Computability and Complexity

Lecture 5

Reductions
Undecidable problems from language theory
Linear bounded automata

given by Jiri Srba

Reduction

Informal Definition

A problem A is reducible to problem B iff the solution to problem B can be used to solve the problem A.

This means that solving A cannot be more difficult than solving B.

Reduction

Informal Definition

A problem A is reducible to problem B iff the solution to problem B can be used to solve the problem A.

This means that solving A cannot be more difficult than solving B.

In the terms of computability theory:

A reduces to B means that

- if B is decidable then A is decidable too, and
- if A is undecidable then B is undecidable too.

The way we will use reducibility:

If we can reduce e.g. A_{TM} to some other problem (language) B, then B is undecidable.

Typical Proof Structure to Show Undecidability

We want to show that a language B is undecidable using the fact that we already know that the language A is undecidable.

Proof idea (proof by contradiction):

- Assume for a while that we have a decider M_B for the language B.
- ② Using M_B we construct a decider M_A for the language A.
- **3** Because we know that M_A cannot exist (A is undecidable), this implies that M_B cannot exist either.
- Conclusion is that the language *B* is undecidable.

Typical Proof Structure to Show Undecidability

We want to show that a language B is undecidable using the fact that we already know that the language A is undecidable.

Proof idea (proof by contradiction):

- Assume for a while that we have a decider M_B for the language B.
- ② Using M_B we construct a decider M_A for the language A.
- 3 Because we know that M_A cannot exist (A is undecidable), this implies that M_B cannot exist either.
- Conclusion is that the language *B* is undecidable.

In the proof we provided a reduction from an undecidable language A to the language B. Hence B is undecidable too.

The Language $HALT_{TM}$

Problem: "Given a TM M and a string w, does M halt on w?"

Language formulation

 $HALT_{TM} \stackrel{\text{def}}{=} \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on the input } w \}$

The Language $HALT_{TM}$

Problem: "Given a TM M and a string w, does M halt on w?"

Language formulation

 $HALT_{TM} \stackrel{\text{def}}{=} \{\langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on the input } w \}$

Theorem

The language $HALT_{TM}$ is undecidable.

Proof: We reduce A_{TM} to $HALT_{TM}$.

```
A_{TM} \stackrel{\mathrm{def}}{=} \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts the input } w \}
HALT_{TM} \stackrel{\mathrm{def}}{=} \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on the input } w \}
```

1 By contradiction. Assume there is a decider R for $HALT_{TM}$.

```
 A_{TM} \stackrel{\mathrm{def}}{=} \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts the input } w \} 
 HALT_{TM} \stackrel{\mathrm{def}}{=} \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on the input } w \}
```

- **1** By contradiction. Assume there is a decider R for $HALT_{TM}$.
- ② Using the decider R, we construct a decider S for A_{TM} :

```
S = " On input \langle M, w \rangle:
```

- 1. Run R on $\langle M, w \rangle$.
- 2. If *R* rejected then *S* rejects.
- 3. If R accepted then simulate M on w.
- 4. If M accepted then S accepts, else If M rejected then S rejects. "

```
 A_{TM} \stackrel{\mathrm{def}}{=} \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts the input } w \} 
 HALT_{TM} \stackrel{\mathrm{def}}{=} \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on the input } w \}
```

- **1** By contradiction. Assume there is a decider R for $HALT_{TM}$.
- **②** Using the decider R, we construct a decider S for A_{TM} :

```
S = " On input \langle M, w \rangle:
```

- 1. Run R on $\langle M, w \rangle$.
- 2. If R rejected then \underline{S} rejects.
- 3. If R accepted then simulate M on w.
- 4. If M accepted then \underline{S} accepts, else If M rejected then \underline{S} rejects. "
- 3 So S is a decider for A_{TM} , but we know that S does not exist.

```
A_{TM} \stackrel{\mathrm{def}}{=} \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts the input } w \}
HALT_{TM} \stackrel{\mathrm{def}}{=} \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on the input } w \}
```

- **1** By contradiction. Assume there is a decider R for $HALT_{TM}$.
- ② Using the decider R, we construct a decider S for A_{TM} :

```
S = " On input \langle M, w \rangle:
```

- 1. Run R on $\langle M, w \rangle$.
- 2. If R rejected then \underline{S} rejects.
- 3. If R accepted then simulate M on w.
- 4. If M accepted then S accepts, else If M rejected then S rejects. "
- 3 So S is a decider for A_{TM} , but we know that S does not exist.
- **4** Conclusion: the decider R does not exist either and so $HALT_{TM}$ is undecidable.

The Language E_{TM}

Problem: "Given a TM M is the language of M empty?"

Language formulation

$$E_{TM} \stackrel{\text{def}}{=} \{ \langle M \rangle \mid M \text{ is a TM such that } L(M) = \emptyset \}$$

The Language E_{TM}

Problem: "Given a TM M is the language of M empty?"

Language formulation

$$E_{TM} \stackrel{\text{def}}{=} \{ \langle M \rangle \mid M \text{ is a TM such that } L(M) = \emptyset \}$$

Theorem

The language E_{TM} is undecidable.

Proof: We reduce A_{TM} to E_{TM} .

```
A_{TM} \stackrel{\mathrm{def}}{=} \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts the input } w \}
E_{TM} \stackrel{\mathrm{def}}{=} \{ \langle M \rangle \mid M \text{ is a TM such that } L(M) = \emptyset \}
```

1 By contradiction. Assume there is a decider R for E_{TM} .

```
\begin{array}{l} A_{TM} \stackrel{\mathrm{def}}{=} \{\langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts the input } w \} \\ E_{TM} \stackrel{\mathrm{def}}{=} \{\langle M \rangle \mid M \text{ is a TM such that } L(M) = \emptyset \end{array} \}
```

- **1** By contradiction. Assume there is a decider R for E_{TM} .
- ② Using the decider R, we construct a decider S for A_{TM} :

```
S = " On input \langle M, w \rangle:
```

- 1. Using M and w construct the following TM M_1 $M_1 =$ "On input x:
 - 1. If $x \neq w$ then M_1 rejects
 - 2. If x = w then simulate M on w. If M accepted then M_1 accepts, if M rejected then M_1 rejects."
- 2. Run R on $\langle M_1 \rangle$.
- 3. If R accepted, S rejects; if R rejected, S accepts. "

```
\begin{array}{l} A_{TM} \stackrel{\mathrm{def}}{=} \{\langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts the input } w \} \\ E_{TM} \stackrel{\mathrm{def}}{=} \{\langle M \rangle \mid M \text{ is a TM such that } L(M) = \emptyset \end{array} \}
```

- **1** By contradiction. Assume there is a decider R for E_{TM} .
- ② Using the decider R, we construct a decider S for A_{TM} :

```
S = " On input \langle M, w \rangle:
```

- 1. Using M and w construct the following TM M_1 M_1 = "On input x:
 - 1. If $x \neq w$ then M_1 rejects
 - 2. If x = w then simulate M on w. If M accepted then M_1 accepts, if M rejected then M_1 rejects."
- 2. Run R on $\langle M_1 \rangle$.
- 3. If R accepted, S rejects; if R rejected, S accepts. "
- **3** So S is a decider for A_{TM} , but we know that S does not exist.

```
A_{TM} \stackrel{\mathrm{def}}{=} \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts the input } w \}
E_{TM} \stackrel{\mathrm{def}}{=} \{ \langle M \rangle \mid M \text{ is a TM such that } L(M) = \emptyset \}
```

- **1** By contradiction. Assume there is a decider R for E_{TM} .
- ② Using the decider R, we construct a decider S for A_{TM} :

```
S = " On input \langle M, w \rangle:
```

- 1. Using M and w construct the following TM M_1 M_1 = "On input x:
 - 1. If $x \neq w$ then M_1 rejects
 - If x = w then simulate M on w.
 If M accepted then M₁ accepts, if M rejected then M₁ rejects."
- 2. Run R on $\langle M_1 \rangle$.
- 3. If R accepted, S rejects; if R rejected, S accepts. "
- **3** So S is a decider for A_{TM} , but we know that S does not exist.
- **1** Conclusion: R cannot exist and hence E_{TM} is undecidable. \square

The Language EQ_{TM}

Problem: "Given two TMs M_1 and M_2 , do they recognize the same language?"

Language formulation

$$EQ_{TM} \stackrel{\mathrm{def}}{=} \{\langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs s.t. } L(M_1) = L(M_2) \}$$

The Language EQ_{TM}

Problem: "Given two TMs M_1 and M_2 , do they recognize the same language?"

Language formulation

$$EQ_{TM}\stackrel{\mathrm{def}}{=} \{\langle M_1,M_2
angle \mid M_1 \text{ and } M_2 \text{ are TMs s.t. } L(M_1)=L(M_2) \}$$

Theorem

The language EQ_{TM} is undecidable.

Proof: We reduce E_{TM} to EQ_{TM} .

$$EQ_{TM} \stackrel{\text{def}}{=} \{\langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs s.t. } L(M_1) = L(M_2) \}$$

 $E_{TM} \stackrel{\text{def}}{=} \{\langle M \rangle \mid M \text{ is a TM such that } L(M) = \emptyset \}$

1 By contradiction. Assume there is a decider R for EQ_{TM} .

```
\begin{split} &EQ_{TM} \stackrel{\mathrm{def}}{=} \{\langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs s.t. } L(M_1) = L(M_2) \ \} \\ &E_{TM} \stackrel{\mathrm{def}}{=} \{\langle M \rangle \mid M \text{ is a TM such that } L(M) = \emptyset \ \} \end{split}
```

- **1** By contradiction. Assume there is a decider R for EQ_{TM} .
- ② Using the decider R, we construct a decider S for E_{TM} :

```
S = " On input \langle M \rangle:
```

- 1. Let M_1 be a TM that rejects all inputs.
- 2. Run R on $\langle M, M_1 \rangle$.
- 3. If R accepted, S accepts; if R rejected, S rejects. "

$$EQ_{TM} \stackrel{\mathrm{def}}{=} \{\langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs s.t. } L(M_1) = L(M_2) \}$$

 $E_{TM} \stackrel{\mathrm{def}}{=} \{\langle M \rangle \mid M \text{ is a TM such that } L(M) = \emptyset \}$

- **1** By contradiction. Assume there is a decider R for EQ_{TM} .
- ② Using the decider R, we construct a decider S for E_{TM} :

```
S = " On input \langle M \rangle:
```

- 1. Let M_1 be a TM that rejects all inputs.
- 2. Run R on $\langle M, M_1 \rangle$.
- 3. If R accepted, S accepts; if R rejected, S rejects. "
- **3** So S is a decider for E_{TM} , but we know that S does not exist.

$$EQ_{TM} \stackrel{\mathrm{def}}{=} \{\langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs s.t. } L(M_1) = L(M_2) \}$$

 $E_{TM} \stackrel{\mathrm{def}}{=} \{\langle M \rangle \mid M \text{ is a TM such that } L(M) = \emptyset \}$

- **1** By contradiction. Assume there is a decider R for EQ_{TM} .
- ② Using the decider R, we construct a decider S for E_{TM} :

```
S = " On input \langle M \rangle:
```

- 1. Let M_1 be a TM that rejects all inputs.
- 2. Run R on $\langle M, M_1 \rangle$.
- 3. If R accepted, S accepts; if R rejected, S rejects. "
- 3 So S is a decider for E_{TM} , but we know that S does not exist.
- Conclusion: R cannot exist and so EQ_{TM} is undecidable.

The Language REGULAR_{TM}

Problem: "Given a TM M, is L(M) regular?"

Language formulation

 $REGULAR_{TM} \stackrel{\text{def}}{=} \{ \langle M \rangle \mid M \text{ is a TM s.t. } L(M) \text{ is regular } \}$

The Language $REGULAR_{TM}$

Problem: "Given a TM M, is L(M) regular?"

Language formulation

$$REGULAR_{TM} \stackrel{\text{def}}{=} \{ \langle M \rangle \mid M \text{ is a TM s.t. } L(M) \text{ is regular } \}$$

Theorem

The language $REGULAR_{TM}$ is undecidable.

Proof: We reduce A_{TM} to $REGULAR_{TM}$.

```
A_{TM} \stackrel{\mathrm{def}}{=} \{ \langle M, w \rangle \mid M \text{ is a TM such that } M \text{ accepts } w \}
REGULAR_{TM} \stackrel{\mathrm{def}}{=} \{ \langle M \rangle \mid M \text{ is a TM such that } L(M) \text{ is regular } \}
```

1 By contradiction. Assume a decider R for $REGULAR_{TM}$.

Undecidability of REGULAR_{TM} by Reduction from A_{TM}

```
A_{TM} \stackrel{\text{def}}{=} \{ \langle M, w \rangle \mid M \text{ is a TM such that } M \text{ accepts } w \}
REGULAR_{TM} \stackrel{\text{def}}{=} \{ \langle M \rangle \mid M \text{ is a TM such that } L(M) \text{ is regular } \}
```

- **1** By contradiction. Assume a decider R for $REGULAR_{TM}$.
- ② Using the decider R, we construct a decider S for A_{TM} :

```
S = " On input \langle M, w \rangle:
       1. Construct the following TM M_1:
          M_1 = "On input x:
                1. If x of the form 0^n1^n then M_1 accepts, else
                2. run M on w and M_1 accepts iff M accepted."
```

- 2. Run R on $\langle M_1 \rangle$.
- 3. If R accepted, S accepts; if R rejected, S rejects."

```
A_{TM} \stackrel{\mathrm{def}}{=} \{ \langle M, w \rangle \mid M \text{ is a TM such that } M \text{ accepts } w \}
REGULAR_{TM} \stackrel{\mathrm{def}}{=} \{ \langle M \rangle \mid M \text{ is a TM such that } L(M) \text{ is regular } \}
```

- lacktriangle By contradiction. Assume a decider R for $REGULAR_{TM}$.
- ② Using the decider R, we construct a decider S for A_{TM} :

```
S= " On input \langle M,w \rangle:

1. Construct the following TM M_1:

M_1= "On input x:

1. If x of the form 0^n1^n then \underline{M_1} accepts, else

2. run M on w and \underline{M_1} accepts iff M accepted."

2. Run R on \langle M_1 \rangle.

3. If R accepted, S accepts; if R rejected, S rejects."
```

3 So S is a decider for A_{TM} , but we know that S does not exist.

```
A_{TM} \stackrel{\mathrm{def}}{=} \{ \langle M, w \rangle \mid M \text{ is a TM such that } M \text{ accepts } w \}
REGULAR_{TM} \stackrel{\mathrm{def}}{=} \{ \langle M \rangle \mid M \text{ is a TM such that } L(M) \text{ is regular } \}
```

- lacktriangle By contradiction. Assume a decider R for $REGULAR_{TM}$.
- ② Using the decider R, we construct a decider S for A_{TM} :

```
S= " On input \langle M,w \rangle:

1. Construct the following TM M_1:

M_1= "On input x:

1. If x of the form 0^n1^n then \underline{M_1} accepts, else

2. run M on w and \underline{M_1} accepts iff M accepted."

2. Run R on \langle M_1 \rangle.

3. If R accepted, S accepts; if R rejected, S rejects."
```

- **3** So S is a decider for A_{TM} , but we know that S does not exist.
- **9** So R cannot exist and $REGULAR_{TM}$ is undecidable.

Idea:

- Limit the memory (tape cells) of a TM.
- The available memory is proportional (by a constant factor) to the length of the input string.

Idea:

- Limit the memory (tape cells) of a TM.
- The available memory is proportional (by a constant factor) to the length of the input string.

Definition

Linear bounded automaton (LBA) is a restricted Turing machine M such that when M runs on any input string w, its head always stays within the first |w| cells (should the head move to the right of the string, it stays at the end instead).

Idea:

- Limit the memory (tape cells) of a TM.
- The available memory is proportional (by a constant factor) to the length of the input string.

Definition

Linear bounded automaton (LBA) is a restricted Turing machine M such that when M runs on any input string w, its head always stays within the first |w| cells (should the head move to the right of the string, it stays at the end instead).

Lemma

Let M be an LBA with q states and g tape symbols. When M is run on w then there are at most distinct configurations of M where n = |w|.

Idea:

- Limit the memory (tape cells) of a TM.
- The available memory is proportional (by a constant factor) to the length of the input string.

Definition

Linear bounded automaton (LBA) is a restricted Turing machine M such that when M runs on any input string w, its head always stays within the first |w| cells (should the head move to the right of the string, it stays at the end instead).

Lemma

Let M be an LBA with q states and g tape symbols. When M is run on w then there are at most qng^n distinct configurations of M where n = |w|.

Acceptance Problem of Linear Bounded Automaton

Problem: "Does a given LBA accept a given string?"

Language formulation

 $A_{LBA} \stackrel{\text{def}}{=} \{ \langle M, w \rangle \mid M \text{ is an LBA such that } M \text{ accepts } w \}$

Acceptance Problem of Linear Bounded Automaton

Problem: "Does a given LBA accept a given string?"

Language formulation

 $A_{LBA} \stackrel{\text{def}}{=} \{ \langle M, w \rangle \mid M \text{ is an LBA such that } M \text{ accepts } w \}$

Theorem

The language A_{LBA} is decidable.

Proof: The following algorithm decides A_{LBA} :

"On input $\langle M, w \rangle$ where M is an LBA and w a string:

- 1. Simulate M on w for at most $q \cdot |w| \cdot g^{|w|}$ steps where q is the number of states in M, and g the number of tape symbols in M.
- 2. If M accepted, then accept.

If M rejected, then reject.

If M did not halt (in $q \cdot |w| \cdot g^{|w|}$ steps), then reject."

Exam Questions

- Notion of reduction from problem A to problem B.
- Undecidability proofs using the reduction.
- Linear bounded automata: definition, decidability of the acceptance problem.