$P\check{r}iklad$ (Teoretický příklad 3) Najděte všechna čísla m splňující

$$(1+m)^n > 1 + mn, \forall n \in \mathbb{N}.$$

Řešení

Pro kladná čísla je zřejmě (z binomické věty) $(1+m)^n=1+n\cdot m+z$, kde z je pro všechna $n\in\mathbb{N}$ nezáporné, tedy $(1+m)^n\geq 1+nm$, tudíž všechna kladná m podmínku splňují.

Nula též, protože $1^n \ge 1$, stejně tak čísla -1, protože $0^n \ge 1-n$, a -2, protože $(-1)^n \ge -1 \ge 1-2n$. -3 už ne, jelikož $(1-3)^5 = -32 < -14 = 1-3 \cdot 5$.

Pro záporná čísla stačí zvolit n=3 a dokázat, že pro toto n nemůže při m záporném, menším než -3, (označme $k=-m\in\mathbb{N}$) být splněno:

$$(1-k)^3 = 1 - 3k + 3k^2 - k^3 \ge 1 - 3k \Leftrightarrow$$

$$\Leftrightarrow 3k^2 - k^3 \ge 0 \stackrel{k \ge 0}{\Leftrightarrow}$$

$$\Leftrightarrow 3 - k \ge 0. \Leftrightarrow$$

$$\Leftrightarrow -k \ge -3 \Leftrightarrow m \ge -3$$

Tedy řešením je $m \in \mathbb{N} \cup \{0, -1, -2\}.$