

47483c1.app

SEQUENCE LISTING

<110> DANA-FARBER CANCER INSTITUTE, INC.

KOLODNER, Richard

WINAND, Nena

<120> A METHOD OF DETECTION OF ALTERATIONS IN MSH5

<130> 700157/47483C

<140> 09/470,276

<141> 1999-12-22

<150> 60/051,686

<151> 1997-07-03

<150> PCT/US98/13850

<151> 1998-07-02

<160> 104

<170> PatentIn Ver. 2.1

<210> 1

<211> 2900

<212> DNA

<213> Human

<400> 1

cgctcccttt gcaggctcgt ggcggtcggt cagcggggcg ttctccacc tgttagcgact
60

caggttactg aaaaggcggg aaaacgctgc gatggcggca gctgggggag gaggaagata
120

agcgcgtgag gctgggtcc tggcgctgg ttggcagagg cagagacata agacgtgcac
180

gactcgcccc acagggcctt cagacccctt ct当地ccaaag gagcctccaa gctcatggcc
240

tccttaggag cgaacccaag gaggacaccg caggaccga gacctgggc ggcttcctcc
300

ggtttccca gccggcccc agtgcgggc cccagggagg ccgaggagga ggaagtgcag
360

gaggaggagg agctggccga gatccatctg tgtgtgctgt ggaattcagg atacttggc

420 attgcctact atgatactag tgactccact atccacttca tgccagatgc cccagaccac
480 gagagcctca agcttctcca gagagttctg gatgagatca atccccagtc tgttgttacg
540 agtgccaaac aggatgagaa tatgactcga tttctggaa agcttgcctc ccaggagcac
600 agagagccta aaagacctga aatcatattt ttgccaagtg tggatttgg tctggagata
660 agcaaacaac gcctccttgc tggaaactac tccttcatcc cagacgccat gactgccact
720 gagaaaatcc tcttcctctc ttccattatt ccctttgact gcctoactcac agttcgagca
780 ctggagggc tgctgaagtt cctgggtcga agaagaatcg gggttgaact ggaagactat
840 aatgtcagcg tccccatcct gggcttaag aaatttatgt tgactcatct ggtgaacata
900 gatcaagaca cttacagtgt tctacagatt tttaagagtg agtctcaccc ctcagtgta
960 aaagtggcca gtggactgaa ggaggggctc agcctcttg gaatcctcaa cagatgccac
1020 tctaagtggg gagagaagct gtcaggcta tggttcacac gtccgactca tgacctgggg
1080 gagctcagtt ctctgttgc cgtcatttag tttttctgc tgccccagaa tctggacatg
1140 gctcagatgc tgcattcggt cctgggtcac atcaagaacg tgcctttgat tctgaaacgc
1200 atgaagttgt cccacaccaa ggtcagcgac tggcaggttc tctacaagac tgtgtacagt
1260 gccctgggcc tgagggatgc ctggcgctcc ctggcgca gcatccagct cttcgggac
1320 attgcccac agttctctga tgacctgcac catatcgcca gcctcattgg gaaagttagtg
1380 gactttgagg gcagccttgc tgaaaatcgc ttcacagtc tccccaaacat agatcctgaa
1440 attgatgaga aaaagcgaag actgatgggaa cttcccagtt tccttactga ggttgcccgac
1500 aaggagctgg agaatctgga ctcccgtatt ctttcattgca gtgtcatcta catccctatg
1560 attggcttcc ttctttctat tccccgcctg cttccatgg tagaggccag tgactttgag
1620 attaatggac tggacttcat gtttctctca gaggagaagc tgcactatcg tagtgcccgaa
1680

accaaggagc tggatgcatt gctgggggac ctgcactgcg agatccggga ccaggagacg
1740
ctgctgatgt accagctaca gtgccaggtg ctggcacgag cagctgtctt aacccgagta
1800
ttggaccttg cctcccgct ggacgtcctg ctggctttg ccagtgctgc ccgggactat
1860
ggctactcaa ggccgcgtta ctccccacaa gtccttgggg tacgaatcca gaatggcaga
1920
catcctctga tggaaactctg tgcccgaacc tttgtgccc actccacaga atgtggtggg
1980
gacaaaggga gggtaaagt catcaactgga cccaaactcat cagggaaagag catatacctc
2040
aaacaggttag gcttgatcac attcatggcc ctggtaggca gctttgtgcc agcagaggag
2100
gccgaaaattg gggcagtaga cgccatcttc acacgaattc atagctgcga atccatctcc
2160
cttggcctct ccaccttcat gatcgacctc aaccaggtgg cgaaagcagt gaacaatgcc
2220
actgcacagt cgctggcct tattgatgaa tttggaaagg gaaccaaacac ggtggatggg
2280
ctcgcgcttc tggccgctgt gctccgacac tggctggcac gtggacccac atgccccac
2340
atctttgtgg ccaccaactt tctgagcctt gttcagctac aactgctgcc acaagggccc
2400
ctggcgcagt atttgaccat ggagacctgt gaggatggca acgatcttgt cttcttctat
2460
cagggttgcg aagggtttgc gaaggccagc catgcctccc acacagctgc ccaggctggg
2520
cttcctgaca agcttggc tcgtggcaag gaggtctcag atttgcattcg cagtggaaaa
2580
cccatcaagc ctgtcaagga tttgctaaag aagaaccaaa tggaaaattg ccagacatta
2640
gtggataagt ttatgaaact ggatttggaa gatcctaacc tggacttgaa cgtttcatg
2700
agccaggaag tgctgcctgc tgccaccagc atcctctgag agtccttcca gtgtcctccc
2760
caggcctcctg agactccggc gggctgccc gccccttttgc tttccttatac tccctcagac
2820
gcagagttt tagttctct agaaattttgc tttcatatta ggaataaaagt ttatggaa
2880
aaaaaaaaaaaa aaaaaaaaaaaa
2900

<210> 2
<211> 834
<212> PRT
<213> Human

<400> 2
Met Ala Ser Leu Gly Ala Asn Pro Arg Arg Thr Pro Gln Gly Pro Arg
1 5 10 15

Pro Gly Ala Ala Ser Ser Gly Phe Pro Ser Pro Ala Pro Val Pro Gly
20 25 30

Pro Arg Glu Ala Glu Glu Glu Val Glu Glu Glu Glu Leu Ala
35 40 45

Glu Ile His Leu Cys Val Leu Trp Asn Ser Gly Tyr Leu Gly Ile Ala
50 55 60

Tyr Tyr Asp Thr Ser Asp Ser Thr Ile His Phe Met Pro Asp Ala Pro
65 70 75 80

Asp His Glu Ser Leu Lys Leu Leu Gln Arg Val Leu Asp Glu Ile Asn
85 90 95

Pro Gln Ser Val Val Thr Ser Ala Lys Gln Asp Glu Asn Met Thr Arg
100 105 110

Phe Leu Gly Lys Leu Ala Ser Gln Glu His Arg Glu Pro Lys Arg Pro
115 120 125

Glu Ile Ile Phe Leu Pro Ser Val Asp Phe Gly Leu Glu Ile Ser Lys
130 135 140

Gln Arg Leu Leu Ser Gly Asn Tyr Ser Phe Ile Pro Asp Ala Met Thr
145 150 155 160

Ala Thr Glu Lys Ile Leu Phe Leu Ser Ser Ile Ile Pro Phe Asp Cys
165 170 175

Leu Leu Thr Val Arg Ala Leu Gly Gly Leu Leu Lys Phe Leu Gly Arg
180 185 190

Arg Arg Ile Gly Val Glu Leu Glu Asp Tyr Asn Val Ser Val Pro Ile
195 200 205

Leu Gly Phe Lys Lys Phe Met Leu Thr His Leu Val Asn Ile Asp Gln
210 215 220

Asp Thr Tyr Ser Val Leu Gln Ile Phe Lys Ser Glu Ser His Pro Ser
225 230 235 240

Val Tyr Lys Val Ala Ser Gly Leu Lys Glu Gly Leu Ser Leu Phe Gly
245 250 255

Ile Leu Asn Arg Cys His Cys Lys Trp Gly Glu Lys Leu Leu Arg Leu
260 265 270

Trp Phe Thr Arg Pro Thr His Asp Leu Gly Glu Leu Ser Ser Arg Leu
275 280 285

Asp Val Ile Gln Phe Phe Leu Leu Pro Gln Asn Leu Asp Met Ala Gln
290 295 300

Met Leu His Arg Leu Leu Gly His Ile Lys Asn Val Pro Leu Ile Leu
305 310 315 320

Lys Arg Met Lys Leu Ser His Thr Lys Val Ser Asp Trp Gln Val Leu
325 330 335

Tyr Lys Thr Val Tyr Ser Ala Leu Gly Leu Arg Asp Ala Cys Arg Ser
340 345 350

Leu Pro Gln Ser Ile Gln Leu Phe Arg Asp Ile Ala Gln Glu Phe Ser
355 360 365

Asp Asp Leu His His Ile Ala Ser Leu Ile Gly Lys Val Val Asp Phe
370 375 380

Glu Gly Ser Leu Ala Glu Asn Arg Phe Thr Val Leu Pro Asn Ile Asp
385 390 395 400

Pro Glu Ile Asp Glu Lys Lys Arg Arg Leu Met Gly Leu Pro Ser Phe
405 410 415

Leu Thr Glu Val Ala Arg Lys Glu Leu Glu Asn Leu Asp Ser Arg Ile

420

425

430

Pro Ser Cys Ser Val Ile Tyr Ile Pro Leu Ile Gly Phe Leu Leu Ser

435

440

445

Ile Pro Arg Leu Pro Ser Met Val Glu Ala Ser Asp Phe Glu Ile Asn
450 455 460

Gly Leu Asp Phe Met Phe Leu Ser Glu Glu Lys Leu His Tyr Arg Ser
465 470 475 480

Ala Arg Thr Lys Glu Leu Asp Ala Leu Leu Gly Asp Leu His Cys Glu
485 490 495

Ile Arg Asp Gln Glu Thr Leu Leu Met Tyr Gln Leu Gln Cys Gln Val
500 505 510

Leu Ala Arg Ala Ala Val Leu Thr Arg Val Leu Asp Leu Ala Ser Arg
515 520 525

Leu Asp Val Leu Leu Ala Ser Ala Ala Arg Asp Tyr Gly Tyr
530 535 540

Ser Arg Pro Arg Tyr Ser Pro Gln Val Leu Gly Val Arg Ile Gln Asn
545 550 555 560

Gly Arg His Pro Leu Met Glu Leu Cys Ala Arg Thr Phe Val Pro Asn
565 570 575

Ser Thr Glu Cys Gly Gly Asp Lys Gly Arg Val Lys Val Ile Thr Gly
580 585 590

Pro Asn Ser Ser Gly Lys Ser Ile Tyr Leu Lys Gln Val Gly Leu Ile
595 600 605

Thr Phe Met Ala Leu Val Gly Ser Phe Val Pro Ala Glu Glu Ala Glu
610 615 620

Ile Gly Ala Val Asp Ala Ile Phe Thr Arg Ile His Ser Cys Glu Ser
625 630 635 640

Ile Ser Leu Gly Leu Ser Thr Phe Met Ile Asp Leu Asn Gln Val Ala
645 650 655

Lys Ala Val Asn Asn Ala Thr Ala Gln Ser Leu Val Leu Ile Asp Glu
660 665 670

Phe Gly Lys Gly Thr Asn Thr Val Asp Gly Leu Ala Leu Leu Ala Ala
675 680 685

Val Leu Arg His Trp Leu Ala Arg Gly Pro Thr Cys Pro His Ile Phe
690 695 700

Val Ala Thr Asn Phe Leu Ser Leu Val Gln Leu Gln Leu Leu Pro Gln
705 710 715 720

Gly Pro Leu Val Gln Tyr Leu Thr Met Glu Thr Cys Glu Asp Gly Asn
725 730 735

Asp Leu Val Phe Phe Tyr Gln Val Cys Glu Gly Val Ala Lys Ala Ser
740 745 750

His Ala Ser His Thr Ala Ala Gln Ala Gly Leu Pro Asp Lys Leu Val
755 760 765

Ala Arg Gly Lys Glu Val Ser Asp Leu Ile Arg Ser Gly Lys Pro Ile
770 775 780

Lys Pro Val Lys Asp Leu Leu Lys Lys Asn Gln Met Glu Asn Cys Gln
785 790 795 800

Thr Leu Val Asp Lys Phe Met Lys Leu Asp Leu Glu Asp Pro Asn Leu
805 810 815

Asp Leu Asn Val Phe Met Ser Gln Glu Val Leu Pro Ala Ala Thr Ser
820 825 830

Ile Leu

<210> 3
<211> 29
<212> DNA
<213> Human

<400> 3
ttccaaaggg taacctccgc gtgacagaa
29

<210> 4
<211> 29
<212> DNA
<213> Human

<400> 4
ctggccgagg tctctgaggg gagtagaaa
29

<210> 5
<211> 29
<212> DNA
<213> Human

<400> 5
tccagagagg tggggatgga accatgaat
29

<210> 6
<211> 29
<212> DNA
<213> Human

<400> 6
gaaagcttgg taaggacttg gtaaaggat
29

<210> 7
<211> 29
<212> DNA
<213> Human

<400> 7
tggattttgg tatctccttc ctttgctt
29

<210> 8
<211> 29
<212> DNA
<213> Human

<400> 8
ctccctcacag tgagattggc cctggggga
29

<210> 9
<211> 29
<212> DNA
<213> Human

<400> 9
atttatgttg taggtgattc accccaacc
29

<210> 10
<211> 29
<212> DNA
<213> Human

<400> 10
cacttacagg taaagaggtg gaggcatgc
29

<210> 11
<211> 29
<212> DNA
<213> Human

<400> 11
gcctctttgg taggtgtgcc ccatccctc
29

<210> 12

<211> 29
<212> DNA
<213> Human

<400> 12
gctgctcagg tgagtggttc ccacacata
29

<210> 13
<211> 29
<212> DNA
<213> Human

<400> 13
aacgtgcctg tgagcccagg gtggagggc
29

<210> 14
<211> 29
<212> DNA
<213> Human

<400> 14
ctctacaagg taaggctttc cttcttgaa
29

<210> 15
<211> 29
<212> DNA
<213> Human

<400> 15
gggaaagttag tgagtagaaag gaaaaaggg
29

<210> 16
<211> 29
<212> DNA
<213> Human

<400> 16
ttgatgagag tgagtgttgg gtgtggatg
29

<210> 17
<211> 29
<212> DNA
<213> Human

<400> 17
atccctctgg tgagggcagg agagtgggt
29

<210> 18
<211> 29
<212> DNA
<213> Human

<400> 18
gacttcatgg taagaccctc aacctctgt
29

<210> 19
<211> 29
<212> DNA
<213> Human

<400> 19
agatccgggg tgaggaaaag ccagaggtt
29

<210> 20
<211> 29
<212> DNA
<213> Human

<400> 20
gaatggcagg taagaataga ggcggtgg

29

<210> 21
<211> 29
<212> DNA
<213> Human

<400> 21
ctcaaacagg tgaggagaag ccctgcagc
29

<210> 22
<211> 29
<212> DNA
<213> Human

<400> 22
ctcaaccagg tcaaaggaa caaagggag
29

<210> 23
<211> 29
<212> DNA
<213> Human

<400> 23
accaacacgg tgaggggaga aactgatga
29

<210> 24
<211> 29
<212> DNA
<213> Human

<400> 24
cagtatttgg tgaggagacc aatctagct
29

<210> 25
<211> 29
<212> DNA
<213> Human

<400> 25
ggcaaggagg tcatgagatc caaatgtgc
29

<210> 26
<211> 29
<212> DNA
<213> Human

<400> 26
aatggaaaag tgcgtatatg gccccagtg
29

<210> 27
<211> 29
<212> DNA
<213> Human

<400> 27
ctcactttt gcatccgcag agcctccaa
29

<210> 28
<211> 29
<212> DNA
<213> Human

<400> 28
ctttcttcct tgctggacag atccatctg
29

<210> 29
<211> 29
<212> DNA

<213> Human

<400> 29

gatctctgtt ctcccttccag ttctggatg
29

<210> 30

<211> 29

<212> DNA

<213> Human

<400> 30

ttttctttcc tcccccacag cctcccagg
29

A
<210> 31

<211> 29

<212> DNA

<213> Human

<400> 31

tgcttgcctc cctcaaatacg gtctggaga
29

<210> 32

<211> 29

<212> DNA

<213> Human

<400> 32

cactgctgat cccctcccag gttcgagca
29

<210> 33

<211> 29

<212> DNA

<213> Human

<400> 33

tttttgtttt ctgtcctcag gactcatct
29

<210> 34
<211> 29
<212> DNA
<213> Human

<400> 34
cctccatttc tcctcgacag tggctaca
29

<210> 35
<211> 29
<212> DNA
<213> Human

<400> 35
cctgccttat ccctcacaag aatcctcaa
29

<210> 36
<211> 29
<212> DNA
<213> Human

<400> 36
acccaaaccc tcacttccag gctatggtt
29

<210> 37
<211> 29
<212> DNA
<213> Human

<400> 37
gtaaccttgt ctgactgtag ttgattctg
29

<210> 38
<211> 29
<212> DNA
<213> Human

<400> 38
tttttgtt tcttcacag actgtgtac
29

<210> 39
<211> 29
<212> DNA
<213> Human

<400> 39
aacagtactt atctcctcag gtggacttt
29

<210> 40
<211> 29
<212> DNA
<213> Human

<400> 40
cctgtttcc accctcgtag aaaagcgaa
29

<210> 41
<211> 29
<212> DNA
<213> Human

<400> 41
ctcctttta ctctccccag attggcttc
29

<210> 42
<211> 29

<212> DNA
<213> Human

<400> 42
ctttgaaccc ctgtacccag tttctctca
29

<210> 43
<211> 29
<212> DNA
<213> Human

<400> 43
ccttcctcac ccactcccag accaggaga
29

Q
<210> 44
<211> 29
<212> DNA
<213> Human

<400> 44
tgcctctccg cccactgcag acatcctct
29

<210> 45
<211> 29
<212> DNA
<213> Human

<400> 45
ctgtctcatt ccctattcag gtaggcttg
29

<210> 46
<211> 29
<212> DNA
<213> Human

<400> 46
gtccaccta tacccagcag gtggcgaaa
29

<210> 47
<211> 29
<212> DNA
<213> Human

<400> 47
aacctctgcc ctcttgcag gtggatggg
29

<210> 48
<211> 29
<212> DNA
<213> Human

<400> 48
gtctttatt ctctttaag accatggag
29

<210> 49
<211> 29
<212> DNA
<213> Human

<400> 49
caccttcttg cttgtcctag gtctcagat
29

<210> 50
<211> 29
<212> DNA
<213> Human

<400> 50
cgattttctc tcttcttcag ttgccagac
29

<210> 51
<211> 20
<212> DNA
<213> Human

<400> 51
gaatggcaga catcctctga
20

<210> 52
<211> 22
<212> DNA
<213> Human

<400> 52
ggtatatgtcttccctgtat ga
22

<210> 53
<211> 2576
<212> DNA
<213> Human

<400> 53
ggcttggggc ggttggtcag ggaggtggat cgtcgccgc gagagtgcgc gagcccatgg
60
cttcagagc gaccccaggc cggacgcccgc cgggaccgg acccagatcc ggaatcccc
120
cagccagctt ccccaagccct cagcccccaa tggcggggcc tggaggtatc gaggaagagg
180
acgaggagga gcccgcccgag atccatctgt gcgtgctgtg gagctcgga tacctggca
240
ttgcttacta tgacactagt gactccacta tccacttcat gccagatgcc ccagaccacg
300
agagcctaaa gcttctccag agagttctgg atgaaatcaa cccccagtct gttgtcacaa
360
gtgccaaaca ggatgaggct atgactcgat ttcttagggaa gcttgctct gaggagcaca
420
gagagccaaa gggacctgaa atcatacttc tgccaagcgt ggatttttgtt ccagagataa

480
gcaaaacagcg tctcctttcc gaaaaactact ccttcatctc agactccatg actgctactg
540
agaaaaatcct tttcctctcc tccattattc ccttgactg tgtcctcacg gtccgggcac
600
ttggaggact gctcaagttc ctgagtcgaa gaagaattgg gttgaactg gaagactatg
660
atgttggcgt ccctatcctg ggattcaaga agtttgtatt gaccatctg gtgagcatag
720
atcaagacac ttacagcggtt ctacagattt tcaagagtga gtctcacccc tcggtgtaca
780
aagtagccag tgggctgaag gaggggctca gccttttgg aatcctaacc agatgccgct
840
gtaagtgggg acagaagctg ctcaggctgt gtttacacg tccaacccgg gagctaagg
900
aactcaattc ccgactggat gtcattcagt tcttcctgat gcctcagaac ctggacatgg
960
cccagatgt gcaccgactc ctgagccaca tcaagaatgt gcctctgatt ctgaaacgca
1020
tgaagttgtc ccacaccaag gtcagtgact ggcaggtcct ctacaagact gtgtacagt
1080
ctctcggcct gagggatgcc tgccgttctc tgccacagtc catccagctt tttcaggaca
1140
ttgcccagga gttctctgac gacctgcatac acattgccag cctcatcgaa aaggtggtg
1200
actttgagga aagtcttgct gaaaatcgct tcacagtcct ccctaacata gaccctgaca
1260
tagatgccaa gaagcgaagg ctgataggc ttccgagctt cctcactgaa gttgctcaga
1320
aggagctgga gaacctggac tctcgcatcc cctcatgcag tgtcatctac atccctctga
1380
ttggcttcct tcttccatt ccccgcttgc ct当地tgggtt ggaagctagt gactttgaga
1440
ttgaggggct ggacttcatg tttctctcag aggacaagct gcactatcgt agcgccccgga
1500
ccaaggagct ggacacgctg ctgggagacc tgcactgtga gatccggac caggagactc
1560
tggatgtc ccagctgcag tgccaggtgc tggcacgggc ttccgttgc actcgggtat
1620
tggaccttgc ctcccgctg gacgtttgt tggctttgc cagtgtgcc cggtactacg
1680
gctattcgag accgcattac tctccctgtt tccatggagt acgaatcagg aatggcaggc
1740

atcctctgat ggaactgtgt gcacgaacct tcgtccccaa ctccacggac tgtgggggg
 1800
 accagggcag ggtcaaagtc atcaactggac ccaactcctc agggaaaagc atatatctca
 1860
 agcaggtagg cttgatcaact ttcatggccc tggggcag tttcgctgcct gcagaggagg
 1920
 ccgagattgg ggtaatcgac gccatcttca ctcaattca cagctgcgaa tccatctccc
 1980
 tcggccttc caccttcatg attgatctca accaggtggc gaaagcagtg aacaatgcc
 2040
 cagagcactc gctggtcctg atcgatgaat tcgggaaggg gaccaactcg gtggatggcc
 2100
 tggcacttct ggctgctgtg ctccgtcaact ggcttgcact gggacccagc tgccccacg
 2160
 tcttttagc caccaacttc ctgagccttg tttagctgca gctgctgccc caaggacccc
 2220
 tggtgcatgtt tttgaccatg gagacttgc aggtgggaa agaccttgc ttcttctacc
 2280
 agctttgcca aggctcgcc agtgcagcc acgcctccca cacagcgcc caggctggc
 2340
 ttccctgaccc actcattgct cgtggcaaag aggtctcaga cttgatccgc agtggaaac
 2400
 ccatcaaggc cacgaatgag cttctaagga gaaaccaaat ggaaaactgc caggcactgg
 2460
 tggataagtt tctaaaactg gacttggagg atcccacccct ggacctggac attttcatta
 2520
 gtcaggaagt gctgcccgt gctccacca tcctctgaga gtccttccag tgtcct
 2576

<210> 54
 <211> 833
 <212> PRT
 <213> Human

<400> 54
 Met Ala Phe Arg Ala Thr Pro Gly Arg Thr Pro Pro Gly Pro Gly Pro
 1 5 10 15

Arg Ser Gly Ile Pro Ser Ala Ser Phe Pro Ser Pro Gln Pro Pro Met
 20 25 30

Ala Gly Pro Gly Gly Ile Glu Glu Glu Asp Glu Glu Pro Ala Glu

35

40

45

Ile His Leu Cys Val Leu Trp Ser Ser Gly Tyr Leu Gly Ile Ala Tyr			
50	55	60	
Tyr Asp Thr Ser Asp Ser Thr Ile His Phe Met Pro Asp Ala Pro Asp			
65	70	75	80
His Glu Ser Leu Lys Leu Leu Gln Arg Val Leu Asp Glu Ile Asn Pro			
85	90	95	
Gln Ser Val Val Thr Ser Ala Lys Gln Asp Glu Ala Met Thr Arg Phe			
100	105	110	
Leu Gly Lys Leu Ala Ser Glu Glu His Arg Glu Pro Lys Gly Pro Glu			
115	120	125	
Ile Ile Leu Leu Pro Ser Val Asp Phe Gly Pro Glu Ile Ser Lys Gln			
130	135	140	
Arg Leu Leu Ser Gly Asn Tyr Ser Phe Ile Ser Asp Ser Met Thr Ala			
145	150	155	160
Thr Glu Lys Ile Leu Phe Leu Ser Ser Ile Ile Pro Phe Asp Cys Val			
165	170	175	
Leu Thr Val Arg Ala Leu Gly Gly Leu Leu Lys Phe Leu Ser Arg Arg			
180	185	190	
Arg Ile Gly Val Glu Leu Glu Asp Tyr Asp Val Gly Val Pro Ile Leu			
195	200	205	
Gly Phe Lys Lys Phe Val Leu Thr His Leu Val Ser Ile Asp Gln Asp			
210	215	220	
Thr Tyr Ser Val Leu Gln Ile Phe Lys Ser Glu Ser His Pro Ser Val			
225	230	235	240
Tyr Lys Val Ala Ser Gly Leu Lys Glu Gly Leu Ser Leu Phe Gly Ile			
245	250	255	
Leu Asn Arg Cys Arg Cys Lys Trp Gly Gln Lys Leu Leu Arg Leu Trp			
260	265	270	

Phe Thr Arg Pro Thr Arg Glu Leu Arg Glu Leu Asn Ser Arg Leu Asp
 275 280 285

Val Ile Gln Phe Phe Leu Met Pro Gln Asn Leu Asp Met Ala Gln Met
 290 295 300

Leu His Arg Leu Leu Ser His Ile Lys Asn Val Pro Leu Ile Leu Lys
 305 310 315 320

Arg Met Lys Leu Ser His Thr Lys Val Ser Asp Trp Gln Val Leu Tyr
 325 330 335

Lys Thr Val Tyr Ser Ala Leu Gly Leu Arg Asp Ala Cys Arg Ser Leu
 340 345 350

Pro Gln Ser Ile Gln Leu Phe Gln Asp Ile Ala Gln Glu Phe Ser Asp
 355 360 365

Asp Leu His His Ile Ala Ser Leu Ile Gly Lys Val Val Asp Phe Glu
 370 375 380

Glu Ser Leu Ala Glu Asn Arg Phe Thr Val Leu Pro Asn Ile Asp Pro
 385 390 395 400

Asp Ile Asp Ala Lys Lys Arg Arg Leu Ile Gly Leu Pro Ser Phe Leu
 405 410 415

Thr Glu Val Ala Gln Lys Glu Leu Glu Asn Leu Asp Ser Arg Ile Pro
 420 425 430

Ser Cys Ser Val Ile Tyr Ile Pro Leu Ile Gly Phe Leu Leu Ser Ile
 435 440 445

Pro Arg Leu Pro Phe Met Val Glu Ala Ser Asp Phe Glu Ile Glu Gly
 450 455 460

Leu Asp Phe Met Phe Leu Ser Glu Asp Lys Leu His Tyr Arg Ser Ala
 465 470 475 480

Arg Thr Lys Glu Leu Asp Thr Leu Leu Gly Asp Leu His Cys Glu Ile
 485 490 495

Arg Asp Gln Glu Thr Leu Leu Met Tyr Gln Leu Gln Cys Gln Val Leu
500 505 510

Ala Arg Ala Ser Val Leu Thr Arg Val Leu Asp Leu Ala Ser Arg Leu
515 520 525

Asp Val Leu Leu Ala Leu Ala Ser Ala Ala Arg Asp Tyr Gly Tyr Ser
530 535 540

Arg Pro His Tyr Ser Pro Cys Ile His Gly Val Arg Ile Arg Asn Gly
545 550 555 560

Arg His Pro Leu Met Glu Leu Cys Ala Arg Thr Phe Val Pro Asn Ser
565 570 575

Thr Asp Cys Gly Gly Asp Gln Gly Arg Val Lys Val Ile Thr Gly Pro
580 585 590

Asn Ser Ser Gly Lys Ser Ile Tyr Leu Lys Gln Val Gly Leu Ile Thr
595 600 605

Phe Met Ala Leu Val Gly Ser Phe Val Pro Ala Glu Glu Ala Glu Ile
610 615 620

Gly Val Ile Asp Ala Ile Phe Thr Arg Ile His Ser Cys Glu Ser Ile
625 630 635 640

Ser Leu Gly Leu Ser Thr Phe Met Ile Asp Leu Asn Gln Val Ala Lys
645 650 655

Ala Val Asn Asn Ala Thr Glu His Ser Leu Val Leu Ile Asp Glu Phe
660 665 670

Gly Lys Gly Thr Asn Ser Val Asp Gly Leu Ala Leu Leu Ala Ala Val
675 680 685

Leu Arg His Trp Leu Ala Leu Gly Pro Ser Cys Pro His Val Phe Val
690 695 700

Ala Thr Asn Phe Leu Ser Leu Val Gln Leu Gln Leu Leu Pro Gln Gly
705 710 715 720

Pro Leu Val Gln Tyr Leu Thr Met Glu Thr Cys Glu Asp Gly Glu Asp

725

730

735

Leu Val Phe Phe Tyr Gln Leu Cys Gln Gly Val Ala Ser Ala Ser His
 740 745 750

Ala Ser His Thr Ala Ala Gln Ala Gly Leu Pro Asp Pro Leu Ile Ala
 755 760 765

Arg Gly Lys Glu Val Ser Asp Leu Ile Arg Ser Gly Lys Pro Ile Lys
 770 775 780

Ala Thr Asn Glu Leu Leu Arg Arg Asn Gln Met Glu Asn Cys Gln Ala
 785 790 795 800

Leu Val Asp Lys Phe Leu Lys Leu Asp Leu Glu Asp Pro Thr Leu Asp
 805 810 815

Leu Asp Ile Phe Ile Ser Gln Glu Val Leu Pro Ala Ala Pro Thr Ile
 820 825 830

Leu

<210> 55
 <211> 232
 <212> DNA
 <213> Human

<400> 55
 gtaaacctccg cgtgacagaaa tgagggtggg gcgcgtggag tttcccacaa tctgtacttt
 60
 agttaaatac ccgagaattc acctcctgtg tccacagctc tccacgcccc tcagccctgc
 120
 cccgcagccc tgtatcagaa gtacttagcg cttagcattc tgcgccac cctaccccg
 180
 cctcctctgt gaatcggtgc ttccgaaccg ccctcacttt ttgcattccgc ag
 232

<210> 56
 <211> 74
 <212> DNA

<213> Human

<220>

<221> intron

<222> (73)..(74)

<223> N = A or T or G or C

<400> 56

gtctctgagg ggagtagaaa cttgaatgga gagttgatgg gaatttaaaa taaaagaggg

60

ttgggagccg ggnn

74

<210> 57

<211> 189

<212> DNA

<213> Human

<400> 57

aaaaaaaaac agggttggga agagctgggc aagtctctta ctccttgagt ggctgtttca

60

cattcactaa atgggggtga tgatgcctat ctcagagatt tgagaaaatg attaaattat

120

ataagacatg gttaacccta cacttatgag tgattctaat agtgatttcc ttttttcctt

180

gctggacag

189

<210> 58

<211> 450

<212> DNA

<213> Human

<220>

<221> intron

<222> (449)..(450)

<223> N = A or T or G or C

<400> 58

gtggggatgg aaccatgaat tcctctgctc tctgggattg cagatgtgtt acacacacac

60

acacacacac acacacacac acacacatat ttttttttc tagacagagt cttgctctgt
120
tacccaggct caagtgcagt ggcgcaatct tggctcactg cagcctccac ctcctgggtt
180
caagcaattc tcctgactca acctccccgag tagctgggac tacaggcggtg tgccaccaca
240
cccagctagt tttttgtgtg tgtttttagc acagacggtg tttcaccatg ttggccaggg
300
tggctctaaa ctcctgacct tgtgatccgc ccacccctggc ctcctaaagt gctgggacta
360
caggtgtgag tcaccacgcc cagccatgtt ttacttacat taactcacct cactgtctag
420
catattttgt gttgctgtaa ggaaataacnn
450

a
<210> 59
<211> 323
<212> DNA
<213> Human

<400> 59
ggcgacaaat atatatgacg tatttacaat gtttcaggtg cttcagattc agccctggc
60
aaatcagtca tgtctgttct ccaggggtt acagcctagt gacaacatcc agaacatccc
120
acttccctct caccatccca ccactcttaa ctactttct aaatctcaac ttctacactgt
180
gttcccactg tgcaagagcac tccctactcc tagggaggaa atgttttga gaaggagagg
240
ggtaggaaga ggagggctat gggtttctc ttagtcaaag acaaagatcc tttaactcat
300
ttgatctctg ttctcattcc aag
323

<210> 60
<211> 150
<212> DNA
<213> Human

<400> 60
gtaaggactt ggttaaaggat agagggaaaa tggggaaagga ctaatatatg gaatattcca

60

gggggctaga attgggtgag agggagtgtc agacagaggt agaaggactg agatgtaaag
120

aatgatagcc ttttcttcc tcccccacag

150

<210> 61

<211> 733

<212> DNA

<213> Human

<400> 61

gtatctcctt cttttgctt tgccataactc cctgttccgg tgtcccattc tttcccccaa
60

ctctaccttc atcatcacag atctcccctc tgccttatgt catcctaaac ctttgtgctc
120

ctcatgcctt atgacctgtc ccccaagat ctctcctgct ccctaccctt taataatctg
180

cagcttatttgc ggaaggctct gcttaagtca tgtctaggga tgagggcctc ccctgaggag
240

tggtgacact tttggacag ggttttatttgc ttggattct ccccatthaag ttaaaggcctt
300

ttatcaccaa accaaaaggc actgcctcag tgacccttat tatgatccat aaggcacttc
360

tataactttc ctaggtttac aataagaaca ggagtgtact atcctaatta gatattaagg
420

cattagtgtt actagttcta ttaataccat tattttgacc aaaatcctca attccagaca
480

gatgtctact ttccctcagcc atttatctt ctcaggctgt gcttcagac aagtatctt
540

atattatatg tagaataaaa agagaattag actaagagtc tgaaaatttg gttcttgctc
600

tagcttcca ttaactgcct gtgtgagctt gggcaagtca aataatctct cttgcttcta
660

ttgtctcatt cttaaaaatgg ggtaaaaaaa ttgagctaca agaccgttcc ctttgcttgc
720

ctccctcaaa tag

733

<210> 62

<211> 164

<212> DNA
<213> Human

<400> 62
gtgagattgg tcctggggga taagggctgg gaggcgac aagtgcagg gctgaattct
60
gggaggtact ggccctagccc tggaaaatag taactttccc tggtgctctg cagccccag
120
gagatttaag atttaccccg attccactgc tgatcccctc ccag
164

<210> 63
<211> 246
<212> DNA
<213> Human

<400> 63
gtaggtgatt caccccaacc ccaaccaaag taatgtggga ttgggaggcc tgaaaagtaa
60
agtgggggtg ggggtgtggat gtggctgtga cccagtggtt caaggctct aggacacccg
120
ggagaatcta agggctaattg agactttggg aagaagactg ggacaatatt cagagagggg
180
gacaaaggaa gtggagttgt ggaacgaact cagactgctt cctgctttt tgtttctgt
240
cctcag
246

<210> 64
<211> 413
<212> DNA
<213> Human

<220>
<221> intron
<222> (412)..(413)
<223> N = A or T or G or C

<400> 64
gtaaagaggt ggaggcatgc tgctgtctct ggggagggag aaggattaag tttaatgcc
60

caataatcct aatgaggctc tagttccct aatcctgggg ctattaagat ctctctcctt
120
gaaggaaagg gaaggggggt tttgagggaa agagaggaag aaaagcataa agataactagc
180
tttctttct atagggagaa actgaggcaa agaaaaagtaa gggacaaacc ttacatcaag
240
atatgatctc ggctgggcgc ggtggctcat gcctgtaatc cccgcgcctt gggaggccaa
300
ggcggggtgga tcgcctgagg tcaggagttt gagacctgac caatatggta aaaccccgtc
360
tctactaaaa atataaaaaat tagctgggtg tggtgtgcgc ctgtaatccc ann
413

<210> 65
<211> 136
<212> DNA
<213> Human

<400> 65
tttttttta aaaaaaaaaaaa aaaaaaagacg tgatctcagg aggatatccc ctgtccccat
60
tccatttatc agtcctcaat tcttattccc ctcaaaagtc caagttaccc caaactcctc
120
catttctcct cgacag
136

<210> 66
<211> 356
<212> DNA
<213> Human

<220>
<221> intron
<222> (355)..(356)
<223> N = A or T or G or C

<400> 66
gtaggtgtgc cccatccctc atctcacgta caaagaccta ccagaaaagc aattggctcc
60
aaagatgtgt cccagcctcc cttcccactt cactcccatt gtcagatatc tctttcatgc
120

caatccaaat ttcttaccta tttgtacccc ccgcggggca agcttgagca tcttccata
180
ctttgtggct gtacagtgtg ttgcatatca gccattactt taccaattct gtgttccttc
240
cctgggtttg tatgaatgtt tctactagtt gggtaacctgt tagggacttt gggagacctt
300
gtgtatagag aagagtttg taactgcata actgcctatt tgatttgtat agagnn
356

<210> 67
<211> 426
<212> DNA
<213> Human

<400> 67
ccaggagtag agggagagac agaaacagcc aacaatggcc cagaaaatgg atgatatatt
60
agataaggga agaaatgagt taccagattt gggagagatg gtttggatgt caaagcaggt
120
gatcggtgac gtcagcgtcc gagggaaagac ggctgccacc ggccggggcca gttgagggaa
180
ctaggttagtt aagtgttgtc gggctaaaag tccctagagt gtccatccct cccccatctc
240
catgtgcggt aatcccagct catttagggg ccagggcacca actttggttg cctttgtgcc
300
ctccccaggcc agcttcctca acaaccagca cctctgactg gatgcctcag gttagacaca
360
taaacacatt ccattgcctt gtccgtgcct tgtaacaagt tcactccctg ccttatccct
420
cacaag
426

<210> 68
<211> 360
<212> DNA
<213> Human

<220>
<221> intron
<222> (359)..(360)
<223> N = A or T or G or C

<400> 68

gtgagtgggt cccacacata ctacacacta atgcataat tccatatgca cactacatac
60
taaggctact aatggcagta tacagattct cacatacacc accccaccta gtagtagtaa
120
agcaactgcc cttaactgag cactggctaa ctgcatttca tccttataac agctttgtgt
180
agtagctgat atgcatactca tttttgttg tcagcgcagg tacacatata cattgatgat
240
acacagactt gcacacatac agcagcagga aaaaacacaa aatgtaaggc cgggcacagt
300
ggctcacacc tgttatcagc actttggggg gccaacgctg ggtgaccttc catcttgnn
360

<210> 69

<211> 447

<212> DNA

<213> Human

<400> 69

cacaggaaga atatgaaaag atgaatgtct gttgctgtta cccagagaca ctttcacagc
60
taaaaagaca tacaaactca tactgactca ccgtctctta ctcagcctca gagtgagctg
120
cagtgttggc acacaaatac ctcaacacac tgctctcctt ctaaaatatt gacaagctcc
180
gttacttata tacatggaat gacacacggt cttatccgtt gaaactgtga tatgtagaca
240
caattatgct cacatctagc aattttcagt agatacatgt aaacacacac ttatgggttag
300
gacactgcac ttgccactac attcccatag cacatcggtt atacatattt ccacaatccc
360
cagggactgc aagcacactt tttggcaaac tgagatcaag atgatagatg taactttag
420
taccccccacc caaaccctca cttccag
447

<210> 70

<211> 127

<212> DNA

<213> Human

<400> 70

gtgagccca ggtggagggc agggaggtgg ggaaggaggt tgagggctga tactggcag
60
tgggcttctt gaggggcatt agagtgaggg aagagaaaac agcggctgta accttgtctg
120
actgtag
127

<210> 71

<211> 30

<212> DNA

<213> Human

<220>

<221> intron

<222> (29)..(30)

<223> N = A or T or G or C

<400> 71

gtaaggcctt cttcttgaa tcccaaaann
30

<210> 72

<211> 222

<212> DNA

<213> Human

<400> 72

tacaggcatg agccactgtg cctggccagg accatatctt aattgtcttt gtagttcag
60
tgtttggtagt acgtgcctctc actgtttctt tttgcctttg agatctccc tctttgttac
120
tgtgatcttc cctactggtc tttgttcttc tgagtctgtc cctatcacca cctcaaccgg
180
agctggatgt ggccctgtcct ccttttgtg tttctctcac ag
222

<210> 73

<211> 254
<212> DNA
<213> Human

<400> 73
gtgagtagaa ggaaaaagg agtgcaccca gggaggtcag ggagagagaa tgcagtgtgc
60
aagatgggaa aacatggaag atattgaggt caattggata aagaatggaa tggtgggagg
120
aggcagcaga acttcaggaa agtatctgga gggtagact taaaggagga ctgcagggag
180
aattggggcc caaggagagc tgaggaacag gacagagggt gccaggtact aagaaacagt
240
acttatctcc tcag
254

01
<210> 74
<211> 145
<212> DNA
<213> Human

<400> 74
gtgagtggttg ggtgtggatg ggcctgttag ccctgcgcag tgatggagta ccatccttgg
60
caggtggtca ccacagctgg ggatcttcat agcaaccagg gcaggagact cactttgtat
120
aaccacacctgt cttccaccct cgtag
145

<210> 75
<211> 98
<212> DNA
<213> Human

<220>
<221> intron
<222> (97) .. (98)
<223> N = A or T or G or C

<400> 75
gtgagggcag gagagtgggt gtagccttca gatgtcttt gggggagata ttaggcttat

60

gaaagacata ctggtagata agaaaacttg tggggcnn

98

<210> 76

<211> 83

<212> DNA

<213> Human

<400> 76

atcttttaag ctcccttggg atggggagggt tccagtaagt ctccaaacaa gagagttagag

60

tatctcctct ttactctccc cag

83

<210> 77

<211> 247

<212> DNA

<213> Human

<400> 77

gtaagacct caacctctgt aaggtgagtg atgaggaaaa tgagtcagca gctgaggaag

60

agcgttactc tacagcagca ctgccaata tggatctct cctctgttgt tttactctga
120gcattaccag cactgagaca aaggaaagag aagtcagagt tagggctgg aggtggggtt
180

agaaagatgg ggaaggagag gaggaccaag agatgcaaag tccacagctt tgaaccctg

240

tacccag

247

<210> 78

<211> 273

<212> DNA

<213> Human

<400> 78

gtgagggaaaa gccagaggtt atatgcattg taagatgttt aaaaaaagca gcagccaggg

60

gaaggagggg agtgggcaac ttggggatgc ttccaacagg cccctcctct tcctgctctc
120
tgtctcgctc actctgactc tatctttcc tctgaatgtc ttgaggtctc agattgtatc
180
tgcaaactgt ttccagatcc ccctaggggc ctctgcctct ctttcacttt cccctggaac
240
tgacctccag ctccccttcct cacccactcc cag
273

<210> 79
<211> 114
<212> DNA
<213> Human

<400> 79
gtaagaatag aggccgggtgg aggaatacac atgaggggcc caaaggctac atcttctggg
60
ggttcatcta tcttgatcca caagccatgc gaggtgcctc tccgcccact gcag
114

<210> 80
<211> 473
<212> DNA
<213> Human

<400> 80
gtgaggagaa gccctgcagc ctgggcctct ggcgctcact gcatctactc cacccctact
60
tgccagccaa ctcaggctcc tgcaagctttt ctccatgtt ctgaccggc tcttcatgaa
120
aggaccatca cccacatccc tgtgcttcca cctcacatgt tcttattctc cactggagag
180
ccatgctcta atggaacttt ccgtggccca aattccttca cctgcctctg agtaggtaca
240
caccactccc aagtatgtct ctgcccacgt cccgtgcctc ttcactgatt ctaaattagc
300
ccacagggct atggtcagga ttccgggagg agagacagag tcagtgtgtc tgttacctat
360
ttctcctgtt tcaccctgtc catttctttt tcatgtgcca ttcatgcctt gagcctcact
420
ttcacctcag cccacggcac caggccccag gccctgtctc cttccctatt cag

473

<210> 81
<211> 348
<212> DNA
<213> Human

<400> 81
gtcaaaggga acaaagggag gtgggattga ggaagggat aatggaaag gaaccctga
60
aaatgctcat aacaggaaag catgccctct gctgcattgc ctttatacta aaagtgggg
120
gcactaaggc cagagataag aagaatcaat accataaaca tttcttgaac ctttgttca
180
tgtgagtcac tggtggcaaa gaggatgaac aaagcggtca cctcaccatt caagaacttg
240
cagtgcagta gggagggcat gtatacagct ttattcacag gccaaactgtg gtcagtgcg
300
tacgggcttc caataactaac ttccccttgt ccacccata cccagcag
348

<210> 82
<211> 209
<212> DNA
<213> Human

<400> 82
gtgaggggag aaactgatga gggagaaac taaggagggg aaaatggagg aggatgaagg
60
agcatgacag tgaggctggg cctctggat ggaataggc tgtgtggca gaaaagaaat
120
agaacacgag acagggaaag gcagtgcag tgcagagggg catatgggtt cccatggct
180
ccgaatgcta acctctgccc tctttgcag
209

<210> 83
<211> 202
<212> DNA
<213> Human

<400> 83

gtgaggagac caatctagct cctcgaaaaac ccccaggctg ggcattttccc agaggtgggg
60
attggcttct ctatcagaac aagggtccc tcagcacaga gaccacatcc cttccctttt
120
ctcccccccc acaggattgg ccaagggttt caggacagga aggaggtgat tgatgataca
180
ctgtctttta ttctctttta ag
202

<210> 84

<211> 155
<212> DNA
<213> Human

<400> 84

gtgatgagat ccaaattgtgc aaccacctcc acatcagagc tccctttcat tcctagtcc
60
actgggcctg ggtcttaggtc cacaggattt ctgaccctta tttcccttc tcttccccac
120
tccccttact cctcccacct tcttgcttgt cctag
155

<210> 85

<211> 215
<212> DNA
<213> Human

<400> 85

gtgcgtatat ggccccagtg tctttaccct ctctgcatact tctcctgcaa ctcttctccc
60
ccctccagca ctttgccctt cagaaaccca ccattttttt ctgaaaatccc taaatcttca
120
agatcccagg ttttctgtgc cacagcctct cccctctgcc cagggatttg gttgtccatt
180
ctgccataaaa tcttgcgatt ttctctttc ttca
215

<210> 86

<211> 29
<212> DNA
<213> Human

<400> 86
gctgctcagg tatacagtac cacgctccc
29

<210> 87
<211> 29
<212> DNA
<213> Human

<400> 87
agatccgggg tgaggagccc gtggtagga
29

<210> 88
<211> 29
<212> DNA
<213> Human

<400> 88
gaatggcagg tgagaagggg ccccatgtc
29

<210> 89
<211> 29
<212> DNA
<213> Human

<400> 89
ctcaaggcagg tgaggggccc ccaagctgg
29

<210> 90
<211> 29
<212> DNA
<213> Human

<400> 90
accaactcg~~g~~ tg~~cggag~~aa aatgaagag
29

<210> 91
<211> 29
<212> DNA
<213> Human

<400> 91
ttccc~~at~~cc~~a~~ aaccctccag gctgtgg~~t~~
29

<210> 92
<211> 29
<212> DNA
<213> Human

<400> 92
ctctctctct ccttctccag accaggaga
29

<210> 93
<211> 29
<212> DNA
<213> Human

<400> 93
tgtctctcta cccaccacag gcatcctct
29

<210> 94
<211> 29
<212> DNA
<213> Human

<400> 94
tctcccc~~tgc~~ cctggcccag gtaggcttg

29

<210> 95
<211> 29
<212> DNA
<213> Human

<400> 95
tcacctctgc ccttgacag gtggatggc
29

Q1
<210> 96
<211> 79
<212> DNA
<213> Human

<400> 96
gtatacagta ccacgctccc caagcaaagt caagatgaga gaagacgtga cttgtAACCT
60
tcccatccca accctccag
79

<210> 97
<211> 135
<212> DNA
<213> Human

<400> 97
gtgaggagcc cgtggtagga gggggcaggg tgctctaaca gaccctgctc tcatgctggc
60
ccctctgcat ggtcacactg catctgcatg cctgcttcca gatcttcca ggcacccctc
120
tctctccttc tccag
135

<210> 98
<211> 79
<212> DNA
<213> Human

<400> 98
gtgagaaggg gccccatgtc ctgctgtggg gatcctccct gggtccacaa accatgcagt
60
gtctctctac ccaccacag
79

<210> 99
<211> 389
<212> DNA
<213> Human

<400> 99
gtgaggggcc gccaagctgg gggcccacat ctccatctcc tctggccgcc aggccagatc
60
ctctgcccccc ccccacacac acatacagca catgtccttg tcctctgagg gacagtctgt
120
tcttaggat agacctttcc gtggccacaa gtccctggac caacacctcaa atagatccat
180
gcgcgttcctt agtatgcctt tacccacaac cttgactctg gagttaattt tgaagtcagg
240
accaggaaaa ctgtgttcca gggctctgtt cttctgttac actgtgtcct ctcttaatc
300
tgtcggtcat gtcttagtt gagacccatt tttactttgc ccatagtagtacg gcaacaggcc
360
catgttctgt ctccccgtcc ctggccca
389

<210> 100
<211> 180
<212> DNA
<213> Human

<400> 100
gtgcggagga aaatgaagag atgctaagga gggggatgg agaaaaatga gaaccgggag
60
caggagactg acctcaggaa agaaaagggg gatgcgtgca cagaggggag gagaagccat
120
gacagctaca gaaggacaca gctgtcctgg ttctgccctc tcacacctgc ccttgacag
180

<210> 101
<211> 20
<212> DNA
<213> Human

<400> 101
ccagaactct ctggagaagc
20

<210> 102
<211> 21
<212> DNA
<213> Human

<400> 102
gtgctgtgga attcaggata c
21

<210> 103
<211> 27
<212> DNA
<213> Human

<400> 103
ctccactatc cacttcatgc cagatgc
27

<210> 104
<211> 28
<212> DNA
<213> Human

<400> 104
gctggggagg acactggaag gactctca
28