脉冲核磁共振

邵智轩

学号: 1400012141*

(日期: 2019年3月9日)

本实验学习了核磁共振及弛豫时间的原理。学习用软件观察、采集 FID 信号及信号采集有关的知识。测量 CuSO₄ 样品的 FID 信号,并分析其频谱。用 $\frac{\pi}{2} - \tau - \pi$ 自旋回波法测量横向弛豫时间 T_2 ,用 $\pi - \tau - \frac{\pi}{2}$ 系列脉冲法测量纵向弛豫时间 T_1 。

关键词:核磁共振,弛豫时间,自由衰减感应(FID)

^{*} shaozhixuansh@pku.edu.cn; (86)13381350619

I. 引言

核磁共振(NMR)现象是指核磁矩在静磁场中被磁化后与特定频率的射频场产 生共振吸收的现象。吸收能量后的自旋核与周围物质相互作用并以相同频率的射频辐 射形式退激,共振频率和退激的时间特性(弛豫时间)与物质的种类、结构和环境有 关,从而可以测定物质的结构。

不同于"核磁共振"实验中的稳态核磁共振(外加稳定的射频磁场),另一种方法是用脉冲射频场作用到核系统上,观察核系统对脉冲的响应,并利用快速傅里叶变换(FFT)将时域信号变换成频域信号。这种方法称为脉冲核磁共振。

II. 原理

核磁共振的原理已在"核磁共振"实验中叙述,此处略。

A. 弛豫时间

我们观测到的是有大量原子核磁矩组成的宏观磁矩。在外磁场 B_0 中(其方向记为 z 方向),每个核磁矩均绕着 B_0 方向旋进,它们彼此间相位随机。所以在平衡态时,宏观磁矩 M_0 在 x,y 方向的分量为 0, M_0 与 B_0 的方向一致。若因某种因素使 M 偏离 z 轴,使 M 获得非零的 M_{xy} ,总磁矩将绕 z 轴以 Larmor 频率 ω_0 旋转,并逐渐恢复到平衡态,这个过程称为弛豫过程。

从微观角度看弛豫过程的机理可分为两类,自旋-晶格弛豫(纵向弛豫),时间为 T_1 ; 自旋-自旋弛豫(横向弛豫),时间为 T_2 。有 $T_2 < T_1$ 。

纵向弛豫过程的方程为:

$$\frac{\mathrm{d}M_z}{\mathrm{d}t} = -\frac{M_z - M_0}{T_1} \tag{1}$$

其解为

$$M_z = M_0 + (M_z^0 - M_0) \exp(-t/T_1)$$
(2)

其中 M_z^0 为 t=0 时 M_z 的值。若 $M_z^0=-M_0$ (相当于 π 脉冲的作用),则

$$M_z = M_0(1 - 2\exp(-t/T_1)) \tag{3}$$

横向弛豫过程的方程为:

$$\frac{\mathrm{d}M_x}{\mathrm{d}t} = -\frac{M_x}{T_2}, \quad \frac{\mathrm{d}M_y}{\mathrm{d}t} = -\frac{M_y}{T_2} \tag{4}$$

其解为

$$M_{xy} = M_{xy}^0 \exp(-t/T_2) \tag{5}$$

B. 弛豫时间的测量

1. 自由感应衰减 (FID) 信号及其频谱

为测量 T_1 、 T_2 ,在外磁场 B_0 垂直的平面内加一脉冲旋转磁场 B_1 ,其 $\omega_1 = \omega_0 = \gamma B_0$, $B_1 \ll 0$,从与 B_1 转速相同的坐标系 x', y', z' 中看,M 在 B_1 的作用下以角速度 γB_1 向 y' 方向旋转。如此脉冲的作用时间为 τ ,则 M 的倾角 θ 为

$$\theta = \gamma B_1 \tau \tag{6}$$

当 B_1 一定时,改变脉冲宽度 τ 可使 $\theta = \pi/2$,即 M 从 z' 方向倒向 y' 方向,如果在 y 方向放一电感线圈就可以检测到横向弛豫引起的指数衰减信号

$$S(t) = A \exp(-t/T_2) \tag{7}$$

此信号称为自由感应衰减(FID)信号。图 (1a) 显示的是使磁矩转 $\frac{\pi}{2}$ 的射频脉冲,

图 1: 自由感应衰减 (FID) 信号及其频谱

其频率为 ν ,脉宽为 τ 。当 ν 与核的共振频率 $\nu_0 = \frac{\gamma}{2\pi} B_0$ 相同时,FID 信号严格按式 (7) 变化,如图 (1b) 所示。其傅里叶变换后的频谱 $\left(\frac{1}{t}\right)$ 如图 (1c) 所示,它的峰位在 $\Delta \nu = 0$ 处,此时射频频率 $\nu = \nu_0$,峰的高度与信号强度有关。

当射频频率 ν 与共振频率 ν_0 有一定差异 $\Delta\nu$ 时,FID 信号如图 (1d) 所示,其衰减规律为

$$S(t) = A\cos(2\pi\Delta\nu t)\exp(-t/T_2) \tag{8}$$

其频谱如图 (1e) 所示,与图 (1c) 相比两者的差异仅在于峰位移动了 $\Delta \nu$ 。因而可根据频谱图来改变射频脉冲的频率,使其达到严格的共振 $\nu = \nu_0$;同时也可以改变射频脉冲的宽度 τ 来准确判断是否达到了 $\frac{\pi}{2}$ 的要求。

2. 用自旋回波信号测 T_2

图 2: 自旋回波原理图

图 3: 自旋回波信号示意图

用 FID 的包络线测出的 T_2^* 往往要小于 T_2 ,这是由外加磁场 B_0 的不均匀性引起的。为消除其影响,在实验中采用自旋回波法。先加一个 $\pi/2$ 的射频脉冲长,使 M 从 z' 方向倒向 y' 方向,如图 (2a) 所示。由于横向弛豫的作用,经过一段时间 τ 后,各核磁矩的相位离散使 M'_{xy} 减小,如图 (2b) 所示(磁场不均与使相位离散加速),为便于说明,图上仅画两个核磁矩,一个旋进角速度高于 ω_0 (右旋),另一个低于 ω_0 (左旋),此时再加一个 π 射频脉冲,由于此磁场对 x' 分量 M_x 不起作用,仅使 y' 方向分量 M_y 反转 π ,其旋转方向不变,如图 (2c) 所示。再经过时间 τ ,M 在 -y' 方向会聚形成极大,如同形成一个回波,其过程如图 (2d、e) 所示。实际的自旋回波信号如图 (3) 所示,脉冲间隔的时间 τ 要大于 3-5 个 T'_2 ,使磁场不均匀的影响在测量中可忽略不计,自旋回波的峰值仅由 T_2 决定。改变 τ ,测出一系列 τ 核回波信号的峰值,用式 (5) 可求出自旋-自旋弛豫时间 T_2 ,也可用多回波系列脉冲 $\frac{\pi}{2} - \tau - \pi - 2\tau - \pi - 2\tau - \pi$ …来测 T_2 。

3. T_1 的测量

 T_1 的测量采用 $\pi - \tau - \frac{\pi}{2}$ 反转脉冲法。首先加一个 π 脉冲使 M_0 从 z 方向反转 到 -z 方向,这时由于自旋-晶格弛豫, M_z 将从 $-M_0$ 逐渐增加,最后趋于 M_0 。如在 τ 时刻加一个 $\frac{\pi}{2}$ 脉冲,使 M_z 转到 -y' 方向,则可在接收线圈中测到 FID 信号,其幅度正比于此刻的 $M_z(\tau)$ 。改变 τ ,测出一系列 $M_z(\tau)$,即可由式 (3) 得出 T_1 。也可找 $M_z(\tau_0) = 0$ 时对应的 τ_0 ,用 $\tau_0 = T_1 \ln 2$ 来估测 T_1 。

C. 实验结果

1. 调出共振频率 ν

试验样品为 0.5% 和 1% 浓度 CuSO₄ 溶液。

当射频频率 ν 与共振频率 ν_0 有一定差异 $\Delta \nu$ 时,频谱会偏倚零点,可调整射频频谱使其位于零点。此时的射频频率为: $17 \mathrm{MHz} + 113 \mathrm{kHz}$ 。[2]

2. 确定 ½ 与 π 脉冲对应的脉冲宽度

从 0 逐渐增大脉冲宽度,测得使 FID 信号峰值最大时($\theta = \pi/2$)对应的脉冲宽度为 $28\mu s$;继续增大脉冲宽度,使信号峰值最小时($\theta = \pi$)对应的脉冲宽度为 $56\mu s$ 。

3. 单回波 $\frac{\pi}{2} - \tau - \pi$ 法测量横向弛豫时间 T_2

表 I: 单回波 $\frac{\pi}{2} - \tau - \pi$ 法测 T_2 : 不同延迟时间 τ 对应的峰值强度

$ au/\mathrm{ms} $											
强度	560	545	520	488	423	368	284	215	119	53.5	23.0

用表**I**中的数据拟合曲线: $y = A + B \exp(-t/T_2)$, 其中 A, B, T_2 为未知参数, $t = 2\tau$ 。 拟合结果为:

$$T_2 = (31.8 \pm 1.6) \text{ms}, \quad A = 0 \pm 8, \quad B = 596 \pm 7$$
 (9)

拟合的曲线如图 (4) 所示。

图 4: 单次回波法测 T₂

图 5: 0.5% 溶液多回波系列脉冲测 T_2

图 6: 1% 溶液多回波系列脉冲测 T_2

4. 多回波系列脉冲 $\frac{\pi}{2} - \tau - \pi - 2\tau - \pi - 2\tau - \pi \cdots$ 测 T_2

0.5% 溶液的拟合曲线如图5所示,拟合结果为:

$$T_2 = (33.5 \pm 0.5) \text{ms}, \quad A = 5 \pm 3, \quad B = 634 \pm 3$$
 (10)

这与单回波法的结果接近,而多回波法精度更高,更准确。

1% 溶液的拟合曲线如图6所示,拟合结果为:

$$T_2 = (16.5 \pm 0.4) \text{ms}, \quad A = 10 \pm 4, \quad B = 674 \pm 6$$
 (11)

我们看到,随着 $CuSO_4$ 溶液浓度加大,其横向弛豫时间显著缩短,这不难理解——更强的自旋自旋相互作用使得 M 更快地回复到平衡态。

5. 反转脉冲 $\pi - \tau - \frac{\pi}{2}$ 测 T_1

对于 0.5% 溶液,FID 信号峰值强度的拐点大约对应延迟时间 $au_0 \approx 15.7 \mathrm{ms}$,估算 $T_1 = au_0/\ln 2 = 23 \mathrm{ms}$ 。

表 II: 反转脉冲 $\pi-\tau-\frac{\pi}{2}$ 测 T_1 (0.5% 溶液): 不同延迟时间 τ 对应的峰值强度

$\tau(\mathrm{ms})$											
强度	3578	3603	3651	3704	3761	3812	3860	3886	3900	3910	3911

对于 1% 溶液,FID 信号峰值强度的拐点大约对应延迟时间 $\tau_0 \approx 9.7 \mathrm{ms}$,估算 $T_1 = \tau_0/\ln 2 = 14 \mathrm{ms}$ 。

表 III: 反转脉冲 $\pi - \tau - \frac{\pi}{2}$ 测 T_1 (1% 溶液): 不同延迟时间 τ 对应的峰值强度

$\tau(\mathrm{ms})$	l	l							1	
强度	3578	3620	3667	3701	3762	3788	3806	3841	3872	3875

图 7: 0.5% 溶液反转脉冲 $\pi - \tau - \frac{\pi}{2}$ 测 T_1

图 8: 1% 溶液反转脉冲 $\pi - \tau - \frac{\pi}{2}$ 测 T_1

0.5% 溶液的拟合曲线如图7所示,拟合结果为:

$$T_1 = (38.3 \pm 2.1) \text{ms}, \quad A = 3923 \pm 6, \quad B = -550 \pm 15$$
 (12)

1% 溶液的拟合曲线如图8所示,拟合结果为:

$$T_1 = (18.7 \pm 1.6) \text{ms}, \quad A = 3894 \pm 10, \quad B = -536 \pm 21$$
 (13)

仍有纵向弛豫时间随浓度增大而减小。

以上我们验证了 $T_2 < T_1$ 。另外我们看到,由于拐点很难找准,用拐点单点估算出的 T_1 是很不准确的。

III. 结论

通过本实验我们学习了如何测量脉冲核磁共振的弛豫时间,包括自旋-自旋弛豫时间 T_2 和自旋-晶格弛豫时间 T_1 ,更深刻地体会到通过核磁共振可以让我们探索物质的内部结构、成分。

IV. 致谢

感谢黄斐增老师对实验的悉心指导,使我迅速掌握了核磁共振原理,测量方法和 仪器的操作。

- [1] 吴思诚, 荀坤. 近代物理实验(第四版). 北京: 高等教育出版社, 2015
- [2] 随着环境、温度的变化,共振频率会有一定的漂移,需要不时调整。