lista_3

July 2, 2018

MAI 103: Análise de Risco // Prof. Eber Lista 03 // Data: 26/06/2018 // Entrega: 03/07/2018 Luis Filipe Kopp

Faça um modelo de risco (em R) para o custo de um projeto de um gasoduto. A opção preferida para a rota do gasoduto tem uma extensão de 260 km. Existe um risco, porém, de que devido a oposição local, uma rota alternativa com 290 km tenha que ser utilizada. Estima-se que a chance que isto aconteça está na faixa entre 35% a 40%. A tubulação para o gasoduto vem em seções de 8m de comprimento. As estimativas de custo (em USD) são mostradas na tabela abaixo.

item	unid	min	Mprov	Max
Tubulação	dolar por 8m	725	740	790
Tempo pra cavar vala	hh por 8m	12	16	25
Custo de mão-de-obra	dolar por hora	17	18.5	23
Transporte da tubulação	dolar por 8m	6.1	6.6	7.4
Tempo de soldagem dos tubos	hh por junção	4	4.5	5
Custo do sistema de filtragem	unid.	165000	173000	188000
Custo de acabamento	dolar por km	14000	15000	17000

0.1 1) as funções de probabilidade e suas cumulativas para o custo total em função da percepção de incerteza da rota alternativa

a função de probabilidade é a custo_(prob), e a acumulada é ecdf(custo_(prob)).

Aplicando em .35, .40 ou de .35 a .4 de .01 em .01 apresenta comportamento muito similar, como apresentado no gráfico 2.

No entanto, a ocorrência da rota alternativa só pode ser sim ou não.

```
In [21]: library(triangle)
    custo_ <- function(prob = .35, ns = 10000) {
        distancia <- (rep(260,ns) + rbinom(ns,1,prob) * 30) * 1000 #### em metros
        n_tubos <- ceiling(distancia / 8)
        tub <- rtriangle(ns,725,790,740) * n_tubos ### dolar
        cavar <- rtriangle(ns,12,25,16) * n_tubos ### horas
        mdo <- rtriangle(ns,17,23,18.5) ### dolar/hora
        transp <- rtriangle(ns,6.1,7.4,6.6) * n_tubos ### dolar
        sold <- rtriangle(ns,4,5,4.5) * (n_tubos -1) ### horas
        filtr <- rtriangle(ns,165000,188000,173000) ### dolar
        acab <- rtriangle(ns,14000,17000,15000) * distancia/1000 ### dolar</pre>
```

```
c <- (tub + cavar * mdo + transp + sold* mdo + filtr + acab) / 1000000
}

In [22]: cc <- c()
    for (p in seq(.35, .40, .01) ){
        cc <- c(cc,custo_(p,10000))
    }

In [23]: hist(custo_(0), col=rgb(0,1,0,.3),breaks =100, xlim=c(37,57), probability = T,
        main="graf 1 - histograma para 260 (verde), média (vermelho) e 290km (azul)")
    hist(cc, col=rgb(1,0,0,.3),breaks =100, xlim=c(37,57), probability = T, add=T) #</pre>
```

 $hist(custo_(1), col=rgb(0,0,1,.3), breaks = 100, xlim=c(37,57), probability = T, add=T)$

graf 1 - histograma para 260 (verde), média (vermelho) e 290km (azul)

box()

Graf 2 - Densidade em linhas

Graf 3 - Probabilidade Cumulativa P(Custo<x)

0.1.1 2) assumindo que vc é o proponente: qual seria o preço proposto, o alvo de custo e o valor contingenciado da obra?

o preço proposto depende de:

- 1) margem de lucro média praticada no setor
- 2) o retorno depende do risco tomado, e a percepção de risco depende do lugar e do risco já tomado na carteira da empresa.

Como essas informações não estão disponíveis, fizemos apenas a análise de custo

```
In [26]: inv_ecdf <- function(f){
     x <- environment(f)$x</pre>
```

```
y <- environment(f)$y
                 approxfun(y, x)
         }
         com260 <- inv ecdf(ecdf(custo (0)))(.85)</pre>
         print(c("melhor caso (260km)",com260))
         com290 <- inv_ecdf(ecdf(custo_(1)))(.85)</pre>
         print(c("pior caso (290km)",com290))
         provavel <- inv_ecdf(ecdf(cc))(.85)</pre>
         print(c("ALVO - custo esperado considerando risco 35-40%",provavel))
         print(c("CONTINGÊNCIA - alvo até pior caso",com290 - provavel))
[1] "melhor caso (260km)" "44.9951604225644"
[1] "pior caso (290km)" "50.2714317707834"
[1] "ALVO - custo esperado considerando risco 35-40%"
[2] "48.2366661276318"
[1] "CONTINGÊNCIA - alvo até pior caso" "2.03476564315154"
In [27]: ### outra forma de calcular a reserva de contingência é ver diferença
         #entre pior e melhor caso e multiplicar pelo risco
         reserva <- (com290 - com260) * .375
         reserva
   1.97860175558211
```

0.1.2 3) assumindo que vc é o contratante: aceitaria uma proposta de USD \$45 M?

Não, tem 43.4% de chance de o projeto ter um custo maior que USD 45M.

Uma empresa que oferece o serviço por 45M não dimensionou ou não previu o risco da rota alternativa. Já que se houver a rota alternativa teria 89.7% de chance do custo ser maior que 45 milhões de dólares

- [1] "chance na média do risco para custo maior que "
- [2] "48.24"
- [3] "0.15"
- [1] "chance de pior caso maior que " "48.24"
- [3] "0.406"