

IWT-Tetra-project

Onderzoekssymposium Thomas More – track E/ICT 21 maart 2013

Projectleider: Toon Goedemé Projectassistent: Steven Puttemans

Overzicht

- 1. IWT TETRA TOBCAT
- 2. Objectherkenning
- 3. Objectcategorisatie
- 4. Algemene aanpak
- 5. Doel van het project
- 6. Toepassingsdomeinen
- 7. Reeds verrichte onderzoek

IWT – TETRA TOBCAT

- Tetra project = TEchnologieTRAnsfer
 - Doel : kennis/technologie transfereren van de academische naar de bedrijfswereld
- Beroep op kennisinstellingen zoals EAVISE
 - Verkennen & verspreiden van kennis
- TOBCAT = industriële toepassingen van objectcategorisatie
 - Start: 1 september 2012, looptijd: 2 jaar
 - Samenwerking
 - EAVISE, Thomas More Mechelen
 - · MOBILAB, Thomas More Geel
 - IMOB, Universiteit Hasselt
 - Ondersteund door een bedrijven gebruikersgroep: Grontmij, Van Hoecke, Traficon, Vansteelandt, Case New Holland, ...

Objectherkenning (evolutie)

1980s

122223

1990s tot vroege 2000s

Momenteel

Objectcategorisatie

Objectherkenning
Object recognition
Object identification

Object detectie
Object categorisation
Object classification

Objectcategorisatie

Objecten met grote variatie binnen de klasse

Moeilijker naarmate grotere variatie

KU LEUVEN

Objectcategorisatie

- Robuust tegen
 - Belichting
 - Positie van object
 - Occlusie
 - Oriëntatie

- Schaal
- Standpunt camera
- Andere objecten
- Intra klasse variatie

Illumination

Object pose

Clutter

Occlusions

Intra-class

Viewpoint

Algemene aanpak

1. Heel wat trainingsvoorbeelden

- Zoveel mogelijk variatie
- Zowel positieve (bevatten object) als negatieve beelden (bevatten helemaal geen object)

2. Variatie modelleren in enkel model

- Zoeken belangrijke kenmerken "features"
- Feature model

Algemene aanpak

3. Enkel model hergebruiken

- Trainingsvoorbeelden niet meer nodig
- Voordeel: beperkte dataopslag

4. Voor elke nieuwe detectie

- Afbeelding omzetten naar feature ruimte
- Met model over de afbeelding zoeken

Algemene aanpak

Doel van het project

- Moderne technieken van objectclassificatie <u>bekend maken</u> bij industriële partners
- <u>Toegankelijk</u> en <u>transparant</u> maken van de beschikbare academische technologie
- Objectclassificatie effectief bij bedrijven uit de industrie introduceren : ontwikkelen software
 - 1. Annotatie van trainingsbeelden
 - Training van modellen
 - 3. Detecteren van objecten

Doel van het project

- Gebruikmakend van bestaande technieken
 - Viola & Jones (CVPR2006) → cascade of simple features
 - Felzenszwalb (CVPR2010) → deformable part models
 - Dollár (BMVC2009) → integral channels features
 - Gall & Lempitsky (CVPR2009) → class specific hough forests

- Wegwerken van specifieke problemen
 - Moeilijkheidsgraad gebruik naar beneden halen
 - Zorgen dat bedrijven niet afhankelijk zijn van code (open-source)

Toepassingsdomeinen

REMOTE SENSING

MONITORING (verkeer/ouderen)

LANDBOUW

BIOLOGIE

KU LEUVEN

- Uittesten van bestaande detectoren in OpenCV
 - Open Source Computervisie bibliotheek in C / C++ / Python / Java
 - Bijsturen van detectiealgoritmes waar nodig voor beter resultaat

- Huidig werk : opbouwen van eigen detectiemodellen
 - Annotatiesoftware: aanduiden positieve & negatieve voorbeelden
 - Trainingsalgoritme opbouwen
 - Huidig algoritme:
 - adaBoost cascade of weak classifier
 - Viola&Jones aanpak
 - Gezichtsdetectie in fototoestel
 - Gegeneraliseerd voor elk type & soort object
- Uitzoeken waar beperkingen van algoritme liggen
 - Aantal trainingsvoorbeelden
 - Robuustheid van de detecties
 - Gebruik van verschillende features om te trainen

Enkele voorbeelden

Annotatie, training & detectie van mijten

- Enkele voorbeelden
 - Detectie van mijten
 - Alle detecties die gebeuren

- Hoe meer overlap, hoe beter de detectie
- Merken dat achtergrond toch nog valse detecties oplevert

- Enkele voorbeelden
 - Detectie van mijten
 - Meer negatieven toevoegen, achtergrond beter modelleren

Threshold op toepassen

- Enkele voorbeelden
 - Detectie van personen in 360° beelden
 - Modellering van de omgevingskennis

- Enkele voorbeelden
 - Detectie van personen in 360° beelden

- Enkele voorbeelden
 - Detectie van personen in 360° beelden
 - Uitdagingen

- Enkele voorbeelden
 - Detectie van auto's in luchtfoto's
 - Gebruiken van kennis opnames hoogte → schaal model

- Enkele voorbeelden
 - Detectie van auto's in luchtfoto's
 - Nog steeds valse detecties! ← grootste uitdaging

Interesse naar meer?

Wil je graag meer weten?

Website onderzoeksgroep

→ http://www.eavise.be

Website TOBCAT project

→ http://www.eavise.be/tobcat/

Zijn er nog vragen?