ریاضی مهندسی

سری فوریه تابع متناوب f(x) با دوره تناوب $au \pi$ با ضابطه زیر را به دست آورید. $oldsymbol{1}$

$$f(x) = \begin{cases} x + \pi & -\pi < x < *, \\ * & * < x < \pi. \end{cases}$$

- سری فوریه دلتای دیراک $\delta(x)$ با دوره تناوب π را در بازه $|x| < \pi$ به دست آورید.
- ری در $f(x)=1+rac{1}{\pi}\sum_{n=1}^{\infty}rac{(-1)^n}{n}\cos nx$ اگر سری فوریه تابع f در بازه f(x)=1 به صورت $f(x)=1+rac{1}{\pi}\sum_{n=1}^{\infty}rac{(-1)^n}{n}\cos nx$ بسط فوریه $f(x)\sin x$ با دوره تناوب f(x) در بازه $f(x)\sin x$ را به دست آورید.
- با استفاده از سری فوریه تابع f با ضابطه $f(x)=|\sin x|$ مقدار سری $\sum_{n=1}^\infty \frac{1}{\Re n^{7}-1}$ را به دست آورید. $\cos(2\mathrm{nx})\,\mathrm{dx}$
- را به $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{\intercal}}$ و $\sum_{n=1}^{\infty} \frac{1}{n^{\intercal}}$ ، مقادیر $\int_{n=1}^{\infty} \frac{1}{n^{\intercal}}$ و $\int_{n=1}^{\infty} \frac{1}{n^{\intercal}}$ مقادیر $\int_{n=1}^{\infty} \frac{1}{n^{\intercal}}$ و $\int_{n=1}^{\infty} \frac{1}{n^{\intercal}}$ مقادیر وی بازه $\int_{n=1}^{\infty} \frac{1}{n^{\intercal}}$ و $\int_{n=1}^{\infty} \frac{1}{n^{\intercal}}$ مقادیر وی بازه $\int_{n=1}^{\infty} \frac{1}{n^{\intercal}}$ و $\int_{n=1}^{\infty} \frac{1}{n^{\intercal}}$ مقادیر وی بازه $\int_{n=1}^{\infty} \frac{1}{n^{\intercal}}$ و $\int_{n=1}^{\infty} \frac{1}{n^{\intercal}}$
- فرض کنید f یک تابع متناوب انتگرال پذیر با دوره تناوب T باشـد. آنگاه برای هر عدد ثابت مانند a نشـان دهـد:

$$\int_{a}^{a+T} f(x)dx = \int_{\cdot}^{T} f(x)dx.$$

- فرض کنید تابع f روی بازه $(\cdot,1)$ با ضابطه f(x)=1-x تعریف شده است. سری های فوریه توسعه های تناوبی x و فرد تابع x را به دست آورید.
- سری فوریه تابع f تعریف شده با ضابطه ی زیر را روی بازه ۲|x|<1 یکبار از روش مستقیم و یک بار از روش صورت مختلط سری فوریه به دست آورید.

$$f(x) = \begin{cases} e^x & -\Upsilon < x < {}^{\bullet}, \\ {}^{\bullet} & x = {}^{\bullet}, \\ -e^{-x} & {}^{\bullet} < x < \Upsilon. \end{cases}$$