

### Deep Learning:

## Regularization & Generalization

#### Ozan Özdenizci

Institute of Theoretical Computer Science ozan.ozdenizci@igi.tugraz.at

Deep Learning VO - WS 23/24

Lecture 6 - November 13th, 2023

### Today

Regularization
Parameter Norm Penalties
Early Stopping
Dropout
Dataset Augmentation

Further Techniques



### (1) Parameter Norm Penalties

Adding a parameter norm penalty  $\Omega(\mathbf{w})$  to the error E.

$$\tilde{E}(\mathbf{w}; \mathcal{D}) = E(\mathbf{w}; \mathcal{D}) + \lambda \Omega(\mathbf{w})$$

- Typically only regularize weights, leave biases unregularized.
- Sometimes it is desirable to use different  $\lambda$  for different layers.

w : network parameters

 $\mathscr{D}$ : data

 $\lambda \in [0,\infty)$ : relative contribution of

the regularizer

## L<sub>2</sub> regularization (weight decay)

Adding a parameter norm penalty  $\Omega(\mathbf{w})$  to the error E.

$$\tilde{E}(\mathbf{w}; \mathcal{D}) = E(\mathbf{w}; \mathcal{D}) + \lambda \Omega(\mathbf{w})$$

 $L_2$  regularization:

$$\Omega(\mathbf{w}) = \frac{1}{2}||\mathbf{w}||_2^2 = \frac{1}{2}\mathbf{w}^T\mathbf{w}$$

$$\begin{split} \nabla_{\mathbf{w}} \tilde{E}(\mathbf{w}; \mathcal{D}) &= \nabla_{\mathbf{w}} E(\mathbf{w}; \mathcal{D}) + \lambda \, \nabla_{\mathbf{w}} \Omega(\mathbf{w}) \\ &= \nabla_{\mathbf{w}} E(\mathbf{w}; \mathcal{D}) + \lambda \, \mathbf{w} \\ &\mathbf{w} \leftarrow \mathbf{w} - \epsilon \, \left( \lambda \mathbf{w} + \nabla_{\mathbf{w}} E(\mathbf{w}; \mathcal{D}) \right) \quad \text{leads to weight decay} \end{split}$$

• Can be interpreted as MAP inference: it would correspond to a zero-mean Gaussian prior over weights.

w : network parameters

 $\mathscr{D}$ : data

 $\lambda \in [0,\infty)$  : relative contribution of the regularizer



## L<sub>1</sub> regularization

Adding a parameter norm penalty  $\Omega(\mathbf{w})$  to the error E.

$$\tilde{E}(\mathbf{w}; \mathcal{D}) = E(\mathbf{w}; \mathcal{D}) + \lambda \Omega(\mathbf{w})$$

L<sub>1</sub> regularization:

$$\Omega(\mathbf{w}) = ||\mathbf{w}||_1 = \sum_i |w_i|$$

Weight updates using the sub-gradient:  $\nabla_{\mathbf{w}} ||\mathbf{w}||_1 = \text{sign}(\mathbf{w})$ 

$$\mathbf{w} \leftarrow \mathbf{w} - \epsilon \left(\lambda \operatorname{sign}(\mathbf{w}) + \nabla_{\mathbf{w}} E(\mathbf{w}; \mathcal{D})\right)$$
 leads to **sparse** parameter vectors (many entries are 0).

• As MAP inference: corresponds to a Laplacian prior over weights.

$$p(w_i) = \frac{1}{2\sigma} e^{-\frac{|w_i|}{\sigma}}$$

• A linear model with least squares error and  $L_1$  norm regularization is known as LASSO (least absolute shrinkage and selection operator).

w : network parameters

 $\mathscr{D}$ : data

 $\lambda \in [0,\infty)$ : relative contribution of the regularizer

## L<sub>1</sub> regularization

Adding a parameter norm penalty  $\Omega(\mathbf{w})$  to the error E.

$$\tilde{E}(\mathbf{w}; \mathcal{D}) = E(\mathbf{w}; \mathcal{D}) + \lambda \Omega(\mathbf{w})$$

L<sub>1</sub> regularization:

$$\Omega(\mathbf{w}) = ||\mathbf{w}||_1 = \sum_i |w_i|$$

Weight updates using the sub-gradient:  $\nabla_{\mathbf{w}} ||\mathbf{w}||_1 = \text{sign}(\mathbf{w})$ 

$$\mathbf{w} \leftarrow \mathbf{w} - \epsilon \left(\lambda \operatorname{sign}(\mathbf{w}) + \nabla_{\mathbf{w}} E(\mathbf{w}; \mathcal{D})\right)$$
 leads to vectors

As MAP inference: corresponds to a Laplacian prior over we

$$p(w_i) = \frac{1}{2\sigma} e^{-\frac{|w_i|}{\sigma}}$$

• A linear model with least squares error and  $L_1$  norm regularization is LASSO (least absolute shrinkage and selection operator).

#### Impact of $L_1$ vs $L_2$ regularization on weights:



With L<sub>1</sub> regularization:

- zero weights are more probable (sparse)
- remaining weights get higher values (w.r.t. L<sub>2</sub>)
   since Laplacian dist. is heavier tailed

### (2) Early Stopping

• Training error decreases over training. However, test error first decreases, then increases.

#### Early stopping:

- Monitor error on a validation set.
- Store parameters whenever validation error decreases.
- Use parameters of best validation error as final setting.

#### Alternative (to make better use of data):

- Use early stopping to determine number of epochs.
- Then retrain with validation set included with the determined number of epochs.

#### How early stopping acts as a regularizer:

- We start training with small parameters.
- As training continues, parameters grow. Hence, the effective model capacity (complexity) grows.
- Since we monitor validation error, we can stop at a particularly good point.



### (3) Dropout

- During training with minibatches, in each minibatch, drop each neuron with probability 1-p (e.g., p=0.5).
  - "dropping" means: In both the forward and backward-pass, the neuron is ignored and its output is set to 0.









### (3) Dropout

- During training with minibatches, in each minibatch, drop each neuron with probability 1-p (e.g., p=0.5).
  - "dropping" means: In both the forward and backward-pass, the neuron is ignored and its output is set to 0.



#### Idea:

- Neurons cannot fully rely on the output of other neurons.
- Co-specialization is not possible.
- Sometimes, also inputs are dropped out during training.

#### Final network (application after training):

• Use all weights (and neurons), but rescale:  $w_{ij}^{final} = p w_{ij}$ 



### (3) Dropout - Why does it work well?

#### Model Averaging:

- Train several models separately on the data.
- All models vote for the output on test examples.

#### Dropout is an efficient way to implement model averaging:

- $2^N$  different thinned networks are possible (N: number of neurons).
- Many of them are trained, but with shared weights.

#### Final network (application after training):

• Rescaling of weights  $w_{ij}^{final} = p w_{ij}$  approximates the geometric mean of the thinned models.

### (4) Dataset Augmentation

Augment training data with transformed instances of the original data.

Boost the size of training set by deformation of input samples.

Table 1: Error Rates on MNIST Test Set.

|    | Architecture                    |                     |           |            |            |
|----|---------------------------------|---------------------|-----------|------------|------------|
|    | (Number of Neurons              | Test Error for      | Best Test | Simulation | Weights    |
| ID | in Each Layer)                  | Best Validation (%) | Error (%) | Time (h)   | (Millions) |
| 1  | 1000, 500, 10                   | 0.49                | 0.44      | 23.4       | 1.34       |
| 2  | 1500, 1000, 500, 10             | 0.46                | 0.40      | 44.2       | 3.26       |
| 3  | 2000, 1500, 1000, 500, 10       | 0.41                | 0.39      | 66.7       | 6.69       |
| 4  | 2500, 2000, 1500, 1000, 500, 10 | 0.35                | 0.32      | 114.5      | 12.11      |
| 5  | 9 × 1000, 10                    | 0.44                | 0.43      | 107.7      | 8.86       |



### (4) Dataset Augmentation

Augment training data with transformed instances of the original data.

e.g., image classification: boost the size of training set with common image transformations.



original input



horizontal flip



vertical stretch



rotate and crop



color balance



blur

### Adversarial Training

#### Adversarial example

 Small (and human-imperceptible) changes in inputs can produce different outputs.



"panda" 57.7% confidence



 $\operatorname{sign}(\nabla_{\mathbf{x}} \mathcal{L}(f_{\boldsymbol{\theta}}(\mathbf{x}), y))$ "nematode" 8.2% confidence



x + $\epsilon \operatorname{sign}(\nabla_{\mathbf{x}} \mathcal{L}(f_{\boldsymbol{\theta}}(\mathbf{x}), y))$ "gibbon" 99.3 % confidence

"cat"

"cat"

#### Adversarial training

- During training, seek for adversarial examples (i.e., examples  $\mathbf{x}'$  nearby a training example **x** where  $y' \neq y$ ).
- Train with input  $\mathbf{x}'$  and target y.





use both during training



 $\operatorname{sign}(\nabla_{\mathbf{x}} \mathcal{L}(f_{\boldsymbol{\theta}}(\mathbf{x}), y))$ 

 $\mathbf{x} + \epsilon \operatorname{sign}(\nabla_{\mathbf{x}} \mathcal{L}(f_{\boldsymbol{\theta}}(\mathbf{x}), y))$ 

### (5) Further Techniques

#### Label smoothing

- ullet Training labels are also often noisy ullet We can assume that a training label is correct with probability  $1-\epsilon$
- Simple implementation: Replace  $\{0,1\}$  targets for k-softmax output with  $\left\{\frac{\epsilon}{k-1}, 1-\epsilon\right\}$  targets.

#### Semi-supervised learning

- Use unlabeled data to obtain good representation of examples.
- Use labeled examples for classification.

#### Multi-task learning (auxiliary training)

• Pooling examples out of several tasks (e.g., train lower layers on several tasks, upper layers are task-specific)

#### Parameter sharing

- Some parameters can be constrained to have the same value.
- (more on Convolutional Neural Networks...)

### Today

- Regularization
  - Parameter Norm Penalties
  - Early Stopping
  - Dropout
  - Dataset Augmentation
  - Further Techniques

# Questions?