UCI Adult Income Dataset - Exploratory and Descriptive Analysis

In this notebook, we carry out an in-depth exploratory and descriptive analysis of the UCI Adult Income Dataset, a widely used dataset for income prediction tasks based on individual demographic and employment attributes.

This phase of analysis is essential for uncovering patterns, detecting potential biases, and gaining intuition about the dataset's structure before applying any modelling procedures. We examine the distribution of key numerical and categorical variables, investigate relationships between demographic features and income levels, and use visualizations to summarize insights. Particular focus is placed on income disparities across **age groups**, **geographical regions**, **races**, and **education-occupation combinations**, helping lay a solid foundation for downstream modeling and policy-relevant interpretation.

We begin our analysis by importing the core Python libraries required for **data handling**, **numerical computation**, **visualization**, and **directory management**:

- pandas: Enables efficient manipulation, filtering, and aggregation of structured tabular data, forming the backbone of our analysis pipeline.
- numpy: Provides support for fast numerical operations, array-based computation, and statistical routines.
- os: Facilitates interaction with the file system, allowing us to construct flexible and portable directory paths for data and output management.
- plotly.express: A high-level graphing library that enables the creation of interactive, publication-quality visualizations, which we use extensively to uncover patterns and present insights throughout the notebook

Import the Libralies

```
# import libraries
import pandas as pd
import numpy as np
import os
import plotly.colors as colors
import plotly.express as px
```

Define and Create Directory Paths

To ensure reproducibility and organized storage, we programmatically create directories if they don't already exist for:

- raw data
- processed data
- results
- documentation

These directories will store intermediate and final outputs for reproducibility.

```
# Get working directory
current dir= os.getcwd()
# Go one directory up to the root directory
project root dir= os.path.dirname(current dir)
data_dir = os.path.join(project_root_dir,'data')
raw_dir = os.path.join(data_dir,'raw')
processed_dir = os.path.join(data_dir,'processed')
# define path to result folder
result_dir=os.path.join(project_root_dir,'result')
# define path to docs folder
docs_dir=os.path.join(project_root_dir,'docs')
# create directory if they do not exist
os.makedirs(raw_dir, exist_ok = True)
os.makedirs(processed dir, exist ok = True)
os.makedirs(result_dir, exist_ok = True)
os.makedirs(docs dir, exist ok = True)
```

Loading the Cleaned Dataset

We load the cleaned version of the UCI Adult Income Dataset from the processed data directory into a Pandas DataFrame. The head(10) function shows the first ten records, giving a glimpse

into the data columns such as age, workclass, education_num, etc.

```
adult_data_filename = os.path.join(processed_dir,"adult_cleaned.csv")
adult_df = pd.read_csv(adult_data_filename)
adult_df.head(10)
```

	age	workclass	fnlwgt	education_num	martial_status	relationship	race	sex
0	39	state-gov	77516	13	single	single	white	male
1	50	self-emp-not-inc	83311	13	married	male spouse	white	male
2	38	private	215646	9	divorced or separated	single	white	male
3	53	private	234721	7	married	male spouse	black	male
4	28	private	338409	13	married	female spouse	black	female
5	37	private	284582	14	married	female spouse	white	female
6	49	private	160187	5	divorced or separated	single	black	female
7	52	self-emp-not-inc	209642	9	married	male spouse	white	male
8	31	private	45781	14	single	single	white	female
9	42	private	159449	13	married	male spouse	white	male

Dataset Dimensions and Data Types

Here, we examine the structure of the dataset:

- There are 32,513 entries and 16 variables.
- The dataset includes both numerical (e.g., age, hours_per_week) and categorical variables (e.g., sex, education_level).

Understanding data types and null entries is essential before proceeding with analysis.

```
adult_df.shape

(32514, 16)

adult_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32514 entries, 0 to 32513
Data columns (total 16 columns):
    # Column Non-Null Count Dtype
```

0	age	32514 non-null	int64
1	workclass	30678 non-null	object
2	fnlwgt	32514 non-null	int64
3	education_num	32514 non-null	int64
4	martial_status	32514 non-null	object
5	relationship	32514 non-null	object
6	race	32514 non-null	object
7	sex	32514 non-null	object
8	capital_gain	32514 non-null	int64
9	capital_loss	32514 non-null	int64
10	hours_per_week	32514 non-null	int64
11	income	32514 non-null	object
12	education_level	32514 non-null	object
13	occupation_grouped	30671 non-null	object
14	native_region	31933 non-null	object
15	age_group	32514 non-null	object

dtypes: int64(6), object(10)

memory usage: 4.0+ MB

Summary Statistics: Numerical Variables

adult_df.describe()

	age	fnlwgt	education_num	$capital_gain$	$capital_loss$	hours_per_week
count	32514.000000	3.251400e + 04	32514.000000	32514.000000	32514.000000	32514.000000
mean	38.589746	1.897964e + 05	10.081626	1079.206619	87.430030	40.440949
std	13.639033	1.055780e + 05	2.571975	7390.514416	403.237687	12.349994
\min	17.000000	1.228500e + 04	1.000000	0.000000	0.000000	1.000000
25%	28.000000	1.178330e + 05	9.000000	0.000000	0.000000	40.000000
50%	37.000000	1.783630e + 05	10.000000	0.000000	0.000000	40.000000
75%	48.000000	2.370615e+05	12.000000	0.000000	0.000000	45.000000
max	90.000000	1.484705e + 06	16.000000	99999.000000	4356.000000	99.000000

This summary provides a snapshot of key distribution characteristics. We see that:

• Age ranges from 17 to 90, with a mean of 38.6 years. It is slightly right-skewed (positively skewed). While the average age is approximately 38.6 years, an examination of the percentiles reveals that the majority of individuals are clustered in the younger to middle-age range, with fewer observations in the older age brackets. This skewed age distribution

might suggest labor force participation is concentrated in specific age groups, which could reflect broader demographic or economic realities.

- Capital gains/losses are highly skewed, with most values at 0 (the 75th percentile is 0). This indicates that a small number of individuals report very large gains or losses, especially evident in the capital gain variable which reaches up to \$99,999. These variables act as proxies for wealth-related income that goes beyond regular wages or salaries. Individuals with non-zero values for capital gains or losses often represent a distinct socioeconomic subset of the population typically more financially literate, or with access to investment assets. The stark inequality in their distributions mirrors real-world disparities in asset ownership and investment returns.
- The dataset has individuals working anywhere from 1 to 99 hours per week, with a median of 40. This aligns with the standard full-time work week in many countries (8 hours per day for 5 working days). The mean is slightly above that at 40.4 hours, suggesting a mild right skew, with a small subset of individuals working significantly longer hours. The mode is also 40, further reinforcing the prevalence of full-time work. A non-trivial number of individuals report working very few hours, possibly due to part-time work, unemployment, or semi-retirement. On the other extreme, some report working more than 45 hours per week, which may indicate multiple jobs, weekend-work, self-employment, or informal labor, and could reflect socio economic necessity.

Summary Statistics: Categorical Variables

adult df.describe(include='object')

	workclass	martial_status	relationship	race	sex	income	education_level	occupati
count	30678	32514	32514	32514	32514	32514	32514	30671
unique	8	4	5	5	2	2	7	4
top	private	married	male spouse	white	male	$\leq =50k$	high school graduate	white co
freq	22650	14984	13178	27772	21758	24678	10484	16533

adult_df['workclass'].value_counts()

workclass	
private	22650
self-emp-not-inc	2540
local-gov	2093
state-gov	1298

```
self-emp-inc 1116
federal-gov 960
without-pay 14
never-worked 7
Name: count, dtype: int64
```

adult_df['workclass'].value_counts(normalize=True)

```
workclass
                    0.738314
private
self-emp-not-inc
                    0.082795
local-gov
                    0.068225
state-gov
                    0.042310
self-emp-inc
                    0.036378
federal-gov
                    0.031293
without-pay
                    0.000456
never-worked
                    0.000228
Name: proportion, dtype: float64
```

adult_df['martial_status'].value_counts(normalize=True)

```
martial_status
```

married 0.460848 single 0.327705 divorced or separated 0.180907 widowed 0.030541 Name: proportion, dtype: float64

adult_df['relationship'].value_counts(normalize=True)

relationship

male spouse 0.405302
single 0.360706
child 0.155595
female spouse 0.048225
extended relative 0.030172
Name: proportion, dtype: float64

adult df['race'].value counts(normalize=True)

race

white 0.854155 black 0.096020 asian or pacific islander 0.031925 american indian or eskimo 0.009565 other 0.008335

Name: proportion, dtype: float64

workclass

The private sector dominates, employing $\sim 69.7\%$ of the population. The government sector (13.4%) and self-employment (11.2%) also make up substantial portions of the workforce. A small fraction is labeled as "unknown" (5.6%), which may correspond to missing or ambiguous data entries. Tiny proportions are voluntary (0.04%) or unemployed (0.02%), possibly underreported or underrepresented in the sample.

marital_status

Married individuals make up the largest group (46.1%), followed by those who are single (32.8%) and divorced or separated (18.1%). Widowed individuals represent a small minority $(\sim 3.1\%)$.

relationship

The majority are labeled as "male spouse" (40.5%) or "single" (36.1%). Smaller categories include children (15.6%), female spouses (4.8%), and extended relatives (3.0%). The dominance of male spouse reflects the dataset's gendered structure and may point to traditional family roles. The relative scarcity of "female spouse" roles suggests potential gender imbalances in how income-earning is reported within households.

race

The dataset is overwhelmingly composed of White individuals ($\sim 85.4\%$). Other racial groups include Black (9.6%), Asian or Pacific Islander (3.2%), American Indian or Eskimo (1.0%), and Other (0.8%). The racial imbalance limits the generalizability of models trained on this data. Smaller racial groups may suffer from limited statistical power, affecting fairness and performance in predictive modeling.

sex

Males constitute 66.9% of the dataset, with females making up the remaining 33.1%. This male-skewed distribution could be due to sampling (e.g., primary earners in households), workforce participation patterns, or reporting biases.

education_level

Secondary-school graduates form the largest educational group (~32%), highlighting the central role of high school completion in the labor force. Tertiary education holders — those with university or equivalent degrees — account for nearly 25% of the population, representing a substantial segment with advanced qualifications. A notable 22.4% have attended some college without necessarily earning a degree, suggesting that partial post-secondary education is common, yet may not always translate into formal certification. The remaining 20% are distributed among those with only secondary education (9.4%), associate degrees (7.5%), primary school (3.5%), and a very small group with only preschool education (0.15%). It is ecident that the education distribution is skewed toward mid- to high-level education, with relatively few individuals having only basic schooling. This reflects a dataset that largely captures working-age adults in formal labor, which may underrepresent the least-educated populations.

occupation_grouped

White-collar occupations are the most prevalent (~51%), followed by blue-collar, service, and unknown. Smaller categories include military, which is marginal. Essentially, slightly over half of individuals in the dataset work in professional, managerial, sales, clerical, or tech-support roles. This suggests the dataset is heavily weighted toward professional and administrative occupations. Nearly a third of the population works in manual labor or skilled trade positions (craft, transport, machine operation, farming, etc.). This indicates a significant segment engaged in physically intensive or technical labor.

native_region

The vast majority of individuals are from North America (~92.3%). Smaller proportions are from Central America, Asia, Europe, South America, and a generic Other category. The heavy concentration of North American individuals reflects the U.S. focus of the dataset.

age_group

The largest groups are 26–35 and 36–45, followed by 46–60. These three age groups represent about 73% of the dataset. Very few individuals are under 18 or above 75, consistent with the dataset's focus on the working-age population.

Income Distribution

Given that income is the target variable, most of the analysis hereafter will be based on it. We first of all examine the income distribution in the dataset.

```
adult_df_income = adult_df.groupby('income').size().reset_index(name='totol')
adult_df_income
```

	income	totol
0	<=50k	24678
1	>50 k	7836

```
fig = px.pie(adult_df_income, names='income', values='totol', title='Overal Income Distribut
fig.update_layout(template="presentation")
fig.show()
fig.write_image(os.path.join(result_dir,'income_distribution_pie_chart.jpg'))
fig.write_image(os.path.join(result_dir,'income_distribution_pie_chart.png'))
fig.write_html(os.path.join(result_dir,'income_distribution_pie_chart.html'))
```

Overal Income Distribution

This pie chart visualizes the overall income split: 76% of individuals earn 50K, while 24% earn >50K. This means that nearly 3 out of 4 individuals fall into the lower income bracket (<=50K). This shows that there is a significant imbalance.

Income by Age Group

```
adult_df_income_age =adult_df.groupby(['age_group', 'income']).size().reset_index(name = 'to-
adult_df_income_age
```

	age_group	income	totol_by_age
0	18-25	<=50k	5334
1	18-25	>50k	114
2	26-35	$\leq =50k$	6910
3	26-35	>50k	1591
4	36-45	<=50k	5230

	age_group	income	totol_by_age
5	36-45	>50k	2771
6	46-60	$\leq =50k$	4479
7	46-60	>50k	2809
8	61-75	$\leq =50k$	1580
9	61-75	>50k	511
10	76+	$\leq =50k$	200
11	76+	>50k	40
12	<18	$\leq =50k$	945

```
totol_per_group = adult_df_income_age.groupby('age_group')['totol_by_age'].transform('sum')
totol_per_group
```

```
0
      5448
1
      5448
2
      8501
3
      8501
      8001
4
5
      8001
6
      7288
7
      7288
      2091
8
9
      2091
10
       240
11
       240
12
       945
Name: totol_by_age, dtype: int64
```

total_per_group = adult_df_income_age.groupby('age_group')['totol_by_age'].transform('sum') adult_df_income_age['percentage'] = (adult_df_income_age['totol_by_age']/total_per_group)*10 adult_df_income_age

	age_group	income	totol_by_age	percentage
0	18-25	<=50k	5334	97.907489
1	18-25	>50k	114	2.092511
2	26-35	$\leq =50k$	6910	81.284555
3	26-35	>50k	1591	18.715445
4	36-45	$\leq =50k$	5230	65.366829
5	36-45	>50k	2771	34.633171

	age_group	income	totol_by_age	percentage
6	46-60	<=50k	4479	61.457190
7	46-60	>50k	2809	38.542810
8	61-75	$\leq =50k$	1580	75.561932
9	61-75	>50k	511	24.438068
10	76+	$\leq =50k$	200	83.333333
11	76+	>50k	40	16.666667
12	<18	$\leq =50k$	945	100.000000

```
fig = px.bar(
   adult_df_income_age,
   x = 'age_group',
   y = 'percentage',
    color = 'income',
    title='Income Distribution by Age Group(%)',
   barmode='group',
   height=500,
   width=1000,
    color_discrete_sequence=px.colors.sequential.RdBu,
   text='percentage'
)
fig.update_traces(texttemplate = '%{text:.2f}%')
fig.update_layout(template="presentation", xaxis_title='Age Group', yaxis_title='Percentage
fig.show()
fig.write_image(os.path.join(result_dir,'income_distribution_by agegroup_bar_plot.jpg'))
fig.write_image(os.path.join(result_dir,'income_distribution_by agegroup_bar_plot.png'))
fig.write_html(os.path.join(result_dir,'income_distribution_by agegroup_bar_plot.html'))
```

Income Distribution by Age Group(%)

The bar chart visualizes the income distribution across age groups, using percentages within each group. There is an evident pattern in terms of income progression over the years with a gradual increase in terms of the number of people earning $>50\mathrm{K}$ starting from 0 amongst those aged 18 and below, peaking between 36 and 60 years, then declining after 60 years but not to zero.

All individuals under 18 earn $<=50 \rm K$, likely due to being students, minors, or ineligible for full-time employment. Extremely few young adults (2.1%) exceed 50 K, as most are early in their careers, pursuing education, or in entry-level jobs. For the 26-35 age group, there's a noticeable improvement — roughly 1 in 5 individuals in this group earn $>50 \rm K$, reflecting early career progression and accumulation of qualifications/experience. A substantial income increase is seen in the 36-45 age group: over a third now earn $>50 \rm K$. This is typically considered the prime earning age where individuals settle into stable, higher-paying positions. Highest proportion of $>50 \rm K$ earners is seen amongst individuals aged between 46 and 60— nearly 4 in 10. This reflects career maturity, peak seniority levels, and accumulated experience. There's a drop-off in high incomes as many transition to retirement, part-time, or less demanding roles in the age group 61-75. Yet about 1 in 4 still earn $>50 \rm K$. Most in the 76+ age group earn $<=50 \rm K$, likely due to retirement, pensions, or fixed incomes — but a small minority still earn higher incomes, possibly through continued work or investments.

Income distribution by native region

adult_df_income_native_region = adult_df.groupby(['native_region', 'income']).size().reset_income_native_region

	native_region	income	total_income_distr
0	asia	<=50k	465
1	asia	>50k	206
2	central america	$\leq =50k$	466
3	central america	>50k	58
4	europe	$\leq =50k$	369
5	europe	>50k	152
6	north america	$\leq =50k$	22769
7	north america	>50k	7250
8	south america	$\leq =50k$	174
9	south america	>50 k	24

total_per_region = adult_df_income_native_region.groupby('native_region')['total_income_dist:
adult_df_income_native_region['percentage'] = (adult_df_income_native_region['total_income_d
adult_df_income_native_region

	native_region	income	$total_income_distr$	percentage
0	asia	<=50k	465	69.299553
1	asia	>50k	206	30.700447
2	central america	$\leq =50k$	466	88.931298
3	central america	>50k	58	11.068702
4	europe	$\leq =50k$	369	70.825336
5	europe	>50k	152	29.174664
6	north america	$\leq =50k$	22769	75.848629
7	north america	>50k	7250	24.151371
8	south america	$\leq =50k$	174	87.878788
9	south america	>50 k	24	12.121212

```
fig = px.bar(
   adult_df_income_native_region,
   x='native_region',
   y='percentage',
   color='income',
   title='Income Distribution by Native Regions (%)',
   barmode='group',
   height=600,
   width=1000,
   color_discrete_sequence=px.colors.sequential.RdBu,
   text='percentage')

fig.update_traces(texttemplate='%{text:.2f}%', textposition='outside')
fig.update_layout( xaxis_title='Native Region', yaxis_title='Percentage of Population',legending.show()
```


Asia (30.7%) and Europe (29.2%) have the highest proportions of high-income earners. This suggests these immigrant groups might be better integrated into high-paying professional roles, or may represent a more skilled migrant profile in the dataset. Central America (11.1%) and South America (12.1%) have the lowest proportions of >50K earners. With 24.2% of North Americans earning >50K, this serves as a middle-ground baseline. Interestingly, both Asian and European groups outperform the native-born population proportionally in high-income brackets. The 'Other' group sits around 25.1%, close to North America's rate. This likely reflects a diverse mix of regions not explicitly listed.

Income distribution by race

	race	income	total_by_race
0	american indian or eskimo	<=50k	275
1	american indian or eskimo	>50 k	36
2	asian or pacific islander	$\leq =50k$	762
3	asian or pacific islander	>50 k	276
4	black	$\leq =50k$	2735
5	black	>50 k	387

	race	income	total_by_race
6	other	<=50k	246
7	other	>50k	25
8	white	$\leq =50k$	20660
9	white	>50k	7112

```
total_per_race = adult_df_income_race.groupby('race')['total_by_race'].transform('sum')
adult_df_income_race['percentage'] = (adult_df_income_race['total_by_race']/total_per_race)
adult_df_income_race
```

	race	income	total_by_race	percentage
0	american indian or eskimo	<=50k	275	88.424437
1	american indian or eskimo	>50k	36	11.575563
2	asian or pacific islander	$\leq =50k$	762	73.410405
3	asian or pacific islander	>50k	276	26.589595
4	black	$\leq =50k$	2735	87.604100
5	black	>50k	387	12.395900
6	other	$\leq =50k$	246	90.774908
7	other	>50k	25	9.225092
8	white	$\leq =50k$	20660	74.391473
9	white	>50k	7112	25.608527

```
fig = px.bar(
    adult_df_income_race,
    x='race',
    y='percentage',
    color='income',
    title='Income Distribution by race (%)',
    barmode='group',
    height=600,
    width=1000,
    color_discrete_sequence=px.colors.sequential.RdBu,
    text='percentage')
fig.update_traces(texttemplate='%{text:.2f}%', textposition='outside')
fig.update_layout( xaxis_title='race', yaxis_title='Percentage of Population',legend_title='.
fig.show()
fig.write_image(os.path.join(result_dir,'income_distribution_race_bar_plot.jpg'))
fig.write_image(os.path.join(result_dir,'income_distribution_by race_plot.png'))
fig.write_html(os.path.join(result_dir,'income_distribution_by race_plot.html'))
```

Income Distribution by race (%)

Asian or Pacific Islander (26.6%) and White (25.6%) populations have the highest proportions of >50K earners. Asians/Pacific Islanders marginally outperform Whites, a pattern often attributed to occupational concentration in high-paying sectors like technology and medicine. On the other hand, American Indian or Eskimo (11.6%), Black (12.4%), and Other (9.2%) groups show significantly lower rates of high-income earners. These figures reflect long-standing economic disparities rooted in historical exclusion, occupational segregation, and systemic inequality.

The stark differences in high-income proportions:

- Between Whites and Blacks: 25.6% vs 12.4% slightly over double the proportion.
- Between Asians and Others: 26.6% vs 9.2% nearly triple.

These disparities are consistent with well-documented wage gaps and underrepresentation of marginalized groups in higher-paying roles.

adult_df_income_edu_occ = (adult_df.groupby(['education_level', 'occupation_grouped','income
adult_df_income_edu_occ

	education_level	$occupation_grouped$	income	total
6	high school graduate	blue collar	<=50k	3976
43	tertiary	white collar	>50 k	3545
42	tertiary	white collar	<=50k	3369

	education_level	occupation_grouped	income	total
34	some college	white collar	$\leq =50k$	3004
11	high school graduate	white collar	$\leq =50k$	2900
29	some college	blue collar	$\leq =50k$	1503
9	high school graduate	service	$\leq =50k$	1444
22	secondary	blue collar	$\leq =50k$	1349
4	associate	white collar	$\leq =50k$	1015
32	some college	service	$\leq =50k$	902
35	some college	white collar	>50k	858
7	high school graduate	blue collar	>50k	796
12	high school graduate	white collar	>50k	731
25	secondary	service	$\leq =50k$	663
16	primary	blue collar	$\leq =50k$	634
27	secondary	white collar	$\leq =50k$	552
0	associate	blue collar	$\leq =50k$	482
5	associate	white collar	>50k	397
30	some college	blue collar	>50k	397
36	tertiary	blue collar	$\leq =50k$	375
18	primary	service	$\leq =50k$	243
2	associate	service	$\leq =50k$	237
40	tertiary	service	$\leq =50k$	232
37	tertiary	blue collar	>50k	183
1	associate	blue collar	>50k	166
23	secondary	blue collar	>50k	116
10	high school graduate	service	>50k	100
41	tertiary	service	>50k	97
33	some college	service	>50k	95
20	primary	white collar	$\leq =50k$	93
28	secondary	white collar	>50k	49
3	associate	service	>50k	44
17	primary	blue collar	>50k	40
13	preschool	blue collar	$\leq =50k$	25
21	primary	white collar	>50k	17
14	preschool	service	$\leq =50k$	17
26	secondary	service	>50k	12
8	high school graduate	military	$\leq =50k$	4
15	preschool	white collar	$\leq =50k$	3
31	some college	military	$\leq =50k$	2
38	tertiary	military	$\leq =50k$	1
39	tertiary	military	>50k	1
24	secondary	military	$\leq =50k$	1

19 primary service >50k 1

adult_df_income_edu_occ['edu_occ'] = (adult_df_income_edu_occ['education_level'] + "|" + adult_adult_df_income_edu_occ

	$education_level$	$occupation_grouped$	income	total	edu_occ
6	high school graduate	blue collar	<=50k	3976	high school graduate blue collar
43	tertiary	white collar	>50k	3545	tertiary white collar
42	tertiary	white collar	$\leq =50k$	3369	tertiary white collar
34	some college	white collar	$\leq =50k$	3004	some college white collar
11	high school graduate	white collar	$\leq =50k$	2900	high school graduate white collar
29	some college	blue collar	$\leq =50k$	1503	some college blue collar
9	high school graduate	service	$\leq =50k$	1444	high school graduate service
22	secondary	blue collar	$\leq =50k$	1349	secondary blue collar
4	associate	white collar	$\leq =50k$	1015	associate white collar
32	some college	service	$\leq =50k$	902	some college service
35	some college	white collar	>50k	858	some college white collar
7	high school graduate	blue collar	>50k	796	high school graduate blue collar
12	high school graduate	white collar	>50k	731	high school graduate white collar
25	secondary	service	$\leq =50k$	663	secondary service
16	primary	blue collar	$\leq =50k$	634	primary blue collar
27	secondary	white collar	$\leq =50k$	552	secondary white collar
0	associate	blue collar	$\leq =50k$	482	associate blue collar
5	associate	white collar	>50k	397	associate white collar
30	some college	blue collar	>50k	397	some college blue collar
36	tertiary	blue collar	$\leq =50k$	375	tertiary blue collar
18	primary	service	$\leq =50k$	243	primary service
2	associate	service	$\leq =50k$	237	associate service
40	tertiary	service	$\leq =50k$	232	tertiary service
37	tertiary	blue collar	>50k	183	tertiary blue collar
1	associate	blue collar	>50k	166	associate blue collar
23	secondary	blue collar	>50k	116	secondary blue collar
10	high school graduate	service	>50k	100	high school graduate service
41	tertiary	service	>50k	97	tertiary service
33	some college	service	>50k	95	some college service
20	primary	white collar	$\leq =50k$	93	primary white collar
28	secondary	white collar	>50k	49	secondary white collar
3	associate	service	>50k	44	associate service
17	primary	blue collar	>50k	40	primary blue collar
13	preschool	blue collar	$\leq =50k$	25	preschool blue collar

	education_level	$occupation_grouped$	income	total	edu_occ
21	primary	white collar	>50k	17	primary white collar
14	preschool	service	$\leq =50k$	17	preschool service
26	secondary	service	>50 k	12	secondary service
8	high school graduate	military	$\leq =50k$	4	high school graduate military
15	preschool	white collar	$\leq =50k$	3	preschool white collar
31	some college	military	$\leq =50k$	2	some college military
38	tertiary	military	$\leq =50k$	1	tertiary military
39	tertiary	military	>50 k	1	tertiary military
24	secondary	military	$\leq =50k$	1	secondary military
19	primary	service	>50k	1	primary service

```
num = 15
adult_df_combos = adult_df_income_edu_occ.head(num)
fig = px.bar(
            adult_df_combos,
            x='total',
            y='edu_occ',
             color='income',
             orientation = 'h',
            title=f'Top {num} Education and Occupation Groups Combination by Income Group',
             #barmode='group',
            height=500,
            width=1100,
             color_discrete_sequence=px.colors.sequential.RdBu,
             text='total'
fig.update_layout(template="presentation",
                                                           xaxis_title='Number of individual',
                                                           yaxis_title='Education | Occupation Group',
                                                           legend_title=dict(text = 'Income Level'),
                                                           margin=dict(1=450, r=50, t=50, b=50), paper_bgcolor = "rgba(0,0,0,0)", plotter = "rgba(0,0,0)", 
fig.update_traces(textposition='inside')
fig.show()
fig.write_image(os.path.join(result_dir,'income_distribution_by Educ_occ_plot.jpg'))
fig.write_image(os.path.join(result_dir,'income_distribution_by Educ_occ_plot.png'))
fig.write_html(os.path.join(result_dir,'income_distribution_by Educ_occ_plot.html'))
```


Top 15 Education and Occupation Groups Combination by Income Group

From the bar chart, we can pick out the largest groups per income-level. We see that secondary-school graduates working a blue collar job occupy the largest group in the dataset (3976). This reflects a common socio-economic profile: individuals with basic schooling in manual or technical trades predominantly earning lower incomes. The largest high-income group are tertiary-educated individuals in white collar roles. This highlights the strong earning advantage conferred by higher education and skilled jobs.

Some of the key patterns we can get from the dataset are:

• Education matters, but isn't deterministic

Tertiary education combined with white-collar work offers the highest income prospects. Yet a substantial number of tertiary-educated white-collar workers earn <=50K, likely early career, part-time, or structural pay gaps.

• Blue-collar and service work predominantly pay ≤ 50 K, regardless of education.

Even some college education doesn't guarantee high incomes in these sectors. Manual and service sector income is highly occupation-dependent (some skilled trades can break the 50K mark).

• Some non-tertiary education groups do reach >50K

Secondary-school graduates in blue-collar and white-collar work have decent representation among >50K earners. This reflects upward mobility possible through skilled trades, tenure, or niche roles.