Chapter 10

Strongly Connected Components and Topological Sort.

10.1 Topological Sort

Definition 10.1.1. (connectivity)

- 1. Let G = (V, E) be a non-directed graph. A **connected component** of G is a subset $U \subseteq V$ of maximal size in which there exists a path between every two vertices.
- 2. A non-directed graph G is said to be a **connected** graph if it only has one connected component.
- 3. Let G=(V,E) be a directed graph. A **strongly connected component** of G is a subset $U\subseteq V$ of maximal size in which for any pair of vertices $u,v\in U$ there exist both directed path from u to v and a directed path form v to u.

10.1.1 Depth First Search (DFS)

As its name implies, depth-first search searches "deeper" in the graph whenever possible. Depth-first search explores edges out of the most recently discovered vertex v that still has unexplored edges leaving it. Once all of v's edges have been explored, the search "backtracks" to explore edges leaving the vertex from which v was discovered. This process continues until all vertices that are reachable from the original source vertex have been discovered. If any undiscovered vertices remain, then depth-first search selects one of them as a new source, repeating the search from that source. The algorithm repeats this entire process until it has discovered every vertex.

Properties of depth-first search. Depth-first search yields valuable information about the structure of a graph. Perhaps the most basic property of depth-first search is that the predecessor subgraph G_{π} does indeed form a forest of trees since

```
vi.visited \leftarrow False
3 end
4 time \leftarrow 1
5 for v \in V do
       if not v.visited then
            \pi\left(v\right)\leftarrow \text{null}
            Explore(G, v)
        end
10 end
                                Algorithm 1: DFS(G):
 1 Previsit(v) for (v, u) \in E do
        if not u.visited then
            \pi\left(u\right)\leftarrow v
            Explore(G, u)
        end
6 end
7 Postvisit(v)
                             Algorithm 2: Explore(G, v):
 1 pre(v) \leftarrow time
\mathbf{2} \; \; time \leftarrow time \; {+} 1
                               Algorithm 3: Previsit(v):
1 post(v) \leftarrow time
2 \text{ time} \leftarrow \text{time} + 1
                              Algorithm 4: Postvisit(v):
```

1 for $v \in V$ do

the structure of the depth-first trees exactly mirrors the structure of recursive calls of explore-function. That is, $u=\pi(v)$ if and only if $\exp(G,v)$ was called during a search of u's adjacency list. Additionally, vertex v is a descendant of vertex u in the depth-first forest if and only if v is discovered during the time in which u is gray. Another important property of depth-first search is that discovery and finish times have a parenthesis structure. If the explore procedure were to print a left parenthesis "(u" when it discovers vertex u and to print a right parenthesis r"u)" when it finishes u, then the printed expression would be well-formed in the sense that the parentheses are properly nested.

The following theorem provides another way to characterize the parenthesis structure.

Parenthesis theorem In any depth-first search of a (directed or undirected) graph G=(V,E), for any two vertices u and v, exactly one of the following three conditions holds:

- 1. the intervals [pre(u), post(u)] and [pre(v), post(v)] are entirely disjoint, and neither u nor v is a descendant of the other in the depth-first forest.
- 2. the interval [pre(u), post(u)] is contained entirely within the interval [pre(v), post(v)], and u is a descendant of v in a depth-first tree, or
- 3. the interval [pre(v), post(v)] is contained entirely within the interval [pre(u), post(u)], and v is a descendant of u in a depth-first tree.

Proof. We begin with the case in which $\operatorname{pre}(u) < \operatorname{pre}(v)$. We consider two subcases, according to whether $\operatorname{pre}(v) < \operatorname{post}(u)$. The first subcase occurs when $\operatorname{pre}(v) < \operatorname{post}(u)$, so that v was discovered while u was still gray, which implies that v is a descendant of u. Moreover, since v was discovered after u, all of its outgoing edges are explored, and v is finished before the search returns to and finishes u. In this case, therefore, the interval $[\operatorname{pre}(v), \operatorname{post}(v)]$ is entirely contained within the interval $[\operatorname{pre}(u), \operatorname{post}(u)]$. In the other subcase, $\operatorname{post}(u) < \operatorname{pre}(v)$, and by defintion, $\operatorname{pre}(u) < \operatorname{post}(u) < \operatorname{pre}(v) < \operatorname{post}(v)$, and thus the intervals $[\operatorname{pre}(u), \operatorname{post}(u)]$ and $[\operatorname{pre}(v), \operatorname{post}(v)]$ are disjoint. Because the intervals are disjoint, neither vertex was discovered while the other was gray, and so neither vertex is a descendant of the other.

Corollary. Nesting of descendants' intervals. Vertex v is a proper descendant of vertex u in the depth-first forest for a (directed or undirected) graph G if and only if pre(u) < pre(v) < post(v) < post(u).