IMDB Sentiment Analysis - Performance Analysis Report

Executive Summary

The Conv1D CNN achieved best performance at 86.97% accuracy, marginally outperforming Logistic Regression at 85.74%. Stopword removal consistently degraded performance across all models, with CNN showing the largest drop (0.76%). The Feed-Forward NN performed worst at 81.76%, actually underperforming simple Logistic Regression. None reached the 90% target.

Model Performance Rankings

- 1. Conv1D CNN: 86.97%
- 2. Logistic Regression (BOW): 85.74%
- 3. Logistic Regression (no stopwords): 85.64%
- 4. Conv1D CNN (no stopwords): 86.21%
- 5. Feed-forward NN: 81.76%
- 6. Feed-forward NN (no stopwords): 81.10%

Detailed Analysis

Logistic Regression (85.74%)

Strengths: Remarkably competitive with only 1.23% gap from best model. Fast training (128s), no GPU required, interpretable. Proves word frequency alone is powerful for sentiment.

Weaknesses: Ignores word order, cannot capture phrase-level sentiment or complex patterns.

Key Finding: Simple bag-of-words nearly matches deep learning, indicating strong lexical markers in movie reviews.

Feed-Forward Neural Network (81.76%)

Critical Issue: Worst performer, 4% below Logistic Regression despite greater complexity.

Root Cause: GlobalAveragePooling destroys sequential information. Averaging all word embeddings treats position-dependent patterns (e.g., "not good") identically to isolated words.

Implication: Architecture design matters more than model sophistication. Poorly structured neural networks underperform simpler alternatives.

Convolutional Neural Network (86.97%)

Strengths: Best accuracy. Three Conv1D layers capture n-gram patterns at multiple scales. MaxPooling extracts salient features. Preserves sequential context critical for phrases like "not bad" or "very good."

Architecture: 128/128/64 filters with kernel size 5, capturing 5-word phrase patterns. GlobalMaxPooling for position-invariant feature extraction.

Performance: 1.23% improvement over Logistic Regression validates sequential modeling for sentiment tasks.

Stopword Removal Impact

Model	With Stopwords	Without Stopwords	Change
Logistic Regression	85.74%	85.64%	-0.10%
Feed-forward NN	81.76%	81.10%	-0.66%
Conv1D CNN	86.97%	86.21%	-0.76%

Analysis

All models degraded with stopword removal. CNN suffered most because it learns sequential patterns that stopwords help define.

Why Stopwords Matter:

- 1. **Negations:** "not," "no," "never" reverse sentiment completely
- 2. **Intensifiers:** "very," "really," "so" modify sentiment strength
- 3. **Discourse markers:** "but," "however" signal sentiment transitions
- 4. Context: "if," "because," "while" provide conditional framing

Example: "The movie was not good but terrible" loses all meaning without stopwords, becoming "movie good terrible."

Contrast with Topic Modeling: Stopword removal helps topic classification (focused on content words) but harms sentiment analysis (dependent on function words).

Gap to 90% Accuracy

Likely Causes

- 1. Limited vocabulary (5,000 words)
- 2. Simple architecture (no recurrence or attention)
- 3. Short training (6-10 epochs)
- 4. No pre-trained embeddings
- 5. Fixed hyperparameters

Recommendations to Reach 90%

Architecture: Implement LSTM/GRU for long-range dependencies, add bidirectional processing, incorporate attention mechanisms, or fine-tune BERT.

Data: Expand vocabulary to 10,000-20,000 words, use GloVe/Word2Vec embeddings, train longer with early stopping.

Techniques: Ensemble multiple models, optimize hyperparameters (learning rate, dropout, batch size), apply data augmentation.

Key Findings

- 1. **Simplicity vs. Complexity:** Logistic Regression (85.74%) nearly matched CNN (86.97%), showing strong lexical signals. Poor architecture (FFNN) underperformed simple models by 4%.
- 2. **Sequential Structure Matters:** CNN's marginal improvement validates n-gram pattern learning. FFNN's averaging destroyed this advantage.
- 3. **Task-Specific Preprocessing:** Stopword removal, standard in NLP, proved harmful for sentiment analysis across all architectures.

Conclusions and Recommendations

For Production

- **Best Performance:** Conv1D CNN with stopwords (86.97%)
- **Best Efficiency:** Logistic Regression (85.74%, no GPU, 128s training)
- **Avoid:** Feed-Forward NN with averaging (81.76%, no advantages)

For Research

Explore LSTM/GRU architectures, attention mechanisms, or pre-trained transformers (BERT/RoBERTa) to exceed 90%.

Critical Lessons

- 1. Architecture design outweighs model complexity
- 2. Domain knowledge essential for preprocessing decisions
- 3. Sequential modeling crucial for text, but marginal gains suggest strong lexical features
- 4. Stopword retention non-negotiable for sentiment tasks

The 3% gap to 90% is addressable through architectural improvements (LSTM, attention) and better feature representations (pre-trained embeddings, larger vocabulary).