STEA UNITED TO THE COLUMN TO T

DHA SUFFA UNIVERSITY

Department of Computer Science CS-2004L Operating Systems Fall 2020

LAB 07 – RR and Priority Scheduling

OBJECTIVE(S)

• Understanding RR and Priority scheduling Algorithms

Round Robin Scheduling Algorithm:

This is a preemptive version of the FCFS algorithm based on time quantum. Very large time quantum makes Round Robin as FCFS algorithm. It minimizes average response time. Each process is provided a fixed time to execute, which is called a quantum. Once a process is executed for a given time period, it is preempted and another process executes for a given time period. Context switching is used to save states of preempted processes.

Aim:

Write a C/C++ program to implement the process scheduling mechanism of Round Robin Scheduling.

Algorithm:

- **Step 1:** Start the process
- **Step 2:** Accept the number of processes in the ready Queue and time quantum (or) time slice.
- **Step 3:** For each process in the ready Q, assign the process id and accept the CPU burst time.
- **Step 4:** Calculate the no. of time slices for each process where No. of time slice for process (n) = burst time process (n)/time slice.
- **Step 5:** If the burst time is less than the time slice than the no. of time slice = 1.

Step 6: Calculate

DHA SUFFA UNIVERSITY Department of Computer Science CS-2004L Operating Systems

Operating Systems Fall 2020

Turn-around time (TaT) of Process(n) = Completion Time – Arrival Time

Waiting Time (WT) for process(n) = Turn-around time – Burst Time

Step 7: Calculate

Average waiting time = Total waiting Time / Number of processes

Average Turnaround time = Total Turnaround Time / Number of processes

Step 8:Stop the process

Round Robin Scheduling Example:

Example: Consider the following table:

Process no.	Arrival Time	Burst Time
Pl	0	6
P2	2	1
P3	5	4
P4	6	3

Find the average waiting time and average turnaround time using RR (Round Robin) algorithm with Time Quantum size 2?

Solution: Using round robin algorithm with time quantum size = 2, ready queue and Gantt chart are:

DHA SUFFA UNIVERSITY Department of Computer Science CS-2004L

Operating Systems Fall 2020

Ready Queue: P1, P2, P1, P3, P1, P4, P3, P4

Gantt chart is:

Therefore,

Process No.	Arrival Time	Burst Time	Completion Time	Turnaround Time	Waiting Time
P1	0	6	9	9 - 0 = 9	9 - 6 = 3
P2	2	1	3	3 - 2 = 1	1 - 1 = 0
P3	5	4	13	13 - 5 = 8	8 - 4 = 4
P4	6	3	14	14 - 6 = 8	8 - 3 = 5

So,

Average Turnaround time = (9 + 1 + 8 + 8) / (4) = 6.5

Average Waiting time = (3 + 0 + 4 + 5) / (4) = 3

STEA UNIVERSITY OF THE PROPERTY OF THE PROPERT

DHA SUFFA UNIVERSITY Department of Computer Science CS-2004L

Operating Systems Fall 2020

Priority Scheduling Algorithm:

Priority can be internal or external and static or dynamic. This algorithm selects processes with highest priority to execute.

Aim:

Write a C/C++ program to implement the process scheduling mechanism of Priority Scheduling.

Algorithm:

- **Step 1:** Start the process.
- **Step 2:** Accept the number of processes in the ready Queue.
- **Step 3:** For each process in the ready Q, assign the process id and accept the CPU burst time.
- **Step 4:** Start the Ready Q according to the priority, higher priority process will get the CPU first than lower priority process.
- **Step 5:** If the two processes have similar priority then FCFS is used to break the tie and repeat steps 4 and 5 until the ready queue is empty.
- **Step 6:** Consider the ready queue is a circular Q calculate

Turn-around time (TaT) of Process(n) = Completion Time – Arrival Time

Waiting Time (WT) for process(n) = Turn-around time – Burst Time

Step 7: Calculate

DHA SUFFA UNIVERSITY Department of Computer Science CS-2004L Operating Systems

Operating Systems Fall 2020

Average waiting time = Total waiting Time / Number of processes

Average Turnaround time = Total Turnaround Time / Number of processes

.

Step 8: Stop the process.

Priority Scheduling Example:

Example: Consider the following table:

Process no.	Arrival Time	Burst Time	Priority
P1	0	6	2
P2	2	1	4 (Lowest)
P3	5	4	1 (Highest)
P4	6	3	3

Find the average waiting time and average turnaround time using Priority (Non-preemptive) algorithm?

Solution: Using Priority (non-preemptive) algorithm, Gantt chart is:

Therefore,

DHA SUFFA UNIVERSITY Department of Computer Science CS-2004L Operating Systems Fall 2020

Process No.	Arrival Time	Burst Time	Completion Time	Turnaround Time	Waiting Time	Priority
P1	0	6	6	6 - 0 = 6	6 - 6 = 0	2
P2	2	1	14	14 - 2 = 12	12 - 1 = 11	4 (Lowest)
P3	5	4	10	10 - 5 = 5	5 - 4 = 1	1 (Highest)
P4	6	3	13	13 - 6 = 7	7 - 3 = 4	3

So,

Average Turnaround time = (6 + 12 + 5 + 7) / (4) = 7.5

Average Waiting time = (0 + 11 + 1 + 4) / (4) = 4

DHA SUFFA UNIVERSITY Department of Computer Science CS-2004L

Operating Systems Fall 2020

ASSIGNMENT # 07

- 1. Write a shell script/ C++/Java program to implement the following scheduling algorithms.
 - RR(Round robin algorithm)
 - Priority Scheduling algorithm(non preemptive)