GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2023 (COGC-2023) Semester-VI

Course Title: CNC Machines (Course Code: 4362005)

Diploma programmer in which this course is offered	Semester in which offered
Mechatronics	Sixth

1. RATIONALE

In the dynamic landscape of modern manufacturing, the utilization of advanced technologies is pivotal for success. The paradigm shift in the manufacturing environment necessitates the production of high-quality components within compressed timelines. With the evolution of information technology and the emergence of various manufacturing concepts emphasizing zero lead time and heightened quality standards, the rapid integration of computerized numerical control (CNC) machines has become imperative. Much like the increasing significance of mental acuity over physical prowess in human endeavors, CNC programming has gained paramount importance in conjunction with the selection and application of CNC tooling. This course is meticulously designed to equip students with the essential skills for CNC machine programming, tooling, and related aspects. It is noteworthy that CNC machines extend beyond conventional machine tools, permeating various facets of manufacturing processes and support activities. Given the expanding influence of CNC technology across diverse manufacturing domains, mechatronics engineers are presented with a unique opportunity to master these advanced techniques. The course aims to empower students to navigate the complexities of CNC technology, thereby preparing them to meet the challenges and opportunities presented by the contemporary manufacturing landscape.

2. COMPETENCY

The course content should be taught and curriculum should be implemented with the aim to develop required skills in the students so that they are able to acquire the following competency:

- Precision Programming and Operation
- Tooling Selection and Optimization
- Automation Proficiency
- Preventive Maintenance and Troubleshooting
- Process Optimization and Continuous Improvement

5. COURSE OUTCOMES (COs)

Theoretical concepts will be delivered, and practical sessions will be conducted in a manner that enables students to achieve the desired learning outcomes across cognitive, psychomotor, and affective domains, thereby demonstrating the following course outcomes.:

CO-1	Recognize various axes, machine zero, home position, systems, and controls of CNC machines.
CO-2	Choose, install, and configure cutting tools and tool holders on CNC machines
CO-3	Develop part programs using the ISO format for simple components, incorporating MACRO, CANNED CYCLE, and SUBROUTINE as needed.
CO-4	Utilize software applications for automated part programming
CO5	Implement maintenance procedures for CNC machines

4. TEACHING AND EXAMINATION SCHEME

Te	eachir	ng	Total Credits	Examination Scheme				
	chem Hou		(L+T+P/2)	Theory	neory Marks Practical Marks		Total Marks	
L	T	P	С	CA	ESE	CA	ESE	Marks
3	0	2	4	70	30	25	25	150

*Theory CA having 30 marks has two components, i.e., the micro-project assessment, which will be done out of 10 marks to facilitate the integration of COs. The remaining 20 marks would be the average of marks of the 2 midsemester exams to be taken during the semester to assess the cognitive domain's attainment.

Legends: L-Lecture; T— Tutorial/Teacher Guided Theory Practice; P -Practical; C— Credit, CA- Continuous Assessment; ESE -End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES:

The practical should be properly designed and implemented with an attempt to develop different types of skills (outcomes in psychomotor and affective domain) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance. Note: Here only outcomes in psychomotor domain are listed as practical. However, if these practical are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of Course Outcomes related to affective domain. Thus, over all development of Programme Outcomes (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Sr	r.	Unit	Practical	Exercises	(outcomes	in	Psychomotor	Approx.
No	0.	No.	Domain)					Hours

			Required
1	I,II	Preparatory activity: a. Collect mechanical	02
		components manufactured on CNC machines and	
		show difference compared to conventional machining	
		b. Identify operations on that components c. Prepare	
		conventional process plan for at least two	
		components.	
2	III	Demonstrate constructional features and modes of	02
		operations of CNC.	
3	III	Demonstrate and interpret CNC controllers features.	02
4	III	Demonstrate inserts, holders and tool management	02
		systems.	
5	IV	Develop and simulate CNC turning part program (at least	10
		five) and identify errors and manufacture on CNC turning	
		machine.	
6	IV	Develop and simulate CNC milling part program (at least	06
		three) and identify errors and manufacture on CNC milling	
		machine	
7	IV	Prepare part program with CAD/ CAM software (like	04
		master cam, NX) and interface with CNC machine.	
Total H	lours		28

Notes:

- a. It is compulsory to prepare log book of exercises. It is also required to get each exercise recorded in logbook, checked and duly dated signed by teacher.PA component of practical marks is dependent on continuous and timely evaluation and submission of exercises.
- b. Term work report must not include any photocopy / ies, printed manual/pages, litho, etc. It must be hand written / hand drawn by student only.
- c. Mini project and presentation topic/area has to be assigned to the group of specified students in the beginning of the term by batch teacher, if applicable.
- d. For practical ESE part, students are to be assessed for competencies achieved. They should be given experience/part of experience to perform.

Sr. No.	Sample Performance Indicators for the PrOs	Weightage in			
Experime	ntation/performance type PrOs (PrOs Number: 2,3,4,5,6	,7,8,9,10 &11)			
1	Knowledge	30			
2	Quality of Report	30			
3	Participation	20			
4	Punctuality	20			
	Total	100			
	For Demonstration type PrOs (PrOs Number: 1&12)				
1	Knowledge	20			

2	Procedure follows	30				
3	3 Observation Skill					
4	4 Conclusion/ Summary					
5	Quality of Report	10				
6	6 Punctuality					
	Total					

Sample rubrics Performance Indicators for the PrOs

	Dei	monstration type Pi	rOs (PrOs Number	1 &12)	
Criteria	%	10	9-8	7-6	5
Knowledge	30%	Students give the correct answers 90% or more	Student give the correct answers between 70-89%	Student give the correct answers between 50-69%	Student give the correct answers less than 50%
Quality of Report	30%	Neat Handwriting, figure, and table. Complete labeling of figure and table.	not proper (Location of figures/tables, use of pencil and scale)	(labeling/	Several require elements content in paragraph, labels, figures, tables) are missing
Participation	25%	Excellent focused attention in the exercise	Moderately focused attention on exercise		Participation is minimum
Punctuality	15%	Timely Submission	Submission late by one laboratory	Submission late by two laboratories	Submission late by more than two laboratories

Experimentation/performance type PrOs (PrOs number 2,3,4,5,6,7,8,9,10 & 11)						
Criteria	%	10	9-8	7-6	5	
			correct answers	Student give the correct answers between 50-69%	correct answers	
Knowledge	20%					

		Student follow all the procedure with recaution	the procedure with	•	Student follow all the procedure
Procedure		in a logical order	C	without precaution in a logical order	without precaution in an illogical order
follows	30%				5
		Excellent focused	Moderately focused		Participation is
Observation		attention in the exercise	attention on exercise	attention in the exercise	minimum
Skill	20%				
Conclusion/		Student concept is mostly clear	partly clear	Student concept is somewhat clear	Student concept is not clear
Summary	10%				
		Neat Handwriting, igure, and table. Complete labeling of figure and table.	not proper (Location of figures/tables, use of pencil and scale)	elements (labeling/	Several require elements (content in paragraph, labels, figures, tables) are
Quality of Report	10%				missing
Punctuality	10%	Timely Submission	one laboratory	Submission late by two laboratories	Submission late by more than two laboratories

7. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

Sr.No.	Equipment Name with Broad Specifications	PrO. No.
1	CNC turning Machine (Tutor or productive) Min Diameter: 30 mm, Min Length: 120mm, ATC facility	1,2,6
2	CNC milling Machine (Tutor or productive) X axis travel:150mm Y axis travel: 150mm Z axis travel:100mm ATC facility	5,7,12

Sr.No.	Equipment Name with Broad Specifications	PrO. No.
3	CNC programming simulation software Latest version of any one from following softwares CNC simulator Pro Swansoft CNC	5,7,8
4	Software for CAD/CAM integration. Latest version of any one from following softwares Mastercam, NX Solid Edge.	4,10

7. AFFECTIVE DOMAIN OUTCOMES

The following sample Affective Domain Outcomes (ADOs) are embedded in many of the Above-mentioned COs and PrOs. More could be added to fulfill the development of this course competency.

- a) Work as a leader/ team member.
- b) Follow safety practices.
- c) Follow ethical practices
- d) Maintain tools and equipment
- e) Practice environment-friendly methods and processes. (Environment-related)

The ADOs are best developed through laboratory/field-based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should

gradually increase as planned below:

- I. 'Valuing Level' in 1st year.
- II. 'Organization Level' in 2nd year.
- III. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY:

Unit	Major Learning Outcomes	Topics and Sub-topics
	(in cognitive domain)	
Unit – I Fundamentals of	1a. Analyze Operation	1.1 Process planning 1.2
process planning	Sequence. 1b. Develop Route	Structure of process plan 1.3
	Sheet	Factors influencing process
		plan 1.4 Sequence of operation
		of process plan
Unit – II. CNC systems	2a. Distinguish between CAM,	2.1 CAM, NC,CNC and DNC
	NC, CNC, and DNC 2b.	2.2 Selection criteria for CNC
	Determine Selection Criteria	machines. 2.3 Adoptive
	for CNC Machines	Control
UNIT- III Constructional	3a. Illustrate the Working	3.1 Classifications of CNC
Features of CNC machines	Principle of CNC Systems:.	Machine 3.2 Modes of

	21. F1 M-1	
	3b. Explore Modes of	operation of CNC 3.3 Working
	Operations in CNC Machines:.	of: Machine Structure,
	3c. Examine Different	Slideways, Spindle drive, Axis
	Toolings in CNC Systems:.	drive, Recirculating ball screw
		Feedback devices (transducers,
		encoders), Automatic tool
		changer (ATC), Automatic
		pallet changer (APC). 3.4 CNC
		axis and motion nomenclature
		3.5 CNC toolings – tool pre
		setting, qualified tool, tool
		holders and inserts
Unit – IV CNC Part	40 Bassanias Aves in CNC	4.1 Axes Identification in CNC
	4a. Recognize Axes in CNC	
Programming	Turning and Machining	turning and Machining centers
	Centers: 4b. Justify the	4.2 Machine zero, home
	Significance of Machine and	position, work piece zero,
	Part Positions. 4c. Develop	programme zero. 4.3 CNC part
	Part Programs for Turning and	programming: Programming
	Milling: 4d. Highlight the	format and Structure of part
	Importance of Advanced	programme. 4.4 ISO G and M
	Commands: 4e. Interface	codes for turning and milling-
	Software for Automated Part	meaning and applications of
	Programming:	important codes. 4.5
		Compensations: Tool length
		compensation, Pitch error
		compensation, Tool radius
		compensation. 4.6 Simple part
		programming for turning using
		ISO format having straight
		turning, taper turning (linear
		interpolation) and
		convex/concave turning
		(circular interpolation). 4.7
		Simple part programming for
		milling using ISO format. 4.8
		Importance, types, applications
		and format for: Canned cycles,
		Macro, Do loops, Subroutine,
		Mirror image. 4.9 CNC turning
		and milling part programming
		using canned cycles, Do loops
		and Subroutine. 4.10 CAD
		CAM integration: Concept
		Steps involved in CAD/CAM
		_
		integration, CAM software.

Unit – V Maintenance of CNC	5a. Acquaintance with CNC	5.1 Types of machine tools
Machine	Systems Maintenance	maintenance 5.2 Systems and
	Practices:. 5b. Development	Sub systems of CNC machines
	and Management of Daily	5.3 CNC Maintenance
	Checklist. 5c. Troubleshooting	practice: Tools required, Daily
	Mechanical and Electronic	checklist, Problems related to
	Issues:	mechanical systems, Backlash,
		Causes and precautions of
		electronics system

9. SUGGESTED SPECIFICATION TABLE FOR QUESTIONPAPER DESIGN:

Unit	Unit Title	Teaching	Distribution of Theory Marks			
No.		Hours	R Level	U Level	A Level	Total Marks
Ι	Fundamentals of Process Planning	4	-	3	4	7
II	Introduction to CNC systems	6	3	4	3	10
III	Constructional Features of CNC machines.	10	4	6	6	16
IV	CNC part programming.	18	5	10	15	30
V	Maintenance in CNC machines	4	2	2	3	7
	Total	42	14	25	31	70

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy)

Note: This specification table gives general guidelines to assist students in their learning, and to the teachers, for question paper design and teaching methodology to formulate test items/questions to assess the attainment of the UOs. The actual distribution of marks at different taxonomy levels (of R, U, and A) in the question paper may slightly vary from the above table

10. SUGGESTED STUDENT ACTIVITIES

S NO	Activity
1	Download simulation software for free and validate part programs through
	simulation.
2	For any component generate part programs using Computer-Aided
	Manufacturing (CAM) software.
3	Analyze and interpret tool designations.
4	Visit industries equipped with CNC machines or explore websites of
	renowned CNC suppliers. Compile a specification list and gain insights
	into operation and maintenance practices.

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

Sr. No.	Unit	Unit Name	Strategies
1	I	Fundamentals of Process Planning	Study of actual routesheets
			available, Industrial visits
2	II	Introduction to CNC systems	Videos, Presentations,

			Industrial Visits, expert
			lectures
3	III	Constructional Features of CNC machines	Videos, Presentations,
			Industrial Visits, expert
			lectures
4	IV	CNC Programming	Simulation softwares
5	V	Maintenance in CNC machines	Demonstration

12. SUGGESTED PROJECT LIST

Only one micro project will be given by the teacher to the students. The micro project should cover at least 2 COs which are integration of PrOs, UOs, and ADOs. Each student will have to submit a report related to their assigned micro project at the end of the semester. The following is the suggested micro-projects list which should be matched with the competency and Cos.

- CNC part programming of any simple object with the use of CNC codes.
- Implement features such as MACRO, CANNED CYCLE, and SUBROUTINE using ISO format.
- Visit any Manufacturing industry and find out production parts and prepare detailed part and Assembly drawings.
- Visit the Automation industry and prepare specifications for CNC turning, CNC Milling, etc.
- Prepare Axis Designation model of CNC Turning, CNC Milling, etc.
- Prepare a report on different accessories used like Ball screws, Guideways, Slideways, ATC, APC, and Sensors used.
- Prepare a report on tool offset.
- Prepare a report tool compensation method.
- Prepare a report on different techniques used for work holding in different CNC Machines.
- Prepare a model on work zero, machine zero axis.
- Solve examples of identifying machining costs with the use of different CNC machines.
- Prepare a report on different types of CNC controllers available in the market.

13. SUGGESTED LEARNING RESOURCES

Sr No	Title of Book	Author	publication
1	CNC Machines	Pabla B.S., Adithan	New Age
		M	International, New
			Delhi,2014(reprint)
2	CAD/CAM: computer-aided	Groover Mikell P,	Prentice Hall 2011
	design and manufacturing	Zimmered W Emory	
3	Computer Aided Manufacturing	Rao P N, Tiwari N	Tata McGraw Hill
		K, Kundra T	2014
4	CAD/CAM/CIM	P. Radhakrishnan, S.	New Age

		Subramaniyan & V. Raju	International Pvt. Ltd., New Delhi, 3rd
		_	Edition
5	CNC Fundamentals And	P. M. Agrawal, Dr.	Charotar Publication
	Programming	V. J. Patel	

14. SOFTWARE/LEARNING WEBSITES

- 1. https://academy.titansofcnc.com/
- 2. https://www.cnccookbook.com/online-cnc-training-courses-guides-help/
- 3. https://www.siemens.com/global/en/industries/machinebuilding/machine-tools/cnc4you/education-training.html
- 4. https://www.mastercam.com/news/blog/learn-how-to-use-cnc-software/
- 5. https://www.siemens.com/global/en/industries/machinebuilding/machine-tools/cnc4you/education-training/cnc-courses.html
- 6. https://www.autodesk.in/solutions/cnc-programming
- 7. https://archive.nptel.ac.in/courses/112/105/112105211/
- 8. https://nptel.ac.in/courses/112102103
- 9. https://www.youtube.com/watch?v=IPnr1cdaT1s&list=PLT1NMjA2P81Frwoo5PLbL9IbhjMEaO8kK&pp=iAQB
- 10. http://vlabs.iitkgp.ernet.in/vlabs/rtvlab1/cncbase%20software.html
- 11. https://fab-coep.vlabs.ac.in/exp/3d-machining/
- 12. http://vlabs.iitkgp.ac.in/psac/newlabs2020/vlabiitkgpAM/exp2/index.html

15. PO-COMPETENCY-CO MAPPING:

Semester VI	CNC Machines (Course Code:4362002)						
				POs			
Competency & Course Outcomes	PO 1 Basic & Discipline specific knowledge	PO 2 Problem Analysis	PO 3 Design/ developm ent of solutions	PO 4 Engineering Tools, Experiment ation &Testing	PO 5 Engineering practices for society, sustainabilit y & environment	PO 6 Project Managem ent	PO 7 Life- long learnin g
Course Outcomes CO1 Recognize various axes, machine zero, home position, systems, and controls of CNC machines	3	3	1	1	1	-	1
CO2 Choose, install, and	1	1	-	3	3	-	2

configure cutting tools and tool holders on CNC machines.							
CO3 Develop part programs using the ISO format for simple components, incorporating MACRO, CANNED CYCLE, and SUBROUTINE as needed.	2	3	2	1	2	-	1
CO4 Utilize software applications for automated part programming	1	-	2	1	1	2	1
CO5 Implement maintenance procedures for CNC machines	1	-	-	3	3	1	-

Legend: '3' for high, '2' for medium, '1' for low and '-' for no correlation of each CO with PO.

16. COURSE CURRICULUM DEVELOPMENT COMMITTEE

	GTU Resource Persons							
Sr. No.	Name and Designation	Institute	Contact No.	Email				
1.	H C MEVADA	B & B INSTITUTE OF TECHNOLOGY	9978803918	hcmevada@bbit.ac.in				
2.	A J Suthar	B & B INSTITUTE OF TECHNOLOGY		ajsuthar@bbit.ac.in				
		BOS RESOURC	<u>E PERSONS</u>					
1	Dr. S. H. Sundarani, BOS Chairman & HOD Mechanical	Government Polytechnic, Ahmadabad	9227200147	gpasiraj@gmail.com				

2	Dr. Rakesh D. Patel, BOS Member & HOD Mechanical	B. & B. Institute of Technology, V. V. Nagar	9825523982	rakeshgtu@gmail.com
3	Dr. Atul S. Shah, BOS Member & Principal	B. V. Patel Institute of Technology, Bardoli	7567421337	asshah97@yahoo.in