0 < P(A) < 1

"Law of Large Numbers"

event > subset of sample Event

Sample Space and Complement

Sample space (S): all possible outcomes Complement (Ac): all outcomes other than A in S

- Coin flip: S = {Heads, Tails}
 - Heads^c = Tails
 - o Tails^c =Heads
- Die roll: $S = \{1, 2, 3, 4, 5, 6\}$
 - \circ {3}° = {1, 2, 4, 5, 6}
 - \circ {2, 5}° = {1, 3, 4, 6}

P(A) + P(A) =1

Disjoint vs. Not Disjoint

Disjoint: cannot happen at the same time

- A coin can't be heads and tails
- A student can't pass and fail a single class
- A playing card can't be an Ace and a 10

Not disjoint: can happen at the same time

- A student can pass one class and fail another
- A playing card can be an Ace and a Heart

Nisjoint => Mutually Exclusive

Probability Distributions

Lists all possible outcomes & probability of each

Example:

Probability of Rh+/- blood type		
+	-	
0.15	0.85	

Rules:

- Outcomes in list must be mutually exclusive
- Probabilities must be between 0 and 1
- Probabilities must sum to 1

Outcomes vs. Events

 Often we are not concerned with a single outcome, but rather collections of outcomes ("events")

- Examples
 - o Rolling a die and getting an even number
 - Choosing a song at random and getting a Queen song

Addition Rules

Addition Rule for disjoint outcomes:

P(A or B) = P(A) + P(B)

General Addition Rule:

P(A or B) = P(A) + P(B) - P(A and B)

Note: also works for disjoint events

P(A or B) = P(A) + P(B) - P(A&B)

Independence

Processes are independent if knowing the outcome of one provides no useful information about the outcome of the other

• Flipping a coin twice. First time: Heads

- o P(Heads) for second coin?
- O P(Heads) if we hadn't seen a Heads?
- Drawing from a deck of cards. First time: Ace
 - P(Ace) for second card?
 - P(Ace) if we hadn't seen an Ace?
- "Gambler's fallacy:" believing that independent processes such as dice or roulette wheels have "hot streaks"

Product Rule PLASED = PLADED

The Z-score

The Z-score of an observation is the number of standard deviations it falls above or below the mean. We compute the Z-score for an observation x that follows a distribution with mean μ and standard deviation σ using

$$Z = \frac{x - \mu}{\sigma}$$

$$Z * Sd + mean = X$$

1 Standard deviation below the mean $Z = -1$

Conditional

Three different probabilities

If A and B are two events:

- Joint probability: P(A and B)
- Marginal probability: P(A) or P(B)
- Conditional probability: P(A | B) (read: 'probability of A given B')

How do each of these arise in an experimental context?

Marginal Probability

Marginal probabilities come from the margins of the table: the totals

		relapse			
		No	Yes	Total	
	desipramine	14	10	24	
treatment	lithium	6	18	24	
	placebo	4	20	24	
	Total	24	48	72	

Conditional Probability

P(A|B) = P(A and B) / P(B)

P(relapse|desipramine)

= P(relapse and desipramine) / P(desipramine)

Joint Probability

Joint probabilities

		relapse		
		No	Yes	Total
	desipramine	14	10	24
treatment	lithium	6	18	24
	placebo	4	20	24
	Total	24	48	72

P(desipramine and relapse) = 10/72 ≈ .19

Conditional Probability

Probability of relapse if we know the patient took desipramine?

	_	relapse		
		No	Yes	Total
	desipramine	14	10	24
treatment	lithium	6	18	24
	placebo	4	20	24
	Total	24	48	72

$$P(A|B) = \frac{P(A \& B)}{P(B)}$$

General Multiplication Rule

If A and B are random processes:

 $P(A \text{ and } B) = P(A \mid B) \times P(B)$

Note that A and B do not have to be independent

P(draw 2 Aces) =

P(1st Ace) x P(2nd Ace | 1st Ace) =

 $4/52 \times 3/51 \approx 0.0045$

Independence

Independence

If A and B are independent:

$$P(A \mid B) = P(A)$$

Conceptually:

B tells us nothing about A

Mathematically:

$$P(A|B) = \frac{P(A \text{ and } B)}{P(B)} = \frac{P(A) \times P(B)}{P(B)} = P(A)$$

Tree Diagram

Bayes' Theorem

Given:

- One variable with outcomes A₁, A₂, ..., A_k
- Another variable with an outcome B

$$P(A_1|B) = \frac{P(B|A_1)P(A_1)}{P(B)}$$

$$= \frac{P(B|A_1)P(A_1)}{P(B|A_1)P(A_1) + \dots + P(B|A_k)P(A_k)}$$

$$P(A|B) = \frac{0.53 * 0.37}{0.53 * 0.37}$$

$$0.4029 \quad 0.47 * 0.44$$

$$0.208$$