EXERCISE 1

- Write a Matlab function [w]=pagerank(H, γ, maxit) that implements the pagerank (final version in the slides) algorithm, based on the power method, to approximate the dominant left-eigenvector w that represents the importance of the nodes (webpages). In order to make it efficient, keep in mind that:
 - ► H is a sparse matrix
 - ▶ the matrix $A = \gamma \cdot \hat{D}^{-1} * \hat{H} + (1 \gamma) \cdot \mathbf{1} * \mathbf{v}^T$ does not need to be computed as a matrix, neither \hat{H} , only the vector*matrix product $y^T * A$ needs to be computed in the power method algorithm
- Use the adjacency matrix in pagerank.zip or on https://snap.stanford.edu/data/#web in order to test the previous algorithm
- Implement a stopping criterion and test it
- For different γ the vector w is in general different. Analyse how the parameter γ affects the ranking. (Hint: [importance,page]=sort(w,'descend') returns the vector page such that page(1) is the ranked first page, page(2) is the ranked second page, page(3) is the ranked third page, ...)