第二周作业参考答案

2022年9月16日

1 周三作业

1. 证明: 对 $\forall n \in \mathbb{N}, f(n) = n^4 + 2n^3 + 2n^2 + n$ 能被 6 整除 (数学归纳法)

证明:

- 当 n=1 时, f(1)=6 命题成立
- 假设 n = k 时, $f(k) = k^4 + 2k^3 + 2k^2 + k$ 能被 6 整除
- 当 n=k+1 时, $f(k+1)=k^4+6k^3+14k^2+15k+6=f(k)+6(2k^2+1)+2k(2k^2+7)$ 只要证: $k(2k^2+7)|3$ 再进行一次数学归纳法或者讨论 $k=3m,3m+1,3m+2;m\in\mathbb{N}$ 即可
- 2. 求证:任意两个不同的有理数之间一定有无理数证明: $\forall a < b, a, b \in \mathbb{Q}$,令 $c = a + \frac{b-a}{\sqrt{2}}$,则a < c < b,反证法证明c为无理数即可
- 3. 设 $\mathbb{F} = \left\{ r + s\sqrt{2} \mid r, s \in \mathbb{Q} \right\}$ 证明:
 - 若 $r+s\sqrt{2}=0$,则 r=s=0 证明: 若 $s\neq 0$,则有 $\sqrt{2}=-\frac{r}{s}\in\mathbb{Q}$,矛盾,故 s=0,从而 r=0
 - F 是域
 验证对加减乘除封闭,说明零元和单位元,说明加法、乘法的交换律、结合律、分配律
 - $\mathbb{Q} \subsetneq \mathbb{F} \subsetneq \mathbb{R}$

- 验证 $\mathbb{Q} \subsetneq \mathbb{F}$ 令 s = 0,可得 $\mathbb{Q} \subset \mathbb{F}$,而 $\sqrt{2} \in \mathbb{F}$, $\sqrt{2} \notin \mathbb{Q}$
- 验证 $\mathbb{F} \subsetneq \mathbb{R}$ $\mathbb{F} \subset \mathbb{R} \text{ 显然, 下面验证 } \sqrt{3} \notin \mathbb{F}$ 假设存在 $r,s \in \mathbb{Q}$,使得 $r+s\sqrt{2}=\sqrt{3}$,则有 $r^2+2s^2+2\sqrt{2}rs=3$ 则有 $\sqrt{2}=\frac{3-r^2-2s^2}{2rs} \in \mathbb{Q}$ (rs=0 需要单独讨论一下),矛盾

2 P25 习题 1.2

- 1. 用定义证明下面的结论:
 - $\lim_{n\to\infty} \frac{n}{5+3n} = \frac{1}{3}$ 证明: $\forall \epsilon > 0$,取 $N = \left[\frac{5}{9\epsilon}\right] + 1$,当 n > N 时, $\left|\frac{n}{5+3n} \frac{1}{3}\right| = \frac{5}{15+9n} < \frac{5}{9n} < \epsilon$
 - $\lim_{n\to\infty}\frac{\sin n}{n}=0$ 证明: $\forall \epsilon>0$,取 $N=\left[\frac{1}{\epsilon}\right]+1$,当 n>N 时, $\left|\frac{\sin n}{n}-0\right|=\left|\frac{\sin n}{n}\right|\leqslant\frac{1}{n}<\epsilon$
- 2. 若数列 $\{a_n\}$ $(n \ge 1)$ 满足条件: 任给正数 ε , 存在自然数 N, 使得当 n > N 时, 有 $|a_n a| < M\varepsilon$ (其中 M 为常数), 则 $\{a_n\}$ 必以 a 为极限.

证明: $\forall \epsilon>0$,令 $\epsilon_1=\frac{\epsilon}{M}$,由条件,存在自然数 N,使得当 n>N 时, $|a_n-a|< M\epsilon_1=\epsilon$,由数列极限定义知: $\lim_{n\to\infty}a_n=a$

- 4. 证明: 若 $\lim_{n\to\infty} a_n = a$, 则 $\lim_{n\to\infty} |a_n| = |a|$ 反之不一定成立 (试举例说明). 但若 $\lim_{n\to\infty} |a_n| = 0$, 则有 $\lim_{n\to\infty} a_n = 0$.
 - 注意到: $||a_n| |a|| \leq |a_n a|$ 即可
 - 反例: 取 $a_n = \frac{n}{3n+1}, a = -\frac{1}{3}$
 - 注意到: $|a_n 0| = ||a_n| 0|$ 即可
- 5. 证明: 若 $\lim_{n\to\infty} a_n = 0$, 又 $|b_n| \leq M$, $(n = 1, 2, \dots)$, 则 $\lim_{n\to\infty} a_n b_n = 0$.

证明: (M=0) 单独讨论 $\forall \epsilon > 0$,令 $\epsilon_1 = \frac{\epsilon}{M}$,存在自然数 N,使得当 n > N 时, $|a_n - 0| < \epsilon_1$, $|a_n b_n - 0| = |b_n| |a_n| \leq M |a_n| < M \epsilon_1 = \epsilon$,由数列极限定义: $\lim_{n \to \infty} a_n b_n = 0$

6. 证明: 若数列 $\{a_n\}$ 满足 $\lim_{k\to\infty}a_{2k+1}=a$, 及 $\lim_{k\to\infty}a_{2k}=a$, 则 $\lim_{n\to\infty}a_n=a$.

证明: $\forall \epsilon > 0$,存在自然数 N_1 ,使得当 $k > N_1$ 时, $|a_{2k+1} - a| < \epsilon$,存在自然数 N_2 ,使得当 $k > N_2$ 时, $|a_{2k} - a| < \epsilon$,取 $N = 2 \max\{N_1, N_2\} + 1$,当 n > N 时, $|a_n - a| < \epsilon$,由数列极限定义: $\lim_{n \to \infty} a_n = a$