Sheaves on subanalytic sites セミナーノート

2022年4月7日

目次

0	Preface	1
1	Sheaves on sites	1
1.1	Sites and sheaves	1
1.2	Subanalytic sites and sheaves	3
1.3	Sheaves on sites and \mathbb{R} -constructible sheaves	5
2	Examples	6
2.1	Tempered distribution	6
3	Appendix	7
3.1	Subanalytic set	7
3.2	\mathbb{R} -constructible sheaves	7

0 Preface

このノートでは、L. Prelli, Sheaves on Subanalytic Site [4] を参考にして、Subanalytic sites や、その上の層についてまとめる。また、必要に応じて、Kashiwara-Schapira[1]、[3] を参照する.

1 Sheaves on sites

1.1 Sites and sheaves

この節では、Kashiwara-Schapira、Ind-sheaves [2] も合わせて参照して、景 (site) 上の層について述べる.

層は、位相空間 X の開集合の圏 $\operatorname{Op}(X)$ に対して定められる。景 (site) とは、任意の圏に対して抽象的な被覆によって位相を入れたもので、これにより、層の概念を拡張できる。

以降、考える圏は、U-small であり、有限の積とファイバー積が存在するものとする.このような圏 C では、射 $V \to U$ の圏 C_U も有限の積とファイバー積が存在する.

また, C が終対象 (terminal object) を持てば,

C が有限の積とファイバー積を持つ \iff C が有限の射影極限を持つ

が成り立つ. さらに、このとき、終対象をTとして、

$$X \times Y = X \times_T Y \quad (\forall X, Y \in \mathcal{C})$$

である.

記号 射 $V \to U$ と $S \subset \mathrm{Ob}(C_U)$ に対して,

$$V \times_U S := \{V \times_U W \to V \mid W \in S\} \subset \mathrm{Ob}(C_V)$$

と定める.

注意 位相空間 X とし, $C = \operatorname{Op}(X)$ とする. このとき, $V, W \in C_U = \operatorname{Op}(U)$ に対して,

$$V \times_U W = V \cap W$$

である.

定義 1.1.1 $S_1, S_2 \subset \mathrm{Ob}(C_U)$ に対して, S_1 が S_2 の細分 (refinement) とは, 任意の $V \to U \in S_1$ に対して, ある $V' \to U \in S_2$ が存在して, $V \to V' \to U$ と分解できることを言う. また, これを $S_1 \preceq S_2$ と書く.

定義 1.1.2 \mathcal{C} 上の Grothendieck 位相とは, $\mathrm{Ob}(\mathcal{C}_U)$ の部分集合の族 $\{\mathrm{Cov}(U)\}_{U\in\mathcal{C}}$ で, 次の公理を満たすもの を言う:

- (GT1) $\{id_U: U \to U\} \in Cov(U)$ である.
- (GT2) $S_1, S_2 \subset \mathcal{C}_U$ とする. $S_1 \in Cov(U)$ かつ $S_1 \leq S_2$ ならば, $S_2 \in Cov(U)$ である.
- (GT3) $S \in Cov(U)$ ならば、任意の $V \to U$ に対して、 $V \times_U S \in Cov(V)$ である.
- (GT4) $S_1, S_2 \subset Ob(\mathcal{C}_U)$ が、 $S_1 \in Cov(U)$ および $V \times_U S_2 \in Cov(V)$ $(\forall V \in S_1)$ を満たせば、 $S_2 \in Cov(U)$ である.

 $S \in \text{Cov}(U)$ を U の被覆 (covering) という. 景 X とは、圏 \mathcal{C}_X で、有限の積とファイバー積が定義され、Grothendieck 位相が定められているものを言う.

 C_X に終対象が存在する場合は, C_X を X と書くことにする.

定義 1.1.3 *X,Y* を景とする.

- (i) 関手 $f^t: \mathcal{C}_Y \to \mathcal{C}_X$ が連続 (continuous) とは、次の 2 条件が満たされることを言う.
 - (1) ファイバー積と可換である, i.e. 任意の射 $V \to U$, $W \to U$ に対して, $f^t(V \times_U W) \xrightarrow{\sim} f^t(V) \times_{f^t(U)} f^t(W)$ である.
 - (2) 任意の $V \in \mathcal{C}_Y$, $S \in \text{Cov}(V)$ に対し, $f^t(S) \in \text{Cov}(f^t(V))$ である. ただし, $f^t(S) \coloneqq \{f^t(W) \to f^t(V) \mid W \in S\}$ とする.
- (ii) 景の間の射 $f: X \to Y$ とは、連続な関手 $f^t: \mathcal{C}_Y \to \mathcal{C}_X$ である.
- 例 1.1.4 (i) 位相空間 X に対して, X の開集合に包含射で順序を付けた圏を $\mathrm{Op}(X)$ とする. $U \in \mathrm{Op}(X)$ に対して, $\mathrm{Op}(X)_U = \mathrm{Op}(U)$ である. 通常の被覆で Grothedieck 位相を入れた景を, X と書く (終対象は $X \in \mathrm{Op}(X)$).
- (ii) $f:X\to Y$ を位相空間の間の連続写像とする. 関手 $f^t:\operatorname{Op}(Y)\to\operatorname{Op}(X)$ を $V\mapsto f^{-1}(V)$ として、 景の間の射も $f:X\to Y$ と書ける. つまり、位相空間を景とすると、連続写像が景の間の関手となる $(f^{-1}(V\cap W)=f^{-1}(V)\cap f^{-1}(W))$.
- (iii) X を位相空間とする. $\operatorname{Op}(X)$ には、次のような位相も入る. $S \subset \operatorname{Op}(U)$ は、U の被覆で、有限部分被覆を持つとする. このような被覆の集合は、Grothendieck 位相となる. この景を X_f と書く.
- (iv) X を局所コンパクトな位相空間とする. X_{lf} を, $\operatorname{Op}(X)$ に次のような位相を入れた景とする: $S \subset \operatorname{Op}(X)$ が X_{lf} での被覆であるとは, X の任意のコンパクト集合 K に対して, ある有限進ん集合 $S_0 \subset S$ で, $K \cap (\cup_{V \in S_0} V) = K \cap U$ となるものが存在する. このとき, 自然な射 $U_{lf} \to U_{X_{lf}}$ が存在するが, 一般には同型でない事に注意する.

k-加群の層を定義する. ここで, k は, 可換環とする.

定義 1.1.5 *X* を景とする.

(i) F が X 上の k-加群の前層 (presheaf) とは、関手 $\mathcal{C}_X^{\mathrm{op}} \to \mathrm{Mod}(k)$ であり、前層の間の射は関手の射として定める.

- (ii) $Psh(k_X)$ を X 上の k-加群の前層の圏とする. この圏はアーベル圏である.
- (iii) X 上の k-加群の前層 F と $S \subset C_U$ に対して,

$$F(S) := \operatorname{Ker} \left(\prod_{V \in S} F(V) \rightrightarrows \prod_{V', V'' \in S} F(V' \times_U V'') \right)$$

と定める. (ただし、二重矢印の核は、2つの射の差で定義される. ここでの 2つの射は、 $F(V') \to F(V' \times_U V'')$ と $F(V'') \to F(V' \times_U V'')$ である.)

- (iv) X 上の k-加群の前層 F が分離的 (separated) (resp. 層 (sheaf) である) とは、任意の $U \in \mathcal{C}_X$ と任意の 被覆 $X \in \mathrm{Cov}(U)$ に対して、自然な射 $F(U) \to F(S)$ が monomorphism(resp. isomorphism) となることである.
- (v) $\operatorname{Mod}(k_X)$ を X 上の k-加群の層の圏とする. $\operatorname{Mod}(k_X)$ は, $\operatorname{Psh}(k_X)$ の加法的な充満部分圏 (full additive subcategory) である. また, $\operatorname{Hom}_{\operatorname{Mod}(k_X)}$ を Hom_{k_X} と略記する.

注意 (古典的な層の定義 (S1),(S2) の復習と、ここでの定義との対応について) そのうち執筆

定義 1.1.6 (層化 (sheafification))

$$F^+(U) := \varinjlim_{S \in Cov(U)} F(S).$$

定理 1.1.7 (i) 関手 $(\cdot)^+$: $Psh(k_X) \to Psh(k_X)$ は, 左完全である.

- (ii) 任意の $F \in Psh(k_X)$ に対して, F^+ は分離的な前層となる.
- (iii) 任意の分離的前層 F に対して, F^+ は層となる.
- (iv) 関手 $(\cdot)^{++}$: $Psh(k_X) \to Mod(k_X)$ は、埋め込み関手 $\iota: Mod(k_X) \to Psh(k_X)$ の左随伴である.
 - (iv) は, ι を省いて, 次のように書かれることも多い:

$$\operatorname{Hom}_{\operatorname{Psh}(k_X)}(F,G) \simeq \operatorname{Hom}_{\operatorname{Mod}(k_X)}(F^{++},G) \ (F \in \operatorname{Psh}(k_X), G \in \operatorname{Mod}(k_X)).$$

証明. そのうち執筆

1.2 Subanalytic sites and sheaves

定義 1.2.1 (subanalytic site) $Op(X_{sa})$ を X の subanalytic な部分集合の圏とする. この圏には, 次のような位相が入る:

 $S \subset \operatorname{Op}(X_{sa})$ が $U \in \operatorname{Op}(X_{sa})$ の被覆であるとは、X の任意のコンパクト集合 K に対して、ある有限部分集合 $S_0 \subset S$ で、 $K \cap (\cup_{V \in S_0} V) = K \cap U$ となるものが存在する.

このような X_{sa} を subanalytic site と言う. また, $U_{X_{sa}}$ を, $\operatorname{Op}(X_{sa})\cap U$ に X_{sa} の位相から誘導される位相を入れたものとする. 一般に, U_{sa} と $U_{X_{sa}}$ は異なる.

例 1.2.2 $X = \mathbb{R}^2$, $U = \mathbb{R}^2 \setminus \{0\}$ とする. このとき, $V_n = \left\{x \in \mathbb{R}^2 \mid |x| > \frac{1}{n}\right\}$ とすると, $\{V_n\}_{n \in \mathbb{N}} \in \text{Cov}(U_{sa})$ であるが, $\{V_n\}_{n \in \mathbb{N}} \notin \text{Cov}(U_{X_{sa}})$ である.

定義 1.2.3 $\operatorname{Mod}(k_{X_{sa}})$ を X_{sa} 上の層の圏とする.

定義 1.2.4 $\operatorname{Op}^c(X_{sa})$ で、X の相対コンパクトな subanalytic 開集合のなす圏とし、 X_{sa} から誘導される位相を入れたものを X_{sa}^c と書く、 X_{sa}^c 上の前層 (resp. 層) の圏を $\operatorname{Psh}(k_{X_{sa}^c})$ (resp. $\operatorname{Mod}(k_{X_{sa}^c})$) と書く.

命題 1.2.5 $\operatorname{Mod}(k_{X_{sa}})$ は、Grothendieck 圏である i.e. 生成元を持ち、small inductive limits と small filtrant inductive limits が完全となる圏である。特に、Grothendieck 圏として、 $\operatorname{Mod}(k_{X_{sa}})$ は、enough injective な対象を持つ。

命題 1.2.6 忘却関手 $\operatorname{Mod}(k_{X_{sa}}) o \operatorname{Mod}(k_{X_{sa}^c})$ は圏同値を与える.

命題 1.2.7 $\{F_i\}_{i\in I}$ を $\operatorname{Mod}(k_{X_{sa}})$ の filitrant inductive system とし, $U\in\operatorname{Op}^c(X_{sa})$ とする. このとき,

$$\underbrace{\lim_{i \in I} \Gamma(U; F_i)}_{i \in I} \simeq \Gamma(U; \underbrace{\lim_{i \in I} F_i}_{i \in I})$$

が成り立つ.

証明・ $\operatorname{Mod}(k_{X_{sa}^c})$ で示せば十分である." $\varinjlim_i F_i$ で, X_{sa}^c 上の前層 $V \mapsto \varinjlim_i \Gamma(U; F_i) = \varinjlim_i (F_i(U))$ を表す. $U \in \operatorname{Op}^c(X_{sa})$ とし,S を U の有限被覆とする.同型(" $\varinjlim_i F_i$)(S) 0)が存在し,0 だん(0)が存在し,0 を 0)が成り立つ.0 は、"0) 0 が成り立つ.0 で 0 で

ここで、U の有限被覆の族 $\operatorname{Cov}^f(U)$ は、 $\operatorname{Cov}(U)$ で cofinal なので、(" \varinjlim_i " F_i)(U) $\simeq \varinjlim_{S \in \operatorname{Cov}^f(U)}$ (" \varinjlim_i " F_i)(S) \simeq

"
$$\varinjlim_{i}$$
" $F_{i} \xrightarrow{\sim} ($ " \varinjlim_{i} " $F_{i})^{+} \xrightarrow{\sim} ($ " \varinjlim_{i} " $F_{i})^{++}$

を得る。また,層 $\varinjlim_i F_i$ の定義より,(" $\varinjlim_i "F_i$)⁺⁺ = $\varinjlim_i F_i$ なので," $\varinjlim_i "F_i$ = $\varinjlim_i F_i$ が言える。これに $\Gamma(U; \bullet)$ を施せば, $\varinjlim_i \Gamma(U; F_i) \simeq \Gamma(U; \varinjlim_i F_i)$ となる.

命題 1.2.8 $F \in Psh(X_{sa}^c)$ が、次の 2 条件を満たすとする.

- (i) $F(\emptyset) = 0$,
- (ii) 任意の $U, V \in \operatorname{Op}^c(X_{sa})$ に対して,

$$0 \longrightarrow F(U \cup V) \longrightarrow F(U) \oplus F(V) \longrightarrow F(U \cap V)$$

は完全列である.

このとき, $F \in \operatorname{Mod}(k_{X_{sa}^c}) \simeq \operatorname{Mod}(k_{X_{sa}})$ である.

証明. $U \in \operatorname{Op}^c(X_{sa})$ と U の有限被覆 $\{U_j\}_{j=1}^n$ とする. また, $U_{ij} = U_i \cap U_j$ と略記する. 次の列が完全であることを示せば良い.

$$0 \longrightarrow F(U) \longrightarrow \bigoplus_{1 \le k \le n} F(U_k) \longrightarrow \bigoplus_{1 \le i < j \le n} F(U_{ij}) .$$

ただし、2 番目の射は、 $(s_k)_{1 \leq k \leq n}$ を、 $(s_i|_{U_{ij}} - s_j|_{U_{ij}})_{1 \leq i < j \leq n}$ に対応させる射である.

n についての帰納法で示す。n=1 は明らかで,n=2 は仮定の (ii) そのものである。 $1\leq j\leq n-1$ では成り立つと仮定する。また, $U'=\bigcup_{1\leq k\leq n-1}U_k$ と略記する。このとき,帰納法の仮定から,完全列による可換図式

$$0 \longrightarrow F(U) \longrightarrow F(U') \oplus F(U_n) \longrightarrow F(U' \cap U_n)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\bigoplus_{1 \le k \le n-1} F(U_k) \oplus F(U_n) \longrightarrow \bigoplus_{1 \le i \le n-1} F(U_{in})$$

$$\downarrow \qquad \qquad \downarrow$$

$$\bigoplus_{1 \le i < j \le n-1} F(U_{ij})$$

を得る. この図式で diagram chasing を行えば, 目的の結果を得る.

1.3 Sheaves on sites and \mathbb{R} -constructible sheaves

 $\operatorname{Mod}_{\mathbb{R}\text{-c}}(k_X)$ を X 上の \mathbb{R} -constructible な層の成すアーベル圏とする. また, \mathbb{R} -constructible で, 台がコンパクトな層は, その部分圏となり, $\operatorname{Mod}_{\mathbb{R}\text{-c}}^c(k_X)$ と書く.

$$\operatorname{Mod}_{\mathbb{R}_{-\mathsf{C}}}^c(k_X) \subset \operatorname{Mod}_{\mathbb{R}_{-\mathsf{C}}}(k_X) \subset \operatorname{Mod}(k_X)$$

である.

site 間の自然な射

$$\rho: X \to X_{sa}$$

が定まり、次のような層の射 ρ_* , ρ^{-1} が取れる.

$$\operatorname{Mod}(k_X) \xrightarrow{\rho_*} \operatorname{Mod}(k_{X_{sa}})$$
.

 ho_* を $\mathrm{Mod}_{\mathbb{R}\text{-c}}(k_X)$ 及び $\mathrm{Mod}_{\mathbb{R}\text{-c}}^c(k_X)$ に制限したものも, ho_* と書くこととする.

注意 1.3.1 任意の $F \in \operatorname{Mod}(k_X)$ と $V \in \operatorname{Op}^c(X_{sa})$ に対して,

$$\Gamma(V; \rho_*) \simeq \varinjlim_U \Gamma(V; \rho_* F_U) \simeq \Gamma(V; \varinjlim_U \rho_* F_U)$$

が成り立つ (U は X の相対コンパクトな subanalytic 開集合を動く). つまり、 $\varinjlim_U \rho_* F_U \xrightarrow{\sim} \rho_* F$ である.

証明. $V \subset U$ ならば, $\Gamma(V; \rho_* F_U) \simeq \Gamma(V; \rho_* F)$ であることから分かる.

注意 1.3.2 関手 ρ_* は filtrant inductive limits と可換でない.

証明. $V_n = \left\{x \in \mathbb{R}^2 \;\middle|\; |x| > \frac{1}{n}\right\}$ とすると, $\rho_* \varinjlim_n k_{V_n} \simeq \rho_* k_{\mathbb{R}^2 \setminus \{0\}}$ であるが, $0 \in \partial U$ なる $U \in \operatorname{Op}^c(\mathbb{R}^2_{sa})$ に対して, $\Gamma(U; \varinjlim_n \rho_* k_{V_n}) \simeq \varinjlim_n \Gamma(U; \rho_* k_{V_n}) = 0$ となる.

命題 1.3.3 $U \in \operatorname{Op}(X_{sa}), k_{U_{sa}} \in \operatorname{Mod}(k_{X_{sa}})$ をとる. このとき, $k_{U_{sa}} \simeq \rho_* k_U$ である.

証明. $F \in Psh(k_{X_{sa}})$ を, $V \subset U$ のとき F(V) = k

$$F(V) = \begin{cases} k & (V \subset U), \\ 0 & (otherwise), \end{cases}$$

と定める.これは、separated であり、 $k_{U_{sa}}=F^{++}$ である.さらに、 $V\in {\rm Op}(X_{sa})$ に対して、埋め込み $F(V)\to \rho_*k_U(V)$ となるように射を作れる.(\bullet) $^{++}$ は完全関手なので、monomorphism $F^{++}\to \rho_*k_U$ を作れる.よって、epimorphism であることを示せば良い.これは、次に紹介する命題を用いれば、次のように示せる. $\{U_\lambda\}_{\lambda\in\Lambda}$ を U の連結成分の族とする.

$$\mathcal{T} := \left\{ W \in \operatorname{Op}(X_{sa}) \middle| \begin{array}{c} W : \text{ \underline{a}}\text{!} \text{!} \\ W \cap U_{\lambda}{}^{c} = \emptyset \ (\forall \lambda \in \Lambda) \end{array} \right\}$$

と定めれば、 $\{U_{\lambda}\}_{\lambda}$ が局所有限であることから、 \mathcal{T} は、 X_{sa} の位相の基底 (basis for the topology of X) となる. 各 $W \in \mathcal{T}$ に対して、

$$F(W) \simeq \rho_* k_U(W) = \begin{cases} k & (W \subset U), \\ 0 & (otherwise), \end{cases}$$

となる. よって, $F^{++} \simeq \rho_* k_U$ となる.

命題 1.3.4 $F, G \in \text{Mod}(k_{X_{sq}})$ とする.

 $arphi\in \operatorname{Hom}_{k_{X_{sa}}}(F,G)$ స్ epimorphism ొచ్చి $\ \Leftrightarrow \forall V\in \operatorname{Op}(X_{sa}),\ \exists \{V_i\}_{i\in I}\in \operatorname{Cov}(V)\ \mathrm{s.t.}\ \left[\forall s\in G(V),\exists t_i\in F(V_i)\ \mathrm{s.t.}\ arphi(t_i)=s|_{V_i}\ (i\in I)
ight]$

であることは同値である.

証明. 証明は参考文献のどれにも書いていないような気がするので略.

今回のセミナーでは、任意の $V \in \operatorname{Op}(X_{sa})$ に対し、 $\mathcal{T} \cap V$ が $(X_{sa}$ の位相での)V の被覆となれば、命題の被覆を $\mathcal{T} \cap V$ とすれば良いので、これを示した。 X_{sa} の位相で基底となると言うのは、おそらく、そのような事実から示せると思われる。

注意 ("基底になる" を無視した証明) \mathcal{T} は, $\{U_{\lambda}\}$ の局所有限性と X が実解析的多様体である事実から, (相対コンパクトな) 開集合からなる X の (通常の位相の) 被覆を含むことが示せる. これが示せると, 任意の $V \in \operatorname{Op}(X_{sa})$ に対し, $\mathcal{T} \cap V$ が X_{sa} の被覆となることが, 次のように示せる.

任意の $V \in \operatorname{Op}(X_{sa})$, コンパクト集合 $K \subset X$ をとる. $K \cap \overline{V}$ がコンパクトであり, \mathcal{T} が X の被覆なので, 有限部分集合 $\mathcal{T}_0 \subset \mathcal{T}$ で, $K \cap \overline{V}$ の被覆となるものが存在する. このとき, $S_0 = \mathcal{T}_0 \cap V$ とすれば, $K \cap \bigcup_{W \in S_0} W = K \cap V$ が成り立つ.

 $(K\cap \bigcup_{W'\in\mathcal{T}_0}W'\supset K\cap\overline{V}$ と $\bigcup_{W'\in\mathcal{T}_0}(W'\cap V)\subset V$ より $K\cap \bigcup_{W\in S_0}W=K\cap V$ である.)

注意 (T が X の被覆であること) 任意の点 $x \in X$ に対して、十分小さい相対コンパクトな subanalytic 開近傍 W を取る.このような近傍は、例えば、W をある座標近傍の中に入るように作ればユークリッド空間で考えて良く、semi-analytic 開集合である開球を取れば簡単に作れる (同相写像で戻す).

ここで, \overline{W} はコンパクトであり, U の連結成分 $\{U_{\lambda}\}$ は局所有限なので, W と有限枚しか交わらない.

W と交わる連結成分 $\{U_i\}_{i:\text{finite}}$ から、x とは異なる点 $u_i \in U_i$ を代表点として取る $(x \in U_i^c$ なら $W \cap U_i \neq \emptyset$ より必ず取れて、 $x \in U_i$ の場合も X が多様体なので取れる).

選んだ有限個の代表点 u_i と x の最小距離 $r=\min_i \operatorname{dist}(u_i,x)$ を考える (ユークリッド空間で考えても良いし計量を入れても良い). そこで, r 以下の半径を持つ x 中心の円を W として取り直す.

W は連結で、相対コンパクトな subanalytic 開集合となっており、未だ交わっている可能性のある U の連結成分に関しても、選んだ代表点は含まれていないので、完全には含んでいない.

よって, $W \in \mathcal{T}$ であり, 各点 x に対してこのような W_x を取れば, X の被覆となることが示せる.

証明を作る際, 間違いを起こしたのでメモしておく. 大したことは言ってないので読み飛ばし推奨.

メモ W に含まれている U_i の閉包を除けば、有限枚の開集合の共通部分となり、開集合になるが、連結でなくなる例を簡単に作れる (半径 2 の円の中に、2 つの半径 1 の円を、内接するように書く).

また, 点x に対して, $\min_i \operatorname{dist}(x, U_i)$ とするのは, $x \in \overline{U_i}$ のときに 0 となるので注意が必要である.

 $x \in \overline{U_i}$ を場合分けして考えると, W が U_i を含んでいないか考える必要があり, 結局, x と異なる U_i の点を, (正規空間であることから?実数の連続性から?) 取る必要が出てくる.

2 Examples

2.1 Tempered distribution

執筆中

3 Appendix

3.1 Subanalytic set

この節では, subanalytic set について述べる.

3.1.1 Semi-analytic set

執筆中

3.1.2 Subanalytic set

執筆中

3.2 \mathbb{R} -constructible sheaves

この節では、ℝ-constructible な対象について述べる.

3.2.1 stratification

執筆中

3.2.2 \mathbb{R} -constructible

執筆中

参考文献

- [1] Masaki Kashiwara and Pierre Schapira. Sheaves on manifolds. No. 292 in Die Grundlehren der mathematischen Wissenschaften. Springer-Verlag, 1990.
- [2] Masaki Kashiwara and Pierre Schapira. *Ind-sheaves*. No. 271 in Astérisque. Société mathématique de France, 2001.
- [3] Masaki Kashiwara and Pierre Schapira. *Category and Sheaves*. No. 332 in Die Grundlehren der mathematischen Wissenschaften. Springer, 2006.
- [4] Luca Prelli. Sheaves on subanalytic sites. No. 120 in Rendiconti del Seminario Matematico della Università di Padova. 2008.