0.1. DEF

0.1 Def

We call integral operator on S any \mathbb{R} -linear mapping $I:S\to\mathbb{R}$ that satisfies the following conditions:

- (1) If $f \in S$ is such that $\forall \omega \in \Omega, f(\omega) \geq 0$ then $I(f) \geq 0$
- (2) If $(f_n)_{n\in\mathbb{N}}$ is a decreasing sequence of elements in S such that $\forall \omega \in \Omega \lim_{n\to +\infty} f_n(\omega) = 0$ then

$$\lim_{n \to +\infty} I(f_n) = 0$$

$$(\forall \omega \in \Omega, n \in \mathbb{N}, f_n(\omega) \ge f_{n+1}(\omega))$$

0.2 Def

Let Ω be a set. We call semialgebra on Ω any $\mathcal{C} \subseteq \wp(\Omega)$ that verifies:

- $\varnothing \in \mathcal{C}$
- $\forall (A,B) \in \mathcal{C}^2, A \cap B \in \mathcal{C}$
- $\forall (A,B) \in \mathcal{C}^2, \exists (C_i)_{i=1}^n$ a finite family of elements in \mathcal{C} such that $B \setminus A = \bigcup_{i=1}^n C_i$

0.3 Def

Let \mathcal{C} be a semialgebra on Ω . The set

$$\{A \in \wp(\Omega) \mid \exists n \in \mathbb{N}, \exists (A_i)_{i=1}^n \in \mathcal{C}^n, A = \bigsqcup_{i=1}^n A_i\}$$

is called the algebra generated by $\mathcal C$

0.4 Def

Let $\mathcal{C} \subseteq \wp(\Omega)$. We denote by $\sigma(\mathcal{C})$ the intersection of all σ -algebras on Ω containing \mathcal{C} . It's the smallest σ -algebra containing \mathcal{C}

0.5 Def

Let $f: X \to Y$ be a mapping of sets.

• For any $\mathcal{C}_Y \subseteq \wp(Y)$ we denote by

$$f^{-1}(\mathcal{C}_Y) := \{ f^{-1}(B) \mid B \in \mathcal{C}_Y \}$$

• For any $\mathcal{C}_X \subseteq \wp(X)$ we denote by

$$f_*(\mathcal{C}_X) := \{ B \subseteq Y \mid f^{-1}(B) \in \mathcal{C}_X \}$$

0.6 Def

Let (X, \mathcal{G}_X) and (Y, g_Y) be measurable spaces, $f: X \to Y$ be a mapping. If $f^{-1}(g_Y) \subseteq \mathcal{G}_X$ or equivalently $g_Y \subseteq f_8(\mathcal{G}_X)$ (or $\forall B \in g_Y, f^{-1}(B) \in \mathcal{G}_X$) then we say that f is measurable.

0.7 Def

Let Ω be a set $((E_i, \mathcal{E}))_{i \in I}$ be a family of measurable spaces. $f = (f_i)_{i \in I}$ where $f_i : \Omega \to E_i$ is a mapping. We denote by $\sigma(f)$ the σ -algebra $\sigma(\bigcup_{i \in I} f_i^{-1}(\mathcal{E}_i))$ It's the smallest σ -algebra on Ω making all f_i measurable.

If I_{μ} is an integral operator, we say that μ is σ -additive.

0.8 Def

If $\exists (A_n)_{n\in\mathbb{N}}$ such that $\Omega=\bigcup_{n\in\mathbb{N}}A_n$ and $\mu(A_n)<+\infty$ then μ is said to be σ -finite.

0.9 Def

We fix a measure space $(\Omega, \mathcal{G}, \mu)$ the set of measurable mappings $f: \Omega \to \mathbb{R}$ such that

$$f_{L^p} := \left(\int_{\Omega} \left| f(\omega) \right|^p \mu(dx) \right)^{\frac{1}{p}} < +\infty$$