Mathematics Year 1, Calculus and Applications I

D.T. Papageorgiou Solutions Problem Sheet 2

1. $\underline{y = x \exp(-x)}$: y = 0 at x = 0; y < 0 for x < 0; y > 0 for x > 0; $y \to 0$ as $x \to \infty$, and $y \to -\infty$ as $x \to -\infty$. In addition $y' = (1 - x) \exp(-x)$, hence there is a local maximum at x = 1. This is the only critical point. See Figure 1.

 $\underline{y=x^2\exp(-x^2)}$: The function is symmetric about x=0 and $y\geq 0$ for all x. y=0 at x=0 and $y\to 0$ as $|x|\to \infty$. $y'=2x(1-x^2)\exp(-x^2)$, hence x=0 is a local minimum and $x=\pm 1$ are local maxima. Sketch in Figure 2.

 $\underline{y=e^x/x}$: $y \to \pm \infty$ as $x \to 0\pm$. $y \to \infty$ as $x \to +\infty$, and $y \to 0$ as $x \to -\infty$. Also, $\underline{y'=e^x(1/x-1/x^2)}$, so x=1 is the only critical point - it must be a local minimum. y>0 for x>0 and y<0 for x<0. Sketch in Figure 3.

- 2. For the function $f(x) = \exp(1/x), x \neq 0$.
 - (a) What are the limits

$$\lim_{x \to 0+} f(x) = +\infty, \qquad \lim_{x \to 0-} f(x) = 0, \qquad \lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = 1.$$

(b) Defining f(0) = 0, the function is differentiable everywhere except possibly at x = 0, Here we consider

$$\lim_{h \to 0} \frac{\exp(1/h) - 0}{h},$$

which clearly does not exist if h > 0.

(c) Calculate derivatives:

$$\frac{df}{dx} = -\frac{1}{x^2} \exp(1/x),$$

$$\frac{d^2 f}{dx^2} = \frac{1}{x^4} \exp(1/x) + \frac{2}{x^3} \exp(1/x),$$
...

$$\frac{d^n f}{dx^n} = (-1)^n \frac{1}{x^{2n}} \exp(1/x) + g_n(x) \exp(1/x),$$

where the function $g_n(x)$ contains terms of size x^{-2n+1} at most for small negative x. Now, $\lim_{x\to 0^-} \left|\frac{\exp(1/x)}{x^{2n}}\right| = \lim_{t\to +\infty} t^{2n} \exp(-t) = 0$, and hence $\lim_{x\to 0^-} g_n(x) \exp(1/x) = 0$ also by the comparison test (since it is x times something that already goes to 0).

- (d) From the result for d^2f/dx^2 we see that there is an inflection point at x = -1/2, $y = 1/e^2$. There are no critical points, and the asymptotes have been determined. The sketch is given in Figure 4.
- 3. The function $y = x \exp(1/x)$ is slightly different from that in problem 2. We have y behaving like x for large x and $\lim_{x\to 0-} x \exp(1/x) = 0$ but $\lim_{x\to 0+} x \exp(1/x) = +\infty$ as before. All derivatives are 0 at x = 0- as before. Since $y' = (1-1/x) \exp(1/x)$ we must have a local minimum at x = 1, y = e. There are no other critical points. A sketch is given in Figure 5.

4. Need to show that the equation $e^x = ax$ has at least one solution for any number a, except when $0 \le a < e$.

Lets do the easy cases first: (i) If a = 0 there is no root since $e^x > 0$. (ii) If a < 0 then f(0) = 1 and $\lim_{x \to -\infty} (e^x - ax) = -\infty$; by the intermediate value theorem there is at least one root (you can also see this graphically but that is not a proof).

It remains to consider a > 0. There is probably another solution but I did it this way: Take the difference defined by $f(x) = e^x - ax$. Find the local minima for this (there is no local maximum since $f \to \infty$ as $x \to \infty$) by setting $f'(x_m) = 0$, i.e. $e_m^x - a = 0$, giving $x_m = \log a$. Hence $f(x_m) = a(1 - \log a)$ which immediately shows that a = e gives a solution. If a < e we have $a(1 - \log a) > 0$ hence f(x) > 0 and there cannot be a solution. If a > e we have $f(x_m) < 0$, and since f(0) = 1, the intermediate value theorem guarantees a root.

5. We are given the function

$$f(x) = \begin{cases} \exp(-1/x^2) & x \neq 0 \\ 0 & x = 0 \end{cases}$$

(a) Using the definition of the derivative we have

$$f'(0) = \lim_{h \to 0} \frac{\exp(-1/h^2) - 0}{h} = \lim_{t \to \infty} t \exp(-t^2) = 0,$$

hence the derivative exists and f'(0) = 0.

(b) Use the chain rule, $\frac{d}{dx}(e^{-1/x^2}) = \frac{2}{x^3}e^{-1/x^2}$ and combined with (a) above we have

$$f'(x) = \begin{cases} \frac{2}{x^3} \exp(-1/x^2) & x \neq 0\\ 0 & x = 0 \end{cases}$$

(c) We can see that $f^{(n)}(x)$ will contain a term proportional to $x^{-3n}e^{-1/x^2}$ along with smaller inverse powers of x (the x^{-3n} is the most singular as $x \to 0$). Since

$$\lim_{r \to 0} \frac{e^{-1/x^2}}{r^{3n}} = 0, \qquad (why?)$$

we also define $f^{(n)}(0) = 0$ and hence all higher derivatives exist.

- (d) To sketch the function we note that $f(x) \ge 0$, it is symmetric about x = 0, and $\lim_{|x| \to \infty} f(x) = e^0 = 1$. All derivatives are zero at x = 0 and there are inflection points at $x = \pm \sqrt{2/3}$, $y = e^{-3/2}$. A plot is provided in Figure 6.
- 6. Can write $f(x) = e^{x \log x}$, hence $f'(x) = x^x(1 + \log x)$. Considering $\lim_{x\to 0+} x^x(1 + \log x)$, we note that $\lim_{x\to 0+} x^x = 1$ (why?), and hence $\lim_{x\to 0+} f'(x)$ does not exist and in fact tends to $-\infty$. This means that the tangent at x=0 is vertical. In addition, there is a local minimum at $x=e^{-1}$, $y=e^{-1/e}$, and clearly f is positive and becomes large for x large.

A plot is given in Figure 7.

7. We can use the result $\frac{d}{dx}x^x = x^x(1 + \log x)$ in problem 7 also. Compute

$$\frac{d}{dx}\left(x^{x^x}\right) = \frac{d}{dx}e^{x^x\log x} = x^{x^x}\left(x^{x-1} + x^x(1+\log x)\log x\right)$$

8. Yes. One example is $\log_2 \sqrt{2} = 1/2$.

9. (a) Need to find $\lim_{a\to 0} \frac{1}{a} \log\left(\frac{e^a-1}{a}\right)$. The function $\frac{e^a-1}{a}$ has the form '0/0' and so L'Hôpital's rule can be used to see that $\lim_{a\to 0} \frac{e^a-1}{a} = 1$. Hence, $\frac{1}{a} \log\left(\frac{e^a-1}{a}\right)$ is of the form '0/0' and what we have shown is that L'Hôpital's rule can be applied directly to find

$$\lim_{a \to 0} \frac{1}{a} \log \left(\frac{e^a - 1}{a} \right) = \lim_{a \to 0} \frac{\frac{e^a}{e^a - 1} - \frac{1}{a}}{1} = \lim_{a \to 0} \frac{ae^a - (e^a - 1)}{a(e^a - 1)}$$
$$= \lim_{a \to 0} \frac{ae^a}{ae^a + e^a - 1} = \lim_{a \to 0} \frac{ae^a + e^a}{ae^a + 2e^a} = \frac{1}{2}.$$

[We can do this much more easily using Taylor's Theorem that is coming a bit later.]

(b) For $\lim_{a\to\infty} \frac{1}{a} \log\left(\frac{e^a-1}{a}\right)$ I can save myself all the differentiations by noting that $\log x$ is a strictly increasing function and hence $\log\left(\frac{e^a-1}{a}\right) < \log\left(\frac{e^a}{a}\right) = a - \log a$. Hence

$$\lim_{a \to \infty} \frac{1}{a} \log \left(\frac{e^a - 1}{a} \right) < \lim_{a \to 0} \left(\frac{a - \log a}{a} \right) = \lim_{a \to 0} \left(1 - \frac{\log a}{a} \right) = 1,$$

since $\lim_{a\to\infty} \frac{\log a}{a} = 0$, and by use of the squeezing theorem.

10. $\lim_{x\to 1} x^{1/(1-x^2)}$ of form '1\infty'.

$$x^{1/(1-x^2)} = \exp\left(\frac{1}{1-x^2}\log x\right); \quad \lim_{x \to 1} \frac{\log x}{1-x^2} = \lim_{x \to 1} \frac{1/x}{-2x} = -1/2$$

so $\lim_{x\to 1} x^{1/(1-x^2)} = e^{-1/2}$ since $\exp(x)$ is a continuous function.

 $\lim_{x\to 0} (\tan x)^x$, x>0, is of form '0°'.

$$(\tan x)^x = \exp(x\log(\tan x)); \quad x\log(\tan x) = \frac{\log(\tan x)}{(1/x)},$$

which is of the form ∞/∞ so can use L'H rule to find

$$\lim_{x \to 0} \frac{\log(\tan x)}{(1/x)} = \lim_{x \to 0} \frac{\frac{\sec^2 x}{\tan x}}{-\frac{1}{x^2}} = -\lim_{x \to 0} \frac{x^2}{\sin x} = 0.$$

Hence $\lim_{x\to 0} (\tan x)^x = 1$.

$$\underline{\lim_{x \to \infty} [\log x - \log(x - 1)]} = \lim_{x \to \infty} \log \left(\frac{1}{1 - 1/x}\right) = 0.$$

$$\underline{\lim_{x \to 1} \frac{\log x}{e^x - 1}} = \lim_{x \to 1} \left(\frac{1/x}{e^x}\right) = 1.$$

$$\underline{\lim_{x\to 0} \frac{\cos x - 1 + x^2/2}{x^4}} = \lim_{x\to 0} \frac{-\sin x + x}{4x^3} = \lim_{x\to 0} \frac{-\cos x + 1}{12x^2} = \lim_{x\to 0} \frac{-\sin x}{24x} = -1/24.$$

11. Suppose that f is continuous at $x = x_0$, that f'(x) exists for x in an interval about x_0 , $x \neq x_0$, and that $\lim_{x \to x_0} f'(x) = m$. Prove that $f'(x_0)$ exists and equals m. [Hint. Use the mean value theorem.]

We are given $\lim_{x\to x_0} f(x) = f(x_0)$. Also, $\lim_{x\to x_0} f'(x) = m$, hence I can write this as

$$\lim_{x \to x_0} \left[\frac{f(x) - f(x_0)}{x - x_0} - m \right] = 0,$$

and since f' exists near x_0 except possibly at x_0 , we can use the MVT to find a c between x and x_0 such that the above limit has the form

$$\lim_{x \to x_0} \left[f'(c) - m \right] = 0.$$

Now as $x \to x_0$, the number c is squeezed between x and x_0 , tends to x_0 in the limit, and the result follows.

Figure 1: The function $y = x \exp(-x)$.

Figure 2: The function $y = x^2 \exp(-x^2)$.

Figure 3: The function $y = \exp(x)/x$. The red dot denotes the point (1, e) where the local minimum is attained.

Figure 4: The function $y = \exp(1/x)$. The red dot denotes the point $(1/2, 1/e^2)$ where there is an inflection point

Figure 5: The function $y = x \exp(1/x)$. The red dot denotes the local minimum point (1, e).

Figure 6: The function $y=\exp(-1/x^2)$. The red dots denote the inflection points $(\sqrt{2/3},e^{-3/2})$.

Figure 7: The function $y=x^x$. The red dot denotes the local minimum $(1/e,e^{-e})$.