The beauty of kNN

Readings for today

- Chapter 2: Statistical learning. James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning: with applications in R (Vol. 6). New York: Springer.
- Chapter 4: Classification. James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning: with applications in R (Vol. 6). New York: Springer.

Topics

1. kNN classification

2. kNN regression

knn Classification

The fundamental classification problem

$$P(Y = k | X = x_i) \leftarrow Goal$$

Nearest neighbors

Interpretation

Observations in X that are closer together are likely to belong to the same group. No other assumptions required (i.e., non-parametric)

↓ distance = ↑ likelihood

kNN classification

Euclidean distance:
$$d_{i,j} = \sqrt{\sum_{j=1}^{p} (x_{i,p} - x_{j,p})^2}$$

$$\underline{\mathsf{k=3:}}$$
 (\bullet \bullet) \rightarrow \land

Decision: Categorize by popular vote.

knn classification

Euclidean distance:
$$d_{i,j} = \sqrt{\sum_{j=1}^{p} (x_{i,p} - x_{j,p})^2}$$

$$\underline{\mathsf{k=3:}}$$
 (\bullet \bullet) \rightarrow A

$$\underline{\mathsf{k=5:}}$$
 (\bullet \bullet \bullet \bullet) \rightarrow B

Decision: Categorize by popular vote.

kNN classification algorithm

Step 1: Choose k.

Step 2: For every target observation x_i calculate all $d_{i,j}$.

Step 3: Sort all $d_{i,j}$'s and select the k smallest to x_i

Step 4: Categorize based on median class in Step 3.

Decision boundaries

kNN

Defining territories via brute search

Territories

Iteratively search through all possible values of X (i.e. $[x_{min}, x_{max}]$) and use kNN to classify any possible state of X.

Decision Positions in *X* where the vote is Boundaries: an exact tie.

Bias-variance tradeoff

$$\uparrow k = \downarrow variance$$

<u>k=1</u>

- † flexibility
- "islands" of group clusters

Bias-variance tradeoff

$$\uparrow k = \downarrow variance$$

<u>k=1</u>

- † flexibility
- "islands" of group clusters

<u>k=25</u>

- clear segmentation
- higher error rate

Prediction with kNN classifiers

Full dataset

$$= \hat{f}_{tracin}(\begin{pmatrix} x_{1,1} & \dots & x_{1,p} \\ \vdots & \ddots & \ddots \end{pmatrix})$$

Test set

$$\begin{pmatrix} y_{1} \\ \vdots \\ y_{m} \\ y_{m+1} \\ \vdots \\ y_{n} \end{pmatrix} = f\begin{pmatrix} x_{1,1} & \cdots & x_{1,p} \\ \vdots & \vdots \\ x_{m,1} & \cdots & x_{m,p} \\ x_{m+1,1} & \cdots & x_{m+1,p} \\ \vdots & \vdots & \vdots \\ x_{n,1} & \cdots & x_{n,p} \end{pmatrix}$$

$$Training set$$

$$\begin{pmatrix} \hat{y}_{1} \\ \vdots \\ x_{m,1} & \cdots & x_{m,p} \\ \vdots \\ \vdots \\ x_{n,1} & \cdots & x_{n,p} \end{pmatrix}$$

$$\frac{\hat{y}_{m+1}}{\hat{y}_{m}} = \hat{f}_{train} \begin{pmatrix} x_{m+1,1} & \cdots & x_{m+1,p} \\ \vdots \\ x_{n,1} & \cdots & x_{n,p} \end{pmatrix}$$

Prediction:
$$\hat{y}_i^{test} = \hat{f}(X_i^{test}, [X^{train}, Y^{train}])$$

Bias-variance tradeoff

$$\uparrow k = \downarrow variance$$

kNN Regression

Classification vs. regression with kNN

1. The classification problem: $\hat{y}_i = \hat{f}(x_i) = P(Y = k \mid X = x_i) = \frac{1}{m} \sum_{l \in m} I(y_l = k)$ $I(y_i = k) = \begin{cases} 1, & \text{in k} \\ 0, & \text{otherwise} \end{cases}$

2. The regression problem: $\hat{y}_i = \hat{f}(x_i) = P(Y = k \mid X = x_i) = \frac{1}{m} \sum_{l \in m} y_l$

Regression with kNN is a classification problem where every value of y is its own unique category.

kNN regression

$\uparrow k = \downarrow variance$

Curse of dimensionality

Problem:

As $n \rightarrow p$, there are not enough neighbors to query and the distance become too sparse.

Curse of dimensionality

Problem:

As $n \rightarrow p$, there are not enough neighbors to query and the distance become too sparse.

Take home message

 kNN offers a simple, non-parametric way to ask classification and regression questions in the prediction context.