- 13. Marginal probability: "The probability of only one event that taken at a time when both are occurring jointly is called Marginal Probability".
- 14. Joint probability: The probability of occurrence of both the events A and B together, denoted by P (A ∩ B), is known as joint probability of A and B.
- 15. Conditional probability: The conditional probability of A for the given B is $P(A/B) = \frac{P(A \cap B)}{P(B)}$ if $P(B) \neq 0$ and it is undefined if P(B) = 0.

A rearrangement of the above definition yields the following: MR (Multiplication Rule).

$$P(A \cap B) = \begin{cases} P(B) & P(A/B) & \text{if } P(B) \neq 0 \\ P(A) & P(B/A) & \text{if } P(A) \neq 0 \\ 0 & \text{otherwise} \end{cases}$$

16. Explain the term "two events are independent".

Two events are independent if any one of the following equivalent statements is true.

1.
$$P(A/B) = P(A)$$
 2. $P(B/A) = P(B)$

$$3. P (A \cap B) = P (A) P (B)$$

- 17. Type of Random variables:
 - 1. Discrete random variables
 - 2. Continuous random variables

Discrete Random Variable	Continuous Random Variable
A r.v. X is discrete if it takes	A r.v. X is said to be
only discrete or countable	continuous if it takes all
values.	possible values between certain
11 MAR.	limits or in an internal which
	may be finite or infinite.

Discrete Random Variable

P.m.f. [Probability mass function] If X is a discrete r.v. then the function $\overline{P}(x) = P[X = x]$ is called the p.m.f. of X provided it satisfies the following conditions

(i)
$$p(x_i) \ge 0$$
, \forall , $i = 1,2,3,...$

$$(ii) \sum_{i=1}^{\infty} p(x_i) = 1$$

Continuous Random Variable

p.d.f [Probability density
function] If X is a continuous
r.v. such that

P
$$\left\{x - \frac{1}{2}dx \le X \le x + \frac{1}{2}dx\right\} = f(x) dx$$
 then $f(x)$ is called the p.d.f of X provided $f(x)$ satisfies the following

(i)
$$f(x) \ge 0$$
, (ii)
$$\int_{-\infty}^{\infty} f(x) dx = 1$$

$$p [a \le X \le b] \text{ (or) } p [a < X < b] \text{ (or)}$$

$$p (a \le X < b) \text{ (or) } p [a < X \le b]$$

$$= \int_{a}^{b} f(x) dx.$$

C.d.f [Cumulative distribution function]

$$F[x] = P[X \le x] = \sum_{i}^{x} P_{i}$$

C.d.f [Cumulative distribution function]

$$F[x] = P[--\infty < X \le x]$$

$$= \int_{-\infty}^{x} f(x) dx$$

Properties of cdf.

- 1. F [x] is a non-decreasing function of x, (i.e.,,) if $x_1 < x_2$, then $F [x_1] \le F [x_2].$ $P [X \le x_1] \le P [X \le X_2]$ $= P [x \le x_i] - P [X \le x_{i-1}]$
- 2. $F[-\infty] = 0$ and $F[\infty] = 1$.
- 3. If X is discrete R.V. taking values x_1 , x_2 ,...

 where $x_1 < x_2 < ...$ $< x_{i-1} < x_i < ...$ then $P[X = x_i] = F[x_i] F[x_{i-1}]$

Properties of cdf.

conditions.

- 1. F [x] is a non-decreasing function of x, (i.e.,) if $x_1 < x_2$, then $F[x_1] \le F[x_2]$.
- 2. $F[-\infty]=0$ and $F[\infty]=1$.
- 3. If X is a continuous R.V, then $\frac{d}{dx}$ F [x] = f(x), at all points where F [x] is differentiable.

Discrete Random Variable

Mean
$$(\mu) = E[X] = \sum_{i} x_{i} p(x_{i})$$

Variance
$$(\sigma^2) = \text{Var }(X)$$

 $= \text{E} [X^2] - [\text{E} [X]]^2$
 $\text{E} [X^2] = \sum_{i} x_i^2 p(x_i)$
S.d of $X = \sqrt{\text{Var}(X)}$ (+ve)

Moments

$$\mu_{\mathbf{r}}' = \mathbf{E} [\mathbf{X}^{\mathbf{r}}] = \sum_{i=1}^{n} x_{i}^{\mathbf{r}} p_{i}$$
(about the origin)
$$= \sum_{i=1}^{n} (x_{i} - A)^{\mathbf{r}} p_{i}$$
(about any point $x = A$)
$$= \sum_{i=1}^{n} (x_{i} - mean)^{\mathbf{r}} p_{i}$$
(about the (x))

First four moments about the origin are

$$\mu_1'' = E[X] = mean,$$

 $\mu_2' = E[X^2],$
 $\mu_3' = E[X^3],$

$$\mu_4' = E[X^4]$$

 $\mu_1 = 0$ first moment about mean

$$\mu_2 = E [X - \mu]^2 = \text{variance}$$
of X

$$\mu_3 = E [X - \mu]^3$$

$$\mu_4 = \mathbf{E} [\mathbf{X} - \mu]^4$$

M.G.F $M_X[f] = E[e^{tx}]$ = $\sum_{x} e^{tx} p(x)$

Continuous Random Variable

Mean
$$(\mu) = E[X] = \int_{-\infty}^{\infty} x f(x) dx$$

Variance
$$(\sigma^2) = \text{Var } [X]$$

= $E[X^2] - [E(X)]^2$

$$E[X^2] = \int x^2 f(x) dx$$

S.d. of
$$X = \sqrt{Var(X)}$$
 (+ve)
Moments

$$\mu_r' = E[X^r] = \int_{-\infty}^{\infty} x^r f(x) dx$$

[about the origin]

$$=\int_{-\infty}^{\infty}(x-A)^{\mathrm{r}}f(x)\,dx$$

[about any point A]

$$=\int_{-\infty}^{\infty}(x-\overline{x})^{r} f(x) dx$$

[about the mean]

First four moments about the origin are

$$\mu_1' = E[X] = mean,$$

$$\mu_2' = E [X^2],$$

$$\mu_3' = E [X^3],$$

$$\mu_4' = \mathbf{E}[X^4]$$

 $\mu_1 = 0$ first moment about mean

$$\mu_2 = E [X - \mu]^2 = \text{variance}$$
of X

$$\mu_3 = E [X - \mu]^3$$

$$\mu_4 = E[X - \mu]^4$$

M.G.F.
$$M_x(f) = E[e^{tx}]$$

= $\int_{-\infty}^{\infty} e^{tx} f(x) dx$

TWO DIMENSIONAL RANDOM VARIABLES

Discrete Random Variable	Continuous Random Variable
If the possible values of (X, Y) are finite or countably infinite, then (X, Y) is called a two dimensional discrete random variable	If the values of (X, Y) is an uncountably infinite set, (i.e.,) the range space is a region in the XY plane, then (X, Y) is called the two-dimensional continuous random variable.
Joint probability mass function	Joint Probability density function
$P(x_i, y_i) = P[X = x_i ; Y = y_j]$	$P \left[x - \frac{dx}{2} \le X \le x + \frac{dx}{2} \right],$
	$y - \frac{dy}{2} \le Y \le y + \frac{dy}{2}$
grand grander factilities.	= f(x, y) dx dy
$(i) p(x_i, y_i) \ge 0,$	(i) $f(x, y) \ge 0, \forall (x, y) \in \mathbb{R}$
$\forall i = 1, 2,; j = 1, 2,$	$\left \text{(ii)} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = 1 \right $
$(ii) \sum_{i} \sum_{j} p(x_{i}y_{j}) = 1$	$(\text{or}) \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dy dx = 1$
Marginal probability mass	Marginal density function
function	
$f(x) = P_X(x_i) = P(X = x_i)$	$f(x) = f_X(x) = \int f(x, y) dy$
$= \sum_{i=1}^{m} p(x_i, y_i) = p_i$	
$f(y) = P_Y(y_i) = P[Y = y_i]$ $= p_j = \sum_j p_{ij}$	$f(y) = f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$

Discrete Random	Variable
-----------------	----------

c.d.f.

$$F_{XY}(x, y) = P[X \le x, Y \le y]$$

c.d.f.

$$F[x, y] = \int_{-\infty}^{x} \int_{-\infty}^{y} f(x, y) dx_{dy}$$

Properties

$$1, \quad 0 \le P(x_i, y_i) \le 1$$

$$\sum_{i} \sum_{j} P(x_i, y_j) = 1$$

3.
$$P(x_i) = \sum_i P(x_i, y_i)$$

4.
$$P(y_i) = \sum_i P(x_i, y_i)$$

Properties

$$1. \quad 0 \leq F(x', y) \leq 1$$

$$2. \quad F(\infty, \infty) = 1$$

$$3. \quad F[-\infty, y] = 0$$

$$4. \quad F[x, -\infty] = 0$$

5.
$$f(x, y) = \frac{\partial^2}{\partial x \partial y} F(xy)$$

Conditional probability mass function

(i)
$$P_{Y/X}(y) = \frac{P_{XY}(x, y)}{P_{X}(x)}$$

(ii)
$$\sum_{R_x} P_{Y/X}(y) = 1$$

Conditional probability density function

(i)
$$f_{Y/X}(y) = \frac{f(x, y)}{f_X(x)}$$

(ii)
$$\int_{\mathbf{R_X}} f_{\mathbf{Y/X}}(y) \, dy = 1$$

Note:

$$P_{XY}(x,y) = P(x,y)$$

$$P_{Y}(y) = P(y)$$

$$P_X(x) = P(x)$$

$$P_{X/Y}(x/y) = P(x/y)$$

$$P_{Y/X}(y/x) = P(y/x)$$

$$P(x,y) = P(y,x)$$

$$f_{\mathbf{X}}(x) = f(x)$$

$$f_{\mathbf{Y}}(\mathbf{y}) = f(\mathbf{y})$$

$$f_{\mathbf{X}}(x) = f(x)$$

$$f_{X/Y}(x/y) = f(x/y)$$

$$f_{Y/X}(y/x) = f(y/x)$$

$$f(x,y) = f(y,x)$$