CS 331: Artificial Intelligence Introduction

What is AI? (4 categories of defns)

Human performance

Rationality

Thought process

Systems that think like humans

Systems that think rationally

Behavior

Systems that act like humans Systems that act rationally

2

Acting like humans (Turing Test)

Can a human interrogator, after posing some written questions, tell if the responses come from a human being or a computer?

Requirements for computer: natural language processing, knowledge representation, automated reasoning, machine learning, vision and robotics (the last two are for the "total Turing Test")

Problems with the Turing Test

- · Not reproducible
- · Can't be analyzed mathematically
- Tends to focus on human-like errors, linguistic tricks, etc.
- · Does not produce useful computer programs

Al researchers believe it's more important to study the underlying principles of intelligence than duplicating how humans act

4

Thinking Humanly (Cognitive Modeling)

- Models of the internal workings of the human mind
- Validation:
 - Compare models with actual behavior of human subjects (cognitive science)
 - Compare models with neurological activity in the brain (cognitive neuroscience)
- AI is now distinct from both cognitive science and cognitive neuroscience

Thinking rationally (Laws of Thought)

Facts and rules in formal logic

Theorem Prover

- Rational = conclusions are provable from inputs and prior knowledge
- Ensure all actions by a computer are justifiable (ie. "rational")

Problems:

- Hard to represent informal knowledge formally, especially when not 100% certain
- · Computationally expensive

6

Acting Rationally (Rational Agents)

- "Agent": something that acts
- "Rational" means more than just logically justified. It also means "doing the right thing"
- "Rational agent": an agent that acts to achieve the best outcome given its resources

7

Rational Agents

very few resources

lots of resources

no thought "reflexes"

approximate reasoning

Careful, deliberate reasoning

- Adjust amount of reasoning according to available resources and importance of the result
- This is one thing that makes AI hard

AI Timeline

1943-1956	The gestation of AI
1956	The birth of AI
1952-1969	Early enthusiasm, great expectations
1966-1973	A dose of reality
1969-1979	Knowledge-based systems
1980-present	AI becomes a successful industry
1986-present	The return of neural networks
1987-present	AI adopts the scientific method
1995-present	The emergence of intelligent agents
2001	Big Data

9

AI Today

- Deep Blue: first computer program to defeat the world champion in chess (1996)
- AlphaGo: master-level performance at Go (2016)
- NavLab: minivan drove itself across the US on its own 98% of the time (1995)
- Google's self-driving cars
- Proverb: crossword puzzle solver (1998)

10

Other AI applications in the real world

- · Credit card fraud detection
- Medical diagnosis programs
- · Computer-assisted surgery
- · Search engines
- · Personalized news sites
- · Collaborative filtering
- · Spam filtering
- · Disease outbreak detection
- · Opponents in video games

11

Surprises in AI Research

- Tasks difficult for humans have turned out to be "easy"
 - Chess
 - Checkers, Othello, Backgammon
 - Logistics planning
 - Airline scheduling
 - Fraud detection
 - Sorting mail
 - Proving theorems
 - Crossword puzzles

12

Surprises in AI Research

- · Tasks easy for humans have turned out to be hard.
 - Speech recognition
 - Face recognition
 - Composing music/art
 - Autonomous navigation
 - Motor activities (walking)
 - Language understanding
 - Common sense reasoning (example: how many legs does a fish have?)

13

AI Courses at OSU

- 1. CS331: Introduction to AI (Spring quarter)
 - Search
 - Games
 - · Knowledge Representation
 - Bayesian Networks
- 2. CS434: Machine Learning and Data Mining (Spring quarter)
 - · Supervised Learning
 - Unsupervised Learning
 - Reinforcement Learning

14

1. Search 8-puzzle: Beginning with the start state, slide tiles horizontally or vertically until you get to the goal state. 7 2 4 5 6 8 3 1 Start State Goal State

2. Games (Fully observable) • How do you create a program to play tic-tactoe intelligently? • What about chess? • What about chess?

3. Knowledge Representation Knowledge Base From this knowledge base, Everyone from Wisconsin is a can we derive the All Packer fans like cheese following? Everyone from Wisconsin is • Your professor is a Packer fan Your professor is from Wisconsin · You will have a difficult Evil professors have difficult midterm Your professor does not like cheese 18

4. Bayesian Networks

Example: Learning to classify emails as spam or not spam

P(Spam) = 0.88

P(Spam) = 0.28

Private And Confidential

Dear Friend

It is with heart of hope that I write to seek your help in the context below. I am Mrs. Jumai Asfatu Abacha, the second wife of the former Nigeria head of state who died on the 8th of June, 1998.

Having gotten your address through the internet, I have no doubt on your goodwill to assist us in receiving into your custody (For Safety) the sum of Forty-Eight Million, Five Hundred Thousand United States Dollars (US\$48.5M) willed and deposited in my favour by my Late husband...

Professor Hutchinson,

I tried to hand in homework 1 electronically but the handin script was broken. I've attached my homework in this email...