

Contrôle continue : N°2

Semestre 2

Matière : Mathématiques Niveau/Classe : T C S

Durée : 2h

Date: 8/04/2023

Année scolaire 2022/23

\mathcal{NB} : l'utilisation de la calculatrice n'est pas autorisée

Exercice 1 8 points

Les questions 1), 2), 3) et 4) sont indépendantes

2 pts 1) Déterminer l'abscisse curviligne principale du point $A\left(\frac{40\pi}{12}\right)$ et représenter le sur le cercle trigonométrique

1 pt 2) Soit $x \in \mathbb{R}$ simplifier $\cos(5\pi + x) + \cos\left(\frac{5\pi}{2} + x\right) - \cos(3\pi + x) + 2\cos\left(\frac{\pi}{2} - x\right)$

2 pts 3) En utilisant le cercle trigonométrique résoudre dans l'intervalle $]-\pi,\pi]$ l'inéquation : $\cos x \leq \frac{1}{2}$

4) Soit x un nombre réel tel que $x \neq \frac{\pi}{2} + \frac{k}{2}\pi/k \in \mathbb{Z}$

1 pt a) Montrer que $\frac{1+\tan^2(x)}{\tan^2(x)} = \frac{1}{\sin^2(x)}$

 $\frac{2 \text{ pts}}{2 \text{ pts}} \qquad \text{b) En déduire que } \frac{1}{1-\cos(x)} + \frac{1}{1+\cos(x)} = 2\left(\frac{1+\tan^2(x)}{\tan^2(x)}\right)$

Exercice 2 5 points

Pour tout $x \in \mathbb{R}$ on pose $A(x) = 2\cos^2 x + \cos x - 1$

2 pts 1) Calculer $A(2023\pi)$ et $A\left(\frac{\pi}{4}\right)$

1 pt 2) a) Résoudre dans \mathbb{R} l'équation $2t^2+t-1=0$

 $\frac{2 \text{ pts}}{2}$ b) Résoudre dans $\mathbb R$ l'équation A(x)=0

Exercice 3 7 points

Soit (\mathscr{C}) le cercle de contre O et de rayon $\mathbf{2}$ et de diametre [AB]Soit M un point du cercle (\mathscr{C}) tel que $\widehat{BAM} = \frac{\pi}{8}$ Soit H le projete orthogonale de M sur [AB] (Voir figure)

1 pt 1) a) Montrer que $\widehat{BOM} = \frac{\pi}{4}$

2 pts b) En déduire que $OH = \sqrt{2}$ et $MH = \sqrt{2}$

2 pts 2) a) Démontrer que $AM = 2\sqrt{2 + \sqrt{2}}$

1 pt b) Déduire que $\sin\left(\frac{\pi}{8}\right) = \frac{\sqrt{4+2\sqrt{2}}}{4+2\sqrt{2}}$

1 pt 3) Montrer que l'aire du triangle OAM est $S=2\sqrt{2}$