Chapter 2B.

E-R Model to

Relational Tables

CSIS0278 / COMP3278

Database Management Systems

Department of Computer Science, The University of Hong Kong

Slides prepared by - **Dr. Chui Chun Kit** for students in CSIS0278/COMP3278 For other uses, please email : ckchui@cs.hku.hk

Outcome based learning (OBL)

- Outcome 1. Information Modeling
 - Able to understand the modeling of real life information in a database system.
- Outcome 2. Query Languages
 - Able to understand and use the languages designed for data access.
- Outcome 3. System Design
 - Able to understand the design of an efficient and reliable database system.
- Outcome 4. Application Development
 - Able to implement a practical application on a real database.

We are going to learn...

- E-R design decision.
- Reduction of an E-R schema to database tables.

Revision

branch-name assets branch loan-branch payment-date customer-name customer-street payment-number payment-amount customer-id loan-number customer-city amount loancustomer loan payment borrower payment access-date (account-number) balance cust-banker type depositor account manager **ISA** works-for employee worker employee-id employee-name savings-account checking-account (telephone-number) dependent-name employment-length start-date interest-rate overdraft-amount

branch-city

Can you understand the data model captured by this E-R Diagram?

E-R Diagram for a Banking Enterprise

Section 2B.1

E-R Design

Decision

Entity sets v.s. Attributes

- How do you model an employee and his phone number?
 - Treat phone number as an attribute of an employee.
 - Treat phone as a separate entity.

 phone

 v.s. employee

 has phone

1. In my company, an employee can have multiple phone numbers...

Entity sets v.s. Attributes

- How do you model an employee and his phone number?
 - Treat phone number as an attribute of an employee.
 - Treat phone as a separate entity.

2. In my company, a phone number can be shared by multiple employee...

Entity sets v.s. Attributes

How do you model an employee and his phone number?

3. In the system, for each phone, I want to keep a list of missed call numbers.

Entity sets v.s. Relationship sets

- Use a relationship set to describe an action that occurs between entities.
 - Hint: entity sets often have "nouns" as name, and relationship sets have "verbs" as name.

Entity sets v.s. Relationship sets

- How to model a loan?
 - 1. As a Loan entity.
 - 2. As a relationship between a customer and a branch.

loan V.S. customer loan branch

Can we have joint loan?

(E.g., Do we need to express something like "A loan can be associated with multiple customers")

A loan is an object in this phrase.

Entity sets v.s. Relationship sets

Can we have joint loan?

(E.g., Do we need to express something like "A loan can be associated with multiple customers")

Section 2B.2

From E-R Schema to Relational Tables

Entity sets

An Entity set (or another name, strong entity set) reduces to a table with the same attributes.

Customer (customer_id, name, address)

Attributes

- Composite attributes are flattened out by creating a separate attribute for each component attribute.
 - e.g, name becomes name.first_name and name.last_name.

Customer (customer_id, name.first_name, name.last_name, address)

Attributes

A multi-valued attribute M of an entity set E is represented by a separate table EM, with the primary key of E as one of EM's attribute.

employee_id	name	address
1	Kit	•••
2	Ben	•••

employee_id	phone
1	9123 4567
1	2987 6543

Employee(employee_id, name, address)

EmployeePhone(employee_id, phone)

Weak entity sets

A weak entity set becomes a table that includes the columns for the primary key of the identifying strong entity set. player name player_number team id belongs team player Partial key (or discriminator) Primary key of the of the weak entity set identifying entity set team_id player_number player_name

- The reduction depends on their mapping cardinalities.
 - Many to many
 - One to many / many to one
 - One to one

A many-to-many relationship set is a table with columns for the primary keys of the participating entity sets, and any attributes of the relationship set.

team_id	
1	
2	

team_id	sponsor_id	sponsor_date
1	1	2013-1-1
2	1	2013-9-1

sponsor_id	•••
1	
2	•••

Team(team_id, ...)

Team_asoc_sponsor (team_id, sponsor_id, sponsor_id)

Sponsor(sponsor_id, ...)

Many-to-one and one-to-many relationship sets that are total on the many-side can be represented by adding extra attributes to the "many-side", containing the primary key of the "one-side".
person id

car_number	ownership_date	person_id	
HV 2299	2013-10-1	1	
HW 2149	2013-12-4	1	

person_id	•••
1	
2	•••

Car (car_number, ownership_date, person_id,...)

Person (person_id, ...)

For one-to-one relationship sets, either side can be chosen to act as the "many-side".

name	office.address	•••
Professor Kao	CB312	•••

Professor(name, office.address,...)

address	phone	
CB312	21234567	

Office(address, phone, ...)

OR

name	
Professor Kao	

address	professor.name	phone	
CB312	Professor Kao	21234567	•••

Professor(name, ...)

Office(address, professor.name, phone, ...)

Specialization (method 1)

- Form a table for the higher-level entity set.
- Form a table for each lower-level entity set, which contains the primary key of the higher-level entity set and local attributes.
 - Person(<u>name</u>, street, city)
 - Customer(<u>name</u>, credit_rating)
 - Employee(name, salary)

person

street

city

Specialization (method 2)

- Form a table for each entity set with all local and inherited attributes.
 - Person(name, street, city)
 - Customer(name, street, city, credit_rating)
 - Employee(name, street, city, salary)

What are the advantage and disadvantage of method 1 and 2?

- 1. Storage redundancy?
- 2. Efficiency in retrieving data?

Specialization

Observation: If the specialization is total, the generalized entity set may not require a table!

Chapter 2B.

END

CSIS0278 / COMP3278
Introduction to
Database Management Systems