Scratch paper

Anonymous Università di Torino May 2020

Abstract Poche idee, ben confuse.

1 Introduction

master

2 Abstract samples

Let M be a structure of signature L. The sample-expansion of M is a 3-sorted expansion $\langle M, \omega, \bar{M} \rangle$, where $\bar{M} = M^{<\omega}$. These three sorts are called home-sort, integer-sort, and sample-sort, respectively. The symbol x always denotes a tuple of variables of the home-sort. We put a bar over the symbols of sample-sort such as \bar{x} and \bar{a} . Symbols as m, n, i are of integer-sort; from the context it should be inferred whether they are variables or parameters.

The size of a sample $\bar{a} \in \bar{M}$ is the length of \bar{a} as an element of $M^{<\omega}$. This is denoted by $\ln \bar{a}$. We write $\bar{a}.i$ for the i-th element of the sample \bar{a} . The same symbol \bar{a} may be used for tuples of samples such as $\bar{a}_1, \ldots, \bar{a}_n$. Then by $|\bar{a}|$ we denote the length of this tuple (that is, n, for the tuple above). We always make the the implicit assumption that all \bar{a}_i in a tuple have the same size. By this assumption, $\bar{a}.i$ is a well-defined element of $M^{|\bar{a}|}$.

The language of this expansion is denoted by \bar{L} ; it comprises

- 1. all symbols of *L* that apply to the home-sort;
- 2. $0, 1, +, \cdot$ that apply to the integer-sort;
- 3. a ternary relation of sort \bar{M} , ω , M that holds if $\bar{x}.i = y$;
- 4. for every formula $\varphi(x;y) \in \bar{L}$, where y a tuple of mixed sort, there is relation symbol for $\varphi(\bar{x}.i;y)$, where i is a variable of integer-sort.

When $\varphi(x)$ is the formula x=x, requirement 4 implies that $\ln \bar{x}$ is definable. By 2, the cardinality of finite subsets of ω is definable. Therefore, from 4, it easily follows that the function $|\{i<\ln \bar{a}: \varphi(\bar{a}.i)\}|$ is definable, uniformly in the parameters of $\varphi(x)$.

As in the integer-sort we can interpret the field of rational numbers, below we will freely use rational numbers when this clarify the notation. For instance we define

$$\operatorname{Fr}_{\bar{a}}\left[\varphi(x)\right] = \frac{\left|\left\{i < \operatorname{lh}\bar{a} : \varphi(\bar{a}.i)\right\}\right|}{\operatorname{lh}\bar{a}}$$

and use that it is a definable function in \bar{L} . In particular we will use that for every $s \in \mathbb{Q}$ there is a formula saying $\operatorname{Fr}_{\bar{a}} \left[\varphi(x) \right] \geq s$, uniformly in the parameter of $\varphi(x)$.

2.1 Definition Let U be a monster model of inaccessible cardinality $\kappa > |L|$ and let $\langle U, \omega, \overline{U} \rangle$ be the corresponding sample-expansion. We denote by $\langle U, \omega^*, \overline{U}^* \rangle$ a saturated elementary extension of $\langle U, \omega, \overline{U} \rangle$ of cardinality κ . Note that we can assume that the home-sort of this extension is U, in fact as all saturated models of cardinality κ are isomorphic. The elements of \overline{U} are called finite samples, those of \overline{U}^* are called internal samples.

To any internal sample \bar{a} we associate a finitely additive measure on definable subsets of $\mathcal{U}^{|x|}$. For $\varphi(x) \in \bar{L}(\mathcal{U}, \omega^*, \bar{\mathcal{U}}^*)$ we define

$$\Pr_{\bar{\boldsymbol{q}}} \left[\varphi(\boldsymbol{x}) \right] = \sup \left\{ s \in \mathbb{Q} : s < \Pr_{\bar{\boldsymbol{q}}} \varphi(\boldsymbol{x}) \right\}$$

Note that this measure is type-definable, uniformly in the parameters of $\varphi(x)$. Namely, let $r \in \mathbb{R}$ and $\varphi(x;y) \in \bar{L}$, where y is a tuple of mixed sort. Then there is a type $q(\bar{x};y) \subseteq \bar{L}$ that defines $\Pr_{\bar{x}} [\varphi(x;y)] \ge r$.

Let M be a given model. By elementarity, for every $\varepsilon > 0$ and every formula $\varphi(x) \in L(M, \omega, \bar{M})$ there is an $\bar{a}' \in \bar{M}$ such that

$$\Pr_{\bar{a}}\left[\varphi(x)\right] \approx_{\varepsilon} \Pr_{\bar{a}'} \varphi(x)$$

Note that \bar{a} need not have the same size of \bar{a}' . In fact, in general $\ln \bar{a}$ may be non standard, while $\ln \bar{a}' \in \omega$.

2.2 Definition An external sample is a global type $p(\bar{x}) \in S(\mathcal{U}, \omega^*, \bar{\mathcal{U}}^*)$ such that, for every formula $\varphi(x) \in L(\mathcal{U})$, the set $\{i \in \omega^* : p(\bar{x}) \vdash \varphi(\bar{x}.i)\}$ is bounded and definable; uniformly in the parameters of $\varphi(x)$.

For every external sample $p(\bar{x})$ there is an $n \in \omega^*$ such that $p(\bar{x}) \vdash \ln \bar{x} = n$ and $|\{i \in \omega^* : p(\bar{x}) \vdash \varphi(\bar{x}.i)\}|$ is definable uniformly on the parameters of $\varphi(x)$.

In analogy to what done with internal samples, we associate to an external sample $p(\bar{x})$ a finitely additive probability measure on the definable subsets of \mathcal{U} . Namely, we define

$$\Pr_{\bar{p}}\left[\varphi(x)\right] \quad = \quad \sup\left\{r \in \mathbb{Q} \ : \ r < \frac{\left|\left\{i < \operatorname{lh}\bar{x} \ : \ p(\bar{x}) \vdash \varphi(\bar{x}.i)\right\}\right|}{\operatorname{lh}\bar{x}}\right\}$$

What claimed above for internal samples, apply also to external samples, that is, there is a type $q(\bar{x};y) \subseteq \bar{L}$ that defines $\Pr_{\bar{p}} [\varphi(x;y)] \ge r$.

2.3 Notation Let z be a tuple of variables of the home-sort. For $p(\bar{x})$ an external sample, $\varphi(\bar{x};z) \in \bar{L}$, and $b \in \mathcal{U}^{|z|}$ we write $\varphi(\bar{p};b)$ for $p(\bar{x}) \vdash \varphi(\bar{x};b)$. We also write

$$\varphi(\bar{p};\mathcal{U}) = \left\{b \in \mathcal{U}^{|z|} : \varphi(\bar{p};b)\right\}$$

Sets of this form are called externally definable. This notation intentionally confuses $p(\bar{x})$ with any of its realizations (suggestively denoted by \bar{p}) in some elementary extension of $\bar{\mathcal{U}}$.

- **2.4 Definition (with warning)** Let z be a tuple of variables of the home-sort. Let M be given. An external sample $p(\bar{x})$ is
 - 1. invariant over M if for every formula $\varphi(\bar{x};z) \in \bar{L}(M,\omega,\bar{M})$ the set $\varphi(\bar{p};\mathcal{U})$ is invariant over M;
 - 2. finitely satisfiable in M if every formula $\varphi(\bar{x}) \in \bar{L}(\mathcal{U}, \omega, \bar{\mathcal{U}})$ in p(x) is satisfied by some $\bar{a} \in \bar{M}$.

These notions are standard but for the important fact that only parameters in the home-sort are allowed.

It is clear that satisfiable implies invariant.

If an external sample $p(\bar{x})$ is weakly satisfiable in \bar{M} then for every $\varepsilon > 0$ and every formula $\varphi(x)$ there is an $\bar{a} \in \bar{M}$ such that

$$\Pr_{\bar{p}}\left[\varphi(x)\right] \approx_{\varepsilon} \Pr_{\bar{a}} \varphi(x)$$

Let $p(\bar{x})$ external sample finitely satisfiable in M. A coheir sequence in $p(\bar{x})$ is sequence $\langle \bar{a}_i : i < \omega \rangle$ such that

$$\psi(x;b_1,\ldots,b_n) \rightarrow \left[\varphi(a;b) \leftrightarrow \varphi(x;b)\right]$$

3 Distal formulas

The formula $\varphi(x;z) \in L$ is distal if there is a formula $\psi(x;z_1,\ldots,z_n) \in L$ such that for every finite set $B \subseteq \mathcal{U}^{|z|}$ of cardinality at least 2 and every $a \in \mathcal{U}^{|x|}$ there are some $b_1,\ldots,b_n \in B$ such that $\psi(a;b_1,\ldots,b_n)$ and

$$\psi(x;b_1,\ldots,b_n) \rightarrow [\varphi(a;b) \leftrightarrow \varphi(x;b)]$$
 for all $b \in B$.