University of Wisconsin-Madison Department of Economics

Econ 703 Fall 2001 Prof. R. Deneckere

Final Exam

- 1. Let $f: \mathbb{R}^{\perp} \mathbb{R}^2$ be of class C^3 in a neighborhood of a point \mathbf{a} in its domain. Suppose the gradient of f is $\mathbf{0}$ at \mathbf{a} , and that not all second order derivatives of f are 0 at \mathbf{a} . Show that one can then determine from the Taylor polynomial (of degree 2) of f at \mathbf{a} whether f has a local maximum, or a local minimum, or neither, at the point \mathbf{a} .
- 2. Let $f: \mathbb{R}^{\perp} \mathbb{R}^2$ and $g: \mathbb{R}^{\perp} \mathbb{R}^2$ be given by $f(x,y) = x^2 + y^2$ and $g(x,y) = (x-1)^3 y^2$. Find the minimum of f(x,y) subject to $g(x,y) \ge 0$.
- 3. Can the intersection of the surfaces $e^y xyz = e$ and $x^2 + y^2 z = 2$ be written in terms of differentiable functions $x^*(z)$ and $y^*(z)$ near (0,1,-1)? Defend your answer.
- 4. Consider the nonlinear program $\min f(x) = \sum_{j=1}^{n} \frac{c_j}{x_j}$, subject to $\sum_{j=1}^{n} a_j x_j = b$ and
 - $x \ge 0$, where a_j , b_j , and c_j are strictly positive constants. Provide an economic interpretation of this problem, and solve it.