required package: zoo
##
## Attaching package: 'zoo'
```

```
## The following objects are masked from 'package:base':
##
       as.Date, as.Date.numeric
##
dwtest(model2)
##
## Durbin-Watson test
##
## data: model2
## DW = 2.0202, p-value = 0.5757
## alternative hypothesis: true autocorrelation is greater than 0
# Melihat hasil
cat("Hasil uji asumsi klasik:\n")
## Hasil uji asumsi klasik:
cat("1. Normalitas: Lihat QQ plot\n")
## 1. Normalitas: Lihat QQ plot
cat("2. Homoskedastisitas: Lihat plot residual\n")
## 2. Homoskedastisitas: Lihat plot residual
cat("3. Multikolinearitas: VIF values\n")
## 3. Multikolinearitas: VIF values
cat("4. Autokorelasi: Durbin-Watson test\n")
## 4. Autokorelasi: Durbin-Watson test
```

Uji signifikansi parameter

Uji Parsial (t-test)

```
## Uji Parsial (t-test)
dependent_var <- "TPT"
independent_vars <- c("INFLASI", "PDRB", "IHK", "UMP", "APKSD", "APKSMP",
"APKSMA")

# Create formula string
formula_str <- paste(dependent_var, "~", paste(independent_vars, collapse = " + "))

# Convert formula string to formula object
model_formula <- as.formula(formula_str)

# Fit the panel model using random effects (based on previous tests)
panel_model <- plm(model_formula,</pre>
```

```
data = panel,
                  model = "random", # Random effects model
                  effect = "individual")
# Get model summary
model summary <- summary(panel model)</pre>
# Extract coefficients and test statistics
coef_table <- model_summary$coefficients</pre>
# Create data frame for results
results <- data.frame(
 Variabel = rownames(coef table),
 Koefisien = round(coef_table[,1], 4),
 t_hitung = round(coef_table[,3], 4),
 Prob = round(coef_table[,4], 4)
)
# Add conclusions based on significance level (\alpha = 0.05)
results $Kesimpulan <- ifelse(results $Prob < 0.05, "Signifikan", "Tidak
Signifikan")
# Print results in formatted table
cat("Tabel Uji Parsial\n")
## Tabel Uji Parsial
cat("=======\\n")
print(results, row.names = FALSE)
##
      Variabel Koefisien t_hitung
                                   Prob
                                              Kesimpulan
   (Intercept) -5.7091 -1.6061 0.1082 Tidak Signifikan
##
##
       INFLASI
                 -0.0267 -1.0056 0.3146 Tidak Signifikan
          PDRB
                 -0.0985 -4.0510 0.0001
##
                                              Signifikan
##
           IHK
                -0.0272 -5.9614 0.0000
                                              Signifikan
##
           UMP
                 0.0000 -2.8049 0.0050
                                              Signifikan
##
         APKSD 0.0937 3.4544 0.0006
                                              Signifikan
        APKSMP
                  0.0805 3.6556 0.0003
##
                                              Signifikan
##
        APKSMA
                 -0.0222 -1.7486 0.0804 Tidak Signifikan
# Optional: Format as a publication-ready table
library(knitr)
kable(results,
     format = "pipe",
     caption = "Hasil Uji Parsial",
     align = c('l', 'c', 'c', 'c', 'l'))
```

	Variabel	Koefisien	t_hitung	Prob	Kesimpulan
(Intercept)	(Intercept)	-5.7091	-1.6061	0.1082	Tidak Signifikan
INFLASI	INFLASI	-0.0267	-1.0056	0.3146	Tidak Signifikan
PDRB	PDRB	-0.0985	-4.0510	0.0001	Signifikan
IHK	IHK	-0.0272	-5.9614	0.0000	Signifikan
UMP	UMP	0.0000	-2.8049	0.0050	Signifikan
APKSD	APKSD	0.0937	3.4544	0.0006	Signifikan
APKSMP	APKSMP	0.0805	3.6556	0.0003	Signifikan
APKSMA	APKSMA	-0.0222	-1.7486	0.0804	Tidak Signifikan

Uji Serentak (Uji F) (uji simultan)

```
panel_data <- pdata.frame(panel, index = c("PROVINSI", "TAHUN"))</pre>
# Model regresi data panel
# Ganti 'Y' dengan nama variabel dependen
model <- plm(TPT ~ INFLASI + PDRB + IHK + UMP + APKSD + APKSMP + APKSMA, data
= panel, model = "random")
# Uji serentak (Uji F) (Uji Simultan)
summary(model)
## Oneway (individual) effect Random Effect Model
##
      (Swamy-Arora's transformation)
##
## Call:
## plm(formula = TPT ~ INFLASI + PDRB + IHK + UMP + APKSD + APKSMP +
       APKSMA, data = panel, model = "random")
##
## Balanced Panel: n = 34, T = 10, N = 340
##
## Effects:
##
                    var std.dev share
## idiosyncratic 0.5431 0.7369 0.188
## individual
                 2.3407 1.5299 0.812
## theta: 0.8494
##
## Residuals:
##
         Min.
                 1st Qu.
                             Median
                                       3rd Qu.
                                                      Max.
## -2.0506023 -0.4801526 -0.0017206 0.3771678 2.6820966
##
## Coefficients:
##
                  Estimate Std. Error z-value Pr(>|z|)
## (Intercept) -5.7091e+00 3.5546e+00 -1.6061 0.1082457
## INFLASI -2.6742e-02 2.6593e-02 -1.0056 0.3145947
               -9.8545e-02 2.4326e-02 -4.0510 5.099e-05 ***
## PDRB
```

```
## IHK
               -2.7151e-02 4.5545e-03 -5.9614 2.501e-09 ***
              -3.3580e-07 1.1972e-07 -2.8049 0.0050327 **
## UMP
               9.3722e-02 2.7131e-02 3.4544 0.0005515 ***
## APKSD
## APKSMP
               8.0528e-02 2.2029e-02 3.6556 0.0002566 ***
               -2.2230e-02 1.2713e-02 -1.7486 0.0803660 .
## APKSMA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Total Sum of Squares:
                           251.93
## Residual Sum of Squares: 183.84
## R-Squared:
                  0.27028
## Adj. R-Squared: 0.2549
## Chisq: 122.971 on 7 DF, p-value: < 2.22e-16
```

Visualisasi Data

```
library(ggplot2)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:car':
##
##
       recode
## The following objects are masked from 'package:plm':
##
       between, lag, lead
##
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(plm)
library(lfe)
## Loading required package: Matrix
##
## Attaching package: 'lfe'
## The following object is masked from 'package:lmtest':
##
       waldtest
##
## The following object is masked from 'package:plm':
##
##
       sargan
```

```
library(lmtest)
library(car)
library(geepack)
Data visualisasi <- Data Final
View(Data visualisasi)
str(Data visualisasi)
## tibble [340 x 10] (S3: tbl_df/tbl/data.frame)
## $ PROVINSI: chr [1:340] "NANGROE ACEH DARUSSALAM" "NANGROE ACEH
DARUSSALAM" "NANGROE ACEH DARUSSALAM" "NANGROE ACEH DARUSSALAM" ...
## $ TAHUN : num [1:340] 2014 2015 2016 2017 2018 ...
## $ TPT
            : num [1:340] 7.88 9.93 7.57 6.57 6.34 ...
## $ INFLASI : num [1:340] 2.09 1.53 3.95 4.25 1.84 1.69 3.59 2.24 5.89 1.53
. . .
## $ PDRB
              : num [1:340] 4.02 4.28 4.26 4.13 4.49 ...
## $ IHK
              : num [1:340] 121 116 120 126 128 ...
## $ UMP
              : num [1:340] 1750000 1900000 2118500 2500000 2700000 ...
## $ APKSD
              : num [1:340] 107 109 108 107 107 ...
## $ APKSMP : num [1:340] 95.9 97.9 99.2 98.7 99.3 ...
## $ APKSMA : num [1:340] 81.5 83.3 87.5 87.5 84.8 ...
head(Data visualisasi)
## # A tibble: 6 × 10
    PROVINSI
                        TAHUN
                                TPT INFLASI PDRB
                                                     THK
                                                           UMP APKSD APKSMP
APKSMA
##
                        <dbl> <dbl>
                                      <dbl> <dbl> <dbl> <dbl> <dbl> <
    <chr>>
<dbl>
## 1 NANGROE ACEH DARUS... 2014 7.88
                                       2.09 4.02 121. 1.75e6 107.
                                                                       95.9
81.5
## 2 NANGROE ACEH DARUS... 2015
                              9.93
                                       1.53 4.28 116. 1.9 e6
                                                                       97.9
                                                                109.
83.3
## 3 NANGROE ACEH DARUS... 2016 7.57
                                       3.95 4.26 120. 2.12e6
                                                                108.
                                                                       99.2
87.5
                                       4.25 4.13 126. 2.5 e6
## 4 NANGROE ACEH DARUS... 2017
                              6.57
                                                                107.
                                                                       98.7
87.5
## 5 NANGROE ACEH DARUS... 2018
                              6.34
                                       1.84 4.49 128. 2.70e6
                                                                107.
                                                                       99.3
84.8
                                       1.69 4.14 130. 2.92e6 106.
## 6 NANGROE ACEH DARUS... 2019 6.17
                                                                       97.4
90.1
ggplot(data = Data_visualisasi, aes(x = TAHUN, y = TPT, colour =
as.factor(PROVINSI))) +
 geom line() +
 labs(x = "Tahun", y = "TPT", colour = "Provinsi") +
theme minimal()
```

```
- BALI
                                      LAWPUNG
      — BANGKA BELITUNG

    MALUKU

      BANTEN

    MALUKU UTARA

      — BENGKULU

    NANGROE ACEH DARUSSALAM

      — DAERAH ISTIMEWA YOGYAKARTA — NUSA TENGGARA BARAT
      — DKI JAKARTA

    NUSA TENGGARA TIMUR

      — GORONTALO
                                     PAPUA
      — JAMBI
                                   — PAPUA BARAT
= 6

    JAWA BARAT

                                     RIAU
      — JAWA TENGAH

    SULAWESI BARAT

      — JAWA TIMUR
                                   — SULAWESI SELATAN

    KALIMANTAN BARAT

                                   — SULAWESI TENGAH

    KALIMANTAN SELATAN

                                   — SULAWESI TENGGARA

    KALIMANTAN TENGAH

                                   — SULAWESI UTARA

    KALIMANTAN TIMUR

                                   — SUMATERA BARAT

    KALIMANTAN UTARA

                                   — SUMATERA SELATAN
Tahun — KEPULAUAN RIAU
                                   — SUMATERA UTARA
ggplot(data = Data_visualisasi, aes(x = TAHUN, y = INFLASI, colour =
as.factor(PROVINSI))) +
  geom_line() +
  labs(x = "Tahun", y = "INFLASI", colour = "Provinsi") +
theme minimal()
```


Data_visualisasi,)