Tema 4. Análisis sintáctico descendente

- 1. Gramáticas LL(1).
- 2. Cálculo de Primeros y Siguientes.
- 3. Tabla y análisis sintáctico LL(1).
- 4. Transformaciones de gramáticas.
- 5. A.S. Descendente Recursivo

1. Gramáticas LL(1)

Primeros y Siguientes

PRIMEROS:
$$(N \cup \Sigma)^* \longrightarrow P(\Sigma \cup \{\epsilon\})$$

PRIM $(\alpha) = \{x \in \Sigma \mid \alpha \Rightarrow^* x \beta\} \cup \{\epsilon \mid \alpha \Rightarrow^* \epsilon\}$
 $\alpha, \beta \in (N \cup \Sigma)^*$

SIGUIENTES:
$$N \longrightarrow P(\Sigma \cup \{\$\})$$

SIG $(A)=\{x \in \Sigma \mid S \Rightarrow^* \alpha \ Ax \ \beta\} \cup \{\$ \mid S \Rightarrow^* \alpha A\}$
 $\alpha, \beta \in (N \cup \Sigma)^*; A \in N$

Condición LL(1)

Una gramática independiente del contexto es **LL(1)**, si para cualquier par de producciones

$$(A \rightarrow \alpha \ y \ A \rightarrow \beta)$$
 se cumple la condición:

Prim (
$$\alpha$$
 Sig (A)) \cap Prim (β Sig (A)) = \emptyset

Proposición 1:

Si una gramática es LL(1) entonces no es ambigua.

Proposición 2:

Si una gramática es LL(1) entonces no es recursiva a izquierdas.

2. Cálculo de Primeros y Siguientes

Función Primeros

```
Función Primeros (x \in (N \cup \Sigma)^*): Conjunto de (\Sigma \cup \{\varepsilon\})
<u>Dada</u> G = (N, \Sigma, P, S); <u>con</u> PRIM: Conjunto de (\Sigma \cup \{\varepsilon\})
     PRIM := \emptyset;
     \underline{Si} \times \in (\Sigma \cup \{\epsilon\}) \ \underline{ent} \qquad PRIM := \{x\}
                                                                                         Terminal
     Si \times \in \mathbb{N} ent
                                                      Auxiliar
          Para toda (x \rightarrow \alpha) \in P hacer PRIM := PRIM \cup Primeros(\alpha)
     Si \times = X_1 X_2 \dots X_m \land m > 1 ent
                                                                                         Cadena
             i := 1
             Mientras (i < m) ∧ (ε ∈ Primeros(x_i)) hacer
                     PRIM := PRIM \cup (Primeros(x_i) - \{\epsilon\});
                     i := i + 1;
           PRIM := PRIM \cup (Primeros(x_i));
Devolver PRIM
```

$$S \rightarrow Bb \mid Dc$$
 $B \rightarrow aB \mid \varepsilon$
 $D \rightarrow dD \mid \varepsilon$
 $Prim(S) = Prim(Bb) U Prim(Dc)$
 $Prim(Bb) = Prim(aB b) U Prim(\varepsilon b) = \{a, b\}$
 $Prim(Dc) = Prim(dD c) U Prim(\varepsilon c) = \{d, c\}$
 $Prim(S) = \{a, b\} U \{d, c\} = \{a, b, c, d\}$

Recalcular tras añadir las producciones:

S→Sf	PRIM(S)={a, b, c, d}
S→BD	PRIM(S)={a, b, c, d, f, ε }

Función Siguientes

```
<u>Función</u> Siguientes (A \in N: Conjunto de (\Sigma \cup \{\$\})
<u>Dada</u> G = (N, \Sigma, P, S);
Método
Para todo A \in N hacer Sig[A] = \phi
Sig[S] := {\$};
                                  /* S es el símbolo inicial */
Mientras cambie algún Sig[X] (X \in N) hacer
     Para_toda (B \rightarrow \alpha A \beta) \in P hacer
          Si \beta \Rightarrow^* \epsilon /* \epsilon \in \text{Primeros}(\beta) */
           ent Sig[A] := Sig[A] \cup (Primeros(\beta) - {\epsilon}) \cup Sig[B]
           \underline{\mathsf{sino}} \, \mathsf{Sig}[\mathsf{A}] := \mathsf{Sig}[\mathsf{A}] \cup \mathsf{Primeros}(\beta)
```

Calcular SIG para todos los símbolos no-terminales

E→TE'
E'→
$$\varepsilon$$
 | + TE'
T→ FT'
T'→ ε | * FT'
F→ num | (E) | id

$$PRIM(E')=\{+, \varepsilon\} \rightarrow SIG(T)$$

$$PRIM(T')=\{*, \varepsilon\} \rightarrow SIG(F)$$

Calcular SIG para todos los símbolos no-terminales

$$E \rightarrow T E'$$

$$E' \rightarrow \varepsilon | + T E'$$

$$T \rightarrow F T'$$

$$T' \rightarrow \varepsilon | * F T'$$

$$F \rightarrow \text{num} | (E) | \text{id}$$

$$SIG(E) = \{\$, \}$$

$$SIG(E') = \{\$, \}$$

$$SIG(T') = \{+, \$, \}$$

$$SIG(T') = \{+, \$, \}$$

$$SIG(F) = \{*, +, \$, \}$$

PRIM(E')={ +,
$$\varepsilon$$
 } \rightarrow SIG(T)
PRIM(T')={ *, ε } \rightarrow SIG(F)

3. Tabla y análisis LL(1)

Tabla de Análisis LL(1)

```
<u>Algoritmo</u>
                       Construcción de la T.A. LL(1)
Entrada G = (N, \Sigma, P, S);
<u>Salida</u> TA: (N \cup \Sigma \cup \{\$\}) \times (\Sigma \cup \{\$\}) \longrightarrow \{(r: A \rightarrow \beta), sacar, aceptar, error\}
<u>Método</u>
      Inicializar TA con la acción "error";
      Para toda (r: A \rightarrow \beta) \in P hacer
            para todo a \in PRIMEROS (\beta SIGUIENTES(A)) hacer
                  TA [A, a] := (r: A \rightarrow \beta);
      Para todo a \in \Sigma hacer TA [a, a] := sacar;
      TA [$, $] := aceptar;
Fin
```

Análisis Sintáctico Descendente

```
<u>Algoritmo</u> A.S.D: basado en la T.A. LL(1)
Entrada \omega \in \Sigma^*; TA, para una G = (N, \Sigma, P, S);
<u>Salida</u> <u>Si</u> \omega \in L(G) <u>entonces</u> \chi <u>else</u> error()
Método
    apilar (S); sim = yylex(); \chi := \varepsilon; fin = falso;
    Repetir
        <u>Caso</u> TA [cima, sim] <u>sea</u>
         "(r: A \rightarrow \beta)": desapilar; apilar(\beta); \chi := \chi \cdot r;
         "sacar": desapilar; sim := yylex();
         "aceptar": fin := verdad;
         "error": yyerror();
       Fin;
     Hasta fin
Fin
```

4. Transformación de gramáticas

Factorización

Una gramática es factorizable cuando existen más de una producción de un mismo no terminal cuya parte derecha comienza por un mismo prefijo.

Factorización:

$$A \rightarrow \alpha \beta_1 \mid \alpha \beta_2 \mid \dots \mid \alpha \beta_n \mid \gamma$$

Es equivalente a:

$$A \to \alpha A' \mid \gamma$$

$$A' \to \beta_1 \mid \beta_2 \mid \dots \mid \beta_n$$

donde A' es un nuevo no terminal.

Eliminación recursión a izq.

Una GIC es recursiva a izquierdas <u>sii</u> \exists $A \in N$: $A \Rightarrow * A \alpha$.

Eliminación de la recursión directa a izquierdas:

$$A \rightarrow A \alpha_1 \mid A \alpha_2 \mid \dots \mid A \alpha_n \mid \beta_1 \mid \beta_2 \mid \dots \mid \beta_p$$

donde los β_i no comienzan por A , $\forall i$.

Es equivalente a:

$$A \rightarrow \beta_1 A' | \beta_2 A' | \dots | \beta_p A'$$

$$A' \rightarrow \alpha_1 A' | \alpha_2 A' | \dots | \alpha_n A' | \epsilon$$

donde A' es un nuevo no terminal.

Eliminación recursión a izq.

```
<u>Algoritmo</u>
                      Eliminación de recursión indirecta a izquierdas
<u>Entrada</u> G, GIC recursiva a izquierdas sin ciclos ni A \rightarrow e
Método
     Ordenar los no terminales A_1, A_2 \dots A_n
     Para i:=1 Hasta n do
       Para k:=1 Hasta i -1 Hacer
           <u>Si</u> existe A_i \rightarrow A_k \gamma sustituir por A_i \rightarrow \gamma_1, \gamma_2, ..., \gamma_p
                                             (donde A_k \rightarrow \gamma_1, \gamma_2, ..., \gamma_p)
         Eliminar recursión inmediata en A_i \rightarrow A_i \alpha
      Fin para
     Fin para
```

S
$$\rightarrow$$
 Aa|b B \rightarrow ab A \rightarrow SB \rightarrow S \rightarrow Aa|b B \rightarrow ab A' \rightarrow aBA'| ε

5. A. S. Descendente Recursivo

A. Sintáctico Descendente Recursivo

```
B \rightarrow b | f | \varepsilon
    A \rightarrow a B c D | Bc
                                                                       D \rightarrow d
void A () {
   switch(sim){
       case 'a': empareja('a'); B(); empareja('c'); D();
case 'b': case 'f'; case 'c': B(); empareja('c');
                                                                           break ;
                                                                           break ;
       default: yyerror();
} }
void B ( ) {
   switch (sim) {
       case 'b' : empareja ('b'); break;
case 'f' : empareja('f'); break;
                                                           int main(char x) {
                                                                sim = yylex();
       case 'c' : { } ; break ;
                                                                A ();
       default: yyerror ();
} }
void D ( ) {
   switch (sim) {
       case`'d'´ : empareja ('d'); break;
       default: yyerror ();
                                                   void empareja (char x) {
} }
                                                      if (x == sim) sim=yylex();
                                                      else yyerror();
```

Dada la siguiente gramática:

- a) Obtener la tabla de análisis LL(1). ¿Es una gramática LL(1)? ¿Por qué?
- b) Obtener una gramática equivalente LL(1).

	X	(+	-
S	A, 1	A, 1		
Α	B%A, 2	B%A, 2		
	BC, 3	BC, 3		
В	D, 4	D, 4		
	D*B, 5	D*B, 5		
D	x, 6	(C), 7		
С			+x, 8	-x, 9

No es LL(1) porque la tabla de análisis LL(1) contiene entradas múltiples para A y B.

```
S \rightarrow B A
A \rightarrow \% B A \mid \epsilon
B \rightarrow D C
C \rightarrow \& D C \mid \epsilon
D \rightarrow (S) \mid b
```

- a) Demostrar que la gramática es LL(I) y construir su tabla de análisis LL(I).
- b) Realizar la traza de análisis LL(I) para la cadena "((b))".

```
S \rightarrow BA
A \rightarrow \% BA \mid \epsilon
B \rightarrow DC
C \rightarrow \& DC \mid \epsilon
D \rightarrow (S) \mid b
```

```
SIG(S) = \{ \$, \} 
SIG(B) = \{ \%, \$, ) \}
SIG(D) = \{ \&, \%, \$, \} 
SIGC) = { %, $, ) }
SIG(A) = \{ \$, \} 
PRIM(BA Sig(S)) = \{(,b)\}
PRIM(DCSig(B)) = \{(,b)\}
PRIM((S)Sig(D)) = \{(\}
PRIM(b Sig(D)) = \{b\}
PRIM(\% B A Sig(A)) = \{\%\}
PRIM(\varepsilon Sig(A)) = sig(A) = { $, ) }
PRIM( \& D C Sig(C)) = \{ \& \}
PRIM(\varepsilon Sig(C)) = sig(C) = { %, $, ) }
```

	()	%	&	b	\$
S	$S \rightarrow B A$				$S \rightarrow B A$	
В	$B \rightarrow DC$				$B \rightarrow DC$	
D	$D \rightarrow (S)$				$D \rightarrow p$	
С		$C \rightarrow \varepsilon$	$C \rightarrow \epsilon$	$C \rightarrow \& D C$		$C \rightarrow \varepsilon$
A		$A \rightarrow \epsilon$	$A \rightarrow \% B A$			$A \rightarrow \epsilon$
(pop					
)		pop				
%			pop			
&				pop		
b					pop	
\$						Aceptar

PILA	CAD. ENTRADA	CADENA SALIDA	
S \$	((b))\$		
BA\$	((b))\$	1	
DCA\$	((b)) \$	1-4	
(S)CA\$	((b)) \$	1-4-7	
S)CA\$	(b)) \$	1-4-7	
BA)CA\$	(b))\$	1-4-7-1	
DCA)CA\$	(b))\$	1-4-7-1-4	
(S)CA)CA\$	(b))\$	1-4-7-1-4-7	
S)CA)CA\$	b))\$	1-4-7-1-4-7	
BA)CA)CA\$	b))\$	1-4-7-1-4-7-1	
DCA)CA)CA\$	b))\$	1-4-7-1-4-7-1-4	
bCA)CA)CA\$	b))\$	1-4-7-1-4-7-1-4-8	
CA)CA)CA\$))\$	1-4-7-1-4-7-1-4-8	
A)CA)CA\$))\$	1-4-7-1-4-7-1-4-8-6	
) C A) C A \$))\$	1-4-7-1-4-7-1-4-8-6-3	
C A) C A \$) \$	1-4-7-1-4-7-1-4-8-6-3	
A) C A \$) \$	1-4-7-1-4-7-1-4-8-6-3-6	
) C A \$) \$	1-4-7-1-4-7-1-4-8-6-3-6-3	
CA\$	\$	1-4-7-1-4-7-1-4-8-6-3-6-3	
A \$	\$	1-4-7-1-4-7-1-4-8-6-3-6-3-6	
\$	\$	1-4-7-1-4-7-1-4-8-6-3-6-3-6-3	25

Dada la gramática

- a) Construye la tabla de análisis LL(1)
- b) ¿Es una gramática LL(1)? ¿Por qué?
- c) Realiza la traza para la cadena ω = (zx)

$$SIG(B)=\{z, \$,), y\}$$

SIG(C)={\$,), y}

	()	Х	У	Z	\$
S	ABC, 1		ABC,1		ABC,1	
Α	(S), 2		xSy, 3		z, 4	
В		ε, 6	xB, 5	ε, 6	ε, 6	ε, 6
С		ε, 8		ε, 8	zC, 7	ε, 8