

The Search for an Excited Bottom Quark (b*)

Lucas Corcodilos
Advisor: Petar Maksimovic
Research Exam
9/12/17

The Standard Model of Particle Physics

- The Standard Model
 - Experimentally accurate
 - Does not explain everything
- Missing explanations for
 - Dark Matter/Energy
 - The Hierarchy problem
 - Matter/anti-matter asymmetry
- Smashing particles at increasing energies has got us this far so why not keep going?

Standard Model of Elementary Particles

The LHC and CMS

What is a b*?

- A bottom quark is excited by a gluon to produce a b*
- Existence of a b* would imply that quarks are not fundamental

What would a b* look like?

- Very heavy (> 1 TeV)
 - Slowly moving along beamline
 - Decay products have high momentum
 - "boosted"
- All hadronic decay
 - Hadronic showers "jets"
 - $b^* \rightarrow tW$
 - W \rightarrow two jets
 - $t \rightarrow W + b \rightarrow two jets + b$

Top and W jets in opposite hemispheres

- Search for heavy top-W resonance
 - Invariant mass as smooth background
 - Any signal will be a peak

Data Selection - Isolating Signal

- Kinematics
 - $p_T(top) > 400 \text{ GeV}$
 - $p_T(W) > 400 \text{ GeV}$
 - $|\Delta Y| < 1.8$
 - Top and W back-to-back
- Standard CMS tagging algorithms to 'tag' candidate jets
 - Mass
 - Jet Substructure
 - b-tag

Top and W jets in opposite hemispheres

Selection	QCD MC	$tar{t}$ MC	Single top MC	M _{b*} = 1200 GeV	M _{b*} = 2800 GeV
2 jets, p _T	61,272,226	330,094	59,349	51,190	307
Δ y	48,673,108	287,211	51,155	49,860	251
M_top	9,771,616	152,108	17,112	17,609	71
M_W	1,139,835	27,959	3,920	12,004	41
$ au_2/ au_1$	231,390	14,352	2,223	9,013	27
Subjet b-tag	71,099	11,175	1,771	7,196	21
$ au_3/ au_2$	19,071	6,722	887	5,041	14

QCD Background Estimate Extracted from Data

- Look to another region to estimate QCD background
 - Invert part of W-tag selection
- Derive top tagging pass/fail ratio as a function of top p_T ($R_{P/F}$) in two eta regions

Fail

Fit R_{P/F} with bifurcated polynomial

Apply to failed top-tag events in signal region to estimate QCD background

 $signal\ selection = Passed_{Signal\ Region}$

 $background\ estimate = Failed_{Signal\ Region} * \frac{Passed_{Ratio\ Region}}{Failed_{Ratio\ Region}}$

Single top and $t\bar{t}$

Counts

- Well simulated but need some corrections
 - Pileup, top p_T reweighting, ...
- Double counting
 - QCD estimate <u>from data</u> and simulations count same bit
 - Extract QCD background estimate from single top and $t\bar{t}$ MC
 - Subtract from estimate

b* Simulated Signals

- Signals simulating a b* with signature we're looking for
 - 1200 GeV to 3000 GeV in increments of 200 GeV
- Used to set limits on b*
- Run 1 (at 8 TeV) excluded at 1.43 TeV

Summary

- The Standard Model of particle physics has been a great start
 - Need to look for more to study current mysteries
- The LHC is producing enormous amounts of data
 - A great time to be doing experimental particle physics
- The search for an excited bottom quark in an all-hadronic channel at 13 TeV nearing completion
- Submitting analysis note for review by end of the month

Backup

Closure Tests

- Sideband
 - Investigate QCD estimate in control region
 - Low W mass
 - $30 \text{ GeV} < M_W < 65 \text{ GeV}$
 - $R_{P/F}$ found by inverting $\tau 2/\tau 1$ selection
- QCD MC closure
 - Investigate QCD MC behavior in full selection region

Sideband Closure - Data

- Use $t\bar{t}$ rich high W mass sideband
 - M_w > 130 GeV
- Mass shape correction and top p_T reweighting applied

The CMS Detector

- Compact Muon Solenoid
- 5 Main Layers
 - 1. Tracker charged particle position and momentum
 - Electromagnetic Calorimeter
 (ECAL) charge particle energies
 - 3. Hadronic Calorimeter (HCAL) measures energy of hadrons
 - 4. Magnet 3.8 Tesla, bends charged particle paths
 - 5. Muon detectors/Return yoke Directs magnetic field, detects isolated muons

Correction to Shape of M_{top} Distribution

Top Mass Shape Correction - Signal Region

- 1. Normalize top tag pass and fail distributions as functions of M_{top} for QCD MC
- 2. Find $R_{P/F}(M_{top})$

Cut Variables in Signal Region

Top p_T Reweighting

Using TOP groups recommendation for $p_T < 400 \text{ GeV}$ as first-order reweight

•
$$SF(p_T) = e^{0.0615 - 0.0005 \cdot p_T}$$

•
$$w = \sqrt{SF(t)SF(\bar{t})}$$

Uncertainty taken as +/- half the difference between weighting and not weighting

QCD MC

Kinematic Distributions – p_T

QCD MC in Signal Region

Kinematic Distributions — phi QCD MC in Signal Region_____

Kinematic Distributions – Eta QCD MC in Signal Region

Kinematic Distributions — p_T Data in Sideband Region

Kinematic Distributions – phi Data in Sideband Region

Kinematic Distributions — Eta Data in Sideband Region ____

Systematic Uncertainties - MC

Source	Variation	Samples	
$tar{t}$ cross section	+ 4.8%, - 5.5%	$tar{t}$	
Single top (tW) cross section	± 3.9%	Single top (tW-channel)	
Single top (t-channel, top) cross section	+ 3.4%, - 4.0%	Single top (t-channel, top)	
Single top (t-channel, anti-top) cross section	+ 4.5%, - 5.0%	Single top (t-channel, anti-top)	
Luminosity	± 2.6%	$tar{t}$, single top, signal	
Pileup	\pm 1 σ (σ_{mb})	$tar{t}$, single top, signal	
PDF	$\pm 1\sigma (x, Q^2)$	$tar{t}$, signal	
Jet Energy Scale	$\pm 1\sigma (p_T)$	$tar{t}$, single top, signal	
Jet Energy Resolution	$\pm 1\sigma (p_T, \eta)$	$tar{t}$, single top, signal	
Q ² Scale	$\pm 1\sigma (Q^2)$	$t \overline{t}$	
W tagging	± 6%	single top, signal	
Top tagging	+ 14%, - 5.6%	$tar{t}$, single top, signal	
Trigger	± 1σ (<i>H</i> ₇)	$tar{t}$, single top, signal	
Alternate functional forms, Pass-fail ratio fit, Top mass shape correction	\pm 1σ (p_{T} , η)	QCD (from data)	

Sideband Closure – QCD MC

Sideband Closure – QCD MC

Background Estimate Studies

- Looked at QCD MC in various "W space" to study pass-fail ratios
 - Also tried parameterizing in M_{tW}

Background Studies

Blinded Data - Signal Region

Data - Full Selection

Data/MC Sets

Set	Name	Cross Section (pb)
Data	JetHT/Run2016BCD(E)(F)(G)(H)(HV2)-PromptReco-v2	N/A
QCDHT500	QCD_HT500to700_TuneCUETP8M1_13TeV-madgraphMLM-pythia8	31630
QCDHT700	QCD_HT700to1000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8	6802
QCDHT1000	QCD_HT1000to1500_TuneCUETP8M1_13TeV-madgraphMLM-pythia8	1206
QCDHT1500	QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8	120.4
QCDHT2000	QCD_HT2000toInf_TuneCUETP8M1_13TeV-madgraphMLM-pythia8	25.25
ttbar MC	TT_TuneCUETP8M2T4_13TeV-powheg-pythia8	831.76
Single-t_top	ST_t-channel_top_5f_inclusiveDecays_13TeV-powheg- pythia8_TuneCUETP8M2T4	136.02
Single- t_antitop	ST_t-channel_antitop_5f_inclusiveDecays_13TeV-powheg- pythia8_TuneCUETP8M2T4	80.95
Single-tW	ST_tW-channel_(anti)top_5f_inclusiveDecays_13TeV-powheg- pythia8_TuneCUETP8M2T4	80.95

Signal Sets

Signal Left (GeV)	Name	Cross Section (pb)
1200	BstarToTW_M-1200_LH_TuneCUETP8M1_13TeV-madgraph-pythia8	1.944
1400	BstarToTW_M-1400_LH_TuneCUETP8M1_13TeV-madgraph-pythia8	0.7848
1600	BstarToTW_M-1600_LH_TuneCUETP8M1_13TeV-madgraph-pythia8	0.3431
1800	BstarToTW_M-1800_LH_TuneCUETP8M1_13TeV-madgraph-pythia8	0.1588
2000	BstarToTW_M-2000_LH_TuneCUETP8M1_13TeV-madgraph-pythia8	0.0771
2200	BstarToTW_M-2200_LH_TuneCUETP8M1_13TeV-madgraph-pythia8	0.0388
2400	BstarToTW_M-2400_LH_TuneCUETP8M1_13TeV-madgraph-pythia8	0.0202
2600	BstarToTW_M-2600_LH_TuneCUETP8M1_13TeV-madgraph-pythia8	0.0107
2800	BstarToTW_M-2800_LH_TuneCUETP8M1_13TeV-madgraph-pythia8	0.0058
3000	BstarToTW_M-3000_LH_TuneCUETP8M1_13TeV-madgraph-pythia8	0.0032