## Assignment 5

Basic Techniques in Computer Graphics WS 2022/2023 November 28, 2022 Frederik Muthers 412831 Tobias Broeckmann 378764 Debabrata Ghosh 441275 Martin Gäbele 380434

## **Exercise 1** Line Rasterization



## (a) Case Reduction



In the original co-ordinate system, the line segment starts at  $x_0 = (3,1)^{\top}$  and ends at  $x_1 = (2,5)^{\top}$ . We need to specify the map  $(x,y)^{\top} \to (\dots,\dots)^{\top}$  that transforms the line into a setting with slope  $m \in [0,1]$ . If we flip the x and y coordinates we get the new coordinates of the points as:  $x_0 = (1,3)^{\top}$  and  $x_1 = (5,2)^{\top}$ . Now we change the sign of the new y coordinate to get:  $x_0 = (1,-3)^{\top}$  and  $x_1 = (5,-2)^{\top}$  with  $m = \frac{-2-(-3)}{5-1} = \frac{1}{4} \in [0,1]$ . So our required map is:  $(x,y)^{\top} \to (y,-x)^{\top}$  which gave us  $x_0 = (1,-3)^{\top}$  and  $x_1 = (5,-2)^{\top}$ .

(b) Bresenham Algorithm Using the new mapping in part (a), we get:  $\Delta x = 5 - 1 = 4$  and  $\Delta y = -2 - (-3) = 1$ . So, the initial value of  $d = 2 * \Delta y - \Delta x = 2 * 1 - 4 = -2$ ,  $\Delta_E = 2 * \Delta y = 2 * 1 = 2$  and  $\Delta_{NE} = 2 * \Delta y - 2 * \Delta x = 2 * 1 - 2 * 4 = -6$ .

We now use the formula that if d < 0, we go East(E) and increase x by 1, d by  $\Delta_E$  and else we go North-East(NE) and increase both x and y by 1 and d by  $\Delta_{NE}$  to fill the table given as:

| Step | x | y  | d  | decision (E or NE) |
|------|---|----|----|--------------------|
| 0    | 1 | -3 | -2 | E                  |
| 1    | 2 | -3 | 0  | NE                 |
| 2    | 3 | -2 | -6 | E                  |
| 3    | 4 | -2 | -4 | E                  |
| 4    | 5 | -2 | -2 | End                |

In our transformed coordinate system applying Bresenham algorithm gives us the following figure:



Now if we apply the inverse transformation  $((y, -x)^\top \to (x, y)^\top$  or  $(x, y)^\top \to (-y, x))$  from part (a) to each point we get the following coordinates and figure as per the original:

| 01   |   |   |               | (                  |
|------|---|---|---------------|--------------------|
| Step | x | y | $\mid d \mid$ | decision (E or NE) |
| 0    | 3 | 1 | -2            | E                  |
| 1    | 3 | 2 | 0             | NE                 |
| 2    | 2 | 3 | -6            | E                  |
| 3    | 2 | 4 | -4            | Е                  |
| 4    | 2 | 5 | -2            | End                |



## **Exercise 2** Rasterization of Quadratic Polynomials

(a) **Decision Variable** Similar to the linear case we can compute d(x,y) as follows:

$$d(x,y) = F(x+1, y+0.5)$$

We can write F(x,y) as  $F(x,y) = ax^2 + bx + c - y$ . We need to choose F(x,y) = f(x) - y as  $0 \le f'(x) \le 1 \forall x \in \{x_0,...,x_0+n\}$ . Thus we get a formula for d(x,y):

$$d(x,y) = F(x+1,y+0,5) = ax^2 + 2ax + a + bx + b + c - y - 0.5$$

Similar to the linear case, we decide to go east (E) if d < 0 and northeast (NE) otherwise.

(b) Decision Variable Updates For  $\Delta_E(x,y)$  we calculate:

$$\Delta_E(x,y) = d(x+1,y) - d(x,y) = F(x+2,y+0.5) - F(x+1,y+0.5)$$

$$= ax^2 + 4ax + 4a + bx + 2b + c - y - 0.5 - (ax^2 + 2ax + a + bx + b + c - y - 0.5)$$

$$= ax^2 - ax^2 + 4ax - 2ax + bx - bx + 4a - a + 2b - b + c - c - y + y - 0.5 + 0.5$$

$$= 2ax + 3a + b$$

For  $\Delta_{NE}(x,y)$  we see:

$$\Delta_{NE}(x,y) = F(x+2,y+1.5) - F(x+1,y+0.5) = \Delta_{E}(x,y) - 1 = 2ax + 3a + b - 1$$