Compito di Matematica Discreta e Algebra Lineare 19 Giugno 2019, primo appello

	13 Glugilo 2013,	ришо аррено	
Cognome e nome:			
Numero di matricola	a:Corso e Aı	ıla:	
	rivere il nome su ogni foglio. I del foglio o sul retro lo svolgi		TVAMENTE nei riquadri le
Esercizio 1. Consi	deriamo il sistema di congrue	nze	
	$\int 7x \equiv 8 \pmod{m}$	od 12)	
	$\begin{cases} 7x \equiv 8 \pmod{15} \\ 15x \equiv 11 \pmod{15} \end{cases}$	$\pmod{32}$.	
Determinare: (a) l'in	nsieme delle soluzioni; (b) il nu	mero di soluzioni a	x che soddisfano $0 \le x \le 8000$.
	Risposta a)		Risposta b)

Esercizio 2. Sia $A = \begin{bmatrix} 2 & 3 \\ 2 & 0 \end{bmatrix}$ e sia $f : \mathbb{R}^2 \to \mathbb{R}^2$ l'applicazione lineare con matrice A rispetto alla base standard di \mathbb{R}^2 . Sia $\alpha = (v_1, v_2)$ la base di \mathbb{R}^2 costituita dai vettori $v_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ e $v_2 = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$. Determinare la matrice $[f]^{\alpha}_{\alpha}$ di f rispetto alla base α in partenza e in arrivo.

Risposta

Esercizio 3. Tra le matrici seguenti quali sono diagonalizzabili? Spiegare la risposta.

$$a) \quad \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \quad b) \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \quad c) \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

$$b) \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

$$c) \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

Risposta a)	Risposta b)	Risposta c)	

Esercizio 4. Sedici carte, di cui 4 di cuori, 4 di quadri, 4 di fiori e 4 di picche vengono distribuite fra 4 giocatori A,B,C,D. Ciascun giocatore riceve un insieme di quattro carte, non ordinato.

- a) In quanti modi si possono distribuire le carte fra i 4 giocatori?
- b) In quanto modi si possono distribuire le carte fra i 4 giocatori in modo che ciascuno riceva esattamente una carta di ogni seme?
- c) In quanti modi si possono distribuire le carte fra i 4 giocatori in modo che ciascuno riceva tutte e 4 le carte dello stesso seme?

Risposta a)	Risposta b)	Risposta c)