Apunts d'Equacions diferencials ordinàries

ALEIX TORRES I CAMPS

Pau Martín (p.martin@gmail.com), Marcel Guardia i Rafael Ramírez

1 Tema 1: Introducció i definicions bàsiques

Definició 1. Una equació diferencial és una equació que involucra una funció incógnita i les seves derivades.

Exemple 1. Alguns exemples d'equacions diferencials:

- 1. $y(x), x \in \mathbf{R} \text{ amb } y''(x) y(x) = 0$
- 2. $y''(x) = -\sin(y(x))$
- 3. $y''(x) = -\sin(y(x)) + \cos(x)$
- 4. $\frac{\delta^2 z}{\delta x^2} + \frac{\delta^2 z}{\delta u^2} = 0$ on la incògnita és una funció de dues variables z(x,y).

Definició 2. Una e.d.o. és una equació diferencial de la forma:

- 1. Forma implícita: $g(x, y(x), \dots, y^{(n)}(x)) = 0$ on la incògnita és una funció $y(x) = (y_1(x), \dots, y_m(x))^t$ d'una variable unidimensional x. Per tant, $g: U \in \mathbf{R} \times (\mathbf{R}^m)^{n+1} \to \mathbf{R}^m$.
- 2. Forma explícita: $y^{(n)}(x) = f(x, y(x), \dots, y^{n-1}(x))$. Ara $f: V \in \mathbf{R} \times (\mathbf{R}^m)^n \to \mathbf{R}^m$

Nota 2. A partir d'ara treballarem amb només la forma explícita. La qual abreviarem com $y^{(n)}=f(x,y,\dots,y^{n-1})$

Definició 3. Direm que $\phi:(a,b)\to \mathbf{R}^m$ és una solució si ϕ és n vegades derivable i:

$$\phi^{(n)}(x) = f(x, \phi(x), \dots, \phi^{(n-1)}(x)), \forall x \in (a, b)$$

Implícitament demantarem que:

$$\{(x,\phi(x),\ldots,\phi^{n-1}(x))|x\in(a,b)\}\subset Dom f$$

La solució general és el conjunt de totes les seves solucions.

Definició 4. Es diu que l'e.d.o. $y^{(n)} = f(x, y, \dots, y^{(n-1)})$ on $y = (y_1 \cdots y_m)^t$ és un sistema d'e.d.o's de m components, d'ordre n.

Nota 3. Sigui $y = (y_1 \cdots y_m)$, aleshores, $y^{(n)} = f(x, y, \dots, t^{(n-1)})$ és equivalent a un sistema de $n \times m$ e.d.o.'s d'ordre 1.

Demostració. En efecte, sigui $z_1 = y$ (vector de m components), $z_2 = y', \dots, z_n = y^{(n-1)}$. Per tant, a $z = (z_1, \dots, z_n)^t$ hi ha un total de $n \times m$ components.

Com que $z_1' = (y)' = y' = z_2$ i, anar fent, $z_{n-1}' = (y^{n-2})' = y^{(n-1)} = z_n$ i $z_n' = (y^{(n-1)})' = y^{(n)} = f(x, y, \dots, y^{(n-1)}) = f(x, z_1, \dots, z_n)$. Ens queda l'e.d.o. z' = g(x, z) que realment acaba sent $(z_1' \ z_2' \ \cdots \ z_n')^t = (z_2 \ z_3 \ \cdots \ z_n \ f(x, z_1, \cdots, z_n))^t$.

Exemple 4. y'' = -sin(y). Aleshores, $z_1 = y$ i $z_2 = y'$. Podem prendre per sistema d'equacions $z'_1 = z_2$ i $z'_2 = -sin(z_1)$.

1.1 Sistemes autònoms i no autònoms

Definició 5. Direm que una e.d.o. és autònoma si és de la forma y' = f(y) (equació que no depen de x). Direm que un sistema es no autònom si y' = f(x, y).

Proposició 6. Siguin y' = f(y) una e.d.o autònoma $i \phi : (a,b) \to \mathbf{R}^n$ una solució. Llavors, $\forall x \in \mathbf{R}$ i $\phi_{\alpha} : (a + \alpha, b + \alpha) \to \mathbf{R}^n$ per $x \to \phi(x - \alpha)$ també és solució.

Demostració. En efecte: $\phi'_{\alpha}(x) = \phi'(x - \alpha) = f(\phi(x - \alpha)) = f(\phi_{\alpha}(x)).$

Nota 5. Podem transformar el sistema d'ordre 1 i n incògnites d'e.d.o's no autònom y' = f(x,y), en un sistema d'e.d.o's autónom d'ordre 1 i n + 1 incògnites.

Demostració. En efecte, fem $z_1 = x$ i $z_2 = y$. Aleshores, amb $z = (z_1 \ z_2)^t$ compleix que $z' = (z'_1 \ z'_2)^t = (1 \ f(x,y))^t = (1 \ f(z))^t = F(z)$, que és un e.d.o. d'ordre 1 amb n+1 incògnites.

1.2 Problema de Cauchy o problema de valors inicials

Definició 7. Sigui $U \subset \mathbf{R} \times \mathbf{R}^n$ un obert i $f: U \to R^n$ una funció. Sigui $(x_0, y_0) \in U$. Anomenarem problema de Cauchy o problema de valor inicial (p.v.i) a trobar una solució de

$$y' = f(x, y)$$

$$y(x_0) = y_0$$

Exemple 6. Alguns exemples de problemes de Cauchy.

- 1. Volem trobar una funció que compleixi que: y' = y i y(0) = 1. Escollint $\phi(x) = e^x$ és una solució, ja que si derivem ens dona ella mateixa i si l'igualem a 0 dona 1.
- 2. Volem trobar una funció que compleixi que: y' = y i $y(x_0) = y_0$. Escollint $\phi(x) = y_0 e^{x-x_0}$ és solució, ja que si derivem dona ella mateixa i compleix el valor inicial.

Pregunta: Les solucions que hem trobat són totes les possibles? N'hi ha més?

- 3. yy'-x=0 i y(0)=0. Solucions: $\phi_{+-}(x)=+-x$ en són solució, substituint es veu.
- 4. yy' + x = 0 i y(0) = 0. No té cap solució.

1.3 Interpretació geomètrica d'una e.d.o

Sigui $f: U \subset \mathbf{R}^2 \to \mathbf{R}$ $(x,y) \mapsto f(x,y)$. y' = f(x,y) i $\phi: (a,b) \to \mathbf{R}$ nés solució si $\phi'(x) = f(x,\phi(x))$. El que diu és si existeix una funció ϕ , el pendent de la seva gràfica seguix $f(x,\phi)$.

1.4 Exemples importansts

Exemple 7. Equació d'una molla elàstica (oscil·lador harmònic):

$$my'' = -k^2y$$

On y és el desplaçament respecte la posició d'equilibri.

Exemple 8. Pendol de longitud l sota un camp gravitatori constant el qual exerceig una força mq.

$$m\theta''l = -mg\sin\theta \iff \theta'' = -\frac{g}{l}\sin\theta$$

On θ és l'angle del pendol respecte la vertical.

Exemple 9. Model SIR. S és el nombre de persones subceptibles, I infectats i R persones que deixen de ser de la resta tant perquè es curen com perquè moren. N = S + I + R

$$S' = -\frac{\beta}{N}SI$$

$$I' = \frac{\beta}{N}SI - \gamma I$$

$$R' = \gamma I$$

Exemple 10. n cossos a l'espai de masses m_1, m_2, \ldots, m_n submessos a la seva mutua atracció gravitatòria. q_i és la posició del cos i en un sistema de referència.

$$m_i q_i'' = G \sum_{j \neq i} \frac{m_i m_j}{||q_j - q_i||^3} (q_j - q_i)$$

Exemple 11. E.d.o's de famílies de corbes.

Considerem la següent família de corbes: $x^2+y^2=r^2$, per $r\in\mathbb{R}$. Tinc les solucions i m'interessa buscar la e.d.o. que la tingui per solució. Si y=y(x), derivant respecte a x: 2x+2yy'=0 o simplificant y'y+x=0, o també $y'=-\frac{x}{y}$.

Família ortogonal. Té el pendent ortogonal, $y' = -\frac{1}{-\frac{x}{y}} = \frac{y}{x}$. Té per solució $y(x) = \alpha x$ per $\alpha \in \mathbb{R}$.

Exercici: Trobeu l'e.d.o de la família de corbes $(x - \alpha)^2 + y^2 = \alpha^2$. I la família de corbes ortogonals.

Crec que:

$$y' = -\frac{x - \alpha}{y}$$
$$y(0) = 0$$

2 Sistemes lineals d'e.d.o.'s

Definició 8. Direm que un sistema d'e.d.o's és lineal si és de la forma (de funció incògnita x):

$$x' = A(t)x + b(t), \ A(t) \in \mathbb{M}_{n \times n}(\mathbb{R}) \ b(t) \in \mathbf{R}^n$$

Direm que el sistema és homogeni si b(t) = 0. El sistema homogeni associat és x' = A(t)x.

Direm que el sistema té coeficients constants si A no depèn de t.

2.1 Motivació

Suposem que tenim un sistema d'e.d.o.'s x' = f(t, x), on f és \mathscr{C}^1 respecte de x. Suposem que $x_0(t)$ n'és solució. Volem estudiar el comportament de les solucions "properes".

$$f(t,x) = f(t,x_0(t)) + D_x f(t,x_0(t))(x - x_0(t)) + o(||x - x_0(t)||)$$

On D_x és la matriu diferencial.

Sigui $\tilde{x} = x - x_0(t)$, llavors, $\tilde{x}' = x' - x_0(t)' = f(t, x_0(t)) + D_x(t, x_0(t))\tilde{x} + o(||\tilde{x}||) - f(t, x_0(t)) = D_x f(t, x_0(t))\tilde{x} + o(||\tilde{x}||)$ el qual s'aproxima a un sistema lineal.

2.2 Propietats elementals

Proposició 9. (Principi de superposició) Considerem el sistema lineal homogeni x' = A(t)x, on $A(t) \in \mathcal{M}_{n \times n}(\mathbf{R})$. La solució, generat del sistema és un espai vectorial, és a dir, si ϕ_1 i ϕ_2 són solució i $\forall \lambda_1, \lambda_2 \in \mathbf{R}$ (o C), llavors $\lambda_1 \phi_1 + \lambda_2 \phi_2$ és també solució.

Demostració. Sabem que $\phi_i'(t) = A(t)\phi_i(t)$ per i = 1, 2. Donats $\lambda_1, \lambda_2 \in R$, sigui $\tilde{\phi} = \lambda_1\phi_1 + \lambda_2\phi_2$. Llavors, $\tilde{\phi}' = \lambda_1\phi_1' + \lambda_2\phi_2' = \lambda_1A(t)\phi_1 + \lambda_2A(t)\phi_2 = A(t)(\lambda_1\phi_1 + \lambda_2\phi_2) = A(t)\tilde{\phi}$.

Proposició 10. Considerem el sistema lineal

$$x' = A(t)x + b(t)$$

Sigui ϕ_p una solució del sistema ($\phi'_p = A(t)\phi_p + b(t)$). La solució general és

$$\{\phi|\phi'=A(t)\phi+b(t)\}=\{\phi=\phi_p+\phi_n|\phi_n=A(t)\phi_n\}=\{\phi_p\}+\{\phi_n|\phi_n\ soluci\acute{o}\ del\ sistema\ homogeni\ associat\}$$

Demostraci'o.

 \supseteq Sigui $\tilde{\phi} = \phi_p + \phi_n$, en $\phi'_n = A(t)\phi_n$. Llavors

$$\tilde{\phi}' = \phi_p' + \phi_n' = A(t)\phi_p + b(t) + A(t)\phi_n = A(t)(\phi_p + \phi_n) + b(t) = A(t)\tilde{\phi} + b(t)$$

 \subseteq Sigui $\hat{\phi}$ una solució $(\hat{\phi}' = A(t)\hat{\phi} + b(t))$, llavors: $\hat{\phi} = \phi_p + \hat{\phi} - \phi_p$ i cal veure que $\phi_n = \hat{\phi} - \phi_p$ és solució del sistema homogeni. Com que, $\phi'_n = \hat{\phi}' - \phi'_p = A(t)\hat{\phi} + b(t) - A(t)\phi_p - b(t) = A(t)(\hat{\phi} - \phi_p) = A(t)\phi_n$, per tant, ϕ_n és solució del sistema homogeni i hem acabat.

2.3 E.d.o's lineals unidimensionals

Consierem una e.d.o de la forma

$$x' = a(t)x + b(t), \ a(t) \in \mathbb{R}(o \ \mathbb{C}), \ x \in \mathbb{R}$$

Per resoldre-la:

- 1. Trobarem la solució general de x' = a(t)x.
- 2. Trobarem una solució particular de x' = a(t)x + b(t).

Notació: En aquest tema $I \subset \mathbf{R}$ serà un interval obert.

Proposició 11. Sigui $a:I\subset\mathbb{R}\to\mathbb{R}$ una funció contínua. Sigui $t_0\in I$. Llavors, la solució general de l'e.d.o. lineal homogenia x'=a(t)x és

$$\{\lambda e^{\int_{t_0}^t a(s)ds} | \lambda \in \mathbb{R}\}$$

Equivalentment, per a qualsevol $(t_0, x_0) \in I \times \mathbb{R}$, l'única solució de p.v.i.

$$x' = a(t)x$$
$$x(t_0) = x_0$$

 $\acute{e}s$

$$\phi(t, t_0, x_0) = e^{\int_{t_0}^t a(s)ds} x_0$$

Demostració.

 \subseteq Sigui $\phi(t) = x_0 e^{\int_{t_0}^t a(s)ds}$. Tenim que

$$\phi(t)' = x_0 e^{\int_{t_0}^t a(s)ds} \left(\int_{t_0}^t a(s)ds \right)' = a(t)x_0 e^{\int_{t_0}^t a(s)ds} = a(t)\phi(t)$$

Amb això hem vist que és solució de l'equació. Ara anem a veure que és solució del p.v.i.

$$\phi(t_0) = x_0 e^{\int_{t_0}^{t_0} a(s)ds} = x_0 e^0 = x_0$$

 $\supseteq \text{Observem que } e^{\int_{t_0}^t a(s)ds} \neq 0, \ \forall t \in I.$

Sigui $\hat{\phi}$, una solució de x' = a(t)x, la podem escriure com $\hat{\phi}(t) = c(t)e^{\int_{t_0}^t a(s)ds}$ amb $c(t) = e^{-\int_{t_0}^t a(s)ds}\hat{\phi}(t)$ i c és una funció derivable a I.

Llavors, $c'(t)e^{\int_{t_0}^t a(s)ds} + c(t)a(t)e^{\int_{t_0}^t a(s)ds} = \hat{\phi}'(t) = a(t)\hat{\phi}(t) = a(t)c(t)e^{\int_{t_0}^t a(s)ds} \iff c'(t)e^{\int_{t_0}^t a(s)ds} = 0 \iff c'(t) = 0 \implies c = \lambda$. És a dir, com que la derivada de la c és 0, tenim que c és una constant. I hem acabat perquè hem vist que qualsevol solució és de la forma descrita.

Nota 12. Què va fer que escollissim $e^{\int_{t_0}^t a(s)ds}$ com a candidat de solució?

Estem buscant solució de x'(t) = a(t)x(t) tal que $x(t_0) = x_0$. Ara, podem veure la equació com $\frac{x'(t)}{x(t)} = a(t) \iff \int_{t_0}^t \frac{x'(t)}{x(t)} = \int_{t_0}^t a(s)ds$ que és el mateix que $\ln(x(t) - \ln(x(t_0))) = \int_{t_0}^t a(s)ds \iff \ln(x) = \ln(x_0) + \int_{t_0}^t a(s)ds \iff x(t) = e^{\ln x_0} e^{\int_{t_0}^t a(s)ds} = x_0 e^{\int_{t_0}^t a(s)ds}.$

Proposició 12. La solució general de x' = a(t)x + b(t); $a, b : I \subset \mathbb{R} \to \mathbb{R}$ contínues és:

$$\{x(t)=e^{\int_{t_0}^t a(s)ds}[\lambda+\int_{t_0}^t e^{-\int_{t_0}^s a(\sigma)d\sigma}b(s)ds],\lambda\in\mathbb{R}\}$$

I, per tant, la solució que satisfà $x(t_0) = x_0$ és:

$$\phi(t, t_0, x_0) = e^{\int_{t_0}^t a(s)ds} (x_0 + \int_{t_0}^t e^{\int_{t_0}^s a(\sigma)d\sigma} b(s)ds) = x_0 e^{\int_{t_0}^t a(s)ds} + e^{\int_{t_0}^t a(\sigma)d\sigma} \int_{t_0}^t e^{-\int_{t_0}^s a(\sigma)d\sigma} b(s)ds =$$

$$= x_0 e^{\int_{t_0}^t a(s)ds} + \int_{t_0}^t e^{\int_s^t a(\sigma)d\sigma} b(s)ds$$

Demostració. Fem servir el mètode de variacions de les constants.

Busquem $x_p(t) = c(t)e^{\int_{t_0}^t a(s)ds}$, $(\forall t)$. Substituint a l'equació original tenim:

$$c'(t)e^{\int_{t_0}^t a(s)ds} + c(t)a(t)e^{\int_{t_0}^t a(s)ds} = x'_p(t) = a(t)c(t)e^{\int_{t_0}^t a(s)ds} + b(t) \iff c'(t)e^{\int_{t_0}^t a(s)ds} = b(t)$$

$$\implies c'(t) = e^{-\int_{t_0}^t a(s)ds}b(t) \implies c(t) - x_0 = \int_{t_0}^t c'(s)ds = \int_{t_0}^t e^{-\int_{t_0}^s a(\sigma)d\sigma}b(s)ds$$

I, per tant,

$$c(t) = x_0 + \int_{t_0}^t e^{\int_{t_0}^s a(\sigma)d\sigma} b(s)ds$$

Exemple 13. Posem per cas que volem resoldre l'equació $x' = tx + \frac{1}{t}$ (coeficients continus, o bé a $(-\infty, 0)$, o bé a $(0, \infty)$).

Solució. 1. Busquem l'equació homogènia. $x'=tx \implies \frac{x'}{x}=t$, intebrant entre t_0 i t, tenim

$$\ln x - \ln x_0 = \frac{1}{2}t^2 - \frac{1}{2}t_0^2 \implies x(t) = x_0e^{\frac{1}{2}t^2 - \frac{1}{2}t_0^2} = x_0e^{-\int_1^2 t_0^2}e^{\int_1^2 t^2}$$

Per tant, la solució general homogenia:

$$\{x(t) = \lambda e^{\int_1^2 t^2}, \ \lambda \in \mathbf{R}\}$$

2. Trobem la solució de l'e.d.o. completa que en t_0 val x_0 :

5

 $x_p(t) = c(t)e^{\frac{1}{2}t^2}$ i substituim a l'e.d.o:

$$c(t)e^{\frac{1}{2}t^2} + c(t)e^{\frac{1}{2}t^2}t = x_p'(t) = tc(t)e^{\frac{1}{2}t^2} + \frac{1}{t}$$

Que aleshores queda:

$$c'(t) = \frac{1}{t}e^{-\frac{1}{2}t^2} \implies x(t) = x_0e^{-\frac{1}{2}t_0^2} + \int_{t_0}^t \frac{1}{s}e^{-\frac{1}{2}s^2}ds$$

Perquè $c(t_0) = x_0 e^{-\frac{1}{2}t_0^2}$, finalment, la solució és:

$$x_p(t) = e^{\frac{1}{2}t^2} [x_0 e^{-\frac{1}{2}t_0^2} + \int_{t_0}^t \frac{1}{s} e^{-\frac{1}{2}s^2} ds]$$

2.4 Sistemes lineals de dimensió qualsevol (finita)

1. Sistemes homogenis: x' = A(t)x, per $A \in \mathcal{C}(I, \mathcal{M}_{n \times n}(\mathbf{R}))$, és a dir, A és una matriu $n \times n$ amb coeficients continus a $I \subset R$.

Proposició 13. Sigui el sistema x' = A(t)x, amb $A \in \mathcal{C}^k(I, \mathcal{M}_{n \times n}(mathbb{R}))$. Llavors, si ϕ n'és una solució definida a $I \implies \phi \in \mathcal{C}^{k+1}(I, \mathbf{R}^n)$.

Demostració. Provem-ho per inducció:

Pel cas base k=0. Si ϕ és solució $\implies \phi'(t)=A(t)\phi(t) \implies \phi \in \mathscr{C}^1(I,\mathbb{R}^n)$.

Suposem que A és de classe \mathscr{C}^k i ϕ és solució de x' = A(t)x de classe \mathscr{C}^k : llavors $\phi'(t) = A(t)\phi(t) \implies A, \phi' \in \mathscr{C}^k \implies \phi \in \mathscr{C}^{k+1}$.

Exemple 14. Comproveu que el mateix argument a'aplica a x' = f(t, x), si f és de classe \mathscr{C}^k respecte a (t, x).

Teorema 14. (És el teorema 2.8 dels apunts) Siguin $I \subset \mathbb{R}$, interval de \mathbb{R} , $A \in \mathcal{C}(I, M_{n \times n}(\mathbb{R}))$. Sigui $(t_0, x_0) \in I \times \mathbb{R}^n$, qualsevol. llavors el p.v.i

$$x' = A(t)x$$
$$x(t_0) = x_0$$

té una solució $\mathscr C$, definida a I. Una solució és única en el sentit següent: si $\tilde \phi: \tilde I \subset I \to \mathbb R$ n'és una altra solució $\Longrightarrow \phi_{|\tilde I} = \phi_{|\tilde I}$

Demostració. És un corol·lari d'una conseqüència del Teorema de Picard.

Nota 15. No sabem calcular ϕ . El teorema ens permet deduir l'aplicació: $\phi: I \times I \times \mathbb{R}^n \to \mathbb{R}^n$ amb $(t,t_0,x_0) \to \phi(t,t_0,x_0)$, on $\phi(t,t_0,x_0)$ és lá solució del p.v.i. en l'instant t. A aquesta aplicació l'anomenarem flux del p.v.i.

Exercici: Fent servir el teorema 2.8. i el fet que la sol·lució general de x' = A(t)x és un espai vectorial, proveu que, fixats $t, t_0 \in I$, l'aplicació de \mathbb{R}^n a \mathbb{R}^n , que envia x_0 a $\phi(t, t_0, x_0)$ és una aplicació lineal.

$$\phi(t, t_0, \lambda_0 x_0 + \lambda_1 x_1) = \lambda_0 \phi(t, t_0, x_0) + \lambda_1(t, t_0, x_1)$$

Teorema 15. Sigui $A \in \mathcal{C}(I, M_{n \times n}(\mathbb{R}))$. Llavors, la solució general de x' = A(t)x (sistema lineal i homogeni) és un espai vectorial de dimensió n.

Demostració. Veurem (1) que hi ha n solucions de x' = A(t)x linealment independents (\implies dimensió de la solució general $\geq n$). (2) que aquestes solucions en són base.

Per (1). Sigui $t_0 \in I$. Sigui e_i , l'i-éssim vector de la base canònica a \mathbb{R}^n . Pel teorema 2.8, sigui ϕ_i la solució del p.v.i:

$$x' = A(t)x$$
$$x(t_0) = e_i$$

Afirmem que $\{\phi_i\}_{i=1,\dots,n}$ són l.i. Hem de veure que si $\lambda_1\phi_1(t)+\dots+\lambda_n\phi_n(t)=0 \ (\forall t\in I) \implies \lambda_1=\dots=\lambda_n=0.$

Suposem que tenim uns $\lambda_1, \dots, \lambda_n \in \mathbb{R}$ tals que compleixen la condició anterior. En particular, si $t = t_0$, $\lambda_1 \phi_1(t_0) + \dots + \lambda_n \phi_n(t_0) = \lambda_1 e_1 + \dots + \lambda_n e_n = 0$, llavors com els vectors canònics són l.i. llavors $\lambda_1 = \dots = \lambda_n = 0$.

Per (2). Sigui $\tilde{\phi}: I \subset \mathbb{R} \to \mathbb{R}^n$ una solució qualsevol de x' = A(t)x. Siguin $\lambda_1, \dots, \lambda_n$ tals que $\lambda e_1 + \dots + \lambda e_n = \phi(\tilde{t}_0)$. Veiem que $\tilde{\phi}(t) = \lambda_1 \phi_1(t) + \dots + \lambda_n \phi_n(t)$ ($\forall t \in I$).

Per a veure-ho, comproveu que són solució del mateix p.v.i i apliquem el Teorema 2.8. Tant $\tilde{\phi}$ com $\lambda_1 \phi + \cdots + \lambda_n \phi_n$ són solució de x' = A(t)x. Com que $\lambda_1 \phi_1(t_0) + \cdots + \lambda_n \phi_n(t_0) = \lambda_1 e_1 + \cdots + \lambda_n e_n = \tilde{\phi}(t_0)$ coincideixen en $t = t_0$ llavors, com la solució del p.v.i. és única, coincideixen en tot I.

Definició 16. Sigui $A \in (I, \mathcal{M}_{n \times n}(\mathbb{R}))$. Anomenarem sistema fonamental de solucions de x' = A(t)x a qualsevol base de la solució general del sistema. El teorema anterior ens diu que un s.f.s té exactament n funcions

Definició 17. Sigui $A \in (I, \mathcal{M}_{n \times n}(\mathbb{R}))$. Direm que una matriu M(t) (per $t \in I$) és una matriu fonamental del sistema x' = A(t)x si les seves columnes són un s.f.s. del sistema. És a dir, si $M(t) = (m_1(t), \dots, m_n(t))$, llavors $m'_i = A(t)m_i$. Podem escriure M(t)' = A(t)M(t) i que $\{m_i\}_{i=1,\dots,n}$ generant l'espai de solucions.

Exercici: Considerem el problema següent: Donada una matriu $C \in \mathcal{M}_{n \times n}(\mathbb{R})$, busquem Φ tal que

$$\Phi'(t) = A(t)\Phi(t)$$

$$\Phi(t_0) = C$$

On $A \in \mathcal{C}(I, \mathcal{M}_{n \times n}(\mathbb{R}))$ i $t_0 \in I$. Proveu que $\exists !$ solució $\Phi(t)$ definida en I.

Exemple 16. Trobem una m.f. de

$$x' = \frac{1}{t}x + y$$
$$y' = \frac{1}{t}y$$

La qual és

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \frac{1}{t} & 1 \\ 0 & \frac{1}{t} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Comencem resolent (2). $y' = \frac{1}{t}y \implies \frac{y'}{y} = \frac{1}{t} \implies \ln y = c + \ln t$ llavors $y(t) = \beta t$. Substituïm a (1):

$$x' = \frac{1}{t}x + \beta t$$

Les solucions de $x' = \frac{1}{t}x$ són $x_n(t) = \alpha t$. Variació de les constants: x(t) = c(t)t. $c'(t)t + c(t) = \frac{1}{t}c(t)t + \beta t \implies c'(t) = \beta \implies c(t) = \alpha + \beta t$, llavors $x(t) = (\alpha + \beta t)t = \alpha t + \beta t^2$ i $y(t) = \beta t$ amb $\alpha, \beta \in \mathbb{R}$.

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \alpha \begin{pmatrix} t \\ 0 \end{pmatrix} + \beta \begin{pmatrix} t^2 \\ t \end{pmatrix}$$

Exercici: Raoneu que ϕ_1 i ϕ_2 són base de la solució general del sitema. Llavors una m.f n'és:

$$\Phi(t) = \begin{pmatrix} t & t^2 \\ 0 & t \end{pmatrix}$$