2-Datamangement

Thibaut FABACHER

A rajouter/ Modifier

MEttre des exemples de jointures en sql Modifier la fin sur R

SQL

Le langage SQL

- Perme d'interroger un logiciel sgbdr (système de gestion de base de données)
- SGBR : MySQL, Oracle Database, SQLite...
- ! Différent SQL pour différente SGBR

Base de données relationnelle

- La relation, chaque ligne est unique
- Possède une clef unique

identifiant	masse	diamètre	couleur
1	151 g	$8.3~\mathrm{cm}$	rouge
3	$169~\mathrm{g}$	$9.1~\mathrm{cm}$	jaune
3	134g	$8.0~\mathrm{cm}$	jaune

Clefs

Intérêt des clefs

libellé	prix_au_kilo	maturation	goût
Ariane	3.19	tardive	sucré/acidulé
Gala	3.49	précoce	sucré
Reinette	3.19	mi-saison	sucré
Boskoop	2.99	mi-saison	acidulé
[]	[]	[]	[]

Intérêt des clefs

identifiant	masse	diamètre	couleur	nom_variété
14	142 g	$7.3~\mathrm{cm}$	rouge	Ariane
25	$182~\mathrm{g}$	$7.5~\mathrm{cm}$	rouge	Gala
16	$140 \mathrm{\ g}$	$7.9~\mathrm{cm}$	rouge	Ariane
[]	[]	[]	[]	[]

Intérêt des clefs

Intérêt des clefs

Pas de redondance pour le stockage

identifiant	masse	diamètre	couleur	nom_variété	prix_au_kilo	maturation	goût
1	151 g	8.3 cm	rouge	Ariane	3.19	tardive	sucré/acidulé
2	169 g	9.1 cm	jaune	Gala	3.49	précoce	sucré
3	134 g	8.0 cm	jaune	Gala	3.49	précoce	sucré

Table d'association

LE SQL

Langage pour interroger ces bases

```
SELECT *
FROM pommes ;
```

identifiant	masse	diamètre	couleur
1	151 g	$8.3~\mathrm{cm}$	rouge
2	$169 \mathrm{\ g}$	$9.1~\mathrm{cm}$	jaune
3	$134 \mathrm{\ g}$	$8.0~\mathrm{cm}$	jaune

LE SQL

Projection

```
SELECT identifiant, masse FROM
Pommes ;
```

identifiant	masse	diamètre	couleur
1	151 g	$8.3~\mathrm{cm}$	rouge
2	$169~\mathrm{g}$	$9.1~\mathrm{cm}$	jaune
3	$134~\mathrm{g}$	$8.0~\mathrm{cm}$	jaune

SQL

Restriction

```
SELECT * from
Pommes
Where identifiant =1;
```

identifiant	masse	diamètre	couleur
1	151 g	$8.3~\mathrm{cm}$	rouge
2	$169 \mathrm{\ g}$	$9.1~\mathrm{cm}$	jaune

identifiant	masse	diamètre	couleur
3	134 g	8.0 cm	jaune

SQL

Opérateur	Teste si
A = B	A égal à B
A <> B	A différent de B
A > B et A < B	A supérieur à B / A inférieur à B
A >= B et A <= B	A supérieur ou égal à B / A inférieur ou égal à B
A BETWEEN B AND C	A est compris entre B et C
A LIKE 'chaîne de caractères'	(nous verrons cet opérateur dans un prochain chapitre)
A IN (B1, B2, B3, etc.)	A est présent dans la liste (B1, B2, etc.)
A IS NULL	A n'a pas de valeur

• Restriction :

Opérateur disponible

• Opérateur logique :

OR, AND, NOT

Exercice

id_livre	titre	isbn_10	auteur	prix
1	Forteresse digitale	2709626306	Dan Brown	20.5
2	La jeune fille et la nuit	2253237620	Guillaume Musso	21.9
3	T'choupi se brosse les dents	2092589547	Thierry Courtin	5.7
4	La Dernière Chasse	2226439412	Jean-Christophe Grangé	22.9
5	Le Signal	2226319484	Maxime Chattam	23.9

Table 8: Table: Livre

Exercice

id_livre	titre	isbn_10	auteur	prix
1	Forteresse digitale	2709626306	Dan Brown	20.5
2	La jeune fille et la nuit	2253237620	Guillaume Musso	21.9
3	T'choupi se brosse les dents	2092589547	Thierry Courtin	5.7
4	La Dernière Chasse	2226439412	Jean-Christophe Grangé	22.9
5	Le Signal	2226319484	Maxime Chattam	23.9

Table 9: Table: Livre

Quelle requête utiliser pour afficher l'ensemble des enregistrements de la table ?

. . .

```
SELECT *
FROM livres;
```

id_livre	titre	isbn_10	auteur	prix
1	Forteresse digitale	2709626306	Dan Brown	20.5
2	La jeune fille et la nuit	2253237620	Guillaume Musso	21.9
3	T'choupi se brosse les dents	2092589547	Thierry Courtin	5.7
4	La Dernière Chasse	2226439412	Jean-Christophe Grangé	22.9
5	Le Signal	2226319484	Maxime Chattam	23.9

Table 10: Table: Livre

Quelle requête utiliser pour sélectionner uniquement les livres qui ont un ${f prix}$ strictement ${f sup\acute{e}rieur}$ à ${f 20}$?

. .

```
SELECT *
FROM livres
WHERE prix > 20;
```

Exercice

id_livre	titre	$isbn_10$	auteur	prix
1	Forteresse digitale	2709626306	Dan Brown	20.5
2	La jeune fille et la nuit	2253237620	Guillaume Musso	21.9
3	T'choupi se brosse les dents	2092589547	Thierry Courtin	5.7
4	La Dernière Chasse	2226439412	Jean-Christophe Grangé	22.9
5	Le Signal	2226319484	Maxime Chattam	23.9

Table 11: Table: Livre

Quelle requête utiliser pour récupérer les livres de la table qui ont **un prix compris entre 20 et 22** ?

. .

```
SELECT *
FROM livres
WHERE prix BETWEEN 20 AND 22;
```

Le SQL

Jointure entre les tables :

```
#
2 SELECT *
3 FROM pommes,
4 variete
5 WHERE pommes.nom_varieté =variete.libellé ;

1 #
2 SELECT *
3 FROM pommes
4 JOIN variete ON pommes.nom_varieté =variete.libellé ;
```

Les jointures en SQL

Les jointures en SQL

Les jointures en SQL

id_etudiant	prenom	nom
30	Joseph	Biblo
31	Paul	Bismuth
32	Jean	Michel
33	Ted	Bundy

id_etudiant	prenom	nom
34 35	Caroline Joséphine	

Table 12: Table : Etudiant

id	id_examen	id_etudiant	matiere	note
788	45	30	Histoire-Geographie	10.5
789	87	33	Mathématiques	14
790	87	34	Mathématiques	4
791	45	31	Histoire-Geographie	15.5
792	45	32	Histoire-Geographie	8
793	87	31	Mathématiques	14

Table 13: Table : Examen

id_etudiant	prenom	nom
30	Joseph	Biblo
31	Paul	Bismuth
32	Jean	Michel
33	Ted	Bundy
34	Caroline	Martinez
35	Joséphine	Henry

Table 14: Table : Etudiant

id	id_examen	id_etudiant	matiere	note
788	45	30	Histoire-Geographie	10.5
789	87	33	Mathématiques	14
790	87	34	Mathématiques	4
791	45	31	Histoire-Geographie	15.5
792	45	32	Histoire-Geographie	8

id	id_examen	id_etudiant	matiere	note
793	87	31	Mathématiques	14

Table 15: Table : Examen

Quelle requête utiliser pour afficher tous les enregistrement de la table examens avec en plus, si c'est possible, le prenom et le nom de l'étudiant ?

1 SELECT tbl_ex.*,
2 et.prenom,
3 et.nom
4 FROM examens tbl_ex
5 LEFT JOIN etudiants tbl_et ON tbl_ex.id_etudiant = tbl_et.id_etudiant;

id_etudiant	prenom	nom
30	Joseph	Biblo
31	Paul	Bismuth
32	Jean	Michel
33	Ted	Bundy
34	Caroline	Martinez
35	Joséphine	Henry

Table 16: Table : Etudiant

id	id_examen	id_etudiant	matiere	note
788	45	30	Histoire-Geographie	10.5
789	87	33	Mathématiques	14
790	87	34	Mathématiques	4
791	45	31	Histoire-Geographie	15.5
792	45	32	Histoire-Geographie	8
793	87	31	Mathématiques	14

Table 17: Table : Examen

Figure 1: Inner join

Figure 2: Left Join

Figure 3: Full join

Figure 4: Outer Join

Figure 5: Right Join

Quelle requête utiliser pour afficher les résultats d'histoire des étudiants qui ont un resultats ?

. . .

```
SELECT et.prenom,
et.nom,
ex.note
FROM etudiants tbl_et
INNER JOIN examens tbl_ex ON tbl_ex.id_etudiant = tbl_et.id_etudiant
WHERE ex.matiere = "Histoire-Geographie";
```

Data management

Les données

Les données sont des valeurs de variables quantitatives ou qualitatives appartenant à un ensemble de sujet.

Données Brutes

- Données disponible dans la base de données d'origine
- Preprocessing nécessaire pour les analyser
- Souvent dans des bases de données relationnelles

Comment mettre en forme des données ?

Notion de tidy data :

- 1 variable par colonne
- 1 une information par ligne
- si tables multiples, clefs de lien présente dans les tables
- 1 ligne avec des noms de colonnes, noms des variables
- 1 table par fichier

Données pour l'analyse

Souvent dans un fichier plat :

- 1 Individu par ligne
- Redondance d'information
- Nécessité de croiser des tables d'origine

Noms des variables

- En minuscule
- Sans accent
- Pas de doublons
- Débutent pas une lettre

Données

- Brutes : pas d'unité
- Descriptive: Vrai/faux, oui/non , 1/0
- Une donnée par variables
- Homogène : attention à la casse

Fichier descriptif

• Information précises sur les variables (unités de mesure)

Liste d'instruction:

Données brutes tidy

- L'idéal : un script R/python
- En entrée les données brutes
- En sortie les données propre
- Préciser les étapes supplémentaires dans ce script

Importer un fichier

```
# Le plus simple
read.csv2(...)
BDD<- read.csv2(...)

## D'autres solutions
library(xlsx)
read.xlsx(...)</pre>
```

Regarder la structure d'un fichier

Analyser les types de vriables

Différents types de variables : - Quantitatives

- Qualitatives
- Dates
- Texte Libre

Variables Quantitatives

- Stockées sous un format numérique
- Discrètes ou continues
- Possibilité de convertir de «character» à numérique :

1 #
2 as.numeric(var)

Variables qualitatives

- Variables à plusieurs modalités :
 - Nominales
 - Ordinales
- Représenter sous forme de facteur dans r

#
2 as.factor(var)

- Eviter les variables factoriel à plus de 5 modalités
- Cas spécifique si deux modalités : variables binomiales

Variables qualitatives

Questions à choix multiples dans un questionnaire

Maladies du patient Diabètes; Infarctus Infarctus; Covid

Variables qualitatives

Peuvent toujours être séparées en n variables binaires (n = nombre de modalités)

Maladies du patient	Diabète	Infarctus	Covid
Diabète; Infarctus	Oui	Oui	Non
Infarctus; Covid	Non	Oui	Oui

Dates

• Format anglais : mois/jour/année

• Format Français : jour/mois/année

• Stockées sous forme de nombre par rapport à une date 1er janvier 1900 dans excel

R

Installation de package

```
install.package(...)

# aide pour les fonctions
?install.package

install.packages("readxl")
```

Chargement du package + de la base de donnée

```
library("readxl")

# Chemin du fichier, remplacer "\" par "/" ou "\\"
read_excel("~chemin du fichier~/data1.xlsx")
```

Chargement de la base de donnée

Structure de la base de donnée

```
dim(data1)
```

Structure de la base de donnée

```
$ Dernière page : num [1:36] 2 2 2 2 NA 2 2 2 2 2 ...
$ Langue de départ : chr [1:36] "fr" "fr" "fr" "fr" ...
$ Tête de série : num [1:36] 4.88e+08 1.86e+09 2.10e+09 1.67e+09 1.97e+09 ...
$ Date de lancement : chr [1:36] "2021-07-19 20:57:49" "2021-07-19 21:18:42" "2021-07-19 20:57:49" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31:35" "2021-07-19 21:31" "2021-07-19 21:31" "2021-07-19 21:31" "2021-07-19 21:31" "2021-07-19
```

Structure de la base de donnée

head(data1)

```
# A tibble: 6 x 45
  `ID de la réponse` `Date de soumission` `Dernière page` `Langue de départ`
               <dbl> <chr>
                                                    <dbl> <chr>
1
                  45 2021-07-19 21:16:11
                                                         2 fr
                  46 2021-07-19 21:31:35
2
                                                        2 fr
3
                  47 2021-07-19 21:47:58
                                                         2 fr
4
                  48 2021-07-19 22:04:06
                                                        2 fr
                  49 <NA>
                                                       NA fr
                  50 2021-07-27 18:57:00
                                                         2 fr
# ... with 41 more variables: `Tête de série` <dbl>, `Date de lancement` <chr>,
   `Date de la dernière action` <chr>, ...8 <lgl>, `ID :` <dbl>,
    `Sexe du medcin traitant` <chr>, `Date de la première consultation` <chr>,
    `Délais de prise en charge (mois)` <chr>, `Délais de RDV (mois)` <dbl>,
    `Medecin adresseur` <chr>, `Pathologie lié au travail ? [AT]` <chr>,
    `Pathologie lié au travail ? [Commentaire]...16` <dbl>,
    `Pathologie lié au travail ? [AT non reconnu]` <chr>, ...
```

Noms présents dans la base de données

```
names(data1)[1:10]
```

```
[1] "ID de la réponse" "Date de soumission"
[3] "Dernière page" "Langue de départ"
[5] "Tête de série" "Date de lancement"
[7] "Date de la dernière action" "...8"
[9] "ID :" "Sexe du medcin traitant"
```

notion de vecteur

```
c(1,2,3,4)

[1] 1 2 3 4

c("a","b","c")

[1] "a" "b" "c"

c("a",1,"c")
```

notion de vecteur

```
vecteur<- c("a","b","c")
vecteur2<- vecteur
vecteur3<- c(vecteur, vecteur2)</pre>
```

Variable d'une base de données

```
data1$`Pathologie lié au travail ? [AT non reconnu]`

[1] "Non" "Non" "Non" "Non" NA "Non" "Non"
```

```
# A tibble: 36 \times 1
   `ID de la réponse`
                  <dbl>
 1
                     45
 2
                     46
 3
                     47
                     48
 5
                     49
 6
                     50
 7
                     51
 8
                     52
 9
                     53
10
                     54
# ... with 26 more rows
```

Sélection des variables

base R

```
data1$`ID de la réponse`
data1[1,1:3]
data1[,1:3]
data1[,-1]
data1[,-c(1,3,4)]

data1[,c("ID de la réponse")]
```

Sélection des variables

base R

```
names(data1)=="ID.de.la.r?ponse"
```

- [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
- [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
- [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
- [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE

```
data1[,!(names(data1)=="ID.de.la.r?ponse")]
data1[,!(names(data1)%in%c(var1, var2 ...)]
```

Dplyr

• Version classique :

. .

```
allerauboulot(preparer(dejeuner(jemeleve(moi))))
  var1<- jemeleve(moi)
  var2<- dejeuner(var1)</pre>
```

• Version Dplyr :

```
moi%>%jemeleve%>%dejeuner%>%preparer%>%allerauboulot
data1%>%dim
data1%>%names%>%dput
```

Selection de variable, Dplyr

```
library(dplyr)

data1 %>% select(var1)
data1 %>% select(c(var1, var2, var3))
data1%>%select(-var1)

Attachement du package : 'dplyr'

Les objets suivants sont masqués depuis 'package:stats':
   filter, lag

Les objets suivants sont masqués depuis 'package:base':
   intersect, setdiff, setequal, union
```

Changer le type de données :

base R

```
as.numeric(c('1','2','3'))

[1] 1 2 3

as.character(c(1,2,3))

[1] "1" "2" "3"

as.factor(c(2,3,4))

[1] 2 3 4
Levels: 2 3 4

# Attention pas de as.numeric directement sur un as.factor as.factor(c(4,3,2))%>%as.character()%>%as.numeric()
[1] 4 3 2
```

Changer le type de données :

base R

```
data1$Sexe.du.medcin.traitant<-as.factor(data1$Sexe.du.medcin.traitant)
data1$Medecin.adresseur<- as.factor(data1$Medecin.adresseur)</pre>
```

Changer le type de données :

dplyr

Modification des variables

Base R

Modification des variables

dplyr

Remplacement des données manquantes

base R

```
data[,indice][is.na(data[,indice])]<-0</pre>
```

dplyr

extraction de termes

```
library(stringr)
data1$fibromyalgie <-str_detect(data1$var1,"fibromyalgie")</pre>
```

Joindre base de données

```
basefinal<-base1%>%left_join(base2,by =c("id" = "id"))
basefinal<-base1%>%inner_join(base2,by =c("id" = "id"))
basefinal<-base1%>%right_join(base2,by =c("id" = "id"))
basefinal<-base1%>%outer_join(base2,by =c("id" = "id"))
```

Ecrire la base de données finales

```
write.csv2(basefinal, "C:/Users/enseignant/Desktop/basefinal.csv")
```

