Biofuel Feedstocks and Production

BEE 499/599 Winter, 2015 3 Credit Hours Bioethanol is one of the important alternatives to fossil fuels. This course will provide an overview of the biofuel feedstocks for production of fuels, feed and industrially valuable chemicals. Issues in feedstock utilization such as suitability, availability, sustainability and economic viability will be addressed. This course will cover the preprocessing, post processing and fermentation technologies in ethanol production in detail. Influence of feedstock composition and process technologies on ethanol and coproducts will be discussed.

Course Format

Topics Covered

- 1. Overview of a biobased economy
- 2. Feedstocks: classification, properties and selection
- 3. Biochemical technologies for ethanol production
- 4. Other bioprocessing technologies for fuels and chemicals
- 5. Systems analysis

Course Schedule and Location

MWF 9.00-9.50 am; 100 HOV

Three lectures per week, class tests, exams and a review of Journal articles (Graduate).

Instructors

G.S. Murthy, 541-737-6291 murthy@engr.orst.edu

Hong Liu, 541-737-6309 <u>liuh@engr.orst.edu</u>

Teaching Assistant: S.M.H. Tabatabaie (Hossein), <u>tabatabs@onid.oregonstate.edu</u>

Need for Sustainable Biobased Economy

Three important considerations

- Energy resources and their contribution
- Population growth and economy
- Global climate change

World Energy Scenario

Energy sources

- •Non Renewable: Petroleum, coal, nuclear
- •Renewable: Solar, wind, hydro and biomass

Are all forms of energy the same?

kWhr from coal \neq kWhr from gasoline \neq kWhr from electricity

Usability is determined by the following characteristics of energy sources.

- •High energy density
- •Long shelf life
- Safety
- Quality

World Energy Scenario

Source: http://en.wikipedia.org/wiki/Image:World_energy_usage_width_chart.svg

Data: Renewables in global energy supply. IEA Report, 2007.

US Energy Scenario

Source: http://www.eia.doe.gov/cneaf/alternate/page/renew_energy_consump/figure1.html

Data: Renewables in global energy supply. IEA Report, 2008.

US Energy Flows

Source: EIA

Data: Renewables in global energy supply. IEA Report, 2008.

US Energy Scenario

U.S. Energy Flow Trends – 2002 Net Primary Resource Consumption ~103 Exajoules

Source: https://eed.llnl.gov/flow/02flow.php

World Energy Use

Source: EIA

US Natural Gas Production

US CO₂ Liquid Fuels consumption and CO₂ Emission

Source: EIA, 2013 outlook report

US Primary Energy Consumption by Fuel

Source: EIA, 2014 outlook report

Renewable Electricity Generation

Source: EIA

Need for Sustainable Biobased Economy

Three important considerations

- Energy resources and their contribution
- Population growth and economy
- Global climate change

Energy Consumption and Economy

Energy is the real currency of economies.

Source: Frank van Mierlo, http://en.wikipedia.org/wiki/Image:Energy_consumption_versus_GDP.png

World emerging economies

World human development index

Source: http://en.wikipedia.org/wiki/Image:UN_Human_Development_Report_2007_%282%29.svg

Data: Human Development Report, 2007.

World population

 $\textbf{Source:} \ http://en.wikipedia.org/wiki/Image:World_population.PNG$

Need for Sustainable Biobased Economy

Three important considerations

- Energy resources and their contribution
- Population growth and economy
- Global climate change

Arable land in world

Source: http://en.wikipedia.org/wiki/Image:Arable_land_percent_world.png

Data: CIA Factobook

Resources: World Water Stress

Physical water scarcity

Red: >75% river flows already in use Light Red: >60% river flows already used Orange: Economic Water scarcity, <25% used due to economic reasons. Blue: Water resources available.<25% is withdrawn for human purposes.

Ref: .Comprehensive Assessment of Water Management in Agriculture, International Water Management Institute, 2006.

EROEI and **EROWI** for Different Fuels

	Water usage (L/MJ)	EROWI (MJ/L)	EROEI (MJ/MJ)	Net EROWI
Nuclear Electric	1.162(0.145)	0.861(1.517)	10	0.775 (1.137)
Coal Electric	0.560(0.488)	1.786 (2.049)	-	-
Conv. Diesel	0.0035	285.3	5.01	228.4
Biodiesel				
Rapeseed	100-175	0.010-0.0057	2.33	0.0057-0.0033
Algae (Ponds)	20.142*	0.004965	3.33	0.03475
Ethanol				
Sugarcane	38-156	0.026-0.0065	8.3	0.023-0.0057
Corn	73-346	0.014-0.0029	1.38	0.0039-0.00081
Lignocellulosic Crops				
Ethanol	11-171	0.091-0.0058	4.55	0.0071-0.0045
Hydrogen	15-129	0.067-0.0078	4.67	0.053-0.0062
Electricity	13-195	0.077-0.0051	5.0	0.062-0.0041

^{*20142} L/ 4 days ~25 people (201 L/person-day)

Data from: Mulder et al. 2010. AmBio. 39:30-39. and Sander Murthy. 2010. IJLCA.15:704-714

Resources: Nutrients

Nitrogen supply and use.

Resources: Nutrients

Peak phosphorous?

Ref: .Cordell et al. 2009. Global Env. Change. 19:292-305.

Impact of Global Climate Change on Agriculture

Impact of global climate change on agriculture

- Unpredictable rainfall
- Loss of forest cover and biodiversity
- Increase in pests and diseases
- Loss of fertile lands due to rising ocean levels
- Change in the direction of ocean currents
- Ocean acidification

Source: http://www.fao.org/NEWS/FACTFILE/FF9721-E.HTM

Renewable Energy Availability

Source: Tester, Jefferson W.; et al. (2005). Sustainable Energy: Choosing Among Options. The MIT Press. <u>ISBN 0-262-20153-4</u>.

Technologies for Conversion of Bio-feedstock

Technologies for conversion of biomass can be divided into five platforms (Biomass Program, DOE Classification)

Consolidated Bio processing (CBP)

Biofuel plants in the U.S.

Thank you

Renewables: Just Fuels?

- Nitrogenous fertilizers
- Production of polymers (polylactic acid and zein)
- Fuels and chemicals from cattle manure
- Alternate uses for lignin: production of value added products, use for heating
- Nutraceuticals

Thank you

