Chemistry 107: Exam 1B

The 100 pts exam consists of 9 questions and students have 1.5 hours to complete the exam. Answers must be written in the box provided or else no credit is provided. Use the empty space provided to do your work. A periodic table is provided at the end. Fill in your name along with your student ID number.

Problem 1 : Sig Figs Solve the following equations with the appropriate number of significant figures (10 pts)

(a)
$$5.192 \times 10^{2} - 1.024 \times 10 =$$
(b)
$$\frac{67.12 + 52.013}{45.1} =$$
(c)
$$\frac{1.25 \times 10^{-3} + 8. \times 10^{-4}}{7.51}$$
(d)
$$\frac{145g}{80.17mL - 15.32mL} =$$
(e)
$$(3.198 \times 10^{4})(9.18 \times 10^{-2}) =$$

Problem 2 : Unit Conversion Convert the following units. (12 pts)

(a)	58.58 ms to Ms
(b)	$129.1 \text{ mm}^2 \text{ to km}^2$
(c)	$8.16~\mathrm{dag/L}$ to $\mathrm{dg/mL}$
(-)	
(d)	1 ML to m ³
(-)	42.007 11- 4- 1-11-
(e)	43.007 nHz to kHz
(c)	325.48 Kelvin to °C
(I)	
(1)	
Prob molar and 1	r mass of 194.19 g/mol and a mass percentage composition of 49.48% C, 5.19% H, 28.85% N, 6.48% O. (8 pts)
Prob molar and 1	r mass of 194.19 g/mol and a mass percentage composition of 49.48% C, 5.19% H, 28.85% N,
Prob molar and 1	
Prob molar and 1	r mass of 194.19 g/mol and a mass percentage composition of 49.48% C, 5.19% H, 28.85% N, 6.48% O. (8 pts)
Prob molar and 1 (a)	r mass of 194.19 g/mol and a mass percentage composition of 49.48% C, 5.19% H, 28.85% N, 6.48% O. (8 pts)
Prob molar and 1 (a)	r mass of 194.19 g/mol and a mass percentage composition of 49.48% C, 5.19% H, 28.85% N, 6.48% O. (8 pts) Determine the empirical formula
Prob molar and 1 (a)	r mass of 194.19 g/mol and a mass percentage composition of 49.48% C, 5.19% H, 28.85% N, 6.48% O. (8 pts) Determine the empirical formula
Prob molar and 1 (a)	r mass of 194.19 g/mol and a mass percentage composition of 49.48% C, 5.19% H, 28.85% N, 6.48% O. (8 pts) Determine the empirical formula
Prob molar and 1 (a)	r mass of 194.19 g/mol and a mass percentage composition of 49.48% C, 5.19% H, 28.85% 16.48% O. (8 pts) Determine the empirical formula

Problem 4 : Molarity Barium Chloride ($BaCl_2$) is a water-soluble inorganic compound that is toxic and shines yellow-and green under a flame. It has wide applications in the laboratory and in industry such as steel manufracture. Report all results to 3 significant figures. (12 pts)

(a) Determine the mass percent of each element in BaCl₂.

(b) $\overline{\text{A}}$ scientist attempts to prepare 1.50L of 1.75M BaCl₂. How many grams of BaCl₂ is needed?

(c) Suppose the solution in part b) needs to be diluted to make 3.75L of 0.5M BaCl₂, how much volume in L is needed from 1.75M BaCl₂?

obl	olem 5 : Short Answer Scientists attempt to understand chemical phenomena and so ems using the scientific method. What is the scientific method? Describe an everyday exam ich you use the scientific method. (8 pts)
_	
	elem 6 : Nomenclature Provide either the molecular formula or compound name for the g. (12 pts)
in	
in; ı)	Vanadium(V) acetate
in,	g. (12 pts)
in;)	g. (12 pts) Vanadium(V) acetate $Sr(C_2H_3O_2)$
in; ;)	yanadium(V) acetate
in; ,)	yanadium(V) acetate
in; ,)	g. (12 pts) Vanadium(V) acetate $Sr(C_2H_3O_2)$
in; ,) ;)	yanadium(V) acetate $Sr(C_2H_3O_2)$ $HClO_3$ $(NH_4)_2SO_4$
in; ;) ;)	yanadium(V) acetate
(in,	yanadium(V) acetate $Sr(C_2H_3O_2)$ $HClO_3$ $(NH_4)_2SO_4$
win, a) b) c)	Vanadium(V) acetate $Sr(C_2H_3O_2)$ $HClO_3$ $(NH_4)_2SO_4$ Carbonic acid

Problem 7 : Relative Atomic Mass Boron has only two naturally occurring isotopes (Boron-10 and Boron-11). The mass of Boron-10 is 10.01294 amu and the mass of Boron-11 is 11.00931 amu. Report to 3 significant figures. (10 pts)

(a) Based on the periodic table, which boron isotope has the greater relative abundance? Explain using words and/or formulas.

(b) Calculate the relative abundance of each isotope. *Hint*: There are two equations required. Set up a system of equations using the relative atomic mass formula and the relative abundance.

Problem 8 : Atoms and Ions Complete the table with the symbol, atomic number Z, atomic mass A, number of protons (p^+) , number of electrons e^- , number of neutrons n, and charge. (8 pts)

Symbol	$\mid Z \mid$	A	p^+	e^{-}	n	Charge
Si S2-	14		14	14	15	
S^{2-}		32				
	29				13	2+
	15			18	16	
Fe^{2+}		56				

 $\textbf{Problem 9: True/False} \ \ \text{Determine whether the statement is true or false. (20 pts)}$

(a)	An element is a pure substance that contains only one type of atom.
(b)	Atoms are indivisible and indestructible.
(c)	The atomic number of a substance is the number of neutrons that an element has.
(d)	The mass of an atom is the sum of the masses of neutrons, protons, and electrons.
()	
(e)	When a chemical change occurs, matter keeps the same chemical properties.
(f)	The total moles of reactants must equal the total moles of products.
(-)	The cool motes of reactains mass equal the cool motes of produces.
(g)	Matter and energy are neither created nor destroyed.
(1.)	All December 1 and
(h)	All Brønsted acids are Lewis acids.
(i)	Given a solution at concentration M , when the volume of the solution is increased by 2 times, then concentration is halved.
(j)	Creating metal alloys such as steel and bronze is considered a physical change.

2 Helium 4.003	Neon 20.180	18 Ar Argon 39.948	36 Krypton 83.798	54 Kenon 131.293	Rn Padon [222]	00 00 09anes son [294]		
	9 Fluorine 18.998	Chorine 35.45	35 Br Bromine 79.904	53 — lodine 126,904	At Astatine [210]	117 5 Ennes sine [293]		
	8 Oxygen 15.999	16 S uffur 32.06	Selenium 78.97	53 E Tellurium 127.60	84 PO Polonium [209]	116 LV Livermorium [293]		
				51 Sb Antimony 121.760			70 Yb xterbium 173.045	
	6 Carbon 12.011	28.085	32 Ge Germanium 72.630	50 Tm 118.710	82 Pb Lead 207.2	114 Flerovium [289]		
	5 Boron 10.81	13 A I Aluminum 26.982	31 Gallium 69.723	49	81 Thallium 204.38	Nhonium [286]		
			30 Zinc zinc 65.38	48 Cd Cadmium 112.414	81 Hg Mercury 200.592	Cn Coperacium [285]		
			29 Comper 63.546	47 Ag silver 107.868	80 AU 604 196.997	Roentgenium [281]		
			28 Nickel 58.693	Pd Palladium 106.42	79 Platinum 195.084	DS Darmstackiun [281]	65 Tb Ferbium 158.925	97 Bk Berkelium [247]
			27 CO cobalt 58.933	45 Rh Rhodium 102:906	78	109 Meitnerium [278]		
			26 Feb	Ruthenium 101.07	76 OSmium 190.23	108 Hassium [270]	63 EU Europium 151.964	95 Am Americium [243]
			25 Mn Manganes e 54.938	43 E Fechnetium [97]	75 Re Rhenium 186.207	Bohrium [270]	62 Samarium 150.36	94 Plutonium [244]
				42 MO Molybdenum 95.95			Pm Promethium [145]	
			23 Vanadium 50.942	41 Nbinim Nobium 92.906	73 D Tantalum 180.948	105 Db Dubnium [270]		92 Unanium 238.029
			22 ———————————————————————————————————	40 Z r zirconium 91.224	72 Hafnium 178.49	Rutherfordium [267]	59 Pr Praseodymium 140.908	91 Pa Protactinium 231.036
			Scandium 44.956	39 Yttrium 88.906	71 LU Lutetium 174.967		58 Cerium 140.116	90 Th Thorium 232.038
					* 57 - 70	** 89 - 102	57 La Lanthanum 138.905	89 AC Actinium [227]
	Beryllium	12 Mg Magnesium 24.305	20 Cakium 40.078	Strontium 87.62				
1 Hydrogen 1.008	3 Lithium 6.94	Na Sædium 22.990	19 K	Rubidium 85.468	55 Cestum 132.905	87 Fr Fancium [223]	*Lanthanide series	**Actinide series