# UNIVERZA V LJUBLJANI FAKULTETA ZA RAČUNALNIŠTVO IN INFORMATIKO FAKULTETA ZA MATEMATIKO IN FIZIKO

#### Luka Uranič

# Inverzije permutacij, permutacijski grafi, tekmovalnostni grafi

DIPLOMSKO DELO

INTERDISCIPLINARNI UNIVERZITETNI ŠTUDIJSKI PROGRAM PRVE STOPNJE RAČUNALNIŠTVO IN MATEMATIKA

MENTOR: izr. prof. dr. Polona Oblak

Ljubljana, 2023



Kandidat: Luka Uranič

Naslov: Inverzije permutacij, permutacijski grafi, tekmovalnostni grafi

Vrsta naloge: Diplomska naloga na univerzitetnem programu prve stopnje

Računalništvo in matematika

Mentor: izr. prof. dr. Polona Oblak

#### Opis:

Besedilo teme diplomskega dela študent prepiše iz študijskega informacijskega sistema, kamor ga je vnesel mentor. V nekaj stavkih bo opisal, kaj pričakuje od kandidatovega diplomskega dela. Kaj so cilji, kakšne metode naj uporabi, morda bo zapisal tudi ključno literaturo.

Title: Inversions of permutations, permutation graphs, competitivity graphs

#### Description:

opis diplome v angleščini



# Kazalo

| P            | ovzetek                                                    |    |
|--------------|------------------------------------------------------------|----|
| $\mathbf{A}$ | bstract                                                    |    |
| 1            | $\mathbf{U}\mathbf{vod}$                                   | 1  |
| 2            | Notacija, oznake in definicije                             | 3  |
| 3            | Permutacije                                                | 5  |
| 4            | Inverzije                                                  | 9  |
| 5            | Permutacijski grafi                                        | 15 |
| 6            | Tekmovalnostni grafi                                       | 29 |
| 7            | Algoritem za izračun množice posrednih in neposrednih tek- | _  |
|              | movalcev                                                   | 35 |
| 8            | Uporaba algoritma na resničnih podatkih                    | 43 |
| 9            | Sklepne ugotovitve                                         | 45 |
| $_{ m Li}$   | teratura                                                   | 47 |

#### Povzetek

Naslov: Inverzije permutacij, permutacijski grafi, tekmovalnostni grafi

Avtor: Luka Uranič

V vzorcu je predstavljen postopek priprave diplomskega dela z uporabo okolja LATEX. Vaš povzetek mora sicer vsebovati približno 100 besed, ta tukaj je odločno prekratek. Dober povzetek vključuje: (1) kratek opis obravnavanega problema, (2) kratek opis vašega pristopa za reševanje tega problema in (3) (najbolj uspešen) rezultat ali prispevek magistrske naloge.

Ključne besede: permutacije, inverzije, rangiranja, permutacijski grafi, tekmovalnostni grafi, primerljivostni grafi.

### Abstract

Title: Inversions of permutations, permutation graphs, competitivity graphs

Author: Luka Uranič

This sample document presents an approach to type setting your BSc thesis using IFTEX. A proper abstract should contain around 100 words which makes this one way too short.

**Keywords:** permutations, inversions, rankings, permutation graphs, competitivity graphs, comparability graphs.

# Poglavje 1

# $\mathbf{U}\mathbf{vod}$

V člankih Karakterizacija in konstrukcija permutacijskih grafov [8], Permutacijski grafi in šibka Bruhatova urejenost [6], O grafih povezanih z množicami rangiranj [7]. Na spletnih straneh [3] [2] [4] [5] [1]

<u>2</u> Luka Uranič

## Poglavje 2

# Notacija, oznake in definicije

```
[n] = \{1, 2, ..., n\}.
```

 $S_n$  je množica vseh permutacij na množici [n].

 $id \in S_n$  je permutacija podana s predpisom id(a) = a za  $\forall a \in [n]$ .

V(G) je množica vozlišč grafa G.

E(G) je množica povezav grafa G.

 $\overline{G}$  je komplement grafa G (nepovezave grafa G so povezave grafa  $\overline{G}$ ).

 $K_n$  je poln graf na n vozliščih.

 $\overline{K_n}$ je nepovezan graf na n<br/> vozliščih.

 $P_n$  je pot na n vozliščih.

 $K_{n,k}$ je dvodelen graf z n vozlišči v <br/>eni in k vozlišči v drugi množici.

Premer drevesa je najdaljša pot med dvema vozliščema.

Disjunktna unija grafov je združitev dveh grafov v večji graf tako, da ju postavimo drug ob drugega.

Določiti smer povezave vu grafa G pomeni spremeniti vu v urejen par (v,u) ali (u,v).

Orientacija grafa G je usmerjen graf<br/> pridobljen tako da vsaki povezavi grafa G določimo smer.

Naj bo R relacija:  $R \subseteq A \times A, A \neq \emptyset$ 

R je refleksivna  $\Leftrightarrow \forall x \in A: xRx$ 

R je irefleksivna  $\Leftrightarrow \forall x \in A : \neg x R x$ 

R je simetricna  $\Leftrightarrow \forall x, y \in A : xRy \Rightarrow yRx$ 

R je asimetricna  $\Leftrightarrow \forall x, y \in A : xRy \Rightarrow \neg yRx$ 

R je antisimetricna  $\Leftrightarrow \forall x, y \in A : xRy \Rightarrow x = y \lor \neg yRx$ 

R je tranzitivna  $\Leftrightarrow \forall x, y, z \in A : xRy \land yRz \Rightarrow xRz$ 

R je sovisna  $\Leftrightarrow \forall x, y \in A : x \neq y \Rightarrow xRy \lor yRx$  (x in y sta primerljiva)

R je strogosovisna  $\Leftrightarrow \forall x, y \in A : xRy \vee yRx$ 

Relacije urejenosti:

Delna urejenost: R je refleksivna, antisimetricna in tranzitivna

Linearna urejenost: R je antisimetricna, strogosovisna, transitivna

Stroga delna urejenost: R je asimetricna in tranzitivna (irefleksivna)

Stroga linearna urejenost: R je asimetricna, sovisna in transitivna

**Definicija 2.1 (definicija grupe)** Naj bo A množica in · operacija, ki vsakemu urejenemu paru elementov iz A priredi natančno določen element iz množice A:

$$\cdot: A \times A \to A$$

 $Par(A, \cdot)$  je grupa če veljajo naslednje trditve:

- 1.  $\forall a, b, c \in A : (a \cdot b) \cdot c = a \cdot (b \cdot c) \ (asociativnost)$
- 2.  $\exists e \in A : \forall a \in A : a \cdot e = e \cdot a = a \ (obstoj \ enote)$
- 3.  $\forall a \in A : \exists a^{-1} \in A : a \cdot a^{-1} = a^{-1} \cdot a = e \text{ (obstoj inverza)}$

# Poglavje 3

# Permutacije

Bijektivni preslikavi $\pi:[n]\to[n]$ rečemo permutacija (slika 3.1). Permuta-



Slika 3.1: Bijektivna preslikava [5]  $\rightarrow$  [5].

cijo lahko zapišemo na različne načine. Zapis permutacije  $\pi$  kot vodoravna tabela:

$$\pi = \begin{pmatrix} 1 & 2 & \cdots & n \\ \pi(1) & \pi(2) & \cdots & \pi(n) \end{pmatrix}$$

Ker gledamo permutacije na množici [n], ki ima naravno urejenost, lahko zgornjo vrstico izpustimo:

$$\pi = (\pi(1), \pi(2), \dots, \pi(n)) = (\pi_1, \pi_2, \dots, \pi_n)$$

Temu zapisu bomo rekli enovrstični zapis permutacije. Permutacijo lahko zapišemo tudi kot produkt disjunktnih ciklov:

$$\pi = (a_1 a_2 \cdots a_i)(b_1 b_2 \cdots b_i) \cdots (c_1 c_2 \cdots c_k)$$

Ta zapis nam pove, da je

$$\pi(a_1) = a_2, \ \pi(a_2) = a_3, \ \cdots, \ \pi(a_{i-1}) = a_i, \ \pi(a_i) = a_1$$

$$\pi(b_1) = b_2, \ \pi(b_2) = b_3, \ \cdots, \ \pi(b_{j-1}) = b_j, \ \pi(b_j) = b_1$$

$$\cdots$$

$$\pi(c_1) = c_2, \ \pi(c_2) = c_3, \ \cdots, \ \pi(c_{k-1}) = c_k, \ \pi(c_k) = c_1$$

**Primer 3.1** Naj bo  $\pi \in S_5$ ,  $\pi(1) = 3$ ,  $\pi(2) = 5$ ,  $\pi(3) = 1$ ,  $\pi(4) = 4$  in  $\pi(5) = 2$ . Zapis permutacije  $\pi$  kot vodoravna tabela:

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix}$$

$$\pi = (3, 5, 1, 4, 2) = (35142) = 35142$$

Če so vsi elementi permutacije manjši od 10 lahko med številkami izpustimo vejice. Pri tem moramo vedeti, da to ni zapis permutacije z disjunktinimi cikli. Včasih izpustimo tudi oklepaje. Zapis permutacije  $\pi$  kot produkt disjunktnih ciklov:

$$\pi = (13)(25)(4) = (13)(25)$$

Če vemo koliko elementov ima permutacija, lahko cikle dolžine ena izpustimo. Zapis permutacije  $\pi$  kot produkt disjunktnih ciklov ni enoličen, saj lahko na začetek vsakega cikla postavimo poljuben element iz tega cikla.

$$\pi = (31)(52)$$

V nadaljevanju bomo za zapis permutacije uporabljali enovrstični zapis, razen kjer bo navedeno drugače.

**Trditev 3.1** Naj bo  $\circ$  kompozitum permutacij.  $(S_n, \circ)$  je grupa.

Dokaz.

1. Asociativnost: Naj bodo  $\pi, \sigma, \tau \in S_n$ . Za  $\forall i \in [n]$ 

$$((\pi \circ \sigma) \circ \tau)(i) = (\pi \circ \sigma)(\tau(i)) = \pi(\sigma(\tau(i)))$$

$$(\pi \circ (\sigma \circ \tau))(i) = \pi((\sigma \circ \tau)(i)) = \pi(\sigma(\tau(i)))$$

2. Enota: Za  $\forall \pi \in S_n$  in  $\forall i \in [n]$  velja:

$$(\pi \circ id)(i) = \pi(id(i)) = \pi(i)$$

$$(id \circ \pi)(i) = id(\pi(i)) = \pi(i)$$

3. Inverz: Naj bo $\pi \in S_n$ . Ker je  $\pi$  bijekcija,  $\exists \pi^{-1} \in S_n.$ 

$$\pi \circ \pi^{-1} = \pi^{-1} \circ \pi = id$$

Grupi  $(S_n, \circ)$  rečemo simetrična grupa. Permutacijska grupa je podgrupa simetrične grupe. Po Cayleyevem izreku je vsaka grupa izomorfna neki permutacijski grupi.

# Poglavje 4

## Inverzije

Inverzija permutacije  $\sigma = (a_1, a_2, ... a_n) \in S_n$  je urejen par  $(a_i, a_j)$ , kjer je  $i < j \ (\sigma^{-1}(a_i) < \sigma^{-1}(a_j))$  in  $a_i > a_j$ .



Slika 4.1: Permutacija  $\sigma=(4,2,1,3)$  in njen inverz $\sigma^{-1}=(3,2,4,1).$ 

Število inverzij permutacije  $\sigma$  je enako številu inverzij permutacije  $\sigma^{-1}$ . Še več, če ima  $\sigma$  inverzije  $(a_{i_1}, a_{j_1}), ...., (a_{i_k}, a_{j_k})$ , potem ima  $\sigma^{-1}$  inverzije  $(j_1, i_1), ...., (j_k, i_k)$ .

**Primer 4.1** Naj bo  $\sigma = (4, 2, 1, 3)$  kot na sliki 4.1, inverzije permutacije  $\sigma$  so (4, 2), (4, 1), (4, 3), (2, 1). Pozicije inverzij permutacije  $\sigma$  so sledeči pari: (1, 2), (1, 3), (1, 4), (2, 3). Inverz permutacije  $\sigma$  je  $\sigma^{-1} = (3, 2, 4, 1)$ , inverzije permutacije  $\sigma^{-1}$  so (3, 2), (3, 1), (2, 1), (4, 1). Opazimo, da so to ravno obrnjeni pari pozicij inverzij permutacije  $\sigma$ .

Število inverzije je mera, ki nam pove kako daleč je permutacija od urejenega zaporedja (1, ..., n). Urejena permutacija nima inverzij. Največ inverzij ima permutacija (n, n-1, ..., 1). V tem primeru je vsak par različnih števil  $(i, j) \in [n] \times [n], i > j$  v inverziji. Izborov dveh elementov izmed n pa je ravno  $\binom{n}{2}$ .

Stevilo inverzij je enako številu presečišč v puščičnem diagramu premutacije (slika 4.1).

Standardne primerjalne algoritme razvrščanja lahko prilagodimo, tako da izračunamo število inverzij v času  $O(n \cdot log(n))$ . Primer: Merge sort.

Urediti permutacijo (jo preoblikovali v identično permutacijo) s k inverzijami, je vedno mogoče in zahteva zaporedje k transpozicij sosednjih elementov. Na vsakem koraku izberemo transpozicijo i in i+1, če je element na poziciji i+1 manjši od elementa na poziciji i. Na ta način zmanjšamo število inverzij za 1. To ponavljamo dokler ne pridemo do identične permutacije.

**Primer 4.2** Postopek ureditve permutacije  $\sigma = (4, 2, 1, 3)$ , ki ima 4 inverzije. (ij) je zapis transpozicije elementov na poziciji i in j z disjunktnim ciklom:

$$(4,2,1,3) \stackrel{(12)}{\to} (2,4,1,3) \stackrel{(23)}{\to} (2,1,4,3) \stackrel{(34)}{\to} (2,1,3,4) \stackrel{(12)}{\to} (1,2,3,4)$$

Naj bo  $f_n(x)$  rodovna funkcija s koeficienti  $a_i$  pred  $x^i$ , ki štejejo število permutacij množice [n] z i inverzijami.

$$f_n(x) = \sum_{i=0}^{\binom{n}{2}} a_i x^i.$$

Poglejmo si edino permutacijo dolžine ena (1). Ta permutacija nima nobene inverzije, zato je rodovna funkcija  $f_1(x) = 1$ . Sedaj iz permutacije dolžine ena naredimo permutacijo dolžine dva tako, da vstavimo dvojko na prvo ali drugo mesto z enako verjetnostjo. Vidimo da, če jo vstavimo na prvo mesto dobimo permutacijo (2,1), ki ima eno inverzijo. V drugem primeru pa dobimo (1,2), ki nima inverzij. Tako dobimo rodovno funkcijo  $f_2(x) = 1 + x = 1 \cdot (1 + x)$ . Sedaj iz permutacije dolžine dva na podoben način

DIPLOMSKA NALOGA

naredimo permutacijo dolžine tri. Imamo dve različni permutaciji dolžine dve. Permutacija (1,2) je brez inverzij. Ko vstavimo trojko na poljubno mesto tako ustvarimo permutacijo z dvema, eno ali nič inverzijami. Druga permutacijo je (2,1) z eno inverzijo. Ko vstavimo trojko na poljubno mesto tako ustvarimo permutacijo s tremi, dvema, ali eno inverzijo. Tako dobimo rodovno funkcijo

$$f_3(x) = 1 + 2x + 2x^2 + x^3 = 1 \cdot (1 + x + x^2) + x \cdot (1 + x + x^2) = 1 \cdot (1 + x) \cdot (1 + x + x^2).$$

Vidimo da, ko v permutacijo dolžine n-1 vstavimo element n lahko naredimo med 1 in n-1 novih inverzij  $(1+x+\cdots+x^{n-1})$  odvisno od tega kam vstavimo element n (vse pozicije so enako verjetne). Prav tako vse inverzije, ki so bile del permutacije dolžine n-1 ostanejo. Tako iz  $a_i$  permutacij dolžine n-1 z i inverzijami dobimo  $a_i$  permutacija dolžine n z i inverzijami (vstavimo n na zadnje mesto),  $a_i$  permutacija dolžine n z i+1 inverzijami (vstavimo n na predzadnje mesto), ...,  $a_i$  permutacija dolžine n z i+n-1 inverzijami (vstavimo n na prvo mesto). Se pravi iz člena  $a_ix^i$  v rodovni funkciji  $f_{n-1}$  dobimo  $a_ix^i \cdot (1+x+\cdots+x^{n-1})$  v v rodovni funkciji  $f_n$ . Zato, ker to velja ne glede na to koliko inverzij je imela permutacija dolžine n-1 velja rekurzivna zveza

$$f_n(x) = f_{n-1}(x) \cdot (1 + x + \dots + x^{n-1}).$$

in tako dobimo rodovno funkcijo

$$f_n(x) = \prod_{m=1}^n \sum_{i=0}^{m-1} x^i = 1(1+x)(1+x+x^2)\cdots(1+x+\cdots+x^{n-1})$$

Permutacije množice [n] lahko predstavimo tudi, kot celo število N, ki je  $0 \le N \le n!$ . Pretvorbo naredimo preko vmesne oblike zaporedja n števil  $d_n, d_{n-1}, ..., d_2, d_1$ , kjer je  $d_i$  nenegativno celo število manjše od i (pri tem lahko izpustimo  $d_1$ , saj je vedno  $d_1 = 0$ ). Prvi korak je, da N predstavimo v faktorskem številskem sistemu (angl. factorial number system). Ta sistem ima za števila manjša od n!, baze zaporednih števk (n-1)!, (n-2)!, ..., 2!, 1!. Drugi korak pa je interpretacija tega zaporedja kot vektor inverzij ali Lehmerjeva koda.

Število zapisano v faktorskem številskem sistemu pretvorimo v desetiški številski sistem tako, da seštejemo produkt vseh števk s pripadajočo bazo. Pretvorbo iz desetiškega v faktorski številski sistem pa naredimo tako, da število zaporedoma delimo z števili 1, 2, 3... in si zapisujemo ostanke pri deljenju, dokler ne dobimo 0 kot rezultat deljenja. Zapis števila so ostanki pri deljenju od zadnjega deljenja proti prvemu.

**Primer 4.3** Pretvorbi iz faktorskega v desetiški številski sistem in iz desetiškega v faktorski številski sistem:

$$341010! = 3 \cdot 5! + 4 \cdot 4! + 1 \cdot 3! + 0 \cdot 2! + 1 \cdot 1! + 0 \cdot 0! = 463_{10}$$

$$463/1 = 463, ostanek = 0$$

$$463/2 = 231, ostanek = 1$$

$$231/3 = 77, ostanek = 0$$

$$77/4 = 19, ostanek = 1$$

$$19/5 = 3, ostanek = 4$$

$$3/6 = 0, ostanek = 3$$

V Lehmerjevi kodi permutacije  $\sigma$ , število  $d_n$  predstavlja  $\sigma_1 - 1 = \sigma(1) - 1$ , to je število elementov manjših od  $\sigma_1$ , ki so v inverziji z  $\sigma_1$ , število  $d_{n-1}$  predstavlja število elementov, ki so manjši od  $\sigma_2$  in so v inverziji z  $\sigma_2$ ,... Se pravi  $d_{n-i+1}$  predstavlja število elementov, ki so manjši od  $\sigma_i$  in so v inverziji z  $\sigma_i$ .

Vektor inverzij permutacije  $\sigma$  je podoben zapis.  $d_{n-j+1}$  nam pove koliko je inverzij oblike (i, j), kjer je j manjša vrednost para števil v inverziji.

Obe kodiranji lahko prikažemo z Rothejevim diagramom, kjer pike predstavljajo elemente permutacije, križi pa inverzije permutacije. Lehmerjeva koda nam šteje število križev v vsaki vrstici, vektor inverzij pa šteje število križev v vsakem stolpcu. Poleg tega velja tudi, da je vektor inverzij ravno Lehmerjeva koda inverzne permutacije, in obratno. Primer Rothejevega diagrama je prikazan v tabeli 4.1.

| $i \setminus \sigma_i$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Lehmerjeva koda |
|------------------------|---|---|---|---|---|---|---|---|---|-----------------|
| 1                      | × | × | × | × | × | • |   |   |   | $d_9 = 5$       |
| 2                      | × | × | ٠ |   |   |   |   |   |   | $d_8 = 2$       |
| 3                      | × | × |   | × | × |   | × |   |   | $d_7 = 5$       |
| 4                      |   |   |   |   |   |   |   |   |   | $d_6 = 0$       |
| 5                      |   | × |   | • |   |   |   |   |   | $d_5 = 1$       |
| 6                      |   | × |   |   | × |   | × |   |   | $d_4 = 3$       |
| 7                      |   | × |   |   | × |   |   |   |   | $d_3 = 2$       |
| 8                      |   | • |   |   |   |   |   |   |   | $d_2 = 0$       |
| 9                      |   |   |   |   |   |   |   |   |   | $d_1 = 0$       |
| Vektor inverzij        | 3 | 6 | 1 | 2 | 4 | 0 | 2 | 0 | 0 |                 |

Tabela 4.1: Rothejev diagram za permutacijo  $\sigma = (6, 3, 8, 1, 4, 9, 7, 2, 5)$ 

Da bi pretvorili Lehmerjevo kodo  $d_n, d_{n-1}, ..., d_1$  v permutacijo, najprej uredimo števila 1, 2, ..., n v vrsto.  $\sigma_1$  je enak elementu v vrsti, ki je za  $d_n$  elementi. Nato ta element izbrišemo iz vrste.  $\sigma_2$  je enak elementu v spremenjeni vrsti, ki je za  $d_{n-1}$  elementi. Nato ta element izbrišemo iz vrste in ponovimo postopek za  $\sigma_3, ..., \sigma_n$ .

Da bi pretvorili tabelo inverzij  $d_n, d_{n-1}, ..., d_1$  v permutacijo. Imejmo najprej prazno vrsto. Najprej vzemimo n in ga vstavimo v vrsto za  $d_1$  elementi (vedno 0). Nato vzamimo n-1 in ga vstavimo v vrsto za  $d_2$  elementi, ..., vzamemo 1 in ga vstavimo v vrsto za  $d_n$  elementi.

Vsota števk v faktorskem zapisu (Lehmerjeva koda ali vektor inverzij) nam pove število inverzij permutacije. Parnost vsote pa nam pove znak permutacije.

| $\sigma$ | Lehmerjeva koda | Vektor inverzij | Število inverzij |
|----------|-----------------|-----------------|------------------|
| 1234     | 0000            | 0000            | 0                |
| 1243     | 0010            | 0010            | 1                |
| 1324     | 0100            | 0100            | 1                |
| 1342     | 0110            | 0200            | 2                |
| 1423     | 0200            | 0110            | 2                |
| 1432     | 0210            | 0210            | 3                |
| 2134     | 1000            | 1000            | 1                |
| 2143     | 1010            | 1010            | 2                |
| 2314     | 1100            | 2000            | 2                |
| 2341     | 1110            | 3000            | 3                |
| 2413     | 1200            | 2010            | 3                |
| 2431     | 1210            | 3010            | 4                |
| 3124     | 2000            | 1100            | 2                |
| 3142     | 2010            | 1200            | 3                |
| 3214     | 2100            | 2100            | 3                |
| 3241     | 2110            | 3100            | 4                |
| 3412     | 2200            | 2200            | 4                |
| 3421     | 2210            | 3200            | 5                |
| 4123     | 3000            | 1110            | 3                |
| 4132     | 3010            | 1210            | 4                |
| 4213     | 3100            | 2110            | 4                |
| 4231     | 3110            | 3110            | 5                |
| 4312     | 3200            | 2210            | 5                |
| 4321     | 3210            | 3210            | 6                |

Tabela 4.2: Permutacije iz  $S_4$ z zapisom Lehmerjeve kode in tebele inverzij

# Poglavje 5

## Permutacijski grafi

**Definicija 5.1** Naj bo  $\sigma \in S_n$ . Graf inverzij permutacije  $\sigma$ , ki ga označimo  $z G_{\sigma}$ , je neusmerjen graf  $z V(G_{\sigma}) = [n]$ , kjer je  $xy \in E(G_{\sigma})$  natanko tedaj, ko je (x, y) ali (y, x) inverzija permutacije  $\sigma$ . Vsak graf izomorfen grafu  $G_{\sigma}$  za neko permutacijo  $\sigma$  imenujemo permutacijski graf.

**Primer 5.1**  $\sigma = (4, 2, 5, 1, 7, 6, 3) \in S_7$ ,  $V(G_\sigma) = [7]$ . *Množica inverzij*  $\sigma$  *je*  $I = \{(4, 2), (4, 1), (4, 3), (2, 1), (5, 1), (5, 3), (7, 6), (7, 3), (6, 3)\}$  zato *je*  $E(G_\sigma) = \{\{4, 2\}, \{4, 1\}, \{4, 3\}, \{2, 1\}, \{5, 1\}, \{5, 3\}, \{7, 6\}, \{7, 3\}, \{6, 3\}\}\}$ . *Graf*  $G_\sigma$  *je* prikazan na sliki 5.1.



Slika 5.1: Primer grafa inverzij.

Če je graf permutacijski graf, potem lahko veliko problem, ki so NP-polni na poljubnih grafih rešimo v polinomskem času. Na primer: iskanje naječjega podgrafa, ki je poln graf, je ekvivalento iskanju največjega padajočega zaporedja v permutaciji, ki definira permutacijski graf.

Definicija 5.2 (Kohezivno zaporedje grafa) Naj bo G neusmerjen graf na n vozliščih. Zaporedju vozlišč  $l = (v_1, v_2, ..., v_n)$  rečemo kohezivno vozliščno zaporedje grafa G (ali enostavneje kohezivno zaporedje grafa G), če sta izpolnjena nasledna pogoja (slika 5.2):

- (a)  $\check{c}e \ i < k < j \ in \ v_i v_k, \ v_k v_j \in E(G) \Rightarrow v_i v_j \in E(G)$
- (b) če i < k < j in  $v_i v_j \in E(G) \Rightarrow v_i v_k \in E(G)$  ali  $v_k v_j \in E(G)$



Slika 5.2: Pogoja za kohezivno zaporedje grafa G.

**Lema 5.1** Naj bo G graf. Zaporedje vozlišč l je kohezivno zaporedje grafa G natanko tedaj ko je l kohezivno zaporedje grafa  $\overline{G}$ 

Dokaz. ( $\Rightarrow$ ) Naj bo  $l=(v_1,v_2,...,v_n)$  kohezivno zaporedje grafa G. Trdimo, da je l kohezivno zaporedje grafa  $\overline{G}$ .

- (a) Naj bosta  $v_i v_k, v_k v_j \in E(\overline{G})$  tako da i < k < j. Potem, po definiciji komplementa  $v_i v_k, v_k v_j \notin E(G)$ . Če pogoj (b) iz definicije 5.2 negiramo  $(i < k < j \text{ in } v_i v_k, v_k v_j \notin E(G) \Rightarrow v_i v_j \notin E(G))$  sledi, da  $v_i v_j \notin E(G)$ . Kar pomeni  $v_i v_j \in E(\overline{G})$
- (b) Naj bo  $v_i v_j \in E(\overline{G})$  tako da i < j in k tako naravno število, da je i < k < j. Potem  $v_i v_j \notin E(G)$ . Če pogoj (a) iz definicije 5.2 negiramo vidimo, da  $v_i v_k \notin E(G)$  ali  $v_k v_j \notin E(G)$  (vsaj ena od povezav  $v_i v_k, v_k v_j$  ni povezava grafa G). Zato sledi, da je  $v_i v_k \in E(\overline{G})$  ali  $v_k v_j \in E(\overline{G})$ .
- (⇐) Obratna smer dokaza sledi iz dejstva, da je  $\overline{\overline{G}} = G$ .

**Izrek 5.1** Naj bo  $\sigma \in S_n$ .  $\sigma = (\sigma(1), \sigma(2), ..., \sigma(n))$  je kohezivno zaporedje permutacijskega grafa  $G_{\sigma}$ 

DIPLOMSKA NALOGA

Dokaz. Naj bo  $\sigma=(\sigma(1),\sigma(2),...,\sigma(n))\in S_n$ . Trdimo, da je  $\sigma$  kohezivno zaporedje grafa  $G_{\sigma}$ .

- (a) Če je i < k < j in  $\sigma(i)\sigma(k), \sigma(k)\sigma(j) \in E(G_{\sigma})$ , potem sta  $(\sigma(i), \sigma(k))$  in  $(\sigma(k), \sigma(j))$  inverziji permutacije  $\sigma$ . To pomeni  $\sigma(i) > \sigma(k) > \sigma(j)$ . Zato je tudi  $(\sigma(i), \sigma(j))$  inverzija permutacije  $\sigma$  in  $\sigma(i)\sigma(j) \in E(G_{\sigma})$ .
- (b) Naj bo  $\sigma(i)\sigma(j) \in E(G_{\sigma})$  in k tak da i < k < j. Potem je  $(\sigma(i), \sigma(j))$  inverzija permutacije  $\sigma$  in  $\sigma(i) > \sigma(j)$ . Če je  $\sigma(i) > \sigma(k)$  je  $(\sigma(i), \sigma(k))$  inverzija permutacije  $\sigma$  in  $\sigma(i)\sigma(k) \in E(G_{\sigma})$ . Če je  $\sigma(k) > \sigma(j)$  je  $(\sigma(k), \sigma(j))$  inverzija permutacije  $\sigma$  in  $\sigma(k)\sigma(j) \in E(G_{\sigma})$ . To pomeni, da je  $\sigma(i)\sigma(k) \in E(G_{\sigma})$  ali  $\sigma(k)\sigma(j) \in E(G_{\sigma})$ .

Zaporedje vozlišč  $(v_1, v_2, ..., v_n)$  je kohezivno zaporedje grafa G natanko tedaj, ko je zaporedje vozlišč  $(v_n, v_{n-1}, ..., v_1)$  kohezivno zaporedje grafa G.

Za usmerjen graf D rečemo, da je tranzitiven, če je (x, z) usmerjena povezava grafa D kadar sta (x, y) in (y, z) usmerjeni povezavi grafa D.

Polnemu orientiranemu grafu rečemo turnir. Rezultat vozlišča x v turnirju je izhodna stopnja vozlišča x. Označimo ga z s(x). Rezultatsko zaporedje turnirja je zaporedje rezultatov vozlišč turnirja v nepadajočem vrstnem redu.



Slika 5.3: Levo je turnir, desno je tranzitiven turnir na 4 vozliščih

Obstaja samo en tranzitiven turnir na n<br/> vozliščih (do izomorfizma natančno), ki je izomorfen grafu permutacije <br/>  $\sigma=(n,n-1,...,1)$  z usmerjenimi povezavami  $x\to y$ , če je <br/> (x,y) inverzija. Opazimo tudi, da v tranzitivnem turnirju ni usmerjenih ciklov.

Izrek 5.2 Naj bo T turnir na n vozliščih. Naslednje trditve so ekvivalentne:

- 1. T je tranzitiven
- 2. Za  $\forall x, y \in V(T)$  velja, če je (x, y) usmerjena povezava v T potem je s(x) > s(y)
- 3. Za  $\forall x,y \in V(T)$  velja, če je s(x)>s(y) potem je (x,y) usmerjena povezava v T
- 4. Rezultatsko zaporedje turnirja T je (0, 1, 2, ..., n-1)

Dokaz. Tranzitiven turnir T na n vozliščih je izomorfen grafu permutacije  $\sigma = (n, n-1, ..., 1)$  z usmerjenimi povezavami  $x \to y$ , če je (x, y) inverzija. Če uredimo vozlišča od leve proti desni tako kot so v permutaciji  $\sigma$  vidimo, da ima vsako vozlišče povezave do vseh vozlišč desno on njega (slika 5.3). Iz tega sledijo vse lastnosti iz izreka.

Izrek 5.3 Graf G je permutacijski graf natanko tedaj ko ima kohezivno zaporedje.

Dokaz. ( $\Rightarrow$ ) Vsak permutacijski graf G je izomorfen nekemu grafu  $G_{\sigma}$  za neko permutacijo  $\sigma$ . Po izreku 5.1, je  $\sigma = (\sigma(1), ..., \sigma(n))$  kohezivno zaporedje grafa  $G_{\sigma}$ . Naj bo f izomorfizem, ki graf G slika v graf G. Potem je  $g = f^{-1}$  izomorfizem, ki graf  $G_{\sigma}$  slika v graf G. Sledi, da je  $\pi = (g(\sigma(1)), ..., g(\sigma(n)))$  kohezivno zaporedje grafa G, saj je  $\sigma$  kohezivno zaporedje grafa  $G_{\sigma}$  (slika 5.4).



Slika 5.4: Izomorfna grafa G in  $G_{\sigma}$ 

DIPLOMSKA NALOGA



Slika 5.5: Graf G s koezivnim zaporedjem  $(v_1, v_2, v_3, v_4)$ .

 $(\Leftarrow)$  Naj bo G graf s kohezivnim zaporedjem  $\pi = (v_1, v_2, ..., v_n)$  (slika 5.5). Orientirajmo graf G tako, da vse povezave usmerimo od vozlišča z manjšim indeksom proti vozlišču z večjim indeksom. Če je i < j in  $v_i v_j \in E(G)$ , tako dobimo  $(v_i, v_j)$ . Označimo usmerjen graf, ki ga na ta način dobimo z D. Spomnimo se, da je zaradi pogoja (a) iz 5.2 graf D tranzitiven. Orientirajmo še komplement  $\overline{G}$  grafa G. Povezave  $v_i v_j \in E(\overline{G})$ , kjer je i < j usmerimo od večjega indeksa k manjšemu in tako dobimo  $(v_j, v_i)$ . Označimo dobljeni graf z  $\overline{D}$ . Zaradi leme 5.1 je  $\pi$  kohezivno zaporedje grafa  $\overline{G}$ . Zato je tudi usmerjen graf  $\overline{D}$  tranzitiven. Unija grafov  $T = D \cup \overline{D}$  je turnir, to je orientacija polnega grafa  $G \cup \overline{G}$  (slika 5.6). Radi bi pokazali, da je T



Slika 5.6: Tranzitiven turnir T.

tranzitiven turnir. Naj bosta (x,y) in (y,z) usmerjeni povezavi v grafu T. Če bi obe pripadali enemu od D ali  $\overline{D}$  bi sledilo, da je (x,z) usmerjena povezava v T, saj sta D in  $\overline{D}$  tranzitivna. Zato brez škode za splošnost privzamimo, da  $(x,y)\in E(D)$  in  $(y,z)\in E(\overline{D})$ . Če je  $(x,z)\in E(D)$  smo končali, saj je potem  $(x,z)\in E(T)$ . Zato privzamimo da  $(x,z)\notin E(D)$ . Poglejmo ali je lahko  $(z,x)\in E(D)$ . Zaradi tranzitivnosti grafa D bi to pomenilo da je tudi  $(z,y)\in E(D)$ , kar je v protislovju s tem da je  $(y,z)\in E(\overline{D})$ . Potem je  $(z,x)\in E(\overline{D})$  ali  $(x,z)\in E(\overline{D})$ . Če je  $(z,x)\in E(\overline{D})$ , potem zaradi tranzitivnosti  $\overline{D}$  in  $(y,z),(z,x)\in E(\overline{D})$  sledi, da je  $(y,x)\in E(\overline{D})$ . To je

v protislovju z  $(x,y) \in E(D)$ . Se pravi nam ostane  $(x,z) \in E(\overline{D})$ . Sledi, da je  $(x,z) \in E(T)$  in T je tranzitiven turnir. Po izreku 5.2, je rezultatsko zaporedje tranzitivnega turnirja T enako (0,1,2,...,n-1).  $s(v_i)$  je rezultat



Slika 5.7: Permutacijski graf  $G_{\sigma}$ ,  $\sigma = (3, 1, 4, 2)$ .

vozlišča  $v_i$  tranzitivnega turnirja T (slika 5.6). Naj bo  $\sigma(i) = 1 + s(v_i)$  (slika 5.7). Radi bi pokazali, da je  $f: v_i \to 1 + s(v_i) = \sigma(i)$  izomorfizem, ki slika graf G v graf  $G_{\sigma}$ . Preslikava f je bijektivna, saj imajo vozlišča različne rezultate. Pokazati moramo še, da f ohranja sosednosti vozlišč. Naj bo  $v_i v_j \in E(G)$ , kjer je i < j. Potem je  $(v_i, v_j) \in E(D)$ . Ker je T tranzitiven turnir, je  $s(v_i) > s(v_j)$  (izrek 5.2). Sledi, da je  $\sigma(v_i) = 1 + s(v_i) > 1 + s(v_j) = \sigma(v_j)$ . Zato je  $(\sigma(i), \sigma(j))$  inverzija v  $\sigma$  in  $f(v_i)f(v_j) \in E(G_{\sigma})$ . Obratno, naj bo  $xy \in E(G_{\sigma})$ . Potem je (x, y) ali (y, x) inverzija v  $\sigma$ . Privzemimo, da je (x, y) inverzija v  $\sigma$ . Potem je  $x = \sigma(i) = 1 + s(v_i)$  in  $y = \sigma(j) = 1 + s(v_j)$ , i < j. Ker je (x, y) inverzija je x > y. Potem je tudi  $s(v_i) > s(v_j)$  in  $(v_i, v_j) \in E(T)$  (izrek 5.2). Ker je i < j je  $(v_i, v_j) \in E(D)$  in posledično  $v_i v_j \in E(G)$ .  $\square$ 

**Izrek 5.4** Naj bo G graf. Naslednje trditve so ekvivalentne:

- (a) G je permutacijski graf
- (b)  $\overline{G}$  je permutaciski graf
- (c) Vsak induciran podgraf grafa G je permutacijski graf
- (d) Vsaka povezana komponenta grafa G je permutacijski graf

Dokaz. Ekvivalentnost trditve (a) in (b) sledi iz leme 5.1 in izreka 5.3. Naj bo  $(v_1, v_2, ..., v_n)$  kohezivno zaporedje grafa G. Induciran podgraf z vozlišči  $\{v_{i_1}, v_{i_2}, ..., v_{i_k}\}$ , kjer  $i_1 < i_2 < \cdots < i_k$ , ima kohezivno zaporedje DIPLOMSKA NALOGA

 $(v_{i_1}, v_{i_2}, ..., v_{i_k})$  (izpolnjeni sta (a) in (b) iz definicije 5.2). Torej induciran podgraf je permutacijski in iz (a) sledi (c). Iz (c) sledi (d), saj je vsaka povezana komponenta induciran podgraf. Pokazati moramo še da iz (d) sledi (a). Naj bo G graf, ki ima povezane komponente  $G_1, G_2, ..., G_k$ .  $G_i$  naj ima  $n_i$  vozlišč. Ker je vsaka povezana komponenta grafa G permutacijski graf ima kohezivno zaporedje. Naj bo  $l_i = (v_1^i, v_2^i, ..., v_{n_i}^i)$  kohezivno zaporedje povezane komponente  $G_i$ . Potem je

$$l = (l_1, l_2, ..., l_k) = (v_1^1, v_2^1, ..., v_{n_1}^1, v_1^2, v_2^2, ..., v_{n_2}^2, ..., v_1^k, v_2^k, ..., v_{n_k}^k)$$

kohezivno zaporedje grafa G in graf G permutacijski.

Grafi poti  $P_n$  in zvezd  $K_{1,n}$  so permutacijski grafi saj imajo kohezivno zaporedje (sliki 5.8 in 5.9). Kohezivni zaporedji za pot  $P_{13}$  sta permutaciji:

$$\sigma_1 = (3, 1, 5, 2, 7, 4, 9, 6, 11, 8, 13, 10, 12)$$

in

$$\sigma_2 = (2, 4, 1, 6, 3, 8, 5, 10, 7, 12, 9, 13, 11).$$

Kohezivno zaporedje za zvezdo  $K_{1,n}$  pa je permutacija:

$$\pi = (n+1, 1, 2, ..., n).$$



Slika 5.8: Primer kohezivnega zaporedja za pot  $P_n$ .

Vidimo, da je pogoj (a) iz definicije kohezivnega zaporedja 5.2 za poti  $P_n$  na prazno izpolnjen, saj ni dveh povezav  $v_i v_k$  in  $v_k v_j$ , kjer so i < k < j. Pogoj (b) pa je izpolnjen, saj je vedno ko je  $v_i v_j$  povezava in k tak, da i < k < j v grafu ena od povezav  $v_i v_k$  ali  $v_k v_j$ . Podobno je pogoj (a) izpolnjen na prazno za zvezde. Pogoj (b) pa je izpolnjen, saj so vse povezave v grafu



Slika 5.9: Primer kohezivnega zaporedja za zvezdo  $K_{1,n}$ .

oblike  $v_{n+1}v_k$  za  $k \in \{1, 2, ..., n\}$ . Zato katerokoli povezavo vzamemo bodo vsa vozlišča med krajiščema izbrane povezave  $v_{n+1}v_k$  povezana z vozliščem  $v_{n+1}$ .

Poti in zvezde so drevesa. Ampak niso vsa drevesa permutacijski grafi. Drevo  $K_{1,3}^*$ , pridobljeno s subdivizijo vseh povezav zvezde  $K_{1,3}$ , ni permutacijski graf (slika 5.10).



Slika 5.10: Graf  $K_{1,3}$  in  $K_{1,3}^*$ .

**Definicija 5.3** Gosenica je drevo, ki po odstranitvi vseh listov postane pot (slika 5.11).

**Lema 5.2** Drevo je gosenica natanko tedaj ko ne vsebuje  $K_{1,3}^*$  kot podgraf.

Dokaz. Če je drevo gosenica, potem po odstranitvi vseh listov dobimo pot. Če drevesu  $K_{1,3}^*$  odstranimo vse liste ne dobimo poti. Torej tudi če



Slika 5.11: Graf gosenice z 10 listi.

drevo vsebuje  $K_{1,3}^*$  kot podgraf, nam po odstranitvi listov ostane graf, ki ni pot. Torej gosenica ne vsebuje podgrafa  $K_{1,3}^*$ . Če drevo ne vsebuje  $K_{1,3}^*$  kot podgraf, potem ima vsako vozlišče največ dva soseda, ki nista lista. Prav tako graf ne vsebuje ciklov, saj je drevo. Po odstranitvi listov drevesa vedno dobimo povezan graf, zato po odstranitvi listov tako dobimo pot. Torej je drevo, ki ne vsebuje podgrafa  $K_{1,3}^*$ , gosenica.



Slika 5.12: Primer kohezivnega zaporedja gosenice.

Izrek 5.5 Drevo je permutacijski graf natanko tedaj ko je gosenica.

Dokaz. ( $\Rightarrow$ ) Če drevo ni gosenica, potem vsebuje  $K_{1,3}^*$  kot podgraf. Drevo, ki vsebuje  $K_{1,3}^*$  ni permutacijski graf, saj  $K_{1,3}^*$  ni permutacijski graf. ( $\Leftarrow$ ) Potrebno je še pokazati, da je gosenica permutacijski graf. To bomo pokazali tako, da bomo gosenici našli kohezivno zaporedje. Naj bo C gosenica in naj bo  $P_n$  pot, ki jo pridobimo iz C tako, da odstranimo liste. Če je n=1, potem je C zvezda  $K_{1,k}$  za nek  $k \geq 0$  ali pa trivialen graf  $K_1$ . Ker so zvezde in trivialen graf permutacijski grafi, predpostavimo da je  $n \geq 2$ . Zgradimo kohezivno zaporedje poti  $P_n$  kot na primeru od prej. Vse liste lihega vozlišča i na poti vstavimo levo od vozlišče i+1 na poti  $P_n$ . Vse liste sodega vozlišča

i na poti vstavimo med vozlišči i in i-1 na poti  $P_n$ . Rezultat je kohezivno zaporedje (slika 5.12). Zato je gosenica C res permutacijski graf.

**Definicija 5.4** Naj bo G graf z množico vozlišč  $V(G) = \{x_1, x_2, ..., x_n\}$  in naj bodo  $H_1, H_2, ..., H_n$  poljubni grafi. Kompozicija grafov  $H_1, H_2, ..., H_n$  z grafom G, označena z  $G(H_1, H_2, ..., H_n)$ , je graf sestavljen iz disjunktne unije  $H_1, H_2, ..., H_n$  in dodanih povezav  $a_ib_j$ , kjer je  $a_i \in V(H_i)$  in  $b_j \in V(H_j)$ , kadar je  $x_ix_j \in E(G)$  (sliki 5.13 in 5.14). Če je  $H_i$  fiksen graf H. Potem kompozicijo označimo z G(H).



Slika 5.13: Graf  $P_3(P_2, P_3, P_1)$ .

Vsota grafov L in M, označena z L+M, je sestavljena iz disjunktne unije grafov L in M in dodanih povezav ab, kjer  $a \in V(L)$  in  $b \in V(M)$ . Se pravi, kompozicija  $G(H_1, H_2, ..., H_n)$  je sestavljena iz disjunktne unije grafov  $H_i$  in potem iz vsote  $H_i + H_j$  za vsako pripadajočo povezavo  $x_i x_j \in E(G)$ .

**Izrek 5.6** Naj bo G graf z n vozlišči in naj bodo  $H_1, H_2, ..., H_n$  poljubni grafi. Potem je  $G(H_1, H_2, ..., H_n)$  permutacijski graf natanko tedaj ko so  $G, H_1, H_2, ..., H_n$  permutacijski grafi.

Dokaz. ( $\Rightarrow$ ) Privzamimo, da je  $G(H_1, H_2, ..., H_n)$  permutacijski graf. Ker so  $H_1, H_2, ..., H_n$  inducirani podgrafi grafa  $G(H_1, H_2, ..., H_n)$ , so permutacijski grafi po izreku 5.4. Prav tako lahko vzamemo eno vozlišče iz vsakega od grafov  $H_i$  in ga označimo z  $x_i$ . Tako dobimo induciran podgraf izomorfen grafu G. To pomeni, da je tudi G permutacijski. ( $\Leftarrow$ ) Obratno privzamemo, da so

DIPLOMSKA NALOGA

 $G, H_1, H_2, ..., H_n$  permutacijski grafi. Potem je  $(v_1, v_2, ..., v_n)$  kohezivno zaporedje grafa G. Grafe  $H_1, H_2, ..., H_n$  ustrezno preimenujemo tako da je graf, ki pripada vozlišču  $v_1$  poimenovan  $H_1$ , graf, ki pripada vozlišču  $v_2$  poimenovan  $H_2, ...,$  graf, ki pripada vozlišču  $v_n$  poimenovan  $H_n$ . Z  $n_i$  označimo število vozlišč grafa  $H_i$ . Potem ima graf  $H_i$  kohezivno zaporedje  $l_i = (x_1^i, x_2^i, ..., x_{n_i}^i)$ . Se pravi je

$$l = (l_1, l_2, ..., l_n) = (x_1^1, x_2^1, ..., x_{n_1}^1, x_1^2, x_2^2, ..., x_{n_2}^2, ..., x_1^n, x_2^n, ..., x_{n_n}^n)$$

kohezivno zaporedje grafa  $G(H_1,H_2,...,H_n)$  in  $G(H_1,H_2,...,H_n)$  je permutacijski graf.

Izrek 5.6 nam podaja enostaven način konstrukcije permutacijskih grafov. Naj bo G polni graf $K_3$ . Poglejmo si kompozicijo  $K_3(P_2, C_3, P_1)$  (slika 5.14). Ker so  $K_3, P_2, C_3, P_1$  polni grafi dobimo polni graf $K_6$ .



Slika 5.14: Graf  $K_3(P_2, C_3, P_2)$ .

Vsi grafi na največ 4 vozliščih so permutacijski grafi. Zato sta grafa  $P_3(P_2, P_3, P_1)$  in  $K_3(P_2, C_3, P_1)$  permutacijska (sliki 5.13 in 5.14).

Vsak graf G z n vozlišči se lahko zapiše kot  $G(\overline{P_1,...,P_1})$  and  $K_1(G)$ . Če sta to edina načina za zapis grafa G kot kompozicija, potem je graf primaren.

Med polnimi grafi sta primarna samo grafa  $K_1$  in  $K_2$ .

Med drevesi s premerom, ki ni večji od 3 (slika 5.15) lahko pokažemo, da so primarni grafi samo poti  $P_1, P_2$  in  $P_4$ . To so vse gosenice, ki nimajo dveh listov z istim sosednim vozliščem. Graf  $P_3$  ni primaren, saj ima dva lista, ki imata isto sosednje vozlišče. Poleg trivialnih kompozicij ima pot na treh vozliščih tudi kompozicijo  $P_3 = P_2(P_1, \overline{K_2})$  (slika 5.16).



Slika 5.15: Grafi dreves s premerom  $\leq 3$ .



Slika 5.16: Neprimarna grafa  $P_3 = P_2(P_1, \overline{K_2})$  in  $P_3(P_1, P_1, P_1, \overline{K_2})$ .

**Izrek 5.7** Drevo je primaren permutacijski graf natanko tedaj, ko je gosenica brez dveh listov z istim sosednim vozliščem.

Dokaz. Ker smo že pogledali drevesa z premeri, ki ne presegajo 3, privzamimo, da imamo drevo T s premerom vsaj 4. ( $\Rightarrow$ ) Naj bo T drevo z n vozlišči. Privzemimo, da je T primaren permutacijski graf. Po izreku 5.5 je T gosenica. Predpostavimo, da imamo dva lista  $x_1$  in  $x_2$  z istim sosedom y. Naj bo G graf, ki ga dobimo, če identificiramo ti dve vozlišči ( $x_1$  in  $x_2$  zamenjamo z enim listom  $y_1$ , ki je povezan s sosedom vozlišč  $x_1$  in  $x_2$ ). Naj bodo  $y_1, y_2, ..., y_{n-1}$  vozlišča grafa G. Recimo, da je  $y_1$  vozlišče pridobljeno z identifikacijo vozlišč  $x_1$  in  $x_2$ . Naj bo  $H_1 = \overline{K_2}$  in  $H_i$  trivialen graf za

i = 2, 3, ..., n - 1. Potem je  $T = G(H_1, H_2, ..., H_n)$ . To je v protislovju s tem, da je T primaren. (←) Privzamimo zdaj, da je T gosenica brez dveh listov z istim sosednim vozliščem in predpostavimo, da T ni primaren permutacijski graf. Potem je za nek netrivialen graf G z vozlišči  $y_1, y_2, ..., y_k$  $T = G(H_1, H_2, ..., H_k)$ . Brez izgube splošnosti lahko privzamemo, da ima  $H_1$ vsaj 2 vozlišči. Ker je drevo T povezan graf, mora biti tudi graf G povezan. Zato mora  $y_1$  imeti soseda. Privzemimo, da sta  $y_1$  in  $y_2$  sosednji vozlišči. Potem je  $H_1 + H_2$  podgraf grafa T. Če bi  $H_2$  imel vsaj 2 vozlišči, bi graf  $H_1 + H_2$  vseboval cikel, kar je v protislovju s tem, da je T drevo. Torej ima  $H_2$  samo eno vozlišče. Če bi  $y_1$  imel še kakšnega soseda v grafu G, bi graf T tako imel cikel dolžine 4. Prav tako v  $H_1$  ne sme biti povezav, saj bi tako podgraf  $H_1 + H_2$  vseboval cikel dolžine 3. Ampak potem so vsa vozlišča grafa  $H_1$  listi grafa T s skupnim sosedom, ki je edino vozlišče grafa  $H_2$ . To je v protislovju s predpostavko, da je T gosenica brez dveh listov z istim sosedom. Torej je T primaren permutacijski graf. 

Izrek 5.8 Naj bo G sestavljen permutacijski graf. Potem obstaja netrivialen primaren permutacijski graf U in permutacijski grafi  $H_1, H_2, ..., H_k$ , ki so podgrafi grafa G, tako da je  $G = U(H_1, H_2, ..., H_k)$ .

Dokaz. Naj bo  $G = U(H_1, H_2, ..., H_k)$ , kjer je U netrivialen. Če vzamemo eno vozlišče  $x_i$  iz vsakega izmed  $H_i$ , potem je induciran podgraf izomorfen grafu U. Zato mora biti U permutacijski po izreku 5.4. Prav tako so grafi  $H_i$  permutacijski, saj so inducirani podgrafi grafa G. Privzemimo, da ima U najmanjše število vozlišč med vsemi takimi kompozicijami. Dokazali bi radi, da je U primaren. Privzemimo, da U ni primaren. Naj bo  $U = V(L_1, L_2, ..., L_p)$  kompozicija, kjer je V netrivialen. Ker je U kompozicija in oglišča grafa U predstavljajo inducirane podgrafe  $H_i$  v grafu G, potem vsak  $L_i$  predstavlja neko podmnožico  $A_i \subset \{H_1, H_2, ..., H_k\}$ .  $A_i$  je tako tudi induciran podgraf grafa G. Zato je  $G = V(A_1, A_2, ..., A_p)$ . Ampak to predstavla protislovje z izborom grafa U. Torej je U primaren.

#### Poglavje 6

#### Tekmovalnostni grafi

**Definicija 6.1** Rangiranje  $c = (i_1, ..., i_n)$  množice [n] je permutacija iz  $S_n$ . Pisali bomo  $i \prec_c j$ , kadar se vozlišče i pojavi pred vozliščem j v vektorju rangiranja c, to je ko  $c^{-1}(i) < c^{-1}(j)$ . Zato rangiranje c definira zaporedje (urejenost) množice [n]:

$$c(1) = i_1 \prec_c c(2) = i_2 \prec_c \cdots \prec_c c(n) = i_n$$

**Definicija 6.2** Naj bo  $R = \{c_1, c_2, ..., c_r\}$  končna množica rangiranj. Potem rečemo, da par vozlišč  $(i, j) \in [n] \times [n]$  (neposredno) tekmuje, če obstajata rangiranji  $c_s, c_t \in R$  tako da je  $i \prec_{c_s} j$  ampak  $j \prec_{c_t} i$ , to je i in j zamenjata svoji relativni poziciji v rangiranjih  $c_s$  in  $c_t$  (slika 6.1).

Tekmovalnost med dvema vozliščema  $i, j \in [n]$  je močno povezano z dejstvom, da je (i, j) inverzija rangiranja množice. Spomnimo se, da je inverzija v rangiranju c par vozlišč (i, j), tako da je  $(i - j)(c^{-1}(i) - c^{-1}(j)) < 0$ 

Slika 6.1: Par vozlišč (i, j) tekmuje.



Slika 6.2: Preimenovanje vozlišč tako, da je  $c_1 = id$ .

**Lema 6.1** Če imamo podano končno množico  $R = \{c_1, c_2, ..., c_r\}$  rangiranj, so naslednje trditve ekvivalentne:

- (i) Par vozlišč (i, j) tekmuje
- (ii) Obstaja  $c_s \in \{c_1, ..., c_{r-1}\}$  tak, da i in j zamenjata svoji relativni poziciji med rangiranji  $c_s$  in  $c_{s+1}$
- (iii) Obstaja preimenovanje vozlišč, tako da je  $c_1 = id$  (slika 6.2) in nek  $c_s \in \{c_2, ..., c_r\}$  z inverzijo (i, j)

Dokaz.  $((ii) \Rightarrow (i))$  To sledi iz definicije 6.2.  $((i) \Rightarrow (iii))$  Preimenujmo vozlišča, tako da bo  $c_1 = id$ . Naj i in j zamenjata svoji relativni poziciji med rangiranji  $c_s$  in  $c_t$ . Potem je v enem izmed  $c_s$  ali  $c_t$  inverzija (i, j).  $((iii) \Rightarrow (ii))$  Preimenujmo vozlišča, tako da  $c_1 = id$ . Imamo inverzijo (i, j) v  $c_s$ . Potem i in j zamenjata relativno pozicijo med  $c_s$  in  $c_{s-1}$  ali pa  $c_{s-1}$  prav tako vsebuje inverzijo (i, j) in se zamenjava zgodi prej. To sledi iz dejstva, da je R končna množica.

**Definicija 6.3** Naj bo  $R = \{c_1, c_2, ..., c_r\}$  množica rangiranj množice [n]. Definirajmo tekmovalnostni graf množice rangiranj R, kot neusmerjen graf  $G_c(R) = ([n], E)$ , kjer je množica povezav E podana na nasledni način: med i in j je povezava, če (i, j) tekmujeta.

**Primer 6.1** Naj bo  $R = \{c_1, c_2, c_3\}$  množica rangiranj množice [4].

$$c_1 = (1, 2, 3, 4)$$

$$c_2 = (1, 2, 4, 3)$$

$$c_3 = (3, 1, 2, 4)$$

DIPLOMSKA NALOGA

Ker je  $c_1 = id$  so povezave grafa  $G_c(R)$  ravno inverzije rangiranj  $c_2$  in  $c_3$ . Rangiranje  $c_2$  ima inverzijo (4,3) medtem ko ima rangiranje  $c_3$  inverziji (3,1), (3,2). Graf  $G_c(R)$  je prikazan na sliki 6.3.



Slika 6.3: Graf tekmovalnosti  $G_c(R)$ .

**Definicija 6.4** Če vzamemo množico rangiranj  $R = \{c_1, ..., c_r\}$  množice [n] in fiksiramo  $i \in [n]$ , je tekmovalnostna množica C(i) vozlišča i enaka množici elementov množice [n], ki tekmuje z i vključno z i:

$$C(i) = \{ j \in [n] \mid (i,j) \ tekmujeta \} \cup \{ i \}.$$

**Primer 6.2** Naj bo R tak kot v primeru 6.1. Potem je:

$$C(1) = \{1, 3\}, \ C(2) = \{2, 3\}, \ C(3) = \{1, 2, 3, 4\}, \ C(4) = \{3, 4\}$$

**Definicija 6.5** Naj bo  $R = \{c_1, c_2, ..., c_r\}$  množica rangiranj množice [n]. Množici vozlišč  $C \subseteq [n]$  rečemo množica tekmovalcev, če je maksimalna množica glede na lastnost tekmovalnosti svojih elementov. To pomeni, da vsaka dva elementa  $i, j \in C$  tekmujeta in C je maksimalna glede na to lastnost.

Opomba: Množice tekmovalcev so ravno največji polni podgrafi grafa  $G_c(R)$ . Opazimo, da dve vozlišči tekmujeta natanko tedaj ko pripadata isti množici tekmovalcev. Še več, lahko preverimo, da je množica vozlišč $C \subseteq [n]$  množica tekmovalcev natanko tedaj ko je  $C = \bigcap_{i \in C} C(i)$ .

**Definicija 6.6** Če vzamemo množico rangiranj  $R = \{c_1, ..., c_r\}$  množice [n], rečemo da par vozlišč  $(i, j) \in [n] \times [n]$  posredno ali neposredno tekmuje, če obstaja  $k \in \mathbb{N}$  in vozlišča  $i_1, ..., i_k \in [n]$  tako da  $(i, i_1)$  tekmujeta,  $(i_1, i_2)$  tekmujeta, ..., in  $(i_k, j)$  tekmujeta.

 $Množici\ vozlišč\ D\subseteq [n]$  rečemo množica posrednih in neposrednih tekmovalcev, če je maksimalna množica glede na lastnost posredne ali neposredne tekmovalnosti med svojimi elementi.

Opomba: Očitno je, da če par vozlišč (i, j) tekmuje potem tudi posredno ali neposredno tekmuje. Še več par (i, j) posredno ali neposredno tekmuje natanko tedaj, ko sta i in j povezana s potjo v grafu  $G_c(R)$ .

Opazimo, da so množice posrednih ali neposrednih tekmovalcev iz [n], povezane komponente grafa  $G_c(R)$  in dve vozlišči posredno ali neposredno tekmujeta natanko tedaj ko pripadata isti množici posrednih in neposrednih tekmovalcev. Seveda dve vozlišči, ki pripadata različnim množicam posrednih in neposrednih tekmovalcev, ne moreta tekmovati.

**Definicija 6.7** Delno urejeni množici  $(N, \preceq)$  lahko priredimo usmerjen graf  $G_{\preceq}$ , tako da je množica vozlišč enaka N, vozlišči i in j pa sta povezani, če  $i \neq j$  in  $i \preceq j$ . Graf G = (N, E) je primerljivostni graf, če je neusmerjen graf pridobljen po odstranitvi orientacije grafa  $G_{\preceq}$  za neko delno urejenost  $\preceq$  množice N.

Graf G=(N,E) je primerljivosten natanko tedaj ko dopušča tranzitivno orientacijo svojih povezav. To pomeni, da je usmerjen graf  $\overrightarrow{G}=(N,\overrightarrow{E})$  pridobljen iz G z orientiacijo vseh povezav v E, tako da če sta  $(i,j),(j,k)\in \overrightarrow{E}$  potem je  $(i,k)\in \overrightarrow{E}$ 

Uporabna karakterizacija permutacijskih grafov je dejstvo, da sta G in  $\overline{G}$  primerljivostna grafa, to je dovoljujeta tranzitivno orientazijo svojih povezav.

Opazimo, da so permutacijski grafi tako primerljivostni grafi kot tekmovalnostni (imamo dve rangiranji/permutaciji  $c_1 = id$  in  $c_2$ , ki predstavlje permutacijski graf).

**Definicija 6.8** Graf G ima delno kohezivno zaporedje vozlišč (ali enostavneje delno kohezivno zaporedje), če obstaja preimenovanje vozlišč, tako da velja (b) iz definicije 5.2, to je če obstaja povezava ab, kjer a < b, potem mora za vsak x, za katerega velja a < x < b obstajati povezava ax ali xb. Graf G je delno koheziven, če ima delno kohezivno zaporedje.

Medtem ko je pogoj (a) iz definicije 5.2 povezan z primerljivostnimi grafi, je pogoj (b) (delna kohezivnost) povezan z tekmovalnostnimi grafi, kot pokaže nasledni izrek.

#### Izrek 6.1 Vsak tekmovalnostni graf je delno koheziven.

Dokaz. Naj bo  $G_c(R)$  tekmovalnostni graf, ki je generiran z množico rangiranj R. Brez izgube za splošnost privzemimo, da rangiranje  $id \in R$ . Naj bo  $ab \in E(G_c(R))$ , kjer a < b in  $x \in [n]$  tak, da je a < x < b. Ker je ab povezava vozlišči (a,b) tekmujeta. To pomeni, da obstaja tako rangiranje  $c_m \in R$ , da je  $b \prec_{c_m} a$ . Če  $x \prec_{c_m} a$  potem tekmujeta (x,a) in je  $ax \in E(G_c(R))$ , v nasprotnem primeru je  $b \prec_{c_m} a \prec_{c_m} x$ , kar pomeni, da tekmujeta (b,x) in  $xb \in E(G_c(R))$ .

**Domneva 6.1** Izrek 6.1 je karakterizacija tekmovalnostnih grafov, to pomeni G je tekmovalnostni graf natanko tedaj ko ima delno kohezivno zaporedje.

#### Poglavje 7

# Algoritem za izračun množice posrednih in neposrednih tekmovalcev

**Lema 7.1** Naj bo  $R = \{c_1, ..., c_r\}$  množica rangiranj množice [n]. Če je  $D \subseteq [n]$  množica posrednih in neposrednih tekmovalcev in  $a, b \in D$  potem za  $vsak \ x \in [n]$  in vsako rangiranje  $c_m \in R$  tako da je  $a \prec_{c_m} x \prec_{c_m} b$ , sledi  $x \in D$ .

Dokaz. Če vozlišči (a,b) tekmujeta, potem zaradi delne kohezivnosti tekmovalnostnega grafa tekmujeta tudi (a,x) ali (x,b), se pravi  $x \in D$ . Če vozlišči (a,b) ne tekmujeta, potem obstaja  $k \in \mathbb{N}$  in vozlišča  $i_1, ..., i_k \in [n]$ , tako da  $(a,i_1)$  tekmujeta,  $(i_1,i_2)$  tekmujeta, ..., in  $(i_k,b)$  tekmujeta, saj sta  $a,b \in D$ . Če  $a \prec_{c_m} x \prec_{c_m} i_1$  potem  $x \in D$ , ker  $(a,i_1)$  tekmujeta. V nasprotnem primeru je  $i_1 \prec_{c_m} x \prec_{c_m} b$ . Če  $i_1 \prec_{c_m} x \prec_{c_m} i_2$  potem  $x \in D$ , ker  $(i_1,i_2)$  tekmujeta. V nasprotnem primeru je  $i_2 \prec_{c_m} x \prec_{c_m} b$ ... Če  $i_{k-1} \prec_{c_m} x \prec_{c_m} i_k$  potem  $x \in D$ , ker  $(i_{k-1},i_k)$  tekmujeta. V nasprotnem primeru je  $i_k \prec_{c_m} x \prec_{c_m} b$ . Ker  $(i_k,b)$  tekmujeta, sledi  $x \in D$ . □

**Primer 7.1** Naj bo  $R = \{c_1, c_2, c_3\}$  množica rangiranj [5].

$$c_1 = (1, 2, 3, 4, 5)$$

$$c_2 = (2, 1, 3, 4, 5)$$

$$c_3 = (1, 4, 2, 3, 5)$$

Vidimo, da par (4,1) posredno tekmujeta, saj (1,2) in (2,4) tekmujeta, zato sta v isti množici posrednih in neposrednih tekmovalcev. Ker je  $3 \in [5]$  in  $1 \prec_{c_1} 3 \prec_{c_1} 4$  je tudi 3 v isti množici posrednih in neposrednih tekmovalcev. To je res, saj  $2 \prec_{c_1} 3 \prec_{c_1} 4$  in (2,4) tekmujeta, iz delne kohezivnost sledi, da tekmujeta tudi (2,3) ali (3,4). Vidimo, da par (3,4) res tekmuje.

**Lema 7.2** Naj bo  $R = \{c_1, ..., c_r\}$  množica rangiranj množice [n]. Če je  $D \subseteq [n]$  množica posrednih in neposrednih tekmovalcev ter obstajata  $a \in D$  in  $c_m \in R$ , tako da je  $c_m^{-1}(a) = 1$  (element a se pojavi na prvi poziciji v rangiranju  $c_m$ ), potem

$$\{x \in [n] \mid c_s^{-1}(x) = 1 \text{ } za \text{ } nek \text{ } c_s \in R\} \subseteq D.$$

To pomeni da vsi elementi na prvi poziciji rangiranj iz R pripadajo D.

Dokaz. Če  $c_m \neq c_s$ ,  $a \neq x$  in  $c_m^{-1}(a) = 1 = c_s^{-1}(x)$ , potem je  $a \prec_{c_m} x$  in  $x \prec_{c_s} a$ , se pravi (a, x) tekmujeta in  $x \in D$ .

Izrek 7.1 Naj bo  $R = \{c_1, ..., c_r\}$  množica rangiranj vozlišč [n]. Množico posrednih in neposrednih tekmovalcev lahko identificiramo z zaprtimi intervali naravnih števil [p, q] na naslednji način:

$$D_{[p,q]} = \{ x \in [n] \mid c_s^{-1}(x) \in [p,q] \text{ za nek } c_s \in R \}.$$

Še več p in q sta prvi na levi in zadnji na desni poziciji elementov iz  $D_{[p,q]}$  glede na vsa rangiranja.

Dokaz. Pokazali bomo, da ima vsaka množica posrednih in neposrednih tekmovalcev obliko  $D_{[p,q]}$ , za neki naravni števili p in q. Naj bo  $a \in [n]$ ,

 $c_m \in R$ , tako da  $c_m^{-1}(a)=1$  in naj bo D množica posrednih in neposrednih tekmovalcev, ki vsebuje a. Iz lemi 7.2 sledi, da je

$$D_{[1,1]} = \{x \in [n] \mid c_s^{-1}(x) = 1 \text{ za nek } c_s \in R\} \subseteq D.$$

Defirajmo

$$D_{[1,p_k]} = \{x \in [n] \mid c_s^{-1}(x) \in [1, p_k] \text{ za nek } c_s \in R\}$$

in naj bo  $p_{k+1}$  zadnja pozicija (na desni) vseh elementov  $D_{[1,p_k]}$  v vseh rangiranjih. Trdimo, da če  $D_{[1,p_k]}\subseteq D$  in

$$D_{[1,p_{k+1}]} = \{x \in [n] \mid c_s^{-1}(x) \in [1,p_{k+1}] \ za \ nek \ c_s \in R\}$$

potem je  $D_{[1,p_{k+1}]} \subseteq D$ . Naj bo  $x \in [n]$  z  $c_s^{-1}(x) \in [1,p_{k+1}]$  za nek  $c_s$ . Potem je  $c_s^{-1}(x) \in [1,p_k]$  in  $x \in D_{[1,p_k]} \subseteq D$  (po predpostavki) ali pa je  $c_s^{-1} \in [p_k+1,p_{k+1}]$ . V tem primeru, naj bo b element  $D_{[1,p_k]}$ , ki se pojavi na poziciji  $p_{k+1}$  v nekem rangiranju  $c_{m_b}$ , to pomeni  $c_{m_b}^{-1}(b) = p_{k+1}$ . Če  $x \prec_{c_{m_b}} b$ , potem je po lemi 7.1  $x \in D$ . Zato predpostavimo, da je  $b \prec_{c_{m_b}} x$ . Vsi elementi levo od b v rangiranju  $c_{m_b}$  pripadajo množici D po lemi 7.1. Naj bo teh elementov t. Če je  $x \prec_{c_s} b$  potem (c,b) tekmujeta in  $x \in D$ . Zato predpostavimo, da  $b \prec_{c_s} x$ . Na levi od x v rangiranju  $c_s$  je tako največ t elementov, ampak en od njih je b, kar pomeni, da obstaja element z, ki  $z \prec_{c_{m_b}} b \prec_{c_{m_b}} x$  in  $b \prec_{c_s} x \prec_{c_s} z$ . To pomeni, da (x,z) tekmujeta, zato  $x \in D$ .

Ker je [n] končna množica in  $D_{[1,p_m]} \in [n]$  se veriga množic

$$D_{[1,1]} \subset D_{[1,p_1]} \subset D_{[1,p_2]} \subset \cdots$$

stabilizira za nek  $D_{[1,p_m]} \subseteq D$ . Še več  $D \subseteq D_{[1,p_m]}$ : po hipotezi je  $a \in D$ , zato za vsak drug elemet  $x \in D$  obstaja končno število elementov  $a_1, a_2, ..., a_k$ , tako da  $(a, a_1), (a_1, a_2), ..., (a_k, x)$  tekmujejo. Zaradi dejstva, da je  $a \in D_{[1,1]}$  in  $(a, a_1)$  tekmujeta dobimo, da je  $a_1 \in D_{[1,p_1]}$ , podobno ker  $a_1 \in D_{[1,p_1]}$  in  $(a_1, a_2)$  tekmujeta dobimo, da je  $a_2 \in D_{[1,p_2]}$ , ..., in ker  $a_k \in D_{[1,p_k]}$  in  $(a_k, x)$  tekmujeta dobimo, da je  $x \in D_{[1,p_{k+1}]} \subseteq D_{[1,p_m]}$ 

Izbrišimo elemente iz [n], ki se pojavijo v D in ponovimo postopek, da odkrijemo ostale možice posrednih in neposrednih tekmovalcev.

**Primer 7.2** Naj bo  $R = \{c_1, c_2, c_3\}$  množica rangiranj [5].

$$c_1 = (1, 2, 3, 4, 5)$$

$$c_2 = (2, 1, 3, 4, 5)$$

$$c_3 = (1, 4, 2, 3, 5)$$

Poiščimo množice posrednih in neposrednih tekmovalce na zgoraj opisan način. Najprej si poglejmo množico posrednih in neposrednih tekmovalcev  $D_1$ , ki vsebuje elemente, ki se v vsaj enem rangiranju pojavijo na prvem mestu.

$$D_{[1,1]} = \{x \in [n] \mid c_s^{-1}(x) = 1 \text{ za nek } c_s \in R\} = \{1,2\} \subseteq D_1$$

Elementa 1 in 2 se v rangiranjih nahajata na 1.,2. in 3. mestu. Ker je  $max\{1,2,3\}=3$  si sedaj poglejmo  $D_{[1,3]}$ 

$$D_{[1,1]} \subset D_{[1,3]} = \{x \in [n] \mid c_s^{-1}(x) \in [1,3] \text{ za } nek \ c_s \in R\} = \{1,2,3,4\} \subseteq D_1$$

Elementi 1,2,3 in 4 se v rangiranjih nahajajo na 1.,2.,3. in 4. mestu. Ker je  $max\{1,2,3,4\} = 4$  si sedaj poglejmo  $D_{[1,4]}$ 

$$D_{[1,3]} = D_{[1,4]} = \{x \in [n] \mid c_s^{-1}(x) \in [1,4] \text{ za nek } c_s \in R\} = \{1,2,3,4\} = D_1$$

Vidimo, da se je veriga stabilizirala in je  $D_1 = D_{[1,4]} = \{1, 2, 3, 4\}$ . Sedaj si poglejmo množico posrednih in neposrednih tekmovalcev  $D_2$ , ki vsebuje vse elemente, ki se v vsaj enem rangiranju pojavijo na 5. mestu (5 = 4 + 1).

$$D_{[5,5]} = \{x \in [n] \mid c_s^{-1}(x) = 5 \ za \ nek \ c_s \in R\} = \{5\} \subseteq D_2$$

Element 5 se v rangiranjih vedno nagaja na 5. mestu. Ker  $max\{5\} = 5$  se nam zgorna meja ne poveča. Zato je  $D_2 = D_{[5,5]} = \{5\}$ 

Dokaz zadnjega izreka nam podaja algoritem za izračun množice posrednih in neposrednih tekmovalcev direktno iz množice rangiranj, brez predhodnega izračuna tekmovalnostnega grafa.

```
1
          Psevdo koda algoritma za izračun množic
 2
          posrednih in neposrednih tekmovalcev:
 3
 4
         Vhod:
         N=\{1,...,n\} končna množica vozlišč
 5
         R = \{c_1, ..., c_r\} končna množica rangiranj
 6
 7
 8
         begin
               j := 1;
 9
10
               p_0 := 0;
               p_i := 1;
11
               while |N|>0 do
12
                    D_i := \emptyset;
13
14
                     q_0 := p_{j-1};
15
                     q_1 := p_j;
                     i := 0;
16
17
                     while q_i \neq q_{i+1} do
18
                          i := i + 1;
                          Construct D_j := D_{[p_i,q_i]};
19
                          q_{i+1} := \max_{x \in D_j, c \in R} c^{-1}(x) ;
20
21
                     end
                     N := N \setminus D_i;
22
23
                     j := j + 1;
24
                    p_j := q_i + 1;
25
               end
26
          end
27
28
          Izhod:
29
          Množice posrednih in neposrednih
          tekmovalcev D_1,...,D_k
30
```

**Definicija 7.1** Naj bo  $R = \{c_1, ..., c_r\}$  množica r rangiranj  $(r \ge 2)$  množice [n]. Definirajmo usmerjen graf  $G_d(R)$  na naslednji način:

- (i) Vozlišča grafa  $G_d(R)$  so elementi množice [n].
- (ii) Če  $i, j \in [n]$ ,  $i \neq j$  potem je (i, j) usmerjena povezava v grafu  $G_d(R)$ , če obstaja rangiranje  $c_m \in R$ , tako da je  $i \leq_{c_m} j$ .

Opomba: Opazimo, da se usmerjen graf  $G_d(R)$  sklada z usmerjenim grafom  $G_{\leq}$ , ki ga definiramo z (refleksivno in antisimetrično) relacijo  $\leq$  podano z:

- (i)  $i \leq i$  za vsak  $i \in [n]$
- (ii)  $i \leq j \ (i, j \in [n], i \neq j)$ , če obstaja tako rangiranje  $c_m \in R$ , da je  $i \leq_{c_m} j$

Tekmovalnostni graf  $G_c(R)$  se sklada z neusmerjenim grafom z enakimi vozlišči kot  $G_d(R)$  in povezavami med (i, j), kadar sta usmerjeni povezavi  $(i, j), (j, i) \in E(G_d(R))$ 

**Trditev 7.1** Naj bosta  $D_1$  in  $D_2$  dve različni množici posrednih in neposrednih tekmovalcev. Naslednji trditvi o usmerjenem grafu  $G_d(R)$  sta ekvivalentni:

- (i) Obstaja usmerjena povezava (a,b), tako da je  $a \in D_1$  in  $b \in D_2$
- (ii) Vsa vozlišča iz  $D_1$  imajo usmerjeno povezavo proti vsem vozliščem iz  $D_2$

#### Dokaz.

1. Pokazali bomo, da če je  $a \in D_1$ ,  $b_1, b_2 \in D_2$ , par  $(b_1, b_2)$  tekmuje in obstaja usmerjena povezava od a do  $b_1$ , potem obstaja usmerjena povezava od a do  $b_2$ . Po hipotezi obstaja rangiranje  $c_m$  tako da je  $a \prec_{c_m} b_1$ . Če  $a \prec_{c_m} b_2$  potem smo pokazali kar smo hoteli, sicer  $b_2 \prec_{c_m} a \prec_{c_m} b_1$ . Ampak ker  $(b_1, b_2)$  tekmujeta, obstaja rangiranje  $c_{m'}$ , tako da  $b_1 \prec_{c_{m'}} b_2$  in ker a ne tekmuje z  $b_1$  mora biti  $a \prec_{c_{m'}} b_1 \prec_{c_{m'}} b_2$ , kar pomeni, da  $(a, b_2)$  tekmujeta. To je protislovje in zato  $a \prec_{c_m} b_2$ .

- 2. Pokazali bomo, da če je  $a \in D_1$ ,  $b \in D_2$  in obstaja usmerjena povezava od a proti b, potem za vsak  $b' \in D_2$  obstaja povezava od a do b. Ker sta  $b, b' \in D_2$  obstaja  $k \in \mathbb{N}$  in  $b_1, ..., b_k \in D_2$  tako da  $(b, b_1)$  tekmujeta,  $(b_1, b_2)$  tekmujeta, ...,  $(b_k, b')$  tekmujeta. Vozlišča  $a, b, b_1$  so v takem razmerju kot v koraku 1., zato obstaja povezava od a do  $b_1$ , podobno vozlišča  $a, b_1, b_2$ , zato obstaja povezava a do  $b_2$ , ..., podobno vozlišča  $a, b_k, b'$ , zato obstaja povezava od a do b'.
- 3.  $(i) \Rightarrow (ii)$ . Če od elementa  $a \in D_1$  obstaja povezava do elementa v  $D_2$ , potem po koraku 2. obstaja povezava od a do vseh elementov v  $D_2$ . Zdaj fiksirajmo nek element iz  $D_2$  in dva elementa iz  $D_1$ . Uporabimo podoben premislek kot smo ga v korakih 1 in 2 in dobimo, da obstaja povezava od vsakega elementa iz  $D_1$  do fiksiranega elementa.

**Definicija 7.2** Naj bo  $R = \{c_1, ..., c_r\}$  množica r rangiranj  $(r \geq 2)$  vozlišč [n], katerih množice posrednih in neposrednih tekmovalcev označimo z  $D_1, ..., D_k$ . Definirajmo binarno relacijo  $\rightarrow$  med dvema množicama posrednih in neposrednih tekmovalcev na nasledni način:

- (i)  $D_i \rightarrow D_i$  za vsako množico posrednih in neposrednih tekmovalcev  $D_i$ .
- (ii) za vsaki različni množici  $D_i$ ,  $D_j$  posrednih in neposrednih tekmovalcev, je  $D_i \to D_j$  natanko tedaj ko velja katerakoli od trditev iz 7.1

Lema 7.3 Binarna relacija iz definicije 7.2 je tranzitivna.

Dokaz. Predpostavimo, da je  $D_1 \to D_2$  in  $D_2 \to D_3$ , ampak  $D_3 \to D_1$ . Vzamimo vozlišče  $x \in D_1$ . Ker je  $D_3 \to D_1$ , obstaja rangiranje  $c_m$ , tako da je  $a \prec_{c_m} x$  za vse  $a \in D_3$ . Še več, ker  $D_1 \to D_2$ ,  $x \prec_{c_m} b$  za vsa  $b \in D_2$  in zato  $a \prec_{c_m} b$  za vse  $a \in D_3$  in  $b \in D_2$ , kar pomeni  $D_3 \to D_2$ . To je protislovje.  $\square$ 

Posledica 7.1 Binarna relacija podana v definiciji 7.2 nam daje linearno urejost med množicami posrednih in neposrednih tekmovalcev iz [n].

#### Poglavje 8

# Uporaba algoritma na resničnih podatkih

Poglejmo si sezono 2014 v prvenstvu MotoGP. V tej sezoni je bil najboljši dirkač Marc Márquez. Zmagal je na prvih 10 dirkah sezone. V celi sezoni pa je zmagal na 13 od skupaj 18 dirk. Na 3 dirkah je padel, vendar se je v trenutku padca potegoval za zmago. Poleg tega je bil še enkrat drugi in enkrat četrti. Poleg Marca Márqueza so bili veliko boljši od ostalih še Valentino Rossi, Jorge Lorenzo in Dani Pedrosa. Na stopničkah so bili trije od njih (štirih) na 13 dirkah, vsaj dva na 17 dirkah, vsaj en pa na vseh 18 dirkah te sezone. Opazimo, da se nam izoblikujejo vsaj tri kakovostne skupine to sezono. V prvi skupini je Marc Márquez, ki je bil to sezono veliko boljši od ostalih. V drugi skupini so Valentino Rossi, Jorge Lorenzo in Dani Pedrosa. V ostalih skupinah pa so ostali dirkači.

Ce bi uporabili algoritem za izračun množic posrednih in neposrednih tekmovalcev, kar direktno na rezultatih dirk, bi naleteli na težave. Ena od težav je, da ni na vsaki dirki tekmovalo oziroma zaključilo enako tekmovalcev. Zato rezultati dirk niso iz iste simetrične grupe  $S_n$ . Poleg tega opazimo, da je Marc Márquez bil na prvem in na zadnjem mestu (je odstopil), iz česar sledi, da tekmuje z vsemi ostalimi dirkači in imamo samo eno množico posrednih in neposrednih tekmovalcev. Tako nebi pridobili pričakovanih informacij.

Zato bomo izbrali neko podmnožico dirk A in neko podmnožico tekmovalcev, ki so na vseh dirkah iz podmnožice A dirko zaključili. Tako dobimo |A| rangiranj/permutacij nake simitrične grupe.

Izberimo 5 dirk iz te sezone.  $R = \{c_{arg}, c_{esp}, c_{cat}, c_{ger}, c_{gbr}\}$ . Izberimo še vse dirkače, ki so na teh dirkah zaključili dirko. Teh dirkačev je 14. Uredimo jih relativno na to kako so se na koncu sezone uvrstili v skupnem vrstem redu. Tako dobimo dobimo vektor = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14) = (Marc Márquez, Valentino Rossi, Jorge Lorenzo, Dani Pedrosa, Andrea Dovizioso, Pol Espargaró, Aleix Espargaró, Bradley Smith, Stefan Bradl, Scott Redding, Hiroshi Aoyama, Yonny Hernández, Héctor Barberá, Broc Parkes). Sedaj si oglejmo rangiranja teh dirkačev na dirkah iz R:

$$c_{arg} = (1, 4, 3, 2, 9, 8, 6, 5, 11, 12, 10, 7, 13, 14)$$

$$c_{esp} = (1, 2, 4, 3, 5, 7, 8, 6, 9, 11, 10, 12, 13, 14)$$

$$c_{cat} = (1, 2, 4, 3, 9, 7, 6, 5, 8, 12, 10, 11, 14, 13)$$

$$c_{ger} = (1, 4, 3, 2, 7, 6, 5, 10, 11, 9, 12, 13, 8, 14)$$

$$c_{gbr} = (1, 3, 2, 4, 5, 6, 9, 7, 10, 12, 11, 13, 14, 8)$$

To pomeni, da je na dirki v Argentini ( $c_{arg}$ ) bil prvi Marc Márquez, drugi Dani Pedrosa, tretji Jorge Lorenzo, četrti Valentino Rossi,...

Sedaj poženemo algoritem za izračun množice posrednih in neposrednih tekmovalcev in dobimo naslednje množice posrednih in neposrednih tekmovalcev:

$$D_1 = \{1\}$$

$$D_2 = \{2, 3, 4\}$$

$$D_3 = \{5, 6, 7, 8, 9, 10, 11, 12, 13, 14\}$$

Tako vidimo, da so za to izbiro dirk in dirkačev, ki so zaključili te dirke naše ugotovitve enake kot na začetku poglavja. Torej je Marc Márquez v svoji množici posrednih in neposrednih tekmovalcev, v drugi množici posrednih in neposrednih tekmovalcev so Valentino Rossi, Jorge Lorenzo in Dani Pedrosa. Ostali dirkači pa so v tretji množici posrednih in neposrednih tekmovalcev.

## Poglavje 9

### Sklepne ugotovitve

Uporaba LATEXa in BIBTEXa je v okviru Diplomskega seminarja **obvezna!** Izbira LATEX ali ne LATEX pri pisanju dejanske diplomske naloge pa je prepuščena dogovoru med vami in vašim mentorjem.

Res je, da so prvi koraki v IATEXu težavni. Ta dokument naj vam služi kot začetna opora pri hoji. Pri kakršnihkoli nadaljnih vprašanjih ali napakah pa svetujem uporabo Googla, saj je spletnih strani za pomoč pri odpravljanju težav pri uporabi IATEXa ogromno.

Preden diplomo oddate na sistemu STUDIS, še enkrat preverite, če so slovenske besede, ki vsebujejo črke s strešicami, pravilno deljene. Poravnavo po vrsticah pa kontrolirajte tako, da izvorno datoteko prevedete z opcijo draft, kar vam pokaže predolge vrstice.

#### Literatura

- [1] Factorial number system. Dosegljivo: https://en.wikipedia.org/wiki/Factorial\_number\_system. [Dostopano: 11. 1. 2023].
- [2] Inversion (discrete mathematics). Dosegljivo: https://en.wikipedia.org/wiki/Inversion\_(discrete\_mathematics). [Dostopano: 11. 1. 2023].
- [3] Permutation. Dosegljivo: https://en.wikipedia.org/wiki/ Permutation, . [Dostopano: 11. 1. 2023].
- [4] Permutation graph. Dosegljivo: https://en.wikipedia.org/wiki/ Permutation\_graph, . [Dostopano: 11. 1. 2023].
- [5] Permutation group. Dosegljivo: https://en.wikipedia.org/wiki/ Permutation\_group, . [Dostopano: 11. 1. 2023].
- [6] Richard A Brualdi and Geir Dahl. Permutation graphs and the weak bruhat order. The Art of Discrete and Applied Mathematics, 2023.
- [7] Regino Criado, Esther García, Francisco Pedroche, and Miguel Romance. On graphs associated to sets of rankings. *Journal of computational and applied mathematics*, 291:497–508, 2016.
- [8] Severino V Gervacio, Teofina A Rapanut, and Phoebe Chloe F Ramos. Characterization and construction of permutation graphs. 2013.