

Geländewagen

Aufgabennummer:	$A_{}$	_053
-----------------	--------	------

Technologieeinsatz: möglich ⊠ erforderlich □

Ein Geländewagen fährt auf einer Bergstraße. Die Messwerte für ein Bergstraßenprofil sind in folgender Tabelle festgehalten:

x in km	0	0,2	0,4	0,6	0,8	1
g(x) in km	0	0,04	0,09	0,15	0,2	0,23

- x... horizontale Entfernung vom Ausgangspunkt in Kilometern (km)
- g(x) ... Höhenunterschied zum Ausgangspunkt an der Stelle x in Kilometern (km)
 - a) Ermitteln Sie anhand der gegebenen Daten die durchschnittlichen Steigungen der einzelnen Abschnitte.
 - Argumentieren Sie, ob ein Geländewagen, der eine Steigung von bis zu 30 % schafft, den Berg hinaufkommt.
 - b) Das Bergprofil wird im Intervall [0 km; 1 km] durch die Funktion f modelliert.

$$f(x) = -0.35x^3 + 0.45x^2 + 0.075x + 0.0075$$

- x ... horizontale Entfernung vom Ausgangspunkt in km
- f(x) ... Höhenunterschied zum Ausgangspunkt an der Stelle x in km
- Stellen Sie die Daten der obigen Tabelle und den Graphen der Funktion *f* in einem kartesischen Koordinatensystem dar.
- Argumentieren Sie anhand der Grafik, ob das Funktionsmodell zu den in der obigen Tabelle gegebenen Daten passt.
- c) Das Bergprofil kann im Intervall [0 km; 1 km] sehr gut durch folgende Funktion modelliert werden:

$$f(x) = -0.3x^3 + 0.45x^2 + 0.075x + 0.0075$$

- x ... horizontale Entfernung vom Ausgangspunkt in km
- f(x) ... Höhenunterschied zum Ausgangspunkt an der Stelle x in km

Folgende Berechnung wird durchgeführt:

$$f(x) = -0.3x^3 + 0.45x^2 + 0.075x + 0.0075$$

$$f'(x) = -0.9x^2 + 0.9x + 0.075$$

$$f''(x) = -1.8x + 0.9$$

$$f''(x) = 0 \Rightarrow x_1 = 0.5$$

$$f'(x_1) = 0,3$$

- Erläutern Sie die durchgeführten Rechenschritte.
- Erklären Sie, was mithilfe dieser Rechnung in Bezug auf einen bergauf fahrenden Geländewagen ermittelt wird.

Hinweis zur Aufgabe:

Antworten müssen der Problemstellung entsprechen und klar erkennbar sein. Ergebnisse sind mit passenden Maßeinheiten anzugeben. Diagramme sind zu beschriften und zu skalieren.

Geländewagen 2

Möglicher Lösungsweg

a) Aus der Tabelle werden die Steigungen der einzelnen Abschnitte ermittelt.

$$k = \frac{\Delta g(x)}{\Delta x}$$
 mit $\Delta x = 0.2$ km

<i>K</i> ₁	k_2	<i>k</i> ₃	k_4	<i>k</i> ₅
0,2	0,25	0,3	0,25	0,15

Der Geländewagen kommt den Berg hinauf, wenn folgende Bedingungen erfüllt sind:

- Die Steigung im 3. Abschnitt ist konstant.
- Die Steigung in den anderen Abschnitten ist nirgends größer als 0,3.

b)

Das Funktionsmodell beschreibt die Daten der Tabelle im Intervall [0 km; 0.5 km] ganz gut. Danach ist der Anstieg der Funktion f kleiner als bei den Daten aus der Tabelle, d. h., der nach 1 km zu überwindende Höhenunterschied wäre laut Modell zu gering. Die Funktion f hat außerdem bei x = 0.93 km ein lokales Maximum, d. h., sie fällt anschließend,

c) Es wurde die Funktion *f* 2-mal differenziert und die 2. Ableitung null gesetzt. Man erhält jene *x*-Werte der Funktion *f*, an denen die Steigung (in diesem Fall) maximal ist.

was ebenfalls nicht den Daten in der Tabelle entspricht.

$$f'(x) = 0.3$$

Der Wert 0,3 gibt die maximale Steigung der Funktion f an. Die maximale Steigung, die das Geländeauto zu überwinden hat, beträgt somit 30 %.

Geländewagen 3

Klassifikation

	Massiination			
	Teil A □ Teil B			
a)	sentlicher Bereich der Inhaltsdimen 4 Analysis 3 Funktionale Zusammenhänge 4 Analysis	nsion:		
Nek	Nebeninhaltsdimension:			
We	sentlicher Bereich der Handlungsdi	limension:		
a) b) c)	D Argumentieren und Kommunizieren			
Nel	penhandlungsdimension:			
a) b) c)	B Operieren und Technologieeinsatz			
Sch	nwierigkeitsgrad:	Punkteanzahl:		
a) b) c)	mittel	a) 2b) 2c) 2		
Thema: Bewegungsaufgabe				
Que	Quellen: —			