University of New Mexico Department of Computer Science

Midterm Exam I

CS261: Mathematical Foundations of Computer Science

Name:	
Email:	

Instructions:

- 1. Write your name and email address legibly in the space provided above.
- 2. Write your name legibly at the upper right hand corner on each page.
- 3. There are 4 problems in the exam.
- 4. This is a close-book exam. You must not discuss the questions with anyone except the professor in charge.
- 5. You are only allowed to use a one page double-sided handwritten "cheating sheet" that you have brought to the exam. Nothing else permitted.
- 6. Write your answers legibly.
- 7. Don't spend too much time on any single problem. All questions are weighted equally. If you get stuck, move on to something else and get back later.
- 8. Good luck and enjoy the exam!

- 1. (10pt) (Set Theory) Answer the following questions:
- (a) Let $A = \{a, b, c\}$ and $B = \{d, e\}$. What is $A \cup B$, $A \cap B$, A B, $A \oplus B$, and $A \oplus B$, and $A \oplus B$ are set of $A \cap B$?
- (b) In class, we know that in general $A \times B$ is not the same as $B \times A$. Under what situation, will $A \times B = B \times A$? Explain why? What is $A \times \emptyset$, where ϕ is the empty set.
- (c) Does C A = C B imply A = B? Explain why?
- (d) Does A C = B C imply A = B? Explain why?

- 2. (10pt) (Sequences and Recurrence Relations) Answer the following questions with brief explanations:
- (a) Find a simple analytical form for the sum $\sum_{j=0}^{n} \left(\frac{10}{11}\right)^{j}$. What happens when n goes to infinity?
- (b) Find a simple analytical form for the sum $\sum_{j=0}^{n} (2j+1)$.
- (c) Consider the following recurrence relation, which is called the Stern's diatomic series:

$$\begin{cases} f_0 = 0 \\ f_1 = 1 \\ f_{2n} = f_n \\ f_{2n+1} = f_n + f_{n+1} \end{cases}$$

- (c.1) Write the terms f_2 , f_3 , f_4 , f_5 , f_6 , f_7 , f_8 , f_9 , f_{10} .
- (c.2) Consider the Calkin-Wilf sequence defined as $g_n = \frac{f_n}{f_{n+1}}$.

Write the terms g_0 , g_1 , g_2 , g_3 , g_4 , g_5 , g_6 , g_7 , g_8 , g_9 . Can you guess what the Calkin–Wilf sequence produce?

- 3. (10pt) (Logic) Answer the following questions:
- (a) Are $\neg((p \rightarrow q) \land (p \rightarrow r))$ and $p \land \neg q \land \neg r$ logically equivalent?
- (b) Translate the following sentence into logic using nested quantifiers:
- "For every rational number x, there exists two integers a and b, such that $x = \frac{a}{b}$.
- (c) Consider the following sentence:
- "If the streets are wet, then it has rained."
- "The streets are wet."
- "Therefore, it has rained."
- (c.1) Translate the above sentence into logic using the proposition variables:
- p = "the streets are wet"
- q = "it has rained"
- (c.2) Is the argument valid? Is the argument correct?

4. (10pt) (Cardinality)

Let $\mathbb{N} = \{1, 2, 3, 4, ...\}$ be the set of national numbers. Is $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$ countable? Prove your claim?