Búsqueda en juegos

- Tipos de juegos
- Juegos de suma cero de dos jugadores.
 - Minimax
 - Poda alfa-beta
- Juegos contra la naturaleza.
 - Repaso de probabilidades
 - Expectimax
- Juegos de suma no cero.

- Supongamos que habéis entregado un ejercicio.
- Si a cada estudiante le pregunto "qué forma de evaluar el ejercicio prefieres?":
- a) Elegir por sorteo 12 ejercicios y a esos les pongo un 10 de nota y al resto 5.
- b) Poner a esos 12 un 8 y al resto un 7.
- c) Elegir los 12 mejores ejercicios, ponerles un 10 y al resto un 5
- d) Poner a esos 12 un 8 y al resto un 7.

Supongamos que habéis entregado un ejercicio

- Si a cada estudiante le pregunto "qué forma de evaluar el ejercicio prefieres?":
- a) Elegir por sorteo 12 ejercicios y a esos les pongo un 10 de nota y al resto 5
- b) Poner a esos 12 un 8 y al resto un 7. SI ej. malo
- c) Elegir los 12 mejores ejercicios, ponerles un 10 y al resto un 5
- d) Poner a esos 12 un 8 y al resto un 7.

- Supongamos que habéis entregado un ejercicio
- Si a cada estudiante le pregunto "qué forma de evaluar el ejercicio prefieres?":
- a) Elegir por sorteo 12 ejercicios y a esos les pongo un 10 de nota y al resto 5
- b) Poner a esos 12 un 8 y al resto un 7.
- c) Elegir los 12 mejores ejercicios, ponerles un 10 y al resto un 5 SI has hecho un buen ejercicio
- d) Poner a esos 12 un 8 y al resto un 7.

Cálculo?

- Supongamos que habéis entregado un ejercicio
- Si a cada uno de vosotros os pregunto "qué forma de evaluar el ejercicio prefieres?":
- a) Elegir por sorteo 12 ejercicios y a esos les pongo un 10 de nota y al resto 5
- b) Poner a esos 12 un 8 y al resto un 7. SI ej. malo
- c) Elegir los 12 mejores ejercicios, ponerles un 10 y al resto un 5 SI has hecho un buen ejercicio
- d) Poner a esos 12 un 8 y al resto un 7.

Cálculo?

Pregunta: Cálculo

- Si a cada estudiante le pregunto "qué forma de evaluar el ejercicio prefieres?":
- a) Elegir por sorteo 12 ejercicios y a esos les pongo un 10 de nota y al resto 5.
- b) Poner a esos 12 un 8 y al resto un 7.
- c) Elegir los 12 mejores ejercicios, ponerles un 10 y al resto un 5 (has hecho un buen trabajo)
- d) Poner a esos 12 un 8 y al resto un 7.

Cálculo:

E(nota)=P(eleg)*nota_eleg + (1-P(eleg))*nota_no_e

"Qué forma de evaluar los ejercicios prefieres?":

- a) Elegir por sorteo 12 ejercicios y a esos les pongo un 10 de nota y al resto 5
- b) Poner a esos 12 un 8 y al resto un 7.
- c) Elegir los 12 mejores ejercicios, ponerles un 10 y al resto un 5 (has hecho un buen trabajo)
- d) Poner a esos 12 un 8 y al resto un 7.

Asumimos que lo han entregado 50:

a) P(elegido)= $12/50 \approx 0.25$; 0.25*10+0.75*5=6.25

"Qué forma de evaluar los ejercicios prefieres?":

- a) Elegir por sorteo 12 ejercicios y a esos les pongo un 10 de nota y al resto 5
- b) Poner a esos 12 un 8 y al resto un 7.
- c) Elegir los 12 mejores ejercicios, ponerles un 10 y al resto un 5 (has hecho un buen trabajo)
- d) Poner a esos 12 un 8 y al resto un 7.

Asumimos que lo han entregado 50:

```
E(nota)=P(eleg)*nota_eleg + (1-P(eleg))*nota_no_e
```

a) P(elegido)=
$$12/50 \approx 0.25$$
; $0.25*10+0.75*5=6.25$

"Qué forma de evaluar los ejercicios prefieres?":

- a) Elegir por sorteo 12 ejercicios y a esos les pongo un 10 de nota y al resto 5
- b) Poner a esos 12 un 8 y al resto un 7.
- c) Elegir los 12 mejores ejercicios, ponerles un 10 y al resto un 5 (has hecho un buen trabajo)
- d) Poner a esos 12 un 8 y al resto un 7.

Asumimos que lo han entregado 50:

```
E(nota)=P(eleg)*nota_eleg + (1-P(eleg))*nota_no_e
```

- a) P(elegido)= $12/50 \approx 0.25$; 0.25*10+0.75*5=6.25
- b) 0.25*8+0.75*7=7.25
- c) P(elegido)=0.75 (buen ej); 0.75*10+0.25*5=8.75

"Qué forma de evaluar los ejercicios prefieres?":

- a) Elegir por sorteo 12 ejercicios y a esos les pongo un 10 de nota y al resto 5
- b) Poner a esos 12 un 8 y al resto un 7.
- c) Elegir los 12 mejores ejercicios, ponerles un 10 y al resto un 5 (has hecho un buen trabajo)
- d) Poner a esos 12 un 8 y al resto un 7.

Asumimos que lo han entregado 50:

```
E(nota)=P(eleg)*nota_eleg + (1-P(eleg))*nota_no_e
```

- a) P(elegido)= $12/50 \approx 0.25$; 0.25*10+0.75*5=6.25
- b) 0.25*8+0.75*7=7.25
- c) P(elegido)=0.75 (buen ej); 0.75*10+0.25*5=8.75
- d) 0.75*8+0.25*7=7.75

Búsqueda expectimax

 ¿Qué pasa si no conocemos cuál será el resultado de una acción? (Problema no determinista)

Búsqueda expectimax

- ¿Qué pasa si no conocemos cuál será el resultado de una acción? (Problema no determinista)
 - Pedir una carta en el solitario.
 - Probar una mina en el buscaminas.
 - Pacman contra fantasmas aleatorios.

Búsqueda expectimax

- ¿Qué pasa si no conocemos cuál será el resultado de una acción? (Problema no determinista)
 - Pedir una carta en el solitario.
 - Probar una mina en el buscaminas.
 - Pacman contra fantasmas aleatorios.
- Podemos usar búsqueda expectimax:
 - Los nodos del "enemigo" en lugar de calcular el mínimo calcula la esperanza (el valor medio).
- Más adelante → Markov Decision Processes.

¿Por qué no usamos minimax?

- ¿Por qué no usamos minimax?
- Principio de máxima utilidad esperada: Un agente debe seleccionar la acción que maximice su utilidad esperada dado su conocimiento.

- ¿Por qué no usamos minimax?
- Principio de máxima utilidad esperada: Un agente debe seleccionar la acción que maximice su utilidad esperada dado su conocimiento.
- Principio general para la toma de decisiones.
- Definición de racionalidad.

- ¿Por qué no usamos minimax?
- Principio de máxima utilidad esperada: Un agente debe seleccionar la acción que maximice su utilidad esperada dado su conocimiento.
- Principio general para la toma de decisiones.
- Definición de racionalidad.
- Aparecerá más a lo largo del curso.

Probabilidades

 Una variable aleatoria representa un hecho cuyo resultado desconocemos.

Probabilidades

- Una variable aleatoria representa un hecho cuyo resultado desconocemos.
- Una distribución de probabilidad es una asignación de pesos a los diferentes eventos del hecho.

- Una variable aleatoria representa un hecho cuyo resultado desconocemos.
- Una distribución de probabilidad es una asignación de pesos a los diferentes eventos del hecho.
- Ejemplo: Tráfico en la autopista
 - Variable aleatoria: T = cuánto tráfico hay.
 - Eventos: ligero, normal, denso.
 - Distribución: P({T=ligero}) = 0.4 P({T=normal})=0.5 P({T=denso})=0.1

Probabilidades

- Las probabilidades son siempre no negativas.
- Las probabilidades sobre todos los eventos posibles suman 1.

- Las probabilidades son siempre no negativas.
- Las probabilidades sobre todos los eventos posibles suman 1.
- A medida que tenemos más información, las probabilidades cambian.
 - P({T=denso})=0.1
 - P({T=denso}|{hora=8am})=0.4

- Las probabilidades son siempre no negativas.
- Las probabilidades sobre todos los eventos posibles suman 1.
- A medida que tenemos más información, las probabilidades cambian.
 - P({T=denso})=0.1
 - P({T=denso}|{hora=8am})=0.4
- Más adelante veremos métodos para razonar y actualizar las probabilidades.

Visión frecuentista:

Visión Bayesiana:

- Visión frecuentista:
 - Medias sobre experimentos repetidos.
 - Se estiman a partir de observaciones históricas.
 - Nos permiten saber cómo funcionarán los experimentos futuros (a largo plazo).
 - Nos hace pensar en hechos inherentemente aleatorios como lanzar dados.
- Visión Bayesiana:

Visión frecuentista:

- Medias sobre experimentos repetidos.
- Se estiman a partir de observaciones históricas.
- Nos permiten saber cómo funcionarán los experimentos futuros (a largo plazo).
- Nos hace pensar en hechos inherentemente aleatorios como lanzar dados.

Visión Bayesiana:

- Grados de creencia sobre variables no observadas (en base al conocimiento).
 - La creencia de un agente en que está lloviendo, dada la temperatura.
 - La creencia de pacman de que un fantasma va a girar, dado el estado.
- Se pueden aprender a partir de la experiencia, ya que las nuevas experiencias modifican nuestras creencias.

Incertidumbre por todos lados BARCEL

- No sólo en juegos de azar:
 - He cogido un resfriado. ¿Estornudaré en el próximo minuto?
 - Este correo contiene "Viagra". ¿Es spam?
 - Me duele un diente. ¿Tiene caries?
 - ¿Llegaré en 30 min al aeropuerto?
 - El robot ha hecho girar la rueda tres vueltas. ¿Cuánto se ha desplazado?
 - ¿Es seguro cruzar la calle ahora?

Incertidumbre por todos lados

No sólo en juegos de azar:

- He cogido un resfriado. ¿Estornudaré en el próximo minuto?
- Este correo contiene "Viagra". ¿Es spam?
- Me duele un diente. ¿Tiene caries?
- ¿Llegaré en 30 min al aeropuerto?
- El robot ha hecho girar la rueda tres vueltas. ¿Cuánto se ha desplazado?
- ¿Es seguro cruzar la calle ahora?

Fuentes de incertidumbre:

- Procesos aleatorios: dados...
- Información insuficiente.
- Ignorancia de los procesos subyacentes.
- Variables que no se incluyen en el modelo.
- El mundo es ruidoso.

- Podemos definir una función f(X) de una variable aleatoria X.
- El valor esperado de una función es su valor medio, ponderando cada valor de su entrada por la distribución de probabilidad.

- Podemos definir una función f(X) de una variable aleatoria
 X.
- El valor esperado de una función es su valor medio, ponderando cada valor de su entrada por la distribución de probabilidad.
- Ejemplo: ¿Cuánto tardo en llegar al aeropuerto?
 - Es función del tráfico:
 - f(ligero)=10, f(normal)=15, f(denso)=40
 - P({T=ligero}) = 0.4 P({T=normal})=0.5 P({T=denso})=0.1
 - ¿Cuál es el tiempo esperado? E[f(T)]

Recordatorio: Esperanzas

- Podemos definir una función f(X) de una variable aleatoria
 X.
- El valor esperado de una función es su valor medio, ponderando cada valor de su entrada por la distribución de probabilidad.
- Ejemplo: ¿Cuánto tardo en llegar al aeropuerto?
 - Es función del tráfico:
 - f(ligero)=10, f(normal)=15, f(denso)=40
 - P({T=ligero}) = 0.4 P({T=normal})=0.5 P({T=denso})=0.1
 - ¿Cuál es el tiempo esperado? E[f(T)]

```
E[f(T)] = P(ligero)*f(ligero)+P(normal)*f(normal)+P(denso)*f(denso)
```

$$E[f(T)] = 0.4*10+0.5*15+0.1*40 = 4+7.5+4=15.5$$

 Esperanza de una función de una variable aleatoria:

$$E_{P(X)}[f(X)] = \sum_{x} f(x)P(x)$$

Esperanza de una función de una variable aleatoria:

$$E_{P(X)}[f(X)] = \sum_{x} f(x)P(x)$$

Ejemplo: ¿Cuál es el valor medio de un dado?

X	Р	f
1	1857/4857	1
2	1853 <u>8</u> 5	2
3	0.	3
4		4
5		5
6		6

Esperanza de una función de una variable aleatoria:

$$E_{P(X)}[f(X)] = \sum_{x} f(x)P(x)$$

Ejemplo: ¿Cuál es el valor medio de un dado?

X	Р	f
1	1/6	1
2	1/6	2
3	1/6	3
4	1/6	4
5	1/6	5
6	1/6	6

 Esperanza de una función de una variable aleatoria:

$$E_{P(X)}[f(X)] = \sum_{x} f(x)P(x)$$

Ejemplo: valor medio de un dado.

X	Р	f
1	1/6	1
2	1/6	2
3	1/6	3
4	1/6	4
5	1/6	5
6	1/6	6

$$1 \times \frac{1}{6} + 2 \times \frac{1}{6} + 3 \times \frac{1}{6} + 4 \times \frac{1}{6} + 5 \times \frac{1}{6} + 6 \times \frac{1}{6}$$
$$= 3.5$$

Utilidades

 Las utilidades son funciones que van de los resultados (estados del mundo) a números reales que representan las preferencias de un agente.

- Las utilidades son funciones que van de los resultados (estados del mundo) a números reales que representan las preferencias de un agente.
- ¿De dónde salen las utilidades?
 - En un juego, sencillo: ganar= +1, perder =-1
 - Las utilidades resumen los objetivos de un agente.
 - Teorema: Cualquier conjunto de preferencias coherente se puede representar mediante una función de utilidad.

Expectiminimax:

- El entorno es un jugador especial que juega después de cada jugador.
- Los nodos aleatorios usan la esperanza y el resto como minimax.

Expectiminimax:

- El entorno es un jugador especial que juega después de cada jugador.
- Los nodos aleatorios usan la esperanza y el resto como minimax.

Expectiminimax(n) =

 $\begin{cases} \text{UTILITY}(n) \\ \max_{s \in Successors(n)} \text{EXPECTIMINIMAX}(s) \\ \min_{s \in Successors(n)} \text{EXPECTIMINIMAX}(s) \\ \sum_{s \in Successors(n)} P(s) \cdot \text{EXPECTIMINIMAX}(s) \end{cases}$

if *n* is a terminal state if *n* is a *MAX* node if *n* is a *MIN* node if *n* is a chance node

Expectiminimax:

- El entorno es un jugador especial que juega después de cada jugador.
- Los nodos aleatorios usan la esperanza y el resto como minimax.

Expectiminimax(n) =

 $\begin{cases} \text{UTILITY}(n) \\ \max_{s \in Successors(n)} \text{EXPECTIMINIMAX}(s) \\ \min_{s \in Successors(n)} \text{EXPECTIMINIMAX}(s) \\ \sum_{s \in Successors(n)} P(s) \text{. EXPECTIMINIMAX}(s) \end{cases}$

if *n* is a terminal state if *n* is a *MAX* node if *n* is a *MIN* node if *n* is a chance node

Expectiminimax:

- El entorno es un jugador especial que juega después de cada jugador.
- Los nodos aleatorios usan la esperanza y el resto como minimax.

Expectiminimax(n) =

 $\begin{cases} \text{UTILITY}(n) \\ \max_{s \in Successors(n)} \text{EXPECTIMINIMAX}(s) \\ \min_{s \in Successors(n)} \text{EXPECTIMINIMAX}(s) \\ \sum_{s \in Successors(n)} P(s) \text{. EXPECTIMINIMAX}(s) \end{cases}$

if *n* is a terminal state if *n* is a *MAX* node if *n* is a *MIN* node if *n* is a chance node

Expectiminimax:

- El entorno es un jugador especial que juega después de cada jugador.
- Los nodos aleatorios usan la esperanza y el resto como minimax.


```
Expectiminimax(n) =
```

$$\begin{cases} \text{UTILITY}(n) \\ \max_{s \in Successors(n)} \text{EXPECTIMINIMAX}(s) \\ \min_{s \in Successors(n)} \text{EXPECTIMINIMAX}(s) \\ \sum_{s \in Successors(n)} P(s) \cdot \text{EXPECTIMINIMAX}(s) \end{cases}$$

if *n* is a terminal state if *n* is a *MAX* node if n is a *MIN* node if *n* is a chance node

Ej: Backgammon

- En minimax el valor de las funciones de evaluación no importa, tan sólo es importante el orden relativo (si un estado es mejor que otro o no)
- Para expectiminimax necesitamos además que las magnitudes de los valores sean correctas.

- En minimax el valor de las funciones de evaluación no importa, tan sólo es importante el orden relativo (si un estado es mejor que otro o no)
- Para expectiminimax necesitamos además que las magnitudes de los valores sean correctas.

- En minimax el valor de las funciones de evaluación no importa, tan sólo es importante el orden relativo (si un estado es mejor que otro o no)
- Para expectiminimax necesitamos además que las magnitudes de los valores sean correctas.

- En minimax el valor de las funciones de evaluación no importa, tan sólo es importante el orden relativo (si un estado es mejor que otro o no)
- Para expectiminimax necesitamos además que las magnitudes de los valores sean correctas.

- En minimax el valor de las funciones de evaluación no importa, tan sólo es importante el orden relativo (si un estado es mejor que otro o no)
- Para expectiminimax necesitamos además que las magnitudes de los valores sean correctas.

- En minimax el valor de las funciones de evaluación no importa, tan sólo es importante el orden relativo (si un estado es mejor que otro o no)
- Para expectiminimax necesitamos además que las magnitudes de los valores sean correctas.

- En minimax el valor de las funciones de evaluación no importa, tan sólo es importante el orden relativo (si un estado es mejor que otro o no)
- Para expectiminimax necesitamos además que las magnitudes de los valores sean correctas.

- En minimax el valor de las funciones de evaluación no importa, tan sólo es importante el orden relativo (si un estado es mejor que otro o no)
- Para expectiminimax necesitamos además que las magnitudes de los valores sean correctas.

Backgammon

TD-Gammon:

- http://en.wikipedia.org/wiki/TD-Gammon
- Búsqueda a 2 niveles + buena función de evaluación:Temporal Difference learning (red neuronal)
- Al nivel del campeón del mundo.

TD-Gammon:

- http://en.wikipedia.org/wiki/TD-Gammon
- Búsqueda a 2 niveles + buena función de evaluación:Temporal Difference learning (red neuronal)
- Al nivel del campeón del mundo.
- El lanzamiento de dados incrementa b:
 - posibilidades diferentes con 2 dados?

TD-Gammon:

- http://en.wikipedia.org/wiki/TD-Gammon
- Búsqueda a 2 niveles + buena función de evaluación:Temporal Difference learning (red neuronal)
- Al nivel del campeón del mundo.
- El lanzamiento de dados incrementa b:
 - posibilidades diferentes con 2 dados: 21

UNIVERSITATE BARCELONA

Backgammon

 A medida que bajamos niveles disminuye la probabilidad de que lleguemos a esa configuración.

Búsqueda expectimax

- Tenemos un modelo probabilístico de cómo se comportan los rivales:
 - Sencillo: Lanzar un dado.
 - Complejo.
 - Un nodo representa cada hecho fuera de nuestro control (enemigo o naturaleza).
 - El modelo podría decir que el agente se comporta como un adversario ideal.

Pseudocódigo para expectimax BARCELONA

```
def value(s)
   if s is a max node return maxValue(s)
   if s is an exp node return expValue(s)
   if s is a terminal node return evaluation(s)
def max Value(s)
   values = [value(s') for s' in successors(s)]
   return max(values)
def expValue(s)
```

```
8 4 5 6
```

```
def expValue(s)
  values = [value(s') for s' in successors(s)]
  weights = [probability(s, s') for s' in successors(s)]
  return expectation(values, weights)
```

Pseudocódigo para expectimax BARCELONA

Nos hemos alejado de la idea de que los oponentes tratan de ganarnos el juego. Ahora los consideramos "parte del entorno".

```
def value(s)
```

if s is a max node return maxValue(s)
if s is an exp node return expValue(s)
if s is a terminal node return evaluation(s)

```
def maxValue(s)
  values = [value(s') for s' in successors(s)]
  return max(values)
```



```
def expValue(s)
  values = [value(s') for s' in successors(s)]
  weights = [probability(s, s') for s' in successors(s)]
  return expectation(values, weights)
```


- Tipos de juegos
- Juegos de suma cero de dos jugadores.
 - Minimax
 - Poda alfa-beta
- Juegos contra la naturaleza.
 - Repaso de probabilidades
 - Expectimax
- Juegos de suma no cero.

Las utilidades son ahora tuplas.

- Las utilidades son ahora tuplas.
- propaga el resultado al siguiente nivel. Similar al minimax Cada jugador maximiza su propia entrada y

- Las utilidades son ahora tuplas.
- propaga el resultado al siguiente nivel. Similar al minimax Cada jugador maximiza su propia entrada y

- Las utilidades son ahora tuplas.
- propaga el resultado al siguiente nivel. Similar al minimax Cada jugador maximiza su propia entrada y

- Las utilidades son ahora tuplas.
- propaga el resultado al siguiente nivel. Similar al minimax Cada jugador maximiza su propia entrada y

- Las utilidades son ahora tuplas.
- propaga el resultado al siguiente nivel. Similar al minimax Cada jugador maximiza su propia entrada y

Similar al minimax:

- Las utilidades son ahora tuplas.
- Cada jugador maximiza su propia entrada y propaga el resultado al siguiente nivel.
- Diplomacy game