CHAPTER 4 TESTS OF HYPOTHESES AND

CONTENTS

4	Tests of Hypotheses and Confidence			
	Inte	ervals		
	4.1	Test of Hypotheses		
	4.2	Hypothesis Tests for Estimable Func-		
		tion.		5
		4.2.1	The Mean Response For Any	
			Treatments	6
		4.2.2	Difference between the mean	
			response for two treatments	9
		4.2.3	Non Estimable Functions .	10
	4.3	Consistencies and Redundancies		11
	4.4	Testable Hypothesis		
	4.5	Normal Theory Gauss-Markov Model		17
	4.6	Elements of Hypothesis Test 3		
		4.6.1	Type I Error Level	31
		4.6.2	Type II Error Level	32
		4.6.3	Power of a Test	33
	4.7	Confidence intervals for estimable		
			ons of $\boldsymbol{\beta}$	39
	4.8	Confid	ence interval for σ^2 :	44

4 Tests of Hypotheses and Confidence Intervals

4.1 Test of Hypotheses

Consider the linear model with

$$E(\mathbf{Y}) = \mathbf{X}\boldsymbol{\beta}$$
 and $Var(\mathbf{Y}) = \Sigma$

This can also be expressed as

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

where $E(\epsilon) = \mathbf{0}$ and $Var(\epsilon) = \Sigma$.

Typical null hypothesis (H_0)

- is a status quo or prevailing viewpoint about a population
- ullet specifies the values for one or more elements of $oldsymbol{eta}$
- ullet specifies the values for some linear functions of the elements of $oldsymbol{eta}$

An alternative hypothesis (H_1)

• is an alternative to the null hypothesis – the change in the population that the researcher hopes is true

We may test

$$H_0: \mathbf{C}\boldsymbol{\beta} = \mathbf{d}$$
 vs $H_1: \mathbf{C}\boldsymbol{\beta} \neq \mathbf{d}$

where

- C is an $m \times k$ matrix of constants
- d is an $m \times 1$ vector of constants

The null hypothesis is rejected if it is shown to be sufficiently incompatible with the observed data.

Failing to reject H_0 is **not** the same as proving H_0 is true.

- ullet too little data to accurately estimate ${f C}{oldsymbol{eta}}$
- relatively large variation in ϵ (or \mathbf{Y})
- if H_0 : $\mathbb{C}\beta = \mathbf{d}$ is false, $\mathbb{C}\beta \mathbf{d}$ may be "small"

Chapter 4 Tests of Hypotheses and 202205 Confidence Intervals

4

You can never be completely sure that you made the correct decision

- Type I error (significance level): $P(H_0 \text{ is rejected}|H_0 \text{ is true})$
- Type II error: $P(H_0 \text{ is rejected}|H_0 \text{ is true})$

Basic considerations in specifying a null hypothesis $H_0: \mathbf{C}\boldsymbol{\beta} = \mathbf{d}$

- (i) $\mathbf{C}\boldsymbol{\beta}$ should be estimable.
- (ii) Inconsistencies should be avoided, i.e., $\mathbf{C}\boldsymbol{\beta} = \mathbf{d}$ should be a consistent set of equations
- (iii) Redundancies should be eliminated, i.e., in $\mathbf{C}\boldsymbol{\beta} = \mathbf{d}$ we should have

$$rank(\mathbf{C}) = number-of-rows-in-\mathbf{C}$$

4.2 Hypothesis Tests for Estimable Function

Consider the following effects models:

$$Y_{ij} = \mu + \alpha_i + \epsilon_{ij} \quad i = 1, 2, 3$$
$$j = 1, \dots, n_i$$

In this case

$$\begin{bmatrix} Y_{11} \\ Y_{12} \\ Y_{21} \\ Y_{31} \\ Y_{32} \\ Y_{33} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mu \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} + \begin{bmatrix} \epsilon_{11} \\ \epsilon_{12} \\ \epsilon_{21} \\ \epsilon_{31} \\ \epsilon_{32} \\ \epsilon_{33} \end{bmatrix}$$

4.2.1 The Mean Response For Any Treatments

By definition

$$E(Y_{ij}) = \mu + \alpha_i$$
 is estimable.

We can test

$$H_0: \mu + \alpha_1 = 60$$
 seconds

against

$$H_1: \mu + \alpha_1 \neq 60$$
 seconds (two-sided alternative)

Or we can test

$$H_0: \mu + \alpha_1 = 60$$
 seconds

against

$$H_1: \mu + \alpha_1 < 60 \text{ seconds}$$
 (one-sided alternative)

In this case

$$\mu + \alpha_1 = \mathbf{c}^T \boldsymbol{\beta}$$
 where $\mathbf{c} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$

Note that this quantity is estimable, i. e.,

$$\mathbf{c}^T \boldsymbol{\beta} = \mu + \alpha_1 = E\left[\left(\frac{1}{2} \frac{1}{2} \ 0 \ 0 \ 0 \ 0\right) \mathbf{Y}\right].$$

Then, any solution

$$\mathbf{b} = (\mathbf{X}^T \Sigma^{-1} \mathbf{X})^{-1} \mathbf{X}^T \Sigma^{-1} \mathbf{Y}$$

to the generalized least squares estimating equations

$$\mathbf{X}^T \Sigma^{-1} \mathbf{X} \mathbf{b} = \mathbf{X}^T \Sigma^{-1} \mathbf{Y}$$

yields the same value for $\mathbf{c}^T \mathbf{b}$ and it is the unique blue for $\mathbf{c}^T \boldsymbol{\beta}$.

We will reject $H_0: \mathbf{c}^T \boldsymbol{\beta} = 60$ if

$$\mathbf{c}^T \mathbf{b} = \mathbf{c}^T (\mathbf{X}^T \Sigma^{-1} \mathbf{X})^{-1} \mathbf{X}^T \Sigma^{-1} \mathbf{Y}$$

is too far away from 60.

Chapter 4 Tests of Hypotheses and 202205 Confidence Intervals

If $Var(\mathbf{Y}) = \sigma^2 I$, then any solution

$$\mathbf{b} = (\mathbf{X}^T \mathbf{X})^{-} \mathbf{X}^T \mathbf{Y}$$

to the least squares estimating equations

$$\mathbf{X}^T \mathbf{X} \mathbf{b} = \mathbf{X}^T \mathbf{Y}$$

yields the same value for $\mathbf{c}^T \mathbf{b}$, and $\mathbf{c}^T \mathbf{b}$ is the unique blue for $\mathbf{c}^T \boldsymbol{\beta}$.

We will reject $H_0 : \mathbf{c}^T \boldsymbol{\beta} = 60$ if $\mathbf{c}^T \mathbf{b} = \mathbf{c}^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$

is too far away from 60.

4.2.2 Difference between the mean response for two treatments

$$\alpha_1 - \alpha_3 = (\mu + \alpha_1) - (\mu + \alpha_3)$$

$$= \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 & \frac{-1}{3} & \frac{-1}{3} & \frac{-1}{3} \end{pmatrix} E(\mathbf{Y})$$

and we can test

$$H_0: \alpha_1 - \alpha_3 = 0$$
 vs. $H_1: \alpha_1 - \alpha_3 \neq 0$

If $Var(\mathbf{Y}) = \sigma^2 I$, the unique blue for $\alpha_1 - \alpha_3 = (0\ 1\ 0\ - 1)\boldsymbol{\beta} = \mathbf{c}^T \boldsymbol{\beta}$

is

$$\mathbf{c}^T \mathbf{b}$$
 for any $\mathbf{b} = (\mathbf{X}^T \mathbf{X})^{-} \mathbf{X}^T \mathbf{Y}$

Reject $H_0: \alpha_1 - \alpha_3 = \mathbf{c}^T \boldsymbol{\beta} = 0$ if $\mathbf{c}^T \mathbf{b}$ is too far from 0.

4.2.3 Non Estimable Functions

It would not make much sense to attempt to test

CHAPTER 4 TESTS OF HYPOTHESES AND

CONFIDENCE INTERVALS

 $H_0: \alpha_1 = 3$ vs. $H_1: \alpha_1 \neq 3$ because $\alpha_1 = [0\ 1\ 0\ 0]\boldsymbol{\beta} = \mathbf{c}^T\boldsymbol{\beta}$ is not estimable.

- Although $E(Y_{1j}) = \mu + \alpha_1$ neither μ nor α_1 has a clear interpretation.
- Different solutions to the normal equations produce different values for

$$\hat{\alpha}_1 = \mathbf{c}^T \mathbf{b} = \mathbf{c}^T (\mathbf{X}^T \mathbf{X})^{-} \mathbf{X}^T \mathbf{Y}$$

• To make a statement about α_1 , an additional restriction must be imposed on the parameters in the model to give α_1 a precise meaning.

4.3 Consistencies and Redundancies

For
$$\mathbf{C} = \begin{bmatrix} 0 & 1 & 0 & -1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$
, consider testing

$$H_0: \mathbf{C}\boldsymbol{\beta} = \begin{bmatrix} -3\\60\\70 \end{bmatrix} \text{ vs. } H_1: \mathbf{C}\boldsymbol{\beta} \neq \begin{bmatrix} -3\\60\\70 \end{bmatrix}$$

In this case $\mathbb{C}\beta$ is estimable, but there is an inconsistency. If the null hypothesis is true,

$$\mathbf{C}\boldsymbol{\beta} = \begin{bmatrix} \alpha_1 - \alpha_3 \\ \mu + \alpha_1 \\ \mu + \alpha_3 \end{bmatrix} = \begin{bmatrix} -3 \\ 60 \\ 70 \end{bmatrix}$$

Then $\mu + \alpha_1 = 60$ and $\mu + \alpha_3 = 70$ implies

$$(\alpha_1 - \alpha_3) = (\mu + \alpha_1) - (\mu + \alpha_3)$$

= 60 - 70
= -10

Such inconsistencies should be avoided.

For $\mathbf{C} = \begin{bmatrix} 0 & 1 & 0 & -1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$

consider testing

202205

$$H_0: \mathbf{C}\boldsymbol{\beta} = \begin{bmatrix} -10\\60\\70 \end{bmatrix} \text{ vs. } H_1: \mathbf{C}\boldsymbol{\beta} \neq \begin{bmatrix} -10\\60\\70 \end{bmatrix}$$

CHAPTER 4 TESTS OF HYPOTHESES AND

CONFIDENCE INTERVALS

In this case $\mathbb{C}\beta$ is estimable and the equations specified by the null hypothesis are consistent.

There is a redundancy

[1 1 0 0]
$$\boldsymbol{\beta} = \mu + \alpha_1 = 60$$

[1 0 0 1] $\boldsymbol{\beta} = \mu + \alpha_3 = 70$

imply that

$$[0 \ 1 \ 0 \ -1] \boldsymbol{\beta} = \alpha_1 - \alpha_3$$

$$= (\mu + \alpha_1) - (\mu + \alpha_3)$$

$$= 60 - 70$$

$$= -10$$

MEME16203 LINEAR MODELS

The rows of \mathbf{C} are not linearly independent, i.e., rank(\mathbf{C}) < number of rows in \mathbf{C} .

There are many equivalent ways to remove a redundancy:

$$H_0: \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \boldsymbol{\beta} = \begin{bmatrix} 60 \\ 70 \end{bmatrix}$$

$$H_0: \begin{bmatrix} 0 & 1 & 0 & -1 \\ 1 & 1 & 0 & 0 \end{bmatrix} \boldsymbol{\beta} = \begin{bmatrix} -10 \\ 60 \end{bmatrix}$$

$$H_0: \begin{bmatrix} 0 & 1 & 0 & -1 \\ 1 & 0 & 0 & 1 \end{bmatrix} \boldsymbol{\beta} = \begin{bmatrix} -10 \\ 70 \end{bmatrix}$$

$$H_0: \begin{bmatrix} 1 & 2 & 0 & -1 \\ 2 & 1 & 0 & 1 \end{bmatrix} \boldsymbol{\beta} = \begin{bmatrix} 50 \\ 130 \end{bmatrix}$$

are all equivalent.

In each case:

• The two rows of **C** are linearly independent and

$$rank(\mathbf{C}) = 2$$
= number of rows in \mathbf{C}

MEME16203 LINEAR MODELS

• The two rows of \mathbf{C} are a basis for the same 2-dimensional subspace of \mathbb{R}^4 .

CHAPTER 4 TESTS OF HYPOTHESES AND

CONFIDENCE INTERVALS

This is the 2-dimensional space spanned by the rows of

$$\mathbf{C} = \begin{bmatrix} 0 & 1 & 0 & -1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

We will only consider null hypotheses of the form

$$H_0: \mathbf{C}\boldsymbol{\beta} = \mathbf{d}$$

where $rank(\mathbf{C})$ = number of rows in \mathbf{C} . This leads to the following concept of a "testable" hypothesis.

4.4 Testable Hypothesis

Definition 1.

Consider a linear model

$$E(\mathbf{Y}) = \mathbf{X}\boldsymbol{\beta}$$

where

$$V(\mathbf{Y}) = \Sigma$$

and **X** is an $n \times k$ matrix. For an $m \times k$ matrix of constants **C** and an $m \times 1$ vector of constants **d**, we will say that

$$H_0: \mathbf{C}\boldsymbol{\beta} = \mathbf{d}$$

is **testable** if

- (i) $\mathbf{C}\boldsymbol{\beta}$ is estimable
- (ii) $rank(\mathbf{C}) = m = number of rows in \mathbf{C}$

To test $H_0: \mathbf{C}\boldsymbol{\beta} = \mathbf{d}$

202205

- (i) Use the data to estimate $\mathbf{C}\boldsymbol{\beta}$.
- (ii) Reject $H_0 : \mathbf{C}\boldsymbol{\beta} = \mathbf{d}$ if the estimate of $\mathbf{C}\boldsymbol{\beta}$ is to far away from \mathbf{d} .

CHAPTER 4 TESTS OF HYPOTHESES AND

CONFIDENCE INTERVALS

- How much of the deviation of the estimate of $\mathbb{C}\beta$ from \mathbf{d} can be attributed to random errors?
- ullet Need a probability distribution for the estimate of ${f C}{oldsymbol{eta}}$
- Need a probability distribution for a test statistic

4.5 Normal Theory Gauss-Markov Model

$$\mathbf{Y} = \begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix} \sim N(\mathbf{X}\boldsymbol{\beta}, \ \sigma^2 I)$$

A least squares estimator \mathbf{b} for $\boldsymbol{\beta}$ minimizes

$$(\mathbf{Y} - \mathbf{X}\mathbf{b})^T (\mathbf{Y} - \mathbf{X}\mathbf{b})$$

For any generalized inverse of $\mathbf{X}^T\mathbf{X}$,

$$\mathbf{b} = (\mathbf{X}^T \mathbf{X})^{-} \mathbf{X}^T \mathbf{Y}$$

is a solution to the normal equations

$$(\mathbf{X}^T\mathbf{X})\mathbf{b} = \mathbf{X}^T\mathbf{Y}$$
.

Result 1. Results for the Gauss-Markov model For a testable null hypothesis

CHAPTER 4 TESTS OF HYPOTHESES AND

CONFIDENCE INTERVALS

$$H_0: \mathbf{C}\boldsymbol{\beta} = \mathbf{d}$$

the OLS estimator for $\mathbf{C}\boldsymbol{\beta}$,

202205

$$Cb = C(X^TX)^-X^TY$$
,

has the following properties:

- (i) Since $\mathbf{C}\boldsymbol{\beta}$ is estimable, $\mathbf{C}\mathbf{b}$ is invariant to the choice of $(\mathbf{X}^T\mathbf{X})^-$.
- (ii) Since $\mathbb{C}\beta$ is estimable, $\mathbb{C}\mathbf{b}$ is the unique BLUE for $\mathbb{C}\beta$.
- (iii) $E(\mathbf{Cb} \mathbf{d}) = \mathbf{C}\boldsymbol{\beta} \mathbf{d}$

(iv) $V(\mathbf{Cb} - \mathbf{d}) = V(\mathbf{Cb}) = \sigma^2 \mathbf{C} (\mathbf{X}^T \mathbf{X})^{-} \mathbf{C}^T$

(v)
$$\mathbf{Cb} - \mathbf{d} \sim N(\mathbf{C}\boldsymbol{\beta} - \mathbf{d}, \sigma^2 \mathbf{C}(\mathbf{X}^T \mathbf{X})^{-} \mathbf{C}^T)$$

(vi) When $H_0 : \mathbf{C}\boldsymbol{\beta} = \mathbf{d}$ is true, $\mathbf{C}\mathbf{b} - \mathbf{d} \sim N(\mathbf{0}, \sigma^2 \mathbf{C}(\mathbf{X}^T \mathbf{X})^{-} \mathbf{C}^T)$

(vii) Define

$$SS_{H_0} = (\mathbf{Cb} - \mathbf{d})^T [\mathbf{C}(\mathbf{X}^T \mathbf{X})^- \mathbf{C}^T]^{-1} (\mathbf{Cb} - \mathbf{d})$$

then

$$\frac{1}{\sigma^2} SS_{H_0} \sim \chi_m^2(\lambda)$$

where $m = rank(\mathbf{C})$ and

$$\lambda = \frac{1}{\sigma^2} (\mathbf{C} \boldsymbol{\beta} - \mathbf{d})^T [\mathbf{C} (\mathbf{X}^T \mathbf{X})^{-} \mathbf{C}^T]^{-1} (\mathbf{C} \boldsymbol{\beta} - \mathbf{d})$$

- (viii) $\frac{1}{\sigma^2}SS_{H_0} \sim \chi_m^2$ if and only if $H_0: \mathbf{C}\boldsymbol{\beta} = \mathbf{d}$ is true.
 - (ix) $E(SS_{residuals}) = (n k)\sigma^2$ where $k = \text{rank}(\mathbf{X}) = \text{rank}(\mathbf{P_X})$ and $n k = \text{rank}(\mathbf{I} \mathbf{P_X})$ and it follows that $MS_{residuals} = \frac{SS_{residuals}}{n k}$

MEME16203 LINEAR MODELS

is an unbiased estimator of σ^2 .

CHAPTER 4 TESTS OF HYPOTHESES AND

CONFIDENCE INTERVALS

(x)
$$\frac{1}{\sigma^2} SS_{residuals} \sim \chi_{n-k}^2$$

202205

(xi) SS_{H_0} and $SS_{residuals}$ are independently distributed.

Chapter 4 Tests of Hypotheses and 202205 Confidence Intervals

(xii)
$$F = \frac{\left(\frac{\text{SS}_{\text{H}_0}}{m\sigma^2}\right)}{\left(\frac{\text{SS}_{\text{residuals}}}{(n-k)\sigma^2}\right)} = \frac{\frac{\text{SS}_{\text{H}_0}}{m}}{\frac{\text{SS}_{\text{residuals}}}{n-k}} = \frac{(n-k)\text{SS}_{\text{H}_0}}{m\text{SS}_{\text{residuals}}}$$
$$\sim F_{m,n-k}(\lambda)$$

with noncentrality parameter

$$\lambda = \frac{1}{\sigma^2} (\mathbf{C}\boldsymbol{\beta} - \mathbf{d})^T [\mathbf{C}(\mathbf{X}^T \mathbf{X})^{-} \mathbf{C}^T]^{-1} (\mathbf{C}\boldsymbol{\beta} - \mathbf{d})$$

 ≥ 0

and $\lambda = 0$ if and only if $H_0 : \mathbf{C}\boldsymbol{\beta} = \mathbf{d}$ is true.

Example 1.

Consider the linear model $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ with

$$\mathbf{Y} = \begin{bmatrix} Y_{11} \\ Y_{12} \\ Y_{21} \\ Y_{22} \\ Y_{23} \\ Y_{24} \\ Y_{31} \\ Y_{32} \end{bmatrix} \quad \mathbf{X} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix} \quad \boldsymbol{\beta} = \begin{bmatrix} \mu \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix}$$

and $\epsilon \sim N(0, \sigma^2 I)$.

(a) Determine which of the following hypotheses are testable.

i.
$$H_0$$
: $\alpha_1 = \alpha_2$

ii.
$$H_0$$
: $\alpha_1 - 2\alpha_2 + 3\alpha_3 = 0$

iii.
$$H_0$$
: $\alpha_3 = 0$

iv.
$$H_0: \mu = 0$$

v. $\alpha_1 = \alpha_3$ and $\alpha_1 - 2\alpha_2 + \alpha_3 = 0$

vi. $\alpha_1 = \alpha_3$ and $\alpha_2 = \alpha_3$ and $\alpha_1 + \alpha_2$ $2\alpha_3=0$

(b) Suppose

$$H_0: \mathbf{C}\boldsymbol{\beta} = \begin{bmatrix} 0 & 1 & 0 & -1 \\ 0 & 1 & -2 & 1 \end{bmatrix} \begin{bmatrix} \mu \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

against the alternative $H_1: \alpha_1 \neq \alpha_3$ or $\alpha_1 - 2\alpha_2 + \alpha_3 \neq 0$.

i. Show that H_0 is testable.

ii. Express the numerator and denominator of your F-statistic as two quadratic forms. Show that the quadratic form in the denominator of your F-statistic, has a central chi-square distribution. Report it's degrees of freedom.

CHAPTER 4 TESTS OF HYPOTHESES AND

CONFIDENCE INTERVALS

iii. Show that the quadratic form in the numerator of your F-statistic, has a non-central chi-square distribution. Report it's degrees of freedom and non-centrality parameter.

iv. Show that the numerator and denominator of your F-statistic are independently distributed.

v. Show that your F-statistic has a noncentral F-distribution. Report it.s degrees of freedom and express the noncentrality parameter as a function of α_1 , α_2 , α_3 . vi. Show that your test statistic has a central F-distribution when the null hypothesis is true.

4.6 Elements of Hypothesis Test

We perform the test by rejecting

$$H_0: \mathbf{C}\boldsymbol{\beta} = \mathbf{d}$$

if

$$F > F_{(m,n-k),\alpha}$$

where α is a specified significance level (Type I error level) for the test.

$$\alpha = Pr \{rejectH_0 | H_0 \text{ is true} \}$$

4.6.1 Type I Error Level

 $\alpha = Pr \left\{ F > F_{m,n-k,\alpha} \mid H_0 \text{ is true} \right\}$ When H_0 is true,

$$F = \frac{MS_{H_0}}{MS_{residuals}} \sim F_{m,n-k}$$

This is the probability of incorrectly rejecting a null hypothesis that is true.

4.6.2 Type II Error Level

$$\beta = Pr\{\text{Type II error}\}\$$

$$= Pr\{\text{fail to reject } H_0 \mid H_0 \text{ is false}\}\$$

$$= Pr\{F < F_{m,n-k,\alpha} \mid H_0 \text{ is false}\}\$$

When H_0 is false,

$$F = \frac{MS_{H_0}}{MS_{residuals}} \sim F_{(m,n-k)}(\lambda)$$

4.6.3 Power of a Test

$$power = 1 - \beta$$

$$= Pr\{F > F_{m,n-k,\alpha} \mid H_0 \text{ is false}\}$$

this determines the value of the noncentrality parameter.

For a fixed type I error level (significance level) α , the power of the test increases as the noncentrality parameter increases.

$$\lambda = \frac{1}{\sigma^2} (\mathbf{C}\boldsymbol{\beta} - \mathbf{d})^T [\mathbf{C}(\mathbf{X}^T \mathbf{X})^{-} \mathbf{C}^T]^{-1} (\mathbf{C}\boldsymbol{\beta} - \mathbf{d})$$

Example 2.

Effects of three diets on blood coagulation times in rats.

Diet factor: Diet 1, Diet 2, Diet 3 Response: blood coagulation time Model for a completely randomized experiment

with n_i rats assigned to the *i*-th diet.

$$Y_{ij} = \mu + \alpha_i + \epsilon_{ij}$$

where

$$\epsilon_{ij} \sim NID(0, \sigma^2)$$

for i = 1, 2, 3 and $j = 1, 2, ..., n_i$.

Here, $E(Y_{ij}) = \mu + \alpha_i$ is the mean coagulation time for rats fed the *i*-th diet.

Test the null hypothesis that the mean blood coagulation time is the same for all three diets.

. .

Example 3.

Suppose we are willing to specify:

- (i) $\alpha = \text{type I error level} = .05$
- (ii) $n_1 = n_2 = n_3 = n$
- (iii) power \geq .90 to detect
- (iv) a specific alternative

$$(\mu + \alpha_1) - (\mu + \alpha_3) = 0.5\sigma$$
$$(\mu + \alpha_2) - (\mu + \alpha_3) = \sigma$$

How many observations (in this case rats) are needed?

Example 4.

For the hypotheses testing

$$H_0: (\mu + \alpha_1) = (\mu + \alpha_2) = \dots = (\mu + \alpha_k)$$

CHAPTER 4 TESTS OF HYPOTHESES AND

CONFIDENCE INTERVALS

against

202205

$$H_1: (\mu + \alpha_1) \neq (\mu + \alpha_j)$$
 for some $i \neq j$

Obtain the test statistic and the corresponding non-centrality parameter.

4.7 Confidence intervals for estimable functions of β

Definition 2.

Suppose $Z \sim N(0, 1)$ is distributed independently of $W \sim \chi_v^2$, and then the distribution of

$$t = \frac{Z}{\sqrt{\frac{W}{v}}}$$

is called the student t-distribution with v degrees of freedom. We will use the notation

$$t \sim t_v$$

For the normal-theory Gauss-Markov model

$$\mathbf{Y} \sim N(\mathbf{X}\boldsymbol{\beta}, \sigma^2 I),$$

the OLS estimator of an estimable function, $\mathbf{c}^T \boldsymbol{\beta}$,

$$\mathbf{c}^T \mathbf{b} = \mathbf{c}^T (\mathbf{X}^T \mathbf{X})^{-} \mathbf{X}^T \mathbf{Y}$$

follows a normal distribution, i.e.,

$$\mathbf{c}^T \mathbf{b} \sim N(\mathbf{c}^T \boldsymbol{\beta}, \sigma^2 \mathbf{c}^T (\mathbf{X}^T \mathbf{X})^- \mathbf{c}).$$

MEME16203 LINEAR MODELS

It follows that

202205

$$Z = \frac{\mathbf{c}^T \mathbf{b} - \mathbf{c}^T \boldsymbol{\beta}}{\sqrt{\sigma^2 \mathbf{c}^T (\mathbf{X}^T \mathbf{X})^{-} \mathbf{c}}} \sim N(0, 1)$$

CHAPTER 4 TESTS OF HYPOTHESES AND

CONFIDENCE INTERVALS

From Result 1.(ix), we have

$$\frac{1}{\sigma^2}SSE = \frac{1}{\sigma^2}\mathbf{Y}^T(I - P_{\mathbf{X}})\mathbf{Y} \sim \chi^2_{(n-k)}$$

where $k = \text{rank}(\mathbf{X})$.

Using the same argument that we used to derive Result 1.(x), we can show that $c^T \mathbf{b}$ is distributed independently of $\frac{1}{\sigma^2}$ SSE.

First note that

$$\begin{bmatrix} \mathbf{c}^T \mathbf{b} \\ (I - P_{\mathbf{X}}) \mathbf{Y} \end{bmatrix} \begin{bmatrix} \mathbf{c}^T (\mathbf{X}^T \mathbf{X})^{-} \mathbf{X}^T \\ (I - P_{\mathbf{X}}) \end{bmatrix} \mathbf{Y}$$

has a joint normal distribution under the normaltheory Gauss-Markov model.

MEME16203 LINEAR MODELS

Note that

$$\begin{split} &Cov(\mathbf{c}^T\mathbf{b}, (I - P_{\mathbf{X}})\mathbf{Y}) \\ &= (\mathbf{c}^T(\mathbf{X}^T\mathbf{X})^{-}\mathbf{X}^T)(V(\mathbf{Y}))(I - P_{\mathbf{X}})^T \\ &= (\mathbf{c}^T(\mathbf{X}^T\mathbf{X})^{-}\mathbf{X}^T)(\sigma^2)(I - P_{\mathbf{X}}) \\ &= \sigma^2\mathbf{c}^T(\mathbf{X}^T\mathbf{X})^{-}\mathbf{X}^T(\mathbf{I} - \mathbf{P}_{\mathbf{X}}) \\ &= 0 \end{split}$$

this is a matrix of zeros

Consequently, $\mathbf{c}^T \mathbf{b}$ is distributed independently of

$$\mathbf{e} = (I - P_{\mathbf{X}})\mathbf{Y}$$

which implies that

 $\mathbf{c}^T \mathbf{b}$ is distributed independently of SSE = $\mathbf{e}^T \mathbf{e}$.

Then,
$$t = \frac{Z}{\sqrt{\frac{\text{SSE}}{\sigma^2(n-k)}}}$$

Chapter 4 Tests of Hypotheses and 202205 Confidence Intervals $c^T \mathbf{b} - c^T \boldsymbol{\beta}$

$$= \frac{\frac{\mathbf{c}^T \mathbf{b} - \mathbf{c}^T \boldsymbol{\beta}}{\sqrt{\sigma^2 \mathbf{c}^T (\mathbf{X}^T \mathbf{X})^{-} \mathbf{c}}}}{\sqrt{\frac{\text{SSE}}{\sigma^2 (n-k)}}}$$

$$= \frac{\mathbf{c}^T \mathbf{b} - \mathbf{c}^T \boldsymbol{\beta}}{\sqrt{\frac{\text{SSE}}{(n-k)}} \mathbf{c}^T (\mathbf{X}^T \mathbf{X})^{-} \mathbf{c}}} \sim t_{(n-k)}$$

$$\frac{\text{SSE}}{n-k} \text{ is the MSE}$$

It follows that

$$1 - \alpha = Pr \left\{ -t_{(n-k),\alpha/2} \le \frac{\mathbf{c}^T \mathbf{b} - \mathbf{c}^T \boldsymbol{\beta}}{\sqrt{\text{MSE } \mathbf{c}^T (\mathbf{X}^T \mathbf{X})^- \mathbf{c}}} \le t_{(n-k),\alpha/2} \right\}$$
$$= Pr \left\{ \mathbf{c}^T \mathbf{b} - t_{(n-k),\alpha/2} \sqrt{\text{MSE } \mathbf{c}^T (\mathbf{X}^T \mathbf{X})^- \mathbf{c}} \le \mathbf{c}^T \boldsymbol{\beta} \right\}$$
$$\le \mathbf{c}^T \mathbf{b} + t_{(n-k),\alpha/2} \sqrt{\text{MSE } \mathbf{c}^T (\mathbf{X}^T \mathbf{X})^- \mathbf{c}} \right\}$$

and a $(1-\alpha) \times 100\%$ confidence interval for $\mathbf{c}^T \boldsymbol{\beta}$ is

$$\left(\mathbf{c}^{T}\mathbf{b} - t_{(n-k),\alpha/2}\sqrt{\mathrm{MSE}\,\mathbf{c}^{T}(\mathbf{X}^{T}\mathbf{X})^{-}\mathbf{c}},\right.$$
$$\mathbf{c}^{T}\mathbf{b} + t_{(n-k),\alpha/2}\sqrt{\mathrm{MSE}\,\mathbf{c}^{T}(\mathbf{X}^{T}\mathbf{X})^{-}\mathbf{c}}\right)$$

For brevity we will also write

$$\mathbf{c}^T \mathbf{b} \pm t_{(n-k),\alpha/2} S_{\mathbf{c}^T \mathbf{b}}$$

where

$$S_{\mathbf{c}^T \mathbf{b}} = \sqrt{\text{MSE } \mathbf{c}^{\text{T}} (\mathbf{X}^{\text{T}} \mathbf{X})^{-} \mathbf{c}}$$
.

For the normal-theory Gauss-Markov model with $\mathbf{Y} \sim N(\mathbf{X}\boldsymbol{\beta}, \sigma^2 I)$, the interval

$$\mathbf{c}^T \mathbf{b} \pm t_{(n-k),\alpha/2} S_{\mathbf{c}^T \mathbf{b}}$$

is the **shortest random interval** with probability $(1 - \alpha)$ of containing $\mathbf{c}^T \boldsymbol{\beta}$.

4.8 Confidence interval for σ^2 :

For the normal-theory Gauss-Markov model with $\mathbf{Y} \sim N(\mathbf{X}\boldsymbol{\beta}, \sigma^2 I)$ we have shown that

CHAPTER 4 TESTS OF HYPOTHESES AND

CONFIDENCE INTERVALS

$$\frac{\text{SSE}}{\sigma^2} = \frac{\mathbf{Y}^T (I - P_{\mathbf{X}}) \mathbf{Y}}{\sigma^2} \sim \chi^2_{(n-k)}$$

Then,

202205

$$1 - \alpha = Pr \left\{ \chi^2_{(n-k), 1-\alpha/2} \le \frac{\text{SSE}}{\sigma^2} \le \chi_{(n-k), \alpha/2} \right\}$$
$$= Pr \left\{ \frac{\text{SSE}}{\chi^2_{(n-k), \alpha/2}} \le \sigma^2 \le \frac{\text{SSE}}{\chi_{(n-k), 1-\alpha/2}} \right\}$$

The resulting $(1 - \alpha) \times 100\%$ confidence interval for σ^2 is

$$\left(\frac{\text{SSE}}{\chi^2_{(n-k),\alpha/2}}, \frac{\text{SSE}}{\chi^2_{(n-k),1-\alpha/2}}\right)$$

Example 5.

For the simple regression model

$$Y_i = \beta_0 + \beta_1 \mathbf{X}_{i1} + \epsilon_i,$$

where for $\mathbf{e} = (\epsilon_1, \dots, \epsilon_i)^T$, $E(\mathbf{e}) = \mathbf{0}$. You are given

Suppose that $V(\mathbf{e}) = \sigma^2 I$.

- (a) Construct the 95% confidence interval for β_1 .
- (b) Give 95% two-sided confidence interval for σ^2 in the normal version model.