広島大学放射光科学研究センター (HiSOR)

経緯と現状

- H7 学術審議会加速器科学部会ヒヤリング
- Н8 放射光科学研究センター(学内共同利用施設)新設
- H10 放射光利用開始
- アンジュレータビームライン本格稼働 H13

(高分解能低温光電子分光) 第13回日本放射光学会(広島大学)

- 放射光科学研究センター(全国共同利用施設)新設 H14
- H17 特別教育研究経費(拠点形成)
 - 「放射光ナノサイエンスの全国展開」

【教職員】

教員(内 外国人教員(客員 Ⅲ 種) 1)	9
講師(研究機関研究員)	5
客員教授・助教授(Ⅰ種、Ⅱ種)	3
センター研究員(内 客員研究員 12)	43
技術職員	2
研究支援推進員	1
事務職員	2

全国共同利用

- ◆全国共同利用に供するビームライン アンジュレータビームライン 2 偏向電磁石ビームライン
- ◆国際共同研究
 - 日本学術振興会拠点大学交流事業 (高エネルギー加速器研究機構・ 中国科学院)

放射光科学に関する共同研究

- ・国際共同研究 米国、ドイツ、ロシア、ベルギー、 ポーランド、韓国、中国
- ◆研究分野
 - ・固体物理学を中心とする物質科学研究 及び生命科学の基礎研究
 - ・放射光ナノサイエンス

研究成果

光電子分光

高いエネルギー分解能、運動量分解能、及び放射光エネルギー可変性を活用

研究成果 1

朝永ラッティンジャー液体の直接観測 一数 meV の分解能で検証ー

1次元電気伝導体(カーボンナノチューブ) 強い電子相関 Fermi 端の消失

状態密度

 $|(\omega) \propto \omega^{\alpha}$

 $\alpha = 0.46 \sim 0.48$

フェルミ端強度

 $I(E_F,T) \propto T^{\alpha}$

witi

カーボンナノチューブの 電子構造解析(首都大学 東京との共同研究)

Nature 426 (2003)

研究成果 2

世界最高レベルのエネルギー分解能 一分解能 meV から μ eV へー

エネルギー分解能 約600μeV (到達温度 4K) (@h v ~8eV)

レーザに匹敵する分解能を達成 さらに励起エネルギー可変 (電子状態の分離観測に本質的)

研究成果3

世界最高レベルの運動量分解能 一高温超伝導体の研究ー

運動量分解能 4×10^{-3} Å⁻¹ (@h ν ~8 eV)

" bilayer splitting"の直接分離による 分裂エネルギーの定量評価

光電子の運動量分布

将来計画

○可視から紫外域の大強度放射光の重点利用

・挿入型光源の増強

- ○固体物理学を中心とする革新的物質科学研究
 - ・高精度電子構造解析 3次元電子構造の完全決定 スピン軌道秩序の決定
 - ·偏向特性解析 ・スピン偏極光電子分光によるスピンの直接観測 : 表面・超薄膜の磁性 : 光源一観測システム一体化による先端研究推進