Assmnt Week-2

```
Assignment 8 th september

1.Take car crashes dataset from seaborn library

2.load the dataset

3.data visualiation

4.Inference is must for each and every graph

5.Submit it by wednesday in pdf format
```

```
In [30]: import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

```
In [2]: sns.get_dataset_names()
Out[2]: ['anagrams',
          'anscombe',
          'attention',
          'brain_networks',
          'car_crashes',
          'diamonds',
          'dots',
          'dowjones',
          'exercise',
          'flights',
          'fmri',
          'geyser',
          'glue',
          'healthexp',
          'iris',
          'mpg',
          'penguins',
          'planets',
          'seaice',
          'taxis',
          'tips',
          'titanic']
In [3]: df = sns.load_dataset('car_crashes')
```

In [27]: df.head(5)

Out[27]:

	total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses	abbrev
(18.8	7.332	5.640	18.048	15.040	784.55	145.08	AL
•	I 18.1	7.421	4.525	16.290	17.014	1053.48	133.93	AK
2	18.6	6.510	5.208	15.624	17.856	899.47	110.35	AZ
;	3 22.4	4.032	5.824	21.056	21.280	827.34	142.39	AR
4	12.0	4.200	3.360	10.920	10.680	878.41	165.63	CA

In [5]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 51 entries, 0 to 50
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	total	51 non-null	float64
1	speeding	51 non-null	float64
2	alcohol	51 non-null	float64
3	<pre>not_distracted</pre>	51 non-null	float64
4	no_previous	51 non-null	float64
5	ins_premium	51 non-null	float64
6	ins_losses	51 non-null	float64
7	abbrev	51 non-null	object

dtypes: float64(7), object(1)

memory usage: 3.3+ KB

```
In [13]: sns.lineplot(x = 'total', y = 'alcohol', data = df)
# Inference: With this the consuption of alcohol has a direct impact on No of accidents
```

Out[13]: <Axes: xlabel='total', ylabel='alcohol'>


```
In [10]: sns.scatterplot(x = 'total', y = 'alcohol', data = df)
# Inference: With this the consuption of alcohol has a direct impact on No of accidents
```

Out[10]: <Axes: xlabel='total', ylabel='alcohol'>


```
In [8]: sns.scatterplot(x = 'total', y = 'speeding', data = df)
# Inference: With the increse in speed the number of accidents also increses
```

Out[8]: <Axes: xlabel='total', ylabel='speeding'>


```
In [26]: sns.lineplot(x = 'total', y = 'speeding', data = df)
# Inference: With the increse in speed the number of accidents also increses
```

Out[26]: <Axes: xlabel='total', ylabel='speeding'>


```
In [39]: sns.lineplot(y = 'total', x = 'no_previous', data = df)
# Inference: The total is directly proportional to the no_previous
```

Out[39]: <Axes: xlabel='no_previous', ylabel='total'>


```
In [36]: sns.lineplot(x = 'total', y = 'ins_premium', data = df)
# Inference: The Total Num of accidents has no such impact with the ins_premium
```

Out[36]: <Axes: xlabel='total', ylabel='ins_premium'>

<ipython-input-28-45893e33df67>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is de precated. In a future version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning.

corr = df.corr()

In [34]: sns.heatmap(corr, annot=True)

Out[34]: <Axes: >

Inference

- The total number of accidents is mostly correlated with the no_previous
- The total number of accidents is highly dependent or correlated with the alcohol
- The total number of accidents is not correlated with the ins_premium and ins_losses
- ins_premium and ins_losses are correlated with each other