Determination of dynamic security region in power systems using the dynamic mode decomposition

Juelin Liu(Chengdu University of Information Technology)

Zhicheng Zhang, and Yoshihiko Susuki (Kyoto University)

IEEJ Annual Conference, Tokyo

2025.03.18

KYOTO UNIVERSITY

Stability Constrained OPF

Power System
Operation Calculation

Stability Constrained OPF

s.t.
$$g(p) = 0$$

$$h(p) \leq 0$$

Stability constraint

$$h_{s}(p) \leq 0$$

Definition of Dynamic Security Region

Stability Constrained OPF

Parameter space

Unstable $h_{\rm s}(\mathbf{p}) \leq 0$ p_2 Stable **DSR** p_1

Dynamic Security Region (DSR)

The region for large-signal stability in parameter space

Formulation of Dynamic Security Region

Definition of the stability criteria

Nonlinear dynamical systems theory

- Lyapunov Stability Criterion
- Energy Function Method
- Direct Method...

Difficult to be expressed by a explicit function

京都大学

Formulation of Dynamic Security Region

$h_{S}(p) > 0$ **DSR** p_2 $h_{\rm s}(\mathbf{p}) \leq 0$ p_1

Definition of the stability criteria

Dynamic Mode Decomposition

Collect historical data from power system

$$\{x_1, x_2, \dots, x_N, x_{N+1}\}$$

Stability criteria

A unified and theoretically grounded stability criterion applicable across all variables in power system.

Filter: Proper Orthogonal Decomposition (POD)

Ref.) Susuki & Mezic & Hikihara, Coherent swing instability of power grids, J.Nonlin. Sci., 2011

- DMD exhibits sensitivity to the characteristics of the input data
- Only a limited subset of factors significantly influences the system's behavior

The unimportant factor may interfere the estimation result

Companion-based DMD

Ref.) Rowley et al, Spectral analysis of nonlinear flows, J. Fluid Mech., 2008

Companion-based DMD

Dynamic trajectory of power system

Flat data matrix: dimension much smaller than the number of temporal snapshots

Eigenvalues $\lambda_1, \lambda_2, ..., \lambda_{N-1}$

Stability criteria $\max |\lambda_i(p)| \le 1$

京都大学

The Procedure of Determining DSR by DMD

Simulation: IEEE 9-bus case

Test system setup

The IEEE-9 bus system

- Parameter space: generator outputs
- Sampling scale: 10000 operating points
- Time scale of simulation: first 5 seconds of the trajectory
- Clearing time: 0.16s

Table I. Stability detection error

11

Conclusion and Future Work

- ✓DMD provides an accurate and scalable stability criterion for determining the dynamic security region based on eigenvalues.
- ✓ POD can enhance the accuracy of DMD estimations.

Next...

- Formulate stability constraints based on the dynamic security region using a datadriven method
- Integrate stability constraints into Optimal Power Flow (OPF)

KYOTO UNIVERSITY