On Decoding Cohen-Haeupler-Schulman Tree Codes

Matthew Weidner^{1*}

joint with Anand Kumar Narayanan²

¹Carnegie Mellon University, Pittsburgh, PA, USA

²Laboratoire d'informatique de Paris 6, Sorbonne Université, Paris, France

SODA 2020

^{*}Supported by the NSF through a SIAM Travel Award

Tree Codes

Goal: different branches have very different color sequences (after they diverge).

Goal: different branches have very different color sequences (after they diverge).

Tree Codes

Goal: different branches have very different color sequences (after they diverge).

Goal: different branches have very different color sequences (after they diverge).

Parameters:

- Length (depth)
- Alphabet size (number of colors/labels)
- Distance (minimum distance between two branches)

 \approx

Online function

$$\{0,1\}^{\leq n} \to \Sigma^{\leq n},$$

 Online analog of error-correcting codes

Online function

$$\{0,1\}^{\leq n} \to \Sigma^{\leq n},$$

- Online analog of error-correcting codes
 - Can "decode" input from errored version of output with $<\frac{1}{2}$ (distance) errors

Online function

$$\{0,1\}^{\leq n} \to \Sigma^{\leq n},$$

Online function

$$\{0,1\}^{\leq n} \to \Sigma^{\leq n},$$

- Online analog of error-correcting codes
 - Can "decode" input from errored version of output with $< \frac{1}{2}$ (distance) errors
- (Schulman 90s): Add error tolerance to interactive communication protocols

Online function

 \approx

$$\{0,1\}^{\leq n} \to \Sigma^{\leq n},$$

- Online analog of error-correcting codes
 - Can "decode" input from errored version of output with $< \frac{1}{2}$ (distance) errors
- (Schulman 90s): Add error tolerance to interactive communication protocols
- Explicit constructions are challenging

Online function

 \approx

$$\{0,1\}^{\leq n} \to \Sigma^{\leq n},$$

- Online analog of error-correcting codes
 - Can "decode" input from errored version of output with $< \frac{1}{2}$ (distance) errors
- (Schulman 90s): Add error tolerance to interactive communication protocols
- Explicit constructions are challenging
 - "Good" tree codes exist, but no poly-time construction is known!

(Binary) tree codes $TC:\{0,1\}^{\leq n} \to \Sigma^{\leq n}, \ |\Sigma| = \mathsf{polylog}(n),$ distance $=\frac{1}{2}$.

(Binary) tree codes $TC: \{0,1\}^{\leq n} \to \Sigma^{\leq n}$, $|\Sigma| = \operatorname{polylog}(n)$, distance $=\frac{1}{2}$.

Based on integer tree codes $TC_{\mathbb{Z}}: \mathbb{Z}^{\leq n} \to (\mathbb{Z}^2)^{\leq n}$, distance $=\frac{1}{2}$.

(Binary) tree codes $TC: \{0,1\}^{\leq n} \to \Sigma^{\leq n}, \ |\Sigma| = \mathsf{polylog}(n),$ distance $=\frac{1}{2}$.

Based on *integer* tree codes $TC_{\mathbb{Z}}: \mathbb{Z}^{\leq n} \to (\mathbb{Z}^2)^{\leq n}$, distance $= \frac{1}{2}$.

$$(z_0, z_1, \ldots, z_{n-1}) \mapsto ((z_0, a_0), (z_1, a_1), \ldots, (z_{n-1}, a_{n-1}))$$

under the Newton basis transformation

$$z_i = \sum_{j=0}^{n-1} a_j \binom{i}{j}, \qquad \forall i$$

with the inversion formula

$$a_j = \sum_{i=0}^{n-1} (-1)^{j-i} {j \choose i} z_i, \quad \forall j.$$

(Binary) tree codes $TC: \{0,1\}^{\leq n} \to \Sigma^{\leq n}, \ |\Sigma| = \operatorname{polylog}(n),$ distance $=\frac{1}{2}$.

Based on *integer* tree codes $TC_{\mathbb{Z}}: \mathbb{Z}^{\leq n} \to (\mathbb{Z}^2)^{\leq n}$, distance $= \frac{1}{2}$.

$$(z_0, z_1, \ldots, z_{n-1}) \mapsto ((z_0, a_0), (z_1, a_1), \ldots, (z_{n-1}, a_{n-1}))$$

under the Newton basis transformation

$$z_i = \sum_{j=0}^{n-1} a_j \binom{i}{j}, \qquad \forall i$$

with the inversion formula

$$a_j = \sum_{i=0}^{n-1} (-1)^{j-i} {j \choose i} z_i, \qquad \forall j.$$

$$p(i) = z_i,$$

$$p(x) = \sum_{i=0}^{n-1} a_i {x \choose j}$$

$$(z_0, z_1, \dots, z_{n-1}) \mapsto ((z_0, a_0), (z_1, a_1), \dots, (z_{n-1}, a_{n-1})),$$

$$z_i = \sum_{i=0}^{n-1} a_j \binom{i}{j}, \quad \forall i.$$

$$(z_0, z_1, \dots, z_{n-1}) \mapsto ((z_0, a_0), (z_1, a_1), \dots, (z_{n-1}, a_{n-1})),$$

$$z_i = \sum_{j=0}^{n-1} a_j \binom{i}{j}, \qquad \forall i.$$

Theorem

If $z_0 \neq 0$, then

$$Sparsity(z_0, z_1, \dots, z_{n-1}) + Sparsity(a_0, a_1, \dots, a_{n-1}) \ge n + 1$$

 $\Rightarrow Sparsity((z_0, a_0), (z_1, a_1), \dots, (z_{n-1}, a_{n-1})) \ge \frac{n}{2}.$

Thus the CHS code has distance 1/2.

Restated:

$$(z_0, z_1, \dots, z_{n-1}) \mapsto ((z_0, a_0), (z_1, a_1), \dots, (z_{n-1}, a_{n-1})),$$

$$p(x) = \sum_{i=0}^{n-1} a_i {x \choose j}, \qquad z_i = p(i), \quad \forall i.$$

Theorem

If $p(0) \neq 0$, then the number of roots of p(x) in \mathbb{N} is less than its sparsity in the Newton basis $\binom{x}{i}_{j\geq 0}$.

Sparsity Theorem

Theorem

If $p(0) \neq 0$, then the number of roots of $p(x) = \sum_{j=0}^{n-1} a_j {x \choose j}$ in \mathbb{N} is less than its sparsity in the Newton basis $\{{x \choose j}\}_{j\geq 0}$.

If $p(0) \neq 0$, then the number of roots of $p(x) = \sum_{j=0}^{n-1} a_j {x \choose j}$ in \mathbb{N} is less than its sparsity in the Newton basis $\{{x \choose j}\}_{j\geq 0}$.

If $p(0) \neq 0$, then the number of roots of $p(x) = \sum_{j=0}^{n-1} a_j {x \choose j}$ in \mathbb{N} is less than its sparsity in the Newton basis $\{{x \choose j}\}_{j\geq 0}$.

If $p(0) \neq 0$, then the number of roots of $p(x) = \sum_{j=0}^{n-1} a_j {x \choose j}$ in \mathbb{N} is less than its sparsity in the Newton basis $\{{x \choose j}\}_{j\geq 0}$.

$$J = \{\text{nonzero } a_j \text{ indices}\} = \{0, 1, 3\}, I = \{\text{roots}\} = \{1, 3, 4\}.$$

If $p(0) \neq 0$, then the number of roots of $p(x) = \sum_{j=0}^{n-1} a_j {x \choose j}$ in \mathbb{N} is less than its sparsity in the Newton basis $\{{x \choose j}\}_{j\geq 0}$.

$$J = \{\text{nonzero } a_i \text{ indices}\} = \{0, 1, 3\}, I = \{\text{roots}\} = \{1, 3, 4\}.$$

Then $M_{IJ} \cdot (a_{j_1} \cdot \cdots \cdot a_{j_k})^T = \vec{0}$, where M_{IJ} is the I, J minor of

$$M = \left\{ \begin{pmatrix} i \\ j \end{pmatrix} \right\}_{0 \le i, j \le n-1}$$

If $p(0) \neq 0$, then the number of roots of $p(x) = \sum_{j=0}^{n-1} a_j {x \choose j}$ in \mathbb{N} is less than its sparsity in the Newton basis $\{{x \choose j}\}_{j\geq 0}$.

Proof.

$$J = \{\text{nonzero } a_I \text{ indices}\} = \{0, 1, 3\}, I = \{\text{roots}\} = \{1, 3, 4\}.$$

Then $M_{IJ} \cdot (a_{i_1} \cdot \cdots \cdot a_{i_k})^T = \vec{0}$, where M_{IJ} is the I, J minor of

$$M = \left\{ \begin{pmatrix} i \\ j \end{pmatrix} \right\}_{0 \le i, j \le n-1}$$

But by the **Lindström-Gessel-Viennot Lemma**, det $M_{IJ} \neq 0$.

Our Work

1 (Partial) decoding algorithm for the CHS tree codes

Our Work

- (Partial) decoding algorithm for the CHS tree codes
- 2 Number-theoretic variants of $TC_{\mathbb{Z}}$ with similar parameters

Our Work

- (Partial) decoding algorithm for the CHS tree codes
- 2 Number-theoretic variants of $TC_{\mathbb{Z}}$ with similar parameters
- 3 Speculative framework for decoding via convex optimization

The Decoding Problem

$$(z_0, z_1, \dots, z_{n-1}) \mapsto ((z_0, a_0), (z_1, a_1), \dots, (z_{n-1}, a_{n-1})),$$

$$z_i = \sum_{i=0}^{n-1} a_j \binom{i}{j}, \quad \forall i.$$

The Decoding Problem

$$(z_0, z_1, \dots, z_{n-1}) \mapsto ((z_0, a_0), (z_1, a_1), \dots, (z_{n-1}, a_{n-1})),$$

$$z_i = \sum_{j=0}^{n-1} a_j \binom{i}{j}, \quad \forall i.$$

Given a "received word" $((\widehat{z_0}, \widehat{a_0}), (\widehat{z_1}, \widehat{a_1}), \dots, (\widehat{z_{n-1}}, \widehat{a_{n-1}}))$ such that $(\widehat{z_i}, \widehat{a_i}) = (z_i, a_i)$ except at < n/4 coordinates, output z_0 , in time poly(n).

The Decoding Problem

$$(z_0, z_1, \dots, z_{n-1}) \mapsto ((z_0, a_0), (z_1, a_1), \dots, (z_{n-1}, a_{n-1})),$$

$$z_i = \sum_{j=0}^{n-1} a_j \binom{i}{j}, \quad \forall i.$$

Given a "received word" $((\widehat{z_0}, \widehat{a_0}), (\widehat{z_1}, \widehat{a_1}), \dots, (\widehat{z_{n-1}}, \widehat{a_{n-1}}))$ such that $(\widehat{z_i}, \widehat{a_i}) = (z_i, a_i)$ except at < n/4 coordinates, output z_0 , in time poly(n).

More generally, given the above and the prefix z_0, \ldots, z_{k-1} , if $(\widehat{z_i}, \widehat{a_i}) = (z_i, a_i)$ except at < (n-k)/4 coordinates $i \ge k$, output z_k .

$$(z_0, z_1, \dots, z_{n-1}) \mapsto ((z_0, a_0), (z_1, a_1), \dots, (z_{n-1}, a_{n-1})),$$

$$z_i = \sum_{j=0}^{n-1} a_j \binom{i}{j}, \quad \forall i.$$

Given a "received word" $((\widehat{z_0}, \widehat{a_0}), (\widehat{z_1}, \widehat{a_1}), \dots, (\widehat{z_{n-1}}, \widehat{a_{n-1}}))$ such that $(\widehat{z_i}, \widehat{a_i}) = (z_i, a_i)$ except at < n/4 coordinates, output z_0 , in time poly(n).

More generally, given the above and the prefix z_0, \ldots, z_{k-1} , if $(\widehat{z_i}, \widehat{a_i}) = (z_i, a_i)$ except at < (n-k)/4 coordinates $i \ge k$, output z_k .

This yields a decoding algorithm for the binary tree codes, correcting up to < n/4 errors.

$$(z_0, z_1, \dots, z_{n-1}) \mapsto ((z_0, a_0), (z_1, a_1), \dots, (z_{n-1}, a_{n-1})),$$

$$z_i = \sum_{j=0}^{n-1} a_j \binom{i}{j}, \quad \forall i.$$

Given a "received word" $((\widehat{z_0}, \widehat{a_0}), (\widehat{z_1}, \widehat{a_1}), \dots, (\widehat{z_{n-1}}, \widehat{a_{n-1}}))$ such that $(\widehat{z_i}, \widehat{a_i}) = (z_i, a_i)$ except at < n/4 coordinates, output z_0 , in time poly(n). $\Omega(\sqrt{n/\log(n)})$

More generally, given the above and the prefix z_0, \ldots, z_{k-1} , if $(\widehat{z_i}, \widehat{a_i}) = (z_i, a_i)$ except at < (n-k)/4 coordinates $i \ge k$, output z_k .

This yields a decoding algorithm for the binary tree codes, correcting up to $\langle n/4 \rangle$ errors.

$$\Omega(n^{3/4}/\sqrt{\log(n)})$$

Our Decoding Algorithm

Outline

Our Decoding Algorithm

<u>Outline</u>

1 Locate $\alpha(n)/2$ indices $i \in [0, \alpha(n))$ such that $\widehat{z_i} = z_i$, for some $\alpha(n) = \Omega(\sqrt{n \log(n)})$, using a Newton basis analog of the Sudan and Shokrollahi-Wasserman algorithms.

Our Decoding Algorithm

<u>Outline</u>

- **1** Locate $\alpha(n)/2$ indices $i \in [0, \alpha(n))$ such that $\widehat{z_i} = z_i$, for some $\alpha(n) = \Omega(\sqrt{n \log(n)})$, using a Newton basis analog of the Sudan and Shokrollahi-Wasserman algorithms.
- 2 Using a duality trick, do the same for the a_j 's with the same algorithm.

Our Decoding Algorithm

<u>Outline</u>

- **1** Locate $\alpha(n)/2$ indices $i \in [0, \alpha(n))$ such that $\widehat{z_i} = z_i$, for some $\alpha(n) = \Omega(\sqrt{n \log(n)})$, using a Newton basis analog of the Sudan and Shokrollahi-Wasserman algorithms.
- 2 Using a duality trick, do the same for the a_j 's with the same algorithm.
- 3 Among the first $\alpha(n)$ coordinates, we have as many known z_i 's as unknown a_j 's. Interpolate the remaining unknown a_j 's using the Lindström-Gessel-Viennot Lemma, recovering $z_0 = a_0$.

1 Locate $\alpha(n)/2$ indices $i \in [0, \alpha(n))$ such that $\widehat{z_i} = z_i$, for some $\alpha(n) = \Omega(\sqrt{n \log(n)})$, using a Newton basis analog of the Sudan and Shokrollahi-Wasserman algorithms.

WLOG all $\hat{a}_j = 0$ (subtract evaluations of $\sum_{j=0}^{n-1} \hat{a}_j \binom{x}{j}$ from \hat{z}_i 's).

WLOG all $\hat{a}_j = 0$ (subtract evaluations of $\sum_{j=0}^{n-1} \hat{a}_j \binom{x}{j}$ from \hat{z}_i 's).

Algorithm

Let $\alpha = \alpha(n) = r\sqrt{n\log(n)}$, some $r \in \mathbb{R}$.

WLOG all $\hat{a}_j = 0$ (subtract evaluations of $\sum_{j=0}^{n-1} \hat{a}_j \binom{x}{j}$ from \hat{z}_i 's).

Algorithm

Let $\alpha = \alpha(n) = r\sqrt{n\log(n)}$, some $r \in \mathbb{R}$.

• Randomly choose indices $R \subset [\alpha, n)$, $|R| = n - 2\alpha + 1$.

WLOG all $\hat{a}_j = 0$ (subtract evaluations of $\sum_{j=0}^{n-1} \hat{a}_j \binom{x}{j}$ from \hat{z}_i 's).

Algorithm

Let $\alpha = \alpha(n) = r\sqrt{n\log(n)}$, some $r \in \mathbb{R}$.

- Randomly choose indices $R \subset [\alpha, n)$, $|R| = n 2\alpha + 1$.
- Find polynomials

$$b(x) = \sum_{j \in [0,\alpha) \cup R} b_j {x \choose j}, \qquad c(x) = \sum_{j=0}^{\alpha-1} c_j x^j$$
$$\forall i \in [0,n), \ b(i) + c(i)\widehat{z}_i = 0.$$

WLOG all $\hat{a}_j = 0$ (subtract evaluations of $\sum_{j=0}^{n-1} \hat{a}_j \binom{x}{j}$ from \hat{z}_i 's).

Algorithm

Let $\alpha = \alpha(n) = r\sqrt{n\log(n)}$, some $r \in \mathbb{R}$.

- Randomly choose indices $R \subset [\alpha, n)$, $|R| = n 2\alpha + 1$.
- Find polynomials

$$b(x) = \sum_{j \in [0,\alpha) \cup R} b_j {x \choose j}, \qquad c(x) = \sum_{j=0}^{\alpha-1} c_j x^j$$
$$\forall i \in [0,n), \ b(i) + c(i)\widehat{z}_i = 0.$$

• Output smallest $i_0 \in [0, \alpha)$ s.t. $c(i_0) \neq 0$.

Let $\alpha = \alpha(n) = r\sqrt{n\log(n)}$, some $r \in \mathbb{R}$.

- Randomly choose indices $R \subset [\alpha, n)$, $|R| = n 2\alpha + 1$.
- Find polynomials

$$b(x) = \sum_{j \in [0,\alpha) \cup R} b_j {x \choose j}, \qquad c(x) = \sum_{j=0}^{\alpha-1} c_j x^j$$
$$\forall i \in [0,n), \ b(i) + c(i)\widehat{z}_i = 0.$$

• Output smallest $i_0 \in [0, \alpha)$ s.t. $c(i_0) \neq 0$.

Claim: $\widehat{z_{i_0}} = z_{i_0}$.

Let $\alpha = \alpha(n) = r\sqrt{n\log(n)}$, some $r \in \mathbb{R}$.

- Randomly choose indices $R \subset [\alpha, n)$, $|R| = n 2\alpha + 1$.
- · Find polynomials

$$b(x) = \sum_{j \in [0,\alpha) \cup R} b_j {x \choose j}, \qquad c(x) = \sum_{j=0}^{\alpha-1} c_j x^j$$
$$\forall i \in [0,n), \ b(i) + c(i)\widehat{z_i} = 0.$$

• Output smallest $i_0 \in [0, \alpha)$ s.t. $c(i_0) \neq 0$.

Claim:
$$\widehat{z_{i_0}} = z_{i_0}$$
.

Let $p(x) = \sum_{j=0}^{n-1} a_j {x \choose j}$, the correct polynomial. So $p(i) = z_i$.

Let $\alpha = \alpha(n) = r\sqrt{n\log(n)}$, some $r \in \mathbb{R}$.

- Randomly choose indices $R \subset [\alpha, n)$, $|R| = n 2\alpha + 1$.
- Find polynomials

$$b(x) = \sum_{j \in [0,\alpha) \cup R} b_j {x \choose j}, \qquad c(x) = \sum_{j=0}^{\alpha-1} c_j x^j$$
$$\forall i \in [0,n), \ b(i) + c(i)\widehat{z}_i = 0.$$

• Output smallest $i_0 \in [0, \alpha)$ s.t. $c(i_0) \neq 0$.

Claim: $\widehat{\mathbf{z}_{\mathbf{i}_0}} = \mathbf{z}_{\mathbf{i}_0}$.

Let $p(x) = \sum_{i=0}^{n-1} a_i {x \choose i}$, the correct polynomial. So $p(i) = z_i$.

Bound on # errors $\Longrightarrow p(x)$ is $O(\sqrt{n/\log(n)})$ -sparse, and the $\widehat{z_i}$ are the outputs of p(x) except with $O(\sqrt{n/\log(n)})$ errors.

Let $\alpha = \alpha(n) = r\sqrt{n\log(n)}$, some $r \in \mathbb{R}$.

- Randomly choose indices $R \subset [\alpha, n)$, $|R| = n 2\alpha + 1$.
- Find polynomials

$$b(x) = \sum_{j \in [0,\alpha) \cup R} b_j {x \choose j}, \qquad c(x) = \sum_{j=0}^{\alpha-1} c_j x^j$$
$$\forall i \in [0,n), \ b(i) + c(i)\widehat{z}_i = 0.$$

• Output smallest $i_0 \in [0, \alpha)$ s.t. $c(i_0) \neq 0$.

Claim: $\widehat{z_{i_0}} = z_{i_0}$.

Let $p(x) = \sum_{i=0}^{n-1} a_i {x \choose i}$, the correct polynomial. So $p(i) = z_i$.

Bound on # errors $\Longrightarrow p(x)$ is $O(\sqrt{n/\log(n)})$ -sparse, and the $\widehat{z_i}$ are the outputs of p(x) except with $O(\sqrt{n/\log(n)})$ errors.

Plan: Show b(x) + p(x)c(x) is sparse but also has many roots, hence is ≈ 0 . (Specifically, $b(i_0) + p(i_0)c(i_0) = 0$.)

Let $\alpha = \alpha(n) = r\sqrt{n\log(n)}$, some $r \in \mathbb{R}$.

- Randomly choose indices $R \subset [\alpha, n)$, $|R| = n 2\alpha + 1$.
- Find polynomials

$$b(x) = \sum_{j \in [0,\alpha) \cup R} b_j {x \choose j}, \qquad c(x) = \sum_{j=0}^{\alpha-1} c_j x^j$$
$$\forall i \in [0,n), \ b(i) + c(i)\widehat{z}_i = 0.$$

• Output smallest $i_0 \in [0, \alpha)$ s.t. $c(i_0) \neq 0$.

Claim: $\widehat{z_{i_0}} = z_{i_0}$.

Let $p(x) = \sum_{i=0}^{n-1} a_i {x \choose i}$, the correct polynomial. So $p(i) = z_i$.

Bound on # errors $\Longrightarrow p(x)$ is $O(\sqrt{n/\log(n)})$ -sparse, and the $\widehat{z_i}$ are the outputs of p(x) except with $O(\sqrt{n/\log(n)})$ errors.

Plan: Show b(x) + p(x)c(x) is sparse but also has many roots, hence is ≈ 0 . (Specifically, $b(i_0) + p(i_0)c(i_0) = 0$.)

Then $c(i_0) \neq 0 \Rightarrow \widehat{z_{i_0}} = p(i_0) = z_{i_0}$, as desired.

$$\alpha = O(\sqrt{n\log(n)}), \quad |R| = n - 2\alpha + 1, \quad b(x) = \sum_{j \in [0,\alpha) \cup R} b_j {x \choose j}, \quad c(x) = \sum_{j=0}^{\alpha - 1} c_j x^j$$

$$\forall i \in [0,n), \ b(i) + c(i)\widehat{z_i} = 0$$

$$p(x) = \sum_{j=0}^{n-1} a_j {x \choose j}, \ p(i) = z_i$$
sparsity($p(x)$) = $O(\sqrt{n/\log(n)})$, $z_i = \widehat{z_i}$ except for $O(\sqrt{n/\log(n)})$ errors.

$$\alpha = O(\sqrt{n\log(n)}), \quad |R| = n - 2\alpha + 1, \quad b(x) = \sum_{j \in [0,\alpha) \cup R} b_j \binom{x}{j}, \quad c(x) = \sum_{j=0}^{\alpha - 1} c_j x^j$$

$$\forall i \in [0,n), \ b(i) + c(i)\widehat{z_i} = 0$$

$$p(x) = \sum_{j=0}^{n-1} a_j \binom{x}{j}, \ p(i) = z_i$$

$$\text{sparsity}(p(x)) = O(\sqrt{n/\log(n)}), \ z_i = \widehat{z_i} \text{ except for } O(\sqrt{n/\log(n)}) \text{ errors.}$$

$$\alpha = O(\sqrt{n\log(n)}), \quad |R| = n - 2\alpha + 1, \quad b(x) = \sum_{j \in [0,\alpha) \cup R} b_j \binom{x}{j}, \quad c(x) = \sum_{j=0}^{\alpha - 1} c_j x^j$$

$$\forall i \in [0,n), \ b(i) + c(i)\widehat{z_i} = 0$$

$$p(x) = \sum_{j=0}^{n-1} a_j \binom{x}{j}, \ p(i) = z_i$$
 sparsity($p(x)$) = $O(\sqrt{n/\log(n)}), \ z_i = \widehat{z_i}$ except for $O(\sqrt{n/\log(n)})$ errors.

Proof that $b(i_0) + p(i_0)c(i_0) = 0$.

1 b(x) + p(x)c(x) has $n - \Omega(\sqrt{n/\log(n)})$ roots (each i s.t. $\hat{z_i} = z_i$).

$$\alpha = O(\sqrt{n\log(n)}), \quad |R| = n - 2\alpha + 1, \quad b(x) = \sum_{j \in [0,\alpha) \cup R} b_j \binom{x}{j}, \quad c(x) = \sum_{j=0}^{\alpha - 1} c_j x^j$$

$$\forall i \in [0,n), \ b(i) + c(i)\widehat{z_i} = 0$$

$$p(x) = \sum_{j=0}^{n-1} a_j \binom{x}{j}, \ p(i) = z_i$$
 sparsity($p(x)$) = $O(\sqrt{n/\log(n)}), \ z_i = \widehat{z_i}$ except for $O(\sqrt{n/\log(n)})$ errors.

- 1 b(x) + p(x)c(x) has $n \Omega(\sqrt{n/\log(n)})$ roots (each i s.t. $\hat{z_i} = z_i$).
- 2 b(x) + p(x)c(x) is $n \Omega(\sqrt{n/\log(n)})$ sparse w.h.p.:

$$\alpha = O(\sqrt{n\log(n)}), \quad |R| = n - 2\alpha + 1, \quad b(x) = \sum_{j \in [0,\alpha) \cup R} b_j \binom{x}{j}, \quad c(x) = \sum_{j=0}^{\alpha - 1} c_j x^j$$

$$\forall i \in [0,n), \ b(i) + c(i)\widehat{z_i} = 0$$

$$p(x) = \sum_{j=0}^{n-1} a_j \binom{x}{j}, \ p(i) = z_i$$

$$\text{sparsity}(p(x)) = O(\sqrt{n/\log(n)}), \ z_i = \widehat{z_i} \text{ except for } O(\sqrt{n/\log(n)}) \text{ errors.}$$

- **1** b(x) + p(x)c(x) has $n \Omega(\sqrt{n/\log(n)})$ roots (each i s.t. $\widehat{z_i} = z_i$).
- 2 b(x) + p(x)c(x) is $n \Omega(\sqrt{n/\log(n)})$ sparse w.h.p.:
 - sparsity $(p(x)c(x)) \le$ sparsity $(p(x)) \times \deg(c(x)) \le O(n)$.

$$\alpha = O(\sqrt{n\log(n)}), \quad |R| = n - 2\alpha + 1, \quad b(x) = \sum_{j \in [0,\alpha) \cup R} b_j \binom{x}{j}, \quad c(x) = \sum_{j=0}^{\alpha - 1} c_j x^j$$

$$\forall i \in [0,n), \ b(i) + c(i)\widehat{z_i} = 0$$

$$p(x) = \sum_{j=0}^{n-1} a_j \binom{x}{j}, \ p(i) = z_i$$

$$\text{sparsity}(p(x)) = O(\sqrt{n/\log(n)}), \ z_i = \widehat{z_i} \text{ except for } O(\sqrt{n/\log(n)}) \text{ errors.}$$

- **1** b(x) + p(x)c(x) has $n \Omega(\sqrt{n/\log(n)})$ roots (each i s.t. $\widehat{z_i} = z_i$).
- 2 b(x) + p(x)c(x) is $n \Omega(\sqrt{n/\log(n)})$ sparse w.h.p.:
 - sparsity $(p(x)c(x)) \le {n \choose 0}$ sparsity $(p(x)) \times \deg(c(x)) \le O(n)$. p(x)c(x)

$$\alpha = O(\sqrt{n\log(n)}), \quad |R| = n - 2\alpha + 1, \quad b(x) = \sum_{j \in [0,\alpha) \cup R} b_j \binom{x}{j}, \quad c(x) = \sum_{j=0}^{\alpha - 1} c_j x^j$$

$$\forall i \in [0,n), \ b(i) + c(i)\widehat{z_i} = 0$$

$$p(x) = \sum_{j=0}^{n-1} a_j \binom{x}{j}, \ p(i) = z_i$$

$$\text{sparsity}(p(x)) = O(\sqrt{n/\log(n)}), \ z_i = \widehat{z_i} \text{ except for } O(\sqrt{n/\log(n)}) \text{ errors.}$$

- **1** b(x) + p(x)c(x) has $n \Omega(\sqrt{n/\log(n)})$ roots (each i s.t. $\widehat{z_i} = z_i$).
- 2 b(x) + p(x)c(x) is $n \Omega(\sqrt{n/\log(n)})$ sparse w.h.p.:
 - sparsity $(p(x)c(x)) \le$ sparsity $(p(x)) \times \deg(c(x)) \le O(n)$. $p(x)c(x) \xrightarrow{\binom{x}{0}} \frac{\binom{x}{n-1}}{n-1}$
 - +b(x): union with $[0, \alpha) \cup R$ of size $n \Omega(\sqrt{n \log(n)})$.

$$\alpha = O(\sqrt{n\log(n)}), \quad |R| = n - 2\alpha + 1, \quad b(x) = \sum_{j \in [0,\alpha) \cup R} b_j {x \choose j}, \quad c(x) = \sum_{j=0}^{\alpha - 1} c_j x^j$$

$$\forall i \in [0,n), \ b(i) + c(i)\widehat{z_i} = 0$$

$$p(x) = \sum_{j=0}^{n-1} a_j {x \choose j}, \ p(i) = z_i$$

$$\text{sparsity}(p(x)) = O(\sqrt{n/\log(n)}), \ z_i = \widehat{z_i} \text{ except for } O(\sqrt{n/\log(n)}) \text{ errors.}$$

- **1** b(x) + p(x)c(x) has $n \Omega(\sqrt{n/\log(n)})$ roots (each i s.t. $\widehat{z_i} = z_i$).
- 2 b(x) + p(x)c(x) is $n \Omega(\sqrt{n/\log(n)})$ sparse w.h.p.:
- sparsity(p(x)c(x)) \leq sparsity(p(x)) \times deg(c(x)) \leq O(n). p(x)c(x)
- +b(x): union with $[0, \alpha) \cup R$ of size $n \Omega(\sqrt{n \log(n)})$.

$$\alpha = O(\sqrt{n\log(n)}), \quad |R| = n - 2\alpha + 1, \quad b(x) = \sum_{j \in [0,\alpha) \cup R} b_j {x \choose j}, \quad c(x) = \sum_{j=0}^{\alpha - 1} c_j x^j$$

$$\forall i \in [0,n), \ b(i) + c(i)\widehat{z_i} = 0$$

$$p(x) = \sum_{j=0}^{n-1} a_j {x \choose j}, \ p(i) = z_i$$

$$\text{sparsity}(p(x)) = O(\sqrt{n/\log(n)}), \ z_i = \widehat{z_i} \text{ except for } O(\sqrt{n/\log(n)}) \text{ errors.}$$

- 1 b(x) + p(x)c(x) has $n \Omega(\sqrt{n/\log(n)})$ roots (each i s.t. $\hat{z_i} = z_i$).
- 2 b(x) + p(x)c(x) is $n \Omega(\sqrt{n/\log(n)})$ sparse w.h.p.:
 - sparsity $(p(x)c(x)) \le (x-1)$ sparsity $(p(x)) \times \deg(c(x)) \le O(n)$. $p(x)c(x) \xrightarrow{(x-1)}$
 - +b(x): union with $[0, \alpha) \cup R$ of size $n \Omega(\sqrt{n \log(n)})$.
- 3 # roots \geq sparsity $\Longrightarrow b(0) + p(0)c(0) = 0$.

$$\alpha = O(\sqrt{n\log(n)}), \quad |R| = n - 2\alpha + 1, \quad b(x) = \sum_{j \in [0,\alpha) \cup R} b_j {x \choose j}, \quad c(x) = \sum_{j=0}^{\alpha-1} c_j x^j$$

$$\forall i \in [0,n), \ b(i) + c(i)\widehat{z_i} = 0$$

$$p(x) = \sum_{j=0}^{n-1} a_j {x \choose j}, \ p(i) = z_i$$
 sparsity($p(x)$) = $O(\sqrt{n/\log(n)})$, $z_i = \widehat{z_i}$ except for $O(\sqrt{n/\log(n)})$ errors.

- 1 b(x) + p(x)c(x) has $n \Omega(\sqrt{n/\log(n)})$ roots (each i s.t. $\hat{z_i} = z_i$).
- 2 b(x) + p(x)c(x) is $n \Omega(\sqrt{n/\log(n)})$ sparse w.h.p.:
 - sparsity $(p(x)c(x)) \le$ sparsity $(p(x)) \times \deg(c(x)) \le O(n)$. $p(x)c(x) \xrightarrow{\binom{x}{0}} \frac{\binom{x}{n-1}}{}$
- 3 # roots \geq sparsity $\Longrightarrow b(0) + p(0)c(0) = 0$.
- **4** If c(0) = 0, then b(0) = 0. Refine sparsity bound $\implies b(1) + p(1)c(1) = 0, \dots, b(i_0) + p(i_0)c(i_0) = 0$.

$$\alpha = O(\sqrt{n\log(n)}), \quad |R| = n - 2\alpha + 1, \quad b(x) = \sum_{j \in [0,\alpha) \cup R} b_j {x \choose j}, \quad c(x) = \sum_{j=0}^{\alpha-1} c_j x^j$$

$$\forall i \in [0,n), \ b(i) + c(i)\widehat{z_i} = 0$$

$$p(x) = \sum_{j=0}^{n-1} a_j {x \choose j}, \ p(i) = z_i$$

$$\text{sparsity}(p(x)) = O(\sqrt{n/\log(n)}), \ z_i = \widehat{z_i} \text{ except for } O(\sqrt{n/\log(n)}) \text{ errors.}$$

- 1 b(x) + p(x)c(x) has $n \Omega(\sqrt{n/\log(n)})$ roots (each i s.t. $\hat{z_i} = z_i$).
- 2 b(x) + p(x)c(x) is $n \Omega(\sqrt{n/\log(n)})$ sparse w.h.p.:
 - sparsity $(p(x)c(x)) \le$ sparsity $(p(x)) \times \deg(c(x)) \le O(n)$. $p(x)c(x) \xrightarrow{\binom{x}{0}} \frac{\binom{x}{n-1}}{\binom{x}{n-1}}$
- +b(x): union with $[0,\alpha) \cup R$ of size b(x) +b(x) +b(
- 3 # roots \geq sparsity $\Longrightarrow b(0) + p(0)c(0) = 0$.
- **4** If c(0) = 0, then b(0) = 0. Refine sparsity bound $\implies b(1) + p(1)c(1) = 0, ..., b(i_0) + p(i_0)c(i_0) = 0$.

$$\alpha = O(\sqrt{n\log(n)}), \quad |R| = n - 2\alpha + 1, \quad b(x) = \sum_{j \in [0,\alpha) \cup R} b_j {x \choose j}, \quad c(x) = \sum_{j=0}^{\alpha - 1} c_j x^j$$

$$\forall i \in [0,n), \ b(i) + c(i)\widehat{z_i} = 0$$

$$p(x) = \sum_{j=0}^{n-1} a_j {x \choose j}, \ p(i) = z_i$$

$$\text{sparsity}(p(x)) = O(\sqrt{n/\log(n)}), \ z_i = \widehat{z_i} \text{ except for } O(\sqrt{n/\log(n)}) \text{ errors.}$$

- **1** b(x) + p(x)c(x) has $n \Omega(\sqrt{n/\log(n)})$ roots (each i s.t. $\widehat{z_i} = z_i$).
- 2 b(x) + p(x)c(x) is $n \Omega(\sqrt{n/\log(n)})$ sparse w.h.p.:
 - sparsity $(p(x)c(x)) \le$ sparsity $(p(x)) \times \deg(c(x)) \le O(n)$.
 - In the Reed-Solomon code version, these are degrees, which add.
- +b(x): union with $[0,\alpha) \cup R$ of size which add. $n \Omega(\sqrt{n\log(n)})$.
- 3 # roots \geq sparsity $\Longrightarrow b(0) + p(0)c(0) = 0$.
- 4 If c(0) = 0, then b(0) = 0. Refine sparsity bound $\implies b(1) + p(1)c(1) = 0, \dots, b(i_0) + p(i_0)c(i_0) = 0$.

2 Using a duality trick, use the same algorithm to locate $\alpha(n)/2$ indices $j \in [0, \alpha(n))$ such that $\widehat{a_j} = a_j$, for some $\alpha(n) = \Omega(\sqrt{n \log(n)})$.

2 Using a duality trick, use the same algorithm to locate $\alpha(n)/2$ indices $j \in [0, \alpha(n))$ such that $\widehat{a_j} = a_j$, for some $\alpha(n) = \Omega(\sqrt{n \log(n)})$.

Inversion formula:

$$z_i = \sum_{j=0}^{n-1} a_j {i \choose j}, \qquad a_j = \sum_{i=0}^{n-1} (-1)^{j-i} {j \choose i} z_i.$$

2 Using a duality trick, use the same algorithm to locate $\alpha(n)/2$ indices $j \in [0, \alpha(n))$ such that $\widehat{a_j} = a_j$, for some $\alpha(n) = \Omega(\sqrt{n \log(n)})$.

Inversion formula:

$$z_i = \sum_{j=0}^{n-1} a_j {i \choose j}, \qquad a_j = \sum_{i=0}^{n-1} (-1)^{j-i} {j \choose i} z_i.$$

Thus the matrix of the transformation $(a_j) \mapsto (z_i)$ is the same as its inverse except that the rows and columns are scaled by $\begin{pmatrix} 1 & -1 & 1 & -1 & \cdots \end{pmatrix}$.

2 Using a duality trick, use the same algorithm to locate $\alpha(n)/2$ indices $j \in [0, \alpha(n))$ such that $\widehat{a_j} = a_j$, for some $\alpha(n) = \Omega(\sqrt{n \log(n)})$.

Inversion formula:

$$z_i = \sum_{j=0}^{n-1} a_j {i \choose j}, \qquad a_j = \sum_{i=0}^{n-1} (-1)^{j-i} {j \choose i} z_i.$$

Thus the matrix of the transformation $(a_j) \mapsto (z_i)$ is the same as its inverse except that the rows and columns are scaled by $\begin{pmatrix} 1 & -1 & 1 & -1 & \cdots \end{pmatrix}$.

Treat $((\widehat{a_0}, \widehat{z_0}), (-\widehat{a_1}, -\widehat{z_1}), (\widehat{a_2}, \widehat{z_2}), \dots)$ as an errored encoding of $(a_0, -a_1, a_2, \dots)$ and apply step 1 again.

$$J = \{\text{nonzero } a_j \text{ indices}\} = \{0, 1, 3\}, I = \{\text{roots}\} = \{1, 3, 4\}.$$

Unknown
$$a_{j}$$
's

(x) (x) (x) (x) (x) (x) (x) (x) (x) (5) (6)

Known z_{i} 's

0 1 2 3 4 5 6

$$J = \{\text{nonzero } a_j \text{ indices}\} = \{0, 1, 3\}, I = \{\text{roots}\} = \{1, 3, 4\}.$$

$$M_{IJ} \cdot \begin{pmatrix} a_{j_1} \\ \vdots \\ a_{j_k} \end{pmatrix} = \begin{pmatrix} z_{i_1} = \widehat{z_{i_1}} \\ \vdots \\ z_{i_k} = \widehat{z_{i_k}} \end{pmatrix}, \quad M = \left\{ \begin{pmatrix} i \\ j \end{pmatrix} \right\}_{0 \le i, j \le n-1}$$

 $J = \{\text{nonzero } a_j \text{ indices}\} = \{0, 1, 3\}, I = \{\text{roots}\} = \{1, 3, 4\}.$

$$M_{IJ} \cdot \begin{pmatrix} a_{j_1} \\ \vdots \\ a_{j_k} \end{pmatrix} = \begin{pmatrix} z_{i_1} = \widehat{z_{i_1}} \\ \vdots \\ z_{i_k} = \widehat{z_{i_k}} \end{pmatrix}, \quad M = \left\{ \begin{pmatrix} i \\ j \end{pmatrix} \right\}_{0 \le i, j \le n-1}$$

All $j_{\ell} \leq i_{\ell} \Longrightarrow \det(M_{IJ}) \neq 0$ by LGV. Solve for $a_{j_1} = a_0 = z_0$.

Number-theoretic Variants of $\mathcal{TC}_{\mathbb{Z}}$ with Similar Parameters

We generalized the CHS integer tree code construction and found variants with similar parameters.

Number-theoretic Variants of $\mathcal{TC}_{\mathbb{Z}}$ with Similar Parameters

We generalized the CHS integer tree code construction and found variants with similar parameters.

In place of binomials $\binom{i}{j}$, use q-binomials $\binom{i}{j}_q$:

$$(x+y)^i = \sum_{i=0}^i \begin{bmatrix} i \\ j \end{bmatrix}_q x^j y^{i-j}$$
 where $yx = qxy$.

Number-theoretic Variants of $TC_{\mathbb{Z}}$ with Similar Parameters

We generalized the CHS integer tree code construction and found variants with similar parameters.

In place of binomials $\binom{i}{j}$, use q-binomials $\binom{i}{j}_q$:

$$(x+y)^i = \sum_{j=0}^i \begin{bmatrix} i \\ j \end{bmatrix}_q x^j y^{i-j}$$
 where $yx = qxy$.

- $q = \zeta_{\ell}$ for $\ell > n^3$ prime
- $q=e^{2\pi \iota heta}$ for $heta\in \mathbf{R}$ irrational & algebraic (w/ rounding)

Decoding problem: given \hat{x} = errored received output, solve

$$\min_{z \in \mathbf{R}^n} ||\widehat{x} - \operatorname{Enc}(z)||_{\ell_0}.$$

Decoding problem: given $\hat{x} = \text{errored received output}$, solve

$$\min_{z \in \mathbf{R}^n} ||\widehat{x} - \operatorname{Enc}(z)||_{\ell_0}.$$

Idea: Instead solve

$$\min_{z \in \mathbf{R}^n} ||\widehat{x} - \operatorname{Enc}(z)||_{\ell_1}.$$

Decoding problem: given $\hat{x} = \text{errored received output}$, solve

$$\min_{z\in\mathbf{R}^n}||\widehat{x}-\mathsf{Enc}(z)||_{\ell_0}.$$

Idea: Instead solve

$$\min_{z \in \mathbf{R}^n} ||\widehat{x} - \operatorname{Enc}(z)||_{\ell_1}.$$

Candes & Tao 2005: This works for a constant fraction of errors if the parity check matrix F satisfies the *restricted isometry property (RIP)*.

Decoding problem: given \hat{x} = errored received output, solve

$$\min_{z\in\mathbf{R}^n}||\widehat{x}-\mathsf{Enc}(z)||_{\ell_0}.$$

Idea: Instead solve

$$\min_{z\in\mathbf{R}^n}||\widehat{x}-\mathsf{Enc}(z)||_{\ell_1}.$$

Candes & Tao 2005: This works for a constant fraction of errors if the parity check matrix F satisfies the *restricted isometry property (RIP)*.

Suffices to construct such an *F* with shape:

$$\begin{pmatrix} * & * & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ * & * & * & * & * & 0 & 0 & \cdots & 0 & 0 \\ * & * & * & * & * & * & \cdots & 0 & 0 \\ \vdots & & & & \ddots & & \vdots \\ * & * & * & * & * & * & * & \cdots & * & * \end{pmatrix}$$

Decoding problem: given $\hat{x} = \text{errored received output}$, solve

$$\min_{z\in\mathbf{R}^n}||\widehat{x}-\mathsf{Enc}(z)||_{\ell_0}.$$

Idea: Instead solve

$$\min_{z \in \mathbf{R}^n} ||\widehat{x} - \operatorname{Enc}(z)||_{\ell_1}.$$

Candes & Tao 2005: This works for a constant fraction of errors if the parity check matrix F satisfies the *restricted isometry property (RIP)*.

$$\begin{pmatrix} * & * & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ * & * & * & * & 0 & 0 & \cdots & 0 & 0 \\ * & * & * & * & * & * & \cdots & 0 & 0 \\ \vdots & & & & & \ddots & & \vdots \\ * & * & * & * & * & * & * & \cdots & * & * \end{pmatrix}$$

However, this appears impossible. Need new "online RIP".

Hyperinvertible matrix—matrix where every square minor is invertible.

Hyperinvertible matrix—matrix where every square minor is invertible.

CHS encoding of \vec{z} is $(\vec{z}, M\vec{z})$, where M is an $n \times n$ "online hyperinvertible" matrix—lower triangular analog.

Hyperinvertible matrix—matrix where every square minor is invertible.

CHS encoding of \vec{z} is $(\vec{z}, M\vec{z})$, where M is an $n \times n$ "online hyperinvertible" matrix—lower triangular analog.

Open problem: construct $n \times n$ online hyperinvertible matrices over small finite fields.

Hyperinvertible matrix—matrix where every square minor is invertible.

CHS encoding of \vec{z} is $(\vec{z}, M\vec{z})$, where M is an $n \times n$ "online hyperinvertible" matrix—lower triangular analog.

Open problem: construct $n \times n$ online hyperinvertible matrices over small finite fields.

• Binomial matrix gives $\mathbb{F}_{2^{\text{poly}(n)}}$.

Hyperinvertible matrix—matrix where every square minor is invertible.

CHS encoding of \vec{z} is $(\vec{z}, M\vec{z})$, where M is an $n \times n$ "online hyperinvertible" matrix—lower triangular analog.

Open problem: construct $n \times n$ online hyperinvertible matrices over small finite fields.

- Binomial matrix gives $\mathbb{F}_{2^{\text{poly}(n)}}$.
- $\mathbb{F}_{\text{poly}(n)}$ \Rightarrow binary tree codes of distance 1/2 and alphabet size $2^{\log^*(n)}$.

Hyperinvertible matrix—matrix where every square minor is invertible.

CHS encoding of \vec{z} is $(\vec{z}, M\vec{z})$, where M is an $n \times n$ "online hyperinvertible" matrix—lower triangular analog.

Open problem: construct $n \times n$ online hyperinvertible matrices over small finite fields.

- Binomial matrix gives $\mathbb{F}_{2^{\text{poly}(n)}}$.
- $\mathbb{F}_{\text{poly}(n)} \Rightarrow$ binary tree codes of distance 1/2 and alphabet size $2^{\log^*(n)}$.

Without online condition, Beerliová-Trubíniová and Hirt construct

$$M = \left\{ \prod_{k \neq j} \frac{\beta_i - \alpha_k}{\alpha_j - \alpha_k} \right\}_{0 \le i, j \le n-1}$$

over $\mathbb{F}_{2n} = \{\alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_n\}$. (Interpolate $g(\alpha_j) = z_j$, then output $(g(\beta_i))_i$.)