

Master of Data Science Faculty of Computer Science & Information Technology

WQD7005 Data Mining Alternative Assessment 1

Name: Yong Shen Woo

ID:s2175268

GROUP: 1

Lecturer: Dr. Teh Ying Wah

Case Study: E-commerce customer behaviour analysis

E-commerce customer behaviour case study helps in building the understanding of customers, such as their preferences, spending patterns, favourite products, and churn rate. The analysis can generate insights and helps e-commerce businesses to tailor their strategies to fulfil their customer needs, leading to increased satisfaction, loyalty while increasing return rate and reducing churn rate.

GitHub Link: https://github.com/yswooum/WQD7005-AA1-s2175268

Objectives:

- 1. To understand key demographic segments in e-commerce
- 2. To identify key features that lead to customer churn
- 3. To predict churn using machine learning model

Role of Talend Data Integration

Talend Data Integration is a powerful data integration tool that allows users to connect, transform and manage data from various sources. In this case study, Talend Data Integration was used to integrate the two datasets 'customer info' and 'customer purchase info' by the common column which is customer ID.

Role of Talend Data Preparation

Talend Data Preparation is a user-friendly data preparation tools that is specifically designed for data processing, such as data cleaning, transformation and normalization of the data. In this case study, Talend Data Preparation was used to handle the inconsistencies in the dataset. Specifically, the location, which has UK and United Kingdom, US and United States which referred to the same country. Talend Data Preparation was used to convert UK to United Kingdom and US to United States.

Role of SAS Enterprise Miner

SAS Enterprise Miner offers a wide range of advanced analytics and machine learning techniques that can be used to model and predict the trends and hidden relationships which can provide insights into ecommerce business. SEMMA

(Sample, explore, modify, model and access) methodology was applied in this case study. Random sampling was applied to the dataset to obtain a sample that is 10% of the original dataset. Then, data analysis and exploration were performed to inspect the distribution, presence of outliers or missing values in the dataset. In the modify step, missing column (return rate) which was a binary column was imputed with mode. The model that was used to predict churn in this case study was decision trees, random forest and gradient boosting. Lastly, the performance of the 3 models were compared and analysed.

Description of the dataset

The original dataset: E-commerce Customer Behaviour Dataset was obtained from Kaggle: https://www.kaggle.com/datasets/uom190346a/e-commerce-customer-behavior-dataset/data. 2 synthetic dataset was generated based on the original dataset, with the generation and addition of columns such as the membership level and location to ensure the dataset is similar to the required dataset structure.

Dataset 1 (customer info.csv)

Attributes	Description
Customer ID	ID of the customer
Customer Age	Age of the customer
Returns	Return rate, binary (1:yes, 0:no)
Customer Name	Name of the customer
Gender	Gender of the customer, (Male, Female)
Churn	Churn rate, binary (1:yes, 0:no)
Membership Level	Membership (bronze, silver, gold, platinum)
Location	Location of the customer when purchase was made

Dataset 2 (customer purchase info.csv)

Attributes	Description
Customer ID	ID of the customer
Purchase Date	Date of the purchase made ('yyyy-mm-dd')
Product Category	Category of the products purchased (home, clothing, electronics, books)
Product Price	Price of the product purchased
Total Purchased	Total amount of product purchased
Total Spent	Total amount spent
Payment Method	Method of the payment (credit card, PayPal, cash, crypto)

Methodology

1. Talend Data Integration

The two datasets had a common key, which is the ID. So, the datasets were integrated by using Talend Data Integration.

Fig 1. Integrating two datasets with Talend Data Integration. tFileInputDelimited: to import dataset into Talend Data Integration, the schema was set so that it was tally with the column

name. tMap: to integrate the datasets by the key, which is the customer ID. tFileOutputDelimited: to export the csv file ('customer_data.csv'),

Fig. 2 Interface of tMap, the datasets were integrated by the key (customer ID).

A		В	C	D	E	F	G	H		J	K	L	M	N	0	P
stomer ID		Customer Age	Returns	Customer Name	Gender	Churn	Membership Level	Location	urchase Dat	Product Category	Product Price	Total Purchased	Total Spent	ment Metho	d	
!	46251	37	0	Christine Hernand	Male	(Silver	US	2020-09-08	Electronics	12	3	740	Credit Card		
3	46251	37	0	Christine Hernand	Male	(Silver	US	2022-03-05	Home	468	4	2739	PayPal		
1	46251	37	0	Christine Hernand	Male	(Silver	US	2022-05-23	Home	288	2	3196	PayPal		
5	46251	37	0	Christine Hernand	Male	(Silver	US	2020-11-12	Clothing	196	1	3509	PayPal		
6	13593	49	0	James Grant	Female	1	Bronze	UK	2020-11-27	Home	449	1	3452	Credit Card		
7	13593	49	1	James Grant	Female	1	Bronze	UK	2023-03-07	Home	250	4	575	PayPal		
В	13593	49	0	James Grant	Female	1	Bronze	UK	2023-04-15	Electronics	73	1	1896	Credit Card		
9	13593	49	0	James Grant	Female	1	Bronze	UK	2021-03-27	Books	337	2	2937	Cash		
0	13593	49	1	James Grant	Female	1	Bronze	UK	2020-05-05	Clothing	182	2	3363	PayPal		
1	28805	19	0	Jose Collier	Male	(Gold	Canada	2023-09-13	Electronics	394	2	1993	Credit Card		
2	28805	19	0	Jose Collier	Male	(Gold	Canada	2021-03-31	Clothing	366	1	246	PayPal		
13	28805	19	1	Jose Collier	Male	(Gold	Canada	2021-01-18	Books	348	1	2682	Credit Card		
4	28805	19	0	Jose Collier	Male	(Gold	Canada	2020-01-07	Books	103	4	731	Cash		
15	28805	19	0	Jose Collier	Male	(Gold	Canada	2021-02-12	Books	240	1	2563	PayPal		
6	28805	19		Jose Collier	Male	(Gold	Canada	2020-07-02	Clothing	368	1	1342	Credit Card		
7	28961	55		James Stein	Male	(Silver	France	2021-04-25	Books	30	1	4135	PayPal		
8	28961	55	0	James Stein	Male	(Silver	France	2020-01-13	Books	153	5	698	Credit Card		
9	28961	55	0	James Stein	Male	(Silver	France	2023-06-18	Clothing	259	1	2975	Credit Card		
20	28961	55	1	James Stein	Male	(Silver	France	2021-09-10	Books	489	3	2213	Credit Card		
1	28961	55	1	James Stein	Male	(Silver	France	2023-06-01	Books	232	3	4452	PayPal		
2	12163	67		Sonia Moreno	Male	(Gold	Sweden	2021-12-18	Clothing	255	2	1642	Credit Card		
3	12163	67		Sonia Moreno	Male	(Gold	Sweden	2020-06-20	Books	227	3	887	PayPal		
4	12163	67	0	Sonia Moreno	Male	(Gold	Sweden	2023-07-08	Clothing	288	2	1405	PayPal		
5	12163	67		Sonia Moreno	Male	(Gold	Sweden	2023-07-01	Books	60	3	4130	Cash		
26	12163	67		Sonia Moreno	Male	(Gold	Sweden	2022-11-16	Home	285	4	384	Crypto		
7	12163	67	0	Sonia Moreno	Male	(Gold	Sweden	2020-04-07	Books	100	5	1273	Cash		
	42462	67					6.11		2020 44 20	et a s	20		405	c rec I		

Fig. 3 The output of the integrated datasets (customer data.csv)

2. Talend Data Preparation

Fig. 4 Interface of Talend DataPrep. Upon inspection, there was inconsistency in the location column.

Fig. 5 The country name in the Location column. There was UK and United Kingdom as well as US and United States which were representing the same country, but in short form.

Fig. 6 Replacing UK with United Kingdom and US with United States.

3. SAS ENTREPRISE MINER

The summary of SEMMA methodology applied in the case study:

Sample: 10% of the dataset was randomly sampled.

Explore: Explored and analysed the dataset, identify outliers and missing values. No outliers were identified in the dataset, but there is a column (Return) that had missing values.

Modify: The column with the missing values (Return) was imputed with mode. No transformation and normalization were done to the dataset. Then, the dataset was split into 60 % training, 20 % validation and 20% testing sets for modelling.

Model: Three models were used to predict the churn, namely decision tree, random forest and gradient boosting.

Access: The performance of the model was compared.

Fig 7. Summary of the workflow using SAS Enterprise Miner.

Fig. 8 Dropping ID and Name as they are irrelevant to the analysis and prediction.

SEMMA: Sample

Fig. 9 Sampling step. 10% of the data was randomly sampled from the dataset.

Fig. 10 Assigning the role and data type of the columns. The target is churn, which is a binary column.

SEMMA: Explore

Explore

Data			Number of			Mode		Mode2
Role	Variable Name	Role	Levels	Missing	Mode	Percentage	Mode2	Percentage
TRAIN	Gender	INPUT	2	0	Female	50.25	Male	49.75
TRAIN	Location	INPUT	7	0	United States	22.93	United Kingdom	22.06
TRAIN	Membership_Level	INPUT	4	0	Silver	25.16	Gold	25.08
TRAIN	Payment Method	INPUT	4	0	Credit Card	39.55	PayPal	30.48
TRAIN	Product_Category	INPUT	4	0	Books	29.84	Clothing	29.49
TRAIN	Returns	INPUT	3	4811	0	40.51	1	40.25
TRAIN	Churn	TARGET	2	0	0	79.98	1	20.02

Variable	Role	Mean	Standard Deviation	Non Missing	Missing	Minimum	Median	Maximum	Skewness
Customer_Age	INPUT	44.052	15.28281	25000	0	18	44	70	-0.00286
Product_Price	INPUT	254.328	141.8547	25000	0	10	255	500	0.006561
Total_Purchased	INPUT	2.99232	1.415522	25000	0	1	3	5	0.007308
Total_Spent	INPUT	2730.574	1445.849	25000	0	101	2721	5338	0.004814

Fig. 11 Checking for missing values, there was 4811 missing values for column Returns, so imputation was done.

SEMMA: Modify

Fig. 12 Imputation and summary of the missing values (Returns) with mode.

Data Role	Variable	Name	Role		Missing	Mode		Mode Percentage	Mode2	Pe	Mode2 ercentage
TRAIN	Gender		INPUT	2	0	Femal	.e	50.25	Male		49.75
TRAIN	IMP_Retur	ns	INPUT	2	0	0		59.75	1		40.25
TRAIN	Location		INPUT	7	0		d States	22.93	United Kir	ngdom	22.06
TRAIN	Membershi		INPUT	4	0	Silve		25.16	Gold		25.08
TRAIN	Payment_N		INPUT	4	0		t Card	39.55	PayPal		30.48
TRAIN	Product_0	ategory	INPUT	4	0	Books	;	29.84	Clothing		29.49
TRAIN	Churn		TARGET	2	0	0		79.98	1		20.02
Varia	able	Role	Mean	Standard Deviatio		Non sing	Missing	Minimum	Median	Maximum	Skewness
Customer	r_Age	INPUT	44.052	15.28281	2	5000	0	18	44	70	-0.00286
Product	Price	INPUT	254.328	141.8547	2	5000	0	10	255	500	0.006561
Purchase	e_Date	INPUT	44505.79	391.8271	2	5000	0	43831	44500	45184	0.008158
Total_Pu	urchased	INPUT	2.99232	1.415522	2.	5000	0	1	3	5	0.007308
Total Sp	nent	INPUT	2730.574	1445.849	2	5000	0	101	2721	5338	0.004814

Fig. 13 Inspection of the missing values after imputation. There were no missing values after the imputation.

SEMMA: Model

Fig.14 Assigning the partition roles before splitting the data.

Fig.15 Split the data into 60% training, 20% validation and 20% testing.

Partition Summary

		Number of	
Туре	Data Set	Observations	
DATA	EMWS1.Stat2_TRAIN	25000	
TRAIN	EMWS1.Part_TRAIN	14999	
VALIDATE	EMWS1.Part_VALIDATE	4999	
TEST	EMWS1.Part_TEST	5002	
*			*
* Score Ou	tput		
*			*
*			*
* Report 0	utput		
*			*

Summary Statistics for Class Targets

Data=DATA

Variable	Numeric Value	Formatted Value	Frequency Count	Percent	Label
Churn	0	0	19994	79.976	Churn
Churn	1	1	5006	20.024	Churn
Data=TEST					
			_		
	Numeric	Formatted	Frequency		
Variable	Value	Value	Count	Percent	Label
Churn	0	0	4000	79.9680	Churn
Churn	1	1	1002	20.0320	Churn
Data=TRAIN					
	Numeric	Formatted	Frequency		
Variable	Value	Value	Count	Percent	Label
Churn	0	0	11996	79.9787	Churn
Churn	1	1	3003	20.0213	Churn

Fig. 16 Data partition report

Fig. 17 Assigning roles for decision trees.

Fig. 18 Assigning roles for random forest.

Fig. 19 Assigning roles for gradient boosting.

SEMMA: Assess

Fig.20 Receiver operating curve (ROC) for decision trees, random forest and gradient boosting for training, validation and testing sets. The ROC curve is very similar for 3 models across training, validation and testing sets which suggests that the models are not overfitting.

Selected Model	Model Node	Model Description	Valid: Misclassification Rate	Train: Average Squared Error	Train: Misclassification Rate	Valid: Average Squared Error
Y	Tree	Decision Tree	0.20024	0.16013	0.20021	0.16014
	Boost HPD MF orest	Gradient Boosting HP Forest	0.20024 0.20024	0.16010 0.16000	0.20021 0.20021	0.16018 0.16022

Fig. 21 Misclassification rate and average squared error for decision tree, random forest and gradient boosting. The misclassification rate and average squared error across 3 models are very similar, with decision trees has slightly lower average squared error in validation set.

Important features in model prediction

Feature importance can be generated from random forest to study the most important features in the prediction.

Variable Name	Number of Splitting Rules	
Gender		20
Membership Level		5
Total Purchased		4
IMP Returns		2
Location		2
Customer Age		1
Total Spent		1
Payment Method		0
Product Category		0
Product Price		0

Fig. 22 The feature importance generated from random forest in SAS E-Miner. Gender was the most important features, followed by membership level and total amount of product purchased.

Reflection

In this case study, decision tree slightly outperformed random forest and gradient boosting. Usually, the bagging (random forest) and boosting (gradient boosting) method are expected to have better performance than decision trees. This is because random forest and gradient boosting are ensemble models based on decision trees, which allow for more accurate and robust prediction. However, in a simple and straightforward dataset, decision trees can achieve better performance than random forest and gradient boosting, because random forest and gradient boosting require careful and precise hyperparameter tuning, which was not done in this case study. This is the limitation of this study, due to time constraints, the proper tuning of the models was not performed. From the feature importance in random forest, gender, membership level and total amount of product purchased were the top 3 most important features in predicting customer churn. Since gender was the most important features in predicting churn, gender-specific retention actions should be taken by the business. Tailored marketing and retention strategies for different genders can be effective in reducing customer churn.