2 7 AUG 20 JC20 Rec'd PCT/PTO FO.M PTO-1390 U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE (REV 10-2000) TRANSMITTAL LETTER SO THE UNITED STATES DESIGNATED/ELECTED OFFICE (DO/EO/US) U.S. APPLICATION NO. (If known, see 37 CFR 1.5) **CONCERNING A FILING UNDER 35 U.S.C.371** INTERNATIONAL APPLICATION INTERNATIONAL FILING DATE PCT/SE00/00384 28 February 2000 (28.02.00) 26 February 1999 (26.02.99) TITLE OF INVENTION DRUG DESIGN BASED ON THE STRUCTURE OF LTA4 HYDROLASE APPLICANT(S) FOR DO/EO/US HAEGGSTRÖM, Jesper, Z et al. Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information: 1. This is a FIRST submission of items concerning a filing under 35 U.S.C.371. 2. This is a SECOND or SUBSEQUENT submission of items concerning a filing under 35 U.S.C. 371. 3. This is an express request to promptly begin national examination procedures (35 U.S.C. 371(f)). 4. The US has been elected by the expiration of 19 months from the priority date (PCT Article 31). 5. A copy of the International Application as filed (35 U.S.C. 371(c)(2)) a.  $\square$  is attached hereto (required only if not communicated by the International Bureau). b. 🗷 has been communicated by the International Bureau. c.  $\square$  is not required, as the application was filed in the United States Receiving Office (RO/US). 6. An English language translation of the International Application as filed (35 U.S.C 371(c)(2)). 7. Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371(c)(3)) a.  $\square$  are attached hereto (required only if not communicated by the International Bureau). b.  $\square$  have been communicated by the International Bureau. c.  $\square$  have not been made; however, the time limit for making such amendments has NOT expired. d. E have not been made and will not be made. 8. An English language translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)). 9. An oath or declaration of the inventor(s) (35 U.S.C. 371(c)(4)). (unexecuted) (4 sheets) 10. An English language translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371(c)(5)). Items 11. to 16. below concern document(s) or information included: 11. An Information Disclosure Statement under 37 CFR 1.97 and 1.98. 12. An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is 13. A FIRST preliminary amendment. (12 sheets) (along with version of markings to show changes) ☐ A SECOND or SUBSEQUENT preliminary amendment. 14. A substitute specification. 15. A change of power of attorney and/or address letter. 16. Dither items or information: Transmittal Letter (2 sheets in duplicate); International Application Published Under the PCT (with attached International Search Report) WO 00/50577 (156 sheets); PCT International Preliminary Examination Report (6 sheets); Certificate of Express Mailing (1 sheet); and return postcard receipt.

| of the second                                                                                                                                                                                                                                                                    | * * *                                 |                                                    | ປີເປີລີ ຄະວຸນ :          | (Lap 10 2 /         | AUG 2001        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------|--------------------------|---------------------|-----------------|
| U.S. APPLICATION NO. (if)                                                                                                                                                                                                                                                        | known, see 37 CFR 1.5)<br>9 1 4 4 5 1 | INTERNATIONAL APPL PCT/S                           | ICATION NO.<br>E00/00384 |                     | PVZ-006US       |
| 17. E The following fe                                                                                                                                                                                                                                                           | es are submitted:                     |                                                    |                          | CALCULATIO          | NS PTO USE ONLY |
|                                                                                                                                                                                                                                                                                  |                                       | (1) - (5) ) .(a/o Novemb                           | er 1, 2000):             |                     |                 |
| BASIC NATIONAL FEE (37 CFR 1.492 (a) (1) - (5)).(a/o November 1, 2000):  Neither international preliminary examination fee (37 CFR 1.482)  nor international search fee (37 CFR 1.445(a)(2)) paid to USPTO  and International Search Report not prepared by the EPO or JPO\$1000 |                                       |                                                    | <i>3</i> *               |                     |                 |
|                                                                                                                                                                                                                                                                                  |                                       | (37 CFR 1.482) not paid<br>epared by the EPO or JI |                          |                     |                 |
|                                                                                                                                                                                                                                                                                  |                                       | (37 CFR 1.482) not paid<br>2)) paid to USPTO       |                          |                     |                 |
|                                                                                                                                                                                                                                                                                  |                                       | paid to USPTO (37 CFF<br>PCT Article 33(1)-(4)     |                          |                     |                 |
|                                                                                                                                                                                                                                                                                  |                                       | paid to USPTO (37 CFF<br>Article 33(1)-(4)         |                          |                     |                 |
|                                                                                                                                                                                                                                                                                  |                                       |                                                    |                          | \$1,000.00          |                 |
| e , ty e                                                                                                                                                                                                                                                                         | ENTER APPROPE                         | RIATE BASIC FEE A                                  | MOUNT =                  |                     |                 |
| Surcharge of \$130.00 formonths from the earliest                                                                                                                                                                                                                                | or furnishing the oath or             | declaration later than                             | <b>፷</b> 20 □ 30         | \$130.00            |                 |
| CLAIMS                                                                                                                                                                                                                                                                           | NUMBER FILED                          | NUMBER EXTRA                                       | RATE                     |                     | 1               |
| Total claims                                                                                                                                                                                                                                                                     | <b>50-</b> 20 =                       | 30                                                 | X \$18.00                | \$ 540.00           |                 |
| Independent claims                                                                                                                                                                                                                                                               | 5 -3 =                                | 2                                                  | X \$80.00                | \$ 160.00           |                 |
| MULTIPLE DEPEN                                                                                                                                                                                                                                                                   | NDENT CLAIM(S) (if                    |                                                    | + 270.00                 | \$ 270.00           |                 |
| 15 m                                                                                                                                                                                                                                                                             | TOTAL OF AB                           | OVE CALCULATION                                    | NS =                     | \$2,100.00          |                 |
| 14 T                                                                                                                                                                                                                                                                             | mall entity status. See               | 37 CFR 1.27. The fees                              | indicated above          | \$1,050.00          |                 |
| \$= £<                                                                                                                                                                                                                                                                           |                                       | SUBTOTA                                            | <b>L</b> =               | \$1,050.00          |                 |
| Processing fee of \$130.00 for furnishing the English translation later than \( \sum 20 \subseteq 30 \) Fronths from the earliest claimed priority date (37 CFR 1.492(f)).                                                                                                       |                                       |                                                    | \$                       | ,                   |                 |
|                                                                                                                                                                                                                                                                                  |                                       | OTAL NATIONAL                                      | FEE =                    | \$1,050.00          |                 |
| Fee for recording the enclosed assignment (37 CFR 1.21(h)). The assignment must be                                                                                                                                                                                               |                                       |                                                    |                          | \$                  |                 |
|                                                                                                                                                                                                                                                                                  |                                       | AL FEES ENCLOSI                                    |                          | \$1,050.00          |                 |
|                                                                                                                                                                                                                                                                                  |                                       |                                                    |                          | Amount to be:       | \$              |
|                                                                                                                                                                                                                                                                                  |                                       |                                                    |                          | refunded<br>charged | \$              |
| ,                                                                                                                                                                                                                                                                                |                                       |                                                    |                          | chargeu             | 3               |
| a. A check in the amount of \$ to cover the above fees is enclosed.                                                                                                                                                                                                              |                                       |                                                    |                          |                     |                 |
| b. Please charge my Deposit Account No. 12-0080 in the amount of \$1,050.00 to cover the above fees.  A duplicate copy of this sheet is enclosed.                                                                                                                                |                                       |                                                    |                          |                     |                 |
| c. E The Commissioner is hereby authorized to charge any additional fees which may be required, or credit                                                                                                                                                                        |                                       |                                                    |                          |                     |                 |
| any overpayment to Deposit Account No. 12-0080 . A duplicate copy of this sheet is enclosed.                                                                                                                                                                                     |                                       |                                                    |                          |                     |                 |
| NOTE: Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR 1.137(a) or (b)) must be filed and granted to restore the application to pending status.                                                                        |                                       |                                                    |                          |                     |                 |
| $(\eta_{\alpha})$                                                                                                                                                                                                                                                                |                                       |                                                    |                          |                     |                 |
| SEND ALL CORRESPONDENCE TO SIGNATURE                                                                                                                                                                                                                                             |                                       |                                                    |                          |                     |                 |
| Elizabeth A. Hanley, Esq.   SIGNATURE   LAHIVE & COCKFIELD, LLP   Elizabeth A. Hanley                                                                                                                                                                                            |                                       |                                                    |                          |                     |                 |
| 28 State Street NAME                                                                                                                                                                                                                                                             |                                       |                                                    |                          |                     |                 |
| Boston, Massachusetts                                                                                                                                                                                                                                                            |                                       | 33,50                                              | 5                        |                     |                 |
| United States of Amer                                                                                                                                                                                                                                                            | rica                                  | REGIST                                             | RATION NUMBER            | <del>-</del>        |                 |
| (617) 227-7400<br>Dated: 27 August 2001                                                                                                                                                                                                                                          |                                       |                                                    |                          |                     |                 |

#### IN THE UNITED STATES PATENT AND TRADEMARK OFFICE



In re the application of: Jasper Haeggström et al.

**Serial No.:** 09/914,451

Priority Date: February 26, 1999

**PCT Filing Date:** February 28, 2000 (PCT)

U.S. Filing Date: August 27, 2001

For: "Drug Design Based on the Structure of

LTA4 Hydrolase"

Attorney Docket No.: PVZ-006US

Commissioner for Patents BOX SEQUENCE LISTING Washington, D.C. 20231 Group Art Unit: Not Yet Assigned

Examiner: Not Yet Assigned

# TRANSMITTAL LETTER FOR DISKETTE CONTAINING SEQUENCE LISTING

Dear Sir:

1 s

 Responsive to the Notification of Missing Requirements Under 35 U.S.C. §371 in the United States Designated/Elected Office (DO/EO/US) dated October 22, 2001, Applicants' attorney submits a diskette containing a computer readable form of the Sequence Listing for the patent application filed on August 27, 2001. The Sequence Listing complies with the requirements of 37 C.F.R. §1.821-1.825. The material on the enclosed diskette is identical in substance to the Sequence Listing appearing on substitute pages 1 and 2 submitted herewith. The computer readable form of the Sequence Listing contained on the enclosed diskette is understood to comply with the requirements of §1.824(d).

| "Express Mail" mailing label number_     | EL 892 198 215 US                       |
|------------------------------------------|-----------------------------------------|
| Date of Deposit                          | December 20, 2001                       |
| Postal Service "Express Mail Post Office | ve and is addressed to the Commissioner |

Date: December 20, 2001

Respectfully submitted.

LAHIVE & COCKFIELD, LLP

By:

Elizabeth A. Harley Esq Registration No. 33,505 Attorney for Applicants

## IN THE UNITED STATES PATENT DESIGNATED OFFICE (DO/US) (National Phase of International App.: PCT/SE00/00384, WO 00/50577)

In re the

application of: Jesper Z. HAEGGSTRÖM et al.

International Application No.: PCT/SE00/00384

International Filing Date: 28 February 2000

U.S. Serial No.: Not Yet Assigned

Filed: Herewith

For: DRUG DESIGN BASED ON THE STRUCTURE OF LTA<sub>4</sub> HYDROLASE

Attorney Docket No.: PVZ-006US

#### **BOX PCT**

Commissioner for Patents Washington, D.C. 20231

#### PRELIMINARY AMENDMENT

Dear Sir:

Preliminary to examination of the above-referenced patent application, please amend the enclosed above-titled International patent application as follows.

#### In the Claims

Please amend claims 6, 9, 11, 13, 14, 15, 18, 19, 25, 28, 30, and 35 as follows.

- 6. (Amended) A compound which is substantially complementary to a protein according to claim 1.
- 9. (Amended) An isolated complex, which is comprised of a protein according to claim 1 and a complementary compound according to claim 6, wherein the three-

dimensional structure of LTA<sub>4</sub> hydrolase is essentially as disclosed in Table 9 by the parameters defining atom 1- atom 4876, or a functionally equivalent part, derivative or conformational analogue of such a complex.

- 11. (Amended) Use of the parameters of a protein according to claim 1, a compound according to claim 6 in drug design, such as in molecular modeling, direct structure-based design and/or combinatorial chemistry.
- 13. (Amended) Use according to claim 11, wherein said drug is for the treatment and/or prevention of disorders involving acute and chronic inflammatory and/or allergic symptoms, said disorder being selected from the group consisting of arthritis, inflammatory bowel disease (IBD), psoriasis, chronic obstructive pulmonary disease (COPD), and acquired immune deficiency syndrome (AIDS).
- 14. (Amended) Use according to claim 11, wherein said drug is for the treatment and/or prevention of proliferative disorders, such as neoplasias and/or cancer.
- 15. (Amended) Use according to claim 11, wherein said drug is for the treatment and/or prevention of disorders caused by the lethal factor of *Bacillus anthracis*, e.g. anthrax.
- 18. (Amended) A method according to claim 16, wherein an enzymatic inhibitor complementary to the amino acids defined in claim 3 is screened for.
- 19. (Amended) An analogue obtainable by the method of claim 16.
- 25. (Amended) A compound obtainable by the method according to claim 21.

- 28. (Amended) A process for the purification of a protein according to claim 1 or obtained according to claim 26, which purification includes hydroxyapatite-based chromatography and a subsequent anion exchange chromatography.
- 30. (Amended) A protein obtained by the method according to claim 26.
- 35. (Amended) A protein according to any one of claims 6, 25, 30 or 31 for use as a medicament.

Please cancel claims 36-38.

#### **REMARKS**

Applicant amends the claims to remove multiple dependencies, to provide proper antecedent basis, and to address other matters of form. The foregoing amendments introduce no new matter and are not related to issues of patentability.

Entry of the foregoing Preliminary Amendment is respectfully in order and requested.

Attached hereto as Appendix A is a marked-up version of the changes made to the claims by the current amendments. Appendix A is captioned "Version With Markings To Show Changes Made." Also attached hereto as Appendix B is a complete set of the claims that will be pending upon entry of the amendments presented herein.

If there are any questions regarding the amendments to the application, we invite the Examiner to call Applicant's representative at the telephone number below.

Respectfully submitted,

LAHIVE & COCKFIELD, LLP

Registration No. 33,506 Attorney for Applicants

28 State Street Boston, MA 02109 (617) 227-7400

Date: 27 August 2001

#### APPENDIX A

### **VERSION WITH MARKINGS TO SHOW CHANGES MADE**

#### In the Claims

Please amend claims 6, 9, 11, 13, 14, 15, 18, 19, 25, 28, 30, and 35 as follows.

- 6. (Amended) A compound which is substantially complementary to a protein according to any one of claims 1-5.
- 9. (Amended) An isolated complex, which is comprised of a protein according to claims 1-5 and a complementary compound according to any one of claims 6-8, wherein the three-dimensional structure of LTA<sub>4</sub> hydrolase is essentially as disclosed in Table 9 by the parameters defining atom 1- atom 4876, or a functionally equivalent part, derivative or conformational analogue of such a complex.
- 11. (Amended) Use of the parameters of a protein according to any one of claims 1-5, a compound according to any one of claims 6-8 or a complex according to claim 9 or 10 in drug design, such as in molecular modeling, direct structure-based design and/or combinatorial chemistry.
- 13. (Amended) Use according to claim 11 or 12, wherein said drug is for the treatment and/or prevention of disorders involving acute and chronic inflammatory and/or allergic symptoms, said disorder being selected from the group consisting of arthritis, inflammatory bowel disease (IBD), psoriasis, chronic obstructive pulmonary disease (COPD), and acquired immune deficiency syndrome (AIDS).
- 14. (Amended) Use according to claim 11 or 12, wherein said drug is for the treatment and/or prevention of proliferative disorders, such as neoplasias and/or cancer.

- 15. (Amended) Use according to claim 11 or 12, wherein said drug is for the treatment and/or prevention of disorders caused by the lethal factor of *Bacillus anthracis*, e.g. anthrax.
- 18. (Amended) A method according to claim 16 or 17, wherein an enzymatic inhibitor complementary to the amino acids defined in any one of claims 3, 4 or 5 is screened for.
- 19. (Amended) An analogue obtainable by the method according to any one of claims 16-18.
- 25. (Amended) A compound obtainable by the method according to any one of claims 21-24.
- 28. (Amended) A process for the purification of a protein according to any one of claims 1-3 or obtained according to claim 26-or 27, which purification includes hydroxyapatite-based chromatography and a subsequent anion exchange chromatography.
- 30. (Amended) A protein obtained by the method according to any one of claims 27-29 26.
- 35. (Amended) A protein according to any one of claims 6-8, 25, 30 or 31 for use as a medicament.

#### APPENDIX B

- 1. An isolated protein comprising at least a subsequence of the amino acid sequence of LTA<sub>4</sub> hydrolase, which exhibits a three-dimensional form essentially as disclosed in Table 9 by the parameters defining atom 1 to atom 4876, said subsequence being capable of participating in the control of the enzymatic pathway, such as the leukotriene cascade, or a functionally equivalent part, derivative or conformational analogue thereof.
- 2. A protein according to claim 1, which comprises an enzymatically active site defined in the following table:

|   | Left Wall                              | Right Wall                             |
|---|----------------------------------------|----------------------------------------|
| 1 |                                        | Lys608, Asp606, Lys605, Lys354, Thr355 |
| 2 | Phe356, Phe362                         | Gln544, Asp573, Lys572, Arg568         |
| 3 | Val376                                 | Lys565, Arg540, Leu507                 |
| 4 | Ser380, Ser352, Glu348                 | Pro569                                 |
| 5 | Tyr378, Glu348                         | Arg563, Glu533, Phe536, Arg537, Tyr267 |
| 6 | Tyr383, Phe314, Glu318, Glu384, Arg326 | g: 13, 13000,1 Moos 0,1 Mg551, 1 J1201 |
| 7 | Gly268, Gly269, Met270                 | His295, Asn341, Phe340                 |
| 8 | Ser288, His497                         | Glu325, Asn291                         |

- 3. A protein according to claim 2, which is an enzyme having a metallohydrolase activity capable of participating in the regulation of enzyme activities in biochemical pathways, wherein said enzymes have structures similar to the ones defined in claim 2.
- 4. A protein according to claim 1, which comprises an enzymatically active site defined by the following amino acids: Gln136; Ala137; Tyr267; Gly268; Gly269; Met270; Glu271; Val292; His295; Glu296; His299; Glu318; Tyr378; Tyr383; Arg563; Lys565.
- 5. A protein according to claim 1, which comprises an enzymatically active site defined by the following amino acids: Gln136; Ala137; Tyr267; Gly268; Gly269; Met270; Glu271; Va1292; His295; Glu296; His299; Trp315; Glu318; Val322; Phe362; Va1367; Leu369; Pro374; Asp375; Ile372; Ala377; Pro382; Tyr378; Tyr383; Arg563; Lys565.

- 6. A compound which is substantially complementary to a protein according to claim 1.
- 7. A compound according to claim 6, which is substantially complementary to an enzymatically active site of said protein and which is capable of specifically inhibiting said enzymatic activity.
- 8. A compound according to claim 7, which is an inhibitor of a metallohydrolase enzyme.
- 9. An isolated complex, which is comprised of a protein according to claim 1 and a complementary compound according to claim 6, wherein the three-dimensional structure of LTA<sub>4</sub> hydrolase is essentially as disclosed in Table 9 by the parameters defining atom 1- atom 4876, or a functionally equivalent part, derivative or conformational analogue of such a complex.
- 10. A complex according to claim 9, wherein the protein complexed with LTA<sub>4</sub> hydrolase is selected from the group which consists of bestatin, thiolamine or hydroxamic acid or a functionally equivalent part, derivative or conformational analogue of such a complex.
- 11. Use of the parameters of a protein according to claim 1, a compound according to claim 6 in drug design, such as in molecular modeling, direct structure-based design and/or combinatorial chemistry.
- 12. Use according to claim 11, wherein said parameters are selected from the parameters disclosed in Table 9 defining atom 1- atom 4876.

- 13. Use according to claim 11, wherein said drug is for the treatment and/or prevention of disorders involving acute and chronic inflammatory and/or allergic symptoms, said disorder being selected from the group consisting of arthritis, inflammatory bowel disease (IBD), psoriasis, chronic obstructive pulmonary disease (COPD), and acquired immune deficiency syndrome (AIDS).
- 14. Use according to claim 11, wherein said drug is for the treatment and/or prevention of proliferative disorders, such as neoplasias and/or cancer.
- 15. Use according to claim 11, wherein said drug is for the treatment and/or prevention of disorders caused by the lethal factor of *Bacillus anthracis*, e.g. anthrax.
- 16. A method for screening LTA<sub>4</sub> hydrolase hydrolase analogues that mimic at least a part of 5 the three-dimensional structure of the LTA<sub>4</sub> hydrolase molecule as defined by the parameters shown in Table 9 for atom 1 to atom 4876, which comprises the steps of
- (a) producing a multiplicity of analogue structures of LTA<sub>4</sub> hydrolase and
- (b) selecting an analogue structure, wherein the three-dimensional configuration and spatial arrangement of one or more enzymatically active sites and/or binding sites of said LTA<sub>4</sub> hydrolase remain substantially preserved.
- 17. A method according to claim 16, wherein an analogue exhibiting an enzymatic activity, such as an epoxide hydrolase and/or aminopeptidase activity, is selected.
- 18. A method according to claim 16, wherein an enzymatic inhibitor complementary to the amino acids defined in claim 3 is screened for.
- 19. An analogue obtainable by the method of claim 16.

- 20. An analogue according to claim 19, which exhibits an increased catalytic activity when compared to the naturally occurring form of LTA<sub>4</sub> hydrolase, such as defined in Table 9 by parameters of atom 1 to atom 4876.
- 21. A method for screening LTA<sub>4</sub> hydrolase binding compounds complementary to a region of LTA<sub>4</sub> hydrolase, preferably an enzymatically active site thereof, which comprises the steps of
- (a) producing a multiplicity of possible complementary structures and
- (b) selecting a structure, wherein the three-dimensional configuration and spatial arrangement of regions involved in binding to LTA<sub>4</sub> hydrolase remain substantially preserved, which selection is based on the three-dimensional structure of LTA<sub>4</sub> hydrolase, and/or LTA<sub>4</sub> hydrolase complexed to an inhibitor thereof, in a form adopted thereof in nature, such as defined in Table 9.
- 22. A method according to claim 21, wherein a general metallohydrolase inhibitor is selected, which is capable of inhibiting an enzyme belonging to the M1 family.
- 23. A method according to claim 21, wherein an inhibitor of the epoxide hydrolase activity and/or aminopeptidase activity of LTA<sub>4</sub> hydrolase or of LTA<sub>4</sub> syntheses is selected.
- 24. A method according to claim 21, wherein a compound capable of antagonizing LTB<sub>4</sub> receptor binding of a cell is selected.
- 25. A compound obtainable by the method according to claim 21.
- 26. A method of engineering a protein, which method comprises the steps of
- identification of a suitable set of mutations based on the structure of LTA<sub>4</sub> hydrolase;
- generation of a library of genes which contains the suitable sequence variations;

- selection of clones encoding the LTA<sub>4</sub> hydrolase analogues with a desired activity function;

wherein said desired activity is the capability of efficiently producing an organic compound of interest.

- 27. A method according to claim 26, wherein the specified property is the suicidal mode of action of LTA<sub>4</sub> hydrolase.
- 28. A process for the purification of a protein according to claim 1 or obtained according to claim 26, which purification includes hydroxyapatite-based chromatography and a subsequent anion exchange chromatography.
- 29. A process for the crystallization of an LTA<sub>4</sub> hydrolase, an analogue or a derivative thereof, wherein said crystallisation is performed with the addition of an ytterbium salt as an additive, such as an ytterbium chloride.
- 30. A protein obtained by the method according to claim 26.
- 31. A protein according to claim 30, which is present in an essentially pure form.
- 32. An isolated nucleic acid encoding a protein according to claim 30 or 31.
- 33. A nucleic acid capable of specifically hybridising to a nucleic acid according to claim 32.
- 34. Use of a protein, which is a genetically modified LTA<sub>4</sub> hydrolase, according to claim 30 or 31 in the preparation of LTB<sub>4</sub> or other metabolites in the leukotriene cascade.
- 35. A protein according to any one of claims 6, 25, 30 or 31 for use as a medicament.

WO 00/50577

PCT/SE00/00384

## DRUG DESIGN BASED ON THE STRUCTURE OF LTA4 HYDROLASE

#### 1. BACKGROUND

#### 1.1 Technical field

The present invention relates to methods of design or identification of biologically active compounds, which methods are based on the first definition ever of a three-dimensional structure of a protein involved in the leukotriene cascade. Further, the invention relates to novel compounds obtained by said methods, to advantageous uses of such compounds as well as to processes for the preparation thereof.

#### 1.2 Prior art

Leukotriene A4 (LTA<sub>4</sub>) hydrolase is a pivotal enzyme in the biosynthesis of leukotrienes, a family of paracrine hormones implicated in the pathophysiology of inflammatory and allergic disorders, in particular bronchial asthma (Samuelsson, B. Science 220, 568-75 (1983); and Lewis, R.A., Austen, K.F. & Soberman, R.J. N Engl J Med 323, 645-55 (1990)). Leukotrienes are formed by immunocompetent cells including neutrophils, eosinophils, basophils, mast cells, and macrophages, in response to a variety of immunological as well as non-immunological stimuli. These lipid mediators are divided into two major classes exemplified by the chemotaxin LTB4, and the spasmogenic cysteinyl-leukotrienes (LTC4, LTD4, and LTE4). Leukotriene biosynthesis is initiated by the enzyme 5-lipoxygenase which converts arachidonic acid into the unstable epoxide LTA4, a central intermediate in the leukotriene cascade. LTA4 may in turn be hydrolyzed into LTB4 by the enzyme LTA4 hydrolase, or conjugated with GSH to form LTC4, a reaction catalyzed by a specific LTC4 synthase. During cellular activation, all key enzymes in leukotriene biosynthesis, except LTA4 hydrolase, form a biosynthetic complex assembled at the nuclear membrane, suggesting that leukotrienes may have unknown intranuclear functions related to gene regulation or cell growth (Serhan, C.N., Haeggstrom, J.Z. & Leslie, C.C. Faseb J 10, 1147-58 (1996)).

Leukotriene B4, the natural product of LTA4 hydrolase, is one of the most powerful chemotactic agents known to date and triggers leukocyte adherence and ag-

5

20

25

25

5

gregation at only nM concentrations (Ford-Hutchinson, A.W., Bray, M.A., Doig, M.V., Shipley, M.E. & Smith, M.J.H. Nature 286, 264-265 (1980)). Hence, this molecule is regarded as a key mediator of inflammation, and has been implicated in a number of diseases, including arthritis, psoriasis, inflammatory bowel disease (IBD), and chronic obstructive pulmonary disease (COPD). Furthermore, the role of LTB4 in inflammation has been well corroborated by the anti-inflammatory properties of LTA4 hydrolase inhibitors, particularly in combination with a cyclooxygenase inhibitor, and specific LTB4 receptor antagonists, as well as the reduced inflammatory reactions observed in several animal models of leukotriene deficiency (Tsuji, F., Miyake, Y., Enomoto, H., Horiuchi, M., Mita, S. Eur. J. Pharmacol. 346, 81-85, (1998); Chen, X.S., Sheller, J.R., Johnson, E.N. & Funk, C.D. Nature 372, 179-182 (1994); Griffiths, R.J., et al. Proc Natl Acad Sci USA 92, 517-21 (1995); and Griffiths, R.J., et al. J Exp Med 185, 1123-9 (1997)). In addition, LTB4 modulates the immune response, e.g., by interference with specific subsets of lymphocytes, production of cytokines, as well as liberation of immunoglobulins from B-lymphocytes (Payan, D.G., Missirian-Bastian, A. & Goetzl, E.J. Proc Natl Acad Sci U S A 81. 3501-5 (1984); Rola-Pleszczynski, M. & Lemaire, I. J Immunol 135, 3958-61 (1985); and Yamaoka, K.A., Claesson, H.E. & Rosen, A. J. Immunol 143, 1996-2000 (1989)). Recent data also indicate that LTB4 stimulates, and thus has a crucial role in the regulation of, cell proliferation and cell survival in HL-60 cells, suggesting that LTA4 hydrolase inhibitors may have an anti-proliferative effect. (Dittman, K.H., Mayer, C., Rodemann, H.P., Petrides, P.E., and Denzlinger, C. Leuk, Res. 22. 49-53 (1998)). The cell surface receptor for LTB4 (BLTR) was recently cloned and found to be abundantly expressed in the immune system, including lymphocytes, spleen and thymus (Yokomizo, T., Izumi, T., Chang, K., Takuwa, Y. & Shimuzu, T. Nature 387, 620-624 (1997)). BLTR belongs to a family of chemokine receptors and, interestingly, together with CD4 it was found to be an efficient coreceptor for HIV-1 infection (Owman, C., et al. Proc Natl Acad Sci USA 95, 9530-4 (1998)). Moreover, LTB4 is also a natural ligand to the nuclear orphan receptor PPARa.

25

5

suggesting that LTB4 may have intranuclear functions possibly related to lipid homeostasis (Devchand, P.R., et al. Nature 384, 39-43 (1996)).

LTA4 hydrolase is a cytosolic 69 kDa enzyme without any similarity to other soluble or membrane bound xenobiotic epoxide hydrolases (Funk, C.D., et al. Proc Natl Acad Sci U S A 84, 6677-81 (1987)). The enzyme's epoxide hydrolase activity, which generates LTB4, is highly substrate selective accepting only LTA4 and to a small extent the double bond isomers LTA3 and LTA5. Typically, LTA4 hydrolase undergoes suicide inactivation and covalent modification when exposed to LTA4 (Evans, J.F., Nathaniel, D.J., Zamboni, R.J. & Ford-Hutchinson, A.W. J. Biol. Chem. 260, 10966-10970 (1985)). During this process, LTA4 apparently binds to Tyr-378, a residue which also seems to play a role for the formation of the critical cis-trans-trans geometry in the conjugated triene structure of LTB4 (Mueller, M.J., et al. Proc Natl Acad Sci U S A 93, 5931-5935 (1996); and Mueller, M., Andberg, M., Samuelsson, B. & Haeggstrom, J. Z. J. Biol. Chem. 271, 24345-24348 (1996)).

From sequence comparisons with certain metalloproteases and aminopeptidases, a zinc binding motif (HEXXH-X18-E) was unexpectedly found in LTA4 hydrolase (Vallee, B.L. & Auld, D.S. Proc. Natl. Acad. Sci. USA 87, 220-224 (1990)). Further studies demonstrated that the enzyme indeed contains one catalytic zinc atom complexed to His295, His299, and Glu318 (Medina, J.F., et al. Proc. Natl. Acad. Sci. USA 88, 7620-7624 (1991)). In addition, a previously unknown peptide cleaving activity was discovered which requires the presence of anions, particularly chloride (Haeggström, J.Z., Wetterholm, A., Medina, J.F. & Samuelsson, B. J Lipid Mediator 6, 1-13 (1993)). Although the endogenous physiological peptidase substrate(s) has not yet been identified, LTA4 hydrolase cleaves certain arginyl di- and tripeptides with very high efficiency (Örning, L., Gierse, J.K. & Fitzpatrick, F.A. J. Biol. Chem. 269, 11269-11273 (1994)). Hence, LTA4 hydrolase can be described as a bifunctional zinc metalloenzyme with the unique ability to accept both lipid and peptide substrates. Using site-directed mutagenesis, Glu296 and Tyr383 were found to be critical for the peptidase reaction, presumably as a general base and proton donor, respectively (Blomster, M., Wetterholm, A., Mueller, M.J. & Haegeström

5

J.Z. Eur. J. Biochem. 231, 528-534 (1995); and Wetterholm, A., et al. Proc Natl Acad Sci U SA 89, 9141-9145 (1992)). Since the enzyme's ability to convert LTA4 into LTB4 was not affected by the mutations, the two enzyme activities of LTA4 hydrolase are exerted via non-identical but overlapping active sites. Notably, unlike other enzymes in the leukotriene cascade, LTA4 hydrolase is ubiquitous in mammalian cells and tissues suggesting that it may have other functions presumably related to its peptide cleaving activity.

As a consequence of the identification of LTA<sub>4</sub> hydrolase as a zinc metalloen-zyme with a peptidase activity, it was observed that LTA<sub>4</sub> hydrolase is inhibited by bestatin, a general aminopeptidase inhibitor, and captopril, an inhibitor of angiotensin converting enzyme (Örning, L., et al. J. Biol. Chem. 266, 16507-16511 (1991)).

Tsuge et al., (J. Mol. Biol. 238,854-856 (1994)), have described the crystallization of LTA<sub>4</sub> hydrolase. However, despite the well recognized need thereof, the three-dimensional structure of LTA4 hydrolase has not yet been disclosed. More specifically, the problems that need to be overcome in order to provide such a determination may in brief be explained as follows. There are two major difficulties in obtaining a three-dimensional structure of a protein molecule. The first one is to grow crystals of good quality that are reproducible and diffract to atomic resolution (beyond 2.5Å). This means a thorough and cumbersome investigation of parameters that influence the crystal growth such as pH, temperature, nature of buffers, nature of precipitant, just to mention a few. The addition of ligands such as substrate analogues or inhibitors or the addition of other molecules can be important for obtaining good crystals. There is only little understanding of the physical background of the crystallisation process which means that the search for suitable crystallisation conditions for a certain protein is unique, requires creativity and intuition, and is governed by trial and error procedures. The purity of the protein is also a crucial parameter in the crystallisation and a suitable degree of purity can be hard, or even imposible, to achieve. The second major difficulty is associated with overcoming the phase-problem which is inherent to X-ray diffraction methods. To be able to overcome this problem it is necessary to substitute the protein with suitable heavy

5

atom substance such as e.g. mercury, gold or platinum compounds. Crystals often cannot withstand the treatment with these compounds and the search for suitable substitutions is not straight forward and may become very exhaustive. Another option is to substitute all methionines by seleno-methionine (Se-Met) residues. This method requires production of recombinant protein in special strains of E. coli under non-standard conditions, followed by a new purification and recrystallisation of the Se-Met containing protein. Although Tsuge et al reported the crystallisation of LTA4 hydrolase, their crystals only diffracted to medium resolution and the phaseproblem was not solved. Thus, as a reliable definition of the three-dimensional structure of LTA<sub>4</sub> hydrolase would enable e.g. a display in visual form on a computer screen of the shape of the molecule, then, could the above mentioned problems be solved, a whole range of possibilities would be opened, such as rational structure-based drug design, e.g. in combination with combinatorial chemistry, aimed at production of novel medicaments useful in disorders associated with the leukotriene cascade, as well as protein-engineering to create novel variants of the enzyme with altered, but yet useful, catalytic properties.

As LTA4 hydrolase is a recognized important drug target, some inhibitors thereof have been synthesized (Wetterholm, A., et al. J Pharmacol Exp Ther 275, 31-7 (1995); and Yuan, W., Wong, C., Haeggstrom, J. Z., Wetterholm, A. & Samuelsson, B. J. Am. Chem. Soc., 114, 6552-6553 (1992)). Interestingly, certain inhibitors of LTA4 hydrolase were reported to act also as LTB4 receptor antagonists (Labaudinière R, Hilboll G, Leon-Lomeli A, Terlain B, Cavy F, Parnham M, Kuhl P, and Dereu N. J. Med. Chem. 35, 3170-3179 (1992)). Due to the absence of any available information regarding the three-dimensional structure of LTA4 hydrolase, as discussed above, none of the previously described inhibitors have been designed based on the exact structure thereof. Accordingly, there is a need within this field of determining the three-dimensional structure of LTA4 hydrolase in order to design more potent and selective inhibitors of LTA4 hydrolase as well as modified structures exhibiting even more advantageous pharmaceutical properties.

#### 2. THE PRESENT INVENTION

As the following chapter includes a substantial amount of text, it has herein been divided into separate sections, each one of which disclose separate aspects of the present invention.

5

1.15

20

25

30

2.4.8 (a) Method

2.4.8. (b) Novel specifically designed proteins

2.4.8. (c) Use of genetically modified LTA<sub>4</sub> hydrolase

| Index Chapter 2                                                                           |
|-------------------------------------------------------------------------------------------|
| 2.1 Summary of the invention                                                              |
| 2.2 Brief description of the drawings                                                     |
| 2.3 Definitions                                                                           |
| 2.4 Detailed description of the invention                                                 |
| 2.4.1 LTA <sub>4</sub> hydrolase, subsequences and analogues thereof                      |
| 2.4.2 Compounds complementary to LTA <sub>4</sub> hydrolase                               |
| 2.4.3 A complex of LTA <sub>4</sub> hydrolase and acomplementary compound                 |
| 2.4.4 Advantageous uses of LTA <sub>4</sub> hydrolase, complementery compounds and        |
| complexes thereof                                                                         |
| 2.4.5 Screening for LTA <sub>4</sub> hydrolase analogues                                  |
| 2.4.5 (a) Method                                                                          |
| 2.4.5 (b) Analogues obtainable by the present screening method                            |
| 2.4.5 (c) Mutated forms of LTA <sub>4</sub> hydrolase obtainable by the present screening |
| method                                                                                    |
| 2.4.5 (d) Nucleic acids encoding the novel compounds                                      |
| 2.4.6 (a) Production and purification of genetically modified forms of LTA <sub>4</sub>   |
| hydrolase                                                                                 |
| 2.4.6 (b) Purified LTA <sub>4</sub> hydrolase                                             |
| 2.4.7 Identification of LTA <sub>4</sub> hydrolase binding compounds                      |
| 2.4.7 (a) Method                                                                          |
| 2.4.7 (b) Identified binding compounds                                                    |
| 2.4.8 Protein engineering                                                                 |

- 2.4.9 Pharmaceutical applications of the present invention
- 2.4.9 (a) First medical indication
- 2.4.9 (b) Second medical indication and pharmaceutical methods
- 2.4.9.(c) Methods of treatment
- 5 2.5 Production of the novel molecules
  - 2.6 Detailed description of the drawings

#### 2.1 Summary of the invention

The object of the present invention is to fulfill the above defined need. This has been achieved by the crystallization and determination of the three-dimensional structure of LTA4 hydrolase complexed with the competitive inhibitor bestatin and subsequent structure determination of complexes between LTA4 hydrolase and two specific inhibitors. It is the first three-dimensional structure of any protein component of the leukotriene cascade and enables a description of the structural basis and molecular mechanisms of various enzyme functions, such as the two catalytic activities of LTA4 hydrolase. In addition, the structural information will now make possible rational design of enzyme inhibitors, which may be developed into clinically useful anti-inflammatory drugs.

#### 2.2 Brief description of the drawings

Figure 1 shows the key enzymes and intermediates in leukotriene biosynthesis.

Figure 2 shows 2Fo-Fc density contoured at 1.1 s. Part of the active site in the neighborhood of the bestatin molecules is shown.

Figure 3 is a ribbon diagram of the tertiary structure of leukotriene A4 hydrolase.

Figure 4 shows ribbon diagrams of the N-terminal domains of . LTA<sub>4</sub> hydrolase.

Figure 5 shows ribbon diagrams of the catalytic domain of LTA<sub>4</sub> hydrolase and therolysin.

Figure 6 shows the structure of the C-terminal domain.

Figure 7 illustrates zinc binding ligands in LTA4 hydrolase.

Figure 8 (a) is a Ball-and-Stick presentation of the binding of bestatin in LTA4 hydrolase, while Figure 8 (b) is a schematic overview of bestatin binding in LTA4 hydrolase.

Figure 9 (a) is a wire representation of the central cavity found in LTA4 hydrolase (shown as  $C\alpha$ -trace).

Figure 9 (b) is a schematic presentation for the proposed binding of LTA4 into the cavity.

Figure 10 is a schematic representation for the proposed reaction mechanism of the epoxide hydrolase.

#### 2.3 Definitions

In the present context, the term "the three-dimensional form adopted thereof in nature" is to be understood as the conformational structure, defined by the parameters x, y and z in a conventional coordinate system, that a naturally occurring molecule adapt under conditions where it is capable of exerting its biological activities.

The specific conditions during which the herein presented data were collected are detailed in the section "Experimental".

The term "isolated" and variations thereof when used in connection with a molecule, such as protein, a polypeptide or a nucleic acid, means that said molecule is isolated from other substances, such as other proteins, DNA etc normally accompanying it in its natural environment.

The term "leukotriene A<sub>4</sub> (LTA<sub>4</sub>) hydrolase" as used herein is to be understood to include any mammalian or other LTA<sub>4</sub> hydrolase which comprises the same backbone as the human form specifically disclosed in the present application, irrespective of source. The amino acid sequences of mammalian LTA4 hydrolase have been shown to be identical to about 90%. Thus, the three-dimensional structures thereof may be suspected to be identical to approximately the same extent.

"Thiolamine" and "hydroxamic acid" are used herein to denote the compounds examplified in the Experimental section of the present specification.

A "complementary compound" means any compound, the structure of which enables a binding thereof to a specified protein, i.e a compound having a conformation or structure enabling such a suitable fit as to provide an energetically favorable interaction between protein-complementary compound.

20

25

5

"Analogue" means, as used herein, a chemically altered molecule which shares the backbone with, or at least structurally resembles, a "parent molecule". In the present specification, such a "parent molecule" may be LTA<sub>4</sub> hydrolase or an inhibitor thereof.

In the present application, the term "active site" is to be understood to include any region capable of binding a substrate and converting it into product.

The term "nucleic acid" refers to a deoxyribonucleotide or ribonucleotide polymer in either single- or double-stranded form, and unless otherwise limited, encompasses known analogs of nucleotides, that can function in a similar manner as naturally occurring nucleotides.

The phrase "hybridising specifically to" refers to the binding, duplexing, or hybridising of a molecule only to a particular nucleotide sequence under stringent conditions when that sequence is present in a complex mixture (e.g., total cellular) of DNA or RNA. The term "stringent conditions" refers to conditions under which a probe will hybridise to its target subsequence, but to no other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridise specifically at higher temperatures. Generally, stringent conditions are selected to be about 5°C lower than the thermal melting point Tm for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength, pH, and nucleic acid concentration) at which 50% of the probes complementary to the target sequence hybridise to the target sequence at equilibrium. (As the target sequences are generally present in excess, at Tm, 50% of the probes are occupies at equilibrium). Typically, stringent conditions will be those in which the salt concentration is less than about 1.0 M Na ion, typically about 0.01 to 1.0 M Na ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30°C for short probes (e.g., 10 to 50 nucleotides) and at least about 60°C for long probes (e.g., greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide.

"Essentially pure" means herein a purity of at least about 80%, especially at least about 90% and preferably at least about 95%, such as 98-99%. The purity of

25

30

5

LTA<sub>4</sub> hydrolase, an analogue or inhibitor thereof is according to the present invention preferably determined by general biochemical and biophysical methods well-known to the skilled in this field. For proteins, SDS polyacrylamide gel electrophoresis (SDS-PAGE) with Coomassie and silver staining or amino acid sequence analysis can be used, whereas high-pressure liquid chromatography (HPLC), gas chromatography coupled to mass spectrometry (GC-MS), and nuclear magnetic resonance spectroscopy (NMR) are suitable methods for small organic molecules (peptides, lipids, or carbohydrates, or combinations of these classes of substances).

#### 2.4 Detailed description of the invention

#### 2.4.1 LTA<sub>4</sub> hydrolase, subsequences and analogues thereof

In a first aspect, the present invention relates to an isolated protein comprising at least a subsequence of the amino acid sequence of leukotriene A<sub>4</sub> (LTA<sub>4</sub>) hydrolase, which subsequence has the corresponding three-dimensional form adopted thereof in nature. The protein according to invention as discussed below and elsewhere in this application is also understood to encompass any other functionally equivalent part, derivative or conformational analogue thereof. More specifically, the invention relates to the above disclosed protein which comprises a subsequence of the amino acid sequence of leukotriene A<sub>4</sub> (LTA<sub>4</sub>) hydrolase, which is able to participate in, and influence, e.g. by providing enzymatic activity, the leukotriene cascade. Most preferably, the protein according to the invention is capable of controling said cascade by exerting an enzymatic activity and thus regulate the production of leukotriene B<sub>4</sub> (LTB<sub>4</sub>). In a particular embodiment, the protein is comprised of essentially all of the amino acid sequence of leukotriene A<sub>4</sub> (LTA<sub>4</sub>) hydrolase as disclosed in SEQ ID NO 1, or a functionally equivalent part, derivative or conformational analogue thereof.

Thus, the present invention relates to an isolated LTA<sub>4</sub> hydrolase in its naturally ocurring three-dimensional form. More specifically, the present application provides a listing illustrating, for the first time, the coordinates defining human LTA<sub>4</sub> hydrolase complexed to an inhibitor thereof. Thus, the coordinates defining the conformation of LTA<sub>4</sub> hydrolase have been determined by the present inventors as com-

plexed with bestatin, thiolamine and hydroxamic acid, respectively. Bestatin is a

5

25

30

20

universal inhibitor of amino peptidase activity (see e.g. Mathé, G. Biochem. Pharmacol. 45, 49-54 (1991)), while the last mentioned two are specific inhibitors of LTA<sub>4</sub> hydrolase. Based on these different activities, said inhibitors may be used as models in the design of novel molecules having desired properties. Methods for such design will be discussed in further detail below as a further advantageous aspect of the invention. For reasons of convenience for the reader of the present specification, the data collection comprising the novel coordinates according to the invention is included in the present description as a separate section denoted "X-ray data", as Table 9, immediately preceding the claims. In said table, atom no 1 to atom no 4876 define the LTA<sub>4</sub> hydrolase part of the complex. (protein part), atom no 4877 refers to Zn, atom nos. 4878-4880 refer to Yb, atom nos. 4881-4885 refer to imidazole, atom nos. 4886-4889 refer to acetate, atom nos 4890-4908 refer to thiolamine while atom nos. 4909-5160 refer to water. Thus, the intervening atoms relate to the metals that bind in LTA<sub>4</sub> hydrolase, i.e. the active site Zn atom and the Yb atoms that were crucial for the present structure determination. The conditions prevailing at the determination thereof will be described in detail in the Experimental section below. As the skilled in this field realises, such coordinates usually exhibit a certain degree of variation, due to e.g. thermal motion and slight differences in crystal packing. Thus, any references herein to Table 9 in connection with the proteins and other molecules are merely intended to illustrate an average value for each of the coordinates defining the conformation of the molecules under identical conditions, as determined by use of the same apparatus and method. Accordingly, this embodiment of the invention is not limited to a molecule having exactly the specified coordinates, but rather to molecules capable of adopting such a structure. For example, a human LTA<sub>4</sub> hydrolase according to the invention will exhibit a strong bit a conformational similarity with the coordinates presented by atom nos 1 -4876 of Table 9, wherein a variation of about 1%, or 0.5 Å, may be expected. Accordingly, any such variants are within the scope of the present invention.

As regards amino acid sequence, in a specific embodiment, the protein according to the invention is identical, by direct sequence comparison, to at least about

50%, more specifically, at least about 70%, such as at least about 90%, to the LTA<sub>4</sub> hydrolase as defined by SEQ ID NO. 1 while in the three-dimensional form adopted thereof in nature. In this context, it is noted that the amino acid sequence of LTA<sub>4</sub> hydrolase also appears from the data of Table 9, but is also included as a separate sequence listing for reasons of clarity. The protein of this embodiment of the invention are e.g. variants originating from any species, preferably mammals, such as humans, mice or other rodents, etc. Alternatively, the variants including subsequences of the human sequence are mutated forms, resulting from either spontaneous mutations or deliberately produced mutations, as discussed in more detail below.

One preferred embodiment of the present invention is a protein which comprises at least one of the regions defined below in Tables 1-3 below as active sites.

Table 1: Residues lining the big cavity from outsite to insite

|   | Left wall                       | Right wall                     |
|---|---------------------------------|--------------------------------|
| 1 | _                               | Lys608, Asp606, Lys605,        |
|   |                                 | Lys354, Thr355                 |
| 2 | Phe356, Phe362                  | Gln544, Asp573, Lys572, Arg568 |
| 3 | Val376                          | Lys565, Arg540, Leu507         |
| 4 | Ser380, Ser352, Glu348          | Pro569                         |
| 5 | Tyr378, Glu348                  | Arg563, Glu533, Phe536,        |
| • |                                 | Arg537, Tyr267                 |
| 6 | Tyr383, Phe314, Glu318, Glu384, |                                |
|   | Arg326                          |                                |
| 7 | Gly268, Gly269, Met270          | His295, Asn341, Phe340         |
| 8 | Ser288, His497                  | Glu325, Asn291                 |

15

In Table 1, Lys565, Ser380, Pro569, Glu533, Tyr383, Phe314, Glu318, Glu384, Arg326, Gly268, Gly269, Met270, His295, Phe340, Ser288, and Glu325 are strictly conserved amino acids, while Lys608, Phe356, Phe362, Lys572, Arg568, Tyr378, Phe536, Tyr 267, and Asn291 are conserved in nature.

20

25

30

5

Table 2: Amino-acids in the bestatin binding site ("basic" amino-peptidase site)

The binding of bestatin to LTA<sub>4</sub> hydrolase may also be described by way of coordinates. Below follows the specific amino acids involved in the binding of bestatin and similar structures, as defined according to the invention.

Gln136; Ala137; Tyr267; Gly268; Gly269; Met270; Glu271; Val292; His295; Glu296; His299; Glu318; Tyr378; Tyr383; Arg563; Lys565.

#### Table 3: Amino acids in the leukotriene binding site

The present amino acids define the site binding leukotriene-based inhibitors, such as thiolamine and hydroxamic acid, as shown in Table 9 for thiolamine.

Gln136; Ala137; Tyr267; Gly268; Gly269; Met270; Glu271; Val292; His295; Glu296; His299; Trp315; Glu318; Val322; Phe362; Val367; Leu369; Pro374; Asp375; Ile372; Ala377; Pro382; Tyr378; Tyr383; Arg563; Lys565.

In Tables 1-3 above, the enumeration of the amino acid sequence of LTA<sub>4</sub> hydrolase begin without the initial Met. Thus, compared to SEQ ID NO 1, which includes the initial Met, the amino acid enumeration above is lowered by one. Accordingly, Gln136 above corresponds to Gln 137 of SED ID NO 1, Ala137 above corresponds to Ala 138 of SEQ ID NO 1, etc.

Table 4: General catalytic domain for the M1 class of enzymes Amino acids no. 210-450.

The present region will provide a basis for the development of enzyme inhibitors useful in the control other biological pathways than the leukotriene cascade.

Thus, as regards the above defined region of aminopeptidase activity of LTA<sub>4</sub> hydrolase, the present inventors have surprisingly observed, that said region is in fact universal for all enzymes belonging to the metallohydrolase family denoted M1.

25

5

Thus, this specific subsequence of LTA<sub>4</sub> hydrolase is encompassed by the present invention as a novel protein *per se*. In addition to the various advantageous uses of subsequences of LTA<sub>4</sub> hydrolase described herein in connection with the leukotriene cascade, this region, which is shared between all M1 enzymes, will find several further applications in connection with other enzymatic pathways. For example, the present region, herein denoted the "M1 region" in order to clarify that it is shared between the M1 enzymes, may advantageously be used to produce synthetic inhibitors, or identify natural inhibitors, of any one of the other M1 enzymes. Such M1 inhibitors will be discussed below when compounds complementary to LTA<sub>4</sub> hydrolase are disclosed.

The above disclosed proteins and peptides comprising subunits of LTA<sub>4</sub> hydrolase are advantageously used e.g. as enzymes or more preferably in methods wherein novel inhibitors of enzymatic activities are identified and/or designed.

#### 2.4.2 Compounds complementary to LTA<sub>4</sub> hydrolase

In a second aspect, the present invention relates to a novel compound defined by a structure substantially complementary to the above described protein, preferably identified by use of the novel LTA<sub>4</sub> hydrolase conformation according to the present invention. The complementary compound is a naturally occurring or synthetic protein, peptide, lipid, carbohydrate or any other organic or inorganic compound. In relation to naturally occurring compounds, it is to be understood that the present invention relates to such compounds as isolated from their natural environment, preferably identifiable by aid of the novel coordinates defining structures according to the invention, as examplified by the complementary compounds used in the complexes shown in Table 9.

In a first embodiment, the present complementary compound is substantially complementary to an enzymatically active site of the protein and is advantageously capable of specifically inhibiting an enzymatic activity of said protein. Thus, in one embodiment, the present compound is substantially complementary to parts, or all, of the "basic" aminopeptidase binding site defined in Table 2 above. Thus, the pres-

25

5

ent compound is an inhibitor capable of specifically inhibiting an aminopeptidase activity of an enzyme, preferably of LTA<sub>4</sub> hydrolase. In an alternative embodiment, the present compound is substantially complementary to parts, or all, of the leukotriene binding site as defined in Table 3 above. Thus, the present compound is an inhibitor capable of specifically inhibiting an epoxide hydrolase activity of an enzyme, preferably of LTA<sub>4</sub> hydrolase. (The inhibition of both aminopeptidase and epoxidase hydrolase is discussed in detail below in the experimental section.) As the present two binding sites of LTA<sub>4</sub> hydrolase overlap in part, a further embodiment is a compound which is complementary to essential parts of both of the above discussed two binding sites, in part or partially, which thus preferably is an inhibitor of both the discussed activities.

As already mentioned above, one compound which is complementary to an enzymatically active site of LTA<sub>4</sub> hydrolase is a compound complementary to the M1 region thereof and thus capable of partial or total inhibition of the enzymatic activity of LTA<sub>4</sub> hydrolase or any other metallohydrolase belonging to the M1 family. In the present application, such inhibitors will be denoted M1 inhibitors.

As the skilled in this field will realise, the present inhibitors disclosed above need not be compound that inhibit a biological activity completely, but may be capable of exerting a partially inhibiting activity, i.e, lowering the enzymatic activity.

In another embodiment, the present complementary compound is a compound which is also capable of binding to the receptor for the product of an LTA<sub>4</sub> hydrolase, i.e. an LTB<sub>4</sub> receptor, e.g. on a cell, such as a polymorphonuclear leukocyte. Thus, such a compound may be useful as an LTB<sub>4</sub> antagonist whereby the biological effect of LTA<sub>4</sub> hydrolase activity may be regulated. Accordingly, any such LTB<sub>4</sub> antagonist designed and/or identified using the coordinates of LTA<sub>4</sub> hydrolase as presented herein are also encompassed by the present invention.

In another embodiment, the present complementary compound is a compound which, apart from being capable of binding to an active site of LTA4 hydrolase, is also capable of binding to an active site of LTC4 synthase which binds the same substrate as LTA4 hydrolase, i.e. LTA4, and turns it over into LTC4 (cf. Fig 1) and

25

5

is thus expected to share important structural features with the active site of LTA4 hydrolase. Such a compound may be useful as an inhibitor of LTC4 biosynthesis, whereby the production thereof may be regulated. Accordingly, any such LTC4 synthase inhibitor, designed and/or identified using the coordinates of LTA4 hydrolase, are also encompassed by the present invention.

The specific properties and advantageous uses of the present compounds as well as the design and production of novel LTA<sub>4</sub> hydrolase inhibitors will be described in further detail below in relation to the various methods.

#### 2.4.3 A complex of LTA<sub>4</sub> hydrolase and a complementary compound

In a third aspect, the present invention relates to an isolated complex comprised of a protein as described above and a compound complementary to said protein. Said complementary compound may thus be an inhibitor of one or more of the protein's enzymatic activities, such as an aminopeptidase and/or epoxide hydrolase activity, such as bestatin, hydroxamic acid or thiolamine, or leukotriene B4 or any analogue thereof, or LTC<sub>4</sub> or any analogue thereof. Examples of complementary compounds are bestatin, thiolamine or hydroxamic acid. In the present context, it is to be understood that the invention also relates to specific regions of said inhibitors. that have never been specifically disclosed for the present purpose, as well as novel inhibitors identified by aid of the present invention. In specific embodiments, the complex according to the invention is composed of LTA<sub>4</sub> hydrolase complexed with bestatin, thiolamine or hydroxamic acid, respectively, wherein the LTA<sub>4</sub> hydrolase is as defined by the coordinates presented in Table 9, or any functional fragment, derivative or analogue thereof. As bestatin is aminopeptidase based, further similar and advantageous inhibitors may be developped based on the structural information for LTA<sub>4</sub> hydrolase complexed with bestatin, preferably combined with the specification of the binding site of Table 2. Further, as both thiolamine is leukotriene based, the information provided in Table 9, preferably combined with the specification of binding site of Table 3, will prove to be an advantageous tool in order to gain more information about such enzymatic binding and thus the development of further

25

5

novel inhibitors, the same principles applying to hydroxamic acid, which is also leukotriene based.

Accordingly, the present invention presents for the first time the coordinates defining the three-dimensional structure of a complex of LTA<sub>4</sub> hydrolase and an inhibitor thereof as determined by X-ray crystallography, e.g. as illustrated in Table 9. In fact, this is the first time ever to disclose the exact parameters defining the three-dimensional structure of a protein component of the leukotriene cascade. Due to these novel reliable parameters, the complex as well as the components thereof are readily distinguished from the prior art. Together with biochemical and mutagenetic data, the novel structures will provide the basis for understanding the molecular mechanisms of the aminopeptidase and epoxide hydrolase activities, as well as the enzyme's suicide inhibition. Accordingly, the present invention will open a whole range of new possibilities as regards e.g. identification and/or design of novel biologically active molecules and methods of controlling said cascade, *in vivo* or *in vitro*. Consequently, novel advantageous drugs, such as medicaments for the treatment and/or prevention of inflammatory and/or allergic diseases, may be designed, as will be discussed in further detail below.

In the present context, it is to be understood that proteins according to the invention include the naturally occurring three dimensional forms thereof, separated and isolated from its natural environments, as well as any such protein, wherein deletions, additions and/or substitutions of the amino acid sequence have been made, provided that the three dimensional structure is substantially maintained, as the exerted biological activity is critically dependent upon the particular three-dimensional folding of the protein. The present invention also encompasses any derivative or conformational analogue of the above disclosed proteins, which has a three-dimensional structure essentially as disclosed above, or an effective part thereof having the biological activities discussed in detail below.

25

30

5

# 2.4.4 Advantageous uses of LTA<sub>4</sub> hydrolase, complementary compounds and complexes thereof

A fourth aspect of the present invention is the use of a protein, a complementary compound or a complex according to to the invention in drug design, such as in molecular modeling, direct structure-based design and/or combinatorial chemistry. Such methods will be disclosed in detail below. The drugs designed using the above mentioned compounds may be suitable for the treatment and/or prevention of disorders involving acute and chronic inflammatory symtoms, said disorder being selected from the group consisting of arthritis, inflammatory bowel disease (IBD), psoriasis, chronic obstructive pulmonary disease (COPD), and acquired immune deficiency syndrome (AIDS). Further, such a drug may be useed for the treatment and/or prevention of proliferative disorders, such as neoplasias and/or cancer. Alternatively, a drug may be designed which is effective for the treatment and/or prevention of an inflammatory and/or allergic disorders caused by the lethal factor of Bacillus anthracis, e.g. anthrax. However, the above mentioned diseases are exemplary and other diseases or conditions not mentioned herein may also be contemplated.

In a further aspect, the present invention relates to the use of a protein having a structure substantially as defined for the LTA<sub>4</sub> hydrolase of the invention, or a part, analogue or derivative thereof, for screening a compound for possible medicinal activity. In the pharmaceutical industry, new or known compounds are routinely screened for new uses employing a variety of known *in vitro* or *in vivo* screens. Often such screens involve complex natural substances and are consequently expensive to carry out, and the results may be difficult to interpret. However, the knowledge of the three-dimensional protein structure according to the invention allows a preliminary screening to be carried out on the basis of the three-dimensional structure of a region thereof, and the structural similarity of a molecule which is being screened. Such screening can conveniently be carried out using computer modelling techniques, which match the three-dimensional structure of the protein or part thereof with the structure of the molecule being screened. Potential agonist or inhibitor activity may be predicted. As a result, the production efficiency, bioavail-

10 and the state of the state o

5

ability, immunogenicity, stability etc. may be favourably changed with respect to their therapeutic application.

As regards the above disclosed M1 inhibitors, these compounds will presumably find a broader field of application than the other novel inhibitors according to the invention. Thus, the novel general M1 inhibitors are advantageously used e.g. in models to disclose in further detail other enzymatic pathways. Further, they may also be used in the above mentioned type of methods of drug design etc.

#### 2.4.5 Screening for LTA<sub>4</sub> hydrolase analogues

#### 2.4.5 (a) Method

Accordingly, in another aspect, the invention relates to a method for screening LTA<sub>4</sub> hydrolase analogues that mimic at least a part of the three dimensional structure of LTA<sub>4</sub> hydrolase, which comprises the steps of

- (a) producing a multiplicity of analogue structures of the LTA<sub>4</sub> hydrolase
- (b) selecting an analogue structure represented by a three-dimensional representation wherein the three-dimensional configuration and spatial arrangement of specific regions, preferably involved in ligand binding of said LTA<sub>4</sub> hydrolase, remain substantially preserved.

The coordinates used are general for LTA<sub>4</sub> hydrolase are essentially as illustrated in Table 9, as defined by atom nos. 1-4876.

More specifically, analogue structures of LTA4 hydrolase may be screened by their ability to catalyze a particular reaction which may be monitored by chemical physical or immunological means. Furthermore, the analogue structure may be selected from its ability to produce receptor ligands or inhibitors of secondary reactions, which may be monitored directly, as examplified above, via binding assays, enzyme assays, chemical assays, or functional bioassays.

Thus, in one embodiment, the invention relates to a method of screening, wherein one or more analogues exhibiting epoxide hydrolase activity, are screened for. Thus, such a method may be based on the data of Table 9, wherein the binding of thiolamine to LTA<sub>4</sub> hydrolase is shown, preferably combined with the information of Table 3 regarding the active site of LTA<sub>4</sub> hydrolase. In one embodiment, the

25

30

10

15

20

25

invention relates to a method of screening, wherein one or more analogues exhibiting epoxide hydrolase activity, are screened for. In an alternative embodiment, the present method is used to screen for analogues exhibiting aminopeptidase activity, which method e.g. is based data concerning the binding of bestatin to LTA<sub>4</sub> hydrolase is used, preferably combined with the information of Table 2 regarding the active site of LTA<sub>4</sub> hydrolase. Thus, the present analogues will comprise a region which is essentially analogue with the regions of LTA<sub>4</sub> hydrolase exhibiting aminopeptidase activity, and/or analogues exhibiting epoxide hydrolase activity are selected.

In an advantageous embodiment of the screening method according to the invention, one or more analogues comprising one or more genetic modifications, as compared to the naturally occurring form of LTA<sub>4</sub> hydrolase, are selected.

### 2.4.5 (b) Analogues obtainable by the present screening method

Further, the invention also relates to a novel analogue obtainable by the method according to the invention, such as an analogue exhibiting an increased or improved or otherwise modified catalytic activity when compared to the naturally occurring form of LTA<sub>4</sub> hydrolase. Preferably, said catalytic activity is an epoxide hydrolase and/or aminopeptidase activity. Further, the invention relates to an analogue obtainable by the present method and capable of acting as a metallohydrolase, preferably belonging to the M1 class of metallohydrolases.

# 2.4.5 (c) Mutated forms of LTA<sub>4</sub> hydrolase obtainable by the present screening method

In one advantageous embodiment, the present invention relates to a specified analogue which is a mutated form of LTA<sub>4</sub> hydrolase, which analogue comprises one or more of the mutations defined in the following Tables 5-7, wherein amino acids are given in single letter code. Thus,

Q134G/A/V/L/I/S/T/D/E/N/R/H/K/P/C/M/F/Y/W indicates that residue glutamine 134, using the LTA4 hydrolase numbering scheme, is modified to an alanine, valine, a leucine and so forth.

40

Table 5: Mutations in the active site

|                                       | Q134G/A/V/L/I/S/T/D/E/N/R/H/K/P/C/M/F/Y/W  | 5(1)  |
|---------------------------------------|--------------------------------------------|-------|
|                                       | Q136G/A/V/L/I/S/T/D/E/N/R/H/K/P/C/M/F/Y/W  | 5(2)  |
| 5                                     | A137G/V/L/I/S/T/D/E/N/Q/R/H/K/P/C/M/F/Y/W  | 5(3)  |
|                                       | Y267G/A/V/L/I/S/T/D/E/N/Q/R/H/K/P/C/M/F/W  | 5(4)  |
|                                       | G268A/V/L/I/S/T/D/E/N/Q/R/H/K/P/C/M/F/Y/W  | 5(5)  |
|                                       | G269A/V/L/I/S/T/D/E/N/Q/R/H/K/P/C/M/F/Y/W  | 56)   |
|                                       | M270G/A/V/L/I/S/T/D/E/N/Q/R/H/K/P/C/F/Y/W  | 5(7)  |
| 10                                    | E271G/A/V/L/I/S/T/D/N/Q/R/H/K/P/C/M/F/Y/W  | 5(8)  |
|                                       | V292G/A/L/I/S/T/D/E/N/Q/R/H/K/P/C/M/F/Y/W  | 5(9)  |
|                                       | H295/G/A/V/L/I/S/T/D/E/N/Q/R/K/P/C/M/F/Y/W | 5(10) |
|                                       | E296/G/A/V/L/I/S/T/D/N/Q/R/H/K/P/C/M/F/Y/W | 5(11) |
|                                       | H299G/A/V/L/I/S/T/D/E/N/Q/R/K/P/C/M/F/Y/W  | 5(12) |
| 15                                    | W311G/A/V/L/I/S/T/D/E/N/Q/R/H/K/P/C/M/F/Y  | 5(13) |
| 1=0                                   | F314G/A/V/L/I/S/T/D/E/N/Q/R/H/K/P/C/M/Y/W  | 5(14) |
| ## ·                                  | W315G/A/V/L/I/S/T/D/E/N/Q/R/H/K/P/C/M/F/Y  | 5(15) |
| in<br>Li                              | E318G/A/V/L/I/S/T/D/N/Q/R/H/K/P/C/M/F/Y/W  | 5(16) |
| þ.k.                                  | V322G/A/L/I/S/T/D/E/N/Q/R/H/K/P/C/M/F/Y/W  | 5(17) |
| <b>20</b>                             | F362G/A/V/L/I/S/T/D/E/N/Q/R/H/K/P/C/M/Y/W  | 5(18) |
|                                       | V367G/A/L/I/S/T/D/E/N/Q/R/H/K/P/C/M/F/Y/W  | 5(19) |
|                                       | L369G/A/V/I/S/T/D/E/N/Q/R/H/K/P/C/M/F/Y/W  | 5(20) |
| # # # # # # # # # # # # # # # # # # # | 1372G/A/V/L/S/T/D/E/N/Q/R/H/K/P/C/M/F/Y/W  | 5(21) |
|                                       | P374G/A/V/L/I/S/T/D/E/N/Q/R/H/K/C/M/F/Y/W  | 5(22) |
| 25                                    | D375G/A/V/L/I/S/T/E/N/Q/R/H/K/P/C/M/F/Y/W  | 5(23) |
|                                       | A377G/V/L/I/S/T/D/E/N/Q/R/H/K/P/C/M/F/Y/W  | 5(24) |
|                                       | Y378G/A/V/L/I/S/T/D/E/N/Q/R/H/K/P/C/M/F/W  | 5(25) |
|                                       | P382G/A/V/L/I/S/T/D/E/N/Q/R/H/K/C/M/F/Y/W  | 5(26) |
|                                       | Y383G/A/V/L/I/S/T/D/E/N/Q/R/H/K/P/C/M/F/W  | 5(27) |
| 30                                    | R563G/A/V/L/I/S/T/D/E/N/Q/H/K/P/C/M/F/Y/W  | 5(28) |
|                                       | <u>-</u>                                   | ()    |

More specifically, this embodiment relates to an analogue comprising any combination of at least two mutated amino acids, or any one of the above mentioned sequences of mutations, or any separate one amino acid mutation selected from the group consisting of sequences nos 1-9, 13-15, 17-24, 26 and 28, which are all novel mutations that have never been published before the present application. As two specific embodiments of the present mutations according to the invention, E271Q and D375N are mentioned, which have shown to be especially advantageous. However, the other sequences not specified above are novel in the present context and thus such specific uses thereof are within the scope of the present invention.

|                  | Table 6: Mutations of the curved outside o  | f the N-terminal domain |
|------------------|---------------------------------------------|-------------------------|
|                  | R17 G/A/V/L/I/S/T/D/N/E/Q/H/K/P/C/M/F/Y/W   | 6(1)                    |
|                  | K19 G/A/V/L/I/S/T/D/N/E/Q/R/H/P/C/M/F/Y/W   | 6(2)                    |
|                  | H20 G/A/V/L/I/S/T/D/N/E/Q/R/K/P/C/M/F/Y/W   | 6(3)                    |
| 5                | H22 G/A/V/L/I/S/T/D/N/E/Q/R/K/P/C/M/F/Y/W   | 6(4)                    |
|                  | R24 G/A/V/L/I/S/T/D/N/E/Q/H/K/P/C/M/F/Y/W   | 6(5)                    |
|                  | D28 G/A/V/L/I/S/T/N/E/Q/R/H/K/P/C/M/F/Y/W   | 6(6)                    |
|                  | T33 G/A/V/L/I/S/D/N/E/Q/R/H/K/P/C/M/F/Y/W   | 6(7)                    |
|                  | T35 G/A/V/L/I/S/D/N/E/Q/R/H/K/P/C/M/F/Y/W   | 6(8)                    |
| 10               | G36/A/V/L/I/S/T/D/N/E/Q/R/H/K/P/C/M/F/Y/W   | 6(9)                    |
|                  | T37 G/A/V/L/I/S/D/N/E/Q/R/H/K/P/C/M/F/Y/W   | 6(10)                   |
|                  | A39 G/V/L/I/S/T/D/N/E/Q/R/H/K/P/C/M/F/Y/W   | 6(11)                   |
|                  | T41 G/A/V/L/I/S/D/N/E/Q/R/H/K/P/C/M/F/Y/W   | 6(12)                   |
|                  | Q43 G/A/V/L/I/S/T/D/N/E/R/H/K/P/C/M/F/Y/W   | 6(13)                   |
| 15               | K63 G/A/V/L/I/S/T/D/N/E/Q/R/H/P/C/M/F/Y/W   | 6(14)                   |
| 43               | V65 G/A/L/I/S/T/D/N/E/Q/R/H/K/P/C/M/F/Y/W   | • •                     |
|                  | N67 G/A/V/L/I/S/T/D/E/Q/R/H/K/P/C/M/F/Y/W   | 6(15)                   |
| 25 miles         | N97 G/A/V/L/I/S/T/D/E/Q/R/H/K/P/C/M/F/Y/W   | 6(16)                   |
| <u>L</u>         | E99 G/A/V/L/I/S/T/D/N/Q/R/H/K/P/C/M/F/Y/W   | 6(17)                   |
| <sup>26</sup> 20 | V101 G/A/L/JS/T/D/N/E/Q/R/H/K/P/C/M/F/Y/W   | 6(18)                   |
| <b>#</b>         | E103 G/A/V/L/I/S/T/D/N/Q/R/H/K/P/C/M/F/Y/W  | 6(19)                   |
| h<br>Nj          | \$105 G/A/V/L/I/T/D/N/E/Q/R/H/K/P/C/M/F/Y/W | 6(20)                   |
| T.               | E107 G/A/V/L/I/S/T/D/N/Q/R/H/K/P/C/M/F/Y/W  | 6(21)                   |
|                  | K153 G/A/V/L/I/S/T/D/N/E/Q/R/H/P/C/M/F/Y/W  | 6(22)                   |
| 25               | T155 G/A/V/L/I/S/D/N/E/Q/R/H/K/P/C/M/F/Y/W  | 6(23)                   |
| - 2J             | T157 G/A/V/L/I/S/D/N/E/Q/R/H/K/P/C/M/F/Y/W  | 6(24)                   |
|                  | E159 G/A/V/L/I/S/T/D/N/Q/R/H/K/P/C/M/F/Y/W  | 6(25)                   |
|                  | S161 G/A/V/L/I/T/D/N/E/Q/R/H/K/P/C/M/F/Y/W  | 6(26)                   |
|                  | D175 G/A/V/L/I/S/T/N/E/Q/R/H/K/P/C/M/F/Y/W  | 6(27)                   |
| 30               | E177 G/A/V/L/I/S/T/D/N/Q/R/H/K/P/C/M/F/Y/W  | 6(28)                   |
|                  | T178 G/A/V/L/I/S/D/N/E/Q/R/H/K/P/C/M/F/Y/W  | 6(29)                   |
|                  | D180 G/A/V/L/I/S/T/N/E/Q/R/H/K/P/C/M/F/Y/W  | 6(30)                   |
|                  | R186 G/A/V/L/I/S/T/D/N/E/Q/H/K/P/C/M/F/Y/W  | 6(31)                   |
|                  | 1188 G/A/V/L/S/T/D/N/E/Q/R/H/K/P/C/M/F/Y/W  | 6(32)                   |
| 35               | K190 G/A/V/L/I/S/T/D/N/E/Q/R/H/P/C/M/F/Y/W  | 6(33)                   |
|                  | 1192 G/A/V/L/S/T/D/N/E/Q/R/H/K/P/C/M/F/Y/W  | 6(34)                   |
|                  | K194 G/A/V/L/I/S/T/D/N/E/Q/R/H/P/C/M/F/Y/W  | 6(35)                   |
|                  | MIDT GITE VILLES INDINIE QINHIP CIMIFI YIW  | 6(36)                   |
|                  |                                             |                         |
|                  | Table 7: Mutations at the proline           | e rich region           |
| 40               | T359 G/A/V/L/I/S/D/N/E/Q/R/H/K/P/C/M/F/Y/W  | 7(1)                    |
|                  | E358 G/A/V/L/I/S/T/D/N/Q/R/H/K/P/C/M/F/Y/W  | 7(2)                    |
|                  | D443 G/A/V/L/I/S/T/N/E/Q/R/H/K/P/C/M/F/Y/W  | 7(3)                    |
|                  | A446 G/V/L/I/S/T/D/N/E/Q/R/H/K/P/C/M/F/Y/W  | 7(4)                    |
|                  | Y449 G/A/V/L/I/S/T/D/N/E/Q/R/H/K/P/C/M/F/W  | 7(5)                    |
| 45               | S450 G/A/V/L/I/T/D/N/E/Q/R/H/K/P/C/M/F/Y/W  | 7(6)                    |
|                  |                                             |                         |

|                      | ^   |
|----------------------|-----|
| - 1                  | 0   |
| -                    | . • |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
| .622.227             |     |
| 124                  |     |
|                      |     |
|                      |     |
| 400                  |     |
| in the               |     |
|                      |     |
| ja A.                |     |
| 1                    | _   |
| 3700                 | . 3 |
| 1 m                  |     |
| \$ 2000<br>1600 EDIO |     |
|                      |     |
| UT                   |     |
| 52 3                 |     |
| ]= £.                |     |
| State Season         |     |
|                      |     |
| 華                    |     |
| R c                  |     |
| k.                   |     |
| FF 3                 |     |
| M.                   |     |
|                      |     |
| T.                   |     |
|                      |     |
| 44                   |     |
|                      | Ω   |
| 112                  | U   |
|                      |     |
| AT ALL               |     |
| 11                   |     |

30

5

|   | P451 G/A/V/L/I/S/T/D/N/E/Q/R/H/K/C/M/F/Y/W  | 7(7)  |
|---|---------------------------------------------|-------|
|   | G452 /A/V/L/I/S/T/D/N/E/Q/R/H/K/P/C/M/F/Y/W | 7(8)  |
|   | L453 G/A/V/I/S/T/D/N/E/Q/R/H/K/P/C/M/F/Y/W  | 7(9)  |
|   | P454 G/A/V/L/I/S/T/D/N/E/Q/R/H/K/C/M/F/Y/W  | 7(10) |
|   | P455 G/A/V/L/I/S/T/D/N/E/Q/R/H/K/C/M/F/Y/W  | 7(11) |
|   | I456 G/A/V/L/S/T/D/N/E/Q/R/H/K/P/C/M/F/Y/W  | 7(12) |
|   | K457 G/A/V/L/I/S/T/D/N/E/Q/R/H/P/C/M/F/Y/W  | 7(13) |
|   | P458 G/A/V/L/I/S/T/D/N/E/Q/R/H/K/C/M/F/Y/W  | 7(14) |
|   | N459 G/A/V/L/I/S/T/D/E/Q/R/H/K/P/C/M/F/Y/W  | 7(15) |
| ) | Y460 G/A/V/L/I/S/T/D/N/E/Q/R/H/K/P/C/M/F/W  | 7(16) |
|   | D461 G/A/V/L/I/S/T/N/E/Q/R/H/K/P/C/M/F/Y/W  | 7(17) |
|   |                                             |       |

## 2.4.5 (d) Nucleic acids encoding the novel compounds

Further, the invention also relates to an isolated nucleic acid encoding a novel analogue as defined above, that is, including a combination of any at least two of said mutations or one of the novel mutations, as well as a nucleic acid capable of specifically hybridising to a such a nucleic acid. The conditions of specific hybridisation are defined above in the section "Definitions". Further, the invention also relates to any vector or carrier comprising such a nucleotide, such as plasmids, viral vectors, e.g. retrovirus, oligonucleotides etc. Thus, any cell including such a nucleic acid or vector are also within the scope of the present invention and may e.g. be a mammalian cell, such as a human cell, or any other eucaryotic cell, or a procaryotic cell, such as a bacterium. The above mentioned elements may be used in the design of model systems useful in the study of the diseases discussed elsewhere in this application, which systems may be cell cultures, animal models, such as mice, etc.

## 2.4.6 (a) Production and purification of genetically modified forms of LTA<sub>4</sub> hydrolase

Yet another aspect of the present invention is a process for the production of a novel genetically modified form of LTA<sub>4</sub> hydrolase identified or designed according to the present invention. Thus, the present process involves, after conventional steps of insertion a gene encoding the desired product in a host cell and expression thereof, a purification procedure, which includes a hydroxyapatite-based chromatography and a subsequent anion exchange chromatography. These last two steps have been shown to be especially advantageous, in fact, even crucial, for obtaining a

5

satisfying purity of the novel LTA<sub>4</sub> hydrolase forms according to the invention. The preceding steps are conventional as disclosed in literature and are easily performed by the skilled in this field.

Thus, in more detail, the invention relates to a method for purification of LTA4 hydrolase comprised of (i) precipitation with ammonium sulphate, followed by (ii) separations on FPLC using anion exchange, hydrophobic interaction, and chromatofocusing resins, essentially as described (Wetterholm A., Medina J.F., Rådmark O., Shapiro R., Haeggström J.Z., Vallee B.L., Samuelsson B. *Biochim. Biophys. Acta.* 1080, 96-102 (1991)). To achieve a purity suitable for crystallography, we used (iii) chromatography on hydroxyapatite, e.g., on a TSKgel HA-1000, Tosohaas, followed by (iv) a step of anion-exchange chromatography on e.g., Mono-Q HR5/5.

Further, example 4 below describes in detail a purification of LTA<sub>4</sub> hydrolase according to the invention. Said example may be generalised to describe further the purification according to the invention.

## 2.4.6 (b) Purified LTA<sub>4</sub> hydrolase

Further, the invention also relates to an essentially pure form of LTA<sub>4</sub> hydrolase obtained by the process described above.

## 2.4.7 Identification of LTA<sub>4</sub> hydrolase binding compounds

#### 2.4.7 (a) Method

In yet a further aspect, the present invention relates to a method for screening LTA<sub>4</sub> hydrolase binding compounds complementary to a region, preferably an enzymatically active site, e.g. as defined in Tables 1-3, of the LTA<sub>4</sub> hydrolase molecule, which comprises the steps of

- (a) producing a multiplicity of possible complementary structures and
- 25 (b) selecting a structure represented by a three-dimensional representation, wherein the three-dimensional configuration and spatial arrangement of regions of LTA<sub>4</sub> hydrolase involved in binding remain substantially preserved, which selection is based on the three-dimensional structure of LTA<sub>4</sub> hydrolase and/or LTA<sub>4</sub> hydrolase complexed to an inhibitor thereof, e.g. as defined by the coordinates of Table

25

30

5

More specifically, the method according to the invention will advantageously be used to select compounds capable of inhibiting epoxide hydrolase activity and/or aminopeptidase activity, LTB<sub>4</sub> receptor antagonists or inhibitors of LTC<sub>4</sub> synthases or inhibitors of any member of the M1 class of metallohydrolases. In one preferred embodiment, general enzyme inhibitors are screened for, which inhibitors are useful in the control of any one of a plurality of enzymatic pathways, wherein a metallohydrolase of the M1 type is participating. These general metallohydrolase inhibitors are herein denoted M1 inhibitors.

## Structure-based design of inhibitors

In a further embodiment, the present invention relates to a method of structure-based design of LTA<sub>4</sub> hydrolase inhibitors. Such methods are based on the use of the present coordinates, or preferably the coordinates defining a selected region, as templates in order to synthesize advantageous inhibitors with strong and specific binding properties. More specifically, said method first uses a conventional organic synthesis, alone or combined with combinatorial chemistry, wherein the structure of the product of the synthesis is then further refined by cycles of crystallisation of enzyme and inhibitor, followed by another chemical synthesis, the product of which is again refined, etc.

Example 2 describes such a design, wherein it is noted noted that the removal of an extra carbon atom could yield a compound, which is a better inhibitor than this hydroxamic acid compound. Thus, similar conclusions will be drawn from the present method and result in inhibitors with superior properties compared to any prior art inhibitors.

## 2.4.7 (b) Identified binding compounds

Further, the present invention also relates to any novel compounds identifiable by the present method. Advantageous and desired properties as well as other features of such compounds, e.g. as inhibitors, is discussed above in relation to complementary compounds, analogues etc. In one preferred embodiment of the invention, such an identified compound is an inhibitor of another M1 enzyme than LTA<sub>4</sub> hydrolase, such as . The medicinal aspects of the present compounds will be discussed below.

#### Protein engineering

#### 2.4.8 (a) Method

In a further aspect, the present invention relates to a method of engineering a protein, which method comprises the steps of

- -identification of a suitable set of mutation sites based on the structure of LTA<sub>4</sub> hydrolase according to the invention,
- -generation of a library of genes which contains the suitable sequence variations;
- -selection of clones encoding a LTA4 analogue with a desired activity;

wherein said desired activity is the capability of efficiently producing organic compounds of interest.

The present method is based on recent techniques available for generating large libraries of mutated genes (>1 billion variants) which can be attributed to a selection process of individual genes in the laboratory. Such directed evolution schemes have enormous potential for the design of new proteins, including new substrate specificity for enzymes as well as improving enzyme activities.

Directed evolution, or combinatorial engineering schemes have been successfully applied in evolving RNA molecules with improved binding and catalytic activities (Lorsch and Szostak, 1994). Also binding proteins (and peptides) with good affinities can now routinely be evolved based on a range of different protein folds (Nord et al, 1997). The present methods may be used to perform such a directed evolution of advantageous enzyme activity and specificity and may be performed by someone skilled in this field with reference to the literature, see e.g. O. Kuchner and F. H. Arnold (1997); A. Crameri, S.A. Raillard, E. Bermudez and W.P.C.

Stemmer (1998).) In this context, see also the descriptions provided in US patent no 5 873 082, Noguchi, wherein a list processing system for managing and processing lists of data is disclosed; US patent no 5 869 295, LaBean et al., disclosing methods and materials for producing gene libraries; and US patent no 5 856 928, disclosing a process for gene and protein representation, characterization and interpretation thereof.

In general, major difficulties in this kind of process are to search the sequence space: find the suitable sequence variations for a large but limited number of muta-

30

25

25

5

tions (for the same protein fold an immense number of variations can be made e.g. 10 resides protein,  $20^{100}$  variants are in theory possible). It is therefor very important to identify the residues in the protein structure which could effect the activity the most, i.e. the residues near the active site area. Thus, in order to enable a successful performance of a method for engineering proteins with properties relevant in the present field, the data discosed above, more specifically, in Tables 2-4, is crucial.

Further references which are relevent in the context of protein engineering are K. Nord, E. Gunneriusson, J. Ringdahl, S. Stahl, M. Uhlen, P.A. Nygren (1997): "Binding proteins selected from combinatorial libraries of an alpha-helical bacterial receptor domain", *Nature Biotechnology*, 15, 772-777 (1997); R. Lorsch and J.W. Szostak (1994): "In vitro evolution of new ribozymes with polynucleotide kinase activity", *Nature*, 371, 31-36; A. Crameri, S.A. Raillard, E. Bermudez and W.P.C. Stemmer (1998): "DNA shuffling of a family of genes from diverse species accelerates directed evolution", *Nature*, 391, 288-291; and O. Kuchner and F. H. Arnold (1997): "Directed evolution of enzyme catalysts", *Trends in Biotechnology*, 15, 523-530.

In an advantageous embodiment, the present method is used to engineer LTA<sub>4</sub> hydrolase inhibitors and/or analogues. In a specific embodiment of said method, a compound capable of mimicking the suicidal mode of LTA<sub>4</sub> hydrolase catalysis, thus acting as a mechanism-based suicide inhibitor, or otherwise capable of regulating the production of LTB<sub>4</sub> is engineered. In an alternative embodiment, an inhibitor of LTC<sub>4</sub> synthase or an LTB<sub>4</sub> receptor antagonist is designed.

## 2.4.8 (b) Novel specifically designed proteins

Further, the present invention also relates to any novel protein designed by use of the above described method. Once specified, such proteins may be produced by any conventional method well known to the skilled in this field, some of which are examplified below. In Example 2 below, the binding of hydroxamic acid to LTA4 hydrolase is discussed. Thus, such a modified hydroxamic is one example of a novel inhibitor specifically designed according to the invention, and the resoning in the

5

example may be used as a basis for the way of reasoning that is used in the present design.

Accordingly, novel enzymes may be produced, which are capable of any different chemical activity. For example, enzymes capable of novel catalytic properties, enzymes that in turn produce enzymes, etc., may be produced according to the present invention.

#### 2.4.8 (c) Use of genetically modified LTA<sub>4</sub> hydrolase

The invention also encompasses the use of a genetically modified LTA4 hydrolase, obtained by any method according to the invention, with altered catalytic properties, e.g., increased ability to synthesize LTB4. The modified enzyme may thus be used for production of LTB4, or any analogues substances, a biomedical reagent which in turn may be used in, e.g., studies of leukotriene metabolism, induction of chemotaxis, as a reference compound in analysis of leukotrienes etc.

#### 2.4.9 Pharmaceutical applications of the present invention

## 2.4.9 (a) First medical indication

Further, the invention also encompasses a compound obtainable by the method of screening LTA<sub>4</sub> hydrolase binding compounds, structure-based drug design, or the protein engineering methods described above, and more preferably, said compound for use as a medicament. One specifically advantageous embodiment is the herein disclosed novel M1 inhibitor for use as a medicament.

In an advantageous embodiment, the present compounds are used in the manufacture of a medicament for the treatment and/or prevention of acute and chronic inflammatory disorders, said disorder being selected from the group consisting of arthritis, inflammatory bowel disease (IBD), psoriasis and chronic obstructive pulmonary disease (COPD); neoplasias and/or cancer; or disorders caused by the lethal factor of *Bacillus anthracis*, e.g. anthrax. Alternatively, the use may relate to the manufacture of a medicament for the treatment and/or prevention of an inflammatory and/or allergenic disorder, such as bronchial asthma, allergic rhinitis, conjunctivitis etc. Yet an alternative use is in the manufacture of a medicament for the treatment and/or prevention of infection caused be human immunodeficiency virus

25

30

5

(HIV). The novel M1 inhibitor are preferably used in medicaments for the treatment and/or prevention of such various diseases as cancer and/or endochrinological disturbances.

#### 2.4.9 (b) Second medical indication and pharmaceutical methods

Thus, the present invention relates to the above mentioned molecules prepared by the method according to the invention for use in the manufacture of various medicaments for the above defined conditions. The invention also encompasses pharmaceutical preparations containing these molecules together with pharmaceutically acceptable carriers. Methods for the preparation of pharmaceutical preparations are e.g. found in Remington's Pharmaceutical Sciences, Mack Publishing Company, Philadelphia, PA, 17<sup>th</sup> ed. (1985). For a review of drug delivery, see Langer, Science 249:1527-1533 (1990). As those skilled in this field easily realise, the form of such a pharmaceutical preparation, the mode of administration thereof as well as suitable dosages will depend on the specific disease to be treated, the nature of the active substance used, the patient's age, body weight etc.

## 2.4.9 c) Methods of treatment

The present invention also encompasses any method of treatment for the above defined purposes. Exact details regarding such methods are determined by the practitioner depending on the specific circumstances from case to case.

#### 2.5 Production of novel proteinaeous compounds

The compounds, which may be proteins, polypeptides, peptides or any other organic molecules, prepared according to the methods according to the invention may be synthesized chemically by methods well known to those of skill in this field or they may be prepared by use of recombinant DNA technology by any suitable method well known to those of skill in this field. General methods of synthesis are e.g. found in Berger and Kimmel, Guide to Molecular Cloning Techniques, Methods in Enzymology, vol. 152, Academic Press, Inc., San Diego, CA; Sambrook et al., Molecular Cloning, A Laboratory Manual, 2<sup>nd</sup> Ed., vol. 1-3, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1989; and Current Protocols in Molecular Biology, F.M. Ausbel et al., Current Protocols (1994). Methods of reducing and denaturing proteins and inducing re-folding are well known to those of skill in the art,

15

20

30

see e.g. Debinski et al., J. Biol. Chem., 268: 14065-14070 (1993); Kreitman and Pastan, Bioconjug. Chem., 4: 581-585 (1993); and Buchner et al., Anal. Biochem., 205: 263-270 (1992).

#### 2. 6 Detailed description of the drawings

5 Figure 1 shows key enzymes and intermediates in leukotriene biosynthesis.

Figure 2 shows 2Fo-Fc density contoured at 1.1 σ. Part of the active site in the neighborhood of the bestatin molecules is shown. Figures are created using a modified version of Molscript48,49.

Figure 3 is a ribbon diagram of the tertiary structure of LTA4 hydrolase. The N-terminal domain at the top of the diagram is rich in  $\beta$ -strands and connects to the catalytic domain to the left in the figure which is more  $\alpha$ -helical and extends into the central part of the molecule. The C-terminal domain, illustrated at the bottom of the ribbon diagram, extends towards the right side of the catalytic domain.

Figure 4 (a) is a ribbon diagram of the N-terminal domain with its layers of  $\beta$ -strands, while (b) is a superimposition of the C $\alpha$  trace of the N-terminal domain on the C $\alpha$  trace of bacteriochlorophyll a. The N-terminal domain covers approx. half of the bacteriochlorophyll a structure (the right and bottom part of the diagram).

Figure 5 (a) is a ribbon diagram of the catalytic domain. In the center of the diagram, the three zinc binding ligands, His295, His299, and Glu318, as well as the inhibitor bestatin are depicted in ball and stick representation. The zinc ion is shown as a CPK model. The diagram in (b) shows the structure of thermolysin in the same orientation as the catalytic domain of LTA4 hydrolase. The three zinc ligands, His142, His146, and Glu166, as well as the inhibitor Cbz-GlyP-(O)-Leu-Leu50 are depicted in ball-and stick representation. The zinc ion is shown as a CPK model.

Figure 6 shows the structure of the C-terminal domain.

Figure 7 shows the zinc binding ligands in LTA4 hydrolase, His295, His299, and Glu318, superimposed on those in thermolysin, His142, His146, and Glu-166. Other catalytic or neighboring residues in the two enzymes are Tyr383, Glu325, Glu296, Thr302, and Asn317 in LTA4 hydrolase which correspond to His231, Asp170, Glu143, Asn165, and Tyr157 in thermolysin.

25

5

Figure 8 (a) is a Ball-and-Stick presentation of the binding of bestatin in LTA4 hydrolase.

Figure 8 (b) is a schematic overview of bestatin binding in LTA4 hydrolase.

Figure 9 (a) is a wire representation of the cavity found in LTA4 hydrolase (shown as  $C\alpha$ -trace).

Figure 9 (b) is a schematic presentation for the proposed binding of LTA4 into the cavity.

Figure 10 is a schematic representation for the proposed epoxide hydrolase reaction mechanism. The catalytic zinc acts as a Lewis acid and activates the epoxide to form a carbocation intermediate according to an SN1 reaction. Water is added at C12 in a stereospecific manner, presumably directed by Asp375. The double bond geometry is controlled by the binding conformation of LTA4. Further details are given elsewhere in the present description.

## 3. EXPERIMENTAL

The following examples are intended for illustrating purposes only and should not in any way be used to construe the scope of the protection of the present invention as defined by the appended claims. All the references given below, and previously in this specification, are hereby included herein by reference.

#### 3.1 Examples

## Example 1: Binding of the thiol-compound (I)

The thiol group of the compound is ligated to the Zn<sup>2+</sup> ion, that has a tetra-hedral configuration. Both the phenyl-groups are making extensive hydrophobic interactions. The first one makes aromatic stacking interactions with Phe314 and Trp311. Further hydrophobic interactions are made with Pro374 and Leu369. The other phenyl ring is making stacking interactions with Tyr267 and Tyr378. Met270 and Gln136 provide additional hydrophobic interactions. The ether-oxygen in the linker between the two phenyl rings makes a hydrogen bond to the backbone nitrogen of

10

15

20

Ala137 and also with a water molecule which is linked to Asp375. The amine group makes interactions to the Oɛ1 of Gln136 and the Oɛ1 of Glu271.



Formula (I)

Example 2: Binding of the hydroxamic acid compound (II)

The binding of this compound is very similar to the binding of the thiol compound described above. The manner in which the phenyl-moieties, the linker region and the amine group are bound is identical. The manner in which the hydroxamic acid part is bound is different in comparison with other complexes such as thermolysin-HA complexes and LTA<sub>4</sub>-hydrolase-bestatin complex. Instead of a double interaction of the hydroxyl and carbonyl oxygens and the Zn ion resulting in a pentavalent co-ordination, here only one of the oxygens (the hydroxyl) is making an interaction with the Zn ion giving a tetrahedral co-ordination. The other oxygens make an interaction to Asp296 and the backbone nitrogen of Gly268. This difference is probably due to the tight binding of the phenyl rings and the amine group. The linkage between the amine group and the hydroxamic acid group contains one more carbon atom than in a normal or modified peptide-linkage. Since the binding site for substrates is rather narrow near the Zn ion, the conformation of compounds which bind in this area is rather restricted. Therefore one of the otherwise binding oxygens is pushed out and can no longer make an interaction with the Zn<sup>2+</sup> ion. Removal of this extra

20

carbon atom could yield a compound which is a better inhibitor than this hydroxamic acid compound. The acid group at the other end of the compound is fixed by making a double interaction with the Ne and the Nh2 of Arg563.

Formula (II)

Example 3: Structure determination of two specific inhibitor-LTA<sub>4</sub> hydrolase complexes

Crystals, grown as described above, were soaked in 1 mM solution of thiolamine (Yuan et al., 1993) or 0.5 mM solution of hydroxamic acid (Hogg et al., 1995) in 15% PEG8000, 50 mM Imidazol pH 6.7, 25 mM acetate and 2.5 mM YbCl3. After at least 24 hours, the crystals were transferred to a solution that contained a cryoprotectant (see above) and subsequently flash frozen in liquid nitrogen. The data for the crystal soaked with thiolamine was obtained at BM14B at the EMBL-outstation in DESY, Hamburg. The data for the hydroxamic acid was collected at beamline 7/11 at MAX-lab, Lund. Statistics from the data collections are shown in the table. The data were processed using MOSFLM, merging and other manipulations were performed by programs from CCP4 and the BIOMOL packages. The refinement procedures for both datasets were very similar. First rigid body refinement using TNT was performed. As a starting model for refinement and model building the structure of LTA4 hydrolase complexed with bestatin was used. The bestatin molecule and all water molecules were deleted from the model. After this initial refine-

10

15

20

ment it was possible to build the inhibitors into the protein. For evaluation of the density maps and model-building the program QUANTA (Molecular Simulations Inc., Burlington, MA) was used. The refinement was continued using TNT and was combined with sessions of model-building. In all rounds no sigma cut-offs were used and the resolution was slowly increased during the procedure. Water molecules were identified and incorporated into the models. During these procedures the Rfree was carefully monitored. When refinement had converged, it was finished with one round in which all reflections, including those who were used for the calculations of the Rfree, were incorporated. Statistics about refinement and quality of the models can be found in Table 5.

Table 8: Statistics of refinement and quality of the model

|                 | Thiolamine (Thiol) | Hydroxamic acid (HA) |
|-----------------|--------------------|----------------------|
| Resolution      | 15-2.5Å            | 15-1.8Å              |
| Rfactor         | 17.8%              | 24.2%                |
| Rfree           | 24,4               | 29.7%                |
| Bond Lengths    | 0.011Å             | 0.012Å               |
| Angles          | 1.9°               | 2.0°                 |
| Trigonal groups | 0.005Å             | 0.006Å               |
| Planar groups   | 0.009Å             | 0.010Å               |
| Contacts        | 0.026Å             | 0.041Å               |
| No. of waters   | 252                | 127                  |

Example 4: Purification of LTA4 hydrolase.

For adsorption chromatography on hydroxyapatite, a TSKgel HA-1000 column (Tosohaas) was equilibrated in 10 mM potassium phosphate buffer, pH 7.1, supplemented with 0.2 mM CaCl<sub>2</sub>. The enzyme sample was applied and a linear gradient of increasing phosphate (10 - 400 mM) was developed by mixing the starting buffer with 400 mM potassium phosphate buffer, pH 6.8, supplemented with 10 µM CaCl<sub>2</sub>. Active fractions containing LTA4 hydrolase were eluted between 150 - 190 mM potassium phosphate.

5

Anion exchange chromatography was performed on a Mono-Q HR 5/5 column (Pharmacia Biotech) equilibrated with the loading buffer 10 mM Tris-Cl, pH 8. The pure protein was eluted using a linear gradient of KCl (0 - 500 mM) and was recovered at 110 - 140 mM KCl.

#### Example 5: Enzyme engineering

The present inventors have shown, that when Tyr-378 in LTA4 hydrolase was exchanged for a Phe residue, the resulting mutated enzyme was no longer suicide inhibited by LTA4 and exhibited a substantially increased catalytic efficiency. Furthermore, the mutated enzyme was capable of converting LTA4 not only into the natural product LTB4, but also into a novel metabolite, 6-trans-8-cis-LTB4. (Mueller, M.J., et al. Proc Natl Acad Sci U S A 93, 5931-5935 (1996)).

## Example 6: Enzyme-engineering

Tyr-383 in mouse LTA4 hydrolase was exchanged for Gln residue, which resulted in a mutated enzyme capable of forming the unnatural product 5S, 6S-dihydroxy-7,9-trans-11,14-cis-eicosatetraenoic acid from LTA4 (Andberg, M., Hamberg, M. & Haeggstrom, J.Z. J. Biol. Chem. 272, 23057-23063 (1997)).

## Example 7: Crystallisation of LTA<sub>4</sub> hydrolase

LTA<sub>4</sub> hydrolase was crystallised using YbCl<sub>3</sub> as an additive, 15% PEG and 50 mM Na-acetate as precipitant and 50 mM imidazole, pH 6.7, as buffer. Liquid-liquid-diffusion in capillaries were used as crystallisation set-ups.

#### 3.2 Materials and Methods

Enzyme purification. Human recombinant LTA4 hydrolase was expressed in E. coli and purified to homogeneity in four chromatographic steps on FPLC using anion exchange, hydrophobic interaction, chromatofocusing, and hydroxyapatite resins, essentially as described (Wetterholm A., Medina J.F., Rådmark O., Shapiro R., Haeggström J.Z., Vallee B.L., Samuelsson B. Recombinant mouse leukotriene A4 hyd-

20

25

5

rolase: a zinc metalloenzyme with dual enzymatic activities. *Biochim. Biophys. Acta.* 1080, 96-102 (1991)).

Crystallization conditions. The chemicals used for the crystallization experiments were purchased from Merck and were of highest purity available. The sparse matrix kit was obtained from Hampton Research. Crystallization conditions for the protein were initially sought by using the sparse matrix approach (Jancarik, J. & Kim, S.-H. J. Appl. Crystallogr. 24, 409-411 (1991)) in hanging drop vapor diffusion set-ups in cell culture plates at room temperature. Under condition 28, (30% PEG8000, 0.2 M sodium-acetate, 0.1 M cacodylate buffer, pH 6.5) needles grew. They were subsequently reproduced and optimized using a finer grid search, different temperatures for the equilibration and testing of additives. Crystals were only obtained when the inhibitor bestatin was present in the crystallization set-ups. Using YbCl3 as an additive and switching to liquid-liquid diffusion in capillaries, allowed plate-like crystals to grow. Thus, 5 µl 28% PEG8000, 0.1 mM Na-acetate, 0.1 mM imidazole buffer, pH 6.8, 5 mM YbCl3 is injected into the bottom of a melting point capillary and an equal volume of LTA4 hydrolase (5 mg/ml) in 10 mM Tris-Cl, pH 8, supplemented with 1 mM bestatin, is layered on top. Finally, the capillary is closed and stored at 22°C. Crystals with an average size of 0.6 x 0.4 x 0.05 mm<sup>3</sup> appear in 3 to 4 weeks.

<u>Crystal properties</u>. The plate-like crystals diffract beyond 2Å using synchrotron radiation. They belong to space-group P21212 with cell dimensions a = 67.59 Å, b = 133.51 Å, c = 83.40 Å,  $a = b = g = 90 ^{\circ}$  at 100K. As a cryo-solution, a mixture of 15%PEG 8000, 50 mM Na-acetate, 50 mM imidazole buffer, pH 6.8, 2.5 mM YbCl3, and 25% glycerol was used. Assuming one molecule per asymmetric unit the solvent content of the crystals is 48%.

Structure determination. The structure was determined by using multiple anomalous dispersion measurements on the LIII edge of Ytterbium ( $\lambda = 1.3862$  Å) at beam line BM14 at the European Synchrotron Radiation Facility (ESRF), Grenoble. Three datasets, peak (PK), point of inflection (PI) and remote (RM), were collected to 2.5Å resolution from the same crystal. The crystal was aligned such that Bijvoet

25

30

5

equivalent reflections could be collected in one pass of 90° for each wavelength. For RM a subsequent dataset to 2.15Å was collected. A second crystal was used for obtaining a dataset to 1.95Å. (For statistics on data-collection and quality, see table 1). Data were integrated using the program Denzo, scaled to each other using Scalepack (Otwinowski, Z. Data collection and Processing. Proceedings of the ccp4 study weekend. SERC Daresbury Laboratory, Warrington, UK., 56-62 (1993)) and further analyzed using programs from the CCP4 package (Collaborative Computing Project Number 4. Acta Crystallogr. Sect. D 50, 760-763 (1994)).

From Patterson functions one major and one minor Yb position could readily be identified, a third position was identified during heavy atom refinement in difference Fourier maps. The heavy atom parameters were refined using MLPHARE (Otwinowski, Z. Isomorphous replacement anomalous scattering. Proceedings of the CCP4 study weekend. SERC Daresbury Laboratory, Warrington, UK., 80-85 (1991)) and SHARP (de La Fortelle, E. & Bricogne, G. Met. Enzymol. 276, 472-494 (1997)). The final figures of merit was 0.57 to 2.15Å. Phase information was further improved to 2.15Å by solvent flattening using SOLOMON (Abrahams, J.P. & Leslie, A.G.W. Acta Crystallographica D52, 30-42 (1996)) with a solvent content of 43%. The quality of the maps was very good and the entire protein molecule (residue 1-610) could be traced unambiguously. All model building was performed using QUANTA (Molecular simulations). Refinement was started by a run of slowcooling molecular dynamics in XPLOR (Brünger, A.T., Kuriyan, J. & Karplus, M. Science 235, 458-460 (1987)) using the RM dataset to 2.7Å. The three Yb ions were included into the refinement with full occupancy for the first Yb and half occupancy for the two other ions. All subsequent refinement was performed with TNT (Tronrud, D.E., ten Eyk, L.F. & Matthews, B.W. Acta Crystallogr. Sect. A 43, 481-501 (1987)). The same set of reflections (4% of total amount from 25-1.95Å) for the calculation of Rfee (Brünger, A.T. Nature 355, 472-475 (1992)) was maintained throughout all refinement procedures. The resolution was slowly improved by alternating sessions of model-building and refinement. The data for the second crystal to 1.95Å were used for further refinement during which a Zn ion, bestatin, an acetate

10

15

20

and an imidazole molecule were identified. Judged from the B-factors these molecules are all fully occupied. 540 water molecules were added to the coordinates. The Rfree was 24.7% and the working R-factor was 18.8% for all data between 25-1.95 Å. In a final round of refinement all data between 25-1.95 Å were included, yielding a final R-factor of 18.5 % for residues 1-610, 3 Yb ions, 1 Zn, 1 bestatin, 1 imidazole, 1 acetate and 540 water molecules. Most of the model is in good density (Fig. 2) except a loop encompassing residues 179 to 184 for which only poor density was obtained. The model has good stereo-chemical parameters (r.m.s bonds =0.010Å, r.m.s angles = 2.2°) and 91.7% of the residues lie in the most favored part of the Ramachandran plot.

#### 4. RESULTS AND DISCUSSION

#### 4.1 Overall structure and domain organization

The leukotriene A4 hydrolase molecule is folded into three domains; an N-terminal domain, a catalytic domain and a C-terminal domain which together form a flat triangular arrangement with approximate dimensions of  $85 \times 65 \times 50 \text{ Å}^3$ . The overall structure of the enzyme is depicted in figure 3. Although the three domains pack closely and make contact with each other, a deep cleft is formed in between.

#### 4.2 The N-terminal domain is structurally related to bacteriochlorophyll a

The N-terminal domain (residue 1-209) is composed of one 7 stranded mixed b-sheet, one 4 and one 3 stranded antiparallel  $\beta$ -sheet. Strands from the larger  $\beta$ -sheet continue into the two smaller  $\beta$ -sheets that pack on the edges of the same side of the larger sheet so that a kind of envelope is formed (Fig. 4a & b). The two small  $\beta$ -sheets are turned towards the inside of the whole protein while the larger  $\beta$ -sheet is exposed to solvent and forms a large concave surface area. Loops connecting the other strands and hydrophobic residues fill the core of this domain. The N-terminal domain of LTA4 hydrolase shares important structural features with the chlorophyll-containing enzyme bacteriochlorophyll (Bchl)  $\alpha$  (Matthews, B., Fenna, R., Bolognesi, M., Schmid, M. & Olson, J. J. Mol. Biol. 131, 259-285 (1979)). Thus, 111 C $\alpha$  positions have equivalent positions in the two proteins despite the absence

5

of any sequence identity (Fig. 4b). The domain is about half the size of Bchl a which has a single domain structure without major extensions. Like Bchl a, the shape of the N-terminal domain resembles an envelope (or Taco) with a hollow inside and in Bchl a, 7 bacteriochlorophylls are buried in this cavity. However, the domain is not as hollow as BChl a since loop 135-155, which contains a small helical segment, is turned inwards and fills up the core. In BChl a the equivalent loop (290–305) is positioned more towards the exterior of the protein, thereby leaving space for some of the tertrapyrroles of the bacteriochlorophylls. The large sheet (17 strands) of Bchl a is truncated to only 7 strands in LTA4 hydrolase. Especially the region between residue 35 and 263 of Bchl a has been replaced by a much shorter region in LTA4 hydrolase (res. 45 to 98) that forms the 3 stranded small B-sheet and the edge strand of the larger 7 stranded \beta-sheet. The structure of the other half of the molecule is almost completely conserved, except the insertion of two extra strands instead of loops in LTA4 hydrolase. The structural homology between Bchl a, a protein involved in light harvesting, and LTA4 hydrolase was certainly unexpected. In LTA4 hydrolase, the function of the N-terminal domain is not yet known, but one may speculate that it participates in binding to hydrophobic molecules or surfaces with a possible regulatory function. In mammalian 15-lipoxygenase, a similar function was proposed for an N-terminal B-barrel domain with structural homology to a corresponding C-terminal domain in mammalian lipases (Gillmor, S.A., Villasenor, A., Fletterick, R., Sigal, E. & Browner, M.F. Nature Struc. Biol. 4. 1003-1009 (1997)).

The connection from the N-terminal to the catalytic domain is very short, a strand from the 4 stranded β-sheet connects into a strand of a 5-stranded antiparallel β-sheet of the catalytic domain. The two sheets are closely packed and the interface is mainly hydrophobic in character with 14 hydrophobic residues contributing from the N-terminal domain and 11 from the catalytic domain. Hydrogen bonds occur between Gln116 and Ser264, Ser124 and Gln226, the backbone of Ser124 and Glu223, the backbone of Ser151 and Lys309, Lys153 and the backbone of Leu305 and indirectly through a water molecule between Tyr130 and the back-

25

5

bone of Val260. Two salt-bridges between His139 and Asp375 and between Arg174 and Asp257 complete the interactions made in this interface.

# 4.3 The catalytic domain contains the zinc binding site and is structurally similar to thermolysin

The structure of the catalytic domain (res. 210-450) is surprisingly similar to the structure of thermolysin (Fig. 5a & b) (Holmes, M. & Matthews, B. J. Mol. Biol. 160, 623-639 (1982)). When the amino acid sequence in this domain was compared with that of thermolysin, the sequence identity was found to be very low (essentially confined to the zinc binding motifs). However, the structural homology stretches out over the whole domain. Thus, no less than 146 Ca positions overlap with an r.m.s. deviation of 1.946 Å. Like thermolysin, the catalytic domain consists of two lobes, one mainly a-helical and one mixed a/b lobe. The a-lobe consists of 6 major helices interconnected by long loops containing smaller helical segments, while the a/b lobe has a 5 stranded mixed β-sheet lined with 3 helices on one side. The zinc binding site is found in between the two lobes. Since this domain contains only 245 amino acids and thermolysin contains 314 residues, some truncations have taken place, especially in the a/b lobe in which the N-terminal extended b structure is truncated and only a mixed 5 stranded β-sheet remains. The changes in the a-lobe are smaller. Here the long meandering loop 181 to 221 has been replaced by a long a-helix and the b-hairpin from 245 to 258 has been deleted.

A loop in extended conformation on the surface of the protein from 451 to 463 connects the catalytic domain with the C-terminal domain. Interestingly, this segment contains a highly conserved proline rich motif P451-G-f-P-P-x-K-P-x-Y460 which bears some resemblance to an SH3 domain recognition sequence. However, the canonical arginine residue is not present on either side of the proline motif. Nevertheless, since this stretch of amino acids is exposed on the surface of the protein, it is still possible that it could serve as an anchoring site for protein-protein interactions.

The C-terminal domain (464-610) is composed of 9 a-helices that form an unusual coil of helices reminiscent of the ones found in lytic transglycosylase<sup>40</sup> and

recently in the armadillo repeat region of b-catenin (Huber, A.H., Nelson, W.J. & Weis, W.I. Cell 90, 871-882 (1997)) (Fig. 6). The helices pack into two layers of parallel helices (5 inner and 4 outer helices) and in an anti-parallel manner between the two layers. The arrangements found in the two other proteins are much larger and form super-helical structures. In the C-terminal domain of LTA4 hydrolase, the arrangement is more straight and has a very compact shape. One of the helices is deformed and one of the interconnecting loops is long and contains a small 310 helix. The domain makes contacts with both the a-lobe of the catalytic domain and one of the edges of the N-terminal domain. It is positioned in a way such that the helices lie perpendicular to the 7 stranded b-sheet of the N-terminal domain and to most of the helices in the catalytic domain. The helices are amphipatic in character, with the hydrophobic sides towards the middle of the domain and hydrophilic residues pointing towards the solvent and into the deep cleft in the middle of the whole molecule. This side of the cleft is highly polar; 10 Arg and Lys residues and 4 Asp and Glu residues are positioned on this side.

#### 4.4 Zinc coordination

The immediate surroundings of the active site Zn<sup>2+</sup> ion are very similar in thermolysin and LTA4 hydrolase. The Zn<sup>2+</sup> is bound between the two lobes and is coordinated by His295, His299, one carboxylic oxygen of Glu318 and the carbonyl and hydroxyl oxygens of the inhibitor bestatin so that a square based pyramid is formed. The two histidines originate from a long a-helix and the glutamate from a neighboring a-helix, all in the a-lobe. Glu296 and Tyr383, two residues implicated in the reaction mechanism for the peptide cleaving activity, are located near the Zn ion. Glu296, the putative general base, is positioned next to the metal ligand His295 and bends over the bestatin molecule and Tyr383, which was described as a proton donor, also makes contact with the bestatin molecule (Figure 8a).

Interestingly, the second layer around the Zn ion shows differences between thermolysin and LTA4 hydrolase. In both enzymes the orientation of the zinc binding ligands is fixed by hydrogen bonds, however the hydrogen bond acceptors are positioned differently. In thermolysin, the Nd1 of His142 is hydrogen bonded to the

20

25

5

Od2 of Asp170, while in LTA4 hydrolase the Nd1 of His295 is hydrogen bonded to the Oe1 of Glu325. This residue comes from a structural equivalent to the helix carrying Asp170 in thermolysin, but is shifted half a turn outwards. The Nd1 of His146 in thermolysin is hydrogen bonded to the Od1 of Asn165. This residue is part of the zinc binding signature and is conserved between the two enzymes. However, in LTA4 hydrolase the helix in which this conserved residue is placed has been rotated slightly and Asn317 is no longer making a hydrogen bond to His299. The orientation of His299 is now fixed by a hydrogen bond from the Nd1 to the carbonyl backbone oxygen of Thr302. The Od1 of Asn317 makes instead a hydrogen bond to the backbone amide of Asn381 while the Nd2 makes a hydrogen bond to the hydroxyl group of Tyr200. The last protein-ligand, Glu166 is in thermolysin hydrogen bonded to Tyr157 and a water molecule, in LTA4 hydrolase, Glu318 is only hydrogen bonded to a water molecule (Fig. 7).

#### 4.5 Bestatin binding

Although the zinc binding site is formed by residues only from the catalytic domain and most catalytic residues also come from this domain, the active site itself is surrounded by loops from all three domains. The binding of bestatin reflects this, since it makes interactions with residues from all three domains. The main interactions of bestatin are made through the carbonyl and hydroxyl oxygens to the Zn atom. Hydrophobic interactions are made between the phenyl moiety and the phenyl rings of Tyr267, Phe316, Tyr378 and Tyr383. Also, Met270 and Gln136 are involved (Fig. 8a). The other end of the inhibitor is pointing towards the solvent, the leucine moiety makes interactions with Val292 and His295, while the carboxylic oxygens make interactions with Arg563 and Lys565 through water molecules as well as hydrogen bonds to the backbone nitrogen atoms of Gly268 and Gly269. Hydrogen bonds are formed between the peptidyl N of bestatin and Oe2 of Glu296 and between the terminal NH2 and the Oe1 of Glu271 and Oe1 of Gln136. The hydroxyl oxygen makes apart from the interaction with the Zn ion also an interaction to the OH of Tyr383. (For schematic overview see Fig. 8b). Tyr378 which gets modified during suicide inactivation sits slightly further away, but makes a hydrogen bond to Tyr383 and some hydrophobic interactions with the phenyl ring of the

20

25

5

inhibitor. These two tyrosine are both found on the same stretch of amino-acids that in thermolysin form a long a helix, however in leukotriene hydrolase this helix is interrupted and two turns of the helix are replaced by three residues (378-380) in an extended conformation. The binding of bestatin is quite different as was found in the complex between bestatin and bovine lens leucine amino-peptidase (blLAP) (Burley, S., David, P., Sweet, R., Taylor, A. & Lipscomb, W. J. Mol. Biol. 224, 113-140 (1992)). In that complex, bestatin was bound to the Zn by both the terminal nitrogen and the nonproteinaceous P1 hydroxyl oxygen, while in LTA4 hydrolase the bestatin is bound by the hydroxyl and carbonyl oxygens. The terminal nitrogen is involved in hydrogen bonding to Glu271 and Gln136. These differences could stem from the fact the blLAP is a bimetal protein with a different reaction mechanism. Moreover the binding of bestatin as seen in LTA4 hydrolase is similar with the complexes formed between thermolysin and hydroxamates which also act as bidentate ligands by the hydroxyl and carbonyl oxygens (Holmes, M. & Matthews, B. Biochemistry 20 (1981)).

Behind the pocket in which the phenyl ring of bestatin binds, there is a cavity that stretches 15 Å deeper into the protein and is approximately 6 to 7 Å wide. In the present structure this cavity is filled with water molecules. It has however a very hydrophobic nature and is lined with Trp311, Phe314, Trp315 Phe362, Leu365, Val367, Leu369, Pro374, Ala377, Tyr378, and Pro382. Most of these residues are strictly conserved or conserved in nature in all LTA4 hydrolase sequences known up until now, with the exception of Val367, which is replaced by a Gln in the yeast and *C. elegans* sequences. Interestingly space for this cavity is partly created by the interruption by the extended conformation in the stretch where Tyr378 and Tyr383 are found. One patch of this binding site is quite hydrophilic with Asn134, Asp375 and the OH of Tyr267 clustering together. This bigger cavity could be a binding site for the LTA4 substrate molecule. If the epoxide moiety would bind in a similar way as the carbonyl oxygen of bestatin to the Zn ion, then the hydrophobic tail would fit snugly into the binding site now occupied by the phenyl group of bestatin and

25

5

would continue into the deeper hydrophobic cavity (Fig. 9a). The other tail would sit in the pocket that is now occupied by the carboxy group of bestatin and it would be long enough for the carboxylic acid to make direct electrostatic interactions with the conserved Arg563 and Lys565.

The replacement of Val367 by Gln as seen in the enzyme from yeast would make the hydrophobic channel shorter and this might be one of the reasons why the yeast enzyme has a poor leukotriene A4 epoxide hydrolase activity. The manner in which the leukotriene molecule would bind is similar as what is proposed for binding of arachidonic acid in 15-lipoxygenase (Gillmor, S.A., Villasenor, A., Fletterick, R., Sigal, E. & Browner, M.F. *Nature Struc. Biol.* 4, 1003-1009 (1997)) with the hydrophobic end buried inside the protein and the carboxylic acid more towards the surface making interactions with Arg and Lys residues.

The binding of bestatin acts also as a guide for the binding of peptide substrate molecules. From systematic binding studies with tri-peptides it was shown that the enzyme has a strong preference for an arginine residue as the N-terminal residue and for several tri-peptides the enzyme has a kcat/Km ratio 10-fold the kcat/Km for LTA4 (Örning, L., Gierse, J.K. & Fitzpatrick, F.A. J. Biol. Chem. 269, 11269-11273 (1994). If we roughly model a peptide in the active site with an N-terminal Arg with the carbonyl oxygen sitting on the place of the hydroxyl group of bestatin, then the Arg side-chain of this residue would sit in the same place as the phenyl group of the bestatin with the guanidinium headgroup interacting with the conserved Asp375 and the OH of Tyr267 and the more hydrophobic Cb, Cd and Cg atoms making similar interactions as the phenyl ring. The terminal aminogroup could make the same electrostatic interaction as the terminal aminogroup of bestatin with Asp271 and Gln136. This mode of binding of bestatin is in contrast with the mode proposed by Örning, since the phenyl ring seems to occupy the S1 pocket. We also propose that the LTA4 substrate molecule is occupying all three pockets, S1, S'1 and S'2.

If the binding mode of peptides in LTA4 hydrolase is compared with the one described for thermolysin, a number of differences are observed. In thermolysin, the

25

5

peptide molecule is held in place by many interactions to the main chain atoms provided by Asn112, Ala203, Arg203 and Trp115. None of these residues or equivalent residues can be found in the binding site in LTA4 hydrolase. Furthermore, although binding pockets S1 and S'1 are at similar positions as in thermolysin, site S'2 has to be different since its space is occupied by Tyr378 in LTA4 hydrolase. Glu271 and Gln136 and the N-terminal domain are filling up the space into which in thermolysin the upstream peptide binds contributing to the exo-peptidase function instead of an endo-peptidase function as in thermolysin.

#### 4.6 Putative Phosphorylation site

Recently specific phosphorylation by a yet unknown specific kinase of Ser415 has been described as means of regulation of LTA4 hydrolase activity in endothelial cells (Rybina, I.V., Liu, H., Gor, Y. & Feinmark, S.J. *J Biol Chem* 272, 31865-71 (1997)). This residue is conserved in all mammalian LTA4 hydrolases and is embedded in a highly homologous stretch of residues. Phosphorylation of this residue seems to inhibit the epoxide hydrolase activity but not the amino-peptidase activity. In the structure this residue is located in a loop connecting two a-helices that lie on the surface of the molecule. The loop itself is located at the back of the enzyme.

## 4.7 Aminopeptidase activity

The amino-peptidase activity catalyzed by this enzyme has been well studied and many of the important residues have been target for site-directed mutagenesis work. This lead to a proposal in which Glu296 would act as a general base (Wetterholm, A., et al. Proc Natl Acad Sci U S A 89, 9141-9145 (1992)) and Tyr383 as a putative proton donor (Blomster, M., Wetterholm, A., Mueller, M.J. & Haeggström, J.Z. Eur. J. Biochem. 231, 528-534 (1995)). In the current complex, these residues are involved in hydrogen bonds with the bestatin molecule. If bestatin binding is seen as a rough analog for the transition state binding, then the interaction of Glu296 with the hydroxyl oxygen of bestatin indicates that this residue could indeed activate a water-molecule for the nucleophilic attack. The role of Tyr383 cannot so easily be confirmed, however its position strongly suggest the role of proton donor. In thermolysin the proton donor is His231 and although the Ca position of this resi-

5

due is 4.1Å removed from the Ca position of Tyr383 in LTA4 hydrolase, the Nd1 is only 1 Å removed from the OH position of Tyr383. The conserved Glu271 could be involved in the exo-protease activity of the protein. Recently, the analogous Glu350 in aminopeptidase N and Glu352 in aminopeptidase A were subject to site-directed mutagenesis work (Luciani, N., et al. Biochemistry 37, 686-692 (1998); and Vazeux, G., Iturrioz, X., Corvol, P. & Llorenz-Cortez, C. Biochem. J. 334, 407-413 (1998)) and it was observed that mutations of this residue lead to large decreases in the activity in the case of substitutions by conserved amino-acids such as aspartate and glutamine and absence of activity in substitution by alanine. It was concluded that Glu350 belonged to the anionic binding site in that protein. A mechanism based on thermolysin was proposed for aminopeptidase N with a pentavalent transition state with an additional interaction between the free a-aminogroup and Glu350. In this structure we can observe such an interaction between Glu271 and the free aminogroup of bestatin. Furthermore the penta-valent coordination of Zn by the His295, His299, Glu318 and the carbonyl and hydroxyl groups of bestatin indicates that this is an equivalent transition state analog complex as determined previously for thermolysin.

From careful sequence alignments and structural insight we can conclude that the enzymes in the M1 family of proteases will share a highly conserved catalytic domain that includes part of the N-terminal domain as we see it in LTA4 hydrolase and the thermolysin-like domain. There is no homology for residues in the C-terminal domain and we believe that this domain is unique for LTA4 hydrolases. According to the present invention, it is suggested that all proteases belonging to class M1 with the signature HExxH and a Glu 18 residues downstream will function in a similar way to thermolysin.

#### 4.8 Epoxide hydrolase activity

Concerning the epoxide hydrolase activity, much less is known about the functional elements and mechanisms of catalysis. In fact, the prosthetic zinc is the only critical component identified thus far and may potentially assist in the introduction of a water molecule at C12 or in the activation of the epoxide. Although Tyr378 and

25

5

Tyr383 are important active side residues, none of them is essential for catalysis. A mutation of Tyr378 to Phe protects the enzyme against suicide inhibition, however the specificity of the double bond configuration is partly lost (Mueller, M., Andberg, M., Samuelsson, B. & Haeggstrom, J. J. Biol. Chem. 271, 24345-24348 (1996)) since a novel metabolite with a cis-trans-cis conjugated system can be detected. Thus, Tyr378 is a major binding site for LTA4 during suicide inactivation and seems to play a role for the formation of the correct double bond geometry in the product LTB4. Mutations of Tyr383 abolish the amino-peptidase activity where it has a role as potential proton donor (vide supra) but the epoxide hydrolase activity is only decreased compared to wild-type. It is however implicated in the stereospecific introduction of water during the hydrolysis of LTA4 to LTB4 since these mutants convert LTA4 in both LTB4 and 5 [S],6 [S]-DHETE (Andberg, M., Hamberg, M. & Haeggstrom, J. J. Biol. Chem. 272, 23057-23063 (1997)). Moreover careful analysis of the catalytic properties of enzymes mutated in pos. 383, viz [Y383F], [Y383H] and [Y383Q]LTA4 hydrolase have indicated that the epoxide hydrolase reaction follows an SN1 mechanism.

If one considers the chemistry carried out by LTA4 hydrolase, the enzyme has two major tasks during the hydrolysis of LTA4 to LTB4. First introduction of a water molecule stereospecific at C12 and second to generate a cis-double bond Æ6 in the resulting conjugated triene system [cf. Fig. 1]. If LTA4 is modeled into the putative substrate binding pocket as indicated in figure 9b, the catalytic zinc gets close to the epoxide and not C12 of the substrate. Therefore the most likely role of the Zn ion is to act directly as a Lewis acid to activate and open the epoxide ring. This would generate a carbocation, whose charge will be delocalised over the conjugated triene system from C7 to C12. Since this intermediate has an sp2 hydridized planar configuration at C12, it is in principle open for nucleophilic attack from either side of the molecule. The conserved Asp375 is positioned in such a way that a water molecule bound to it is in "attacking" distance of C12 of a modeled LTA4 molecule, the position into which a hydroxyl group is inserted during the reaction.

10

15

20

25

This will account for the proper stereo-chemical and positional insertion of the hydroxyl-group at C12 in R configuration.

The shape and curvature of the LTA4 binding pocket also gives a clue as to how the enzyme creates the cis double bond at Æ6. Since there is free rotation between the c6 and c7 of LTA4, this bond may be kept in a "pro-cis" configuration in the transition state, which in turn would facilitate the formation of a Æ6-cis double bond form the carbocation intermediate. If LTA4 is modeled in this way, the entire molecule adopts a bent shape, fitting very well with the architecture of the binding pocket (Fig. 9b). Hence, the critical double bond geometry at Æ6 of LTB4 is probably guaranteed by the exact binding conformation of LTA4 at the active side which in turn is governed by all the structural elements participating in substrate binding. including the carboxylate recognition sites, Arg56 and Lys565, the catalytic zinc and the hydrophobic residues lining the pocket. The putative binding cleft for the leukotriene molecule is narrow and bend and thereby favoring LTA4 over other epoxides. The two tyrosines are positioned such that they are in contact with the triple double bond configuration of a modeled LTA4 molecule at the bent of the putative binding pocket and they are hydrogen-bonded to each other. Therefore their position is ideal for guidance in stereo-specificity of the double bond configuration. The loss of specificity for the hydroxyl-incorporation at the C12 position in case of the Tyr383 position can be explained that mutations at this position would possibly create extra space for a water molecule that could attack at the C6 position and thereby form 5 [S],6 [S]-DHETE.

The position of Tyr378 is such that it is in contact with the C6 atom of the modeled LTA4 molecule. If after opening of the epoxide ring the hydroxyl group of Tyr378 instead of a water molecule would attack the carbon-cation at the C6 position, a covalently attached molecule is formed which forms the suicide inhibited complex. In order to check this hypothesis and to obtain more information about the binding-site for leukotriene A4, the structure of this inhibited species would be essential.

49 WO 00/50577 PCT/SE00/00384

In order to exclude the possibility that residues near the active site might have further catalytic roles in the epoxide hydrolase reaction, a thorough investigation of these residues, such as Glu271 and Gln136 has to be started. Furthermore the proposed role of Asp375 in activating a water molecule for the stereospecific attack at C12 has to be investigated.

Accordingly, the present invention has solved the first specific leukotriene converting enzyme, which for the first time reveals the binding mode for leukotriene molecules. Furthermore, insight is provided in a unique active site that harbours two activities using different amino-acids to catalyze different reactions.

#### 5. CONFORMATIONAL DATA

Table 9: Structure coordinates of LTA<sub>4</sub> hydrolase-thiolamine complex

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [4]                            | activities using different amino-acids to catalyze different reactions. |             |            |            |             |            |          |                  |           |         |          |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------|-------------|------------|------------|-------------|------------|----------|------------------|-----------|---------|----------|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J 10                           |                                                                         |             |            |            |             |            |          |                  |           |         |          |  |  |
| SCALE1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                             |                                                                         |             |            |            |             |            |          |                  |           |         |          |  |  |
| SCALE1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | To sail                        | <u>5. CONF</u>                                                          | <u>'ORN</u> | <u>MAT</u> | <u>ION</u> | $\Lambda$ L | DATA       |          |                  |           |         |          |  |  |
| SCALE1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1=k                            | T                                                                       | able        | 9: Str     | ructu      | re          | coordinate | s of LTA | hvdrola          | se-thiola | mine c  | omnley   |  |  |
| SCALE1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (                              |                                                                         |             |            |            |             |            |          |                  | se unora  | unine c | ompiex   |  |  |
| SCALE3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | upijane<br>u ram               |                                                                         | 68.         |            |            | .15         |            |          |                  | 90.00     | P21212  | 2        |  |  |
| Atom res. Chain No. x y z occ B-factor    Atom res. Chain No. x y z occ B-factor   Atom res. Chain No. x y z occ B-factor   Atom res. Chain No. x y z occ B-factor   Atom res. Chain No. x y z occ B-factor   Atom res. Chain No. x y z occ B-factor   Atom res. Chain No. x y z occ B-factor   Atom res. Chain No. x y z occ B-factor   Atom res. Chain No. x y z occ B-factor   Atom res. Chain No. x y z occ B-factor   Atom res. Chain No. x y z occ B-factor   Atom res. Chain No. x y z occ B-factor   Atom res. Chain No. x y z occ B-factor   Atom res. Chain No. x y z occ B-factor   Atom res. Chain No. x y z occ B-factor   Atom res. Chain No. x y z occ B-factor   Atom res. Chain No. x y z occ B-factor   Atom res. Chain No. x y z occ B-factor   Atom res. Chain No. x y z occ B-factor   Atom res. Chain No. x y z occ B-factor   Atom res. Chain No. x y z occ B-factor   Atom res. Chain No. x y z occ B-factor   Atom res. Chain No. x y z occ B-factor   Atom res. Chain No. x y z occ B-factor   Atom res. Chain No. x y z occ B-factor   Atom res. Chain No. x y z occ B-factor   Atom res. Chain No. x y z occ B-factor   Atom res. Chain No. x y z occ B-factor   Atom res. Chain No. x y z occ B-factor   Atom res. Chain No. x y z occ B-factor   Atom res. Chain No. x y z occ B-factor   Atom res. Chain No. x y z occ B-factor   Atom res. Chain No. x y z occ B-factor   Atom res. Chain No. x y z occ B-factor   Atom res. Chain No. x y z occ B-factor   Atom res. Chain No. x z z occ B-factor   Atom res. Chain No. x z z occ B-factor   Atom res. Chain No. 1 - 1.1.890                                                                                                                  | 15                             |                                                                         |             |            |            |             |            |          |                  |           |         |          |  |  |
| Atom res. Chain No. x y z occ B-factor    20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ## 13                          |                                                                         |             |            |            |             |            |          |                  |           |         |          |  |  |
| Atom res. Chain No. x y z occ B-factor  20 ATOM 1 N PRO A 1 -0.593 16.387 63.494 1.00 97.99 ATOM 2 CA PRO A 1 -1.890 16.918 63.874 1.00 97.22 ATOM 3 C PRO A 1 -2.210 18.371 63.525 1.00100.00 ATOM 4 O PRO A 1 -2.210 18.371 63.525 1.00100.00 ATOM 5 CB PRO A 1 -2.130 16.551 65.383 1.00100.00 ATOM 6 CG PRO A 1 -2.130 16.551 65.383 1.00100.00 ATOM 7 CD PRO A 1 -0.290 15.233 64.369 1.00 97.81 ATOM 8 N GIU A 2 -2.216 19.272 64.556 1.00 96.95 ATOM 9 CA GLU A 2 -2.569 20.678 64.314 1.00 95.71 ATOM 10 C GIU A 2 -2.569 20.678 64.314 1.00 95.71 ATOM 11 O GIU A 2 -2.512 21.542 66.562 1.00 93.21 ATOM 12 CB GLU A 2 -4.105 20.768 64.214 1.00 97.26 ATOM 13 CG GIU A 2 -4.587 21.732 63.125 1.00100.00 ATOM 14 CD GIU A 2 -4.587 21.732 63.125 1.00100.00 ATOM 15 OEI GLU A 2 -4.351 21.139 61.767 1.00100.00 ATOM 16 OE2 GLU A 2 -3.301 21.261 61.152 1.00100.00 ATOM 17 N ILE A 3 -1.550 22.799 64.944 1.00 86.29 ATOM 18 CA ILE A 3 -1.550 22.799 64.944 1.00 86.29 ATOM 20 O ILE A 3 -2.006 25.154 65.661 1.00 75.68 ATOM 21 CB ILE A 3 0.308 24.324 65.707 1.00 83.45 ATOM 22 CGI ILE A 3 0.308 24.324 65.707 1.00 83.63 ATOM 23 CG2 ILE A 3 1.198 23.160 65.300 1.00 84.76 ATOM 24 CDI ILE A 3 -2.006 25.154 65.661 1.00 75.68 ATOM 25 N VAL A 4 -1.725 26.099 66.523 1.00 61.54 ATOM 26 CA VAL A 4 -1.725 26.099 66.523 1.00 61.54 ATOM 27 C VAL A 4 -1.658 28.552 66.623 1.00 91.36 ATOM 29 CB VAL A 4 -1.658 28.552 66.623 1.00 50.98 ATOM 30 CGI VAL A 4 -3.735 28.754 68.047 1.00 58.40 ATOM 31 CG2 VAL A 4 -1.658 28.552 66.623 1.00 50.98 ATOM 30 CGI VAL A 4 -3.735 28.754 68.047 1.00 58.40 ATOM 31 CG2 VAL A 4 -3.735 28.754 68.047 1.00 58.40 ATOM 31 CG2 VAL A 4 -3.735 28.754 68.047 1.00 58.56 |                                | SCALE3                                                                  |             | 0.0        | 0000       |             | 0.00000    | 0.0120   | 1                | 0.00000   | )       |          |  |  |
| ATOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |                                                                         |             | 74         |            |             | •••        |          |                  |           |         |          |  |  |
| ATOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | fi.                            |                                                                         |             | Atom       | res        | . (         | Chain No.  | x        | У                | Z         | occ     | B-factor |  |  |
| ATOM 2 CA PRO A 1 -1.890 16.918 63.874 1.00 97.99  ATOM 3 C PRO A 1 -2.210 18.371 63.525 1.00100.00  ATOM 4 O PRO A 1 -2.210 18.371 63.525 1.00100.00  ATOM 5 CB PRO A 1 -2.402 18.667 62.342 1.00100.00  ATOM 6 CG PRO A 1 -2.130 16.551 65.332 1.00 97.81  ATOM 7 CD PRO A 1 -0.290 15.233 64.369 1.00 97.05  ATOM 8 N GLU A 2 -2.216 19.272 64.556 1.00 96.95  ATOM 9 CA GLU A 2 -2.169 20.678 64.314 1.00 95.71  ATOM 10 C GLU A 2 -2.188 21.701 65.386 1.00 94.33  ATOM 11 O GLU A 2 -2.188 21.701 65.386 1.00 94.33  ATOM 12 CB GLU A 2 -4.567 21.732 63.125 1.00100.00  ATOM 13 CG GLU A 2 -4.587 21.732 63.125 1.00100.00  ATOM 14 CD GLU A 2 -4.587 21.732 63.125 1.00100.00  ATOM 15 OEI GLU A 2 -3.301 21.261 61.152 1.00100.00  ATOM 16 OE2 GLU A 2 -3.301 21.261 61.152 1.00100.00  ATOM 17 N ILE A 3 -1.550 22.799 64.944 1.00 86.29  ATOM 18 CA ILE A 3 -1.148 23.905 65.820 1.00 81.53  ATOM 19 C ILE A 3 -2.835 25.288 64.763 1.00 76.97  ATOM 20 O ILE A 3 -2.835 25.288 64.763 1.00 75.668  ATOM 21 CB ILE A 3 -1.148 23.905 65.820 1.00 83.63  ATOM 22 CG1 ILE A 3 -0.842 65.707 1.00 83.45  ATOM 24 CD1 ILE A 3 -1.150 25.521 64.759 1.00 83.63  ATOM 25 N VAL A 4 -1.725 26.099 66.523 1.00 61.54  ATOM 26 CA VAL A 4 -1.725 26.099 66.523 1.00 61.54  ATOM 27 C VAL A 4 -1.725 26.099 66.523 1.00 50.98  ATOM 29 CB VAL A 4 -3.514 27.318 67.595 1.00 58.99  ATOM 31 CG2 VAL A 4 -3.514 27.318 67.595 1.00 58.99  ATOM 31 CG2 VAL A 4 -3.514 27.318 67.595 1.00 58.99  ATOM 31 CG2 VAL A 4 -4.819 26.691 67.131 1.00 58.56  ATOM 31 CG2 VAL A 4 -4.819 26.691 67.131 1.00 58.56                                                                                                                         |                                | атом                                                                    | 1           | N          | חחת        | 70          | 3          | 0 500    | 1.5 5.5          |           |         |          |  |  |
| ATOM 3 C PRO A 1 -2.210 18.371 63.525 1.00100.00  ATOM 4 O PRO A 1 -2.402 18.667 62.342 1.00100.00  ATOM 5 CB PRO A 1 -2.402 18.667 62.342 1.00100.00  ATOM 6 CG PRO A 1 -2.130 16.551 65.332 1.00 97.81  ATOM 7 CD PRO A 1 -1.221 15.355 65.583 1.00100.00  ATOM 8 N GLU A 2 -2.216 19.272 64.556 1.00 96.95  ATOM 9 CA GLU A 2 -2.569 20.678 64.314 1.00 95.71  ATOM 10 C GLU A 2 -2.569 20.678 64.314 1.00 95.71  ATOM 11 O GLU A 2 -2.188 21.701 65.386 1.00 94.33  ATOM 12 CB GLU A 2 -2.188 21.701 65.386 1.00 94.33  ATOM 13 CG GLU A 2 -4.105 20.768 64.214 1.00 97.26  ATOM 14 CD GLU A 2 -4.587 21.732 63.125 1.00100.00  ATOM 15 OEI GLU A 2 -4.587 21.732 63.125 1.00100.00  ATOM 16 OE2 GLU A 2 -3.301 21.261 61.52 1.00100.00  ATOM 17 N ILE A 3 -1.550 22.799 64.944 1.00 86.29  ATOM 18 CA ILE A 3 -1.550 22.799 64.944 1.00 86.29  ATOM 19 C ILE A 3 -2.066 25.154 65.661 1.00 75.68  ATOM 20 O ILE A 3 -2.835 25.288 64.763 1.00 76.97  40 ATOM 21 CB ILE A 3 -2.835 25.288 64.763 1.00 76.97  ATOM 22 CG1 ILE A 3 0.308 24.324 65.707 1.00 83.45  ATOM 23 CG2 ILE A 3 1.198 23.160 65.300 1.00 84.76  ATOM 24 CD1 ILE A 3 -0.184 25.361 63.375 1.00 91.36  ATOM 25 N VAL A 4 -1.725 26.099 66.523 1.00 61.54  ATOM 26 CA VAL A 4 -2.477 27.303 66.482 1.00 56.32  ATOM 27 C VAL A 4 -1.725 26.099 66.523 1.00 50.98  ATOM 29 CB VAL A 4 -0.803 28.694 67.512 1.00 47.84  ATOM 29 CB VAL A 4 -3.514 27.318 67.595 1.00 58.40  ATOM 30 CG1 VAL A 4 -3.514 27.318 67.595 1.00 58.99  ATOM 31 CG2 VAL A 4 -4.819 26.691 67.131 1.00 58.56  ATOM 32 N ASP A 5 -2.012 29.486 65.732 1.00 39.38                                                                                                                    | F 1                            |                                                                         |             |            |            |             |            |          |                  |           |         |          |  |  |
| ATOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | किंद्र सर्वे र<br>स्था सर्वे ४ |                                                                         |             |            |            |             |            |          |                  |           | 1.00    | 97.22    |  |  |
| 25 ATOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sec.                           |                                                                         |             |            |            |             |            |          |                  |           | 1.001   | 100.00   |  |  |
| 25 ATOM 6 CG PRO A 1 -1.221 15.355 65.583 1.00100.00 ATOM 7 CD PRO A 1 -0.290 15.233 64.369 1.00 97.05 ATOM 8 N GLU A 2 -2.216 19.272 64.556 1.00 96.95 ATOM 9 CA GLU A 2 -2.569 20.678 64.314 1.00 95.71 ATOM 10 C GLU A 2 -2.512 21.542 66.562 1.00 93.21 ATOM 11 O GLU A 2 -2.512 21.542 66.562 1.00 93.21 ATOM 12 CB GLU A 2 -4.105 20.768 64.214 1.00 97.26 ATOM 13 CG GLU A 2 -4.587 21.732 63.125 1.00100.00 ATOM 14 CD GLU A 2 -4.587 21.732 63.125 1.00100.00 ATOM 15 OE1 GLU A 2 -4.351 21.139 61.767 1.00100.00 ATOM 16 OE2 GLU A 2 -3.301 21.261 61.152 1.00100.00 ATOM 17 N ILE A 3 -1.550 22.799 64.944 1.00 86.29 ATOM 18 CA ILE A 3 -1.148 23.905 65.820 1.00 81.53 ATOM 19 C ILE A 3 -2.006 25.154 65.661 1.00 75.68 ATOM 20 O ILE A 3 -2.835 25.288 64.763 1.00 76.97 ATOM 21 CB ILE A 3 0.452 25.521 64.759 1.00 83.63 ATOM 22 CG1 ILE A 3 0.452 25.521 64.759 1.00 83.63 ATOM 24 CD1 ILE A 3 -0.184 25.361 63.375 1.00 91.36 ATOM 25 N VAL A 4 -1.725 26.099 66.523 1.00 61.54 ATOM 26 CA VAL A 4 -2.477 27.303 66.482 1.00 56.32 ATOM 27 C VAL A 4 -2.477 27.303 66.482 1.00 56.32 ATOM 28 O VAL A 4 -0.803 28.694 67.512 1.00 47.84 ATOM 29 CB VAL A 4 -3.514 27.318 67.595 1.00 58.99 ATOM 31 CG2 VAL A 4 -3.735 28.754 68.047 1.00 58.56 ATOM 31 CG2 VAL A 4 -3.735 28.754 68.047 1.00 58.99 ATOM 31 CG2 VAL A 4 -3.735 28.754 68.047 1.00 58.99 ATOM 31 CG2 VAL A 4 -3.735 28.754 68.047 1.00 58.99 ATOM 32 N ASP A 5 -2.012 29.486 65.732 1.00 39.38                                                                                                                                                                                                                                                 | iber dise                      |                                                                         |             |            |            |             |            |          |                  | 62.342    |         |          |  |  |
| ATOM 7 CD PRO A 1 -0.290 15.233 64.369 1.00 97.05 ATOM 8 N GLU A 2 -2.216 19.272 64.556 1.00 96.95 ATOM 9 CA GLU A 2 -2.569 20.678 64.314 1.00 95.71 ATOM 10 C GLU A 2 -2.569 20.678 64.314 1.00 95.71 ATOM 11 O GLU A 2 -2.188 21.701 65.386 1.00 94.33 ATOM 11 O GLU A 2 -2.512 21.542 66.562 1.00 93.21 ATOM 12 CB GLU A 2 -4.105 20.768 64.214 1.00 97.26 ATOM 13 CG GLU A 2 -4.587 21.732 63.125 1.00100.00 ATOM 14 CD GLU A 2 -4.351 21.139 61.767 1.00100.00 ATOM 15 OEI GLU A 2 -3.301 21.261 61.152 1.00100.00 ATOM 16 OE2 GLU A 2 -3.301 21.261 61.152 1.00100.00 ATOM 17 N ILE A 3 -1.550 22.799 64.944 1.00 86.29 ATOM 18 CA ILE A 3 -1.148 23.905 65.820 1.00 81.53 ATOM 19 C ILE A 3 -2.006 25.154 65.661 1.00 75.68 ATOM 20 O ILE A 3 -2.006 25.154 65.661 1.00 75.68 ATOM 21 CB ILE A 3 0.308 24.324 65.707 1.00 83.45 ATOM 22 CGI ILE A 3 0.452 25.521 64.759 1.00 83.63 ATOM 23 CG2 ILE A 3 1.198 23.160 65.300 1.00 84.76 ATOM 24 CDI ILE A 3 -0.184 25.361 63.375 1.00 91.36 ATOM 25 N VAL A 4 -1.725 26.099 66.523 1.00 61.54 ATOM 26 CA VAL A 4 -2.477 27.303 66.482 1.00 56.32 ATOM 27 C VAL A 4 -1.658 28.552 66.623 1.00 50.98 ATOM 29 CB VAL A 4 -2.477 27.303 66.482 1.00 56.32 ATOM 29 CB VAL A 4 -1.658 28.552 66.623 1.00 50.98 ATOM 29 CB VAL A 4 -3.514 27.318 67.595 1.00 58.99 ATOM 30 CGI VAL A 4 -3.735 28.754 68.047 1.00 58.99 ATOM 31 CG2 VAL A 4 -3.735 28.754 68.047 1.00 58.56 ATOM 32 N ASP A 5 -2.012 29.486 65.732 1.00 39.38                                                                                                                                                                                                                                                     | 25                             |                                                                         |             |            |            |             |            |          |                  |           |         |          |  |  |
| ATOM 8 N GLU A 2 -2.216 19.272 64.556 1.00 96.95 ATOM 9 CA GLU A 2 -2.569 20.678 64.314 1.00 95.71 ATOM 10 C GLU A 2 -2.569 20.678 64.314 1.00 95.71 ATOM 11 O GLU A 2 -2.512 21.542 66.562 1.00 93.21 ATOM 12 CB GLU A 2 -4.155 20.768 64.214 1.00 97.26 ATOM 13 CG GLU A 2 -4.587 21.732 63.125 1.00100.00 ATOM 14 CD GLU A 2 -4.587 21.732 63.125 1.00100.00 ATOM 15 OEI GLU A 2 -4.351 21.139 61.767 1.00100.00 ATOM 16 OE2 GLU A 2 -3.301 21.261 61.152 1.00100.00 ATOM 17 N ILE A 3 -1.550 22.799 64.944 1.00 86.29 ATOM 18 CA ILE A 3 -1.550 22.799 64.944 1.00 86.29 ATOM 19 C ILE A 3 -2.006 25.154 65.661 1.00 75.68 ATOM 20 O ILE A 3 -2.036 25.154 65.661 1.00 75.68 ATOM 21 CB ILE A 3 0.308 24.324 65.707 1.00 83.45 ATOM 22 CGI ILE A 3 0.452 25.218 64.763 1.00 76.97 ATOM 23 CG2 ILE A 3 0.452 25.521 64.759 1.00 83.63 ATOM 24 CD1 ILE A 3 -0.184 25.361 63.375 1.00 91.36 ATOM 25 N VAL A 4 -1.725 26.099 66.523 1.00 61.54 ATOM 26 CA VAL A 4 -2.477 27.303 66.482 1.00 56.32 ATOM 27 C VAL A 4 -2.477 27.303 66.482 1.00 50.98 ATOM 29 CB VAL A 4 -3.514 27.318 67.595 1.00 58.99 ATOM 30 CGI VAL A 4 -3.514 27.318 67.595 1.00 58.99 ATOM 30 CGI VAL A 4 -3.735 28.754 68.047 1.00 58.40 ATOM 31 CG2 VAL A 4 -3.735 28.754 68.047 1.00 58.40 ATOM 31 CG2 VAL A 4 -3.735 28.754 68.047 1.00 58.56 ATOM 31 CG2 VAL A 4 -3.735 28.754 68.047 1.00 58.40 ATOM 31 CG2 VAL A 4 -3.735 28.754 68.047 1.00 58.40 ATOM 31 CG2 VAL A 4 -3.735 28.754 68.047 1.00 58.56 ATOM 31 CG2 VAL A 4 -3.735 28.754 68.047 1.00 58.56 ATOM 31 CG2 VAL A 4 -3.735 28.754 68.047 1.00 58.56 ATOM 31 CG2 VAL A 4 -3.735 28.754 68.047 1.00 58.56                                                                                 |                                |                                                                         |             |            |            |             |            |          |                  |           |         |          |  |  |
| ATOM 10 C GLU A 2 -2.569 20.678 64.314 1.00 95.71  ATOM 11 O GLU A 2 -2.512 21.542 66.562 1.00 93.21  ATOM 12 CB GLU A 2 -4.105 20.768 64.214 1.00 97.26  ATOM 13 CG GLU A 2 -4.105 20.768 64.214 1.00 97.26  ATOM 14 CD GLU A 2 -4.57 21.732 63.125 1.00100.00  ATOM 15 OEI GLU A 2 -4.351 21.139 61.767 1.00100.00  ATOM 16 OE2 GLU A 2 -3.301 21.261 61.152 1.00100.00  ATOM 17 N ILE A 3 -1.550 22.799 64.944 1.00 86.29  ATOM 18 CA ILE A 3 -1.550 22.799 64.944 1.00 86.29  ATOM 19 C ILE A 3 -2.006 25.154 65.661 1.00 75.68  ATOM 20 O ILE A 3 -2.835 25.288 64.763 1.00 76.97  ATOM 21 CB ILE A 3 0.308 24.324 65.707 1.00 83.45  ATOM 22 CG1 ILE A 3 0.452 25.521 64.759 1.00 83.45  ATOM 23 CG2 ILE A 3 1.198 23.160 65.300 1.00 84.76  ATOM 24 CD1 ILE A 3 -0.184 25.361 63.375 1.00 91.36  ATOM 25 N VAL A 4 -1.725 26.099 66.523 1.00 61.54  ATOM 26 CA VAL A 4 -2.477 27.303 66.482 1.00 56.32  ATOM 29 CB VAL A 4 -2.477 27.303 66.482 1.00 56.32  ATOM 29 CB VAL A 4 -3.514 27.318 67.595 1.00 58.99  ATOM 30 CG1 VAL A 4 -3.735 28.754 68.047 1.00 58.40  ATOM 31 CG2 VAL A 4 -3.735 28.754 68.047 1.00 58.56  ATOM 31 CG2 VAL A 4 -3.735 28.754 68.047 1.00 58.40  ATOM 31 CG2 VAL A 4 -3.735 28.754 68.047 1.00 58.56  ATOM 31 CG2 VAL A 4 -3.735 28.754 68.047 1.00 58.56  ATOM 32 N ASP A 5 -2.012 29.486 65.732 1.00 39.38                                                                                                                                                                                                                                                                                                                                                                              |                                |                                                                         |             |            |            |             |            |          |                  |           | 1.00    | 97.05    |  |  |
| ATOM 10 C GLU A 2 -2.188 21.701 65.386 1.00 94.33  ATOM 11 O GLU A 2 -2.512 21.542 66.562 1.00 93.21  ATOM 12 CB GLU A 2 -4.105 20.768 64.214 1.00 97.26  ATOM 13 CG GLU A 2 -4.587 21.732 63.125 1.00100.00  ATOM 14 CD GLU A 2 -4.351 21.139 61.767 1.00100.00  ATOM 15 OE1 GLU A 2 -3.301 21.261 61.152 1.00100.00  ATOM 16 OE2 GLU A 2 -5.361 20.398 61.368 1.00100.00  ATOM 17 N ILE A 3 -1.550 22.799 64.944 1.00 86.29  ATOM 18 CA ILE A 3 -1.148 23.905 65.820 1.00 81.53  ATOM 19 C ILE A 3 -2.006 25.154 65.661 1.00 75.68  ATOM 20 O ILE A 3 -2.835 25.288 64.763 1.00 76.97  ATOM 21 CB ILE A 3 0.308 24.324 65.707 1.00 83.45  ATOM 22 CG1 ILE A 3 0.308 24.324 65.707 1.00 83.63  ATOM 23 CG2 ILE A 3 1.198 23.160 65.300 1.00 84.76  ATOM 24 CD1 ILE A 3 -0.184 25.361 63.375 1.00 91.36  ATOM 25 N VAL A 4 -1.725 26.099 66.523 1.00 61.54  ATOM 27 C VAL A 4 -2.477 27.303 66.482 1.00 56.32  ATOM 28 O VAL A 4 -2.477 27.303 66.482 1.00 56.32  ATOM 29 CB VAL A 4 -3.514 27.318 67.595 1.00 58.99  ATOM 30 CG1 VAL A 4 -3.514 27.318 67.595 1.00 58.99  ATOM 30 CG1 VAL A 4 -3.735 28.754 68.047 1.00 58.40  ATOM 31 CG2 VAL A 4 -3.735 28.754 68.047 1.00 58.40  ATOM 32 N ASP A 5 -2.012 29.486 65.732 1.00 39.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |                                                                         |             |            |            |             | 2          |          |                  |           |         |          |  |  |
| ATOM 11 O GLU A 2 -2.512 21.542 66.562 1.00 93.21  ATOM 12 CB GLU A 2 -4.105 20.768 64.214 1.00 97.26  ATOM 13 CG GLU A 2 -4.587 21.732 63.125 1.00100.00  ATOM 14 CD GLU A 2 -4.351 21.139 61.767 1.00100.00  ATOM 15 OE1 GLU A 2 -3.301 21.261 61.152 1.00100.00  ATOM 16 OE2 GLU A 2 -5.361 20.398 61.368 1.00100.00  ATOM 17 N ILE A 3 -1.550 22.799 64.944 1.00 86.29  ATOM 18 CA ILE A 3 -1.148 23.905 65.820 1.00 81.53  ATOM 19 C ILE A 3 -2.006 25.154 65.661 1.00 75.68  ATOM 20 O ILE A 3 -2.835 25.288 64.763 1.00 76.97  ATOM 21 CB ILE A 3 0.308 24.324 65.707 1.00 83.45  ATOM 22 CG1 ILE A 3 0.452 25.521 64.759 1.00 83.63  ATOM 23 CG2 ILE A 3 1.198 23.160 65.300 1.00 84.76  ATOM 24 CD1 ILE A 3 -0.184 25.361 63.375 1.00 91.36  ATOM 25 N VAL A 4 -1.725 26.099 66.523 1.00 61.54  ATOM 26 CA VAL A 4 -2.477 27.303 66.482 1.00 56.32  ATOM 27 C VAL A 4 -1.658 28.552 66.623 1.00 50.98  ATOM 28 O VAL A 4 -2.477 27.303 66.482 1.00 50.98  ATOM 29 CB VAL A 4 -3.514 27.318 67.595 1.00 58.99  ATOM 30 CG1 VAL A 4 -3.514 27.318 67.595 1.00 58.99  ATOM 31 CG2 VAL A 4 -3.735 28.754 68.047 1.00 58.56  ATOM 32 N ASP A 5 -2.012 29.486 65.732 1.00 39.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                                                                         |             |            |            |             |            |          |                  |           |         |          |  |  |
| ATOM 12 CB GLU A 2 -4.105 20.768 64.214 1.00 97.26 ATOM 13 CG GLU A 2 -4.587 21.732 63.125 1.00100.00 ATOM 14 CD GLU A 2 -4.351 21.139 61.767 1.00100.00 ATOM 15 OE1 GLU A 2 -3.301 21.261 61.152 1.00100.00 ATOM 16 OE2 GLU A 2 -5.361 20.398 61.368 1.00100.00 ATOM 17 N ILE A 3 -1.550 22.799 64.944 1.00 86.29 ATOM 18 CA ILE A 3 -1.148 23.905 65.820 1.00 81.53 ATOM 19 C ILE A 3 -2.006 25.154 65.661 1.00 75.68 ATOM 20 O ILE A 3 -2.835 25.288 64.763 1.00 76.97 ATOM 21 CB ILE A 3 0.308 24.324 65.707 1.00 83.45 ATOM 22 CG1 ILE A 3 0.452 25.521 64.759 1.00 83.63 ATOM 23 CG2 ILE A 3 0.452 25.521 64.759 1.00 83.63 ATOM 24 CD1 ILE A 3 -0.184 25.361 63.375 1.00 91.36 ATOM 25 N VAL A 4 -1.725 26.099 66.523 1.00 61.54 ATOM 26 CA VAL A 4 -1.725 26.099 66.523 1.00 61.54 ATOM 27 C VAL A 4 -1.658 28.552 66.623 1.00 50.98 ATOM 28 O VAL A 4 -1.658 28.552 66.623 1.00 50.98 ATOM 29 CB VAL A 4 -3.514 27.318 67.595 1.00 98.40 ATOM 30 CG1 VAL A 4 -3.514 27.318 67.595 1.00 58.99 ATOM 30 CG1 VAL A 4 -3.735 28.754 68.047 1.00 58.99 ATOM 31 CG2 VAL A 4 -4.819 26.691 67.131 1.00 58.56 ATOM 32 N ASP A 5 -2.012 29.486 65.732 1.00 39.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                             |                                                                         |             |            |            |             | 2          |          |                  |           | 1.00    | 94.33    |  |  |
| ATOM 13 CG GLU A 2 -4.587 21.732 63.125 1.00100.00 ATOM 14 CD GLU A 2 -4.351 21.139 61.767 1.00100.00 ATOM 15 OEI GLU A 2 -3.301 21.261 61.152 1.00100.00 ATOM 16 OE2 GLU A 2 -5.361 20.398 61.368 1.00100.00 ATOM 17 N ILE A 3 -1.550 22.799 64.944 1.00 86.29 ATOM 18 CA ILE A 3 -1.148 23.905 65.820 1.00 81.53 ATOM 19 C ILE A 3 -2.006 25.154 65.661 1.00 75.68 ATOM 20 O ILE A 3 -2.835 25.288 64.763 1.00 76.97 ATOM 21 CB ILE A 3 0.308 24.324 65.707 1.00 83.45 ATOM 22 CG1 ILE A 3 0.452 25.521 64.759 1.00 83.63 ATOM 23 CG2 ILE A 3 0.452 25.521 64.759 1.00 83.63 ATOM 24 CD1 ILE A 3 -0.184 25.361 63.375 1.00 91.36 ATOM 25 N VAL A 4 -1.725 26.099 66.523 1.00 61.54 ATOM 26 CA VAL A 4 -2.477 27.303 66.482 1.00 56.32 ATOM 27 C VAL A 4 -1.658 28.552 66.623 1.00 50.98 ATOM 28 O VAL A 4 -1.658 28.552 66.623 1.00 50.98 ATOM 29 CB VAL A 4 -3.514 27.318 67.595 1.00 58.99 ATOM 30 CG1 VAL A 4 -3.514 27.318 67.595 1.00 58.99 ATOM 31 CG2 VAL A 4 -4.819 26.691 67.131 1.00 58.56 ATOM 32 N ASP A 5 -2.012 29.486 65.732 1.00 39.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |                                                                         |             |            |            |             |            |          |                  |           |         |          |  |  |
| ATOM 14 CD GLU A 2 -4.351 21.139 61.767 1.00100.00 ATOM 15 OE1 GLU A 2 -3.301 21.261 61.152 1.00100.00 ATOM 16 OE2 GLU A 2 -5.361 20.398 61.368 1.00100.00 ATOM 17 N ILE A 3 -1.550 22.799 64.944 1.00 86.29 ATOM 18 CA ILE A 3 -1.148 23.905 65.820 1.00 81.53 ATOM 19 C ILE A 3 -2.006 25.154 65.661 1.00 75.68 ATOM 20 O ILE A 3 -2.835 25.288 64.763 1.00 76.97 ATOM 21 CB ILE A 3 0.308 24.324 65.707 1.00 83.45 ATOM 22 CG1 ILE A 3 0.452 25.521 64.759 1.00 83.63 ATOM 23 CG2 ILE A 3 1.198 23.160 65.300 1.00 84.76 ATOM 24 CD1 ILE A 3 -0.184 25.361 63.375 1.00 91.36 ATOM 25 N VAL A 4 -1.725 26.099 66.523 1.00 61.54 ATOM 26 CA VAL A 4 -2.477 27.303 66.482 1.00 56.32 ATOM 27 C VAL A 4 -1.658 28.552 66.623 1.00 50.98 ATOM 28 O VAL A 4 -0.803 28.694 67.512 1.00 47.84 ATOM 29 CB VAL A 4 -3.514 27.318 67.595 1.00 58.99 ATOM 30 CG1 VAL A 4 -3.735 28.754 68.047 1.00 58.40 ATOM 31 CG2 VAL A 4 -4.819 26.691 67.131 1.00 58.56 ATOM 32 N ASP A 5 -2.012 29.486 65.732 1.00 39.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                                                                         |             |            |            |             |            |          |                  |           |         |          |  |  |
| 35 ATOM 15 OE1 GLU A 2 -3.301 21.261 61.152 1.00100.00 ATOM 16 OE2 GLU A 2 -5.361 20.398 61.368 1.00100.00 ATOM 17 N ILE A 3 -1.550 22.799 64.944 1.00 86.29 ATOM 18 CA ILE A 3 -1.148 23.905 65.820 1.00 81.53 ATOM 19 C ILE A 3 -2.006 25.154 65.661 1.00 75.68 ATOM 20 O ILE A 3 -2.835 25.288 64.763 1.00 76.97 ATOM 21 CB ILE A 3 0.308 24.324 65.707 1.00 83.45 ATOM 22 CG1 ILE A 3 0.452 25.521 64.759 1.00 83.63 ATOM 23 CG2 ILE A 3 1.198 23.160 65.300 1.00 84.76 ATOM 24 CD1 ILE A 3 -0.184 25.361 63.375 1.00 91.36 ATOM 25 N VAL A 4 -1.725 26.099 66.523 1.00 61.54 ATOM 26 CA VAL A 4 -2.477 27.303 66.482 1.00 56.32 ATOM 27 C VAL A 4 -2.477 27.303 66.482 1.00 50.98 ATOM 28 O VAL A 4 -1.658 28.552 66.623 1.00 50.98 ATOM 29 CB VAL A 4 -3.514 27.318 67.595 1.00 58.99 ATOM 30 CG1 VAL A 4 -3.735 28.754 68.047 1.00 58.56 ATOM 31 CG2 VAL A 4 -4.819 26.691 67.131 1.00 58.56 ATOM 32 N ASP A 5 -2.012 29.486 65.732 1.00 39.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                                                                         |             |            |            |             | 2          |          |                  |           |         |          |  |  |
| ATOM 16 OE2 GLU A 2 -5.361 20.398 61.368 1.00100.00 ATOM 17 N ILE A 3 -1.550 22.799 64.944 1.00 86.29 ATOM 18 CA ILE A 3 -1.148 23.905 65.820 1.00 81.53 ATOM 19 C ILE A 3 -2.006 25.154 65.661 1.00 75.68 ATOM 20 O ILE A 3 -2.835 25.288 64.763 1.00 76.97 ATOM 21 CB ILE A 3 0.308 24.324 65.707 1.00 83.45 ATOM 22 CG1 ILE A 3 0.452 25.521 64.759 1.00 83.63 ATOM 23 CG2 ILE A 3 1.198 23.160 65.300 1.00 84.76 ATOM 24 CD1 ILE A 3 -0.184 25.361 63.375 1.00 91.36 ATOM 25 N VAL A 4 -1.725 26.099 66.523 1.00 61.54 ATOM 26 CA VAL A 4 -2.477 27.303 66.482 1.00 56.32 ATOM 27 C VAL A 4 -2.477 27.303 66.482 1.00 50.98 ATOM 28 O VAL A 4 -1.658 28.552 66.623 1.00 50.98 ATOM 29 CB VAL A 4 -3.514 27.318 67.595 1.00 58.99 ATOM 30 CG1 VAL A 4 -3.735 28.754 68.047 1.00 58.56 ATOM 31 CG2 VAL A 4 -4.819 26.691 67.131 1.00 58.56 ATOM 32 N ASP A 5 -2.012 29.486 65.732 1.00 39.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |                                                                         |             |            |            |             | 2          |          |                  |           |         |          |  |  |
| ATOM 17 N ILE A 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 35                             |                                                                         |             | OE2        | GLU        | Α           | 2          |          |                  |           |         |          |  |  |
| ATOM 18 CA ILE A 3 -1.148 23.905 65.820 1.00 81.53 ATOM 19 C ILE A 3 -2.006 25.154 65.661 1.00 75.68 ATOM 20 O ILE A 3 -2.835 25.288 64.763 1.00 76.97 ATOM 21 CB ILE A 3 0.308 24.324 65.707 1.00 83.45 ATOM 22 CG1 ILE A 3 0.452 25.521 64.759 1.00 83.63 ATOM 23 CG2 ILE A 3 1.198 23.160 65.300 1.00 84.76 ATOM 24 CD1 ILE A 3 -0.184 25.361 63.375 1.00 91.36 ATOM 25 N VAL A 4 -1.725 26.099 66.523 1.00 61.54 ATOM 26 CA VAL A 4 -2.477 27.303 66.482 1.00 56.32 ATOM 27 C VAL A 4 -1.658 28.552 66.623 1.00 50.98 ATOM 28 O VAL A 4 -0.803 28.694 67.512 1.00 47.84 ATOM 29 CB VAL A 4 -3.514 27.318 67.595 1.00 58.99 ATOM 30 CG1 VAL A 4 -3.735 28.754 68.047 1.00 58.40 ATOM 31 CG2 VAL A 4 -4.819 26.691 67.131 1.00 58.56 ATOM 32 N ASP A 5 -2.012 29.486 65.732 1.00 39.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |                                                                         |             |            |            |             |            |          | 22.799           |           |         |          |  |  |
| ATOM 20 O ILE A 3 -2.006 25.154 65.661 1.00 75.68  ATOM 20 O ILE A 3 -2.835 25.288 64.763 1.00 76.97  ATOM 21 CB ILE A 3 0.308 24.324 65.707 1.00 83.45  ATOM 22 CG1 ILE A 3 0.452 25.521 64.759 1.00 83.63  ATOM 23 CG2 ILE A 3 1.198 23.160 65.300 1.00 84.76  ATOM 24 CD1 ILE A 3 -0.184 25.361 63.375 1.00 91.36  ATOM 25 N VAL A 4 -1.725 26.099 66.523 1.00 61.54  ATOM 26 CA VAL A 4 -2.477 27.303 66.482 1.00 56.32  ATOM 27 C VAL A 4 -1.658 28.552 66.623 1.00 50.98  ATOM 28 O VAL A 4 -0.803 28.694 67.512 1.00 47.84  ATOM 29 CB VAL A 4 -3.514 27.318 67.595 1.00 58.99  ATOM 30 CG1 VAL A 4 -3.735 28.754 68.047 1.00 58.40  ATOM 31 CG2 VAL A 4 -4.819 26.691 67.131 1.00 58.56  ATOM 32 N ASP A 5 -2.012 29.486 65.732 1.00 39.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                                                                         |             |            |            |             |            | -1.148   | 23.905           |           |         |          |  |  |
| 40 ATOM 20 O ILE A 3 -2.835 25.288 64.763 1.00 76.97 ATOM 21 CB ILE A 3 0.308 24.324 65.707 1.00 83.45 ATOM 22 CG1 ILE A 3 0.452 25.521 64.759 1.00 83.63 ATOM 23 CG2 ILE A 3 1.198 23.160 65.300 1.00 84.76 ATOM 24 CD1 ILE A 3 -0.184 25.361 63.375 1.00 91.36 ATOM 25 N VAL A 4 -1.725 26.099 66.523 1.00 61.54 ATOM 26 CA VAL A 4 -2.477 27.303 66.482 1.00 56.32 ATOM 27 C VAL A 4 -1.658 28.552 66.623 1.00 50.98 ATOM 28 O VAL A 4 -0.803 28.694 67.512 1.00 47.84 ATOM 29 CB VAL A 4 -3.514 27.318 67.595 1.00 58.99 ATOM 30 CG1 VAL A 4 -3.735 28.754 68.047 1.00 58.40 ATOM 31 CG2 VAL A 4 -4.819 26.691 67.131 1.00 58.56 ATOM 32 N ASP A 5 -2.012 29.486 65.732 1.00 39.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |                                                                         |             |            |            |             | 3          |          | 25.154           | 65.661    |         |          |  |  |
| ATOM 22 CG1 ILE A 3 0.452 25.521 64.759 1.00 83.45  ATOM 23 CG2 ILE A 3 1.198 23.160 65.300 1.00 84.76  ATOM 24 CD1 ILE A 3 -0.184 25.361 63.375 1.00 91.36  ATOM 25 N VAL A 4 -1.725 26.099 66.523 1.00 61.54  ATOM 26 CA VAL A 4 -2.477 27.303 66.482 1.00 56.32  ATOM 27 C VAL A 4 -1.658 28.552 66.623 1.00 50.98  ATOM 28 O VAL A 4 -0.803 28.694 67.512 1.00 47.84  ATOM 29 CB VAL A 4 -3.514 27.318 67.595 1.00 58.99  ATOM 30 CG1 VAL A 4 -3.735 28.754 68.047 1.00 58.40  ATOM 31 CG2 VAL A 4 -4.819 26.691 67.131 1.00 58.56  ATOM 32 N ASP A 5 -2.012 29.486 65.732 1.00 39.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40                             |                                                                         |             |            |            |             |            |          |                  |           |         |          |  |  |
| ATOM 23 CG2 ILE A 3 1.198 23.160 65.300 1.00 84.76  ATOM 24 CD1 ILE A 3 -0.184 25.361 63.375 1.00 91.36  ATOM 25 N VAL A 4 -1.725 26.099 66.523 1.00 61.54  ATOM 26 CA VAL A 4 -2.477 27.303 66.482 1.00 56.32  ATOM 27 C VAL A 4 -1.658 28.552 66.623 1.00 50.98  ATOM 28 O VAL A 4 -0.803 28.694 67.512 1.00 47.84  ATOM 29 CB VAL A 4 -3.514 27.318 67.595 1.00 58.99  ATOM 30 CG1 VAL A 4 -3.735 28.754 68.047 1.00 58.40  ATOM 31 CG2 VAL A 4 -4.819 26.691 67.131 1.00 58.56  ATOM 32 N ASP A 5 -2.012 29.486 65.732 1.00 39.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40                             |                                                                         |             |            |            |             |            |          |                  |           | 1.00    | 83.45    |  |  |
| ATOM 24 CD1 ILE A 3 -0.184 25.361 63.375 1.00 91.36 ATOM 25 N VAL A 4 -1.725 26.099 66.523 1.00 61.54 ATOM 26 CA VAL A 4 -2.477 27.303 66.482 1.00 56.32 ATOM 27 C VAL A 4 -1.658 28.552 66.623 1.00 50.98 ATOM 28 O VAL A 4 -0.803 28.694 67.512 1.00 47.84 ATOM 29 CB VAL A 4 -3.514 27.318 67.595 1.00 58.99 ATOM 30 CG1 VAL A 4 -3.735 28.754 68.047 1.00 58.40 ATOM 31 CG2 VAL A 4 -4.819 26.691 67.131 1.00 58.56 ATOM 32 N ASP A 5 -2.012 29.486 65.732 1.00 39.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |                                                                         |             |            |            |             |            |          |                  |           | 1.00    | 83.63    |  |  |
| ATOM 25 N VAL A 4 -1.725 26.099 66.523 1.00 61.54  ATOM 26 CA VAL A 4 -2.477 27.303 66.482 1.00 56.32  ATOM 27 C VAL A 4 -1.658 28.552 66.623 1.00 50.98  ATOM 28 O VAL A 4 -0.803 28.694 67.512 1.00 47.84  ATOM 29 CB VAL A 4 -3.514 27.318 67.595 1.00 58.99  ATOM 30 CG1 VAL A 4 -3.735 28.754 68.047 1.00 58.40  ATOM 31 CG2 VAL A 4 -4.819 26.691 67.131 1.00 58.56  ATOM 32 N ASP A 5 -2.012 29.486 65.732 1.00 39.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                |                                                                         |             |            |            |             |            |          |                  |           | 1.00    | 84.76    |  |  |
| 45 ATOM 26 CA VAL A 4 -2.477 27.303 66.482 1.00 56.32 ATOM 27 C VAL A 4 -1.658 28.552 66.623 1.00 50.98 ATOM 28 O VAL A 4 -0.803 28.694 67.512 1.00 47.84 ATOM 29 CB VAL A 4 -3.514 27.318 67.595 1.00 58.99 ATOM 30 CG1 VAL A 4 -3.735 28.754 68.047 1.00 58.40 ATOM 31 CG2 VAL A 4 -4.819 26.691 67.131 1.00 58.56 ATOM 32 N ASP A 5 -2.012 29.486 65.732 1.00 39.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |                                                                         |             |            | ILE        | A           |            |          |                  |           |         |          |  |  |
| ATOM 27 C VAL A 4 -1.658 28.552 66.623 1.00 50.98 ATOM 28 O VAL A 4 -0.803 28.694 67.512 1.00 47.84 ATOM 29 CB VAL A 4 -3.514 27.318 67.595 1.00 58.99 ATOM 30 CG1 VAL A 4 -3.735 28.754 68.047 1.00 58.40 ATOM 31 CG2 VAL A 4 -4.819 26.691 67.131 1.00 58.56 ATOM 32 N ASP A 5 -2.012 29.486 65.732 1.00 39.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45                             |                                                                         |             |            |            |             |            |          |                  |           |         |          |  |  |
| ATOM 28 O VAL A 4 -0.803 28.694 67.512 1.00 47.84  ATOM 29 CB VAL A 4 -3.514 27.318 67.595 1.00 58.99  ATOM 30 CG1 VAL A 4 -3.735 28.754 68.047 1.00 58.40  ATOM 31 CG2 VAL A 4 -4.819 26.691 67.131 1.00 58.56  ATOM 32 N ASP A 5 -2.012 29.486 65.732 1.00 39.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 70                             |                                                                         |             |            |            |             |            |          |                  |           |         |          |  |  |
| ATOM 29 CB VAL A 4 -3.514 27.318 67.595 1.00 58.99 ATOM 30 CG1 VAL A 4 -3.735 28.754 68.047 1.00 58.40 ATOM 31 CG2 VAL A 4 -4.819 26.691 67.131 1.00 58.56 ATOM 32 N ASP A 5 -2.012 29.486 65.732 1.00 39.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                |                                                                         |             |            |            |             |            |          |                  |           |         |          |  |  |
| 50 ATOM 30 CG1 VAL A 4 -3.735 28.754 68.047 1.00 58.40<br>ATOM 31 CG2 VAL A 4 -4.819 26.691 67.131 1.00 58.56<br>ATOM 32 N ASP A 5 -2.012 29.486 65.732 1.00 39.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | • ,                            |                                                                         |             |            |            |             |            |          |                  |           |         |          |  |  |
| 50 ATOM 31 CG2 VAL A 4 -4.819 26.691 67.131 1.00 58.56<br>ATOM 32 N ASP A 5 -2.012 29.486 65.732 1.00 39.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |                                                                         |             |            |            |             |            |          |                  |           |         |          |  |  |
| ATOM 32 N ASP A 5 -2.012 29.486 65.732 1.00 39.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50                             |                                                                         |             |            |            |             |            |          |                  |           | 1.00    | 58.40    |  |  |
| 7006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |                                                                         |             |            |            |             |            |          |                  |           |         |          |  |  |
| 1.403 30.762 63.763 1.00 32.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |                                                                         |             |            |            |             |            |          | 49.480<br>30 702 |           | 1.00    | 39.38    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                         |             |            |            | -•          | •          | 1.100    | 30.702           | 05.763    | 1.00    | 32.04    |  |  |

|                       |     | MOTA         | 34       | С      | ASP A | . 5 | 6 | -2.308           | 31.596        | 66.634           | 1.00 | 36.35          |
|-----------------------|-----|--------------|----------|--------|-------|-----|---|------------------|---------------|------------------|------|----------------|
|                       |     | MOTA         | 35       | 0      | ASP A |     |   | -3.343           | 32.051        | 66.171           | 1.00 | 38.30          |
|                       |     | MOTA         | 36       | CB     | ASP A |     |   | -1.252           | 31.492        | 64.400           |      | 30.79          |
|                       |     | MOTA         | 37       | CG     | ASP A | . 5 | 5 | -0.251           | 32.581        | 64.563           | 1.00 | 29.96          |
|                       | 5   | MOTA         | 38       |        | ASP A |     |   |                  | 33.123        | 65.635           |      | 35.01          |
|                       |     | MOTA         | 39       | OD2    | ASP A |     |   |                  | 32.831        | 63.493           |      | 29.81          |
|                       |     | ATOM         | 40       | N      | THR A |     |   |                  | 31.745        | 67.903           |      | 32.32          |
|                       |     | MOTA         | 41       | CA     | THR A |     |   |                  | 32.507        | 68.842           |      | 32.08          |
|                       |     | ATOM         | 42       | С      | THR A |     |   |                  | 34.011        | 68.557           | 1.00 | 40.63          |
|                       | 10  | ATOM         | 43       | 0      | THR A |     |   |                  | 34.759        | 69.132           |      | 46.68          |
|                       |     | MOTA         | 44       | CB     | THR A |     |   |                  | 32.171        | 70.295           |      | 44.71          |
|                       |     | ATOM         | 45       |        | THR A |     |   |                  | 32.322        | 70.505           |      | 51.05          |
|                       |     | ATOM         | 46       |        | THR A |     |   |                  | 30.741        | 70.604           |      | 35.79          |
|                       |     | ATOM         | 47       | И      | CYS A |     |   |                  | 34.480        | 67.656           |      | 32.51          |
|                       | 15  | ATOM         | 48       | CA     | CYS A |     |   |                  | 35.923        | 67.335           |      | 28.92          |
|                       |     | ATOM         | 49       | C      | CYS A |     |   | •                | 36.329        | 66.129           |      | 31.49          |
|                       |     | ATOM         | 50       | 0      | CYS A |     |   |                  | 37.523        | 65.875           |      | 25.42          |
| gareg.                |     | MOTA         | 51       | CB     | CYS A |     |   |                  | 36.410        | 67.107           |      | 27.38          |
| ED                    |     | MOTA         | 52       | SG     | CYS A |     |   |                  | 35.944        | 68.518           |      | 32.02          |
| AL.                   | 20  | MOTA         | 53       | N      | SER A |     |   |                  | 35.315        | 65.383           |      | 34.03          |
|                       |     | ATOM         | 54       | CA     | SER A |     |   |                  | 35.508        | 64.158           |      | 32.97          |
| 1 a 1 a               |     | ATOM         | 55       | С      | SER A |     |   |                  | 35.136        | 64.264           |      | 33.52          |
| \$ <del>770</del> 0 . |     | MOTA         | 56       | 0      | SER A |     |   | -5.744           | 34.137        | 64.866           |      | 32.89          |
| 神神                    | 0.5 | ATOM         | 57       | CB     | SER A |     |   | -3.363           | 34.754        | 62.980           |      | 34.07          |
|                       | 25  | ATOM         | 58       | OG     | SER A |     |   | -4.017           | 35.182        | 61.798           |      | 36.65          |
| 12 E                  |     | MOTA         | 59       | N      | LEU A |     |   | -6.289           | 35.921        | 63.635           |      | 30.79          |
| <b>H</b> 40.          |     | ATOM         | 60       | CA     | LEU A |     |   | -7.724           | 35.649        | 63.672           |      | 31.91          |
| #                     |     | ATOM         | 61       | С      | LEU A |     | 9 | -8.198           | 35.009        | 62.377           |      | 36.07          |
| 12 10                 | 20  | MOTA         | 62       | 0      | LEU A |     |   | -9.359           | 34.626        | 62.216           |      | 38.61          |
| T.                    | 30  | ATOM         | 63       | CB     | LEU A |     | 9 | -8.514           | 36.958        | 63.874           |      | 32.47          |
|                       |     | ATOM         | 64       | CG     | LEU A |     | 9 | -8.306           | 37.688        | 65.212           |      | 35.39          |
|                       |     | MOTA         | 65       |        | LEU A |     | 9 | -9.113           | 38.983        | 65.193           |      | 32.27          |
|                       |     | ATOM         | 66.      |        | LEU A |     |   | -8.746           | 36.816        | 66.397           |      | 33.25          |
|                       | 25  | ATOM         | 67       | N      | ALA A |     |   | -7.273           | 34.933        | 61.443           |      | 28.63          |
| J=40                  | 35  | MOTA         | 68       | CA     | ALA A |     |   | -7.545           | 34.408        | 60.147           |      | 27.14          |
|                       |     | ATOM         | 69       | C      | ALA A |     |   | -7.643           | 32.921        | 60.090           |      | 34.34          |
|                       |     | ATOM         | 70       | 0      | ALA A |     |   | -7.296           | 32.173        | 61.005           |      | 37.34          |
|                       |     | MOTA         | 71       | CB     | ALA A |     |   | -6.551           | 34.936        | 59.100           |      | 27.72          |
|                       | 40  | ATOM         | 72       | N      | SER A |     |   | -8.130           | 32.503        | 58.959           |      | 32.08          |
|                       | 40  | ATOM         | 73<br>74 | CA     | SER A |     |   | -8.256<br>6.838  | 31.115        | 58.708           |      | 32.03<br>32.67 |
|                       |     | ATOM         | 75       | C<br>O | SER A | -   |   | -6.838<br>-5.927 | 30.519 31.028 | 58.656<br>57.986 |      | 29.29          |
|                       |     | ATOM<br>ATOM | 76       | CB     | SER A |     |   | -9.013           | 30.934        | 57.401           |      | 38.42          |
|                       |     | ATOM         | 77       | OG     | SER A |     |   | -10.391          | 30.728        | 57.648           |      | 44.17          |
|                       | 45  | ATOM         | 78       |        | PRO A |     |   | -6.651           | 29.440        | 59.387           |      | 29.14          |
|                       | -13 | ATOM         | 79       | CA     | PRO A |     |   | -5.370           | 28.786        | 59.476           |      | 26.83          |
|                       |     | ATOM         | 80       | c.     | PRO A |     |   | -4.935           | 28.176        | 58.173           |      | 32.64          |
|                       |     | ATOM         | 81       | Ö      | PRO A |     |   | -5.737           | 28.007        | 57.284           |      | 35.89          |
|                       |     | ATOM         | 82       | ČВ     | PRO A |     |   | -5.544           | 27.698        | 60.540           |      | 28.28          |
|                       | 50  | ATOM         | 83       | CG     | PRO A |     |   | -7.029           | 27.571        | 60.843           |      | 32.92          |
|                       |     | ATOM         | 84       | CD     | PRO A |     |   | -7.731           | 28.587        | 59.952           |      | 30.42          |
|                       |     | ATOM         | 85       | N      | ALA A |     |   | -3.645           | 27.836        | 58.063           |      | 30.63          |
|                       |     | ATOM         | 86       | CA     | ALA A |     |   | -3.066           | 27.236        | 56.855           |      | 28.36          |
|                       |     | ATOM         | 87       | Ç.     | ALA A |     |   | -3.644           | 25.852        | 56.576           |      | 33.99          |
|                       | 55  | ATOM         | 88       | ŏ      | ALA A |     |   | -3.455           | 25.240        | 55.528           |      | 31.60          |
|                       |     | ATOM         | 89       | СВ     | ALA A |     |   | -1.561           | 27.133        | 57.050           |      | 27.68          |
|                       |     | ATOM         | 90       | N      | SER A |     |   | -4.338           | 25.352        | 57.571           |      | 31.10          |
|                       |     | ATOM         | 91       | CA     | SER A |     |   | -4.919           | 24.069        | 57.469           |      | 30.66          |
|                       |     | MOTA         | 92       | C      | SER A |     |   | -6.242           | 24.133        | 56.753           |      | 37.86          |
|                       | 60  | ATOM         | 93       | ŏ      | SER A |     |   | -6.768           | 23.118        | 56.328           |      | 45.79          |
|                       |     | ATOM         | 94       | СB     | SER A |     |   | -5.005           | 23.386        | 58.825           |      | 34.33          |
|                       |     | ATOM         | 95       | OG     | SER A |     |   | -6.006           | 23.978        | 59.621           |      | 41.01          |
|                       |     | ATOM         | 96       | N      | VAL   |     |   | -6.785           | 25.327        | 56.630           |      | 32.80          |
|                       |     | ATOM         | 97       | CA     | VAL 2 |     |   | -8.036           | 25.529        | 55.917           |      | 31.81          |
|                       |     |              |          |        |       |     |   |                  |               |                  |      |                |

|               | MOTA | 98    | С   | VAL A | 15   | -7,777   | 26.107 | 54.507 | 1.00 34.70 |
|---------------|------|-------|-----|-------|------|----------|--------|--------|------------|
|               | ATOM | 99    | 0   | VAL A | 15   |          | 25.576 | 53.494 | 1.00 31.96 |
|               | ATOM | 100   | CB  | VAL A | 15   |          | 26.336 | 56.720 | 1.00 33.07 |
|               | ATOM | 101   |     | VAL A | 15   |          | 26.638 | 55.861 | 1.00 33.31 |
| -5            | ATOM | 102   |     | VAL A | 15   |          | 25.538 | 57.949 | 1.00 30.32 |
| ,             |      |       |     | CYS A | 16   |          | 27.183 | 54.453 | 1.00 33.85 |
|               | ATOM | 103   | N   |       |      |          |        |        |            |
|               | ATOM | 104   | CA  | CYS A | 16   |          | 27.826 | 53.189 | 1.00 38.27 |
|               | ATOM | 105   | С   | CYS A | 16   |          | 28.388 | 53.265 | 1.00 37.14 |
|               | ATOM | 106   | 0   | CYS A | 16   | -4.616   | 28.534 | 54.322 | 1.00 39.70 |
| 10            | ATOM | 107   | CB  | CYS A | 16   | -7.589   | 28.870 | 52.581 | 1.00 42.09 |
|               | ATOM | 108   | SG  | CYS A | 16   | -7.844   | 30.418 | 53.540 | 1.00 47.38 |
|               | ATOM | 109   | N   | ARG A | 17   | -4.679   | 28.722 | 52.132 | 1.00 32.10 |
|               | ATOM | 110   | CA  | ARG A | 17   |          | 29.262 | 52.101 | 1.00 32.54 |
|               | ATOM | 111   | C   | ARG A | 17   |          | 30.307 | 51.005 | 1.00 34.56 |
| 15            | ATOM | 112   | ō   | ARG A | 17   |          | 30.065 | 49.842 | 1.00 35.07 |
| 13            |      |       |     |       | 17   |          |        |        |            |
|               | MOTA | 113   | CB  | ARG A |      |          | 28.152 | 51.758 | 1.00 36.83 |
|               | ATOM | 114   | CG  | ARG A | 17   |          | 27.391 | 52.915 | 1.00 40.61 |
|               | ATOM | 115   | CD  | ARG A | 17   |          | 25.970 | 52.503 | 1.00 27.18 |
| 20            | MOTA | 116   | NE  | ARG A | 17   |          | 25.026 | 53.501 | 1.00 52.41 |
| 20            | ATOM | 117   | CZ  | ARG A | 17   | * -1.244 | 24.036 | 54.035 | 1.00 69.41 |
| 42 20         | ATOM | 118   | NH1 | ARG A | 17   | 0.020    | 23.812 | 53.683 | 1.00 54.86 |
| ull.          | ATOM | 119   | NH2 | ARG A | 17   | -1.810   | 23.246 | 54.952 | 1.00 49.68 |
| <b>[-4</b> .  | ATOM | 120   | N   | THR A | 18   |          | 31.454 | 51.378 | 1.00 27.06 |
| , wa          | ATOM | 121   | CA  | THR A | 18   |          | 32.477 | 50.428 | 1.00 26.12 |
| 25            | ATOM | 122   | C   | THR A | 18   |          | 32.110 | 49.653 | 1.00 20.12 |
| 4 23          |      |       |     |       |      |          |        |        |            |
|               | ATOM | 123   | 0   | THR A | 18   |          | 31.964 | 50.194 | 1.00 29.06 |
| ļaš.          | MOTA | 124   | CB  | THR A | 18   |          | 33.810 | 51.134 | 1.00 34.27 |
|               | MOTA | 125   | OG1 |       | 18   |          | 34.261 | 51.738 | 1.00 32.95 |
|               | ATOM | 126   | CG2 | THR A | 18   |          | 34.839 | 50.156 | 1.00 35.91 |
| 30            | MOTA | 127   | N   | LYS A | 19   | -1.408   | 31.955 | 48.365 | 1.00 31.55 |
| r.            | MOTA | 128   | CA  | LYS A | 19   | -0.298   | 31.615 | 47.511 | 1.00 31.74 |
| Mi            | ATOM | 129   | С   | LYS A | 19   | 0.359    | 32.848 | 46.906 | 1.00 33.90 |
|               | ATOM | 130   | 0   | LYS A | 19   |          | 32.834 | 46.520 | 1.00 34.57 |
| in the second | MOTA | - 131 | CB  | LYS A | 19   |          | 30.697 | 46.398 | 1.00 36.08 |
| 35            | ATOM | 132   | CG  | LYS A | 19   |          | 29.368 | 46.924 | 1.00 62.54 |
| late .        | ATOM | 133   | CD  | LYS A | 19   |          | 28.257 | 47.057 | 1.00 82.23 |
|               |      | 134   | CE  | LYS A | 19   |          | 27.880 |        |            |
|               | MOTA |       |     |       |      |          |        | 48.496 | 1.00 77.50 |
|               | ATOM | 135   | NZ  | LYS A | 19   |          | 27.849 | 48.745 | 1.00 55.63 |
| 40            | ATOM | 136   | N   | HIS A | 20   |          | 33.928 | 46.810 | 1.00 31.40 |
| 40            | MOTA | 137   | CA  | HIS A | 20   |          | 35.122 | 46.198 | 1.00 29.22 |
|               | ATOM | 138   | C   | HIS A | 20   |          | 36.345 | 46.517 | 1.00 34.68 |
|               | ATOM | 139   | 0   | HIS A | 20   |          | 36.239 | 46.846 | 1.00 35.34 |
|               | MOTA | 140   | CB  | HIS A | 20   | 0.123    | 34.956 | 44.666 | 1.00 26.47 |
|               | ATOM | 141   | CG  | HIS A | 20   | 0.865    | 36.022 | 43.970 | 1.00 26.77 |
| 45            | ATOM | 142   | ND1 | HIS A | 20   | 2.249    | 36.046 | 43.980 | 1.00 28.92 |
|               | MOTA | 143   | CD2 | HIS A | 20   |          | 37.091 | 43.280 | 1.00 27.43 |
|               | ATOM | 144   |     | HIS A | 20   |          | 37.126 | 43.301 | 1.00 28.21 |
|               | ATOM | 145   |     | HIS A | 20   |          | 37.781 | 42.865 | 1.00 28.18 |
|               | ATOM | 146   | N   | LEU A | 21   |          | 37.492 | 46.390 | 1.00 30.14 |
| 50            |      | 147   | CA  | LEU A | 21   |          | 38.782 |        |            |
| 50            | ATOM |       |     |       |      |          |        | 46.610 | 1.00 31.02 |
|               | ATOM | 148   | С   | LEU A | 21   |          | 39.786 | 45.562 | 1.00 38.34 |
|               | MOTA | 149   | 0   | LEU A | 21   |          | 39.952 | 45.312 | 1.00 37.30 |
|               | MOTA | 150   | CB  | LEU A | 21   |          | 39.363 | 47.999 | 1.00 31.30 |
|               | MOTA | 151   | CG  | LEU A | 21   |          | 40.880 | 48.047 | 1.00 32.33 |
| 55            | MOTA | 152   |     | LEU A | 21   |          | 41.192 | 48.324 | 1.00 27.10 |
|               | ATOM | 153   | CD2 | LEU A | 21   | 0.277    | 41.522 | 49.100 | 1.00 32.86 |
|               | ATOM | 154   | N   | HIS A | 22   |          | 40.442 | 44.951 | 1.00 35.47 |
|               | ATOM | 155   | CA  | HIS A | 22   |          | 41.452 | 43.920 | 1.00 34.24 |
|               | ATOM | 156   | C   | HIS A | 22   |          | 42.742 | 44.550 | 1.00 33.99 |
| 60            | ATOM | 157   | ō   | HIS A | 22   |          | 42.957 | 44.905 | 1.00 35.72 |
| , 50          | ATOM | 158   | CB  | HIS A | 22   |          | 41.244 | 42.624 | 1.00 33.72 |
|               |      |       |     |       |      |          |        |        |            |
|               | ATOM | 159   | CG  | HIS A | 22   |          | 42.256 | 41.615 | 1.00 35.97 |
|               | ATOM | 160   |     | HIS A | 22   |          | 42.576 | 41.384 | 1.00 38.81 |
|               | MOTA | 161   | CD2 | HIS A | . 22 | -2.125   | 43.043 | 40.830 | 1.00 39.07 |

|                    | ATOM         | 162        | CE1       | HIS A | 22       | -0.019           | 43.534           | 40.462           | 1.00 38.66               |
|--------------------|--------------|------------|-----------|-------|----------|------------------|------------------|------------------|--------------------------|
|                    | ATOM         | 163        |           | HIS A | 22       | -1.262           | 43.829           | 40.103           | 1.00 39.13               |
|                    | ATOM         | 164        | N         | LEU A | 23       | -0.235           | 43.539           | 44.757           | 1.00 30.17               |
|                    | ATOM         | 165        | CA        | LEU A | 23       | -0.416           | 44.793           | 45.405           | 1.00 33.32               |
| 5                  | ATOM         | 166        | С         | LEU A | 23       | -0.203           | 45.949           | 44.440           | 1.00 44.46               |
|                    | ATOM         | 167        | Ō         | LEU A | 23       | 0.828            | 46.068           | 43.761           | 1.00 44.06               |
|                    | MOTA         | 168        | СВ        | LEU A | 23       | 0.446            | 44.882           | 46.680           | 1.00 33.72               |
|                    | ATOM         | 169        | CG        | LEU A | 23       | -0.141           | 45.682           | 47.871           | 1.00 33.15               |
|                    | ATOM         | 170        |           | LEU A | 23       | 0.780            | 46.835           | 48.172           | 1.00 26.07               |
| 10                 | ATOM         | 171        |           | LEU A | 23       | -1.539           | 46.213           | 47.609           | 1.00 35.39               |
|                    | ATOM         | 172        | N         | ARG A | 24       | -1.256           | 46.765           | 44.395           | 1.00 42.83               |
|                    | ATOM         | 173        | CA        | ARG A | 24       | -1.406           | 47.964           | 43.596           | 1.00 41.79               |
|                    | ATOM         | 174        | C         | ARG A | 24       | -1.930           | 49.005           | 44.562           | 1.00 39.15               |
|                    | ATOM         | 175        | Ô         | ARG A | 24       | -3.025           | 48.859           | 45.107           | 1.00 39.15               |
| 15                 | ATOM         | 176        | CB        | ARG A | 24       | -2.458           | 47.716           | 42.504           | 1.00 46.35               |
| 13                 | ATOM         | 177        | CG        | ARG A | 24       | -2.054           | 46.750           | 41.382           | 1.00 50.50               |
|                    | ATOM         | 178        | CD        | ARG A | 24       | -2.754           | 47.058           | 40.043           | 1.00 80.27               |
|                    | ATOM         | 179        | NE        | ARG A | 24       | -4.200           | 46.798           | 40.062           | 1.00 80.27               |
| 122                |              | 180        | CZ        | ARG A | 24       | -5.152           | 47.703           | 39.826           |                          |
| 175 20             | ATOM         | 181        |           | ARG A | 24       | -4.863           | 48.973           | 39.483           | 1.00100.00               |
| 20                 | ATOM         |            |           |       |          |                  |                  |                  | 1.00100.00               |
| 42                 | ATOM         | 182        |           | ARG A | 24       | -6.432           | 47.326           | 39.865           | 1.00100.00               |
| }= <b>1</b> .      | MOTA         | 183        | N         | CYS A | 25       | -1.164           | 50.028           | 44.844           | 1.00 32.39               |
| TAN<br>TAN         | ATOM         | 184        | CA        | CYS A | 25       | -1.698           | 50.969           | 45.813           | 1.00 33.30               |
| 25                 | ATOM         | 185        | С         | CYS A | 25       | -1.061           | 52.325           | 45.724           | 1.00 34.82               |
| 25                 | ATOM         | 186        | 0         | CYS A | 25       | -0.012           | 52.514           | 45.076           | 1.00 31.03               |
| 14 K               | ATOM         | 187        | CB        | CYS A | 25       | -1.503           | 50.440           | 47.257           | 1.00 34.67               |
| -A                 | MOTA         | 188        | SG        | CYS A | 25       | 0.231            | 50.529           | 47.798           | 1.00 38.07               |
| #                  | ATOM         | 189        | N         | SER A | 26       | -1.711           | 53.257           | 46.418           | 1.00 34.39               |
| 30                 | ATOM         | 190        | CA        | SER A | 26       | -1.196           | 54.601           | 46.437           | 1.00 36.77               |
| 30                 | ATOM         | 191        | C         | SER A | 26       | -0.963           | 55.133           | 47.821           | 1.00 39.85               |
| n.                 | ATOM         | 192        | 0         | SER A | 26       | -1.738           | 54.853           | 48.757           | 1.00 37.56               |
|                    | ATOM         | 193        | CB        | SER A | 26       | -1.889           | 55.600           | 45.530           | 1.00 42.70               |
| मुंब करि<br>संब १८ | ATOM         | 194        | OG        | SER A | 26       | -0.899           | 56.330           | 44.824           | 1.00 61.74               |
| 25                 | ATOM         | 195        | N         | VAL A | 27       | 0.133            | 55.897           | 47.886           | 1.00 39.43               |
| La 35              | ATOM         | 196        | CA        | VAL A | 27       | 0.624            | 56.583           | 49.081           | 1.00 41.31               |
|                    | ATOM         | 197        | C         | VAL A | 27       | 0.209            | 58.043           | 49.082           | 1.00 44.32               |
|                    | ATOM         | 198        | 0         | VAL A | 27       | 0.562            | 58.799           | 48.187           | 1.00 45.24               |
|                    | ATOM         | 199        | CB        | VAL A | 27       | 2.135            | 56.531           | 49.207           | 1.00 46.35               |
| 40                 | ATOM         | 200        |           | VAL A | 27       | 2.524            | 57.207           | 50.522           | 1.00 45.62               |
| 40                 | ATOM         | 201        |           | VAL A | 27       | 2.592            | 55.079           | 49.178           | 1.00 47.20               |
|                    | ATOM         | 202        | N         | ASP A | 28       | -0.553           | 58.417           | 50.093           | 1.00 37.94               |
|                    | MOTA         | 203        | CA        | ASP A | 28       | -1.040           | 59.764           | 50.237           | 1.00 35.28               |
|                    | ATOM         | 204        | С<br>0    | ASP A | 28       | -0.595           | 60.366           | 51.538           | 1.00 33.85               |
| 45                 | ATOM         | 205        |           | ASP A | 28       | -1.181<br>-2.559 | 60.099           | 52.598           | 1.00 28.52               |
| 43                 | ATOM         | 206        | CB        | ASP A | 28       |                  | 59.807           | 50.189           | 1.00 37.09               |
|                    | ATOM<br>ATOM | 207<br>208 | CG<br>OD1 | ASP A | 28<br>28 | -3.055<br>-2.611 | 61.205<br>62.119 | 50.095<br>50.767 | 1.00 55.20<br>1.00 59.17 |
|                    | ATOM         | 209        |           | ASP A | 28       | -3.993           |                  |                  |                          |
|                    | ATOM         | 210        | N N       | PHE A | 29       | 0.436            | 61.335           | 49.192<br>51.405 | 1.00 61.41<br>1.00 36.42 |
| 50                 | ATOM         | 211        | CA        | PHE A | 29       |                  | 61.174<br>61.888 | 52.512           | 1.00 38.42               |
| 50                 | ATOM         | 212        | C         | PHE A | 29       |                  | 62.928           | 53.077           |                          |
|                    | ATOM         | 213        | Ö         | PHE A | 29       |                  | 63.279           | 54.257           | 1.00 51.14<br>1.00 51.35 |
|                    | ATOM         | 214        | CB        | PHE A | 29       |                  | 62.517           | 52.143           | 1.00 31.33               |
|                    | ATOM         | 215        | CG        | PHE A | 29       |                  | 61.485           | 52.143           | 1.00 47.77               |
| 55                 | ATOM         | 216        |           | PHE A | 29       |                  |                  |                  |                          |
| 25                 |              | 217        |           |       |          |                  | 60.957           | 53.247           | 1.00 52.08               |
|                    | ATOM         |            |           | PHE A | 29       |                  | 61.001           | 50.863           | 1.00 53.94               |
|                    |              | 218        |           | PHE A | 29       |                  | 59.995           | 53.215           | 1.00 52.83               |
|                    | ATOM<br>ATOM | 219<br>220 | CE2       | PHE A | 29<br>29 |                  | 60.046           | 50.813           | 1.00 56.46               |
| 60                 |              |            |           |       |          |                  | 59.538           | 51.992           | 1.00 53.39               |
| 00                 | ATOM         | 221        | n<br>ca   | THR A | 30       |                  | 63.420           | 52.220           | 1.00 47.10               |
|                    | ATOM<br>ATOM | 222<br>223 | CA        | THR A | 30<br>30 |                  | 64.386           | 52.654           | 1.00 45.48               |
|                    |              | 224        |           |       |          |                  | 63.715           | 53.509           | 1.00 48.41               |
|                    | MOTA         | 225        | O<br>CB   | THR A | 30<br>30 |                  | 64.082           | 54.649           | 1.00 48.64               |
| •                  | ATOM         | 223        | CD        | THR A | 30       | -2.283           | 65.097           | 51.434           | 1.00 54.06               |

|                 | ATOM   | 226    | OG1      | THR A | 30 | -1.428 | 66.186          | 51.107 | 1.00 50.68 |
|-----------------|--------|--------|----------|-------|----|--------|-----------------|--------|------------|
|                 | ATOM   | 227    | CG2      |       | 30 | -3.697 | 65.568          | 51.745 | 1.00 60.28 |
|                 |        | 228    |          |       |    |        |                 |        |            |
|                 | ATOM   |        | N        | ARG A | 31 | -3.392 | 62.683          | 52.978 | 1.00 46.66 |
| _               | ATOM   | 229    | CA       | ARG A | 31 | -4.404 | 61.987          | 53.734 | 1.00 47.88 |
| 5               | ATOM   | 230    | С        | ARG A | 31 | -3.826 | 60.999          | 54.750 | 1.00 45.46 |
|                 | ATOM   | 231    | 0        | ARG A | 31 | -4.590 | 60.468          | 55.551 | 1.00 41.52 |
|                 | ATOM   | 232    | CB       | ARG A | 31 | -5.335 | 61.214          | 52.805 | 1.00 56.73 |
|                 |        | 233    | CG       | ARG A |    |        |                 |        |            |
|                 | MOTA   |        |          |       | 31 | -5.950 | 62.065          | 51.700 | 1.00 84.16 |
| 10              | ATOM   | 234    | CD       | ARG A | 31 | -7.338 | 61.568          | 51.284 | 1.00100.00 |
| 10              | MOTA   | 235    | NE       | ARG A | 31 | -7.344 | 60.450          | 50.327 | 1.00100.00 |
|                 | MOTA   | 236    | CZ       | ARG A | 31 | -8.148 | 60.371          | 49.251 | 1.00100.00 |
|                 | MOTA   | 237    | NH1      | ARG A | 31 | -9.034 | 61.324          | 48.944 | 1.00100.00 |
|                 | ATOM   | 238    |          | ARG A | 31 | -8.062 | 59.298          | 48.460 | 1.00100.00 |
|                 |        |        |          |       |    |        |                 |        |            |
| 1.5             | ATOM   | 239    | N        | ARG A | 32 | -2.489 | 60.752          | 54.683 | 1.00 39.71 |
| 15              | ATOM   | 240    | CA       | ARG A | 32 | -1.751 | 59.798          | 55.531 | 1.00 39.09 |
|                 | ATOM   | 241    | С        | ARG A | 32 | -2.324 | 58.411          | 55.379 | 1.00 39.62 |
|                 | MOTA   | 242    | 0        | ARG A | 32 | -2.495 | 57.655          | 56.337 | 1.00 33.10 |
|                 | ATOM   | 243    | СВ       | ARG A | 32 | -1.523 | 60.115          | 57.022 | 1.00 37.14 |
| <b>ಕ</b> ವೆಯ    |        |        | CG       |       |    |        |                 |        |            |
| 20              | ATOM   | 244    |          | ARG A | 32 | -1.197 | 61.569          | 57.337 | 1.00 71.25 |
| 20              | ATOM   | 245    | CD       | ARG A | 32 | 0.277  | 61.834          | 57.686 | 1.00100.00 |
| in.             | ATOM   | 246    | NE       | ARG A | 32 | 0.703  | 61.299          | 58.986 | 1.00100.00 |
|                 | ATOM   | 247    | CZ       | ARG A | 32 | 1.284  | 62.005          | 59.961 | 1.00 79.51 |
| <b>44</b> ,     | ATOM   | 248    | NH1      | ARG A | 32 | 1.522  | 63.308          | 59.831 | 1.00 55.73 |
| 2 HG<br>17 E HG | ATOM   | 249    |          | ARG A | 32 |        |                 |        |            |
| 1 THE OF        |        |        |          |       |    | 1.626  | 61.387          | 61.098 | 1.00 44.96 |
| <b>25</b>       | MOTA   | 250    | N        | THR A | 33 | -2.612 | 58.068          | 54.139 | 1.00 39.83 |
|                 | ATOM   | 251    | CA       | THR A | 33 | -3.162 | 56 <b>.7</b> 52 | 53.902 | 1.00 39.31 |
| J=4.            | MOTA   | 252    | C        | THR A | 33 | -2.543 | 56.010          | 52.760 | 1.00 41.13 |
| 9.77            | MOTA   | 253    | 0        | THR A | 33 | -1.853 | 56.574          | 51.926 | 1.00 42.93 |
| #               | MOTA   | 254    | СВ       | THR A | 33 | -4.635 | 56.835          | 53.641 | 1.00 43.44 |
| 30              |        |        |          |       |    |        |                 |        |            |
| 30              | MOTA   | 255    |          | THR A | 33 | -4.798 | 57.636          | 52.468 | 1.00 40.17 |
| L me            | MOTA   | 256    | CG2      | THR A | 33 | -5.245 | 57.468          | 54.880 | 1.00 38.71 |
|                 | MOTA   | 257    | N        | LEU A | 34 | -2.822 | 54.717          | 52.762 | 1.00 35.26 |
| 14.1            | ATOM   | 258    | CA       | LEU A | 34 | -2.372 | 53.799          | 51.745 | 1.00 35.20 |
| 100 mg          | ATOM   | 259    | С        | LEU A | 34 | -3.632 | 53.293          | 51.098 | 1.00 32.49 |
| 35              | ATOM   | 260    | ō        | LEU A | 34 |        |                 |        |            |
|                 |        |        |          |       |    | -4.474 | 52.670          | 51.751 | 1.00 30.96 |
|                 | ATOM   | 261    | CB       | LEU A | 34 | -1.522 | 52.651          | 52.322 | 1.00 37.07 |
|                 | ATOM   | 262    | CG       | LEU A | 34 | -0.149 | 52.571          | 51.685 | 1.00 42.99 |
|                 | MOTA   | 263    | CD1      | LEU A | 34 | 0.648  | 51.425          | 52.285 | 1.00 40.58 |
|                 | ATOM   | 264    | CD2      | LEU A | 34 | -0.360 | 52.302          | 50.208 | 1.00 50.83 |
| 40              | ATOM   | 265    | N        | THR A | 35 | -3.800 | 53.632          | 49.838 | 1.00 28.72 |
|                 | ATOM   | 266    | CA       | THR A | 35 | -5.017 | 53.228          | 49.198 |            |
|                 |        |        |          |       |    |        |                 |        | 1.00 31.26 |
|                 | ATOM   | 267    | С        | THR A | 35 | -4.838 | 52.329          | 48.013 | 1.00 36.54 |
|                 | MOTA   | 268    | 0        | THR A | 35 | -3.940 | 52.546          | 47.187 | 1.00 34.70 |
|                 | ATOM   | 269    | CB       | THR A | 35 | -5.877 | 54.427          | 48.813 | 1.00 44.88 |
| 45              | MOTA   | 270    | OG1      | THR A | 35 | -5.484 | 55.549          | 49.579 | 1.00 58.59 |
|                 | MOTA   | 271    |          | THR A | 35 | -7.324 | 54.094          | 49.109 | 1.00 49.42 |
|                 | MOTA   | 272    | N        | GLY A | 36 | -5.726 | 51.329          | 47.950 |            |
|                 |        |        |          |       |    |        |                 |        | 1.00 32.57 |
|                 | ATOM   | 273    | CA       | GLY A | 36 | -5.696 | 50.405          | 46.837 | 1.00 33.89 |
| 50              | MOTA   | 274    | С        | GLY A | 36 | -6.418 | 49.074          | 46.993 | 1.00 34.50 |
| 50              | ATOM   | 275    | 0        | GLY A | 36 | -7.441 | 48.919          | 47.678 | 1.00 31.78 |
|                 | MOTA   | 276    | N        | THR A | 37 | -5.836 | 48.103          | 46.293 | 1.00 35.93 |
|                 | ATOM   | 277    | CA       | THR A | 37 | -6.327 | 46.723          | 46.281 | 1.00 36.12 |
|                 | ATOM   | 278    | C        | THR A | 37 |        |                 |        |            |
|                 |        |        |          |       |    | -5.268 | 45.696          | 46.473 | 1.00 35.67 |
| E E -           | ATOM   | 279    | 0        | THR A | 37 | -4.155 | 45.795          | 45.964 | 1.00 33.86 |
| 55              | MOTA   | 280    | CB       | THR A | 37 | -7.119 | 46.306          | 45.050 | 1.00 42.21 |
|                 | ATOM   | 281    | OG1      | THR A | 37 | -6.507 | 46.804          | 43.870 | 1.00 30.98 |
|                 | ATOM   | 282    | CG2      | THR A | 37 | -8.547 | 46.793          | 45.229 | 1.00 50.03 |
|                 | ATOM   | 283    | N        | ALA A | 38 | -5.687 |                 |        |            |
|                 |        |        |          |       |    |        | 44.705          | 47.220 | 1.00 32.95 |
| 60              | ATOM   | 284    | CA       | ALA A | 38 | -4.886 | 43.570          | 47.533 | 1.00 33.45 |
| 60              | MOTA   | 285    | C        | ALA A | 38 | -5.481 | 42.374          | 46.824 | 1.00 35.47 |
|                 | ATOM   | 286    | 0        | ALA A | 38 | -6.580 | 41.906          | 47.151 | 1.00 32.91 |
|                 | ATOM   | 287    | CB       | ALA A | 38 | -4.845 | 43.341          | 49.044 | 1.00 33.72 |
|                 | ATOM   | 288    | N        | ALA A | 39 | -4.764 | 41.874          | 45.834 | 1.00 32.70 |
|                 | MOTA   | 289    | CA       | ALA A | 39 | -5.274 | 40.702          | 45.140 |            |
|                 | 111011 | ر ب ــ | <b>₩</b> | and A | 39 | 5.2/1  | 30.702          | 42.T40 | 1.00 31.59 |

|            | MOTA | 290 | С        | ALA A | 39 | -4.692  | 39.464 | 45.770 | 1.00 | 32.11 |
|------------|------|-----|----------|-------|----|---------|--------|--------|------|-------|
|            | ATOM | 291 | 0        | ALA A | 39 | -3.514  | 39.147 | 45.608 | 1.00 | 32.46 |
|            | ATOM | 292 | CB       | ALA A | 39 | -4.934  | 40.729 | 43.662 | 1.00 | 32.13 |
|            | ATOM | 293 | N        | LEU A | 40 | -5.505  | 38.774 | 46.508 | 1.00 | 27.06 |
| - 5        | ATOM | 294 | CA       | LEU A | 40 | -5.001  | 37.593 | 47.155 | 1.00 | 29.04 |
|            | ATOM | 295 | C        | LEU A | 40 | -5.331  | 36.322 | 46.364 | 1.00 | 36.88 |
|            | ATOM | 296 | 0        | LEU A | 40 | -6.485  | 36.100 | 45.963 | 1.00 | 28.89 |
|            | ATOM | 297 | CB       | LEU A | 40 | -5.587  | 37.451 | 48.600 | 1.00 | 29.39 |
|            | ATOM | 298 | CG       | LEU A | 40 | -5.303  | 38.598 | 49.559 | 1.00 | 31.39 |
| 10         | ATOM | 299 | CD1      | LEU A | 40 | -5.435  | 38.063 | 50.970 | 1.00 | 32.62 |
|            | ATOM | 300 | CD2      | LEU A | 40 | -3.879  | 39.019 | 49.355 | 1.00 | 31.60 |
|            | ATOM | 301 | N        | THR A | 41 | -4.310  | 35.470 | 46.165 | 1.00 | 42.40 |
|            | MOTA | 302 | CA       | THR A | 41 | -4.523  | 34.210 | 45.488 | 1.00 | 43.93 |
|            | MOTA | 303 | C        | THR A | 41 | -4.548  | 33.155 | 46.552 | 1.00 | 43.75 |
| 15         | MOTA | 304 | 0        | THR A | 41 | -3.510  | 32.827 | 47.115 | 1.00 | 45.22 |
|            | ATOM | 305 | CB       | THR A | 41 | -3.511  | 33.892 | 44.402 | 1.00 | 55.44 |
|            | MOTA | 306 | OG1      | THR A | 41 | -3.604  | 34.885 | 43.418 | 1.00 | 55.57 |
|            | ATOM | 307 | CG2      | THR A | 41 | -3.872  | 32.544 | 43.802 | 1.00 | 47.78 |
| 177        | ATOM | 308 | N        | VAL A | 42 | -5.755  | 32.688 | 46.848 | 1.00 | 33.25 |
| 20         | ATOM | 309 | CA       | VAL A | 42 | -5.946  | 31.720 | 47.893 | 1.00 | 32.21 |
| % an .<br> | MOTA | 310 | С        | VAL A | 42 | -6.166  | 30.312 | 47.380 |      | 40.56 |
|            | MOTA | 311 | 0        | VAL A | 42 | -6.827  | 30.105 | 46.376 | 1.00 | 42.56 |
| 1-1        | MOTA | 312 | CB       | VAL A | 42 | -7.017  | 32.153 | 48.920 | 1.00 | 36.45 |
| ing me     | MOTA | 313 | CG1      | VAL A | 42 | -6.817  | 31.451 | 50.266 | 1.00 | 36.89 |
| 25         | ATOM | 314 | CG2      | VAL A | 42 | -6.963  | 33.665 | 49.170 | 1.00 | 36.10 |
| UN.        | MOTA | 315 | N        | GLN A | 43 | -5.590  | 29.357 | 48.117 | 1.00 | 35.91 |
| 1.4.       | ATOM | 316 | CA       | GLN A | 43 | -5.678  | 27.945 | 47.838 | 1.00 | 31.59 |
| *          | ATOM | 317 | С        | GLN A | 43 |         | 27.244 | 48.988 | 1.00 | 38.98 |
|            | MOTA | 318 | 0        | GLN A | 43 | -5.916  | 27.317 | 50.144 | 1.00 | 40.92 |
| 30         | ATOM | 319 | CB       | GLN A | 43 | -4.305  | 27.319 | 47.568 | 1.00 | 30.50 |
| Zp.        | ATOM | 320 | CG       | GLN A | 43 |         | 25.800 | 47.259 | 1.00 | 53.80 |
|            | ATOM | 321 | CD       | GLN A | 43 |         | 25.177 | 47.099 | 1.00 | 62.47 |
| 12 m       | ATOM | 322 | OE1      |       | 43 |         | 24.842 | 45.978 |      | 57.34 |
| 14 mg      | ATOM | 323 | NE2      |       | 43 |         | 25.037 | 48.224 |      | 43.72 |
| 35         | MOTA | 324 | N        | SER A | 44 |         | 26.555 | 48.664 |      | 33.83 |
| 4          | MOTA | 325 | CA       | SER A | 44 |         | 25.839 | 49.678 |      | 31.38 |
|            | ATOM | 326 | С        | SER A | 44 |         | 24.557 | 50.117 |      | 42.10 |
|            | ATOM | 327 | 0        | SER A | 44 |         | 23.814 | 49.292 |      | 42.78 |
| 40         | ATOM | 328 | CB       | SER A | 44 |         | 25.530 | 49.226 |      | 28.60 |
| 40         | ATOM | 329 | OG       | SER A | 44 |         | 24.785 | 50.224 |      | 34.57 |
|            | ATOM | 330 | N        | GLN A | 45 |         | 24.286 | 51.423 |      | 38.84 |
|            | MOTA | 331 | CA       | GLN A | 45 |         | 23.082 | 51.994 |      | 37.05 |
|            | ATOM | 332 | С        | GLN A | 45 |         | 22.050 | 52.269 |      | 47.57 |
| 45         | ATOM | 333 | 0        | GLN A | 45 |         | 20.917 | 52.678 |      | 42.94 |
| 45         | ATOM | 334 | CB       | GLN A | 45 |         | 23.411 | 53.280 |      | 36.10 |
|            | ATOM | 335 | CG       | GLN A | 45 |         | 24.539 | 53.034 |      | 54.73 |
|            | MOTA | 336 | CD       | GLN A | 45 |         | 24.206 | 51.888 |      | 45.43 |
|            | ATOM | 337 |          | GLN A | 45 |         | 24.888 | 50.833 |      | 39.23 |
| 50         | MOTA | 338 | NE2      |       | 45 |         | 23.121 | 52.092 |      | 29.80 |
| 50         | MOTA | 339 | N        | GLU A | 46 |         | 22.459 | 52.048 |      | 50.54 |
|            | ATOM | 340 | CA       | GLU A | 46 |         | 21.573 | 52.283 |      | 50.99 |
|            | ATOM | 341 | C        | GLU A | 46 |         | 21.583 | 51.179 |      | 54.49 |
|            | ATOM | 342 | 0        | GLU A | 46 |         | 22.406 | 50.261 |      | 54.00 |
| 55         | ATOM | 343 | CB       | GLU A | 46 |         | 21.793 | 53.657 |      | 51.61 |
| ور         | ATOM | 344 | CG       | GLU A | 46 |         | 22.979 | 54.454 |      | 55.93 |
|            | ATOM | 345 | CD       | GLU A | 46 |         | 23.329 | 55.646 |      | 78.67 |
|            | ATOM | 346 |          | GLU A | 46 |         | 23.765 | 55.543 |      | 69.56 |
|            | ATOM | 347 |          | GLU A | 46 |         | 23.129 | 56.796 |      | 75.10 |
| 60         | ATOM | 348 | N        | ASP A | 47 |         | 20.630 | 51.300 |      | 48.90 |
| 00         | ATOM | 349 | CA       | ASP A | 47 |         | 20.549 | 50.362 |      | 49.03 |
|            | ATOM | 350 | C        | ASP A | 47 |         | 21.425 | 50.846 |      | 55.15 |
|            | MOTA | 351 | 0        | ASP A | 47 |         | 21.631 | 52.044 |      | 56.66 |
|            | MOTA | 352 | CB<br>CG | ASP A | 47 |         | 19.099 | 50.227 |      | 50.20 |
|            | MOTA | 353 | CG       | ASP A | 47 | -13.083 | 18.376 | 49.218 | T.00 | 66.88 |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MOTA | 354 | OD1 | ASP A | 47 | -12.340 1 | 18.945 | 48.434 | 1.00 66.27 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|-----|-------|----|-----------|--------|--------|------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 355 |     | ASP A | 47 |           | 17.081 | 49.284 | 1.00 76.37 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 356 | N   | ASN A | 48 | -15.391 2 | 21.941 | 49.929 | 1.00 50.25 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 357 | CA  | ASN A | 48 | -16.519 2 | 22.755 | 50.339 | 1.00 48.45 |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ATOM | 358 | С   | ASN A | 48 | -16.115 2 | 24.000 | 51.115 | 1.00 43.07 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 359 | 0   | ASN A | 48 | -16.699 2 | 24.351 | 52.138 | 1.00 39.78 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 360 | CB  | ASN A | 48 | -17.559 2 | 21.909 | 51.117 | 1.00 51.19 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MOTA | 361 | CG  | ASN A | 48 | -18.985 2 | 22.417 | 51.005 | 1.00 76.39 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 362 | OD1 | ASN A | 48 | -19.594 2 | 22.348 | 49.929 | 1.00 85.15 |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATOM | 363 | ND2 | ASN A | 48 | -19.515 2 | 22.928 | 52.115 | 1.00 68.29 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MOTA | 364 | N   | LEU A | 49 |           | 24.688 | 50.628 | 1.00 35.36 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MOTA | 365 | CA  | LEU A | 49 | -14.728 2 | 25.874 | 51.335 | 1.00 34.40 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MOTA | 366 | С   | LEU A | 49 | -15.601 2 | 27.009 | 50.851 | 1.00 47.38 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MOTA | 367 | 0   | LEU A | 49 | -15.421 2 | 27.515 | 49.734 | 1.00 45.47 |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MOTA | 368 | CB  | LEU A | 49 | -13.239   | 26.152 | 51.173 | 1.00 31.04 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MOTA | 369 | CG  | LEU A | 49 | -12.781   | 27.394 | 51.885 | 1.00 29.82 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MOTA | 370 | CD1 | LEU A | 49 | -12.725   | 27.137 | 53.385 | 1.00 28.15 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 371 | CD2 | LEU A | 49 | -11.394   | 27.753 | 51.368 | 1.00 30.24 |
| sil es.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MOTA | 372 | N   | ARG A | 50 | -16.568   | 27.363 | 51.699 | 1.00 50.49 |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATOM | 373 | CA  | ARG A | 50 | -17.560   | 28.392 | 51.401 | 1.00 52.83 |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATOM | 374 | С   | ARG A | 50 | -17.169   | 29.838 | 51.702 | 1.00 55.57 |
| il.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ATOM | 375 | 0   | ARG A | 50 | -17.627   | 30.760 | 51.011 | 1.00 53.89 |
| <b>j.</b> 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ATOM | 376 | CB  | ARG A | 50 | -18.928   | 28.028 | 51.986 | 1.00 58.35 |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATOM | 377 | CG  | ARG A | 50 | -19.863   | 27.354 | 50.980 | 1.00 74.76 |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATOM | 378 | CD  | ARG A | 50 | -20.438   | 26.024 | 51.462 | 1.00 81.60 |
| Sid sist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ATOM | 379 | NE  | ARG A | 50 | -21.214   | 25.355 | 50.415 | 1.00 94.37 |
| u a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ATOM | 380 | CZ  | ARG A | 50 | -22.465   | 24.888 | 50.538 | 1.00100.00 |
| i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ATOM | 381 | NH1 | ARG A | 50 | -23.151   | 24.990 | 51.687 | 1.00100.00 |
| ₩.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATOM | 382 | NH2 | ARG A | 50 | -23.046   | 24.297 | 49.471 | 1.00 74.34 |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MOTA | 383 | N   | SER A | 51 | -16.331   | 30.006 | 52.743 | 1.00 54.71 |
| T.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATOM | 384 | CA  | SER A | 51 | -15.823   | 31.297 | 53.224 | 1.00 53.49 |
| n.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATOM | 385 | С   | SER A | 51 | -14.495   | 31.156 | 53.955 | 1.00 53.57 |
| 1 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MOTA | 386 | 0   | SER A | 51 | -14.146   | 30.062 | 54.420 | 1.00 52.93 |
| \$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$6.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$6.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$6.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$6.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00<br>\$4.00 | MOTA | 387 | CB  | SER A | 51 | -16.788   | 31.900 | 54.232 | 1.00 54.03 |
| <b>-35</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MOTA | 388 | OG  | SER A | 51 | -16.871   | 31.048 | 55.373 | 1.00 45.15 |
| - A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ATOM | 389 | N   | LEU A | 52 |           | 32.298 | 54.067 | 1.00 47.19 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 390 | CA  | LEU A | 52 | -12.519   | 32.422 | 54.762 | 1.00 45.66 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 391 | С   | LEU A | 52 | -12.415   | 33.671 | 55.640 | 1.00 50.43 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 392 | 0   | LEU A | 52 |           | 34.633 | 55.471 | 1.00 52.64 |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATOM | 393 | CB  | LEU A | 52 |           | 32.117 | 53.923 | 1.00 44.20 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 394 | CG  | LEU A | 52 |           | 33.044 | 52.745 | 1.00 43.98 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 395 | CD1 | LEU A | 52 |           | 32.687 | 51.554 | 1.00 42.82 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 396 | CD2 | LEU A | 52 |           | 34.501 | 53.094 | 1.00 44.71 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 397 | N   | VAL A | 53 | -11.483   | 33.658 | 56.579 | 1.00 44.97 |
| 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATOM | 398 | CA  | VAL A | 53 | -11.271   | 34.781 | 57.455 | 1.00 41.69 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 399 | С   | VAL A | 53 |           | 35.309 | 57.339 | 1.00 44.25 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MOTA | 400 | 0   | VAL A | 53 |           | 34.551 | 57.302 | 1.00 45.42 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MOTA | 401 | CB  | VAL A | 53 |           | 34.420 | 58.906 | 1.00 45.48 |
| <b>50</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ATOM | 402 |     | VAL A | 53 |           | 35.554 | 59.853 | 1.00 44.94 |
| 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MOTA | 403 |     | VAL A | 53 |           | 34.073 | 59.050 | 1.00 45.79 |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MOTA | 404 | N   | LEU A | 54 |           | 36.627 | 57.166 | 1.00 35.12 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MOTA | 405 | CA  | LEU A | 54 |           | 37.333 | 57.080 | 1.00 34.14 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 406 | С   | LEU A | 54 |           | 38.207 | 58.326 | 1.00 38.92 |
| ا م م                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ATOM | 407 | 0   | LEU A | 54 |           | 38.457 | 59.108 | 1.00 37.45 |
| 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATOM | 408 | CB  | LEU A | 54 |           | 38.216 | 55.831 | 1.00 34.73 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 409 | CG  | LEU A | 54 |           | 37.469 | 54.510 | 1.00 40.25 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 410 |     | LEU A | 54 |           | 38.488 | 53.374 | 1.00 40.69 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 411 |     | LEU A | 54 |           | 36.428 | 54.415 | 1.00 39.64 |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ATOM | 412 | N   | ASP A | 55 |           | 38.674 | 58.524 | 1.00 35.02 |
| 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATOM | 413 | CA  | ASP A | 55 |           | 39.526 | 59.627 | 1.00 31.65 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 414 | С   | ASP A | 55 |           | 40.941 | 59.078 | 1.00 40.38 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 415 | 0   | ASP A | 55 |           | 41.151 | 57.886 | 1.00 39.98 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 416 | CB  | ASP A | 55 |           | 39.232 | 60.075 | 1.00 30.92 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 417 | CG  | ASP A | 55 | -5.397    | 38.103 | 61.037 | 1.00 35.96 |

|             | ATOM | 418 | OD1 | ASP A | 55 | -6.049             | 38.074           | 62.066 | 1.00 38.49 |
|-------------|------|-----|-----|-------|----|--------------------|------------------|--------|------------|
|             | ATOM | 419 |     | ASP A | 55 | -4.491             | 37.205           | 60.682 | 1.00 36.53 |
|             | ATOM | 420 | N   | THR A | 56 | -7.196             | 41.900           | 59.963 | 1.00 42.93 |
|             | ATOM | 421 |     | THR A | 56 | -7.243             | 43.334           | 59.661 | 1.00 41.75 |
| - 5         | ATOM | 422 | C   | THR A | 56 | -7.101             | 44.128           | 60.967 | 1.00 37.46 |
|             | ATOM | 423 | Õ   | THR A | 56 | -7.517             | 43.687           | 62.049 | 1.00 37.40 |
|             | ATOM | 424 | СВ  | THR A | 56 |                    |                  |        |            |
| 14          |      |     |     |       |    | -8.514             | 43.825           | 58.894 | 1.00 37.17 |
|             | ATOM | 425 |     | THR A | 56 | -9.587             | 43.957           | 59.805 | 1.00 31.84 |
| 10          | ATOM | 426 |     | THR A | 56 | -8.910             | 42.943           | 57.714 | 1.00 33.58 |
| 10          | ATOM | 427 | N   | LYS A | 57 | -6.513             | 45.304           | 60.863 | 1.00 26.63 |
|             | MOTA | 428 | CA  | LYS A | 57 | -6.363             | 46.134           | 62.020 | 1.00 25.64 |
|             | MOTA | 429 | С   | LYS A | 57 | -6.585             | 47.539           | 61.547 | 1.00 30.08 |
|             | MOTA | 430 | 0   | LYS A | 57 | -5.854             | 48.012           | 60.711 | 1.00 25.68 |
|             | MOTA | 431 | CB  | LYS A | 57 | -4.991             | 45.983           | 62.641 | 1.00 27.34 |
| 15          | MOTA | 432 | CG  | LYS A | 57 | -4.907             | 46.387           | 64.100 | 1.00 35.83 |
|             | ATOM | 433 | CD  | LYS A | 57 | -3.514             | 46.904           | 64.471 | 1.00 35.57 |
|             | ATOM | 434 | CE  | LYS A | 57 | -2.901             | 46.225           | 65.689 | 1.00 50.54 |
|             | MOTA | 435 | NZ  | LYS A | 57 | -2.521             | 47.180           | 66.757 | 1.00 55.43 |
| eT m        | ATOM | 436 | N   | ASP A | 58 | -7.617             | 48.188           | 62.065 | 1.00 32.68 |
| 20          | ATOM | 437 | CA  | ASP A | 58 | -7.895             | 49.545           | 61.665 | 1.00 35.27 |
| il -        | ATOM | 438 | C   | ASP A | 58 | -7.894             | 49.710           | 60.149 | 1.00 38.24 |
|             | ATOM | 439 | ō   | ASP A | 58 | -7.289             | 50.627           | 59.571 | 1.00 35.86 |
| į.          | ATOM | 440 | CB  | ASP A | 58 | -6.968             | 50.550           | 62.386 | 1.00 33.80 |
| 5 M/A       | ATOM | 441 | CG  | ASP A | 58 | -7.041             | 50.393           | 63.880 | 1.00 57.22 |
| 25          |      |     |     |       |    |                    |                  |        |            |
| 4           | ATOM | 442 |     | ASP A | 58 | -8.073             | 50.136           | 64.478 | 1.00 57.20 |
| LT          | ATOM | 443 |     | ASP A | 58 | -5.878             | 50.562           | 64.463 | 1.00 45.82 |
| - 4w        | ATOM | 444 | N   | LEU A | 59 | -8.604             | 48.796           | 59.516 | 1.00 37.68 |
|             | MOTA | 445 | CA  | LEU A | 59 | -8.720             | 48.813           | 58.079 | 1.00 39.36 |
| 3.20        | ATOM | 446 | C   | LEU A | 59 | -10.077            | 49.243           | 57.555 | 1.00 45.51 |
| <b>4 30</b> | MOTA | 447 | 0   | LEU A | 59 | -11.146            | 48.946           | 58.120 | 1.00 44.18 |
| T.          | MOTA | 448 | CB  | LEU A | 59 | -8.265             | 47.506           | 57.422 | 1.00 38.42 |
|             | MOTA | 449 | CG  | LEU A | 59 | -6.762             | 47.475           | 57.218 | 1.00 37.40 |
| 7-7         | MOTA | 450 |     | LEU A | 59 | -6.392             | 46.173           | 56.526 | 1.00 36.39 |
|             | MOTA | 451 | CD2 | LEU A | 59 | -6.321             | 48.655           | 56.361 | 1.00 36.57 |
| <b>35</b>   | MOTA | 452 | N   | THR A | 60 | -9.984             | 49.949           | 56.437 | 1.00 42.59 |
| Į+A.        | ATOM | 453 | CA  | THR A | 60 | -11.132            | 50.483           | 55.734 | 1.00 42.63 |
|             | ATOM | 454 | С   | THR A | 60 | -11.357            | 49.705           | 54.463 | 1.00 38.18 |
|             | MOTA | 455 | 0   | THR A | 60 | -10.632            | 49.856           | 53.454 | 1.00 34.33 |
|             | ATOM | 456 | CB  | THR A | 60 | -11.030            | 52.028           | 55.532 | 1.00 65.15 |
| 40          | ATOM | 457 | OG1 | THR A | 60 | -11.806            | 52.736           | 56.504 | 1.00 67.56 |
|             | ATOM | 458 | CG2 | THR A | 60 | -11.345            | 52.480           | 54.104 | 1.00 56.89 |
|             | ATOM | 459 | N   | ILE A | 61 | -12.360            | 48.847           | 54.571 | 1.00 33.39 |
|             | ATOM | 460 | CA  | ILE A | 61 | -12.753            | 47.975           | 53.482 | 1.00 35.89 |
|             | ATOM | 461 | C   | ILE A | 61 | -13.726            | 48.634           | 52.533 | 1.00 41.05 |
| 45          | ATOM | 462 | ō   | ILE A |    | -14.913            |                  | 52.840 | 1.00 40.08 |
|             | ATOM | 463 | CB  | ILE A | 61 | -13.403            | 46.670           | 53.944 | 1.00 39.71 |
|             | ATOM | 464 |     | ILE A | 61 | -12.482            | 45.826           | 54.832 | 1.00 39.71 |
|             | ATOM | 465 |     | ILE A | 61 |                    |                  |        |            |
|             | ATOM | 466 |     | ILE A | 61 | -13.788<br>-11.027 | 45.900<br>45.851 | 52.691 | 1.00 38.96 |
| 50          | ATOM |     |     |       |    |                    |                  | 54.358 | 1.00 49.61 |
| 50          |      | 467 | N   | GLU A | 62 | -13.219            | 49.080           | 51.391 | 1.00 40.23 |
|             | MOTA | 468 | CA  | GLU A | 62 | -14.040            | 49.700           | 50.365 | 1.00 41.73 |
|             | ATOM | 469 | C   | GLU A | 62 | -14.986            | 48.633           | 49.826 | 1.00 47.09 |
|             | MOTA | 470 | 0   | GLU A | 62 | -16.207            | 48.726           | 49.926 | 1.00 47.52 |
| 55          | ATOM | 471 | CB  | GLU A | 62 | -13.138            | 50.272           | 49.239 | 1.00 44.08 |
| 55          | ATOM | 472 | CG  | GLU A | 62 | -13.765            | 51.406           | 48.381 | 1.00 64.08 |
|             | MOTA | 473 | CD  | GLU A | 62 | -14.686            | 50.946           | 47.256 | 1.00100.00 |
|             | ATOM | 474 |     | GLU A | 62 | -15.458            | 50.002           | 47.376 | 1.00100.00 |
|             | ATOM | 475 | OE2 | GLU A | 62 | -14.591            | 51.670           | 46.146 | 1.00 75.11 |
|             | ATOM | 476 | N   | LYS A | 63 | -14.399            | 47.580           | 49.267 | 1.00 43.46 |
| 60          | ATOM | 477 | CA  | LYS A | 63 | -15.168            | 46.474           | 48.746 | 1.00 40.53 |
|             | ATOM | 478 | C   | LYS A | 63 | -14.250            | 45.307           | 48.489 | 1.00 45.38 |
|             | ATOM | 479 | 0   | LYS A | 63 | -13.046            | 45.500           | 48.362 | 1.00 43.51 |
|             | ATOM | 480 | CB  | LYS A | 63 | -15.818            | 46.830           | 47.428 | 1.00 40.46 |
|             | ATOM | 481 | CG  | LYS A | 63 | -14.789            | 46.959           | 46.321 | 1.00 20.53 |
|             |      |     |     |       |    |                    |                  |        |            |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 482 | CD  | LYS A | 63 | -15.367 | 47.555 | 45.054 | 1.00 28.36 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|-----|-------|----|---------|--------|--------|------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 483 | CE  | LYS A | 63 | -14.315 | 48.158 | 44.139 | 1.00 40.61 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MOTA | 484 | NZ  | LYS A | 63 | -14.588 | 47.938 |        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |     |     |       |    |         |        | 42.711 | 1.00 54.71 |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ATOM | 485 | N   | VAL A | 64 | -14.862 | 44.116 | 48.441 | 1.00 45.57 |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MOTA | 486 | CA  | VAL A | 64 | -14.190 | 42.844 | 48.171 | 1.00 44.90 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MOTA | 487 | С   | VAL A | 64 | -14.666 | 42.263 | 46.841 | 1.00 46.44 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 488 | 0   | VAL A | 64 | -15.826 | 41.917 | 46.700 | 1.00 45.81 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 489 | СВ  | VAL A | 64 | -14.505 | 41.748 | 49.192 | 1.00 46.24 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 490 |     | VAL A | 64 | -13.864 |        |        |            |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATOM |     |     |       |    |         | 40.471 | 48.669 | 1.00 44.81 |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MOTA | 491 |     | VAL A | 64 | -14.040 | 42.048 | 50.627 | 1.00 44.77 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MOTA | 492 | N   | VAL A | 65 | -13.793 | 42.099 | 45.875 | 1.00 43.10 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 493 | CA  | VAL A | 65 | -14.240 | 41.537 | 44.604 | 1.00 41.42 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 494 | С   | VAL A | 65 | -13.707 | 40.156 | 44.282 | 1.00 42.13 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 495 | 0   | VAL A | 65 | -12.605 | 39.787 | 44.660 | 1.00 42.64 |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATOM | 496 | СВ  | VAL A | 65 | -13.856 | 42.462 |        |            |
| 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |     |     |       |    |         |        | 43.484 | 1.00 44.58 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 497 |     | VAL A | 65 | -14.520 | 42.037 | 42.189 | 1.00 42.79 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 498 | CG2 | VAL A | 65 | -14.264 | 43.874 | 43.883 | 1.00 45.05 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 499 | N   | ILE A | 66 | -14.515 | 39.402 | 43.556 | 1.00 38.68 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MOTA | 500 | CA  | ILE A | 66 | -14.179 | 38.053 | 43.113 | 1.00 39.98 |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATOM | 501 | C   | ILE A | 66 | -14.899 | 37.774 | 41.802 | 1.00 44.86 |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |     |     |       |    |         |        |        |            |
| THE STATE OF THE S | MOTA | 502 | 0   | ILE A | 66 | -16.136 | 37.735 | 41.729 | 1.00 42.69 |
| 12 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MOTA | 503 | CB  | ILE A | 66 | -14.520 | 36.947 | 44.113 | 1.00 44.28 |
| L.A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ATOM | 504 | CG1 | ILE A | 66 | -13.813 | 37.127 | 45.445 | 1.00 47.27 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 505 | CG2 | ILE A | 66 | -14.141 | 35.578 | 43.550 | 1.00 42.84 |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MOTA | 506 | CD1 | ILE A | 66 | -14.352 | 36.169 | 46.514 | 1.00 38.79 |
| 18.5 cm/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ATOM | 507 | N   | ASN A | 67 | -14.120 | 37.549 |        |            |
| un i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |     |     |       |    |         |        | 40.759 | 1.00 42.94 |
| }=1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ATOM | 508 | CA  | ASN A | 67 | -14.715 | 37.266 | 39.472 | 1.00 44.24 |
| Sec. and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MOTA | 509 | С   | ASN A | 67 | -15.541 | 38.444 | 39.008 | 1.00 54.25 |
| ₩                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ATOM | 510 | 0   | asn a | 67 | -16.743 | 38.344 | 38.768 | 1.00 57.56 |
| <b>30</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MOTA | 511 | CB  | ASN A | 67 | -15.595 | 36.007 | 39.507 | 1.00 40.72 |
| T.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MOTA | 512 | CG  | ASN A | 67 | -14.788 | 34.759 | 39.745 | 1.00 57.39 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 513 |     | ASN A | 67 | -13.581 | 34.711 | 39.454 |            |
| F.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |     |     |       |    |         |        |        | 1.00 52.63 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 514 |     | ASN A | 67 | -15.446 | 33.760 | 40.317 | 1.00 44.54 |
| (2 H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ATOM | 515 | N   | GLY A | 68 | -14.876 | 39.574 | 38.899 | 1.00 50.43 |
| <b>235</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ATOM | 516 | CA  | GLY A | 68 | -15.517 | 40.796 | 38.462 | 1.00 48.89 |
| - A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ATOM | 517 | С   | GLY A | 68 | -16.807 | 41.115 | 39.194 | 1.00 48.77 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 518 | 0   | GLY A | 68 | -17.523 | 42.018 | 38.803 | 1.00 51.39 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 519 | N   | GLN A | 69 | -17.129 | 40.385 | 40.244 | 1.00 40.06 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM |     | CA  |       |    |         |        |        |            |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | 520 |     | GLN A | 69 | -18.348 | 40.716 | 40.928 | 1.00 40.02 |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATOM | 521 | С   | GLN A | 69 | -18.031 | 41.059 | 42.364 | 1.00 50.45 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 522 | 0   | GLN A | 69 | -16.943 | 40.748 | 42.855 | 1.00 50.53 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 523 | CB  | GLN A | 69 | -19.415 | 39.602 | 40.829 | 1.00 40.78 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 524 | CG  | GLN A | 69 | -19.966 | 39.367 | 39.414 | 1.00 23.77 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 525 | CD  | GLN A | 69 | -20.513 | 40.646 | 38.831 | 1.00 56.53 |
| 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATOM | 526 |     | GLN A | 69 | -19.974 | 41.198 |        |            |
| 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |     |     |       |    |         |        | 37.859 | 1.00 55.28 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 527 |     | GLN A | 69 | -21.588 | 41.134 | 39.437 | 1.00 62.26 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 528 | N   | GLU A | 70 | -18.975 | 41.718 | 43.028 | 1.00 49.43 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 529 | CA  | GLU A | 70 | -18.766 | 42.094 | 44.407 | 1.00 50.67 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MOTA | 530 | С   | GLU A | 70 | -19.296 | 40.996 | 45.288 | 1.00 57.90 |
| 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATOM | 531 | 0   | GLU A | 70 | -20.272 | 40.367 | 44.909 | 1.00 63.90 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 532 | CB  | GLU A | 70 | -19.449 | 43.434 | 44.732 | 1.00 52.26 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 533 | CG  | GLU A | 70 |         | 44.624 |        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |     |     |       |    | -18.824 |        | 43.970 | 1.00 64.80 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 534 | CD  | GLU A | 70 | -19.181 | 45.967 | 44.555 | 1.00 91.82 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MOTA | 535 |     | GLU A | 70 | -19.749 | 46.108 | 45.629 | 1.00100.00 |
| 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATOM | 536 | OE2 | GLU A | 70 | -18.814 | 46.963 | 43.785 | 1.00 76.01 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 537 | N   | VAL A | 71 | -18.655 | 40.742 | 46.433 | 1.00 47.28 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MOTA | 538 | CA  | VAL A | 71 | -19.119 | 39.685 | 47.335 | 1.00 43.84 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |     |     |       |    |         |        |        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 539 | С   | VAL A | 71 | -19.434 | 40.153 | 48.768 | 1.00 41.62 |
| <b>/</b> 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ATOM | 540 | 0   | VAL A | 71 | -18.983 | 41.206 | 49.254 | 1.00 35.70 |
| 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MOTA | 541 | CB  | VAL A | 71 | -18.308 | 38.361 | 47.273 | 1.00 46.05 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MOTA | 542 | CG1 | VAL A | 71 | -18.062 | 37.923 | 45.827 | 1.00 45.19 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MOTA | 543 |     | VAL A | 71 | -16.979 | 38.460 | 48.017 | 1.00 45.24 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 544 | N   | LYS A | 72 | -20.239 | 39.343 | 49.431 | 1.00 39.34 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM | 545 | CA  | LYS A | 72 | -20.610 | 39.594 | 50.792 |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TION | 242 | CA. | nro W | 12 | -20.010 | 33.334 | 30.132 | 1.00 42.40 |

|                                           |       |     | _   |       |    | 10 047 ( |        | F 2 6 6 6 |            |
|-------------------------------------------|-------|-----|-----|-------|----|----------|--------|-----------|------------|
|                                           | MOTA  | 546 | С   | LYS A | 72 |          | 39.466 | 51.668    | 1.00 56.92 |
|                                           | MOTA  | 547 | 0   | LYS A | 72 | -18.399  | 38.729 | 51.334    | 1.00 59.27 |
|                                           | ATOM  | 548 | CB  | LYS A | 72 | -21.719  | 38.629 | 51.211    | 1.00 45.76 |
|                                           | ATOM  | 549 | CG  | LYS A | 72 |          | 38.960 | 52.557    | 1.00 86.98 |
| 5                                         |       |     |     |       |    |          |        |           |            |
| 2                                         | ATOM  | 550 | CD  | LYS A | 72 |          | 38.767 | 52.606    | 1.00100.00 |
|                                           | ATOM  | 551 | CE  | LYS A | 72 | -24.656  | 10.012 | 53.077    | 1.00100.00 |
|                                           | MOTA  | 552 | NZ  | LYS A | 72 | -26.011  | 39.730 | 53.592    | 1.00100.00 |
|                                           | ATOM  | 553 | N   | TYR A | 73 | -19.332  | 40.210 | 52.780    | 1.00 55.45 |
|                                           |       | 554 | CA  | TYR A | 73 |          | 10.226 | 53.747    | 1.00 53.31 |
| 10                                        | ATOM  |     |     |       |    |          |        |           |            |
| 10                                        | MOTA  | 555 | С   | TYR A | 73 |          | 40.884 | 55.068    | 1.00 50.87 |
|                                           | MOTA  | 556 | 0   | TYR A | 73 | -19.552  | 41.703 | 55.139    | 1.00 47.82 |
|                                           | MOTA  | 557 | CB  | TYR A | 73 | -16.891  | 40.741 | 53.214    | 1.00 52.73 |
|                                           | MOTA  | 558 | CG  | TYR A | 73 |          | 42.244 | 53.227    | 1.00 51.76 |
|                                           |       | 559 |     | TYR A | 73 |          | 42.946 | 54.416    |            |
| 15                                        | MOTA  |     |     |       |    |          |        |           | 1.00 52.82 |
| 15                                        | MOTA  | 560 |     | TYR A | 73 |          | 42.967 | 52.039    | 1.00 53.30 |
|                                           | ATOM  | 561 | CE1 | TYR A | 73 | -16.439  | 44.340 | 54.422    | 1.00 52.71 |
|                                           | ATOM  | 562 | CE2 | TYR A | 73 | -16.804  | 44.359 | 52.026    | 1.00 55.39 |
|                                           | ATOM  | 563 | CZ  | TYR A | 73 |          | 45.044 | 53.229    | 1.00 63.45 |
|                                           |       |     |     |       |    |          |        |           |            |
| ## AA                                     | MOTA  | 564 | OH  | TYR A | 73 |          | 46.404 | 53.215    | 1.00 69.53 |
| 20                                        | MOTA  | 565 | N   | ALA A | 74 | -17.927  | 40.494 | 56.112    | 1.00 45.37 |
| 41                                        | ATOM  | 566 | CA  | ALA A | 74 | -18.180  | 40.999 | 57.433    | 1.00 42.62 |
|                                           | ATOM  | 567 | С   | ALA A | 74 | -16.892  | 41.265 | 58.222    | 1.00 47.81 |
|                                           |       | 568 | ō.  | ALA A | 74 |          | 40.554 | 58.133    |            |
| \$=#.                                     | ATOM  |     |     |       |    |          |        |           | 1.00 45.50 |
| 25                                        | ATOM  | 569 | CB  | ALA A | 74 |          | 40.035 | 58.170    | 1.00 40.75 |
| 25                                        | ATOM  | 570 | N   | LEU A | 75 | -16.930  | 42.323 | 59.005    | 1.00 49.02 |
| 100                                       | ATOM  | 571 | CA  | LEU A | 75 | -15.829  | 42.693 | 59.869    | 1.00 48.85 |
| il.                                       | ATOM  | 572 | С   | LEU A | 75 |          | 42.464 | 61.281    | 1.00 47.18 |
| j-k                                       |       |     |     |       |    |          |        |           |            |
| lia and                                   | MOTA  | 573 | 0   | LEU A | 75 |          | 43.021 | 61.687    | 1.00 44.35 |
| *                                         | ATOM  | 574 | CB  | LEU A | 75 |          | 44.136 | 59.675    | 1.00 49.64 |
| <b>30</b>                                 | MOTA  | 575 | CG  | LEU A | 75 | -14.789  | 44.357 | 58.270    | 1.00 58.09 |
| er                                        | MOTA  | 576 | CD1 | LEU A | 75 | -14.524  | 45.841 | 58.023    | 1.00 61.34 |
|                                           | MOTA  | 577 |     | LEU A | 75 |          | 43.565 | 58.069    | 1.00 62.34 |
|                                           |       |     |     |       |    |          |        |           |            |
| 2 pt/                                     | MOTA  | 578 | N   | GLY A | 76 |          | 41.592 | 62.004    | 1.00 47.67 |
| La | MOTA  | 579 | CA  | GLY A | 76 | -16.034  | 41.281 | 63.359    | 1.00 46.79 |
| <b>35</b>                                 | MOTA  | 580 | С   | GLY A | 76 | -15.495  | 42.337 | 64.279    | 1.00 47.74 |
| is in                                     | ATOM  | 581 | 0   | GLY A | 76 |          | 43.171 | 63.882    | 1.00 42.87 |
| Az ez                                     |       | 582 | N   | GLU A | 77 |          | 42.311 | 65.502    |            |
|                                           | ATOM  |     |     |       |    |          |        |           | 1.00 48.32 |
|                                           | MOTA  | 583 | CA  | GLU A | 77 |          | 43.300 | 66.431    | 1.00 52.14 |
|                                           | ATOM  | 584 | С   | GLU A | 77 | -14.029  | 43.195 | 66.679    | 1.00 56.71 |
| 40                                        | ATOM  | 585 | 0   | GLU A | 77 | -13.418  | 42.120 | 66.591    | 1.00 55.78 |
|                                           | ATOM  | 586 | CB  | GLU A | 77 | -16.357  | 43.341 | 67.732    | 1.00 55.55 |
|                                           | ATOM  | 587 | CG  | GLU A | 77 |          | 42.063 | 67.969    | 1.00 79.57 |
|                                           |       |     |     |       |    |          |        |           |            |
|                                           | ATOM  | 588 | CD  | GLU A | 77 |          | 41.739 | 69.427    | 1.00100.00 |
|                                           | ATOM  | 589 |     | GLU A | 77 | -16.537  | 41.435 | 70.211    | 1.00100.00 |
| 45                                        | ATOM  | 590 | OE2 | GLU A | 77 | -18.712  | 41.799 | 69.770    | 1.00100.00 |
|                                           | ATOM  | 591 | N   | ARG A | 78 | -13.452  | 44.344 | 67.000    | 1.00 54.17 |
|                                           | ATOM  | 592 | CA  | ARG A | 78 |          | 44.433 | 67.298    | 1.00 53.38 |
|                                           |       |     |     |       |    |          |        |           |            |
|                                           | ATOM  | 593 | С   | ARG A | 78 |          | 43.656 | 68.579    | 1.00 58.88 |
|                                           | ATOM  | 594 | 0   | ARG A | 78 | -12.247  | 43.767 | 69.635    | 1.00 61.35 |
| 50                                        | MOTA  | 595 | CB  | ARG A | 78 | -11.571  | 45.891 | 67.367    | 1.00 41.96 |
|                                           | MOTA  | 596 | CG  | ARG A | 78 | -10.050  | 46.006 | 67.326    | 1.00 38.20 |
|                                           |       | 597 | CD  |       | 78 |          |        |           |            |
|                                           | MOTA  |     |     | ARG A |    |          | 47.411 | 67.551    | 1.00 44.73 |
|                                           | ATOM  | 598 | NE  | ARG A | 78 |          | 47.648 | 66.842    | 1.00 66.47 |
|                                           | MOTA  | 599 | CZ  | ARG A | 78 | -7.250   | 48.247 | 67.389    | 1.00 97.61 |
| 55                                        | ATOM  | 600 | NH1 | ARG A | 78 | -7.276   | 48.692 | 68.645    | 1.00100.00 |
|                                           | ATOM  | 601 |     | ARG A | 78 |          | 48.413 | 66.663    | 1.00 80.10 |
|                                           |       |     |     |       |    |          |        |           |            |
|                                           | ATOM  | 602 | N   | GLN A | 79 |          | 42.857 | 68.463    | 1.00 49.54 |
|                                           | MOTA  | 603 | CA  | GLN A | 79 |          | 42.115 | 69.566    | 1.00 47.71 |
|                                           | ATOM  | 604 | С   | GLN A | 79 | -8.664   | 42.789 | 69.865    | 1.00 49.77 |
| 60                                        | ATOM  | 605 | 0   | GLN A | 79 |          | 42.421 | 69.333    | 1.00 52.63 |
|                                           | ATOM  | 606 | CB  | GLN A | 79 |          | 40.613 | 69.240    | 1.00 49.05 |
|                                           |       |     |     |       |    |          |        |           |            |
|                                           | ATOM  | 607 | CG  | GLN A | 79 |          | 39.794 | 69.339    | 1.00 57.32 |
|                                           | ATOM  | 608 | CD  | GLN A | 79 |          | 38.435 | 68.656    | 1.00 69.51 |
|                                           | ATOM  | 609 | OE1 | GLN A | 79 | -10.400  | 37.480 | 69.152    | 1.00 49.72 |
|                                           | * £ _ |     |     |       | -  |          |        |           |            |

|        | ATOM   | 610 | NE2 | GLN A | 79 | -11.727 | 38.340 | 67.517 | 1 00 | 62.60 |
|--------|--------|-----|-----|-------|----|---------|--------|--------|------|-------|
|        | ATOM   | 611 | N   | SER A | 80 | -8.699  | 43.826 | 70.683 |      |       |
|        | ATOM   | 612 | CA  | SER A |    |         |        |        |      | 41.74 |
|        |        |     |     |       | 80 | -7.490  | 44.543 | 71.022 |      | 37.90 |
| _      | ATOM   | 613 | С   | SER A | 80 | -6.437  | 44.559 | 69.920 | 1.00 | 35.98 |
| , 5    | ATOM   | 614 | 0   | SER A | 80 | -6.736  | 44.939 | 68.801 | 1.00 | 34.52 |
|        | ATOM   | 615 | CB  | SER A | 80 | -6.910  | 44.144 | 72.372 |      | 39.07 |
|        | ATOM   | 616 | OG  | SER A | 80 | -7.255  | 42.803 | 72.684 |      | 61.32 |
|        | ATOM   | 617 | N   | TYR A | 81 | -5.206  |        |        |      |       |
|        |        |     | CA  |       |    |         | 44.154 | 70.289 |      | 29.92 |
| 10     | ATOM   | 618 |     | TYR A | 81 | -4.027  | 44.114 | 69.430 |      | 26.45 |
| 10     | MOTA   | 619 | С   | TYR A | 81 | -4.163  | 43.116 | 68.285 | 1.00 | 30.82 |
|        | ATOM   | 620 | 0   | TYR A | 81 | -3.480  | 43.215 | 67.269 |      | 34.48 |
|        | ATOM   | 621 | CB  | TYR A | 81 | -2.727  | 43.893 | 70.257 |      | 25.19 |
|        | ATOM   | 622 | CG  | TYR A | 81 | -2.713  |        |        |      |       |
|        | ATOM   | 623 |     | TYR A |    |         | 42.491 | 70.839 |      | 24.57 |
| 15     |        |     |     |       | 81 | -3.327  | 42.247 | 72.066 | 1.00 | 27.27 |
| 15     | ATOM   | 624 |     | TYR A | 81 | -2.165  | 41.410 | 70.148 | 1.00 | 21.82 |
|        | ATOM   | 625 | CE1 | TYR A | 81 | -3.380  | 40.975 | 72.632 | 1.00 | 26.49 |
|        | ATOM   | 626 | CE2 | TYR A | 81 | -2.230  | 40.122 | 70.682 | 1 00 | 23.48 |
|        | MOTA   | 627 | CZ  | TYR A | 81 | -2.827  | 39.908 | 71.930 |      |       |
|        | ATOM   | 628 | OH  | TYR A |    |         |        |        |      | 38.28 |
|        |        |     |     |       | 81 | -2.889  | 38.653 | 72.493 |      | 42.17 |
| 20     | ATOM   | 629 | N   | LYS A | 82 | -5.038  | 42.136 | 68.415 | 1.00 | 26.97 |
| d)     | MOTA   | 630 | CA  | LYS A | 82 | -5.170  | 41.229 | 67.293 | 1.00 | 27.99 |
| ja š.  | MOTA   | 631 | С   | LYS A | 82 | -5.867  | 41.898 | 66.072 |      | 38.90 |
|        | MOTA   | 632 | 0   | LYS A | 82 | -5.614  | 41.541 | 64.900 |      |       |
| 100    | ATOM   | 633 | СВ  | LYS A | 82 |         |        |        |      | 37.15 |
| 25     |        |     |     |       |    | -5.785  | 39.918 | 67.708 |      | 27.59 |
| 25     | ATOM   | 634 | CG  | LYS A | 82 | -5.169  | 39.451 | 69.008 | 1.00 | 39.68 |
|        | ATOM   | 635 | CD  | LYS A | 82 | -5.435  | 37.993 | 69.350 | 1.00 | 46.78 |
| J=6.   | ATOM   | 636 | CE  | LYS A | 82 | -6.414  | 37.819 | 70.492 |      | 59.84 |
|        | ATOM   | 637 | NZ  | LYS A | 82 | -7.097  | 36.523 | 70.452 |      | 63.48 |
|        | ATOM   | 638 | N   | GLY A | 83 | -6.738  |        |        |      |       |
| 30     | - ATOM | 639 | CA  |       |    |         | 42.894 | 66.367 |      | 35.64 |
| T. 30  |        |     |     | GLY A | 83 | -7.512  | 43.620 | 65.368 |      | 33.65 |
|        | MOTA   | 640 | С   | GLY A | 83 | -8.866  | 42.925 | 65.111 | 1.00 | 32.95 |
| 1 . m. | ATOM   | 641 | 0   | GLY A | 83 | -9.297  | 42.063 | 65.870 | 1.00 | 28.28 |
| 17     | ATOM   | 642 | N   | SER A | 84 | -9.535  | 43.300 | 64.026 |      | 34.51 |
| 35     | ATOM   | 643 | CA  | SER A | 84 | -10.839 | 42.742 | 63.673 |      | 36.13 |
| 35     | ATOM   | 644 | С   | SER A | 84 | -10.796 |        |        |      |       |
| 3,44   | ATOM   | 645 | Ö   |       |    |         | 41.724 | 62.549 |      | 40.65 |
|        |        |     |     | SER A | 84 | -10.173 | 41.893 | 61.501 |      | 39.77 |
|        | ATOM   | 646 | CB  | SER A | 84 | -11.883 | 43.808 | 63.383 | 1.00 | 37.68 |
|        | ATOM   | 647 | OG  | SER A | 84 | -11.812 | 44.832 | 64.352 | 1.00 | 45.14 |
|        | ATOM   | 648 | N   | PRO A | 85 | -11.491 | 40.656 | 62.791 |      | 37.01 |
| 40     | ATOM   | 649 | CA  | PRO A | 85 | -11.573 | 39.559 | 61.863 |      | 34.91 |
|        | ATOM   | 650 | С   | PRO A | 85 | -12.459 | 39.946 |        |      |       |
|        | ATOM   | 651 | ŏ   | PRO A | 85 |         |        | 60.712 | 1.00 |       |
|        |        |     |     |       |    | -13.514 | 40.522 | 60.941 |      | 35.30 |
|        | ATOM   | 652 | CB  | PRO A | 85 | -12.227 | 38.406 | 62.647 | 1.00 |       |
| 4.5    | ATOM   | 653 | CG  | PRO A | 85 | -12.714 | 38.981 | 63.974 | 1.00 | 44.97 |
| 45     | MOTA   | 654 | CD  | PRO A | 85 | -12.325 | 40.462 | 64.004 | 1.00 |       |
|        | ATOM   | 655 | N   | MET A | 86 | -12.018 | 39.642 | 59.487 | 1.00 |       |
|        | ATOM   | 656 | CA  | MET A | 86 | -12.756 | 39.960 | 58.275 | 1.00 |       |
|        | ATOM   | 657 | С   | MET A | 86 | -13.165 |        |        |      |       |
|        | MOTA   |     |     |       |    |         | 38.683 | 57.552 | 1.00 |       |
| 50     |        | 658 | 0   | MET A | 86 | -12.338 | 38.015 | 56.954 | 1.00 |       |
| 30     | MOTA   | 659 | CB  | MET A | 86 | -11.921 | 40.829 | 57.337 | 1.00 | 29.51 |
|        | MOTA   | 660 | CG  | MET A | 86 | -12.750 | 41.242 | 56.136 | 1.00 |       |
|        | ATOM   | 661 | SD  | MET A | 86 | -11.816 | 41.878 | 54.701 | 1.00 |       |
|        | ATOM   | 662 | CE  | MET A | 86 | -13.244 | 42.527 |        |      |       |
|        | ATOM   | 663 | N   | GLU A | 87 |         |        | 53.805 | 1.00 |       |
| 55     |        |     |     |       |    | -14.441 | 38.324 | 57.610 | 1.00 |       |
| 33     | ATOM   | 664 | CA  | GLU A | 87 | -14.912 | 37.107 | 56.950 | 1.00 |       |
|        | ATOM   | 665 | С   | GLU A | 87 | -15.495 | 37.352 | 55.560 | 1.00 | 51.53 |
|        | ATOM   | 666 | 0   | GLU A | 87 | -16.425 | 38.129 | 55.424 | 1.00 |       |
|        | ATOM   | 667 | CB  | GLU A | 87 | -15.942 | 36.390 | 57.813 | 1.00 |       |
|        | ATOM   | 668 | CG  | GLU A | 87 | -16.144 |        |        |      |       |
| 60     | ATOM   | 669 | CD  | GLU A | 87 |         | 34.937 | 57.389 | 1.00 |       |
|        |        |     |     |       |    | -17.300 | 34.316 | 58.104 | 1.00 |       |
|        | ATOM   | 670 |     | GLU A | 87 | -18.439 | 34.738 | 57.994 | 1.00 |       |
|        | MOTA   | 671 | OE2 |       | 87 | -16.943 | 33.301 | 58.868 | 1.00 |       |
|        | ATOM   | 672 | N   | ILE A | 88 | -14.942 | 36.659 | 54.544 | 1.00 |       |
|        | ATOM   | 673 | CA  | ILE A | 88 | -15.332 | 36.765 | 53.145 | 1.00 |       |
|        |        |     |     |       |    |         |        |        |      |       |

|                            | ATOM         | 674        | С       | ILE A | 88       | -16.14           | 15 35.610              | 52.613           | 1 00 46 70               |
|----------------------------|--------------|------------|---------|-------|----------|------------------|------------------------|------------------|--------------------------|
|                            | ATOM         | 675        | Ö       | ILE A | 88       | -15.72           |                        | 52.656           | 1.00 46.72<br>1.00 48.10 |
|                            | ATOM         | 676        | СB      | ILE A | 88       | -14.10           |                        | 52.292           | 1.00 48.10               |
|                            | ATOM         | 677        |         | ILE A | 88       | -13.3            | -                      | 52.696           | 1.00 39.13               |
| 5                          | ATOM         | 678        |         |       | 88       | -14.5            |                        | 50.839           | 1.00 28.13               |
|                            | ATOM         | 679        |         | ILE A | 88       | -11.9            |                        | 52.051           | 1.00 20.13               |
|                            | ATOM         | 680        | N       | SER A | 89       | -17.3            |                        | 52.077           | 1.00 45.16               |
|                            | ATOM         | 681        | CA      | SER A | 89       | -18.1            |                        | 51.559           | 1.00 44.76               |
|                            | ATOM         | 682        | С       | SER A | 89       | -17.90           |                        | 50.131           | 1.00 46.01               |
| 10                         | ATOM         | 683        | 0       | SER A | 89       | -18.04           |                        | 49.243           | 1.00 44.34               |
|                            | MOTA         | 684        | CB      | SER A | 89       | -19.6            | 35.121                 | 51.827           | 1.00 51.87               |
|                            | ATOM         | 685        | OG      | SER A | 89       | -19.94           |                        | 53.198           | 1.00 69.07               |
|                            | MOTA         | 686        | N       | LEU A | 90       | -17.49           | 33.279                 | 49.914           | 1.00 46.43               |
|                            | MOTA         | 687        | CA      | LEU A | 90       | -17.20           |                        | 48.575           | 1.00 46.93               |
| 15                         | ATOM         | 688        | C       | LEU A | 90       | -18.4            |                        | 47.935           | 1.00 55.26               |
|                            | ATOM         | 689        | 0       | LEU A | 90       | -19.2            |                        | 48.556           | 1.00 54.94               |
|                            | ATOM         | 690        | CB      | LEU A | 90       | -16.08           |                        | 48.521           | 1.00 46.14               |
| 100 mg                     | ATOM         | 691        | CG      | LEU A | 90       | -15.26           |                        | 49.792           | 1.00 50.78               |
|                            | ATOM         | 692        |         | LEU A | 90       | -14.54           |                        | 49.806           | 1.00 50.27               |
| 20                         | ATOM         | 693        |         | LEU A | 90       | -14.2            |                        | 49.863           | 1.00 55.52               |
| j.k                        | ATOM         | 694        | N       | PRO A | 91       | -18.62           |                        | 46.683           | 1.00 54.81               |
|                            | ATOM         | 695        | CA      | PRO A | 91       | -19.75           |                        | 45.870           | 1.00 58.45               |
| g sile<br>unig max<br>sumo | ATOM         | 696        | c       | PRO A | 91       | -19.58           |                        | 45.254           | 1.00 67.78               |
| 25                         | ATOM<br>ATOM | 697<br>698 | O<br>CB | PRO A | 91       | -20.50           |                        | 44.623           | 1.00 68.64               |
|                            | ATOM         | 699        | CG      | PRO A | 91       | -19.84           |                        | 44.738           | 1.00 59.70               |
| <b>*</b>                   | ATOM         | 700        | CD      | PRO A | 91<br>91 | -18.50           |                        | 44.711           | 1.00 61.25               |
|                            | ATOM         | 701        | N       | ILE A | 92       | -17.73<br>-18.41 |                        | 45.961           | 1.00 54.16               |
| j.                         | ATOM         | 702        | CA      | ILE A | 92       | -18.23           |                        | 45.416<br>44.850 | 1.00 64.82               |
| 30                         | ATOM         | 703        | c       | ILE A | 92       | -17.48           |                        | 45.801           | 1.00 65.03<br>1.00 66.34 |
|                            | ATOM         | 704        | o       | ILE A | 92       | -16.2            |                        | 45.865           | 1.00 70.20               |
|                            | ATOM         | 705        | CB      | ILE A | 92       | -17.43           |                        | 43.547           | 1.00 70.20               |
| 22 mg                      | ATOM         | 706        | CG1     | ILE A | 92       | -18.29           |                        | 42.430           | 1.00 70.02               |
|                            | ATOM         | 707        |         | ILE A | 92       | -16.9            |                        | 43.171           | 1.00 71.86               |
| - 35                       | MOTA         | 708        | CD1     | ILE A | 92       | -17.52           |                        | 41.121           | 1.00 80.63               |
|                            | ATOM         | 709        | N       | ALA A | 93       | -18.23           | 9 27.115               | 46.534           | 1.00 54.40               |
|                            | ATOM         | 710        | CA      | ALA A | 93       | -17.52           | 26.247                 | 47.452           | 1.00 51.74               |
|                            | MOTA         | 711        | С       | ALA A | 93       | -16.26           |                        | 46.804           | 1.00 52.66               |
| 40                         | ATOM         | 712        | 0       | ALA A | 93       | -16.28           |                        | 45.662           | 1.00 49.87               |
| 40                         | ATOM         | 713        | CB      | ALA A | 93       | -18.36           |                        | 47.968           | 1.00 52.76               |
|                            | ATOM         | 714        | N       | LEU A | 94       | -15.16           |                        | 47.544           | 1.00 48.18               |
|                            | ATOM<br>ATOM | 715        | CA      | LEU A | 94       | -13.86           |                        | 47.067           | 1.00 43.27               |
|                            | ATOM         | 716<br>717 | C<br>O  | LEU A | 94       | -13.56           |                        | 47.581           | 1.00 43.98               |
| 45                         | ATOM         | 718        | СВ      | LEU A | 94<br>94 | -14.08           |                        | 48.601           | 1.00 44.63               |
|                            | ATOM         | 719        | CG      | LEU A | 94       | -12.71<br>-12.68 |                        | 47.509           | 1.00 41.05               |
|                            | ATOM         | 720        |         | LEU A | 94       | -11.27           | 35 27.638<br>72 28.200 | 46.739           | 1.00 40.03               |
|                            | ATOM         | 721        |         | LEU A | 94       | -13.11           |                        | 46.751<br>45.311 | 1.00 36.88<br>1.00 44.98 |
|                            | ATOM         | 722        | N       | SER A | 95       | -12.70           |                        | 46.875           | 1.00 44.98               |
| 50                         | ATOM         | 723        | CA      | SER A | 95       | -12.32           |                        | 47.256           | 1.00 43.26               |
|                            | ATOM         | 724        | C       | SER A | 95       | -10.80           |                        | 47.344           | 1.00 38.58               |
|                            | ATOM         | 725        | 0       | SER A | 95       | -10.08           |                        | 46.975           | 1.00 36.78               |
|                            | ATOM         | 726        | CB      | SER A | 95       | -12.90           |                        | 46.256           | 1.00 51.55               |
|                            | ATOM         | 727        | OG      | SER A | 95       | -14.29           |                        | 46.156           | 1.00 62.74               |
| 55                         | ATOM         | 728        | N       | LYS A | 96       | -10.32           |                        | 47.830           | 1.00 31.10               |
|                            | ATOM         | 729        | CA      | LYS A | 96       | -8.88            |                        | 47.958           | 1.00 34.92               |
|                            | ATOM         | 730        | С       | LYS A | 96       | -8.05            | 8 21.238               | 46.777           | 1.00 45.63               |
|                            | ATOM         | 731        | 0       | LYS A | 96       | -8.40            |                        | 45.612           | 1.00 49.35               |
| 60                         | ATOM         | 732        | CB      | LYS A | 96       | -8.40            |                        | 48.451           | 1.00 38.53               |
| 60                         | ATOM         | 733        | CG      | LYS A | 96       | -9.18            |                        | 49.651           | 1.00 68.97               |
|                            | ATOM         | 734        | CD      | LYS A | 96       | -8.69            |                        | 50.221           | 1.00 80.86               |
|                            | ATOM         | 735        | CE      | LYS A | 96       | -9.59            |                        | 51.330           | 1.00 92.53               |
|                            | ATOM         | 736        | NZ      | LYS A | 96       | -9.04            |                        | 52.029           | 1.00100.00               |
|                            | ATOM         | 737        | N       | ASN A | 97       | -6.94            | 21.873                 | 47.108           | 1.00 41.92               |

|                       | MOTA         | 738 | CA  | ASN A | 97   | -6.009  | 22.403 | 46.139 | 3 00   | 40.91 |
|-----------------------|--------------|-----|-----|-------|------|---------|--------|--------|--------|-------|
|                       | MOTA         | 739 | С   | ASN A |      | -6.606  | 23.348 | 45.088 |        | 42.64 |
|                       | ATOM         | 740 | 0   | ASN A |      | -5.963  | 23.681 | 44.068 |        | 38.69 |
|                       | ATOM         | 741 | CB  | ASN A |      | -5.084  | 21.304 | 45.583 |        | 28.16 |
| 5                     | ATOM         | 742 | CG  | ASN A |      | -4.327  | 20.568 | 46.677 |        | 52.21 |
|                       | ATOM         | 743 |     | ASN A |      | -3.089  | 20.627 | 46.744 |        |       |
|                       | ATOM         | 744 | ND2 |       |      | -5.060  | 19.858 | 47.533 |        | 55.30 |
|                       | ATOM         | 745 | N   | GLN A |      | -7.833  |        |        |        | 53.87 |
|                       | ATOM         | 746 | CA  | GLN A |      |         | 23.791 | 45.382 |        | 36.59 |
| 10                    | ATOM         | 747 | C   | GLN A |      | -8.557  | 24.718 | 44.536 |        | 38.44 |
| , 10                  | ATOM         | 748 |     |       |      | -8.288  | 26.181 | 44.951 |        | 43.30 |
|                       | ATOM         |     | 0   | GLN A |      | -8.248  | 26.526 | 46.138 |        | 43.40 |
|                       |              | 749 | CB  | GLN A |      | -10.064 | 24.395 | 44.575 |        | 42.26 |
|                       | ATOM         | 750 | CG  | GLN A |      | -10.553 | 23.538 | 43.385 |        | 68.24 |
| 15                    | ATOM         | 751 | CD  | GLN A |      | -12.008 | 23.778 | 43.010 |        | 95.57 |
| 15                    | ATOM         | 752 | OE1 | GLN A |      | -12.890 | 22.935 | 43.278 | 1.00   | 86.92 |
|                       | ATOM         | 753 | NE2 | GLN A |      | -12.271 | 24.935 | 42.393 | 1.00   | 95.48 |
|                       | ATOM         | 754 | N   | GLU A |      | -8.089  | 27.062 | 43.973 | 1.00   | 39.70 |
| 120 St.               | MOTA         | 755 | CA  | GLU A | 99   | -7.817  | 28.468 | 44.280 | 1.00   | 40.49 |
| 20                    | ATOM         | 756 | С   | GLU A | 99   | -8.750  | 29.536 | 43.683 |        | 47.84 |
| 20                    | MOTA         | 757 | 0   | GLU A | 99   | -9.330  | 29.394 | 42.606 |        | 46.85 |
|                       | ATOM         | 758 | CB  | GLU A | 99   | -6.361  | 28.866 | 43.951 |        | 40.24 |
| 1=4 <sub>0</sub>      | ATOM         | 759 | CG  | GLU A | 99   | -5.608  | 27.861 | 43.080 |        | 44.16 |
| \$ 710.<br>1 110.     | ATOM         | 760 | CD  | GLU A | 99   | -4.120  | 28.119 | 42.990 |        |       |
| \$ \$700,<br>(10) 400 | ATOM         | 761 | OE1 | GLU A | 99   | -3.636  | 29.062 | 42.376 |        | 73.95 |
| 25                    | ATOM         | 762 | OE2 | GLU A | 99   | -3.395  | 27.210 | 43.614 |        | 55.99 |
| ga A.                 | ATOM         | 763 | N   | ILE A |      | -8.848  | 30.643 | 44.418 |        | 43.55 |
|                       | ATOM         | 764 | CA  | ILE A |      | -9.595  | 31.800 | 44.005 |        | 43.46 |
| ## ·                  | ATOM         | 765 | С   | ILE A |      | -8.701  | 32.992 | 44.238 |        |       |
| jst.                  | ATOM         | 766 | ō   | ILE A |      | -7.725  | 32.927 | 45.004 |        | 53.31 |
| 30                    | ATOM         | 767 | СВ  | ILE A |      | -10.881 | 32.068 | 44.773 |        | 55.16 |
|                       | ATOM         | 768 | CG1 | ILE A |      | -10.762 | 31.640 |        |        | 46.65 |
|                       | ATOM         | 769 | CG2 | ILE A |      | -12.111 |        | 46.227 |        | 50.76 |
| स्य का<br>मुंदर का    | ATOM         | 770 |     | ILE A |      |         | 31.486 | 44.106 |        | 46.76 |
|                       | ATOM         | 771 | N   | VAL A |      | -9.959  | 32.620 | 47.087 |        | 64.36 |
| 35                    | ATOM         | 772 | CA  | VAL A |      | -9.060  | 34.076 | 43.580 |        | 48.20 |
|                       | ATOM         | 773 | CA  | VAL A |      | -8.382  | 35.329 | 43.760 |        | 45.63 |
|                       | ATOM         | 774 | 0   |       |      | -9.383  | 36.351 |        |        | 48.59 |
|                       | ATOM         | 775 | CB  | VAL A |      | -10.331 | 36.722 | 43.623 |        | 51.29 |
|                       | ATOM         | 776 |     |       |      | -7.461  | 35.793 | 42.633 |        | 45.06 |
| 40                    | ATOM         |     | CG1 | VAL A |      | -7.693  | 35.000 | 41.378 |        | 43.25 |
| 70                    |              | 777 | CG2 | VAL A |      | -7.609  | 37.289 | 42.395 |        | 45.02 |
|                       | ATOM<br>ATOM | 778 | N   | ILE A |      | -9.182  | 36.738 | 45.546 |        | 41.15 |
|                       |              | 779 | CA  | ILE A |      | -10.023 | 37.690 | 46.238 |        | 39.43 |
|                       | MOTA         | 780 | C   | ILE A |      | -9.439  | 39.062 | 46.170 |        | 49.35 |
| 45                    | ATOM         | 781 | 0   | ILE A |      | -8.331  | 39.274 | 46.659 |        | 53.80 |
| 43                    | ATOM         | 782 | CB  | ILE A |      | -10.097 | 37.319 | 47.694 | 1.00   | 39.19 |
|                       | ATOM         | 783 | CGT | ILE A | 102  | -10.180 | 35.800 | 47.809 |        | 35.28 |
|                       | ATOM         | 784 |     | ILE A |      | -11.300 | 37.992 | 48.341 |        | 35.25 |
|                       | ATOM         | 785 |     | ILE A |      | -10.962 | 35.392 | 49.044 | 1.00   | 47.09 |
| 50                    | ATOM         | 786 | N   | GLU A |      | -10.192 | 39.984 | 45.572 |        | 43.20 |
| 30                    | MOTA         | 787 | CA  | GLU A |      | -9.748  | 41.362 | 45.433 |        | 39.88 |
|                       | ATOM         | 788 | С   | GLU A |      | -10.378 | 42.299 | 46.425 | 1.00   | 44.03 |
|                       | MOTA         | 789 | 0   | GLU A |      | -11.580 | 42.558 | 46.385 | 1.00   | 41.34 |
|                       | MOTA         | 790 | CB  | GLU A |      | -9.950  | 41.930 | 44.047 |        | 39.11 |
|                       | ATOM         | 791 | CG  | GLU A |      | -9.017  | 43.112 | 43.863 | 1.00   | 36.18 |
| 55                    | ATOM         | 792 | CD  | GLU A |      | -9.150  | 43.666 | 42.485 |        | 61.93 |
|                       | ATOM         | 793 | OE1 | GLU A |      | -10.157 | 44.234 | 42.100 |        | 69.89 |
|                       | ATOM         | 794 | OE2 |       |      | -8.087  | 43.457 | 41.744 |        | 76.18 |
|                       | MOTA         | 795 | N   | ILE A |      | -9.534  | 42.797 | 47.322 |        | 42.69 |
|                       | ATOM         | 796 | CA  | ILE A |      | -9.969  | 43.718 | 48.346 |        | 40.72 |
| 60                    | ATOM         | 797 | С   | ILE A |      | -9.522  | 45.167 | 48.099 |        | 46.21 |
|                       | ATOM         | 798 | o   | ILE A |      | -8.346  | 45.478 | 47.866 |        | 40.21 |
|                       | ATOM         | 799 | СВ  | ILE A |      | -9.578  | 43.283 | 49.754 |        | 42.68 |
|                       | ATOM         | 800 |     | ILE A |      | -10.006 | 41.855 | 50.032 |        |       |
|                       | ATOM         | 801 | CG2 | ILE A | 104  | -10.225 |        |        |        | 39.85 |
|                       |              |     |     | ~ A   | - 07 | 10.223  | 44.222 | 50.768 | T • OO | 41.53 |

|                              | . A'           | TOM        | 802 | CD1 | ILE   | Α | 104 | -8.839  | 40.99 | 35  | 50.485 | 1 00  | 34.17  |
|------------------------------|----------------|------------|-----|-----|-------|---|-----|---------|-------|-----|--------|-------|--------|
|                              | Δ.             | TOM        | 803 | N   | SER   |   |     | -10.506 | 46.05 |     | 48.173 |       |        |
|                              |                | TOM        | 804 | CA  | SER   |   |     |         |       |     |        |       | 47.94  |
|                              |                |            |     |     |       |   |     | -10.278 | 47.48 |     | 48.046 |       | 48.05  |
| _                            | A'             | TOM        | 805 | С   | SER   | Α | 105 | -10.184 | 47.97 | 17  | 49.482 | 1.00  | 42.39  |
| 5                            | A'             | TOM        | 806 | 0   | SER   | Α | 105 | -11.134 | 47.87 | 79  | 50.263 |       | 39.69  |
|                              | A'             | TOM        | 807 | CB  | SER   |   |     | -11.399 | 48.18 |     | 47.290 |       |        |
|                              |                | TOM        | 808 | OG  |       |   |     |         |       |     |        |       | 53.77  |
|                              |                |            |     |     | SER   |   |     | -11.399 | 47.78 |     | 45.930 |       | 60.69  |
|                              |                | TOM        | 809 | N   | PHE   |   |     | -9.020  | 48.44 | 15  | 49.857 | 1.00  | 35.07  |
|                              | A'             | TOM        | 810 | ÇA  | PHE   | Α | 106 | -8.844  | 48.89 | 0   | 51.223 | 1.00  | 34.98  |
| 10                           | A'             | TOM        | 811 | С   | PHE   | Α | 106 | -8.177  | 50.23 |     | 51.262 |       | 39.26  |
|                              |                | TOM        | 812 | 0   | PHE   |   |     | -7.607  | 50.73 |     |        |       |        |
|                              |                |            |     |     |       |   |     |         |       |     | 50.265 |       | 34.24  |
|                              |                | TOM        | 813 | CB  | PHE   |   |     | -8.015  | 47.86 |     | 52.060 | 1.00  | 36.05  |
|                              | A'             | TOM        | 814 | CG  | PHE   | A | 106 | -6.581  | 47.81 | .5  | 51.556 | 1.00  | 37.24  |
|                              | A'             | TOM        | 815 | CD1 | PHE   | Α | 106 | -6.251  | 47.07 |     | 50.422 |       | 39.71  |
| 15                           | A <sup>4</sup> | TOM        | 816 |     | PHE   |   |     | -5.579  | 48.57 |     | 52.161 |       |        |
|                              |                |            | 817 |     | PHE   |   |     |         |       |     |        |       | 36.44  |
|                              |                | TOM        |     |     |       |   |     | -4.950  | 47.08 |     | 49.920 |       | 41.48  |
|                              |                | TOM        | 818 |     | PHE   | A | 106 | -4.273  | 48.60 | 9 . | 51.672 | 1.00  | 38.19  |
|                              | A'             | TOM        | 819 | CZ  | PHE   | Α | 106 | -3.961  | 47.85 | 6   | 50.540 |       | 37.91  |
| संस्था करते ।<br>अस्त्राच्या | A'             | TOM        | 820 | N   | GLU   | Α | 107 | -8.284  | 50.79 |     | 52.453 |       | 40.64  |
| 20                           |                | TOM        | 821 | CA  | GLU   |   |     | -7.711  |       |     |        |       |        |
| 20                           |                |            |     |     |       |   |     |         | 52.06 |     | 52.848 |       | 43.81  |
| -                            |                | TOM        | 822 | С   | GLU   |   |     | -7.206  | 51.86 |     | 54.284 | 1.00  | 43.82  |
|                              | A'             | TOM        | 823 | 0   | GLU   | Α | 107 | -7.933  | 51.30 | 3   | 55.121 | 1.00  | 38.38  |
| ad as                        | A'             | TOM        | 824 | CB  | GLU   | Α | 107 | -8.737  | 53.23 |     | 52.753 |       | 46.93  |
| ##\                          | A'             | TOM        | 825 | CG  | GLU   | Δ | 107 | -8.107  | 54.63 |     | 52.467 |       |        |
| 25                           |                | TOM        | 826 | CD  | GLU   |   |     |         |       |     |        |       | 67.21  |
| - 20                         |                |            |     |     |       |   |     | -9.086  | 55.71 |     | 52.042 |       | 100.00 |
| In La                        |                | TOM        | 827 | OE1 | GLU   |   |     | -10.208 | 55.50 |     | 51.599 | 1.00  | 100.00 |
| ies.                         | A'             | TOM        | 828 | OE2 | GLU   | Α | 107 | -8.631  | 56.93 | 8   | 52.221 |       | 93.72  |
| **                           | A'             | TOM        | 829 | N   | THR   | Α | 108 | -5.963  | 52.29 |     | 54.551 |       | 39.12  |
| ₩#.                          | A'             | TOM        | 830 | CA  | THR   |   |     | -5.345  | 52.17 |     | 55.873 |       |        |
| 30                           |                | TOM        | 831 | С   |       |   |     |         |       |     |        |       | 39.69  |
|                              |                |            |     |     | THR   |   |     | -5.564  | 53.42 |     | 56.724 |       | 49.82  |
| R Tage                       |                | TOM        | 832 | 0   | THR   |   |     | -5.565  | 54.55 | 2   | 56.177 | 1.00  | 50.94  |
| 122 224<br>122 227           |                | TOM        | 833 | CB  | THR   |   |     | -3.810  | 52.09 | 5 ! | 55.722 | 1.00  | 40.40  |
|                              | A.             | TOM        | 834 | OG1 | THR   | A | 108 | -3.360  | 53.22 | 6   | 54.981 | 1.00  | 32.22  |
| 11 5                         | A'             | TOM        | 835 | CG2 | THR . | Α | 108 | -3.371  | 50.80 |     | 55.042 |       | 46.43  |
| <b>35</b>                    | A'             | TOM        | 836 | N   | SER . |   |     | -5.698  | 53.21 |     | 58.065 |       |        |
|                              |                | TOM        | 837 | CA  | SER   |   |     |         |       |     |        |       | 42.02  |
|                              |                |            |     |     |       |   |     | -5.848  | 54.29 |     | 59.038 |       | 38.13  |
|                              |                | TOM        | 838 | С   | SER . |   |     | -4.555  | 55.10 | 1 : | 59.082 | 1.00  | 38.47  |
|                              | A:             | TOM        | 839 | 0   | SER . | Ą | 109 | -3.460  | 54.58 | 3 ! | 58.921 | 1.00  | 33.60  |
|                              | A'             | TOM        | 840 | CB  | SER . | A | 109 | -6.166  | 53.75 | 9 ( | 50.437 |       | 41.44  |
| 40                           | A'             | TOM        | 841 | OG  | SER . |   |     | -6.205  | 54.81 |     | 51.404 |       | 47.63  |
|                              |                | TOM        | 842 | N   | PRO . |   |     |         |       |     |        |       |        |
|                              |                | TOM        |     |     |       |   |     | -4.655  | 56.39 |     | 59.308 |       | 41.64  |
|                              |                |            | 843 | CA  | PRO . |   |     | -3.419  | 57.11 |     | 59.393 | 1.00  | 40.75  |
|                              | A:             | TOM        | 844 | С   | PRO . | A | 110 | -2.803  | 56.74 | 9 ( | 50.725 | 1.00  | 41.47  |
|                              | A'             | TOM        | 845 | 0   | PRO . | A | 110 | -1.676  | 57.08 |     | 61.009 | 1.00  | 42.30  |
| 45                           | A.             | TOM        | 846 | CB  | PRO . | Α | 110 | -3.721  | 58.60 |     | 59.298 |       | 42.09  |
|                              | Αr             | TOM        | 847 | CG  | PRO . |   |     |         |       |     |        |       |        |
|                              |                | TOM        | 848 | CD  |       |   |     | -5.224  | 58.71 |     | 59.132 |       | 48.77  |
|                              |                |            |     |     | PRO . |   |     | -5.811  | 57.31 |     | 59.269 | 1.00  | 44.58  |
|                              | A:             | TOM        | 849 | N   | LYS . |   |     | -3.578  | 56.01 | 7 6 | 51.518 | 1.00  | 36.35  |
|                              | A.             | TOM        | 850 | CA  | LYS . | Α | 111 | -3.167  | 55.53 |     | 52.819 |       | 36.74  |
| 50                           | A.             | TOM        | 851 |     | LYS . |   |     | -2.669  | 54.08 |     | 52.720 |       | 40.19  |
|                              |                | TOM        | 852 |     | LYS . |   |     |         |       |     |        |       |        |
|                              |                | TOM        | 853 |     |       |   |     | -2.733  | 53.31 |     | 53.678 |       | 40.53  |
|                              |                |            |     |     | LYS . |   |     | -4.341  | 55.60 | 6 6 | 53.807 | 1.00  | 41.91  |
|                              |                | FOM        | 854 |     | LYS . |   |     | -4.362  | 56.83 | 8 6 | 54.708 | 1.00  | 71.21  |
|                              | A.             | TOM        | 855 | CD  | LYS . | A | 111 | -5.421  | 57.85 |     | 54.309 |       | 97.95  |
| 55                           | A.             | TOM        | 856 |     | LYS . |   |     | -6.839  | 57.39 |     |        |       |        |
|                              |                | rom        | 857 |     |       |   |     |         |       |     | 54.611 |       | 100.00 |
|                              |                |            |     |     | LYS . |   |     | -7.853  | 58.12 |     | 53.819 | 1.003 | 100.00 |
|                              |                | rom        | 858 | N   | SER . |   |     | -2.184  | 53.67 | 0 € | 51.550 | 1.00  | 36.84  |
|                              | A.             | TOM        | 859 | CA  | SER . | A | 112 | -1.714  | 52.29 |     | 51.358 |       | 34.35  |
| 100                          | A.             | rom        | 860 |     | SER . |   |     | -0.518  | 51.91 |     | 52.225 |       | 35.57  |
| 60                           |                | rom        | 861 |     | SER   |   |     | 0.533   | 52.54 |     |        |       |        |
| ,                            |                | rom        | 862 |     | SER I |   |     |         |       |     | 52.166 |       | 32.49  |
|                              |                |            |     |     |       |   |     | -1.449  | 51.99 |     | 9.883  |       | 35.16  |
|                              |                | rom<br>Tox | 863 |     | SER I |   |     | -0.682  | 50.81 |     | 9.762  | 1.00  | 31.94  |
|                              |                | TOM        |     | N   | SER A | A | 113 | -0.666  | 50.87 | 2 6 | 53.033 |       | 31.84  |
|                              | A.             | TOM        | 865 | CA  | SER . | A | 113 | 0.445   | 50.46 |     | 3.866  |       | 29.27  |
|                              |                |            |     |     |       |   | 0   |         | • 10  | •   |        |       |        |

|                                         | MOTA         | 866        | С       | SER        |    |     | 1.601          | 49.927           | 63.040           | 1.00 | 33.37          |
|-----------------------------------------|--------------|------------|---------|------------|----|-----|----------------|------------------|------------------|------|----------------|
|                                         | MOTA         | 867        | 0       | SER        |    |     | 2.715          | 49.792           | 63.497           | 1.00 | 32.95          |
|                                         | MOTA         | 868        | CB      | SER        |    |     | 0.052          | 49.498           | 64.945           |      | 29.45          |
| _                                       | MOTA         | 869        | OG      | SER        |    |     | 0.045          | 48.169           | 64.462           | 1.00 | 34.27          |
| 5                                       | ATOM         | 870        | N       | ALA        |    |     | 1.357          | 49.628           | 61.797           | 1.00 | 33.69          |
|                                         | ATOM         | 871        | CA      | ALA        |    |     | 2.437          | 49.134           | 60.981           |      | 34.05          |
|                                         | ATOM         | 872        | С       | ALA        |    |     | 3.239          | 50.287           | 60.388           |      | 37.83          |
|                                         | ATOM         | 873        | 0       | ALA        |    |     | 4.411          | 50.149           | 60.033           |      | 37.72          |
| 10                                      | ATOM         | 874        | CB      | ALA        |    |     | 1.845          | 48.292           | 59.852           |      | 34.51          |
| 10                                      | ATOM         | 875<br>876 | N<br>CA | LEU        |    |     | 2.580          | 51.432           | 60.259           |      | 32.19          |
|                                         | ATOM<br>ATOM | 877        | CA      | LEU<br>LEU |    |     | 3.201          | 52.595           | 59.662           |      | 30.48          |
|                                         | ATOM         | 878        | 0       | LEU        |    |     | 3.509          | 53.745           | 60.565           |      | 35.32          |
|                                         | ATOM         | 879        | CB      | LEU        |    |     | 2.902<br>2.358 | 54.012           | 61.604           |      | 35.25          |
| 15                                      | ATOM         | 880        | CG      | LEU        |    |     | 1.787          | 53.156<br>52.064 | 58.507<br>57.602 |      | 30.53          |
| 13                                      | ATOM         | 881        |         | LEU        |    |     | 0.812          | 52.710           | 56.637           |      | 35.51          |
|                                         | ATOM         | 882        |         | LEU        |    |     | 2.903          | 51.387           | 56.821           |      | 35.12          |
|                                         | ATOM         | 883        | N       | GLN        |    |     | 4.490          | 54.457           | 60.096           |      | 33.88<br>34.00 |
|                                         | ATOM         | 884        | CA      | GLN        |    |     | 4.926          | 55.656           | 60.737           |      | 32.52          |
| 20                                      | MOTA         | 885        | c       | GLN        |    |     | 5.066          | 56.689           | 59.645           |      | 31.34          |
| in it was                               | ATOM         | 886        | ō       | GLN        |    |     | 5.880          | 56.552-          |                  |      | 28.29          |
| j=4,                                    | ATOM         | 887        | СВ      | GLN        |    |     | 6.232          | 55.540           | 61.496           |      | 32.66          |
| 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | ATOM         | 888        | CG      | GLN        |    |     | 6.419          | 56.813           | 62.322           |      | 41.25          |
| 1 mm/                                   | ATOM         | 889        | CD      | GLN        |    |     | 7.777          | 56.897           | 62.952           |      | 50.08          |
| 25                                      | ATOM         | 890        |         | GLN        |    |     | 8.515          | 55.905           | 63.017           |      | 55.36          |
| ### 12°                                 | ATOM         | 891        |         | GLN        |    |     | 8.090          | 58.081           | 63.438           |      | 38.23          |
|                                         | MOTA         | 892        | N       | TRP        |    |     | 4.210          | 57.680           | 59.748           |      | 26.66          |
| 盘                                       | ATOM         | 893        | CA      | TRP        | Α  | 117 | 4.148          | 58.785           | 58.827           |      | 26.04          |
| haba                                    | MOTA         | 894        | C       | TRP        | Α  | 117 | 4.912          | 59.978           | 59.375           |      | 34.56          |
| 1. 30                                   | ATOM         | 895        | 0       | TRP        | Α  | 117 | 4.467          | 60.589           | 60.364           |      | 36.83          |
| T.                                      | ATOM         | 896        | CB      | TRP        |    |     | 2.669          | 59.188           | 58.630           |      | 23.15          |
| 14.1                                    | MOTA         | 897        | CG      | TRP        |    |     | 1.826          | 58.209           | 57.863           | 1.00 | 23.02          |
| 11                                      | ATOM         | 898        |         | TRP        |    |     | 1.052          | 57.224           | 58.397           | 1.00 | 26.39          |
|                                         | ATOM         | 899        |         | TRP        |    |     | 1.640          | 58.135           | 56.433           | 1.00 | 21.06          |
| <b>≯</b> 35 ्                           | ATOM         | 900        |         | TRP        |    |     | 0.395          | 56.534           | 57.393           | 1.00 | 26.40          |
|                                         | ATOM         | 901        |         | TRP        |    |     | 0.735          | 57.087           | 56.184           | 1.00 | 27.99          |
|                                         | ATOM         | 902        |         | TRP        |    |     | 2.121          | 58.872           | 55.361           |      | 20.95          |
|                                         | ATOM         | 903        |         | TRP        |    |     | 0.352          | 56.753           | 54.886           |      | 28.21          |
| 40                                      | ATOM<br>ATOM | 904<br>905 | CZ3     | TRP<br>TRP |    |     | 1.750          | 58.560           | 54.079           |      | 22.43          |
| 40                                      | ATOM         | 906        | N N     | LEU        |    |     | 0.872<br>6.043 | 57.512           | 53,847           |      | 24.28          |
|                                         | ATOM         | 907        | CA      | LEU        |    |     | 6.745          | 60.340<br>61.506 | 58.756           |      | 31.44          |
|                                         | ATOM         | 908        | C       | LEU        |    |     | 6.584          | 62.774           | 59.276<br>58.432 |      | 36.67<br>46.93 |
|                                         | ATOM         | 909        | ō       | LEU        |    |     | 6.434          | 62.705           | 57.210           |      | 51.17          |
| 45                                      | ATOM         | 910        | СВ      | LEU        |    |     | 8.250          | 61.327           | 59.577           |      | 38.83          |
|                                         | ATOM         | 911        | CG      | LEU        |    |     | 8.881          | 59.939           | 59.398           |      | 44.33          |
|                                         | ATOM         | 912        | CD1     | LEU        | Α  | 118 | 10.392         | 60.065           | 59.569           |      | 42.12          |
|                                         | MOTA         | 913        |         | LEU        |    |     | 8.351          | 58.950           | 60.426           |      | 49.99          |
|                                         | ATOM         | 914        | N       | THR        |    |     | 6.524          | 63.939           | 59.109           |      | 41.34          |
| 50                                      | ATOM         | 915        | CA      | THR        | A  | 119 | 6.449          | 65.260           | 58.468           |      | 38.89          |
|                                         | ATOM         | 916        | С       | THR        |    |     | 7.847          | 65.633           | 58.034           |      | 40.14          |
|                                         | ATOM         | 917        | 0       | THR        |    |     | 8.841          | 65.165           | 58.605           |      | 44.03          |
|                                         | ATOM         | 918        | CB      | THR        |    |     | 5.932          | 66.300           | 59.467           |      | 42.63          |
|                                         | ATOM         | 919        |         | THR        | Α  | 119 | 6.994          | 66.605           | 60.362           | 1.00 | 50.01          |
| 55                                      | ATOM         | 920        | CG2     |            |    |     | 4.769          | 65.668           | 60.224           |      | 36.78          |
|                                         | MOTA         | 921        | N       | PRO        |    |     | 7.963          | 66.440           | 57.020           | 1.00 | 33.41          |
|                                         | ATOM         | 922        | CA      | PRO        |    |     | 9.275          | 66.781           | 56.517           | 1.00 | 33.18          |
|                                         | ATOM         | 923        | C       | PRO        |    |     | 10.260         | 67.209           | 57.599           | 1.00 | 38.27          |
| 60                                      | ATOM         | 924        | 0       | PRO        |    |     | 11.433         | 66.829           | 57.566           |      | 34.42          |
| UU                                      | ATOM         | 925        | CB      | PRO        |    |     | 9.068          | 67.840           | 55.416           |      | 33.54          |
|                                         | ATOM         | 926        | CG      | PRO        |    |     | 7.582          | 67.823           | 55.097           |      | 34.86          |
|                                         | ATOM<br>ATOM | 927<br>928 | CD<br>N | PRO        |    |     | 6.891          | 67.180           | 56.300           |      | 30.86          |
|                                         | ATOM         | 929        | CA      | GLU        |    |     | 9.751          | 67.982           | 58.563           |      | 38.03          |
|                                         | AION         | 263        | ~∧      | GTO        | Α. | 121 | 10.534         | 68.474           | 59.681           | 1.00 | 41.03          |

|                      | ATOM | 930 | С   | GLU A 121 | <u>l</u> | 11.212 | 67.361 | 60.411 | 1.00 50.88 |
|----------------------|------|-----|-----|-----------|----------|--------|--------|--------|------------|
|                      | ATOM | 931 | 0   | GLU A 121 | ì        | 12.279 | 67.548 | 60.977 |            |
|                      | ATOM | 932 | СВ  |           |          |        |        |        | 1.00 54.97 |
|                      |      |     |     | GLU A 121 |          | 9.742  | 69.325 | 60.699 | 1.00 43.28 |
|                      | ATOM | 933 | CG  | GLU A 121 | L        | 8.220  | 69.071 | 60.702 | 1.00 64.72 |
| 5                    | ATOM | 934 | CD  | GLU A 121 |          | 7.398  | 70.118 | 59.988 | 1.00 86.07 |
|                      | ATOM | 935 | OE1 |           |          |        |        |        |            |
|                      |      |     |     |           |          | 7.007  | 71.131 | 60.538 | 1.00100.00 |
|                      | ATOM | 936 | OE2 | GLU A 121 | ,        | 7.108  | 69.803 | 58.739 | 1.00 59.72 |
|                      | ATOM | 937 | N   | GLN A 122 | 2        | 10.569 | 66.202 | 60.394 | 1.00 44.09 |
|                      | ATOM | 938 | CA  | GLN A 122 | >        | 11.083 | 65.019 | 61.041 |            |
| 10                   | ATOM | 939 | c   | GLN A 122 |          |        |        |        | 1.00 40.20 |
| 10                   |      |     |     |           |          | 12.170 | 64.373 | 60.232 | 1.00 47.73 |
|                      | ATOM | 940 | 0   | GLN A 122 | ?        | 12.711 | 63.343 | 60.643 | 1.00 53.29 |
|                      | ATOM | 941 | CB  | GLN A 122 | 2        | 9.965  | 63.992 | 61.224 | 1.00 39.31 |
|                      | ATOM | 942 | CG  | GLN A 122 | •        | 9.057  | 64.441 | 62.361 |            |
|                      | ATOM | 943 | CD  | GLN A 122 |          |        |        |        | 1.00 30.23 |
| 15                   |      |     |     |           |          | 7.756  | 63.691 | 62.438 | 1.00 38.25 |
| 13                   | MOTA | 944 | OE1 |           | 2        | 6.899  | 63.804 | 61.548 | 1.00 53.34 |
|                      | ATOM | 945 | NE2 | GLN A 122 | ?        | 7.592  | 62.938 | 63.521 | 1.00 18.98 |
|                      | MOTA | 946 | N   | THR A 123 |          | 12.486 | 64.942 |        |            |
| art on               | ATOM | 947 | CA  |           |          |        |        | 59.074 | 1.00 38.99 |
|                      |      |     |     | THR A 123 |          | 13.490 | 64.319 | 58.229 | 1.00 36.00 |
| 1. 1 <sup>58</sup> 1 | ATOM | 948 | С   | THR A 123 | 3        | 14.755 | 65.034 | 58.264 | 1.00 35.30 |
| 20                   | ATOM | 949 | 0   | THR A 123 | 3        | 14.842 | 66.074 | 58.875 | 1.00 34.95 |
| 13                   | MOTA | 950 | CB  | THR A 123 |          |        |        |        |            |
| \$=#x                |      |     |     |           |          | 13.067 | 64.145 | 56.759 | 1.00 38.25 |
|                      | MOTA | 951 | OG1 |           |          | 13.144 | 65.374 | 56.046 | 1.00 43.75 |
|                      | ATOM | 952 | CG2 | THR A 123 | 3        | 11.643 | 63.616 | 56.725 | 1.00 40.72 |
| 2 550                | ATOM | 953 | N   | SER A 124 | l        | 15.699 | 64.447 | 57.557 |            |
| 25                   | ATOM | 954 | CA  | SER A 124 |          | 17.025 |        |        | 1.00 32.18 |
| 25                   |      |     |     |           |          |        | 64.996 | 57.442 | 1.00 33.71 |
| \$=5.                | ATOM | 955 | С   | SER A 124 |          | 17.007 | 66.216 | 56.553 | 1.00 39.04 |
| 1                    | ATOM | 956 | 0   | SER A 124 | l        | 17.537 | 67.268 | 56.883 | 1.00 39.07 |
| 運                    | ATOM | 957 | CB  | SER A 124 |          | 18.023 | 63.992 | 56.859 |            |
| la flo               | ATOM | 958 | OG  |           |          |        |        |        | 1.00 37.73 |
| 30                   |      |     |     | SER A 124 |          | 18.359 | 62.978 | 57.796 | 1.00 36.28 |
|                      | MOTA | 959 | N   | GLY A 125 |          | 16.389 | 66.025 | 55.414 | 1.00 38.59 |
| T.                   | ATOM | 960 | CA  | GLY A 125 | <b>)</b> | 16.280 | 67.034 | 54.396 | 1.00 39.90 |
|                      | MOTA | 961 | С   | GLY A 125 |          | 15.290 | 68.094 |        |            |
| in and               | ATOM | 962 |     |           |          |        |        | 54.749 | 1.00 46.83 |
|                      |      |     | 0   | GLY A 125 |          | 15.347 | 69.171 | 54.172 | 1.00 49.78 |
|                      | ATOM | 963 | N   | LYS A 126 |          | 14.391 | 67.788 | 55.678 | 1.00 41.09 |
| <b>35</b>            | ATOM | 964 | CA  | LYS A 126 | ;        | 13.396 | 68.761 | 56.126 | 1.00 41.26 |
|                      | ATOM | 965 | С   | LYS A 126 |          | 12.498 | 69.307 | 55.020 |            |
|                      | ATOM | 966 | Ö   |           |          |        |        |        | 1.00 47.42 |
|                      |      |     |     | LYS A 126 |          | 11.617 | 70.141 | 55.279 | 1.00 48.94 |
|                      | ATOM | 967 | СВ  | LYS A 126 |          | 14.024 | 69.936 | 56.894 | 1.00 41.98 |
|                      | ATOM | 968 | CG  | LYS A 126 | ;        | 15.094 | 69.555 | 57.913 | 1.00 45.84 |
| 40                   | ATOM | 969 | CD  | LYS A 126 | i        | 14.535 | 68.838 | 59.135 | 1.00 58.74 |
|                      | ATOM | 970 | CE  | LYS A 126 |          |        |        |        |            |
|                      |      |     |     |           |          | 15.612 | 68.500 | 60.151 | 1.00 72.12 |
| 4                    | ATOM | 971 | NZ  | LYS A 126 |          | 15.395 | 67.218 | 60.839 | 1.00 88.38 |
|                      | MOTA | 972 | N   | GLU A 127 | '        | 12.722 | 68.858 | 53.792 | 1.00 41.82 |
|                      | ATOM | 973 | CA  | GLU A 127 | •        | 11.921 | 69.344 | 52.708 | 1.00 41.98 |
| 45                   | ATOM | 974 | C   | GLU A 127 |          | 10.899 | 68.334 |        |            |
|                      |      |     |     |           |          |        |        | 52.239 | 1.00 45.14 |
|                      | ATOM | 975 | 0   | GLU A 127 |          | 9.994  | 68.683 | 51.496 | 1.00 46.95 |
|                      | ATOM | 976 | CB  | GLU A 127 |          | 12.727 | 70.015 | 51.543 | 1.00 44.39 |
|                      | ATOM | 977 | CG  | GLU A 127 | •        | 13.198 | 71.499 | 51.820 | 1.00 57.99 |
|                      | ATOM | 978 | CD  | GLU A 127 |          | 12.331 | 72.659 | 51.301 |            |
| 50                   | ATOM | 979 |     | GLU A 127 |          |        |        | 21.201 | 1.00100.00 |
| 20                   |      |     |     |           |          | 11.652 | 72.611 | 50.286 | 1.00100.00 |
|                      | ATOM | 980 | OE2 | GLU A 127 |          | 12.387 | 73.758 | 52.054 | 1.00100.00 |
|                      | ATOM | 981 | N   | HIS A 128 | :        | 11.027 | 67.077 | 52.653 | 1.00 39.18 |
|                      | ATOM | 982 | CA  | HIS A 128 |          | 10.068 |        |        |            |
|                      | ATOM | 983 |     |           |          |        | 66.072 | 52.210 | 1.00 39.43 |
| 55                   |      |     | С   | HIS A 128 |          | 9.636  | 65.148 | 53.316 | 1.00 42.09 |
| دد                   | ATOM | 984 | 0   | HIS A 128 |          | 10.366 | 64.955 | 54.281 | 1.00 45.34 |
|                      | ATOM | 985 | CB  | HIS A 128 |          | 10.628 | 65.194 | 51.097 | 1.00 42.16 |
|                      | MOTA | 986 | CG  | HIS A 128 |          | 10.947 | 65.936 |        |            |
|                      |      |     |     |           |          |        |        | 49.854 | 1.00 47.24 |
|                      | ATOM | 987 |     | HIS A 128 |          | 9.943  | 66.423 | 49.029 | 1.00 49.12 |
|                      | ATOM | 988 |     | HIS A 128 |          | 12.159 | 66.262 | 49.322 | 1.00 51.13 |
| 60                   | ATOM | 989 | CEl | HIS A 128 |          | 10.559 | 67.031 | 48.026 | 1.00 49.97 |
|                      | ATOM | 990 |     | HIS A 128 |          | 11.888 | 66.953 | 48.166 |            |
|                      | MOTA | 991 |     |           |          |        |        |        | 1.00 50.87 |
|                      |      |     | N   | PRO A 129 |          | 8.447  | 64.572 | 53.171 | 1.00 32.55 |
|                      | ATOM | 992 | CA  | PRO A 129 |          | 7.968  | 63.650 | 54.163 | 1.00 31.15 |
|                      | ATOM | 993 | С   | PRO A 129 |          | 8.636  | 62.328 | 53.900 | 1.00 34.90 |
|                      |      |     |     |           |          |        |        |        | 00 04.50   |

|                  | MOTA | 994          | 0       | PRO A 1            | L29 | 9.481  | 62.214 | 53.021 | 1.00 | 35.46 |
|------------------|------|--------------|---------|--------------------|-----|--------|--------|--------|------|-------|
|                  | MOTA | 995          | CB      | PRO A 1            | 129 | 6.466  | 63.490 | 53.986 |      | 31.94 |
|                  | MOTA | 996          | CG      | PRO A 1            | 129 | 6.133  | 64.104 | 52.649 |      | 36.83 |
|                  | MOTA | 997          | CD      | PRO A 1            | L29 | 7.384  | 64.850 | 52.185 |      |       |
| 5                | ATOM | 998          | N       | TYR A 1            | 130 | 8.248  | 61.342 | 54.659 |      | 29.47 |
|                  | MOTA | 999          | CA      | TYR A 1            |     | 8.826  | 60.025 | 54.548 |      | 29.35 |
|                  | MOTA | 1000         | C       | TYR A 1            |     | 7.856  | 59.046 | 55.156 |      | 31.83 |
|                  | ATOM | 1001         | 0       | TYR A 1            | 130 | 7.138  | 59.375 | 56.093 |      | 29.84 |
|                  | ATOM | 1002         | CB      | TYR A 1            |     | 10.098 | 60.029 | 55.433 |      | 30.54 |
| 10               | ATOM | 1003         | CG      | TYR A 1            |     | 11.083 | 58.886 | 55.285 |      | 29.76 |
|                  | ATOM | 1004         | CD1     | TYR A 1            | 130 | 10.845 | 57.630 | 55.845 |      | 26.16 |
|                  | ATOM | 1005         | CD2     |                    |     | 12.290 | 59.110 | 54.619 |      | 30.28 |
|                  | MOTA | 1006         | CE1     | TYR A 1            |     | 11.795 | 56.621 | 55.721 |      | 17.87 |
| 4                | MOTA | 1007         | CE2     |                    |     | 13.253 | 58.114 | 54.479 |      | 27.75 |
| 15               | MOTA | 1008         | CZ      | TYR A 1            |     | 12.983 | 56.866 | 55.031 |      | 25.76 |
|                  | ATOM | 1009         | ОН      | TYR A 1            |     | 13.899 | 55.864 | 54.894 |      | 40.52 |
|                  | ATOM | 1010         | N       | LEU A 1            |     | 7.832  | 57.842 | 54.647 |      | 31.12 |
|                  | ATOM | 1011         | CA      | LEU A 1            |     | 6.994  | 56.868 | 55.303 |      |       |
| 200 EE           | ATOM | 1012         | C       | LEU A 1            |     | 7.691  | 55.568 | 55.289 |      | 30.43 |
| 20               | ATOM | 1013         | Ö       | LEU A 1            |     | 8.398  | 55.257 |        |      | 33.91 |
|                  | ATOM | 1014         | CB      | LEU A 1            |     | 5.679  |        | 54.397 |      | 33.68 |
|                  | ATOM | 1015         | CG      | LEU A 1            |     | 5.065  | 56.761 | 54.530 |      | 26.16 |
| jado.            | ATOM | 1016         | CD1     | LEU A 1            |     | 4.163  | 55.367 | 54.600 |      | 21.68 |
| अर्थे कर<br>वैकर | ATOM | 1017         | CD2     |                    |     |        | 55.206 | 55.797 |      | 17.56 |
| 25               | ATOM | 1017         | N       | PHE A 1            |     | 4.222  | 55.008 | 53.380 |      | 13.86 |
|                  | ATOM | 1019         | CA      | PHE A 1            |     | 7.533  | 54.828 | 56.348 |      | 29.24 |
| i de             | ATOM | 1019         | CA      | PHE A 1            |     | 8.129  | 53.527 | 56.323 |      | 33.44 |
|                  | ATOM | 1020         | 0       |                    |     | 7.299  | 52.519 | 57.157 |      | 41.08 |
| **               | ATOM | 1021         | CB      | PHE A 1            |     | 6.344  | 52.889 | 57.837 |      | 46.05 |
| 30               | ATOM | 1023         | CG      | PHE A 1            |     | 9.621  | 53.670 | 56.791 |      | 36.40 |
|                  | ATOM | 1023         |         | PHE A 1            |     | 9.763  | 53.895 | 58.256 |      | 38.11 |
|                  |      | 1024         |         | PHE A 1            |     | 9.601  | 52.821 | 59.053 |      | 37.18 |
|                  | ATOM |              |         | PHE A 1            |     | 10.123 | 55.158 | 58.803 |      | 43.89 |
| See at 1         | MOTA | 1026         |         | PHE A 1            |     | 9.771  | 52.936 | 60.422 |      | 41.04 |
| <b>35</b>        | ATOM | 1027<br>1028 |         |                    |     | 10.289 | 55.258 | 60.174 |      | 47.72 |
| hath J           | ATOM |              | CZ      | PHE A 1            |     | 10.131 | 54.143 | 60.986 |      | 44.34 |
|                  | ATOM | 1029<br>1030 | N<br>CA | SER A 1            |     | 7.612  | 51.221 | 57.002 |      | 33.47 |
|                  | ATOM | 1030         | C       | SER A 1            |     | 6.744  | 50.228 | 57.629 |      | 29.86 |
|                  | ATOM | 1031         |         | SER A 1<br>SER A 1 |     | 7.499  | 49.221 | 58.504 |      | 31.53 |
| 40               | ATOM | 1032         | O<br>CB | SER A 1            |     | 8.724  | 49.146 | 58.531 |      | 33.16 |
| 40               | ATOM | 1033         | OG      |                    |     | 5.942  | 49.481 | 56.535 |      | 33.19 |
|                  | ATOM | 1034         | N       | SER A 1<br>GLN A 1 |     | 6.757  | 48.480 | 55.926 |      | 50.66 |
|                  | ATOM | 1035         | CA      | GLN A 1            |     | 6.703  | 48.466 | 59.294 |      | 24.61 |
|                  | ATOM | 1030         | CA      |                    |     | 7.283  | 47.422 | 60.134 |      | 22.55 |
| 45               | ATOM | 1037         |         | GLN A 1            |     | 6.268  | 46.321 | 60.398 |      | 27.28 |
| 73               | ATOM | 1038         | O<br>CB | GLN A 1<br>GLN A 1 |     | 5.161  | 46.566 | 60.809 |      | 25.09 |
|                  | ATOM | 1040         | CG      | GLN A 1            |     | 7.711  | 48.041 | 61.464 |      | 23.29 |
|                  | ATOM | 1041         | CD      | GLN A 1            |     | 8.218  | 46.987 | 62.454 |      | 25.96 |
|                  | ATOM | 1041         | OE1     | GLN A 1            |     | 9.423  | 46.290 | 61.872 |      | 25.65 |
| 50               | ATOM | 1042         | NE2     |                    |     | 10.296 | 46.876 | 61.263 |      | 26.36 |
| 50               | ATOM | 1043         | N       |                    |     | 9.445  | 44.965 | 62.095 |      | 21.75 |
|                  | ATOM | 1044         | CA      | CYS A 1            |     | 6.435  | 45.124 | 59.820 | 1.00 | 29.60 |
|                  | ATOM | 1045         | C       | CYS A 1            |     | 5.291  | 44.220 | 59.755 |      | 32.30 |
|                  | ATOM |              |         |                    |     | 5.442  | 43.006 | 60.662 |      | 39.58 |
| 55               | ATOM | 1047         | O       | CYS A 1            |     | 4.597  | 42.144 | 60.739 |      | 40.94 |
| 22               |      | 1048         | CB      | CYS A 1            |     | 5.098  | 43.794 | 58.320 |      | 35.40 |
|                  | ATOM | 1049         | SG      | CYS A 1            |     | 3.976  | 44.922 | 57.445 |      | 41.22 |
|                  | ATOM | 1050         | N       | GLN A 1            |     | 6.582  | 42.949 | 61.345 |      | 37.37 |
|                  | ATOM | 1051         | CA      | GLN A 1            |     | 6.715  | 41.982 | 62.417 |      | 35.71 |
| 60               | ATOM | 1052         | C       | GLN A 1            |     | 6.589  | 42.645 | 63.797 |      | 31.90 |
| OU.              | ATOM | 1053         | 0       | GLN A 1            |     | 6.878  | 43.803 | 63.981 |      | 30.54 |
|                  | ATOM | 1054         | CB      | GLN A 1            |     | 8.077  | 41.311 | 62.295 |      | 37.24 |
|                  | ATOM | 1055         | CG      | GLN A 1            |     | 8.076  | 39.878 | 62.847 |      | 29.70 |
|                  | ATOM | 1056         | CD      | GLN A 1            |     | 9.483  | 39.511 | 63.235 |      | 36.48 |
|                  | ATOM | 1057         | OET     | GLN A 1            | .36 | 10.366 | 40.328 | 63.356 | 1.00 | 24.49 |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MOTA<br>MOTA<br>MOTA<br>MOTA | 1058<br>1059<br>1060<br>1061 | NE2<br>N<br>CA<br>C | GLN A<br>ALA A<br>ALA A<br>ALA A | 137<br>137 | 9.665<br>5.850<br>5.235<br>3.860 | 38.201<br>41.899<br>40.581<br>40.503 | 63.443<br>64.648<br>64.351 | 1.00<br>1.00 | 22.19<br>28.56<br>28.89 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|---------------------|----------------------------------|------------|----------------------------------|--------------------------------------|----------------------------|--------------|-------------------------|
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ATOM                         | 1062                         | ō                   | ALA A                            |            | 3.679                            | 39.688                               | 63.630<br>62.738           |              | 31.83<br>29.67          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATOM                         | 1063                         | CB                  | ALA A                            |            | 5.091                            | 39.742                               | 65.625                     | 1.00         | 28.91                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATOM<br>ATOM                 | 1064<br>1065                 | N<br>CA             | ILE A                            |            | 2.863<br>1.553                   | 41.285<br>41.176                     | 64.070<br>63.445           |              | 27.07                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATOM                         | 1066                         | C                   | ILE A                            |            | 0.960                            | 42.492                               | 63.053                     |              | 23.90<br>28.69          |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ATOM                         | 1067                         | 0                   | ILE A                            |            | -0.144                           | 42.822                               | 63.426                     |              | 31.92                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATOM<br>ATOM                 | 1068<br>1069                 | CB                  | ILE A                            |            | 0.641                            | 40.357                               | 64.339                     |              | 25.41                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATOM                         | 1009                         |                     | ILE A                            |            | 0.871<br>1.162                   | 40.811<br>38.938                     | 65.801                     |              | 27.32                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATOM                         | 1071                         |                     | ILE A                            |            | -0.275                           | 40.615                               | 64.191<br>66.826           |              | 16.34<br>20.22          |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ATOM                         | 1072                         | N                   | HIS A                            | 139        | 1.718                            | 43.223                               | 62.265                     |              | 24.05                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATOM                         | 1073                         | CA                  | HIS A                            |            | 1.322                            | 44.511                               | 61.824                     | 1.00         | 24.05                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATOM<br>ATOM                 | 1074<br>1075                 | С<br>О              | HIS A                            |            | 0.982                            | 44.579                               | 60.351                     |              | 34.40                   |
| E and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ATOM                         | 1075                         | CB                  | HIS A                            |            | 0.539<br>2.439                   | 45.625<br>45.519                     | 59.888<br>62.173           |              | 35.89                   |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ATOM                         | 1077                         | CG                  | HIS A                            |            | 2.689                            | 45.619                               | 63.657                     |              | 24.63<br>27.97          |
| A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ATOM                         | 1078                         |                     | HIS A                            |            | 1.679                            | 45.970                               | 64.571                     |              | 27.75                   |
| lad.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ATOM                         | 1079                         |                     | HIS A                            |            | 3.835                            | 45.437                               | 64.356                     | 1.00         | 28.42                   |
| 15 Table   15 Table | ATOM<br>ATOM                 | 1080<br>1081                 |                     | HIS A                            |            | 2.222<br>3.517                   | 45.983<br>45.668                     | 65.770                     |              | 26.19                   |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ATOM                         | 1082                         | N                   | CYS A                            |            | 1.181                            | 43.490                               | 65.671<br>59.598           |              | 27.42<br>30.28          |
| HA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ATOM                         | 1083                         | CA                  | CYS A                            | 140        | 0.832                            | 43.517                               | 58.181                     |              | 28.08                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATOM                         | 1084                         | C                   | CYS A                            |            | -0.671                           | 43.765                               | 58.011                     |              | 28.98                   |
| ₩<br>Le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ATOM<br>ATOM                 | 1085<br>1086                 | O                   | CYS A                            |            | -1.111                           | 44.449                               | 57.066                     |              | 30.00                   |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ATOM                         | 1087                         | CB<br>SG            | CYS A                            |            | 1.181<br>1.330                   | 42.213<br>42.483                     | 57.447<br>55.661           |              | 28.82                   |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ATOM                         | 1088                         | N                   | ARG A                            |            | -1.440                           | 43.168                               | 58.949                     |              | 34.37 20.78             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATOM                         | 1089                         | CA                  | ARG A                            | 141        | -2.884                           | 43.252                               | 58.996                     |              | 20.33                   |
| 12 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ATOM                         | 1090                         | C                   | ARG A                            |            | -3.286                           | 44.684                               | 59.003                     | 1.00         | 32.37                   |
| <b>14</b> 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATOM<br>ATOM                 | 1091<br>1092                 | O<br>CB             | ARG A                            |            | -4.355                           | 45.032                               | 58.510                     |              | 35.81                   |
| , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ATOM                         | 1093                         | CG                  | ARG A                            |            | -3.557<br>-3.081                 | 42.498<br>42.891                     | 60.156<br>61.568           |              | 14.60<br>20.94          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATOM                         | 1094                         | CD                  | ARG A                            |            | -3.576                           | 41.978                               | 62.715                     |              | 19.99                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATOM                         | 1095                         | NE                  | ARG A                            |            | -2.911                           | 40.690                               | 62.786                     |              | 18.24                   |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ATOM<br>ATOM                 | 1096<br>1097                 | CZ                  | ARG A                            |            | -3.140                           | 39.707                               | 63.648                     |              | 18.77                   |
| , ,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ATOM                         | 1097                         |                     | ARG A                            |            | -4.029<br>-2.415                 | 39.739<br>38.640                     | 64.634<br>63.508           |              | 20.76                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATOM                         | 1099                         | N                   | ALA A                            |            | -2.408                           | 45.511                               | 59.580                     |              | 24.20 28.35             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATOM                         | 1100                         |                     | ALA A                            |            | -2.668                           | 46.940                               | 59.657                     |              | 27.60                   |
| 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ATOM<br>ATOM                 | 1101<br>1102                 | C                   | ALA A                            |            | -2.369                           | 47.652                               | 58.345                     |              | 34.33                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATOM                         | 1102                         |                     | ALA A                            |            | -2.620<br>-1.994                 | 48.835<br>47.616                     | 58.203<br>60.843           |              | 34.36                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATOM                         | 1104                         | N                   | ILE A                            |            | -1.824                           | 46.922                               | 57.382                     |              | 27.67<br>32.39          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATOM                         | 1105                         | CA                  | ILE A                            |            | -1.537                           | 47.499                               | 56.099                     |              | 30.38                   |
| 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ATOM                         | 1106                         | C                   | ILE A                            |            | -2.520                           | 46.994                               | 55.067                     | 1.00         | 37.79                   |
| . 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ATOM<br>ATOM                 | 1107<br>1108                 | O<br>CB             | ILE A                            |            | -2.885<br>-0.142                 | 47.709                               | 54.152                     |              | 42.65                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATOM                         | 1109                         |                     | ILE A                            | 143        | 0.827                            | 47.228<br>48.062                     | 55.613<br>56.414           |              | 32.06<br>31.71          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATOM                         | 1110                         | CG2                 | ILE A                            | 143        | -0.074                           | 47.654                               | 54.143                     |              | 34.02                   |
| 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MOTA                         | 1111                         |                     | ILE A                            |            | 2.258                            | 47.774                               | 55.988                     |              | 42.10                   |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ATOM<br>ATOM                 | 1112<br>1113                 |                     | LEU A                            |            | -2.939                           | 45.749                               | 55.218                     |              | 32.50                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATOM                         | 1114                         |                     | LEU A                            |            | -3.873<br>-4.435                 | 45.142<br>43.838                     | 54.291<br>54.849           |              | 32.36                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MOTA                         | 1115                         |                     | LEU A                            |            | -3.959                           | 43.278                               | 55.852                     |              | 40.36 33.27             |
| ۲0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ATOM                         | 1116                         | CB                  | LEU A                            | 144        | -3.250                           | 44.936                               | 52.894                     |              | 31.58                   |
| 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ATOM                         | 1117                         |                     | LEU A                            |            | -1.923                           | 44.170                               | 52.917                     | 1.00         | 33.31                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | "ATOM<br>ATOM                | 1118<br>1119                 |                     | LEU A                            |            | -2.147<br>-0.836                 | 42.770                               | 52.352                     |              | 32.07                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATOM                         | 1120                         |                     | PRO A                            |            | -0.836 $-5.490$                  | 44.897<br>43.347                     | 52.110<br>54.213           | 1.00         | 28.67                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MOTA                         | 1121                         |                     | PRO A                            |            | -6.080                           | 42.129                               | 54.715                     |              | 37.86                   |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATOM | 1122         | С    | PRO A 145 | -5.264 | 40.941 | 54.286 | 1.00 37.87 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------|------|-----------|--------|--------|--------|------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATOM | 1123         | 0    | PRO A 145 | -4.819 | 40.831 | 53.144 | 1.00 37.07 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATOM | 1124         | СВ   | PRO A 145 | -7.530 | 42.080 | 54.220 | 1.00 38.81 |
| ٠.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ATOM | 1125         | CG   | PRO A 145 | -7.778 | 43.393 | 53.492 | 1.00 38.81 |
| . 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ATOM | 1126         | CD   | PRO A 145 | -6.432 | 44.093 | 53.341 | 1.00 41.34 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATOM | 1127         | N    | CYS A 146 | -5.041 | 40.056 | 55.233 | 1.00 36.89 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATOM | 1128         | CA   | CYS A 146 | -4.250 | 38.882 |        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATOM | 1129         | c    | CYS A 146 | -4.358 | 37.859 | 54.958 | 1.00 35.60 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATOM | 1130         | ŏ    | CYS A 146 | -5.067 |        | 56.069 | 1.00 33.04 |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ATOM | 1131         | СВ   | CYS A 146 |        | 38.062 | 57.050 | 1.00 30.78 |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ATOM | 1132         | SG   | CYS A 146 | -2.761 | 39.287 | 54.813 | 1.00 36.08 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATOM | 1133         | N    | GLN A 147 | -2.087 | 40.108 | 56.302 | 1.00 39.43 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATOM | 1134         | CA   | GLN A 147 | -3.637 | 36.755 | 55.883 | 1.00 29.33 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATOM | 1134         | CA   | GLN A 147 | -3.517 | 35.703 | 56.875 | 1.00 29.71 |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |              |      |           | -2.254 | 36.131 | 57.628 | 1.00 38.75 |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MOTA | 1136<br>1137 | O    | GLN A 147 | -1.141 | 35.926 | 57.135 | 1.00 40.79 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATOM |              | CB   | GLN A 147 | -3.322 | 34.352 | 56.206 | 1.00 28.99 |
| HERE BEEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ATOM | 1138         | CG   | GLN A 147 | -4.672 | 33.707 | 55.894 | 1.00 25.73 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATOM | 1139         | CD   | GLN A 147 | -4.562 | 32.532 | 54.960 | 1.00 39.92 |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MOTA | 1140         | OE1  | GLN A 147 | -4.217 | 32.668 | 53.775 | 1.00 43.89 |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ATOM | 1141         |      | GLN A 147 | -4.828 | 31.368 | 55.499 | 1.00 26.36 |
| 1=4 <sub>0</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MOTA | 1142         | N    | ASP A 148 | -2.425 | 36.834 | 58.765 | 1.00 32.68 |
| initia april<br>America                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ATOM | 1143         | CA   | ASP A 148 | -1.287 | 37.362 | 59.474 | 1.00 33.50 |
| HARRY THE PARTY | ATOM | 1144         | С    | ASP A 148 | -0.629 | 36.377 | 60.371 | 1.00 33.13 |
| 明明のと                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ATOM | 1145         | 0    | ASP A 148 | -0.622 | 36.563 | 61.584 | 1.00 31.30 |
| <b>1</b> 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MOTA | 1146         | CB   | ASP A 148 | -1.633 | 38.642 | 60.253 | 1.00 37.78 |
| <b>ļ. 4</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ATOM | 1147         | CG   | ASP A 148 | -0.535 | 39.666 | 60.332 | 1.00 45.10 |
| #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MOTA | 1148         |      | ASP A 148 | 0.564  | 39.540 | 59.836 | 1.00 47.89 |
| lah.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ATOM | 1149         |      | ASP A 148 | -0.913 | 40.737 | 60.952 | 1.00 48.63 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MOTA | 1150         | N    | THR A 149 | -0.080 | 35.345 | 59.742 | 1.00 29.15 |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MOTA | 1151         | CA   | THR A 149 | 0.584  | 34.251 | 60.422 | 1.00 28.25 |
| 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ATOM | 1152         | С    | THR A 149 | 1.805  | 33.831 | 59.625 | 1.00 34.92 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATOM | 1153         | 0    | THR A 149 | 1.757  | 33.764 | 58.410 | 1.00 34.47 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATOM | 1154         | CB   | THR A 149 | -0.403 | 33.087 | 60.674 | 1.00 24.79 |
| 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ATOM | 1155         | OG1  |           | 0.241  | 32.059 | 61.352 | 1.00 37.15 |
| 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ATOM | 1156         | CG2  | THR A 149 | -0.905 | 32.527 | 59.345 | 1.00 26.56 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATOM | 1157         | N    | PRO A 150 | 2.910  | 33.575 | 60.323 | 1.00 34.69 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MOTA | 1158         | CA · | PRO A 150 | 4.142  | 33.217 | 59.659 | 1.00 31.06 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATOM | 1159         | С    | PRO A 150 | 4.087  | 31.813 | 59.131 | 1.00 36.66 |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ATOM | 1160         | 0    | PRO A 150 | 4.995  | 31.356 | 58.450 | 1.00 36.37 |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MOTA | 1161         | CB   | PRO A 150 | 5.245  | 33.327 | 60.712 | 1.00 31.18 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATOM | 1162         | CG   | PRO A 150 | 4.570  | 33.471 | 62.077 | 1.00 36.95 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATOM | 1163         | CD   | PRO A 150 | 3.078  | 33.589 | 61.823 | 1.00 34.62 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MOTA | 1164         | N    | SER A 151 | 2.992  | 31.150 | 59.452 | 1.00 31.62 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATOM | 1165         | CA   | SER A 151 | 2.778  | 29.791 | 59.029 | 1.00 27.35 |
| 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MOTA | 1166         | C    | SER A 151 | 2.357  | 29.738 | 57.564 | 1.00 32.97 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MOTA | 1167         | 0    | SER A 151 | 2.344  | 28.703 | 56.928 | 1.00 34.25 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATOM | 1168         | CB   | SER A 151 | 1.714  | 29.203 | 59.905 | 1.00 25.95 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATOM | 1169         | OG   | SER A 151 | 0.483  | 29.685 | 59.439 | 1.00 49.35 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATOM | 1170         | N    | VAL A 152 | 1.997  | 30.887 | 57.024 | 1.00 34.36 |
| 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ATOM | 1171         | CA   | VAL A 152 | 1.595  | 31.015 | 55.623 | 1.00 33.74 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATOM | 1172         | С    | VAL A 152 | 2.705  | 31.764 | 54.847 | 1.00 37.45 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATOM | 1173         | 0    | VAL A 152 | 3.295  | 32.761 | 55.313 | 1.00 37.63 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATOM | 1174         | CB   | VAL A 152 | 0.203  | 31.697 | 55.427 | 1.00 32.61 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MOTA | 1175         | CG1  | VAL A 152 | -0.184 | 31.767 | 53.963 | 1.00 31.50 |
| 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ATOM | 1176         | CG2  | VAL A 152 | -0.915 | 30.975 | 56.149 | 1.00 31.29 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATOM | 1177         | N    | LYS A 153 | 2.999  | 31.289 | 53.654 | 1.00 26.98 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATOM | 1178         | CA   | LYS A 153 | 4.002  | 31.927 | 52.866 | 1.00 25.81 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATOM | 1179         | С    | LYS A 153 | 3.469  | 32.141 | 51.473 | 1.00 23.81 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATOM | 1180         | 0    | LYS A 153 | 2.826  | 31.251 | 50.936 | 1.00 33.94 |
| 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ATOM | 1181         | СВ   | LYS A 153 | 5.252  | 31.091 | 52.841 |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATOM | 1182         | CG   | LYS A 153 | 6.383  | 31.760 | 53.583 | 1.00 24.70 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATOM | 1183         | CD   | LYS A 153 | 7.641  | 30.893 | 53.563 | 1.00 34.68 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATOM | 1184         | CE   | LYS A 153 | 8.121  | 30.506 |        | 1.00 39.37 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATOM | 1185         | NZ   | LYS A 153 | 9.556  | 30.152 | 55.015 | 1.00 29.09 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |              |      |           | 2.330  | 20.125 | 55.112 | 1.00 26.03 |

|              | ATOM | 1186 | N   | LEU A | 154  | 3.732 | 33.321 | 50.896 | 1.00 32.13 |
|--------------|------|------|-----|-------|------|-------|--------|--------|------------|
|              | ATOM | 1187 | CA  | LEU A |      | 3.285 | 33.639 |        |            |
|              |      |      |     |       |      |       |        | 49.544 | 1.00 30.67 |
|              | ATOM | 1188 | С   | LEU A |      | 4.279 | 34.475 | 48.789 | 1.00 40.67 |
|              | ATOM | 1189 | 0   | LEU A | 154  | 5.264 | 35.000 | 49.344 | 1.00 42.56 |
| 5            | ATOM | 1190 | СВ  | LEU A |      |       |        |        |            |
| J.           |      |      |     |       |      | 1.966 | 34.432 | 49.515 | 1.00 30.10 |
|              | ATOM | 1191 | CG  | LEU A | 154  | 2.084 | 35.793 | 50.207 | 1.00 35.20 |
|              | MOTA | 1192 | CD1 | LEU A | 154  | 0.989 | 36.716 | 49.690 | 1.00 37.21 |
|              |      |      |     |       |      |       |        |        |            |
|              | ATOM | 1193 |     | LEU A |      | 1.934 | 35.608 | 51.715 | 1.00 33.07 |
|              | ATOM | 1194 | N   | THR A | 155  | 3.963 | 34.610 | 47.499 | 1.00 37.82 |
| 10           | ATOM | 1195 | CA  | THR A |      | 4.728 | 35.449 | 46.596 |            |
| 10           |      |      |     |       |      |       |        |        | 1.00 38.44 |
|              | ATOM | 1196 | С   | THR A | 155  | 3.934 | 36.730 | 46.389 | 1.00 41.52 |
|              | ATOM | 1197 | 0   | THR A | 155  | 2.738 | 36.775 | 46.674 | 1.00 43.95 |
|              | ATOM | 1198 | CB  | THR A |      | 5.041 | 34.814 |        |            |
|              |      |      |     |       |      |       |        | 45.230 | 1.00 36.99 |
| 1.5          | ATOM | 1199 | OGI | THR A | 155  | 3.886 | 34.281 | 44.584 | 1.00 32.59 |
| 15           | ATOM | 1200 | CG2 | THR A | 155  | 6.133 | 33.790 | 45.404 | 1.00 18.24 |
|              | ATOM | 1201 | N   | TYR A |      |       |        |        |            |
|              |      |      |     |       |      | 4.563 | 37.768 | 45.892 | 1.00 33.87 |
|              | ATOM | 1202 | CA  | TYR A | 156  | 3.835 | 39.003 | 45.683 | 1.00 32.49 |
|              | ATOM | 1203 | С   | TYR A | 156  | 4.509 | 39.922 | 44.717 |            |
|              |      |      |     |       |      |       |        |        | 1.00 37.91 |
| 20           | ATOM | 1204 | 0   | TYR A |      | 5.725 | 39.940 | 44.562 | 1.00 39.04 |
| 20           | MOTA | 1205 | CB  | TYR A | 156  | 3.534 | 39.795 | 46.983 | 1.00 31.16 |
|              | ATOM | 1206 | CG  | TYR A |      | 4.642 | 40.731 |        |            |
|              |      |      |     |       |      |       |        | 47.471 | 1.00 28.94 |
|              | ATOM | 1207 | CD1 |       |      | 4.817 | 42.021 | 46.969 | 1.00 30.33 |
|              | ATOM | 1208 | CD2 | TYR A | 156  | 5.525 | 40.303 | 48.465 | 1.00 30.43 |
|              | MOTA | 1209 | CE1 | TYR A |      |       |        |        |            |
| 25           |      |      |     |       |      | 5.829 | 42.853 | 47.459 | 1.00 36.89 |
| 25           | ATOM | 1210 | CE2 | TYR A | 156  | 6.553 | 41.104 | 48.960 | 1.00 31.47 |
|              | ATOM | 1211 | CZ  | TYR A | 156  | 6.690 | 42.396 | 48.462 | 1.00 43.34 |
|              | ATOM | 1212 | ОН  | TYR A |      |       |        |        |            |
|              |      |      |     |       |      | 7.701 | 43.180 | 48.956 | 1.00 36.86 |
|              | ATOM | 1213 | N   | THR A | 157  | 3.657 | 40.689 | 44.101 | 1.00 36.75 |
|              | ATOM | 1214 | CA  | THR A | 157  | 4.036 | 41.691 | 43.171 | 1.00 38.49 |
| 30           | ATOM | 1215 | С   | THR A |      |       |        |        |            |
| 50           |      |      |     |       |      | 3.346 | 42.942 | 43.611 | 1.00 42.61 |
|              | ATOM | 1216 | 0   | THR A | 157  | 2.228 | 42.913 | 44.143 | 1.00 38.45 |
|              | ATOM | 1217 | CB  | THR A | 157  | 3.631 | 41.316 | 41.751 | 1.00 39.73 |
|              | ATOM | 1218 |     | THR A |      |       |        |        |            |
|              |      |      |     |       |      | 2.380 | 40.655 | 41.803 | 1.00 55.71 |
|              | ATOM | 1219 | CG2 | THR A | 157  | 4.680 | 40.370 | 41.212 | 1.00 26.71 |
| 35           | ATOM | 1220 | N   | ALA A | 158  | 4.037 | 44.025 | 43.404 | 1.00 41.36 |
|              | ATOM | 1221 | CA  |       |      |       |        |        |            |
|              |      |      |     | ALA A |      | 3.488 | 45.273 | 43.789 | 1.00 41.08 |
|              | ATOM | 1222 | C   | ALA A | 158  | 3.869 | 46.401 | 42.839 | 1.00 50.77 |
|              | ATOM | 1223 | 0   | ALA A | 158  | 4.919 | 46.390 | 42.179 | 1.00 53.47 |
|              | ATOM | 1224 | CB  | ALA A |      |       | 45.570 |        |            |
| 40           |      |      |     |       |      | 3.910 |        | 45.212 | 1.00 39.87 |
| 40           | ATOM | 1225 | N   | GLU A | 159  | 2.974 | 47.376 | 42.788 | 1.00 43.90 |
|              | ATOM | 1226 | CA  | GLU A | 159  | 3.107 | 48.604 | 42.023 | 1.00 42.27 |
|              | ATOM | 1227 | С   | GLU A | 15Q  | 2.451 | 49.705 |        |            |
|              |      |      |     |       |      |       |        | 42.843 | 1.00 42.17 |
|              | ATOM | 1228 | 0   | GLU A | 128  | 1.257 | 49.630 | 43.227 | 1.00 41.00 |
|              | ATOM | 1229 | CB  | GLU A | 159  | 2.641 | 48.521 | 40.571 | 1.00 43.72 |
| 45           | ATOM | 1230 | CG  | GLU A | 159  |       | 47.197 |        |            |
|              |      |      |     |       |      |       |        | 40.255 | 1.00 62.90 |
|              | MOTA | 1231 | CD  | GLU A |      | 1.502 | 47.156 | 38.835 | 1.00 91.28 |
|              | ATOM | 1232 | OE1 | GLU A | 159  | 2.202 | 46.696 | 37.955 | 1.00 77.84 |
|              | ATOM | 1233 |     | GLU A |      | 0.322 |        |        |            |
|              |      |      |     |       |      |       | 47.707 | 38.644 | 1.00100.00 |
| 50           | ATOM | 1234 | N   | VAL A | 160  | 3.263 | 50.686 | 43.197 | 1.00 34.67 |
| - 50         | ATOM | 1235 | CA  | VAL A | 160  | 2.738 | 51.717 | 44.044 | 1.00 36.57 |
|              | ATOM | 1236 | С   | VAL A |      | 3.024 | 53.091 |        |            |
|              |      |      |     |       |      |       |        | 43.533 | 1.00 43.02 |
|              | ATOM | 1237 | 0   | VAL A | 100  | 4.121 | 53.380 | 43.050 | 1.00 42.71 |
|              | MOTA | 1238 | CB  | VAL A | 160  | 3.180 | 51.530 | 45.500 | 1.00 40.73 |
|              | ATOM | 1239 |     | VAL A |      |       |        |        |            |
| 55           |      |      |     |       |      | 3.988 | 50.239 | 45.644 | 1.00 38.56 |
| 55           | MOTA | 1240 |     | VAL A |      | 4.006 | 52.728 | 45.963 | 1.00 40.46 |
|              | ATOM | 1241 | N   | SER A | 161  | 2.002 | 53.922 | 43.653 | 1.00 41.79 |
|              | ATOM | 1242 | CA  | SER A |      | 2.076 |        |        |            |
|              |      |      |     |       |      |       | 55.292 | 43.185 | 1.00 42.07 |
|              | ATOM | 1243 | С   | SER A | 101  | 2.532 | 56.204 | 44.270 | 1.00 44.28 |
| 1 -          | ATOM | 1244 | 0   | SER A | 161  | 2.047 | 56.121 | 45.403 | 1.00 43.60 |
| 60           | ATOM | 1245 | СВ  | SER A |      | 0.751 |        |        |            |
| <del>-</del> |      |      |     |       |      |       | 55.801 | 42.635 | 1.00 43.32 |
|              | ATOM | 1246 | OG  | SER A |      | 0.971 | 56.850 | 41.726 | 1.00 49.40 |
|              | MOTA | 1247 | N   | VAL A | 162  | 3.447 | 57.080 | 43.896 | 1.00 36.49 |
|              | ATOM | 1248 | CA  | VAL A |      | 3.979 | 58.019 | 44.838 |            |
|              |      |      |     |       |      |       |        |        | 1.00 34.99 |
|              | ATOM | 1249 | C   | VAL A | 1.07 | 4.273 | 59.319 | 44.148 | 1.00 42.57 |

|            | ATOM     | 1250 | ^   | 3.73 T | 7 | 100  |   | 4 400  |        |        |           |      |
|------------|----------|------|-----|--------|---|------|---|--------|--------|--------|-----------|------|
|            |          |      | 0   | VAL    |   |      |   | 4.470  | 59.354 | 42.932 | 1.00 4    |      |
|            | MOTA     | 1251 | CB  |        |   | 162  |   | 5.300  | 57.498 | 45.402 | 1.00 3    | 5.97 |
|            | ATOM     | 1252 | CG1 | VAL    | Α | 162  |   | 5.084  | 56.219 | 46.188 | 1.00 3    |      |
|            | MOTA     | 1253 |     | VAL    |   |      |   | 6.222  | 57.194 | 44.239 | 1.00 3    | E 40 |
| 5          | ATOM     | 1254 | N   |        |   | 163  |   |        |        |        |           |      |
| J. J.      |          |      |     |        |   |      |   | 4.332  | 60.377 | 44.942 | 1.00 3    |      |
|            | ATOM     | 1255 | CA  |        |   | 163  |   | 4.664  | 61.662 | 44.400 | 1.00 3    | 1.07 |
|            | MOTA     | 1256 | С   | PRO    | Α | 163  |   | 5.966  | 61.496 | 43.652 | 1.00 3    | 9 67 |
|            | ATOM     | 1257 | 0   |        |   | 163  |   | 6.919  | 60.892 | 44.142 |           |      |
|            | ATOM     | 1258 | СВ  |        |   | 163  |   |        |        |        | 1.00 4    |      |
| 10         |          |      |     |        |   |      |   | 4.780  | 62.562 | 45.618 | 1.00 3    | 1.62 |
| 10         | MOTA     | 1259 | CG  |        |   | 163  |   | 3.946  | 61.893 | 46.714 | 1.00 3    | 3.93 |
|            | ATOM     | 1260 | CD  | PRC    | Α | 163  |   | 3.652  | 60.480 | 46.259 | 1.00 2    |      |
|            | ATOM     | 1261 | N   | LYS    | А | 164  |   | 5.962  | 61.978 | 42.436 | 1.00 3    |      |
|            | ATOM     | 1262 | CA  | LYS    |   |      |   | 7.086  |        |        |           |      |
|            |          |      |     |        |   |      |   |        | 61.860 | 41.539 | 1.00 3    |      |
| 1.5        | ATOM     | 1263 | С   | LYS    |   |      |   | 8.451  | 62.222 | 42.088 | 1.00 4    | 2.75 |
| 15         | ATOM     | 1264 | 0   | LYS    | Α | 164  |   | 9.453  | 61.708 | 41.593 | 1.00 4    | 4.47 |
|            | MOTA     | 1265 | CB  | LYS    | Α | 164  |   | 6.828  | 62.479 | 40.177 | 1.00 4    |      |
|            | ATOM     | 1266 | CG  | LYS    |   |      |   |        |        |        |           |      |
|            |          |      |     |        |   |      |   | 6.004  | 63.758 | 40.257 | 1.00 7    | 8.05 |
|            | MOTA     | 1267 | CD  | LYS    |   |      |   | 6.651  | 64.918 | 39.497 | 1.0010    | 0.00 |
| , iffo.    | MOTA     | 1268 | CE  | LYS    | A | 164  |   | 6.016  | 66.289 | 39.772 | 1.0010    | 0.00 |
| 20         | ATOM     | 1269 | NZ  | LYS    | Α | 164  |   | 6.679  | 67.075 | 40.835 | 1.0010    |      |
| 4320       | ATOM     | 1270 | N   | GLU    |   |      |   |        |        |        |           |      |
| 1.4.       | ATOM     | 1271 |     |        |   |      |   | 8.519  | 63.097 | 43.082 | 1.00 3    |      |
|            |          |      | CA  | GLU    |   |      |   | 9.814  | 63.489 | 43.665 | 1.00 3    | 9.56 |
| ing into   | ATOM     | 1272 | С   | GLU    | Α | 165  | • | 10.333 | 62.462 | 44.677 | 1.00 4    | 6.39 |
| 2 9R4,     | ATOM     | 1273 | 0   | GLU    | Α | 165  |   | 11.531 | 62.318 | 44.927 | 1.00 4    |      |
| 25         | ATOM     | 1274 | CB  | GLU    |   |      |   | 9.797  | 64.902 |        |           |      |
|            | ATOM     | 1275 |     |        |   |      |   |        |        | 44.297 | 1.00 4    |      |
| <b>}</b> = |          |      | CG  | GLU    |   |      |   | 8.602  | 65.156 | 45.257 | 1.00 5    | 8.16 |
| 110        | ATOM     | 1276 | CD  | GLU    |   |      |   | 7.214  | 64.970 | 44.664 | 1.00 8    | 8.01 |
| IN         | ATOM     | 1277 | OE1 | GLU    | Α | 165  |   | 6.994  | 64.757 | 43.475 | 1.00 7    |      |
| - #-       | <br>ATOM | 1278 | OE2 | GLU    |   |      |   | 6.266  | 65.050 |        |           |      |
| 130        | ATOM     | 1279 | N   | LEU    |   |      |   |        |        | 45.575 | 1.00 7    |      |
|            |          |      |     |        |   |      |   | 9.398  | 61.733 | 45.265 | 1.00 4    |      |
| n.         | ATOM     | 1280 | CA  | LEU    |   |      |   | 9.696  | 60.733 | 46.254 | 1.00 3    | 6.56 |
| C.         | ATOM     | 1281 | С   | LEU    | Α | 166  |   | 9.934  | 59.377 | 45.640 | 1.00 4    |      |
|            | ATOM     | 1282 | 0   | LEU    | А | 166  |   | 9.366  | 59.080 | 44.581 | 1.00 5    |      |
| See Mile   | ATOM     | 1283 | СВ  | LEU    |   |      |   |        |        |        |           |      |
| 35         |          |      |     |        |   |      |   | 8.525  | 60.630 | 47.250 | 1.00 3    |      |
| 33         | MOTA     | 1284 | CG  | LEU    | А | 100  |   | 8.315  | 61.912 | 48.057 | 1.00 2    | 9.18 |
|            | ATOM     | 1285 |     | LEU    |   |      |   | 7.363  | 61.590 | 49,189 | 1.00 2    | 5.96 |
|            | ATOM     | 1286 | CD2 | LEU    | Α | 166  |   | 9.635  | 62.467 | 48.622 | 1.00 2    |      |
|            | ATOM     | 1287 | N   | VAL    |   |      |   | 10.769 | 58.564 | 46.328 |           |      |
|            | ATOM     | 1288 | CA  | VAL    |   |      |   |        |        |        | 1.00 3    |      |
| 40         |          |      |     |        |   |      |   | 11.077 | 57.218 | 45.908 | 1.00 3    | 0.00 |
| 40         | ATOM     | 1289 | С   | VAL    | А | 167  |   | 10.332 | 56.229 | 46.771 | 1.00 3    | 8.80 |
|            | MOTA     | 1290 | 0   | VAL    | А | 167  |   | 9.902  | 56.532 | 47.879 | 1.00 4    | n 91 |
|            | ATOM     | 1291 | CB  | VAL    | Α | 167  |   | 12.549 | 56.860 | 46.048 | 1.00 3    |      |
|            | ATOM     | 1292 | CG1 |        |   |      |   | 12.854 | 55.542 |        |           |      |
|            |          |      |     |        |   |      |   |        |        | 45.329 | 1.00 2    | 8.20 |
| 15         | ATOM     | 1293 |     | VAL    |   |      |   | 13.456 | 57.964 | 45.565 | 1.00 3    | 1.06 |
| 45         | ATOM     | 1294 | N   | ALA    |   |      |   | 10.217 | 55.019 | 46.257 | 1.00 3    | 6.46 |
|            | ATOM     | 1295 | CA  | ALA    | A | 168  |   | 9.584  | 53.935 | 46.979 | 1.00 3    |      |
|            | ATOM     | 1296 | С   | ALA    |   |      |   | 10.418 | 52.662 |        |           |      |
|            | ATOM     | 1297 | Ö   | ALA    |   |      |   |        |        | 46.836 | 1.00 4    |      |
|            |          |      |     |        |   |      |   | 10.889 | 52.343 | 45.733 | 1.00 4    | 4.74 |
| 50         | ATOM     | 1298 | CB  | ALA    |   |      |   | 8.149  | 53.700 | 46.550 | 1.00 3    | 4.20 |
| 50         | ATOM     | 1299 | N   | LEU    | Α | 169  |   | 10.603 | 51.960 | 47.975 | 1.00 3    |      |
|            | ATOM     | 1300 | CA  | LEU    | Α | 169  |   | 11.323 | 50.696 | 48.069 | 1.00 2    |      |
|            | MOTA     | 1301 | С   | LEU    |   |      |   | 10.491 |        |        |           |      |
|            |          |      |     |        |   |      |   |        | 49.635 | 48.797 | 1.00 3    | 3.87 |
|            | MOTA     | 1302 | 0   | LEU    |   |      |   | 9.604  | 49.918 | 49.613 | 1.00 3    | 1.21 |
|            | ATOM     | 1303 | CB  | LEU    | A | 169  |   | 12.721 | 50.835 | 48.656 | 1.00 2    |      |
| 55         | ATOM     | 1304 | CG  | LEU    | Α | 169  |   | 13.593 | 51.810 | 47.891 | 1.00 3    |      |
|            | ATOM     | 1305 |     | LEU    |   |      |   | 14.953 |        |        |           |      |
|            | ATOM     | 1306 |     |        |   |      |   |        | 51.819 | 48.558 | 1.00 3    |      |
|            |          |      |     | LEU    |   |      |   | 13.765 | 51.394 | 46.432 | 1.00 3    |      |
|            | MOTA     | 1307 | N   | MET    |   |      |   | 10.758 | 48.381 | 48.479 | 1.00 3    |      |
|            | ATOM     | 1308 | CA  | MET    | Α | 170  |   | 10.012 | 47.291 | 49.069 | 1.00 3    |      |
| 60         | MOTA     | 1309 | С   | MET    |   |      |   | 10.874 | 46.083 |        |           |      |
|            | ATOM     | 1310 | ō   | MET    |   |      |   |        |        | 49.287 | 1.00 3    |      |
|            |          |      |     |        |   |      |   | 11.995 | 45.973 | 48.775 | 1.00 3    |      |
|            | ATOM     | 1311 | CB  | MET    | Α | T 10 |   | 8.842  | 46.882 | 48.154 | 1.00 3    | 1.95 |
|            | ATOM     | 1312 | CG  | MET    |   |      |   | 7.751  | 47.934 | 48.116 | 1.00 3    |      |
|            | MOTA     | 1313 | SD  | MET    | Α | 170  |   | 6.105  | 47.253 | 47.815 | 1.00 3    |      |
|            |          |      |     |        |   |      |   |        |        |        | # 1 0 0 J |      |

|                               |            | MOTA | 1314 | CE  | MET : | A | 170 | 5.820  | 46.349 | 49.363 | 1.00 32.25 |
|-------------------------------|------------|------|------|-----|-------|---|-----|--------|--------|--------|------------|
|                               |            | ATOM | 1315 | N   | SER   |   |     | 10.332 | 45.165 | 50.057 | 1.00 28.20 |
|                               |            | ATOM | 1316 | CA  | SER   |   |     | 11.064 | 43.953 | 50.297 | 1.00 28.47 |
|                               |            | ATOM | 1317 | С   | SER   |   |     | 10.929 | 43.054 | 49.049 | 1.00 32.01 |
|                               | 5          | ATOM | 1318 | Ō   | SER   |   |     | 10.396 | 41.958 | 49.089 | 1.00 30.93 |
|                               | -          | ATOM | 1319 | СВ  | SER . |   |     | 10.662 | 43.265 | 51.606 | 1.00 30.93 |
|                               |            | ATOM | 1320 | OG  | SER . |   |     | 9.297  | 42.920 | 51.581 |            |
|                               |            | ATOM | 1321 | N   | ALA . |   |     | 11.401 | 42.920 |        | 1.00 32.90 |
|                               |            | ATOM | 1322 | CA  |       |   |     |        |        | 47.912 | 1.00 28.84 |
|                               | 10         |      |      |     | ALA . |   |     | 11.286 | 42.773 | 46.691 | 1.00 29.48 |
|                               | 10         | ATOM | 1323 | С   | ALA . |   |     | 12.241 | 43.258 | 45.644 | 1.00 37.63 |
|                               |            | MOTA | 1324 | 0   | ALA.  |   |     | 13.060 | 44.147 | 45.881 | 1.00 35.07 |
|                               |            | ATOM | 1325 | CB  | ALA . |   | _   | 9.884  | 42.969 | 46.120 | 1.00 29.48 |
|                               |            | MOTA | 1326 | N   | ILE . |   |     | 12.104 | 42.686 | 44.452 | 1.00 39.49 |
|                               |            | ATOM | 1327 | CA  | ILE . |   |     | 12.966 | 43.120 | 43.382 | 1.00 38.64 |
| ,                             | 15         | MOTA | 1328 | С   | ILE . | A | 173 | 12.418 | 44.343 | 42.648 | 1.00 44.83 |
|                               |            | ATOM | 1329 | 0   | ILE . | A | 173 | 11.269 | 44.394 | 42.193 | 1.00 40.97 |
|                               |            | MOTA | 1330 | CB  | ILE . | Α | 173 | 13.549 | 42.027 | 42.479 | 1.00 38.79 |
|                               |            | ATOM | 1331 | CG1 | ILE . | A | 173 | 14.258 | 40.970 | 43.302 | 1.00 37.40 |
| Cis                           |            | ATOM | 1332 | CG2 | ILE . | Α | 173 | 14.606 | 42.621 | 41.570 | 1.00 38.88 |
|                               | 20         | ATOM | 1333 |     | ILE . |   |     | 15.770 | 41.069 | 43.193 | 1.00 25.93 |
| 714 mg/s                      |            | ATOM | 1334 | N   | ARG . |   |     | 13.286 | 45.345 | 42.584 | 1.00 43.21 |
| 1-4-                          |            | ATOM | 1335 | CA  | ARG   |   |     | 12.997 | 46.567 | 41.917 | 1.00 42.34 |
| 140 ±10<br>142 ±10<br>143 ±10 |            | ATOM | 1336 | C   | ARG . |   |     | 12.630 | 46.173 | 40.516 | 1.00 47.54 |
| 3 5FA<br>14 5 5FA             |            | ATOM | 1337 | Õ   | ARG . |   |     | 13.478 | 45.667 | 39.770 | 1.00 47.34 |
| UT :                          | 25         | ATOM | 1338 | СВ  | ARG . |   |     | 14.254 | 47.422 |        |            |
| 3=50                          |            | ATOM | 1339 | CG  | ARG . |   |     |        |        | 41.937 | 1.00 42.47 |
|                               |            |      |      |     |       |   |     | 14.231 | 48.450 | 43.075 | 1.00 53.40 |
| 189                           |            | ATOM | 1340 | CD  | ARG . |   |     | 15.617 | 48.917 | 43.515 | 1.00 33.80 |
| 4                             |            | MOTA | 1341 | NE  | ARG . |   |     | 16.036 | 50.083 | 42.756 | 1.00 53.32 |
| na.                           | 30         | ATOM | 1342 | CZ  | ARG . |   |     | 17.221 | 50.208 | 42.181 | 1.00 97.11 |
| n.                            | 30         | ATOM | 1343 |     | ARG . |   |     | 18.132 | 49.243 | 42.266 | 1.00100.00 |
| 24 mg                         |            | MOTA | 1344 |     | ARG . |   |     | 17.503 | 51.321 | 41.489 | 1.00100.00 |
| en str.                       |            | MOTA | 1345 | N   | ASP . |   |     | 11.356 | 46.356 | 40.195 | 1.00 51.12 |
|                               |            | MOTA | 1346 | CA  | ASP . |   |     | 10.858 | 45.981 | 38.882 | 1.00 53.89 |
| Jak.                          | 25         | MOTA | 1347 | С   | ASP . |   |     | 10.778 | 47.128 | 37.885 | 1.00 58.32 |
| *                             | 35         | MOTA | 1348 | 0   | ASP . |   |     | 10.455 | 46.901 | 36.727 | 1.00 56.00 |
|                               |            | ATOM | 1349 | CB  | ASP . |   |     | 9.533  | 45.186 | 38.948 | 1.00 57.16 |
|                               |            | ATOM | 1350 | CG  | ASP . |   |     | 9.196  | 44.446 | 37.675 | 1.00 81.25 |
|                               |            | ATOM | 1351 |     | ASP . |   |     | 10.034 | 44.118 | 36.851 | 1.00 83.53 |
|                               | 4.0        | ATOM | 1352 | OD2 | ASP . | Α | 175 | 7.910  | 44.176 | 37.558 | 1.00 92.45 |
| •                             | 40         | MOTA | 1353 | N   | GLY . | Α | 176 | 11.062 | 48.356 | 38.331 | 1.00 58.24 |
|                               |            | ATOM | 1354 | CA  | GLY . | Α | 176 | 11.021 | 49.498 | 37.438 | 1.00 57.71 |
|                               |            | MOTA | 1355 | С   | GLY . | Α | 176 | 9.969  | 50.546 | 37.773 | 1.00 58.98 |
|                               |            | MOTA | 1356 | 0   | GLY . | Α | 176 | 9.090  | 50.371 | 38.620 | 1.00 52.04 |
|                               |            | MOTA | 1357 | N   | GLU . | Α | 177 | 10.110 | 51.649 | 37.050 | 1.00 63.72 |
|                               | 45         | MOTA | 1358 | CA  | GLU . | Α | 177 | 9.267  | 52.812 | 37.172 | 1.00 67.79 |
|                               |            | ATOM | 1359 | С   | GLU . | Α | 177 | 8.874  | 53.388 | 35.817 | 1.00 86.22 |
|                               |            | ATOM | 1360 | 0   | GLU . |   |     | 9.614  | 53.364 | 34.830 | 1.00 91.14 |
|                               |            | MOTA | 1361 | CB  | GLU . | Α | 177 | 9.986  | 53.902 | 38.006 | 1.00 68.25 |
|                               |            | MOTA | 1362 | CG  | GLU . |   |     | 11.432 | 54.145 | 37.519 | 1.00 71.58 |
|                               | 50         | ATOM | 1363 | CD  | GLU . |   |     | 12.183 | 55.088 | 38.404 | 1.00 85.08 |
|                               |            | MOTA | 1364 |     | GLU . | A | 177 | 13.045 | 54.733 | 39.198 | 1.00100.00 |
|                               |            | ATOM | 1365 | OE2 | GLU   |   |     | 11.765 | 56.316 | 38.264 | 1.00 56.71 |
|                               |            | ATOM | 1366 | N   | THR   |   |     | 7.671  | 53.924 | 35.835 | 1.00 84.76 |
|                               |            | ATOM | 1367 | CA  | THR   |   |     | 6.684  | 54.686 | 35.033 |            |
|                               | 55         | ATOM | 1368 | C   | THR   |   |     |        |        | 35.855 | 1.00 84.81 |
|                               | <i>J J</i> | ATOM | 1369 |     | THR   |   |     | 6.024  | 55.810 |        | 1.00 90.37 |
|                               |            |      |      | O   |       |   |     | 5.664  | 55.655 | 36.996 | 1.00 91.10 |
|                               |            | ATOM | 1370 | CB  | THR . |   |     | 5.618  | 53.713 | 34.561 | 1.00 89.82 |
|                               |            | ATOM | 1371 |     | THR   |   |     | 5.283  | 52.830 | 35.636 | 1.00 80.25 |
|                               | <b>6</b> 0 | ATOM | 1372 |     | THR . |   |     | 6.161  | 52.898 | 33.396 | 1.00 93.46 |
|                               | 60         | MOTA | 1373 | N   | PRO   |   |     | 5.921  | 56.984 | 35.217 | 1.00 87.05 |
|                               |            | ATOM | 1374 | CA  | PRO   |   |     | 5.365  | 58.187 | 35.845 | 1.00 86.61 |
|                               |            | ATOM | 1375 | С   | PRO   |   |     | 3.857  | 58.419 | 35.531 | 1.00 89.04 |
|                               |            | MOTA | 1376 | 0   | PRO   |   |     | 3.444  | 59.516 | 35.140 | 1.00 91.15 |
|                               |            | MOTA | 1377 | CB  | PRO   | A | 179 | 6.176  | 59.345 | 35.301 | 1.00 88.63 |
|                               |            |      |      |     |       |   |     |        |        |        |            |

|                  | MOTA         | 1378         | CG       | PRO A | 179 | 6.657            | 58.947           | 33.895           | 1.00 92.62               |
|------------------|--------------|--------------|----------|-------|-----|------------------|------------------|------------------|--------------------------|
|                  | ATOM         | 1379         | CD       | PRO A | 179 | 6.426            | 57.345           | 33.902           | 1.00 87.63               |
|                  | ATOM         | 1380         | N        | ASP A | 180 | 3.020            | 57.347           | 35.694           | 1.00 82.31               |
|                  | ATOM         | 1381         | CA       | ASP A |     | 1.616            | 57.568           | 35.310           | 1.00 81.19               |
| 5                | MOTA         | 1382         | С        | ASP A |     | 0.629            | 56.743           | 36.166           | 1.00 90.72               |
|                  | ATOM         | 1383         | 0        | ASP A |     | 0.533            | 55.519           | 36.072           | 1.00 91.13               |
|                  | ATOM         | 1384         | CB       | ASP A |     | 1.458            | 57.196           | 33.827           | 1.00 82.12               |
|                  | ATOM         | 1385         | CG       | ASP A |     | 0.087            | 57.651           | 33.327           | 1.00 95.94               |
| 10               | MOTA         | 1386         |          | ASP A |     | -0.155           | 58.858           | 33.337           | 1.00100.00               |
| 10               | MOTA         | 1387         |          | ASP A |     | -0.714           | 56.801           | 32.946           | 1.00 94.36               |
|                  | ATOM         | 1388         | N        | PRO A |     | -0.060           | 57.456           | 37.086           | 1.00 92.45               |
|                  | MOTA         | 1389         | CA       | PRO A |     | -1.212           | 56.934           | 37.795           | 1.00 92.02               |
|                  | ATOM         | 1390         | C        | PRO A |     | -2.519           | 57.566           | 37.284           | 1.00100.00               |
| 15               | ATOM         | 1391         | 0        | PRO A |     | -2.605           | 58.114           | 36.192           | 1.00100.00               |
| 15               | ATOM         | 1392         | CB       | PRO A |     | -1.014           | 57.340           | 39.210           | 1.00 92.48               |
|                  | ATOM         | 1393         | CG<br>CD | PRO A |     | -0.362           | 58.734           | 39.152           | 1.00 98.39               |
|                  | ATOM         | 1394<br>1395 | N        | PRO A |     | 0.268            | 58.736           | 37.663           | 1.00 94.17               |
|                  | ATOM<br>ATOM | 1396         | CA       | GLU A |     | -3.567<br>-4.822 | 57.456<br>58.161 | 38.141           | 1.00100.00               |
| 20               | ATOM         | 1397         | C        | GLU A |     | -5.359           | 58.856           | 37.876<br>39.154 | 1.00 98.21<br>1.00100.00 |
| 43               | ATOM         | 1398         | 0        | GLU A |     | -6.404           | 59.497           | 39.167           | 1.00100.00               |
| jak,             | ATOM         | 1399         | CB       | GLU A |     | -5.854           | 57.142           | 37.356           | 1.00 99.44               |
| 25 m/<br>1 m/    | ATOM         | 1400         | CG       | GLU A |     | -5.880           | 57.077           | 35.816           |                          |
| \$200<br>#\$ 000 | ATOM         | 1401         | CD       | GLU A |     | -7.013           | 57.938           | 35.300           | 1.00100.00               |
| 25               | ATOM         | 1402         | OE1      | GLU A |     | -7.817           | 58.385           | 36.105           | 1.00100.00               |
|                  | ATOM         | 1403         | OE2      | GLU A |     | -7.084           | 58.153           | 34.091           | 1.00100.00               |
| ješ.             | ATOM         | 1404         | N        | ASP A |     | -4.607           | 58.672           | 40.265           | 1.00 98.63               |
| #                | ATOM         | 1405         | CA       | ASP A |     | -5.021           | 59.257           | 41.552           | 1.00 97.49               |
| \$= £0           | ATOM         | 1406         | C        | ASP A |     | -4.126           | 60.472           | 41.932           | 1.00100.00               |
| <b>1.30</b>      | ATOM         | 1407         | ō        | ASP A |     | -3.464           | 61.061           | 41.079           | 1.00100.00               |
|                  | ATOM         | 1408         | СВ       | ASP A |     | -4.946           | 58.144           | 42.619           | 1.00 98.36               |
|                  | ATOM         | 1409         | CG       | ASP A |     | -3.612           | 57.409           | 42.547           | 1.00100.00               |
| THE REP.         | MOTA         | 1410         | OD1      | ASP A |     | -3.471           | 56.556           | 41.668           | 1.00100.00               |
| 12.0             | ATOM         | 1411         |          | ASP A |     | -2.741           | 57.688           | 43.364           | 1.00100.00               |
| <b>35</b>        | MOTA         | 1412         | N        | PRO A |     | -4.187           | 60.906           | 43.237           | 1.00 97.96               |
|                  | MOTA         | 1413         | CA       | PRO A | 184 | -3.311           | 61.985           | 43.738           | 1.00 97.92               |
|                  | ATOM         | 1414         | С        | PRO A | 184 | -1.865           | 61.528           | 44.071           | 1.00 97.89               |
|                  | ATOM         | 1415         | 0        | PRO A | 184 | -1.348           | 61.748           | 45.159           | 1.00100.00               |
| 4.0              | MOTA         | 1416         | CB       | PRO A | 184 | -3.973           | 62.561           | 44.992           | 1.00 98.86               |
| 40               | MOTA         | 1417         | CG       | PRO A |     | -5.262           | 61.777           | 45.284           | 1.00100.00               |
|                  | ATOM         | 1418         | CD       | PRO A |     | -5.122           | 60.532           | 44.284           | 1.00 97.20               |
|                  | ATOM         | 1419         | N        | SER A |     | -1.249           | 60.840           | 43.071           | 1.00 82.40               |
|                  | ATOM         | 1420         | CA       | SER A |     | 0.196            | 60.496           | 43.086           | 1.00 75.26               |
| 45               | ATOM         | 1421         | C        | SER A |     | 0.748            | 60.563           | 41.623           | 1.00 71.84               |
| 43               | ATOM         | 1422         | 0        | SER A |     | -0.006           | 60.525           | 40.670           | 1.00 77.97               |
|                  | ATOM         | 1423         | CB       | SER A |     | 0.337            | 59.068           | 43.636           | 1.00 73.41               |
|                  | ATOM<br>ATOM | 1424<br>1425 | OG<br>N  | SER A |     | 0.672            | 59.109           | 45.027           | 1.00 63.60               |
|                  | ATOM         | 1425         | N<br>CA  | ARG A |     | 2.107            | 60.704           | 41.461           | 1.00 57.89               |
| 50               | ATOM         | 1427         | CA       | ARG A |     | 2.650            | 60.971           | 40.088           | 1.00 56.00               |
| 50               | ATOM         | 1428         | o        | ARG A |     | 3.725<br>4.473   | 59.943<br>60.157 | 39.633<br>38.688 | 1.00 59.64               |
|                  | ATOM         | 1429         | СВ       | ARG A |     | 3.258            | 62.393           | 40.064           | 1.00 60.30<br>1.00 63.74 |
|                  | ATOM         | 1430         | CG       | ARG A |     | 2.339            | 63.457           | 40.677           | 1.00 80.44               |
|                  | ATOM         | 1431         | CD       | ARG A |     | 1.188            | 63.874           | 39.736           | 1.00 71.31               |
| 55               | ATOM         | 1432         | NE       | ARG A |     | 1.316            | 63.215           | 38.436           | 1.00 71.51               |
| -                | ATOM         | 1433         | CZ       | ARG A |     | 0.185            | 62.862           | 37.784           | 1.00 95.30               |
|                  | ATOM         | 1434         |          | ARG A |     | -0.999           | 63.109           | 38.312           | 1.00 56.25               |
|                  | ATOM         | 1435         |          | ARG A |     | 0.276            | 62.232           | 36.603           | 1.00 89.98               |
|                  | MOTA         | 1436         | N        | LYS A |     | 3.892            | 58.778           | 40.265           | 1.00 54.50               |
| 60               | ATOM         | 1437         | CA       | LYS A |     | 4.891            | 57.805           | 39.851           | 1.00 51.93               |
|                  | ATOM         | 1438         | С        | LYS A |     | 4.506            | 56.436           | 40.276           | 1.00 52.96               |
|                  | MOTA         | 1439         | 0        | LYS A |     | 3.971            | 56.236           | 41.368           | 1.00 53.58               |
|                  | MOTA         | 1440         | CB       | LYS A |     | 6.247            | 58.047           | 40.470           | 1.00 53.78               |
|                  | ATOM         | 1441         | CG       | LYS A |     | 7.427            | 57.714           | 39.574           | 1.00 43.05               |

|                      |    | AT   | OM  | 1442 | CD  | LYS | Α | 187 |   | 8.517  | 5   | 8.761 | 30  | .762  | 1 00 | 53.36  |
|----------------------|----|------|-----|------|-----|-----|---|-----|---|--------|-----|-------|-----|-------|------|--------|
|                      |    | AT   |     | 1443 | CE  | LYS |   |     |   | 9.870  |     | 8.468 |     | .146  |      | 39.68  |
| •                    |    | AT   |     | 1444 | NZ  | LYS |   |     |   | 10.795 |     | 9.601 |     | 341   |      | 40.19  |
|                      |    | AT   |     | 1445 | N   | ILE |   |     |   | 4.819  |     | 5.502 |     | .403  |      | 46.36  |
|                      | 5  | AT   |     | 1446 | CA  | ILE |   |     |   |        |     |       |     |       |      |        |
|                      | 7  |      |     |      |     |     |   |     |   | 4.565  |     | 4.128 |     | 700   |      | 43.57  |
|                      |    | AT   |     | 1447 | C   | ILE |   |     |   | 5.824  |     | 3.311 |     | 851   |      | 42,64  |
|                      |    | AT   |     | 1448 | 0   | ILE |   |     | • | 6.647  |     | 3.189 |     | 3.937 |      | 41.55  |
|                      |    | AT   |     | 1449 | CB  | ILE |   |     |   | 3.579  |     | 3.425 | 38  | 3.826 |      | 45.64  |
|                      |    | AT   | OM  | 1450 |     | ILE |   |     |   | 2.193  | 5   | 4.021 | 39  | 0.047 | 1.00 | 45.82  |
|                      | 10 | AT   | OM  | 1451 | CG2 | ILE | Α | 188 |   | 3.590  | 5   | 1.969 | 39  | .273  | 1.00 | 43.43  |
|                      |    | AT   | OM  | 1452 | CD1 | ILE | Α | 188 |   | 1.448  | 5   | 3.505 | 40  | .276  |      | 62.08  |
|                      |    | AT   | OM  | 1453 | N   | TYR | Α | 189 |   | 5.950  |     | 2.757 |     | .042  |      | 35.58  |
|                      |    | AT   |     | 1454 | CA  | TYR |   |     |   | 7.079  |     | 1.933 |     | .356  |      | 37.57  |
|                      |    | AT   |     | 1455 | C   | TYR |   |     |   | 6.652  |     | 0.465 |     | .359  |      | 44.89  |
|                      | 15 | AT   |     | 1456 | Ö   | TYR |   |     |   | 5.656  |     | 0.092 |     | .999  |      | 44.33  |
|                      | 10 | AT   |     | 1457 | CB  | TYR |   |     |   | 7.752  |     | 2.392 |     |       |      |        |
|                      |    |      | OM  | 1458 | CG  | TYR |   |     |   |        |     |       |     | 2.661 |      | 37.85  |
| ar su                |    |      |     |      |     |     |   |     |   | 8.692  |     | 3.563 |     | 2.456 |      | 34.49  |
|                      |    |      | OM  | 1459 |     | TYR |   |     |   | 9.968  |     | 3.375 |     | .930  |      | 35.93  |
|                      | 00 |      | MO  | 1460 | CD2 |     |   |     |   | 8.310  |     | 4.859 |     | 2.813 | 1.00 | 32.44  |
| T. T.                | 20 |      | OM  | 1461 |     | TYR |   |     |   | 10.843 |     | 4.449 | 41  | .753  |      | 36.88  |
| 34 #0                |    | AT   | OM  | 1462 | CE2 | TYR | A | 189 |   | 9.170  | 5   | 5.945 | 42  | 2.647 | 1.00 | 31.63  |
| 1-4                  |    | TA   | OM  | 1463 | CZ  | TYR | Α | 189 |   | 10.441 | . 5 | 5.734 | 42  | 2.113 | 1.00 | 44.54  |
| 1984<br>1984<br>1984 |    | AT   | MO  | 1464 | OH  | TYR | Α | 189 |   | 11.296 | 5   | 6.788 | 41  | .929  |      | 57.77  |
| 15 THE               |    |      | MO  | 1465 | N   | LYS | Α | 190 |   | 7.413  |     | 9.651 |     | .608  |      | 42.91  |
|                      | 25 |      | OM  | 1466 | CA  | LYS |   |     |   | 7.173  |     | 8.210 |     | .420  |      | 42.22  |
| -A                   |    |      | 'OM | 1467 | С   | LYS |   |     |   | 8.152  |     | 7.262 |     | 1.143 |      | 40.73  |
| in the               |    |      | MO  | 1468 | ō   | LYS |   |     |   | 9.398  |     | 7.400 |     | 1.093 |      | 35.69  |
| #                    |    |      | 'OM | 1469 | СВ  | LYS |   |     |   | 7.007  |     | 7.839 |     |       |      |        |
| ]+#x                 |    |      |     | 1470 | CG  |     |   |     |   |        |     |       |     | 3.944 |      | 45.87  |
|                      | 30 |      | MO  |      |     | LYS |   |     |   | 5.735  |     | 8.403 |     | 3.306 |      | 71.08  |
| 6 . Mar.             | 30 |      | OM  | 1471 | CD  | LYS |   |     |   | 5.758  |     | 8.384 |     | 5.779 |      | 84.62  |
|                      |    |      | MO  | 1472 | CE  | LYS |   |     |   | 4.386  |     | 8.157 |     | 5.147 |      | 100.00 |
|                      |    |      | 'OM | 1473 | NZ  | LYS |   |     |   | 4.299  |     | 6.930 |     | .329  |      | 100.00 |
|                      |    |      | 'OM | 1474 | N   | PHE |   |     |   | 7.539  | 4   | 6.264 | 4 ] | 1.812 | 1.00 | 35.01  |
| 3 5                  |    | AT   | 'OM | 1475 | CA  | PHE | Α | 191 |   | 8.276  | 4   | 5.304 | 42  | 2.592 | 1.00 | 31.57  |
| #                    | 35 | AT   | 'OM | 1476 | С   | PHE | Α | 191 |   | 7.792  | 2 4 | 3.871 | 42  | 2.465 | 1.00 | 30.89  |
|                      |    | AT   | 'OM | 1477 | 0   | PHE | Α | 191 |   | 6.603  | 3 4 | 3.584 | 42  | 2.377 |      | 25.06  |
|                      |    | AT   | 'OM | 1478 | CB  | PHE | Α | 191 |   | 8.217  | 4   | 5.734 | 44  | 1.080 |      | 32.11  |
|                      |    | AT   | 'OM | 1479 | CG  | PHE | Α | 191 |   | 8.570  |     | 7.190 |     | 1.372 |      | 29.24  |
|                      |    | AT   | MO. | 1480 | CD1 | PHE | Α | 191 |   | 9.895  |     | 7.593 |     | 1.539 |      | 31.81  |
|                      | 40 | AT   | 'OM | 1481 |     | PHE |   |     |   | 7.565  |     | 8.147 |     | 1.508 |      | 30.17  |
|                      |    |      | MO' | 1482 |     | PHE |   |     |   | 10.230 |     | 8.925 |     | 1.805 |      | 34.10  |
|                      |    |      | 'OM | 1483 |     | PHE |   |     |   | 7.866  |     | 9.483 |     | 1.776 |      | 33.69  |
|                      |    |      | 'OM | 1484 | CZ  | PHE |   |     |   | 9.201  |     |       |     |       |      |        |
|                      |    |      | OM  | 1485 | N N | ILE |   |     |   |        |     | 9.860 |     | 1.928 |      | 33.32  |
|                      | 45 |      |     |      | -   |     |   |     |   | 8.764  |     | 2.961 |     | 2.505 |      | 35.75  |
|                      | 43 |      | 'OM | 1486 | CA  | ILE |   |     |   | 8.525  |     | 1.520 |     | 2.415 |      | 37.02  |
|                      |    |      | MO' | 1487 | C   | ILE |   |     |   | 9.255  |     | 0.653 |     | 3.469 |      | 33.05  |
|                      |    |      | 'OM | 1488 | 0   | ILE |   |     |   | 10.489 |     | 0.672 |     | 3.593 |      | 30.73  |
|                      |    |      | MO  | 1489 | CB  | ILE |   |     |   | 8.850  |     | 0.970 |     | L.025 |      | 42.45  |
|                      |    |      | MO  | 1490 |     | ILE |   |     |   | 8.289  | 4   | 1.914 | 39  | 9.981 | 1.00 | 46.39  |
|                      | 50 | ΙA   | MO  | 1491 | CG2 | ILE | A | 192 |   | 8.251  | . 3 | 9.567 | 4 ( | 0.859 | 1.00 | 44.02  |
|                      |    | ΑΊ   | MO. | 1492 | CD1 | ILE | A | 192 |   | 7.609  | 4   | 1.231 | 38  | 3.798 | 1.00 | 69.61  |
|                      |    | ΑI   | MO  | 1493 | N   | GLN | Α | 193 |   | 8.459  | 3   | 9.864 | 44  | 1.195 |      | 27.51  |
|                      |    | ΙA   | MO  | 1494 | CA  | GLN | Α | 193 |   | 8.954  |     | 8.908 |     | 5.177 |      | 32.05  |
|                      |    | AT   | MO. | 1495 | С   | GLN | Α | 193 |   | 8.626  |     | 7.488 |     | 1.757 |      | 44.32  |
|                      | 55 | - AT | MO  | 1496 | 0   | GLN |   |     |   | 7.583  |     | 6.926 |     | .120  |      | 43.11  |
|                      |    |      | MO  | 1497 | СВ  |     |   | 193 |   | 8.502  |     | 9.100 |     | 5.638 |      | 33.44  |
|                      |    |      | OM  | 1498 | CG  |     |   | 193 |   | 9.285  |     | 8.203 |     | 7.632 |      | 22.34  |
|                      |    |      | OM  | 1499 | CD  |     |   | 193 |   | 10.824 |     |       |     |       |      |        |
|                      |    |      | OM  | 1500 |     | GLN |   |     |   |        |     | 8.337 |     | 7.636 |      | 48.52  |
|                      | 60 |      |     |      |     |     |   |     |   | 11.557 |     | 7.537 |     | 7.016 |      | 45.24  |
|                      | UŲ |      | MO  | 1501 |     | GLN |   |     |   | 11.326 |     | 9.330 |     | 3.373 |      | 24.82  |
|                      |    |      | MO  | 1502 | N   | LYS |   |     |   | 9.543  |     | 6.908 |     | 3.993 |      | 46.91  |
|                      |    |      | MO  | 1503 | CA  | LYS |   |     |   | 9.384  |     | 5.540 |     | 3.529 |      | 47.56  |
|                      |    |      | MO  | 1504 | C   | LYS |   |     |   | 9.456  |     | 4.524 |     | 1.666 |      | 49.56  |
|                      |    | ra.  | MOT | 1505 | 0   | LYS | Α | 194 |   | 8.777  | 7 3 | 3.520 | 44  | 1.598 | 1.00 | 50.85  |

|          | ATOM   | 1506 | СВ  | LYS A 194 | 10.385 | 35.159 | 42.439 | 1.00 48.11 |
|----------|--------|------|-----|-----------|--------|--------|--------|------------|
|          | ATOM   | 1507 | CG  | LYS A 194 | 9.884  | 35.443 | 41.031 | 1.00 55.70 |
|          | ATOM   | 1508 | CD  | LYS A 194 | 10.895 | 36.200 | 40.179 | 1.00 67.67 |
|          | ATOM   | 1509 | CE  | LYS A 194 | 10.614 | 36.122 | 38.682 | 1.00 81.92 |
| 5        | ATOM   | 1510 | NZ  | LYS A 194 | 11.284 | 37.185 | 37.910 | 1.00 88.34 |
|          | ATOM   | 1511 | N   | VAL A 195 | 10.308 | 34.753 | 45.689 | 1.00 39.55 |
|          | ATOM   | 1512 | CA  | VAL A 195 | 10.422 | 33.780 | 46.764 | 1.00 33.56 |
|          | MOTA   | 1513 | С   | VAL A 195 | 9.261  | 33.862 | 47.698 | 1.00 35.67 |
|          | MOTA   | 1514 | 0   | VAL A 195 | 8.804  | 34.945 | 48.034 | 1.00 38.69 |
| 10       | ATOM   | 1515 | CB  | VAL A 195 | 11.716 | 33.844 | 47.560 | 1.00 32.62 |
|          | MOTA   | 1516 | CG1 | VAL A 195 | 11.849 | 32.539 | 48.310 | 1.00 32.40 |
|          | ATOM   | 1517 | CG2 | VAL A 195 | 12.933 | 34.029 | 46.667 | 1.00 30.55 |
|          | ATOM - | 1518 | N   | PRO A 196 | 8.770  | 32.717 | 48.126 | 1.00 27.75 |
|          | ATOM   | 1519 | CA  | PRO A 196 |        | 32.757 | 49.038 | 1.00 26.18 |
| 15       | ATOM   | 1520 | С   | PRO A 196 |        | 33.236 | 50.410 | 1.00 35.86 |
|          | ATOM   | 1521 | 0   | PRO A 196 |        | 32.809 | 50.899 | 1.00 35.43 |
|          | ATOM   | 1522 | CB  | PRO A 196 |        | 31.359 | 49.044 | 1.00 26.04 |
|          | MOTA   | 1523 | CG  | PRO A 196 | 7.856  | 30.472 | 48.113 | 1.00 27.79 |
| .dec 20. | MOTA   | 1524 | CD  | PRO A 196 |        | 31.352 | 47.546 | 1.00 25.40 |
| 20       | ATOM   | 1525 | N   | ILE A 197 |        | 34.171 | 51.009 | 1.00 29.92 |
| 43       | ATOM   | 1526 | CA  | ILE A 197 |        | 34.697 | 52.284 | 1.00 26.98 |
|          | ATOM   | 1527 | С   | ILE A 197 |        | 34.809 | 53.128 | 1.00 34.88 |
| j. L     | ATOM   | 1528 | 0   | ILE A 197 |        | 34.788 | 52.606 | 1.00 29.68 |
| · P      | ATOM   | 1529 | СВ  | ILE A 197 |        | 36.100 | 52.094 | 1.00 27.90 |
| 25       | ATOM   | 1530 |     | ILE A 197 |        | 36.867 | 51.254 | 1.00 27.78 |
| B 1885   | ATOM   | 1531 | CG2 |           |        | 36.091 | 51.337 | 1.00 28.12 |
|          | ATOM   | 1532 |     | ILE A 197 |        | 38.378 | 51.438 | 1.00 19.03 |
| hot.     | MOTA   | 1533 | N   | PRO A 198 |        | 34.936 | 54.447 | 1.00 36.02 |
| 52       | ATOM   | 1534 | CA  | PRO A 198 |        | 35.110 | 55.410 | 1.00 31.31 |
| 30       | MOTA   | 1535 | С   | PRO A 198 |        | 36.583 | 55.308 | 1.00 28.27 |
| 25T 12   | ATOM   | 1536 | 0   | PRO A 198 |        | 37.391 | 55.115 | 1.00 22.70 |
|          | ATOM   | 1537 | CB  | PRO A 198 |        | 34.849 | 56.794 | 1.00 31.17 |
|          | ATOM   | 1538 | CG  | PRO A 198 |        | 34.768 | 56.615 | 1.00 34.94 |
| \$= #F   | ATOM   | 1539 | CD  | PRO A 198 |        | 34.706 | 55.122 | 1.00 32.99 |
| 35       | ATOM   | 1540 | N   | CYS A 199 | 4.011  | 36.939 | 55.405 | 1.00 27.60 |
| la la    | MOTA   | 1541 | CA  | CYS A 199 | 3.555  | 38.360 | 55.289 | 1.00 27.66 |
|          | ATOM   | 1542 | С   | CYS A 199 |        | 39.390 | 56.187 | 1.00 30.13 |
|          | ATOM   | 1543 | 0   | CYS A 199 |        | 40.596 | 55.895 | 1.00 29.50 |
|          | ATOM   | 1544 | CB  | CYS A 199 | 2.025  | 38.534 | 55.242 | 1.00 27.18 |
| 40       | ATOM   | 1545 | SG  | CYS A 199 |        | 38.279 | 56.841 | 1.00 30.85 |
|          | ATOM   | 1546 | N   | TYR A 200 |        | 38.903 | 57.270 | 1.00 26.15 |
|          | ATOM   | 1547 | CA  | TYR A 200 | 5.538  | 39.798 | 58.123 | 1.00 28.28 |
|          | ATOM   | 1548 | С   | TYR A 200 | 6.760  | 40.395 | 57.483 | 1.00 32.29 |
| -        | ATOM   | 1549 | 0   | TYR A 200 | 7.359  | 41.286 | 58.036 | 1.00 31.56 |
| 45       | ATOM   | 1550 | CB  | TYR A 200 | 5.844  | 39.215 | 59.489 | 1.00 30.59 |
|          | MOTA   | 1551 | CG  | TYR A 200 | 6.989  | 38.272 | 59.568 | 1.00 28.28 |
|          | MOTA   | 1552 | CD1 | TYR A 200 | 8.288  | 38.733 | 59.689 | 1.00 29.48 |
|          | ATOM   | 1553 | CD2 | TYR A 200 | 6.756  | 36.903 | 59.475 | 1.00 27.55 |
|          | ATOM   | 1554 |     | TYR A 200 |        | 37.862 | 59.825 | 1.00 21.42 |
| 50       | ATOM   | 1555 |     | TYR A 200 | 7.838  | 36.015 | 59.595 | 1.00 27.41 |
|          | ATOM   | 1556 | CZ  | TYR A 200 |        | 36.488 | 59.737 | 1.00 25.11 |
|          | ATOM   | 1557 | OH  | TYR A 200 |        | 35.614 | 59.880 | 1.00 27.62 |
|          | ATOM   | 1558 | N   | LEU A 201 |        | 39.897 | 56.313 | 1.00 31.66 |
| ~ ~      | ATOM   | 1559 | CA  | LEU A 201 |        | 40.378 | 55.579 | 1.00 29.49 |
| 55       | MOTA   | 1560 | С   | LEU A 201 |        | 41.343 | 54.484 | 1.00 33.65 |
|          | MOTA   | 1561 | 0   | LEU A 201 |        | 41.737 | 53.686 | 1.00 35.31 |
|          | ATOM   | 1562 | CB  | LEU A 201 |        | 39.275 | 55.035 | 1.00 27.04 |
|          | MOTA   | 1563 | CG  | LEU A 201 |        | 38.271 | 56.071 | 1.00 27.42 |
| CA       | ATOM   | 1564 |     | LEU A 201 |        | 37.030 | 55.390 | 1.00 23.71 |
| 60       | ATOM   | 1565 |     | LEU A 201 |        | 38.913 | 56.957 | 1.00 30.55 |
|          | MOTA   | 1566 | N   | ILE A 202 |        | 41.710 | 54.438 | 1.00 28.66 |
|          | ATOM   | 1567 | CA  | ILE A 202 |        | 42.674 | 53.433 | 1.00 29.57 |
|          | ATOM   | 1568 | C   | ILE A 202 |        | 44.074 | 53.951 | 1.00 40.28 |
|          | ATOM   | 1569 | 0 , | ILE A 202 | 6.192  | 44.493 | 55.027 | 1.00 40.75 |

|                | MOTA | 1570 | CB  | ILE A | 202 | 4.733  | 42.651 | 53.182 | 1.00 31.18 |
|----------------|------|------|-----|-------|-----|--------|--------|--------|------------|
|                | MOTA | 1571 | CG1 | ILE A |     | 4.250  | 41.429 | 52.405 | 1.00 28.21 |
|                | ATOM | 1572 |     | ILE A |     | 4.259  | 43.962 | 52.521 | 1.00 29.23 |
|                | ATOM | 1573 |     | ILE A |     | 2.724  | 41.288 | 52.449 | 1.00 23.23 |
| 5              |      | 1574 | N   | ALA A |     | 7.445  |        |        |            |
| , ,            | ATOM |      |     |       |     |        | 44.813 | 53.197 | 1.00 39.14 |
|                | MOTA | 1575 | CA  | ALA A |     | 7.840  | 46.150 | 53.611 | 1.00 37.03 |
|                | MOTA | 1576 | C   | ALA A |     | 7.819  | 47.159 | 52.482 | 1.00 34.32 |
|                | ATOM | 1577 | 0   | ALA A |     | 8.060  | 46.836 | 51.311 | 1.00 30.63 |
|                | MOTA | 1578 | CB  | ALA A | 203 | 9.180  | 46.143 | 54.309 | 1.00 38.22 |
| 10             | MOTA | 1579 | N   | LEU A | 204 | 7.514  | 48.388 | 52.910 | 1.00 33.64 |
|                | ATOM | 1580 | CA  | LEU A | 204 | 7.388  | 49.604 | 52.102 | 1.00 32.56 |
|                | ATOM | 1581 | С   | LEU A | 204 | 7.993  | 50.817 | 52.812 | 1.00 37.69 |
|                | ATOM | 1582 | 0   | LEU A |     | 7.854  | 51.037 | 54.034 | 1.00 32.66 |
|                | ATOM | 1583 | СВ  | LEU A |     | 5.906  | 49.929 | 51.718 | 1.00 29.74 |
| 15             | ATOM | 1584 | CG  | LEU A |     | 5.706  | 51.182 |        |            |
| 10             |      | 1585 |     | LEU A |     |        |        | 50.855 | 1.00 29.64 |
|                | ATOM |      |     |       |     | 6.263  | 50.994 | 49.445 | 1.00 29.47 |
|                | MOTA | 1586 |     | LEU A |     | 4.222  | 51.515 | 50.750 | 1.00 33.50 |
|                | ATOM | 1587 | N   | VAL A |     | 8.670  | 51.603 | 51.991 | 1.00 36.87 |
| 20             | ATOM | 1588 | CA  | VAL A |     | 9.305  | 52.821 | 52.415 | 1.00 35.15 |
| 20             | MOTA | 1589 | С   | VAL A | 205 | 9.224  | 53.795 | 51.284 | 1.00 38.41 |
| ्रम्<br>इस्त्र | ATOM | 1590 | 0   | VAL A | 205 | 9.575  | 53.462 | 50.148 | 1.00 39.50 |
| W.             | ATOM | 1591 | CB  | VAL A | 205 | 10.769 | 52.651 | 52.804 | 1.00 36.06 |
| jula.          | ATOM | 1592 |     | VAL A |     | 11.466 | 51.794 | 51.757 | 1.00 35.08 |
| 12 m           | ATOM | 1593 |     | VAL A |     | 11.432 | 54.020 | 52.833 | 1.00 35.98 |
| 25             | ATOM | 1594 | N   | VAL A |     | 8.750  |        |        |            |
|                |      |      |     |       |     |        | 54.983 | 51.623 | 1.00 33.54 |
| UT             | ATOM | 1595 | CA  | VAL A |     | 8.623  | 56.104 | 50.687 | 1.00 31.81 |
| John .         | ATOM | 1596 | С   | VAL A |     | 9.300  | 57.343 | 51.249 | 1.00 31.62 |
| ₩              | MOTA | 1597 | 0   | VAL A |     | 9.076  | 57.722 | 52.406 | 1.00 34.81 |
|                | ATOM | 1598 | CB  | VAL A | 206 | 7.179  | 56.405 | 50.305 | 1.00 33.35 |
| 30             | ATOM | 1599 | CG1 | VAL A | 206 | 7.129  | 57.243 | 49.029 | 1.00 33.44 |
|                | ATOM | 1600 | CG2 | VAL A | 206 | 6.452  | 55.084 | 50.109 | 1.00 31.98 |
| n.             | ATOM | 1601 | N   | GLY A |     | 10.130 | 57.959 | 50.431 | 1.00 24.94 |
|                | ATOM | 1602 | CA  | GLY A |     | 10.807 | 59.168 | 50.861 | 1.00 27.25 |
| 22 Hz          | ATOM | 1603 | С   | GLY A |     | 11.802 | 59.632 | 49.838 | 1.00 38.81 |
| 35             | ATOM | 1604 | ŏ   | GLY A |     | 12.046 | 58.966 | 48.840 | 1.00 30.01 |
| P# 20          | ATOM | 1605 | N   | ALA A |     | 12.375 | 60.783 |        |            |
|                |      | 1606 |     |       |     |        |        | 50.113 | 1.00 41.07 |
|                | ATOM |      | CA  | ALA A |     | 13.370 | 61.354 | 49.233 | 1.00 42.72 |
|                | MOTA | 1607 | C   | ALA A |     | 14.660 | 60.550 | 49.356 | 1.00 49.10 |
| 40             | ATOM | 1608 | 0   | ALA A |     | 15.651 | 60.997 | 49.957 | 1.00 51.30 |
| 40             | ATOM | 1609 | CB  | ALA A |     | 13.605 | 62.810 | 49.589 | 1.00 42.95 |
|                | ATOM | 1610 | N   | LEU A | 209 | 14.623 | 59.350 | 48.773 | 1.00 40.92 |
|                | ATOM | 1611 | CA  | LEU A | 209 | 15.739 | 58.440 | 48.825 | 1.00 39.55 |
|                | ATOM | 1612 | С   | LEU A | 209 | 16.756 | 58.575 | 47.743 | 1.00 47.96 |
|                | ATOM | 1613 | 0   | LEU A | 209 | 16.420 | 58.843 | 46.597 | 1.00 49.44 |
| 45             | ATOM | 1614 | CB  | LEU A |     | 15.269 | 56,994 | 48.894 | 1.00 37.97 |
|                | ATOM | 1615 | CG  | LEU A |     | 14.420 | 56.803 | 50.129 | 1.00 40.46 |
|                | ATOM | 1616 |     | LEU A |     | 13.713 | 55.469 | 50.075 | 1.00 36.99 |
|                | ATOM | 1617 |     | LEU A |     | 15.283 | 56.921 | 51.387 | 1.00 33.33 |
|                | ATOM | 1618 | N   | GLU A |     | 17.999 | 58.317 | 48.182 |            |
| 50             |      |      |     |       |     |        |        |        | 1.00 42.68 |
| 20             | ATOM | 1619 | CA  | GLU A |     | 19.205 | 58.311 | 47.381 | 1.00 40.30 |
|                | ATOM | 1620 | С   | GLU A |     | 19.965 | 57.056 | 47.693 | 1.00 47.51 |
|                | ATOM | 1621 | 0   | GLU A |     | 19.708 | 56.432 | 48.721 | 1.00 47.89 |
|                | ATOM | 1622 | CB  | GLU A |     | 20.084 | 59.553 | 47.613 | 1.00 42.01 |
|                | ATOM | 1623 | CG  | GLU A |     | 19.699 | 60.734 | 46.697 | 1.00 58.26 |
| 55             | MOTA | 1624 | CD  | GLU A | 210 | 20.524 | 61.970 | 46.897 | 1.00100.00 |
|                | ATOM | 1625 | OE1 | GLU A | 210 | 21.629 | 61.968 | 47.451 | 1.00 95.26 |
|                | ATOM | 1626 |     | GLU A |     | 19.935 | 63.047 | 46.486 | 1.00100.00 |
|                | ATOM | 1627 | N   | SER A |     | 20.895 | 56.662 | 46.805 | 1.00100.00 |
|                | ATOM | 1628 | CA  | SER A |     | 21.661 | 55.442 |        |            |
| 60             |      |      | C   |       |     |        |        | 47.013 | 1.00 42.25 |
| 00             | ATOM | 1629 |     | SER A |     | 23.143 | 55.535 | 46.667 | 1.00 43.37 |
|                | ATOM | 1630 | 0   | SER A |     | 23.649 | 56.493 | 46.086 | 1.00 46.43 |
|                | ATOM | 1631 | CB  | SER A |     | 21.025 | 54.233 | 46.346 | 1.00 44.33 |
|                | ATOM | 1632 | OG  | SER A |     | 21.274 | 54.244 | 44.934 | 1.00 54.15 |
|                | ATOM | 1633 | N   | ARG A | 212 | 23.829 | 54.497 | 47.053 | 1.00 34.85 |

|                                          | ATOM | 1634 | CA        | ARG A 212 | 25.229 | 54.328 | 46.791 | 1.00 | 35.41 |
|------------------------------------------|------|------|-----------|-----------|--------|--------|--------|------|-------|
|                                          | ATOM | 1635 | С         | ARG A 212 | 25.430 | 52.838 | 46.567 | 1.00 | 45.39 |
|                                          | ATOM | 1636 | 0         | ARG A 212 | 24.840 | 52.027 | 47.276 | 1.00 | 48.85 |
|                                          | ATOM | 1637 | CB        | ARG A 212 | 26.101 | 54.846 | 47.915 | 1.00 | 37.25 |
| 5                                        | ATOM | 1638 | CG        | ARG A 212 | 27.151 | 55.827 | 47.402 | 1.00 |       |
|                                          | ATOM | 1639 | CD        | ARG A 212 | 26.532 | 56.962 | 46.587 | 1.00 |       |
|                                          | ATOM | 1640 | NE        | ARG A 212 | 26.695 | 58.307 | 47.148 | 1.00 |       |
|                                          | ATOM | 1641 | CZ        | ARG A 212 | 25.845 | 59.301 | 46.867 | 1.00 |       |
|                                          | ATOM | 1642 |           | ARG A 212 | 24.806 | 59.105 | 46.059 | 1.00 |       |
| 10                                       | ATOM | 1643 |           | ARG A 212 | 26.032 | 60.516 | 47.392 | 1.00 |       |
| •                                        | ATOM | 1644 | N         | GLN A 213 | 26.210 | 52.442 | 45.567 | 1.00 |       |
|                                          | ATOM | 1645 | CA        | GLN A 213 | 26.408 | 51.021 | 45.331 | 1.00 |       |
|                                          | MOTA | 1646 | C         | GLN A 213 | 27.646 | 50.537 | 46.050 | 1.00 |       |
|                                          | ATOM | 1647 | Ö         | GLN A 213 | 28.740 | 50.981 | 45.741 | 1.00 |       |
| 15                                       | ATOM | 1648 | CB        | GLN A 213 | 26.545 | 50.741 | 43.846 | 1.00 |       |
| 1.7                                      | ATOM | 1649 | CG        | GLN A 213 | 26.976 | 49.296 | 43.532 | 1.00 |       |
|                                          |      |      |           |           |        |        |        |      |       |
|                                          | ATOM | 1650 | CD        | GLN A 213 | 26.292 | 48.743 | 42.301 | 1.00 |       |
|                                          | ATOM | 1651 |           | GLN A 213 | 26.275 | 47.523 | 42.102 | 1.00 |       |
| 30                                       | MOTA | 1652 | NE2       |           | 25.700 | 49.618 | 41.489 | 1.00 |       |
| 20                                       | ATOM | 1653 | N         | ILE A 214 | 27.495 | 49.649 | 47.013 | 1.00 |       |
| 14 14 14 14 14 14 14 14 14 14 14 14 14 1 | ATOM | 1654 | CA        | ILE A 214 | 28.663 | 49.206 | 47.743 | 1.00 |       |
|                                          | MOTA | 1655 | С         | ILE A 214 | 28.911 | 47.765 | 47.536 | 1.00 |       |
| lella.                                   | ATOM | 1656 | 0         | ILE A 214 | 29.726 | 47.162 | 48.230 | 1.00 |       |
| 14 AV                                    | ATOM | 1657 | CB        | ILE A 214 | 28.546 | 49,428 | 49.250 | 1.00 | 35.72 |
| 25                                       | MOTA | 1658 |           | ILE A 214 | 27.395 | 48.573 | 49.791 | 1.00 | 36.13 |
| Ü                                        | ATOM | 1659 |           | ILE A 214 | 28.344 | 50.911 | 49.598 | 1.00 | 35.79 |
| 1.4.                                     | ATOM | 1660 | CD1       | ILE A 214 | 27.067 | 48.841 | 51.260 | 1.00 | 46.69 |
| HA.                                      | MOTA | 1661 | N         | GLY A 215 | 28.199 | 47.197 | 46.598 | 1.00 | 35.02 |
| #-                                       | ATOM | 1662 | CA        | GLY A 215 | 28.638 | 45.855 | 46.234 | 1.00 | 34.88 |
| -30                                      | MOTA | 1663 | С         | GLY A 215 | 27.970 | 45.405 | 44.950 | 1.00 | 41.09 |
| 7.4                                      | MOTA | 1664 | 0         | GLY A 215 | 27.083 | 46.048 | 44.425 | 1.00 | 44.25 |
| T.                                       | ATOM | 1665 | N         | PRO A 216 | 28.448 | 44.262 | 44.410 | 1.00 | 39.62 |
|                                          | ATOM | 1666 | CA        | PRO A 216 | 27.890 | 43.720 | 43.197 | 1.00 | 39.69 |
| ALC: NO.                                 | MOTA | 1667 | С         | PRO A 216 | 26.369 | 43.661 | 43.253 | 1.00 | 41.56 |
| 35                                       | ATOM | 1668 | 0         | PRO A 216 | 25.655 | 43.817 | 42.240 | 1.00 | 44.35 |
| Ha site                                  | MOTA | 1669 | CB        | PRO A 216 | 28.448 | 42.311 | 42.996 | 1.00 | 39.91 |
|                                          | MOTA | 1670 | CG        | PRO A 216 | 29.377 | 41.993 | 44.164 | 1.00 | 41.54 |
|                                          | ATOM | 1671 | CD        | PRO A 216 | 29.514 | 43.411 | 44.897 | 1.00 | 37.70 |
|                                          | MOTA | 1672 | N         | ARG A 217 | 25.846 | 43.398 | 44.477 | 1.00 | 31.04 |
| 40                                       | MOTA | 1673 | CA        | ARG A 217 | 24.421 | 43.328 | 44.652 | 1.00 | 29.22 |
|                                          | ATOM | 1674 | С         | ARG A 217 | 23.928 | 44.109 | 45.872 | 1.00 |       |
|                                          | ATOM | 1675 | 0         | ARG A 217 | 22.861 | 43.885 | 46.368 | 1.00 |       |
|                                          | MOTA | 1676 | CB        | ARG A 217 | 24.012 | 41.844 | 44.790 | 1.00 |       |
|                                          | ATOM | 1677 | CG        | ARG A 217 | 25.221 | 40.963 | 45.109 | 1.00 |       |
| 45                                       | ATOM | 1678 | CD        | ARG A 217 | 24.828 | 39.774 | 45.985 |      | 34.08 |
|                                          | MOTA | 1679 | NE        | ARG A 217 | 26.020 | 39.183 | 46.581 |      | 45.20 |
|                                          | ATOM | 1680 | CZ        | ARG A 217 | 25.955 | 37.894 | 46.911 |      | 65.13 |
|                                          | ATOM | 1681 |           | ARG A 217 | 24.832 | 37.220 | 46.716 |      | 42.40 |
|                                          | MOTA | 1682 |           | ARG A 217 |        | 37.300 | 47.472 |      | 48.08 |
| 50                                       | ATOM | 1683 | N         | THR A 218 |        | 45.022 | 46.404 |      | 31.00 |
|                                          | ATOM | 1684 | CA        | THR A 218 |        | 45.886 | 47.487 |      | 31.00 |
|                                          | MOTA | 1685 | С         | THR A 218 |        | 47.319 | 47.021 |      | 43.60 |
|                                          | ATOM | 1686 | ō         | THR A 218 |        | 47.930 | 46.512 |      | 48.42 |
|                                          | ATOM | 1687 | СВ        | THR A 218 |        | 45.845 | 48.640 |      | 36.95 |
| 55                                       | ATOM | 1688 |           | THR A 218 |        | 44.517 | 49.139 |      | 45.66 |
|                                          | ATOM | 1689 |           | THR A 218 |        | 46.751 | 49.766 |      | 34.17 |
|                                          | ATOM | 1690 | N         | LEU A 219 |        | 48.018 | 47.431 |      |       |
|                                          | MOTA | 1691 | CA        | LEU A 219 |        | 49.452 |        |      | 39.19 |
|                                          | ATOM | 1691 | CA        | LEU A 219 |        |        | 47.315 |      | 38.18 |
| 60                                       | MOTA | 1693 | 0         | LEU A 219 |        |        | 48.695 |      | 42.32 |
| - 00                                     |      |      |           |           |        | 49.289 | 49.498 |      | 43.67 |
|                                          | ATOM | 1694 | CB        | LEU A 219 |        | 49.841 | 46.356 |      | 37.05 |
|                                          | ATOM | 1695 | CG<br>CD1 | LEU A 219 |        | 50.657 | 45.168 |      | 39.31 |
|                                          | ATOM | 1696 |           | LEU A 219 |        |        | 44.613 | 1.00 | 40.57 |
|                                          | MOTA | 1697 | CD2       | LEU A 219 | 21.283 | 50.619 | 44.131 | T-00 | 29.39 |

|              | ATOM         | 1698         | N         | VAL A | 220 | 23.066           | 51.241           | 48.976           | 1.00 35.01               |
|--------------|--------------|--------------|-----------|-------|-----|------------------|------------------|------------------|--------------------------|
|              | ATOM         | 1699         | CA        | VAL A |     | 22.741           | 51.830           | 50.253           | 1.00 36.98               |
|              | ATOM         | 1700         | С         | VAL A |     | 21.736           | 52.923           | 50.043           | 1.00 44.08               |
| _ *          | ATOM         | 1701         | 0         | VAL A | 220 | 21.959           | 53.835           | 49.256           | 1.00 46.60               |
| 5            | ATOM         | 1702         | CB        | VAL A |     | 23.965           | 52.346           | 51.028           | 1.00 44.95               |
|              | ATOM         | 1703         |           | VAL A |     | 23.675           | 52.428           | 52.516           | 1.00 43.16               |
|              | MOTA         | 1704         |           | VAL A |     | 25.138           | 51.382           | 50.828           | 1.00 47.70               |
|              | MOTA         | 1705         | N         | TRP A |     | 20.622           | 52.818           | 50.731           | 1.00 41.98               |
|              | MOTA         | 1706         | CA        | TRP A |     | 19.605           | 53.828           | 50.602           | 1.00 41.64               |
| 10           | MOTA         | 1707         | С         | TRP A |     | 19.464           | 54.612           | 51.872           | 1.00 42.40               |
|              | MOTA         | 1708         | 0         | TRP A |     | 19.461           | 54.060           | 52.960           | 1.00 45.56               |
|              | ATOM         | 1709         | CB        | TRP A |     | 18.256           | 53.245           | 50.186           | 1.00 41.24               |
|              | ATOM         | 1710         | CG        | TRP F |     | 18.353           | 52.459           | 48.918           | 1.00 42.59               |
| 1.5          | ATOM         | 1711         |           | TRP F |     | 18.888           | 51.225           | 48.793           | 1.00 45.35               |
| 15           | ATOM         | 1712         |           | TRP F |     | 17.949           | 52.873           | 47.590           | 1.00 41.62               |
|              | ATOM         | 1713         |           | TRP A |     | 18.826           | 50.832           | 47.478           | 1.00 44.74               |
|              | MOTA         | 1714         | CE2       |       |     | 18.243           | 51.821           | 46.720           | 1.00 45.31               |
| .220         | MOTA         | 1715         |           | TRP F |     | 17.345           | 54.009           | 47.061           | 1.00 41.17               |
|              | ATOM         | 1716         |           | TRP A |     | 17.958           | 51.902           | 45.346           | 1.00 42.60               |
| <b>13 20</b> | ATOM         | 1717         | CZ3       | TRP F |     | 17.054           | 54.083           | 45.710           | 1.00 39.08               |
| uil          | ATOM         | 1718         | CH2       | TRP F |     | 17.360           | 53.040           | 44.864           | 1.00 38.48               |
| 1 - 5x       | ATOM         | 1719         | N         | SER A |     | 19.271           | 55.896           | 51.688           | 1.00 37.01               |
| 144<br>144   | ATOM         | 1720         | CA        | SER A |     | 19.017           | 56.846           | 52.748           | 1.00 38.05               |
| 25           | ATOM         | 1721         | C         | SER A |     | 18.853           | 58.251           | 52.205           | 1.00 45.28               |
| 25           | MOTA         | 1722         | 0         | SER A |     | 19.005           | 58.503           | 51.008           | 1.00 44.02               |
| W ()         | ATOM         | 1723         | CB        | SER A |     | 20.098           | 56.816           | 53.820           | 1.00 39.07               |
| ļ-L          | ATOM         | 1724         | OG        | SER A |     | 21.322           | 57.149           | 53.229           | 1.00 42.36               |
| 18           | ATOM         | 1725         | N         | GLU A |     | 18.586           | 59.190           | 53.088           | 1.00 40.91               |
| 30           | ATOM         | 1726         | CA        | GLU A |     | 18.465           | 60.527           | 52.584           | 1.00 41.97               |
| 30           | ATOM         | 1727         | c         | GLU A |     | 19.843           | 61.042           | 52.234           | 1.00 50.17               |
| N            | ATOM         | 1728         | 0         | GLU A |     | 20.829           | 60.701           | 52.863           | 1.00 52.02               |
|              | ATOM         | 1729<br>1730 | CB        | GLU A |     | 17.856           | 61.483           | 53.597           | 1.00 43.06               |
|              | ATOM         |              | CG        | GLU A |     | 16.364           | 61.262           | 53.861           | 1.00 51.71               |
| 35           | ATOM         | 1731         | CD<br>OE1 | GLU A |     | 15.799           | 62.478           | 54.545           | 1.00 84.51               |
|              | ATOM         | 1732<br>1733 | OE2       |       |     | 15.905           | 63.610           | 54.085           | 1.00 56.82               |
|              | ATOM<br>ATOM | 1734         | N<br>N    | GLU A |     | 15.244           | 62.222           | 55.705           | 1.00 88.87               |
|              | ATOM         | 1735         | CA        | LYS A |     | 19.892<br>21.139 | 61.875           | 51.229           | 1.00 47.39               |
|              | ATOM         | 1736         | C         | LYS A |     | 22.163           | 62.456<br>62.683 | 50.792<br>51.930 | 1.00 48.51<br>1.00 50.90 |
| 40           | ATOM         | 1737         | Ö         | LYS A |     | 23.382           | 62.569           | 51.736           | 1.00 50.90               |
|              | ATOM         | 1738         | CB        | LYS A |     | 20.843           | 63.736           | 49.986           | 1.00 51.58               |
|              | ATOM         | 1739         | CG        | LYS A |     | 22.039           | 64.648           | 49.723           | 1.00 31.38               |
|              | ATOM         | 1740         | CD        | LYS A |     | 21.954           | 65.397           | 48.392           | 1.00 97.82               |
|              | ATOM         | 1741         | CE        | LYS A |     | 21.646           | 66.891           | 48.530           | 1.00100.00               |
| 45           | MOTA         | 1742         | NZ        | LYS A |     | 22.056           | 67,700           | 47.362           | 1.00100.00               |
|              | MOTA         | 1743         | N         | GLU A |     | 21.683           | 63.011           | 53.123           | 1.00 45.77               |
|              | ATOM         | 1744         | CA        | GLU A |     | 22.607           | 63.309           | 54.199           | 1.00 46.00               |
|              | ATOM         | 1745         | С         | GLU A |     | 23.227           | 62.150           | 54.902           | 1.00 47.99               |
|              | ATOM         | 1746         | 0         | GLU A |     | 24.107           | 62.354           | 55.732           | 1.00 47.21               |
| 50           | ATOM         | 1747         | CB        | GLU A |     | 22.057           | 64.296           | 55.210           | 1.00 47.71               |
|              | ATOM         | 1748         | CG        | GLU A |     | 20.530           | 64.296           | 55.182           | 1.00 63.24               |
|              | ATOM         | 1749         | CD        | GLU A |     | 19.931           | 65.219           | 54.150           | 1.00 75.13               |
|              | MOTA         | 1750         | OE1       | GLU A | 225 | 20.187           | 66.420           | 54.046           | 1.00 54.64               |
| *            | MOTA         | 1751         | OE2       | GLU A | 225 | 19.039           | 64.578           | 53.420           | 1.00 49.64               |
| 55           | MOTA         | 1752         | N         | GLN A | 226 | 22,798           | 60.949           | 54.564           | 1.00 43.92               |
|              | ATOM         | 1753         | CA        | GLN A |     | 23.340           | 59.772           | 55.224           | 1.00 43.91               |
|              | ATOM         | 1754         | С         | GLN A | 226 | 24.036           | 58.756           | 54.322           | 1.00 45.86               |
|              | ATOM         | 1755         | 0         | GLN A |     | 24.756           | 57.871           | 54.806           | 1.00 45.70               |
|              | ATOM         | 1756         | CB        | GLN A |     | 22.252           | 59.084           | 56.063           | 1.00 45.27               |
| 60           | ATOM         | 1757         | CG        | GLN A |     | 21.965           | 59.790           | 57.400           | 1.00 31.17               |
|              | ATOM         | 1758         | CD        |       | 226 | 21.297           | 61.155           | 57.302           | 1.00 44.48               |
|              | MOTA         | 1759         |           | GLN A |     | 21.823           | 62.149           | 57.820           | 1.00 37.36               |
|              | MOTA         | 1760         |           | GLN A |     | 20.115           | 61.202           | 56.696           | 1.00 30.28               |
|              | MOTA         | 1761         | N         | VAL A | 227 | 23.814           | 58.871           | 53.021           | 1.00 41.20               |
|              |              |              |           |       |     |                  |                  |                  |                          |

|            | MOTA | 1762 | CA          | VAL A | 227 | 24.406 | 57.947 | 52.071          | 1.00 43.13 |
|------------|------|------|-------------|-------|-----|--------|--------|-----------------|------------|
|            |      |      |             |       |     |        |        |                 |            |
|            | MOTA | 1763 | С           | VAL A |     | 25.884 | 57.670 | 52.261          | 1.00 50.55 |
|            | MOTA | 1764 | 0           | VAL A | 227 | 26.298 | 56.518 | 52.480          | 1.00 53.01 |
|            | ATOM | 1765 | CB          | VAL A | 227 | 24.155 | 58.293 | 50.604          | 1.00 49.39 |
| 5          | ATOM | 1766 |             | VAL A |     | 24.319 | 57.029 | 49.771          |            |
| , ,        |      |      |             |       |     |        |        |                 | 1.00 48.89 |
|            | ATOM | 1767 | CG2         | VAL A | 227 | 22.752 | 58.851 | 50.421          | 1.00 50.47 |
|            | ATOM | 1768 | N           | GLU A | 228 | 26.696 | 58.718 | 52.170          | 1.00 44.08 |
|            | ATOM | 1769 | CA          | GLU A |     | 28.123 | 58.542 | 52.310          | 1.00 41.71 |
|            |      |      |             |       |     |        |        |                 |            |
| 10         | MOTA | 1770 | С           | GLU A |     | 28.514 | 57.871 | 53.583          | 1.00 44.20 |
| 10         | MOTA | 1771 | 0           | GLU A | 228 | 29.227 | 56.868 | 53.589          | 1.00 44.88 |
|            | ATOM | 1772 | CB          | GLU A | 228 | 28.935 | 59.824 | 52.102          | 1.00 43.08 |
|            |      | 1773 | ĊĠ          | GLU A |     |        |        |                 |            |
|            | MOTA |      |             |       |     | 29.153 | 60.161 | 50.611          | 1.00 64.74 |
|            | MOTA | 1774 | $^{\rm CD}$ | GLU A | 228 | 29.114 | 58.965 | 49.701          | 1.00 84.29 |
|            | ATOM | 1775 | OE1         | GLU A | 228 | 29.975 | 58.107 | 49.685          | 1.00 84.36 |
| 15         | ATOM | 1776 | OE2         |       |     | 28.064 | 58.951 |                 |            |
| 15         |      |      |             |       |     |        |        | 48.917          | 1.00 73.81 |
|            | ATOM | 1777 | N           | LYS A | 229 | 28.066 | 58.423 | 54.685          | 1.00 39.79 |
|            | ATOM | 1778 | CA          | LYS A | 229 | 28.449 | 57.796 | 55.922          | 1.00 39.04 |
|            | ATOM | 1779 | С           | LYS A |     | 27.949 | 56.375 | 55.930          | 1.00 40.38 |
| .200 BB.   |      |      |             |       |     |        |        |                 |            |
| 20         | MOTA | 1780 | 0           | LYS A |     | 28.639 | 55.433 | 56.346          | 1.00 43.63 |
| 20         | ATOM | 1781 | CB          | LYS A | 229 | 28.129 | 58.585 | 57.187          | 1.00 39.79 |
| 43 Mar     | MOTA | 1782 | CG          | LYS A | 229 | 28.903 | 58.072 | 58.394          | 1.00 63.75 |
| 41         | ATOM |      |             | LYS A |     |        |        |                 |            |
| ha da      |      | 1783 | CD          |       |     | 28.498 | 58.763 | 59.685          | 1.00 77.46 |
| E 200      | ATOM | 1784 | ÇE          | LYS A | 229 | 29.677 | 59.084 | 60.593          | 1.00 94.73 |
| ud inc     | ATOM | 1785 | NZ          | LYS A | 229 | 30.344 | 60.353 | 60.256          | 1.00100.00 |
| 25         | ATOM | 1786 | N           | SER A |     | 26.741 | 56.220 | 55.428          |            |
| 0 3301     |      |      |             |       |     |        |        |                 | 1.00 28.48 |
|            | MOTA | 1787 | CA          | SER A |     | 26.174 | 54.891 | 55.377          | 1.00 25.93 |
| ##x        | ATOM | 1788 | С           | SER A | 230 | 27.089 | 53.988 | 54.587          | 1.00 30.26 |
|            | MOTA | 1789 | 0           | SER A |     | 27.469 | 52.855 | 54.955          | 1.00 28.48 |
| 康.         |      |      |             |       |     |        |        |                 |            |
| 30         | MOTA | 1790 | CB          | SER A |     | 24.824 | 54.927 | 54.694          | 1.00 30.08 |
| 30         | MOTA | 1791 | OG          | SER A | 230 | 23.822 | 55.293 | 55.605          | 1.00 41.60 |
|            | MOTA | 1792 | N           | ALA A | 231 | 27.436 | 54.536 | 53.459          | 1.00 31.13 |
| 13         | ATOM | 1793 | CA          | ALA A |     | 28.288 | 53.820 | 52.593          |            |
| tank       |      |      |             |       |     |        |        |                 | 1.00 36.66 |
| de m       | MOTA | 1794 | С           | ALA A |     | 29.597 | 53.383 | 53.270          | 1.00 47.68 |
| <u> </u>   | MOTA | 1795 | 0           | ALA A | 231 | 30.003 | 52.238 | 53.103          | 1.00 54.59 |
| <b>35</b>  | ATOM | 1796 | CB          | ALA A | 231 | 28.406 | 54.518 | 51.257          | 1.00 38.49 |
| Ha sad     | ATOM | 1797 | N           | TYR A |     | 30.256 | 54.246 | 54.060          |            |
|            |      |      |             |       |     |        |        |                 | 1.00 40.77 |
|            | ATOM | 1798 | CA          | TYR A |     | 31.500 | 53.830 | 54.730          | 1.00 38.40 |
|            | ATOM | 1799 | С           | TYR A | 232 | 31.265 | 52.721 | 55.753          | 1.00 39.70 |
|            | MOTA | 1800 | 0           | TYR A | 232 | 32.041 | 51.772 | 55.862          | 1.00 36.46 |
| 40         | ATOM | 1801 | СВ          | TYR A |     | 32.311 |        | 55.414          |            |
|            |      |      |             |       |     |        | 54.981 |                 | 1.00 38.27 |
|            | MOTA | 1802 | CG          | TYR A |     | 33.497 | 54.525 | 56.303          | 1.00 42.36 |
|            | ATOM | 1803 | CD1         | TYR A | 232 | 34.755 | 54.238 | 55.753          | 1.00 46.41 |
|            | ATOM | 1804 | CD2         | TYR A | 232 | 33.373 | 54.394 | 57.691          | 1.00 40.99 |
|            | ATOM | 1805 |             | TYR A |     |        |        |                 |            |
| AE         |      |      |             |       |     | 35.835 | 53.815 | 56.534          | 1.00 47.23 |
| 45         | ATOM | 1806 |             | TYR A |     | 34.441 | 53.979 | 58.496          | 1.00 40.10 |
|            | ATOM | 1807 | CZ          | TYR A | 232 | 35.680 | 53.695 | 57.916          | 1.00 48.59 |
|            | ATOM | 1808 | OH          | TYR A |     | 36.734 | 53.282 | 58.698          | 1.00 51.92 |
|            | ATOM | 1809 | N           | GLU A |     |        |        |                 |            |
|            |      |      |             |       |     | 30.191 | 52.883 | 56.519          | 1.00 35.75 |
| 60         | MOTA | 1810 | CA          | GLU A | 233 | 29.835 | 51.984 | 57.606          | 1.00 34.55 |
| 50         | MOTA | 1811 | С           | GLU A | 233 | 29.633 | 50.498 | 57.252          | 1.00 38.39 |
|            | ATOM | 1812 | 0           | GLU A |     | 30.152 | 49.576 | 57.892          | 1.00 38.55 |
|            |      |      |             |       |     |        |        |                 |            |
|            | ATOM | 1813 | CB          | GLU A |     | 28.673 | 52.623 | 58.414          | 1.00 34.48 |
|            | ATOM | 1814 | CG          | GLU A | 233 | 28.666 | 52.262 | 59.912          | 1.00 24.95 |
|            | MOTA | 1815 | CD          | GLU A | 233 | 29.463 | 53.183 | 60.787          | 1.00 37.55 |
| 55         |      |      |             |       |     |        |        |                 |            |
|            | ATOM | 1816 |             | GLU A |     | 29.408 | 54.410 | 60.741          | 1.00 55.33 |
|            | ATOM | 1817 | OE2         | GLU A | 233 | 30.216 | 52.518 | 61.619          | 1.00 40.65 |
|            | MOTA | 1818 | N           | PHE A | 234 | 28.867 | 50.282 | 56.202          | 1.00 33.02 |
|            | MOTA | 1819 | CA          | PHE A |     | 28.493 | 48.974 | 55.719          | 1.00 29.90 |
|            |      |      |             |       |     |        |        |                 |            |
| <b>C</b> 0 | MOTA | 1820 | С           | PHE A |     | 29.341 | 48.398 | 54.592          | 1.00 34.69 |
| 60         | MOTA | 1821 | 0           | PHE A | 234 | 28.883 | 47.521 | 53.823          | 1.00 34.21 |
|            | ATOM | 1822 | CB          | PHE A | 234 | 27.020 | 49.081 | 55.293          | 1.00 30.23 |
|            | ATOM | 1823 | CG          | PHE A |     | 26.215 | 49.752 | 56.394          |            |
|            |      |      |             |       |     |        |        |                 | 1.00 30.32 |
|            | ATOM | 1824 |             | PHE A |     | 26.518 | 49,521 | 5 <b>7.</b> 739 | 1.00 31.50 |
|            | ATOM | 1825 | CD2         | PHE A | 234 | 25.151 | 50.605 | 56.102          | 1.00 28.66 |
|            |      |      |             |       |     |        |        |                 |            |

|                                       | ATOM   | 1826 | CE1 | PHE A | 234   | 25.780 | 50.103 | 58.772 | 1.00 30.43 |
|---------------------------------------|--------|------|-----|-------|-------|--------|--------|--------|------------|
|                                       | ATOM   | 1827 | CE2 | PHE A |       | 24.407 | 51.203 | 57.121 | 1.00 29.60 |
|                                       | ATOM   | 1828 | CZ  | PHE A |       | 24.725 | 50.959 | 58.458 |            |
|                                       |        |      |     |       |       |        |        |        | 1.00 27.47 |
| 5                                     | ATOM   | 1829 | N   | SER A |       | 30.571 | 48.874 | 54.476 | 1.00 29.55 |
| , ,                                   | MOTA   | 1830 | CA  | SER A |       | 31.428 | 48.366 | 53.412 | 1.00 28.64 |
|                                       | ATOM   | 1831 | С   | SER A |       | 31.387 | 46.858 | 53.338 | 1.00 30.38 |
|                                       | MOTA   | 1832 | 0   | SER A |       | 31.166 | 46.252 | 52.282 | 1.00 32.37 |
|                                       | MOTA   | 1833 | CB  | SER A |       | 32.861 | 48.787 | 53.604 | 1.00 31.15 |
| 1                                     | ATOM   | 1834 | OG  | SER A |       | 33.028 | 49.368 | 54.873 | 1.00 39.32 |
| 10                                    | MOTA   | 1835 | N   | GLU A | 236   | 31.698 | 46.299 | 54.504 | 1.00 22.49 |
|                                       | ATOM   | 1836 | CA  | GLU A | 236   | 31.815 | 44.873 | 54.737 | 1.00 23.79 |
|                                       | MOTA   | 1837 | C   | GLU A | 236   | 30.627 | 43.992 | 54.380 | 1.00 32.37 |
|                                       | MOTA   | 1838 | 0   | GLU A | 236   | 30.697 | 42.772 | 54.545 | 1.00 29.91 |
|                                       | MOTA   | 1839 | CB  | GLU A |       | 32.305 | 44.529 | 56.134 | 1.00 24.06 |
| 15                                    | ATOM   | 1840 | CG  | GLU A |       | 33.491 | 45.403 | 56.585 | 1.00 22.96 |
|                                       | ATOM   | 1841 | CD  | GLU A |       | 33.600 | 45.492 | 58.090 | 1.00 22.30 |
|                                       | ATOM   | 1842 | OE1 | GLU A |       |        | 45.482 |        | 1.00 37.01 |
|                                       |        | 1843 | OE2 | GLU A |       | 32.633 |        | 58.849 |            |
| .47 49,                               | ATOM   |      |     |       |       | 34.848 | 45.518 | 58.494 | 1.00 78.68 |
| 20                                    | ATOM   | 1844 | N   | THR A |       | 29.560 | 44.593 | 53.891 | 1.00 34.11 |
| 20                                    | ATOM   | 1845 | CA  | THR A |       | 28.384 | 43.823 | 53.539 | 1.00 33.69 |
|                                       | ATOM   | 1846 | С   | THR A |       | 28.644 | 42.609 | 52.644 | 1.00 33.33 |
| jalis                                 | MOTA   | 1847 | 0   | THR A |       | 28.517 | 41.451 | 53.048 | 1.00 31.09 |
|                                       | ATOM   | 1848 | CB  | THR A |       | 27.218 | 44.710 | 53.057 | 1.00 37.99 |
| SHA                                   | ATOM   | 1849 | OG1 | THR A | 237   | 26.899 | 45.675 | 54.048 | 1.00 33.49 |
| 25                                    | ATOM   | 1850 | CG2 | THR A | 237   | 25,995 | 43.862 | 52.744 | 1.00 25.66 |
|                                       | ATOM   | 1851 | N   | GLU A | 238   | 29.020 | 42.854 | 51.409 | 1.00 29.69 |
| # # # # # # # # # # # # # # # # # # # | ATOM   | 1852 | CA  | GLU P | 238   | 29.267 | 41.734 | 50.520 | 1.00 27.05 |
|                                       | ATOM   | 1853 | С   | GLU A | 238   | 30.071 | 40.638 | 51.146 | 1.00 33.17 |
| #<br>1 .                              | ATOM   | 1854 | 0   | GLU A | 238   | 29.660 | 39.497 | 51.055 | 1.00 38.50 |
| 30                                    | MOTA   | 1855 | CB  | GLU P |       | 29.851 | 42.080 | 49.161 | 1.00 27.50 |
| 17                                    | MOTA   | 1856 | CG  | GLU A |       | 30.116 | 40.813 | 48.320 | 1.00 18.83 |
| NJ                                    | ATOM   | 1857 | CD  | GLU A |       | 28.902 | 40.297 | 47.596 | 1.00 41.67 |
|                                       | ATOM   | 1858 | OE1 | GLU A |       | 27.848 | 40.909 | 47.464 | 1.00 33.59 |
|                                       | ATOM   | 1859 | OE2 | GLU P |       | 29.085 | 39.089 | 47.138 | 1.00 46.30 |
| 35                                    | ATOM   | 1860 | N   | SER A |       | 31.203 | 40.973 | 51.772 | 1.00 24.44 |
| Ba and                                | ATOM   | 1861 | CA  | SER A |       | 32.045 | 39.957 | 52.387 | 1.00 24.60 |
|                                       | ATOM   | 1862 | С   | SER A |       | 31.245 | 39.060 | 53.344 | 1.00 35.72 |
|                                       | ATOM   | 1863 | 0   | SER A |       | 31.379 | 37.830 | 53.360 | 1.00 35.25 |
|                                       | ATOM   | 1864 | CB  | SER A |       | 33.231 | 40.601 | 53.074 | 1.00 29.14 |
| 40                                    | ATOM   | 1865 | OG  | SER A |       | 32.747 | 41.590 | 53.961 | 1.00 54.60 |
|                                       | ATOM   | 1866 | N   | MET A |       | 30.382 | 39.703 | 54.154 | 1.00 34.00 |
|                                       | MOTA   | 1867 | CA  | MET A |       | 29.529 | 38.993 | 55.091 | 1.00 33.13 |
|                                       | ATOM   | 1868 | C   | MET A |       | 28.603 |        |        |            |
|                                       |        | 1869 | 0   |       |       |        | 38.075 | 54.325 | 1.00 35.65 |
| 45                                    | ATOM   |      |     | MET A |       | 28.435 | 36.926 | 54.689 | 1.00 35.99 |
| 7.7                                   | ATOM   | 1870 | CB  | MET A |       | 28.736 | 39.945 | 55.993 | 1.00 26.50 |
|                                       | ATOM   | 1871 | CG  | MET A |       | 29.691 | 40.675 | 56.910 | 1.00 27.57 |
|                                       | ATOM   | 1872 | SD  | MET A |       | 28.871 | 41.986 | 57.833 | 1.00 32.91 |
|                                       | MOTA   | 1873 | CE  | MET A |       | 30.040 | 42.085 | 59.183 | 1.00 28.47 |
| 50                                    | MOTA   | 1874 | N   | LEU F |       | 28.019 | 38.603 | 53.243 | 1.00 32.77 |
| 50                                    | MOTA   | 1875 | CA  | LEU A |       | 27.120 | 37.859 | 52.381 | 1.00 29.87 |
|                                       | MOTA   | 1876 | С   | LEU F |       | 27.848 | 36.615 | 51.878 | 1.00 36.76 |
|                                       | ATOM   | 1877 | 0   | LEU A |       | 27.302 | 35.509 | 51.858 | 1.00 36.97 |
|                                       | ATOM   | 1878 | CB  | LEU A |       | 26.715 | 38.753 | 51.196 | 1.00 29.71 |
| **±_                                  | ATOM   | 1879 | CG  | LEU F | 241   | 25.283 | 39.289 | 51.237 | 1.00 37.68 |
| 55                                    | ATOM   | 1880 | CD1 | LEU A | 241   | 25.174 | 40.552 | 50.389 | 1.00 35.76 |
|                                       | ATOM   | 1881 | CD2 | LEU F | 241   | 24.309 | 38.257 | 50.673 | 1.00 45.60 |
|                                       | ATOM   | 1882 | N   | LYS A |       | 29.114 | 36.806 | 51.468 | 1.00 34.76 |
|                                       | ATOM   | 1883 | CA  | LYS A |       | 29.908 | 35.702 | 50.972 | 1.00 33.62 |
|                                       | ATOM   | 1884 | c   | LYS A |       | 30.072 | 34.690 | 52.039 | 1.00 33.02 |
| 60                                    | ATOM   | 1885 | Ö   | LYS A |       | 29.887 | 33.512 | 51.795 | 1.00 32.10 |
| _ <del>-</del>                        | ATOM   | 1886 | CB  | LYS A |       | 31.292 | 36.069 | 50.468 | 1.00 32.36 |
|                                       | ATOM   | 1887 | CG  | LYS A |       | 31.406 | 36.263 | 48.961 | 1.00 38.43 |
|                                       | ATOM   | 1888 | CD  | LYS A |       | 31.160 |        |        |            |
|                                       | ATOM   | 1889 | CE  | LYS A |       |        | 37.721 | 48.536 | 1.00 88.36 |
|                                       | ALI OF | 1009 | CE  | PIO V | 1 242 | 32.371 | 38.456 | 47.943 | 1.00100.00 |

WO 00/50577

PCT/SE00/00384

32.033 39.411 46.862 1.00100.00 MOTA 1890 NZLYS A 242 1891 N ILE A 243 30.428 35.154 53.227 1.00 30.87 ATOM 54.359 54.764 1.00 31.70 1.00 36.50 ATOM CA ILE A 243 30.627 34.229 1892 ILE A 243 33.458 1893 С 29.381 ATOM 55.119 5 32.303 1.00 39.33 ILE A 243 29.458 ATOM 1894 0 1.00 32.36 ILE A 243 34.886 55.579 1895 31.227 CB ATOM 1896 CG1 ILE A 243 32.630 35.337 55.222 1.00 32.09 ATOM 33.891 56.718 MOTA 1897 CG2 ILE A 243 31.243 1.00 28.26 CD1 ILE A 243 33.035 36.578 55.981 1898 1.00 20.09 ATOM ALA A 244 34.120 33.519 10 ATOM 1899 N 28.237 54.708 1.00 32.10 26.968 1900 CA ALA A 244 55.066 1.00 32.95 MOTA ALA A 244 32.392 26.600 54.127 1.00 36.35 ATOM 1901 С ALA A 244 26.074 31.358 1.00 36.88 ATOM 1902 0 54.546 34.576 1903 CB ALA A 244 25.858 55.123 1.00 34.02 MOTA 15 ATOM 1904 N **GLU A 245** 26.890 32.617 52.846 1.00 31.20 ATOM 1905 CA GLU A 245 26.614 31.635 51.818 1.00 29.26 27.360 26.849 26.908 GLU A 245 30.354 52.092 1906 С 1.00 35.18 MOTA GLU A 245 1907 29.276 51.800 1.00 36.21 ATOM 0 26.908 25.701 26.026 1908 GLU A 245 32.177 50.421 ATOM CB 1.00 30.22 GLU A 245 20 ATOM 1909 CG 32.938 49.842 1.00 39.79 CD GLU A 245 33.564 1910 48.529 1.00 51.91 Barre B. ATOM OE1 GLU A 245 26.945 1.00 34.19 34.351 48.358 ATOM 1911 1 OE2 GLU A 245 25.246 ATOM 1912 33.142 47.585 1.00 47.48 1 ATOM 1913 ASP A 246 28.570 30.484 52.680 1.00 32.29 N ATOM 1914 CA ASP A 246 29.417 29.350 53.033 1.00 30.70 ATOM 1915 С ASP A 246 28.848 28.645 54.230 1.00 35.47 ASP A 246 28.881 27.417 ATOM 1916 54.347 0 1.00 37.08 30.873 1 ASP A 246 29.717 ATOM 1917 CB 53.355 1.00 33.17 28.473 27.789 ASP A 246 1.00 64.49 MOTA 1918 31.709 53.413 CG **30** OD1 ASP A 246 52.437 1.00 67.15 1.00 79.01 ATOM 1919 31.934 OD2 ASP A 246 28.167 54.622 ATOM 1920 32.118 1.00 33.59 LEU A 247 MOTA 1921 N 28.323 29.434 55.134 The state of ATOM 1922 CA LEU A 247 27.731 28.868 56.334 1.00 36.70 ATOM 1923 LEU A 247 26.355 28.208 56.083 C 1.00 35.92 **...35** LEU A 247 26.060 27.110 56.551 MOTA 1924 0 1.00 30.77 LEU A 247 LEU A 247 27.562 28.732 ATOM 1925 CB 29.954 57.435 1.00 38.34 MOTA 1926 30.100 58.394 1.00 44.30 CG CD1 LEU A 247 29.341 29.779 28.738 1.00 48.20 MOTA 1927 58.641 1.00 35.25 CD2 LEU A 247 31.013 57.815 **ATOM** 1928 40 GLY A 248 25.471 28.887 55.353 1.00 34.97 MOTA 1929 N 1.00 36.00 MOTA 1930 CA **GLY A 248** 24.160 28.315 55.181 MOTA 1931 **GLY A 248** 23.754 27.976 53.778 1.00 37.99 GLY A 248 22.637 53.526 ATOM 1932 0 27.524 1.00 38.13 MOTA 1933 N GLY A 249 24.637 28.158 52.849 1.00 30.74 45 GLY A 249 GLY A 249 ATOM 1934 CA 24.203 27.852 51.526 1.00 30.15 50.759 1.00 38.91 ATOM 1935 С 23.918 29.131 MOTA GLY A 249 24.126 30.240 51.238 1936 0 1.00 41.32 PRO A 250 ATOM 1937 23.453 28.946 49.547 1.00 38.93 N ATOM 1938 PRO A 250 23.173 30.021 CA 48.639 1.00 38.03 50 MOTA 1939 С PRO A 250 22.203 31.078 49.096 1.00 42.17 21.258 ATOM 1940 0 PRO A 250 30.823 49.840 1.00 45.20 PRO A 250 ATOM 1941 CB 22.663 29.357 47.352 1.00 39.18 MOTA 1942 CG PRO A 250 22.952 27.864 47.436 1.00 41.01 PRO A 250 1.00 38.57 1.00 35.37 1943 ATOM CD 23.396 27.610 48.865 55 1944 TYR A 251 22.486 32.275 48.600 ATOM N TYR A 251 1.00 34.87 MOTA 1945 CA 21.692 33.461 48.817 MOTA 1946 TYR A 251 20.740 47.649 1.00 39.55 С 33.479 ATOM 1947 TYR A 251 21.125 33.794 46.535 1.00 42.57 0 TYR A 251 1948 48.790 MOTA CB 22.540 34.759 1.00 35.07 60 21.711 49.119 MOTA TYR A 251 1949 CG 35.980 1.00 35.25 ATOM 1950 CD1 TYR A 251 21.341 36.229 50.441 1.00 33.14 36.846 MOTA 1951 CD2 TYR A 251 21.260 48.121 1.00 37.98 CE1 TYR A 251 1952 20.575 50.781 MOTA 37.341 1.00 28.05 MOTA 1953 CE2 TYR A 251 20.492 37.967 48.443 1.00 40.05

|                      | ATOM         | 1954         | cz        | TYR A 251              | 20.160           | 38.213           | 49.777           | 1.00 42.84               |
|----------------------|--------------|--------------|-----------|------------------------|------------------|------------------|------------------|--------------------------|
|                      | ATOM         | 1955         | ОН        | TYR A 251              | 19.409           | 39.307           | 50.112           | 1.00 39.70               |
|                      | ATOM         | 1956         | N         | VAL A 252              | 19.510           | 33.102           | 47.914           | 1.00 32.21               |
|                      | ATOM         | 1957         | CA        | VAL A 252              | 18.495           | 33.003           | 46.899           | 1.00 30.05               |
| 5                    | ATOM         | 1958         | С         | VAL A 252              | 17.708           | 34.279           | 46.631           | 1.00 38.47               |
|                      | MOTA         | 1959         | 0         | VAL A 252              | 17.000           | 34.340           | 45.640           | 1.00 40.65               |
|                      | MOTA         | 1960         | CB        | VAL A 252              | 17.560           | 31.845           | 47.253           | 1.00 31.27               |
|                      | ATOM         | 1961         | CG1       | VAL A 252              | 18.378           | 30.605           | 47.643           | 1.00 28.15               |
|                      | ATOM         | 1962         | CG2       | VAL A 252              | 16.614           | 32.234           | 48.405           | 1.00 30.93               |
| 10                   | ATOM         | 1963         | N         | TRP A 253              | 17.800           | 35.292           | 47.504           | 1.00 32.44               |
|                      | ATOM         | 1964         | CA        | TRP A 253              | 17.041           | 36.509           | 47.309           | 1.00 30.93               |
|                      | ATOM         | 1965         | С         | TRP A 253              | 17.468           | 37.341           | 46.119           | 1.00 43.56               |
|                      | MOTA         | 1966         | 0         | TRP A 253              | 16.690           | 38.119           | 45.568           | 1.00 46.70               |
| 15                   | MOTA         | 1967         | CB        | TRP A 253              | 16.898           | 37.302           | 48.606           | 1.00 29.65               |
| 15                   | ATOM         | 1968         | CG<br>CD1 | TRP A 253              | 16.364           | 36.369           | 49.625           | 1.00 30.19               |
|                      | ATOM         | 1969         |           | TRP A 253              | 17.086           | 35.546           | 50.413           | 1.00 32.81               |
|                      | ATOM<br>ATOM | 1970<br>1971 |           | TRP A 253              | 14.989<br>16.251 | 36.110<br>34.794 | 49.913           | 1.00 29.63               |
|                      | ATOM         | 1972         | CE2       |                        | 14.955           | 35.128           | 51.194<br>50.912 | 1.00 30.69               |
| 20                   | ATOM         | 1973         |           | TRP A 253              | 13.789           | 36.637           | 49.450           | 1.00 31.50<br>1.00 30.18 |
| 13 20                | ATOM         | 1974         |           | TRP A 253              | 13.746           | 34.657           | 51.433           | 1.00 30.18               |
| 12.00                | ATOM         | 1975         | CZ3       |                        | 12.600           | 36.164           | 49.958           | 1.00 30.31               |
| i i                  | ATOM         | 1976         | CH2       |                        | 12.579           | 35.176           | 50.946           | 1.00 31.14               |
| 3 PX                 | ATOM         | 1977         | N         | GLY A 254              | 18.697           | 37.182           | 45.675           | 1.00 42.35               |
| 25                   | ATOM         | 1978         | CA        | GLY A 254              | 19.101           | 37.944           | 44.509           | 1.00 41.34               |
| <u>I</u>             | ATOM         | 1979         | С         | GLY A 254              | 19.875           | 39.192           | 44.858           | 1.00 45.47               |
| <b> -</b>   <b> </b> | ATOM         | 1980         | 0         | GLY A 254              | 21.079           | 39.236           | 44.671           | 1.00 45.89               |
|                      | MOTA         | 1981         | N         | GLN A 255              | 19.160           | 40.210           | 45.351           | 1.00 41.86               |
| #R                   | MOTA         | 1982         | CA        | GLN A 255              | 19.746           | 41.488           | 45.675           | 1.00 38.67               |
| 30                   | ATOM         | 1983         | С         | GLN A 255              | 19.576           | 41.776           | 47.153           | 1.00 40.18               |
| Tu -                 | ATOM         | 1984         | 0         | GLN A 255              | 18.494           | 41.811           | 47.659           | 1.00 38.67               |
| T.                   | MOTA         | 1985         | CB        | GLN A 255              | 19.023           | 42.552           | 44.836           | 1.00 37.82               |
| 72 T                 | ATOM         | 1986         | CG        | GLN A 255              | 19.455           | 43.979           | 45.169           | 1.00 50.17               |
| 35                   | ATOM         | 1987         | CD        | GLN A 255              | 20.618           | 44.368           | 44.283           | 1.00 62.88               |
| <b>14.33</b>         | ATOM         | 1988         |           | GLN A 255              | 21.104           | 43.612           | 43.463           | 1.00 55.76               |
|                      | MOTA         | 1989<br>1990 | NE2       |                        | 21.057           | 45.625           | 44.479           | 1.00 34.97               |
|                      | ATOM<br>ATOM | 1990         | N<br>CA   | TYR A 256<br>TYR A 256 |                  | 41.900<br>42.361 | 47.866           | 1.00 33.01               |
|                      | ATOM         | 1992         | CA        | TYR A 256              |                  | 43.854           | 49.258<br>49.329 | 1.00 28.69<br>1.00 26.72 |
| 40                   | ATOM         | 1993         | Õ         | TYR A 256              |                  | 44.321           | 49.225           | 1.00 24.22               |
|                      | ATOM         | 1994         | СВ        | TYR A 256              |                  | 41.629           | 50.075           | 1.00 29.99               |
|                      | MOTA         | 1995         | CG        | TYR A 256              |                  | 41.867           | 51.556           | 1.00 35.47               |
|                      | ATOM         | 1996         | CD1       | TYR A 256              |                  | 41.200           | 52.250           | 1.00 35.76               |
| 26                   | MOTA         | 1997         | CD2       | TYR A 256              | 22.405           | 42.746           | 52.239           | 1.00 37.52               |
| 45                   | ATOM         | 1998         | CE1       | TYR A 256              | 20.436           | 41.396           | 53.599           | 1.00 25.80               |
|                      | ATOM         | 1999         | CE2       | TYR A 256              |                  | 42.946           | 53.588           | 1.00 39.10               |
|                      | ATOM         | 2000         | CZ        | TYR A 256              |                  | 42.275           | 54.268           | 1.00 31.78               |
|                      | MOTA         | 2001         | OH        | TYR A 256              |                  | 42.433           | 55.631           | 1.00 37.35               |
| 60                   | MOTA         | 2002         | N         | ASP A 257              |                  | 44.613           | 49.463           | 1.00 23.26               |
| <i>5</i> 0           | ATOM         | 2003         | CA        | ASP A 257              |                  | 46.027           | 49.621           | 1.00 23.47               |
|                      | ATOM         | 2004         | С         | ASP A 257              |                  | 46.444           | 51.071           | 1.00 35.90               |
|                      | ATOM<br>ATOM | 2005<br>2006 | O<br>CB   | ASP A 257<br>ASP A 257 |                  | 45.661           | 51.967           | 1.00 39.48               |
|                      | ATOM         | 2007         | CG        | ASP A 257              |                  | 46.803           | 48.758           | 1.00 24.13               |
| 55                   | ATOM         | 2007         |           | ASP A 257              |                  | 47.030<br>46.675 | 47.388<br>47.220 | 1.00 38.50<br>1.00 42.61 |
| <i></i>              | MOTA         | 2009         |           | ASP A 257              |                  | 47.555           | 46.517           | 1.00 42.61               |
|                      | ATOM         | 2010         | N N       | LEU A 258              |                  | 47.661           | 51.386           | 1.00 29.02               |
|                      | ATOM         | 2011         | CA        | LEU A 258              |                  | 48.159           | 52.735           | 1.00 30.80               |
|                      | ATOM         | 2012         | C         | LEU A 258              |                  | 49.466           | 52.765           | 1.00 36.37               |
| 60                   | ATOM         | 2013         | ō         | LEU A 258              |                  | 50.302           | 51.840           | 1.00 37.98               |
|                      | ATOM         | 2014         | СВ        | LEU A 258              |                  | 48.442           | 53.274           | 1.00 24.71               |
|                      | MOTA         | 2015         | CG        | LEU A 258              | 22.552           | 47.191           | 53.491           | 1.00 31.13               |
|                      | MOTA         | 2016         |           | LEU A 258              |                  | 47.567           | 54.043           | 1.00 30.89               |
|                      | MOTA         | 2017         | CD2       | LEU A 258              | 21.854           | 46.282           | 54.500           | 1.00 33.65               |

|                     | MOTA         | 2018         | N       | LEU A 259              | 18.762           | 49.632           | 53.838           | 1.00 29.87               |
|---------------------|--------------|--------------|---------|------------------------|------------------|------------------|------------------|--------------------------|
|                     | MOTA         | 2019         | CA      | LEU A 259              | 18.006           | 50.849           | 54.052           | 1.00 28.43               |
|                     | ATOM         | 2020         | С       | LEU A 259              | 18.283           | 51.453           | 55.446           | 1.00 31.30               |
| _ *                 | MOTA         | 2021         | 0       | LEU A 259              | 18.055           | 50.819           | 56.477           | 1.00 31.19               |
| 5                   | ATOM         | 2022         | CB      | LEU A 259              | 16.500           | 50.809           | 53.693           | 1.00 27.63               |
|                     | MOTA         | 2023         | CG      | LEU A 259              | 15.706           | 51.980           | 54.298           | 1.00 31.51               |
|                     | MOTA         | 2024         |         | LEU A 259              | 16.026           | 53.300           | 53.605           | 1.00 32.32               |
|                     | MOTA         | 2025         |         | LEU A 259              | 14.212           | 51.731           | 54.253           | 1.00 26.87               |
| 10                  | MOTA         | 2026         | N       | VAL A 260              | 18.807           | 52.683           | 55.447           | 1.00 25.88               |
| 10                  | MOTA         | 2027         | CA      | VAL A 260              | 19.105           | 53.435           | 56.638           | 1.00 25.99               |
|                     | ATOM         | 2028         | C       | VAL A 260              | 17.896           | 54.336           | 56.796           | 1.00 34.83               |
|                     | ATOM         | 2029         | O       | VAL A 260              | 17.647           | 55.187           | 55.959           | 1.00 41.92               |
|                     | ATOM         | 2030<br>2031 | CB      | VAL A 260<br>VAL A 260 | 20.390<br>20.701 | 54.234<br>55.179 | 56.408<br>57.592 | 1.00 29.97<br>1.00 32.08 |
| 15                  | ATOM<br>ATOM | 2031         |         | VAL A 260              | 21.563           | 53.295           | 56.130           | 1.00 32.08               |
| 1.7                 | ATOM         | 2032         | N       | LEU A 261              | 17.098           | 54.120           | 57.815           | 1.00 28.41               |
|                     | ATOM         | 2034         | CA      | LEU A 261              | 15.865           | 54.878           | 58.024           | 1.00 25.52               |
|                     | ATOM         | 2035         | C       | LEU A 261              | 16.016           | 56.054           | 58.948           | 1.00 29.42               |
| APP AT              | ATOM         | 2036         | 0       | LEU A 261              | 17.090           | 56.300           | 59.489           | 1.00 29.96               |
| 20                  | ATOM         | 2037         | СВ      | LEU A 261              | 14.874           | 53.921           | 58.706           | 1.00 25.70               |
|                     | ATOM         | 2038         | CG      | LEU A 261              | 14.387           | 52.877           | 57.740           | 1.00 33.14               |
| Handa St. 1         | ATOM         | 2039         |         | LEU A 261              | 15.161           | 51.571           | 57.929           | 1.00 32.73               |
| ļaš,                | ATOM         | 2040         |         | LEU A 261              | 12.900           | 52.686           | 57.935           | 1.00 43.74               |
| ्रमाः<br>सर्वे मार् | ATOM         | 2041         | N       | PRO A 262              | 14.903           | 56.758           | 59.142           | 1.00 28.52               |
| 25                  | MOTA         | 2042         | CA      | PRO A 262              | 14.894           | 57.870           | 60.047           | 1.00 28.50               |
| WT.                 | ATOM         | 2043         | С       | PRO A 262              | 15.152           | 57.294           | 61.432           | 1.00 35.36               |
| lat.                | ATOM         | 2044         | 0       | PRO A 262              | 14.866           | 56.124           | 61.683           | 1.00 34.52               |
| *                   | ATOM         | 2045         | CB      | PRO A 262              | 13.512           | 58.512           | 59.971           | 1.00 29.19               |
|                     | ATOM         | 2046         | CG      | PRO A 262              | 12.707           | 57.719           | 58.964           | 1.00 34.34               |
| 30                  | ATOM         | 2047         | CD      | PRO A 262              | 13.581           | 56 <b>.5</b> 75  | 58.492           | 1.00 30.63               |
| n.<br>Ma            | MOTA         | 2048         | N       | PRO A 263              | 15.706           | 58.105           | 62.327           | 1.00 31.50               |
| i ingg              | MOTA         | 2049         | CA      | PRO A 263              | 16.060           | 57.657           | 63.673           | 1.00 28.77               |
|                     | MOTA         | 2050         | C       | PRO A 263              | 14.966           | 57.021           | 64.493           | 1.00 29.15               |
|                     | ATOM         | 2051         | 0       | PRO A 263              | 15.256           | 56.335           | 65.434           | 1.00 26.36               |
| <b>4.35</b>         | ATOM         | 2052         | CB      | PRO A 263              | 16.652           | 58.867           | 64.392           | 1.00 29.16               |
|                     | ATOM         | 2053         | CG      | PRO A 263              | 16.851           | 59.954           | 63.335           | 1.00 31.55               |
|                     | MOTA         | 2054         | CD      | PRO A 263              | 15.994           | 59.558           | 62.138           | 1.00 29.17               |
|                     | ATOM<br>ATOM | 2055<br>2056 | N<br>CA | SER A 264<br>SER A 264 | 13.712<br>12.578 | 57.258<br>56.703 | 64.143<br>64.864 | 1.00 33.87               |
| 40                  | ATOM         | 2057         | CA      | SER A 264              | 12.403           | 55.223           | 64.604           | 1.00 33.81<br>1.00 37.36 |
| -10                 | ATOM         | 2058         | Ö       | SER A 264              | 11.529           | 54.570           | 65.201           | 1.00 37.30               |
|                     | ATOM         | 2059         | СВ      | SER A 264              | 11.280           | 57.423           | 64.576           | 1.00 35.61               |
|                     | ATOM         | 2060         | OG      | SER A 264              | 10.955           | 57.276           | 63.201           | 1.00 53.45               |
|                     | ATOM         | 2061         | N       | PHE A 265              | 13.213           | 54.684           | 63.710           | 1.00 29.00               |
| 45                  | MOTA         | 2062         | CA      | PHE A 265              | 13.136           | 53.256           | 63.453           | 1.00 28.56               |
|                     | MOTA         | 2063         | С       | PHE A 265              | 13.260           | 52.491           | 64.787           | 1.00 28.49               |
|                     | ATOM         | 2064         | 0       | PHE A 265              | 14.208           | 52.675           | 65.533           | 1.00 27.36               |
|                     | ATOM         | 2065         | CB      | PHE A 265              | 14.200           | 52.833           | 62.454           | 1.00 31.40               |
|                     | MOTA         | 2066         | CG      | PHE A 265              | 13.875           | 51.458           | 62.028           | 1.00 34.51               |
| 50                  | ATOM         | 2067         |         | PHE A 265              | 12.601           | 51.174           | 61.543           | 1.00 35.11               |
|                     | MOTA         | 2068         |         | PHE A 265              | 14.814           | 50.435           | 62.156           | 1.00 38.94               |
|                     | ATOM         | 2069         |         | PHE A 265              | 12.282           | 49.876           | 61.154           | 1.00 37.42               |
|                     | ATOM         | 2070         |         | PHE A 265              | 14.511           | 49.131           | 61.772           | 1.00 42.65               |
| 55                  | ATOM         | 2071         | CZ      | PHE A 265              | 13.236           | 48.860           | 61.274           | 1.00 40.14               |
|                     | MOTA<br>MOTA | 2072<br>2073 | N<br>CA | PRO A 266<br>PRO A 266 | 12.272<br>12.249 | 51.650<br>50.945 | 65.128<br>66.419 | 1.00 24.06               |
|                     | MOTA         | 2074         | C       | PRO A 266              | 13.231           | 49.794           | 66.701           | 1.00 20.62<br>1.00 29.34 |
|                     | ATOM         | 2075         | 0       | PRO A 266              | 13.231           | 49.794           | 67.847           | 1.00 29.34               |
|                     | ATOM         | 2076         | CB      | PRO A 266              | 10.808           | 50.463           | 66.593           | 1.00 28.17               |
| 60                  | ATOM         | 2077         | CG      | PRO A 266              | 10.076           | 50.686           | 65.281           | 1.00 21.07               |
| -,-                 | ATOM         | 2078         | CD      | PRO A 266              | 11.046           | 51.355           | 64.325           | 1.00 19.44               |
|                     | MOTA         | 2079         | N       | TYR A 267              | 13.922           | 49.280           | 65.676           | 1.00 27.23               |
|                     | MOTA         | 2080         | CA      | TYR A 267              | 14.849           | 48.160           | 65.817           | 1.00 25.74               |
|                     | ATOM         | 2081         | С       | TYR A 267              | 16.181           | 48.454           | 65.189           | 1.00 32.57               |
|                     |              |              |         |                        |                  |                  |                  |                          |

|                    | MOTA         | 2082         | 0       | TYR A 267              | 16.281           | 49.316           | 64.324           | 1.00 32.48               |
|--------------------|--------------|--------------|---------|------------------------|------------------|------------------|------------------|--------------------------|
|                    | MOTA         | 2083         | CB      | TYR A 267              | 14.298           | 46.903           | 65.121           | 1.00 25.07               |
|                    | MOTA         | 2084         | CG      | TYR A 267              | 12.968           | 46.502           | 65.674           | 1.00 24.45               |
| _                  | MOTA         | 2085         |         | TYR A 267              | 12.915           | 45.765           | 66.856           | 1.00 27.05               |
| 5                  | MOTA         | 2086         |         | TYR A 267              | 11.776           | 46.851           | 65.037           | 1.00 22.15               |
|                    | ATOM         | 2087         |         | TYR A 267              | 11.697           | 45.387           | 67.419           | 1.00 25.01               |
|                    | MOTA         | 2088         |         | TYR A 267              | 10.548           | 46.496           | 65.596           | 1.00 19.09               |
|                    | ATOM         | 2089         | CZ      | TYR A 267              | 10.510           | 45.767           | 66.786           | 1.00 17.98               |
| 10                 | ATOM         | 2090         | OH      | TYR A 267              | 9.302            | 45.416           | 67.353           | 1.00 19.51               |
| 10                 | MOTA         | 2091         | N       | GLY A 268              | 17.196           | 47.698           | 65.627           | 1.00 30.22               |
|                    | ATOM         | 2092         | CA      | GLY A 268              | 18.547           | 47.826           | 65.114           | 1.00 27.29               |
|                    | ATOM         | 2093         | C       | GLY A 268              | 18.485           | 47.620           | 63.614           | 1.00 29.82               |
|                    | ATOM         | 2094         | 0       | GLY A 268<br>GLY A 269 | 19.136<br>17.637 | 48.297           | 62.836           | 1.00 32.99               |
| 15                 | ATOM         | 2095<br>2096 | N       | GLY A 269              | 17.393           | 46.676<br>46.320 | 63.228           | 1.00 23.19               |
| 15                 | ATOM         | 2090         | CA<br>C | GLY A 269              | 16.187           | 45.402           | 61.853<br>61.777 | 1.00 21.62               |
|                    | ATOM         | 2097         | 0       | GLY A 269              | 15.681           | 44.948           | 62.820           | 1.00 27.53               |
|                    | ATOM<br>ATOM | 2099         | N       | MET A 270              | 15.735           | 45.154           | 60.528           | 1.00 20.14               |
|                    | ATOM         | 2100         | CA      | MET A 270              | 14.615           | 44.267           | 60.176           | 1.00 27.81<br>1.00 25.61 |
| 20                 | MOTA         | 2101         | C       | MET A 270              | 14.956           | 43.585           | 58.874           | 1.00 23.61               |
| ul Zu              | MOTA         | 2102         | ō       | MET A 270              | 15.221           | 44.247           | 57.867           | 1.00 33.30               |
| jak.               | MOTA         | 2103         | CB      | MET A 270              | 13.247           | 44.936           | 60.028           | 1.00 34.07               |
| regard<br>interest | MOTA         | 2104         | CG      | MET A 270              | 12.195           | 43.937           | 59.602           | 1.00 28.81               |
| 2200-              | MOTA         | 2105         | SD      | MET A 270              | 11.875           | 42.742           | 60.929           | 1.00 20.01               |
| 25                 | ATOM         | 2106         | CE      | MET A 270              | 10.720           | 41.621           | 60.082           | 1.00 35.30               |
| H                  | ATOM         | 2107         | N       | GLU A 271              | 14.995           | 42.263           | 58.904           | 1.00 32.20               |
| - L                | ATOM         | 2108         | CA      | GLU A 271              | 15.393           | 41.459           | 57.753           | 1.00 33.32               |
| #                  | ATOM         | 2109         | С       | GLU A 271              | 14.419           | 41.382           | 56.567           | 1.00 40.86               |
| 1=4 <sub>1</sub>   | ATOM         | 2110         | 0       | GLU A 271              | 14.087           | 40.285           | 56.107           | 1.00 42.02               |
| 1.30               | ATOM         | 2111         | CB      | GLU A 271              | 15.802           | 40.054           | 58.230           | 1.00 35.05               |
|                    | ATOM         | 2112         | CG      | GLU A 271              | 14.607           | 39.218           | 58.760           | 1.00 33.55               |
|                    | ATOM         | 2113         | CD      | GLU A 271              | 14.291           | 39.428           | 60.219           | 1.00 25.52               |
|                    | ATOM         | 2114         | OE1     |                        | 14.586           | 40.436           | 60.844           | 1.00 37.23               |
| in all             | ATOM         | 2115         |         | GLU A 271              | 13.699           | 38.393           | 60.757           | 1.00 25.86               |
| 35                 | ATOM         | 2116         | N       | ASN A 272              | 13.978           | 42.535           | 56.052           | 1.00 35.34               |
|                    | ATOM         | 2117         | CA      | ASN A 272              | 13.057           | 42.544           | 54.928           | 1.00 33.26               |
|                    | ATOM         | 2118         | C       | ASN A 272              | 13.787           | 42.048           | 53.702           | 1.00 34.47               |
|                    | ATOM         | 2119         | 0       | ASN A 272              | 14.811           | 42.613           | 53.351           | 1.00 33.64               |
| 40                 | ATOM         | 2120         | CB      | ASN A 272              | 12.441           | 43.947           | 54.719           | 1.00 30.65               |
| 40                 | ATOM         | 2121         | CG      | ASN A 272              | 11.667           | 44.453           | 55.935           | 1.00 42.50               |
|                    | ATOM         | 2122         |         | ASN A 272<br>ASN A 272 | 11.908           | 45.554           | 56.475           | 1.00 47.09               |
|                    | MOTA<br>MOTA | 2123<br>2124 | ND2     | PRO A 273              | 10.716<br>13.281 | 43.661           | 56.371           | 1.00 24.31               |
|                    | ATOM         | 2124         | CA      | PRO A 273              | 13.201           | 40.983<br>40.373 | 53.078<br>51.910 | 1.00 29.63<br>1.00 28.47 |
| 45                 | ATOM         | 2126         | C       | PRO A 273              | 14.303           | 41.345           | 50.819           | 1.00 20.47               |
|                    | ATOM         | 2127         | ŏ       | PRO A 273              | 13.457           | 42.089           | 50.372           | 1.00 30.43               |
|                    | ATOM         | 2128         | ČВ      | PRO A 273              | 12.991           | 39.305           | 51.381           | 1.00 31.03               |
|                    | ATOM         | 2129         | CG      | PRO A 273              | 11.829           | 39.237           | 52.365           | 1.00 36.65               |
|                    | ATOM         | 2130         | CD      | PRO A 273              | 11.927           | 40.440           | 53.310           | 1.00 30.84               |
| 50                 | ATOM         | 2131         | N       | CYS A 274              | 15.571           | 41.333           | 50.431           | 1.00 27.40               |
|                    | ATOM         | 2132         | CA      | CYS A 274              | 16.069           | 42.206           | 49.373           | 1.00 28.17               |
|                    | ATOM         | 2133         | C       | CYS A 274              | 16.327           | 43.604           | 49.860           | 1.00 27.35               |
|                    | MOTA         | 2134         | 0       | CYS A 274              | 17.114           | 44.345           | 49.248           | 1.00 28.53               |
|                    | MOTA         | 2135         | CB      | CYS A 274              | 15.121           | 42.347           | 48.145           | 1.00 32.00               |
| 55                 | MOTA         | 2136         | SG      | CYS A 274              | 14.659           | 40.798           | 47.340           | 1.00 38.42               |
|                    | MOTA         | 2137         | N       | LEU A 275              | 15.658           | 43.972           | 50.947           | 1.00 26.20               |
|                    | MOTA         | 2138         | CA      | LEU A 275              | 15.789           | 45.315           | 51.535           | 1.00 29.54               |
|                    | MOTA         | 2139         | С       | LEU A 275              | 15.857           | 45.279           | 53.059           | 1.00 32.52               |
| · .                | MOTA         | 2140         | 0       | LEU A 275              | 14.859           | 45.250           | 53.772           | 1.00 32.44               |
| 60                 | MOTA         | 2141         | CB      | LEU A 275              | 14.657           | 46.253           | 51.005           | 1.00 28.58               |
|                    | MOTA         | 2142         | CG      | LEU A 275              | 14.847           | 47.735           | 51.239           | 1.00 26.78               |
|                    | ATOM         | 2143         |         | LEU A 275              | 16.191           | 48.183           | 50.698           | 1.00 21.90               |
|                    | ATOM         | 2144         |         | LEU A 275              | 13.712           | 48.478           | 50.554           | 1.00 31.48               |
|                    | MOTA         | 2145         | N       | THR A 276              | 17.062           | 45.244           | 53.570           | 1.00 29.67               |

|                  | ATOM  | 2146 | CA  | THR A | 276 | 17.2 | 225 | 45.198 | 54.996 | 1.00 30.47 |
|------------------|-------|------|-----|-------|-----|------|-----|--------|--------|------------|
|                  | MOTA  | 2147 | С   | THR A | 276 | 17.1 | 20  | 46.624 | 55.597 | 1.00 34.60 |
|                  | ATOM  | 2148 | 0   | THR A |     | 17.7 |     | 47.588 | 55.129 | 1.00 31.01 |
|                  | MOTA  | 2149 | CB  | THR A |     | 18.5 |     | 44.397 | 55.387 | 1.00 30.98 |
| 5                | ATOM  | 2150 | OG1 | THR A |     | 18.2 |     | 43.030 | 55.512 | 1.00 42.01 |
| _                | ATOM  | 2151 |     | THR A |     | 19.1 |     | 44.835 | 56.694 | 1.00 29.43 |
|                  | ATOM  | 2152 | N   | PHE A |     | 16.2 |     | 46.759 | 56.622 | 1.00 27.69 |
|                  |       |      |     |       |     |      |     |        | _      |            |
|                  | ATOM  |      | CA  | PHE A |     | 16.1 |     | 48.034 | 57.274 | 1.00 28.92 |
| 10               | ATOM  |      | C   | PHE A |     | 17.1 |     | 48.065 | 58.403 | 1.00 36.07 |
| 10               | MOTA  |      | 0   | PHE A |     | 17.3 |     | 47.088 | 59.131 | 1.00 34.57 |
|                  | MO'TA |      | CB  | PHE A |     | 14.7 |     | 48.265 | 57.901 | 1.00 30.17 |
|                  | MOTA  | 2157 | CG  | PHE A | 277 | 13.7 | 774 | 48.458 | 56.848 | 1.00 30.72 |
|                  | ATOM  | 2158 | CD1 | PHE A | 277 | 14.0 | 11  | 47.966 | 55.568 | 1.00 30.73 |
|                  | ATOM  | 2159 | CD2 | PHE A | 277 | 12.5 | 573 | 49.114 | 57.105 | 1.00 30.61 |
| 15               | MOTA  |      | CE1 | PHE A | 277 | 13.0 | 172 | 48.135 | 54.552 | 1.00 29.30 |
|                  | ATOM  |      |     | PHE A |     | 11.6 |     | 49.276 | 56.101 | 1.00 32.26 |
|                  | MOTA  |      | CZ  | PHE A |     | 11.8 |     | 48.772 | 54.824 | 1.00 32.20 |
|                  | ATOM  |      | N   | VAL A |     | 17.8 |     | 49.186 | 58.562 |            |
| See and          |       |      |     |       |     |      |     |        |        | 1.00 32.97 |
| 2 Mil.           | ATOM  |      | CA  | VAL A |     | 18.8 |     | 49.338 | 59.614 | 1.00 32.66 |
| 20               | ATOM  |      | C   | VAL A |     | 18.6 |     | 50.698 | 60.248 | 1.00 37.01 |
| (43 ta)(         | ATOM  |      | 0   | VAL A |     | 18.2 |     | 51.635 | 59.599 | 1.00 37.16 |
| je#x             | ATOM  |      | CB  | VAL A |     | 20.2 | 246 | 49.088 | 59.109 | 1.00 36.51 |
| 144 mm           | MOTA  | 2168 |     | VAL A |     | 20.1 | L73 | 47.967 | 58.086 | 1.00 37.40 |
| 5 4ks            | ATOM  | 2169 | CG2 | VAL A | 278 | 20.7 | 791 | 50.356 | 58.444 | 1.00 34.87 |
| 25               | -ATOM | 2170 | N   | THR A | 279 | 19.0 | 066 | 50.778 | 61.515 | 1.00 32.36 |
|                  | ATOM  |      | CA  | THR A |     | 18.9 |     | 51.994 | 62,264 | 1.00 31.03 |
| -L               | ATOM  |      | C   | THR A |     | 20.1 |     | 52.883 | 62.035 | 1.00 37.42 |
| <b>\$</b>        | ATOM  |      | ŏ   | THR A |     | 21.2 |     | 52.397 | 61.920 | 1.00 37.42 |
| ]=4 <sub>0</sub> | ATOM  |      | CB  | THR A |     | 18.8 |     | 51.695 | 63.759 |            |
| <b>1.30</b>      |       |      | OG1 |       |     |      |     |        |        | 1.00 31.39 |
|                  | ATOM  |      |     | THR A |     | 19.1 |     | 52.895 | 64.472 | 1.00 34.21 |
|                  | ATOM  |      |     | THR A |     | 19.9 |     | 50.706 | 64.083 | 1.00 23.69 |
| in m             | ATOM  |      | N   | PRO A |     | 19.8 |     | 54.187 | 62.000 | 1.00 30.07 |
| C)               | ATOM  |      | CA  | PRO A |     | 20.9 |     | 55.132 | 61.802 | 1.00 27.00 |
|                  | ATOM  |      | С   | PRO A | 280 | 21.8 | 323 | 55.110 | 63.005 | 1.00 30.60 |
| 35               | ATOM  | 2180 | 0   | PRO A |     | 22.9 | 951 | 55.588 | 62.934 | 1.00 30.20 |
|                  | ATOM  | 2181 | CB  | PRO A | 280 | 20.2 | 249 | 56.497 | 61.601 | 1.00 26.23 |
|                  | ATOM  | 2182 | CG  | PRO A | 280 | 18.7 | 769 | 56.337 | 61.889 | 1.00 28.07 |
|                  | ATOM  | 2183 | CD  | PRO A | 280 | 18.4 | 199 | 54.848 | 61.984 | 1.00 26.11 |
|                  | ATOM  | 2184 | N   | THR A | 281 | 21.3 | 348 | 54.509 | 64.112 | 1.00 27.82 |
| 40               | ATOM  |      | CA  | THR A |     | 22.1 |     | 54.426 | 65.302 | 1.00 27.48 |
|                  | ATOM  |      | C   | THR A |     | 23.3 |     | 53.523 | 65.073 | 1.00 31.37 |
|                  | ATOM  |      | Ō   | THR A |     | 24.2 |     | 53.385 | 65.944 | 1.00 31.93 |
|                  | ATOM  |      | CB  | THR A |     | 21.4 |     | 54.016 | 66.601 | 1.00 21.45 |
|                  | ATOM  |      |     | THR A |     | 21.0 |     | 52.681 | 66.524 |            |
| 45               | ATOM  |      |     | THR A |     | 20.3 |     | 54.994 |        | 1.00 33.18 |
| -13              |       |      |     |       |     |      |     |        | 66.874 | 1.00 9.89  |
|                  | ATOM  |      | N   | LEU A |     | 23.3 |     | 52.881 | 63.913 | 1.00 25.29 |
|                  | ATOM  |      | CA  | LEU A |     | 24.4 |     | 51.993 | 63.586 | 1.00 24.04 |
|                  | ATOM  |      | C   | LEU A |     | 25.6 |     | 52.790 | 63.049 | 1.00 34.74 |
| 50               | ATOM  |      | 0   | LEU A |     | 26.7 |     | 52.279 | 62.884 | 1.00 34.84 |
| 50               |       |      | CB  | LEU A |     | 24.0 | 063 | 51.038 | 62.464 | 1.00 22.14 |
|                  | ATOM  |      | CG  | LEU A |     | 23.1 | 104 | 49.916 | 62.819 | 1.00 26.88 |
|                  | ATOM  |      |     | LEU A |     | 23.3 | 312 | 48.809 | 61.791 | 1.00 27.77 |
|                  | ATOM  | 2198 | CD2 | LEU A | 282 | 23.3 | 322 | 49.404 | 64.249 | 1.00 21.75 |
|                  | ATOM  | 2199 | N   | LEU A | 283 | 25.4 | 465 | 54.063 | 62.744 | 1.00 32.05 |
| 55               | ATOM  | 2200 | CA  | LEU A | 283 | 26.5 | 501 | 54.903 | 62.159 | 1.00 31.43 |
|                  | ATOM  |      | С   | LEU A |     | 27.6 |     | 55.324 | 63.055 | 1.00 41.94 |
|                  | ATOM  |      | Ö   | LEU A |     | 27.9 |     | 56.525 | 63.196 | 1.00 49.19 |
|                  | MOTA  |      | CB  | LEU A |     | 25.8 |     | 56.117 | 61.418 | 1.00 49.19 |
|                  | ATOM  |      | CG  |       |     |      |     |        |        |            |
| 60               |       |      |     | LEU A |     | 24.  |     | 55.661 | 60.488 | 1.00 32.94 |
| .00              |       |      |     | LEU A |     | 23.9 |     | 56.811 | 59.869 | 1.00 33.48 |
|                  | MOTA  |      |     | LEU A |     | 25.2 |     | 54.716 | 59.409 | 1.00 28.39 |
|                  | ATOM  |      | N   | ALA A |     | 28.3 |     | 54.370 | 63.638 | 1.00 33.18 |
|                  | ATOM  |      | CA  | ALA A |     | 29.  |     | 54.728 | 64.532 | 1.00 30.20 |
|                  | ATOM  | 2209 | C   | ALA A | 284 | 30.6 | 655 | 55.492 | 63.922 | 1.00 31.97 |
|                  |       |      |     |       |     |      |     |        |        |            |

|           | ATOM | 2210         | 0        | ALA A 284              | 31.411           | 56.165           | 64.642           | 1.00 31.40               |
|-----------|------|--------------|----------|------------------------|------------------|------------------|------------------|--------------------------|
|           | ATOM | 2211         | CB       | ALA A 284              | 29.973           | 53.544           | 65.336           | 1.00 29.60               |
|           | ATOM | 2212         | N        | GLY A 285              | 30.801           | 55.371           | 62.605           | 1.00 27.10               |
| _         | ATOM | 2213         | CA       | GLY A 285              | 31.882           | 56.018           | 61.867           | 1.00 29.77               |
| 5         |      | 2214         | С        | GLY A 285              | 33.174           | 55.194           | 61.910           | 1.00 39.25               |
|           | ATOM | 2215         | 0        | GLY A 285              | 34.264           | 55.649           | 61.544           | 1.00 41.21               |
|           | MOTA | 2216         | N        | ASP A 286              | 33.022           | 53.951           | 62.363           | 1.00 34.57               |
|           | MOTA | 2217         | CA       | ASP A 286              | 34.144           | 53.057           | 62.473           | 1.00 32.57               |
| 10        | MOTA | 2218         | С        | ASP A 286              | 33.805           | 51.625           | 62.130           | 1.00 31.59               |
| 10        |      | 2219         | 0        | ASP A 286              | 34.609           | 50.743           | 62.325           | 1.00 29.27               |
|           | ATOM | 2220         | CB       | ASP A 286              | 34.812           | 53.163           | 63.860           | 1.00 34.65               |
|           | ATOM | 2221         | CG       | ASP A 286              | 34.081           | 52.447           | 64.945           | 1.00 41.93               |
|           | MOTA | 2222         |          | ASP A 286              | 33.008           | 51.893           | 64.765           | 1.00 45.21               |
| 15        | MOTA | 2223         |          | ASP A 286              | 34.714           | 52.492           | 66.087           | 1.00 35.67               |
| 13        |      | 2224         | N        | LYS A 287              | 32.590           | 51.395           | 61.641           | 1.00 29.46               |
|           | ATOM | 2225         | CA       | LYS A 287              | 32.199           | 50.038           | 61.272           | 1.00 31.62               |
| use etc.  | ATOM | 2226         | C        | LYS A 287              | 31.976           | 49.060           | 62.437           | 1.00 37.91               |
|           | MOTA | 2227         | O        | LYS A 287              | 31.761           | 47.879           | 62.240           | 1.00 37.91               |
| 20        | ATOM | 2228         | CB       | LYS A 287              | 33.215           | 49.447           | 60.304           | 1.00 32.17               |
| 45 20     |      | 2229         | CG       | LYS A 287              | 33.510           | 50.358           | 59.119           | 1.00 51.60               |
| is A.     | ATOM | 2230         | CD       | LYS A 287              | 33.960           | 49.601           | 57.877           | 1.00 50.74               |
| 25 min.   | ATOM | 2231         | CE       | LYS A 287              | 35.290           | 50.105           | 57.328           | 1.00 63.80               |
| #2 ## T   | ATOM | 2232         | NZ       | LYS A 287              | 35.167           | 50.866           | 56.069           | 1.00 71.91               |
| 25        | ATOM | 2233<br>2234 | N        | SER A 288              | 32.168           | 49.575           | 63.647           | 1.00 31.58               |
| 44 4      | ATOM |              | CA       | SER A 288              | 32.079           | 48.737           | 64.810           | 1.00 27.15               |
| je #      | ATOM | 2235         | C        | SER A 288              | 30.742           | 48.137           | 65.142           | 1.00 36.08               |
| ***       | ATOM | 2236<br>2237 | 0        | SER A 288              | 30.676           | 47.318           | 66.057           | 1.00 37.87               |
| ha.       | ATOM | 2237         | CB<br>OG | SER A 288              | 32.618           | 49.463           | 66.005           | 1.00 16.31               |
| <b>30</b> | ATOM | 2239         | N        | SER A 288              | 31.659           | 50.443           | 66.312           | 1.00 29.71               |
| n.        | ATOM | 2240         | CA       | LEU A 289              | 29.669           | 48.529           | 64.460           | 1.00 29.34               |
|           | ATOM | 2241         | CA       | LEU A 289              | 28.351           | 47.979           | 64.794           | 1.00 24.70               |
| the mile  | ATOM | 2242         | õ        | LEU A 289<br>LEU A 289 | 27.792           | 47.105           | 63.686           | 1.00 32.97               |
|           | ATOM | 2243         | СВ       | LEU A 289              | 26.591<br>27.385 | 46.766           | 63.648           | 1.00 30.35               |
| 35        | ATOM | 2244         | CG       | LEU A 289              | 27.954           | 49.090           | 65.191           | 1.00 21.45               |
|           | ATOM | 2245         |          | LEU A 289              | 26.881           | 49.887<br>50.769 | 66.347           | 1.00 22.99               |
|           | ATOM | 2246         |          | LEU A 289              | 28.381           | 48.881           | 66.950           | 1.00 20.66               |
|           | ATOM | 2247         | N        | SER A 290              | 28.723           | 46.753           | 67.394<br>62.801 | 1.00 29.65               |
|           | ATOM | 2248         | CA       | SER A 290              | 28.453           | 45.941           | 61.645           | 1.00 31.21<br>1.00 29.89 |
| 40        | MOTA | 2249         | С        | SER A 290              | 27.861           | 44.582           | 62.006           | 1.00 29.89               |
|           | ATOM | 2250         | 0        | SER A 290              | 27.299           | 43.872           | 61.153           | 1.00 30.37               |
|           | ATOM | 2251         | CB       | SER A 290              | 29.704           | 45.800           | 60.783           | 1.00 29.73               |
|           | ATOM | 2252         | OG       | SER A 290              | 30.470           | 44.725           | 61.266           | 1.00 38.77               |
|           | ATOM | 2253         | N        | ASN A 291              | 27.980           | 44.207           | 63.282           | 1.00 26.55               |
| 45        | ATOM | 2254         | CA       | ASN A 291              | 27.449           | 42.909           | 63.706           | 1.00 25.78               |
|           | ATOM | 2255         | С        | ASN A 291              | 26.006           | 42.773           | 63.355           | 1.00 30.89               |
|           | ATOM | 2256         |          | ASN A 291              | 25.576           | 41.702           | 62.975           | 1.00 29.73               |
|           | ATOM | 2257         |          | ASN A 291              | 27.725           | 42.503           | 65.157           | 1.00 28.48               |
| 50        | ATOM | 2258         | CG       | ASN A 291              | 26.910           | 43.313           | 66.119           | 1.00 33.33               |
| 50        | MOTA | 2259         |          | ASN A 291              | 27.065           | 44.529           | 66.198           | 1.00 34.48               |
|           | ATOM | 2260         |          | ASN A 291              | 26.001           | 42.653           | 66.818           | 1.00 28.96               |
|           | ATOM | 2261         |          | VAL A 292              | 25.277           | 43.885           | 63.476           | 1.00 30.68               |
|           | ATOM | 2262         |          | VAL A 292              | 23.865           | 43.924           | 63.142           | 1.00 30.27               |
| 55        | ATOM | 2263         |          | VAL A 292              | 23.667           | 43.619           | 61.669           | 1.00 32.61               |
| 55        | ATOM | 2264         |          | VAL A 292              | 22.644           | 43.082           | 61.255           | 1.00 33.31               |
|           | ATOM | 2265         |          | VAL A 292              | 23.288           | 45.289           | 63.505           | 1.00 35.13               |
|           | ATOM | 2266         |          | VAL A 292              | 21.877           | 45.486           | 62.946           | 1.00 33.48               |
|           | ATOM | 2267         |          | VAL A 292              | 23.328           | 45.478           | 65.014           | 1.00 35.02               |
| 60        | ATOM | 2268         | N        | ILE A 293              | 24.653           | 43.975           | 60.861           | 1.00 27.92               |
| 00        | MOTA | 2269         |          | ILE A 293              | 24.527           | 43.685           | 59.461           | 1.00 28.71               |
|           | ATOM | 2270         |          | ILE A 293              | 24.658           | 42.159           | 59.296           | 1.00 35.03               |
|           | ATOM | 2271         |          | ILE A 293              | 23.860           | 41.475           | 58.624           | 1.00 38.34               |
|           | ATOM | 2272         |          | ILE A 293              | 25.554           | 44.438           | 58.606           | 1.00 33.84               |
|           | ATOM | 2273         | CGI      | ILE A 293              | 25.608           | 45.952           | 58.898           | 1.00 34.55               |
|           |      |              |          |                        |                  |                  |                  |                          |

|                                       | MOTA | 2274   | CG2 | ILE A 29 | 3  | 25.305 | 44.186 | 57.121 | 1.00 36.50 |
|---------------------------------------|------|--------|-----|----------|----|--------|--------|--------|------------|
|                                       | ATOM | 2275   |     | ILE A 29 |    | 24.265 | 46.680 | 58.808 | 1.00 30.49 |
|                                       |      | 2276   |     | ALA A 29 |    | 25.668 | 41.584 | 59.934 | 1.00 23.76 |
|                                       | ATOM |        |     |          |    |        |        |        |            |
| _                                     | ATOM | 2277   |     | ALA A 29 |    | 25.836 | 40.138 | 59.809 | 1.00 19.95 |
| 5                                     | MOTA | 2278   | С   | ALA A 29 | 4  | 24.559 | 39.409 | 60.165 | 1.00 27.33 |
|                                       | MOTA | 2279   | 0   | ALA A 29 | 4  | 24.183 | 38.422 | 59.505 | 1.00 25.48 |
|                                       | ATOM | 2280   |     | ALA A 29 |    | 26.984 | 39.644 | 60.688 | 1.00 19.24 |
|                                       |      |        |     | HIS A 29 |    | 23.917 | 39.934 | 61.244 | 1.00 27.63 |
|                                       | ATOM | 2281   |     |          |    |        |        |        |            |
| 4.0                                   | ATOM | 2282   |     | HIS A 29 |    | 22.666 | 39.414 | 61.797 | 1.00 26.83 |
| 10                                    | ATOM | 2283   | С   | HIS A 29 | 5  | 21.611 | 39.383 | 60.734 | 1.00 28.61 |
|                                       | MOTA | 2284   | 0   | HIS A 29 | 5  | 21.169 | 38.301 | 60.348 | 1.00 25.72 |
|                                       | ATOM | 2285   |     | HIS A 29 |    | 22.148 | 40.175 | 63.028 | 1.00 27.98 |
|                                       |      |        |     | HIS A 29 |    |        |        |        |            |
|                                       | MOTA | 2286   |     |          |    | 20.937 | 39.534 | 63.657 | 1.00 31.62 |
|                                       | MOTA | 2287   | ND1 | HIS A 29 | 5  | 21.047 | 38.675 | 64.763 | 1.00 32.66 |
| 15                                    | ATOM | 2288   | CD2 | HIS A 29 | 5  | 19.602 | 39.643 | 63.338 | 1.00 30.92 |
|                                       | ATOM | 2289   | CE1 | HIS A 29 | 5  | 19.802 | 38.298 | 65.088 | 1.00 30.14 |
|                                       | ATOM | 2290   |     | HIS A 29 |    | 18.916 | 38.860 | 64.254 | 1.00 30.24 |
| 3                                     |      |        |     |          |    |        |        |        |            |
|                                       | MOTA | 2291   | N   | GLU A 29 |    | 21.257 | 40.590 | 60.251 | 1.00 27.23 |
| 349                                   | MOTA | 2292   | CA  | GLU A 29 | 6  | 20.266 | 40.749 | 59.195 | 1.00 25.98 |
| 20                                    | ATOM | 2293   | С   | GLU A 29 | 6  | 20.533 | 39.790 | 58.056 | 1.00 32.73 |
| 145 #                                 | ATOM | 2294   | 0   | GLU A 29 |    | 19.628 | 39.081 | 57.561 | 1.00 31.88 |
| h-Ac                                  |      | 2295   | СВ  | GLU A 29 |    | 20.046 | 42.203 | 58.728 |            |
| n<br>Esta                             | ATOM |        |     |          |    |        |        |        | 1.00 24.55 |
| · · · · · · · · · · · · · · · · · · · | MOTA | 2296   | CG  | GLU A 29 |    | 19.892 | 43.148 | 59.936 | 1.00 23.16 |
| 25                                    | MOTA | 2297   | CD  | GLU A 29 |    | 18.939 | 42.632 | 60.991 | 1.00 53.50 |
| 25                                    | MOTA | 2298   | OE1 | GLU A 29 | 16 | 17.964 | 41.956 | 60.700 | 1.00 23.99 |
| \$4 K                                 | ATOM | 2299   |     | GLU A 29 |    | 19.237 | 43.006 | 62.233 | 1.00 32.77 |
| - i                                   |      |        |     |          |    |        |        |        |            |
| *                                     | ATOM | 2300   | N   | ILE A 29 |    | 21.803 | 39.745 | 57.675 | 1.00 25.37 |
|                                       | MOTA | 2301   | CA  | ILE A 29 |    | 22.195 | 38.870 | 56.599 | 1.00 22.64 |
| ##.                                   | MOTA | 2302   | С   | ILE A 29 | 7  | 21.812 | 37.445 | 56.859 | 1.00 27.47 |
| <b>30</b>                             | MOTA | 2303   | 0   | ILE A 29 | 7  | 21.175 | 36.799 | 56.048 | 1.00 26.25 |
|                                       | MOTA | 2304   | СВ  | ILE A 29 |    | 23.672 | 38.963 | 56.302 | 1.00 24.19 |
| 6 22                                  |      |        |     |          |    |        |        |        |            |
| 2 m                                   | MOTA | 2305   | CG1 |          |    | 23.920 | 40.140 | 55.355 | 1.00 25.28 |
| 7%                                    | ATOM | _ 2306 | CG2 | ILE A 29 | 97 | 24.079 | 37.686 | 55.626 | 1.00 20.77 |
| \$4.40°                               | ATOM | 2307   | CD1 | ILE A 29 | 37 | 25.325 | 40.705 | 55.435 | 1.00 16.26 |
| 35                                    | ATOM | 2308   | N   | SER A 29 | 8  | 22.226 | 36.947 | 58.012 | 1.00 28.23 |
|                                       | MOTA | 2309   | CA  | SER A 29 |    | 21.939 | 35.569 | 58.377 | 1.00 25.04 |
|                                       |      |        |     |          |    |        |        |        |            |
|                                       | MOTA | 2310   | С   | SER A 29 |    | 20.467 | 35.235 | 58.298 | 1.00 26.21 |
|                                       | ATOM | 2311   | 0   | SER A 29 |    | 20.118 | 34.097 | 58.000 | 1.00 26.30 |
|                                       | ATOM | 2312   | CB  | SER A 29 | 98 | 22.520 | 35.209 | 59.714 | 1.00 27.82 |
| 40                                    | ATOM | 2313   | OG  | SER A 29 | 8  | 23.890 | 35.552 | 59.714 | 1.00 35.98 |
| *                                     | ATOM | 2314   | N   | HIS A 29 |    | 19.599 | 36.230 | 58.562 | 1.00 22.17 |
|                                       |      |        |     |          |    |        |        |        |            |
|                                       | MOTA | 2315   | CA  | HIS A 29 |    | 18.205 | 36.092 | 58.719 | 1.00 22.77 |
|                                       | MOTA | 2316   | C   | HIS A 29 |    | 17.614 | 35.710 | 57.387 | 1.00 29.10 |
|                                       | MOTA | 2317   | 0   | HIS A 29 | 9  | 16.553 | 35.162 | 57.290 | 1.00 31.50 |
| 45                                    | ATOM | 2318   | CB  | HIS A 29 | 9  | 17.662 | 37.432 | 59.200 | 1.00 24.67 |
|                                       | ATOM | 2319   | CG  | HIS A 29 | 19 | 17.053 | 37.338 | 60.602 | 1.00 29.10 |
|                                       | ATOM | 2320   |     | HIS A 29 |    |        |        |        |            |
|                                       |      |        |     |          |    | 16.190 | 36.368 | 60.975 | 1.00 30.70 |
|                                       | MOTA | 2321   |     | HIS A 29 |    | 17.196 | 38.233 | 61.667 | 1.00 32.39 |
|                                       | MOTA | 2322   |     | HIS A 29 |    | 15.811 | 36.675 | 62.233 | 1.00 30.41 |
| 50                                    | MOTA | 2323   | NE2 | HIS A 29 | 99 | 16.397 | 37.783 | 62.674 | 1.00 31.74 |
|                                       | ATOM | 2324   | N   | SER A 30 |    | 18.356 | 36.048 | 56.315 | 1.00 23.31 |
|                                       |      | 2325   | CA  |          |    |        |        |        |            |
|                                       | ATOM |        |     | SER A 30 |    | 17.942 | 35.581 | 55.010 | 1.00 24.24 |
|                                       | ATOM | 2326   | С   | SER A 30 |    | 17.879 | 34.050 | 54.977 | 1.00 34.13 |
|                                       | ATOM | 2327   | 0   | SER A 30 | 00 | 17.075 | 33.463 | 54.305 | 1.00 33.28 |
| - 55                                  | MOTA | 2328   | CB  | SER A 30 |    | 18.941 | 36.092 | 53.965 | 1.00 27.31 |
|                                       | MOTA | 2329   | OG  | SER A 30 |    | 18.947 | 37.519 | 53.962 |            |
|                                       |      |        |     |          |    |        |        |        | 1.00 49.96 |
|                                       | MOTA | 2330   | N   | TRP A 3  |    | 18.773 | 33.411 | 55.752 | 1.00 33.09 |
|                                       | ATOM | 2331   | CA  | TRP A 30 | 01 | 18.702 | 31.969 | 55.829 | 1.00 31.84 |
|                                       | ATOM | 2332   | С   | TRP A 30 |    | 17.740 | 31.511 | 56.895 | 1.00 32.15 |
| 60                                    | ATOM | 2333   | ŏ   | TRP A 3  |    | 16.764 | 30.876 | 56.620 | 1.00 27.05 |
| 00                                    |      |        |     |          |    |        |        |        |            |
|                                       | MOTA | 2334   | CB  | TRP A 3  |    | 20.095 | 31.429 | 56.082 | 1.00 30.16 |
|                                       | ATOM | 2335   | CG  | TRP A 3  |    | 20.791 | 31.421 | 54.801 | 1.00 32.02 |
|                                       | MOTA | 2336   |     | TRP A 3  |    | 20.787 | 30.393 | 53.859 | 1.00 35.05 |
|                                       | ATOM | 2337   |     | TRP A 3  |    | 21.496 | 32.520 | 54.202 | 1.00 30.84 |
|                                       |      |        |     |          | _  |        |        |        |            |

|                                        |     | MOTA | 2338 | NEI | TRP A | 301 | 21.415 | 30.732 | 52.722 | 1.00 33.29 |
|----------------------------------------|-----|------|------|-----|-------|-----|--------|--------|--------|------------|
|                                        |     | ATOM | 2339 |     | TRP A |     | 21.886 | 32.112 | 52.921 | 1.00 33.44 |
|                                        |     | ATOM | 2340 |     | TRP A |     | 21.811 | 33.790 | 54.631 | 1.00 32.65 |
|                                        |     | ATOM | 2341 |     | TRP A |     | 22.577 | 32.970 | 52.108 | 1.00 32.21 |
| 5                                      | ,   | ATOM | 2342 |     | TRP A |     | 22.503 | 34.652 | 53.812 | 1.00 36.10 |
|                                        | •   | ATOM | 2343 |     | TRP A |     | 22.888 | 34.239 | 52.544 | 1.00 36.83 |
|                                        |     | MOTA | 2344 |     | THR A |     | 18.042 | 31.864 | 58.146 | 1.00 31.77 |
|                                        |     | ATOM | 2345 |     | THR A |     | 17.125 | 31.488 | 59.215 | 1.00 33.55 |
|                                        |     | ATOM | 2346 |     | THR A |     | 16.276 | 32.690 | 59.695 | 1.00 36.35 |
| 10                                     | •   | ATOM | 2347 |     | THR A |     | 16.759 | 33.590 | 60.330 | 1.00 36.56 |
| .10                                    |     | ATOM | 2348 |     | THR A |     | 17.963 | 30.920 | 60.366 | 1.00 31.04 |
|                                        |     | ATOM | 2349 |     | THR A |     | 19.047 | 31.807 | 60.639 | 1.00 38.50 |
|                                        |     | ATOM | 2350 |     | THR A |     | 18.544 | 29.555 | 59.967 | 1.00 30.30 |
|                                        |     | MOTA | 2351 | N   | GLY A |     | 15.053 | 32.418 | 59.250 | 1.00 25.28 |
| 15                                     | ξ   | ATOM | 2352 | CA  | GLY A |     | 13.908 | 33.236 | 59.483 | 1.00 23.20 |
| 1.                                     |     | ATOM | 2353 | C   | GLY A |     | 13.202 | 33.382 | 58.163 | 1.00 21.39 |
|                                        |     |      | 2354 | o   | GLY A |     | 12.040 | 33.040 | 57.994 |            |
|                                        |     | ATOM | 2355 |     | ASN A |     | 13.936 | 33.891 | 57.195 | 1.00 26.18 |
| # F.                                   |     | ATOM | 2356 |     | ASN A |     |        |        |        | 1.00 28.05 |
|                                        | 1   | ATOM |      |     | ASN A |     | 13.363 | 34.101 | 55.875 | 1.00 28.17 |
| 1 20                                   | ,   | ATOM | 2357 |     |       |     | 13.141 | 32.839 | 55.056 | 1.00 28.99 |
| W.                                     |     | MOTA | 2358 | 0   | ASN A |     | 12.118 | 32.715 | 54.415 | 1.00 24.87 |
| in a sing                              |     | MOTA | 2359 |     | ASN A |     | 14.091 | 35.176 | 55.047 | 1.00 23.55 |
| ## ## ## ## ## ## ## ## ## ## ## ## ## |     | ATOM | 2360 | CG  | ASN A |     | 14.133 | 36.499 | 55.757 | 1.00 37.80 |
| 1 2                                    | _   | ATOM | 2361 |     | ASN A |     | 13.630 | 36.613 | 56.892 | 1.00 20.66 |
| 2:                                     | •   | ATOM | 2362 |     | ASN A |     | 14.752 | 37.488 | 55.093 | 1.00 24.17 |
| 124 · (1                               |     | ATOM | 2363 | N   | LEU A |     | 14.110 | 31.919 | 55.055 | 1.00 27.24 |
| jak,                                   |     | ATOM | 2364 | CA  | LEU A |     | 13.987 | 30.677 | 54.306 | 1.00 27.34 |
| 畢                                      |     | MOTA | 2365 | С   | LEU A |     | 13.218 | 29.665 | 55.121 | 1.00 31.29 |
| L.                                     |     | MOTA | 2366 | 0   | LEU A |     | 12.235 | 29.051 | 54.678 | 1.00 29.23 |
| 74 30                                  | U , | ATOM | 2367 | CB  | LEU A |     | 15.371 | 30.119 | 53.967 | 1.00 27.62 |
|                                        |     | ATOM | 2368 | CG  | LEU A |     | 15.805 | 30.593 | 52.603 | 1.00 32.23 |
| #####################################  |     | ATOM | 2369 |     | LEU A |     | 17.289 | 30.293 | 52.412 | 1.00 28.91 |
| 15 11                                  |     | MOTA | 2370 |     | LEU A |     | 14.951 | 29.887 | 51.549 | 1.00 41.51 |
| -                                      | _   | MOTA | 2371 | N   | VAL A |     | 13.711 | 29.528 | 56.347 | 1.00 27.75 |
| <b>L.</b> 3.                           | 5   | MOTA | 2372 | CA  | VAL A |     | 13.134 | 28.652 | 57.327 | 1.00 29.99 |
|                                        |     | ATOM | 2373 | С   | VAL A |     | 12.578 | 29.527 | 58.403 | 1.00 31.78 |
| •                                      |     | ATOM | 2374 | 0   | VAL A |     | 13.306 | 30.217 | 59.110 | 1.00 28.32 |
|                                        |     | ATOM | 2375 | CB  | VAL A |     | 14.092 | 27.593 | 57.827 | 1.00 37.24 |
|                                        | _   | ATOM | 2376 |     | VAL A |     | 15.479 | 28.180 | 57.969 | 1.00 38.36 |
| 4                                      | U   | ATOM | 2377 | CG2 | VAL A |     | 13.602 | 27.107 | 59.164 | 1.00 37.56 |
|                                        |     | ATOM | 2378 | N   | THR A |     | 11.259 | 29.517 | 58.440 | 1.00 29.40 |
|                                        |     | MOTA | 2379 | CA  | THR A |     | 10.499 | 30.358 | 59.320 | 1.00 28.14 |
|                                        |     | MOTA | 2380 | С   | THR A |     | 9.729  | 29.712 | 60.446 | 1.00 34.06 |
|                                        | _   | ATOM | 2381 | 0   | THR A |     | 9.029  | 28.706 | 60.277 | 1.00 36.72 |
| 4                                      | 3   | MOTA | 2382 | CB  | THR A |     | 9.474  | 31.115 | 58.460 | 1.00 23.03 |
|                                        |     | ATOM | 2383 |     | THR A |     | 10.124 | 31.811 | 57.422 | 1.00 28.56 |
|                                        |     | ATOM | 2384 |     | THR A |     | 8.665  | 32.068 | 59.336 | 1.00 12.55 |
|                                        |     | ATOM | 2385 | N   | ASN A |     | 9.802  | 30.347 | 61.608 | 1.00 29.29 |
| _                                      | ^   | MOTA | 2386 | CA  | ASN A |     | 9.042  | 29.862 | 62.724 | 1.00 27.82 |
| )                                      | 0   | ATOM | 2387 | С   | ASN A |     | 7.576  | 29.716 | 62.234 | 1.00 31.42 |
|                                        |     | ATOM | 2388 | 0   | ASN A |     | 7.072  | 30.535 | 61.450 | 1.00 32.96 |
|                                        |     | ATOM | 2389 | CB  | ASN A |     | 9.194  | 30.790 | 63.972 | 1.00 23.57 |
|                                        |     | ATOM | 2390 | ÇG  | ASN A |     | 8.935  | 32.298 | 63.745 | 1.00 30.38 |
| _                                      | _   | ATOM | 2391 |     | ASN A |     | 9.505  | 33.190 | 64.400 | 1.00 23.70 |
| 5                                      | 5   | ATOM | 2392 | ND2 | ASN A |     | 8.056  | 32.608 | 62.818 | 1.00 41.34 |
|                                        |     | ATOM | 2393 | N   | LYS A |     | 6.890  | 28.658 | 62.640 | 1.00 24.10 |
|                                        |     | ATOM | 2394 | CA  | LYS A |     | 5.502  | 28.433 | 62.230 | 1.00 23.40 |
|                                        |     | ATOM | 2395 | С   | LYS A |     | 4.514  | 29,380 | 62.964 | 1.00 28.17 |
| _                                      | . ~ | ATOM | 2396 | 0   | LYS A |     | 3.430  | 29.756 | 62.474 | 1.00 22.88 |
| . 6                                    | 0   | ATOM | 2397 | CB  | LYS A |     | 5.151  | 26.975 | 62.459 | 1.00 24.26 |
|                                        |     | MOTA | 2398 | CG  | LYS A |     | 4.036  | 26.478 | 61.555 | 1.00 28.57 |
|                                        |     | MOTA | 2399 | CD  | LYS A |     | 3.543  | 25.075 | 61.924 | 1.00 38.25 |
|                                        |     | MOTA | 2400 | CE  | LYS A |     | 3.475  | 24.112 | 60.739 | 1.00 78.39 |
|                                        |     | MOTA | 2401 | NZ  | LYS A | 309 | 4.389  | 22.953 | 60.849 | 1.00 98.22 |
|                                        |     |      |      |     |       |     |        |        |        |            |

|                  | ATOM         | 2402         | N   | THR A 31 | .0         | 4.917            | 29.744           | 64.179           | 1.00 | 23.46          |
|------------------|--------------|--------------|-----|----------|------------|------------------|------------------|------------------|------|----------------|
|                  | ATOM         | 2403         | CA  | THR A 31 |            | 4.179            | 30.616           | 65.037           |      | 22.98          |
|                  | MOTA         | 2404         | С   | THR A 31 | .0         | 5.142            | 31.336           | 65.922           | 1.00 | 31.43          |
|                  | MOTA         | 2405         | 0   | THR A 31 | .0         | 6.223            | 30.836           | 66.230           | 1.00 | 31.51          |
| 5                | ATOM         | 2406         | CB  | THR A 31 | .0         | 3.104            | 29.917           | 65.871           | 1.00 | 34.01          |
|                  | ATOM         | 2407         | OG1 | THR A 31 | 10         | 3.684            | 29.148           | 66.945           | 1.00 | 27.97          |
|                  | MOTA         | 2408         | CG2 | THR A 31 | .0         | 2.174            | 29.114           | 64.956           | 1.00 | 24.58          |
|                  | ATOM         | 2409         | N   | TRP A 31 | .1         | 4.733            | 32.527           | 66.299           | 1.00 | 29.82          |
|                  | MOTA         | 2410         | CA  | TRP A 31 | 11         | 5.559            | 33.371           | 67.120           | 1.00 | 30.49          |
| 10               | MOTA         | 2411         | С   | TRP A 31 | 11         | 6.044            | 32.692           | 68.381           | 1.00 | 26.99          |
|                  | MOTA         | 2412         | 0   | TRP A 31 | 1          | 7.015            | 33.101           | 68.971           | 1.00 | 25.15          |
|                  | ATOM         | 2413         | CB  | TRP A 31 | L1         | 4.933            | 34.768           | 67.320           | 1.00 | 30.34          |
|                  | ATOM         | 2414         | CG  | TRP A 31 | 11         | 4.706            | 35.412           | 66.001           | 1.00 | 30.63          |
|                  | ATOM         | 2415         | CD1 | TRP A 31 | 11         | 3.514            | 35.785           | 65.490           | 1.00 | 32.07          |
| 15               | MOTA         | 2416         | CD2 | TRP A 31 | 11         | 5.705            | 35.723           | 65.008           | 1.00 | 31.31          |
|                  | MOTA         | 2417         | NE1 | TRP A 31 | L1         | 3.703            | 36.335           | 64.250           | 1.00 | 29.97          |
|                  | MOTA         | 2418         | CE2 | TRP A 31 | L1         | 5.033            | 36.317           | 63.931           | 1.00 | 32.88          |
| 24 FB.           | ATOM         | 2419         | CE3 | TRP A 3  | L <b>1</b> | 7.099            | 35.586           | 64.943           | 1.00 | 31.44          |
|                  | MOTA         | 2420         | CZ2 | TRP A 31 | 11         | 5.721            | 36.771           | 62.804           | 1.00 | 31.56          |
| - 20             | ATOM         | 2421         | CZ3 | TRP A 3  | 11         | 7 <b>.7</b> 79   | 36.059           | 63.848           | 1.00 | 30.39          |
| ui.              | MOTA         | 2422         | CH2 | TRP A 3  | 11         | 7.089            | 36.639           | 62.789           | 1.00 | 30.58          |
|                  | ATOM         | 2423         | N   | ASP A 3  | 12         | 5.366            | 31.632           | 68.770           | 1.00 | 27.36          |
| सर्वे सार<br>इसर | ATOM         | 2424         | CA  | ASP A 3  | 12         | 5.757            | 30.868           | 69.950           | 1.00 | 27.38          |
| = 200            | ATOM         | 2425         | С   | ASP A 3  | L2         | 7.149            | 30.213           | 69.757           | 1.00 | 31.25          |
| 25               | ATOM         | 2426         | 0   | ASP A 3  | 12         | 7.826            | 29.802           | 70.718           | 1.00 | 27.07          |
| ## X             | ATOM         | 2427         | CB  | ASP A 3  | 12         | 4.697            | 29.750           | 70.217           | 1.00 | 25.96          |
| }=&.             | MOTA         | 2428         | CG  | ASP A 3  | 12         | 3.432            | 30.230           | 70.872           | 1.00 | 27.42          |
| #                | ATOM         | 2429         | OD1 | ASP A 3  | 12         | 3.197            | 31.396           | 71.102           | 1.00 | 28.97          |
|                  | ATOM         | 2430         | OD2 | ASP A 3  |            | 2.623            | 29.265           | 71.208           | 1.00 | 29.33          |
| <b>-30</b>       | ATOM         | 2431         | N   | HIS A 3  |            | 7.562            | 30.089           | 68.487           | 1.00 | 25.04          |
| F.               | ATOM         | 2432         | CA  | HIS A 3  |            | 8.820            | 29.454           | 68.164           | 1.00 | 23.48          |
|                  | ATOM         | 2433         | С   | HIS A 3  |            | 9.864            | 30.452           | 67.737           |      | 25.38          |
| 55 M             | MOTA         | 2434         | 0   | HIS A 3  |            | 10.929           | 30.139           | 67.214           |      | 29.97          |
|                  | MOTA         | 2435         | CB  | HIS A 3  |            | 8.588            | 28.245           | 67.209           |      | 25.00          |
| -35              | MOTA         | 2436         | CG  | HIS A 3  |            | 7.641            | 27.230           | 67.837           |      | 29.77          |
|                  | ATOM         | 2437         |     | HIS A 3  |            | 8.087            | 26.183           | 68.635           | 1.00 | 31.37          |
|                  | MOTA         | 2438         |     | HIS A 3  |            | 6.279            | 27.152           | 67.808           |      | 31.31          |
|                  | ATOM         | 2439         |     | HIS A 3  |            | 7.015            | 25.509           | 69.039           |      | 28.91          |
| 40               | MOTA         | 2440         |     | HIS A 3  |            | 5.913            | 26.066           | 68.559           |      | 29.40          |
| 40               | MOTA         | 2441         | N   | PHE A 3  |            | 9.521            | 31.682           | 68.005           |      | 17.43          |
|                  | ATOM         | 2442         | CA  | PHE A 3  |            | 10.345           | 32.810           | 67.701           |      | 17.16          |
|                  | ATOM         | 2443         | C   | PHE A 3  |            | 11.852           | 32.523           | 67.812           |      | 26.01          |
|                  | ATOM         | 2444         | 0   | PHE A 3  |            | 12.669           | 32.922           | 66.963           |      | 30.40          |
| 45               | ATOM         | 2445         | CB  | PHE A 3  |            | 9.908            | 34.056           | 68.517           |      | 18.63          |
| 43               | MOTA         | 2446         |     |          |            | 10.592           | 35.351           | 68.113           |      | 20.10          |
|                  | MOTA<br>MOTA | 2447<br>2448 |     | PHE A 3  |            | 10.712<br>11.129 | 35.697<br>36.214 | 66.768           |      | 21.80          |
|                  | ATOM         | 2449         |     | PHE A 3  |            |                  |                  | 69.070           |      | 22.60          |
|                  | ATOM         | 2450         |     | PHE A 3  |            | 11.337<br>11.750 | 36.890<br>37.416 | 66.400<br>68.716 |      | 24.74<br>27.24 |
| 50               | ATOM         | 2451         | CZ  | PHE A 3  |            | 11.750           | 37.756           | 67.368           |      | 24.97          |
| 20               | ATOM         | 2452         | N   | TRP A 3  |            | 12.235           | 31.828           | 68.861           |      | 19.66          |
|                  | ATOM         | 2453         | CA  | TRP A 3  |            | 13.639           | 31.541           | 69.068           |      | 17.87          |
|                  | ATOM         | 2454         | C   | TRP A 3  |            | 14.292           | 30.775           | 67.953           |      | 28.55          |
|                  | ATOM         | 2455         | Õ   | TRP A 3  |            | 15.518           | 30.769           | 67.830           |      | 29.23          |
| 55               | ATOM         | 2456         | СВ  | TRP A 3  |            | 13.860           | 30.842           | 70.362           |      | 16.03          |
|                  | ATOM         | 2457         | CG  | TRP A 3  |            | 13.613           | 29.408           | 70.362           |      | 19.64          |
|                  | ATOM         | 2458         |     | TRP A 3  |            | 12.428           | 28.787           | 70.101           |      | 22.39          |
|                  | MOTA         | 2459         |     | TRP A 3  |            | 14.599           | 28.430           | 69.876           |      | 21.70          |
|                  | MOTA         | 2460         |     | TRP A 3  |            | 12.597           | 27.457           | 70.033           |      | 24.22          |
| 60               | ATOM         | 2461         |     | TRP A 3  |            | 13.934           | 27.205           | 69.801           |      | 27.96          |
| -                | ATOM         | 2462         |     | TRP A 3  |            | 15.976           | 28.481           | 69.681           |      | 22.89          |
|                  | ATOM         | 2463         |     | TRP A 3  |            | 14.631           | 26.018           | 69.547           |      | 27.76          |
|                  | ATOM         | 2464         |     | TRP A 3  |            | 16.651           | 27.321           | 69.421           |      | 23.16          |
|                  | ATOM         | 2465         |     | TRP A 3  |            | 15.991           | 26.108           | 69.341           |      | 23.94          |
|                  |              |              | _   |          |            |                  |                  |                  |      |                |

|                          | ATOM | 2466  | N   | LEU A | 316   | 13.488 | 30.114 | 67.144 | 1.00 26.33 |
|--------------------------|------|-------|-----|-------|-------|--------|--------|--------|------------|
|                          |      |       |     |       |       |        |        |        |            |
|                          | ATOM | 2467  | CA  | LEU A |       | 14.092 | 29.400 | 66.067 | 1.00 25.44 |
|                          | ATOM | 2468  | С   | LEU A | 316   | 14.666 | 30.443 | 65.129 | 1.00 33.21 |
|                          | ATOM | 2469  | 0   | LEU A | 316   | 15.737 | 30.252 | 64.530 | 1.00 37.80 |
| 5                        | ATOM | 2470  | CB  | LEU A | 316   | 13.050 | 28.567 | 65.311 | 1.00 24.82 |
|                          | ATOM | 2471  | CG  | LEU A |       | 12.663 | 27.242 | 65.956 | 1.00 27.62 |
|                          |      |       |     |       |       |        |        |        |            |
|                          | MOTA | 2472  | CD1 | LEU A |       | 11.574 | 26.552 | 65.106 | 1.00 22.30 |
|                          | MOTA | 2473  | CD2 | LEU A | 316   | 13.897 | 26.344 | 66.097 | 1.00 27.03 |
|                          | MOTA | 2474  | N   | ASN A | 317   | 13.931 | 31.555 | 64.997 | 1.00 20.55 |
| 10                       | MOTA | 2475  | CA  | ASN A | 317   | 14.354 | 32.624 | 64.115 | 1.00 19.34 |
| 10                       |      | 2476  | C   | ASN A |       |        |        |        |            |
|                          | MOTA |       |     |       |       | 15.603 | 33.333 | 64.531 | 1.00 30.38 |
|                          | MOTA | 2477  | 0   | ASN A |       | 16.553 |        | 63.766 | 1.00 32.04 |
|                          | ATOM | 2478  | CB  | ASN A | 317   | 13.273 | 33.682 | 63.838 | 1.00 14.82 |
|                          | MOTA | 2479  | CG  | ASN A | 317   | 12.330 | 33.177 | 62.793 | 1.00 31.14 |
| 15                       | ATOM | 2480  |     | ASN A |       | 12.151 | 31.966 | 62.657 | 1.00 38.42 |
| 10                       |      |       |     |       |       |        |        |        |            |
|                          | ATOM | 2481  |     | ASN A |       | 11.724 | 34.074 | 62.049 | 1.00 17.34 |
|                          | ATOM | 2482  | N   | GLU A |       | 15.562 | 33.870 | 65.750 | 1.00 26.15 |
|                          | ATOM | 2483  | CA  | GLU A | 318   | 16.624 | 34.648 | 66.358 | 1.00 20.23 |
| 57 PL                    | ATOM | 2484  | С   | GLU A | 318   | 17.860 | 33.884 | 66.816 | 1.00 23.53 |
| 20                       | ATOM | 2485  | Ö   | GLU A |       | 19.006 |        | 66.554 | 1.00 26.34 |
| 32 22                    |      |       |     |       |       |        |        |        |            |
| 43                       | ATOM | 2486  | CB  | GLU A |       | 15.998 |        | 67.456 | 1.00 19.11 |
|                          | ATOM | 2487  | CG  | GLU A |       | 14.999 | 36.480 | 66.800 | 1.00 24.06 |
| 1-1.                     | ATOM | 2488  | CD  | GLU A | 318   | 15.615 | 37.391 | 65.758 | 1.00 40.32 |
| 16 mrs                   | ATOM | 2489  | OE1 | GLU A |       | 16.833 |        | 65.612 | 1.00 21.24 |
| 25                       |      | 2490  | OE2 | GLU A |       | 14.703 |        |        |            |
| # 14th                   | ATOM |       |     |       |       |        |        | 65.062 | 1.00 24.23 |
|                          | ATOM | 2491  | N   | GLY A |       | 17.621 |        | 67.494 | 1.00 17.17 |
| 1-2                      | MOTA | 2492  | CA  | GLY A |       | 18.681 | 31.955 | 68.016 | 1.00 15.31 |
| *                        | MOTA | 2493  | С   | GLY A | 319   | 19.673 | 31.601 | 66.953 | 1.00 24.07 |
|                          | MOTA | 2494  | 0   | GLY A | 319   | 20.860 | 31.897 | 67.080 | 1.00 28.47 |
| 30                       | ATOM | 2495  | N   | HIS A |       | 19.165 |        | 65.907 | 1.00 20.24 |
| 13                       | ATOM | 2496  | CA  | HIS A |       | 19.977 |        | 64.790 |            |
|                          |      |       |     |       |       |        |        |        | 1.00 20.13 |
| र्वे करोते.<br>अस्य देवा | MOTA | 2497  | C   | HIS A |       | 20.678 |        | 64.142 | 1.00 24.97 |
|                          | ATOM | 2498  | 0   | HIS A |       | 21.855 | 31.700 | 63.739 | 1.00 23.54 |
| E 25                     | ATOM | -2499 | CB  | HIS P | A 320 | 19.143 | 29.737 | 63.791 | 1.00 20.57 |
| 35                       | ATOM | 2500  | CG  | HIS A | 320   | 18.662 | 28.426 | 64.349 | 1.00 22.57 |
| Handar .                 | ATOM | 2501  | ND1 | HIS A | 320   | 17.471 |        | 65.058 | 1.00 22.98 |
|                          | ATOM | 2502  |     | HIS A |       | 19.217 |        | 64.286 | 1.00 19.52 |
|                          |      | 2503  |     |       |       |        |        |        |            |
|                          | ATOM |       |     | HIS A |       | 17.336 |        | 65.385 | 1.00 19.18 |
| 40                       | ATOM | 2504  |     | HIS A |       | 18.368 |        | 64.952 | 1.00 18.12 |
| 40                       | ATOM | 2505  | N   | THR A |       | 19.958 | 32.875 | 64.053 | 1.00 21.61 |
|                          | MOTA | 2506  | CA  | THR A | 321   | 20.543 | 34.056 | 63.478 | 1.00 22.16 |
|                          | ATOM | 2507  | С   | THR A | 321   | 21.697 | 34.552 | 64.342 | 1.00 27.47 |
|                          | ATOM | 2508  | 0   | THR A |       | 22.789 |        | 63.836 | 1.00 26.64 |
|                          | ATOM | 2509  | CB  | THR A |       | 19.470 |        | 63.113 | 1.00 27.88 |
| 15                       |      |       |     |       |       |        |        |        |            |
| 45                       | MOTA | 2510  |     | THR A |       | 18.403 |        | 62.523 | 1.00 27.92 |
|                          | ATOM | 2511  |     | THR A |       | 19.999 |        | 62.087 | 1.00 18.05 |
|                          | ATOM | 2512  | N   | VAL A | 322   | 21.496 | 34.634 | 65.659 | 1.00 21.90 |
|                          | ATOM | 2513  | CA  | VAL A | 322   | 22.610 | 35.054 | 66.470 | 1.00 19.44 |
|                          | ATOM | 2514  | С   | VAL A |       | 23.762 |        | 66.285 | 1.00 24.43 |
| 50                       | MOTA | 2515  | ō   | VAL A |       |        |        |        |            |
| 50                       |      |       |     |       |       | 24.926 |        | 66.188 | 1.00 21.48 |
|                          | MOTA | 2516  | CB  | VAL A |       | 22.218 |        | 67.928 | 1.00 20.92 |
|                          | ATOM | 2517  | CG1 | VAL A | A 322 | 23.406 | 35.644 | 68.772 | 1.00 18.37 |
|                          | MOTA | 2518  | CG2 | VAL A | 322   | 21.093 | 36.200 | 68.048 | 1.00 20.01 |
|                          | ATOM | 2519  | N   | TYR A | 323   | 23.427 |        | 66.197 | 1.00 27.08 |
| 55                       | ATOM | 2520  | CA  | TYR A |       | 24.446 |        | 66.013 | 1.00 26.26 |
|                          | MOTA | 2521  | C   | TYR A |       |        |        |        |            |
|                          |      |       |     |       |       | 25.222 |        | 64.728 | 1.00 28.26 |
|                          | ATOM | 2522  | 0   | TYR A |       | 26.431 |        | 64.643 | 1.00 27.51 |
|                          | MOTA | 2523  | CB  | TYR A |       | 23.804 | 30.407 | 66.020 | 1.00 25.74 |
|                          | MOTA | 2524  | CG  | TYR A | A 323 | 24.867 | 29.341 | 65.987 | 1.00 26.66 |
| 60                       | ATOM | 2525  | CD1 | TYR A |       | 25.539 |        | 67.150 | 1.00 29.09 |
| ~                        | ATOM | 2526  |     | TYR A |       | 25.199 |        | 64.789 | 1.00 24.52 |
|                          |      | 2527  |     |       |       |        |        |        |            |
|                          | ATOM |       |     | TYR A |       | 26.530 |        | 67.157 | 1.00 22.56 |
|                          | ATOM | 2528  |     | TYR A |       | 26.178 |        | 64.770 | 1.00 25.31 |
|                          | MOTA | 2529  | CZ  | TYR A | A 323 | 26.846 | 27.370 | 65.944 | 1.00 29.19 |
|                          |      |       |     |       |       |        |        |        |            |

|           | ATOM         | 2530           | OH  | TYR A 323              | 27.823           | 26.434           | 65.895           | 1.00 27.51               |
|-----------|--------------|----------------|-----|------------------------|------------------|------------------|------------------|--------------------------|
|           | ATOM         | 2531           | N   | LEU A 324              | 24.497           | 32.408           | 63.702           | 1.00 24.82               |
|           | ATOM         | 2532           | CA  | LEU A 324              | 25.135           | 32.638           | 62.439           | 1.00 26.04               |
| -         | MOTA         | 2533           | C   | LEU A 324              | 25.832           | 33.952           | 62.417           | 1.00 30.92               |
| 5         | ATOM         | 2534           | 0   | LEU A 324              | 26.903           | 34.045           | 61.851           | 1.00 33.76               |
|           | ATOM         | 2535           | CB  | LEU A 324              | 24.176           | 32.537           | 61.235           | 1.00 26.21               |
|           | ATOM         | 2536           | CG  | LEU A 324              | 23.916           | 31.112           | 60.778           | 1.00 28.46               |
|           | ATOM         | 2537           |     | LEU A 324<br>LEU A 324 | 22.752<br>25.169 | 31.109<br>30.508 | 59.791<br>60.151 | 1.00 28.95               |
| 10        | ATOM         | 2538<br>2539   | N   | GLU A 325              | 25.234           | 34.976           | 63.033           | 1.00 26.54<br>1.00 27.04 |
| 10        | ATOM         | 2540           | CA  | GLU A 325              | 25.870           | 36.303           | 63.064           | 1.00 27.04               |
|           | ATOM         | 2541           | C   | GLU A 325              | 27.282           | 36.210           | 63.624           | 1.00 28.76               |
|           | ATOM         | 2542           | Õ   | GLU A 325              | 28.250           | 36.722           | 63.024           | 1.00 26.70               |
|           | ATOM         | 2543           | CB  | GLU A 325              | 25.016           | 37.365           | 63.759           | 1.00 20.24               |
| 15        | ATOM         | 2544           | CG  | GLU A 325              | 25.827           | 38.411           | 64.524           | 1.00 41.55               |
| 10        | MOTA         | 2545           | CD  | GLU A 325              | 25.035           | 39.040           | 65.646           | 1.00 72.11               |
|           | ATOM         | 2546           |     | GLU A 325              | 23.866           | 38.764           | 65.862           | 1.00 41.88               |
|           | ATOM         | 2547           | OE2 | GLU A 325              | 25.719           | 39.922           | 66.350           | 1.00 67.15               |
| 27 PR.    | ATOM         | 2548           | N   | ARG A 326              | 27.349           | 35.479           | 64.755           | 1.00 27.84               |
| 20        | ATOM         | 2549           | CA  | ARG A 326              | 28.551           | 35.213           | 65.511           | 1.00 28.10               |
| 44        | ATOM         | 2550           | C   | ARG A 326              | 29.604           | 34.457           | 64.771           | 1.00 30.90               |
| 43        | MOTA         | 2551           | 0   | ARG A 326              | 30.763           | 34.747           | 64.976           | 1.00 33.93               |
| j=h,      | MOTA         | 2552           | CB  | ARG A 326              | 28.334           | 34.761           | 66.947           | 1.00 31.52               |
| wint.     | ATOM         | 2553           | CG  | ARG A 326              | 27.645           | 35.864           | 67.726           | 1.00 22.20               |
| 25        | ATOM         | 2554           | CD  | ARG A 326              | 27.462           | 35.572           | 69.203           | 1.00 28.71               |
| LT.       | ATOM         | 2555           | NE  | ARG A 326              | 26.727           | 36.673           | 69.830           | 1.00 23.82               |
| je i.     | ATOM         | 2556           | CZ  | ARG A 326              | 25.805           | 36.556           | 70.780           | 1.00 26.09               |
|           | MOTA         | 2557           |     | ARG A 326              | 25.443           | 35.388           | 71.305           | 1.00 23.16               |
| #         | ATOM         | 2558           | NH2 | ARG A 326              | 25.220           | 37.655           | 71.222           | 1.00 24.77               |
| 130<br>[] | ATOM         | 2559           | N   | HIS A 327              | 29.221           | 33.511           | 63.918           | 1.00 29.85               |
|           | ATOM         | 2560           | CA  | HIS A 327              | 30.207           | 32.777           | 63.120           | 1.00 30.52               |
|           | ATOM         | 2561           | С   | HIS A 327              | 30.778           | 33.738           | 62.085           | 1.00 35.50               |
| 13.11     | ATOM         | 2562           | 0   | HIS A 327              | 31.966           | 33.777           | 61.822           | 1.00 36.74               |
| 35        | ATOM         | 2563           | CB  | HIS A 327              | 29.591           | 31.555           | 62.407           | 1.00 31.59               |
| 33        | ATOM         | 2564           | CG  | HIS A 327              | 29.764           | 30.259           | 63.176           | 1.00 34.51               |
| H.        | ATOM         | 2565           |     | HIS A 327<br>HIS A 327 | 30.963           | 29.913           | 63.788           | 1.00 36.17               |
|           | ATOM<br>ATOM | 2566<br>2567 · |     | HIS A 327              | 28.875<br>30.778 | 29.263<br>28.740 | 63.432<br>64.384 | 1.00 35.58<br>1.00 35.27 |
|           | ATOM         | 2568           | NE2 |                        | 29.532           | 28.322           | 64.191           | 1.00 35.27               |
| 40        | ATOM         | 2569           | N   | ILE A 328              | 29.902           | 34.549           | 61.511           | 1.00 33.30               |
|           | ATOM         | 2570           | CA  | ILE A 328              | 30.328           | 35.517           | 60.528           | 1.00 31.66               |
|           | ATOM         | 2571           | C   | ILE A 328              | 31.416           | 36.407           | 61.086           | 1.00 40.12               |
|           | ATOM         | 2572           | ō   | ILE A 328              | 32.451           | 36.615           | 60.465           | 1.00 40.81               |
|           | ATOM         | 2573           | СВ  | ILE A 328              | 29.175           | 36.379           | 59.998           | 1.00 32.94               |
| 45        | ATOM         | 2574           | CG1 | ILE A 328              | 28.220           | 35.570           | 59.114           | 1.00 29.53               |
|           | ATOM         | 2575           | CG2 | ILE A 328              | 29.694           | 37.591           | 59.201           | 1.00 30.91               |
|           | MOTA         | 2576           |     | ILE A 328              | 27.119           | 36.463           | 58.535           | 1.00 32.98               |
|           | MOTA         | 2577           | N   | CYS A 329              | 31.179           | 36.948           | 62.266           | 1.00 37.88               |
|           | ATOM         | 2578           | CA  | CYS A 329              | 32.170           | 37.810           | 62.851           | 1.00 39.54               |
| 50        | ATOM         | 2579           | С   | CYS A 329              | 33.475           | 37.092           | 63.157           | 1.00 40.19               |
|           | ATOM         | 2580           | 0   | CYS A 329              | 34.567           | 37.642           | 62.971           | 1.00 38.44               |
|           | MOTA         | 2581           | CB  | CYS A 329              | 31.607           | 38.509           | 64.083           | 1.00 42.61               |
|           | MOTA         | 2582           | SG  | CYS A 329              | 30.241           | 39.595           | 63.619           | 1.00 48.14               |
| ے ہے      | MOTA         | 2583           | N   | GLY A 330              | 33.332           | 35.852           | 63 <b>.6</b> 32  | 1.00 34.74               |
| 55        | ATOM         | 2584           | CA  | GLY A 330              | 34.471           | 35.030           | 63.980           | 1.00 35.20               |
|           | ATOM         | 2585           | C   | GLY A 330              | 35.359           | 34.854           | 62.778           | 1.00 43.66               |
|           | ATOM         | 2586           | 0   | GLY A 330              | 36.581           | 34.857           | 62.891           | 1.00 46.79               |
|           | ATOM         | 2587           | N   | ARG A 331              | 34.709           | 34.725           | 61.622           | 1.00 34.99               |
| 60        | ATOM         | 2588           | CA  | ARG A 331              | 35.416           | 34.562           | 60.392           | 1.00 33.19               |
| OU        | MOTA         | 2589           | C   | ARG A 331              | 36.086           | 35.863           | 60.017           | 1.00 40.63               |
|           | MOTA         | 2590           | O   | ARG A 331              | 37.238           | 35.914           | 59.586           | 1.00 44.40               |
|           | ATOM         | 2591           | CB  | ARG A 331              | 34.494           | 34.101           | 59.269           | 1.00 31.29               |
|           | MOTA         | 2592           | CG  | ARG A 331              | 33.987           | 32.685           | 59.450           | 1.00 47.66               |
|           | MOTA         | 2593           | CD  | ARG A 331              | 34.812           | 31.722           | 58.622           | 1.00 70.36               |

|                                        | MOTA | 2594 | NE  | ARG A |     | 34.461 | 31.851 | 57.221 | 1.00 80.25 |
|----------------------------------------|------|------|-----|-------|-----|--------|--------|--------|------------|
|                                        | ATOM | 2595 | CZ  | ARG A | 331 | 33.615 | 31.023 | 56.628 | 1.00100.00 |
|                                        | MOTA | 2596 | NH1 | ARG A | 331 | 33.055 | 29.999 | 57.279 | 1.00 79.12 |
|                                        | ATOM | 2597 | NH2 | ARG A | 331 | 33.334 | 31.216 | 55.341 | 1.00 89.33 |
| 5                                      | ATOM | 2598 | N   | LEU A |     | 35.342 | 36.926 | 60.172 | 1.00 32.14 |
|                                        | ATOM | 2599 | CA  | LEU A |     | 35.885 | 38.198 | 59.820 | 1.00 30.02 |
|                                        | ATOM | 2600 | C   | LEU A |     | 37.013 | 38.612 |        |            |
|                                        |      |      |     |       |     |        |        | 60.761 | 1.00 40.33 |
|                                        | MOTA | 2601 | 0   | LEU A |     | 38.084 | 38.972 | 60.286 | 1.00 40.10 |
| 10                                     | MOTA | 2602 | CB  | LEU A |     | 34.772 | 39.262 | 59.822 | 1.00 28.20 |
| 10                                     | ATOM | 2603 | CG  | LEU A |     | 34.451 | 39.896 | 58.469 | 1.00 28.82 |
|                                        | MOTA | 2604 |     | LEU A |     | 35.007 | 39,063 | 57.341 | 1.00 23.73 |
|                                        | MOTA | 2605 | CD2 | LEU A | 332 | 32.947 | 40.114 | 58.306 | 1.00 29.76 |
|                                        | ATOM | 2606 | N   | PHE A |     | 36.744 | 38.557 | 62.091 | 1.00 37.69 |
|                                        | ATOM | 2607 | CA  | PHE A |     | 37.657 | 38.997 | 63.143 | 1.00 34.12 |
| 15                                     | ATOM | 2608 | C   | PHE A |     | 38.251 | 37.956 | 64.035 | 1.00 37.12 |
| 13                                     | ATOM | 2609 | Ö   | PHE A |     |        |        |        |            |
|                                        |      |      |     |       |     | 39.015 | 38.293 | 64.925 | 1.00 41.67 |
|                                        | ATOM | 2610 | CB  | PHE A |     | 36.970 | 40.058 | 64.024 | 1.00 35.62 |
|                                        | ATOM | 2611 | CG  | PHE A |     | 36.209 | 41.003 | 63.138 | 1.00 39.09 |
| 23                                     | MOTA | 2612 | CD1 | PHE A | 333 | 36.887 | 41.923 | 62.332 | 1.00 43.22 |
| 20                                     | ATOM | 2613 | CD2 | PHE A | 333 | 34.818 | 40.941 | 63.045 | 1.00 42.78 |
| ************************************** | MOTA | 2614 | CE1 | PHE A | 333 | 36.205 | 42.781 | 61.464 | 1.00 44.14 |
| 40                                     | MOTA | 2615 |     | PHE A |     | 34.123 | 41.806 | 62.194 | 1.00 46.56 |
| - A                                    | ATOM | 2616 | CZ  | PHE A |     | 34.814 | 42.716 | 61.389 | 1.00 43.20 |
| g PAN<br>vertical                      | ATOM | 2617 | N   | GLY A |     | 37.908 | 36.706 |        |            |
| 25                                     |      |      |     |       |     |        |        | 63.865 | 1.00 34.36 |
| # 2J                                   | ATOM | 2618 | CA  | GLY A |     | 38.507 | 35.705 | 64.763 | 1.00 32.89 |
| UT .                                   | MOTA | 2619 | C   | GLY A |     | 37.582 | 34.985 | 65.767 | 1.00 32.67 |
| <b>-</b>                               | ATOM | 2620 | 0   | GLY A |     | 36.641 | 35.540 | 66.340 | 1.00 33.48 |
|                                        | ATOM | 2621 | N   | GLU A | 335 | 37.908 | 33.726 | 66.003 | 1.00 23.52 |
|                                        | MOTA | 2622 | CA  | GLU A | 335 | 37.196 | 32.875 | 66.931 | 1.00 18.13 |
| 30                                     | MOTA | 2623 | С   | GLU A | 335 | 37.278 | 33.384 | 68.346 | 1.00 29.15 |
|                                        | ATOM | 2624 | 0   | GLU A | 335 | 36.357 | 33.124 | 69.112 | 1.00 34.14 |
|                                        | ATOM | 2625 | CB  | GLU A |     | 37.782 | 31.488 | 66.929 | 1.00 17.35 |
|                                        | ATOM | 2626 | CG  | GLU A |     | 37.041 | 30.591 | 67.929 | 1.00 32.97 |
| ing self                               | ATOM | 2627 | CD  | GLU A |     | 35.642 | 30.305 | 67.473 | 1.00 32.97 |
| 35                                     | ATOM | 2628 | OE1 |       |     |        |        |        |            |
| <b>1</b> 33                            |      |      |     | GLU A |     | 35.093 | 30.944 | 66.588 | 1.00 39.31 |
|                                        | ATOM | 2629 | OE2 | GLU A |     | 35.080 | 29.317 | 68.132 | 1.00 32.80 |
|                                        | ATOM | 2630 | N   | LYS A |     | 38.370 | 34.077 | 68.706 | 1.00 24.53 |
|                                        | MOTA | 2631 | ÇA  | LYS A |     | 38.468 | 34.609 | 70.061 | 1.00 25.38 |
| 4.0                                    | ATOM | 2632 | С   | LYS A |     | 37.445 | 35.726 | 70.169 | 1.00 35.32 |
| 40                                     | ATOM | 2633 | 0   | LYS A | 336 | 36.908 | 36.004 | 71.233 | 1.00 38.14 |
|                                        | MOTA | 2634 | CB  | LYS A | 336 | 39.820 | 35.199 | 70.421 | 1.00 25.45 |
|                                        | ATOM | 2635 | CG  | LYS A | 336 | 40.871 | 34.188 | 70.825 | 1.00 25.43 |
|                                        | ATOM | 2636 | CD  | LYS A |     | 42.207 | 34.846 | 71.189 | 1.00 47.10 |
|                                        | ATOM | 2637 | CE  | LYS A | 336 | 43.325 | 34.600 | 70.172 | 1.00 68.74 |
| 45                                     | ATOM | 2638 | NZ  | LYS A |     | 44.566 | 34.072 | 70.767 | 1.00 77.62 |
|                                        | ATOM | 2639 | N   | PHE A |     | 37.174 | 36.364 | 69.029 | 1.00 77.02 |
|                                        | ATOM | 2640 | CA  | PHE A |     |        |        |        |            |
|                                        |      |      |     |       |     | 36.186 | 37.442 | 68.967 | 1.00 29.34 |
|                                        | ATOM | 2641 | C   | PHE A |     | 34.783 | 36.869 | 69.083 | 1.00 31.73 |
| 50                                     | MOTA | 2642 | 0   | PHE A |     | 33.908 | 37.424 | 69.742 | 1.00 35.53 |
| 50                                     | ATOM | 2643 | CB  | PHE A |     | 36.304 | 38.336 | 67.709 | 1.00 30.04 |
|                                        | ATOM | 2644 | CG  | PHE A |     | 35.435 | 39.589 | 67.747 | 1.00 35.16 |
|                                        | ATOM | 2645 | CD1 | PHE A | 337 | 35.468 | 40.459 | 68.843 | 1.00 43.88 |
|                                        | ATOM | 2646 | CD2 | PHE A | 337 | 34.550 | 39.893 | 66.709 | 1.00 40.16 |
|                                        | ATOM | 2647 | CE1 | PHE A | 337 | 34.688 | 41.617 | 68.913 | 1.00 46.53 |
| 55                                     | ATOM | 2648 |     | PHE A |     | 33.753 | 41.040 | 66.760 | 1.00 45.62 |
|                                        | ATOM | 2649 | CZ  | PHE A |     | 33.830 | 41.908 | 67.852 | 1.00 45.57 |
|                                        | ATOM | 2650 | N   | ARG A |     |        |        |        |            |
|                                        |      |      |     |       |     | 34.566 | 35.733 | 68.452 | 1.00 25.52 |
|                                        | ATOM | 2651 | CA  | ARG A |     | 33.266 | 35.119 | 68.508 | 1.00 25.23 |
| <i>(</i>                               | ATOM | 2652 | C   | ARG A |     | 32.944 | 34.759 | 69.922 | 1.00 29.77 |
| 60                                     | MOTA | 2653 | 0   | ARG A |     | 31.854 | 35.025 | 70.415 | 1.00 31.81 |
|                                        | ATOM | 2654 | CB  | ARG A |     | 33.186 | 33.920 | 67.606 | 1.00 24.04 |
|                                        | MOTA | 2655 | CG  | ARG A |     | 31.839 | 33.228 | 67.623 | 1.00 21.31 |
|                                        | ATOM | 2656 | CD  | ARG A |     | 31.807 | 32.086 | 66.599 | 1.00 30.62 |
|                                        | ATOM | 2657 | NE  | ARG A |     | 32.518 | 30.892 | 67.040 | 1.00 29.87 |
|                                        |      |      |     |       |     |        |        | 0      |            |

|         | MOTA | 2658 | CZ  | ARG A | 338   | 31.919 | 29.781 | 67.466 | 1.00 | 26.37 |
|---------|------|------|-----|-------|-------|--------|--------|--------|------|-------|
|         |      |      |     | ARG A |       |        |        |        |      | 20.26 |
|         | ATOM | 2659 |     |       |       | 30.616 | 29.687 | 67.518 |      |       |
|         | ATOM | 2660 |     | ARG A |       | 32.632 | 28.737 | 67.864 |      | 18.57 |
| _       | ATOM | 2661 | N   | HIS A |       | 33.934 | 34.190 | 70.577 |      | 25.88 |
| 5       | ATOM | 2662 | CA  | HIS A | 339   | 33.813 | 33.797 | 71.982 | 1.00 | 25.59 |
|         | ATOM | 2663 | С   | HIS A | 339   | 33.455 | 34.972 | 72.892 | 1.00 | 27.61 |
|         | MOTA | 2664 | 0   | HIS A | 339   | 32.615 | 34.912 | 73.793 | 1.00 | 25.27 |
|         | ATOM | 2665 | CB  | HIS A |       | 35.065 | 33.045 | 72.462 |      | 25.06 |
|         | ATOM | 2666 | CG  | HIS A |       | 34.923 | 31.587 | 72.155 |      | 28.13 |
| 10      |      |      |     | HIS A |       |        |        |        |      |       |
| 10      | ATOM | 2667 |     |       |       | 35.049 | 30.612 | 73.127 |      | 30.52 |
|         | ATOM | 2668 |     | HIS A |       | 34.586 | 30.970 | 70.981 |      | 30.89 |
|         | MOTA | 2669 |     | HIS A |       | 34.843 | 29.442 | 72.535 | 1.00 | 30.89 |
|         | MOTA | 2670 | NE2 | HIS A |       | 34.546 | 29.616 | 71.245 | 1.00 | 31.36 |
|         | MOTA | 2671 | N   | PHE A | 340   | 34.103 | 36.065 | 72.608 | 1.00 | 24.54 |
| 15      | MOTA | 2672 | CA  | PHE A | 340   | 33.892 | 37.278 | 73.334 | 1.00 | 25.36 |
|         | ATOM | 2673 | С   | PHE A |       | 32.452 | 37.762 | 73.216 |      | 32.47 |
|         | ATOM | 2674 | Ō   | PHE A |       | 31.822 | 38.222 | 74.190 |      | 32.78 |
|         |      | 2675 | CB  | PHE A |       | 34.876 | 38.309 | 72.801 |      |       |
|         | ATOM |      |     |       |       |        |        |        |      | 26.03 |
|         | ATOM | 2676 | CG  | PHE A |       | 34.654 | 39.671 | 73.346 |      | 26.47 |
| 20      | MOTA | 2677 |     | PHE A |       | 35.238 | 40.047 | 74.559 |      | 24.59 |
| 9 a sax | MOTA | 2678 | CD2 | PHE A | 340   | 33.902 | 40.592 | 72.616 | 1.00 | 28.22 |
|         | MOTA | 2679 | CE1 | PHE A | 340   | 35.063 | 41.330 | 75.072 | 1.00 | 21.58 |
| ₿«A»    | ATOM | 2680 | CE2 | PHE A | 340   | 33.715 | 41.879 | 73.115 | 1.00 | 29.13 |
| 25      | ATOM | 2681 | CZ  | PHE A |       | 34.280 | 42.225 | 74.345 |      | 25.28 |
| 25      | ATOM | 2682 | N   | ASN A |       | 31.944 | 37.663 | 72.004 |      | 28.41 |
| 福養事 20  |      | 2683 | CA. | ASN A |       | 30.600 |        | 71.728 |      |       |
| 41      | ATOM |      |     |       |       |        | 38.084 |        |      | 29.60 |
| laft.   | ATOM | 2684 | С   | ASN A |       | 29.665 | 37.110 | 72.379 |      | 38.52 |
| 選 (     | ATOM | 2685 | 0   | ASN A |       | 28.699 | 37.511 | 73.029 |      | 42.88 |
| 71      | MOTA | 2686 | CB  | ASN A |       | 30.322 | 38.274 | 70.224 | 1.00 | 30.01 |
| 30      | MOTA | 2687 | CG  | ASN A | 341   | 31.159 | 39.374 | 69.587 | 1.00 | 52.80 |
| ī.      | ATOM | 2688 | OD1 | ASN A | 341   | 31.528 | 39.284 | 68.404 | 1.00 | 60.88 |
| T.      | MOTA | 2689 | ND2 | ASN A | 341   | 31.442 | 40.427 | 70.359 | 1.00 | 41.02 |
| day.    | ATOM | 2690 | N   | ALA A |       | 29.994 | 35.826 | 72.239 |      | 28.24 |
| AN AND  | ATOM | 2691 | CA  | ALA A |       | 29.195 | 34.800 | 72.877 |      | 26.95 |
| 35      | ATOM | 2692 | C   | ALA A |       | 29.013 | 35.134 | 74.393 |      | 35.98 |
| -k JJ   |      | 2693 | 0   |       |       |        |        |        |      |       |
|         | ATOM |      |     | ALA A |       | 27.877 | 35.261 | 74.897 |      | 35.09 |
|         | ATOM | 2694 | СВ  | ALA A |       | 29.837 | 33.422 | 72.671 |      | 25.45 |
|         | ATOM | 2695 | N   | LEU A |       | 30.153 | 35.304 | 75.122 |      | 29.16 |
|         | ATOM | 2696 | CA  | LEU A |       | 30.162 | 35.633 | 76.560 | 1.00 | 22.58 |
| 40      | MOTA | 2697 | С   | LEU A | 343   | 29.310 | 36.854 | 76.831 | 1.00 | 27.48 |
|         | MOTA | 2698 | 0   | LEU A | 343   | 28.452 | 36.821 | 77.696 | 1.00 | 32.73 |
|         | MOTA | 2699 | CB  | LEU A | 343   | 31.583 | 35.786 | 77.147 | 1.00 | 18.70 |
|         | ATOM | 2700 | CG  | LEU A | 343   | 31.647 | 35.693 | 78.671 |      | 20.08 |
|         | ATOM | 2701 |     | LEU A |       | 30.842 | 34.510 | 79.204 |      | 17.76 |
| 45      | ATOM | 2702 |     | LEU A |       | 33.091 | 35.522 | 79.111 |      | 21.94 |
|         |      |      |     |       |       |        |        |        |      |       |
|         | ATOM | 2703 | N   | GLY A |       | 29.512 | 37.936 | 76.080 |      | 22.60 |
|         | ATOM | 2704 | CA  |       |       | 28.670 | 39.146 | 76.278 |      | 24.15 |
|         | MOTA | 2705 | С   | GLY A |       | 27.157 | 38.824 | 76.136 |      | 31.38 |
|         | MOTA | 2706 | 0   | GLY A |       | 26.339 | 39.260 | 76.943 | 1.00 | 32.44 |
| 50      | MOTA | 2707 | N   | GLY A | 345   | 26.806 | 38.017 | 75.094 | 1.00 | 22.79 |
|         | ATOM | 2708 | CA  | GLY A | 345   | 25.451 | 37.587 | 74.801 | 1.00 | 19.88 |
|         | ATOM | 2709 | С   | GLY A |       | 24.787 | 36.994 | 76.034 |      | 28.37 |
|         | ATOM | 2710 | 0   | GLY A |       | 23.632 | 37.294 | 76.325 |      | 27.56 |
|         | ATOM | 2711 | N   | TRP A |       | 25.547 | 36.153 | 76.765 |      | 25.41 |
| 55      | ATOM |      | CA  |       |       |        |        |        |      |       |
| , 55    |      | 2712 |     | TRP A |       | 25.082 | 35.520 | 77.994 |      | 23.90 |
|         | MOTA | 2713 | C   | TRP A |       | 24.825 | 36.541 | 79.071 |      | 31.54 |
|         | ATOM | 2714 | 0   | TRP A |       | 23.957 | 36.379 | 79.924 |      | 29.57 |
|         | ATOM | 2715 | CB  | TRP A |       | 26.122 | 34.556 | 78.562 |      | 21.53 |
|         | ATOM | 2716 | CG  | TRP A | 346   | 25.680 | 33.880 | 79.837 |      | 21.92 |
| 60      | ATOM | 2717 | CD1 | TRP A | 346   | 25.933 | 34.335 | 81.079 |      | 24.36 |
|         | ATOM | 2718 |     | TRP A |       | 25.004 | 32.597 | 80.010 |      | 20.97 |
|         | ATOM | 2719 |     | TRP A |       | 25.450 | 33.453 |        |      | 23.95 |
|         | ATOM | 2720 |     | TRP A |       | 24.859 | 32.388 | 81.391 |      |       |
|         |      |      |     |       |       |        |        |        | 1.00 | 24.13 |
|         | MOTA | 2721 | CEO | TRP A | . 340 | 24.488 | 31.611 | 79.144 | 1.00 | 21.46 |

|                  | MOTA         | 2722         | CZ2     | TRP A | 346 |   | 24.225           | 31.244           | 81.921           | 1.00 | 22.89          |
|------------------|--------------|--------------|---------|-------|-----|---|------------------|------------------|------------------|------|----------------|
|                  | ATOM         | 2723         | CZ3     | TRP A | 346 |   | 23.872           | 30.477           | 79.662           |      | 22.03          |
|                  | ATOM         | 2724         | CH2     | TRP A | 346 |   | 23.747           | 30.286           | 81.046           |      | 21.87          |
|                  | ATOM         | 2725         | N       | GLY A |     |   | 25.627           | 37.593           | 79.039           |      | 29.66          |
| . 5              | ATOM         | 2726         | CA      | GLY A |     |   | 25.465           | 38.625           | 80.042           |      | 29.03          |
|                  | MOTA         | 2727         | С       | GLY A |     |   | 24.156           | 39.333           | 79.844           |      | 33.01          |
|                  | MOTA         | 2728         | 0       | GLY A |     | * | 23.491           | 39.647           | 80.799           |      | 34.17          |
|                  | ATOM         | 2729         | N       | GLU A |     |   | 23.797           | 39.574           | 78.581           |      | 30.57          |
| 10               | MOTA         | 2730         | CA      | GLU A |     |   | 22.535           | 40.220           | 78.250           |      | 29.17          |
| 10               | ATOM         | 2731         | C       | GLU A |     |   | 21.423           | 39.282           | 78.664           |      | 31.25          |
|                  | ATOM         | 2732         | 0       | GLU A |     |   | 20.373           | 39.663           | 79.142           |      | 33.71          |
|                  | ATOM         | 2733         | CB      | GLU A |     |   | 22.432           | 40.606           | 76.757           |      | 30.33          |
|                  | ATOM         | 2734         | CG      | GLU A |     |   | 23.432           | 41.715           | 76.336           |      | 49.41          |
| 1.5              | ATOM         | 2735         | CD      | GLU A |     |   | 23.209           | 43.088           | 76.964           |      | 73.39          |
| 15               | ATOM         | 2736         | OE1     |       |     |   | 22.295           | 43.846           | 76.656           |      | 71.22          |
|                  | ATOM         | 2737         |         | GLU A |     |   | 24.119           | 43.395           | 77.857           |      | 44.23          |
|                  | ATOM         | 2738         | N       | LEU A |     |   | 21.682           | 38.011           | 78.541           |      | 27.36          |
| 92 <b>m</b> ,    | ATOM         | 2739         | CA      | LEU A |     |   | 20.677           | 37.081           | 78.976           |      | 26.89          |
| 20               | ATOM         | 2740         | С       | LEU A |     |   | 20.429           | 37.250           | 80.485           |      | 24.87          |
| <b>12 20</b>     | MOTA         | 2741         | 0       | LEU A |     |   | 19.299           | 37.403           | 80.914           |      | 28.31          |
| u.               | ATOM         | 2742         | CB      | LEU A |     |   | 20.984           | 35.630           | 78.529           |      | 27.18          |
| k.k.             | ATOM         | 2743         | CG      | LEU A |     |   | 19.943           | 34.565           | 78.942           |      | 32.45          |
| 17%<br>          | ATOM         | 2744         |         | LEU A |     |   | 18.611           | 34.704           | 78.154           | 1.00 | 30.09          |
| 25               | ATOM         | 2745         |         | LEU A |     |   | 20.541           | 33.169           | 78.749           |      | 27.10          |
| 23               | ATOM         | 2746         | N       | GLN A |     |   | 21.460           | 37.255           | 81.315           | 1.00 | 14.78          |
|                  | ATOM         | 2747         | CA      | GLN A |     |   | 21.188           | 37.428           | 82.727           | 1.00 | 18.51          |
| <b> -</b> 4.     | ATOM         | 2748         | C       | GLN A |     |   | 20.442           | 38.722           | 82.953           |      | 25.53          |
| **               | ATOM         | 2749         | 0       | GLN A |     |   | 19.495           | 38.833           | 83.737           |      | 28.35          |
| 30               | ATOM         | 2750         | CB      | GLN A |     |   | 22.469           | 37.369           | 83.536           |      | 22.22          |
|                  | ATOM         | 2751         | CG      | GLN A |     |   | 23.512           | 36.426           | 82.919           |      | 22.37          |
| n.               | ATOM         | 2752         | CD      | GLN A |     |   | 24.871           | 36.673           | 83.547           | 1.00 | 34.49          |
| 12.0             | ATOM         | 2753         | OE1     | GLN A |     |   | 25.261           | 35.932           | 84.417           |      | 24.01          |
| ्रेस को<br>इस को | ATOM         | 2754         |         | GLN A |     |   | 25.588           | 37.727           | 83.127           |      | 36.58          |
| 35               | ATOM         | 2755         | N       | ASN A |     |   | 20.838           | 39.696           | 82.201           | 1.00 | 22.64          |
| <u>⊫</u> 35      | ATOM         | 2756         | CA      | ASN A |     |   | 20.163           | 40.960           | 82.273           |      | 26.10          |
|                  | ATOM         | 2757         | c       | ASN A |     |   | 18.661           | 40.780           | 82.083           |      | 37.49          |
|                  | ATOM<br>ATOM | 2758<br>2759 | O<br>CB | ASN A |     |   | 17.890           | 41.098           | 82.977           |      | 41.41          |
|                  | ATOM         | 2760         | CG      | ASN A |     |   | 20.769           | 42.021           | 81.341           |      | 20.74          |
| 40               | ATOM         | 2761         |         | ASN A |     |   | 22.118           | 42.477           | 81.847           |      | 23.25          |
|                  | ATOM         | 2762         |         | ASN A |     |   | 22.692           | 41.875           | 82.771           |      | 26.88          |
|                  | ATOM         | 2763         | N       | SER A |     |   | 22.644<br>18.228 | 43.530           | 81.247           |      | 32.93          |
|                  | ATOM         | 2764         | CA      | SER A |     |   | 16.784           | 40.252           | 80.938           |      | 32.84          |
|                  | ATOM         | 2765         | C       | SER A |     |   | 16.107           | 40.041<br>39.135 | 80.715           |      | 34.27          |
| 45               | ATOM         | 2766         | ŏ       | SER A |     |   | 14.927           |                  | 81.784           | 1.00 | 31.72          |
|                  | ATOM         | 2767         | СВ      | SER A |     |   | 16.503           | 39.266<br>39.531 | 82.189<br>79.301 |      | 28.64          |
|                  | ATOM         | 2768         | OG      | SER A |     |   | 17.506           | 39.979           | 78.407           |      | 42.57          |
|                  | ATOM         | 2769         | N       | VAL A |     |   | 16.874           | 38.188           | 82.247           |      | 49.17          |
|                  | ATOM         | 2770         | CA      | VAL A |     |   | 16.322           | 37.351           | 83.234           |      | 21.90          |
| 50               | ATOM         | 2771         | С       | VAL A |     |   | 16.068           | 38.122           | 84.516           |      | 22.13<br>36.22 |
|                  | ATOM         | 2772         | 0       | VAL A |     |   | 14.958           | 38.076           | 85.052           |      | 37.69          |
|                  | ATOM         | 2773         | CB      | VAL A |     |   | 17.137           | 36.070           | 83.419           |      | 20.84          |
|                  | MOTA         | 2774         |         | VAL A |     |   | 16.632           | 35.256           | 84.634           |      | 15.06          |
|                  | ATOM         | 2775         |         | VAL A |     |   | 16.968           | 35.284           | 82.105           |      | 20.93          |
| 55               | ATOM         | 2776         | N       | LYS A |     |   | 17.086           | 38.847           | 85.002           |      |                |
|                  | ATOM         | 2777         | CA      | LYS A |     |   | 16.880           | 39.587           | 86.221           |      | 30.67<br>31.71 |
|                  | ATOM         | 2778         | C       | LYS A |     |   | 15.660           | 40.474           | 86.098           |      | 36.17          |
|                  | ATOM         | 2779         | 0       | LYS A |     |   | 14.808           | 40.582           | 86.980           |      | 35.80          |
|                  | ATOM         | 2780         | CB      | LYS A |     |   | 18.099           | 40.396           | 86.624           |      | 35.28          |
| 60               | MOTA         | 2781         | CG      | LYS A |     |   | 17.841           | 41.303           | 87.818           |      | 51.51          |
|                  | ATOM         | 2782         | CD      | LYS A |     |   | 19.038           | 41.405           | 88.749           |      | 60.46          |
|                  | MOTA         | 2783         | CE      | LYS A |     |   | 19.198           | 42.780           | 89.383           | 1.00 | 50.46          |
|                  | ATOM         | 2784         | NZ      | LYS A |     |   | 20.596           | 43.133           | 89.657           |      | 63.77          |
|                  | MOTA         | 2785         | N       | THR A |     |   | 15.608           | 41.108           | 84.962           |      | 32.63          |
|                  |              |              |         |       |     |   |                  |                  |                  |      |                |

|                             |     | 2001 | 2206 | C 3 | mun a |    | 255 | 14 560 | 40 005 | 04 630 | 1 00 24 02 |
|-----------------------------|-----|------|------|-----|-------|----|-----|--------|--------|--------|------------|
|                             |     | MOTA | 2786 |     | THR A |    |     | 14.562 | 42.025 | 84.610 | 1.00 34.03 |
|                             |     | MOTA | 2787 |     | THR A |    |     | 13.129 | 41.422 | 84.578 | 1.00 42.11 |
|                             |     | ATOM | 2788 |     | THR A |    |     | 12.216 | 42.006 | 85.154 | 1.00 40.96 |
|                             |     | ATOM | 2789 |     | THR A |    |     | 14.974 | 42.736 | 83.308 | 1.00 41.11 |
|                             | 5   | ATOM | 2790 |     | THR A |    |     | 16.071 | 43.615 | 83.542 | 1.00 29.85 |
|                             | 1   | ATOM | 2791 |     | THR A |    |     | 13.798 | 43.438 | 82.656 | 1.00 45.50 |
|                             |     | MOTA | 2792 |     | PHE A |    |     | 12.895 | 40.273 | 83.908 | 1.00 33.89 |
|                             |     | MOTA | 2793 |     | PHE A |    |     | 11.556 | 39.729 | 83.860 | 1.00 29.29 |
|                             | 10  | ATOM | 2794 |     | PHE A |    |     | 11.209 | 39.070 | 85.147 | 1.00 31.93 |
|                             | 10  | ATOM | 2795 |     | PHE A |    |     | 10.089 | 39.152 | 85.642 | 1.00 33.85 |
|                             |     | ATOM | 2796 | CB  | PHE A |    |     | 11.460 | 38.645 | 82.785 | 1.00 33.30 |
|                             |     | ATOM | 2797 | CG  | PHE A |    |     | 11.187 | 39.196 | 81.416 | 1.00 36.54 |
|                             |     | MOTA | 2798 |     | PHE A |    |     | 10.106 | 40.054 | 81.224 | 1.00 42.38 |
|                             | 1.5 | MOTA | 2799 |     | PHE A |    |     | 11.985 | 38.858 | 80.320 | 1.00 38.62 |
|                             | 15  | MOTA | 2800 |     | PHE A |    |     | 9.831  | 40.596 | 79.968 | 1.00 44.75 |
|                             |     | ATOM | 2801 |     | PHE A |    |     | 11.723 | 39.384 | 79.055 | 1.00 43.46 |
|                             |     | ATOM | 2802 | CZ  | PHE A |    |     | 10.649 | 40.261 | 78.890 | 1.00 43.86 |
|                             |     | ATOM | 2803 | N   | GLY A |    |     | 12.212 | 38.386 | 85.661 | 1.00 30.41 |
| 10 10                       |     | ATOM | 2804 | CA  | GLY A |    |     | 12.152 | 37.564 | 86.864 | 1.00 29.17 |
| nie.                        | 20  | MOTA | 2805 | С   | GLY A |    |     | 12.446 | 36.100 | 86.438 | 1.00 28.92 |
| H.                          |     | MOTA | 2806 | 0   | GLY A |    |     | 12.008 | 35.642 | 85.372 | 1.00 27.33 |
| in the                      |     | ATOM | 2807 | N   | GLU A |    |     | 13.211 | 35.382 | 87.243 | 1.00 21.27 |
|                             |     | ATOM | 2808 | CA  | GLU A | ł  | 358 | 13.590 | 34.040 | 86.898 | 1.00 23.10 |
| THE MILE                    |     | MOTA | 2809 | С   | GLU A |    |     | 12.424 | 33.104 | 86.747 | 1.00 31.53 |
| अर्थे कर्                   | 25  | MOTA | 2810 | 0   | GLU A | 1  | 358 | 12.581 | 31.972 | 86.294 | 1.00 30.92 |
|                             |     | MOTA | 2811 | CB  | GLU A | ¥  | 358 | 14.596 | 33.473 | 87.880 | 1.00 25.36 |
| <b>}=</b> ₽0                |     | MOTA | 2812 | CG  | GLU A | Ą  | 358 | 14.011 | 33.436 | 89.301 | 1.00 38.73 |
| *                           |     | MOTA | 2813 | CD  | GLU A | ł  | 358 | 15.011 | 33.037 | 90.345 | 1.00 56.34 |
| na in                       |     | ATOM | 2814 | OE1 | GLU A | ł  | 358 | 16.026 | 32.446 | 90.071 | 1.00 50.55 |
| वास्त्र अस्त्र<br>साम्राज्य | 30  | ATOM | 2815 | OE2 | GLU A | 4  | 358 | 14.678 | 33.403 | 91.564 | 1.00 75.65 |
| T.                          |     | MOTA | 2816 | N   | THR A | A. | 359 | 11.246 | 33.542 | 87.139 | 1.00 27.87 |
|                             |     | MOTA | 2817 | CA  | THR A | Ą. | 359 | 10.154 | 32.625 | 86.970 | 1.00 25.66 |
| 12.00                       |     | ATOM | 2818 | С   | THR A | Į. | 359 | 9.236  | 33.152 | 85.906 | 1.00 25.96 |
| 122                         |     | ATOM | 2819 | 0   | THR A | 4  | 359 | 8.247  | 32.528 | 85.533 | 1.00 25.58 |
| i se                        | 35  | ATOM | 2820 | CB  | THR A | Ą  | 359 | 9.423  | 32.341 | 88.253 | 1.00 25.00 |
| 11-3-2                      |     | ATOM | 2821 | OG1 | THR A | 4  | 359 | 8.908  | 33.565 | 88.692 | 1.00 33.10 |
|                             |     | ATOM | 2822 | CG2 | THR A | 4  | 359 | 10.406 | 31.785 | 89.273 | 1.00 14.43 |
|                             |     | ATOM | 2823 | N   | HIS A | A. | 360 | 9.602  | 34.310 | 85.407 | 1.00 20.75 |
|                             |     | ATOM | 2824 | CA  | HIS A | 4  | 360 | 8.837  | 34.902 | 84.363 | 1.00 22.77 |
|                             | 40  | ATOM | 2825 | C   | HIS A | 4  | 360 | 8.823  | 34.034 | 83.130 | 1.00 35.30 |
|                             |     | MOTA | 2826 | 0   | HIS A | Ą  | 360 | 9.858  | 33.611 | 82.620 | 1.00 37.42 |
|                             |     | MOTA | 2827 | CB  | HIS A | 4  | 360 | 9.294  | 36.291 | 83.982 | 1.00 23.18 |
|                             |     | ATOM | 2828 | CG  | HIS A | Ą. | 360 | 8.207  | 36.908 | 83.219 | 1.00 27.05 |
|                             | 1   | ATOM | 2829 | ND1 | HIS A | 4  | 360 | 7.532  | 38.009 | 83.691 | 1.00 29.34 |
|                             | 45  | ATOM | 2830 | CD2 | HIS A | Ą  | 360 | 7.651  | 36.545 | 82.059 | 1.00 29.91 |
|                             |     | MOTA | 2831 | CE1 | HIS A | 4  | 360 | 6.596  | 38.315 | 82.806 | 1.00 27.94 |
|                             |     | MOTA | 2832 | NE2 | HIS A | 4  | 360 | 6.651  | 37.440 | 81.812 | 1.00 29.60 |
|                             |     | MOTA | 2833 | N   | PRO A | Ą  | 361 | 7.606  | 33.817 | 82.666 | 1.00 32.40 |
|                             |     | MOTA | 2834 | CA  | PRO A |    |     | 7.301  | 32.999 | 81.519 | 1.00 29.46 |
|                             | 50  | ATOM | 2835 | C   | PRO A | Ą  | 361 | 7.862  | 33.478 | 80.224 | 1.00 30.59 |
|                             |     | MOTA | 2836 | 0   | PRO A | 4  | 361 | 7.907  | 32.737 | 79.248 | 1.00 33.00 |
|                             |     | ATOM | 2837 | CB  | PRO A |    |     | 5.770  | 32.963 | 81.478 | 1.00 30.74 |
|                             |     | ATOM | 2838 | CG  | PRO A | Ą  | 361 | 5.311  | 33.172 | 82.927 | 1.00 34.96 |
|                             | -   | MOTA | 2839 | CD  | PRO A | A  | 361 | 6.463  | 33.869 | 83.627 | 1.00 31.82 |
|                             | 55  | MOTA | 2840 | N   | PHE 2 | A  | 362 | 8.289  | 34.712 | 80.179 | 1.00 26.32 |
|                             |     | MOTA | 2841 | CA  | PHE I |    |     | 8.823  | 35.173 | 78.933 | 1.00 25.68 |
|                             |     | ATOM | 2842 | C   | PHE I | A  | 362 | 10.261 | 34.781 | 78.829 | 1.00 29.73 |
|                             |     | MOTA | 2843 | 0   | PHE 2 | A  | 362 | 10.906 | 35.131 | 77.870 | 1.00 32.02 |
|                             |     | ATOM | 2844 | CB  | PHE I |    |     | 8.643  | 36.677 | 78.723 | 1.00 28.12 |
|                             | 60  | ATOM | 2845 | CG  | PHE I |    |     | 7.194  | 37.105 | 78.629 | 1.00 30.03 |
|                             |     | MOTA | 2846 | CD1 | PHE I |    |     | 6.204  | 36.276 | 78.098 | 1.00 30.92 |
|                             |     | MOTA | 2847 |     | PHE 2 |    |     |        | 38.372 | 79.051 | 1.00 32.04 |
|                             |     | ATOM | 2848 |     | PHE   |    |     | 4.864  | 36.655 | 77.998 | 1.00 26.59 |
|                             |     | ATOM | 2849 |     | PHE   |    |     | 5.470  | 38.773 | 78.952 | 1.00 32.40 |
|                             |     |      |      |     |       |    |     |        |        |        |            |

|     | ATOM         | 2914         | С       | ASP A 371              | -2.557         | 37.636           | 75.255           | 1.00 40.92               |
|-----|--------------|--------------|---------|------------------------|----------------|------------------|------------------|--------------------------|
|     | MOTA         | 2915         |         | ASP A 371              | -2.784         | 38.625           | 75.933           | 1.00 41.63               |
|     | MOTA         | 2916         |         | ASP A 371              | -4.519         | 36.375           | 76.245           | 1.00 39.88               |
|     | MOTA         | 2917         |         | ASP A 371              | -5.805         | 35.733           | 75 <b>.7</b> 98  | 1.00 51.30               |
| . 5 | ATOM         | 2918         | OD1     | ASP A 371              | -6.373         | 36.072           | 74.761           | 1.00 50.39               |
|     | ATOM         | 2919         | OD2     | ASP A 371              | -6.206         | 34.754           | 76.583           | 1.00 48.61               |
|     | ATOM         | 2920         | N       | ILE A 372.             | -1.387         | 37.398           | 74.664           | 1.00 36.37               |
|     | ATOM         | 2921         | CA      | ILE A 372              | -0.259         | 38.283           | 74.817           | 1.00 34.61               |
|     | MOTA         | 2922         | C       | ILE A 372              | 0.203          | 39.018           | 73.555           | 1.00 35.46               |
| 10  | MOTA         | 2923         | 0       | ILE A 372              | 0.545          | 38.400           | 72.548           | 1.00 36.69               |
|     | MOTA         | 2924         | CB      | ILE A 372              | 0.920          | 37.511           | 75.381           | 1.00 36.51               |
|     | ATOM         | 2925         |         |                        | 0.658          | 37.195           | 76.842           | 1.00 37.01               |
|     | MOTA         | 2926         |         | ILE A 372              | 2.121          | 38.441           | 75.281           | 1.00 35.52               |
|     | MOTA         | 2927         | CD1     | ILE A 372              | 1.268          | 38.261           | 77.747           | 1.00 54.33               |
| 15  | MOTA         | 2928         | N       | ASP A 373              | 0.254          | 40.345           | 73.601           | 1.00 25.92               |
|     | MOTA         | 2929         | CA      | ASP A 373              | 0.747          | 41.053           | 72.450           | 1.00 23.77               |
|     | ATOM         | 2930         | С       | ASP A 373              | 2.263          | 40.781           | 72.360           | 1.00 31.40               |
|     | ATOM         | 2931         | 0       | ASP A 373              | 3.040          | 41.002           | 73.305           | 1.00 32.80               |
| 20  | ATOM         | 2932         | CB      | ASP A 373              | 0.408          | 42.543           | 72.519           | 1.00 25.08               |
| 20  | ATOM         | 2933         | CG      | ASP A 373              | 1.064          | 43.356           | 71.418           | 1.00 43.24               |
|     | MOTA         | 2934         |         | ASP A 373              | 1.861          | 42.894           | 70.616           | 1.00 45.30               |
|     | MOTA         | 2935         |         | ASP A 373              | 0.668          | 44.610           | 71.395           | 1.00 38.59               |
|     | MOTA         | 2936         | N       | PRO A 374              | 2.709          | 40.267           | 71.225           | 1.00 29.51               |
| 0.5 | MOTA         | 2937         | CA      | PRO A 374              | 4.123          | 39.943           | 71.132           | 1.00 28.52               |
| 25  | ATOM         | 2938         | С       | PRO A 374              | 5.029          | 41.090           | 71.506           | 1.00 32.54               |
|     | ATOM         | 2939         | 0       | PRO A 374              | 6.019          | 40.905           | 72.217           | 1.00 29.62               |
|     | ATOM         | 2940         | CB      | PRO A 374              | 4.390          | 39.421           | 69.714           | 1.00 28.88               |
|     | MOTA         | 2941         | CG      | PRO A 374              | 3.028          | 39.278           | 69.032           | 1.00 32.27               |
| 20  | ATOM         | 2942         | CD      | PRO A 374              | 1.966          | 39.786           | 70.008           | 1.00 28.84               |
| 30  | ATOM         | 2943         | N       | ASP A 375              | 4.660          | 42.257           | 70.981           | 1.00 26.85               |
|     | ATOM         | 2944         | CA      | ASP A 375              | 5.357          | 43.511           | 71.154           | 1.00 24.25               |
|     | ATOM         | 2945         | C       | ASP A 375<br>ASP A 375 | 5.695<br>6.648 | 43.783<br>44.494 | 72.628<br>72.988 | 1.00 33.10               |
|     | ATOM<br>ATOM | 2946<br>2947 | O<br>CB | ASP A 375              | 4.507          | 44.494           | 70.509           | 1.00 30.67<br>1.00 24.46 |
| 35  | ATOM         | 2948         | CG      | ASP A 375              | 4.753          | 44.836           | 69.033           | 1.00 24.40               |
| 33  | ATOM         | 2949         |         | ASP A 375              | 5.703          | 44.393           | 68.411           | 1.00 30.08               |
|     | ATOM         | 2950         |         | ASP A 375              | 3.852          | 45.609           | 68.491           | 1.00 38.41               |
|     | ATOM         | 2951         | N       | VAL A 376              | 4.885          | 43.161           | 73.477           | 1.00 30.21               |
|     | ATOM         | 2952         | CA      | VAL A 376              | 5.001          | 43.232           | 74.904           | 1.00 25.40               |
| 40  | ATOM         | 2953         | c       | VAL A 376              | 5.879          | 42.106           | 75.431           | 1.00 37.27               |
|     | MOTA         | 2954         | ō       | VAL A 376              | 6.599          | 42.299           | 76.394           | 1.00 42.46               |
|     | ATOM         | 2955         | CB      | VAL A 376              | 3.638          | 43.099           | 75.550           | 1.00 22.48               |
|     | ATOM         | 2956         |         | VAL A 376              | 3.799          | 42.533           | 76.975           | 1.00 21.25               |
|     | ATOM         | 2957         |         | VAL A 376              | 2.926          | 44.440           | 75.547           | 1.00 18.29               |
| 45  | ATOM         | 2958         | N       | ALA A 377              | 5.811          | 40.905           | 74.831           | 1.00 30.48               |
|     | ATOM         | 2959         | CA      | ALA A 377              | 6.671          | 39.793           | 75,288           | 1.00 27.04               |
|     | ATOM         | 2960         | С       | ALA A 377              | 8.149          | 39.911           | 74.797           | 1.00 28.15               |
|     | ATOM         | 2961         | 0       | ALA A 377              | 9.077          | 39.325           | 75.312           | 1.00 27.36               |
| 1   | MOTA         | 2962         | CB      | ALA A 377              | 6.091          | 38.433           | 74.891           | 1.00 26.74               |
| 50  | ATOM         | 2963         | N       | TYR A 378              | 8.376          | 40.692           | 73.768           | 1.00 25.81               |
|     | ATOM         | 2964         | CA      | TYR A 378              | 9.683          | 40.876           | 73.161           | 1.00 25.43               |
|     | MOTA         | 2965         | С       | TYR A 378              | 10.862         | 41.194           | 74.057           | 1.00 30.49               |
|     | ATOM         | 2966         | 0       | TYR A 378              | 10.873         | 42.204           | 74.747           | 1.00 32.35               |
|     | ATOM         | 2967         | CB      | TYR A 378              | 9.549          | 41.924           | 72.068           | 1.00 26.20               |
| 55  | ATOM         | 2968         | CG      | TYR A 378              | 10.804         | 42.168           | 71.327           | 1.00 19.90               |
|     | ATOM         | 2969         |         | TYR A 378              | 11.256         | 41.231           | 70.406           | 1.00 18.53               |
|     | ATOM         | 2970         |         | TYR A 378              | 11.536         | 43.331           | 71.543           | 1.00 18.47               |
|     | ATOM         | 2971         |         | TYR A 378              | 12.444         | 41.436           | 69.716           | 1.00 15.98               |
| 60  | MOTA         | 2972         |         | TYR A 378              | 12.719         | 43.555           | 70.840           | 1.00 18.77               |
| 60  | ATOM         | 2973         | CZ      | TYR A 378              | 13.161         | 42.609           | 69.920           | 1.00 16.37               |
|     | ATOM         | 2974         | OH      | TYR A 378              | 14.309         | 42.811           | 69.212           | 1.00 32.30               |
|     | ATOM         | 2975         | N       | SER A 379              | 11.879         | 40.317           | 73.977           | 1.00 23.03               |
|     | ATOM         | 2976         | CA      | SER A 379              | 13.115         | 40.430           | 74.725           | 1.00 18.13               |
|     | ATOM         | 2977         | C       | SER A 379              | 14.267         | 39.777           | 73.970           | 1.00 20.60               |

The first of the f

|              |       | ATOM     | 2850 | CZ  | PHE A | 362 | 4.495  | 37.920 | 78.435 | 1.00 26.37  |
|--------------|-------|----------|------|-----|-------|-----|--------|--------|--------|-------------|
|              |       | ATOM     | 2851 | N   | THR A | 363 | 10.730 | 34.049 | 79.843 | 1.00 27.22  |
|              |       | ATOM     | 2852 | CA  | THR A |     | 12.102 | 33.575 | 79.943 | 1.00 27.52  |
|              |       |          | 2853 | C   |       |     |        |        |        |             |
|              |       | MOTA     |      |     | THR A |     | 12.251 | 32.132 | 79.504 | 1.00 29.28  |
|              | 5     | ATOM     | 2854 | 0   | THR A |     | 13.331 | 31.560 | 79.524 | 1.00 29.42  |
|              |       | ATOM     | 2855 | CB  | THR A | 363 | 12.697 | 33.777 | 81.360 | 1.00 31.67  |
|              |       | ATOM     | 2856 | OG1 | THR A | 363 | 12.279 | 32.745 | 82.218 | 1.00 26.17  |
|              |       | MOTA     | 2857 | CG2 | THR A | 363 | 12.278 | 35.118 | 81.930 | 1.00 31.62  |
|              |       | ATOM     | 2858 | N   | LYS A |     | 11.148 | 31.530 | 79.113 | 1.00 23.08  |
|              | 10    |          | 2859 | CA  |       |     |        |        |        |             |
|              | 10    | ATOM     |      |     | LYS A |     | 11.174 | 30.160 | 78.664 | 1.00 20.50  |
|              |       | MOTA     | 2860 | С   | LYS A |     | 11.556 | 30.270 | 77.217 | 1.00 28.83  |
|              |       | ATOM     | 2861 | 0   | LYS A | 364 | 11.139 | 31.239 | 76.570 | 1.00 29.80  |
|              |       | MOTA     | 2862 | CB  | LYS A | 364 | 9.766  | 29.584 | 78.667 | 1.00 23.55  |
|              |       | ATOM     | 2863 | CG  | LYS A | 364 | 9.252  | 29.134 | 80.022 | 1.00 40.85  |
|              | 15    | ATOM     | 2864 | CD  | LYS A |     | 7.761  | 29.369 | 80.162 |             |
|              | 10    |          |      | CE  |       |     |        |        |        | 1.00 44.83  |
|              |       | MOTA     | 2865 |     | LYS A |     | 7.131  | 28.492 | 81.224 | 1.00 66.38  |
|              |       | ATOM     | 2866 | NZ  | LYS A |     | 6.063  | 27.638 | 80.691 | 1.00 91.70  |
|              | 1     | ATOM     | 2867 | N   | LEU A | 365 | 12.332 | 29.328 | 76.698 | 1.00 23.57  |
|              |       | MOTA     | 2868 | CA  | LEU A | 365 | 12.699 | 29.420 | 75.312 | 1.00 23.95  |
|              | 20    | MOTA     | 2869 | С   | LEU A | 365 | 11.414 | 29.419 | 74.445 | 1.00 35.57  |
| रीई और       |       | ATOM     | 2870 | 0   | LEU A |     | 11.166 | 30.369 | 73.708 |             |
| Hand.        |       |          |      |     |       |     |        |        |        | 1.00 34.58  |
| Bay Sho      |       | MOTA     | 2871 | CB  | LEU A |     | 13.702 | 28.303 | 75.021 | 1.00 25.08  |
| magnet.      |       | <br>MOTA | 2872 | CG  | LEU A |     | 14.456 | 28.372 | 73.702 | 1.00 31.15  |
| e aur        |       | ATOM     | 2873 |     | LEU A |     | 14.987 | 29.778 | 73.466 | 1.00 33.16  |
| 1784<br>1785 | 25    | ATOM     | 2874 | CD2 | LEU A | 365 | 15.609 | 27.353 | 73.781 | 1.00 30.62  |
| L.           |       | ATOM     | 2875 | N   | VAL A |     | 10.572 | 28.360 | 74.564 | 1.00 35.62  |
| G= 4.        |       | ATOM     | 2876 | CA  | VAL A |     | 9.294  | 28.232 | 73.840 |             |
| FTTT         |       |          |      |     |       |     |        |        |        | 1.00 32.10  |
| 學            |       | ATOM     | 2877 | C   | VAL A |     | 8.211  | 28.911 | 74.694 | 1.00 33.14  |
| in the       | -     | ATOM     | 2878 | 0   | VAL A |     | 7.982  | 28.470 | 75.808 | 1.00 34.20  |
| The second   | 30    | MOTA     | 2879 | CB  | VAL A |     | 8.936  | 26.739 | 73.568 | 1.00 34.73  |
| 1 (m)        |       | ATOM     | 2880 | CG1 | VAL A | 366 | 7.558  | 26.605 | 72.933 | 1.00 34.88  |
|              |       | MOTA     | 2881 |     | VAL A |     | 9.922  | 26.012 | 72.649 | 1.00 32.65  |
| 12 tr        |       | ATOM     | 2882 | N   | VAL A |     | 7.562  | 29.990 | 74.211 | 1.00 28.76  |
| the stiff    |       |          | 2883 | CA  |       |     |        |        |        |             |
| 22           | 25    | ATOM     |      |     | VAL A |     | 6.532  | 30.700 | 74.987 | 1.00 28.27  |
| 1            | 35    | MOTA     | 2884 | С   | VAL A |     | 5.161  | 30.613 | 74.420 | 1.00 30.62  |
| -            |       | ATOM     | 2885 | 0   | VAL A | 367 | 4.994  | 30.509 | 73.235 | `1.00 34.30 |
|              |       | ATOM     | 2886 | CB  | VAL A | 367 | 6.773  | 32.185 | 75.061 | 1.00 33.45  |
|              |       | MOTA     | 2887 | CG1 | VAL A | 367 | 8.178  | 32.478 | 75.565 | 1.00 33.03  |
|              |       | ATOM     | 2888 |     | VAL A |     | 6.498  | 32.804 | 73.693 | 1.00 33.18  |
|              | 40    | ATOM     | 2889 | N   | ASP A |     | 4.168  | 30.722 | 75.290 |             |
|              |       | ATOM     | 2890 | CA  | ASP A |     |        |        |        | 1.00 29.27  |
|              |       |          |      |     |       |     | 2.764  | 30.771 | 74.984 | 1.00 27.67  |
|              |       | ATOM     | 2891 | С   | ASP A |     | 2.315  | 32.207 | 74.862 | 1.00 26.94  |
|              |       | ATOM     | 2892 | 0   | ASP A | 368 | 2.283  | 32.975 | 75.830 | 1.00 23.11  |
|              | × 1.0 | MOTA     | 2893 | CB  | ASP A | 368 | 1.990  | 30.073 | 76.100 | 1.00 26.80  |
|              | 45    | ATOM     | 2894 | CG  | ASP A | 368 | 0.572  | 29.781 | 75.613 | 1.00 37.90  |
|              |       | ATOM     | 2895 |     | ASP A |     | 0.276  | 30.123 | 74.481 | 1.00 38.93  |
|              |       | ATOM     | 2896 |     | ASP A |     | -0.215 | 29.217 | 76.380 | 1.00 38.59  |
|              |       | ATOM     | 2897 | N   | LEU A |     |        |        |        |             |
|              |       |          |      |     |       |     | 2.027  | 32.588 | 73.622 | 1.00 26.55  |
|              | 50    | MOTA     | 2898 | CA  | LEU A |     | 1.643  | 33.953 | 73.373 | 1.00 27.39  |
|              | 50    | ATOM     | 2899 | С   | LEU A |     | 0.138  | 34.105 | 73.301 | 1.00 30.74  |
|              |       | ATOM     | 2900 | 0   | LEU A | 369 | -0.372 | 34.979 | 72.648 | 1.00 30.68  |
|              |       | ATOM     | 2901 | CB  | LEU A | 369 | 2.281  | 34.395 | 72.064 | 1.00 26.06  |
| :27          |       | ATOM     | 2902 | CG  | LEU A |     | 3.759  | 34.760 | 72.229 | 1.00 26.80  |
|              |       | ATOM     | 2903 |     | LEU A |     | 4.343  | 35.415 | 70.994 | 1.00 24.30  |
|              | 55    |          | 2904 |     | LEU A |     |        |        |        |             |
|              | 25    | ATOM     |      |     |       |     | 4.014  | 35.728 | 73.384 | 1.00 21.81  |
|              |       | ATOM     | 2905 | N   | THR A |     | -0.577 | 33.154 | 73.953 | 1.00 30.26  |
|              |       | MOTA     | 2906 | CA  | THR A |     | -2.022 | 33.306 | 74.093 | 1.00 31.38  |
|              |       | ATOM     | 2907 | С   | THR A | 370 | -2.355 | 34.519 | 74.941 | 1.00 38.62  |
|              |       | ATOM     | 2908 | 0   | THR A |     | -1.821 | 34.714 | 76.027 | 1.00 38.84  |
|              | 60    | ATOM     | 2909 | CB  | THR A |     | -2.601 | 32.056 | 74.750 | 1.00 34.04  |
|              |       | ATOM     | 2910 |     | THR A |     | -2.472 |        |        |             |
|              |       |          |      |     |       |     |        | 30.949 | 73.873 | 1.00 29.99  |
|              |       | ATOM     | 2911 |     | THR A |     | -4.091 | 32.266 | 75.052 | 1.00 26.40  |
|              |       | MOTA     | 2912 | N   | ASP A |     | -3.173 | 35.387 | 74.363 | 1.00 37.89  |
|              |       | ATOM     | 2913 | CA  | ASP A | 371 | -3.641 | 36.612 | 75.012 | 1.00 37.85  |
|              |       |          |      |     |       |     |        |        |        |             |

| m #12     |
|-----------|
| 144       |
| ga 🌬      |
| 12 m:     |
| <b>研究</b> |
|           |
| 14        |
| <b>12</b> |
| 1-4       |
| 1         |
|           |
|           |
|           |
| 122       |
|           |

|        | ATOM         | 2978         | 0         | SER A | 379 | 14.100           | 39.334           | 72.843           | 1.00 18.46               |
|--------|--------------|--------------|-----------|-------|-----|------------------|------------------|------------------|--------------------------|
|        | ATOM         | 2979         | CB        | SER A | 379 | 12.976           | 39.740           | 76.067           | 1.00 23.56               |
|        | MOTA         | 2980         | OG        | SER A | 379 | 12.805           | 38.329           | 75.883           | 1.00 37.26               |
| _      | MOTA         | 2981         | N         | SER A | 380 | 15.424           | 39.697           | 74.651           | 1.00 23.65               |
| 5      | MOTA         | 2982         | CA        | SER A |     | 16.701           | 39.084           | 74.222           | 1.00 26.09               |
|        | MOTA         | 2983         | C         | SER A |     | 16.669           | 37.571           | 74.457           | 1.00 28.37               |
|        | ATOM         | 2984         | 0         | SER A |     | 17.480           | 36.785           | 73.975           | 1.00 30.81               |
|        | ATOM         | 2985         | CB        | SER A |     | 17.889           | 39.588           | 75.062           | 1.00 31.60               |
|        | ATOM         | 2986         | OG        | SER A |     | 18.036           | 41.000           | 75.033           | 1.00 42.48               |
| 10     | MOTA         | 2987         | И         | VAL A |     | 15.718           | 37.188           | 75.260           | 1.00 18.04               |
|        | ATOM         | 2988         | CA        | VAL A |     | 15.595           | 35.812           | 75.598           | 1.00 14.91               |
|        | ATOM         | 2989         | C         | VAL A |     | 15.708           | 34.897           | 74.419           | 1.00 20.31               |
|        | ATOM         | 2990         | 0         | VAL A |     | 16.620           | 34.091           | 74.330           | 1.00 27.64               |
| 1.5    | MOTA         | 2991         | CB        | VAL A |     | 14.408           | 35.546           | 76.501           | 1.00 16.34               |
| 15     | ATOM         | 2992         |           | VAL A |     | 14.284           | 34.062           | 76.734           | 1.00 17.26               |
|        | MOTA         | 2993         |           | VAL A |     | 14.687           | 36.204           | 77.829           | 1.00 13.94               |
|        | MOTA         | 2994         | N         | PRO A |     | 14.797           | 35.005           | 73.489           | 1.00 16.53               |
|        | ATOM         | 2995         | CA        | PRO A |     | 14.886           | 34.139           | 72.324           | 1.00 17.21               |
| 20     | ATOM         | 2996         | С         | PRO A |     | 16.222           | 34.230           | 71.634           | 1.00 24.01               |
| 20     | ATOM         | 2997         | 0         | PRO A |     | 16.709           | 33.192           | 71.207           | 1.00 27.79               |
|        | ATOM         | 2998         | CB        | PRO A |     | 13.777           | 34.514           | 71.351           | 1.00 17.20               |
|        | MOTA         | 2999         | CG        | PRO A |     | 13.003           | 35.618           | 72.033           | 1.00 18.32               |
|        | ATOM         | 3000         | CD        | PRO A |     | 13.627           | 35.873           | 73.399           | 1.00 12.12               |
| 25     | ATOM         | 3001         | N         | TYR A |     | 16.809           | 35.447           | 71.542           | 1.00 19.33               |
| 25     | MOTA         | 3002         | CA        | TYR A |     | 18.112           | 35.648           | 70.902           | 1.00 19.70               |
|        | ATOM         | 3003         | C         | TYR A |     | 19.246           | 34.953           | 71.651           | 1.00 28.79               |
|        | ATOM         | 3004         | O         | TYR A |     | 19.980           | 34.117           | 71.104           | 1.00 31.38               |
|        | ATOM         | 3005<br>3006 | CB        | TYR A |     | 18.468           | 37.135           | 70.894           | 1.00 21.02               |
| 30     | MOTA         | 3007         | CG<br>CD1 | TYR A |     | 17.593           | 37.968           | 70.011           | 1.00 23.86               |
| 30     | ATOM<br>ATOM | 3007         |           | TYR A |     | 16.290<br>18.067 | 38.277<br>38.450 | 70.404           | 1.00 28.36<br>1.00 20.93 |
|        | ATOM         | 3009         |           | TYR A |     | 15.473           | 39.054           | 68.784<br>69.576 | 1.00 20.93               |
|        | ATOM         | 3010         |           | TYR A |     | 17.272           | 39.244           | 67.957           | 1.00 30.88               |
|        | ATOM         | 3010         | CZ        | TYR A |     | 15.967           | 39.533           | 68.358           | 1.00 18.71               |
| <br>35 | ATOM         | 3012         | OH        | TYR A |     | 15.171           | 40.294           | 67.556           | 1.00 20.33               |
|        | ATOM         | 3013         | N         | GLU A |     | 19.389           | 35.333           | 72.921           | 1.00 20.17               |
|        | ATOM         | 3014         | CA        | GLU A |     | 20.419           | 34.857           | 73.803           | 1.00 17.57               |
|        | ATOM         | 3015         | С         | GLU A |     | 20.188           | 33.506           | 74.405           | 1.00 22.88               |
|        | ATOM         | 3016         | 0         | GLU A |     | 21.151           | 32.775           | 74.669           | 1.00 25.65               |
| 40     | ATOM         | 3017         | CB        | GLU A | 384 | 20.833           | 35.973           | 74.773           | 1.00 20.44               |
|        | ATOM         | 3018         | CG        | GLU A | 384 | 21.263           | 37.202           | 73.944           | 1.00 15.21               |
|        | ATOM         | 3019         | CD        | GLU A | 384 | 22.539           | 36.937           | 73.184           | 1.00 26.58               |
|        | ATOM         | 3020         | OE1       | GLU A | 384 | 23.185           | 35.915           | 73.293           | 1.00 17.84               |
|        | MOTA         | 3021         |           | GLU A |     | 22.887           | 37.915           | 72.400           | 1.00 21.88               |
| 45     | ATOM         | 3022         | N         | LYS A |     | 18.935           | 33.116           | 74.610           | 1.00 20.33               |
|        | ATOM         | 3023         | CA        | LYS A |     | 18.736           | 31.767           | 75.146           | 1.00 20.05               |
|        | ATOM         | 3024         | С         | LYS A |     | 18.865           | 30.716           | 74.028           | 1.00 27.19               |
|        | ATOM         | 3025         | 0         | LYS A |     | 19.420           | 29.621           | 74.219           | 1.00 31.66               |
| 50     | ATOM         | 3026         | CB        | LYS A |     | 17.507           | 31.577           | 76.014           | 1.00 21.51               |
| 50     | ATOM         | 3027         | CG        | LYS A |     | 17.676           | 30.384           | 76.953           | 1.00 22.29               |
|        | ATOM         | 3028         | CD        | LYS A |     | 16.386           | 29.820           | 77.518           | 1.00 19.87               |
|        | MOTA         | 3029         | CE        | LYS A |     | 16.049           | 30.277           | 78.937           | 1.00 31.60               |
|        | ATOM         | 3030         | NZ        | LYS A |     | 14.783           | 29.694           | 79.441           | 1.00 30.38               |
| 55     | ATOM         | 3031         | N         | GLY A |     | 18.364           | 31.084           | 72.832           | 1.00 20.72               |
| 55     | MOTA         | 3032         | CA        | GLY A |     | 18.453           | 30.248           | 71.637           | 1.00 17.41               |
|        | ATOM         | 3033         | C         | GLY A |     | 19.924           | 30.106           | 71.298           | 1.00 20.81               |
|        | ATOM         | 3034         | N<br>O    |       |     | 20.396           | 29.001           | 71.225           | 1.00 22.50               |
|        | ATOM<br>ATOM | 3035<br>3036 | CA.       | PHE A |     | 20.683 22.137    | 31.228           | 71.163           | 1.00 20.30               |
| 60     | MOTA         | 3036         | CA        | PHE A |     | 22.137           | 31.158<br>30.263 | 70.900           | 1.00 19.92               |
| 00     | ATOM         | 3037         | 0         | PHE A |     | 23.685           | 29.478           | 71.905<br>71.530 | 1.00 29.09<br>1.00 32.80 |
|        | ATOM         | 3039         | СВ        | PHE A |     | 22.852           | 32.519           | 70.955           | 1.00 32.80               |
|        | MOTA         | 3040         | CG        | PHE A |     | 24.344           | 32.319           | 70.933           | 1.00 20.07               |
|        | ATOM         | 3041         |           | PHE A |     | 24.949           | 32.163           | 69.631           | 1.00 19.67               |
|        |              |              | 1         |       |     |                  |                  |                  |                          |
|        |              |              |           |       |     |                  |                  |                  |                          |

|                                              |      | ATOM         | 3042         | CD2     | PHE A | 387 | 25.157           | 32.373           | 72.007                 | 1.00 25.27               |
|----------------------------------------------|------|--------------|--------------|---------|-------|-----|------------------|------------------|------------------------|--------------------------|
|                                              |      | ATOM         | 3043         |         | PHE A |     | 26.329           | 31.977           | 69.525                 | 1.00 20.88               |
|                                              |      | ATOM         | 3044         | CE2     | PHE A | 387 | 26.542           | 32.202           | 71.916                 | 1.00 28.83               |
|                                              |      | ATOM         | 3045         | CZ      | PHE A | 387 | 27.131           | 31.981           | 70.668                 | 1.00 23.24               |
|                                              | 5    | MOTA         | 3046         | N       | ALA A | 388 | 22.495           | 30.381           | 73.203                 | 1.00 25.48               |
|                                              |      | MOTA         | 3047         | CA      | ALA A | 388 | 23.133           | 29.556           | 74.242                 | 1.00 23.14               |
|                                              |      | ATOM         | 3048         | С       | ALA A | 388 | 22.872           | 28.108           | 74.055                 | 1.00 32.10               |
|                                              |      | ATOM         | 3049         | 0       | ALA A |     | 23.757           | 27.282           | 74.258                 | 1.00 37.82               |
|                                              |      | ATOM         | 3050         | CB      | ALA A |     | 22.717           | 29.932           | 75.633                 | 1.00 23.02               |
|                                              | 10   | MOTA         | 3051         | N .     | LEU A |     | 21.636           | 27.793           | 73.691                 | 1.00 26.31               |
|                                              |      | ATOM         | 3052         | CA      | LEU A |     | 21.275           | 26.405           | 73.460                 | 1.00 21.42               |
|                                              |      | MOTA         | 3053         | C       | LEU A |     | 22.189           | 25.906           | 72.372                 | 1.00 27.91               |
|                                              |      | MOTA         | 3054         | 0       | LEU A |     | 22.865           | 24.900           | 72.532                 | 1.00 29.25               |
|                                              | 15   | MOTA         | 3055         | CB      | LEU A |     | 19.841           | 26.300           | 72.937                 | 1.00 19.24               |
|                                              | 13   | MOTA         | 3056         | CG      | LEU A |     | 19.427           | 24.868           | 72.632                 | 1.00 17.17               |
|                                              |      | MOTA         | 3057<br>3058 |         | LEU A |     | 19.717<br>17.943 | 24.017<br>24.808 | 73.844                 | 1.00 14.63               |
|                                              |      | ATOM<br>ATOM | 3059         | N N     | LEU A |     | 22.217           | 26.659           | 72.328                 | 1.00 10.16               |
|                                              |      | ATOM         | 3060         | CA      | LEU A |     | 23.050           | 26.340           | 71.262<br>70.107       | 1.00 24.49<br>1.00 25.05 |
|                                              | 20   | ATOM         | 3061         | C       | LEU A |     | 24.531           | 26.256           | 70.383                 | 1.00 23.03               |
|                                              | 20   | ATOM         | 3062         | 0       | LEU A |     | 25.183           | 25.301           | 69.932                 | 1.00 32.31               |
| 4                                            |      | ATOM         | 3063         | CB      | LEU A |     | 22.765           | 27.152           | 68.844                 | 1.00 33.00               |
| je ik                                        |      | ATOM         | 3064         | CG      | LEU A |     | 21.307           | 27.026           | 68.442                 | 1.00 23.38               |
| 18 B. S. |      | ATOM         | 3065         |         | LEU A |     | 20.986           | 28.025           | 67.334                 | 1.00 20.84               |
| 1990<br>1990                                 | 25   | ATOM         | 3066         |         | LEU A |     | 20.988           | 25.591           | 68.017                 | 1.00 18.86               |
| LTS.                                         |      | ATOM         | 3067         | N       | PHE A |     | 25.058           | 27.231           | 71.127                 | 1.00 28.52               |
| H= 50                                        |      | ATOM         | 3068         | CA      | PHE A |     | 26.480           | 27.236           | 71.494                 | 1.00 27.82               |
|                                              |      | ATOM         | 3069         | С       | PHE A |     | 26.813           | 25.992           | 72.312                 | 1.00 28.67               |
| 1-5                                          |      | MOTA         | 3070         | 0       | PHE A | 391 | 27.839           | 25.331           | 72.148                 | 1.00 26.96               |
| n,                                           | 30   | MOTA         | 3071         | CB      | PHE A | 391 | 26.834           | 28.455           | 72.341                 | 1.00 28.60               |
|                                              |      | MOTA         | 3072         | CG      | PHE A | 391 | 28.296           | 28.786           | 72.283                 | 1.00 30.53               |
| n.                                           |      | MOTA         | 3073         | CD1     | PHE A | 391 | 28.967           | 28.816           | 71.064                 | 1.00 35.08               |
|                                              |      | MOTA         | 3074         |         | PHE A |     | 29.020           | 29.063           | 73.440                 | 1.00 36.52               |
|                                              | 2.5  | MOTA         | 3075         |         | PHE A |     | 30.320           | 29.142           | 70.983                 | 1.00 37.61               |
|                                              | 35   | MOTA         | 3076         |         | PHE A |     | 30.378           | 29.383           | 73.382                 | 1.00 40.61               |
|                                              |      | ATOM         | 3077         | CZ      | PHE A |     | 31.026           | 29.432           | 72.148                 | 1.00 37.64               |
|                                              |      | ATOM         | 3078         | N       | TYR A |     | 25.913           | 25.699           | 73.225                 | 1.00 24.90               |
|                                              |      | ATOM         | 3079<br>3080 | CA      | TYR A |     | 26.044           | 24.550<br>23.298 | 74.065                 | 1.00 24.66               |
|                                              | 40   | ATOM<br>ATOM | 3081         | C<br>O  | TYR A |     | 26.106<br>27.058 | 22.558           | 73.186                 | 1.00 34.30<br>1.00 37.51 |
|                                              | 70   | ATOM         | 3082         | CB      | TYR A |     | 24.821           | 24.501           | 73.268<br>74.967       | 1.00 37.31               |
|                                              |      | ATOM         | 3083         | CG      | TYR A |     | 24.631           | 23.181           | 75.678                 | 1.00 20.39               |
|                                              |      | ATOM         | 3084         |         | TYR A |     | 25.546           | 22.715           | 76.625                 | 1.00 35.17               |
|                                              |      | ATOM         | 3085         |         | TYR A |     | 23.501           | 22.397           | 75.432                 | 1.00 32.49               |
|                                              | 45   | ATOM         | 3086         |         | TYR A |     | 25.341           |                  |                        | 1.00 39.01               |
|                                              |      | ATOM         | 3087         | CE2     | TYR A | 392 | 23.281           | 21.184           | 76.094                 | 1.00 31.50               |
|                                              |      | ATOM         | 3088         | CZ      | TYR A | 392 | 24.206           | 20.743           | 77.035                 | 1.00 34.08               |
|                                              |      | ATOM         | 3089         | OH      | TYR A |     | 23.986           | 19.564           | 77.683                 | 1.00 36.46               |
|                                              | -    | MOTA         | 3090         | N       | LEU A |     | 25.101           | 23.067           | 72.310                 | 1.00 31.02               |
|                                              | 50   | MOTA         | 3091         | CA      | LEU A |     | 25.043           | 21.889           | 71.410                 | 1.00 29.65               |
|                                              |      | MOTA         | 3092         | С       | LEU A |     | 26.274           | 21.616           | 70.507                 | 1.00 32.03               |
|                                              |      | ATOM         | 3093         | 0       | LEU A |     | 26.664           | 20.468           | 70.267                 | 1.00 27.90               |
|                                              |      | ATOM         | 3094         | CB      | LEU A |     | 23.758           | 21.905           | 70.552                 | 1.00 28.85               |
|                                              | 55   | ATOM         | 3095         | CG      | LEU A |     | 22.489           | 21.688           | 71.375                 | 1.00 30.33               |
|                                              | 22   | ATOM         | 3096         |         | LEU A |     | 21.256           | 22.047           | 70.559                 | 1.00 27.38               |
|                                              |      | ATOM         | 3097         |         | LEU A |     | 22.400           | 20.246           | 71.865                 | 1.00 29.76               |
|                                              |      | ATOM         | 3098         | N<br>CA | GLU A |     | 26.841           | 22.701           | 69.980                 | 1.00 30.84               |
|                                              | 1    | ATOM<br>ATOM | 3099<br>3100 | CA<br>C | GLU A |     | 28.000<br>29.210 | 22.727<br>22.214 | 69.118                 | 1.00 30.05               |
|                                              | 60   | ATOM         | 3100         | 0       | GLU A |     | 30.089           | 21.595           | 69.868<br>69.299       | 1.00 39.16<br>1.00 42.14 |
|                                              | - 50 | ATOM         | 3102         | СВ      | GLU A |     | 28.300           | 24.204           | 68.756                 | 1.00 42.14               |
|                                              |      | ATOM         | 3103         | CG      | GLU A |     | 29.776           | 24.406           | 68.376                 | 1.00 31.03               |
|                                              |      | ATOM         | 3104         | CD      | GLU A |     | 30.182           | 25.830           | 68.208                 | 1.00 45.20               |
|                                              |      | ATOM         | 3105         |         | GLU A |     | 29.614           | 26.609           | 67.471                 | 1.00 56.77               |
|                                              |      | *            |              |         | -     | -   |                  |                  | - · · · <del>-</del> · |                          |

|             |     | ATOM | 3106 | OE2 | GLU A | 394 | 31.229 | 26.133 | 68.927 | 1.00 39.77 |
|-------------|-----|------|------|-----|-------|-----|--------|--------|--------|------------|
|             |     | ATOM | 3107 |     | GLN A |     | 29.256 | 22.534 | 71.160 | 1.00 34.20 |
|             |     | ATOM | 3108 |     | GLN A |     | 30.342 | 22.139 | 72.029 | 1.00 32.86 |
|             |     |      | _    |     |       |     |        | 20.690 | 72.435 | 1.00 32.00 |
|             | ~   | ATOM | 3109 |     | GLN A |     | 30.143 |        |        |            |
|             | 5   | ATOM | 3110 |     | GLN A |     | 31.066 | 19.899 | 72.507 | 1.00 38.67 |
|             |     | MOTA | 3111 | CB  | GLN A | 395 | 30.474 | 23.051 | 73.287 | 1.00 33.17 |
|             |     | ATOM | 3112 | CG  | GLN A | 395 | 30.831 | 24.540 | 72.996 | 1.00 13.79 |
|             |     | ATOM | 3113 | CD  | GLN A | 395 | 31.176 | 25.354 | 74.247 | 1.00 37.45 |
|             |     | ATOM | 3114 |     | GLN A |     | 30.909 | 24.959 | 75.407 | 1.00 26.89 |
|             | 10  |      |      |     | GLN A |     |        |        |        | 1.00 20.09 |
|             | 10  | ATOM | 3115 |     |       |     | 31.758 | 26.523 | 74.010 |            |
|             |     | MOTA | 3116 |     | LEU A |     | 28.903 | 20.352 | 72.682 | 1.00 38.68 |
|             |     | MOTA | 3117 | CA  | LEU A | 396 | 28.514 | 19.015 | 73.083 | 1.00 38.49 |
|             | 114 | MOTA | 3118 | C   | LEU A | 396 | 28.633 | 18.017 | 71.924 | 1.00 39.28 |
|             |     | MOTA | 3119 | 0   | LEU A | 396 | 29.012 | 16.871 | 72.100 | 1.00 42.17 |
|             | 15  | MOTA | 3120 |     | LEU A |     | 27.055 | 19.072 | 73.628 | 1.00 37.93 |
|             | 15  |      |      |     |       |     |        |        |        |            |
|             |     | ATOM | 3121 |     | LEU A |     | 26.389 | 17.732 | 73.946 | 1.00 42.72 |
|             |     | MOTA | 3122 |     | LEU A |     | 26.436 | 17.489 | 75.445 | 1.00 45.42 |
|             |     | MOTA | 3123 | CD2 | LEU A |     | 24.917 | 17.709 | 73.527 | 1.00 43.81 |
| in all      |     | MOTA | 3124 | N   | LEU A | 397 | 28.303 | 18.456 | 70.730 | 1.00 28.48 |
|             | 20  | MOTA | 3125 | CA  | LEU A | 397 | 28.337 | 17.595 | 69.589 | 1.00 25.49 |
| 1257        |     | MOTA | 3126 | С   | LEU A |     | 29.620 | 17.609 | 68.771 | 1.00 36.86 |
| ii.         |     |      |      |     |       |     |        |        |        |            |
| 44          |     | MOTA | 3127 | 0   | LEU A |     | 29.596 | 17.220 | 67.599 | 1.00 39.85 |
|             |     | MOTA | 3128 | CB  | LEU A |     | 27.156 | 17.924 | 68.686 | 1.00 23.73 |
| 2 days      |     | MOTA | 3129 | CG  | LEU A | 397 | 25.843 | 17.773 | 69.401 | 1.00 25.82 |
|             | 25  | MOTA | 3130 | CD1 | LEU A | 397 | 24.740 | 18,559 | 68.669 | 1.00 22.99 |
|             |     | ATOM | 3131 | CD2 | LEU A | 397 | 25.525 | 16.272 | 69.452 | 1.00 27.30 |
| ind.        |     | MOTA | 3132 | N   | GLY A |     | 30.731 | 18.069 | 69.342 | 1.00 33.98 |
|             |     |      |      | CA  | GLY A |     | 31.993 | 18.038 | 68.617 | 1.00 33.30 |
| ¥.          |     | MOTA | 3133 |     |       |     |        |        |        |            |
| hot.        | •   | MOTA | 3134 | С   | GLY A |     | 32.547 | 19.260 | 67.889 | 1.00 38.92 |
|             | 30  | ATOM | 3135 | 0   | GLY A |     | 33.502 | 19.097 | 67.115 | 1.00 39.98 |
| 11 THE      |     | MOTA | 3136 | N   | GLY A | 399 | 32.001 | 20.457 | 68.105 | 1.00 33.01 |
|             |     | ATOM | 3137 | CA  | GLY A | 399 | 32.543 | 21.650 | 67.440 | 1.00 30.35 |
| 14 mg       |     | ATOM | 3138 | С   | GLY A | 399 | 31.713 | 22.336 | 66.365 | 1.00 31.72 |
| 12.20       |     | MOTA | 3139 | ŏ   | GLY A |     | 30.800 | 21.823 | 65.762 | 1.00 34.57 |
| केंद्र अर्थ | 25  |      |      |     |       |     |        |        |        |            |
| la de       | 35  | ATOM | 3140 | N   | PRO A |     | 32.076 | 23.550 | 66.124 | 1.00 33.01 |
|             |     | ATOM | 3141 | CA  | PRO A |     | 31.429 | 24.406 | 65.151 | 1.00 35.02 |
|             |     | ATOM | 3142 | С   | PRO A | 400 | 31.379 | 23.794 | 63.750 | 1.00 43.93 |
|             |     | ATOM | 3143 | 0   | PRO A | 400 | 30.360 | 23.838 | 63.045 | 1.00 40.14 |
|             |     | ATOM | 3144 | CB  | PRO A | 400 | 32.293 | 25.672 | 65.111 | 1.00 35.73 |
|             | 40  | ATOM | 3145 | CG  | PRO A |     | 33.539 | 25.411 | 65.948 | 1.00 38.03 |
|             | 10  |      | 3146 | CD  | PRO A |     |        | 24.010 | 66.517 | 1.00 33.92 |
|             |     | MOTA |      |     |       |     | 33.423 |        |        |            |
|             |     | MOTA | 3147 | N   | GLU A |     | 32.512 | 23.237 | 63.345 | 1.00 43.85 |
|             |     | ATOM | 3148 | CA  | GLU A |     | 32.597 | 22.620 | 62.042 | 1.00 42.92 |
|             | 0_0 | ATOM | 3149 | С   | GLU A | 401 | 31.491 | 21.587 | 61.878 | 1.00 37.92 |
|             | 45  | ATOM | 3150 | 0   | GLU A | 401 | 30.810 | 21.588 | 60.866 | 1.00 33.79 |
|             |     | ATOM | 3151 | CB  | GLU A | 401 | 33.996 | 22.034 | 61.789 | 1.00 45.93 |
|             |     | ATOM | 3152 | CG  | GLU A |     | 34.578 | 22.372 | 60.398 | 1.00 69.62 |
|             |     | ATOM | 3153 | CD  | GLU A |     | 35.603 | 21.373 | 59.911 | 1.00100.00 |
|             |     | ,    |      |     |       |     |        |        |        |            |
|             | 50  | ATOM | 3154 |     | GLU A |     | 36.702 | 21.236 | 60.427 | 1.00100.00 |
|             | 50  | ATOM | 3155 | OE2 | GLU A |     | 35.195 | 20.689 | 58.865 | 1.00 93.16 |
|             |     | ATOM | 3156 | N   | ILE A | 402 | 31.317 | 20.720 | 62.902 | 1.00 34.58 |
|             |     | ATOM | 3157 | CA  | ILE A | 402 | 30.281 | 19.681 | 62.922 | 1.00 33.20 |
|             |     | ATOM | 3158 | С   | ILE A | 402 | 28.898 | 20.291 | 62.938 | 1.00 39.09 |
|             |     | ATOM | 3159 | ō   | ILE A |     | 28.065 | 19.896 | 62.133 | 1.00 41.43 |
|             | 55  |      |      |     |       |     |        |        |        |            |
|             | 23  | MOTA | 3160 | CB  | ILE A |     | 30.391 | 18.673 | 64.078 | 1.00 33.82 |
|             |     | MOTA | 3161 |     | ILE A |     | 31.490 | 17.661 | 63.811 | 1.00 34.70 |
|             |     | MOTA | 3162 | CG2 | ILE A | 402 | 29.080 | 17.900 | 64.287 | 1.00 23.32 |
|             |     | ATOM | 3163 | CD1 | ILE A | 402 | 31.878 | 16.896 | 65.080 | 1.00 49.20 |
|             |     | ATOM | 3164 | N   | PHE A |     | 28.668 | 21.246 | 63.868 | 1.00 32.73 |
|             | 60  | ATOM | 3165 | CA  | PHE A |     | 27.390 | 21.952 | 64.044 | 1.00 29.52 |
|             | 5.0 |      |      |     |       |     |        |        |        |            |
|             |     | ATOM | 3166 | С   | PHE A |     | 27.032 | 22.816 | 62.836 | 1.00 33.94 |
|             |     | MOTA | 3167 | 0   | PHE A |     | 25.866 | 23.022 | 62.469 | 1.00 34.15 |
|             |     | MOTA | 3168 | CB  | PHE A |     | 27.319 | 22.719 | 65.381 | 1.00 29.03 |
|             |     | ATOM | 3169 | CG  | PHE A | 403 | 25.917 | 22.783 | 65.929 | 1.00 28.54 |
|             |     |      |      |     |       |     |        |        |        |            |

|                    |       | ATOM | 3170 | CD1 | PHE A | 403 | 25.323 | 21.643 | 66.484          | 1.00 29.91 |
|--------------------|-------|------|------|-----|-------|-----|--------|--------|-----------------|------------|
|                    |       | ATOM | 3171 |     | PHE A |     | 25.176 | 23.964 | 65.873          | 1.00 27.62 |
|                    |       |      | 3172 |     |       |     |        |        |                 |            |
|                    |       | MOTA |      |     | PHE A |     | 24.021 | 21.667 | 66.990          | 1.00 27.38 |
|                    | _     | MOTA | 3173 |     | PHE A |     | 23.881 | 24.017 | 66.393          | 1.00 28.82 |
|                    | 5     | ATOM | 3174 | CZ  | PHE A |     | 23.304 | 22.863 | 66.932          | 1.00 25.72 |
|                    |       | ATOM | 3175 | N   | LEU A | 404 | 28.040 | 23.327 | 62.165          | 1.00 31.31 |
|                    |       | ATOM | 3176 | CA  | LEU A | 404 | 27.687 | 24.080 | 60.983          | 1.00 32.95 |
|                    |       | ATOM | 3177 | C   | LEU A |     | 27.068 | 23.099 | 59.952          | 1.00 32.89 |
|                    |       |      |      |     |       |     |        |        |                 |            |
|                    | 10    | ATOM | 3178 | 0   | LEU A |     | 26.050 | 23.361 | 59.315          | 1.00 37.36 |
|                    | 10    | ATOM | 3179 | СВ  | LEU A |     | 28.798 | 25.045 | 60.464          | 1.00 33.15 |
|                    |       | ATOM | 3180 | CG  | LEU A | 404 | 29.029 | 26.208 | 61.444          | 1.00 36.96 |
|                    |       | ATOM | 3181 | CD1 | LEU A | 404 | 30.454 | 26.717 | 61.353          | 1.00 37.13 |
|                    |       | ATOM | 3182 | CD2 | LEU A | 404 | 28.083 | 27.362 | 61.163          | 1.00 39.27 |
|                    |       | MOTA | 3183 | N   | GLY A |     | 27.670 | 21.921 | 59.826          |            |
|                    | 15    |      |      |     |       |     |        |        |                 | 1.00 22.02 |
|                    | 13    | MOTA | 3184 | CA  | GLY A |     | 27.167 | 20.908 | 58.928          | 1.00 22.77 |
|                    |       | ATOM | 3185 | С   | GLY A |     | 25.698 | 20.676 | 59.206          | 1.00 31.85 |
|                    |       | MOTA | 3186 | 0   | GLY A | 405 | 24.885 | 20.438 | 58.297          | 1.00 33.01 |
| 1                  |       | MOTA | 3187 | N   | PHE A | 406 | 25.364 | 20.747 | 60.493          | 1.00 26.28 |
|                    |       | MOTA | 3188 | CA  | PHE A | 406 | 23.992 | 20.565 | 60.863          | 1.00 25.27 |
| THE PARTY NAMED IN | 20    | ATOM | 3189 | C   | PHE A |     | 23.188 | 21.757 | 60.365          | 1.00 34.80 |
|                    | 20    |      |      |     |       |     |        |        |                 |            |
| 1                  |       | ATOM | 3190 | 0   | PHE A |     | 22.195 | 21.629 | 59.638          | 1.00 36.22 |
| 3=4.               |       | ATOM | 3191 | CB  | PHE A |     | 23.798 | 20.268 | 62.351          | 1.00 24.52 |
| III.               |       | ATOM | 3192 | CG  | PHE A | 406 | 22.388 | 20.525 | 62.798          | 1.00 24.82 |
| E STOR             |       | ATOM | 3193 | CD1 | PHE A | 406 | 21.328 | 19.734 | 62.353          | 1.00 28.50 |
| (F)                | 25    | ATOM | 3194 | CD2 | PHE A | 406 | 22.107 | 21.579 | 63.669          | 1.00 30.12 |
| LT.                |       | ATOM | 3195 |     | PHE A |     | 20.025 | 19.977 | 62.793          |            |
|                    |       |      |      |     |       |     |        |        |                 | 1.00 31.40 |
|                    |       | ATOM | 3196 |     | PHE A |     | 20.810 | 21.862 | 64.105          | 1.00 32.57 |
| 123                |       | ATOM | 3197 | CZ  | PHE A |     | 19.771 | 21.037 | 63.669          | 1.00 31.88 |
| -4                 |       | ATOM | 3198 | N   | LEU A | 407 | 23.661 | 22.934 | 60.708          | 1.00 32.11 |
| T.                 | 30    | ATOM | 3199 | CA  | LEU A | 407 | 22.972 | 24.132 | 60.269          | 1.00 33.11 |
|                    |       | ATOM | 3200 | С   | LEU A |     | 22.706 | 24.204 | 58.767          | 1.00 34.74 |
| M.                 |       | ATOM | 3201 | ō   | LEU A |     | 21.635 | 24.615 | 58.341          |            |
|                    |       |      |      |     |       |     |        |        |                 | 1.00 35.21 |
| 44 MC              |       | MOTA | 3202 | CB  | LEU A |     | 23.589 | 25.420 | 60.840          | 1.00 35.36 |
| 54 H               | -     | ATOM | 3203 | CG  | LEU A |     | 22.597 | 26.577 | 60.855          | 1.00 41.79 |
| A Ba               | 35    | MOTA | 3204 | CD1 | LEU A | 407 | 23.048 | 27.626 | 61.833          | 1.00 40.45 |
|                    |       | MOTA | 3205 | CD2 | LEU A | 407 | 22.513 | 27.197 | 59.461          | 1.00 49.57 |
|                    |       | MOTA | 3206 | N   | LYS A |     | 23.667 | 23.804 | 57.948          | 1.00 34.92 |
|                    |       | ATOM | 3207 | CA  | LYS A |     | 23.476 | 23.826 | 56.490          | 1.00 36.29 |
|                    |       | ATOM | 3208 | C   |       |     |        | 22.876 |                 |            |
|                    | 40    |      |      |     | LYS A |     | 22.378 |        | 56.037          | 1.00 38.15 |
|                    | 40    | ATOM | 3209 | 0   | LYS A |     | 21.568 | 23.191 | 55.160          | 1.00 35.09 |
|                    |       | ATOM | 3210 | CB  | LYS A |     | 24.747 | 23.517 | 55.707          | 1.00 40.54 |
|                    |       | ATOM | 3211 | CG  | LYS A | 408 | 24.633 | 23.873 | 54.214          | 1.00 43.41 |
|                    |       | MOTA | 3212 | CD  | LYS A | 408 | 25.950 | 23.796 | 53.422          | 1.00 49.26 |
|                    |       | ATOM | 3213 | CE  | LYS A |     | 26.808 | 25.059 | 53.459          | 1.00 61.45 |
|                    | 45    | ATOM | 3214 | NZ  | LYS A |     | 28.014 | 24.994 | 52.606          | 1.00 73.78 |
|                    | •••   | ATOM | 3215 |     |       |     |        |        |                 |            |
|                    |       |      |      | N   | ALA A |     | 22.352 | 21.690 | 56.655          | 1.00 35.34 |
|                    |       | ATOM | 3216 | CA  | ALA A |     | 21.333 | 20.698 | 56.298          | 1.00 36.14 |
|                    |       | ATOM | 3217 | С   | ALA A | 409 | 19.927 | 21.041 | 56.814          | 1.00 38.45 |
|                    |       | MOTA | 3218 | 0   | ALA A | 409 | 18.913 | 20.821 | 56.134          | 1.00 37.39 |
|                    | 50    | ATOM | 3219 | CB  | ALA A | 409 | 21.762 | 19.273 | 56,626          | 1.00 36.66 |
|                    |       | MOTA | 3220 | N   | TYR A |     | 19.902 | 21.597 | 58.030          | 1.00 33.14 |
|                    |       | MOTA | 3221 | CA  | TYR A |     | 18.693 | 22.059 | 58.682          | 1.00 29.65 |
|                    |       |      |      |     |       |     |        |        |                 |            |
|                    |       | MOTA | 3222 | C   | TYR A |     | 18.028 | 23.051 | 57.730          | 1.00 35.55 |
|                    | e- e- | ATOM | 3223 | 0   | TYR A |     | 16.855 | 22.976 | 57.399          | 1.00 37.26 |
|                    | 55    | MOTA | 3224 | CB  | TYR A | 410 | 19.117 | 22.762 | 59 <b>.9</b> 70 | 1.00 24.67 |
|                    |       | MOTA | 3225 | CG  | TYR A | 410 | 18.069 | 23.643 | 60.541          | 1.00 26.95 |
|                    |       | ATOM | 3226 |     | TYR A |     | 16.861 | 23.112 | 60.990          | 1.00 28.10 |
|                    |       | ATOM | 3227 |     | TYR A |     | 18.288 | 25.015 | 60.663          |            |
|                    |       |      |      |     |       |     |        |        |                 | 1.00 29.66 |
| -                  | 60    | ATOM | 3228 |     | TYR A |     | 15.883 | 23.924 | 61.571          | 1.00 26.98 |
|                    | 60    | ATOM | 3229 |     | TYR A |     | 17.316 | 25.839 | 61.230          | 1.00 31.84 |
|                    |       | ATOM | 3230 | CZ  | TYR A |     | 16.112 | 25.294 | 61.685          | 1.00 37.49 |
|                    |       | ATOM | 3231 | OH  | TYR A | 410 | 15.156 | 26.110 | 62.241          | 1.00 33.48 |
|                    |       | ATOM | 3232 | N   | VAL A |     | 18.848 | 23.961 | 57.262          | 1.00 28.75 |
|                    |       | ATOM | 3233 | CA  | VAL A |     | 18.457 | 24.984 | 56.341          | 1.00 29.23 |
|                    |       |      | 7.7  |     |       | 177 |        | 21.501 | 50.031          | 42.23      |
|                    |       |      |      |     |       |     |        |        |                 |            |

|            | ATOM | 3234   | С   | VAL A   | 411 | 18.013 | 24.469 | E4 000 | 1 00 04 00 |
|------------|------|--------|-----|---------|-----|--------|--------|--------|------------|
|            |      |        |     |         |     |        |        | 54.992 | 1.00 34.00 |
|            | ATOM | 3235   | 0   | VAL A   |     | 17.060 | 24.982 | 54.401 | 1.00 30.00 |
|            | MOTA | 3236   | CB  | VAL A   | 411 | 19.617 | 25.922 | 56.139 | 1.00 32.22 |
|            | ATOM | 3237   | CGI | VAL A   | 411 | 19.331 |        |        |            |
| 5          |      |        |     |         |     |        | 26.821 | 54.950 | 1.00 29.86 |
| <b>J</b> . | MOTA | 3238   |     | VAL A   |     | 19.850 | 26.708 | 57.431 | 1.00 31.69 |
|            | ATOM | 3239   | N   | GLU A   | 412 | 18.730 | 23.479 | 54.488 | 1.00 33.14 |
|            | MOTA | 3240   | CA  | GLU A   |     |        |        |        |            |
|            |      |        |     |         |     |        | 22.900 | 53.217 | 1.00 31.91 |
|            | ATOM | 3241   | С   | GLU A   | 412 | 17.068 | 22.163 | 53.355 | 1.00 30.32 |
|            | ATOM | 3242   | 0   | GLU A   | 412 | 16.182 | 22.225 | 52.531 | 1.00 31.89 |
| 10         | ATOM | 3243   | CB  | GLU A   |     |        |        |        |            |
| 10         |      |        |     |         |     | 19.502 | 21.883 | 52.932 | 1.00 36.48 |
|            | ATOM | 3244   | CG  | GLU A   | 412 | 20.443 | 22.174 | 51.737 | 1.00 67.01 |
|            | ATOM | 3245   | CD  | GLU A   | 412 | 21.872 | 21.699 | 51.962 | 1.00100.00 |
|            | ATOM | 3246   |     | GLU A   |     |        |        |        |            |
|            |      |        |     |         |     | 22.193 | 20.782 | 52.716 | 1.00100.00 |
|            | ATOM | 3247   | OE2 | GLU A   | 412 | 22.750 | 22.396 | 51.277 | 1.00 94.73 |
| 15         | ATOM | 3248   | N   | LYS A   | 413 | 16.922 | 21.444 | 54.444 |            |
|            | ATOM | 3249   | CA  |         |     |        |        |        | 1.00 22.18 |
|            |      |        |     | LYS A   |     | 15.729 | 20.692 | 54.714 | 1.00 17.91 |
|            | ATOM | 3250   | С   | LYS A   | 413 | 14.463 | 21.486 | 54.855 | 1.00 23.75 |
|            | ATOM | 3251   | 0   | LYS A   | 413 | 13.417 | 20.978 |        |            |
|            |      |        |     |         |     |        |        | 54.503 | 1.00 25.92 |
| 20         | ATOM | 3252   | CB  | LYS A   |     | 15.890 | 19.911 | 55.988 | 1.00 15.65 |
| 20         | ATOM | 3253   | CG  | LYS A   | 413 | 14.554 | 19.422 | 56.503 | 1.00 38.69 |
|            | ATOM | 3254   | CD  | LYS A   |     |        |        |        |            |
|            |      |        |     |         |     | 14.150 | 18.089 | 55.903 | 1.00 58.11 |
|            | ATOM | 3255   | CE  | LYS A   | 413 | 13.634 | 17.099 | 56.937 | 1.00 64.98 |
|            | ATOM | 3256   | NZ  | LYS A   | 413 | 13.457 | 15.751 | 56.381 |            |
|            | ATOM | 3257   | N   |         |     |        |        |        | 1.00 73.89 |
| 25         |      |        |     | PHE A   |     | 14.530 | 22.688 | 55.424 | 1.00 25.40 |
| 23         | MOTA | 3258   | CA  | PHE A   | 414 | 13.316 | 23.479 | 55.640 | 1.00 27.80 |
|            | ATOM | 3259   | С   | PHE A   | 414 | 13.151 | 24.748 | 54.821 |            |
|            | ATOM | 3260   | O   |         |     |        |        |        | 1.00 35.82 |
|            |      |        |     | PHE A   |     | 12.276 | 25.557 | 55.122 | 1.00 35.17 |
|            | ATOM | 3261   | CB  | PHE A   | 414 | 13.063 | 23.791 | 57.118 | 1.00 30.46 |
|            | ATOM | 3262   | CG  | PHE A   | 414 | 12.936 | 22.553 | 57.964 |            |
| 30         | ATOM | 3263   |     | PHE A   |     |        |        |        | 1.00 33.88 |
| 50         |      |        | CDI | FRE A   | 414 | 11.746 | 21.826 | 57.996 | 1.00 35.94 |
|            | ATOM | 3264   |     | PHE A   |     | 14.005 | 22.110 | 58.742 | 1.00 37.75 |
|            | ATOM | 3265   | CE1 | PHE A   | 414 | 11.629 | 20.664 | 58.761 |            |
|            | ATOM | 3266   |     |         |     |        |        |        | 1.00 37.77 |
|            |      |        |     | PHE A   |     | 13.888 | 20.962 | 59.526 | 1.00 42.23 |
|            | ATOM | · 3267 | CZ  | PHE A   | 414 | 12.698 | 20.231 | 59.542 | 1.00 39.10 |
| 35         | ATOM | 3268   | N   | SER A   | 415 | 13.970 | 24.933 |        |            |
|            | ATOM | 3269   | CA  |         |     |        |        | 53.795 | 1.00 36.12 |
|            |      |        |     | SER A   |     | 13.858 | 26.115 | 52.945 | 1.00 36.36 |
|            | ATOM | 3270   | С   | SER A   | 415 | 12.412 | 26.295 | 52.510 | 1.00 38.99 |
|            | ATOM | 3271   | 0   | SER A   | 415 | 11.730 | 25.315 | 52.243 |            |
|            | ATOM | 3272   | CB  | SER A   |     |        |        |        | 1.00 41.04 |
| 40         |      |        |     |         |     | 14.773 | 26.008 | 51.736 | 1.00 37.43 |
| 40         | MOTA | 3273   | OG  | SER A   | 415 | 16.036 | 26.566 | 52.046 | 1.00 46.73 |
|            | ATOM | 3274   | N   | TYR A   | 416 | 11.928 | 27.537 | 52.475 |            |
|            | ATOM | 3275   | CA  | TYR A   |     |        |        |        | 1.00 33.40 |
|            |      |        |     |         |     | 10.541 | 27.832 | 52.072 | 1.00 30.88 |
|            | ATOM | 3276   | С   | TYR A   | 416 | 9.453  | 27.183 | 52.947 | 1.00 33.62 |
|            | ATOM | 3277   | 0   | TYR A   | 416 | 8.295  | 27.095 | 52.546 |            |
| 45         | ATOM | 3278   |     | TYR A   |     |        |        |        | 1.00 33.44 |
|            |      |        |     |         |     |        | 27.479 | 50.584 | 1.00 28.42 |
|            | MOTA | 3279   | CG  | TYR A   |     | 11.496 | 27.782 | 49.723 | 1.00 24.76 |
|            | ATOM | 3280   | CD1 | TYR A   | 416 | 11.791 | 29.087 | 49.338 | 1.00 26.55 |
|            | ATOM | 3281   |     | TYR A   |     | 12.375 |        |        |            |
|            | ATOM |        | OPI | T11( 1) | 110 |        | 26.778 | 49.335 | 1.00 21.68 |
| 50         |      | 3282   |     | TYR A   |     | 12.914 | 29.384 | 48.570 | 1.00 25.16 |
| 50         | ATOM | 3283   | CE2 | TYR A   | 416 | 13.504 | 27.052 | 48.572 | 1.00 20.15 |
|            | ATOM | 3284   | CZ  | TYR A   |     |        |        |        |            |
|            |      |        |     |         |     |        | 28.360 | 48.189 | 1.00 30.62 |
|            | ATOM | 3285   |     | TYR A   |     | 14.892 | 28.616 | 47.399 | 1.00 35.15 |
|            | ATOM | 3286   | N   | LYS A   | 417 | 9.823  | 26.713 | 54.122 | 1.00 27.67 |
|            | ATOM | 3287   |     | LYS A   |     |        |        |        |            |
| 55         |      |        |     |         |     |        | 26.065 | 55.008 | 1.00 28.02 |
| 23         | ATOM | 3288   | С   | LYS A   | 417 | 8.733  | 26.830 | 56.317 | 1.00 31.36 |
|            | ATOM | 3289   | 0   | LYS A   | 417 |        | 27.671 | 56.682 |            |
|            | ATOM | 3290   |     |         |     |        |        |        | 1.00 33.15 |
|            |      |        |     | LYS A   |     |        | 24.615 | 55.252 | 1.00 33.86 |
|            | ATOM | 3291   | CG  | LYS A   | 417 | 8.449  | 23.792 | 56.201 | 1.00 86.28 |
|            | ATOM | 3292   |     | LYS A   |     |        | 22.275 | 56.232 |            |
| 60         | ATOM | 3293   |     |         |     |        |        |        | 1.00100.00 |
|            |      |        |     | LYS A   |     |        | 21.471 | 57.265 | 1.00 72.28 |
|            | ATOM | 3294   |     | LYS A   |     | 8.280  | 20.033 | 57.323 | 1.00 41.88 |
|            | MOTA | 3295   | N   | SER A   | 418 |        | 26.557 | 57.033 |            |
|            | ATOM | 3296   |     | SER A   |     |        |        |        | 1.00 28.88 |
|            |      |        |     |         |     |        | 27.195 | 58.335 | 1.00 30.04 |
|            | ATOM | 3297   | C   | SER A   | 418 | 7.425  | 26.064 | 59.332 | 1.00 34.09 |
|            |      |        |     |         |     | 8      |        |        |            |

|                       |            | ATOM | 3298 | 0   | SER A | 418 | 6.614  | 25.145 | 59.193 | 1 00 | 31.54 |
|-----------------------|------------|------|------|-----|-------|-----|--------|--------|--------|------|-------|
|                       |            | ATOM | 3299 | СВ  | SER A |     | 6.261  | 28.126 | 58.410 |      | 31.46 |
|                       |            | ATOM | 3300 | OG  |       |     |        |        |        |      |       |
|                       |            |      |      |     | SER A |     | 6.417  | 29.106 | 57.399 |      | 35.01 |
|                       | -          | ATOM | 3301 | N   | ILE A |     | 8.356  | 26.077 | 60.281 |      | 28.50 |
|                       | 5          | ATOM | 3302 | CA  | ILE A |     | 8.446  | 24.971 | 61.205 |      | 23.86 |
|                       |            | MOTA | 3303 | С   | ILE A |     | 8.272  | 25.342 | 62.641 | 1.00 | 25.06 |
|                       |            | MOTA | 3304 | 0   | ILE A | 419 | 8.122  | 26.500 | 63.002 | 1.00 | 21.64 |
|                       |            | MOTA | 3305 | CB  | ILE A | 419 | 9.803  | 24.314 | 61.026 | 1.00 | 25.02 |
|                       |            | MOTA | 3306 | CG1 | ILE A | 419 | 10.863 | 25.325 | 61.399 |      | 23.63 |
|                       | 10         | ATOM | 3307 |     | ILE A |     | 10.051 | 23.937 | 59.565 |      | 23.22 |
|                       | 10         | ATOM | 3308 |     | ILE A |     | 12.236 | 24.688 | 61.253 |      | 23.48 |
|                       |            |      | 3309 |     | THR A |     |        |        |        |      |       |
|                       |            | ATOM |      | N   |       |     | 8.321  | 24.302 | 63.455 |      | 24.71 |
|                       |            | ATOM | 3310 | CA  | THR A |     | 8.201  | 24.417 | 64.895 |      | 24.36 |
|                       |            | ATOM | 3311 | С   | THR A |     | 9.416  | 23.795 | 65.538 |      | 28.90 |
|                       | 15         | MOTA | 3312 | 0   | THR A |     | 10.190 | 23.112 | 64.863 | 1.00 | 23.38 |
|                       |            | ATOM | 3313 | CB  | THR A | 420 | 6.979  | 23.691 | 65.448 | 1.00 | 24.92 |
|                       |            | MOTA | 3314 | OG1 | THR A | 420 | 7.190  | 22.313 | 65.291 | 1.00 | 26.43 |
|                       |            | MOTA | 3315 |     | THR A |     | 5.728  | 24.082 | 64.694 |      | 31.57 |
| and the               |            | MOTA | 3316 | N   | THR A |     | 9.542  | 24.051 | 66.855 |      | 29.30 |
| 100                   | 20         | ATOM | 3317 | CA  | THR A |     | 10.610 | 23.549 | 67.709 |      |       |
| £4 ##¢                | 20         |      | 3318 | C   | THR A |     |        |        |        |      | 27.78 |
| 43                    |            | ATOM |      |     |       |     | 10.831 | 22.035 | 67.585 |      | 30.99 |
| i.4.                  |            | ATOM | 3319 | 0   | THR A |     | 11.975 | 21.594 | 67.489 | 1.00 | 33.28 |
|                       |            | ATOM | 3320 | CB  | THR A |     | 10.394 | 23.969 | 69.166 | 1.00 | 21.94 |
| Higher<br>Test        |            | ATOM | 3321 | OG1 | THR A | 421 | 10.567 | 25.369 | 69.263 | 1.00 | 24.52 |
| संबंधार<br>इसके       | 25         | MOTA | 3322 | CG2 | THR A | 421 | 11.399 | 23.221 | 70.045 |      | 20.12 |
|                       |            | MOTA | 3323 | N   | ASP A |     | 9.721  | 21.272 | 67.575 |      | 21.94 |
| . 1997 PA             |            | ATOM | 3324 | CA  | ASP A |     | 9.706  | 19.823 | 67.430 |      |       |
| i i                   |            | ATOM | 3325 | C   | ASP A |     |        |        |        |      | 21.08 |
| · 107                 |            |      |      |     |       |     | 10.323 | 19.401 | 66.104 |      | 31.16 |
| g=40                  | 30         | ATOM | 3326 | 0_  | ASP A |     | 11.110 | 18.427 | 66.027 |      | 31.95 |
| # D                   | 30         | ATOM | 3327 | СВ  | ASP A |     | 8.276  | 19.278 | 67.561 |      | 19.49 |
| 12 (125)<br>1925 - 35 |            | ATOM | 3328 | CG  | ASP A |     | 8.236  | 17.802 | 67.298 | 1.00 | 31.85 |
|                       |            | ATOM | 3329 | ODl | ASP A | 422 | 9.130  | 17.040 | 67.654 | 1.00 | 29.73 |
| 49                    |            | ATOM | 3330 | OD2 | ASP A | 422 | 7.197  | 17.415 | 66.598 | 1.00 | 56.60 |
| 140                   |            | ATOM | 3331 | N   | ASP A | 423 | 9.957  | 20.146 | 65.049 |      | 26.75 |
| 35.00                 | 35         | MOTA | 3332 | CA  | ASP A |     | 10.505 | 19.876 | 63.729 |      | 26.01 |
| in the                | -          | ATOM | 3333 | C   | ASP A |     | 12.027 | 19.957 | 63.830 |      | 40.09 |
|                       |            | MOTA | 3334 | Õ   | ASP A |     | 12.753 |        |        |      |       |
|                       |            | ATOM | 3335 | CB  | ASP A |     |        | 19.020 | 63.500 |      | 47.09 |
|                       |            |      |      |     |       |     | 10.000 | 20.833 | 62.631 |      | 24.86 |
|                       | 40         | ATOM | 3336 | CG  | ASP A |     | 8.538  | 20.722 | 62.343 |      | 39.90 |
|                       | 40         | ATOM | 3337 |     | ASP A |     | 7.968  | 19.649 | 62.299 | 1.00 | 45.03 |
|                       |            | ATOM | 3338 | OD2 | ASP A |     | 7.943  | 21.887 | 62.113 | 1.00 | 40.43 |
|                       |            | ATOM | 3339 | N   | TRP A | 424 | 12.493 | 21.099 | 64.320 | 1.00 | 31.92 |
|                       |            | ATOM | 3340 | CA  | TRP A | 424 | 13.903 | 21.372 | 64.495 | 1.00 | 29.69 |
|                       |            | ATOM | 3341 | С   | TRP A | 424 | 14.611 | 20.271 | 65.282 |      | 33.81 |
|                       | 45         | MOTA | 3342 | 0   | TRP A | 424 | 15.537 | 19.616 | 64.824 |      | 35.87 |
|                       |            | MOTA | 3343 | CB  | TRP A |     | 14.056 | 22.711 | 65.239 |      | 26.11 |
|                       |            | ATOM | 3344 | CG  | TRP A |     | 15.431 | 22.869 | 65.786 |      |       |
|                       |            | ATOM | 3345 |     |       |     |        |        |        |      | 27.05 |
|                       |            |      |      |     | TRP A |     | 16.518 | 23.302 | 65.101 |      | 29.65 |
|                       | 50         | ATOM | 3346 |     | TRP A |     | 15.885 | 22.587 | 67.119 |      | 26.62 |
|                       | 50         | MOTA | 3347 |     | TRP A |     | 17.612 | 23.321 | 65.922 |      | 27.83 |
|                       |            | ATOM | 3348 |     | TRP A |     | 17.257 | 22.891 | 67.163 | 1.00 | 28.62 |
|                       |            | ATOM | 3349 |     | TRP A |     | 15.260 | 22.138 | 68.269 | 1.00 | 29.69 |
|                       |            | ATOM | 3350 | CZ2 | TRP A | 424 | 18.010 | 22.758 | 68.319 |      | 29.28 |
|                       |            | MOTA | 3351 |     | TRP A |     | 16.000 | 21.993 | 69.429 |      | 33.50 |
|                       | 55         | MOTA | 3352 |     | TRP A |     | 17.362 | 22.317 | 69.459 |      | 33.93 |
|                       |            | ATOM | 3353 | N   | LYS A |     | 14.156 | 20.090 | 66.497 |      |       |
|                       |            | ATOM | 3354 | CA  |       |     |        |        |        |      | 28.75 |
|                       |            |      |      |     | LYS A |     | 14.723 | 19.105 | 67.373 |      | 29.43 |
|                       |            | ATOM | 3355 | C   | LYS A |     | 14.697 | 17.691 | 66.808 |      | 29.49 |
|                       | <i>د</i> م | ATOM | 3356 | 0   | LYS A |     | 15.627 | 16.928 | 67.030 | 1.00 | 27.65 |
|                       | 60         | MOTA | 3357 | CB  | LYS A |     | 14.078 | 19.171 | 68.744 | 1.00 | 29.70 |
|                       |            | ATOM | 3358 | CG  | LYS A | 425 | 14.860 | 18.414 | 69.787 |      | 28.11 |
|                       |            | ATOM | 3359 | CD  | LYS A |     | 14.161 | 18.409 | 71.132 |      | 23.57 |
|                       |            | MOTA | 3360 | CE  | LYS A |     | 14.300 | 17.063 | 71.815 |      | 36.16 |
|                       |            | MOTA | 3361 | NZ  | LYS A |     | 13.042 | 16.302 | 71.768 |      | 58.08 |
|                       |            |      |      |     |       |     |        |        |        | _ ,  | ~~~~  |

|           | ATOM | 3362 | N   | ASP A 4 | 126   | 13.606 | 17.361 | 66.107 | 1.00 19.05 |
|-----------|------|------|-----|---------|-------|--------|--------|--------|------------|
|           | ATOM | 3363 | CA  | ASP A 4 |       | 13.417 | 16.070 | 65.516 | 1.00 19.03 |
|           | ATOM | 3364 | C   | ASP A 4 |       |        |        |        |            |
|           |      |      |     |         |       | 14.453 | 15.879 | 64.387 | 1.00 28.33 |
| <u>.</u>  | ATOM | 3365 | 0   | ASP A 4 |       | 15.070 | 14.832 | 64.232 | 1.00 31.25 |
| 5         | ATOM | 3366 | CB  | ASP A 4 |       | 11.920 | 15.840 | 65.098 | 1.00 19.79 |
|           | ATOM | 3367 | CG  | ASP A 4 | 126   | 10.998 | 15.575 | 66.274 | 1.00 25.54 |
|           | ATOM | 3368 | OD1 | ASP A 4 | 126 · | 11.341 | 15,466 | 67.409 | 1.00 29.73 |
|           | MOTA | 3369 |     | ASP A 4 |       | 9.804  | 15.611 | 65.938 | 1.00 20.67 |
|           | ATOM | 3370 | N   | PHE A 4 |       | 14.674 | 16.926 | 63.612 |            |
| 10        |      |      |     |         |       |        |        |        | 1.00 25.09 |
| 10        | ATOM | 3371 | CA  | PHE A 4 |       | 15.654 | 16.899 | 62.540 | 1.00 25.81 |
|           | ATOM | 3372 | С   | PHE A 4 |       | 17.066 | 16.718 | 63.159 | 1.00 34.01 |
|           | MOTA | 3373 | 0   | PHE A 4 | 127   | 17.843 | 15.851 | 62.773 | 1.00 36.25 |
|           | MOTA | 3374 | CB  | PHE A 4 | 127   | 15.589 | 18.197 | 61.704 | 1.00 26.35 |
|           | ATOM | 3375 | CG  | PHE A 4 | 127   | 16.698 | 18.202 | 60.702 | 1.00 27.40 |
| 15        | MOTA | 3376 | CD1 | PHE A 4 |       | 16.714 | 17.247 | 59.686 | 1.00 29.97 |
|           | ATOM | 3377 |     | PHE A 4 |       | 17.773 | 19.084 | 60.805 |            |
|           |      | 3378 |     | PHE A 4 |       |        |        |        | 1.00 28.71 |
|           | ATOM |      |     |         |       | 17.730 | 17.194 | 58.733 | 1.00 27.72 |
|           | ATOM | 3379 | CE2 | PHE A 4 |       | 18.806 | 19.046 | 59.867 | 1.00 30.37 |
|           | MOTA | 3380 | CZ  | PHE A 4 | 127   | 18.780 | 18.104 | 58.837 | 1.00 26.34 |
| 20        | MOTA | 3381 | N   | LEU A 4 | 128   | 17.369 | 17.544 | 64.160 | 1.00 28.94 |
|           | MOTA | 3382 | CA  | LEU A 4 | 128   | 18.622 | 17.496 | 64.924 | 1.00 27.74 |
| * * .     | ATOM | 3383 | С   | LEU A 4 |       | 18.989 | 16.047 | 65.303 | 1.00 32.08 |
|           | ATOM | 3384 | ŏ   | LEU A 4 |       | 20.145 |        |        |            |
|           |      |      |     |         |       |        | 15.647 | 65.209 | 1.00 36.38 |
| 25        | ATOM | 3385 | CB  | LEU A 4 |       | 18.510 | 18.362 | 66.223 | 1.00 24.68 |
| 25        | ATOM | 3386 | CG  | LEU A 4 |       | 19.778 | 18.377 | 67.079 | 1.00 24.30 |
|           | MOTA | 3387 | CD1 |         |       | 20.855 | 19.278 | 66.467 | 1.00 23.00 |
|           | ATOM | 3388 | CD2 | LEU A 4 | 128   | 19.446 | 18.856 | 68.481 | 1.00 16.41 |
|           | ATOM | 3389 | N   | TYR A 4 |       | 17.991 | 15.271 | 65.735 | 1.00 23.71 |
|           | ATOM | 3390 | CA  | TYR A 4 |       | 18.148 | 13.896 | 66.144 | 1.00 23.18 |
| 30        | ATOM | 3391 | C   | TYR A 4 |       |        |        |        |            |
| 50        |      |      |     |         |       | 18.311 | 12.967 | 64.976 | 1.00 26.62 |
|           | ATOM | 3392 | 0   | TYR A 4 |       | 18.911 | 11.910 | 65.076 | 1.00 28.43 |
|           | ATOM | 3393 | CB  | TYR A 4 |       | 16.921 | 13.453 | 66.914 | 1.00 25.59 |
|           | ATOM | 3394 | CG  | TYR A 4 |       | 17.069 | 13.526 | 68.414 | 1.00 29.53 |
|           | MOTA | 3395 | CD1 | TYR A 4 | 129   | 16.823 | 14.714 | 69.114 | 1.00 31.11 |
| 35        | ATOM | 3396 | CD2 | TYR A 4 | 129   | 17.361 | 12.383 | 69.156 | 1.00 32.70 |
|           | ATOM | 3397 | CE1 | TYR A 4 |       | 16.916 | 14.769 | 70.510 | 1.00 32.23 |
|           | ATOM | 3398 | CE2 | TYR A 4 |       | 17.485 | 12.420 | 70.551 |            |
|           | ATOM | 3399 | CZ  | TYR À 4 |       |        |        |        | 1.00 35.30 |
|           |      |      |     |         |       | 17.251 | 13.623 | 71.231 | 1.00 41.02 |
| 40        | MOTA | 3400 | OH  | TYR A 4 |       | 17.339 | 13.679 | 72.609 | 1.00 30.02 |
| 40        | ATOM | 3401 | N   | SER A 4 |       | 17.748 | 13.342 | 63.854 | 1.00 21.68 |
|           | ATOM | 3402 | CA  | SER A 4 | 130   | 17.914 | 12.469 | 62.730 | 1.00 23.42 |
|           | MOTA | 3403 | С   | SER A 4 | 130   | 19.264 | 12.722 | 62.050 | 1.00 32.87 |
|           | ATOM | 3404 | 0   | SER A 4 | 130   | 19.879 | 11.819 | 61.467 | 1.00 35.11 |
|           | ATOM | 3405 | CB  | SER A 4 | 130   | 16.756 | 12.541 | 61.773 | 1.00 28.79 |
| 45        | ATOM | 3406 | OG  | SER A 4 |       | 17.089 | 13.475 | 60.777 | 1.00 20.75 |
|           | ATOM | 3407 | N   | TYR A 4 |       |        |        |        |            |
|           |      |      |     |         |       | 19.748 | 13.955 | 62.132 | 1.00 27.18 |
|           | ATOM | 3408 | CA  | TYR A 4 |       | 21.017 | 14.296 | 61.537 | 1.00 27.14 |
|           | MOTA | 3409 | С   | TYR A 4 |       | 22.152 | 13.702 | 62.316 | 1.00 32.52 |
| 50        | ATOM | 3410 | 0   | TYR A 4 |       | 23.155 | 13.242 | 61.771 | 1.00 33.64 |
| 50        | ATOM | 3411 | CB  | TYR A 4 | 131   | 21.216 | 15.818 | 61.385 | 1.00 31.07 |
|           | ATOM | 3412 | CG  | TYR A 4 | 131   | 22.566 | 16.265 | 60.812 | 1.00 35.63 |
|           | ATOM | 3413 |     | TYR A 4 |       | 23.663 | 16.492 | 61.650 | 1.00 36.88 |
|           | ATOM | 3414 |     | TYR A 4 |       | 22.735 | 16.496 |        |            |
|           | ATOM | 3415 |     | TYR A 4 |       |        |        | 59.444 | 1.00 36.92 |
| <b>55</b> |      |      |     |         |       | 24.894 | 16.924 | 61.157 | 1.00 33.78 |
| 23        | ATOM | 3416 | CE2 | TYR A 4 |       | 23.964 | 16.916 | 58.924 | 1.00 37.86 |
|           | MOTA | 3417 | CZ  | TYR A 4 |       | 25.038 | 17.143 | 59.786 | 1.00 46.01 |
|           | ATOM | 3418 | OH  | TYR A 4 | 131   | 26.247 | 17.573 | 59.294 | 1.00 51.28 |
|           | ATOM | 3419 | N   | PHE A 4 | 132   | 21.964 | 13.728 | 63.606 | 1.00 29.66 |
|           | ATOM | 3420 | CA  | PHE A 4 |       | 22.939 | 13.215 | 64.526 | 1.00 29.12 |
| 60        | ATOM | 3421 | C   | PHE A 4 |       | 22.522 | 11.865 | 65.007 | 1.00 23.12 |
|           | ATOM | 3422 | Ö   | PHE A 4 |       |        |        |        |            |
|           | ATOM | 3423 | СВ  |         |       | 22.499 | 11.593 | 66.197 | 1.00 46.77 |
|           |      |      |     | PHE A 4 |       | 23.063 | 14.157 | 65.719 | 1.00 30.24 |
|           | ATOM | 3424 | CG  | PHE A 4 |       | 23.962 | 15.327 | 65.401 | 1.00 33.03 |
|           | MOTA | 3425 | CDI | PHE A 4 | 132   | 25.336 | 15.113 | 65.277 | 1.00 37.22 |
|           |      |      |     |         |       |        |        |        |            |

|                           | MOTA         | 3426         |         | PHE A |     | 23.470           | 16.624           | 65.232           | 1.00 30.70               |
|---------------------------|--------------|--------------|---------|-------|-----|------------------|------------------|------------------|--------------------------|
|                           | MOTA         | 3427         |         | PHE A |     | 26.223           | 16.153           | 64.999           | 1.00 34.27               |
|                           | ATOM         | 3428         |         | PHE A |     | 24.349           | 17.667           | 64.938           | 1.00 31.71               |
| _                         | ATOM         | 3429         | CZ      | PHE A |     | 25.722           | 17.438           | 64.823           | 1.00 27.82               |
| 5                         | ATOM         | 3430         | N       | LYS A |     | 22.174           | 11.029           | 64.063           | 1.00 42.50               |
|                           | ATOM         | 3431         | CA      | LYS A |     | 21.669           | 9.670            | 64.270           | 1.00 40.87               |
|                           | ATOM         | 3432         | С       | LYS A |     | 22.718           | 8.751            | 64.908           | 1.00 46.17               |
|                           | ATOM         | 3433         | 0       | LYS A |     | 22.405           | 7.734            | 65.513           | 1.00 48.48               |
|                           | MOTA         | 3434         | CB      | LYS A |     | 21.245           | 9.106            | 62.917           | 1.00 39.25               |
| 10                        | ATOM         | 3435         | CG      | LYS A |     | 19.988           | 8.241            | 63.017           | 1.00 84.17               |
|                           | MOTA         | 3436         | CD      | LYS A |     | 18.925           | 8.660            | 62.000           | 1.00100.00               |
|                           | MOTA         | 3437         | CE      | LYS A | 433 | 17.523           | 8.172            | 62.384           | 1.00100.00               |
|                           | MOTA         | 3438         | NZ      | LYS A | 433 | 16.525           | 9.119            | 61.884           | 1.00100.00               |
| * *                       | MOTA         | 3439         | N       | ASP A |     | 24.002           | 9.112            | 64.697           | 1.00 45.20               |
| 15                        | MOTA         | 3440         | CA      | ASP A |     | 25.083           | 8.349            | 65.321           | 1.00 47.80               |
|                           | MOTA         | 3441         | С       | ASP A |     | 25.201           | 8.684            | 66.802           | 1.00 50.78               |
|                           | MOTA         | 3442         | 0       | ASP A |     | 25.474           | 7.845            | 67.653           | 1.00 55.76               |
| . C 10.                   | ATOM         | 3443         | CB      | ASP A |     | 26.405           | 8.567            | 64.562           | 1.00 53.91               |
| G                         | ATOM         | 3444         | CG      | ASP A |     | 26.123           | 8.474            | 63.069           | 1.00 93.32               |
| 20                        | ATOM         | 3445         |         | ASP A |     | 25.744           | 7.573            | 62.325           | 1.00 96.22               |
| 200                       | MOTA         | 3446         | OD2     | ASP A |     | 26.119           | 9.664            | 62.753           | 1.00100.00               |
| ge Si.                    | ATOM         | 3447         | N       | LYS A |     | 25.015           | 9.978            | 67.085           | 1.00 38.82               |
| 170                       | MOTA         | 3448         | CA      | LYS A | 435 | 24.974           | 10.404           | 68.468           | 1.00 34.57               |
| 25                        | ATOM         | 3449         | С       | LYS A | 435 | 23.549           | 10.749           | 68.881           | 1.00 39.87               |
| 25                        | MOTA         | 3450         | 0       | LYS A | 435 | 23.070           | 11.840           | 68.693           | 1.00 40.34               |
|                           | MOTA         | 3451         | CB      | LYS A |     | 25.864           | 11.631           | 68.615           | 1.00 34.69               |
| 1-4-                      | ATOM         | 3452         | CG      | LYS A |     | 27.064           | 11.595           | 67.679           | 1.00 40.86               |
| 麗 -                       | ATOM         | 3453         | CD      | LYS A |     | 27.703           | 12.975           | 67.532           | 1.00 51.04               |
| }-A-                      | ATOM         | 3454         | CE      | LYS A | 435 | 29.242           | 12.904           | 67.557           | 1.00 24.08               |
| 30                        | ATOM         | 3455         | NZ      | LYS A |     | 29.822           | 13.990           | 66.760           | 1.00 45.26               |
|                           | ATOM         | 3456         | N       | VAL A |     | 22.843           | 9.728            | 69.414           | 1.00 38.07               |
| त्रे व्यक्ति<br>सम्बद्धाः | MOTA         | 3457         | CA      | VAL A |     | 21.601           | 10.036           | 70.111           | 1.00 36.86               |
| 14 m)<br>14 m)            | MOTA         | 3458         | С       | VAL A |     | 21.846           | 10.129           | 71.608           | 1.00 44.88               |
|                           | MOTA         | 3459         | 0       | VAL A |     | 21.289           | 10.948           | 72.300           | 1.00 46.42               |
| <b>4435</b>               | MOTA         | 3460         | CB      | VAL A |     | 20.567           | 8.923            | 69.816           | 1.00 37.37               |
|                           | MOTA         | 3461         |         | VAL A |     | 19.944           | 9.143            | 68.446           | 1.00 36.24               |
|                           | ATOM         | 3462         |         | VAL A |     | 21.227           | 7.556            | 69.854           | 1.00 36.80               |
|                           | ATOM         | 3463         | N       | ASP A |     | 22.718           | 9.232            | 72.099           | 1.00 43.61               |
| 40                        | ATOM         | 3464         | CA      | ASP A |     | 23.044           | 9.222            | 73.522           | 1.00 41.43               |
| 40                        | ATOM         | 3465         | C       | ASP A |     | 23.657           | 10.546           | 73.958           | 1.00 45.71               |
|                           | ATOM         | 3466         | 0       | ASP A |     | 23.554           | 10.956           | 75.107           | 1.00 49.89               |
|                           | ATOM         | 3467         | CB      | ASP A |     | 24.022           | 8.082            | 73.776           | 1.00 43.84               |
|                           | ATOM         | 3468         | CG      | ASP A |     | 23.281           | 6.752            | 73.691           | 1.00 72.47               |
| 45                        | ATOM         | 3469         |         | ASP A |     | 22.062           | 6.769            | 73.823           | 1.00 74.64               |
| 45                        | ATOM         | 3470         |         | ASP A |     | 23.933           | 5.730            | 73.481           | 1.00 86.09               |
|                           | ATOM         | 3471         | N       | VAL A |     | 24.333           | 11.324           | 73.122           | 1.00 40.21               |
|                           | ATOM         | 3472         | CA      | VAL A |     | 24.807           |                  | 73.577           | 1.00 40.97               |
|                           | ATOM         | 3473         | C       | VAL A |     | 23.621           | 13.582           | 73.668           | 1.00 41.86               |
| 50                        | ATOM         | 3474         | 0       | VAL A |     | 23.368           | 14.276           | 74.657           | 1.00 39.95               |
| 30                        | ATOM         | 3475         | CB      | VAL A |     | 25.875           | 13.165           | 72.615           | 1.00 47.47               |
|                           | ATOM         | 3476         |         | VAL A |     | 26.438           | 14.523           | 73.051           | 1.00 47.51               |
|                           | ATOM         | 3477         |         | VAL A |     | 26.996           | 12.149           | 72.440           | 1.00 47.51               |
|                           | MOTA<br>MOTA | 3478<br>3479 | N<br>CA | LEU A |     | 22.876<br>21.729 | 13.595<br>14.442 | 72.585<br>72.507 | 1.00 37.91               |
| 55                        | ATOM         | 3479         | C       |       |     |                  |                  |                  | 1.00 36.21               |
|                           | ATOM         | 3481         | 0       | LEU A |     | 20.850 20.214    | 14.190<br>15.064 | 73.695           | 1.00 40.03               |
|                           | ATOM         | 3482         | CB      | LEU A |     |                  |                  | 74.255           | 1.00 42.22               |
|                           | ATOM         | 3483         | CG      | LEU A |     | 20.949           | 14.180           | 71.210           | 1.00 33.84               |
|                           |              |              |         | LEU A |     | 21.552           | 14.939           | 70.039           | 1.00 32.80               |
| 60                        | ATOM<br>ATOM | 3484<br>3485 |         | LEU A |     | 20.813           | 14.538           | 68.775           | 1.00 34.08               |
| 00                        | ATOM         | 3486         | N       | ASN A |     | 21.435 20.810    | 16.434<br>12.953 | 70.258<br>74.076 | 1.00 23.80               |
|                           | ATOM         | 3487         |         | ASN A |     | 19.971           | 12.933           | 75.187           | 1.00 34.03<br>1.00 34.00 |
|                           | ATOM         | 3488         | CA      | ASN A |     | 20.494           | 13.093           | 76.532           | 1.00 34.00               |
|                           | ATOM         | 3489         | 0       |       |     | 19.816           |                  | 77.544           |                          |
|                           | ALOM         | 2403         | 9       | ASN A | 440 | 13.010           | 12.995           | 11.044           | 1.00 42.09               |

|            | ATOM   | 3490 | CP  | TACKE TA  | 440 | 10 601 |        |        |      |       |
|------------|--------|------|-----|-----------|-----|--------|--------|--------|------|-------|
|            |        |      | CB  | ASN A     |     | 19.681 | 11.095 | 75.178 | 1.00 | 24.89 |
|            | MOTA   | 3491 | CG  | ASN A     |     | 18.790 | 10.635 | 74.028 |      | 46.52 |
|            | ATOM   | 3492 | OD1 | ASN A     | 440 | 19.005 | 9.537  | 73.480 |      | 58.82 |
|            | ATOM   | 3493 |     | ASN A     |     | 17.769 |        |        |      |       |
| 5          | ATOM   | 3494 |     |           |     |        | 11.440 | 73.680 |      | 31.11 |
|            |        |      | N   | GLN A     |     | 21.707 | 13.623 | 76.531 | 1.00 | 36.98 |
|            | ATOM   | 3495 | CA  | GLN A     |     | 22.339 | 14.095 | 77.744 |      | 35.47 |
|            | ATOM   | 3496 | C   | GLN A     | 441 | 21.879 | 15.478 | 78.067 |      | 36.00 |
|            | ATOM   | 3497 | 0   | GLN A     |     | 22.137 |        |        |      |       |
|            |        |      |     |           |     |        | 16.029 | 79.142 |      | 34.96 |
| 10         | ATOM   | 3498 | CB  | GLN A     |     | 23.878 | 14.109 | 77.581 | 1.00 | 38.10 |
| 10         | ATOM   | 3499 | CG  | GLN A     | 441 | 24.504 | 12.692 | 77.422 |      | 52.06 |
|            | ATOM   | 3500 | CD  | GLN A     | 441 | 25.954 | 12.730 | 76.955 |      |       |
|            | ATOM   | 3501 | OE1 | GLN A     |     |        |        |        |      | 81.69 |
|            |        |      |     |           |     | 26.476 | 13.796 | 76.609 |      | 74.46 |
|            | ATOM   | 3502 | NE2 | GLN A     |     | 26.616 | 11.574 | 76.972 | 1.00 | 91.09 |
|            | ATOM   | 3503 | N   | VAL A     | 442 | 21.197 | 16.067 | 77.112 |      | 31.86 |
| 15         | ATOM   | 3504 | CA  | VAL A     |     | 20.753 | 17.411 | 77.384 |      |       |
|            | ATOM   | 3505 | С   |           |     |        |        |        |      | 32.78 |
|            |        |      |     | VAL A     |     | 19.354 | 17.468 | 77.970 | 1.00 | 38.24 |
|            | MOTA   | 3506 | 0   | VAL A     | 442 | 18.468 | 16.700 | 77.588 | 1.00 | 42.83 |
|            | MOTA   | 3507 | CB  | VAL A     | 442 | 20.845 | 18.277 | 76.159 |      | 34.84 |
|            | ATOM   | 3508 | CG1 |           |     | 21.430 | 17.435 |        |      |       |
| 20         | ATOM   | 3509 |     |           |     |        |        | 75.020 | 1.00 | 34.65 |
| 20         |        |      |     | VAL A     |     | 19.441 | 18.705 | 75.811 | 1.00 | 33.21 |
|            | MOTA   | 3510 | N   | ASP A     | 443 | 19.172 | 18.388 | 78.908 |      | 25.60 |
|            | ATOM   | 3511 | CA  | ASP A     | 443 | 17.931 | 18.634 | 79.616 |      |       |
|            | MOTA   | 3512 | С   | ASP A     |     | 16.996 |        | 75.010 |      | 24.57 |
|            | ATOM   |      |     |           |     |        | 19.533 | 78.791 | 1.00 | 32.14 |
| 25         |        | 3513 | 0   | ASP A     |     | 16.744 | 20.732 | 79.073 | 1.00 | 34.77 |
| 25         | ATOM   | 3514 | СВ  | ASP A     |     | 18.332 | 19.272 | 80.957 |      | 27.11 |
|            | ATOM   | 3515 | CG  | ASP A     | 443 | 17.216 | 19.413 | 81.901 |      | 39.99 |
|            | ATOM   | 3516 | OD1 | ASP A     | 443 |        |        |        |      |       |
|            | ATOM   | 3517 |     |           |     | 16.063 | 19.234 | 81.573 |      | 44.78 |
|            |        |      |     | ASP A     |     | 17.631 | 19.753 | 83.094 | 1.00 | 56.66 |
| -00        | ATOM   | 3518 | N   | TRP A     |     | 16.525 | 18.914 | 77.722 |      | 28.30 |
| 30         | ATOM   | 3519 | CA  | TRP A     | 444 | 15.614 | 19.507 | 76.757 | 1 00 | 26.27 |
|            | ATOM   | 3520 | С   | TRP A     |     | 14.460 |        |        | 1.00 | 20.27 |
|            | ATOM   | 3521 |     |           |     |        | 20.296 | 77.416 |      | 31.52 |
|            |        |      | 0   | TRP A     |     | 14.102 | 21.409 | 76.988 | 1.00 | 34.63 |
|            | ATOM   | 3522 | CB  | TRP A     |     | 15.067 | 18.398 | 75.799 | 1.00 | 21.47 |
|            | MOTA   | 3523 | CG  | TRP A     | 444 | 16.095 | 17.951 | 74.806 |      | 22.03 |
| 35         | ATOM   | 3524 | CD1 | TRP A     |     | 16.675 |        |        |      |       |
|            | ATOM   | 3525 | CD2 |           |     |        | 16.718 | 74.736 |      | 25.16 |
|            |        |      |     | TRP A     |     | 16.733 | 18.738 | 73.776 | 1.00 | 20.36 |
|            | MOTA   | 3526 |     | TRP A     |     | 17.623 | 16.677 | 73.738 |      | 23.97 |
|            | ATOM   | 3527 | CE2 | TRP A     | 444 | 17.688 | 17.906 | 73.138 |      | 24.71 |
|            | ATOM   | 3528 |     | TRP A     |     | 16.596 |        |        |      |       |
| 40         | MOTA   | 3529 |     |           |     |        | 20.045 | 73.342 |      | 20.86 |
|            |        |      |     | TRP A     |     | 18.448 | 18.345 | 72.060 | 1.00 | 24.51 |
|            | MOTA   | 3530 |     | TRP A     |     | 17.353 | 20.471 | 72.264 | 1.00 | 22.88 |
|            | MOTA   | 3531 | CH2 | TRP A     | 444 | 18.281 | 19.643 | 71.643 |      | 23.48 |
|            | MOTA   | 3532 | N   | ASN A     |     | 13.855 | 19.711 |        |      |       |
|            | ATOM   | 3533 | CA  | ASN A     |     |        |        | 78.457 |      | 24.92 |
| 45         |        |      |     | -         |     | 12.723 | 20.326 | 79.113 | 1.00 | 26.30 |
| 73         | ATOM   | 3534 |     | ASN A     |     | 13.040 | 21.677 | 79.729 | 1.00 | 30.17 |
|            | MOTA   | 3535 | 0   | ASN A     | 445 | 12.291 | 22.660 | 79.547 |      | 31.86 |
|            | ATOM   | 3536 | CB  | ASN A     | 445 | 11.987 | 19.382 | 80.094 |      |       |
|            | MOTA   | 3537 |     | ASN A     |     |        |        | 00.094 |      | 40.83 |
|            | ATOM   | 3538 | 001 | ACM A     | 445 | 10.946 | 20.033 | 81.020 |      | 87.07 |
| 50         |        |      |     | ASN A     |     | 11.271 | 20.635 | 82.065 | 1.00 | 86.38 |
| <i>3</i> 0 | ATOM   | 3539 | ND2 | ASN A     | 445 | 9.670  | 19.848 | 80.688 |      | 71.65 |
|            | MOTA   | 3540 | N   | ALA A     | 446 | 14.147 | 21.687 | 80.436 |      |       |
|            | ATOM   | 3541 | CA  | ALA A     | 446 | 14.583 |        |        |      | 22.70 |
|            | MOTA   | 3542 |     |           |     |        | 22.886 | 81.073 |      | 24.45 |
|            |        |      |     | ALA A     |     | 14.886 | 23.896 | 79.990 | 1.00 | 30.52 |
|            | ATOM   | 3543 | 0   | ALA A     | 446 | 14.324 | 25.001 | 79.936 |      | 33.92 |
| 55         | ATOM   | 3544 |     | ALA A     |     | 15.814 | 22.543 | 81.900 |      |       |
|            | ATOM   | 3545 |     |           |     |        |        |        |      | 25.68 |
|            |        |      |     | TRP A     |     | 15.776 | 23.494 | 79.102 |      | 25.24 |
|            | ATOM   | 3546 |     | TRP A     |     | 16.162 | 24.384 | 78.034 |      | 26.83 |
|            | ATOM   | 3547 | С   | TRP A     | 447 | 14.989 | 24.912 | 77.223 |      | 31.32 |
|            | ATOM   | 3548 |     | TRP A     |     | 14.971 | 26.089 |        |      |       |
| 60         | ATOM   | 3549 |     | TRP A     |     |        |        | 76.875 |      | 30.48 |
|            |        |      |     |           |     | 17.166 | 23.725 | 77.062 |      | 25.78 |
|            | ATOM   | 3550 |     | TRP A     |     | 18.625 | 23.815 | 77.421 |      | 26.60 |
|            | ATOM   | 3551 | CD1 | TRP A     | 447 | 19.343 | 22.840 | 78.046 |      | 28.89 |
|            | MOTA   | 3552 |     | TRP A     |     | 19.554 | 24.896 | 77.165 | 1 00 | 26 16 |
|            | ATOM - | 3553 |     | TRP A     |     |        |        |        | T.00 | 26.16 |
|            |        |      |     | ***** 'L' | 171 | 20.654 | 23.217 | 78.197 | T.00 | 27.23 |
|            |        |      |     |           |     |        |        |        |      |       |

|     | ATOM | 3554  | CE2 | TRP A 447 | 20.822         | 24.476 | 77.660 | 1.00 29.00 |
|-----|------|-------|-----|-----------|----------------|--------|--------|------------|
|     | ATOM | 3555  |     | TRP A 447 | 19.435         | 26.162 | 76.607 | 1.00 27.56 |
|     | ATOM | 3556  | CZ2 |           | 21.954         | 25.290 | 77.583 | 1.00 27.95 |
|     | ATOM | 3557  | CZ3 | TRP A 447 | 20.554         | 26.966 | 76.538 | 1.00 29.93 |
| 5   | ATOM | 3558  | CH2 | TRP A 447 | 21.792         | 26.539 | 77.035 | 1.00 20.16 |
| ,   | MOTA | 3559  | N   | LEU A 448 | 14.029         | 24.034 | 76.893 | 1.00 36.10 |
|     | ATOM | 3560  | CA  | LEU A 448 | 12.896         | 24.421 | 76.052 | 1.00 26.92 |
|     |      | 3561  | C   | LEU A 448 | 11.734         | 25.064 | 76.779 |            |
|     | ATOM |       |     | LEU A 448 |                |        |        | 1.00 36.15 |
| 10  | ATOM | 3562  | O   |           | 11.089         | 26.031 | 76.304 | 1.00 31.19 |
| 10  | ATOM | 3563  | CB  | LEU A 448 | 12.338         | 23.197 | 75.307 | 1.00 25.26 |
|     | ATOM | 3564  | CG  | LEU A 448 | 13.311         | 22.545 | 74.332 | 1.00 28.29 |
|     | ATOM | 3565  |     | LEU A 448 | 12.597         | 21.455 | 73.530 | 1.00 30.49 |
|     | ATOM | 3566  |     | LEU A 448 | 13.879         | 23.576 | 73.375 | 1.00 21.94 |
|     | MOTA | 3567  | N   | TYR A 449 | 11.472         | 24.455 | 77.924 | 1.00 33.14 |
| 15  | MOTA | 3568  | CA  | TYR A 449 | 10.373         | 24.835 | 78.747 | 1.00 30.64 |
|     | ATOM | 3569  | С   | TYR A 449 | 10.646         | 25.525 | 80.041 | 1.00 34.31 |
|     | MOTA | 3570  | 0   | TYR A 449 | 9 <b>.7</b> 50 | 26.191 | 80.529 | 1.00 41.98 |
|     | MOTA | 3571  | CB  | TYR A 449 | 9.400          | 23.674 | 78.916 | 1.00 29.14 |
|     | MOTA | 3572  | CG  | TYR A 449 | 9.212          | 23.089 | 77.556 | 1.00 26.50 |
| 20  | ATOM | 3573  | CD1 | TYR A 449 | 8.762          | 23.869 | 76.485 | 1.00 24.36 |
|     | MOTA | 3574  | CD2 | TYR A 449 | 9.560          | 21.762 | 77.325 | 1.00 28.48 |
|     | MOTA | 3575  |     | TYR A 449 | 8.626          | 23.331 | 75.202 | 1.00 17.56 |
|     | ATOM | 3576  | CE2 | TYR A 449 | 9.427          | 21.205 | 76.054 | 1.00 29.93 |
|     | ATOM | 3577  | CZ  | TYR A 449 | 8.959          | 21.988 | 74.998 | 1.00 23.55 |
| 25  | MOTA | 3578  | OH  | TYR A 449 | 8.840          | 21.415 | 73.762 | 1.00 39.47 |
| 20  | MOTA | 3579  | N   | SER A 450 | 11.806         | 25.413 | 80.644 | 1.00 33.47 |
|     | ATOM | 3580  | CA  | SER A 450 | 11.902         | 26.149 |        |            |
|     |      | 3581  | C   | SER A 450 | 12.278         |        | 81.900 | 1.00 21.21 |
|     | MOTA |       |     |           |                | 27.625 | 81.749 | 1.00 23.98 |
| 30  | ATOM | 3582  | 0   | SER A 450 | 12.966         | 28.035 | 80.810 | 1.00 27.17 |
| 30  | ATOM | 3583  | CB  | SER A 450 | 12.666         | 25.436 | 83.010 | 1.00 24.83 |
|     | ATOM | 3584  | OG  | SER A 450 | 12.540         | 24.046 | 82.871 | 1.00 36.29 |
|     | ATOM | 3585  | N   | PRO A 451 | 11.806         | 28.430 | 82.689 | 1.00 19.76 |
|     | MOTA | 35,86 | CA  | PRO A 451 | 12.111         | 29.840 | 82.669 | 1.00 18.20 |
| 25  | ATOM | 3587  | С   | PRO A 451 | 13.461         | 29.988 | 83.271 | 1.00 21.72 |
| 35  | ATOM | 3588  | 0   | PRO A 451 | 14.022         | 29.015 | 83.742 | 1.00 24.34 |
|     | MOTA | 3589  | CB  | PRO A 451 | 11.185         | 30.485 | 83.695 | 1.00 18.85 |
|     | ATOM | 3590  | CG  | PRO A 451 | 10.836         | 29.390 | 84.677 | 1.00 23.13 |
|     | ATOM | 3591  | CD  | PRO A 451 | 11.002         | 28.078 | 83.900 | 1.00 19.61 |
| 4.0 | ATOM | 3592  | N   | GLY A 452 | 13.959         | 31.212 | 83.307 | 1.00 18.97 |
| 40  | ATOM | 3593  | CA  | GLY A 452 | 15.241         | 31.444 | 83.922 | 1.00 19.09 |
|     | ATOM | 3594  | С   | GLY A 452 | 16.382         | 31.107 | 83.016 | 1.00 26.20 |
|     | MOTA | 3595  | 0   | GLY A 452 | 16.191         | 30.916 | 81.819 | 1.00 27.37 |
|     | ATOM | 3596  | N   | LEU A 453 | 17.557         | 31.057 | 83.650 | 1.00 25.48 |
|     | MOTA | 3597  | CA  | LEU A 453 | 18.843         | 30.750 | 83.029 | 1.00 25.32 |
| 45  | ATOM | 3598  | С   | LEU A 453 | 18.906         | 29.322 | 82.629 | 1.00 26.21 |
|     | ATOM | 3599  | 0   | LEU A 453 | 18.400         | 28.458 | 83.322 | 1.00 25.04 |
|     | MOTA | 3600  | CB  | LEU A 453 | 20.042         | 31.119 | 83.938 | 1.00 25.46 |
|     | ATOM | 3601  | CG  | LEU A 453 | 20.280         | 32.632 | 83.904 | 1.00 31.82 |
|     | ATOM | 3602  | CD1 | LEU A 453 | 21.019         | 33.087 | 85.119 | 1.00 31.78 |
| 50  | ATOM | 3603  |     | LEU A 453 | 21.046         | 33.056 | 82.651 | 1.00 41.50 |
|     | MOTA | 3604  | N   | PRO A 454 | 19.510         | 29.082 | 81.489 | 1.00 22.97 |
|     | MOTA | 3605  | CA  | PRO A 454 | 19.585         | 27.747 | 81.003 | 1.00 21.60 |
|     | ATOM | 3606  | C   | PRO A 454 | 20,145         | 26.890 | 82.075 | 1.00 26.94 |
|     | MOTA | 3607  | Ö   | PRO A 454 | 20.143         | 27.359 | 82.893 | 1.00 20.94 |
| 55  | ATOM | 3608  | СВ  | PRO A 454 | 20.489         | 27.780 | 79.768 | 1.00 22.34 |
|     | ATOM | 3609  | CG  | PRO A 454 | 20.777         | 29.232 | 79.470 | 1.00 22.34 |
|     |      | 3610  | CD  | PRO A 454 |                |        |        |            |
|     | ATOM | 3611  | N   | PRO A 454 | 20.136         | 30.054 | 80.556 | 1.00 20.82 |
|     | ATOM |       |     |           | 19.721         | 25.648 | 82.067 | 1.00 25.61 |
| 60  | MOTA | 3612  | CA  | PRO A 455 | 20.167         | 24.683 | 83.031 | 1.00 24.27 |
| UU  | ATOM | 3613  | C   | PRO A 455 | 21.661         | 24.568 | 82.991 | 1.00 30.95 |
|     | ATOM | 3614  | 0   | PRO A 455 | 22.225         | 24.062 | 83.920 | 1.00 33.47 |
|     | ATOM | 3615  | CB  | PRO A 455 | 19.631         | 23.320 | 82.592 | 1.00 25.04 |
|     | ATOM | 3616  | CG  | PRO A 455 | 19.149         | 23.497 | 81.162 | 1.00 33.02 |
|     | MOTA | 3617  | CD  | PRO A 455 | 19.111         | 25.005 | 80.888 | 1.00 28.49 |

|       | MOTA  | 3618 | N   | ILE A | 456 | 22.305 | 25.002 | 81.911 | 1.00 27.91 |
|-------|-------|------|-----|-------|-----|--------|--------|--------|------------|
|       | ATOM  | 3619 | CA  | ILE A |     | 23.764 | 24.893 | 81.821 | 1.00 27.82 |
|       | ATOM  | 3620 | С   | ILE A |     | 24.395 | 26.057 | 81.077 | 1.00 27.82 |
|       | ATOM  | 3621 | 0   | ILE A |     | 23.737 | 26.769 | 80.293 | 1.00 34.73 |
| 5     | ATOM  | 3622 | CB  | ILE A |     | 24.228 | 23.540 | 81.259 | 1.00 37.01 |
|       | ATOM  | 3623 | CG1 |       |     | 25.721 | 23.305 | 81.417 |            |
|       | ATOM  | 3624 | CG2 |       |     | 23.865 | 23.369 | 79.788 | 1.00 29.78 |
|       | ATOM  | 3625 | CD1 |       |     | 26.054 | 21.852 |        | 1.00 32.96 |
|       | ATOM  | 3626 | N   | LYS A |     | 25.680 |        | 81.116 | 1.00 23.94 |
| 10    | ATOM  | 3627 | CA  | LYS A |     | 26.405 | 26.252 | 81.334 | 1.00 30.52 |
| 10    | ATOM  | 3628 | c   | LYS A |     |        | 27.335 | 80.707 | 1.00 30.21 |
|       | ATOM  | 3629 | õ   | LYS A |     | 27.515 | 26.808 | 79.835 | 1.00 32.14 |
|       | ATOM  | 3630 | СВ  |       |     | 28.328 | 26.037 | 80.273 | 1.00 33.07 |
|       | ATOM  | 3631 |     | LYS A |     | 26.953 | 28.264 | 81.749 | 1.00 32.38 |
| 15    | ATOM  | 3632 | CG  | LYS A |     | 27.818 | 29.327 | 81.121 | 1.00 34.64 |
| 13    |       |      | CD  | LYS A |     | 28.288 | 30.306 | 82.166 | 1.00 13.41 |
|       | ATOM  | 3633 | CE  | LYS A |     | 28.803 | 31.596 | 81.565 | 1.00 18.04 |
|       | ATOM  | 3634 | NZ  | LYS A |     | 28.974 | 32.643 | 82.595 | 1.00 26.77 |
|       | ATOM  | 3635 | N   | PRO A |     | 27.567 | 27.208 | 78.589 | 1.00 27.50 |
| 20    | ATOM  | 3636 | CA  | PRO A |     | 28.630 | 26.675 | 77.737 | 1.00 26.85 |
| 20    | ATOM  | 3637 | С   | PRO A |     | 29.994 | 27.147 | 78.185 | 1.00 26.89 |
| 3     | ATOM  | 3638 | 0   | PRO A | 458 | 30.128 | 27.876 | 79.167 | 1.00 24.86 |
|       | ATOM  | 3639 | CB  | PRO A | 458 | 28.335 | 27.191 | 76.316 | 1.00 29.41 |
|       | ATOM  | 3640 | CG  | PRO A | 458 | 26.952 | 27.864 | 76.375 | 1.00 33.24 |
|       | ATOM  | 3641 | CD  | PRO A | 458 | 26.574 | 28.044 | 77.848 | 1.00 26.12 |
| 25    | ATOM  | 3642 | N   | ASN A |     | 31.005 | 26.754 | 77.440 | 1.00 20.12 |
|       | ATOM  | 3643 | CA  | ASN A |     | 32.359 | 27.191 | 77.735 |            |
|       | ATOM  | 3644 | С   | ASN A |     | 32.751 | 28.325 | 76.820 | 1.00 22.29 |
|       | ATOM  | 3645 | Ö   | ASN A |     | 32.451 | 28.296 | 75.617 | 1.00 30.27 |
|       | ATOM  | 3646 | CB  | ASN A |     | 33.315 | 26.060 | 77.494 | 1.00 32.89 |
| 30    | ATOM  | 3647 | CG  | ASN A |     | 32.766 | 24.846 |        | 1.00 25.03 |
| 1     | ATOM  | 3648 |     | ASN A |     | 32.700 | 24.822 | 78.155 | 1.00 49.54 |
|       | ATOM  | 3649 | ND2 | ASN A | 450 | 32.411 |        | 79.383 | 1.00 50.09 |
|       | ATOM  | 3650 | N   | TYR A |     |        | 23.870 | 77.332 | 1.00 38.39 |
|       | ATOM  | 3651 | CA  | TYR A |     | 33.448 | 29.316 | 77.380 | 1.00 25.58 |
| 35    | ATOM  | 3652 | C   | TYR A |     | 33.851 | 30.493 | 76.625 | 1.00 23.89 |
|       | ATOM  | 3653 | õ   |       |     | 35.298 | 30.853 | 76.745 | 1.00 34.20 |
|       | ATOM  | 3654 | СВ  | TYR A |     | 35.849 | 30.862 | 77.839 | 1.00 35.27 |
|       | ATOM  | 3655 | CG  | TYR A |     | 33.120 | 31.708 | 77.171 | 1.00 24.38 |
|       | ATOM  | 3656 | CD1 | TYR A |     | 31.636 | 31.631 | 77.024 | 1.00 26.98 |
| 40    | ATOM  | 3657 |     |       |     | 31.029 | 32.011 | 75.829 | 1.00 30.69 |
| 40    |       |      | CD2 | TYR A |     | 30.838 | 31.168 | 78.064 | 1.00 25.70 |
|       | ATOM  | 3658 | CE1 | TYR A |     | 29.644 | 31.952 | 75.684 | 1.00 28.77 |
|       | ATOM  | 3659 | CE2 | TYR A |     | 29.453 | 31.096 | 77.938 | 1.00 25.24 |
|       | ATOM  | 3660 | CZ  | TYR A |     | 28.863 | 31.496 | 76.741 | 1.00 24.49 |
| 45    | ATOM  | 3661 | OH  | TYR A |     | 27.519 | 31.443 | 76.587 | 1.00 28.39 |
| 43    | ATOM  | 3662 | N   | ASP A |     | 35.893 | 31.227 | 75.616 | 1.00 30.58 |
|       | ATOM  | 3663 | CA  | ASP A |     | 37.268 | 31.640 | 75.654 | 1.00 27.51 |
|       | ATOM  | 3664 | С   | ASP A |     | 37.319 | 32.941 | 76.464 | 1.00 23.53 |
|       | ATOM  | 3665 | 0   | ASP A |     | 36.377 | 33.704 | 76.396 | 1.00 26.62 |
| · 60: | ATOM  | 3666 | CB  | ASP A | 461 | 37.821 | 31.784 | 74.218 | 1.00 27.30 |
| 50    | ATOM  | 3667 | CG  | ASP A | 461 | 39.137 | 32.466 | 74.260 | 1.00 32.53 |
|       | ATOM  | 3668 | OD1 | ASP A | 461 | 39.262 | 33.672 | 74.334 | 1.00 39.66 |
|       | ATOM  | 3669 | OD2 | ASP A | 461 | 40.130 | 31.628 | 74.306 | 1.00 44.34 |
|       | ATOM  | 3670 | N   | MET A | 462 | 38,375 | 33.234 | 77.224 | 1.00 17.26 |
|       | ATOM  | 3671 | CA  | MET A |     | 38.396 | 34.511 | 78.008 | 1.00 18.66 |
| 55    | ATOM  | 3672 | С   | MET A |     | 39.299 | 35.634 | 77.485 | 1.00 24.02 |
|       | ATOM  | 3673 | 0   | MET A |     | 39.336 | 36.738 | 78.011 |            |
|       | ATOM  | 3674 | СВ  | MET A |     | 38.818 | 34.186 | 79.431 | 1.00 24.56 |
|       | ATOM  | 3675 | CG  | MET A |     | 37.808 | 33.209 | 80.025 | 1.00 22.99 |
|       | ATOM  | 3676 | SD  | MET A |     | 36.166 | 33.969 |        | 1.00 28.98 |
| 60    | ATOM  | 3677 | CE  | MET A |     | 36.420 |        | 79.951 | 1.00 33.22 |
|       | ATOM  | 3678 | N   | THR A |     |        | 35.300 | 81.153 | 1.00 27.89 |
|       | ATOM  | 3679 | CA  | THR A |     | 40.067 | 35.348 | 76.461 | 1.00 22.57 |
|       | ATOM  | 3680 | C   | THR A |     | 41.015 | 36.285 | 75.911 | 1.00 22.64 |
|       | ATOM  |      |     |       |     | 40.690 | 37.738 | 75.961 | 1.00 33.12 |
|       | AL ON | 3681 | 0   | THR A | 403 | 41.372 | 38.493 | 76.640 | 1.00 35.27 |
|       |       |      |     |       |     |        |        |        |            |

|         |     | ATOM | 3682 | СВ  | THR A | 163 |   | 41.574 | 35.929           | 74 506 | 1 00 00 00 |
|---------|-----|------|------|-----|-------|-----|---|--------|------------------|--------|------------|
|         |     | ATOM |      |     | THR A |     |   | 41.939 |                  | 74.536 | 1.00 29.80 |
|         |     | ATOM | 3684 |     | THR A |     |   | 42.797 | 34.576<br>36.793 | 74.509 | 1.00 26.74 |
|         |     | ATOM | 3685 | N   | LEU A |     |   |        |                  | 74.224 | 1.00 18.79 |
|         | 5   | ATOM | 3686 | CA  | LEU A |     |   | 39.700 | 38.141           | 75.177 | 1.00 30.50 |
|         | 5   |      |      |     |       |     |   | 39.293 | 39.533           | 75.061 | 1.00 29.15 |
|         |     | ATOM | 3687 | C   | LEU A |     |   | 38.490 | 40.067           | 76.216 | 1.00 34.24 |
|         |     | ATOM | 3688 | 0   | LEU A |     | • | 38.439 | 41.270           | 76.422 | 1.00 37.12 |
|         |     | ATOM |      | CB  | LEU A |     |   | 38.537 | 39.767           | 73.743 | 1.00 29.20 |
|         | 10  | MOTA | 3690 | CG  | LEU A |     |   | 39.393 | 39.394           | 72.527 | 1.00 33.73 |
|         | 10  | MOTA | 3691 |     | LEU A |     |   | 38.609 | 39.565           | 71.217 | 1.00 32.72 |
|         |     | MOTA | 3692 | CD2 | LEU A |     |   | 40.648 | 40.261           | 72.499 | 1.00 26.22 |
|         |     | ATOM | 3693 | N   | THR A | 465 |   | 37.855 | 39.167           | 76.964 | 1.00 30.71 |
|         |     | ATOM | 3694 | CA  | THR A | 465 |   | 37.005 | 39.496           | 78.103 | 1.00 28.58 |
|         |     | MOTA | 3695 | С   | THR A | 465 |   | 37.800 | 39.893           | 79.324 | 1.00 30.69 |
|         | 15  | ATOM | 3696 | 0   | THR A |     |   | 37.530 | 40.865           | 80.030 | 1.00 30.03 |
|         |     | ATOM | 3697 | СВ  | THR A |     |   | 36.016 | 38.328           | 78.372 | 1.00 31.27 |
|         |     | ATOM | 3698 |     | THR A |     |   | 35.101 | 38.212           |        |            |
| .co eu. |     | ATOM | 3699 |     | THR A |     |   | 35.255 |                  | 77.296 | 1.00 50.93 |
|         |     | ATOM | 3700 | N   | ASN A |     |   |        | 38.451           | 79.690 | 1.00 26.34 |
| 100     | 20  | ATOM | 3701 | CA  |       |     |   | 38.802 | 39.111           | 79.568 | 1.00 24.40 |
| 12      | 20  |      |      |     | ASN A |     |   | 39.635 | 39.375           | 80.688 | 1.00 23.11 |
| L.A.    |     | ATOM | 3702 | C   | ASN A |     |   | 39.899 | 40.856           | 80.967 | 1.00 28.37 |
| E MOST  |     | ATOM | 3703 | 0   | ASN A |     |   | 39.763 | 41.270           | 82.120 | 1.00 27.03 |
|         |     | ATOM | 3704 | CB  | ASN A |     |   | 40.921 | 38.543           | 80.629 | 1.00 20.30 |
| 11 m    | 0.5 | ATOM | 3705 | CG  | ASN A |     |   | 40.709 | 37.145           | 81.155 | 1.00 32.26 |
|         | 25  | MOTA | 3706 |     | ASN A |     |   | 41.384 | 36.191           | 80.723 | 1.00 29.29 |
| isi.    |     | MOTA | 3707 | ND2 | ASN A | 466 |   | 39.775 | 37.015           | 82.111 | 1.00 28.19 |
| 4       |     | ATOM | 3708 | N   | ALA A | 467 |   | 40.306 | 41.666           | 79.967 | 1.00 27.97 |
|         |     | MOTA | 3709 | CA  | ALA A |     |   | 40.587 | 43.079           | 80.295 | 1.00 26.66 |
| 10 ft.  |     | ATOM | 3710 | С   | ALA A |     |   | 39.352 | 43.827           | 80.720 | 1.00 20.00 |
|         | 30  | MOTA | 3711 | 0   | ALA A |     |   | 39.406 | 44.845           | 81.393 |            |
| n.      |     | ATOM | 3712 | СВ  | ALA A |     |   | 41.365 | 43.837           | 79.256 | 1.00 31.71 |
| 12.00   |     | ATOM | 3713 | N   | CYS A |     |   | 38.217 | 43.277           |        | 1.00 25.99 |
| \$2 30° |     | ATOM | 3714 | CA  | CYS A |     |   |        |                  | 80.336 | 1.00 28.06 |
| 14.64   |     | ATOM | 3715 | C   | CYS A |     |   | 36.942 | 43.862           | 80.693 | 1.00 25.80 |
| -4      | 35  | ATOM | 3716 |     |       |     |   | 36.668 | 43.619           | 82.165 | 1.00 26.47 |
|         | 33  | ATOM |      | O   | CYS A |     |   | 36.469 | 44.517           | 82.963 | 1.00 27.99 |
|         |     |      | 3717 | CB  | CYS A |     |   | 35.882 | 43.376           | 79.696 | 1.00 24.56 |
|         |     | ATOM | 3718 | SG  | CYS A |     |   | 36.455 | 43.873           | 78.049 | 1.00 27.76 |
|         |     | ATOM | 3719 | N   | ILE A |     |   | 36.752 | 42.384           | 82.540 | 1.00 24.34 |
|         | 40  | ATOM | 3720 | CA  | ILE A |     |   | 36.599 | 42.052           | 83.921 | 1.00 25.23 |
|         | 40  | ATOM | 3721 | C   | ILE A |     |   | 37.560 | 42.800           | 84.876 | 1.00 28.13 |
|         |     | ATOM | 3722 | 0   | ILE A |     |   | 37.175 | 43.220           | 85.950 | 1.00 29.54 |
|         |     | ATOM | 3723 | CB  | ILE A |     |   | 36.858 | 40.574           | 84.068 | 1.00 27.23 |
|         |     | MOTA | 3724 |     | ILE A |     |   | 35.956 | 39.801           | 83.112 | 1.00 26.94 |
|         | 4.4 | MOTA | 3725 | CG2 | ILE A | 469 |   | 36.537 | 40.208           | 85.496 | 1.00 25.56 |
|         | 45  | ATOM | 3726 | CD1 | ILE A | 469 |   | 36.247 | 38.298           | 83.085 | 1.00 45.50 |
|         |     | ATOM | 3727 | N   | ALA A | 470 |   | 38.830 | 42.960           | 84.534 | 1.00 23.28 |
|         |     | ATOM | 3728 | CA  | ALA A | 470 |   | 39.749 | 43.621           | 85.461 | 1.00 22.23 |
|         |     | ATOM | 3729 | С   | ALA A |     |   | 39.392 | 45.038           | 85.808 | 1.00 30.29 |
|         |     | MOTA | 3730 | 0   | ALA A |     |   | 39.474 | 45.451           | 86.986 | 1.00 30.23 |
|         | 50  | MOTA | 3731 | CB  | ALA A |     |   | 41.218 | 43.502           | 85.074 | 1.00 32.82 |
|         |     | ATOM | 3732 | N   | LEU A |     |   | 39.007 | 45.760           |        |            |
|         |     | ATOM | 3733 | CA  | LEU A |     |   | 38.643 |                  | 84.759 | 1.00 23.53 |
|         |     | ATOM | 3734 | C   | LEU A |     |   | 37.333 | 47.173           | 84.834 | 1.00 18.39 |
|         |     | ATOM | 3735 | ō   | LEU A |     |   |        | 47.373           | 85.569 | 1.00 26.57 |
|         | 55  | ATOM | 3736 | CB  | LEU A |     |   | 37.210 | 48.208           | 86.462 | 1.00 30.48 |
|         | 55  | MOTA | 3737 |     |       |     |   | 38.676 | 47.827           | 83.444 | 1.00 15.51 |
|         |     |      |      | CG  | LEU A |     |   | 38.671 | 49.325           | 83.539 | 1.00 24.20 |
|         |     | ATOM | 3738 |     | LEU A |     |   | 39.754 | 49.795           | 84.513 | 1.00 24.86 |
|         |     | ATOM | 3739 |     | LEU A |     |   | 38.876 | 49.941           | 82.156 | 1.00 26.35 |
|         | 60  | ATOM | 3740 | N   | SER A |     |   | 36.351 | 46.570           | 85.222 | 1.00 25.31 |
|         | 60  | ATOM | 3741 | CA  | SER A |     |   | 35.080 | 46.674           | 85.901 | 1.00 27.56 |
|         |     | ATOM | 3742 | С   | SER A |     |   | 35.260 | 46.477           | 87.396 | 1.00 33.46 |
|         |     | MOTA | 3743 | 0   | SER A | 472 |   | 34.800 | 47.292           | 88.214 | 1.00 32.85 |
|         |     | ATOM | 3744 | CB  | SER A | 472 |   | 33.989 | 45.714           | 85.393 | 1.00 32.06 |
|         |     | MOTA | 3745 | OG  | SER A | 472 |   | 34.492 | 44.774           | 84.470 | 1.00 48.56 |
|         |     |      |      |     |       |     |   |        |                  | = - =  |            |

|                        |     | ATOM | 3746          | N       | GLN | А | 473 | 35.911 | 45.350 | 87.736  | 1.00 27.52               |
|------------------------|-----|------|---------------|---------|-----|---|-----|--------|--------|---------|--------------------------|
|                        |     | ATOM | 3747          | CA      | GLN |   |     | 36.170 | 44.971 | 89.108  | 1.00 24.10               |
|                        |     | ATOM | 3748          | С       | GLN |   |     | 36.866 | 46.096 | 89.836  | 1.00 25.18               |
|                        |     | ATOM | 3749          | 0       | GLN |   |     | 36.534 | 46.458 | 90.969  | 1.00 21.62               |
|                        | 5   | ATOM | 3750          | CB      | GLN |   |     | 36.994 | 43.671 | 89.148  | 1.00 25.86               |
|                        | _   | ATOM | 3751          | CG      | GLN |   |     | 36.128 | 42.402 | 89.118  | 1.00 32.72               |
|                        |     | ATOM | 3752          | CD      | GLN |   |     | 34.970 | 42.504 | 90.090  | 1.00 46.08               |
|                        |     | ATOM | 3753          |         | GLN |   |     | 35.165 | 42.422 | 91.308  | 1.00 40.00               |
|                        |     | ATOM | 3754          |         | GLN |   |     | 33.761 | 42.692 | 89.559  | 1.00 40.73               |
|                        | 10  | ATOM | 3755          | N       | ARG |   |     | 37.855 | 46.656 | 89.161  |                          |
|                        | 10  | ATOM | 3756          | CA      | ARG |   |     | 38.562 | 47.765 | 89.779  | 1.00 24.00<br>1.00 24.46 |
|                        | -   | ATOM | 3757          | C       | ARG |   |     | 37.609 |        |         |                          |
|                        |     |      | 3758          | 0       | ARG |   |     |        | 48.893 | 90.141  | 1.00 29.31               |
|                        |     | MOTA |               |         |     |   |     | 37.620 | 49.447 | 91.242  | 1.00 33.13               |
|                        | 15  | ATOM | 3759          | CB      | ARG |   |     | 39.682 | 48.290 | 88.898  | 1.00 20.19               |
|                        | 1.0 | ATOM | 3760          | CG      | ARG |   |     | 40.866 | 47.352 | 88.831  | 1.00 28.48               |
|                        |     | ATOM | 3761          | CD      | ARG |   |     | 41.871 | 47.869 | 87.832  | 1.00 34.41               |
|                        |     | MOTA | 3762          | NE      | ARG |   |     | 42.258 | 49.245 | 88.093  | 1.00 40.09               |
|                        |     | ATOM | 3763          | CZ      | ARG |   |     | 42.927 | 49.938 | 87.185  | 1.00 51.25               |
|                        | 20  | MOTA | 3764          |         | ARG |   |     | 43.220 | 49.376 | 86.019  | 1.00 24.79               |
| 13. 1                  | 20  | MOTA | 3765          |         | ARG |   |     | 43.316 | 51.199 | 87.444  | 1.00 20.43               |
| Halls.                 |     | MOTA | 3766          | N       | TRP |   |     | 36.791 | 49.259 | 89.178  | 1.00 25.32               |
|                        |     | ATOM | 3767          | CA      | TRP |   |     | 35.862 | 50.332 | 89.400  | 1.00 26.77               |
| 135 MW                 |     | ATOM | 3768          | С       | TRP |   |     | 34.881 | 49.962 | 90.474  | 1.00 27.52               |
| अंद्री सार्थ<br>है असर |     | ATOM | 3769          | 0       | TRP |   | -   | 34.749 | 50.633 | 91.475  | 1.00 29.64               |
| un -                   | 25  | MOTA | 3770          | CB      | TRP |   |     | 35.199 | 50.804 | 88.093  | 1.00 27.95               |
| ļ.ā.                   |     | MOTA | 3771          | CG      | TRP | Α | 475 | 36.047 | 51.819 | 87.361  | 1.00 32.11               |
| #                      |     | MOTA | 3772          | CD1     | TRP | Α | 475 | 36.873 | 51.592 | 86.298  | 1.00 35.65               |
| <u>.</u>               |     | MOTA | 3773          | CD2     | TRP | Α | 475 | 36.161 | 53.217 | 87.648  | 1.00 31.62               |
|                        | ×   | MOTA | 3774          | NE1     | TRP | Α | 475 | 37.484 | 52.748 | 85.904  | 1.00 34.92               |
|                        | 30  | MOTA | 3775          | CE2     | TRP | Α | 475 | 37.054 | 53.763 | 86.707  | 1.00 36.16               |
|                        |     | ATOM | 3776          | CE3     | TRP | Α | 475 | 35.588 | 54.040 | 88.606  | 1.00 32.63               |
|                        |     | ATOM | 3777          | CZ2     | TRP | Α | 475 | 37.372 | 55.112 | 86.719  | 1.00 36.24               |
|                        |     | MOTA | 37 <b>7</b> 8 | CZ3     | TRP | Α | 475 | 35.897 | 55.375 | 88.616  | 1.00 34.74               |
| in the                 |     | MOTA | 3779          | CH2     | TRP | Α | 475 | 36.777 | 55.901 | 87.685  | 1.00 35.77               |
| 3, 100                 | 35  | MOTA | 3780          | N       | ILE | Α | 476 | 34.234 | 48.847 | 90.279  | 1.00 26.36               |
|                        |     | MOTA | 3781          | CA      | ILE | Α | 476 | 33.268 | 48.386 | 91.235  | 1.00 28.33               |
|                        | -   | MOTA | 3782          | С       | ILE | Α | 476 | 33.771 | 48.315 | 92.681  | 1.00 34.20               |
|                        |     | MOTA | 3783          | 0       | ILE | A | 476 | 33.056 | 48.595 | 93.637  | 1.00 36.89               |
|                        |     | ATOM | 3784          | CB      | ILE | Α | 476 | 32.722 | 47.070 | 90.761  | 1.00 32.23               |
|                        | 40  | ATOM | 3785          | CG1     | ILE | Α | 476 | 31.993 | 47.308 | 89.443  | 1.00 30.49               |
|                        |     | MOTA | 3786          |         | ILE |   |     | 31.864 | 46.376 | 91.851  | 1.00 34.86               |
|                        |     | ATOM | 3787          | CD1     | ILE | Α | 476 | 31.595 | 46.005 | 88.756  | 1.00 33.04               |
|                        |     | ATOM | 3788          | N       | THR |   |     | 35.010 | 47.934 | 92.860  | 1.00 27.27               |
|                        |     | ATOM | 3789          | CA      | THR |   |     | 35.558 | 47.846 | 94.194  | 1.00 24.15               |
|                        | 45  | ATOM | 3790          | С       | THR |   |     | 36.416 | 49.052 | 94.523  | 1.00 27.30               |
|                        |     | ATOM | 3791          | 0       | THR |   |     | 37.120 | 49.065 | 95.519  | 1.00 27.36               |
|                        |     | ATOM | 3792          | СВ      | THR |   |     | 36.402 | 46.578 | 94.257  | 1.00 32.13               |
|                        |     | ATOM | 3793          |         | THR |   |     | 37.593 | 46.848 | 93.557  | 1.00 29.48               |
|                        |     | ATOM | 3794          |         | THR |   |     | 35.634 | 45.470 | 93.530  | 1.00 16.94               |
|                        | 50  | ATOM | 3795          | N       | ALA |   |     | 36.371 | 50.097 | 93.695  | 1.00 22.33               |
|                        |     | ATOM | 3796          | CA      | ALA |   |     | 37.164 | 51.260 | 93.988  | 1.00 20.44               |
|                        |     | ATOM | 3797          | C       | ALA |   |     | 36.890 | 51.843 | 95.390  | 1.00 20.44               |
|                        |     | ATOM | 3798          | ō       | ALA |   |     | 35.786 | 51.756 | 95.922  |                          |
|                        |     | ATOM | 3799          | СВ      | ALA |   |     | 36.938 | 52.343 | 92.942  | 1.00 34.38<br>1.00 19.26 |
|                        | 55  | ATOM | 3800          | N       | LYS |   |     | 37.931 | 52.469 | 95.970  |                          |
|                        | , , | ATOM | 3801          | CA      | LYS |   |     | 37.899 |        |         | 1.00 29.65               |
|                        |     | ATOM | 3802          | C       | LYS |   |     |        | 53.168 | 97.243  | 1.00 27.30               |
|                        |     | ATOM | 3803          |         |     |   |     | 38.575 | 54.512 | 97.051  | 1.00 36.54               |
|                        |     |      |               | O<br>CB | LYS |   |     | 39.378 | 54.692 | 96.118  | 1.00 34.13               |
|                        | 60  | MOTA | 3804          | CB      | LYS |   |     | 38.457 | 52.410 | 98.417  | 1.00 28.01               |
|                        | JU  | ATOM | 3805          | CG      | LYS |   |     | 37.696 | 51.116 | 98.631  | 1.00 51.38               |
|                        |     | ATOM | 3806          | CD      | LYS |   |     | 37.115 |        | 100.021 | 1.00 67.24               |
|                        |     | ATOM | 3807          | -CE     |     |   | 479 | 35.804 | 50.103 | 99.931  | 1.00 87.12               |
|                        |     | ATOM | 3808          | NZ      |     |   | 479 | 35.711 |        | 100.841 | 1.00 85.55               |
|                        |     | ATOM | 3809          | N       | GTO | A | 480 | 38.241 | 55.477 | 97.900  | 1.00 36.30               |
|                        |     |      |               |         |     |   |     |        |        |         |                          |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM      | 3810 | CA  | GLU | Α  | 480 | 38.843 | 56.793 | 97.751 | 1.00 34.79 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------|------|-----|-----|----|-----|--------|--------|--------|------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM      | 3811 | С   | GLU | Α  | 480 | 40.261 | 56.707 | 97.220 | 1.00 34.79 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | MOTA      | 3812 | 0   | GLU |    |     | 40.613 | 57.332 | 96.234 | 1.00 34.10 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM      | 3813 | СВ  | GLU |    |     | 38.899 | 57.565 | 99.078 | 1.00 36.21 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5  | ATOM      | 3814 | CG  | GLU |    |     | 37.709 | 58.500 | 99.303 | 1.00 63.85 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM      | 3815 | CD  | GLU |    |     | 37.601 | 59.511 | 98.214 | 1.00100.00 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM      | 3816 | OE1 | GLU |    |     | 38.457 | 59.648 | 97.357 | 1.00100.00 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM      | 3817 |     | GLU |    |     | 36.491 | 60.209 | 98.288 | 1.00100.00 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM      | 3818 | N   | ASP |    |     | 41.080 | 55.946 | 97.904 | 1.00 24.69 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 | ATOM      | 3819 | CA  | ASP |    |     | 42.451 | 55.860 | 97.519 | 1.00 23.87 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 | ATOM      | 3820 | C   | ASP |    |     | 42.771 | 55.314 | 96.132 | 1.00 23.87 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |           | 3821 | Õ   | ASP |    |     |        | 55.312 |        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM      |      |     |     |    |     | 43.925 |        | 95.721 | 1.00 39.44 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM      | 3822 | CB  | ASP |    |     | 43.262 | 55.155 | 98.611 | 1.00 25.29 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15 | MOTA      | 3823 | CG  | ASP |    |     | 43.072 | 53.668 | 98.575 | 1.00 39.58 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15 | MOTA      | 3824 |     | ASP |    |     | 42.471 | 53.029 | 97.708 | 1.00 46.00 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | MOTA      | 3825 |     | ASP |    |     | 43.698 | 53.107 | 99.567 | 1.00 39.59 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | MOTA      | 3826 | N   | ASP |    |     | 41.788 | 54.881 | 95.373 | 1.00 30.70 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM      | 3827 | CA  | ASP | Α  | 482 | 42.098 | 54.379 | 94.024 | 1.00 31.73 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1  | ATOM      | 3828 | С   | ASP | Α  | 482 | 41.725 | 55.307 | 92.859 | 1.00 34.17 |
| U.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20 | ATOM      | 3829 | 0   | ASP | A  | 482 | 42.158 | 55.150 | 91.717 | 1.00 35.45 |
| The State of the S |    | ATOM      | 3830 | CB  | ASP | Α  | 482 | 41.399 | 53.022 | 93.756 | 1.00 33.31 |
| 5348<br>8 a -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | MOTA      | 3831 | CG  | ASP | Α  | 482 | 41.686 | 51.970 | 94.779 | 1.00 38.90 |
| -4.<br> **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    | ATOM      | 3832 | OD1 | ASP | Α  | 482 | 42.810 | 51.514 | 94.992 | 1.00 42.45 |
| 15 21/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | ATOM      | 3833 | OD2 | ASP | Α  | 482 | 40.606 | 51.625 | 95.440 | 1.00 40.17 |
| मर्चु मार<br>इस्तर<br>सर्वे मार                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25 | MOTA      | 3834 | N   | LEU | Α  | 483 | 40.863 | 56.246 | 93.146 | 1.00 29.93 |
| a Figure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -  | ATOM      | 3835 | CA  |     |    | 483 | 40.352 | 57.159 | 92.160 | 1.00 27.80 |
| 2 770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    | ATOM      | 3836 | C   |     |    | 483 | 41.434 | 57.943 | 91.410 | 1.00 40.70 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM      | 3837 | ŏ   |     |    | 483 | 41.386 | 58.102 | 90.180 | 1.00 40.76 |
| 181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | ATOM      | 3838 | СВ  |     |    | 483 | 39.265 | 58.049 | 92.819 | 1.00 22.54 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30 | ATOM      | 3839 | CG  |     | -  | 483 | 38.148 | 57.240 | 93.488 | 1.00 20.75 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50 | ATOM      | 3840 |     | LEU |    |     | 37.170 | 58.165 | 94.197 | 1.00 20.73 |
| The state of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    | ATOM      | 3841 |     | LEU |    |     | 37.389 | 56.467 | 92.414 | 1.00 19.29 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | MOTA      | 3842 | N   |     |    | 484 | 42.410 |        |        |            |
| केम स्थाप<br>स्थापन                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |           | 3843 | CA  |     |    |     |        | 58.446 | 92.162 | 1.00 36.15 |
| is all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35 | MOTA      |      |     |     |    | 484 | 43.459 | 59.225 | 91.571 | 1.00 34.08 |
| ###                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33 | ATOM      | 3844 | C   |     |    | 484 | 44.168 | 58.524 | 90.429 | 1.00 39.51 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM      | 3845 | 0   |     |    | 484 | 44.456 | 59.091 | 89.359 | 1.00 38.59 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM      | 3846 | CB  |     |    | 484 | 44.495 | 59.602 | 92.618 | 1.00 34.26 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM      | 3847 | CG  |     |    | 484 | 45.807 | 59.955 | 91.941 | 1.00100.00 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40 | ATOM      | 3848 |     | ASN |    |     | 45.878 | 60.940 | 91.171 | 1.00100.00 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40 | ATOM      | 3849 |     | ASN |    |     | 46.836 | 59.134 | 92.186 | 1.00100.00 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | MOTA      | 3850 | N   |     |    | 485 | 44.472 | 57.268 | 90.698 | 1.00 35.37 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM      | 3851 | CA  |     |    | 485 | 45.202 | 56.417 | 89.791 | 1.00 32.79 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM      | 3852 | С   |     |    | 485 | 44.522 | 56.140 | 88.484 | 1.00 32.26 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4- | MOTA      | 3853 | 0   |     |    | 485 | 45.159 | 55.925 | 87.463 | 1.00 32.44 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45 | ATOM      | 3854 | CB  |     |    | 485 | 45.565 | 55.132 | 90.477 | 1.00 38.65 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM      | 3855 | OG  |     |    | 485 | 46.040 | 55.437 | 91.777 | 1.00 62.66 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM      | 3856 | N   |     |    | 486 | 43.222 | 56.110 | 88.491 | 1.00 27.13 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM      | 3857 | CA  | PHE | Α  | 486 | 42.631 | 55.809 | 87.233 | 1.00 28.26 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | MOTA      | 3858 | С   |     |    | 486 | 43.193 | 56.772 | 86.264 | 1.00 32.12 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50 | ATOM      | 3859 | 0   |     |    | 486 | 43.423 | 57.910 | 86.604 | 1.00 32.02 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM      | 3860 | CB  | PHE | Α  | 486 | 41.101 | 55.819 | 87.198 | 1.00 31.01 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | MOTA      | 3861 | CG  | PHE | Α  | 486 | 40.471 | 54.807 | 88.132 | 1.00 27.04 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM      | 3862 | CD1 | PHE | Α  | 486 | 40.504 | 53.425 | 87.911 | 1.00 22.43 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | MOTA      | 3863 | CD2 | PHE | Α  | 486 | 39.805 | 55.293 | 89.253 | 1.00 21.40 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 55 | MOTA      | 3864 |     | PHE |    |     | 39.896 | 52.538 | 88.804 | 1.00 19.69 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM      | 3865 |     | PHE |    |     | 39.224 | 54.426 | 90.174 | 1.00 19.20 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | MOTA      | 3866 | CZ  |     |    | 486 | 39.245 | 53.051 | 89.927 | 1.00 15.13 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM      | 3867 | N   |     |    | 487 | 43.455 | 56.279 | 85.089 | 1.00 34.97 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM      | 3868 | CA  |     |    | 487 | 44.032 | 57.092 | 84.070 | 1.00 34.06 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60 | ATOM      | 3869 | c   |     |    | 487 | 43.491 | 56.622 | 82.758 | 1.00 43.55 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM      | 3870 | Ö   |     |    | 487 | 42.951 | 55.537 | 82.604 | 1.00 45.33 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM      | 3871 | СВ  |     |    | 487 | 45.591 | 57.038 | 84.085 | 1.00 43.93 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | MOTA      | 3872 | CG  |     |    | 487 | 46.196 | 58.169 | 83.302 | 1.00 43.93 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM      | 3873 |     | ASN |    |     | 46.057 | 58.189 | 82.077 | 1.00 36.10 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | - 14 04 1 |      |     |     | 41 | ,   | /      | 00.109 | 02.011 | 1.00 12.14 |

46.829 59.112 84.007 1.00 65.62

MOTA

3874 ND2 ASN A 487

|    | 711011 | 2075 |     | 71011 11 |     | 40.029 | 33.112 | 04.007 | 1.00 05.02 |
|----|--------|------|-----|----------|-----|--------|--------|--------|------------|
|    | MOTA   | 3875 | N   | ALA A    |     | 43.662 | 57.435 | 81.781 | 1.00 39.34 |
|    | ATOM   | 3876 | CA  | ALA A    |     | 43.201 | 57.055 | 80.472 | 1.00 38.25 |
| _  | MOTA   | 3877 | С   | ALA A    |     | 44.024 | 55.900 | 79.809 | 1.00 43.58 |
| 5  | MOTA   | 3878 | 0   | ALA A    | 488 | 43.596 | 55.317 | 78.834 | 1.00 44.11 |
|    | ATOM   | 3879 | СВ  | ALA A    |     | 43.153 | 58.314 | 79.621 | 1.00 37.54 |
|    | ATOM   | 3880 | N   | THR A    |     |        |        |        |            |
|    |        |      |     |          |     | 45.207 | 55.555 | 80.314 | 1.00 38.34 |
|    | MOTA   | 3881 | CA  | THR A    |     | 45.996 | 54.499 | 79.715 | 1.00 36.16 |
|    | ATOM   | 3882 | С   | THR A    | 489 | 45.270 | 53.181 | 79.792 | 1.00 45.74 |
| 10 | ATOM   | 3883 | 0   | THR A    | 489 | 45.476 | 52.233 | 79.057 | 1.00 47.78 |
|    | ATOM   | 3884 | CB  | THR A    |     | 47.296 | 54.458 | 80.503 | 1.00 31.01 |
|    | ATOM   | 3885 |     | THR A    |     |        |        |        |            |
|    |        |      |     |          |     | 46.961 | 54.457 | 81.872 | 1.00 35.33 |
|    | ATOM   | 3886 | CG2 | THR A    |     | 47.993 | 55.771 | 80.229 | 1.00 28.28 |
|    | ATOM   | 3887 | N   | ASP A    | 490 | 44.337 | 53.182 | 80.708 | 1.00 46.75 |
| 15 | ATOM   | 3888 | CA  | ASP A    |     | 43.560 | 52.018 | 80.972 | 1.00 51.49 |
|    | ATOM   | 3889 | C   | ASP A    |     | 42.759 |        |        |            |
|    |        |      |     |          |     |        | 51.515 | 79.786 | 1.00 52.21 |
|    | ATOM   | 3890 | 0   | ASP A    |     | 42.396 | 50.342 | 79.651 | 1.00 54.75 |
|    | ATOM   | 3891 | CB  | ASP A    | 490 | 42.676 | 52.345 | 82.184 | 1.00 54.04 |
|    | MOTA   | 3892 | CG  | ASP A    | 490 | 43.413 | 52.884 | 83.380 | 1.00 53.83 |
| 20 | ATOM   | 3893 | OD1 | ASP A    |     | 44.621 | 52.777 | 83.616 | 1.00 62.93 |
|    | ATOM   | 3894 |     | ASP A    |     |        |        |        |            |
|    |        |      |     |          |     | 42.565 | 53.446 | 84.165 | 1.00 35.66 |
|    | ATOM   | 3895 | И   | LEU A    |     | 42.486 | 52.450 | 78.938 | 1.00 42.42 |
|    | ATOM   | 3896 | CA  | LEU A    | 491 | 41.752 | 52.250 | 77.723 | 1.00 43.54 |
|    | ATOM   | 3897 | С   | LEU A    | 491 | 42.712 | 51.977 | 76.585 | 1.00 43.97 |
| 25 | ATOM   | 3898 | ō   | LEU A    |     |        |        |        |            |
| 20 |        |      |     |          |     | 42.340 | 51.438 | 75.588 | 1.00 42.53 |
|    | ATOM   | 3899 | CB  | LEU A    |     | 40.984 | 53.528 | 77.421 | 1.00 44.89 |
|    | ATOM   | 3900 | CG  | LEU A    | 491 | 39.794 | 53.747 | 78.338 | 1.00 48.31 |
|    | MOTA   | 3901 | CD1 | LEU A    | 491 | 38.558 | 54.171 | 77.552 | 1.00 49.16 |
|    | ATOM   | 3902 |     | LEU A    |     | 39.377 | 52.494 | 79.125 |            |
| 30 |        | 3903 | N   |          |     |        |        |        | 1.00 39.24 |
| 30 | MOTA   |      |     | LYS A    |     | 43.958 | 52.403 | 76.754 | 1.00 42.32 |
|    | MOTA   | 3904 | CA  | LYS A    |     | 44.999 | 52.320 | 75.696 | 1.00 44.57 |
|    | ATOM   | 3905 | С   | LYS A    | 492 | 44.826 | 51.165 | 74.680 | 1.00 49.08 |
|    | ATOM   | 3906 | 0   | LYS A    | 492 | 44.810 | 51.343 | 73.473 | 1.00 49.66 |
|    | ATOM   | 3907 | CB  | LYS A    |     | 46.359 | 52.177 |        |            |
| 35 | ATOM   | 3908 |     |          |     |        |        | 76.401 | 1.00 48.47 |
| 33 |        |      | CG  | LYS A    |     | 47.487 | 52.883 | 75.629 | 1.00 88.73 |
|    | ATOM   | 3909 | CD  | LYS A    | 492 | 48.852 | 52.537 | 76.197 | 1.00100.00 |
|    | ATOM   | 3910 | CE  | LYS A    | 492 | 48.786 | 51.460 | 77.300 | 1.00100.00 |
|    | ATOM   | 3911 | NZ  | LYS A    | 492 | 50.103 | 50.896 | 77.541 | 1.00100.00 |
|    | ATOM   | 3912 | N   | ASP A    |     | 44.711 | 49.917 |        |            |
| 40 |        |      |     |          |     |        |        | 75.227 | 1.00 41.86 |
| 40 | ATOM   | 3913 | CA  | ASP A    |     | 44.664 | 48.740 | 74.372 | 1.00 40.17 |
|    | ATOM   | 3914 | С   | ASP A    |     | 43.220 | 48.162 | 74.215 | 1.00 44.29 |
|    | MOTA   | 3915 | 0   | ASP A    | 493 | 43.031 | 46.973 | 73.889 | 1.00 42.00 |
|    | ATOM   | 3916 | CB  | ASP A    | 493 | 45.560 | 47.699 | 75.015 | 1.00 41.52 |
|    | ATOM   | 3917 | CG  | ASP A    |     | 47.021 |        |        |            |
| 45 |        | 3918 |     |          |     |        | 48.130 | 74.956 | 1.00 67.01 |
| 43 | ATOM   |      |     | ASP A    |     | 47.467 | 48.451 | 73.856 | 1.00 77.10 |
|    | MOTA   | 3919 |     | ASP A    |     | 47.678 | 48.131 | 75.984 | 1.00 57.19 |
|    | ATOM   | 3920 | N   | LEU A    | 494 | 42.193 | 49.005 | 74.475 | 1.00 40.69 |
|    | ATOM   | 3921 | CA  | LEU A    | 494 | 40.789 | 48.512 | 74.526 | 1.00 36.32 |
|    | ATOM   | 3922 | С   | LEU A    |     | 39.992 | 48.877 |        |            |
| 50 | ATOM   | 3923 | ō   |          |     |        |        | 73.245 | 1.00 37.76 |
| 50 |        |      |     | LEU A    |     | 39.897 | 50.029 | 72.863 | 1.00 38.93 |
|    | ATOM   | 3924 | CB  | LEU A    |     | 40.098 | 49.125 | 75.733 | 1.00 32.52 |
|    | MOTA   | 3925 | CG  | LEU A    | 494 | 40.376 | 48.433 | 77.063 | 1.00 30.66 |
|    | ATOM   | 3926 | CD1 | LEU A    | 494 | 39.229 | 48.580 | 78.052 | 1.00 30.39 |
|    | ATOM   | 3927 |     | LEU A    |     |        |        |        |            |
| 55 |        |      |     |          |     | 40.611 | 46.925 | 76.918 | 1.00 23.54 |
| 33 | ATOM   | 3928 | N   | SER A    |     | 39.477 | 47.825 | 72.631 | 1.00 25.56 |
|    | ATOM   | 3929 | CA  | SER A    | 495 | 38.674 | 48.017 | 71.457 | 1.00 22.23 |
|    | ATOM   | 3930 | С   | SER A    | 495 | 37.344 | 48.670 | 71.856 | 1.00 31.27 |
|    | ATOM   | 3931 | 0   | SER A    |     | 36.968 | 48.706 |        |            |
|    | ATOM   | 3932 |     |          |     |        |        | 73.038 | 1.00 31.21 |
| 60 |        |      | CB  | SER A    |     | 38.380 | 46.705 | 70.795 | 1.00 20.88 |
| ou | ATOM   | 3933 | OG  | SER A    | 495 | 37.192 | 46.143 | 71.317 | 1.00 33.60 |
|    | ATOM   | 3934 | N   | SER A    | 496 | 36.627 | 49.184 | 70.865 | 1.00 29.48 |
|    | ATOM   | 3935 | CA  | SER A    |     | 35.363 | 49.821 | 71.139 |            |
|    | ATOM   | 3936 | C   | SER A    |     | 34.495 |        |        | 1.00 26.67 |
|    |        |      |     |          |     |        | 48.747 | 71.744 | 1.00 29.54 |
|    | ATOM   | 3937 | 0   | SER A    | 490 | 33.744 | 48.960 | 72.697 | 1.00 24.80 |
|    |        |      |     |          |     |        |        |        |            |

|      | ATOM    | 3938 | СВ  | SER A  | 496 | 34.760 | 50.441 | 60 004          | 1 00   |       |
|------|---------|------|-----|--------|-----|--------|--------|-----------------|--------|-------|
|      | ATOM    | 3939 | OG  | SER A  |     |        |        | 69.894          | 1.00 2 |       |
|      | ATOM    | 3940 | N   | HIS A  |     | 33.749 | 49.597 | 69.397          | 1.00   |       |
|      |         |      |     |        |     | 34.674 | 47.547 | 71.219          | 1.00 2 |       |
| 5    | ATOM    | 3941 | CA  | HIS A  |     | 33.949 | 46.383 | 71.750          | 1.00 2 |       |
| 5    | ATOM    | 3942 | С   | HIS A  |     | 34.156 | 46.148 | 73.275          | 1.00   | 37.24 |
|      | ATOM    | 3943 | 0   | HIS A  |     | 33.238 | 45.863 | 74.041          | 1.00 3 |       |
|      | ATOM    | 3944 | CB  | HIS A  |     | 34.364 | 45.106 | 70.978          | 1.00   |       |
|      | ATOM    | 3945 | CG  | HIS A  | 497 | 34.182 | 45.348 | 69.545          | 1.00   |       |
|      | ATOM    | 3946 | ND1 | HIS A  | 497 | 32.943 | 45.204 | 68.962          | 1.00   |       |
| 10   | ATOM    | 3947 | CD2 | HIS A  | 497 | 35.054 | 45.833 | 68.622          | 1.00   |       |
|      | ATOM    | 3948 | CE1 | HIS A  | 497 | 33.075 | 45.531 | 67.702          |        |       |
|      | ATOM    | 3949 | NE2 | HIS A  | 497 | 34.330 | 45.932 | 67.462          | 1.00 3 |       |
|      | ATOM    | 3950 | N   | GLN A  |     | 35.406 |        |                 | 1.00 3 |       |
|      | ATOM    | 3951 | CA  | GLN A  |     |        | 46.243 | 73.715          | 1.00 3 |       |
| 15   | ATOM    | 3952 | C   |        |     | 35.737 | 46.008 | 75.094          | 1.00 2 |       |
| 1.0  |         |      |     | GLN A  |     | 35.263 | 47.122 | 75.965          | 1.00 2 | 27.11 |
|      | ATOM    | 3953 | 0   | GLN A  |     | 34.842 | 46.930 | 77.089          | 1.00 2 | 23.92 |
|      | ATOM    | 3954 | CB  | GLN A  |     | 37.221 | 45.659 | 75.248          | 1.00 2 | 29.95 |
|      | ATOM    | 3955 | CG  | GLN A  |     | 37.582 | 44.317 | 74.544          | 1.00 2 | 25.78 |
|      | MOTA    | 3956 | CD  | GLN A  | 498 | 39.074 | 44.084 | 74.535          | 1.00 2 |       |
| 20   | MOTA    | 3957 | OE1 | GLN A  | 498 | 39.796 | 44.891 | 73.960          | 1.00 2 |       |
|      | MOTA    | 3958 | NE2 | GLN A  | 498 | 39.561 | 43.049 | 75.218          | 1.00 2 |       |
|      | ATOM    | 3959 | N   | LEU A  |     | 35.289 | 48.301 | 75.431          |        |       |
|      | ATOM    | 3960 | CA  | LEU A  |     |        |        |                 | 1.00 2 |       |
|      | ATOM    | 3961 | C   | LEU A  |     | 34.819 | 49.396 | 76.229          | 1.00 2 |       |
| 25   | ATOM    | 3962 |     |        |     | 33.351 | 49.162 | 76.632          | 1.00 2 |       |
| - 40 |         |      | 0   | LEU A  |     | 32.893 | 49.361 | 77.780          | 1.00 2 | 29.41 |
|      | ATOM    | 3963 | CB  | LEU A  |     | 34.991 | 50.709 | 75.436          | 1.00 3 | 31.70 |
|      | ATOM    | 3964 | CG  | LEU A  |     | 36.242 | 51.512 | 75 <b>.7</b> 88 | 1.00 3 | 39.76 |
|      | ATOM    | 3965 |     | LEU A  |     | 37.335 | 50.572 | 76.278          | 1.00 4 |       |
| 20   | ATOM    | 3966 |     | LEU A  | 499 | 36.718 | 52.268 | 74.555          | 1.00 3 |       |
| 30   | ATOM    | 3967 | N   | ASN A  | 500 | 32.606 | 48.737 | 75.642          | 1.00 1 |       |
|      | ATOM    | 3968 | CA  | ASN A  | 500 | 31.213 | 48.508 | 75.828          | 1.00 1 |       |
|      | ATOM    | 3969 | С   | ASN A  | 500 | 30.919 | 47.455 | 76.864          | 1.00 1 |       |
|      | MOTA    | 3970 | 0   | ASN A  |     | 29.997 | 47.602 | 77.705          | 1.00 1 |       |
|      | ATOM    | 3971 | CB  | ASN A  |     | 30.604 | 48.129 | 74.476          |        |       |
| 35   | ATOM    | 3972 | CG  | ASN A  |     | 29.093 | 48.214 |                 | 1.00 1 |       |
|      | ATOM    | 3973 |     | ASN A  |     | 28.433 |        | 74.426          | 1.00 3 |       |
|      | MOTA    | 3974 | ND3 | ASN A  | 500 |        | 49.151 | 74.930          | 1.00 3 |       |
|      | ATOM    | 3975 | N   | GLU A  |     | 28.542 | 47.218 | 73.787          | 1.00 1 |       |
|      | ATOM    | 3976 | CA  | GLU A  |     | 31.699 | 46.366 | 76.743          | 1.00 1 |       |
| 40   | ATOM    | 3977 |     |        |     | 31.626 | 45.224 | 77.625          | 1.00 1 |       |
| -10  | ATOM    |      | C   | GLU A  |     | 31.948 | 45.676 | 79.063          | 1.00 2 |       |
|      |         | 3978 | 0   | GLU A  |     | 31.175 | 45.463 | 80.009          | 1.00 2 | 5.02  |
|      | ATOM    | 3979 | CB  | GLU A  |     | 32.446 | 44.057 | 77.053          | 1.00 1 | 4.95  |
|      | MOTA    | 3980 | CG  | GLU A  |     | 32.371 | 42.827 | 77.989          | 1.00 3 |       |
| 4.5  | ATOM    | 3981 | CD  | GLU A  | 501 | 30.946 | 42.399 | 78.199          | 1.00 3 |       |
| 45   | ATOM    | 3982 |     | GLU A  |     | 30.050 | 42.672 | 77.413          | 1.00 7 |       |
|      | ATOM    | 3983 | OE2 | GLU A  | 501 | 30.780 | 41.694 | 79.292          | 1.00 4 |       |
|      | ATOM    | 3984 | N   | PHE A  | 502 | 33.059 | 46.400 | 79.226          | 1.00 1 |       |
|      | ATOM    | 3985 | CA  | PHE A  |     | 33.395 | 46.952 | 80.530          | 1.00 2 |       |
|      | ATOM    | 3986 | С   | PHE A  |     | 32.179 | 47.679 | 81.125          |        |       |
| 50   | ATOM    | 3987 | 0   | PHE A  |     | 31.786 | 47.491 |                 | 1.00 2 |       |
|      | ATOM    | 3988 | СВ  | PHE A  |     | 34.507 |        | 82.301          | 1.00 2 |       |
|      | ATOM    | 3989 | CG  | PHE A  |     |        | 48.012 | 80.327          | 1.00 2 |       |
|      | ATOM    | 3990 |     |        |     | 34.590 | 49.082 | 81.393          | 1.00 3 |       |
|      |         |      |     | PHE A  |     | 35.085 | 48.781 | 82.662          | 1.00 2 |       |
| 55   | ATOM    | 3991 |     | PHE A  |     | 34.211 | 50.402 | 81.132          | 1.00 3 | 9.16  |
| 33   | ATOM    | 3992 |     | PHE A  |     | 35.183 | 49.773 | 83.638          | 1.00 3 | 1.12  |
|      | ATOM    | 3993 |     | PHE A  |     | 34.305 | 51.414 | 82.096          | 1.00 4 |       |
|      | ATOM    | 3994 | CZ  | PHE A  |     | 34.812 | 51.090 | 83.352          | 1.00 3 |       |
|      | ATOM    | 3995 | N   | LEU A  | 503 | 31.613 | 48.557 | 80.288          | 1.00 1 |       |
|      | ATOM    | 3996 | CA  | LEU A  |     | 30.487 | 49.343 | 80.692          | 1.00 2 |       |
| 60   | ATOM    | 3997 | С   | LEU A  |     | 29.337 | 48.491 | 81.178          | 1.00 2 |       |
|      | ATOM    | 3998 | 0   | LEU A  |     | 28.768 | 48.784 | 82.243          |        |       |
|      | ATOM    | 3999 | СВ  | LEU A  |     | 30.002 | 50.325 | 79.619          | 1.00 2 |       |
|      | ATOM    | 4000 | CG  | LEU A  |     | 30.888 |        |                 | 1.00 2 |       |
|      | ATOM    | 4001 |     | LEU A  |     | 30.000 | 51.571 | 79.465          | 1.00 2 | 1.47  |
|      | 111 011 | .001 | ~DI | TIPO M | JUJ | 30.415 | 52.376 | 78.259          | 1.00 2 | 4.86  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | MOTA | 4002 | CD2 | LEU A | 503 | 30.860 | 52.420 | 80.733 | 1.00 20.54 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|------|-----|-------|-----|--------|--------|--------|------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | ATOM | 4003 | N   | ALA A | 504 | 29.012 | 47.444 | 80.378 | 1.00 27.79 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | ATOM | 4004 | CA  | ALA A |     | 27.911 | 46.474 | 80.643 |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      | 4005 | C   |       |     |        |        |        | 1.00 24.63 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E   | ATOM |      |     | ALA A |     | 28.140 | 45.752 | 81.939 | 1.00 27.71 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5   | ATOM | 4006 | 0   | ALA A | 504 | 27.265 | 45.577 | 82.817 | 1.00 28.62 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | MOTA | 4007 | CB  | ALA A | 504 | 27.762 | 45.482 | 79.496 | 1.00 23.87 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | ATOM | 4008 | N   | GLN A | 505 | 29.382 | 45.344 | 82.066 | 1.00 22.16 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | ATOM | 4009 | CA  | GLN A |     | 29.738 |        |        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |      |     |       |     |        | 44.710 | 83.299 | 1.00 21.02 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10  | ATOM | 4010 | C   | GLN A |     | 29.489 | 45.737 | 84.423 | 1.00 31.26 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10  | MOTA | 4011 | 0   | GLN A | 505 | 28.787 | 45.507 | 85.413 | 1.00 32.31 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | ATOM | 4012 | CB  | GLN A | 505 | 31.202 | 44.209 | 83.270 | 1.00 18.95 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | ATOM | 4013 | CG  | GLN A | 505 | 31.367 | 42.881 | 82.495 | 1.00 13.72 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | ATOM | 4014 | CD  | GLN A |     | 32.806 |        |        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |      |     |       |     |        | 42.549 | 82.136 | 1.00 31.75 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.5 | ATOM | 4015 |     | GLN A |     | 33.796 | 42.969 | 82.768 | 1.00 43.14 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15  | ATOM | 4016 | NE2 | GLN A | 505 | 32.923 | 41.781 | 81.085 | 1.00 39.34 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | ATOM | 4017 | N   | THR A | 506 | 30.056 | 46.918 | 84.263 | 1.00 25.95 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | ATOM | 4018 | CA  | THR A | 506 | 29.855 | 47.864 | 85.302 | 1.00 23.64 |
| :#F FB.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | ATOM | 4019 | С   | THR A |     | 28.411 |        |        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |      |     |       |     |        | 48.101 | 85.579 | 1.00 23.89 |
| THE PARTY OF THE P | 20  | ATOM | 4020 | 0   | THR A |     | 27.923 | 47.999 | 86.696 | 1.00 22.75 |
| 1.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20  | MOTA | 4021 | CB  | THR A | 506 | 30.600 | 49.130 | 85.008 | 1.00 23.72 |
| र्वे स्था                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | MOTA | 4022 | OG1 | THR A | 506 | 31.938 | 48.749 | 84.742 | 1.00 27.18 |
| He sty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | ATOM | 4023 | CG2 | THR A |     | 30.502 | 49.961 | 86.260 | 1.00 11.12 |
| 102 207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | ATOM | 4024 | N   | LEU A |     | 27.727 | 48.408 | 84.518 |            |
| 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | ATOM | 4025 | CA  | LEU A |     |        |        |        | 1.00 17.92 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25  |      | 4026 |     |       |     | 26.334 | 48.683 | 84.604 | 1.00 17.22 |
| #4 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23  | ATOM |      | С   | LEU A |     | 25.618 | 47.683 | 85.442 | 1.00 25.65 |
| - A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | ATOM | 4027 | 0   | LEU A |     | 24.816 | 48.073 | 86.266 | 1.00 27.85 |
| #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | ATOM | 4028 | CB  | LEU A | 507 | 25.693 | 48.686 | 83.224 | 1.00 17.85 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | ATOM | 4029 | CG  | LEU A | 507 | 24.207 | 48.930 | 83.336 | 1.00 21.02 |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | ATOM | 4030 | CD1 | LEU A | 507 | 23.974 | 50.290 | 83.970 | 1.00 22.48 |
| n,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30  | ATOM | 4031 |     | LEU A |     | 23.599 | 48.919 | 81.949 |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | ATOM | 4032 | N   | GLN A |     | 25.878 |        |        | 1.00 15.25 |
| \$20,00°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |      |      |     |       |     |        | 46.395 | 85.194 | 1.00 21.35 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | ATOM | 4033 | CA  | GLN A |     | 25.215 | 45.333 | 85.979 | 1.00 18.08 |
| E.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | ATOM | 4034 | С   | GLN A |     | 25.386 | 45.561 | 87.508 | 1.00 34.24 |
| ja it.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | "   | MOTA | 4035 | 0   | GLN A | 508 | 24.653 | 45.017 | 88.343 | 1.00 34.04 |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35  | ATOM | 4036 | CB  | GLN A | 508 | 25.713 | 43.917 | 85.608 | 1.00 10.94 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | MOTA | 4037 | CG  | GLN A |     | 25.366 | 43.446 | 84.191 | 1.00 26.42 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | ATOM | 4038 | CD  | GLN A |     | 25.635 | 41.944 | 84.002 | 1.00 52.93 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | ATOM | 4039 | OE1 | GLN A |     |        |        |        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | ATOM | 4040 | NE2 | GLN A |     | 26.550 | 41.396 | 84.628 | 1.00 32.89 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40  |      |      |     |       |     | 24.864 | 41.252 | 83.147 | 1.00 34.36 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40  | ATOM | 4041 | N   | ARG A |     | 26.380 | 46.361 | 87.901 | 1.00 33.73 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | MOTA | 4042 | CA. | ARG A | 509 | 26.600 | 46.614 | 89.328 | 1.00 32.53 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | MOTA | 4043 | C   | ARG A | 509 | 26.153 | 48.016 | 89.727 | 1.00 33.63 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | MOTA | 4044 | 0   | ARG A | 509 | 26.509 | 48.522 | 90.777 | 1.00 31.08 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | MOTA | 4045 | CB  | ARG A |     | 28.055 | 46.440 | 89.760 |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45  | ATOM | 4046 | CG  | ARG A |     |        |        |        | 1.00 29.22 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      | 4047 |     |       |     | 28.553 | 45.014 | 89.733 | 1.00 29.78 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | ATOM |      | CD  | ARG A |     | 27.744 | 44.054 | 90.609 | 1.00 30.86 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | ATOM | 4048 | NE  | ARG A |     | 28.533 | 43.602 | 91.756 | 1.00 82.23 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | MOTA | 4049 | CZ  | ARG A | 509 | 29.842 | 43.274 | 91.726 | 1.00100.00 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | ATOM | 4050 | NH1 | ARG A | 509 | 30.579 | 43.315 | 90.613 | 1.00 92.85 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50  | ATOM | 4051 | NH2 | ARG A | 509 | 30.430 | 42.881 | 92.855 | 1.00 91.85 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | MOTA | 4052 | N   | ALA A |     | 25.384 | 48.659 | 88.880 |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | ATOM | 4053 | CA  | ALA A |     |        |        |        | 1.00 32.59 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |      |     |       |     | 24.952 | 49.985 | 89.215 | 1.00 32.51 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | MOTA | 4054 | C   | ALA A |     | 24.151 | 49.845 | 90.479 | 1.00 34.97 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | ATOM | 4055 | 0   | ALA A |     | 23.601 | 48.785 | 90.693 | 1.00 37.57 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 55  | ATOM | 4056 | CB  | ALA A | 510 | 24.189 | 50.622 | 88.063 | 1.00 32.91 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | ATOM | 4057 | N   | PRO A | 511 | 24.174 | 50.856 | 91.334 | 1.00 25.14 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | MOTA | 4058 | CA  | PRO A |     | 24.867 | 52.102 | 91.052 | 1.00 21.00 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | ATOM | 4059 | C   | PRO A |     |        |        |        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |      |     |       |     | 26.217 | 52.178 | 91.694 | 1.00 29.23 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60  | ATOM | 4060 | 0   | PRO A |     | 26.445 | 51.601 | 92.723 | 1.00 28.16 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JU  | ATOM | 4061 | CB  | PRO A |     | 24.102 | 53.169 | 91.818 | 1.00 21.55 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | ATOM | 4062 | CG  | PRO A | 511 | 23.316 | 52.432 | 92.886 | 1.00 28.68 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | ATOM | 4063 | CD  | PRO A | 511 | 23.169 | 50.995 | 92.407 | 1.00 25.16 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | ATOM | 4064 | N   | LEU A | 512 | 27.094 | 52.968 | 91.109 | 1.00 32.95 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | ATOM | 4065 | CA  | LEU A |     | 28.394 | 53.188 | 91.686 | 1.00 33.42 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |      |     |       |     |        |        |        | UU JJ.4Z   |

|               | ATOM | 4066 | С   | LEU A | 512  | 28. | 287         | 54.512 | 92.397 | 1.00 | 38.65 |
|---------------|------|------|-----|-------|------|-----|-------------|--------|--------|------|-------|
|               | ATOM | 4067 | 0   | LEU A | 512  | 27. | 388         | 55.305 | 92.114 |      | 40.69 |
|               | ATOM | 4068 | CB  | LEU A | 512  |     | 453         | 53.350 | 90.587 |      | 34.40 |
|               | ATOM | 4069 | CG  | LEU A |      |     | 178         | 52.049 | 90.216 |      | 40.13 |
| 5             | ATOM | 4070 |     | LEU A |      |     | 222         | 51.086 | 89.508 |      | 39.04 |
| -             | ATOM | 4071 |     | LEU A |      |     | 322         | 52.385 | 89.273 |      |       |
|               | ATOM | 4072 | N   | PRO A |      |     |             |        |        |      | 44.61 |
|               |      | 4073 |     |       |      |     | 196         | 54.781 | 93.312 |      | 31.05 |
|               | ATOM |      | CA  | PRO A |      |     | 167         | 56.058 | 94.008 |      | 27.16 |
| 10            | ATOM | 4074 | C   | PRO A |      |     | 296         | 57.203 | 93.019 |      | 23.76 |
| 10            | ATOM | 4075 | 0   | PRO A |      |     | 121         | 57.182 | 92.118 | 1.00 | 27.17 |
|               | ATOM | 4076 | CB  | PRO A |      |     | 387         | 56.013 | 94.948 | 1.00 | 25.59 |
|               | ATOM | 4077 | CG  | PRO A | 513  | 30. | 702         | 54.542 | 95.149 |      | 27.14 |
|               | ATOM | 4078 | CD  | PRO A | 513  | 30. | 030         | 53.779 | 94.032 |      | 25.00 |
|               | ATOM | 4079 | N   | LEU A | 514  | 28. | 478         | 58.203 | 93.185 |      | 22.92 |
| 15            | ATOM | 4080 | CA  | LEU A | 514  |     | 516         | 59.350 | 92.279 |      | 27.55 |
|               | ATOM | 4081 | С   | LEU A |      |     | 930         | 59.766 | 91.940 |      |       |
|               | ATOM | 4082 | ŏ   | LEU A |      |     | 287         |        |        |      | 31.95 |
| .89 pb.       | ATOM | 4083 | СВ  | LEU A |      |     |             | 59.908 | 90.765 |      | 37.11 |
|               | ATOM | 4084 | CG  |       |      |     | 673         | 60.564 | 92.741 |      | 30.03 |
| 20            |      |      |     | LEU A |      | 27. |             | 61.626 | 91.648 |      | 32.87 |
| 43 ZU         | ATOM | 4085 | CD1 |       |      | 26. |             | 61.082 | 90.440 | 1.00 | 28.48 |
| La.           | ATOM | 4086 |     | LEU A |      | 26. |             | 62.780 | 92.272 | 1.00 | 31.16 |
|               | ATOM | 4087 | N   | GLY A | 515  | 30. | 731         | 59.989 | 92.979 |      | 24.42 |
| HA HA         | ATOM | 4088 | CA  | GLY A | 515  | 32. | 131         | 60.384 | 92.811 |      | 25.59 |
| 1 A.          | ATOM | 4089 | С   | GLY A | 515  | 32. |             | 59.472 | 91.835 |      | 33.83 |
| 25            | ATOM | 4090 | 0   | GLY A |      |     | 746         | 59.914 | 91.035 |      | 35.67 |
| jad.          | ATOM | 4091 | N   | HIS A |      | 32. |             | 58.180 | 91.891 |      |       |
| Pares.        | MOTA | 4092 | CA  | HIS A |      | 33. |             |        |        |      | 26.40 |
| HI.           | ATOM | 4093 | C   | HIS A |      |     |             | 57.255 | 90.998 |      | 25.86 |
| in in         | ATOM | 4094 |     |       |      | 32. |             | 57.578 | 89.560 |      | 27.62 |
| □ 30          |      |      | 0   | HIS A |      | 33. |             | 57.596 | 88.695 | 1.00 | 28.67 |
| # # <b>JU</b> | ATOM | 4095 | CB  | HIS A |      | 32. |             | 55.814 | 91.282 | 1.00 | 25.39 |
| rj.           | ATOM | 4096 | CG  | HIS A |      | 33. |             | 55.283 | 92.505 | 1.00 | 27.96 |
| 124           | ATOM | 4097 | NDl | HIS A | 516  | 33. | <b>6</b> 35 | 56.092 | 93.602 | 1.00 | 30.14 |
| 17 F          | ATOM | 4098 | CD2 | HIS A | 516  | 33. | 929         | 54.037 | 92.791 |      | 27.79 |
|               | ATOM | 4099 |     | HIS A |      | 34. | 205         | 55.336 | 94.534 |      | 27.58 |
| <b>35</b>     | MOTA | 4100 | NE2 | HIS A | 516  | 34. | 390         | 54.099 | 94.085 |      | 27.02 |
|               | ATOM | 4101 | N   | ILE A |      | 31. |             | 57.815 | 89.315 |      | 21.40 |
|               | MOTA | 4102 | CA  | ILE A |      | 31. |             | 58.107 | 87.973 |      | 22.75 |
|               | ATOM | 4103 | C   | ILE A |      | 31. |             | 59.424 | 87.462 |      |       |
|               | ATOM | 4104 | Õ   | ILE A |      | 32. |             | 59.558 | 86.352 |      | 31.09 |
| 40            | ATOM | 4105 | СB  | ILE A |      |     |             |        |        |      | 28.78 |
| ••            | ATOM | 4106 |     | ILE A |      | 29. |             | 58.024 | 87.930 |      | 27.12 |
|               |      | 4100 |     |       |      | 29. |             | 56.610 | 88.312 |      | 29.40 |
|               | ATOM |      |     | ILE A |      | 29. |             | 58.285 | 86.536 | 1.00 | 25.49 |
|               | ATOM | 4108 |     | ILE A |      | 29. |             | 55.665 | 87.105 | 1.00 | 34.77 |
| 15            | MOTA | 4109 | N   | LYS A |      | 31. |             | 60.416 | 88.308 | 1.00 | 27.28 |
| 45            | ATOM | 4110 | CA  | LYS A |      | 32. | 108         | 61.690 | 87.955 | 1.00 | 23.77 |
| * 4           | ATOM | 4111 | С   | LYS A |      | 33. | 558         | 61.482 | 87.485 | 1.00 | 24.03 |
|               | ATOM | 4112 | 0   | LYS A |      | 33. | 982         | 61.831 | 86.391 |      | 26.08 |
|               | ATOM | 4113 | CB  | LYS A | 518  | 32. | 038         | 62.557 | 89.210 |      | 24.00 |
| ×             | ATOM | 4114 | CG  | LYS A | 518  | 30. |             | 63.060 | 89.591 |      | 19.24 |
| 50            | ATOM | 4115 | CD  | LYS A |      | 30. |             | 64.276 | 90.537 |      | 27.93 |
|               | ATOM | 4116 | CE  | LYS A |      | 29. |             | 64.877 | 90.962 |      | 37.11 |
|               | ATOM | 4117 | NZ  | LYS A |      | 28. |             | 65.988 | 90.104 |      |       |
|               | ATOM | 4118 | N   | ARG A |      |     |             |        |        |      | 52.30 |
|               | ATOM | 4119 | CA  | ARG A |      | 34. |             | 60.899 | 88.361 |      | 17.90 |
| 55            | ATOM |      |     |       |      | 35. |             | 60.636 | 88.098 |      | 20.80 |
| , 55          |      | 4120 | C   | ARG A |      | 35. |             | 59.874 | 86.802 |      | 28.98 |
|               | ATOM | 4121 | 0   | ARG A |      | 36. |             | 60.084 | 86.051 |      | 29.86 |
|               | ATOM | 4122 | СВ  | ARG A |      | 36. |             | 59.844 | 89.276 |      | 20.56 |
|               | MOTA | 4123 | CG  | ARG A |      | 37. | 721         | 59.308 | 89.036 |      | 29.02 |
|               | MOTA | 4124 | CD  | ARG A | 519  | 38. | 668         | 60.320 | 88.404 |      | 41.17 |
| 60            | ATOM | 4125 | NE  | ARG A | 519  | 40. |             | 60.008 | 88.616 |      | 59.84 |
|               | ATOM | 4126 | CZ  | ARG A |      | 41. |             | 60.858 | 88.349 |      | 50.77 |
|               | MOTA | 4127 |     | ARG A |      | 40. |             | 62.073 | 87.880 |      | 31.21 |
|               | ATOM | 4128 |     | ARG A |      | 42. |             | 60.486 |        |      |       |
|               | ATOM | 4129 | N   | MET A |      | 34. |             |        | 88.543 |      | 31.86 |
|               |      |      |     | 31    | J_ V | 54. | , , ,       | 58.956 | 86.565 | T.00 | 25.08 |

|     | ATOM | 4130 | CA  | MET A | 520 | 34.979 | 58.121 | 85.379 | 1.00 24.56 |
|-----|------|------|-----|-------|-----|--------|--------|--------|------------|
|     | MOTA | 4131 | С   | MET A | 520 | 34.906 | 58.918 | 84.086 | 1.00 29.37 |
|     | MOTA | 4132 | 0   | MET A | 520 | 35.651 | 58.687 | 83.114 | 1.00 27.92 |
|     | MOTA | 4133 | CB  | MET A | 520 | 33.905 | 57.007 | 85.442 | 1.00 26.98 |
| 5   | ATOM | 4134 | CG  | MET A | 520 | 34.082 | 55.902 | 84.399 | 1.00 28.02 |
|     | MOTA | 4135 | SD  | MET A | 520 | 32.830 | 54.591 | 84.479 | 1.00 27.87 |
|     | ATOM | 4136 | CE  | MET A | 520 | 33.246 | 53.825 | 86.070 | 1.00 22.09 |
|     | MOTA | 4137 | N   | GLN A | 521 | 33.982 | 59.864 | 84.067 | 1.00 28.32 |
|     | ATOM | 4138 | CA  | GLN A | 521 | 33.838 | 60.672 | 82.886 | 1.00 28.34 |
| 10  | ATOM | 4139 | С   | GLN A |     | 35.067 | 61.540 | 82.785 | 1.00 36.52 |
|     | MOTA | 4140 | 0   | GLN A |     | 35.514 | 61.879 | 81.707 | 1.00 35.87 |
|     | ATOM | 4141 | CB  | GLN A | 521 | 32.514 | 61.451 | 82.863 | 1.00 28.34 |
|     | MOTA | 4142 | CG  | GLN A |     | 32.564 | 62.774 | 82.079 | 1.00 9.68  |
|     | MOTA | 4143 | CD  | GLN A |     | 32.890 | 62.572 | 80.616 | 1.00 27.55 |
| 15  | ATOM | 4144 |     | GLN A |     | 33.382 | 63,491 | 79.924 | 1.00 28.25 |
| 10  | ATOM | 4145 |     | GLN A |     | 32.657 | 61.368 | 80.142 | 1.00 25.70 |
|     | ATOM | 4146 | N   | GLU A |     | 35.626 | 61.827 | 83.963 | 1.00 25.70 |
|     | ATOM | 4147 | CA  | GLU A |     | 36.818 | 62.648 | 84.171 | 1.00 36.13 |
|     | ATOM | 4148 | c.  | GLU A |     | 38.136 | 62.046 | 83.662 | 1.00 30.13 |
| 20  | ATOM | 4149 | Ö   | GLU A |     | 39.099 | 62.735 | 83.335 |            |
| 20  | ATOM | 4150 | СВ  | GLU A |     | 36.857 | 63.035 | 85.641 | 1.00 42.40 |
|     |      | 4151 | CG  | GLU A |     |        |        |        | 1.00 37.79 |
|     | MOTA |      |     |       |     | 38.233 | 63.196 | 86.273 | 1.00 58.85 |
|     | ATOM | 4152 | CD  | GLU A |     | 38.046 | 64.040 | 87.493 | 1.00 73.64 |
| 25  | ATOM | 4153 |     | GLU A |     | 37.006 | 64.641 | 87.709 | 1.00 45.66 |
| 25  | MOTA | 4154 |     | GLU A |     | 39.081 | 64.037 | 88.289 | 1.00 47.91 |
|     | ATOM | 4155 | N   | VAL A |     | 38.188 | 60.739 | 83.552 | 1.00 40.13 |
|     | ATOM | 4156 | CA  | VAL A |     | 39.401 | 60.136 | 83.058 | 1.00 37.49 |
|     | ATOM | 4157 | С   | VAL A |     | 39.205 | 59.351 | 81.778 | 1.00 38.88 |
| 20  | ATOM | 4158 | 0   | VAL A |     | 40.195 | 59.016 | 81.138 | 1.00 40.21 |
| 30  | ATOM | 4159 | CB  | VAL A |     | 40.184 | 59.370 | 84.102 | 1.00 40.01 |
|     | ATOM | 4160 |     | VAL A |     | 40.231 | 60.165 | 85.413 | 1.00 39.12 |
|     | MOTA | 4161 |     | VAL A |     | 39.534 | 58.017 | 84.320 | 1.00 39.82 |
|     | MOTA | 4162 | N   | TYR A |     | 37.952 | 59.048 | 81.379 | 1.00 30.35 |
| ~ - | ATOM | 4163 | CA  | TYR A |     | 37.801 | 58.330 | 80.114 | 1.00 28.11 |
| 35  | MOTA | 4164 | С   | TYR A |     | 37.061 | 59.144 | 79.074 | 1.00 33.14 |
|     | MOTA | 4165 | 0   | TYR A |     | 37.076 | 58.802 | 77.908 | 1.00 35.84 |
|     | ATOM | 4166 | CB  | TYR A | 524 | 37.281 | 56.878 | 80.119 | 1.00 25.56 |
|     | ATOM | 4167 | CG  | TYR A |     | 37.941 | 55.960 | 81.111 | 1.00 20.87 |
|     | ATOM | 4168 |     | TYR A |     | 39.324 | 55.938 | 81.258 | 1.00 21.59 |
| 40  | ATOM | 4169 |     | TYR A |     | 37.170 | 55.083 | 81.879 | 1.00 19.80 |
|     | MOTA | 4170 | CE1 | TYR A | 524 | 39.905 | 55.063 | 82.176 | 1.00 25.64 |
|     | MOTA | 4171 | CE2 | TYR A |     | 37.731 | 54.227 | 82.827 | 1.00 18.61 |
|     | ATOM | 4172 | CZ  | TYR A | 524 | 39.116 | 54.231 | 82.969 | 1.00 19.81 |
|     | MOTA | 4173 | OH  | TYR A |     | 39.706 | 53.402 | 83.863 | 1.00 23.92 |
| 45  | ATOM | 4174 | N   | ASN A | 525 | 36.416 | 60.221 | 79.496 | 1.00 25.98 |
|     | ATOM | 4175 | CA  | ASN A | 525 | 35.687 | 61.088 | 78.588 | 1.00 25.01 |
|     | MOTA | 4176 | С   | ASN A | 525 | 34.661 | 60.354 | 77.735 | 1.00 29.86 |
|     | ATOM | 4177 | 0   | ASN A | 525 | 34.533 | 60.535 | 76.499 | 1.00 29.39 |
|     | MOTA | 4178 | CB  | ASN A | 525 | 36.637 | 61.922 | 77.739 | 1.00 29.55 |
| 50  | MOTA | 4179 | CG  | ASN A | 525 | 35.949 | 62.980 | 76.894 | 1.00 30.32 |
|     | ATOM | 4180 | OD1 | ASN A | 525 | 36.460 | 63.332 | 75.850 | 1.00 32.77 |
|     | MOTA | 4181 | ND2 | ASN A | 525 | 34.822 | 63.527 | 77.344 | 1.00 13.80 |
|     | ATOM | 4182 | N   | PHE A | 526 | 33,924 | 59.512 | 78.436 | 1.00 24.21 |
|     | ATOM | 4183 | CA  | PHE A | 526 | 32.900 | 58.745 | 77.807 | 1.00 25.14 |
| 55  | MOTA | 4184 | С   | PHE A | 526 | 31.846 | 59.631 | 77.214 | 1.00 31.74 |
|     | ATOM | 4185 | 0   | PHE A |     | 31.161 | 59.241 | 76.272 | 1.00 34.99 |
|     | ATOM | 4186 | CB  | PHE A |     | 32.256 | 57.732 | 78.781 | 1.00 26.60 |
|     | ATOM | 4187 | CG  | PHE A |     | 33.115 | 56.499 | 78.978 | 1.00 23.82 |
|     | ATOM | 4188 |     | PHE A |     | 34.017 | 56.080 | 78.000 | 1.00 25.00 |
| 60  | MOTA | 4189 |     | PHE A |     | 33.031 | 55.767 | 80.159 | 1.00 23.00 |
|     | ATOM | 4190 |     | PHE A |     | 34.783 | 54.927 | 78.173 | 1.00 27.63 |
|     | ATOM | 4191 |     | PHE A |     | 33.817 | 54.634 | 80.370 | 1.00 27.03 |
|     | MOTA | 4192 | CZ  | PHE A |     | 34.683 | 54.202 | 79.364 | 1.00 25.28 |
|     | ATOM | 4193 | N   | ASN A |     | 31.689 | 60.815 | 77.760 | 1.00 28.22 |
|     | ,    |      |     | 1     |     |        | 55.015 |        | 2.00 20.22 |

To see that the see that the see that the see that the see the see the see the see that the see the se

|                   |     | 14     |      |     | _     |       |        |        |        |      |        |
|-------------------|-----|--------|------|-----|-------|-------|--------|--------|--------|------|--------|
|                   |     | MOTA   | 4194 | CA  | ASN A | 527   | 30.657 | 61.688 | 77.214 | 1.00 | 31.18  |
|                   |     | ATOM   | 4195 | С   | ASN A | 527   | 30.884 | 62.046 | 75.744 | 1.00 | 33.17  |
|                   |     | ATOM   | 4196 | 0   | ASN A | 527   | 29.965 | 62.394 | 74.999 | 1.00 | 30.80  |
|                   |     | MOTA   | 4197 | CB  | ASN A |       | 30.479 | 62.967 | 78.052 |      | 36.41  |
|                   | 5   | ATOM   | 4198 | CG  | ASN A |       | 29.638 | 62.752 |        |      | 46.99  |
|                   | ,   |        |      |     |       |       |        |        | 79.292 |      |        |
|                   |     | MOTA   | 4199 |     | ASN A |       | 29.647 | 63.571 | 80.209 |      | 36.82  |
|                   |     | ATOM   | 4200 | ND2 | ASN A | 527 . | 28.922 | 61.636 | 79.338 |      | 43.55  |
|                   |     | MOTA   | 4201 | N   | ALA A | 528   | 32.136 | 61.947 | 75.348 | 1.00 | 27.46  |
|                   |     | MOTA   | 4202 | CA  | ALA A | 528   | 32.581 | 62.278 | 74.005 |      | 26.48  |
|                   | 10  | MOTA   | 4203 | С   | ALA A |       | 32.335 | 61.188 | 72.950 |      | 32.09  |
|                   | 10  |        |      |     |       |       |        |        |        |      |        |
|                   |     | MOTA   | 4204 | 0   | ALA A |       | 32.420 | 61.404 | 71.753 |      | 32.09  |
|                   |     | MOTA   | 4205 | CB  | ALA A |       | 34.076 | 62.584 | 74.105 | 1.00 | 26.04  |
|                   |     | MOTA   | 4206 | N   | ILE A | 529   | 32.067 | 59.983 | 73.402 | 1.00 | 31.35  |
|                   |     | ATOM   | 4207 | CA  | ILE A | 529   | 31.854 | 58.859 | 72.529 | 1.00 | 28.47  |
|                   | 15  | MOTA   | 4208 | С   | ILE A | 529   | 30.492 | 58.904 | 71.887 |      | 35.96  |
|                   | × 1 | ATOM   | 4209 | 0   | ILE A |       | 29.486 | 59.023 | 72.578 |      | 38.79  |
|                   |     |        |      |     |       |       |        |        |        |      |        |
|                   |     | ATOM   | 4210 | CB  | ILE A |       | 32.103 | 57.544 | 73.264 |      | 30.17  |
|                   |     | ATOM   | 4211 |     | ILE A |       | 33.622 | 57.291 | 73.392 |      | 31.37  |
| 74 FE             |     | ATOM   | 4212 | CG2 | ILE A | 529   | 31.428 | 56.411 | 72.489 | 1.00 | 27.63  |
| de to             | 20  | ATOM   | 4213 | CD1 | ILE A | 529   | 34.059 | 56.515 | 74.635 |      | 33.41  |
|                   |     | ATOM   | 4214 | N   | ASN A |       | 30.462 | 58.806 | 70.559 |      | 34.86  |
| 100               |     |        | 4215 |     | ASN A |       |        |        |        |      |        |
| J.E.              |     | ATOM   |      | CA  |       |       | 29.196 | 58.841 | 69.852 |      | 36.44  |
| 1200              |     | - ATOM | 4216 | С   | asn a |       | 28.596 | 57.495 | 69.473 |      | 39.90  |
|                   | 7   | ATOM   | 4217 | 0   | ASN A | 530   | 27.452 | 57.437 | 69.043 | 1.00 | 41.37  |
| हम्मः<br>सर्वेकाः | 25  | ATOM   | 4218 | CB  | ASN A | 530   | 28.951 | 60.044 | 68.928 |      | 51.44  |
|                   |     | ATOM   | 4219 | CG  | ASN A | 530   | 28.461 | 61.253 | 69.732 |      | 100.00 |
| 44. 14.           |     | ATOM   | 4220 |     | ASN A |       | 27.652 |        |        |      |        |
| ]=£.              |     |        |      |     |       |       |        | 61.109 | 70.665 |      | 100.00 |
| <b>#</b>          |     | MOTA   | 4221 |     | ASN A |       | 28.955 | 62.442 | 69.392 |      | 91.39  |
|                   | •   | MOTA   | 4222 | N   | ASN A |       | 29.368 | 56.403 | 69.688 | 1.00 | 30.37  |
| H.<br>113         | 30  | MOTA   | 4223 | CA  | ASN A | 531   | 28.912 | 55.030 | 69.446 | 1.00 | 28.14  |
| T.                |     | MOTA   | 4224 | С   | ASN A | 531   | 27.696 | 54.753 | 70.360 | 1.00 | 32.80  |
| n.                |     | MOTA   | 4225 | 0   | ASN A |       | 27.746 | 54.887 | 71.611 |      | 36.74  |
| \$2.20°           |     | ATOM   | 4226 | СВ  | ASN A |       |        |        |        |      |        |
| 12.20             |     |        |      |     |       |       | 30,092 | 54.066 | 69.690 |      | 24.31  |
|                   | 25  | ATOM   | 4227 | CG  | ASN A |       | 29.770 | 52.601 | 69.730 |      | 34.44  |
| 1.4.              | 35  | ATOM   | 4228 | OD1 | ASN A | 531   | 28.795 | 52.182 | 70.359 | 1.00 | 36.49  |
| 4-200             |     | MOTA   | 4229 | ND2 | ASN A | 531   | 30.643 | 51.810 | 69.099 | 1.00 | 30.57  |
|                   |     | ATOM   | 4230 | N   | SER A | 532   | 26.570 | 54.403 | 69.734 |      | 22.02  |
|                   |     | ATOM   | 4231 | CA  | SER A |       | 25.325 | 54.183 | 70.459 |      | 19.67  |
|                   |     | ATOM   | 4232 | c   | SER A |       | 25.323 |        |        |      |        |
|                   | 40  |        |      |     |       |       |        | 53.208 | 71.627 |      | 26.15  |
|                   | 40  | ATOM   | 4233 | 0   | SER A |       | 24.767 | 53.475 | 72.680 |      | 26.64  |
|                   |     | MOTA   | 4234 | CB  | SER A | 532   | 24.090 | 54.034 | 69.582 | 1.00 | 26.92  |
|                   |     | ATOM   | 4235 | OG  | SER A | 532   | 24.294 | 53.211 | 68.452 | 1.00 | 23.59  |
|                   |     | MOTA   | 4236 | N   | GLU A | 533   | 25.929 | 52.062 | 71.423 |      | 22.68  |
|                   |     | ATOM   | 4237 | CA  | GLU A | 533   | 25.995 | 51.036 | 72.420 |      | 22.97  |
|                   | 45  | ATOM   | 4238 | C   | GLU A |       | 26.677 | 51.569 | 73.635 |      |        |
|                   |     |        |      |     |       |       |        |        |        |      | 30.48  |
|                   |     | MOTA   | 4239 | 0   | GLU A |       | 26.125 | 51.539 | 74.749 |      | 31.13  |
|                   |     | MOTA   | 4240 | СВ  | GLU A |       | 26.683 | 49.779 | 71.850 |      | 23.96  |
|                   |     | MOTA   | 4241 | CG  | GLU A | 533   | 25.827 | 49.146 | 70.733 | 1.00 | 20.82  |
|                   |     | MOTA   | 4242 | CD  | GLU A | 533   | 24.611 | 48.450 | 71.276 |      | 40.65  |
|                   | 50  | MOTA   | 4243 | OE1 | GLU A | 533   | 24.432 | 48.256 | 72.476 |      | 36.25  |
|                   | _   | ATOM   | 4244 |     | GLU A |       | 23.782 |        |        | 1 00 | 25.23  |
|                   |     |        |      |     |       |       |        | 48.038 | 70.339 |      | 25.87  |
|                   |     | ATOM   | 4245 | N   | ILE A |       | 27.872 | 52.101 | 73.392 |      | 26.20  |
|                   |     | MOTA   | 4246 | CA  | ILE A |       | 28.622 | 52.672 | 74.484 |      | 26.32  |
|                   |     | ATOM   | 4247 | C   | ILE A | 534   | 27.900 | 53.849 | 75.121 | 1.00 | 27.83  |
|                   | 55- | ATOM   | 4248 | 0   | ILE A | 534   | 27.697 | 53.911 | 76.326 |      | 26.54  |
|                   |     | ATOM   | 4249 | CB  | ILE A |       | 30.051 | 53.022 | 74.102 |      | 29.16  |
|                   |     | ATOM   | 4250 |     | ILE A |       |        |        |        | 1 00 | 20.10  |
|                   |     |        |      |     |       |       | 30.738 | 51.808 | 73.479 | 1.00 | 29.47  |
|                   |     | MOTA   | 4251 |     | ILE A |       | 30.801 | 53.458 | 75.353 |      | 28.28  |
|                   |     | MOTA   | 4252 | CD1 | ILE A |       | 32.038 | 52.184 | 72.765 | 1.00 | 34.99  |
|                   | 60  | ATOM   | 4253 | N   | ARG A | 535   | 27.480 | 54.805 | 74.320 |      | 24.30  |
|                   |     | ATOM   | 4254 | CA  | ARG A |       | 26.804 | 55.898 | 74.949 | 1.00 | 22.51  |
|                   |     | ATOM   | 4255 | C   | ARG A |       | 25.573 | 55.401 | 75.701 |      | 28.19  |
|                   |     | MOTA   | 4256 | Ö   | ARG A |       |        |        |        |      |        |
|                   |     |        |      |     |       |       | 25.212 | 55.808 | 76.791 |      | 32.61  |
|                   |     | MOTA   | 4257 | CB  | ARG A | 232   | 26.457 | 56.942 | 73.913 | 1.00 | 24.83  |

|             | ATOM         | 4258         | CG         | ARG I | 4 535 |   | 25.970 | 58.229           | 74 547 | 1 00 | 01 40 |
|-------------|--------------|--------------|------------|-------|-------|---|--------|------------------|--------|------|-------|
|             | ATOM         | 4259         | CD         | ARG A |       |   | 25.370 |                  | 74.541 |      | 21.49 |
|             | ATOM         | 4260         | NE         | ARG A |       |   | 25.194 | 59.183<br>60.457 | 73.554 |      | 13.79 |
|             | ATOM         | 4261         | CZ         | ARG I |       |   | 26.256 |                  | 74.213 |      | 31.38 |
| 5           | ATOM         | 4262         |            | ARG A |       |   | 27.463 | 61.140<br>60.677 | 74.554 |      | 29.41 |
|             | ATOM         | 4263         |            | ARG A |       |   |        |                  | 74.259 |      | 26.45 |
|             | ATOM         | 4264         | N          |       | 4 536 |   | 26.110 | 62.302           | 75.195 |      | 19.99 |
|             | ATOM         | 4265         | CA         | PHE A |       | • | 24.911 | 54.466           | 75.126 |      | 23.44 |
|             | ATOM         | 4266         |            |       |       |   | 23.740 | 53.980           | 75.770 |      | 22.05 |
| 10          |              |              | C          | PHE A |       |   | 23.976 | 53.555           | 77.199 |      | 22.74 |
| 10          | ATOM         | 4267         | 0          | PHE A |       |   | 23.349 | 54.113           | 78.105 |      | 22.06 |
|             | ATOM         | 4268         | CB         | PHE A |       |   | 23.117 | 52.865           | 74.919 | 1.00 | 23.17 |
|             | ATOM         | 4269         | CG         | PHE A |       |   | 22.040 | 52.153           | 75.658 | 1.00 | 21.92 |
|             | ATOM         | 4270         |            | PHE A |       |   | 20.933 | 52.845           | 76.150 | 1.00 | 22.66 |
| 1.5         | ATOM         | 4271         |            | PHE A |       |   | 22.145 | 50.783           | 75.882 | 1.00 | 23.25 |
| 15          | ATOM         | 4272         | CE1        | PHE A |       |   | 19.926 | 52.181           | 76.847 |      | 21.23 |
|             | ATOM         | 4273         | CE2        |       |       |   | 21.147 | 50.101           | 76.576 |      | 24.70 |
|             | ATOM         | 4274         | CZ         | PHE A | A 536 |   | 20.047 | 50.811           | 77.065 |      | 20.57 |
|             | ATOM         | 4275         | N          | ARG A | ¥ 537 |   | 24.863 | 52.560           | 77.364 |      | 18.22 |
|             | ATOM         | 4276         | CA         | ARG A | 537   |   | 25.239 | 51.995           | 78.665 |      | 19.20 |
| 20          | ATOM         | 4277         | С          | ARG A | 537   |   | 25.932 | 52.963           | 79.618 |      | 27.62 |
|             | ATOM         | 4278         | 0          | ARG A |       |   | 25.803 | 52.845           | 80.837 |      |       |
|             | ATOM         | 4279         | СВ         | ARG A |       |   | 26.035 | 50.709           | 78.556 |      | 26.73 |
|             | ATOM         | 4280         | CG         | ARG A |       |   | 25.318 | 49.656           | 77.708 |      | 18.91 |
|             | ATOM         | 4281         | CD         | ARG A |       |   | 26.181 |                  |        |      | 16.55 |
| 25          | ATOM         | 4282         | NE         | ARG A |       |   | 25.341 | 48.426           | 77.387 |      | 21.58 |
|             | ATOM         | 4283         | CZ         | ARG A |       |   |        | 47.357           | 76.886 |      | 28.42 |
|             | ATOM         | 4284         | NH1        |       |       |   | 25.060 | 47.206           | 75.609 |      | 18.29 |
|             | ATOM         | 4285         |            |       |       |   | 25.569 | 48.004           | 74.703 |      | 22.46 |
|             |              |              |            | ARG A |       |   | 24.240 | 46.236           | 75.224 |      | 25.22 |
| 30          | ATOM         | 4286         | N          | TRP A |       |   | 26.668 | 53.930           | 79.064 |      | 24.21 |
| 30          | ATOM         | 4287         | CA         | TRP F |       |   | 27.337 | 54.918           | 79.867 | 1.00 | 22.11 |
|             | ATOM         | 4288         | C          | TRP A |       |   | 26.274 | 55.719           | 80.550 | 1.00 | 28.09 |
|             | ATOM         | 4289         | 0          | TRP A |       |   | 26.320 | 55.951           | 81.741 |      | 27.39 |
|             | ATOM         | 4290         | CB         | TRP A |       |   | 28.064 | 55.888           | 78.949 |      | 20.48 |
| 35          | ATOM         | 4291         | CG         | TRP A |       |   | 28.606 | 57.157           | 79.580 | 1.00 | 21.29 |
| 33          | ATOM         | 4292         |            | TRP A |       |   | 28.641 | 58.345           | 78.968 |      | 22.86 |
|             | ATOM<br>ATOM | 4293<br>4294 | CD2        |       |       |   | 29.286 | 57.352           | 80.845 | 1.00 | 21.79 |
|             | ATOM         | 4295         | NE1<br>CE2 | -     |       |   | 29.228 | 59.270           | 79.769 | 1.00 | 22.70 |
|             | ATOM         | 4296         | CE3        |       |       |   | 29.643 | 58.696           | 80.911 |      | 24.79 |
| 40          | ATOM         | 4297         |            |       |       |   | 29.574 | 56.535           | 81.946 |      | 23.35 |
| -10         | ATOM         |              | CZ2        | _     |       |   | 30.280 | 59.248           | 82.025 |      | 25.89 |
|             |              | 4298         | CZ3        |       |       |   | 30.203 | 57.056           | 83.046 |      | 23.35 |
|             | ATOM         | 4299         | CH2        |       |       |   | 30.562 | 58.405           | 83.081 | 1.00 | 24.89 |
|             | ATOM         | 4300         | N          | LEU A |       |   | 25.303 | 56.161           | 79.758 |      | 27.31 |
| 45          | ATOM         | 4301         | CA         | LEU A |       |   | 24.229 | 56.974           | 80.306 | 1.00 | 27.18 |
| 42          | MOTA         | 4302         | C          | LEU A |       |   | 23.369 | 56.245           | 81.332 |      | 28.25 |
|             | ATOM         | 4303         | 0          | LEU A |       |   | 22.857 | 56.822           | 82.266 | 1.00 | 27.19 |
|             | ATOM         | 4304         | CB         | LEU A |       |   | 23.428 | 57.812           | 79.262 | 1.00 | 26.37 |
|             | ATOM         | 4305         | CG         | LEU A | 539   |   | 24.269 | 58.682           | 78.279 | 1.00 | 25.71 |
| 50          | ATOM         | 4306         |            | LEU A |       |   | 23.369 | 59.424           | 77.290 | 1.00 | 21.79 |
| <b>30</b> , | ATOM         | 4307         |            | LEU A |       |   | 25.146 | 59.680           | 79.011 | 1.00 | 23.51 |
|             | ATOM         | 4308         | N          | ARG A |       |   | 23.199 | 54.960           | 81.188 |      | 27.56 |
|             | ATOM         | 4309         | CA         | ARG A |       |   | 22.390 | 54.283           | 82.170 | 1.00 | 26.88 |
|             | ATOM         | 4310         | С          | ARG A |       |   | 23.145 | 54.229           | 83.453 |      | 31.82 |
| 55          | ATOM         | 4311         | 0          | ARG A |       |   | 22.618 | 54.448           | 84.539 |      | 32.72 |
| 55          | MOTA         | 4312         | CB         | ARG A | 540   |   | 22.034 | 52.888           | 81.732 |      | 24.48 |
|             | ATOM         | 4313         | CG         | ARG A |       |   | 21.447 | 52.885           | 80.331 | 1.00 | 32.96 |
|             | ATOM         | 4314         | CD         | ARG A | 540   |   | 20.695 | 51.597           | 80.090 |      | 33.19 |
|             | MOTA         | 4315         | NE         | ARG A |       |   | 19.660 | 51.414           | 81.085 |      | 33.19 |
| -           | ATOM         | 4316         | CZ         | ARG A | 540   |   | 19.151 | 50.242           | 81.409 |      | 30.83 |
| 60          | MOTA         | 4317         | NH1        | ARG A |       |   | 19.564 | 49.132           | 80.849 |      | 25.37 |
|             | MOTA         | 4318         |            | ARG A |       |   | 18.186 | 50.186           | 82.317 |      |       |
|             | ATOM         | 4319         | N          | LEU A |       |   | 24.414 | 53.948           | 83.318 |      | 30.30 |
|             | ATOM         | 4320         | CA         | LEU A |       |   | 25.239 | 53.895           | 84.505 |      | 28.93 |
|             | ATOM         | 4321         | C          | LEU A |       |   | 25.036 | 55.210           | 85.277 | 1.00 | 26.36 |
|             |              |              | 1          |       |       |   |        | 33.210           | 03.211 | 1.00 | 31.00 |

|            |                | T COM | 4222 | ^   | TEH N | E 4 1 | 24 622 | EE 046              | 06 430 | 1 00 21 62 |
|------------|----------------|-------|------|-----|-------|-------|--------|---------------------|--------|------------|
|            |                | ATOM  | 4322 | 0   | LEU A |       | 24.632 | 55.246              | 86.439 | 1.00 31.62 |
|            |                | ATOM  | 4323 | СВ  | LEU A |       | 26.702 | 53.586              | 84.094 | 1.00 23.61 |
|            |                | MOTA  | 4324 | CG  | LEU A |       | 27.730 | 53.533              | 85.212 | 1.00 24.67 |
|            |                | ATOM  | 4325 | CD1 | LEU A | 541   | 27.387 | 52.411              | 86.190 | 1.00 25.02 |
|            | 5              | ATOM  | 4326 | CD2 | LEU A | 541   | 29.098 | 53.245              | 84.621 | 1.00 19.31 |
|            |                | ATOM  | 4327 | N   | CYS A | 542   | 25.254 | 56.307              | 84.570 | 1.00 30.52 |
|            |                | ATOM  | 4328 | CA  | CYS A | 542   | 25.115 | 57.661              | 85.105 | 1.00 31.76 |
|            |                | ATOM  | 4329 | С   | CYS A |       | 23.808 | 57.996              | 85.805 | 1.00 32.71 |
|            |                | ATOM  | 4330 | ō   | CYS A |       | 23.801 | 58.536              | 86.914 | 1.00 33.97 |
|            | 10             | ATOM  | 4331 | СВ  | CYS A |       | 25.461 | 58.744              | 84.073 |            |
|            | 10             |       |      |     |       |       |        |                     |        | 1.00 31.30 |
|            |                | MOTA  | 4332 | SG  | CYS A |       | 27.085 | 58.488              | 83.347 | 1.00 34.39 |
|            |                | ATOM  | 4333 | N   | ILE A |       | 22.711 | 57.708              | 85.125 | 1.00 25.61 |
|            |                | MOTA  | 4334 | CA  | ILE A |       | 21.382 | 57.982              | 85.643 | 1.00 23.12 |
|            |                | MOTA  | 4335 | С   | ILE A | 543   | 21.199 | 57.161              | 86.885 | 1.00 30.15 |
|            | 15             | MOTA  | 4336 | 0   | ILE A | 543   | 20.900 | 57.645              | 87.972 | 1.00 30.73 |
|            |                | ATOM  | 4337 | CB  | ILE A | 543   | 20.340 | 57.627              | 84.585 | 1.00 23.75 |
|            |                | ATOM  | 4338 | CG1 | ILE A |       | 20.369 | 58.664              | 83.468 | 1.00 24.09 |
|            |                | ATOM  | 4339 |     | ILE A |       | 18.955 | 57.572              | 85.182 | 1.00 22.99 |
| Ser.       |                | MOTA  | 4340 |     | ILE A |       | 20.386 | 60.109              | 83.982 | 1.00 27.34 |
|            | 20             |       | 4341 |     | GLN A |       |        |                     |        |            |
| dia.       | 20             | ATOM  |      | N   |       |       | 21.440 | 55.884              | 86.695 | 1.00 27.99 |
| To est     |                | ATOM  | 4342 | CA  | GLN A |       | 21.320 | 54.929              | 87.756 | 1.00 25.72 |
| -          |                | MOTA  | 4343 | С   | GLN A |       | 22.243 | 55.269              | 88.901 | 1.00 26.34 |
| E 4794.    |                | MOTA  | 4344 | 0   | GLN A | . 544 | 22.029 | 54.826              | 90.014 | 1.00 26.24 |
| THE THE    |                | MOTA  | 4345 | CB  | GLN A | 544   | 21.562 | 53.512              | 87.210 | 1.00 26.76 |
| 12 FF4.    | 25             | ATOM  | 4346 | CG  | GLN A | . 544 | 20.355 | 52.955              | 86.432 | 1.00 17.74 |
| 144        |                | ATOM  | 4347 | CD  | GLN A | 544   | 20.598 | 51.604              | 85.743 | 1.00 32.62 |
| - E        |                | MOTA  | 4348 | OE1 | GLN A |       | 20.326 | 51.432              | 84.551 | 1.00 38.66 |
| 3          |                | ATOM  | 4349 |     | GLN A |       | 21.063 | 50.627              | 86.494 | 1.00 14.93 |
| #          |                |       | 4350 |     | SER A |       |        | 56.033              |        |            |
| - A.       | 30             | ATOM  |      | N   |       |       | 23.286 |                     | 88.625 | 1.00 21.73 |
|            | 20             | MOTA  | 4351 | CA  | SER A |       | 24.187 | 56.392              | 89.685 | 1.00 22.42 |
| FF R       |                | ATOM  | 4352 | С   | SER A |       | 23.819 | 57.726              | 90.287 | 1.00 33.67 |
|            |                | ATOM  | 4353 | 0   | SER A |       | 24.567 | 58.257              | 91.133 | 1.00 37.22 |
|            |                | MOTA  | 4354 | CB  | SER A | 545   | 25.646 | 56.322              | 89.338 | 1.00 21.57 |
| 12.00      | - 1            | ATOM  | 4355 | OG  | SER A | 545   | 25.980 | <sup>^</sup> 54.968 | 89.163 | 1.00 31.72 |
| las die    | 35             | ATOM  | 4356 | N   | LYS A | 546   | 22.662 | 58.251              | 89.841 | 1.00 23.09 |
| Harana And |                | MOTA  | 4357 | CA  | LYS A | . 546 | 22.135 | 59.490              | 90.356 | 1.00 20.79 |
|            |                | ATOM  | 4358 | C   | LYS A |       | 22.887 | 60.738              | 89.961 | 1.00 27.55 |
|            |                | ATOM  | 4359 | 0   | LYS A |       | 23.001 | 61.655              | 90.771 | 1.00 27.95 |
|            |                | ATOM  | 4360 | СВ  | LYS A |       | 22.126 | 59.449              | 91.881 | 1.00 27.33 |
|            | 40             | ATOM  | 4361 | CG  | LYS A |       |        |                     |        |            |
|            | <del>1</del> 0 |       |      |     |       |       | 21.498 | 58.195              | 92.484 | 1.00 15.90 |
|            |                | MOTA  | 4362 | CD  | LYS A |       | 20.245 | 57.814              | 91.731 | 1.00 39.84 |
|            |                | ATOM  | 4363 | CE  | LYS A |       | 19.355 | 56.850              | 92.498 | 1.00 45.16 |
|            |                | ATOM  | 4364 | NZ  | LYS A |       | 18.197 | 56.399              | 91.704 | 1.00 40.14 |
|            |                | MOTA  | 4365 | N   | TRP A | 547   | 23.414 | 60.776              | 88.753 | 1.00 23.26 |
|            | 45             | ATOM  | 4366 | CA  | TRP A | 547   | 24.141 | 61.931              | 88.289 | 1.00 21.90 |
|            |                | MOTA  | 4367 | С   | TRP A | 547   | 23.221 | 62.901              | 87.570 | 1.00 29.82 |
|            |                | ATOM  | 4368 | 0   | TRP A | 547   | 22.808 | 62.679              | 86.432 | 1.00 34.91 |
|            |                | ATOM  | 4369 | СВ  | TRP A |       | 25.262 | 61.500              | 87.361 | 1.00 21.04 |
|            |                | MOTA  | 4370 | CG  | TRP A |       | 26.254 | 62.591              | 87.206 | 1.00 22.57 |
|            | 50             | ATOM  | 4371 |     | TRP A |       | 26.224 | 63.769              | 87.844 | 1.00 25.87 |
|            |                | ATOM  | 4372 |     | TRP A |       | 27.437 | 62.588              | 86.417 |            |
|            |                |       | 4373 |     | TRP A |       |        |                     |        | 1.00 23.40 |
|            |                | ATOM  |      |     |       |       | 27.316 | 64.511              | 87.517 | 1.00 25.64 |
|            |                | ATOM  | 4374 |     | TRP A |       | 28.081 | 63.819              | 86.635 | 1.00 27.46 |
|            |                | MOTA  | 4375 |     | TRP P |       | 28.014 | 61.668              | 85.547 | 1.00 26.21 |
|            | 55             | ATOM  | 4376 |     | TRP A |       | 29.279 | 64.162              | 85.995 | 1.00 27.44 |
|            |                | ATOM  | 4377 |     | TRP A |       | 29.195 | 62.009              | 84.923 | 1.00 28.70 |
|            |                | MOTA  | 4378 | CH2 | TRP P | 547   | 29.822 | 63.236              | 85.138 | 1.00 28.41 |
|            |                | MOTA  | 4379 | N   | GLU A |       | 22.888 | 63.995              | 88.227 | 1.00 22.95 |
|            |                | ATOM  | 4380 | CA  | GLU P |       | 21.979 | 64.970              | 87.649 | 1.00 20.70 |
|            | 60             | ATOM  | 4381 | C   | GLU P |       | 22.419 | 65.473              | 86.305 | 1.00 28.32 |
|            | .55            | ATOM  | 4382 | õ   | GLU F |       |        |                     |        |            |
|            |                |       |      |     |       |       | 21.598 | 65.735              | 85.391 | 1.00 29.41 |
|            |                | ATOM  | 4383 | CB  | GLU A |       | 21.635 | 66.144              | 88.607 | 1.00 22.45 |
|            |                | ATOM  | 4384 | CG  | GLU A |       | 20.884 | 65.709              | 89.919 | 1.00 30.56 |
|            |                | ATOM  | 4385 | CD  | GLU A | 1 548 | 20.337 | 66.848              | 90.765 | 1.00 59.35 |
|            |                |       |      |     |       |       |        |                     |        |            |

|           | ATOM         | 4386         |          | GLU A  |       | 20.336           | 68.021           | 90.413           | 1.00 8 |       |
|-----------|--------------|--------------|----------|--------|-------|------------------|------------------|------------------|--------|-------|
|           | ATOM         | 4387         |          | GLU A  |       | 19.888           | 66.450           | 91.925           | 1.00 5 |       |
|           | ATOM         | 4388         | N        | ASP A  |       | 23.728           | 65.661           | 86.201           | 1.00 2 |       |
| 0         | ATOM         | 4389         | CA       | ASP A  |       | 24.276           | 66.190           | 84.981           | 1.00 2 |       |
| 5         | ATOM         | 4390         | C        | ASP A  |       | 23.914           | 65.359           | 83.795           | 1.00 3 |       |
|           | MOTA         | 4391         | 0        | ASP A  |       | 23.760           | 65.869           | 82.697           | 1.00 3 |       |
|           | ATOM         | 4392         | CB       | ASP A  |       | 25.775           | 66.480           | 85.048           | 1.00 2 |       |
|           | ATOM         | 4393         | CG       | ASP A  |       | 26.076           | 67.463           | 86.130           | 1.00 3 |       |
| 10        | ATOM         | 4394         |          | ASP A  |       | 25.432           | 68.479           | 86.297           | 1.00 4 |       |
| 10        | ATOM         | 4395         |          | ASP A  |       | 27.076           | 67.115           | 86.882           | 1.00 4 |       |
|           | ATOM         | 4396         | N        | ALA A  |       | 23.766           | 64.073           | 84.032           | 1.00 2 |       |
|           | ATOM         | 4397         | CA       | ALA A  |       | 23.445           | 63.133           | 82.965           | 1.00 2 |       |
|           | ATOM         | 4398         | C        | ALA A  |       | 22.019           | 63.171           | 82.431           | 1.00 3 |       |
| 15        | MOTA         | 4399         | O        | ALA A  |       | 21.745           | 62.615           | 81.361           | 1.00 3 |       |
| 13        | ATOM         | 4400         | CB       | ALA A  |       | 23.812           | 61.713           | 83.372           | 1.00 2 |       |
|           | ATOM         | 4401         | N        | ILE A  |       | 21.123           | 63.795           | 83.192           | 1.00 2 |       |
|           | ATOM         | 4402         | CA       | ILE A  |       | 19.716           | 63.882           | 82.832           | 1.00 2 |       |
|           | ATOM         | 4403<br>4404 | С<br>0   | ILE A  |       | 19.461           | 64.355           | 81.411           | 1.00 3 |       |
| 20        | ATOM<br>ATOM | 4405         | CB       | ILE A  |       | 18.833<br>18.876 | 63.679           | 80.619           | 1.00 3 |       |
| 20        | ATOM         | 4406         | CG1      |        |       | 19.038           | 64.641           | 83.868<br>85.226 | 1.00 3 |       |
|           | ATOM         | 4407         | CG2      | ILE A  |       | 17.391           | 63.985<br>64.661 |                  | 1.00 3 |       |
|           | ATOM         | 4408         |          | ILE A  |       | 18.072           |                  | 83.475<br>86.253 | 1.00 2 |       |
|           | ATOM         | 4409         | N        | PRO A  |       | 19.969           | 64.561<br>65.529 |                  | 1.00 3 |       |
| 25        | ATOM         | 4410         | CA       | PRO A  |       | 19.793           | 66.121           | 81.099           | 1.00 3 |       |
|           | ATOM         | 4411         | C        | PRO F  |       | 20.240           | 65.224           | 79.796<br>78.669 | 1.00 3 |       |
|           | ATOM         | 4412         | ō        | PRO A  |       | 19.583           | 65.119           | 77.622           | 1.00 3 |       |
|           | ATOM         | 4413         | СВ       | PRO F  |       | 20.659           | 67.383           | 79.787           | 1.00 2 |       |
|           | MOTA         | 4414         | CG       | PRO P  |       | 21.348           | 67.500           | 81.139           | 1.00 3 |       |
| 30        | ATOM         | 4415         | CD       | PRO A  |       | 20.934           | 66.296           | 81.950           | 1.00 3 |       |
|           | ATOM         | 4416         | N        | LEU A  |       | 21.391           | 64.616           | 78.891           | 1.00 2 |       |
|           | ATOM         | 4417         | CA       | LEU A  |       | 21.997           | 63.727           | 77.931           | 1.00 2 |       |
| y ===     | ATOM         | 4418         | C        | LEU A  |       | 21.138           | 62.522           | 77.670           | 1.00 3 |       |
|           | ATOM         | 4419         | 0        | LEU A  |       | 21.015           | 62.087           | 76.523           | 1.00 3 |       |
| 35        | ATOM         | 4420         | СВ       | LEU A  |       | 23.362           | 63.281           | 78.439           | 1.00 2 |       |
|           | ATOM         | 4421         | CG       | LEU A  |       | 24.196           | 64.496           | 78.818           | 1.00 2 |       |
|           | ATOM         | 4422         | CD1      |        |       | 25.608           | 64.071           | 79.174           | 1.00 1 |       |
|           | MOTA         | 4423         | CD2      | LEU A  |       | 24.188           | 65.479           | 77.630           | 1.00 1 |       |
| 1         | ATOM         | 4424         | N        | ALA A  | 554   | 20.563           | 61.973           | 78.754           | 1.00 3 |       |
| 40        | MOTA         | 4425         | CA       | ALA A  | 554   | 19.726           | 60.779           | 78.669           | 1.00 2 |       |
|           | ATOM         | 4426         | С        | ALA A  | 554   | 18.432           | 61.107           | 77.988           | 1.00 3 |       |
|           | MOTA         | 4427         | 0        | ALA A  | 554   | 17.944           | 60.332           | 77.163           | 1.00 3 | 37.08 |
|           | ATOM         | 4428         | CB       | ALA A  |       | 19.475           | 60.165           | 80.017           | 1.00 2 | 26.78 |
| 4.5       | ATOM         | 4429         | N        | LEU A  |       | 17.898           | 62.283           | 78.320           | 1.00 2 | 29.70 |
| 45        | ATOM         | 4430         | CA       | LEU A  |       | 16.644           | 62.724           | 77.720           | 1.00 2 | 28.32 |
|           | MOTA         | 4431         | С        | LEU A  |       | 16.803           | 62.902           | 76.229           | 1.00 2 | 29.19 |
|           | ATOM         | 4432         | 0        | LEU A  |       | 15.970           | 62.506           | 75.385           | 1.00 2 | 26.13 |
|           | ATOM         | 4433         | CB       | LEU A  |       | 16.110           | 64.027           | 78.342           | 1.00 2 |       |
| 50        | ATOM         | 4434         | CG       | LEU A  |       | 15.371           | 63.814           | 79.666           | 1.00 3 |       |
| 50        | MOTA         | 4435         |          | LEU A  |       | 15.360           | 65.118           | 80.464           | 1.00 3 |       |
|           | ATOM         | 4436         |          | LEU A  |       | 13.938           | 63.334           | 79.427           | 1.00 2 |       |
|           | ATOM         | 4437         | N        | LYS A  |       | 17.922           | 63.524           | 75.950           | 1.00 2 |       |
|           | ATOM         | 4438         | CA       | LYS A  |       | 18.325           | 63.839           | 74.615           | 1.00 2 |       |
| 55        | MOTA         | 4439         | С        | LYS A  |       | 18.369           | 62.591           | 73.800           | 1.00 3 |       |
| ا رر      | ATOM         | 4440         | O        | LYS A  |       | 17.670           | 62.491           | 72.796           | 1.00 4 |       |
|           | ATOM         | 4441         | CB       | LYS A  |       | 19.645           | 64.592           | 74.599           | 1.00 3 |       |
|           | ATOM         | 4442         | CG       | LYS A  |       | 20.101           | 65.139           | 73.250           | 1.00   |       |
|           | ATOM         | 4443         | CD       | LYS A  |       | 21.585           | 65.518           | 73.254           | 1.00 8 |       |
| 60        | ATOM         | 4444         | CE<br>NZ | LYS A  |       | 22.046           | 66.270           | 72.011           | 1.00   |       |
| <b>50</b> | ATOM         | 4445         | NZ       | LYS A  |       | 23.239           | 65.661           | 71.401           | 1.00   |       |
|           | ATOM         | 4446         | N        | MET A  |       | 19.154           | 61.623           | 74.248           | 1.00 2 |       |
|           | ATOM         | 4447         | CA<br>C  | MET A  |       | 19.305           | 60.364           | 73.514           | 1.00 2 |       |
|           | ATOM         | 4448         | 0        | MET A  |       | 18.033           | 59.553           | 73.287           | 1.00   |       |
|           | ATOM         | 4449         | J        | ribi F | 3 331 | 17.811           | 58.907           | 72.263           | 1.00 2 | 23.24 |

|                   |      | ATOM | 4450 | CB  | MET A | A 55 | 7  | 20.401 | 59.488 | 74.104 | 1.00 24.89 |
|-------------------|------|------|------|-----|-------|------|----|--------|--------|--------|------------|
|                   |      | ATOM | 4451 |     | MET A |      |    | 20.533 |        | 73.368 | 1.00 29.37 |
|                   |      | ATOM | 4452 | SD  | MET A | A 55 | 7  | 22.029 | 57.276 | 73.864 | 1.00 33.21 |
|                   |      | ATOM | 4453 | CE  | MET A | A 55 | 7  | 21.939 | 55.812 | 72.793 | 1.00 30.16 |
|                   | 5    | ATOM | 4454 | N   | ALA A | A 55 | 8  | 17.203 | 59.568 | 74.287 | 1.00 33.42 |
|                   |      | ATOM | 4455 | CA  | ALA A | A 55 | 8  | 16.000 | 58.816 | 74.194 | 1.00 33.03 |
|                   |      | ATOM | 4456 | С   | ALA A | A 55 | 8  | 15.042 | 59.345 | 73.163 | 1.00 38.12 |
|                   |      | ATOM | 4457 | 0   | ALA A | A 55 | 8  | 14.349 | 58.568 | 72.543 | 1.00 37.09 |
|                   |      | MOTA | 4458 | CB  | ALA A | A 55 | 8  | 15.317 | 58.780 | 75.553 | 1.00 32.89 |
|                   | 10   | ATOM | 4459 | N   | THR A | A 55 | 9  | 14.994 | 60.665 | 73.032 | 1.00 36.76 |
|                   |      | ATOM | 4460 | CA  | THR A | A 55 | 9  | 14.067 | 61.326 | 72.144 | 1.00 36.43 |
|                   |      | ATOM | 4461 | С   | THR A | A 55 | 9  | 14.588 | 61.590 | 70.794 | 1.00 41.71 |
|                   |      | MOTA | 4462 | 0   | THR A | A 55 | 9  | 13.788 | 61.768 | 69.891 | 1.00 44.66 |
|                   |      | MOTA | 4463 | CB  | THR A | A 55 | 59 | 13.615 | 62.705 | 72.694 | 1.00 43.70 |
|                   | 15   | MOTA | 4464 | OG1 | THR A | A 55 | 59 | 14.728 | 63.545 | 72.957 | 1.00 38.88 |
|                   |      | ATOM | 4465 | CG2 | THR A |      |    | 12.764 | 62.549 | 73.942 | 1.00 44.95 |
|                   |      | MOTA | 4466 | N   | GLU 1 | A 56 | 50 | 15.897 | 61.695 | 70.674 | 1.00 37.38 |
| 1 15-             |      | ATOM | 4467 | CA  | GLU A | A 56 | 50 | 16.495 | 62.018 | 69.395 | 1.00 36.51 |
| 34.00             |      | ATOM | 4468 | C   | GLU 1 | A 56 | 50 | 16.652 | 60.846 | 68.448 | 1.00 40.11 |
| 10 m              | 20   | MOTA | 4469 | 0   | GLU 1 | A 56 | 50 | 17.003 | 61.052 | 67.300 | 1.00 43.23 |
|                   |      | ATOM | 4470 | CB  | GLU 1 | A 56 | 50 | 17.799 | 62.820 | 69.519 | 1.00 38.13 |
| \$=£:             |      | ATOM | 4471 | CG  | GLU J | A 56 | 50 | 17.653 | 64.142 | 70.292 | 1.00 54.29 |
| 124               |      | ATOM | 4472 | CD  | GLU I | A 56 | 50 | 18.857 | 65.043 | 70.127 | 1.00 78.42 |
| 545<br>544        |      | ATOM | 4473 | OE1 | GLU 1 | A 56 | 50 | 19.960 | 64.639 | 69.812 | 1.00 32.69 |
| # 1000            | 25   | MOTA | 4474 | OE2 | GLU 2 | A 56 | 50 | 18.593 | 66.303 | 70.380 | 1.00 85.90 |
| 1                 |      | ATOM | 4475 | N   | GLN 3 | A 56 | 51 | 16.425 | 59.627 | 68.955 | 1.00 30.45 |
| #= # <sub>1</sub> |      | ATOM | 4476 | CA  | GLN . |      |    | 16.467 | 58.356 | 68.230 | 1.00 22.57 |
| igi.              |      | ATOM | 4477 | С   | GLN : | A 56 | 51 | 15.398 | 57.523 | 68.878 | 1.00 26.95 |
|                   |      | ATOM | 4478 | 0   | GLN : | A 56 | 51 | 14.978 | 57.814 | 69.975 | 1.00 27.79 |
| 27.3              | 30   | ATOM | 4479 | CB  | GLN . | A 56 | 51 | 17.829 | 57.661 | 68.128 | 1.00 20.64 |
|                   |      | ATOM | 4480 | CG  | GLN . | A 56 | 51 | 18.470 | 57.290 | 69.491 | 1.00 22.59 |
| 1 100             |      | ATOM | 4481 | CD  | GLN . | A 56 | 51 | 17.802 | 56.121 | 70.184 | 1.00 28.22 |
|                   |      | MOTA | 4482 | OE1 | GLN : | A 56 | 51 | 17.524 | 56.156 | 71.400 | 1.00 37.44 |
|                   |      | ATOM | 4483 | NE2 | GLN . | A 56 | 61 | 17.556 | 55.069 | 69.419 | 1.00 31.92 |
| ht.               | - 35 | ATOM | 4484 | N   | GLY . | A 56 | 62 | 14.888 | 56.535 | 68.209 | 1.00 26.16 |
| 3                 |      | ATOM | 4485 | CA  | GLY . | A 56 | 62 | 13.801 | 55.810 | 68.858 | 1.00 27.83 |
|                   |      | ATOM | 4486 | С   | GLY . | A 56 | 52 | 13.932 | 54.320 | 68.761 | 1.00 41.56 |
|                   |      | ATOM | 4487 | 0   | GLY . | A 56 | 62 | 12.936 | 53.614 | 68.677 | 1.00 45.37 |
|                   |      | ATOM | 4488 | N   | ARG . |      |    | 15.171 | 53.864 | 68.742 | 1.00 37.40 |
|                   | 40   | MOTA | 4489 | CA  | ARG . |      |    | 15.457 | 52.453 | 68.689 | 1.00 34.41 |
|                   |      | MOTA | 4490 | C   | ARG . | A 56 | 63 | 15.121 | 51.939 | 70.109 | 1.00 39.48 |
|                   |      | ATOM | 4491 | 0   | ARG . |      |    | 15.832 | 52.221 | 71.087 | 1.00 40.29 |
|                   |      | ATOM | 4492 | CB  | ARG   |      |    | 16.932 | 52.231 | 68.284 | 1.00 18.23 |
|                   |      | MOTA | 4493 | CG  | ARG   |      |    | 17.309 | 50.755 | 68.169 | 1.00 20.07 |
|                   | 45   | MOTA | 4494 | CD  | ARG . |      |    | 18.779 | 50.514 |        | 1.00 25.07 |
|                   |      | MOTA | 4495 | NE  | ARG   |      |    | 19.234 | 49.139 | 68.320 | 1.00 25.66 |
|                   |      | MOTA | 4496 | CZ  | ARG   |      |    | 20.425 | 48.891 | 67.821 | 1.00 26.35 |
|                   |      | ATOM | 4497 |     | AŖG   |      |    | 21.257 | 49.860 | 67.430 | 1.00 12.96 |
|                   | 50   | MOTA | 4498 |     | ARG   |      |    | 20.804 | 47.636 | 67.656 | 1.00 30.31 |
|                   | 50   | MOTA | 4499 | N   | MET   |      |    | 13.989 | 51.228 | 70.239 | 1.00 33.12 |
|                   |      | ATOM | 4500 | CA  | MET   |      |    | 13.487 | 50.695 | 71.526 | 1.00 31.84 |
|                   |      | ATOM | 4501 | С   | MET   |      |    | 14.565 | 50.247 | 72.532 | 1.00 31.42 |
| **                |      | ATOM | 4502 | 0   | MET   |      |    | 14.494 | 50.501 | 73.744 | 1.00 25.72 |
|                   | EE   | ATOM | 4503 | CB  | MET   |      |    | 12.323 | 49.682 | 71.365 | 1.00 32.45 |
|                   | 55   | ATOM | 4504 | CG  | MET   |      |    | 11.196 | 50.225 | 70.487 | 1.00 35.78 |
|                   |      | ATOM | 4505 | SD  | MET   |      |    | 9.695  | 49.205 | 70.533 | 1.00 40.85 |
|                   |      | ATOM | 4506 | CE  | MET   |      |    | 10.177 | 47.892 | 69.382 | 1.00 35.87 |
|                   |      | ATOM | 4507 | N   | LYS   |      |    | 15.562 | 49.581 | 71.966 | 1.00 31.68 |
|                   | (0   | MOTA | 4508 | CA  | LYS   |      |    | 16.699 | 49.041 | 72.668 | 1.00 29.04 |
|                   | 60   | MOTA | 4509 | С   | LYS   |      |    | 17.281 | 50.089 | 73.562 | 1.00 26.36 |
|                   |      | MOTA | 4510 | 0   | LYS   |      |    | 17.648 | 49.782 | 74.673 | 1.00 21.19 |
|                   |      | MOTA | 4511 | CB  | LYS   |      |    | 17.747 | 48.494 | 71.697 | 1.00 29.06 |
|                   |      | MOTA | 4512 | CG  | LYS   |      |    | 18.864 | 47.715 | 72.359 | 1.00 23.89 |
|                   |      | ATOM | 4513 | CD  | LYS   | A 5  | 65 | 19.982 | 47.355 | 71.392 | 1.00 35.75 |
|                   |      |      |      |     |       |      |    |        |        |        |            |

|               | ATOM         | 4514         | CE  | LYS A 565              | 20.796 | 46.153           | 71.842 | 1 00 | 36.31 |
|---------------|--------------|--------------|-----|------------------------|--------|------------------|--------|------|-------|
|               | ATOM         | 4515         | NZ  | LYS A 565              |        |                  | 71.577 |      | 44.91 |
|               | ATOM         | 4516         | N   | PHE A 566              | 17.321 |                  | 73.073 |      | 22.91 |
| 1 1           | MOTA         | 4517         | CA  | PHE A 566              |        |                  | 73.833 |      | 24.36 |
| 5             | ATOM         | 4518         | С   | PHE A 566              |        |                  | 74.571 |      | 30.37 |
|               | MOTA         | 4519         | 0   | PHE A 566              |        |                  | 75.758 |      | 30.52 |
|               | ATOM         | 4520         | CB  | PHE A 566              | 18.622 |                  | 72.857 |      | 25.26 |
|               | ATOM         | 4521         | CG  | PHE A 566              |        |                  | 72.088 |      | 24.09 |
|               | ATOM         | 4522         | CD1 | PHE A 566              |        |                  | 72.609 |      | 23.51 |
| 10            | ATOM         | 4523         |     | PHE A 566              |        |                  | 70.858 |      | 24.48 |
|               | MOTA         | 4524         |     | PHE A 566              |        |                  | 71.900 |      | 23.73 |
|               | MOTA         | 4525         |     | PHE A 566              |        |                  | 70.129 |      | 24.75 |
|               | ATOM         | 4526         | CZ  | PHE A 566              |        |                  | 70.668 |      | 25.20 |
|               | ATOM         | 4527         | N   | THR A 567              |        |                  | 73.801 |      | 31.17 |
| 15            | ATOM         | 4528         | CA  | THR A 567              |        |                  | 74.239 |      | 31.74 |
|               | ATOM         | 4529         | С   | THR A 567              |        |                  | 75.458 |      |       |
|               | MOTA         | 4530         | 0   | THR A 567              |        | 54.818           | 76.373 |      |       |
|               | MOTA         | 4531         | СВ  | THR A 567              |        |                  | 73.017 |      | 26.01 |
|               | ATOM         | 4532         |     | THR A 567              |        | 55.844           | 72.138 | 1.00 |       |
| 20            | ATOM         | 4533         | CG2 |                        |        |                  |        |      | 24.12 |
|               | ATOM         | 4534         | N   | ARG A 568              |        |                  | 73.473 |      | 34.94 |
|               | ATOM         | 4535         | CA  | ARG A 568              |        | 52,726<br>52,166 | 75.469 | 1.00 | 30.74 |
|               | ATOM         | 4536         | C   | ARG A 568              |        |                  | 76.545 |      | 26.30 |
|               | ATOM         | 4537         | ŏ   | ARG A 568              |        |                  | 77.882 |      | 28.61 |
| 25            | ATOM         | 4538         | СВ  | ARG A 568              |        |                  | 78.832 |      | 30.84 |
|               | ATOM         | 4539         | CG  | ARG A 568              |        | 50.798           | 76.251 |      | 18.11 |
|               | ATOM         | 4540         | CD  | ARG A 568              |        | 50.919           | 75.088 |      | 29.19 |
|               | ATOM         | 4541         | NE  | ARG A 568              |        | 49.660           | 74.799 |      | 19.19 |
|               | ATOM         | 4542         | CZ  | ARG A 568              |        | 49.343           | 75.917 |      | 28.72 |
| 30            | ATOM         | 4543         |     | ARG A 568              |        | 48.138           | 76.133 |      | 32.39 |
| 50            | ATOM         | 4544         |     | ARG A 568              |        | 47.144           | 75.291 |      | 29.79 |
|               | ATOM         | 4545         | Nnz |                        |        | 47.930           | 77.208 |      | 16.44 |
|               | ATOM         | 4546         | CA  | PRO A 569<br>PRO A 569 |        | 51.774           | 77.925 |      | 28.41 |
|               | ATOM         | 4547         | CA  | PRO A 569              |        | 51.709           | 79.154 |      | 28.01 |
| 35            | ATOM         | 4548         | Ö   | PRO A 569              |        | 53.042           | 79.663 |      | 32.18 |
| 55            | ATOM         | 4549         | CB  | PRO A 569              |        | 53.256           | 80.869 |      | 29.25 |
|               | ATOM         | 4550         | CG  | PRO A 569              |        | 50.732           | 78.919 |      | 28.83 |
|               | ATOM         | 4551         | CD  | PRO A 569              |        | 50.034           | 77.592 |      | 32.42 |
|               | ATOM         | 4552         | N   | LEU A 570              |        | 50.829           | 76.893 |      | 29.82 |
| 40            | ATOM         | 4553         | CA  | LEU A 570              |        | 53.949           | 78.741 |      | 31.95 |
|               | ATOM         | 4554         | C   | LEU A 570              |        | 55.270           | 79.160 |      | 35.11 |
|               | ATOM         | 4555         | 0   | LEU A 570              |        | 55.962           | 79.897 | 1.00 | 36.24 |
|               | ATOM         | 4556         | СВ  | LEU A 570              |        | 56.506           | 81.028 |      | 34.02 |
|               | ATOM         | 4557         |     |                        |        | 56.110           | 77.932 |      | 37.06 |
| 45            | ATOM         | 4558         | CD1 | LEU A 570<br>LEU A 570 | 18.387 | 55.701           | 77.343 |      | 41.39 |
|               | ATOM         | 4559         |     | LEU A 570              |        | 56.462           | 76.050 |      | 41.06 |
|               | ATOM         | 4560         | N N | PHE A 571              | 19.497 | 55.984           | 78.353 |      | 37.42 |
|               | ATOM         | 4561         | CA  | PHE A 571              | 14.262 | 55.944           | 79.211 |      | 30.06 |
|               | ATOM         | 4562         | C   | PHE A 571              | 13.084 | 56.541           | 79.758 |      | 27.27 |
| 50            | ATOM         | 4563         | o   | PHE A 571              | 12.813 | 55.899           | 81.095 |      | 25.94 |
| -             | ATOM         | 4564         | СВ  | PHE A 571              | 12.399 | 56.536           | 82.030 |      | 27.16 |
|               | ATOM         | 4565         | CG  | PHE A 571              | 11.888 | 56.375           | 78.828 |      | 27.60 |
|               | MOTA         | 4566         |     | PHE A 571              | 11.546 | 57.616           | 78.042 |      | 27.70 |
|               | ATOM         | 4567         |     | PHE A 571              | 11.193 | 58.820           | 78.651 |      | 29.97 |
| 55            | ATOM         | 4568         |     | PHE A 571              | 11.557 | 57.570           | 76.651 |      | 28.87 |
| 55            |              |              |     |                        | 10.861 | 59.953           | 77.910 |      | 28.24 |
|               | ATOM<br>ATOM | 4569<br>4570 |     | PHE A 571              | 11.233 | 58.684           | 75.886 |      | 30.43 |
|               |              |              | CZ  | PHE A 571              | 10.877 | 59.875           | 76.520 |      | 29.55 |
|               | ATOM         | 4571         | N   | LYS A 572              | 13.089 | 54.618           | 81.196 |      | 22.77 |
| 60            | ATOM         | 4572         | CA  | LYS A 572              | 12.845 | 53.946           | 82.468 |      | 25.43 |
| <del>UU</del> | ATOM         | 4573         | C   | LYS A 572              | 13.783 | 54.425           | 83.561 |      | 34.48 |
|               | MOTA         | 4574         | O   | LYS A 572              | 13.351 | 54.920           | 84.602 |      | 35.11 |
|               | MOTA         | 4575         | CB  | LYS A 572              | 12.736 | 52.428           | 82.392 |      | 26.89 |
|               | MOTA         | 4576         | CG  | LYS A 572              | 11.303 | 51.911           | 82.326 |      | 44.03 |
|               | MOTA         | 4577         | CD  | LYS A 572              | 11.219 | 50.426           | 81.922 | 1.00 | 57.87 |
|               |              |              |     |                        |        |                  |        |      |       |

|                |    | MOTA         | 4578         | CE      | LYS A 572              | 10.975 | 50.204           | 80.422           | 1.00 65.25               |
|----------------|----|--------------|--------------|---------|------------------------|--------|------------------|------------------|--------------------------|
|                |    | ATOM         | 4579         | NZ      | LYS A 572              | 11.535 | 48.954           | 79.850           | 1.00 61.06               |
|                |    | ATOM         | 4580         | N       | ASP A 573              | 15.074 | 54.292           | 83.319           | 1.00 31.94               |
|                |    | ATOM         | 4581         | CA      | ASP A 573              | 16.032 | 54.751           | 84.291           | 1.00 30.55               |
|                | 5  | ATOM         | 4582         | С       | ASP A 573              | 15.684 | 56.166           | 84.712           | 1.00 32.26               |
|                |    | ATOM         | 4583         | 0       | ASP A 573              | 15.693 | 56.453           | 85.895           | 1.00 31.85               |
|                |    | MOTA         | 4584         | CB      | ASP A 573              | 17.453 | 54.788           | 83.718           | 1.00 32.87               |
|                |    | MOTA         | 4585         | CG      | ASP A 573              | 18.051 | 53.443           | 83.487           | 1.00 33.43               |
|                |    | MOTA         | 4586         | OD1     | ASP A 573              | 17.517 | 52.422           | 83.853           | 1.00 29.11               |
|                | 10 | ATOM         | 4587         | OD2     | ASP A 573              | 19.206 | 53.501           | 82.864           | 1.00 35.22               |
|                |    | ATOM         | 4588         | N       | LEU A 574              | 15.387 | 57.071           | 83.745           | 1.00 29.50               |
|                |    | ATOM         | 4589         | CA      | LEU A 574              | 15.062 | 58.461           | 84.109           | 1.00 27.65               |
|                |    | ATOM         | 4590         | С       | LEU A 574              | 13.887 | 58.577           | 85.075           | 1.00 32.88               |
|                |    | MOTA         | 4591         | 0       | LEU A 574              | 13.864 | 59.411           | 85.962           | 1.00 31.04               |
|                | 15 | ATOM         | 4592         | CB      | LEU A 574              | 14.844 | 59.385           | 82.909           | 1.00 26.24               |
|                |    | ATOM         | 4593         | CG      | LEU A 574              | 16.068 | 59.567           | 82.027           | 1.00 30.41               |
|                |    | ATOM         | 4594         |         | LEU A 574              | 15.644 | 59.922           | 80.582           | 1.00 28.47               |
| 44.86          |    | MOTA         | 4595         |         | LEU A 574              |        | 60.659           | 82.604           | 1.00 27.06               |
|                | 20 | ATOM         | 4596         | N       | ALA A 575              |        | 57.723           | 84.874           | 1.00 32.80               |
|                | 20 | ATOM         | 4597         | CA      | ALA A 575              |        | 57.713           | 85.711           | 1.00 31.11               |
| ųD             |    | MOTA         | 4598         | С       | ALA A 575              |        | 57.140           | 87.083           | 1.00 35.71               |
| - A            |    | MOTA         | 4599         | 0       | ALA A 575              |        | 57.362           | 88.055           | 1.00 39.91               |
| HE PAR         |    | ATOM         | 4600         | CB      | ALA A 575              |        | 56.890           | 85.024           | 1.00 30.56               |
| mågar/<br>årår | 25 | ATOM         | 4601         | N       | ALA A 576              |        | 56.364           | 87.170           | 1.00 28.55               |
| UN.            | 25 | ATOM         | 4602         | CA      | ALA A 576              |        | 55.778           | 88.448           | 1.00 22.80               |
| Ped it.<br>B∴n |    | ATOM         | 4603         | C       | ALA A 576              |        | 56.724           | 89.266           | 1.00 26.93               |
| 1              |    | ATOM         | 4604         | 0       | ALA A 576              |        | 56.591           | 90.461           | 1.00 30.45               |
| #              |    | MOTA         | 4605         | CB      | ALA A 576              |        | 54.415<br>57.686 | 88.245           | 1.00 20.31               |
| and the        | 30 | MOTA         | 4606         | N       | PHE A 577              |        | 58.673           | 88.584<br>89.194 | 1.00 22.86               |
| T.             | 30 | ATOM<br>ATOM | 4607<br>4608 | CA<br>C | PHE A 577              |        | 59.751           | 89.673           | 1.00 22.71<br>1.00 32.25 |
|                |    | ATOM         | 4609         | Ö       | PHE A 577              |        | 60.334           | 88.863           | 1.00 32.23               |
| ar my          |    | ATOM         | 4610         | CB      | PHE A 577              |        | 59.188           | 88.154           | 1.00 34.17               |
| 27 FF          |    | ATOM         | 4611         | CG      | PHE A 577              |        | 60.076           | 88.741           | 1.00 23.16               |
| fin giv        | 35 | · ATOM       | 4612         | CD1     |                        |        | 60.231           | 90.120           | 1.00 26.60               |
| Sec. and       | •  | ATOM         | 4613         | CD2     |                        |        | 60.806           | 87.914           | 1.00 23.46               |
|                |    | ATOM         | 4614         |         | PHE A 577              |        | 61.082           | 90.661           | 1.00 27.55               |
|                |    | ATOM         | 4615         | CE2     | PHE A 577              |        | 61.657           | 88.431           | 1.00 23.88               |
|                |    | ATOM         | 4616         | CZ      | PHE A 577              |        | 61.791           | 89.813           | 1.00 23.59               |
|                | 40 | ATOM         | 4617         | N       | ASP A 578              | 14.625 | 60.008           | 90.990           | 1.00 29.70               |
|                |    | MOTA         | 4618         | CA      | ASP A 578              | 13.717 | 61.018           | 91.533           | 1.00 28.65               |
|                |    | MOTA         | 4619         | С       | ASP A 578              | 13.862 | 62.357           | 90.881           | 1.00 28.55               |
|                |    | MOTA         | 4620         | 0       | ASP A 578              | 12.877 | 63.004           | 90.599           | 1.00 32.65               |
|                |    | MOTA         | 4621         | CB      | ASP A 578              | 13.804 | 61.192           | 93.055           | 1.00 32.60               |
|                | 45 | MOTA         | 4622         | CG      | ASP A 578              |        | 61.647           | 93.550           | 1.00 53.21               |
|                |    | MOTA         | 4623         |         | ASP A 578              |        | 61.594           | 92.872           | 1.00 51.81               |
|                |    | MOTA         | 4624         |         | ASP A 578              |        | 62.072           | 94.796           | 1.00 64.93               |
|                |    | MOTA         | 4625         | N       | LYS A 579              |        | 62.750           | 90.674           | 1.00 20.12               |
|                | 50 | MOTA         | 4626         | CA      | LYS A 579              |        | 64.012           | 90.084           | 1.00 21.01               |
|                | 50 | MOTA         | 4627         | С       | LYS A 579              |        | 64.270           | 88.697           | 1.00 30.25               |
|                |    | ATOM         | 4628         | 0       | LYS A 579              |        |                  | 88.368           | 1.00 35.12               |
|                |    | ATOM         | 4629         | CB      | LYS A 579              |        | 64.223           | 90.104           | 1.00 24.11               |
|                |    | ATOM         | 4630         | CG      | LYS A 579              |        |                  | 91.512           | 1.00 48.98               |
|                | 55 | ATOM         | 4631         | CD      | LYS A 579              |        |                  | 92.286           | 1.00 76.92               |
|                | رر | ATOM         | 4632         | CE      | LYS A 579              |        |                  | 93.588           | 1.00 87.93               |
|                |    | ATOM         | 4633         | NZ<br>N | LYS A 579<br>SER A 580 |        |                  | 94.611<br>87.857 | 1.00 89.56<br>1.00 28.66 |
|                |    | ATOM<br>ATOM | 4634<br>4635 | n<br>CA |                        |        |                  | 86.459           |                          |
|                |    | ATOM         | 4635         | C       | SER A 580<br>SER A 580 |        |                  | 86.129           | 1.00 28.56<br>1.00 32.95 |
|                | 60 | ATOM         | 4637         | 0       | SER A 580              |        |                  | 84.992           | 1.00 32.93               |
|                | 50 | MOTA         | 4638         | CB      | SER A 580              |        |                  | 85.517           | 1.00 25.69               |
|                |    | MOTA         | 4639         | OG      | SER A 580              |        |                  | 85.969           | 1.00 25.12               |
|                |    | MOTA         | 4640         | N .     | HIS A 58               |        |                  | 87.098           | 1.00 26.81               |
|                |    | ATOM         | 4641         | CA      | HIS A 58               |        |                  | 86.850           | 1.00 28.26               |
|                |    | -11 011      |              |         |                        |        | 0000             | 0 - 3 0 0 0      |                          |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | 2 2001 | 4640 | ~            |       |     |        |        |        |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------|------|--------------|-------|-----|--------|--------|--------|------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM   | 4642 | С            | HIS A |     | 10.067 | 62.399 | 86.042 | 1.00 36.50 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM   | 4643 | 0            | HIS A | 581 | 9.644  | 62.031 | 84.927 | 1.00 34.71 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM   | 4644 | СВ           | HIS A | 581 | 10.553 | 61.047 | 88.152 | 1.00 29.76 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM   | 4645 | CG           | HIS A |     |        |        |        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5  |        |      |              |       |     | 9.148  | 60.588 | 87.968 | 1.00 35.31 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5  | ATOM   | 4646 |              | HIS A |     | 8.111  | 61.494 | 87.899 | 1.00 38.92 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | MOTA   | 4647 |              | HIS A |     | 8.634  | 59.338 | 87.891 | 1.00 36.84 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM   | 4648 | CE1          | HIS A | 581 | 6.999  | 60.783 | 87.817 | 1.00 38.85 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | MOTA   | 4649 |              | HIS A |     | 7.280  | 59.488 | 87.734 |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM   | 4650 | N            | ASP A |     |        |        |        | 1.00 38.13 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 |        |      |              |       |     | 9.656  | 63.502 | 86.639 | 1.00 35.79 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 | MOTA   | 4651 | CA           | ASP A |     | 8.680  | 64.388 | 86.064 | 1.00 34.39 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM   | 4652 | С            | ASP A |     | 9.035  | 64.807 | 84.659 | 1.00 37.82 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM   | 4653 | 0            | ASP A | 582 | 8.220  | 64.704 | 83.735 | 1.00 37.01 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM   | 4654 | CB           | ASP A | 582 | 8.428  | 65.552 | 87.001 | 1.00 36.57 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM   | 4655 | CG           | ASP A |     | 7.597  |        |        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15 | ATOM   | 4656 |              | ASP A |     |        | 65.110 | 88.167 | 1.00 58.09 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13 |        |      |              |       |     | 6.708  | 64.289 | 88.070 | 1.00 63.17 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM   | 4657 |              | ASP A |     | 7.920  | 65.708 | 89.279 | 1.00 73.96 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | MOTA   | 4658 | N            | GLN A | 583 | 10.272 | 65.255 | 84.488 | 1.00 32.88 |
| CJ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | ATOM   | 4659 | CA           | GLN A | 583 | 10.750 | 65.648 | 83.169 | 1.00 29.92 |
| 20 m/ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | MOTA   | 4660 | С            | GLN A | 583 | 10.690 | 64.464 | 82.168 | 1.00 37.12 |
| W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20 | ATOM   | 4661 | 0            | GLN A |     | 10.362 | 64.624 |        |            |
| 14.5 mg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | ATOM   | 4662 | СВ           | GLN A |     |        |        | 80.990 | 1.00 37.42 |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |        |      |              |       |     | 12.172 | 66.182 | 83.287 | 1.00 28.54 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | MOTA   | 4663 | CG           | GLN A |     | 12.704 | 66.648 | 81.929 | 1.00 48.12 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | MOTA   | 4664 | CD           | GLN A |     | 13.957 | 67.475 | 82.081 | 1.00 64.09 |
| 1000 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    | ATOM   | 4665 | OE1          | GLN A | 583 | 14.736 | 67.248 | 83.015 | 1.00 59.43 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25 | ATOM   | 4666 | NE2          |       |     | 14.130 | 68.461 | 81.201 | 1.00 55.34 |
| 1 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | ATOM   | 4667 | N            | ALA A |     | 11.009 |        |        |            |
| h fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | ATOM   | 4668 |              |       |     |        | 63.250 | 82.638 | 1.00 33.22 |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |        |      | CA           | ALA A |     | 10.964 | 62.062 | 81.780 | 1.00 32.22 |
| Just.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    | ATOM   | 4669 | С            | ALA A |     | 9.557  | 61.841 | 81.315 | 1.00 37.45 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | MOTA   | 4670 | 0            | ALA A |     | 9.319  | 61.526 | 80.152 | 1.00 40.05 |
| N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30 | ATOM   | 4671 | CB           | ALA A | 584 | 11.389 | 60.793 | 82.504 | 1.00 31.62 |
| n.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    | ATOM   | 4672 | N            | VAL A |     | 8.622  | 61.995 | 82.261 | 1.00 30.42 |
| 12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | MOTA   | 4673 | CA           | VAL A |     | 7.217  |        |        |            |
| 425 BEV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | ATOM   | 4674 | C            |       |     |        | 61.806 | 81.946 | 1.00 29.16 |
| Same of the same o |    |        |      |              | VAL A |     | 6.647  | 62.909 | 81.024 | 1.00 36.53 |
| - A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25 | ATOM   | 4675 | 0            | VAL A |     | 5.933  | 62.690 | 80.052 | 1.00 36.22 |
| 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35 | ATOM   | 4676 | CB           | VAL A |     | 6.408  | 61.567 | 83.209 | 1.00 29.78 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM   | 4677 | CG1          | VAL A | 585 | 4.959  | 61.947 | 82.955 | 1.00 30.03 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM   | 4678 | CG2          | VAL A | 585 | 6.464  | 60.085 | 83.539 | 1.00 27.82 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM   | 4679 | N            | ARG A |     | 7.000  |        |        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM   | 4680 | CA           | ARG A |     |        | 64.123 | 81.333 | 1.00 35.76 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40 |        |      |              |       |     | 6.574  | 65.242 | 80.562 | 1.00 36.20 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40 | ATOM   | 4681 | С            | ARG A |     | 7.146  | 65.125 | 79.180 | 1.00 44.65 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM   | 4682 | 0            | ARG A |     | 6.459  | 65.355 | 78.197 | 1.00 48.32 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | AŤOM   | 4683 | CB           | ARG A | 586 | 7.116  | 66.498 | 81.208 | 1.00 38.13 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM   | 4684 | CG           | ARG A | 586 | 6.744  | 67.799 | 80.518 | 1.00 61.01 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM   | 4685 | CD           | ARG A |     | 7.077  | 69.029 | 81.354 | 1.00 73.03 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45 | ATOM   | 4686 | NE           | ARG A |     | 8.491  |        |        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM   | 4687 | CZ           |       |     |        | 69.128 | 81.711 | 1.00 86.05 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM   |      |              | ARG A |     | 8.961  | 69.001 | 82.957 | 1.00 98.46 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |        | 4688 |              | ARG A |     | 8.167  | 68.741 | 84.004 | 1.00 79.75 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM   | 4689 | NH2          | ARG A |     | 10.268 | 69.103 | 83.159 | 1.00 77.55 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50 | ATOM   | 4690 | N            | THR A |     | 8.426  | 64.769 | 79.110 | 1.00 39.49 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50 | ATOM   | 4691 | CA           | THR A | 587 | 9.099  | 64.646 | 77.822 | 1.00 36.80 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM   | 4692 | С            | THR A |     | 8.387  | 63.690 | 76.869 |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM   | 4693 | ō            | THR A |     | ,      |        |        | 1.00 37.11 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM   | 4694 | СВ           |       |     | 8.229  | 63.931 | 75.678 | 1.00 36.91 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |        |      |              | THR A |     | 10.634 | 64.384 | 77.917 | 1.00 39.40 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 55 | ATOM   | 4695 |              | THR A |     | 11.303 | 65.334 | 78.717 | 1.00 46.27 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33 | ATOM   | 4696 | CG2          | THR A |     | 11.233 | 64.460 | 76.529 | 1.00 32.60 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM   | 4697 | N            | TYR A | 588 | 7.934  | 62.587 | 77.393 | 1.00 33.33 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM   | 4698 | CA           | TYR A |     | 7.252  | 61.639 | 76.555 |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM   | 4699 | С            | TYR A |     | 5.890  |        |        | 1.00 33.94 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM   | 4700 |              |       |     |        | 62.146 | 76.090 | 1.00 37.02 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60 |        |      | 0            | TYR A |     | 5.428  | 61.880 | 74.988 | 1.00 41.55 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JV | ATOM   | 4701 |              | TYR A |     | 7.042  | 60.383 | 77.396 | 1.00 33.96 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | MOTA   | 4702 | CG           | TYR A |     | 6.017  | 59.440 | 76.851 | 1.00 33.08 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM   | 4703 | CD1          | TYR A | 588 | 6.331  | 58.640 | 75.754 | 1.00 35.64 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM   | 4704 |              | TYR A |     | 4.758  | 59.288 | 77.437 | 1.00 33.04 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ATOM   | 4705 |              | TYR A |     | 5.424  |        |        | 1 00 34.09 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | •      |      | ,±)= <b></b> | A     |     | J.724  | 57.703 | 75.251 | 1.00 34.36 |

|               | ATOM | 4706 | CE2 | TYR A 5 | 88 | 3.822  | 58.378 | 76.932          | 1 00 | 34.05 |
|---------------|------|------|-----|---------|----|--------|--------|-----------------|------|-------|
|               | ATOM | 4707 | CZ  | TYR A 5 |    | 4.162  | 57.581 | 75.834          |      |       |
|               |      | 4708 | OH  |         |    |        |        |                 |      | 33.89 |
|               | ATOM |      |     | TYR A 5 |    | 3.275  | 56.674 | 75.322          |      | 23.43 |
|               | ATOM | 4709 | N   | GLN A 5 | 89 | 5.216  | 62.853 | 76.959          | 1.00 | 25.04 |
| 5             | MOTA | 4710 | CA  | GLN A 5 | 89 | 3.914  | 63.339 | 76.612          | 1.00 | 21.41 |
|               | ATOM | 4711 | C   | GLN A 5 | 89 | 3,992  | 64.304 | 75.481          |      | 28.78 |
|               | ATOM | 4712 | 0   | GLN A 5 |    | 3.099  | 64.410 | 74.678          |      |       |
|               |      |      |     |         |    |        |        |                 |      | 31.24 |
|               | ATOM | 4713 | CB  | GLN A 5 |    | 3.241  | 63.935 | 77.832          | 1.00 | 21.73 |
| 10            | ATOM | 4714 | CG  | GLN A 5 |    | 2.878  | 62.820 | 78.827          | 1.00 | 22.30 |
| 10            | MOTA | 4715 | CD  | GLN A 5 | 89 | 1.695  | 62.069 | 78.293          | 1.00 | 52.83 |
|               | MOTA | 4716 | OE1 | GLN A 5 | 89 | 1.511  | 62.003 | 77.075          |      | 60.15 |
|               | ATOM | 4717 | NE2 |         |    | 0.864  | 61.542 | 79.182          |      | 53.04 |
|               | ATOM | 4718 | N   | GLU A 5 |    |        |        |                 |      |       |
|               |      |      |     |         |    | 5.099  | 65.001 | 75.409          |      | 28.36 |
| 15            | ATOM | 4719 | CA  | GLU A 5 |    | 5.276  | 65.966 | 74.355          | 1.00 | 26.87 |
| 15            | ATOM | 4720 | С   | GLU A 5 |    | 5.840  | 65.338 | 73.140          | 1.00 | 35.10 |
|               | MOTA | 4721 | 0   | GLU A 5 | 90 | 6.096  | 66.059 | 72.171          |      | 40.28 |
| ate in.       | ATOM | 4722 | СВ  | GLU A 5 |    | 6.323  | 67.011 | 74.747          |      | 27.61 |
| - en-         | ATOM | 4723 | CG  | GLU A 5 |    | 5.846  |        |                 |      |       |
|               |      |      |     |         |    |        | 67.954 | 75.847          |      | 44.11 |
| 20            | ATOM | 4724 | CD  | GLU A 5 |    | 6.981  | 68.759 | 76.388          |      | 75.35 |
|               | ATOM | 4725 |     | GLU A 5 |    | 8.120  | 68.689 | 75.925          | 1.00 | 54.78 |
| je in         | MOTA | 4726 | OE2 | GLU A 5 | 90 | 6.609  | 69.516 | 77.403          |      | 59.46 |
| in the second | ATOM | 4727 | N   | HIS A 5 | 91 | 6.091  | 64.031 | 73.207          |      | 27.57 |
| 8 445         | ATOM | 4728 | CA  | HIS A 5 |    | 6.713  | 63.384 | 72.086          |      |       |
| ing m/        | ATOM | 4729 | C   | HIS A 5 |    |        |        |                 |      | 25.58 |
| 25            |      |      |     |         |    | 5.928  | 62.249 | 71.578          |      | 32.34 |
| 25            | ATOM | 4730 | 0   | HIS A 5 |    | 6.184  | 61.751 | 70.496          | 1.00 | 38.53 |
|               | ATOM | 4731 | CB  | HIS A 5 | 91 | 8.094  | 62.851 | 72.487          | 1.00 | 26.32 |
| <b>P</b>      | MOTA | 4732 | CG  | HIS A 5 | 91 | 9.219  | 63.809 | 72.268          | 1.00 | 31.06 |
| la fin        | ATOM | 4733 | ND1 | HIS A 5 | 91 | 9.630  | 64.680 | 73.255          |      | 32.65 |
| n i           | MOTA | 4734 |     | HIS A 5 |    | 9.998  | 64.032 |                 |      |       |
| 30            | ATOM | 4735 |     |         |    |        |        | 71.169          |      | 34.91 |
| 20            |      |      |     | HIS A 5 |    | 10.635 | 65.404 | 72.756          |      | 32.01 |
|               | ATOM | 4736 |     | HIS A 5 |    | 10.884 | 65.037 | 71.508          | 1.00 | 33.36 |
| L1            | ATOM | 4737 | N   | LYS A 5 | 92 | 4.978  | 61.812 | 72.337          | 1.00 | 28.34 |
|               | ATOM | 4738 | CA  | LYS A 5 | 92 | 4.254  | 60.643 | 71.849          |      | 29.96 |
| in the        | ATOM | 4739 | С   | LYS A 5 |    | 3.654  | 60.692 | 70.432          |      | 33.41 |
| 35            | ATOM | 4740 | Ō   | LYS A 5 |    |        | 59.769 |                 |      |       |
| 7.7           |      |      |     |         |    | 3.819  |        | 69.592          |      | 29.05 |
|               | ATOM | 4741 | СВ  | LYS A-5 |    | 3.362  | 59.983 | 72.888          |      | 32.83 |
|               | ATOM | 4742 | CG  | LYS A 5 |    | 2.435  | 60.930 | 73.615          | 1.00 | 31.14 |
|               | ATOM | 4743 | CD  | LYS A 5 | 92 | 1.677  | 60.203 | 74.704          | 1.00 | 38.97 |
|               | ATOM | 4744 | CE  | LYS A 5 | 92 | 0.253  | 60.691 | 74.890          |      | 25.02 |
| 40            | ATOM | 4745 | NZ  | LYS A 5 | 92 | -0.157 | 60.632 | 76.302          |      | 45.83 |
|               | ATOM | 4746 | N   | ALA A 5 |    | 2.934  | 61.782 |                 |      |       |
|               | ATOM | 4747 | CA  | ALA A 5 |    |        |        | 70.187          |      | 30.97 |
|               |      |      |     |         |    | 2.260  | 62.026 | 68.917          |      | 28.47 |
|               | ATOM | 4748 | С   | ALA A 5 |    | 3.169  | 61.943 | 67.703          | 1.00 | 32.66 |
| 4.5           | ATOM | 4749 | 0   | ALA A 5 |    | 2.775  | 61.488 | 66 <b>.6</b> 39 | 1.00 | 36.77 |
| 45            | ATOM | 4750 | CB  | ALA A 5 | 93 | 1.571  | 63.379 | 68.954          | 1.00 | 27.35 |
|               | MOTA | 4751 | N   | SER A 5 | 94 | 4.384  | 62.405 | 67.869          |      | 27.08 |
|               | ATOM | 4752 | CA  | SER A 5 |    | 5.345  | 62.417 | 66.794          |      | 30.04 |
|               | ATOM | 4753 | C   | SER A 5 |    |        |        |                 |      |       |
|               | ATOM | 4754 |     |         |    | 6.185  | 61.169 | 66.760          |      | 36.80 |
| 50            |      |      | 0   | SER A 5 |    | 6.995  | 60.991 | 65.848          |      | 37.94 |
| 50            | ATOM | 4755 | CB  | SER A 5 |    | 6.292  | 63.596 | 66.977          | 1.00 | 37.69 |
|               | MOTA | 4756 | OG  | SER A 5 | 94 | 7.199  | 63.340 | 68.043          | 1.00 | 54.55 |
|               | MOTA | 4757 | N   | MET A 5 | 95 | 6.015  | 60.340 | 67.776          |      | 33.12 |
|               | MOTA | 4758 | CA  | MET A 5 |    | 6.794  | 59.115 | 67.898          |      | 33.96 |
|               | ATOM | 4759 | c   | MET A 5 |    |        |        |                 |      |       |
| 55            |      |      |     |         |    | 6.200  | 57.936 | 67.125          |      | 40.91 |
| J.J.          | ATOM | 4760 | 0   | MET A 5 |    | 5.019  | 57.927 | 66.809          |      | 50.82 |
|               | ATOM | 4761 | CB  | MET A 5 |    | 6.716  | 58.686 | 69.382          | 1.00 | 34.22 |
|               | ATOM | 4762 | CG  | MET A 5 | 95 | 7.621  | 59.371 | 70.399          |      | 34.61 |
|               | MOTA | 4763 | SD  | MET A 5 |    | 7.606  | 58.440 | 71.962          |      | 39.24 |
|               | ATOM | 4764 | CE  | MET A 5 |    |        |        |                 |      |       |
| 60            | ATOM | 4765 |     |         |    | 7.145  | 59.779 | 73.084          |      | 36.72 |
| 55            |      |      | N   | HIS A 5 |    | 6.987  | 56.897 | 66.886          |      | 26.19 |
|               | ATOM | 4766 | CA  | HIS A 5 |    | 6.496  | 55.657 | 66.246          | 1.00 | 23.19 |
|               | ATOM | 4767 | С   | HIS A 5 |    | 5.438  | 54.964 | 67.120          |      | 25.21 |
|               | MOTA | 4768 | 0   | HIS A 5 |    | 5.621  | 54.728 | 68.311          |      | 22.59 |
|               | MOTA | 4769 | CB  | HIS A 5 | 96 | 7.657  | 54.655 | 66.077          |      | 24.41 |
|               |      |      |     |         |    |        |        |                 |      | 7     |

WO 00/50577

|                 |              | 4330  | ~~  | ****  | 500   |   | 2 000 | 50 000 | CC 400         |            |
|-----------------|--------------|-------|-----|-------|-------|---|-------|--------|----------------|------------|
|                 | MOTA         | 4770  | CG  | HIS A |       |   | 7.222 | 53.366 | 65.493         | 1.00 30.13 |
|                 | MOTA         | 4771  |     | HIS A |       |   | 7.606 | 52.995 | 64.214         | 1.00 32.86 |
|                 | MOTA         | 4772  | CD2 | HIS A | 596   |   | 6.421 | 52.385 | 66.005         | 1.00 30.90 |
|                 | ATOM         | 4773  | CE1 | HIS A | 596   |   | 7.047 | 51.824 | 63.974         | 1.00 30.05 |
| 5               | ATOM         | 4774  | NE2 | HIS A | 596   |   | 6.325 | 51.441 | 65.031         | 1.00 30.20 |
|                 | ATOM         | 4775  | N   | PRO A |       |   | 4.334 | 54.587 | 66.512         | 1.00 27.08 |
|                 |              | 4776  | CA  |       | 597   |   |       |        | 67.173         |            |
|                 | MOTA         |       |     |       |       | • | 3.217 | 53.912 |                | 1.00 26.35 |
|                 | MOTA         | 4777  | C   | PRO A |       |   | 3.513 | 52.851 | 68.248         | 1.00 37.51 |
|                 | MOTA         | 4778  | 0   | PRO A | 597   |   | 2.979 | 52.900 | 69.348         | 1.00 41.16 |
| 10              | ATOM         | 4779  | CB  | PRO P | 597   |   | 2.334 | 53.307 | 66.076         | 1.00 26.17 |
|                 | <b>A.TOM</b> | 4780  | CG  | PRO A | 597   |   | 3.140 | 53.426 | 64.792         | 1.00 34.56 |
|                 | ATOM         | 4781  | CD  | PRO A | 597   |   | 4.285 | 54.418 | 65.050         | 1.00 30.06 |
|                 | ATOM         | 4782  | N   | VAL A |       |   | 4.311 | 51.850 | 67.939         | 1.00 33.08 |
|                 | ATOM         | 4783  | CA  | VAL A |       |   | 4.585 | 50.802 | 68.911         |            |
| 15              |              |       |     |       |       |   |       |        |                | 1.00 28.39 |
| 13              | MOTA         | 4784  | С   | VAL A |       |   | 5.444 | 51.307 | 70.029         | 1.00 29.32 |
|                 | MOTA         | 4785  | 0   | VAL A |       |   | 5.168 | 51.096 | 71.217         | 1.00 29.13 |
|                 | MOTA         | 4786  | CB  | VAL A |       |   | 5.196 | 49.599 | 68.210         | 1.00 27.99 |
|                 | MOTA         | 4787  | CG1 | VAL A | 1 598 |   | 5.806 | 48.608 | 69.187         | 1.00 26.98 |
| <b>车辆</b> 。     | MOTA         | 4788  | CG2 | VAL A | 1 598 |   | 4.144 | 48.944 | 67.296         | 1.00 26.13 |
| 20              | ATOM         | 4789  | N   | THR A | 599   |   | 6.480 | 52.021 | 69.635         | 1.00 26.10 |
|                 | ATOM         | 4790  | CA  | THR A |       |   | 7.370 | 52.573 | 70.631         | 1.00 26.95 |
|                 | ATOM         | 4791  | C   | THR A |       |   | 6.650 |        |                |            |
| in An           |              |       |     |       |       |   |       | 53.404 | 71.669         | 1.00 30.81 |
| 新来              | ATOM         | 4792  | 0   | THR A |       |   | 6.863 | 53.327 | 72.871         | 1.00 31.33 |
| र्हे <b>म</b> र | ATOM         | 4793  | CB  | THR A |       |   | 8.413 | 53.455 | 69.975         | 1.00 26.67 |
| 25              | MOTA         | 4794  |     | THR A |       |   | 9.092 | 52.725 | 68.958         | 1.00 27.92 |
| 15              | MOTA         | 4795  | CG2 | THR A | A 599 |   | 9.358 | 53.884 | 71.092         | 1.00 20.69 |
| 50 W.           | MOTA         | 4796  | N   | ALA A | 4 600 |   | 5.801 | 54.218 | 71.135         | 1.00 26.41 |
| 4               | MOTA         | 4797  | CA  | ALA A |       |   | 4.997 | 55.111 | 71.878         | 1.00 26.39 |
| 4               | ATOM         | 4798  | C   | ALA A |       |   | 4.176 | 54.339 | 72.860         | 1.00 32.00 |
| 30              |              | 4799  | Ö   | ALA A |       |   |       |        |                |            |
| 7. Ju           | ATOM         |       |     |       |       |   | 4.162 | 54.597 | 74.057         | 1.00 35.37 |
| 5 m2            | MOTA         | 4800  | CB  | ALA A |       |   | 4.090 | 55.774 | 70.856         | 1.00 27.56 |
| MJ              | ATOM         | 4801  | N   | MET A |       |   | 3.470 | 53.380 | 72.332         | 1.00 26.26 |
| <b>13</b>       | ATOM         | 4802  | CA  | MET A |       |   | 2.627 | 52.585 | 73.167         | 1.00 26.60 |
| F7.             | MOTA         | -4803 | C   | MET 2 | 4 601 |   | 3.439 | 51.909 | 74.225         | 1.00 25.73 |
| 35              | ATOM         | 4804  | 0   | MET A | A 601 |   | 3.099 | 51.964 | 75.381         | 1.00 25.77 |
| 15 m            | ATOM         | 4805  | CB  | MET A | A 601 |   | 1.752 | 51.625 | 72.353         | 1.00 30.49 |
|                 | ATOM         | 4806  | CG  | MET A | A 601 |   | 1.024 | 50.594 | 73.176         | 1.00 36.00 |
|                 | ATOM         | 4807  | SD  | MET A |       |   | 2.043 | 49.146 | 73.554         | 1.00 42.41 |
|                 | ATOM         | 4808  | CE  | MET A |       |   | 1.693 | 48.128 | 72.111         | 1.00 37.75 |
| 40              | ATOM         | 4809  | N   | LEU A |       |   | 4.538 | 51.310 | 73.848         | 1.00 37.73 |
|                 |              | 4810  | CA  | LEU A |       |   | 5.339 |        |                |            |
|                 | ATOM         |       |     | LEU I |       |   |       | 50.671 | 74.873         | 1.00 22.59 |
|                 | ATOM         | 4811  | C   |       |       |   | 6.010 | 51.650 | 75.870         | 1.00 29.61 |
|                 | ATOM         | 4812  | 0   | LEU A |       |   | 6.137 | 51.346 | 77.039         | 1.00 27.62 |
| 4.5             | ATOM         | 4813  | CB  | LEU 2 |       |   | 6.418 | 49.760 | 74.294         | 1.00 22.14 |
| 45              | MOTA         | 4814  | CG  | LEU A | A 602 |   | 5.916 | 48.529 | 73.575         | 1.00 25.78 |
|                 | MOTA         | 4815  | CD1 | LEU A | A 602 |   | 7.021 | 48.087 | 72.609         | 1.00 26.02 |
|                 | MOTA         | 4816  | CD2 | LEU A | A 602 |   | 5.651 | 47.445 | 74.613         | 1.00 21.01 |
|                 | ATOM         | 4817  | N   | VAL A | A 603 |   | 6.508 | 52.805 | 75.445         | 1.00 27.15 |
|                 | ATOM         | 4818  | CA  |       | A 603 |   | 7.145 | 53.684 | 76.413         | 1.00 26.39 |
| 50              | ATOM         | 4819  | c   |       | A 603 |   | 6.121 | 54.157 | 77.438         |            |
| 20              | ATOM         | 4820  | Ö   |       |       |   |       |        |                | 1.00 32.60 |
|                 |              |       |     |       | A 603 |   | 6.436 | 54.235 | 78.621         | 1.00 35.31 |
|                 | ATOM         | 4821  | CB  |       | A 603 |   | 7.917 | 54.832 | 75.760         | 1.00 27.78 |
|                 | ATOM         | 4822  |     | VAL 3 |       |   | 8.286 | 55.887 | 76 <b>.774</b> | 1.00 24.54 |
|                 | MOTA         | 4823  | CG2 | VAL 2 |       |   | 9.172 | 54.286 | 75.094         | 1.00 27.29 |
| 55              | ATOM         | 4824  | N   |       | A 604 |   | 4.878 | 54.434 | 76.976         | 1.00 27.44 |
|                 | ATOM         | 4825  | CA  | GLY Z | A 604 |   | 3.759 | 54.856 | 77.819         | 1.00 27.58 |
|                 | ATOM         | 4826  | С   |       | A 604 |   | 3.418 | 53.797 | 78.905         | 1.00 37.00 |
|                 | ATOM         | 4827  | ō   |       | A 604 |   | 3.088 | 54.102 | 80.072         | 1.00 36.56 |
|                 | ATOM         | 4828  | N   |       | A 605 |   | 3.511 | 52.522 | 78.520         |            |
| 60              |              |       |     |       |       |   |       |        |                | 1.00 32.54 |
| · · · · ·       | ATOM         | 4829  | CA  |       | A 605 |   | 3.250 | 51.415 | 79.459         | 1.00 32.17 |
|                 | ATOM         | 4830  | C   |       | A 605 |   | 4.312 | 51.405 | 80.539         | 1.00 35.15 |
|                 | ATOM         | 4831  | 0   |       | A 605 |   | 4.040 | 51.347 | 81.734         | 1.00 33.77 |
|                 | MOTA         | 4832  | CB  |       | A 605 |   | 3.231 | 50.034 | 78.782         | 1.00 33.59 |
|                 | ATOM         | 4833  | CG  | LYS I | A 605 |   | 1.837 | 49.438 | 78.576         | 1.00 42.45 |
|                 |              |       |     |       |       |   |       |        |                |            |

PCT/SE00/00384 WO 00/50577

|             | MOTA         | 4834         | CD       | LYS        | Α | 605    | 1. | 846          | 48.115           | 77.815           | 1.00 60.83               |
|-------------|--------------|--------------|----------|------------|---|--------|----|--------------|------------------|------------------|--------------------------|
|             | MOTA         | 4835         | CE       | LYS        |   |        |    | 223          | 46.946           | 78.578           | 1.00 86.38               |
|             | ATOM         | 4836         | NZ       | LYS        |   |        |    | 188          | 46.179           | 79.385           | 1.00 93.05               |
|             | ATOM         | 4837         |          | ASP        |   |        |    | 544          | 51.470           | 80.056           | 1.00 32.91               |
| 5           | ATOM         | 4838         |          | ASP        |   |        |    | 715          | 51.510           | 80.878           | 1.00 31.82               |
|             | ATOM         | 4839         |          | ASP        |   |        |    | 549          | 52.667           | 81.833           | 1.00 36.24               |
|             | ATOM         | 4840         |          | ASP        |   |        |    | 652          | 52.503           | 83.045           | 1.00 35.19               |
|             | MOTA         | 4841         |          | ASP        |   |        |    | 983          | 51.702           | 80.027           | 1.00 32.52               |
| 10          | ATOM         | 4842         | CG       | ASP        |   |        |    | 302          | 50.525           | 79.134           | 1.00 40.01               |
| 10          | ATOM         | 4843         |          | ASP        |   |        |    | 934          | 49.378           | 79.344           | 1.00 40.49               |
|             | ATOM         | 4844         |          | ASP<br>LEU |   |        |    | 038          | 50.869           | 78.111           | 1.00 41.73               |
|             | ATOM<br>ATOM | 4845<br>4846 | N<br>CA  | LEU        |   |        |    | 240          | 53.833           | 81.266           | 1.00 34.45               |
|             | ATOM         | 4847         | CA       | LEU        |   |        |    | 152          | 54.972<br>55.018 | 82.185<br>82.968 | 1.00 36.03               |
| 15          | ATOM         | 4848         | Õ        | LEU        |   |        |    | 814<br>600   | 55.872           | 83.824           | 1.00 42.35               |
| 15          | ATOM         | 4849         | СВ       | LEU        |   |        |    | 321          | 56.250           | 81.364           | 1.00 41.57<br>1.00 36.90 |
|             | ATOM         | 4850         | CG       | LEU        |   |        |    | 779          | 56.490           | 80.974           | 1.00 38.75               |
|             | ATOM         | 4851         |          | LEU        |   |        |    | 954          | 57.746           | 80.132           | 1.00 34.34               |
| C9          | ATOM         | 4852         |          | LEU        |   |        |    | 695          | 56.653           | 82.183           | 1.00 34.34               |
| 20          | ATOM         | 4853         | N        | LYS        |   |        |    | 895          | 54.062           | 82.586           | 1.00 45.01               |
| - Table - C | ATOM         | 4854         | CA       | LYS        |   |        |    | 576          | 53.874           | 83.264           | 1.00 46.99               |
|             | ATOM         | 4855         | С        | LYS        |   |        |    | 625          | 55.088           | 83.181           | 1.00 51.31               |
| ja ik       | ATOM         | 4856         | 0        | LYS        |   |        |    | 988          | 55.467           | 84.151           | 1.00 51.35               |
| ing int     | ATOM         | 4857         | CB       | LYS        |   |        |    | 813          | 53.510           | 84.750           | 1.00 50.83               |
| 25          | ATOM         | 4858         | CG       | LYS        | Α | 608    | 3. | .331         | 52.093           | 84.949           | 1.00 63.57               |
| LT.         | ATOM         | 4859         | CD       | LYS        |   |        |    | 405          | 52.019           | 86.031           | 1.00 77.03               |
| }=4x        | MOTA         | 4860         | CE       | LYS        | Α | 608    |    | .341         | 50.825           | 85.858           | 1.00 96.40               |
| R           | ATOM         | 4861         | NZ       | LYS        | Α | 608    | 6  | .034         | 50.554           | 87.117           | 1.00100.00               |
| 1.4.        | MOTA         | 4862         | N        | VAL        | Α | 609    | 1. | .560         | 55.724           | 81.991           | 1.00 50.28               |
| 30          | MOTA         | 4863         | CA       | VAL        |   |        |    | .688         | 56.901           | 81.852           | 1.00 50.89               |
|             | MOTA         | 4864         | С        | VAL        |   |        |    | .494         | 56.660           | 80.897           | 1.00 60.23               |
| # # P       | ATOM         | 4865         | 0        | VAL        |   |        |    | .640         | 56.952           | 81.194           | 1.00 63.02               |
| # 10 m      | ATOM         | 4866         | CB       | VAL        |   |        |    | .533         | 58.091           | 81.364           | 1.00 54.72               |
| 25          | MOTA         | 4867         |          | VAL        |   |        |    | .996         | 58.926           | 82.551           | 1.00 54.87               |
| 35          | ATOM         | 4868         |          | VAL        |   |        |    | .744         | 57.607           | 80.605           | 1.00 54.46               |
|             | MOTA<br>MOTA | 4869<br>4870 | N<br>CA  | ASP<br>ASP |   |        | -0 | .177<br>.238 | 56.152<br>55.949 | 79.687<br>78.699 | 1.00 58.84               |
|             | ATOM         | 4871         | C        | ASP        |   |        |    | .062         | 54.695           | 79.001           | 1.00 99.84 1.00100.00    |
|             | ATOM         | 4872         | õ        | ASP        |   |        |    | .247         | 54.615           | 78.711           | 1.00 69.75               |
| 40          | ATOM         | 4873         | СВ       | ASP        |   |        |    | .594         | 55.818           | 77.316           | 1.00100.00               |
|             | ATOM         | 4874         | CG       | ASP        |   |        |    | .637         | 57.161           | 76.610           | 1.00 92.61               |
|             | ATOM         | 4875         |          | ASP        |   |        |    | .449         | 57.999           | 77.018           | 1.00 90.49               |
|             | MOTA         | 4876         |          | ASP        |   |        |    | .134         | 57.355           | 75.670           | 1.00 89.29               |
|             | ATOM         | 4877         | ZN2+     | ZN         | Z | 1      |    | .003         | 38.803           | 64.180           | 1.00 28.37               |
| 45          | ATOM         | 4878         | YB3+     | YB         | Y | 1      | 43 | .011         | 51.068           | 98.864           | 1.00 34.70               |
|             | ATOM         |              | YB3+     |            | Y | 2      |    | .786         | 56.771           | 52.040           | 0.50 57.25               |
|             | ATOM         |              | YB3+     |            | Y | 3      |    | .537         | 57.860           | 52.381           | 0.50 36.57               |
|             | ATOM         | 4881         | CG       | IMD        |   | 1      |    | .249         | 42.039           | 80.754           | 1.00 28.44               |
| 50          | ATOM         | 4882         |          | IMD        |   | 1      |    | .057         | 42.254           | 79.400           | 1.00 28.35               |
| 50          | MOTA         | 4883         |          | IMD        |   | 1      |    | .562         | 41.726           | 80.902           | 1.00 17.99               |
|             | MOTA         | 4884         |          | IMD        |   | 1      |    | .201         | 42.063           | 78.760           | 1.00 29.77               |
|             | MOTA         | 4885         |          | IMD        |   | 1      |    | .130         | 41.745           | 79.647           | 1.00 35.02               |
|             | ATOM<br>ATOM | 4886<br>4887 | CB<br>CG | ACE<br>ACE |   | 1<br>1 |    | .616         | 12.333           | 68.475           | 1.00 59.33               |
| 55          | ATOM         | 4888         |          | ACE        |   | 1      |    | .871<br>.958 | 13.331<br>14.536 | 69.306<br>69.146 | 1.00 42.98<br>1.00 39.66 |
| 23          | ATOM         | 4889         |          | ACE        |   | 1      |    | .142         | 12.759           | 70.236           | 1.00 39.00               |
|             | MOTA         | 4890         | C6       | INH        |   | ī      |    | .422         | 38.514           | 70.154           | 1.00 38.70               |
|             | ATOM         | 4891         | C5       | INH        |   | 1      |    | .571         | 39.820           | 69.689           | 1.00 37.05               |
|             | ATOM         | 4892         | C4       | INH        |   | ī      |    | .901         | 40.062           | 68.354           | 1.00 37.03               |
| 60          | ATOM         | 4893         | C3       | INH        |   | 1      |    | .091         | 38.967           | 67.505           | 1.00 35.48               |
|             | ATOM         | 4894         | C2       | INH        |   |        |    | .944         | 37.650           | 67.949           | 1.00 31.90               |
|             | ATOM         | 4895         | Cl       | INH        |   |        |    | .611         | 37.434           | 69.286           | 1.00 36.93               |
|             | MOTA         | 4896         | c7       | INH        |   | 1      | 8  | .071         | 41.463           | 67.833           | 1.00 32.28               |
|             | MOTA         | 4897         | -01      | INH        | V | 1      | 8  | .288         | 41.443           | 66.485           | 1.00 37.06               |
|             |              |              |          |            |   |        |    |              |                  |                  |                          |

|                   | MOTA         | 4898         | C8 | INH V    | 1        | 9.584            | 41.740           | 66.129           | 1.00 32.34               |
|-------------------|--------------|--------------|----|----------|----------|------------------|------------------|------------------|--------------------------|
|                   | ATOM         | 4899         | C9 | INH V    | 1        | 9.825            | 42.911           | 65.416           | 1.00 31.03               |
|                   | ATOM         | 4900         |    | INH V    | 1        | 11.127           | 43.216           | 65.023           | 1.00 33.64               |
| _                 | ATOM         | 4901         |    | INH V    | 1        | 12.194           | 42.381           | 65.339           | 1.00 31.88               |
| 5                 | ATOM         | 4902         |    | INH V    | 1        | 11.928           | 41.198           | 66.028           | 1.00 31.07               |
|                   | ATOM         | 4903         |    | INH V    | 1        | 10.630           | 40.858           | 66.412           | 1.00 28.70               |
|                   | ATOM         | 4904         |    | INH V    | 1        | 13.587           | 42.710           | 64.882           | 1.00 32.51               |
|                   | MOTA         | 4905         |    | INH V    | 1        | 14.260           | 41.560           | 64.121           | 1.00 34.69               |
| 10                | ATOM         | 4906         |    | INH V    | 1        | 15.683           | 41.849           | 63.754           | 1.00 28.88               |
| 10                | ATOM         | 4907         | S1 | INH V    | 1        | 16.605           | 40.755           | 64.790           | 1.00 29.16               |
|                   | ATOM         | 4908         | N1 | INH V    | 1        | 13.497           | 40.805           | 63.099           | 1.00 30.69               |
|                   | ATOM         | 4909         | 0  | HOH W    | 1        | 44.463           | 49.888           | 77.523           | 1.00 46.91               |
|                   | ATOM         | 4910         |    | HOH W    | 2        | 13.469           | 27.803           | 78.018           | 1.00 20.07               |
| 15                | ATOM         | 4911<br>4912 | 0  | HOH W    | 3        | 4.225            | 69.721           | 58.393           | 1.00 27.76               |
| 13                | MOTA MOTA    | 4913         | 0  | HOH W    | 4        | 15.603           | 28.826           | 61.823           | 1.00 22.81               |
|                   | ATOM         | 4913         | 0  | HOH W    | 5<br>6   | 22.862           | 26.624           | 42.874           | 1.00 53.05               |
|                   | ATOM         | 4915         | 0  | HOH W    | 7        | 8.423            | 46.452           | 57.584           | 1.00 32.22               |
|                   | ATOM         | 4916         | Ö  | HOH W    | 8        | 17.904<br>22.979 | 46.550           | 68.524           | 1.00 31.91               |
| 20                | ATOM         | 4917         | Ö  | HOH W    | 9        | 17.707           | 45.895           | 83.716           | 1.00 39.37               |
| 43                | ATOM         | 4918         | Ö  | HOH W    | 10       | 12.439           | 39.158<br>36.303 | 55.643           | 1.00 25.27               |
| j.k.              | ATOM         | 4919         | Ö  | HOH W    | 11       | 17.367           | 62.730           | 59.209           | 1.00 31.46               |
| 1 FR:<br>11 S FR: | ATOM         | 4920         | ŏ  | HOH W    | 12       | 42.823           | 52.642           | 50.320<br>90.552 | 1.00 37.74               |
| 2 8673            | ATOM         | 4921         | Ö  | HOH W    | 13       | 34.337           | 45.508           | 97.419           | 1.00 53.80<br>1.00 57.99 |
| 25                | ATOM         | 4922         | Õ  | HOH W    | 14       | 6.726            | 27.119           | 48.459           | 1.00 57.99               |
| 194 A             | ATOM         | 4923         | 0  | HOH W    | 15       | -0.093           | 30.159           | 71.746           | 1.00 02.29               |
| 1-10              | ATOM         | 4924         | 0  | HOH W    | 16       | -19.673          | 44.016           | 58.682           | 1.00 29.96               |
| ##                | MOTA         | 4925         | 0  | HOH W    | 17       | 16.563           | 26.790           | 80.837           | 1.00 38.62               |
| J=4.              | ATOM         | 4926         | 0  | HOH W    | 18       | 10.281           | 35.677           | 88.518           | 1.00 26.01               |
| <b>30</b>         | ATOM         | 4927         | 0  | HOH W    | 19       | 20.973           | 35.691           | 44.774           | 1.00 49.50               |
|                   | ATOM         | 4928         | 0  | HOH W    | 20       | 0.996            | 19.571           | 53.713           | 1.00 67.39               |
|                   | MOTA         | 4929         | 0  | HOH W    | 21       | 20.424           | 37.014           | 85.845           | 1.00 39.54               |
|                   | ATOM         | 4930         | 0  | HOH W    | 22       | -2.498           | 35.905           | 53.781           | 1.00 51.70               |
| 4                 | ATOM         | 4931         | 0  | HOH W    | 23       | 39.807           | 49.718           | 92.595           | 1.00 37.39               |
| 35                | ATOM         | 4932         | 0  | HOH W    | 24       | 16.431           | 58.267           | 93.127           | 1.00 47.45               |
|                   | ATOM         | 4933         | 0  | HOH W    | 25       | 6.935            | 45.104           | 66.012           | 1.00 18.12               |
|                   | ATOM         | 4934         | 0  | HOH W.   |          | 40.479           | 54.713           |                  | 1.00 28.72               |
|                   | ATOM         | 4935         | 0  | HOH W    | 27       | 22.369           | 40.324           | 67.919           | 1.00 46.36               |
| 40                | ATOM<br>ATOM | 4936<br>4937 | 0  | HOH W    | 28       | 37.289           | 49.457           | 68.016           | 1.00 61.37               |
| 40                | ATOM         | 4937         | 0  | HOH W    | 29<br>30 | 2.611            | 35.015           | 55.709           | 1.00 24.45               |
|                   | ATOM         | 4939         | 0  | HOH W    | 31       | 41.088           | 62.590           | 98.644           | 1.00 65.38               |
|                   | ATOM         | 4940         | 0  | HOH W    | 32       | 17.369<br>25.433 | 55.024           | 87.465           | 1.00 24.22               |
|                   | ATOM         | 4941         | ŏ  | HOH W    | 33       | 3.890            | 20.198<br>42.770 | 55.692           | 1.00 44.61               |
| 45                | ATOM         | 4942         | ō  | HOH W    | 34       | 3.934            | 63.391           | 66.651<br>62.592 | 1.00 22.34               |
|                   | ATOM         | 4943         | Ō  | HOH W    | 35       | 22.280           | 41.610           | 86.289           | 1.00 60.69<br>1.00 74.20 |
|                   | ATOM         | 4944         | 0  | HOH W    | 36       | 22.631           | 46.401           | 90.078           | 1.00 47.44               |
|                   | ATOM         | 4945         | 0  | HOH W    | 37       | 33.442           | 20.227           | 64.569           | 1.00 47.44               |
|                   | ATOM         | 4946         | 0  | HOH W    | 38       | 39.834           | 28.974           | 75.602           | 1.00 41.72               |
| 50                | ATOM         | 4947         | 0  | HOH W    | 39       | 35.232           | 47.140           | 54.186           | 1.00 37.08               |
|                   | ATOM         | 4948         | 0  | HOH W    | 40       | 36.003           | 57.784           | 57.893           | 1.00 43.05               |
|                   | ATOM         | 4949         | 0  | HOH W    | 41       | 37.216           | 27.438           | 74.564           | 1.00 50.79               |
|                   | ATOM         | 4950         | 0  | HOH W    | 42       | 17.770           | 67.012           | 77.183           | 1.00 45.78               |
| 55                | ATOM         | 4951         | 0  | HOH W    | 43       | 5.341            | 31.286           | 78.127           | 1.00 25.34               |
| 55                | ATOM         | 4952         | 0  | HOH W    | 44       | 33.535           | 32.503           | 52.063           | 1.00 56.13               |
|                   | ATOM         | 4953         | 0  | HOH W    | 45       | 25.477           | 33.146           | 44.610           | 1.00 65.43               |
|                   | ATOM         | 4954         | 0  | HOH W    | 46       | 16.235           | 37.438           | 52.628           | 1.00 32.10               |
|                   | ATOM         | 4955         | 0  | HOH W    | 47       | 28.791           | 14.101           | 63.316           | 1.00 46.67               |
| 60                | ATOM         | 4956         | 0  | HOH W    | 48       | 10.230           | 24.992           | 86.967           | 1.00 38.63               |
| UU                | ATOM         | 4957         | 0  | HOH W    | 49       | 30.821           | 38.856           | 79.630           | 1.00 40.44               |
|                   | ATOM<br>ATOM | 4958<br>4959 | 0  | HOH W    | 50       | 12.621           | 37.226           | 62.944           | 1.00 26.70               |
|                   | ATOM         | 4959         | 0  | HOH W    | 51       | 27.987           | 30.609           | 66.612           | 1.00 33.55               |
|                   | ATOM         | 4961         | 0  | HOH W    | 52<br>53 | 34.459           | 28.696           | 64.242           | 1.00 51.01               |
|                   |              | 1001         | 0  | .1011 84 | J J      | 34.969           | 62.270           | 91.179           | 1.00 68.20               |

|                                       |      | 4000 | _ |       |     |   |         |                |         |      |       |
|---------------------------------------|------|------|---|-------|-----|---|---------|----------------|---------|------|-------|
|                                       | MOTA | 4962 | 0 | HOH W | 54  |   | 33.631  | 30.717         | 62.396  | 1.00 | 41.64 |
|                                       | ATOM | 4963 | 0 | HOH W | 55  |   | 43.987  | 48.530         | 91.269  |      | 50.99 |
|                                       | MOTA | 4964 | 0 | нон w | 56  |   | 23.412  | 28.584         | 85.186  |      | 69.23 |
|                                       | ATOM | 4965 | 0 | HOH W |     |   | 39.834  |                |         |      |       |
| 5                                     |      |      |   |       |     |   |         | 28.057         | 72.257  |      | 81.00 |
| ,                                     | ATOM | 4966 | 0 | HOH W |     |   | 2.892   | 25.685         | 69.907  | 1.00 | 38.96 |
|                                       | MOTA | 4967 | 0 | HOH W | 59  |   | 10.284  | 47.120         | 72.671  | 1.00 | 40.28 |
|                                       | ATOM | 4968 | 0 | HOH W | 60  | • | 32.645  | 39.037         | 76.746  |      | 21.71 |
|                                       | ATOM | 4969 | 0 | HOH W | 61  |   | 43.535  | 48.019         | 95.228  |      |       |
|                                       | ATOM | 4970 | ŏ | HOH W |     |   |         |                |         |      | 37,69 |
| 10                                    |      |      |   |       | 62  |   | 11.991  | 51.053         | 43.479  |      | 41.05 |
| 10                                    | ATOM | 4971 | 0 | HOH W | 63  |   | 18.329  | 56.527         | 89.388  | 1.00 | 28.51 |
|                                       | ATOM | 4972 | 0 | HOH W | 64  |   | 16.555  | 9.309          | 68.875  | 1.00 | 89.05 |
|                                       | ATOM | 4973 | 0 | HOH W | 65  |   | 23.741  | 44.759         | 73.150  |      | 38.43 |
|                                       | ATOM | 4974 | 0 | нон w | 66  |   | 19.093  | 53.805         | 41.239  |      |       |
|                                       | ATOM | 4975 | ō | нон w | 67  |   |         |                |         |      | 55.25 |
| 15                                    |      | 4976 |   |       |     |   | 31.750  | 60.369         | 56.933  |      | 92.26 |
| 13                                    | ATOM |      | 0 | HOH W | 68  |   | 24.836  | 68.428         | 80.926  |      | 59.25 |
|                                       | ATOM | 4977 | 0 | HOH W | 69  |   | -21.014 | 19.446         | 48.342  | 1.00 | 52.24 |
|                                       | MOTA | 4978 | 0 | HOH W | 70  |   | 11.318  | 68.028         | 86.566  |      | 77.81 |
| an en.                                | ATOM | 4979 | 0 | HOH W | 71  |   | 5.312   | 60.076         | 63.511  |      | 36.83 |
|                                       | ATOM | 4980 | 0 | HOH W | 72  |   | 7.689   | 20.219         |         |      |       |
| 20                                    | ATOM |      |   |       |     |   |         |                | 84.680  |      | 32.24 |
| 40                                    |      | 4981 | 0 | HOH W | 73  |   | 34.988  | 44.708         | 64.746  | 1.00 | 40.73 |
|                                       | MOTA | 4982 | 0 | HOH W | 74  |   | 10.614  | 49.644         | 41.337  | 1.00 | 38.90 |
| jad.                                  | MOTA | 4983 | 0 | HOH W | 75  |   | 19.349  | 42.973         | 64.739  |      | 54.53 |
| · · · · · · · · · · · · · · · · · · · | MOTA | 4984 | 0 | HOH W | 76  |   | 35.916  | 30.862         | 80.753  |      | 55.38 |
| 25                                    | ATOM | 4985 | 0 | HOH W | 77  |   | 9.666   | 26.046         |         |      |       |
| 1 25                                  | ATOM | 4986 |   |       |     |   |         |                | 46.603  |      | 40.09 |
| U1 23                                 |      |      | 0 | HOH W | 78  |   | -10.171 | 46.751         | 60.237  | 1.00 | 29.78 |
| <b>j</b> .a.                          | MOTA | 4987 | 0 | HOH W | 79  |   | 46.751  | 58.883         | 86.875  | 1.00 | 35.92 |
|                                       | MOTA | 4988 | 0 | HOH W | 80  |   | 19.320  | 32.528         | 51.000  | 1.00 | 33.36 |
| #                                     | ATOM | 4989 | 0 | HOH W | 81  |   | 28.815  | 39.568         | 66.176  |      | 59.19 |
| <b>}</b> =4.                          | ATOM | 4990 | 0 | HOH W | 82  |   | 38.207  | 35.773         | 73.585  |      | 17.81 |
| 1.30                                  | ATOM | 4991 | ō | HOH W | 83  |   |         |                |         |      |       |
|                                       |      |      |   |       |     |   | 23.802  | 33.925         | 75.175  |      | 25.19 |
| n.                                    | ATOM | 4992 | 0 | HOH W | 84  |   | 42.241  | 51.290         | 99.896  | 1.00 | 15.88 |
|                                       | ATOM | 4993 | 0 | HOH W | 85  |   | 3.751   | 36.678         | 58.842  | 1.00 | 24.97 |
| he all                                | ATOM | 4994 | 0 | HOH W | 86  |   | -7.009  | 40.341         | 62.580  |      | 25.39 |
|                                       | ATOM | 4995 | 0 | HOH W | 87  |   | 11.735  | 58.910         | 68.155  |      | 39.70 |
| 35                                    | ATOM | 4996 | 0 | HOH W | 88  |   | 13.986  | 52.835         | 42.224  |      |       |
|                                       | ATOM | 4997 | ŏ | HOH W | 89  |   |         |                |         |      | 50.91 |
|                                       |      |      |   |       |     |   | 1.452   | 46.541         | 69.459  |      | 35.03 |
|                                       | MOTA | 4998 | 0 | HOH W | 90  |   | -1.938  | 55.310         | 56.971  | 1.00 | 28.10 |
|                                       | MOTA | 4999 | 0 | HOH W | 91  |   | 13.801  | 66.947         | 52.600  | 1.00 | 38.65 |
| 4.0                                   | MOTA | 5000 | 0 | HOH W | 92  |   | 21.594  | 47.218         | 79.203  |      | 30.31 |
| 40                                    | ATOM | 5001 | 0 | HOH W | 93  |   | 10.639  | 58.632         | 90.827  |      | 43.78 |
|                                       | ATOM | 5002 | 0 | HOH W | 94  |   | 33.335  | 53.550         |         |      |       |
|                                       | ATOM | 5003 | Ö | HOH W | 95  |   |         |                | 68.086  |      | 37.04 |
|                                       |      |      |   |       |     |   | -1.984  | 28.738         | 60.212  |      | 31.56 |
|                                       | ATOM | 5004 | 0 | HOH W | 96  |   | -4.958  | 51.055         | 59.250  | 1.00 | 34.00 |
| AE                                    | MOTA | 5005 | 0 | HOH W | 97  |   | 17.610  | 39.701         | 51.503  | 1.00 | 28.27 |
| 45                                    | ATOM | 5006 | 0 | HOH W | 98  |   | 10.686  | 54.166         | 67.565  |      | 37.68 |
|                                       | ATOM | 5007 | 0 | HOH W | 99  |   | 20.567  | 43.859         | 78.621  |      | 41.57 |
|                                       | ATOM | 5008 | 0 | HOH W |     |   | 7.013   | 22.332         | 69.109  |      |       |
|                                       | ATOM | 5009 | ō | HOH W |     |   |         |                |         |      | 28.72 |
|                                       |      |      |   |       |     |   | 10.097  | 53.225         | 78.477  |      | 35.68 |
| 50                                    | MOTA | 5010 | 0 | HOH W |     |   | 10.849  | 31.404         | 53.014  | 1.00 | 32.22 |
| 20                                    | MOTA | 5011 | 0 | HOH W |     |   | 42.381  | 59.035         | 94.728  | 1.00 | 36.00 |
|                                       | MOTA | 5012 | 0 | HOH W | 104 |   | 17.234  | 41.111         | 54.082  |      | 33.65 |
|                                       | ATOM | 5013 | 0 | HOH W | 105 |   | 26.902  | 62.025         | 81.989  |      | 34.70 |
|                                       | ATOM | 5014 | 0 | HOH W |     |   | -14.313 | 49.559         |         |      |       |
|                                       | ATOM | 5015 | Ö | HOH W |     |   |         |                | 56.204  |      | 54.36 |
| 55                                    |      |      |   |       |     |   | 41.646  |                | 101.015 |      | 68.12 |
| , 55                                  | ATOM | 5016 | 0 | HOH W |     |   | 26.759  | 43.000         | 47.219  | 1.00 | 32.69 |
|                                       | ATOM | 5017 | 0 | HOH W |     |   | 16.624  | 48.119         | 46.545  |      | 38.64 |
|                                       | ATOM | 5018 | 0 | HOH W | 110 |   | 26.159  | 32.793         | 75.230  |      | 24.77 |
|                                       | MOTA | 5019 | 0 | нон w |     |   | 2.101   | 33.468         | 67.006  |      |       |
|                                       | ATOM | 5020 | ŏ | HOH W |     |   |         |                |         |      | 31.50 |
| 60                                    |      |      |   |       |     |   | 38.114  | 36.374         | 87.451  |      | 44.06 |
| U.                                    | MOTA | 5021 | 0 | HOH W |     |   | 13.211  | 29.810         | 61.356  |      | 33.81 |
|                                       | ATOM | 5022 | 0 | HOH W |     |   | -3.064  | <b>37.86</b> 3 | 40.673  | 1.00 | 37.92 |
|                                       | ATOM | 5023 | 0 | HOH W |     |   | 15.007  | 47.948         | 69.488  |      | 28.23 |
|                                       | MOTA | 5024 | 0 | HOH W |     |   | 27.101  | 66.633         | 80.518  |      | 41.24 |
|                                       | ATOM | 5025 | 0 | HOH W |     |   | 11.870  | 38.304         | 43.174  | 1 00 | 40.85 |
|                                       |      |      |   |       |     |   |         | 20.204         | 30.114  | 1.00 | 40.02 |

WO 00/50577

|                              |      | MOTA         | 5026         | 0 | HOH W 118              | -13.844          | 25.597           | 58.258           | 1.00 53.75               |
|------------------------------|------|--------------|--------------|---|------------------------|------------------|------------------|------------------|--------------------------|
|                              |      | ATOM         | 5027         | 0 | HOH W 119              | 2.929            | 41.135           | 59.858           | 1.00 36.49               |
|                              |      | ATOM         | 5028         | 0 | HOH W 120              | 24.890           | 45.490           | 82.167           | 1.00 41.65               |
|                              |      | ATOM         | 5029         | 0 | HOH W 121              | 36.062           | 59.335           | 75.090           | 1.00 38.82               |
|                              | 5    | ATOM         | 5030         | 0 | HOH W 122              | -10.715          | 32.037           | 61.699           | 1.00 78.82               |
|                              |      | ATOM         | 5031         | 0 | HOH W 123              | -2.646           | 25.492           | 60.812           | 1.00 48.40               |
|                              |      | MOTA         | 5032         | 0 | HOH W 124              | -8.948           | 46.831           | 63.556           | 1.00 48.06               |
|                              |      | ATOM         | 5033         | 0 | HOH W 125              | -17.843          | 39.367           | 36.020           | 1.00 35.80               |
|                              |      | ATOM         | 5034         | 0 | HOH W 126              | 2.218            | 57.766           | 62.253           | 1.00 44.61               |
|                              | 10   | ATOM         | 5035         | 0 | HOH W 127              | 10.736           | 62.766           | 64.366           | 1.00 55.84               |
|                              |      | A'TOM        | 5036         | 0 | HOH W 128              | 0.884            | 35.562           | 63.963           | 1.00 44.14               |
|                              |      | ATOM         | 5037         | 0 | HOH W 129              | 19.165           | 59.557           | 60.644           | 1.00 47.82               |
|                              |      | ATOM         | 5038         | 0 | HOH W 130              | 1.546            | 27.875           | 68.443           | 1.00 39.69               |
|                              |      | MOTA         | 5039         | 0 | HOH W 131              | 5.497            | 26.285           | 76.668           | 1.00 44.47               |
|                              | 15   | MOTA         | 5040         | 0 | HOH W 132              | 14.505           | 36.538           | 88.996           | 1.00 40.00               |
|                              |      | MOTA         | 5041         | 0 | HOH W 133              | .8.534           | 28.713           | 88.519           | 1.00 46.55               |
|                              |      | MOTA         | 5042         | 0 | HOH W 134              | 6.125            | 45.267           | 77.959           | 1.00 45.57               |
|                              |      | ATOM         | 5043         | 0 | HOH W 135              | 26.016           | 18.543           | 78.878           | 1.00 51.65               |
|                              |      | ATOM         | 5044         | 0 | HOH W 136              | 33.880           | 23.025           | 70.739           | 1.00 46.95               |
| 1                            | 20   | MOTA         | 5045         | 0 | HOH W 137              | 19.230           | 26.073           | 49.998           | 1.00 51.97               |
|                              | - L  | ATOM         | 5046         | 0 | HOH W 138              | 41.563           | 41.085           | 77.326           | 1.00 43.14               |
| i.a.                         | 4.60 | ATOM         | 5047         | 0 | HOH W 139              | 39.187           | 63.067           | 75.380           | 1.00 56.52               |
|                              |      | MOTA         | 5048         | 0 | HOH W 140              | 26.878           | 54.491           | 67.203           | 1.00 42.14               |
| SALV.                        |      | ATOM         | 5049         | 0 | HOH W 141              | 22.988           | 62.189           | 74.174           | 1.00 48.31               |
| 15 TO 15 TO 15               | 25   | ATOM         | 5050         | 0 | HOH W 142              | 25.190           | 62.803           | 71.067           | 1.00 67.16               |
| U                            |      | ATOM         | 5051         | 0 | HOH W 143              | 18.598           | 45.126           | 81.949           | 1.00 53.80               |
| =4                           |      | ATOM         | 5052         | 0 | HOH W 144              | 19.782           | 53.129           | 90.556           | 1.00 48.73               |
| 15                           |      | MOTA         | 5053         | 0 | HOH W 145              | 21.735           | 48.367           | 86.454           | 1.00 40.39               |
|                              |      | MOTA         | 5054         | 0 | HOH W 146              | 25.707           | 57.012           | 93.476           | 1.00 53.61               |
|                              | 30   | ATOM         | 5055         | 0 | HOH W 147              | 22.832           | 62.085           | 93.149           | 1.00 46.02               |
|                              |      | MOTA         | 5056         | 0 | HOH W 148              | 25.725           | 67.203           | 89.990           | 1.00 75.23               |
| # 188 <sup>1</sup><br>## #8. |      | MOTA         | 5057         | 0 | HOH W 149              | 10.773           | 53.653           | 85.697           | 1.00 50.65               |
| 25 H                         |      | ATOM         | 5058         | 0 | HOH W 150              | 4.221            | 58.449           | 86.608           | 1.00 49.23               |
|                              | 2    | MOTA         | 5059         | 0 | HOH W 151              | 7.790            | 72.096           | 84.410           | 1.00 51.10               |
| - A                          | 35   | ATOM         | 5060         | 0 | HOH W 152              | 2.387            | 58.282           | 6 <b>7.8</b> 35  | 1.00 33.29               |
| , ,                          |      | MOTA         | 5061         | 0 | HOH W 153              | 0.921            | 49.551           | 69.095           | 1.00 59.60               |
|                              |      | MOTA         | 5062         | 0 | HOH W 154              | 8.722            | 45.171           | 71.561           | 1.00 46.56               |
|                              |      | MOTA         | 5063         | 0 | HOH W 155              | 6.422            | 47.947           | 81.081           | 1.00 57.56               |
|                              | 40   | MOTA         | 5064         | 0 | HOH W 156              | 15.936           | 56.908           | 55.129           | 1.00 43.33               |
|                              | 40   | ATOM         | 5065         | 0 | HOH W 157              | 3.032            | 19.635           | 62.453           | 1.00 80.38               |
|                              |      | ATOM         | 5066         | 0 | HOH W 158              | -4.228           | 58.058           | 47.057           | 1.00 39.66               |
|                              |      | MOTA         | 5067         | 0 | HOH W 159              | 1.197            | 41.002           | 78.942           | 1.00 57.22               |
|                              |      | ATOM         | 5068         | 0 | HOH W 160              | 1.259            | 43.651           | 68.100           | 1.00 37.94               |
|                              | 45   | ATOM         | 5069         | 0 | HOH W 161              | 25.799           | 64.833           | 56.690           | 1.00 38.96               |
|                              | 43   | ATOM         | 5070         | 0 | HOH W 162              | -11.853          | 45.054           | 45.070           | 1.00 38.38               |
|                              |      | ATOM         | 5071<br>5072 | 0 | HOH W 163<br>HOH W 164 | 40.159           | 31.033           | 78.548           | 1.00 75.36               |
|                              |      | ATOM         | 5072         | 0 | HOH W 165              | 21.477<br>26.347 | 20.377           | 79.349<br>72.803 | 1.00 35.96<br>1.00 42.21 |
|                              |      | ATOM<br>ATOM | 5074         | 0 | HOH W 166              | 16.446           | 44.558<br>61.207 | 59.687           | 1.00 42.21               |
|                              | 50   | ATOM         | 5075         | 0 | HOH W 167              | 27.695           | 64.216           | 82.410           | 1.00 39.70               |
|                              | 20   | ATOM         | 5076         | 0 | HOH W 168              | -2.998           | 57.511           | 34.738           | 1.00 45.35               |
|                              |      | ATOM         | 5077         | ŏ | HOH W 169              | 6.608            | 51.527           | 60.826           | 1.00 43.33               |
|                              |      | ATOM         | 5078         | Ö | HOH W 170              | 31.104           | 28.934           | 81.337           | 1.00 43.19               |
|                              |      | ATOM         | 5079         | Ö | HOH W 171              | 10.135           | 28.233           | 45.533           | 1.00 41.24               |
|                              | 55   | ATOM         | 5080         | Ö | HOH W 172              | 8.201            | 43.960           | 75.322           | 1.00 37.71               |
|                              | 23   | ATOM         | 5081         | Ö | HOH W 173              | 13.799           | 66.601           | 85.597           | 1.00 37.71               |
|                              |      | ATOM         | 5082         | 0 | HOH W 174              | 16.664           | 53.670           | 65.006           | 1.00 34.74               |
|                              |      | MOTA         | 5083         | Ö | HOH W 175              | 18.301           | 47.296           | 43.793           | 1.00 45.84               |
|                              |      | ATOM         | 5084         | ő | HOH W 176              | 11.717           | 61.868           | 52.648           | 1.00 45.84               |
|                              | 60   | ATOM         | 5085         | Ö | HOH W 177              | 29.516           | 23.822           | 76.838           | 1.00 51.50               |
|                              |      | MOTA         | 5086         | ŏ | HOH W 178              | 39.940           | 60.509           | 78.535           | 1.00 46.33               |
|                              |      | ATOM         | 5087         | ō | HOH W 179              | -1.803           | 44.974           | 37.278           | 1.00 52.56               |
|                              |      | ATOM         | 5088         | ō | HOH W 180              | 7.343            | 47.305           | 65.468           | 1.00 47.27               |
|                              |      | ATOM         | 5089         | ō | HOH W 181              | 17.912           | 15.338           | 81.793           | 1.00 50.08               |
|                              |      |              |              |   |                        |                  |                  |                  |                          |

|       | ATOM | 5090 | 0  | HOH W 182 | -4.631          | 55.917 | 82.183 | 1.00 65.36               |
|-------|------|------|----|-----------|-----------------|--------|--------|--------------------------|
|       | ATOM | 5091 | ō  | HOH W 183 | 32.973          | 42.656 | 86.667 | 1.00 43.97               |
|       | ATOM | 5092 | ō  | HOH W 184 | -1.834          | 36.784 | 71.040 | 1.00 45.10               |
|       | ATOM | 5093 | ō  | HOH W 185 | -4.519          | 34.633 | 71.838 | 1.00 43.10               |
| 5     | ATOM | 5094 | ŏ  | HOH W 186 | 4.518           | 68.554 | 71.661 | 1.00 46.99               |
| J     |      | 5095 | o  | HOH W 187 | 2.774           |        |        |                          |
|       | ATOM | 5095 | 0  | HOH W 187 | 31.770          | 37.503 | 61.490 | 1.00 45.81               |
|       | ATOM |      |    |           |                 | 43.526 | 51.410 | 1.00 58.02               |
|       | ATOM | 5097 | 0  | HOH W 189 | 5.471           | 43.861 | 38.891 | 1.00 49.43               |
| 10    | ATOM | 5098 | 0  | HOH W 190 | 11.934          | 58.219 | 70.811 | 1.00 49.96               |
| 10    | ATOM | 5099 | 0  | HOH W 191 | 33.112          | 26.203 | 70.484 | 1.00 60.03               |
|       | MOTA | 5100 | 0  | HOH W 192 | 30.914          | 43.017 | 70.613 | 1.00 73.23               |
|       | MOTA | 5101 | 0  | HOH W 193 | 0.400           | 39.300 | 39.714 | 1.00 65.37               |
|       | MOTA | 5102 | 0  | HOH W 194 | 48.247          | 56.159 | 86.370 | 1.00 60.09               |
| 15    | MOTA | 5103 | 0  | HOH W 195 | 12.359          | 59.992 | 62.698 | 1.00 53.57               |
| 15    | MOTA | 5104 | 0  | HOH W 196 | 11.149          | 17.504 | 78.264 | 1.00 54.43               |
|       | ATOM | 5105 | 0  | HOH W 197 | -4.284          | 31.953 | 60.991 | 1.00 47.12               |
|       | ATOM | 5106 | 0  | HOH W 198 | 29.888          | 35.624 | 82.772 | 1.00 52.16               |
|       | MOTA | 5107 | 0  | HOH W 199 | 14.388          | 39.115 | 89.656 | 1.00 47.93               |
|       | ATOM | 5108 | 0  | HOH W 200 | -8.529          | 51.475 | 47.745 | 1.00 61.00               |
| 20    | ATOM | 5109 | 0  | HOH W 201 | -15.572         | 53.338 | 52.008 | 1.00 72.42               |
|       | ATOM | 5110 | 0  | HOH W 202 | 24.319          | 38.590 | 87.128 | 1.00 50.03               |
| 14 da | ATOM | 5111 | Ο, | HOH W 203 | 25.366          | 70.670 | 82.839 | 1.00 49.01               |
| 2 m   | ATOM | 5112 | 0  | HOH W 204 | 18.531          | 27.749 | 86.236 | 1.00 48.64               |
|       | ATOM | 5113 | 0  | HOH W 205 | 21.694          | 20.030 | 81.796 | 1.00 49.04               |
| 25    | ATOM | 5114 | 0  | HOH W 206 | 23.953          | 47.993 | 67.580 | 1.00 40.39               |
| 17    | ATOM | 5115 | 0  | HOH W 207 | 22.012          | 40.217 | 90.228 | 1.00 42.29               |
| j=4.  | ATOM | 5116 | 0  | HOH W 208 | 16.197          | 45.094 | 43.427 | 1.00 48.00               |
|       | ATOM | 5117 | 0  | HOH W 209 | 21.019          | 68.985 | 84.382 | 1.00 56.50               |
| # *   | ATOM | 5118 | ō  | HOH W 210 | -7.134          | 33.015 | 71.591 | 1.00 56.31               |
| 30    | ATOM | 5119 | ō  | HOH W 211 | 40.843          | 44.050 | 89.284 | 1.00 43.07               |
|       | ATOM | 5120 | ō  | HOH W 212 | 20.374          | 14.856 | 56.642 | 1.00 50.07               |
| T.    | ATOM | 5121 | ō  | HOH W 213 | 12.723          | 46.277 | 73.748 | 1.00 59.15               |
| C)    | MOTA | 5122 | o  | HOH W 214 | 8.956           | 43.704 | 58.706 | 1.00 45.56               |
| 17    | ATOM | 5123 | ō  | HOH W 215 | -2.433          | 36.012 | 80.232 | 1.00 54.12               |
| 35    | ATOM | 5124 | ō  | HOH W 216 | 5.257           | 25.271 | 55.914 | 1.00 53.23               |
| 93.44 | ATOM | 5125 | ō  | HOH W 217 | 13.354          | 64.403 | 53.862 | 1.00 33.23               |
|       | ATOM | 5126 | ō  | HOH W 218 | 30.477          | 42.517 | 67.472 | 1.00 48.17               |
|       | ATOM | 5127 | ŏ  | HOH W 219 | 14.139          | 47.479 | 76.123 | 1.00 79.04               |
|       | ATOM | 5128 | ō  | HOH W 220 | 0.829           | 29.563 | 50.769 | 1.00 48.10               |
| 40    | ATOM | 5129 | ō  | HOH W 221 | 32.979          | 51.667 | 96.624 | 1.00 40.10               |
|       | ATOM | 5130 | ŏ  | HOH W 222 | 14.677          | 45.948 | 71.756 | 1.00 52.31               |
|       | ATOM | 5131 | ō  | HOH W 223 | 33.890          | 24.505 | 58.094 | 1.00 32.51               |
|       | ATOM | 5132 | õ  | HOH W 224 | 17.853          | 9.519  | 65.560 | 1.00 45.05               |
|       | ATOM | 5133 | Ö  | HOH W 225 | 37.794          | 31.473 | 62.305 | 1.00 50.38               |
| 45    | ATOM | 5134 | ŏ  | HOH W 226 | 29.206          | 50.335 | 62.673 | 1.00 45.43               |
|       | ATOM | 5135 | o. |           | 4.932           | 48.808 | 63.354 | 1.00 43.45               |
|       | ATOM | 5136 | 0  | HOH W 228 | 18.933          | 59.070 | 55.899 | 1.00 50.29               |
|       | ATOM | 5137 | Ö  | HOH W 229 | 13.849          | 18.833 | 83.641 | 1.00 55.89               |
|       | MOTA | 5138 | ŏ  | HOH W 230 | 25.919          | 46.022 | 68.076 | 1.00 35.63               |
| 50    | ATOM | 5139 | ŏ  | HOH W 231 | 27.565          | 65.098 | 75.153 |                          |
| . 50  | MOTA | 5140 | ŏ  | HOH W 232 | 27.128          | 39.012 | 68.497 | 1.00 73.11               |
|       | ATOM | 5141 | ō  | HOH W 233 | 40.706          | 52.468 | 74.641 | 1.00 40.77<br>1.00 51.60 |
|       | ATOM | 5142 | o  | HOH W 234 | 21.689          | 65.312 |        |                          |
|       | ATOM | 5143 | 0  | HOH W 235 |                 | 17.615 | 58.080 | 1.00 66.72               |
| 55    | ATOM | 5144 | 0  | HOH W 236 | 9.121<br>17.931 |        | 59.271 | 1.00 51.98               |
| 25    | ATOM | 5144 | 0  | HOH W 237 |                 | 36.565 | 88.091 | 1.00 54.77               |
|       |      |      |    |           | 33.843          | 36.707 | 52.576 | 1.00 61.60               |
|       | ATOM | 5146 | 0  | HOH W 238 | -3.693          | 50.074 | 63.986 | 1.00 43.64               |
|       | ATOM | 5147 | 0  | HOH W 239 | 44.272          | 44.279 | 81.461 | 1.00 69.21               |
| 60    | ATOM | 5148 | 0  | HOH W 240 | 2.092           | 28.868 | 52.894 | 1.00 54.01               |
| 00    | ATOM | 5149 | 0  | HOH W 241 | 8.309           | 33.518 | 71.442 | 1.00 68.05               |
|       | ATOM | 5150 | 0  | HOH W 242 | 1.051           | 31.947 | 69.204 | 1.00 52.88               |
|       | ATOM | 5151 | 0  | HOH W 243 | 44.255          | 51.162 | 96.650 | 1.00 20.00               |
|       | MOTA | 5152 | 0  | HOH W 244 | 16.173          | 45.408 | 46.636 | 1.00 20.00               |
|       | MOTA | 5153 | 0  | HOH W 245 | 41.130          | 50.734 | 97.991 | 1.00 20.00               |

5

5

# **CLAIMS**

- 1. An isolated protein comprising at least a subsequence of the amino acid sequence of LTA<sub>4</sub> hydrolase, which exhibits a three-dimensional form essentially as disclosed in Table 9 by the parameters defining atom 1 to atom 4876, said subsequence being capable of participating in the control of the an enzymatic pathway, such as the leukotriene cascade, or a functionally equivalent part, derivative or conformational analogue thereof.
- 2. A protein according to claim 1, which comprises an enzymatically active site defined in the following table:

|   | Left wall                              | Right wall                                |
|---|----------------------------------------|-------------------------------------------|
| 1 |                                        | Lys608, Asp606, Lys605,<br>Lys354, Thr355 |
| 2 | Phe356, Phe362                         | Gln544, Asp573, Lys572, Arg568            |
| 3 | Val376                                 | Lys565, Arg540, Leu507                    |
| 4 | Ser380, Ser352, Glu348                 | Pro569                                    |
| 5 | Tyr378, Glu348                         | Arg563, Glu533, Phe536,<br>Arg537, Tyr267 |
| 6 | Tyr383, Phe314, Glu318, Glu384, Arg326 |                                           |
| 7 | Gly268, Gly269, Met270                 | His295, Asn341, Phe340                    |
| 8 | Ser288, His497                         | Glu325, Asn291                            |

- 3. A protein according to claim 2, which is an enzyme having a metallohydrolase activity capable of participating in the regulation of enzyme activities in biochemical pathways, wherein said enzymes have structures similar to the ones defined in claim 2.
- A protein according to claim 1, which comprises an enzymatically active site defined by the following amino acids: Gln136; Ala137; Tyr267; Gly268; Gly269; Met270; Glu271; Val292; His295; Glu296; His299; Glu318; Tyr378; Tyr383; Arg563; Lys565.
- A protein according to claim 1, which comprises an enzymatically active site defined by the following amino acids: Gln136; Ala137; Tyr267; Gly268; Gly269;
   Met270; Glu271; Val292; His295; Glu296; His299; Trp315; Glu318; Val322:

- Phe362; Val367; Leu369; Pro374; Asp375; Ile372; Ala377; Pro382; Tyr378; Tyr383; Arg563; Lys565.
- A compound which is substantially complementary to a protein according to any one of claims 1-5.
- 7. A compound according to claim 6, which is substantially complementary to an enzymatically active site of said protein and which is capable of specifically inhibiting said enzymatic activity.
  - 8. A compound according to claim 7, which is an inhibitor of a metallohydrolase enzyme.
  - 9. An isolated complex, which is comprised of a protein according to claim 1-5 and a complementary compound according to any one of claims 6-8, wherein the three-dimensional structure of LTA<sub>4</sub> hydrolase is essentially as disclosed in Table 9 by the parameters defining atom 1- atom 4876, or a functionally equivalent part, derivative or conformational analogue of such a complex.
  - 10. A complex according to claim 9, wherein the protein complexed with LTA<sub>4</sub> hydrolase is selected from the group which consists of bestatin, thiolamine or hydroxamic acid, or a functionally equivalent part, derivative or conformational analogue of such a complex.
  - 11. Use of the parameters of a protein according to any one of claims 1-5, a compound according to any one of claims 6-8 or a complex according to claim 9 or 10 in drug design, such as in molecular modeling, direct structure-based design and/or combinatorial chemistry.
  - 12. Use according to claim 11, wherein said parameters are selected from the parameters disclosed in Table 9 defining atom 1- atom 4876.
- 25 13. Use according to claim 11 or 12, wherein said drug is for the treatment and/or prevention of disorders involving acute and chronic inflammatory and/or allergic symtoms, said disorder being selected from the group consisting of arthritis, inflammatory bowel disease (IBD), psoriasis, chronic obstructive pulmonary disease (COPD), and acquired immune deficiency syndrome (AIDS).
- 30 14. Use according to claim 11 or 12, wherein said drug is for the treatment and/or prevention of proliferative disorders, such as neoplasias and/or cancer.

30

- 15. Use according to claim 11 or 12, wherein said drug is for the treatment and/or prevention of disorders caused by the lethal factor of *Bacillus anthracis*, e.g. anthrax.
- 16. A method for screening LTA<sub>4</sub> hydrolase analogues that mimic at least a part of the three dimensional structure of the LTA<sub>4</sub> hydrolase molecule as defined by the parameters shown in Table 9 for atom 1 to atom 4876, which comprises the steps of
- (a) producing a multiplicity of analogue structures of LTA<sub>4</sub> hydrolase and
- (b) selecting an analogue structure, wherein the three-dimensional configuration and spatial arrangement of one or more enzymatically active sites and/or binding sites of said LTA<sub>4</sub> hydrolase remain substantially preserved.
- 17. A method according to claim 16, wherein an analogue exhibiting an enzymatic activity, such as an epoxide hydrolase and/or aminopeptidase activity, is selected.
- 18. A method according to claim 16 or 17, wherein an enzymatic inhibitor complementary to the amino acids defined in any one of claims 3, 4 or 5 is screened for.
- 19. An analogue obtainable by the method according to any one of claims 16-18.
- 20. An analogue according to claim 19, which exhibits an increased catalytic activity when compared to the naturally occurring form of LTA<sub>4</sub> hydrolase, such as defined in Table 9 by parameters of atom 1 to atom 4876.
- 21. A method for screening LTA<sub>4</sub> hydrolase binding compounds complementary to a region of LTA<sub>4</sub> hydrolase, preferably an enzymatically active site thereof, which comprises the steps of
  - (a) producing a multiplicity of possible complementary structures and
  - (b) selecting a structure, wherein the three-dimensional configuration and spatial arrangement of regions involved in binding to LTA<sub>4</sub> hydrolase remain substantially preserved, which selection is based on the three-dimensional structure of LTA<sub>4</sub> hydrolase, and/or LTA<sub>4</sub> hydrolase complexed to an inhibitor thereof, in a form adopted thereof in nature, such as defined in Table 9.
  - 22. A method according to claim 21, wherein a general metallohydrolase inhibitor is selected, which is capable of inhibiting an enzyme belonging to the M1 family.

- 23. A method according to claim 21, wherein an inhibitor of the epoxide hydrolase activity and/or aminopeptidase activity of LTA<sub>4</sub> hydrolase or of LTC<sub>4</sub> synthases is selected.
- 24. A method according to claim 21, wherein a compound capable of antagonizing LTB<sub>4</sub> receptor binding of a cell is selected.
- 25. A compound obtainable by the method according to any one of claims 21-24.
- 26. A method of engineering a protein, which method comprises the steps of
- -identification of a suitable set of mutations based on the structure of LTA<sub>4</sub> hydrolase;
- -generation of a library of genes which contains the suitable sequence variations;
- -selection of clones encoding the LTA<sub>4</sub> hydrolase analogues with a desired activity function;
  - wherein said desired activity is the capability of efficiently producing an organic compound of interest.
- 27. A method according to claim 26, wherein the specified property is the suicidal mode of action of LTA<sub>4</sub> hydrolase.
- 28. A process for the purification of a protein according to any one of claims 1-3 or obtained according to claim 26 or 27, which purification includes hydroxyapatite-based chromatography and a subsequent anion exchange chromatography.
- 29. A process for the crystallisation of an LTA<sub>4</sub> hydrolase, an analogue or a derivative thereof, wherein said crystallisation is performed with the addition of a ytterbium salt as an additive, such as an ytterbium chloride.
  - 30. A protein obtained by the method according to any one of claims 27-29.
  - 31. A protein according to claim 30, which is present in an essentially pure form.
- 25 32. An isolated nucleic acid encoding a protein according to claim 30 or 31.
  - 33. A nucleic acid capable of specifically hybridising to a the nucleic acid according to claim 32.
  - 34. Use of a protein, which is a genetically modified LTA<sub>4</sub> hydrolase, according to claim 30 or 31 in the preparation of LTB<sub>4</sub> or other metabolites in the leukotriene cascade.

- 35. A protein according to any one of claims 6-8, 25, 30 or 31 for use as a medicament.
- 36. Use of a protein according to any one of claims 6-8, 25, 30 or 31 in the manufacture of a medicament for the treatment and/or prevention of acute and chronic inflammatory and/or allergic disorders, said disorder being selected from the group consisting of arthritis, inflammatory bowel disease (IBD), psoriasis and chronic obstructive pulmonary disease (COPD); neoplasias and/or cancer; or disorders caused by the lethal factor of *Bacillus anthracis*, e.g. anthrax.
- 37. Use of a protein according to any one of claims 6-8, 25, 30 or 31, in the manufacture of a medicament for the treatment and/or prevention of an anti-inflammatory and/or anti-allergenic disorder, such as bronchial asthma, allergic rhinitis, conjunctivitis etc.
- 38. Use of a protein according to any one of claims 6-8, 25, 30 or 31 in the manufacture of a medicament for the treatment and/or prevention of infection caused be human immunodeficiency virus (HIV).

Figure 1

Figure 2



Figure 3













Figure 7



10/14



Figure 8b





Figure 9b



# DECLARATION, PETITION AND POWER OF ATTORNEY FOR PATENT APPLICATION

| (Check  | cone):                                                                |                                                                                                                                                                                                                             |  |  |  |
|---------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| X       | Decla                                                                 | ration Submitted with Initial Filing                                                                                                                                                                                        |  |  |  |
|         | Decla                                                                 | ration Submitted after Initial Filing                                                                                                                                                                                       |  |  |  |
|         |                                                                       |                                                                                                                                                                                                                             |  |  |  |
| As a b  | elow n                                                                | amed inventor, I hereby declare that:                                                                                                                                                                                       |  |  |  |
| My res  | sidence                                                               | e, post office address and citizenship are as stated below next to my name,                                                                                                                                                 |  |  |  |
| origina | al, first                                                             | the original, first and sole inventor (if only one name is listed below) or an and joint inventor (if plural names are listed below) of the subject matter which do for which a patent is sought on the invention entitled: |  |  |  |
| ·<br>·  | DRU                                                                   | G DESIGN BASED ON THE STRUCTURE OF LTA4 HYDROLASE                                                                                                                                                                           |  |  |  |
| the spe | ecificat                                                              | tion of which (check one):                                                                                                                                                                                                  |  |  |  |
|         | is attached hereto.                                                   |                                                                                                                                                                                                                             |  |  |  |
| :       | OF                                                                    | 8                                                                                                                                                                                                                           |  |  |  |
| ×       | was filed on 28 February 2000 as PCT International Application Number |                                                                                                                                                                                                                             |  |  |  |
|         | PCT.                                                                  | <u>/SE00/00384</u>                                                                                                                                                                                                          |  |  |  |
|         |                                                                       | and was amended by PCT Article 19 Amendment on (if applicable),                                                                                                                                                             |  |  |  |
|         |                                                                       | and was amended by PCT Article 34 Amendment on (if applicable).                                                                                                                                                             |  |  |  |
| to pate | entabil                                                               | ge the duty to disclose to the Office all information known to me to be material ity as defined in Title 37, Code of Federal Regulations, §1.56.                                                                            |  |  |  |
| ı nerek | ov state                                                              | e that I have reviewed and understood the contents of the above-identified                                                                                                                                                  |  |  |  |

specification, including the claims, as amended by any amendment referred to above.

# PRIORITY CLAIM

| (Check one):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                       |                                                                                |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------|
| ☐ no such applic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | no such applications have been filed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                       |                                                                                |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                              |
| such application                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | such applications have been filed as follows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                       |                                                                                |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                              |
| 1) FOREIGN PRIOR<br>States Code, §119(a)-(d<br>§365(a) of any PCT inte<br>United States of America<br>application for patent or<br>before that of the applic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | or §365(b) of ernational applicational applications of the control | any foreign ap<br>cation which of<br>and have also<br>ificate or any                                                  | pplicati<br>designa<br>identif<br>PCT in                                       | on(s) for patent ted at least one of the contract ted at least one of the contract ted below, by cl                               | or invente<br>country of<br>necking th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | or's certific<br>ther than th<br>ne box, any                             | ate or<br>ne<br>foreign      |
| Prior Foreign                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                       |                                                                                |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          | ]                            |
| Application Number(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Application Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                       |                                                                                | Not Claimed                                                                                                                       | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ached<br>No                                                              |                              |
| 9900722-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (mm,dd,yy<br>26 February<br>(26.02.9                                                                                  | 1999                                                                           |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                                                        | -                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (20021)                                                                                                               |                                                                                |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          | 1                            |
| 2) PROVISIONAL PRO | ited States prov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | visional applic                                                                                                       | cation(s                                                                       | ) listed below.                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i, United S                                                              | tates                        |
| Provisional Application Number(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                       | Filing Date (mm/dd/yyyy) <b>26 February 1999 (26.02.99)</b>                    |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                              |
| 60/122,110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                       | 201 col uary 1999 (20.02.99)                                                   |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                              |
| Additional provision hereto.  3) U.S./PCT PRIORIT §120 of any United State United States of America application is not disclose provided by the first part disclose information who of Federal Regulations, and the national or PCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | es application of a, listed below sed in the prior agraph of Title ich is known to §1.56 which be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | hereby claim<br>or §365(c) of a<br>and, insofar a<br>United States<br>35, United St<br>ome to be mat<br>came availabl | the ben<br>any PCT<br>s the su<br>s or PCT<br>ates Co<br>terial to<br>le betwe | efit under Title Ω Γ international a  ibject matter of α Γ international a  ide, §112, I ackn patentability as een the filing dat | 35, United pplication each of the pplication owledge to defined in the policity of the policit | d States Con designating e claims of a in the manthe duty to n Title 37, | ode, ng the f this nner Code |
| U.S. Parent Application<br>Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PCT Parent 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                     |                                                                                | Filing Date<br>d/yyyy)                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Patent Nu<br>plicable)                                                   | mber                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                       |                                                                                |                                                                                                                                   | 1,5,11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                          |                              |
| a *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                       |                                                                                |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                              |
| ☐ Additional U.S. or P sheet attached hereto.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CT internations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | al application                                                                                                        | numbe                                                                          | rs are listed on a                                                                                                                | suppleme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ental priori                                                             | ity                          |

# The Art of the Art of

### **POWER OF ATTORNEY:**

As a named inventor, I hereby appoint the following attorneys and/or agents to prosecute this application and transact all business in the Patent and Trademark Office connected therewith.

| James E. Cockfield     | Reg. No. 19,162              | Megan E. Williams   | Reg. No. 43,270           |
|------------------------|------------------------------|---------------------|---------------------------|
| Thomas V. Smurzynski   | Reg. No. 24,798              | Jeremiah Lynch      | Reg. No. 17,425           |
| Ralph A. Loren         | Reg. No. 29,325              | David J. Rikkers    | Reg. No. 43,882           |
| Giulio A. DeConti, Jr. | Reg. No. 31,503              | Maria C. Laccotripe | Limited Recognition       |
| Ann Lamport Hammitte   | Reg. No. 34,858              | -                   | Under 37 C.F.R. § 10.9(b) |
| Elizabeth A. Hanley    | Reg. No. 33,505              | Debra J. Milasincic | Reg. No. 46,931           |
| Amy E. Mandragouras    | Reg. No <del>. 36,20</del> 7 | David R. Burns      | Reg. No. 46,590           |
| Anthony A. Laurentano  | Reg. No. 38,220              | Sean D. Detweiler   | Reg. No. 42,482           |
| Kevin J. Canning       | Reg. No. 35,470              | Peter S. Stecher    | Reg. No. 47,259           |
| Jane E. Remillard      | Reg. No. 38,872              | Cynthia L. Kanik    | Reg. No. 37,320           |
| Peter C. Lauro         | Reg. No. 32,360              | Theodore R. West    | Reg. No. 47,202           |
| DeAnn F. Smith         | Reg. No. 36,683              | Shayne Y. Huff      | Reg. No. 44,784           |
| Jeanne M. DiGiorgio    | Reg. No. 41,710              | •                   |                           |

Send Correspondence to:

# Elizabeth A. Hanley, Esq. Lahive & Cockfield, LLP, 28 State Street, Boston, Massachusetts 02109, United States of America

Direct Telephone Calls to: (name and telephone number)

### Elizabeth A. Hanley, Esq., (617) 227-7400

Wherefore I petition that letters patent be granted to me for the invention or discovery described and claimed in the attached specification and claims, and hereby subscribe my name to said specification and claims and to the foregoing declaration, power of attorney, and this petition.

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

| 2   | Full name of sole or first inventor            |
|-----|------------------------------------------------|
| 10  | HAEGGSTRÖM, Jesper Z.                          |
|     | Inventor's signature Date                      |
|     | Expert 10eggs 2001-11-05                       |
|     | Residence                                      |
|     | Valhallavägen 145, SE-115 31 Stockholm, SWEDEN |
|     | Citizenship                                    |
|     | SE                                             |
| 100 | Post Office Address (if different)             |
|     |                                                |

| NORDLUND, Pär<br>Inventor's signature | 010           | Date       |
|---------------------------------------|---------------|------------|
| 150                                   |               | 2001-11-05 |
| Residence                             | 0             | _1         |
| Gruvbacken 2, SE-116 34 Stock         | kholm, SWEDEN | EV         |
| Citizenship                           |               | 9          |
| SE                                    |               |            |

Full name of third inventor

THUNISSEN, Marjolein

Inventor's signature

Residence

Svinningevägen 26, SE-184 92 Åkersberga, SWEDEN

Citizenship

NL

Post Office Address (if different)

JC03 Rec'd PCT/PTO 2 7 AUG 2001

PCT/SE00/00384

# WO 00/50577

# SEQUENCE LISTING

|                                                  | <u>022                                   </u>         |
|--------------------------------------------------|-------------------------------------------------------|
| <110> Haeggström et al                           | ., Jesper                                             |
| <120> DRUG DESIGN                                | BASED ON THE STRUCTURE OF LTA <sub>4</sub> HYDROLASE  |
| <130> 54660                                      |                                                       |
| <140><br><141>                                   |                                                       |
| <160> 1                                          |                                                       |
| <170> PatentIn Ver. 2.1                          |                                                       |
| <210> 1<br><211> 611<br><212> PRT<br><213> HUMAN |                                                       |
| <220><br><223> AMINO ACID S<br>HYDROLASE         | EQUENCE OF HUMAN LEUKOTRIENE A4                       |
| <400> 1<br>Met Pro Giu Ile Val Asp<br>1 5        | Thr Cys Ser Leu Ala Ser Pro Ala Ser Val<br>10 15      |
| Cys Arg Thr Lys His Le                           | u His Leu Arg Cys Ser Val Asp Phe Thr Arg  5 30       |
| Arg Thr Leu Thr Gly To                           | hr Ala Ala Leu Thr Val Gln Ser Gln Glu Asp<br>45      |
| Asn Leu Arg Ser Leu V<br>50 55                   | al Leu Asp Thr Lys Asp Leu Thr Ile Glu Lys 60         |
| Val Val Ile Asn Gly Gli<br>65 70                 | n Glu Val Lys Tyr Ala Leu Gly Glu Arg Gln<br>75 80    |
| Ser Tyr Lys Gly Ser Pro<br>85                    | Met Glu Ile Ser Leu Pro Ile Ala Leu Ser<br>90 95      |
| •                                                | 1 Ile Glu Ile Ser Phe Glu Thr Ser Pro Lys 05 110      |
| Ser Ser Ala Leu Gln Tr<br>115 120                | p Leu Thr Pro Glu Gln Thr Ser Gly Lys Glu<br>125      |
| His Pro Tyr Leu Phe Se<br>130 135                | r Gln Cys Gln Ala Ile His Cys Arg Ala Ile<br>140      |
| Leu Pro Cys Gln Asp T<br>145 150                 | hr Pro Ser Val Lys Leu Thr Tyr Thr Ala Glu<br>155 160 |
| Val Ser Val Pro Lys Gh<br>165                    | a Leu Val Ala Leu Met Ser Ala Ile Arg Asp<br>170 175  |

- Gly Glu Thr Pro Asp Pro Glu Asp Pro Ser Arg Lys Ile Tyr Lys Phe 180 185 190
- lle Gln Lys Val Pro Ile Pro Cys Tyr Leu Ile Ala Leu Val Val Gly
  195 200 205
- Ala Leu Glu Ser Arg Gln Ile Gly Pro Arg Thr Leu Val Trp Ser Glu 210 215 220
- Lys Glu Gln Val Glu Lys Ser Ala Tyr Glu Phe Ser Glu Thr Glu Ser 225 230 235 240
- Met Leu Lys Ile Ala Glu Asp Leu Gly Gly Pro Tyr Val Trp Gly Gln 245 250 255
- Tyr Asp Leu Leu Val Leu Pro Pro Ser Phe Pro Tyr Gly Gly Met Glu 260 265 270
- Asn Pro Cys Leu Thr Phe Val Thr Pro Thr Leu Leu Ala Gly Asp Lys 275 280 285
- Ser Leu Ser Asn Val Ile Ala His Glu Ile Ser His Ser Trp Thr Gly 290 295 300
- Asn Leu Val Thr Asn Lys Thr Trp Asp His Phe Trp Leu Asn Glu Gly 305 310 315 320
- His Thr Val Tyr Leu Glu Arg His Ile Cys Gly Arg Leu Phe Gly Glu 325 330 335
- Lys Phe Arg His Phe Asn Ala Leu Gly Gly Trp Gly Glu Leu Gln Asn 340 345 350
- Ser Val Lys Thr Phe Gly Glu Thr His Pro Phe Thr Lys Leu Val Val 355 360 365
- Asp Leu Thr Asp Ile Asp Pro Asp Val Ala Tyr Ser Ser Val Pro Tyr 370 375 380
- Glu Lys Gly Phe Ala Leu Leu Phe Tyr Leu Glu Gln Leu Leu Gly Gly 385 390 395 400
- Pro Glu Ile Phe Leu Gly Phe Leu Lys Ala Tyr Val Glu Lys Phe Ser 405 410 415
- Tyr Lys Ser Ile Thr Thr Asp Asp Trp Lys Asp Phe Leu Tyr Ser Tyr 420 425 430
- Phe Lys Asp Lys Val Asp Val Leu Asn Gln Val Asp Trp Asn Ala Trp
  435 440 445
- Leu Tyr Ser Pro Gly Leu Pro Pro Ile Lys Pro Asn Tyr Asp Met Thr 450 455 460
- Leu Thr Asn Ala Cys lle Ala Leu Ser Gln Arg Trp lle Thr Ala Lys 465 470 475 480
- Glu Asp Asp Leu Asn Ser Phe Asn Ala Thr Asp Leu Lys Asp Leu Ser

490

495

Ser His Gln Leu Asn Glu Phe Leu Ala Gln Thr Leu Gln Arg Ala Pro
500 505 510

Leu Pro Leu Gly His Ile Lys Arg Met Gln Glu Val Tyr Asn Phe Asn 515 520 525

Ala Ile Asn Asn Ser Glu Ile Arg Phe Arg Trp Leu Arg Leu Cys Ile
530 535 540

Gln Ser Lys Trp Glu Asp Ala Ile Pro Leu Ala Leu Lys Met Ala Thr 545 550 555 560

Glu Gln Gly Arg Met Lys Phe Thr Arg Pro Leu Phe Lys Asp Leu Ala 565 570 575

Ala Phe Asp Lys Ser His Asp Gln Ala Val Arg Thr Tyr Gln Glu His 580 585 590

Lys Ala Ser Met His Pro Val Thr Ala Met Leu Val Gly Lys Asp Leu 595 600 605

Lys Val Asp 610

# PHURET ROS 20 DEC 2011

# H'S

### SEQUENCE LISTING

<110> Jesper Z. HAEGGSTRÖM et al.

<120> Drug design based on the structure of LTA4 Hydrolase

<130> 30630US02

<140> US 09/914,451

<141> 2001-08-27

<150> SE 9900722.1

<151> 1999-02-26

<150> US 60/122,110

<151> 1999-02-26

<160>1

<170> FastSEQ for Windows Version 4.0

<210>1

<211>610

<212> PRT

<213> homo sapiens

<400> 1

Pro Glu Ile Val Asp Thr Cys Ser Leu Ala Ser Pro Ala Ser Val Cys

Arg Thr Lys His Leu His Leu Arg Cys Ser Val Asp Phe Thr Arg Arg

Thr Leu Thr Gly Thr Ala Ala Leu Thr Val Gln Ser Gln Glu Asp Asn 35 40 45

Leu Arg Ser Leu Val Leu Asp Thr Lys Asp Leu Thr Ile Glu Lys Val 50 55 60

Val Ile Asn Gly Gln Glu Val Lys Tyr Ala Leu Gly Glu Arg Gln Ser 65 70 75 80

Tyr Lys Gly Ser Pro Met Glu Ile Ser Leu Pro Ile Ala Leu Ser Lys 85 90 95

Asn Gln Glu Ile Val Ile Glu Ile Ser Phe Glu Thr Ser Pro Lys Ser 100 105 110

Ser Ala Leu Gln Trp Leu Thr Pro Glu Gln Thr Ser Gly Lys Glu His 115 120 125

Pro Tyr Leu Phe Ser Gln Cys Gln Ala Ile His Cys Arg Ala Ile Leu 130 135 140

Pro Cys Gln Asp Thr Pro Ser Val Lys Leu Thr Tyr Thr Ala Glu Val 145 150 155 160

Ser Val Pro Lys Glu Leu Val Ala Leu Met Ser Ala Ile Arg Asp Gly 165 170 175

Glu Thr Pro Asp Pro Glu Asp Pro Ser Arg Lys Ile Tyr Lys Phe Ile 180 185 190

Gln Lys Val Pro Ile Pro Cys Tyr Leu Ile Ala Leu Val Val Gly Ala 195 200 205 Leu Glu Ser Arg Gln Ile Gly Pro Arg Thr Leu Val Trp Ser Glu Lys 210 215 220

Glu Gln Val Glu Lys Ser Ala Tyr Glu Phe Ser Glu Thr Glu Ser Met 225 230 235 240

Leu Lys Ile Ala Glu Asp Leu Gly Gly Pro Tyr Val Trp Gly Gln Tyr 245 250 255

Asp Leu Leu Val Leu Pro Pro Ser Phe Pro Tyr Gly Gly Met Glu Asn 260 265 270

Pro Cys Leu Thr Phe Val Thr Pro Thr Leu Leu Ala Gly Asp Lys Ser 275 280 285

Leu Ser Asn Val Ile Ala His Glu Ile Ser His Ser Trp Thr Gly Asn 290 295 300

Leu Val Thr Asn Lys Thr Trp Asp His Phe Trp Leu Asn Glu Gly His 305 310 315 320

Thr Val Tyr Leu Glu Arg His Ile Cys Gly Arg Leu Phe Gly Glu Lys 325 330 335

Phe Arg His Phe Asn Ala Leu Gly Gly Trp Gly Glu Leu Gln Asn Ser 340 345 350

Val Lys Thr Phe Gly Glu Thr His Pro Phe Thr Lys Leu Val Val Asp 355 360 365

Leu Thr Asp Ile Asp Pro Asp Val Ala Tyr Ser Ser Val Pro Tyr Glu 370 375 380

Lys Gly Phe Ala Leu Leu Phe Tyr Leu Glu Gln Leu Leu Gly Gly Pro 385 390 395 400

Glu Ile Phe Leu Gly Phe Leu Lys Ala Tyr Val Glu Lys Phe Ser Tyr 405 410 415

Lys Ser Ile Thr Thr Asp Asp Trp Lys Asp Phe Leu Tyr Ser Tyr Phe 420 425 430

Lys Asp Lys Val Asp Val Leu Asn Gln Val Asp Trp Asn Ala Trp Leu 435 440 445

Tyr Ser Pro Gly Leu Pro Pro Ile Lys Pro Asn Tyr Asp Met Thr Leu 450 455 460

Thr Asn Ala Cys Ile Ala Leu Ser Gln Arg Trp Ile Thr Ala Lys Glu 465 470 475 480

Asp Asp Leu Asn Ser Phe Asn Ala Thr Asp Leu Lys Asp Leu Ser Ser 485 490 495

His Gln Leu Asn Glu Phe Leu Ala Gln Thr Leu Gln Arg Ala Pro Leu 500 505 510

Pro Leu Gly His Ile Lys Arg Met Gln Glu Val Tyr Asn Phe Asn Ala
515
520
525

Ile Asn Asn Ser Glu Ile Arg Phe Arg Trp Leu Arg Leu Cys Ile Gln 530 535 540

Ser Lys Trp Glu Asp Ala Ile Pro Leu Ala Leu Lys Met Ala Thr Glu 545 550 555 560

Gln Gly Arg Met Lys Phe Thr Arg Pro Leu Phe Lys Asp Leu Ala Ala 565 570 575

Phe Asp Lys Ser His Asp Gln Ala Val Arg Thr Tyr Gln Glu His Lys 580 585 590

Ala Ser Met His Pro Val Thr Ala Met Leu Val Gly Lys Asp Leu Lys 595 600 605

Val Asp