

Shear Stress, Pa

$$\tau = \frac{F r_c}{2\pi R_{ch}^2 L}$$

where:

F [N] : force, = nominal load (Kg) * Gravity

r_c [m] : radius of die (capillary)
R_{ch} [m] : radius of cylinder
L [m] : length of die (capillary)

Shear Rate, s-1

$$\gamma = \frac{4 \text{ V}}{\pi r_c^3 t}$$

where:

V [m³] : volume (total of steps) of extruded material

 $V = A_m * L_t$

L_t: total length of steps

r_c [m] : radius of die (capillary)

t [s] : time (total of steps) of extrusion

Viscosity, Pa * s

$$\eta = \frac{\tau}{\gamma} = \frac{F r_c^4 t}{8 R_{ch}^2 L V}$$

where:

F [N] : force, = test mass (kg) * gravity

Gravity (free fall) = 9.806650 m/s^2

r [m] : radius of die (capillary)

t [s] : time (total of steps) of extrusion

 R_{ch} [m] : radius of cylinder

L [m] : length of die (capillary)

V [m³] : volume (total of steps) of extruded material

 $V = A_m * L_t$

L,: total length of steps