Лабораторная работа №4 по курсу "Интеллектуальный анализ данных"

выполнил Сорокин Никита, М8О-403Б-20

4.1 Кластеризация иерархическим алгоритмом

```
In [1]: import numpy as np
    import matplotlib.pyplot as plt

from scipy.cluster import hierarchy
from scipy.spatial.distance import pdist

In [2]: distance_mat = np.array([
            [0., 3.3, 3.2, 1.6, 4.8, 5.1],
            [3.3, 0., 4.5, 3.25, 1.2, 2.6],
            [3.2, 4.5, 0., 1.4, 0.5, 2.3],
            [1.6, 3.25, 1.4, 0., 4.2, 1.8],
            [4.8, 1.2, 0.5, 4.2, 0., 2.6],
            [5.1, 2.6, 2.3, 1.8, 2.6, 0.]
])

In [3]: upper_triangle_dist_mat = np.array(
            [3.3, 3.2, 1.6, 4.8, 5.1, 4.5, 3.25, 1.2, 2.6, 1.4, 0.5, 2.3, 4.2, 1.8, 2.6]
)
```

Ближайший сосед

```
In [4]: from sklearn.cluster import AgglomerativeClustering, ward_tree
In [5]: Z = hierarchy.linkage(upper_triangle_dist_mat, "single")
In [6]: plt.figure(figsize=(10, 5))
dn = hierarchy.dendrogram(Z, color_threshold=0.5)
```


Наиболее удаленный сосед

Средняя связь

```
In [9]: Z = hierarchy.linkage(upper_triangle_dist_mat, "average")
In [10]: plt.figure(figsize=(10, 5))
dn = hierarchy.dendrogram(Z, color_threshold=0.5)
```


Центроидный метод

Сравнение результатов

Используем метрику оценки Silhouette

```
import pandas as pd
from sklearn import datasets, metrics
from sklearn.cluster import AgglomerativeClustering
```

```
data = datasets.load_digits()
X, y = data.data, data.target
n_{clusters} = 6
algorithms = []
for i in range(2, n_clusters):
    algorithms.append(AgglomerativeClustering(n_clusters=i, metric='precomputed', 1
    algorithms.append(AgglomerativeClustering(n_clusters=i, metric='precomputed', 1
    algorithms.append(AgglomerativeClustering(n_clusters=i, metric='precomputed', l
data = []
for algo in algorithms:
    algo.fit(distance_mat)
    data.append(
        (
                "Silhouette": metrics.silhouette_score(distance_mat, algo.labels_)
        )
    )
results = pd.DataFrame(
    data=data,
    columns=["Silhouette"],
    index=[
        'Single, n = 2', 'Complete, n = 2', 'Average, n = 2',
        'Single, n = 3', 'Complete, n = 3', 'Average, n = 3',
        'Single, n = 4', 'Complete, n = 4', 'Average, n = 4',
        'Single, n = 5', 'Complete, n = 5', 'Average, n = 5',
    ],
results
```

```
Out[13]:
                              Silhouette
                               -0.099914
               Single, n = 2
            Complete, n = 2
                               0.247890
             Average, n = 2
                               0.247890
               Single, n = 3
                               -0.107858
            Complete, n = 3
                               0.146005
             Average, n = 3
                               0.125300
               Single, n = 4
                               -0.037944
                               0.070679
            Complete, n = 4
             Average, n = 4
                               0.070679
               Single, n = 5
                               0.000967
            Complete, n = 5
                               0.000967
             Average, n = 5
                               0.000967
```

Пример кластеризации большого искусственного датасета:

```
In [18]: X = np.zeros((150, 2))

np.random.seed(seed=42)
X[:50, 0] = np.random.normal(loc=0.0, scale=0.3, size=50)
X[:50, 1] = np.random.normal(loc=0.0, scale=0.3, size=50)

X[50:100, 0] = np.random.normal(loc=2.0, scale=0.5, size=50)
X[50:100, 1] = np.random.normal(loc=-1.0, scale=0.2, size=50)

X[100:150, 0] = np.random.normal(loc=-1.0, scale=0.2, size=50)
X[100:150, 1] = np.random.normal(loc=2.0, scale=0.5, size=50)
In [19]: plt.scatter(X[:, 0], X[:, 1])
```

Out[19]: <matplotlib.collections.PathCollection at 0x29259f04f10>


```
In [20]: distance_mat = pdist(X)
Z = hierarchy.linkage(distance_mat, "single")
plt.figure(figsize=(10, 5))
dn = hierarchy.dendrogram(Z, color_threshold=0.5)
```


4.2 Кластеризация методом k-средних

6 вариант

In [21]: from scipy.spatial.distance import cdist

from sklearn.cluster import KMeans

```
In [23]: plt.figure(figsize=(5, 5))
    plt.scatter(X[:, 0], X[:, 1])
```

Out[23]: <matplotlib.collections.PathCollection at 0x29259d74550>


```
In [24]: centroids = np.array([X[0, :], X[1, :], X[2, :]])
    plt.figure(figsize=(5, 5))
    plt.scatter(centroids[:, 0], centroids[:, 1])
```

Out[24]: <matplotlib.collections.PathCollection at 0x29259ef4090>


```
In [28]:
    cent_history = []
    cent_history.append(centroids)

for i in range(3):
        distances = cdist(X, centroids)
        labels = distances.argmin(axis=1)

        centroids = centroids.copy()
        centroids[0, :] = np.mean(X[labels == 0, :], axis=0)
        centroids[1, :] = np.mean(X[labels == 1, :], axis=0)
        centroids[2, :] = np.mean(X[labels == 2, :], axis=0)

        cent_history.append(centroids)
```

```
In [29]: plt.figure(figsize=(12, 12))
for i in range(1):
    distances = cdist(X, cent_history[i])
    labels = distances.argmin(axis=1)

plt.subplot(2, 2, i + 1)
    plt.plot(X[labels == 0, 0], X[labels == 0, 1], "bo", label="cluster #1")
    plt.plot(X[labels == 1, 0], X[labels == 1, 1], "co", label="cluster #2")
    plt.plot(X[labels == 2, 0], X[labels == 2, 1], "mo", label="cluster #3")
    plt.plot(cent_history[i][:, 0], cent_history[i][:, 1], "rX")
    plt.legend(loc=0)
    plt.title("Step {:}".format(i + 1));
```


Выбор оптимального числа кластеров

```
In [30]: inertia = []
for k in range(1, 6):
    kmeans = KMeans(n_clusters=k, random_state=1, n_init='auto').fit(X)
    inertia.append(np.sqrt(kmeans.inertia_))
```

График величины 'Inertia' уменьшает скорость убывания в тот момент когда количество кластеров оптимальное

```
In [31]: plt.plot(range(1, 6), inertia, marker="s")
    plt.xlabel("$k$")
    plt.ylabel("$J(C_k)$");
```


4.3 Кластеризация ирисов Фишера

```
In [44]: from sklearn.mixture import GaussianMixture
    from sklearn import datasets
    from sklearn.decomposition import PCA
    from sklearn.metrics import accuracy_score, classification_report
    import pandas as pd
```

```
In [34]: iris = datasets.load_iris()
```

Загрузка датасета в пандас:

Out[36]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
	0	5.1	3.5	1.4	0.2	0.0
	1	4.9	3.0	1.4	0.2	0.0
	2	4.7	3.2	1.3	0.2	0.0
	3	4.6	3.1	1.5	0.2	0.0
	4	5.0	3.6	1.4	0.2	0.0
	•••					
	145	6.7	3.0	5.2	2.3	2.0
	146	6.3	2.5	5.0	1.9	2.0
	147	6.5	3.0	5.2	2.0	2.0
	148	6.2	3.4	5.4	2.3	2.0
	149	5.9	3.0	5.1	1.8	2.0

150 rows × 5 columns

```
In [37]: X = df.drop(['target'], axis=1)
In [38]: target = df['target'].values
target = np.int16(target)
```

PCA

```
In [39]: pca = PCA(n_components=2)
X_2d = pca.fit_transform(X)

color_map = {
        '0': 'r',
        '1': 'b',
        '2': 'g'
}

colors = []
for i in range(target.shape[0]):
        colors.append(color_map[f'{target[i]}'])

plt.scatter(X_2d[:, 0], X_2d[:, 1], c=colors)
```

Out[39]: <matplotlib.collections.PathCollection at 0x2925a1ac290>


```
gm = GaussianMixture(n_components=3).fit(X)
In [40]:
In [41]:
         y_pred = gm.predict(X)
In [45]: print(classification_report(target, y_pred))
                        precision
                                      recall f1-score
                                                         support
                     0
                             1.00
                                        1.00
                                                  1.00
                                                               50
                     1
                             1.00
                                        0.90
                                                  0.95
                                                               50
                             0.91
                                        1.00
                                                  0.95
                                                               50
                                                  0.97
                                                              150
              accuracy
                                                  0.97
                                                              150
             macro avg
                             0.97
                                        0.97
         weighted avg
                             0.97
                                        0.97
                                                  0.97
                                                              150
```

Визулизация через РСА:

```
In [46]: colors = []
    for i in range(target.shape[0]):
        colors.append(color_map[f'{y_pred[i]}'])

plt.scatter(X_2d[:, 0], X_2d[:, 1], c=colors)
```

Out[46]: <matplotlib.collections.PathCollection at 0x2925b59c290>

