Anduril

Air Defense Case Study

Ravi Dayabhai April 8, 2024

Contents

Context

Analysis

Q&A

Context

Context

- The Task: exploratory data analysis + answer select questions about tower performance and reporting
- The Data: raw readings for 30+ metrics from 4 towers spanning c. 1 month period
 - Data is structurally sound, but the representations were non-uniform (e.g., CSV, JSONL)
 - Units were assumed from metric names or inferred via data or standards
 - No assumptions are made about missing data, though significant nullity is worth further investigation
- The Artifacts: various data products to enable subsequent analysis
 - Idempotent <u>ETL logic</u> (i.e., code to build data warehouse)
 - Static site of the profiled data (e.g., summary statistics, cuts by metric & by tower)
 - Chronicled <u>investigations</u> (i.e., notebooks with deeper dives)

The **sampling frequency** over the period for any **tower - metric** pair is **30 seconds**.

The **data availability** over the period **show patterns**, though the **underlying causal explanation is not clear**.

Analysis

The distributions of <u>CV detection rates</u> are bounded but vary in shape...

→ Towers A & B show greater average, and more varied, FPS than their counterparts overall and per day.

...and there are notable fluctuations over particular sub-periods...

- → Tower B's sees a c. 4x increase in the middle of the period. A similar phenomenon affects Tower D later in the period (to a lesser extent).
- → The **latter pair of towers have c. 3x lower FPS** over the period on average.

...and non-reporting for Towers B, C, D are awfully similar.

→ This is first (of many) examples of **patterned nullity** in the dataset; this and **the next two metrics share similar nullity**.

CV tracking latency is also non-uniform across towers and days...

→ Putting aside the anomalous readings, in general, the first pairs of towers are more similar to each other than to the second pair in terms of CV tracking latency.

...with the average latency for Tower D spiking in early February.

→ Towers C & D tend to have lower latencies, with the notable exception being tower D during early February.

<u>System uptime</u> readings are *mostly* consistent...

- → The **maximum** uptime is **c. 18 days**, but **there are aberrations** according to a few towers.
- → The *inferred* units are *decaseconds* (1 decasecond = 10 seconds).

...but it's not clear whether monotonicity of the metric is reliable.

→ Peak-to-peak calculations reveal "micro-cycles", which have an outsized effect on simple averages.

LTE SNR looks relatively stable (absent baseline).

- → Tower C is the only tower with a negative ratio, on average.
- → Tower D is the only tower with a bimodal distribution, from the peak on February 12th.

Nullity and indiscernible power consumption patterns...

→ Unless power doesn't vary, **Tower A** is effectively **providing no information about power consumption**, as all related fields are constant (100%) or missing entirely.

... obscure consistent monitoring of tower power.

Tower A: Battery Percentage & All Batteries State of Charge Percentage

Tower D: Battery Percentage & All Batteries State of Charge Percentage

→ It **does not seem there is a clear and consistent picture** across the four towers if consumption patterns are expected to be similar.

Track creation metrics contain notable outliers.

→ The **pan/tilt unit elapsed command time** contains a record that, if measured in seconds, amounts to **c. 13k-14k years**.

Time between Non-Uniformity Corrections (NUCs) ranges widely...

→ It is **unclear** what the **expected behavior** or underlying cause for this variation is.

...and the variation across towers doesn't stop there.

Camera Drifting Pixels

- → Tower B experiences an exponential increase in camera drift from Jan. 26th to Feb. 9th.
- → Roughly, coincides with **Computer Vision detection rate uptick** mentioned earlier.

Q&A