Conversion analogique-numérique

Capteurs – Chapitre 1

I. Fonction de transfert

Convertisseur n bits. $N_{max} = 2^n - 1$

$$q = \frac{V_{ref}}{2^n} \qquad \text{(quantum)}$$

$$V_{out_{CNA}} = qN \Rightarrow V_{out_{CNA_{max}}} = V_{ref} - q$$

II. Convertisseur Analogique-Numérique (CAN)

1. Simple rampe

$$U_R = at$$
 $t_x = \frac{U_x}{a} \Rightarrow N = \frac{t_x}{T_H} = \frac{U_x}{a.T_H}$

111 110 - 3q/2 101 - q/2 001 - q/2 001 - Q/2 001 - V_{in} V_{PE}= V_{ref}

• valeurs représentées par les codes

2. Double rampe

- 1. On intègre U_x pendant un temps t_1 fixe
- 2. On intègre U_{ref}
- 3. On mesure le temps t_x que met U_R pour revenir à 0

$$U_{R_{max}} = -U_x \cdot \frac{t_1}{RC} = -U_{ref} \cdot \frac{t_x}{RC} \qquad t_x = t_1 \frac{U_x}{U_{ref}} \quad \Rightarrow \quad N = \frac{t_x}{T_H} = \frac{t_1}{t_H} \frac{U_x}{U_{ref}}$$

Conversion analogique-numérique

Capteurs – Chapitre 1

3. Approximations successives

SAR = Successive Approximation

On teste successivement les bits de N en débutant par le poids fort (MSB). Le résultat du test est donné par le comparateur.

Il faut n tests pour n bits.

5. CAN pas-à-pas

1^{ère} partie du code par CAN flash puis 2^{ème} partie par autre CAN flash après soustraction du 1^{er} résultat (décompose le codage).

4. CAN Flash

Comparaison directe. $2^n - 1$ comparateurs nécessaire.

6. CAN pipeline

Etage élémentaire de CAN pipeline

Un CAN pipeline est un CAN pas-à-pas avec n étages avec CAN flash 1 bit.

III. Convertisseurs Numérique Analogique (CNA)

1. Résistances pondérées

$$I = \sum I_i = -V_{ref} \sum \frac{a_i}{2^{n-i}R}$$

$$\begin{aligned} U_S &= -\frac{R}{2I} = V_{ref} \sum \frac{a_i}{2^{n-i}} \\ &= \frac{V_{ref}}{2^n} \sum a_i 2^i = V_{ref} \frac{N}{2^n} \end{aligned}$$

2. Réseau R/2R

Le générateur et les cellules voient à leur droite une résistance équivalente de 2R.

$$I_i = -\frac{a_i}{2^{n-1}} \frac{V_{ref}}{2R} \qquad I = \sum I_i$$

$$U_s = -2RI = V_{ref} \sum \frac{a_i}{2^{n-1}} = V_{ref} \frac{N}{2^n}$$

En partie inspiré – et certains schémas repris – du <u>cours de Giustini Robert</u>