DEPARTMENT OF CIVIL ENGINEERING: IIT DELHI

SEM-II: 2006-07

CEL 718: DESIGN OF STEEL STRUCTURES MAJOR TEST

Max. Marks=40 All questions are compulsory Duration = 2 hrs

1. Starting ab initio, develop an expression for the value of the critical flexural moment about the major principal axis for lateral buckling of a deep cantilever with rectangular cross-section.

10 marks

2. A simply supported steel beam of span 12m is under the action of a concentrated live load P acting at mid-span and self-weight of intensity q. The relevant data on normal probability distribution of yield strength f_y, self weight q and concentrated load P are as under:

Variable (X _i)	Mean Value (μ _i)	Coefficient of Variance (δ_i)
Yield Strength: X ₁	500 MPa	0.1
Dead Load: X ₂	20 N/mm	0.05
Live Load: X ₃	100X10 ³ N	0.3

Determine the partial safety factors for the mean value of material strength as well as dead and live loads for a target reliability of 5.

15 marks

- a) Write a short note on the MERCHANT-RANKINE FORMULA in the particular reference to its use in the determination of inelastic buckling loads of plane frames.
 - b) Distinguish between ORDINARY and SPECIAL MOMENT RESISTING FRAMES in the context of seismic design of steel frames.
 - c) Discuss the Moment-Rotation characteristics of semi-rigid beam-column connections.

5+5+5=15 marks