Una Introduccion a R

Edgar Acuna (academic.uprm.edu/eacuna/introRacuna2018.pdf) Computational and Statistical Learning Group Departament of Mathematics University of Puerto Rico at Mayaguez Agosto, 2018

Contenido

- Introduccion
- Interfaces graficos para R:Rstudio
- Leyendo datos en R
- Operaciones aritmeticas basicas
- Funciones estadisticas basicas
- Graficas :GGplot2 y ggplotgui
- Matrices y DataFrames
- Programacion en R
- Haciendo aplicaciones de R en la web: Shiny
- Haciendo paquetes en R: Dprep

Introduccion

- R (Ihaka and Gentleman, 1994) es una implementacion gratuita del programa de computacion estadistica, S, el cual se origino a principios de los 80's. S-Plus una implementacion comercial de S que incluye un interface grafico(GUI), estuvo disponible desde los inicios de los 90's hasta el 2010 aprox.
- R mayormente usa comandos de linea e incluye un limitado GUI. Hay varias propuestas para GUI's en R, siendo Rstudio, Rcmdr y Deducer los mas usados.
- R tiene excelente capacidades de graficas.
- R esta disponible para Windows, MacOs. Unix/Linux.
- R tiene muy buena documentacion y ayuda disponible.

Porque usar R?

- Los metodos estadisticos mas recientes aparecen primero en R.
- Existen muchas librerias disponibles (11,926, Enero 2018) para aplicar diversos metodos estadisticos.
- Crea excelente graficas con relativa facilidad.
- Es facil de usar.
- Puede leer datos de diferente sistemas de bases de datos (SQL, Oracle, etc) y en diferentes formatos csv, xml, json.
- Puede interactuar con muchos lenguajes de Programacion: Java, C++, Python, etc.
- Es gratis.

Instalando R

- 1-EntrarWebsite:cran.r-project.org.
- 2-Escoger el sistema operativo en donde va a usar R: Linux, MacOs o Windows.
- 3. En la pantalla R for Windows escoger el subdirectorio base
- 4. En la pantalla R-3.5.1 for Windows hacer un click a Download R-3.5.1 for Windows para descargar el archivo R-3.5.1-win.exe
- 5. Localizar el archivo R-3.5.1-win.exe en su computadora y ejecutarlo eso instalara R

El ambiente grafico de R

UPRM, Agosto 2018

Edgar

Ambientes graficos (GUI) de R

- 1-R commander Rcmd es un paquete que se instala dentro de R (John Fox, 2007)
- 2-Para instalar Rstudio entrar a <u>www.rstudio.com</u> (Hadley Wickham, 2011)
- 3. Para instalar Deducer entrar a <u>www.deducer.org</u>. (Ian Fellows, 2011)
- 4. Para instalar R Analytic Flow entrar a https://r.analyticflow.com/en/ (Ef-Prtime, Japan 2018)
- De todos ellos Rstudio es el que ha ganado mas popularidad

El ambiente grafico Rcmdr de R

Usando el gui R Commander

File: Menu de opciones para cargar y guardar archivos log/script.

Guadar las salidas y el espacio de trabajo de R y salir.

Edit: Opciones para editar el contenido de las ventanas output y log/script..

Data: contiene opciones para leer y manipular datos.

Statistics: Submenus conteniendo opciones para analisis estadistico basico.

Graphs: Contiene opciones para crear graficas estadisticas.

Models: Contiene opciones para obtener resumenes numericos, hacer pruebas de hipotesis, intervalos de confianza y modelos de regresion.

Distributions: Contiene opciones para calcular probabilidades, obtener quantiles, and graficas de distribuciones estadisticas conocidas.

Tools: Menu de opciones para cargar paquetes de R y modificar opciones de Rcmdr

Help: Menu de opciones para obtener informacion acerca del Remdr UPRM, Agosto 2018

El ambiente grafico Deducer de R

El ambiente grafico de RAnalyticF

El entorno de Desarrollo (IDE) Rstudio

Operaciones aritmeticas basicas

```
2+3 #Suma
2-3 #Resta
2*3 #Producto
2/3 # Division
2^3 #Potencia
(4^2) - (3*2) #Operaciones combinadas
2^-3
```

Funciones matematicas

```
>exp(3)
[1] 20.08554
> \cos(pi)
\lceil 1 \rceil - 1
> \sin(pi/2)
\lceil 1 \rceil 1
> \tan(pi/4)
[1]1
log(100)
log(100, base=10)
log(100, b=2)
help(log)
```

Usando la ayuda de R

```
help(plot) ?plot
```

help.search("plot") #lista todas las funciones que tiene el string "plot". Un comando similar es

apropos("plot")

Tambien hay un menu de help, en donde hay manuales en formatos pdf e información acerca de comandos y paquetes en formato html.

help(package=Rcmdr) # da ayuda acerca el paquete Rcmdr.

La ventana de ayuda para plot (vista parcial)

```
R Documentation
plot
                   package:graphics
Generic X-Y Plotting
Description:
    Generic function for plotting of R objects. For more details
     about the graphical parameter arguments, see 'par'.
Usage:
    plot(x, v, ...)
Arguments:
      x: the coordinates of points in the plot. Alternatively, a
          single plotting structure, function or any R object with a
          'plot' method can be provided.
       y: the y coordinates of points in the plot, optional if 'x' is
          an appropriate structure.
```

Emtrando datos en R

```
x=c(1,2,3,4) #combinado varios valores
x=1:4 # vector formado por una secuencia
x=rep(1,4) \# vector de 4 unos
x=seq(2, 8, by=2) # vector: 2,4,6,8
x=seq(0, 1, length=11) #vector desde 0 ... hasta 1.0
#Tambien se puede copiar datos de EXCEL o WORD usando
la function scan
x=scan()
> x = scan()
1:6
2: 7
3:4
4:
Read 3 items
```

Manipulando un vector de datos

```
x[2] # el segundo elemento del vector x
x[c(2,4,6)] # vector conteniendo los elementos 2,4 y 6 de x
x[-c(1,3)] # vector sin incluir los elementos 1 y 3 de x
x[x < 4] # vector que contiene los elementos de x t.q x < 4.
x[x!=4] # vector que contiene los elementos de x distintos de 4.
y=x/2 # divide los elementos del vector x por 2
z=x+y #suma los vectores x y y
\log(x, 10) #logaritmos en base 10
y = \operatorname{sqrt}(x) #raiz cuadrada
```

Leyendo datos de un archivo

read.table("c://esma3016/colon.txt") #lee los datos que estan en colon.txt localizado en c://esma3016.

clase=read.table("http://academic.uprm.edu/eacuna/clase97.txt", header=T) #lee los datos clase97.txt que estan en mi pagina de internet y los guarda en el objeto clase. En la primera fila aparecen los nombres de las variables.

head(clase) # muestra las seis primeras filas de clase edad sexo escuela programa creditos gpa familia hestud htv

```
1 21 f publ biol 119 3.6 3 35 10
```

2 18 f priv mbio 15 3.6 3 30 10

3

tail(clase) #muestra las ultimas seis filas de clase

Leyendo datos de un archivo (cont)

Otra forma de leer datos de la internet es usando la funcion getURL de la libreria RCurl().

getURL("http://academic.uprm.edu/eacuna/clase97.txt")

- Tambien hay interfaces que permiten leer datos de otros programas estadisticos como SAS, SPPS y MINITAB.
- Para leer datos guardados Excel es mejor tenerlo en el fomato csv y usar el commando read.csv("c://datos1.csv", sep=";")
- Otra alternativas para leer datos son usar las librerias data.table, foreign, xlsx o RODBC.
- Se pueden leer tablas de datos directamente de la internet usando las librerias rvest y XML.
- Cuando los datos estan en un paquete (libreria de R) se usa simplemente: data(datospaq), donde datospaq es un conjunto de datos que viene con el paquete.

Corriendo scripts en R

```
Se puede escribir varias lineas de comandos y guardarlos en un archivo
con la extension R. Por ejemplo, el archivo comandos 1. R
contiene las siguientes lineas
x=c(1,2,3,4) \# combinar
cat("\nEste es el vector x\n")
X
y=1:4 # vector formado por una secuencia
cat("El vector y es:\n")
print(y)
x1=seq(1,4) \# vector de 4 unos
cat("\n El vector x1 es\n")
print(x1)
x2 = seq(2, 8, by=2) # vector: 2,4,6,8
cat("\n El vector x2 es",x2,"\n")
x3=seq(0, 1, length=11)
cat("El vector x3 es",x3,"\n")
```

Corriendo scripts en R(cont)

Para correr el script, abrir R y cuando aparece el prompt escribir el comando

Source("c://com1.R") # escribir el path adecuado o del menu File elegir la opcion Source R code

Otra opcion es abrir Rstudio y en el Menu File elegir Open File y accesar al file com1.R; Luego marcar todas las lineas que quiere ejecutar y darle run or darle CTRL+SHIFT+ENTER para ejecutar todo. Los resultados apareceran en la ventana Console

Funciones estadisticas basicas

x=c(18,24,17,23,23,21,19,18,24,21)

mean(x) #calcula la media

median(x) #calcula la mediana

var(x) #calcula la varianza de x

sd(x) #calcula la desviacion estandar

quantile(x,prob=c(.1,.9)) # percentiles del 10 y 90%

UPRM, Agosto 2018

Funciones estadisticas basicas

```
summary(x) # calcula varias medidas estadisticas
Min. 1st Qu. Median Mean 3rd Qu. Max.
13.00 18.50 23.50 23.00 27.75 32.00
```

sort(x) #ordena los valores de x en forma creciente

sort(x,decreasing=T) # ordena en forma decreciente

table(x) #muestra las frecuencias absolutas de x

Graficas estadisticas univariadas

```
edad=c(18,24,19,23,22,32,17,21,23,20)
hist(edad) #hace un histogram
boxplot(edad,horizontal=T) #Hace un diagrama de caja
#Muestra las dos figuras en la misma pantalla
par(mfrow=c(1,2))
hist(edad,main="histograma de edad",col="green")
boxplot(edad,main="boxplot de edad", col=4)
programas=c("bio", "sico", "adem", "sico", "bio", "sico", "adem", "ade
m", "sico")
```

Graficas estadisticas univariadas

Grafica de Barras

barplot(table(programas),col=c("red","blue","green"))

UPRM, Agosto 2018

Edgar Acuna

Pie-charts

pie(table(programas),col=c("red","blue","green"),main="distribucion de estudiantes por programa",cex.matribucion de Edgar Acuna

Grafica en dos dimensiones

```
htv=c(16,18,19,21,23,24,25,27,28,30)
gpa=c(3.17,3.45,2.95,2.71,2.64,2.65,2.37,2.68,2.11,2.09)
"V")
plot(htv,gpa,main="htv versus gpa",col="red")
boxplot(gpa~as.factor(genero),col="green")
title("GPA por genero")
edad=c(20,17,21,23,22,24,21,18,19,22)
```

Scatterplot

Regresion y correlacion lineal simple

```
> \overline{\text{cor}(\text{htv,gpa})}
[1] -0.9015101
> rl=lm(gpa~htv)
> summary(rl)
Call:
lm(formula = gpa \sim htv)
Residuals:
  Min 1Q Median 3Q Max
-0.15562 -0.14167 -0.06545 0.03194 0.33462
Coefficients:
       Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.64495 0.33899 13.702 7.76e-07 ***
       htv___
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
Residual standard error: 0.1982 on 8 degrees of freedom
Multiple R-Squared: 0.8127, Adjusted R-squared: 0.7893
F-statistic: 34.72 on 1 and 8 DF, p-value: 0.000365
```

UPRM, Agosto 2018 Edgar Acuna

linea de regresion mostrando la relacion entre htv y gpa

UPRM, Agosto 2018 Edgar Acuna

Boxplots parar comparar grupos

Comparando dos grupos

t.test(gpa~as.factor(genero))

Welch Two Sample t-test

```
data: gpa by as.factor(genero)

t = -0.5372, df = 4.592, p-value = 0.6161

alternative hypothesis: true difference in means is not equal to

95 percent confidence interval:
-1.0156057 0.6722724

sample estimates:
mean in group M mean in group V

2.613333 2.785000
```

Plot en 3 dimesniones

```
color=c("red","blue")[as.factor(genero)]
> color
[1] "red" "blue" "blue" "red" "red" "blue" "red" "red"
"red" "blue"
>scatterplot3d(gpa,htv,edad,color) #requiere instalar el paquete
scatterplot3d
x = seq(-3, 3, length = 30)
y=x
f=function(x,y) \{ (1/(2*pi*.6))*exp(-(1/.72)*(x^2-1.6*x*y+y^2)
)} # definiendo la función normal bivariada
z = outer(x, y, f) # calculando la funcion en cada par (x,y)
persp(x, y, z, theta = 30, phi = 30, expand = 0.5, col =
"lightblue")
```

Plot en 3 dimensiones

Grafica de una densidad normal bivariada (0,0,1,1,.8)

Grafica en mas de tres dimensiones

pairs(clase[,c(1,5,6,8)], pch=21, bg=c("red","blue")[unclass(clase\$sexo)])

Librerias para graficas en R

Ggplot2 (Hadley Wickham, 2009)
Plolty (2014)
Ggvis (Hadley Wickham, 2014)

Histograma en Plotly

Scatterplot en ggvis

library(ggvis)
data(mtcars)
ggvis(mtcars,~wt,~mpg)
Edgar Acuna

ggplot2

Graficas de barras y pie-chart

```
datos=read.table("http://academic.uprm.edu/eacuna/clase97.txt",
na.strings="*",header=T)
attach(datos)
#Usando la libreria ggplot2
library(ggplot2)
#grafica de barras verticales
ggplot(datos, aes(factor(programa)))+geom bar(fill="green")
#Grafica de barras horizontales
ggplot(datos, aes(factor(programa)))+geom bar(fill="red")+coord flip()
#Grafica de pie-chart
barras=ggplot(datos,aes(x=factor(1),fill=factor(programa)))+geom_bar(
width=1)
barras+ coord polar("y")
                              UPRM, Agosto 2018
```

Edgar Acuna

UPRM, Agosto 2018 Edgar Acuna

UPRM, Agosto 2018 Edgar Acuna

Boxplots usando ggplot

```
#Boxplot elegante
(datos,aes(x=1,y=edad))+geom boxplot()+theme(axis.text.x=element
 blank(),
panel.background = element rect(fill = "lightblue",colour =
"lightblue", size = 0.5, linetype = "solid"),
panel.grid.major = element line(size = 0.5, linetype = 'solid', colour =
"white"),
panel.grid.minor = element line(size = 0.25, linetype = 'solid',colour
= "white"))+labs(x=" ")
#Boxplot para comparar dos grupos
ggplot(datos,aes(x=sexo,y=gpa,fill=sexo))+geom boxplot()
```


UPRM, Agosto 2018 Edgar Acuna

Scatterplot y regression lineal

```
datos1=read.table("http://academic.uprm.edu/eacuna/mortalidad.txt",he
ader=T)
attach(datos1)
#Usando la libreria ggplot2
ggplot(datos1,aes(x=porc.inmuniz,y=tasa.mort,label=nacion))+
geom_point()+geom_text(hjust=1,size=2)
```

```
#scatter plot incluyendo la linea de regresion
p=ggplot(datos1,aes(x=porc.inmuniz,y=tasa.mort))+geom_smooth(met hod="lm",se=FALSE,color="red",formula=y~x)+geom_point()
p +ggtitle("linea de regression")
```

UPRM, Agosto 2018

Edgar

UPRM, Agosto 2018 Edgar Acuna

ggplotGUI

Introducida en Julio el 2017.

Facilita el analisis grafico de bases de datos Reuqire que tenga instalado la libreria shiny

Despues de dar library(shiny) y library(ggplotgui)

Se activa usando el commando ggplot_shiny("filename"). Se puede usar desde R o Rstudio.

Usar la opcion Data Upload para cargar su propios datos

ggplot GUI

Matrices y Dataframes

```
x=c(1,4,3,7,5,8)
xmat=matrix(x,nrow=2,ncol=3) #convirtiendo el
vector en matriz
xmat
     [,1] [,2] [,3]
[1,] 1 3 5
[2,] 4 7 8
dim(xmat) #Tamano de la matriz(filas y columnas)
xmat[1,2] # el elemento de la matriz en la posicion (1,2)
[1]3
xmat[,3] # la tercera columna de la matriz
[1]58
xmat[2,] # la segunda fila de la matriz
[1] 4 7 8
```

Anadiendo y quitando columns

```
> addcol=c(9,2)
>
  newmat=cbind(xmat,addcol)
> newmat
            addcol
[1,] 1 5 7
[2,] 3 4 8
> mat2=newmat[,-c(3,4]) #elimina columnas 3 y 4
> mat2
[1,] 15
[2,] 3 4
```

Anadiendo y quitando filas

```
> addrow=c(9,2,7)
> newmat=rbind(xmat,addrow)
> newmat
  V1 V2 V3
1 1 3 5
2 4 7 8
>mat2=newmat[-c(1,2),] #elimina filas 1 y 2
> mat2
V1 V2 V3
3 9 2 7
```

Haciendo operaciones con matrices

```
m1+m2 #suma de matrices
t(m1) # transpuesta de una matriz
t(m1)%*%m1 # producto de matrices t(m1) y m1
det(m1) # determinante de una matriz
solve(m1) #inversa de una matriz
eigen(m1) # produce los valores y vectores propios de la
matriz m1
```

Hallando estadisticas de filas y columnas

```
colSums(m1) # suma de columnas
rowSums(m1) # suma de filas
apply(m1,2,sum) # suma de columnas
apply(m1,1,sum) # suma de filas
apply(m1,1,max) # maximo de las filas
apply(m1,2,min) # minimo de las columnas
apply(m1,2,mean) # media de las columnas
```

UPRM, Agosto 2018 Edgar Acuna

Convirtiendo una matriz en dataframe

```
xmat=as.data.frame(xmat)
xmat
V1 V2 V3
1 85 86 87
2 85 91 98
> rownames(xmat) #nombres de las filas
[1] "1" "2"
> colnames(xmat) #nombres de las columnas
[1] "V1" "V2" "V3"
```

En un dataframe las columnas y las filas tienen nombres y se pueden hacer las mismas operaciones que con una matriz. Pero una matriz per mite solo numeros mientras que en un dataframe se pueden incluir va riables categoricas y missing values.

Subsetting un dataframe

```
clase=read.table("http://academic.uprm.edu/eacuna/clase97.txt",head er=T)
clase.pub=subset(clase,escuela=="pub") #solo los estudiantes de
publica
clase.pubyf= subset(clase,escuela=="pub" & sexo=="f") #solo los
estudiantes de publica y mujeres
clase.biologpa= subset(clase,programa=="biol" | gpa>3.25) #solo los
estudiantes de biol o con gpa mayor de 3.25
```

Subsetting un dataframe

```
#Extrae todos los estudiantes que son mujeres y que tienen promedio mas de 3.20 clase1=clase[which(clase$sexo=='f' & clase$gpa > 3.20),] #Extrae todos los estudiantes que son mujeres o que tienen promedio clase2=clase[which(clase$sexo=='f' | clase$gpa > 3.20),] #divide al conjunto clase en dos los datos de las mujeres y los varones split(clase,as.factor(clase$sexo))
```

Uso de For

```
for (x in 1:4) { cat(x, "al cuadrado es", x^2, "\n")}
    Output:
1 al cuadrado es 1
2 al cuadrado es 4
3 al cuadrado es 9
4 al cuadrado es 16
x=c(3,7,12) for ( i in x) {
cat( i, "al cuadrado es", i^2, "\n")}
3 al cuadrado es 9
7 al cuadrado es 49
12 al cuadrado es 144
```

Uso del condicional If

```
gpa = 1.4
if(gpa >= 2.5)
{cat("Bienvenido al Colegio!")}else
{cat("su solicitud fue denegada")}

Notar que el else tiene que estar en la misma
linea del bracket que Cierra el if
Ana=3
Rosa=25
if(Ana <= 5 && Rosa >= 10 || Rosa == 500 && Ana!=5)
{print("Ana and Rosa")}
```

Haciendo operaciones repetidas con while

```
number = 1
while(number < 200){
      print(number)
      number = number *2
1] 1
[1] 2
[1] 4
[1] 8
[1] 16
[1] 32
[1] 64
[1] 128
```

UPRM, Agosto 2018 Edgar Acuna

Construyendo funciones I

```
moda=function(x)
#Funcion que encuentra la moda de un vector x
 m1=sort(table(x),decreasing=T)
 moda=names(m1[m1==m1[1]])
 moda=as.numeric(moda)
 return(moda)
> x1=c(2,3,4,4,5,2,3,3,8)
> moda(x1)
[1]3
> x
[1] 1 3 4 5 3 2 4 5 7
> moda(x)
[1] 5 4 3
```

UPRM, Agosto 2018

Construyendo funciones II

```
tablafreq=function (x)
{#Tabla de frecuencias para datos discretos
n=length(x)
frec.abs=table(x)
frec.rel.porc=table(x)*100/n
frec.abs.acum=cumsum(frec.abs)
frec.rel.acum=cumsum(frec.rel.porc)
tabla=cbind(frec.abs,frec.rel.porc,frec.abs.acum,frec.rel.ac
um)
return(tabla)
```

Paquetes(librerias)

- •Un Paquete es un conjunto de funciones que realizan ciertas tareas especificas y que han sido construidas por diversos usuarios de R.
- •Hay mas de 11,000 paquetes disponibles en el website de R.
- •La mayoria de ellos se instalan eligiendo primero el menu Packages y luego la opcion Install Packages from CRAN.
- La calidad y la cantidad de funciones incluidas en los paquetes varia bastante.
- >library(Rcmdr) # carga el paquete Rcmdr
- >help(package="paquete") # da ayuda de como usar el paquete

Algunos paquetes disponibles

<u>fBasics</u> Financial Software Collection - fBasics

foreign Read Data Stored by Minitab, S, SAS, SPSS, Stata, Systat, dBase,

cluster Funciones para hacer clustering

dplyr Funciones para subsetting, summarizing, y juntar datasets

ggplot2 Funciones para hacer graficas de alta calidad

lubridate Funciones para trabajar facilnente con datos que tienen fecha y hora

manipulater Funciones para plots interactivos en Rstudio

Rcmdr R Commander

Rcpp Functiones para llamar en R programs escritos en c++

vcd Visualizing Categorical Data

Construyendo librerias

Aqui solo explicaremos como hacer una libreria local. Hacer una libreria para ponerlo en el cran es mas tedioso

- 1. Descargar Rtools del cran de R
- 2. Moficar su path. Abrir Control Panel, luego ir a System and Security y luego a System > Advanced System Settings > Environment Variables. Hallar la variable "Path" y anadir C:\Program Files\R\R\- 3.3\bin\x64;C:\Rtools\bin
- 2. Construir el esqueleto (versión básica) del paquete
- Supongamos que tiene varias funciones en su medio ambiente ("environment") de R, digamos "fun1", "fun2",..., "funN" las cuales han sido corridas individualmente y que se las quiere ensamblarlas y ponerlas todas a la vez en una librería llamada "mipaquete", la cual va a estar localizada en el directorio ("c:\Rpaquetes". Supongamos además que se usan los conjuntos de datos "dat1",..."datN".
- a. Entrar al medio ambiente de R
- b. Escribir el siguiente comando de línea dentro de R package.skeleton(name="mipaquete", list=c("fun1","fun2",....."funN","dat1,..."datN"), path="c://Rpaquetes"). UPRM, Agosto 2018 Edgar Acuna

Construyendo librerias

Por ejemplo package.skeleton(name="mipaquete", list=c("moda","tablafreq"), path="c://Rpaquetes"). En el subdirectorio mipaquete vana crearse dos subidrectorios R y man, en uno estan los codigos de las funciones y en otra la ayuda

3- Finalmente se construye el paquete dando en la Ventana de terminal el commando Rcmd build --binary mipaquete

Seguido del commando Rcmd INSTALL mynewpackage_1.0.tar.gz 4-Despues de esto se puede entrar a R y dar el commando library(mipaquete)

La Libreria Dprep

Package: dprep Type: Package

Title: Data Pre-Processing and Visualization Functions for Classification Version: 3.0.2

Date: 2015-11-14

Author: Edgar Acuna and the CASTLE research group at The University of Puerto Rico-

Mayaguez

Maintainer: Edgar Acuna edgar.acuna@upr.edu

Description: Data preprocessing techniques for classification. Functions for normalization, handling of missing values, discretization, outlier detection, feature selection, and data visualization are included.

Depends: R (>= 3.1.0), graphics, stats Imports: MASS, e1071, class, nnet, rpart, FNN,

StatMatch, rgl, methods

License: GPL LazyLoad: yes

NeedsCompilation: yes

Packaged: 2015-11-24 00:51:58 UTC; Edgar

Repository: CRAN

Date/Publication: 2015-11-24 07:46:38

Built: R 3.4.0; x86_64-w64-mingw32; 2017-06-21 03:40:56 UTC; windows

Archs: i386, x64 UPRM, Agosto 2018 Edgar Acuna

Aplicaciones Web Shinny

Crear un archivo server.R y otro ui.R dentro de un directorio
Ver varios ejemplos en la pagina de shiny
Aqui les muestro uno de mi proyecto

Conclusion

R es flexible y poderoso

- Facil de leer datos.
- Bastante capacidad de manipular datos.
- Enorme capacidad para hacer graficas.
- Un rango bien amplio de funciones estadisticas.
- Un gran numero de paquetes disponibles.
- Se puede guardar todo el trabajo que se hace en una sesion.