Filter Summary Report: CG,TIA,simple,Z3

Generated by MacAnalog-Symbolix January 16, 2025

Contents

1 Examined H(z) for CG TIA simple Z3: Z_3

$$H(z) = Z_3$$

- 2 HP
- 3 BP
- **3.1** BP-1 $Z(s) = \left(\infty, \infty, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \infty, \infty, \infty\right)$

$H(s) = \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}$

 ${\bf Parameters:}$

Q:
$$C_3R_3\sqrt{\frac{1}{C_3L_3}}$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{1}{C_3R_3}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

- 4 LP
- 5 BS
- **5.1** BS-1 $Z(s) = \left(\infty, \infty, \frac{R_3(C_3L_3s^2+1)}{C_3L_3s^2+C_3R_3s+1}, \infty, \infty, \infty\right)$

 $H(s) = \frac{C_3 L_3 R_3 s^2 + R_3}{C_3 L_3 s^2 + C_3 R_3 s + 1}$

Parameters:

Q:
$$\frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3}$$
 wo: $\sqrt{\frac{1}{C_3L_3}}$ bandwidth: $\frac{R_3}{L_3}$ K-LP: R_3 K-HP: R_3 K-BP: 0 Qz: None Wz: $\sqrt{\frac{1}{C_3L_3}}$

- 6 **GE**
- 7 AP

8 INVALID-NUMER

9 INVALID-WZ

10 INVALID-ORDER

10.1 INVALID-ORDER-1 $Z(s) = (\infty, \infty, R_3, \infty, \infty, \infty)$

$$H(s) = R_3$$

10.2 INVALID-ORDER-2 $Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, \infty, \infty, \infty\right)$

$$H(s) = \frac{1}{C_3 s}$$

10.3 INVALID-ORDER-3 $Z(s) = \left(\infty, \infty, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \infty\right)$

$$H(s) = \frac{R_3}{C_3 R_3 s + 1}$$

10.4 INVALID-ORDER-4 $Z(s) = \left(\infty, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$

$$H(s) = \frac{C_3 R_3 s + 1}{C_3 s}$$

10.5 INVALID-ORDER-5 $Z(s) = \left(\infty, \infty, L_3 s + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$

$$H(s) = \frac{C_3 L_3 s^2 + 1}{C_3 s}$$

10.6 INVALID-ORDER-6 $Z(s) = \left(\infty, \infty, \frac{L_3s}{C_3L_3s^2+1}, \infty, \infty, \infty\right)$

$$H(s) = \frac{L_3 s}{C_3 L_3 s^2 + 1}$$

10.7 INVALID-ORDER-7 $Z(s) = \left(\infty, \infty, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$

$$H(s) = \frac{C_3 L_3 s^2 + C_3 R_3 s + 1}{C_3 s}$$

10.8 INVALID-ORDER-8 $Z(s) = \left(\infty, \infty, \frac{C_3L_3R_3s^2 + L_3s + R_3}{C_3L_3s^2 + 1}, \infty, \infty, \infty\right)$

$$H(s) = \frac{C_3 L_3 R_3 s^2 + L_3 s + R_3}{C_3 L_3 s^2 + 1}$$

11 PolynomialError