Latex Math Assignment ncert-exemplar/12/leep210.pdf-Excercise 10.3

Short Answer (S.A)

- 1. Find the unit vector in the direction of sum of vectors $\overrightarrow{d} = 2\hat{i} \hat{j} + \hat{k}$ and $\overrightarrow{b} = 2\hat{j} + \hat{k}$.
- 2. If $\overrightarrow{a} = \hat{i} + \hat{j} + 2\hat{k}$ and $\overrightarrow{b} = 2\hat{i} + \hat{j} 2\hat{k}$, find the unit vector in the direction of
 - (i) $6\overrightarrow{a}$ (ii) $2\overrightarrow{a} \overrightarrow{b}$
- 3. Find a unit vector in the direction of \overline{PQ} , where P and Q have co-ordinates (5,0,8) and (3,3,2), respectively.
- 4. If \overrightarrow{a} and \overrightarrow{b} are the postion vectors of A and B, respectively, find the position vector of a point C in BA produced such that BC=1.5 BA.
- 5. Using vectors, find the value of k such that the points (k,-10,3),(1,-1,3) and (3,5,3) are colinear
- 6. A vector \overrightarrow{r} is inclined at equal angles to the three axes. If the magnitude of \overrightarrow{r} is $2\sqrt{3}$ units, find \overrightarrow{r} .
- 7. A vector \overrightarrow{r} has a magnitude 14 and direction ratios 2,3,-6. Find the direction cosines and components of \overrightarrow{r} , given that \overrightarrow{r} makes an acute angle with x-axis.
- 8. Find a vector of magnitude 6, which is perpendicular to both the vectors $2\hat{i} - \hat{j} + 2\hat{k}$ and $4\hat{i} - \hat{j} + 3\hat{k}$.
- 9. Find the angle between the vectors $2\hat{i} \hat{j} + \hat{k}$ and $3\hat{i} + 4\hat{j} \hat{k}$.
- 10. If $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$, show that $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{c} \times \overrightarrow{a}$. Interpret the result geometrically?
- 11. Find the sine of the angle between the vectors $\overrightarrow{a} = 3\overrightarrow{i} + \overrightarrow{j} + 2\overrightarrow{k}$ and $b = 2\overrightarrow{i} 2\overrightarrow{j} + 4\overrightarrow{k}$.
- 12. If A,B,C,D are the points with position vectors $\hat{i} + \hat{j} \hat{k}$, $2\hat{i} \hat{j} + 3\hat{k}$, $2\hat{i} 3\hat{k}$, $3\hat{i} 2\hat{j} + \hat{k}$, respectively, find the projection of \overline{AB} along \overline{CD} .
- 13. Using vectors, find the area of triangle ABC with vertices A(1,2,3), B(2,-1,4) and C(4,5,-1).
- 14. Using vectors, prove that the parallelogram on the same base and between the same parallels are equal in area.

Long Answer Questions(L.A)

- 15. Prove that in any triangle ABC, $\cos A = \frac{b^2 + c^2 a^2}{2bc}$, where a,b,c are the magnitudes of the sides opposite to the vertices A,B,C respectively.
- 16. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} determine the vertices of a triangle, show that $\frac{1}{2}$ $\left[\overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a} + \overrightarrow{a} \times \overrightarrow{b}\right]$ gives the vector area of the triangle. Hence deduce the condition that the three points \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are collinear. Also find the unit vector of normal to the plane of triangle.
- 17. Show that area of the parallelogram whose diagonals are given by $\overrightarrow{a} \times \overrightarrow{b}$ is $\frac{|a \times b|}{2}$. Also find the area of the parallelogram whose diagonals are $2\hat{i} \hat{j} + \hat{k}$ and $\hat{i} + 3\hat{j} \hat{k}$.
- 18. If $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$ and $\overrightarrow{b} = \hat{j} \hat{k}$, find a the vector \overrightarrow{c} such that $\overrightarrow{a} \times \overrightarrow{c} = \overrightarrow{b}$ and $\overrightarrow{a} \cdot \overrightarrow{c} = 3$.

Objective Type Questions

Choose the correct answer from the given four options in each of the Excercise from 19 to 33(M.C.Q)

$(\mathrm{A}) \ \hat{i} - 2\hat{j} + 2\hat{k}$		(C) $3(\hat{i} - 2\hat{j} + 2\hat{k})$	
$(B) \ \frac{\hat{i} - 2\hat{j} + 2\hat{k}}{3}$		(D) $9(\hat{i} - 2\hat{j} + 2\hat{k})$	
20. The position vector of the point which divides the join of points $2\overrightarrow{a} - 3\overrightarrow{b}$ and $\overrightarrow{a} + \overrightarrow{b}$ in the ratio 3:1 is			
(A) $\frac{3\overrightarrow{a}-2\overrightarrow{b}}{2}$	(B) $\frac{7\overrightarrow{a} - 8\overrightarrow{b}}{4}$	(C) $\frac{\overrightarrow{3a}}{4}$	(D) $\frac{\overrightarrow{5a}}{4}$
21. The vector having intial and terminal points as (2,5,0)and (-3,7,4), respectively is			
$(\mathbf{A}) \ \mathbf{-}\hat{i} + 12\hat{j} + 4\hat{k}$		(C) $5\hat{i} + 2\hat{j} - 4\hat{k}$	
$(B) -5\hat{i} + 2\hat{j} + 4\hat{k}$		(D) $\hat{i} + \hat{j} + \hat{k}$	
22. The angles between two vectors \overrightarrow{d} and \overrightarrow{b} with magnitude $\sqrt{3}$ and 4, respectively, and \overrightarrow{d} , $\overrightarrow{b} = 2\sqrt{3}$ is			
(A) $\frac{\pi}{6}$	(B) $\frac{\pi}{3}$	(C) $\frac{\pi}{2}$	(D) $\frac{5\pi}{2}$
23. Find the value of λ such that the vectors $\overrightarrow{d} = 2\hat{i} + \lambda\hat{j} + \hat{k}$ and $\overrightarrow{b} = \overrightarrow{i} + 2\overrightarrow{j} + 3\overrightarrow{k}$ are orthogonal.			
(A) 0	(B) 1	(C) $\frac{3}{2}$	(D) $-\frac{5}{2}$
24. The value of λ for which the vectors $3\hat{i} - 6\hat{j} + \hat{k}$ and $2\hat{i} - 4\hat{j} + \lambda\hat{k}$ are parallel is			
(A) $\frac{2}{3}$	(B) $\frac{3}{2}$	(C) $\frac{5}{2}$	(D) $\frac{2}{5}$
25. The vector from origin to the points A and B are $\vec{d} = 2\hat{i} - 3\hat{j} + 2\hat{k}$ and $\vec{b} = 2\hat{i} + 3\hat{j} + \hat{k}$, respectively, then the area of triangle OAB is			
(A) 340	(B) $\sqrt{25}$	(C) $\sqrt{229}$	(D) $\frac{1}{2}\sqrt{229}$
26. For any vector \overrightarrow{a} , the value of $(\overrightarrow{a} \times \overrightarrow{i})^2 + (\overrightarrow{a} \times \overrightarrow{j})^2 + (\overrightarrow{a} \times \overrightarrow{k})^2$ is equal to			
(A) a	(B) 3a	(C) 4a	(D) 2a
27. If $ \overrightarrow{a} = 10, \overrightarrow{b} = 2$ and $\overrightarrow{a}, \overrightarrow{b} = 12$, then value of $ \overrightarrow{a} \times \overrightarrow{b} $ is			
(A) 5	(B) 10	(C) 14	(D) 16
28. The vectors $\lambda \hat{i} + \hat{j} + 2\hat{k}$, $\hat{i} + \lambda \hat{j} - \hat{k}$ and $2\hat{i} - \hat{j} + \lambda \hat{k}$ are coplanar if			
(A) $\lambda = -2$	(B) $\lambda = 0$	(C) $\lambda = 1$	(D) $\lambda = 1$
29. If $\hat{a}, \hat{b}, \hat{c}$ are unit vectors such that $\hat{a} + \hat{b} + \hat{c} = 0$, then the value of $\hat{a}.\hat{b} + \hat{b}.\hat{c} + \hat{c}.\hat{a}$ is			
(A) 1	(B) 3	(C) $-\frac{3}{2}$	(D) None of these
30. Projection vector of \overrightarrow{a} on \overrightarrow{b} is			
(A) $\left(\frac{\overrightarrow{a} \cdot \overrightarrow{b}}{ \overrightarrow{b} ^2}\right)$	(B) $\frac{\overrightarrow{a} \cdot \overrightarrow{b}}{ \overrightarrow{b} }$	(C) $\frac{\overrightarrow{a} \cdot \overrightarrow{b}}{ \overrightarrow{a} }$	(D) $\left(\frac{\overrightarrow{a}.\overrightarrow{b}}{ \overrightarrow{a} ^2}\right)$
31. $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are the three vectors such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$ and $ \overrightarrow{a} = 2, \overrightarrow{b} = 3, \overrightarrow{c} = 5$, the value of $\overrightarrow{a}.\overrightarrow{b} + \overrightarrow{b}.\overrightarrow{c} + \overrightarrow{c}.\overrightarrow{a}$ is			

19. The vector in the direction of the vector $\hat{i} - 2\hat{j} + 2\hat{k}$ that has magnitude 9 is

(A) 0 (B) 1 (C) -19 (D) 38

32. If $|\overrightarrow{a}| = 4$ and $-3 \le \lambda \le 2$, then the range of $|\lambda \overrightarrow{a}|$ is

(A) [0,8] (B) [-12,8] (C) [0,12] (D) [8,12]

33. The number of vectors of unit length perpendicular to the vectors $\overrightarrow{d} = 2\overrightarrow{i} + \overrightarrow{j} + 2\overrightarrow{k}$ and $\overrightarrow{b} = \overrightarrow{j} + \overrightarrow{k}$ is

(A) one (B) two (C) three (D) infinite

Fill in the blanks in each of Excersices from 34 to 40.

34. The vector $\overrightarrow{a} + \overrightarrow{b}$ bisects the angle between the non-collinear vectors \overrightarrow{a} and \overrightarrow{b} if ______

35. If $\overrightarrow{r} \cdot \overrightarrow{d} = 0$, $\overrightarrow{r} \cdot \overrightarrow{b} = 0$ and $\overrightarrow{r} \cdot \overrightarrow{c} = 0$ for some non-zero vector \overrightarrow{r} , then the value of $\overrightarrow{d} \cdot (\overrightarrow{b} \times \overrightarrow{c})$ is _____

36. The vectors $\overrightarrow{a} = 3\hat{i} - 2\hat{j} + 2\hat{k}$ and $\overrightarrow{b} = -\hat{i} - 2\hat{k}$ are the adjancent sides of a parallelogram. The acute angle between its diagonals is _____

37. The values of k for which $|k\overrightarrow{a}| < |\overrightarrow{a}|$ and $k\overrightarrow{a} + \frac{1}{2}\overrightarrow{a}$ is parallel to \overrightarrow{a} holds true are _____

38. The value of the expression $|\overrightarrow{a} \times \overrightarrow{b}|^2 + (\overrightarrow{a}.\overrightarrow{b})^2$ is _____

39. If $|\overrightarrow{a} \times \overrightarrow{b}| + |\overrightarrow{a}.\overrightarrow{b}| = 144$ and $|\overrightarrow{a}| = 4$, then $|\overrightarrow{b}|$ is equal to _____

40. If \overrightarrow{a} is any non-zero vector, then $(\overrightarrow{a}.\hat{i})\hat{i}+(\overrightarrow{a}.\hat{j})\hat{j}+(\overrightarrow{a}.\hat{k})\hat{k}$ equals _____

State True or False in each of the Excercises.

41. If $|\overrightarrow{a}| = |\overrightarrow{b}|$, then necessarily it implies $\overrightarrow{a} = \pm \overrightarrow{b}$.

42. Position vector of point P is a vector whose intial point is origin.

43. If $|\overrightarrow{a} + \overrightarrow{b}| = |\overrightarrow{a} - \overrightarrow{b}|$, then the vectors \overrightarrow{a} and \overrightarrow{b} are orthogonal.

44. The formula $(\overrightarrow{a} + \overrightarrow{b}) = \overrightarrow{a}^2 + \overrightarrow{b}^2 + 2\overrightarrow{a} \times \overrightarrow{b}$ is valid for non-zero vectors \overrightarrow{a} and \overrightarrow{b} .

45. If \overrightarrow{a} and \overrightarrow{b} are adjacent sides of a rhombus, then \overrightarrow{a} . \overrightarrow{b} .=0.