Answer Key: DCAC DADB ECBB

- 1. Find all values of x so that the vectors $\mathbf{a}=(x,-3,1)$, $\mathbf{b}=(x,x,2)$ are perpendicular. The correct values of x are
- A. 0, 1
- B. -1, 2
- C. 1, 1
- D. 1, 2
- E. 2, 2

2. Determine a so that the line

$$\frac{x-3}{7} = \frac{y+5}{a} = \frac{z+1}{4}$$

- A. 1
- В. 3

C. 2

- is parallel to the plane 2x + 3y 5z = 10. The correct choice of a is
- D. -2
- E. -1
- **3.** Determine a so that the lines x=a+t, y=-3+2t, z=t and x=1+s, y=2-s, z=2s intersect. The correct choice of a is
- A. 0
- B. 1
- C. -1
- D. 2
- E. -2

4. The equation of the plane perpendicular to the line

$$\frac{x-1}{-2} = \frac{y-1}{3} = z$$

and containing the point (1,1,1) is

A. x + y - z = 1

B.
$$2x - 3y + z = 0$$

C.
$$-2x + 3y + z = 2$$

D.
$$2x + 3y - z = 4$$

E.
$$3x - 2y + z = 2$$

- 5. The surface whose equation in spherical coordinates is $\phi = \pi$ represents
- A. a plane
- B. a cone with axis the z-axis
- C. the xy plane
- D. the negative z axis
- E. the z axis
- **6.** Let L be the line tangent to the curve $\mathbf{r}(t) = (\ln t, 2\sqrt{t}, t^2)$ at (0, 2, 1). Then when L passes through the point (3, y, z), we have

A.
$$y = 5$$
 and $z = 7$

B.
$$y = 3$$
 and $z = 3$

C.
$$y = 7$$
 and $z = 5$

D.
$$y = 3$$
 and $z = 6$

E.
$$y = 4$$
 and $z = 5$

7. The curve $\mathbf{r}(t) = (e^{2t}, -e^t), -\infty < t < \infty$, has a graph most like

- **8.** Let a particle move on the curve $\mathbf{r}(t) = 5t\mathbf{i} + (1-3t)\mathbf{j} + (5+4t)\mathbf{k}$, starting when t=0. After it has gone a distance 2, the x coordinate is
- A. 10
- B. $\sqrt{2}$
- C. $5\sqrt{2}$
- D. 1/10
- E. $5/\sqrt{2}$

9. Let $u = e^{2x} \sin(xy)$. Then $u_{xy} =$

A.
$$e^{2x} \Big((x+1)\cos(xy) - xy\sin(xy) \Big)$$

B.
$$e^{2x} \Big((x+1)\cos(xy) + xy\sin(xy) \Big)$$

C.
$$e^{2x} \left(-(x+1)\cos(xy) - xy\sin(xy) \right)$$

D.
$$e^{2x} \left((2x+1)\cos(xy) + xy\sin(xy) \right)$$

E.
$$e^{2x} \left((2x+1)\cos(xy) - xy\sin(xy) \right)$$

10. Let Π be the tangent plane to the paraboloid $z=x^2+2y^2+6$ at the point (1,1,9). Then Π intersects the z-axis when

A.
$$z = 1$$

B.
$$z = 2$$

C.
$$z = 3$$

D.
$$z = 4$$

E.
$$z = 5$$

11. The level curve f(x,y)=2 of the function $f(x,y)=x^2-y^2+8x-7$ is

- A. a parabola
- B. a hyperbola
- C. two lines
- D. an ellipse but not a circle
- E. a circle

12. The trajectory of a moving particle is given by

$$\mathbf{r}(t) = (t^2/2 - t, \cos(t-1), \ln(1+t) - t/2).$$

When the speed is zero, the acceleration \mathbf{a} is

- A. (0,0,0)
- B. $(1, -1, -\frac{1}{4})$
- C. $(1, -1, \frac{1}{4})$
- D. $(1,1,-\frac{1}{4})$
- E. $(1,1,\frac{1}{4})$