If we compute god (Sn+2, Sn+1) using Evolideon algo, the first step: , to divide Snew by Snew.

$$(A) S_{n+2} = q S_{n+1} + r$$

where Ofre Sati. on the other hand, by definition of Satz, we have

If we show that $0 \le S_n < S_{n+1}$, then the uniqueness part if the division algorithm kills or that

There he has see of computing gcd(Shull, Ser

- Sn+1 = 2.5n+5n-1 > 5n 30

$$a = a_d 2^d + a_{d-1} 2^{d-1} + \dots + a_1 2 + a_0$$

$$= \sum_{\substack{k \in \mathbb{Z}^k \\ \text{even } k}} a_k 2^k + \sum_{\substack{k \in \mathbb{Z}^k \\ \text{odd } k}} a_k 2^k$$

$$= \sum_{\substack{k \in \mathbb{Z}^k \\ \text{odd } k}} a_k + \sum_{\substack{k \in \mathbb{Z}^k \\ \text{odd } k}} (-a_k)$$

$$= \sum_{\substack{k \in \mathbb{Z}^k \\ \text{odd } k}} a_k - \sum_{\substack{k \in \mathbb{Z}^k \\ \text{odd } k}} a_k.$$

Notice that $\sum a_k = \# \text{ of l's in even positions} = m$. $\sum_{n=1}^{\infty} a_{in} = \# \text{ if l's in odd positions} = n$

~ a = m-n (mod 3).

(1) $a^{q(p^n)} = 1 + q_n p^n$ for some q_n which is not div. by p.

n=1. $\alpha^{(p)} = 1 + q_1 p$ for rome q_1 that's not div. by p_1 . $\alpha^{(p)} = \alpha^{p-1} \equiv 1 \pmod{p}$ so $\alpha^{(p)} = 1 = q_1 p$ for some q_1 .

want to show that q_1 is not divisible by p_2 .

suppose $p_1 = 1 \pmod{p} = 1 \pmod{p^2}$, but a is a primitive root of $p_2 = 1 \pmod{p^2}$, but a is a primitive root of $p_2 = 1 \pmod{p^2}$, but a is a primitive root of $p_2 = 1 \pmod{p^2}$, and which is congruent to $1 \pmod{p^2}$, and $q_1 = 1 \pmod{p^2}$.

Contradiction!

<u>Inductive SKP</u> Assume that $a^{(p^n)} = 1 + q_n p^n$ for some q_n not div. by p_n want to show that $a^{(p^{n+1})} = 1 + q_{n+1} p^{n+1}$ for some q_{n+1} not div. by p_n

(2) Let d_n be order of a mod p^n . Want to show that $d_n = \varphi(p^n)$, for all n > 2.

n=2 | immediate since a primitive root of p^2 .

Inductive step. Assume that $d_k=\varphi(p^k)$, and we want to show that $d_{k+1}=\varphi(p^{k+1})$.

(a) Explain why $Q(p^k) \mid d_{k+1} \nmid d_{k+1} \mid Q(p^{k+1})$.

aduti = 1 (mod pk)

a has order $\varphi(p^k)$ mod p^k , so thm 8.1, $\varphi(p^k)$ | d_{k+1} .

 $\varphi(p^k) = p^{k-1}(p-1)$ if $\varphi(p^{k+1}) = p^k(p-1)$ so knowing that $\varphi(p^k) | d_{k+1} | \varphi(p^{k+1})$ means that $d_{k+1} = p^{k-1}(p-1)$ or $p^k(p-1)$.

(b). Assume dk+1 = Q(pk) and use (1) to derive a contradiction.

$$Q = Q = | (mod p^{k+1})$$

so $a^{e(p^k)} = 1 + qp^{k+1}$ for some q. = $1 + (qp)p^k$

so q = qp is div by p, which is a contradiction.

$$m^g = (m^q)^2 \equiv 1 \pmod{p}$$
 (*)

Thm 8.1 tells us that, if k is order of m mod p, then k 18. 50 K=1,2,4,0r 8.

But, if k=1,2,or 4, then $m^k\equiv 1 \pmod{p} \implies m^4\equiv 1 \pmod{p}$ controdicts (x). 5.1 ⇒ 8 \ Q(p)= p-1

Let p be a prime divisor & n. p must be odd, since n is odd. By part (a), PEI (mod 8), so p is one of the prime: P1,->Pr. 50 p | P1... Pr. => p | (2p1.-Pr)4. But p | n also, so p | 1. *.

$$u_{+\cdots} + u_n = \frac{n(n+1)(n+2)}{6}$$

$$t_1+\cdots+t_n=\frac{n(n+1)(n+2)}{6}$$
 $\frac{t_1+\cdots+t_n}{n}=\frac{(n+1)(n+2)}{6}$ should be an integer.

n	6	
n	(mtr)	
1	2:3 - 1	
2	$\frac{3.4}{6}=2$	
3	4.5 & B.	
4	5.6 = 5	
5	6:7 =7	
6	7.8 € 7.	
7	$\frac{8\cdot 9}{6} = 12$	
8	9.10=15	

$${n \mid n \mid (t_1 + \cdots + t_n)} = {n \mid 3 + n}$$

n= 4kt)

want buse that be show that

a = a (mod 10).

We can dothis by breaking up into 2 congnences:

an = a (mod2)

ansa (mods).

a = a (mod 2) is clear even wout Fermet's thm. (It doesn't mother that no 4kt). Mod 5: case 1: if 5/a, then 5/a" so an=0=a (mod 5) Case L: If 5+a, then a = 1 (mod 5) by Fermot's +hm, so a" = a 4kt1 = (a4)k. a = a (mod 5).

S = { n & N | n = 1 (mod 4)}

- (\{nem | n≥1 (mod 4)} ≤ S to show this, we assume that nel (mod 4), ie, n= 4k+1 for some k, and we prove that a = a (mod 10).
- 2 S = {nem | n=1 (mod 4) } To show this, we assume that I has the property that a Ea (mad 10) for all a we want to use this to show that n=1 (mod 4).

3"=3 (mod 10). But qcd (10,3)=1, 50 a=3. I know that 3"=1 (mod 10).

Calculate & check that 3 has order 4 mod 10.

50 by 4nm 8.1, 4 | n-1.