Clase Práctica 7 : Inferencia de tipos

Tomás Felipe Melli

June 21, 2025

$\acute{\mathbf{I}}\mathbf{ndice}$

		roducción	2
	1.1	Generalidad	2
2	Alg	ortimo ${\mathcal I}$	2
	2.1	Ejercicio: foldr map	2
	2.2	Ejercicio: listas	9
	2.3	Ejercicio: Listas por comprensión	4

1 Introducción

Supongamos las siguientes expresiones

```
\begin{split} &(\lambda x.isZero(x))\ True \\ &\lambda x.succ(x) \\ &\lambda x.succ(y) \\ &\emptyset \ \rhd \lambda x: Nat.x: Nat \to Nat \\ &\emptyset \ \rhd \lambda x: X_1.x: X_1 \to X_1 \end{split}
```

Nos queremos preguntar sobre si tienen tipo, si sabemos cuál es, si necesitamos saber algo del contexto... estas preguntas motivan esta práctica.

1.1 Generalidad

Recordamos que un juicio es una afirmación de la forma $\Gamma \vdash e : \tau$ donde, Γ es el contexto, e es una expresión y τ es su tipo. Decir que cierto juicio es el más general para cierto término T significa que cualquier juicio válido para T puede obtenerse a partir de ese juicio general mediante alguna sustitución o instanciación del tipo.

Supongamos el siguiente juicio

$$\emptyset \vdash \lambda x : X_1.x : X_1 \rightarrow X_1$$

es el más general para el término $\lambda x.x$ ya que a partir de este juicio es que podemos obtener otros válidos para este término mediante alguna sustitución como :

```
\begin{split} & \emptyset \vdash \lambda x : Nat.x : Nat \rightarrow Nat. \\ & \emptyset \vdash \lambda x : Bool.x : Bool \rightarrow Bool. \\ & \{y : Bool\} \vdash \lambda x : (X_2 \rightarrow Nat).x : (X_2 \rightarrow Nat) \rightarrow X_2 \rightarrow Nat. \end{split}
```

Estos ejemplos podemos verlos como instancias (casos particulares) del juicio general.

2 Algortimo \mathcal{I}

2.1 Ejercicio: foldr map

Dada la siguiente extensión al conjunto de términos para el cálculo λ con listas:

$$M ::= \cdots \mid \operatorname{map}_{\sigma,\tau} \mid \operatorname{foldr}_{\sigma,\tau}$$

La modificación al sistema de tipos es la introducción de dos axiomas de tipado para map $_{\sigma,\tau}$ y fold $r_{\sigma,\tau}$:

$$\frac{\Gamma \vdash \operatorname{map}_{\sigma,\tau} : (\sigma \to \tau) \to [\sigma] \to [\tau]}{\Gamma \vdash \operatorname{foldr}_{\sigma,\tau} : (\sigma \to \tau \to \tau) \to \tau \to [\sigma] \to \tau}$$

Se extiende el algoritmo de inferencia con las siguientes reglas:

$$\mathcal{I}(\Gamma \mid \mathrm{map}_{\sigma,\tau}) = ((\sigma \to \tau) \to [\sigma] \to [\tau], \ \emptyset)$$

$$\mathcal{I}(\Gamma \mid \mathrm{foldr}_{\sigma,\tau}) = ((\sigma \to \tau \to \tau) \to \tau \to [\sigma] \to \tau, \ \emptyset)$$

Se asumen dadas las extensiones correspondientes para $\tt Erase$ y $\tt mgu$. Usar el algoritmo $\mathcal I$ con esta nueva extensión para tipar la siguiente expresión:

2

foldr map

1. Paso I : Rectificar. foldr map ya está rectificado.

2. Paso II : Anotación.

$$\Gamma_0 = \emptyset$$

$$M_0 = foldr_{X_1, X_2} map_{X_3, X_4}$$

3. Paso III:

$$\mathcal{I}(\emptyset \mid \operatorname{foldr}_{X_1,X_2} \operatorname{map}_{X_3,X_4}) = \left(X_5 \mid \{(X_1 \to X_2 \to X_2) \to X_2 \to [X_1] \to X_2 \stackrel{?}{=} ((X_3 \to X_4) \to [X_3] \to [X_4]) \to X_5\}\right)$$

$$\mathcal{I}(\emptyset \mid \operatorname{foldr}_{X_1,X_2}) = \left((X_1 \to X_2 \to X_2) \to X_2 \to [X_1] \to X_2, \ \emptyset\right)$$

$$\mathcal{I}(\emptyset \mid \operatorname{map}_{X_2,X_4}) = \left((X_3 \to X_4) \to [X_3] \to [X_4], \ \emptyset\right)$$

4. Paso IV: Unificación.

$$\begin{split} & \text{S} = \text{MGU}\{(X_1 \to X_2 \to X_2) \to X_2 \to [X_1] \to X_2 \overset{?}{=} ((X_3 \to X_4) \to [X_3] \to [X_4]) \to X_5 \} \\ & \text{S} = \text{MGU}\{(X_1 \to X_2 \to X_2) \to X_2 \to [X_1] \to X_2 \overset{?}{=} ((X_3 \to X_4) \to [X_3] \to [X_4]) \to X_5 \} \\ & \overset{1}{\mapsto} \{X_1 \to X_2 \to X_2 \overset{?}{=} (X_3 \to X_4) \to [X_3] \to [X_4], X_2 \to [X_1] \to X_2 \overset{?}{=} X_5 \} \\ & \overset{1}{\mapsto} \{X_1 \overset{?}{=} (X_3 \to X_4), X_2 \to X_2 \overset{?}{=} [X_3] \to [X_4], X_2 \to [X_1] \to X_2 \overset{?}{=} X_5 \} \\ & \overset{4}{\mapsto} \{X_2 \to X_2 \overset{?}{=} [X_3] \to [X_4], X_2 \to [X_3 \to X_4] \to X_2 \overset{?}{=} X_5 \} \mid \{X_1 := X_3 \to X_4 \} \\ & \overset{1}{\mapsto} \{X_2 \overset{?}{=} [X_3], X_2 \overset{?}{=} [X_4], X_2 \to [X_3 \to X_4] \to X_2 \overset{?}{=} X_5 \} \mid \{X_1 := X_3 \to X_4 \} \\ & \overset{4}{\mapsto} \{[X_3] \overset{?}{=} [X_4], X_2 \to [X_3 \to X_4] \to X_2 \overset{?}{=} X_5 \} \mid \{X_2 := [X_3] \} \circ \{X_1 := X_3 \to X_4 \} \\ & \overset{4}{\mapsto} \{[X_3] \overset{?}{=} [X_4], X_2 \to [X_3 \to X_4] \to [X_3] \overset{?}{=} X_5 \} \mid \{X_2 := [X_3] \} \circ \{X_1 := X_3 \to X_4 \} \\ & \overset{4}{\mapsto} \{[X_4] \to [X_4 \to X_4] \to [X_4] \overset{?}{=} X_5 \} \mid \{X_3 := X_4 \} \circ \{X_2 := [X_3] \} \circ \{X_1 := X_3 \to X_4 \} \\ & \overset{4}{\mapsto} \{X_5 \overset{?}{=} [X_4] \to [X_4 \to X_4] \to [X_4] \} \mid \{X_3 := X_4 \} \circ \{X_2 := [X_3] \} \circ \{X_1 := X_3 \to X_4 \} \\ & \overset{4}{\mapsto} \{\} \mid \{X_5 := [X_4] \to [X_4 \to X_4] \to [X_4] \} \mid \{X_3 := X_4 \} \circ \{X_2 := [X_3] \} \circ \{X_1 := X_3 \to X_4 \} \\ & \overset{4}{\mapsto} \{\} \mid \{X_5 := [X_4] \to [X_4 \to X_4] \to [X_4] \} \circ \{X_3 := X_4 \} \circ \{X_2 := [X_3] \} \circ \{X_1 := X_3 \to X_4 \} \end{split}$$

Con esto decimos que vale el siguiente juicio

$$S(\emptyset) \vdash S(foldr_{X_1,X_2} map_{X_3,X_4}) : S(X_5) = \emptyset foldr_{X_4 \to X_4,X_{[X_4]}} map_{X_4,X_4} : [X_4] \to [X_4 \to X_4] \to [X_4]$$

2.2 Ejercicio: listas

Se extiende el algoritmo $\mathcal I$ para listas como sigue

$$\sigma ::= \cdots \mid [\sigma]$$
 $M,\ N,\ O ::= \cdots \mid [\]_{\sigma} \mid M\ ::\ N \mid {\it Case}\ M \ {\it of}\ [\] \leadsto N\ ;\ h :: t \leadsto O$

Reglas de tipado

$$\begin{array}{c|c} \Gamma \vdash [\]_{\sigma} : [\sigma] \\ \\ \underline{\Gamma \vdash M : \sigma \qquad \Gamma \vdash N : [\sigma]} \\ \hline \Gamma \vdash M :: \ N : [\sigma] \\ \\ \underline{\Gamma \vdash M : [\sigma] \qquad \Gamma \vdash N : \tau \qquad \Gamma \cup \{h : \sigma, \ t : [\sigma]\} \vdash O : \tau} \\ \hline \Gamma \vdash \text{Case } M \text{ of } [\] \leadsto N \ ; \ h :: t \leadsto O : \tau \\ \end{array}$$

Donde

$$\begin{split} \mathcal{I}(\Gamma \mid [\]_{\tau}) &= ([\tau] \mid \emptyset) \\ \mathcal{I}(\Gamma \mid M_! :: M_2) &= (\tau_2 \mid \{\tau_2 \stackrel{?}{=} [\tau_1] \cup E_! \cup E_2\}) \\ \text{donde} \quad \mathcal{I}(\Gamma \mid M_1) &= (\tau_1 \mid E_1) \\ \mathcal{I}(\Gamma \mid M_2) &= (\tau_2 \mid E_2) \\ \mathcal{I}(\Gamma, h : X_h, t : X_t \mid M_3) &= (\tau_3 \mid E_3) \\ X_h \ y \ X_t \ \text{son variables frescas} \end{split}$$

Nos piden dar el tipo de

Case
$$succ(\underline{0}) :: x \text{ of } [] \leadsto x ; x :: y \leadsto succ(x) :: []$$

• Paso I : Rectificación.

case
$$succ(\underline{0}) :: x \text{ of } [] \leadsto x ; h :: z \leadsto succ(z) :: []$$

• Paso II : Anotación

$$\begin{split} &\Gamma_0 = \{x: X_1\} \\ &M_0 = \text{ case } succ(\underline{0}) :: x \text{ of } [\;] \leadsto x \; ; \; h :: z \leadsto succ(h) :: [\;]_{X_2} \end{split}$$

• Paso III : Restricciones

$$\mathcal{I}(\{x:X_1\} \mid succ(\underline{0})::x \mid \underline{1} \rightarrow x \mid h :: z \rightarrow succ(\underline{h})::[\underline{1}_{X_2}) = (X_1 \mid \{X_1 \stackrel{?}{=} [X_h], X_1 \stackrel{?}{=} [X_2], X_t \stackrel{?}{=} X_1, X_1 \stackrel{?}{=} X_n, Nat \stackrel{?}{=} Nat, [X_2] \stackrel{?}{=} [Nat], X_h \stackrel{?}{=} Nat\})$$

$$\mathcal{I}(\{x:X_1\} \mid succ(\underline{0})::x) = (X_1 \mid \{X_1 \stackrel{?}{=} [Nat], Nat \stackrel{?}{=} Nat\})$$

$$\mathcal{I}(\{x:X_1\} \mid x) = (X_1 \mid \emptyset)$$

$$\mathcal{I}(\{x:X_1\} \mid succ(\underline{h})) = (Nat \mid \{X_h \stackrel{?}{=} Nat\})$$

$$\mathcal{I}(\{x:X_1\} \mid x) = (X_1 \mid \emptyset)$$

• Paso IV : Unificación

$$S = \text{MGU}\{X_1 \stackrel{?}{=} [X_h] \text{, } X_1 \stackrel{?}{=} [X_2] \text{, } X_t \stackrel{?}{=} X_1, X_1 \stackrel{?}{=} X_n, Nat \stackrel{?}{=} Nat, [X_2] \stackrel{?}{=} [Nat] \text{,} X_h \stackrel{?}{=} Nat\} \\ = \{X_2 := Nat, X_1 := [Nat], X_h := Nat, X_t := [Nat] \}$$

Vale entonces

$$\{x:Nat\}\vdash \mathsf{case}\ \mathsf{succ}(\underline{0})::\mathsf{x}\ \mathsf{of}\ []\leadsto \mathsf{x}\ ;\ \mathsf{h}\ ::\ \mathsf{t}\leadsto \mathsf{succ}(\mathsf{h})\ ::\ []_{Nat}:Nat$$

2.3 Ejercicio: Listas por comprensión

$$M ::= \cdots \mid [M \mid x \leftarrow M, M]$$

Consideremos el Cálculo Lambda extendido con las listas por comprensión vistas en la práctica 4. La regla de tipado es la siguiente

$$\frac{\Gamma \cup \{x:\sigma\} \vdash M:\tau \quad \Gamma \vdash N: [\sigma] \quad \Gamma \cup \{x:\sigma\} \vdash O: \operatorname{Bool}}{\Gamma \vdash [M \mid x \leftarrow N, O]: [\tau]}$$

$$\begin{split} I(\Gamma \mid [\,M_1 \mid x \leftarrow M_2, M_3\,]) &= \Big([\tau_1] \,\Big|\, \{\tau_2 \stackrel{?}{=} [X_0], \; \tau_3 \stackrel{?}{=} \operatorname{Bool}\} \cup E_1 \cup E_2 \cup E_3 \Big) \\ \operatorname{donde} \quad I(\Gamma, x : X_0 \mid M_1) &= (\tau_1 \mid E_1) \\ \quad I(\Gamma \mid M_2) &= (\tau_2 \mid E_2) \\ \quad I(\Gamma, x : X_0 \mid M_3) &= (\tau_3 \mid E_3) \\ \quad X_0 \; \text{es una variable fresca.} \end{split}$$