$\bf Nota: \ \ No \ tenia acentos en el teclado, sepan disculpar$

Contents

1	Metodos iterativos de aproximacion		
	1.1	Bisection	2
	1.2	Metodo de Newton	4
	1.3	Punto fijo	6
2	Interpolacion		
	2.1	Polinomio interpolante	10
	2.2	Lagrange	11
	2.3	Aproximar el error de una interpolacion	12

1 Metodos iterativos de aproximacion

1.1 **Biseccion**

Theorem 1 (Sobre el metodo de biseccion) Sea $f:[a,b] \to \mathbb{R}$ continua, tal que f(a)f(b) < 0 y $\exists r \in [a,b]$ tal que f(r) = 0. Entonces las sucesiones $\{a_n\}, \{b_n\}, \{c_n\}$. Definidas como:

$$a_0 = a, b_0 = b$$

$$c_{n} = \frac{a_{n} + b_{n}}{2}$$

$$a_{n+1} = \begin{cases} c_{n} & Si \ f(c_{n}) f(b_{n}) < 0 \\ a_{n} & Si \ f(a_{n}) f(c_{n}) < 0 \end{cases}$$

$$b_{n+1} = \begin{cases} b_{n} & Si \ f(c_{n}) f(b_{n}) < 0 \\ c_{n} & Si \ f(a_{n}) f(c_{n}) < 0 \end{cases}$$

Entonces sucede que

- 1) a_n, b_n, c_n son convergentes.
- 2) $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = \lim_{n\to\infty} c_n = r$ 3) Se tiene que $c_n r \le \frac{b-a}{2^{n+1}}$

Notar que no definimos el caso $f(c_n) = 0$ pues en ese caso habriamos encontrado la raiz $r = c_n$.

Proof: Ya vimos que si $f(c_n) \neq r$ se generan a_n y b_n tal que:

$$a = a_0 < a_1 < a_2 < \dots < a_n < b_n < \dots < b_1 < b_0$$

Asi que a_n es monotona creciente y acotada superiormente por b_n . \Longrightarrow a_n es convergente a r_1 .

Del mismo modo $\implies b_n$ es convergente a r_2

Ahora la resta $b_{n+1} - a_{n+1}$ se puede definir de la siguiente manera

$$b_{n+1} - a_{n+1} = \begin{cases} b_n - c_n = b_n - \frac{b_n + a_n}{2} = \frac{b_n - a_n}{2} \\ c_n - a_n = \frac{b_n + a_n}{2} - a_n = \frac{b_n - a_n}{2} \end{cases}$$

Osea que simplemente

$$b_{n+1} - a_{n+1} = \frac{1}{2}(b_n - a_n)$$

$$= \frac{1}{2^2}(b_{n-1} - a_{n-1})$$

$$= \frac{1}{2^3}(b_{n-2} - a_{n-2})$$
...
$$= \frac{1}{2^{n+1}}(b - a)$$

Luego tomando limite

$$\lim_{n \to \infty} \frac{1}{2^{n+1}} (b - a) = 0$$

Pero

$$\lim_{n \to \infty} b_{n+1} - a_{n+1} = 0$$

$$\lim_{n \to \infty} b_{n+1} - \lim_{n \to \infty} a_{n+1} = 0$$

$$r_1 - r_2 = 0$$

$$\implies r_1 = r_2$$

Llamaremos a partir de ahora $r=r_1=r_2$ Ahora:

$$c_n = \frac{a_n + b_n}{2} = \lim_{n \to \infty} c_n = \frac{1}{2} (\lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n) = \frac{1}{2} (r + r) = r$$

Por la forma en que se definen a_n, b_n se deduce que

$$f(a_{n+1})f(b_{n+1}) \le 0$$

Como f es continua

$$f(\lim_{n\to\infty} a_n) = \lim_{n\to\infty} f(a_n)$$

$$f(\lim_{n\to\infty}b_n)=\lim_{n\to\infty}f(b_n)$$

Finalmente tenemos:

$$0 \ge f(a_{n+1})f(b_{n+1}) \implies 0 \ge (\lim_{n \to \infty} f(a_n))(\lim_{n \to \infty} f(b_n)) = f(r)f(r) = f(r)^2$$

En resumen

$$0 > f(r)^2$$

y esto sucede sii f(r) = 0

Por ultimo veamos la cota para el error. Recordemos que:

$$b_{n+1} - a_{n+1} = \frac{1}{2^{n+1}}(b-a) \quad \forall n \implies b_n - a_n = \frac{1}{2^n}(b-a)$$

$$|c_n - r| \le |c_n - a_n| = \frac{1}{2}(b_n - a_n)$$

= $\frac{1}{2}\frac{1}{2^n}(b - a)$
= $\frac{b - a}{2^{n+1}}$

1.2 Metodo de Newton

Theorem 2 (Sobre el método de Newton) Sea $f:[a,b] \to \mathbb{R}$ con f'' continua tal que: existe $r \in [a,b]$ tal que f(r) = 0 y $f'(r) \neq 0$. Entonces existe $\delta > 0$ tal que si empezamos a iterar segun el método de

Entonces existe $\delta > 0$ tal que si empezamos a iterar segun el metodo Newton con $x_0 \in [r - \delta, r + \delta]$ entonces la iteración

$$x_{n+1} = x_n - \frac{f(x)}{f'(x)} \tag{1}$$

Produce una sucesion $\{x_n\}$ que cumplirá que:

- 1. $x_n \in [r \delta, r + \delta] \ \forall n$
- 2. $\lim_{n\to\infty} x_n = r$ La sucesion tiende a la raiz
- 3. Existe c > 0 tal que $|x_{n+1} r| < c \times |x_n r|^2$ (Converge cuadraticamente)

Proof: Para cada h > 0 definimos la función auxiliar C(h) como:

$$C: (0, \infty) \to \mathbb{R}$$

$$C(h) = \frac{1}{2} \frac{\max\{f''(y) : y \in [r - h, r + h]\}}{\min\{f'(z) : z \in [r - h, r + h]\}}$$
(2)

Notar que este es cociente mas grande posible entre elementos de la image de f'' y f' al rededor de r a distancia h.

Con esto en mente, resulta que:

Si
$$x, \gamma \in [r-h, r+h]$$
 entonces $\frac{1}{2} \frac{f''(\gamma)}{f'(x)} \le C(h)$

Ademas sucede que:

$$\lim_{h\to 0}C(h)=\frac{1}{2}\frac{|f''(r)|}{|f'(r)|}\neq 0 \implies \lim_{h\to 0}C(h)\times h=0 \implies \exists \delta>0:C(\delta)\times \delta<1$$

(Nota: El hecho de que el limite tienda a 0, nos dice que hay algun h, que se va a acercar tanto como necesitamos)

Nombraremos esta ultima parte: $C(\delta) \times \delta = \lambda$.

Este δ nos servira mas adelante en la prueba

Tomemos el polinomio de Taylor de grado 1 centrado en $a=x_n$. Sea e entre x y x_n

$$f(x) = f(x_n) + \frac{f'(x_n)}{1!}(x - x_n) + \frac{f''(e)}{2!}(x - x_n)^2$$
(3)

Evaluando el polinomio en r a

$$f(r) = 0 = f(x_n) + \frac{f'(x_n)}{1!}(r - x_n) + \frac{f''(e)}{2!}(r - x_n)^2$$

$$-f(x_n) - \frac{f'(x_n)}{1!}(r - x_n) = \frac{f''(e)}{2!}(r - x_n)^2$$

$$-f(x_n) + \frac{f'(x_n)}{1!}(x_n - r) = \frac{1}{2}f''(e)(r - x_n)^2$$

$$-\frac{f(x_n)}{f'(x_n)} + \frac{1}{1!}(x_n - r) = \frac{1}{2}\frac{f''(e)}{f'(x_n)}(r - x_n)^2$$

$$(x_n - r) - \frac{f(x_n)}{f'(x_n)} = \frac{1}{2}\frac{f''(e)}{f'(x_n)}(r - x_n)^2$$

$$(x_n - \frac{f(x_n)}{f'(x_n)}) - r = \frac{1}{2}\frac{f''(e)}{f'(x_n)}(r - x_n)^2$$

Notar que de el lado izquierdo tenemos el error para el paso x_{n+1} de la sucesion al tomar valor absoluto

$$|(x_{n+1} - r)| = \left| \frac{1}{2} \frac{f''(e)}{f'(x_n)} (r - x_n)^2 \right|$$

$$= \frac{1}{2} \frac{|f''(e)|}{|f'(x_n)|} |r - x_n|^2$$

$$\leq C(\delta) |r - x_n|^2$$

$$\leq C(\delta) |r - x_n| |r - x_n|$$

$$< \lambda |r - x_n|$$
(5)

$$\implies x_{n+1} \in [r - \delta, r + \delta]$$

De la misma forma como $\lambda < 0$

$$|r - x_{n+1}| < \lambda |r - x_n| < \lambda^2 |r - x_{n-1}| < \dots < \lambda^{n+1} |r - x_0| \implies |x_n - r| \to 0$$

Finalmente tomando $c = C(\delta)$ tenemos que

$$|x_{n+1} - r| \le c|x_n - r|^2.$$

1.3 Punto fijo

Theorem 3 (Sobre la iteración de punto fijo)

Sea $g:[a,b]\to\mathbb{R}$ continua y tal que su imagen esta contenida en [a,b]. Entonces g tiene un punto fijo p*. (Existencia)

Ademas si g' esta definida en (a,b) y $|g'(x)| \leq k$ con $k < 1 \ \forall x \in (a,b)$. Entonces el punto fijo es único (Unicidad) y la iteración:

$$p_{n+1} = g(p_n)$$

Converge a p* partiendo de $p_0 \in [a, b]$. Y valen estas cotas:

- 1) $|p_{n+1} p *| \le k|p_n p *|$ (la convergencia es al menos lineal) 2) $|p_n p *| \le k^{n+1}|p_0 p *|$ 3) $|p_n p *| \le \frac{k^n}{1-k}|p_1 p_0|$ 4) $|p_n p *| \le \frac{k}{1-k}|p_n p_{n-1}|$

Veamos antes una propiedad general Dada $g:[a,b] \to \mathbb{R}$ continua en ese intervalo y f(x) = g(x) - x.

1)
$$g(a) < a$$
, $g(b) > b \implies f(a) < 0$, $f(b) > 0$
 $\implies (T.V.intermedio) \exists p* \in [a, b] : g(p*) = p*$

2)
$$g(a) > a$$
, $g(b) < b \implies f(a) > 0$, $f(b) < 0$
 $\Longrightarrow (T.V.intermedio) \exists p* \in [a, b] : g(p*) = p*$

Proof: Tenemos que $g(a) \in [a, b]$ Entonces vale alguna de las siguientes

1.a)
$$g(a) > a$$
 Pues a es el minimo

2.a) O bien vale que
$$g(a) = a$$

En caso de que pase lo segundo es trivial que g tiene punto fijo en a Similarmente para b

1.b)
$$g(b) < b$$
 Pues b es el maximo

2.b) O bien vale que
$$g(b) = b$$

En caso de que pase lo segundo es trivial que g tiene punto fijo en b Ahora para el caso no trivial, dado que sucede 1.a y 1.b. Por la propiedad que vimos antes de la prueba sabemos que existe p*. Entonces la funcion tiene punto fijo en p*

Supongamos ahora que $|g'(x)| \le k < 1 \quad \forall x \in (a, b)$ veamos que p* es único: Si $\exists q* \ne p*$ y g(p*) = p* y g(q*) = q* \Longrightarrow

$$\frac{g(p*) - g(q*)}{p* - q*} = 1$$

Luego por el teorema de valor medio hay un λ entre p y q tal que:

$$g(p*) - g(q*) = g'(\lambda)(p*-q*)$$

Lugo usando la hipotesis de que $g'(x) \le k < 1$ tenemos que:

$$\begin{aligned} |p*-q*| &= |g(p*)-g(q*)| = |g'(\lambda)||p*-q*| \leq k|p*-q*| &< |p*-q*| \\ |p*-q*| &< |p*-q*| \end{aligned}$$

Absurdo que vino de suponer que existen mas de un puntos fijos. Por lo que el punto fijo debe ser único.

Veamos que la iteración converge al punto fijo. Notar que como $g(x) \in [a,b]$ la sucesion siempre esta bien definida.

Ahora sea $p_0 \in (a, b)$ y sea $p_{n+1} = g(p_n)$ entonces:

$$|p_{n+1} - p *| = |g(p_n) - g(p*)| = |g(p_n) - p *|$$

Por teorema de valor medio existe λ tq:

$$|g(p_n)-p*|=$$

$$|g'(\lambda)||p_n-p*| \leq k|p_n-p*| \ (\ k \ \text{acota a la derivada en el intervalo}\)$$

Entonces podemos hacer los mismo para los casos $n-1, n-2, \dots$ y tenemos:

$$|p_n - p*| \le k|p_{n-1} - p*| \le k^2|p_{n-2} - p*| \le \dots \le k^n|p_0 - p*|$$
 (2)

Ahora tomando:

$$\lim_{n \to \infty} |p_n - p*| \le \lim_{n \to \infty} k^n |p_0 - p*| = |p_0 - p| \lim_{n \to \infty} k^n = 0$$

Por lo tanto la sucesion converge a p*.

Veamos por ultimo las cotas que se pueden deducir.

1) Esta apareció durante la prueba

$$|p_{n+1} - p *| =$$
 $|g(p_n) - p *| = {^{T.V.M}} |g'(\lambda)| |p_n - p *|$
 $\leq k|p_n - p *|$

2) Tambien aparecio durante la prueba

$$|p_n - p*| \le k|p_{n-1} - p*| \le k^2|p_{n-2} - p*| \le \dots \le k^{n+1}|p_0 - p*|$$

3) Partiendo de la anterior

$$|g(p_{n-1}) - g(p_{n-2})| = |p_n - p_{n-1}| \le k|p_{n-1} - p_{n-2}|$$

$$\implies |p_n - p *| \le \frac{k}{1 - k}k|p_{n-1} - p_{n-2}|$$

$$\implies |p_n - p *| \le \frac{k}{1 - k}k^2|p_{n-1} - p_{n-2}|$$

...

$$\implies |p_n - p*| \le \frac{k}{1-k} k^{n-1} |p_1 - p_0| = \frac{k^n}{1-k} |p_1 - p_0|$$

4) Partiendo de la anterior

$$|p_{n+1} - p*| \le k|p_n - p*|$$

Sumo y resto p_{n+1}

$$|p_{n+1} - p*| \le k|p_n - p_{n+1} + p_{n+1} - p*|$$

Desigualdad triuangular:

$$|p_{n+1} - p *| \le k|p_n - p_{n+1} + p_{n+1} - p *|$$

$$|p_{n+1} - p *| \le k|p_n - p_{n+1}| + k|p_{n+1} - p *|$$

$$|p_{n+1} - p *| - k|p_{n+1} - p *| \le k|p_n - p_{n+1}|$$

$$(1 - k)|p_{n+1} - p *| \le k|p_n - p_{n+1}|$$

$$|p_{n+1} - p *| \le \frac{k}{(1 - k)}|p_n - p_{n+1}|$$

2 Interpolacion

Enunciamos y probamos a continuación una propiedad que nos servira para probar la unicidad en el proximo teorema.

Lemma 4 Un polinomio p(x) con gr(p) = k tiene a lo sumo k raices

Proof: Veamos por induccion

gr(p) = 0:

Es trivial.

gr(p) = 1:

el polinomio es de la forma

$$p(x) = x - a$$

Que tiene raiz solamente en a

gr(p) = k: Hipotesis inductiva: Los polinomios de grado k-1 tienen a los sumo k-1 raices.

Sea p(x) un polinomio tal que gr(p) = k con al menos una raiz en a. Entonces se puede factorizar como:

$$p(x) = (x - a)q(x)$$

Donde q(x) es otro polinomio, necesariamente de grado k-1. Ahora la cantidad de raices de p(x) es 1 (porque a es raiz) + las raices que tenga q(x). Pero por hipotesis inductiva q tiene a lo sumo k-1 raices. $\implies p(x)$ tiene a lo sumo k raices.

2.1 Polinomio interpolante

Theorem 5 (Polinomio interpolante)

Dados $(x0, y0), (x1, y1), ..., (x_n, y_n)$ puntos en el plano cartesiano. Tales que $x_i \neq x_j$, para $i \neq j$

Existe un **unico** polinomio p(x) de grado $\leq n$ tal que:

$$p(x_i) = y_i$$

Para cada punto de los dados.

Proof: Veamos por induccion en n

n=0: definimos el polinomio p(x) como

$$p(x) = x_0$$

 $\underline{n=k}$: Ahora nuestra hipotesis inductiva sera que existe un poliniomio q(x) que interpola los puntos $(x_0, y_0), ..., (x_{n-1}, y_{n-1})$ Plantearemos p(x) como:

$$p(x) = q(x) + \alpha(x - x_0)(x - x_1)...(x - x_{n-1})$$

Donde α es una constante a determinar pero notemos que en caso de evaluar p(x) en uno de los puntos que ya interpolaba q(x) resulta en que se anula todo el termino derecho, por lo que simplemente se evalua q(x)

Ahora queremos despejar α para que p cumpla que interpola el n-esimo punto

$$p(x_n) = y_n = q(x_n) + \alpha(x_n - x_0)...(x_n - x_{n-1})$$
$$y_n = q(x_n) + \alpha(x_n - x_0)...(x_n - x_{n-1})$$
$$y_n - q(x_n) = \alpha(x_n - x_0)...(x_n - x_{n-1})$$
$$\frac{y_n - q(x_n)}{(x_n - x_0)...(x_n - x_{n-1})} = \alpha$$

Recordemos que los x_i eran todos distintos por la hipotesis del teorema osea que el denominador nunca se hace cero, por lo que el polinomio queda bien definido.

Veamos ahora que p(x) es unico.

<u>Unicidad</u>: Supongamos que p(x) y d(x) dos polinomios, ambos de grado $\leq n$ y tales que $p(x_i) = d(x_i) = y_i$ para cada punto de los mencionados al inicio

Definamos q(x) = p(x) - d(x), un polinomio de grado $\leq n$ Notemos que tiene raices en cada uno de los x_i pues:

$$q(x_i) = p(x_i) - d(x_i) = y_i - y_i = 0$$

Para ser distintos p y d deben tener al menos una raiz distinta. Como el grado de q es n, usando el lemma de antes, es claro que como q tiene a lo sumo n raices. Pero como p y d interpolan exactamente los n mismos puntos es claro que esas son todas las n raices posibles de q. En conclusion p(x) = d(x).

2.2 Metodo de Lagrange para dar el interpolante

<u>Notacion</u>: En matematica en general cuando aparece un \hat{x} en una formula, quiere decir que ese termino 'se borra' o no va en la formula, pero facilita la notacion.

Dados $(x0, y0), (x1, y1), ..., (x_n, y_n)$ puntos en el plano cartesiano. Tales que $x_i \neq x_j$, para $i \neq j$. Definimos $\ell_i(x)$ para cada i = 0, 1, ..., n como:

$$\ell_i(x) = \frac{(x - x_0)...(\widehat{x - x_i})...(x - x_n)}{(x_i - x_0)...(\widehat{x_i - x_i})...(x_i - x_n)}$$

los ℓ_i tienen la propiedad de que cumplen lo siguiente:

$$\ell_i(x_j) = \begin{cases} 1 & \text{si } j \neq i \\ 0 & \text{si } j = i \end{cases}$$

y ademas hay que notar que ℓ_i es un polinomio, mas aun $gr(\ell_i) = n$

por lo que para dar un polinomio de grado $\leq n$ que interpole los puntos mencionados al principio podemos usar:

$$p(x) = \sum_{i=0}^{n} y_i \ell_i(x)$$

2.3 Error de interpolacion

Lemma 6 Sea $g:[a,b] \to \mathbb{R}$ derivable en su dominio (por consecuencia continua). Sean $x_0, x_1, ..., x_n \in [a,b]$ todos distintos, raices de g y tal que $x_i < x_{i+1}$. Entonces siempre hay un $c \in (x_i, x_{i+1})$ tal que g'(c) = 0.

Proof: Por teorema de Rolle tomando dos raices x_i, x_{i+1} tenemos que como g es derivable en el intervalo y $g(x_i) = g(x_{i+1}) = 0$, entonces existe c entre (x_i, x_{i+1}) tal que g'(c) = 0

Lemma 7 Del lema anterior se deduce que Sea $g : [a,b] \to \mathbb{R}$ derivable en su dominio (por consecuencia continua). Sean $x_0, x_1, ..., x_n \in [a,b]$ todos distintos, raices de g y tal que $x_i < x_{i+1}$. Entonces g' tiene al menos n raices en (x_0, x_n)

Theorem 8 (Error del polinomio interpolante) Sea $f:[a,b] \to \mathbb{R}$ una funcion con n+1 derivadas continuas. y sea p(x) un polinomio de grado $\leq n$ que interpola los n+1 puntos: $(x_0,y_0),...,(x_n,y_n)$ Donde $y_i=f(x_i)$. Con $x_0,x_1,...,x_n \in [a,b]$ todos distintos. Entonces:

$$f(x) - p(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x - x_0)(x - x_1)...(x - x_n)$$

Donde $c \in (a, b)$

Proof: Vale obviamente si tomamos $x = x_i$, pues el error da 0. Fijaremos un $x \in [a, b]$ tal que $x \neq x_i$, i = 0, 1, ..., n.

Definimos:

$$\varphi : [a, b] \to \mathbb{R}$$

$$\varphi(t) = [f(x) - p(x)] \frac{\prod_{i=0}^{n} (t - x_i)}{\prod_{i=0}^{n} (x - x_i)} - (f(t) - p(t))$$

Notar que φ es continua y derivalbe n+1 veces con todas derivadas continuas.

<u>¿Cuantas raices tiene φ ?</u> Claramente $t=x_0, t=x_1, ..., t=x_n$ son raices. Y tambien lo es t=x.

Como φ es n+1 veces derivable:

$$\Rightarrow \varphi'$$
 Tiene al menos n raices en (x_0, x_n)
 $\Rightarrow \varphi''$ Tiene al menos $n-1$ raices en (x_0, x_n)
 $\Rightarrow \dots$
 $\Rightarrow \varphi^{(n+1)}$ Tiene al menos una raiz en (x_0, x_n)

Llamemos c a la raiz de $\varphi^{(n+1)}$. Luego calcular la derivada n+1 esima es facil:

$$\varphi^{(n+1)}(t) = [f(x) - p(x)] \frac{1}{\prod_{i=0}^{n} (x - x_i)} (n+1)! - f^{(n+1)}(t)$$

Ahora evaluada en c tenemos que

$$0 = \varphi^{(n+1)}(c)$$

$$0 = [f(x) - p(x)] \frac{1}{\prod_{i=0}^{n} (x - x_i)} (n+1)! - f^{(n+1)}(c)$$

$$f^{(n+1)}(c) = [f(x) - p(x)] \frac{1}{\prod_{i=0}^{n} (x - x_i)} (n+1)!$$

$$\frac{f^{(n+1)}(c)}{[f(x) - p(x)]} = \frac{(n+1)!}{\prod_{i=0}^{n} (x - x_i)}$$

$$\frac{[f(x) - p(x)]}{f^{(n+1)}(c)} = \frac{\prod_{i=0}^{n} (x - x_i)}{(n+1)!}$$

$$\frac{[f(x) - p(x)]}{f^{(n+1)}(c)} = \frac{1}{(n+1)!} \prod_{i=0}^{n} (x - x_i)$$

$$f(x) - p(x) = \frac{f^{(n+1)}(c)}{(n+1)!} \prod_{i=0}^{n} (x - x_i)$$