	Reg. No.			
	B.Tech. DEGREE EXAMINATION, NOVEMBER 2023 Fifth Semester			
	18MAB304T – PROBABILITY AND APPLIED STATISTICS (For the candidates admitted from the academic year 2018-2019 to 2021-2022)	=		
hal	rt - A should be answered in OMR sheet within first 40 minutes and OMR sheet should invigilator at the end of 40 th minute. rt - B & Part - C should be answered in answer booklet.	uld be h	ande	d over
3 hour	s	Max. N	/lark	s: 100
	$PART - A (20 \times 1 = 20 Marks)$	Marks	BL	со
. The	Answer ALL Questions probability mass function of X is $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	3	1
(A)	n the mean (B) 6/5 (D) 2			
(A)	the probability density function of X is $f(x) = kx^2$, $0 < x < 3$, then k= (B) $1/2$ (D) $1/9$	2	5	1
(A)	X is a random variable which can take only non negative values, then $E(X^{2}) = [E(X)]^{2} \qquad (B) E(X^{2}) \ge [E(X)]^{2}$ $E(X^{2}) \le [E(X)]^{2} \qquad (D) E(X^{2})$	1	1	1
. Th	e first two moments about the origin are 2, 5 respectively, then the variance the random variable is (B) 3	e ¹	5	1
TC	he standard deviction of the Deigner distribution is 2 then the profic	1	2	2

- (A) 4
- (C) 2

5. If the standard deviation of the Poisson distribution is 2 then the pmf is

(A) $e^{-2}2^{x}$

Note:

(i)

(ii)

Time: 3 hours

x!

6. The mean and variance of a binomial distribution are 4 and 4/3 respectively. Find $P(X \ge 1)$ of n = 6.

725 (A) 729

(B) 726 729

(C) 727 729 (D) 728

7. If X is uniformly distributed over (0,3) then the mean is

(A) 3/2

(B) 2/3

(D) 3 -

8. If the parameter of the exponential distribution is 2, then the variance of the distribution is

(A) 1/4

(B) 1/2

2 (C)

(D) 4

9.	Wha	t is the main objective of estimation	n the	ory?	1	1	3
	(A)			To minimize the mean squared			
	` ′	parameter		error of an estimator			
	(C)	To maximize the sample size	(D)				
10	` ,	•	` '	•	1	1	3
10.		ch of the following is not a point es			1	1	5
	(A)	•	` '	Sample variance			
	(C)	Maximum likelihood estimation	(D)	Confidence interval			
11.	Whi	ch of the following is a method for	const	ructing confidence intervals?	1	1	3
	(A)	Maximum likelihood estimation	(B)	Bootstrap resampling			
	(C)	Hypothesis testing	(D)	Regression analysis			
12.	Α	is a subset of a			1	1	3
		Sample, population	(B)	Population, sample			
	(C)		, ,	Parameter, statistic			
	` .		` ′				
13.		e critical region is evenly distribute		_	1	1	4
	(A)		(B)	One tailed			
	(C)	Three tailed	(D)	Zero tailed	٠.		
1 /	Tr.	TT			1	1	4
14.		e II errors is also called as	(T)	G . 1	1	1	-
·		Producer risk	(B)				
	(C)	Labour risk	(D)	Management risk			
15	The	value set for α is known	2		1	2	4
15.			(D)	The level of acceptance			
		The level of rejection	(B)	-			
	(C)	The level of significance	(D)	Error			
16	If we	e apply t-test for difference between	ı mea	ns then the degree of freedom is	1	1	4
10.		$v = n_1 + n_2 - 1$		$v = n_1 + n_2 - 2$			
				. 2			
	(C)	$v = n_1 + n_2 - 3$	(D)	$v = n_1 + n_2 - 4$			
17	If b	$a_x < 1$, then b_{xy} is			1	3	5
17.	-	•	~				
		Same sign		Opposite sign			
	(C)	Either same or opposite sign	(D)	Nothing can be decided			
10	Ina	one-way ANOVA, what is the null	hima	thesis?	1	4	5
10.	(A)	•		•			
	(A)	-	(D)	There is a significant difference			
	(())	the means	(D)	among the group means			
	(C)	The sample size is too small to	(D)	The data is normally distributed			
		draw conclusions					
10	In ci	mula linear regression what is	tha n	urpose of the regression equation	1	2	5
17.	_		me p	urpose of the regression equation			
	(y =	(mx+b)?					
	(A)	To calculate the correlation	(B)	To predict the dependent variable			
				(y) based on the independent			
				variable (x)			
	(C)	To calculate the standard error	(D)	• •			
	= '	of the residuals	` ,	independent variable			
20.	The	regression co-efficients are b ₂ and 1	b ₁ the	-	1	1	5
	(A)	b ₁ /	(B)	b_2			
	. ,	b_{2}	(-)	b_1			
	(C)	$h \cdot h$	(D)	1 1 1			
	(C)	$b_1 \cdot b_2$	(D)	$\pm \sqrt{D_1 \cdot D_2}$			

Marks BL CO

PART - B (5 × 4 = 20 Marks) Answer ANY FIVE Questions

- 21. Two persons A and B appear in an interview for two vacancies for the same post. The probability of a A's selection is 1/7 and that of B's selection is 1/5. What is the probability that: (i) both of them will be selected (ii) none of them will be selected?
- 22. If X has the probability distribution

x	-1	0	1	2
p(x)	0.3	0.1	0.4	0.2

Find (i) E(2X+1) (ii) V(2X+1)

- 23. Below you are given the values obtained from a random sample of observations taken from an infinite population 32, 34, 35, 39
 - (i) Find a point estimator μ , is this unbiased estimator of μ ? Explain
 - (ii) Find a point estimator for σ^{2} , explain.
- 24. If a random variable 'X' has the m.g.f $Mx(t) = \frac{3}{3-t}$. Find the S.D 'x'
- 25. If the probability that an applicant for driving license will pass the round test on any given trail is 0.8, what is the probability he/ she pass the test (i) on 4th trail (ii) less than 4th table.
- 26. A sample of 100 students is taken from a large population. The mean height of the students in this sample is 160cm. can it be reasonably regarded that in the population, the mean height is 165 cm, and the S.D is 10cm.
- 27. In an art competition, two judges accorded the following ranks to the 10 ⁴ participants. Find the correlation using spearman's rank correlation.

Judge X	1	2	3	4	5	6	7	8	9	10
Judge Y	6	2	9	7	1	4	8	3	10	5

$PART - C (5 \times 12 = 60 Marks)$

Answer ALL Questions

- 28. a.i. The chances of x, y and z becoming managers are 4:3:2. The probability that bonus scheme will be introduced if x, y and z become manager 0.3 and 0.5 and 0.8 respectively.(I) what is the probability that the bonus scheme would be introduced? (II) if it is introduced. What will be the probability that will be Z,
 - ii. A random variable X has the following probability distribution

X:	-2	-1	0	1	2	3
P(X)	0.1	K	0.2	2K	0.3	3K

- (I) Find K
- (II) $P(-2 \le X \le 2)$
- (III) Mean and variance

(OR)

b. The density function of a continuous random variable X is given by

 $f(x) \begin{cases} ax & ,0 \le x \le 1 \\ a & ,1 \le x \le 2 \\ 3a - ax & ,2 \le x \le 3 \\ 0 & ,otherwise \end{cases}$

- (i) Find the value of 'a'. (ii) Find the C.D.F of X.
- 29. a. Fit a binomial distribution for the following:

X	0	1	2	3	4	5	6	7	8
f	2	6	24	63	64	50	36	10	1

25NA518MAB304T

12

12

Marks

- b. In a normal distribution, 7% of the items are under 35 and 89% are under 63. What are the mean and SD of the distribution?
- 12 30. a. If X_1 , X_2 are the two random observations drawn from a population with mean θ and variance σ^2 verify whether the following statistic (estimator) are unbiased and consistent for θ .
 - $t_1 = \frac{3x_1 + x_2}{4}$ $t_2 = \frac{2x_1 + 3x_2}{10}$

(OR)

b. Find the most likely estimator of

 $f(x,\theta) = \frac{1}{\theta}e^{-\frac{x}{\theta}}x \ge 0, \theta \ge 0$

31. a. The nicotine contents in milligrams in tow samples of tobacco were found to be as follows

Sample A	24	27	26	21	25	-
Sample B	27	30	28	31	32	36

Can it be said that two samples come from normal populations.

(OR)

b. Given the following contingency table for hair colour and eye colour. Find the value of chi square. Is there good association between the two.

	Hair colour								
		Fair	Brown	Black	Total				
	Blue	15	5	20	40				
Eye colour	Grey	20	10	20	50				
	Brown	25	15	20	60				
	Total	60	30	60	150				

32. a. The following data relates to the ages of husbands and wives:

THE IOI	TOW	ing uc	na icia	ics to a	ic ages	OI IIUS	vanus a	HIG WIY	Co.		1-5
Age	of	26	29	31	33	_ 35	34	38	39	41	45
husbar	nds										
Age wives	of	22	26	27	31	38	19	29	36	35	46

- Find the regression equations. (i)
- Find the age of the husband if the wife's age is 30. (ii)
- Find the wife's age when the husband's age is 32. (iii)

(OR)

b. A tea company appoints four salesmen A, B, C and D and observes their sales in three seasons-summer, winter and monsoon. The out sales in 1000 of units given helow

given octow.				
Seasons	A	В	C	D
Summer	38	40	41	39
Winter	45	42	49	36
Monsoon	40	38	42.	42

Test whether there is a significant difference among seasons and among salesmen using ANOVA.

3

12

12

1

2