清华大学本科生考试试题专用纸

	考试课程		- J M M N2	年	月日			
卷A	《概率论与数理统计	考试题》(05.01)	班级	学号	姓名			
记号:	rv 随机变量;	<i>iid</i> 独立同分布; B (n, p)二项分布; U (a,b)均匀分布;	P (λ) Poisson 分才	可; Ge(p) 几何分布;			
1. 🛪	才某射手打靶考核, 不	(正确时填√,错误时 有两次命中6环以下 上的概率是0.8,则他	(不含6环)时,	立即淘汰出	出局。如果此射手			
2. 该	と三个事件 A _i ,i=1, 2	2, 3 两两独立,令 rv .	$X_i X_i = \begin{cases} 1 & (\not \exists i \end{cases}$	1果 A ;发生 (反之)	(i), $i = 1, 2, 3$			
贝	リ E X_i^2 =。又-	一定有 A ₁ A ₂ 与 A ₃ 独	立();一定有	$\vec{I} X_1 + X_2 \stackrel{\text{\tiny L}}{=}$	ラX ₃ 独立()			
3. 习	k 随机相位正弦波 $m{X}$	$= A\sin(\omega_0 + \Theta) , \sharp$	其中 ω_0 是常数, r	$\Theta \sim U_{[-\pi,\pi]}$	1'			
F	$A \sim \begin{pmatrix} -1 & 0 & 1 \\ q & r & p \end{pmatrix}, \Box$	且两者独立,其中 <i>p</i> .	q, q, r > 0, p + q + r	·=1,则 D	<i>X</i> =			
4.	 上箱装有 100 件产品,	其中一、二和三等品	占分别为 80、10 和	10 件, 现在	E随机抽取一件,			
4	令 $X_i = I(抽出 i$ 等品), $i=1,2,3$,则 $P(X_1X_2=0) =;$							
2	X_1 和 X_2 的相关系数=	=						
5. 该	设总体 $\mathbf X$ 的二阶矩存在, $X_1, X_2,, X_n$ 是其简单样本, $n>1$,样本均值为 \overline{X} 。							
		$(X_1 + ar{X})/2$ 比 $ar{X}$ 更有 $(X_1 + ar{X})/2$ 以概率收		一致估计。()			
6. 肖		列总体 $X\sim Ex(\lambda)$ 的大	小为n的简单样z	太 ,				
贝	$P(X_1 < X_2) = $,而 <i>n</i> 足够大	时样本均值 \overline{X} 的 \overline{X}	近似分布				
7. 该	と总体X~N(μ ₁ ,σ²),	总体Y~N(μ ₂ ,σ ²),且	且两个总体独立。	从总体 X 和	Y分别抽取容量			
5	是 n_1 和 n_1 的简单随机样本,分别算得样本方差为 S_1^2 和 S_2^2 。 $D(S_1^2+S_2^2)=$ 。							

二(10 分) 设有 n 个袋子, 各装 r+b 只球, 其中红球 r 只。今从第 1 个袋子随机取一球, 放入第 2 个袋子, 再从第二个袋子再随机取一球, 放入第 3 个袋子, 如此继续。

(1)试求 X_k 的分布; (2) 设 r=b, 求 X_1 和 X_2 的相关系数 r

 Ξ (**10** 分) 设(X,Y)的 *pdf* 为 $f(x,y) = \lambda^2 e^{-\lambda x} I(0 < y < x)$, ($\lambda > 0$)

(1) 证明 rv Y 有如下性质: 对任意的 s,t>0, 有 P(Y>t+s/Y>s)=P(Y>t)

(2) 求 EX

四(10分) 用两个独立的同类设备分别组成串联、并联及备用(即当一个接通的设备不能工作时系统立即自动接通另外一个备用设备)系统。如此类设备的寿命为 $\mathbf{Ex}(\lambda)$, $\lambda > 0$,试求三个系统在时刻 $\mathbf{t}(>0)$ 前失效的概率和三个系统的平均失效时间.

五(10 分) 设在(s,t]时段内到某个网站访问的次数 $\xi_{(s,t]} \sim P(\lambda(t-s))$, $\forall t > s \geq 0$, λ 为正常数。

- (1) 如果 $\lambda=5$, η_2 为第 2 此访问该网站的时刻。利用切贝雪夫不等式求概率 $P(|\lambda\eta_2-2|<\lambda)$ 的下限:
- (2) 引入记号 $N_t := \xi_{(s,t]}, \ 0 \le \forall t < +\infty$,计算 $E(N_t | N_s = k), \ 0 \le s < t < +\infty$ 六(10 分)设 rv X 的分布函数为 $F(x;\alpha,\beta) = [1 - (\alpha/x)^{\beta}] I(x > \alpha)$,其中参数 $\alpha > 0,\beta > 1$,设 $X_1, X_2, ..., X_n$ 是来自总体 X 的简单随机样本,
 - (1) 当 α =1, β 未知时,求 β_M ; (2) 当 β =2, α 未知时,求 $\hat{\alpha}_L$ 。

七(12分)为提高某一化学生产过程的得率,试图采用一种新的催化剂。试验中,设采用原来催化剂和新催化剂的各进行了 \mathbf{n}_1 = \mathbf{n}_2 =8次试验,而得到得率的平均值分别为 $\overline{\mathbf{x}}_1$ = \mathbf{n}_2 = \mathbf{n}_3 = $\mathbf{n}_$

- (1) 可否认为两个总体的方差相等? (作假设检验, 取显著性水平 α=0.05)
- (2) 在(1)的基础上,给出两总体均值差 μ_1 - μ_2 的置信度为 0.95 的单侧置信下限。

附表 $z_{0.05}=1.64$, $z_{0.025}=1.96$

$\chi^2_{\alpha}(n)$	n=14 n=16	$\chi^2_{\alpha}(n)$	n=14 n=16	$t_{\alpha}(n)$	n=14 n=16
α=0.95	6.571 7.96	$\alpha = 0.05$	23.685 26.296	$\alpha = 0.05$	1.7613 1.7459
$\alpha = 0.975$	5.629 6.90	8 $\alpha = 0.025$	26.119 28.845	$\alpha = 0.025$	2.1448 2.1199
$F_{\alpha}(n,m)$	n=7 m=7	$F_{\alpha}(n,m)$	n=7 m=8	$F_{\alpha}(n,m)$	n=8 m=8
α=0.05	3.79	$\alpha = 0.05$	3.50	$\alpha = 0.05$	3.44
$\alpha = 0.025$	4.99	$\alpha = 0.025$	4.90	$\alpha = 0.025$	4.43

解答《概率论与数理统计》(05.01)

×¢£°′ËÄ˹Ù·½Îı′ð°.£

一(36分) 填空与判正误

1. 对某射手打靶...被淘汰的概率是____【 0.0768】 2. 设三个事件...【 1,×,×】

3. 求随机相位正弦波...DX=____【(p+q)/2】

4. 某箱装【1, -2/3】

5. 设总体 X 二阶矩存在, 【×,×】 6. 设 $X_1, X_2, ..., X_n$ 是总体... 【1/2, N(1/ λ , 1/($n\lambda^2$ **)**)

7. 设总体…则 $D(S_1^2 + S_2^2) = \underline{\qquad} \left(\frac{2(n_1 + n_2 - 2)}{(n_1 - 1)(n_2 - 1)} \sigma^4. \right)$

=(10 分) 设有 n 个袋子,...

解 1) 本题是 c=1 的 Polya 模型,故 $X_k \sim \begin{pmatrix} -1 & 1 \\ b/(r+b) & r/(r+b) \end{pmatrix}$, k=1,2,...n

2) $EX_k^2 = 1$, 而 r = b 时 $EX_k = 0$, k = 1, 2, ..., n.; 由乘法公式,知

$$\begin{split} P(X_1X_2=1) &= P(X_1=1,X_2=1) + P(X_1=-1,X_2=-1) \stackrel{r=b}{===} \frac{r+1}{2r+1}, \\ &\cos(X_1,X_2) = E(X_1X_2) = P(X_1X_2=1) - P(X_1X_2=-1) = \frac{1}{2r+1}. \\ &\rho = \frac{\cos(X_1,X_2)}{EX_1^2} = \cos(X_1,X_2) = \frac{1}{2r+1}. \end{split}$$

解(1) Y的边缘密度为 $f_Y(y) = \int_0^\infty f(x,y) dx = \lambda e^{-\lambda y} I(y > 0)$;

故对 t > 0,有 $P(Y > t) = \int_{0}^{\infty} \lambda e^{-\lambda y} dy = e^{-\lambda t}$,从而

$$P(Y > t + s \mid Y > s) = \frac{P(Y > t + s)}{P(Y > s)} = \frac{e^{-\lambda(t + s)}}{e^{-\lambda s}} = e^{-\lambda t} = P(Y > t)$$

(2)
$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy = \begin{cases} \int_{0}^{x} \lambda^2 e^{-\lambda x} dy = \lambda^2 x e^{-\lambda x} & x > 0 \\ 0 & x \le 0 \end{cases}$$

$$EX = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{0}^{\infty} x \cdot \lambda^2 x e^{-\lambda x} dx = 2/\lambda$$

四(12分) 用两个独立的同类设备

记两设备寿命分别为 X 和 Y、系统寿命为 U.

串联 $U = \min\{X, Y\}$. 故 $F_U(t) = 1 - [1 - F_x(t)]^2 = 1 - \exp\{-2\lambda t\}$, t > 0.

 $U \sim \text{Ex}(2\lambda)$, 故 $EU = 1/(2\lambda)$ 。

并联 $U = \max\{X, Y\}$. 故 $F_U(t) = [F_x(t)]^2 = (1 - \exp{-\lambda t})^2$, t>0.

其 $f_U(u) = 2\lambda \exp\{-\lambda u\}$ [1- $\exp\{-\lambda u\}$], u>0.

$$EU = E \max\{X, Y\} = \int_0^\infty u f_U(u) du = \int_0^\infty 2\lambda u \ e^{-\lambda u} [1 - e^{-\lambda u}] du = \frac{2}{\lambda} - \frac{1}{2\lambda} = \frac{3}{2\lambda}$$

备用系统 U = X + Y. 由Γ-分布参数可加性知 $U \sim \Gamma(2, \lambda)$, 所求概率

$$F_{\mathrm{U}}(t) = \int_0^t f_U(u) du \;,\;\; \sharp + f_{\mathrm{U}}(u) = \lambda^2 \; u \; \exp\left\{-\lambda u\right\}, \;\; u > 0 \;. \quad EU = \mathrm{E}X + \mathrm{E}Y = 2/\lambda.$$

五(10分)设在(s,t]时段内到某个网站访问的次数

解 (1). $\eta_2 \sim \Gamma(2, \lambda)$, 由 Poisson 流性质,可写 $\eta_2 = X_1 + X_2$,其中 X_1, X_2 iid, ~ Ex(λ),故

 $E\eta_2 = EX_1 + EX_2 = 2/\lambda$

利用切贝雪夫不等式, $P(|\lambda\eta_2-2|<\lambda)=P(|\eta_2-E\eta_2|<1)\geq 1-D\eta_2$

$$D\eta_2 = DX_1 + DX_2 = 2/\lambda^2$$

也可计算并利用 $E_{\eta_2}=2/\lambda$,

$$E\eta_2^2 = \int_0^\infty t^2 f_{\eta_2}(t) dt = \int_0^\infty \lambda^2 t^3 e^{-\lambda t} dt = (3/\lambda) E\eta_2 = 6/\lambda^2$$

$$D\eta_2 = 2/\lambda^2$$

故 $\lambda = 5$ 时 $P(|\lambda \eta_2 - 2| < \lambda) \ge 1 - 2/\lambda^2 = 0.92$, 即所求概率的下限为 0.92.

(2) $E(N_t \mid N_s = k) = E(N_s + N_t - N_s \mid N_s = k) = E(k + N_t - N_s \mid N_s = k)$ $= k + E(N_t - N_s) = k + \lambda(t - s)$

六(10分)设rvX的df为

解 当 $\alpha = 1$ 时,X的 pdf为 $f(x;\beta) = \frac{\beta}{x^{\beta+1}} I(x > 1)$

令
$$\frac{\beta}{\beta-1} = \overline{X}$$
,解得 $\beta = \frac{\overline{X}}{\overline{X}-1}$. 所以, $\beta_M^{\hat{}} = \frac{\overline{X}}{\overline{X}-1}$.

(2) 当 β =2时,对于总体X的样本值 $x_1, x_2 \cdots, x_n$,似然函数为

$$L(\alpha) = \prod_{i=1}^{n} f(x_i; \alpha) = \frac{2^n \alpha^{2n}}{(x_1 x_2 \cdots x_n)^3} I(x_i > \alpha, i = 1, 2, \dots, n)$$

当 $\alpha < x_i$, $i = 1, 2, \dots, n$, 时, α 越大, $L(\alpha)$ 越大,因而 $\hat{\alpha}_L = \min\{x_1, x_2, \dots, x_n\}$

则估计量为
$$\hat{\alpha}_L = \min\{X_1, X_2, \dots, X_n\}$$

七 (12分)

解 (1) H₀:
$$\sigma_1^2 = \sigma_2^2$$

选取统计量
$$\frac{{S_1}^2}{{S_2}^2} \sim F(n_1 - 1, n_2 - 1),$$

统计量拒绝域
$$(0, F_{1-\alpha/2}(n_1-1, n_2-1))(F_{\alpha/2}(n_2-1, n_1-1), \infty)$$

计算统计量观测值 $\frac{{s_1}^2}{{s_2}^2} = \frac{3.82}{4.02} = 0.9502$,

$$F_{0.025}(7,7) = 4.99,$$

$$F_{1-\alpha/2}(n_1-1, n_2-1) = 1/F_{0.025}(7,7) = 1/4.99 = 0.2004$$

统计推断: $\frac{{s_1}^2}{{s_2}^2}$ = 0.9502 不在拒绝域内, 故接受 H_0 : ${\sigma_1}^2$ = ${\sigma_2}^2$,认为两总体的方差相等。

(2) 利用(1)的推断,认为两总体的方差相等, 故 $\mu_1 - \mu_2$ 置信度为 0.95 的单侧置信下限为 $\overline{X}_1 - \overline{X}_2 - t_{0.05}(n_1 + n_2 - 2)S_w\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$,

代入观测值计算
$$s_w^2 = (3.82 + 4.02)/2 = 3.92$$

$$\overline{x}_1 - \overline{x}_2 - t_{0.05}(14)s_w \sqrt{\frac{1}{8} + \frac{1}{8}} = -2.02 - 1.7613 \times 1.9799 \times 0.5 = -3.7636$$

所求单侧置信下限为一3.7636。