

LOGIKA FUZZY

Logika Klasik Vs Logika Fuzzy

- Logika klasik: "segala sesuatu bersifat biner", Sehingga semua ini dapat mempunyai nilai keanggotaan 0 atau 1
- Logika fuzzy adalah metodologi sistem kontrol pemecahan masalah, yang cocok untuk diimplementasikan pada sistem
 - logika fuzzy memungkinkan nilai keanggotaan berada diantara 0 dan 1.

Kelebihan Logika Fuzzy

- Mudah dimengerti,
- Memiliki toleransi terhadap data-data yang tidak tepat,
- Memodelkan fungsi nonlinear yang sangat kompleks,
- Mengaplikasikan pengalaman pakar secara langsung tanpa harus melalui proses pelatihan,
- Bekerjasama dengan teknik kendali secara konvensional,
- Didasarkan pada bahasa alami

Dasar-Dasar Logika Fuzzy

Dasar-Dasar Logika Fuzzy

1. Variabel fuzzy

- yaitu variabel yang akan dibahas dalam suatu sistem fuzzy.
- Contoh: penghasilan, temperatur, permintaan, umur dan sebagainya.

2. Himpunan fuzzy

- yaitu suatu kelompok yang mewakili suatu keadaan tertentu dalam suatu variabel fuzzy.
- Atribut Himpunan Fuzzy: (2)
 - Linguistik, yaitu nama suatu kelompok yang mewakili suatu keadaan tertentu dengan menggunakan bahasa alami, misalnya:
 - DINGIN, SEJUK, PANAS mewakili variabel temperatur,
 - MUDA, PAROBAYA, TUA, mewakili variabel umur.
 - Numeris, yaitu suatu nilai yang menunjukkan ukuran dari suatu variabel, misalnya: 10, 35, 40, dan sebagainya.

Dasar-Dasar Logika Fuzzy

- 3. Semesta pembicaraan, yaitu seluruh nilai yang diijinkan untuk dioperasikan dalam suatu variabel fuzzy.
 - Contoh:
 - Semesta pembicaraan untuk variabel permintaan: $[0 + \infty)$
 - Semesta pembicaraan untuk variabel temperatur: [-10 90]
- 4. Domain himpunan fuzzy, yaitu seluruh nilai yang diijinkan dalam semesta pembicaraan dan boleh dioperasikan dalam suatu himpunan fuzzy.

Fungsi Keanggotaan

- Fungsi keanggotaan adalah grafik yang mewakili besar dari derajat keanggotaan masing-masing variabel input yang berada dalam interval antara 0 dan 1.
- Derajat keanggotaan sebuah variabel x dilambangkan dengan simbol $\mu(x)$.

Fungsi Keanggotaan

1. Kurva Linear Naik

Berapa derajat keanggotaan 32 pada himpunan NAIK?

- mNAIK[32]
- =(32-25)/(35-25)
- =7/10
- = 0.7

Gambar 5.3: Himpunan fuzzy : NAIK.

$$\mu[x] = \begin{cases} 0; & x \le a \\ (x-a)/(b-a); & a \le x \le b \\ 1; & x \ge b \end{cases}$$

2. Kurva Segitiga

Berapa derajat keanggotaan 23 pada himpunan DINGIN tersebut ?

- mDINGIN[23]
- $\bullet = (23-15)/(25-15)$
- = 8/10
- = 0.8

Gambar 5.7: Himpunan fuzzy: DINGIN

$$\mu[x] = \begin{cases} 0; & x \le a \text{ atau } x \ge c \\ (x-a)/(b-a); & a \le x \le b \\ (b-x)/(c-b); & b \le x \le c \end{cases}$$

3. Kurva Trapesium

- Berapa derajat keanggotaan 32 dan 25 pada himpunan DINGIN tersebut ?
- mDINGIN [32]
- $\bullet = (35-32)/(35-27)$
- = 3/8
- = 0.375
- mDINGIN [25]= 1

Gambar 5.9: Himpunan fuzzy: DINGIN (kurva trapesium).

$$\mu[x] = \begin{cases} 0; & x \le a \text{ atau } x \ge c \\ (x - a)/(b - a); & a \le x \le b \\ 1; & b \le x \le c \\ (d - x)/(d - c); & c \le x \le d \end{cases}$$

4. Kurva Bahu

Kurva Bentuk Bahu

Gambar 5.10: Grafik keanggotaan kurva "bahu" pada variabel umur

$$\mu[x] = \begin{cases} 1; & 0 \le x \le a \text{ atau } c \le x \le d \\ (b - x)/(b - a); & a \le x \le b \\ (x - b)/(c - b); & b \le x \le c \end{cases}$$

5. Kurva-S: Pertumbuhan

- Berapa derajat keanggotaan PANAS pada variabel temperatur, bila sebuah benda mempunyai temperatur 50°C
- mPANAS[50]
- = $1 2((60-50)/(60-35))^2$
- = $1 2(10/25)^2$
- = 0,68

Gambar 5.12: Himpunan Fuzzy PANAS.

$$\mu(x;a,b,c) = \begin{cases} 0 & \to & x \le a \\ 2((x-a)/(c-a))^2 & \to & a \le x \le b \\ 1-2((c-x)/(c-a))^2 & \to & b \le x \le c \\ 1 & \to & x \ge c \end{cases}$$

5. Kurva-S: Penyusutan

- Berapa derajat keanggotaan PANAS pada variabel temperatur, bila sebuah benda mempunyai temperatur 37°C
- mMUDA[37]
- = $2((50-37)/(50-20))^2$
- = $2(13/30)^2$
- = 0,376

Gambar 5.13: Himpunan Fuzzy PANAS.

$$S(x;a,b,c) = \begin{cases} 1 & \to & x \le a \\ 1 - 2((x-a)/(c-a))^2 & \to & a \le x \le b \\ 2((c-x)/(c-a))^2 & \to & b \le x \le c \\ 0 & \to & x \ge c \end{cases}$$

6. Kurva Bentuk Lonceng - Pi

- Berapa derajat keanggotaan PANAS pada variabel temperatur, bila sebuah benda mempunyai dua buah sisi,
 - sisi depan temperaturnya 42 °C
 - Dan sisi belakang temperaturnya 51°C.
- mPANAS[42]
- $\bullet = 1 2((45-42)/(45-35))2$
- $\bullet = 1 2(3/10)2$
- = 0.82
- mPANAS[51]
- $\bullet = 2((55-51)/(55-45))2$
- = 2(4/10)2
- = 0.32

$$\Pi(x,b,c) = \begin{cases} S\left(x;c-b,c-\frac{b}{2},c\right) & \to & x \le c \\ 1-S\left(x;c,c+\frac{b}{2},c+b\right) & \to & x > c \end{cases}$$

6. Kurva Bentuk Lonceng - Beta

- Berapa derajat keanggotaan PANAS pada variabel temperatur, bila sebuah benda mempunyai dua buah sisi,
 - sisi depan temperaturnya 42 °C
 - dan sisi belakang temperaturnya 51°C.
- mPANAS[42]
- = 1/(1+((42-45)/5)2)
- = 0,7353
- mPANAS[51]
- = 1/(1+((51-45)/5)2)
- = 0,4098

$$B(x;c,b) = \frac{1}{1 + \left(\frac{x-c}{b}\right)^2}$$

6. Kurva Bentuk Lonceng - Gauss

- Berapa derajat keanggotaan PANAS pada variabel temperatur, bila sebuah benda mempunyai dua buah sisi,
 - sisi depan temperaturnya 42 °C
 - dan sisi belakang temperaturnya 51°C.
- mPANAS[42]
- = 1/(1+((42-45)/5)2)
- = 0,7353
- mPANAS[51]
- = 1/(1+((51-45)/5)2)
- = 0,4098

$$G(x; L, c) = e^{-L(c-x)^2}$$

Operasi Himpunan

Union (Gabungan)

$$\mu_{A \cup B}(x) = \max \{\mu_A(x), \mu_B(x)\} \text{ untuk setiap } x \in X$$

Intersection (Irisan)

$$\mu_{A \cap B}(x) = \min \{\mu_A(x), \mu_B(x)\}$$
 untuk setiap $x \in X$

Complement (komplemen)

$$\mu_{A^{C}}(x) = 1 - \mu_{A}(x)$$

Operasi Himpunan

• Misalkan nilai keanggotaan temperatur 45°C pada himpunan PANAS adalah 0,6 (mPANAS[45]=0,6) dan nilai keanggotaan 50 pcs/hari pada himpunan produksi NAIK adalah 0,3 (mNAIK[50]=0,3), maka α–predikat untuk temperatur :

```
PANAS OR produksi
                            \bullet = \max\{ \text{ mPANAS}[45], \text{ mNAIK}[50] \}
         NAIK
                            \bullet = \max\{0,6;0,3\}
                            \bullet = 0.6
  (mPANAS UNAIK
    PANAS AND
                            • = mPANAS[45], mNAIK[50]
   produksi NAIK
                            \bullet = \min\{0.6; 0.3\}
                            \bullet = 0.3
 (mPANAS \cap NAIK)
                            mTIDAK_PANAS[45]
     Complement
                            \bullet = 1 - 0.6
     (komplemen)
                            • = 0.4
```

Penalaran Monoton

• Penalaran monoton digunakan untuk merelasikan himpunan fuzzy A pada variabel *x* dan himpunan fuzzy B pada variabel *y* dengan cara membuat implikasi berikut

IF x is A THEN y is B

Gambar 5.19: himpunan Tinggi badan dan Berat badan

Penalaran Monoton

• Relasi antara kedua himpunan diatas diekspresikan dengan aturan tunggal berikut:

IF TinggiBadan is TINGGI THEN BeratBadan is BERAT IDEAL

• Jika Toyes mempunyai tinggi badan 168 cm dengan berat badan 55 kg, apakah Toyes termasuk orang yang mempunyai berat badan ideal, kurus atau gemuk?

Penalaran Monoton

• Hitung bagian If (derajat tinggi badan)

```
• Derajat Tinggi [168] = (168 - 155)/(175 - 155) = 0.65
```

• Derajat Tinggi untuk merelasikan himpunan TINGGI dan BERAT IDEAL dengan cara menghitung bagian THEN, yaitu

```
• Nilai Berat[0.65] \iff 1-2[(70-y)/(70-50)]<sup>2</sup> = 0.65

• \iff 1-2(70-y)<sup>2</sup>/400 = 0.65

• \iff 2(70-y)<sup>2</sup>/400 = 0.35

• \iff (70-y)<sup>2</sup> = 70

• \iff (70-y) = 8.366

• \iff y = 61.634 kg
```

• Berat badan Toyes adalah 55 kg, berarti Toyes termasuk orang kurus, karena berat badannya lebih rendah dari berat badan idealnya 61,634 kg.

Sistem Inferensi Fuzzy

• Sistem inferensi fuzzy adalah cara memetakan ruang input menuju ruang output menggunakan logika fuzzy.

Gambar 5.22: Struktur sistem inferensi fuzzy

Sistem Inferensi Fuzzy

- Basis Pengetahuan: kumpulan rule-rule dalam bentuk pernyataan IF...THEN yang dibuat oleh pakar dibidangnya.
- Fuzzifikasi : adalah proses untuk mengubah input sistem yang mempunyai nilai tegas menjadi variabel linguistik menggunakan fungsi keanggotaan yang disimpan dalam basis pengetahuan fuzzy.
- Mesin inferensi: proses untuk mengubah input fuzzy menjadi output fuzzy dengan cara mengikuti aturan-aturan (*IF-THEN Rules*) yang telah ditetapkan pada basis pengetahuan fuzzy.
- DeFuzzifikasi: mengubah output fuzzy yang diperoleh dari mesin inferensi menjadi nilai tegas menggunakan fungsi keanggotaan yang sesuai dengan saat dilakukan fuzzyfikasi.

Sistem Inferensi Fuzzy METODE TSUKAMOTO

• Secara umum bentuk model fuzzy tsukamoto adalah:

If (x is A) and (y is B) then (z is C)

- Dimana A, B, dan C adalah himpunan fuzzy.
- Misalkan diketahui 2 rule berikut :
 - If (x is A1) and (y is B1) then (z is C1)
 - If (x is A2) and (y is B2) then (z is C2)

Sistem Inferensi Fuzzy METODE TSUKAMOTO

GAMBAR 5.23 menunjukkan skema penalaran fungsi implikasi min atau product dan proses deffuzifikasi dilakukan dengan cara mencari nilai rata-ratanya.

Sistem Inferensi Fuzzy METODE MAMDANI

- Metode Mamdani paling sering digunakan dalam aplikasi-aplikasi karena strukturnya yang sederhana, yaitu menggunakan operasi minmax atau max-product.
- Untuk mendapatkan output, diperlukan 4 tahapan:
 - 1.Fuzzyfikasi (pembentukan himpunan fuzzy dan perhitungan derajat keanggotaan)
 - 2. Aplikasi fungsi implikasi menggunakan fungsi min
 - 3. Komposisi antar rule menggunakan fungsi max atau max-product (menghasilkan himpunan fuzzy baru)
 - 4.Penegasan (deffuzy) menggunakan metode centroid

Sistem Inferensi Fuzzy METODE MAMDANI

Secara umum bentuk model fuzzy SUGENO adalah:

```
IF (x1 \text{ is } A1) \cdot \dots \cdot (xN \text{ is } AN) \text{ THEN } z = f(x,y)
```

- Catatan:
 - A1, A2, A_N, adalah himpunan fuzzy ke-i sebagai anteseden
 - z = f(x,y) adalah fungsi tegas (biasanya merupakan fungsi linier dari x dan y).

Contoh: Sistem Kontrol Frekuensi Putar Kipas Angin

- Untuk mengatur frekuensi putar kipas angin secara otomatis digunakan sistem kontrol.
- Variabel dan data spesifikasi dari pabrik,
 - kecepatan putar kipas angin terkecil 1000 rpm (rotary per menit) dan terbesar 5000 rpm,
 - kemampuan sensor suhu ruangan berada dalam interval 100 Kelvin hingga 600 Kelvin,
 - sumber frekuensi putar kipas sebesar 2000 rpm 7000 rpm.
- Berapa sumber frekuensi putar kipas angin yang dihasilkan sistem kontrol tersebut bila pada saat itu sensor suhu menunjukkan angka 300 K sedangkan kipas angin berputar dengan kecepatan 4000 rpm?
- Selesaikan masalah ini dengan menggunakan metode :
 - a) Tsukamoto
 - b) Mamdani
 - c) sugeno

Contoh: Sistem Kontrol Frekuensi Putar Kipas Angin

• Rule:

- [R1] IF kecepatan LAMBAT And suhu TINGGI THEN frekuensi KECIL;
- [R2] IF kecepatan LAMBAT And suhu RENDAH THEN frekuensi KECIL;
- [R3] IF kecepatan CEPAT And suhu TINGGI THEN frekuensi BESAR;
- [R4] IF kecepatan CEPAT And suhu RENDAH THEN frekuensi BESAR;

• Rule khusus Sugeno:

- [R1] IF kecepatan LAMBAT And suhu TINGGI THEN frekuensi = 0,5*kecepatan + 1700;
- [R2] IF kecepatan LAMBAT And suhu RENDAH THEN frekuensi = 2*kecepatan 4000;
- [R3] IF kecepatan CEPAT And suhu TINGGI THEN frekuensi = 0,5*kecepatan+2000;
- [R4] IF kecepatan CEPAT And suhu RENDAH
 THEN
 frekuensi = kecepatan + 700;

Metode Tsukamoto (FUZZIFIKASI)- Kecepatan

Gambar 5.2 7: Fungsi keanggotaan variabel Kecepatan

$$\mu_{LAMBAT}[x] = \begin{cases} 1, & x \le 1000 \\ \frac{5000 - x}{4000}, & 1000 \le x \le 5000 \\ 0, & x \ge 5000 \end{cases} = 0,25$$

$$\mu_{CEPAT}[x] = \begin{cases} 0, & x \le 1000 \\ \frac{x - 1000}{4000}, & 1000 \le x \le 5000 \\ 1, & x \ge 5000 \end{cases} = \mu \text{Cepat}[4000] = (4000 - 1000)/4000 = 0,75$$

 Derajat keanggotaan untuk kecepatan 4000 rpm adalah:

- μLAMBAT[4000] = (5000-4000)/4000 = 0.25

Metode Tsukamoto (FUZZIFIKASI)- Suhu

Gambar 5.28: Fungsi keanggotaan variable Suhu

$$\mu_{RENDAH}[y] = \begin{cases} 1, & y \le 100 \\ \frac{600 - y}{500}, & 100 \le y \le 600 \\ 0, & y \ge 600 \end{cases} = 0,6$$

$$\mu_{TINGGI}[y] = \begin{cases} 0, & y \le 100 \\ \frac{y - 100}{500}, & 100 \le y \le 600 \\ 1, & y \ge 600 \end{cases} \bullet \muTINGGI[300] = (300-100)/500 = 0.4$$

- Derajat keanggotaan untuk suhu 300 Kelvin adalah:
- μRENDAH[300] = (600-300)/500 = 0.6

= 0,4

Metode Tsukamoto (FUZZIFIKASI)- Frekuensi

Gambar 5.29: Fungsi keanggotaan variable Frekuensi

$$\mu_{KECIL}[z] = \begin{cases} 1, & z \le 2000\\ \frac{7000 - z}{5000}, & 2000 \le z \le 7000\\ 0, & z \ge 7000 \end{cases}$$

$$\mu_{BESAR}[z] = \begin{cases} 0, & z \le 2000\\ \frac{z - 2000}{5000}, & 2000 \le z \le 7000\\ 1, & z \ge 7000 \end{cases}$$

Metode Tsukamoto (FUZZIFIKASI)- Inferensi

```
\alpha-predikat1
                                                        =\muLAMBAT \cap TINGGI
                                                        =min(μLAMBAT[4000],μTINGGI[300])
[R1]
       IF kecepatan LAMBAT And suhu TINGGI
                                                        =min(0,25; 0,4) =0,25
             THEN frekuensi KECIL;
                                                        (7000-z)/5000 = 0.25 \rightarrow z1 = 5750 \text{ (rpm)}
\alpha-predikat2
                                                        =\muLAMBAT \cap TINGGI
                                                        =min(μLAMBAT [4000],μTINGGI[300])
       IF kecepatan LAMBAT And suhu RENDAH
       THEN
                                                        =min(0,25; 0,4) =0,25
       frekuensi KECIL;
                                                        (7000-z)/5000 = 0.25 \rightarrow z1 = 5750 \text{ (rpm)}
\alpha-predikat3
                                                        = \mu CEPAT \cap TINGGI
                                                        = min(\mu CEPAT [4000], \mu TINGGI[300])
       IF kecepatan CEPAT And suhu TINGGI
                                                        = min(0,75; 0,4) = 0,4
       THEN
       frekuensi BESAR;
                                                        (z-2000)/5000 = 0.4 \rightarrow z3 = 4000 \text{ (rpm)}
\alpha-predikat4
                                                        = \mu CEPAT \cap RENDAH
[R4]
       IF kecepatan CEPAT And suhu RENDAH
                                                        = min(\mu CEPAT [4000], \mu RENDAH[300])
       THEN
                                                        = min(0,75; 0,6) = 0,6
       frekuensi BESAR;
                                                        (z-2000)/5000 = 0.6 \rightarrow z4 = 5000 (rpm)
```

Metode Tsukamoto (FUZZIFIKASI)- Defuzifikasi

• Nilai tegas z dapat dicari menggunakan rata-rata terbobot, yaitu:

$$z = \frac{\alpha pred_1 * z_1 + \alpha pred_2 * z_2 + \alpha pred_3 * z_3 + \alpha pred_4 * z_4}{\alpha pred_1 + \alpha pred_2 + \alpha pred_3 + \alpha pred_4}$$

$$z = \frac{0,25*5750 + 0,25*5750 + 0,4*4000 + 0,6*5000}{0,25 + 0,25 + 0,4 + 0,6} = \frac{7475}{1,5} = 4983$$

• Jadi sumber frekuensi putar kipas angin yang dihasilkan sistem kontrol haruslah 4983 rpm.

Metode Mamdani (INFERENSI)

• Kita terapkan fungsi MIN untuk setiap aturan pada aplikasi fungsi implikasinya:

[R1] IF kecepatan LAMBAT And suhu TINGGI THEN frekuensi KECIL;

- α -predikat1 = μ LAMBAT $\cap \mu$ TINGGI
- $= \min(\mu LAMBAT[4000], \mu TINGGI[300])$
- $= \min(0,25;0,4)$
- = 0,25

Metode Mamdani (INFERENSI)

```
\alpha-predikat1
                                           = \muLAMBAT \cap TINGGI
                                           = min(\mu LAMBAT[4000], \mu TINGGI[300])
[R1] IF kecepatan LAMBAT And suhu
     TINGGI THEN frekuensi KECIL;
                                           = min(0,25; 0,4)
                                           = 0,25
\alpha-predikat2
                                           = \muLAMBAT \cap RENDAH
                                           = min(\mu LAMBAT[4000], \mu RENDAH[300])
[R2] IF kecepatan LAMBAT And suhu
     RENDAH THEN
                                           = min(0,25; 0,6)
     frekuensi KECIL;
                                           = 0.25
α-predikat3
                                           = \muCEPAT \cap TINGGI
                                           = min(\mu CEPAT [4000], \mu TINGGI[300])
[R3] IF kecepatan CEPAT And suhu
     TINGGI THEN
                                           = min(0,75; 0,4)
     frekuensi BESAR;
                                           = 0,4
α-predikat4
                                           = \mu CEPAT \cap RENDAH
[R4] IF kecepatan CEPAT And suhu
                                           = min(\mu CEPAT [4000], \mu RENDAH[300])
     RENDAH THEN
                                           = min(0,75; 0,6)
     frekuensi BESAR;
                                           = 0.6
```

17/10/2023

37

$$\alpha$$
-predikat1 = min(0,25; 0,4)
= 0,25

$$\alpha$$
-predikat2 = min(0,25; 0,6)
= 0,25

$$\alpha$$
-predikat3 = min(0,75; 0,4)
= 0,4

$$\alpha$$
-predikat4 = min(0,75; 0,6)
= 0,6

Metode Mamdani (INFERENSI)

• Kemudian daerah hasil komposisi kita bagi menjadi 3 bagian, yaitu A1, A2, dan A3, sehingga menjadi himpunan fuzzy baru. Cari nilai a1 dan a2.

•
$$(a1 - 2000)/5000 = 0.25$$
 ---> $a1 = 3250$

•
$$(a2 - 2000)/5000 = 0,60 \longrightarrow a2 = 5000$$

• Dengan demikian, fungsi keanggotaan untuk himpunan fuzzy baru adalah:

$$\mu[z] = \begin{cases} 0,25; & z \le 3250 \\ (z-2000)/5000; & 3250 \le z \le 5000 \\ 0,6; & z \ge 5000 \end{cases}$$

17/10/2023

Metode Mamdani (Defuzzyfikasi)

Menggunakan metode centroid

$$z^* = \frac{\int \mu(z)zdz}{\int \mu(z)dz}$$

$$z^* = \frac{\int_0^{3250} 0.25zdz + \int_{3250}^{5000} \frac{(z - 2000)}{5000}zdz + \int_{5000}^{7000} 0.6zdz}{\int_0^{3250} 0.25dz + \int_{3250}^{5000} \frac{(z - 2000)}{5000}dz + \int_{5000}^{7000} 0.6dz}$$

$$z^* = \frac{1320312.5 + 3187515.625 + 72000000}{812.5 + 743.75 + 1200}$$

$$z^* = 4247.74$$

• Jadi sumber frekuensi putar kipas angin yang dihasilkan sistem kontrol haruslah 4247,74 rpm.

Metode Sugeno (Inferensi)

```
\alpha-predikat1
                                                    =\muLAMBAT \cap TINGGI
[R1] IF kecepatan LAMBAT And suhu TINGGI
                                                    = min(\mu LAMBAT[4000], \mu TINGGI[300])
       THEN frekuensi = 0,5*kecepatan + 1700;
                                                    = min(0,25; 0,4) = 0,25
                                                    z1 = 0.5*4000 + 1700 = 2000 + 1700 = 3700
\alpha-predikat2
                                                    = \muLAMBAT \cap RENDAH
                                                    = min(μLAMBAT[4000],μRENDAH[300])
[R2] IF kecepatan LAMBAT And suhu RENDAH
       THEN frekuensi = 2*kecepatan – 4000;
                                                    = min(0,25; 0,6) = 0,25
                                                    z2 = 2*4000 - 4000 = 4000
\alpha-predikat3
                                                    = \mu CEPAT \cap TINGGI
[R3] IF kecepatan CEPAT And suhu TINGGI THEN
                                                    = min(\muCEPAT[4000],\muTINGGI[300])
       frekuensi = 0,5*kecepatan+2000;
                                                    = min(0,75; 0,4) = 0,.4
                                                    z3 = 0,5*4000 + 2000 = 4000
\alpha-predikat4
                                                    = \muCEPAT \cap RENDAH
[R4] IF kecepatan CEPAT And suhu RENDAH THEN
                                                    = min(\mu CEPAT [4000], \mu RENDAH[300])
                                                    = min(0,25; 0,6) = 0,25
       frekuensi = kecepatan + 700;
                                                    z4 = 4000 + 700 = 4700
```

41

17/10/2023

• Nilai z dicari dengan persamaan berikut :

$$z = \frac{\alpha pred_1 * z_1 + \alpha pred_2 * z_2 + \alpha pred_3 * z_3 + \alpha pred_4 * z_4}{\alpha pred_1 + \alpha pred_2 + \alpha pred_3 + \alpha pred_4}$$

$$z = \frac{0,25*3700 + 0,25*4000 + 0,4*4000 + 0,6*4700}{0,25 + 0,25 + 0,4 + 0,6} = \frac{6345}{1,5} = 4230$$

• Jadi sumber frekuensi putar kipas angin yang dihasilkan sistem kontrol haruslah 4230 rpm.

Basis data konvensional

• Contoh operasi:

- Menampilkan mhs dengan nilai toefl...
- Menampilkan mhs dengan penghasilan ortu ...
- Menampilkan mhs dengan lpk ...

Tabel 5.1 Data Mahasiswa Calon Penerima Beasiswa

NIM	Nama	TOEFL	IPK	Pengh.Ortu
01	Toyes	450	4	750,000
02	Bowo	480	3	1.500.000
03	Erna	360	3	1.255.000
04	Astuti	270	2	1.040.000
05	Yuni	420	4	950,000
06	Heribertus	390	4	1.600.000
07	Edy	370	3	1.250.000
08	Usman	255	3	550,000
09	Pujiono	325	2	735,000
10	Slamet	250	1	860,000

Problem

- syarat penerima beasiswa di UDINUS adalah"
 - mahasiswa yang nilai IPK-nya BAGUS,
 - nilai TOEFL-nya TINGGI dan
 - penghasilan orang tuanya SEDIKIT.

Nilai *Toefl* berdasar Derajat keanggotaan

$$\mu_{RENDAH}[x] = \begin{cases} 1; & x \le 200\\ \frac{300 - x}{100}; & 200 \le x \le 300\\ 0; & x \ge 300 \end{cases}$$

$$\mu_{MENENGAH}[x] = \begin{cases} 0; & x \le 250 \text{ atau} \quad x \ge 350\\ \frac{x - 250}{50}; & 250 \le x \le 300\\ \frac{350 - x}{50}; & 300 \le x \le 350 \end{cases}$$

$$\mu_{TINGGI}[x] = \begin{cases} 0; & x \le 300\\ \frac{x - 300}{100}; & 300 \le x \le 400\\ 1; & x \ge 400 \end{cases}$$

Nilai *Toefl* berdasar Derajat keanggotaan

NIM	Nama	TOEFL	Derajat Keanggotaan (μ[x])				
IVIIVI	Ivalita		RENDAH	MENENGAH	TINGGI		
01	Toyes	450	0	0	1		
02	Bowo	480	0	0	1		
03	Erna	360	0	0	0,6		
04	Astuti	270	0,3	0,4	0		
05	Yuni	420	0	0	1		
06	Heribertus	390	0	0	0,9		
07	Edy	370	0	0	0,7		
08	Usman	255	0,45	0,1	0		
09	Pujiono	325	0	0,5	0,5		
10	Slamet	250	0,5	0	0		

Nilai IPK berdasar Derajat keanggotaan

$$\mu_{JELEK}[x] = \begin{cases} 1; & x \le 1 \\ 2 - x; & 1 \le x \le 2 \\ 0; & x \ge 2 \end{cases}$$

$$\mu_{CUKUP}[x] = \begin{cases} 0; & x \le 1,5 \text{ atau} \quad x \ge 2,5 \\ \frac{x - 1,5}{0,5}; & 1,5 \le x \le 2 \\ \frac{2,5 - x}{0,5}; & 2 \le x \le 2,5 \end{cases}$$

$$\mu_{BAGUS}[x] = \begin{cases} 0; & x \le 2\\ x - 2; & 2 \le x \le 3\\ 1; & x \ge 3 \end{cases}$$

Nilai *IPK* berdasar Derajat keanggotaan

NIM	Nama	IPК	Derajat Keanggotaan (μ[x])				
INIIVI			JELEK	CUKUP	BAGUS		
01	Toyes	4	0	0	1		
02	Bowo	3	0	0	1		
03	Erna	3	0	0	1		
04	Astuti	2	0	1	0		
05	Yuni	4	0	0	1		
06	Heribertus	4	0	0	1		
07	Edy	3	0	0	1		
08	Usman	3	0	0	1		
09	Pujiono	2	0	1	0		
10	Slamet	1	1	0	0		

Nilai *Penghasilan* berdasar Derajat keanggotaan

$$\mu_{SEDIKIT}[x] = \begin{cases} 1; & x \le 600\\ \frac{800 - x}{200}; & 600 \le x \le 800\\ 0; & x \ge 800 \end{cases}$$

$$\mu_{SEDANG}[x] = \begin{cases} 0; & x \le 700 \text{ atau} \quad x \ge 900\\ \frac{x - 700}{100}; & 700 \le x \le 800\\ \frac{900 - x}{100}; & 800 \le x \le 900 \end{cases}$$

$$\mu_{BANYAK}[x] = \begin{cases} 0; & x \le 800\\ \frac{x - 800}{200}; & 800 \le x \le 1000\\ 1; & x \ge 1000 \end{cases}$$

Nilai *Penghasilan* berdasar Derajat keanggotaan

NIM	Nama	Penghasilan	Derajat <u>Keanggotaan</u> (μ[x])			
11111		orangtua	SEDIKIT	SEDANG	BANYAK	
01	Toyes	750.000	0,25	0,5	0	
02	Bowo	1.500.000	0	0	1	
03	Erna	1.255.000	0	0	1	
04	Astuti	1.040.000	0	0	1	
05	Yuni	950.000	0	0	0,75	
06	Heribertus	1.600.000	0	0	1	
07	Edy	1.250.000	0	0	1	
08	Usman	550.000	1	0	0	
09	Pujiono	735.000	0,325	0,35	0	
10	Slamet	860.000	0	0,4	0,3	

• Query2:

• Siapa sajakah mahasiswa yang nilai TOEFL-nya RENDAH tetapi IPK-nya BAGUS ?

Tabel 5.9 Hasil query2.

NIP	NAMA	IPK	TOEFL	Derajat Keanggotaan			
MIP				BAGUS	RENDAH	BAGUS & RENDAH	
08	Usman	3	255	1	0,45	0,45	
01	Toyes	4	450	1	0	0	
02	Bowo	3	480	1	0	0	
03	Erna	3	360	1	0	0	
04	Astuti	2	270	0	0,3	0	
05	Yuni	4	420	1	0	0	
06	Heribertus	4	390	1	0	0	
07	Edv	3	370	1	0	0	
09	Pujiono	2	325	0	0	0	
10	Slamet	1	250	0	0,5	0	

• kriteria penerima beasiswa adalah mahasiswa yang nilai IPK-nya BAGUS, nilai TOEFL-nya TINGGI dan penghasilan orang tuanya SEDIKIT?

Tabel 5.11: Hasil query4

		Derajat Keanggotaan μ(x)				
MIM	Nama	Toefl TINGGI	Penghasila n SEDIKIT	Ipk BAGUS	kriteria penerima beasiswa TINGGI & SEDIKIT & BAGUS	
01	Toyes	1	0,25	1	0,25	
02	Вошо	1	0	1	0	
03	Erna	0,6	0	1	0	
04	Astuti	0	0	0	0	
05	Yuni	1	0	1	0	
06	Heribertus	0,9	0	1	0	
07	Edy	0,7	0	1	0	
08	Usman	0	1	1	0	
09	Pujiono	0,5	0,325	0	0	
10	Slamet	0	0	0	0	