

Recap

EXPLORATORY DATA ANALYSIS (EDA)

Q1: The syntax df.shape returns a tuple representing ____ of the dataset.

- A. correlation and variance
- B. mean and median
- C. number of rows and columns
- D. size in memory

Q1: The syntax df.shape returns a tuple representing ____ of the dataset.

- A. correlation and variance
- B. mean and median
- C. number of rows and columns
- D. size in memory

Q2: To check the percentage of missing values column-wise, we use df.isnull().mean(), which gives us values between ___ and ___.

- A. 1 and 100
- B. 0 and 1
- C. -1 and 1
- D. 0 and 100

Q2: To check the percentage of missing values column-wise, we use df.isnull().mean(), which gives us values between ____ and ____.

A. 1 and 100

B. 0 and 1

C. -1 and 1

D. 0 and 100

Q3: The line

df = df.drop(columns=null_percent[null_percent >
0.3].index) is used to remove columns with more
than ____% missing values.

A. 3

B. 10

C. 30

D. 50

Q3: The line

df = df.drop(columns=null_percent[null_percent >
 0.3].index) is used to remove columns with more
than ____% missing values.

A. 3

B. 10

C. 30

D. 50

Q4: To examine the summary statistics of numerical features, the code df[num_cols].describe().T[:5] is used. The .T stands for ____.

- A. table format
- B. trimming values
- C. transpose
- D. top values

Q4: To examine the summary statistics of numerical features, the code df[num_cols].describe().T[:5] is used. The .T stands for ____.

- A. table format
- B. trimming values
- C. transpose
- D. top values

Q5: The function sns.boxplot() is used to detect and visualize distribution characteristics.

- A. duplicates
- **B.** outliers
- C. nulls
- D. categories

Q5: The function sns.boxplot() is used to detect and visualize distribution characteristics.

- A. duplicates
- **B.** outliers
- C. nulls
- D. categories

Q6: A histogram with KDE (Kernel Density Estimation) is plotted using sns.histplot(df['SalePrice'], kde=True). The KDE line helps to understand the ____ of the data.

- A. completeness
- **B.** sparsity
- C. central tendency
- D. probability density

Q6: A histogram with KDE (Kernel Density Estimation) is plotted using sns.histplot(df['SalePrice'], kde=True). The KDE line helps to understand the ____ of the data.

- A. completeness
- **B.** sparsity
- C. central tendency
- D. probability density

Q7: The df.select_dtypes(include='object') line is used to select ____ features in the dataset.

- A. numerical
- B. categorical
- C. Boolean
- D. missing

Q7: The df.select_dtypes(include='object') line is used to select ____ features in the dataset.

- A. numerical
- **B.** categorical
- C. Boolean
- D. missing

Q8: The correlation matrix is created using df.corr(numeric_only=True). Setting numeric_only=True ensures that only ____ data types are used in the computation.

- A. float and bool
- B. object and float
- C. int and float
- D. datetime and object

Q8: The correlation matrix is created using df.corr(numeric_only=True). Setting numeric_only=True ensures that only ____ data types are used in the computation.

- A. float and bool
- B. object and float
- C. int and float
- D. datetime and object

Q9: The sns.heatmap() function with annot=True overlays ____ on the heatmap cells.

- A. feature names
- B. colors
- C. correlation values
- D. histogram bars

Q9: The sns.heatmap() function with annot=True overlays ____ on the heatmap cells.

- A. feature names
- B. colors
- C. correlation values
- D. histogram bars

Q10: In the context of EDA, the main reason to remove columns with high null percentages is to avoid ____ during model training.

- A. faster execution
- B. better styling
- C. bias and error
- D. overfitting

Q10: In the context of EDA, the main reason to remove columns with high null percentages is to avoid ____ during model training.

- A. faster execution
- B. better styling
- C. bias and error
- D. overfitting

Knowledge Test Day 3

REGULARIZATION + DEEP LEARNING OVERVIEW

Q1. Overfitting occurs when a model performs well on training data but poorly on test data because it ____ the training patterns.

- A. ignores
- B. generalizes
- C. memorizes
- D. transforms

Q1. Overfitting occurs when a model performs well on training data but poorly on test data because it ____ the training patterns.

- A. ignores
- B. generalizes
- C. memorizes
- D. transforms

Q2. Underfitting typically happens when the model is too ____ to capture the underlying structure of the data.

- A. large
- B. simple
- C. complex
- D. deep

Q2. Underfitting typically happens when the model is too ____ to capture the underlying structure of the data.

A. large

B. simple

C. complex

D. deep

Q3. One of the key goals of L1 and L2 regularization is to prevent ____ by penalizing large weights.

- A. optimization
- B. dropout
- C. overfitting
- D. training

Q3. One of the key goals of L1 and L2 regularization is to prevent ____ by penalizing large weights.

A. optimization

B. dropout

C. overfitting

D. training

Q4. L1 regularization encourages ____ by forcing some weights to become exactly zero.

- A. sparsity
- B. overfitting
- C. weight duplication
- D. normalization

Q4. L1 regularization encourages ____ by forcing some weights to become exactly zero.

- A. sparsity
- B. overfitting
- C. weight duplication
- D. normalization

Q5. In L2 regularization, the penalty added to the loss function is proportional to the ____ of the weights.

- A. mean
- B. square
- C. absolute value
- D. maximum

Q5. In L2 regularization, the penalty added to the loss function is proportional to the ____ of the weights.

- A. mean
- B. square
- C. absolute value
- D. maximum

Q6. A neural network consists of input, hidden, and output layers where each neuron computes a weighted sum followed by a(n) ____ function.

- A. loss
- B. dropout
- C. activation
- D. optimizer

Q6. A neural network consists of input, hidden, and output layers where each neuron computes a weighted sum followed by a(n) ____ function.

A. loss

B. dropout

C. activation

D. optimizer

Q7. In deep learning, the term "deep" refers to the presence of ____ layers in the network.

- A. very wide
- B. many hidden
- C. few output
- D. multiple input

Q7. In deep learning, the term "deep" refers to the presence of ____ layers in the network.

A. very wide

B. many hidden

C. few output

D. multiple input

Q8. Regularization is typically added to the model's ____ function to constrain the learning process.

- A. activation
- B. loss
- C. dropout
- D. optimizer

Q8. Regularization is typically added to the model's ____ function to constrain the learning process.

- A. activation
- B. loss
- C. dropout
- D. optimizer

Q9. A key indicator of overfitting is when training accuracy is high, but ____ accuracy is low.

- A. validation
- B. learning rate
- C. training
- D. test loss

Q9. A key indicator of overfitting is when training accuracy is high, but ____ accuracy is low.

- A. validation
- B. learning rate
- C. training
- D. test loss

Q10. One benefit of using dropout layers in neural networks is that they prevent co-adaptation of neurons by randomly ____ some during training.

- A. scaling
- B. deleting
- C. updating
- D. deactivating