Using online update algorithms to predict speedway results.

Dawid Kałędkowski @ClickMeeting

Speedway is a motorcycle sport.

- Motorbike racing on dirt circuit.
- No gears and no breaks.
- 4 riders competing over four laps.
- Start indicated by **tape rise** and light signal.
- Exclusions for falling, engine failure, retiring, touching tape etc.
- Sliding scale for scoring (known as the 3-2-1-0 method)

More than 1000 events annualy.

- 1000 riders from 31 countries
- 100 different competitions.
- Individual competitions Grand-Prix
- League matches PGE Ekstraliga,
 Premiership, Elitserien, Bundesliga etc.
- Team competitions SWC/SON
- Pair competitions SBP

Statistics matter.

Approach to data is old-fashioned

source: sportowefakty.pl, speedwayresults.com, speedwayupdates.proboards.com

Data gathering partially automated.

- Multiple scrapers for different pages (`rvest`, `RSelenium` and a lot of REGEXP)
- PDF parsers ('tabulizer')
- Finding appropriate rider-heat pattern
- Additional verifications
- Approximate string matching for language specific letters (`stringdist:amatch`)
- Apps to input and browse data (`shiny`,`rhandsontable`,`RMySQL`)

Actual speedway database

- 10528 events in 148 competitions.
- Almost 700k individual performances.
- Unified rider names, competitions and places.
- 241 Speedway stadiums with coordinates

Analytical challange

- Output is a ranking.
- Need for continuous updates.
- Some commonly known effects need to be examined:
 - Riders form changes in time.
 - Many interactions (gate*heat*stadium).
 - Field advantage.
 - Winter break

Online update algorithms.

- Ranking modelled as Rank Ordered Logit/BT Model.
- Models are estimated using Bayesian Approximation Method.

$$R_i' \leftarrow R_i + K * (Y_i - \hat{Y}_i)$$

- Update doesn't require previous data.
- Computationaly efficient.

Elo rating system

- Rating calculated using formula specified by FIDE.
- Points gain depends on rating difference
- No rating deviation in Elo formula

D	PD	D	PD	D	PD	D	PD
Rtg Dif	H L						
0-3	.50.50	92-98	.63.37	198-206	.76.24	345-357	.89.11
4-10	.51.49	99-106	.64.36	207-215	.77.23	358-374	.90.10
11-17	.52.48	107-113	.65.35	216-225	.78.22	375-391	.91.09
18-25	.53.47	114-121	.66.34	226-235	.79.21	392-411	.92.08
26-32	.54.46	122-129	.67.33	236-245	.80.20	412-432	.93.07
33-39	.55.45	130-137	.68.32	246-256	.81.19	433-456	.94.06
40-46	.56.44	138-145	.69.31	257-267	.82.18	457-484	.95.05
47-53	.57.43	146-153	.70.30	268-278	.83.17	485-517	.96.04
54-61	.58.42	154-162	.71.29	279-290	.84.16	518-559	.97.03
62-68	.59.41	163-170	.72.28	291-302	.85.15	560-619	.98.02
69-76	.60.40	171-179	.73.27	303-315	.86.14	620-735	.99.01
77-83	.61.39	180-188	.74.26	316-328	.87.13	> 735	1.0.00
84-91	.62.38	189-197	.75.25	329-344	.88.12		

source: https://www.fide.com/fide/handbook.html?id=172&view=article

Glicko rating system (`sport::glicko`)

- First bayesian rating system.
- Rating change depends on ratings (R) and ratings deviation (RD).

$$\hat{Y}_i = P(X_i > X_q) = \frac{1}{1 + 10^{-g(RD_{iq}) * (R_i - R_q)/400}}$$

$$R'_{i} = R_{i} + \frac{1}{\frac{1}{RD_{i}^{2}} + \frac{1}{d_{i}^{2}}} * \sum_{j} g(RD_{j}) * (Y_{ij} - \hat{Y}_{ij})$$

$$RD'_i = \sqrt{(\frac{1}{RD_i^2} + \frac{1}{d_i^2})^{-1}}$$

Glicko2 rating system (`sport::glicko2`)

- Volatile parameter σ added. Measures expected fluctuations.
- Updated rating deviation based on the 'Illinois Algorithm'.

$$\hat{Y}_{ij} = \frac{1}{1 + e^{-g(\phi_{ij})*(\mu_i - \mu_j)}}$$

$$\phi'_i = \frac{1}{\sqrt{\frac{1}{\phi_i^2 + {\sigma'_i}^2} + \frac{1}{\nu}}}$$

$$\mu'_i = \mu_i + \phi'_i * \sum_i g(\phi_i) * (Y_{ij} - \hat{Y}_{ij})$$

Bayesian Bradley Terry ('sport::bbt')

- Extends algorithms to multi-player teams.
- Team rating/variance is a sum of team players ratings/variances.

$$\hat{Y}_{ij} = P(X_i > X_j) = \frac{e^{R_i/c_{ij}}}{e^{R_i/c_{ij}} + e^{R_j/c_{ij}}}$$

$$R'_{i} = R_{i} + \sum_{j} \frac{RD_{i}^{2}}{c_{ij}} * (Y_{ij} - \hat{Y}_{ij})$$

$$RD'_{i} = RD_{i} * [1 - \frac{RD_{ij}^{2}}{RD_{i}^{2}} \sum_{j} \gamma_{j} * (\frac{RD_{i}}{c_{ij}})^{2} * \hat{Y}_{ij} \hat{Y}_{ji}]$$

Bayesian Dynamic Logit ('sport::bdl')

- EKF with logistic function as measurement equation.
- Teams/players are treated as alternative in discrete choice models.

$$Y_t = \frac{e^z}{1 + e^{z_t}}$$

$$z_t = \beta_{it}^T x_{it} - \beta_{jt}^T x_{jt}$$

$$\hat{\boldsymbol{w}}_t = \hat{\boldsymbol{w}}_{t-1} + \boldsymbol{\Sigma}_t \boldsymbol{x}_t (z_t - y_t)$$

$$s_t^2 = \boldsymbol{x}_t^T (\boldsymbol{\Sigma}_{t-1} + q_t \boldsymbol{I}) \boldsymbol{x}_t$$

`sport` - package for sport analytics.

```
# devtools::install_github("gogonzo/sport")
library(sport)
list_glicko <- glicko_run( formula = rank|id ~ rider_name, data = gpheats )
list_glicko2 <- glicko2_run( formula = rank|id ~ rider_name, data = gpheats )</pre>
list_bbt <- bbt_run( formula = rank|id ~ rider_name, data = gpheats )</pre>
list_bdl
         <- bdl_run( formula = rank|id ~ rider_name, data = gpheats )</pre>
> names(list_glicko)
[1] "r"
               "pairs"
                          "final_r" "final_rd"
> head(list_glicko$r)
  id
                names
        Tomasz Gollob 1586.327 203.5029
        Gary Havelock 1241.019 203.5029
          Chris Louis 1758.981 203.5029
  1 Tony Rickardsson 1413.673 203.5029
        Sam Ermolenko 1758.981 203.5029
       Jan Staechmann 1241.019 203.5029
> tail(list_glicko$pairs)
        id
                                                     PΥ
                      team1
                                       team2
             Tai Woffinden Fredrik Lindgren 0.6333719 0
61043 5063
                                Patryk Dudek 0.4877610 0
61044 5063
             Tai Woffinden
              Tai Woffinden Emil Sajfutdinow 0.5177363 0
61045 5063
61046 5063 Emil Sajfutdinow Fredrik Lindgren 0.6167259 0
61047 5063 Emil Sajfutdinow
                               Patryk Dudek 0.4700839 0
61048 5063 Emil Sajfutdinow Tai Woffinden 0.4822637 1
```


Methods perform similarly.

ML methods don't improve model.

Algorithm	Accuracy	
Glicko	69.75%	
Glicko2	70.20%	
BBT	71.06%	
BDL	69.09%	- xgBoost, Rai
BDL2	68.81%	trees didn't
xgb1	71.01%	troop didire
xgb2	71.00%	- Additional va
xgb3	71.02%	predictive at
xgb4	71.67%	p. 0 0.10 t. 10 0.1
treeb1	70.16%	
treeb2	69.65%	
treeb3	69.97%	
treeb4	69.03%	
rf	70.25%	

xgBoost, Random Forests nor Boosted trees didn't improve accuracy.

- Additional variables have no additional predictive abilities.

Non-rating vars contribution < 5%

The Best speedway riders.

What comes next

- Searching for perfect predictive model.
- Improve `sport` package.
- Simulate events results.
- Promote data-science in speedway.

References

- Mark E. Glickman (1999): Parameter estimation in large dynamic paired comparison experiments. Applied Statistics, 48:377-394.

URL http://www.glicko.net/research/glicko.pdf

- Mark E. Glickman (2001): Dynamic paired comparison models with stochastic variances, Journal of Applied Statistics, 28:673-689.

URL http://www.glicko.net/research/dpcmsv.pdf

- Mark E. Glickman (1995): A Comprehensive guide to chess ratings. American Chess Journal, 3, pp. 59--102.

URL http://www.glicko.net/research/acjpaper.pdf

- Ruby C. Weng and Chih-Jen Lin (2011): A Bayesian Approximation Method for Online Ranking. Journal of Machine Learning Research, 12:267-300.

URL http://jmlr.csail.mit.edu/papers/volume12/weng11a/weng11a.pdf

- William D. Penny and Stephen J. Roberts (1999): Dynamic Logistic Regression, Departament of Electrical and Electronic Engineering, Imperial College

Thank you

github.com/gogonzo dawid.kaledkowski@clickmeeting.com linkedin.com/in/dawidkaledkowski

