1 The Laws of Motion:

1.1 Newton's 1st Law

A body is either at rest, or moving with constant speed in a straight line, if no resultant force acts on it.

$$p = mv (kg m s^{-1})$$

Where p is an object's momentum $(kg m s^{-1})$, m its mass (kg) and v its velocity $(m s^{-1})$.

1.2 Newton's 2nd Law

The acceleration of a body is directly proportional to the resultant force applied to it and acts in the same direction.

$$F = ma (N)$$

Where p is an object's momentum $(kg m s^{-1})$, m its mass (kg) and $v (m s^{-1})$ its velocity.

1.3 Newton's 3rd Law

To every action there is an equal and opposite reaction.

Consider object A and object B:

$$_{A}F_{B} = {}_{B}F_{A}$$
 (N)

2 Force of impact:

$$F_i = \frac{mv - mu}{t} \tag{N}$$

3 Inclined plane:

ParallelPerpendicular $mg \sin \theta$ (N) $mg \cos \theta$ (N)

4 Conservation of momentum:

$$Mu_1 + mu_2 = Mv_1 + mv_2$$

Where M and m are object 1 and 2's masses (kg) respectively whilst u and v the initial and final velocities (m s⁻¹) of a given object respectively.

5 Centripetal force:

$$F_c = \frac{mv^2}{r} \tag{N}$$

Where m is the given object's mass (kg), v its tangential velocity¹ (m s⁻¹) and r the radius (m) of the circular path.

5.1 Specific cases:

$$F_c = \frac{mv^2}{r} = mg + R$$

$$F_c = \frac{mv^2}{r} = mg - R$$

¹The velocity perpendicular to the cirular path's radius.