Multi-class Imbalanced Learning

DingHao

December 5, 2016

Contents

Introduction

Evaluation Criteria

Approaches

Future Work

Classification Problem

classifiers

classifiers

classifiers

Real World

Introduction Doggy

Rare Word

叅叆叇亝収叏叚叜叝叞囕牎牏囖圞嚈嚸嚹圑 壄壅壆夁壾夣夤敻奰奱奲玁孎嬁嬂嬃孠孲孶 孴宐宑寯尌対尠尣尦牄牅尨尮巘巙巚匘巪巬 巭巸潀卺幰幱幯幐牖牗牍幷廌廛廜廰牓牔廱 廽廵弉弆弎彏彁彄彅彚雕彲徺牊牑徿戆忕憃 戼戫揱擧擨擩攠斄斅敤斖斚漑斵斸旜旝旣暬 旴晅朆朇朙朞樄橷櫇歠欪欤歩殧毄毑氎毲氝 渹渻灟焭煭爋爮爯爰爳爴牁牉牕牚犓犔犕獩

Rare Word

壄壅壆夁壾夣夤敻奰奱奲玁孎嬁嬂嬃孠孲孶 舂穷宑寯尌対尠尣尦牄牅尨尮巇巙巚匘巪巬 孕巸潀巹幰幱幯幐牖牗牍幷廌廛廜廰牓牔廱 廽廵弉弆弎彏彁彄彅彚<mark>雕</mark>彲徺牊牑徿戆忕憃 丣戫揱轝擨擩攠斄斅敤斖斚漑斵斸旝旝旣暬 旰晍朆朇朙諅樄橷櫇歠欪欤歩殧毄毑氎毲氝 渹渻灟焭煭爋爮爯爰爳爴牁牉牕牚犓犔犕獩

Imbalanced Ratio

imbalanced ratio = majority class / minority class

ZooScan

427 / 28 = 15.25

Kaggle

1979 / 9 = 219.89

WHOI

2606720 / 4 = 651680

EVEN MORE THAN 108!

WHY?

Evaluation Criteria

Name	Formula	Explanation
True Positive Rate (TP rate)	TP / (TP + FP)	The closer to 1, the better. TP rate = 1 when FP = 0. (No false positives)
True Negative Rate (TN rate)	TN / (TN + FN)	The closer to 1, the better. TN rate = 1 when FN = 0. (No false negatives)
False Positive Rate (FP rate)	FP / (FP + TN)	The closer to 0, the better. FP rate = 0 when FP = 0. (No false positives)
False Negative Rate (FN rate)	FN / (FN + TP)	The closer to 0, the better. FN rate = 0 when FN = 0. (No false negatives)

$$G-mean = \sqrt{TPr*TNr}$$

$$Precision = \frac{TP}{TP+FP}$$

$$Recall = \frac{TP}{TP+FN} = TPr$$

$$F-measure = \frac{2*Precision*Recall}{Precision+Recall}$$

Overview

- Sampling Under-sampling Over-samping
- Cost-sensitive learning
- Ensembled classifier EasyEnsemble
 BalanceCascade

Approaches Sampling

Best approache: SMOTE

Cost-sensitive

$$L(x,i) = \sum_{j} P(j|x)c(i,j)$$

Minimize the overall cost.

- x : an example

- i : a class

- j: the j^{th} class

- P : Probability

- c : cost matrix

Best approaches: AdaCost, AsymBoost

Ensembled Classifier

Best approaches: EasyEnsemble, BalanceCascade, SMOTEBoost

$\mathsf{EasyEnsemble}.\mathsf{M} \Rightarrow \mathsf{EasyEnsemble}.\mathsf{D}$

1: Input:A set of minority class examples \mathcal{P} , k-1 sets of majority class examples \mathcal{N} , $|\mathcal{P}| < |\mathcal{N}_k|$, the number of subsets T to sample from \mathcal{N}_k , and s_i ,the number of iterations to train an AdaBoost ensemble H_i

```
2: for i \Leftarrow 1:T

3: D_i = \mathcal{N}_1

4: for t \Leftarrow 1:k

5: Randomly sample a subset \mathcal{N}_{it} from \mathcal{N}_k, N_{it}, |N_{it}| = |P| + \frac{\mathcal{N}_1*(|\mathcal{N}_i|-|P|)}{|\mathcal{N}_k|} in the t^{th}

6: D_i = D_i \bigcup \mathcal{N}_{it}

7: H_t(x) = sgn\left(\sum_{d=1}^{s_i} \alpha_{t,d} h_{t,d}(x) - \theta_i\right)

8: H(x) = sgn\left(\sum_{t=1}^{T} \sum_{d=1}^{s_i} \alpha_{t,d} h_{t,d}(x) - \sum_{t=1}^{T} \theta_i\right)
```

Future Work

- Optimize the algorithm to cost less runtime
- Use Kaggle and WHOI datasets
- Increase the amount of time in each dataset

