Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Statistics 191: Introduction to Applied Statistics Qualitative Variables, Interactions & ANOVA

Jonathan Taylor Department of Statistics Stanford University

February 22, 2010

Qualitative variables + interactions

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Outline

- Qualitative / categorical variables.
- Regression equations differing by group.
- Interactions.
- Analysis of Variance Models

Categorical variables

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Categorical variables

- Most variables we have looked at so far were continuous: height, rating, etc.
- In many situations, we record a categorical variable: sex, state, country, etc.
- How do we include this in our model?

Categorical variables

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

A simple example

- One example that we have looked at does have categorical variables.
- Two sample problem with equal variances: suppose

$$Y = (Z_1, \ldots, Z_m, W_1, \ldots, W_n)$$

with
$$Z_j \sim N(\mu_1, \sigma^2), 1 \leq j \leq m$$
 and $W_j \sim N(\mu_2, \sigma^2), 1 \leq j \leq n + m$.

• For $1 \le i \le n$, let

$$X_i = \begin{cases} 1 & 1 \le i \le m \\ 0 & \text{otherwise.} \end{cases}$$

Categorical variables

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

A simple example

Design matrix

$$X_{(n+m) imes 2} = egin{pmatrix} 1 & 1 \ dots & dots \ 1 & 1 \ 1 & 0 \ dots & dots \ 1 & 0 \ \end{pmatrix}$$

Example

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

IT salary data

- Outcome: S, salaries for IT staff in a corporation.
- Predictors: X, experience (years); E, education (3 levels):
 1=Bachelor's, 2=Master's, 3=Ph.D; M, management (2 levels):
 1=management, 0=not management.

IT salary

Statistics 191: Introduction to Applied Statistics

IT salary

Statistics 191: Introduction to Applied Statistics

Two solutions

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Solution #1: stratification

- One solution is to "stratify" data set by this categorical variable.
- We could break data set up into groups by education and management, and fit fit model

$$S_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

in each group.

• Problem: this results in smaller samples in each group: lose degrees of freedom for estimating σ^2 within each group.

Two solutions

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Solution #2: qualitative predictors

- IF it is reasonable to assume that σ^2 is constant for each observation.
- THEN, we can incorporate all observations into 1 model.

$$S_i = \beta_0 + \beta_1 X_i + \beta_2 E_{i2} + \beta_3 E_{i3} + \beta_4 M_i + \varepsilon_i$$

where

$$E_{i2} = \begin{cases} 1 & \text{if } E_i = 2, \\ 0 & \text{otherwise.} \end{cases}, E_{i3} = \begin{cases} 1 & \text{if } E_i = 3, \\ 0 & \text{otherwise,} \end{cases},$$

Categorical variables: details

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Things to notice

- Although E has 3 levels, we only added 2 variables to the model. In a sense, this is because "intercept" absorbs one level.
- If we added three variables then the columns of design matrix would be linearly dependent.
- Assumes β_1 effect of experience is the same in all groups, unlike when we fit the model separately. This may or may not be reasonable.

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Effect of experience

- Our model has enforced the constraint the β_1 is the same within each group.
- Graphically, this seems OK, but how can we "test" this?
- We could fit a model with different slopes in each group, but keeping as many d.f. as we can.
- This model has "interactions" in it: the effect of experience depends on what level of education you have.

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Interaction between experience and education

Model:

$$S_{i} = \beta_{0} + \beta_{1}X_{i} + \beta_{2}E_{i2} + \beta_{3}E_{i3} + \beta_{4}M_{i} + \beta_{5}E_{i2}X_{i} + \beta_{6}E_{i3}X_{i} + \varepsilon_{i}.$$

- Note that we took each column corresponding to education and multiplied it by the column for experience to get two new predictors.
- To test whether the slope is the same in each group we would just test $H_0: \beta_5 = \beta_6 = 0$.
- Based on figure, we expect not to reject H_0 .

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Interaction between management and education

- Based on figure, we expect an interaction effect.
- Fit model

$$S_{i} = \beta_{0} + \beta_{1}X_{i} + \beta_{2}E_{i2} + \beta_{3}E_{i3} + \beta_{4}M_{i} + \beta_{5}E_{i2}M_{i} + \beta_{6}E_{i3}M_{i} + \varepsilon_{i}.$$

• Again, testing for interaction is testing H_0 : $\beta_5 = \beta_6 = 0$.

IT salary, outlier removed

Statistics 191: Introduction to Applied Statistics

Example

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Minority employment data

TEST job aptitude test score

RACE 1 if minority, 0 otherwise

JPERF job performance evaluation

Minority employment data

Statistics 191: Introduction to Applied Statistics

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

General model

- In theory, there may be a linear relationship between JPERF and TEST but it could be different by group.
- Model:

$$JPERF_i = \beta_0 + \beta_1 TEST_i + \beta_2 RACE_i + \beta_3 RACE_i * TEST_i + \varepsilon_i.$$

Regression functions:

$$Y_i = \begin{cases} \beta_0 + \beta_1 TEST_i + \varepsilon_i & \text{if } i\text{-th ind. is white} \\ (\beta_0 + \beta_2) + (\beta_1 + \beta_3) TEST_i + \varepsilon_i & \text{if } i\text{-th ind. is white.} \end{cases}$$

No difference

Statistics 191: Introduction to Applied Statistics

Different slopes, same intercept

Statistics 191: Introduction to Applied Statistics

Different intercepts, same slope

Statistics 191: Introduction to Applied Statistics

Different intercepts, different slopes

Statistics 191: Introduction to Applied Statistics

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Interpreting different models

- Both $\beta_2, \beta_3 \neq 0$ main effect for *RACE* and interaction effect between *TEST* and *RACE*.
- $\beta_2 \neq 0, \beta_3 = 0$ main effect for *RACE*, no interaction between *TEST* and *RACE*.
- $\beta_2 = 0, \beta_3 \neq 0$ no main effect for *RACE*, interaction between *TEST* and *RACE*.
- R code

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

General definition of ANOVA model

- Models with only qualitative variables.
- Can be thought of as extensions of "two-sample" t-test to more than two groups at once, and more than one grouping variable.
- Example: in a simple experiment studying blood pressure we might start by considering only the overall health (Poor, Moderate, Good).
- Data would then have one categorical variable with three levels.

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Example: rehab surgery

- How does prior fitness affect recovery from surgery?
 Observations: 24 subjects' recovery time.
- Three fitness levels: below average, average, above average.
- If you are in better shape before surgery, does it take less time to recover?

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

One-way ANOVA

- First generalization of two sample *t*-test: more than one level.
- One-way ANOVA model: observations: $Y_{ij}, 1 \le i \le r, 1 \le j \le n_i$: r groups and n_i samples in i-th group.

$$Y_{ij} = \mu + \alpha_i + \varepsilon_{ij}, \qquad \varepsilon_{ij} \sim N(0, \sigma^2).$$

• Constraint: $\sum_{i=1}^{r} \alpha_i = 0$. This constraint is needed for "identifiability". This is "equivalent" to only adding r-1 columns to the design matrix for this qualitative variable.

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

One-way ANOVA

• Model is easy to fit:

$$\widehat{Y}_{ij} = \frac{1}{n_i} \sum_{i=1}^{n_i} Y_{ij} = \overline{Y}_{i}...$$

If observation is in *i*-th group: predicted mean is just the sample mean of observations in *i*-th group.

• Simplest question: is there any group (main) effect?

$$H_0: \alpha_1 = \cdots = \alpha_r = 0$$
?

- Test is based on F-test with full model vs. reduced model.
 Reduced model just has an intercept.
- Other questions: is the effect the same in groups 1 and 2?

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

ANOVA table: One-way

	Source	SS	df	E(MS)
•	Treatments Error	$SSTR = \sum_{i=1}^{r} n_i \left(\overline{Y}_{i.} - \overline{Y}_{} \right)^2$ $SSE = \sum_{i=1}^{r} \sum_{j=1}^{n_i} (Y_{ij} - \overline{Y}_{i.})^2$	$r-1$ $\sum_{i=1}^{r} n_i - r$	$\sigma^2 + \frac{\sum_{i=1}^r n_i \alpha_i^2}{\sigma^2}$

- Note that MSTR measures "variability" of the "cell" means. If there is a group effect we expect this to be large relative to MSE.
- We see that under $H_0: \alpha_1 = \cdots = \alpha_r = 0$, the expected value of MSTR and MSE is σ^2 . This tells us how to test H_0 using ratio of mean squares, i.e. an F test.

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Testing for any main effect

- Rows in the ANOVA table are, in general, independent.
- Therefore, under H_0

$$F = \frac{MSTR}{MSE} = \frac{\frac{SSTR}{df_{TR}}}{\frac{SSE}{df_E}} \sim F_{df_{TR}, df_E}$$

the degrees of freedom come from the *df* column in previous table.

• Reject H_0 at level α if $F > F_{1-\alpha,df_{TR},df_E}$.

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Inference for linear combinations

• Suppose we want to "infer" something about

$$\sum_{i=1}^{r} a_i \mu_i$$

where $\mu_i = \mu + \alpha_i$ is the mean in the *i*-th group. For example:

$$H_0: \mu_1 - \mu_2 = 0$$
 (same as $H_0: \alpha_1 - \alpha_2 = 0$)?

Is there a difference between below average and average groups in terms of rehab time?

$$\operatorname{Var}\left(\sum_{i=1}^r a_i \overline{Y}_{i\cdot}\right) = \sigma^2 \sum_{i=1}^r \frac{a_i^2}{n_i}.$$

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Two categorical variables: kidney failure

- Time of stay in hospital depends on weight gain between treatments and duration of treatment.
- Two levels of duration, three levels of weight gain.
- Is there an interaction? Main effects?

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Two-way ANOVA

- Second generalization: more than one grouping variable.
- Two-way ANOVA model: observations: $(Y_{ijk}), 1 \le i \le r, 1 \le j \le m, 1 \le k \le n_{ij}$: r groups in first grouping variable, m groups in second and n_{ij} samples in (i, j)-"cell":

$$Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha \beta)_{ij} + \varepsilon_{ijk}, \qquad \varepsilon_{ijk} \sim N(0, \sigma^2).$$

• In kidney example, r = 3 (weight gain), m = 2 (duration of treatment), $n_{ij} = 10$ for all (i, j).

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Two-way ANOVA: main questions of interest

• Are there main effects for the grouping variables?

$$H_0: \alpha_1 = \cdots = \alpha_r = 0, \qquad H_0: \beta_1 = \cdots = \beta_m = 0.$$

• Are there interaction effects:

$$H_0: (\alpha \beta)_{ij} = 0, 1 \le i \le r, 1 \le j \le m.$$

Statistics 191. Introduction to Applied Statistics

Ionathan Taylor Department of Statistics Stanford University

Constraints on the parameters

- Many constraints are needed, again for identifiability. Let's not worry about the details . . .
- Constraints:

$$\bullet \ \sum_{i=1}^r \alpha_i = 0$$

$$\sum_{i=1}^{r} \alpha_i = 0$$

$$\sum_{i=1}^{m} \beta_i = 0$$

•
$$\sum_{i=1}^{m} (\alpha \beta)_{ij} = 0, 1 \leq i \leq r$$

$$\bullet \sum_{j=1}^{r} (\alpha \beta)_{ij} = 0, 1 \leq j \leq m.$$

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Fitting model

• Easy to fit:

$$\widehat{Y}_{ijk} = \overline{Y}_{ij\cdot} = \frac{1}{n_{ij}} \sum_{k=1}^{n_{ij}} Y_{ijk}.$$

Inference for combinations

$$\operatorname{Var}\left(\sum_{i=1}^r\sum_{j=1}^m a_{ij}\overline{Y}_{ij.}\right) = \sigma^2 \cdot \sum_{i=1}^r\sum_{j=1}^m \frac{a_{ij}^2}{n_{ij}}.$$

• Usual *t*-tests, confidence intervals.

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

ANOVA table: Two-way (assuming $n_{ij} = n$)

Term	SS
Α	$SSA = nm \sum_{i=1}^{r} (\overline{Y}_{i} - \overline{Y}_{})^{2}$
В	$SSB = nr \sum_{i=1}^{m} \left(\overline{Y}_{\cdot j \cdot} - \overline{Y}_{\cdot \cdot \cdot} \right)^2$
AB	$SSAB = n \sum_{i=1}^{r} \sum_{i=1}^{m} \left(\overline{Y}_{ij} - \overline{Y}_{i} - \overline{Y}_{.j} + \overline{Y}_{} \right)^{2}$
Error	$SSAB = n \sum_{i=1}^{r} \sum_{j=1}^{m} (\overline{Y}_{ij.} - \overline{Y}_{i} - \overline{Y}_{.j.} + \overline{Y}_{})^{2}$ $SSE = \sum_{i=1}^{r} \sum_{j=1}^{m} \sum_{k=1}^{n} (Y_{ijk} - \overline{Y}_{ij.})^{2}$

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

ANOVA table: Two-way (assuming $n_{ij} = n$)

	SS	df	E(MS)
•	SSA	r-1	$\sigma^2 + nm \frac{\sum_{i=1}^r \alpha_i^2}{r-1}$
•	SSB	m-1	$\sigma^2 + nr \frac{\sum_{j=1}^m \beta_j^2}{m-1}$
	SSAB	(m-1)(r-1)	$\sigma^2 + n \frac{\sum_{i=1}^r \sum_{j=1}^m (\alpha \beta)_{ij}^2}{(r-1)(m-1)}$
	SSE	(n-1)mr	σ^2

• For instance, we see that under $H_0: (\alpha\beta)_{ij} = 0, \forall i, j$ the expected value of SSAB and SSE is σ^2 – use these for an F-test testing for an interaction.

Fixed and random effects

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Random effects

- In kidney & rehab examples, the categorical variables are well-defined categories: below average fitness, long duration, etc.
- In some designs, the categorical variable is "subject".
- Simplest example: repeated measures, where more than one (identical) measurement is taken on the same individual.
- In this case, the "group" effect α_i is best thought of as random because we only sample a subset of the entire population.

Fixed and random effects

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

When to use random effects?

- A "group" effect is random if we can think of the levels we observe in that group to be samples from a larger population.
- Example: if collecting data from different medical centers, "center" might be thought of as random.
- Example: if surveying students on different campuses, "campus" may be a random effect.

Fixed and random effects

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Example: sodium content in beer

- How much sodium is there in North American beer? How much does this vary by brand?
- Observations: for 6 brands of beer, we recorded the sodium content of 8 12 ounce bottles.
- Questions of interest: what is the "grand mean" sodium content? How much variability is there from brand to brand?
- "Individuals" in this case are brands, repeated measures are the 8 bottles.

Statistics 191: Introduction to Applied Statistics Jonathan Taylor Department of Statistics Stanford University

One-way random effects model

- Assuming that cell-sizes are the same, i.e. equal observations for each "subject" (brand of beer).
- Observations

$$Y_{ij} \sim \mu. + \alpha_i + \varepsilon_{ij}, 1 \le i \le r, 1 \le j \le n$$

- $\varepsilon_{ii} \sim N(0, \sigma^2), 1 \leq i \leq r, 1 \leq j \leq n$
- $\alpha_i \sim N(0, \sigma_u^2), 1 \leq i \leq r$.
- Parameters:
 - μ is the population mean;
 - σ^2 is the measurement variance (i.e. how variable are the readings from the machine that reads the sodium content?);
 - σ_{μ}^2 is the population variance (i.e. how variable is the sodium content of beer across brands).

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Implications for model

ullet In random effects model, the observations are no longer independent (even if arepsilon's are independent

$$Cov(Y_{ij}, Y_{i'j'}) = \sigma_{\mu}^2 \delta_{i,i'} + \sigma^2 \delta_{j,j'}.$$

- In more complicated models, this makes "maximum likelihood estimation" more complicated: least squares is no longer the best solution.
- Also changes the degrees of freedom for some t-statistics.

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Fitting the model

- Only one parameter in the mean function μ ..
- When cell sizes are the same (balanced),

$$\widehat{\mu}_{\cdot \cdot} = \overline{Y}_{\cdot \cdot} = \frac{1}{nr} \sum_{i,j} Y_{ij}.$$

- Unbalanced models: slightly more tricky.
- This also changes estimates of σ^2 see ANOVA table below. We might guess that df = nr 1 and

$$\widehat{\sigma}^2 = \frac{1}{nr-1} \sum_{i,j} (Y_{ij} - \overline{Y}_{\cdot \cdot})^2.$$

This is *not* the case.

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

ANOVA table

Source	SS	df	E(MS)
Treatments	$SSTR = \sum_{i=1}^{r} n \left(\overline{Y}_{i.} - \overline{Y}_{} \right)^{2}$	r-1	$\sigma^2 + n\sigma_{\mu}^2$
Error	$SSE = \sum_{i=1}^{r} \sum_{j=1}^{n} (Y_{ij} - \overline{Y}_{i.})^2$	(n - 1)r	σ^2

- Only change here is the expectation of *SSTR* which reflects randomness of α_i 's.
- ANOVA table is still useful to setup tests: the same F statistics for fixed or random will work here.
- Test for random effect: $H_0: \sigma_u^2 = 0$ based on

$$F = \frac{MSTR}{MSE} \sim F_{r-1,(n-1)r}$$
 under H_0 .

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Inference for population mean: μ .

• Easy to check that

$$E(\overline{Y}_{\cdot \cdot}) = \mu_{\cdot}$$

$$Var(\overline{Y}_{\cdot \cdot}) = \frac{n\sigma_{\mu}^{2} + \sigma^{2}}{rn}.$$

- To come up with a t statistic that we can use for test, Cls, we need to find an estimate of $Var(\overline{Y}..)$. ANOVA table says $E(MSTR) = n\sigma_{u}^{2} + \sigma^{2}$.
- Therefore,

$$\frac{\overline{Y}_{\cdot \cdot} - \mu_{\cdot}}{\sqrt{\frac{SSTR}{(r-1)rn}}} \sim t_{r-1}$$

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Inference for population mean: μ .

- Why r-1 degrees of freedom? Imagine we could record an infinite number of observations for each individual, so that \overline{Y}_i . $\to \mu_i$, or that $\sigma_\mu^2 = 0$.
- To learn anything about μ . we still only have r observations (μ_1, \ldots, μ_r) .
- Sampling more within an individual cannot narrow the CI for μ ..

Statistics 191: Introduction to Applied Statistics

Jonathan Taylor Department of Statistics Stanford University

Estimating σ_{μ}^2

From the ANOVA table

$$\sigma_{\mu}^2 = \frac{E(SSTR/(r-1)) - E(SSE/((n-1)r))}{n}.$$

Natural estimate:

$$S_{\mu}^{2} = \frac{SSTR/(r-1) - SSE/((n-1)r)}{n}$$

 Problem: this estimate can be negative! One of the difficulties in random effects model.