Lliurament 7.2: Altres mètodes d'integració (AMPLIACIÓ)

Matemàtiques II

Josep Mulet Pol

Àmbit científic

IEDIB

https://iedib.net/

Aquesta obra està subjecta a les condicions de llicència CREATIVE COMMONS no comercial i compartir igual.

Edició ETEX: ® Josep Mulet Pol

Versió: 20-02-2025
Reconeixement-NoComercial-Compartirigual 4.0 Internacional

Índex

1 Altres mètodes d'integració		es mètodes d'integració	3
	1.1	Integració per parts	3
	1.2	Primitives de funcions racionals	5
2	Teoı	rema fonamental del càlcul	8

1. Altres mètodes d'integració

Aquesta secció es deixa com a ampliació. Això no vol dir que no es demanarà a l'examen IEDIB, però heu de saber que els continguts que s'hi expliquen poden aparèixer perfectament a l'examen de les PAU.

En el llibre d'apunts BAT_MAT2 7.1, hem après alguns mètodes bàsics per calcular primitives. Per desgràcia, no totes les primitives es poden calcular amb aquests mètodes i en necessitam d'altres que presentam en aquesta secció. En particular, veurem:

- El mètode d'integració per parts
- Integrals de funcions racionals, funcions que són quocient de dos polinomis

1.1 Integració per parts

Imaginem que volem integrar un producte de funcions $u\cdot v'$ on la funció u és fàcil de derivar i la funció v' fàcil d'integrar. En tal cas empram la regla d'integració per parts

Regla d'integració per parts

$$\int u \cdot dv = v \cdot u - \int v \cdot du \tag{1}$$

on hem expressat du = u'dx i dv = v'dx

Una regla mnemotècnica de recordar-se'n és recitar la frase: " S usana, u n d ia v entoso, v ió u n s oldado v estido d e u niforme"

La regla d'integració per parts s'utilitza en integrals de la forma

•
$$\int x^n \cdot a^x dx$$

•
$$\int \left\{ \begin{array}{c} \sin x \\ \cos x \end{array} \right\} \cdot a^x \, dx$$

•
$$\int x^n \cdot \left\{ \begin{array}{c} \sin x \\ \cos x \end{array} \right\} dx$$

•
$$\int x^n \cdot \left\{ \begin{array}{c} \arcsin x \\ \arctan x \end{array} \right\} dx$$

•
$$\int x^n \cdot \log_b x \, dx$$

En aquest vídeo s'explica la regla d'integració per parts:

Vídeo 7.2.1: *Mètode d'integració per parts* https://www.youtube.com/watch?v=lQQvE1lux4Q

Exemple 1

Calcula $\int x \ln x \, dx$

En aquesta integral $\ln x$ és fàcil de derivar i x d'integrar, per tant, feim les assigna-

cions
$$\int \ln x \cdot x dx = \begin{cases} u = \ln x & \to du = \frac{1}{2} dx \\ dv = x dx & \to v = \frac{x^2}{2} \end{cases} = \frac{x^2}{2} \ln x - \int \frac{x^2}{2} \cdot \frac{1}{x} dx = \frac{x^2}{2} \ln x - \frac{x^2}{2} \cdot \frac{1}{2} dx = \frac{x^2}{2} \ln x - \frac{x^2}{2} \cdot \frac{1}{2} dx = \frac{x^2}{2} \ln x - \frac{x^2}{2} \cdot \frac{1}{2} dx = \frac{x^2}{2} \ln x - \frac{x^2}{2} \cdot \frac{1}{2} dx = \frac{x^2}{2} \ln x - \frac{x^2}{2} \cdot \frac{1}{2} dx = \frac{x^2}{2} \ln x - \frac{x^2}{2} \cdot \frac{1}{2} dx = \frac{x^2}{2} \ln x - \frac{x^2}{2} \cdot \frac{1}{2} dx = \frac{x^2}{2} \ln x - \frac{x^2}{2} \cdot \frac{1}{2} dx = \frac{x^2}{2} \ln x - \frac{x^2}{2} \cdot \frac{1}{2} dx = \frac{x^2}{2} \ln x - \frac{x^2}{2} \cdot \frac{1}{2} dx = \frac{x^2}{2} \ln x - \frac{x^2}{2} \cdot \frac{1}{2} dx = \frac{x^2}{2} \ln x - \frac{x^2}{2} \cdot \frac{1}{2} dx = \frac{x^2}{2} \ln x - \frac{x^2}{2} \cdot \frac{1}{2} dx = \frac{x^2}{2} \ln x - \frac{x^2}{$$

$$\frac{x^2}{2}\ln x - \int \frac{x}{2} dx = \frac{x^2}{2}\ln x - x^2 + C$$

Exemple 2

Calcula $\int \arctan x \, dx$

Sembla que, en aquest cas, no hi ha producte de funcions quan realment el producte es pot expressar com $\arctan x \cdot 1$. Feim aquesta assignació en el mètode d'integració per parts

$$\int \underset{u}{\operatorname{arctg}} x \cdot 1 dx = \left\{ \begin{array}{l} u = \operatorname{arctg} x \to du = \frac{1}{1+x^2} dx \\ dv = 1 dx \to v = x \end{array} \right\}$$
$$= x \cdot \operatorname{arctg} x - \int \frac{1}{1+x^2} \cdot x dx = \cdots$$

Aquesta darrera integral és quasi-immediata, multiplicam i dividim entre 2

$$= x \cdot \arctan x - \frac{1}{2} \int \frac{1}{1+x^2} \cdot 2x dx = x \cdot \arctan x - \frac{1}{2} \ln(1+x^2) + C$$

Exercicis

- **1.** Calculeu $\int x \cdot e^x dx$ utilitzant la tècnica d'integració per parts.
- **2.** Calculeu $\int x^2 \cdot \ln x \, dx$ utilitzant la tècnica d'integració per parts.

1.2 Primitives de funcions racionals

Anomenam integral racional, a la integral del quocient de dos polinomis: $\int \frac{P(x)}{Q(x)} \, dx$

Procediment:

• La primera passa és comprovar els graus del numerador i el denominador. Si grau $P(x) \geq$ grau Q(x) haurem de fer la divisió de polinomis i

utilitzar la següent fórmula:

$$\underbrace{R(x)}_{P(x)} \qquad \frac{|Q(x)|}{C(x)} \qquad \to \qquad P(x) = C(x) \cdot Q(x) + R(x) \qquad (2)$$

Si la comprovació de la divisió anterior la dividim tota entre $Q(\boldsymbol{x})$ trobam

$$\frac{P(x)}{Q(x)} = C(x) + \frac{R(x)}{Q(x)} \tag{3}$$

• Calculam les solucions de l'equació Q(x)=0 i miram si estan repetides (arrels múltiples) o no (arrels simples).

Exemple 3

Calcula
$$\int \frac{x^2 + 1}{x + 2} \, dx$$

Com el el grau del numerador és més gran o igual que el denominador, efectuam la divisió de polinomis

$$\underbrace{\frac{x^2+1}{5}}_{x-2} \quad \frac{\underline{x+2}}{x-2} \quad \to \quad \frac{x^2+1}{x+2} = x-2 + \frac{5}{x+2}$$
 (4)

$$\int \frac{x^2 + 1}{x + 2} = \int (x - 2) \, dx + \int \frac{5}{x + 2} \, dx = \frac{x^2}{2} - 2x + 5 \ln|x + 2| + C$$

Exemple d'arrels simples

Volem calcular $\int \frac{x-2}{x^2+x} dx$

No cal efectuar la divisió perquè el grau del denominador supera al numerador. Resolem l'equació: $x^2+x=0 \to x=0, -1$. Cap d'elles està repetida i diem que són arrels simples. La factorització del denominador és Q(x)=x(x+1)=

Intentarem fer la descomposició següent

$$\frac{x-2}{x^2+x} = \frac{A}{x} + \frac{B}{x+1} \tag{5}$$

Efectuam la suma del segon membre

$$\frac{x-2}{x^2+x} = \frac{A(x+1) + Bx}{x(x+1)} \tag{6}$$

Donat que els denominadors són iguals, els numeradors també ho han d'ésser

$$x - 2 = A(x+1) + Bx (7)$$

Ara donam dos valors a x i intentam trobar que valen A i B

- Si x = 0: -2 = A
- Si x = -1: $-3 = -B \rightarrow B = 3$

Amb això hem aconseguit separar la integral en dues que si sabem fer:

$$\int \frac{x-2}{x^2+x} = \int \frac{-2}{x} \, dx + \int \frac{3}{x+1} \, dx = \cdots \tag{8}$$

Cadascuna de les integrals és un logaritme Neperià

$$\dots = -2\ln|x| + 3\ln|x + 1| + C \tag{9}$$

>

Vídeo 7.2.2: *Integració de funcions racionals* https://www.youtube.com/watch?v=klKHcqcA9Bw

Exemple d'arrels múltiples

Volem calcular $\int \frac{2x+5}{(x+3)^3} dx$

No cal efectuar la divisió perquè el grau del denominador supera al del numerador. Resolem l'equació: $(x+3)^3=0 \to \text{t\'e l'arrel } x=-3$ amb multiplicitat 3 (està repetida tres vegades).

En el cas de multiplicitat major a 1, es fa la descomposició de la forma següent

$$\frac{2x+5}{(x+3)^3} = \frac{A}{x+3} + \frac{B}{(x+3)^2} + \frac{B}{(x+3)^3}$$
 (10)

és a dir, afegim tants de termes com multiplicitat tingui l'arrel.

Efectuam la suma del segon membre

$$\frac{2x+5}{(x+3)^3} = \frac{A(x+3)^2 + B(x+3) + C}{(x+3)^3}$$
 (11)

Donat que els denominadors són iguals, els numeradors també ho han d'ésser

$$2x + 5 = A(x+3)^2 + B(x+3) + C$$
(12)

Ara donam tres valors a x per determinar els paràmetres A, B i C

- Si x = -3: -1 = C
- Si x = -2: $1 = A + B + C \rightarrow A + B = 2$
- Si x = -4: $-3 = A B + C \rightarrow A B = -2$

Resolem el sistema d'equacions per A i B i trobam que A=0 i B=2. Amb això hem aconseguit separar la integral en dues integrals més senzilles:

$$\int \frac{2x+5}{(x+3)^3} = 0 + \int \frac{2}{(x+3)^2} \, dx + \int \frac{-1}{(x+3)^3} \, dx = \dots$$
 (13)

Cadascuna de les integrals és de tipus potència, perquè $\frac{1}{(x+3)^n}=(x+3)^{-n}$

i la seva integral és $\frac{(x+3)^{-n+1}}{-n+1}$

$$\cdots = 2\frac{(x+3)^{-1}}{-1} - 1\frac{(x+3)^{-2}}{-2} + C$$
 (14)

la qual es pot arreglar com

$$\dots = -\frac{2}{x+3} + \frac{1}{2(x+3)^2} + C \tag{15}$$

Exercicis

- **3.** Calculau les següents integrals racionals:
 - $\mathbf{a)} \ \int \frac{x^2}{x-1} \, dx$
 - $\mathbf{b)} \int \frac{1}{x \cdot (x-2)} \, dx$
- **4.** Calculau la integral $\int \frac{2x^2+1}{x^3+4x^2+4x} dx$

2. Teorema fonamental del càlcul

Com hem dit a la introducció hi ha una estreta relació entre integració (càlcul de l'àrea davall una corba) i la derivació.

La funció àrea

Donada una funció f(x), contínua en [a,b], podem calcular $\int_a^c f(x)dx$ per a tot nombre $c \in [a,b]$.

Consideram la nova funció $F(x)=\int_a^x f(t)\,dt$ per a $x\in[a,b]$, que és l'àrea davall f entre a i x.

Simulació 3: https://www.geogebra.org/m/at39zggt : *Desplaçau el punt X per generar la funció àrea*

És fàcil comprovar que F(a)=0 i F(b) és la integral entre a i b. Llavors, la funció F(x) diu com canvia l'àrea a mesura que augmentam l'abscissa x. Si la funció f(x) és positiva, la funció àrea creix, mentre que si f(x) és negativa, la funció àrea decreix. Això ens duu a pensar que la derivada de la funció àrea ha d'estar relacionada amb la f(x). Aquesta relació l'expressam com un teorema.

Teorema fonamental del càlcul

Si f(x) és una funció contínua en [a,b], aleshores la funció $F(x)=\int_a^x f(t)dt$, per a $x\in [a,b]$ és derivable i, a més, compleix F'(x)=f(x).

Efectivament, comprovem que la funció $f(x)=\sin x$ per a $x\in[0,\pi]$ compleix el teorema. Per això, ens construïm la funció àrea

$$F(x) = \int_0^x \sin t dt = -\cos t \Big|_0^x = -\cos x - (-\cos 0) = 1 - \cos x$$

Podem comprovar que $F(0)=1-\cos 0=1-1=0$ i $F(\pi)=1-\cos \pi=1-(-1)=2$. Per qualsevol altre valor x, la funció F(x) dóna l'àrea entre 0 el valor d'abscissa x.

Si derivam la funció àrea $F'(x) = -(-\sin x) = \sin x$ cosa que assegura el teorema fonamental del càlcul, ja que F'(x) = f(x).

Exemple 4

Calcula els màxims i mínims de la funció $F(x) = \int_{1}^{x} (t^3 - 4t) dt$ definida per a $x \ge 1$.

Començam calculant una primitiva de la funció
$$\int (t^3-4t)\,dt = \frac{t^4}{4}-2t^2$$

Calculam la funció
$$F(x)$$
:
$$F(x) = \int_1^x (t^3 - t) \, dt = \frac{t^4}{4} - 2t^2 \bigg]_1^x = \left(\frac{x^4}{4} - 2x^2\right) - \left(\frac{1^4}{4} - 2\right) = \frac{x^4}{4} - 2x^2 + \frac{7}{4}$$
 Per calcular els extrems (màxims i mínims) de la funció necessitam calcular-ne la

Per calcular els extrems (màxims i mínims) de la funció necessitam calcular-ne la derivada

$$F'(x) = x^3 - 4x$$

Fixeu-vos que aquest resultat l'haguéssim pogut trobar més fàcilment aplicant el Teorema fonamental del càlcul $F'(x) = f(x) = x^3 - 4x$

Per trobar els extrems igualam la derivada a zero, $x^3 - 4x = 0 \rightarrow x = 0, x = \pm 2$ Calculam la segona derivada $F''(x) = 3x^2 - 4$

- x = -2, x = 0: No serveixen, queda fora del domini de la funció F
- x=2: $F''(2)=8>0 \rightarrow$ mínim relatiu

Per calcular l'ordenada del mínim, necessitam haver calculat la funció F(x)

•
$$x = 2$$
: $F(2) = \frac{-9}{4}$