Ejercicios 32-42

Arruti, Sergio

Ej 32. Mod(R) es normal y conormal.

Demostración. Se tiene que, por el Ej. 28, Mod(R) tiene objeto cero y más aún, que $\forall M, N \in Mod(R)$ el morfismo 0 de M en N está dado por

$$0_{M,N}: M \to N$$
$$m \mapsto 0_N,$$

con 0_N el neutro aditivo de N. En vista de lo anterior, en lo sucesivo prescindiremos de los subíndices en la notación de los morfismos cero.

Normal Sean $\alpha: M \to N$ en $Mod(R), P := \frac{N}{Im(\alpha)}$ y β el epi canónico dado por

$$\beta: N \to P$$

$$n \mapsto n + In(\alpha).$$

Afirmamos que α es un kernel para β . En efecto:

Dado que $Im(\alpha)$ es el neutro aditivo de P y $Im(\alpha) = \{\alpha(m) \mid m \in M\}$, se tiene que $\beta\alpha = 0$.

Supongamos ahora que $\alpha': M' \to N$ en Mod(R) es tal que $\beta\alpha' = 0$, así

$$\beta \left(\alpha' \left(a \right) \right) = Im \left(\alpha \right) \qquad \forall \ a \in M'$$

$$\implies Im \left(\alpha' \right) \subseteq Im \left(\alpha \right)$$

De lo cual se sigue que $\forall a \in M' \exists b_a \in M$ tal que $\alpha(b_a) = \alpha'(a)$. Más aún, como α es un monomorfismo se tiene que tal b_a es único, y por lo tanto la siguiente aplicación es una función bien definida

$$\gamma: M' \to M$$
$$a \mapsto b_a.$$

Sean $r \in R$, $a_1, a_2 \in M'$. Así

$$\alpha (b_{ra_1-a_2}) = \alpha' (ra_1 - a_2) = r\alpha' (a_1) - \alpha (a_2)$$

$$= r\alpha (b_{a_1}) - \alpha (b_{a_2}) = \alpha (rb_{a_1} - b_{a_2}),$$

$$\implies b_{ra_1-a_2} = rb_{a_1} - b_{a_2}, \qquad \alpha \text{ es mono}$$

$$\implies \gamma (ra_1 - a_2) = r\gamma (a_1) - \gamma (a_2).$$

Con lo cual γ es un morfismo de R-m'odulos que satisface que, si $a\in M',$ entonces

$$\alpha \gamma (a) = \alpha (b_a) = \alpha' (a) ,$$

$$\alpha \gamma = \alpha' .$$

Más aún, puesto que α es mono, γ es el único morfismo de R-módulos de M' en M que satisface lo anterior, con lo cual se ha verificado la afirmación.

Conormal Ahora supongamos que $\alpha: M \to N$ es epi en Mod(R) y denotemos por β al morfismo inclusión de $Ker(\alpha)$ en M. Afirmamos que α es un cokernel para β , en efecto:

Como $Ker(\alpha) = \{m \in M \mid \alpha(m) = 0_N\}$, entonces $\alpha\beta = 0$. Sea $\alpha' : M \to N'$ en Mod(R) tal que $\alpha'\beta = 0$, así

$$Ker(\alpha') \supseteq Im(\beta) = Ker(\alpha)$$
.

Como α es epi se tiene que $N=Im\left(\alpha\right)$. Así, consideremos la aplicación

$$\gamma: N \to N'$$
 $\alpha(m) \mapsto \alpha'(m)$,

la cual es una función bien definida, puesto que si $m,o\in M$ son tales que $\alpha\left(m\right)=\alpha\left(o\right),$ entonces

$$m - o \in Ker(\alpha) \subseteq Ker(\alpha')$$

 $\implies \alpha'(m) = \alpha'(o)$.

Más aún, es un morfismo de R-módulos, pues α y α' lo son, que satisface que $\gamma\alpha=\alpha'$. Finalmente γ es el único morfismo de R-módulos que satisface la igualdad anterior dado que α es epi.

Еј 33.

Ej 34.

Ej 35. Construiremos la noción dual a la intersección de una familia de subobjetos.

Intersección: $\mu: B \to A$ es una intersección para $\{\mu_i: A_i \hookrightarrow A\}$ en $\mathscr C$ si

IntI) $\forall i \in I \exists \lambda_i : B \to A_i \text{ tal que } \mu = \mu_i \lambda_i;$

IntII) si $\nu: C \to A$ satisface que $\forall i \in I \exists \eta_i: C \to A_i$ tal que $\nu = \mu_i \eta_i$, entonces $\exists \eta: C \to B$ tal que $\nu = \mu \eta$.

Intersección op: $\mu^{op}: B \to A$ es una intersección para $\{\mu_i^{op}: A_i \hookrightarrow A\}$ en $\mathscr C$ si

Int^{op}I) $\forall i \in I \exists \lambda_i^{op} : B \to A_i \text{ tal que } \mu^{op} = \mu_i^{op} \lambda_i^{op};$

Int^{op}II) si $\nu^{op}: C \to A$ satisface que $\forall i \in I \exists \eta_i^{op}: C \to A_i$ tal que $\nu^{op} = \mu_i^{op} \eta_i^{op}$, entonces $\exists \eta^{op}: C \to B$ tal que $\nu^{op} = \mu^{op} \eta^{op}$.

Así, aplicando el funtor $D_{\mathscr{C}^{op}}$ a las flechas que aparecen en lo anterior, y sabiendo que el dual de mono es epi, se llega a la siguiente definición **Intersección***:

Definición. $\beta: A \to B$ es una **cointersección** para $\{\beta_i: A \twoheadrightarrow A_i\}$ en $\mathscr C$ si

CointI) $\forall i \in I \exists \delta_i : A_i \to B \text{ tal que } \beta = \delta_i \beta_i;$

CointII) si $\omega : A \to C$ satisface que $\forall i \in I \exists \gamma_i : A_i \to C$ tal que $\omega = \gamma_i \beta_i$, entonces $\exists \gamma : B \to C$ tal que $\omega = \gamma \beta$.

Ej 36. Sean $\mathscr C$ una categoría exacta y $\theta: A \twoheadrightarrow A'$, $\{\alpha_i: A_i \hookrightarrow A\}_{i \in I}$ y, $\forall i \in I$, $\beta_i := coker(\alpha_i)$, en $\mathscr C$. Si θ es una cointersección para $\{\beta_i\}_{i \in I}$, entonces $ker(\theta)$ es una unión para $\{\alpha_i\}_{i \in I}$.

Demostraci'on. Denotemos por k_θ un kernel de θ . Se tiene que k_θ es un subobjeto de A.

 $I = \varnothing$ En este caso, por la vacuidad de I, basta con verificar que si $f: A \to B$ y $\mu: B' \hookrightarrow B$, entonces θ es llevado a μ vía f. Notemos que por vacuidad f satisface la condición CointI) para la familia $\{\beta_i\}_{i \in I}$, y así por la propiedad universal de la cointersección, CointII), $\exists \ \gamma: A' \to B$ tal que $f = \gamma \theta$. Con lo cual $fk_{\theta} = f\gamma \ (\theta k_{\theta}) = 0$, y por tanto si denotamos por ρ al morfismo 0 de A en B' se tiene que

$$fk_{\theta} = 0 = \rho\mu,$$

i.e. θ es llevado a μ vía f.

 $I \neq \emptyset$ Dado que θ es una cointersección para $\{\beta_i\}_{i \in I}$ se tiene en partícular que $\forall i \in I \exists \eta_i : A/A_i \to A'$ tal que $\theta = \eta_i \beta_i$, así

$$\theta \alpha_i = (\eta_i \beta_i) \alpha_i = \eta_i (\beta_i \alpha_i) = 0,$$
 $\beta_i = coker (\alpha_i)$

Luego para cada $i \in I$, por la propiedad universal del kernel, se tiene que $\exists ! \ \lambda_i : A_i \to Ker(\theta)$ tal que $\alpha_i = k_\theta \lambda_i$. Por lo tanto $\forall \ i \in I \ \alpha_i \le k_\theta$.

Ahora, sean $f:A\to B$ y $\mu:B'\hookrightarrow B$ en $\mathscr C$ tales que α_i es llevado a μ vía $f,\,\forall\,\,i\in I,$ i.e., tales que $\forall\,\,i\in I\,\,\exists\,\,\rho_i:A_i\to B'$ de modo que el siguiente diagrama conmuta

$$\begin{array}{ccc}
A_i & \xrightarrow{\rho_i} & B' \\
\alpha_i \downarrow & & \downarrow \mu \\
A & \xrightarrow{f} & B
\end{array}$$
(*)

Si c_{μ} es un cokernel para μ , entonces por lo anterior se tiene que

$$(c_{\mu}f) \alpha_i = (c_{\mu}\mu) \rho_i = 0, \quad \forall i \in I$$

Luego, aplicando para cada $i \in I$ la propiedad universal del cokernel, se tiene que $\forall i \in I \exists ! \ \chi_i : A_{A_i} \to B_{B'}$ tal que

$$c_{\mu}f = \chi_i coker(\mu_i) = \chi_i \beta_i.$$

Esto último, por la propiedad universal de la cointersección, garantiza que $\exists \ \chi: A' \to B_{B'}$ tal que el siguiente diagrama conmuta

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\theta \downarrow & & \downarrow^{c_{\mu}} \\
A' & \xrightarrow{\chi} & B_{B'}
\end{array}$$
(**)

De (*) y (**) se sigue que

$$c_{\mu} (fk_{\theta}) = \chi (\theta k_{\theta})$$
$$= 0.$$

lo cual, en conjunto a que

$$\mu \simeq Im(\mu) \simeq Ker(Coker(\mu)) \simeq Ker(c_{\mu}), \quad en Mon_{\mathscr{C}}(-,B)$$

(pues \mathscr{C} es exacta y μ es mono) garantiza que por medio de la propiedad universal del kernel \exists ! $\rho: Ker(\theta) \to B'$ tal que $fk_{\theta} = \rho \mu$, i.e. el siguiente diagrama conmuta

$$Ker (\theta) \xrightarrow{\rho} B'$$

$$\downarrow^{k_{\theta}} \downarrow \qquad \downarrow^{\mu}$$

$$A \xrightarrow{f} B$$

y así se tiene lo deseado.

Ej 37.

Ej 38.

Ej 39. Sean $\mathscr C$ una categoría y $\{A_i\}_{i\in I}$ en $\mathscr C$. Si $I=\varnothing$ y dicha familia admite un coproducto, entonces este es un objeto inicial en $\mathscr C$.

Demostración. Se tiene que, por definición, dada una familia de objetos $\{A_i\}_{i\in I}$, un objeto C en conjunto a una familia de morfismos $\{\mu_i:A_i\to C\}$ es un coproducto para $\{A_i\}_{i\in I}$ si $\forall\ B\in\ y\ \forall\ \{\beta_i:A_i\to B\}\ \exists!\ \alpha:C\to B$ tal que $\beta_i=\alpha\mu_i$. De modo que si $I=\varnothing$ lo anterior se reduce a que $\forall\ B\in\mathscr{C}$ existe un único morfismo $\alpha\in Hom_\mathscr{C}(C,B)$, i.e. C es un objeto inicial en \mathscr{C} .

Notemos que, más aún, si C es un objeto inicial entonces C en conjunto una familia vacía de morfismos es un coproducto para cualquier familia vacía de objetos en \mathscr{C} .

Ej 40. Sean $\mathscr C$ una categoría, $C \in \mathscr C$ y $\{\mu_i : A_i \to C\}_{i \in I}$ en $\mathscr C$. C y $\{\mu_i : A_i \to C\}_{i \in I}$ es un coproducto para $\{A_i\}_{i \in I}$ en $\mathscr C$ si y sólo si C y $\{\mu_i^{op} : C \to A_i\}_{i \in I}$ es un producto para $\{A_i\}_{i \in I}$ en $\mathscr C^{op}$.

Demostración. Si $I = \emptyset$ la equivalencia se sigue de los ejercicios 37 y 39, y que $A \in \mathscr{C}$ es un objeto inicial si y sólo si $A \in \mathscr{C}^{op}$ es un objeto final. En adelante supondremos que $I \neq \emptyset$.

Para la necesidad comencemos notando que C también es un objeto de \mathscr{C}^{op} . Sean A y $\{\gamma_i^{op}:A\to A_i\}_{i\in I}$ en \mathscr{C}^{op} , luego A es un objeto de \mathscr{C} y $\{\gamma_i:A_i\to A\}$ es una familia de morfismos en \mathscr{C} , con lo cual por la propiedad universal del coproducto $\exists!\ \alpha:C\to A$ tal que $\forall\ i\in I\ \gamma_i=\alpha\mu_i$ en \mathscr{C} . De modo que α^{op} satisface que $\alpha^{op}\in Hom_{\mathscr{C}^{op}}(A,C)$ y $\forall\ i\in I$ $\gamma_i^{op}=\mu_i^{op}\alpha^{op}$. Finalmente, si suponemos que $\beta^{op}:A\to C$ satisface que $\forall\ i\in I\ \gamma_i^{op}=\mu_i^{op}\beta^{op}$, entonces $\beta\in Hom_{\mathscr{C}}(C,A)$ y $\forall\ i\in I\ \gamma=\beta\mu_i$. De esto último y la unicidad de α se sigue que $\beta=\alpha$ en \mathscr{C} , y así $\beta^{op}=\alpha^{op}$ en \mathscr{C}^{op} , con lo cual se tiene lo dseeado.

La suficiencia se verifica en forma análoga, puesto que tomar una familia de morfismos en la categoría $\mathscr C$ induce una familia de morfismos en $\mathscr C^{op}$, empleando ahora la propiedad universal del producto.

Ej 41.

Ej 42. Sean $\mathscr C$ una categoría, $\left\{\mu_i:A_i\to\coprod_{i\in I}A_i\right\}$ un coproducto en $\mathscr C,\,C\in\mathscr C$ y $\{\nu_i:A_i\to C\}_{i\in I}$. Entonces las siguientes condiciones son equivalentes:

a)
$$C \text{ y } \{\nu_i : A_i \to C\}_{i \in I} \text{ son un coproducto de } \{A_i\}_{i \in I};$$

b) $\exists \varphi : \coprod_{i \in I} A_i \tilde{\to} C \text{ tal que } \forall i \in I \ \varphi \mu_i = \nu_i.$