Decision procedures for a non-Fregean logic SCI

Adrian Siwiec

August 13, 2024

Test: ążźćłóęń

1 Sentential logic and the Fregean axiom

2 SCI

2.1 Basic notions

Definition 2.1 (Alphabet of SCI). The alphabet of SCI is as follows:

- $V = \{p, q, r, ...\}$ a countable infinite set of atomic formulas,
- ¬ unary operator "not",
- \rightarrow , \equiv binary operators "implication" and "identity".

Definition 2.2 (Language of SCI). The language of SCI is a set of formulas FOR defined with the grammar:

$$\mathtt{FOR}\ni\varphi::=p\mid\neg\varphi\mid(\varphi\rightarrow\varphi)\mid(\varphi\equiv\varphi)$$

where $p \in V$ is an atomic formula.

From now on whenever we write p, q, r, ... we will mean the atomic formulas. We will omit brackets when obvious. We will write $\varphi \not\equiv \psi$ as a shorthand for $\neg(\varphi \equiv \psi)$.

The set of identities ID is a set of formulas $\varphi \equiv \psi$ where $\varphi, \psi \in FOR$. Formulas $\varphi \equiv \varphi$ are the trivial identities.

Definition 2.3 (Subformulas). For a formula $\varphi \in FOR$ let us define the set of subformulas of φ as:

$$\mathtt{SUB}(\varphi) = \begin{cases} \{p\}, & \text{if } \varphi = p \in \red{V}, \\ \{\varphi\} \cup \mathtt{SUB}(\psi), & \text{if } \varphi = \neg \psi, \\ \{\varphi\} \cup \mathtt{SUB}(\psi) \cup \mathtt{SUB}(\vartheta), & \text{if } \varphi = \psi \to \vartheta, \text{or } \varphi = \psi \equiv \vartheta \end{cases}$$

By $\varphi(\psi/\vartheta)$ we will denote the formula φ with all occurrences of its subformula ψ substituted with ϑ .

Definition 2.4 (Simple formulas). The formula φ is called a simple formula if it is equal to one of:

$$p, \neg p, p \equiv q, p \not\equiv q, p \equiv \neg q, p \equiv (q \rightarrow r), p \equiv (q \equiv r)$$

for $p, q, r \in V$.

Definition 2.5 (Size of formula). Given a formula φ , let us define its size $s(\varphi)$:

$$s(\varphi) = \begin{cases} 1, & \text{if } \varphi = p, \\ s(\psi) + 1, & \text{if } \varphi = \neg \psi, \\ s(\psi) + s(\vartheta) + 1, & \text{if } \varphi = \psi \equiv \vartheta, \text{ or } \varphi = \psi \to \vartheta. \end{cases}$$

Since V is a countable set we can assume it has a full ordering < Let us extend it by saying that for each $p \in V$: p < ``¬" < ``("><")" < ``¬" < ``=" Now, let us define a ordering of formulas < to be a lexicographical ordering with <.

Definition 2.6 (Axiomatization of SCI). SCI is axiomatized with the following axioms:

- $(Ax1) \varphi \rightarrow (\psi \rightarrow \varphi)$
- (Ax2) $(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$

- $(Ax3) (\neg \varphi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \varphi)$
- $(Ax4) \varphi \equiv \varphi$,
- (Ax5) $(\varphi \equiv \psi) \rightarrow (\varphi \rightarrow \psi),$
- (Ax6) $(\varphi \equiv \psi) \rightarrow (\neg \varphi \equiv \neg \psi),$
- (Ax7) $(\varphi \equiv \psi) \rightarrow ((\chi \equiv \theta) \rightarrow ((\varphi \rightarrow \chi) \equiv (\psi \rightarrow \theta))),$
- (Ax8) $(\varphi \equiv \psi) \rightarrow ((\chi \equiv \theta) \rightarrow ((\varphi \equiv \chi) \equiv (\psi \equiv \theta))).$

The only inference rule is the *modus ponens* rule:

$$\underbrace{\mathit{MP}}:\frac{\varphi,\ \varphi\to\psi}{\psi}$$

Definition 2.7 (A theorem). A formula φ is a theorem if there exists a finite set of formulas $\varphi_1, ..., \varphi_n$ $(n \ge 1)$, such that $\varphi = \varphi_n$, and for all $i \in \{1, ..., n\}$ the formula φ_i is either an axiom of SCI, or it is inferred from formulas φ_j , φ_k (j, k < i) via the modus ponens rule. If φ is a theorem we'll mark it as $\vdash \varphi$ and say that it is provable.

Let us give an example of a provable formula with its full proof: TODO

Definition 2.8 (Decidability). A logic is *decidable* if there exists an effective method to determine whether a given formula of this logic is a theorem.

Let us now give some semantic definitions:

Definition 2.9 (Model). A SCI model is a structure $M = (U, D, \tilde{\neg}, \tilde{\rightarrow}, \tilde{\equiv})$ where:

- $U \neq \emptyset$ is the universe of M,
- $\emptyset \neq D \subsetneq U$ is the set of designated values,
- $\tilde{\neg}: U \longrightarrow U$ is the algebraic counterpart of the operator not, such that $\forall a \in U: \tilde{\neg} a \in D$ iff $a \not\in D$,
- $\tilde{\rightarrow}: U \times U \longrightarrow U$ is the algebraic counterpart of the operator of implication, such that $\forall a, b \in U: a \tilde{\rightarrow} b \in D$ iff $a \notin D$ or $b \in D$,
- $\stackrel{\circ}{=}$: $U \times U \longrightarrow U$ is the algebraic counterpart of the operator of identity, such that $\forall a, b \in U$: $a \stackrel{\circ}{=} b$ iff a = b (that is, iff a and b denote the same element of the universe U).

Definition 2.10 (Valuation). Given a model $M = (U, D, \tilde{\neg}, \tilde{\rightarrow}, \tilde{\equiv})$, a valuation in this model is a function $V : \mathtt{FOR} \longrightarrow U$, such that for all $\varphi, \psi \in \mathtt{FOR}$:

- $\bullet V(\neg \varphi) = \tilde{\neg}V(\varphi)$
- $V(\varphi \to \psi) = V(\varphi) \tilde{\to} V(\psi)$
- $V(\varphi \equiv \psi) = V(\varphi) \tilde{\equiv} V(\psi)$

If $V(\varphi) = a$ we will call a the denotation of φ .

Definition 2.11 (Satisfiability of a formula). Given a model $M = (U, D, \tilde{\neg}, \tilde{\rightarrow}, \tilde{\equiv})$ and a valuation V, a formula φ is satisfied in this valuation iff its valuation belongs to D. If a formula φ is satisfied by a valuation V in a model M we will mark it by $M, V \models \varphi$.

Definition 2.12 (Truth of a formula). Given a model $M = (U, D)(U, D, \tilde{\neg}, \tilde{\rightarrow}, \tilde{\equiv})$, a formula is true in this model iff it is satisfied in all valuations of this model. If a formula φ is true in a model M we'll mark it by $M \models \varphi$.

Definition 2.13 (Validity of a formula). A formula is *valid* iff it is true in all models. If a formula φ is valid we'll mark it by $\models \varphi$.

Let us see some examples:

TODO

Theorem 1 (Correctness and fullness of SCI). For any formula φ the following two are equivalent;

- φ is provable,
- φ is valid.

The proof of the correctness and fullness theorem can be found in [1] (Theorem 1.9).

Theorem 2 (Dedidability of SCI). SCI is decidable.

The proof of the decidability theorem can be found in [1] (Corollary 2.4).

2

References

[1] Stephen L. Bloom, Roman Suszko (1972) Investigations into the Sentential Calculus with Identity, Notre Dame Journal of Formal Logic, vol. XIII, no 3.

