Lecture 2 - Computational Complexity and Algorithm Design

Lan Peng, Ph.D.

School of Management, Shanghai University, Shanghai, China

"import numpy as np"

1 Preliminaries

1.1 How difficult is to solve an integer program?

- Hard!
- What is "hard"? \Rightarrow measurement of difficulties.
- \bullet \Rightarrow computational complexity \Rightarrow the art of classifying computational problems according to their resource usage.
- What is "algorithm"? \Rightarrow Given a string s, an algorithm takes the input s and within finite number of steps, returns an output string s'.
- What is "resource usage"? \Rightarrow How much time/space it takes for an algorithm to process s?

1.2 Asymptotic Notation

O-Notation Let f(n) and g(n) be real functions. We say f(n) = O(g(n)) if there exist positive constants n_0 and c such that

$$0 \le f(n) \le cg(n), \quad \forall n \ge n_0$$

A common trick that finds O(g(n)) for f(n) is to find function g(n) such that

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = C \quad \text{(constant)}$$

The O-Notation is referred as the asymptotic upper bound. The O-Notation is more widely used, since it can provide a clear estimate of the worst case time/space complexity of an algorithm that exclusively considers the critical grow factors.

Ω-Notation Let f(n) and g(n) be real functions. We say $f(n) = \Omega(g(n))$ if there exist positive constants n_0 and c such that

$$0 \le cg(n) \le f(n), \quad \forall n \ge n_0$$

The Ω -Notation is referred as the asymptotic lower bound. In addition:

Theorem 1.1. $f(n) = O(g(n)) \Leftrightarrow g(n) = \Theta(f(n))$

 Θ -Notation Let f(n) and g(n) be real functions. We say $f(n) = \Theta(g(n))$ if there exist positive constants n_0 , c_1 , and c_2 such that

$$c_1g(n) \le f(n) \le c_2g(n), \quad \forall n \ge n_0$$

The Θ -Notation is referred as the asymptotic tight bound. In addition:

Theorem 1.2.
$$f(n) = \Theta(g(n)) \Leftrightarrow f(n) = O(g(n))$$
 and $f(n) = \Omega(g(n))$

2 P v.s. NP

2.1 P and NP

Decision problem A decision problem X is the set of strings on which the output is yes, i.e., $s \in X$ iff the correct output for the input s is 1 (yes).

Example. The optimization version of the knapsack problem: Given a set of items N, each item $i \in N$ having a weight w_i and a value c_i , a capacity b and a threshold value k, find a collection of items $S \subseteq N$ of the maximum value whose total weight is less than or equal to b. The output is a set S.

The decision version of the knapsack problem: Given a set of items N, each item $i \in N$ having a weight w_i and a value c_i , a capacity b and a threshold value k, determine if there exists a collection of items $S \subseteq N$ whose total weight is less than or equal to b and its total value is at least k. The output is a boolean value, True/False.

If we have an algorithm to solve the optimization version of knapsack problem, we can immediately solve the decision version.

Class P

Definition 2.1 (polynomial running time). Algorithm A has polynomial running time if there is a polynomial function $p(\dot{})$ such that for every string s, A terminates on s in at most p(|s|) steps.

Definition 2.2 (Class P). The complexity class P is the set of decision problems X that can be solved in polynomial time.

That is, there is a known algorithm that provides the solution of any instance of size n in time $n^{O(1)}$.

Example. The following problems are known as in class P:

- Shortest path problem
- Maximum flow problem
- Spanning tree problem
- Linear programming (but not the simplex method)
- Assignment problem

Class NP

Definition 2.3 (certifier, certificate). B is an efficient certifier for a problem X if

- \bullet B is a polynomial-time algorithm that takes two input strings s and t
- There is a polynomial function p such that $s \in X$ if and only if there is a string t such that $|t| \le p(|s|)$ and B(s,t) = 1

The string t such that B(s,t) = 1 is called a certificate.

Example. Q: Given a graph G = (V, E) with a Hamiltonian cycle, how can one convince another there exists a Hamiltonian cycle?

A: One can send a string (certificate) to another, the other will run an algorithm (certifier) to check if the string represents a Hamiltonian cycle.

Definition 2.4 (class NP). The complexity class NP is the set of all problems for which there exists an polynomial-time certifier.

P v.s. NP

- Is P = NP? This is the most famous and fundamental open problem in computer science.
- Most people believe $P \neq NP$.
- If P = NP, that means if one can check a solution in polynomial time, one can solve it in polynomial time.
- We are sure that $P \subseteq NP$

2.2 Polynomial Time Reduction

Polynomial-time reducible Given a black box algorithm A that solves a problem X, if any instance of a problem Y can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to A, then we say Y is polynomial-time reducible to X, denoted as $Y \leq_P X$.

Suppose $Y \leq_P X$:

- If X can be solved in polynomial time, then Y can be solved in polynomial time.
- If Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.

X is at least as hard as Y.

2.3 NP-Completeness

NP-Completeness A problem X is called NP-complete if

- $X \in NP$, and
- $Y \leq_P X$, for every $Y \in NP$

If any NP-complete problem can be solved in polynomial time, then P = NP. Unless P = NP, a NP-complete problem cannot be solved in polynomial time.

Circuit-Sat The Circuit Satisfiability problem is the first NP-complete problem.

Theorem 2.1 (Cook's Theorem). SAT is NP-Complete

- key fact: any algorithm that takes n bits as input and outputs 0/1 with running time T(n) can be converted into a circuit of size p(T(n)) for some polynomial function $p(\cdot)$.
- Then, we can show that any problem $Y \in NP$ can be reduced to Circuit-Sat

Reductions of NP-Complete problems We will show a SAT $\leq_P 3$ -SAT

Definition 2.5 (3-CNF). 3-CNF is a special case of formula:

• Boolean variables: x_1, x_2, \cdots, x_n

• Literals: x_i or $\bar{x_i}$

• Clause: disjunction ("or") of at most 3 literals

• 3-CNF formula: conjunctino ("and") of clauses.

Example. This is a 3-CNF: $(x_1 \lor x_2 \lor x_3) \land (x_2 \lor \bar{x_3} \lor x_4)$

To satisfy a 3-CNF, we need to satisfy all clauses. To satisfy a clause, we need to satisfy at least 1 literal. Associate every wire with a new variable, the circuit will be equivalent to a formula. Each formula can be transformed into a 3-CNF.

The SAT is satisfiable iff the 3-CNF is satisfiable, and the size of the 3-CNF formula is polynomial in the size of the circuit. Thus SAT \leq_P 3-SAT.

For other problems, here is a polynomial-reducible relation graph for reference.

3 Algorithm Analysis and Design

3.1 Three programming paradigms

Greedy Algorithm

- Make a greedy choice
- At each step, make an irrevocable decision using a "reasonable" strategy
- Prove that the greedy choice is safe
- Show that the remaining task after applying the strategy is to solve a/many **smaller in-stance**(s) of the same problem
- Usually for optimization problems.

Dynamic Programming

- Break up a problem into many **overlapping** sub-problems
- Build solutions for larger and larger sub-problems
- Use a table/dictionary to store solutions for sub-problems for reuse

Divide and Concur

- Break a problem into many **independent** sub-problems
- Solve each sub-problem separately
- Combine solutions for sub-problems to form a solution for the original one
- Usually used to design more efficient algorithms

3.2 Master Theorem

Theorem 3.1. $T(n) = aT(n/b) + O(n^c)$, where $a \ge 1, b > 1, c \ge 0$ are constants. Then,

$$T(n) = \begin{cases} O(n^{\log_b a}) & \text{if } c < \log_b a \\ O(n^c \log n) & \text{if } c = \log_b a \\ O(n^c) & \text{if } c > \log_b a \end{cases}$$

$$T(n) = aT(n/b) + O(n^c)$$

- $c < \log_b a$: bottom-level dominates, $(\frac{a}{b^c})^{\log_b n} n^c = O(n^{\log_b a})$
- $c = \log_b a$: all levels have same time, $n^c \log_b n = O(n^c \log n)$
- $c > \log_b a$: top-level dominates, $O(n^c)$

4 Some examples

4.1 Minimum Spanning Tree Problem

Basic Concepts

Example. A company wants to build a communication network for their offices. For a link between office v and office w, there is a cost c_{vw} . If an office is connected to another office, then they are connected to with all its neighbors. Company wants to minimize the cost of communication networks.

Definition 4.1 (Minimum spanning tree problem). Given a connected graph graph G, and a cost $C_e, \forall e \in E$, find a minimum cost spanning tree of G

Kruskal's Algorithm Let's start with a greedy algorithm

Algorithm 1 MST-Greedy(G, w)

```
1: F = \emptyset

2: Sort edges in E in non-decreasing order of weight w

3: for e = (u, v) do

4: if u and v are not connected by a path of edge in F then

5: F = F \cup \{(u, v)\}

6: return F
```

The Kruskal's algorithm is as follows

Algorithm 2 Kruskal's Algorithm

```
F \leftarrow \emptyset
S \leftarrow \{\{v\} : v \in V\}
Sort edges in E in non-decreasing order of weight w
for e = (u, v) do
S_u \leftarrow \text{the set in } S \text{ containing } u
S_v \leftarrow \text{the set in } S \text{ containing } v
if S_u \neq S_v \text{ then}
F \leftarrow F \cup \{(u, v)\}
S \leftarrow S \setminus \{S_u\} \setminus \{S_v\} \cup \{S_u \cup S_v\}
return F
```

Prim's Algorithm Let's start with another greedy algorithm

Algorithm 3 MST-Greedy(G, w)

```
\begin{split} S &\leftarrow \{s\}, \text{ where } s \text{ is arbitary vertex in } V \\ F &\leftarrow \emptyset \\ \textbf{while } S \neq V \textbf{ do} \\ &\quad (u,v) \leftarrow \text{ the lightest edge between } S \text{ and } V \setminus S, \text{ where } u \in S \text{ and } v \in V \setminus S \\ &\quad S \leftarrow S \cup \{v\} \\ &\quad F \leftarrow F \cup \{(u,v)\} \end{split}
```

The Prim's algorithm is as follows

Algorithm 4 Prim's Algorithm

```
s \leftarrow 	ext{arbitary vertex in } G
S \leftarrow \emptyset, \ d(s) \leftarrow 0 \ 	ext{and} \ d(v) \leftarrow \infty \ 	ext{for every } v \in V \setminus \{s\}
while S \neq V \ 	ext{do}
u \leftarrow 	ext{vertex in } V \setminus S \ 	ext{with minimum } d(u)
S \leftarrow S \cup \{u\}
for Each v \in V \setminus S \ 	ext{such that } (u,v) \in E \ 	ext{do}
if w(u,v) < d(v) \ 	ext{then}
d(v) \leftarrow w(u,v)
\pi(v) \leftarrow u
return \{(u,\pi(u))|u \in V \setminus \{s\}\}
```

Knapsack Problem

Integer program model

$$\max \sum_{i \in S} v_i \tag{1}$$
s.t.
$$\sum_{i \in S} w_i \le W \tag{2}$$

s.t.
$$\sum_{i \in S} w_i \le W \tag{2}$$

$$w_i \ge 0, \forall i \in S \tag{3}$$

Solve knapsack problem by dynamic programming

- Let opt[i, W'] be the optimum value when budget is W' and the items are $\{1, 2, 3, \dots, i\}$.
- If i = 0, opt[i, W'] = 0 for every $W' = 0, 1, \dots, W$. Then

•
$$opt[i, W'] = \begin{cases} 0, & i = 0\\ opt[i - 1, W'], & i > 0, w_i > W'\\ \max\{opt[i - 1, W'], opt[i - 1, W' - w_i] + v_i\}, & i > 0, w_i \le W' \end{cases}$$

4.3 Fibonacci Numbers

Fibonacci sequence

$$0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \cdots$$
 (4)

Naive algorithm Use recursion (in a stupid way)

Algorithm 5 Fib(n)

- 1: **if** n = 0 **then**
- return 0
- 3: if n = 1 then
- return 1
- 5: **return** Fib(n-1) + Fib(n-2)

The runtime is exponential $O(2^n)$. This is stupid.

Reasonable algorithm Use dynamic programming

Algorithm 6 Fib(n)

- 1: $F(0) \leftarrow 0$
- $2: F(1) \leftarrow 1$
- 3: **for** $i \leftarrow 2$ to n **do**
- $F(i) \leftarrow F(i-1) + F(i-2)$
- 5: **return** F(n)

The runtime is O(n).

Even better algorithm Notice that

$$\begin{bmatrix} F_n \\ F_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} F_{n-1} \\ F_{n-2} \end{bmatrix}$$
$$\begin{bmatrix} F_n \\ F_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^2 \begin{bmatrix} F_{n-2} \\ F_{n-3} \end{bmatrix}$$

 $\begin{bmatrix} F_n \\ F_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{n-1} \begin{bmatrix} F_1 \\ F_0 \end{bmatrix}$

First define power(n)

Algorithm 7 power(n)

1: **if** n = 0 **then**

return $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

3: $R \leftarrow power(n/2.floor())$

4: $R \leftarrow R \times R$

5: **if** n is odd number_**then**

 $R \leftarrow R \times \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$

7: return R

Then the Fibonacci sequence is calculated by

Algorithm 8 Fib(n)

1: **if** n = 0 **then**

return 0

3: $M \leftarrow power(n-1)$

4: **return** M[1][1]

The time complexity is $T(n) = T(n/2) + O(1) = O(\log n)$

Multiplications

Polynomial Multiplication Given two polynomials of degree n-1, we need to find the product of two polynomials.

Example. Let A = (4, -5, 2, 3) and B = (-5, 6, -3, 2) as input. The expected output C =

9

(-20, 49, -52, 20, 2, -5, 6), since

$$(3x^{3} + 2x^{2} - 5x + 4) \times (2x^{3} - 3x^{2} + 6x - 5)$$

$$=6x^{6} - 9x^{5} + 18x^{4} - 15x^{3} + 4x^{5} - 6x^{4} + 12x^{3} - 10x^{2}$$

$$-10x^{4} + 15x^{3} - 30x^{2} + 25x + 8x^{3} - 12x^{2} + 24x - 20$$

$$=6x^{6} - 5x^{5} + 2x^{4} + 20x^{3} - 52x^{2} + 49x - 20$$

A naive algorithm for polynomial multiplication is as follows

Algorithm 9 naivePolyMultiply(A, B, n)

- 1: Let C[k] = 0 for every $k = 0, 1, \dots, 2n 2$
- 2: for $i \leftarrow 0$ to n-1 do
- 3: **for** $j \leftarrow 0$ to n-1 **do**
- 4: $C[i+j] \leftarrow C[i+j] + A[i] \times B[j]$
- 5: return C

Obviously, the running time is $O(n^2)$. Now we try to use divide-and-conquer to improve. For a polynomial p(x) with degree of n-1, denote

$$p(x) = p_H(x)x^{\frac{n}{2}} + p_L(x)$$

then, $p_H(x)$ and $p_L(x)$ are polynomials of degree n/2-1. Consider

$$pq = (p_H x^{\frac{n}{2}} + p_L)(q_H x^{\frac{n}{2}} + q_L) = p_H q_H x^n + (p_H q_L + p_L q_H) x^{\frac{n}{2}} + p_L q_L$$

The recurrence time is

$$T(n) = 4T(n/2) + O(n) = O(n^2)$$

still not good... Consider

$$pq = (p_H x^{\frac{n}{2}} + p_L)(q_H x^{\frac{n}{2}} + q_L)$$
$$= p_H q_H x^n + ((p_H + p_L)(q_H + q_L) - p_H q_H - p_L q_L) x^{\frac{n}{2}} + p_L q_L$$

The new recurrence time is

$$T(n) = 3T(n/2) + O(n) = O(n^{\log_2 3}) = O(n^{1.585})$$

Better!!! The algorithm is given as follows

Algorithm 10 polyMultiply(A, B, n)

```
1: A_L \leftarrow A[0..n/2-1], A_H \leftarrow A[n/2..n-1]

2: B_L \leftarrow B[0..n/2-1], B_H \leftarrow B[n/2..n-1]

3: C_L \leftarrow polyMultiply(A_L, B_L, n/2)

4: C_H \leftarrow polyMultiply(A_H, B_H, n/2)

5: C_M \leftarrow polyMultiply(A_L + A_H, B_L + B_H, n/2)

6: Initialize C \leftarrow [0..0] (2n-1) 0s

7: for i \leftarrow 0 to n-2 do

8: C[i] \leftarrow C[i] + C_L[i]

9: C[i+n] \leftarrow C[i+n] + C_H[i]

10: C[i+n/2] \leftarrow C[i+n/2] + C_M[i] - C_L[i] - C_H[i]

11: return C
```

Notice that the name of Algorithm 10 appears inside itself (line 3, 4, 5). This is referred as *recursion*. The key to recursion functions is to break complex problems into smaller instances of the **same** problems, so we need to "think beyond timescape".

Matrix multiplication Given two matrices $\mathbf{A} \in \mathbb{R}^{n \times}$ and $\mathbf{B} \in \mathbb{R}^{n \times}$, we need to find the production, $\mathbf{C} = \mathbf{A}\mathbf{B} \in \mathbb{R}^{n \times}$.

A naive algorithm for matrix multiplication is as follows

Algorithm 11 naiveMatMultiply(A, B, n)

```
1: for i \leftarrow 1 to n do

2: for j \leftarrow 1 to n do

3: C[i,j] \leftarrow 0

4: for k \leftarrow 1 to n do

5: C[i,j] \leftarrow C[i,j] + A[i,k] \times B[k,j]

6: return C
```

The running time is $O(n^3)$. Try divided-and-conquer. Let

$$\mathbf{A} = egin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix}, \quad \mathbf{B} = egin{bmatrix} \mathbf{B}_{11} & \mathbf{B}_{12} \ \mathbf{B}_{21} & \mathbf{B}_{22} \end{bmatrix}$$

each sub-matrix is $n/2 \times n/2$. Then

$$\mathbf{C} = \begin{bmatrix} \mathbf{A}_{11}\mathbf{B}_{11} + \mathbf{A}_{12}\mathbf{B}_{21} & \mathbf{A}_{11}\mathbf{B}_{12} + \mathbf{A}_{12}\mathbf{B}_{22} \\ \mathbf{A}_{21}\mathbf{B}_{11} + \mathbf{A}_{22}\mathbf{B}_{21} & \mathbf{A}_{21}\mathbf{B}_{12} + \mathbf{A}_{22}\mathbf{B}_{22} \end{bmatrix}$$

Still not good enough because T(n) = 8T(n/2) + O(n).

Strassen's Algorithm In 1969, the first matrix multiplication algorithm with time complexity lower than $O(n^3)$ was introduced by Volker Strassen, the famous Strassen's Algorithm.

For $\mathbf{A}, \mathbf{B}, \mathbf{C}$, let

$$\begin{split} \mathbf{M}_1 &= (\mathbf{A}_{11} + \mathbf{A}_{22})(\mathbf{B}_{11} + \mathbf{B}_{22}) \\ \mathbf{M}_2 &= (\mathbf{A}_{21} + \mathbf{A}_{22})\mathbf{B}_{11} \\ \mathbf{M}_3 &= \mathbf{A}_{11}(\mathbf{B}_{12} - \mathbf{B}_{22}) \\ \mathbf{M}_4 &= \mathbf{A}_{22}(\mathbf{B}_{21} - \mathbf{B}_{11}) \\ \mathbf{M}_5 &= (\mathbf{A}_{11} + \mathbf{A}_{12})\mathbf{B}_{22} \\ \mathbf{M}_6 &= (\mathbf{A}_{21} - \mathbf{A}_{11})(\mathbf{B}_{11} + \mathbf{B}_{12}) \\ \mathbf{M}_7 &= (\mathbf{A}_{12} - \mathbf{A}_{22})(\mathbf{B}_{21} + \mathbf{B}_{22}) \end{split}$$

Then,

$$\begin{split} \mathbf{C}_{11} &= \mathbf{M}_1 + \mathbf{M}_4 - \mathbf{M}_5 + \mathbf{M}_7 \\ \mathbf{C}_{12} &= \mathbf{M}_3 + \mathbf{M}_5 \\ \mathbf{C}_{21} &= \mathbf{M}_2 + \mathbf{M}_4 \\ \mathbf{C}_{22} &= \mathbf{M}_1 - \mathbf{M}_2 + \mathbf{M}_3 + \mathbf{M}_6 \end{split}$$

In total, $T(n) = 7T(n/2) + O(n) = O(n^{\log_2 7}).$

Why is this important? Matrix multiplication has been widely used in machine learning such as calculating convolutions. For n > 300, the Strassen's algorithm will run significantly faster than the naive algorithm.

There are some algorithms even faster than Strassen, e.g., the Coppersmith-Winograd matrix multiplication algorithm.