

# **LOGSYS KINTEX-7 FPGA KÁRTYA**

# FELHASZNÁLÓI ÚTMUTATÓ





# Tartalomjegyzék

| 1  |     | Bevezetés                       | 1 |
|----|-----|---------------------------------|---|
| 2  |     | Megjelenítő eszközök            | 4 |
|    | 2.1 | 1 LED-ek                        | 4 |
|    | 2.2 | 2 Hétszegmenses kijelző         | 4 |
| 3  |     | Beviteli eszközök               | 5 |
|    | 3.1 | 1 Kapcsolók                     | 5 |
|    | 3.2 | 2 Nyomógombok                   | 5 |
| 4  |     | Memóriák                        | 5 |
|    | 4.1 | 1 DDR3 SDRAM                    | 5 |
|    | 4.2 | 2 SPI soros flash               | 6 |
|    | 4.3 | 3 MicroSD kártya                | 6 |
| 5  |     | Digitális video interfészek     | 6 |
|    | 5.1 | 1 HDMI be- és kimenetek         | 6 |
|    | 5.2 | 2 MIPI kamera csatlakozó        | 7 |
| 6  |     | Nagysebességű soros interfészek | 7 |
|    | 6.1 | 1 PCI Express                   | 7 |
|    | 6.2 | 2 SATA                          | 7 |
| 7  |     | Gigabit Ethernet interfész      | 8 |
| 8  |     | Audio interfész                 | 8 |
| 9  |     | Órajel források                 | 9 |
| 10 | )   | FPGA konfigurációs módok        | 9 |
| 11 | l.  | USB JTAG és UART interfész      | 9 |
| 12 |     | Tápellátás                      |   |
| 13 |     | Bővítőcsatlakozók               |   |
|    |     | Megjegyzések                    |   |
| 14 |     | a cr                            |   |
| 15 | 5   | A kártva kapcsolási raiza       | 2 |



#### 1 Bevezetés

A LOGSYS Kintex-7 FPGA kártya alkalmas mind egyszerűbb, mind pedig nagy komplexitású logikák és processzoros rendszerek megvalósítására is, a perifériakészlete ennek megfelelően lett kialakítva. A blokkvázlata az 1-1. ábrán látható, a felépítését az 1-2. ábra szemlélteti. A kártya beépített programozó eszközzel rendelkezik, melyet támogat a Xilinx Vivado fejlesztői környezete, így külső programozó eszköz nélkül egyből használható.

A kártyán az alábbi komponensek találhatók:

- Xilinx XC7K70T-1FBG676I típusú FPGA, melynek főbb jellemzői:
  - 41000 darab 6 bemenetű LUT és 82000 darab flip-flop
  - 135 darab 36 kbites blokk-RAM
  - 240 darab DSP48E1 blokk (elő összeadó, 25 x 18 bites előjeles szorzó, SIMD ALU, mintadetektor és akkumulátor)
  - 6 darab MMCM (Multi-Mode Clock Manager) és 6 darab PLL (Phase Locked Loop) modul
  - 1 db PCI Express Gen2 interfész modul
  - 8 darab GTX transceiver (12,5 Gbit/s) a nagysebességű soros kommunikációhoz
- Memóriák a program és az adatok tárolására:
  - 256 M x 32 bites DDR3 memória (2 darab Micron MT41K256M16TW-107 memória chip)
  - 512 Mbites SPI buszos soros flash memória (Micron MT25QL512ABB8E12), amely konfigurációs memóriaként is szolgál az FPGA számára
  - MicroSD memóriakártya foglalat
- Egyszerű megjelenítő eszközök:
  - 8 darab RGB LED
  - 4 digites hétszegmenses kijelző
- Egyszerű beviteli eszközök:
  - 5 darab nyomógomb
  - 8 darab kapcsoló
- Gigabit Ethernet interfész IEEE 1588 támogatással (Texas Instruments DP83867CRRGZ)
- Nagysebességű digitális video interfészek:
  - HDMI be- és kimenet (mini-HDMI csatlakozók)
  - MIPI D-PHY kamera bemenet (Raspberry Pi kamera modulnak megfelelő csatlakozó)
- Nagysebességű soros kommunikációs interfészek:
  - PCI Express Gen2 x1 élcsatlakozó
  - 2 darab SATA csatlakozó
- Audio be- és kimenet (Cirrus Logic CS4270-CZZ audio CODEC)
- 100 MHz-es oszcillátor
- FTDI FT2232H alapú USB JTAG és UART interfész
- 2 darab INA219 teljesítménymérő áramkör a kártya fogyasztásának méréséhez
- 2 darab csatlakozó a kiegészítő modulok számára:
  - 13 FPGA I/O láb, melyből 6 pár differenciális vonalként is használható
  - 5 V és 3,3 V tápfeszültség kimenet
  - LOGSYS és PMOD modulokat is fogad





1-1. ábra: A LOGSYS Kintex-7 FPGA kártya blokkvázlata.



1-2. ábra: A LOGSYS Kintex-7 FPGA kártya.



#### A LOGSYS Kintex-7 FPGA kártya felépítése:

- 1. Xilinx XC7K70T-1FBG676I típusú FPGA
- 2. 256 M x 32 bites (1 GB) DDR3 SDRAM (2 darab Micron MT41K256M16TW-107)
- 3. 512 Mbites SPI buszos soros flash (Micron MT25QL512ABB8E12)
- 4. MicroSD kártya foglalat
- 5. 8 darab RGB LED
- 6. 4 digites hétszegmenses kijelző
- 7. 5 darab nyomógomb
- 8. 8 darab kapcsoló
- 9. 100 MHz-es oszcillátor
- 10. Csatlakozó a kiegészítő modulok számára (A)
- 11. Csatlakozó a kiegészítő modulok számára (B)
- 12. 6 12 V külső tápfeszültség csatlakozó
- 13. 2 darab SATA csatlakozó (GTX transceiver-ekre kötve)
- 14. PCI Express Gen2 x1 élcsatlakozó (GTX transceiver-re kötve)
- 15. HDMI kimenet (mini-HDMI csatlakozó)
- 16. HDMI bemenet (mini-HDMI csatlakozó)
- 17. MIPI kamera bemenet (Raspberry Pi kamera modulhoz)
- 18. Audio bemenet
- 19. Audio kimenet
- 20. 10/1000/1000 Mbit Ethernet interfész
- 21. USB JTAG és UART interfész
- 22. Az FPGA újrakonfigurálását elindító nyomógomb (PROG)
- 23. Az FPGA konfigurációs módját (JTAG vagy SPI flash) kiválasztó jumper
- 24. Az FPGA sikeres felkonfigurálását jelző zöld LED (DONE)
- 25. A megfelelő tápellátást jelző piros LED (PWROK)
- 26. Az UART kommunikációt jelző narancs LED (UART)



## 2 Megjelenítő eszközök

#### 2.1 LED-ek

A LOGSYS Kintex-7 FPGA kártyán található 8 darab RGB (piros, kék, zöld) LED bekötését a 2-1. táblázat mutatja. A LED-ek LD0-tól LD7-ig vannak számozva, a bal szélső LED az LD7, a jobb szélső LED az LD0. A LED-ek vezérlő jelei aktív magas szintűek és 3,3 V feszültségről működnek. A fejlesztői környezetben a LED-ekhez LVCMOS\_33 I/O szabványt állítsunk be.

| LED          | LD7 | LD6 | LD5 | LD4 | LD3 | LD2 | LD1 | LD0 |
|--------------|-----|-----|-----|-----|-----|-----|-----|-----|
| FPGA láb (R) | C18 | D18 | C16 | D15 | C14 | F19 | E17 | E16 |
| FPGA láb (G) | C19 | D19 | C17 | D16 | D14 | G19 | E18 | G17 |
| FPGA láb (B) | D20 | B19 | B17 | B16 | B15 | F20 | F18 | F17 |

2-1. táblázat: A LED-ek bekötése.

### 2.2 Hétszegmenses kijelző

A LOGSYS Kintex-7 FPGA kártyán található négydigites hétszegmenses kijelző bekötését a 2-2. táblázat és a 2-1. ábra mutatja. A karakterek DISP0-tól DISP3-ig vannak számozva, a bal szélső karakter a DISP3, a jobb szélső karakter a DISP0. A hétszegmenses kijelző minden vezérlő jele aktív magas szintű és 3,3 V feszültségről működnek. A fejlesztői környezetben a kijelzőhöz LVCMOS\_33 I/O szabványt állítsunk be.

2-2. táblázat: A hétszegmenses kijelző bekötése.



A hétszegmenses kijelző időmultiplexelt vezérlését a 2-2. ábra szemlélteti. A kijelző esetén nyolc vezérlőjel közös, ezekkel lehet az egyes szegmensekhez és a tizedespontokhoz tartozó LED-eket bekapcsolni. Minden egyes karakter külön kiválasztó (katódvezérlő) jellel rendelkezik, ezek közül egyszerre csak egyet aktiváljunk.





2-2. ábra: A hétszegmenses kijelző időmultiplexelt vezérlése.

### 3 Beviteli eszközök

### 3.1 Kapcsolók

A LOGSYS Kintex-7 FPGA kártyán található 8 darab kapcsoló bekötését a 3-1. táblázat mutatja. A kapcsolók SW0-tól SW7-ig vannak jelölve, a bal szélső kapcsoló az SW7, a jobb szélső kapcsoló az SW0. Az adott FPGA láb a kapcsoló alsó állásában logikai alacsony szintű (0 V), a kapcsoló felső állásában pedig logikai magas szintű (3,3 V) lesz. A kapcsolók hardveresen pergésmentesítettek. A fejlesztői környezetben a kapcsolókhoz LVCMOS\_33 I/O szabványt állítsunk be.

3-1. táblázat: A kapcsolók bekötése.

| Kapcsoló | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|
| FPGA láb | B12 | C12 | C11 | B11 | G14 | E15 | E12 | E11 |

### 3.2 Nyomógombok

A LOGSYS Kintex-7 FPGA kártyán található 5 darab nyomógomb bekötését a 3-2. táblázat mutatja. A nyomógombok jelölése balról jobbra rendre BTN3-BTN0, illetve RST. Az adott FPGA lábra logikai magas szint (3,3 V) kerül a nyomógomb megnyomása esetén, a pergésmentesítés hardveresen meg van oldva. Az RST gomb elsősorban alaphelyzetbe állításra szolgál, de tetszőlegesen is felhasználható. A fejlesztői környezetben a nyomógombokhoz LVCMOS\_33 I/O szabványt állítsunk be.

3-2. táblázat: A nyomógombok bekötése.

| Nyomógomb | BTN3 | BTN2 | BTN1 | BTN0 | RST |
|-----------|------|------|------|------|-----|
| FPGA láb  | A18  | A19  | A17  | A10  | L23 |

### 4 Memóriák

#### 4.1 DDR3 SDRAM

A kártyán két darab Micron MT41K256M16TW-107 típusú, 1,5 V-ról működő DDR3 SDRAM áramkör található, melyek 256 M x 32 bites konfigurációban kapcsolódnak az FPGA-hoz (a rendelkezésre álló memória mennyisége 1 GB). A kártyán lévő FPGA működési sebessége legfeljebb 400 MHz-es órajel frekvenciát, azaz legfeljebb 800 MT/s-os adatátviteli sebességet tesz lehetővé. A memória interfész kialakításához használjuk a Xilinx Vivado fejlesztői környezetben lévő Memory Interface Generator-t. A DDR3 memória bekötése a kapcsolási rajzról leolvasható. Az FPGA-ban a memória interfészhez tartozó I/O bankok esetén engedélyezni kell a belső 0,75 V-os referencia feszültséget.



### 4.2 SPI soros flash

A LOGSYS Kintex-7 FPGA kártyán található Micron MT25QL512ABB8E12 típusú 512 Mbites SPI buszos soros flash memória bekötését a 4-1. táblázat mutatja. A memória bekötése lehetővé teszti mind a normál 1 bites, mind pedig a 2 bites, illetve a 4 bites SPI adatátvitel használatát is. Az eszköz használatáról és a támogatott parancsokról az adatlapjában olvashatunk bővebben. A flash memória tápfeszültsége 3,3 V, az SPI interfészhez a fejlesztői környezetben az LVCMOS\_33 I/O szabványt állítsuk be. A CSn chip select jel aktív alacsony szintű. A CLK vonal az FPGA dedikált CCLK\_0 (C8) konfigurációs lábára kapcsolódik, ezt a felhasználói logikából a STARTUPE2 blokkon keresztül érhetjük el. A soros flash memória konfigurációs memóriaként is szolgál az FPGA számára, a konfigurációs adatok beprogramozására a Xilix Vivado fejlesztői környezet lehetőséget biztosít.

4-1. táblázat: Az SPI flash memória bekötése.

| Flash memória | CSn | CLK | DQ0/MOSI | DQ1/MISO | DQ2/WPn | DQ3/HOLDn |
|---------------|-----|-----|----------|----------|---------|-----------|
| FPGA láb      | C23 | C8  | B24      | A25      | B22     | A22       |

### 4.3 MicroSD kártya

A kártyán lévő microSD kártya foglalat lehetővé teszi nagy adattároló kapacitást biztosító microSD memóriakártya illesztését. A foglalat kivezetései (4-2. táblázat) közvetlenül kapcsolódnak az FPGA áramkörhöz, így megvalósítható mind az SD, mind pedig az SPI interfészen keresztüli kommunikáció. Az SD memóriakártyák kezelése összetett, az ehhez szükséges információkat az SD Specifications¹ című dokumentum tartalmazza. Behelyezett memóriakártya esetén a CDn jel alacsony szintű. A memóriakártya 3,3 V-os tápfeszültségről működik, az interfészhez a fejlesztői környezetben az LVCMOS\_33 I/O szabványt állítsuk be.

4-2. táblázat: A microSD memóriakártya foglalat bekötése.

| SD mód   | CLK | CMD  | DAT0 | DAT1 | DAT2 | DAT3 | CDn  |
|----------|-----|------|------|------|------|------|------|
| SPI mód  | CLK | MOSI | MISO | 1    | 1    | CSn  | CDII |
| FPGA láb | F13 | B14  | H14  | F14  | C13  | D13  | G9   |

## 5 Digitális video interfészek

#### 5.1 HDMI be- és kimenetek

A LOGSYS Kintex-7 FPGA kártyán lévő két mini-HDMI csatlakozó lehetővé teszi TMDS kódolású digitális videojel fogadását, illetve kiadását. A nagysebességű adatvonalakon és a pixel órajel vonalon kívül az interfész tartalmazza még az EDID EEPROM elérését lehetővé tevő I²C vonalat, az eszközök távirányítását lehetővé tevő CEC (Consumer Electronics Control) jelet, valamint a hot-plug detect (HPD) jelet. A HDMI be- és kimenetek bekötését az 5-1. és az 5-2. táblázat tartalmazza. A HDMI interfész 3,3 V-os tápfeszültségről működik, a nagysebességű adat és órajel vonalak I/O szabványa TMDS\_33, a többi vonal esetén LVCMOS\_33 I/O szabványt állítsunk be a fejlesztői környezetben.

<sup>&</sup>lt;sup>1</sup> Az egyszerűsített specifikáció letölthető a <a href="https://www.sdcard.org/downloads/pls/simplified">https://www.sdcard.org/downloads/pls/simplified</a> specs címről.



#### 5-1. táblázat: A HDMI bemeneti csatlakozó bekötése.

| HDMI     | DA  | TA0 | DA  | ГА1 | DA  | TA2 | CLC | СК  | CEC | HPD | I <sup>2</sup> C | I <sup>2</sup> C |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------------------|------------------|
| bemenet  | Р   | N   | Р   | N   | Р   | N   | Р   | N   |     |     | SCL              | SDA              |
| FPGA láb | F25 | E26 | D26 | C26 | E25 | D25 | G24 | F24 | F23 | E21 | F22              | E23              |

5-2. táblázat: A HDMI kimeneti csatlakozó bekötése.

| HDMI     | DA  | TA0 | DA  | TA1 | DA. | TA2 | CLC | ОСК | CEC | HPDn | I <sup>2</sup> C | I <sup>2</sup> C |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------------------|------------------|
| kimenet  | Р   | N   | Р   | N   | Р   | N   | Р   | N   |     |      | SCL              | SDA              |
| FPGA láb | A23 | A24 | C21 | B21 | B20 | A20 | D21 | C22 | E22 | G21  | D24              | C24              |

#### 5.2 MIPI kamera csatlakozó

A kártya tartalmaz egy MIPI kamera csatlakozót, amely Raspberry Pi kamera modulokat képes fogadni. A fizikai interfész kialakítása a Xilinx XAPP894² dokumentumban szereplő D-PHY kompatibilis megoldás szerint történt. A MIPI kamera interfész bekötését az 5-3. táblázat tartalmazza. A nagysebességű adat és órajel vonalak (HS) esetén az I/O szabvány LVDS\_25, az alacsony sebességű adat és órajel vonalak (LS) esetén az I/O szabvány HSUL\_12, a GPIO és az I<sup>2</sup>C jelek esetén az I/O szabvány LVCMOS\_33.

5-3. táblázat: A MIPI kamera interfész bekötése.

| MIDLIO   | DO_HS |     | D1_   | _HS | CLK | _HS | I <sup>2</sup> C | I <sup>2</sup> C |
|----------|-------|-----|-------|-----|-----|-----|------------------|------------------|
| MIPI jel | Р     | Ζ   | Р     | N   | Р   | Ν   | SCL              | SDA              |
| FPGA láb | T18   | T19 | U19   | U20 | R22 | R23 | M25              | L25              |
| MIDLIA   | D0_LS |     | D1_LS |     | CLK | _LS | GPIO0            | GPIO1            |
| MIPI jel | Р     | N   | Р     | N   | Р   | N   |                  |                  |
| FPGA láb | R18   | P18 | T20   | R20 | R21 | P21 | N22              | M22              |

## 6 Nagysebességű soros interfészek

### 6.1 PCI Express

A LOGSYS Kintex-7 FPGA kártyán található PCI Express x1 élcsatlakozó lehetővé teszi, hogy a kártyát PC-hez csatlakoztassuk nagysebességű PCI Express interfészen keresztül. Az FPGA 2. generációs PCI Express interfészt képes megvalósítani, így az adatátviteli sebesség mindkét irányba maximum 500 MB/s lehet. Az adatvonalak az FPGA 116-os I/O bankjában lévő 3-as sorszámú GTX transceiver-re vannak bekötve, a 100 MHz-es referencia órajel ugyanezen I/O bank 0-s órajel bemenetéhez csatlakozik. A vonalak AC csatolása a szabványban előírt 100 nF-os kondenzátorokkal van megoldva.

#### 6.2 SATA

A LOGSYS Kintex-7 FPGA kártyán lévő 2 darab SATA csatlakozó egy-egy GTX transceiver-be van bekötve, ezeken keresztül nagysebességű soros kommunikáció valósítható meg. A SATA HOST csatlakozó az FPGA 115-ös I/O bankjában lévő 0-s sorszámú, a SATA DEVICE csatlakozó pedig ugyanezen I/O bankban lévő 1-es sorszámú GTX transceiver-rel van összekötve. Az AC csatolás mindkét irányba a SATA szabványban előírt 10 nF-os kondenzátorokkal van megoldva.

<sup>&</sup>lt;sup>2</sup> https://www.xilinx.com/support/documentation/application\_notes/xapp894-d-phy-solutions.pdf



## 7 Gigabit Ethernet interfész

A kártyán lévő Ethernet csatlakozót egy Texas Instruments DP83867CRRGZ típusú, IEEE 1588 óraszinkronizációs szabványt támogató 10/100/1000 Ethernet PHY áramkör illeszti az FPGA-hoz RGMII interfészen keresztül. Az Ethernet PHY konfigurálásáról az adatlapjában olvashatunk bővebben. Az Ethernet csatlakozón lévő sárga LED a kapcsolat meglétét, a zöld LED az aktivitást jelzi alapértelmezésben. A PHY bekötését a 7-1. táblázat mutatja, mindegyik jelhez LVCMOS\_33 I/O szabvány tartozik.

| Jel      | TXCLK | TXCTRL | TXD0 | TXD1 | TXD2 | TXD3 | RXCLK | RXCTRL | RXD0 | RXD1 |
|----------|-------|--------|------|------|------|------|-------|--------|------|------|
| FPGA láb | R25   | T24    | T25  | R26  | P26  | P25  | P23   | M26    | P24  | N23  |
| Jel      | RXD2  | RXD3   | RSTn | INTn | MDC  | MDIO | GPIO0 | GPIO1  | CLK  | TUC  |
| FPGA láb | N26   | N24    | H21  | H23  | K25  | K26  | M24   | L24    | G2   | 22   |

7-1. táblázat: Az audio CODEC bekötése.

### 8 Audio interfész

A LOGSYS Kintex-7 FPGA kártyán található szabványos 3,5 mm-es audio be- és kimeneti jack csatlakozó, valamint a Cirrus Logic CS4270-CZZ sztereó audio CODEC lehetővé teszik hangfrekvenciás tartományú analóg jelek digitalizálását és a digitális jelek analóg formába történő visszaalakítását. A CODEC-ben lévő A/D és D/A konverterek 24 bitesek, a mintavételi frekvencia maximum 216 kHz lehet. A CODEC-ről, illetve annak lehetséges beállításairól bővebben az adatlapjában olvashatunk. A CODEC konfigurálása történhet hardveresen a megfelelő lábakra kiadott fix logikai értékekkel, illetve szoftveresen a soros konfigurációs interfészen keresztüli regiszter írásokkal. Az előbbi mód egyszerű használatot tesz lehetővé az alapbeállítások megadásával, az utóbbi viszont teljes hozzáférést biztosít az összes lehetséges beállításhoz. Az alapértelmezett működési mód a slave mód, azaz az FPGA-nak kell kiadnia a CODEC számára a működéshez szükséges órajeleket. A CODEC bekötése a 8-1. táblázatban látható, mindegyik jelhez LVCMOS\_33 I/O szabvány tartozik. A jelek iránya a CODEC szerint értendő.

8-1. táblázat: Az audio CODEC bekötése.

| Jel      | RSTn | MCLK | LRCLK | SCLK | SDIN | SDOUT | CSn | CCLK | MOSI | MISO | MDIV2 |
|----------|------|------|-------|------|------|-------|-----|------|------|------|-------|
| FPGA láb | L22  | J24  | J23   | K23  | H24  | K21   | H26 | G26  | J25  | G25  | J26   |

A CODEC audio kimenete és a kimeneti audio csatlakozó között található egy Texas Instruments LM4811 típusú fejhallgató erősítő, így a kimenethez nem csak beépített erősítővel rendelkező hangszórót, hanem fejhallgatót is csatlakoztathatunk. Az LM4811 erősítése egyszerű hardveres interfészen keresztül 16 lépésben -33 dB és +12 dB tartományon belül növelhető és csökkenthető. Az órajel felfutó élének hatására az UD jel értékének megfelelően változik az erősítés (0: csökken, 1: nő). Az erősítést vezérlő jelek bekötését a 8-2. táblázat tartalmazza, mindegyik jelhez LVCMOS\_33 I/O szabvány tartozik.

8-2. táblázat: Az LM4811 erősítését vezérlő jelek bekötése.

| Jel      | CLK | UD  |
|----------|-----|-----|
| FPGA láb | K22 | H22 |



## 9 Órajel források

A felhasználói logika számára a fő órajel forrás a 100 MHz frekvenciájú oszcillátor, amely az FPGA D23 lábára van vezetve, a jelhez LVCMOS\_33 I/O szabványt állítsunk be a fejlesztői környezetben. Ez az oszcillátor biztosítja még az FPGA számára a gyors konfigurációhoz szükséges külső konfigurációs órajelet (EMCCLK) is.

A 100 MHz-es oszcillátoron kívül az alábbi perifériák képesek még órajelet adni az FPGA számára:

- HDMI bemenet
- MIPI kamera bemenet
- PCI Express élcsatlakozó (100 MHz-es referencia órajel)
- Ethernet PHY (RXCLK vételi órajel)

Az FPGA-ban található MMCM (Multi-Mode Clock Manager) és PLL (Phase Locked Loop) modulok lehetőséget biztosítanak a bemenetitől eltérő frekvenciájú órajelek előállítására.

## 10 FPGA konfigurációs módok

A LOGSYS Kintex-7 FPGA kártya esetén kétféle konfigurációs mód lehetséges. Az FPGA felkonfigurálható az USB JTAG interfészen keresztül, illetve az eszköz képes magát felkonfigurálni a kártyán lévő SPI buszos soros flash memóriából is. A konfigurációs mód egy jumperrel választható ki a 10-1. táblázatnak megfelelően. A JTAG interfész a kiválasztott módtól függetlenül mindig rendelkezésre áll. Az FPGA sikeres felkonfigurálódását a kártyán lévő zöld DONE LED kigyulladása jelzi.

Jumper állásaKonfigurációs módLeírásSPIAz FPGA az SPI buszos soros flash memóriából konfigurálja fel magát a tápfeszültség bekapcsolása vagy a PROG gomb megnyomása után.JTAGAz FPGA-t a JTAG interfészen keresztül kell felkonfigurálni.

10-1. táblázat: Az FPGA lehetséges konfigurációs módjai.

## 11 USB JTAG és UART interfész

A kártyára történő fejlesztés támogatásához és a PC-vel történő egyszerű soros kommunikációhoz rendelkezésre áll egy FTDI FT2232H alapú USB JTAG és UART interfész. A Xilinx Vivado fejlesztői környezete felismeri az FPGA kártyát, tehát az külső programozó eszköz nélkül egyből használható.

Az UART vonalak bekötését a 11-1. táblázat mutatja, a fejlesztői környezetben itt LVCMOS\_33 I/O szabványt állítsunk be. A jelek elnevezése az FPGA szerint értendő.

11-1. táblázat: Az UART bekötése.

| <b>UART</b> vonal | TXD | RXD |  |  |
|-------------------|-----|-----|--|--|
| FPGA láb          | M21 | N21 |  |  |



## 12 Tápellátás

Az FPGA kártya tápfeszültséggel való ellátása háromféle forrásból lehetséges:

- Az USB csatlakozón bejövő 5 V-os feszültségről
- A PCI Express élcsatlakozón bejövő 12 V-os feszültségről
- A tápcsatlakozón bejövő 6 12 V közötti feszültségről

A kártyán lévő tápfeszültség multiplexer mindig azt a forrást választja ki, amelynek a legnagyobb a bemeneti feszültsége. A tápfeszültség források közötti váltás teljesen zavarmentes, a működést nem befolyásolja. Az USB csatlakozón keresztüli táplálás estén figyelembe kell venni annak maximális 500 mA-es terhelhetőségét, tehát csak kisebb méretű rendszerek esetén használható.

Ha az összes tápegység kimenete megfelelő feszültséget szolgáltat, akkor kigyullad a kártyán lévő piros PWROK LED. A tápfeszültségek stabilizálódásáig az FPGA konfigurációja késleltetve van az INIT\_B láb alacsony szintre történő lehúzásával.

Az 5 V-os fő tápfeszültségen és az FPGA 1 V-os tápfeszültség vonalán lehetőség van a fogyasztás monitorozására, melyet két I²C interfésszel rendelkező INA219 áramkör biztosít. A sönt ellenállások értéke mindkét esetben 0,002 Ω. A teljesítménymérő áramkörök használatáról részletesen azok adatlapjában olvashatunk. Az I2C interfész bekötését a 12-1. táblázat mutatja. Az 5 V-os fogyasztást mérő INA219 7 bites I²C címe 0x41, az 1 V-os fogyasztást mérő INA219 7 bites I²C címe 0x40. A fejlesztői környezetben az I2C interfészhez LVCMOS\_33 I/O szabványt állítsunk be.

12-1. táblázat: A teljesítménymérők I<sup>2</sup>C interfészének bekötése.

| I <sup>2</sup> C vonal | SCL | SDA |  |  |
|------------------------|-----|-----|--|--|
| FPGA láb               | J8  | J14 |  |  |

### 13 Bővítőcsatlakozók

A LOGSYS Kintex-7 FPGA kártyához a kiegészítő modulok illesztését két 20 pólusú csatlakozó teszi lehetővé. Mindkét csatlakozó lábkiosztása azonos, ez a kártya szerinti nézetből a 13-1. ábrán látható. Az ábrának megfelelően lehetőség van mind LOGSYS, mind pedig PMOD modulok csatlakoztatására is. A csatlakozókra ki van vezetve a 3,3 V-os és az 5 V-os tápfeszültség is, azonban az adatvonalak 3,3 V-ról működnek és nem 5 V toleránsak. A 13 adatvonal mindegyike kétirányú. A csatlakozókon az 5 – 16 sorszámú kivezetések differenciális párként is használhatóak. A bővítőcsatlakozók bekötését a 13-1. táblázat mutatja.



13-1. ábra: A bővítőcsatlakozók lábkiosztása.



13-1. táblázat: A bővítőcsatlakozók bekötése.

| "A" bővítőcsatlakozó |      |      |      |      |      |      |       |       |       |       |       |       |       |
|----------------------|------|------|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|
| Kivezetés            | AIO4 | AIO5 | AIO6 | AIO7 | AIO8 | AIO9 | AIO10 | AIO11 | AIO12 | AIO13 | AIO14 | AIO15 | AIO16 |
| Diff. párok          |      | 1P   | 1N   | 2P   | 2N   | 3P   | 3N    | 4P    | 4N    | 5P    | 5N    | 6P    | 6N    |
| FPGA láb             | U16  | N19  | M20  | N18  | M19  | P19  | P20   | T22   | T23   | R16   | R17   | U17   | T17   |
| "B" bővítőcsatlakozó |      |      |      |      |      |      |       |       |       |       |       |       |       |
| Kivezetés            | BIO4 | BIO5 | BIO6 | BIO7 | BIO8 | BIO9 | BIO10 | BIO11 | BIO12 | BIO13 | BIO14 | BIO15 | BIO16 |
| Diff. párok          |      | 1P   | 1N   | 2P   | 2N   | 3P   | 3N    | 4P    | 4N    | 5P    | 5N    | 6P    | 6N    |
| FPGA láb             | A8   | G12  | F12  | Н9   | Н8   | F9   | F8    | J11   | J10   | H12   | H11   | J13   | H13   |

## 14 Megjegyzések



A kártya EMC megfelelősége legfeljebb 3 m hosszú kábelek (táp, audio, illetve HDMI) használata esetén garantált. Az alkatrészek érintése (például mérés) esetén ESD csuklópánt használata kötelező.



## 15 A kártya kapcsolási rajza

































