Classificazione segnali ECG

Benedetta Altamura, Serena Balestrucci

Politecnico di Bari Dipartimento di Ingegneria Elettrica e dell'Informazione Corso di Laurea Magistrale in Ingegneria dei Sistemi Medicali

Anno Accademico 2023-2024

Introduzione

- OBIETTIVO: Realizzare e confrontare due algoritmi di classificazione multiclasse di tracciati di ECG e simulare la predizione su batch di dati in streaming
- TECNOLOGIE: Apache Spark, PyCharm
- MODULI DI SPARK: Spark SQL, Spark Streaming, MLlib

Descrizione dataset

Il dataset utilizzato è composto da una raccolta di segnali di battito cardiaco, scaricato dal link di seguito riportato

https://www.kaggle.com/datasets/shayanfazeli/heartbeat. all'interno del quale sono presenti i csv 'mitbih_train.csv' e 'mitbih_test.csv'

- Numero di campioni: 109446 (87554 per il training e 21892 per il test)
- Numero di categorie: 5
- Numero di features (colonne escluse l'ultima): 187
- Frequenza di campionamento: 125Hz
- Classi (label):
 - 'Battito normale': 0
 - 'Battito prematuro sopraventricolare': 1
 - 'Contrazione ventricolare prematura': 2
 - 'Fusione del battito ventricolare e del battito normale': 3
 - 'Battito non classificabile': 4

Esempi di tracciati ECG

Battito normale

Battito non classificabile

Battito prematuro sopra ventricolare

Contrazione ventricolare prematura

Segnale ECG

L'elettrocardiogramma (ECG) è uno strumento diagnostico fondamentale in cardiologia, utilizzato per registrare l'attività elettrica del cuore.

- Le registrazioni mostrano le onde P, QRS e T.
- Sull'asse delle ascisse, il tempo è solitamente rappresentato in millisecondi (ms) o secondi (s).
- Il voltaggio è espresso in millivolt (mV).

Workflow di creazione dei modelli di ML

Configurazione della SparkSession

La sessione Spark viene avviata e inizializzata quando il file viene eseguito.

```
spark-submit main.py
```

La configurazione della SparkSession è ottimizzata per gestire grandi quantità di dati e migliorare le prestazioni. Sono state impostate le seguenti configurazioni:

```
spark = SparkSession.builder \
    .appName("ECG Analyst") \
    .config("spark.driver.memory", "8g") \
    .config("spark.executor.memory", "6g") \
    .config("spark.driver.maxResultsize", "4g") \
    .config("spark.sql.debug.maxToStringFields", "1980") \
    .config("spark.sql.shuffle.partitions", "280") \
    .getOrCreate()
```

Per la gestione efficiente della persistenza dei dati, si è deciso di persistere i DataFrame utilizzando il livello di storage MEMORY_AND_DISK

Caricamento del dataset

Creazione di un Dataframe basandoci sul contenuto di un file CSV

```
train_df = spark.read.csv(train_path, header=False, inferSchema=True)
test_df = spark.read.csv(test_path, header=False, inferSchema=True)
```

 Conversione del Dataframe Spark in un Dataframe Pandas per applicare lo SMOTE sui dati di training

```
train_pd = train_df.toPandas()
test_pd = test_df.toPandas()
```

 Creazione di un DataFrame Spark dai dati di training concatenati utilizzando lo schema definito. Il ripartizionamento è utile per migliorare le prestazioni di elaborazione distribuita.

Pipeline Pre-Processing

Obiettivo: rendere i dati idonei per l'addestramento dei modelli di ML

In verde sono evidenziati gli effettivi stages usati nell'oggetto pipeline.

Controllo dei Valori Mancanti

Calcolando la somma totale di tutti i valori mancanti nelle diverse colonne, si è osservato che nel DataFrame elaborato non sono presenti valori nulli.

```
missing_values_train = train_df.select(
    [spark_sum(col(c).isNull().cast("int")).alias(c) for c in train_df.columns]
).collect()
missing_values_train_dict = {col: missing_values_train[0][col] for col in train_df.columns}
total_missing_train = sum(missing_values_train_dict.values())
```

```
Missing values in the training data: {'_c0': 0, '_c1': 0, '_c2': 0, '_c3': 0, Total missing values in training data: 0 Missing values in the testing data: {'_c0': 0, '_c1': 0, '_c2': 0, '_c3': 0, Total missing values in testing data: 0
```

Bilanciamento dei Dati

Vista la grande disomogeneità del dataset è stato effettuato il bilanciamento seguendo due approcci:

- Undersampling
- Oversampling con SMOTE

Un dataset di train non bilanciato non è idoneo all'addestramento di un modello di predizione per diversi motivi:

- I modelli tendono a favorire le classi maggioritarie e a trascurare le classi minoritarie.
- Problemi di generalizzazione del modello su nuovi dati che possono essere bilanciati diversamente rispetto al dataset di addestramento.
- La metrica di accuratezza può risultare ingannevolmente alta perché il modello potrebbe semplicemente imparare a predire sempre la classe maggioritaria.

SMOTE

- Utilizzo della libreria imbalanced-learn in Python.
- Conversione dei dati di training e di test da DataFrame Spark a DataFrame Pandas per poter applicare SMOTE.

from imblearn.over_sampling import SMOTE

Undersampling

```
def undersample_majority_classes(df, target_col, seed=42):
    minority_class_count = df.groupBy(target_col).count().agg({"count": "min"}).collect()[0][0]
    print("Minority class_count)
    classes = df.select(target_col).distinct().collect()
    sampled_df = None

for cls in classes:
    cls_df = df.filter(F.col(target_col) == cls[target_col])
    fraction = minority_class_count / cls_df.count()
    undersampled_cls_df = cls_df.sample(withReplacement=False, fraction=fraction, seed=seed)
    sampled_df = undersampled_cls_df if sampled_df is None else sampled_df.union(undersampled_cls_df)
    return sampled_df
```

Questa funzione sottocampiona le classi maggioritarie calcolando il numero di istanze della classe con il minor numero di campioni.

PCA

L'Analisi delle Componenti Principali (PCA) è una tecnica di riduzione della dimensionalità utilizzata in statistica e machine learning per trasformare un dataset di caratteristiche correlate in un nuovo insieme di caratteristiche non correlate.

- PCA funziona trovando le direzioni (componenti principali) lungo le quali la varianza dei dati è massimizzata.
- Le prime componenti principali catturano la maggior parte della varianza presente nei dati originali.

Implementazione PCA

L'implementazione di seguito riportata prevede l'utilizzo della libreria pyspark.ml.feature che fornisce le classi StandardScaler e PCA.

```
from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer, VectorAssembler, StandardScaler, PCA
```

A monte dell'applicazione della PCA si sono attuate le seguenti trasformazioni all'interno della pipeline:

- VectorAssembler combina un insieme di colonne che rappresentano caratteristiche in un singolo vettore di caratteristiche.
- StandardScaler scala le caratteristiche in modo che abbiano media zero e deviazione standard unitaria.

```
feature_cols = train_df_resampled.columns[:-1]
assembler = VectorAssembler(inputCols=feature_cols, outputCol="featuresAssembled")
scaler = StandardScaler(inputCol="featuresAssembled", outputCol="scaledFeatures", withStd=True, withMean=True)

pipeline = Pipeline(stages=[assembler, scaler])
pipeline_model = pipeline.fit(train_df_resampled)
train_df_scaled = pipeline_model.transform(train_df_resampled)
test_df_scaled = pipeline_model.transform(test_df)
```

Implementazione PCA

Il numero di componenti principali che spiegano il 95% di varianza totale risulta pari a 33

Si applica la trasformazione PCA ai dati di training e test generando "pcaFeatures" considerando n_components=33

```
pca = PCA(k=n_components, inputCol="scaledFeatures", outputCol="pcaFeatures")
pca_model = pca.fit(train_df_scaled)
train_pca = pca_model.transform(train_df_scaled).select("pcaFeatures", "class")
test_pca = pca_model.transform(test_df_scaled).select("pcaFeatures", "class")
```

Modelli di classificazione

Al fine di realizzare un modello di classificazione dei tracciati ottenuti dall'elettrocardiogramma, sono stati confrontati due algoritmi di classificazione: Random Forest e Rete neurale.

Modello ANN

Modello Random Forest

rom pyspark.ml.classification import MultilayerPerceptronClassifier

rom pyspark.ml.classification import RandomForestClassifier

Addestramento del Modello

Entrambi i modelli sono stato addestrati utilizzando la **cross-validation**.

```
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
from pyspark.ml.tuning import ParamGridBuilder, CrossValidator
```

Il modello di ML, la paramGrid e l'evaluator vengono utilizzati dall'oggetto CrossValidator, con 3 fold, per addestrare il modello sui dati di training per ogni combinazione di iperparametri

Sul modello migliore trovato si effettua la predizione dui dati di test

Valutazione dei Modelli

Attraverso la classe 'MulticlassMetrics' è stato possibile valutare le prestazioni complessive del modello sui dati di test.

- Accuratezza: numero di previsioni corrette (TP e TN) diviso per il numero di campioni
- Precisione: numero di campioni previsti come positivi che sono effettivamente positivi
- Recall: numero di campioni positivi catturati dalla previsione positiva
- F1 Score: media armonica della precisione e del recall

Risultati delle Predizioni

```
Modello ANN
```

```
Metrics for class Fusion of ventricular and normal beat (label 3):
```

Modello Random Forest

Matrice di Confusione

La matrice di confusione è una tabella che descrive le prestazioni di un modello di classificazione.

- Vero Positivo (TP): Il numero di casi positivi che sono stati correttamente identificati come positivi.
- Falso Positivo (FP): Il numero di casi negativi che sono stati erroneamente identificati come positivi.
- Vero Negativo (TN): Il numero di casi negativi che sono stati correttamente identificati come negativi.
- Falso Negativo (FN): Il numero di casi positivi che sono stati erroneamente identificati come negativi.

Matrice di Confusione - Random Forest

Di seguito si riportano i risultati ottenuti per l'algoritmo di Random Forest:

Matrice di Confusione - ANN

Di seguito si riportano i risultati ottenuti per la rete neurale artificiale:

Curve ROC

Le curve ROC (*Receiver Operating Characteristic*) sono uno strumento grafico utilizzato per valutare le prestazioni di un modello di classificazione binaria.

- Nel contesto della classificazione multiclasse, le curve ROC possono essere estese considerando l'approccio "one-vs-all".
- L'area sotto la curva (AUC Area Under the Curve) è un indicatore dell'accuratezza del modello.

Curve ROC - Random Forest

(a) Classe 0

(b) Classe 1

(c) Classe 2

(a) Classe 3

(b) Classe 4

Curve ROC - ANN

(a) Classe 0

(b) Classe 1

(c) Classe 2

(a) Classe 3

(b) Classe 4

Simulazione streaming

Structured Streaming è un motore di elaborazione dei flussi scalabile e tollerante ai guasti, basato su Spark SQL, che consente di esprimere computazioni di streaming come batch su dati statici.

- metodo readStream() → legge dati da una sorgente, per la quale si possono specificare formato, schema ed opzioni.
- metodo writeStream() \rightarrow specifica la modalità di output, il formato e le opzioni.

Simulazione streaming

