Artificial Identification: A Novel Privacy Framework for Federated Learning Based on Blockchain

竹本志恩

May 9, 2025

INIAD

目次

1. はじめに

- 2. 動機
- 3. 手法
- 4. 知見
- 5. 他

書誌情報

• 題名

 Artificial Identification: A Novel Privacy Framework for Federated Learning Based on Blockchain

• 発表日

• 01 February 2023

著者

 Liwei Ouyang, Fei-Yue Wang, Yonglin Tian, Xiaofeng Jia, Hongwei Qi, and Ge Wang

• 論文誌名

 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 10, NO. 6, DECEMBER 2023

どんな研究?

- ブロックチェーンを適用する FL について
- プライバシーとセキュリティを従来より確保し
- 運用に必要なコストを削減する

ブロックチェーン

- 公正で安定した記録システム
- 改ざんや障害発生に強い
- 記録の複製を複数の参加者が保持する
- ・参加者が脱落してもシステムは動く
- ・取引記録が残る

スマートコントラクト

- 公正で安定した記録システム
- ブロックチェーン上で
- 事前に定めた内容で契約し、取引を実行
- 条件を満たすと自動で実行
- 不正や改ざんを防ぎ,効率的な取引を実現

目次

- 1. はじめに
- 2. 動機
- 3. 手法
- 4. 知見
- 5. 他

背景

- FLの課題
 - データ送受信に関する攻撃の危険性
 - 信頼性の低いノードによる問題の発生
- ブロックチェーンの役割
 - 安全なブリッジ
 - グローバルモデルのダウンロード
 - ローカルモデルのアップロード
 - インセンティブメカニズムによる参加意 欲の向上
- 従来手法はプライバシの保護が不完全
- 二種のスマートコントラクトで改善

目次

- 1. はじめに
- 2. 動機
- 3. 手法
- 4. 知見
- 5. 他

手法の概要

- フレームワークを作成
- 2種のブロックチェーンシステムを利用
 - Ethereum
 - inter-plenary file systems(IPFS)
- 2種のモジュールから構成
 - a. private P2P identification
 - b. private FL

a. プライベート P2P 識別

- 識別スマートコントラクト (ISC) を使用
 - FL 参加者を直接共有しない
 - ISC を通じてやり取り
 - 各サーバは参加者のリストをローカルに保持
- 正しい参加者を識別しやり取り
- 匿名性とプライバシに役立つ

問題設定

- Blockchain Account
 - acc で示される
 - ◆ 公開鍵と秘密鍵のペア {pk_{acc}, sk_{acc}} と紐付け
- Federated Members
 - F で示される
 - ISC で他メンバを識別
- Federal Account.
 - accfe で示される
 - {pk_{FE}, sk_{FE}} でやり取り
 - 全メンバで共有
 - ここに F がメッセージを送るとブロードキャス トする

問題設定

- Trust list
 - ある参加者 F_i, F_j がいる
 - *F_i* のリスト中の *F_i* について
 - F_i が F_i の P2P 認証で許可されたということ
 - 相互に信頼
 - 最終的に TrustList_{FF} ができる?
 - これは各参加者がローカルに保持するという こと?
 - 最終的なリストはブロックチェーンに参加する 全ての F を網羅する?

問題設定

- Active list
 - 仮に $F_i \in ActiveList_{F_i}$ のとき
 - F_i が F_j によって合意された $TrustList_{FE}$ を所持
 - F_i が F_i を学習の参加者とみなしている
 - 各 TrustList に対応する ActiveList が存在
 - TrustList_{FE} に対応するのが ActiveList_{FE}
 - 協調的な FL の参加者一覧

b. プライベート FL

- 協調学習スマートコントラクト (CTSC) で学習
- FL において, 以下の 4 段階を実行
 - 登録
 - 検証データ交換
 - 学習
 - 終了処理

b-1. 登録

- 事前に設定された登録時間中
 - デポジット *D_r* と len(ActiveList_{FE}) を *CTSC* に 報告
- 一定時間経過後,*CTSC* が合意された len(ActiveList_{FE}) を算出
- 各 F; は怪しい参加者を除外する準備
 - 「正しい len(ActiveList_{FE}) を報告したが
 ActiveList_{FE} に含まれていないアカウント」を
 検出
 - ローカルな RejectList_{Fi} に追加

b-2. 検証データ交換

- 検証用の VSet を作成
 - $F_j \in ActiveList_{FE}$ からサンプリングしたデータ $VSet_{F_j}$ を受領
 - ローカルで統合し、最終的に VSet を構成

b-3. 学習プロセス

a. モデル検証

- 各 *F_i* は VSet 上で
 - ローカルモデル Model_{Fi} と検証性能 E_{Fi} を生成
 - F_i → acc_{FE}:
 Enc{ Enc{ Path(Model_{Fi}), E_{Fi}, acc_{Fi}}_{kActive}}_{pkFE}
 を送信しつつ、他モデルを検証
 - 偽モデル提出または 2 ラウンド未提出 を検出した F_i を RejectList_{Fi} に追加

b. 罰則·報酬判定

- CTSC が全 RejectList_{Fi} を統合,拒否回数 RJ_{Fi} を集計
- *RJ_{Fi}* が閾値超:公開の PuniList へ (Punishment)
- 超えなければ、SucList_{Fi} に追加(Success)

c. モデル統合

 SucList に含まれる各 Model_{Fi} を用いて,連 合モデル Model_{FE} を ローカルに融合

b-4. 終了処理

- 条件を満たすまで (規定のラウンド数など) 繰り返し
- 最終的に, CTSC が
 - PuniList の参加者のデポジットを没収
 - SucList の参加者へ仮想通貨で報酬を付与

CTSC とセキュリティ

- CTSC:オンチェーン協調学習スマートコントラクト
- ◆ オンチェーン協調のセキュリティはスマートコントラクト上でメンバー リストに応じた関数呼び出し権限管理で担保
- 本稿では ActiveList_{FE} や TrustList_{FE} を公開・保存しない
- 各ステージの実行時間を厳格に設定し, 単一障害点の発生を防止

脅威モデル

- 1) フェデレーション外の誤呼び出し
 - 識別情報 {pkFE, skFE, ...} は非公開
 - CTSC が公開かつ透明ゆえに、アウトサイダーの誤呼び出しが可能
 - 対策:登録時に正しい len(ActiveList_{FE}) を報告した者のみ RejectList_{Fi} 報告を許可
- 2) k_{Active} 非知悉者による妨害
 - (a) len(ActiveList_{FE}) は把握しても k_{Active} を知らない場合(図 1(a) の F₂, F₄ 相当)
 - RejectList_{Fi} を構成できても復号不能
 - (b) 小規模協調下で総当たり攻撃により TrustList_{FE} や k_{Active} を解読
 - しかし ActiveList_{FE} に認識されなければ学習に寄与せず、最終モデルに影響 しない

fig1

罰則メカニズム

- 各イテレーションで RejectList_E の提出は 1 回に制限
- 全ての $F_i \in ActiveList_{FE}$ に「正しい len(ActiveList_{FE}) を報告したが認識 されていないメンバー」を監視し、RejectList_E に追加する義務
- RejectList_{Fi} / PuniList **に含まれるのが悪意メンバーか正直メンバーか** は区別困難
- 最終的に PuniList 登録者はデポジット全額没収
- 没収金 D_{Puni} は正直メンバーに均等分配

CTSC の主要な関数

- 登録:正しい len(ActiveList_{FE}) の報告
- VSet_{Fi} 交換:イベント発火+モニタリング
- Model_{Fi} 交換:同上
- RejectList_F 報告:1 アカウント 1 回に制限
- デポジット引き出し:イテレーション終了後1回のみ
- 全関数は所定の呼び出し可能時間内にのみ実行可能 - Model F と資金の安全を保証

CTSCのまとめ

- プライベート FL 終了時,ActiveList_{FE} メンバーは理想的な Model_{FE} を 取得
- 仮想通貨を通じて公平な報酬・罰則を実現

目次

- 1. はじめに
- 2. 動機
- 3. 手法
- 4. 知見
- 5. 他

得られた結果,知見

- 提案手法はコラボレーションコストを削減しつつ
 - イーサリアム上での暗号通貨の支払額
 - 計算時間
- セキュリティやプライバシを担保

目次

- 1. はじめに
- 2. 動機
- 3. 手法
- 4. 知見
- 5. 他

テーマについて

- 何かしら連合学習に使えそう
- もし参考にするなら
 - IoT デバイスのデータを集約するサーバを用意
 - 各サーバが bc のブロックとなり,FL に参加
- 任意のノードを追加可能な設計にしたい
- bc でモデルのバージョン管理などできないか?
- 次読むなら
- Anton Wahrstatter et al. Openfl: A scalable and secure decentralized federated learning system on the ethereum blockchain. Internet of Things, 26:101174, 2024.

分かっていない/気になる点

- イーサリアムと IPFS をどう使い分けているか
 - 現状の認識
 - 前者がインセンティブや識別に利用?
 - 後者がファイル共有に強いらしいので, モデル交換?
- セキュリティとプライバシがどれくらい良いか
 - 類似手法と比較したい
 - そもそも bc を使わない FL とも比較したい
 - いまいち効果がピンときていない
 - 何かしら追試を行いたい
- 台帳上に保管されるデータはどれ?
 - モデルのパスくらい?

分かっていない/気になる点

- オフチェーンとオンチェーンとは何か
 - 前者が通常の FL
 - 後者が bc 上の FL?
 - bc 上の FL に参加できない > ローカルで完結, という 文脈?
- 結局どのように学習しているか
 - プライバシとセキュリティ担保の取り組みは一通り見た
 - P2P ネットワーク上でどのようにモデルを交換する?
 - 今の認識
 - 相互に信頼したリスト上の相手に逐次問い合わせ,交換
 - 最終的に信頼されたノードのみ含まれるグローバルモデル が完成