Лаб 9

Упражнение 1

- 1) Постройте в одной системе координат график функции f(x) (см. п. а) и б)) и график многочленов Тейлора $R_n(x)$ этой функции в точке $x_0 = 0$ для n = 1, 2, 3, 4, 5.
- 2) Рассчитайте разности между численными значениями функции f(x) и значениями многочленов $R_n(x)$ при $x=\frac{\pi}{12},\frac{\pi}{8},\frac{\pi}{6},\frac{\pi}{4},\frac{\pi}{3},\frac{\pi}{2}$. Результат представьте в виде таблицы, в первой строке которой разместите указанные значения x, во второй соответствующие им значения f(x), в остальных строках модули разностей значений функции f(x) и многочленов $R_n(x)$ при указанных значениях x).

a)
$$f(x) = \sin x$$

б)
$$f(x) = \cos x$$

Решение:

A)

```
clear: clc: cla: close all:
  x0 = 0; x = -pi:pi/20:pi; syms z;
  ya = 0(x) sin(x);
  \texttt{yap} = \texttt{@(n, x, x0)} \\ \texttt{subs(diff(sin(z), n), z, x).*(x-x0).^n./factorial(n);}
 hold on; grid on;
 plot(x, ya(x));
plot(x, ya(x0)+yap(1, x, 0));
  plot(x, ya(x0)+yap(1, x, 0)+yap(2, x, 0));
  plot(x, ya(x0)+yap(1, x, 0)+yap(2, x, 0)+yap(3, x, 0));
  \verb"plot(x, ya(x0)+yap(1, x, 0)+yap(2, x, 0)+yap(3, x, 0)+yap(4, x, 0))";
  plot(x, ya(x0)+yap(1, x, 0)+yap(2, x, 0)+yap(3, x, 0)+yap(4, x, 0)+yap(5, x, 0)); xlabel('x'); ylabel('y'); title('График <math>sin(x) и многочленов Тайлера'); legend('y(x)', 'n = 1', 'n = 2', 'n = 3', 'n = 4', 'n = 5');
  Ra = [pi/12 pi/8 pi/6 pi/ 4 pi/3 pi/2];
for a = 1:6
      Ra(2, a) = ya(Ra(1, a));
      Ra(3, a) = abs(Ra(2, a) - (ya(x0) + yap(1, Ra(1, a), 0)));
      Ra(4, a) = abs(Ra(2, a) - (ya(x0) + yap(1, Ra(1, a), 0) + yap(2, Ra(1, a), 0)));
      Ra(5, a) = abs(Ra(2, a) - (ya(x0) + yap(1, Ra(1, a), 0) + yap(2, Ra(1, a), 0) + yap(3, Ra(1, a), 0)));
      Ra(6, a) = abs(Ra(2, a) - (ya(x0) + yap(1, Ra(1, a), 0) + yap(2, Ra(1, a), 0) + yap(3, Ra(1, a), 0) + yap(4, Ra(1, a), 0)));
      Ra(7, a) = abs(Ra(2, a)-(ya(x0)+yap(1, Ra(1, a), 0)+yap(2, Ra(1, a), 0)+yap(3, Ra(1, a), 0)+yap(4, Ra(1, a), 0)+yap(5, Ra(1, a), 0)));
```

Результат А

0.2618	0.3927	0.5236	0.7854	1.0472	1.5708
0.2588	0.3827	0.5000	0.7071	0.8660	1.0000
0.0059	0.0199	0.0466	0.1517	0.3424	1.0000
0.0148	0.0494	0.1151	0.3698	0.8173	2.2337
0.0177	0.0587	0.1358	0.4269	0.9130	2.2337
0.0176	0.0583	0.1342	0.4157	0.8696	1.9800
0.0176	0.0583	0.1340	0.4140	0.8643	1.9800

Решение Б

```
%E
yb = @(x) cos(x);
% възчисляем значение пного члена в многочлене Тейлора
ybp = @(n, x, x0) subs(diff(cos(z), n), z, x).*(x-x0).^n./factorial(n);

figure(); hold on; grid on;
plot(x, yb(x0);
plot(x, yb(x0)+ybp(1, x, 0)+ybp(2, x, 0));
plot(x, yb(x0)+ybp(1, x, 0)+ybp(2, x, 0)+ybp(3, x, 0));
plot(x, yb(x0)+ybp(1, x, 0)+ybp(2, x, 0)+ybp(3, x, 0)+ybp(4, x, 0));
plot(x, yb(x0)+ybp(1, x, 0)+ybp(2, x, 0)+ybp(3, x, 0)+ybp(4, x, 0)+ybp(5, x, 0));
xlabel('x'); ylabel('y'); title('Tpaфик cos(x) и многочленов Тайлера'); legend('y(x)', 'n = 1', 'n = 2', 'n = 3', 'n = 4', 'n = 5');

%ED
Rb = [pi/12 pi/8 pi/6 pi/ 4 pi/3 pi/2];
□ for a = 1:6
Rb(2, a) = ya(Rb(1, a));
Rb(3, a) = abs(Rb(2, a)-(ya(x0)+yap(1, Rb(1, a), 0)));
Rb(4, a) = abs(Rb(2, a)-(ya(x0)+yap(1, Rb(1, a), 0)+yap(2, Rb(1, a), 0)));
Rb(5, a) = abs(Rb(2, a)-(ya(x0)+yap(1, Rb(1, a), 0)+yap(2, Rb(1, a), 0)+yap(3, Rb(1, a), 0)));
Rb(5, a) = abs(Rb(2, a)-(ya(x0)+yap(1, Rb(1, a), 0)+yap(2, Rb(1, a), 0)+yap(3, Rb(1, a), 0)+yap(4, Rb(1, a), 0)));
Rb(7, a) = abs(Rb(2, a)-(ya(x0)+yap(1, Rb(1, a), 0)+yap(2, Rb(1, a), 0)+yap(3, Rb(1, a), 0)+yap(4, Rb(1, a), 0)+yap(5, Rb(1, a), 0)));
end
```

Результат Б:

0.2618	0.3927	0.5236	0.7854	1.0472	1.5708
0.2588	0.3827	0.5000	0.7071	0.8660	1.0000
0.0059	0.0199	0.0466	0.1517	0.3424	1.0000
0.0148	0.0494	0.1151	0.3698	0.8173	2.2337
0.0177	0.0587	0.1358	0.4269	0.9130	2.2337
0.0176	0.0583	0.1342	0.4157	0.8696	1.9800
0.0176	0.0583	0.1340	0.4140	0.8643	1.9800

Вывод: для построения графиков многочленов Тайлера написал функцию определения n — ного члена последовательности. Для этого использовал функцию поиска производной н порядка diff и функцию подстановки значений в уравнение subs. Прописал plot с нужным количеством элементов последовательности в каждом. Значения последовательности тем точнее, чем ближе они к x0, что видно из графиков и матриц полученных результатов разности.

Упражнение 2

Постройте в одной системе координат график функции f(x) и график многочленов Тейлора $R_n(x)$ этой функции в точке x_0 для n=1,2,3,4 .

Решение А

```
clear; clc; cla; close all;
%A
x0 = 1; x = 0.01:0.01:10; syms z;
y = z^(1/2);
ya = @(x) sqrt(x);
%вычисляем значение пного члена в многочлене Тейлора
yap = @(n, x, x0) subs(diff(sqrt(z), n), z, x).*(x-x0).^n./factorial(n);
hold on; grid on; ylim([-5, 3]);
plot(x, ya(x));
plot(x, ya(x0)+yap(1, x, x0));
plot(x, ya(x0)+yap(1, x, x0)+yap(2, x, x0));
plot(x, ya(x0)+yap(1, x, x0)+yap(2, x, x0)+yap(3, x, x0));
plot(x, ya(x0)+yap(1, x, x0)+yap(2, x, x0)+yap(3, x, x0)+yap(4, x, x0));
xlabel('x'); ylabel('f(x)'); title('f = x^(1/2), x0 = 1');
legend('f(x)', 'n = 1', 'n = 2', 'n = 3', 'n = 4');
```

Результат А

Решение Б

```
figure(); hold on; grid on; ylim([-60, 60]);
x0 = 2;
yb = @(x)(2*x-1)./(x-1);
x1 = 0:0.01:0.99; xr = 1.01:0.01:3;
%вычисляем значение пного члена в многочлене Тейлора
ybp = @(n, x, x0) subs(diff((2.*z-1)./(z-1), n), z, x).*(x-x0).^n./factorial(n);
plot(x1, yb(x1), 'b');
plot(x1, yb(x0)+ybp(1, x1, 0), 'r');
plot(x1, yb(x0)+ybp(1, x1, 0)+ybp(2, x1, 0), 'g');
plot(x1, yb(x0)+ybp(1, x1, 0)+ybp(2, x1, 0)+ybp(3, x1, 0), 'k');
plot(x1, yb(x0)+ybp(1, x1, 0)+ybp(2, x1, 0)+ybp(3, x1, 0)+ybp(4, x1, 0), 'm');
plot(xr, yb(xr), 'b');
plot(xr, yb(x0)+ybp(1, xr, 0), 'r');
plot(xr, yb(x0)+ybp(1, xr, 0)+ybp(2, xr, 0), 'g');
plot(xr, yb(x0)+ybp(1, xr, 0)+ybp(2, xr, 0)+ybp(3, xr, 0), 'k');
\verb|plot(xr, yb(x0)+ybp(1, xr, 0)+ybp(2, xr, 0)+ybp(3, xr, 0)+ybp(4, xr, 0), 'm');|
xlabel('x'); ylabel('f(x)'); title('f = (2*x-1)/(x-1), x0 = 2');
legend('f(x)', 'n = 1', 'n = 2', 'n = 3', 'n = 4');
```

Результат Б

Вывод: задание аналогично предыдущему, исключая массивы разности значений. Т. к. до этого писал в общем виде, изменений было внесено не много. Однако в функции б был разрыв второго рода и пришлось делать отдельно построение для правой и левой части от x = 1 с близкими к нему значениями.