Where oh where are the home buyers?

Business Understanding

Noznas Inc has noticed a rapid decline in their house sales lately and would like to know where to focus their marketing efforts. With so much competition out there, they want to be on top of who the home buyers are and what they are looking for. They want to essentially speak right to them through their advertising making the potential buyers feel as if Noznas knows exactly what they need. Their sales in King County, Washington did well and they supplied the data from there as a reference.

Data Understanding

The data used for this project was obtained from a the kc_house_data.csv file which contains data for 2021-2022 home sales in King County, Washington.

Data Preparation

Loading the Data

First I loaded all the libraries I felt I needed.

```
In [1]:  import matplotlib.pyplot as plt
plt.style.use('seaborn')
import numpy as np
import pandas as pd
import scipy.stats as stats
import seaborn as sns
import statsmodels.api as sm
```

Next was the file.

Data Exploration

I looked through the file to familiarize myself with the information provided and to see if I can find what what buyers are looking for in a house.

In [3]: ► dfkc.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 30155 entries, 0 to 30154
Data columns (total 25 columns):

Data #	Columns (total	•	Dtura	
#	Column	Non-Null Count	Dtype	
0	id	30155 non-null	int64	
1	date	30155 non-null	object	
2	price	30155 non-null	float64	
3	bedrooms	30155 non-null	int64	
4	bathrooms	30155 non-null	float64	
5	sqft_living	30155 non-null	int64	
6	sqft_lot	30155 non-null	int64	
7	floors	30155 non-null	float64	
8	waterfront	30155 non-null	object	
9	greenbelt	30155 non-null	object	
10	nuisance	30155 non-null	object	
11	view	30155 non-null	object	
12	condition	30155 non-null	object	
13	grade	30155 non-null	object	
14	heat_source	30123 non-null	object	
15	sewer_system	30141 non-null	object	
16	sqft_above	30155 non-null	int64	
17	sqft_basement	30155 non-null	int64	
18	sqft_garage	30155 non-null	int64	
19	sqft_patio	30155 non-null	int64	
20	yr_built	30155 non-null	int64	
21	yr_renovated	30155 non-null	int64	
22	address	30155 non-null	object	
23	lat	30155 non-null	float64	
24	long	30155 non-null	float64	
dtype	es: float64(5),	int64(10), object	ct(10)	
memory usage: 5.8+ MB				

In [4]: ▶ dfkc.head()

Out[4]:

:		id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	water
	0	7399300360	5/24/2022	675000.0	4	1.0	1180	7140	1.0	
	1	8910500230	12/13/2021	920000.0	5	2.5	2770	6703	1.0	
	2	1180000275	9/29/2021	311000.0	6	2.0	2880	6156	1.0	
	3	1604601802	12/14/2021	775000.0	3	3.0	2160	1400	2.0	
	4	8562780790	8/24/2021	592500.0	2	2.0	1120	758	2.0	

5 rows × 25 columns

dtype='object')

In [6]: ▶ dfkc.describe()

Out[6]:

	id	price	bedrooms	bathrooms	sqft_living	sqft_lot	
count	3.015500e+04	3.015500e+04	30155.000000	30155.000000	30155.000000	3.015500e+04	:
mean	4.538104e+09	1.108536e+06	3.413530	2.334737	2112.424739	1.672360e+04	
std	2.882587e+09	8.963857e+05	0.981612	0.889556	974.044318	6.038260e+04	
min	1.000055e+06	2.736000e+04	0.000000	0.000000	3.000000	4.020000e+02	
25%	2.064175e+09	6.480000e+05	3.000000	2.000000	1420.000000	4.850000e+03	
50%	3.874011e+09	8.600000e+05	3.000000	2.500000	1920.000000	7.480000e+03	
75%	7.287100e+09	1.300000e+06	4.000000	3.000000	2619.500000	1.057900e+04	
max	9.904000e+09	3.075000e+07	13.000000	10.500000	15360.000000	3.253932e+06	

Data Cleaning

First and foremost, I made a copy of the file just so any changes I make will not affect the actual file.

In [7]: ► dfkc_copy=dfkc

Checking to make sure the copy worked.

dfkc_copy.head() In [8]: **2** 1180000275 9/29/2021 311000.0 2.0 1.0 2880 6156 **3** 1604601802 12/14/2021 775000.0 3.0 2160 1400 2.0 **4** 8562780790 8/24/2021 592500.0 2.0 1120 2.0 2 758

Took out the columns I didn't feel were necessary.

```
In [10]:

    dfkc copy1=dfkc copy.drop(labels='nuisance',axis=1)

In [11]:

    dfkc_copy2=dfkc_copy1.drop(labels='id',axis=1)

In [12]:
             dfkc copy3=dfkc copy2.drop(labels='floors',axis=1)
             dfkc copy4=dfkc copy3.drop(labels='sqft basement',axis=1)
In [13]:
In [14]:
             dfkc copy5=dfkc copy4.drop(labels='sqft above',axis=1)
In [15]:
          dfkc copy5.columns
   Out[15]: Index(['date', 'price', 'bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot',
                     'waterfront', 'greenbelt', 'view', 'condition', 'grade', 'heat_sourc
             e',
                     'sewer_system', 'sqft_garage', 'sqft_patio', 'yr_built', 'yr_renovat
             ed',
                     'address', 'lat', 'long'],
                   dtype='object')
```

Dropped the rows with null values. There was just a small number of them and I felt dropping them completely wouldn't affect the overall numbers much.

```
dfkc_copy5.dropna(subset=['heat_source','sewer_system'], axis=0, inplace=True
In [16]:
               dfkc copy5.head()
    Out[16]:
                       date
                                      bedrooms
                                                 bathrooms sqft_living sqft_lot waterfront greenbelt
               0
                   5/24/2022 675000.0
                                              4
                                                        1.0
                                                                 1180
                                                                         7140
                                                                                     NO
                                                                                               NO
                  12/13/2021 920000.0
                                              5
                                                       2.5
                                                                 2770
                                                                         6703
                                                                                     NO
                                                                                               NO
                                                                                               NO
                   9/29/2021 311000.0
                                              6
                                                       2.0
                                                                 2880
                                                                         6156
                                                                                     NO
```

In [17]: ► dfkc_copy5.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 30111 entries, 0 to 30154
Data columns (total 20 columns):

#	Column	Non-Null Count	Dtype			
0	date	30111 non-null	object			
1	price	30111 non-null	float64			
2	bedrooms	30111 non-null	int64			
3	bathrooms	30111 non-null	float64			
4	sqft_living	30111 non-null	int64			
5	sqft_lot	30111 non-null	int64			
6	waterfront	30111 non-null	object			
7	greenbelt	30111 non-null	object			
8	view	30111 non-null	object			
9	condition	30111 non-null	object			
10	grade	30111 non-null	object			
11	heat_source	30111 non-null	object			
12	sewer_system	30111 non-null	object			
13	sqft_garage	30111 non-null	int64			
14	sqft_patio	30111 non-null	int64			
15	yr_built	30111 non-null	int64			
16	yr_renovated	30111 non-null	int64			
17	address	30111 non-null	object			
18	lat	30111 non-null	float64			
19	long	30111 non-null	float64			
dtyp	dtypes: float64(4), int64(7), object(9)					
memo	ry usage: 4.8+	MB				

Remamed the date column to date_sold. I originally was going to leave it but for some reason couldn't grasp the concept of date. :)

Out[18]:

•		date_sold	price	bedrooms	bathrooms	sqft_living	sqft_lot	waterfront	greenbelt	
	0	5/24/2022	675000.0	4	1.0	1180	7140	NO	NO	
	1	12/13/2021	920000.0	5	2.5	2770	6703	NO	NO	AV
	2	9/29/2021	311000.0	6	2.0	2880	6156	NO	NO	AV
	3	12/14/2021	775000.0	3	3.0	2160	1400	NO	NO	AV
	4	8/24/2021	592500.0	2	2.0	1120	758	NO	NO	
	4									•

Changed date_sold from a string to date/time to calculate age of homes, then added age column to the table.

In [21]:
#check to see if column was added
dfkc_copy5.head()

Out[21]:

	date_sold	price	bedrooms	bathrooms	sqft_living	sqft_lot	waterfront	greenbelt	
0	2022-05- 24	675000.0	4	1.0	1180	7140	NO	NO	
1	2021-12- 13	920000.0	5	2.5	2770	6703	NO	NO	AVE
2	2021-09- 29	311000.0	6	2.0	2880	6156	NO	NO	AVE
3	2021-12- 14	775000.0	3	3.0	2160	1400	NO	NO	AVE
4	2021-08- 24	592500.0	2	2.0	1120	758	NO	NO	

5 rows × 21 columns

I researched the house features home buyers are looking for. While all the features on this table are considered, I found the most important and calculated the average selling price for each feature to find the best condition and made a visualization for each.

Out[22]:

```
        view
        price

        1
        EXCELLENT
        3.007975e+06

        2
        FAIR
        1.742069e+06

        3
        GOOD
        1.738145e+06

        0
        AVERAGE
        1.454727e+06

        4
        NONE
        1.018818e+06
```


In [24]: avg_ss=dfkc_copy5.groupby('sewer_system').mean()['price'].reset_index().sort_
avg_ss

Out[24]:

	sewer_system	price
2	PUBLIC	1.116769e+06
0	PRIVATE	1.063043e+06
3	PUBLIC RESTRICTED	9.951490e+05
1	PRIVATE RESTRICTED	8.164000e+05

Out[26]:

	bedrooms	price
12	13	3.750000e+06
7	7	1.903534e+06
6	6	1.848920e+06
10	10	1.700000e+06
5	5	1.673307e+06
8	8	1.605601e+06
9	9	1.474579e+06
4	4	1.269938e+06
0	0	1.268990e+06
11	11	1.200000e+06
3	3	9.345138e+05
1	1	9.110776e+05
2	2	7.807247e+05

In [28]: ▶ Bedrooms=avg_bdrm.mean().reset_index()
Bedrooms

Out[28]:

	index	0
0	bedrooms	6.076923e+00
1	price	1.563168e+06

Out[29]:

	sqft_lot	price
11265	50705	30750000.0
8865	15494	23500000.0
10503	32920	22750000.0
11615	92345	17800000.0
11522	77594	15000001.0
11295	52101	40000.0
12140	429071	30108.0
11387	60229	29941.0
1992	3755	28559.0
11354	56809	28307.0

12223 rows × 2 columns

In [31]: N Lot=avg_lot.mean().reset_index()
Lot

Out[31]:

	index	0
0	sqft_lot	2.634945e+04
1	price	1.214927e+06

Out[32]:

	sqft_garage	price
409	3390	17800000.0
385	1750	8500000.0
389	1790	8400000.0
381	1690	6000000.0
358	1420	5160000.0
147	511	390000.0
407	2840	328000.0
89	416	304625.0
221	664	204500.0
376	1600	67500.0

411 rows × 2 columns

Out[34]:

	inaex	U
0	sqft_garage	7.949051e+02
1	price	1.425485e+06

```
avg_bathrooms=dfkc_copy5.groupby('bathrooms').mean()['price'].reset_index().s
In [35]:
               avg bathrooms
                11
                          5.5 3.571516e+06
                20
                         10.5 3.495000e+06
                10
                          5.0 3.230708e+06
                 9
                              2.764199e+06
                 8
                          4.0
                              1.903924e+06
                 7
                              1.724917e+06
                 6
                          3.0
                               1.244328e+06
                 5
                              1.072449e+06
                          2.5
                 1
                              9.773900e+05
                               8.936014e+05
                 4
                          2.0
                 0
                          0.0 8.541956e+05
                           1.5
                              7.835607e+05
                 2
                           1.0 7.105680e+05
```


In [37]: M Bathrooms=avg_bathrooms.mean().reset_index()
Bathrooms

Out[37]:

	index	0
0	bathrooms	5.071429e+00
1	price	3.330347e+06

Out[38]:

	condition	price
0	Average	1.134565e+06
4	Very Good	1.130900e+06
2	Good	1.053324e+06
1	Fair	7.924678e+05
3	Poor	6.821867e+05

Out[40]:

	sqft_living	price
1293	8160	22750000.0
1283	7610	20000000.0
1310	12470	17800000.0
1255	6780	15000001.0
1305	10250	14500000.0
43	684	188622.0
227	1532	153124.0
485	2244	119250.0
321	1806	64559.0
1187	5780	40000.0

1314 rows × 2 columns

Out[42]:

	inaex	0
0	sqft_living	3.109803e+03
1	price	1.718650e+06

Out[43]:

	age	price
4	3	1.557398e+06
23	22	1.512969e+06
7	6	1.459599e+06
8	7	1.416208e+06
25	24	1.396900e+06
81	80	8.362164e+05
76	75	8.180666e+05
78	77	7.852669e+05
80	79	7.483135e+05
79	78	6.510239e+05


```
In [45]:  Age=avg_age.mean().reset_index()
Age
```

Out[45]:

```
index 0

age 6.050000e+01

price 1.090556e+06
```

To create my regression model, I first created a table to only include the most important features of a house to home buyers.

Out[46]:

	price	bedrooms	bathrooms	sqft_living	sqft_lot	view	condition	sewer_system
0	675000.0	4	1.0	1180	7140	NONE	Good	PUBLIC
1	920000.0	5	2.5	2770	6703	AVERAGE	Average	PUBLIC
2	311000.0	6	2.0	2880	6156	AVERAGE	Average	PUBLIC
3	775000.0	3	3.0	2160	1400	AVERAGE	Average	PUBLIC
4	592500.0	2	2.0	1120	758	NONE	Average	PUBLIC
4								•

In [47]: | imp_feats.describe()

Out[47]:

	price	bedrooms	bathrooms	sqft_living	sqft_lot	sqft_garage	
count	3.011100e+04	30111.000000	30111.000000	30111.000000	3.011100e+04	30111.000000	30
mean	1.108971e+06	3.415197	2.335708	2113.342798	1.664880e+04	330.475308	
std	8.965158e+05	0.979755	0.888293	973.453260	5.993303e+04	285.725020	
min	2.736000e+04	0.000000	0.000000	3.000000	4.020000e+02	0.000000	
25%	6.492360e+05	3.000000	2.000000	1420.000000	4.850000e+03	0.000000	
50%	8.600000e+05	3.000000	2.500000	1920.000000	7.477000e+03	400.000000	
75%	1.300000e+06	4.000000	3.000000	2620.000000	1.056800e+04	510.000000	
max	3.075000e+07	13.000000	10.500000	15360.000000	3.253932e+06	3580.000000	4
4							•

```
In [48]: ▶ sns.lineplot(data=imp_feats, x='bedrooms', y="price")
```

Out[48]: <AxesSubplot:xlabel='bedrooms', ylabel='price'>

In [49]: ▶ sns.lineplot(data=imp_feats, x="bathrooms", y="price")

Out[49]: <AxesSubplot:xlabel='bathrooms', ylabel='price'>

In [50]: | imp_feats.hist(figsize=(15,10), bins="auto");

Modeling

Baseline Model

```
▶ imp_feats.info()
In [51]:
             <class 'pandas.core.frame.DataFrame'>
             Int64Index: 30111 entries, 0 to 30154
             Data columns (total 11 columns):
              #
                  Column
                                Non-Null Count
                                                Dtype
                                 -----
              0
                  price
                                30111 non-null float64
                                30111 non-null int64
              1
                  bedrooms
              2
                                30111 non-null float64
                  bathrooms
              3
                  sqft living
                                30111 non-null int64
              4
                  sqft_lot
                                30111 non-null int64
              5
                  view
                                30111 non-null object
              6
                  condition
                                30111 non-null object
              7
                                30111 non-null object
                  sewer system
              8
                  sqft_garage
                                30111 non-null int64
              9
                  sqft patio
                                30111 non-null int64
              10
                  age
                                30111 non-null int64
             dtypes: float64(2), int64(6), object(3)
             memory usage: 2.8+ MB
             imp feats num = [x for x in imp feats.columns if x not in ['date sold', 'price
In [52]:
             imp feats num
   Out[52]: ['bedrooms',
              'bathrooms',
              'sqft living',
              'sqft lot',
              'sqft_garage',
              'sqft patio',
              'age']
             preds = imp feats[imp feats num]
In [53]:
             target = imp feats.price
```

```
In [54]:
           X= preds
              model = sm.OLS(y, sm.add_constant(X))
              results = model.fit()
               results.summary()
               /opt/conda/lib/python3.9/site-packages/statsmodels/tsa/tsatools.py:142: F
               utureWarning: In a future version of pandas all arguments of concat excep
               t for the argument 'objs' will be keyword-only
                 x = pd.concat(x[::order], 1)
    Out[54]:
              OLS Regression Results
                   Dep. Variable:
                                                                      0.404
                                           price
                                                      R-squared:
                         Model:
                                           OLS
                                                                      0.404
                                                  Adj. R-squared:
                        Method:
                                   Least Squares
                                                      F-statistic:
                                                                      2916.
                          Date:
                                Mon, 03 Oct 2022 Prob (F-statistic):
                                                                       0.00
                          Time:
                                        02:32:43
                                                  Log-Likelihood:
                                                                -4.4764e+05
               No. Observations:
                                          30111
                                                           AIC:
                                                                  8.953e+05
                   Df Residuals:
                                          30103
                                                           BIC:
                                                                  8.954e+05
                                             7
                      Df Model:
```

The model overall explains about 40% of the variance in sale price.

Bedrooms: For each additional bedroom, the price decreases by about \$171K

Bathrooms: For each additional bathroom, the price increases by about \$133K

Sqft living: For each additional square foot of living space, the price increases by about \$600

Sqft lot: For each additional square foot of lot, the price decreases by about \$.06

Sqft garage: For each additional square foot of garage area, the price decreases by about \$135

Sqft patio: For each additional sqare foot of patio area, the price increases by about \$265

age: For each additional year the house ages, the price increases by about \$2957

In [55]: ▶ sns.regplot(x="price", y="bedrooms", data=imp_feats);

N X.dtypes In [56]: Out[56]: bedrooms int64 float64 bathrooms sqft_living int64 sqft_lot int64 sqft_garage int64 sqft_patio int64 int64 age

dtype: object

```
In [57]:
          #dummifying categorial columns
             cat_columns =['view','condition','sewer_system']
             dummy_imp_feats= pd.get_dummies(data=imp_feats, columns=cat_columns, drop_fir
             dummy imp feats.columns
   Out[57]: Index(['price', 'bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot',
                     'sqft_garage', 'sqft_patio', 'age', 'view_EXCELLENT', 'view_FAIR',
                    'view_GOOD', 'view_NONE', 'condition_Fair', 'condition_Good',
                    'condition_Poor', 'condition_Very Good',
                    'sewer_system_PRIVATE RESTRICTED', 'sewer_system_PUBLIC',
                    'sewer system PUBLIC RESTRICTED'],
                   dtype='object')
             dummy_imp_feats_cat = imp_feats[cat_columns].copy()
In [58]:
             dummy_imp_feats_cat = pd.get_dummies(dummy_imp_feats_cat, columns=cat_columns
             dummy_imp_feats_cat
   Out[58]:
```

		view_EXCELLENT	view_FAIR	view_GOOD	view_NONE	condition_Fair	condition_Good
	0	0	0	0	1	0	1
	1	0	0	0	0	0	0
	2	0	0	0	0	0	0
	3	0	0	0	0	0	0
	4	0	0	0	1	0	0
30 ⁻	150	0	0	0	1	0	1
30 ⁻	151	0	1	0	0	0	0
30 ⁻	152	0	0	0	1	0	0
30	153	0	0	0	1	0	0
30 ⁻	154	0	0	0	1	0	0

30111 rows × 11 columns

```
In [59]: X=dummy_imp_feats.drop(labels =['price'], axis=1)
y=dummy_imp_feats.price

first_dummy_model = sm.OLS(y,sm.add_constant(X))
results = first_dummy_model.fit()
results.summary()
```

/opt/conda/lib/python3.9/site-packages/statsmodels/tsa/tsatools.py:142: Fut
ureWarning: In a future version of pandas all arguments of concat except fo
r the argument 'objs' will be keyword-only
 x = pd.concat(x[::order], 1)

Out[59]:

OLS Regression Results

Dep. Variable: price R-squared: 0.443 Model: OLS Adj. R-squared: 0.443 Method: Least Squares F-statistic: 1330. Mon, 03 Oct 2022 Prob (F-statistic): 0.00 Date: Time: 02:32:45 Log-Likelihood: -4.4662e+05 No. Observations: 30111 AIC: 8.933e+05 **Df Residuals:** 30092 BIC: 8.934e+05

Df Model: 18
Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	-7.305e+04	2.67e+04	-2.735	0.006	-1.25e+05	-2.07e+04
bedrooms	-1.484e+05	5369.404	-27.643	0.000	-1.59e+05	-1.38e+05
bathrooms	1.097e+05	7730.355	14.186	0.000	9.45e+04	1.25e+05
sqft_living	558.0284	7.438	75.022	0.000	543.449	572.608
sqft_lot	0.3400	0.070	4.863	0.000	0.203	0.477
sqft_garage	-54.1629	16.761	-3.231	0.001	-87.016	-21.310
sqft_patio	215.4326	17.822	12.088	0.000	180.502	250.364
age	2534.6824	164.716	15.388	0.000	2211.831	2857.534
view_EXCELLENT	1.117e+06	3.27e+04	34.123	0.000	1.05e+06	1.18e+06
view_FAIR	2.072e+05	4.77e+04	4.345	0.000	1.14e+05	3.01e+05
view_GOOD	6.359e+04	2.74e+04	2.320	0.020	9868.052	1.17e+05
view_NONE	-1.125e+05	1.62e+04	-6.953	0.000	-1.44e+05	-8.08e+04
condition_Fair	-6.387e+04	4.54e+04	-1.407	0.160	-1.53e+05	2.51e+04
condition_Good	-1.22e+04	9712.258	-1.257	0.209	-3.12e+04	6832.920
condition_Poor	-6.589e+04	8.63e+04	-0.763	0.445	-2.35e+05	1.03e+05
condition_Very Good	1.951e+04	1.37e+04	1.429	0.153	-7256.323	4.63e+04
sewer_system_PRIVATE RESTRICTED	-3.697e+05	3e+05	-1.231	0.218	-9.58e+05	2.19e+05

sewer_system_PUBLIC	2.172e+05	1.22e+04	17.873	0.000	1.93e+05	2.41e+05
sewer_system_PUBLIC RESTRICTED	1.4e+05	3.87e+05	0.362	0.717	-6.18e+05	8.98e+05

 Omnibus:
 41771.818
 Durbin-Watson:
 1.842

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 42988029.275

 Skew:
 7.589
 Prob(JB):
 0.00

 Kurtosis:
 187.481
 Cond. No.
 6.24e+06

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 6.24e+06. This might indicate that there are strong multicollinearity or other numerical problems.

In [60]: ► sns.regplot(x="price", y="bedrooms", data=dummy_imp_feats);

This dummy model explains about 44% of the variance in sale price. According to this model, the following is found:

Each additional bedroom, the price decreases by about \$148K.

Each additional bathroom, the price increases by about \$109K.

Each additional square foot of living space, the price increases by about \$558.

Each additional square foot of lot, the price decreases by about \$.34.

Each additional square foot of garage area, the price decreases by about \$54.

Each additional squre foot of patio area, the price increases by about \$215.

Each additional year the house ages, the price increases by about \$2535.

Now I will explore multicollinearity problems.

In [61]: | imp_feats.corr()

Out[61]:

	price	bedrooms	bathrooms	sqft_living	sqft_lot	sqft_garage	sqft_patio
price	1.000000	0.288954	0.480337	0.608616	0.086550	0.263674	0.313789
bedrooms	0.288954	1.000000	0.588035	0.637048	0.006215	0.318110	0.183660
bathrooms	0.480337	0.588035	1.000000	0.772226	0.038028	0.456264	0.327982
sqft_living	0.608616	0.637048	0.772226	1.000000	0.122271	0.510967	0.396530
sqft_lot	0.086550	0.006215	0.038028	0.122271	1.000000	0.089318	0.154575
sqft_garage	0.263674	0.318110	0.456264	0.510967	0.089318	1.000000	0.216512
sqft_patio	0.313789	0.183660	0.327982	0.396530	0.154575	0.216512	1.000000
age	-0.126909	-0.156650	-0.471854	-0.312269	-0.003427	-0.409075	-0.157426
4							•

Out[62]:

	price	bedrooms	bathrooms	sqft_living	sqft_lot	sqft_garage	sqft_patio	age
price	True	False	False	False	False	False	False	False
bedrooms	False	True	False	False	False	False	False	False
bathrooms	False	False	True	True	False	False	False	False
sqft_living	False	False	True	True	False	False	False	False
sqft_lot	False	False	False	False	True	False	False	False
sqft_garage	False	False	False	False	False	True	False	False
sqft_patio	False	False	False	False	False	False	True	False
age	False	False	False	False	False	False	False	True
4								•

Using a heatmap, it appears that living space has the greatest impact on price, followed by number of bathrooms and number of bedrooms. The least important feature is the age of the house.

The residuals from the actual model are skewed and not quite normal.

```
In [65]:
             #get t test p-values
             results.pvalues
    Out[65]: const
                                                   6.248366e-03
              bedrooms
                                                  4.011338e-166
              bathrooms
                                                   1.577300e-45
              sqft living
                                                   0.000000e+00
              sqft lot
                                                   1.159479e-06
              sqft_garage
                                                   1.233103e-03
              sqft_patio
                                                   1.456048e-33
                                                   3.136302e-53
              age
                                                  1.985477e-250
              view_EXCELLENT
              view FAIR
                                                   1.398813e-05
              view GOOD
                                                   2.034182e-02
              view NONE
                                                   3.650523e-12
              condition Fair
                                                   1.595540e-01
              condition Good
                                                   2.089419e-01
              condition Poor
                                                   4.452540e-01
              condition_Very Good
                                                   1.531130e-01
              sewer system PRIVATE RESTRICTED
                                                   2.182960e-01
              sewer system PUBLIC
                                                   4.476682e-71
              sewer system PUBLIC RESTRICTED
                                                   7.172644e-01
              dtype: float64
```

In [66]: #get the 95% confidence interval for the coefficients
print(results.conf_int())

```
0
                                                          1
const
                                -1.254051e+05 -2.069133e+04
bedrooms
                                -1.589524e+05 -1.379039e+05
bathrooms
                                 9.450807e+04 1.248117e+05
sqft living
                                 5.434493e+02 5.726075e+02
sqft lot
                                 2.029998e-01 4.770850e-01
sqft garage
                                -8.701588e+01 -2.130995e+01
sqft_patio
                                 1.805017e+02
                                               2.503636e+02
                                 2.211831e+03 2.857534e+03
age
view EXCELLENT
                                 1.052504e+06
                                               1.180784e+06
view FAIR
                                 1.137026e+05 3.006107e+05
view GOOD
                                 9.868052e+03
                                               1.173038e+05
view NONE
                                -1.442618e+05 -8.081293e+04
condition Fair
                                -1.528658e+05
                                               2.512921e+04
condition Good
                                -3.123996e+04
                                               6.832920e+03
condition Poor
                                -2.350794e+05
                                               1.032954e+05
condition Very Good
                                -7.256323e+03
                                               4.627436e+04
sewer system PRIVATE RESTRICTED -9.582338e+05
                                               2.188873e+05
sewer system PUBLIC
                                 1.933736e+05
                                               2.410107e+05
sewer system PUBLIC RESTRICTED -6.178649e+05
                                               8.979057e+05
```

Analysis

My analysis shows that the following averages of houses sold had: 3 bedrooms, 2.5 bathrooms, 2100 sqft living space, with 1.5 car garage, a patio and an age of around 45 years old. In my findings, it was noticable that there was a threshold where additional space began to lose value.

Conclusion

The perfect house that home buyers are looking for have an excellent view, a public sewer system, 6 bedrooms, 5 bathrooms, is in average condition with living space of around 3100 sqft and no older than 10 years. My analysis leads to the following recommendations for Noznas Inc. to successfully increase their housing sales. They should build houses with similar specifications stated above, calculating their asking price around the square footage of living space, number of bedrooms and the number of bathrooms. Directing their advertising towards middle class families will result in more attention and traffic to their sales department because these families are who need the above features.

In []: ▶	