CS304 - Homework 2

The answers of each question are given at the end of each part so that you can check your solutions.

Part 1 – Gradient Descent

Consider the nonlinear error surface $E(u, v) = (ue^v - 2ve^{-u})^2$. We start at the point (u, v) = (1,1) and minimize this error using gradient descent in the uv space. Use $\eta = 0.1$ (learning rate, not step size).

- 1. What is the partial derivative of E(u, v) with respect to u, i.e., $\frac{\partial E}{\partial u}$?
 - (a) $(ue^v 2ve^{-u})^2$
 - (b) $2(ue^v 2ve^{-u})$
 - (c) $2(e^v + 2ve^{-u})$
 - (d) $2(e^v 2ve^{-u})(ue^v 2ve^{-u})$
 - (e) $2(e^v + 2ve^{-u})(ue^v 2ve^{-u})$
- 2. How many iterations (among given choices) does it take for the error E(u, v) to fall below 10^{-14} for the first time? In your programs, make sure to use double precision to get the needed accuracy.
 - (a) 1
 - (b) 3
 - (c) 5
 - (d) 10
 - (e) 17
- 3. After running enough iterations such that the error has just dropped below 10^{-14} , what are the closest values (in Euclidean distance) among the following choices to the final (u, v) you got in problem 2?
 - (a) (1.000, 1.000)
 - (b) (0.713,0.045)
 - (c) (0.016,0.112)
 - (d) (-0.083, 0.029)
 - (e) (0.045,0.024)
- 4. Now, we will compare the performance of "coordinate descent." In each iteration, we have two steps along the 2 coordinates. Step 1 is to move only along the u coordinate to reduce the error (assume first-order approximation holds like in gradient descent), and step 2 is to reevaluate and move only along the v coordinate to reduce the error (again, assume first-order approximation holds). Use the same learning rate of $\eta = 0.1$ as we did in gradient descent. What will the error E(u, v) be closest to after 15 full iterations (30 steps)?
 - (a) 10^{-1}
 - (b) 10^{-7}
 - (c) 10^{-14}
 - (d) 10^{-17}
 - (e) 10^{-20}

Solutions: 1-(e), 2-(d), 3-(e), 4-(a)

Part 2 – Support Vector Machines

We will apply soft-margin SVM to handwritten digits from the processed US Postal Service Zip Code data set given in the files "features_train.txt" and "features_test.txt". Each row consists of three numbers representing: digit intensity symmetry.

We will train two types of binary classifiers: i) one-versus-one (one digit class +1 and the other digit class -1), with the rest of the digits disregarded), and ii) one-versus-all (one digit class +1 and the rest of the digits are class -1).

When evaluating the training error (E_{train}) and test error (E_{test}) of the resulting classifier, use binary classification error.

Pracitical remarks:

- (i) You may use the np.loadtxt() method to read the .txt files as numpy arrays
- (ii) For the purpose of this homework, do not scale the data, otherwise you may get different results.
- (iii) Use the SVC class of scikit-learn library:

 https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

 https://scikit-learn.org/stable/modules/svm.html#svm-classification
- The Kernel Functions are defined as: https://scikit-learn.org/stable/modules/svm.html#svm-kernels
 (iv) In 10-fold cross validation, if the data size is not a multiple of 10, the sizes of the 10 subsets may be off

Polynomial Kernels

by 1 data point.

Consider the polynomial kernel $K(\mathbf{x}_n, \mathbf{x}_m) = (1 + \mathbf{x}_n^T \mathbf{x}_m)^Q$, where Q is the degree of the polynomial.

Note: Call the SVC class using parameters gamma = 1.0 and coef0= 1.0 since the polynomial kernel in scikit learn is defined as: $K(\mathbf{x}_n, \mathbf{x}_m) = (\gamma \mathbf{x}_n^T \mathbf{x}_m + r)^Q$ where r is defined by coef0. svm.SVC (C=C param, kernel="poly", degree=Q param, gamma=1.0, coef0 = 1.0)

- 1. With C = 0.01 and Q = 2, which of the following classifiers has the **highest** E_{train} ?
 - (a) 0 versus all
 - (b) 2 versus all
 - (c) 4 versus all
 - (d) 6 versus all
 - (e) 8 versus all
- 2. With C = 0.01 and Q = 2, which of the following classifiers has the **lowest** E_{train} ?
 - (a) 1 versus all
 - (b) 3 versus all
 - (c) 5 versus all
 - (d) 7 versus all
 - (e) 9 versus all
- 3. Comparing the two selected classifiers from Problems 1 and 2, which of the following values is the closest to the difference between the number of support vectors of these two classifiers?
 - (a) 600
 - (b) 1200
 - (c) 1800
 - (d) 2400
 - (e) 3000

- 4. Consider the 1 versus 5 classifier with Q=2 and $C \in \{0.001, 0.01, 0.1, 1\}$. Which of the following statements is correct? Going up or down means strictly so.
 - (a) The number of support vectors goes down when C goes up.
 - (b) The number of support vectors goes up when C goes up.
 - (c) E_{test} goes down when C goes up.
 - (d) Maximum C achieves the lowest E_{train} .
 - (e) None of the above.
- 5. In the 1 versus 5 classifier, comparing Q = 2 with Q = 5, which of the following statements is correct?
 - (a) When C = 0.0001, E_{train} is higher at Q = 5.
 - (b) When C = 0.001, the number of support vectors is lower at Q = 5.
 - (c) When C = 0.01, E_{train} is higher at Q = 5.
 - (d) When C = 1, E_{test} is lower at Q = 5.

Cross Validation

In the next two problems, we will experiment with 10-fold cross validation for the polynomial kernel. Because E_{cv} is a random variable that depends on the random partition of the data, we will try 100 runs with different partitions and base our answer on how many runs lead to a particular choice.

Note:

You can use the sklearn.model selection. Kfold class for this cross validation:

https://scikit-learn.org/stable/modules/cross_validation.html#k-fold

https://scikit-

learn.org/stable/modules/generated/sklearn.model selection.KFold.html#sklearn.model selection.KFold

- 6. Consider the 1 versus 5 classifier with Q=2. We use E_{cv} to select $C \in \{0.0001, 0.001, 0.01, 0.1, 1\}$. If there is a tie in E_{cv} , select the smaller C. Within the 100 random runs, which of the following statements is correct?
 - (a) C = 0.0001 is selected most often.
 - (b) C = 0.001 is selected most often.
 - (c) C = 0.01 is selected most often.
 - (d) C = 0.1 is selected most often.
 - (e) C = 1 is selected most often.
- 7. Again, consider the 1 versus 5 classifier with Q=2. For the winning selection in the previous problem, the average value of E_{cv} over the 100 runs is closest to
 - (a) 0.001
 - (b) 0.003
 - (c) 0.005
 - (d) 0.007
 - (e) 0.009

RBF Kernel

Consider the radial basis function (RBF) kernel $K(x_n, x_m) = exp(-||x_n - x_m||^2)$ in the soft-margin SVM approach. Focus on the 1 versus 5 classifier.

- 8. Which of the following values of C results in the lowest E_{train} ?
 - (a) C = 0.01
 - (b) C = 1
 - (c) C = 100
 - (d) $C = 10^4$
 - (e) $C = 10^6$
- 9. Which of the following values of C results in the lowest E_{test} ?
 - (a) C = 0.01
 - (b) C = 1
 - (c) C = 100
 - (d) $C = 10^4$
 - (e) $C = 10^6$

Solutions: 1-(a), 2-(a), 3-(c), 4-(d), 5-(b), 6-(b), 7-(c), 8-(e), 9- (c)

References

- [1] Ski-kit learn library: https://scikit-learn.org/stable/user_guide.html
- [2] Learning from Data course: https://work.caltech.edu/telecourse.html