Network QoS 371-2-0213

Lecture 9

Gabriel Scalosub

Outline

- Simple Packet Scheduling
- Generalized Processor Sharing (GPS) and Packetization
 - Generalized Processor Sharing (GPS)
 - Packet-by-packet Generalized Processor Sharing (PGPS)
 a.k.a Weighted Fair Queuing (WFQ)
 - PGPS Properties
- Beyond WFQ
 - Worst Case Fair WFQ (WF²Q)
 - Observations and Other Algorithms
 - References

Simple Packet Scheduling

- FIFO
 - simple to implement
 - sources have incentives to be aggressive
 - increases share of bandwidth
 - "unfair"
 - no mechanism for flow/aggregate protection
 - hard to provide delay guarantees
- Static-Priority
 - provides protection
 - starvation of low-priority
- Weighted Round-Robin
 - predetermined TDM schedule
 - tries to provide $\frac{w_i}{\sum_i w_i}$ service
 - round length depends upon
 - number of flows
 - average packet length
 - may lead to large delays / unfairness
 - e.g., if a packet just misses its slot

Introduction to Generalized Processor Sharing (GPS)

- Fluid multiplexing model
 - infinitesimally small quanta of data
 - bit-level weighted round robin
 - implementation?
 - impossible
 - for demultimplexing, we need "headers"
 - used as a reference model
- Weights:
 - enable unequal share of bandwidth
 - enable traffic differentiation
- Session:
 - aggregate of flows
 - share same queue in the round-robin schedule
 - DiffServ:
 - correspond to same DSCP/PHB
 - in general
 - may depend on many parameters (e.g., 5-tuple)

GPS Model and Architecture

- Work conserving policy, with rate r
- Separate FIFO queue for each session
- Assume N queues/sessions
 - ϕ_i : weight of queue i (i = 1, ..., N)
 - $S_i(\tau, t)$: amount of session *i*'s flow delivered during $(\tau, t]$.
- GPS scheduler:
 - for any continuously backlogged session i during $(\tau, t]$

$$rac{\mathcal{S}_i(au,t)}{\mathcal{S}_j(au,t)} \geq rac{\phi_i}{\phi_j} \quad j=1,\ldots,N$$

• in particular, summing over all j

$$S_i(\tau, t) \sum_i \phi_j \ge \phi_i \sum_i S_j(\tau, t) = \phi_i(t - \tau)r$$

- *i* backlogged + work conserving: $\sum_{i} S_{i}(\tau, t) = (t \tau)r$
- ullet implies i's rate is at least $g_i = rac{\phi_i}{\sum_i \phi_j} r$

GPS Preliminary Properties

- Bandwidth
 - r_i : session i's average rate
 - if $r_i \leq g_i$, average rate r_i can be guaranteed
 - backlog is cleared at rate $\geq g_i$
- Delay
 - session i's delay depends only on i's queue length
- Sensitivity to weights
 - if $\sum_{i} r_{i} < r$, any weight-assignment yields a stable system
 - stability: probability of unbounded buffers is 0
 - weight-assignment captures delay-tolerance
 - e.g., high-BW delay-insensitive session i can settle for $g_i < r_i$

Generalized Processor Sharing (GPS) Packet-by-packet Generalized Processor Sharing (PGPS) PGPS Properties

GPS Example: Fluid-Pipe Diagram

Generalized Processor Sharing (GPS)

Packet-by-packet Generalized Processor Sharing (PGPS) PGPS Properties

GPS Example: Fluid-Pipe Diagram

Generalized Processor Sharing (GPS)

Packet-by-packet Generalized Processor Sharing (PGPS) PGPS Properties

GPS Example: Service Curves

Ideals vs. Reality

- GPS:
 - fluid model
 - multiple queues serviced "simultaneously"
 - optimal bandwidth sharing
 - max-min weighted fairness
- Real life:
 - packetized traffic
 - do not preempt a packet being sent
 - one queue can be served at any given time
 - can we be as good as GPS in spite of packetization?
- Bridging ideals and reality
 - need to approximate fluid-based GPS by a packetized algorithm
- Solution
 - Packet-by-packet GPS (PGPS)
 - Parekh and Gallager (1993)
 - a.k.a. Weighted Fair Queuing (WFQ)
 - Demers, Keshav and Shenker (1990)

How to Packetize GPS?

- Offline:
 - assume all packets arrive at t = 0
 - can we rearrange the schedule into a packetized one?
 - can we do this s.t. packets finish no-later than in GPS?
 - yes!! (on both accounts)
 - similar proof to that of GIS for interval scheduling (last week)
- Online basic idea:
 - follow GPS as closely as possible
 - simulate GPS to produce virtual deadlines
 - employ EDF
 - recall: care about bandwidth sharing, not making the deadlines

Algorithm 1 PGPS: at any idle-link time t

- 1: for every pending packet p do
- 2: $F_p \leftarrow p$'s departure time in GPS

- 3: end for
- 4: forward $p' = \arg \min \{F_p \mid \text{pending } p\}$

Is PGPS As Good As GPS?

Consider

• The (order-maintaining) packetized version would be

- Is this feasible?
- Delay vs. work-conserving

GPS vs. PGPS

GPS vs. PGPS

GPS vs. PGPS

Order Property

- In PGPS
 - F_p is only calculated w.r.t. packets already arrived
 - why is this consistent with "offline" GPS?

Lemma

Let p, p' be packets in a GPS system at time t. If p is completed before p' with no arrivals after t, then the same holds for any arrival pattern after t.

Proof (almost shorter than claim...).

- The sessions of p, p' are both backlogged until we complete the first of the two
- The service ratio between these sessions is independent of future arrivals: $\phi_i/\phi_{i'}$
- Order is maintained

- Notation:
 - F_p : p's departure time in GPS
 - \hat{F}_p : p's departure time in PGPS
 - L_{max}: maximum packet length
 - r: outgoing link rate

Corollary

If $\hat{F}_p > F_p$ then p arrived too late to be transmitted in GPS order

Theorem (how late can PGPS be)

$$\hat{F}_p - F_p \leq \frac{L_{\text{max}}}{r}$$

- GPS and PGPS are work conserving
 - busy periods coincide
 - suffices to prove per busy period
- Notation:
 - pk: k'th packet to depart under PGPS
 - L_k : p_k 's length
 - a_k : p_k 's arrival time
 - t_k : p_k 's departure time under PGPS
 - u_k : p_k 's departure time under GPS
- We'll show (for all k):

•
$$t_k \leq u_k + \frac{L_{\max}}{r}$$

Theorem (how late can PGPS be)

$$\hat{F}_p - F_p \leq \frac{L_{\text{max}}}{r}$$

- Case 1: p_1, \ldots, p_{k-1} depart before p_k under GPS
 - busy-period: GPS had to finish work on p_1, \ldots, p_{k-1}
 - $t_k \leq u_k$
- Case 2: exists $0 < m \le k-1$
 - p_m departs after p_k under GPS, i.e. $u_m > u_k$
 - m is maximal
 - i.e., p_{m+1}, \ldots, p_{k-1} depart no later than p_k under GPS

Theorem (how late can PGPS be)

$$\hat{F}_p - F_p \leq \frac{L_{\text{max}}}{r}$$

- p_m begins transission at $t_m \frac{L_m}{r}$ under PGPS
- By lemma:

$$\min\left\{a_{m+1},\ldots,a_k\right\} > t_m - \frac{L_m}{r}$$

- Otherwise
 - they all depart no later than p_k under GPS
 - PGPS would have sent one of them
- p_{m+1}, \ldots, p_{k-1}
 - arrive after $t_m \frac{L_m}{r}$
 - depart no later than p_k under GPS
- Hence

$$u_k \geq \frac{1}{r}(L_{m+1} + \ldots + L_k) + t_m - \frac{L_m}{r} \geq t_k - \frac{L_{\max}}{r}$$

Backlog Property

Theorem (how backlogged can PGPS be compared to GPS)

For all $i, t, S_i(0, t) - \hat{S}_i(0, t) \leq L_{\text{max}}$

- Comparing slopes
 - \hat{S}_i
- r: i's packet is being transmitted
- 0: otherwise
- S_i
- always in [0, r]
- ⇒ Maximal difference: i's packets begin transmission in PGPS
 - Consider i's packet p
 - t: p begins transmission in PGPS (length L)
 - completed at $t + \frac{L}{r}$
 - \bullet τ : completed by GPS

Backlog Property

Theorem (how backlogged can PGPS be compared to GPS)

For all $i, t, S_i(0, t) - \hat{S}_i(0, t) \leq L_{\text{max}}$

Proof.

- FIFO within i (both GPS and PGPS)
 - $S_i(0,\tau) = \hat{S}_i(0,t+\frac{L}{r})$
- By previous theorem
 - $\tau \geq (t + \frac{L}{r}) \frac{L_{\text{max}}}{r}$
- Hence

$$S_i(0, t + \frac{L - L_{\max}}{r}) \le S_i(0, \tau) = \hat{S}_i(0, t + \frac{L}{r}) = \hat{S}_i(0, t) + L$$

• S_i 's slope $\leq r$:

$$S_{i}(0,t) = S_{i}(0,t + \frac{L-L_{\max}}{r}) + S_{i}(t + \frac{L-L_{\max}}{r},t)$$

$$\leq \hat{S}_{i}(0,t) + L + r \cdot \frac{L_{\max}-L}{r}$$

$$= \hat{S}_{i}(0,t) + L_{\max}$$

How Far Ahead Can PGPS Be Compared To GPS?

Lemma

There is no constant c > 0 s.t. $\forall i, t, \ \hat{S}_i(0, t) - S_i(0, t) \le c \cdot L_{\text{max}}$

Worst Case Fair WFQ (WF²Q)

- Another packetized approximation of GPS
- WFQ vs. WF²Q
 - WFQ: consider only GPS finish times
 - arg min $\{F_p \mid \text{pending } p\}$
 - WF²Q: consider both GPS start and finish times
 - arg min $\{F_p \mid \text{pending } p \text{ already in service under GPS}\}$

 p_{10}^{1}

Worst Case Fair WFQ (WF²Q)

- Another packetized approximation of GPS
- WFQ vs. WF²Q
 - WFQ: consider only GPS finish times
 - arg min $\{F_p \mid \text{pending } p\}$
 - WF²Q: consider both GPS start and finish times
 - arg min $\{F_p \mid \text{pending } p \text{ already in service under GPS}\}$

 p_{10}^{1}

Observations and Other Algorithms

- WFQ/WF²Q:
 - E2E delay guarantees for leaky-bucket sources
 - recall IntServ...
- Self-Clocked Fair Queuing (SCFQ)
 - does not simulate GPS: "local" approximation of F_p
 - depend on current serviced packet + previous session's packet
 - simpler implementation than WFQ/WF²Q
- Deficit Round-Robin (DRR)
 - credit-based WRR
 - schedule packet in time slot only if sufficient credit
 - time slot size independent of packet lengths
 - simpler implementation than WFQ/WF²Q
- Non work-conserving
 - Stop-and-go
 - delay by fixed-window length before sending
 - can be used to regulate jitter
- Many others...

References

- Parekh and Gallager. A generalized processor sharing approach to flow control in integrated services networks: The Single Node Case. IEEE/ACM Transactions on Networking 1(3): 344–357 (1993)
- Demers, Keshav and Shenker. Analysis and simulation of a fair queueing algorithm. Internetworking: Research and Experience 1: 3–26 (1990)
- Zhang. Service Disciplines For Guaranteed Performance Service in Packet-Switching Networks. Proceedings of the IEEE 83(10): 1374–1396 (1995)