Chapter 8

8.1 Eigenvalues of $\frac{1}{4}$ are $\lambda_1 = 6$, $\lambda_2 = 1$. The principal components are

$$Y_1 = .894X_1 + .447X_2$$

 $Y_2 = .447X_1 - .894X_2$

 $Var(Y_1) = \lambda_1 = 6$. Therefore, proportion of total population variance explained by Y_1 is 6/(6+1) = .86.

8.2

$$\rho = \begin{bmatrix} 1 & .6325 \\ .6325 & 1 \end{bmatrix}$$

(a)
$$Y_1 = .707Z_1 + .707Z_2$$

$$Var(Y_1) = \lambda_1 = 1.6325$$

$$Y_2 = .707Z_1 - .707Z_2$$

Proportion of total population variance explained by Y_1 is 1.6325/(1+1) = .816

- (b) No. The two (standardized) variables contribute equally to the principal components in 8.2(a). The two variables contribute unequally to the principal components in 8.1 because of their unequal variances.
- (c) $\rho_{Y_1Z_1} = .903$; $\rho_{Y_1Z_2} = .903$; $\rho_{Y_2Z_1} = .429$
- Eigenvalues of \ddagger are 2, 4, 4. Eigenvectors associated with the eigenvalues 4, 4 are not unique. One choice is $e_2' = [0 \ 1 \ 0]$ and $e_3' = [0 \ 0 \ 1]$. With these assignments the principal components are $Y_1 = X_1$, $Y_2 = X_2$ and $Y_3 = X_3$.
- Eigenvalues of ‡ are solutions of $|\ddagger -\lambda I| = (\sigma^2 \lambda)^3 2(\sigma^2 \lambda)(\sigma^2 \rho)^2 = 0$ Thus $\{\sigma^2 - \lambda\}[\{\sigma^2 - \lambda\}^2 - 2\sigma^4 \rho^2] = 0$ so $\lambda = \sigma^2$ or $\lambda = \sigma^2 \{1 \pm \rho \sqrt{2}\}$. For $\lambda_1 = \sigma^2, e_1^{\dagger} = [1/\sqrt{2}, 0, -1/\sqrt{2}]$. For $\lambda_2 = \sigma^2(1 + \rho \sqrt{2})$; $e_2^{\dagger} = [1/2, 1/2]$. For $\lambda_3 = \sigma^2(1 - \rho \sqrt{2})$, $e_3^{\dagger} = [1/2, -1/\sqrt{2}, 1/\sqrt{2}]$

Principal Component		Variance	Proportion of Total Variance Explained
$\frac{1}{Y_1} = \frac{1}{Y_1}$	$\frac{1}{\sqrt{2}} x_1 - \frac{1}{\sqrt{2}} x_3$	σ²	1/3
$Y_2 = \frac{1}{2}$	$\frac{1}{2} x_1 + \frac{1}{\sqrt{2}} x_2 + \frac{1}{2} x_3$	σ²(1+ρ√2)	$\frac{1}{3} (1+\rho\sqrt{2})$
$Y_3 = \frac{1}{2}$	$\frac{1}{2} x_1 - \frac{1}{\sqrt{2}} x_2 + \frac{1}{2} x_3$	σ²(1-ρ√2)	$\frac{1}{3} (1-\rho\sqrt{2})$

8.5 (a) Eigenvalues of $oldsymbol{arrho}$ satisfy

$$|\rho-\lambda I| = (1-\lambda)^3 + 2\rho^3 - 3(1-\lambda)\rho^2 = 0$$
 or $(1+2\rho-\lambda)(1-\rho-\lambda)^2 = 0$. Hence $\lambda_1 = 1+2\rho$; $\lambda_2 = \lambda_3 = 1-\rho$ and results are consistent with (8-16) for $\rho=3$.

(b) By direct multiplication

$$P(\frac{1}{\sqrt{p}}, \frac{1}{2}) = (1 + (p-1)p)(\frac{1}{\sqrt{p}}, \frac{1}{2})$$

thus varifying the first eigenvalue-eigenvector pair. Further $\mathbf{p} = (1-\rho)\mathbf{e}_{i}$, i = 2,3,...,p.

8.6 (a)
$$\hat{y}_1 = .999x_1 + .041x_2$$
 Sample variance of $\hat{y}_1 = \hat{\lambda}_1 = 7488.8$ $\hat{y}_2 = -.041x_1 + .999x_2$ Sample variance of $\hat{y}_2 = \hat{\lambda}_2 = 13.8$

- (b) Proportion of total sample variance explained by \hat{y}_1 is $\hat{\lambda}_1/(\hat{\lambda}_1 + \hat{\lambda}_2) = .9982$
- (c) Center of constant density ellipse is (155.60, 14.70). Half length of major axis is 102.4 in direction of \hat{y}_1 . Half length of perpendicular minor axis is 4.4 in direction of \hat{y}_2 .
- (d) $r_{\hat{y}_1,x_1} = 1.000$, $r_{\hat{y}_1,x_2} = .687$ The first component is almost completely determined by $x_1 =$ sales since its variance is approximately 285 times that of $x_2 =$ profits. This is confirmed by the correlation coefficient $r_{\hat{y}_1,x_1} = 1.000$.

8.7 (a)
$$\hat{y}_1 = .707z_1 + .707z_2$$
 Sample variance of $\hat{y}_1 = \hat{\lambda}_1 = 1.6861$ $\hat{y}_2 = .707z_1 - .707z_2$ Sample variance of $\hat{y}_2 = \hat{\lambda}_2 = .3139$

- (b) Proportion of total sample variance explained by \hat{y}_1 is $\hat{\lambda}_1/(\hat{\lambda}_1 + \hat{\lambda}_2) = .8431$
- (c) $r_{\hat{y}_1,z_1} = .918$, $r_{\hat{y}_1,z_2} = .918$ The standardized "sales" and "profits" contribute equally to the first sample principal component.
- (d) The sales numbers are much larger than the profits numbers and consequently, sales, with the larger variance, will dominate the first principal component obtained from the sample covariance matrix. Obtaining the principal components from the sample correlation matrix (the covariance matrix of the standardized variables) typically produces components where the importance of the variables, as measured by correlation coefficients, is more nearly equal. It is usually best to use the correlation matrix or equivalently, to put the all the variables on similar numerical scales.

8.8 (a)
$$r_{\hat{y}_i,z_k} = \hat{e}_{ik} \sqrt{\hat{\lambda}_i}$$
 $i = 1,2$ $k = 1,2,...,5$

Correlations:

i\k	1	2	3	4	5
1	.732	.831	.726	.604	.564
2	437	280	374	.694	.719

The correlations seem to reinforce the interpretations given in Example 8.5.

(b) Using (8-34) and (8-35) we have

k	\overline{r}_{k}	
1	.353	$\bar{r} = .353 \qquad \qquad \hat{\gamma} = 2.485$
2	.435	
3	.354	
4	.326	
5	.299	$T = 103.1 > \chi_9^2(.01) = 21.67$ so would reject
		level. This test assumes a large random sar

 $T = 103.1 > \chi_9^2(.01) = 21.67$ so would reject H_0 at the 1% level. This test assumes a large random sample and a multivariate normal parent population.

8.9 (a) By (5-10)
$$\max_{\mu, \frac{1}{2}} L\{\mu, \frac{1}{2}\} = \frac{e^{\frac{np}{2}}}{(2\pi)^{\frac{pn}{2}} (\frac{n-1}{n})^{\frac{pn}{2}} |s|^{\frac{n}{2}}}$$

The same result applied to each variable independently gives

$$\max_{\mu_{i},\sigma_{ii}} L(\mu_{i},\sigma_{ii}) = \frac{e^{-\frac{n}{2}}}{(2\pi)^{\frac{n}{2}} (\frac{n-1}{n})^{\frac{n}{2}} s_{ii}^{\frac{n}{2}}}$$

Under
$$H_0$$
, $\max_{\mu, t_0} L(\mu, t_0) = \prod_{i=1}^{p} L(\mu_i, \sigma_{ii})$

and the likelihood ratio statistic becomes

$$\Lambda = \frac{\underset{\mu, \uparrow}{\text{max}} L(\mu, \uparrow_0)}{\underset{\mu, \uparrow}{\text{max}} L(\mu, \downarrow)} = \frac{1s^{\frac{n}{2}}}{\underset{i=1}{\text{p}} \frac{n}{2}}$$

(b) When $\ddagger = \sigma^2 I$, using (4-16) and (4-17) we get

$$\max_{\underline{\mu}} L(\underline{\mu}, \sigma^{2}I) = \frac{1}{\frac{np}{(2\pi)^{\frac{np}{2}}(\sigma^{2})^{\frac{np}{2}}}} e^{-\frac{1}{2\sigma^{2}} \{tr[(n-1)S]\}}$$

8.9 (Continued)

50

$$\max_{\mu,\sigma^2} L(\mu,\sigma^2I) = \frac{(np)^{np/2} e^{-np/2}}{(2\pi)^{np/2} (n-1)^{np/2} (tr[S])^{np/2}}$$

$$= \frac{e^{-np/2}}{(2\pi)^{np/2} (\frac{n-1}{n})^{np/2} (\frac{1}{p} tr(S))^{np/2}}$$

and the result follows. Under H_0 there are $p \mu_i$'s and one variance so the dimension of the parameter space is $\gamma_0 = p + 1$. The unrestricted case has dimension p + p(p+1)/2 so the χ^2 has p(p+1)/2 - 1 = (p+2)(p-1)/2 d.f.

8.10 (a) Covariances: JPMorgan, CitiBank, WellsFargo, RoyDutShell, ExxonMobil

	JPMorgan	CitiBank	WellsFargo	RoyDutShell	ExxonMobil
JPMorgan	0.00043327				
CitiBank	0.00027566	0.00043872			
WellsFargo	0.00015903	0.00017999	0.00022398		
RoyDutShell	0.00006410	0.00018144	0.00007341	0.00072251	
ExxonMobil	0.00008897	0.00012325	0.00006055	0.00050828	0.00076568

Principal Component Analysis: JPMorgan, CitiBank, WellsFargo, RoyDutShell, Exxon

Eigenanalysis of the Covariance Matrix 103 cases used

ExxonMobil

Eigenvalue Proportion	0.00136		07012 0.271	0.0002538 0.098		0.0001189 0.046
Cumulative	0.5	29	0.801	0.899	0.954	1.000
		200		504	DOF	
Variable	PC1	PC2	PC3		PC5	
JPMorgan	0.223	-0.625	-0.326	0.663	-0.118	
CitiBank	0.307	-0.570	0.250	-0.414	0.589	
WellsFargo	0.155	-0.345	0.038	-0.497	-0.780	
RoyDutShell	0.639	0.248	0.642	0.309	-0.149	

0.651 0.322 -0.646 -0.216 0.094

(b) From part (a),

$$\hat{\lambda}_1 = .00137$$
 $\hat{\lambda}_2 = .00070$ $\hat{\lambda}_3 = .00025$ $\hat{\lambda}_4 = .00014$ $\hat{\lambda}_5 = .00012$,

so the total sample variance is $\sum_{i=1}^{5} \hat{\lambda}_i = .00258$ and the proportion of total variance

explained by the first three components is $\sum_{i=1}^{3} \hat{\lambda}_{i} / \sum_{i=1}^{5} \hat{\lambda}_{i} = .899$. As in Example 8.5,

the first component might be interpreted as a market component, the second component as an industry component, and the third component is difficult to interpret.

(c) Using (8-33), Bonferroni 90% simultaneous confidence intervals for λ_1 λ_2 λ_3 are

 λ_1 : (.00106, .00195)

 λ_2 : (.00054, .00100)

 λ_3 : (.00019, .00036)

(d) Stock returns are probably best summarized in two dimensions with 80% of the total variation accounted for by a "market" component and an "industry" component.

$$\mathbf{S} = \begin{bmatrix} 3.397 & -1.102 & 4.306 & -2.078 & .270 \\ 9.673 & -1.513 & 10.953 & 12.030 \\ 55.626 & -28.937 & -.440 \\ 89.067 & 9.570 \\ (Symmetric) & 31.900 \end{bmatrix}$$

$$\hat{y}_1 = -.038x_1 + .119x_2 - .480x_3 + .859x_4 + .129x_5$$

$$\hat{y}_2 = -.062x_1 - .249x_2 - .759x_3 - .316x_4 - .508x_5$$

(c) Correlations between variables and components:

· · · · · · · · · · · · · · · · · · ·	x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅
$r_{\hat{y}_1,x_i}$	212	.398	669	.947	.238
$r_{\hat{y}_2,x_i}$	222	527	669	220	590

The proportion of total sample variance explained by the first two principal Components is (108.27+43.15)/(108.27+43.15+31/29+4.60+2.35)=.80.

The first component appears to be a weighted difference between percent total employment and percent employed by government. We might call this component an employment contrast. The second component appears to be influenced most by roughly equal contributions from percent with professional degree (x_2) , percent employment (x_3) and median home value (x_5) . We might call this an achievement component. The change in scale for x_5 did not appear to have much affect on the first sample principal component (see Example 8.3) but did change the nature of the second component. Variable x_5 now has much more influence in the second principal component.

Using S:

$$\hat{\lambda}_1 = 304.26; \ \hat{\lambda}_2 = 28.28; \ \hat{\lambda}_3 = 11.46; \ \hat{\lambda}_4 = 2.52; \ \hat{\lambda}_5 = 1.28; \ \hat{\lambda}_6 = .53; \ \hat{\lambda}_7 = .21$$

The first sample principal component

 $\hat{y}_1 = -.010x_1 + .993x_2 + .014x_3 - .005x_4 + .024x_5 + .112x_6 + .002x_7$ accounts for 87% of the total sample variance. The first component is essentially "solar radiation". (Note the large sample variance for x_2 in S).

Using R:

$$\hat{\lambda}_1 = 2.34; \quad \hat{\lambda}_2 = 1.39; \quad \hat{\lambda}_3 = 1.20; \quad \hat{\lambda}_4 = .73; \quad \hat{\lambda}_5 = .65;$$

 $\hat{\lambda}_6 = .54; \quad \hat{\lambda}_7 = .16$

The first three sample principle components are

$$\hat{y}_1 = .237z_1 - .205z_2 - .551z_3 - .378z_4 - .498z_5 - .324z_6 - .319z_7$$

$$\hat{y}_2 = -.278z_1 + .527z_2 + .007z_3 - .435z_4 - .199z_5 + .567z_6 - .308z_7$$

$$\hat{y}_3 = .644z_1 + .225z_2 - .113z_3 - .407z_4 + .197z_5 + .159z_6 + .541z_7$$

These components account for 70% of the total sample variance.

The first component contrasts "wind" with the remaining variables. It might be some general measure of the pollution level. The second component is largely composed of "solar radiation" and the pollutants "NO" and "O3". It might represent the effects of solar radiation since solar radiation is involved in the production of NO and O3 from the other pollutants. The third component is composed largely of "wind" and certain pollutants (e.g. "NO" and "HC"). It might represent a wind transport effect. A "better" interpretation of the components would depend on more extensive subject matter knowledge.

The data can be effectively summarized in three or fewer dimensions. The choice of S or R makes a difference.

8.13

(a)	Cova	riance Mat	rix				
` '			X1	X2		ХЗ	
	X1	4.654	750889	0.931345370	0.5896	599088	
	X2	0.931	345370	0.612821160	0.1109	933412	
	Х3		699088	0.110933412	0.571	128861	
	X4		915309	0.118469052	0.087	004959	
	X5	1.074	885659	0.388886434	0.347	989910	
	X6	0.158	150852	-0.024851988	0.110	131391	
	3.0		X4	X5		Х6	
	X1	0.276	915309	1.074885659	0.158	150852	
	X2		469052	0.388886434	-0.024	851988	
	XЗ		004959	0.347989910	0.110	131391	
	X4		409072	0.217405649	0.021	814433	
	X5		405649	0.862172372	-0.008	817694	
	X6		814433	-0.008817694	0.861	455923	• • • • • • • • • • • • • • • • • • •
		relation Ma					
	001	X1	X2	ХЗ	X4	X5	X6
	X1	1.0000	0.5514	0.3616	0.3863	0.5366	0.0790
	X2	0.5514	1.0000	0.1875	0.4554	0.5350	0342
	ХЗ	0.3616	0.1875	1.0000	0.3464	0.4958	0.1570
	X4	0.3863	0.4554	0.3464	1.0000	0.7046	0.0707
	X5	0.5366	0.5350	0.4958	0.7046	1.0000	0102
	X6	0.0790	0342	0.1570	0.0707	0102	1.0000

(b) We will work with R since the sample variance of x1 is approximately 40 times larger than that of x4.

Eigenval	ues of the Corre	lation Matrix		
	Eigenvalue	Difference	Proportion	Cumulative
PRIN1	2.86431	1.78786	0.477385	0.47738
PRIN2	1.07645	0.29881	0.179408	0.65679
PRIN3	0.77764	0.12733	0.129607	0.78640
PRIN4	0.65031	0.26228	0.108386	0.89479
PRIN5	0.38803	0.14478	0.064672	0.95946
PRING	0.24326	•	0.040543	1.00000

Eig	envectors					
	PRIN1	PRIN2	PRIN3	PRIN4	PRIN5	PRIN6
X1	0.444858	026660	0.339330	551149	600851	0.146492
X2	0.429300	291738	0.498607	061367	0.687297	0.076408
ХЗ	0.358773	0.380135	628157	421060	0.331839	0.211635
X4	0.462854	020959	124585	0.665604	207413	0.532689
X5	0.521276	073690	203339	0.200526	103175	794127
X6	0.055877	0.873960	0.429880	0.178715	0.053090	116262

- (c) It is not possible to summarize the radiotherapy data with a single component. We need the first four components to summarize the data.
- (d) Correlations between principal components and X1 X6 are

	PRIN1	PRIN2	PRIN3	PRIN4
X1	0.75289	-0.02766	0.29923	-0.44446
X2	0.72656	-0.30268	0.43969	-0.04949
Х3	0.60720	0.39440	-0.55393	-0.33955
X4	0.78335	-0.02175	-0.10986	0.53676
X5	0.88222	-0.07646	-0.17931	0.16171
X6	0.09457	0.90675	0.37909	0.14412

8.14 S is given in Example 5.2.

$$\hat{\lambda}_1 = 200.5, \quad \hat{\lambda}_2 = 4.5, \quad \hat{\lambda}_3 = 1.3$$

The first sample principal component explains a proportion 200.5/(200.5 + 4.5 + 1.3) = .97 of the total sample variance. Also,

$$\hat{\mathbf{e}}_{1}^{i} = [-.051, -.998, .029]$$

Hence $\hat{y}_1 = -.051x_1 -.998x_2 +.029x_3$

The first principal component is essentially X_2 = sodium content. (Note the (relatively) large sample variance for sodium in S). A Q-Q plot of the \hat{y}_1 values is shown below. These data appear to be approximately normal with no suspect observations.

$$\hat{\lambda}_1 = 3779.01; \quad \hat{\lambda}_2 = 468.25; \quad \hat{\lambda}_3 = 452.13; \quad \hat{\lambda}_4 = 248.72$$

Consequently, the first sample principal component accounts for a proportion 3779.01/4948.11 = .76 of the total sample variance. Also,

$$\hat{e}_{1}^{1} = [.45, .49, .51, .53]$$

Consequently,

$$\hat{y}_1 = .45x_1 + .49x_2 + .51x_3 + .53x_4$$

The interpretation of the first component is the same as the interpretation of the first component, obtained from R, in Example 8.6. (Note the sample variances in S are nearly equal).

- 8.16. Principal component analysis of Wisconsin fish data
 - (a) All are positively correlated.
 - (b) Principal component analysis using x1 x4

Eigenvalues of R 2.1539 0.7875 0.6157 0.4429

Eigenvectors of R 0.7032 0.4295 0.1886 -0.7071 0.6722 0.3871 -0.4652 0.4702 0.5914 -0.7126 -0.2787 -0.3216 0.6983 -0.2016 0.4938 0.5318

pc1 pc2 pc3 pc4
St. Dev. 1.4676 0.8874 0.7846 0.6655
Prop. of Var. 0.5385 0.1969 0.1539 0.1107
Cumulative Prop. 0.5385 0.7354 0.8893 1.0000

The first principal component is essentially a total of all four. The second contrasts the Bluegill and Crappie with the two bass.

(c) Principal component analysis using x1 - x6

Eigenvalues of R 2.3549 1.0719 0.9842 0.6644 0.5004 0.4242

Eigenvectors of R
-0.6716 0.0114 0.5284 -0.0471 0.3765 -0.7293
-0.6668 -0.0100 0.2302 -0.7249 -0.1863 0.5172
-0.5555 -0.2927 -0.2911 0.1810 -0.6284 -0.3081
-0.7013 -0.0403 0.0355 0.6231 0.3407 0.5972
0.3621 -0.4203 0.0143 -0.2250 0.5074 0.0872
-0.4111 0.0917 -0.8911 -0.2530 0.4021 -0.1731

pc1 pc2 pc3 pc4 pc5 pc6
St. Dev. 1.5346 1.0353 0.9921 0.8151 0.7074 0.6513
Prop. of Var. 0.3925 0.1786 0.1640 0.1107 0.0834 0.0707
Cumulative Prop. 0.3925 0.5711 0.7352 0.8459 0.9293 1.0000

The Walleye is contrasted with all the others in the first principal component (look at the covariance pattern). The second principal component is essentially the Walleye and somewhat the largemouth bass. The third principal component is nearly a contrast between Northern pike and Bluegill.

8.17

COVARIANCE MATRIX

```
x1 .0130016
    .0103784
x2
             .0114179
xЗ
    .0223500
              .0185352
                        .0803572
×4
    .0200857
              .0210995
                        .0667762
                                  .0694845
x5
    .0912071
              .0085298
                        .0168369
                                  .0177355
                                             .0115684
x6
    .0079578
             .0089085
                        .0128470
                                  .0167936
                                            .0080712
                                                      .0105991
```

The eigenvalues are

0.164 0.018 0.008 0.003 0.002 0.001 and the first two principal components are
[.218 , .204 , .673 , .633 , .181 , .159] X
[.337 , .432 , -.500 , .024 , .430 , .514] X

8.18 (a) & (b) Principal component analysis of the correlation matrix follows.

Correlations: 100m(s), 200m(s), 400m(s), 800m, 1500m, 3000m, Marathon

	100m(s)	200m(s)	400m(s)	800m	1500m	3000m
200m(s) 400m(s) 800m 1500m 3000m Marathon	0.941 0.871 0.809 0.782 0.728 0.669	0.909 0.820 0.801 0.732 0.680	0.806 0.720 0.674 0.677	0.905 0.867 0.854	0.973 0.791	0.799
Eigenanaly	sis of the	e Correlati	on Matrix			
Eigenvalue Proportion Cumulative	5.8076 0.830	0.6287 0. 0.090 0	2793 0.12 0.040 0.0 0.959 0.9	18 0.01	0.008	0.0143 0.002 1.000
Variable 100m(s) 200m(s) 400m(s) 800m 1500m 3000m Marathon	0.383 -0 0.368 -0 0.395 0 0.389 0 0.376 0	PC2 PC .407 0.14 .414 0.10 .459 -0.23 .161 -0.14 .309 0.42 .423 0.40 .389 -0.74	11 -0.587 21 -0.194 37 0.645 48 0.295 22 0.067 06 0.080	-0.094 -0.327 0.819 -0.026	0.745 -0 -0.240 0 0.017 -0 0.189 0 -0.240 -0	PC7 .089 .266 .127 .195 .731 .572

$$\hat{y}_1 = .378z_1 + .383z_2 + .368z_3 + .395z_4 + .389z_5 + .376z_6 + .355z_7$$

$$\hat{y}_2 = -.407z_1 - .414z_2 - .459z_3 + .161z_4 + .309z_5 + .423z_6 + .389z_7$$

						7.	Z 7
	71	Z 2	Z 3	Z 4	Z 5	ν6	
	.911	.923	.887	.952	.937	.906	.856
\hat{y}_1, z_i	323	328	364	.128	.245	.335	.308
\hat{y}_2,z_i	<u></u>		L				

Cumulative proportion of total sample variance explained by the first two components is .919.

- (c) All track events contribute about equally to the first component. This component might be called a track index or track excellence component. The second component contrasts the times for the shorter distances (100m, 200m 400m) with the times for the longer distances (800m, 1500m, 3000m, marathon) and might be called a distance component.
- (d) The "track excellence" rankings for the first 10 and very last countries follow. These rankings appear to be consistent with intuitive notions of athletic excellence.
 - 1. USA 2. Germany 3. Russia 4. China 5. France 6. Great Britain
 - 7. Czech Republic 8. Poland 9. Romania 10. Australia 54. Somoa

8.19 Principal component analysis of the covariance matrix follows.

Covariances: 100m/s, 200m/s, 400m/s, 800m/s, 1500m/s, 3000m/s, Marm/s

	100m/s	200m/s	400m/s	800m/s	1500m/s	3000m/s
100m/s 200m/s 400m/s 800m/s 1500m/s 3000m/s Marm/s	0.0905383 0.0956063 0.0966724 0.0650640 0.0822198 0.0921422 0.0810999	0.1146714 0.1138699 0.0749249 0.0960189 0.1054364 0.0933103	0.1377889 0.0809409 0.0954430 0.1083164 0.1018807	0.0735228 0.0864542 0.0997547 0.0943056	0.1238405 0.1437148 0.1184578	0.1765843 0.1465604
Marm/s	Marm/s 0.1667141					

Eigenanalysis of the Covariance Matrix

Eigenvalue Proportion Cumulative	0.829	0.097	0.038	0.017	0.010	0.007	0.002
--	-------	-------	-------	-------	-------	-------	-------

Variable	PC1	PC2	PC3	PC4	PC5	PC6 -0.624	PC7 0.138
100m/s	0.310	-0.376	0.038	-0.323	-0.030	0.689	-0.311
200m/s	0.357 0.379	-0.434	-0.274	0.667	-0.187	-0.124	0.132
400m/s	0.379	0.053	-0.274	0.128	0.894	-0.136	-0.265
800m/s	0.299	0.033	0.435	0.055	0.127	0.236	0.734
1500m/s 3000m/s	0.460	0.396	0.427	0.184	-0.357	-0.199	-0.499
Marm/s	0.423	0.445	-0.730	-0.237	-0.136	0.081	0.095
TICLE III/ O							

$$\hat{y}_1 = .310x_1 + .357x_2 + .379x_3 + .299x_4 + .391x_5 + .460x_6 + .423x_7$$

$$\hat{y}_2 = -.376x_1 - .434x_2 - .519x_3 + .053x_4 + .211x_5 + .396x_6 + .445x_7$$

	<i>x</i> ₁	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	<i>x</i> ₇
r	.882	.902	.874	.944	.951	.937	.886
$r_{\hat{y}_2,x_i}$	367	376	410	.057	.176	.276	.320

Cumulative proportion of total sample variance explained by the first two components is .926.

The interpretation of the sample component is similar to the interpretation in Exercise 8.18. All track events contribute about equally to the first component. This component might be called a track index or track excellence component. The second component contrasts times in m/s for the shorter distances (100m, 200m 400m) with the times for the longer distances (800m, 1500m, 3000m, marathon) and might be called a distance component.

The "track excellence" rankings for the countries are very similar to the rankings for the countries obtained in Exercise 8.18.

8.20 (a) & (b) Principal component analysis of the correlation matrix follows.

Eigenanalysis of the Correlation Matrix

Elderman										
Eigenvalue Proportion Cumulative	0.838	0.08	0.0	28 0.0	26 0.0	12 0.0	0.0	06	0.0097 0.001 1.000	
Variable 100m 200m 400m 800m 1500m 5000m 10,000m Marathon	0.366 - 0.370 - 0.366 -	PC2 0.529 0.470 0.345 -0.089 -0.154 -0.295 -0.334 -0.387	PC3 0.344 -0.004 -0.067 -0.783 -0.244 0.183 0.244 0.335	PC4 -0.381 -0.217 0.851 -0.134 -0.233 0.055 0.087 -0.018	PC5 0.300 -0.541 0.133 -0.227 0.652 0.072 -0.061 -0.338	PC6 -0.362 0.349 0.077 -0.341 0.530 -0.359 -0.273 0.375	PC7 0.348 -0.440 0.114 0.259 -0.147 -0.328 -0.351 0.594	-0.0 0.0 -0.0 -0.0 -0.0 -0.0	061 003 039 040 706	

$$\hat{y}_1 = .332z_1 + .346z_2 + .339z_3 + .353z_4 + .366z_5 + .370z_6 + .366z_7 + .354z_8$$

$$\hat{y}_2 = .529z_1 + .470z_2 + .345z_3 - .089z_4 - .154z_5 - .295z_6 - .334z_7 - .387z_8$$

							-	
	71	Z 2	Z 3	Z 4	Z 5	Z6	27	Z8
r.	.860	.896	.878	.914	.948	.958	.948	.917
$\frac{r_{\hat{y}_1,z_i}}{r_{\hat{y}_2,z_i}}$.423	.376	.276	071	123	236	267	309

Cumulative proportion of total sample variance explained by the first two components is .918.

- (c) All track events contribute about equally to the first component. This component might be called a track index or track excellence component. The second component contrasts the times for the shorter distances (100m, 200m 400m) with the times for the longer distances (800m, 1500m, 5000m, 10,000m, marathon) and might be called a distance component.
- (d) The male "track excellence" rankings for the first 10 and very last countries follow. These rankings appear to be consistent with intuitive notions of athletic excellence.
 - 1. USA 2. Great Britain 3. Kenya 4. France 5. Australia 6. Italy
 - 7. Brazil 8. Germany 9. Portugal 10. Canada 54. Cook Islands

The principal component analysis of the men's track data is consistent with that for the women.

1500m/s

800m/s

8.21 Principal component analysis of the covariance matrix follows.

200m/s

Covariances: 100m/s, 200m/s, 400m/s, 800m/s, 1500m/s, 5000m/s, 10,000m/s, Marathonn/s

400m/s

	100	N/S	200111/5	40011	-				
100m/s	0.04349								
200m/s	0.04827		0648452				*		
400m/s	0.04346	32 0.	0558678	0.068821					
	0.03149		0432334	0.042822		168840			
800m/s	0.04250		0535265	0.053720		23058	0.0729140		
1500m/s	0.04692		0587731	0.061766	4 0.05	71560	0.0766388		
5000m/s	0.04483		0572512	0.059935	4 0.05	53945	0.0745719		
10,000m/s			0562945	0.056734		41911	0.0736518		
Marathonm/	s 0.04312	:50 0.	0502545	0.050.50	•				
	5000-	10	.000m/s	Marathonm/	s				
Sec Signal Company	5000a		, 000,000	Mar a Citorian,	1000				
5000m/s	0.09593		0040004						
10,000m/s	0.09373		0942894	0.097927	•				
Marathonm/	s 0.09058	319 0.	0909952	0.09/92/	•				
			SEAT ON						
							6 Ta - 2		
	Eigenanalys	is of the	e Covaria	ance Matrix					
			1,4			0.00752	0.00575	0.00322	
	Eigenvalue	0.49405			0.01332	0.00752	0.010	0.006	
	Proportion	0.844	0.07		0.023		0.993	0.998	
	Cumulative	0.844	0.92	3 0.947	0.970	0.983	0.993	0.550	
	Camazassi			•					
	Eigenvalue	0.00112							
	Proportion	0.002							
	Cumulative	1.000							
	CHIMITACIAE								

$$\hat{y}_1 = .244x_1 + .311x_2 + .317x_3 + .278x_4 + .364x_5 + .428x_6 + .421x_7 + .416x_8$$

$$\hat{y}_2 = -.432x_1 - .523x_2 - .469x_3 - .033x_4 + .063x_5 + .261x_6 + .310x_7 + .387x_8$$

								1
	X 1	x_2	x_3	X4	x_5	x_6	<i>X</i> 7	<i>x</i> ₈
r.	.822	.858	.849	.902	.948	.971	.964	.934
r_{\circ}	445	442	384	033	.050	.181	.217	.266
\hat{y}_2, x_i								

Cumulative proportion of total sample variance explained by the first two components is .923.

The interpretation of the sample component is similar to the interpretation in Exercise 8.20. All track events contribute about equally to the first component. This component might be called a track index or track excellence component. The second component contrasts times in m/s for the shorter distances (100m, 200m 400m, 800m) with the times for the longer distances (1500m, 5000m, 10,000m, marathon) and might be called a distance component.

The "track excellence" rankings for the countries are very similar to the rankings for the countries obtained in Exercise 8.20.

8.22 Using *S*

Eigenvalues of the Covariance Matrix

	Eigenvalue	Difference	Proportion	Cumulative
PRIN1	20579.6	15704.9	0.808198	0.80820
PRIN2 PRIN3	4874.7 5.4	4869.2	0.191437	0.99985
PRIN4	3.3 0.5	2.8 0.4	0.000130 0.000018	0.99998 1.00000
PRIN5 PRIN6	0.1	0.1	0.000003	1.00000 1.00000
PRIN7	0.0	•	0.0000	

Eigenvectors

	PRIN1	PRIN2	PRIN3	PRIN4	PRIN5	PRIN6	PRIN7	
x3 x4 x5 x6 x7	0.005887 0.487047 0.008526 0.003112 0.000069 0.009330	0.009680 0.872697 0.029196 0.004886 000493 0.008577 487193	0.286337 034277 0.904389 0.133267 018864 0.284215	0.608787 003227 425175 0.311194 005278 0.593037 005597	0.535569 0.000444 0.008388 0.390573 0.011906 748598 0.002665	509727 000457 0.010389 0.855204 0.043786 0.082331	0.024592 000253 0.014293 037984 0.998778 0.013820 000256	yrhgt ftfrbody prctffb frame bkfat saleht salewt
~~	. ₽∩ 873259 T	# . TU / 10U						

8.22 (Continued)

Using R

Eigenvalues of the Correlation Matrix

		Eigenvalue	Difference	Proportion	Cumulat	ive		
	PRIN1	4,12070	2.78357	0.588671	0.58	867		
	PRIN2	1,33713	0.59575	0.191018	0.77	969		
	PRIN3	0.74138	0.31996	0.105912	0.88	560		
	PRIN4	0.42143	0.23562	0.060204	0.94	580		
	PRIN5	0.18581	0.03930	0.026544	0.97	235		
	PRIN6	0.14650	0.09945	0.020929	0.99	328		
	PRIN7	0.04706		0.006722	1.00	000		
				Eigenvectors				
	PRIN1	PRIN2	PRIN3	PRIN4	PRIN5	PRIN6	PRIN7	
хз	0.449931	 042790	→ .415709	0.113356	0.065871	072234	0.774926	yrhgt
X4	0.412326	0.129837	0.450292	0.247479	719343	→.177061	0.017768	ftfrbody
X5	0.355562	●.315508	0.568273	0.314787	0.579367	0.127800	002397	pretffb
X6	0.433957	0.007728	452345	0.242818	0.142995	 434144	582337	frame
X7	◆. 186705	0.714719	⊶.038732	0.618117	0.160238	0.208017	0.042442	bkfat
X8	0.452854	0.101315	 176650	215769	~.109535	0.799288	236723	saleht
X9	0.269947	0.600515	0.253312	582433	0.290547	 276561	0.047036	salewt

8.23 a) Using S

Eigenvalues of S

4478.87 152.47 32.32 8.12 1.52 0.54

Eigenvectors of S (in columns)

The first component might be identified as a "size" component. It is dominated by Weight, Body length and Girth, those variables with the largest sample variances. The first component explains 4478.87/4673.84 = .958 or 95.8% of the total sample variance. The second component essentially contrasts Weight with the remaining body size variables, Body length, Neck, Girth, Head length, and Head width, although the sample correlation between the second component and Neck is small (-.05). The first two components explain 99.1% of the total sample variance.

These body measurement data can be effectively summarized in one dimension.

b) Using R

```
R
1.0000
        0.8752
                 0.9559
                           0.9437
                                   0.9025
                                             0.9045
0.8752
        1.0000
                 0.9013
                           0.9177
                                    0.9461
                                             0.9503
0.9559
        0.9013
                  1.0000
                           0.9635
                                    0.9270
                                             0.9200
0.9437
        0.9177
                  0.9635
                           1.0000
                                    0.9271
                                             0.9439
0.9025
        0.9461
                  0.9270
                                    1.0000
                           0.9271
                                             0.9544
0.9045
        0.9503
                 0.9200
                           0.9439
                                    0.9544
                                             1.0000
```

Eigenvalues of R

5.6447 0.1758 0.0565 0.0492 0.0473 0.0266

Eigenvectors of R (in columns)

8.23 (Continued)

Again, the first principal component is a "size" component. All variables contribute equally to the first component. This component explains 5.6447/6 = .941 or 94.1% of the total sample variance. The second principal component contrasts Weight, Neck and Girth with Body length, Head length and Head width. The first two components explain 97% of the total sample variance.

These data can be effectively summarized in one dimension.

c) The results are similar for both the covariance matrix S and the correlation matrix R. The first component in each analysis is a "size" component and almost all of the variation in the data. The analyses differ a bit with respect to the second and remaining components, but these latter components explain very little of the total sample variance.

8.24 An ellipse format chart based on the first two principal components of the Madison, Wisconsin, Police Department data

```
XBAR
3557.8 1478.4 2676.9 13563.6 800 7141
```

```
367884.7
           -72093.8
                      85714.8
                                222491.4 -44908.3
                                                     101312.9
-72093.8
         1399053.1
                       43399.9
                                139692.2 110517.1
                                                    1161018.3
 85714.8
            43399.9 1458543.0 -1113809.8 330923.8
                                                    1079573.3
           139692.2 -1113809.8 1698324.4 -244785.9
222491.4
                                                    -462615.6
-44908.3
          110517.1
                     330923.8 -244785.9 224718.0
                                                     427767.5
101312.9 1161018.3 1079573.3 -462615.6 427767.5
                                                   2488728.4
```

Eigenvalues of S 4045921.9 2265078.9 761592.1 288919.3 181437.0 94302.6

Eigenvectors of S

Principal components

```
y1
                y2
                       у3
                              y4
                                     у5
                                           y6
 1 1745.4 -1479.3
                    618.7 222.6
                                    7.2
                                        178.1
 2 -1096.6 2011.8
                    652.5 -69.5 636.9
                                        560.2
     210.6
            490.6
                    365.8 -899.8 -293.5
 4 -1360.1 1448.1
                    420.1 523.5 -972.2
                                         88.5
 5 -1255.9
            502.1 -422.4 -893.8 359.9 -273.7
    971.6
            284.7 -316.9 -942.8
                                 -83.5 -70.1
   1118.5
            123.7
                    572.9 319.9 -60.8 -598.5
 8 -1151.6 1752.0 -1322.1 700.2 -242.2 -158.8
   -497.3 -593.0
                    209.5 -149.2 101.6 -586.2
10 -2397.1 1819.6
                     -9.5 -147.6 -109.9
                                        207.8
11 -3931.9 -3715.7
                    924.1
                            35.1 -274.2
                                        152.9
12 -1392.4 -1688.0 -2285.1 372.1 444.0
                                         85.2
13
    326.8
            650.8 1251.6 728.8 809.5 -140.0
14 3371.4 -379.1 -499.9 -114.6 -324.3
                                        286.9
   3076.6 -199.1 -105.7 419.8 -122.3
                                          3.4
   2261.9 -1029.3
                   -53.7 -104.5 123.8 279.6
```

$$2.5 \times 10^{-7} y_1^2 + 4.4 \times 10^{-7} y_2^2 = 5.99$$

The 95% control ellipse based on the first two principal components of overtime hours

8.25 A control chart based on the sum of squares d_{Uj}^2 . Period 12 looks unusual.

8.26 (a)-(c) Principal component analysis of the correlation matrix R.

Correlations: Indep, Supp, Benev, Conform, Leader

	Indep	Supp	Benev	Conform
Supp	-0.173			
Benev	-0.561	0.018		
Conform	-0.471	-0.327	0.298	
Leader	0.187	-0.401	-0.492	-0.333

Cell Contents: Pearson correlation

Principal Component Analysis: Indep, Supp, Benev, Conform, Leader

Eigenvalue 2.1966 1.3682 0.7559 0.5888 0.0905 Proportion 0.439 0.274 0.151 0.118 0.018 Cumulative 0.439 0.713 0.864 0.982 1.000

Eigenanalysis of the Correlation Matrix

Variable Indep Supp Benev	PC1 -0.521 0.121 0.548 0.439	PC2 0.087 0.788 -0.008 -0.491	PC3 -0.667 0.187 0.115 -0.295	PC4 -0.253 0.351 -0.733	PC5 -0.460 -0.454 -0.386 -0.451
Conform Leader	-0.469	-0.361	0.648	0.007	-0.480

Using the scree plot and the proportion of variance explained, it appears as if 4 components should be retained. These components explain almost all (98%) of the variability. It is difficult to provide an interpretation of the components without knowing more about the subject matter. All four of the components represent contrasts of some form. The first component contrasts independence and leadership with benevolence and conformity. The second component contrasts support with conformity and leadership and so on.

The two dimensional plot of the scores on the first two components suggests that the two socioeconomic levels cannot be distinguished from one another nor can the two genders be distinguished. Observation #111 is a bit removed from the rest and might be called an outlier.

(a)-(d) Principal component analysis of the covariance matrix S.

Covariances: Indep, Supp, Benev, Conform, Leader

	Indep	Supp	Benev	Conform	Leader
Indep	34.7502	14 74 5		1.0	
Supp	-4.2767	17.5134			
Benev	-18.0718	0.4198	29.8447		
Conform	-15.9729	-7.8682	9.3488	33.0426	
Leader	5.7165	-8.7233	-13.9422	-9.9419	26.9580

Principal Component Analysis: Indep, Supp, Benev, Conform, Leader

Eigenanalysis of the Covariance Matrix

					and the second second	
Eigenvalue Proportion	0.484	0.222	0.163	0.115	0.017	
Cumulative	0.484	0.700	0.800	0.505	1.000	
Variable Indep Supp Benev Conform Leader	PC1 -0.579 0.042 0.524 0.493 -0.380	PC2 0.079 0.612 0.219 -0.572 -0.494	PC3 -0.643 0.140 0.119 -0.422 0.612	PC4 0.309 -0.515 0.734 -0.304 0.090	PC5 0.386 0.583 0.352 0.398 0.478	

Using the scree plot and the proportion of variance explained, it appears as if 4 components should be retained. These components explain almost all (98%) of the variability. The components are very similar to those obtained from the correlation matrix **R**. All four of the components represent contrasts of some form. The first component contrasts independence and leadership with benevolence and conformity. The second component contrasts support with conformity and leadership and so on. In this case, it makes little difference whether the components are obtained from the sample correlation matrix or the sample covariance matrix.

The two dimensional plot of the scores on the first two components suggests that the two socioeconomic levels cannot be distinguished from one another nor can the two genders be distinguished. Observations #111 and #104 are a bit removed from the rest and might be labeled outliers.

Large sample 95% confidence interval for λ_1 :

$$\left(\frac{68.752}{(1+1.96\sqrt{2/130})}, \frac{68.752}{(1-1.96\sqrt{2/130})}\right) = (55.31, 90.83)$$

8.27 (a)-(d) Principal component analysis of the correlation matrix R.

Correlations: BL, EM, SF, BS

	BL	EM	SF
EM	0.914		
SF	0.984	0.942	
BS	0.988	0.875	0.975

Cell Contents: Pearson correlation

Principal Component Analysis: BL, EM, SF, BS

Eigenanalysis of the Correlation Matrix

Eigenvalue	3.8395	0.1403	0.0126	0.0076
Proportion	0.960	0.035	0.003	0.002
Cumulative	0.960	0.995	0.998	1.000

Variable	PC1	PC2	PC3	PC4
BL	0.506	-0.261	-0.565	0.597
EM	0.485	0.819	-0.194	-0.237
SF	0.508	-0.020	0.800	0.318
BS	0.500	-0.510	-0.053	-0.698

The proportion of variance explained and the scree plot below suggest that one principal component effectively summarizes the paper properties data. All the variables load about equally on this component so it might be labeled an index of paper strength.

The plot below of the scores on the first two sample principal components does not indicate any obvious outliers.

(a)-(d) Principal component analysis of the covariance matrix S.

Covariances: BL, EM, SF, BS

	BL	EM	SF	BS
ВL	8.302871			
EM	1.886636	0.513359		
SF	4.147318	0.987585	2.140046	0 400077
BS	1.972056	0.434307	0.987966	0.480272

Principal Component Analysis: BL, EM, SF, BS

Eigenanalysis of the Covariance Matrix

Eigenvalue Proportion Cumulative	n 0.9	88 0.00	9 0.003	0.001	
Variable BL EM SF BS	PC1 0.856 0.198 0.431 0.204	PC2 -0.364 0.786 0.458 -0.201	PC3 -0.332 -0.497 0.733 0.325	PC4 0.155 -0.310 0.259 -0.901	

The proportion of variance explained and the scree plot that follows suggest that one principal component effectively summarizes the paper properties data. The loadings of the variables on the first component are all positive, but there are some differences in magnitudes. However, the correlations of the variables with

the first component are .998, .928, .990 and .989 for BL, EM, SF and BS respectively. Again, this component might be labeled an index of paper strength.

The plot below of the scores on the first two sample principal components does not indicate any obvious outliers.

8.28 (a) See scatter plots below. Observations 25, 34, 69 and 72 are outliers.

(b) Principal component analysis of R follows. Removing the outliers has some but relatively little effect on the analysis. Five components explain about 90% of the total variability in the data set and seems a reasonable number given the scree plot.

Principal Component Analysis: AdjFam, AdjDistRd, AdjCotton, AdjMaize, AdjSorg, (Outliers 25,34,69,72 removed)

Eigenanalysis of the Correlation Matrix

Eigenvalue Proportion Cumulative	0.465	0.160	0.121	0.7918 0.088 0.833	0.6043 0.067 0.900	0.041	0.027	0.019	9
Eigenvalue Proportion Cumulative	0.013								
Variable AdjFam AdjDistRd AdjCotton AdjMaize AdjSorg AdjMillet AdjBull AdjCattle AdjGoats	0.446 0.352 0.204 0.240 0.445	-0.009 -0.353 0.604 0.415 -0.068 -0.284	0.388 -0.111 -0.116 -0.030 0.014	-0.027 0.240 -0.059 0.616	PC5 0.011 -0.378 -0.219 -0.079 -0.645 0.527 -0.028 0.218 0.249	PC6 -0.040 0.187 -0.200 -0.273 0.246 0.181 -0.134 0.759 -0.402	PC7 -0.797 0.021 0.361 -0.024 -0.021 0.241 0.396 -0.011 -0.131	PC8 -0.263 -0.048 0.329 0.363 0.126 0.077 -0.751 0.169 0.274	PC9 -0.249 -0.065 -0.675 0.574 0.293 0.048 0.190 0.038 0.149

Principal Component Analysis: Family, DistRd, Cotton, Maze, Sorg, Millet, Buil, ...

Eigenanalys	sis of t	he Corre	lation Ma	trix					
Eigenvalue Proportion Cumulative	4.1443 0.460 0.460	1.2364		0.9205 0.102 0.818	0.6058 0.067 0.885	0.056	0.030	0.016	;
Eigenvalue Proportion Cumulative	0.1114 0.012 1.000								
Variable Family DistRd Cotton Maze Sorg Millet Bull Cattle Gosts	-0.033 0.411 0.337 0.311 0.269	-0.072 -0.342 -0.554 0.452 0.043 -0.029 0.458	-0.831 -0.068 0.170 -0.069	0.502 0.030 0.164 -0.229 -0.606 0.197	-0.194 0.100 -0.134	PC6 -0.127 -0.051 -0.216 0.053 -0.632 0.594 0.110 0.407 0.043	PC7 -0.579 -0.045 0.509 -0.352 0.055 0.089 0.458 -0.012 -0.242	PC8 0.454 0.082 -0.372 -0.360 -0.139 -0.097 0.621 -0.215 -0.242	PC9 -0.461 0.041 -0.504 0.499 0.300 0.077 0.357 -0.225 0.095

- (c) All the variables (all crops, all livestock, family) except for distance to road (DistRd) load about equally on the first component. This component might be called a farm size component. Millet and sorghum load positively and distance to road and maize load negatively on the second component. Without additional subject matter knowledge, this component is difficult to interpret. The third component is essentially a distance to the road and goats component. This component might represent subsistence farms. The fourth component appears to be a contrast between distance to road and millet versus cattle and goats. Again, this component is difficult to interpret. The fifth component appears to contrast sorghum with millet.
- **8.29** (a) The 95% ellipse format chart using the first two principal components from the covariance matrix S (for the first 30 cases of the car body assembly data) is shown below. The ellipse consists of all \hat{y}_1 , \hat{y}_2 such that $\frac{\hat{y}_1^2}{\hat{\lambda}_1} + \frac{\hat{y}_2^2}{\hat{\lambda}_2} \le \chi_2^2(.05) = 5.99$ where $\hat{\lambda}_1 = .354$, $\hat{\lambda}_2 = .186$. Observations 3 and 11 lie outside the ellipse.

(b) To construct the alternative control chart based upon unexplained components of the observations we note that $\overline{d}_U^2 = .4137$, $s_{d^2}^2 = .0782$ so

$$c = \frac{.0782}{2(.4137)} = .0946$$
, $v = 2\frac{(.4137)^2}{.0782} = 4.4$. Conservatively, we set the chi-squared degrees of freedom to $v = 5$ and the UCL becomes

 $c\chi_5^2(.05) = .0946(11.07) = 1.05$ or approximately 1.0. The alternative control chart is plotted on the next page and it appears as if multivariate observation 18 is out of control. For observation 18, \hat{y}_4^2 makes the largest contribution to d_{U18}^2 and

the variables getting the most weight in \hat{y}_4 are the thickness measurements x_1 and x_2 . Car body #18 could be examined at locations 1 and 2 to determine the cause of the unusual deviations in thickness from the nominal levels.

