Logique

Chapitre 3 : Logique du premier ordre

Lucie Le Briquer

1 Theories

Remark.

s.t. means "such that"

Definition 1 (elementary arithmetics) —

- $\forall x, \ 0+x=x$
- $\forall x, \forall y, \ S(x) + y = S(x+y)$
- $\forall x, \ 0 \times x = x$
- $\forall x, \forall y, \ S(x) = S(y) \Rightarrow x = y$
- $\forall x, x \neq 0 \Rightarrow \exists y, \ x = S(y)$
- $\forall x, \forall y, \ S(x)y = (xy) + y$
- $\quad \forall x, \ \neg(S(x) = 0)$

- **Definition 2** (group theory) -

- $\forall x, \forall y, \forall z, \ (xy)z = x(yz)$
- $-\exists e, (\forall x, xe = ex) \land (xx^{-1} = e) \land (x^{-1}x = e)$

Remark.

A theory equivalent to group theory :

$$\forall x \forall y : x^{-1} \times (xy) = y$$

2 Syntax

Let F be a set of symbols of functions $f \in F$, each one having arity $a(f) \in \mathbb{N}$. Let X be a set of variables.

- Definition 3 (terms) ———

F,X given. The set of terms T(F,X) is defined by :

- $-x \in X$
- $f(t_1,...,t_n)$ where the t_i are terms and a(f)=n

Example.

$$F = \{z(0), +(2), \times(3), s(1)\}\$$

3 Formulas of the first-order predicate calculus

Let \mathcal{P} be a set of relation symbols s.t. $P \in \mathcal{P}$ has arity $a(P) \in \mathbb{N}$.

- Definition 4 $(CP_1(F, \mathcal{P}))$ -

 $CP_1(F,\mathcal{P})$:

- an atomic formula $P(t_1,...,t_n)$, where a(P)=n and $t_1,...,t_n$ are terms
- if $\varphi, \psi \in CP_1(F, \mathcal{P})$, then : $\neg \varphi, \varphi \Rightarrow \psi, \varphi \land \psi, \varphi \lor \psi \in CP_1(F, \mathcal{P})$

3.1 F-algebra

- **Definition 5** (F-algebra) —

- a given non empty set D_A
- for all $f \in F$ $f_A : D_A^{a(f)} \longrightarrow D_A$

Examples.

- $(\mathbb{N}, +_{\mathbb{N}}, \times_{\mathbb{N}}, 0_{\mathbb{N}}, S_N)$ is an F-algebra where $F = \{+(2), \times(2), 0(0), s(1)\}$
- -A', with:
 - $D_{A'} = \Sigma^*$
 - $+_{A'}$ is the concatenation
 - $\times_{A'}$ is defined by

$$\omega \times_{A'} \omega' = \omega[a \mapsto \omega'] \quad \text{for } a \in \Sigma$$

- $S_{A'}(\omega) = \omega \cdot a$
- T(F,X) is a F-algebra, where functions are trivially interpreted:

$$f_{T(F,X)}(t_1,...,t_n) = f(t_1,...,t_n)$$

As it happens, the domain is T(F, X)

3.2 Morphisms

Definition 6 (morphism of $A \longrightarrow A'$)

A,A' two F-algebras. A morphism of $A\longrightarrow A'$ is an application $h:D_A\longrightarrow D_{A'}$ s.t. for all $f\in F,e_1,...,e_n\in D_A$ where a(f)=n:

$$h(f_A(e_1,...,e_n)) = f_{A'}(h(e_1),...,h(e_n))$$

Example.

$$h: \left\{ \begin{array}{l} A_{\Sigma} \longrightarrow \mathbb{N} \\ \omega \mapsto |\omega|_a \end{array} \right.$$

- $h(z_A) = h(\varepsilon) = 0 = z_{\mathbb{N}}$
- $-h(\omega +_A \omega') = h(\omega \omega') = |\omega \omega'| = |\omega|_a + |\omega'|_a = h(\omega) +_{\mathbb{N}} h(\omega')$
- $h(\omega \times_A \omega') = h(\omega[a \mapsto \omega']) = |\omega|_a |\omega'|_a$
- $h(s_A(\omega)) = h(\omega \cdot a) = |\omega|_a + 1 = S_{\mathbb{N}}(h(\omega))$

- **Theorem 1** (Birkhoff) —

If $\sigma: X \longrightarrow A$, where A is a F-algebra, then there exists a unique morphism:

$$\widehat{\sigma}:T(F,X)\longrightarrow A$$
 s.t. $\widehat{\sigma}(x)=\sigma(x)$ for all $x\in X$

Proof.

 $\hat{\sigma}(t)$ is constructed by structural induction on t, with :

- $-\widehat{\sigma}(x) = \sigma(x)$
- $-\widehat{\sigma}(f(t_1,...,t_n)) = f_A(\widehat{\sigma}(t_1),...,\widehat{\sigma}(t_n))$

Examples.

$$x + s(y)$$

$$\sigma = \begin{cases} X \longrightarrow A_{\Sigma} \\ x \longmapsto ab \\ y \longmapsto b \end{cases}$$

then $\widehat{\sigma}(x+s(y)) = abba$

$$\sigma' = \left\{ \begin{array}{l} X \longrightarrow \mathbb{N} \\ x \longmapsto 1 \\ y \longmapsto 2 \end{array} \right.$$

then $\widehat{\sigma}(x+s(y))=4$

Remarks.

- $\hat{\sigma}(t)$ is denoted $[\![t]\!]\sigma, A$, or $t\sigma$
- $\sigma: X \longrightarrow A$ is called an interpretation
- $\sigma: X \longrightarrow T(F,X)$ is a substitution
- $\operatorname{Dom}(\sigma) = \{x \mid x\sigma \neq x\} \qquad \text{if } \operatorname{Dom}(\sigma) = \{x_1, ..., x_n\}, \ \sigma \text{ is denoted } \{x_1 \mapsto t_1, ..., x_n \mapsto t_n\}$