目录

1	最短	短路问题 2						
	1.1	应用场景 2						
		1.1.1 单源最短路问题						
		1.1.2 多源最短路问题						
		1.1.3 例子						
	1.2	变量定义 3						
		1.2.1 定义图-邻接表						
		1.2.2 定义距离原点距离						
	1.3	BFS (广度优先搜索) 3						
		1.3.1 流程						
		1.3.2 时间复杂度						
		1.3.3 举例						
	1.4	Bellman-Ford 算法						
		1.4.1 图结构存储						
		1.4.2 流程						
		1.4.3 时间复杂度						
		1.4.4 举例						
	1.5	SPFA 算法						
		1.5.1 STL 优先队列						
	1.6	Dijkstra 算法						
		1.6.1 图结构存储						
		1.6.2 流程						
		1.6.3 时间复杂度						
		1.6.4 举例						
	1.7	Floyd 算法						
	1.8	相关题目 15						
		1.8.1 HDU 1874						
		1.8.2 HDU 2112						
		1.8.3 HDU 2680						

1.8.4	HDU 1217	15
1.8.5	HDU 1221	15
186	POJ 1217	1.5

1 最短路问题

1.1 应用场景

1.1.1 单源最短路问题

给定一个图(有向图或者无向图),求图中任意节点距离某一节点的最 短距离。

1.1.2 多源最短路问题

给定一个图(有向图或者无向图),求图中任意两个节点之间的最短距离。

1.1.3 例子

• 求所有节点到节点1的最短距离

1.2 变量定义

1.2.1 定义图-邻接表

```
#include <vector>
const int maxn = 1010;
struct edge{
   int nextId;
   int dist;
};
vector <edge> node[maxn];
```

1.2.2 定义图-邻接矩阵

#+BEGIN_{SRC} c++ //edge[i][j] 表示 i 指向 j 的边的权重 int edge[maxn][maxn];

1.2.3 定义距离原点距离

```
int dist[maxn];
```

1.3 BFS (广度优先搜索)

1.3.1 流程

1. 初始化

```
const int INF = 1e9;
queue <int> que;
que.push(sNode);
for (int i = 0 ;i<= n ;i++)
    dist[i] = INF;
dist[sNode] = 0;</pre>
```

2. BFS 流程

```
while (!que.empty()){
   int nId = que.front();
   que.pop();
   for (int i = 0 ;i< node[nId].size() ;i++){
      int nextId = node[nId][i].nextId;
      if (node[nId][i].dist + dist[nId]< dist[nextId]){
         dist[nextId] = node[nId][i].dist + dist[nId];
         que.push(nextId);
    }
}</pre>
```

1.3.2 时间复杂度

节点个数 N, 边个数 M $O(N^2)$

1.3.3 举例

• 求所有节点到节点 1 的最短距离

1. 初始化

• 所有节点距离源节点的距离 dist

• 初始化 Queue 状态 [1]

2. 循环详情

- (a) step 1
 - 弹出队顶元素 1, 更新 dist

- 把所有更新的元素 [2,3,4] 放入队列中 Queue 状态:[2,3,4]
- (b) step 2
 - 弹出队顶元素 2, 更新 dist

- 把所有更新的元素 [5] 放入队列中 Queue 状态:[3,4,5]
- (c) step 3
 - 弹出队顶元素 3, 更新 dist

- 把所有更新的元素 [2] 放入队列中 Queue 状态:[4,5,2]
- (d) step 4
 - 弹出队顶元素 4, 更新 dist

- 把所有更新的元素 [] 放入队列中 Queue 状态:[5,2]
- (e) step 5
 - 弹出队顶元素 5, 更新 dist

- 把所有更新的元素 [] 放入队列中 Queue 状态:[2]
- (f) step 6
 - 弹出队顶元素 2, 更新 dist

- 把所有更新的元素 [5] 放入队列中 Queue 状态:[5]
- (g) step 7
 - 弹出队顶元素 5, 更新 dist

- 把所有更新的元素 [] 放入队列中 Queue 状态:[]
- (h) 队列为空结束

1.4 Bellman-Ford 算法

以边为思考中心的最短路径算法。可以发现负环的情况。

1.4.1 图结构存储

把所有边信息存储起来

```
const int maxm = 1010;
struct edge{
    int u;
    int v;
    int dist;
};
edge E[maxm];
```

1.4.2 流程

1. 初始化 初始化所有节点距离源节点的距离

```
const int INF = 1e9;
for (int i = 0 ;i<= n ;i++)
    dist[i] = INF;
dist[sNode] = 0;</pre>
```

2. Bellman-Ford 流程

```
for (int i = 0; i < n-1; i++){
   bool is0k = false;
   for (int j = 0; j < m; j++){
       int u = E[j].u;
       int v = E[j].v;
       int d = E[j].dist;
       if (dist[u] + d < dist[v]){</pre>
           dist[v] = dist[u] + d;
           isOk = true;
       }
       else if (dist[v] + d < dist[u]){
           dist[u] = dist[v] + d;
           is0k = true;
       }
   }
   if (!isOk) break;
}
```

1.4.3 时间复杂度

节点个数 N, 边个数 M O(N*M)

1.4.4 举例

• 求所有节点到节点 1 的最短距离

1. 初始化

• 所有节点距离源节点的距离 dist

2. 循环

(a) step 1

- 遍历所有边, 更新边两端端点距离源点的距离
 - 1 22 变为 5
 - 1 3 3 变为 1
 - 1 4 4 变为 5
 - 2 3 不能更新
 - 2 5 不能更新
 - 4 5 不能更新
- 所有节点距离源节点的距离 dist

(b) step 2

- 遍历所有边, 更新边两端端点距离源点的距离
 - 1 2 不更新
 - 1 3 不更新
 - 1 4 不更新
 - 2 3 2 变成 2
 - 2 5 5 变为 10
 - 4 5 5 变为 11
- 所有节点距离源节点的距离 dist

- (c) step 3
 - 遍历所有边, 更新边两端端点距离源点的距离
 - 1 2 不更新
 - 1 3 不更新
 - 1 4 不更新
 - 2 3 不更新
 - 2 5 5 变为 7
 - 4-5 不更新
 - 所有节点距离源节点的距离 dist

- (d) step 4
 - 遍历所有边, 更新边两端端点距离源点的距离
 - 1 2 不更新
 - 1 3 不更新
 - 1 4 不更新
 - 2 3 不更新
 - 2 5 不更新

- 4 - 5 不更新

• 所有节点距离源节点的距离 dist

(e) 终止条件为全部不更新

1.5 SPFA 算法

优先队列优化的 Bellman-Ford 算法。

1.5.1 STL 优先队列

1. 优先队列方法

方法	功能
empty()	如果队列为空,则返回真
pop()	删除对顶元素,删除第一个元素
$\operatorname{push}()$	加入一个元素
size()	返回优先队列中拥有的元素个数
top()	返回优先队列对顶元素,返回优先队列中有最高优先级的元素

2. 普通方法声明

#include <queue>
priority_queue <int> q;
//通过操作,按照元素从大到小的顺序出队
priority_queue <int,vector<int>, greater<int> > q2;
//通过操作,按照元素从小到大的顺序出队

3. 自定义优先级声明

#include <queue>
struct cmp {

```
operator bool ()(int x, int y)
       {
           return x > y;
       //x小的优先级高
       //也可以写成其他方式,
       //如: return p[x] > p[y];
       //表示p[i]小的优先级高
       }
   };
   //定义方法
   priority_queue<int, vector<int>, cmp> q;
 4. 结构体声明方式
    #include <queue>
    struct node {
       int x, y;
       friend bool operator < (node a, node b)</pre>
          return a.x > b.x; //结构体中, x小的优先级高
       }
   };
   priority_queue<node>q; //定义方法
   //在该结构中, y为值, x为优先级。
   //通过自定义operator<操作符来比较元素中的优先级。
   //在重载"<"时,最好不要重载">",可能会发生编译错误
1.5.2 流程
 1. 初始化
    const int INF = 1e9;
```

```
struct upd{
     int nextId;
     int val;
     friend bool operator < (upd a, upd b)
     {
                                   //结构体中, x小的优先级高
          return a.val > b.val;
     }
  };
  priority_queue <upd> que;
  upd tmp; tmp.nextId = sNode; tmp.val = 0;
  que.push(tmp);
  for (int i = 0; i \le n; i++)
      dist[i] = INF;
  dist[sNode] = 0;
2. BFS 流程
  while (!que.empty()){
      upd tmp = que.top();
      int nId = tmp.nextId;
      que.pop();
      for (int i = 0 ;i< node[nId].size() ;i++){</pre>
          int nextId = node[nId][i].nextId;
          if (node[nId][i].dist + dist[nId] < dist[nextId]){</pre>
             dist[nextId] = node[nId][i].dist + dist[nId];
             tmp.nextId = nextId;
             tmp.val = dist[nextId];
             que.push(tmp);
          }
      }
  }
```

1.6 Dijkstra 算法

以点为思考中心的最短路径算法。

1.6.1 图结构存储

邻接表

1.6.2 流程

1. 初始化

```
const int INF = 1e9;
  bool hasFind[maxn];
  for (int i = 0; i \le n; i++)
      dist[i] = INF;
  dist[sNode] = 0;
  memset(hasFind,0,sizeof hasFind);
  hasFind[sNode] = true;
2. Dijkstra 算法
  for (int i = 0; i < n-1; i++){
      int nId = -1;
      for (int j = 0; j < n; j++){
           if (!hasFind[j]){
              if (nId == -1)
                  nId = j;
              else if (dist[j]<dist[nId])</pre>
                  nId = j;
          }
      }
      hasFind[nId] = true;
```

for (int i = 0; i < node[nId].size(); $i++){}$

```
int nextId = node[nId][i].nextId;
if (node[nId][i].dist + dist[nId] < dist[nextId]){
    dist[nextId] = node[nId][i].dist + dist[nId];
    que.push(nextId);
}
}</pre>
```

1.6.3 时间复杂度

节点个数 N, 边个数 M O(N*N)

1.6.4 举例

• 求所有节点到节点1的最短距离

1. 初始化

- 将源节点 1, 放入已获取最短路径集合, 集合变为 {1}
- 未获取最短路径节点结合 {2,3,4,5}
- 根据节点 1 来更新所有节点距离源节点的距离 dist

2. 流程

(a) step 1:

- 从未获取最短路径节点结合 {2,3,4,5} 中,选取距离源节点最近的节点 3
- 将节点 3, 放入已获取最短路径集合, 集合变为 {1,3}
- 根据节点 3 来更新所有节点距离源节点的距离 dist

(b) step 2:

- 从未获取最短路径节点结合 {2,4,5} 中,选取距离源节点最近的节点 2
- 将节点 2, 放入已获取最短路径集合, 集合变为 {1,2,3}
- 根据节点 2 来更新所有节点距离源节点的距离 dist

(c) step 3:

- 从未获取最短路径节点结合 {4,5} 中,选取距离源节点最近的节点 4
- 将节点 4, 放入已获取最短路径集合, 集合变为 {1,2,3,4}
- 根据节点 4 来更新所有节点距离源节点的距离 dist

(d) step 4:

- 从未获取最短路径节点结合 {5} 中,选取距离源节点最近的 节点 5
- 将节点 5, 放入已获取最短路径集合, 集合变为 {1,2,3,4,5}

• 根据节点 5 来更新所有节点距离源节点的距离 dist

(e) 终止条件, 所有节点都放入到了已获取最短路径集合。

1.7 Floyd 算法

动态规划类型的最短路径算法。应用场景:多源最短路问题

1.7.1 动态转移方程

dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j]);

1.7.2 初始化

```
//dist[i][j] 表示从i到j之间的最短距离
int dist[maxn][maxn];
for (int i = 0; i< n; i++)
    for (int j = 0; j< n; j++)
        dist[i][j] = edge[i][j];
```

1.7.3 Floyd 流程

```
for (int k = 0 ; k < n ; k++)
    for (int i = 0 ; i < n ; i++)
        for (int j = 0 ; j < n ; j++)
            dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j]);</pre>
```

1.7.4 时间复杂度

节点个数 N, 边个数 M $O(N^3)$

1.7.5 举例

• 求所有节点到节点1的最短距离

1. 初始化

- dist 矩阵
 - dist[i][j] 表示节点 i 到节点 j 之间的最短路径长度
 - dist 初始化为 edge

	1	2	3	4	5
1	0	5	1	5	INF
2	5	0	1	INF	5
3	1	1	0	INF	INF
4	5	INF	INF	0	6
5	INF	5	INF	6	0

2. 流程

- (a) step 1
 - 通过节点 1 作为中转节点更新 dist
 - 更新公式 dist[i][j] = min(dist[i][1] + dist[1][j],dist[i][j]);

```
1
          2
                           5
                3
                     4
      0
          5
1
                1
                     5
                        INF
2
                    10
      5
                1
                           5
3
      1
          1
                0
                     6
                        INF
4
      5
         10
                6
                     0
                           6
   INF
          5
             INF
                     6
                           0
```

(b) step 2

- 通过节点 2 作为中转节点更新 dist
- 更新公式 dist[i][j] = min(dist[i][2] + dist[2][j],dist[i][j]);

(c) step 3

- 通过节点 3 作为中转节点更新 dist
- 更新公式 dist[i][j] = min(dist[i][3] + dist[3][j],dist[i][j]);

(d) step 4

- 通过节点 4 作为中转节点更新 dist
- 更新公式 dist[i][j] = min(dist[i][4] + dist[4][j],dist[i][j]);

(e) step 5

- 通过节点 5 作为中转节点更新 dist
- 更新公式 dist[i][j] = min(dist[i][5] + dist[5][j],dist[i][j]);

- 1.8 相关题目
- 1.8.1 HDU 1874
- 1.8.2 HDU 2112
- 1.8.3 HDU 2680
- 1.8.4 HDU 1217
- 1.8.5 HDU 1221
- 1.8.6 POJ 1217