原始数据展示

名称	类型	宽度	小数位数	标签	值	缺失	列	对齐	测量	角色
年份	数字	5	0		无	无	12	臺 右	৵ 标度	输入
农业增加值x1	数字	7	1		无	无	12	畫 右	৵ 标度	输入
工业增加值×2	数字	7	1		无	无	12	臺 右	৵ 标度	输入
建筑业增加	数字	6	1		无	无	12	畫 右	৵ 标度	输入
人口数x4	数字	7	0		无	无	12	畫 右	৵ 标度	输入
社会消费总	数字	7	1		无	无	12	臺 右	৵ 标度	输入
受灾面积x6	数字	6	0		无	无	12	畫 右	৵ 标度	输入
财政收入y	数字	6	1		无	无	12	畫 右	৵ 标度	输入
FAC1_1	数字	11	5	REGR factor sc	无	无	13	臺 右	৵ 标度	输入

A	В	С	D	E	F	G	Н
年份	农业增加值x1	工业增加值x2	建筑业增加值对	人口数x4	社会消费总额x	受灾面积对	财政收入y
1978	1018. 4	1607	138. 2	96259	2239. 1	50760	1132. 3
1979	1258. 9	1769. 7	143. 8	97542	2619. 4	39370	1146. 4
1980	1359. 4	1996. 5	195. 5	98705	2976. 1	44530	1159. 9
1981	1545. 6	2048. 4	207. 1	100072	3309. 1	39790	1175.8
1982	1761. 6	2162.3	220. 7	101654	3637. 9	33130	1212. 3
1983	1960.8	2375. 6	270. 6	103008	4020. 5	34710	1367
1984	2295. 5	2789	316. 7	104357	4694. 5	31890	1642. 9
1985	2541.6	3448. 7	417. 9	105851	5773	44370	2004. 8
1986	2763. 9	3967	525. 7	107507	6542	47140	2122
1987	3204. 3	4585.8	665. 8	109300	7451. 2	42090	2199. 4
1988	3831	5777. 2	810	111026	9360. 1	50870	2357. 2
1989	4228	6484	794	112704	10556. 5	46990	2664. 9
1990	5017	6858	859. 4	114333	11365. 2	38470	2937. 1
1991	5288. 6	8087. 1	1015. 1	115823	13145. 9	55470	3149. 5
1992	5800	10284. 5	1415	117171	15952. 1	51330	3483. 4
1993	6882. 1	14143.8	2284. 7	118517	20182. 1	48830	4349
1994	9457. 2	19359. 6	3012.6	119850	26796	55040	5218. 1
1995	11993	24718.3	3819. 6	121121	33635	45821	6242. 2
1996	13844. 2	29082.6	4530. 5	122389	40003.9	46989	7408
1997	14211. 2	32412. 1	4810.6	123626	43579. 4	53429	8651.1
1998	14599. 6	33429.8	5262	124810	46405. 9	50145	9876

进行主成分分析

→ 因子分析

相关性矩阵^a

		农业增加值x1	工业增加值x2	建筑业增加值 x3	人口数x4	社会消费总额 x5	受灾面积x6
相关性	农业增加值x1	1.000	.994	.992	.909	.997	.506
	工业增加值x2	.994	1.000	.999	.871	.999	.502
	建筑业增加值x3	.992	.999	1.000	.867	.997	.494
	人口数x4	.909	.871	.867	1.000	.890	.571
	社会消费总额x5	.997	.999	.997	.890	1.000	.511
	受灾面积x6	.506	.502	.494	.571	.511	1.000
显著性 (单尾)	农业增加值x1		.000	.000	.000	.000	.010
	工业增加值x2	.000		.000	.000	.000	.010
	建筑业增加值x3	.000	.000		.000	.000	.011
	人口数x4	.000	.000	.000		.000	.003
	社会消费总额x5	.000	.000	.000	.000		.009
	受灾面积x6	.010	.010	.011	.003	.009	

a. 决定因子 = 6.26E-010

公因子方差

	初始	提取
农业增加值x1	1.000	.982
工业增加值x2	1.000	.971
建筑业增加值x3	1.000	.965
人口数x4	1.000	.864
社会消费总额x5	1.000	.980
受灾面积x6	1.000	.372

提取方法: 主成分分析法。

总方差解释

		初始特征值			提取载荷平方和		
成分	总计	方差百分比	累积%	总计	方差百分比	累积%	
1	5.133	85.542	85.542	5.133	85.542	85.542	
2	.694	11.568	97.110				
3	.168	2.806	99.915				
4	.004	.061	99.976				
5	.001	.020	99.996				
6	.000	.004	100.000				

提取方法: 主成分分析法。

成分矩阵a

1
.991
.985
.983
.929
.990
.610

提取方法: 主成分分析法。

a. 提取了1个成分。

成分得分系数矩阵

	成分
	1
农业增加值x1	.193
工业增加值x2	.192
建筑业增加值x3	.191
人口数x4	.181
社会消费总额x5	.193
受灾面积x6	.119

提取方法: 主成分分析法。 组件得分。

成分得分协方 差矩阵

成分	1
1	1.000
提取方法:	主成分
分析法。	
组件得分。	

1. 数据相关性检验

根据相关性矩阵,农业增加值、工业增加值、建筑业增加值、人口数、社会消费总额之间均存在极高的正相关性(相关系数均在 0.867-0.999 之间),表明变量间存在高度冗余,可以进行主成分分析。

2. 公因子方差

从公因子方差可见,除受灾面积 x6 外,其余变量的方差提取率均较高(农业增加值 0.982,工业增加值 0.971,社会消费总额 0.980 等),说明这些变量在第一主成分中的解释能力较强,而受灾面积的提取率(0.372)相对较弱,表明其独立性较高。

3. 主成分提取与解释

根据特征值大于 1 的原则,最终提取了 1 个主成分,其特征值为 5.133,方差贡献率为 85.542%,累计贡献率同为 85.542%。该主成分已能够解释原始变量 85.542%的信息量,降维

效果良好,后续再提取更多主成分的边际贡献极小。

4. 成分矩阵分析

在成分矩阵中,农业增加值(0.991)、工业增加值(0.985)、建筑业增加值(0.983)、社会消费总额(0.990)对第一主成分的载荷值极高,表明该主成分主要反映了宏观经济产出与消费能力的综合影响。人口数(0.929)次之,而受灾面积(0.610)影响相对较弱,但仍有贡献。

结论

本次主成分分析成功将 6 个高度相关的经济指标降维为 1 个主成分,该主成分能够解释 85.542%的原始数据信息,具备良好的综合代表性。后续可以基于该主成分得分进行回归分析、预测财政收入等进一步建模工作。

回归分析

→ 回归

描述统计

	平均值	标准偏差	个案数
财政收入y	3404.729	2617.1197	21
REGR factor score 1 for analysis 1	.0000000	1.00000000	21

相关性

		财政收入y	REGR factor score 1 for analysis 1
皮尔逊相关性	财政收入y	1.000	.983
	REGR factor score 1 for analysis 1	.983	1.000
显著性 (单尾)	财政收入y		.000
	REGR factor score 1 for analysis 1	.000	
个案数	财政收入y	21	21
	REGR factor score 1 for analysis 1	21	21

输入/除去的变量^a

模型	输入的变量	除去的变量	方法
1	REGR factor score 1 for analysis 1 b		输入

a. 因变量: 财政收入y

b. 己输入所请求的所有变量。

模型摘要b

					更改统计					
模型	R	R方	调整后R方	标准估算的错 误	R方变化量	F 变化量	自由度 1	自由度 2	显著性 F 变化 量	德宾-沃森
1	.983ª	.967	.966	486.0568	.967	560.833	1	19	.000	.762

a. 預測变量: (常量), REGR factor score 1 for analysis 1

b. 因变量: 财政收入y

ANOVA^a

模型		平方和	自由度	均方	F	显著性
1	回归	132497542.8	1	132497542.8	560.833	.000 ^b
	残差	4488772.389	19	236251.178		
	总计	136986315.2	20			

a. 因变量: 财政收入y

b. 预测变量: (常量), REGR factor score 1 for analysis 1

系数^a

		未标准化系数		标准化系数			B 的 95.0% 置信区间	
模型		В	标准错误	Beta	t	显著性	下限	上限
1	(常量)	3404.729	106.066		32.100	.000	3182.729	3626.728
	REGR factor score 1 for analysis 1	2573.884	108.686	.983	23.682	.000	2346.402	2801.365

a. 因变量: 财政收入y

残差统计a

	最小值	最大值	平均值	标准偏差	个案数
预测值	810.862	8534.167	3404.729	2573.8837	21
残差	-757.8572	1341.8329	.0000	473.7495	21
标准预测值	-1.008	1.993	.000	1.000	21
标准残差	-1.559	2.761	.000	.975	21

a. 因变量: 财政收入y

1. 描述性统计与相关性

根据描述性统计,因变量财政收入(y)的均值为 3404.729,标准差为 2617.1197。主成分得分(FAC1)的均值为 0,标准差为 1,表明数据已标准化。皮尔逊相关分析显示,财政收入与主成分得分的相关系数为 0.983,显著性 p < 0.001,表明二者之间存在显著的强正相关关系。

2. 回归模型拟合优度

回归模型的 R^2 为 0. 967,调整后 R^2 为 0. 966,说明主成分得分(FAC1)能够解释财政收入 96. 6%的变异,模型拟合效果极佳。标准估算误差为 486. 06,模型 F 值为 560. 833,显著性 p < 0. 001,表明回归模型整体显著。

3. 回归系数分析

回归系数表显示,主成分得分(FAC1)对财政收入的非标准化回归系数为 2573. 884,t 值为 23. 682,显著性 p < 0. 001,表明 FAC1 对财政收入有极强的正向影响。回归方程为: $y=3404.\ 729+2573.\ 884*FAC1$

系数的 95%置信区间为[2346.402,2801.365],进一步验证了其稳定性和显著性。

4. 残差分析

残差统计显示,标准化残差均值为 0,标准差接近 1,符合回归分析基本假设。德宾-沃森统计量为 0.762,提示残差存在一定自相关性,需在后续建模中关注时间序列或其他动态因素的影响。

结论

本次回归分析表明,基于农业、工业、建筑业、人口、消费等多项指标提取的主成分(FAC1) 对财政收入具有显著正向影响,回归模型拟合优良,解释力强。该主成分可以作为简化后、 具备代表性的综合指标应用于财政收入的预测与分析中。