Théorème de Jordan-Schönflies

Soit C un courbe fermée simple de \mathbb{R}^2 . Par le théorème de Jordan, C sépare le plan en deux régions : int(C) bornée par C, et ext(C) non bornée. Ces régions ont toutes deux C comme frontière.

Le théorème de Jordan-Schönflies généralise le théorème de Jordan.

Théorème. Soit C une courbe fermée simple de \mathbb{R}^2 . Alors il existe un homéomorphisme de \mathbb{R}^2 tel que C soit homéomorphe à S^1 et tel que int(C) et ext(C) soient respectivement homéomorphes à D^2 et $\mathbb{R}^2 \setminus (D^2 \cup S^1)$, où D^2 est le disque unité ouvert et S^1 le cercle unité.

Dans ce document, nous présentons la démonstration de Carsten Thomassen, publiée en 1992, que nous complémentons de nos réflexions topologiques et analytiques.

Nous construisons explicitement un homéorphisme entre $int(C) \cup C$ et $D^2 \cup S^1$ tel que int(C) soit homéomorphe à S^1 . La même construction peut être appliquée à ext(C) afin d'obtenir le résultat général du théorème.

1 C est homéomorphe à S^1

C est paramétrée par $\gamma: t \mapsto \gamma(t)$ pour $t \in [0,1]$ telle que $\gamma(0) = \gamma(1)$.

C étant simple, γ est bijective sur [0,1). On a donc l'homéomorphisme

$$F: \qquad C \xrightarrow{\gamma^{-1}} [0,1) \longrightarrow S^1$$
$$\gamma(t) \longmapsto t \longmapsto (\cos 2\pi t, \sin 2\pi t)$$

entre C et le cercle unité S^1 . On cherche à étendre F à int(C) afin que $F(int(C)) = int(D^2)$, tel que F soit homéomorphisme entre $int(C) \cup C$ et $D^2 \cup S^1$.

2 Extension par graphes isomorphes

Factorisons F par les homéomorphismes f et g tels que

$$F: C \xrightarrow{f} C' \xrightarrow{g} S^1$$

où C' est une courbe fermée polygonale telle que $int(C') \cup C'$ est un polygone convexe. En montrant que f peut être étendue homéomorphiquement à $int(C) \cup C$, on obtient le résultat voulu par généralité de C, donnant g homéomorphisme de $int(C') \cup C'$ à $D^2 \cup S^1$. On obtiendra alors une extension de $F = g \circ f$ qui sera l'homéomorphisme cherché.

Soit $\Gamma_0 \subset int(C) \cup C$ un graphe 2-connecté ¹ pour lequel C forme un cycle et soit g_0 un isomorphisme entre Γ_0 et un graphe $\Gamma_0' \subset int(C') \cup C'$ pour lequel C' forme un cycle. On définit g_0 tel que si un cycle $c \in \Gamma_0$ borne une région, alors $g_0(c) \subset \Gamma_0'$ borne aussi une région. Supposons de plus que $g_0 = f$ sur $C \cap V(\Gamma_0)$, où V(G) désigne les sommets d'un graphe G.

On peut alors étendre f par g_0 sur l'ensemble $V(\Gamma_0) \subset int(C)$.

Afin d'étendre f aux autres points de int(C), on cherche à construire des suites de graphes $\{\Gamma_n\}$ et $\{\Gamma'_n\}$, telles que Γ_n et Γ'_n soient isomorphes par une fonction g_n analogue à g_0 décrite ci-haut. Cette construction nous servira à "remplir densément" int(C) par les sommets $V(\Gamma_n)$, sur lesquels on étendra successivement f par les isomorphismes de graphes g_n .

Pour ce faire, nous avons besoin de la notion d'accessibilité d'un point.

^{1.} Un graphe d'au moins k+1 sommets est dit k-connecté s'il est connexe et demeure connexe si on lui retire k-1 sommets.

3 Accessibilité d'un point

Un point p de C est dit accessible à partir de int(C) si pour tout point q de int(C), il existe un arc polygonal simple joignant q et p n'ayant que p en commun avec C. Montrons que l'ensemble de tels points de C est dense dans C.

Soit $P \subset C$ un arc dans C. Alors $(\mathbb{R}^2 \setminus C) \cup P$ est connexe par arcs. Il existe donc un arc polygonal simple P' joignant $q \in int(C)$ à tout $p \in (\mathbb{R}^2 \setminus C) \cup P$. Remarquons que si en particulier, on avait $p \in P$, on ne peut immédiatement dire que P' n'a que p en commun avec C. Considérons donc $p \in \mathbb{R}^2 \setminus int(C) \subset (\mathbb{R}^2 \setminus C) \cup P$ quelconque. P' doit intersecter P en au moins un point. En partant de q, le premier point d'intersection $p' \in P' \cap P \subset C$ est un point accessible de C.

Tout $P \subset C$ contient donc au moins un point accessible. Soient alors $x \in C$ et $U \subset C$ ouvert de C contenant x. Considérons un fermé $P \subset U$ contenant x: c'est un arc dans C. Par ci-haut, il existe un point accessible $p' \in P \subset U$. L'ensemble des points de C accessibles à partir de int(C) est bien dense dans C.

4 Ensemble dense et dénombrable

Pour construire nos suites de graphes, nous voudrons considérer un ensemble dense et dénombrable dans $int(C) \cup C$.

Posons Ω l'ensemble des points accessibles de C à partir de int(C), et posons $Q = C \cap (\mathbb{Q} \times \mathbb{Q})$. Notons que Q est dénombrable et dense dans C.

Pour tout $q \in Q \subset C$, il existe une suite $\{\omega_n\}_{n \in \mathbb{N}}$ convergeant vers q, par densité de Ω dans C. Posons

$$A = \bigcup_{q \in Q} \{\omega_n\}_{n \in \mathbb{N}}$$

A est dénombrable car Q et \mathbb{N} le sont. De plus, $\overline{A} = Q$, d'où $\overline{\overline{A}} = \overline{Q} = C$, et alors $\overline{A} = C$. $A \in \Omega$ est dense et dénombrable dans C.

Remarque. Par le même raisonnement, on obtient que tout ensemble dense d'un espace séparable possède un sous-ensemble dense dans cet espace et qui est dénombrable.

Posons $B = int(C) \cap (\mathbb{Q} \times \mathbb{Q})$; c'est un ensemble dense dans int(C) et dénombrable.

A et B étant respectivement denses dans C et int(C), on a $A \cup B$ dense dans $int(C) \cup C$ et dénombrable.

Soit alors $\{p_n\}_{n\in\mathbb{N}}\subset A\cup B$ une suite où chaque élément de $A\cup B$ apparaît une infinité de fois.

Par récurrence, supposons qu'on a étendu f à un ensemble $V(\Gamma_0) \cup V(\Gamma_1) \cup \ldots \cup V(\Gamma_{n-1}) \subset int(C)$. Définissons Γ_n selon que p_n est dans A ou B.

5 Construction de $\Gamma_n: p_n \in A$

Supposons $p_n \in A$. Il est sur un cycle c bornant une région R_c de Γ_{n-1} . Par densité des points accessibles à partir d'une région, il existe $q_n \in c \setminus C$ accessible à partir R_c . Soit $p \in R_c$ rejoignant q_n par un arc polygonal. Comme p_n est accessible à partir de int(C), il existe un arc polygonal joignant p_n et p, ce qui nous donne un arc polygonal joignant p_n et q_n .

On définit Γ_n comme l'union de Γ_{n-1} , de p_n et q_n comme sommets et de l'arc polygonal joignant p_n et q_n comme arête.

On définit Γ'_n comme l'union de Γ'_{n-1} , de $g_{n-1}(p_n)$ et $g_{n-1}(q_n)$ comme sommets et de l'arc polygonal joignant $g_{n-1}(p_n)$ et $g_{n-1}(q_n)$ comme arête (qui existe par l'argument de densité des points accessibles).

On définit g_n en étendant g_{n-1} à l'arête joignant p_n et q_n , tel que cette dernière soit isomorphe à l'arête joignant $g_{n-1}(p_n)$ et $g_{n-1}(q_n)$ et tel que g_n soit continue sur Γ_n . Du coup, g_n est bien isomorphisme entre Γ_n et Γ'_n .

On étend f à $V(\Gamma_n)$ en posant $f = g_n$ sur $V(\Gamma_n)$. f est maintenant définie sur $C \cup V(\Gamma_0) \cup \ldots \cup V(\Gamma_{n-1}) \cup V(\Gamma_n) \subset int(C) \cup C$.

6 Construction de $\Gamma_n : p_n \in B$

Supposons $p_n \in B \subset int(C)$. Traçons une grille de taille maximale complètement contenue dans int(C) telle que p_n est à l'intersection de segments de la grille, et telle que chaque région de la grille soit de diamètre < 1/n. Ajoutons à Γ_{n-1} cette grille, avec les intersections de ses segments comme sommets et ses segments comme arêtes. Ajoutons des arêtes de sorte que le graphe résultant soit connecté. Notons ce graphe $\widetilde{\Gamma_n}$.

Ajoutons à Γ'_{n-1} les sommets et arêtes correspondants afin de le rendre isomorphe à $\widetilde{\Gamma}_n$, tel qu'un cycle bornant une région soit isomorphe à un cycle bornant une région. Notons ce graphe $\widetilde{\Gamma}'_n$. A priori, on ne connaît pas le diamètre des régions du sous-graphe de $\widetilde{\Gamma}'_n$ correspondant à la grille de $\widetilde{\Gamma}_n$. Ajoutons donc à $\widetilde{\Gamma}'_n$ des arêtes de façon à ce que ce sous-graphe n'ait que des régions de diamètre < 1/2n. Notons ce nouveau graphe Γ'_n .

Afin de préserver l'isomorphisme, ajoutons à $\widetilde{\Gamma_n}$ les sommets et arêtes correspondants aux ajouts que nous avons fait pour obtenir Γ'_n . Ceci nous donne le graphe Γ_n .

On étend f sur les sommets $V(\Gamma_n)$ de la même façon que précédemment.

7 Extension à $int(C) \setminus V$

Posons $V = \bigcup_{n=0}^{\infty} V(\Gamma_n)$. Nous avons étendu f à l'ensemble $C \cup V$. Par construction, on a $\{p_n\} \subset V$. Comme $\{p_n\}$ contient tout les points de $A \cup B$, V est dense dans int(C).

Soit $p \in int(C) \setminus V$. Par densité de V, il existe une suite $\{q_n\}_{n \in \mathbb{N}} \subset V$ convergeant vers p. Montrons que $\{f(q_n)\}$ converge en montrant que c'est une suite de Cauchy.

Soit $\epsilon > 0$, et soit $n \in \mathbb{N}$ tel que $1/n < \epsilon$. Soit $p_n \in B$.

Par construction de Γ_n et Γ'_n , il existe un cycle c de Γ_n entourant p tel que $int(g_n(c))$ est de diamètre < 1/n: en effet, soit p est dans un région de Γ_n , alors la région correspondante de Γ'_n est de diamètre < 1/2n < 1/n; soit p est sur une arête de Γ_n , alors l'union de l'arête et des régions de par et d'autre de l'arête est de diamètre < 1/2n + 1/2n = 1/n.

int(c) est un ouvert contenant p. Par convergence de $\{q_n\}$, il existe $N \in \mathbb{N}$ tel que pour tout m > N on a $\{q_m\} \subset int(c)$. Les graphes étant 2-connectés, on a $f(\{q_m\}) = g_n(\{q_m\}) \subset int(g_n(c))$. Alors pour tout m, n > N, on a $d(f(q_n), f(q_m)) < 1/n < \epsilon$, si bien que $\{f(q_n)\}_{n \in \mathbb{N}}$ est suite de Cauchy.

Posons f(p) la limite de cette suite. Comme la limite d'une suite convergente est unique, on vient de définir f sur tout $int(C) \cup C$.

8 f est homéomorphisme entre int(C) et int(C')

Montrons que f est continue sur int(C). Soit $\epsilon > 0$ et $n \in \mathbb{N}$ tel que $1/n < \epsilon$. Soit $p \in int(C)$. Par construction, p est entouré d'un cycle c de Γ_n tel que $int(g_n(c))$ est de diamètre < 1/n. L'argument ci-haut donne que $f(q) \in int(g_n(c))$ pour tout $q \in int(c)$, alors on a $d(f(p), f(q)) < 1/n < \epsilon$, d'où f continue sur int(C).

Montrons que f est injective sur int(C). Soient $p,q \in int(C)$ tels que f(p) = f(q). Supposons que $p \neq q$. Soit un arc simple P joignant p,q dans int(C). Par continuité de f, f(P) est un arc joignant f(p) et f(q): c'est donc une courbe fermée. Par densité de V dans $int(C) \cup C$, il existe deux éléments de V sur P. f est bijective sur V, alors f(P) n'est pas réduite au point f(p) = f(q). Par continuité, il existe un autre arc simple P' tel que f(P'), un courbe fermée, soit contenue dans int(f(P)). On a que la région bornée par $P \cup P'$ est envoyée sur la région bornée par $f(P) \cup f(P')$. Or, la continuité implique que $int(C) \setminus int(P \cup P')$ est envoyée sur int(P'), faisant de l'image de int(C) la région bornée par f(P). Ainsi, f(P) = C', d'où P = C ce qui est absurde.

Montrons que f est surjective sur int(C). Soit $p' \in int(C')$. Pour tout $n \in \mathbb{N}$ il existe un cycle $g_n(c_n) \in \Gamma'_n$ entourant p' tel que $int(c_n)$ est de diamètre < 1/n. Considérons une suite de tels cycles tels que $c_n \subset int(c_{n-1}) \cup c_{n-1}$, qui existent par construction des Γ_n . Posons $V' = \bigcup_{n=0}^{\infty} V(\Gamma'_n)$. Soit alors $\{q'_n\} \subset int(C')$ telle que $q'_n \in g_n(c_n) \cap V'$ pour tout $n \in \mathbb{N}$. Soit $\epsilon > 0$ et $N \in \mathbb{N}$ tel que $\epsilon > 1/N$. Comme les c_n sont imbrqués, les $g_n(c_n)$ le sont aussi et pour tout m, n > N, on a $q'_n, q'_m \in int(g_N(c_N)) \cup g_N(c_N)$. f est surjective sur V', il existe donc q_n, q_m tels que $f(q_n) = q'_n$ et $f(q_m) = q'_m$ et alors $q_n, q_m \in int(g_N(c_N))$. La suite est de Cauchy et est donc convergente dans int(C). Posons p sa limite. On a montré plus haut que $\{f(q_n)\}$ converge vers f(p), d'où f(p) = p' par unicité de la limite.

L'inverse f^{-1} est continue sur int(C') par le même argument que pour la continuité de f sur int(C). Ceci nous donne l'homéomorphisme entre int(C) et int(C').

Puisque f et C sont quelconques, nous pouvons dire que int(C') est homéomorphe à D^2 . Nous avons montré que int(C) est homéomorphe à D^2 , tel que voulu.

9 Continuité de f sur C

Afin d'avoir f(C) comme frontière de int(C'), il nous faut démontrer que notre extension de f est continue sur C (on sait déjà qu'elle y est bijective).

Soit $\{q_n\} \subset int(C)$ convergeant vers $p \in C$. $\{f(q_n)\}$ est suite dans $int(C') \cup C'$, un fermé borné : elle possède une sous-suite convergente. Sans perte de généralité, supposons que $\{f(q_n)\}$ elle-même converge. Posons p' sa limite.

Nous voulons montrer que p' = f(p). Supposons que $p' \neq f(p)$.

Montrons que p' est élément de C'. Supposons qu'il ne l'est pas. Soit $\epsilon > 0$. Par continuité de f^{-1} sur int(C'), il existe $\delta > 0$ tel que $d(f(q_n), p') < \delta$ implique $d(q_n, f^{-1}(p')) < \epsilon$. Comme $\{f(q_n)\}$ converge vers p', il existe $N \in \mathbb{N}$ tel que pour tout m > N on ait $d(q_m, f^{-1}(p')) < \delta$, si bien que $\{q_n\}$ converge vers $f^{-1}(p')$. Par unicité de la limite, $f^{-1}(p') = p \in C$. En appliquant f, homéomorphisme sur C, on trouve p' = f(p), contredisant notre hypothèse $p' \neq f(p)$. On a bien $p' \in C$.

Il existe deux arcs dans C' reliant p' et f(p). f(A) étant dense dans C', on peut trouver $f(a_1) \in f(A)$ sur l'au de ces arcs, et $f(a_2) \in f(A)$ sur l'autre. Les points a_1, a_2 sont accessibles à partir de int(C): il existe un arc les reliant, séparant int(C) en deux régions R_1 et R_2 . C est séparé en deux arcs joignant a_1 et a_2 : l'un contenant $f^{-1}(p')$ et l'autre p. En appliquant f, int(C') est séparé en deux régions $f(R_1)$ et $f(R_2)$. Le point p' est sur le bord de la région $f(R_2)$: cette région contient une infinité des points de la suite $\{f(q_n)\}$. En appliquant f^{-1} , on obtient que la région R_2 contient une infinité de points de la suite $\{q_n\}$, ce qui est absurde puisque la limite de cette suite, p, est sur l'arc de C ne bornant pas R_1 . On doit donc avoir p' = f(p).

On a montré que la convergence d'une suite $\{q_n\} \subset int(C)$ vers $p \in C$ implique que son image $\{f(q_n)\} \in int(C')$ converge vers $f(p) \in C'$. Ceci est équivalent à la continuité de f en $p \in C$. f est donc continue sur C. Il en est de même pour

 f^{-1} par le même argument.

10 Conclusion

En plus de nous donner que $int(C) \cup C$ est homéomorphe à $int(C') \cup C'$, cette dernière étape nous donne que tout point $f(p) \in C'$ est limite d'une suite $f(q_n) \in int(C') : C'$ est bien la frontière de int(C').

Comme précédemment, C étant quelconque, on applique le résultat à S^1 pour conclure que l'homéomorphisme entre $int(C') \cup C'$ et $D^2 \cup S^1$ envoie C', le bord de int(C'), sur S^1 .

En composant les homéomorphismes, on obtient le résultat : $int(C) \cup C$ est homéormorphe à $D^2 \cup S^1$, avec int(C) homéomorphe à D^2 .

Références

- [1] Jean Gallier et Diana Xu: A Guide to the Classification Theorem for Compact Surfaces. Springer-Verlag Berlin Heidelberg, Berlin, 2013.
- [2] Carsten Thomassen: The Jordan-Schonflies theorem and the classification of surface. The American Mathematical Monthly, 99(2):116–131, 1992.