VLSI DESIGN FLOW: RTL TO GDS

Lecture 25 Constraints I

Sneh Saurabh Electronics and Communications Engineering IIIT Delhi

Lecture Plan

- Basics of constraints
- Clock constraints
- Input/Output constraints
- Timing exceptions

Constraints: Basics

Constraints are:

- Requirements of a design that needs to be honoured or attempted to be honoured by the CAD tools
- Information about a design that could potentially be exploited by the CAD tools to improve the PPA of the design
- Constraints are normally specified in Synopsys Design Constraints (SDC)
- ASCII format written in Tool Command Language (TCL)

create_clock -period 10 -waveform {5 10}
[get_ports CLK]

set_clock_transition -rise 0.1 [get_clocks CLK]

set_clock_uncertainty 0.2 [get_clocks CLK]

set_input_delay -clock CLK 3.0 [get_ports
INPA]

set_output_delay -clock CLK 3.0 [get_ports INPA]

set_false_path -from [get_ports TE]

set_multicycle_path -from [get_ports mult_out]

Constraints: Application

- Most of the constraints are related to timing of a design (also called timing constraints)
 - > Employed by implementation tool to gather information about the expected timing behavior
 - > Employed by STA tool to verify timing

Constraints: What is the origin?

Constraints are normally manually written

- Designer have the knowledge of design goals and environmental constraints
- There are certain tools for automatic constraints generation
 - > Some user intervention is always required

It is important to write correct constraints

- Otherwise design implementation tools can produce unexpected results
- There should be consistency between different constraints
- Constraints should be consistent with design attributes

Constraints: Types

Clock signal

Attributes of a clock signal such as frequency, duty cycle, skew, uncertainty and delay

Environment under which the design operates

Attributes of external incoming signal and expected behavior of the signals produced by a design

Functionality of the design (informative)

 Timing exceptions (paths that are false and paths that are allowed to behave differently than traditional synchronous behavior), modes of design

Design rules and optimization constraints

Maximum slew at the port, maximum capacitance at a pin, and soft constraints

Clock Constraints: Sources

Two types of clock sources

- Primary clock sources: waveform independent of other clock sources in that design
- Derived clock sources: waveform depends on other clock sources
- Master clock: clock from which we derive another clock is known as the master clock of the derived clock
 - > CS1 is the master clock source of CS2

Primary Clock Source Definition

create_clock: defines the primary clock source in a design

current_design *MyComp*

create_clock -name EXT_CLK -period 10 -waveform {0 4} [get_ports *clk_in*]

create_clock -name INT_CLK -period 10 [get_pins CS1/clk_g]

-waveform: time when the clock edges occur, starting from rise-edge

Derived Clock Source Definition

create_generated_clock: define derived clock sources

create_clock -name CLK -period 10 [get_pins CS1/CLK]

create_generated_clock -name GCLK -divide_by 2 -source [get_pins CS1/CLK] [get_pins CS2/GCLK]

Attributes of Clock Signal: Latency

set_clock_latency: specify clock latency

create_clock -name CLK -period 200 [get_ports *clk_port*] set_clock_latency 5 -source [get_clocks CLK] set_clock_latency 10 [get_clocks CLK]

Attributes of Clock Signal: Uncertainty

set_clock_uncertainty: unpredictable deviation of the clock edges from the ideal value

Clock uncertainty can be used to model:

Jitter: temporal variation

Skew: spatial variation

Safety margins

create_clock -name CLK -period 200 [get_ports *clk_port*] set_clock_uncertainty 15 -hold [get_clocks CLK] set_clock_uncertainty 20 -setup [get_clocks CLK]

Attributes of Clock Signal: Transition

set_clock_transition: specify an estimated clock transition time

create_clock -name CLK -period 2000 [get_ports *clk_port*] set_clock_transition 10 [get_clocks CLK]

References

- S. Saurabh, "Introduction to VLSI Design Flow". Cambridge: Cambridge University Press, 2023.
- Bhasker, Jayaram, and Rakesh Chadha. Static timing analysis for nanometer designs: A practical approach. Springer Science & Business Media, 2009.

