

Topic 1: Privacy Attacks

CS 6501, Data Privacy, Spring 2022 Tianhao Wang

Machine Learning Pipeline

Machine Learning as a Service (MLaaS)

Outline

- 1. Model Inversion
- 2. Model Extraction
- 3. Membership Inference

Model Inversion

Model Inversion

- Attacker Goal: Extract private and sensitive inputs by leveraging the outputs and ML model.
- Example: 538 Steak Survey on BigML.com

Prediction of how person likes steak prepared:

- rare
- medium-rare
- medium
- medium-well
- well-done

Plus confidence value

Normalized vector of class confidences each in [0,1]

How to do that?

Model Inversion Attack 1

- Evaluate f with $x_n = 0$ and $x_n = 1$
- Return x_n that gives y

- Question 1: Is this a white-box (sees the model parameters) or black-box (only uses the model) attack?
- Question 2: Can $x_n=0$ and $x_n=1$ give the same y? How to deal with it?

[Fredrikson, Lantz, Jha, Lin, Page, Ristenpart 2014]

Generic model inversion

```
Given f, x_1, ..., x_{n-1}, y infer x_n
x_n takes on possible values in set \{v_1,..., v_s\}
```

- (1) Compute $y_j = f(x_1, ..., x_{n-1}, v_j)$ for each j Runs in O(s)
- (2) Output v_i that maximizes

Dist(y,
$$y_i$$
) × Pr($v_i | x_1, ..., x_{n-1}$)

Model Inversion Attack 2

- $f(x_1, ..., x_n) = [p_{Bob}, ..., p_{Jake}]$
- Given y, infer x_1 , ..., x_n assuming they are all unknowns

• Exponential possibilities. What can we do?

Approach

- Setting: $f(x_1, ..., x_n) = [p_{Bob}, ..., p_{Jake}]$
- Problem: Given f, y = "Bob" find input x that is most likely to match "Bob"

Search for x that maximizes p_{Bob} using gradient descent

Question: Is this black-box or white-box attack?

Outline

- 1. Model Inversion
- 2. Model Extraction
- 3. Membership Inference

Model Extraction

Model Extraction

• Goal: Adversary learns a close approximation of the model f using as few queries as possible

- Why: what is the implication?
 - Undermine pay-for-prediction pricing model
 - Facilitate privacy attacks (model inversion)

Extraction Example: Logistic Regression

Query n+1 random points \Rightarrow solve a linear system of n+1 equations

Outline

- 1. Model Inversion
- 2. Model Extraction
- 3. Membership Inference

Membership Inference

Membership Inference

- Goal: Infer whether x is used to train the model.
- Why: what is the privacy concern?
 - Assume f can predict cancer-related health outcomes.
 - If x is used to train f, x may have health issues.
- How?
 - By observing the behavior of f.

Membership Inference

1. Find D', values that result in different y

Intuition: Models memorize too much information so that the behavior (e.g., confidence) are different.

- 2. Obtain D_t
- 3. Train f_t
- 4. Evaluate

Without knowing the specifics of the actual model f!

[Shokri, Stronati, Song, Shmatikov 2017] 18

Adversarial Knowledge

- The adversary does not have any specialized knowledge of the training data.
- 2. The adversary has access to population-level statistics that describe the distribution of features in the target model's training data.
- 3. The adversary has access to some versions of real data in the training data or some leaked portion but not the complete training set.
- Knowledge: 1<2<3
- Attack Difficulty: 3<2<1

1. Development of a Shadow Dataset D'

- Goal: Generate D' that is used to obtain D_t
- Statistic-Based Sampling: Given known distributions for features, an adversary may conduct random sampling to construct these new samples.
- Query-Based Generation: Generate a random sample x and then query the target model to obtain class y.

• Want to identify instances for which the machine learning service provides a class label with relatively high confidence.

- To save queries:
 - Region-Based Generation
 - Active Learning-Based Generation

2. Obtain D_t using Shadow Models

- 1. Partition D' to $D_1, D_2, ..., D_s$ where s > = 1
- 2. For j in $\{1, ..., s\}$, train f_j based on D_j
 - f_i can be close to f
- 3. For j in $\{1, ..., s\}$, evaluate D_i on f_i to obtain <y, "in" >
- 4. For j in $\{1, ..., s\}$, evaluate D'/D_j on f_j to obtain $\{$, "out">

3. Generating the Membership Attack Model

• The dataset D_t will then be used to generate the final attack model f_t , which takes as input a probability vector output for an instance x and outputs a binary classification of "in" or "out".

