Exercise class 11

Introduction to Programming and Numerical Analysis

Class 3 and 6 Annasofie Marckstrøm Olesen Spring 2024

UNIVERSITY OF COPENHAGEN

Problem set 7

Dynamic programming

Feedback on Data Project

In general: Good job!

I've approved your projects if you:

- Do at least *some* cleaning/processing of the data
- Do at least *some* analysis (calculations or plots)

Common feedback points:

- It's a bit too easy to just plot raw data you should at the minimum compute some descriptive statistics. Preferably some split-apply-combine.
- Good idea to use modules (py-file) for data cleaning.
- Clean up your repositories: Update README, delete files you are not using.

Plan for today: Problem set 7

- 1. Now-15.50: Work on optimization problems
- 2. 15.55-16.00: We talk about optimization in class
- 3. 16.00-16.15: Break
- 4. 16.15-16.35: Intro to dynamic programming
- 5. 16.35-17.00: Work on dynamic programming problems

Tip: Focus on the optimization tasks - If you get stuck with plotting, move on to the next task.

State variable: A variable determining the state of the world as it is when I make my decision. State variables evolve over time according to a transition process.

Example: Cash-on-hand in consumption-savings model.

State variable: A variable determining the *state of the world* as it is when I make my decision. State variables evolve over time according to a *transition process*.

Example: Cash-on-hand in consumption-savings model.

Choice variable: The variable I *choose* to maximize utility (*also control variable*). Example: Consumption in consumption-savings model.

State variable: A variable determining the *state of the world* as it is when I make my decision. State variables evolve over time according to a *transition process*.

Example: Cash-on-hand in consumption-savings model.

Choice variable: The variable I *choose* to maximize utility (*also control variable*). Example: Consumption in consumption-savings model.

Policy function: The optimal *choice* as a function of *state*.

State variable: A variable determining the state of the world as it is when I make my decision. State variables evolve over time according to a transition process.

Example: Cash-on-hand in consumption-savings model.

Choice variable: The variable I *choose* to maximize utility (*also control variable*). Example: Consumption in consumption-savings model.

Policy function: The optimal *choice* as a function of *state*.

Value function: The total value of today's *state*: Utility today + discounted value of tomorrow's state.

State variable: A variable determining the *state of the world* as it is when I make my decision. State variables evolve over time according to a *transition process*.

Choice variable: The variable I *choose* to maximize utility (*also control variable*). Example: Consumption in consumption-savings model.

Example: Cash-on-hand in consumption-savings model.

Policy function: The optimal choice as a function of state.

Value function: The total value of today's state: Utility today + discounted value of tomorrow's state.

Solution: Set of (approximate) policy and value functions describing optimal behavior as a function of the state.

Period 1:

$$egin{aligned} V_1(\emph{m}_1) &= \max_{\emph{c}_1} \emph{u}(\emph{c}_1) + \beta \mathbb{E}\left[V_2(\emph{m}_2)
ight] \ s.t. & \emph{m}_2 &= R(\emph{m}_1 - \emph{c}_1) + \emph{y}_2 \ y_2 &\sim \emph{U}(0,1) \end{aligned}$$

Period 1:

$$egin{aligned} V_1(\emph{m}_1) &= \max_{\emph{c}_1} \emph{u}(\emph{c}_1) + \beta \mathbb{E}\left[V_2(\emph{m}_2)
ight] \ s.t. & \emph{m}_2 &= \emph{R}(\emph{m}_1 - \emph{c}_1) + \emph{y}_2 \ y_2 &\sim \emph{U}(0,1) \end{aligned}$$

Period 2:

$$V_2(m_2) = \max_{c_2} u(c_2)$$

s.t. $m_2 \ge c_2$

State variable(s)? Choice variable(s)? Policy function(s)?

State variable(s)? m_1 , m_2 Choice variable(s)? Policy function(s)?

State variable(s)? m_1 , m_2 Choice variable(s)? c_1 , c_2 Policy function(s)?

State variable(s)? m_1 , m_2 Choice variable(s)? c_1 , c_2 Policy function(s)? $c_1^*(m_1)$, $c_2^*(m_2)$

Period 1:

$$egin{aligned} V_1(\emph{m}_1) &= \max_{\emph{c}_1} \emph{u}(\emph{c}_1) + \beta \mathbb{E}\left[rac{\emph{V}_2(\emph{m}_2)}{2}
ight] \ s.t. \quad \emph{m}_2 &= R(\emph{m}_1 - \emph{c}_1) + \emph{y}_2 \ \emph{y}_2 &\sim \emph{U}(0,1) \end{aligned}$$

Period 1:

$$egin{aligned} V_1(\emph{m}_1) &= \max_{\emph{c}_1} \emph{u}(\emph{c}_1) + \beta \mathbb{E}\left[rac{\emph{V}_2(\emph{m}_2)}{\emph{m}_2}
ight] \ s.t. \quad \emph{m}_2 &= R(\emph{m}_1 - \emph{c}_1) + \emph{y}_2 \ \emph{y}_2 &\sim \emph{U}(0,1) \end{aligned}$$

The optimal choice today depends on the value function tomorrow - which in turn depends on the optimal choice tomorrow.

So we need to solve tomorrow's problem first - backwards induction.

Period 2:

$$V_2(m_2) = \max_{c_2} u(c_2)$$
s.t. $m_2 \ge c_2$

This is just a standard constrained optimization problem. We can solve this for any value of m_2 , we like. This gives us consumption $c_2^*(m_2)$ and a value $V_2(m_2)$ for any given input m_2 .

Period 2

$$V_2(m_2) = \max_{c_2} u(c_2)$$
s.t. $m_2 \ge c_2$

This is just a standard constrained optimization problem. We can solve this for any value of m_2 , we like. This gives us consumption $c_2^*(m_2)$ and a value $V_2(m_2)$ for any given input m_2 .

Problem: Evaluating $V_2(m_2)$ is **costly** because it involves an optimization.

Period 2

$$V_2(m_2) = \max_{c_2} u(c_2)$$
s.t. $m_2 \ge c_2$

This is just a standard constrained optimization problem. We can solve this for any value of m_2 , we like. This gives us consumption $c_2^*(m_2)$ and a value $V_2(m_2)$ for any given input m_2 .

Problem: Evaluating $V_2(m_2)$ is **costly** because it involves an optimization. **Solution:** We evaluate V_2 and c_2^* on a grid over m_2 and approximate the rest of the functions by **interpolation**.

0.00 0.5 1.0 1.5 2.0

3.0

Back to period 1...

$$egin{aligned} V_1(m_1) &= \max_{c_1} u(c_1) + eta \mathbb{E}\left[\check{V}_2(m_2)
ight] \ s.t. \quad m_2 &= R(m_1 - c_1) + y_2 \ y_2 &\sim U(0,1) \end{aligned}$$

Now we know the (approximate) period 2 value function, so we can solve the problem in period 1.

We still need to take expectations with respect to $V_2(m_2)$, where m_2 is stochastic...

Back to period 1...

$$V_1(m_1) = \max_{c_1} u(c_1) + \beta \mathbb{E} \left[\check{V}_2(m_2) \right]$$

s.t. $m_2 = R(m_1 - c_1) + y_2$
 $y_2 \sim U(0, 1)$

Now we know the (approximate) period 2 value function, so we can solve the problem in period 1.

We still need to take expectations with respect to $V_2(m_2)$, where m_2 is stochastic... \rightarrow for instance Monte Carlo Integration for continuous m_2 , weighted average for discrete m_2 ! 1

We can solve this problem over a grid of m_1 . After doing so we have:

- Grid over m_1 : \overrightarrow{m}_1
- ullet Value $V_1(\overrightarrow{m}_1)$ and $c_1^*(\overrightarrow{m}_1) o$ Interpolators $\check{V}_1(m_1)$ and $\check{c}_1^*(m_1)$
- ullet Transition rule for state variable: $m_2=R(m_1-c_1)+y_2$
- Grid over m_2 : \overrightarrow{m}_2
- ullet Value $V_2(\overrightarrow{m}_2)$ and $c_2^*(\overrightarrow{m}_2) o$ Interpolators $\check{V}_2(m_2)$ and $\check{c}_2^*(m_2)$

So for any given initial state m_1 , we can **simulate** behavior.

We simulate forwards:

1. Set initial state, m_1 .

- 1. Set initial state, m_1 .
- 2. Interpolate period 1 consumption, $\emph{c}_1^* = \check{\emph{c}}_1^*(\emph{m}_1)$

- 1. Set initial state, m_1 .
- 2. Interpolate period 1 consumption, $c_1^* = \check{c}_1^*(m_1)$
- 3. Compute next period state:

- 1. Set initial state, m_1 .
- 2. Interpolate period 1 consumption, $c_1^* = \check{c}_1^*(m_1)$
- 3. Compute next period state:
 - 3.1 Draw income shock $y_2 \sim U(0,1)$

- 1. Set initial state, m_1 .
- 2. Interpolate period 1 consumption, $c_1^* = \check{c}_1^*(m_1)$
- 3. Compute next period state:
 - 3.1 Draw income shock $y_2 \sim U(0,1)$
 - 3.2 Compute $m_2 = R(m_1 c_1^*) + y_2$

- 1. Set initial state, m_1 .
- 2. Interpolate period 1 consumption, $c_1^* = \check{c}_1^*(m_1)$
- 3. Compute next period state:
 - 3.1 Draw income shock $y_2 \sim U(0,1)$
 - 3.2 Compute $m_2 = R(m_1 c_1^*) + y_2$
- 4. Interpolate period 2 consumption, $\emph{c}_2= \check{\emph{c}}_2^*(\emph{m}_2)$

- 1. Set initial state, m_1 .
- 2. Interpolate period 1 consumption, $c_1^* = \check{c}_1^*(m_1)$
- 3. Compute next period state:
 - 3.1 Draw income shock $y_2 \sim U(0,1)$
 - 3.2 Compute $m_2 = R(m_1 c_1^*) + y_2$
- 4. Interpolate period 2 consumption, $c_2 = \check{c}_2^*(m_2)$
- 5. Repeat for N consumers

Summing up:

- Solve **backwards** to find interpolators of c_1^* and c_2^*
- ullet Simulate **forwards** using interpolators of c_1^* and c_2^*

Approach generalizes to an arbitrary number of periods - start at the last period and iterate backwards.

Next time...

Physical lecture:

• Model project

Video lectures:

- Structural estimation
- OLG and Ramsey models

Exercises

• Work on model project