Mathematical Statistics 2 Tutoring1

Seung Bong Jung

Seoul National University

September 30, 2021

Method-of-Moment Estimator (MME)

Let X_1, \ldots, X_n be a random sample from a unknown distribution P. Let η be a unknown characteristic of the distribution P. Assume that it can be expressed as a function of the moments of P, say

$$\eta = g(\mu_1, \dots, \mu_k)$$

for a given (known) function g, where $\mu_j=EX_1^j$. The method-of-moment estimator of η is defined by

$$\hat{\eta}^{\mathsf{MME}} = g(\hat{\mu}_1, \dots, \hat{\mu}_k),$$

where $\hat{\mu}_j = n^{-1} \sum_{i=1}^n X_i^j$, that is, $\hat{\eta}^{\text{MME}}$ is obtained by simply replacing the population moments μ_j by the corresponding sample moments $\hat{\mu}_j$.

Consistency of MME

- Consistency: An estimator $\hat{\eta}$ of η is consistent if $\hat{\eta}$ converges in probability to η for all $P \in \mathcal{P}$, where \mathcal{P} is the underlying statistical model.
- ullet Continuous mapping theorem: If g is continuous and if all elements of ${\mathcal P}$ have finite k-th moments, then

$$\hat{\eta}^{\mathsf{MME}} = g(\hat{\mu}_1, \dots, \hat{\mu}_k) \overset{P}{\rightarrow} g(\mu_1, \dots, \mu_k) = \eta$$

for all $P \in \mathcal{P}$.

Note: The set in \mathbb{R}^k where g is continuous needs to cover the set $\{(\mu_1(P), \dots, \mu_k(P)) : P \in \mathcal{P}\}.$

Example of MME

2018 Midterm Problem2

Let X_1, \ldots, X_n be i.i.d. with p.d.f. $f_{p,\lambda}(x)$ (0 0), where

$$f_{p,\lambda}(x) = \begin{cases} p + (1-p)e^{-\lambda} & \text{if } x = 0\\ (1-p)\lambda^x e^{-\lambda}/x! & \text{if } x = 1, 2, 3, \dots \end{cases}$$

- (a) Find a method-of-moment estimator $\hat{\theta}$ of $\theta=(p,\lambda)^t.$
- (b) Find a $2-{\rm dimensional}$ vector μ and 2×2 matrix Σ such that

$$\sqrt{n}(\hat{\theta} - \mu) \stackrel{d}{\to} N(0, \Sigma).$$

Advantages and Disadvantages of MME

Advantages of MME

- It is fairly simple and satisfies consistency provided that the moments exist.
- Compared to MLE, it is easy to compute.
- More preferred than MLE if the distribution is unknown.

Disadvantages of MME

- It is possible that estimator does not belong to the parameter space even if exists, which is never the case for MLE.
- Do not attain the desirable optimality properties of MLE or LSE.

Idea of Maximizing likelihood

- If $pdf(x;\theta_1)>pdf(x;\theta_2)$ for an observation X=x, then the distribution $pdf(\cdot;\theta_1)$ is more likely, than $pdf(\cdot;\theta_2)$, to be the true distribution that generated the observation x.
- For a set of observations x_1, \ldots, x_n of a random smaple X_1, \ldots, X_n from pdf $f(\cdot; \theta)$, we have the likelihood (function)

$$L(\theta) = \prod_{i=1}^{n} f(x_i; \theta)$$

and the log-likelihood (function)

$$l(\theta) = \log L(\theta) = \sum_{i=1}^{n} \log f(x_i; \theta).$$

Maximum Likelihood Estimator (MLE)

ullet Definition of MLE: The MLE of θ for a given observation x is defined by

$$\hat{\theta}^{\mathsf{MLE}}(x) \equiv \argmax_{\theta \in \Theta} L(\theta; x)$$

when it exists.

MLE may not exist and may not be unique when it exists.

Existence of MLE

- When the likelihood is differentiable, an MLE is often found by solving the likelihood equation $\dot{l}(\theta;x)=0$, where $\dot{l}(\theta;x)=(\partial/\partial\theta)l(\theta;x)$.
- Suppose that the likelihood is twice continuously differentiable and $\Theta = \prod_{i=1}^k (a_i,b_i)$. For a given x, if $\dot{l}(\hat{\theta};x) = 0$ and $\ddot{l}(\theta;x)$ is negative definite for all $\theta \in \Theta$, then $\hat{\theta}$ is the unique MLE.
- Suppose that the likelihood is twice continuously differentiable and $\Theta = \prod_{i=1}^k (a_i,b_i)$. For a given x, if $\lim_{\theta \to \partial \Theta} l(\theta) = -\infty$ and the second derivative $\ddot{l}(\theta;x)$ is negative definite for all $\theta \in \Theta$, then the solution of the likelihood equation exists and is the unique MLE.

MLE of Function of Parameter

- Let $\theta=(\theta_1,\theta_2)$ and $\hat{\theta}=(\hat{\theta}_1,\hat{\theta}_2)$ is its MLE. Then, we call $\hat{\theta}_j$ the MLEs of θ_j , respectively.
- \bullet For a function g, the MLE of $\eta=g(\theta)$ is given by

$$\hat{\eta}^{\mathsf{MLE}} = g(\hat{\theta}^{\mathsf{MLE}}).$$

Profiling Method of Finding MLE

- Sometimes it is difficult to find the MLE of $\theta=(\theta_1,\theta_2)$ simultaneously, but rather easy to find the MLEs of θ_j with the other being fixed. Let $\hat{\theta}_1(\theta_2)$ denote the MLE of θ_1 when θ_2 is fixed.
- The MLE of θ is given by $\theta=(\hat{\theta}_1(\hat{\theta}_2),\hat{\theta}_2)$, where

$$\hat{\theta}_2 = \mathop{\arg\max}_{\theta_2:(\hat{\theta_1}(\theta_2),\theta_2) \in \Theta} l(\hat{\theta_1}(\theta_2),\theta_2)$$

• Multinomial distribution example: Let X_1,\ldots,X_n be random sample from $\operatorname{Multi}(n,(p_1,p_2,p_3)^t)$, where $p_1+p_2+p_3=1,\ p_j>0$ for all $j=1,\ldots,k$. Find a maximum likelihood estimator $\hat{\eta}$ of $\eta=(p_1,p_2)^t$ using profiling method.

Sufficient Conditions for Consistency of MLE

- Suppose that we observe a random sample from P_{θ} in $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$. Assume that θ in Θ is identifiable and that P_{θ} have common support and $\Theta = \prod_{i=1}^k (a_i,b_i)$. Assume also that the likelihood is twice continuously differentiable, $\lim_{\theta \to \partial \Theta} l(\theta) = -\infty$, and $E_{\theta_0}(\log f(X_1;\theta))$ exists and is continuous with respect to θ . If $\dot{l}(\dot{\theta};x) = 0$ and $\ddot{l}(\theta;x)$ is negative definite for all $\theta \in \Theta$, the MLE of θ is consistent.
- Logistic $(\theta,1)$ example: The support of P_{θ} equals to \mathbb{R} , the likelihood $l(\theta) \to -\infty$ as $\theta \to \pm \infty$ and $\ddot{l}(\theta) < 0$ for all θ . Thus, the MLE is consistent.

Consistency of MLE: Some Examples

- Let X_1, \ldots, X_n be a random sample from $U[0, \theta]$, $\theta \in (0, \infty)$. In this case $\hat{\theta} = X_{(n)}$ and $\hat{\theta} \stackrel{P_{\theta}}{\to} \theta$ as $n \to \infty$ for all $\theta > 0$.
- Let X_1, \ldots, X_n be a random sample from $\mathsf{DE}(\theta, 1)$, $\theta \in \mathbb{R}$. Then $\hat{\theta} = \mathsf{med}(X_i) \overset{P_{\theta}}{\to} \theta$ as $n \to \infty$ for all $\theta \in \mathbb{R}$.
- Let X_1, \ldots, X_n be a random sample from $\mathsf{Logistic}(\theta, \sigma)$, where $\theta \in \mathbb{R}$ and $\sigma > 0$. Then the MLE of (θ, σ) exists and is consistent.

Exercises

2020 Midterm Problem2

Suppose we observe data (X_i,Y_i) , $i=1,2,\ldots,n$ where $n\geq 2$. Assume that $Y_i\sim \operatorname{Exp}(\lambda_i)$ and Y_i 's are mutually independent, where $\mu_i=E[Y_i]=\lambda_i^{-1}=\exp(\alpha+\beta X_i)$. Further assume that $X_i\neq X_j$ if $i\neq j$. Show that the MLE of (α,β) exists and is unique.

Exercises

2020 Midterm Problem3

Consider the following model.

$$Y_i = \theta + \epsilon_i, \quad i = 1, \dots, n,$$

where $\epsilon_i = c\eta_{i-1} + \eta_i$, $i = 1, \ldots, n$, $\eta_0 = 0$, $\eta_i \overset{\text{i.i.d.}}{\sim} N(0, 1)$, and 0 < c < 1 is constant.

- (a) Find the MLE $\hat{\theta}$ of θ .
- (b) Show that $\hat{\theta}$ is consistent.

Exercises

2020 Midterm Problem5

Suppose that $X_1, \ldots, X_n \overset{\text{i.i.d.}}{\sim} Poi(\lambda)$. Suppose we cannot observe X_i but can observe whether $X_i = 0$ or $X_i > 0$.

- (a) Find the MLE $\hat{\lambda}$ of λ .
- (b) Find the case when $\hat{\lambda}$ does not exist and the probability that $\hat{\lambda}$ does not exist assuming λ_0 is true parameter of λ .

Kullback-Leibler Divergence and MLE

• Kullback-Leibler Divergence: Let $\mathcal{P}=\{P_{\theta}:\theta\in\Theta\}$ be a statistical model for an observation X. Let $f(\cdot;\theta)$ denote the density function of P_{θ} . The Kullback-Leibler divergence (of P_{θ} from P_{θ_0}) is defined by

$$\mathsf{KL}(\theta, \theta_0) = -\mathsf{E}_{\theta_0}(\log f(X; \theta) / f(X; \theta_0)).$$

• Assume $\theta \in \mathcal{P}$ is identifiable and P_{θ} have common support, i.e., $\{x: f(x;\theta)>0\}$ does not depend on $\theta \in \Theta$. Then,

$$\mathsf{KL}(\theta, \theta_0) \geq 0$$
 and $\mathsf{KL}(\theta, \theta_0) = 0$ if and only if $\theta = \theta_0$.

Kullback-Leibler Divergence and MLE

Let X_1, \ldots, X_n be a random sample from P_θ in $\mathcal{P} = \{P_\theta : \theta \in \Theta\}$. Let $f(\cdot; \theta)$ denote the density function of P_θ . Assume θ in Θ is identifiable and P_θ have common support. For a fixed θ_0 , define

$$D_n(\theta) = -n^{-1} \sum_{i=1}^n \log f(X_i; \theta) / f(X_i; \theta_0), \quad D_0(\theta) = \mathsf{KL}(\theta, \theta_0).$$

- θ_0 is the unique minimizer of $D_0(\theta)$ over Θ .
- $\hat{\theta}$ is a minimizer of $D_n(\theta)$ when it exists.
- By WLLN, $D_n(\theta) \stackrel{P_{\theta}}{\to} D_0(\theta)$ for all $\theta \in \Theta$.
- Does $\hat{\theta}$, the minimizer of $D_n(\theta)$, converges to θ_0 , the minimizer of $D(\theta)$, in P_{θ_0} probability?

Kullback-Leibler Divergence and MLE

KL Divergence and Consistency of MLE (2019 Midterm Problem1)

Let G_n be a sequence of random functions, and let G_0 be a function defined on Θ . Assume the following conditions:

- \bullet Θ is compact.
- ullet G_0 has the unique minimizer.
- G_0 is continuous on Θ .
- $\sup_{\theta \in \Theta} |G_n(\theta) G_0(\theta)| \stackrel{P}{\to} 0.$

Denote the minimizer of G_n by $\hat{\theta}_n$ and the minimizer of G_0 by θ_0 over Θ . Prove that $\hat{\theta}_n$ converges to θ_0 in probability.