Dimensions:

- a = 47 b = 41c = 40
- r = (3%3)+1= 1

MATLAB CODE TO PLOT THE FIGURE:

```
%Clear Command Window
                                                                                   30 -
       clc;
                                                                                   31 -
       %Clears Workspace
3
                                                                                   32
                                                                                            % angle
       clear all;
4 -
       %Clears Figure Window
5
                                                                                   33 -
       clf;
                                                                                   34
7
                                                                                   35 -
       % create axes (X-Axis ans Y-Axis)
8
                                                                                   36 -
       plot([-20 200], [0 0], 'k');
9 -
                                                                                   37
       hold on:
10 -
                                                                                   38 -
       plot([0 0], [-20 200], 'k');
11 -
       hold on;
                                                                                   39
12 -
13 -
       axis equal;
                                                                                   40 -
       % Assuming the Centroid of the whole system to be the origin
14
                                                                                   41 -
15 -
       Assumed Centroid = [0 0];
                                                                                   42
       %plot(Assumed Centroid(1) , Assumed Centroid(2) , 'c.', 'MarkerSize', 20);
16
                                                                                   43 -
17 -
       hold on;
                                                                                   44
18
                                                                                   45 -
       % Plot the Small Square (A)
19
20 -
       x = [47 88 88 47 47];
                                                                                   46
       y = [0 \ 0 \ -41 \ -41 \ 0];
21 -
                                                                                   47
       plot(x,y,'g');
22 -
                                                                                   48 -
23 -
       hold on;
                                                                                   49 -
       % Marking the Centroid of the Small Square
24
                                                                                   50 -
25 -
       A = [67.5 -20.5];
                                                                                   51 -
       %plot(A(1) , A(2) , 'g.', 'MarkerSize', 20);
26
                                                                                   52 -
       hold on;
27 -
28
                                                                                   53
                                                                                   54 -
                                                                                   55
```

```
% Plot the Quarter Circle (B)
       R = 41.;
       D = [128.47.];
       theeta = 90:-1:0;
       % points of circle
       xc = D(1) + R*cosd(theeta);
       yc = D(2) + R*sind(theeta);
       %Plot curve of Quarter Circle
       plot(xc,yc, 'Color', '#522701');
       % plot line of Quarter Circle ([x1 x2] , [y1 y2])
       plot([128 169], [47 47], 'Color', '#331900');
       hold on;
       % Marking the Centroid of the Quarter circle
       D = [145.4098 64.4098];
       %plot(D(1), D(2), 'k.', 'MarkerSize', 20);
       hold on;
       % Plot the Semi Circle (C)
       theeta = linspace(0, pi, 100);
       R = 20.5;
       x = R*cos(theeta) + 60.50;
       y = R*sin(theeta) + 128;
       plot(x,y,'Color','#EE771C');
       % Marking the Centroid of the Semi Circle
       D = [60.5 \ 136.7049];
       %plot(D(1), D(2), 'y.', 'MarkerSize', 20);
56 -
       hold on;
57
```

```
58
       % Plot the Triangle (D)
       D1 = plot([0 -35.5070], [40 60.5], 'Color', 'r');
59 -
       hold on;
60 -
       D2 = plot([-35.5070 0], [60.5 81], 'Color', 'r');
61 -
62 -
       hold on;
       D3 = plot([0\ 0], [81\ 40], 'Color', 'r');
63 -
       hold on;
64 -
65
       % Marking the Centroid of the triangle
       D = [-11.8357 60.5];
66 -
67
       %plot(D(1), D(2), 'r.', 'MarkerSize', 20);
68 -
       hold on;
69
       % Plot the circle (E)
70
       x = 60.5;
71 -
72 -
       y = 81;
       radius = 20.5;
73 -
       Theeta=0:0.01:2*pi;
74 -
       xt=radius*cos(Theeta);
75 -
       vt=radius*sin(Theeta);
76 -
       plot(x+xt, y+yt,'m');
77 -
       % Marking the Centroid of the circle
78
       E = [60.5 81];
79 -
       %plot(E(1) , E(2) , 'm.', 'MarkerSize', 20);
80
       hold on;
81 -
82
```

```
% Plot the big Square (F)
83
       F1 = plot([0 \ 0], [128 \ 0], 'b');
84 -
85 -
       hold on;
86 -
       F2 = plot([128 0], [128 128], 'b');
87 -
       hold on;
       F3 = plot([128 128], [0 128], 'b');
88 -
89 -
       hold on;
90 -
       F4 = plot([0 128], [0 0], 'b');
91 -
       axis equal;
       hold on;
92 -
       % Marking the Centroid of the Big Square
93
       F = [64 64];
94 -
       %plot(F(1), F(2), 'b.', 'MarkerSize', 20);
95
96 -
       hold on;
```

CENTROID

Table to find the Individual Centroids:

	Xi (Calculations)	Xi	Yi (Calculations)	Yi	Ai (Calculations)	Ai	XiAi	YiAi
Small Square (A)	47+20.5	67.5	-20.5	-20.5	41*41	1681	113467.5	-34460.5
Quarter-Circle (B)	128+17.4098	145.4098	47+17.4098	64.4098	(pi)*(41)^2/4	1319.585	191880.5909	84994.20593
Semi-Circle (C)	40+20.5	60.5	128+8.7049	136.7049	(pi)*(20.5)^2/2	659.7925	39917.44625	90196.86773
Triangle (D)	-11.8357	-11.8357	40+30.5	60.5	0.5*47*35.5070	834.4145	-9875.879698	50482.07725
Circle (E)	40+20.5	60.5	41+40	81	(pi)*(20.5)^2	1319.585	79834.8925	106886.385
Big Square (F)	64	64	64	64	128*128	16384	1048576	1048576

 $\Sigma Ai = 22198.377$ $\Sigma XiAi = 1463800.55$

 Σ XiAi = 1463800.55 Σ YiAi = 1346675.036

CENTROID:

$$X = \sum XiAi \div \sum Ai$$
 $Y = \sum YiAi \div \sum Ai$ $= 65.94178259$ $= 60.66547279$

(X,Y) = (65.94178259,60.66547279)

Centroids of Individual figures:

$$A = (67.5, -20.5)$$
 $B = (145.41, 64.4098)$
 $C = (60.5, 136.705)$
 $D = (-11.8357, 60.5)$
 $E = (60.5, 81)$
 $F = (64, 64)$

Here, the chosen reference frame is (0,0)


```
%Clear Command Window
                                                                                                                                    %X Coordinate
     clc;
                                                     %For the Triangle (D)
                                                                                                                          59 -
                                                                                                                                   X = Sigma X/Sigma A;
     %Clears Workspace
                                                     X Triangle = -11.8357;
     clear all;
                                                     Y Triangle = 40+20.5;
      %Clears Figure Window
                                                                                                                          61
                                                                                                                                    %Y Coordinate
                                                     A Triangle = (0.5)*(47)*(35.5070);
                                                     XD AD = X Triangle*A Triangle;
                                                                                                                          62 -
                                                                                                                                   Y = Sigma Y/Sigma A;
     % For the small Square (A)
                                                     YD AD = Y Triangle*A Triangle;
                                                                                                                          63
     X SmallSquare = 47+20.5;
     Y SmallSquare = -20.5;
                                                                                                                          64
                                                                                                                                    %Centroid of the figure
                                                     %For the Circle (E)
     A SmallSquare = 41*41;
                                              39 -
                                                     E Radius = 20.5;
                                                                                                                          65 -
                                                                                                                                   Centroid = [X Y]
     XA AA = X SmallSquare*A SmallSquare;
                                                     X \text{ Circle} = 40+20.5;
     YA AA = Y SmallSquare*A SmallSquare;
                                                                                                                          66
14
                                                     Y Circle = 41+40;
                                                                                                                          67
                                                                                                                                    %Table
     %For the Quarter Circle (B)
                                                     A Circle = (pi) * (E Radius) * (E Radius);
     B Radius = 41;
                                                                                                                          68 -
                                                                                                                                                                                            A SmallSquare , XA AA , YA AA ];
                                                     XE AE = X Circle*A Circle;
                                                                                                                                   A = [ X SmallSquare ,
                                                                                                                                                                     Y SmallSquare
     X QuarterCircle = 47+41+40+(4*B Radius)/(3*pi)
                                                     YE AE = Y Circle*A Circle;
                                                                                                                                    B = [ X QuarterCircle , Y QuarterCircle , A QuarterCircle , XB AB , YB AB ];
     Y QuarterCircle = 47+(4*B Radius)/(3*pi);
     A_QuarterCircle = ((pi)*(B_Radius)*(B_Radius))/45
                                                                                                                          70 -
                                                                                                                                             X SemiCircle
                                                                                                                                                                     Y SemiCircle
                                                                                                                                                                                            A SemiCircle
                                                                                                                                                                                                              , XC AC , YC AC ];
                                                     % For the big Square (F)
     XB AB = X QuarterCircle*A QuarterCircle;
                                                                                                                                               X Triangle
                                                                                                                          71 -
                                                                                                                                                                      Y Triangle
                                                                                                                                                                                              A Triangle
                                                                                                                                                                                                               , XD AD , YD AD ];
21 -
     YB AB = Y QuarterCircle*A QuarterCircle;
                                                     X BigSquare = 128/2;
                                                     Y BigSquare = 128/2;
                                                                                                                          72 -
                                                                                                                                                  X Circle
                                                                                                                                                                        Y Circle
                                                                                                                                                                                               A Circle
                                                                                                                                    E = [
                                                                                                                                                                                                               , XE AE , YE AE ];
     %For the Semi Circle (C)
                                                     A BigSquare = 128*128;
                                                                                                                          73 -
                                                                                                                                             X BigSquare
                                                                                                                                                                     Y BigSquare
                                                                                                                                                                                              A BigSquare , XF AF , YF AF ];
     C Radius = 20.5;
                                                     XF AF = X BigSquare*A BigSquare;
     X SemiCircle = 40+20.5;
                                                                                                                          74 -
                                                                                                                                    format long;
                                                     YF AF = Y BigSquare*A BigSquare;
     Y SemiCircle = 40+41+47+(4*C Radius)/(3*pi);
     A SemiCircle = ((pi)*(C Radius)*(C Radius))/2; 52
                                                                                                                                    Table = [ A ; B ; C ; D ; E ; F ]
     XC AC = X SemiCircle*A SemiCircle;
                                                     %Finding the sum of the Areas, XiAi and YiAi
     YC AC = Y SemiCircle*A SemiCircle;
                                                     Sigma A = A SmallSquare + A QuarterCircle + A SemiCircle - A Circle + A BigSquare;
                                                     Sigma X = XA AA + XB AB + XC AC + XD AD - XE AE + XF AF;
                                                    Sigma Y = YA AA + YB AB + YC AC + YD AD - YE AE + YF AF;
                                              56 -
                                              57
```

```
Command Window
  Centroid =
    69.649521476886164 60.502782197671102
  Table =
     1.0e+06 *
     0.000067500000000
                        -0.000020500000000
                                             0.001681000000000
                                                                 0.113467500000000 -0.034460500000000
                        0.000064400940445
     0.000145400940445
                                             0.001320254312671
                                                                 0.191966218688569
                                                                                    0.085025619362209
                                             0.000660127156336
                         0.000136700470222
     0.000060500000000
                                                                 0.039937692958301
                                                                                    0.090239692677618
    -0.000011835700000
                         0.000060500000000
                                             0.000834414500000 -0.009875879697650
                                                                                    0.050482077250000
     0.000060500000000
                         0.000081000000000
                                             0.001320254312671
                                                                 0.079875385916602
                                                                                    0.106940599326360
     0.000064000000000
                         0.000064000000000
                                             0.016384000000000
                                                                1.048576000000000
                                                                                    1.048576000000000
```

MOMENT OF INERTIA (MOI)

Table to find the Individual Moment of Inertia's:

	Iu (Calculations)	lu	Iv (Calculations)	lv	Ai	dy	dx	A(dy)^2	A(dx)^2	$Ix = Iu + A(dy)^2$	$Iy = Iv + A(dx)^2$
Small Square (A)	(41)^4/12	235480.0833	(41)^4/12	235480.0833	1681	-81.0028	-2.1495	11029803.51	7766.80877	11265283.6	243246.8921
Quarter-Circle (B)	0.05488*(41)^4	155077.7637	((PI)*(41)^4)/16	554555.5963	1319.585	3.8981	75.7514	20051.33636	7572141.091	175129.1	8126696.687
Semi-Circle (C)	0.1098*(20.5)^4	19391.78486	((PI)*(20.5)^4)/8	69319.44953	659.7925	76.1977	9.1495	3830814.297	55233.44064	3850206.082	124552.8902
Triangle (D)	41*(35.5070)/36	40.43852778	((35.5070*(41)^3)- (35.5070*20.5*(41)^2) +(35.5070*(20.5)^2*41))/36	50982.8739	834.4145	-0.0028	-81.4852	0.00654181	5540376.954	40.44506959	5591359.828
Circle (E)	((PI)*(23.5)^4)/4	239409.3491	((PI)*(23.5)^4)/4	239409.3491	1319.585	20.4972	-9.1495	554404.1182	110466.8813	793813.4673	349876.2304
Big Square (F)	(128)^4/12	22369621.33	(128)^4/12	22369621.33	16384	3.4972	-5.6495	200383.0021	522925.6745	22570004.34	22892547.01

Ix = 37220164.55240876

Iy = 36283634.39218253

(Ix, Iy) = (37220164.55240876, 36283634.39218253)

```
%Clear Command Window
                                                          %For the Quarter Circle (B)
      clc;
                                                    21 -
                                                          B Radius = 41;
                                                    22 -
                                                          A QuarterCircle = ((pi)*(B Radius)*(B Radius))/4;
      %Clears Workspace
                                                    23 -
                                                          dx B = 75.7514;
       clear all;
 4 -
                                                          dy B = 3.8981;
       %Clears Figure Window
                                                          Iu B = (0.05488)*(B Radius)^4;
       clf;
                                                          IV B = (0.05488)*(B Radius)^4;
                                                    27 -
                                                          Area B dy = A QuarterCircle*(dy B)^2;
       % For the small Square (A)
                                                    28 -
                                                          Area B dx = A QuarterCircle*(dx B)^2;
       A SmallSquare = 41*41;
                                                    29 -
                                                          Ix_B = Iu_B + Area_B dy;
       Side of SmallSquare = 41;
                                                    30 -
                                                          Iy B = Iv B + Area B dx;
10 -
       dx A = -2.1495;
11 -
12 -
       dy A = -81.0028;
                                                    33
                                                          %For the Semi Circle (C)
13 -
       Iu A = (1/12)*(Side of SmallSquare)^4;
                                                    34 -
                                                           C Radius = 20.5;
       Iv A = (1/12)*(Side of SmallSquare)^4;
14 -
                                                    35 -
                                                           A SemiCircle = ((pi)*(C Radius)*(C Radius))/2;
15 -
       Area A dy = A SmallSquare* (dy A) ^2;
                                              36 -
                                                          dx C = 9.1495;
      Area A dx = A SmallSquare*(dx A)^2;
16 -
                                              37 -
                                                          dy C = 76.1977;
                                                    38 -
                                                          Iu C = (0.1098)*(C Radius)^4;
17 -
      Ix A = Iu A + Area A dy;
                                                          Iv C = (0.1098)*(C_Radius)^4;
                                                    39 -
18 -
       Iy A = Iv A + Area A dx;
                                                          Area C dy = A SemiCircle*(dy C)^2;
                                                    40 -
19
                                                    41 -
                                                          Area C dx = A SemiCircle*(dx C)^2;
                                                          Ix C = Iu C + Area C dy;
                                                    43 -
                                                          Iy C = Iv C + Area C dx;
                                                    44
```

```
70
45
      %For the Triangle (D)
                                                                 % For the big Square (F)
                                                         71
46 -
      b = 41;
47 -
      h = 35.5070;
                                                         72 -
                                                                 Side of BigSquare = 128;
48 -
      a = 20.5;
                                                                 A BigSquare = 128*128;
                                                         73 -
      A Triangle = (0.5)*(47)*(35.5070);
49 -
                                                                 dx F = -5.6495;
                                                         74 -
      dx D = -81.4852;
50 -
      dy D = -0.0028;
51 -
                                                                 dy F = 3.4972;
                                                         75 -
      Iu D = (1/36)*(b)*(h^3);
52 -
                                                         76 -
                                                                 Iu F = (1/12)*(Side of BigSquare)^4;
53 -
      IV D = (1/36)*((h)*(b^3)-(h)*(a)*(b^2)+(h)*(a^2)*(b));
                                                                 Iv F = (1/12)*(Side_of_BigSquare)^4;
54 -
      Area D dy = A Triangle*(dy D)^2;
                                                         77 -
55 -
      Area D dx = A Triangle*(dx D)^2;
                                                         78 -
                                                                 Area F dy = A BigSquare*(dy F)^2;
56 -
      Ix D = Iu D + Area D dy;
                                                         79 -
                                                                 Area_F_dx = A_BigSquare*(dx_F)^2;
57 -
      Iy D = Iv D + Area D dx;
                                                                 Ix_F = Iu_F + Area_F_dy;
58
                                                         80 -
      %For the Circle (E)
59
                                                         81 -
                                                                  Iy F = Iv F + Area F dx;
60 -
      E Radius = 20.5;
                                                         82
      A Circle = (pi) * (E Radius) * (E Radius);
61 -
62 -
      dx E = -9.1495;
                                                                  %Finding the sum of the Moments
                                                         83
63 -
      dy E = 20.4972;
                                                         84 -
                                                                  Ix = Ix A + Ix B + Ix C + Ix D - Ix E + Ix F;
      Iu E = ((pi)*(E Radius)^4)/4;
64 -
                                                         85 -
65 -
      Iv E = ((pi)*(E Radius)^4)/4;
                                                                  Iy = Iy A + Iy B + Iy C + Iy D - Iy E + Iy F;
66 -
      Area E dy = A Circle*(dy E)^2;
                                                         86
67 -
      Area E dx = A Circle*(dx E)^2;
                                                         87
                                                                  %Moment
68 -
     Ix E = Iu E + Area E dy;
                                                                  Moment of Inertia = [Ix Iy]
                                                         88 -
69 -
      Iy E = Iv E + Area E dx;
```

Command Window

Moment_of_Inertia =

1.0e+07 *

3.722016455240876 3.628363439218253

RESULTANT FORCE AND RESULTANT MOMENT DUE TO THESE FORCES ABOUT THE CENTROID (G):

Resultant Force:

$$\overrightarrow{F_{AB}}$$
 = [0.736829508, 0.803039353]
 $\overrightarrow{F_{BC}}$ = [0.735493583, 0.798414037]
 $\overrightarrow{F_{CD}}$ = [0.643525514, 0.541039645]
 $\overrightarrow{F_{DA}}$ = [0.714408131, 0.729394946]

		Xi wrt (0,0)	Xi (wrt Centroid)	Yi wrt (0.0)	Yi (wrt Centroid)	AB (y	2-y1)	(3.8981) - (-81.0028)	84.9009
	Small Square (A)	67.5	-2.1495	-20.5	-81.0028	BC (y	2-y1)	(76.1977) - (3.8981)	72.2996
	Quarter-Circle (B)	145.4098	75.7514	64.4098	3.8981	CD (y	2-y1)	(-0.0028) - (76.1977)	-76.2005
	Semi-Circle (C)	60.5	9.1495	136.7049	76.1977	DA (y	2-y1)	(-81.0028) - (-0.0028)	-81
	Triangle (D)	-11.8357	-81.4852	60.5	-0.0028				
						AB (x	2-x1)	(75.7514) - (-2.1495)	77.9009
						BC (x	2-x1)	(9.1495) - (75.7514)	-66.6019
						CD (x	2-x1)	(-81.4851) - (9.1495)	-90.6347
						DA (x	2-x1)	(-2.1495) - (-81.4852)	79.3357
		Magnitude							
	y2-y2/x2-x2	(absolute	Radians (tan)	Degrees	Angle wrt +ve x-axis			magnitude*cos(theta)	magnitude*sin(theta
		value)							
AB	1.089857755	1.089857755	0.828368763	47.46203402	47.46203402	Fa	ab	0.736829508	0.803039353
BC	-1.08554861	1.08554861	0.826394895	47.34893969	132.6510603	FI	эс	0.735493583	0.798414037
CD	0.840743115	0.840743115	0.699095357	40.05521341	220.0552134	Fo	d	0.643525514	0.541039645
11	-1.020977946	1.020977946	0.795777887	45.59471436	314.4052856	Fe	da	0.714408131	0.729394946
DA	-1.020377340	1.020377340	0.755777667	75.55771750	31414032030				017 2000 10 10

 $\vec{F} = [2.830256736, 2.871887982]$


```
%Clear Command Window
                                                                                 % Angles tan(theta) = ...., theta = tanInverse(....)
       clc;
                                                                                 ThetaAB = atand(Magnitude AB);
                                                                         29 -
       %Clears Workspace
                                                                                 ThetaBC = atand(Magnitude BC);
                                                                         30 -
       clear all;
                                                                                 ThetaCD = atand(Magnitude_CD);
                                                                         31 -
       % Centroid of individual figures wrt Centroid of Composite figure
                                                                         32 -
                                                                                 ThetaDA = atand (Magnitude DA);
       A = [-2.1495 -81.0028];
       B = [75.7514 \ 3.8981];
                                                                                 % Angles wrt +ve x-axis
       C = [9.1495 76.1977];
 8 -
                                                                                 Theta AB = ThetaAB;
       D = [-81.4852 - 0.0028];
                                                                                 Theta BC = 180 - ThetaBC;
10
                                                                                Theta CD = 180 + ThetaCD;
       % X2-X1
11
                                                                                Theta DA = 360 - \text{ThetaDA};
       AB x = [B([1]) - A([1])];
12 -
       BC x = [C([1]) - B([1])];
                                                                         39
13 -
                                                                                 x1 = abs(Magnitude AB*cosd(Theta AB)); y1 = abs(Magnitude AB*sind(Theta AB));
       CD x = [D([1]) - C([1])];
                                                                         40 -
14 -
                                                                                 x2 = abs(Magnitude BC*cosd(Theta BC)); y2 = abs(Magnitude BC*sind(Theta BC));
       DA x = [A([1]) - D([1])];
                                                                         41 -
15 -
                                                                         42 -
                                                                                 x3 = abs(Magnitude CD*cosd(Theta CD)); y3 = abs(Magnitude CD*sind(Theta CD));
16
       % Y2-Y1
17 -
       AB y = [B([2]) - A([2])];
                                                                                 x4 = abs(Magnitude DA*cosd(Theta DA)); y4 = abs(Magnitude DA*sind(Theta DA));
                                                                         43 -
18 -
       BC y = [C([2]) - B([2])];
                                                                         44
       CD y = [D([2]) - C([2])];
19 -
                                                                        45
                                                                                % Individual forces
       DA y = [A([2]) - D([2])];
20 -
                                                                         46 -
                                                                                F AB = [x1 y1];
21
                                                                                 F BC = [x2 y2];
                                                                         47 -
       % Magnitude (slope, y2-y1/x2-x1)
22
                                                                                 F CD = [x3 y3];
                                                                         48 -
       Magnitude AB = abs(AB y/AB x);
23 -
                                                                         49 -
                                                                                 FDA = [x4 y4];
       Magnitude BC = abs(BC y/BC x);
24 -
                                                                         50
       Magnitude CD = abs(CD y/CD x);
25 -
                                                                                % Resultant force acting on the composite area
       Magnitude DA = abs(DA y/DA x);
26 -
                                                                                F = F AB + F BC + F CD + F DA;
                                                                         52 -
27
```

Command Window

```
F AB =
 F BC =
 0.735493583165179 0.798414037218294
F_CD =
 F DA =
 0.714408131226849 0.729394946151289
 2.830256736407927 2.871887982051683
```

Result Moment due to the forces:

 $Moment = r \times F$

Here, r is GA (Xi and Yi of A wrt X and Y of Centroid), GB (Xi and Yi of B wrt X and Y of Centroid), GC (Xi and Yi of C wrt X and Y of Centroid) and GD(Xi and Yi of D wrt X and Y of Centroid).

We have the Force (Fab, Fbc, Fcd and Fda from the previous part, so we can apply the moment formula for each and find the Resultant Moment due to all the forces

CENTROD	X (x1)	65.94178259		Xi wrt (0,0) (y2)	Yi wrt (0.0) (x2)						
CENTROD	Y (y1)	60.66547279	Small Square (A)	67.5	-20.5		GA (y2-y1)	1.55821741		GA (x2-x1)	-81.16547279
			Quarter-Circle (B)	145.4098	64.4098		GB (y2-y2)	79.46801741		GB (x2-x2)	3.74432720
			Semi-Circle (C)	60.5	136.7049		GC (y2-y1)	-5.44178259		GC (x2-x1)	76.0394272
			Triangle (D)	-11.8357	60.5		GD (y2-y1)	-77.77748259		GD (x2-x1)	-0.16547279
				CROSS PRO	DUCT				mag*cos(theta)	mag*sin(theta)	
			GA	Х	Fab	(0,0,-66.33)		Fab	0.736829508	0.803039353	
			GB	X	Fbc	(0,0,-55.46)		Fbc	0.735493583	0.798414037	
			GC	X	Fcd	(0,0,44.64)		Fcd	0.643525514	0.541039645	
			GD	X	Fda	(0,0,55.44)		Fda	0.714408131	0.729394946	
				G	(0,0,-21.71)						

As seen from the diagram, and the moment obtained, we can conclude that the figure moves in a clockwise direction.


```
%Clear Command Window
       clc;
       %Clears Workspace
       clear all;
       % Centroid of individual figures wrt Centroid of Composite figure
       A = [-2.1495 -81.0028];
       B = [75.7514 \ 3.8981];
       C = [9.1495 76.1977];
       D = [-81.4852 -0.0028];
10 -
11
12
       % X2-X1
13 -
       AB x = [B([1]) - A([1])];
14 -
       BC x = [C([1]) - B([1])];
       CD x = [D([1]) - C([1])];
15 -
16 -
       DA x = [A([1]) - D([1])];
17
       % Y2-Y1
       AB y = [B([2]) - A([2])];
18 -
       BC y = [C([2]) - B([2])];
19 -
       CD y = [D([2]) - C([2])];
20 -
       DA y = [A([2]) - D([2])];
21 -
22
       % Magnitude (slope, y2-y1/x2-x1)
23
       Magnitude AB = abs(AB y/AB x);
24 -
       Magnitude BC = abs(BC y/BC x);
25 -
       Magnitude CD = abs(CD y/CD x);
26 -
27 -
       Magnitude DA = abs(DA y/DA x);
28
```

```
29
       % Angles tan(theta) = ...., theta = tanInverse(....)
       ThetaAB = atand(Magnitude AB);
30 -
       ThetaBC = atand(Magnitude BC);
31 -
       ThetaCD = atand (Magnitude CD);
32 -
33 -
       ThetaDA = atand(Magnitude DA);
34
       % Angles wrt +ve x-axis
35
36 -
       Theta AB = ThetaAB;
37 -
       Theta BC = 180 - ThetaBC;
       Theta CD = 180 + ThetaCD;
38 -
       Theta DA = 360 - ThetaDA;
39 -
40
       x1 = abs(Magnitude AB*cosd(Theta AB)); y1 = abs(Magnitude AB*sind(Theta AB));
41 -
       x2 = abs(Magnitude BC*cosd(Theta BC)); y2 = abs(Magnitude BC*sind(Theta BC));
42 -
       x3 = abs(Magnitude CD*cosd(Theta CD)); y3 = abs(Magnitude CD*sind(Theta CD));
43 -
       x4 = abs(Magnitude DA*cosd(Theta DA)); y4 = abs(Magnitude DA*sind(Theta DA));
44 -
45
       % Individual forces
46
       F AB = [x1 y1 0];
       F BC = [x2 y2 0];
49 -
       F CD = [x3 y3 0];
       F DA = [x4 y4 0];
50 -
51
       % Resultant force acting on the composite area
52
53 -
       F = F AB + F BC + F CD + F DA
54
```

```
55
       % Centroid of individual figures wrt initial (0,0)
56 -
       A = [67.5 - 20.5 0];
57 -
       B = [145.40984 64.4098 0];
58 -
       C = [60.5 \ 136.7049 \ 0];
59 -
       D = [-11.8357 60.5 0];
60
        % Centroid of composite figure
61
62 -
       G = [65.94178259 60.66547279 0];
63
64
       % X2-X1
       GA x = [A([2]) - G([2])];
65 -
66 -
       GB x = [B([2]) - G([2])];
67 -
       GC x = [C([2]) - G([2])];
       GD x = [D([2]) - G([2])];
68 -
69
       % Y2-Y1
70 -
       GA y = [A([1]) - G([1])];
71 -
       GB y = [B([1]) - G([1])];
72 -
       GC y = [C([1]) - G([1])];
73 -
       GD y = [D([1]) - G([1])];
74
75 -
       GA = [GA \times GA \times 0];
76 -
       GB = [GB \times GB_y 0];
77 -
       GC = [GC \times GC \times 0];
78 -
       GD = [GD \times GD \times 0];
79
       % Individual Moments
80
       M A = cross(GA , F AB);
81 -
82 -
       M B = cross(GB , F BC);
83 -
       M C = cross(GC , F CD);
       M D = cross(GD , F DA);
84 -
85
86
       % Resultant moment acting on the composite area about the centroid(G)
87 -
       M = MA + MB + MC + MD
88
```

Command Window

 $M_A =$

0

0 -66.327209347390180

MB =

0

0 -55.458722887254609

M C =

0

0 44.642270671743226

MD =

0

0 55.444170971899133

M =

0

0 -21.699490591002437

KINEMATCS OF PARTICLES

$A \longrightarrow A1 \longrightarrow A2 \longrightarrow C$

The particle has a Linear movement from A to A1

The particle has a Circular movement from A1 to A2

The particle has a Linear movement from A2 to C

$\mathbf{C} \longrightarrow \mathbf{B}$

The particle has a Linear movement from C to B

$B \longrightarrow B1 \longrightarrow D$

The particle has a Linear movement from B to B1

The particle has a Linear movement from B1 to D

$\mathbf{D} \longrightarrow \mathbf{A}$

The particle has a Linear movement from D to A

```
%Clear Command Window
 2 -
       clc;
       %Clears Workspace
       clear all;
       %Clears Figure Window
       clf;
 8
       % create axes (X-Axis ans Y-Axis)
       plot([-20 200], [0 0], 'k');
 9 -
       hold on:
10 -
11 -
       plot([0 0], [-20 200], 'k');
12 -
       hold on;
13 -
       axis equal;
14
       % Assuming the Centroid of the whole system to be the origin
15
       Assumed Centroid = [0 0];
16 -
17 -
       plot(Assumed Centroid(1), Assumed Centroid(2), 'c.', 'MarkerSize', 20);
18 -
       hold on;
19
       % Centroid of the Whole figure
20
       Centroid = [69.6495 \quad 60.5028];
21 -
       plot(Centroid(1) , Centroid(2) , 'c.', 'MarkerSize', 20);
22 -
23 -
       hold on;
24
```

```
% Plot the Small Square (A)
       x = [47 88 88 47 47];
26 -
27 -
       y = [0 \ 0 \ -41 \ -41 \ 0];
       plot(x,y,'g', 'LineWidth',2);
28 -
29 -
       hold on;
       % Marking the Centroid of the Small Square
30
       A = [67.5 - 20.5];
31 -
       plot(A(1), A(2), 'g.', 'MarkerSize', 20);
32 -
       hold on;
33 -
34
       % Plot the Quarter Circle (B)
35
       R = 41.;
36 -
       D = [128.47.];
37 -
       % angle
38
       theeta = 90:-1:0;
39 -
       % points of circle
40
       xc = D(1) + R*cosd(theeta);
41 -
       yc = D(2) + R*sind(theeta);
42 -
       %Plot curve of Quarter Circle
43
       plot(xc,yc, 'k', 'LineWidth',2);
44 -
45
       % plot line of Quarter Circle ([x1 x2] , [y1 y2])
       plot([128 169], [47 47], 'k', 'LineWidth',2);
46 -
47 -
       hold on;
       % Marking the Centroid of the Quarter circle
48
       D = [145.4098 64.4098];
49 -
       plot(D(1), D(2), 'k.', 'MarkerSize', 20);
50 -
51 -
       hold on;
52
```

```
76
                                                                                    % Plot the circle (E)
       % Plot the Semi Circle (C)
53
                                                                             77 -
                                                                                    x = 60.5;
       theeta = linspace(0, pi, 100);
54 -
                                                                                    y = 81;
       R = 20.5;
                                                                             78 -
55 -
                                                                             79 -
                                                                                    radius = 20.5;
56 -
       x = R*cos(theeta) + 60.50;
                                                                                    Theeta=0:0.01:2*pi;
       y = R*sin(theeta) + 128;
                                                                             80 -
57 -
                                                                                    xt=radius*cos(Theeta);
                                                                             81 -
58 -
       plot(x,y,'y', 'LineWidth',2);
                                                                             82 -
                                                                                    yt=radius*sin(Theeta);
       % Marking the Centroid of the Semi Circle
59
                                                                                    plot(x+xt, y+yt,'m', 'LineWidth',2);
                                                                             83 -
       D = [60.5 136.7049];
60 -
                                                                                    % Marking the Centroid of the circle
                                                                             84
       plot(D(1) , D(2) , 'y.', 'MarkerSize', 20);
61 -
                                                                                    E = [60.5 81];
                                                                             85 -
62 -
       hold on;
                                                                             86 -
                                                                                    plot(E(1), E(2), 'm.', 'MarkerSize', 20);
63
                                                                                    hold on;
       % Plot the Triangle (D)
                                                                             87 -
64
       D1 = plot([0 - 35.5070], [40 60.5], 'Color', 'r', 'LineWidth', 2);
                                                                             88
65 -
                                                                                    % Plot the big Square (F)
                                                                             89
66 -
       hold on;
                                                                                    F1 = plot([0 0],[128 0], 'b', 'LineWidth',2);
       D2 = plot([-35.5070 \ 0], [60.5 \ 81], 'Color', 'r', 'LineWidth', 2);
                                                                             90 -
67 -
                                                                             91 -
                                                                                    hold on;
       hold on;
68 -
69 -
       D3 = plot([0 0], [81 40], 'Color', 'r', 'LineWidth',2);
                                                                             92 -
                                                                                    F2 = plot([128 0],[128 128], 'b', 'LineWidth',2);
                                                                             93 -
                                                                                    hold on;
70 -
       hold on;
                                                                                    F3 = plot([128 128], [0 128], 'b', 'LineWidth', 2);
                                                                             94 -
       % Marking the Centroid of the triangle
71
                                                                             95 -
                                                                                    hold on;
       D = [-11.8357 60.5];
72 -
                                                                                    F4 = plot([0 128],[0 0], 'b', 'LineWidth',2);
       plot(D(1), D(2), 'r.', 'MarkerSize', 20);
                                                                             96 -
73 -
                                                                             97 -
                                                                                    axis equal;
74 -
       hold on;
                                                                             98 -
                                                                                    hold on;
75
                                                                                    % Marking the Centroid of the Big Square
                                                                             99
                                                                                    F = [64 64];
                                                                            100 -
                                                                                    plot(F(1), F(2), 'b.', 'MarkerSize', 20);
                                                                            101 -
                                                                            102 -
                                                                                    hold on;
                                                                            103
```

```
131 -
                                                                                        A2=[41.3991;88.4435];
        % Animation
104
                                                                                        C=[60.5;136.705];
                                                                                132 -
105
        % From A to C
                                                                                133 - F for lambda=0:0.05:1
        A=[67.5;-20.5];
106 -
                                                                                134 -
                                                                                            x=(1-lambda)*A2+ lambda*C;
        A1=[41.6056;73.047];
107 -
                                                                                135 -
                                                                                            plot(x(1,1), x(2,1), 'g.', 'MarkerSize',14)
108 -
       ☐ for lambda=0:0.05:1
                                                                                136 -
                                                                                            pause (0.05);
109 -
            x=(1-lambda)*A+ lambda*A1;
                                                                                137 -
                                                                                            hold on
            plot(x(1,1), x(2,1), 'q.', 'MarkerSize', 14)
110 -
                                                                                            % Command taken for equal distribution of points in x and y
                                                                                138
111 -
            pause (0.05);
                                                                                            axis('equal')
                                                                                139 -
112 -
            hold on
                                                                                            plot([0,200],[0,0],'k') % plot line from(0,0) to (200,0)
                                                                                140 -
            % Command taken for equal distribution of points in x and y
113
                                                                                141 -
                                                                                            plot([0,0],[0,150],'k') % plot line from (0,0) to (0,150)
            axis('equal')
114 -
                                                                                142 -
                                                                                            drawnow
115 -
            plot([0,200],[0,0],'k') % plot line from(0,0) to (200,0)
                                                                                143 -
                                                                                       ∟ end
116 -
            plot([0,0],[0,150],'k') % plot line from (0,0) to (0,150)
                                                                                144
117 -
            drawnow
                                                                                145
                                                                                        % From C to B
118 -
        end
                                                                                        C=[60.5;136.705];
                                                                                146 -
119 -
        ThetaArray = linspace((((360-156.42)*pi)/180), (159.46*pi)/180, 180);
                                                                                147 -
                                                                                        B=[145.41;64.4098];
120 -
        LengthOfThetaArray = length(ThetaArray);
                                                                                      ☐ for lambda=0:0.05:1
                                                                                148 -
        r = 20.5;
121 -
                                                                                149 -
                                                                                            x=(1-lambda)*C+ lambda*B;
122
        %For moving outside the circle
                                                                                            plot(x(1,1), x(2,1), 'y.', 'MarkerSize', 14)
                                                                                150 -
       ☐ for index = 1:1:LengthOfThetaArray
123 -
                                                                                151 -
                                                                                            pause (0.05);
124 -
            theta = ThetaArray(index);
                                                                                152 -
                                                                                            hold on
125 -
            x = 60.5 + r \cdot cos(theta);
                                                                                            % Command taken for equal distribution of points in x and y
                                                                                153
            y = 81+r*sin(theta);
126 -
                                                                                            axis('equal')
                                                                                154 -
127 -
            plot(x, y, 'g.', 'MarkerSize', 12);
                                                                                155 -
                                                                                            plot([0,200],[0,0],'k') % plot line from(0,0) to (200,0)
128 -
            drawnow;
                                                                                156 -
                                                                                            plot([0,0],[0,150],'k') % plot line from (0,0) to (0,150)
129 -
            pause(0);
                                                                                157 -
                                                                                            drawnow
130 -
       ∟end
                                                                               158 -
                                                                                       ∟ end
                                                                               159
```

```
% From B to D
160
        B=[145.41;64.4098];
161 -
162 -
        B1=[66.8361;59.5108];
163 -
       ☐ for lambda=0:0.05:1
            x=(1-lambda)*B+ lambda*B1;
164 -
            plot(x(1,1), x(2,1), 'k.', 'MarkerSize', 14)
165 -
            pause (0.05);
166 -
            hold on
167 -
             % Command taken for equal distribution of points in x and y
168
            axis('equal')
169 -
            plot([0,200],[0,0],'k') % plot line from(0,0) to (200,0)
170 -
171 -
            plot([0,0],[0,150],'k') % plot line from (0,0) to (0,150)
172 -
             drawnow
173 -
        end
174 -
        B1=[66.8361;59.5108];
        D=[-11.8357;60.5];
175 -
       \Box for lambda=0:0.05:1
176 -
177 -
            x=(1-lambda)*B1+ lambda*D;
            plot(x(1,1), x(2,1), 'k.', 'MarkerSize', 14)
178 -
            pause (0.05);
179 -
            hold on
180 -
181
             % Command taken for equal distribution of points in x and y
            axis('equal')
182 -
            plot([0,200],[0,0],'k') % plot line from(0,0) to (200,0)
183 -
            plot([0,0],[0,150],'k') % plot line from (0,0) to (0,150)
184 -
185 -
             drawnow
186 -
        ∟end
```

187

```
188
        % From D to A
189 -
        D=[-11.8357;60.5];
190 -
        A=[67.5;-20.5];
      ☐ for lambda=0:0.05:1
191 -
192 -
            x=(1-lambda)*D+ lambda*A;
193 -
            plot(x(1,1), x(2,1), 'r.', 'MarkerSize', 14)
            pause (0.05);
194 -
            hold on
195 -
196
            % Command taken for equal distribution of points in x and y
197 -
            axis('equal')
            plot([0,200],[0,0],'k') % plot line from(0,0) to (200,0)
198 -
199 -
            plot([0,0],[0,150],'k') % plot line from (0,0) to (0,150)
200 -
             drawnow
201 -
       ∟end
```


Distance travelled by the particle:

```
%Clear Command Window
       clc;
       %Clears Workspace
       clear all;
 5
 6
       % From A to C
       A=[67.5;-20.5];
       A1=[41.6056;73.047];
       A2=[41.3991;88.4435];
       C = [60.5; 136.705];
10 -
11
       % From C to B
       C=[60.5;136.705];
14 -
       B=[145.41;64.4098];
15
       % From B to D
       B=[145.41;64.4098];
       B1=[66.8361;59.5108];
       D=[-11.8357;60.5];
19 -
20
21
       % From D to A
       D=[-11.8357;60.5];
      A=[67.5;-20.5];
24
25
       %Distance from A to C
       d1 = norm(A-A1);
26 -
       d2 = norm(A1-A2);
       d3 = norm(A2-C);
       D1 = d1+d2+d3
```

```
30
31
       %Distance from C to B
       D2 = norm(C-B)
32 -
33
       %Distance from B to D
       d4 = norm(B-B1);
       d5 = norm(B1-D);
       D3 = d4+d5
37 -
38
39
       %Distance from D to A
40 -
       D4 = norm(D-A)
41
       Distance travelled by particle = D1+D2+D3+D4
42 -
```

Command Window

```
D1 =
     1.643665299661436e+02
D2 =
     1.115181780833959e+02
D3 =
     1.574044943453363e+02
D4 =
     1.133805684166824e+02
Distance_travelled_by_particle =
     5.466697708115581e+02
```