Applied Statistics and Econometrics Lecture 6

GIUSEPPE Ragusa

Luiss University

gragusa@luiss.it
http://gragusa.org/

March 6, 2017

Luiss University

Empirical application.

Data

Italian Labour Force Survey, ISTAT (2015Q3)

- wage: wage of full-time workers
- education: years of education

Wage and Education

Italia Labour Force Survey - ISTAT, 2015 3 Variables 26127 Observations

RETRIC												lana da	عاداداد	لتلتلتن	حصلتات		
n 26127	missing 0	distinct 275	Info 0.999	Mean 1307	Gmd 567.5	.05 500	.10 680	.25 1000	.50 1300	.75 1550	.90 1950	.95 2290					
lowest : :	250 260	270 280	290, high	est: 2960	2970 2980	2990 3	000										
EDULEV	,													1		-	ı
n 26127	missing 0	distinct 6															
/alue		No edu	cation	elem	entary so	hool		middle	school								
requency Proportion			142 0.005		C	700 0.027			7510 0.287								
/alue	prof. hi	gh school d	iploma	high s	chool dip	oloma		college	degree								
Frequency Proportion			2289 0.088			10530 0.403			4956 0.190								

SG11

n	missing	distinct	Info	Mean	Gmd
26127	0	2	0.749	1 472	0.4006

Wage and education: data

We recode education in terms of year of education

```
years <- c(0, 5, 8, 11, 13, 18)
cnt <- 1
for (j in levels(lfs$EDULEV)) {
    lfs$educ[lfs$EDULEV == j] <- years[cnt]
    cnt <- cnt + 1
}

table(lfs$educ)

##
## 0 5 8 11 13 18
## 142 700 7510 2289 10530 4956</pre>
```

Wage and education: data

Regression: wages and education

```
lm1 <- lm(RETRIC ~ educ, data = lfs)</pre>
summary(lm1)
##
## Call:
## lm(formula = RETRIC ~ educ, data = lfs)
##
## Residuals:
      Min 10 Median 30
##
                                    Max
## -1312.6 -312.6 -32.5 252.4 1867.5
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 788.421 10.368 76.0 <2e-16 ***
## educ 43.012 0.822 52.4 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 497 on 26125 degrees of freedom
## Multiple R-squared: 0.0949, Adjusted R-squared: 0.0949
```

Regression when X is Binary (Section 5.3)

- X = 1 if small class size, = 0 if not;
- X = 1 if female, = 0 if not;
- etc.
- Binary regressors are sometimes called dummy variables.
- So far, β_1 has been called a "slope", but that doesn't make sense if X is binary.
- How do we interpret regression with a binary regressor?

Interpretation when X is binary

Consider

$$Y_i = \beta_0 + \beta_1 X_i + u_i,$$

when X is binary.

Interpretation when X is binary

Consider

$$Y_i = \beta_0 + \beta_1 X_i + u_i,$$

when X is binary. Then,

$$E[Y_i|X_i = 0] = \beta_0$$
$$E[Y_i|X_i = 1] = \beta_0 + \beta_1$$

Interpretation when X is binary

Consider

$$Y_i = \beta_0 + \beta_1 X_i + u_i,$$

when X is binary. Then,

$$E[Y_i|X_i = 0] = \beta_0$$
$$E[Y_i|X_i = 1] = \beta_0 + \beta_1$$

Thus,

$$\beta_1 = E[Y_i|X_i = 1] - E[Y_i|X_i = 0]$$

= population difference in group means

Example

Let

$$D_i = \begin{cases} 1 & \text{if } STR_i \leqslant 20\\ 0 & \text{if } STR_i > 20 \end{cases}$$

The linear model:

$$TestScore_i = \beta_0 + \beta_1 D_i + u_i$$

```
library(ase)
data(CASchools)
```

```
CASchools["D"] <- ifelse(CASchools[["str"]] <= 20, 1, 0)

## OLS

lm(testscore ~ D, data = CASchools)

##

## Call:
## lm(formula = testscore ~ D, data = CASchools)

##

## Coefficients:
## (Intercept) D

## 650.00 7.19
```

Difference in means/regression

		testscore					
D	n	mean	sd				
0	177	649.999	17.966				
1	243	657.185	19.286				
Α	1 420	654.157	19.053				

$$ar{Y}_{small} - ar{Y}_{large} = 657.185 - 649.999$$

= $7.186 \approx 7.19$

$$SE(\bar{Y}_{small} - \bar{Y}_{large}) = \sqrt{\frac{s_s^2}{n_s} + \frac{s_l^2}{n_l}}$$
$$= 1.83$$

```
summarv(lm(testscore ~ D. data = CASchools))
Call:
lm(formula = testscore ~ D. data = CASchools)
Residuals:
         10 Median 30
  Min
                            Max
-50.43 -14.07 -0.28 12.78 49.57
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 650.00 1.41 461.41 < 2e-16 ***
       7.19 1.85 3.88 0.00012 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 19 on 418 degrees of freedom
Multiple R-squared: 0.0348, Adjusted R-squared: 0.0324
```

F-statistic: 15.1 on 1 and 418 DF, p-value: 0.000121

Difference in wages: males / females

```
## SG11 denote gender of individual
## SG11 is coded as:
## == 1, male;
## == 2, female
## `female` is == 1 if female; ==0 o/w
lfs$female <- ifelse(lfs$SG11 == 2, 1, 0)</pre>
```

```
lm(RETRIC ~ female, data = lfs)

##

## Call:

## lm(formula = RETRIC ~ female, data = lfs)

##

## Coefficients:

## (Intercept) female

## 1445 -291
```

Heteroskedasticity and Homoskedasticity

Heteroskedasticity robust standard errors (Section 5.4)

- What...?
- Consequences of heteroskedasticity/homoskedasticity
- Implication for computing standard errors

What do these two terms mean?

If var(u|X=x) is constant — that is, if the variance of the conditional distribution of u given X does not depend on X then u is said to be homoskedastic. Otherwise, u is heteroskedastic.

Consider

$$wage_i = \beta_0 + \beta_1 educ_i + u_i$$

Homoskedasticity means that the variance of u_i does not change with the education level.

Of course, we do not know anything about $var(u_i|educ_i)$, but we can use data to get an idea.

We plot the boxplot of wage for each educational cathegory — if u_i is homeskedastic, the box should approximately be of the same size

Homoskedasticity in a picture

Homoskedasticity in a table

Table 1: Sample variance of wage per education level

EDULEV	VAR	SD
No education	104210	323
elementary school	179437	424
middle school	184808	430
prof. high school diploma	184084	429
high school diploma	235692	485
college degree	401217	633

So far we have (without saying so) assumed that u might be heteroskedastic.

Recall the three least squares assumptions:

- E(u|X=x)=0;
- (Xi, Yi), i = 1, ..., n, are i.i.d.
- Large outliers are rare

Heteroskedasticity and homoskedasticity concern var(u|X=x). Because we have not explicitly assumed homoskedastic errors, we have implicitly allowed for heteroskedasticity.

Standard Errors

We now have two formulas for standard errors for $\hat{\beta}_1$:

- Homoskedastic only standard errors—these are valid only if the errors are homoskedastic
- The heteroskedasticity robust standard errors valid whether or not the errors are heteroskedastic.
- The main advantage of the homoskedasticity-only standard errors is that the formula is simpler. But the disadvantage is that the formula is only correct if the errors are homoskedastic.

Practical implications

• The homoskedasticity-only formula for the standard error of $\hat{\beta}_1$ and the heteroskedasticity-robust formula differ - so in general, you get different standard errors using the different formulas.

Practical implications

- The homoskedasticity-only formula for the standard error of $\hat{\beta}_1$ and the heteroskedasticity-robust formula differ so in general, you get different standard errors using the different formulas.
- Homoskedasticity-only standard errors are the default setting in regression software sometimes the only setting (e.g. Excel). To get the general heteroskedasticity-robust standard errors you must override the default.

Practical implications

- The homoskedasticity-only formula for the standard error of $\hat{\beta}_1$ and the heteroskedasticity-robust formula differ so in general, you get different standard errors using the different formulas.
- Homoskedasticity-only standard errors are the default setting in regression software sometimes the only setting (e.g. Excel). To get the general heteroskedasticity-robust standard errors you must override the default.
- If you dont override the default and there is in fact heteroskedasticity, your standard errors (and wrong t-statistics and confidence intervals) will be wrong - typically, homoskedasticity-only SEs are too small.

• If the errors are either homoskedastic or heteroskedastic and you use heteroskedastic-robust standard errors, you are OK

- If the errors are either homoskedastic or heteroskedastic and you use heteroskedastic-robust standard errors, you are OK
- If the errors are heteroskedastic and you use the homoskedasticity-only formula for standard errors, your standard errors will be wrong (the homoskedasticity-only estimator of the variance of $\hat{\beta}_1$ is inconsistent if there is heteroskedasticity).

- If the errors are either homoskedastic or heteroskedastic and you use heteroskedastic-robust standard errors, you are OK
- If the errors are heteroskedastic and you use the homoskedasticity-only formula for standard errors, your standard errors will be wrong (the homoskedasticity-only estimator of the variance of $\hat{\beta}_1$ is inconsistent if there is heteroskedasticity).
- \bullet The two formulas coincide (when n is large) in the special case of homoskedasticity

- If the errors are either homoskedastic or heteroskedastic and you use heteroskedastic-robust standard errors, you are OK
- If the errors are heteroskedastic and you use the homoskedasticity-only formula for standard errors, your standard errors will be wrong (the homoskedasticity-only estimator of the variance of $\hat{\beta}_1$ is inconsistent if there is heteroskedasticity).
- The two formulas coincide (when n is large) in the special case of homoskedasticity
- So, you should always use heteroskedasticity-robust standard errors

In R, to obtain heteroskedastic robust standard errors use summary_rob()

```
summary(lm(testscore ~ str, data = CASchools)) ## This only works if `ase` has been loaded
                                             summary_rob(lm(testscore ~ str, data = CASchools))
Call:
lm(formula = testscore ~ str. data = CASchools) Coefficients:
                                                         Estimate Std. Error z value Pr(>|z|)
Residuals:
                                             (Intercept) 698.933
                                                                    10.364 67.44 < 2e-16
                                             str
                                                        -2.280 0.519 -4.39 1.1e-05
  Min
          10 Median
                       30
                            Max
-47.73 -14.25 0.48 12.82 48.54
                                             Heteroskadasticity robust standard errors used
Coefficients:
           Estimate Std. Error t value Pr(>|t|) Residual standard error: 19 on 418 degrees of freedom
(Intercept) 698.93
                         9.47
                               73.82 < 2e-16 Multiple R-squared: 0.0512, Adjusted R-squared: 0.049
             -2.28
                         0.48 -4.75 2.8e-06 F-statistic: 19.3 on 1 and Inf DF, p-value: 1.14e-05
str
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 19 on 418 degrees of freedom
Multiple R-squared: 0.0512.Adjusted R-squared: 0.049
F-statistic: 22.6 on 1 and 418 DF. p-value: 2.78e-06
```

Difference in means/regression

		testscore					
D	n	mean	sd				
0	177	650.00	17.97				
1	243	657.18	19.29				
All	420	654.16	19.05				

$$\bar{Y}_{small} - \bar{Y}_{large} = 657.18 - 650.00$$

= 7.18

$$SE(\bar{Y}_{small} - \bar{Y}_{large}) = \sqrt{\frac{s_s^2}{n_s} + \frac{s_l^2}{n_l}}$$
$$= 1.83$$

```
summary_rob(lm(testscore ~ D, data = CASchools))
```

Coefficients:

```
| Estimate Std. Error z value Pr(>|z|)
| (Intercept) | 650.00 | 1.35 | 481.55 | < 2e-16
| D | 7.19 | 1.83 | 3.92 | 8.7e-05
```

Heteroskadasticity robust standard errors used

Residual standard error: 19 on 418 degrees of freedom Multiple R-squared: 0.0348, Adjusted R-squared: 0.0324 F-statistic: 15.4 on 1 and Inf DF, p-value: 8.73e-05

Some Additional Theoretical Foundations of OLS

Some Additional Theoretical Foundations of OLS (Section 5.5)

We have already learned a very great deal about OLS: (i) OLS is unbiased and consistent; (ii) we have a formula for heteroskedasticity-robust standard errors; (iii) and we can construct confidence intervals and test statistics.

Some Additional Theoretical Foundations of OLS (Section 5.5)

We have already learned a very great deal about OLS: (i) OLS is unbiased and consistent; (ii) we have a formula for heteroskedasticity-robust standard errors; (iii) and we can construct confidence intervals and test statistics.

Also, a very good reason to use OLS is that everyone else does — so by using it, others will understand what you are doing. In effect, OLS is the language of regression analysis, and if you use a different estimator, you will be speaking a different language.

Further questions you may have:

- Is this really a good reason to use OLS? Arent there other estimators that might be better
 - in particular, ones that might have a smaller variance?

Further questions you may have:

- Is this really a good reason to use OLS? Arent there other estimators that might be better
 - in particular, ones that might have a smaller variance?

So we will now answer this question but to do so we will need to make some stronger assumptions than the three least squares assumptions already presented.

The Extended Least Squares Assumptions

- 1. $E(u_i|X_i = x) = 0$, for all x;
- 2. (X_i, Y_i) , i = 1, ..., n, are i.i.d.;
- 3. large outliers are rare (E(Y⁴) $< \infty$, E(X⁴) $< \infty$);
- 4. u_i is homoskedastic;
- 5. u_i is $N(0, \sigma_u^2)$.

Efficiency of OLS: The Gauss-Markov Theorem

Gauss-Markov theorem - Part I

Under extended LS assumptions 1-4 (1-3, plus homoskedasticity):

OLS has the smallest variance among all linear estimators of β_1 .

Efficiency of OLS:The Gauss-Markov Theorem

Gauss-Markov theorem - Part II

Under extended LS assumptions 1-5 (1-3, plus homoskedasticity and normality):

OLS has the smallest variance among all consistent estimators.

This is a pretty amazing result — it says that, if (in addition to LSA 1-3) the errors are homoskedastic and normally distributed, then OLS is a better choice than any other consistent estimator.

And because an estimator that isn't consistent is a poor choice, this says that OLS really is the best you can do — if extended LS assumptions hold.

The foregoing results are impressive, but these results and the OLS estimator have important limitations.

• The GM theorem really isnt that compelling:

- The GM theorem really isnt that compelling:
 - The condition of homoskedasticity often doesn't hold (homoskedasticity is special)

- The GM theorem really isnt that compelling:
 - The condition of homoskedasticity often doesn't hold (homoskedasticity is special)
 - The result is only for linear estimators only a small subset of estimators

- The GM theorem really isnt that compelling:
 - The condition of homoskedasticity often doesn't hold (homoskedasticity is special)
 - The result is only for linear estimators only a small subset of estimators
- The strongest optimality result (part II above) requires homoskedastic normal errors not plausible in applications

- The GM theorem really isnt that compelling:
 - The condition of homoskedasticity often doesn't hold (homoskedasticity is special)
 - The result is only for linear estimators only a small subset of estimators
- The strongest optimality result (part II above) requires homoskedastic normal errors not plausible in applications
- OLS is more sensitive to outliers than some other estimators.

- The GM theorem really isnt that compelling:
 - The condition of homoskedasticity often doesn't hold (homoskedasticity is special)
 - The result is only for linear estimators only a small subset of estimators
- The strongest optimality result (part II above) requires homoskedastic normal errors not plausible in applications
- OLS is more sensitive to outliers than some other estimators.

The foregoing results are impressive, but these results and the OLS estimator have important limitations.

- The GM theorem really isnt that compelling:
 - The condition of homoskedasticity often doesn't hold (homoskedasticity is special)
 - The result is only for linear estimators only a small subset of estimators
- The strongest optimality result (part II above) requires homoskedastic normal errors not plausible in applications
- OLS is more sensitive to outliers than some other estimators.

In virtually all applied regression analysis, OLS is used and that is what we will do in this course too.