ANALYSIS I EXAMPLES 4

G.P. Paternain Lent 2012

Comments on and/or corrections to the questions on this sheet are always welcome, and may be e-mailed to me at g.p.paternain@dpmms.cam.ac.uk.

- 1. Show directly from the definition of an integral that $\int_0^a x^2 = a^3/3$ for a > 0.
- **2**. Let $f(x) = \sin(1/x)$ for $x \neq 0$ and f(0) = 0. Does $\int_0^1 f$ exist?
- **3**. Give an example of a continuous function $f:[0,\infty)\to[0,\infty)$, such that $\int_0^\infty f$ exists but f is unbounded.
- **4.** Give an example of an integrable function $f:[0,1]\to\mathbb{R}$ with $f\geq 0$, $\int_0^1 f=0$, and f(x)>0 for some value of x. Show that this cannot happen if f is continuous.
- 5. Let $f: \mathbb{R} \to \mathbb{R}$ be monotonic. Show that $\{x \in \mathbb{R} : f \text{ is discontinuous at } x\}$ is countable. Let $x_n, n \ge 1$ be a sequence of distinct points in (0,1]. Let $f_n(x) = 0$ if $0 \le x < x_n$ and $f_n(x) = 1$ if $x_n \le x \le 1$. Let $f(x) = \sum_{n=1}^{\infty} 2^{-n} f_n(x)$. Show that this series converges for every $x \in [0,1]$. Show that f is increasing (and so is integrable). Show that f is discontinuous at every x_n .
- **6.** Let $f(x) = \log(1-x^2)$. Use the mean value theorem to show that $|f(x)| \le 8x^2/3$ for $0 \le x \le 1/2$. Now let $I_n = \int_{n-1/2}^{n+1/2} \log x \, dx \log n$ for $n \in \mathbb{N}$. Show that $I_n = \int_0^{1/2} f(t/n) \, dt$ and hence that $|I_n| < 1/9n^2$. By considering $\sum_{j=1}^n I_j$, deduce that $n!/n^{n+1/2}e^{-n} \to \ell$ for some constant ℓ . [The bounds $8x^2/3$ and $1/9n^2$ are not best possible; they are merely good enough for the conclusion.]
- 7. Let $I_n = \int_0^{\pi/2} \cos^n x$. Prove that $nI_n = (n-1)I_{n-2}$, and hence $\frac{2n}{2n+1} \leq I_{2n+1}/I_{2n} \leq 1$. Deduce Wallis's Product:

$$\frac{\pi}{2} = \lim_{n \to \infty} \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdots 2n \cdot 2n}{1 \cdot 3 \cdot 3 \cdot 5 \cdots (2n-1) \cdot (2n+1)} = \lim_{n \to \infty} \frac{2^{4n}}{2n+1} {2n \choose n}^{-2}.$$

By taking note of the previous exercise, prove that $n!/n^{n+1/2}e^{-n} \to \sqrt{2\pi}$ (Stirling's formula).

- **8.** Do these improper integrals converge? (i) $\int_1^\infty \sin^2(1/x) dx$, (ii) $\int_0^\infty x^p \exp(-x^q) dx$ where p,q>0.
- **9.** Show that $\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \to \log 2$ as $n \to \infty$, and find $\lim_{n \to \infty} \frac{1}{n+1} \frac{1}{n+2} + \dots + \frac{(-1)^{n-1}}{2n}$.
- **10**. Let $f:[a,b]\to\mathbb{R}$ be continuous and suppose that $\int_a^b f(x)g(x)\,dx=0$ for every continuous function $g:[a,b]\to\mathbb{R}$ with g(a)=g(b)=0. Must f vanish identically?
- **11.** Let $f:[0,1]\to\mathbb{R}$ be continuous. Let G(x,t)=t(x-1) for $t\leq x$ and G(x,t)=x(t-1) for $t\geq x$. Let $g(x)=\int_0^1 f(t)G(x,t)dt$. Show that g''(x) exists for $x\in(0,1)$ and equals f(x).
- 12. Let $I_n(\theta) = \int_{-1}^1 (1-x^2)^n \cos(\theta x) dx$. Prove that $\theta^2 I_n = 2n(2n-1)I_{n-1} 4n(n-1)I_{n-2}$ for $n \geq 2$, and hence that $\theta^{2n+1}I_n(\theta) = n!(P_n(\theta)\sin\theta + Q_n(\theta)\cos\theta)$, where P_n and Q_n are polynomials of degree at most 2n with integer coefficients. Deduce that π is irrational.
- **13.** Let $f_1, f_2 : [-1, 1] \to \mathbb{R}$ be increasing and $g = f_1 f_2$. Show that there exists K such that, for any dissection $\mathcal{D} = x_0 < \cdots < x_n$ of [-1, 1], $\sum_{j=1}^n |g(x_j) g(x_{j-1})| \le K$. Now let $g(x) = x \sin(1/x)$ for $x \ne 0$ and g(0) = 0. Show that g is integrable but is not the difference of two increasing functions.
- **14**. Show that if $f:[0,1]\to\mathbb{R}$ is integrable then f has infinitely many points of continuity.