Fundamental theorem of Curues	John Waczah MTH 434
Tapp 1.76 (313 m = 1300) = 1	111111111111111111111111111111111111111
B= (cost sinti-t)	
let $\gamma(t) = (\chi(t), \chi(t), \chi(t))$ define $\gamma(t) = (\chi(t), \chi(t), -\chi(t))$ describe	f(t)
by &(t) = (3(t), x(t), -y(t)) describe	و ا
how the curvature and torsion are	
relatid.	
A = A Aloon (84) = A +	
let Rr, Is be curreture and -	torsion
the can encode this transform	· ·
The can encode this transform	aton
my: 100/ 1100/1100/	
1001 /X / (Z)	NA-
$\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{z}{x} \\ -y \end{pmatrix}$	
0 10 -10 10 2 3 1 10 3 1	
define A= (00) Note that	- A
AT= (010) Non me	
compute (0011/010)	
$AA^{T} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$	
10-1011001	
$ \frac{1}{0} = \frac{1}{0} $	
010 - 1	
	' (
thus A ∈ O(3) and So is a right	<u>al</u>
motion.	
motion. $det(A) = 1(det(0-1)) = -1$	
thus by proposition 1.64 Kr=Kz	and
$T_{\gamma} = -T_{\gamma}$	

(cost, sintit) Cost thus A ∈ O(3) is a rigid motion = 1 plet (30) = -1 - and 50 A is improper thus by prop 1.64 Ky = Rp but Ty =- Tp thing by Angosition would

Tapp 1.81

What
$$T_1 = (\cos t)$$
, $\sin (t)$
 $T_2(t, t^2)$
 $T_1 = (0^{-1})$ "reflection about $t_1 = (-1, 0)$ "reflection about $t_2 = (-1, 0)$ "reflection about $t_3 = (-1, 0)$ "reflection about $t_4 = (-1, 0)$ "