

Revision History

Revision	Content	Time	Edit
1.0	Initial release	2017-03-01	RD
3.0	Fill inthe content according to RS-LiDAR-16 1.0 hardware.	2017-05-10	RD
3.1	Modify the relatioship between laser channel and vertical angle	2017-06-13	PD
3.2	Update the content according to RS-LiDAR-16 2.0 hardware	2017-07-17	PD
	Add the timestamp calculation method for every point		
3.3	Improve the range to 150m	2017-08-10	PD
	Delete the description that MAC addressing is the same as serial number		
	Add azimuth interpolation calculation method		
	Corrected the data structure of UCWP		
	Add the instruction for RSVIEW		
	Add the instruction for ROS driver		
3.4	Add the frame description for ROS driver	2017-08-23	PD
	Add the RS-LiDAR information in RSVIEW		
3.5	Correct the description for horizontal resolution	2017-09-16	PD
	Add the description for LiDAR mechanical origin		
3.6	Update the RS-LiDAR information and data port setting	2017-12-05	PD
	Update the protocol description of DIFOP		
3.7	Correct the depth dimension of the mount hole Add Phase Lock	2018-02-05	PD
	Add fault diagnosis		
	Add operation status		
3.8	Add trouble shooting	2018-03-15	PD
4.0	Add LiDAR flag for MSOP	2018-06-25	PD
	Update DIFOP protocol		
	Add top and bottom board flag description		
	Add GPS input status flag		
	Add laser mechanical position		
	Add bottom board firmware online update		
	Add fault diagnosis usage		

	Add LiDAR installation suggestion			
4.1	Add the sensor clean instruction	2018-08-04	PD	
	Add the RSVIEW compatible instruction			
	Add the LiDAR cable route instruction			

TABLE OF CONTENTS

1 Safety Notices	6
2 Introduction	7
3 Product Specifications	8
4 Connections	9
4.1 Power	9
4.2 Electrical Configuration	9
4.3 Electrical Interface	9
5 Communications Protocols	11
5.1 MSOP	11
5.1.1 Header	12
5.1.2 Data Field	13
5.1.3 Tail	14
5.1.4 Demonstration Data	15
5.2 DIFOP	16
5.3 UCWP	16
6 GPS Synchronization	19
6.1 GPS Synchronization Theory	19
6.2 GPS Usage	19
7 Phase Lock	20
8 Point Cloud	21
8.1 Coordinate Mapping	21
8.2 Point Cloud Presentation	21
9 Laser Channels and Vertical Angles	24
10 Calibrated Reflectivity	26
11 Trouble Shooting	27
Appendix A • Point Time Calculate	29
Appendix B • Information Registers	30
B.1 Motor(MOT_SPD)	30
B.2 Ethernet(ETH)	30
B.3 Motor Phase Offset (MOT_PHASE)	31
B.4 Top Board Firmware (TOP_FRM)	31
B.5 Bottom Board Firmware (BOT_FRM)	31
B.6 Corrected Pitch (COR_PITCH)	31
B.7 Serial Number(SN)	32
B.8 Software Version(SOFTWARE_VER)	
B.9 UTC Time(UTC_TIME)	
B.10 STATUS	34
B.11 Fault Diagnosis	34
B.12ASCII code in GPSRMC Packet	
Annendix C = RSView	37

C.1 Features	37
C.2 Install RSView	37
C.3 Set up Network	37
C.4 Visualize Streaming Sensor Data	38
C.5 Capture Streaming Sensor Data to PCAP File	39
C.6 Replay Captured Sensor Data from PCAP File	40
C.7 RS-LiDAR-16 Factory Firmware Parameters Setting	43
C.8 RSView Data Port	44
C.9 Firmware Online Update	45
C.10 Fault Diagnosis	46
Appendix D • RS-LiDAR-16 ROS Package	48
D.1 Prerequisite	48
D.2 Install RS-LiDAR-16 ROS Package	48
D.3 Configure PC IP address	48
D.4 View the real time data	48
D.5 View the recorded pcap file offline	49
Appendix E • Dimensions	51
Appendix F LiDAR Mechanical Installation Suggestion	53
Appendix G How to Distinguish the Port Number of MSOP and DIFOP Packets	54
Appendix H Sensor clean	55
H.1 Attention	55
H.2 Require Materials	55
H.3 Clean Method	55

Terminologies

MSOP	Main Data Stream Output Protocol	
DIFOP	Device Info Output Protocol	
UCWP	User Configuration Write Protocol	
Azimuth	Horizontal angle of each laser firing	
Timestamp	The marker that records the system time	
Header	The starting part of the protocol packet	
Tail	The ending part of the protocol packet	

5

Congratulations on your purchase of a RS-LiDAR-16 Real-Time 3D LiDAR Sensor. Please read carefully before operating the product. Wish you a pleasurable product experience with RS-LiDAR-16.

1 Safety Notices

To reduce the risk of electric shock and to avoid violating the warranty, do not open sensor body.

- Read Instructions All safety and operating instructions should be read before operating the product.
- Follow Instructions All operating and use instructions should be followed.
- Retain Instructions The safety and operating instructions should be retained for future reference.
- **Heed Warnings** All warnings on the product and in the operating instructions should be adhered to.
- **Servicing** The user should not attempt to service the product beyond what is described in the operating instructions. All other servicing should be referred to RoboSense.

2 Introduction

RS-LiDAR-16, launched by RoboSense, is the first of its kind in China, world leading 16-beam miniature LiDAR product. Its main applications are in autonomous driving, robots environment perception and UAV mapping. RS-LiDAR-16, as a solid-state hybrid LiDAR, integrates 16 laser/detector pairs mounted in a compact housing. Unique features include:

- Measurement range of up to 150 meters
- Within 2 centimeters measurement accuracy
- Data rate of up to 320,000 points/second
- Horizontal Field of View(FOV) of 360°
- Vertical Field of View(FOV) of 30°

The compact housing of RS-LiDAR-16 mounted with 16 laser/detector pairs rapidly spins and sends out high-frequency laser beams to continuously scan the surrounding environment. Advanced digital signal processing and ranging algorithms calculate point cloud data and reflectivity of objects to enable the machine to "see" the world and to provide reliable data for localization, navigation and obstacle avoidance.

Figure 1 RS-LiDAR Imaging System

Operation of device include:

- Establish communication with RS-LiDAR-16;
- Parse the data packets for azimuth, measured distance, and reported calibrated reflectivities;
- Calculate X, Y, Z coordinates from reported azimuth, measured distance, and vertical angle;
- Store the data as needed;
- Read current device configuration data;
- Set Ethernet, time and rotational speed as needed.

3 Product Specifications

Table 1 Product Parameters

	_		
Sensor	Time of Flight Distance Measurement		
	16 Channels		
	Measurement Range: 20cm to 150m (on 20% reflectivity target)		
	Accuracy: ±2cm (typical)		
	Field of View (Vertical): \pm 15.0° (30° in total)		
	Angular Resolution (Vertical): 2°		
	Field of View (Horizontal): 360°		
	Angular Resolution (Horizontal/Azimuth): 0.09°(5Hz) to 0.36°(20Hz)		
	Rotation Speed: 300/600/1200rpm (5/10/20Hz)		
Laser	Class 1		
	Wavelength: 905nm		
	Beam Divergence Horizontal: 3.0mrad, Vetical: 1.2mrad		
Output	Data Rate: 320,000 points/second		
	100Mbps Ethernet		
	UDP packet, include:		
	Distance		
	Rotation Angle/Azimuth		
	Calibrated Reflectivity		
	Synchronized Timestamp(Resolution: 1us)		
Mechanical/	Power Consumption: 9w (typical)		
Electrical/	Operating Voltage: 12VDC (with Interface Box and Regulated Power		
Operational	Supply) 9-32VDC		
	Weight: 0.840Kg(without cable)		
	Dimensions: 109mm Diameter X 82.7mm Height		
	Protection Level: IP67		
	Operation Temperature: -10°C to +60°C		

8

4 Connections

4.1 Power

Interface BOX.

RS-LiDAR-16 can operate with 9 to 32 volt power. But standard 12 volt power is suggested. RS-LiDAR-16 requires 9 watts (typical) of power while operating.

4.2 Electrical Configuration

RS-LiDAR-16 comes with an integral cable(power/data) that is permanently attached to the sensor and terminates at a standard SH1.1.25 wiring terminal. Figure 2 illustrates the serial pins and their properties.

To operate RS-LiDAR-16, the user should insert the SH1.25 wiring terminal to the corresponding port on the

Figure 2 Wiring Terminal and Serialized Pin

4.3 Electrical Interface

The Interface BOX provides indicator LEDs for power, interfaces for power, 100Mbps Ethernet, and GPS inputs. The DC 5.5-2.1 connector for power input, RJ45 Ethernet connector for RS-LiDAR-16 data output and SH1.0-6P female connector for GPS input. We have two different appearance for the Interface BOX, but the interfaces on

the box are the same between the two different Interface BOX. (As shown in Figure 3.)

Figure 3 Interface BOX

Note: When RS-LiDAR-16 connects its grounding system with an external system, the external power supply system should share the same grounding system with that of the GPS.

On the Interface BOX, the red light indicator means standard power input, and the green one means standard power output. The Interface BOX access protection status when the red light indicator lights up and green light indicator blacks out. If the red and green light indicators blink at the same time, please check for errors of the power supply. If the power supply is checked without error, the high chance is that the Interface BOX is damaged. Please return damaged Interface BOX to RoboSense for service.

GPS interface definition: GPS REC means GPS UART input, GPS PULSE means GPS PPS input.

Ethernet interface complies with EIA/TIA568 Standard.

Power interface adopts standard DC 5.5-2.1 connector.

5 Communications Protocols

RS-LiDAR-16 adopts UDP protocol and communicates with computer through 100Mbps Ethernet. There two different kinds of UDP output packets: MSOP packets and DIFOP packets. The UDP protocol packet in this manual is of 1290 byte long, and consists of a 1248 byte payload and a 42 byte header. The IP address and port number of RS-LiDAR-16 is set in the factory as shown in the Table 2, but can be changed by the user as needed.

Table 2	The IP Address and Port Number Set at the Factory
---------	---

	IP Address	MSOP Port No.	DIFOP Port No.
RS-LiDAR-16	192.168.1.200	6600	7700
Computer	192.168.1.102	6699	7788

The default MAC Address of each RS-LiDAR-16 is set in the factory . The MAC Address can be changed as needed.

To establish communication between a sensor and a computer, the IP address of the computer should be set at the same network segment of that of the sensor. By default: 192.168.1.102, subnet mask: 255.255.255.0. In case of uncertainty about the internet setting of the sensor, please set the computer subnet mask as 0.0.0.0, connect the sensor to the computer, and parse packet to get the IP and port through Wireshark.

RS-LiDAR-16 adopts 3 kinds of communications protocols to establish communication with the computer:

- MSOP(Main Data Stream Output Protocol). Distance, azimuth and reflectivity data collected by the sensor are packed and output to computer.
- DIFOP(Device Information Output Protocol). Monitor the current configuration information of the sensor.
- UCWP(User Configuration Write Protocol). User can modify some parameters of the sensor as needed.

Table 3 Protocols Adopted by RS-LiDAR-16

Protocol	Abbreviation	Function	Туре	Size	Interval
Main Data Stream	MSOP	Scan Data Output	UDP	1248byte	~1ms
Output Protocol					
Device Information	DIFOP	Device Information	UDP	1248byte	~100Mbps
Output Protocol		Output			
User Configuration	UCWP	Sensor Parameters	UDP	1248byte	INF
Write Protocol		Setting			

Note: The following section describes and defines the valid payload (1248 byte) of the UDP protocol packet.

5.1 MSOP

I/O type: device output data, computer parse data.

Default port number is 6699.

MSOP outputs data information of the 3D environment in packets. Each MSOP packet is 1248 bytes long and consists of reported distance, calibrated reflectivity values, azimuth values and a time stamp.

Each RS-LiDAR-16 MSOP packet payload is 1248 byte long and consists of a 42 byte header and a 1200 byte data field containing twelve blocks of 100-byte data records and a 6 byte tail.

The basic data structure of a MSOP packet is as shown in Figure 4.

Figure 4 MSOP Packet

5.1.1 Header

The 42 byte Header marks the beginning of data blocks.

In the 42-byte data header, the first 8 bytes are for header identification, the 21 to 30 bytes records time stamp, the 31st byte represents the LiDAR model, and the rest bytes are reserved for future updates.

The first 8 bytes of the header is defined as 0x55,0xAA,0x05,0x0A,0x5A,0xA5,0xA0.

Time stamp with a resolution of 1us records the system time. Please refer to the definition of time in Appendix B.9 and Table 8 in part 3 of this section.

The 31st byte LiDAR model is described as below:

Table 4 LiDAR Model Flag

LiDAR Model		(1 byte)
0x01		RS-LiDAR-16
0x02	RS-LiDAR-32	

5.1.2 Data Field

Data field comprises data blocks that contain valid measurement data. Each data filed contains 12 blocks. Each block is 100-byte long and is a complete measurement data set. Each data block begins with a 2-byte start identifier "0xffee", then a two-byte azimuth value (rotational angle). Each azimuth value records 32 sets of channel data reported by the 16 laser channels for two sequence. (Please see Section 8 for the relationship between channel sequence and vertical angel.)

5.1.2.1 Azimuth Value

The reported azimuth is associated with the first laser firing in each sequence of 16 laser firings. The Azimuth Value is recorded by the encoder. The zero position on the encoder indicates the zero degree of azimuth value on RS-LiDAR-16. In one data block, there are 32 sets of laser data indicating two sequence of the 16 laser firings, however only every-other encoder angle is reported for alternate firing sequences. The user can choose to interpolate that unreported encoder stamp(Refer to 5.1.2.2). The resolution of Azimuth is 0.01°.

For example, in Figure 6, the azimuth value is calculated through the following steps:

Get azimuth values: 0x00, 0x44

Combine to a 16 bit, unsigned integer: 0x0044

Convert to decimal: 68

Divided by 100 Result: 0.68°

Hence the firing angle is 0.68°

Note: the position of 0° on sensor is the Y axis positive direction in Figure 8.

5.1.2.2 Azimuth Value Interpolation

Because the RS-LIDAR-16 reports the azimuth value for every-other firing sequence, it's helpful to interpolate the un-reported azimuth. There are several ways to interpolate the un-reported azimuth, but the one given below is simple and straight forward.

Consider a single data packet. The time between the first firing of the first sequence of sixteen firings (Data Block 1) and the first firing of the third sequence of sixteen laser firings (Data Block 2) is \sim 100.0 μ s. If you assume the rotation speed over that short interval is constant, you can assume the azimuth of the (N+1) set of sixteen laser firings is halfway between the azimuth reported with the Nth set of 16 laser firings and the azimuth reported with the (N+2) set of laser firings.

Below is pseudo-code that performs the interpolation. The code checks to see if the azimuth rolled over from 359.99° to 0° between firing sequence N and N+2.

In the example below, N=1.

```
// First, adjust for a rollover from 359.99° to 0°
If (Azimuth[3] < Azimuth[1])
Then Azimuth[3]:= Azimuth[3]+360;
Endif;
```



```
// Perform the interpolation

Azimuth[2]:=Azimuth[1]+((Azimuth[3]-Azimuth[1])/2);

// Correct for any rollover over from 359.99° to 0°

If (Azimuth[2]>360)

Then Azimuth[2]:= Azimuth[2]-360;

Endif
```

5.1.2.3 Channel Data

Channel data contains 3 bytes, with the upper 2 bytes store distance information, and the lower 1 byte contains reflectivity data. The structure of channel data is as shown in Table 5.

Table 5 Channel Data

Channel Data N (3 bytes)				
2 by	1 byte			
Distan	Reflectivity			
Distance1 Distance2		Deflectivity.		
[16:8]	[7:0]	Reflectivity		

The 2-byte distance data is set in centimeter. The distance accuracy is 1 centimeter.

Reflectivity data records relative reflectivity (more definition on reflectivity, please refer to description on calibrated reflectivity in Section 9 of this manual). Reflectivity data reveals the reflectivity performance of the system in real measurement environments, it can be used in distinguishing different materials.

The following shows how to parse channel data.

In the case of Figure 6, the distance information is calculated by:

Get distance values: 0x06,0x42 Actual distance value: 0x06,0x42

Combine distance bytes to a 2-byte, unsigned integer: 0x0642

Convert to decimal: 1602

Divided by 100 Result: 16.02m

Hence the distance measured is 16.02m.

5.1.3 Tail

The tail is 6 bytes long, with 4 bytes unused and reserved for information, and the other 2 byte as: 0x00, 0xFF.

5.1.4 Demonstration Data

```
1 0.000000
                       192.168.2.103
                                          192.168.1.102
                                                             UDP
                                                                     1290 6677 → 6699 Len=1248
        2 0.001153
                      192.168.2.103
                                         192.168.1.102
                                                            UDP
                                                                     1290 6677 → 6699 Len=1248
        3 0.002355
                       192.168.2.103
                                          192.168.1.102
                                                            UDP
                                                                     1290 6677 → 6699 Len=1248
                                                                                      Len=1248
        4 0.003616
                       192.168.2.103
                                          192.168.1.102
                                                             UDP
                                                                     1290 6677 → 6699
        5 0.004768
                       192.168.2.103
                                          192.168.1.102
                                                            UDP
                                                                     1290 6677 → 6699
                                                                                      Len=1248
 Frame 4: 1290 bytes on wire (10320 bits), 1290 bytes captured (10320 bits) on interface 0
▶ Ethernet II, Src: Dell_17:4a:cc (00:1c:23:17:4a:cc), Dst: Dell_48:60:3f (84:7b:eb:48:60:3f)
▶ Internet Protocol Version 4, Src: 192.168.2.103, Dst: 192.168.1.102
▶ User Datagram Protocol, Src Port: 6677 (6677), Dst Port: 6699 (6699)
Data (1248 bytes)
      84 7b eb 48 60 3f 00 1c 23 17 4a cc 08 00 45 00
                                                        .{.H`?.. #.J...E.
      04 fc fc 40 40 00 80 11
                              74 92 c0 a8 02 67 c0 a8
                                                        ...@@... t....g..
      01 66 1a 15 1a 2b 04 e8
                              33 6f 55 aa 05 0a 5a a5
                                                         .f...+.. <u>Bo</u>U...Z.
      50 a0 00 00 00 00 00 00
                              00 00 00 00 00 00 00 00
                                                        P.....
0030
      99 99 99 99 99 99 99
                              00 00 00 00 00 00 00 00
                              ff ff bc 06 76 09 ff ff
      00 00 5a 5a ff ee 2b 70
9959
                                                         ..ZZ..+p ....v...
      bc 06 7f 07 06 7b 12 06
9969
                              6e 08 06 7d 0e 06 7d 09
                                                        .....{.. n..}..}.
0070
      06 78 0e 06 81 05 06 79
                              08 06 81 13 06 6b 10 06
                                                         .x....y .....k..
      79 0d 06 80 0c 06 7e 0c
                              ff ff bc 06 75 09 ff ff
                                                        y........u....
0080
      bc 06 7f 07 06 7a 11 06
                              6d 08 06 7c 0e 06 7c 09
                                                        ....z.. m.......
      06 78 0e 06 80 05 06 79
                              07 06 80 13 06 6a 10 06
00a0
                                                        .x.....j..
00h0
     78 0d 06 7f 0c 06 7f 0c
                              ff ee 2b 78 ff ff bc 06
                                                        x.....x...
      75 09 ff ff bc 06 7e 07
                              06 7c 11 06 6c 08 06 7b
00c0
                                                        u.....~. .|..1..{
      0f 06 7c 09 06 77 0e 06
                              7f 05 06 79 07 06 7e 13
                                                        ..|..w.. ...y..~.
0000
00e0 06 68 10 06 77 0d 06 80 0c 06 7d 0c ff ff bc 06
                                                        .h..w....}....
     73 09 ff ff bc 06 7d 07 06 7b 11 06 6c 08 06 7a
aafa
                                                        s.....}. .{..1..z
0100 0f 06 7b 09 06 78 0e 06 7f 05 06 77 07 06 7e 13
                                                        ..{..x.. ...w..~.
```

Figure 5 MSOP packet

Figure 6 Data Block

5.2 DIFOP

I/O type: device output, computer read.

Default port number is 7788.

DIFOP is a protocol that reports and outputs only device information including the device serial number, firmware version, driver compatibility, internet setting, calibration data, electrical machine setting and operation status, fault detection information to users. It is a viewer for users to get comprehensive details about the device.

Each DIFOP packet is 1248 byte long, and comprises a 8 byte Header, a 1238 byte data field, and a 2 byte tail. The structure of DIFOP is as shown in Table 6.

Table 6 DIFO Packet

	No.	Information	Offset	Length (byte)
Header	0	DIFOP header	0	8
	1	motor rotation speed (MOT_SPD)	8	2
	2	Ethernet(ETH)	10	26
	3	corrected static base (COR_STATIC_BASE)	36	2
	4	motor phase lock(MOT_PHASE)	38	2
	5	top board firmware version(TOP_FRM)	40	5
Data	6	bottom board firmware version(BOT_FRM)	45	5
	7	corrected intensity curves coefficient	50	240
	8	reseved	290	2
	9	serial number(SN)	292	6
	10	reserved	298	3
	11	upper computer compatibility	301	2
	12 UTC time(UTC_TIME)		303	10
	13	operation status(STATUS)	313	18
	14	reserved	331	11
	15	fault diagnosis(FALT_DIGS)	342	40
	16	GPSRMC	382	86
	17	corrected static(COR_STATIC)	468	697
	18	corrected vertical angle(COR_PITCH)	1165	48
	19	reserved	1213	33
Tail	20	tail	1246	2

Note: The Header(the DIFOP identifier) in the table above is 0xA5,0xFF,0x00,0x5A,0x11,0x11,0x55,0x55, among which the first 4 byte 0xA5,0xFF,0x00,0x5A is the sequence to identify the packet.

The tail is 0x0F,0xF0.

For definition of information registers as well as their usage, please check more details in part 2, section 10 of this manual.

5.3 UCWP

I/O type: computer writes into the device.

Function: user can reconfigure Ethernet connection, time and some parameters of the device.

Each UCWP Packet is 1248 byte long, and is comprised of a 8-byte Header, a 1238-byte data field and a 2-byte Tail.

The UCWP packet structure is as shown below:

Table 7 UCWP Packet

	No.	Info	Offset	Length (byte)
Header	0	UCWP header	0	8
Data	1	motor rotation speed	8	2
	2	Ethernet	10	26
	3	time	36	10
	4	reserved	46	2
	5	motor phase lock	48	2
	6	reserved	50	1196
Tail	7	tail	1246	2

Note: The Header(UCWP identifier) in the table above is 0xAA,0x00,0xFF,0x11,0x22,0x22,0xAA,0xAA, among which, the first 4 bytes 0xAA,0x00,0xFF,0x11 forms the sequence to identify the packet.

The Tail is 0x0F,0xF0.

Statement: RS-LiDAR-16 doesn't RTC system to support operation while power is off. In the case of no GPS or GPS signal, it is imperative to write time into the device through a computer, or it will use a default system time for clock.

Refer to Part 2, Section 10 of this manual for details on Ethernet, Time, Motor Rotation Speed and Motor Phase Lock.

Below is and example to configure the RS-LIDAR-16:

LiDAR IP: 192.168.1.105,

Destination PC IP: 192.168.1.225, MAC ADDR: 001C23174ACC

MSOP port: 6688 DIFOP port: 8899

Time: 09:45:30:100:200, March 10, 2017

Rotation speed: 600rpm Motor phase lock: 90 degree

User can reset the above information by following the example in Table 8.

Table 8 Resetting Example

Information	Content	Setting	Length (byte)
Header		0xAA,0x00,0xFF,0x11,	8
		0x22,0x22,0xAA,0xAA	
Rotate Speed	1200rpm	0x04	2
LiDAR IP	192.168.1.105	0xC0	4
(LIDAR_IP)		0xA8	

		0x01	
		0x69	
Destination PC IP	192.168.1.225	0xC0	4
(DEST_PC_IP)		0xA8	
		0x01	
		0xE1	
Device MAC Address	001C23174ACC	0x00,0x1C,0x23,	6
(MAC_ADDR)		0x17,0x4A,0xCC	
MSOP Port (port1)	6688	0x1A20	2
MSOP Port (port2)	6688	0x1A20	2
DIFOP Port (port3)	8899	0x22C3	2
DIFOP Port (port4)	8899	0x22C3	2
port5~port6	00,00,00,00,	0x00,0x00,0x00,0x00,	4
UTC_TIME	Year:2017	0x11	10
	Month:3	0x03	
	Day:10	0x0A	
	Hour:9	0x09	
	Minute:45	0x2D	
	Second:30	0x1E	
	Millisecond: 100	0x00,0x64	
	Microsecond: 200	0x00,0xC8	
Others	reserved	0x00	2
Motor Phase Lock	90	0x005A	2
Others	reserved	0x00	1196
Tail		0x0F,0xF0	2

While setting the device and computer according to this protocol, it is imperative to set all the information listed in the table above. Addressing or writing in with part of the information will lead to invalid setting. The function refreshes the moment the correspondent parameter is changed, but the network parameters only take effect when the next initialization of device is started.

RSVIEW provides the configuration UI, so we suggest to use RSVIEW to configure the RS-LiDAE-16.

6 GPS Synchronization

RS-LiDAR-16 supports external GPS receiver connections. With GPS connections, we can synchronize the RS-LiDAR-16 system time and also pack the GPSRMC message into DIFOP packets.

6.1 GPS Synchronization Theory

The GPS receiver keeps generating synchronization Pulse Per Second (PPS) signal and GPSRMC message and send them to the sensor. The pulse width of the PPS should between 20ms to 200ms, and the GPSRMC message should be received within 500ms after the PPS signal is generated.

6.2 GPS Usage

The GPS interface on the Interface BOX is SH1.0-6P female connector, the pin definition is as shown in Figure 3.

Pin GPS REC receive the data that is 3.3V TTL standard from GPS module serial port.

Pin GPS PULSE receive the PPS from GPS module.

Pin +5V can supply the power for GPS module. (Please do not connect the GPS into the +5V pin if the GPS is 3.3V power supply. And also please do not input the power into the +5V pin beacause the pin is an output.)

Pin GND provide the ground connection for GPS module.

The GPS module should set to 9600bps baud rate, 8 bit data bit, no parity and 1 stop bit. RS-LiDAR-16 only read the GPSRMC message from GPS module., the GPSMRC message format is shown as below:

\$GPRMC,<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,<10>,<11>,<12>*hh

- <1> UTC time
- <2> validity A-ok, V-invalid
- <3> Latitude
- <4> North/South
- <5> Longitude
- <6> East/West
- <7> Ground Speed
- <8> True course
- <9> UTC date
- <10> Variation
- <11> East/West
- <12> Mode (A/D/E/N=)
- *hh checksum from \$ to *

Different GPS module may send out different length GPSRMC message, the RS-LiDAR-16 reserve 86byte space for GPRMC message, so it can be compatible with the majority GPS module in the market.

7 Phase Lock

When using multiple RS-LiDAR-16 sensors in proximity to one another, users may observe interference between them due to one sensor picking up a reflection intended for another. To minimize this interference, RS-LiDAR-16 provides a phase-locking feature that enables the user to control where the lase firings overlap.

The Phase Lock feature can be used to synchronize the relative rotational position of multiple sensors based on the PPS signal and relative orientation. To operate correctly, the PPS signal must be present and locked. Phase locking works by offsetting the rising edge of the PPS signal.

Figure 7 Phase Offset 0° /135° /270°

The red arrows in Figure 8 above indicate the firing direction of the sensor's laser at the moment it receives the rising edge of the PPS signal.

In the **Tools > RS-LiDAR Information** of RSVIEW, we can set the Phase Lock angle from 0 to 359.

8 Point Cloud

8.1 Coordinate Mapping

RS-LiDAR-16 exports data packet that contains azimuth value and distance data. But to present a 3 dimensional point cloud effect, a transformation of the azimuth value and distance data into x, y, z coordinates in accordance to Cartesian Coordinate System is necessary. The function of how to transfer the information is as shown below:

$$\begin{cases} x = r\cos(\omega)\sin(\alpha); \\ y = r\cos(\omega)\cos(\alpha); \\ z = r\sin(\omega); \end{cases}$$

Here r is the reported distance, ω is the vertical/elevation angle of the laser(which is fixed and is given by the Laser ID), and ω is the horizontal angle/azimuth reported at the beginning of every other firing sequence. x, y, z values are the projection of the polar coordinates on the XYZ Cartesian Coordinate System.

Figure 8 Coordinate Mapping

Note 1: In the RS-LiDAR-16 ROS package, we use a coordinate transformation by default to compatible with the ROS right-handed coordinate system: ROS-X axis is the Y axis as Figure 8, while ROS-Y axis is -X axis as Figure 80, Z axis keep the same.

Note 2: The origin of the LiDAR coordinate is defined at the center of the LiDAR structure, with 39.8mm high to the bottom of the LiDAR.

8.2 Point Cloud Presentation

In a circular arena, as the RS-LiDAR-16 rotates, the scanning path of the 16 laser beams plots 16 conical scanning surfaces with 8 face upward and 8 face downward, and the point cloud produced are the section line between these conical surfaces and the floor which are circles. While in non-circular environments, the point cloud

produced are the section lines of the conical surfaces and the surface of objects. Therefore, in an rectangular environment, the section lines of the conical surfaces and the rectangular planes are hyperbolas as shown in Figure 10.

Figure 9 Contour lines plotted on X, Z coordinates

Figure 10 RS-LiDAR-16 Scanning Illustration

The hyperbolas contour lines phenomenon can also be explain by transforming polar coordinates into orthogonal coordinates. As shown in Figure 11, we deduced the function of a hyperbolas

$$\frac{z^2}{(y\tan(\omega))^2} - \frac{x^2}{y^2} = 1$$
In Figure 13, When y and ω are definite values, $\frac{z^2}{(y\tan(\omega))^2} - \frac{x^2}{y^2} = 1$ indicates a

hyperbola with focus on z coordinate. When y is a definite value, as $\ ^{lpha}$ gains in value, the asymptote slope and eccentricity will decline thereof, which resulted a more curved hyperbola. On the contrary, as $\ ^{lpha}$ loses in value, a more flat hyperbola is resulted. When $\ ^{lpha}$ is a definite value, as y gains in value, the asymptote of the same angle presents same slope, the value of y determines the width between scanning contours.

Figure 11 Hyperbolic Function

9 Laser Channels and Vertical Angles

Figure 12 RS-LiDAR-16 Laser Channels and Vertical Angles

RS-LiDAR-16 has a vertical field of view of -15 ° to +15 ° with a eventful interval of 2 degrees. The 16 laser heads also called as 16 channels. The laser channels and their designated vertical angles are as shown in the Table 8. However, a lot of elements in the assembling process will lead to slight divergence between the actual angle of laser channels and their ideal vertical angle. The calibrated vertical angle can be found from the U disk (path: configuration_data/angle.csv).

Table 9 Laser Channel Number and Their Designated Vertical Angle.

Laser Channel No.	Ideal Vertical Angle			
1	-15			
2	-13			
3	-11			
4	-9			
5	-7			
6	-5			
7	-3			
8	-1			
9	+15			
10	+13			
11	+11			
12	+9			

13	+7
14	+5
15	+3
16	+1

Every sequence of 16 laser firings consumes 50us.

10 Calibrated Reflectivity

RS-LiDAR-16 produces calibrated reflectivity data of objects. Reflectivity of object is largely determined by the property of objects. Reflectivity therefore is an important information for LiDAR to distinguish objects.

RS-LiDAR-16 reports reflectivity values from 0 to 255 with 255 being the reported reflectivity for an ideal reflector. Diffuse reflection reports values from 0 to 100, with the weakest reflectivity reported from black objects and strongest reflectivity reported from white object. Retro- reflector reports values from 101 to 255.

Diffuse Reflector

Figure 13 Reflector Types

Retro-reflector without any coverage

intensity≈255

Retro-reflector covered

with semi-transparent Intensity>100

To calculate each point intensity, we need use the intensity value from MOSP packet and the values from the calibrated reflectivity file. The calibrated reflectivity file can be found from the U disk (path: configuration_data/curves.csv). The calculate code is suggested to refer to the function calibrateIntensity() in rawdata.cc from RS-LiDAR-16 ROS package.

11 Trouble Shooting

This section provides detail on how to troubleshoot your sensor.

Problem	Resolution
Interface BOX red LED	Verify the power connection and polarity
doesn't light or blink	 Verify the power supply satisfy the requirement (at least 2A @ 12V)
Interface BOX red LED lights on but green LED doesn't light or blink	Verify the connection between Interface BOX and LiDAR is solid.
Rotor doesn't spin	Verify the Interface BOX LEDs is okay
	Verify the connection between Interface BOX and LiDAR is solid.
Reboot at the boot time	Verify the power connection and polarity
	 Verify the power supply satisfy the requirement (at least 2A @ 12V)
Unit spin but no data	Verify network wiring is functional.
	Verify receiving computer's network settings.
	Verify packet output using another application (e.g. Wireshark)
	 Verify no security software is installed which may block Ethernet broadcasts.
	Verify input voltage and current draw are in proper ranges
Can see data in Wireshark	Check the no firewall is active on receiving computer.
but not RSVIEW	 Check the receiving computer's IP address is the same as LiDAR destination IP address.
	Check the RSVIEW Data Port setting.
	 Check the RSVIEW installation path and LiDAR configuration files path both do not contain any Chinese characters.
	Check if the wireshark receive the MSOP packets.
Data dropouts	This is nearly always an issue with the network and/or user computer.
	Check the following:
	Is there excessive traffic and/or collisions on network?
	• Are excessive broadcast packets from another service being received by the sensor? This can slow the sensor down

	Is the computer fast enough to keep up with the packet flow coming from
	• the sensor?
	Remove all network devices and test with a computer directly connected to
	• the sensor.
GPS not synchronizing	• Check baud rate is 9600 and serial port set to 8N1 (8 bits, no parity, 1 stop
	• bit).
	Check the signal level is 3.3V TTL
	Check electrical continuity of PPS and serial wiring
	Check incorrect construction of NMEA sentence
	Check the GPS and Interface BOX are connected to the same GND
	Check the GPS receive the valid data
No data via router	Close the DHCP function in router or set the Sensor IP in router configuration
Sensor point cloud data distortion	Check the configuration files is right
A blank region rotate in the	This is the normal phenomenon as the ROS driver use fixed packets quantity to divide display frame. The blank region data will put us in the post frame.
cloud data when using ROS driver	to divide display frame. The blank region data will output in the next frame.
Point cloud data to be a radial	If the computer is windows 10 OS, then run the RSVIEW with windows 7 OS compatible mode

Appendix A - Point Time Calculate

In a MSOP packet, there are 12 blocks, each block has two sequence for the whole 16 laser firings, so in a MOSP packet, there are 24 groups for the whole 16 laser firings. All sixteen lasers are fired and recharged every 50.0 μ s. The cycle time between firing is 3 μ s. There are 16 firings (16 x 3 μ s) followed by a short period of 2 μ s. Therefore, the timing cycle to fire and recharge all 16 lasers is given by ((16 x 2.304 μ s) + (1 x 2 μ s)) = 50 μ s.

Set the channel number data_index is 1-16, firing sequences is 1-24. Because the time stamp is the time of the first data point in the packet, you need to calculate a time offset for each data point and then add this offset to the time stamp.

Time offset is:

To calculate the exact point time, add the TimeOffset to the timestamp:

Exact point time = Timestamp + Time offset

Channel ID Data Block 10 0.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00 800.00 900.00 1000.00 1100.00 3.00 103.00 203.00 303.00 803.00 903.00 1003.00 403.00 503.00 603.00 703.00 6.00 106.00 206.00 306.00 406.00 506.00 606.00 706.00 806.00 906.00 1006.00 1106.00 909.00 1009.00 1109.00 9.00 109.00 209.00 | 309.00 | 409.00 509.00 609.00 709.00 809.00 912.00 1012.00 1112.00 915.00 1015.00 1115.00 212.00 312.00 412.00 15.00 115.00 215.00 | 315.00 | 415.00 515.00 615, 00 715.00 815.00 18.00 118.00 218.00 318.00 418.00 518.00 618.00 718.00 818.00 918.00 1018.00 1118.00 21.00 721.00 First 221.00 321.00 421.00 521.00 621.00 821.00 921.00 1021.00 1121.00 121.00 Firing 924.00 1024.00 1124.00 24.00 124.00 224.00 | 324.00 | 424.00 | 524.00 624.00 724.00 824.00 10 127.00 227.00 327.00 427.00 527.00 927.00 1027.00 1127.00 11 30.00 130.00 230.00 | 330.00 | 430.00 530.00 630.00 730.00 830.00 930.00 | 1030.00 | 1130.00 33.00 133.00 233.00 333.00 433.00 533.00 833.00 933.00 1033.00 1133.00 12 633.00 733.00 13 36.00 136.00 236.00 336.00 436.00 536.00 636.00 736.00 836.00 936.00 1036.00 1136.00 14 39.00 139.00 239.00 339.00 439.00 539.00 639.00 739.00 839.00 939.00 1039.00 1139.00 142.00 242.00 342.00 442.00 942.00 1042.00 1142.00 16 45, 00 145.00 245.00 345.00 445.00 545.00 645.00 745.00 845.00 945.00 1045.00 1145.00 250.00 350.00 450.00 550.00 950.00 1050.00 1150.00 50.00 650.00 750.00 150.00 850.00 153.00 253.00 353.00 453.00 553.00 653.00 753.00 853.00 953.00 1053.00 1153.00 53.00 56.00 156.00 256.00 | 356.00 | 456.00 556.00 | 656.00 756.00 856.00 | 956.00 | 1056.00 | 1156.00 159.00 259.00 359.00 459.00 559.00 759.00 859.00 959.00 1059.00 62.00 162.00 262.00 362.00 462.00 562.00 662.00 762.00 862.00 962.00 1062.00 1162.00 265.00 365.00 465.00 565.00 765.00 865.00 965.00 1065.00 1165.00 65.00 165.00 665.00 268.00 868.00 968.00 1068.00 1168.00 68.00 168.00 368.00 468.00 568.00 668.00 768.00 Second 71.00 171.00 271.00 371.00 471.00 571.00 671.00 771.00 871.00 971.00 | 1071.00 | 1171.00 Firing 74.00 174.00 274.00 374.00 474.00 574.00 674.00 774.00 874.00 974.00 1074.00 10 77.00 177.00 | 277.00 | 377.00 | 477.00 577.00 677.00 777.00 877.00 | 977.00 | 1077.00 | 1177.00 580.00 680.00 780.00 11 80.00 180.00 280.00 380.00 480.00 880.00 980.00 1080.00 1180.00 83.00 183.00 283.00 383.00 483.00 583.00 683.00 783.00 883.00 983.00 1083.00 1183.00 13 86.00 186.00 286.00 | 386.00 | 486.00 | 586.00 686.00 786.00 886.00 | 986.00 | 1086.00 | 1186.00 89.00 189.00 289.00 389.00 489.00 589.00 689.00 789.00 889.00 989.00 1089.00 1189.00 14 292.00 392.00 492.00 192.00 592.00 692.00 792.00 892.00 992.00 1092.00 1192.00 95.00 | 195.00 | 295.00 | 395.00 | 495.00 | 595.00 | 695.00 | 795.00 | 895.00 | 995.00 | 1095.00 | 1195.00

Table A-1 Time Offset for Each Channel

Appendix B • Information Registers

Here are definitions and more details on information registers as mentioned in Section 5.

B.1 Motor (MOT_SPD)

Motor Speed(2 bytes in total)						
Byte No.	byte1	byte2				
Function MOTOR						

Register description:

- (1) This register is used to set the rotation direction and rotation speed.
- (2) The data storage format adopts big endian format.
- (3) Supported rotation speed:

```
(byte1==0x04) && (byte2==0xB0) speed 1200rpm, clockwise rotation;
(byte1==0x02) && (byte2==0x58) speed 600rpm, clockwise rotation;
(byte1==0x01) &&(byte2==0x2C) speed 300rpm, clockwise rotation;
```

If set with data other than the above described, the rotation speed of the motor is 0.

B.2 Ethernet (ETH)

	Ethernet (26 bytes in total)								
Byte No.	byte1	byte2	byte3	byte4	byte5	byte6	byte7	byte8	
Function	LIDAR_IP				nction LIDAR_IP IP_DEST				
Byte No.	byte9	byte10	byte11	byte12	byte13	byte14	byte15	byte16	
Function	MAC_ADDR				port1			rt1	
Byte No.	byte17	byte18	byte19	byte20	byte21	byte22	byte23	byte24	
Function	port2 port3			ро	rt4	ро	port5		
Byte No.	byte25	byte26							
Function	Ро	Port6							

Register description:

- (1) LIDAR_IP is the LiDAR source IP address, it takes 4 bytes.
- (2) DEST_PC_IP is the destination PC IP address, it takes 4 bytes.
- (3) MAC_ADDR is the LiDAR MAC Address.
- (4) port1~port6 signals the number of ports. Port1 and port2 are the MSOP packet ports, we suggested to set them to the same number. Port3 and port4 are the DIFOP packet ports, we suggested to set them to the same number.

B.3 Motor Phase Offset (MOT_PHASE)

Motor Phase Offset (2bytes in total)						
Byth No. byte1 byte2						
Function MOT_PHASE						

Register description: It can be used to adjust the phase offset of the motor with the PPS together. The value can be set from 0 to 360. The data storage format adopts big endian format. For example: the byte1=1, byte2=14, so the motor phase should be 1*256+14 = 270.

B.4 Top Board Firmware (TOP_FRM)

Top Board Firmware (5bytes in total)							
序号	序号 byte1 byte2 Byte3 Byte4 Byte5						
功能 TOP_FRM							

Register description:

If our top board firmware revision is T6R23V6_T6_A, then TOP_FRM will output 06 23 06 06 A0. In the output, the A represent release version Application, while the F represent factory version Factory.

B.5 Bottom Board Firmware (BOT_FRM)

Bottom Board Firmware (5bytes in total)						
序号 byte1 byte2 Byte3 Byte4 Byte5						
功能 BOT_FRM						

Register description:

If our top board firmware revision is B7R14V4_T1_F, then BOT_FRM will output 06 23 06 06 F0. In the output, the A represent release version Application, while the F represent factory version Factory.

B.6 Corrected Pitch (COR_PITCH)

			Correc	ted Pitch(4	48 bytes in t	otal)			
Byte No.	byte1	byte2	byte3	byte4	byte5	byte6	byte7	byte8	Byte9
Function		Channel 1		Channel 2				Channel 3	
Byte No.	byte10	byte10 Byte11 Byte12			Byte14 Byte14 Byte15			Byte17	Byte18
Function	Channel 4				Channel 5			Channel 6	
Byte No.	byte19 byte20 Byte21			Byte22 Byte23 Byte24			Byte25 Byte26 Byte2		
Function		Channel 7		Channel 8				Channel 9	
Byte No.	Byte28	byte29	byte30	Byte31	Byte32	Byte33	Byte34	Byte35	Byte36
Function		Channel 10)	Channel 11			Channel 12		
Byte No.	Byte37	Byte38	byte39	byte40	Byte41	Byte42	Byte43	Byte44	Byte45
Function	Channel 13				Channel 14			Channel 15	
Byte No.	Byte46	Byte47	Byte48						
Function		Channel 16	ŝ						

Register description:

- (1) The storage format of corrected pitch data adopts big endian format.
- (2) LSB = 0.0001°
- (2) The value of the pitch is unsigned integer. Channel 1 to Channel 8 pitches downwards, channel 9 to channel 16 pitches upwards.

For example, the calculation of vertical angle of channel 9:

```
byte1 = 0, byte2 = 39, byte3 = 16,
cor_pitch_9: (0* (256^2) + 39* (256^1) +16) *0.0001 = 1°
```

***At currently, this register is left to N/A, so we need find the angle from U disk (path: configuration_data/angle.csv)

B.7 Serial Number (SN)

Serial Number (6 bytes in total)									
Byte No. 1byte 2byte 3byte 4byte 5byte 6byte									
Function			S	N					

The Serial Number of each device adopts the same format as the MAC_Address, namely, a 6-byte hexadecimal number.

B.8 Software Version (SOFTWARE_VER)

	Software Version (2 bytes in toatal)								
Byte No.	byte1	byte2							
Function	SOFTWARE_VER								

B.9 UTC Time (UTC_TIME)

	UTC Time (8 bytes in total)										
Byte No.	byte1	byte2	byte3	byte4	byte5	byte6	byte7	byte8			
Function	year	month	day	hour	min	sec	ms				
Byte No.	byte9	byte10									
Function	u	IS									

Register description:

(1) Year

	reg name: set_year									
Byte No. bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0										
Function	Function set_year[7:0]: data 0~255 corresponds year 2000 to year 2255.									

(2) month

reg name: set_month										
Byte No. bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0										
Function reserve reserve reserve set_month[3:0]: 1~12 month										

(3) Day

	reg name: set_day										
Byte No. bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0											
Function	reserve	reserve	reserve	set_day[4:0]: 1~31 day							

(4) Hour

	reg name: set_hour										
Byte No. bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0											
Function reserve reserve set_hour[4:0]: 0~23 hour											

(5) Min

	reg name: set_min									
Byte No. bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0										
Function	reserve	reserve		set_min[5:0]: 0~59 min						

(6) Sec

			reg	name: set_	sec			
Byte No.	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
Function	reserve	reserve			set_sec[5:0]	: 0~59 sec		

(7) Ms

	reg name: set_ms										
Byte No.	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8			
Function	reserve	reserve	reserve	reserve	reserve	reserve	ms[9:8]				
Byte No.	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0			
Function		set_ms[7:0]									

Note: set_ms[9:0] value: 0~999

(8) Us

reg name: set_us										
Byte No.	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8		
Function	reserve	reserve	reserve	reserve	reserve	reserve	us[9:8]			
Byte No.	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0		
Function	set_us[7:0]									

Note: set_us[9:0] value: 0~999

B.10 STATUS

Status (18bytes in total)								
Byte No.	byte1	byte2	byte3	byte4	byte5	byte6	byte7	byte8
Function	tion Idat1_reg			Idat2_reg			Vdat_12V_reg	
Byte No.	byte9	byte10	byte11	byte12	byte13	byte14	byte15	byte16
Function	Vdat_12V_M_reg		Vdat_!	5V_reg Vdat_3V3_reg		V3_reg	Vdat_2V5_reg	
Byte No.	17byte	18byte						
Function	unction Vdat_1V2_reg							

Register description:

(1) Idat1 is sensor power supply current, Idat2 is top board power supply current. We use Idat to represent Idat1 or Idat2. Idat_reg contains 3 bytes to be Idat_reg[23:0]. Idat_reg[23] is symbol flag, while Idat_reg[22:0] is current value. The LSB for Idat is 1uA, the formula is as below:

$$Idat = \begin{cases} Idat _reg[22:0] \cdot \dots \cdot (Idat _reg[23] = 0) \\ -Idat _reg[22:0] \cdot \dots \cdot (Idat _reg[23] = 1) \end{cases}$$

For example, if byte1 = 8C, byte2 = D5 and byte3 = 00, then the current value is:

Idat = -Idat_reg[22:0] = -0x0CD500 uA = -840960uA
$$\approx$$
-841mA

(2) We have six different voltage, each voltage register has 2 bytes to be Vdat_reg[15:0]. Vdat_reg[15:12] is invalid, while Vdat[11:0] represent the voltage value. The six different voltage formula is as below: formula

The unit above is volt (V).

B.11 Fault Diagnosis

Fault Diagnosis (40bytes in total)								
Byte No.	byte1	byte2	byte3	byte4	byte5	byte6	byte7	byte8
Function	reserve							
Byte No.	byte9	byte10	Byte11	Byte12	Byte13	Byte14	Byte15	Byte16

Function	reserve		cksum_st	manc_err1		manc_err2		gps_st
Byte No.	Byte17	Byte18	byte19	byte20	Byte21	Byte22	Byte23	Byte24
Function	temperature1_reg		temperature2_reg		temperature3_reg		temperature4_reg	
Byte No.	Byte25	Byte26	Byte27	Byte28	byte29	byte30	Byte31	Byte32
Function	temperature5_reg		reserve					
Byte No.	Byte33	Byte34	Byte35	Byte36	Byte37	Byte38	byte39	byte40
Function	reserve							

Register description:

- (1) chksum_st represents the temperature compensation status. If chksum_st=0, the temperature compensation is working. If chksum_st=0, the temperature compensation is, the temperature compensation is abnormal.
- (2) manc_err1 and manc_err2 are used to calculate the bit error rate of the data communication. manc_err1 represents 1bit error, while manc_err2 represents 2bit error. The error rate formula is as below:

When the manc_err1_per and manc_err1_per are both zero, the system data communication is normal.

(3) Temperature1 and temperature2 represent the bottom board temperature, while temperature3 and temperature4 represent the top board temperature. Each temperature register contains 2 bytes to be temperature_reg[15:0]. temperature_reg[2:0] is invalid. temperature_reg[15:3] is temperature value, while temperature_reg[15] is symbol flag. The temperature formula is as below:

$$temperature 1_4 = \begin{cases} temperature [15:3]/16 & (temperature [15]=0) \\ -((8192-temperature [15:3])/16) & (temperature [15]=1) \end{cases}$$

Temperature5 represents bottom board tempreture. The temperature register contains 2 bytes to be temperature_reg[15:0]. temperature_reg[15:12] is invalid. temperature_reg[11:0] is temperature value, while temperature_reg[15] is symbol flag

$$temperature = \begin{cases} temperature_reg[11:0]/4 & (temperature_reg[11]=0) \\ -(4096-temperature_reg[11:0])/4 & (temperature_reg[11]=1) \end{cases}$$

(4) Byte16 represents the GPS input status register gps_st, this register use 3 bit to describe the validation

for PPS, GPS, and timestamp. The details are shown below:

GPS input status register gps_st						
BIT	Function	Value	Status			
bit0		0	PPS is valid			
	PPS_LOCK	1	PPS is invalid			
bit1	GPRMC 标志:	0	GPRMC is valid			
	GPRMC_LOCK	1	GPRMC is invalid			
bit2	UTC_LOCK	0	LiDAR internal timestamp is not synchronizing the UTC.			

		1	LiDAR internal timestamp is synchronizing the UTC.
bit3~bit7	Reserved	Х	N/A

(5) The reset are used for debug, they are not opened.

B.12ASCII code in GPSRMC Packet

 ${\sf GPSRMC}\ {\sf register}\ {\sf reserve}\ {\sf 86byte}, \ {\sf it}\ {\sf can}\ {\sf store}\ {\sf the}\ {\sf whole}\ {\sf GPSRMC}\ {\sf message}\ {\sf from}\ {\sf GPS}\ {\sf module}\ {\sf in}\ {\sf to}\ {\sf the}\ {\sf register}\ {\sf in}\ {\sf ASCII}\ {\sf code}.$

Appendix C - RSView

This appendix gets you started with RSView. It shows you how to use the application to acquire, visualize, save, and replay sensor data.

You can examine sensor data with other free tools, such as Wireshark or tcp-dump. But to visualize the 3D data, use RSView. It's free and relatively easy to use.

C.1 Features

RSView provides real-time visualization of 3D LiDAR data from RoboSense LiDAR sensors. RSView can also playback pre-recorded data stored in "pcap" (Packet Capture) files, but RSView still does not support .pcapng files.

RSView displays distance measurements from a RoboSense LiDAR sensor as point data. It supports custom-colored display of variables such as intensity-of-return, time, distance, azimuth, and laser ID. The data can be exported as XYZ data in CSV format. RSView is not intended to generate point cloud files in LAS, XYZ, or PLY formats.

Functionality and features include:

- Visualize live streaming sensor data over Ethernet
- Record live sensor data in pcap files
- Visualize sensor data from a recording (pcap file)
- Interprets point data such as distance timestamp, azimuth, laser ID, etc.
- Tabular point data inspector
- Export to CSV format
- Ruler tool
- Display multiple frames of data simultaneously (Trailing Frames)
- Display or hide subsets of lasers
- Crop views

C.2 Install RSView

Installer for RSView is provided for Windows 64-bit system and it has no need for other dependencies. You can find the executable installer RSView_X.X.X_Setup.exe from the U disk in the RS-LiDAR-16 box. Also you can downlaod the latest version from RoboSense website (http://www.robosense.ai/web/resource/en). Launch the installer and follow the on-screen instructions to finish the installation. The installation path should not contain any Chinese character.

C.3 Set up Network

As mentioned in the RS-LiDAR-16 User's Manual, the default IP address of the computer should be set as

192.168.1.102, sub-net mask should be 255.255.255.0. You should make sure that RSView dose not be shielded by firewall in the computer.

C.4 Visualize Streaming Sensor Data

- 1. Connect the sensor to your computer and power it up.
- 2. Right Click to start the RSView application with Run as administrator.
- 3. Click on File > Open and select Sensor Stream (Fig C-1).

Fig C-1 RSView Open Sensor Stream

4. The Sensor Configuration dialog will appear. The application contains a default configuration folder of RSLIDAR-16 called "RSlidar16CorrectionFile" for reference, but please add the right configuration files folder of the RSLIDAR-16 you have, or you will get chaos point cloud display with the default configuration files. Select the configuration files folder of your lidar and then click **OK** (Fig C-2). The path of the folder should only include English characters and should include all three csv files (angle.csv, ChannelNum.csv, curves.csv). You can find the configuration files folder named "configuration_data" in the U disk in the RS-LiDAR-16 package box or you can ask the RoboSense support to get the files. The path contains the configuration files should not contain any Chinese character.

Fig C-2 RSView Select Sensor Correction File

5. RSView begins displaying the sensor data stream (Fig C-3). The stream can be paused by pressing the **Play** button. Press it again to resume streaming.

Fig C-3 RSView Sensor Stream Display

C.5 Capture Streaming Sensor Data to PCAP File

1. Click the **Record** button when streaming (Fig C-4).

Fig C-4 RSView Record Button

2. A Choose Output File dialog will pop up. Navigate to where you want the file to be saved and click the **Save** button (Fig C-5). RSView begins writing packets to your pcap file. (Note: RS-LiDAR-16 sensors generate a lot of data. The pcap file can become quite large if the recording duration is lengthy. Also, it is best to record to a fast, local HDD or SSD, not to a slow subsystem such as a USB storage device or network drive.)

Fig C-5 RSView Record Saving Dialog

3. Recording will continue until the **Record** button is clicked again, which stops the recording and closes the pcap file.

C.6 Replay Captured Sensor Data from PCAP File

To replay (or examine) a pcap file, open it with RSView. You can press **Play** to let it run, or scrub through the data frames with the Scrub slider. Select a set of 3D rendered data points with your mouse and examine the numbers with a Spreadsheet sidebar.

1. Click on File > Open and select Capture File (Fig C-6).

Fig C-6 RSView Open Capture File

2. An Open File dialog will pop up. Navigate to a pcap file, select it, and click the **Open** button.

Fig C-7 Select the PCAP file

- 3. The Sensor Configuration dialog will pop-up. Select your sensor configuration folder and click **OK**.
- 4. Press **Play** to replay/pause the data stream. Use the Scrub slider tool (it looks like an old-fashioned volume slider) to move back and forth through the data frames. Both controls are in the same toolbar as the **Record** button (Fig C-8).

Fig C-8 RSView Play Button

5. To take a closer look at some data, scrub to an interesting frame and click the Spreadsheet button (Fig C-9). A sidebar of tabular data is displayed to the right of the rendered frame, containing all data points in the frame.

Fig C-9 RSView Spreadsheet Tool

6. Adjust the columns to get a better view of the numbers. If you've adjusted columns in Excel, some of this will be familiar. You can change column widths by dragging the column header divider left or right, and by double-clicking them. Drag column headers left or right to reorder them. Sort the table by clicking column headers. And you can make the table itself wider by dragging the table's sides left or right. Make Points_m_XYZ wider to expose the XYZ points themselves.

Fig C-10 RSView Data Point Table

7. Click **Show only selected elements** in the Spreadsheet (Fig C-11). Since no points are selected yet, the table will be empty.

Fig C-11 RSView Show Only Selected Elements

8. Click the **Select All Points** tool. This turns your mouse into a point selection tool(Fig C-12).

Fig C-12 RSView Select All Points

9. In the 3D rendered data pane use your mouse to draw a rectangle around a small number of points. They will immediately populate the data table (Fig C-13).

Fig C-13 RSView List Selected Points

10. At any point you can save a subset of data frames by doing File > Save As > Select Frames.

C.7 RS-LiDAR-16 Factory Firmware Parameters Setting

RSView provide a tool which integrates UCWP function. We can use this tool to modify Rotation Speed, Network and Time in the RS-LiDAR-16 factory firmware

- 1. We need connect RS-LiDAR-16 to the PC and confirm we can view the real time data. Then click **Tools > RS-LiDAR Information**.
- 2. A RS-LiDAR Information dialog will appear. Click **Get** button, it will display the current RS-LiDAR-16 parameters setting.

Fig C-14 RS-LiDAR Information

3. We can modify the parameters to the ones we want to have, then click **Set LiDAR**. We need re-power and connect the RS-LiDAR-16 to make the modified parameters valid. After the device connecting again, we can use RSView to see the RS-LiDAR Information again to check if the modification take effect.

Fig C-15 Set LiDAR information

Fig C-16 Set LiDAR information successful

Attention 1: Please do not power off the sensor when we are setting LiDAR information, it may cause the sensor internal parameters broken.

Attention 2: if we modify the MSOP Port or DIFOP parameters above, we need setting the RSView MSOP Port and DIFOP Port according to C.8 section to make RS-LiDAR-16 can be connected correctly.

C.8 RSView Data Port

In the RS-LiDAR-16 factory firmware, the default MSOP port is 6699, the default DIFOP port is 7788, if we change the RS-LiDAR-16 ports number by modify the 2 parameters in C.7 section, we need configure the RSView Data Port first or we will see nothing in the RSView. If we do not know the RS-LiDAR-16 ports configuration, we can use Wireshark to capture the packets to check the Dst Port.

Click **Tools > Data Port**, enter the real MSOP port and DIFOP port of RS-LiDAR-16, then click **Set Data Port**. After that we can see the cloud point data again in the RSView.

Fig C-17 Data Port Setting

C.9 Firmware Online Update

Before begin firmware online update, we need make sure the RS-LiDAR-16 is working normally, that means we can view the Pointcloud and get LiDAR information in RSVIEW.

Click **Tools > Online Update** , we can select the top board firmware update and bottom board firmware update as shown in Figure C-18.

Fig C-18 Online Update

For example, when we choose "Bottom Board Update", we need direct to choose the .rpd firmware file for update, and then click Open to begin the online update process. The online update process would take some time, if the firmware update successfully, it wll show "Online Update Successful".

Fig C-19 Select the Firmware for Update

Fig C-20 Online Update Successful

C.10 Fault Diagnosis

Before begin firmware online update, we need make sure the RS-LiDAR-16 is working normally, that means we can view the Pointcloud and get LiDAR information in RSVIEW.

Click **Tools > Fault Diagnosis**, the Fault Diagnosis window will pop up. Then we can click Start button to monitor the LiDAR status in real time, including current, voltage, temperature, error rate of the data communication, etc.

Fig C-21 Fault Diagnosis

Appendix D • RS-LiDAR-16 ROS Package

This appendix describes how to use ROS to view the RS-LiDAZR-16 data.

D.1 Prerequisite

- 1. Install Ubuntu 14.04. Please download from ubuntu website and install the ubunut 14.04.
- 2. Please refer the link (http://wiki.ros.org/indigo/Installation/Ubuntu) to install the ROS indigo version.

D.2 Install RS-LiDAR-16 ROS Package

1. Create the work space for ros:

cd ~ mkdir -p catkin_ws/src

2. Copy the ros_rslidar_package into the work space ~/catkin_ws/src. You can find the ros_rslidar package in the U disk in the RS-LiDAR-16 box. You can also ask RoboSense to get these files.

3. Build

cd ~/catkin_ws catkin_make

D.3 Configure PC IP address

For the default RS-LiDAR-16 firmware, it is configured the "192.168.1.200" as its own IP address, and the "192.168.1.102" as its destination PC IP address. So we need set the PC static IP as "192.168.1.102" and the net mask as "255.255.255.0", while the gateway address is not necessary. After configuration, we can use "ifconfig" command to check if the IP is work.

D.4 View the real time data

- 1. Connect the RS-LiDAR-16 to your PC via RJ45 cable, and power on it.
- 2. We have provided an example launch file named "rs_lidar_16.launch" under rslidar_pointcloud/launch to start the node, we can run the launch file to view the real time point cloud data. Open an terminal:

cd ~/catkin_ws source devel/setup.bash roslaunch rslidar_pointcloud rs_lidar_16.launch

3. Open a new terminal:

rviz

Set the Fixed Frame to "rslidar". Add a Pointcloud2 type and set the topic to "rslidar_points":

D.5 View the recorded pcap file offline

We can also use the ros_rslidar ROS package to view the recorded .pcap data.

1. Modify the "rs_lidar_16.launch" file to something like below (please pay attention to the red line):

<pre><param name="channel_path" value="\$(find rslidar_pointcloud)/data/rs_lidar_16/ChannelNum.csv"/></pre>
2. Open an teminal:
cd ~/catkin_ws
source devel/setup.bash
roslaunch rslidar_pointcloud rs_lidar_16.launch
3. Open a new terminal and run:
ruig

Appendix E • Dimensions

Appendix F LiDAR Mechanical Installation Suggestion

Please make sure the platform surface used for mount LiDAR is smooth as possible.

Please make sure the locating pin on the mount surface do exceed 4mm high.

The material of the mount platform is suggested to be aluminum alloy in order to thermolysis.

We do not suggest to mount the LiDAR in a tilt position that the tilt angle exceed 90 degree, this will reduce the sensor life time..

When we route the LiDAR cable in the mount device, we need keep the cable a little slack..

Appendix G How to Distinguish the Port Number of MSOP and DIFOP Packets

According to the Chapter 5, RS-LiDAR-16 outputs MSOP packets and DIFOP packets. We can use the Wireshark software to filter the MSOP packets or DIFOP packets so that we can know which port number the packets send to. After that we can set the Data Port in the RSVIEW.

We first need connect the RS-LiDAR-16 to the PC and power on the RS-LiDAR-16. The we can start the Wireshark and select the right network to begin capturing the packets.

In the Display Filter, we can enter **data.data[0:1]==55** expression to filter the MSOP packets, then we can see the port number in the Info column, as shown in Fig F-1.

In the Display Filter, we can enter **data.data[0:1]==a5** expression to filter the DIFOP packets, then we can see the port number in the Info column, as shown in Fig F-2.

Fig F-1 Wireshark filter the MSOP packets

Fig F-2 Wireshark filter the DIFOP packets

Appendix H Sensor clean

Please make sure the platform surface used for mount LiDAR is smooth as possible.

Please make sure the locating pin on the mount surface do exceed 4mm high.

The material of the mount platform is suggested to be aluminum alloy in order to thermolysis.

We do not suggest to mount the LiDAR in a tilt position that the tilt angle exceed 90 degree, this will reduce the sensor life time..

H.1 Attention

Please read through this entire Appendix H content before clean the RS-LiDAR. Improper handling can permanently damage it.

H.2 Require Materials

- 1. Clean microfiber cloths
- 2. Mild, liquid dish-washing soap
- 3. Spray bottle with warm, clean water
- 4. Spray bottle with warm, mildly soapy water
- 5. Isopropyl alcohol

H.3 Clean Method

If the sensor is just covered by dust, use a clean microfiber cloth with a little isopropyl alcohol to clean the sensor directly, then dry with another clean microfiber cloths.

If the sensor is caked with mud or bugs, use a spray bottle with clean, warm water to loosen any debris from it. Do not wipe dirt directly off the sensor. Doing so may abrade the surface. Then use warm, mildly-soapy water and gently wipe the sensor with a clean microfiber cloth. Wipe the ring lens gently along the curve of the sensor, not top-to-bottom. To finish, spray the sensor with clean water to rinse off any remaining soap (if necessary, use isopropyl alcohol and a clean microfiber cloth to clean any remaining dirt from the sensor), then dry with another clean microfiber cloth.

400 6325 830

激光雷达 看见大世界 More than what you see

深圳市速腾聚创科技有限公司 Shenzhen Suteng Innovation Technology Co., LTD.

Address: 深圳市南山区桃源街道留仙大道 1213 号众冠红花岭工业南区 1 区速腾科技楼 Robosense Building, Block 1, South of Zhongguan Honghualing Industrial District, No. 1213 Liuxian Avenue, Taoyuan Street, Nanshan District, Shenzhen, China.

Web: www.robosense.ai Tel: 0755-8632-5830 Email: Service@sz-sti.com