## LAB 7.5 CPE213 Data Models

## 62070501064 อรวิภา คูเจริญไพศาล

## Task 1

เมื่อเอามาพลอตกราฟและใช้ geom\_smooth ในการพลอตแนวโน้มของค่า pi ที่ได้จากการเปลี่ยนจำนวนรอบใน การประมาณค่า จะเห็นได้ดังรูป



จะได้ว่า ยิ่งเพิ่มจำนวนรอบในการประมาณค่า จะทำให้มี error น้อยลง ซึ่งจะสังเกตได้จากแนวโน้มของเส้นสีน้ำเงิน (geom\_smooth) และเส้นสีดำ (เส้นที่มีความชันเป็น -0.5)

Jimmy prints a neighborhood newspaper with 10 subscribers. He also sells it to whoever comes by from his front lawn on Friday afternoons. His mother has kept track of his demand (including requests made after he had sold out) for the past 100 weeks, and observed the pattern shown below.

Task 2

| Papers Demanded | Number of weeks | Probability | Cumulative Probability |  |
|-----------------|-----------------|-------------|------------------------|--|
| 13              | 1               | 0.01        | 0.01                   |  |
| 14              | 2               | 0.02        | 0.03                   |  |
| 15              | 4               | 0.04        | 0.07                   |  |
| 16              | 9               | 0.09        | 0.16                   |  |
| 17              | 10              | 0.10        | 0.26                   |  |
| 18              | 15              | 0.15        | 0.41                   |  |
| 19              | 16              | 0.16        | 0.57                   |  |
| 20              | 15              | 0.15        | 0.72                   |  |
| 21              | 12              | 0.12        | 0.84                   |  |
| 22              | 9               | 0.09        | 0.93                   |  |
| 23              | 4               | 0.04        | 0.97                   |  |
| 24              | 2               | 0.02        | 0.99                   |  |
| 25              | 1               | 0.01        | 1.00                   |  |
| 26              | 0               | 0.00        | 1.00                   |  |
| Total           | 100             | 1           |                        |  |

The papers cost 30 cents to print and Jimmy sells them for 50 cents. Assume that he prints 20 copies a week. Mom makes him throw away unsold copies. Simulate his sales for the next 12 weeks and determine his earnings.

| Week  | Random | Number   | Number | Number | Revenue | Cost | Profit |
|-------|--------|----------|--------|--------|---------|------|--------|
|       | number | Demanded | Sold   | Thrown |         |      |        |
| 1     | 0.4175 | 19       | 19     | 1      | 950     | 600  | 350    |
| 2     | 0.8434 | 22       | 20     | 0      | 1000    | 600  | 400    |
| 3     | 0.5227 | 19       | 19     | 1      | 950     | 600  | 350    |
| 4     | 0.1624 | 17       | 17     | 3      | 850     | 600  | 250    |
| 5     | 0.0149 | 14       | 14     | 6      | 700     | 600  | 100    |
| 6     | 0.0067 | 13       | 13     | 7      | 650     | 600  | 50     |
| 7     | 0.0957 | 16       | 16     | 4      | 800     | 600  | 200    |
| 8     | 0.6233 | 20       | 20     | 0      | 1000    | 600  | 400    |
| 9     | 0.9990 | 25       | 20     | 0      | 1000    | 600  | 400    |
| 10    | 0.0391 | 15       | 15     | 5      | 750     | 600  | 150    |
| 11    | 0.2901 | 18       | 18     | 2      | 900     | 600  | 300    |
| 12    | 0.0779 | 16       | 16     | 4      | 800     | 600  | 200    |
| Total | _      |          |        |        |         |      | 3150   |

Should Jimmy increase his paper copies to 30? Would it increase the earning? Why?

| Week  | Random | Number   | Number | Number | Revenue | Cost | Profit |
|-------|--------|----------|--------|--------|---------|------|--------|
|       | number | Demanded | Sold   | Thrown |         |      |        |
| 1     | 0.4175 | 19       | 19     | 11     | 950     | 900  | 50     |
| 2     | 0.8434 | 22       | 22     | 8      | 1100    | 900  | 200    |
| 3     | 0.5227 | 19       | 19     | 11     | 950     | 900  | 50     |
| 4     | 0.1624 | 17       | 17     | 13     | 850     | 900  | -50    |
| 5     | 0.0149 | 14       | 14     | 16     | 700     | 900  | -200   |
| 6     | 0.0067 | 13       | 13     | 17     | 650     | 900  | -250   |
| 7     | 0.0957 | 16       | 16     | 14     | 800     | 900  | -100   |
| 8     | 0.6233 | 20       | 20     | 10     | 1000    | 900  | 100    |
| 9     | 0.9990 | 25       | 25     | 5      | 1250    | 900  | 350    |
| 10    | 0.0391 | 15       | 15     | 15     | 750     | 900  | -150   |
| 11    | 0.2901 | 18       | 18     | 12     | 900     | 900  | 0      |
| 12    | 0.0779 | 16       | 16     | 14     | 800     | 900  | -100   |
| Total |        |          |        |        |         |      | -100   |

Answer: จากตารางด้านบนจะเห็นได้ว่าเมื่อเพิ่มจำนวนเป็น 30 ฉบับ และคำนวณกำไรที่ได้รวมทั้ง 12 สัปดาห์แล้ว ปริมาณกำไรรวมที่จิมมี่จะได้ จะกลายเป็นติดลบหรือก็คือขาดทุนนั่นเอง ดังนั้นจิมมี่ไม่ควรเพิ่มเป็น 30 ฉบับ 1. Analyze the distribution of daily demand of each order.

Code

```
# 1.
data %>%
    select(Order.ID, Order.Date) %>%
    distinct() %>%
    group_by(Order.Date) %>%
    summarise(n = n()) %>%
    gpplot() + geom_histogram(aes(x = n), binwidth = 1, fill = 'orange') +
    xlab('Number of Daily Order') + ylab('Number of dat that has x order')
```

Graph



จากกราฟ จะเห็นได้ว่ากราฟเป็นลักษณะปัวส์ซอง หรือก็คือมีค่าที่สูงในช่วงแรกนั่นเอง

2. Analyze the time between order of different product category.

```
Code
```

```
# 2.
data %>%
  mutate(ProcessTime = as.Date(Ship.Date) - as.Date(Order.Date)) %>%
  group_by(Category) %>%|
  ggplot(aes(x = ProcessTime, fill = Category)) + geom_bar(position = 'dodge')
```

Graph



จากกราฟแสดงให้เห็นว่า ในภาพรวมแล้วจำนวนวันในการจัดการ (ระยะเวลาตั้งแต่สั่งสินค้าจนถึงวันส่งสินค้า) ของสินค้า แต่ละประเภทจะเท่า ๆ กัน โดยระยะเวลาสูงสุดคือ 4-5 วัน ต่างกันเพียงจำนวนสินค้าที่ขายได้ในแต่ละประเภทเท่านั้น 3. Analyze the distribution of order processing time of each order.

```
# 3.
data %>%
  mutate(ProcessTime = as.Date(Ship.Date) - as.Date(Order.Date)) %>%
  ggplot(aes(x = ProcessTime, fill = 'red')) + geom_density()
```



จากกราฟ จะแสดงให้เห็นว่าการกระจายตัวของจำนวนวันในการจัดการของสินค้า (ระยะเวลาตั้งแต่สั่งสินค้าจนถึงวันส่ง สินค้า) ส่วนใหญ่จะกระจุกตัวอยู่ที่ประมาณ 4 – 5 วัน

4. Simulate the superstore processing time.

Code

```
# 4.
data %>%
  mutate(ProcessTime = as.Date(Ship.Date) - as.Date(Order.Date)) %>%
  select(ProcessTime) -> OrderTime
# Sampling
  quantile(OrderTime$ProcessTime, runif(1000)) -> y
  sampling <- c()
sampling <- append(sampling, as.numeric(y))
ggplot() + geom_histogram(aes(x = sampling), binwidth = 1)
# raw data
ggplot() + geom_histogram(aes(x = OrderTime$ProcessTime), binwidth = 1)</pre>
```

ข้อมูลเดิม



## Number of Run = 10



Number of Run = 1000



จากกราฟทั้ง 3 ภาพ จะเห็นได้ว่าเมื่อเทียบกับข้อมูลเดิม หากเพิ่ม Number of run หรือจำนวนการสุ่มข้อมูลให้ มากขึ้น กราฟจะมีลักษณะใกล้เคียงกับกราฟข้อมูลเดิมมากขึ้น ซึ่งก็คือจะมีระยะเวลาตั้งแต่สั่งสินค้าจนถึงวันที่ส่งสินค้าที่ กระจายตัวตั้งแต่ 0-8 วัน โดยข้อมูลส่วนใหญ่จะกระจุกตัวอยู่ที่ประมาณ 4-6 วันนั่นเอง

5. Is there relationship between order size and average processing time?
ปริมาณสินค้าในแต่ละออเดอร์จะมีความสัมพันธ์กับระยะเวลาตั้งแต่วันที่สั่งออเดอร์จนถึงวันที่ส่งสินค้า โดยที่หาก ปริมาณสินค้ามากขึ้นจะส่งผลให้มีระยะเวลาในการจัดการที่เพิ่มขึ้น 6. What would happen, if every Friday, the number of orders is boosted by 50%?

สีฟ้า = วันศุกร์ที่เพิ่มยอดขาย 50%, สีน้ำเงิน = วันศุกร์เดิม จากกราฟ จะแสดงให้เห็นว่าถ้าหากมีการเพิ่มออเดอร์ในวันศุกร์เป็น 50 % จะมียอดขายเพิ่มขึ้นกว่าเดิมเกือบ 2 เท่า