

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ $\Pi O \Lambda \Upsilon T E X N I K H \Sigma X O \Lambda H$ T M H M A H Λ ΕΚΤΡΟΛΟΓΩΝ ΜΗΧ ΑΝΙΚΩΝ ΚΑΙ ΜΗΧ ΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

$TIT\Lambda O\Sigma$

Διδακτορική Διατριβή

του

Αλεξάνδρου Φιλοθέου του Χρήστου

ΔΙΠΛΩΜΑΤΟΥΧΟΥ ΗΛΕΚΤΡΟΛΟΓΟΥ ΜΗΧΑΝΙΚΟΥ ΚΑΙ ΜΗΧΑΝΙΚΟΥ ΥΠΟΛΟΓΙΣΤΩΝ $\text{APIΣΤΟΤΕΛΕΙΟΥ} \text{ ΠΑΝΕΠΙΣΤΗΜΙΟΥ } \Theta \text{ESSAΛONIKHS}$

KAI

ΜΕΤΑΠΤΥΧΙΟΥΧΟΥ ΗΛΕΚΤΡΟΛΟΓΟΥ ΜΗΧΑΝΙΚΟΥ ${\rm BAΣΙΛΙΚΟΥ}\ {\rm INΣΤΙΤΟΥΤΟΥ}\ {\rm TEXNΟΛΟΓΙΑΣ}\ {\rm ΣΤΟΚΧΟΛΜΗΣ}$

που εκπονήθηκε ως μερική εκπλήρωση των απαιτήσεων για την απονομή του τίτλου του $\Delta {\rm i} \delta {\rm aktora} \ {\rm Mhc} {\rm aktora} \ {\rm Mhc} {\rm aktora} \ {\rm Mhc} {\rm aktora} \ {\rm a$

Επιβλέπων Γεώργιος Δ. Σεργιάδης Καθηγητής

Συμβουλευτική Επιτροπή

Τραϊανός Β. Γιούλτσης Καθηγητής Ανδρέας Λ. Συμεωνίδης Αναπληρωτής Καθηγητής

Hκύρια αιτία των προβλημάτων είναι οι λύσεις.

—Έρικ Σέβαραϊντ

Περίληψη

Abstract

Περιεχόμενα

Ι	\mathbf{E}_{tc}	σαγωη	rή	1
1	Περ	οιγραφ	ρή του πεδίου εφαρμογής	3
	1.1	Ρομπο	οτική κινητής βάσης	
		1.1.1	Θεμελιώδεις λειτουργίες	5
		1.1.2	Πηγές και κύριοι τρόποι αντίληψης του περιβάλλοντος	7
		1.1.3	Τρέχουσα κατάσταση και Προκλήσεις	11
	1.2	Απαρο	ίτητες έννοιες	12
		1.2.1	Ο αισθητήρας lidar δισδιάστατων μετρήσεων	12
		1.2.2	Το φίλτρο σωματιδίων	12
		1.2.3	Ευθυγράμμιση σαρώσεων lidar	12
		1.2.4	Τα προβλήματα εύρεσης στάσης	12
		1.2.5	Το λειτουργικό σύστημα ρομπότ ROS	12
	1.3	Παραδ	οχές	12
2	Οδι	χός χ	άρτης	13
	2.1	Οδικό	ς χάρτης	13
3	Επι	σκόπη	ηση των ερευνητικών περιοχών	15
	3.1	Επισκ	όπηση ερευνητικών περιοχών	15
4	Συμ	ιβολέο	ς και Διάρθρωση της διατριβής	17
	4.1	Συμβο	νλές της διατριβής	17

ii	ПЕРІЕХОМЕNA
4.2 Διάρθρωση	17
ΙΙ Προβλήματα—Λύσεις—Συμβολές	19
III Συμπεράσματα	21
Αναφορές	23

Μέρος Ι

Εισαγωγή

Περιγραφή του πεδίου εφαρμογής

Η ρομποτιχή είναι η επιστήμη της αντίληψης και του χειρισμού του φυσικού κόσμου μέσω συσχευών που ελέγχονται από υπολογιστές [TBF05]. Ως επιστήμη συμβάλλεται από τους κλάδους του αυτομάτου ελέγχου, της επιστήμης των υπολογιστών, των μαθηματικών, και ως πράξη από την επιστήμη της φυσικής, της τεχνολογίας υλικών, της τεχνολογίας λογισμικού, και της ηλεκτρονικής. Το φυσικό αντικείμενο της ρομποτικής είναι το ρομποτ: μία τεχνητή σύνθεση αντλούσα πληροφορίες από το φυσικό περιβάλλον μέσω αισθητήριων συσκευών, επενεργούσα σε αυτό μέσω φυσικών δυνάμεων, αποτελούμενη κατ' ελάχιστον από κινητήρες, τερματικά, υπολογιστικά συστήματα, λογισμικό, και πηγή ενέργειας. Η μορφή της χρήσης των ρομπότ είναι πρόσθετική: 1 πολλαπλασιάζουν τις επιχειρησιακές ενέργειες του ανθρώπου διαιρώντας την απαιτούμενη προσπάθεια για την επίτευξη των σχοπών του χαι χατανέμοντάς την σε μη ανθρώπινους δράστες της βούλησής του. Στη σημερινή εποχή επιχουρούν, συνεργούν, ή επιχειρούν εξ ολοκλήρου στους τομείς της κατασκευής $[\mathrm{Wan}{+}19]$, πλανητικής εξερεύνησης [Wil+18], γεωργίας [VKA19; NB11], απομακρυσμένης ιατρικής πράξης [SCD20], μεταφοράς αγαθών και ανθρώπων [DB16; Lim+18; Sim+19], συνεχούς απογραφής αγαθών σε αποθήκες [Dim+21], καθαρισμού και απολύμανσης χώρων [KSL20], και αλλού [smp21; rev22; Che+21; NH08]. Σχοπός του ανθρώπου όσο αφορά στα ρομπότ είναι (α) η αντικατάστασή του ατόμου του από αυτά με στόχο την απελευθέρωσή του από τα τετριμμένα, χρονοβόρα, ή επιχίνδυνα έργα τα οποία έχει αυτοεπωμιστεί και (β) η ανάπτυξη τους ώστε να αποκτήσει

¹προσθετικός: ο διατεθειμένος να προσθέση, ο παρέχων πρόσθετον δύναμιν [LSK07]

τη δυνατότητα να πατήσει στους ώμους γιγάντων με στόχο τις δικές του επιδιώξεις. Η επιταχυνόμενη, εξαπλούμενη, και θεμελιωμένη χρήση της αυτοματικής λογικής που γέννησε τη ρομποτική έχει εκτρέψει αυτές τις αντικειμενικές επιδιώξεις με αποτέλεσμα την αυτονόμηση τους: ο οριακός σκοπός της αυτοματοποίησης είναι σήμερα η παράδοση των διαδικασιών που εμπλέκουν οργανικά τον άνθρωπο, ει και όπου δυνατόν, στον κόσμο των αυτοματοποιημάτων.

Προς το παρόν, και σε συνάφεια με το πεδίο εφαρμογής της παρούσας διατριβής, το περιεχόμενο αντικείμενο της ρομποτικής ταξινομείται σε τέσσερις τάξεις:

- ρομπότ των οποίων το σώμα μπορεί να κινηθεί ως μία μονάδα στο σύνολό του στο χώρο (ρομποτική κινητής βάσης) ή ρομπότ των οποίων μόνο μέρη έχουν τη δυνατότητα κίνησης στο χώρο (π.χ. βραχίονες)
- ρομπότ τα οποία δρουν αυτόνομα, χωρίς την ανάγκη για είσοδο από άνθρωπο (π.χ. αυτόνομη οδήγηση) ή ρομπότ των οποίων η δράση ορίζεται από ανθρώπινες εντολές
 (π.χ. ως μέσα εξουδετέρωσης εκρηκτικών μηχανισμών). Αυτή η τάξη διακρίνεται σε βαθμίδες αυτονομίας [BFR14]
- ρομπότ τα οποία έχουν τη δυνατότητα κίνησης στη γη, τον αέρα, ή τη θάλασσα
- ρομπότ εσωτερικού ή εξωτερικού χώρου

Πεδίο Εφαρμογής ΠΕ. Το πεδίο εφαρμογής της παρούσας διατριβής είναι η ρομποτική αυτόνομης επίγειας κινητής βάσης εσωτερικού χώρου.

Πιό συγκεκριμένα: το μεγαλύτερο μέρος της διατριβής αφορά στην επίλυση προβλημάτων τα οποία είναι ανεξάρτητα από το βαθμό αυτονομίας, ενώ σε όλες τις συνθήκες προϋποτίθεται ότι το ρομπότ επιχειρεί εντός κλειστού (από όλες τις έξι πλευρές) χώρου. Η τελευταία προϋπόθεση-παραδοχή είναι κύριας σημασίας:

Παραδοχή Ι. Ο περιβάλλον χώρος είναι επιδεκτικός αίσθησης ως πλήρως οριοθετημένος, και κάθε πληροφορία που αποτελεί είσοδο (ή προϊόν επεξεργασίας της) των υπολογιστικών συστημάτων του ρομπότ προέρχεται αποκλειστικά από ίδια μέσα του ρομπότ και από την επίδραση του με τα όρια του χώρου—: το σύστημα ρομποτπεριβάλλων χώρος είναι κλειστό.

Παρατήρηση Ι. Αυτό σημαίνει ότι η μοντελοποίηση του κόσμου και η αυτοαντίληψη του ρομπότ πηγάζουν από τους δικούς του (πεπερασμένους) πόρους.

Η παρούσα διατριβή εστιάζει στο πεδίο εφαρμογής ΠΕ λόγω του διαρχώς αυξανόμενου ενδιαφέροντος στην έρευνα αυτόνομων επίγειων οχημάτων, η οποία εφορμάται από την τρέχουσα και προβλεπόμενη διάχυση τους σε (κρίσιμους και μη) τομείς της παγκόσμιας ανθρώπινης δραστηριότητας. Σκοπός της είναι η επίλυση τρέχοντων προβλημάτων του πεδίου εφαρμογής, τα οποία απαντώνται τόσο στην ερευνητική βιβλιογραφία όσο και στην ερευνητική πράξη. Σημείο εκκίνησής της είναι η έρευνα πάνω στην αυτόνομη πλοήγηση επί του πρακτέου. Από εκεί, βάσει μίας κρίσιμης παρατήρησης, ξεκινάει να εστιάζει στο πρόβλημα της εύρεσης της στάσης ενός ρομπότ στο χώρο, με βάσει παραδοχές και περιορισμούς που προσδιορίζονται από πραγματικές συνθήκες και επιδιώξεις και οι οποίες ποικίλουν ανάλογα με αυτές. Σε αυτό το κεφάλαιο ορίζεται η ρομποτική κινητής βάσης (ενότητα 1.1) ... ??

1.1 Ρομποτική κινητής βάσης

Ο όρος "ρομποτική κινητής βάσης" αναφέρεται σε ρομπότ τα οποία έχουν τη δυνατότητα κίνησης στο περιβάλλον τους, σε αντίθεση με εκείνα των οποίων η βάση είναι πακτωμένη σε μία συγκεκριμένη θέση του χώρου. Ως εκ τούτου η έρευνα αυτού του τομέα ασχολείται με όλα εκείνα τα προβλήματα που απορρέουν από την πλοήγηση ενός ρομπότ από μία θέση σε μία άλλη.

1.1.1 Θεμελιώδεις λειτουργίες

Το πρόβλημα της πλοήγησης διαχρίνεται σε βαθμούς αυτονομίας. Κάθε επόμενη βαθμίδα αυτονομίας αφομοιώνει μία ανεξάρτητη μεταβλητή προηγούμενης βαθμίδας ως μία προς υπολογισμό, την οποία εξαρτά από τον αρχικό στόχο. Η αυτονομία πλοήγησης ξεκινάει από την τυχαία κίνηση στο χώρο με εντολές κίνησης υπολογιζόμενες από το ρομπότ, στην παραχολούθηση προκαθορισμένων τροχιών, ύστερα στην αυτόνομη χάραξη τροχιών προς προκαθορισμένους στόχους και την αυτόνομη παρακολούθηση των τροχιών, και καταλήγει στην αυτόνομη πλοήγηση με αυτόνομη επιλογή σημείων-στόχων.

Κοιτώντας την μη-τετριμμένη αυτόνομη πλοήγηση από το επίπεδο της επιφάνειας απαιτείται κατ' ελάχιστον η γνώση δύο μεταβλητών: του στόχου προς τον οποίο το ρομπότ θα κινηθεί και η τρέχουσα θέση του. Αυτές οι αθώες μεταβλητες ανοίγουν την πόρτα σε ένα σύμπαν προβλημάτων μερικών από των οποίων τη λύση αποπειράται η παρούσα διατριβή.

Για τον ακριβή προσδιορισμό ενός σημείου στο φυσικό χώρο απαιτείται αυτός ο χώρος να φέρει σύστημα συντεταγμένων, και κατά συνέπεια να είναι μετρικός. Έπειτα, με γνώμονα την ασφάλεια του ρομπότ και του περιβάλλοντός του, το ρομπότ πρέπει να έχει γνώση των κατειλειμένων και μη σημείων από εμπόδια σε αυτό το σύστημα. Από αυτές τις αιτίες προκύπτει η ανάγκη για την αναπαράσταση του περιβάλλοντος με τη μορφή μετρικού χάρτη. Εν γένει το σύστημα συντεταγμένων και ο χάρτης θα πρέπει να εφευρεθούν επί τούτου για κάθε περιβάλλον καθώς στη γενική περίπτωση τα αρχιτεκτονικά σχέδια χώρων δεν είναι γνωστά. Από αυτή την απαίτηση προκύπτει το πρόβλημα του SLAM (Simultaneous Localisation and Mapping), δηλαδή της ταυτόχρονης κατασκευής χάρτη και εύρεσης της στάσης ενός ρομποτ σε αυτόν.

Κατά συνέπεια η γνώση μιας οποιασδήποτε θέσης στο φυσικό χώρο μεσολαβείται από τη γνώση της στο χάρτη του, στο οικείο του σύστημα αναφοράς. Δεδομένου του χάρτη ενός χώρου ένα ρομπότ μπορεί να προσδιορίσει τη θέση του σε αυτόν χρησιμοποιώντας τους αισθητήρες του, αντιπαραβάλλοντας μετρήσεις από αυτούς με εικονικές μετρήσεις από κάποια υπόθεση-εκτίμηση για τη θέση του στο χάρτη. Το πρόβλημα της έυρεσης της θέσης ενός ρομπότ στο χάρτη είναι θεμελιώδους σημασίας στη ρομποτική κινητής βάσης, και διακρίνεται σε τριών ειδών προβλήματα (σχήμα 1.1 [PB21]):

- Εύρεση της θέσης βάσει καθολικής αβεβαιότητας (Global Localisation)
- Εύρεση και παρακολούθηση της θέσης βάσει περιορισμένης αβεβαιότητας (Pose Tracking)
- Ανίχνευση απαγωγής ρομπότ και εύρεση της νέας θέσης του (Kidnapped Robot Problem)

Παρατήρηση ΙΙ. Λόγω της παραδοχής Ι η θέση του ρομπότ δεν είναι μετρήσιμη αλλά παρατηρήσιμη.

Στο μεγαλύτερό της μέρος η παρούσα διατριβή εστιάζει στα δύο πρώτα προβλήματα, των οποίων η λύση απαιτείται στην πράξη σε κάθε σύστημα με πεδίο εφαρμογής ΠE που ικανοποιεί την παραδοχή I.

Σχήμα 1.1: Κατάτμηση του προβλήματος της εύρεσης θέσης σε κατηγορίες και τα ποσοστά έρευνας σε αυτές

Δεδομένης της γνώσης του χάρτη του περιβάλλοντος στο οποίο χινείται ένα ρομπότ χινητής βάσης, της αρχιχής και της επιθυμητής του θέσης, ενός αλγορίθμου παρακολούθησης της θέσης του (pose tracking), και αισθητήρων για την αντίληψη του περιβάλλοντος, στη γενικότερή του μορφή το πρόβλημα της αυτόνομης πλοήγησης είναι επιλύσιμο. Για την επίλυσή του απαιτούνται δύο μέθοδοι:

- Ένας αλγόριθμος χάραξης μονοπατιού που συνδέει την αρχική με την τελική του θέση (Path Planning)
- Ένας ελεγκτής κίνησης του ρομπότ για την παρακολούθηση του παραπάνω μονοπατιού (Motion Controller)

1.1.2 Π ηγές και κύριοι τρόποι αντίλη ψ ης του περιetaάλλοντος

Η επιτυχής λύση του προβλήματος της αυτόνομης πλοήγησης προϋποθέτει την ύπαρξη και χρήση εξωδεκτικών αισθητήρων. Χωρίς αυτούς τα προβλήματα των οποίων η λύση είναι αναγκαία για την αυτόνομη πλοήγηση (κατασκευή χάρτη, εύρεση και παρακολούθηση της θέσης του ρομπότ) δεν είναι επιλύσιμα. Για την αντίληψη των ορίων (επιφάνειες-εμπόδια) του περιβάλλοντος χρησιμοποιούνται αισθητήρες με ποικίλα χαρακτηριστικά, ανάλογα με τα χαρακτηριστικά του περιβάλλοντος και την αντικειμενική επιδίωξη της χρήσης ρομπότ κινητής βάσης. Όσο τα χρόνια περνούσαν και η τεχνολογία υλικών εκλεπτυνόταν, μαζί της εξελίσ-

σονταν και οι παραπάνω αλγόριθμοι, οξύνοντας την ακρίβεια εκτίμησης της αναπαράστασης του περιβάλλοντος χώρου και της θέσης ενός ρομπότ σε αυτό, ή παρέχοντας περισσότερη και πλουσιότερη πληροφορία για το περιβάλλον.

Τα πρώτα χρόνια της ρομποτικής χρησιμοποιούνταν αισθητήρες υπερήχων (sonar), εκκινώντας από την ανίχνευση εμποδίων στη γειτονιά ενός ρομπότ. Η τεχνολογία ήταν εκεί λόγω εκτεταμένης χρήσης τους σε στρατιωτικές επιχειρήσεις, και το κόστος τους ήταν χαμηλό. Η αρχή λειτουργίας τους βασίζεται στην εκτίμηση αποστάσεων προς τα γύρω εμπόδια μέσω της μέτρησης του χρόνου εκπομπής υπερήχων προς και ανάκλασης από αυτά. Αν και χρησιμοποιούνται μέχρι και σήμερα, η χρήση τους περιορίζεται στην ανίχνευση αντικειμένων σε χαμηλές αποστάσεις λόγω της αδρής λεπτομέρειας των μετρήσεών τους, το περιορισμένο τους γωνιακό πεδίο όρασης, και το εγγενές πρόβλημα της αμφισημίας των μετρήσεών τους λόγω των πολλαπλών διαδοχικών ενδεχόμενων ανακλάσεων του ήχου σε τρίτες επιφάνειες.

Την ίδια αρχή λειτουργίας εκμεταλλεύονται οι αισθητήρες lidar (σύντμηση του Light και Radar ή αλλιώς Light Detection and Ranging) χρησιμοποιώντας, αντί για ήχο, φως υπέρυθρης, ορατής, ή υπεριώδους ακτινοβολίας. Διακρίνονται σε αισθητήρες που αποτυπώνουν αποστάσεις σε εμπόδια του περιβάλλοντός τους σε ένα επίπεδο (δισδιάστατες μετρήσεις) ή σε πολλαπλά επίπεδα γύρω από αυτό (τρισδιάστατες μετρήσεις). Οι αισθητήρες LIDAR υστερούν σε κόστος, μέγεθος, και συχνότητα μετρήσεων σε σχέση με τους αισθητήρες υπερήχων, αλλά εμφανίζουν σημαντικά μεγαλύτερο εύρος όρασης (έως 360°), τόσο γωνιακά όσο και ακτινικά, και ακρίβεια μετρήσεων που μπορεί να φτάσει την τάξη των μερικών εκατοστών. Η διαφορά της ακρίβειάς των μετρήσεών τους ως προς την κατασκευή χάρτη με τη χρήση τους αποτυπώνεται στο σχήμα 1.2.

Η ανάπτυξη της τεχνολογίας αισθητήρων εικόνας και η βελτίωση της ποιότητάς τους τούς κατέστησε και πηγές εξωδεκτικών μετρήσεων στη ρομποτική. Το σημαντικό τους προτέρημα είναι η χρωματική πληροφορία του περιβάλλοντος, το μεγάλο οριζόντιο και κάθετο εύρος όρασής τους, και ο υψηλός ρυθμός ανανέωσης των μετρήσεών τους. Η εφεύρεση των αισθητήρων εικόνας και βάθους (RGBD, ή η χρήση στερεοειδών συστημάτων) εισάγει την επιπρόσθετη πληροφορία κατάληψης σημείων στον τρισδιάστατο χώρο από εμπόδια, αλλά ταυτόχρονα επιφέρει χαμηλότερες συχνότητες ανανέωσης αξιοποιήσιμης πληροφορίας λόγω του αυξημένου όγκου της χωρικής πλέον πληροφορίας. Λόγω του μεγάλου όγκου πληροφορίας που φέρουν απαιτούν αντίστοιχους υπολογιστικούς πόρους, οι οποίοι στα πλαίσια του πε

Σχήμα 1.2: Αριστερά: δισδιάστατος χάρτης από μετρήσεις αισθητήρα τύπου sonar. Δεξιά: χάρτης του ίδιου χώρου από μετρήσεις αισθητήρα τύπου lidar σε δύο διαστάσεις [Qi+20]. Τα χρωματισμένα περιγράμματα περιχλείουν περιοχές τις οποίες ο αισθητήρας sonar απέτυχε να χαρτογραφήσει με πιστότητα προς το πραγματικό περιβάλλον

δίου εφαρμογής ΠΕ ενδέχεται να μην είναι διαθέσιμοι. Σε αντίθεση με τους προηγούμενους αισθητήρες εξαρτώνται από τις συνθήκες φωτισμού του χώρου στον οποίον λειτουργούν και συνεπώς η ποιότητα των μετρήσεων είναι ευμετάβλητη. Σε σχέση με τους αισθητήρες lidar εμφανίζουν σημαντικά περιορισμένο γωνιακό εύρος όρασης, ακρίβεια μετρήσεων που φθίνει τετραγωνικά σε σχέση με την απόσταση μέτρησης (αντί για γραμμικά όπως στους αισθητήρες lidar), και περιοχές μη αξιοποιήσιμων μετρήσεων λόγω σκιών που παράγονται ως συνέπεια της αρχής λειτουργίας τους [MDM14]. Η διαφορά της ακρίβειάς των μετρήσεών τους ως προς την κατασκευή χάρτη με τη χρήση τους αποτυπώνεται στο σχήμα 1.3.

Λόγω της μεγάλης τους μετρητικής ακρίβειας, της πυκνής τους γωνιακής δειγματολειψίας, του ικανού ρυθμού ανανέωσης μετρήσεων, του ευρύτατου πεδίου οράσεως τους, του μέτριου κόστους τους, και του γεγονότος ότι ο όγκος των μετρήσεων τους είναι κατά κύριο λόγο επεξεργάσιμος σε πραγματικό χρόνο (απαιτητέο από την επίλυση της πλειονότητας των προβλημάτων της υποενότητας 1.1.1), οι αισθητήρες τύπου lidar έχουν προκριθεί στη θέση των αισθητήρων εκ των ων ουκ άνευ όσο αφορά σε εφαρμογές αυτόνομους πλοήγησης, κατασκευής χάρτη, και εύρεσης της θέσης ενός ρομπότ, στο πεδίο εφαρμογής ΠΕ που ικανοποιούν την παραδοχή Ι. Οι ίδιες αρετές τούς έχουν καταστήσει ηγέτες στην ευρύτερη αγορά αισθητήρων για ρομποτικές εφαρμογές όπου επιζητείται επιπρόσθετη αντίληψη που να υπηρετεί σκοπούς αυτονομίας (σχήμα 1.4).

Σχήμα 1.3: Αριστερά: δισδιάστατος χάρτης από μετρήσεις αισθητήρα τύπου RGBD προβεβλημένες στο οριζόντιο επίπεδο. Δεξιά: χάρτης του ίδιου χώρου από μετρήσεις αισθητήρα τύπου lidar σε δύο διαστάσεις [Oli+12]. Οι κόκκινες γραμμές αναπαραστούν το πραγματικό περιβάλλον

Σχήμα 1.4: Αριστερά: κατάτμηση της αγοράς αισθητήρων στην αυτοκινητοβιομηχανία [SSC21]. Μέση: πωλήσεις αισθητήρων lidar σε εκατομμύρια δολλάρια κατά έτος [staa]. Δεξιά: προβολή της κατάτμησης της αγοράς αισθητήρων και πωλήσεις σε δισεκατομμύρια δολλάρια το έτος 2027 [stab]

1.1.3 Τρέχουσα κατάσταση και Προκλήσεις

Τα θεμελιακά προβλήματα που απορρέουν από απαιτήσεις αυτόνομης πλοήγησης, δηλαδή η κατασκευή χάρτη, η εύρεση και παρακολούθηση της θέσης ενός ρομπότ στο χώρο, καθώς και η ίδια η αυτόνομη πλοήγηση, θεωρούνται σήμερα λυμένα στο πεδίο εφαρμογής ΠΕ με τη χρήση αισθητήρων lidar. Για την ακρίβεια αυτό που θεωρείται λυμένο είναι το πρόβλημα επί της αρχής: δηλαδή ότι υπάρχουν αναγκαίες συνθήκες στις οποίες η λύση κάθε προβλήματος είναι εφικτή. Η αφαίρεση αυτών των συνθηκών και η έρευνα με γνώμονα την ευρωστία στη μετέπειτα κατάσταση αποτελεί πρόκληση για κάθε μελλοντική λύση.

Επιπρόσθετα η λύση χάθε προβλήματος δεν είναι απαραίτητα "βέλτιστη". Παράδειγμα αποτελεί το πεδίο του εντοπισμού της θέσης ενός ρομπότ όπου, λόγω της παρατήρησης ΙΙ, η εχτίμηση για τη θέση του φέρει ένα αναπόφευχτο σφάλμα (λόγω μετρητιχού θορύβου χαι σφαλμάτων μοντελοποίησης χαι λύσης). Η ανάγχη για πρόσθετη ή υψηλή αχρίβεια, αν χαι πάντα ευπρόσδεχτη, δεν ανήχει στις αυστηρές απαιτήσεις των ρομποτιχών εφαρμογών, εχτός από αυτές της βιομηχανίας. Στις τελευταίες, ωστόσο, λόγω της ανάγχης για αυστηρές προδιαγραφές χαι υψηλή αχρίβεια, η αυτονομία ενός οχήματος είτε αποφεύγεται (χαι η χειροχίνητη πλοήγηση χαθιστά περιττό τον εντοπισμό της θέσης του) είτε, όπου υιοθετείται, αντιχαθίσταται από εξωτεριχές χαι δαπανηρές υποδομές λόγω των διαχυβεύματων που υπάρχουν στο βιομηχανιχό πλαίσιο [Vas+16]. Σε αυτό το πλαίσιο αποτελεί πρόχληση η μείωση των σφαλμάτων εχτίμησης της θέσης ενός ρομπότ, χαθώς μιχρότερα σφάλματα σημαίνουν περισσότερο γόνιμο έδαφος για την περαιτέρω αυτοματοποίηση διαδιχασιών, χαι την διεύρυνση υιοθέτησης ρομποτιχών οχημάτων από τη βιοτεχνία/βιομηχανία.

- 1.2 Απαραίτητες έννοιες
- 1.2.1 Ο αισθητήρας lidar δισδιάστατων μετρήσεων
- 1.2.2 Το φίλτρο σωματιδίων
- 1.2.3 Ευθυγράμμιση σαρώσεων lidar
- 1.2.4 Τα προβλήματα εύρεσης στάσης
- 1.2.5 Το λειτουργικό σύστημα ρομπότ ROS
- 1.3 Παραδοχές

Οδικός χάρτης

2.1 Οδικός χάρτης

Σχήμα 2.1: Ο οδικός χάρτης της διατριβής

Επισκόπηση των ερευνητικών περιοχών

3.1 Επισκόπηση ερευνητικών περιοχών

Συμβολές και Διάρθρωση της διατριβής

- 4.1 Συμβολές της διατριβής
- 4.2 Διάρθρωση

Μέρος ΙΙ

Προβλήματα—Λύσεις— Συμβολές

Μέρος III

Συμπεράσματα

Αναφορές

- [TBF05] Sebastian Thrun, Wolfram Burgard και Dieter Fox. *Probabilistic robotics*. Cambridge, Mass.: MIT Press, 2005. ISBN: 9780262201629. URL: http://www.amazon.de/gp/product/0262201623/102-8479661-9831324?v=glance% 7B%5C&%7Dn=283155%7B%5C&%7Dn=507846%7B%5C&%7Ds=books%7B%5C&%7Dv=glance.
- [LSK07] Henry. G. Liddell, Robert Scott και Α. Κωνσταντινίδου. Επιτομή του μεγάλου λεξικού της ελληνικής γλώσσης. 2007.
- [NH08] J. W. Nicholson και A. J. Healey. "The present state of Autonomous Underwater Vehicle (AUV) applications and technologies". Στο: Marine Technology Society Journal 42.1 (2008), σσ. 44–51. ISSN: 00253324. DOI: 10.4031/002533208786861272.
- [NB11] Noboru Noguchi και Oscar C. Barawid. "Robot Farming System Using Multiple Robot Tractors in Japan Agriculture". Στο: IFAC Proceedings Volumes 44.1 (Ιαν. 2011), σσ. 633–637. ISSN: 14746670. DOI: 10.3182/20110828-6-IT-1002.03838. URL: https://linkinghub.elsevier.com/retrieve/pii/S1474667016436815.
- [Oli+12] Ayrton Oliver x.ά. "Using the Kinect as a navigation sensor for mobile robotics". Στο: Proceedings of the 27th Conference on Image and Vision Computing New Zealand IVCNZ '12. New York, New York, USA: ACM Press, 2012, σσ. 509–514. ISBN: 9781450314732. DOI: 10.1145/2425836.2425932. URL: http://dl.acm.org/citation.cfm?doid=2425836.2425932.
- [BFR14] Jenay M Beer, Arthur D Fisk και Wendy A Rogers. "Toward a Framework for Levels of Robot Autonomy in Human-Robot Interaction". Στο: Journal of Human-Robot Interaction 3.2 (Ιούν. 2014), σ. 74. ISSN: 2163-0364. DOI:

24 $ANA\Phi OPE\Sigma$

- 10.5898/JHRI.3.2.Beer. URL: http://dl.acm.org/citation.cfm?id=3109833.
- [MDM14] Tanwi Mallick, Partha Pratim Das και Arun Kumar Majumdar. "Characterizations of Noise in Kinect Depth Images: A Review". Στο: *IEEE Sensors Journal* 14.6 (Ιούν. 2014), σσ. 1731–1740. ISSN: 1530-437X. DOI: 10.1109/JSEN.2014. 2309987. URL: http://ieeexplore.ieee.org/document/6756961/.
- [DB16] Murat Dikmen και Catherine M. Burns. "Autonomous Driving in the Real World". Στο: Proceedings of the 8th International Conference on Automotive User Interfaces and Interactive Vehicular Applications. New York, NY, USA: ACM, Οκτ. 2016, σσ. 225–228. ISBN: 9781450345330. DOI: 10.1145/3003715. 3005465. URL: https://dl.acm.org/doi/10.1145/3003715.3005465.
- [Vas+16] Goran Vasiljević x.ά. "High-accuracy vehicle localization for autonomous warehousing". Στο: Robotics and Computer-Integrated Manufacturing 42 (Δεχ. 2016), σσ. 1–16. ISSN: 07365845. DOI: 10.1016/j.rcim.2016.05.001. URL: https://linkinghub.elsevier.com/retrieve/pii/S0736584515300314.
- [Lim+18] Pedro F. Lima x.ά. "Experimental validation of model predictive control stability for autonomous driving". Στο: Control Engineering Practice 81 (Δεχ. 2018), σσ. 244–255. ISSN: 09670661. DOI: 10.1016/j.conengprac.2018.09.021. URL: https://linkinghub.elsevier.com/retrieve/pii/S0967066118305926.
- [Wil+18] Kenneth H. Williford x.ά. "The NASA Mars 2020 Rover Mission and the Search for Extraterrestrial Life". Στο: From Habitability to Life on Mars. Elsevier, 2018, σσ. 275–308. DOI: 10.1016/B978-0-12-809935-3.00010-4. URL: https://linkinghub.elsevier.com/retrieve/pii/B9780128099353000104.
- [Sim+19] Jesse R. Simpson x.ά. "An estimation of the future adoption rate of autonomous trucks by freight organizations". Στο: Research in Transportation Economics 76 (Σεπτ. 2019), σ. 100737. ISSN: 07398859. DOI: 10.1016/j.retrec.2019. 100737. URL: https://linkinghub.elsevier.com/retrieve/pii/S0739885919302495.
- [VKA19] Juan P. Vasconez, George A. Kantor και Fernando A. Auat Cheein. "Human-robot interaction in agriculture: A survey and current challenges". Στο: Biosystems Engineering 179 (Μαρ. 2019), σσ. 35–48. ISSN: 15375110. DOI: 10.1016/j.

 $ANA\Phi OPE\Sigma$ 25

biosystemseng.2018.12.005. URL: https://linkinghub.elsevier.com/retrieve/pii/S1537511017309625.

- [Wan+19] L. Wang x.ά. "Symbiotic human-robot collaborative assembly". Στο: CIRP Annals 68.2 (2019), σσ. 701-726. ISSN: 00078506. DOI: 10.1016/j.cirp. 2019.05.002. URL: https://linkinghub.elsevier.com/retrieve/pii/S0007850619301593.
- [KSL20] Zeashan Hameed Khan, Afifa Siddique και Chang Won Lee. "Robotics Utilization for Healthcare Digitization in Global COVID-19 Management". Στο: International Journal of Environmental Research and Public Health 17.11 (Μάι. 2020), σ. 3819. ISSN: 1660-4601. DOI: 10.3390/ijerph17113819. URL: https://www.mdpi.com/1660-4601/17/11/3819.
- [Qi+20] Xianyu Qi κ.ά. "Building semantic grid maps for domestic robot navigation".
 Στο: International Journal of Advanced Robotic Systems 17.1 (Ιαν. 2020).
 ISSN: 1729-8814. DOI: 10.1177/1729881419900066. URL: http://journals.
 sagepub.com/doi/10.1177/1729881419900066.
- [SCD20] Kyle H. Sheetz, Jake Claffin και Justin B. Dimick. "Trends in the Adoption of Robotic Surgery for Common Surgical Procedures". Στο: JAMA Network Open 3.1 (Ιαν. 2020), e1918911. ISSN: 2574-3805. DOI: 10.1001/jamanetworkopen. 2019.18911. URL: https://jamanetwork.com/journals/jamanetworkopen/ fullarticle/2758472.
- [Che+21] Cheng Chen κ.ά. "The adoption of self-driving delivery robots in last mile logistics". Στο: Transportation Research Part E: Logistics and Transportation Review 146 (Φεβ. 2021), σ. 102214. ISSN: 13665545. DOI: 10.1016/j.tre. 2020.102214. URL: https://linkinghub.elsevier.com/retrieve/pii/S1366554520308565.
- [Dim+21] Antonis Dimitriou x.ά. "Autonomous Robots, Drones and Repeaters for Fast, Reliable, Low-Cost RFID Inventorying & Localization". Στο: 2021 6th International Conference on Smart and Sustainable Technologies (SpliTech). IEEE, Σεπτ. 2021, σσ. 01–06. ISBN: 978-953-290-112-2. DOI: 10.23919/SpliTech52315. 2021.9566425. URL: https://ieeexplore.ieee.org/document/9566425/.

26 $ANA\Phi OPE\Sigma$

[PB21] Prabin Kumar Panigrahi και Sukant Kishoro Bisoy. "Localization strategies for autonomous mobile robots: A review". Στο: Journal of King Saud University

- Computer and Information Sciences (Μαρ. 2021). ISSN: 13191578. DOI: 10.
1016/j.jksuci.2021.02.015. URL: https://linkinghub.elsevier.com/retrieve/pii/S1319157821000550.

- [SSC21] Bogdan Ilie Sighencea, Rareș Ion Stanciu και Cătălin Daniel Căleanu. "A Review of Deep Learning-Based Methods for Pedestrian Trajectory Prediction". Στο: Sensors 21.22 (Noέ. 2021), σ. 7543. ISSN: 1424-8220. DOI: 10.3390/s21227543. URL: https://www.mdpi.com/1424-8220/21/22/7543.
- [smp21] smprobotics. 2021. URL: https://smprobotics.com/security_robot.
- [rev22] revfine. 2022. URL: https://www.revfine.com/hotel-robots/.
- [staa] statista.com. URL: https://www.statista.com/statistics/430086/automotive-sales-of-automotive-lidar-systems-worldwide/.
- [stab] statista.com. URL: https://www.statista.com/statistics/880147/global-robotic-vehicle-sensors-market-size-by-segment/.