Es02A: Circuito RC – Filtri passivi

Gruppo 1.AC Matteo Rossi, Bernardo Tomelleri

14 ottobre 2021

Filtro passa-basso

1.a Progettazione circuito RC passa-basso

Figura 1: Schema di massima del passa-basso.

1.b Scelta della frequenza di taglio

La frequenza nominale di taglio è stata fissata a $f_1=7337 \text{Hz} \ \Rightarrow |A_v(3\,\text{kHz})|=0.93 \ |A_v(30\,\text{kHz})|=0.23$

Abbiamo scelto $f_{1\text{teo}} = 6$ kHz, così da attenuare il segnale a 3 kHz di un fattore ~ 1 e quello a 30 kHz di un fattore $1/\sqrt{1+(30/6)^2} \simeq 1/5$, per avere un fattore di soppressione di circa 4. Siamo giunti a questa scelta attraverso le seguenti considerazioni:

Dette $f_l=3~{\rm kHz}$ e $f_h=30~{\rm kHz}$ definiamo il fattore di soppressione del filtro come il rapporto tra le attenuazioni attese alle due frequenze di interesse:

$$S^{2}(f_{1}) := \frac{|A(f_{l})|^{2}}{|A(f_{h})|^{2}} = \frac{f_{1}^{2} + f_{l}^{2}}{f_{1}^{2} + f_{h}^{2}}$$

questa è una funzione decrescente di f_1 con massimo in $f_1 = 0$ Hz pari a $\mathcal{S}(f_1 = 0) = f_l/f_h$; Però la scelta $f_1 = 0$ Hz oltre a non essere realizzabile praticamente avrebbe $A(f) \sim 0$ per tutte le frequenze di nostro interesse ($\geq 3 \,\mathrm{kHz}$) su cui il circuito avrebbe sempre lo stesso comportamento, che va contro a quanto vogliamo.

Idealmente vorremmo f_1 il più "piccola" possibile, ma non minore di f_l per ridurre attenuazioni e sfasamenti indesiderati del segnale a bassa frequenza, ma "sufficientemente" minore di f_h affinché il segnale ad alta frequenza venga apprezzabilmente "tagliato". Ovverosia $f_l \ll f_1 \ll f_h$; però, dal momento che $f_h = 10 \cdot f_l$ tra i due estremi di frequenza c'è solo un ordine di grandezza, siamo costretti a cercare un compromesso ragionevole: $f_l \leq f_1 \leq f_h$.

Visto che il filtro raggiunge un fronte di discesa di pendenza modesta (-20 dB/decade) soltanto quando $f \gg f_1$ scegliamo f_1 decisamente più lontana da $f_h = 5 \cdot f_1$ che da $f_l = \frac{1}{2} f_1$: di modo che il segnale a f_l venga adeguatamente soppresso, mentre quello a f_l rimanga il più possibile indisturbato.

Infine la scelta tra i valori disponibili di R_1 e C_1 ci ha portato alla frequenza di taglio nominale più vicina a quella teorica di $f_1 = 7.3 \pm 0.3 \,\mathrm{kHz}$.

1.c,1.d Scelta dei componenti

I valori nominali scelti sono $R_1 = 2 \pm 1\% \text{ k}\Omega$ $C_1 = 10 \pm 10\% \text{ nF}$.

Affinché il passa basso non venga perturbato dal carico a valle $R_{\rm L}=100~{\rm k}\Omega,$ l'impedenza in uscita dal circuito $Z_{\rm out}(\omega)$ dev'essere trascurabile rispetto a quella del carico.

$$|Z_{\rm out}| = \left| \left(\frac{1}{R_1} + j\omega C_1 \right)^{-1} \right| \ll R_{\rm L} \implies R_1 \ll R_{\rm L} \sqrt{1 + \omega^2 R_1^2 C_1^2} = R_{\rm L} \sqrt{1 + \left(\frac{f}{f_1} \right)^2}.$$

Dunque dobbiamo avere

$$R_1 \ll 100 \text{ k}\Omega \sqrt{1 + \left(\frac{f_l}{f_1}\right)^2} \approx 110 \text{ k}\Omega.$$

Abbiamo quindi scelto $R_{1\text{teo}} = 2 \text{ k}\Omega$. Per cui prendiamo $C_{1\text{teo}} = \frac{1}{2\pi R_{1\text{teo}} f_{1\text{teo}}} \approx 8 \text{ nF}$.

1.e Misura di C_1

$$C_1 = 10.9 \pm 0.4 \text{nF}$$

Compatibile entro la tolleranza con il valore nominale.

1.f Calcolo della frequenza di taglio e delle attenuazioni attese

$$\begin{array}{rcl} f_1 & = & 7.3 \pm 0.3 \\ |A_v(3\,\mathrm{kHz})| & = & 0.93 \pm 0.04 \\ |A_v(30\,\mathrm{kHz})| & = & 0.24 \pm 0.01 \end{array}$$

3 Misura A_v

Dalla misura delle ampiezze dei segnali di ingresso/uscita e del loro sfasamento si ottiene:

$f \pm \sigma(f)$ [kHz]	$V_{\rm in} \pm \sigma(V_{\rm in})$ [V]	$V_{\rm out} \pm \sigma(V_{\rm out})$ [V]	$A_v \pm \sigma(A_v)$	$\varphi \pm \sigma(\varphi)$
3.00 ± 0.06	1 ± 0.05	0.93 ± 0.05	0.93 ± 0.07	0.38 ± 0.01
7.34 ± 0.15	1 ± 0.05	0.72 ± 0.04	0.72 ± 0.06	1.32 ± 0.04
30.0 ± 0.6	1 ± 0.05	0.25 ± 0.01	0.25 ± 0.02	0.77 ± 0.02

Tabella 1: (3) Amplficazione e sfasamento del filtro passa-basso a bassa ed alta frequenza ed alla frequenza nominale di taglio.

4 Risposta in frequenza

Figura 2: Plot di Bode per il filtro passa-basso.

5.a Stima della frequenza di taglio (metodo a)

La nostra stima della frequenza per cui $A_v(dB) = -3 dB$ è

$$f_{1A} = 7336 \pm 13 \text{ kHz}$$

5.b Misura della frequenza di taglio (metodo b)

Dal fit a bassa frequenza $(f \ll f_1)$ otteniamo

$$A_1(\text{mdB}) = -17.91 \pm 0.18 \quad \chi^2 = 243 \quad \text{d.o.f.} = 873$$

Ad alta frequenza $(f \gg f_1)$ la retta di best-fit al plot di Bode in ampiezza ha i seguenti parametri: intercetta = 75.928 ± 0.008 pendenza = -19.6747 ± 0.0016 correlazione = -0.997 $\chi^2 = 1647$ d.o.f. = 1746 Dall' intersezione delle due rette stimiamo per la frequenza di taglio il valore

$$f_{1B} = 7246 \pm 8 \text{ Hz}$$

Figura 3: Fit al plot di bode per trovare la frequenza di corner. In verde i punti non utilizzati nel fit.

5.c Misura della frequenza di taglio (metodo c)

Dal fit complessivo del modulo della funzione di trasferimento

$$|T(f)| = A(f) = \frac{1}{\sqrt{1 + \left(\frac{f}{f_1}\right)^2}}$$
 (1)

otteniamo per l'amplificazione di centro-banda e per la frequenza di taglio i seguenti valori:

$$A_1(\text{mdB}) = -19.1 \pm 0.3$$
 $f_{1B} = 7428.8 \pm 0.9 \text{Hz}$ $\chi^2 = 1614$ $d.o.f. = 4997$

5.d Confronto misure-predizione

Commentare l'accordo tra le varie stime di f_1 ed il valore atteso.

Figura 4: Fit complessivo al plot di bode con l'espressione per l'attenuazione (1).

6 Risposta del filtro ad un gradino

Il fronte del segnale di uscita ha un tempo di salita, misurato con i cursori, di

$$t_r = \ldots \pm \ldots$$

da cui

$$f_1 = \ln(9)R_1C_1 \simeq \frac{2.2}{2\pi f_1} = \dots \pm \dots$$

(6) Salvare ed inserire uno screenshot dell' oscillografo.

Figura 5: (6) Risposta del filtro passa-basso ad un gradino di tensione.

7.a Impedenze di ingresso/uscita

(Qui è sufficiente scrivere le espressioni in termini della frequenza e dei componenti)

$$Z_{\rm in}(\omega) = R_1 + \frac{1}{j\omega C_1} = R_1 \left(1 - j\frac{1}{\omega R_1 C_1} \right) = R_1 \left(1 - j\frac{\omega_1}{\omega} \right)$$
$$Z_{\rm out}(\omega) = \left(\frac{1}{R_1} + j\omega C_1 \right)^{-1}$$

7.b Effetti dovuti all' accoppiamento con un carico

(Qui è richiesto che valutiate l'amplificazione di centro-banda e la frequenza di taglio nel caso in cui il carico sia rispettivamente 100 e 10 k Ω)

$$R_L = 100 \, k\Omega \quad \Rightarrow A_1 = \dots \quad f_1 = \dots$$

 $R_L = 10 \, k\Omega \quad \Rightarrow A_1 = \dots \quad f_1 = \dots$

Filtro passa-banda

8.a Misura dei componenti

$$C_1 = \ldots \pm \ldots$$

8.b Filtro passa-basso, stima della frequenza di taglio

Dalla risposta in frequenza risulta

$$A_1(dB) = \ldots \pm \ldots, \quad f_1 = \ldots \pm \ldots$$

9.a Misura dei componenti

$$C_2 = \ldots \pm \ldots$$

9.b Filtro passa-alto, stima della frequenza di taglio

Dalla risposta in frequenza risulta

$$A_2(dB) = \ldots \pm \ldots, \quad f_2 = \ldots \pm \ldots$$

10.a Filtro passa-banda, risposta in frequenza

(10.a) Salvare ed inserire l'immagine del Network analyzer per il passa-banda

Figura 6: (4) Plot di Bode per il filtro passa-banda.

La nostra stima dell' amplificazione di centro-banda e delle frequenze di taglio (per cui il guadagno si riduce di 3 dB rispetto a centro-banda) è

$$A(dB) = \dots \pm \dots \quad f_L = \dots \pm \dots \quad f_H = \dots \pm \dots$$

10.b Interpolazione del plot di Bode

Dal fit del plot di Bode in ampiezza si ha

$$A(dB) = \dots \pm \dots \quad f_L = \dots \pm \dots \quad f_H = \dots \pm \dots \quad \chi^2 = \dots \quad d.o.f. = \dots$$

10.c Differenze

Motivare la differenza rispetto ai filtri standalone

10.d Dipendenza dai valori delle resistenze

Commentare la dipendenza dalle resistenze, come da guida

10.e Andamento della fase

Commentare la dipendenza della fase dalla frequenza

Conclusioni e commenti finali

Inserire eventuali commenti e conclusioni finali

Dichiarazione

I firmatari di questa relazione dichiarano che il contenuto della relazione è originale, con misure effettuate dai membri del gruppo, e che tutti i firmatari hanno contribuito alla elaborazione della relazione stessa.