

AD-A113 756

BROWN UNIV PROVIDENCE RI DEPT OF CHEMISTRY
PREPARATION AND PHOTOELECTRONIC PROPERTIES OF FEW04. (U)

F/G 7/2

APR 82 K SIEBER, K KOURTAKIS, R KERSHAW

N00014-77-C-0387

UNCLASSIFIED

TR-20

NL

For I
AB 5786

END
DATE FILMED
5-82
DTIC

AD A113756

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

(12)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM	
1. REPORT NUMBER 20	2. GOVT ACCESSION NO. 1A 4511	3. RECIPIENT'S CATALOG NUMBER 1256	
4. TITLE (and Subtitle) Preparation and Photoelectronic Properties of FeWO ₄		5. TYPE OF REPORT & PERIOD COVERED	
		6. PERFORMING ORG. REPORT NUMBER 20	
7. AUTHOR(s) K. Sieber, K. Kourtakis, R. Kershaw K. Dwight, and A. Wold		8. CONTRACT OR GRANT NUMBER(s) N00014-77-C-0387	
9. PERFORMING ORGANIZATION NAME AND ADDRESS Professor Aaron Wold Brown University, Department of Chemistry Providence, R. I. 02912		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS NR-359-653	
11. CONTROLLING OFFICE NAME AND ADDRESS Dr. David Nelson, Code 472 Office of Naval Research Arlington, Virginia 22217		12. REPORT DATE April 15, 1982	
		13. NUMBER OF PAGES 14	
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		15. SECURITY CLASS. (of this report)	
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE	
16. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release; Distribution Unlimited			
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)			
18. SUPPLEMENTARY NOTES Submitted to the Materials Research Bulletin			
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Conducting Iron Oxides Wolframites			
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Single crystals and polycrystalline samples of FeWO ₄ were prepared and characterized. From high temperature paramagnetic data, the presence of high spin state Fe ^{II} (3d _{5/2}) was confirmed. Qualitative Seebeck measurements indicated p-type conductivity. The measured room temperature resistivity of single crystals was ~100Ω·cm with an activation energy of .16(2) eV. No appreciable photocurrents were found in 0.2M NaAc at pH = 8.3.			

DTIC
SELECTED
APR 23 1982
H

DTIC COPY

OFFICE OF NAVAL RESEARCH

Contract N00011-77-C-0387

Task No. NR-359-653

TECHNICAL REPORT NO. 20

Preparation and Photoelectronic Properties of FeWO₄

by

K. Sieber, K. Kourtakis, R. Kershaw, K. Dwight, and A. Wold

Department of Chemistry

Brown University

Providence, Rhode Island 02912

Prepared for Publication

in the

Materials Research Bulletin

April 15, 1982

Reproduction in whole or in part is permitted for
any purpose of the United States Government

This document has been approved for public release
and sale; its distribution is unlimited

32 04 23 011

PREPARATION AND PHOTOELECTRONIC PROPERTIES OF FeWO₄

K. Sieber, K. Kourtakis, R. Kershaw, K. Dwight and A. Wold
Department of Chemistry, Brown University
Providence, Rhode Island 02912

ABSTRACT

Single crystals and polycrystalline samples of FeWO₄ were prepared and characterized. From high temperature paramagnetic data, the presence of high spin state FeII(3d⁶) was confirmed. Qualitative Seebeck measurements indicated p-type conductivity. The measured room temperature resistivity of single crystals was ~100 Ω·cm with an activation energy of .16(2) eV. No appreciable photocurrents were found in 0.2M NaAc at pH = 8.3.

Introduction

Iron oxide, α-Fe₂O₃, has a relatively narrow band gap of 2.2 eV which makes it a potential candidate for use as an n-type photoanode. Unfortunately, pure α-Fe₂O₃ is not a photoconductor because of its high resistivity, which results from the presence of iron in only a single valence state. Whereas it has been reported that the electrical conductivity of pure α-Fe₂O₃ can be increased by heating it at high temperatures, the actual phase formed is a surface layer of Fe₃O₄ rather than a non-stoichiometric oxide (1).

Sanchez has shown (2) that α-Fe₂O₃ can be made conducting by the formation of members of the series Fe_{2-x}Ge_xO₃ (0.05 > x > 0). He concluded that the polycrystalline iron oxide doped with Si or Ge could be used as a photoanode in a photoelectrochemical cell, but that the photocurrents obtained are too small for practical applications.

In the search for other oxides having relatively small band gaps and also small flat-band potentials, several iron-containing ternary systems

A		By	Distribution	NTIS GRAFILE	Accession For
				DTIC TAB	
			Unannounced	U.S. GOVERNMENT	
			Justification	1	
Dist	Availability C				
Special	Available				

have been investigated (3,4). FeNbO_4 , which crystallizes with the $\alpha\text{-PbO}_2$ structure above 1085°C , showed an appreciable photoresponse, but its flat-band potential of between 0.1 and 0.4V versus SCE at a pH of 8.5 is still too positive. Another ternary iron compound, crystallizing with the wolframite structure, is FeWO_4 . In this material, iron is divalent ($3d^6$), and hence it may be possible to prepare a p-type electrode by introducing acceptor levels above the valence band. Conduction in FeWO_4 is possible since a certain miscibility between $\text{Fe}^{II}\text{WO}_4$ and $\text{Fe}^{III}\text{WO}_6$ is possible (5).

Experimental Procedure

Synthesis

Polycrystalline FeWO_4 was prepared by the direct combination of FeO and WO_3 . The reaction was carried out in a sealed evacuated silica tube at 900°C for 3 days with two intermediate grindings. The FeO was obtained by reacting iron powder (Leico) with Fe_2O_3 (Mapico Red) in sealed evacuated silica tubes for 3 days at 900°C and quenching the tube rapidly in cold water in order to prevent disproportionation of the FeO into Fe and Fe_3O_4 .

Single crystals of FeWO_4 were grown by chemical vapor transport using tellurium(IV) chloride as the transport agent. A concentration of 2.3 mg TeCl_4/cc was used; the temperature of the charge zone was 985°C and that of the growth zone 900°C . Crystal growth proceeded for one week. The thick, irregularly shaped black plates which formed were up to 7 mm on a side. All products were removed from the transport tube, washed immediately with dilute hydrochloric acid, and then rinsed with water and dried with acetone.

Powder diffraction patterns of the polycrystalline starting material and ground single crystal powders were taken using a Philips Norelco diffractometer with monochromatic $\text{CuK}\alpha_1$ radiation from a high-intensity copper source ($\lambda=1.5405\text{\AA}$). Cell parameters were determined from slow-scan (0.25 degree $2\theta/\text{min}$) diffraction patterns over the range $10^\circ \leq 2\theta \leq 70^\circ$; the reflections were indexed and precise lattice parameters were obtained using a least-squares refinement.

The density of polycrystalline FeWO_4 was determined using the hydrostatic technique (5). Perfluoro (1-methyldecalin) was used as the liquid, and its density was calibrated before each measurement with a silicon crystal ($d = 2.328 \text{ g/cm}^3$ at 22°C).

Stability of FeWO_4 towards oxidation was determined by means of thermogravimetric analysis using a Cahn electrobalance (Model RG). The analysis was carried out with an oxygen flow rate of 20 cc/min, over a temperature range of room temperature to 900°C . The rate of heating was maintained at 25°C/hr .

Magnetic measurements were performed using the Faraday balance previously described by Morris and Wold (6). The magnetic susceptibilities of ground single crystal powders were measured from 300 to 800K at a field strength of 10.4 kOe. No corrections were made for core diamagnetism.

The resistivities of the samples were measured using the van der Pauw technique (7). Contacts were made by the ultrasonic soldering of indium onto the samples, and their ohmic behaviors were established by measuring their current-voltage characteristics. The sign of the majority carriers was determined from qualitative measurements of the Seebeck effect.

Results and Discussion

The commonly accepted space group for the wolframite structure is $P2/c$, and the parameters obtained from x-ray diffraction patterns of FeWO_4 given in Table I are found to be in reasonable agreement with earlier reported values. There was reasonably good agreement (within 3%) between the measured density of polycrystalline FeWO_4 (7.75 g/cm^3 at 22°C) and the value calculated from the cell parameters ($d = 7.52 \text{ g/cm}^3$).

The stability of FeWO_4 towards oxidation was determined by means of thermogravimetric analysis. The products obtained after heating a powdered sample under an oxygen atmosphere to a temperature of 860°C were Fe_2WO_6 and WO_3 , as identified by x-ray analysis. These results confirm the studies of the oxidation of FeWO_4 , as reported by Berman and Campbell (8).

The high-temperature paramagnetic data for FeWO_4 are shown in Fig. 1, and indicate ideal Curie behavior. The molar Curie constant obtained from Fig. 2 was $C_M = 3.33$, with $\mu_{\text{eff}} = 5.16\mu_B$. This compares with a calculated value of $\mu_{\text{eff}} = 4.9\mu_B$ assuming a spin-only moment for high spin state $\text{Fe}^{II}(3d^6)$. These results are in agreement with those reported by Ulku (9) from neutron diffraction measurements. His results indicated an effective moment of $5.29\mu_B$ per iron atom.

Electrical conductivity was measured on single crystals of FeWO_4 from liquid nitrogen to room temperature, and the results are shown in Fig. 2.

FIG. 1
Temperature dependence of the molar magnetic susceptibility of FeWO_4 , giving $\mu_{\text{eff}} = 5.16\mu_B$.

FIG. 2
Temperature dependence of the electrical conductivity of FeWO_4 , giving an activation energy of $0.16(2) \text{ eV}$.

The activation energy (E_a) was determined to be .16(2) eV and is in good agreement with previously reported results (10). From qualitative Seebeck measurements, the crystals were shown to be p-type so that photoelectrodes of this material should act as photocathodes. However, it was found that no appreciable photocurrents were produced in 0.2M NaAc at pH = 8.3. This raises the question as to whether compounds containing only Fe^{2+} are capable of acting as p-type photocathodes for the photodecomposition of water.

TABLE I
CRYSTALLOGRAPHIC PARAMETERS FOR FeWO_4

<u>Sample</u>	<u>a (Å)</u>	<u>b (Å)</u>	<u>c (Å)</u>	<u>β</u>	<u>$V (\text{\AA}^3)$</u>
Synth. polycryst.	4.734(1)	5.709(1)	4.963(1)	90	134.1
Synth. ground crystals	4.730(1)	5.708(1)	4.963(1)	90	134.0
Synth. polycryst. (11)	4.733(2)	5.709(2)	4.964(3)	90	134.1
Synth. polycryst. (12)	4.724	5.705	4.961	90	133.7
Synth. polycryst. (10)	4.71	5.70	4.97	90	133.4
Nat. ground crystal (9)	4.730(3)	5.703(2)	4.952(2)	90	133.6
Nat. single crystal (13)	4.750	5.720	4.97	$90^\circ 10'$	135

Acknowledgements

The authors would like to thank the Office of Naval Research, Arlington, Virginia, for the support of Kurt Sieber and Kirby Dwight. Acknowledgement is also made to the Materials Research Laboratory Program at Brown University.

References

1. P. Merchant, R. Collins, R. Kershaw, K. Dwight, and A. Wold; J. Solid State Chemistry 27, 307 (1979).
2. H.L. Sanchez, H. Steinfink, and H.S. White; J. Solid State Chemistry 41, 90 (1982).
3. J. Koenitzer, B. Khazai, J. Hormadaly, R. Kershaw, K. Dwight and A. Wold; J. Solid State Chemistry 35, 128 (1980).
4. H. Leiva, K. Dwight and A. Wold; J. Solid State Chemistry 42 No. 1 (1982).
5. R.L. Adams, Ph.D. Thesis, Brown University, 1973.
6. B. Morris and A. Wold; Rev. Sci. Instrum. 39, 1937 (1968).
7. L.J. van der Pauw; Philips Res. Rep. 13, 1 (1968).
8. J. Berman and W. Campbell; U.S. Bureau Mines Rep. Invest. 5300, 14P (1957).
9. D. Ülku; Zeit. Krist. 124, 192 (1967).

10. Y. Noda, M. Shimada, M. Koizumi and F. Kanamaru; J. Solid State Chemistry 28, 379 (1979).
11. L.C. Hsu; American Minerologist 61, 944 (1976).
12. A.W. Sleight; Acta Cryst. B28, 2899 (1972).
13. H. Cid-Dresdner and C. Escobar; Zeit. Krist. 127, 61 (1968).

FeWO_4

$\chi^{-1} (\text{emu/mol})^{-1}$

TECHNICAL REPORT DISTRIBUTION LIST, GEN

<u>No.</u> <u>Copies</u>	<u>No.</u> <u>Copies</u>		
Office of Naval Research Attn: Code 472 300 North Quincy Street Arlington, Virginia 22217	2	U.S. Army Research Office Attn: CRD-AA-IP P.O. Box 1211 Research Triangle Park, N.C. 27709	1
ONR Western Regional Office Attn: Dr. R. J. Marcus 1030 East Green Street Pasadena, California 91106	1	Naval Ocean Systems Center Attn: Mr. Joe McCartney San Diego, California 92152	1
ONR Eastern Regional Office Attn: Dr. L. H. Peebles Building 114, Section D 666 Summer Street Boston, Massachusetts 02210	1	Naval Weapons Center Attn: Dr. A. B. Amster, Chemistry Division China Lake, California 93555	1
Director, Naval Research Laboratory Attn: Code 6100 Washington, D.C. 20390	1	Naval Civil Engineering Laboratory Attn: Dr. R. W. Drisko Port Hueneme, California 93401	1
The Assistant Secretary of the Navy (RE&S) Department of the Navy Room 4E736, Pentagon Washington, D.C. 20350	1	Department of Physics & Chemistry Naval Postgraduate School Monterey, California 93940	1
Commander, Naval Air Systems Command Attn: Code 3100 (H. Rosenwasser) Department of the Navy Washington, D.C. 20360	1	Scientific Advisor Commandant of the Marine Corps (Code RD-1) Washington, D.C. 20380	1
Defense Technical Information Center Building 5, Cameron Station Alexandria, Virginia 22314	12	Naval Ship Research and Development Center Attn: Dr. G. Bosmajian, Applied Chemistry Division Annapolis, Maryland 21401	1
Dr. Fred Saalfeld Chemistry Division, Code 6100 Naval Research Laboratory Washington, D.C. 20375	1	Naval Ocean Systems Center Attn: Dr. S. Yamamoto, Marine Sciences Division San Diego, California 91232	1
		Mr. John Boyle Materials Branch Naval Ship Engineering Center Philadelphia, Pennsylvania 19112	1

TECHNICAL REPORT DISTRIBUTION LIST, 359

<u>No.</u> <u>Copies</u>	<u>No.</u> <u>Copies</u>		
Dr. A. B. Ellis Chemistry Department University of Wisconsin Madison, Wisconsin 53706	1	Dr. R. P. Van Duyne Department of Chemistry Northwestern University Evanston, Illinois 60201	1
Dr. M. Wrighton Chemistry Department Massachusetts Institute of Technology Cambridge, Massachusetts 02139	1	Dr. B. Stanley Pons Department of Chemistry University of Alberta Edmonton, Alberta CANADA T6G 2G2	1
Larry E. Plew Naval Weapons Support Center Code 30736, Building 2906 Crane, Indiana 47522	1	Dr. Michael J. Weaver Department of Chemistry Michigan State University East Lansing, Michigan 48824	1
S. Ruby DOE (STOR) 600 E Street Washington, D.C. 20545	1	Dr. R. David Rauh EIC Corporation 55 Chapel Street Newton, Massachusetts 02158	1
Dr. Aaron Wold Brown University Department of Chemistry Providence, Rhode Island 02192	1	Dr. J. David Margerum Research Laboratories Division Hughes Aircraft Company 3011 Malibu Canyon Road Malibu, California 90265	1
Dr. R. C. Chudacek McGraw-Edison Company Edison Battery Division Post Office Box 28 Bloomfield, New Jersey 07003	1	Dr. Martin Fleischmann Department of Chemistry University of Southampton Southampton SO9 5NH England	1
Dr. A. J. Bard University of Texas Department of Chemistry Austin, Texas 78712	1	Dr. Janet Osteryoung Department of Chemistry State University of New York at Buffalo Buffalo, New York 14214	1
Dr. M. M. Nicholson Electronics Research Center Rockwell International 3370 Miraloma Avenue Anaheim, California	1	Dr. R. A. Osteryoung Department of Chemistry State University of New York at Buffalo Buffalo, New York 14214	1
Dr. Donald W. Ernst Naval Surface Weapons Center Code R-33 White Oak Laboratory Silver Spring, Maryland 20910	1	Mr. James R. Moden Naval Underwater Systems Center Code 3632 Newport, Rhode Island 02840	1

TECHNICAL REPORT DISTRIBUTION LIST, 359

<u>No.</u> <u>Copies</u>	<u>No.</u> <u>Copies</u>		
Dr. Paul Delahay Department of Chemistry New York University New York, New York 10003	1	Dr. P. J. Hendra Department of Chemistry University of Southampton Southampton SO9 5NH United Kingdom	1
Dr. E. Yeager Department of Chemistry Case Western Reserve University Cleveland, Ohio 41106	1	Dr. Sam Perone Department of Chemistry Purdue University West Lafayette, Indiana 47907	1
Dr. D. N. Bennion Department of Chemical Engineering Brigham Young University Provo, Utah 84602	1	Dr. Royce W. Murray Department of Chemistry University of North Carolina Chapel Hill, North Carolina 27514	1
Dr. R. A. Marcus Department of Chemistry California Institute of Technology Pasadena, California 91125	1	Naval Ocean Systems Center Attn: Technical Library San Diego, California 92152	1
Dr. J. J. Auborn Bell Laboratories Murray Hill, New Jersey 07974	1	Dr. C. E. Mueller The Electrochemistry Branch Materials Division, Research & Technology Department Naval Surface Weapons Center White Oak Laboratory Silver Spring, Maryland 20910	1
Dr. Adam Heller Bell Laboratories Murray Hill, New Jersey 07974	1	Dr. G. Goodman Globe-Union Incorporated 5757 North Green Bay Avenue Milwaukee, Wisconsin 53201	1
Dr. T. Katan Lockheed Missiles & Space Co., Inc. P.O. Box 504 Sunnyvale, California 94088	1	Dr. J. Boechler Electrochimica Corporation Attention: Technical Library 2485 Charleston Road Mountain View, California 94040	1
Dr. Joseph Singer, Code 302-1 NASA-Lewis 21000 Brookpark Road Cleveland, Ohio 44135	1	Dr. P. P. Schmidt Department of Chemistry Oakland University Rochester, Michigan 48063	1
Dr. B. Brummer EIC Incorporated 55 Chapel Street Newton, Massachusetts 02158	1	Dr. H. Richtol Chemistry Department Rensselaer Polytechnic Institute Troy, New York 12181	1
Library P. R. Mallory and Company, Inc. Northwest Industrial Park Burlington, Massachusetts 01803	1		

TECHNICAL REPORT DISTRIBUTION LIST, 359

<u>No.</u> <u>Copies</u>	<u>No.</u> <u>Copies</u>		
Dr. R. Nowak Naval Research Laboratory Code 6130 Washington, D.C. 20375	1	Dr. Bernard Spielvogel U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709	1
Dr. John F. Houlihan Shenango Valley Campus Pennsylvania State University Sharon, Pennsylvania 16146	1	Dr. Denton Elliott Air Force Office of Scientific Research Bolling AFB Washington, DC 20332	1
Dr. D. F. Shriver Department of Chemistry Northwestern University Evanston, Illinois 60201	1	Dr. David Aikens Chemistry Department Rensselaer Polytechnic Institute Troy, NY 12181	1
Dr. D. H. Whitmore Department of Materials Science Northwestern University Evanston, Illinois 60201	1	Dr. A. P. B. Lever Chemistry Department York University Downsview, Ontario M3J1P3 Canada	1
Dr. Alan Bewick Department of Chemistry The University Southampton, SO9 5NH England	1	Mr. Maurice F. Murphy Naval Sea Systems Command 63R32 2221 Jefferson Davis Highway Arlington, VA 20360	1
Dr. A. Himy NAVSEA-5433 NC #4 2541 Jefferson Davis Highway Arlington, Virginia 20362	1	Dr. Stanislaw Szpak Naval Ocean Systems Center Code 6343 San Diego, CA 95152	1
Dr. John Kincaid Department of the Navy Strategic Systems Project Office Room 901 Washington, DC 20376	1	Dr. Gregory Farrington Department of Materials Science & Engineering University of Pennsylvania Philadelphia, PA 19104	1
M. L. Robertson Manager, Electrochemical Power Sonices Division Naval Weapons Support Center Crane, Indiana 47522	1	Dr. Bruce Dunn Department of Engineering & Applied Science University of California Los Angeles, CA 90024	1
Dr. Elton Cairns Energy & Environment Division Lawrence Berkeley Laboratory University of California Berkeley, California 94720	1		

TECHNICAL REPORT DISTRIBUTION LIST, 359No.
Copies

Dr. Micha Tomkiewicz
Department of Physics
Brooklyn College
Brooklyn, NY 11210 1

Dr. Lesser Blum
Department of Physics
University of Puerto Rico
Rio Piedras, PR 00931 1

Dr. Joseph Gordon II
IBM Corporation
K33/281
5600 Cottle Road
San Jose, CA 95193 1

Dr. Robert Somoano
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA 91103 1