Extremely Sharp

Time limit: 0.5 second. Memory limit: 128MB

You have an extremely sharp sword and a nice modern painting that shows a convex polygon. You want to practice your swording skill by cutting this painting but you do not want to destroy the polygon.

The convex polygon has N vertices at positions $(X_1, Y_1), (X_2, Y_2), ..., (X_N, Y_N)$ in a counter-clockwise order. It is guaranteed that there will be no three vertices on the same line.

Each cut is a straight line and is specified by two distinct points on that line. For each cut you want to know if it intersects the polygon.

Input

Each test case starts with a line containing two integers N and M ($3 \le N \le 100000$; $1 \le M \le 100000$).

The next N lines specify the convex polygon. For $1 \le i \le N$, the 1 + i line contains two integers X_i and Y_i , the co-ordinate of the i-th vertex of the polygon.

The next M lines describe the cuts. For $1 \le j \le M$, the 1 + N + j line contains four integers A B C D stating that the j-th cut passes through points (A,B) and (C,D). Each co-ordinate is within the range -1 000 000 000 to 1 000 000 000.

Output

For each test case, your program must output the number of cuts that pass through the polygon.

Example

Input 1	Output 1
4 5	3
0 0	
10 0	
10 10	
0 10	
-10 0 50 0	
-1 1 1 -1	
100 10 101 11	
20 0 20 30	
19 24 -1 4	
Input 2	Output 2
Input 2 3 6	Output 2
3 6	
3 6 0 0 10 0 5 5	
3 6 0 0 10 0 5 5 -10 5 -5 5	
3 6 0 0 10 0 5 5 -10 5 -5 5 -10 3 -5 3	
3 6 0 0 10 0 5 5 -10 5 -5 5 -10 3 -5 3 -5 3 -7 3	
3 6 0 0 10 0 5 5 -10 5 -5 5 -10 3 -5 3 -5 3 -7 3 -10 0 -5 0	
3 6 0 0 10 0 5 5 -10 5 -5 5 -10 3 -5 3 -5 3 -7 3	

Explanation: For the first test case, the 1st cut, the 2nd cut, and the 5th cut pass through the polygon, so the correct output for this test case is 3 (3 cuts). For the second test case, the first 4 cuts pass through the polygon, so the correct answer is 4.