Announcements

Midterm 3: Wed 4123, 7:00-8:30pm, Sidney Lu 1043

- · Covers through Friday (start of algebraic geometry)
- · Practice Problem solks posted
- · Wednesday class will be review
- · Office hour Wed. after class (+ usual prob. session)

Recall:

Unless otherwise stated, let k be an alg. closed field

Def: An (affine) algebraic variety (or algebraic set)

is a subset $V \subseteq k^n$ of the form

for some subset/ideal Is k[x,,,xn]

Def: V: alg. variety. Then set

Radical of I:

$$P(T) \cup P(T) \cup P(T) = P(T+T)$$

d)
$$V(0) = k^n$$
 and $V(\langle 1 \rangle) = \phi$

Prop: U, V: varieties

$$V \cap E \land \Rightarrow I(\land) \ni I(\land)$$

$$f)$$
 I(U \vee V) = I(U) \wedge I(V)

Prop:

Hilbert's Nullstellensatz (weak form, first version):

Let
$$f_i(x_1,...,x_n)$$
, ..., $f_m(x_1,...,x_n) \in \mathbb{C}[x_1,...,x_n]$

Then the system of equations

has no solution in C" if and only if

Hilbert's Nullstellensatz (strong form): $I(V(I)) = \sqrt{I}$. Moreover, we have inverse bijections

alg. Varieties
$$\xrightarrow{I}$$
 radical ideals $V \subseteq \mathbb{R}^n$ \longrightarrow $I \subseteq \mathbb{R}[x_{1,1}, y_{n}]$

Pf of easy direction: If FEJI then freI For some n. If a EV(I), then

$$0 = f''(\alpha) = (f(\alpha))^n$$
, so $f(\alpha) = 0$ since $b[x_{11-7}x_n]$ is an int. domain, so $\sqrt{I} \subseteq I(V(I))$. \square

Cor: Hilbert's Nullstellensatz (weak form, second version) Let $\mathbb{I} \subseteq \mathbb{k}[x_1,...,x_n]$ be an ideal. Then $V(\mathbb{I}) = \emptyset$

if and only if 1 EI (and so I=k[v,,-,xn])

Pf: By the strong form, $\overline{T} = \overline{I}(V(\overline{I})) = \overline{I}(\beta) = k[x_1, ..., x_n],$

So
$$1 \in JI$$
. This means that $1^n \in I$ for some n , so $I=1^n \in I$

 Π

Examples:

a)
$$k = \mathbb{C}$$
 (or IR), $n = 2$

$$I = (X-Y), \quad J = (X+Y) \quad I+J = (X,Y)$$

$$IV 2 = I2 = ((x-\lambda)(x+\lambda))$$

$$I(\Lambda(\chi)) = \left\{ e \in ([x'\lambda]) \mid L(x'-x) = 0 \land x \right\}$$

If (x+y)|f(x,y), (recall: $k[x_1,...,x_n]$ is a UFD) then f(x,-x)=0

So $J \subseteq I(V(J))$. (an this containment be strict? Yes, but in this case I(V(J)) = J

 $T(V(T+J)) = \{f \in k[x,y] | f(0,0) = 0\}$ = all functions what a constant term = (x,y) = T+J

 β h=1 $I=(x^2) \subseteq k[x]$

_____ k

V(t) = 0, but $I(V(t)) = (x) \supseteq I$

Aside: how would we distinguish (x^2) from (x)?

Ans: replace varieties with schemes

Prime ideals are radical since in a prime ideal I, $ab \in I \implies a \in I$ or $b \in I$, so $a^n \in I \implies a \in I$

Def: A variety V is irreducible if whenever $V = V_1 U V_2$ for varieties V_1 and V_2 , $V = V_1$ or $V = V_2$.

Prop: V irred \iff I:=I(V) prime Pf: \implies) Let $f_1f_2 \in I$

Let $V_i = V \wedge V(f_i) = V(I+(f_i))$ = { a \in V \ s.t. $f_i(a) = 0$ } (i = 1,2)

Let $a \in V$. Then $f_1(a) \cdot f_2(a) = f_1 f_2(a) = 0$, so $f_1(a) = 0$ or $f_2(a) = 0$, and so $V = V_1 \cup V_2$.

Since V irred, V=V; for j=lor2, so $f_j(\alpha)=0$ for all $\alpha \in V$, which means that $f_j \in I$, so I is prime.

 \Leftarrow) Let $V = V_1 \cup V_2$, and assume $V_1 \subsetneq V$.

This means that $I(v) \subsetneq I(v_i)$ since otherwise $V = V(I(v)) = V(I(v_i)) = V_i$.

Let f, et(v,)\ T(v), f, et(v2).

Then fifze I(V) since one of fifz is 0 on every point in V.

Since I(V) is prime, must have $f_{\epsilon} \in I$ (can't have $f_{\epsilon} \in I$), so $I(V_{\epsilon}) \subseteq I(V)$, so $V_{\epsilon} \subseteq V \subseteq V_{\epsilon}$, so $V = V_{\epsilon}$ and V inch.

Prop: Any variety $V \subseteq k^{n}$ is a finite union of irred. varieties.

Pf: Friday