

Introduction to Data Science and Machine Learning

NEURALNETS

- Quiz
- Frameworks for Implementing Neural Networks (NN)
- Implementing a NN with TensorFlow
- Additional Layer Types for NNs

QUIZ

Learning Rate:

How much should this step outcome affect our weights and biases?

Momentum:

How much should past outcomes affect our weights and biases?

change = (learningRate * delta * value) + (momentum * pastChange)

OPTIMIZER PARAMETERS

- Step size for approaching the cost minimum ("Learning Rate")
- Resistance to direction changes ("Momentum")

Quelle: https://www.coursera.org/learn/machine-learning

PARAMETERS OF THE "ADAM" OPTIMIZER

Learning parameter for optimization:
 alpha (learning rate)

- Proportion of current gradient in calculating the next optimization step:
 - beta1 (decay rate for the direction) and
 - beta2 (decay rate for the magnitude of gradients)

HYPERPARAMATERS IN NEURAL NETS

- Architecture Definition:
 - Number of hidden layers in the network
 - Types of hidden layers
 - Number of neurons per hidden layer
 - Selection of activation function
- Selection of cost function ("Loss Function")
- Selection of the optimizer
- Setting of the learning rate for the optimizer

LIBRARIES FOR NEURAL NETS

PYTORCH

- TensorFlow 0.1 (Nov 2015): Released as open source software by Google; developed by the Google Brain Team for internal research and production)
- **TensorFlow 1.4 (Nov 2017):** Development of the Keras API as a high-level API for TensorFlow and other ML libraries, to increase user-friendliness for commonly used models.
- TensorFlow 2.0 (Sep 2019): Keras is integrated as a high-level API into TensorFlow.
- TensorFlow 2.3 (October 2020): Significant performance improvements, distributed training, quantized training, and improved mobile deployments.
- Keras 3.0 (Dec 2023): Major release that extends support for multiple backends, including
 TensorFlow, JAX, and PyTorch, making Keras a versatile framework for various deep learning needs.

- Transformers 1.0 (December 2018): Hugging Face releases the first version of the Transformer library as open source with implementations of popular transformer models like BERT, GPT, and others.
- Transformers 2.0 (March 2020): Support for fine-tuning, production deployment, and quantization. Higher performance and more intuitive APIs.
- Transformers 3.0 (November 2020): Support for more task areas like computer vision, audio, and reinforcement learning. Performance optimizations.
- Transformers 4.0 (May 2022): Improved performance and integration of additional new techniques for enhancing model optimization.

DATA PREPARATION

For every modeling, the data must have the following properties:

- 1. There must be no missing values.
- 2. All values must be numbers.
- 3. Categorical variables are one-hot encoded.

EXAMPLE DATA PREPARATION FOR THE TRAINING OF A NEURAL NET

EXAMPLE DEFINITION AND OPTIMIZATION OF A NEURAL NET

BREAKOUT

- Load the example notebooks from below into your Codespace and run them once unchanged.
- Supplement your data preparation with the steps performed in this example notebook:
 - 1) One-hot encoding of categorical variables
 - 2) Removing cases with missing values
 - 3) Export of training and validation data as pickle files

Estimate a first neural network based on <u>this example</u> notebook.

BATCHES, STEPS AND EPOCHS

Batch

- The entire set of training data is divided into separate subgroups of equal size.
- The standard batch size in TensorFlow is 32.

Step

 A single iteration of gradient descent performed on one batch of data, during which all model weights are updated once.

Epoch

- Optimization of the model using the complete training data:
 Number of Steps × Batch Size = Training Sample Size
- Depending on the model, very few epochs may suffice, or several hundred or thousand may be needed for optimization.

NORMALIZATION

Definition:

Subtracting the mean and dividing by the standard deviation.

Ensures all input features are on similar scales, which stabilizes training and speeds up convergence.

BATCH NORMALIZATION

- Performing normalization at the batch level

Additional optimization parameters:

- Exactly identical means and standard deviations are not necessarily optimal for modeling purposes
- Normalization parameters are incorporated as trainable parameters

LEARNING RESSOURCES

 Watch this video (7 minutes) to better understand the properties of dropout layers.

 Watch <u>this video</u> (5 minutes) to better understand the benefits of normalization.

 Complete the first chapter of this course on DataCamp to learn about identifying missing values.

TASKS

 Examine all your model variables for the existence of missing and implausible values.

Train a first neural network for your dataset.
 (Delete all rows with missing values.)