

Creating forest sector solutions

www.fpinnovations.ca

Design for Durability: Cross-Laminated Timber (CLT) Construction

CLT Building Envelope Design Guide

Objectives:

- Provide designers with guidance on CLT building envelope design
- Remind designers of durability considerations

Document Development Team

Authors

- Graham Finch, RDH Building Engineering Ltd.
- Dave Ricketts, RDH Building Engineering Ltd.
- Jieying Wang, FPInnovations
- Constance Thivierge, FPInnovations
- Paul Morris, FPInnovations

Peer reviewers

- Annette Neylon, Mark Porter, George de Ridder, Associated Engineering
- Douglas L. Watts, Read Jones Christoffersen Ltd.
- Mark Lawton, Morrison Hershfield Ltd.
- Mario D. Gonçalves, Patenaude-Trempe Inc.

General Principles of Design for Durability

CLT does not change basic wood characteristics CLT does not change basic durability principles

- Keep wood dry wherever possible
 - Minimize wetting during shipment & construction
 - Prevent wetting in service
 - Allow drying in case wetting occurs
 - CLT may dry slowly due to the mass of wood
- Anticipate persistent wet conditions or other hazards
 - Preservative treatment
 - Use naturally durable wood

General Principles of Design for Durability

CLT does not change basic building physics

- Assess climatic load and control water, heat, air and vapour flow
- Use 4 D's to protect assembly from water penetration
 - Deflection: Divert water off building
 - Drainage: Remove bulk water
 - Drying: Facilitate drying of wood
 - Durable material: Treated or naturally durable wood

General Principles of Durability by Design

- General guidelines on design for durability
 - Best Practice Guide for Wood-Frame Envelopes/
 (in the Coastal Climate of BC) (CMHC 1999)
 - Building Enclosure Design Guide Wood Frame Multi-Unit Residential Buildings (HPO 2011)
- Consult with building science professionals
 - Required in some jurisdictions
- Interface detailing critical

CLT Building Envelope Design Guide

- Focuses on unique aspects of CLT
- Tries to answer
 - Why important to prevent wetting during construction?
 - How to prevent rain penetration into envelopes?
 - How to meet envelope energy requirements?
 - How to place/choose insulation?
 - How to deal with "vapour retarder/barrier"?
 - How to build air tight?
 - How to make CLT more durable?

– ...

Construction Moisture Management

- CLT construction may reduce wetting potential
 - Prefabrication reduces construction time
- CLT may get wet and trap moisture when exposed to moisture
- Potential to absorb or trap moisture influenced by
 - Wood species
 - Amounts of permeable sapwood versus heartwood
 - Gaps within and between laminae
 - Use of edge gluing
 - Any water repellant/coating/membrane applied

Construction Moisture Management

- On-site protection needed in most climates
 - Much attention paid in Europe: temporary roofs etc.
- Simple protection measures can make a difference
 - Temporary shelters etc.
- Consider season for construction
 - Try to avoid CLT installation in rain without protection
- Design assembly to
 - Allow drying in case wetting occurs

Enclosure: Rainwater Management

- Rain is usually the largest water source
- Building design important to reduce wetting
 - Overhangs and sloped roofs
- Rainscreen walls proved to be effective
 - Two drainage planes
 - Cladding and sheathing membrane
 - Air space
 - Capillary break
 - Pressure moderation
 - Ventilation
 - Provide redundancy for dry areas

Enclosure: Thermal Insulation Design

- CLT provides considerable insulation
 - Inherent R-value about R-1.2/per inch
 - R-4.2 for 3 ½" thick panel
 - Solid panel reduces convection in the assembly
- Exterior insulation helps keep wood warm and dry
 - Cladding attachment must meet structural requirements
 - Insulation permeance has impact on wall performance

Enclosure: Thermal Insulation Design

Required nominal insulation	CLT thickness	CLT insulation	Additional insulation thickness
R-value (RSI)	inch (mm)	R-value (RSI)	inch (mm), R-4/inch
	2.0 (50)	2.4 (0.42)	4.5 (114)
20 (3.52)	3.5 (89)	4.2 (0.74)	4 (102)
	5.5 (140)	6.6 (1.16)	3.5 (89)

- Overall principle
 - Prevent vapour condensation and facilitate drying
 - Control layer on warm/high vapour pressure side
- CLT is a vapour retarder/barrier
 - 3 ½" solid wood: 3-30 ng/Pa·s·m² (0.05-0.5 US Perms)
 - No need for interior vapour retarder/barrier in cold climates

- Assemblies should be "breathable"
 - Based on simulation study by Paolo Baldracchi (U. Trento) and RDH
 - Dry out from initial wetting
 - Present lower risk if building envelope leaks occur

- Risk increases when impermeable materials used
 - May not dry out when initially wetted/wetted in service
 - Moisture level may exceed the margin of safety
- Don't place potential vapour barriers/retarders both sides

Enclosure: Air Flow Control

Air tightness of CLT depends on

- Joints between boards and layers
- Edge gluing and staggered layers help
- With wood moisture changes
 - Gaps between boards may increase or decrease
 - Wood surfaces may form "checks" or cracks
- Interface between panels
- CLT may not be relied on as a primary air barrier

Enclosure: Air Flow Control

- Recommend use of a primary air barrier
 - Preferred to use water-resistive barrier
 - Other approaches may also work: interior drywall
 - Continuity at interfaces critical

CLT at Grade

- Important to provide a clearance between wood and soil
 - A minimum of 8" (200 mm) recommended
 - Consider podium structures with CLT on elevated concrete decks for residential over commercial
- Separation between wood and concrete in contact with moisture important
- Detailing at the base critical

A Balance of Wetting, Drying and Storage

- CLT has a large moisture storage & buffering capacity, but ...
 - There is a limit to amount that can be safely handled
 - Moisture may get trapped locally such as at end grain

Further Increase CLT Durability

- Select wood with low water permeability
 - Reduce potential for water absorption
- Select heartwood of naturally durable wood
 - Unlikely to be a practical approach
- Use preservative treated lamina for panel base
 - For parts of CLT likely to be exposed to moisture
- Use on-site diffusible treatment
 - Borate/glycol on surface + boron rods inside
- Consider making CLT from treated laminae

Summary

- CLT assemblies can be durable/energy efficient
- Minimize moisture exposure during construction
- Design assemblies to keep CLT dry and warm
- "Breathable" assemblies are more durable
- A primary air barrier is recommended
- Interface detailing is critical

Ongoing Research

- Laboratory and field testing of wall assemblies
 - NSERC Forest Sector Initiative ("NEWBuildS")
 - Ryerson University and University of Waterloo
- Characterization of hygrothermal properties
 - In collaboration with National Research Council

General Durability Information on

- Durability by Design
- Durability by Nature
- Durability by Treatment

WWW.DURABLE-WOOD.COM

Questions?

Future comments to:

<u>Jieying.Wang@fpinnovations.ca</u>
Constance.Thivierge@fpinnovations.ca