2025년도 「산업혁신기술지원플랫폼구축사업」 패키지지원서비스 참여기업 모집 공고

2025년도 「산업혁신기술지원플랫폼구축사업」의 패키지지원서비스를 다음과 같이 공고하오니, 사업에 참여하고자 하는 기업은 아래의 절차에 따라 신청하여 주시기 바랍니다.

2025년 2월 25일 한국로봇산업진흥원장

1. 사업개요

가. 사업목적

- 「연구기반센터*」에 구축된 다양한 연구장비와 전문인력, 서비스를 패키지로 지원하여 기업의 연구개발, 사업화 등 지원
 - * 연구기반센터 : 연구장비, 전문인력, 서비스 지원을 통하여 기술애로를 겪는 기업을 지원하기 위해 구축된 비영리기관

나. 지원방법

- o 연구기반센터 간 연계 패키지서비스를 바탕으로 기업 애로사항 해결 서비스 지원
- **다. 지원기간** : 선정일 ~ '25, 12, 31, 이내
 - * 선정 이후 별도 계약을 체결하게 되며, 지원기간은 계약기간에 준함
- 라. 지원대상 : 국내 중소·중견기업
 - * 붙임2 지원(신청) 제외 대상 참고
- 마. 지원체계: 서비스운영기관, 서비스참여기관 중심으로 기업지원

산업통	상자원부
한국산업	기술진흥원

기계로봇	바이오	소재	자동차항공	전기전자	조선해양
서비스 운영기관					
서비스 참여기관	서비스 참여기관	서비스 참여기관	서비스 참여기관	세스 참여기관	서비스 참여기관
참여기업	참여기업	참여기업	참여기업	참여기업	참여기업

2. 지원내용 및 지원방법

가. 지원내용

- o 기계로봇 업종 기업의 연구개발, 사업화, 시험·분석 등 원스톱 서비스 지원을 위해 아래 패키지서비스를 지원
- 동일 패키지서비스 내 서비스 운영·참여기관 공동 기술지원서비스 가능 < 기계로봇 업종 패키지서비스 지원내용 >

서비스 분야	패키지서비스명	지원내용
일반기계	자율제조 기반 검사기계의 첨단 스마트 측정시스템 핵심 부품	 자율 제조 공정 연동 측정 시스템 핵심 부품별설계/모델링 지원 안정화 설계 검증, 공정 최적화 검증 분석 및 시제품 제작 지원 자율 제조 공정 연동을 위한 공정 적용 및 설계개선 기술 지원 스마트 검사 시스템 핵심 부품 사용/자율 제조 연동 검사 시스템
건설/농기계	건설/농기계 디지털 전환을 위한 제어시스템 및 핵심 부품	 건설/농기계 디지털 전환을 위한 제어시스템 성능· 신뢰성·실증평가 건설/농기계 주행부하, 작업프로파일 등의 데이터 베이스 활용한 제어시스템 최적설계 건설/농기계 제어 관련 핵심 부품의 설계 및 시험 평가
로봇 (공정 설비)	첨단로봇 및 스마트 팩토리 공정 설비	- 제품 가능성 검토 및 사양 결정 후 제품 기획서 작성 - 첨단로봇 및 스마트 팩토리 공정 설비 핵심부품 생산 공정 해석 및 성능향상 시뮬레이션 - 최적설계를 위한 시제품 제작 - 시제품 성능 및 신뢰성 평가 - 초기불량 고장분석 및 공정 개선
로봇 (외골격 수트)	신체증강·보조용 착용형 로봇	- 신체증강·보조용 착용형 로봇을 구성하는 소재 및 부품과 구조프레임, 인체-로봇간 접촉인터페이스와 완제품에 대한 성능/안전성/사용성/신뢰성/해외인증 등 전주기 기술 지원

나. 수행기관(서비스 지원기관) 구성 현황

패키지서비스명	서비스운영기관	서비스참여기관
자율제조 기반 검사기계의 첨단 스마트 측정시스템 핵심 부품	경북IT융합산업기술원 융합시스템센터	한국섬유기계융합연구원 기업협력본부
건설/농기계 디지털 전환을 위한 제어시스템 및 핵심 부품	한국건설기계연구원 신뢰성연구본부	한국생산기술연구원 농기계기술지원센터
첨단로봇 및 스마트 팩토리 공정 설비	한국섬유기계융합연구원 기계로봇 연구센터	한국로봇산업진흥원 로봇혁신사업본부
신체증강·보조용 착용형 로봇	(재)FITI시험연구원 신뢰성연구센터	한국산업기술시험원 로봇시험인증센터

다. 지원방법 및 규모

- o 해당 서비스 분야별 패키지서비스 전체 또는 일부를 지원(세부 협약시 필요 서비스 선택)
- 총 사업비의 30% 이상을 기업부담금으로 추진

서비스	총 지원규모			기업당 지원규모		
분야	수혜 기업	총 정부 지원금	총 기업 부담금(현금)	지원사업비	정부지원금	기업부담금 (현금)
일반기계	10개社	73,000천원	32,500천원	10,550천원	7,300천원	3,250천원
	내외	내외	내외	내외	내외	내외
건설/	10개社	75,940천원	32,500천원	10,844천원	7,594천원	3,250천원
농기계	내외	내외	내외	내외	내외	내외
로봇	10개社	66,500천원	32,500천원	9,900천원	6,650천원	3,250천원
(공정 설비)	내외	내외	내외	내외	내외	내외
로봇	9개社	75,880천원	32,500천원	12,043천원	8,432천원	3,612천원
(외골격수트)	내외	내외	내외	내외	내외	내외

- * 정부지원금 지원규모는 평가위원회를 통해 결정하고, 기업부담금은 현금으로만 계상
- * 총 사업비의 70% 이내에서 정부지원금을 지원하며, 수행기업 부담금은 30% 이상으로 산정함
- 예시) 패키지지원서비스 총 사업비 1,000천원 = 정부지원금 700천원 + 수행기업 부담금 300천원
- * 총 지원사업비(정부지원금+기업부담금)는 공급가액 기준 금액이며, 이에 대한 부가가치세는 신청기업이 별도 부담
- * 사업 신청현황, 선정평가 결과 등 내부 사정에 따라 지원규모(지원금, 기업 수 등)는 변동될 수 있음
- 대표기관 기술코디네이터 상담을 통한 서비스운영·참여기관 매칭 및 연결 必
- 신청서 작성 시 서비스운영·참여기관별 담당자와 지원 가능 범위 및 일정 등 사전협의 후 작성 必
- 타 분야의 서비스 중복 신청 시 평가 결과에 따라 선정 가능

3. 지원절차 및 일정

^{*} 일정은 상황에 따라 변동될 수 있으며, 사업 공고 및 상세 변경 일정은 i-Tube를 통해 확인 가능

4. 참여기업 선정 평가기준

가. 평가방법: 서면평가를 원칙으로 하며, 필요시 발표평가 실시

구분	평가내용	평가지표	배점
수행	신청내용의 적합성	- 기술개발, 애로해결 등 해당 샤비스 필요 내용의 혁신성 및 중요도 - 산업기술정책 및 사업목적 부합성 - 주요산업 또는 신산업과의 부합성	15
계획의 타당성	사업 목표 명확성	- 목표달성 가능성 및 기술 목표의 구체성 - 서비스 이후 기술의 경쟁력 확보 가능성	15
(60점)	수행 내용 타당성	- 서비스 추진내용의 타당성 - 기관간 인프라 활용 및 연계의 적합성	15
	시급성	- 기술개발, 애로해결의 시급성	15
기대 효과	경제적 기대효과	- 지원 후 기대되는 경제적 효과 - 해외 수출 확대 가능성	20
요파 (40점)	기술적 기대효과	- 지원 후 기대되는 기술적 효과 * 기술개발, 고장 감소 등 기술적 효과 등	20
		합계	100

나. 평가결과

o 평가결과 종합평점이 60점 이상인 과제 중 예산을 고려하여 최종 지원과제를 선정하되 지원 예산을 조정할 수 있음

5. 신청방법

가. 접수처

- ㅇ 접수기간
 - (1차) '25. 02. 25(화) ~ '25. 04. 02(수)
 - (2차) '25. 04. 21(월) ~ '25. 06. 18(수)
 - (3차) 잔여 예산에 따라 추후 공지
- ㅇ 접수방법 : 온라인 접수(www.itube.or.kr, 아이튜브)
- * [붙임] 참여기업 신청서 작성 후 부대 서류와 함께 온라인 업로드
- * 홈페이지 내 회원가입 및 기업 승인 후 사업신청이 가능함으로 사전 회원가입 등 준비 必
- ㅇ 사업신청 관련 문의
- 동효경 책임(053-210-9552, 1533-0101(내선1), hkdong@kiria.org)
- 이가영 선임(053-210-9563, 1533-0101(내선1), galee@kiria.org)

나. 기술지원 상담 및 문의처

서비스 분야	수행기관	수행센터	담당자	연락처
일반	경북IT융합산업기술원 융합시스템센터		한대성 선임연구원	053-245-5074 dshan@gitc.or.kr
기계	한국섬유기계융합연구원	기업협력본부	한기수 선임연구원	053-819-3112 gshan@kotmi.re.kr
건설/	한국건설기계연구원 신뢰성연구본부 정 건		정 건 그룹장	063-734-2636 kjeong8@koceti.re.kr
농기계	한국생산기술연구원	생산기술연구원 농기계기술지원센터 김		063-920-1273 kjg14@kitech.re.kr
로봇	한국섬유기계융합연구원	기계로봇 연구센터	최기훈 선임연구원	053-819-3180 khchoi@kotmi.re.kr
(공정 설비)	한국로봇산업진흥원	로봇혁신사업본부	황재휘 선임연구원	053-210-9559 jhwang1@kiria.org
로봇 (외골격			김시연 선임연구원	02-3299-8145 siyeonkim@fitiglobal.com
수트)	한국산업기술시험원	로봇시험인증센터	이재민 팀장	031-500-2548 jmlee1@ktl.re.kr

다. 시스템 문의처

구분	전 담기 관	23 문의처
온라인 시스템(i-Tube) 관련	한국산업기술진흥원 i-Tube 유지보수팀	1811-9126 (내선2)

라. 필수제출 서류 및 부수

구분	제출서류	비고
1	참여기업 신청서	지정양식 1부
2	사업자등록증	1부
3	중소·중견기업 확인서	1부
4	과제 참여자의 개인정보 이용 동의서 및 청렴서약서	지정양식 1부
5	신청자격 적정성 확인서	지정양식 1부
6	기술지원 기관 견적서	1부

- * 서류 접수 시 제출서류 누락, 잘못된 서류 제출 등이 발견될 경우 평가 제외될 수 있으니 제출서류 준비에 각별히 신경 써 주시기 바랍니다.
- * 필수 제출서류를 i-Tube 홈페이지 패키지지원서비스 페이지 내 업로드 必

6. 기타사항

- ㅇ 제출된 서류는 일체 반환하지 않음
- o 사업신청 및 선정 이후 관련 규정 및 기준을 숙지하지 않아 발생하는 불이익 및 그에 따른 책임은 본 사업에 신청한 참여기업에게 있음
- o 패키지지원서비스 선정기업은 서비스지원기관과의 별도 협약을 통하여 지원내용 및 규모 등 상세 사항 확정

붙임 1. 참여기업 신청서

- 2. [별표] 지원(신청) 제외 대상
- 3. 품목별 기술지원 내용

붙임1

참여기업 신청서

『산업혁신기술지원플랫폼구축사업』 참 여 기 업 신 청 서

	업 체	명			대 표 자	명			
	설 립 일] 자	년 월 일]	기 업 형	태	□ 법	인	□ 개인
	사업자등록	÷번호	-		법인등록변	<u>년</u> 호		-	
기업	업	중	□ 제조업 □ 지식서비스 □ 기타	<u>-</u> 업	상시종업원 (직전년도기				명
현황	자 본 (직전년도	금 기준)	Ž	천원	매 출 (직전년도기	액 준)			천원
	주생산	품							
	주	소	(-)						
신청			2 2 - 12		서비스분	야			₩로봇(공정설비). :트) 中 택1
서비스	업	중	기계로봇		패키지서비스	스명			
대표자	성	명			전 화 번	Ó	()		-
41327	핸 드	폰	-		E - m a	i 1		@	
담당자	성	명			전 화 번	호	()		-
급장사	핸 드	폰	() -		E - m a	i 1	·	@	

「산업기술혁신사업 공통운영요령」 및 「산업혁신기술지원플랫폼구축사업 패키지 서비스 공고문」에 따라 동 사업에 참여하고자 신청합니다.

<참고사항>

- 1. 참여기업은 공고 및 산업혁신기술지원플랫폼 주관/공동연구개빌기관이 제시하는 금액 및 비율에 따라 기업부담금을 매칭하여야 한다.
- 2. 사업기간 내 정부지원금과 민간부담금(기업부담금)을 합산한 패키지서비스 사업비 내에서 애로 기술 지원이 가능하다.

2025.

업 체 명 대 표 자 (인)

한국로봇산업진흥원 귀하

(최대 3페이지를 넘기지 않게 작성 - 제출시 삭제)

1. 기업 개요 : 기업명

구분	'22년	'23년	′24년	
매출액(백만원)				
종업원수(명)				
R&D투자액(백만원)				
주요이력	○ 설립 및 주요이력			
<u> </u>	○ 회사 주요 이벤트(수상, 수출, 인증·지정 등)			

2. 서비스 신청 사유 또는 애로기술(사항)

<작성시 참고> - 제출시 삭제

- 현재 겪고 있는 어려움 및 연구기반센터의 지원이 필요한 사유
- 객관적 자료를 근거로 사업에 대한 필요성을 타당성 있게 제시(기술성, 사업성, 시장성 등)

Ò

Ò

3. 지원 요청내용

<작성시 참고> - 제출시 삭제

- 지원을 받아 해결 또는 개발하고자 하는 기술에 대한 설명(어떠한 기술애로 해결이 필요한지에 대하여)
- 지원항목, 패키지지원서비스를 통해 어떻게 해결이 가능한지에 대해 제시
- 제품개발 이후 사업화 전략 제시
- 지원희망 기간 종료일은 사업종료일 이전으로 기입
- 지원사업비의 경우 제출한 견적서(공급가액)와 금액이 일치해야하며, 정부지원금과 민간부담금 구분하여 기입
- 지원 요청내용의 경우 작성 전 서비스지원기관과 협의 후 작성 必
- * 요청 절차 : 1) 기술코디네이터 협의 -> 2) 기술지원기관 매칭 -> 3) 기술지원 범위, 일정, 내용 등 협의 및 견적 접수 -> 4) 본 신청서 작성 및 제출(i-Tube, 제출시 견적서 필히 첨부)

지원희망기간		원희망사업비		지원내용
시편의당기간	정부(0.7A)			시전네공
2025.00.00~2025.00.00				

- * 선정 및 계약 과정에서 기간, 사업비, 지원내용 등은 변경될 수 있음
- * 기업부담비의 경우 지원사업비의 30% 이상이어야 함. (지원사업비X0.3 => 천원 단위 올림으로 계산)

Ò

*

4. 기대효과

<작성시 참고> - 제출시 삭제

- 지원 이후 개발된 기술, 해결된 애로기술이 기업에 어떻게 도움이 될 것인지 제시
- 정량적 기대효과 제시
- * 제조 생산 관점(불량률, 생산능력 등). 경제적 관점(비용절감, 매출증대, 시너지효과 등) 등 기타 파급효과 기재

Ò

*

Ò

*

붙임2

[별표] 지원(신청) 제외 대상

- 1. (공고내용과의 부합성) 과제의 내용이 사업공고 상의 목적과 내용에 부합하지 않을 경우
- 2. (참여제한 여부) 기업 또는 기업의 대표이사가 국가연구개발사업에 참여제한 중인 경우
- 3. (의무사항 불이행) 각종 의무사항(각종 보고서 제출, 기술료 납부, 기술료 납부계획서 제출, 정산금 또는 환수금 납부 등)을 불이행하고 있는 경우
- 4. (파산) 파산·회생절차·개인회생절차의 개시 신청이 이루어진 경우 (* 단, 법원의 인가를 받은 회생계획 또는 변제계획에 따른 채무변제를 정상적으로 이행하고 있는 경우는 예외)
- 5. (부도·채무불이행)
 - ① 부도, 휴폐업, 국세, 지방세 등의 체납처분을 받은 경우
 - ② 민사집행법에 의하여 채무불이행자명부에 등재된 경우
 - ③ 전국은행연합회 등 신용정보 집중기관에 채무불이행자로 등록된 경우
 - (* 단, 회생인가를 받은 기업, 중소기업진흥공단 등으로부터 재창업자금을 지원 받은 법인기업은 예외)
- 6. (타 사업 중복지원) 동일 애로사항 해결. 동일 시험·컨설팅 등에 대해 중복으로 지원받는 경우
 - * 동일 건에 대한 중복지원 적발시, 환수 등 필요절차를 진행할 수 있음

붙임3

품목별 기술지원 내용

① 일반기계 공정별 기술지원 내용

추진 공정		지원 내용	지원 기관 (지역/기관명)	대상 장비
기획	제품 가능성 검토	자율제조 기반 검사 기계의 첨단 스마트 측정시스템 개발 사양 및 가능 여부 검토, 기술성 및 사업성 검토	경북T융합산업기술원 한국섬유기계융합연구원 (경북)	디지털복합성형기
	제품기획	사양을 결정하여 핵심 모듈 부품 기획서 작성지원	경북T융합산업기술원 (경북)	
설계	설계 해석 / 성능 항상 / 시뮬 레이션	자율 제조 공정 연동 측정시스템 핵심부품의 안정화 설계 검증을 위한 시뮬레이션 설계 해석(구조, 피로, 진동해석) 및 공정 최적화 검증을 위한 공정 시뮬레이션 분석	경북T융합산업기술원 한국섬유기계융합 업구 원 (경북)	유동해석 S/W, 구조진동 분석 S/W, 구조해석시스템, FPGA 설계 및 검증 시스템, 고변위 복합 진동 시험장치
	시작품 제작	자율 제조 연동 스마트 측정시스템 적용 및 검증을 위한 시제품 제작 지원	경북T융합신업기술원 (경북)	초정밀 고속가공기, FPGA 하드웨어 디지털로직 신호분석장비
검증	성능 / 신뢰성 평가	비전 시스템 지그, 검증 프로그램, 가공 장비, 소음·진동 측정 및 내구시험분석, 고속 동작 분석 등의 장비를 활용해 첨단 스마트 측정시스템 핵심부품의 활용성, 호환성, 작업성, 작동성 등 시제작품 성능 평가 및 검증	경북T융합산업기술원 한국삼유기계융합연구원 (경북)	인장시험기, 금속성분 분석기, 내구시험기, 구조 진동분석 S/W, 구조진동 분석 시스템, 소음 및 진동센서, 열선유속계, 초정밀 고속가공기, 변형 특성분석기, 가스부식 시험기
양 산	고장 분석/ 공정 개선/ 사업화	자율 제조 공정의 필드 적용 후 초기 불량에 대한 고장분석, 고속 운전 중인 제품의 동작 분석, 시제품 공정개선을 위한 재제조 실행, 전시회 참가 등 판로개척을 위한 사업화 지원	경북T융합산업기술원 한국삼유기계융합 연구 원 (경북)	고속동작분석시스템, 소음 및 진동센서, 초 정밀 고속가공기, 고변위 복합 진동 시험장치, 복합 환경 부식 시험장비

② 건설농기계 공정별 기술지원 내용

추진 공정		지원 내용	지원 기관 (지역/기관명)	대상 장비
설계	필드 부하 분석	계측용 완성차(굴착기, 트랙터 등)를 이용하여 다양한 작업 모드별 소요되는 연료, 주행분석, 부하, 견인력 등을 종합적으로 계측 분석하여 제어시스템 설계 지원	한국건설기계연구원 (전북기반기술연구센터) 한국생산기술연구원 (전북/동) 계기술지원센터)	스마트 건설 통합 평가 설비, 중소형 건설기계 융합부품 실시시험시스템, 40kw/80kw/120kw급 계측용 트랙터 및 부속 작업기
	가상 시뮬 레이션	농작업기계의 용량 및 용도에 따른 다양한 조합의 농작업기계의 주행부하, 작업부하, 작업프로파일, 부하 프로파일 등의 데이터베이스를 구축하여 제어시스템 최적설계	한국생산기술연구원 (전북 <i>농</i>) 계기술자원센터)	농기계 시뮬레이션 검증 시스템
	성능/ 신뢰성/ 실증 평가	건설/농기계의 동력특성(토크, 속도, 출력, 효율 등)을 측정 및 분석하여 동력 제어 관련 시스템의 성능/신뢰성평가	한국건설기계연구원 (전북기반키술연구센터) 한국생산기술연구원 (전북/공)계기술자원센터	굴착기 전자제어 미션밸브 신뢰성 평가설비, 3축 기어 박스 시험시스템
		농기계에 들어가는 전자제어시스템에 대한 진동, 고온, 저온 등의 조건에서의 성능 및 내구성 평가	한국생산기술연구원 (전북농) 계가술자원센터	농기계전자제어플랫폼검증 시스템
		농기계의 자율 주행 및 주행 성능을 평가	한국생산기술연구원 (전북) 경기술자원센터	농기계주행성능평가시스템
		농기계 완성차 및 부품의 다양한 환경, 온도조건에서의 제어 시스템 성능평가	한국생산기술연구원 (전북/동) 계기술자원센터	환경챔버, 태양광 시뮬레이션 농기계 시험장비
		건설기계, 농기계 및 제어시스템 핵심 부품의 복합 환경시험 및 부식 시험평가	한국건설기계연구원 (전북/기반기술연구센터)	대형 복합 환경 부식 시험장비
검 증		건설농기계 및 부속작업기의 실작업 시 제어시스템의 성능에 따른 소음, 진동(Noise, Vibration, Harshness) 분석시험	한국건설기계연구원 (전북기반키술연구센터) 한국생산기술연구원 (전북)공기계술자원센터)	소음진동 측정설비
		건설농기계의 유압 관련 제어시스템 성능 및 내구성 평가	한국건설기계연구원 (전북기반기술연구센터) 한국생산기술연구원 (전북/동/여기술자원센터)	스마트 건설가계용 자율작업 평기설비, 굴삭기 전자제어 컨트롤 밸브 신뢰성평가설비, 굴착기 전자제어 미션밸브 신뢰성 평가설비, 유압부품 종합시험베드
		다양한 환경 및 악조건에서의 농업기계 제어시스템의 성능 계측을 통하여 내구성 평기방법 개발 및 실증평가 지원	한국생산기술연구원 (전북) 경기술자원센터	실외험로주행장
		건설농기계의 원격제어 시스템 실증평가 지원	한국건설기계연구원 (전북/기반키술연구센터)	건설기계 자동화 실차시험 시스템
		전동화 건설농기계에서 사용되는 전기 모터류에 대한 제어시스템 성능평가	한국건설기계연구원 (전북/기반기술연구센터)	스마트 건설기계용 차세대 동력시스템 평가설비

- 13 -

③ 로봇(공정설비) 공정별 기술지원 내용

추진	· 공정	지원 내용	지원 기관 (지역/기관명)	대상 장비
기획	제품 가능성 검토	첨단로봇 및 스마트 팩토리 공정 설비 핵심부품 개발 사양 및 가능여부 검토, 기술성 및 사업성 검토	한국섬유기계융합연구원 (경북)	
	제품 기획	사양을 결정하여 핵심 부품 기획서 작성지원	한국섬유기계 융합연구원 (경북)	
설계	설계 해석 / 성능 향상 시뮬	첨단로봇 및 스마트 팩토리 공정 설비 핵심부품 생산 공정 해석적 분석, 부품, 장비 내부 해석을 통한 시스템 설계 및 공정 조건 설계	한국섬유가계용합연구원 (경북) 한국로봇산업진흥원	구조 해석 시스템, 구조진동분석 시스템, 소음 및 진동센서, 구조진동분석 S/W 첨단제조 모사시험 시스템
	레이션 시작품 제작	첨단로봇 및 스마트 팩토리 공정 설비 핵심부품 부품 최적 설계를 위한 시작품 제작 첨단로봇 및 스마트 팩토리 공정 설비 관련 부품의 기능적 검토를 위한 금속 3D 프린팅 시제품 제작 지원	(대구) 한국섬유기계융합연구원 (경북) 한국로봇산업진흥원 (대구)	(2409-E-0017) 디지털 신호 분석기, 로직 분석기, 스펙트럼 분석기 첨단 제조 로봇 시제품 제작 장비(2108-C-0180)
검증	성능 / 신뢰성 평가	소음진동측정 및 내구시험분석, 고속동작분석 등의 장비를 활용해 첨단로봇 및 스마트 팩토리 공정 설비 핵심부품의 품질 및 성능/내구수명/부품 기구학적 거동분석/인장 및 임축 분석/물성분석 등 종합 부품 성능 및 신뢰성 평가	한국섬유7/계용합연구원 (경북)	인장시험기, 내구시험기, 소음 및 진동센서, 표준공정모델 테스트베드 시험 및 운용용 협동로봇
		-첨단로봇 부품 대상 피로시험, 신로성 시험, 충격시험, 한례 수명시험 -5G,Wifi,블루투스 통신방식에 대한 무선통신 단말기 및 무선통신 관련 부품에 대한 불요복사측정 및 안테나 송수신 특성 측정시험 -전기 구동방식의 첨단 이동로봇 제품 등의 구동 시스템에 대한 성능 및 1총전 주행거리, 최고 속도, 내구 시험 -KS C IEC 61508, KS B ISO 13849 등과 관련하여 첨단 로봇의 소프트웨어 신뢰성 평가 및 검증	한국로봇산업진흥원 (대구)	이동로봇 인증용 진동 시험기(2408-F-0004), 로봇 5세대 통신망 무선 통신 성능검증 시스템 (2407-D-0056), 이동 로봇 에너지 효율 시험기(2408-F-0040), 로봇 소프트웨어 신뢰성 평가시스템(2101-E-0014)
양산	고장 분석/ 공정 개선/ 사업화	참단로봇 및 스마트 팩토리 공정 설비 핵심부품의 필드 적용 후 초기불량에 대한 고장분석 실시, 제품의 동작 분석, 시제품 공정 개선을 위한 재제조 실행, 전시회 참가 등 판로 개척을 위한 사업화 지원	한국섬유기계융합연구원 (경북)	구조진동분석 시스템, 구조진동분석 S/W, 표준공정모델 테스트베드 시험 및 운용용 협동로봇
		-실제 제조 환경을 모시한 환경에서 첨단제조로봇의 실증을 통한 로봇 및 공정의 성능 안전성의 검증개선 -첨단 이동 로봇에 대해 인체더미 등의 타켓 시스템을 구축하여 제품의 전방감지 성능 및 안전성 평가 -제조 환경에서 실시간으로 단일 로봇, 로봇-로봇 상호간 위치 정보와 상대속도, 상대거리 등을 계측하여 단일- 다중 로봇의 자율주행성능에 대한 시험 평가 -5세대 통신망 첨단 제조 실증환경 테스트베드와의 5G 통신망 구축, 망관제, 데이터 모니터링/수집, 이상감지	한국로봇산업진흥원 (대구)	5세대 통신망 첨단 제조 실증환경 테스트베드 (2408-C-0014), 장 애 물 재 현 장 치 (2410-C-0318), 고정밀 위치 시스템 (2103-F-0079), 5세대 통신망 실증환경 통합 관제시스템(2412-E-0006)

- 14 -

④ 로봇(외골격 수트) 공정별 기술지원 내용

추진 공정		지원 내용	지원 기관 (지역/기관명)	대상 장비
기획	정보수집 지원	착용형 로봇 기술동향 및 컨설팅 지원	(재)FITI시험연구원 (서울)	
	기술컨설팅	착용형 로봇 성능검증을 위한 기술컨설팅	한국산업기술시험원 (서울/안산)	
설계	섬유복합재 물성평가	- 섬유복합재 물성평가(섬유-수지 접합특성) - 섬유복합재 유연성, 드레이프성 평가	재)FITI시험연구원 (서울)	단섬유 물성 및 섬유수지 접합특성 평가시스템 (1911-C-0075), 구조안정성(드레이프성) 평가시스템(2106-A-0088)
	전자섬유, 근전도전극 성능, 내구성 평가	- 전자섬유의 선저항/면저항/비접촉 면저항 측정 지원 - 전자섬유의 선저항 및 사용환경 내구성 평가 (세탁/땀/마모/UV 노출 내구성) 평가 지원(EN, IEC 표준 준용, KOLAS 성적서 발급 가능) - 섬유형 근전도 전극의 잡음비(SNR) 평가	(재)FITI시험연구원 (서울)	비접촉 자동매핑 면저항 측정기(1902-D-0072), 생체신호계측기(미등록)
	근력지원 및 보행보조 효과 평가	- 근력지원효과 정량평가지원(근피로 경감 및 작업 효율 향상) - 보행보조효과 정량평가지원 (보행안정성, 보행 속도 향상 등) - 착용쾌적성 평가지원(하네스 의복압 분포 분석 등) - 제품 맞춤형 평가 프로토콜 및 평가법 설계 지원	(재)FITI시험연구원 (서울)	아웃도어 제품의 체온 보호안전성 측정시스템 (1909 F-0105), 인솔타입 즉저압력 측정 시스템 (미등록), 신발완제품 안전성 시험평가 시스템(1911 F-0101)
	기술컨설팅	- 착용형 로봇 설계검증을 위한 기술컨설팅	한국산업기술시험원 (서울/안산)	
	소재 핵심성능 및 특성 분석	- 섬유형 재료의 내구성, 기능성, 쾌적성, 내환경성 평가 - 소재 및 완제품 가속노화 시험 (신뢰성 평가) - 석유, 플라스틱 소재의 유해물질 함유량 평가 - 복합재료의 열분석(용융온도/DSC/TGA/MI 등)	(재)FITI시험연구원 (서울)	유해물질전이 물성변회측정 시스템(1311-B-0057)
건모심이	실증 평가	- 군/소방/경찰/건설/제조 등 고위험 작업환경 실증 평가 지원(화염, 강우 노출 등) - 맞춤 프로토골을 활용한 실사용환경 실증평가 지원	(재)FITI시험연구원 (서울)	화염 보호용 섬유제품 열저항 성능평가 시스템 (2106-F-0292) 고급섬유소비재의 강우 환경안정성 시험평가장비 (1901-F-0094) Fame&Fre 실증화가스스템 (2106-F-0371)
	부품 모듈 성능/신뢰성 검증	- ISO 9283 기반 평가, 충돌 안정성, 치수 데이터, 전기적 특성, 기능안전, 환경성능 평가, 정확도 평가	한국산업기술시험원 (서울/안산)	(2106 + 03/1) 협동로봇 기계적 특성 시험 설비(2305-D-0032), 현동로봇 인전되가 시험살비(2203-T-0147), 현동로봇 말단장치 전용 3차원 형상 측정장비(2401-A-0028), 한동로봇 지제품 제착 장비(2308-D-0031), 현동로봇 전기적 등성 시험 설비(2306-D-0031), 한동로봇 제품 제착 장비(15등록), 호환경조성실(미등록), 호환경조성실(미등록), 회환경조성실(미등록), 회원(기원 및 기원적 지원적지), 기원 및 기원적 지원적지, 기원적 지원적 기원적 지원적 기원적 지원적 기원적 기원적 기원적 기원적 기원적 기원적 기원적 기원적 기원적 기
	고장원인 분석	- 완제품 구조분석연계 고장원인분석 지원	(재)FITI시험연구원 (서울)	현미경(2106-A-0289),
쓩상	완제품 성능/신뢰성 검증	- ISO 9283 기반 평가, 총돌 안정성, 치수 데이터 전기적 특성, 기능안전, 환경성능 평가, 정확도 평가	한국산업기술시험원 (서울/안산)	3 전반 교육 (1984) 1 (19