

M54/M74HC192 M54/M74HC193

HC192 - SYNCHRONOUS UP/DOWN DECADE COUNTER HC193 - SYNCHRONOUS UP/DOWN BINARY COUNTER

- HIGH SPEED
- f_{MAX} = 54 MHz (TYP.) AT V_{CC} = 5 V
- LOW POWER DISSIPATION $I_{CC} = 4 \mu A \text{ (MAX.)} \text{ AT } I_{A} = 25 \text{ °C}$
- HIGH NOISE IMMUNITY

 VNIH = VNIL = 28 % VCC (MIN.)
- OUTPUT DRIVE CAPABILITY 10 LSTTL LOADS
- SYMMETRICAL OUTPUT IMPEDANCE ||OH| = |OL| = 4 mA (MIN.)
- BALANCED PROPAGATION DELAYS tplh = tphl
- WIDE OPERATING VOLTAGE RANGE Vcc (OPR) = 2 V TO 6 V
- PIN AND FUNCTION COMPATIBLE WITH 54/74LS192-193

DESCRIPTION

The M54/74HC192/193 are a high speed CMOS SYN-CHRONOUS UP/DOWN DECADE COUNTERS fabricated in silicon gate C²MOS technology. They have the same high speed performance of LSTTL combined with true CMOS low power consumption. The counter has two separate clock inputs, an UP COUNT input and a DOWN COUNT input. All outputs of the flip-flop are simultaneously triggered on the low to high transition of either clock while the other input is held high. The direction of counting is determined by which input is clocked. This counter may be preset by entering the desired data on the DATA A, DATA B, DATA C, and DATA D input. When the LOAD input is taken low the data is loaded independently of either clock input. This feature allows the counters to be used as divide-by-n counters by modifying the count length with the preset inputs. In addition the counter can also be cleared. This is accomplished by inputting a high on the CLEAR input. All 4 internal stages are set to low independently of either COUNT input. Both a BORROW and CARRY output are provided to enable cascading of both up and down counting functions. The BORROW output produces a negative going pulse when the counter underflows and the CARRY outputs a pulse when the counter overflows. The counter can be cascaded by connecting the CARRY and BORROW outputs of one device to the COUNT UP and COUNT DOWN inputs, respectively, of the next device. All inputs are equipped with protection circuits against static discharge and transient excess voltage.

October 1992 1/15

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
3, 2, 6, 7	QA to QD	Flip-Flop Outputs
4	CPD	Count Down Clock Input
5	CPU	Count Up Clock Input
11	LOAD	Asynchronous Parallel Load Input (Active LOW)
12	CARRY	Count Up (Carry) Output (Active LOW)
13	BORROW	Count Down (Borrow) Output (Active LOW)
14	CLEAR	Asynchronous Reset Input (Active HIGH)
15, 1, 10, 9	DA to DD	Data Inputs
8	GND	Ground (0V)
16	V _{CC}	Positive Supply Voltage

IEC LOGIC SYMBOL (HC191)

IEC LOGIC SYMBOL (HC193)

TRUTH TABLE

COUNT UP	COUNT DOWN	LOAD	CLEAR	FUNCTION
	Н	Н	L	COUNT UP
	Н	Н	L	NO COUNT
Н		Н	L	COUNT DOWN
Н		Н	L	NO COUNT
Х	Х	L	L	PRESET
Х	X	Х	Н	RESET

X: Don't Care

LOGIC DIAGAM (HC192)

LOGIC DIAGAM (HC193)

TIMING DIAGRAM (HC192)

TIMING DIAGRAM (HC193)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage	-0.5 to +7	V
VI	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	± 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
Ιο	DC Output Source Sink Current Per Output Pin	± 25	mA
Icc or I _{GND}	DC V _{CC} or Ground Current	± 50	mA
P_{D}	Power Dissipation	500 (*)	mW
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied. (*) 500 mW: \cong 65 °C derate to 300 mW by 10mW/°C: 65 °C to 85 °C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Value	Unit
V _{CC}	Supply Voltage	2 to 6	V	
VI	Input Voltage	0 to V _{CC}	V	
Vo	Output Voltage	0 to V _{CC}	V	
T _{op}	Operating Temperature: M54HC Series M74HC Series		-55 to +125 -40 to +85	°C
t _r , t _f	Input Rise and Fall Time	$V_{CC} = 2 V$	0 to 1000	ns
		V _{CC} = 4.5 V	0 to 500	
		V _{CC} = 6 V	0 to 400	

DC SPECIFICATIONS

		Te	est Co	nditions	Value							
Symbol	Parameter	V cc (V)			$T_A = 25$ °C 54HC and 74HC			-40 to 85 °C 74HC		-55 to 125 °C 54HC		Unit
		(v)			Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V_{IH}	High Level Input	2.0			1.5			1.5		1.5		
	Voltage	4.5			3.15			3.15		3.15		V
		6.0			4.2			4.2		4.2		
V_{IL}	Low Level Input	2.0					0.5		0.5		0.5	
	Voltage	4.5					1.35		1.35		1.35	V
		6.0					1.8		1.8		1.8	
V_{OH}	V _{OH} High Level Output Voltage	2.0	V _I =		1.9	2.0		1.9		1.9		
		4.5	VI =		4.4	4.5		4.4		4.4		
		6.0 or		5.9	6.0		5.9		5.9		V	
		4.5	V _{IL}	I _O =-4.0 mA	4.18	4.31		4.13		4.10		
		6.0		I _O =-5.2 mA	5.68	5.8		5.63		5.60		
V_{OL}	Low Level Output	2.0	Vı =			0.0	0.1		0.1		0.1	
	Voltage	4.5	VI =	I _O = 20 μA		0.0	0.1		0.1		0.1	
		6.0	or			0.0	0.1		0.1		0.1	V
		4.5	VIL	I _O = 4.0 mA		0.17	0.26		0.33		0.40	
		6.0		I _O = 5.2 mA		0.18	0.26		0.33		0.40	
lı	Input Leakage Current	6.0	Vı = '	Vcc or GND			±0.1		±1		±1	μΑ
I _{CC}	Quiescent Supply Current	6.0	V _I = '	V _{CC} or GND			4		40		80	μΑ

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ ns}$)

		Test Conditions		Value						
Symbol	Parameter	Vcc (V)		A = 25 C C and 7			85 °C HC	1	125 °C HC	Unit
		(V)	Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{TLH}	Output Transition	2.0		30	75		95		110	
t _{THL}	Time	4.5		8	15		19		22	ns
		6.0		7	13		16		19	
t _{PLH}	Propagation	2.0		65	190		240		285	
t _{PHL}	Delay Time	4.5		20	38		48		57	ns
	(UP, DOWN - Q)	6.0		16	32		41		48	
t _{PLH}	Propagation	2.0		40	130		165		195	
t_{PHL}	Delay Time	4.5		13	26		33		39	ns
	(UP - CARRY)	6.0		11	22		28		33	
t _{PLH}	Propagation Delay	2.0		40	130		165		195	
t_{PHL}	Time (DOWN -	4.5		13	26		33		39	ns
	BORROW)	6.0		11	22		28		33	
t _{PLH}	Propagation	2.0		85	220		275		330	
t _{PHL}	Delay Time	4.5		25	44		55		66	ns
	(LOAD - Q)	6.0		20	37		47		56	
t _{PLH}	Delay Time	2.0		110	250		315		375	
t _{PHL}		4.5		30	50		63		75	ns
(LOAD - CARRY)	6.0		25	43		54		64		
t _{PLH}	Propagation	2.0		110	250		315		375	
t _{PHL}	Delay Time	4.5		31	50		63		75	ns
	(LOAD - BORROW)	6.0		25	43		54		64	
t _{PLH}	Propagation	2.0		80	190		240		285	
tPHL	Delay Time	4.5		25	38		48		57	ns
	(DATA - Q)	6.0		20	32		41		48	
t _{PLH}	Propagation	2.0		120	250		315		375	
tpHL	Delay Time	4.5		34	50		63		75	ns
	(DATA - CARRY)	6.0		28	43		54		64	
t _{PLH}	Propagation	2.0		110	250		315		375	
t _{PHL}	Delay Time	4.5		30	50		63		75	ns
	(DATA - BORROW)	6.0		25	43		54		64	
t _{PHL}	Propagation	2.0		100	225		280		340	
-1 112	Delay Time	4.5		30	45		56		68	ns
	(CLEAR - Q)	6.0		25	38		48		58	
t _{PLH}	Propagation	2.0		120	250		315		375	
	Delay Time	4.5		35	50		63		75	ns
	(CLEAR - CARRY)	6.0		29	43		54		64	
t _{PHL}	, ,	2.0		120	250		315		375	
NT ITE	Time (CLEAR -	4.5		35	50				ns	
	BORROW)	6.0		29	43		54		64	
f _{MAX}	Maximum Clock	2.0	5	12	-70	4	J-1	3.4	54	
INIAX	Frequency	4.5	25	48		20		17		MHz
	riequency	1.0	20	70		<u></u>		<u> </u>		

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_f = t_f = 6 \text{ ns}$)

		Te	est Conditions		Value						
Symbol	Parameter	Vcc		T _A = 25 °C 54HC and 74HC			-40 to 85 °C 74HC		-55 to 125 °C 54HC		Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{W(H)}	Minimum Pulse	2.0			34	100		125		150	
t _{W(L)}	Width (COUNT	4.5			9	20		25		30	ns
	UP/DOWN)	6.0			7	17		21		26	
t _{W(L)}		2.0			34	75		95		110	
	Width_	4.5			9	15		19		22	ns
(LOAD)	6.0			7	13		16		19		
t _{W(H)}	t _{W(H)} Minimum Pulse Width (CLEAR)	2.0			40	100		125		150	
		4.5			12	20		25		30	ns
		6.0			10	17		21		26	
ts	t _s Minimum Set-up	2.0			30	75		95		110	
	Time	4.5			9	15		19		22	ns
	(DATA - LOAD)	6.0			7	13		16		19	
t _h	Minimum Hold	2.0				0		0		0	
	Time	4.5				0		0		0	ns
		6.0				0		0		0	
t _{REM}	Minimum	2.0			6	50		65		75	
	Removal Time	4.5			2	10		13		15	ns
	(LOAD)	6.0			2	9		11		13	
t _{REM}	Minimum	2.0			14	50		65		75	
	Removal Time	4.5			4	10		13		15	ns
	(CLEAR)	6.0			3	9		11		13	
C _{IN}	Input Capacitance				5	10		10		10	pF
C _{PD} (*)	Power Dissipation Capacitance		for HC192 for HC193		68 67						pF

^(*) C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC}(opr) = C_{PD} \bullet V_{CC} \bullet f_{IN} + I_{CC}$

SWITCHING CHARACTERISTICS TEST WAVEFORM

TEST CIRCUIT ICC (Opr.)

Plastic DIP16 (0.25) MECHANICAL DATA

DIM.		mm		inch				
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
a1	0.51			0.020				
В	0.77		1.65	0.030		0.065		
b		0.5			0.020			
b1		0.25			0.010			
D			20			0.787		
E		8.5			0.335			
е		2.54			0.100			
e3		17.78			0.700			
F			7.1			0.280		
I			5.1			0.201		
L		3.3			0.130			
Z			1.27			0.050		

Ceramic DIP16/1 MECHANICAL DATA

DIM.		mm		inch			
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А			20			0.787	
В			7			0.276	
D		3.3			0.130		
Е	0.38			0.015			
e3		17.78			0.700		
F	2.29		2.79	0.090		0.110	
G	0.4		0.55	0.016		0.022	
Н	1.17		1.52	0.046		0.060	
L	0.22		0.31	0.009		0.012	
М	0.51		1.27	0.020		0.050	
N			10.3			0.406	
Р	7.8		8.05	0.307		0.317	
Q			5.08			0.200	

SO16 (Narrow) MECHANICAL DATA

DIM.		mm			inch	
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			1.75			0.068
a1	0.1		0.2	0.004		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1			45°	(typ.)		
D	9.8		10	0.385		0.393
E	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.62			0.024
S			8° (ı	max.)		

PLCC20 MECHANICAL DATA

DIM.		mm		inch				
Diiii.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А	9.78		10.03	0.385		0.395		
В	8.89		9.04	0.350		0.356		
D	4.2		4.57	0.165		0.180		
d1		2.54			0.100			
d2		0.56			0.022			
E	7.37		8.38	0.290		0.330		
е		1.27			0.050			
e3		5.08			0.200			
F		0.38			0.015			
G			0.101			0.004		
М		1.27			0.050			
M1		1.14			0.045			

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

