Công thức chỉnh họp

1. Tổng hợp lý thuyết

- Cho tập hợp A có n phần tử và cho số nguyên k, $(1 \le k \le n)$. Khi lấy k phần tử của A và sắp xếp chúng theo một thứ tự, ta được một chỉnh hợp chập k của n phần tử của A (gọi tắt là một chỉnh hợp n chập k của A).
- Số các chỉnh hợp chập k của một tập hợp có n phần tử là: $A_n^k = \frac{n!}{(n-k)!}$.
- Một số quy ước: 0!=1, $A_n^0=1$, $A_n^n=n!$
- Đặc điểm: Đây là sắp xếp có thứ tự và số phần tử được sắp xếp là k: $0 \le k \le n$.

2. Công thức tính

Công thức chỉnh hợp:
$$A_n^k = \frac{n!}{(n-k)!}$$

3. Ví dụ minh họa

Ví dụ 1: Một đôi bóng có 11 cầu thủ, chuẩn bị đá penalty. Huấn luận viên muốn chọn ra 5 cầu thủ lần lượt lên đá penalty. Biết cả 11 cầu thủ đều có khả năng đá như nhau. Hỏi có bao nhiêu cách chọn cầu thủ lên đá bóng.

Lời giải

Số cách chọn và sắp xếp 5 cầu thủ lần lượt lên đá penalty là $A_{11}^5 = 55440$ cách.

Ví dụ 2: Từ các chữ số từ 0 đến 9. Có bao nhiều cách lập một số tự nhiên sao cho:

- a) Số có 6 chữ số khác nhau
- b) Số có 6 chữ số khác nhau và chia hết cho 10
- c) Số lẻ có 6 chữ số khác nhau.

Lời giải

a) Lập số có 6 chữ số khác nhau

Chọn chữ số đầu tiên từ các số từ 1 đến 9: có 9 cách chọn

Các chữ số còn lại là chỉnh hợp chập 5 của 9 số còn lại (khác chữ số đầu tiên) có A_9^5

Vậy có
$$9A_9^5 = 136080 \text{ số.}$$

b) Số có 6 chữ số khác nhau và chia hết cho 10

Chọn chữ số hàng đơn vị: có 1 cách chọn là chữ số 0

Chọn các chữ số còn lại là chỉnh hợp chập 5 của 9 số còn lại (khác chữ số 0) có A_9^5

Vậy có
$$A_9^5 = 15120$$
 số.

c) Gọi số abcdef là số lẻ có 6 chữ số khác nhau được lập từ chữ số 0 đến 9

Vì \overline{abcdef} là số lẻ nên $f \in \{1;3;5;7;9\}$

Chọn f: có 5 cách chọn

Chọn a từ các chữ số $\{1; 2; 3; 4; 5; 6; 7; 8; 9\} \setminus \{f\}$: có 8 cách chọn

Chọn b, c, d, e là chỉnh hợp chập 4 của 8 chữ số còn lại (khác f và a): có A_8^4

Vậy có $5.8A_8^4 = 67200 \text{ số.}$