別途本学所定の答案用紙 有 1 人 2 枚 無

甲南大学試験用紙

試験科目	数学及び演習	【注意】 ■・年次、学部、学籍番号、氏名は所定の欄に必ずペン書きにす
担当者	臼井 健二	ること。
実施日 1	0月5日3限 所要 60分	・答案用紙はいかなる場合も試験場外へ持ち出してはならない。 ・退場の際は必ず各自で答案提出箱へ提出のこと。

			年	次		学	部
	学籍	番号					
<u></u>	氏	名					
0	採	点					

※問題は、問1から問6まである。

※問題すべてに、考え方や、計算式、過程などを必ず記すこと。

※解答する順番は自由。出来るものから答えていくこと。

ただし、どれを答えたのか分かるように、問題番号を必ず記したあと、解答すること。

※できなかった問題は単位の修得の有無、成績に関わらず、しっかり復習して理解しておくこと。

間1

ある工場で、2種類の製品 A, B を作っている。A, B 各 1 個を作るのに必要な燃料と電力の量および、A, B の各 1 個当たりの利益は表のとおりである。燃料 $240 \, \mathrm{kg}$ までと電力 $160 \, \mathrm{kW}$ 時までを用いて最大の利益を得るには A, B をそれぞれ何個ずつ作れ

ばよいか。また、最大利益はいくらか。

	A	В
燃料(kg)	6	2
電力(kW時)	3	2
利益 (万円)	4	2

問2

ある PCR の n 回目(n≥1) の増加率は n-1 回目の DNA 量の 80%増加するものとする。この場合、最初 DNA が $2\,\mu$ mol 存在していたとして、 $20\,\mu$ mol 以上になるには、何回以上 PCR を行えばよいか。ただし、 $\log_{10} 2 = 0.3010$ 、 $\log_{10} 3 = 0.4771$ とする。

間3

 $y = 2\sin x + 2\cos x$ ($0 \le x \le 2\pi$) のグラフの概形を描け。

1回微分、2回微分を行い、増減表も記載すること。

別途本学所定の答案用紙 有 1 人 2 枚 無

甲南大学試験用紙

試験科	目	数学及び演習						
担当	者		臼	井	健二			
実施日 10		0月5	日 3	限	所要時間	60分		

年次、	学部、	学籍番号、	氏名は所定の欄に必ずペン書きにす
ること	- 0		

ること。
・答案用紙はいかなる場合も試験場外へ持ち出してはならない
・退場の際け必ず各自で答案提出箱へ提出のこと

		年	次		学	部
学籍	番号					
氏	名					
採	点					

問4

 $y = -xe^{-x}$ について、次の(1)、(2)を答えよ。但し、 $\lim_{x\to\infty} -xe^{-x} = 0$ とする。

- (1)グラフの概形を描け。1回微分2回微分を行い、増減表も記載すること。
- (2)方程式 $-xe^{-x}-a=0$ が異なる2つの解をもつような実数aの範囲を求めよ。

問5

- (1) $y=(x^2+1)^3$ を y で微分せよ。答えは x の式のままで良い。
- (2) $f(x) = e^{-3x} + x^{\pi}$ を微分せよ。
- (3) $Z = \sin xy$ について、 Z_x (x についての偏微分) および Z_{xy} を求めよ。
- (4) 対数微分法を使って $y = x^{sinx}$ の $\frac{dy}{dx}$ を求めよ。
- (5) 微分方程式 $\frac{dy}{dx} = y$ の一般解を求めよ。(微分方程式 $\frac{dy}{dx} = y$ を解け。)

問6

 $\frac{d}{dx}\sin x = \cos x, \frac{d}{dx}\cos x = -\sin x, 積の微分法、合成関数の微分法を<u>必ず</u>用いて、<math>\frac{d}{dx}\tan x = \frac{1}{\cos^2 x}$ を導け。

(商の微分法は用いてはならない。)

以上

氏 名	採点
-----	----