深入分析Parquet列式存储格式

2015-08-11 大数据邦

↑点击蓝字,轻松关注

Parquet是面向分析型业务的列式存储格式,由Twitter和Cloudera合作开发,2015年5月从Apache的孵化器里毕业成为Apache顶级项目,最新的版本是1.8.0。

列式存储

列式存储和行式存储相比有哪些优势呢?

- 1,可以跳过不符合条件的数据,只读取需要的数据,降低IO数据量。
- 2,压缩编码可以降低磁盘存储空间。由于同一列的数据类型是一样的,可以使用更高效的压缩编码(例如Run Length Encoding和DeltaEncoding)进一步节约存储空间。
- 3,只读取需要的列,支持向量运算,能够获取更好的扫描性能。

当时Twitter的日增数据量达到压缩之后的100TB+,存储在HDFS上,工程师会使用多种计算框架 (例如MapReduce, Hive, Pig等)对这些数据做分析和挖掘;日志结构是复杂的嵌套数据类型,例如一个典型的日志的schema有87列,嵌套了7层。所以需要设计一种列式存储格式,既能支持关系型数据(简单数据类型),又能支持复杂的嵌套类型的数据,同时能够适配多种数据处理框架。

关系型数据的列式存储,可以将每一列的值直接排列下来,不用引入其他的概念,也不会丢失数据。关系型数据的列式存储比较好理解,而嵌套类型数据的列存储则会遇到一些麻烦。如图1所示,我们把嵌套数据类型的一行叫做一个记录(record),嵌套数据类型的特点是一个record中的column除了可以是Int, Long,String这样的原语(primitive)类型以外,还可以是List,Map,Set这样的复杂类型。在行式存储中一行的多列是连续的写在一起的,在列式存储中数据按列分开存储,例如可以只读取A. B. C这一列的数据而不去读A. E和A. B. D,那么如何根据读取出来的各个列的数据重构出一行记录呢?

图1 行式存储和列式存储

Google的**Dremel**系统解决了这个问题,核心思想是使用"record shreddingand assembly algorithm"来表示复杂的嵌套数据类型,同时辅以按列的高效压缩和编码技术,实现降低存储空间,提高IO效率,降低上层应用延迟。Parquet就是基于Dremel的数据模型和算法实现的。Parquet适配多种计算框架

Parquet是语言无关的,而且不与任何一种数据处理框架绑定在一起,适配多种语言和组件,能够与Parquet配合的组件有:

查询引擎: Hive, Impala, Pig, Presto, Drill, Tajo, HAWQ, IBM Big SQL

计算框架: MapReduce, Spark, Cascading, Crunch, Scalding, Kite

数据模型: Avro, Thrift, Protocol Buffers, POJOs

那么Parquet是如何与这些组件协作的呢?这个可以通过图2来说明。数据从内存到Parquet文件或者反过来的过程主要由以下三个部分组成:

1, 存储格式(storage format)

parquet-format项目定义了Parquet内部的数据类型、存储格式等。

2, 对象模型转换器(object model converters)

这部分功能由parquet-mr项目来实现,主要完成外部对象模型与Parquet内部数据类型的映射。

3, 对象模型(object models)

对象模型可以简单理解为内存中的数据表示,Avro, Thrift, Protocol Buffers, Hive SerDe, Pig Tuple, Spark SQLInternalRow等这些都是对象模型。Parquet也提供了一个example object model 帮助大家理解。

例如**parquet-mr**项目里的parquet-pig项目就是负责把内存中的Pig Tuple序列化并按列存储成Parquet格式,以及反过来把Parquet文件的数据反序列化成Pig Tuple。

这里需要注意的是Avro, Thrift, Protocol Buffers都有他们自己的存储格式,但是Parquet并没有使用他们,而是使用了自己在parquet-format项目里定义的存储格式。所以如果你的应用使用了Avro等对象模型,这些数据序列化到磁盘还是使用的parquet-mr定义的转换器把他们转换成Parquet自己的存储格式。

图2 Parquet项目的结构

Parquet数据模型

理解Parquet首先要理解这个列存储格式的数据模型。我们以一个下面这样的schema和数据为例来说明这个问题。

```
message AddressBook {
  required string owner;
  repeated string ownerPhoneNumbers;
  repeated group contacts {
    required string name;
    optional string phoneNumber;
  }
}
```

这个schema中每条记录表示一个人的AddressBook。有且只有一个owner, owner可以有0个或者多个ownerPhoneNumbers, owner可以有0个或者多个contacts。每个contact有且只有一个name,这个contact的phoneNumber可有可无。这个schema可以用图3的树结构来表示。

每个schema的结构是这样的:根叫做message, message包含多个fields。每个field包含三个属性:repetition, type, name。repetition可以是以下三种:required(出现1次), optional(出现0次或者1次), repeated(出现0次或者多次)。type可以是一个group或者一个primitive类型。

Parquet格式的数据类型没有复杂的Map, List, Set等, 而是使用repeated fields 和groups来表 示。例如List和Set可以被表示成一个repeated field, Map可以表示成一个包含有key-value 对的 repeated field, 而且key是required的。

图3 AddressBook的树结构表示

Parquet文件的存储格式

那么如何把内存中每个AddressBook对象按照列式存储格式存储下来呢? 在Parquet格式的存储中,一个schema的树结构有几个叶子节点,实际的存储中就会有多少 column。例如上面这个schema的数据存储实际上有四个column,如图4所示:

Column	Туре	
owner	string	
ownerPhoneNumbers	string	
contacts.name	string	
contacts.phoneNumber	string	

AddressBook				
owner	ownerPhoneNumbers	contacts		
		name	phoneNumber	
***			722	
	***	****	***	
***	***	***	***	
	12		- 364 - km - En	
	\\	(0)	30.7店开	

图4 AddressBook实际存储的列

Parquet文件在磁盘上的分布情况如图5所示。所有的数据被水平切分成Row group, 一个Row group 包含这个Row group对应的区间内的所有列的column chunk。一个column chunk负责存储某一列的 数据,这些数据是这一列的Repetition levels, Definition levels和values(详见后文)。一个 column chunk是由Page组成的, Page是压缩和编码的单元, 对数据模型来说是透明的。一个 Parquet文件最后是Footer,存储了文件的元数据信息和统计信息。Row group是数据读写时候的缓 存单元,所以推荐设置较大的Row group从而带来较大的并行度,当然也需要较大的内存空间作为 代价。一般情况下推荐配置一个Row group大小1G,一个HDFS块大小1G,一个HDFS文件只含有一个 块。

图5 Parquet文件格式在磁盘的分布

拿我们的这个schema为例,在任何一个Row group内,会顺序存储四个column chunk。这四个 column都是string类型。这个时候Parquet就需要把内存中的AddressBook对象映射到四个string类 型的column中。如果读取磁盘上的4个column要能够恢复出AddressBook对象。这就用到了我们前面 提到的 "record shredding and assembly algorithm"。

Striping/Assembly算法

对于嵌套数据类型,我们除了存储数据的value之外还需要两个变量Repetition Level (R), Definition Level (D) 才能存储其完整的信息用于序列化和反序列化嵌套数据类 型。Repetition Level和 Definition Level可以说是为了支持嵌套类型而设计的,但是它同样适 用于简单数据类型。在Parquet中我们只需定义和存储schema的叶子节点所在列的Repetition Level和Definition Level。

DefinitionLevel:

嵌套数据类型的特点是有些field可以是空的,也就是没有定义。如果一个field是定义的,那么它 的所有的父节点都是被定义的。从根节点开始遍历,当某一个field的路径上的节点开始是空的时 候我们记录下当前的深度作为这个field的Definition Level。如果一个field的Definition Level 等于这个field的最大Definition Level就说明这个field是有数据的。对于required类型的field

必须是有定义的,所以这个Definition Level是不需要的。在关系型数据中,optional类型的 field被编码成0表示空和1表示非空(或者反之)。

RepetitionLevel:

记录该field的值是在哪一个深度上重复的。只有repeated类型的field需要Repetition Level, optional 和required类型的不需要。Repetition Level = 0 表示开始一个新的record。在关系型数据中, repetion level总是0。

下面用AddressBook的例子来说明Striping和assembly的过程。

对于每个column的最大的Repetion Level和 Definition Level如图6所示:

Column	Max Definition level	Max Repetition level
owner	0 (owner is required)	0 (no repetition)
ownerPhoneNumbers	1	1 (repeated)
contacts.name	1 (name is required)	1 (contacts is repeated)
contacts.phoneNumber	2 (phoneNumber is optional)	1 (contacts repeated)

图6 AddressBook的MaxDefinition Level和Max Repetition Level

下面这样两条record:

```
AddressBook {
  owner:"Julien Le Dem",
  ownerPhoneNumbers: "555 123 4567",
  ownerPhoneNumbers: "555 666 1337",
  contacts: {
   name: "Dmitriy Ryaboy",
   phoneNumber: "555 987 6543",
  },
  contacts: {
   name: "Chris Aniszczyk"
  }
}
AddressBook {
  owner:"A. Nonymous"
}
```

以contacts.phoneNumber这一列为例,"555987 6543"这个contacts.phoneNumber的 DefinitionLevel是最大Definition Level=2。而如果一个contact没有phoneNumber,那么它的 DefinitionLevel就是1。如果连contact都没有,那么它的DefinitionLevel就是0。

下面我们拿掉其他三个column只看contacts.phoneNumber这个column,把上面的两条record简化成下面的样子:

```
AddressBook {
  contacts: {
    phoneNumber: "555 987 6543"
  }
  contacts: {
  }
}
AddressBook {
}
```

这两条记录的序列化过程如图7所示:

图7 一条记录的序列化过程

如果我们要把这个column写到磁盘上,磁盘上会写入这样的数据(图8):

R	D	Value
0	2	"555 987 6543"
1	1	NULL
0	0	NULL 选 大數据邦

图8 一条记录的磁盘存储

注意: NULL实际上不会被存储,如果一个column value的**Definition Level**小于该column最大**Definition Level**的话,那么就表示这是一个空值。

下面是从磁盘上读取数据并反序列化成AddressBook对象的过程:

1,读取第一个三元组R=0,D=2,Value="5559876543"

R=O 表示是一个新的record,要根据schema创建一个新的nested record直到**Definition** Level=2。

D=2 说明DefinitionLevel=Max DefinitionLevel,那么这个Value就是contacts.phoneNumber这一列的值,赋值操作contacts.phoneNumber=" 555 987 6543"。

2, 读取第二个三元组 R=1, D=1

R=1 表示不是一个新的record, 是上一个record中一个新的contacts。

D=1 表示contacts定义了,但是contacts的下一个级别也就是phoneNumber没有被定义,所以创建一个空的contacts。

3,读取第三个三元组 R=0, D=0

R=O 表示一个新的record,根据schema创建一个新的nested record直到**Definition Level=O**,也就是创建一个AddressBook根节点。

可以看出在Parquet列式存储中,对于一个schema的所有叶子节点会被当成column存储,而且叶子节点一定是primitive类型的数据。对于这样一个primitive类型的数据会衍生出三个sub columns (R, D, Value),也就是从逻辑上看除了数据本身以外会存储大量的Definition Level和Repetition Level。那么这些Definition Level和Repetition Level是否会带来额外的存储开销呢?实际上这部分额外的存储开销是可以忽略的。因为对于一个schema来说level都是有上限的,而且非repeated类型的field不需要RepetitionLevel,required类型的field不需要DefinitionLevel,也可以缩短这个上限。例如对于Twitter的7层嵌套的schema来说,只需要3个bits就可以表示这两个Level了。

对于存储关系型的record, record中的元素都是非空的(NOT NULL in SQL)。Repetion Level和 **DefinitionLevel**都是0,所以这两个subcolumn就完全不需要存储了。所以在存储非嵌套类型的时候,Parquet格式也是一样高效的。

上面演示了一个column的写入和重构,那么在不同column之间是怎么跳转的呢,这里用到了有限状态机的知识,详细介绍可以参考**Dremel。**

数据压缩算法

列式存储给数据压缩也提供了更大的发挥空间,除了我们常见的snappy, gzip等压缩方法以外,由于列式存储同一列的数据类型是一致的,所以可以使用更多的压缩算法。

压缩算法	使用场景	
Run Length Encoding	重复数据	
Delta Encoding	有序数据集,例如timestamp,自动生成的ID, 以及监控的各种metrics	
Dictionary Encoding	小规模的数据集合,例如IP地址	
Prefix Encoding	Delta Encoding for strings	

性能

Parquet列式存储带来的性能上的提高在业内已经得到了充分的认可,特别是当你们的表非常宽(column非常多)的时候,Parquet无论在资源利用率还是性能上都优势明显。具体的性能指标详见参考文档。

Spark已经将Parquet设为默认的文件存储格式,Cloudera投入了很多工程师到Impala+Parquet相关开发中,Hive/Pig都原生支持Parquet。Parquet现在为Twitter至少节省了1/3的存储空间,同时节省了大量的表扫描和反序列化的时间。这两方面直接反应就是节约成本和提高性能。

如果说HDFS是大数据时代文件系统的事实标准的话,Parquet就是大数据时代存储格式的事实标准。

参考文档

http://parquet.apache.org/

https://blog.twitter.com/2013/dremel-made-simple-with-parquet

http://blog.cloudera.com/blog/2015/04/using-apache-parquet-at-appnexus/

http://blog.cloudera.com/blog/2014/05/using-impala-at-scale-at-allstate/

作者简介:

梁堰波,现就职于明略数据,开源爱好者,Apache Hadoop & Spark contributor。北京航空航天大学计算机硕士,曾就职于Yahoo!、美团网、法国电信,具备丰富的大数据、数据挖掘和机器学习领域的项目经验。

回复关键字获得推荐头条文章

回复 宇宙 宇宙的终极密码: 从释迦摩尼到爱因斯坦

回复 班花 土豪张三怎样用大数据思维追到"某江商学院"美女班花?

回复傅里叶不懂数学也能明白傅里叶分析和感受数学之美

回复高官中国高官晋升模型分析:如何在55岁前晋升省部级首长

回复常委分析预测下一届政治局常委可能都有谁?

回复女人女人最懂大数据!

回复 美人 大数据分析: 如何成为美人?

回复 色情 大数据! 你能在色情行业里做什么!

