计算机组成原理 实验2 原码除法器设计

2024 · 春

实验目的

- 理解基于恢复余数、加减交替的原码除法原理
- 掌握使用HDL设计实现原码除法器的方法
- 了解片上系统SoC的基本架构

实验内容

- 1. 基于恢复余数法/加减交替法,设计一个8bit的整数原码除法器要求:
 - ① 输入输出均使用8bit原码表示
 - ② 不得使用 /、% 运算符
 - ③ 其余未规定细节可自行决定
- 2. 将所设计的原码除法器扩展到32bit,并集成到SoC中

1. 整数原码除法

 \triangleright 设有 $[x]_{\bar{\mathbb{P}}} = x_0 x_1 x_2 \cdots x_n$, $[y]_{\bar{\mathbb{P}}} = y_0 y_1 y_2 \cdots y_n$, 则:

$$\left[\frac{x}{y}\right]_{\mathbb{R}} = (x_0 \oplus y_0) \cdot \frac{x_1 x_2 \cdots x_n}{y_1 y_2 \cdots y_n} = (x_0 \oplus y_0) \cdot \frac{x^*}{y^*}$$

其中,
$$x_0$$
、 y_0 —— $[x]_{\bar{\mathbb{R}}}$ 、 $[y]_{\bar{\mathbb{R}}}$ 的符号位 x^* 、 y^* —— $[x]_{\bar{\mathbb{R}}}$ 、 $[y]_{\bar{\mathbb{R}}}$ 的绝对值

- ▶ 商的符号 = 被除数的符号 异或 除数的符号
- ▶ 商的值 = 被除数的<u>绝对值</u>除以除数的<u>绝对值</u>
- 余数的符号与被除数相同

2. 恢复余数法

- ① 被除数加上 $[-y^*]_{*}$
- ② 若<u>被除数(余数)为负</u>,<u>商上0</u>, 加上[y*]₄以恢复余数; 若被除数(余数)为正,商上1;
- ③ 若左移次数小于n, 与 不含符号的位宽 令被除数 (余数) 左移1位; 否则结束

【例】x = 13, y = -6, 求 $z = [x \div y]_{\mathbb{R}}$ $[x]_{\mathbb{R}} = 01101,$ $[y^*] = 00110, \ [-y^*]_{\stackrel{}{N}} = 11010$ $z_0 = x_0 \oplus y_0 = 0 \oplus 1 = 1, \ 故商为负$

被除数 (余数)	商	说明
00001101 +11010		+[-y*] _* r
110101101 +00110	0	余数为负,不够减,上商0 恢复余数:+[y*]
000001101		
000011010 +11010	0_	恢复余数后,商和余数 左移1位 +[-y*]*\
$\begin{matrix} 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ +0 & 0 & 1 & 1 & 0 & 0 \end{matrix}$	00	余数为负,不够减,上商0 恢复余数: +[y*]
$\begin{array}{c} 0\ 0\ 0\ 0\ 1\ 1\ 0\ 1\ 0 \\ \hline 0\ 0\ 0\ 1\ 1\ 0\ 1\ 0\ 0 \\ +1\ 1\ 0\ 1\ 0 \\ \end{array}$	_00_	恢复余数后,商和余数 左移1位 +[-y*] _补
$\begin{matrix} 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ +0 & 0 & 1 & 1 & 0 & 0 \end{matrix}$	_000	余数为负,不够减,上商0 恢复余数:+[y*]
$\begin{array}{c} 0\ 0\ 0\ 1\ 1\ 0\ 1\ 0\ 0\\ \hline 0\ 0\ 1\ 1\ 0\ 1\ 0\ 0\ 0\\ +1\ 1\ 0\ 1\ 0\\ \end{array}$	000_	恢复余数后,商和余数 左移1位 +[-y*]*\
$\begin{array}{c} 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\\ \hline 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\\ +1\ 1\ 0\ 1\ 0\\ \end{array}$	$egin{array}{cccc} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & _ \end{array}$	余数为正,上商1 商和余数 左移1位 +[-y*]*\
110110000 +00110	0010	余数为负,不够减,上商0 恢复余数:+[y*]
00001 0000		

2. 恢复余数法

- ① 被除数加上[-y*]_补
- ② 若<u>被除数(余数)为负</u>,<u>商上0</u>, 加上[y*]_补以恢复余数; 若被除数(余数)为正,商上1;
- ③ 若左移次数小于n, □ 不含符号的位宽 令被除数 (余数) 左移1位; 否则结束

【例】x = 13, y = -6, 求 $z = [x \div y]_{\mathbb{R}}$ $[x]_{\mathbb{R}} = 01101,$ $[y^*] = 00110, \ [-y^*]_{\stackrel{}{\rightarrow}} = 11010$ $z_0 = x_0 \oplus y_0 = 0 \oplus 1 = 1, \ 故商为负$

被除数 (余数)	商	说明
$\begin{array}{c} 0\ 0\ 0\ 1\ 1\ 0\ 1 \\ +\ 1\ 1\ 0\ 1\ 0 \end{array}$		+[-y*] _* ⊦
$1\ 1\ 0\ 1\ 1\ 1\ 0\ 1\\ +\ 0\ 0\ 1\ 1\ 0$	0	余数为负,不够减,上商0 恢复余数: +[y*]
$\begin{array}{c} 0\ 0\ 0\ 0\ 1\ 1\ 0\ 1 \\ \hline 0\ 0\ 0\ 1\ 1\ 0\ 1\ 0 \\ +\ 1\ 1\ 0\ 1\ 0 \end{array}$	0_	恢复余数后,商和余数 左移1位 +[-y*]*\
$\begin{array}{c} 1\ 1\ 1\ 0\ 1\ 0\ 1\ 0 \\ +\ 0\ 0\ 1\ 1\ 0 \end{array}$	00	余数为负,不够减,上商0 恢复余数: +[y*]
$\begin{array}{c} 0\ 0\ 0\ 1\ 1\ 0\ 1\ 0 \\ \hline 0\ 0\ 1\ 1\ 0\ 1\ 0\ 0 \\ +\ 1\ 1\ 0\ 1\ 0 \end{array}$	_00_	恢复余数后,商和余数 左移1位 +[-y*]*\
$\begin{array}{c} 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0 \\ \hline 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0 \\ +\ 1\ 1\ 0\ 1\ 0 \end{array}$	$\begin{smallmatrix} & 0 & 0 & 1 \\ & 0 & 0 & 1 \\ & & \end{smallmatrix}$	余数为正,上商1 商和余数 左移1位 +[-y*]*\
1 1 0 1 1 0 0 0 + 0 0 1 1 0	0010	余数为负,不够减,上商0 恢复余数: +[y*]
0 000 1 000		

3. 加减交替法

- ① 被除数加上[-y*]_补
- ② 若被除数 (余数) 为负, 商上0, 被除数 (余数) <u>左移1位后+[y*]_{*}</u>; 若被除数 (余数) 为正, 商上1, 被除数 (余数) <u>左移1位后+[-y*]_{*}</u>;
- ③ 若左移次数小于n,回到②;否则结束

【例】
$$x = 13$$
, $y = -6$, 求 $z = [x \div y]_{\bar{\mathbb{R}}}$ $[x]_{\bar{\mathbb{R}}} = 01101$, $[y^*] = 00110$, $[-y^*]_{\dot{\mathbb{A}}} = 11010$ $z_0 = x_0 \oplus y_0 = 0 \oplus 1 = 1$, 故商为负

被除数 (余数)	商	说明
$\begin{array}{c} 0\ 0\ 0\ 0\ 1\ 1\ 0\ 1\\ +1\ 1\ 0\ 1\ 0\\ \hline \hline 11\ 0\ 1\ 0\ 1\ 1\ 0\ 1\\ \hline 10\ 1\ 0\ 1\ 1\ 0\ 1\ 0\\ +0\ 0\ 1\ 1\ 0\\ \end{array}$	0_	+[-y*] [*] 余数为负,不够减,上商0 商和余数 左移1位 +[y*]
$\begin{array}{c} 110111010 \\ \hline 101110100 \\ +00110 \end{array}$	00_ 00_	余数为负,不够减,上商0 商和余数 左移1位 +[y*]
$ \begin{array}{r} 111010100\\ 110101000\\ +00110 \end{array} $	_000_	余数为负,不够减,上商0 商和余数 左移1位 +[y*]
$\begin{array}{c} 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\\ \hline 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\\ +1\ 1\ 0\ 1\ 0\\ \end{array}$	0001 001_	余数为正,上商1 商和余数 左移1位 +[-y*] ^补
110110000 +00110 000010000	0010	余数为负,不够减,上商0 +[y*]
000010000		

3. 加减交替法

- ① 被除数加上[-y*]*
- ② 若<u>被除数(余数)为负</u>,<u>商上0</u>, 被除数(余数)<u>左移1位后+[y*]_{*+};</u> 若被除数(余数)为正,<u>商上1</u>, 被除数(余数)<u>左移1位后+[-y*]_{*+};</u>
- ③ 若左移次数小于n,回到②;否则结束

【例】
$$x = 13$$
, $y = -6$, 求 $z = [x \div y]_{\bar{\mathbb{R}}}$
$$[x]_{\bar{\mathbb{R}}} = 01101,$$

$$[y^*] = 00110, \ [-y^*]_{\bar{\mathbb{A}}} = 11010$$

$$z_0 = x_0 \oplus y_0 = 0 \oplus 1 = 1, \$$
故商为负

被除数 (余数)	商	说明
$\begin{array}{c} 0\ 0\ 0\ 1\ 1\ 0\ 1 \\ +\ 1\ 1\ 0\ 1\ 0 \end{array}$		+[-y*]*\
$\begin{array}{c} 1\ 1\ 0\ 1\ 1\ 1\ 0\ 1 \\ \hline 1\ 0\ 1\ 1\ 1\ 0\ 1\ 0 \\ +\ 0\ 0\ 1\ 1\ 0 \end{array}$	0 0	余数为负,不够减,上商0 商和余数 左移1位 +[y*]
$\begin{array}{c} 1\ 1\ 1\ 0\ 1\ 0\ 1\ 0\\ \hline 1\ 1\ 0\ 1\ 0\ 1\ 0\ 0\\ +\ 0\ 0\ 1\ 1\ 0\\ \end{array}$	00	余数为负,不够减,上商0 商和余数 左移1位 +[y*]
$\begin{array}{c} 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\\ \hline 0\ 0\ 0\ 1\ 0\ 0\ 0\\ +\ 1\ 1\ 0\ 1\ 0\\ \end{array}$	$\begin{smallmatrix} & 0 & 0 & 1 \\ & 0 & 0 & 1 & \\ & & & & & \\ \end{smallmatrix}$	余数为正,上商1 商和余数 左移1位 +[-y*]ネト
11011000 + 0011000	0010	余数为负,不够减,上商0 +[y*]
00001000		

4. 除法器设计

▶ 原码除法的基本操作:求补、加法、左移、异或

① 复位时

• 计数器初始为6, 其余清零

② 运算时

- 商符S通过异或求得
- 控制逻辑根据被除数 (余数) 的符号, 选择加法的数据源,并控制上商
- 控制逻辑根据<u>计数器值</u>,控制被除数 (余数)的<u>移位次数</u>

4. 除法器设计

序号	名称	位宽	属性	功能描述
1	clk	1	输入	时钟信号
2	rst	1	输入	复位信号 (高电平有效)
3	X	8	输入	被除数 (原码)
4	у	8	输入	除数 (原码)
5	start	1	输入	启动信号
6	z	8	输出	商 (原码)
7	r	8	输出	余数 (原码)
8	busy	1	输出	忙标志信号

4. 除法器设计

- ▶ 除法器接口信号时序
- ① start表示何时开始运算: start有效时,x、y也有效, 此时即将要进行除法运算
- ② start、x、y<mark>仅有效1个clk</mark>,除法器**缓存数据**后,拉高busy信号,表示正在运算,此时不可接收新的数据
- ③ 运算结束,拉低busy,输出 商和余数

5. SoC架构简介

5. SoC架构简介

指令执行过程:

cpu_core以PC为地址,向ICache取指

- → ICache命中:直接返回指令
 ICache缺失:向axi_master发出读请求
- → axi_master向AXI总线桥发出读请求
- → AXI总线桥根据请求地址,向相应的设备 (主存)发出读请求,从而取出指令
- → 指令依次经过AXI总线桥、axi_master、ICache,最终进入cpu_core
- → cpu_core对指令进行译码、执行和写回

实验步骤

- 1. 在lab2_div模板工程中,完成原码除法器设计
 - ① 下载lab2_div工程,基于恢复余数法or加减交替法,完成divider模块
 - ② 运行功能仿真,并对除法器进行调试和验证

实验步骤

- 1. 在lab2_div模板工程中,完成原码除法器设计
 - ① 下载lab2_div工程,基于恢复余数法or加减交替法,完成divider模块
 - ② 运行功能仿真,并对除法器进行调试和验证

实验步骤

- 2. 扩展除法器到32位,并集成到miniRV_axi工程
 - ① 将8位原码除法器扩展成32位
 - ② 下载SoC工程miniRV_axi,将扩展后的除法器连接到SoC工程
 - ③ 运行功能仿真,并对除法器进行调试和验证
 - 注意不要修改乘/除法器以外的其余模块

验收与提交

• 验收内容

- 课上检查是否通过lab2 div工程中的所有测试用例: 2.5分
- 课上检查集成到SoC后的除法器是否通过所有测试用例: 0.5分

・提交内容

- 原码除法器的.v源文件(含8位和32位): 1分
- 实验报告(按模板完成):3分
- 将上述文件打包成.zip,以"学号_姓名.zip"命名提交到作业系统
 - ◆ 注意: **如有雷同,双方均0分!**

开始实验

1920

哈 I 大

