Basics of probability

Define

- (Event)
- Axioms of probability
- Conditional probability

Prove

- Law of Total Probability
- Bayes' Formula

Definition 1.2 (Event). A subset of S, $A \subseteq S$, is called an *event*.

Definition 1.3 (Axioms of Probability). A probability measure is a function P, which assigns to each event A a number P(A) satisfying

- (a) $0 \le P(A) \le 1$
- **(b)** P(S) = 1
- (c) If $A_1, A_2, ...$ is a sequence of pairwise disjoint event, that is, if $i \neq j$, then $A_i \cap A_j = \emptyset$, then

$$P\left(\bigcup_{k=1}^{\infty} A_k\right) = \sum_{k=1}^{\infty} P(A_k) \tag{1}$$

Definition 1.4. (Conditional probability). Let B be an event such that P(B) > 0. For any event A, denote and define the *conditional probability* of A given B as

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \tag{2}$$

Theorem 1.1 (Law of Total Probability). Let $B_1, B_2, ...$ be a sequence of events such that

- (a) $P(B_x) > 0$ for k = 1, 2, ...
- (b) B_i and B_j are disjoint whenever $i \neq j$
- (c) $S = \bigcup_{k=1}^{\infty} B_k$

Then, for any event A, we have

$$P(A) = \sum_{k=1}^{\infty} P(A|B_k)P(B_k)$$
(3)

Bevis

Ved den distibutive lov for uendelige fællesmængder fås

$$A = A \cap B = \bigcup_{k=1}^{\infty} (A \cap B_k) \tag{4}$$

Siden $A \cap B_1, A \cap B_2, \ldots$ er parvis disjunkte og derfor kan summeres fås

$$P(A) = \sum_{k=1}^{\infty} P(A \cap B_k) = \sum_{k=1}^{\infty} P(A|B_k)P(B_k)$$
 (5)

Proposition 1.11 (Bayes' Formula). Under the same assumptions as in the law of total probability and if P(A) > 0, then for any event B_j , we have

$$P(B_j|A) = \frac{P(A|B_j)P(B_j)}{\sum_{k=1}^{\infty} P(A|B_k)P(B_k)}$$
(6)

Bevis

Fra loven om samlet sandsynlighed (law of total probability) kan nævneren skrives om, således

$$P(B_j|A) = \frac{P(A|B_j)P(B_j)}{P(A)} \tag{7}$$

som kan omskrives til

$$P(B_i|A)P(A) = P(A|B_i)P(B_i)$$
(8)

Dette er sandt, da loven om betinget sandsynlighed giver, at de to udtryk er ens

Proposition 1.3. Let P be a probability measure on some sample space S and let A and B be events. Then

(a)
$$P(A^c) = 1 - P(A)$$

(b)
$$P(A \setminus B) = P(A) - P(A \cap B)$$

(c)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

(d) If
$$A \subseteq B$$
, then $P(A) \le P(B)$

TABLE 1.1 Basic Set Operations and Their Verbal Description

Notation	Mathematical Description	Verbal Description
$A \cup B$	The union of A and B	A or B (or both) occurs
$A \cap B$	The intersection of A and B	Both A and B occur
A^c	The complement of <i>A</i>	A does not occur
$A \setminus B$	The difference between A and B	A occurs but not B
Ø	The empty set	Impossible event

Proposition 1.1. Let A, B, and C be events. Then

(a) (Distributive Laws)
$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$

 $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$

(b) (De Morgan's Laws)
$$(A \cup B)^c = A^c \cap B^c$$

 $(A \cap B)^c = A^c \cup B^c$

Proposition 1.5. Let A_1, A_2, \ldots, A_n be a sequence of n events. Then

$$P\left(\bigcup_{k=1}^{n} A_{k}\right) = \sum_{k=1}^{n} P(A_{k})$$

$$-\sum_{i < j} P(A_{i} \cap A_{j})$$

$$+\sum_{i < j < k} P(A_{i} \cap A_{j} \cap A_{k})$$

$$\vdots$$

$$+ (-1)^{n+1} P(A_{1} \cap A_{2} \cap \cdots \cap A_{n})$$

 TABLE 1.2
 Choosing k Out of n Objects

	With Replacement	Without Replacement
With regard to order	n^k	$n(n-1)\cdots(n-k+1)$
Without regard to order	$\binom{n-1+k}{k}$	$\binom{n}{k}$