## Part 1

## **Domain**

D1.tex

**Exercise** 1 The following is the graph of an exponential function, f(x).



Which of the following could be a formula for f(x)?

Multiple Choice:

(a) 
$$-2^x + 1$$

(b) 
$$\left(\frac{1}{2}\right)^x - 1$$

(c) 
$$2^{-x} + 1$$

$$(d) \left(\frac{1}{2}\right)^{-x} - 1$$

D2.tex

**Exercise 2** Use the graph of y = f(x) and the table for g(x) below to find the requested function values.



$$\begin{array}{c|cc}
x & g(x) \\
\hline
0 & 0 \\
1 & 3 \\
2 & 3 \\
3 & 0 \\
4 & 4
\end{array}$$

$$(f+g)(1) = \boxed{5}$$

$$(g-f)(2) = \boxed{0}$$

$$\left(\frac{f}{g}\right)(4) = \boxed{0}$$

$$\left(\frac{g}{f}\right)(2) = \boxed{1}$$

D3.tex

Let 
$$f(x) = \frac{2x^2 - 4x + 5}{2x^2 - x}$$
.

**Exercise 3** How many vertical asymptotes does f have?  $\boxed{2}$ .

**Exercise** 3.1 They are at: (List them in order from left to right)

$$x = \boxed{0}$$
 and  $x = \boxed{\frac{1}{2}}$ 

**Exercise** 3.1.1 The domain of f is: (List the intervals in order from left to right)

$$\left(\boxed{-\infty},\boxed{0}\right)\cup\left(\boxed{0},\boxed{\frac{1}{2}}\right)\cup\left(\boxed{\frac{1}{2}},\boxed{\infty}\right)$$

**Exercise** 4 What is the end behavior of f?

$$As \ x \to \infty, \quad f(x) \to \boxed{1}$$

$$As \ x \to -\infty, \quad f(x) \to \boxed{1}$$

**Exercise 4.1** Which of the following reasons justifies this? (Select all that apply)

Select All Correct Answers:

- (a) The degree of the numerator is less than the degree of the denominator.
- (b) The degree of the numerator equals the degree of the denominator.  $\checkmark$
- (c) The degree of the numerator is greater than the degree of the denominator.
- (d) It is the ratio of the leading coefficients.  $\checkmark$

**Exercise 4.1.1** How many horizontal asymptotes does f have?  $\boxed{1}$ .

Exercise 4.1.1.1 It is at:  $y = \lfloor 1 \rfloor$ .

D4.tex

**Exercise 5** A box with an open top is to be constructed from a rectangular piece of cardboard with dimensions 12 cm by 20 cm by cutting out equal squares of side x at each corner and then folding up the sides:



Express the volume V of the box as a function of x. (In factored form)

$$V(x) = x(20 - 2x)(12 - 2x)$$

**Feedback(attempt):** When folded up, what is the width of the box in terms of x? The length? The height?

**Exercise 5.1** *Multiply* out your answer above:

$$V(x) = 4x^3 + 64x^2 + 240x$$

**Exercise** 5.1.1 The domain of V is:

**Feedback(attempt):** Think about what x represents in the question. Can x be negative? Can the width or length of the box be negative?



The entire graph of a function f is given below. Use the graph of f to answer the questions.



## Exercise 6

Find the domain of f.

[-5], [3]

## Exercise 7

Solve f(x) = 4.

$$x = \boxed{-3}$$

**Exercise 8** Solve  $f(x) \ge 0$  using intervals written from left to right.

$$[\![-4],\![-1]\!]\cup[\![1],\![3]\!]$$

D6.tex

**Exercise** 9 The function f is defined by the formula  $f(x) = \frac{x-2}{3}$ .

The domain of f is  $(-\infty, \infty)$ .

**Exercise** 10 The function g is defined by the formula g(x) = 5.

The domain of g is  $(-\infty, \infty)$ .

**Exercise** 11 The function k is defined by the formula k(x) = 2x(x-4).

The domain of k is  $(-\infty)$ ,  $\infty$ .

D7.tex

**Exercise** 12 The function f is defined by the formula  $f(x) = 2\sqrt{x+3}$ .

The domain of f is  $[-3, \infty)$ .

**Exercise** 13 The function g is defined by the formula  $g(x) = \frac{2x}{x-1}$ .

The domain of g is  $(-\infty, 1) \cup (1, \infty)$ .

Feedback(attempt): Be sure to enter your intervals from left to right.

**Exercise** 14 The function k is defined by the formula  $k(x) = 2\sqrt{x+3} - \frac{2x}{x-1}$ .

The domain of 
$$k$$
 is  $[-3], [1] \cup ([1], [\infty])$ .

Feedback(attempt): Be sure to enter your intervals from left to right.

D8.tex

**Exercise** 15 The function f is defined by the formula  $f(x) = \ln(5 - 2x)$ .

The domain of 
$$f$$
 is  $\left( \boxed{-\infty}, \boxed{\frac{5}{2}} \right)$ .

**Exercise** 16 The function g is defined by the formula  $g(x) = \sin(x)$ .

The domain of 
$$g$$
 is  $(-\infty, \infty)$ .

**Exercise** 17 The function k is defined by the formula  $k(x) = \sqrt[4]{3x+1}$ .

The domain of 
$$k$$
 is  $\left[-\frac{1}{3}, \infty\right)$ .

**Exercise 18** The function t is defined by the formula  $t(x) = 2\ln(5-2x) + 6\sin(x) - \sqrt[4]{3x-1}$ .

The domain of t is 
$$\left[ -\frac{1}{3}, \frac{5}{2} \right]$$

D9.tex

A right circular cone has a **fixed slant height** of 7 m. Call h the height of the cone and r the radius, as in the figure below.



**Exercise** 19 h is a function of r. The formula for h(r) is given by:

$$h(r) = \boxed{\sqrt{49 - r^2}}$$

.

**Hint:** Notice that h and r form the legs of a right triangle with the slant height of the cone as its hypotenuse. Think about the Pythagorean Theorem  $a^2 + b^2 = c^2$ .

**Exercise** 19.1 The domain of h is:  $\begin{bmatrix} -7 \\ \end{bmatrix}$ .

**Hint:** You know that  $49 - r^2$  can not be negative. Try plotting the parabola  $y = 49 - x^2$  and seeing where the graph is above the x-axis.