81	A/	Events
Relationships Between Events A and B	from Old Events A B	occurances
A implies B:	A or B:	Sample Space
A B are mutually exclusive events: A OB = Ø A,, An is a partitioning of 3: A,UA,UUAn = 8	A and B: A A B not A: Ac Ac A but not both: (AUB) - (AAB) = (AUB) A (AAB) =	an impossible event: [(Ø)] I an event is a set 3 is a possible outcome: A is an event A S S
$A_i \cap A_j = \emptyset$, for $i \neq j$		Something must happen an outcome must occure Sactual & S

this document is prepared to explain basic and regularly used statistical terminology through the use of simple set theory notions.

The following sample space is defined as an **example** of events and occurrences:

Sample space \mathscr{S} : the set of all pebbles in the garden with surface area \leq n cm^2

A possible outcome, Outcome \mathcal{S} : a pebble with surface area $2 cm^2$

$$\Rightarrow A \in \mathcal{S}$$

Event A: the set of all pebbles (outcomes) with surface area $\geq 2 cm^2$

$$\Rightarrow A \subseteq \mathscr{S}$$
 (A implies \mathscr{S})

Event A occurred:

there actually exists an outcome y,

a pebble with surface area $3 cm^2$

in Event A (set of all pebbles (outcomes) with surface area $\geq 2\,cm^2$) since there exists Outcome y \in Event A we say Event A has occurred.

An impossible outcome (outcome \varnothing): a pebbles with surface area -2 cm^2 An impossible event (event \varnothing):

- the set of pebbles with negative surface area
- The set of outcomes $\{z_1, ..., z_n\}$ such that $\{z_1, ..., z_n\} \subseteq (A \cap A^c)$

Partitions of sample space $\mathscr S$:

Let A_1 the set of pebbles (outcomes) with surface area in (0, 1]

Let A_2 the set of pebbles (outcomes) with surface area in (1, 2]

Let A_n the set of pebbles (outcomes) with surface area in (n-1, n]

Then A_1, \ldots, A_n are the partitions of \mathscr{S}

Where
$$A_1 \cup ... \cup A_n = \mathscr{S}$$

And
$$(A_i \cap A_i) = \emptyset$$
 for $i \neq j$

Example

```
\{\{1\}, \{2,3\}, \{4,5\}\}\ is a partition of \{1,2,3,4,5\}
```