Problem 1

Proof. Let $K = \{k + 1, ..., 2k + 1\}.$

Part A

Assume towards contradiction that A is not sum free. Then there exists some b_i, b_j, b_k such that $b_i + b_j = b_k$. Since $b_i, b_j, b_k < \max\{|b_i| : 1 \le i \le n\}$ and $p > 2\max\{|b_i| : 1 \le 1 \le n\}$, $b_i + b_j < p$ thus

$$b_i + b_j \equiv b_k \pmod{p} \implies xb_i + xb_j \equiv xb_k \pmod{p}$$
.

But this means that $d_i + d_j = d_k$, which are elements of a sum free subset. This is a contradiction, hence A must be sum free.

Part B

Let D_i be the indicator random variable that $d_i \in K$. Then we have

$$\mathbb{E}[|\{d_1,\ldots,d_n\}\cap K|] = \mathbb{E}igg[\sum_{i=1}^n D_iigg] = \sum_{i=1}^n \mathbb{E}[D_i].$$

Since $x \neq 0$ and $b_i \neq 0$, $d_i \neq 0$ and hence the number of total possibilities for d_i is p-1. Therefore since x is chosen uniformly at random

$$\mathbb{P}[d_i \in K] = \frac{(2k+2) - (k+1)}{p-1} = \frac{k+1}{3k+1}$$

Thus we have that the desired expectation equals

$$\sum_{i=1}^{n} \mathbb{E}[D_i] = \sum_{i=1}^{n} \frac{k+1}{3k+1} = n \left(\frac{k+1}{3k+1} \right).$$

Since $\frac{k+1}{3k+1} > \frac{1}{3}$ for all $k \ge 0$,

$$\mathbb{E}[|\{d_1,\ldots,d_n\}\cap K|]>\frac{n}{3}.$$

Part C

Since the expectation is greater than $\frac{n}{3}$, it follows that

$$\mathbb{P}\Big[|\{d_1,\ldots,d_n\}\cap K|>\frac{n}{3}\Big]>0.$$

Therefore there must exist some *x* such that

$$|\{d_1,\ldots,d_n\}\cap K|>\frac{n}{3}.$$

Part D

Take A to be the collection of associated b_i to x such that $d_i \in K$. Then by (a) this set is A sum free and by (c) this set has size greater than $\frac{n}{3}$. \diamondsuit

Problem 2

Proof. Let $\varepsilon_1, \ldots, \varepsilon_n$ be independently randomnly chosen weights such that $\mathbb{P}[\varepsilon_i = -1] = \mathbb{P}[\varepsilon_i = 1] = \frac{1}{2}$. If $\langle \ , \ \rangle$ is the Euclidean inner product, then $\|\cdot\|^2 = \langle \cdot, \cdot \rangle$ and thus by linearity of the inner product

$$\left\| \sum_{i} \varepsilon_{i} v_{i} \right\|^{2} = \left\langle \left(\sum_{i} \varepsilon_{i} v_{i} \right), \left(\sum_{j} \varepsilon_{j} v_{j} \right) \right\rangle$$

$$= \sum_{i} \left\langle \varepsilon_{i} v_{i}, \sum_{j} \varepsilon_{j} v_{j} \right\rangle$$

$$= \sum_{i} \sum_{j} \left\langle \varepsilon_{i} v_{i}, \varepsilon_{j} v_{j} \right\rangle$$

$$= \sum_{i} \sum_{j} \varepsilon_{i} \varepsilon_{j} \left\langle v_{i}, v_{j} \right\rangle.$$

Note that since $\mathbb{E}\left[\varepsilon_{i}^{2}\right]=1$ and for $i\neq j$, $\mathbb{E}\left[\varepsilon_{i}\varepsilon_{j}\right]=\mathbb{E}\left[\varepsilon_{i}\right]\mathbb{E}\left[\varepsilon_{j}\right]=0$,

$$\mathbb{E}\big[\varepsilon_i\varepsilon_j\big] = \begin{cases} 1 & i=j\\ 0 & i\neq j \end{cases}.$$

Therefore by linearity of expectation, we have

$$\mathbb{E}\left[\left\|\sum_{i} \varepsilon_{i} v_{i}\right\|^{2}\right] = \mathbb{E}\left[\sum_{i} \sum_{j} \varepsilon_{i} \varepsilon_{j} \left\langle v_{i}, v_{j} \right\rangle\right]$$

$$= \sum_{i} \sum_{j} \mathbb{E}\left[\varepsilon_{i} \varepsilon_{j}\right] \left\langle v_{i}, v_{j} \right\rangle$$

$$= \sum_{i} \left\langle v_{i}, v_{i} \right\rangle$$

$$= n$$

since all of the v_i are unit vectors. Therefore since the expected value of the norm squared is n, then the probability that there exists an assignment of the ε_i that makes the norm squared less than or equal to n is non zero. Since this probability is non zero, there then must exist such an assignment. Thus

$$\left\| \sum_{i} \varepsilon_{i} v_{i} \right\|^{2} \leq n \implies \left\| \sum_{i} \varepsilon_{i} v_{i} \right\| \leq \sqrt{n}$$

 \Diamond

which was to be shown.

Problem 3

Proof. Trivially, if n < 3 then K_n has no possible rainbow triangles and $\binom{n}{3}\frac{2}{9} < 1$. Assume then that $n \geq 3$. Consider a random assignment of a color to each edge $e \in K_n$ such that each color is equally likely. Let $X_{i,j,k}$ be the indicator random variable that the triangle comprised of edges i, j, k is rainbow. Then the expected number of rainbow triangles is

$$\mathbb{E}\left[\sum_{i\neq j\neq k} X_{i,j,k}\right] = \sum_{i\neq j\neq k} \mathbb{E}\left[X_{i,j,k}\right] = \binom{n}{3} \mathbb{E}\left[X_{1,2,3}\right]$$

since each $X_{i,j,k}$ is identically distributed hence we only need to find the expectation of a single one, and there are $\binom{n}{3}$ edges since K_n is complete.

The expectation is simply the probability a given triangle is rainbow. There are $3^3 = 27$ possible colorings of the edges of a triangle, and there are $3 \cdot 2 \cdot 1 = 6$ colorings in which all edges are different colors. Since every coloring is equally likely, this means

$$\mathbb{E}\left[\sum_{i\neq j\neq k}X_{i,j,k}\right] = \binom{n}{3}\mathbb{E}\left[X_{1,2,3}\right] = \binom{n}{3}\frac{6}{27} = \binom{n}{3}\frac{2}{9}.$$

Therefore the probability that a random edge coloring of K_n contains more than $\binom{n}{3}\frac{2}{9}$ rainbow triangles is non zero, hence such a random edge coloring must exist. \diamondsuit

Problem 4

Proof. Let $S = \{1, ..., n\}$ and I = (c, c+1) where $c \in \mathbb{R}$. Given a vector $\varepsilon \in \{0, 1\}^n$, we can associate a subset $E \subseteq S$ in which $i \in E$ iff $\varepsilon_i = 1$. Note then that the sum

$$\sum_{i=1}^n \varepsilon_i a_i = \sum_{i \in E} a_i.$$

Assume towards contradiction we have a family of such subsets such that they satisfy the unit interval summation property, but there is two subsets E_1 and E_2 such that $E_1 \neq E_2$ and $E_1 \subset E_2$. Note that

$$c < \sum_{i \in E_1} a_i < c + 1.$$

Since $E_1 \subset E_2$,

$$\sum_{i \in E_2} a_i = \sum_{i \in E_1} a_i + \sum_{i \in E_2 \setminus E_1} a_i.$$

Furthermore, there must be at least one element a_i in E_2 that isnt in E_1 . Combined with the fact that all $a_i \ge 1$,

$$\sum_{i \in E_2 \setminus E_1} a_i \ge 1.$$

Thus

$$\sum_{i\in E_2}a_i=\sum_{i\in E_1}a_i+\sum_{i\in E_2\backslash E_1}a_i\geq 1+\sum_{i\in E_1}a_i>c+1.$$

But this means E_2 can not be in the family since it does not lay in I, a contradiction. Therefore the family of E_i is a Sperner Family and hence has at most $\binom{n}{\frac{n}{2}} = \binom{n}{\lfloor \frac{n}{2} \rfloor}$ members. By the initial equivalence, this means that a family of ε vectors is also subject to the same upper bound. \diamondsuit

Problem 5

Proof. Let $\tilde{X} = X - a \cdot \mathbb{1}_{X \geq a}$. Note that $\tilde{X} \geq 0$, since when X < a then $\tilde{X} = X$ and when $X \geq a$, then $\tilde{X} = X - a \geq a - a = 0$. Furthermore, by linearity of expectation $\mathbb{E}\big[\tilde{X}\big] = \mathbb{E}[X] - a\mathbb{P}[X \geq a]$. When $\mathbb{E}\big[\tilde{X}\big] = 0$, we get equality of the Markov inequality. Since \tilde{X} is non-negative, the expectation being 0 means that $\mathbb{P}\big[\tilde{X} = 0\big] = 1$. The only two possibilities for X that satisfy this are either $\mathbb{P}[X = 0] = 1$ or $\mathbb{P}[X = a] = 1$.