Artificial Intelligence

Classification 2

Extended from Kyuseok Shim's slides

인공지능학과 Department of Artificial Intelligence

정 우 환 (whjung@hanyang.ac.kr) Fall 2021

Classification—A Two-Step Process

- Model construction: describing a set of predetermined classes
 - Each tuple/sample is assumed to belong to a predefined class, as determined by the class label attribute
 - The set of tuples used for model construction is training set
 - The model is represented as classification rules, decision trees, or mathematical formulae
- Model usage: for classifying future or unknown objects
 - Estimate accuracy of the model
 - The known label of test sample is compared with the classified result from the model
 - Accuracy rate is the percentage of test set samples that are correctly classified by the model
 - Test set is independent of training set (otherwise overfitting)
 - If the accuracy is acceptable, use the model to classify new data
- Note: If the test set is used to select models, it is called validation (test) set

Process (1): Model Construction

NAME	RANK	YEARS	TENURED
Mike	Assistant Prof	3	no
Mary	Assistant Prof	7	yes
Bill	Professor	2	yes
Jim	Associate Prof	7	yes
Dave	Assistant Prof	6	no
Anne	Associate Prof	3	no

IF rank = 'professor'
OR years > 6
THEN tenured = 'yes'

Process (2): Using the Model in Prediction

Cross-validation

- 10-fold cross-validation
 - Divide dataset into 10 parts (folds)
 - Hold out each part in turn
 - Average the results
 - Each data point used once for testing, 9 times for training

K-NEAREST NEIGHBOR CLASSIFIER

K-nearest Neighbor Classifier

- KNN classifier
 - Choose majority class among k-nearest neighbor neighbors

K-nearest Neighbor Classifier

- Assign to a point the label for majority of the k-nearest neighbors
- Often very accurate ... but slow:
 - Scan entire training data to make each prediction?
 - Sophisticated data structures can make this faster
 - R-tree family works well up to 20 dimensions

K-nearest Neighbor Classifier

- Simplest form of learning
- To classify a new instance, search training set for one that's "most like" it
 - the instances themselves represent the "knowledge"
 - lazy learning: do nothing until you have to make predictions
- "Instance-based" learning = "nearest-neighbor" learning

Python – K-nearest Neighbor Classifier

Download the Dataset

- Download glass.csv from
- https://hyumy.sharepoint.com/:f:/g/personal/whjung_hanyang_ac_kr/Ev34n7L_Z0BErxWCad88rsAB6IdZCa0cUn7_Rd0ryYYYWQ ?e=bqVe6k
- PWD: ai202102
- Save the csv file in the same directory as the source file (.ipynb)

glass.csv

- Classify the type of glass
 - Motivated by criminological investigation
 - At the scene of the crime, the glass left can be used as evidence...if it is correctly identified!

Features:

RI: refractive index

Na: Sodium

Mg: Magnesium

. . .

Types of glass:

building_windows_float_processed building_windows_non_float_processed vehicle_windows_float_processed

...

Import Libraries

```
import pandas as pd
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
from sklearn.neighbors import KNeighborsClassifier
```

- pandas: a library for data analysis
- cross_val_score: a function for K-fold cross validation
- KNeighborsClassifier: a class for K-nearest neighbor classifier
- KFold : K-fold cross validation model

Open the Dataset

```
df = pd.read_csv('glass.csv')
In [90]:
           df
Out [90]:
                      RΙ
                                 Mg
                                        ΑI
                                               Si
                                                     Κ
                                                                 Ba
                                                                       Fe
                                                                                        Type
                            Na
                                                           Ca
                         12.79 3.50 1.12 73.03
                                                   0.64
                                                                               'build wind float'
                                                          8.77
                                                                0.00
                                                                     0.00
              1 1.51643 12.16 3.52 1.35
                                           72.89
                                                   0.57
                                                          8.53
                                                               0.00
                                                                     0.00
                                                                               'vehic wind float'
                                                                               'build wind float'
              2 1.51793 13.21 3.48 1.41 72.64
                                                   0.59
                                                               0.00
                                                          8.43
                                                                     0.00
              3 1.51299 14.40 1.74 1.54 74.55 0.00
                                                          7.59
                                                                0.00
                                                                     0.00
                                                                                    tableware
              4 1.53393 12.30 0.00 1.00 70.16 0.12
                                                         16.19
                                                                0.00
                                                                     0.24
                                                                           'build wind non-float'
                         12.75 2.85 1.44 73.27
                                                  0.57
                                                                           'build wind non-float'
                                                          8.79
                                                                0.11 0.22
                         13.64 3.65 0.65
                                           73.00
                                                   0.06
                                                                0.00
                                                                              'vehic wind float'
                                                          8.93
                                                                     0.00
              7 1.51837 13.14 2.84 1.28
                                           72.85
                                                   0.55
                                                                0.00
                                                                     0.00
                                                                               'build wind float'
                                                          9.07
              8 1.51545 14.14 0.00 2.68
                                           73.39
                                                   0.08
                                                          9.07
                                                               0.61
                                                                     0.05
                                                                                   headlamps
                         13.19 3.90 1.30 72.33 0.55
                                                                0.00
                                                                     0.28
              9 1.51789
                                                                           'build wind non-float'
             10 1.51625 13.36 3.58 1.49 72.72 0.45
                                                                    0.00 'build wind non-float'
                                                          8.21
                                                                0.00
```

Data Preprocessing

```
X = df.values[:, :-1]
y = df.values[:, -1]
```

print(X)

```
[[1.51793 12.79 3.5 ... 8.77 0.0 0.0]

[1.51643 12.16 3.52 ... 8.53 0.0 0.0]

[1.51793 13.21 3.48 ... 8.43 0.0 0.0]

...

[1.51613 13.92 3.52 ... 7.94 0.0 0.14]

[1.51689 12.67 2.88 ... 8.54 0.0 0.0]

[1.51852 14.09 2.19 ... 9.32 0.0 0.0]]
```

print(y)

```
["'build wind float'" "'vehic wind float'" "'build wind float'"

"'vehic wind float'" "'build wind float'" 'headlamps'

"'build wind non-float'" "'build wind non-float'"

"'build wind non-float'" "'build wind float'" "'vehic wind float'"

"'vehic wind float'" "'build wind non-float'" 'headlamps'

"'build wind non-float'" 'containers' "'build wind non-float'"

"'build wind float'" "'build wind non-float'" "'build wind non-float'"

"'build wind float'" 'containers' "'build wind non-float'"

"'build wind non-float'" 'headlamps' "'build wind non-float'"

"'vehic wind float'" "'build wind non-float'" "'vehic wind float'"

"tableware' "'build wind non-float'" "'build wind float'"

"'build wind float'" "'build wind float'" "'build wind non-float'"

"'build wind non-float'" "'build wind non-float'" "'build wind float'"

"'build wind non-float'" "'build wind non-float'" "'build wind float'"

"'build wind non-float'" "'build wind non-float'" "'build wind float'"
```

Changing Model Parameters

n_neighbors : number of neighbors (k)

weights: weight function used in prediction.

'uniform': all neighbors have same weight

'distance': weights are given according to the distance

* Note: user defined function can also be called

metric: the distance metric to use

K-fold Cross-validation

0.6155844155844156

K-fold Cross-validation

```
cv = KFold(
    n_splits=10,
    shuffle=True,
    random_state=0)
cv_results = cross_val_score(clf, X, y, cv=cv)
print(cv_results.mean())
Labels
```

0.6155844155844156

K-fold Cross-validation

```
cv = KFold(
    n splits=10,
    shuffle=True,
    random state=0)
cv results = cross val score(clf, X, y, cv=cv)
print(cv results.mean())
                                   Scores of 10-fold cross-
                                        validations
0.6155844155844156
                                Print the average of
                                     scores
```

Prediction with KNN

```
Fit the model to the train data X

clf.fit(X,y)

pred_y = clf.predict(
    [[1.5, 13, 1.5, 1.5, 70, 0.5, 8.9, 0.1, 0.2]])

print(pred_y)

Test data should be a 2-D array

["'build wind float'"]
```

The prediction result is printed

Comparison with Varying k

```
clf = KNeighborsClassifier(n neighbors=20, weights='uniform')
clf2 = KNeighborsClassifier(n neighbors=5, weights='uniform')
clf3 = KNeighborsClassifier(n neighbors=1, weights='uniform')
results = cross val score(clf, X, y, cv=cv)
results2 = cross val score(clf2, X, y, cv=cv)
results3 = cross val score(clf3, X, y, cv=cv)
                                                Varying the number
                                                   of neighbors
print("20 neighbors: {}".format(
    results.mean()))
print("5 neighbors: {}".format(
    results2.mean()))
print("1 neighbors: {}".format(
    results3.mean()))
```

20 neighbors: 0.6155844155844156 5 neighbors: 0.648051948051948 1 neighbors: 0.7370129870129871

Note: It is not always a good idea to increase k

DECISION TREE CLASSIFIERE

Decision Tree Induction: An Example

Outlook	Temp	Humidity	Wind	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Decision Tree Algorithm

- A decision tree is created in two phases:
 - Building Phase
 - Recursively split nodes using best splitting attribute for node until all the examples in each node belong to one class
 - Pruning Phase
 - Prune leaf nodes recursively to prevent over-fitting
 - Smaller imperfect decision tree generally achieves better accuracy

Underfitting and Overfitting

Building Phase

General tree-growth algorithm (binary tree)

Partition(Data S)

```
If (all points in S are of the same class) then return; for each attribute A do
evaluate splits on attribute A;
Use best split to partition S into S1 and S2;
Partition(S1);
Partition(S2);
```

Decision trees

- Top-down: recursive divide-and-conquer
 - Select attribute for root node
 - Create branch for each possible attribute value
 - Split instances into subsets
 - One for each branch extending from the node
 - Repeat recursively for each branch
 - using only instances that reach the branch
 - Stop
 - if all instances have the same class

Decision Trees

Which attribute to select?

Ian H. Witten's slide

Decision Trees

- Which is the best attribute?
 - Aim: to get the smallest tree
 - Heuristic
 - choose the attribute that produces the "purest" nodes
 - i.e., the greatest information gain
- Q: How to measure the amount of information (gain)?

Information

Quantity of information

1000 bits

0000000...000000000

0 * 1000

Same quantity?

1000 bits

0010001...111001001

Same quantity?

0*2,1*1,0*3...1*3,0 *2,1*1,0*2,1*1

(Self) Information I(x)

- Roughly speaking, the minimum number of bits to encode a signal x
- Definition
 - $I(x) = -\log P(x)$
- Intuition
 - If a pattern is frequent, it can be simply and efficiently encoded/compressed
 - Example: 0000000...000000000

Probability of Winning

	P(red)	P(blue)	P(winning)
0000	1	0	1 × 1 × 1 × 1 = 1
0000	0.75	0.25	$0.75 \times 0.75 \times 0.75 \times 0.25 = $ 0.105
0000	0.5	0.5	$0.5 \times 0.5 \times 0.5 \times 0.5 = $ 0.0625

Decision Trees

- Which is the best attribute?
 - Aim: to get the smallest tree
 - Heuristic
 - choose the attribute that produces the "purest" nodes
 - i.e., the greatest information gain
 - Information theory: measure information in bits
 - entropy($p_1, p_2, ..., p_n$) = $-p_1 log p_1 p_2 log p_2 ... P_n log p_n$
- Information gain
 - Amount of information gained by knowing the value of the attribute
 - (Entropy of distribution before the split) (entropy of distribution after it)
 - Claude Shannon, American mathematician and scientist 1916–2001

Attribute Selection Measure: Information Gain (ID3/C4.5)

- Select the attribute with the highest information gain
- Let p_i be the probability that an arbitrary tuple in D belongs to class C_i , estimated by $|C_{i,D}|/|D|$
- Expected information (entropy) needed to classify a tuple in D:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

■ Information needed (after using A to split $D^{i=1}$ into v partitions) to classify D: $\underline{v} \mid D$.

$$Info_{A}(D) = \sum_{j=1}^{v} \frac{|D_{j}|}{|D|} \times Info(D_{j})$$

Information gained by branching on attribute A

$$Gain(A) = Info(D) - Info_A(D)$$

Attribute Selection: Information Gain

- Class P: buys_computer = "yes"
- Class N: buys_computer = "no"

$$Info(D) = I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.940$$
 $+\frac{5}{14}I(3,2) = 0.694$

age	p _i	n _i	I(p _i , n _i)
<=30	2	3	0.971
3140	4	0	0
>40	3	2	0.971

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

$$Info_{age}(D) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0) + \frac{5}{14}I(3,2) = 0.694$$

$$\frac{5}{14}I(2,3)$$
 means "age <=30" has 5 out of 14 samples, with 2 yes'es and 3 no's. Hence

$$Gain(age) = Info(D) - Info_{age}(D) = 0.246$$
 Similarly,

$$Gain(income) = 0.029$$

 $Gain(student) = 0.151$
 $Gain(credit_rating) = 0.048$

Decision Trees

Which attribute to select?

Ian H. Witten's slide

Decision Trees

Continue to split ...

gain(temperature) = 0.571 bits

gain(windy) = 0.020 bits

gain(humidity) = 0.971 bits

Ian H. Witten's slide

Splitting Numeric Attributes

Split on temperature attribute:

- E.g. temperature < 71.5: yes/4, no/2 temperature ≥ 71.5: yes/5, no/3
- Info([4,2],[5,3])= 6/14 info([4,2]) + 8/14 info([5,3])= 0.939 bits
- Place split points halfway between values
- Can evaluate all split points in one pass!

Avoid repeated sorting!

- Sort instances by the values of the numeric attribute
 - Time complexity for sorting: O(n log n)
- Q. Does this have to be repeated at each node of the tree?
- A: No! Sort order for children can be derived from sort order for parent
 - Time complexity of derivation: O(n)
 - Drawback: need to create and store an array of sorted indices for each numeric attribute

More speeding up

 Entropy only needs to be evaluated between points of different classes (Fayyad & Irani, 1992)

Potential optimal breakpoints

Breakpoints between values of the same class cannot be optimal

Decision trees for multi-class classification

Visual Introduction to Decision Trees

http://www.r2d3.us/visual-intro-to-machine-learningpart-1/

Interpreting a Decision Tree

2. Interpreting a decision tree: Consider the decision boundary in Fig. and draw the equivalent decision tree. Red circle are Class +1 and blue squares are class -1.

[10 Points]

Overfitting in Decision Tree Learning

Avoiding Overfitting

- How can we avoid overfitting?
 - Method 1: Stop growing when data split not statistically significant
 - Method 2: Grow full tree, then post-prune
- How to select the "best" tree:
 - Measure performance over training data
 - Measure performance over separate validation data set

Pruning

- Goal: Prevent overfitting to noise in the data
- Two strategies for "pruning" the decision tree:
 - Postpruning take a fully-grown decision tree and discard unreliable parts
 - Prepruning stop growing a branch when information becomes unreliable
- Postpruning preferred in practice—prepruning can "stop too early"

Prepruning

- Based on statistical significance test
 - Stop growing the tree when there is no statistically significant association between any attribute and the class at a particular node
- Most popular test: chi-squared test
- ID3 used chi-squared test in addition to information gain
 - Only statistically significant attributes were allowed to be selected by information gain procedure
- Pre-pruning may stop the growth process prematurely: early stopping
- Pre-pruning faster than post-pruning

Post-pruning

- First, build full tree
- Then, prune it
 - Fully-grown tree shows all attribute interactions
- Two pruning operations:
 - Subtree replacement
 - Subtree raising
- Possible strategies:
 - Error estimation
 - Significance testing
 - MDL principle

Subtree Replacement

Subtree Raising

Ian H. Witten's slide