

西安电子科技大学

数字媒体技术基础

上机报告

名称: 数字媒体技术基础上机报告

学号: 14030130100

一主成分析

实验目的

深入理解 PCA、矩阵分解、特征值以及对角化的含义。

实验原理

PCA 变换是一种将原始数据变换为一组各维度线性无关的数据的算法,可以用于提取数据的 主要特征分量,是一种常用的数据降维算法。其算法流程可以描述如下:

Algorithm $PCA(\mathbf{D}, \alpha)$

$$\textcircled{1}\mu = \frac{1}{n}\sum_{i=1}^{n} \mathbf{x}_{i}$$

$$(2)\mathbf{Z} = \mathbf{D} - \mathbf{1} \cdot \boldsymbol{\mu}^{\mathrm{T}}$$

$$2\mathbf{Z} = \mathbf{D} - \mathbf{1} \cdot \boldsymbol{\mu}^{\mathrm{T}}$$
$$3\mathbf{\Sigma} = \frac{1}{n} (\mathbf{Z}^{\mathrm{T}} \mathbf{Z})$$

$$(4)(\lambda_1, \lambda_2, \dots, \lambda_d) = \text{eigenvalue}(\Sigma)$$

$$(5)$$
U = $(\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_d)$ = eigenvector (Σ)

$$\text{(6)Let } f(r) = \frac{\sum_{i=1}^{r} \lambda_i}{\sum_{i=1}^{d} \lambda_i} \ \forall r \in \{k \mid k \in \mathbb{Z} \land 1 \le k \le d\}$$

(7)Choose smallest r so that $f(r) \ge \alpha$

$$\otimes \mathbf{U}_r = (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_r)$$

在 PCA 算法过程中,参数 α 是需要提前确定的,用于控制需要保留的 Variance 的比例,直接决定了 成分数目的选择,常用的值为 0.95 → 0.99

实验结果

实验中使用数据集为 10000×128 的 SIFT 特征, $\alpha = 0.95$, 实验结果为当保留的 Variance 比 例取 95.160866 时,对应的成分数目为 73,恢复后的数据采用以下指标进行评价:

$$e = \frac{1}{n} L_2(\mathbf{x}_i - \mathbf{x}_i')$$

对于 $\alpha = \{0.95, 0.96, 0.97, 0.98, 0.99, 1.00\}$, 其对应值如下:

α	e
0.95	99.54955
0.96	87.67179
0.97	76.33297
0.98	63.208263
0.99	39.486423
1.00	0.001052467

由上表可以知,随着保留的 Variance 比例逐渐增大,恢复后的数据误差逐渐减小,当 $\alpha = 1.00$ 时, $e \rightarrow 0$, 上述数据不为零是由于计算机浮点运算的累积误差所致。

二.图像压缩(DCT 变换)

• 实验目的

理解图像压缩的原理,掌握 JPEG 图像压缩中的核心步骤。

• 实验原理

JPEG 图像压缩标准是现行使用最为广泛的静态图片压缩技术,由联合图像专家组于1992年发布,根据其标准文档(itu-t81)¹,其压缩过程可以用下图描述:

(以下讨论的是灰度图像,对于彩色图像,需要先进行色彩空间的变换)

- ①对图像进行分块,分为若干个8×8图像块
- ②对每一个块进行 DCT 变换, 然后进行量化
- ③对 DCT 变换的结果执行 Zig-Zag 扫描
- ④ 使用差分脉冲编码对直流系数进行编码
- ⑤使用行程长度编码对交流系数进行编码
- ⑥ 熵编码 (Huffman、Arithmetic)

在 JPEG 压缩的过程中,信息的损失主要在量化过程中,基于人体对色彩的敏感度研究,标准中建议使用以下的(亮度)量化表:

16 11 10 16 24 40 51 61 12 12 14 19 26 58 60 55 14 13 16 24 40 57 69 56 14 17 22 29 51 87 80 62 18 22 37 56 68 109 103 77 24 35 55 64 81 104 113 92 49 64 78 87 103 121 120 101								
14 13 16 24 40 57 69 56 14 17 22 29 51 87 80 62 18 22 37 56 68 109 103 77 24 35 55 64 81 104 113 92 49 64 78 87 103 121 120 101	16	11	10	16	24	40	51	61
14 17 22 29 51 87 80 62 18 22 37 56 68 109 103 77 24 35 55 64 81 104 113 92 49 64 78 87 103 121 120 101	12	12	14	19	26	58	60	55
18 22 37 56 68 109 103 77 24 35 55 64 81 104 113 92 49 64 78 87 103 121 120 101	14	13	16	24	40	57	69	56
24 35 55 64 81 104 113 92 49 64 78 87 103 121 120 101	14	17	22	29	51	87	80	62
49 64 78 87 103 121 120 101	18	22	37	56	68	109	103	77
	24	35	55	64	81	104	113	92
	49	64	78	87	103	121	120	101
72 92 95 98 112 100 103 99	72	92	95	98	112	100	103	99

Table K.1 – Luminance quantization table

¹ https://www.w3.org/Graphics/JPEG/itu-t81.pdf

• 实验过程及结果分析

在本次实验中,没有实现完整的 JPEG 编码解码器,而是在 Zig-Zag 扫描之后,不区分交流系数和直流系数,直接使用了行程长度编码来对图像进行压缩,整个过程如下:

- ①对图像进行分块,分为若干个8×8图像块
- ②对每一个块进行 DCT 变换, 然后进行量化
- ③对 DCT 变换的结果执行 Zig-Zag 扫描
- ④使用行程长度编码对交流系数和直流系数进行编码

对于实验中给定的 Luna 灰度图像,经过上述编码和解码过程后,原始图像与重建图像如下:

对别原图(左)和压缩后的图像(右),在右图中存在肉眼分辨精度损失和部分白色小方块,证明该压缩过程是有损压缩,压缩过程中的精度损失主要存在于量化过程中,在量化过程中,丢失了部分高频信息,保留的低频信息取决量化表。

三.iDistance 索引查询技术

(1) 算法一:暴力搜索

暴力搜索的算法伪代码如下:

Sequential Scan(data, query, k):
For each x in data:
 calculate dist(x, query)
Return k smallest dist

对查询集合中的 1000 个查询点进行 10 NN 检索,正确率为 100%,以下算法的正确率评判使用暴力搜索的结果为基准。

(2) 算法二: Partial Linear Scan (部分线性搜索)

PLS 是利用数据的部分信息对数据集进行 filter and refine 以减少需要扫描的数据量的一种检索方法,其算法算法过程可以描述如下:

- ①对数据集合进行 PCA 降维, 然后在 PCA 空间中, 使用最大的主分量对数据进行 filter-and-refine
- ②对于一个查询点,使用二分搜索算法定位查询点在数据集中的参考点
- ③在查询点的两边,选择一定范围内的数据点加入扫描的候选集
- ④在候选集中进行检索, 找出 K 近邻点

使用 PLS 算法对查询集合的数据进行 10 NN 查询,正确率在 80% 到 97% 之间,选取的候选集越大,正确率越高。

(3) 算法三: iDistance

iDistance 是一种高维数据的索引技术,其算法思想是将数据从高维映射到一维空间中,然后在一维空间中进行检索,其利用了三角形不等式的性质,使得在给定映射函数下,高维空间中的数据映射到一维空间中仍然保持局部有序。其算法过程可以分为 索引建立 和 查询 两个过程。建立索引之前,首先需要对数据进行聚类,本实验中使用的聚类算法为 K-means,算法流程如下:

```
K-Means(dataset, k):
  kernels = rand_choose(dataset, k)
  labels = classify(dataset, kernels)
  While True
      kernels = calc_kernels(labels)
      new_labels = classify(dataset, kernels)
      If new_labels = labels
          break
  Return labels
```

在对数据集进行分类后,对于每一个查询点,首先计算查询点到各类别中心的距离,然后根据该距离与各类构成的超立方体的关系(包含或相交),对类别中的数据进行二分搜索确定上下界,将该集合中的点加入到结果集中。

(4)算法效率分析(1000个查询点 10 NN 检索)

- ①暴力搜索
- ②PLS 部分搜索
- ③ iDistance

四.实验心得

在本学期的数子媒体基础上机实验中,通过编写相应的程序,理解了PCA降维、DCT变换以及高维数据检索中的相关技术和其背后的原理。在信息爆炸性增长的时代,在这些信息中,多媒体数据(图片、视频)占据了绝大部分,掌握如何对这些媒体信息进行检索、处理的技能是一项必备的技能。在实验的过程中,采用了Rust这门相对较新的语言,由于语言成熟度的不足和相关资料的缺乏,在实验中遇到了很多的问题,通过请教老师、学长学姐以及网络搜索,顺利地解决了实验中遇到的种种问题,感谢在实验中对我提供帮助的所有人。