

# **Final Project Report**

**Project Title: Predicting Bike Rental Demand - Linear Regression Analysis** 

Course Title: WM-ASDS04: Introduction to Data Science with Python

Section: A Batch:09

## **Submitted to**

## **Farhana Afrin Duty**

## **Submitted by**

| Name                 | ID       |
|----------------------|----------|
| Jayanta Sarker Shuva | 20229022 |
| Sujan Kumar Bhowmik  | 20229026 |
| Md Sakhawat Hossain  | 20229041 |
| HASIN AHMED MALLICK  | 20229029 |

### **Title: Predicting Bike Rental Demand - Linear Regression Analysis**

#### **Objective**

The objective of this analysis is to develop a linear regression model to predict bike rental demand based on various features such as season, weather, temperature, humidity, windspeed, weekday, month, and holiday/working day status. The dataset used for this analysis contains historical data of bike rentals

**Data Preprocessing:** The dataset was initially explored and cleaned by handling missing values, converting categorical variables into binary representations, and scaling numeric features using min-max scaling.

**Exploratory Data Analysis (EDA):** Descriptive statistics and visualizations were used to gain insights into the distribution and relationships of the variables. It was observed that temperature and humidity have a significant impact on bike rental demand, with higher demand during warmer months and lower demand during rainy or humid conditions.

**Feature Engineering:** Categorical variables such as season, weather, weekday, and month were converted into dummy variables to be used as predictors in the linear regression model.

.

**Model Building:** We have built a Linear Regression model using the stats model API in Python. We have added a constant variable and fitted the model on the training set. We have calculated the p-values and t-values to check the significance of the coefficients. The model summary shows that all the variables are significant with p-values less than 0.05.

**Model Evaluation:** We have used the model to make predictions on the testing set. We have evaluated the model's performance using the following metrics:

- MAE (Mean Absolute Error)
- MSE (Mean Squared Error)
- RMSE (Root Mean Squared Error)
- R-squared

The scatter plot between y\_test and y\_pred indicates that the predicted values and original values have a linear relationship. The evaluation metrics for the Linear Regression model are as follows:

MAE: 0.042MSE: 0.004RMSE: 0.062R-squared: 0.793

### Conclusion

The Linear Regression model built on the Bike Sharing dataset has an R-squared value of 0.793, which indicates that the model explains 79.3% of the variance in the target variable. This model can be used to predict the demand for bikes in the bike-sharing system based on the given set of independent variables.