Remember:

Statements are represented by the letters: *p, q, r* Connectives used in this section are: *and, or, not*

In this section we will find the truth values, T or F, for compound statements (two or more statements put together by a connective). First let's use ordinary language and statements to create the rules for finding truth values. Then we will write the rule in symbol form.

1. AND

Find the truth value, T or F, of compound statements using the connective, **and**. and (\land) is a connective that implies 60 + 6 = 6.

EXAMPLE: "I want to go to dinner and a movie." This statement implies doing both activities.

Compound statement: Last night, we went to dinner and a movie.

Is p true? <u>yes</u> Is q true? <u>yes</u>

Is the compound statement **p** and **q** true? <u>yes</u>

Compound statement: Last night, we went to dinner and did not go to a movie.

Is the compound statement *p* and *q* true?

Create a truth value table of all the possible values for compound statements using, and:

Truth Table Rule for AND

2. or

Find the truth value, T or F, of compound statements using the connective, or. $or(\lor)$ is a connective that implies ore or the other or both

EXAMPLE: "I will help you paint, so I will paint the walls or the ceiling." This statement implies doing one of the activities or maybe both.

Compound statement: I painted your walls. I painted your ceiling.

Is p true? <u>yes</u> Is q true? <u>yes</u>

Is the compound statement p or q true? __yes__

Compound statement: I painted your walls. I did not paint your ceiling.

Is p true? <u>yes</u> Is q true? <u>no</u>

Is the compound statement **p** or **q** true? <u>yes</u>

Create a truth value table of all the possible values for compound statements using, or.

Truth Table Rule for OR

3. NOT

Find the truth value, T or F, of statements using not. not (~) is a negation that implies the opposite, complement

EXAMPLE: The United States has a president.

Statement: Obama) the President of the United States.

Is p true? <u>UES</u>

What is ~p = Obama was not president (false)

Statement: Jimmy Fallon, of The Tonight Show, is the President of the United States.

Is p true? NO

What is ~p = Jimmy Fallon is not president (true)

Create a truth value table of all the possible values for using, not:

Truth Table Rule for NOT

4. DeMorgan's Law: The complement (negation) of compound statements.

The complement of
$$p$$
 or q : $\sim (p \lor q) = \sim p \land \sim q$

The compliment of p and q:
$$\sim (p \land q) = \sim p \lor \sim q$$

EXAMPLE: use DeMorgan's law to negate the statements.

Statement: I got an A or I got a B on my test.

Negation: I did not get an A and I did not get a B on my test

Statement: It is summer and there is no snow.

Negation: It is not summer or there is snow

TRUTH VALUE EXAMPLES: If p is a false statement and q is a true statement, find the truth value for the given compound statements.

$$2.pvq = For T = T$$

5. TRUTH TABLES:

- 1. Draw a basic table
- 2. p and q are the statements and go on the left side of the table.

* You need to know how many basic combinations of TRUE and FALSE will be in your truth table (left side/column). In other words, how many rows are in the truth table? Use the same formula from Chapter 2, when we looked for the number of subsets created from one given set: 2ⁿ where n was the number of elements in a set. Now n will be the number of statements.

The formula: $\frac{\partial}{\partial}$ How many rows? $\frac{\partial^2 = \partial}{\partial}$ $\frac{\partial^3 = 4}{\partial}$ $\frac{\partial^3 = 8}{\partial}$

- 3. In many mathematical problems, sometimes you have several steps to get to the final answer. Create a column for each step, the last column being your final answer.
- 4. We solve math problems using Order of Operations, so you must fill in truth tables in a particular order, too:
 - ① Parentheses
 - Not
 - (3)And, Or
- 5. Refer back the basic truth table rules to follow the pattern and find your answers.

EXAMPLE: construct a truth table for the given compound statements. Use this page or your own notebook paper.

4.
$$(\sim p \land q) \land r$$
 $2^3 > 8 rows$

	3.2 continued	MATH 1010
		11 -11 10 10 10
	② O	
	~(prg) pg (prg) ~(pra)	
,	TTT F	
	T F F T	
-	FTFT	
	FF F T	
	<u> </u>	
	O 30 Final ans	wer
2)	~pv~q	
	p q ~p ~a ~p v~a	
7	T F F T T	
	F T F F T	
	FFTTT	
	1	
	Final Answer	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
3		
		6
		,

	3.2 Continued	MATH 1010
3	3 0 0 0 0 ~ q \ (~p \ v q)	
	P q mp (mpvq) na nan(mpva) T F F F F F T F F	
	T F F F F F F F F F F F T T T T	
4	(mpnq) Ar	
	PGT NP (~PAQ) (~PAQ) AT TTTFFFF	
	TFFFFFFFFF	
	FTTTTTFFF	
	PFF T F Final Answer	