

SQL-Rank: A Listwise Approach to Collaborative Ranking

LIWEI WU, CHO-JUI HSIEH, AND JAMES SHARPNACK { LIWU, CHOHSIEH AND JSHARPNA}@UCDAVIS.EDU

PROBLEM

- Collaborative Ranking
- Recommender system problem
- Focus on ranking of items rather than ratings in the model
- Performance measured by ranking order of top k items for each user
- State-of-arts are using pairwise loss (such as BPR, and Primal-CR++).
- But pairwise loss is not the only ranking loss.
- We will show a new listwise loss works better than pairwise loss in collaborative ranking with implicit feedback.

STOCHASTIC QUEUING (SQ)

We denote the set of valid permutations as $S(R, \Omega)$, where Ω is the set of all pairs (i, j) such that $R_{i,j}$ is observed.

Figure 1. Demonstration of Stochastic Queuing Process—the rating matrix R (left) generates multiple possible rankings Π 's (right), $\Pi \in \mathcal{S}(R,\Omega)$ by breaking ties randomly.

THEORY

The problem of the constrained form

$$\hat{X} := \arg\min - \log P_X(\Pi) \text{ such that } X \in \mathcal{X}.$$
 (1

The personalized setting:

$$X_{ij} = u_i^{\top} v_j, u_i, v_j \in \mathbb{R}^r, ||U||_F \le c_u, ||V||_F \le c_v.$$
(2)

Corollary 1. Consider the minimizer, \hat{X} , to the constrained optimization, (1). Suppose that there exists a $X^* \in \mathcal{X}$ such that $\Pi_i \sim P_{X_i^*}$ independently for all $i = 1, \ldots, n$. If $\log \phi$ is 1-Lipschitz, then in the personalized ranking setting, (2), the KL-divergence between the estimate and the truth is bounded:

$$D(X^{\star}, \hat{X}) = O_{\mathbb{P}}\left(\sqrt{\frac{rm}{n}} \ln m\right).$$

CONCLUSION

- We propose a new collaborative filtering algorithm using listwise loss.
- Our algorithm is faster and more accurate than the state-of-the-art methods on implicit feedback data.
- We provide a theoretical framework for analyzing listwise methods.

SOURCE CODE

• Julia codes: https://github.com/wuliwei9278/SQL-Rank

Model

• Permutation probability for a single user's top *k* ranked items:

$$P_s^{(k,\bar{m})}(\pi) = \prod_{j=1}^{\min\{k,\bar{m}\}} \frac{\phi(s_{\pi_j})}{\sum_{l=j}^{\bar{m}} \phi(s_{\pi_l})}.$$

, where π is a particular permutation (or ordering) of the m items, s are underlying true scores for all items, and ϕ is some increasing function.

- Can easily be extended to multiple users even with a lot of ties (e.g. 0/1 implicit feedback data).
- Minimize the negative log-likelihood:

$$\min_{X \in \mathcal{X}} -\log \sum_{\Pi \in \mathcal{S}(R,\Omega)} P_X^{(k,\bar{m})}(\Pi)$$

• The non-convex version can easily be optimized using SGD:

$$\sum_{\Pi \in \mathcal{S}(R,\Omega)} - \sum_{i=1}^{n} \sum_{j=1}^{\bar{m}} \log \frac{\phi(u_i^T v_{\Pi_{ij}})}{\sum_{l=j}^{\bar{m}} \phi(u_i^T v_{\Pi_{il}})} + \frac{\lambda}{2} (\|U\|_F^2 + \|V\|_F^2),$$

$$f(U,V)$$

 $g = \log \phi$ is the sigmoid function.

• For implicit feedback data, we sample $\rho \tilde{m}$ unobserved entries uniformly and append to the back of the list $\to \bar{m} = (1 + \rho)\tilde{m}$ (For each user (row of R), assume there are \tilde{m} 1's).

RESULTS

- Baseline Methods
 - Explicit methods:
 - * LIST-MF (Shi et al., 2010): another listwise method which utilizes the cross entropy loss
 - * Primal-CR++ (Wu et al., 2017): our newly proposed pairwise method
 - * MF (Koren, 2008): classical matrix factorization method
 - Implicit methods:
 - * Weighted-MF (Hu et al., 2008): the weighted matrix factorization algorithm by putting different weights on 0 and 1's
 - * BPR (Rendle et al., 2009): the Bayesian personalized ranking method motivated by MLE
- Experimental results

DATASET	M ETHOD	NDCG@10	P@1	P@5	P@10
	SQL-RANK	0.75076	0.50736	0.43692	0.40248
MOVIELENS1M	LIST-MF	0.73307	0.45226	0.40482	0.38958
	PRIMAL-CR++	0.76826	0.49365	0.43098	0.39779
	MF	0.74661	0.00050	0.00096	0.00134
	SQL-RANK	0.66150	0.14983	0.12144	0.10192
YAHOO MUSIC	LIST-MF	0.67490	0.12646	0.11301	0.09865
	PRIMAL-CR++	0.66420	0.14291	0.10787	0.09104
	MF	0.69916	0.04944	0.03105	0.04787

DATASET	METHOD	P@1	P@5	P@10
Movielens1m	SQL-RANK WEIGHTED-MF BPR	0.73685 0.54686 0.69951	0.67167 0.49423 0.65608	0.61833 0.46123 0.62494
Amazon	SQL-RANK WEIGHTED-MF BPR	0.04255 0.03647 0.04863	0.02978 0.02492 0.01762	0.02158 0.01914 0.01306
YAHOO MUSIC	SQL-RANK WEIGHTED-MF BPR	0.45512 0.39075 0.37624	0.36137 0.31024 0.32184	0.30689 0.27008 0.28105
Foursquare	SQL-RANK WEIGHTED-MF BPR	0.05825 0.02184 0.03398	0.01941 0.01553 0.01796	0.01699 0.01407 0.01359

METHOD	P@1	P@5	P@10
WITH SQ	0.73685	0.67167	0.61833
WITHOUT SQ	0.62763	0.58420	0.55036

Explicit Feedback Methods

Implicit Feedback Methods

Effectiveness of SQ

- We find that our method achieves better precision results on most explicit or implicit datasets.
- We find that stochastic queuing (SQ) greatly improves recommendation results.