Matemáticas 1 (ÁLGEBRA LINEAL)

Álgebra Lineal: rama de las matemáticas que estudia los conceptos de vectores, matrices, sistemas de ecuaciones lineales, espacios vectoriales y sus transformaciones lineales.

Se basa en el **espacio vectorial real de dimensión** <u>n</u>

Área que conecta con: ingeniería, gráficas por computadora, etc.

¿Qué es un Sistema de ecuaciones Lineales (SL)?

Colección de ecuaciones lineales¹ que involucran las mismas variables.

Definición 2.1: Un sistema lineal de m ecuaciones con n incógnitas o variables x_1, x_2, \ldots, x_n e un conjunto de m ecuaciones lineales

siendo $a_{ij} \in \mathbb{R}$ los coeficientes y $b_i \in \mathbb{R}$ los términos independientes.

a_{ii}: coeficiente en la i-ésima ecuación de la incógnita j

1 Una **ecuación lineal o de primer grado** es aquella que involucra solamente sumas y restas de variables elevadas a la primera potencia. Se llaman lineales porque se pueden representar como rectas en el sistema cartesiano.

Clasificación de un SL según el conjunto solución

Discutir un SL consiste en clasificarlo.

Resolver un SL es buscar las soluciones, si tiene.

- > **Incompatible**: si no tiene solución.
- > Compatible: si tiene al menos una solución.
 - **Determinado**: si tiene una única solución.
 - Indeterminado: si tiene más de una, infinitas soluciones.

T1-Alg: Sistemas de Ecuaciones Lineales

Discusión y Resolución.

- ➤ Métodos **Directos**:
 - Gauss
 - Gauss-Jordan
- ➤ Métodos **Iterativos**:
 - Jacobi.
 - Gauss-Seidel

Estudio de Sistemas de Ecuaciones Lineales (SL)

1º.- Métodos Directos: encuentran la solución exacta del SL.

Gauss y Gauss-Jordan

$$x1 + x2 + 2x3 = 9$$

 $2x1 + 4x2 - 3x3 = 1$
 $3x1 + 6x2 - 5x3 = 0$
 $6x1 + 11x2 - 6x3 = 10$

Solución única (x1, x2, x3) = (1, 2, 3)

2º.- Métodos Iterativos : encuentran solución aproximada a partir de la construcción de una sucesión de vectores.

Jacobi y Gauss-Seidel

$$7x_1 - x_2 = 5$$

 $3x_1 - 5x_2 = -7$

i	0	1	2	3	4	5	6
$x_1^{(i)}$	0	0'714	0'914	0′976	0'9934	0'998	0'999
$x_2^{(i)}$	0	1'400	1′829	1′949	1′985	1′996	1′999

:MÁTICAS I. 20<mark>15</mark>-2016

1º Resolución de SL con métodos directos

- El SL se representa con **estructura matricial Ax=b**.
- Se obtiene matriz ampliada [A|b] y su forma escalonada/reducida [C|d] .
- Se **discute** el SL a partir de la matriz [C|d].
- Si el SL es compatible se resuelve aplicando: Gauss o Gauss-Jordan.

-A: matriz de coeficientes

-x: vector solución.

-b : vector de términos independientes.

Ojo: Almacenar SL con matrices es lo mejor:

- Soluciona almacenaje de grandes datos.
- Permite automatizar cualquier método de resolución

Matrices asociadas a un SL

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$$

$$\dots \dots \dots \dots \dots$$

$$a_{m1}x_1 + a_{m2}x_2 + a_{n3}x_3 + \dots + a_{mn}x_n = b_m$$

$$Ax = b$$

$$\mathsf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

Matriz de Coeficientes (mxn)

$$x = [x1,...xm]T$$

b = [b1,...bm]T

Matriz de incógnitas/solución (mx1)

Matriz de términos Independientes (mx1)

Ma Jesús Castel de Haro, DCCIA

Matrices asociadas a un SL

Ejemplo

$$x1 - 3x2 + 3x3 + x4 = 1$$

$$x1 + x2 - x3 + x4 = 5$$

$$x1 - x2 + x3 + x4 = -3$$

matriz ampliada del SL

$$M3 = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

matriz escalonada del SL

matriz reducida del SL

M1, M2 y M3 son equivalentes

Tienen las mismas soluciones

8

Matriz ESCALONADA / REDUCIDA de un SL

Vemos cómo son y cómo se obtienen

Para ello tenemos en cuenta...

Estudio y cálculo de matrices escalonadas

En una matriz...

>> Una fila o columna distinta de cero (no nula) es la que tiene, al menos, una entrada (elemento) diferente de cero;

0	2	3	-4	1
0	0	0	0	4
0	0	-5	0	4
2	0	-6	0	7

Todas las filas y columnas son distintas de cero ya que todas tienen algún elemento no cero.

Ej: fila 2 al menos tiene $\mathbf{a}_{25} = \mathbf{4}$

Estudio y cálculo de matrices escalonadas

En una matriz...

>> Una entrada principal de una fila es la entrada diferente de cero que se encuentra más a la izquierda (en una fila distinta de cero).

0	2	3	-4	1
0	0	0	0	4
0	0	-5	0	4
2	0	-6	0	7

Entrada principal de la fila 1 es

$$a_{12} = 2$$
;

De la fila 2 es $a_{25} = 4$

. . .

Si en la entrada principal hay un 1, lo llamaremos 1 principal No hay en el ejemplo

Una matriz A (mxn) está en forma **escalonada por filas** si:

- a) La entrada principal de cada fila es un 1 principal.
- b) Cada 1 principal de una fila está en una columna situada a la derecha del 1 principal de la fila precedente (por eso se llama escalonada...)
- c) Las filas sólo de ceros están en la parte inferior de la matriz

$$\begin{bmatrix} 1 & -3 & 9 & 0 \\ 0 & 1 & 8 & 1 \\ 0 & 0 & 1 & 3 \end{bmatrix},$$

$$\begin{bmatrix} 1 & -3 & 1 & 8 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 1 & 8 & 7 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 5 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -3 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{0} & 0 & 5 \\ \mathbf{1} & 0 & -1 \\ 0 & \mathbf{1} & -3 \end{bmatrix}, \begin{bmatrix} \mathbf{1} & -3 & 0 & 8 \\ 0 & 0 & \mathbf{1} & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} \mathbf{1} & 0 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 3 & -4 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Características de las matrices escalonadas reducidas

Una matriz escalonada será **reducida**, si además de ser escalonada:

• En cada columna que tenga **un 1 principal**, el resto de entradas de la columna son ceros.

¿Son reducidas?

$$\begin{bmatrix} 1 & -3 & 9 & 0 \\ 0 & 1 & 8 & 1 \\ 0 & 0 & 1 & 3 \end{bmatrix}, \begin{bmatrix} 1 & -3 & 1 & 8 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 1 & 8 & 7 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 5 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -3 \end{bmatrix}, \begin{bmatrix} 1 & -3 & 0 & 8 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 3 & -4 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

MATEMÁTICAS I. 20<mark>15</mark>-20

Operaciones para escalonar una matriz

Operaciones elementales por filas sobre una matriz:

>> Tipo-1: Intercambiar las filas i y j: Fi \leftrightarrow Fj

>> Tipo-2: **Multiplicar** la fila i por $\alpha \neq 0$: **Fi** <-> $\alpha*$ **Fi**

>> Tipo-3: **Sumar** a la fila i, la fila j multiplicada por $\alpha \neq 0$,

Fi
$$\leftarrow$$
 Fi + α *F j = Fij (α).

OJO: Una matriz puede tener varias formas escalonadas, en función de cómo se elijan las operaciones elementales

Algoritmo para escalonar una matriz

Para cada fila de la matriz, hay que conseguir que tenga un 1 principal, así:

- Elegir la fila a procesar: La que tenga un elemento no nulo (x) más a la izquierda.
- Subir la fila, justo debajo de la última fila procesada (en la primera iteración se pasará a la primera fila).
- Dividir la fila a procesar por 'x' → Esto hará que tenga un uno principal
- Hacer ceros debajo del uno principal → Restando a cada fila, la fila procesada multiplicada por "algo".

Ejemplo de cómo escalonar una matriz

0	2	3	-4
0	0	2	3
2	2	-5	2

	2	2	-5	2
	0	0	2	3
,	0	2	3	-4

			-5/2	
7	0	0	2	3
7/	0	2	3	-4

$$\textbf{F1} \leftrightarrow \textbf{F3}$$

0	0	2	3	0	0	2	3	0	0	1	3/2
0	2	3	-4	0	1	3/2	-2	0	1	3/2	-2
1	1	-5/2	1	1	1	-5/2	1	1	1	-5/2	1

En este ejemplo, no ha sido necesario hacer 0s debajo de los 1 principales porque salían solos...

Hacer los ejemplos 1.7 y 1.8 de las pags. 12 y 13 del libro de teoría.

Ejemplo 1.7: Consideremos el siguiente sistema

Ejemplo 1.8: Resolver el sistema

Algoritmo para reducir una matriz escalonada

Una vez escalonada la matriz, hay que hacer 0s encima de los 1s principales:

Empezando por la derecha, seleccionar la fila a la que se le quiere hacer un 0 y restarle la fila del 1 principal multiplicada por algo. Hacer lo mismo para el resto de filas.

1	1	-5/2	1	1	1	-5/2	1
0	1	3/2	-2	0	1	0	-17/4
0	0	1	3/2	0	0	1	3/2

1	1	0	19/4	
0	1	0	-17/4	
0	0	1	3/2	
F	1 ↔ F	- -1 + (5/2	2)*F3	

	1	0	0	9
	0	1	0	-17/4
	0	0	1	3/2
L	F1	\longleftrightarrow	F1 +	(-1)*F2

T1-Alg: Sistemas de Ecuaciones

Matrices escalonadas / reducidas

$$\begin{bmatrix} 1 & -3 & 9 & 0 \\ 0 & 1 & 8 & 1 \\ 0 & 0 & 1 & 3 \end{bmatrix}, \begin{bmatrix} 1 & -3 & 1 & 8 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 1 & 8 & 7 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 5 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -3 \end{bmatrix}, \begin{bmatrix} 1 & -3 & 0 & 8 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 3 & -4 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

OJO: Una matriz puede tener varias formas escalonadas, pero sólo UNA matriz reducida.

MATEMÁTICAS I. 20<mark>15-</mark>2016

DISCUSIÓN de SL ESCALONADOS

Discusión de SL a partir de su matriz escalonada

Sea [A|b] matriz ampliada de un SL y [C|d] su matriz escalonada.

El sistema es Incompatible:

Si en [C|d] aparece un **1** principal en la <u>última columna</u> o si <u>alguna fila</u> queda [0,0,...0 | b], $b \ne 0$.

EjEMPLO:

$$x2 - 4x3 = 8$$

 $2x1- 3x2 + 2x3 = 1$
 $5x1- 8x2 + 7x3 = 1$

[A|b]

0	1	-4	8	
2	-3	2	1	
5	-8	7	1	

[C|d]

4 0/0 4	
1 -3/2 1 1/	2
0 1 -4 8	
0 0 0 1).

Discusión de SL a partir de su matriz escalonada/reducida

El sistema es Compatible Determinado si todas las columnas (excepto la última) tienen un 1 principal. Es decir:

Si en [C|d] **no hay** ecuaciones del tipo **0 = b** y el nº de 1 principales **es igual** al nº de incógnitas.

1	-3	4	2		1	-3	4	2	
-2	6	1	5		0	1	-3	-2	
1	-2	1	0		0	0	1	1	

Nº incógnitas=3. Nº 1 principales=3

Discusión de SL a partir de su matriz escalonada/reducida

El sistema es Compatible Indeterminado:

Si en [C|d] no hay ecuaciones del tipo 0 = b y

el nº de 1 principales **es menor que** el nº de incógnitas.

1	1	-1	-2	3
2	1	1	1	2
1	0	2	3	-1

1	1	-1	-2	3
0	1	-3	-5	4
0	0	0	0	0

Nº incógnitas=4. Nº 1 principales=2

RESOLUCIÓN de SL ESCALONADOS

Plantear sistema

Sistemas asociados a matrices Escalonadas

a)
$$\begin{bmatrix} 1 & -3 & 9 & 0 \\ 0 & 1 & 8 & 1 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$
, $x1 - 3x2 + 9x3 = 0$
 $x2 + 8x3 = 1$
 $x3 = 3$

b)
$$\begin{bmatrix} 1 & -3 & 1 & 8 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \begin{array}{c} x1 - 3x2 + x3 = 9 \\ x3 = 3 \\ 0 = 1 \end{array}$$

c)
$$x1 + x3 + 8x4 = 7$$
 $0 = 1$ $0 = 0$, $\begin{bmatrix} 1 & 0 & 1 & 8 & 7 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$

Sistemas asociados a matrices Escalonadas

d)
$$\begin{bmatrix} 1 & 0 & 0 & 5 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -3 \end{bmatrix}, \quad \begin{array}{c} x1 & = 5 \\ x2 & = -1 \\ x3 = -3 \end{array}$$

f)
$$x1 + 3x3 - 4x4 = 0$$

$$0 = 1$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

Métodos directos de resolución de sistemas lineales

- **Método de Gauss:** Generaliza el método de reducción y obtiene la **solución exacta de SL** aplicando **sustitución regresiva** a la matriz **escalonada.**
- Método de Gauss-Jordan: Obtiene la solución exacta a partir de la matriz escalonada/reducida, donde la solución se obtiene de forma directa a partir del vector de términos independientes, es decir, de la última columna.

Resolución de SL usando Gauss

Ejemplo-1 Gauss

Matriz escalonada [C|d]

$$x2 - 4x3 = 8$$

 $2x1- 3x2 + 2x3 = 1$
 $5x1- 8x2 + 7x3 = 1$

1	-3/2	1	1/2
0	1	-4	8
0	0	0 (1

Clasificación SL: incompatible. Hay ecuaciones del tipo 0 = b

SL:
$$x1 - 3/2x2 + x3 = 1/2$$

 $x2 - 4x3 = 8$
 $0 = 1$

Resolución de SL usando Gauss

Ejemplo-3 Gauss

1	-3	4	2
-2	6	1	5
1	-2	1	0

1	-3	4	2	
0	1	-3	-2	
0	0	1	1	

Clasificación SL: Compatible Determinado No hay ecuaciones 0 = b y n^0 1 principales = n^0 incógnitas.

Cálculo solución: sustitución regresiva

SL:

$$x1 - 3x2 + 4x3 = 2$$

 $x2 - 3x3 = -2$
 $x3 = 1$

$$x = (x1, x2, x3) = (1, 1, 1)$$

Resolución de SL usando Gauss

Ejemplo-2 Gauss

1	1	-1	-2	3
2	1	1	1	2
1	0	2	3	-1

Matriz escalonada [C|d]

1	1	-1	-2	3
0	1	-3	-5	4
0	0	0	0	0

Incógnitas **básicas**: x1, x2 (1 principal)

Incógnitas **libres:** x3, x4 (no 1 principal)

Clasificación SL: Compatible Indeterminado

No hay ecuaciones 0 = b y n^0 1 principales $< n^0$ incógnitas.

libres: se les asigna un parámetro. $\mathbf{x3} = \alpha$, $\mathbf{x4} = \beta$

básicas: en función de las libres

$$x1 + x2 - x3 - 2x4 = 3$$

 $x2 - 3x3 - 5x4 = 4$

$$x = (x1, x2, x3, x4) = (x1, x2, \alpha, \beta)$$

Resolución de SL usando Gauss

Ejemplo-2 Gauss

Solución parametrizada de un sistema compatible indeterminado

SL:

$$x1 + x2 - x3 - 2x4 = 3$$

 $x2 - 3x3 - 5x4 = 4$

$$x1 = 3 - x2 + x3 + 2x4$$

 $x2 = 4 + 3x3 + 5x4$
 $x3 = \alpha$
 $x4 = \beta$
 $x2 = 4 + 3\alpha + 5\beta$
 $x3 = \alpha$
 $x4 = \beta$

$$x2 = 4 + 3\alpha + 5\beta$$

$$x3 = \alpha$$

$$x4 = \beta$$

$$\begin{bmatrix} x1 = 3 - (4 + 3\alpha + 5\beta) + \alpha + 2\beta \\ = -1 - 2\alpha - 3\beta \end{bmatrix}$$

$$x = (x_1, x_2, x_3, x_4)^T = (-1 - 2\alpha - 3\beta, 4 + 3\alpha + 5\beta, \alpha, \beta)^T$$

SOLUCIÓN escrita en forma vectorial:

$$\begin{vmatrix}
 x = | x1 | = \begin{cases}
 -1 - 2\alpha - 3\beta \\
 4 + 3\alpha + 5\beta \\
 \alpha \\
 \beta
 \end{vmatrix}$$

Resolución de SL usando Gauss-Jordan

>> Las filas nulas se ignoran pues la ecuación correspondiente será satisfecha por cualesquiera valores de las incógnitas.

Tiene más coste de operaciones que Gauss pero evitamos sustitución regresiva

Resolución de SL usando Gauss-Jordan

Ejemplo-1 Gauss-J

$$x1 + x2 + 2x3 = 9$$

 $2x1 + 4x2 - 3x3 = 1$
 $3x1 + 6x2 - 5x3 = 0$
 $6x1 + 11x2 - 6x3 = 10$

$$[C|d] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Clasificación SL: Compatible Determinado

No hay ecuaciones 0 = b y n^0 1 principales = n^0 incógnitas.

Cálculo solución: igualación a t. independiente

SOLUCIÓN: $x = (x1, x2, x3)^T = (1, 2, 3)^T$

Resolución de SL usando Gauss-Jordan

Ejemplo-2 Gauss-J

Clasificación SL: Compatible indeterminado No hay ecuaciones 0 = b y n^0 1 principales $< n^0$ incógnitas.

Parámetros: x2, x4;

Incógnitas básicas: x1, x3

Solución escrita en forma vectorial

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 2+\alpha-\beta \\ \alpha \\ 1+\beta \\ \beta \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 1 \\ 0 \end{bmatrix} + \alpha \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} -1 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \quad \alpha, \beta \in \mathbb{R}.$$

Sistemas Homogéneos

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n = 0$$

 $a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n = 0$
 $...$
 $a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n = 0$

- > SL de m ecuaciones y n incógnitas que tiene **todos los términos independientes nulos.**
- > Son compatibles determinados -solución trivial: x1 = x2 = ... = xn = 0.
- ➤ <u>Pueden</u> ser compatibles indeterminados con infinitas soluciones, cuando tiene más incógnitas que ecuaciones.
- > Se <u>resuelven</u> por Gauss y Gauss-Jordan.

MÉTODOS ITERATIVOS

MATEMÁTICAS I. 2015-2016

Métodos Iterativos

Dado un SL escrito $\mathbf{A}\mathbf{x} = \mathbf{b}$

Se obtiene una solución aproximada (un vector) del SL construyendo una sucesión de vectores a partir de un vector inicial arbitrario (normalmente el vector nulo), usando una ecuación de recurrencia.

Ejemplo

i	0	1	2	3	4	5	6
$x_1^{(i)}$	0	0'714	0'914	0′976	0'9934	0′998	0'999
$x_2^{(i)}$	0	1'400	1'829	1'949	1′985	1′996	1′999

Se puede comprobar que **x1 converge** (tiende) al valor 1 y x2 converge al valor 2, por lo que la solución exacta sería (1,2).

Método iterativo de Jacobi

Se <u>aplica</u> sólo a **sistemas cuadrados** (Nº incógnitas = Nº ecuaciones).

Para obtener e<u>cuación de recurrencia:</u>

- 1. Se ordenan las ecuaciones y las incógnitas.
- 2.De la ecuación i se despeja la incógnita i (aii<>0).

$$x_i = \frac{b_i - \sum_{j \neq i} a_{ij} x_j}{a_{ii}} \quad i = 1, 2, \dots, n.$$

MATEMÁTICAS I. 20<mark>15</mark>-2016

PASOS DE UN M_ITERATIVO

La resolución de un SL comienza en :

<u>Iteración0</u>: a **x** se le da un valor **inicial** (vector nulo) $x^{(0)} = (0,...0)$,

Se aplica ecuación recurrencia

Iteración 1: x toma los valores obtenidos de la iteración 0

Se aplica ecuación recurrencia

<u>Iteración2</u>: **x** toma los valores obtenidos de la iteración 1

Con ecuación de recurrencia se <u>hacen cálculos</u> para construir nueva solución $\{x^{(i)}\}$ i=1,..n

Ejemplo

$$7x_1 - x_2 = 5$$

 $3x_1 - 5x_2 = -7$

Se despeja x1 y x2

$$x_1 = \frac{5 + x_2}{7}$$
$$x_2 = \frac{7 + 3x_1}{5}$$

IDEA Y REPRESENTACIÓN

Se asignan valores iniciales a x1, x2 = solución inicial

En general x = (0,0)

Se escribe

$$(x_1^{(0)}, x_2^{(0)})$$

$$(x_1^{(1)}, x_2^{(1)})$$
 $(x_1^{(2)}, x_2^{(2)})$

Se obtiene Se obtiene

$$(x_1^{(2)}, x_2^{(2)})$$

Se dice: iteración 0

iteración 1 iteración 2

El superíndice es la iteración que se está realizando,

$$x_1^{(1)} = \frac{5+0}{7} \approx 0'714$$
$$x_2^{(1)} = \frac{7+3\cdot 0}{5} \approx 1'400$$

$$x_1^{(2)} = \frac{5 + 1'4}{7} \approx 0'914$$
$$x_2^{(2)} = \frac{7 + 3 \cdot 0'714}{5} \approx 1'829$$

etc