Claims:

- 1. In a method for improving the expression of a heterologous gene in plants by modifying the structural coding sequence of said gene, the improvement which comprises reducing the occurrence of polyadenylation signals selected from the group consisting of AATAAA, AATAAT, AACCAA, ATATAA, AATCAA, ATACTA, ATACTA, ATACTA, ATACTA, ATACTA, ATACTA, ATTAAA, AATTAAA, AATACTA and CATAAA.
 - 2. The method of Claim 1 further comprising the improvement of reducing the occurrence of ATTTA sequences within the structural coding sequence.
 - 3. A method for modifying a wild-type structural gene sequence which encodes an insecticidal protein of Bacillus thuringiensis to enhance the expression of said protein in plants which comprises:
 - a) removing polyadenylation signals contained in said wild-type gene while retaining a sequence which encodes said protein; and
 - b) removing ATTTA sequences contained in said wild-type gene while retaining a sequence which encodes said protein.
 - 4. A method of Claim 3 further comprising the removal of self-complementary sequences and replacement of such sequences with nonself-complementary DNA comprising plant preferred codons while retaining a structural gene sequence encoding said protein.
 - 5. A method of Claim 4 further comprising the use of plant preferred sequences in the removal of the polyadenylation signals and ATTTA sequences.

15

20

25

180 S1

- A method of Claim 3 in which the poly-6. adenylation signals are selected from the group consisting of AATAAA, AATAAT, AACCAA, ATATAA, AATCAA, ATACTA, ATAAAA, ATGAAA, AAGCAT, ATTAAT, AAAATA, ATTAAA, AATTAA, AATACA and CATAAA
- in/ which method of Claim polyadenylation signals are selected/from the group consisting of AATAAA, AATAAT, AACCAA, ATATAA, AATCAA, ATACTA, ATAAAA, ATGAAA, AAGCAT, ATTAAT, ATACAT, AAAATA, ATTAAA, AATTAA, AATACA and CATAAA.
- method of Claim 5 in which Α polyadenylation signals are selected from the group consisting of AATAAA, AATAAT/ AACCAA, ATATAA, AATCAA, ATTAAT, ATACAT, 15 ATACTA, ATAAAA, ATGAAA, /AAGÇAT/, AAAATA, ATTAAA, AATTAA, AATACA/apd CATAAA.
 - A method for modifying a wild-type structural gene sequence which endodes an insecticidal protein of Bacillus thuringiens is to enhance the expression of said protein in plants which comprises:
 - identifying regions within said sequence with greater /than four consecutive adenine or thymine/nucleotides;
 - modifying the regions of step (a) which have b) two or more polyadenylation signals within a ten/base sequence to remove said signals while maintaining a gene sequence which encodes said protein; and
 - modifying the 15-30 base regions surrounding c) the regions of step (a) to remove major plant polyadenylation signals, consecutive sequences containing more than one minor polyadenylation

30

20

25

5

signal and consecutive sequences containing more than one ATTTA sequence while maintaining a gene sequence which encodes said protein.

10. A method of Claim 9 in which the major plant polyadenylation signals are selected from the group consisting of AATAAA and AATAAT.

11. A method of Claim 10 in which the polyadenylation signals are selected from the group consisting of AATAAA, AATAAT, AACCAA, ATATAA, AATCAA, ATACAA, ATAAAA, ATTAAA, AATTAA, AATACA and CATAAA.

12. A method of Claim 11 further comprising the use of plant preferred sequences in the removal of polyadenylation signals and ATTTA sequences.

13. A structural gene which encodes an insecticidal protein of Bacillus thuringiensis, said gene being substantially devoid of polyadenylation signals and ATTTA sequences,

25

20

5

	15	. A structural gene of Claim 13 which encodes an	
		ticidal protein of B.t.k. HD-1 having the	
5	seque	nce:	
J			
	1	ATGGCTATAGAAACTGGTTACACCCCAATCGATATTTCCT 40	
	41	TGTCGCTAACGCAATTTCTTTTGAGTGAATTTGTTCCCGG 80	
10	81	TGCTGGATTTGTGTTAGGACTAGTTGATATTATCTGGGGA 120	
	121	ATTTTTGGTCCCTCTCAATGGGACGCATTTCTTGTACAAA 160	
15	161	TTGAACAGCTCATCAACCAGAGAATCGAAGAGTTCGCTAG 200	
ш	201	GAATCAAGCCATTTCTAGATTAGAAGGACTAAGCAATCTT 240	
	241	TATCAAATTTACGCAGAATCTTTTAGAGAGTGGGAAGCAG 280	
20	281	ATCCTACTAATCCAGCATTAAGAGAAGAGATGCGTATTCA 320	
	321	ATTCAATGACATGAACAGTGCCCTTACAACCGCTATTCCT 360	
	361	CTTTTTGCAGTTCAAAATTATCAAGTTCCTCTCCCCCCCC	
25	401	TGTACGTTCAAGCTGCCAACCTCCACCTCTCAGTTTTGAG 440	
	441	AGATGTTTCAGTGTTTGGACAAAGGTGGGGATTTGATGCC 480	
30	481	GCGACTATCAATAGTCGTTATAATGATTTAACTAGGCTTA 520	

	521	TTGGCAACTATACAGATCATGCTGTACGCTGGTACAATAC	560
5	561	GGGATTAGAGCGTGTATGGGGACCGGATTCTAGAGATTGG	600
	601	ATCAGGTACAACCAGTTCAGAAGAGAGCTTACACTAACTG	640
10	641	TATTAGATATCGTTTCTCTATTTCCGAACTATGATAGTAG	680
10	681	AACGTATCCAATTCGAACAGTTTCCCAATTAACAAGAGAA	720
	721	ATTTATACAAACCCAGTATTAGAAAATTTTGATGGTAGTT	760
15	761	TTCGAGGCTCGGCTCAGGGCATAGAAGGAAGTATTAGGAG	800
	801	TCCACATTTGATGGATATACTTAATAGTATAACCATCTAT	840
	841	ACGGATGCTCATAGAGGAGAATACTACTGGTCCGGTCACC	880
20	881	AGATCATGGCTTCTCCTGTAGGGTTTTCGGGGCCAGAATT	920
	921	CACTTTTCCGCTATATGGAACTATGGGAAATGCAGCTCCA	960
05	961		1000
25	1001	GAACATTATCGTCCACCTTATATAGAAGACCTTTTAACAT	1040
	1041		1080
30	1081	GAATTTGCTTATGGAAC¢TCCTCAAATTTGCCATCCGCTG	1120

	1121	TATACAGAAAAAGCGGAACGGTAGATTCGCTGGATGAAAT	1160
5	1161	ACCGCCACAGAATAACAACGTGCCACCTAGGCAAGGATTT	1200
	1201	AGTCATCGATTAAGCCATGTTTCAATGTTTCGTTCAGGCT	1240
	1241	TTAGTAATAGTAGTGTAAGTATAATAAGAGCTCCTATGTT	1280
10	1281		1320
	1321		1360
15	1361		1400
	1401		1440
	1441		1480
20	1481		1520
	1521	AAACCTTCAGTTCCACACATCAATTGACGGAAGACCTATT	1560
		AATCAGGGGAATTTTTCAGCAACTATGAGTAGTGGGAGTA	1600
25	1561		1640
	1601	ATTTACAGTCCGGAAGCTTTAGGACTGTAGGTTTTACTAC	
00	1641	TCCGTTTAACTTTTCAAATGGATCAAGTGTATTTACGTTA	1680
30			

		. 1	
	1681	AGTGCTCATGTCTTCATTCAGGCAATGAAGTTTATATAG	1720
5	1721	ATCGAATTGAATTTGTTCCGGCA 1743.	
10			des an
	1	ATGGCCATTGAAACCGCTTACACTCCCATCGACATCTCCT	40
	41	TGTCCTTGACACAGTTTCTGCTCAGCGAGTTCGTGCCAGG	80
15	81	TGCTGGGTTCGTCTCGGACTAGTTGACATCATCTGGGGT	120
	121	ATCTTTGGTCCATCTCAATGGGATGCATTCCTGGTGCAAA	160
	161	TTGAGCAGTTGATCAACCAGAGGATCGAAGAGTTCGCCAG	200
20	201	GAACCAGGCCATCTCTAGGTTGGAAGGATTGAGCAATCTC	240
	241	TACCAAATCTATGCAGAGAGCTTCAGAGAGTGGGAAGCCG	280
25	281	ATCCTACTAACCCAGCTCTCCGCGAGGAAATGCGTATTCA	320
	321	ATTCAACGACATGAACAGCGCCTTGACCACAGCTATCCCA	360
	361		400
30	401	TGTACGTTCAGCAGCTAATCTTCACCTCAGCGTGCTTCG	440

	441	AGACGTTAGCGTGTTTGGGCAAAGGTGGGGATTCGATGCT	480
5	481	GCAACCATCAATAGCCGTTACAACGACCTTACTAGGCTGA	520
	521	TTGGAAACTACACCGACCACGCTGTTCGTTGGTACAACAC	560
	561	TGGCTTGGAGCGTGTCTGGGGTCCTGATTCTAGAGATTGG	600
10	601	ATTAGATACAACCAGTTCAGGAGAGAATTGACCCTCACAG	640
	641		680
15	681	AACCTACCCTATCCGTACAGTGTCCCAACTTACCAGAGAA	720
	721	ATCTATACTAACCCAGTTCTTGAGAACTTCGACGGTAGCT	760
	761	TCCGTGGTTCTGCCCAAGGTATCGAAGGCTCCATCAGGAG	800
20	801		840
	841	ACCGATGCTCACAGAGGAGAGTATTACTGGTCTGGACACC	880
	881	AGATCATGGCCTCTCCAGTTGGATTCAGCGGGCCCGAGTT	920
25	921	TACCTTTCCTCTATGGAACTATGGGAAACGCCGCTCCA	960
00	961	CAACAACGTATCGTTGCTCAACTAGGTCAGGGTGTCTACA	1000
30	1001	GAACCTTGTCTTCCACCTTGTACAGAAGACCCTTCAATAT	1040

	1041	CGGTATCAACAACCAGCAACTTTCCGTTCTTGACGGAACA	1080
5	1081	GAGTTCGCCTATGGAACCTCTTCTAACTTGCCATCCGCTG	1120
	1121	TTTACAGAAAGAGCGGAACCGTTGATTCCTTGGACGAAAT	1160
10	1161		1200
10	1201	TCCCACAGGTTGAGCCACGTGTCCATGTTCCGTTCCGGAT	1240
	1241	TCAGCAACAGTTCCGTGAGCATCATCAGAGCTCCTATGTT	1280
15	1281	CTCTTGGATACACCGTAGTGCTGAGTTCAACAACATCATC	1320
	1321	GCATCCGATAGTATTACTCAAATCCCTGCAGTGAAGGGAA	1360
	1361	ACTTTCTCTTCAACGGTTCTGTCATTTCAGGACCAGGATT	1400
20	1401	CACTGGTGGAGACCTCGTTAGACTCAACAGCAGTGGAAAT	1440
	1441	AACATTCAGAATAGAGGGTATATTGAAGTTCCAATTCACT	1480
25	1481		1520
<i>4</i> 0	1521	TGCTTCTGTGACCCCTATTCACCTCAACGTTAATTGGGGT	1560
	1561	AATTCATCCATCTTCTCCAATACAGTTCCAGCTACAGCTA	1600
30	1601		1640

	1641	TGAAAGTGCCAATGCTTTTACATCTTCACTCGGTAACATC 1	680
5	1681	GTGGGTGTTAGAAACTTTAGTGGGACTGCAGGAGTGATTA 1	720
	1721	TCGACAGATTCGAGTTCCAGTTACTGCAACACTCGA 1	760
10	1761	GGCTGAG 1767.	
	17	. A structural gene of Claim 13 encodi	ng a
	insec	ticidal protein of B.t.k. HD-1 having	the
	sequer	nce:	
	seque	M (M	
		. \	
15	1	ATGGACAACAACCAAACATCAACGAATGCATTCCATACA 4	0
	41	ACTGCTTGAGTAACCCAGAAGTTGAAGTACTTGGTGGAGA 8	10
	41	ACIGCIIGAGIAACCCAGAAGIIGAAGIACIICOICO	
	81	ACGCATTGAAACCGGTTACACTCCCATCGACATCTCCTTG 1	.20
20	101	TCCTTGACACAGTTTCTGCTCAGCGAGTTCGTGCCAGGTG 1	.60
	121	TCCTTGACACAGTTTCTGCTCAGCGAGTTCGTGCCAGGTG	. 00
	161	CTGGGTTCGTTCTCGGACTAGTTGACATCATCTGGGGTAT 2	200
	201	CTTTGGTCCATCTCAATGGGATGCATTCCTGGTGCAAATT 2	240
25	201	CTTTGGTCCATCTCAATGGGATGCATTCCTGGTGCAAATT	.40
20			
	241	GAGCAGTTGATCAACCAGAGGATCGAAGAGTTCGCCAGGA 2	280
	001	10010000100000000000000000000000000000	320
	281	ACCAGGCCATCTCTAGGTTGGAAGGATTGAGCAATCTCTA 3	020
30	321	CCAAATCTATGCAGAGAGCTTCAGAGAGTGGGAAGCCGAT	360

	361	CCTACTAACCCAGCTCTCCGCGAGGAAATGCGTATTCAAT	400
5	401	TCAACGACATGAACAGCGCCTTGACCACAGCTATCCCATT	440
	441	GTTCGCAGTCCAGAACTACCAAGTTCCTCTTGTCCGTG	480
10	481	TACGTTCAAGCAGCTAATCTTCACCTCAGCGTGCTTCGAG	520
10	521	ACGTTAGCGTGTTTGGGCAAAGGTGGGGATTCGATGCTGC	560
	561	AACCATCAATAGCCGTTACAACGACCTTACTAGGCTGATT	600
15	601	GGAAACTACACCGACCACGCTGTTCGTTGGTACAACACTG	640
	641	GCTTGGAGCGTGTCTGGGGTCCTGATTCTAGAGATTGGAT	680
	681	TAGATACAACCAGTTCAGGAGAATTGACCCTCACAGTT	720
20	721	TTGGACATTGTGTCTCTCTCCCGAACTATGACTCCAGAA	760
	761		800
95	801		840
25	841		880
	881		920
30	921		960

	961	ATCATGGCCTCTCCAGTTGGATTCAGCGGGCCCGAGTTTA	1000
5	1001	CCTTTCCTCTATGGAACTATGGGAAACGCCGCTCCACA	1040
	1041	ACAACGTATCGTTGCTCAACTAGGTCAGGGTGTCTACAGA	1080
	1081	ACCTTGTCTTCCACCTTGTACAGAAGACCCTTCAATATCG	1120
10	1121	GTATCAACAACCAGCAACTTTCCGTTCTTGACGGAACAGA	1160
	1161	GTTCGCCTATGGAACCTCTTCTAACTTGCCATCCGCTGTT	1200
			1240
15	1201	TACAGAAAGAGCGGAACCÉTTGATTCCTTGGACGAAATCC	
	1241	CACCACAGAACAATGTGCCACCCAGGCAAGGATTCTC	1280
20	1281	CCACAGGTTGAGCCACGTTCCATGTTCCGTTCCGGATTC	1320
20	1321	AGCAACAGTTCCGTGAGCATCATCAGAGCTCCTATGTTCT	1360
	1361	CATGGATTCATCGTAGTGCTGAGTTCAACAATATCATTCC	1400
25	1401	TTCCTCTCAAATCACCCAAATCCCATTGACCAAGTCTACT	1440
ىپ	1441	AACCTTGGATCTGGAACTTCTGTCGTGAAAGGACCAGGCT	1480
	1481	TCACAGGAGGTGATATTCTTAGAAGAACTTCTCCTGGCCA	1520
30	1521	GATTAGCACCCTCAGAGTTAACATCACTGCACCACTTTCT	1560

		٦	
	1561	CAAAGATATCGTGTCAGGATTCGTTACGCATCTACCACTA	1600
5			1.640
	1601	ACTTGCAATTCCACACCTCCATCGACGGAAGGCCTATCAA	1640
		•	
	1641	TCAGGGTAACTTCTCCGCAACCATGTCAAGCGGCAGCAAC	1680
	1681	TTGCAATCCGGCAGCTTCAGAACCGTCGGTTTCACTACTC	1720
10	1001		
10			1760
	1721	CTTTCAACTTCTCTAACGGATCAAGCGTTTTCACCCTTAG	1760
	1761	CGCTCATGTGTTCAATTCTGGCAATGAAGTGTACATTGAC	1800
15	1801	CGTATTGAGTTTGTGCCTGCCGAAGTTACCTTCGAGGCTG	1840
<i></i>	1001		
		1045	
	1841	AGTAC 1845.	
	1	18. A structural gene of Claim 13 encod	ing an
00	insec	ticidal protein derived from B.t.k. HD-73	having
20		equence:	
	circ 5	equence.	
			40
	1	ATGGACAACAACCAAACATCAACGAATGCATTCCATACA	40
	41	ACTGCTTGAGTAACCCAGAAGTTGAAGTACTTGGTGGAGA	80
25			
	81	ACGCATTGAAACCGGTTACACTCCCATCGACATCTCCTTG	120
	01	ACCOMITOMMICCOCTING TO CONTROL OF THE CONTROL OF TH	
			1.60
	121	TCCTTGACACAGTTTCTGCTCAGCGAGTTCGTGCCAGGTG	160
30	161	CTGGGTTCGTTCTCGGACTAGTTGACATCATCTGGGGTAT	200

	201	CTTTGGTCCATCTCAATGGGATGCATTCCTGGTGCAAATT	240
5	241	GAGCAGTTGATCAACCAGAGGATCGAAGAGTTCGCCAGGA	280
	281	ACCAGGCCATCTCTAGGTTGGAAGGATTGAGCAATCTCTA	320
10	321	CCAAATCTATGCAGAGAGCTTCAGAGAGTGGGAAGCCGAT	360
	361	CCTACTAACCCAGCTCTCCGCGAGGAAATGCGTATTCAAT	400
	401	TCAACGACATGAACAGCCCTTGACCACAGCTATCCCATT	440
15	441		480
~		·	520
	481	TACGTTCAAGCAGCTAATCTTCACCTCAGCGTGCTTCGAG	520
	521	ACGTTAGCGTGTTTGGGCAAAGGTGGGGATTCGATGCTGC	560
20	561	AACCATCAATAGCCGTTACAACGACCTTACTAGGCTGATT	600
	601	GGAAACTACACCGACCACGCTGTTCGTTGGTACAACACTG	640
	641		680
25	041	· · · ·	000
	681	TAGATACAACCAGTTCAGGAGAGAATTGACCCTCACAGTT	720
	721	TTGGACATTGTGTCTCTCTTCCCGAACTATGACTCCAGAA	760
30	761	CCTACCCTATCCGTACAGTGTCCCAACTTACCAGAGAAAT	800
		1	

	801	CTATACTAACCCAGTTCTTGAGAACTTCGACGGTAGCTTC	840
5	841	CGTGGTTCTGCCCAAGGTATCGAAGGCTCCATCAGGAGCC	880
	881		920
	921		960
10	961	ATCATGGCCTCTCCAGTTGGATTCAGCGGGCCCGAGTTTA	1000
	1001		1040
15	1041		1080
	1081	ACCTTGTCTTCCACCTTGTACAGAAGACCCTTCAATATCG	1120
	1121	GTATCAACAACCAGCAACTTTCCGTTCTTGACGGAACAGA	1160
20			1200
	1161	GTTCGCCTATGGAACCTCTTCTAACTTGCCATCCGCTGTT	
	1201	TACAGAAAGAGCGGAACCGTTGATTCCTTGGACGAAATCC	1240
25	1241	CACCACAGAACAATGTGCCACCCAGGCAAGGATTCTC	1280
	1281	CCACAGGTTGAGCCACGTGTCCATGTTCCGTTCCGGATTC	1320
	1321	AGCAACAGTTCCGTGAGCATCATCAGAGCTCCTATGTTCT	1360
30	1361	CTTGGATACACCGTAGTGCTGAGTTCAACAACATCATCGC	1400

		1	
	1401	ATCCGATAGTATTACTCAAATCCCTGCAGTGAAGGGAAAC 1	440
5	1441	TTTCTCTTCAACGGTTCTGTCATTTCAGGACCAGGATTCA 1	480
	1481		520
	1521	CATTCAGAATAGAGGGTATATTGAAGTTCCAATTCACTTC 1	560
10	1561		600
	1601		640
15	1641		680
	1681	TCCTTGGATAATCTCCAAT¢CAGCGATTTCGGTTACTTTG 1	720
	1721	AAAGTGCCAATGCTTTTACATCTTCACTCGGTAACATCGT 1	760
20	1761	GGGTGTTAGAAACTTTAGTGGGACTGCAGGAGTGATTATC 1	800
			.840
			.880
25	1841		
	1881		.920.
		9. A structural gene of Claim 13 encoding	
	full-	-length insecticidal protein of B.t.k. I	HD-73
30	havin	ng the sequence:	

		1	
	1	ATGGACAACAACCCAAAGATCAACGAATGCATTCCATACA	40
5	41	ACTGCTTGAGTAACCCAGAAGTTGAAGTACTTGGTGGAGA	80
	0.1		120
	81	ACGCATTGAAACCGGTTACACTCCCATCGACATCTCCTTG	120
	121	TCCTTGACACAGTTTCTGCTCAGCGAGTTCGTGCCAGGTG	160
10	161	CTGGGTTCGTTCTCGGACTAGTTGACATCATCTGGGGTAT	200
			240
	201	CTTTGGTCCATCTCAATGGGATGCATTCCTGGTGCAAATT	240
15	241	GAGCAGTTGATCAACCAGAGGATCGAAGAGTTCGCCAGGA	280
	281	ACCAGGCCATCTCTAGGTTGGAAGGATTGAGCAATCTCTA	320
	321	CCAAATCTATGCAGAGAGCTTCAGAGAGTGGGAAGCCGAT	360
20	361		400
	401	TCAACGACATGAACAGCGCCTTGACCACAGCTATCCCATT	440
25	441	GTTCGCAGTCCAGAACTACCAAGTTCCTCTCTTGTCCGTG	480
ω	481	TACGTTCAAGCAGCTAATCTTCACCTCAGCGTGCTTCGAG	520
	521	ACGTTAGCGTGTTTGGGCAAAGGTGGGGATTCGATGCTGC	560
30	561	AACCATCAATAGCCGTTACAACGACCTTACTAGGCTGATT	600

		. 1	
	601	GGAAACTACACCGACCACGCTGTTCGTTGGTACAACACTG	640
5	641	GCTTGGAGCGTGTCTGGGGTCCTGATTCTAGAGATTGGAT	680
	681	TAGATACAACCAGTTCAGGAGAATTGACCCTCACAGTT	720
	721	TTGGACATTGTGTCTCTCTTCCCGAACTATGACTCCAGAA	760
10	761	CCTACCCTATCCGTACAGTGTCCCAACTTACCAGAGAAAT	800
	801		840
15	841		880
	881	CACACTTGATGGACATCTTGAACAGCATAACTATCTACAC	920
	921		960
20	961	ATCATGGCCTCTCCAGTTGGATTCAGCGGGCCCGAGTTTA	1000
	1001	CCTTTCCTCTATGGAACTATGGGAAACGCCGCTCCACA	1040
	1041		1080
25	1081	ACCTTGTCTTCCACCTTGTACAGAAGACCCTTCAATATCG	1120
	1121	GTATCAACAACCAGCAACTTTCCGTTCTTGACGGAACAGA	1160
30			1200
50	1161	GTTCGCCTATGGAACCTCTTCTAACTTGCCATCCGCTGTT	1200

		. 1	
	1201	TACAGAAAGAGCGGAACCGTTGATTCCTTGGACGAAATCC	1240
5	1241	CACCACAGAACAACAATGTGCCACCCAGGCAAGGATTCTC	1280
	1281		1320
	1321	AGCAACAGTTCCGTGAGCATCATCAGAGCTCCTATGTTCT	1360
10	1361		1400
	1401	ATCCGATAGTATTACTCAAATCCCTGCAGTGAAGGGAAAC	1440
15	1441		1480
	1481	CTGGTGGAGACCTCGTTAGACTCAACAGCAGTGGAAATAA	1520
	1521		1560
20	1561		1600
	1601		1640
05	1641		1680
25	1681		1720
	1721		1760
30	1761		1800
		10	

		. 1	
	1801	GACAGATTCGAGTTCATTCCAGTTACTGCAACACTCGAGG	1840
5	1841	CTGAATATATCTGGAAAGAGCGCAGAAGGCGGTGAATGC	1880
	1881	GCTGTTTACGTCTACAAACCAGCTCGGCCTCAAGACCAAT	1920
	1921		1960
10	1961		2000
	2001		2040
15	2041	GAACGCAATTTACTCCAAGATTCAAATTTCAAAGACATTA	2080
Ю			2120
	2081		
20	2121	TACCATCCAGGGAGGTGACGACGTGTTCAAGGAGAACTAC	2160
	2161	GTCACACTATCAGGTACCTTTGATGAGTGCTATCCAACAT	2200
	2201	ACCTCTACCAGAAGATCGACGAGTCCAAGTTGAAAGCCTT	2240
25	2241	TACCCGTTATCAATTAAGAGGGTATATCGAAGATAGTCAA	2280
	2281	GACCTCGAGATCTACCTCATCCGCTACAATGCAAAACATG	2320
	2321	AAACAGTAAATGTGCCAGGTACGGGTTCCTTATGGCCGCT	2360
30	2361	TTCAGCCCAAAGTCCAATCGGAAAGTGTGGAGAGCCGAAT	2400

	2401	CGATGCGCGCCACACCTTGAATGGAATCCTGACTTAGATT	2440
5	2441	GTTCGTGTAGGGATGGAGAAAAGTGTGCCCATCATTCGCA	2480
	2481	TCATTTCTCCTTAGACATTGATGTAGGATGTACAGACTTA	2520
10	2521	AATGAGGACCTAGGTGTATGGGTGATCTTTAAGATTAAGA	2560
10	2561		2600
	2601		2640
15	2641		2680
	2681	TGGAATGGGAGACCAAQATCGTCTACAAAGAGGCAAAAGA	2720
	2721	ATCTGTAGATGCTTTATTTGTAAACTCTCAATATGATCAA	2760
20	2761	TTACAAGCGGATACGAATATTGCCATGATTCATGCGGCAG	2800
	2801		2840
	2841		2880
25	2881	GAATTAGAAGGGCGTATTTTCACTGCATTCTCCCTCTACG	2920
	2921		2960
30	2961	CTTATCCTGCTGGAACGTGAAAGGGCATGTAGATGTAGAA	3000

	3001	GAACAAAACAACCAACGTTCGGTCCTTGTTGTTCCGGAAT	3040
5	3041	GGGAAGCAGAAGTGTCACAAGAAGTTCGTGTCTGTCCGGG	3080
	3081		3120
	3121	TATGGAGAAGGTTGCGTAACCATTCATGAGATCGAGAACA	3160
10	3161		3200
	3201		3240
15	3241	GTAAATCAAGAAGAATACGGAGGTGCGTACACTTCTCGTA	3280
	3281		3320
	3321		3360
20	3361		3400
	3401	ACACGCCACTACCAGTTGGTTATGTGACAAAAGAATTAGA	3440
	3441		3480
25	3481	GAAACGGAAGGAACATTTATCGTGGACAGCGTGGAATTAC	3520
	3521	TCCTTATGGAGGAA 3534.	
20	3322		

30

	20.	A structural gene of Claim 13 encoding a	a full-
		insecticidal protein of B.t.k. HD-73 havi	
	sequenc		_
5	sequenc		
	1	ATGGACAACAACCCAAACATCAACGAATGCATTCCATACA	40
	41	ACTGCTTGAGTAACCCAGAAGTTGAAGTACTTGGTGGAGA	. 80
10	81	ACGCATTGAAACCGGTTACACTCCCATCGACATCTCCTTG	120
	121	TCCTTGACACAGTTTCTGCTCAGCGAGTTCGTGCCAGGTG	160
	161	CTGGGTTCGTTCTCGGACTAGTTGACATCATCTGGGGTAT	200
15			
	201	CTTTGGTCCATCTCAATGGGATGCATTCCTGGTGCAAATT	240
		· \(\lambda \cdot	
	241	GAGCAGTTGATCAACCAGAGGATCGAAGAGTTCGCCAGGA	280
20	281	ACCAGGCCATCTCTAGGTTGGAAGGATTGAGCAATCTCTA	320
	321	CCAAATCTATGCAGAGAGCTTCAGAGAGTGGGAAGCCGAT	360
	361	CCTACTAACCCAGCTCTCCGCGAGGAAATGCGTATTCAAT	400
05			
25	401	. TCAACGACATGAACAGCCCTTGACCACAGCTATCCCATT	440
			•
	441	. GTTCGCAGTCCAGAACTACCAAGTTCCTCTCTTGTCCGTC	480
			•
	481	. TACGTTCAAGCAGCTAATCTTCACCTCAGCGTGCTTCGAG	520
30			

	521	ACGTTAGCGTGTTTGGGCAAAGGTGGGGATTCGATGCTGC	560
5	561	AACCATCAATAGCCGTTACAACGACCTTACTAGGCTGATT	600
	601	GGAAACTACACCGACCACGCTGTTCGTTGGTACAACACTG	640
10	641	GCTTGGAGCGTGTCTGGGGTCCTGATTCTAGAGATTGGAT	680
10	681	TAGATACAACCAGTTCAGGAGAATTGACCCTCACAGTT	720
	721	TTGGACATTGTGTCTCTCTCCCGAACTATGACTCCAGAA	760
15	761	CCTACCCTATCCGTACAGTGTCCCAACTTACCAGAGAAAT	800
	801	CTATACTAACCCAGTTCTTGAGAACTTCGACGGTAGCTTC	840
	841	CGTGGTTCTGCCCAAGGTATCGAAGGCTCCATCAGGAGCC	880
20	881	CACACTTGATGGACATCTTGAACAGCATAACTATCTACAC	920.
	921	CGATGCTCACAGAGGAGAGTATTACTGGTCTGGACACCAG	960
25	961	ATCATGGCCTCTCCAGTTGGATTCAGCGGGCCCGAGTTTA	1000
	1001	CCTTTCCTCTATGGAACTATGGGAAACGCCGCTCCACA	1040
	1041	ACAACGTATCGTTGCTCAACTAGGTCAGGGTGTCTACAGA	1080
30	1081	ACCTTGTCTTCCACCTTGTACAGAAGACCCTTCAATATCG	1120

	1121	GTATCAACAACCAGCAACTTTCCGTTCTTGACGGAACAGA	1160
5	1161	GTTCGCCTATGGAACCTCTTCTAACTTGCCATCCGCTGTT	1200
	1201	TACAGAAAGAGCGGAACCGTTGATTCCTTGGACGAAATCC	1240
10	1241	CACCACAGAACAATGTGCCACCCAGGCAAGGATTCTC	1280
10	1281	CCACAGGTTGAGCCACGTGTCCATGTTCCGTTCCGGATTC	1320
	1321	AGCAACAGTTCCGTGAGCATCATCAGAGCTCCTATGTTCT	1360
15	1361	CTTGGATACACCGTAGTGCTGAGTTCAACAACATCATCGC	1400
	1401	ATCCGATAGTATTACTCAAATCCCTGCAGTGAAGGGAAAC	1440
	1441	TTTCTCTTCAACGGTTCTGTCATTTCAGGACCAGGATTCA	1480
20	1481	CTGGTGGAGACCTCGTTAGACTCAACAGCAGTGGAAATAA	1520
	1521	CATTCAGAATAGAGGGTATATTGAAGTTCCAATTCACTTC	1560
25	1561	CCATCCACATCTACCAGATATAGAGTTCGTGTGAGGTATG	1600
	1601	CTTCTGTGACCCCTATTCACCTCAACGTTAATTGGGGTAA	164.0
	1641	TTCATCCATCTTCTCCAATACAGTTCCAGCTACAGCTACC	1680
30	1681	TCCTTGGATAATCTCCAATCCAGCGATTTCGGTTACTTTG	1720

	1721	AAAGTGCCAATGCTTTTACATCTTCACTCGGTAACATCGT	1760
5			
J	1761	GGGTGTTAGAAACTTTAGTGGGACTGCAGGAGTGATTATC	1800
	1801	GACAGATTCGAGTTCATTCCAGTTACTGCAACACTCGAGG	1840
	1841		1880
10	1001	GCTGTTTACGTCTACAAA¢CAACTAGGGCTAAAAACAAAT	1920
	1881		1320
	1921	GTAACGGATTATCATATTGATCAAGTGTCCAATTTAGTTA	1960
15	1961	CGTATTTATCGGATGAATTTTGTCTGGATGAAAAGCGAGA	2000
	2001	ATTGTCCGAGAAAGTCAAACATGCGAAGCGACTCAGTGAT	2040
	2041	GAACGCAATTTACTCCAAGATTCAAATTTCAAAGACATTA	2080
20	2081		2120
	2121	TACCATCCAAGGAGGGGATGACGTATTTAAAGAAAATTAC	2160
	2161	GTCACACTATCAGGTACCTTTGATGAGTGCTATCCAACAT	2200
25			2240
	2201	ATTTGTATCAAAAAATCGATGAATCAAAATTAAAAGCCTT	2240
	2241	TACCCGTTATCAATTAAGAGGGTATATCGAAGATAGTCAA	2280
30	2281	GACTTAGAAATCTATTTAATTCGCTACAATGCAAAACATG	2320

	2321	AAACAGTAAATGTGCCAGGTACGGGTTCCTTATGGCCGCT	2360
5	2361	TTCAGCCCAAAGTCCAATCGGAAAGTGTGGAGAGCCGAAT	2400
	2401		2440
10	2441	GTTCGTGTAGGGATGGAGAAAGTGTGCCCATCATTCGCA	2480
10	2481	TCATTTCTCCTTAGACATTGATGTAGGATGTACAGACTTA	2520
	2521	AATGAGGACCTAGGTGTATGGGTGATCTTTAAGATTAAGA	2560
15	2561	CGCAAGATGGGCACGCAAGACTAGGGAATCTAGAGTTTCT	2600
	2601		2640
	2641	AAAAGAGCGGAGAAAAAATGGAGAGACAAACGTGAAAAAT	2680
20	2681	TGGAATGGGAAACAAATATGTTTATAAAGAGGCAAAAGA	2720
	2721	ATCTGTAGATGCTTTATTTGTAAACTCTCAATATGATCAA	2760
25	2761		2800
25	2801	ATAAACGTGTTCATAGCATTCGAGAAGCTTATCTGCCTGA	2840
	2841	GCTGTCTGTGATTCCGGGTGTCAATGCGGCTATTTTTGAA	2880
30	2881	GAATTAGAAGGGCGTATTTTCACTGCATTCTCCCTATATG	2920

-141-

_	1	4	2	_

		1	
	2921	ATGCGAGAAATGTCATTAAAAATGGTGATTTTAATAATGG	2960
5	2961	CTTATCCTGCTGGAACGTGAAAGGGCATGTAGATGTAGAA	3000
	3001	GAACAAAACAACCAACGTTCGGTCCTTGTTGTTCCGGAAT	3040
	3041	GGGAAGCAGAAGTGTCACAAGAAGTTCGTGTCTGTCCGGG	3080
10	3081		3120
	3121		3160
	-	ATACAGACGAACTGAAGTTTAĞCAACTGCGTAGAAGAGGA	3200
15	3161		
	3201	AATCTATCCAAATAACACGĞTAACGTGTAATGATTATACT	3240
20	3241	GTAAATCAAGAAGAATACGGAGGTGCGTACACTTCTCGTA	3280
	3281	ATCGAGGATATAACGAAGCTCCTTCCGTACCAGCTGATTA	3320
	3321	TGCGTCAGTCTATGAAGAAAAATCGTATACAGATGGACGA	3360
25	3361	AGAGAGAATCCTTGTGAATTTAACAGAGGGTATAGGGATT	3400
	3401	ACACGCCACTACCAGTTGGTTATGTGACAAAAGAATTAGA	3440
	3441	ATACTTCCCAGAAACCGATAAGGTATGGATTGAGATTGGA	3480

	3481	GAAACGGAAGGAACATTTATCGTGGACAGCGTGGAATTAC	3520
5	3521	TCCTTATGGAGGAA 3534.	
		. A structural gene of Claim 13 encoding a	
	lengtl	n insecticidal protein of <i>B.t.</i> k. HD-73 havi	ng the
	seque	nce:	
10			
	1	ATGGACAACACCAAACATCAACGAATGCATTCCATACA	40
	41	ACTGCTTGAGTAACCCAGAAGTTGAAGTACTTGGTGGAGA	80
		· · · · · · · · · · · · · · · · · · ·	120
15	81	ACGCATTGAAACCGGTTA¢ACTCCCATCGACATCTCCTTG	120
		·	
	121	TCCTTGACACAGTTTCTGQTCAGCGAGTTCGTGCCAGGTG	160
		. ()	
	161	CTGGGTTCGTTCTCGGACTAGTTGACATCATCTGGGGTAT	200
	101	CIGGGIICGIICICGGACIAGIIGACAICAICIIGGGIIII	200
20			
	201	CTTTGGTCCATCTCAATGGGATGCATTCCTGGTGCAAATT	240
	241	GAGCAGTTGATCAACCAGAGGATCGAAGAGTTCGCCAGGA	280
	2.11		
			200
25	281	ACCAGGCCATCTCTAGGTTGGAAGGATTGAGCAATCTCTA	320
20			
	321	CCAAATCTATGCAGAGAGCTTCAGAGAGTGGGAAGCCGAT	360
	261	CCTACTAACCCAGCTCTCCGCGAGGAAATGCGTATTCAAT	400
	361	CCTACTAACCCAGCTCTCCGCGAGGAAATGCGTATTCAAT	400
30	401	TCAACGACATGAACAGCGC¢TTGACCACAGCTATCCCATT	440

	441	GTTCGCAGTCCAGAACTACCAAGTTCCTCTTGTCCGTG	480
5	481	TACGTTCAAGCAGCTAATCTTCACCTCAGCGTGCTTCGAG	520
	521	ACGTTAGCGTGTTTGGGCAAAGGTGGGGATTCGATGCTGC	560
10	561	AACCATCAATAGCCGTTACAACGACCTTACTAGGCTGATT	600
10	601	GGAAACTACACCGACCACCCTGTTCGTTGGTACAACACTG	640
	641	GCTTGGAGCGTGTCTGGGGTCCTGATTCTAGAGATTGGAT	680
15	681	TAGATACAACCAGTTCAGGAGAGAATTGACCCTCACAGTT	720
	721	TTGGACATTGTGTCTCTCTTCCCGAACTATGACTCCAGAA	760
	761		800
20	801		840
	841		880
9 5	881		920
25	921		960
	961	ATCATGGCCTCTCCAGTTGGATTCAGCGGGCCCGAGTTTA	1000
30	1001	CCTTTCCTCTATGGAACTATGGGAAACGCCGCTCCACA	1040

		1	
	1041	ACAACGTATCGTTGCTCAACTAGGTCAGGGTGTCTACAGA	1080
5	1081	ACCTTGTCTTCCACCTTGTACAGAAGACCCTTCAATATCG	1120
	1121	GTATCAACAACCAGCAACTTTCCGTTCTTGACGGAACAGA	1160
	1161	GTTCGCCTATGGAACCTCTTCTAACTTGCCATCCGCTGTT	1200
10	1201	TACAGAAAGAGCGGAACCGTTGATTCCTTGGACGAAATCC	1240
	1241		1280
15	1281		1320
	1321	AGCAACAGTTCCGTGAGCATCATCAGAGCTCCTATGTTCT	1360
	1361	CTTGGATACACCGTAGTGCTGAGTTCAACAACATCATCGC	1400
20	1401	ATCCGATAGTATTACTCAAATCCCTGCAGTGAAGGGAAAC	1440
	1441	TTTCTCTTCAACGGTTCTGTCATTTCAGGACCAGGATTCA	1480
25	1481		1520
20	1521	CATTCAGAATAGAGGGTATATTGAAGTTCCAATTCACTTC	1560
	1561		1600
30	1601	CTTCTGTGACCCCTATTCACCTCAACGTTAATTGGGGTAA	1640

	1641	TTCATCCATCTTCTCCAATA	CAGTTCCAGCTACAGCTACC	1680
5	1681	TCCTTGGATAATCTCCAATC	CAGCGATTTCGGTTACTTTG	1720
	1721	AAAGTGCCAATGCTTTTACA	TCTTCACTCGGTAACATCGT	1760
10	1761	GGGTGTTAGAAACTTTAGTG	GGACTGCAGGAGTGATTATC	1800
	1801	GACAGATTCGAGTTCATTC	AGTTACTGCAACACTCGAGG	1840
	1841	CTGAGTACAACCTTGAGAGA	GCCCAGAAGGCTGTGAACGC	1880
15	1881	CCTCTTTACCTCCACCAATC	AGCTTGGCTTGAAAACTAAC	1920
	1921	GTTACTGACTATCACATTGA	. CCAAGTGTCCAACTTGGTCA	1960
20	1961	CCTACCTTAGCGATGAGTTC	TGCCTCGACGAGAAGCGTGA	2000
20	2001	ACTCTCCGAGAAAGTTAAAC	ACGCCAAGCGTCTCAGCGAC .	2040
	2041	GAGAGGAATCTCTTGCAAGA	ACTCCAACTTCAAAGACATCA	2080
25	2081	ACAGGCAGCCAGAACGTGGI	TTGGGGTGGAAGCACCGGGAT	2120
	2121		SATGTGTTCAAGGAGAACTAC	2160
•	2161		CGACGAGTGCTACCTACCT	2200
30	2201	ACTTGTACCAGAAGATCGA	GAGTCCAAACTCAAAGCCTT	2240

		1	
	2241	CACCAGGTATCAACTTAGAGGCTACATCGAAGACAGCCAA	2280
5	2281	GACCTTGAAATCTACTCGATCAGGTACAATGCCAAGCACG	2320
	2321	AGACCGTGAATGTCCCAGGTACTGGTTCCCTCTGGCCACT	2360
10	2361	TTCTGCCCAATCTCCCATTGGGAAGTGTGGAGAGCCTAAC	2400
10	2401	AGATGCGCTCCACACCTTGAGTGGAATCCTGACTTGGACT	2440
	2441	GCTCCTGCAGGGATGGCGAGAAGTGTGCCCACCATTCTCA	2480
15	2481	TCACTTCTCCTTGGACATCGATGTGGGATGTACTGACCTG	2520
	2521	AATGAGGACCTCGGAGTCTGGGTCATCTTCAAGATCAAGA	2560
	2561	CCCAAGACGGACACGCAAGACTTGGCAACCTTGAGTTTCT	2600
20	2601	CGAAGAGAAACCATTGGTCGGTGAAGCTCTCGCTCGTGTG	2640
	2641	AAGAGAGCAGAGAAAGTGGAGGACAAACGTGAGAAAC	2680
25	2681	TCGAATGGGAAACTAACATCGTTTACAAGGAGGCCAAAGA	2720
	2721	GTCCGTGGATGCTTTGTTCGTGAACTCCCAATATGATCAG	2760
	2761	TTGCAAGCCGACACCAACATCGCCATGATCCACGCCGCAG	2800
30	2801	ACAAACGTGTGCACAGCATTCGTGAGGCTTACTTGCCTGA	2840

	2841	GTTGTCCGTGATCCCTGGTCTGAACGCTGCCATCTTCGAG	2880
5	2881	GAACTTGAGGGACGTATCTTTACCGCATTCTCCTTGTACG	2920
	2921	ATGCCAGAAACGTCATCAACAACGGTGACTTCAACAATGG	2960
10	2961	CCTCAGCTGCTGGAATGTGAAAGGTCATGTGGACGTGGAG	3000
10	3001	GAACAGAACAATCAGCGTTCCGTCCTGGTTGTGCCTGAGT	3040
	3041	GGGAAGCTGAAGTGTCCCAAGAGGTTAGAGTCTGTCCAGG	3080
15	3081	TAGAGGCTACATTCTCCGTGTGACCGCTTACAAGGAGGGA	3120
	3121	TACGGTGAGGGTTGCGTGACCATCCACGAGATCGAGAACA	3160
	3161	ACACCGACGAGCTTAAGTTCTCCAACTGCGTCGAGGAAGA	3200
20	3201	AATCTATCCCAACAACACCGTTACTTGCAACGACTACACT	3240
	3241	GTGAATCAGGAAGAGTACGGAGGTGCCTACACTAGCCGTA	3280
25	3281	ACAGAGGTTACAACGAAGCTCCTTCCGTTCCTGCTGACTA	3320
	3321	TGCCTCCGTGTACGAGGAGAAATCCTACACAGATGGCAGA	3360
	3361	CGTGAGAACCCTTGCGAGTTCAACAGAGGTTACAGGGACT	3400
30	3401	ACACACCACTTCCAGTTGGCTATGTTACCAAGGAGCTTGA	3440

		j		
	3441	GTACTTTCCTGAGACCGAC.	AAAGTGTGGATCGAGATCGGT	3480
5	3481	GAAACCGAGGGAACCTTCA	rcgtggacagcgtggagcttc	3520
	3521	TCTTGATGGAGGAA 353	1. 1.	
10	22		of Claim 13 which encoder.	
	1			40
	41	CCACTAAGGATGTTATCCA	SAAGGGTATCTCCGTTGTGGG	80
15	81	. (AGACCTCTTGGGCGTGGTT	GATTTCCCTTCGGTGGAGCC	120
	121	CTCGTGAGCTTCTATACAA	ACTTTCTCAACACCATTTGGC	160
20	161	CAAGCGAGGACCCTTGGAA	GCATTCATGGAGCAAGTTGA	200
	201	AGCTCTTATGGATCAGAAG	ATTGCAGATTATGCCAAGAAC	240
	241	AAGGCTTTGGCAGAACTCC	AGGGCCTTCAGAACAATGTGG	280
25	281	AGGACTACGTGAGTGCATT	GTCCAGCTGGCAGAAGAACCC	320
	321	TGTTAGCTCCAGAAATCCT	CACAGCCAAGGTAGGATCAGA	360
30	361	GAGTTGTTCTCTCAAGCCG	ANTCCCACTTCAGAAATTCCA	400

		1	
	401	TGCCTAGCTTTGCTATCTCCGGTTACGAGGTTCTTTTCCT	440
5	441		480
	481		520
	521	AGAAAGAGGACATTGCTGAGTTCTACAAGCGTCAACTTAA	560
10	561	GCTCACCCAAGAGTACACTGACCATTGCGTGAAATGGTAT	600
	601	AACGTTGGTCTCGATAAGCTCAGAGGCTCTTCCTACGAGT	640
15	641		680
	681	GACTGTGCTCGATCTTATCGCACTCTTTCCCTTGTACGAT	720
	721	GTGAGACTCTACCCAAAGGAAGTGAAAACTGAGCTTACCA	760
20	761	GAGACGTGCTCACTGACCCTATTGTCGGAGTCAACAACCT	800
	801	TAGGGGTTATGGAACTACCTTCAGCAATATCGAAAACTAC	840
	841	ATTAGGAAACCACATCTCTTCGACTATCTTCACAGAATTC	880
25	881	ATTCCACACAAGGTTTCAACCAGGATACTATGGTAACGA	920
		CTCCTTCAACTATTGGTCCGGTAACTATGTTTCCACCAGA	960
200	921		1000
30	961	CCAAGCATTGGATCTAATGACATCACATCTCCCTTCT	1000

	1001	ATGGTAACAAGTCCAGTGAACCTGTGCAGAACCTTGAGTT	1040
5	1041	CAACGGCGAGAAAGTCTATAGAGCCGTCGCAAACACCAAT	1080
	1081	CTCGCTGTGTGGCCATCCGCAGTTTACTCAGGCGTCACAA	1120
10	1121	AGGTGGAGTTTAGTCAGTATAACGATCAGACCGATGAGGC	1160
10	1161	CAGCACCCAGACTTACGACTCCAAACGTAACGTTGGCGCA	1200
	1201	GTCTCTTGGGATTCTATCGACCAATTGCCTCCAGAAACCA	1240
15	1241	CAGACGAACCATTGGAGAAGGGCTACAGCCACCAACTTAA	1280
	1281	CTATGTGATGTGCTTCTTGATGCAAGGTTCCAGAGGGACC	1320
	1321	ATTCCAGTGTTGACCTGGACACACAAGTCCGTGGACTTCT	1360
20	1361	TCAACATGATCGATAGCAAGAAGATCACTCAACTTCCCTT	1400
	1401	GGTGAAAGCCTACAAGCTGCAATCTGGTGCTTCCGTTGTC	1440
25	1441	GCAGGTCCCAGATTCACTGGAGGTGACATCATCCAGTGCA	1480
	1481	CAGAGAACGGCAGCGCAGCTACTATCTACGTGACACCTGA	1520
	1521	TGTGTCTTACTCTCAGAAGTACAGGGCACGTATTCATTAC	1560
30	1561	GCATCTACCAGCCAGATCACCTTCACACTCAGCTTGGATG	1600

		•	
	1601	GAGCACCCTTCAACCAGTATTACTTTGACAAGACCATCAA	1640
	1001		
5			1.600
	1641	CAAAGGTGACACTCTCACATACAATAGCTTCAACTTGGCA	1680
	1681	AGTTTCAGCACACCATTTGAACTCTCAGGCAACAATCTTC	1720
	1721	AGATCGGCGTCACCGGTCTCAGCGCCGGAGACAAAGTCTA	1760
10			
	1761	CATCGACAAGATTGAGTTCATCCCAGTGAAC 1791.	
	2.2	. A structural gene of Claim 13 which enco	ndee an
		-	
	insec	ticidal protein of $B.t.$ entomocidus havi	ng the
15	seque	nce:	
		· 4.\	
	1	ATGGAGGAGAACAACCAAAACCAATGCATTCCATACAACT	40
	41	GCTTGAGTAACCCAGAAGAGGTATTGCTTGATGGAGAACG	80
~			
20	81	CATTTCAACCGGTAACTCTTCCATCGACATCTCCTTGTCC	120
	121	TTGGTCCAGTTTCTGGTCAGCAACTTCGTGCCAGGTGGTG	160
	121	11gg1ccAg111c1gg1cAgcAc11cg1dccAgg10g1d	100
			200
25	161	GGTTCCTTGTCGGACTAATTGACTTCGTCTGGGGTATCGT	200
س			
	201	TGGTCCATCTCAATGGGAT CATTCCTGGTGCAAATTGAG	240
	241	CAGTTGATCAACGAGAGGATCGCTGAGTTCGCCAGGAACG	280
30	281	CTGCCATCGCTAACTTGGAAGGATTGGGCAATAACTTCAA	320

		1	
	321	CATCTATGTGGAGGCCTTCAAAGAGTGGGAAGAGACCCT	360
-	321	· · · · ·	
5	361	AACAACCCAGAGACCCGCACTAGGGTGATCGACAGATTCA	400
	401	GAATCTTGGACGCCTCTTGGAGAGAGATATCCCATCCTT	440
10	441	CAGAATCTCTGGCTTCGAAGTTCCTCTCTTGTCCGTGTAC	480
	481	GCTCAAGCAGCTAATCTTCACCTCGCTATCCTTCGAGACA	520
	521	GTGTCATCTTTGGGGAAAGGTGGGGATTGACCACTATCAA	560
15	561	CGTCAATGAGAATTACAACAGACTTATCAGGCACATTGAC	600
	601	GAGTACGCCGACCACTGTGCTAACACCTACAACCGTGGCT	640
	641	TGAACAATCTCCCTAAGTCTACTTATCAAGATTGGATTAC	680
20	681	CTACAACAGGTTGAGGAGAGACTTGACCCTCACAGTTTTG	720
	721	GACATTGCAGCTTTCTTCCCGAACTATGACAACAGGAGAT	760
25	761	ACCCTATCCAACCAGTGGGTCAACTTACCAGAGAAGTCTA	800
	801	TACTGACCCACTTATCAACTTCAACCCTCAGTTGCAAAGT	840
	841	GTCGCCCAACTTCCCACATTCAACGTCATGGAGTCCAGCC	880
30	881	GTATCAGGAACCCACACTTGTTTGACATCTTGAACAACCT	920

	921	TACTATCTTCACCGATTGGTTCAGCGTTGGGCGTAACTTC	960
5	961	TATTGGGGTGGACACAGGGTCATCTCCTCTTATTGGAG	1000
	1001	GTGGGAACATTACCTCTCCTATCTATGGACGTGAGGCAAA	1040
10	1041	CCAGGAGCCACCACGTAGTTTCACCTTCAACGGTCCAGTC	1080
	1081	TTCAGAACCTTGTCTAACCCTACCTTGAGATTGCTCCAGC	1120
	1121	AACCTTGGCCAGCTCCACCTTTCAACCTTAGAGGTGTTGA	1160
15	1161	GGGCGTTGAGTTCTCTACTCCTACCAACTCCTTCACTTAC	1200
	1201	AGAGGTAGAGGAACCGTTGATTCCTTGACCGAACTCCCAC	1240
22	1241	CAGAGGACAATAGCGTGCCACCCAGGGAAGGCTACTCCCA	1280
20	1281	CAGGTTGTGCCACGCAACCTTCGTGCAGCGTTCCGGAACT	1320
	1321	CCATTCCTCACTACAGGAGTTGTGTTCTCATGGACTGATC	1360
25	1361	GTAGTGCTACTCTCACTAATACCATTGATCCCGAGAGGAT	1400
	1401	CAATCAAATCCCATTGGTCAAGGGTTTCCGTGTGTGGGGA	1440
	1441	GGAACTTCTGTCATCACAGGACCCAGGCTTCACAGGAGGTG	1480
30	1481	ATATTCTTAGAAGAAACACTTTTGGCGACTTTGTGAGCCT	1520

		1	
	1521	CCAAGTTAACATCAACTCTCCAATTACTCAAAGATATCGT	1560
5	1561	CTCAGGTTTCGTTACGCATCTTCCCGTGACGCTAGAGTCA	1600
	1601	TCGTGCTCACCGGAGCAGCTTCTACCGGTGTCGGTGGACA	1640
10	1641	AGTCTCCGTGAACATGCCAGTCCAGAAGACTATGGAGATC	1680
10	1681	GGCGAGAACTTGACATCCAGGACCTTCAGATACACCGACT	1720
	1721	TCTCTAACCCTTTCAGTTTCCGTGCCAACCCTGACATCAT	1760
15	1761	TGGCATTAGCGAACAACCTGTCTTTGGAGCTGGTAGCATC	1800
	1801	TCATCTGGCGAATTGTACATTGACAAGATTGAGATCATTC	1840
	1841	TTGCCGACGCTACCTTCGAGGCTGAGTCTGACCTTGAGAG	1880
20	1881	AGCCCAGAAGGCTGTGAACGCCCTCTTTACCTCCTCTAAT	1920
	1921	CAGATTGGCTTGAAAACTGACGTTACTGACTATCACATTG	1960
	1961	ACCAAGTGTCCAACTTGGTCGACTGCCTTAGCGATGAGTT	2000
25	2001		2040
	2041		2080
30	2081		2120

	2121	TTGGAGAGGAAGCACCGACATCACCATCCAAGGAGGCGAC	2160
5	2161	GATGTGTTCAAGGAGAACTACGTCACCCTCCCAGGAACTG	2200
	2201	TGGACGAGTGCTACCTACTTGTACCAGAAGATCGA	2240
	2241	TGAGTCCAAACTCAAAGCCTACACCAGGTATGAACTTAGA	2280
10	2281	GGCTACATCGAAGACAGCCAAGACCTTGAAATCTACCTCA	2320
	2321		2360
15	2361	TACTGGTTCCCTCTGGCCACTTTCTGCCCAAATGCCCATT	2400
	2401	GGGAAGTGTGGAGAGCCTAACAGATGCGCTCCACACCTTG	2440
	2441	AGTGGAATCCTGACTTGGACTGCTCCTGCAGGGATGGCGA	2480
20	2481	GAAGTGTGCCCACCATTCTCATCACTTCACCTTGGACATC	2520
		GATGTGGGATGTACTGACCTGAATGAGGACCTCGGAGTCT	2560
	2521		
25	2561	GGGTCATCTTCAAGATCAAGACCCAAGACGGACACGCAAG	2600
	2601	ACTTGGCAACCTTGAGTTTCTCGAAGAGAAACCATTGCTC	2640
	2641	GGTGAAGCTCTCGCTCGTGTGAAGAGAGCAGAAGAAGAAGT	2680
30	2681	GGAGGGACAAACGTGAGAAACTCCAACTCGAGACTAACAT	2720

		. :1	
	2721	CGTTTACAAGGAGGCCAAAGAGTCCGTGGATGCTTTGTTC	2760
5	2761	GTGAACTCCCAATATGATAGGTTGCAAGTGGACACCAACA	2800
	2801		2840
	2841		2880
10	2881	GTGAACGCTGCCATCTTCGAGGAACTTGAGGGACGTATCT	2920
	2921		2960
15	2961	GAACGGTGACTTCAACAATGGCCTCTTGTGCTGGAATGTG	3000
	3001	AAAGGTCATGTGGACGTGGAGGAACAGAACAATCACCGTT	3040
	3041		3080
20	3081	AGAGGTTAGAGTCTGTCCAGGTAGAGGCTACATTCTCCGT	3120
	3121	GTGACCGCTTACAAGGAGGGATACGGTGAGGGTTGCGTGA	3160
	3161		3200
25	3201		3240
	3241	GTTACTTGCAACAACTACACTGGGACCCAGGAAGAGTACG	3280
30	3281	AAGGTACCTACACTAGCCGTAACCAAGGTTACGACGAAGC	3320
~	2201	ANGUINCOINGCUINGCUINGCUINGCUINGCUINGCUINGCUINGCU	

		1	
	3321	TTACGGAAACAATCCTTCCGTTCCTGCTGACTATGCCTCC	3360
5	3361	GTGTACGAGGAGAAATCCTACACAGATGGCAGACGTGAGA	3400
	3401	ACCCTTGCGAGTCCAACAGAGGTTACGGTGACTACACACC	3440
	3441	ACTTCCAGCAGGCTATGTTACCAAGGACCTTGAGTACTTT	3480
10	3481		3520
	3521	AGGGAACCTTCATCGTGGACAGCGTGGAGCTTCTCTTGAT	3560
15	3561	GGAGGAA 3567.	
		/ //	
	24	. A structural gene of Claim 13 which end	codes a
		. A structural gene of Claim 13 which end secticidal protein having the sequence:	codes a
20			codes a
20	P2 in	secticidal protein having the sequence:	
20	P2 in	secticidal protein having the sequence: ATGGACAACAACGTCTTGAACTCTGGTAGAACAACCATCT	40
20	P2 in	secticidal protein having the sequence: ATGGACAACAACGTCTTGAACTCTGGTAGAACAACCATCT GCGACGCATACAACGTCGTGGCTCACGATCCATTCAGCTT	40
	P2 in 1 41 81	secticidal protein having the sequence:	40 80 120
	P2 in 1 41 81 121	secticidal protein having the sequence:	40 80 120 160

		1		
	241	ATCATCTTTCCATCTGGGT	CCACTAATCTCATGCAAGACA	280
5				
J	281	TCTTGAGGGAGACCGAACA	GTTTCTCAACCAGCGTCTCAA	320
	321	CACTGATACCTTGGCTAG	· .GTCAACGCTGAGTTGATCGGT	360
		·		
10	361	CTCCAAGCAAACATTCGT	AGTTCAACCAGCAAGTGGACA	400
20	401	ACTTCTTGAATCCAACTC	· .GAATCCTGTGCCTCTTTCCAT	440
	441	CACTTCTTCCGTGAACACT	ATGCAGCAACTCTTCCTCAAC	480
15	481	AGATTGCCTCAGTTTCAGA	/\ \TTCAAGGCTACCAGTTGCTCC	520
	521	TTCTTCCACTCTTTGCTCA	GGCTGCCAACATGCACTTGTC	560
	561	CTTCATACGTGACGTGATO	CTCAACGCTGACGAATGGGGA	600
20		•		
	601	ATCTCTGCAGCCACTCTT	GGACATACAGAGACTACTTGA	640
	641	GGAACTACACTCGTGATTA	· CTCCAACTATTGCATCAACAC	680
				720
25	681	TTATCAGACTGCCTTTCG	GGACTCAATACTAGGCTTCAC	720
	721	GACATGCTTGAGTTCAGG	CCTACATGTTCCTTAACGTGT	760
	761	. TTGAGTACGTCAGCATTT	GAGTCTCTTCAAGTACCAGAG	800
	· • •			
30	801	CTTGATGGTGTCCTCTGG	AGCCAATCTCTACGCCTCTGGC	840

	841	AGTGGACCACAGCAAACTCAGAGCTCACAGCTCAGAACT	880
5	881	GGCCATTCTTGTATAGCTTGTTCCAAGTCAACTCCAACTA	920
	921	CATTCTCAGTGGTATCTCTGGGACCAGACTCTCCATAACC	960
10	961	TTTCCCAACATTGGTGGACTTCCAGGCTCCACTACAACCC	1000
10	1001	ATAGCCTTAACTCTGCCAGAGTGAACTACAGTGGAGGTGT	1040
	1041	CAGCTCTGGATTGATTGGTGCAACTAACTTGAACCACAAC	1080
15	1081	TTCAATTGCTCCACCGTCTTGCCACCTCTGAGCACACCGT	1120
	1121	TTGTGAGGTCCTGGCTTGACAGCGGTACTGATCGCGAAGG	1160
	1161	AGTTGCTACCTCTACAAACTGGCAAACCGAGTCCTTCCAA	1200
20	1201	ACCACTCTTAGCCTTCGGTGTGGAGCTTTCTCTGCACGTG	1240
	1241	GGAATTCAAACTACTTTCCAGACTACTTCATTAGGAACAT	1280
25	1281		1320
25	1321		1360
	1361	CATCCGGTACTCCAGGAGGTGCAAGAGCTTACCTCGTGTC	1400
30	1401		1440

	1441	AATGGCACCATGATTCACCTTGCACCAGAAGATTACACTG	1480
5	1481	GATTCACCATCTCTCCAATCCATGCTACCCAAGTGAACAA	1520
	1521		1560
	1561	GGTGACTCCTTGAGGTTCGAGCAATCCAACACTACCGCTA	1600
10	1601	GGTACACTTTGAGAGGCAATGGAAACAGCTACAACCTTTA	1640
	1641		1680
15	1681	ACCATCAACGGACGTGTTTACACAGTCTCTAATGTGAACA	1720
	1721		1760
	1761		1800
20	1801	AACACTAACGTTACTTTGGACATCAATGTGACCCTCAATT	1840
	1841	CTGGAACTCCATTTGATGTCATGAACATCATGTTTGTGCC	1880
		AACTAACCTCCCTCCATTGTACTAA 1905.	2000
25	1881		ina n
	25 plant	. A plant transformation vector comprise gene containing a structural gene of Claim	

		1	
		. A Structural gene bequence of offerm	13
	encod	ing a fusion protein comprising the N-termin	al
_	610 a	mino acids of $B.$ $t.k.$ HD-1 and the C-terminal 5	67
5	amino	acids of $B.t.k$. HD-73, said gene having t	he
	seque	nce:	
	1	ATGGACAACAACCAAACATCAACGAATGCATTCCATACA 40	
		·	
10	41	ACTGCTTGAGTAACCCAGAAGTTGAAGTACTTGGTGGAGA 80	
		·	
	81	ACGCATTGAAACCGGTTACACTCCCATCGACATCTCCTTG 120	
	121	TCCTTGACACAGTTTCTGCTCAGCGAGTTCGTGCCAGGTG 160	
15		\cdot 0 1.	
	161	CTGGGTTCGTCTCGGACTAGTTGACATCATCTGGGGTAT 200	
	201	CTTTGGTCCATCTCAATGGGATGCATTCCTGGTGCAAATT 240	
20	241	GAGCAGTTGATCAACCAGAGGATCGAAGAGTTCGCCAGGA 280	
	281	ACCAGGCCATCTCTAGGTTGGAAGGATTGAGCAATCTCTA 320	
		360	
	321	CCAAATCTATGCAGAGAGCTTCAGAGAGTGGGAAGCCGAT 360	
25		CCTACTAACCCAGCTCTCCCGAGGAAATGCGTATTCAAT 400	
_	361	CCTACTAACCCAGCTCTCCGCGAGGAAATGCGTATTCAAT 400	
	400	TCAACGACATGAACAGCGCCTTGACCACAGCTATCCCATT 440	
	401	TCAACGACATGAACAGCGCCTTGACCACAGCTATCCCATT 440	
		N .	

		1	
	441	GTTCGCAGTCCAGAACTACCAAGTTCCTCTTGTCCGTG	480
5			
ีย	481	TACGTTCAAGCAGCTAATCTTCACCTCAGCGTGCTTCGAG	520
	521	ACGTTAGCGTGTTTGGGCAAAGGTGGGGATTCGATGCTGC	560
10	561	AACCATCAATAGCCGTTACAACGACCTTACTAGGCTGATT	600
10	601	GGAAACTACACCGACCACGCTGTTCGTTGGTACAACACTG	640
	641	GCTTGGAGCGTGTCTGGGGTCCTGATTCTAGAGATTGGAT	680
15	681	TAGATACAACCAGTTCAGGAGAATTGACCCTCACAGTT	720.
	721	TTGGACATTGTGTCTCTCTTGCCGAACTATGACTCCAGAA	760
20	761	CCTACCCTATCCGTACAGTGTCCCAACTTACCAGAGAAAT	800
	801	CTATACTAACCCAGTTCTTGAGAACTTCGACGGTAGCTTC	840
	841	CGTGGTTCTGCCCAAGGTATCGAAGGCTCCATCAGGAGCC	880
25	881	CACACTTGATGGACATCTTGAACAGCATAACTATCTACAC	920
	921	CGATGCTCACAGAGGAGAGTATTACTGGTCTGGACACCAG	960
	961	ATCATGGCCTCTCCAGTTGGATTCAGCGGGCCCGAGTTTA	1000
30	1001	CCTTTCCTCTATGGAACTATGGGAAACGCCGCTCCACA	1040

	1041	ACAACGTATCGTTGCTCAACTAGGTCAGGGTGTCTACAGA	1080
5	1081	ACCTTGTCTTCCACCTTGTACAGAAGACCCTTCAATATCG	1120
	1121		1160
	1161	GTTCGCCTATGGAACCTCTTCTAACTTGCCATCCGCTGTT	1200
10	1201	TACAGAAAGAGCGGAACCGTTGATTCCTTGGACGAAATCC	1240
			1280
	1241	CACCACAGAACAATGTGCCACCCAGGCAAGGATTCTC	
15	1281	CCACAGGTTGAGCCACGTGTCCATGTTCCGTTCCGGATTC	1320
	1321	AGCAACAGTTCCGTGAGCAZCATCAGAGCTCCTATGTTCT	1360
	1361	CATGGATTCATCGTAGTGCTGAGTTCAACAATATCATTCC	1400
20	1401	TTCCTCTCAAATCACCCAAATCCCATTGACCAAGTCTACT	1440
	1441	AACCTTGGATCTGGAACTTCTGTCGTGAAAGGACCAGGCT	1480
25	1481	TCACAGGAGGTGATATTCTTAGAAGAACTTCTCCTGGCCA	1520
20	1521	GATTAGCACCCTCAGAGTTAACATCACTGCACCACTTTCT	1560
	1561	CAAAGATATCGTGTCAGGATTCGTTACGCATCTACCACTA	1600
30	1601	ACTTGCAATTCCACACCTCCATCGACGGAAGGCCTATCAA	1640

		4	
	1641	TCAGGGTAACTTCTCCGCAACCATGTCAAGCGGCAGCAAC	1680
5	1681	TTGCAATCCGGCAGCTTCAGAACCGTCGGTTTCACTACTC	1720
	1721	CTTTCAACTTCTCTAACGGATCAAGCGTTTTCACCCTTAG	1760
10	1761		1800
10	1801		1840
	1841	AGTACAACCTTGAGAGAGCCCAGAAGGCTGTGAACGCCCT	1880
15	1881	CTTTACCTCCACCAATCAGCTTGGCTTGAAAACTAACGTT	1920
	1921	ACTGACTATCACATTGACCAAGTGTCCAACTTGGTCACCT	1960
	1961	ACCTTAGCGATGAGTTCTGCCTCGACGAGAAGCGTGAACT	,2000
20	2001		2040
	2041	AGGAATCTCTTGCAAGACTCCAACTTCAAAGACATCAACA	2080
25	2081	GGCAGCCAGAACGTGGTTGGGGTGGAAGCACCGGGATCAC	2120
	2121	CATCCAAGGAGGCGACGATGTTCAAGGAGAACTACGTC	2160
	2161	ACCCTCTCCGGAACTTTCGACGAGTGCTACCCTACCT	2200
30	2201	TGTACCAGAAGATCGATGAGTCCAAACTCAAAGCCTTCAC	2240

			1		
		2241	CAGGTATCAACTTAGAGGC	TACATCGAAGACAGCCAAGAC	2280
5	5	2281	CTTGAAATCTACTCGATCA	GGTACAATGCCAAGCACGAGA	2320
		2321	CCGTGAATGTCCCAGGTAC	TGGTTCCCTCTGGCCACTTTC	2360
		2361	TGCCCAATCTCCCATTGGG	AAGTGTGGAGAGCCTAACAGA	2400
	10	2401	TGCGCTCCACACCTTGAGT	GGAATCCTGACTTGGACTGCT	2440
		2441	CCTGCAGGGATGGCGAGAA	ETGTGCCCACCATTCTCATCA	2480
	15	2481	. (CTTCTCCTTGGACATCGAT	GTGGGATGTACTGACCTGAAT	2520
		2521	. GAGGACCTCGGAGTCTGGG	TCATCTTCAAGATCAAGACCC	2560
		2561	AAGACGGACACGCAAGACT	TGGCAACCTTGAGTTTCTCGA	2600
	20	2601	. AGAGAAACCATTGGTCGGT	GAAGCTCTCGCTCGTGTGAAG	2640
		2641	AGAGCAGAGAAGAAGTGGA	AGGGACAAACGTGAGAAACTCG	2680
	25	2681	•	TTTACAAGGAGGCCAAAGAGTC	
		2721		GAACTCCCAATATGATCAGTTG	
		2761			
	20				
	30	2801	AACGTGTGCACAGCATTC	GTGAGGCTTACTTGCCTGAGTT	. 2040

		1	
	2841	GTCCGTGATCCCTGGTGTGAACGCTGCCATCTTCGAGGAA	2880
5	2881	CTTGAGGGACGTATCTTACCGCATTCTCCTTGTACGATG	2920
	2921	CCAGAAACGTCATCAAGAACGGTGACTTCAACAATGGCCT	2960
	0061	CAGCTGCTGGAATGTGAAAGGTCATGTGGACGTGGAGGAA	3000
10	2961	CAGCTGCTGGAATGTGAAAGGTCATGTGGACGTGGAGGAA	3000
10	3001	CAGAACAATCAGCGTTCGGTCCTGGTTGTGCCTGAGTGGG	3040
	3001		
	3041	AAGCTGAAGTGTCCCAAGAGGTTAGAGTCTGTCCAGGTAG	3080
		. M; · · · ·	
15	3081	AGGCTACATTCTCCGTGTGACCGCTTACAAGGAGGGATAC	3120
			21.60
	3121	GGTGAGGGTTGCGTGACCATCCACGAGATCGAGAACAACA	3160
	3161	CCGACGAGCTTAAGTTCTCCAACTGCGTCGAGGAAGAAAT	3200
	2101		
20	3201	CTATCCCAACACACCGTTACTTGCAACGACTACACTGTG	3240
	3241	AATCAGGAAGAGTACGGAGGTGCCTACACTAGCCGTAACA	3280
0=	3281	GAGGTTACAACGAAGCTCCTTCCGTTCCTGCTGACTATGC	3320
25	2201	CTCCGTGTACGAGGAGAAATCCTACACAGATGGCAGACGT	3360
	3321	CTCCGTGTACGAGGAGAAATCCTACACAGATGGCAGACGT	3300
	3361	GAGAACCCTTGCGAGTTCAACAGAGGTTACAGGGACTACA	3400
			
30	3401	CACCACTTCCAGTTGGCTATGTTACCAAGGAGCTTGAGTA	3440

		1	
	3441	CTTTCCTGAGACCGACAAAGTGTGGATCGAGATCGGTGAA	3480
5	3481	ACCGAGGGAACCTTCATCGTGGACAGCGTGGAGCTTCTCT	3520
	3521	TGATGGAGGAA 3531	
10	of second	. A method of Claim 4 further comprising r quences comprising more than five consecuti C bases.	ve A+T
		. A structural gene sequence of Cla ising a majority of plant preferred codons.	im 13
	-	. A structural geme encoding the coat prot	ein of
15	potato	o leaf roll virus, said gene having the seq	uence:
	1	ATGAGTACTGTCGTGGTTAAGGGAAACGTGAACGGTGGTG	40
	41	TTCAACAACCTAGAAGGAAGGAAGGCAATCCCTTCGTAG	80
20	81	GAGAGCTAACAGAGTTCAGCCAGTGGTTATGGTCACTGCT	120
	121	CCTGGGCAACCAAGAAGGAGAAGAAGAAGAAGAAGAAGAAGAA	160
25	161	ATCGCAGATCAAGAAGAACTGGAGTTCCCAGAGGAAGAGG	200
	201	TTCAAGCGAGACATTCGTGTTTACAAAGGACAACCTCGTG	240
	241	GGCAACTCCCAAGGAAGTTTCACCTTCGGACCAAGTGTTT	280
30	281	CAGACTGTCCAGCATTCAAGGATGGAATACTCAAGGCTTA	320

		<u>, </u>	
	321	CCATGAGTACAAGATCACAAGTATCTTGCTTCAGTTCGTC	360
5	361	AGCGAGGCCTCTTCCACCTCTCCAGGCTCCATCGCTTATG	400
•	401	AGTTAGATCCACATTGCAAAGTTTCATCCCTCCAGTCCTA	440
10	441	CGTCAACAAGTTCCAAATCACAAAGGGTGGTGCTAAGACC	480
10	481	TATCAAGCTCGTATGATCAACGGAGTTGAATGGCACGATT	520
	521	CTTCTGAGGATCAGTGCAGAATCCTTTGGAAAGGAAATGG	560
15	561	AAAGTCTTCAGATCCAGCTGGATCTTTCAGAGTTACCATC	600
	601	AGAGTTGCTCTTCAAAACCGAAAG 624.	

- 30. A chimeric plant gene which comprises a structural coding sequence encoding an insecticidal protein of Bacillus thuringiensis, said structural coding sequence being modified to reduce the number of putative polyadenylation signals within said structural coding sequence.
- 31. A chimeric plant dene of Claim 30 in which the polyadenylation signals are selected from the group consisting of AATAAA, AATAAT, AACCAA, ATATAA, AATCAA, ATACTA, ATAAAA, ATGAAA, AAGCAT, ATTAAT, ATACAT, AAAATA, ATTAAA, AATTAA, AATACA and CATAAA.

30

- 32. A chimeric plant gene of Claim 31 in which said structural coding sequence is further modified to reduce the number of ATTTA sequences within said structural coding sequence.
- 33. A chimeric plant gene of Claim 32 in which said structural coding sequence is substantially devoid of polyadenylation signals and ATTTA sequences.
- - 35. A transformed plant cell of Claim 34 selected from the group consisting of soybean, cotton, alfalfa, oilseed rape, flax, tomato, sugarbeet, sunflower, potato, tobacco, maize, rice and wheat.
- 15 36. A plant comprising transformed plant cells of Claim 34.
 - 37. A plant of Claim 36 which comprises plant cells of Claim 35.
 - 38. A seed produced by a plant of Claim 36.

20

5