

Itens Para Testes de Avaliação | 1.º Período

MATEMÁTICA A | 11.º ANO

Temas: Trigonometria e Funções Trigonométrica, Produto Escalar e Geometria

1. Na figura, está representado o triângulo [ABC].

Sabe-se que $\overline{AC} = 5$, $\overline{BC} = 6$ e que $\cos \alpha = \frac{\sqrt{5}}{3}$, sendo α a amplitude do ângulo ABC.

Qual é o valor de \overline{AB} ?

A
$$3 + \sqrt{5}$$

C
$$3+2\sqrt{5}$$

B
$$4 + \sqrt{5}$$

D
$$4+2\sqrt{5}$$

2. Seja
$$\alpha \in]-\pi,0[$$
 tal que $sen\left(\alpha-\frac{\pi}{2}\right)+2\cos\left(\alpha-3\pi\right)<0$.

Qual das seguintes expressões designa um número real positivo?

A $sen \alpha cos \alpha$

C $\cos \alpha - \sin \alpha$

B $tg \alpha + sen \alpha$

 \mathbf{D} $\operatorname{tg} \alpha \cos \alpha$

3. Para um certo valor real de α sabe-se que $(\operatorname{sen} \alpha + \cos \alpha)^2 = \frac{1}{3}$.

Qual é o valor de $tg \alpha + \frac{1}{tg \alpha}$?

A −3

 $\frac{3}{2}$

B $-\frac{3}{2}$

- **D** 3
- **4.** Sejam \vec{u} , \vec{v} e \vec{w} três vetores de norma 1, tais que:
- \vec{u} e \vec{v} são perpendiculares;
- $4\vec{v} \cdot \left(2\vec{u} \sqrt{3}\vec{w}\right) = 6 .$

Qual é a amplitude do ângulo formado pelos vetores \vec{v} e \vec{w} ?

- $\mathbf{A} \quad \frac{5\pi}{6}$
- $\mathbf{B} \frac{2\pi}{3}$
- $C \frac{\pi}{3}$

- $\mathbf{D} \ \frac{\pi}{6}$
- **5.** Considera, em referencial o.n. Oxyz , a reta r e o plano α , definidos por:

$$r:(x,y,z)=(0,2,3)+k(3,a,-\frac{1}{2}), k \in \mathbb{R}$$

e

$$\alpha:bx-3y+12z=1$$

Sabendo que a reta r é paralela a plano lpha , qual é o valor de $\left(a-b\right)^3$?

- **A** −2
- **B** −8
- **C** 2

D 8

6. Considera a função g , de domínio $\mathbb R$ e contradomínio [-2,4] , definida por

$$g(x) = k - 2 + k \operatorname{sen}\left(\frac{x}{2}\right)$$
, com $k \in \mathbb{R}^+$

- **6.1** Mostra que k = 3.
- **6.2** Determina, no intervalo $\left[-\pi, \frac{\pi}{2}\right]$, o conjunto-solução da equação $1-g(2x) = 6 \sec x \cos x$.

6.3 Seja
$$\alpha \in]-\pi,0[$$
 tal que $tg\left(\alpha-\frac{\pi}{2}\right)=\frac{\sqrt{2}}{4}$.

Determina o valor de $g(2\alpha + \pi) + \operatorname{sen}(\pi + \alpha)$.

7. Na figura, estão representados o retângulo [ABCD] e o quadrado [AEFG].

Sabe-se que:

- $\overline{AB} = 2\overline{AD}$;
- G é o ponto médio do lado $\begin{bmatrix} AD \end{bmatrix}$ e H é o centro do retângulo $\begin{bmatrix} ABCD \end{bmatrix}$.
- 7.1 Mostra que a área do hexágono [EBCDGF] é dada por $\overrightarrow{GC} \cdot \overrightarrow{HB}$.

7.2 Na figura, está representado, em referencial o.n. Oxy, o retângulo [ABCD].

Sabe-se que:

- as coordenadas do ponto A são $(-\sqrt{3},-2)$;
- a reta AB intersecta o Ox no ponto P;
- a amplitude do ângulo $OPB \notin \frac{5\pi}{6}$.
- **7.2.1** Mostra que uma equação que define a reta $AB \in 3y \sqrt{3}x + 3 = 0$.

7.2.2 Sejam $S\left(-\frac{7\sqrt{3}}{3}, -2\right)$ e R um ponto pertencente à reta AB.

Determina as coordenadas do ponto R de modo que as retas RS e AB sejam perpendiculares.

8. Considera, em referencial o.n. Oxyz, a pirâmide [ABCD].

Sabe-se que:

o ponto C pertence ao eixo Oz;

•
$$\overrightarrow{AC}(-4,4,2)$$
;

•
$$D(-2,0,0)$$
;

• uma equação do plano *ABC* é 2x + y + 2z = 8.

8.1 Identifica o lugar geométrico dos pontos P(x, y, z) do espaço que satisfazem a equação $\overrightarrow{AP} \cdot \overrightarrow{CP} = 0$.

Escreve uma equação cartesiana deste lugar geométrico.

8.2 Determina uma equação cartesiana do plano *CAD* .

Apresenta a equação na forma ax + by + cz + d = 0, com $a,b,c,d \in \mathbb{R}$.

Nota: Se não conseguiste determinar as coordenadas de C, considera que são C(0,0,4).

8.3 Supõe que a área do triângulo [ABC] é 12.

Determina o volume da pirâmide [ABCD].

9. Na figura, estão representados, em referencial o.n. *Oxy* , a circunferência trigonométrica e o trapézio [*ABCD*].

Sabe-se que:

- o ponto *E* pertence à circunferência trigonométrica e ao eixo *Ox*;
- os pontos A e D pertencem à circunferência trigonométrica e são simétricos em relação ao eixo Ox;
- a reta BC é tangente à circunferência trigonométrica no ponto E;
- os pontos $B \in C$ são simétricos em relação ao eixo Ox;
- α é a amplitude em radianos do ângulo EOA, com $\alpha \in \left] -\frac{\pi}{2}, 0\right[$.

Mostra que a área do trapézio $\left[ABCD\right]$ é dada, em função, de $\,lpha\,$ por $-{
m sen}^2\,lpha\,{
m tg}\,lpha\,.$

FIM

Sugestão de cotações

1.	2.	3.	4.	5.	6.1	6.2	6.3	7.1	7.2.1	7.2.2	8.1	8.2	8.3	9.	Total
10	10	10	10	10	15	15	15	15	15	15	15	15	15	15	200

Propostas de resolução

1. Consideremos a seguinte figura, onde D é a projeção ortogonal do ponto C no lado [AB].

Tem-se que
$$\cos \alpha = \frac{\overline{BD}}{\overline{BC}} \Leftrightarrow \frac{\sqrt{5}}{3} = \frac{\overline{BD}}{6} \Leftrightarrow \overline{BD} = 6 \times \frac{\sqrt{5}}{3} \Leftrightarrow \overline{BD} = 2\sqrt{5}$$
.

Assim, pelo teorema de Pitágoras:

•
$$\overline{BC}^2 = \overline{BD}^2 + \overline{CD}^2 \Leftrightarrow 6^2 = (2\sqrt{5})^2 + \overline{CD}^2 \Leftrightarrow 36 = 4 \times 5 + \overline{CD}^2 \Leftrightarrow \overline{CD}^2 = 16$$

$$\overline{AC}^2 = \overline{AD}^2 + \overline{CD}^2 \underset{\overline{CD}^2 = 16}{\Leftrightarrow} 5^2 = \overline{AD}^2 + 16 \Leftrightarrow \overline{AD}^2 = 25 - 16 \Leftrightarrow \overline{AD}^2 = 9 \underset{\overline{AD} > 0}{\Leftrightarrow} \overline{AD} = \sqrt{9} \Leftrightarrow \overline{AD} = 3$$

Logo,
$$\overline{AB} = \overline{AD} + \overline{BD} = 3 + 2\sqrt{5}$$
.

Resposta: C

2. Tem-se que
$$\operatorname{sen}\left(\alpha - \frac{\pi}{2}\right) = -\cos\alpha$$
 e $\cos(\alpha - 3\pi) = \cos(\alpha - \pi - 2\pi) = \cos(\alpha - \pi) = -\cos\alpha$, pelo que:

$$\operatorname{sen}\left(\alpha - \frac{\pi}{2}\right) + 2\cos\left(\alpha - 3\pi\right) < 0 \Leftrightarrow -\cos\alpha - 2\cos\alpha < 0 \Leftrightarrow -3\cos\alpha < 0 \Leftrightarrow \cos\alpha > 0$$

Assim, como $\cos \alpha > 0$, o ângulo de amplitude α pertence ao primeiro quadrante ou ao quarto quadrante. Mas como $\alpha \in]-\pi,0[$, conclui-se que o ângulo de amplitude α pertence ao quarto quadrante e, portanto, $\sin \alpha < 0$ e tg $\alpha < 0$.

Logo:

- $\sec \alpha < 0 \land \cos \alpha > 0 \Rightarrow \sec \alpha \cos \alpha < 0$ (o produto entre um número positivo e um número negativo é negativo)
- $tg \alpha < 0 \land sen \alpha < 0 \Rightarrow tg \alpha + sen \alpha < 0$ (a soma entre dois números negativos é negativa)

• $tg \alpha < 0 \land cos > 0 \Rightarrow tg \alpha cos \alpha < 0$

Portanto, nenhuma das opções **A**, **B** e **D** é a correta, pelo que a resposta correta deverá ser a **C**. Verificando:

Como $\cos \alpha - \sin \alpha = \cos \alpha + (-\sin \alpha)$ e como $\sin \alpha < 0 \Leftrightarrow -\sin \alpha > 0$, tem-se que:

$$\cos \alpha > 0 \land -\sin \alpha > 0 \Rightarrow \cos \alpha + (-\sin \alpha) > 0 \Leftrightarrow \cos \alpha - \sin \alpha > 0$$
(a soma entre dois números positivos é positiva)

Resposta: C

3. Tem-se que:

$$(\operatorname{sen}\alpha + \cos\alpha)^2 = \frac{1}{3} \Leftrightarrow \operatorname{sen}^2 \alpha + 2\operatorname{sen}\alpha \cos\alpha + \cos^2 \alpha = \frac{1}{3} \Leftrightarrow \underbrace{\operatorname{sen}^2 \alpha + \cos^2 \alpha}_{=1} + 2\operatorname{sen}\alpha \cos\alpha = \frac{1}{3} \Leftrightarrow$$
$$\Leftrightarrow 1 + 2\operatorname{sen}\alpha \cos\alpha = \frac{1}{3} \Leftrightarrow 2\operatorname{sen}\alpha \cos\alpha = \frac{1}{3} - 1 \Leftrightarrow 2\operatorname{sen}\alpha \cos\alpha = -\frac{2}{3}$$
$$\Leftrightarrow \operatorname{sen}\alpha \cos\alpha = -\frac{1}{3}$$

Logo,
$$\operatorname{tg}\alpha + \frac{1}{\operatorname{tg}\alpha} = \frac{\operatorname{sen}\alpha}{\cos\alpha} + \frac{1}{\frac{\operatorname{sen}\alpha}{\cos\alpha}} = \frac{\operatorname{sen}\alpha}{\cos\alpha} + \frac{\cos\alpha}{\operatorname{sen}\alpha} = \frac{\frac{\operatorname{sen}^2\alpha + \cos^2\alpha}{\operatorname{sen}^2\alpha + \cos^2\alpha}}{\frac{\operatorname{sen}\alpha\cos\alpha}{\operatorname{sen}\alpha\cos\alpha}} = \frac{1}{\frac{-1}{3}} = -3$$

Resposta: A

4. Os vetores \vec{u} e \vec{v} são perpendiculares, pelo que $\vec{u} \cdot \vec{v} = 0$. Assim:

$$4\vec{v} \cdot \left(2\vec{u} - \sqrt{3}\vec{w}\right) = 6 \Leftrightarrow 8\vec{v} \cdot \vec{u} - 4\sqrt{3}\vec{v} \cdot \vec{w} = 6 \Leftrightarrow 8 \times 0 - 4\sqrt{3}\vec{v} \cdot \vec{w} = 6 \Leftrightarrow -4\sqrt{3}\vec{v} \cdot \vec{w} = 6 \Leftrightarrow$$
$$\Leftrightarrow \vec{v} \cdot \vec{w} = -\frac{6}{4\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} \Leftrightarrow \vec{v} \cdot \vec{w} = -\frac{6\sqrt{3}}{4 \times 3} \Leftrightarrow \vec{v} \cdot \vec{w} = -\frac{6\sqrt{3}}{12} \Leftrightarrow \vec{v} \cdot \vec{w} = -\frac{\sqrt{3}}{2}$$

Sendo α a amplitude do ângulo formado pelos vetores \vec{v} e \vec{w} , tem-se:

$$\vec{v} \cdot \vec{w} = -\frac{\sqrt{3}}{2} \Leftrightarrow \|\vec{v}\| \times \|\vec{w}\| \times \cos \alpha = -\frac{\sqrt{3}}{2} \Leftrightarrow 1 \times 1 \times \cos \alpha = -\frac{\sqrt{3}}{2} \Leftrightarrow \cos \alpha = -\frac{\sqrt{3}}{2} \Leftrightarrow \frac{5\pi}{\alpha \in [0,\pi]} \alpha = \frac{5\pi}{6}$$

Resposta: A

5. Um vetor diretor da reta $r \notin \vec{r}\left(3,a,-\frac{1}{2}\right)$ e um vetor normal ao plano $\alpha \notin \vec{n}\left(b,-3,12\right)$.

A reta r é paralela ao plano α se \vec{r} e \vec{n} forem perpendiculares, isto é, se $\vec{r} \cdot \vec{n} = 0$.

Assim,
$$\vec{r} \cdot \vec{n} = 0 \Leftrightarrow \left(3, a, -\frac{1}{2}\right) \cdot \left(b, -3, 12\right) = 0 \Leftrightarrow 3b - 3a - 6 = 0 \Leftrightarrow 3b - 3a = 6 \Leftrightarrow -3\left(a - b\right) = 6 \Leftrightarrow a - b = -2$$

Logo,
$$(a-b)^3 = (-2)^3 = -8$$
.

Resposta: B

6.1 Para todo o $x \in [-\pi, \pi]$, tem-se $-1 \le \operatorname{sen}\left(\frac{x}{2}\right) \le 1$. Assim, para k > 0:

$$-k \le k \operatorname{sen}\left(\frac{x}{2}\right) \le k \underset{+k-2}{\iff} \underbrace{k-2-k}_{=2} \le \underbrace{k-2+k \operatorname{sen}\left(\frac{x}{2}\right)}_{g(x)} \le \underbrace{k+k-2}_{2k-2} \Leftrightarrow -2 \le g\left(x\right) \le 2k-2$$

(Em cada uma das passagens, a função toma todos os valores reais entre os extremos do intervalo.)

Portanto, em função de k, o contradomínio da função g é $\begin{bmatrix} -2,2k-2 \end{bmatrix}$. Por outro lado, o contradomínio da função g é $\begin{bmatrix} -2,4 \end{bmatrix}$, pelo que $2k-2=4 \Leftrightarrow 2k=6 \Leftrightarrow k=3$.

6.2 Como k = 3, a expressão analítica da função g fica $g(x) = 3 - 2 + 3\operatorname{sen}\left(\frac{x}{2}\right) = 1 + 3\operatorname{sen}\left(\frac{x}{2}\right)$.

Assim, $1 - g(2x) = 6 \operatorname{sen} x \cos x \Leftrightarrow 1 - \left(1 + 3 \operatorname{sen} \left(\frac{2 / x}{2 / x}\right)\right) = 6 \operatorname{sen} x \cos x \Leftrightarrow 1 - 1 / 3 \operatorname{sen} x = 6 \operatorname{sen} x \cos x \Leftrightarrow 1 / 3 / 3 = 6 \operatorname{sen} x \cos x \Leftrightarrow 1 / 3 = 6 \operatorname{sen} x \cos x \Leftrightarrow 1 / 3 / 3 = 6 \operatorname{sen} x \cos x \Leftrightarrow$

$$\Leftrightarrow$$
 0 = 6sen x cos x + 3sen x \Leftrightarrow 3sen x (2cos x + 1) = 0

$$\Leftrightarrow$$
 3 sen $x = 0 \lor 2\cos x + 1 = 0$

$$\Leftrightarrow \operatorname{sen} x = 0 \lor \cos x = -\frac{1}{2}$$

$$\Leftrightarrow x = 0 + k\pi \lor x = \frac{2\pi}{3} + 2k\pi \lor x = -\frac{2\pi}{3} + 2k\pi, k \in \mathbb{Z}$$

Logo:

• se
$$k = 0$$
, então $x = 0 \lor x = \frac{2\pi}{3} \lor x = -\frac{2\pi}{3}$; $0 \in \left[-\pi, \frac{\pi}{2}\right[, \frac{2\pi}{3} \notin \left[-\pi, \frac{\pi}{2}\right] = -\frac{2\pi}{3} \in \left[-\pi, \frac{\pi}{2}\right]$

• se
$$k=1$$
, então $x=\pi \lor \underline{\qquad} \lor x=\frac{4\pi}{3}$; $\pi \notin \left[-\pi, \frac{\pi}{2}\right]$ e $\frac{4\pi}{3} \notin \left[-\pi, \frac{\pi}{2}\right]$

• se
$$k = -1$$
, então $x = -\pi \lor x = -\frac{4\pi}{3} \lor x = -\frac{8\pi}{3}$; $-\pi \in \left[-\pi, \frac{\pi}{2}\right[, -\frac{4\pi}{3} \notin \left[-\pi, \frac{\pi}{2}\right[e^{-\frac{8\pi}{3}} \notin \left[-\pi, \frac{\pi}{2}\right[$

Portanto, o conjunto-solução da equação no intervalo $\left[-\pi, \frac{\pi}{2}\right]$ é $\left\{-\pi, -\frac{2\pi}{3}, 0\right\}$.

6.3 Tem-se que:

•
$$\operatorname{tg}\left(\alpha - \frac{\pi}{2}\right) = \frac{\operatorname{sen}\left(\alpha - \frac{\pi}{2}\right)}{\operatorname{cos}\left(\alpha - \frac{\pi}{2}\right)} = \frac{-\operatorname{cos}\alpha}{\operatorname{sen}\alpha} = -\frac{1}{\operatorname{tg}\alpha} \Rightarrow \frac{1}{\operatorname{tg}\alpha} = -\frac{\sqrt{2}}{4} \Leftrightarrow \operatorname{tg}\alpha = -\frac{4}{\sqrt{2}}$$

Assim, como $\alpha \in]-\pi,0[$ e $\lg \alpha < 0$, conclui-se que o ângulo de amplitude α pertence ao quatro quadrante, pelo que $\sec \alpha < 0$ e $\cos \alpha > 0$

$$g(2\alpha + \pi) + \underbrace{\sec(\pi + \alpha)}_{-\sec\alpha} = 1 + 3\sec\left(\frac{2\alpha + \pi}{2}\right) - \sec\alpha = 1 + 3\sec\left(\frac{2\alpha}{2} + \frac{\pi}{2}\right) - \sec\alpha = 1 + 3\sec\alpha = 1$$

$$=1+3\operatorname{sen}\left(\alpha+\frac{\pi}{2}\right)-\operatorname{sen}\alpha=1+3\cos\alpha-\operatorname{sen}\alpha$$

Portanto:

• como
$$1 + tg^2 \alpha = \frac{1}{\cos^2 \alpha}$$
, tem-se que:

$$1 + \left(-\frac{4}{\sqrt{2}}\right)^2 = \frac{1}{\cos^2 \alpha} \Leftrightarrow 1 + \frac{16}{2} = \frac{1}{\cos^2 \alpha} \Leftrightarrow 9 = \frac{1}{\cos^2 \alpha} \Leftrightarrow \cos^2 \alpha = \frac{1}{9} \Leftrightarrow \cos \alpha = \sqrt{\frac{1}{9}} \Leftrightarrow \cos \alpha = \frac{1}{3}$$

• como $\operatorname{tg} \alpha = \frac{\operatorname{sen} \alpha}{\cos \alpha} \Leftrightarrow \operatorname{sen} \alpha = \operatorname{tg} \alpha \times \cos \alpha$, tem-se que:

Logo,
$$g(2\alpha + \pi) + \sin(\pi + \alpha) = 1 + 3\cos\alpha - \sin\alpha = 1 + 3 \times \frac{1}{3} - \left(-\frac{2\sqrt{3}}{3}\right) = 2 + \frac{2\sqrt{3}}{3}$$
.

7.1 Vamos representar o retângulo num referencial à nossa escolha, um que seja conveniente, por exemplo, um em que A é origem do referencial, ou seja, A(0,0), D e G pertencem ao eixo Oy, e E e B pertencem ao eixo Ox.

Assim, se $\overline{AE} = \overline{AG} = a$, com a > 0, e dado que G é o ponto médio de AD, H é o centro do retângulo ABCD e $\overline{AB} = 2\overline{AD}$, então:

$$B(4a,0)$$
, $C(4a,2a)$ $D(0,2a)$, $E(a,0)$, $F(a,a)$, $G(0,a)$ e $H(2a,a)$

Portanto,
$$A_{[EBCDGF]} = A_{[ABCD]} - A_{[AEFG]} = \overline{AB} \times \overline{AD} - \overline{AE}^2 = 4a \times 2a - a^2 = 8a^2 - a^2 = 7a^2$$

Por outro lado:

•
$$\overrightarrow{GC} = C - G = (4a, 2a) - (0, a) = (4a, a)$$

$$\overrightarrow{HB} = B - H = (4a,0) - (2a,a) = (2a,-a)$$

$$\therefore \overrightarrow{GC} \cdot \overrightarrow{HB} = (4a, a) \cdot (2a, -a) = 4a \times 2a + a \times (-a) = 8a^2 - a^2 = 7a^2 = A_{[EBCDGF]}$$

7.2.1 Como a amplitude do ângulo *OPB* é $\frac{5\pi}{6}$, a inclinação da reta *AB* é $\pi - \frac{5\pi}{6} = \frac{\pi}{6}$.

Logo, o declive da reta AB é igual a $tg\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{3}$, pelo que a equação reduzida da reta AB é da forma:

$$y = \frac{\sqrt{3}}{3}x + b$$
, com $b \in \mathbb{R}$

Como o ponto $A\left(-\sqrt{3},-2\right)$ pertence à reta AB , substituindo as suas coordenadas na equação, tem-se:

$$-2 = \frac{\sqrt{3}}{3} \times \left(-\sqrt{3}\right) + b \Leftrightarrow -2 = -\frac{3}{3} + b \Leftrightarrow -2 = -1 + b \Leftrightarrow b = -1$$

Portanto, uma equação da reta AB é $y = \frac{\sqrt{3}}{3}x - 1 \Leftrightarrow 3y = \sqrt{3}x - 3 \Leftrightarrow 3y - \sqrt{3}x + 3 = 0$.

7.2.2 O ponto R pertence à reta AB, pelo que as suas coordenadas são da forma $\left(x, \frac{\sqrt{3}}{3}x - 1\right)$.

Tem-se que:

- o declive da reta $AB \notin \frac{\sqrt{3}}{3}$, pelo que $\vec{u}(3,\sqrt{3})$ é um vetor diretor da reta AB;
- as retas RS e AB são perpendiculares se \overrightarrow{RS} e \overrightarrow{u} forem perpendiculares, ou seja, se $\overrightarrow{RS} \cdot \overrightarrow{u} = 0$.

Como
$$\overrightarrow{RS} = S - R = \left(-\frac{7\sqrt{3}}{3}, -2\right) - \left(x, \frac{\sqrt{3}}{3}x - 1\right) = \left(-\frac{7\sqrt{3}}{3} - x, -\frac{\sqrt{3}}{3}x - 1\right)$$
, tem-se:

$$\overrightarrow{RS} \cdot \overrightarrow{u} = 0 \Leftrightarrow \left(-\frac{7\sqrt{3}}{3} - x, -\frac{\sqrt{3}}{3}x - 1 \right) \cdot \left(3, \sqrt{3} \right) = 0 \Leftrightarrow 3 \times \left(-\frac{7\sqrt{3}}{3} - x \right) + \sqrt{3} \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{7\sqrt{3}}{3} - x \right) + \sqrt{3} \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{7\sqrt{3}}{3} - x \right) + \sqrt{3} \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{7\sqrt{3}}{3} - x \right) + \sqrt{3} \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{7\sqrt{3}}{3} - x \right) + \sqrt{3} \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x - 1 \right) = 0 \Leftrightarrow 3 \times \left(-\frac{\sqrt{3}}{3}x$$

$$\Leftrightarrow -7\sqrt{3} - 3x - x - \sqrt{3} = 0 \Leftrightarrow -4x - 8\sqrt{3} = 0 \Leftrightarrow -4x = 8\sqrt{3} \Leftrightarrow x = -2\sqrt{3}$$

Logo, as coordenadas do ponto R são $\left(-2\sqrt{3}, \frac{\sqrt{3}}{3} \times \left(-2\sqrt{3}\right) - 1\right)$, ou seja, $\left(-2\sqrt{3}, -3\right)$

8.1 O lugar geométrico dos pontos P(x, y, z) do espaço que satisfazem a equação $\overrightarrow{AP} \cdot \overrightarrow{CP} = 0$ é a superfície esférica de diâmetro AC:

Como o ponto C pertence ao eixo O_Z , as suas coordenadas são da forma (0,0,z). Por outro lado, o ponto C também pertence ao plano ABC, pelo que, substituindo (0,0,z) na equação do plano, obtém-se $2\times0+0+2z=8\Leftrightarrow 2z=8\Leftrightarrow z=4$. Logo, C(0,0,4).

Como $A = C + \overrightarrow{CA} = C - \overrightarrow{AC}$, as coordenadas do ponto A, são (0,0,4) - (-4,4,2) = (4,-4,2)

Assim:

$$\overrightarrow{AP} = P - A = (x, y, z) - (4, -4, 2) = (x - 4, y + 4, z - 2)$$

•
$$\overrightarrow{CP} = P - C = (x, y, z) - (0, 0, 4) = (x, y, z - 4)$$

Logo:

$$\overrightarrow{AP} \cdot \overrightarrow{CP} = 0 \Leftrightarrow (x - 4, y + 4, z - 2) \cdot (x, y, z - 4) = 0 \Leftrightarrow x(x - 4) + y(y + 4) + (z - 2)(z - 4) = 0 \Leftrightarrow x^2 - 4x + y^2 - 4y + z^2 - 4z - 2z + 8 = 0 \Leftrightarrow x^2 + y^2 + z^2 - 4x - 4y - 6z + 8 = 0$$

Portanto, uma equação cartesiana da superfície esférica de diâmetro $\begin{bmatrix} AC \end{bmatrix}$ é:

$$x^2 + y^2 + z^2 - 4x - 4y - 6z + 8 = 0$$

Outra resolução:

Para determinarmos uma equação cartesiana da superfície esférica de diâmetro [AC], podemos começar por determinar o seu centro, que é o ponto médio do segmento de reta [AC]. Para tal, precisamos das coordenadas do ponto C.

Assim, se ao ponto C adicionarmos metade do vetor \overrightarrow{CA} , obtemos o ponto M, o centro da superfície esférica.

Logo,
$$M = C + \frac{1}{2}\overrightarrow{CA} = C - \frac{1}{2}\overrightarrow{AC} = (0,0,4) - \frac{1}{2}(-4,4,2) = (0,0,4) + (2,-2,-1) = (2,-2,3)$$
.

A medida do raio é
$$\overline{CM} = \sqrt{(0-2)^2 + (0+2)^2 + (4-3)^2} = \sqrt{4+4+1} = \sqrt{9} = 3$$
.

Portanto, uma equação cartesiana da superfície esférica de diâmetro $\begin{bmatrix} AC \end{bmatrix}$ é:

$$(x-2)^2 + (y+2)^2 + (z-3)^2 = 3^2 \Leftrightarrow (x-2)^2 + (y+2)^2 + (z-3)^2 = 9$$

A equação $(x-2)^2 + (y+2)^2 + (z-3)^2 = 9$ é equivalente à equação $x^2 + y^2 + z^2 - 4x - 4y - 6z + 8 = 0$. De facto:

$$(x-2)^{2} + (y+2)^{2} + (z-3)^{2} = 9 \Leftrightarrow x^{2} - 4z + 4 + y^{2} - 4y + 4 + z^{2} - 6z + \emptyset = \emptyset \Leftrightarrow$$
$$\Leftrightarrow x^{2} + y^{2} + z^{2} - 4x - 4y - 6z + 8 = 0$$

8.2 Seja $\vec{n}(a,b,c)$ um vetor normal ao plano ACD.

Os vetores \overrightarrow{AC} e $\overrightarrow{CD} = D - C = (-2,0,0) - (0,0,4) = (-2,0,-4)$ são dois vetores não colineares paralelos ao plano ACD, pelo que:

$$\begin{cases}
\vec{n} \cdot \overrightarrow{AC} = 0 \\
\vec{n} \cdot \overrightarrow{CD} = 0
\end{cases} \Leftrightarrow \begin{cases}
(a,b,c) \cdot (-4,4,2) = 0 \\
(a,b,c) \cdot (-2,0,-4) = 0
\end{cases} \Leftrightarrow \begin{cases}
-4a + 4b + 2c = 0 \\
-2a - 4c = 0
\end{cases} \Leftrightarrow \begin{cases}
-4a + 4b + 2c = 0 \\
-2a = 4c
\end{cases} \Leftrightarrow \begin{cases}
-4 \times (-2c) + 4b + 2c = 0 \\
a = -2c
\end{cases} \Leftrightarrow \begin{cases}
4b + 10c = 0 \\
a = -2c
\end{cases} \Leftrightarrow \begin{cases}
4b = -10c \\
a = -2c
\end{cases} \Leftrightarrow \begin{cases}
b = -\frac{10c}{4} \\
a = -2c
\end{cases} \Leftrightarrow \begin{cases}
b = -\frac{5c}{2} \\
a = -2c
\end{cases} \Leftrightarrow \begin{cases}
-4a + 4b + 2c = 0 \\
-2a = 4c
\end{cases} \Leftrightarrow \begin{cases}
4b = -10c \\
a = -2c
\end{cases} \Leftrightarrow \begin{cases}
4b = -10c \\
a = -2c
\end{cases} \Leftrightarrow \begin{cases}
4b = -2c
\end{cases} \Leftrightarrow \begin{cases}
-4c + 4c + 2c = 0 \\
-2a = 4c
\end{cases} \Leftrightarrow \begin{cases}
-4c + 4c + 2c = 0 \\
-2a = 4c
\end{cases} \Leftrightarrow \begin{cases}
-4c + 4c + 2c = 0 \\
-2a = 4c
\end{cases} \Leftrightarrow \begin{cases}
-4c + 4c + 2c = 0 \\
-2a = 4c
\end{cases} \Leftrightarrow \begin{cases}
-4c + 4c + 2c = 0 \\
-2a = 4c
\end{cases} \Leftrightarrow \begin{cases}
-4c + 4c + 2c = 0 \\
-2a = 4c
\end{cases} \Leftrightarrow \begin{cases}
-4c + 4c + 2c = 0 \\
-2a = 4c
\end{cases} \Leftrightarrow \begin{cases}
-4c + 4c + 2c = 0 \\
-2a = 4c
\end{cases} \Leftrightarrow \begin{cases}
-4c + 4c + 2c = 0 \\
-2a = 4c
\end{cases} \Leftrightarrow \begin{cases}
-4c + 4c + 2c = 0 \\
-2a = 4c
\end{cases} \Leftrightarrow \begin{cases}
-4c + 4c + 2c = 0 \\
-2a = 4c
\end{cases} \Leftrightarrow \begin{cases}
-4c + 4c + 2c = 0 \\
-2a = 4c
\end{cases} \Leftrightarrow \begin{cases}
-4c + 4c + 2c = 0 \\
-2a = 4c
\end{cases} \Leftrightarrow \begin{cases}
-4c + 4c + 2c = 0 \\
-2a = 4c
\end{cases} \Leftrightarrow \begin{cases}
-4c + 4c + 2c = 0 \\
-2a = 4c
\end{cases} \Leftrightarrow \begin{cases}
-4c + 4c + 2c = 0 \\
-2c + 4c
\end{cases} \Leftrightarrow \begin{cases}
-4c + 4c + 2c = 0 \\
-2c + 4c
\end{cases} \Leftrightarrow \begin{cases}
-4c + 4c + 2c = 0 \\
-2c + 4c
\end{cases} \Leftrightarrow \begin{cases}
-4c + 4c + 2c = 0 \\
-2c + 4c
\end{cases} \Leftrightarrow \begin{cases}
-4c + 4c + 2c = 0
\end{cases} \Leftrightarrow \begin{cases}
-4c + 4c + 2c + 2c
\end{cases} \Leftrightarrow \begin{cases}
-4c + 4c + 2c + 2c
\end{cases} \Leftrightarrow \begin{cases}
-4c + 4c + 2c + 2c
\end{cases} \Leftrightarrow \begin{cases}
-4c + 4c + 2c + 2c
\end{cases} \Leftrightarrow \begin{cases}
-4c + 4c + 2c + 2c
\end{cases} \Leftrightarrow \begin{cases}
-4c + 4c + 2c + 2c
\end{cases} \Leftrightarrow \begin{cases}
-4c + 4c + 2c
\end{cases} \Leftrightarrow \begin{cases}
-4c + 4c
\end{cases} \Leftrightarrow \begin{cases}
-4c
\end{cases} \Leftrightarrow \begin{cases}
-4c + 4c
\end{cases} \Leftrightarrow \begin{cases}
-4c
\end{cases} \end{cases} \end{cases} \end{cases} \end{cases} \Leftrightarrow \begin{cases}
-4c$$

Logo, tem-se $\vec{n}\left(-2c, -\frac{5c}{2}, c\right)$, com $c \in \mathbb{R} \setminus \{0\}$. Fazendo c = -2 (por exemplo), tem-se $\vec{n}\left(4,5,-2\right)$, pelo que uma equação do plano ACD é da forma 4x + 5y - 2z + d = 0.

Como o ponto C(0,0,4) (por exemplo) pertente ao plano ACD, substituindo as suas coordenadas na equação do plano, obtém-se:

$$4 \times 0 + 5 \times 0 - 2 \times 4 + d = 0 \Leftrightarrow -8 + d = 0 \Leftrightarrow d = 8$$

$$\therefore ACD: 4x + 5y - 2z + 8 = 0$$

8.3 Consideremos a seguinte figura.

O volume da pirâmide é dado por $\frac{1}{3}A_{[ABC]} \times \overline{DD'} = \frac{1}{3} \times 12 \times \overline{DD'} = 4\overline{DD'}$, em que D' é a projeção ortogonal do vértice D no plano ABC.

Seja r a reta perpendicular ao plano ABC que contém o ponto D. Assim, a reta r interseta o plano ABC no ponto D'.

Como a reta r é perpendicular ao plano ABC, o vetor $\vec{n}(2,1,2)$, que é normal ao plano ABC, é um vetor diretor da reta r e, portanto, como D(-2,0,0), uma equação vetorial de r é:

$$(x, y, z) = (-2,0,0) + k(2,1,2), k \in \mathbb{R}$$

Logo, um ponto genérico da reta r é $\left(-2+2k, \frac{k}{2}, 2k\right)$, pelo que, substituindo na equação de ABC, tem-se: $2 \times \left(-2+2k\right) + \frac{k}{2} + 2 \times 2k = 8 \Leftrightarrow -4 + 4k + k + 4k = 8 \Leftrightarrow 9k = 12 \Leftrightarrow k = \frac{12}{9} \Leftrightarrow k = \frac{4}{3}$.

Portanto, as coordenadas de D' são $\left(-2+2\times\frac{4}{3},\frac{4}{3},2\times\frac{4}{3}\right)$, ou seja, $\left(\frac{2}{3},\frac{4}{3},\frac{8}{3}\right)$.

Então
$$\overline{DD'} = \sqrt{\left(-2 - \frac{2}{3}\right)^2 + \left(0 - \frac{4}{3}\right)^2 + \left(0 - \frac{8}{3}\right)^2} = \sqrt{\frac{64}{9} + \frac{16}{9} + \frac{64}{9}} = \sqrt{\frac{144}{9}} = \sqrt{16} = 4$$
.

$$\therefore V_{[ABCD]} = \frac{1}{3} A_{[ABC]} \times \overline{DD'} = 4 \overline{DD'} = 4 \times 4 = 16.$$

9. Consideremos a seguinte figura, em que F é o ponto de intersecção do lado [AD] com o eixo Ox.

A área do trapézio $\begin{bmatrix} ABCD \end{bmatrix}$ é dada por $\frac{\overline{AD} + \overline{BC}}{2} \times \overline{EF}$.

Mas como $\overline{AD} = 2\overline{AF}$, $\overline{BC} = 2\overline{BE}$ e $\overline{EF} = 1 - \overline{OF}$, tem-se que:

$$A_{[ABCD]} = \frac{\overline{AD} + \overline{BC}}{2} \times \overline{EF} = \frac{2\overline{AF} + 2\overline{BE}}{2} \times \left(1 - \overline{OF}\right) = \left(\overline{AF} + \overline{BE}\right)\left(1 - \overline{OF}\right)$$

As coordenadas do ponto A são $(\cos\alpha, \sin\alpha)$, com $\cos\alpha > 0$ e $\sin\alpha < 0$, e as do ponto B são $(1, tg\alpha)$, com $tg\alpha < 0$. Assim, $\overline{AF} = -\sin\alpha$, $\overline{BE} = -tg\alpha$ e $\overline{OF} = \cos\alpha$ e portanto:

$$A_{[ABCD]} = \left(\overline{AF} + \overline{BE}\right) \left(1 - \overline{OF}\right) = \left(-\sin\alpha - \operatorname{tg}\alpha\right) \left(1 - \cos\alpha\right) = \left(-\sin\alpha - \frac{\sin\alpha}{\cos\alpha}\right) \left(1 - \cos\alpha\right) =$$

$$= -\sin\alpha + \sin\alpha \cos\alpha - \frac{\sin\alpha}{\cos\alpha} + \frac{\sin\alpha}{\cos\alpha} \times \cos\alpha = -\sin\alpha + \sin\alpha \cos\alpha - \frac{\sin\alpha}{\cos\alpha} + \sin\alpha$$

$$= \sin\alpha \left(\cos\alpha - \frac{1}{\cos\alpha}\right) = \sin\alpha \left(\frac{\cos^2\alpha - 1}{\cos\alpha}\right) = \frac{\sin\alpha}{\cos\alpha} \left(\cos^2\alpha - 1\right) = -\sin^2\alpha \operatorname{tg}\alpha$$

$$= \operatorname{tg}\alpha = -\sin^2\alpha$$

FIM