Лабораторная работа № 4

Модель гармонический колебаний (Вариант 9)

Сулицкий Богдан Романович

Содержание

Цели работы	4
Задание [1]	5
Теоретическое введение[2]	6
Выполнение лабораторной работы Код на Julia	7 7 15
Вывод	
Список Литературы	22

Список иллюстраций

1	Подключение библиотек и создание переменных	7
2	Функции уравнение	8
3	Функция визуализации	8
4	Решение ОДУ и построение мат. моделей	9
5	Математическая модель - I случай	10
6	Математическая модель - I случай(парам.)	11
7	Математическая модель - II случай	12
8	Математическая модель - II случай(парам.)	13
9	Математическая модель - III случай	14
10	Математическая модель - III случай(парам.)	15
11	OpenModelica - I случай	16
12	OpenModelica - II случай	16
13	OpenModelica - III случай	17
14	Математическая модель - I случай	17
15	Математическая модель - I случай(парам.)	18
16	Математическая модель - II случай	18
17	Математическая модель - II случай(парам.)	19
18	Математическая модель - III случай	19
19	Математическая модель - III случай(парам.)	20

Цели работы

Целью данной лабораторной работы является построение математической модели гармонический колебаний.

Задание [1]

Построить фазовый портрет гармонического осциллятора и решение уравнения гармонического осциллятора для следующих случаев:

- 1. Колебания гармонического осциллятора без затуханий и без действий внешней сил: $\ddot{x} + 5.5x = 0$
- 2. Колебания гармонического осциллятора с затуханием и без действий внешней силы: $\ddot{x} + 20\dot{x} + 2x = 0$
- 3. Колебания гармонического осциллятора с затуханием и под действием внешней силы: $\ddot{x} + \dot{x} + 9x = 2sin(t)$

Теоретическое введение[2]

Движение грузика на пружинке, маятника, заряда в электрическом контуре, а также эволюция во времени многих систем в физике, химии, биологии и других науках при определенных предположениях можно описать одним и тем же дифференциальным уравнением, которое в теории колебаний выступает в качестве основной модели. Эта модель называется линейным гармоническим осциллятором. Уравнение свободных колебаний гармонического осциллятора имеет следующий вид:

$$\ddot{x} + 2\gamma \dot{x} + \omega_0^2 x = 0$$

где x – переменная, описывающая состояние системы (смещение грузика, заряд конденсатора и т.д.), γ – параметр, характеризующий потери энергии (трение в механической системе, сопротивление в контуре), ω_0 – собственная частота колебаний, t – время.

Выполнение лабораторной работы

Код на Julia

Подключаем нужные библиотеки и создаем переменные.(1)

```
using PyPlot
using DifferentialEquations

range = (0, 35)

X = -2
Y = 0
```

Рис. 1: Подключение библиотек и создание переменных

С помощью Differential Equations[3] создадим функции уравнения и визуализации.(2-3)

```
function f1(du, u, p, t) # первое уровение

du[1] = u[2]

du[2] = -w*u[1]

end

function f2(du, u, p, t) # второе уровнение

du[1] = u[2]

du[2] = -g*u[2]-w^2*u[1]

end

function f3(du, u, p, t) # третье уровнение

du[1] = u[2]

du[2] = -g*u[2]-w^2*u[1]+2*sin(t)

end
```

Рис. 2: Функции уравнение

```
function draw(p) # отрисовка
    ax = PyPlot.axes() # Параметрические координаты
    ax.set_title(p)
    ax.plot(x, y, linestyle="-", color="red")
    show()
    close()
    ax = PyPlot.axes() # Линейные координаты
    ax.set_title(p)
    ax.plot(time, x, linestyle="-", color="blue")
    ax.plot(time, y, linestyle="-", color="green")
    show()
    close()
end
```

Рис. 3: Функция визуализации

```
w = 5.5 # случай 1
ode = ODEProblem(f1, [X,Y], range)
sol = solve(ode, dtmax=0.05)
x = [u[1] \text{ for } u \text{ in sol.} u]
y = [u[2] \text{ for } u \text{ in sol.} u]
time = [t for t in sol.t]
draw("Случай 1")
g = 20 # случай 2
W = 2
ode = ODEProblem(f2, [X,Y], range)
sol = solve(ode, dtmax=0.05)
x = [u[1] \text{ for } u \text{ in sol.} u]
y = [u[2] \text{ for } u \text{ in sol.} u]
time = [t for t in sol.t]
draw("Случай 2")
g = 1 # случай 3
W = 9
ode = ODEProblem(f3, [X,Y], range)
sol = solve(ode, dtmax=0.05)
x = [u[1] \text{ for } u \text{ in sol.} u]
y = [u[2] \text{ for } u \text{ in sol.} u]
time = [t for t in sol.t]
draw("Случай 3")
```

Рис. 4: Решение ОДУ и построение мат. моделей

Результаты:(5-11)

Рис. 5: Математическая модель - І случай

Рис. 6: Математическая модель - І случай(парам.)

Рис. 7: Математическая модель - ІІ случай

Рис. 8: Математическая модель - ІІ случай(парам.)

Рис. 9: Математическая модель - III случай

Рис. 10: Математическая модель - III случай (парам.)

Код на OpenModelica

Реализуем код на OpenModelica, указав начальные значения переменных. Далее запишем ОДУ, а также укажем интервалы.(11-13)

model model_1

```
parameter Real w(start=5.5);
Real x(start = -2);
Real y(start = 0);

equation

der(x)=y;
der(y)=-w*w*x;

annotation(experiment(StartTime = 0, StopTime = 35, Tolerance = 1e-6, Interval = 0.05));
end model_1;
```

Рис. 11: OpenModelica - I случай

```
model model_2

parameter Real w(start=2);
parameter Real g(start=20);
Real x(start = -2);
Real y(start = 0);

equation

der(x)=y;
der(y)=-g*y-w*w*x;

annotation(experiment(StartTime = 0, StopTime = 35, Tolerance = 1e-6, Interval = 0.05));
end model_2;
```

Рис. 12: OpenModelica - II случай

```
model model_3

parameter Real w(start=9);
parameter Real g(start=1);
Real x(start = -2);
Real y(start = 0);

equation

der(x)=y;
der(y)=-g*y-w*w*x+2*sin(time);
annotation(experiment(StartTime = 0, StopTime = 35, Tolerance = 1e-6, Interval = 0.05));
end model_3;
```

Рис. 13: OpenModelica - III случай

Результаты:(14-19)

Рис. 14: Математическая модель - І случай

Рис. 15: Математическая модель - І случай(парам.)

Рис. 16: Математическая модель - II случай

Рис. 17: Математическая модель - II случай(парам.)

Рис. 18: Математическая модель - III случай

Рис. 19: Математическая модель - III случай(парам.)

Вывод

В результате проделанной работы были построены математические модели 3 случаев движения гармонического осциллятора.

Список Литературы

- 1. Лабораторная работа №4 [Электронный ресурс]. RUDN, 2023. URL: https://esystem.rudn.ru/pluginfile.php/1971656/mod_resource/content/2/Лабораторная%20работа%20№%203.pdf.
- 2. Задания к лабораторной работе №4 (по вариантам) [Электронный ресурс]. RUDN, 2023. URL: https://esystem.rudn.ru/pluginfile.php/1971653/mod_resource/content/2/Лабораторная%20работа%20№%204.pdf.
- 3. DifferentialEquations.jl: Efficient Differential Equation Solving in Julia [Электронный ресурс]. 2023. URL: https://docs.sciml.ai/DiffEqDocs/stable/.