

Universidade Federal de Uberlândia FEELT – Faculdade de Engenharia Elétrica

SISTEMAS E CONTROLE

Roteiro 05b - Amplificadores Operacionais

Professor: Dr. Éder Alves de Moura

Gabriel Cardoso Mendes de Ataide

11811ECP008

SUMÁRIO

Introdução	2
Atividade 01	3
Resolução	3
Atividade 02	5
Resolução A - Amplificador Integrador	5
Resolução B - Amplificador Diferenciador	5
Resolução C - Amplificador Comparador	6
Resolução D - Amplificador com Realimentação Positiva	6

Introdução

Amplificadores operacionais (AmpOp) formam uma grande classe de circuitos integrados que podem ser configurados para diversas aplicações. Esse roteiro explora os conceitos introdutórios sobre os AmpOps.

Atividade 01

Da playlist:

https://www.youtube.com/watch?v=U0XaljeXVn8&list=PLf1lowbdbFIBSLXMLK4NoGgml7 15rK922 assista aos vídeos, de 12 à 16 e produza um material explicando:

- a) o amplificador integrador;
- b) o amplificador diferenciador;
- c) o amplificador comparador;
- d) o amplificador com realimentação positiva;
- e) o resumo das configurações básicas.

Resolução

- a) **Amplificador Integrador:** integra um sinal de entrada ao longo do tempo. Consiste em um amplificador operacional e um capacitor no circuito de feedback. O sinal de entrada é aplicado à entrada não inversora do amplificador, portanto, um sinal integrado é produzido na saída inversora. É amplamente utilizado em aplicações que envolvem processamento de sinais e controle de sistemas.
- b) **Amplificador Diferenciador:** diferencia um sinal de entrada em função do tempo. Consiste em um amplificador operacional e resistores no circuito de feedback. O sinal de entrada é aplicado à entrada inversora do amplificador, portanto, um sinal diferencial é produzido na saída não inversora. É usado em aplicações que envolvem a detecção de mudanças rápidas nos sinais.
- c) Amplificador Comparador: compara dois sinais de entrada e produz uma saída baseada na relação entre eles. Consiste em um amplificador operacional e um par de resistores. O sinal de referência é aplicado à entrada não inversora, enquanto o sinal de entrada é aplicado à entrada inversora. Se o sinal de entrada for maior que o sinal de referência, a saída será alta; se o sinal de entrada for menor que o sinal de referência, a saída será baixa. É amplamente utilizado em aplicações que envolvem comparação de sinais.
- d) Amplificador com Realimentação Positiva: usa um sinal de saída para realimentar um sinal de entrada, aumentando assim a amplitude do sinal de saída. Consiste em um amplificador operacional e resistores no circuito de feedback. O sinal de saída é aplicado à entrada não inversora e o sinal de entrada é aplicado à entrada inversora. É utilizado em aplicações que requerem ganho de tensão muito alto.
- e) **Resumo das Configurações Básicas:** Existem várias configurações básicas de amplificadores operacionais, incluindo amplificadores inversores, amplificadores não inversores, amplificadores seguidores de tensão, amplificadores seguidores de corrente

e amplificadores somadores. Amplificadores inversores e amplificadores não inversores são as configurações mais comuns e são usados em muitas aplicações, incluindo amplificação de sinal, filtragem de sinal, amplificação de som, etc. Amplificadores seguidores de tensão são usados para fornecer alta impedância de entrada e baixa impedância de saída, enquanto amplificadores seguidores de corrente são usados para fornecer baixa impedância de entrada e alta impedância de saída. Amplificadores somadores são usados para combinar vários sinais de entrada em uma única saída.

Atividade 02

Para os exemplos citados na questão anterior, construa um exemplo e sua simulação no SimulIDE. Apresente os prints da simulação e o desenvolvimento matemático.

Resolução A - Amplificador Integrador

Figura 1 - Amplificador Integrador.

Resolução B - Amplificador Diferenciador

Figura 2 - Amplificador Diferenciador.

Resolução C - Amplificador Comparador

Figura 3 - Amplificador Comparador.

Resolução D - Amplificador com Realimentação Positiva

Figura 4 - Amplificador com Realimentação Positiva.