

Gabel, Gailene

From: Gabel, Gailene
Sent: Tuesday, June 26, 2001 8:12 PM
To: STIC-ILL
Subject: 09/525,582

Please provide a copy of the following literature (ASAP):

- 1) Ericson et al., Salivary factors in children with recurrent parotitis, Swedish Dental Journal 20(5): 199-207 (1996).
- 2) Fisher et al., Salivary secretion of albumin in type 1 insulin dependent diabetes, Diabetes Research and Clinical Practice 11(2): 117- 119 (Feb 1991).
- 3) Coppo et al., A solid phase enzyme immunoassay for the measurement of urinary albumin and detection of microalbuminuria, Journal of Diabetic Complications, 1(2): 58-60 (Apr-Jun 1987).

Thanks a bunch!

Gailene R. Gabel
305-0807
7B15

Gabel, Gailene

From: Gabel, Gailene
Sent: Tuesday, June 26, 2001 8:12 PM
To: STIC-ILL
Subject: 09/525,582

Please provide a copy of the following literature (ASAP):

- 1) Ericson et al., Salivary factors in children with recurrent parotitis, Swedish Dental Journal 20(5): 199-207 (1996).
- 2) Fisher et al., Salivary secretion of albumin in type 1 insulin dependent diabetes, Diabetes Research and Clinical Practice 11(2): 117- 119 (Feb 1991).
- 3) Coppo et al., A solid phase enzyme immunoassay for the measurement of urinary albumin and detection of microalbuminuria, Journal of Diabetic Complications, 1(2): 58-60 (Apr-Jun 1987).

Thanks a bunch!

Gailene R. Gabel
305-0807
7B15

Gabel, Gailene

To: STIC-ILL

Please provide a copy of the following literature:

- 1) Larson, B., Lipids in Human Saliva, Archs Oral Biol 41(1): 105-110 (1996).
- 2) Slomiany et al., J. Dent. Res. 61(1): 24-27 (1983).

THanks a bunch!

Gail Gabel
305-0807
7B15

Gabel, Gailene

To: STIC-ILL
Subject: 09/526,582

Please provide a copy of the ff literature:

- 1) Fisher et al., Salivary secretion of albumin type I insulin dependent diabetes, Diabetes Research and Clinical Practice, 11(2): 117-119 (2/1991).
- 2) Coppo et al., A solid phase enzyme immunoassay for the measurement of urinary albumin and the detection of microalbuminuria, Journal of Diabetic Complications, 1(2): 58-60 (3-4/1987).

Thanks a bunch!!!

Gail Gabel
7B15
CM1

(FILE 'HOME' ENTERED AT 09:06:56 ON 26 JUN 2001)

FILE 'MEDLINE, EMBASE, SCISEARCH, USPATFULL' ENTERED AT 09:07:14 ON 26 JUN 2001

L1 0 S SALIVA? ADJ5 STIMULAT?
L2 7818 S SALIVA? (P) STIMULAT?
L3 233 S L2 AND ALBUMIN
L4 143 S L2 (6P) ALBUMIN
L5 1 S L4 AND (APOLIPOPROTEIN? OR LIPOPROTEIN?)
L6 3988 S SALIVA (P) STIMULAT?
L7 166 S L6 AND ALBUMIN
L8 114 S L6 (6P) ALBUMIN
L9 69 DUP REM L8 (45 DUPLICATES REMOVED)
L10 106 S L6 (3P) ALBUMIN
L11 61 DUP REM L10 (45 DUPLICATES REMOVED)
L12 18 S L11 AND (ANTI-ALBUMIN OR ANTIBOD?)
L13 0 S SALIVA (6P) ALBUMIN (6P) ANTI-ALBUMIN
L14 16 S SALIVA AND ANTI-ALBUMIN
L15 16 DUP REM L14 (0 DUPLICATES REMOVED)
L16 0 S L2 AND ANTI-ALBUMIN
L17 0 S L2 AND (ANTIBOD? ADJ5 ALBUMIN)
L18 201 S ANTI-ALBUMIN ANTIBOD?
L19 15 S L18 (6P) ELISA
L20 11 DUP REM L19 (4 DUPLICATES REMOVED)

L11 ANSWER 4 OF 61 MEDLINE
DUPLICATE 3
ACCESSION NUMBER: 2000499991 MEDLINE
DOCUMENT NUMBER: 20498068 PubMed ID: 11045369
TITLE: Correlations between total protein, lysozyme,
immunoglobulins, amylase, and **albumin** in
stimulated whole **saliva** during daytime.
AUTHOR: Rantonen P J; Meurman J H
CORPORATE SOURCE: Department of Clinical Chemistry, Kuopio University
Hospital, Finland.. prantone@hytti.uku.fi
SOURCE: ACTA ODONTOLOGICA SCANDINAVICA, (2000 Aug) 58 (4) 160-5.
Journal code: 1EU. ISSN: 0001-6357.

PUB. COUNTRY: Norway
Journal; Article; (JOURNAL ARTICLE)
LANGUAGE: English
FILE SEGMENT: Dental Journals; Priority Journals
ENTRY MONTH: 200101
ENTRY DATE: Entered STN: 20010322
Last Updated on STN: 20010322
Entered PubMed: 20010117
Entered Medline: 20010125

AB The correlations between salivary proteins and the daytime variations are not known. The present study investigated the within-subject variation of correlations and concentrations between lysozyme, IgA, IgG, IgM, **albumin**, amylase, and total protein in **stimulated** whole **saliva** of healthy adults in the course of a 12-h period. After several practise sessions, unstimulated and **stimulated** whole **saliva** samples were collected five times daily (at 8 a.m., 11 a.m., 2 p.m., 5 p.m., and 8 p.m.) from 30 healthy university students. Flow rate and total protein concentration were used as covariates, and gender as a between-subject factor in the MANOVA analysis. After this adjustment, there was significant within-subject variation in salivary

IgA ($P < 0.001$), **albumin** ($P < 0.01$), amylase ($P < 0.05$), and total protein ($P < 0.001$) concentrations. Total protein correlated significantly

with amylase **albumin** and IgA through different samplings. In addition, IgG correlated with **albumin** and lysozyme in the course of 12 h. On the whole, the correlations between variables remained stable during repeated samplings. In addition, rankings of subjects for the variables tended to be maintained across different samplings ($P < 0.001$). However, the observed within-subject variations in salivary IgA, **albumin**, amylase, and total protein concentrations suggest that these proteins are subject to short-term variation.

TI Correlations between total protein, lysozyme, immunoglobulins, amylase, and **albumin** in **stimulated** whole **saliva** during daytime.

AB . . . variations are not known. The present study investigated the within-subject variation of correlations and concentrations between lysozyme, IgA, IgG, IgM, **albumin**, amylase, and total protein in **stimulated** whole **saliva** of healthy adults in the course of a 12-h period. After several practise sessions, unstimulated and **stimulated** whole **saliva** samples were collected five times daily (at 8 a.m., 11 a.m., 2 p.m., 5 p.m., and 8 p.m.) from 30 . . . between-subject factor in the MANOVA analysis. After this adjustment, there was significant within-subject variation in salivary IgA ($P < 0.001$), **albumin** ($P < 0.01$), amylase ($P < 0.05$), and total protein ($P < 0.001$) concentrations. Total protein correlated significantly with amylase **albumin** and IgA through different samplings. In

addition, IgG correlated with **albumin** and lysozyme in the course of 12 h. On the whole, the correlations between variables remained stable during repeated samplings... . . the variables tended to be maintained across different samplings ($P < 0.001$). However, the observed within-subject variations in salivary IgA, **albumin**, amylase, and total protein concentrations suggest that these proteins are subject to short-term variation.

L11 ANSWER 17 OF 61 SCISEARCH COPYRIGHT 2001 ISI (R)
ACCESSION NUMBER: 97:377860 SCISEARCH
THE GENUINE ARTICLE: WW075
TITLE: Temporal variation of **albumin**, amylase and
protein concentrations in **stimulated** whole
saliva.
AUTHOR: Rantonen P J F (Reprint); Meurman J H
CORPORATE SOURCE: UNIV KUOPIO, FAC MED, DEPT ORAL & DENT DIS, FIN-70211
KUOPIO, FINLAND
COUNTRY OF AUTHOR: FINLAND
SOURCE: JOURNAL OF DENTAL RESEARCH, (MAY 1997) Vol. 76, No. 5,
pp.
1120-1120.
Publisher: AMER ASSOC DENTAL RESEARCH, 1619 DUKE ST,
ALEXANDRIA, VA 22314.
ISSN: 0022-0345.
DOCUMENT TYPE: Conference; Journal
FILE SEGMENT: LIFE; CLIN
LANGUAGE: English
REFERENCE COUNT: 0
TI Temporal variation of **albumin**, amylase and protein
concentrations in **stimulated** whole **saliva**.

L11 ANSWER 22 OF 61 MEDLINE DUPLICATE 12
ACCESSION NUMBER: 97152835 MEDLINE
DOCUMENT NUMBER: 97152835 PubMed ID: 9000329
TITLE: Salivary factors in children with recurrent parotitis.
Part 2: Protein, albumin, amylase, IgA, lactoferrin lysozyme
and kallikrein concentrations.
AUTHOR: Ericson S; Sjoback I
CORPORATE SOURCE: Institute for Postgraduate Dental Education, Jonkoping,
Sweden.
SOURCE: SWEDISH DENTAL JOURNAL, (1996) 20 (5) 199-207.
Journal code: VEO; 7706129. ISSN: 0347-9994.
PUB. COUNTRY: Sweden
LANGUAGE: English
FILE SEGMENT: Dental Journals; Priority Journals
ENTRY MONTH: 199704
ENTRY DATE: Entered STN: 19970414
Last Updated on STN: 20000303
Entered Medline: 19970403

AB The concentrations of total protein, **albumin**, amylase, IgA, lactoferrin, lysozyme and kallikrein in parotid **saliva** from 17 children with juvenile recurrent parotitis (JRP) in a non-active phase of disease and in healthy controls of the same number, sex and age were analysed after gustatory **stimulation** with 1%, 2% and 6% citric acid. There was a great individual variation in all analysed variables, especially in **saliva** from the diseased glands. Significantly raised levels of **albumin**, IgA, lactoferrin and kallikrein were found in the **saliva** from the JRP-children compared with the controls ($p < 0.01-0.001$), while total protein and alpha-amylase did not differ significantly. The sialo-chemical findings are discussed in the light of histological and bacteriological findings and support the hypothesis that the etiology of juvenile recurrent parotitis is a combination of congenital malformation of portions of the salivary ducts and a set-in infection.

AB The concentrations of total protein, **albumin**, amylase, IgA, lactoferrin, lysozyme and kallikrein in parotid **saliva** from 17 children with juvenile recurrent parotitis (JRP) in a non-active phase of disease and in healthy controls of the same number, sex and age were analysed after gustatory **stimulation** with 1%, 2% and 6% citric acid. There was a great individual variation in all analysed variables, especially in **saliva** from the diseased glands. Significantly raised levels of **albumin**, IgA, lactoferrin and kallikrein were found in the **saliva** from the JRP-children compared with the controls ($p < 0.01-0.001$), while total protein and alpha-amylase did not differ significantly. The . . .

5510 R²

L11 ANSWER 34 OF 61 MEDLINE

DUPLICATE 22

ACCESSION NUMBER: 91216022 MEDLINE

DOCUMENT NUMBER: 91216022 PubMed ID: 2022176

TITLE: Salivary secretion of albumin in type 1
(insulin-dependent)

diabetes.

AUTHOR: Fisher B M; Lamey P J; Sweeney D; Beeley J A; Spooner R J;

Frier B M

CORPORATE SOURCE: Diabetic Department, Western Infirmary, Glasgow Dental Hospital and School, U.K.

SOURCE: DIABETES RESEARCH AND CLINICAL PRACTICE, (1991 Feb) 11 (2)
117-9.

Journal code: EBI; 8508335. ISSN: 0168-8227.

PUB. COUNTRY: Netherlands

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 199106

ENTRY DATE: Entered STN: 19910623

Last Updated on STN: 19910623

Entered Medline: 19910603

AB The concentration of **albumin** in **saliva** is low in healthy humans. To determine whether alterations in capillary permeability

in diabetes affects the salivary glands, the concentration of **albumin** in parotid **saliva** was measured in 26 Type 1 (insulin-dependent) diabetic patients, and compared to 32 non-diabetic control subjects. The diabetic patients were subdivided into 3 groups on the basis of the urinary excretion of **albumin** in timed overnight collections of urine: (1) normal **albumin** excretion (less than 30 micrograms/min) n = 13; (2) microalbuminuria (30-300 micrograms/min) n = 7, and (3) macroalbuminuria (greater than 300 micrograms/min) n = 6.

Saliva was collected for one minute following **stimulation** with 1 ml 10% citric acid, and the concentration of **albumin** was measured by a sensitive ELISA method. No significant difference in salivary **albumin** concentration was found between the control group and any of the diabetic groups. Thus, although urinary **albumin** excretion was increased, suggesting altered capillary permeability, simultaneous leakage of **albumin** into **saliva** was not observed. Measurement of salivary **albumin** concentration does not, therefore, provide a marker of occult microvascular disease in diabetes.

AB The concentration of **albumin** in **saliva** is low in healthy humans. To determine whether alterations in capillary permeability

in diabetes affects the salivary glands, the concentration of **albumin** in parotid **saliva** was measured in 26 Type 1 (insulin-dependent) diabetic patients, and compared to 32 non-diabetic control subjects. The diabetic patients were subdivided into 3 groups on the basis of the urinary excretion of **albumin** in timed overnight collections of urine: (1) normal **albumin** excretion (less than 30 micrograms/min) n = 13; (2) microalbuminuria (30-300 micrograms/min) n = 7, and (3) macroalbuminuria (greater than 300 micrograms/min) n = 6.

Saliva was collected for one minute following **stimulation** with 1 ml 10% citric acid, and the concentration of **albumin** was measured by a sensitive ELISA method. No significant difference in salivary **albumin** concentration was found between the control group and any of the diabetic groups. Thus, although urinary **albumin** excretion was increased, suggesting altered capillary

permeability, simultaneous leakage of albumin into saliva was not observed. Measurement of salivary **albumin** concentration does not, therefore, provide a marker of occult microvascular disease in diabetes.

L19 ANSWER 3 OF 15 MEDLINE
ACCESSION NUMBER: 88298988 MEDLINE
DOCUMENT NUMBER: 88298988 PubMed ID: 2969903
TITLE: A solid phase enzyme immunoassay for the measurement of urinary albumin and the detection of microalbuminuria.
AUTHOR: Coppo R; Amore A; Roccatello D; Formica M; Beltrame G; Malavasi F; Sena L M; Piccoli G
CORPORATE SOURCE: Department of Medical Nephrology, University of Turin, Italy.
SOURCE: JOURNAL OF DIABETIC COMPLICATIONS, (1987 Apr-Jun) 1 (2) 58-60.
Journal code: HNO; 8708656. ISSN: 0891-6632.
PUB. COUNTRY: United States
Journal; Article; (JOURNAL ARTICLE)
LANGUAGE: English
FILE SEGMENT: Priority Journals
ENTRY MONTH: 198809
ENTRY DATE: Entered STN: 19900308
Last Updated on STN: 19900308
Entered Medline: 19880915

AB A test for the measurement of trace urinary albumin concentrations, which is suitable for the detection of microalbuminuria, was developed. The technique is an indirect enzyme-linked assay (**ELISA**) in which a fixed amount of **anti-albumin antibody** is placed into polystyrene tubes coated with human albumin, together with the urine sample to be tested. The albumin in the test specimen competes with the solid-phase albumin for binding to the added antibody. The test is precise (inter- and intra-assay coefficients of variation were 8.2% and 7.8%, respectively), accurate (mean recovery 102-106% for two human albumin preparations), and sensitive (detection limit 0.9 micrograms/ml). These characteristics are not dissimilar from those of the radioimmunoassay reported in the literature, with the advantages of being completely safe, easy to perform, and not requiring expensive equipment. Using this assay the urinary albumin excretion in 20 normal subjects was found to be 2.5 +/- 2.2 micrograms/min (range 0.9-7.5 micrograms/min) after 8 hours of bed rest and 4.5 +/- 5.7 micrograms/min (range 1.5-2.0 micrograms/min) after 8 hours of moderate physical activity.

AB . . . urinary albumin concentrations, which is suitable for the detection of microalbuminuria, was developed. The technique is an indirect enzyme-linked assay (**ELISA**) in which a fixed amount of **anti-albumin antibody** is placed into polystyrene tubes coated with human albumin, together with the urine sample to be tested. The albumin in. . .

L19 ANSWER 11 OF 15 USPATFULL
ACCESSION NUMBER: 97:49518 USPATFULL
TITLE: Method of detecting bone acidic glycoprotein-75 and
its
INVENTOR(S): Gorski, Jeffrey P., Prairie Village, KS, United States
PATENT ASSIGNEE(S): Curators of the University of Missouri, Columbia, MO,
United States (U.S. corporation)

	NUMBER	KIND	DATE
PATENT INFORMATION:	US 5637466		19970610
APPLICATION INFO.:	US 1993-116480		19930903 (8)
RELATED APPLN. INFO.:	Continuation of Ser. No. US 1992-825509, filed on 24 Jan 1992, now abandoned which is a continuation-in-part		
	of Ser. No. US 1990-580790, filed on 11 Sep 1990, now abandoned		
DOCUMENT TYPE:	Utility		
PRIMARY EXAMINER:	Feisee, Lila		
ASSISTANT EXAMINER:	Wolski, Susan C.		
LEGAL REPRESENTATIVE:	Kohn & Associates		
NUMBER OF CLAIMS:	5		
EXEMPLARY CLAIM:	1		
NUMBER OF DRAWINGS:	17 Drawing Figure(s); 15 Drawing Page(s)		
LINE COUNT:	944		

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB A method of detecting bone acidic glycoprotein-75 (BAG-75) antigen includes the steps incubating a serum or synovial fluid sample with anti-BAG antibody, reacting the incubated sample with a signal generating antibody to the anti-BAG-75 antibody, and detecting the signal as an indication of BAG-75 antigen in the serum. Antibodies for use in the test for detecting BAG-75 antigen in serum and synovial

fluid

samples includes BAG-75 #3-13 peptide anti-serum, anti-BAG-75 protein anti-serum, and monoclonal antibodies against the BAG-75 protein, the antibodies recognizing the 75,000 molecular weight BAG-75 precursor protein and the 50,000 molecular weight BAG-75 fragment in serum and synovial fluid. Molecular weight assignments are based upon electrophoretic mobilities under denaturing conditions.

DETD . . . with anti-BAG-75 peptide #3-13 antibodies. As set forth below in detail, applicants research utilized several types of antibody dependent methods: **ELISA**, RIA (radioaminoassay), and immunoblotting or Western blotting.

DETD **ELISA Assays**

DETD . . . set was incubated with preimmune rabbit serum (negative control). Several positive control wells were also included in each assay (i.e. **anti-albumin antibodies** with albumin protein adsorbed to plate). Wells were washed with phosphate-buffered saline containing 0.05% Tween 20 and then incubated with. . .

DETD both . . . demonstrated by the titration study illustrated in FIG. 1,

types of antisera recognize purified BAG-75 protein (molecular weight=75,000) in **ELISA** assays. Whereas nonimmune serum gave a background response over the entire range of antigen tested, the anti-peptide and anti-protein sera. . .

(FILE 'HOME' ENTERED AT 11:24:32 ON 26 JUN 2001)

FILE 'MEDLINE, EMBASE, SCISEARCH, USPATFULL' ENTERED AT 11:24:47 ON 26
JUN 2001

L1 0 S SALIVA (P) MUCOPOLYSSACCHARIDE? (P) (FILTER? OR FILTRATION)
L2 0 S SALIVA (P) MUCOPOLYSSACCHARIDE?
L3 0 S SALIVA (6P) MUCOPOLYSSACCHARIDE?
L4 1 S SALIVA (6P) ?SSACCHARIDE?
L5 7 S SALIVA (6P) ?SACCHARIDE?
L6 1267 S SALIVA (6P) ?SACCHARIDE?
L7 61 S SALIVA (6P) MUCOPOLYSACCHARIDE?
L8 31 S L7 AND (FILTER? OR FILTRATION)
L9 31 DUP REM L8 (0 DUPLICATES REMOVED)
L10 986 S SALIVA (P) (FILTER? OR FILTRATION)
L11 3 S L10 (6P) MUCOPOLYSACCHARIDE?
L12 3 DUP REM L11 (0 DUPLICATES REMOVED)

L12 ANSWER 2 OF 3 USPATFULL
ACCESSION NUMBER: 92:38314 USPATFULL
TITLE: Treating body fluids for diagnostic testing
INVENTOR(S): Fellman, Jack H., Portland, OR, United States
Goldstein, Andrew S., Portland, OR, United States
PATENT ASSIGNEE(S): Epitope, Inc., Beaverton, OR, United States (U.S.
corporation)

	NUMBER	KIND	DATE
PATENT INFORMATION:	US 5112758		19920512
APPLICATION INFO.:	US 1988-192015		19880509 (7)
DOCUMENT TYPE:		Utility	
PRIMARY EXAMINER:		Rosen, Sam	
LEGAL REPRESENTATIVE:		Wegner, Cantor, Mueller & Player	
NUMBER OF CLAIMS:	26		
EXEMPLARY CLAIM:	1		
LINE COUNT:	309		

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB A method of reducing the viscosity of a body fluid comprises mixing a body fluid with a cationic quaternary ammonium reagent. The body fluid is a mucopolysaccharide-containing body fluid which will be tested for a metabolite.

SUMM This invention relates to the treatment of **mucopolysaccharide**-containing body fluids prior to testing for diagnostic purposes. In particular, this invention relates to the treatment of saliva prior to.

SUMM **Mucopolysaccharide**-containing body fluids, such as saliva, contain antibodies and other metabolites that are useful in the diagnosis of diseases, including those of bacterial, viral, and metabolic origin. However, the viscous nature of such fluids, due to the

nature of **mucopolysaccharides**, makes testing of these fluids difficult.

SUMM **Saliva** in particular presents problems as a diagnostic indicator. In order to prepare **saliva** for any laboratory testing procedure, the **saliva** must be rendered sufficiently fluid (i.e., viscosity must be reduced) and free from debris.

Previously

known techniques used to remove debris include centrifugation and **filtration**. However, no satisfactory method for reducing **saliva** viscosity resulting from **mucopolysaccharides** is currently available.

SUMM An objective of the present invention is to develop a satisfactory method for reducing the viscosity of **mucopolysaccharide**-containing body fluids, in particularly saliva, for diagnostic testing purposes. Another object of the present invention is to provide a practical.

SUMM Viscosity reduction is caused by chemical interaction between the poly anionic **mucopolysaccharides** (comprising neuraminic acid and sulfated residues) with the cationic quaternary ammonium reagents. For example, electrostatic interaction between hexadecyltrimethylammonium chloride, a quaternary ammonium salt, and saliva **mucopolysaccharides** produces an insoluble aggregate. This results from the fact that long chain alkylquaternary ammonium detergents are soluble by nature of their highly hydrated chloride counter ion. When the hydrated chloride ion is displaced by the anionic **mucopolysaccharide**, the quaternary ammonium complex is rendered

insoluble. Thus, many diverse quaternary ammonium compounds are useful in accordance with the present.

L12 ANSWER 3 OF 3 USPATFULL

ACCESSION NUMBER: 89:24723 USPATFULL
TITLE: Oral fluid collection article
INVENTOR(S): Schramm, Willfried, Ann Arbor, MI, United States
PATENT ASSIGNEE(S): BioQuant, Inc., Ann Arbor, MI, United States (U.S. corporation)

	NUMBER	KIND	DATE
PATENT INFORMATION:	US 4817632		19890404
APPLICATION INFO.:	US 1987-65559		19870623 (7)
DOCUMENT TYPE:	Utility		
PRIMARY EXAMINER:	Hindenburg, Max		
LEGAL REPRESENTATIVE:	Reising, Ethington, Barnard, Perry & Milton		
NUMBER OF CLAIMS:	13		
EXEMPLARY CLAIM:	1		
NUMBER OF DRAWINGS:	4 Drawing Figure(s); 2 Drawing Page(s)		
LINE COUNT:	338		

AB The present invention is an oral fluid collection article for placement in the buccal cavity of an individual for the collection and filtering of a saliva fluid. The collection article has a semi-permeable membrane container enclosing an osmotic substance means.

SUMM . . . remain problems in the collection of saliva and in the handling of saliva by laboratory technicians. For instance, saliva contains **mucopolysaccharides** which contribute to the highly viscous, stringy or sticky consistency which creates problems in pipetting and measuring of the saliva. . . .

SUMM Variations in the consistency and contents of **saliva** also creates problems in its handling such that a centrifugal apparatus or other **filtering** or separation device must be used to separate and purify the sample from the undesirable particulate matter contained in the **saliva** prior to analysis. Additionally, the pipetting and measuring of **saliva** is difficult due to the stringy or viscous consistency. For these reasons, it is difficult for technicians to handle samples of **saliva**.

L13 ANSWER 2 OF 4 USPATFULL
ACCESSION NUMBER: 92:38314 USPATFULL
TITLE: Treating body fluids for diagnostic testing
INVENTOR(S): Fellman, Jack H., Portland, OR, United States
PATENT ASSIGNEE(S): Goldstein, Andrew S., Portland, OR, United States
Epitope, Inc., Beaverton, OR, United States (U.S.
corporation)

	NUMBER	KIND	DATE
PATENT INFORMATION:	US 5112758		19920512
APPLICATION INFO.:	US 1988-192015		19880509 (7)
DOCUMENT TYPE:	Utility		
PRIMARY EXAMINER:	Rosen, Sam		
LEGAL REPRESENTATIVE:	Wegner, Cantor, Mueller & Player		
NUMBER OF CLAIMS:	26		
EXEMPLARY CLAIM:	1		
LINE COUNT:	309		

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L13 ANSWER 3 OF 4 USPATFULL
ACCESSION NUMBER: 89:24723 USPATFULL
TITLE: Oral fluid collection article
INVENTOR(S): Schramm, Willfried, Ann Arbor, MI, United States
PATENT ASSIGNEE(S): BioQuant, Inc., Ann Arbor, MI, United States (U.S.
corporation)

	NUMBER	KIND	DATE
PATENT INFORMATION:	US 4817632		19890404
APPLICATION INFO.:	US 1987-65559		19870623 (7)
DOCUMENT TYPE:	Utility		
PRIMARY EXAMINER:	Hindenburg, Max		
LEGAL REPRESENTATIVE:	Reising, Ethington, Barnard, Perry & Milton		
NUMBER OF CLAIMS:	13		
EXEMPLARY CLAIM:	1		
NUMBER OF DRAWINGS:	4 Drawing Figure(s); 2 Drawing Page(s)		
LINE COUNT:	338		

L13 ANSWER 4 OF 4 USPATFULL
ACCESSION NUMBER: 78:45695 USPATFULL
TITLE: Process for extracting and processing glycoproteins,
INVENTOR(S): mucopolysaccharides and accompanying substances
Thomas, Andre, 8, RUE Pierre et Marie Curie, 75005
Paris, France

	NUMBER	KIND	DATE
PATENT INFORMATION:	US 4108849		19780822
APPLICATION INFO.:	US 1975-552061		19750224 (5)

	NUMBER	DATE
PRIORITY INFORMATION:	FR 1974-6369	19740225
	FR 1974-27513	19740808
	FR 1975-4148	19750211
DOCUMENT TYPE:	Utility	
PRIMARY EXAMINER:	Danison, Walter C.	
LEGAL REPRESENTATIVE:	Ostrolenk, Faber, Gerb & Soffen	

NUMBER OF CLAIMS: 13
EXEMPLARY CLAIM: 1
LINE COUNT: 547
CAS INDEXING IS AVAILABLE FOR THIS PATENT.