New Integer Divisibility Theorems and the Period of the Bell Numbers Modulo a Prime

Peter Montgomery Microsoft Redmond, Washington

Sangil Nahm Purdue University Math West Lafayette, Indiana

Sam Wagstaff Purdue University CERIAS West Lafayette, Indiana

September 25, 2009

The Bell Numbers

The Bell numbers arise in combinatorics.

The Bell number B(n) is the number of partitions of a set of n distinct objects into nonempty subsets.

The Bell number B(n) is the number of ways to factor a product of n different primes into factors > 1.

They may be defined by

$$e^{e^x-1} = \sum_{n=0}^{\infty} B(n) \frac{x^n}{n!}.$$

The first few Bell numbers are:

$$n$$
 0 1 2 3 4 5 6 7 8 $B(n)$ 1 1 2 5 15 52 203 877 4140

The Bell Numbers modulo p

The sequence of Bell numbers modulo a prime p has been studied for about a century.

Many congruences have been proved for B(n) modulo p. The basic facts we need are these:

J. Touchard's congruence [1933]

$$B(n+p) \equiv B(n) + B(n+1) \mod p$$
,

valid for any prime p and for all $n \ge 0$, shows that any p consecutive values of $B(n) \mod p$ determine the sequence modulo p after that point.

It follows from this congruence that B(n) mod p must be periodic with period $\leq p^p$.

In 1945, G. T. Williams proved that for each prime p, the period of the Bell numbers modulo p divides

$$N_p = (p^p - 1)/(p - 1).$$

In fact the minimum period equals N_p for every prime p for which this period is known.

Theorem 1. The minimum period of the sequence $\{B(n) \bmod p\}$ is N_p when p is a prime < 126 and also when p = 137, 149, 157, 163, 167 or 173.

This theorem is proved by showing that the period does not divide N_p/q for any prime divisor q of N_p .

If q divides N_p and $N=N_p/q$, then one can test whether the period of the Bell numbers modulo p divides N by checking whether $B(N+i)\equiv B(i) \mod p$ for $0 \le i \le p-1$. The period divides N if and only if all p of these congruences hold.

A polynomial time algorithm for computing $B(n) \mod p$ is known.

The theorem for p can be proved (or disproved) this way if we know the factorization of N_p .

It is conjectured that the minimum period of the Bell numbers modulo p equals N_p for every prime p.

The conjecture is known to be true for all primes < 126 and for a few larger primes.

Below we will give a heuristic argument for the probability that the conjecture holds for a prime p and estimate the expected number of primes p > 126 for which the conjecture fails.

The most difficult piece of this heuristic argument is determining the probability that a prime q divides N_p . We investigate this probability in the next few slides.

The assumptions made in the heuristic argument are clearly labeled with the words "assume" or "assuming."

How often does 2kp + 1 divide N_p as p varies?

It is well known (Euler, 1755) that when p is prime every prime factor of N_p has the form 2kp+1.

For each $1 \le k \le 50$ and for all odd primes p < 100000, we computed the fraction of the primes q = 2kp + 1 that divide N_p .

For example, when k=5 there are 1352 primes p<100000 for which q=2kp+1 is also prime, and 129 of these q divide N_p , so the fraction is 129/1352=0.095.

This fraction is called "Prob" in the table because it approximates the probability that q divides N_p , given that p and q=2kp+1 are prime, for fixed k.

Probability that $q = (2kp + 1) \mid N_p$

k	Prob
1	0.503
2	1.000
3	0.171
4	0.247
5	0.095
6	0.173
7	0.076
8	0.496
9	0.047
10	0.096
11	0.042
12	0.082
13	0.051
14	0.068
15	0.033
16	0.064
17	0.032
18	0.111
19	0.021
20	0.050

Probability that $q = (2kp + 1) \mid N_p$

k	1/k	Prob		
1	1.000	0.503		
2	0.500	1.000		
3	0.333	0.171		
4	0.250	0.247		
5	0.200	0.095		
6	0.167	0.173		
7	0.143	0.076		
8	0.125	0.496		
9	0.111	0.047		
10	0.100	0.096		
11	0.091	0.042		
12	0.083	0.082		
13	0.077	0.051		
14	0.071	0.068		
15	0.067	0.033		
16	0.063	0.064		
17	0.059	0.032		
18	0.056	0.111		
19	0.053	0.021		
20	0.050	0.050		

Probability that $q = (2kp + 1) \mid N_p$						
$Odd\; k$			Even k			
k	1/(2k)	Prob	k	1/k	Prob	
1	0.500	0.503	2	0.500	1.000	
3	0.167	0.171	4	0.250	0.247	
5	0.100	0.095	6	0.167	0.173	
7	0.071	0.076	8	0.125	0.496	
9	0.056	0.047	10	0.100	0.096	
11	0.045	0.042	12	0.083	0.082	
13	0.038	0.051	14	0.071	0.068	
15	0.033	0.033	16	0.063	0.064	
17	0.029	0.032	18	0.056	0.111	
19	0.026	0.021	20	0.050	0.050	
21	0.024	0.016	22	0.045	0.054	
23	0.022	0.021	24	0.042	0.042	
25	0.020	0.021	26	0.038	0.052	
27	0.019	0.021	28	0.036	0.036	
29	0.017	0.022	30	0.033	0.031	
31	0.016	0.019	32	0.031	0.055	
49	0.010	0.014	50	0.020	0.043	

Obervations about the table

- 1. Prob is approximately 1/(2k) when k is odd.
- 2. Usually Prob is approximately 1/k when k is even.
- 3. Some anomalies to 2. are that Prob is about 2/k when k=2, 18, 32 and 50.
- 4. Also, Prob is about 4/k when k = 8.
- 5. The exceptional values of k in 3. and 4. have the form $2m^2$ for $1 \le m \le 5$. (These numbers also arise as the lengths of the rows in the periodic table of elements in chemistry.)

We will now explain these observations. Suppose k is a positive integer and that both p and q=2kp+1 are odd primes. Let g be a primitive root modulo q.

If $p \equiv 1 \mod 4$ or k is even (so $q \equiv 1 \mod 4$), then by the Law of Quadratic Reciprocity

$$\left(\frac{p}{q}\right) = \left(\frac{q}{p}\right) = \left(\frac{2kp+1}{p}\right) = \left(\frac{1}{p}\right) = +1,$$

so p is a quadratic residue modulo q. In this case $g^{2s} \equiv p \mod q$ for some s. Now by Euler's criterion for power residues, $(2kp+1) \mid (p^p-1)$ if and only if p is a (2k)-ic residue of 2kp+1, that is, if and only if $(2k) \mid (2s)$. It is natural to assume that $k \mid s$ with probability 1/k because k is fixed and s is a random integer.

If $p \equiv 3 \mod 4$ and k is odd (so $q \equiv 3 \mod 4$), then

$$\left(\frac{p}{q}\right) = -\left(\frac{q}{p}\right) = -\left(\frac{2kp+1}{p}\right) = -\left(\frac{1}{p}\right) = -1,$$

so p is a quadratic nonresidue modulo q. Now $g^{2s+1} \equiv p \mod q$ for some s. Reasoning as before, $(2kp+1) \mid (p^p-1)$ if and only if $(2k) \mid (2s+1)$, which is impossible. Therefore q does not divide N_p .

Thus, if we fix k and let p run over all primes, then the probability that q=2kp+1 divides N_p is 1/k when k is even and 1/(2k) when k is odd because, when k is odd only those $p\equiv 1 \mod 4$ (that is, half of the primes p) offer a chance for q to divide N_p .

In fact, when k = 1 and $p \equiv 1 \mod 4$, q always divides N_p . This theorem must have been known long ago, but we could not find it in the literature.

Theorem 2. If p is odd and q = 2p+1 is prime, then q divides N_p if and only if $p \equiv 1 \mod 4$.

Proof. We have just seen that q does not divide N_p when $p \equiv 3 \mod 4$. If $p \equiv 1 \mod 4$, then p is a quadratic residue modulo q, as was mentioned above, so $p^p = p^{(q-1)/2} \equiv +1 \mod q$ by Euler's criterion. Finally, q is too large to divide p-1, so q divides N_p .

We now explain the anomalies, beginning with k = 2.

Theorem 3. If q = 4p + 1 is prime, then q divides N_p .

This result was an ancient problem posed and solved more than 100 years ago. Here is a modern proof.

Proof. Since $q \equiv 1 \mod 4$, there exists an integer i with $i^2 \equiv -1 \mod q$. Then

$$(1+i)^4 \equiv (2i)^2 \equiv -4 \equiv \frac{1}{p} \mod q.$$

Hence

$$p^p \equiv \left(\frac{1}{p}\right)^{-p} \equiv (1+i)^{-4p} \equiv (1+i)^{1-q} \equiv 1 \bmod q$$

by Fermat's theorem. Thus, q divides $p^p - 1$. But q = 4p + 1 is too large to divide p - 1, so q divides N_p . **Lemma**. Suppose $q \equiv 1 \mod 4$ is prime. If ℓ divides (q-1)/4, then ℓ is a QR modulo q.

Proof. The hypothesis implies $gcd(q, \ell) = 1$. In particular $\ell \neq 0$. Factor

$$\ell = \pm \ell_1 \dots \ell_k \tag{1}$$

where each ℓ_j is prime.

The hypotheses that q is prime and $q \equiv 1 \mod 4$ imply that ± 1 are QR modulo q.

We claim each ℓ_j is a QR modulo q, so their product (1) (or its negation) is also a QR.

If $\ell_j=2$, then ℓ_j is even and $q\equiv 1 \bmod 8$. Since q is prime, 2 is a QR modulo q.

If instead ℓ_j is odd, then we can use LQR:

$$\left(\frac{\ell_j}{q}\right) = \left(\frac{q}{\ell_j}\right) = \left(\frac{1}{\ell_j}\right) = +1,$$

which completes the proof.

Theorem 4. Let p be an odd positive integer and m be a positive integer. If $q = 4m^2p + 1$ is prime, then q divides $p^{m^2p} - 1$.

Proof. As in the proof of the previous theorem, $q \equiv 1 \mod 4$, so we have i with $i^2 \equiv -1 \mod q$ and $(1+i)^4 \equiv -4 \mod q$. By the lemma, m is a quadratic residue modulo q, so

$$-4m^2 \equiv (1+i)^4 m^2 \bmod q$$

is a fourth power modulo q, say $r^4 \equiv -4m^2 \mod q$. Then

$$p^{m^2p} = \left(\frac{q-1}{4m^2}\right)^{(q-1)/4}$$

$$\equiv ((-4m^2)^{-1})^{(q-1)/4} = r^{1-q} \equiv 1 \mod q,$$

which proves the theorem.

Of course, Theorem 3 is the case m=1 of Theorem 4.

We now apply Theorem 4. As before, let g be a primitive root modulo q and let $a=g^{(q-1)/m^2} \mod q$. Then a^j , $0 \le j < m^2$, are all the solutions to $x^{m^2} \equiv 1 \mod q$. Let $b=p^p \mod q$. By the theorem, $b^{m^2} \equiv 1 \mod q$, so $b \equiv a^j \mod q$ for some $0 \le j < m^2$. It is natural to assume that j=0, that is, $q \mid N_p$, happens with probability $1/m^2$.

In the case m=2, that is, k=8, we can do even better.

Theorem 5 If q = 16p + 1 is prime, then q divides $p^{2p} - 1$.

Proof. As in the proof of the previous theorem, we have i with $i^2 \equiv -1 \mod q$ and $(1+i)^4 \equiv -4 \mod q$. Therefore, $(1+i)^8 \equiv 16 \equiv -1/p \mod q$ and so $p^{2p} \equiv (1+i)^{-16p} \equiv (1+i)^{1-q} \equiv 1 \mod q$,

which proves the theorem.

Thus, a prime q=2kp+1 divides $(p^p-1)(p^p+1)$ when k=8. Assuming that q has equal chance to divide either factor, the probability that q divides p^p-1 is 1/2.

So far, we have explained all the behavior seen in the table. Further experiments with $q=2m^2p+1$ lead us to the following result, which generalizes Theorems 4 and 5.

Theorem 6. Suppose p, m, t are positive integers, with t a power of 2 and t > 1. Let $k = (2m)^t/2$ and $q = 2kp + 1 = (2m)^tp + 1$. If q is prime, then (a) p is a (2t)-th power modulo q, and (b) $p^{kp/t} \equiv 1 \mod q$.

Proof. To prove part (a), note that since $q \equiv 1 \mod 2^t$, the cyclic multiplicative group $(Z/qZ)^*$ of order q-1 has an element ω of order 2^t . Then $\omega^{2^{t-1}} \equiv -1 \mod q$ so $i = \omega^{2^{t-2}}$ satisfies $i^2 \equiv -1 \mod q$.

Now $m^t = (q-1)/p2^{t-1}$, so m is a quadratic residue modulo q by the lemma. We will show that $p^{-1} \equiv (1-q)/p = -(2m)^t \mod q$ is a (2t)-th power modulo q.

If t = 2, then $-(2m)^t \equiv (2im)^2 = (1+i)^4 m^2 \mod q$ is a fourth power modulo q.

If t>2, then $t\geq 4$ because t is a power of 2. Then $(q-1)/4=2mp((2m)^{t-1}/4)$ is divisible by 2m, Hence 2m is a quadratic residue modulo q by the lemma. Therefore, $(2m)^t$ is a (2t)-th power modulo q. Finally, -1 is a (2^{t-1}) -th power modulo q because 2^{t-1} divides (q-1)/2. Hence -1 is a (2t)-th power modulo q because 2^{t-1} when t>4.

For part (b), apply part (a) and choose r with $r^{2t} \equiv p \mod q$. Observe that 2t divides 2^t which divides q-1=2kp. Hence,

$$1 \equiv r^{q-1} \equiv (r^{2t})^{2kp/2t} \equiv p^{kp/t} \bmod q.$$

This completes the proof.

When t = 2, the theorem is just Theorem 4.

When t=4, Theorem 6 says that if $q=(2m)^4+1=16m^4+1$ is prime, then q divides $p^{2m^4p}-1$. Theorem 5 is the case m=1 of this statement.

When t=8, Theorem 6 says that if $q=(2m)^8+1=256m^8+1$ is prime, then q divides $p^{16m^8p}-1$. The first case, m=1, of this statement is for k=128, which is beyond the end of the table.

We now apply Theorem 6. As above, let g be a primitive root modulo q and let $a = g^{(q-1)t/k}$ mod q. Then a^j , $0 \le j < k/t$, are all the solutions to $x^{k/t} \equiv 1 \mod q$. Let $b = p^p \mod q$. By the theorem, $b^{k/t} \equiv 1 \mod q$, so $b \equiv a^j \mod q$ for some $0 \le j < k/t$. It is natural to assume that j = 0, that is, $q \mid N_p$, happens with probability 1/(k/t) = t/k.

When k is an odd positive integer, define c(k) = 1/2. When k is an even positive integer, define c(k) to be the largest power of 2, call it t, for which there exists an integer m so that $k = (2m)^t/2$. Note that c(k) = 1 if k is even and not of the form $2m^2$. Also, $c(k) \ge 2$ whenever $k = 2n^2$ because if $k = (2m)^t/2$ with $t \ge 2$, then $k = 2n^2$ with $n = 2^{(t-2)/2}m^{t/2}$. Note that

$$c(k) = \begin{cases} 1/2 & \text{if } k \text{ is odd,} \\ 1 & \text{if } k \text{ is even and } k \neq 2m^2, \\ O(\log k) & \text{if } k = 2m^2 \text{ for some } m. \end{cases}$$

Hence the average value of c(k) is 3/4 because the numbers $2m^2$ are rare.

We have given heuristic arguments which conclude that, for fixed k, when p and q=2kp+1 are both prime, the probability that q divides N_p is c(k)/k. Empirical evidence in the table supports this conclusion. We have explained all the behavior shown in the table. We tested many other values of k and found no further anomalies beyond those listed above.

Summary

We have given heuristic arguments which conclude that, for fixed k, when p and q=2kp+1 are both prime, the probability that q divides N_p is c(k)/k.

Here c(k) is defined as follows:

When k is an odd positive integer, let c(k) = 1/2.

When k is an even positive integer, let c(k) be the largest power of 2, call it t, for which there exists an integer m so that $k = (2m)^t/2$.

We have

$$c(k) = \left\{ \begin{array}{ll} 1/2 & \text{if } k \text{ is odd,} \\ 1 & \text{if } k \text{ is even and } k \neq 2m^2, \\ O(\log k) & \text{if } k = 2m^2 \text{ for some } m. \end{array} \right.$$

The average value of c(k) is 3/4 because the numbers $2m^2$ are rare.

Is the conjecture about the Bell numbers' period true? Does it always equal N_p ?

According to the Bateman-Horn conjecture, for each positive integer k the number of $p \le x$ for which both p and 2kp+1 are prime is asymptotically

$$2C_2f(2k)\frac{x}{(\log x)\log(2kx)},$$

where

$$C_2 = \prod_{q \text{ odd prime}} \left(1 - (q-1)^{-2}\right),$$

$$f(n) = \prod_{\substack{q|n\\q \text{ odd prime}}} \frac{q-1}{q-2}.$$

Thus, by the Prime Number Theorem, if p is known to be prime and k is a positive integer, then the probability that 2kp + 1 is prime is $2C_2f(2k)/\log(2kp)$.

Now we apply the earlier results. If p is prime and k is a positive integer, then the probability that 2kp+1 is prime and divides N_p is $(2C_2f(2k)/\log(2kp))\times(c(k)/k)$. For a fixed prime p and real numbers A < B, let $F_p(A,B)$ denote the expected number of prime factors of N_p between A and B. Then

$$F_p(A, B) \approx \sum_{\substack{k \ A < 2kp+1 \le B}} \frac{2C_2 f(2k)c(k)}{k \log(2kp)}.$$

The anomalous values of c(k) occur when k is twice a square, and these numbers are rare. The denominator $k \log(2kp)$ changes slowly with k. If B-A is large, so that there are many k in the sum, then we may ignore the anomalies and replace c(k) by its average value 3/4. This change makes little difference in the sum. Thus,

$$F_p(A,B) pprox \sum_{\substack{k \ A < 2kp+1 \le B}} \frac{3C_2f(2k)}{2k\log(2kp)}.$$

We may replace $C_2f(2k)$ by 1 and find

$$F_p(A,B) pprox \sum_{\substack{k \ A < 2kp+1 \le B}} rac{3}{2k \log(2kp)} pprox$$
 $pprox rac{3}{2\log(2kp)} \left(rac{\log B}{\log A} \right).$

We can now estimate the expected value of the number d_p of distinct prime factors of N_p . (Question: Is N_p always square free?) The expected value of d_p is

$$F_p\left(2p,N_p\right) pprox rac{3}{2}\log\left(rac{\log_p N_p}{\log_p(2p)}
ight) pprox rac{3}{2}\log p.$$

Now we are ready to compute the probability that the conjecture holds for a prime p. If the conjecture fails for p, then there is a prime factor q of N_p such that the period of the Bell numbers modulo p divides $N = N_p/q$. The period will divide N if and only if $B(N+i) \equiv B(i) \mod p$ for all i in $0 \le i \le p-1$.

Assume that the numbers $B(N+i) \mod p$ for $0 \le i \le p-1$ are independent random variables uniformly distributed in the interval [0,p-1]. Then the probability that the period divides N is p^{-p} because, for each i, there is one chance in p that B(N+i) will have the needed value $B(i) \mod p$. The probability that the period does not divide N is $1-p^{-p}$.

Assume also that the probabilities that the period divides $N=N_p/q$ for different prime divisors q of N_p are independent. Then the probability that the minimum period is N_p is

$$(1-p^{-p})^{d_p},$$

where d_p is the number of distinct prime factors of N_p . Using our estimate for d_p , we find that this probability is

$$(1-p^{-p})^{3(\log p)/2} \approx 1 - \frac{3\log p}{2p^p}$$

by the Binomial Theorem. This shows that the heuristic probability that the minimum period of the Bell numbers modulo p is N_p is exceedingly close to 1 when p is large.

Finally, we compute the expected number of primes p>x for which the conjecture fails. When x>2, this number is

$$\sum_{p>x} \frac{3\log p}{2p^p} < \sum_{p>x} p^{1-x} \le \int_x^\infty t^{1-x} dt = \frac{x^{2-x}}{x-2}.$$

By Theorem 1, the conjecture holds for all primes p < 126. Taking x = 126, the expected number of primes for which the conjecture fails is $< 126^{-124}/124 < 10^{-262}$. Thus, the heuristic argument predicts that the conjecture is almost certainly true.