

ЛЕКТОР: РОМАН ИСАЧЕНКО

СЕМИНАРИСТ: АЛЕКСАНДР КОЛЕСОВ

CTAPT KYPCA: 08.02.2022

О ПРЕПОДАВАТЕЛЯХ И КУРСЕ

РОМАН ИСАЧЕНКО, лектор

- Кандидат физико-математических наук, преподаватель МФТИ
- Разработчик в Yandex, Служба компьютерного зрения
- ⊠ e-mail: roman.isachenko@phystech.edu

АЛЕКСАНДР КОЛЕСОВ, семинарист

Выпускник МФТИ (2020)

🖆 Исследователь в Skoltech

🗖 telegram: @kolesov68

⊠ e-mail: kolesov.as@phystech.edu

КОРОТКО О КУРСЕ

Курс посвящен современным методам построения генеративных порождающих моделей.

Рассматриваются следующие классы генеративных моделей:

- авторегрессионные модели,
- модели скрытых переменных,
- модели нормализационных потоков,
- состязательные модели,
- диффузионные модели.

Особое внимание уделяется свойствам различных классов генеративных моделей, их взаимосвязям, теоретическим предпосылкам и методам оценивания качества.

Целью курса является знакомство слушателя с широко применяемыми продвинутыми методами глубокого обучения.

Курс сопровождается практическими заданиями, позволяющими на практике понять принципы устройства рассматриваемых моделей.

ГЕНЕРАТИВНЫЕ МОДЕЛИ

he was silent for a long moment .
he was silent for a moment .
it was quiet for a moment .
it was dark and cold .
there was a pause .
it was my turn .

Text analysis

Active Learning

Image analysis

Reinforcement Learning

 $p(y = cat|\mathbf{x}) = 0.90$ $p(y = dog|\mathbf{x}) = 0.05$ $p(y = horse|\mathbf{x}) = 0.05$

noise

 $p(y = cat | \mathbf{x}) = 0.05$ $p(y = dog | \mathbf{x}) = 0.05$ $p(y = horse | \mathbf{x}) = 0.90$

Graph analysis

Medical data

Audio analysis

AND MORE

О КУРСЕ

СТРУКТУРА КУРСА

14 лекций

14 семинаров

6 домашних заданий

экзамен

КАК ФОРМИРУЕТСЯ ОЦЕНКА?

6 дз по 13 баллов: **78** БАЛЛОВ

+

устный экзамен: **26** БАЛЛОВ

максимум за курс: **104** БАЛЛА Финальная оценка выставляется по формуле:

floor(relu(#баллов/8 - 2))

№	ТЕМА ЛЕКЦИИ
1	Логистика. Мотивация. Задача минимизации дивергенций. Авторегрессионное моделирование.
2	Авторегрессионные модели (WaveNet, PixelCNN, PixelSnail). Основы байесовского вывода. Модели скрытых переменных.
3	Вариационная нижняя оценка (ELBO). EM-алгоритм, амортизированный вывод. Градиент ELBO, репараметризация.
4	Вариационный автокодировщик (VAE). Коллапс апостериорного распределения VAE. Техники ослабления декодера. Importance Sampling VAE.
5	Модели нормализующих потоков. Прямая и обратная KL дивергенции. Остаточные потоки (Planar/Sylvester flows). Линейные потоки (Glow).
6	Авторегрессионные потоки (MAF/IAF/RealNVP). Теорема об операции над ELBO.
7	Оптимальное априорного распределение в VAE (VampPrior, flow-based prior). Потоки в апостериорном и априорном распределении VAE. Равномерная и вариационная деквантизации.
8	Задача распутывания представлений (beta-VAE, DIP-VAE). Неявные генеративные модели без оценки правдоподобия.
9	Модель генеративных состязательных сетей (GAN). Проблемы GAN (vanishing gradients, mode collapse). KL дивергенция vs JS дивергенция. Adversarial Variational Bayes.
10	Топологические особенности обучения GAN моделей. Расстояние Baccepштейна. Wasserstein GAN. Липшицевость и дуальность Кантторовича-Рубинштейна. Gradient penalty. Spectral Normalization.
11	Вариационная минимизация f-дивергенций. Оценивания качества likelihood-free моделей (Inception score, FID, Precision-Recall).
12	Разбор конкретных GAN моделей (Self-attention GAN, BigGAN, Progressive Growing GAN, StyleGAN, truncation trick). Neural ODE. Непрерывные во времени нормализационные потоки.
13	VAE с дискретным скрытым пространством (Gumbel-Softmax трюк, VQ-VAE, VQ-VAE-2, DALL-E).
14	Диффузионные модели.

ЧТО НУЖНО ЗНАТЬ ДЛЯ СТАРТА КУРСА?

- Теория вероятностей,
- Статистика,
- Машинное обучение,
- Основы глубокого обучения

ОБЯЗАТЕЛЬНО ПОМНИМ, ЧТО...

- Курс новый любой фидбек, особенно негативный, приветствуется!
- Если у тебя возникли вопросы, связанные с курсом, обязательно задай их!

ССЫЛКИ:

Repo:

https://github.com/r-isachenko/2022-DGM-Ozon-course

Feedback:

https://forms.gle/NuWQsSNMepEurPrB7

Чат курса https://t.me/+4x9DgnTaYSU1NTZi

РОМАН ИСАЧЕНКО, лектор

ДО ВСТРЕЧИ НА КУРСЕ!