#### Metropolis-Hastings

Luís Pedro Coelho

Programming for Scientists

March 24, 2009





# Random Hill Climbing

- 0  $x_0 \leftarrow \text{random}$
- **2** For  $t \in \{1 ... N\}$

a 
$$c \leftarrow x_{t-1} + \mathcal{N}(0, \sigma)$$

**b** If 
$$f(c) < f(x_{t-1}), x_t \leftarrow c$$

c Else,  $x_t \leftarrow x_{t-1}$ 

#### Random Numbers

Many algorithms need random numbers.

#### Pseudo-Random Numbers

PRN are deterministically generated numbers that look like random.

#### Pseudo Random Number Example

$$x_{n+1} = 1103515245x_n + 12345 \mod 2^{32}$$

#### Pseudo Random Sequences

Each number is generated based on the previous.

#### Seeding the Sequence

```
import random
random.seed(0)
print random.random()
print random.random()
print random.random()
print

random.seed(0)
print random.random()
print random.random()
print random.random()
```

#### prints

```
0.844421851525
0.75795440294
0.420571580831
0.844421851525
0.75795440294
```

0.420571580831

## Seeding the Sequence (II)

```
import numpy.random
numpy.random.seed(0)
print numpy.random.random()
print numpy.random.random()
print numpy.random.random()
print
numpy.random.seed(0)
print numpy.random.random()
print numpy.random.random()
print numpy.random.random()
```

#### prints

```
0.715189366372
0.602763376072
0.548813503927
0.715189366372
0.602763376072
```

0.548813503927

## Sampling From a Distribution

Given a random number uniformly distributed on [0, 1], how do we sample from p(x)?

#### In Practice

Check out what's already written (scipy.stats has plenty).

#### Scipy.stats

- Normal
- Exponential
- Poisson
- ...

# How do I Sample a sphere?



## Metropolis-Hastings

What if P(x) is really complicated?

# Example



# Metropolis-Hastings

- $x_0 \leftarrow \text{random}$
- For  $t \in \{1 \cdots T\}$ :
  - $\bullet$   $c \leftarrow \text{sample from } Q(x'|x_t)$
  - $a \leftarrow \frac{P(c)Q(x_t|c)}{P(x_t)Q(c|x_t)}$

# Metropolis-Hastings Example (Simple)



# Metropolis-Hastings Example



# Metropolis-Hastings Example



# Metropolis-Hastings More Complex Example



#### MCMC for Minimisation

$$P(x) = k \exp(-\beta f(x))$$

#### Minimisation



#### Minimisation



# Simulated Annealing Trick

$$P(x)/P(x') = \exp(T(f(x) - f(x')))$$

# Simulated Annealing Trick

$$P(x)/P(x') = \exp(T(f(x) - f(x')))$$

Start hot, reduce the temperature.

## Simulated Annealing

Starts like Metropolis-Hastings, finished like Random Hill Climbing.