Finite-state Automata over infinite words

A Finite-sate Automaton (FA) consists of

- A finite input alphabet Σ
- A finite set of states Q
- A transition relation $\Delta \subseteq Q \times \Sigma \times Q$
- A start state $q_0 \in Q$
- A set of accepting states $F \subseteq Q$

Then

- 1. If the input is finite, i.e. in Σ^* , we have a non-deterministic FA (with no ϵ transitions)
- 2. If the input is infinite, i.e. in Σ^{ω} , we have A Buchi Automaton
- 3. If Δ is a partial function $Q \times \Sigma \to Q$, we have a Deterministic Automaton

1 Acceptance conditions

NFA or DFA accepts a finite word $w_1w_2...w_n \in \Sigma^*$ if there is a sequence of states $r_0, r_1, r_2, ..., r_n$ satisfying the following conditions

- 1. $r_0 = q_0$
- 2. (r_i, w_{i+1}, r_{i+1}) ∈ ∆ for every $i, \le i \le n 1$
- 3. $r_n \in F$

Buchi Automaton accepts $w_1w_2... \in \Sigma^{\omega}$ if there is a sequence of states $r_0, r_1, r_2, ... \in Q^{\omega}$ satisfying the following conditions

- 1. $r_0 = q_0$
- 2. $(r_i, w_{i+1}, r_{i+1}) \in \Delta$ for every i, i > 0
- 3. There are infinitely many r_i 's in F

2 Regular Languages

Regular language - Some DFA/NFA recognises it

Theorem - A language is regular iff it could be described by a regular expression

A regular language/expression is built upon the basic ones, which are any $s \in \Sigma$, the regular symbol ϵ or the empty language \emptyset , using the following operations (where A and B are regular)

- 1. $A \cup B$, which is the set-theoretic union
- 2. $A \circ B$ (or simply AB) which is $\{ab | a \in A, b \in B\}$
- 3. A*, which is $\{a_1...a_n | a_i \in A, n \ge 0\}$

3 ω -regular languages

Definition: ω regular language

An w-regular language/expression is built upon regular languages, using the following expressions

- 1. $A \cup B$, where both A and B are ω -regular
- 2. *AB*, where A is regular and B is ω -regular
- 3. A^{ω} , which is $\{a_1...|a_i \in A\}$, i.e. an infinite sequence of words from A, where A is regular and doesn't contain the empty word

Theorem - An ω -language is ω -regular iff some non-deterministic Buchi Automaton recognises it

4 Limits of Regular Languages

Definition: Limit of a regular language

Let A be a regular language. The limit of A limA is the language $\{a \in \Sigma^{\omega} | a \text{ has infinitely many prefixes in A} \}$

Theorem: An ω -language is a limit of a regular language iff some deterministic Buchi Automaton recognises it