ЛАБОРАТОРНА РОБОТА № 2 ПОРІВНЯННЯ МЕТОДІВ КЛАСИФІКАЦІЇ ДАНИХ

Мета роботи: використовуючи спеціалізовані бібліотеки та мову програмування Python дослідити різні методи класифікації даних та навчитися їх порівнювати.

Хід роботи

Завдання 1. Класифікація за допомогою машин опорних векторів (SVM)

F1 score: 56.15%

Process finished with exit code 1

Завдання 2. Порівняння якості класифікаторів SVM з нелінійними ядрами

Поліноміальне ядро

classifier = OneVsOneClassifier(SVC(random state=0, kernel='poly', degree=8))

Гаусове ядро

classifier = OneVsOneClassifier(SVC(random_state=0, kernel='rbf')

F1 score: 71.95%

Process finished with exit code 1

Сигмоїдальне ядро

classifier = OneVsOneClassifier(SVC(random_state=0, kernel='sigmoid'))

Завдання 3. Порівняння якості класифікаторів на прикладі класифікації сортів ірисів

Форма масиву та зріз даних

	*****shape****											
(1	(150, 5)											
***	******3piз даних******											
	sepal-length	sepal-width	petal-length	petal-width	class							
0	5.1	3.5	1.4	0.2	Iris-setosa							
1	4.9	3.0	1.4	0.2	Iris-setosa							
2	4.7	3.2	1.3	0.2	Iris-setosa							
3	4.6	3.1	1.5	0.2	Iris-setosa							
4	5.0	3.6	1.4	0.2	Iris-setosa							
5	5.4	3.9	1.7	0.4	Iris-setosa							
6	4.6	3.4	1.4	0.3	Iris-setosa							
7	5.0	3.4	1.5	0.2	Iris-setosa							
8	4.4	2.9	1.4	0.2	Iris-setosa							
9	4.9	3.1	1.5	0.1	Iris-setosa							
10	5.4	3.7	1.5	0.2	Iris-setosa							
11	4.8	3.4	1.6	0.2	Iris-setosa							
12	4.8	3.0	1.4	0.1	Iris-setosa							
13	4.3	3.0	1.1	0.1	Iris-setosa							
14	5.8	4.0	1.2	0.2	Iris-setosa							
15	5.7	4.4	1.5	0.4	Iris-setosa							
16	5.4	3.9	1.3	0.4	Iris-setosa							
17	5.1	3.5	1.4	0.3	Iris-setosa							
18	5.7	3.8	1.7	0.3	Iris-setosa							
19	5.1	3.8	1.5	0.3	Iris-setosa							

Статистичне зведення та розподіл за класом.

******Oпис даних*****								
s	epal-length	sepal-width	petal-length	petal-width				
count	150.000000	150.000000	150.000000	150.000000				
mean	5.843333	3.054000	3.758667	1.198667				
std	0.828066	0.433594	1.764420	0.763161				
min	4.300000	2.000000	1.000000	0.100000				
25%	5.100000	2.800000	1.600000	0.300000				
50%	5.800000	3.000000	4.350000	1.300000				
75%	6.400000	3.300000	5.100000	1.800000				
max	7.900000	4.400000	6.900000	2.500000				
*****Poзподіл за класом*****								
class								
Iris-setosa		i0						
Iris-ver	sicolor 5	i0						
Iris-virginica		60						
dtype: int64								

Гістограма розподілу атрибутів датасета

Матриця діаграм розсіювання

Порівняння алгоритмів

Найкращий результат має алгоритм SVM.

Мій прогноз

```
from sklearn.neighbors import KNeighborsClassifier
import numpy as np
knn = KNeighborsClassifier(n_neighbors=1)

knn.fit(X_train, Y_train)
X_new = np.array([[5, 2.9, 1, 0.2]])
print("Форма масиву X_new: {}".format(X_new.shape))
prediction = knn.predict(X_new)
print("Прогноз: {}".format(prediction))
print("Спрогнозированная метка: {}".format(dataset['class']))
```

```
Форма масиву X_new: (1, 4)
Прогноз: ['Iris-setosa']
Спрогнозированная метка: 0 Iris-setosa
```

Квітка належить до класу Iris-setosa

Завдання 4. Класифікація даних лінійним класифікатором Ridge

Accuracy: 0.7556 Precision: 0.8333 Recall: 0.7556 F1 Score: 0.7503 Cohen Kappa Score: 0.6431 Matthews Corrcoef: 0.6831 Classification Report:									
	precision	recall	f1-score	support					
Θ	1.00	1.00	1.00	16					
1	0.44	0.89	0.59	9					
2	0.91	0.50	0.65	20					
accuracy			0.76	45					
macro avg	0.78	0.80	0.75	45					
weighted avg	0.85	0.76	0.76	45					

Ця картинка показує, що програма 16 із 16 класів 0, 8 з 18 класів 1 та 10 з 11 класів 2.

Посилання на Git: https://github.com/Grum74/AI

Висновок

Я, використовуючи спеціалізовані бібліотеки та мову програмування Python дослідив різні методи класифікації даних та навчився їх порівнювати.