Homework Assignment #10

[47] PROBLEM 4.53

Scattering from a hydrogen atom ...

(a) Classical model of a hydrogen atom

(b) The scattering process

Before the collision

$$e_{2} \rightarrow \vec{v}$$
 r
 $e_{2} \rightarrow \vec{v}$
 r
 $e_{2} \rightarrow \vec{v}$
 r
 $e_{2} \rightarrow \vec{v}$
 $e_{3} \rightarrow \vec{v}$
 $e_{4} \rightarrow \vec{v}$
 $e_{4} \rightarrow \vec{v}$
 $e_{5} \rightarrow \vec{v}$
 $e_{7} \rightarrow$

(c) Conservation of energy

Energy before the collision
$$E = T_2 + \frac{Ke^2}{2r}$$

after the collision $E = T_1 + \frac{Ke^2}{2r^2}$

Energy is conserved, so

 $T_1 = T_2 + \frac{Ke^2}{2} \left(\frac{1}{r} - \frac{1}{r^2} \right)$.

"Frequency" for an underdamped oscillator...

Consider a damped oscillator with $\beta < \omega_0$ (underdamped);

We can write the solution $\chi(t) = Ae^{-\beta t} \cos(\omega_1 t - \delta)$ where δ is arbitrary. W.L.O.G. set $\delta = 0$. $\chi = Ae^{-\beta t} \cos(\omega_1 t)$ and $v = \dot{\chi} = A[-\beta e^{-\beta t} \cos(\omega_1 t)]$. $-\omega_1 e^{-\beta t} \sin(\omega_1 t)]$.

(a) Let τ_1 = the time between maxima.

(a) The maximize
$$y \propto (t)$$
 occur when $V = 0$; that is, $tan w_1 t = -\beta/\omega_1$.

tan $(w_1(t_1 + \tau)) = tan w_1 t \implies \omega_1 \tau = 2\pi$

Thus $\tau = 2\pi/\omega_1$.

(b) Let $\tau_1' = 2$ x the time between zeros.

(c) Suppose
$$\beta = \omega_0/2$$
; then $\omega_1 = (\omega_0^2 - \beta^2)^{1/2} = \omega_0 \sqrt{3}/2$

(b) The zeros of x(t) occur when
$$\omega_s(\omega_i t) = 0$$
.

$$\omega_i t_n = \frac{\pi}{2} + n\pi$$

Define $T = t_{n+2} - t_n = \frac{1}{\omega_i} \left[\frac{T}{2} + (n+2)\pi - \frac{T}{2} - n\pi \right]$

Thus $T = 2\pi/\omega_i$.

(c) Suppose $\beta = \frac{\omega_o}{2}$. Then $\omega_i = \sqrt{\omega_o^2 - \beta^2} = \frac{\sqrt{3}}{2} \omega_o$.

[49] PROBLEM 5.30

An overdamped oscillator ...

10.E

(This problem involves some computer calculations.)

(a) $x(t) = C_1 \exp(p_1 t) + C_2 \exp(p_2 t)$ where $p_{\{1,2\}} = -\beta \pm \sqrt{(\beta^2 - \omega_0^2)}$

Solve for C_1 and C_2 from $x(0) = x_0$ and $x'(0) = v_0$

$$C_1 = (p_2 x_0 + v_0) / (p_2 - p_1)$$
 and $C_2 = (p_1 x_0 + v_0) / (p_1 - p_2)$

$$C_2 = (p_1 x_0 + v_0) / (p_1 - p_2)$$

 $(\text{for } \mathbf{x}_0 = 0)$

(b) Sketches of the graphs of x(t) for (i) $v_0 = 0$ and for (ii) $x_{0-} = 0$:

(c)

Let $\beta \to 0$. Then $p_1 \to p_1 \to i \omega_0$ and $p_2 \to -i \omega_0$.

 $x(t) = C1 \exp(i \omega_0 t) + C2 \exp(-i \omega_0 t)$

which is an undamped oscillation.

10.4

[50] PROBLEM 5.37

A driven underdamped oscillator ...

(This problem is a computer problem, based on Example 5.3.) Consider a driven damped oscillator, with these parameter values

$$\omega = 2\pi$$

and

$$\omega_0 = \pi/2$$

and

$$\beta = 0.2 \omega_0$$

and

$$f_0 = 1000.$$

Note that $\beta < \omega_0$, so this is an underdamped oscillator.

Initial conditions: $x_0 = 0$

 $v_0 = 0$.

Plot x(t)

Compare with Example 5.3 and explain the similarities and difference:

/1/ Problem 5.37 has transient oscillations with a longer period; $\omega_0 = \pi/2$ compared to $\omega_0 = 10 \pi$.

/2/ Problem 5.37 has a longer decay time; $\beta = 0.1 \pi$ compared to $\beta = 0.5 \pi$.

/3/ Problem 5.37 and Example 5.3 have the same frequency of steady state motion; $\omega = 2\pi$ in both cases.

[50x] PROBLEM 5.44

Another interpretation of the quality factor Q of a resonance ...

Consider a driven oscillator with ω = ω_0 . The steady state slution is $x_p(t)$ = A cos ($\omega t - \delta$) where $\Delta = f_0/(2\beta \omega_0)$ and $\delta = \pi/2$.

(A) The total energy is

E =
$$\frac{1}{2}$$
 m x'² + $\frac{1}{2}$ k x² = $\frac{1}{2}$ m A² ω² sin² (ωt – δ) + $\frac{1}{2}$ m ω₀² A² cos² (ωt – δ)
= $\frac{1}{2}$ m ω² A² (because ω = ω₀)

(B) The energy dissipated in one period is

$$\Delta E = \int F_{damping} v dt = \int_0^{2\pi/\omega} m.2\beta. v^2 dt = 2m\beta A^2 \omega^2 [\int \sin^2 (u) du] \omega$$
$$= 2 \pi m \beta \omega A^2$$

(C) Now calculate E / Δ E . The result is ω / $(4\pi\beta)$ = Q / (2π) .

Thus $Q = 2\pi E / \Delta E$.

Oscillator driven by rectangular pulses ...

(This problem is a computer problem, based on Example 5.5)

· Parameter values

• Fourier coefficients for $f(t) = \sum_{n=0}^{\infty} a_n \cos(n\omega t)$ $a_0 = \frac{f_{max} \Delta t}{2} = \frac{a_0 t}{2}$

$$a_n = \frac{2 f_{max}}{\sqrt{2} n} sin \left(\frac{\sqrt{2} n}{\sqrt{2}} \right) = \frac{2}{\sqrt{2} n} sin \left(\frac{\sqrt{2} n}{4 c} \right) for n \ge 1$$

• Former coefficients for $\chi(t) = \sum_{n=0}^{\infty} A_n \cos(n\omega t - \delta_n)$

$$A_{n} = \frac{\alpha_{n}}{\sqrt{(\omega_{n}^{2} - n^{2}\omega^{2})^{2} + 4\beta^{2}n^{2}\omega^{2}}} = \frac{\alpha_{n}/\alpha_{n}}{\sqrt{2\pi(1 - n^{2}/\alpha_{2})^{2} + 0.04 n^{2}}}$$

$$\delta_n = \arctan \left[\frac{2\beta n \omega}{(2\pi)^2 - n^2 \omega^2} \right]$$

· Computer program and graphs next page.

Oscillator driven by rectangular pulses ...

(This problem is a computer problem, based on Example 5.5)

```
Problem 5.52
 In[152]:= Remove["Global`*"]
 In[173]:= Do
           tau = 1.00000001 + 0.5 * (j - 1); omega = 2 * Pi / tau; beta = 0.1;
         a[0] = 0.25 / tau;
          Do[a[n] = 2/(Pi*n)*Sin[Pi*n/4/tau], {n, 1, 10}];
          Do[A[n] = a[n] / (2 * Pi) / Sqrt[2 * Pi * (1 - n^2 / tau^2) ^2 + 0.04 * n^2 / tau^2],
            {n, 0, 11}];
          Do[delta[n] = ArcTan[(2 * beta * n * omega) / (4 * Pi^2 - n^2 * omega^2)],
            {n, 0, 11}];
          x[t_{-}] := Sum[A[n] * Cos[n * omega * t - delta[n]], {n, 0, 10}];
          lbl = StringJoin["\tau = ", ToString[tau], " \tau_0"];
          pl[j] = Plot[x[t], \{t, 0, 7\}, PlotRange \rightarrow \{\{0, 7\}, \{-0.4, 0.4\}\},
              PlotLabel → lbl],
           {j, 1, 4}
{\scriptstyle \mathsf{In}[175]:=} \  \, \mathsf{Show}\big[\mathsf{GraphicsGrid}\big[\big\{\big\{\mathsf{pl}\,\texttt{[1]}\,,\,\mathsf{pl}\,\texttt{[2]}\big\},\,\big\{\mathsf{pl}\,\texttt{[3]}\,,\,\mathsf{pl}\,\texttt{[4]}\big\}\big\}\big]\,,\,\,\mathsf{ImageSize}\,\,\mathsf{->}\,\,\mathsf{Large}\big]
                                    \tau = 1. \tau_0
                                                                                                 \tau = 1.5 \tau_0
           0.4
                                                                         0.4
           0.2
                                                                         0.2
          -0.2
                                                                         -0.2
          -0.4
                                                                         -0.4
Out[175]=
                                    \tau = 2. \tau_0
                                                                                                 \tau = 2.5 \, \tau_0
           0.4
                                                                         0.4
                                                                         0.2
                                                                         0.0
           -0.2
                                                                         -0.2
          -0.4
                                                                         -0.4
```

Homework Assignment 10 Name	
due in class Friday, November 11	
Cover sheet: Staple this page in front of your solutions, with answers	
where indicated.	
[47] Problem 4.53 **	
What is $T_1 - T_2$? = $Ke^2/2 (1/r - 1/r')$	2 points
[48] Problem 5.25 **	
What is the time between maxima? Also, what is ω_1 for part (c)?	
$\tau = 2\pi/\omega_1 \qquad \omega_1 = \sqrt{3}/2 \omega_0$	2 points
[49] Problem 5.30 **	
Hand in the computer program and computer plots. Check plots	2 points
[50] Problem 5.37 **	
Hand in the computer program and computer plot.	
Explain the similarities and differences compared to Example 5.3. /1/ The decay time is longer; β is smaller.	2 points
/2/ The period of transient oscillations is longer; ω_0 is smaller.	
/3/ The period of steady state oscillations is the same; ω is the same.	
[50x] Problem 5.44 **	
Express Q in terms of the parameters (m, ω, β) . $Q = \omega/2\beta$	2 points
[50xx] Problem 5.52 *** [Computer]	
Hand in the computer program and computer plot.	
Compare your results with those of the example.	
The amplitudes are larger than in Figure 5.25.	<mark>3 points</mark>