

Outline

- Model Development
 - Statement of Purpose
 - Dataset assessment
 - Feature Engineering
 - Model search and final model selection
 - Model testing

- Model Validation
 - Data Quality
 - Conceptual Soundness
 - Quantitative Validation

PART 01

Model Development

Statement of Purpose

The purpose of this model is to leverage explainable and interpretable machine learning techniques to predict credit card default, adhering to the SR 11-7 guidelines

Dataset

<u>Default of Credit Card Clients Dataset</u> - UC Irvine Machine Learning Repository

Features:

- X1: Amount of the given credit (NT dollar)
- X2: Gender (1 = male; 2 = female)
- X3: Education (1 = graduate school; 2 = university; 3 = high school; 4 = others)
- X4: Marital status (1 = married; 2 = single; 3 = others)
- X5: Age (year)
- X6 X11: History of past payment from April to September 2005

 The measurement scale for the repayment status is: -1 = pay duly; 1 = payment delay for one month; 2 = payment delay for two months; . . .; 8 = payment delay for eight months; 9 = payment delay for nine months and above
- X12-X17: Amount of bill statement (NT dollar)
- X18-X23: Amount of previous payment (NT dollar)
- Target: default payment (Yes = 1, No = 0)

Dataset Assessment

Key steps performed:

- Checking for missing values and duplicates
 Although the dataset was free of NaNs, duplicates were detected and removed
- Identifying and handling outliers
 The IQR approach was used to identify outliers from the relevant features and they were removed

$$ext{Outliers}_i = \{x \in ext{Data}_i \mid x < Q1_i - 1.5 \cdot ext{IQR}_i ext{ or } x > Q3_i + 1.5 \cdot ext{IQR}_i \}$$

Data Augmentation

Based on analysis of features, these new features were augmented:

- Credit Limit Utilization
 - o Represents the ratio of the bill amount to the credit limit
 - o high ratio can indicate financial stress and potentially higher risk of default
- Average Delay in Payments
 - the average delay in payments over the last six months
 - would capture the general tendency of the customer to delay payments without focusing on a specific month
- Change in Bill Amount
 - Calculate the month-to-month percentage change in bill amount to capture trends in spending behavior

Model Shortlisting

SVM (Support Vector Machine)

- Maximizes the margin between data classes, enhancing model generalization and robustness
- Kernel trick to efficiently handle non-linear data separations
- Effective in high-dimensional spaces

Random Forest

- Utilizes multiple decision trees to ensure stability and accuracy, reducing the risk of overfitting
- Automatically ranks the importance of variables providing clear insights
- Naturally adept at handling unbalanced datasets

XGBoost

- Ensemble approach capable of handling varied and complex data structures
- Incorporates regularization to prevent overfitting
- Extremely popular in Kaggle competitions for its performance

Model Shortlisting

0.77

0.76

Comparison of Model Performance Metrics

0.825

Accuracy

K-fold cross validation results

Model Testing

Results of tuned XGBoost model:

	Accuracy	AUC	FPR	FNR
Train	80.69%	88.39%	14.49%	24.13%
Test	78.06%	79.53%	15.53%	33.35%

Model Validation

Data Quality & Processing

Evaluating key points:

- Dataset
 - UCI dataset is well documented and widely used in research literature
 - Contains key, well defined attributes
- Dataset Cleaning treatment
 - Null and duplicates handled
 - Outliers handled using IQR approach
- Alignment with portfolio is essential

- Does model capture key characteristics for the required portfolio?

- Captures the key demographic data (age, sex, education, marital status)
- Financial behaviors (payment history, bill amounts, payment amounts) also captured
- Critique: Model should also take in credit score as input feature

- How is imbalanced dataset taken care of?

- Imbalanced dataset with Y=1 for 22% of dataset, may lead to illusively high performance
- SMOTE (Synthetic Minority Over-sampling Technique) used
- SMOTE on the train and not the test, unaltered test dataset
- Critique: SMOTE can lead to overfitting to synthetic data, bad test performance Can explore ADASYN for more realistic data generation

Model Section Process fair?

- K fold cross validation used to assess models' performance in robust manner
- Ensures that the outperformance on a subset is subdued by underperformance on other subsets
- AUC, ACC, FPR, and FNR capture overall correctness as well as type 1 & 2 errors
- Model selection on the basis of the false negative rate is in line with significance of that error

Assumptions of XGBoost Satisfied?

- All input features preprocessed to a numerical format
- Although robust, outlier handling is performed for more effective learning
- Standardization performed, although not required, impacts interpretability
- Model assumes that individual observations are independent of each other
- Critique: More testing needs to be conducted to gauge the independence of the observations 14
 - Critique: Standardization can lead to reduction relative magnitude information

- Augmented features logical?

- Credit Limit Utilization: incorporation is justified as it encapsulates risk through a single metric
- Average Delay in Payments: smoothed indicator of an individual's payment habits, mitigating the impact of any one-off or atypical late payment
- Change in Bill Amount: spikes or drops could indicate new financial undertakings or changes in fiscal behavior
- Critique:
 - Average Delay may erode the information of the extreme values
 - Time weighted approaches giving maximum importance to latest payment cycle can be incorporated

- Does the feature importance make business sense?

- Average Delay
 - High importance of the Average Delay feature is consistent with business expectations
 - Delays in past payments are a strong indicator of potential future defaults, reflecting the borrower's financial habits and stability
- Most Recent Payment/Default
 - Importance of recent payment behavior or default status as a critical factor is also logically sound
 - Recent default or delay can indicate current financial distress, making this feature crucial for predicting short-term credit risk

Benchmarking against Logistic Regression

- Baseline Performance:
 - Logistic Regression is a well-established and well-understood model
 - If XGBoost performs significantly better than Logistic Regression, it provides evidence that the more complex model is capturing more complex patterns
- Feature Importance comparison
 - We can compare and contrast the feature importance
 - o A radical shift would indicate insidious logical error in the XGBoost approach

Comparison of Cross-Validation Model Performance Metrics

	Accuracy	AUC	FPR	FNR
Logistic Regg	70.02%	72.32%	18.41%	41.56%
XGBoost	76.72%	77.00%	16.73%	31.65%

Feature Importance

- Average Delay is given highest importance by both the models underscoring the information gained by an summarized feature of delayed payments
- Most recent payment/default is second most important factor highlighting a possible a domino effect
- The performance enhancement of XGBoost can be explained by even importance distribution across recent payment history
- Feature importance assigned by the XGBoost is not a stark departure from that assigned by Logistic Regression

Sensitivity Analysis

Average Delay

	Accuracy	AUC
+10 %	76.97%	77.15%
	79.36%	78.49%
-10%	75.504%	78.238%

X6

	Accuracy	AUC
+10 %	74.95%	77.249%
	79.36%	78.49%
-10%	75.771%	76.09%

On varying the two key feature inputs by +/- 10% we see that there is only a significant yet small difference in the accuracies and the AUC

Key Takeaways

- Machine Learning models add additional checkpoints in the model development and model validation process
 - Feature Engineering
 - Data Leakage
 - Hyperparameter tuning
- Model Validation for ML models is absolutely critical: high accuracy% (high FNR%) gives illusive confidence

Thank you

