Assignment5

Rajiv Reddy Devidi

4/17/2022

```
crls = read.csv("C:\\Users\\rdevi\\Downloads\\Cereals (1).csv")
View(crls)
numericaldata = data.frame(crls[,4:16])
#loading required libraries
library(factoextra)
## Warning: package 'factoextra' was built under R version 4.1.3
## Loading required package: ggplot2
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
library(dendextend)
## Warning: package 'dendextend' was built under R version 4.1.3
##
## -----
## Welcome to dendextend version 1.15.2
## Type citation('dendextend') for how to cite the package.
## Type browseVignettes(package = 'dendextend') for the package vignette.
## The github page is: https://github.com/talgalili/dendextend/
## Suggestions and bug-reports can be submitted at: https://github.com/talgalili/dendextend/issues
## You may ask questions at stackoverflow, use the r and dendextend tags:
##
    https://stackoverflow.com/questions/tagged/dendextend
##
## To suppress this message use: suppressPackageStartupMessages(library(dendextend))
## -----
##
## Attaching package: 'dendextend'
## The following object is masked from 'package:stats':
##
##
      cutree
```

```
library(cluster)
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.1.3
## -- Attaching packages ------ tidyverse 1.3.1 --
## v tibble 3.1.6 v dplyr 1.0.7
## v tidyr 1.2.0 v stringr 1.4.0
## v readr 2.1.2 v forcats 0.5.1
## v purrr 0.3.4
## Warning: package 'forcats' was built under R version 4.1.3
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
#omitting all the missing values present in the data
omitmissing = na.omit(numericaldata)
#normalizing and scaling the data
normalise = scale(omitmissing)
#measuring distance using the euclidian distance and computing the dissimilarity matrix
distance = dist(normalise, method = "euclidian")
# hierarchial clustering using complete linkage and representing in plot
hierarchial_clustering = hclust(distance,method = "complete")
plot(hierarchial_clustering)
#rounding off the decimals
round(hierarchial_clustering$height, 4)
## [1] 0.1432 0.1962 0.5745 0.6980 0.8281 0.9035 1.0035 1.0041 1.2009
## [10] 1.2033 1.2538 1.3777 1.4083 1.4207 1.4536 1.4633 1.4739 1.5173
## [19] 1.6076 1.6106 1.6158 1.6245 1.6504 1.6870 1.6923 1.7202 1.7305
## [28] 1.7949 1.8389 1.8965 1.9187 1.9821 2.0154 2.0463 2.2030 2.2236
## [37] 2.3389 2.3814 2.3940 2.5223 2.5630 2.5744 2.5792 2.6683 2.6820
## [46] 2.7340 2.7764 2.7868 3.2293 3.2362 3.3850 3.4507 3.5100 3.5352
## [55] 3.7169 3.8664 3.9574 4.0047 4.0311 4.1676 4.4557 4.7789 4.8387
## [64] 5.3417 5.4879 5.9199 6.1686 6.6687 6.7312 7.6496 7.9638 9.9787
## [73] 10.9839
#determining the optimla clusters and highlighting with colours
plot(hierarchial clustering)
rect.hclust(hierarchial_clustering,k = 4, border = "red")
```

Cluster Dendrogram

distance hclust (*, "complete")

```
#performing clustering using AGNES
HCsingle = agnes(normalise, method = "single")
HCcomplete = agnes(normalise, method = "complete")
HCaverage = agnes(normalise, method = "average")
HCward = agnes(normalise, method = "ward")
#comparing the agglomerative cosfficients of single , complete, average, ward
print(HCsingle$ac)
## [1] 0.6067859
```

print(HCcomplete\$ac)

[1] 0.8353712

print(HCaverage\$ac)

[1] 0.7766075

print(HCward\$ac)

[1] 0.9046042

Dendogram of agnes-ward

normalise agnes (*, "ward")

```
#using the ward method for hierarchial clustering
HC1 <- hclust(distance, method = "ward.D2" )
subgrp <- cutree(HC1, k = 4)
table(subgrp)

## subgrp
## 1 2 3 4
## 3 20 21 30

crls <- as.data.frame(cbind(normalise, subgrp))

#visualising the results on scatterplot
fviz_cluster(list(data = normalise, cluster = subgrp))</pre>
```



```
#choosing healthy cereal cluster
newdata = numericaldata
newdata_omit = na.omit(newdata)
Clust = cbind(newdata_omit,subgrp)
Clust[Clust$subgrp==1,]
```

```
##
     calories protein fat sodium fiber carbo sugars potass vitamins shelf weight
## 1
           70
                     4
                               130
                                      10
                                             5
                                                     6
                                                          280
                                                                     25
                                                                            3
                         1
                                                                                   1
                                             7
## 3
           70
                         1
                               260
                                       9
                                                     5
                                                          320
                                                                     25
                                                                            3
                                                                                   1
## 4
           50
                         0
                              140
                                      14
                                             8
                                                     0
                                                          330
                                                                     25
                                                                            3
                                                                                    1
     cups
            rating subgrp
## 1 0.33 68.40297
## 3 0.33 59.42551
                         1
## 4 0.50 93.70491
```

Clust[Clust\$subgrp==2,]

##		calories	protein	fat	sodium	fiber	carbo	sugars	potass	vitamins	shelf	weight
##	2	120	3	5	15	2.0	8.0	8	135	0	3	1.00
##	8	130	3	2	210	2.0	18.0	8	100	25	3	1.33
##	14	110	3	2	140	2.0	13.0	7	105	25	3	1.00
##	20	110	3	3	140	4.0	10.0	7	160	25	3	1.00
##	23	100	2	1	140	2.0	11.0	10	120	25	3	1.00
##	28	120	3	2	160	5.0	12.0	10	200	25	3	1.25
##	29	120	3	0	240	5.0	14.0	12	190	25	3	1.33

##	35		120	3	3	75	3.0	13.0	4	100	25	3	1.00
##	40		140	3	1	170	2.0	20.0	9	95	100	3	1.30
##	42		100	4	2	150	2.0	12.0	6	95	25	2	1.00
##	45		150	4	3	95	3.0	16.0	11	170	25	3	1.00
##	46		150	4	3	150	3.0	16.0	11	170	25	3	1.00
##	47		160	3	2	150	3.0	17.0	13	160	25	3	1.50
##	50		140	3	2	220	3.0	21.0	7	130	25	3	1.33
##	52		130	3	2	170	1.5	13.5	10	120	25	3	1.25
##	53		120	3	1	200	6.0	11.0	14	260	25	3	1.33
##	57		100	4	1	135	2.0	14.0	6	110	25	3	1.00
##	59		120	3	1	210	5.0	14.0	12	240	25	2	1.33
##	60		100	3	2	140	2.5	10.5	8	140	25	3	1.00
##	71		140	3	1	190	4.0	15.0	14	230	100	3	1.50
##		cups	_	sube	-								
##			33.98368		2								
##			37.03856		2								
			40.40021		2								
			40.44877		2								
			36.17620		2								
			40.91705		2								
			41.01549		2								
			45.81172		2								
			36.47151		2								
			45.32807		2								
			37.13686		2								
			34.13976		2								
			30.31335		2 2								
			40.69232		2								
			30.45084 37.84059		2								
			49.51187		2								
			39.25920		2								
			39.70340		2								
			28.59278		2								
##	1 1	1.00	20.03210		_								

Clust[Clust\$subgrp==3,]

##		calories	protein	fat	sodium	fiber	carbo	sugars	potass	vitamins	shelf	weight
##	6	110	2	2	180	1.5	10.5	10	70	25	1	1
##	7	110	2	0	125	1.0	11.0	14	30	25	2	1
##	11	120	1	2	220	0.0	12.0	12	35	25	2	1
##	13	120	1	3	210	0.0	13.0	9	45	25	2	1
##	15	110	1	1	180	0.0	12.0	13	55	25	2	1
##	18	110	1	0	90	1.0	13.0	12	20	25	2	1
##	19	110	1	1	180	0.0	12.0	13	65	25	2	1
##	25	110	2	1	125	1.0	11.0	13	30	25	2	1
##	26	110	1	0	200	1.0	14.0	11	25	25	1	1
##	30	110	1	1	135	0.0	13.0	12	25	25	2	1
##	31	100	2	0	45	0.0	11.0	15	40	25	1	1
##	32	110	1	1	280	0.0	15.0	9	45	25	2	1
##	36	120	1	2	220	1.0	12.0	11	45	25	2	1
##	37	110	3	1	250	1.5	11.5	10	90	25	1	1
##	38	110	1	0	180	0.0	14.0	11	35	25	1	1
##	43	110	2	1	180	0.0	12.0	12	55	25	2	1

```
100
                 2 1
                             220
                                   2.0 15.0
                                                       90
                                                                25
## 48
                                                                       1
                                                                              1
## 49
                             190
                                   0.0 15.0
                                                                25
          120
                    2 1
                                                 9
                                                       40
                                                                       2
                                                                              1
## 67
                    2 1
                                       9.0
                                                15
                                                       40
                                                                25
                                                                       2
          110
                             70
                                   1.0
## 74
          110
                    1 1
                             140
                                   0.0 13.0
                                                12
                                                       25
                                                                25
                                                                       2
                                                                              1
                                                8
                                                                25
## 77
          110
                    2
                        1
                             200
                                   1.0 16.0
                                                       60
                                                                       1
                                                                              1
##
      cups rating subgrp
## 6 0.75 29.50954
## 7 1.00 33.17409
                        3
## 11 0.75 18.04285
                        3
## 13 0.75 19.82357
                        3
## 15 1.00 22.73645
                        3
## 18 1.00 35.78279
                        3
## 19 1.00 22.39651
                        3
                        3
## 25 1.00 32.20758
## 26 0.75 31.43597
                       3
                       3
## 30 0.75 28.02576
## 31 0.88 35.25244
                      3
## 32 0.75 23.80404
                      3
                       3
## 36 1.00 21.87129
## 37 0.75 31.07222
                        3
## 38 1.33 28.74241
                        3
## 43 1.00 26.73451
                        3
## 48 1.00 40.10596
                        3
## 49 0.67 29.92429
                        3
                        3
## 67 0.75 31.23005
## 74 1.00 27.75330
                        3
## 77 0.75 36.18756
                        3
```

Clust[Clust\$subgrp==4,]

				٠.								
##			_					_	_	vitamins		_
##	9	90	2	1	200	4	15	6	125	25	1	1.00
##	10	90	3	0	210	5	13	5	190	25	3	1.00
##	12	110	6	2	290	2	17	1	105	25	1	1.00
##	16	110	2	0	280	0	22	3	25	25	1	1.00
##	17	100	2	0	290	1	21	2	35	25	1	1.00
##	22	110	2	0	220	1	21	3	30	25	3	1.00
##	24	100	2	0	190	1	18	5	80	25	3	1.00
##	27	100	3	0	0	3	14	7	100	25	2	1.00
##	33	100	3	1	140	3	15	5	85	25	3	1.00
##	34	110	3	0	170	3	17	3	90	25	3	1.00
##	39	110	2	1	170	1	17	6	60	100	3	1.00
##	41	110	2	1	260	0	21	3	40	25	2	1.00
##	44	100	4	1	0	0	16	3	95	25	2	1.00
##	51	90	3	0	170	3	18	2	90	25	3	1.00
##	54	100	3	0	320	1	20	3	45	100	3	1.00
##	55	50	1	0	0	0	13	0	15	0	3	0.50
##	56	50	2	0	0	1	10	0	50	0	3	0.50
##	61	90	2	0	0	2	15	6	110	25	3	1.00
##	62	110	1	0	240	0	23	2	30	25	1	1.00
##	63	110	2	0	290	0	22	3	35	25	1	1.00
##	64	80	2	0	0	3	16	0	95	0	1	0.83
##	65	90	3	0	0	4	19	0	140	0	1	1.00
##	66	90	3	0	0	3	20	0	120	0	1	1.00

```
## 68
           110
                     6
                         0
                               230
                                       1
                                            16
                                                           55
                                                                    25
                                                                                1.00
## 69
                     2
                         0
                                            15
                                                     5
                                                           90
                                                                    25
                                                                           2
                                                                                1.00
            90
                               15
                                       3
## 70
           110
                               200
                                            21
                                                     3
                                                           35
                                                                   100
                                                                                1.00
                     3 1
                               200
                                                                   100
## 72
           100
                                       3
                                            16
                                                    3
                                                          110
                                                                           3
                                                                               1.00
## 73
           110
                     2
                               250
                                       0
                                            21
                                                     3
                                                           60
                                                                    25
                                                                           3
                                                                               1.00
## 75
           100
                     3
                         1
                               230
                                            17
                                                    3
                                                          115
                                                                    25
                                                                           1
                                       3
                                                                               1.00
## 76
                     3
                               200
                                            17
                                                          110
                                                                    25
                                                                               1.00
           100
##
      cups
             rating subgrp
## 9
      0.67 49.12025
## 10 0.67 53.31381
## 12 1.25 50.76500
## 16 1.00 41.44502
                          4
## 17 1.00 45.86332
                          4
## 22 1.00 46.89564
## 24 0.75 44.33086
## 27 0.80 58.34514
                         4
## 33 0.88 52.07690
                          4
## 34 0.25 53.37101
## 39 1.00 36.52368
                          4
## 41 1.50 39.24111
                          4
## 44 1.00 54.85092
                          4
## 51 1.00 59.64284
## 54 1.00 41.50354
## 55 1.00 60.75611
## 56 1.00 63.00565
## 61 0.50 55.33314
## 62 1.13 41.99893
                          4
## 63 1.00 40.56016
                          4
## 64 1.00 68.23588
## 65 0.67 74.47295
## 66 0.67 72.80179
                          4
## 68 1.00 53.13132
                          4
## 69 1.00 59.36399
## 70 1.00 38.83975
                          4
## 72 1.00 46.65884
                          4
## 73 0.75 39.10617
                          4
## 75 0.67 49.78744
## 76 1.00 51.59219
                          4
#here we calculate the mean rating in order determine the healthy cluster cereals
mean(Clust[Clust$subgrp==1,"rating"])
## [1] 73.84446
mean(Clust[Clust$subgrp==2,"rating"])
## [1] 38.26161
mean(Clust[Clust$subgrp==3,"rating"])
```

[1] 28.84825

mean(Clust[Clust\$subgrp==4,"rating"])

[1] 51.43111