I have taken "**Titanic Dataset**" from Kaggle. On that dataset I performed Data Preprocessing. Also along with that I used .describe(), .info(), .value_counts(). After that I had done some visualizations like:

Histogram:

1) Histogram for Age-Distribution

In that I found that there are **mostly younger people** whose age lies in 20-30 years.

2) Histogram for Fare-Distribution

The Fare distribution is **right-skewed** with a small number of passengers paying much higher fares.

Boxplot:

These are used to detect the outliers. And we can see that

- 1) The Age boxplot shows a large **range of ages**, with most passengers falling between 20 and 40 years.
- 2) The Fare boxplot has significant **outliers** on the upper side, indicating the presence of passengers who paid significantly higher fares.

Scatterplot:

Scatterplots are used to identify the correlations in the data. It reveals the two variables are positively, negatively, or there is no correlation.

1) 1)Age vs Fare Scatterplot

There is **no clear linear relationship** between Age and Fare, suggesting that the fare paid was not dependent on age. The scatterplot reveals a mix of social classes across all ages, with younger passengers paying both low and high fares, indicating no direct correlation.

2) Fare vs Survived

You will likely see that passengers who paid higher fares tended to survive more, as 1st-class passengers (with higher fares) had a better survival rate.

Barcharts:

It shows relationship between variables in form of bars. Let's have some barchat visualizations.

1) Survival vs Sex

Females survived at a much higher rate than males.

2) Survival vs Pclass (Ticket Class)

1st class passengers had much better survival than 2nd and 3rd class.

3) Age vs Survival

Children (younger age) survived more; older passengers less.

4) Fare vs Survival

Higher fare-paying passengers survived more (they were richer \rightarrow better access to lifeboats).

5) Family Size (SibSp + Parch) vs Survival

Small families (1-3 members) had better survival; alone people or very large families struggled.

Pairplot:

The **pairplot()** is great for visualizing pairwise relationships between features in a dataset. It will generate scatterplots for each pair of continuous variables and histograms on the diagonal.

- Trend: Pairplot shows the relationships between numerical variables (Age, Fare, SibSp, Parch, etc.) and how they vary with Survived.
- Key Observations:
 - **Higher Fare passengers** are more likely to have survived (clear separation visible).
 - **Age** does not show a strong direct separation for survival (but many children survived).
 - **SibSp** and **Parch** values around 0–1 are more associated with survival (large families seem to have lower survival).
- Overall: Passengers with higher Fare, lower SibSp, and lower Parch values had better chances of survival.

Heatmap:

A **correlation heatmap** is useful to understand the strength of relationships between numeric features. The heatmap() function will show a color-coded matrix of correlations between the variables.

- Trend: Heatmap shows correlation strength between numerical variables.
- Key Observations:
 - Fare has a positive correlation with Survived (higher Fare → higher survival).
 - Pclass has a negative correlation with Survived (lower class number (1st class) → higher survival).
 - **SibSp** and **Parch** are **positively correlated** with each other (makes sense families often traveled together).
 - **Age** has a weak negative correlation with Survived (younger passengers slightly more likely to survive).
- Overall: Fare and Pclass are the most important features influencing survival.