Real Analysis (MA 101) Tutorial Sheet- 7: Real Analysis, Partial Derivatives and Differentiability for function of several variables

- 1. Let $f: \mathbb{R}^n \to \mathbb{R}$ be defined by $f(x_1, ..., x_n) = \sum_{i=1}^n a_i x_i$, where $a_1, ..., a_n \in \mathbb{R}$. Show that f is differentiable and find the total derivative of f.
- 2. Suppose f(x,y) = 2x + 3y, evaluate Df(1,2). What is the directional derivative of f at (1,2) in the direction (1,2)?
- 3. Suppose f(x,y) = (2x + 3y, xy). Show that f is differentiable and find the total derivative of f. Use this to find the directional derivative of f.
- 4. Suppose $S=\{(x,y)\in R^2|(x-1)^2+(y-1)^2<\frac{1}{2}\}$ and $f:S\to R^2$ is the map $f(x,y)=(\frac{1}{x},\frac{1}{y}).$ Is f differentiable on S?
- 5. Suppose $f(x, y) = (x^2, y^2)$, then
 - i) Find all the directional derivative of f.
 - ii) Find all the partial derivative of f.
 - iii) Find Df(0,0).
- 6. Suppose

$$f(x,y) = \begin{cases} \frac{x^3 + y^3}{x - y}, & \text{for } x \neq y \\ 0, & \text{for } x = y. \end{cases}$$

Show that both the partial derivatives exist at (0,0), but the function is not continuous at (0,0).

- 7. Prove that $f(x,y) = \sqrt{|xy|}$ is not differentiable at (0,0), but both the partial derivatives exist at (0,0) and have the value 0. Hence deduce that these two partial derivatives are continuous except at the origin.
- 8. Suppose

$$f(x,y) = \begin{cases} \frac{x^3 - y^3}{x^2 + y^2}, & \text{for } x^2 + y^2 \neq (0,0) \\ 0, & \text{for } x^2 + y^2 = 0. \end{cases}$$

Check the differentiability of the function at (0,0).

9. Suppose

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & \text{for } x^2 + y^2 \neq (0,0) \\ 0, & \text{for } x^2 + y^2 = 0. \end{cases}$$

Check the differentiability of the function at (0,0).

10. Suppose

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2}, & \text{for } x^2 + y^2 \neq (0,0) \\ 0, & \text{for } x^2 + y^2 = 0. \end{cases}$$

Check the differentiability of the function at (0,0).

11. If
$$f(x,y) = \frac{xy(x^2-y^2)}{x^2+y^2}$$
 and $f(0,0) = 0$. Show that $f_{xy}(0,0) \neq f_{yx}(0,0)$.

12. Show that if w = f(u, v) satisfies the Laplace equation

$$f_{uu} + f_{vv} = 0$$

and if $u = \frac{x^2 - y^2}{2}$ and v = xy then w satisfies the Laplace equation

$$w_{xx} + w_{yy} = 0.$$

13. If
$$u = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$$
, $x^2 + y^2 + z^2 \neq 0$. Show that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$.

14. If
$$x^x y^y z^z = c$$
 (constant), Show that at (x, y, z) where $x = y = z$, $\frac{\partial^2 z}{\partial x \partial y} = \frac{1}{x \log_e(ex)}$.

- 15. Use chain rule to find the derivative of w = xy, with respect to t along the path $x = \cos t$, $y = \sin t$. What is the derivative's value at $t = \frac{\pi}{2}$?
- 16. Evaluate $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$ and $\frac{\partial u}{\partial z}$ at the given point (x, y, z) for the function $u = \frac{p-q}{q-r}$, where p = x + y + z, q = x y + z, r = x + y z.

Note: Some of questions have been taken from the book of Calculus by Thomas and Finney. For more questions you can see the same book.