Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

# ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОННИКИ (ТУСУР)

Кафедра компьютерных систем в управлении и проектировании (КСУП)

# РАЗРАБОТКА ПЛАГИНА «ПОРИСТАЯ СРЕДА» ДЛЯ СИСТЕМЫ АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ «AUTOCAD»

#### ПРОЕКТ СИСТЕМЫ

по дисциплине

«Основы разработки САПР» (ОРСАПР)

|          |    | Выполнил:                |
|----------|----|--------------------------|
|          |    | Студент гр. 580-2        |
|          |    | Иванов А.А.              |
| <u> </u> | >> | 2023 г.                  |
|          |    | Руководитель:            |
|          |    | к.т.н., доцент каф. КСУП |
|          |    | Калентьев А.А.           |
| ,,       |    | 2023 г                   |

# Оглавление

| 1 Описание САПР                         | . 3 |
|-----------------------------------------|-----|
| 1.1 Информация о выбранной САПР         | . 3 |
| 1.2 Описание АРІ                        | . 3 |
| 1.3 Обзор аналогов плагина              | . 6 |
| 2 Описание предмета проектирования      | . 7 |
| 3 Проект Системы                        | . 8 |
| 3.1 Диаграмма классов                   | . 8 |
| 3.2 Макеты пользовательского интерфейса | . 9 |
| Список используемых источников          | 10  |
| Приложение А                            | 12  |

#### 1 Описание САПР

## 1.1 Информация о выбранной САПР

Autodesk AutoCAD — система автоматизированного проектирования (САПР) для создания трёх- и двухмерных моделей. Позволяет выполнять построение 3D-моделей деталей, объединять их в сборки, а также выполнять чертежи и инженерные расчёты физических характеристик. AutoCAD и специализированные приложения на его основе применяются в области машиностроения, строительства, архитектуры и т.д. Программа имеет русскую локализацию.

#### Аналоги AutoCAD:

- Autodesk Inventor;
- Autodesk Fusion 360;
- SolidWorks;
- Kompas-3D.

Данная САПР была выбрана из-за ряда преимуществ:

- Документация к АРІ;
- Обширный список инструментов для создания деталей.

#### 1.2 Описание АРІ

API (Application programming interface) — это программный интерфейс, используемый программами для взаимодействия между собой.

Для AutoCAD существует ObjectARX — набор динамически подключаемых библиотек, позволяющий реализовать взаимодействие между разрабатываемым плагином и САПР. Для работы с ним необходимо подключить файлы API с расширением .dll в проект, использующий .NET Framework 4.8.

Свойства и методы, используемые при разработке плагина, представлены в таблицах 1.1-1.8.

Таблица 1.1 – Основные методы интерфейса DocumentManager

| Название                   | Тип      | Описание                                          |
|----------------------------|----------|---------------------------------------------------|
| MdiActiveDocument()        | Document | Метод для создания и получения документа чертежа  |
| MdiActiveDocument.Editor() | Editor   | Метод для получения<br>редактора текущего чертежа |

# Таблица 1.2 — Используемые свойства класса Database

| Название           | Тип данных         | Описание             |     |
|--------------------|--------------------|----------------------|-----|
| TransactionManager | TransactionManager | Доступ               |     |
|                    |                    | TransactionManager 2 | ппр |
|                    |                    | базы данных.         |     |

# Таблица 1.3 — Используемые методы класса TransactionManager

| Название         | Входные параметры | Тип возвращаемых | Описание       |
|------------------|-------------------|------------------|----------------|
|                  |                   | данных           |                |
| StartTransaction |                   | Transaction      | Начинает новую |
|                  |                   |                  | транзакцию.    |

# Таблица 1.4 — Используемые методы класса Transaction

| Название  | Входные параметры         | Тип         | Описание   |
|-----------|---------------------------|-------------|------------|
|           |                           | возвращаемы |            |
|           |                           | х данных    |            |
| Commit    |                           | void        | Функция    |
|           |                           |             | фиксирует  |
|           |                           |             | изменения, |
|           |                           |             | внесенные  |
|           |                           |             | во все     |
|           |                           |             | объекты    |
|           |                           |             | DBObject,  |
|           |                           |             | открытые   |
|           |                           |             | во время   |
|           |                           |             | транзакции |
|           |                           |             | , а затем  |
|           |                           |             | закрывает  |
|           |                           |             | их.        |
| GetObject | ObjectId,                 | DBObject    | Функция    |
|           | DatabaseServices.OpenMode |             | вызывает   |
|           |                           |             | функцию    |

|                          |                                               |      | Ореп()<br>верхней<br>транзакции<br>, передавая<br>все                                                                                                                       |
|--------------------------|-----------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          |                                               |      | полученны е                                                                                                                                                                 |
|                          |                                               |      | аргументы.                                                                                                                                                                  |
| AddNewlyCreatedDBObje ct | DBObject, [MarshalAs(UnmanagedType.U 1)] bool | void | Если add == true, объект, на который указывает оbj, добавляетс я в верхнюю транзакци ю. Если add == false, то объект удаляется из любой транзакции, в которой он находится. |

Таблица 1.5 — Используемые методы класса BlockTableRecord

| Название     | Входные параметры                   | Тип<br>возвращаемых<br>данных | Описание                                                                                |
|--------------|-------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------|
| AppendEntity | [CallerMustClose] Entity            | ObjectId                      | Добавляет объект в базу данных и запись таблицы блоков.                                 |
| GetObject    | ObjectId, DatabaseServices.OpenMode | DBObject                      | Функция вызывает функцию Open() верхней транзакции, передавая все полученные аргументы. |

Таблица 1.6 — Используемые методы класса Point3dCollection

| Название | Входные параметры | Тип          | Описание |
|----------|-------------------|--------------|----------|
|          |                   | возвращаемых |          |
|          |                   | данных       |          |

| Add | Point3d | int | Добавляет объект, |
|-----|---------|-----|-------------------|
|     |         |     | представленный    |
|     |         |     | значением, в эту  |
|     |         |     | коллекцию.        |

Таблица 1.7 — Используемые методы класса PolyFaceMesh

| Название         | Входные параметры  | Тип          | Описание                |
|------------------|--------------------|--------------|-------------------------|
|                  |                    | возвращаемых |                         |
|                  |                    | данных       |                         |
| AppendFaceRecord | FaceRecord         | ObjectId     | Функция добавляет       |
|                  |                    |              | FaceRecord, на который  |
|                  |                    |              | указывает toAppend, в   |
|                  |                    |              | конец списка фейслей    |
|                  |                    |              | PolyFaceMesh            |
| AppendVertex     | PolyFaceMeshVertex | ObjectId     | Функция добавляет       |
|                  |                    |              | объект                  |
|                  |                    |              | PolyFaceMeshVertex, на  |
|                  |                    |              | который указывает       |
|                  |                    |              | vertexToAppend, в конец |
|                  |                    |              | списка вершин           |
|                  |                    |              | PolyFaceMesh            |

Таблица 1.8 — Используемые методы класса SubDMesh

| Название       | Входные параметры             | Тип          | Описание          |
|----------------|-------------------------------|--------------|-------------------|
|                |                               | возвращаемых |                   |
|                |                               | данных       |                   |
| SetSubDMesh    | Point3dCollection,            | void         | Создает сетку для |
|                | Int32Collectionm, int         |              | заданного         |
|                |                               |              | массива вершин и  |
|                |                               |              | массива списка    |
|                |                               |              | граней.           |
| ConvertToSolid | [MarshalAs(UnmanagedType.U1)] | Solid3d      | Создает объект    |
|                | bool,                         |              | AcDb3dSolid из    |
|                | [MarshalAs(UnmanagedType.U1)] |              | данных сетки      |
|                | bool                          |              |                   |

## 1.3 Обзор аналогов плагина

Прямых аналогов для данного плагина нет. Косвенные плагины реализовывают только часть требуемой функциональности.

Плагин GeoMESH предоставляет инструменты для создания и редактирования цифровых моделей рельефа и триангулированных нерегулярных сетей.

GeoMESH предоставляет команды для:

- Чтение точек местности из LAS и текстовых файлов;
- Генерация сетки для неравномерно распределенных точек местности;
  - Генерация контурных линий;
  - Создание шаблонов контурных линий;
  - Строительство секций;
- Расчет разницы объемов между различными моделями местности [1].

Пользовательский интерфейс представлен на рисунке 1.1.



Рисунок 1.1 — Пользовательский интерфейс плагина GeoMESH

## 2 Описание предмета проектирования

Пористый материал — твердое тело, содержащее в своем объёме свободное пространство в виде полостей, каналов или пор. В пористых материалах с губчатой структурой невозможно выделить отдельные первичные частицы, и поры в них представляют собой сеть каналов и полостей различной формы и переменного сечения.



Рисунок 1.2 — Модель пористой среды с размерами

Изменяемые параметры для плагина (также все обозначения показаны на рис. 1.2):

- длина моделируемой среды L (0,001-1000мм; 1-1000мм, если ширина или высота меньше 1мм);
- ширина моделируемой среды W (0,001 1000мм; 1 1000мм, если длина или высота меньше 1мм);
- высота моделируемой среды Н (0,001 1000мм; 1 1000мм, если длина или ширина меньше 1мм);
- пористость I (5 80% от общего объёма моделируемой среды. Доля объема порового пространства в общем объеме пористой среды);
  - размер пор D (0,001 0,06мм от общей высоты забора).

## 3 Проект Системы

# 3.1 Диаграмма классов

Диаграмма классов (class diagram) показывает набор классов, интерфейсов и коопераций, а также их связи. Диаграммы этого вида чаще всего используются для моделирования объектно-ориентированных систем.

Предназначены для статического представления системы. Диаграммы классов, включающие активные классы, представляют статическое представление процессов системы [2].

Диаграмма классов для плагина представлена в приложении А.

#### 3.2 Макеты пользовательского интерфейса

На рисунках 3.1 - 3.4 представлены макеты пользовательского интерфейса.



Рисунок 3.1 — Макет пользовательского интерфейса



Рисунок 3.2 — Обозначение блоков в пользовательском интерфейсе. 1 — название параметров; 2 — поля для ввода значений параметров; 3 — единицы измерения; 4 — ограничения параметров; 5 — кнопка построения



Рисунок 3.3 — Макет пользовательского интерфейса с неправильно введёнными значениями параметров



Рисунок 3.4 — Макет пользовательского интерфейса при попытке построения фигуры с неправильно введёнными параметрами

#### Список используемых источников

1 GeoMESH | AutoCAD | Autodesk App Store. [Электронный ресурс]. Режим доступа: свободный (дата обращения: 09.10.2023), <a href="https://apps.autodesk.com/ACD/ru/Detail/Index?id=1842816844021215808&a">https://apps.autodesk.com/ACD/ru/Detail/Index?id=1842816844021215808&a</a> ppLang=en&os=Win64

2 Буч, Г. Язык UML. Руководство пользователя. 2-е изд. [Текст]/Г. Буч, Д. Рамбо, И. Якобсон. – М.: ДМК Пресс, 2006. - 496 с

