Aprendizagem por Reforço

Motivação

- Como um agente aprende a escolher ações apenas interagindo com o ambiente?
 - Muitas vezes, é impraticável o uso de aprendizagem supervisionada
 - Como obter exemplos do comportamento correto e representativo para qualquer situação?
 - E se o agente for atuar em um ambiente desconhecido?
 - Exemplos:
 - Criança adquirindo coordenação motora
 - Robô interagindo com um ambiente para atingir objetivo(s)

Exemplo de aprendizado por reforço

A primeira ação leva para S2 ...

Próximo estado é escolhido aleatóriamente de um dos possíveis estados, ponderado pela força da associação

Associação = largura da linha

Quando a meta é atingida, reforce a conexão entre ele e o estado que levou a ele

Na próxima vez que S5 for alcançado, parte da força de associação será passada para S4...

S5 tem grande chance de atingir a meta pela rota com mais força

Em aprendizado por reforço, a "força" é passada de volta para o estado anterior

Esse processo leva a criar um caminho entre o início e a meta

O que é aprendizagem por reforço (tradicional)?

- Problema de aprendizagem (não é uma técnica)
 - Um agente, em um ambiente
 - A cada instante de tempo t:
 - o agente está em um estado s
 - executa uma ação a
 - vai para um estado s'
 - recebe uma recompensa r
 - Problema da aprendizagem por reforço:
 - Como escolher uma política de ações que maximize o total de recompensas recebidas pelo agente

O problema da aprendizagem por reforço

Agente autômato otimizador adaptativo

Estado Interno (modelo do mundo)

Percepções / Reforço (+/-)

Ação

Ambiente

Algumas aplicações

- Tesauro, 1995] Modelagem do jogo de gamão como um problema de aprendizagem por reforço:
 - Vitória: +100
 - Derrota: 100
 - Zero para os demais estados do jogo (*delayed reward*)
 - Após 1 milhão de partidas contra ele mesmo, joga tão bem quanto o melhor jogador humano

Algumas aplicações

- Time Brainstormers da Robocup (entre os 3 melhores nos 3 últimos anos)
 - Objetivo: Time cujo conhecimento é obtido 100% por técnicas de aprendizagem por reforço
 - RL em situações específicas
 - 2 atacantes contra 2 defensores
 - habilidades básicas
- Inúmeras aplicações em problemas de otimização, de controle, jogos e outros...

Patrulha multi-agente

- Dado um mapa, um grupo de agentes deve visitar continuamente locais específicos deste mapa de maneira a minimizar o tempo que os nós ficam sem serem visitados
- Recompensa: ociosidade dos nós visitados
- Coordenação emergente (mesmo sem comunicação explícita)

50 n, 69 a

Conceitos Básicos

- Processo de decisão de Markov (MDP)
 - Conjunto de estados S
 - Conjunto de ações A
 - Uma função de recompensa r(s,a)
 - Uma função de transição de estados (pode ser estocástica) δ(s,a)
- \bullet Política de ações $\pi(s)$:

$$s_0 \stackrel{a_0}{\longrightarrow} s_1 \stackrel{a_1}{\longrightarrow} s_2 \stackrel{a_2}{\longrightarrow} \dots$$

Estados e Ações

- Estado: conjunto de características indicando como está o ambiente
 - Formado pelas percepções do agente + modelo do mundo
 - Deve prover informação para o agente de quais ações podem ser executadas
- A representação deste estado deve ser suficiente para que o agente tome suas decisões (satisfaz a propriedade de Markov)
 - A decisão de que ação tomar não pode depender da sequência de estados anteriores
 - Ex: Um tabuleiro de dama satisfaz esta propriedade, mas de xadrez não
 - O ambiente não precisa ser episódico

A função de recompensa

- Feedback do ambiente sobre o comportamento do agente
- ♦ Indicada por $r:(S \times A) \rightarrow R$
 - r(s,a) indica a recompensa recebida
 quando se está no estado se es executa a ação a
 - Pode ser determinística ou estocástica

Função de transição de estados

- $\bullet \delta$: (S × A) \rightarrow S
- δ(s,a) indica em qual estado o agente está, dado que:
 - Estava no estado s
 - executou a ação a
- Ambientes não-determinísticos:
 - escrita como δ(s,a,s')
 - indica a probabilidade de ir para um estado s' dado que estava em s e executou a

Exemplos de MDPs

Problema	Estados	Ações	Recompensas
Agente jogador de damas	Configurações do tabuleiro	Mover uma determinada peça	#capturas – #perdas
Agente em jogo de luta	Posições/energia dos lutadores, tempo, se está sendo atacado ou não, etc	Mover-se em uma determinada direção, lançar magia, dar porrada, etc	(Sangue tirado – sangue perdido)
Agente patrulhador	Posição no mapa (atual e passadas), ociosidade da vizinhança, etc	Ir para algum lugar vizinho do mapa	Ociosidade (tempo sem visitas) do lugar visitado atualmente

Política de ações (π)

- Função que modela o comportamento do agente
 - Mapeia estados em ações
- ◆ Pode ser vista como um conjunto de regras do tipo s_n → a_m
 - Exemplo:
 - Se estado s = (inimigo próximo, estou perdendo e tempo acabando) então ação a = (usar magia);
 Se estado s = (outro estado) então

Função valor dos **estados** Vπ(s) (S → R)

- Como saber se um determinado estado é bom ou ruim?
 - A função valor expressa esta noção, em termos das recompensas e da política de ações
 - Representa a recompensa a receber em um estado s, mais as recompensas futuras se seguir uma política de ações π
 - ex. tornar-se diretor, vale pelo que o cargo permite e permitirá nas próximas promoções (não interessa de onde veio - chefe de seção)
 - - Problema: se o tempo for infinito, a função valor do estado tende a infinito

Função Valor dos estados

 Para garantir convergência e diferenciar recompensas distantes do estado atual, usa-se um fator de desconto

$$0 \le \gamma \le 1$$

•
$$V\pi(s_t) = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} \dots$$

- $V\pi(s_t) = r_t + \gamma V\pi(s')$, onde:
 - $r_t = r(s_t, \pi(s_t))$
 - s' = $\delta(s_t, \pi(s_t))$
- Ex. Se γ = 90%, então:

•
$$V\pi(s_t) = r_t + 0.9 r_{t+1} + 0.81 r_{t+2} + 0.729 r_{t+3} \dots$$

Função valor das **ações** $Q\pi(s,a):(S\times A)\to R$

- Analogamente, ela diz a soma das recompensas a obter dado que:
 - o agente está no estado s
 - executou uma ação a
 - lacktriangle a partir daí, seguiu uma política de ações π
- $Q\pi(s,a) = r(s,a) + \gamma V\pi(s')$, onde:
 - \bullet s' = δ (s,a)
 - o valor da ação é a recompensa da ação mais o valor do estado para onde o agente vai devido à ação

Aprendizagem por reforço

- Tarefa de aprendizagem por reforço:
 - Aprender uma política de ações π* ótima, que maximiza a função Vπ (V*) ou a função Qπ (Q*)
 - $\pi^* = \operatorname{argmax}_{\pi}[V\pi(s)]$
- Em outras palavras, de que maneira o agente deve agir para maximizar as suas recompensas futuras

Exemplo: Labirinto $(c/\gamma=0.9)$

Função recompensa

Função V*

Função Q*

Uma política de ações ótima

Aprendendo uma política ótima

- Se o ambiente é determinístico (δ(s,a) = s' é conhecida) e r(s,a) é conhecida, a programação dinâmica computa uma política ótima :
 - $V^*(s) = \max_a [r(s,a) + \gamma V^*(\delta(s,a))]$
 - $\pi^*(s) = \operatorname{argmax}_a[r(s,a) + \gamma V^*(\delta(s,a))]$
 - Tempo polinomial
 - Problema: se não temos conhecimento prévio das recompensas e transição de estados
- Se o ambiente é não-determinístico mas a função de probabilidade de transição de estados for conhecida, também é possível computar π*
 - problema: É difícil estimar estas probabilidades

Q Learning

- lackloss É possível determinar π^* se eu conheço Q^*
 - não precisando conhecer δ (função de transição de estados) nem r
 - $\pi^*(s) = \operatorname{argmax}_a[Q(s,a)]$
 - não é função de δ nem de r
- Então, vamos aprender a função Q ótima (valor das ações) sem considerar V
 - $Q(s_t,a_t) = r(s_t,a_t) + \gamma V^*(\delta(s_t,a_t))$ = $r(s_t,a_t) + \gamma \max_{a'} [Q(s_{t+1},a')]$
 - o valor do próximo estado é o melhor Q nele
 - Como atualizar Q?

Q-Learning

Atualiza-se Q(s_t) após observar o estado s_{t+1} e recompensa recebida

$$Q(s_1,a_{right}) = r + \gamma max_a, Q(s_2,a')$$

= 0 + 0.9 max{63,81,100}
= 90

Algoritmo Q-Learning para mundos determinísticos

- Para todo estado s e ação a, inicialize a tabela Q[s][a] = 0;
 Usufruir
- Para sempre, faça:
 - Observe o estado atual s;
 - Escolha uma ação a e execute;
 - Observe o próximo estado s' e recompensa r
 - Atualize a tabela Q:
 - $Q[s][a] = r + \gamma \max_{a'} (Q[s'][a'])$

Usufruir valores conhecidos ou explorar valores não computados?

Dilema de explorar ou usufruir (exploration x exploitation)

Usufruir

 Escolher a ação que atualmente está com maior valor Q(s,a)

Explorar

 Escolher uma ação randômica, para que seu valor Q(s,a) seja atualizado

Dilema

- Dado que eu aprendi que Q(s,a) vale 100, vale a pena tentar executar a ação a' se Q(s,a') por enquanto vale 20 ?
 - Depende do ambiente, da quantidade de ações já tomadas e da quantidade de ações restantes

Métodos para balancear exploration e exploration

E-Greedy

- A cada iteração, escolhe uma ação exploratória (randômica) com probabilidade E
- Ex. 10-armed bandit (caça níqueis)
 - 10 caça níqueis com distribuições de prob. diferentes (desconhecidas)
 - e = 10% acha ações ótimas mais cedo, mas erra 9% do tempo
 - e = 1% obterá melhor performance no futuro!
 - e = 0 % fica preso em uma ação não ótima

Métodos para balancear exploration e exploration

- Escolha de ações softmax
 - A probabilidade de uma ação ser escolhida varia de acordo com o valor de Q(s,a)
 - Pode-se usar o conceito de temperatura de simulated annealing:
 - T = infinito, ação totalmente exploratória
 - T = zero, ação totalmente gulosa

$$rac{e^{Q_{t-1}(a)/ au}}{\sum_b e^{Q_{t-1}(b)/ au}}$$

RL em ambiente não determinístico

- Recompensas serão não determinísticas
 - $V\pi(s) = E[r_t + r_{t+1} + r_{t+2} + ...]$
 - Problema:
 - Suponha que a sequência de recompensas recebidas em um determinado estado foi:
 - **100**, 98, 101, 97, 90, 103, 10
 - O valor da função Q vai refletir apenas o último valor!
- Solução: usar uma taxa de aprendizagem α
 - $Q_n(s,a) = (1-\alpha)Q_{n-1}(s,a) + \alpha[r + \max_{a'} Q_{n-1}(s',a')]$
 - A atualização de Q não "esquece" dos valores anteriores
 - Se $\alpha = 1/[1+\#visitas(s,a)]$, Q converge para Q* em tempo polinomial

Semi-MDP

- Como o agente pode levar em conta o tempo de suas ações?
 - Ex. no jogo de luta: É melhor dar vários socos fracos ou um soco forte?
 - Soco forte provavelmente traria maior recompensa
 - Demoraria mais tempo para ser executado
 - No problema da patrulha: como levar em conta o a distância entre os nós?

Semi-MDP

- O formalismo SMDP engloba este conceito
- Prova-se que a atualização de Q passa a ser dada por:
 - Q[s][a] = r + $\gamma^{t} \max_{a'} (Q[s'][a'])$
 - Onde t pode ser:
 - número de unidades de tempo que o agente executou a ação (caso discreto)
 - alguma função contínua do tempo
 - Desta maneira, as recompensas futuras passam a valer menos se o agente passar muito tempo executando uma ação

Complexidade de Q-Learning

- Escolher uma ação é barato no tempo
 - No entanto, o tempo de treinamento cresce com #S
- Em espaço: O(#S x #A)
 - Problemas
 - o número de estados possíveis cresce exponencialmente com a quantidade de características representadas
 - Como tratar estados contínuos?

Linhas de pesquisa em RL atualmente

- Substituir a tabela Q por redes neurais
 - Permite generalização
 - Tratar estados contínuos
- Tratar casos em que o estado é parcialmente observável
 - POMDP
- Aprendizagem por reforço hierárquica
- Aprendizagem por reforço multi-agente

Aprendizagem por reforço multi-agente - Cooperação

- Abordagens usando RL tradicional:
 - White box agent
 - Representação de estado global
 - Encontra a ação conjunta (a₁, a₂, ..., a_n) que maximiza uma função de reforço global (única)
 - Problemas
 - Complexidade exponencial no número de agentes
 - Como aprender as ações de maneira distribuída ?
 - Black box agent
 - O reforço é individual, mas é alguma função do bem estar global
 - O agente n\u00e3o toma conhecimento dos outros agentes
 - Outros agentes passam a ser ruído no ambiente

Aprendizagem por reforço multi-agente - Cooperação

- Black box agent
 - Problemas
 - Atribuição de crédito
 - Como atribuir valor a ações individuais de um agente, em termos do bem estar global?
 - Ex: Que reforço dar pra uma ação do jogador do meio de campo em um jogo de futebol?
- Gray box agent:
 - O agente toma suas decisões individualmente
 - Os agentes comunicam suas intenções

Aprendizagem por reforço multi-agente - Competição

- Min-Max Reinforcement Learning
 - RL Tradicional:
 - Executa ações com maior recompensa esperada
 - Min-Max RL
 - Modela as ações do adversário
 - Executa ações que, dado que um oponente utiliza uma política ótima, minimiza minhas perdas

Referências

- Slides de Hugo Pimentel de Santana (CIN/UFPE)
- Lecture slides do livro Machine Learning, do Tom Mitchell
 - http://www-2.cs.cmu.edu/~tom/mlbook-chapter-slides.html
- Livro "Reinforcement Learning: An introduction", de Sutton & Barto disponível online
 - http://envy.cs.umass.edu/~rich/book/the-book.html