Физико-технический мегафакультет

Физический факультет

Группа_М3304	_К работе допущен
Студент Васильков Д.А, Лавренов Д.А.	- .
Преподаватель Шоев В.И.	

Рабочий протокол и отчет по лабораторной работе №5.02 "Внешний фотоэффект. Исследование характеристик фотоэлемента с внешним фотоэффектом"

- 1) Цель работы
 - 1. Исследование характеристик фотоэлемента с внешним фотоэффектом
- 2) Задачи, решаемые при выполнении работы
 - 1. Проверка опытным путем справедливости законов фотоэффекта
 - Определение порога фотоэффекта по вольт-амперной и спектральной характеристикам
- 3) Объект исследования

Вырывающиеся из вещества электроны

4) Метод экспериментального исследования

Наблюдение фотоэффекта

- 5) Рабочие формулы и исходные данные
 - 1. Длина волны света:

$$\lambda = \frac{c}{\lambda}$$

2. Частота волны: $v = \frac{c}{\lambda}$

$$v = \frac{c}{\lambda}$$

3. Формула Эйнштейна:

$$h\nu = A_{\rm B} + E_{
m K.MAKC} = A_{\rm B} + rac{m_e V^2}{2}$$

4. Формула Эйнштейна для полупроводников:

$$h\nu = E_i + E_{\text{к.макс}}$$

5. Определение максимальной кинетической энергии электронов при фотоэффекте:

$$\frac{m_e V_{max}^2}{2} = -e(V_A + V_C) = e(V_B - V_A)$$

6) Измерительные приборы

№ п/п	Наименование	Тип прибора	Используемый	Погрешность
			диапазон	прибора
1	Амперметр	Электронный	0 – 20 мкА	0,005 A
2	Вольтметр	Электронный	0 - 20 B	0,05 B

7) Схема установки.

Рис. 1. Схема рабочей установки

В качестве источников света в лабораторной установке используется набор светодиодов (кластер), излучающих в различных узких диапазонах длин волн. Эти диапазоны лежат в видимой и инфракрасной частях спектра. В качестве фотоэмиттера используется катод фотоэлемента (или полупрозрачный катод фотоэлектронного умножителя), изготовленный из полупроводника. Роль анода у фотоэлектронного умножителя играют соединенные между собой диноды. Фотоэлектроны, выбитые из фотокатода ускоряются электрическим полем и бомбардируют первый динод. Так как они обладают большой кинетической энергией, то один электрон может выбить из динода несколько электронов.

8) Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

$$\frac{J}{J_{0 \text{ светл}}} = 1.115; \frac{J}{J_{0 \text{ темн}}} = 0.11;$$
 $\lambda_2 = 520 \text{ нм}$

U прямое, В	І _{свет} , мкА	І _{темн} , мкА	І _{фото} ,мкА	I _{фото} ,мкА U обратное, В		І _{темн} , мкА	І _{фото} ,мкА
0	0,48	0,05	0,43	0,0	0,50	0,08	0,42
1	1,60	0,21	1,39	0,5	0,07	0,08	-0,01
2	2,22	0,25	1,97	1,0	0,04	0,06	-0,02
3	2,68	0,40	2,28	1,5	0,04	0,04	0,00
4	2,99	0,46	2,53	2,0	0,01	0,00	0,01
5	3,22	0,60	2,62	2,5	-0,05	-0,02	-0,03
6	3,45	0,66	2,79	3,0	-0,07	-0,05	-0,02
7	3,60	0,77	2,83				
8	3,76	0,85	2,91				

9	3,90	0,92	2,98
10	4,06	1,05	3,01
11	4,18	1,16	3,02
12	4,28	1,25	3,03

$$rac{J}{J_{0 \; { ext{\tiny CBETJ}}}} = 1.115; \; rac{J}{J_{0 \; { ext{\tiny TEMH}}}} = 0.11; \ \lambda_3 = 565 \; { ext{hm}}$$

U прямое, В	І _{свет} , мкА	I _{темн} , мкА	I _{фото} ,мк А	U обратное, В	І _{свет} , мкА	I _{темн} , мкА	І _{фото} ,мкА
0	0,38	0,05	0,33	0,0	0,39	0,08	0,31
1	1,30	0,17	1,13	0,5	0,06	0,08	-0,02
2	1,90	0,28	1,62	1,0	0,05	0,06	-0,01
3	2,24	0,39	1,85	1,5	0,04	0,04	0,00
4	2,48	0,49	1,99	2,0	0,01	0,00	0,01
5	2,69	0,59	2,10	2,5	-0,05	-0,02	-0,03
6	2,87	0,62	2,25	3,0	-0,07	-0,05	-0,02
7	3,00	0,73	2,27				
8	3,18	0,85	2,33				
9	3,30	0,95	2,35				
10	3,46	1,05	2,41				
11	3,57	1,15	2,42				

2,44

$$rac{J}{J_{0 \; { ext{\tiny CBETJ}}}} = 1.115; \; rac{J}{J_{0 \; { ext{\tiny TEMH}}}} = 0.11; \ \lambda_4 = 590 \; { ext{\tiny HM}}$$

3,64

3,58

1,20

1,20

11 12

12

U прямое, B	I NATE A	I NATE A	Ι. ΜΙζΔ	U обратное, В	I MICA	I MICA	Ι. ΜΙζ Δ
о прямое, в	I _{свет} , мкА	$I_{\text{темн}}$, мкА	I _{фото} ,мкА	о обратное, в	$I_{\text{свет}}$, мк A	$I_{\text{темн}}$, мкА	${ m I}_{ m \phi o ext{ro}}$,мк ${ m A}$
0	0,38	0,08	0,30	0,0	0,38	0,08	0,3
1	1,35	0,20	1,15	0,5	0,06	0,08	-0,02
2	1,90	0,28	1,62	1,0	0,07	0,06	0,01
3	2,28	0,39	1,89	1,5	0,04	0,04	0
4	2,52	0,49	2,03	2,0	0,01	0,00	0,01
5	2,74	0,56	2,18	2,5	-0,05	-0,02	-0,03
6	2,87	0,65	2,22	3,0	-0,07	-0,05	-0,02
7	2,99	0,72	2,27				
8	3,09	0,85	2,24				
9	3,28	0,95	2,33				
10	3,39	0,99	2,40				
11	3,48	1,15	2,33				

2,38

$$E_{\text{max k}} = e(U_{\text{B}} - U_{\text{A}})$$

$$v = \frac{c}{\lambda}$$

$$v_0 = v - \frac{E_{\text{k max}}}{h}$$

$$egin{array}{ll} {\rm E}_{
m max\,1} = 2.4\cdot 10^{-19} \ {
m Дж} \\ {\it U}_{\it A1} &= 2.5 \ {
m B} \\ {\it U}_{\it B1} &= 4 \ {
m B} \\ {\it v}_{\it 1} = 5.76\cdot 10^{14} \ {
m \Gamma u} \\ {\it v}_{\it 0\,1} = 2.14\cdot 10^{14} \ {
m \Gamma u} \end{array}$$

$$E_{\max 2} = 9,6 \cdot 10^{-20}$$
 Дж $U_{A2} = 2,4$ В $U_{B2} = 3$ В $v_2 = 5,3 \cdot 10^{14}$ Гц $v_{02} = 3,85 \cdot 10^{14}$ Гц

$$E_{\max 3} = 2,72 \cdot 10^{-19}$$
 Дж $U_{A3} = 2,3$ В $U_{B3} = 4$ В $v_3 = 5,08 \cdot 10^{14}$ Гц $v_{03} = 9,75 \cdot 10^{13}$ Гц

2. Пункт 2

$$\label{eq:U} \begin{split} \mathbf{U} &= 18 \; \mathbf{B} \\ I_{\text{темн}} &= 1.88 \; \text{мкA} \end{split}$$

 $\lambda_2 = 520$ нм

71 <u>Z</u>		
J/J_0	$I_{\mathtt{CBET}}$, MKA	$I_{ m \phioto}$, мкА
0,1	2,00	0,12
0,2	2,28	0,40
0,3	2,58	0,70
0,4	2,83	0,95
0,5	3,09	1,21
0,6	3,44	1,56
0,7	3,62	1,74
0,8	3,94	2,06
0,9	4,23	2,35
1,0	4,52	2,64
1,1	4,75	2,87
1,2	5,05	3,17

$\lambda_3 = 565 \text{ нм}$

J/J_0	$I_{ m cBet}$, MKA	$I_{ m \phioto}$, мкА
0,1	1,95	0,07
0,2	2,12	0,24
0,3	2,32	0,44
0,4	2,60	0,72
0,5	2,82	0,94
0,6	3,04	1,16
0,7	3,20	1,32
0,8	3,46	1,58
0,9	3,68	1,80
1,0	3,90	2,02
1,1	4,15	2,27
1,2	4,35	2,47

3. Пункт 3

$$J/J_{0 \text{ CBETJ}} = 1.15$$

 $J/J_{0 \text{ TEMH}} = 0.01$
 $U = 18 \text{ B}$

λ, нм	430	470	520	565	590	660	700	860
$I_{ m cBeT}$, мкА	5,53	6,35	4,9	4,28	4,18	3,25	2,45	1,85
${ m I}_{{ m ext{\scriptsize TEMH}}}$, мкА	1,78	1,74	1,79	1,79	1,73	1,76	1,78	1,74
v, c ⁻¹	6,98 · 10 ¹⁴	6,38 · 10 ¹⁴	$5,77$ $\cdot 10^{14}$	5,31 · 10 ¹⁴	5,08 · 10 ¹⁴	4,55 · 10 ¹⁴	4,29 · 10 ¹⁴	3,49 · 10 ¹⁴
$I_{ m \phi o ext{ro}}$, мкА	3,75	4,61	3,11	2,49	2,45	1,49	0,67	0,11

9) Графики.

1. Пункт 1

2. Пункт 2

Зависимость $I_{\phi \text{ото}}$ от интенсивности - линейная

3. Пункт 3

$I_{ m \phi o au o}$ от частоты

$$v_{
m пороговая}=3,49\cdot 10^{14}\ \Gamma$$
ц

$${\rm A_{\scriptscriptstyle B}} = {\rm h\cdot v_0} = 2{,}31\cdot 10^{-19}\,{\rm Дж} \,=\, 1{,}44\,{\rm Эв} \,\Rightarrow\,$$
 материал фотокатода – цезий

10) Расчет погрешностей

$$\begin{split} \Delta E_{max\;k} &= \sqrt{(e\cdot\Delta U)^2 + (e\cdot\Delta U)^2} = 2.32\cdot 10^{-21}\text{Дж} \\ \Delta v_0 &= \sqrt{\left(\frac{-E_{max\;k}}{h}\right)^2} = 4.1\cdot 10^{12}\,\Gamma\text{ц} \end{split}$$

11)Окончательные результаты

При измерениях:

$$v_{0\,1} = 2,14 \cdot 10^{14} \pm 4.1 \cdot 10^{12}$$
 Гц $v_{0\,2} = 3,85 \cdot 10^{14} \pm 4.1 \cdot 10^{12}$ Гц $v_{0\,3} = 9,75 \cdot 10^{13} \pm 4.1 \cdot 10^{12}$ Гц

По графику:

$$v_{\text{пороговая}} = 3,49 \cdot 10^{14} \pm 4.1 \cdot 10^{12} \ \Gamma$$
ц

$$A_{_{\rm B}}=h\cdot v_0=2{,}31\cdot 10^{-19}$$
 Дж $\,=\,$ 1,44 Эв $\,\Rightarrow\,$ материал фотокатода – цезий

12)Выводы и анализ результатов работы.

В первом пункте работы были получены вольтамперные характеристики фотоэлемента для разных источников света. Установлена зависимость тока насыщения от интенсивности источника, которая оказалась прямо пропорциональной. По зависимости $I_{\phi \text{ото}}$ от длины волны определена красная граница фотоэффекта — $\lambda \sim 859$ нм.