Dynamic Interaction Graphs with Probabilistic Edge Decay

Wenlei Xie¹, Yuanyuan Tian², Yannis Sismanis³, Andrey Balmin⁴, Peter J. Haas² ¹Cornell University ²IBM Almaden Research Center ³Google, Inc. ⁴Platfora, Inc.

Dynamic Interaction Graphs

Social interactions can be modeled as graphs

New interactions (edges) continuously added

Goal: Extract insight from data stream of interactions

"Who are influencers on Twitter **now**?"

"What is the community structure on Twitter **now**?"

Challenge: Most graph mining algorithms assume static graph structures

Existing Models

Snapshot Model

- Consider all interactions seen so far
- Problem: Does not emphasize recent interactions (no recency)

Sliding Window Model

- Consider recent interactions within a small time window
- Problem: Abruptly forgets past interactions (no continuity)

Example: Influence Analysis

Alice: Temporarily dormant influencer Missed by Sliding Window Model

Bob: Rising star influencer Missed by Snapshot Model Twitter data experiment: Either approach would miss ~25% of top influencers

Carol: Active in remote past, not an influencer at present

Should she be totally forgotten?

Problem: Binary View of an Edge's Role

- Included edges all have same importance regardless of how outdated they are
 - Impossible to satisfy both recency and continuity

The Probabilistic Edge Decay Model

Breaking the Binary View

of an Edge's Role

Key Idea: Temporally Biased Sampling

- Sample data items according to a probability that decreases over time • Sample contains a relatively high proportion of recent interactions
- Probabilistic View of an Edge's Role <
- All edges have chance to be considered (continuity) Outdated edges are less likely to be used (recency)
- Can systematically trade off recency and continuity

Can use existing static-graph algorithms

TIDE: A distributed system for dynamic graph analysis

Final result | Monte Carlo variability

Maintaining Sample Graphs

Idea #1: Exploit overlaps at successive time points

Idea #2: Exploit overlap between sample graphs at each time point [from O(MN) to $O(M \log N)$ space bound]

Eager and Lazy Incremental Updating

E.g., relationship

between a and b

is forgotten

Eager updating for an edge

Lazy updating for an edge

Efficient Analysis of Sample Graphs

Bulk Graph Execution Model

Think-as-a-vertex Model (Pregel, GraphLab. Trinity, GRACE, ...)

Bulk execution: Compute results for multiple sample graphs simultaneously

(bulk processing) (individual processing) its via amortized extraction costs, memory locality, compression

Incremental Graph Analysis

High edge overlap (p) of a sample graph at t and t + 1

Similar vertex and edge states during computation

Use final states at t as the starting states for computation at t+1

Example: Katz centrality for a random sample graph (t = 40) Computing from scratch: 28 iterations until convergence

Initializing with final values from t = 39: 4 iterations

Caveat: Not applicable to all algorithms

Same issue as in other dynamic graph processing systems

Implementation on Spark

Time (sec) 120.62

Experiments

Setup

17 IBM System x iDataPlex DX 340 Servers

Twitter mention interactions: 10% of Sep 2011 to Feb 2012

Used 1-day, 2-day and 3-day batches to keep data large 13.9 million interactions per day on average

Incremental Updating Methods

Average per-batch time for incremental updating (After aggregate-graph stabilization at 30th batch)

Bulk Graph Execution

Average running time per iteration for Katz centrality

Conclusions

Novel probabilistic decay model (PED) Extends temporally biased sampling to graphs

- Generalizes existing snapshot and sliding-window model
- Allows controlled trade off between recency and continuity
- Allows direct application of static algorithms to dynamic setting

Benefit of PED Approach (Empirical Twitter Data)

Methods to efficiently maintain and compute the results

Exploit overlaps between sample graphs at each time t

• Exploit overlaps of a given sample graph at different time points

TIDE

- An end-to-end distributed system for analyzing dynamic graphs
- Prototype implementation on Spark

Future work

- General decay functions (some results already extend)
- Extend techniques for analyzing sample graphs