Unsupervised and Semi-Supervised learning

Assume we have data

$$\mathbf{Y} = [\mathbf{y}_1, \dots, \mathbf{y}_n]$$

The data can be

- Images
- Text
- Sound
- ► Set of numbers (climate, pressure ...)

We can think of (at least) 3 goals

- Cluster the data (unsupervised)
- Give meaning to each cluster, label it (semisupervised)
- ► Find a functional relation between the cluster and its label (supervised)

Example - rock conductivity verses porosity data

- How many types of rocks we have: Unsupervised learning
- What are their names (Granite, Basalt): Semisupervised learning
- ▶ Given σ , ϕ can we find a function $f(\sigma, \phi) = \text{rock type}$: Supervised learning

- Supervised learning requires a large labeled data set
- ▶ Gives an "explanation" (a model) between data and label
- Un/Semisupervised is more modest
- ► No model, just label
- Can be followed by supervised learning

- What kind of cars are in the picture
- What is their colour
- What is their size
- Which direction are they going

Types of learning

- Unsupervised learning may cluster cars in irrelevant manner
- Semi-supervised we label a few cars and ask the computer the label the rest
- ► In supervised learning someone labeled all the cars Supervised learning 5

In this module we focus on semisupervised learning and a bit on unsupervised learning.

Main questions

- Given a data set cluster the data into a few groups
- Assuming that a few data are labeled, label the rest

Un/Semisupervised learning: General principle

Main assumption:

Given the data set $\mathbf{Y} = [\mathbf{y}_1, \dots, \mathbf{y}_n]$, if \mathbf{y}_i is "close" to \mathbf{y}_j then they belong to the same class.

What is close?

The question is how to measure the closeness of two vectors in our space.

Assume a function $D(\mathbf{x}, \mathbf{y}) \to [0, \infty)$ with the following properties

- $D(\mathbf{x},\mathbf{y}) \geq 0$
- \triangleright $D(\mathbf{x}, \mathbf{y}) = 0 \rightarrow \mathbf{x} = \mathbf{y}$
- D(x,y) = D(y,x)
- $D(\mathbf{x}, \mathbf{z}) \leq D(\mathbf{x}, \mathbf{y}) + D(\mathbf{y}, \mathbf{z})$

In many cases we will not keep all the above but will keep most of them

Most obvious metric based on a norm

$$D(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|_{p} = \left(\sum |\mathbf{x}_{i} - \mathbf{y}_{i}|^{p}\right)^{\frac{1}{p}}$$

- ► Most used is the 2-norm (why?)
- ▶ $p = \infty$ is called the max norm (why?)

A simple modification weighted norms

$$D(\mathbf{x}, \mathbf{y}) = \left(\sum \mathbf{w}_i |\mathbf{x}_i - \mathbf{y}_i|^p\right)^{\frac{1}{p}}$$

where $\mathbf{w} > 0$ is a vector of positive weights.

Allow us to focus on some parts of the vectors and scale it if needed

Are these signals similar?

Measure is very sensitive to translation

Which of these images are closer

Many different definitions of distance based on the application

- Normed distance
- Hamming distance for strings
- Wasserstein metric for probabilities (also applied to images)
- ▶ Riemannian metrics for data that "lives" on manifolds

Choosing the right distance is the key for the application In many cases - chicken and egg. If we know the right distance then we know how to cluster.

We will use L_2 distance for conveniency.

Using metrics - graphical models

A graph is $\bullet \qquad \bullet$ A vertex set ${\mathcal V}$

Using metrics - graphical models

The adjacency matrix

The adjacency matrix is defined as

$$\mathbf{A}_{ij} = \begin{cases} 1 & \text{if there is an edge} \\ 0 & \text{otherwise} \\ 0 & \text{if } i = j \end{cases}$$

$$\mathbf{A} = egin{pmatrix} 0 & 1 & 1 & 1 & 1 \ 1 & 0 & 1 & 1 & 0 \ 1 & 1 & 0 & 1 & 1 \ 1 & 1 & 1 & 0 & 1 \ 1 & 0 & 1 & 1 & 0 \end{pmatrix}$$

The graph Laplacian

The degree matrix

$$\mathbf{D} = \operatorname{diag}\left(\sum_{i} \mathbf{A}ij\right)$$

$$\mathbf{A} = egin{pmatrix} 0 & 1 & 1 & 1 & 1 \ 1 & 0 & 1 & 1 & 0 \ 1 & 1 & 0 & 1 & 1 \ 1 & 1 & 1 & 0 & 1 \end{pmatrix}$$

The graph Laplacian

The graph Laplacian

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \end{pmatrix} \quad \mathbf{D} = \begin{pmatrix} 4 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 0 & 3 \end{pmatrix}$$

$$\mathbf{D} = \begin{pmatrix} 4 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 0 & 3 \end{pmatrix}$$

$$\mathbf{L} = \begin{pmatrix} 4 & -1 & -1 & -1 & -1 \\ -1 & 3 & -1 & -1 & 0 \\ -1 & -1 & 4 & -1 & -1 \\ -1 & -1 & -1 & 4 & -1 \\ -1 & 0 & -1 & -1 & 3 \end{pmatrix}$$

Note

$$(\mathbf{L}\mathbf{v})_i = \sum_{i \neq j} \mathbf{v}_i - \mathbf{v}_j \quad ext{and} \quad \mathbf{v}^{ op} \mathbf{L}\mathbf{v} = \sum_{e_{ij}} (\mathbf{v}_i - \mathbf{v}_j)^2$$

The weighted graph Laplacian

In the Laplacian above every neighbour gets the same weight. Define the weighted Laplacian, where each edge e_{ij} is associated with a weight $0 \le w_{ij}$.

$$(\mathbf{L}\mathbf{v})_i = \sum_{i \neq j} \mathbf{w}_{ij} (\mathbf{v}_i - \mathbf{v}_j) \quad \mathrm{and} \quad \mathbf{v}^{\top} \mathbf{L} \mathbf{v} = \sum_{\mathbf{e}_{ij}} \mathbf{w}_{ij} (\mathbf{v}_i - \mathbf{v}_j)^2$$

Typical choice for \mathbf{w} is

$$\mathbf{w}_{ij} = \exp\left(-\frac{\|\mathbf{v}_i - \mathbf{v}_j\|^2}{\sigma}\right)$$

More appropriate choice

$$\mathbf{w}_{ij} = \exp\left(-rac{D(\mathbf{v}_i, \mathbf{v}_j)}{\sigma}
ight)$$

The smallest eigenvalue is always 0 with eigenvector $\mathbf{v} = [1, \dots, 1]^{\top}$ (why)

The second to smallest eigenvalue that is not zero is the Fiedler eigenvalue.

It gets the (approximate) value 1 on the first group and -1 (approximately) on the second group.

The second eigenvalue is the solution to the optimization problem

$$\label{eq:linear_problem} \begin{aligned} \min_{\mathbf{u} \neq \gamma \mathbf{e}} & \quad \frac{1}{2} \mathbf{u}^\top \mathbf{L} \mathbf{u} \\ \mathrm{subject to} & \quad \|\mathbf{u}\| = 1 \end{aligned}$$

Interpretation

Try to find the non-constant vector with the minimal energy The solution should be "smooth" on the graph

The second eigenvalue is the solution to the optimization problem

$$\begin{aligned} & \underset{\mathbf{u} \neq \gamma \mathbf{e}}{\text{min}} & & \frac{1}{2} \mathbf{u}^{\top} \mathbf{L} \mathbf{u} \\ & \text{subject to} & & \|\mathbf{u}\| = 1 \end{aligned}$$

- ► For small problems use eig solver of a dense matrix
- ► For large problem use iterative methods inverse iteration, Krylov methods, randomized linear algebra

Power method

$$\mathbf{v}_k = \mathbf{L}^{-\dagger} \mathbf{u}_k \qquad \mathbf{u}_{k+1} = rac{\mathbf{v}_k}{\|\mathbf{v}_k\|}$$

Example

Can be very sensitive to parameters

- ► Number of neiboghrs
- \triangleright Choice of σ
- Distance measure

- In most cases it is possible to obtain a few labeled data
- ► Goal is to label the whole data given the labeled data
- Typically, results are much better and more robust than unsupervised learning

Assumption: we are given a set $\mathcal S$ where $\mathbf p_{\mathcal S}^{\mathrm{obs}}$ is the probability of each datum to belong to each class

Incorporating probabilities - the softmax function

- ightharpoonup $\mathbf{p}^{\mathrm{obs}}$ is a probability, $0 \leq \mathbf{p}_{i}^{\mathrm{obs}} \leq 1$ and $\sum \mathbf{p}^{\mathrm{obs}} = 1$.
- **u** is unbounded
- ▶ Define $\mathbf{p}(\mathbf{u}) = \frac{\exp(\mathbf{u})}{\sum \exp(\mathbf{u})}$
- ightharpoonup Use cross entropy to compare probabilities, $\mathbf{p}(\mathbf{u})$ and $\mathbf{p}^{\mathrm{obs}}$

$$loss(\mathbf{u}, \mathbf{p}^{\text{obs}}) = -\frac{1}{n} \mathbf{p}_{\text{obs}}^{\top} \log(\mathbf{p}(\mathbf{u}))$$

New goal - Fit the given labels **and** keep the vector smooth.

$$\min_{\mathbf{u}} \ \mathcal{E}(\mathbf{u}) = \ell oss(\mathbf{u}, \mathbf{p}^{obs}) + \frac{\alpha}{2} \mathbf{u}^{\mathsf{T}} \mathbf{L} \mathbf{u}$$

- $ightharpoonup \alpha$ tradeoff parameter
- Can be estimated using cross validation
- Solution using inexact Newton's method

Example - classifying nonlinear data

Reordered Graph Lap

Insurervised and Semi-Supervised learning – 26

Semisupervised learning - challenges

- Choice of distance function
- Choice of hyper parameters
- Naive complexity n^2
- Sparse linear algebra, preconditioning, eigenvalue solvers