COMMONWEALTH OF AUSTRALIA

Copyright Regulations 1969

WARNING

This material has been reproduced and communicated to you by and on behalf of The University of New South Wales pursuant to Part VB of the Copyright Act 1968 (the Act).

The material in this communication may be subject to copyright under this Act. Any further reproduction or communication of this material by you may be the subject of copyright protection under the Act.

Do not remove this notice.

Lecture 3 - Revision

https://kahoot.it/

✓ Pose

$${}^{A}\xi_{B}$$

- Transformation Operator
- $\bullet \quad {}^{A}\boldsymbol{p} = {}^{A}R_{B} \, {}^{B}\boldsymbol{p} + {}^{A}\boldsymbol{p}_{Bo}$

✓ Rotation

- Euler angle, Roll-Pitch-Yaw
- Rotation about current axes and fixed axes
- rotx(),roty(),rotz() in RVC Toolbox

✓ Homogeneous Transformations

$${}^{A}T_{B} = \begin{bmatrix} {}^{A}R_{B} & {}^{A}\boldsymbol{p}_{Bo} \\ 0 \ 0 \ 0 & 1 \end{bmatrix}$$

$$SE(3) = \mathbb{R}^3 \times SO(3)$$

MTRN4230 Robotics

Lecture 4

Denavit-Hartenberg Convention

Hoang-Phuong **Phan** – T2 2023

Learning objectives

- ☐ Understand the DH Convention
- ☐ Define the DH parameters
- ☐ Solve the forward kinematics of serial manipulators

UR5e						
Kinematics	theta [rad]	a [m]	d [m]	alpha [rad]		
Joint 1	0	0	0.1625	π/2		
Joint 2	0	-0.425	0	0		
Joint 3	0	-0.3922	0	0		
Joint 4	0	0	0.1333	π/2		
Joint 5	0	0	0.0997	-π/2		
Joint 6	0	0	0.0996	0		

Why D-H Convention?

☐ In many kinematic problems, by properly defining coordinate frames, we can significantly simplify the solutions

Constant acceleration

$$s_x = v_o t + \frac{at^2}{2}$$
$$s_y = 0$$

$$s_y = 0$$

$$s_{x} = ?$$

$$s_y = ?$$

Why D-H Convention?

D-H Convention

- ☐ A common convention used to attach coordinate frames to the links of a robot manipulator
- ☐ Its aim was to standardize coordinate frames for spatial linkages
- ☐ Parameters from the DH Convention can be used to transform one coordinate frame to another in a robot arm manipulator

D-H Convention

$$^{i-1}T_i = R_{(i-1)}(\theta_i).Q_{(i-1)}(d_i).Q_i(a_i).R_i(\alpha_i)$$

- ☐ First two terms: the previous axis
- ☐ Last two terms: the new axis

Transformation Rules for Robot Arms

- \square A serial robot with n joints will has n+1 links since each joint connects 2 links
- □ Number the **link** from **0** to **n**, starting from the base (link 0)
- ☐ Number the joint from 1 to n
- \square Joint variable q_i :
 - If revolute, $q_i = \theta_i$ (angle of rotation)
 - If prismatic, $q_i = d_i$, (joint displacement)

Step 1 – Setup Z axis for all frames

- \square Identify all the joint axes, and label them as, $z_0, z_1 \dots, z_{n-1}$
- $\Box z_i$ is the actuation axis of joint i+1
- ☐ Rotation axis for revolute joint, or axis of translation for prismatic joint

E.g., z_0 is axis of actuation of joint 1, z_1 is axis of actuation for joint 2

Step 2 – Define Frame Z₀

- \Box The origin O_0 of the base frame can be anywhere along the z_0 axis
- \square Choose x_0 and y_0 to satisfy the right-hand rule

- $\square z_i$ are defined in step 1 \rightarrow only need to define x_i , y_i and the origin O_i
- \square Since y_i can be defined from x_i and z_i using the right-hand frame \rightarrow only need to define x_i and O_i
- \Box The construction of x_i and O_i depends on the relative position between z_{i-1} and z_i
- \Box Case 3: z_{i-1} and z_i intersect

\square Case 1: z_{i-1} and z_i are not coplanar

Let consider the home position first (i.e., θ_i =0), then we will add joint variables (θ_i) later

• The <u>common normal</u> between z_{i-1} and z_i defines x_i

• The point where x_i and z_i intersect is the origin O_i of frame $\{i\}$

Transformation from {i-1} to {i} has 4 steps:

Rotate by θ_i^* about z_{i-1} ; Translate by d_i along z_{i-1} ; Translate by a_i along x_i ; Rotate by α_i along x_i

\square Case 1: z_{i-1} and z_i are not coplanar

Link	Joint angle	Link offset	Link length	Link twist
	(degree)	(cm)	(cm)	(degree)
i	$ heta_i^*$	d_i^*	a_i	α_i

Robot actuation: Joint (i-1)th rotates an angle of θ_i (for revolute joint) or translate a distance of d_i (for prismatic joint). We need to add this joint variable to the DH table

i-1 is a revolute joint

Link	Joint angle (degree)	Link offset (cm)	Link length (cm)	Link twist (degree)
i	$\theta_i + \theta_i^*$	d_i^*	a_i	α_i

i-1 is a prismatic joint

Link	Joint angle (degree)	Link offset (cm)	Link length (cm)	Link twist (degree)
i	$ heta_i^*$	$d_i + d_i^*$	a_i	α_i

\square Case 1: z_{i-1} and z_i are not coplanar

Example

Link	θ_i (degree)	d_i (cm)	a_i (cm)	α_i (degree)
i	40+ 180	15	25	90

\square Case 2: z_{i-1} is parallel to z_i

• There are infinitive common normals between z_{i-1} and z_i

• A <u>common method</u> to choose x_i is the common normal that **pass through** O_{i-1}

• O_i is the intersect between the selected x_i and z_i

Link	θ_i (degree)	d_i (cm)	a_i (cm)	α_i (degree)
i	$oldsymbol{ heta}_i^* + oldsymbol{ heta}_i$	0	a_i	0

$$H = R_{z_{i-1}}(\theta_i^* + \theta_i). T_{x_i}(a_i)$$

(or 180 if you choose the opposite direction)

 \square Case 2: z_{i-1} is parallel to z_i

□ Example

Link	θ_i (degree)	d_i (cm)	a_i (cm)	α_i (degree)
1	$oldsymbol{ heta}_1$	0	a_1	0

In this example (before the robot move an angle of θ_1), we have $\theta_1^*=0$

\square Case 3: z_{i-1} intersects z_i

- x_i is chosen normal to the plane formed by z_{i-1} and z_i . The direction of x_i is arbitrary
- Generally, O_i is the intersect between z_{i-1} and z_i

Link	θ_i (degree)	d_i (cm)	a_i (cm)	α_i (degree)
i	$\theta_i^* + \boldsymbol{\theta_i}$	$\boldsymbol{d_i^*}$	0	α_i

- \square Case 3: z_{i-1} intersects z_i
- Example

Link	$ heta_i$ (degree)	d_i (cm)	a_i (cm)	α_i (degree)
i	30	20	0	90

Step 4 – Construct the end-effector frame

- ☐ The final coordinate system {n} is the end-effector or tool frame
 - There are several approaches to define the tool frame (in some cases, can be similar to frame {n-1})
 - In Spong' book, z_n : approach direction (the gripper approaches an object)
 - y_n : sliding direction (open and close robot finger)
 - x_n : right-hand rule

Step 5 Complete the DH table & apply the chain rule

Link	θ_i	d_i	a_i	α_i
0	0	0	0	0
1	$oldsymbol{ heta_1}$	d_1	a_1	α_1
2	$ heta_2$	d_2	a_2	α_2
n	$\boldsymbol{\theta_n}$	d_n	a_n	α_n

$$^{i-1}T_i = \begin{pmatrix} \cos\theta_i & -\sin\theta_i\cos\alpha_i & \sin\theta_i\sin\alpha_i & a_i\cos\theta_i \\ \sin\theta_i & \cos\theta_i\cos\alpha_i & -\cos\theta_i\sin\alpha_i & a_i\sin\theta_i \\ 0 & \sin\alpha_i & \cos\alpha_i & d_i \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

• $^{i-1}T_i$ represents the product of four basic transformations.

Note: In many textbooks, for simplification, $\theta_i^* + \theta_i$ is written as θ_i , which includes offset angle inside.

Please remember to check if there is any offset angle at the home position

Step 5 Complete the DH table & apply the chain rule

☐ Transformation matrix from Frame {0} to Frame {n}:

$${}^{0}T_{n} = {}^{0}T_{1} {}^{1}T_{2} {}^{n-2}T_{n-1} {}^{n-1}T_{n}$$

as the position and orientation of the tool frame w.r.t the base frame.

☐ A vector relative to the tool frame can be expressed in base coordinates as:

$$^{\mathbf{0}}\mathbf{p} = {}^{0}T_{n}{}^{n}\mathbf{p}$$

If $l_1 = 3$, $l_2 = 4$, $\theta_1 = 25$, $\theta_2 = 40$, $\theta_3 = 0$, and the end effector tool point is considered to be at (0,0,0) of frame 2 (i.e, $l_3 = 0$).

What is the position of the end effector in frame 0 coordinates?

$${}^{0}p = {}^{0}T_{n}{}^{n}p$$
, where ${}^{n}p = (0\ 0\ 0)$

- \square Identify all the joint axes, z_0, z_1, z_2 (z_{i-1} is the axis of revolution or translation of joint i)
- \square Select the origin O_0 of the base frame
- $\square x_0$ and y_0 to satisfy the right-hand rule

- \square Frame {1}: As z_1 is parallel to z_0 , x_1 is a common normal between z_0 and z_1 ,
- x_1 in the direction from z_0 to z_1 that passthrough O_0
- O_1 is the intersect between x_1 and z_1

i	$\boldsymbol{\theta_i}$	d_i	a_i	α_i
1	25	0	3	0

- ☐ Apply the same procedure for frame {2}
- \square z_1 is parallel to z_2 ; hence, x_2 is a common normal between z_1 and z_2

i	$oldsymbol{ heta}_i$	d_i	a_i	α_i
2	40	0	4	0

- \square Establish the end-effector frame $O_3x_3y_3z_3$
- \square z_3 is parallel to z_2 , and and x_3 is a common normal between z_2 and z_3 .

i	$oldsymbol{ heta_i}$	d_i	a_i	α_i
3	$\theta_3 = 0$	0	$l_3 = 0$	0

DH Parameter Table

i	$oldsymbol{ heta}_i$	d_i	a_i	α_i
1	25	0	3	0
2	40	0	4	0
3	0	0	0	0

$${}^{0}p = \begin{pmatrix} 0.906 & -0.423 & 0 & 2.718 \\ 0.423 & 0.906 & 0 & 1.268 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0.766 & -0.643 & 0 & 3.064 \\ 0.643 & 0.766 & 0 & 2.571 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

$${}^{0}p = \begin{pmatrix} 4.409 \\ 4.893 \\ 0 \\ 1 \end{pmatrix}$$

Using RVC toolbox for transformation matrix

$$^{i-1}T_i = R_{(i-1)}(\theta_i).Q_{(i-1)}(d_i).Q_i(a_i).R_i(\alpha_i)$$

- Rotation matrix in 3D: rotx(), roty(), and rotz() for x, y z axis respectively
- Homogeneous transformation (HT) matrix for rotation: trotz() for z axis, and trotx() for x axis
- HT matrix for translation: transl([x y z])

Quiz: Using RVC toolbox for transformation matrix

What is the transformation matrix $\binom{i-1}{i}$ between frame $\{i-1\}$ and $\{i\}$?

$$^{i-1}T_i = R_{(i-1)}(\theta_i).Q_{(i-1)}(d_i).Q_i(a_i).R_i(\alpha_i)$$

Hint: Trotx, transl

Answer

startup_rvc

%%% Convert degree to radian %%%

theta_i = deg2rad(theta_degree); alpha_i = deg2rad(alpha_degree);

$$^{i-1}T_i = \text{trotz}(\text{theta_i})*\text{transl}(\text{d_i})*\text{transl}(\text{a_i})*\text{trotx}(\text{alpha_i})$$

Using RVC toolbox in Example 1

```
startup_rvc
%%%% Convert degree to radian %%%%
theta = deg2rad([25 40 0]);

%%%% Create three link of the robot %%%

L(1) = Link('revolute', 'd', d1, 'a', a1, 'alpha', alpha1, 'offset', 0); % Link 1.
L(2) = Link('revolute', 'd', d2, 'a', a2, 'alpha', alpha2, 'offset', 0); % Link 2.
L(3) = Link('revolute', 'd', d3, 'a', a3, 'alpha', alpha3, 'offset', 0); % Link 3.
```

i	$\boldsymbol{\theta_i}$	d_i	a_i	α_i
1	25	0	3	0
2	40	0	4	0
3	0	0	0	0

%%%%% Connect all links in a series %%%%

robot= SerialLink(L, 'name', ' three link');

%%%%% Forward kinematic %%%%

Matrix= robot.fkine([theta]);

(set θ_i =0 if there is no offset angle at the home position)

i	$oldsymbol{ heta_i}$	d_i	a_i	α_i
1	$oldsymbol{ heta}_1$	d_1	a_1	0
2	$oldsymbol{ heta}_2$	0	a_2	180
3	0	d_3	0	0

Example 2: SCARA Robot

i	$\boldsymbol{\theta_i}$	d_i	a_i	α_i
1	$oldsymbol{ heta_1}$	d_1	a_1	0
2	$oldsymbol{ heta}_2$	0	a_2	180
3	0	d_3	0	0

☐ Hint using RVC

- (i) Use the 'link' function as the previous example
- (ii) robot= SerialLink(L, 'name', 'SCARA');
- (iii) f= robot.fkine([theta1 theta2 0]); % theta3=0 for revolute joint

i	$oldsymbol{ heta_i}$	d_i	a_i	α_i
1	$oldsymbol{ heta}_1$	d_1	0	90
2	$oldsymbol{ heta}_2$	0	a_2	0
3	$\boldsymbol{\theta}_3$	0	a_3	0

- ☐ Hint using RVC
- (i) Use the 'link' function as the previous example
- (ii) robot= SerialLink(L, 'name', 'Articulated');
- (iii) f= robot.fkine([theta1 theta2 theta3]);

i	$oldsymbol{ heta_i}$	d_i	a_i	α_i	${}^{0}T_{3} =$	
	10	32	0	90	-0.4162 -0.8925	0.1736 0.30
	50	0	11	0		0.9848 0.05
	65	0	16	0	0.9063 -0.4226 0 0	0 54.9 0 1

All combined

i	$oldsymbol{ heta_i}$	d_i	a_i	α_i
1	θ_1	d_1	0	0
2	0	d_2	0	-90
3	0	d_3	0	0

$${}^{0}T_{3} = {}^{0}T_{1}{}^{1}T_{2}{}^{2}T_{3}$$

- ☐ Hint using RVC
- (i) Use the 'link' function as the previous example
- (ii) robot= SerialLink(L, 'name', 'cylindrical');
- (iii) f= robot.fkine([theta1 theta2 theta3]);

Exar	nple $ heta$	₁ = 6	8°		0			
i	$oldsymbol{ heta_i}$	d_i	a_i	α_i	$^{0}T_{3} =$			
1	68	8	0	0	0.3746		-0.9272	
2	0	6	0	-90	0.9272	0 -1	0.3746 0	2.997 14
3	0	8	0	0	0	0	0	1

Example 5: Cylindrical robot-offset angle

i	$oldsymbol{ heta}_i$	d_i	a_i	$lpha_i$
1	$\theta_1 + 180$	d_1	0	0
2	0	d_2	0	-90
3	0	d_3	0	0

Example $\theta_1 = 68^{\circ}$

$${}^{0}T_{3} = {}^{-0.3746} {}^{0} {}^{0.9272} {}^{7.417} {}^{0}$$
 ${}^{0}T_{3} = {}^{-0.9272} {}^{0} {}^{-0.3746} {}^{-2.997} {}^{-1} {}^{0} {}^{0} {}^{14} {}^{0}$

Lecture 3: Summary

i	$oldsymbol{ heta}_i$	d_i	a_i	α_i
0	0	0	0	0
1	$ heta_1$	d_1	a_1	$lpha_1$
2	θ_2	d_2	a_2	α_2
3	$ heta_3$	d_3	a_3	α_3

RVC Toolbox is very useful to build the robot & calculate the matrix!

Next week

- ☐ Lecture 5: Inverse Kinematics and The Jacobian
- ☐ Marking ROBOT2 during lab sessions
- □ Quiz1 (70 minutes on Moodle Monday 26th from 16pm)
 - Time: 70 minutes on Moodle. Please start before 16:15pm
 - From weeks 1 to 4 (except slides 52-59 in Lecture 3)
 - Seven questions, including multiple choice and calculation questions
 - Can use Matlab for your calculation (e.g., RVC Toolbox)
 - Write your answer with 4 decimal places

Self practice

Find the DH parameters for UR5e (forward kinematics of MTRN4230's robots)

UR5e							
Kinematics	theta [rad]	a [m]	d [m]	alpha [rad]			
Joint 1	0	0	0.1625	π/2			
Joint 2	0	-0.425	0	0			
Joint 3	0	-0.3922	0	0			
Joint 4	0	0	0.1333	π/2			
Joint 5	0	0	0.0997	-π/2			
Joint 6	0	0	0.0996	0			

