# Nathan Jacobs

Dept. of Computer Science University of Kentucky Lexington, KY, 40506 (859) 257-5254

jacobs@cs.uky.edu http://jacobsn.github.io/ http://mvrl.cs.uky.edu/ 0000-0002-4242-8967 (ORCID)

## **Areas of Expertise**

Computer Vision, Deep Learning, Remote Sensing, Medical Imaging, Multimodal Integration

### Education

2005-2010 Ph.D. in Computer Science Washington University in St. Louis

Adviser: Robert Pless

Thesis: Calibrating and Using the Global Network of Outdoor Webcams

1995-1999 B.S. in Computer Science (Minor in Mathematics) University of Missouri

Summa Cum Laude with Honors

## **Appointments and Affiliations**

**Associate Professor** Dept. of Computer Science, University of Kentucky

Lexington, KY 2016-present

**Director of Graduate Studies (Data Science)** Dept. of Computer Science, University of Kentucky

2020-present Lexington, KY

Multidomain Vision Research, LLC Owner

2019-present Lexington, KY

Institute for Biomedical Informatics, University of Kentucky Member

2017-present Lexington, KY

**Affiliated Faculty** Unmanned Systems Research Consortium, University of Kentucky

2013-present Lexington, KY

co-Department Chair (interim) Dept. of Computer Science, University of Kentucky 2019-2020 Lexington, KY

**Affiliated Faculty** Center for Visualization and Virtual Environments, University of Kentucky

2010-2019 Lexington, KY

**Visiting Research Scientist** Orbital Insight, Inc. 2017-2018 (sabbatical) Mountain View, CA

**Assistant Professor** Dept. of Computer Science, University of Kentucky

2010-2016 Lexington, KY

**Computer Vision Research Intern** ObjectVideo, Inc. 2008 (May-Aug) Reston, VA

**Graduate Research Assistant** Dept. of Computer Science & Engineering, Washington University

2005-2010

St. Louis, MO

### **Awards**

- Outstanding Reviewer Recognition (top 10%) [NeurIPS 2020]
- Outstanding Reviewer Recognition [ICCV 2019]
- University of Kentucky, College of Engineering Dean's Award for Excellence in Research [2018]
- Google Faculty Research Award [2018]
- Outstanding Reviewer Recognition [CVPR 2017]
- National Science Foundation CAREER Award [2016]
- Google Faculty Research Award [2016]
- Best Student Paper Award at Applied Imagery Pattern Recognition [2009]
- Ph.D. Forum Prize at the ACM/IEEE International Conference on Distributed Smart Cameras [2009]
- Best Talk Award for the Doctoral Student Seminar, Department of Computer Science, the Washington University in St. Louis, [Fall 2006]

### **Publications**

### **Journal Articles**

- [1] Y. Su, Y. Zhang, G. Liang, et al., "A deep learning view of the census of galaxy clusters in IllustrisTNG," Monthly Notices of the Royal Astronomical Society (MNRAS), 2020, Impact factor: 5.356. DOI: 10.1093/mnras/staa2690.
- [2] T. C. Hammond, X. Xing, C. Wang, *et al.*, "Beta-amyloid and tau drive early Alzheimer's disease decline while glucose hypometabolism drives late decline," *Communications Biology*, vol. 3, no. 1, p. 352, Jul. 2020. DOI: 10.1038/s42003-020-1079-x.
- [3] J. Zhu, A. Nolte, N. Jacobs, and M. Ye, "Machine learning in identifying karst sinkholes from LiDAR-derived topographic depressions in the Bluegrass region of Kentucky," *Journal of Hydrology*, Sep. 2020, Impact factor: 4.405. DOI: 10.1016/j.jhydrol.2020.125049.
- [4] X. Wang, G. Liang, Y. Zhang, H. Blanton, Z. Bessinger, and N. Jacobs, "Inconsistent performance of deep learning models on mammogram classification," *Journal of the American College of Radiology*, 2020, Impact factor: 3.785. DOI: 10.1016/j.jacr.2020.01.006.
- [5] R. V. Maretto, L. M. G. Fonseca, N. B. Jacobs, T. S. Körting, H. N. Bendini, and L. L. Parente, "Spatio-temporal deep learning approach to map deforestation in Amazon rainforest," *IEEE Geoscience and Remote Sensing Letters*, vol. 18, no. 5, pp. 771–775, 2021, Impact factor: 3.534. DOI: 10.1109/LGRS.2020.2986407.
- [6] H. Hamraz, N. B. Jacobs, M. A. Contreras, and C. H. Clark, "Deep Learning for Conifer/Deciduous Classification of Airborne LiDAR 3D Point Clouds Representing Individual Trees," *ISPRS Journal of Photogrammetry and Remote Sensing*, vol. 158, pp. 219–230, 2019, Impact factor: 6.946, ISSN: 0924-2716. DOI: 10.1016/j.isprsjprs.2019.10.011.
- [7] R. P. Mihail, G. Liang, and N. Jacobs, "Automatic hand skeletal shape estimation from radiographs," *IEEE Transactions on NanoBioscience*, 2019, Impact factor: 1.927. DOI: 10.1109/TNB.2019.2911026.
- [8] H. Sajid, N. Jacobs, and S.-c. S. Cheung, "Motion and appearance based background subtraction for freely moving cameras," *Signal Processing: Image Communication*, 2019, Impact factor: 2.814. DOI: 10.1016/j.image.2019.03.003.

- [9] X. Zhang, Y. Zhang, E. Han, *et al.*, "Classification of whole mammogram and tomosynthesis images using deep convolutional neural networks," *IEEE Transactions on NanoBioscience*, 2018, Impact factor: 1.927. DOI: 10.1109/TNB.2018.2845103.
- [10] H. Sajid, S.-c. S. Cheung, and N. Jacobs, "Appearance based background subtraction for PTZ cameras," *Signal Processing: Image Communication*, Jul. 2016, Impact factor: 1.602. DOI: 10.1016/j.image.2016.07.008.
- [11] N. Jacobs, S. Workman, and R. Souvenir, "Cloudmaps from static ground-view video," *Image and Vision Computing (IVC)*, vol. 52, pp. 154–166, Aug. 2016, Impact factor: 1.766. DOI: 10.1016/j.imavis.2016.05.013.
- [12] M. T. Islam, C. Greenwell, R. Souvenir, and N. Jacobs, "Large-scale geo-facial image analysis," *EURASIP Journal on Image and Video Processing (JIVP)*, vol. 2015, no. 1, pp. 1–14, Jun. 2015, Impact factor: 1.060. DOI: 10.1186/s13640-015-0070-9.
- [13] S. Workman, R. Souvenir, and N. Jacobs, "Scene shape estimation from multiple partly cloudy days," *Computer Vision and Image Understanding (CVIU)*, pp. 116–129, Apr. 2015, Impact factor: 1.54. DOI: 10.1016/j.cviu.2014.10.002.
- [14] N. Jacobs, A. Abrams, and R. Pless, "Two cloud-based cues for estimating scene structure and camera calibration," *IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)*, vol. 35, no. 10, pp. 2526–2538, 2013, Impact factor: 4.795, ISSN: 0162-8828. DOI: 10.1109/TPAMI.2013.55.
- [15] N. Jacobs and R. Pless, "Time scales in video surveillance," *IEEE Transactions on Circuits and Systems for Video Technology (CSVT)*, vol. 18, no. 8, pp. 1106–1113, 2008, Impact factor: 2.615. DOI: 10.1109/TCSVT. 2008.928215.

### **Patents**

- [1] N. Jacobs and S. Workman, *Network architecture for generating a labeled overhead image*, US Patent App. 16/045,606, Jan. 2020.
- [2] J. A. G. Whitney, J. T. Fessler, Z. C. N. Kratzer, N. B. Jacobs, A. M. Whitney, et al., Method and system for estimating error in predicted distance using RSSI signature, Jan. 2016.

### **Book Chapters**

[1] R. P. Mihail, N. Jacobs, J. Goldsmith, and K. Lohr, "Using visual analytics to inform rheumatoid arthritis patient choices," in *Serious Games Analytics*, ser. Advances in Game-Based Learning, C. S. Loh, Y. Sheng, and D. Ifenthaler, Eds., Springer International Publishing, 2015, pp. 211–231, ISBN: 978-3-319-05833-7. DOI: 10.1007/978-3-319-05834-4\_9.

#### **Refereed Conference Papers**

- [1] B. Brodie, S. Khanal, M. U. Rafique, C. Greenwell, and N. Jacobs, "Hierarchical probabilistic embeddings for multi-view image classification," in *IEEE International Geoscience and Remote Sensing Symposium (IGARSS)*, 2021.
- [2] D. Jones and N. Jacobs, "Intensity harmonization for airborne LiDAR," in *IEEE International Geoscience and Remote Sensing Symposium (IGARSS)*, 2021.
- [3] Y. Zhang, G. Liang, Y. Su, and N. Jacobs, "Multi-branch attention networks for classifying galaxy clusters," in *International Conference on Pattern Recognition (ICPR 2020)*, Acceptance rate: 28.47%, Jan. 2021.

- [4] M. U. Rafique, H. Blanton, N. Snavely, and N. Jacobs, "Generative Appearance Flow: A hybrid approach for outdoor view synthesis," in *British Machine Vision Conference (BMVC)*, Sep. 2020.
- [5] G. Liang, Y. Zhang, X. Wang, and N. Jacobs, "Improved trainable calibration method for neural networks," in *British Machine Vision Conference (BMVC)*, Sep. 2020.
- [6] A. Hadzic, G. Christie, J. Freeman, *et al.*, "Estimating displaced populations from overhead," in *IEEE International Geoscience and Remote Sensing Symposium (IGARSS)*, 2020.
- [7] S. Workman, M. U. Rafique, H. Blanton, C. Greenwell, and N. Jacobs, "Single image cloud detection via multi-image fusion," in *IEEE International Geoscience and Remote Sensing Symposium (IGARSS)*, (oral), 2020.
- [8] H. Blanton, S. Grate, and N. Jacobs, "Surface modeling for airborne LiDAR," in *IEEE International Geoscience and Remote Sensing Symposium (IGARSS)*, (oral), 2020.
- [9] G. Liang, X. Wang, Y. Zhang, and N. Jacobs, "Weakly-supervised self-training for breast cancer localization," in *International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)*, (oral), 2020. DOI: 10.1109/EMBC44109.2020.9176617.
- [10] T. Salem, S. Workman, and N. Jacobs, "Learning a dynamic map of visual appearance," in *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, Acceptance rate: 25%, 2020. DOI: 10.1109/CVPR42600.2020.01245.
- [11] S. Workman and N. Jacobs, "Dynamic traffic modeling from overhead imagery," in *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, Acceptance rate: 5.7% (oral), 2020. DOI: 10.1109/CVPR42600.2020.01233.
- [12] Y. Zhang, X. Wang, H. Blanton, G. Liang, X. Xing, and N. Jacobs, "2d convolutional neural networks for 3d digital breast tomosynthesis classification," in *IEEE International Conference on Bioinformatics and Biomedicine* (*BIBM*), Acceptance rate: 18% (oral), 2019. DOI: 10.1109/BIBM47256.2019.8983097.
- [13] G. Liang, X. Wang, Y. Zhang, et al., "Joint 2d-3d breast cancer classification," in *IEEE International Conference on Bioinformatics and Biomedicine (BIBM)*, Acceptance rate: 18% (oral), 2019. DOI: 10.1109/BIBM47256.2019.8983048.
- [14] T. Salem, C. Greenwell, H. Blanton, and N. Jacobs, "Learning to map nearly anything," in *IEEE International Geoscience and Remote Sensing Symposium (IGARSS)*, (oral), 2019. DOI: 10.1109/IGARSS.2019.8900646.
- [15] W. Song, T. Salem, H. Blanton, and N. Jacobs, "Remote estimation of free-flow speeds," in *IEEE International Geoscience and Remote Sensing Symposium (IGARSS)*, (oral), 2019. DOI: 10.1109/IGARSS.2019.
- [16] M. U. Rafique and N. Jacobs, "Weakly supervised building segmentation from aerial images," in *IEEE International Geoscience and Remote Sensing Symposium (IGARSS)*, 2019. DOI: 10.1109/IGARSS.2019.8898812.
- [17] G. Liang, S. Fouladvand, J. Zhang, M. A. Brooks, N. Jacobs, and J. Chen, "GANai: Standardizing CT images using generative adversarial network with alternative improvement," in *IEEE International Conference on Healthcare Informatics (ICHI)*, 2019. DOI: 10.1109/ICHI.2019.8904763.
- [18] Z. Bessinger and N. Jacobs, "A generative model of worldwide facial appearance," in *IEEE Winter Conference on Applications of Computer Vision (WACV)*, (oral), 2019. DOI: 10.1109/WACV.2019.00172.
- [19] R. P. Mihail and N. Jacobs, "Automatic hand skeletal shape estimation from radiographs," in *IEEE International Conference on Bioinformatics and Biomedicine (BIBM)*, Acceptance rate: 19.6%, 2018. DOI: 10.1109/BIBM.2018.8621196.
- [20] N. Jacobs, A. Kraft, M. U. Rafique, and R. D. Sharma, "A weakly supervised approach for estimating spatial density functions from high-resolution satellite imagery," in *ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM SIGSPATIAL)*, Acceptance rate: 22.5% (oral), 2018. DOI: 10.1145/3274895.3274934.

- [21] S. Schulter, M. Zhai, N. Jacobs, and M. Chandraker, "Learning to look around objects for top-view representations of outdoor scenes," in *European Conference on Computer Vision (ECCV)*, Acceptance rate: 31.8%, 2018. DOI: 10.1007/978-3-030-01267-0 48.
- [22] M. Zhai, T. Salem, C. Greenwell, S. Workman, R. Pless, and N. Jacobs, "Learning geo-temporal image features," in *British Machine Vision Conference (BMVC)*, Acceptance rate: 29.5%, 2018.
- [23] W. Song, S. Workman, A. Hadzic, et al., "FARSA: Fully automated roadway safety assessment," in *IEEE Winter Conference on Applications of Computer Vision (WACV)*, 2018. DOI: 10.1109/WACV.2018.00063.
- [24] C. Greenwell, S. Workman, and N. Jacobs, "What goes where: Predicting object distributions from above," in *IEEE International Geoscience and Remote Sensing Symposium (IGARSS)*, 2018. DOI: 10.1109/IGARSS. 2018.8519251.
- [25] T. Salem, M. Zhai, S. Workman, and N. Jacobs, "A multimodal approach to mapping soundscapes," in *IEEE International Geoscience and Remote Sensing Symposium (IGARSS)*, 2018. DOI: 10.1109/IGARSS.2018.8517977.
- [26] D. Jones, J. Bopaiah, F. Alghamedy, *et al.*, "Polypharmacology within the full kinome: A machine learning approach," in *AMIA Informatics Summit*, 2018.
- [27] X. Zhang, Y. Zhang, E. Han, *et al.*, "Whole mammogram image classification with convolutional neural networks," in *IEEE International Conference on Bioinformatics and Biomedicine (BIBM)*, Acceptance rate: 19%, 2017. DOI: 10.1109/BIBM.2017.8217738.
- [28] S. Workman, M. Zhai, D. Crandall, and N. Jacobs, "A unified model for near and remote sensing," in *IEEE International Conference on Computer Vision (ICCV)*, Acceptance rate: 28.9%, 2017. DOI: 10.1109/ICCV. 2017.293.
- [29] S. Workman, R. Souvenir, and N. Jacobs, "Understanding and mapping natural beauty," in *IEEE International Conference on Computer Vision (ICCV)*, Acceptance rate: 28.9%, 2017. DOI: 10.1109/ICCV.2017.596.
- [30] N. Vo, N. Jacobs, and J. Hays, "Revisiting IM2GPS in the deep learning era," in *IEEE International Conference on Computer Vision (ICCV)*, Acceptance rate: 28.9%, 2017. DOI: 10.1109/ICCV.2017.286.
- [31] M. Zhai, Z. Bessinger, S. Workman, and N. Jacobs, "Predicting ground-level scene layout from aerial imagery," in *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, Acceptance rate: 29.2%, 2017. DOI: 10.1109/CVPR.2017.440.
- [32] Z. Bessinger, C. Stauffer, and N. Jacobs, "Who goes there? Approaches to mapping facial appearance diversity," in ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM SIGSPATIAL), 2016. DOI: 10.1145/2996913.2996997.
- [33] S. Workman, M. Zhai, and N. Jacobs, "Horizon lines in the wild," in *British Machine Vision Conference* (*BMVC*), Acceptance rate: 39.4%, 2016.
- [34] M. Zhai, S. Workman, and N. Jacobs, "Camera geo-calibration using an MCMC approach," in *IEEE International Conference on Image Processing (ICIP)*, Acceptance rate: 45%, 2016. DOI: 10.1109/ICIP.2016.7532905.
- [35] Z. Bessinger and N. Jacobs, "Quantifying curb appeal," in *IEEE International Conference on Image Processing (ICIP)*, Acceptance rate: 45%, 2016. DOI: 10.1109/ICIP.2016.7533189.
- [36] M. Zhai, S. Workman, and N. Jacobs, "Detecting vanishing points using global image context in a non-Manhattan world," in *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, Acceptance rate: 29.9%, 2016. DOI: 10.1109/CVPR.2016.610.
- [37] T. Salem, S. Workman, M. Zhai, and N. Jacobs, "Analyzing human appearance as a cue for dating images," in *IEEE Winter Conference on Applications of Computer Vision (WACV)*, Acceptance rate: 42.3%, 2016, pp. 1–8. DOI: 10.1109/WACV.2016.7477678.

- [38] R. Baltenberger, M. Zhai, C. Greenwell, S. Workman, and N. Jacobs, "A fast method for estimating transient scene properties," in *IEEE Winter Conference on Applications of Computer Vision (WACV)*, Acceptance rate: 42.3%, 2016, pp. 1–8. DOI: 10.1109/WACV.2016.7477713.
- [39] R. P. Mihail, S. Workman, Z. Bessinger, and N. Jacobs, "Sky segmentation in the wild: An empirical study," in *IEEE Winter Conference on Applications of Computer Vision (WACV)*, Acceptance rate: 42.3%, 2016, pp. 1–6. DOI: 10.1109/WACV.2016.7477637.
- [40] S. Workman, R. Souvenir, and N. Jacobs, "Wide-area image geolocalization with aerial reference imagery," in *IEEE International Conference on Computer Vision (ICCV)*, Acceptance rate: 30.3%, 2015, pp. 1–9. DOI: 10.1109/ICCV.2015.451.
- [41] C. Murdock, N. Jacobs, and R. Pless, "Building dynamic cloud maps from the ground up," in *IEEE International Conference on Computer Vision (ICCV)*, Acceptance rate: 30.3%, 2015, pp. 1–9. DOI: 10.1109/ICCV. 2015.85.
- [42] S. Workman, C. Greenwell, M. Zhai, R. Baltenberger, and N. Jacobs, "DeepFocal: A method for direct focal length estimation," in *IEEE International Conference on Image Processing (ICIP)*, Acceptance rate: 45% (overall), 2015. DOI: 10.1109/ICIP.2015.7351024.
- [43] M. T. Islam, S. Workman, and N. Jacobs, "Face2GPS: Estimating geographic location from facial features," in *IEEE International Conference on Image Processing (ICIP)*, Acceptance rate: 45% (overall), 2015. DOI: 10.1109/ICIP.2015.7351072.
- [44] S. Workman, R. P. Mihail, and N. Jacobs, "A Pot of Gold: Rainbows as a calibration cue," in *European Conference on Computer Vision (ECCV)*, Acceptance rate: 25%, 2014, pp. 820–835. DOI: 10.1007/978-3-319-10602-1\_53.
- [45] F. Shi, M. Zhai, D. Duncan, and N. Jacobs, "MPCA: EM-based PCA for mixed-size image datasets," in *IEEE International Conference on Image Processing (ICIP)*, Acceptance rate: 40%, 2014, pp. 1807–1811. DOI: 10.1109/ICIP.2014.7025362.
- [46] A. Whitney, J. Fessler, J. Parker, and N. Jacobs, "Received signal strength indication signature for passive UHF tags," in *IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)*, 2014, pp. 1183–1187. DOI: 10.1109/AIM.2014.6878242.
- [47] M. Zhai, F. Shi, D. Duncan, and N. Jacobs, "Covariance-based PCA for multi-size data," in *International Conference on Pattern Recognition (ICPR)*, Acceptance rate: 56.2%, 2014, pp. 1603–1608. DOI: 10.1109/ICPR. 2014.284.
- [48] M. T. Islam, S. Workman, H. Wu, R. Souvenir, and N. Jacobs, "Exploring the geo-dependence of human face appearance," in *IEEE Winter Conference on Applications of Computer Vision (WACV)*, Acceptance rate: 40%, 2014, pp. 1042–1049. DOI: 10.1109/WACV.2014.6835989.
- [49] N. Jacobs, J. King, D. Bowers, and R. Souvenir, "Estimating cloud maps from outdoor image sequences," in *IEEE Winter Conference on Applications of Computer Vision (WACV)*, Acceptance rate: 40%, 2014, pp. 961–968. DOI: 10.1109/WACV.2014.6836000.
- [50] R. P. Mihail, G. Blomquist, and N. Jacobs, "A CRF approach to fitting a generalized hand skeleton model," in *IEEE Winter Conference on Applications of Computer Vision (WACV)*, Acceptance rate: 40%, 2014, pp. 409–416. DOI: 10.1109/WACV.2014.6836070.
- [51] N. Jacobs, S. Workman, and R. Souvenir, "Scene geometry from several partly cloudy days," in *ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC)*, 2013, pp. 1–6. DOI: 10.1109/ICDSC. 2013.6778227.
- [52] R. P. Mihail, J. Goldsmith, N. Jacobs, and J. Jaromczyk, "Teaching graphics for games using Microsoft XNA," in *International Conference on Computer Games (CGAMES)*, Best Student Paper Award (runner-up), 2013, pp. 36–40. DOI: 10.1145/2538862.2538898.

- [53] N. Jacobs, M. T. Islam, and S. Workman, "Cloud motion as a calibration cue," in *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, Acceptance rate: 26.2%, 2013, pp. 1344–1351. DOI: 10.1109/CVPR.2013.177.
- [54] M. Dixon, A. Abrams, N. Jacobs, and R. Pless, "On analyzing video with very small motions," in *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, Acceptance rate: 26.4%, 2011, pp. 1–8. DOI: 10.1109/CVPR.2011.5995703.
- [55] A. Abrams, N. Fridrich, N. Jacobs, and R. Pless, "Participatory integration of live webcams into GIS," in *International Conference on Computing for Geospatial Research and Applications (COM.GEO)*, (oral), 2010, pp. 1–8. DOI: 10.1145/1823854.1823867.
- [56] N. Jacobs, B. Bies, and R. Pless, "Using cloud shadows to infer scene structure and camera calibration," in *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, Acceptance rate: 4.5% (oral), Jun. 2010, pp. 1102–1109. DOI: 10.1109/CVPR.2010.5540093.
- [57] N. Jacobs, S. Schuh, and R. Pless, "Compressive sensing and differential image motion estimation," in *IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)*, Acceptance rate = 10% (oral), Mar. 2010, pp. 718–721. DOI: 10.1109/ICASSP.2010.5495053.
- [58] N. Jacobs, W. Burgin, N. Fridrich, *et al.*, "The global network of outdoor webcams: Properties and applications," in *ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM SIGSPATIAL)*, Acceptance rate: 20.9%, Nov. 2009, pp. 111–120. DOI: 10.1145/1653771.1653789.
- [59] M. Dixon, N. Jacobs, and R. Pless, "An efficient system for vehicle tracking in multi-camera networks," in *ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC)*, Sep. 2009, pp. 1–8. DOI: 10.1109/ICDSC.2009.5289383.
- [60] N. Jacobs, S. Satkin, N. Roman, R. Speyer, and R. Pless, "Geolocating static cameras," in *IEEE International Conference on Computer Vision (ICCV)*, Acceptance rate: 23%, Oct. 2007, pp. 1–6. DOI: 10.1109/ICCV. 2007.4408995.
- [61] N. Jacobs, N. Roman, and R. Pless, "Consistent temporal variations in many outdoor scenes," in *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, Acceptance rate: 23.4%, Jun. 2007, pp. 1–6. DOI: 10.1109/CVPR.2007.383258.
- [62] T. Anderson, A. Hussam, B. Plummer, and N. Jacobs, "Pie charts for visualizing query term frequency in search results," English, in *International Conference on Asian Digital Libraries (ICADL)*, 2002. DOI: 10.1007/3-540-36227-4 52.
- [63] A. Hussam, T. Anderson, N. Jacobs, D. Eckhoff, A. Merayyan, and Y. Yang, "Semantic highlighting: Enhancing search engine display and web document interactivity," in *IFIP Conference on Human-Computer Interaction* (INTERACT), Sep. 1999. DOI: 10.1007/3-540-36227-4\_52.

### **Workshop Papers**

- [1] X. Xing, G. Liang, H. Blanton, *et al.*, "Dynamic image for 3d MRI image Alzheimer's disease classification," in *ECCV Workshop on BioImage Computing (BIC)*, (oral), 2020.
- [2] H. Blanton, C. Greenwell, S. Workman, and N. Jacobs, "Extending absolute pose regression to multiple scenes," in *Joint Workshop on Long-Term Visual Localization, Visual Odometry and Geometric and Learning-based SLAM (CVPR Workshop)*, 2020.
- [3] A. Hadzic, H. Blanton, W. Song, M. Chen, S. Workman, and N. Jacobs, "RasterNet: Modeling free-flow speed using lidar and overhead imagery," in *EARTHVISION: Large Scale Computer Vision for Remote Sensing Imagery*, Acceptance rate: 26%, 2020. DOI: 10.1109/CVPRW50498.2020.00112.
- [4] Y. Zhang, G. Liang, T. Salem, and N. Jacobs, "Defense-PointNet: Protecting pointnet against adversarial attacks," in *The Next Frontier of Big Data From LiDAR Workshop (co-located with IEEE Big Data)*, 2019.

- [5] M. U. Rafique, H. Blanton, and N. Jacobs, "Weakly supervised fusion of multiple overhead images," in *IEEE/ISPRS Workshop: Large Scale Computer Vision for Remote Sensing (EARTHVISION)*, Acceptance rate: 23.5%, 2019. DOI: 10.1109/CVPRW.2019.00189.
- [6] S. Workman and N. Jacobs, "On the location dependence of convolutional neural network features," in *IEEE/ISPRS Workshop: Looking from above: When Earth observation meets vision (EARTHVISION)*, Acceptance rate: 30%, 2015, pp. 1–9. DOI: 10.1109/CVPRW.2015.7301385.
- [7] C. Greenwell, S. Spurlock, R. Souvenir, and N. Jacobs, "GeoFaceExplorer: Exploring the geo-dependence of facial attributes," in *ACM SIGSPATIAL International Workshop on Crowdsourced and Volunteered Geographic Information (GEOCROWD)*, 2014, pp. 32–37. DOI: 10.1145/2676440.2676443.
- [8] M. T. Islam, N. Jacobs, H. Wu, and R. Souvenir, "Images+Weather: Collection, validation, and refinement," in *IEEE CVPR Workshop on Ground Truth*, Acceptance rate: 67%, 2013, pp. 1–7.
- [9] C. Murdock, N. Jacobs, and R. Pless, "Webcam2Satellite: Estimating cloud maps from webcam imagery," in *IEEE Workshop on Applications of Computer Vision (WACV)*, Acceptance rate: 40%, 2013, pp. 214–221. DOI: 10.1109/WACV.2013.6475021.
- [10] R. P. Mihail, N. Jacobs, and J. Goldsmith, "Real time gesture recognition with 2 Kinect sensors," in *International Conference on Image Processing, Computer Vision, and Pattern Recognition (IPCV)*, 2012, pp. 1–7.
- [11] A. Abrams, J. Tucek, N. Jacobs, and R. Pless, "LOST: Longterm observation of scenes (with tracks)," in *IEEE Workshop on Applications of Computer Vision (WACV)*, Acceptance rate: 44%, 2012, pp. 297–304. DOI: 10. 1109/WACV.2012.6163032.
- [12] N. Jacobs, K. Miskell, and R. Pless, "Webcam geo-localization using aggregate light levels," in *IEEE Workshop on Applications of Computer Vision (WACV)*, (oral), 2011, pp. 132–138. DOI: 10.1109/WACV.2011.5711494.
- [13] N. Jacobs, R. Souvenir, and R. Pless, "Passive Vision: The global webcam imaging network," in *IEEE Applied Imagery and Pattern Recognition (AIPR)*, Best Student Paper, 2009, pp. 1–8. DOI: 10.1109/AIPR.2009. 5466314.
- [14] R. Pless, N. Jacobs, M. Dixon, *et al.*, "Persistence and Tracking: Putting vehicles and trajectories in context," in *IEEE Applied Imagery and Pattern Recognition (AIPR)*, 2009. DOI: 10.1109/AIPR.2009.5466307.
- [15] N. Jacobs, M. Dixon, S. Satkin, and R. Pless, "Efficient tracking of many objects in structured environments," in *IEEE ICCV Workshop on Visual Surveillance*, Oct. 2009, pp. 1161–1168. DOI: 10.1109/ICCVW.2009. 5457477.
- [16] N. Jacobs and R. Pless, "Calibrating and using the global network of outdoor webcams," in *ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC)*, Winner PhD Forum Prize, Sep. 2009, pp. 1–2. DOI: 10.1109/ICDSC.2009.5289404.
- [17] N. Jacobs, W. Burgin, R. Speyer, D. Ross, and R. Pless, "Adventures in archiving and using three years of webcam images," in *IEEE CVPR Workshop on Internet Vision*, Jun. 2009, pp. 39–46. DOI: 10.1109/CVPRW. 2009.5204185.
- [18] N. Jacobs, M. Dixon, and R. Pless, "Location-specific transition distributions for tracking," in *IEEE Workshop on Motion and Video Computing (WMVC)*, Acceptance rate: 33.3%, Jan. 2008. DOI: 10.1109/WMVC.2008. 4544061.
- [19] N. Jacobs, N. Roman, and R. Pless, "Toward fully automatic geo-location and geo-orientation of static outdoor cameras," in *IEEE Workshop on Applications of Computer Vision (WACV)*, Acceptance rate: 33.3%, Jan. 2008, pp. 1–6. DOI: 10.1109/WACV.2008.4544040.
- [20] N. Jacobs and R. Pless, "Shape Background Modeling: The shape of things that came," in *IEEE Workshop on Motion and Video Computing (WMVC)*, Feb. 2007, pp. 1–6. DOI: 10.1109/WMVC.2007.35.
- [21] —, "Real-time constant memory visual summaries for surveillance," in *ACM International Workshop on Visual Surveillance and Sensor Networks (VSSN)*, Oct. 2006. DOI: 10.1145/1178782.1178805.

[22] M. Dixon, N. Jacobs, and R. Pless, "Finding minimal parameterizations of cylindrical image manifolds," in *IEEE CVPR Workshop on Perceptual Organization in Computer Vision (POCV)*, Jun. 2006, pp. 1–8. DOI: 10.1109/CVPRW.2006.82.

#### **Abstracts**

- [1] G. Liang, Y. Su, S.-C. Lin, Y. Zhang, Y. Zhang, and N. Jacobs, "Optical wavelength guided self-supervised featurelearning for galaxy cluster richness estimate," in *Workshop on Machine Learning and the Physical Sciences at the 34th Conference on Neural Information Processing Systems*, Dec. 2020.
- [2] M. Chen, A. Hadzic, W. Song, and N. Jacobs, "Applications of deep machine learning to highway safety and usage assessment," in *Transportation Research Board Workshop (Sponsored by AED50)*, (oral), Jan. 2021.
- [3] G. Liang, Y. Zhang, and N. Jacobs, "Neural network calibration for medical imaging classification using DCA regularization," in *ICML 2020 workshop on Uncertainty and Robustness in Deep Learning (UDL)*, 2020.
- [4] C. Greenwell, S. Workman, and N. Jacobs, "Implicit land use mapping using social media imagery," in *IEEE Applied Imagery and Pattern Recognition (AIPR)*, (oral), 2019. DOI: 10.1109/AIPR47015.2019.9174570.
- [5] T. Hammond, X. Xing, N. Jacobs, and A.-L. Lin, "Phase-dependent importance of amyloid-beta, phosphorylated-tau, and hypometabolism in determining mild cognitive impairment and Alzheimer's disease: A machine learning study," in *Alzheimer's Disease Therapeutics: Alternatives to Amyloid*, 2019.
- [6] Y. Zhang, G. Liang, N. Jacobs, and X. Wang, "Unsupervised domain adaptation for mammogram image classification: A promising tool for model generalization," in *Conference on Machine Intelligence in Medical Imaging (CMIMI)*, (oral), 2019.
- [7] G. Liang, N. Jacobs, and X. Wang, "Training deep learning models as radiologists: Breast cancer classification using combined whole 2d mammography and full volume digital breast tomosynthesis," in *Radiological Society of North America (RSNA)*, (oral), 2019.
- [8] J. Zhu, A. M. Nolte, N. Jacobs, and M. Ye, "Incorporating machine learning with LiDAR for delineating sinkholes," in *Kentucky Water Resources Annual Symposium*, 2019.
- [9] G. Liang, N. Jacobs, J. Liu, K. Luo, W. Owen, and X. Wang, "Translational relevance of performance of deep learning models on mammograms," in *SBI/ACR Breast Imaging Symposium*, 2019.
- [10] G. Liang, X. Wang, and N. Jacobs, "Evaluating the publicly available mammography datasets for deep learning model training," in *SBI/ACR Breast Imaging Symposium*, 2018.
- [11] D. Jones, N. Jacobs, and S. Ellingson, "Learning deep feature representations for kinase polypharmacology," in *ACM Richard Tapia Celebration of Diversity in Computing Conference*, 2018.
- [12] W. Song, T. Salem, N. Jacobs, and M. Johnson, "Detecting the presence of bird vocalizations in audio segments using a convolutional neural network architecture," in *International Symposium on Acoustic Communication by Animals*, 2017.
- [13] N. Jacobs, S. Workman, and M. Zhai, "Crossview convolutional networks," in *IEEE Applied Imagery and Pattern Recognition (AIPR)*, (oral), 2016. DOI: 10.1109/AIPR.2016.8010593.
- [14] J. D. Smith, R. Baltenberger, S. Workman, and N. Jacobs, "User-in-the-loop calibration and mensuration," in *National Conference on Undergraduate Research (NCUR)*, 2014.
- [15] X. Zhou, S. Workman, M. T. Islam, N. Jacobs, and J. Griffioen, "Cyber infrastructure for the VOEIS project," in *Symposium in the Mathematical, Statistical and Computer Sciences*, Best Student Presentation, 2013.
- [16] S. Workman, J. Knochelmann, N. Jacobs, D. S. White, and R. Hauer, "Registration and visualization of scientific aerial imagery at Kentucky Lake," in *Kentucky EPSCoR Conference*, 2012.
- [17] E. Welty, T. Pfeffer, S. O'Neel, and N. Jacobs, "Calving dynamics of the Columbia Glacier, AK (2000-2011 update)," in *Workshop on the Dynamics and Mass Budget of Arctic Glaciers*, 2012.

- [18] P. Wang, S. Bhattacharyya, D. White, and N. Jacobs, "Visualization of Kentucky Lake," in *Kentucky EPSCoR Conference*, 2011.
- [19] T. Milliman, K. Hufkins, I. Lavine, *et al.*, "The PhenoCam Website: Adventures in "crowd-sourcing" data collection, distribution and analysis," in *American Geophysical Union Annual Meeting*, 2011.

## **Technical Reports**

- [1] D. Tuia, R. Roscher, J. D. Wegner, N. Jacobs, X. X. Zhu, and G. Camps-Valls, "Towards a collective agenda on ai for earth science data analysis," *arXiv*, vol. preprint 2104.05107 [cs.CV], 2021.
- [2] R. Padilha, T. Salem, S. Workman, F. A. Andaló, A. Rocha, and N. Jacobs, "Content-based detection of temporal metadata manipulation," *arXiv*, vol. preprint 2103.04736 [cs.CV], 2021.
- [3] H. Blanton, S. Workman, and N. Jacobs, "A structure-aware method for direct pose estimation," *arXiv*, vol. preprint 2012.12360 [cs.CV], 2020.
- [4] G. Liang, C. Greenwell, Y. Zhang, X. Wang, R. Kavuluru, and N. Jacobs, "Weakly-supervised feature learning via text and image matching," *arXiv*, vol. preprint 2010.03060 [cs.CV], 2020.
- [5] A. Abrams, C. Hawley, K. Miskell, A. Stoica, N. Jacobs, and R. Pless, "Shadow estimation method for "the episolar constraint: Monocular shape from shadow correspondence"," *arXiv*, vol. preprint 1304.4112 [cs.CV], 2013.
- [6] N. Jacobs, S. Schuh, and R. Pless, "On unusual pixel shapes and image motion," Computer Science and Engineering, Washington University in St. Louis, MO, USA, Tech. Rep. WUCSE-2009-16, Jun. 2009.

### **Datasets**

- [1] N. Jacobs, R. Pless, A. Abrams, and many others (see website for details), *AMOS: The archive of many outdoor scenes*, https://mvrl.github.io/AMOS.
- [2] S. Workman and N. Jacobs, *Crossview USA (CVUSA): A large dataset containing millions of pairs of ground-level and aerial/satellite images from across the United States.* https://mvrl.github.io/CVUSA.
- [3] P. Mihail, S. Workman, Z. Bessinger, and N. Jacobs, *SkyFinder: A large dataset of webcam images annotated with sky regions*, https://mvrl.github.io/SkyFinder.
- [4] T. Salem, S. Workman, M. Zhai, and N. Jacobs, *Face2Year: A large number of images extracted from highschool yearbooks*, https://mvrl.github.io/Face2Year.
- [5] S. Workman, M. Zhai, and N. Jacobs, *Horizon Lines in the Wild (HLW): A large database of images with known horizon-line location*, http://mvrl.github.io/HLW.
- [6] A. Abrams, J. Tucek, J. Little, N. Jacobs, and R. Pless, *LOST: Longterm observation of scenes (with tracks)*, http://mvrl.github.io/LOST.
- [7] M. U. Rafique, H. Blanton, and N. Jacobs, *Brooklyn Panorama Synthesis: A large dataset of panoramic images suitable for view synthesis evaluation*. https://mvrl.github.io/GAF.
- [8] S. Workman and N. Jacobs, Cross-View Scenic OrNot (CVSoN), https://mvrl.github.io/CVSoN.
- [9] T. Salem, S. Workman, M. Zhai, and N. Jacobs, *Cross-View Time (CVT)*, https://mvrl.github.io/CVT.
- [10] M. T. Islam, C. Greenwell, and N. Jacobs, *GeoFaces: A large database of geolocated face patches*, http://mvrl.github.io/GeoFaces.

## **Funding**

#### **Grants** (awarded/active)

1. WATCH: Wide Area Terrestrial Change Hypercube

PI: Nathan Jacobs

Sponsor: Kitware / Intelligence Advanced Research Projects Activity (IARPA)

Total Award: \$305,941.48 (Phase 1); \$851,489 (Phase 1–3) Duration: 2020–2022 (Phase 1); 2020–2024 (Phase 1–3)

2. CAREER: Learning and Using Models of Geo-Temporal Appearance

PI: Nathan Jacobs

Sponsor: National Science Foundation (NSF)

Total Award: \$499,426 Duration: 2016–2021

3. NURI: Semantic Representations for Multi-Viewpoint Multimodal Geolocation

PI: Nathan Jacobs

Sponsor: Johns Hopkins University, Applied Physics Laboratory / National Geospatial-Intelligence Agency

(NGA)

Total Award: \$196,000 (base) Duration: 2020–2022

4. CCT: Context and Colorization for Tracking (Phase 2)

PI: Nathan Jacobs

Sponsor: Intelligent Automation Inc. / Defense Advanced Research Projects Agency (DARPA)

Total Award: \$100,000 (Year 1); \$200,000 (Year 1–2) Duration: 2020–2021 (Year 1); 2020–2022 (Year 1–2)

5. Video to Feature Data Association and Geolocation

PI: Nathan Jacobs

Sponsor: Novateur Research Solutions / National Geospatial-Intelligence Agency (NGA)

Total Award: \$29,503 (Phase 1), \$149,883 (Phase 2)

Duration: 2018-2021

## **Grants (completed)**

1. Spatio-Temporal Association and Curve Kernel Networks (STACKNet)

PI: Nathan Jacobs

Sponsor: Intelligent Automation Inc. Total Award: \$33,000 (Phase 1)

Duration: 2020-2020

2. ToFENet: Topographic Feature Extraction Network

PI: Nathan Jacobs

Sponsor: Intelligent Automation Inc. / National Geospatial-Intelligence Agency (NGA)

Total Award: \$19,944 (Phase 1), \$249,988 (Phase 2)

Duration: 2018-2020

3. R01: Monomeric G-proteins and Cardioprotection from Heart Failure

PI: John Satin

Co-PI(s)/Co-I(s): Douglas Andres, Ahmed Abdel-Latif, Nathan Jacobs, Peter Kekenes-Huskey

Sponsor: National Institutes of Health (NIH)

Total Award: \$1,575,279 Duration: 2016–2020

4. Group Travel Grant for the Doctoral Consortium to be Held in Conjunction with IEEE Conference on Computer

Vision and Pattern Recognition

PI: Nathan Jacobs

Sponsor: National Science Foundation (NSF)

Total Award: \$22,500 Duration: 2019–2020

5. DLALA: Deep Learning for Airborne LiDAR Analysis

PI: **Nathan Jacobs** Sponsor: Orbital Insight Total Award: \$104,927 Duration: 2019–2020

6. Listening to Markets: A Temporal Convolutional Net (TCN) Analysis of Conservatism in Company Reporting

PI: Dan Stone

Co-PI(s)/Co-I(s): Nathan Jacobs, Mark Lauersdorf, Hong Xie

Sponsor: University of Kentucky

Total Award: \$33,315 Duration: 2018–2019

7. Calibrated Pose Regression Networks

PI: Nathan Jacobs

Sponsor: The Design Knowledge Company / Air Force Research Lab (Wright-Patterson AFB)

Total Award: \$155,700 (Phase 3)

Duration: 2018-2019

8. Group Travel Grant for the PhD Forum to be Held in Conjunction with IEEE Winter Conference on Applications

of Computer Vision PI: Nathan Jacobs

Sponsor: National Science Foundation (NSF)

Total Award: \$13,625 Duration: 2018–2019

9. ASER Multi Center Review of Blunt Splenic Trauma: Optimal CT Diagnosis, Characterization

PI: James Lee (Radiology)

Co-PI(s)/Co-I(s): David Nickels, Nathan Jacobs, Emily Slade

Sponsor: American Society of Emergency Radiology

Total Award: \$5,000 Duration: 2018–2019

10. Mechanism of a Novel Stable Compensatory Cardiac Hypertrophy Model

PI: Jonathan Satin

Co-PI(s)/Co-I(s): Douglas Andres, Nathan Jacobs, Moriel Vandsburger

Sponsor: American Heart Association

Total Award: \$154,000 Duration: 2016–2018

11. NIP: GeoLookbook: Modeling Worldwide Human Visual Appearance

PI: Nathan Jacobs

Sponsor: National Geospatial-Intelligence Agency (NGA)

Total Award: \$299,204 Duration: 2014–2018 12. Crossview ConvNets for Near/Remote Sensing

PI: **Nathan Jacobs** Sponsor: Google Total Award: \$46,209 Duration: 2016–2017

13. WALDO: Wide Area Localization of Depicted Objects

PI: Nathan Jacobs

Sponsor: Object Video / Intelligence Advanced Research Projects Activity (IARPA)

Total Award: \$373,395 Duration: 2012–2016

14. CSSG: ContextualEyes: A Context-Aware Surveillance System

PI: Nathan Jacobs

Sponsor: Defense Advanced Research Projects Agency (DARPA)

Total Award: \$743,131 Duration: 2011–2015

15. Image-Net: Discriminatory Imaging and Network Advancement for Missiles, Aviation, and Space

PI: Brent Seales

Co-PI(s)/Co-I(s): Ken Calvert, James Griffioen, Jane Hayes, Nathan Jacobs, Victor Marek, Thomas Seigler,

Suzanne Smith, Miroslaw Truszczynski, Ruigang Yang

Sponsor: United States Army Space and Missile Defense Command / United States Army Forces Strategic

Command

Total Award: \$2,092,905 Duration: 2011–2012

#### **Donations**

1. Google Cloud Compute Research Credits

PI: Nathan Jacobs Sponsor: Google Amount/Value: \$5,000 Date: Aug 2018

2. NVIDIA Titan X GPU

PI: Nathan Jacobs Sponsor: NVIDIA Amount/Value: \$778 Date: Oct 2016

3. AWS Research Education Grant

PI: Nathan Jacobs Sponsor: Amazon Amount/Value: \$5,000 Date: Jul 2015

4. NVIDIA Tesla K40 GPU

PI: **Nathan Jacobs** Sponsor: NVIDIA Amount/Value: \$3,900

Date: Dec 2014

## **Proposals (under review)**

This list does not include letters of intent, pre-proposals, or proposals where I was listed as Senior Personnel.

1. GeoSearch: Image-based Geolocation using Rank Aggregated Hash Index

PI: Nathan Jacobs

Sponsor: Intelligent Automation Inc. / National Geospatial-Intelligence Agency (NGA)

Total Award: \$250,000

Duration: 2020

2. Spatio-Temporal Association and Curve Kernel Networks (STACKNet)

PI: Nathan Jacobs

Sponsor: Intelligent Automation Inc. Total Award: \$450,000 (Phase 2)

Duration: 2020

3. Clinical Translation of an Artificial Intelligence (AI) System for Breast Cancer Screening: Multicenter Retrospective and Prospective Application Studies

PI: Nathan Jacobs

Sponsor: Dept. of the Army (USAMRAA)

Total Award: \$643,412 Submission Year: 2020

4. Algorithm Performance Evaluation with Low Sample Size

PI: Nathan Jacobs

Sponsor: Intelligent Automation Inc. / National Geospatial-Intelligence Agency (NGA)

Total Award: \$30,000 Submission Year: 2020

5. Vehicles Identification and Traffic camera Localization (VITAL)

PI: Nathan Jacobs

Sponsor: Intelligent Automation Inc. / National Geospatial-Intelligence Agency (NGA)

Total Award: \$25,000 Submission Year: 2020

6. R01: Ex vivo single molecule tools to analyze membrane receptor dynamics

PI: Christopher Richards

Co-PI(s)/Co-I(s): Jim Pauly, Ahmed Abdel-Latif, David Heidary, Nathan Jacobs

Sponsor: National Institutes of Health (NIH)

Total Award: \$1,510,308 Submission Year: 2020

7. R01: Ketogenic diet for reducing Alzheimer's disease risk in an APOE4 mouse model via gut-brain axis

PI: Ai-Ling Lin

Co-PI(s)/Co-I(s): Arnold Stromberg, Josh Morganti, Nathan Jacobs, Anika Hartz

Sponsor: National Institutes of Health (NIH)

Total Award: \$3,481,533 Submission Year: 2020

#### **Proposals (not funded)**

This list does not include letters of intent, pre-proposals, or proposals where I was listed as Senior Personnel.

1. GeoRank

PI: Nathan Jacobs

Sponsor: Intelligent Automation Inc. / National Geospatial-Intelligence Agency (NGA)

Total Award: \$40,000 (awarded but failed during contract negotiations)

Submission Year: 2020

2. Machine and Deep Learning Methods to Identify Potential Targets for Alzheimer's Disease Therapeutics Alternative to Amyloid Hypothesis

PI: Ai-Ling Lin

Co-PI(s)/Co-I(s): Nathan Jacobs

Sponsor: National Institutes of Health (NIH)

Total Award: \$420,750 Submission Year: 2020

3. NRT: Intelligent Sensing for Data-Driven Understanding of Complex Systems

PI: Michael Renfro

Co-PI(s)/Co-I(s): Suzanne Smith, Michael Sama, Shannon Sampson, Sean Bailey, Marcelo Guzman, Jesse

Hoagg, **Nathan Jacobs**, Jian Yang, Christoph Brehm Sponsor: National Science Foundation (NSF)

Total Award: \$1,510,803 Submission Year: 2020

4. Ex vivo single molecule tools to analyze membrane receptor dynamics

PI: Christopher Richards

Co-PI(s)/Co-I(s): Jim Pauly, Ahmed Abdel-Latif, David Heidary, Nathan Jacobs

Sponsor: National Institutes of Health (NIH)

Total Award: \$1,510,803 Submission Year: 2020

5. Ex vivo single molecule tools to analyze membrane receptor dynamics

PI: Christopher Richards

Co-PI(s)/Co-I(s): Jim Pauly, David Heidary, Nathan Jacobs

Sponsor: National Institutes of Health (NIH)

Total Award: \$1,891,300 Submission Year: 2019 (Oct)

6. Assessing molecular and cellular level structural changes in the adolescent brain due to nicotine consumption

PI: Christopher Richards

Co-PI(s)/Co-I(s): Jim Pauly, **Nathan Jacobs** Sponsor: National Institutes of Health (NIH)

Total Award: \$2,147,884 Submission Year: 2019 (Oct)

7. NSF Engineering Research Center for Precision Meteorology (CPM)

PI: Suzanne Smith

Co-PI(s)/Co-I(s): Michael Sama, Tyler Mark, Sean Bailey, Marcelo Guzman, Jesse Hoagg, Nathan Jacobs,

Michael Renfro, Simone Silvestri, Hasan Poonawala

Sponsor: National Science Foundation (NSF)

Total Award: \$2,147,884 Submission Year: 2019

8. Assessing molecular and cellular level structural changes in the adolescent brain due to nicotine consumption

PI: Christopher Richards

Co-PI(s)/Co-I(s): Jim Pauly, Nathan Jacobs

Sponsor: National Institutes of Health (NIH)

Total Award: \$2,456,763 Submission Year: 2019 (Feb)

9. Development of a single molecule methods to monitor changes in protein dimerization in animals

PI: Christopher Richards

Co-PI(s)/Co-I(s): Phoebe Glazer, David Heidary, Nathan Jacobs

Sponsor: National Institutes of Health (NIH)

Total Award: \$1,886,000 Submission Year: 2019 (Feb)

10. Rail Crossing Risk Assessment

PI: Reginald Souleyrette

Co-PI(s)/Co-I(s): Nathan Jacobs

Sponsor: University of Tennessee / Federal Railroad Administration

Total Award: \$380,230 Submission Year: 2019

11. Transfer Learning and Deep Transfer Learning for Military Applications

PI: Nathan Jacobs

Sponsor: DZYNE Technologies / Air Force

Total Award: \$45,000 Submission Year: 2019

12. AVA-3D: Accurate Video Alignment for 3D Modeling

PI: Nathan Jacobs

Sponsor: Intelligent Automation Inc. / Army

Total Award: \$40,000 Submission Year: 2019

13. Long-term Patterns of Life from Sporadic Observations

PI: Nathan Jacobs

Sponsor: Intelligent Automation Inc. / National Geospatial-Intelligence Agency (NGA)

Total Award: \$20,000 Submission Year: 2019

14. Rail Crossing Risk Assessment

PI: Reginald Souleyrette

Co-PI(s)/Co-I(s): **Nathan Jacobs** 

Sponsor: University of Tennessee / Federal Railroad Administration

Total Award: \$240,031 Submission Year: 2018

15. A Multimodal Deep Learning Framework to Reduce Callbacks of Screening Mammography

PI: Jennifer Wang

Co-PI(s)/Co-I(s): **Nathan Jacobs** Sponsor: Department of Defense

Total Award: \$550,261 Submission Year: 2018

16. Motion Compensation for Background Estimation from On-The-Move Ground Platforms

PI: Nathan Jacobs

Sponsor: Intelligent Automation Inc. / Army

Total Award: \$30,000 Submission Year: 2018

#### 17. Contour Based Image Segmentation

PI: Nathan Jacobs

Sponsor: Novateur Research Solutions / Air Force

Total Award: \$49,869 Submission Year: 2018

18. Evaluating the performance of automated LiDAR-based tree detection methods across different forest conditions

in Kentucky

PI: Marco Contreras

Co-PI(s)/Co-I(s): Nathan Jacobs

Sponsor: Kentucky Science and Engineering Foundation

Total Award: \$150,000 Submission Year: 2018

19. Geospatial Cloud Analytics TA-2 Proposal

PI: Nathan Jacobs

Sponsor: Orbital Insight / Defense Advanced Research Projects Agency (DARPA)

Total Award: \$347,840 Submission Year: 2017

20. Cloud Analytics of Geospatial Imagery (CAGI)

PI: Nathan Jacobs

Sponsor: Dzyne Technologies / Defense Advanced Research Projects Agency (DARPA)

Total Award: \$353,341 (awarded but failed during contract negotiations)

Submission Year: 2017

21. Global Video Analysis Network

PI: Nathan Jacobs

Co-PI(s)/Co-I(s): James Griffioen, Cody Bumgardner

Sponsor: NSF

Total Award: \$999,975 Submission Year: 2016

22. NURI: Semantic Segmentation for Improved 3D Scene Generation

PI: Nathan Jacobs

Sponsor: Lockheed Martin / Intelligence Advanced Research Projects Activity (IARPA)

Total Award: \$1,004,562 Submission Year: 2016

23. Automatic Joint Verification of Calibration, Motion, and Lighting

PI: Nathan Jacobs

Sponsor: Washington University in St. Louis / Defense Advanced Research Projects Agency (DARPA)

Total Award: \$447,828 Submission Year: 2015

24. Remote Non-contact Multispectral Imaging for Monitoring of Respiration and End Tidal Carbon Dioxide

PI: Abhijit Patwardhan

Co-PI(s)/Co-I(s): Nathan Jacobs, Dong-Sheng Yang

Sponsor: National Institutes of Health (NIH)

Total Award: \$363,249 Submission Year: 2015

25. US Ignite: Track 1: PERSDN: A Personalized Emergency Response Software Defined Network

PI: Jim Griffioen

Co-PI(s)/Co-I(s): **Nathan Jacobs**, Jeannette Sutton Sponsor: National Science Foundation (NSF)

Total Award: \$599,110 Submission Year: 2015

26. Recognizing Objects from the Air

PI: Nathan Jacobs

Sponsor: National Geospatial-Intelligence Agency (NGA)

Total Award: \$745,819 Submission Year: 2015

27. Firebrands and Fire Whirls in Large-Scale Wildland Fires

PI: James M McDonough

Co-PI(s)/Co-I(s): Nathan Jacobs, Kozo Saito, Sean Bailey, Jian Yang

Sponsor: National Science Foundation (NSF)

Total Award: \$1,955,823 Submission Year: 2014

28. CAREER: Geo-Temporal Understanding of Outdoor Images and Video

PI: Nathan Jacobs

Sponsor: National Science Foundation (NSF)

Total Award: \$523,850 Submission Year: 2014

29. Toward a Geotemporal Model for Human Appearance

PI: Nathan Jacobs

Sponsor: Intelligence Community Postdoc Program

Total Award: \$359,463 Submission Year: 2014

30. Remote Non-contact Multispectral Imaging for Monitoring of Respiration and End Tidal Carbon Dioxide

PI: Abhijit Patwardhan

Co-PI(s)/Co-I(s): **Nathan Jacobs** Sponsor: Department of Defense

Total Award: \$259,968 Submission Year: 2014

31. Rad-GTPase L-type Calcium Channel Signaling in the Heart

PI: Jonathan Satin

Co-PI(s)/Co-I(s): Nathan Jacobs, Douglas Andres, Kenneth Campbell, Moriel Vandsburger, Haining Zhu

Sponsor: National Institutes of Health (NIH)

Total Award: \$3,338,710 Submission Year: 2014

32. A Novel Mechanism of Post-Myocardial Infarction Cardioprotection

PI: Jonathan Satin

 $Co\text{-}PI(s)\text{/}Co\text{-}I(s)\text{: }\textbf{Nathan Jacobs}\text{, }Douglas \ Andres\text{, }Kenneth \ Campbell\text{, }Moriel \ Vandsburger\text{, }Haining \ Zhu$ 

Sponsor: American Heart Association (AHA)

Total Award: \$118,045 Submission Year: 2014

33. Novel Inotropic Support By Targeting Rad GTPase

PI: Jonathan Satin

Co-PI(s)/Co-I(s): Nathan Jacobs, Douglas Andres, Kenneth Campbell, Moriel Vandsburger, Haining Zhu

Sponsor: National Institutes of Health (NIH)

Total Award: \$3,060,642 Submission Year: 2013

34. SCH: INT: Game-based Decision Aid for Rheumatoid Arthritis Patients

PI: Judy Goldsmith

Co-PI(s)/Co-I(s): **Nathan Jacobs**, Kristine Lohr, Zixue Tai, Melody Carswell

Sponsor: National Science Foundation (NSF)

Total Award: \$1,864,219 Submission Year: 2013

35. CAREER: Toward a Geo-Temporal Framework for Outdoor Scene Understanding

PI: Nathan Jacobs

Sponsor: National Science Foundation (NSF)

Total Award: \$499,975 Submission Year: 2012

36. An Interactive Decision Aid for Rheumatoid Arthritis Patients

PI: Judy Goldsmith

Co-PI(s)/Co-I(s): Nathan Jacobs, Malachy Bishop, Kristine Lohr, Gustav Blomquist

Sponsor: National Science Foundation (NSF)

Total Award: \$600,000 Submission Year: 2012

37. Geo-Temporal Context for Outdoor Scene Understanding

PI: Nathan Jacobs

Co-PI(s)/Co-I(s): National Science Foundation (NSF)

Sponsor: \$341,563 Total Award: 2010 Submission Year:

## **Talks**

- "Mapping the Visual World Using Webcams, Cell Phones, and Satellites", Dec 2020, University of Campinas, Unicamp, Brazil (virtual)
- "Exploring the Intersection of Localization, Mapping, and Image Understanding", Aug 2020, ECCV Workshop on Long-Term Visual Localization (virtual)
- "Deep Convolutional Neural Networks: Foundations to Frontiers (a 2-day short course)", Mar 2020, Brazilian Space Agency (INPE), Sao Jose dos Campos, Brazil
- "What, Where, and When: Mapping the World Using Webcams, Cell Phones, and Satellites", Mar 2020, Brazilian Space Agency (INPE), Sao Jose dos Campos, Brazil
- "Learning to Map Visual Appearance", Feb 2020, Keeping Current Seminar, University of Kentucky (Computer Science), Lexington, KY
- "Learning to Map Visual Appearance", Jan 2020, Wageningen University, Netherlands
- "What, Where, and When: Mapping the World Using Webcams, Cell Phones, and Satellites", Nov 2019, University of Kentucky (Forestry), Lexington, KY
- "Learning to Map the Visual World", Jul 2019, Wright State University, Dayton, OH

- "Keynote: Understanding Places Using Ground-Level and Overhead Views", May 2019, Kentucky Geological Society (Annual Symposium), Lexington, KY
- "Understanding Places Using Ground-Level and Overhead Views", Feb 2019, Notre Dame University, South Bend, IN
- "A Generative Model of Worldwide Facial Appearance (Extended Keynote)", Jan 2019, Workshop on Demographic Variations in Performance of Biometric Algorithms, Waikoloa Village, HI
- "A Generative Model of Worldwide Facial Appearance", Jan 2019, IEEE Winter Conference on Applications of Computer Vision, Waikoloa Village, HI
- "A Weakly Supervised Approach for Estimating Spatial Density Functions from High-Resolution Satellite Imagery", Nov 2018, ACM SIGSPATIAL, Seattle, WA
- "Understanding Places Using Ground-Level and Overhead Views", Oct 2018, Commonwealth Computational Summit, Lexington, KY
- "GeoLookbook: Modeling Worldwide Human Visual Appearance (Year 4)", Sep 2018, National Academy of Sciences (IC Academic Research Symposium), Washington, DC
- "Understanding Places Using Ground-Level and Overhead Views", Aug 2018, Oak Ridge National Lab, Oak Ridge, TN
- "WhatGoesWhere: Predicting Object Distributions from Above", Jul 2018, IGARSS, Valencia, Spain
- "Building World Models for Situated Training and Planning", May 2018, Air Force Science and Technology 2030 Workshop, Bloomington, IN
- "Recent Advances in Image Understanding", May 2018, DASC, Lexington, KY
- "(Tutorial) Recent Advances in Deep Learning: Fusing Overhead and Ground-Level Views for Remote Sensing", April 2018, USGIF Annual Symposium, Tampa, FL
- "Understanding Places Using Ground-Level and Overhead Views", Feb 2018, CVPR Area Chair Meeting, Toronto, Canada
- "GeoLookbook: Modeling Worldwide Human Visual Appearance (Year 3)", Sep 2017, National Academy of Sciences (IC Academic Research Symposium), Washington, DC
- "GPU Accelerated Computer Vision, Remote Sensing, and Machine Learning", Aug 2017, Kentucky Geological Service, Lexington, KY
- "Fusing Overhead and Ground-Level Imagery to Improve Scene Understanding", Jul 2017, Planet, San Francisco, CA
- "Learning about When and Where from Imagery", Jun 2017, Orbital Insight, Mountain View, CA
- "(Tutorial) Recent Advances in Deep Learning: Fusing Overhead and Ground-Level Views for Remote Sensing", Jun 2017, USGIF Annual Symposium, San Antonio, TX
- "How Computers See People (extended)", May 2017, CCTS Biomedical Informatics Seminar Series, Lexington, KY
- "Understanding Places Using Ground-Level and Overhead Views", May 2017, Midwest Vision Meeting, Chicago, IL
- "How Computers See People", Feb 2017, Suds'n'Science Speaker Series, West Sixth Brewing, Lexington, KY

- "Learning about When and Where from Imagery", Feb 2017, University of Missouri, Department of Computer Science
- "Localization, Mapping, and Image Understanding", Feb 2017, USGIF Machine Learning Symposium
- "Deep Convolutional Neural Networks: Concepts and Examples (in Computer Vision", Nov 2016, University of Kentucky, Society of Industrial and Applied Mathematics
- "Crossview Convolutional Networks", Oct 2016, Applied Imagery and Pattern Recognition, Washington, D.C.
- "GeoLookbook: Modeling Worldwide Human Visual Appearance (Year 2)", Sep 2016, National Academy of Sciences (IC Academic Research Symposium), Washington, DC
- "Deep Convolutional Neural Networks: Concepts and Examples", Jul 2016, University of Kentucky: Systems Biology and Omics Integration Seminar
- "Crossview Methods for Localization and Mapping", Jun 2016, IEEE CVPR Workshop on "Vision from Satellite to Street" (invited talk)
- "A Fast Method for Estimating Transient Scene Properties", Mar 2016, Winter Conference on Applications of Computer Vision, Lake Placid, NY
- "Novel Cues for Geocalibration", Feb 2016, Indiana University, Bloomington, IN
- "Novel Cues for Camera Geocalibration", Jan 2016, Uber Advanced Technology Center, Pittsburgh, PA
- "Novel Cues for Geocalibration: Cloudy Days, Rainbows, and More", Oct 2015, Carnegie Mellon University, Pittsburgh, PA
- "Using Geotagged Internet Imagery to Understand the World", Sep 2015, Université Laval, Quebec City, Canada
- "face2gps: Estimating Geographic Location from Facial Features", Sep 2015, International Conference on Image Processing, Quebec City, Canada
- "GeoLookbook: Modeling Worldwide Human Visual Appearance", Sep 2015, National Academy of Sciences (IC Academic Research Symposium), Washington, DC
- "Exploring the Geo-Dependence of Human Face Appearance", Mar 2014, Winter Conference on Applications of Computer Vision, Steamboat Springs, CO
- "Estimating Cloudmaps from Outdoor Image Sequences", Mar 2014, Winter Conference on Applications of Computer Vision, Steamboat Springs, CO
- "Scene Geometry from Several Partly Cloudy Days", Oct 2013, International Conference on Distributed Smart Cameras, Palm Springs, CA
- "Unlocking the Potential of the Global Network of Outdoor Webcams", Apr 2013, Rochester Institute of Technology
- "Geo-temporal Computer Vision: Applications to the NGA", Nov 2011, National Geospatial-Intelligence Agency
- "Geo-temporal Computer Vision: Applications to the Army", Oct 2011, Army Research Lab
- "Localizing, Calibrating, and Using Thousands of Outdoor Webcams", Feb 2011, University of North Carolina– Charlotte
- "Using Clouds Shadows to Infer Scene Structure and Camera Calibration", Jun 2010, CVPR, San Francisco, CA

- "Passive Vision and The Power of Collective Imaging", Apr 2010, Object Video Inc., Reston, VA
- "Localizing, Calibrating, and Using Thousands of Outdoor Webcams", Apr 2010, University of Kentucky
- "Time-Lapse Vision: Localizing, Calibrating, and Using Thousands Outdoor Webcams", Apr 2010, Google, Mountain View, CA
- "Passive Vision and The Power of Collective Imaging", Jan 2010, Google, Mountain View, CA
- "Incorporating Domain Constraints in Urban Vehicle Tracking", Nov 2010, University of Missouri, Columbia, MO
- "Compressive Sensing and Differential Image-Motion Estimation", Mar 2010, ICASSP, Dallas, TX
- "The Global Network of Outdoor Webcams: Properties and Applications", Nov 2009, ACM GIS, Seattle, WA
- "Passive Vision: The Global Webcam Imaging Network", Oct 2009, AIPR, Washington, DC
- "Calibrating and Using the Global Network of Outdoor Webcams", Aug 2009, ICDSC, Italy
- "Adventures in Archiving and Using Three Years of Webcam Images", Jun 2009, CVPR Workshop on Internet Vision, Miami, FL
- "Recent Work: Webcams and Grooves", Aug 2009, Object Video, Reston, VA
- "Location-Specific Models for Tracking", Jan 2008, WMVC, Copper Mountain, CO
- "Using natural cues to geo-locate and geo-orient distributed cameras", Jan 2008, VISN, Copper Mountain, CO
- "Foreground Modeling: The Shape of Things That Came", Feb 2007, WMVC, Austin, Texas

### Service

#### **University Service**

- 2020–2021: Computer Science Department: Chair Search Committee
- 2019–present: Computer Science Department: Executive Committee
- 2018–2019, 2020–present: College of Engineering: Research Advisory Committee
- 2020–present: College of Engineering: Graduate Studies Team
- 2013–2017, 2018–present: Computer Science Department: Faculty Search Committee
- 2020: College of Engineering: Recruiting Advisory Committee
- 2018–2019: University Senate (Academic Facilities Committee, Technology Committee)
- 2017: Member (Information Technology Task Force for Research Enablement and Outreach)
- 2015–2016: Computer Science Department: ABET Committee
- 2010-2012, 2015-2016: Computer Science Department: Media and Outreach
- 2013: Center for Visualization and Virtual Environment: Director Search Committee
- 2013: Computer Science Department: Chair Search Committee
- 2012–2013: Computer Science Department: Curriculum Development Committee
- 2012–2013, 2015: University of Kentucky Engineering Day (oral presentation and/or software demonstration)

### **Professional Service**

- · Area Chair:
  - IEEE Conference on Computer Vision and Pattern Recognition (CVPR) [2018, 2019, 2021]
  - IEEE Winter Conference on Applications of Computer Vision (WACV) [2014]
- Organizing Committees:
  - IEEE/ISPRS Workshop on Large Scale Computer Vision for Remote Sensing Imagery (EARTHVISION)
    [2019, 2020]
  - Doctoral Consortium Co-Chair: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
    [2017, 2019]
  - Doctoral Consortium Chair: IEEE Winter Conference on Applications of Computer Vision (WACV)
    [2018, 2022]
  - Video Proceedings Chair: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) [2015]
  - IEEE Workshop on Motion and Video Computing [2011]
- · Guest Editor:
  - Elsevier Computer Vision and Image Understanding (CVIU) [2019], Special Issue "Computer Vision for Remote Sensing"
- · Session Chair:
  - IEEE International Geoscience and Remote Sensing Symposium (IGARSS) [2020]
  - IEEE/ISPRS Workshop on Large Scale Computer Vision for Remote Sensing Imagery (EARTHVISION)
    [2019]
  - IEEE Winter Conference on Applications of Computer Vision (WACV) [2016, 2019]
  - IEEE Conference on Computer Vision and Pattern Recognition (CVPR) [2018]
  - IEEE/ACM International Conference on Distributed Smart Cameras [2013]
- Reviewing for Journals:
  - IEEE Transactions on Geoscience and Remote Sensing [2020]
  - ISPRS Journal of Photogrammetry and Remote Sensing [2020]
  - IEEE Transactions on Pattern Analysis and Machine Intelligence [2011, 2011, 2012, 2018, 2019]
  - ISPRS Journal of Photogrammetry and Remote Sensing [2019]
  - IEEE Transactions on Geoscience and Remote Sensing [2017]
  - IEEE Transactions on Multimedia [2011, 2016]
  - Elsevier Computer Vision and Image Understanding [2010, 2013, 2016×2]
  - IEEE Transactions on Computational Imaging [2016]
  - IEEE Journal on Selected Topics in Remote Sensing [2015]
  - Springer Machine Vision and Applications [2014]
  - IEEE Sensors [2014]
  - Elsevier Image and Vision Computing [2013]
  - IEEE Transactions on Circuits and Systems for Video Technology [2007, 2008, 2009, 2010, 2011]
  - IEEE Computer Graphics and Applications [2010]

- IEEE Transactions on Aerospace and Electronic Systems [2010]
- Elsevier Computers and Electronics in Agriculture [2010]
- Cartography and Geographic Information Science [2010]
- Program Committee / Reviewer for:
  - Conferences
    - \* IEEE Winter Conference on Applications of Computer Vision (WACV) [2021]
    - \* IEEE International Geoscience and Remote Sensing Symposium (IGARSS) [2020]
    - \* British Machine Vision Conference (BMVC) [2020]
    - \* IEEE Conference on Computer Vision and Pattern Recognition (CVPR) [2006–2017, 2020]
    - \* European Conference on Computer Vision (ECCV) [2010, 2014, 2020]
    - \* Neural Information Processing Systems (NeurIPS) [2010–2012, 2020]
    - \* AAAI Conference on Artificial Intelligence (AAAI) [2020]
    - \* IEEE International Conference on Computer Vision (ICCV) [2007, 2009, 2019, 2021]
    - \* Asian Conference on Computer Vision (ACCV) [2010, 2016]
    - \* IEEE International Conference on Robotics and Automation (ICRA) [2016]
    - \* International Conference on Machine Learning (ICML) [2012]
    - \* IEEE International Conference on Advanced Video and Signal-Based Surveillance (AVSS) [2010]
  - Workshops
    - \* IEEE/ISPRS Workshop on Large Scale Computer Vision for Remote Sensing Imagery (EARTHVI-SION) [2017, 2019, 2020]
    - \* CVPR Workshop on Photogrammetric Computer Vision [2019]
    - \* CVPR Workshop on DeepGlobe Satellite Challenge [2018]
    - \* ACM International Workshop on Geotagging and Its Applications [2013]
    - \* ICCV Workshop on Computer Vision for Converging Perspectives [2013]
    - \* IEEE Workshop on Applications of Computer Vision [2012–2013]
    - \* ECCV Workshop on Visual Analysis and Geo-Localization of Large-Scale Imagery [2012]
    - \* ACM Workshop on Geotagging and Its Applications in Multimedia [2012]
    - \* IEEE Workshop on Motion and Video Computation [2009–2011]
- Reviewing for Funding Agencies:
  - Panelist for NSF Information and Intelligent Systems Division [2019]
  - Panelist for NSF Information and Intelligent Systems Division [2018]
  - Panelist for NSF Information and Intelligent Systems Division [2017]
  - Panelist for NSF Division of Industrial Innovation and Partnerships [2016]
  - Panelist for NSF Information and Intelligent Systems Division [2016]
  - Panelist for NSF Information and Intelligent Systems Division [2015]
  - External reviewer for NSF Information and Intelligent Systems Division [2015]
  - External reviewer for Fonds de recherche du Quebec [2014]

### **Memberships**

- Senior Member: Institute of Electrical and Electronics Engineers
- Full Member: British Machine Vision Association and Society for Pattern Recognition
- Affiliate Member: International Association of Pattern Recognition

## **Teaching**

## **Courses Taught**

- Introduction to Machine Learning, CS 460g, [F2012, F2013, F2014, F2016, F2018, F2019], University of Kentucky
- Computer Vision, CS 636, [S2011, S2013, S2017], University of Kentucky
- Learning-Based Methods for Computer Vision, CS 585/685, [S2015], University of Kentucky
- Advanced Topics in Computer Science: Machine Learning, CS 685, [S2012], University of Kentucky
- Intermediate Topics in Computer Science: Computational Photography, CS 585, [F2010, F2011], University of Kentucky
- Theory of Computation, CECS 341, [F2002], University of Missouri
- Independent Work in Computer Science, CS 395/612, University of Kentucky:
  - F2019, "Applied Deep Learning"
  - S2019, "Applied Deep Learning" (×5)
  - F2018, "Applied Deep Learning" (×5)
  - S2018, "Applied Deep Learning" (×4)
  - F2017, "Applied Deep Learning"
  - F2016, "Applied Deep Learning" (×6)
  - S2016, "Applied Deep Learning: Understanding Urban Areas"
  - S2015, "Understanding Real-Estate Imagery"
  - F2014, "Recent Techniques in Machine Learning" (×4)
  - F2014, "Learning-Based Methods for Background Subtraction"
  - F2014, "A Novel Approach for Category-Level Object Detection from Partial Pose Estimation of Symmetric Objects"
  - S2013, "Extracting Geo-Temporal Image Appearance Patterns from Flickr Imagery"
  - S2013, "Automatic Camera Calibration Methods"
  - S2013, "Deep-Learning Architectures for Computer Vision"
  - F2012, "Automatic Image Geolocalization"
  - S2012, "Image Calibration using Natural Scene Variations"
  - F2011, "Practical Methods in Crowd Sourcing"

## Mentoring

#### **Postdoctoral Scholars**

| Name            | Degree                     | Research Focus                             | Dates |
|-----------------|----------------------------|--------------------------------------------|-------|
| Benjamin Brodie | Ph.D. Mathematics, Univer- | Object Tracking, Re-Identification, Metric | 2020- |
|                 | sity of Kentucky           | Learning                                   |       |

#### Ph.D. Students

| Student Name       | Role          | Thesis Title                                              | Date     |
|--------------------|---------------|-----------------------------------------------------------|----------|
| Paul Mihail        | co-chair w/   | Visualizing and Predicting the Effects of Rheumatoid      | May 2014 |
|                    | Goldsmith     | Arthritis on Hands                                        |          |
| Ju Shen            | member        | Computational Multimedia for Video Self Modeling          | May 2014 |
| Chenxi Zhang       | member        | Depth-assisted Image Segmentation, Enhancement and Vi-    | Dec 2014 |
|                    |               | sualization                                               |          |
| Mao Ye             | member        | 3D Reconstruction and Motion Analysis of Deformable       | Dec 2014 |
|                    |               | Objects with Consumer Depth Cameras                       |          |
| Yan Huang          | member        | Novel Computational Methods for Transcript Reconstruc-    | Dec 2014 |
|                    |               | tion and Quantification using RNA-SEQ Data                |          |
| Shaoceng Wei       | outside exam- | Multi-state Models for Interval Censored Data with Com-   | May 2015 |
|                    | iner          | peting Risk                                               |          |
| Bo Fu              | member        | Towards Intelligent Telerobotics: Visualization and Con-  | May 2015 |
|                    |               | trol of Remote Robot                                      |          |
| Harikrishnan       | member        | Analysis of Vocal Fold Kinematics using High Speed Video  | Dec 2015 |
| Unnikrishnan       |               |                                                           |          |
| Mohammad T.        | chair         | Analyzing the Geo-Dependence of Human Face Appear-        | Jul 2016 |
| Islam              |               | ance and Its Applications                                 |          |
| Hasan Sajid        | member        | Robust Background Subtraction for Moving Cameras and      | Jul 2016 |
|                    |               | their Applications in Ego-vision Systems                  |          |
| Wesley Hough       | outside exam- | On Independence, Matching, and Homomorphism Com-          | May 2017 |
|                    | iner          | plexes                                                    |          |
| Yajie Zhao         | member        | 3D Human Face Reconstruction and 2D Appearance Syn-       | Dec 2017 |
| _                  |               | thesis                                                    |          |
| Po-Chang Su        | member        | Real-time Capture and Rendering of Physical Scene with    | Dec 2017 |
| _                  |               | an Efficiently Calibrated RGB-D Camera Network            |          |
| Hamid Hamraz       | co-chair w/   | Computational Forest Modeling using Airborne LiDAR        | Apr 2018 |
|                    | Contreras     |                                                           |          |
| Scott Workman      | chair         | Leveraging Overhead Imagery for Localization, Mapping,    | Apr 2018 |
|                    |               | and Understanding                                         |          |
| Anthony Rios       | member        | Deep Neural Networks for Multi-Label Text Classification: | Jun 2018 |
|                    |               | Application to Coding Electronic Medical Records          |          |
| Ethan Welty        | member        | High-Precision Photogrammetry for Glaciology              | Jul 2018 |
| (University of     |               |                                                           |          |
| Colorado-          |               |                                                           |          |
| Boulder)           |               |                                                           |          |
| Yannick            | member        | Learning Geometric and Lighting priors from Natural Im-   | Aug 2018 |
| Hold-Geoffroy      |               | ages                                                      |          |
| (Laval University, |               |                                                           |          |
| Quebec, CA)        |               |                                                           |          |
| Nkiruka            | member        | Self-Image Multimedia Technologies for Feedforward Ob-    | Oct 2018 |
| Uzuegbunam         |               | servational Learning                                      |          |
| Menghua "Ted"      | chair         | Deep Probabilistic Models for Camera Geo-Calibration      | Dec 2018 |
| Zhai               |               |                                                           |          |
| Zach Bessinger     | chair         | Modeling and Mapping Location-Dependent Human Ap-         | Dec 2018 |
|                    |               | pearance                                                  |          |
| Nam Vo (Georgia    | member        | Image Geolocalization with Deep Learning                  | May 2019 |
| Institute of       |               |                                                           |          |
| Technology)        |               |                                                           |          |

| Jinping Zhuge                                                        | outside exam-<br>iner | Boundary layers in periodic homogenization                                                                                                            | May 2019    |
|----------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Tawfiq Salem                                                         | chair                 | Learning to Map the Visual and Auditory World                                                                                                         | Jul 2019    |
| Sifei Han                                                            | member                | Text Mining Methods for Analyzing Online Health Information and Communication                                                                         | Dec 2019    |
| Shivangi<br>Srivastava<br>(Wageningen<br>University,<br>Netherlands) | member                | Mapping of urban landuse and landcover with multiple sensors: joining close and remote sensing with deep learning                                     | Feb 2020    |
| Raian Maretto<br>(National Institute<br>for Space<br>Research)       | member                | Deep Learning techniques applied to classification of Remote Sensing Images                                                                           | Feb 2020    |
| Kyle Helfrich                                                        | member                | Orthogonal Recurrent Neural Networks and Batch Normalization in Deep Neural Networks                                                                  | Apr 2020    |
| Xinxin Zuo                                                           | member                | Depth Enhancement and Surface Reconstruction with RGB-D sequence                                                                                      | Oct 2019    |
| Narjes Bozorg                                                        | member                | Articulatory-Wavenet: Deep Autoregressive Model for Acoustic-to-Articulatory Inversion                                                                | Nov 2020    |
| Gongbo Liang                                                         | chair                 | Clinical-Inspired Multi-Modal Deep Learning Medical Imaging Analysis                                                                                  | Oct 2020    |
| Céline Portenier<br>(University of<br>Bern)                          | external referee      | High-resolution snow cover retrieval using public webcams                                                                                             | May 2021    |
| Ahmed Nassar<br>(IRISA,<br>Université<br>Bretagne Sud,<br>Vannes)    | external referee      | Learning to map street-side objects using multiple views                                                                                              | May 2021    |
| Usman Rafique                                                        | co-chair w/<br>Cheung | Weakly Supervised Learning for Multi-Image Synthesis                                                                                                  | in progress |
| Hunter Blanton                                                       | chair                 | Explicit Constraints for CNN Based Absolute Pose Regression                                                                                           | in progress |
| Sajad Javadinasab<br>Hormozabad                                      | member                | Artificial Intelligence and Soft Computing in Smart Structural Systems                                                                                | in progress |
| Tarannum Shaila<br>Zaman                                             | member                | Debugging Concurrent Programs                                                                                                                         | in progress |
| Arnab Sarkar                                                         | member                | Machine Learning for Astro-Physics                                                                                                                    | in progress |
| Connor Greenwell                                                     | chair                 | Probabilistic Cross-Domain Representation Learning                                                                                                    | in progress |
| Yu Zhang                                                             | chair                 | Multimodal Domain Generalization                                                                                                                      | in progress |
| Paul Eberhart                                                        | member                | TBD                                                                                                                                                   | in progress |
| Chengxi Li                                                           | member                | TBD                                                                                                                                                   | in progress |
| Mohammad<br>Soleymanpour                                             | member                | Parallel and non-parallel voice conversion based data augmentation for dysarthric speech applications                                                 | in progress |
| David Adeniji                                                        | member                | Establishing a Digital Process Twin for Aerospace Alloy Machining using In-situ Process Characterization and Physics Embedded Machine Learning Models | in progress |
| Xin Xing                                                             | chair                 | TBD                                                                                                                                                   | in progress |

| Subash Khanal    | chair  | TBD | in progress |
|------------------|--------|-----|-------------|
| Hui Lin          | member | TBD | in progress |
| Chao Du          | member | TBD | in progress |
| Anastasia Kazadi | member | TBD | in progress |
| Shunnan Chen     | member | TBD | in progress |
| Md Sultan Al     | member | TBD | in progress |
| Nahian           |        |     |             |
| Alireza Shirvani | member | TBD | in progress |
| Yong Song        | member | TBD | in progress |
| Fujun Liu        | member | TBD | in progress |
| Stephen Parsons  | member | TBD | in progress |
| Minoo            | member | TBD | in progress |
| Hosseinzadeh     |        |     |             |
| Sidrah Liaqat    | member | TBD | in progress |

## **Masters Students**

| Student Name      | Role        | Thesis/Project Title                                         | Date        |
|-------------------|-------------|--------------------------------------------------------------|-------------|
| Edwin Prem        | member      | Global Change Reactive Background Subtraction                | Mar 2011    |
| Kumar             |             |                                                              |             |
| Sathiyamoorthy    |             |                                                              |             |
| Feiyu Shi         | chair       | Principal Component Analysis For Multi-size Images           | Dec 2013    |
| Hasan Sajid       | member      | A Universal Background Subtraction System                    | Jul 2014    |
| Ryan Baltenberger | chair       | Estimating Transient Scene Attributes Using Deep Convo-      | May 2016    |
|                   |             | lutional Neural Networks                                     |             |
| Sean Karlage      | member      | Diachronic Volume Registration for Analysis of Antiqui-      | May 2016    |
|                   |             | ties                                                         |             |
| Stanley           | member      | A method for presenting volume and color of 3D objects       | Dec 2016    |
| Rosenbaum         |             | via audio for the visually impaired                          |             |
| DhiShankar        | member      | Analyzing Sybil Attacks and Similar Phenomena in Twitter     | Apr 2017    |
| Bhattacharya      |             | Data                                                         |             |
| Xiaofei Zhang     | member      | Mammogram and Tomosynthesis Classification Using             | Jul 2017    |
|                   |             | Convolutional Neural Networks                                |             |
| Qingguo Xu        | member      | 3D Body Tracking using Deep Learning                         | May 2017    |
| William "Derek"   | co-chair w/ | Scalable Feature Selection and Extraction with Applica-      | May 2018    |
| Jones             | Ellingson   | tions in Kinase Polypharmacology                             |             |
| Weilian "William" | chair       | Image-Based Roadway Assessment using Convolutional           | May 2019    |
| Song              |             | Neural Networks                                              |             |
| Ryan Zembrodt     | member      | Open-World Story Generation with Sequence-to-Sequence        | May 2019    |
|                   |             | and Hierarchical Recurrent Encoder-Decoder Models            |             |
| Jonathan Dingess  | member      | Epsilon-Superposition and Truncation Dimension in Av-        | May 2019    |
|                   |             | erage and Probabilistic Settings for Infinite-Variate Linear |             |
|                   |             | Problems                                                     |             |
| Genghis Goodman   | member      | A Machine Learning Approach to Artificial Floorplan Gen-     | Jul 2019    |
|                   |             | eration                                                      |             |
| Armin Hadzic      | chair       | Estimating Free-Flow Speed with LiDAR and Overhead           | May 2020    |
|                   |             | Imagery                                                      |             |
| Subash Khanal     | member      | Mispronunciation Detection and Diagnosis in Mandarin         | May 2020    |
|                   |             | Accented English Speech                                      |             |
| David Jones       | chair       | TBD                                                          | in progress |

## **Undergraduate Research Students**

| Student Name      | Project Title                                                            |           |
|-------------------|--------------------------------------------------------------------------|-----------|
| Jim Knochelmann   | User-Tools for Aerial Image Registration                                 |           |
| Kyle Kolpek       | Aerial Image Registration                                                | 2012      |
| Noora Aljabi      | Using Flickr to Map Phenological Trends                                  | 2013      |
| J. David Smith    | User-in-the-loop Camera Calibration                                      | 2013–2015 |
| Angelo Stekardis  | Understanding Facial Expressions                                         |           |
| Ryan Baltenberger | Understanding Outdoor Scene Appearance                                   |           |
| Connor Greenwell  | Interactive Methods for Aerial Imagery Understanding                     | 2014–2016 |
| Sam Davidson      | Applications of Generative Adversarial Networks to Social Media Imagery  | 2016–2017 |
| Aaron Mueller     | Deep Learning for Educational Data                                       | 2018      |
| Weilian Song      | Applications of Deep Convolutional Neural Networks to Geometric Computer |           |
|                   | Vision                                                                   |           |

| Yuhan Long     | Deep Learning for Medical Imaging | 2019      |
|----------------|-----------------------------------|-----------|
| Thomas Barber  | Deep Learning for Remote Sensing  | 2019      |
| Sean Grate     | Deep Learning for Point Clouds    | 2019–2020 |
| Shashank Bhatt | TBD                               | 2020-     |
| Cohen Archbold | TBD                               | 2020-     |
| Aurek          | Multimodal Retrieval              | 2020-     |
| Chattopadhyay  |                                   |           |

# **High School Research Students**

| Student Name      | Project Title                                                            |           |
|-------------------|--------------------------------------------------------------------------|-----------|
| Ryan Baltenberger | Gesture-Based User Interaction with the Microsoft Kinect                 |           |
| Alex Lucas        | Evaluation of Automatic Face Detection Methods                           | 2014–2013 |
| Andrew Tapia      | Estimating Surface Reflectivity                                          |           |
| Andrew Albrecht   | Mapping Social Media Imagery                                             | 2016–2017 |
| C. J. Labianca    | Evaluation of Optimization Algorithms for Deep Convolutional Neural Net- |           |
|                   | works                                                                    |           |
| Ryan Landry       | RRADCL: Rapid Roadway Assessment with Deep Convolutional Learning        | 2017–2018 |
| Cohen Archbold    | Photo-Geolocation using Convolutional Neural Networks                    | 2017–2018 |
| Nicole Wong       | Learning-Based View Synthesis                                            | 2019–2020 |
| Chris Wang        | Multimodal Medical Imaging for Alzheimer's Disease Classification        | 2019–     |