Recommender Systems and DGL

Quan Gan

AWS Shanghai AI Lab

July 12, 2019

We don't want our customers to think (hard).

Good relevant recommendations make the customers adhere to us.

Dell SE2419Hx 23.8" IPS Full HD (1920x1080)

Seagate IronWolf 8TB NAS Internal Hard Drive HDD -

Silicon Power 256GB SSD 3D NAND A55 SLC Cache

Ubiquiti Networks Unifi 802.11ac Dual-Radio PRO

AmazonBasics Wired - ← 3 → -Computer Keyboard and

Good relevant recommendations make the customers adhere to us.

Recommender System: Problem Statement

Image source: Wikipedia

Collaborative Filtering

Collaborative Filtering

Collaborative Filtering

Image source: Wikipedia

• **User-based**: Infer how a user *i* would act to an item *j* by looking at how users that have similar interactions to user *i* acted to item *j*.

- **User-based**: Infer how a user *i* would act to an item *j* by looking at how users that have similar interactions to user *i* acted to item *j*.
 - We have millions of customers.

- **User-based**: Infer how a user *i* would act to an item *j* by looking at how users that have similar interactions to user *i* acted to item *j*.
 - We have millions of customers.
 - User profiles change constantly and quickly, requiring frequent rebuilds (which are expensive already).

- Item-based: Infer how a user i would act to an item j by looking at how items that have similar interactions to item j were being acted by user i.
 - Amazon used to have fewer items than users.

- **Item-based**: Infer how a user *i* would act to an item *j* by looking at how items that have similar interactions to item *j* were being acted by user *i*.
 - Amazon used to have fewer items than users.
 - Now we also have millions of items.

Machine Learning Kicks In

Machine Learning Kicks In

	Feature 1	Feature 2
User 1	?	?
User 2	?	?
User 3	?	?
User 4	?	?
User 5	?	?

	Item 1	Item 2	Item 3	Item 4	Item 5
Feature 1	?	?	?	?	?
Feature 2	?	?	?	?	?

	Item 1	Item 2	Item 3	Item 4	Item 5
User 1	°?	3	°?	3	°?
User 2	4	°?	°?	2	°?
User 3	⁰ ?	°?	3	°?	°?
User 4	3	0.3	4	°?	3
User 5	4	3	0.5	4	0.5

Latent Factor Model

 An item can be described with a set of features (e.g. how sweet some food is).

Latent Factor Model

- An item can be described with a set of features (e.g. how sweet some food is).
- A user can be described with preferences of the same set of features (e.g. how much a user likes sweet food).

	Feature 1	Feature 2				1	D)	Item 2	Item 3	Item 4	Item 5	
User 1	?	?	١,		Feature	-	_	?	?	?	?	
User 2	?	?	2	Κ	Feature	2 1	-	?	?	?	?	
User 3	?	?										
User 4	?	?										
User 5	?	?			Item 1	Item 2		Item 3	Itom 4	1	Item 5	
				User 1	°?	3	Ì	°?	3		°?	
				User 2	4	0?		°?	2	:	°?	
				User 3	°?	0?		3	0	?	⁰ ?	

Latent Factor Model

- An item can be described with a set of features (e.g. how sweet some food is).
- A user can be described with preferences of the same set of features (e.g. how much a user likes sweet food).
- The interaction is defined by how well the item features match the user preferences.

	Feature 1	Feature 2				Item 1	Item 2		Item 4	
Use	1 ?	?	١,	-	Feature	1 ?	?	?	? ?	
User	2 ?	?		Κ.	Feature	2 ?	?	?	? ?	
Use	3 ?	?								
Use	4 ?	?								
Use	5 ?	?			Item 1	Item 2	Item 3	Item 4	Item 5	
				User 1	°?	3	°?	3	0.	
				User 2	4	°?	⁰ ?	2	0.	?

- An item can be described with a vector v_i .
- A user can be described with preferences of the same set of features (e.g. how much a user likes sweet food).
- The interaction is defined by how well the item features match the user preferences.

- An item can be described with a vector v_i .
- A user can be described with another vector u_i
- The interaction is defined by how well the item features match the user preferences.

- An item can be described with a vector v_i .
- A user can be described with another vector u_i
- The rating on item j by user i. is defined by $u_i^{\top} v_i$.

	Feature 1	Feature 2				Item 1	Item 2
				Feature	1	?	?
User 1	?	?		Feature	2	?	?
User 2	?	?	A .	reature	_	ľ	
User 3	?	?					
User 4	?	?					
User 5	?	?		Item 1	ľ	Item 2	Item 3
			User 1	°?		3	0
		_	User 2	4		0-	0

Source: Kat Bailey

User 4 3

User 3 0 7

3 07

0.5

02

0,2

- An item can be described with a vector v_i .
- A user can be described with another vector u_i
- The rating on item j by user i. is defined by $u_i^{\top} v_i$.
- We minimize

$$\sum_{i,j} \left(r_{i,j} - \left(u_i^\top v_j \right) \right)^2$$

	Feature 1	Feature 2	
User 1	?	?	١,
User 2	?	?	١,
User 3	?	?	
User 4	?	?	
User 5	2	2	

	Item 1	Item 2	Item 3	Item 4	Item 5
User 1	°?	3	°?	3	°?
User 2	4	°?	°?	2	°?
User 3	٥?	°?	3	°?	°?
User 4	3	°?	4	°?	3
User 5	4	3	°?	4	°?

- An item can be described with a vector v_i .
- A user can be described with another vector u_i
- The rating on item j by user i. is defined by $u_i^{\top} v_i$.
- We minimize

$$\sum_{i,j} \left(r_{i,j} - \left(u_i^\top v_j + \boldsymbol{b}_{u_i} + \boldsymbol{b}_{v_j} \right) \right)^2$$

	Feature 1	Feature 2	
User 1	?	?	١,
User 2	?	?	١,
User 3	?	?	
User 4	?	?	
Hear 5	2	2	

	Item 1	Item 2	Item 3	Item 4	Item 5
User 1	°?	3	°?	3	°?
User 2	4	°?	°?	2	°?
User 3	٥?	°?	3	°?	°?
User 4	3	°?	4	°?	3
User 5	4	3	°?	4	°?

- An item can be described with a vector v_i .
- A user can be described with another vector u_i
- The rating on item j by user i. is defined by $u_i^{\top} v_i$.
- We minimize

$$\sum_{i,j} \left(r_{i,j} - \left(u_i^{\top} v_j + b_{u_i} + b_{v_j} \right) \right)^2 + \alpha \left(\|U\|_F^2 + \|V\|_F^2 \right)$$

	Feature 1	Feature 2
User 1	?	?
User 2	?	?
User 3	?	?
User 4	?	?
User 5	?	?

	Item 1	Item 2	Item 3	Item 4	Item 5
User 1	°?	3	°?	3	°2
User 2	4	°?	°?	2	°?
User 3	٥?	°?	3	°?	°?
User 4	3	°?	4	⁰ ?	3
User 5	4	3	⁰ ?	4	°?

- An item can be described with a vector v_i .
- A user can be described with another vector u_i
- The rating on item j by user i. is defined by $u_i^{\top} v_i$.
- We minimize

$$\sum_{(i,j)\in\mathcal{B}} \left(r_{i,j} - \left(u_i^\top v_j + b_{u_i} + b_{v_j} \right) \right)^2 + \alpha \left(\|U\|_F^2 + \|V\|_F^2 \right)$$

	Feature 1	Feature 2
User 1	?	?
User 2	?	?
User 3	?	?
User 4	?	?
User 5	?	?

	Item 1	Item 2	Item 3	Item 4	Item 5
User 1	°?	3	°?	3	°2
User 2	4	°?	°?	2	°?
User 3	۰?	٥?	3	°?	°?
User 4	3	⁰ ?	4	°?	3
User 5	4	3	⁰ ?	4	°?

What if we don't have ratings?

 For a given user i, an item being interacted j should have a higher score than another item k which was never being interacted.

- For a given user i, an item being interacted j should have a higher score than another item k which was never being interacted.
- We maximize

$$\sum_{i,j,k \in I \setminus I_{u_i}} \log \frac{1}{1 + \exp\left(u_i^\top v_k - u_i^\top v_j\right)}$$

- For a given user i, an item being interacted j should have a higher score than another item k which was never being interacted.
- We maximize

$$\sum_{i,j,k \in I \setminus I_{u_i}} \log \frac{1}{1 + \exp\left(u_i^\top v_k - u_i^\top v_j\right)}$$

- We usually sample one or multiple k when computing gradients (negative sampling).
 - Commonly uniformly, but adaptive sampling often helps.

• **Cold-start**: What if we have *new* users and items coming in, with few to no historical interactions?

- **Cold-start**: What if we have *new* users and items coming in, with few to no historical interactions?
- **Bias correction**: The training dataset usually comes from the result of a *previous* recommender system. How to mitigate the bias?

- **Cold-start**: What if we have *new* users and items coming in, with few to no historical interactions?
- **Bias correction**: The training dataset usually comes from the result of a *previous* recommender system. How to mitigate the bias?
- **Diversity**: Always recommending the same items (or even the same kind of item) to a user would make him/her feel *bored*.

- **Cold-start**: What if we have *new* users and items coming in, with few to no historical interactions?
- **Bias correction**: The training dataset usually comes from the result of a *previous* recommender system. How to mitigate the bias?
- Diversity: Always recommending the same items (or even the same kind of item) to a user would make him/her feel bored.
- **Fraud**: How to detect and deal with fabricated explicit feedbacks (e.g. fake ratings and reviews)?

Extensions of Matrix Factorization

- The score function of vanilla MF: $u_i^{\top} v_j$ where user and item representations are static and independent of each other (fixing the model).
- RNN To integrate user history, $u_i = f(v_{u,1}, v_{u,2}, \dots, v_{u,n})$
 - The user representation now depends on his/her previously interacted items.
- Graph-based models to integrate neighboring items/users (in the next slide).
 - The user representation could also depend on behaviors of other users/items.
- Can combine with content-based recommendation (i.e. with user and item features).
- Can combine both explicit and implicit feedbacks.

Extensions of Matrix Factorization (with Graph-based Models)

- Graph Convolutional Networks on an item copurchase graph
 - When new interactions are added, the copurchase graph and the item representation would also change as well.
 - GCN can also be replaced with other models such as GraphSAGE or PinSAGE (Hierarchical Temporal Convolutional Networks for Dynamic Recommender Systems, You et al., 2019)
- GCN on the user-item bipartite graph itself
 - With one layer, becomes GCMC (van den Berg et al., 2017)
 - With neighbor sampling, becomes GraphSAGE.
 - Latest work include STAR-GCN (Zhang et al., 2019) which also deal with cold start problems.

Source: Graph Convolutional Neural Networks for Web-Scale Recommender Systems, Ying et al. 2018

• The graph is a copurchase graph.

Source: Graph Convolutional Neural Networks for Web-Scale Recommender Systems, Ying et al. 2018

- The graph is a copurchase graph.
- Item features can be projected before GCN.

Source: Graph Convolutional Neural Networks for Web-Scale Recommender Systems, Ying et al. 2018

- The graph is a copurchase graph.
- Item features can be projected before GCN.
- During inference, when new copurchases/items appear, we can just recompute the

• GraphSAGE - neighbor sampling

- GraphSAGE neighbor sampling
- PinSAGE Neighbors determined by "top-K most frequent nodes visited by random walk with restarts"

- GraphSAGE neighbor sampling
- PinSAGE Neighbors determined by "top-K most frequent nodes visited by random walk with restarts"
 - In the example: if K = 2, then B could also be a neighbor of D.

- GraphSAGE neighbor sampling
- PinSAGE Neighbors determined by "top-K most frequent nodes visited by random walk with restarts"
 - In the example: if K = 2, then B could also be a neighbor of D.
 - For concrete details of the random walk algorithm, please refer to *Pixie: A System for Recommending 3+ Billion Items to 200+ Million Users in Real-Time*, Eksombatchai et al., 2017

Learning Both User and Item Representations with GCMC

Source: Graph Convolutional Matrix Completion, van den Berg et al. 2017

$$\mu_{j\to i,r} = \frac{1}{c_{ij}} W_r x_j$$

$$h_i = \sigma \left[\operatorname{accum} \left(\sum_{j\in \mathcal{N}_{i,1}} \mu_{j\to i,1}, \cdots, \sum_{j\in \mathcal{N}_{i,R}} \mu_{j\to i,R} \right) \right]$$

$$u_i = \sigma(Wh_i)$$

4 D > 4 B > 4 B > 4 B > 9 Q @

Learning Both User and Item Representations with GCMC

Source: Graph Convolutional Matrix Completion, van den Berg et al. 2017

$$\mu_{j\to i,r} = \frac{1}{c_{ij}} W_r x_j$$

$$h_i = \sigma \left[\operatorname{accum} \left(\sum_{j \in \mathcal{S}(\mathcal{N}_{i,1})} \mu_{j\to i,1}, \cdots, \sum_{j \in \mathcal{S}(\mathcal{N}_{i,R})} \mu_{j\to i,R} \right) \right]$$

 $u_i = \sigma(Wh_i)$

4 D > 4 D > 4 D > 4 D > 4 D > 4 O O

Learning Both User and Item Representations with Star-GCN

- Vanilla GCMC can't deal with new users/items without features and with a few interactions.
- STAR-GCN
 - "Mask" the user/item embedding to 0 as if it is new.
 - Reconstruct the embedding after the forward pass and reconstruction pass.

Coding Session

GraphSAGE on bipartite user-item graph.