MATH3802 Chapter 3: Models for time series

with thanks to Stuart Barber for previous years' notes and slides Peter Thwaites

February 2017

MATH3802 Chapter 3: Models for time series

L_3.1 White noise

3.1 White noise

Definition 3.1 (White noise) The time series $\{X_t\}$ is called white noise if the X_t are i.i.d. with $\mathbb{E}(X_t)=0$ for all t.

If $\{X_t\}$ is white noise, then

$$\mu(t) = \mathbb{E}(X_t) = 0;$$
 $\gamma_k = \operatorname{cov}(X_t, X_{t+k}) = \begin{cases} \sigma^2 & \text{if } k = 0 \\ 0 & \text{else;} \end{cases}$
 $ho_k = \begin{cases} 1 & \text{if } k = 0 \\ 0 & \text{else.} \end{cases}$

MATH3802 Chapter 3: Models for time series

∟3.1 White noise

Remarks:

- lacktriangle Often we assume $X_t \sim N(0,\sigma^2)$ for all t.
- 2 White noise is used to model the residuals of more complicated time series.
- We will usually denote a white noise process as $\{\varepsilon_t\}$, with variance σ_{ε}^2 .

We can use the correlogram to distinguish between white noise and processes with dependence.

MATH3802 Chapter 3: Models for time series

∟3.1 White noise

Bartlett's theorem

Theorem (Bartlett, 1946) If $\{X_t\}$ is white noise, then for large n the distribution of $\widehat{\rho}_k, k \neq 0$, is approximately N(0, 1/n).

One considers values $|\widehat
ho_k|>1.96/\sqrt{n}$ significant at the 5% level. But note that the $\widehat{
ho}_k$ are not independent of each other!

MATH3802 Chapter 3: Models for time series L-3.2 MA

3.2 Moving average (MA) models

 $\{X_t\}$ is called a *moving average process of order q* (or an MA(q)Definition 3.2 (Moving average processes) A stochastic process process) if

$$X_t = \sum_{k=0}^{q} \beta_k \varepsilon_{t-k} = \beta_0 \varepsilon_t + \beta_1 \varepsilon_{t-1} + \dots + \beta_q \varepsilon_{t-q},$$

where $eta_0,\dots,eta_q\in\mathbb{R}$ and $\{arepsilon_t\}$ is white noise.

Remarks:

- lacktriangle 1 Without loss of generality, we can assume $eta_0=1$ (since we can choose $\sigma_{arepsilon}^2 = \mathrm{var}(arepsilon_t))$
- Since $\{\varepsilon_t\}$ is stationary, $\{X_t\}$ is stationary. 7

ACF of MA

For an MA(q) process, we have

$$\mu = 0,$$

$$\gamma_0 = (\beta_0^2 + \dots + \beta_q^2)\sigma_{\varepsilon}^2,$$

$$\gamma_k = \begin{cases} \frac{q-k}{i=0} \\ \sum_{i=0}^{q-k} \beta_i \beta_{i+k} \sigma_{\varepsilon}^2 \end{cases} \text{ if } 0 \leqslant k \leqslant q$$

$$\beta_k = \begin{cases} \frac{q-k}{i=0} \\ 0 \end{cases} \text{ else.}$$

processes and can be used to recognise data sets for which an MA So the acf 'cuts off' at lag q. This is a special feature of MA process is suitable. More on this in chapter 4.

The R script sim.ma.R, available in the VLE, simulates a number of MA processes.

MATH3802 Chapter 3: Models for time series

∟3.2 MA

Example 3.1 (MA(0), MA(1))

■ MA(0) is white noise:

$$X_t = \beta_0 \varepsilon_t$$
, iid $N(0, \beta_0^2 \sigma_{\varepsilon}^2)$.

2 MA(1) has $X_t = \varepsilon_t + \beta \varepsilon_{t-1}$ (assuming $\beta_0 = 1$). Therefore,

$$\gamma_0 = (1 + \beta^2)\sigma_{\varepsilon}^2 \qquad \rho_0 = 1$$

$$\gamma_1 = \beta\sigma_{\varepsilon}^2 \qquad \rho_1 = \frac{\beta}{1 + \beta^2}$$

$$\gamma_k = 0 \quad \forall k > 1 \qquad \rho_k = 0 \quad \forall k > 1$$

Invertibility

We have seen that MA(1) has

$$ho_0=1 \qquad
ho_1=rac{eta}{1+eta^2}$$

 $\rho_2=\rho_3=\cdots=0.$

Assume we have observed ρ_1 and want to determine β :

$$\beta_{1,2} = \frac{1 \pm \sqrt{1 - 4\rho_1^2}}{2\rho_1}.$$

function! This problem is referred to as "invertibility"; we shall There are two $\mathsf{MA}(1)$ processes with the same autocorrelation discuss this in more detail later in chapter 4.

MATH3802 Chapter 3: Models for time series

L3.3 AR

3.3 Autoregressive (AR) models

Defintion 3.3 A stochastic process $\{X_t\}$ is an *autoregressive* process of order p (AR(p) process) if

$$X_t = \sum_{k=1}^{p} \alpha_k X_{t-k} + \varepsilon_t \qquad \forall$$

where $lpha_1,\dots,lpha_{
ho}\in\mathbb{R}$, $\{arepsilon_t\}$ is white noise, and $arepsilon_t$ is independent of X_s for all s < t.

Remarks:

- **1** When constructing the process $\{X_t\}$, the first p values need to be specified as an initial condition.
- We shall see that whether $\{X_t\}$ is stationary depends on $lpha_1,\dots,lpha_p$ and on the initial conditions. 7

The R script sim.ar.R, available in the VLE, simulates a number of AR processes.

AR(1)

Example 3.2 The process $\{X_t\}$ given by

$$X_0 = 0$$
, $X_t = X_{t-1} + \varepsilon_t \ \forall t \in \mathbb{N}$,

with $\{arepsilon_t\}$ a white noise process, is an AR(1) process with $lpha_1=1$.

Such a process is called a random walk. We have $X_t = \sum_{k=1}^t \varepsilon_k$,

$$\mathbb{E}(X_t)=0$$

 $\operatorname{\mathsf{var}}(X_t) = t\sigma_{arepsilon}^2.$

Therefore $\{X_t\}$ is not stationary.

MATH3802 Chapter 3: Models for time series __3.3 AR A general AR(1) process has $X_t = \alpha X_{t-1} + \varepsilon_t$, $\alpha \neq 0$, so

$$\mathbb{E}(X_t) = \alpha \mathbb{E}(X_{t-1}) = \cdots = \alpha^t \mathbb{E}(X_0)$$

$$\operatorname{var}(X_t) = \alpha^2 \operatorname{var}(X_{t-1}) + \sigma_{\varepsilon}^2.$$

Claim: Such a process is weakly stationary if and only if

- $\frac{\alpha}{|\alpha|} < 1$,
- $\mathbb{Z} \ \mathbb{E}(X_t) = 0 \ \forall \ t, \ \mathsf{and}$
- $\operatorname{\mathsf{var}}(X_t) = \sigma_{arepsilon}^2/(1-lpha^2) \ orall \ t \ \operatorname{\mathsf{including}} \ t = 0.$

Example 3.3 Consider the AR(1) process with $lpha_1=-0.8$. Note that $|lpha_1| < 1$; necessary but not sufficient for weak stationarity.

- Let $X_t = -0.8X_{t-1} + \varepsilon_t$ with ε_t iid N(0,1) and fix $X_0 = 0$. This is not stationary since $\text{var}(X_0) = 0 \neq 1/0.36 = \text{var}(X_t)$
- Now let $X_0 \sim N(0, 1/0.36)$. Now $|\alpha_1| < 1$, $\mathbb{E}(X_t) = 0$ and var $(X_t) = 1/0.36$ for all t; $\{X_t\}$ is weakly stationary.

MATH3802 Chapter 3: Models for time series

Stationarity of AR(p)

Proposition 3.1 An AR(p) process is stationary if and only if all the roots y_1,\ldots,y_p of the equation

$$\alpha(y) = 1 - \alpha_1 y - \dots - \alpha_p y^p$$

are such that $|y_i| > 1$.

Remark: Note that for the AR(1) process $X_t = lpha X_{t-1} + arepsilon_t$, we

$$\alpha(y) = 1 - \alpha_1 y = 0 \Leftrightarrow y = 1/\alpha$$

and

$$|y_1| > 1 \Leftrightarrow |\alpha| < 1$$

as we saw above.

Proof of propsition 3.1

We prove proposition 3.1 in three steps:

- 1 Write X_t in terms of $\alpha(\cdot)^{-1}$.
- 2 Write X_t in terms of $\varepsilon_{t-1}, \varepsilon_{t-2}, \ldots$ infinite recursion.
- Examine coefficients $\{c_k\}$ of $\{arepsilon_{t-k}\}$ to see when stationarity is possible.

Details of the proof appear in the Lecture Notes in the VLE. The definition and use of the backshift operator B is important, and will be examined.

MATH3802 Chapter 3: Models for time series

Example 3.4 Consider the AR(2) process

$$X_t = \frac{1}{2}X_{t-1} + \frac{1}{2}X_{t-2} + \varepsilon_t.$$

The roots are 1, -2 (exercise: check), so this process is not stationary

Remarks

In case of stationarity, we have

$$\mathbb{E}(X_t) = \mathbb{E}\left(\alpha(B)^{-1}\varepsilon_t\right) = \mathbb{E}\left(\sum_{k=0}^{\infty} c_k B^k \varepsilon_t\right) = \sum_k c_k \mathbb{E}(\varepsilon_{t-k}) = 0.$$

The roots of $\alpha()$ can be complex. For example, consider $X_t = -X_{t-2} + \varepsilon_t$. This has $\alpha(y) = 1 - (-1)y^2 = 1 + y^2$, with roots $y_1 = i$, $y_2 = -i$. Hence $\{X_t\}$ is not stationary.

Stationarity of AR(2)

For AR(2) we have

$$\alpha(y) = 1 - \alpha_1 y - \alpha_2 y^2$$

$$\Rightarrow \text{roots} \quad y_{1,2} = \frac{\alpha_1 \pm \sqrt{\alpha_1^2 + 4\alpha_2}}{-2\alpha_2}$$

If $\alpha_1^2+4\alpha_2>0$ we have two real roots. If $\alpha_1^2+4\alpha_2<0$ we have two complex roots. In this case,

 α_1^2 α_1^2 $-4\alpha_2$ $4lpha_2$ - $2\alpha_2$ $\alpha_1 \pm i_{\gamma}$ $\frac{\alpha_1^2}{4\alpha_2^2}$ $\Rightarrow |y_{1,2}|^2 = 1$

 $4lpha_2^2$

 lm^2

 $\mathbb{E}_{0}^{2}\left\{ ^{\prime}\right\}$

MATH3802 Chapter 3: Models for time series

L3.3 AR

One can check that the process is stationary if α_2 $1 + \alpha_1$. \bigvee – $lpha_1$ and $lpha_2$ $lpha_2 < 1$.

Stationarity of AR(p), p > 2

For AR(p), p>2, we use a computer to find the roots.

Eg the R command polyroot which takes the argument $(1,-\alpha_1,\ldots,-\alpha_p)$. Using

will verify example 3.4.

MATH3802 Chapter 3: Models for time series —3.3 AR

Autocovariance of AR(p)

Recall $\gamma_k = \operatorname{cov}(X_t, X_{t+k})$

Since

$$X_t = \alpha_1 X_{t-1} + \dots + \alpha_p X_{t-p} + \varepsilon_t$$
$$X_{t+k} = \alpha_1 X_{t+k-1} + \dots + \alpha_p X_{t+k-p} + \varepsilon_{t+k},$$

we have

$$\gamma_k = \sum_{j=1}^{p} \alpha_j \gamma_{k-j}$$
 $\forall k \geqslant 1.$

Hence the autocorrelations $ho_k=\gamma_k/\gamma_0$ are

$$\rho_k = \sum_{j=1}^p \alpha_j \rho_{k-j}.$$

AR(2)

Example 3.5 (AR(2)) We have

$$\rho_k = \alpha_1 \rho_{k-1} + \alpha_2 \rho_{k-2}$$

80

$$\rho_0 = 1$$

$$\rho_1 = \alpha_1 \rho_0 + \alpha_2 \rho_{-1} = \alpha_1 + \alpha_2 \rho_1 = \frac{\alpha_1}{1 - \alpha_2}$$

$$\rho_2 = \alpha_1 \rho_1 + \alpha_2 \rho_0 = \frac{\alpha_1^2}{1 - \alpha_2} + \alpha_2$$

MATH3802 Chapter 3: Models for time series L 3.3 AR

Yule-Walker equations

We can determine α_1,\ldots,α_p from ρ_1,\ldots,ρ_p using

$$\rho_{1} = 1 \cdot \alpha_{1} + \rho_{1}\alpha_{2} + \dots + \rho_{p-1}\alpha_{p}
\rho_{2} = \rho_{1}\alpha_{1} + 1 \cdot \alpha_{2} + \dots + \rho_{p-2}\alpha_{p}
\vdots
\rho_{p} = \rho_{p-1}\alpha_{1} + \rho_{p-2}\alpha_{2} + \dots + 1 \cdot \alpha_{p}.$$
(4)

The equations (1) are called the Yule-Walker equations. In matrix notation they are

$$\begin{bmatrix} 1 & \rho_1 & \cdots & \rho_{p-1} \\ \rho_1 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & 1 & \rho_1 \\ \vdots & \ddots & 1 & \rho_1 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \vdots \\ \beta_p \end{bmatrix} = \begin{bmatrix} \rho_1 \\ \vdots \\ \rho_p \end{bmatrix}.$$

AR(2) Yule-Walker

Example 3.6(AR(2)) Consider an AR(2) process with $ho_0=1,
ho_1=1/6,
ho_2=-11/24.$ We get the Yule-Walker equations

$$lpha_1 + rac{1}{6}lpha_2 = rac{1}{6}$$
 $rac{1}{6}lpha_1 + lpha_2 = -rac{11}{24}$.

Solving these equations for $lpha_1$ and $lpha_2$ yields

$$lpha_1=rac{1}{4}$$

$$lpha_2 = -rac{1}{2}$$

(exercise — check).

Run the R script yule-walker.R, available in the VLE.

MATH3802 Chapter 3: Models for time series

L3.3 AR

AR(p) model-fitting summary

To fit an AR(p) model to data $\{X_t\}=(X_1,\dots,X_n)$, we use the following steps.

- lacktriangle Subtract trend and seasonal effects from $\{X_t\}$ to obtain residuals $\{Y_t\}$.
- Estimate the a.c.f. of Y to obtain $\widehat{
 ho}_1,\ldots,\widehat{
 ho}_{
 ho}$.
- Solve the Yule-Walker equations to obtain $\widehat{lpha}_1,\dots,\widehat{lpha}_{
 ho}.$
- (approximately) white noise (otherwise the model is not a Consider the residuals $Z_t=Y_t-\widehat{lpha}_1\,Y_{t-1}-\cdots-\widehat{lpha}$ the Bartlett bands to check whether the $\{Z_t\}$ are good fit to the data).
- Use the sample variance of the $\{Z_t\}$ to estimate $\sigma_{arepsilon}^2.$
- Add trend and seasonal effects back on to conclusions about $\{Y_t\}$ to get conclusions for $\{X_t\}$. 9

3.4 Mixed autoregressive moving average (ARMA) models

Definition 3.4 (ARMA(p,q) model) The ARMA(p,q) model

$$X_t = \sum_{j=1}^{p} \alpha_j X_{t-j} + \varepsilon_t + \sum_{j=1}^{q} \beta_j \varepsilon_{t-j},$$
 (2)

with ε_t independent of X_{t-1}, X_{t-2}, \ldots

Remarks:

Equation (2) can be written as

$$\alpha(B)X_t = \beta(B)\varepsilon_t,$$

$$lpha(y)=1-\sum_{j=1}^{p}lpha_{j}y^{j}, \qquad eta(y)=1+\sum_{j=1}^{p}lpha_{j}y^{j},$$

 $eta(y) = 1 + \sum_{j=1}^q eta_j y^j.$

MATH3802 Chapter 3: Models for time series

L-3.4 ARMA

2 As for AR(p), we can write

$$X_t = \alpha(B)^{-1}\beta(B)\varepsilon_t.$$

The model is weakly stationary if

$$X_t = \sum_{k=0}^{\infty} \lambda_k \beta(B) \varepsilon_{t-k} = \sum_{k=0}^{\infty} \tilde{\lambda}_k \varepsilon_{t-k}$$

with $\sum_{k=0}^{\infty} \tilde{\lambda}_k^2 < \infty$.

This is again equivalent to the roots of lpha() lying outside the complex unit circle.

If stationary, we have $\mathbb{E}(X_t) = \sum_{k=0}^{\infty} \tilde{\lambda}_k \mathbb{E}(\varepsilon_{t-k}) = 0$.

4 We can reconstruct the noise as

$$\varepsilon_t = \beta(B)^{-1} \alpha(B) X_t = \sum_{k=0}^{\infty} \delta_k X_{t-k}.$$

If $\sum_{k=0}^{\infty} \delta_k^2 < \infty$, the process is called *invertible* (more on invertibility later in chapter 4).

In this case, the influence of X_{t_0} $\left(t_0$ fixed) on X_t gets smaller

Result $\{X_t\}$ is invertible iff the roots of β lie outside the complex unit circle.

MATH3802 Chapter 3: Models for time series \$\bigcup_{3.4}\$ ARMA

Example

Example 3.7 Consider the ARMA(1,1) process

$$X_t = \alpha X_{t-1} + \varepsilon_t + \beta \varepsilon_{t-1}.$$

Stationary iff $|\alpha| < 1$.

Invertible iff roots of 1+eta y lie outside the unit circle, iff |eta| < 1.

Auto-covariances of ARMA

$$\gamma_k = \text{cov}(X_t, X_{t+k})$$

$$\Rightarrow \gamma_k = \sum_{i=1}^p \alpha_i \gamma_{k-i} \qquad \forall k > q$$

$$\Rightarrow \rho_k = \sum_{i=1}^p \alpha_i \rho_{k-i} \qquad \forall k > q.$$

Reminder: $\mathsf{AR}(p)$ satisfies the same relationship (but for all k > 0). Hence the a.c.f. for AR and ARMA show the same behaviour for k > q.

MATH3802 Chapter 3: Models for time series —3.5 ARIMA

Differencing

Recall the AR(1) process

$$X_t = X_{t-1} + \varepsilon_t = \sum_{s=0}^t \varepsilon_s,$$

where $\{\varepsilon_t\}$ is white noise, is not stationary.

Definition 3.5 (Difference operator) Let

$$\nabla X_t = X_t - X_{t-1}$$
 $\forall t$.

The operator ∇ ("nabla") is called the *difference operator*.

Remarks

- 1 We can write abla=1-B where B is the backshift operator:
- **2** If $\{X_t\}$ has stationary increments, then ∇X is stationary.
- ${f 3}$ $\ \ \, \nabla$ removes a constant mean:

$$\nabla(X_t+\mu)=\nabla X_t.$$

4 A linear trend is converted to a constant mean:

$$\nabla(X_t + \alpha + \beta t) = \nabla X_t + \beta.$$

MATH3802 Chapter 3: Models for time series _3.5 ARIMA

Autoregressive Integrated Moving Average process

Definition 3.6 (ARIMA(p, d, q)) $\{X_t\}$ is an ARIMA(p, d, q) process if $\nabla^d X$ is a stationary ARMA(p, q) process.

Remark An ARIMA(p, d, q) process $\{X_t\}$ can be written as an ARMA(p+d, q) process which has a unit root and hence is non-stationary for d > 0. **Example 3.8** Let $arepsilon_t \sim \mathcal{N}(0,\sigma^2)$ and $X_t = \sum_{s=1}^t arepsilon_s$ (random walk).

Then $\nabla X_t = X_t - X_{t-1} = \varepsilon_t$ is white noise, i.e. $\{\varepsilon_t\}$ is an ARMA(0,0) process. Hence $\{X_t\}$ is ARIMA(0,1,0).