AMENDMENTS TO THE CLAIMS

1. (Currently Amended) A light emitting material for an organic electroluminescent device comprising an asymmetric anthracene derivative represented by the following general formula (1):

wherein, A¹ and A² each independently represents a substituted or unsubstituted condensed aromatic hydrocarbon ring group selected from 2-naphthyl group, 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group, 1-naphthacenyl group, 2-naphthacenyl group, 2-naphthacenyl group, 3-methyl-2-naphthyl group, and 4-methyl-1-naphthyl group;

Ar¹ and Ar² each independently represents a hydrogen atom, a substituted or unsubstituted aromatic hydrocarbon ring group having ring carbon atoms of 6 to 50;

R¹ to R⁸ each independently represents a hydrogen atom, a substituted or unsubstituted aromatic hydrocarbon ring group having ring carbon atoms of 6 to 50, a substituted or unsubstituted aromatic hetero ring group having ring atoms of 5 to 50, a substituted or unsubstituted alkyl group having carbon atoms of 1 to 50, a substituted or unsubstituted cycloalkyl group having carbon atoms of 3 to 50, a substituted or unsubstituted alkoxy group having carbon atoms of 1 to 50, a substituted aralkyl group

having carbon atoms of 6 to 50, a substituted or unsubstituted aryloxy group having carbon atoms of 5 to 50, a substituted or unsubstituted arylthio group having carbon atoms of 5 to 50, a substituted or unsubstituted alkoxycarbonyl group having carbon atoms of 1 to 50, a substituted or unsubstituted silyl group, a carboxyl group, a halogen atom, a cyano group, a nitro group or a hydroxyl group;

wherein when A¹ and A² each independently represents a substituted or unsubstituted condensed aromatic hydrocarbon ring group selected from 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group, 1-naphthacenyl group, 2-naphthacenyl group, 2-naphthacenyl group, 3-methyl-2-naphthyl group, and 4-methyl-1-naphthyl group, R⁹ to R¹⁰ each independently represents a hydrogen atom, a substituted or unsubstituted aromatic hydrocarbon ring group having ring carbon atoms of 6 to 50, a substituted or unsubstituted alkyl group having carbon atoms of 1 to 50, a substituted or unsubstituted cycloalkyl group having carbon atoms of 3 to 50, a substituted aralkyl group having carbon atoms of 6 to 50, a substituted or unsubstituted aralkyl group having carbon atoms of 5 to 50, a substituted or unsubstituted or unsubstituted or unsubstituted aryloxy group having carbon atoms of 5 to 50, a substituted or unsubstituted aryloxy group having carbon atoms of 5 to 50, a substituted or unsubstituted alkoxycarbonyl group having carbon atoms of 1 to 50, a substituted or unsubstituted alkoxycarbonyl group having carbon atoms of 1 to 50, a substituted or unsubstituted alkoxycarbonyl group having carbon atoms of 1 to 50, a substituted or unsubstituted silyl group, a carboxyl group, a halogen atom, a cyano group, a nitro group or a hydroxyl group, and none of R⁹ and R¹⁰ is alkenyl group;

wherein, A¹ and A² each independently represents a substituted or unsubstituted condensed 2-naphthyl group, R⁹ to R¹⁰ each independently represents a hydrogen atom, a substituted or unsubstituted aromatic hydrocarbon ring group having ring carbon atoms of 6 to 50, a substituted or unsubstituted cycloalkyl group having carbon atoms of 3 to 50, a substituted or unsubstituted alkoxy group having carbon atoms of 1 to 50, a substituted or

unsubstituted aralkyl group having carbon atoms of 6 to 50, a substituted or unsubstituted aryloxy group having carbon atoms of 5 to 50, a substituted or unsubstituted arylthio group having carbon atoms of 5 to 50, a substituted or unsubstituted alkoxycarbonyl group having carbon atoms of 1 to 50, a substituted or unsubstituted silyl group, a carboxyl group, a halogen atom, a cyano group, a nitro group or a hydroxyl group, and none of R⁹ and R¹⁰ is alkenyl group:

 Ar^1 , Ar^2 , R^9 and R^{10} each are optionally a plural number, and two neighboring groups thereof optionally form a saturated or unsaturated ring structure;

wherein the substituent groups at the 9^{th} and 10^{th} positions of the anthracene at the core in the general formula (1) are different from each other.

- 2. (Currently Amended) The light emitting material for the organic electroluminescent device according to Claim 1, wherein, in the general formula (1), A¹ and A² each independently represents any one of 2-naphthyl group, 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group, and 3-methyl-2-naphthyl group.
- 3. (Currently Amended) The light emitting material for the organic electroluminescent device according to Claim 1, wherein, in the general formula (1), A^1 and A^2 each independently represents 2-naphthyl group or 9-phenanthryl group.
- 4. (Currently Amended) The light emitting material for the organic electroluminescent device according to Claim 2, wherein, in the general formula (1), Ar¹ and Ar² each independently represents any one of a hydrogen atom, phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-phenanthryl group, 2-

phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group, 1-naphthacenyl group, 2-naphthacenyl group, 9-naphthacenyl group, 1-pyrenyl group, 2-pyrenyl group, 4-pyrenyl group, 2-biphenylyl group, 3-biphenylyl group, 4-biphenylyl group, p-terphenyl-4-yl group, p-terphenyl-3-yl group, p-terphenyl-2-yl group, m-terphenyl-4-yl group, m-terphenyl-3-yl group, m-terphenyl-2-yl group, o-tolyl group, m-tolyl group, p-tolyl group, p-t-butylphenyl group, p-(2-phenylpropyl) phenyl group, 3-methyl-2-naphthyl group, 4-methyl-1-naphthyl group, 4-methyl-1-anthryl group, 4'-methylbiphenylyl group and 4"-t-butyl-p-terphenyl-4-yl group.

- 5. (Currently Amended) The light emitting material for the organic electroluminescent device according to Claim 13, wherein, in the general formula (1), Ar¹ and Ar² each independently represents any one of a hydrogen atom, 1-naphtyl group, 2-naphtyl group and 9-phenanthryl group.
- 6. (Previously Presented) The light emitting material for the organic electroluminescent device according to Claim 1, wherein, the asymmetric anthracene derivative comprises a condensed aromatic hydrocarbon ring group selected from 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group, 1-naphthacenyl group, 2-naphthacenyl group, 9-naphthacenyl group, 1-pyrenyl group, 2-pyrenyl group, 4-pyrenyl group, 3-methyl-2-naphthyl group and 4-methyl-1-naphthyl group.
- 7. (Withdrawn) An organic electroluminescent device comprising at least one organic thin film layer, which comprises at least a light emitting layer, which interposed between a pair of electrode comprising an anode and a cathode, wherein a light emitting zone comprises

Application Serial No. 10/583,554

Response to Office Action mailed June 17, 2010

the light emitting material for the organic electroluminescent device according to Claim 1 singly or as a component of a mixture thereof.

- 8. (Withdrawn) The organic electroluminescent device according to Claim 7, wherein, the light emitting layer comprises the light emitting material for the organic electroluminescent device singly or as a component of a mixture thereof.
- 9. (Withdrawn) The organic electroluminescent device according to Claim 7, wherein, the organic thin film layer comprises the light emitting material for the organic electroluminescent device.
- 10. (Withdrawn) The organic electroluminescent device according to Claim 7, wherein, the light emitting layer contains additionally an arylamine compound.
- 11. (Withdrawn) The organic electroluminescent device according to Claim 7, wherein, the light emitting layer contains additionally a styrylamine compound.
- 12. (Currently Amended) A material for an organic electroluminescence device comprises an asymmetric anthracene derivative represented by the following general formula (1'):

wherein, A¹ and A² each independently represents a substituted or unsubstituted condensed aromatic hydrocarbon ring group selected from 2-naphthyl group, 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group, 1-naphthacenyl group, 2-naphthacenyl group, 9-naphthacenyl group, 1-pyrenyl group, 2-pyrenyl group, 4-pyrenyl group, 3-methyl-2-naphthyl group and 4-methyl-1-naphthyl group, and

at least one of A¹, and A², represents a substituted or unsubstituted condensed aromatic hydrocarbon ring group selected from 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group, 1-naphthacenyl group, 2-naphthacenyl group, 9-naphthacenyl group, 1-pyrenyl group, 2-pyrenyl group, and 4-pyrenyl group;

Ar¹ and Ar² each independently represents a hydrogen atom, or a substituted or unsubstituted aromatic hydrocarbon ring having ring carbon atoms of 6 to 50;

R¹ to R⁸ each independently represents a hydrogen atom, a substituted or unsubstituted aromatic hydrocarbon ring group having ring carbon atoms of 6 to 50, a substituted or unsubstituted aromatic hetero ring group having ring atoms of 5 to 50, a substituted or unsubstituted alkyl group having carbon atoms of 1 to 50, a substituted or

unsubstituted cycloalkyl group having carbon atoms of 3 to 50, a substituted or unsubstituted alkoxy group having carbon atoms of 1 to 50, a substituted or unsubstituted aralkyl group having carbon atoms of 6 to 50, a substituted or unsubstituted aryloxy group having carbon atoms of 5 to 50, a substituted or unsubstituted arylthio group having carbon atoms of 5 to 50, a substituted or unsubstituted alkoxycarbonyl group having carbon atoms of 1 to 50, a substituted or unsubstituted alkoxycarbonyl group having carbon atoms of 1 to 50, a substituted or unsubstituted silyl group, a carboxyl group, a halogen atom, a cyano group, a nitro group or a hydroxyl group;

R⁹ to R¹⁰ each independently represents a hydrogen atom, a substituted or unsubstituted aromatic hydrocarbon ring group having ring carbon atoms of 6 to 50, a substituted or unsubstituted alkyl group having carbon atoms of 1 to 50, a substituted or unsubstituted cycloalkyl group having carbon atoms of 3 to 50, a substituted or unsubstituted alkoxy group having carbon atoms of 1 to 50, a substituted or unsubstituted aralkyl group having carbon atoms of 6 to 50, a substituted or unsubstituted aryloxy group having carbon atoms of 5 to 50, a substituted or unsubstituted arylthio group having carbon atoms of 5 to 50, a substituted or unsubstituted arylthio group having carbon atoms of 1 to 50, a substituted or unsubstituted alkoxycarbonyl group having carbon atoms of 1 to 50, a substituted or unsubstituted silyl group, a carboxyl group, a halogen atom, a cyano group, a nitro group or a hydroxyl group, and none of R⁹ and R¹⁰ is alkenyl group;

Ar¹, Ar², R⁹ and R¹⁰ each are optionally a plural number, and two neighboring groups thereof are optionally a saturated or unsaturated ring structure;

wherein the substituent groups at the 9th and 10th positions of the anthracene at the core in the general formula (1) are different from each other.

13. (Currently Amended) The light emitting material for the organic electroluminescent device according to Claim 1, wherein, in the general formula (1), Arl and

Ar2 Ar^1 and Ar^2 each independently represents hydrogen atom, or an aromatic hydrocarbon ring having ring carbon atoms of 6 to 16.

14. (Previously Presented) A light emitting material for an organic electroluminescent device comprising an asymmetric anthracene derivative selected from the compounds AN6, AN9, AN10, AN11, AN12, AN13, AN14, AN15, AN16, AN23, AN24, AN28, AN29, AN31, AN38, AN40, AN41, AN42 and AN46: