TP3 – Segmentation par classification

Rappels de cours

La segmentation d'une image en niveaux de gris $\mathbf{x} = (x_s)_{s \in \mathcal{S}}$ peut être effectuée par classification. En choisissant un nombre N de classes, supposées gaussiennes, et en supposant connues les moyennes μ_1, \ldots, μ_N et les écarts-types $\sigma_1, \ldots, \sigma_N$ des différentes classes, le résultat est la configuration $\hat{\mathbf{k}} = (\hat{k}_s)_{s \in \mathcal{S}}$ qui maximise la probabilité a posteriori de la configuration $\mathbf{k} = (k_s)_{s \in \mathcal{S}}$, sachant \mathbf{x} . Or, d'après le théorème de Bayes :

$$p(\mathbf{K} = \mathbf{k}|\mathbf{X} = \mathbf{x}) = \frac{p(\mathbf{X} = \mathbf{x}|\mathbf{K} = \mathbf{k}) p(\mathbf{K} = \mathbf{k})}{p(\mathbf{X} = \mathbf{x})} \propto p(\mathbf{X} = \mathbf{x}|\mathbf{K} = \mathbf{k}) p(\mathbf{K} = \mathbf{k})$$
(1)

L'hypothèse d'indépendance des données permet d'écrire la vraisemblance sous la forme d'un produit :

$$p(\mathbf{X} = \mathbf{x}|\mathbf{K} = \mathbf{k}) = \prod_{s \in \mathcal{S}} p(X_s = x_s|K_s = k_s) = \prod_{s \in \mathcal{S}} \frac{1}{\sigma_{k_s} \sqrt{2\pi}} \exp\left\{-\frac{(x_s - \mu_{k_s})^2}{2\sigma_{k_s}^2}\right\}$$
(2)

Quant à la probabilité a priori de la configuration \mathbf{k} , elle est donnée par le $mod\`ele$ de Potts:

$$p(\mathbf{K} = \mathbf{k}) \propto \exp \left\{ -\beta \sum_{\{s,t\} \in \mathcal{C}_2} [1 - \delta(k_s, k_t)] \right\}$$
 (3)

où C_2 désigne l'ensemble des cliques de cardinal 2, c'est-à-dire l'ensemble des paires $\{s,t\}$ de pixels voisins (c'est le système de voisinage des « 8 plus proches voisins » qui est utilisé). Nous déduisons de (1), (2) et (3):

$$p(\mathbf{K} = \mathbf{k} | \mathbf{X} = \mathbf{x}) \propto \exp \left\{ -\sum_{s \in \mathcal{S}} \left[\ln \sigma_{k_s} + \frac{(x_s - \mu_{k_s})^2}{2 \sigma_{k_s}^2} \right] - \beta \sum_{\{s,t\} \in \mathcal{C}_2} [1 - \delta(k_s, k_t)] \right\} = \exp\{-U(\mathbf{k})\}$$
(4)

Chercher le maximum de $p(\mathbf{K} = \mathbf{k} | \mathbf{X} = \mathbf{x})$ équivaut donc à chercher le minimum de l'énergie $U(\mathbf{k})$. Pour ce faire, il ne suffit pas d'optimiser l'énergie localement, en chaque pixel $s \in \mathcal{S}$, ce qui s'écrirait :

$$\widehat{k}_s = \operatorname*{arg\,min}_{k_s \in \{1, \dots, N\}} \left\{ \frac{1}{2} \left[\ln \sigma_{k_s}^2 + \frac{(x_s - \mu_{k_s})^2}{\sigma_{k_s}^2} \right] + \beta \sum_{t \in \mathcal{V}(s)} \left[1 - \delta(k_s, k_t) \right] \right\}$$
(5)

Pour trouver le minimum global de $U(\mathbf{k})$, il est impensable de tester les $N^{\operatorname{card}(S)}$ configurations possibles. Nous pouvons en revanche utiliser le recuit simulé. Cette méta-heuristique fait décroître un paramètre T, appelé temp'erature, en le multipliant par $\alpha < 1$ à chaque itération. L'algorithme complet s'écrit :

- 1. **Initialisations**: $T \leftarrow T_0$; $\mathbf{K} \leftarrow \text{Configuration } \mathbf{k}$ obtenue par maximisation de la vraisemblance.
- 2. Parcours de tous les pixels s de l'image, visitée ligne par ligne et colonne par colonne :
 - Tirer une nouvelle réalisation $k_s' \in \{1, \dots, N\} \setminus \{k_s\}$ de K_s , et comparer les deux énergies locales :

$$\begin{cases}
U_s = \frac{1}{2} \left[\ln \sigma_{k_s}^2 + \frac{(x_s - \mu_{k_s})^2}{\sigma_{k_s}^2} \right] + \beta \sum_{t \in \mathcal{V}(s)} \left[1 - \delta(k_s, k_t) \right] \\
U_s' = \frac{1}{2} \left[\ln \sigma_{k_s'}^2 + \frac{(x_s - \mu_{k_s'})^2}{\sigma_{k_s'}^2} \right] + \beta \sum_{t \in \mathcal{V}(s)} \left[1 - \delta(k_s', k_t) \right]
\end{cases} \tag{6}$$

- Si $U_s' < U_s$, alors $K_s \leftarrow k_s'$. Sinon, la nouvelle réalisation k_s' de K_s peut quand même être acceptée, mais avec une probabilité $\exp\left\{-\frac{U_s'-U_s}{T}\right\}$ qui décroît avec la température T. Une particularité du recuit simulé est donc de ne pas systématiquement éliminer les changements de configuration qui font croître l'énergie.
- 3. Mises à jour : $T \leftarrow \alpha T$, puis retour en 2, tant que le nombre maximal d'itérations q_{max} n'est pas atteint.

Exercice 1 : segmentation par classification supervisée

Écrivez les fonctions attache_aux_donnees, regularisation et recuit_simule, qui sont appelées par le script exercice_1:

- La fonction attache_aux_donnees doit retourner une matrice tridimensionnelle contenant, pour chaque pixel, la valeur du terme d'attache aux données de (5), relativement à chacune des N classes.
- La fonction regularisation doit retourner la valeur du terme de régularisation de (5).

Les paramètres de chaque classe (moyenne et écart-type) sont estimés à partir d'un échantillon sélectionné par l'utilisateur, d'où le caractère *supervisé* de la classification.

Ajustez les paramètres T_0 , α , q_{max} et β de façon à maximiser le pourcentage de bonnes classifications. Observez ensuite ce qui se passe dans les cas suivants (liste non exhaustive) :

- ullet Si le nombre N de classes est différent de 4.
- Lorsque les échantillons sont mal sélectionnés.
- Si $T_0 = 0$, ce qui élimine tout changement de configuration qui fait croître l'énergie.

Exercice 2 : utilisation de la couleur

Il serait dommage de ne pas utiliser l'information de couleur, qui constitue un indice majeur pour segmenter une image. En vous inspirant de la fonction estimation, qui traite aussi bien une image RVB qu'une image en niveaux de gris, modifiez la fonction attache_aux_donnees de manière à pouvoir être appelée indifféremment par les scripts exercice_1 et exercice_2. Il est rappelée que la loi normale en dimension d s'écrit, si $\mathbf{x} \in \mathbb{R}^d$:

$$f(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} \sqrt{\det \mathbf{\Sigma}}} \exp \left\{ -\frac{1}{2} (\mathbf{x} - \mu)^{\top} \mathbf{\Sigma}^{-1} (\mathbf{x} - \mu) \right\}$$
(7)

où $\mu \in \mathbb{R}^d$ et $\Sigma \in \mathbb{R}^{d \times d}$ désignent, respectivement, la moyenne et la matrice de variance/covariance.

Vous disposez maintenant d'une méthode de segmentation d'une image RVB quelconque, mais n'oubliez pas que cette méthode est $supervis\acute{e}e$: vous devez fixer par avance le nombre N de classes et sélectionner un échantillon par classe. Ce travail nécessite généralement l'intervention d'un « expert ». Prêtez-vous à ce jeu sur l'image guadeloupe.jpg, ou sur toute autre image de votre choix.

Partie facultative : classification non supervisée

Pour éviter à l'utilisateur de sélectionner « à la main » un échantillon de chaque classe, il est envisageable d'estimer les paramètres des N classes, en cherchant un mélange de N gaussiennes égal à l'histogramme f(x) de l'image (supposée en niveaux de gris) :

$$f(x) = \sum_{i=1}^{N} \frac{p_i}{\sigma_i \sqrt{2\pi}} \exp\left\{-\frac{(x-\mu_i)^2}{2\sigma_i^2}\right\}, \qquad x \in \{1, \dots, 255\}$$
 (8)

où μ_i , σ_i et p_i désignent, respectivement, la moyenne, l'écart-type et le poids de la $i^{\text{ème}}$ gaussienne. L'estimation des paramètres de ce modèle revient donc à résoudre le problème en moindres carrés suivant :

$$(\widehat{\mu}_i, \widehat{\sigma}_i, \widehat{p}_i)_{i \in \{1, \dots, N\}} = \underset{(\mu_i, \sigma_i, p_i)_{i \in \{1, \dots, N\}}}{\operatorname{arg\,min}} \sum_{x=0}^{255} \left[f(x) - \sum_{i=1}^{N} \frac{p_i}{\sigma_i \sqrt{2\pi}} \exp\left\{ -\frac{(x - \mu_i)^2}{2 \,\sigma_i^2} \right\} \right]^2$$
(9)

qui est non linéaire vis-à-vis des inconnues μ_i et σ_i , mais linéaire vis-à-vis de p_i . La méthode la mieux adaptée à la résolution de ce problème (« algorithme EM ») sera vue dans une autre partie de l'UE. Nous vous proposons ci-après une méthode moins performante, mais plus facile à mettre en œuvre.

Exercice 3 : estimation des paramètres des N classes

Faites une copie du script exercice_1, de nom exercice_3, dans lequel vous remplacerez l'appel à la fonction estimation par un appel à estimation_bis. Dans cette nouvelle fonction, vous devrez commencer par calculer l'histogramme f(x) de l'image, puis résoudre le problème (9). Le calcul de l'histogramme normalisé d'une image en niveaux de gris peut être effectué à l'aide de la fonction ksdensity.

Pour résoudre (9), il est conseillé de supposer, dans un premier temps, les écarts-types σ_i connus, et de n'estimer que les moyennes μ_i et les poids p_i (notez qu'il sera inutile de retourner ces derniers, qui ne sont pas utiles à la méthode de classification par MAP de l'exercice 1). L'estimation des moyennes μ_i peut être menée en minimisant l'argument du problème (9) par tirages aléatoires, c'est-à-dire en maximisant la vraisemblance. Quant à l'estimation des poids p_i , elle est grandement facilitée par le fait que le problème en moindres carrés (9) est linéaire en p_i . Pour chaque tirage aléatoire de N valeurs réelles μ_i dans l'intervalle [0,255], il suffit donc de résoudre un système linéaire du type $\mathbf{AP} = \mathbf{F}$, où $\mathbf{P} = [p_1, \dots, p_N]^{\top}$ et où \mathbf{F} contient l'histogramme.

Vous pourrez ensuite modifier la fonction estimation_bis de manière à également estimer les écarts-types σ_i par tirages aléatoires. Mais alors que les moyennes des lois normales peuvent être tirées dans l'intervalle [0, 255], vous pourrez restreindre cet intervalle pour le tirage aléatoire des écarts-types.

Enfin, l'extension de cette fonction à la couleur vous permettra d'obtenir une version non supervisée du script exercice_2, que vous pourrez tester, par exemple, sur l'image guadeloupe.jpg.