Calculer les volumes des solides ci-dessous et donner le résultat en cm^3 .

Savoir calculer le volume de n'importe quel solide usuel

Feuille 1 bis

Calculer les volumes des solides ci-dessous et donner le résultat en cm^3 .

Tableau de conversion - les mètres cubes (m^3)

km ³	hm ³	dam^3	m^3	dm^3	cm^3	mm^3
				1 L		

Exercice 1:

Relier chaque capacité à l'objet correspondant

- 24 L 1 L 20 cL 0.05 mL
- 56 000 L •
- 200 L
 - 12 L

- Pichet d'eau
- Cartable
- Baignoire
- **Piscine**
- Verre
- Ballon de football
- Goutte d'eau

Exercice 2:

Effectuer les conversions suivantes.

- a. 12 dm³ = mm³
- **b.** 5 dam³ = km³
- c. 205 mm³ = cm³
- d. $15.42 \text{ km}^3 = \dots \text{dam}^3$
- $e. 56.78 \text{ cm}^3 = \dots dL$
- f. 7 302 L = dam³

Savoir effectuer des conversions dans l'unité choisie

Feuille 2 bis

Tableau de conversion - les mètres cubes (m^3)

km^3	hm^3	dam^3	m^3	dm^3	cm^3	mm^3
				11		

Exercice 1:

Relier chaque capacité à l'objet correspondant

24 L	•	Pichet d'eau
1 L	•	Cartable
20 cL	•	Baignoire
0,05 mL	•	Piscine
56 000 L	•	Verre
200 L	•	Ballon de football
12 L		Goutte d'eau

Exercice 2:

Effectuer les conversions suivantes.

- a. $12 \text{ dm}^3 = \dots \text{ mm}^3$
- b. 5 dam³ = km³
- c. 205 mm³ = cm³
- d. $15.42 \text{ km}^3 = \dots \text{dam}^3$
- **e.** $56.78 \text{ cm}^3 = \dots \text{dL}$
- f. 7 302 L = dam³

Sur la figure ci-contre, SABCD est une pyramide à base carrée de hauteur [SA] telle que AB = 9 cm et SA = 12 cm. Le triangle SAB est rectangle en A.

EFGH est la section de la pyramide SABCD par le plan parallèle à la base et telle que SE = 3 cm.

- 1) Calculer EF.
- 2) Calculer SB
- 3) a) Calculer le volume de la pyramide SABCD.
 - b) Calculer le volume de SEFGH.

Utiliser les théorèmes de Thalès et de Pythagore dans une section de solide

Feuille 3 bis

Sur la figure ci-contre, SABCD est une pyramide à base carrée de hauteur [SA] telle que AB = 9 cm et SA = 12 cm. Le triangle SAB est rectangle en A.

EFGH est la section de la pyramide SABCD par le plan parallèle à la base et telle que SE = 3 cm.

- 1) Calculer EF.
- 2) Calculer SB
- 3) a) Calculer le volume de la pyramide SABCD.
 - b) Calculer le volume de SEFGH.

Utiliser les théorèmes de Thalès et de Pythagore dans une section de solide

Feuille 3 bis

Sur la figure ci-contre, SABCD est une pyramide à base carrée de hauteur [SA] telle que AB = 9 cm et SA = 12 cm. Le triangle SAB est rectangle en A.

EFGH est la section de la pyramide SABCD par le plan parallèle à la base et telle que SE = 3 cm.

- 1) Calculer EF.
- 2) Calculer SB
- 3) a) Calculer le volume de la pyramide SABCD.
 - b) Calculer le volume de SEFGH.

