MANOJ KUMAR - 2048015

Lab 5 & 6 - Chronic Kidney Disease

Create a program to implement ANN, SVM and Logistic regression for binary classification using respective datasets related to your own doamin. Find out the inference related to following:

- 1. Time complexity
- 2. Generalizing capacity of each technique
- 3. Hyper parameter tuning and
- 4. Advantages and disadvantages of each technique

NOTE: Prepare a detailed report (Word document) on comparative study.

Importing basic libraries

```
In [1]: import pandas as pd
        import numpy as np
        import time
        import seaborn as sns
        import matplotlib.pyplot as plt
        import matplotlib as mpl
```

Reading the dataset

```
In [2]: ckd_df = pd.read_csv('kidney disease.csv')
        #Check the shape
        print(ckd_df.shape)
        (400, 26)
In [3]: #check the columns
        ckd_df.columns
Out[3]: Index(['id', 'age', 'bp', 'sg', 'al', 'su', 'rbc', 'pc', 'pcc', 'ba', 'bgr',
               'bu', 'sc', 'sod', 'pot', 'hemo', 'pcv', 'wc', 'rc', 'htn', 'dm', 'cad',
               'appet', 'pe', 'ane', 'classification'],
              dtype='object')
```

Rename the columns to have meaningful names

```
In [4]: col_dict={"bp":"blood_pressure",
                 "sg": "specific_gravity",
                 "al":"albumin",
                 "su":"sugar",
                 "rbc": "red_blood_cells",
                 "pc": "pus_cell",
                 "pcc": "pus_cell_clumps",
                 "ba":"bacteria",
                 "bgr": "blood_glucose_random",
                 "bu":"blood_urea",
                 "sc": "serum_creatinine",
                 "sod": "sodium",
                 "pot": "potassium",
                 "hemo": "hemoglobin",
                 "pcv": "packed_cell_volume",
                 "wc": "white_blood_cell_count",
                 "rc": "red_blood_cell_count",
                 "htn": "hypertension",
                 "dm": "diabetes_mellitus",
                 "cad": "coronary_artery_disease",
                 "appet": "appetite",
                 "pe": "pedal_edema",
                 "ane":"anemia"}
        ckd_df.rename(columns=col_dict, inplace=True)
        #Check the column names again
        ckd_df.columns
'blood_glucose_random', 'blood_urea', 'serum_creatinine', 'sodium',
               'potassium', 'hemoglobin', 'packed_cell_volume',
               'white_blood_cell_count', 'red_blood_cell_count', 'hypertension',
               'diabetes_mellitus', 'coronary_artery_disease', 'appetite',
               'pedal_edema', 'anemia', 'classification'],
             dtype='object')
```

Observing the data

In [5]: ckd_df.head(11).T

Out	[5]	:

	0	1	2	3	4	5	6	7	8	9	10
id	0	1	2	3	4	5	6	7	8	9	10
age	48	7	62	48	51	60	68	24	52	53	50
blood_pressure	80	50	80	70	80	90	70	NaN	100	90	60
specific_gravity	1.02	1.02	1.01	1.005	1.01	1.015	1.01	1.015	1.015	1.02	1.01
albumin	1	4	2	4	2	3	0	2	3	2	2
sugar	0	0	3	0	0	0	0	4	0	0	4
red_blood_cells	NaN	NaN	normal	normal	normal	NaN	NaN	normal	normal	abnormal	NaN
pus_cell	normal	normal	normal	abnormal	normal	NaN	normal	abnormal	abnormal	abnormal	abnormal
pus_cell_clumps	notpresent	notpresent	notpresent	present	notpresent	notpresent	notpresent	notpresent	present	present	present
bacteria	notpresent										
blood_glucose_random	121	NaN	423	117	106	74	100	410	138	70	490
blood_urea	36	18	53	56	26	25	54	31	60	107	55
serum_creatinine	1.2	0.8	1.8	3.8	1.4	1.1	24	1.1	1.9	7.2	4
sodium	NaN	NaN	NaN	111	NaN	142	104	NaN	NaN	114	NaN
potassium	NaN	NaN	NaN	2.5	NaN	3.2	4	NaN	NaN	3.7	NaN
hemoglobin	15.4	11.3	9.6	11.2	11.6	12.2	12.4	12.4	10.8	9.5	9.4
packed_cell_volume	44	38	31	32	35	39	36	44	33	29	28
white_blood_cell_count	7800	6000	7500	6700	7300	7800	NaN	6900	9600	12100	NaN
red_blood_cell_count	5.2	NaN	NaN	3.9	4.6	4.4	NaN	5	4.0	3.7	NaN
hypertension	yes	no	no	yes	no	yes	no	no	yes	yes	yes
diabetes_mellitus	yes	no	yes	no	no	yes	no	yes	yes	yes	yes
coronary_artery_disease	no										
appetite	good	good	poor	poor	good	good	good	good	good	poor	good
pedal_edema	no	no	no	yes	no	yes	no	yes	no	no .	no
anemia	no	no	yes	yes	no	no	no	no	yes	yes	yes
classification	ckd										

```
In [ ]: for i in ckd_df.drop("id",axis=1).columns:
             print('unique values in "{}":\n'.format(i),ckd_df[i].unique())
 In [ ]: #Replace incorrect values
         ckd_df['diabetes_mellitus'] =ckd_df['diabetes_mellitus'].replace(to_replace={'\tno':'no','\tyes':'yes',' yes':'y
         ckd_df['coronary_artery_disease'] = ckd_df['coronary_artery_disease'].replace(to_replace='\tno',value='no')
         ckd_df['white_blood_cell_count'] = ckd_df['white_blood_cell_count'].replace(to_replace='\t8400',value='8400')
         ckd_df["classification"]=ckd_df["classification"].replace("ckd\t", "ckd")
         for i in range(ckd_df.shape[0]):
             if ckd_df.iloc[i,16]=='\t?':
                 ckd_df.iloc[i,16]=np.nan
             if ckd_df.iloc[i,16]=='\t43':
                 ckd_df.iloc[i,16]='43'
             if ckd_df.iloc[i,17]=='\t?':
                 ckd_df.iloc[i,17]=np.nan
             if ckd_df.iloc[i,17]=='\t6200':
                 ckd_df.iloc[i,17]= '6200'
             if ckd_df.iloc[i,18]=='\t?':
                 ckd_df.iloc[i,18]=np.nan
             if ckd_df.iloc[i,25]=='ckd':
                 ckd_df.iloc[i,25]='1'
             if ckd_df.iloc[i,25]=='notckd':
                 ckd_df.iloc[i,25]='0'
         for i in ckd_df.drop("id",axis=1).columns:
             print('unique values in "{}":\n'.format(i),ckd_df[i].unique())
 In [ ]: # Observing the summarized information of data
         ckd df.info()
 In [ ]: | ckd_df.iloc[:,-1]=ckd_df.iloc[:,-1].astype('int64')
         ckd_df.head(11).T
 In [ ]: |print(ckd_df['packed_cell_volume'].unique())
         print(ckd_df['white_blood_cell_count'].unique())
         print(ckd_df['red_blood_cell_count'].unique())
In [10]: mistyped=['packed cell volume','white blood cell count','red blood cell count']
         for col in mistyped:
                 ckd_df[col]=ckd_df[col].astype('float')
         numeric=[]
         for i in ckd_df.columns:
             if ckd_df[i].dtype=='float64':
                 numeric.append(i)
         numeric
Out[10]: ['age',
          'blood_pressure',
           'specific_gravity',
           'albumin',
          'sugar',
          'blood_glucose_random',
          'blood_urea',
          'serum_creatinine',
          'sodium',
          'potassium',
          'hemoglobin',
           'packed_cell_volume',
           'white_blood_cell_count',
          'red_blood_cell_count']
In [11]: ckd_df.drop('id',axis=1,inplace=True)
         categoricals=[]
         for col in ckd_df.columns:
             if not col in numeric:
                 categoricals.append(col)
         categoricals.remove('classification')
         categoricals
Out[11]: ['red_blood_cells',
           'pus_cell',
           'pus cell clumps',
           'bacteria',
          'hypertension',
          'diabetes_mellitus',
           'coronary artery disease',
           'appetite',
           'pedal_edema',
           'anemia']
```

```
In [12]: import warnings
warnings.simplefilter('ignore')

import matplotlib.style as style
style.use('fivethirtyeight')
```

Checking distribution of the numerical features

```
In [13]: fig, axes = plt.subplots(nrows=7, ncols=2, figsize=(15,30))
         fig.subplots adjust(hspace=0.5)
         fig.suptitle('Distributions of numerical Features')
         n_{rows}, n_{cols} = (7,2)
         for index, column in enumerate(numeric):
             i,j = (index // n_cols), (index % n_cols)
             miss_perc="%.2f"%(100*(1-(ckd_df[column].dropna().shape[0])/ckd_df.shape[0]))
             collabel=column+"\n({}% is missing)".format(miss_perc)
             fig=sns.distplot(ckd_df[column], color="green", label=collabel,
                              norm_hist=True, ax=axes[i,j], kde_kws={"lw":4})
             fig=fig.legend(loc='best', fontsize=18)
             axes[i,j].set_ylabel("Probability Density",fontsize='medium')
             axes[i,j].set xlabel(None)
         plt.show()
                                                    Distributions of numerical Features
```


Checking distribution of the Categorical features

```
In [14]: |style.use('fivethirtyeight')
         fig, axes = plt.subplots(nrows=5, ncols=2, figsize=(15,30))
         fig.subplots_adjust(hspace=0.5)
         fig.suptitle('Distributions of Categorical Features')
         n_{rows}, n_{cols} = (5,2)
         for index, column in enumerate(categoricals):
             i,j = index // n_cols, index % n_cols
             miss_perc="%.2f"%(100*(1-(ckd_df[column].dropna().shape[0])/ckd_df.shape[0]))
             collabel=column+"\n({}% is missing)".format(miss_perc)
             fig = sns.countplot(x=column, data=ckd_df,label=collabel,
                                  palette=sns.cubehelix_palette(rot=-.4,light=0.85,hue=1), ax=axes[i,j])
             axes[i,j].set_title(collabel,fontsize=25)
             axes[i,j].set_xlabel(None)
             axes[i,j].set_ylabel("Count",fontsize=20)
             axes[i,j].set_xticklabels(axes[i,j].get_xticklabels(), Fontsize=20)
         plt.show()
```



```
In [15]: import matplotlib.ticker as ticker
         style.use('fivethirtyeight')
         # Some random data
         ncount = 400
         plt.figure(figsize=(15,8))
         ax = sns.countplot(x="classification", data=ckd_df)
         plt.title('Distribution of classification sata')
         plt.xlabel('Type')
         # Make twin axis
         ax2=ax.twinx()
         # Switch so count axis is on right, frequency on left
         ax2.yaxis.tick_left()
         ax.yaxis.tick_right()
         # Also switch the labels over
         ax.yaxis.set_label_position('right')
         ax2.yaxis.set_label_position('left')
         ax2.set_ylabel('Frequency [%]')
         for p in ax.patches:
             x=p.get_bbox().get_points()[:,0]
             y=p.get_bbox().get_points()[1,1]
             ax.annotate('\{:.1f\}%'.format(100.*y/ncount), (x.mean(), y),
                     ha='center', va='bottom') # set the alignment of the text
         # Use a LinearLocator to ensure the correct number of ticks
         ax.yaxis.set_major_locator(ticker.LinearLocator(11))
         # Fix the frequency range to 0-100
         ax2.set_ylim(0,100)
         ax.set_ylim(0,ncount)
         # And use a MultipleLocator to ensure a tick spacing of 10
         ax2.yaxis.set_major_locator(ticker.MultipleLocator(10))
         # Need to turn the grid on ax2 off, otherwise the gridlines end up on top of the bars
         ax2.grid(None)
```



```
In [16]: for i in range(ckd_df.shape[0]):
    if ckd_df.iloc[i,24]=='ckd':
        ckd_df.iloc[i,24]='1'
    if ckd_df.iloc[i,24]=='notckd':
        ckd_df.iloc[i,24]='0'
```

```
In [17]: g = sns.pairplot(ckd_df, vars = numeric ,hue = 'classification')
    g.map_diag(sns.distplot)
    g.add_legend()
    g.fig.suptitle('FacetGrid plot', fontsize = 20)
    g.fig.subplots_adjust(top= 0.9);
FacetGrid plot
```


In [19]: onehotdata=pd.get_dummies(ckd_df,drop_first=True,prefix_sep=': ')
onehotdata.head(13).T

Out[19]:

	0	1	2	3	4	5	6	7	8	9	10	11	12
age	48.00	7.00	62.00	48.000	51.00	60.000	68.00	24.000	52.000	53.00	50.00	63.00	68.000
blood_pressure	80.00	50.00	80.00	70.000	80.00	90.000	70.00	NaN	100.000	90.00	60.00	70.00	70.000
specific_gravity	1.02	1.02	1.01	1.005	1.01	1.015	1.01	1.015	1.015	1.02	1.01	1.01	1.015
albumin	1.00	4.00	2.00	4.000	2.00	3.000	0.00	2.000	3.000	2.00	2.00	3.00	3.000
sugar	0.00	0.00	3.00	0.000	0.00	0.000	0.00	4.000	0.000	0.00	4.00	0.00	1.000
blood_glucose_random	121.00	NaN	423.00	117.000	106.00	74.000	100.00	410.000	138.000	70.00	490.00	380.00	208.000
blood_urea	36.00	18.00	53.00	56.000	26.00	25.000	54.00	31.000	60.000	107.00	55.00	60.00	72.000
serum_creatinine	1.20	0.80	1.80	3.800	1.40	1.100	24.00	1.100	1.900	7.20	4.00	2.70	2.100
sodium	NaN	NaN	NaN	111.000	NaN	142.000	104.00	NaN	NaN	114.00	NaN	131.00	138.000
potassium	NaN	NaN	NaN	2.500	NaN	3.200	4.00	NaN	NaN	3.70	NaN	4.20	5.800
hemoglobin	15.40	11.30	9.60	11.200	11.60	12.200	12.40	12.400	10.800	9.50	9.40	10.80	9.700
packed_cell_volume	44.00	38.00	31.00	32.000	35.00	39.000	36.00	44.000	33.000	29.00	28.00	32.00	28.000
white_blood_cell_count	7800.00	6000.00	7500.00	6700.000	7300.00	7800.000	NaN	6900.000	9600.000	12100.00	NaN	4500.00	12200.000
red_blood_cell_count	5.20	NaN	NaN	3.900	4.60	4.400	NaN	5.000	4.000	3.70	NaN	3.80	3.400
classification	1.00	1.00	1.00	1.000	1.00	1.000	1.00	1.000	1.000	1.00	1.00	1.00	1.000
red_blood_cells: normal	0.00	0.00	1.00	1.000	1.00	0.000	0.00	1.000	1.000	0.00	0.00	0.00	0.000
pus_cell: normal	1.00	1.00	1.00	0.000	1.00	0.000	1.00	0.000	0.000	0.00	0.00	0.00	1.000
pus_cell_clumps: present	0.00	0.00	0.00	1.000	0.00	0.000	0.00	0.000	1.000	1.00	1.00	1.00	1.000
bacteria: present	0.00	0.00	0.00	0.000	0.00	0.000	0.00	0.000	0.000	0.00	0.00	0.00	0.000
hypertension: yes	1.00	0.00	0.00	1.000	0.00	1.000	0.00	0.000	1.000	1.00	1.00	1.00	1.000
diabetes_mellitus: yes	1.00	0.00	1.00	0.000	0.00	1.000	0.00	1.000	1.000	1.00	1.00	1.00	1.000
coronary_artery_disease: yes	0.00	0.00	0.00	0.000	0.00	0.000	0.00	0.000	0.000	0.00	0.00	0.00	1.000
appetite: poor	0.00	0.00	1.00	1.000	0.00	0.000	0.00	0.000	0.000	1.00	0.00	1.00	1.000
pedal_edema: yes	0.00	0.00	0.00	1.000	0.00	1.000	0.00	1.000	0.000	0.00	0.00	1.00	1.000
anemia: yes	0.00	0.00	1.00	1.000	0.00	0.000	0.00	0.000	1.000	1.00	1.00	0.00	0.000

```
In [20]: # define imputer
    from sklearn.impute import KNNImputer
    imputer = KNNImputer(n_neighbors=5, weights='uniform', metric='nan_euclidean')
    impute_columns=list(set(onehotdata.columns)-set(["classification"]))
    print(impute_columns)
```

['sodium', 'serum_creatinine', 'sugar', 'diabetes_mellitus: yes', 'albumin', 'pus_cell_clumps: present', 'cor onary_artery_disease: yes', 'appetite: poor', 'red_blood_cells: normal', 'anemia: yes', 'pus_cell: normal', 'red_blood_cell_count', 'bacteria: present', 'blood_urea', 'pedal_edema: yes', 'potassium', 'age', 'white_blo od_cell_count', 'hypertension: yes', 'hemoglobin', 'specific_gravity', 'blood_pressure', 'blood_glucose_rando m', 'packed_cell_volume']

```
In [21]: imputer.fit(onehotdata[impute_columns])
```

Out[21]: KNNImputer()

```
In [22]: X_trans=pd.DataFrame(imputer.transform(onehotdata[impute_columns]), columns=impute_columns)
```

Out[23]:

	0	1	2	3	4	5	6	7	8	9	10	11	12
sodium	137.60	136.80	133.80	111.000	138.40	142.000	104.00	133.800	134.000	114.00	139.00	131.00	138.000
serum_creatinine	1.20	0.80	1.80	3.800	1.40	1.100	24.00	1.100	1.900	7.20	4.00	2.70	2.10(
sugar	0.00	0.00	3.00	0.000	0.00	0.000	0.00	4.000	0.000	0.00	4.00	0.00	1.000
diabetes_mellitus: yes	1.00	0.00	1.00	0.000	0.00	1.000	0.00	1.000	1.000	1.00	1.00	1.00	1.000
albumin	1.00	4.00	2.00	4.000	2.00	3.000	0.00	2.000	3.000	2.00	2.00	3.00	3.000
pus_cell_clumps: present	0.00	0.00	0.00	1.000	0.00	0.000	0.00	0.000	1.000	1.00	1.00	1.00	1.000
coronary_artery_disease: yes	0.00	0.00	0.00	0.000	0.00	0.000	0.00	0.000	0.000	0.00	0.00	0.00	1.000
appetite: poor	0.00	0.00	1.00	1.000	0.00	0.000	0.00	0.000	0.000	1.00	0.00	1.00	1.000
red_blood_cells: normal	0.00	0.00	1.00	1.000	1.00	0.000	0.00	1.000	1.000	0.00	0.00	0.00	0.000
anemia: yes	0.00	0.00	1.00	1.000	0.00	0.000	0.00	0.000	1.000	1.00	1.00	0.00	0.000
pus_cell: normal	1.00	1.00	1.00	0.000	1.00	0.000	1.00	0.000	0.000	0.00	0.00	0.00	1.000
red_blood_cell_count	5.20	4.96	3.80	3.900	4.60	4.400	4.64	5.000	4.000	3.70	4.92	3.80	3.400
bacteria: present	0.00	0.00	0.00	0.000	0.00	0.000	0.00	0.000	0.000	0.00	0.00	0.00	0.000
blood_urea	36.00	18.00	53.00	56.000	26.00	25.000	54.00	31.000	60.000	107.00	55.00	60.00	72.000
pedal_edema: yes	0.00	0.00	0.00	1.000	0.00	1.000	0.00	1.000	0.000	0.00	0.00	1.00	1.000
potassium	4.20	3.92	4.20	2.500	3.98	3.200	4.00	4.200	4.960	3.70	4.56	4.20	5.800
age	48.00	7.00	62.00	48.000	51.00	60.000	68.00	24.000	52.000	53.00	50.00	63.00	68.000
white_blood_cell_count	7800.00	6000.00	7500.00	6700.000	7300.00	7800.000	10280.00	6900.000	9600.000	12100.00	9260.00	4500.00	12200.000
hypertension: yes	1.00	0.00	0.00	1.000	0.00	1.000	0.00	0.000	1.000	1.00	1.00	1.00	1.000
hemoglobin	15.40	11.30	9.60	11.200	11.60	12.200	12.40	12.400	10.800	9.50	9.40	10.80	9.700
specific_gravity	1.02	1.02	1.01	1.005	1.01	1.015	1.01	1.015	1.015	1.02	1.01	1.01	1.01
blood_pressure	80.00	50.00	80.00	70.000	80.00	90.000	70.00	74.000	100.000	90.00	60.00	70.00	70.000
blood_glucose_random	121.00	113.00	423.00	117.000	106.00	74.000	100.00	410.000	138.000	70.00	490.00	380.00	208.000
packed_cell_volume	44.00	38.00	31.00	32.000	35.00	39.000	36.00	44.000	33.000	29.00	28.00	32.00	28.000

Modelling

```
In [24]: X=X_trans
    y=ckd_df["classification"]
    X_prod=X_trans
    print(X.shape)
    print(y.shape)
    print(X_prod.shape)

    (400, 24)
    (400,)
    (400, 24)
```

Predictive Models with hyperparameter tuning Section

```
In [25]: from sklearn.metrics import classification_report from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix

from sklearn.model_selection import GridSearchCV
```

```
plt.plot([0, 1], linestyle='--')
             plt.xlabel('False Positive Rate')
             plt.ylabel('True Positive Rate')
             plt.legend()
             plt.show()
In [28]: ##Split train and test
         from sklearn.model_selection import train_test_split
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20, random_state = 4658)
         print(X_train.shape)
         print(X_test.shape)
         print(y_train.shape)
         print(y_test.shape)
         (320, 24)
         (80, 24)
         (320,)
         (80,)
         Logistic Regression Hyper parameter tuning
In [29]: from sklearn.linear_model import LogisticRegression
         from sklearn.metrics import roc_curve
         from sklearn.metrics import roc_auc_score
         c_{space} = np.logspace(-5, 8, 15)
         param_grid = {'C': c_space}
         start_lr = time.time()
         lr = GridSearchCV(LogisticRegression(),
                           param_grid,
                           cv = 5)
         lr.fit(X_train, y_train)
         end_lr = time.time()
         final_lr = end_lr - start_lr
         final_lr = round(final_lr,3)
         final_lr
         # Print the tuned parameters and score
         print("Tuned Logistic Regression Parameters: {}".format(lr.best_params_))
         print("Best score is {}".format(lr.best_score_))
         print("Best estimator is {} \n\n".format(lr.best_estimator_))
         y_pred_lr = lr.predict(X_test)
         display_confusion_matrix(y_test, y_pred_lr)
         accuracy_lr=accuracy_score(y_test, y_pred_lr)
         print("\nAccuracy of Logistic Regression is :", accuracy_lr)
         print("Computation time {} - Sec".format(final_lr))
         Tuned Logistic Regression Parameters: { 'C': 0.05179474679231213}
         Best score is 0.9125
         Best estimator is LogisticRegression(C=0.05179474679231213)
                       precision
                                     recall f1-score
                                                        support
                                                             25
                    0
                             0.88
                                       0.92
                                                 0.90
                    1
                             0.96
                                       0.95
                                                 0.95
                                                              55
                                                 0.94
                                                              80
             accuracy
            macro avg
                             0.92
                                       0.93
                                                 0.93
                                                              80
         weighted avg
                             0.94
                                       0.94
                                                 0.94
```

Accuracy of Logistic Regression is: 0.9375 Computation time 3.255 - Sec

In [27]: def plot_roc_curve(fpr, tpr):

plt.plot(fpr, tpr, label='ROC')


```
In [30]: auc = roc_auc_score(y_test, y_pred_lr)
    print('AUC: %.2f' % auc)

fpr, tpr, thresholds = roc_curve(y_test, y_pred_lr)
    plot_roc_curve(fpr, tpr)
```


Decision Tree Hyper parameter tuning

```
In [31]: from sklearn.tree import DecisionTreeClassifier
         from sklearn.model selection import RandomizedSearchCV
         hyperparam_combs = {
             'max_depth': [4, 6, 8, 10, 12],
             'criterion': ['gini', 'entropy'],
             'min_samples_split': [2, 10, 20, 30, 40],
             'max_features': [0.2, 0.4, 0.6, 0.8, 1],
             'max_leaf_nodes': [8, 16, 32, 64, 128],
             'class_weight': [{0: 1, 1: 1}, {0: 1, 1: 2}, {0: 1, 1: 3}, {0: 1, 1: 4}, {0: 1, 1: 5}]
         start_dt = time.time()
         clf = RandomizedSearchCV(DecisionTreeClassifier(),
                                  hyperparam_combs,
                                  scoring='f1',
                                  random state=1,
                                  n_iter=20)
         dt_model = clf.fit(X_train, y_train)
         end_dt = time.time()
         final_dt = end_dt - start_dt
         final_dt = round(final_dt,3)
         final_dt
         # Print the tuned parameters and score
         print("Tuned Decision Tree Parameters: {}".format(dt_model.best_params_))
         print("Best score is {}".format(dt_model.best_score_))
         print("Best estimator is {}".format(dt_model.best_estimator_))
         y_pred_dt = dt_model.predict(X_test)
         display_confusion_matrix(y_test, y_pred_dt)
         accuracy dt=accuracy score(y test, y pred_dt)
         print("Accuracy of Decision Tree is :", accuracy_dt)
         print("Computation time {} - Sec".format(final_dt))
         Tuned Decision Tree Parameters: {'min_samples_split': 2, 'max_leaf_nodes': 16, 'max_features': 0.4, 'max_dept
         h': 8, 'criterion': 'entropy', 'class_weight': {0: 1, 1: 1}}
         Best score is 0.9689451476793248
         Best estimator is DecisionTreeClassifier(class_weight={0: 1, 1: 1}, criterion='entropy',
                                max_depth=8, max_features=0.4, max_leaf_nodes=16)
                                    recall f1-score
                                                        support
                    0
                             1.00
                                       0.96
                                                 0.98
                                                             25
                    1
                             0.98
                                       1.00
                                                 0.99
                                                             55
                                                 0.99
                                                             80
             accuracy
                             0.99
                                       0.98
                                                 0.99
                                                             80
            macro avg
                             0.99
                                       0.99
                                                 0.99
                                                             80
         weighted avg
         Accuracy of Decision Tree is: 0.9875
         Computation time 0.699 - Sec
                 True Neg
                                    False Pos
```



```
In [32]: auc = roc_auc_score(y_test, y_pred_dt)
print('AUC: %.2f' % auc)

fpr, tpr, thresholds = roc_curve(y_test, y_pred_dt)
plot_roc_curve(fpr, tpr)
```


Random Forest Hyper parameter tuning

```
In [33]: | from sklearn.ensemble import RandomForestClassifier
         param_grid = {"n_estimators": np.arange(2, 300, 2),
                        "max_depth": np.arange(1, 28, 1),
                        "min_samples_split": np.arange(1,150,1),
                        "min_samples_leaf": np.arange(1,60,1),
                        "max_leaf_nodes": np.arange(2,60,1),
                        "min_weight_fraction_leaf": np.arange(0.1,0.4, 0.1)}
         start rf = time.time()
         rf = RandomizedSearchCV(RandomForestClassifier(),
                                  param_grid,
                                  scoring='f1',
                                  random_state=4658,
                                  n_iter=20)
         rf_model = rf.fit(X_train, y_train)
         end_rf = time.time()
         final_rf = end_rf - start_rf
         final_rf = round(final_rf,3)
         final_rf
         # Print the tuned parameters and score
         print("Tuned Random Tree Parameters: {}".format(rf_model.best_params_))
         print("Best score is {}".format(rf_model.best_score_))
         print("Best estimator is {}".format(rf_model.best_estimator_))
         y_pred_rf = rf_model.predict(X_test)
         display_confusion_matrix(y_test, y_pred_rf)
         accuracy_rf=accuracy_score(y_test, y_pred_rf)
         print("Accuracy of Random Forests model is :", accuracy_rf)
         print("Computation time {} - Sec".format(final_rf))
         Tuned Random Tree Parameters: {'n_estimators': 168, 'min_weight_fraction_leaf': 0.2, 'min_samples_split': 41,
         'min samples leaf': 28, 'max leaf nodes': 52, 'max depth': 17}
         Best score is 0.9742257742257742
         Best estimator is RandomForestClassifier(max_depth=17, max_leaf_nodes=52, min_samples_leaf=28,
                                 min_samples_split=41, min_weight_fraction_leaf=0.2,
                                n_estimators=168)
                                    recall f1-score
                       precision
                                                        support
                    0
                            0.93
                                       1.00
                                                 0.96
                                                             25
                    1
                            1.00
                                       0.96
                                                 0.98
                                                             55
                                                 0.97
                                                             80
             accuracy
            macro avg
                            0.96
                                       0.98
                                                 0.97
                                                             80
         weighted avg
                            0.98
                                       0.97
                                                 0.98
                                                             80
```

Accuracy of Random Forests model is : 0.975 Computation time 21.179 - Sec


```
In [34]: auc = roc_auc_score(y_test, y_pred_rf)
    print('AUC: %.2f' % auc)

fpr, tpr, thresholds = roc_curve(y_test, y_pred_rf)
    plot_roc_curve(fpr, tpr)
```


Support Vector Machine Hyper parameter tuning

```
In [35]: from sklearn.svm import SVC
       # defining parameter range
       param_grid = {'C': [0.1, 1, 10, 100, 1000],
                  'gamma': [1, 0.1, 0.01, 0.001, 0.0001],
                  'kernel': ['rbf']}
       start_svm = time.time()
       svm = GridSearchCV(SVC(), param_grid, refit = True, verbose = 3)
       # fitting the model for grid search
       svm.fit(X_train, y_train)
       end_svm = time.time()
       final_svm = end_svm - start_svm
       final_svm = round(final_svm,3)
       final_svm
       # Print the tuned parameters and score
       print("Tuned Support Vector Machine Parameters: {}".format(svm.best_params_))
       print("Best score is {}".format(svm.best_score_))
       print("Best estimator is {}".format(svm.best_estimator_))
       Fitting 5 folds for each of 25 candidates, totalling 125 fits
       [CV] C=0.1, gamma=1, kernel=rbf ......
       [CV] ...... C=0.1, gamma=1, kernel=rbf, score=0.609, total= 0.0s
       [CV] C=0.1, gamma=1, kernel=rbf ......
       [CV] ...... C=0.1, gamma=1, kernel=rbf, score=0.609, total= 0.0s
       [CV] C=0.1, gamma=1, kernel=rbf ......
       [CV] ...... C=0.1, gamma=1, kernel=rbf, score=0.609, total= 0.0s
       [CV] C=0.1, gamma=1, kernel=rbf ......
       [CV] ...... C=0.1, gamma=1, kernel=rbf, score=0.609, total= 0.0s
       [CV] C=0.1, gamma=1, kernel=rbf ......
       [CV] ...... C=0.1, gamma=1, kernel=rbf, score=0.609, total= 0.0s
       [CV] ...... C=0.1, gamma=0.1, kernel=rbf, score=0.609, total= 0.0s
       [CV] C=0.1, gamma=0.1, kernel=rbf ......
       [CV] ...... C=0.1, gamma=0.1, kernel=rbf, score=0.609, total= 0.0s
       [CV] ...... C=0.1, gamma=0.1, kernel=rbf, score=0.609, total= 0.0s
       [CV] ...... C=0.1, gamma=0.1, kernel=rbf, score=0.609, total= 0.0s
```

```
In [36]: y_pred_svm = svm.predict(X_test)
    display_confusion_matrix(y_test, y_pred_svm)
    accuracy_svm=accuracy_score(y_test, y_pred_svm)
    print("Accuracy of Support Vector Machine is :", accuracy_svm)
    print("Computation time {} - Sec".format(final_svm))
```

	precision	recall	f1-score	support
0	0.83	0.60	0.70	25
1	0.84	0.95	0.89	55
accuracy			0.84	80
macro avg	0.84	0.77	0.79	80
weighted avg	0.84	0.84	0.83	80

Accuracy of Support Vector Machine is : 0.8375 Computation time 1.123 - Sec


```
In [37]: auc = roc_auc_score(y_test, y_pred_svm)
print('AUC: %.2f' % auc)

fpr, tpr, thresholds = roc_curve(y_test, y_pred_svm)
plot_roc_curve(fpr, tpr)
```

AUC: 0.77

Artificial neural network

```
In [38]: from sklearn.neural_network import MLPClassifier
        # defining parameter range
        param_grid = {
                    'max_iter': [1000]
        start_mlp = time.time()
        mlp = GridSearchCV(MLPClassifier(), param grid, refit = True, verbose = 3)
        # fitting the model for grid search
        mlp.fit(X_train, y_train.values.ravel())
        end_mlp = time.time()
        final mlp = end mlp - start mlp
        final_mlp = round(final_mlp,3)
        final mlp
        # Print the tuned parameters and score
        print("Tuned Artificial neural network Parameters: {}".format(mlp.best_params_))
        print("Best score is {}".format(mlp.best_score_))
        print("Best estimator is {}".format(mlp.best_estimator_))
        Fitting 5 folds for each of 1 candidates, totalling 5 fits
        [CV] max_iter=1000 ......
        [CV] ..... max_iter=1000, score=0.812, total= 0.2s
        [CV] max_iter=1000 ......
        [Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
        [Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed:
                                                      0.2s remaining:
        [CV] ..... max_iter=1000, score=0.703, total= 0.2s
        [CV] max_iter=1000 ......
        [CV] ..... max_iter=1000, score=0.828, total= 0.1s
        [CV] max_iter=1000 ......
        [Parallel(n_jobs=1)]: Done 2 out of 2 | elapsed:
                                                        0.4s remaining:
                                                                        0.0s
        [CV] ..... max_iter=1000, score=0.844, total= 0.1s
        [CV] max_iter=1000 ......
        [CV] ..... max_iter=1000, score=0.594, total= 0.1s
        Tuned Artificial neural network Parameters: {'max iter': 1000}
        Best score is 0.75625
        Best estimator is MLPClassifier(max_iter=1000)
        [Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed:
                                                        0.7s finished
In [39]: y_pred_mlp = mlp.predict(X_test)
        display_confusion_matrix(y_test, y_pred_mlp)
        accuracy_mlp=accuracy_score(y_test, y_pred_mlp)
        print("Accuracy of Artificial neural network is :", accuracy_mlp)
        print("Computation time {} - Sec".format(final_mlp))
                              recall f1-score
                    precision
                                               support
                        0.54
                                1.00
                                         0.70
                                                    25
                        1.00
                                         0.76
                 1
                                 0.62
                                                    55
                                         0.74
                                                    80
           accuracy
          macro avg
                        0.77
                                 0.81
                                         0.73
                                                    80
        weighted avg
                        0.86
                                 0.74
                                         0.75
                                                    80
        Accuracy of Artificial neural network is: 0.7375
        Computation time 0.836 - Sec
```



```
In [40]: auc = roc_auc_score(y_test, y_pred_mlp)
    print('AUC: %.2f' % auc)

fpr, tpr, thresholds = roc_curve(y_test, y_pred_mlp)
    plot_roc_curve(fpr, tpr)
```



```
In [41]: accuracies1 = [accuracy_lr,accuracy_dt,accuracy_rf, accuracy_svm, accuracy_mlp]
    final_time1 = [final_lr,final_dt,final_rf, final_svm, final_mlp]
    print(accuracies1)
    print(final_time1)

models= ['LogisticRegression', 'DecisionTrees', 'RandomForests', 'Support Vector Machine', 'Artificial neural net)
```

[0.9375, 0.9875, 0.975, 0.8375, 0.7375] [3.255, 0.699, 21.179, 1.123, 0.836]

```
In [42]: # Figure Size
         fig, ax = plt.subplots(figsize =(16, 9))
         # Horizontal Bar Plot
         ax.barh(models, accuracies1)
         # Remove axes splines
         for s in ['top', 'bottom', 'left', 'right']:
             ax.spines[s].set_visible(False)
         # Remove x, y Ticks
         ax.xaxis.set_ticks_position('none')
         ax.yaxis.set_ticks_position('none')
         # Add padding between axes and labels
         ax.xaxis.set_tick_params(pad = 5)
         ax.yaxis.set_tick_params(pad = 10)
         # Add x, y gridlines
         ax.grid(b = True, color ='grey',
                 linestyle ='-.', linewidth = 0.5,
                 alpha = 0.2)
         # Show top values
         ax.invert_yaxis()
         # Add annotation to bars
         for i in ax.patches:
             plt.text(i.get_width()+0.2, i.get_y()+0.5,
                     str(round((i.get_width()), 2)),
                     fontsize = 10, fontweight ='bold',
                     color ='grey')
         ax.set_title('Accuracy of different models', loc ='left')
         plt.show()
```


StandardScaler data with PCA implementation

```
In [43]: # performing preprocessing part
    from sklearn.preprocessing import StandardScaler
    sc = StandardScaler()
        X_train = sc.fit_transform(X_train)
        X_test = sc.transform(X_test)

In [44]: # Applying PCA function on training and testing set of X component
    from sklearn.decomposition import PCA
    pca = PCA(n_components = 2)
        X_train = pca.fit_transform(X_train)
        X_test = pca.transform(X_test)
        explained_variance = pca.explained_variance_ratio_
        explained_variance
```

Out[44]: array([0.30943656, 0.07796664])

```
In [45]: c_space = np.logspace(-5, 8, 15)
         param_grid = {'C': c_space}
         start_lr = time.time()
         lr = GridSearchCV(LogisticRegression(),
                           param_grid,
                           cv = 5)
         lr.fit(X_train, y_train)
         end_lr = time.time()
         final_lr = end_lr - start_lr
         final_lr = round(final_lr,3)
         final_lr
         # Print the tuned parameters and score
         print("Tuned Logistic Regression Parameters: {}".format(lr.best_params_))
         print("Best score is {}".format(lr.best_score_))
         print("Best estimator is {} \n\n".format(lr.best_estimator_))
         y_pred_lr = lr.predict(X_test)
         display_confusion_matrix(y_test, y_pred_lr)
         accuracy_lr=accuracy_score(y_test, y_pred_lr)
         print("\nAccuracy of Logistic Regression is :", accuracy_lr)
         print("Computation time {} - Sec".format(final_lr))
```

Tuned Logistic Regression Parameters: {'C': 3.727593720314938}
Best score is 0.978125
Best estimator is LogisticRegression(C=3.727593720314938)

	precision	recall	f1-score	support
0	1.00	1.00	1.00	25
1	1.00	1.00	1.00	55
accuracy			1.00	80
macro avg	1.00	1.00	1.00	80
weighted avg	1.00	1.00	1.00	80

Accuracy of Logistic Regression is : 1.0 Computation time 0.407 - Sec


```
In [46]: auc = roc_auc_score(y_test, y_pred_lr)
print('AUC: %.2f' % auc)

fpr, tpr, thresholds = roc_curve(y_test, y_pred_lr)
plot_roc_curve(fpr, tpr)
```

AUC: 1.00

Decision Tree Hyper parameter tuning

```
In [47]: hyperparam_combs = {
             'max_depth': [4, 6, 8, 10, 12],
             'criterion': ['gini', 'entropy'],
              'min_samples_split': [2, 10, 20, 30, 40],
              'max_features': [0.2, 0.4, 0.6, 0.8, 1],
             'max_leaf_nodes': [8, 16, 32, 64, 128],
             'class_weight': [{0: 1, 1: 1}, {0: 1, 1: 2}, {0: 1, 1: 3}, {0: 1, 1: 4}, {0: 1, 1: 5}]
         start_dt = time.time()
         clf = RandomizedSearchCV(DecisionTreeClassifier(),
                                  hyperparam_combs,
                                  scoring='f1',
                                  random_state=1,
                                  n_iter=20)
         dt_model = clf.fit(X_train, y_train)
         end_dt = time.time()
         final_dt = end_dt - start_dt
         final_dt = round(final_dt,3)
         final_dt
         # Print the tuned parameters and score
         print("Tuned Decision Tree Parameters: {}".format(dt_model.best_params_))
         print("Best score is {}".format(dt_model.best_score_))
         print("Best estimator is {}".format(dt_model.best_estimator_))
         y_pred_dt = dt_model.predict(X_test)
         display_confusion_matrix(y_test, y_pred_dt)
         accuracy_dt=accuracy_score(y_test, y_pred_dt)
         print("Accuracy of Decision Tree is :", accuracy_dt)
         print("Computation time {} - Sec".format(final_dt))
         Tuned Decision Tree Parameters: {'min_samples_split': 20, 'max_leaf_nodes': 64, 'max_features': 0.6, 'max_dep
         th': 6, 'criterion': 'gini', 'class_weight': {0: 1, 1: 5}}
         Best score is 0.9872768581629341
         Best estimator is DecisionTreeClassifier(class_weight={0: 1, 1: 5}, max_depth=6, max_features=0.6,
                                max_leaf_nodes=64, min_samples_split=20)
                       precision
                                    recall f1-score
                                                      support
                    0
                            1.00
                                      1.00
                                                 1.00
                                                             25
                    1
                            1.00
                                       1.00
                                                 1.00
                                                             55
                                                             80
                                                 1.00
             accuracy
            macro avg
                            1.00
                                      1.00
                                                 1.00
                                                             80
         weighted avg
                            1.00
                                      1.00
                                                 1.00
                                                             80
         Accuracy of Decision Tree is: 1.0
         Computation time 0.225 - Sec
```

50 True Neg False Pos 0 0 40 31.25% 0.00% 30 20 False Neg True Pos 0 55 0.00% 68.75% 10 0 1 0

```
In [48]: auc = roc_auc_score(y_test, y_pred_dt)
print('AUC: %.2f' % auc)

fpr, tpr, thresholds = roc_curve(y_test, y_pred_dt)
plot_roc_curve(fpr, tpr)
```

AUC: 1.00

Random Forest Hyper parameter tuning

```
In [49]: param_grid = {"n_estimators": np.arange(2, 300, 2),
                       "max_depth": np.arange(1, 28, 1),
                       "min_samples_split": np.arange(1,150,1),
                       "min_samples_leaf": np.arange(1,60,1),
                       "max_leaf_nodes": np.arange(2,60,1),
                       "min_weight_fraction_leaf": np.arange(0.1,0.4, 0.1)}
         start_rf = time.time()
         rf = RandomizedSearchCV(RandomForestClassifier(),
                                  param grid,
                                  scoring='f1',
                                  random_state=4658,
                                  n_iter=20)
         rf_model = rf.fit(X_train, y_train)
         end_rf = time.time()
         final_rf = end_rf - start_rf
         final_rf = round(final_rf,3)
         final_rf
         # Print the tuned parameters and score
         print("Tuned Random Tree Parameters: {}".format(rf_model.best_params_))
         print("Best score is {}".format(rf_model.best_score_))
         print("Best estimator is {}".format(rf_model.best_estimator_))
         y_pred_rf = rf_model.predict(X_test)
         display_confusion_matrix(y_test, y_pred_rf)
         accuracy_rf=accuracy_score(y_test, y_pred_rf)
         print("Accuracy of Random Forests model is :", accuracy_rf)
         print("Computation time {} - Sec".format(final_rf))
         Tuned Random Tree Parameters: {'n_estimators': 240, 'min_weight_fraction_leaf': 0.1, 'min_samples_split': 52,
         'min_samples_leaf': 38, 'max_leaf_nodes': 39, 'max_depth': 26}
         Best score is 0.9872768581629341
         Best estimator is RandomForestClassifier(max depth=26, max leaf nodes=39, min samples leaf=38,
                                min_samples_split=52, min_weight_fraction_leaf=0.1,
                                n_estimators=240)
                       precision
                                    recall f1-score
                                                        support
                    0
                            1.00
                                      1.00
                                                 1.00
                                                             25
                    1
                            1.00
                                      1.00
                                                 1.00
                                                             55
             accuracy
                                                 1.00
                                                             80
                                                 1.00
                                                             80
                            1.00
                                       1.00
            macro avg
         weighted avg
                            1.00
                                       1.00
                                                 1.00
                                                             80
```

Accuracy of Random Forests model is : 1.0 Computation time 20.392 - Sec


```
In [50]: auc = roc_auc_score(y_test, y_pred_rf)
print('AUC: %.2f' % auc)

fpr, tpr, thresholds = roc_curve(y_test, y_pred_rf)
plot_roc_curve(fpr, tpr)
```

AUC: 1.00

Support Vector Machine Hyper parameter tuning

```
In [51]: # defining parameter range
       param grid = \{'C': [0.1, 1, 10, 100, 1000],
                  'gamma': [1, 0.1, 0.01, 0.001, 0.0001],
                  'kernel': ['rbf']}
       start_svm = time.time()
       svm = GridSearchCV(SVC(), param_grid, refit = True, verbose = 3)
       # fitting the model for grid search
       svm.fit(X_train, y_train)
       end svm = time.time()
       final_svm = end_svm - start_svm
       final_svm = round(final_svm,3)
       final_svm
       # Print the tuned parameters and score
       print("Tuned Support Vector Machine Parameters: {}".format(svm.best_params_))
       print("Best score is {}".format(svm.best_score_))
       print("Best estimator is {}".format(svm.best_estimator_))
       Fitting 5 folds for each of 25 candidates, totalling 125 fits
       [CV] C=0.1, gamma=1, kernel=rbf ......
       [CV] ...... C=0.1, gamma=1, kernel=rbf, score=0.984, total= 0.0s
       [CV] C=0.1, gamma=1, kernel=rbf ......
       [CV] ...... C=0.1, gamma=1, kernel=rbf, score=0.984, total= 0.0s
       [CV] C=0.1, gamma=1, kernel=rbf ......
       [CV] ...... C=0.1, gamma=1, kernel=rbf, score=0.984, total= 0.0s
       [CV] C=0.1, gamma=1, kernel=rbf ......
       [CV] ...... C=0.1, gamma=1, kernel=rbf, score=0.969, total= 0.0s
       [CV] C=0.1, gamma=1, kernel=rbf ......
       [CV] ...... C=0.1, gamma=1, kernel=rbf, score=1.000, total= 0.0s
       [CV] ...... C=0.1, gamma=0.1, kernel=rbf, score=0.953, total= 0.0s
       [CV] ..... C=0.1, gamma=0.1, kernel=rbf, score=0.984, total= 0.0s
       [CV] C=0.1, gamma=0.1, kernel=rbf ......
       [CV] ...... C=0.1, gamma=0.1, kernel=rbf, score=0.969, total= 0.0s
       [CV] ...... C=0.1, gamma=0.1, kernel=rbf, score=0.953, total= 0.0s
```

```
In [52]: y_pred_svm = svm.predict(X_test)
    display_confusion_matrix(y_test, y_pred_svm)
    accuracy_svm=accuracy_score(y_test, y_pred_svm)
    print("Accuracy of Support Vector Machine is :", accuracy_svm)
    print("Computation time {} - Sec".format(final_svm))
```

	precision	recall	f1-score	support
0	0.89	1.00	0.94	25
1	1.00	0.95	0.97	55
accuracy			0.96	80
macro avg	0.95	0.97	0.96	80
weighted avg	0.97	0.96	0.96	80

Accuracy of Support Vector Machine is : 0.9625 Computation time 0.359 - Sec


```
In [53]: auc = roc_auc_score(y_test, y_pred_svm)
print('AUC: %.2f' % auc)

fpr, tpr, thresholds = roc_curve(y_test, y_pred_svm)
plot_roc_curve(fpr, tpr)
```

AUC: 0.97

Artificial neural network

```
In [54]: # defining parameter range
       param_grid = {
                    'max_iter': [1000]
       start mlp = time.time()
       mlp = GridSearchCV(MLPClassifier(), param_grid, refit = True, verbose = 3)
       # fitting the model for grid search
       mlp.fit(X_train, y_train.values.ravel())
       end_mlp = time.time()
       final_mlp = end_mlp - start_mlp
       final_mlp = round(final_mlp,3)
       final_mlp
       # Print the tuned parameters and score
       print("Tuned Artificial neural network Parameters: {}".format(mlp.best_params_))
       print("Best score is {}".format(mlp.best_score_))
       print("Best estimator is {}".format(mlp.best_estimator_))
       Fitting 5 folds for each of 1 candidates, totalling 5 fits
       [CV] max_iter=1000 .....
       [Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
        [CV] ..... max_iter=1000, score=0.984, total= 0.6s
       [CV] max_iter=1000 ......
        [Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed:
                                                     0.6s remaining:
                                                                       0.0s
        [CV] ..... max_iter=1000, score=0.984, total= 0.7s
        [CV] max_iter=1000 ......
        [Parallel(n_jobs=1)]: Done 2 out of 2 | elapsed:
                                                      1.3s remaining:
                                                                       0.0s
        [CV] ..... max_iter=1000, score=0.969, total= 0.6s
        [CV] max_iter=1000 ......
        [CV] ..... max_iter=1000, score=0.969, total= 0.6s
        [CV] max_iter=1000 ......
        [CV] ..... max_iter=1000, score=1.000, total= 0.5s
        [Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed:
                                                       2.9s finished
       Tuned Artificial neural network Parameters: {'max_iter': 1000}
       Best score is 0.98125
       Best estimator is MLPClassifier(max_iter=1000)
In [55]: y_pred_mlp = mlp.predict(X_test)
       display_confusion_matrix(y_test, y_pred_mlp)
       accuracy_mlp=accuracy_score(y_test, y_pred_mlp)
       print("Accuracy of Artificial neural network is :", accuracy_mlp)
       print("Computation time {} - Sec".format(final_mlp))
                   precision
                              recall f1-score
                                              support
                 0
                        0.96
                                1.00
                                         0.98
                                                   25
                 1
                        1.00
                                0.98
                                         0.99
                                                   55
                                                   80
                                         0.99
           accuracy
```

0.99 0.98 0.99 macro avg 80 weighted avg 0.99 0.99 0.99 80

Accuracy of Artificial neural network is: 0.9875 Computation time 3.391 - Sec


```
In [56]: auc = roc_auc_score(y_test, y_pred_mlp)
    print('AUC: %.2f' % auc)

fpr, tpr, thresholds = roc_curve(y_test, y_pred_mlp)
    plot_roc_curve(fpr, tpr)
```



```
In [57]: accuracies2 = [accuracy_lr,accuracy_dt,accuracy_rf, accuracy_svm, accuracy_mlp]
final_time2 = [final_lr,final_dt,final_rf, final_svm, final_mlp]
print(accuracies2)
print(final_time2)
```

[1.0, 1.0, 1.0, 0.9625, 0.9875] [0.407, 0.225, 20.392, 0.359, 3.391]

```
In [58]: # Figure Size
         fig, ax = plt.subplots(figsize =(16, 9))
         # Horizontal Bar Plot
         ax.barh(models, accuracies2)
         # Remove axes splines
         for s in ['top', 'bottom', 'left', 'right']:
             ax.spines[s].set_visible(False)
         # Remove x, y Ticks
         ax.xaxis.set_ticks_position('none')
         ax.yaxis.set_ticks_position('none')
         # Add padding between axes and labels
         ax.xaxis.set_tick_params(pad = 5)
         ax.yaxis.set_tick_params(pad = 10)
         # Add x, y gridlines
         ax.grid(b = True, color ='grey',
                 linestyle ='-.', linewidth = 0.5,
                 alpha = 0.2)
         # Show top values
         ax.invert_yaxis()
         # Add annotation to bars
         for i in ax.patches:
             plt.text(i.get_width()+0.2, i.get_y()+0.5,
                     str(round((i.get_width()), 2)),
                     fontsize = 10, fontweight ='bold',
                     color ='grey')
         ax.set_title('Accuracy of different models', loc ='left')
         plt.show()
```

