Diseño de Bases de Datos Relacionales: Dependencia Funcional y Formas Normales

Juan F. Pérez

Departamento MACC Matemáticas Aplicadas y Ciencias de la Computación Universidad del Rosario

juanferna.perez@urosario.edu.co

Primer Semestre de 2019

Contenidos

- Escogiendo un buen diseño
- Primera Forma Normal
- Oescomposición y Segunda Forma Normal (Boyce-Codd)
- Tercera Forma Normal
- Teoría de Dependencias Funcionales
 - Calculando la clausura de un conjunto de atributos
 - Atributos extraños y cobertura mínima
 - Descomposición sin pérdidas
- Normalización de BDs usando la Formal Normal Boyce-Codd (BCNF)
- Normalización de BDs usando la Tercera Formal Normal (3NF)

Escogiendo un buen diseño

Esquemas grandes: muchos atributos por esquema

- Esquemas grandes: muchos atributos por esquema
- estudiantesCursos(<u>estID</u>, <u>curso_cod</u>, nombre, apellido, nombre_curso, nota)

- Esquemas grandes: muchos atributos por esquema
- estudiantesCursos(estID, curso_cod, nombre, apellido, nombre_curso, nota)
- Ventaja: consultas se pueden escribir con menos joins

- Esquemas grandes: muchos atributos por esquema
- estudiantesCursos(estID, curso_cod, nombre, apellido, nombre_curso, nota)
- Ventaja: consultas se pueden escribir con menos joins
- Desventaja: los datos del estudiante y el curso (diferente a los códigos usados como llave primaria) deben ser consistentes en todos los registros (difícil de mantener)

- Esquemas grandes: muchos atributos por esquema
- estudiantesCursos(estID, curso_cod, nombre, apellido, nombre_curso, nota)
- Ventaja: consultas se pueden escribir con menos joins
- Desventaja: los datos del estudiante y el curso (diferente a los códigos usados como llave primaria) deben ser consistentes en todos los registros (difícil de mantener)
- Desventaja: imposible crear un estudiante sin inmediatamente asignarle un curso (y viceversa) a menos que se usen nulos

Esquemas pequeños: pocos atributos por esquema

- Esquemas pequeños: pocos atributos por esquema
- estudiantesCursos(<u>estID</u>, <u>curso_cod</u>, nombre, apellido, nombre_curso, nota)

- Esquemas pequeños: pocos atributos por esquema
- estudiantesCursos(estID, curso_cod, nombre, apellido, nombre_curso, nota)
- estudiantes(<u>estID</u>, nombre, apellido)

- Esquemas pequeños: pocos atributos por esquema
- estudiantesCursos(estID, curso_cod, nombre, apellido, nombre_curso, nota)
- estudiantes(<u>estID</u>, nombre, apellido)
- cursos(<u>curso_cod</u>, nombre_curso, nota)

- Esquemas pequeños: pocos atributos por esquema
- estudiantesCursos(estID, curso_cod, nombre, apellido, nombre_curso, nota)
- estudiantes(<u>estID</u>, nombre, apellido)
- cursos(<u>curso_cod</u>, nombre_curso, nota)
- estudiantesCursos(estID, curso_cod, nota)

• ¿Cómo identificar división adecuada?

- ¿Cómo identificar división adecuada?
- ¿Qué campos tienen valores que se repiten y corresponden al mismo "objeto"?

- ¿Cómo identificar división adecuada?
- ¿Qué campos tienen valores que se repiten y corresponden al mismo "objeto"?
- Es necesario hacer explícitas que cada estudiante tiene exactamente un nombre y un apellido, o cada curso tiene un nombre

- ¿Cómo identificar división adecuada?
- ¿Qué campos tienen valores que se repiten y corresponden al mismo "objeto"?
- Es necesario hacer explícitas que cada estudiante tiene exactamente un nombre y un apellido, o cada curso tiene un nombre
- En el esquema *estudiantes*(*estID*, *nombre*, *apellido*) , estID es una llave primaria (no como en el caso inicial de *estudiantesCursos*)

- ¿Cómo identificar división adecuada?
- ¿Qué campos tienen valores que se repiten y corresponden al mismo "objeto"?
- Es necesario hacer explícitas que cada estudiante tiene exactamente un nombre y un apellido, o cada curso tiene un nombre
- En el esquema *estudiantes*(*estID*, *nombre*, *apellido*) , estID es una llave primaria (no como en el caso inicial de *estudiantesCursos*)
- lacktriangle Dependencia funcional: estID ightarrow nombre

 $\blacksquare \ \, \textbf{Dependencia funcional} \colon \mathsf{estID} \to \mathsf{nombre} \\$

- Dependencia funcional: estID → nombre
- Para todo par de registros, si el valor del atributo a la izquierda es igual, el valor del atributo a la derecha debe ser igual

- Dependencia funcional: estID → nombre
- Para todo par de registros, si el valor del atributo a la izquierda es igual, el valor del atributo a la derecha debe ser igual
- Problema con el esquema inicial *estudiantesCursos*: como estID no puede ser llave primaria, es necesario repetir el nombre del estudiante

- Dependencia funcional: estID → nombre
- Para todo par de registros, si el valor del atributo a la izquierda es igual, el valor del atributo a la derecha debe ser igual
- Problema con el esquema inicial estudiantes Cursos: como estID no puede ser llave primaria, es necesario repetir el nombre del estudiante
- ¿Cómo descomponer un esquema?

- Dependencia funcional: estID → nombre
- Para todo par de registros, si el valor del atributo a la izquierda es igual, el valor del atributo a la derecha debe ser igual
- Problema con el esquema inicial estudiantes Cursos: como estID no puede ser llave primaria, es necesario repetir el nombre del estudiante
- ¿Cómo descomponer un esquema?
- Descomposición con pérdida de información (lossy): al descomponer se pierde información del esquema "grande" (e.g., no es posible obtener el esquema grande/original usando un join)

- **Dependencia funcional**: estID \rightarrow nombre
- Para todo par de registros, si el valor del atributo a la izquierda es igual, el valor del atributo a la derecha debe ser igual
- Problema con el esquema inicial *estudiantesCursos*: como estID no puede ser llave primaria, es necesario repetir el nombre del estudiante
- ¿Cómo descomponer un esquema?
- Descomposición con pérdida de información (lossy): al descomponer se pierde información del esquema "grande" (e.g., no es posible obtener el esquema grande/original usando un join)
- Descomposición con pérdida de información (lossless): no se pierde

 El dominio de un atributo es atómico si los elementos del dominio son indivisibles

- El dominio de un atributo es atómico si los elementos del dominio son indivisibles
- Ej. atributos no atómicos: nombres compuestos, direcciones compuestas, mezcla de códigos en uno solo

- El dominio de un atributo es atómico si los elementos del dominio son indivisibles
- Ej. atributos no atómicos: nombres compuestos, direcciones compuestas, mezcla de códigos en uno solo

Primera forma normal

Un esquema relacional se considera en la primera forma normal (1NF) si los dominios de todos sus atributos son atómicos

Descomposición y Segunda Forma Normal (Boyce-Codd)

• Una relación r(R) con conjunto de atributos R

- Una relación r(R) con conjunto de atributos R
- Un subconjunto de atributos $K \subset R$ es una superllave si es posible identificar cada registro en la relación con los atributos en K

- Una relación r(R) con conjunto de atributos R
- Un subconjunto de atributos $K \subset R$ es una superllave si es posible identificar cada registro en la relación con los atributos en K
- Dependencia funcional: $K \to R$

- Una relación r(R) con conjunto de atributos R
- Un subconjunto de atributos $K \subset R$ es una superllave si es posible identificar cada registro en la relación con los atributos en K
- Dependencia funcional: $K \rightarrow R$
- Llave candidata: superllave que no tiene como subconjunto otra superllave (superllave mínima)

- Una relación r(R) con conjunto de atributos R
- Un subconjunto de atributos $K \subset R$ es una superllave si es posible identificar cada registro en la relación con los atributos en K
- Dependencia funcional: $K \rightarrow R$
- Llave candidata: superllave que no tiene como subconjunto otra superllave (superllave mínima)
- Llave primaria: llave candidata seleccionada para identificar de manera única cada elemento en la relación

Relaciones y dependencias funcionales

• Una instancia de una relación r(R) satisface la dependencia funcional $\alpha \to \beta$ si para todo par de tuplas t_1, t_2 se cumple que si $t_1[\alpha] = t_2[\alpha]$, entonces $t_1[\beta] = t_2[\beta]$

Relaciones y dependencias funcionales

- Una instancia de una relación r(R) satisface la dependencia funcional $\alpha \to \beta$ si para todo par de tuplas t_1, t_2 se cumple que si $t_1[\alpha] = t_2[\alpha]$, entonces $t_1[\beta] = t_2[\beta]$
- La dependencia funcional $\alpha \to \beta$ se cumple si todo par de registros que tengan el mismo valor en los atributos α , tienen el mismo valor en los atributos β

- Una instancia de una relación r(R) satisface la dependencia funcional $\alpha \to \beta$ si para todo par de tuplas t_1, t_2 se cumple que si $t_1[\alpha] = t_2[\alpha]$, entonces $t_1[\beta] = t_2[\beta]$
- La dependencia funcional $\alpha \to \beta$ se cumple si todo par de registros que tengan el mismo valor en los atributos α , tienen el mismo valor en los atributos β
- Un esquema r(R) satisface la dependencia funcional $\alpha \to \beta$ si toda instancia legal del mismo satisface la dependencia

■ estudiantes(<u>estID</u>, nombre, apellido)

- estudiantes(<u>estID</u>, nombre, apellido)
- lacksquare Se cumple la dependencia $\underline{\mathsf{estID}} o \mathsf{nombre}$, apellido

- estudiantes(<u>estID</u>, nombre, apellido)
- lacksquare Se cumple la dependencia $\underline{\mathsf{estID}} o \mathsf{nombre}$, apellido
- cursos(<u>curso_cod</u>, nombre_curso, nota)

- estudiantes(<u>estID</u>, nombre, apellido)
- lacksquare Se cumple la dependencia $\underline{\mathsf{estID}} o \mathsf{nombre}$, apellido
- cursos(<u>curso_cod</u>, nombre_curso, nota)
- lacktriangle Se cumple la dependencia $\underline{\mathsf{curso_cod}} o \mathsf{nombre_curso}$, nota

lacktriangle Una dependencia funciona lpha
ightarrow eta se considera trivial si $eta \subset lpha$

- \blacksquare Una dependencia funciona $\alpha \to \beta$ se considera trivial si $\beta \subset \alpha$
- Siempre se cumple

- \blacksquare Una dependencia funciona $\alpha \to \beta$ se considera trivial si $\beta \subset \alpha$
- Siempre se cumple
- Si para un esquema r(A, B, C) se cumple $A \rightarrow B$ y $B \rightarrow C$, entonces $A \rightarrow C$

- Una dependencia funciona $\alpha \to \beta$ se considera trivial si $\beta \subset \alpha$
- Siempre se cumple
- Si para un esquema r(A, B, C) se cumple $A \rightarrow B$ y $B \rightarrow C$, entonces $A \rightarrow C$
- Dado un conjunto de dependencia funcionales *F*, *F*⁺ denota la clausura de *F*, es decir, el conjunto de todas las dependencias funcionales que se pueden inferir a partir de *F*

 Elimina todas las redundancias que pueden descubrirse a partir de dependencias funcionales

 Elimina todas las redundancias que pueden descubrirse a partir de dependencias funcionales

Segunda Forma Normal (Boyce-Codd)

Un esquema relacional r(R) se considera en la segunda forma normal (BCNF) con respecto al conjunto de dependencias funcionales F si para todas las dependencias funcionales $\alpha \to \beta$ en F^+ , se cumple una de las dos condiciones siguientes:

En toda dependencia $\alpha \to \beta$ no trivial α es una superllave

 Elimina todas las redundancias que pueden descubrirse a partir de dependencias funcionales

Segunda Forma Normal (Boyce-Codd)

Un esquema relacional r(R) se considera en la segunda forma normal (BCNF) con respecto al conjunto de dependencias funcionales F si para todas las dependencias funcionales $\alpha \to \beta$ en F^+ , se cumple una de las dos condiciones siguientes:

En toda dependencia $\alpha \to \beta$ no trivial α es una superllave

 Elimina todas las redundancias que pueden descubrirse a partir de dependencias funcionales

Segunda Forma Normal (Boyce-Codd)

Un esquema relacional r(R) se considera en la segunda forma normal (BCNF) con respecto al conjunto de dependencias funcionales F si para todas las dependencias funcionales $\alpha \to \beta$ en F^+ , se cumple una de las dos condiciones siguientes:

- lacksquare $\alpha o eta$ es trivial
- lacksquare α es una superllave de R

En toda dependencia $\alpha \to \beta$ no trivial α es una superllave

estudiantes(<u>estID</u>, nombre, apellido)

- estudiantes(<u>estID</u>, nombre, apellido)
- Está en segunda forma normal

- estudiantes(<u>estID</u>, nombre, apellido)
- Está en segunda forma normal
- cursos(<u>curso_cod</u>, nombre_curso, nota)

- estudiantes(<u>estID</u>, nombre, apellido)
- Está en segunda forma normal
- cursos(<u>curso_cod</u>, nombre_curso, nota)
- Está en segunda forma normal

- estudiantes(<u>estID</u>, nombre, apellido)
- Está en segunda forma normal
- cursos(<u>curso_cod</u>, nombre_curso, nota)
- Está en segunda forma normal
- estudiantesCursos(<u>estID</u>, <u>curso_cod</u>, nombre, apellido, nombre_curso, nota)

- estudiantes(<u>estID</u>, nombre, apellido)
- Está en segunda forma normal
- cursos(<u>curso_cod</u>, nombre_curso, nota)
- Está en segunda forma normal
- estudiantesCursos(estID, curso_cod, nombre, apellido, nombre_curso, nota)
- estID \rightarrow nombre, apellido

- estudiantes(<u>estID</u>, nombre, apellido)
- Está en segunda forma normal
- cursos(<u>curso_cod</u>, nombre_curso, nota)
- Está en segunda forma normal
- estudiantesCursos(estID, curso_cod, nombre, apellido, nombre_curso, nota)
- lacktriangledown estID ightarrow nombre, apellido
- NO está en segunda forma normal

■ Existe al menos una dependencia $\alpha \to \beta$ tal que α no es una superllave

- \blacksquare Existe al menos una dependencia $\alpha \to \beta$ tal que α no es una superllave
- Reemplace r(R) con dos esquemas:

- \blacksquare Existe al menos una dependencia $\alpha \to \beta$ tal que α no es una superllave
- Reemplace r(R) con dos esquemas:
 - $\alpha \cup \beta$

- \blacksquare Existe al menos una dependencia $\alpha \to \beta$ tal que α no es una superllave
- Reemplace r(R) con dos esquemas:
 - $\alpha \cup \beta$
 - $R (\beta \alpha)$

estudiantesCursos(<u>estID</u>, <u>curso_cod</u>, nombre, apellido, nombre_curso, nota)

- estudiantesCursos(<u>estID</u>, <u>curso_cod</u>, nombre, apellido, nombre_curso, nota)
- estID \rightarrow nombre, apellido

- estudiantesCursos(estID, curso_cod, nombre, apellido, nombre_curso, nota)
- ullet estID o nombre, apellido
 - α : estID

- estudiantesCursos(<u>estID</u>, <u>curso_cod</u>, nombre, apellido, nombre_curso, nota)
- lacktriangledown estID ightarrow nombre, apellido
 - α : estID
 - β : nombre, apellido

- estudiantesCursos(<u>estID</u>, <u>curso_cod</u>, nombre, apellido, nombre_curso, nota)
- lacktriangledown estID ightarrow nombre, apellido
 - α: estID
 - β : nombre, apellido
 - $\alpha \cup \beta$: estID, nombre, apellido

- estudiantesCursos(estID, curso_cod, nombre, apellido, nombre_curso, nota)
- lacksquare estID ightarrow nombre, apellido
 - α: estID
 - β : nombre, apellido
 - $\alpha \cup \beta$: estID, nombre, apellido
 - $\beta \alpha$: nombre, apellido

- estudiantesCursos(<u>estID</u>, <u>curso_cod</u>, nombre, apellido, nombre_curso, nota)
- lacksquare estID ightarrow nombre, apellido
 - α: estID
 - β : nombre, apellido
 - $\alpha \cup \beta$: estID, nombre, apellido
 - $\beta \alpha$: nombre, apellido
 - $R (\beta \alpha)$: curso_cod, estID, nombre_curso, nota

- estudiantesCursos(<u>estID</u>, <u>curso_cod</u>, nombre, apellido, nombre_curso, nota)
- lacksquare estID ightarrow nombre, apellido
 - α: estID
 - β : nombre, apellido
 - $\alpha \cup \beta$: estID, nombre, apellido
 - $\beta \alpha$: nombre, apellido
 - $R (\beta \alpha)$: curso_cod, estID, nombre_curso, nota
- curso_cod → nombre_curso

- estudiantesCursos(<u>estID</u>, <u>curso_cod</u>, nombre, apellido, nombre_curso, nota)
- lacksquare estID ightarrow nombre, apellido
 - α: estID
 - β : nombre, apellido
 - $\alpha \cup \beta$: estID, nombre, apellido
 - $\beta \alpha$: nombre, apellido
 - $R (\beta \alpha)$: curso_cod, estID, nombre_curso, nota
- curso_cod → nombre_curso
- Continuar la descomposición hasta que todos los esquemas estén en la segunda forma normal

Tercera Forma Normal

Tercera Forma Normal

■ Similar a la segunda pero más flexible

Tercera Forma Normal

Similar a la segunda pero más flexible

Tercera Forma Normal

Un esquema relacional r(R) se considera en la tercera forma normal (3NF) con respecto al conjunto de dependencias funcionales F si para todas las dependencias funcionales $\alpha \to \beta$ en F^+ , se cumple una de las tres condiciones siguientes:

Similar a la segunda pero más flexible

Tercera Forma Normal

Un esquema relacional r(R) se considera en la tercera forma normal (3NF) con respecto al conjunto de dependencias funcionales F si para todas las dependencias funcionales $\alpha \to \beta$ en F^+ , se cumple una de las tres condiciones siguientes:

- lacksquare $\alpha o eta$ es trivial
- lacksquare α es una superllave de R
- Cada atributo $A \in \beta \alpha$ está contenido en una llave candidata para r(R)

■ Todo esquema en BCNF está también 3NF

- Todo esquema en BCNF está también 3NF
- Comparada con BCNF, evita descomponer algunas relaciones

- Todo esquema en BCNF está también 3NF
- Comparada con BCNF, evita descomponer algunas relaciones
- Sin esa descomposición, algunas dependencias funcionales pueden ser revisadas más eficientemente

asesorUnidad(estID, instID, nombre_unidad)

- asesorUnidad(estID, instID, nombre_unidad)
- Todo instructor debe estar asociado a un único departamento

- asesorUnidad(estID, instID, nombre_unidad)
- Todo instructor debe estar asociado a un único departamento
 - ullet instID o nombre_unidad

- asesorUnidad(estID, instID, nombre_unidad)
- Todo instructor debe estar asociado a un único departamento
 - instID → nombre_unidad
- Todo estudiante puede tener a lo sumo un asesor en cada unidad académica

- asesorUnidad(estID, instID, nombre_unidad)
- Todo instructor debe estar asociado a un único departamento
 - instID \rightarrow nombre_unidad
- Todo estudiante puede tener a lo sumo un asesor en cada unidad académica
 - estID, nombre_unidad → instID

- asesorUnidad(estID, instID, nombre_unidad)
- Todo instructor debe estar asociado a un único departamento
 - ullet instID o nombre_unidad
- Todo estudiante puede tener a lo sumo un asesor en cada unidad académica
 - estID, nombre_unidad → instID
- ¿Está en BCNF? No

- asesorUnidad(estID, instID, nombre_unidad)
- Todo instructor debe estar asociado a un único departamento
 - instID \rightarrow nombre_unidad
- Todo estudiante puede tener a lo sumo un asesor en cada unidad académica
 - estID, nombre_unidad \rightarrow instID
- ¿Está en BCNF? No
 - instID no es una súperllave
 - (estID, nombre_unidad) no es una súperllave

- asesorUnidad(estID, instID, nombre_unidad)
- Todo instructor debe estar asociado a un único departamento
 - instID \rightarrow nombre_unidad
- Todo estudiante puede tener a lo sumo un asesor en cada unidad académica
 - estID, nombre_unidad \rightarrow instID
- ¿Está en BCNF? No
 - instID no es una súperllave
 - (estID, nombre_unidad) no es una súperllave
- ¿Está en 3NF? Sí

- asesorUnidad(estID, instID, nombre_unidad)
- Todo instructor debe estar asociado a un único departamento
 - instID \rightarrow nombre_unidad
- Todo estudiante puede tener a lo sumo un asesor en cada unidad académica
 - estID, nombre_unidad → instID
- ¿Está en BCNF? No
 - instID no es una súperllave
 - (estID, nombre_unidad) no es una súperllave
- ¿Está en 3NF? Sí
 - nombre_unidad instID = nombre_unidad es parte de una llave candidata

- asesorUnidad(estID, instID, nombre_unidad)
- Todo instructor debe estar asociado a un único departamento
 - instID \rightarrow nombre_unidad
- Todo estudiante puede tener a lo sumo un asesor en cada unidad académica
 - estID, nombre_unidad → instID
- ¿Está en BCNF? No
 - instID no es una súperllave
 - (estID, nombre_unidad) no es una súperllave
- ¿Está en 3NF? Sí
 - nombre_unidad instID = nombre_unidad es parte de una llave candidata
 - instID (estID, nombre_unidad) = instID es parte de una llave candidata

asesorUnidad(estID, instID, nombre_unidad)

- asesorUnidad(estID, instID, nombre_unidad)
- Todo instructor debe estar asociado a un único departamento

- asesorUnidad(estID, instID, nombre_unidad)
- Todo instructor debe estar asociado a un único departamento
 - instID \rightarrow nombre_unidad

- asesorUnidad(estID, instID, nombre_unidad)
- Todo instructor debe estar asociado a un único departamento
 - instID \rightarrow nombre_unidad
- Todo estudiante puede tener a lo sumo un asesor en cada unidad académica

- asesorUnidad(estID, instID, nombre_unidad)
- Todo instructor debe estar asociado a un único departamento
 - instID \rightarrow nombre_unidad
- Todo estudiante puede tener a lo sumo un asesor en cada unidad académica
 - estID, nombre_unidad → instID

- asesorUnidad(estID, instID, nombre_unidad)
- Todo instructor debe estar asociado a un único departamento
 - instID → nombre_unidad
- Todo estudiante puede tener a lo sumo un asesor en cada unidad académica
 - estID, nombre_unidad → instID
- Para garantizar BCNF necesitaríamos descomponer en dos esquemas

- asesorUnidad(estID, instID, nombre_unidad)
- Todo instructor debe estar asociado a un único departamento
 - instID → nombre_unidad
- Todo estudiante puede tener a lo sumo un asesor en cada unidad académica
 - estID, nombre_unidad → instID
- Para garantizar BCNF necesitaríamos descomponer en dos esquemas
 - (estID, instID)
 - (instID, nombre_unidad)

- asesorUnidad(estID, instID, nombre_unidad)
- Todo instructor debe estar asociado a un único departamento
 - instID → nombre_unidad
- Todo estudiante puede tener a lo sumo un asesor en cada unidad académica
 - estID, nombre_unidad → instID
- Para garantizar BCNF necesitaríamos descomponer en dos esquemas
 - (estID, instID)
 - (instID, nombre_unidad)
- Chequear la condición estID, $nombre_unidad \rightarrow instID$

- asesorUnidad(estID, instID, nombre_unidad)
- Todo instructor debe estar asociado a un único departamento
 - instID → nombre_unidad
- Todo estudiante puede tener a lo sumo un asesor en cada unidad académica
 - estID, nombre_unidad → instID
- Para garantizar BCNF necesitaríamos descomponer en dos esquemas
 - (estID, instID)
 - (instID, nombre_unidad)
- Chequear la condición estID, nombre_unidad → instID
- Requiere combinar varias tablas: menos eficiente que mantener un solo esquema

Teoría de Dependencias Funcionales

• Sea r(R) un esquema con atributos R

- Sea r(R) un esquema con atributos R
- \blacksquare Denotamos subconjuntos de R con letras griegas α , β , γ

- Sea r(R) un esquema con atributos R
- lacktriangle Denotamos subconjuntos de R con letras griegas lpha, eta, γ

- Sea r(R) un esquema con atributos R
- lacktriangle Denotamos subconjuntos de R con letras griegas lpha, eta, γ

Axiomas de Armstrong

■ [Reflexividad] Sean $\alpha, \beta \subset R$ con $\beta \subset \alpha$, entonces $\alpha \to \beta$

- Sea r(R) un esquema con atributos R
- Denotamos subconjuntos de R con letras griegas α , β , γ

- [Reflexividad] Sean $\alpha, \beta \subset R$ con $\beta \subset \alpha$, entonces $\alpha \to \beta$
- [Aumentación] Sean $\alpha, \beta, \gamma \subset R$. Si $\alpha \to \beta$, entonces $\alpha \cup \gamma \to \beta \cup \gamma$

- Sea r(R) un esquema con atributos R
- Denotamos subconjuntos de R con letras griegas α , β , γ

- [Reflexividad] Sean $\alpha, \beta \subset R$ con $\beta \subset \alpha$, entonces $\alpha \to \beta$
- [Aumentación] Sean $\alpha, \beta, \gamma \subset R$. Si $\alpha \to \beta$, entonces $\alpha \cup \gamma \to \beta \cup \gamma$
- [Transitividad] Sean $\alpha, \beta, \gamma \subset R$. Si $\alpha \to \beta$ y $\beta \to \gamma$, entonces $\alpha \to \gamma$

- Sea r(R) un esquema con atributos R
- Denotamos subconjuntos de R con letras griegas α , β , γ

- [Reflexividad] Sean $\alpha, \beta \subset R$ con $\beta \subset \alpha$, entonces $\alpha \to \beta$
- [Aumentación] Sean $\alpha, \beta, \gamma \subset R$. Si $\alpha \to \beta$, entonces $\alpha \cup \gamma \to \beta \cup \gamma$
- [Transitividad] Sean $\alpha, \beta, \gamma \subset R$. Si $\alpha \to \beta$ y $\beta \to \gamma$, entonces $\alpha \to \gamma$
- Completos y sólidos

- Sea r(R) un esquema con atributos R
- Denotamos subconjuntos de R con letras griegas α , β , γ

- [Reflexividad] Sean $\alpha, \beta \subset R$ con $\beta \subset \alpha$, entonces $\alpha \to \beta$
- [Aumentación] Sean $\alpha, \beta, \gamma \subset R$. Si $\alpha \to \beta$, entonces $\alpha \cup \gamma \to \beta \cup \gamma$
- [Transitividad] Sean $\alpha, \beta, \gamma \subset R$. Si $\alpha \to \beta$ y $\beta \to \gamma$, entonces $\alpha \to \gamma$
- Completos y sólidos
- A partir de F, generar su clausura F⁺ aplicando estos axiomas repetidamente

Otras reglas que se pueden derivar de los axiomas de Armstrong

- Otras reglas que se pueden derivar de los axiomas de Armstrong
- Simplifican el cálculo de F⁺

- Otras reglas que se pueden derivar de los axiomas de Armstrong
- Simplifican el cálculo de F⁺

- Otras reglas que se pueden derivar de los axiomas de Armstrong
- Simplifican el cálculo de F⁺
- [Unión] Sean $\alpha, \beta \subset R$. Si $\alpha \to \beta$ y $\alpha \to \gamma$, entonces $\alpha \to \beta \cup \gamma$

- Otras reglas que se pueden derivar de los axiomas de Armstrong
- Simplifican el cálculo de F⁺
- [Unión] Sean $\alpha, \beta \subset R$. Si $\alpha \to \beta$ y $\alpha \to \gamma$, entonces $\alpha \to \beta \cup \gamma$
- [Descomposición] Sean $\alpha, \beta, \gamma \subset R$. Si $\alpha \to \beta \cup \gamma$, entonces $\alpha \to \beta$ y $\alpha \to \gamma$

- Otras reglas que se pueden derivar de los axiomas de Armstrong
- Simplifican el cálculo de F⁺
- [Unión] Sean $\alpha, \beta \subset R$. Si $\alpha \to \beta$ y $\alpha \to \gamma$, entonces $\alpha \to \beta \cup \gamma$
- [Descomposición] Sean $\alpha, \beta, \gamma \subset R$. Si $\alpha \to \beta \cup \gamma$, entonces $\alpha \to \beta$ y $\alpha \to \gamma$
- [Pseudo-transitividad] Sean $\alpha, \beta, \gamma, \delta \subset R$. Si $\alpha \to \beta$ y $\gamma \cup \beta \to \delta$, entonces $\alpha \cup \gamma \to \delta$

Ejemplo:

R = (A, B, C, D, E, F)

- R = (A, B, C, D, E, F)
- $\blacksquare F = \{A \rightarrow B, A \rightarrow C, C \cup D \rightarrow E, C \cup D \rightarrow F, B \rightarrow E\}$

- R = (A, B, C, D, E, F)
- $\blacksquare F = \{A \rightarrow B, A \rightarrow C, C \cup D \rightarrow E, C \cup D \rightarrow F, B \rightarrow E\}$
- lacksquare A
 ightarrow E (transitividad, A
 ightarrow B, B
 ightarrow E)

- R = (A, B, C, D, E, F)
- $F = \{A \rightarrow B, A \rightarrow C, C \cup D \rightarrow E, C \cup D \rightarrow F, B \rightarrow E\}$
- $A \rightarrow E$ (transitividad, $A \rightarrow B, B \rightarrow E$)
- $C \cup D \rightarrow E \cup F$ (union, $C \cup D \rightarrow E, C \cup D \rightarrow F$)

- R = (A, B, C, D, E, F)
- $F = \{A \rightarrow B, A \rightarrow C, C \cup D \rightarrow E, C \cup D \rightarrow F, B \rightarrow E\}$
- $A \rightarrow E$ (transitividad, $A \rightarrow B, B \rightarrow E$)
- $C \cup D \rightarrow E \cup F$ (union, $C \cup D \rightarrow E, C \cup D \rightarrow F$)
- $A \cup D \rightarrow F$ (pseudo-transitividad, $A \rightarrow C, C \cup D \rightarrow F$)

```
function CALCULA F^+(F)
   F^+ = F
   repeat
       for f \in F^+ do
           Aplique reflexividad y aumentación a f
           Agregue las dependencias funcionales resultantes a F^+
       end for
       for pareja (f_1, f_2) \in F^+ do
          if f_1 y f_2 se pueden combinar con transitividad then
              Agregue la dependencia funcional resultante a F^+
           end if
       end for
   until F^+ no cambie
   return F^+
end function
```

■ Un atributo B está funcionalmente determinado por α si $\alpha \to B$

- Un atributo B está funcionalmente determinado por α si $\alpha \to B$
- El conjunto de atributos determinado por α es la clausura de α y se denota α^+

- Un atributo B está funcionalmente determinado por α si $\alpha \to B$
- \blacksquare El conjunto de atributos determinado por α es la clausura de α y se denota α^+
- Podemos probar si α es una superllave, verificando que $\alpha^+=R$

```
function CLAUSURA DE \alpha BAJO F(\alpha, F)
    S=\alpha
    repeat
        for f: \beta \to \gamma \in F do
            if \beta \in S then
                S = S \cup \gamma
            end if
        end for
    until S no cambie
    return S
end function
```

También podemos usar este algoritmo para verificar si la dependencia funcional $\alpha \to \beta$ es válida bajo F (i.e., si $\alpha \to \beta \in F^+$):

■ Calculamos α⁺

También podemos usar este algoritmo para verificar si la dependencia funcional $\alpha \to \beta$ es válida bajo F (i.e., si $\alpha \to \beta \in F^+$):

- Calculamos α⁺
- Si $\beta \subset \alpha^+$, entonces $\alpha \to \beta$ es válida bajo F

Atributos extraños y cobertura mínima

Dado un conjunto F de dependencias funcionales y una dependencia funcional $\alpha \to \beta \in F$,

Dado un conjunto F de dependencias funcionales y una dependencia funcional $\alpha \to \beta \in F$,

■ Un atributo $A \in \alpha$ es extraño si F implica $(F - \{\alpha \to \beta\}) \cup \{(\alpha - A) \to \beta\}$

Dado un conjunto F de dependencias funcionales y una dependencia funcional $\alpha \to \beta \in F$,

- Un atributo $A \in \alpha$ es extraño si F implica $(F \{\alpha \to \beta\}) \cup \{(\alpha A) \to \beta\}$
- Un atributo $A \in \beta$ es extraño si el conjunto $(F \{\alpha \to \beta\}) \cup \{\alpha \to (\beta A)\}$ implica a F

Dado un conjunto F de dependencias funcionales y una dependencia funcional $\alpha \to \beta \in F$,

- Un atributo $A \in \alpha$ es extraño si F implica $(F \{\alpha \to \beta\}) \cup \{(\alpha A) \to \beta\}$
- Un atributo $A \in \beta$ es extraño si el conjunto $(F \{\alpha \to \beta\}) \cup \{\alpha \to (\beta A)\}$ implica a F
- Podemos quitar a A (de α o de β) sin afectar la clausura de F

Determinar si un atributo es extraño:

■ Dado un conjunto F de dependencias funcionales, una dependencia funcional $\alpha \to \beta \in F$, y un atributo A,

Determinar si un atributo es extraño:

- Dado un conjunto F de dependencias funcionales, una dependencia funcional $\alpha \to \beta \in F$, y un atributo A,
- Si $A \in \beta$ defina

$$F' = (F - \{\alpha \to \beta\}) \cup \{\alpha \to (\beta - A)\},\$$

calcule α^+ bajo F'. Si $A \in \alpha^+$, entonces A es extraño en β ($\alpha \to A$ se cumple).

Determinar si un atributo es extraño:

- Dado un conjunto F de dependencias funcionales, una dependencia funcional $\alpha \to \beta \in F$, y un atributo A,
- Si $A \in \beta$ defina

$$F' = (F - \{\alpha \to \beta\}) \cup \{\alpha \to (\beta - A)\},\$$

calcule α^+ bajo F'. Si $A \in \alpha^+$, entonces A es extraño en β ($\alpha \to A$ se cumple).

■ Si $A \in \alpha$ defina $\gamma = \alpha - A$, calcule γ^+ bajo F. Si $\beta \subset \gamma^+$, entonces A es extraño en α ($\gamma \to \beta$ se puede inferir de F).

4□ > 4□ > 4 = > 4 = > = 90

Una cobertura mínima F_c para F es un conjunto de dependencias funcionales tal que:

• F implica F_c

- F implica F_c
- F_c implica F

- F implica F_c
- F_c implica F
- Ninguna dependencia en F_c contiene atributos extraños

- F implica F_c
- F_c implica F
- Ninguna dependencia en F_c contiene atributos extraños
- El lado izquierdo de las dependencias en F_c es único. Es decir, no existen dos dependencias $\alpha_1 \to \beta_1, \alpha_2 \to \beta_2 \in F_c$ tal que $\alpha_1 = \alpha_2$

Una cobertura mínima F_c para F tiene las siguientes propiedades:

Una cobertura mínima F_c para F tiene las siguientes propiedades:

 \blacksquare F_c tiene la misma clausura de F

Una cobertura mínima F_c para F tiene las siguientes propiedades:

- F_c tiene la misma clausura de F
- F_c es mínima en el sentido de que no tiene atributos extraños y combina todas las dependencias con el mismo lado izquierdo

Una cobertura mínima F_c para F tiene las siguientes propiedades:

- \bullet F_c tiene la misma clausura de F
- F_c es mínima en el sentido de que no tiene atributos extraños y combina todas las dependencias con el mismo lado izquierdo
- F_c es más conveniente para hacer pruebas que F

Calculando la cobertura mínima

```
function Cobertura mínima(F)
    F_c = F
    repeat
         Reemplazar todo par de dependencias en F_c de la forma
\alpha_1 \to \beta_1 y \alpha_1 \to \beta_2 con una dependencia \alpha_1 \to \beta_1 \cup \beta_2 (unión)
         Buscar dependencias funcionales \alpha \to \beta \in F_c con atributos
extraños en \alpha o en \beta
        if A \in \alpha es extraño en \alpha \to \beta \in F_c then
             Reemplazar \alpha \to \beta por (\alpha - A) \to \beta en F_c
         else if A \in \beta es extraño en \alpha \to \beta \in F_c then
             Reemplazar \alpha \to \beta por \alpha \to (\beta - A) en F_c
         end if
    until F_c no cambie
    return F_c
end function
```

Descomposición sin pérdidas

Descomposición sin pérdidas

Una descomposición del conjunto ed atributos R en R_1 y R_2 no tiene pérdidas si al menos una de las siguientes dependencias se cumple:

Descomposición sin pérdidas

Una descomposición del conjunto ed atributos R en R_1 y R_2 no tiene pérdidas si al menos una de las siguientes dependencias se cumple:

 $\blacksquare R_1 \cap R_2 \to R_1$

Descomposición sin pérdidas

Una descomposición del conjunto ed atributos R en R_1 y R_2 no tiene pérdidas si al menos una de las siguientes dependencias se cumple:

- $\blacksquare R_1 \cap R_2 \to R_1$
- \blacksquare $R_1 \cap R_2 \rightarrow R_2$

Descomposición sin pérdidas

Una descomposición del conjunto ed atributos R en R_1 y R_2 no tiene pérdidas si al menos una de las siguientes dependencias se cumple:

- $\blacksquare R_1 \cap R_2 \to R_1$
- $\blacksquare R_1 \cap R_2 \to R_2$
- Es decir, si $R_1 \cap R_2$ es una superllave para R_1 o para R_2

Normalización de BDs usando la Formal Normal Boyce-Codd (BCNF)

Segunda Forma Normal (Boyce-Codd)

Segunda Forma Normal (Boyce-Codd)

Segunda Forma Normal (Boyce-Codd)

Un esquema relacional r(R) se considera en la segunda forma normal (BCNF) con respecto al conjunto de dependencias funcionales F si para todas las dependencias funcionales $\alpha \to \beta$ en F^+ , se cumple una de las dos condiciones siguientes:

- lacksquare $\alpha o eta$ es trivial
- lacksquare α es una superllave de R

En toda dependencia $\alpha \to \beta$ no trivial α es una superllave

Determinar si un esquema está en BCNF (sin calcular F^+)

Sea F el conjunto de dependencias funcionales definidas para una BDs y r(R) un esquema relacional en la BD

Determinar si un esquema está en BCNF (sin calcular F^+)

Sea F el conjunto de dependencias funcionales definidas para una BDs y r(R) un esquema relacional en la BD

```
function PRUEBA BCNF((r(R), F))

for all \alpha \subset R do

Calcule \alpha^+ bajo F

if \alpha^+ no incluye atributos en R - \alpha then

Toda dependencia del tipo \alpha \to \beta es trivial

else if \alpha^+ = R then

\alpha es una superllave para R

else

El esquema no está en BCNF con respecto a la dependencia
```

 $\alpha \to (\alpha^+ - \alpha) \cap R$ end if

end for

end function

Normalizar una Base de Datos en BCNF

Sea F el conjunto de dependencias funcionales definidas para una BDs y $S = \{R_1, \dots, R_n\}$ los esquemas relacionales presentes en la BD

Normalizar una Base de Datos en BCNF

Sea F el conjunto de dependencias funcionales definidas para una BDs y $S = \{R_1, \dots, R_n\}$ los esquemas relacionales presentes en la BD

```
function NORMALIZAR BCNF(S = \{R_1, \dots, R_n\}, F))
    repeat
        for all R_i \in S do
            if R_i no está en BCNF con respecto a \alpha \to \beta y \alpha \cap \beta = \emptyset
then
                 S = (S - R_i) \cup (R_i - \beta) \cup (\alpha, \beta)
             end if
        end for
    until S no cambie
    return S
end function
```

Normalización de BDs usando la Tercera Formal Normal (3NF)

Normalización de BDs usando la Tercera Formal Normal (3NF)

■ Sea F un conjunto dependencias funcionales en el esquema R y sea $\{R_1, \ldots, R_n\}$ una descomposición de R

- Sea F un conjunto dependencias funcionales en el esquema R y sea $\{R_1, \ldots, R_n\}$ una descomposición de R
- F_i : la restricción F a R_i (dependencias en F^+ que solo incluyen dependencias en R_i)

- Sea F un conjunto dependencias funcionales en el esquema R y sea $\{R_1, \ldots, R_n\}$ una descomposición de R
- F_i : la restricción F a R_i (dependencias en F^+ que solo incluyen dependencias en R_i)
- F_i : pueden revisarse eficientemente (un esquema)

- Sea F un conjunto dependencias funcionales en el esquema R y sea $\{R_1, \ldots, R_n\}$ una descomposición de R
- F_i : la restricción F a R_i (dependencias en F^+ que solo incluyen dependencias en R_i)
- F_i : pueden revisarse eficientemente (un esquema)
- $F' = F_1 \cup \cdots \cup F_n$: todas las dependencias que pueden revisarse eficientemente

- Sea F un conjunto dependencias funcionales en el esquema R y sea $\{R_1, \ldots, R_n\}$ una descomposición de R
- F_i : la restricción F a R_i (dependencias en F^+ que solo incluyen dependencias en R_i)
- F_i : pueden revisarse eficientemente (un esquema)
- $F' = F_1 \cup \cdots \cup F_n$: todas las dependencias que pueden revisarse eficientemente

Descomposición que preserva dependencias

 $\{R_1,\ldots,R_n\}$ es una descomposición que preserva dependencias si

$$F'^{+} = F^{+}$$

■ Sea F un conjunto dependencias funcionales en el esquema R y sea $\{R_1, \ldots, R_n\}$ una descomposición de R

- Sea F un conjunto dependencias funcionales en el esquema R y sea $\{R_1, \ldots, R_n\}$ una descomposición de R
- Sea $\alpha \to \beta \in F$

- Sea F un conjunto dependencias funcionales en el esquema R y sea $\{R_1, \ldots, R_n\}$ una descomposición de R
- Sea $\alpha \rightarrow \beta \in F$
- Si $\alpha \to \beta \in F'^+$, la descomposición preserva la dependencia $\alpha \to \beta$

- Sea F un conjunto dependencias funcionales en el esquema R y sea $\{R_1, \ldots, R_n\}$ una descomposición de R
- Sea $\alpha \to \beta \in F$
- \blacksquare Si $\alpha \to \beta \in {\it F'^{+}}$, la descomposición preserva la dependencia $\alpha \to \beta$
- Para saber si $\alpha \to \beta \in F'^+$, calculamos la clausura de α bajo F'.

- Sea F un conjunto dependencias funcionales en el esquema R y sea $\{R_1, \ldots, R_n\}$ una descomposición de R
- Sea $\alpha \rightarrow \beta \in F$
- \blacksquare Si $\alpha \to \beta \in {\it F'^{+}}$, la descomposición preserva la dependencia $\alpha \to \beta$
- Para saber si $\alpha \to \beta \in F'^+$, calculamos la clausura de α bajo F'.
- Si β está en la clausura de α bajo F', $\alpha \to \beta \in F'^+$, y la descomposición preserva la dependencia $\alpha \to \beta$

Calcular la clausura de α bajo F'

```
function CLAUSURA DE \alpha BAJO F'((\alpha, S = \{R_1, \dots, R_n\})) result= \alpha repeat for all R_i \in S do t = (\operatorname{result} \cap R_i)^+ \operatorname{cap} R_i result = result \cap t end for until result no cambie return result end function
```