Verifiable Delay Functions An introduction

Mitul Patel

Instructor: Dr Somitra Sanadhya

Indian Institute of Technology Jodhpur

May 19, 2021

Summary

1 The Idea behind Pietrzak VDF Scheme

2 Analysis

3 Comparison with Wesolowski VDF Scheme

The Idea behind Pietrzak VDF Scheme

$\operatorname{Setup}(\lambda, T)$

- Let's take
 - A Finite abelian multiplicative group of unknown order: G, with mod n.
 - f 2 The delay parameter some T
 - $oxed{3}$ The info about input domain ${\mathcal X}$ and the output domain ${\mathcal Y}$.
 - 4 Some security parameter λ .
- Now the public parameter will be

$$pp \leftarrow (n, T, \mathcal{X}, \mathcal{Y}, \lambda)$$

Eval(pp, x)

- $Eval(pp, x) \to x^{2^T} \mod n$
- The representation of $2^T \xrightarrow{binary} 100000...00(1 \text{ followed by } T \text{ zeroes})$
- Using the Square and Multiply algorithm, we can compute the $x^{2^T} \mod n$ in T sequential steps.
- The actual delay will be approximiately some multiple of T.

Verify (pp, x, y, π)

Protocol 1: Verify(n, x, T, y)

```
if T == 1 then
       if y == x^2 then Verifier Accepts;
       else Verifier Rejects ;
else
       Prover Sends \mu \leftarrow x^{2^{T/2}} to the Verifier.
       if \mu \notin G then
              Verifier Rejects ;
       else
              Verifier samples r \xleftarrow{\$} \mathbb{Z}_{2^{\lambda}} and sends it to the Prover
              The Prover & Verifier computes: x' \leftarrow x^r \mu
              The Prover & Verifier computes: u' \leftarrow \mu^r u
              if T/2 is even then
                     The Prover & Verifier engages in: Verify(n, x', T/2, y')
              else
                     The Prover & Verifier engages in: Verify(n, x', \lceil T/2 \rceil, y'^2)
              end
       end
```


- In each step the verifier basically asks for the proof of T/2 amount of work.
- $T/2 \rightarrow T/4 \rightarrow T/8 \rightarrow T/16 \rightarrow T/32 \rightarrow \cdots$

- In each step the verifier basically asks for the proof of T/2 amount of work.
- $T/2 \rightarrow T/4 \rightarrow T/8 \rightarrow T/16 \rightarrow T/32 \rightarrow \cdots$
- Which sums up as:

$$T/2 + T/4 = 3T/4$$
$$3T/4 + T/8 = 7T/8$$
$$7T/8 + T/16 = 15T/16$$
$$15T/16 + T/32 = 31T/33$$
$$\vdots$$

- \blacksquare At the end when recursively $T \xrightarrow{reaches} 1$
- \blacksquare The verifier simply checks if, $y == x^{2^T} (\equiv y == x^2)$

- At the end when recursively $T \xrightarrow{reaches} 1$
- The verifier simply checks if, $y == x^{2^T} (\equiv y == x^2)$
- The terms μ, x', y' grow as shown below: for i^{th} recursive-iteration,

$$\begin{split} \mu_i \leftarrow x^{(\prod_{k=0}^{i-1} f(k)) \cdot 2^{T_i/2}} \\ x_i' \leftarrow x^{(\prod_{k=0}^{i} f(k))} \\ y_i' \leftarrow x^{(\prod_{k=0}^{i} f(k)) \cdot 2^{T_i/2}} \end{split}$$
 Where: $T_i = T/2^{i-1} \mid f(k) = r_k + 2^{T_{k+1}} \; , \; f(0) = 1$

- At the end when recursively $T \xrightarrow{reaches} 1$
- \blacksquare The verifier simply checks if, $y == x^{2^T} (\equiv y == x^2)$
- The terms μ, x', y' grow as shown below: for i^{th} recursive-iteration,

$$\begin{split} \mu_i \leftarrow x^{(\prod_{k=0}^{i-1} f(k)) \cdot 2^{T_i/2}} \\ x_i' \leftarrow x^{(\prod_{k=0}^{i} f(k))} \\ y_i' \leftarrow x^{(\prod_{k=0}^{i} f(k)) \cdot 2^{T_i/2}} \end{split}$$
 Where: $T_i = T/2^{i-1} \mid f(k) = r_k + 2^{T_{k+1}} \; , \; f(0) = 1$

- At each level the relation $y' = x'^{2^{T_i/2}}$ is maintained & T_i is halved.
- If we consider r=0 at each level, $x' \xrightarrow{sums-to} x^{2^T}$

Non-interactive version using Fiat-Shamir heuristic

$$\pi \leftarrow \{\mu_1, \mu_2, \mu_3, \cdots, \mu_d\} \mid d = \log_2(T)$$

Non-interactive version using Fiat-Shamir heuristic

$$\pi \leftarrow \{\mu_1, \mu_2, \mu_3, \cdots, \mu_d\} \mid d = \log_2(T)$$

If we observe,

$$\mu_{1} \leftarrow x^{2^{T/2}}$$

$$\mu_{2} \leftarrow x^{r_{1}2^{T/4} + 2^{3T/4}}$$

$$\mu_{3} \leftarrow x^{r_{1} \cdot r_{2} \cdot 2^{T/8} + r_{1} \cdot 2^{3T/8} + r_{2} \cdot 2^{5T/8} + 2^{7T/8}}$$

$$\vdots$$

 \blacksquare So we can compute the μ_i values from already computed values from $x^{2^T}.$

- \blacksquare So we can compute the μ_i values from already computed values from $x^{2^T}.$
- But it would require us to store 2^d values, where $d = \log_2(T)$

- \blacksquare So we can compute the μ_i values from already computed values from $x^{2^T}.$
- But it would require us to store 2^d values, where $d = \log_2(T)$
- So, we make a tradeoff between storage & compute by having a $s \in [1 \dots d]$, such that we only use storage upto s^{th} recursive level & recompute the rest values, using

$$\frac{T}{2^{s+1}} + \frac{T}{2^{s+2}} + \dots + \frac{T}{2^d} < \frac{T}{2^s}$$

with 2^s values stored & rest to be computed with $\frac{T}{2^s}$ multiplications, we need a total of $2^s+\frac{T}{2^s}$ operations, now to minimise that we need $s=\log_2(\sqrt{T})$. So the proof generation time is of the order:

$$O(\sqrt{T})$$

Analysis - Verification

Verification basically requires the computation of:

$$x' \leftarrow x^r \mu$$

$$y' \leftarrow \mu^r y$$

in $d = \log_2(T)$ levels.

- So the total time is dominated by the 2 exponentiations with r, in $\log_2(T)$ levels $\Rightarrow 2 \cdot \log_2(T)$ exponentiations
- So the verification time is: $O(\log_2(T)) \Rightarrow \text{polylog}(T)$.

Comparison with Wesolowski VDF Scheme

Comparison - Proof Size

■ The Pietrzak scheme has proof size of $log_2(T)$ elements:

$$\pi \leftarrow \{\mu_1, \mu_2, \mu_3, \cdots, \mu_d\} \mid d = \log_2(T)$$

While the Wesolowski scheme has proof size of 1 element:

$$\pi \leftarrow x^b$$

Comparison - Verification Speed

- \blacksquare We saw that The proof generation for Piertzak scheme takes : $2\log_2(T)$ exponentiations
- While the wesolowski takes only 2 exponentiations:

$$y == \pi^L x^r$$

Comparison - Proof Generation Speed

- \blacksquare We saw that proof generation in Pietrzak scheme takes $O(\sqrt{T})$ time.
- While in Wesolowski it takes O(T) time.
- Both the approaches are parallelizable.

References

A VDF Explainer. https://reading.supply/@whyrusleeping/a-vdf-explainer-5S6Ect.

Boneh, D., Bonneau, J., Bünz, B. & Fisch, B. Verifiable Delay Functions. *IACR Cryptol. ePrint Arch.* 2018, 601. https://eprint.iacr.org/2018/601 (2018).

Boneh, D., Bünz, B. & Fisch, B. A Survey of Two Verifiable Delay Functions. *IACR Cryptol. ePrint Arch.* 2018, 712. https://eprint.iacr.org/2018/712 (2018).

Introduction to Verifiable Delay Functions (VDFs).

https://blog.trailofbits.com/2018/10/12/introduction-to-verifiable-delay-functions-vdfs/. Oct. 2018

Netti, J. Pietrzak Verifiable Delay Functions.

https://medium.com/@joenetti/pietrzak-verifiable-delay-functions-f5683131882b. May 2020.

Rocha, A. d. l. @adlrocha - A gentle introduction to VDFs.

https://adlrocha.substack.com/p/adlrocha-a-gentle-introduction-to. June 2020

Wesolowski, B. Efficient Verifiable Delay Functions. J. Cryptol. 33, 2113-2147.

https://doi.org/10.1007/s00145-020-09364-x (2020).

Thank You!