Math 318: Assignment 2 Solutions

Problem 1

Part (1)

Let $y \in f(f^{-1}(B))$. Then there is some $x \in f^{-1}(B)$ with y = f(x). Since $x \in f^{-1}(B)$, we have $y = f(x) \in B$. Thus $f(f^{-1}(B)) \subset B$.

On the other hand, let $y \in B$. Since f is surjective, there is some $x \in X$ with f(x) = y. Now $f(x) = y \in B$, so $x \in f^{-1}(B)$, and thus $y = f(x) \in f(f^{-1}(B))$. Thus $B = f(f^{-1}(B))$.

Part (2)

This is not always true.

For example, take $X = \{0,1\}$, $Y = \{0\}$, $f: X \to Y$ defined by f(x) = 0, and $A = \{0\}$. Then $f(A) = \{0\}$, and $f^{-1}(f(A)) = f^{-1}(\{0\}) = \{0,1\} \neq A$. \Box

Part (3)

Let $y\in f(A\cap f-1(B))$. Then there is some $x\in A\cap f^{-1}(B)$ with y=f(x). Since $x\in A$, we have $y=f(x)\in f(A)$. Also since $x\in f^{-1}(B)$, we have $y=f(x)\in B$. Thus $y\in f(A)\cap B$. Thus $f(A\cap f^{-1}(B))\subset f(A)\cap B$. On the other hand, let $y\in f(A)\cap B$. Since $y\in f(A)$, there is some $x\in A$ with f(x)=y. Now $f(x)=y\in B$, so $x\in f^{-1}(B)$. Thus $x\in A\cap f^{-1}(B)$, and so $f(x)\in f(A\cap f^{-1}(B))$. Thus $f(A\cap f^{-1}(B))=f(A)\cap B$.

Problem 2

Note that a function from X to Y is determined by choosing an element of Y for each element of X.

Part (1)

 $3^2 = 9$.

Part (2)

 $1^5 = 1$.

Part (3)

 $0^5 = 0.$

Part (4)

 $5^0 = 1$.

^{*}Note that this does not depend on surjectivity.

 $^{^{\}dagger}$ In general, $f^{-1}(f(A)) = A$ iff A is the preimage under f of a subset of Y.

Problem 3

Let $A \leq B$ denote that there exists an injection from A to B. Note that if $A \subset B$, then $A \leq B$.

Part (a)

No, these sets are not equinumerous.

We know $[0,1) \sim \mathbb{R}$ and $\mathbb{Q} \sim \mathbb{N}$, but we know that $\mathbb{R} \nsim \mathbb{N}$, so we must have $[0,1) \nsim \mathbb{Q}$.

Part (b)

Yes, these sets are equinumerous.

We have:

$$[0,\infty) \leq \mathbb{R} \sim [0,1] \leq [0,\infty)$$

Thus by Cantor-Schröder-Bernstein, we have $\mathbb{R} \sim [0, \infty)$. Thus:

$$[0,1]^{\mathbb{N}} \sim \mathbb{R}^{\mathbb{N}} \sim \mathbb{R} \sim [0,\infty)$$

Part (c)

By our work in Part (b), we have:

$$[0,1]^{\mathbb{N}} \sim \mathbb{R} \sim [0,1] \sim 2^{\mathbb{N}} \preceq \mathbb{Q}^{\mathbb{N}} \preceq [0,1]^{\mathbb{N}}$$

Thus by Cantor-Schröder-Bernstein, we have $[0,1]^{\mathbb{N}} \sim \mathbb{Q}^{\mathbb{N}}$.

Problem 4

Part (A)

No, it is not countable.

We have $\mathbb{Z}^{\mathbb{N}} \succ 2^{\mathbb{N}}$ and $2^{\mathbb{N}}$ is uncountable, so $\mathbb{Z}^{\mathbb{N}}$ is uncountable.

Part (B)

Yes, it is countable.

 \mathbb{Z}^3 and \mathbb{Z}^7 are countable since they are finite products of countable sets. Thus $\mathbb{Z}^3 \cup \mathbb{Z}^7$ is countable since it is a union of two countable sets.

Part (C)

Yes, it is countable.

As in Part (B), for any $n \in \mathbb{N}$, \mathbb{Z}^n is countable since it is a finite product of countable sets. Thus $\bigcup_{n \in \mathbb{N}} \mathbb{Z}^n$ is countable since it is a countable union of countable sets.

Part (D)

No, it is not countable.

We have $\mathbb{R} \times \mathbb{Q} \succ \mathbb{R} \times \{0\} \sim \mathbb{R}$ which is uncountable, so $\mathbb{R} \times \mathbb{Q}$ is uncountable.

Problem 5

We prove by induction on $n \ge 0$ that a bijection on an n-element set is a composition of disjoint cycles. The n = 0 case is true since the only bijection on the empty set is vacuously a cycle.

Now let n>0 and suppose that the statement is true for k< n. Let $x_0\in X$. Since X is finite, there must be some $p\leq q$ with $f^p(x_0)=f^q(x_0)$. Let $N\geq 1$ be minimal such that there exists $p\geq 0$ with $f^p(x_0)=f^{p+N}(x_0)$. Since f is a bijection, we have that $x_0=f^N(x_0)$. Also by our choice of N, for $0\leq k< l< N$, we have $f^k(x_0)\neq f^l(x_0)$. Let $Y=\{x_0,f(x_0),\ldots,f^{N-1}(x_0)\}$. Then f restricts to a cycle on Y and f restricts to a function on $X\setminus Y$, which is a composition of disjoint cycles by the inductive hypothesis. Thus f is also a composition of disjoint cycles.

Problem 6

First of all, consider the special case where $X=\{f^n(x_0):n\in\mathbb{Z}\}$ for some $x_0\in X$. We will show that f is the composition of two involutions. Define g on X by $g(f^n(x_0))=f^{-n}(x_0)$. Note that g well-defined since if $f^n(x_0)=f^m(x_0)$, then applying f^{-n-m} to both sides gives $f^{-m}(x_0)=f^{-n}(x_0)$. Also g is an involution since $g^2(f^n(x_0))=g(f^{-n}(x_0))=f^n(x_0)$. Similarly, if we define h on X by $h(f^n(x_0))=f^{-n-1}(x_0)$, then h is a well-defined involution on X. Now $(g\circ h)(f^n(x_0))=g(f^{-n-1}(x_0))=f^{n+1}(x_0)=f(f^n(x_0))$, so $g\circ h=f$. Now for the general case, consider the equivalence relation \sim on X defined by $x\sim y$ iff for some $n\in\mathbb{Z}$, we have $f^n(x)=y$ (this is an equivalence relation since f is a bijection).

For each equivalence class C of \sim , note that we have $C=\{f^n(x_0):n\in\mathbb{Z}\}$ for some $x_0\in C$, so by above, we have that $f|_C=g_C\circ h_C$ for some involutions g_C and h_C on C. ‡ Define g and h on X by $g(x)=g_C(x)$ and $h(x)=h_C(x)$ when $x\in C$. Then g and h are involutions with $f=g\circ h$.

[‡]Note that this step requires the Axiom of Choice.