Mathematik für Biologen Vorlesungsskript

Sommer 2005

Achim Klenke Mathematisches Institut Johannes Gutenberg-Universität Mainz Staudingerweg 9 55099 Mainz

korrigierte Fassung vom 09.05.2011 erweiterte Tabellen: 21.07.2011

Inhalt der Vorlesung

- halbes Semester: Grundlagen (Auflösen von Gleichungen, Exponential- und Logarithmusfunktion, Winkelfunktionen, Ableiten/Integrieren, Folgen/Reihen, Differenzialgleichungen)
- halbes Semester: Statistik

Literatur

- Bohl: Mathematik in der Biologie, Springer 2001
- Steland: Mathematische Grundlagen der empirischen Forschung, Springer 2004
- Timischl, Biomathematik, Springer 1995
- Vogt: Grundkurs Mathematik für Biologen, Teubner

Dringend abzuraten ist von dem Buch A. Cann: Mathe für Biologen (Wiley 2004). Dieses Buch ist weitgehend und substanziell fehlerhaft.

Korrigierte Fassung des Skripts vom 24.02.2006.

Inhaltsverzeichnis

1	Ein	führung	1
2	Ma	thematische Grundbegriffe	9
	2.1	Zahlen	9
	2.2	Rechenregeln	13
	2.3	Vektoren und Matrizen	16
	2.4	Zahlenfolgen	17
	2.5	Summenzeichen und Produktzeichen	21
3	Var	ia	25
	3.1	Dreisatz	25
	3.2	Lineare Gleichungen / Gauß Algorithmus	26
	3.3	Quadratische Gleichungen	30
4	Abl	bildungen	33
	4.1	Allgemeines	33
	4.2	Umkehrabbildung	35
	4.3	Winkelfunktionen	38
	4.4	Exponential funktion und Logarithmus	40
	4.5	Reelle Funktionen einer Veränderlichen	41
	4.6	Reelle Funktionen mehrerer Veränderlicher	45
	4.7	Vektorwertige Funktionen einer Veränderlichen	47
5	Difl	ferenziation von Funktionen	51
	5.1	Einführung	51
	5.2	Rechenregeln für Ableitungen	53
	5.3	Höhere Ableitungen	55

6	Kur	vendiskussion	57							
	6.1	Extremalstellen								
	6.2	Monotonie	59							
	6.3	Bestimmung der Extremalstellen	61							
	6.4	Krümmung	63							
	6.5	Programm: Kurvendiskussion	66							
7	Inte	egration von Funktionen	71							
	7.1	Definition des Integrals	71							
	7.2	Hauptsatz der Differential- und Integralrechnung	73							
	7.3	Berechnung von Integralen	75							
	7.4	Uneigentliche Integrale	80							
8	Erg	änzungen zur Differentialrechnung	85							
	8.1	Partielle Ableitungen und Gradient	85							
	8.2	Differentialgleichungen erster Ordnung	88							
		8.2.1 DGL 1. Ordnung mit getrennten Variablen	90							
	8.3	Lineare Differentialgleichung 2. Ordnung	93							
9	Eler	Elemente der Wahrscheinlichkeitstheorie 9'								
	9.1	Grundbegriffe	97							
		9.1.1 Zufallsvariablen	97							
		9.1.2 Ereignisse	98							
		9.1.3 Wahrscheinlichkeit	100							
		9.1.4 Wichtige Verteilungen	102							
		9.1.5 Urnenmodelle	104							
	9.2	Unabhängigkeit	105							
	9.3	Bedingte Wahrscheinlichkeiten / Bayes'sche Formel	108							
	9.4	Kenngrößen von Verteilungen	110							
		9.4.1 Lagemaße	110							
		9.4.2 Streuung	115							
		9.4.3 Kovarianz	119							
10	Des	kriptive Statistik	123							
	10.1	Empirische Verteilungsfunktion	123							
	10.2	Kenngrößen	124							
	10.3	Lineare Regression	127							

11 Sch	ätzen von Parametern	131
11.1	Das Likelihood-Prinzip	131
11.2	Güte von Schätzern	134
	11.2.1 Erwartungstreue und Bias	134
	11.2.2 Mittlerer quadratischer Fehler	137
11.3	Konfidenzbereiche	138
12 Test	ts	143
12.1	Einführung	143
12.2	Binomialtest	144
12.3	Gaußtest	146
	12.3.1 1. Fall: zweiseitige Alternative	146
	12.3.2 2. Fall: einseitige Alternative	148
12.4	t-Test	149
12.5	<i>p</i> -Werte	152
	12.5.1 Gaußtest	152
	12.5.2 <i>t</i> -Test	154
	12.5.3 Formale Definition des p -Werts	155
12.6	Lagetests bei unbekannten Verteilungen	155
	12.6.1 Mediantest (ein 1-Stichprobentest)	156
	12.6.2 Wilcoxon Test (ein 2-Stichprobentest)	158
Anhan	g: Tabellen	161
A.1	Tabelle der Normalverteilung	161
A.2	Quantile der Normalverteilung	162
A.3	Quantile der t -Verteilung	163
A.4	Tabelle der t-Verteilung	164
A.5	Quantile der χ^2 -Verteilung	168
A.6	Quantile der Fisher'schen $F_{m,n}$ -Verteilung	169
A.7	Quantile der Beta-Verteilung	176
A.8	Quantile der Wilcoxon $U_{m,n}$ -Verteilung	196
Schlag	wortverzeichnis	220

Kapitel 1

Einführung

Wir wollen zunächst die Frage klären, was Mathematik (für Naturwissenschaftler) ist, und wie sie eingesetzt wird.

Die kurze Antwort ist: Mathematik ist Sprache und Kalkül.

In der Tat stellt die Mathematik einen Begriffsapparat zur Verfügung, der es erlaubt, manche Probleme überhaupt erst zu formulieren. Andererseits gibt die Mathematik Methoden an die Hand, um die so formulierten Probleme auch konkret zu lösen. Die typische Arbeitsweise eines praktisch arbeitenden Naturwissenschaftlers besteht (vereinfacht gesagt) aus drei Schritten:

- (1) konkretes Problem formalisieren
- (2) formales Problem lösen
- (3) formale Lösung im Kontext interpretieren.

Beispiel 1.1 (Ansetzen einer chemischen Lösung) Problem: Es sollen 20ml einer 2% igen wässrigen Lösung angesetzt werden. Im Regal finden Sie:

- 15% ige Lösung
- reines Wasser
- (1) **Formalisieren:** Wir definieren Symbole x und y durch

x = Volumen der 15% igen Lösung, die verwendet wird

y =Volumen des Wassers, das verwendet wird

Es ergeben sich zwei Gleichungen

$$\frac{15\% \cdot x}{20 \,\text{ml}} = 2\%, \qquad x + y = 20 \,\text{ml}.$$

(2) Formale Lösung:

$$\frac{15\% \cdot x}{20 \,\text{ml}} = 2\% \qquad \Longrightarrow \qquad 15\% \cdot x = 2\% \cdot 20 \,\text{ml}$$

$$\implies \qquad x = \frac{2\%}{15\%} \cdot 20 \,\text{ml} = \frac{8}{3} \,\text{ml} \approx 2.67 \,\text{ml}.$$

2 Einführung

Aus der zweiten Gleichung $(x + y = 20 \,\text{ml})$ folgt $y = 20 \,\text{ml} - x = \frac{52}{3} \,\text{ml} \approx 17.33 \,\text{ml}$.

(3) Interpretation

Es müssen $2.67\,\mathrm{ml}$ der $15\%\,\mathrm{igen}$ Lösung in $17.33\,\mathrm{ml}$ Wasser pipettiert werden.

Der etwas theoretischer arbeitende Wissenschaftler möchte Mathematik auch benutzen, um Modelle aufzustellen und zu analysieren. Die Arbeitsweise umfasst typischerweise fünf Schritte:

 \Diamond

- (1) Modell bilden,
- (2) Modell formalisieren,
- (3) formales Modell mathematisch analysieren,
- (4) formale Ergebnisse interpretieren,
- (5) Vergleich mit der Natur bzw. Schätzen von Modellparametern (hier kommt Statistik ins Spiel).

Beispiel 1.2 (Fibonacci Zahlen) Wir wollen an Hand eines einfaches Modells für das Wachstum einer Kaninchenpopulation die obigen fünf Schritte illustrieren.

(1) Modell bilden.

Wir machen die folgenden Vereinfachungen:

- die Tiere vermehren sich asexuell,
- die Altersstruktur ist simpel: es gibt nur Jungtiere und adulte Tiere,
- die Zeit vergeht in diskreten Schritten (etwa halbjahresweise).

Die Dynamik der Entwicklung sieht in jedem Schritt zwei Dinge vor:

- jedes adulte Tier wirft ein neues Kaninchen,
- Jungtiere werden nach einem Schritt adult.

Wir wollen für dieses Modell zwei Fragen untersuchen:

- 1. Wie schnell wächst die Population?
- 2. Wie groß ist der Anteil der Jungtiere?

Wir wählen als Anfangsbedingung: ein Jungtier. Dann ergeben in den ersten Generationen folgende Zahlen:

Zeit	n	1	2	3	4	5	6	7	8	9
Jungtiere	j_n	1	0	1	1	2	3	5	8	13
adulte Tiere	a_n	0	1	1	2	3	5	8	13	21
Gesamt	b_n	1	1	2	3	5	8	13	21	34

(2) Modell formalisieren.

Wir benennen

- die Zeitpunkte n = 1, 2, 3, 4, ...,
- die Anzahl der Jungtiere zur Zeit n: j_n ,

- die Anzahl der adulten Tiere zur Zeit n: a_n ,
- die Gesamtanzahl der Tiere zur Zeit n: b_n .

Die Anfangsbedingung lautet dann: $a_1=0$ und $j_1=1$. Die Dynamik gliedert sich in die zwei Aspekte

- Werfen: $j_{n+1} = a_n$ für jedes $n \in \mathbb{N}$,
- Reifen: $a_{n+1} = a_n + j_n$ für jedes $n \in \mathbb{N}$.

Gleichungen von diesem Typ nennt man **Rekursionsgleichung**, weil der Wert zur Zeit n+1 erst berechnet werden kann, wenn man den zur Zeit n schon kennt, man also auf ihn rekurrieren kann. Die Gesamtanzahl der Tiere erfüllt die besonders einfache Gleichung

$$b_n = a_n + j_n$$
 für jedes $n \in \mathbb{N}$.

(3) Modell analysieren.

Wir berechnen die ersten paar Zahlen explizit.

$$b_1 = a_1 + j_1 = 0 + 1 = 1$$

$$b_2 = a_2 + j_2 = a_1 + j_1 + a_1 = 0 + 1 + 0 = 1$$

$$b_3 = a_3 + j_3$$

$$= (a_2 + j_2) + a_2$$

$$= b_2 + (j_1 + a_1)$$

$$= b_2 + b_1 = 1 + 1 = 2$$

$$\vdots$$

$$b_{n+1} = a_{n+1} + j_{n+1}$$

$$= (a_n + j_n) + a_n$$

$$= b_n + (j_{n-1} + a_{n-1})$$

$$= b_n + b_{n-1}.$$

Wir haben also eine Rekursionsgleichung hergeleitet für die Zahlen $(b_n)_{n=1,2,3,4,...}$, nämlich

$$b_1 = b_2 = 1$$
 und $b_{n+1} = b_n + b_{n-1}$, für $n = 2, 3, 4, \dots$ (1.1)

Wir können b_{n+1} berechnen, wenn wir b_1, \ldots, b_n schon berechnet haben. Nacheinander kön-

4 Einführung

nen wir die Werte der folgenden Tabelle ausrechnen:

n	b_n	n	b_n
1	1	20	6 765
2	1	30	$832\ 040 \approx 8.3 \cdot 10^5$
3	2	40	$102\ 334\ 155 \approx 1.02 \cdot 10^8$
4	3	50	$12\ 586\ 269\ 025 \ \approx 1.26\cdot 10^{10}$
5	5	60	$\approx 1.55 \cdot 10^{12}$
6	8	70	$\approx 1.90392 \cdot 10^{14}$
7	13		
8	21		
9	34		
10	55		
11	89		

Die Zahl b_n heißt n-te **Fibonacci Zahl**.

Wie schnell wächst nun b_n , wenn n groß wird? Mit Hilfe der Tabelle kann man schätzen: Wenn n um 10 größer wird, wird b_n um dem Faktor circa 120 größer. Die Idee ist nun, dass, zumindest für große n, in etwa die folgende Gleichheit gelten könnte

$$b_n \approx c \cdot w^n$$
.

Dabei ist w > 1 der Wachstumsfaktor, um den b_n in etwa wächst, wenn wir zu n+1 übergehen, also $w \approx b_{n+1}/b_n$, jedenfalls für große n. Die Zahl c ist hingegen eine Proportionalitätskonstante, die von der Anfangsbedingung abhängt.

Wie berechnen wir nun w? Einsetzen in die Rekursionsgleichung (1.1) liefert

$$c w^{n+1} = c w^n + c w^{n-1}$$
.

Wir teilen durch $c w^{n-1}$ und erhalten

$$w^2 = w + 1.$$

Diese Gleichung lösen wir mit quadratischer Ergänzung auf und erhalten

$$w = \frac{1}{2} \Big(1 \pm \sqrt{5} \Big).$$

Da wir w > 1 haben wollten, müssen wir die nichtnegative Lösung wählen, also

$$w = \frac{1}{2} \left(1 + \sqrt{5} \right) \approx 1.61803\dots$$
 (1.2)

Diese Zahl wird in der klassischen Architektur **goldener Schnitt** genannt. Das Leipziger Rathaus (erbaut 1556-1567) besteht aus zwei ungleich langen Flügeln, deren Längen im Verhältnis des goldenen Schnittes stehen. Tatsächlich hat der linke Flügel 8 Bögen und der rechte Flügel 13 Bögen. Dies sind aber gerade die Fibonacci Zahlen b_6 und b_7 .

Abbildung 1.1: Leipziger Rathaus mit 8 Torbögen links und 13 rechts.

Nachdem wir w exakt bestimmt haben, wollen wir für c wenigstens einen Schätzwert bestimmen. Wir wählen n=10 und machen den Ansatz

$$c \cdot w^{10} \stackrel{!}{=} b_{10}.$$

Hieraus folgt

$$c = \frac{b_{10}}{w^{10}} = \frac{55}{122.991...} = 0.447187...$$

Als Ergebnis halten wir fest

$$b_n \approx 0.447187 \cdot \left(\frac{1}{2}(1+\sqrt{5})\right)^n.$$

Wir machen die Probe für ein paar große Werte von n:

n	Schätzwert	exakter Wert
20	6764.6	6765
40	$1.0238 \cdot 10^8 1.9038 \cdot 10^{14}$	$1.0233 \cdot 10^8$
70	$1.9038 \cdot 10^{14}$	$1.9039 \cdot 10^{14}$

Randbemerkung Tatsächlich kann man eine exakte Formel für b_n angeben. Hierzu müssen wir beide Lösungen aus der quadratischen Formel $w^2=w+1$ ernst nehmen, nämlich

$$w_{+} = \frac{1}{2} (1 + \sqrt{5})$$
 und $w_{-} = \frac{1}{2} (1 - \sqrt{5}).$

6 Einführung

Der Ansatz liefert

$$b_n = c_- w_-^n + c_+ w_+^n$$

für gewisse c_{-} und c_{+} . Einsetzen in n=0 liefert

$$0 = b_0 = c_+ w_+^0 + c_- w_-^0 = c_+ + c_-,$$

also $c_{-} = -c_{+}$. Einsetzen in n = 1 liefert

$$1 = b_1 = c_+ w_+ - c_+ w_- = c_+ \left(\frac{1}{2} \left(1 + \sqrt{5}\right) - \frac{1}{2} \left(1 - \sqrt{5}\right)\right) = c_+ \sqrt{5}.$$

Es folgt $c_{+} = 1/\sqrt{5}$ und $c_{-} = -1/\sqrt{5}$ und damit

$$b_n = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^n.$$
 (1.3)

Nachdem wir die Wachstumsgeschwindigkeit geklärt haben, wollen wir den Anteil der Jungtiere in der Gesamtpopulation bestimmen. Wir rechnen formal

$$j_n = 2j_n + a_n - \underbrace{(a_n + j_n)}_{=a_{n+1}}$$

$$= 2j_n + a_n - a_{n+1}$$

$$= 2j_n + 2a_n - (a_{n+1} + a_n)$$

$$= 2j_n + 2a_n - (a_{n+1} + j_{n+1})$$

$$= 2b_n - b_{n+1}.$$

Es folgt: Der Anteil der Jungtiere ist

$$\frac{j_n}{b_n} = \frac{2b_n - b_{n+1}}{b_n} \approx \frac{2w^n - w^{n+1}}{w^n} = 2 - w = \frac{1}{2}(3 - \sqrt{5}) = 0.38197\dots$$

(4) Ergebnisse interpretieren.

- (a) Die Anzahl der Tiere wächst nach einiger Zeit von Zeitpunkt zu Zeitpunkt etwa um den Faktor $w = \frac{1}{2}(1+\sqrt{5}) \approx 1.61$.
- (b) Der Anteil der Jungtiere beträgt etwa 38.2%, und zwar unabhängig von der Generation (jedenfalls für späte Zeitpunkte).

 \Diamond

(5) Ergebnisse empirisch prüfen.

- (a) Kaninchen: naja.
- (b) Bakterien: sehr gut (mit anderem w) bis die Nahrung knapp wird.

Beispiel 1.3 (Lambert-Beer'sches Gesetz) Mit Hilfe von *Photometrie* können Konzentrationen, beispielsweise von wässrigen Lösungen, durch Messung von Lichtabsorbtion bestimmt werden. Hierzu wird etwa eine wässrige Lösung eines Stoffes mit Konzentration c in eine Küvette der Breite L gegeben. Im Photometer wird die Küvette von einer Seite mit Licht (der Helligkeit h_0) bestrahlt, auf der anderen Seite wird die Helligkeit h(c, L) des durchgelassenen Lichtes gemessen.

Der Einfachheit halber nehmen wir für den Moment an, dass die Küvette selber und auch klares Wasser kein Licht absorbieren, sodass bei 0%iger Lösung $h(0, L) = h_0$ gilt. Wir bezeichnen dann mit

 $f(c,L) = \frac{h(c,L)}{h_0}$ den Anteil des durchgelassenen Lichtes. Ziel dieses Beispiels ist es, den funktionalen Zusammenhang von c, L und f(c,L) zu bestimmen.

Abhängigkeit von L. Stellen wir zwei Küvetten der selben Art hintereinander, so wird in der zweiten Küvette wieder der selbe Anteil des Lichts durchgelassen wie in der ersten, allerdings bemisst sich der Anteil an dem Licht, das die erste Küvette durchgelassen hat, das heißt, der Anteil des Lichtes, der durch beide Küvetten geht, ist $f(c, L) \cdot f(c, L)$. Nach unserer Idealisierung entsprechen zwei Küvetten der Breite L einer Küvette der Breite 2L. Es gilt also

$$f(c, 2L) = f(c, L)^2.$$

Wir können dies Verfahren nun auf drei Küvetten anwenden und erhalten

$$f(c, 3L) = f(c, L)^3.$$

Allgemein können wir n Küvetten nehmen (n = 1, 2, 3, 4, ...) und erhalten

$$f(c, n L) = f(c, L)^n.$$

Da diese Gleichung für alle L>0 gilt, können wir L ersetzen durch L/n und erhalten

$$f(c, L) = f(c, L/n)^n$$
.

Wählen wir n = L, so bekommen wir

$$f(c, L) = f(c, 1)^{L}$$
.

Die rechte Seite dieser Gleichung, können wir ausrechnen, wenn wir f(c,1) kennen, da sie in einfacher Weise von L abhängt.

Abhängigkeit von c. Wie viel Licht absorbiert wird, hängt davon ab, wie viele Teilchen des gelösten Stoffes ein Lichtstrahl auf seinem Weg durch die Küvette trifft. Halbieren wir die Konzentration, so trifft der Lichtstrahl nur halb so viele Moleküle. Verdoppeln wir die Breite der Küvette, so trifft der Lichtstrahl auf seinem doppelt so langen Weg auch doppelt so viele Moleküle. Wenn wir gleichzeitig die Konzentration halbieren und die Breite verdoppeln, dann trifft der Lichtstrahl gleich viele Moleküle, und auch die gemessene Helligkeit bleibt gleich. Es gilt also

$$f(c/2, 2L) = f(c, L).$$

Wie oben können wir nun als Konzentration c/3 bei der Breite 3L wählen oder allgemeiner c/n bei der Breite nL und erhalten

$$f(c/n, nL) = f(c, L).$$

Wenn wir n = c wählen, bekommen wir f(c, L) = f(1, cL) und nach dem oben Gezeigten

$$f(c, L) = f(1, cL) = f(1, 1)^{cL}.$$

Diese Gleichung beschreibt den Zusammenhang von Konzentration, Breite der Küvette und Anteil des durchgelassenen Lichtes komplett. Dabei ist zu beachten, dass die Zahl f(1,1) von dem verwendeten Stoff (und der Wellenlänge des Lichtes) abhängt. Diese Materialkonstanten sind vielfach tabelliert. Meistens wird aber nicht f(1,1) angegeben, sondern die Zahl $\varepsilon := -\log(f(1,1))/\log(10)$, die dekadischer **Extinktionskoeffizient**¹ heißt. Wenn wir diese Zahl in die obige Gleichung einsetzen, erhalten wir

$$f(c, L) = 10^{-\varepsilon cL}$$

¹mit $\log(x)$ bezeichnen wir stets den natürlichen Logarithmus, für den oft auch das Symbol $\ln(x)$ geläufig ist. Der dekadische Logarithmus ist $\lg(x) = \log_{10}(x) = \log(x)/\log(10)$. Es gilt also $\varepsilon = -\log_{10}(f(1,1))$.

8 Einführung

und somit das Lambert-Beer'sche Gesetz 2

$$h(c, L) = h_0 \cdot 10^{-\varepsilon \cdot cL}. (1.4)$$

Der Exponent $E := \varepsilon \cdot cL$ wird dabei manchmal auch die (dekadische) Extinktion genannt. \diamond

²In der *physikalischen* Literatur wird das Lambert-Beer'sche Gesetz meist formuliert als $h(c, L) = h_0 \cdot e^{-\lambda cL}$, wobei $e = 2.71828\ldots$ die Euler'sche Zahl ist. Die Zahl λ errechnet sich aus ε durch $\lambda = \log(10) \cdot \varepsilon \approx 2.303 \cdot \varepsilon$.

Kapitel 2

Mathematische Grundbegriffe

2.1 Zahlen

Die Relevanz der Zahlen in den Naturwissenschaften muss an dieser Stelle nicht erläutert werden. Dieses Kapitel stellt die grundlegenden Zahlbegriffe der natürlichen, ganzen, rationalen und reellen Zahlen gestrafft dar.

Natürliche Zahlen

Die Menge der natürlichen Zahlen wird mit

$$\mathbb{N} = \{1, 2, 3, \ldots\} \tag{2.1}$$

bezeichnet. Die heute übliche "positionelle Dezimalschreibweise" entstand zwischen 300 v.Chr. und 600 n.Chr. in Indien. Die arabischen Rechentechniken gelangten im späten Mittelalter zum Beispiel über die Rechenbücher Adam Rieses nach Europa.

Die Null wird als eigenständige, nützliche Größe erstmals 600 n.Chr. in Indien beschrieben. Die Menge der natürlichen Zahlen mit Null wird mit

$$\mathbb{N}_0 = \{0, 1, 2, 3, \ldots\} \tag{2.2}$$

bezeichnet.

Ganze Zahlen

Mit

$$\mathbb{Z} = \{0, -1, 1, -2, 2, \ldots\} \tag{2.3}$$

wird die Menge der ganzen Zahlen bezeichnet.

Die ganzen Zahlen wurden seit dem späten Mittelalter in Europa als nützliche Größen anerkannt. Obwohl negative Zahlen keinen direkten Bezug zum Zählen realer Objekte haben, sind sie aus konzeptionellen Gründen hilfreich. So möchte man beispielsweise in dem Ausdruck

$$(3+5)-7=3+(5-7)=1$$

auch den Ausdruck (5-7) sinnvoll erklären und benötigt – zumindest als Zwischenergebnis der Rechnung – den Begriff 5-7=-2.

Die Mathematik stellt nicht die Frage danach, ob es die negativen Zahlen "wirklich gibt", sondern nur,

- (1) ob man einen konsistenten Kalkül aufbauen kann,
- (2) ob dieser Kalkül **nützlich** ist.

Auf die Nützlichkeit muss der Leser zunächst vertrauen. Die Konsistenz wird in den Sätzen gezeigt und in den Übungen der praktische Umgang mit dem Kalkül gelernt.

Rationale Zahlen (Brüche)

Die Menge der rationalen Zahlen wird mit

$$\mathbb{Q} = \left\{ \frac{p}{q} : p \in \mathbb{Z}, q \in \mathbb{N} \right\}$$
 (2.4)

bezeichnet.

Die (positiven) rationalen Zahlen sind schon im klassischen Griechenland geläufig – vor allem als Verhältnisgrößen in der Geometrie. Sie drücken Verhältnisse ganzer Zahlen aus, wie sie zum Beispiel auch in der Stöchiometrie auftreten.

Beispiele sind $\frac{9}{4}$, $\frac{17}{30}$, $\frac{2}{7}$, $-\frac{11}{8}$. Diese Brüche lassen sich auch als Dezimalzahlen darstellen: 2.25, $0.5\overline{6}$, $0.\overline{285714}$, -1.375 usw. Dabei benutzen wir die Schreibweise $0.\overline{56} = 0.56666666\ldots$ beziehungsweise $0.\overline{285714} = 0.285714285714285714\ldots$ Man kann zeigen, dass die Dezimalentwicklung jeder rationalen Zahl schließlich periodisch wird.

Reelle Zahlen

Die Menge der reellen Zahlen ist die Menge der Zahlen mit unendlicher Dezimalentwicklung

$$\mathbb{R} = \left\{ k + r : k \in \mathbb{Z}, r = 0, a_1 a_2 a_3 \dots = \frac{a_1}{10} + \frac{a_2}{100} + \dots, \text{ mit } a_1, a_2, \dots \in \{0, 1, \dots, 9\} \right\}$$
 (2.5)

Anschaulich ist $\mathbb R$ die Menge der Punkte auf der Zahlengeraden

Beispiele: $0,3,-\frac{3}{2},\,\sqrt{2},\,\pi,\,e.$

Dabei bezeichnet $\pi=3.1415\ldots$ die Kreiszahl (Erinnerung: ein Kreis mit Radius r hat die Fläche πr^2 und den Umfang $2\pi r$; eine Kugel mit Radius r hat das Volumen $\frac{4}{3}\pi r^3$ und die Oberfläche $4\pi r^2$.) und $e=2.71828\ldots$ die Euler'sche Zahl.¹ Die Euler'sche Zahl lässt sich auf verschiedene Weisen rechnerisch bestimmen. Wir geben nur zwei Darstellungen an:

 $^{^{1}\}mathrm{nach}$ Leonhard Euler, Schweizer Mathematiker (1707–1783)

2.1 Zahlen 11

(1) Der Ausdruck $(1+\frac{1}{n})^n$ nähert sich für große n immer mehr e an. Wir prüfen dies für ein paar Werte von n mit dem Taschenrechner:

$$n = 10: \qquad \left(1 + \frac{1}{10}\right)^{10} = 2.5937...$$

$$n = 50: \qquad \left(1 + \frac{1}{50}\right)^{50} = 2.6915...$$

$$n = 100: \qquad \left(1 + \frac{1}{100}\right)^{10} = 2.7048...$$

$$n = 500: \qquad \left(1 + \frac{1}{500}\right)^{500} = 2.7155...$$

(2) Die folgende (nicht abbrechende) Summe nähert sich immer besser an e an:

$$e = 1 + \frac{1}{1} + \frac{1}{1 \cdot 2} + \frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{1 \cdot 2 \cdot 3 \cdot 4} + \frac{1}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} + \dots$$

Übung: Man prüfe dies mit dem Taschenrechner für fünf und für acht Summanden!

Reelle Zahlen drücken kontinuierliche Größen aus. Das Konzept soll hier nicht mathematisch fundiert werden. Stattdessen wird an die Anschauung und an das Schulwissen appelliert.

Satz 2.1 Brüche sind genau diejenigen reellen Zahlen, deren Dezimalentwicklung schließlich periodisch wird.

Beispiel:
$$5.37614614614... = \frac{537}{100} + \frac{614}{99900} = \frac{537077}{99900}.$$

Die Zahlen, die reell sind, aber nicht rational, heißen irrational.

Beispiele: $\sqrt{2}$, π , 0.10 110 1110 11110 . . . sind irrational.²

Für die bisher eingeführten Zahlen gilt die Inklusionskette

$$\mathbb{N} \subset \mathbb{N}_0 \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}. \tag{2.6}$$

Darstellung von Zahlen

Zahlen lassen sich ausdrücken in der Dezimalschreibweise, etwa 25, 1.3, $-2.\overline{8}$ usw., als Brüche $\frac{1}{3}$, $-\frac{11}{4}$ usw., oder beispielsweise durch Wurzelausdrücke $1+\sqrt{2}$, $-1-\sqrt{3/7}$. In vielen naturwissenschaftlichen Bereichen treten sehr große und/oder sehr kleine Zahlen auf, die auf diese Weise nur unübersichtlich dargestellt werden können. Daher verwendet man die Schreibweise mit Zehnerpotenzen

$$1.67 \cdot \underbrace{10^5}_{=100\,000} = 167\,000.$$

oder

$$2.3 \cdot \underbrace{10^{-4}}_{=0.0001} = 0.00023.$$

²Für e und π ist das etwas schwieriger nachzuweisen. Für $\sqrt{2}$ ist der Beweis nicht so schwer: Wir nehmen das Gegenteil an und führen dies zum Widerspruch. Wir nehmen also an, dass $\sqrt{2} = \frac{p}{q}$ ist für teilerfremde $p, q \in \mathbb{N}$. Die Teilerfremdheit heißt gerade, dass der Bruch gekürzt ist. Dann sind aber auch p^2 und q^2 teilerfremd, also ist $2 = \frac{p^2}{q^2}$ ein gekürzter Bruch und damit q = 1 und $p^2 = 2$. Nun ist aber $1^2 = 1$ und $n^2 \ge 4$ für alle $n = 2, 3, 4, \ldots$ Damit ist die Annahme ad absurdum geführt und die Aussage bewiesen.

$$-7.6 \cdot \underbrace{10^{-8}}_{=0.00000001} = -0.000000076.$$

Viele technische Messinstrumente können keine hochgestellten Zahlen anzeigen. Daher sind hier auch folgende Angaben gebräuchlich

$$1.67E5 = 1.67 \cdot 10^5$$
 und $2.3E - 4 = 2.3 \cdot 10^{-4}$.

In vielen Zusammenhängen werden nur durch drei teilbare Zehnerexponenten angegeben: 10^3 , 10^6 , 10^{-3} , 10^{-9} etc. Wir geben eine Tabelle der gebräuchlichsten Zehnerpotenzen mit Zahlwörtern, griechischen Vorsilben und Formelzeichen an.

10^{1}	Zehn	deka	da
10^{2}	Hundert	hekto	h
10^{3}	Tausend	kilo	k
10^{6}	Million	mega	Μ
10^{9}	Milliarde	giga	G
10^{12}	Billion	tera	Т
10^{15}	Billiarde	peta	Р

10^{-1}	dezi	d
10^{-2}	zenti	c
10^{-3}	milli	m
10^{-6}	mikro	μ
10^{-9}	nano	n
10^{-12}	pico	p
10^{-15}	femto	f
10^{-18}	atto	a

Beispiel: Gelbes Licht hat etwa die Wellenlänge 440 nm (Nanometer), also $440 \cdot 10^{-9} \, m = 4.4 \cdot 10^{-7} \, m$.

Intervalle

Auf den reellen Zahlen ist eine Ordnung erklärt: x < y heißt, dass x kleiner als y ist, also weiter links auf dem Zahlenstrahl liegt. Wir schreiben $x \le y$, falls x < y oder x = y.

Der Absolutbetrag einer reellen Zahl x ist definiert durch

$$|x| = \begin{cases} x, \text{ falls } x \ge 0, \\ -x, \text{ falls } x < 0. \end{cases}$$
 (2.7)

Zusammenhängende Teilmengen der reellen Zahlen heißen Intervalle. Für Intervalle sind die folgenden Schreibweisen gebräuchlich:

$$[a,b] = \{x \in \mathbb{R} : a \le x \le b\} \quad \text{abgeschlossenes Intervall,}$$

$$[a,b) = \{x \in \mathbb{R} : a \le x < b\} \quad \text{rechtsoffenes Intervall,}$$

$$(a,b] = \{x \in \mathbb{R} : a < x \le b\} \quad \text{linksoffenes Intervall,}$$

$$(a,b) = \{x \in \mathbb{R} : a < x < b\} \quad \text{offenes Intervall}$$

Ebenfalls gebräuchlich ist die Schreibweise

$$[a, \infty) = \{x \in \mathbb{R} : a \le x\},$$

$$(-\infty, b] = \{x \in \mathbb{R} : x \le b\},$$

$$\mathbb{R}^+ = [0, \infty),$$

und analog (a, ∞) und $(-\infty, b)$. Manche Autoren, insbesondere in der deutschsprachigen Literatur, benutzen die Schreibweise mit umgedrehten eckigen Klammern, statt der runden, für offene Intervalle: [a, b] = [a, b) u.s.w.

2.2 Rechenregeln 13

2.2 Rechenregeln

Im Folgenden sind a, b, c... reelle Zahlen. Es gelten die folgenden Regeln:

(1) Assoziativgesetz

$$a + (b + c) = (a + b) + c$$
 und $a \cdot (b \cdot c) = (a \cdot b) \cdot c$.

(2) Distributivgesetz

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c).$$

(3) Kommutativgesetz

$$a \cdot b = b \cdot a$$
 und $a + b = b + a$.

(4) Vollständigkeit a-b ist lösbar, und $\frac{a}{b}$ ist stets lösbar, falls $b \neq 0$.

Wir schreiben

$$a^{2} = a \cdot a$$

$$a^{3} = a \cdot a \cdot a$$

$$\vdots$$

$$a^{n} = \underbrace{a \cdot a \cdot a}_{n \text{ mal}}$$

Beispiel 2.2 (i) $5^2 = 25$,

(ii)
$$6^3 = 6 \cdot 6 \cdot 6 = 216$$
,

(iii)
$$3^7 = 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 = 2187$$

(iv)
$$(-3)^4 = (-3) \cdot (-3) \cdot (-3) \cdot (-3) = 81$$
,

(v)
$$(-4)^3 = (-4) \cdot (-4) \cdot (-4) = -64$$
.

Mit den obigen Rechenregeln können wir leicht die folgenden Ausdrücke ausrechnen.

Beispiel 2.3 (i) (Erste binomische Formel)

$$(a+b)^2 = (a+b)(a+b)$$

$$= (a+b) \cdot a + (a+b) \cdot b \quad \text{(Distributivgesetz)}$$

$$= a^2 + ba + ab + b^2$$

$$= a^2 + 2ab + b^2 \quad \text{(Kommutativgesetz)}.$$

 \Diamond

(ii) Offenbar ist $0 = (a - a) = (a - a)^2$, also ist

$$0 = (a - a)^{2}$$

$$= (a + (-a)) \cdot (a + (-a))$$

$$= a^{2} - a^{2} - a^{2} + (-a)^{2}$$

$$= -a^{2} + (-a)^{2}.$$

Es folgt: $(-a)^2 = a^2$, also "Minus mal Minus ergibt Plus". Dieser Merksatz ist keine zusätzliche Rechenregel, sondern ergibt sich zwingend aus den oben beschriebenen Regeln.

 \Diamond

(iii) (Zweite binomische Formel)

$$(a-b)^{2} = (a+(-b))^{2}$$
$$= a + 2a \cdot (-b) + (-b)^{2}$$
$$= a - 2ab + b^{2}.$$

(iv) (Dritte binomische Formel)

$$(a+b)(a-b) = (a+b)(a+(-b))$$

= $(a+b) \cdot a - (a+b) \cdot b$
= $a^2 + ba - ab - b^2$
= $a^2 - b^2$.

Rechenregeln für Potenzen

Für $a\in\mathbb{R}$ und $m,n\in\mathbb{N}$ gilt

$$a^m \cdot a^n = a^{m+n},$$

denn

$$a^m \cdot a^n = \underbrace{a \cdots a}_{m \text{ mal}} \cdot \underbrace{a \cdots a}_{n \text{ mal}} = \underbrace{a \cdots a}_{(m+n) \text{ mal}} = a^{m+n}.$$

Es gilt

$$(a^m)^n = a^{m \cdot n},$$

denn

$$(a^m)^n = \underbrace{a \cdots a}_{m \text{ mal}} \cdots \underbrace{a \cdots a}_{m \text{ mal}} = a^{m \cdot n}.$$

Beispiel: $(2^5)^3 = (32)^3 = 32768$. Andererseits ist $(2^5)^3 = 2^{15} = 32768$.

Vorsicht: Die Ausdrücke $(a^m)^n$ und $a^{(m^n)}$ sind nicht gleich! Deshalb schreibt man nicht ohne Klammer a^{mn} , denn es ist nicht ersichtlich, ob $(a^m)^n$ oder $a^{(m^n)}$ gemeint ist. Beispiel: $4^{(3^2)} = 4^9 = 262144$, aber $(4^3)^2 = 64^2 = 4096$.

Wir setzen formal

$$a^{-n} = \frac{1}{a^n} = (a^{-1})^n$$
.

Beispiel: $2^{-3} = \frac{1}{2^3} = \frac{1}{8}$. $10^{-4} = \frac{1}{10^4} = 0.0001$.

Es ist dann $a^{m-n} = \frac{a^m}{a^n}$. Speziell ist $a^0 = 1$. Diese Festsetzung für negative Exponenten ist die einzige, mit der die obigen Rechenregeln weiter gelten.

Es gilt für $a, b \in \mathbb{R}$: $(ab)^n = a^n \cdot b^n$, denn

$$(ab)^n = \underbrace{a \cdot b \cdot a \cdot b \cdots a \cdot b}_{n \text{ Paare}} = \underbrace{a \cdots a}_{n \text{ mal}} \cdot \underbrace{b \cdots b}_{n \text{ mal}} = a^n \cdot b^n.$$

Wir fassen die Regeln zusammen:

Satz 2.4 Für alle $m, n \in \mathbb{Z}$ und alle $a, b \in \mathbb{R}$ (beziehungsweise $a, b \neq 0$, falls m, n < 0) gilt:

- (i) $a^0 = 1$,
- (ii) $a^{-1} = \frac{1}{a}$,
- (iii) $a^m a^n = a^{m+n}$,
- $(iv) (a^m)^n = a^{mn},$
- (v) $a^n b^n = (ab)^n$.

Diese Rechenregeln, die bislang formal nur für ganzzahlige m,n gelten, können wir für nichtganzzahlige m,n fordern und dadurch rationale Potenzen definieren: Wir definieren $a^{1/2}$, indem wir fordern, dass die Rechenregel (iv) gilt (mit $m=\frac{1}{2}$ und n=2), also $a^1=(a^{1/2})^2$. Also ist $a^{1/2}=\sqrt{a}$, falls $a\geq 0$ ist (und sonst nicht definiert).

Analog definieren wir $a^{1/3}$ durch $(a^{1/3})^3 = a$, also $a^{1/3} = \sqrt[3]{a}$, falls $a \ge 0$. Allgemein setzen wir

$$a^{1/n} = \sqrt[n]{a}$$
, falls $a \ge 0$.

Die Rechenregeln aus dem Satz gelten weiter, denn so haben wir die Definition ja angelegt. Es gelten also (i)-(v) auch für $m, n \in \mathbb{Q}$. Tatsächlich kann man die Ausdrücke a^m sogar für $m \in \mathbb{R}$ so definieren, dass (i)-(v) gelten.

Beispiel:
$$\sqrt{3} \cdot \sqrt{7} = 3^{1/2} \cdot 7^{1/2} = 21^{1/2} = \sqrt{21}$$
.

Bruchrechnung

Zur Übersicht stellen wir hier die Regeln zur Bruchrechnung zusammen. Seien also a,b,c,d reelle Zahlen, die jeweils nicht Null sind. Dann gelten

$$\frac{a}{b} \cdot c = \frac{a}{b} \frac{c}{b}$$

$$\frac{a}{b} \frac{c}{d} = \frac{a}{b} \frac{c}{d}$$

$$\frac{\frac{a}{b}}{c} = \frac{a}{b} \frac{c}{c}$$

$$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \frac{d}{c}$$

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}.$$

Oftmals kann man Brüche kürzen, indem man Zähler (oben) und Nenner (unten) durch die selbe Zahl teilt. Geschicktes Kürzen erfordert etwas Übung. Ansonsten sind die Regeln für die Bruchrechnung banal.

2.3 Vektoren und Matrizen

Oft möchte man Daten/Zahlen zu einem *Objekt* zusammenfassen. In vielen Fällen bietet sich die Schreibweise eines **Vektors** an. Beispiele für Vektoren sind

$$\begin{pmatrix} 3 \\ 7 \end{pmatrix}, \qquad \begin{pmatrix} a \\ b \\ c \end{pmatrix}, \qquad \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \qquad \begin{pmatrix} \sqrt{3} x \\ -2 \\ 1 \\ 9 \end{pmatrix}.$$

Speziell schreiben wir (für festes $d \in \mathbb{N}$)

$$\mathbb{R}^d = \left\{ x = \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix}, x_1, \dots, x_d \in \mathbb{R} \right\}$$

und nennen \mathbb{R}^d den d-dimensionalen Raum. Ganz formal handelt es sich bei einem Vektor also bislang um eine Liste von Zahlen, die untereinander geschrieben sind. Von Bedeutung sind Vektoren beispielsweise, um die Lage von Punkten im Raum zu beschreiben. Man misst etwa die x-Koordinate 2.1, die y-Koordinate -1.9 und die z-Koordinate 10.2. Die Lage des Punkts wird

nun zu dem Vektor
$$\begin{pmatrix} 2.1 \\ -1.9 \\ 10.2 \end{pmatrix}$$
 zusammengefasst.

Einträge eines Vektors können aber auch ganz unterschiedliche Größen sein, etwa bei der Untersuchung eines Tiers: 1. Gewicht, 2. Herzfrequenz, 3. Energieumsatz, also etwa

$$\begin{pmatrix} 60 \text{ kg} \\ 1.5 \text{ Hertz} \\ 6000 \text{ kJ/Tag} \end{pmatrix}.$$

Vektoren gleicher Größe kann man addieren:

$$\begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix} + \begin{pmatrix} y_1 \\ \vdots \\ y_d \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_d + y_d \end{pmatrix}.$$

Außerdem kann man Vektoren mit Zahlen multiplizieren:

$$a \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} ax \\ ay \\ az \end{pmatrix}.$$

Beispielsweise können wir den Mittelwert von drei Vektoren $x, y, z \in \mathbb{R}^d$ bilden:

$$\frac{1}{3}(x+y+z) = \begin{pmatrix} \frac{1}{3}(x_1+y_1+z_1) \\ \vdots \\ \frac{1}{3}(x_d+y_d+z_d) \end{pmatrix}.$$

Hier steckt bislang keine Mathematik drin, sondern nur eine ökonomische Schreibweise.

2.4 Zahlenfolgen 17

Manchmal ist es nötig (oder sinnvoll), Daten zweidimensional zu ordnen, statt sie einfach nur untereinander zu schreiben. Das sind dann Ausdrücke wie

$$\begin{pmatrix} 2 & 7 \\ -1 & 3 \\ -2 & 1 \end{pmatrix} \quad \text{oder} \quad \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}.$$

Im ersten Fall haben wir 3×2 Matrix (sprich "drei Kreuz zwei"), die aus drei Zeilen und zwei Spalten besteht. Die zweite Matrix besteht aus drei Zeilen und drei Spalten.

Die allgemeine Form einer $m \times n$ Matrix ist

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} = (a_{ij})_{\substack{i=1,\dots,m\\j=1,\dots,n}}^{i=1,\dots,m}.$$

Formal können wir einen Vektor $\begin{pmatrix} v_1 \\ \vdots \\ v_m \end{pmatrix}$ als $m \times 1$ -Matrix auffassen.

2.4 Zahlenfolgen

Folgen von Zahlen beschreiben etwa zeitliche Abläufe, Generationenfolgen oder einfach nur nach einander erhobene Daten. Obwohl man gelegentlich auch von endlichen Folgen spricht, sind meist unendliche Folgen gemeint.

Eine (unendliche) Zahlenfolge kann geschrieben werden als $(x_1, x_2, x_3, ...)$ (kurz: $(x_n)_{n \in \mathbb{N}}$), dabei heißt x_n das n-te Folgenglied. (Manchmal wird die Nummerierung auch bei Null begonnen, also $(x_0, x_1, x_2, ...)$ (kurz: $(x_n)_{n \in \mathbb{N}_0}$).)

Beispiel 2.5 (i) (3, 3, 3, 3, ...)

- (ii) $(2, 4, 6, 8, 10, \ldots)$
- (iii) $(1, 2, 4, 8, 16, \ldots)$
- (iv) $(1,-1,1,-1,1,-1,\ldots)$
- (v) $(\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \ldots)$
- (vi) $(1, \frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \ldots)$

(vii)
$$(1, -0.8, 0.64, -0.512, 0.4096, -0.32768, ...)$$

Manche Folgen genügen einem mehr oder weniger leicht erkennbaren Bildungsgesetz, also einer leicht berechenbaren Formel, die zu jedem $n \in \mathbb{N}$ den Wert x_n liefert. Im vorangehenden Beispiel sind das:

- (i) $x_n = 3$ für jedes $n \in \mathbb{N}$
- (ii) $x_n = 2n$ für jedes $n \in \mathbb{N}$

- (iii) $x_k = 2^k$ für jedes $k \in \mathbb{N}$
- (iv) $x_m = (-1)^{m-1}$ für jedes $m \in \mathbb{N}$
- (v) $x_n = \frac{1}{n+1}$ für jedes $n \in \mathbb{N}$
- (vi) $x_n = (2/3)^{n-1}$ für jedes $n \in \mathbb{N}$
- (vii) $x_n = (-0.8)^{n-1}$ für jedes $n \in \mathbb{N}$.

Obwohl hier alles so schön aufgeht, sollte man gewarnt sein:

- (i) Bildungsgesetze brauchen nicht offensichtlich zu sein oder überhaupt zu existieren, etwa bei der Folge der Lottozahlen.
- (ii) Ein Bildungsgesetz kann auch rekursiv gegeben sein durch Angabe eines Startwertes, etwa $x_1=3$, und einer Rekursionsgleichung, die angibt, wie x_{n+1} aus den vorangehenden Folgengliedern berechnet wird, z.B. $x_{n+1}=x_n+2$ für jedes $n\in\mathbb{N}$. Mit diesem Startwert und diesem Bildungsgesetz erhalten wir die Folge $(x_1,x_2,x_3,x_4,\ldots)=(3,5,7,9,\ldots)$.

Aus manchen Rekursiongleichungen kann man leicht ein Bildungsgesetz ableiten, hier z.B. $x_n = 2n + 1$ für jedes $n \in \mathbb{N}$.

- (iii) Eine Rekursionsgleichung kann auch komplizierter sein und etwa zwei Startwerte benötigen. Wir haben so etwas bei der Folge der Fibonacci Zahlen gesehen. Dort war $b_1=1,\,b_2=1$ und die Rekursionsgleichung: $b_{n+1}=b_n+b_{n-1}$ für $n=2,3,4,\ldots$ Das Bildungsgesetz der Fibonacci Zahlen war aus dieser Rekursionsgleichung nur schwer abzuleiten.
- (iv) Obwohl die Folge im Prinzip bekannt ist, kann es unter Umständen kein einfaches Bildungsgesetz geben. Dies ist beispielsweise bei der Folge $(p_1, p_2, p_3, p_4, p_5, \ldots) = (2, 3, 5, 7, 11, 13, \ldots)$ der Prinzahlen der Fall.

Verhalten für große n

Oftmals ist es von Interesse, das Verhalten einer Folge $(x_n)_{n\in\mathbb{N}}$ für große n grob qualitativ abzuschätzen, etwa um das "Langzeitverhalten" eines Versuchs zu beurteilen. Im obigen Beispiel gilt:

- (i) x_n ist konstant.
- (ii), (iii) x_n strebt gegen ∞ , wenn n gegen ∞ strebt.
- (iv) x_n oszilliert zwischen -1 und +1.
- (v), (vi), (vii) x_n strebt (oder *konvergiert*) gegen 0, wenn n gegen ∞ geht. Wir schreiben kurz $x_n \to 0$ für $n \to \infty$ oder auch $\lim_{n \to \infty} x_n = 0$.

Eine Folge vom Typ $x_n = a^n$, wo $a \in \mathbb{R}$ ist, heißt **geometrische Folge**.

2.4 Zahlenfolgen 19

Für geometrische Folgen gilt:

- (i) $a^n \to 0$ für $n \to \infty$, falls -1 < a < +1,
- (ii) $a^n\to\infty$ für $n\to\infty$, falls a>1, (iii) $|a^n|\to\infty$ für $n\to\infty$, falls a<-1, jedoch mit stets wechselndem Vorzeichen,
- (iv) $(-1)^n$ oszilliert zwischen -1 und +1,
- (v) 1^n ist konstant.

Grenzwerte

Sei $a \in \mathbb{R}$ und $(a_n)_{n \in \mathbb{N}}$ eine Zahlenfolge. Wir schreiben

$$a = \lim_{n \to \infty} a_n,$$

wenn a_n für große n gegen a strebt. Die Zahl a heißt dann **Limes** oder **Grenzwert** der Folge $(a_n)_{n\in\mathbb{N}}$. Die Folge heißt in diesem Fall konvergent. ³

Ist $(a_n)_{n\in\mathbb{N}}$ nicht konvergent, so heißt die Folge **divergent**. Divergente Folgen können beispielsweise oszillieren, oder auch nach $+\infty$ oder $-\infty$ streben.

Wir schreiben $\lim_{n\to\infty} a_n = \infty$, falls a_n gegen ∞ strebt und $\lim_{n\to\infty} a_n = -\infty$, falls a_n für große $n \text{ gegen } -\infty \text{ strebt.}^4$

Satz 2.6 Ist $(a_n)_{n\in\mathbb{N}}$ konvergent, so ist der Grenzwert eindeutig bestimmt.

Beispiele 2.7 (i) $a_n = 2^{-n} = (1/2)^n$. Dann ist $\lim_{n \to \infty} a_n = 0$.

- (ii) $a_n = n + 1$. Dann ist $\lim_{n \to \infty} a_n = \infty$.
- (iii) $a_n = (-1)^n$. Die Folge $(a_n)_{n \in \mathbb{N}}$ konvergiert nicht, sondern oszilliert.

(iv)
$$a_n = \frac{n+1}{n} = 1 + \frac{1}{n}$$
. Dann ist $\lim_{n \to \infty} a_n = 1$.

Wir fassen die wichtigsten Rechenregeln für Grenzwerte von Zahlenfolgen zusammen.

(i) Sind $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ konvergente Zahlenfolgen mit $a_n \stackrel{n\to\infty}{\longrightarrow} a$ und $b_n \stackrel{n\to\infty}{\longrightarrow} b$, Satz 2.8 sowie $\lambda \in \mathbb{R}$, so gilt

$$\lim_{n \to \infty} (\lambda + a_n) = \lambda + a,$$

$$\lim_{n \to \infty} (\lambda \cdot a_n) = \lambda \cdot a,$$

$$\lim_{n \to \infty} (a_n + b_n) = a + b,$$

$$\lim_{n \to \infty} (a_n - b_n) = a - b,$$

$$\lim_{n \to \infty} (a_n \cdot b_n) = a \cdot b.$$
(2.8)

 $^{^3}$ Formal gesprochen heißt a Limes der Folge (a_n) , falls für jedes (noch so kleine) $\varepsilon > 0$ eine Zahl $N \in \mathbb{N}$ (die von ε abhängen kann) existiert mit der Eigenschaft, dass $|a_n - a| < \varepsilon$, wenn $n \ge N$ ist.

⁴Formal gesprochen gilt $\lim_{n\to\infty}a_n=\infty$, falls für jedes (noch so große) K>0 eine Zahl $N\in\mathbb{N}$ (die von Kabhängen kann) existiert mit der Eigenschaft, dass $a_n > K$, wenn $n \ge N$ ist.

(ii) Ist zudem $b \neq 0$, so gilt

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b}.$$
 (2.9)

- (iii) Ist zusätzlich zu (i) (wobei wir jetzt auch $a = \pm \infty$ und $b = \pm \infty$ erlauben wollen) noch $a_n \leq b_n$ für alle $n \in \mathbb{N}$, so gilt $a \leq b$.
- (iv) Gilt $\lim_{n\to\infty} a_n = a \in \mathbb{R}$ und $|b_n| \stackrel{n\to\infty}{\longrightarrow} \infty$, so gilt $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$. Speziell ist dann $\lim_{n\to\infty} \frac{1}{b_n} = 0$.
- (v) Ist $a_n > 0$, $n \in \mathbb{N}$, and $a_n \stackrel{n \to \infty}{\longrightarrow} 0$, so gilt $\lim_{n \to \infty} \frac{1}{a_n} = \infty$.

Beispiele 2.9 (i) $\lim_{n \to \infty} (1 + \frac{1}{n})(5 - n^{-2}) = \lim_{n \to \infty} (1 + \frac{1}{n}) \cdot \lim_{n \to \infty} (5 - n^{-2}) = 5.$

- (ii) $\lim_{n \to \infty} \frac{n}{n+1} = \lim_{n \to \infty} \frac{1}{1 + (1/n)} = (\lim_{n \to \infty} (1 + \frac{1}{n}))^{-1} = 1.$
- (iii) Es ist $\lim_{n\to\infty} 2^{-n} = 0$, weil $\lim_{n\to\infty} 2^n = \infty$.

(iv)

$$\lim_{n \to \infty} \frac{n^2 + n}{2n^2 + 5} = \lim_{n \to \infty} \frac{1 + \frac{1}{n}}{2 + \frac{5}{n^2}} = \frac{1 + \lim_{n \to \infty} \frac{1}{n}}{2 + \lim_{n \to \infty} \frac{5}{n^2}} = \frac{1}{2}.$$

- (v) Sei $a_n = -\frac{1}{n}$ und $b_n = \frac{1}{n}$ für jedes $n \in \mathbb{N}$. Dann ist $a_n < b_n$ für jedes n, aber $\lim_{n \to \infty} a_n = 0 = \lim_{n \to \infty} b_n$.
- (vi) Um $\lim_{n\to\infty}\frac{n+1}{n^2}$ auszurechnen, betrachte $a_n=1+\frac{1}{n}$ und $b_n=n$ und wende (iv) an:

$$\lim_{n \to \infty} \frac{n+1}{n^2} = \lim_{n \to \infty} \frac{1 + \frac{1}{n}}{n} = 0.$$

Wir wollen nun $\lim_{n\to\infty}\frac{n^2}{2^n}$ ausrechnen. Hier ist keine der obigen Rechenregeln direkt anwendbar.

Faustregel 2.10 Es gilt $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$, falls der Term, der am schnellsten nach ∞ geht, oben steht. Es gilt $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$, falls der Term, der am schnellsten nach ∞ geht, unten steht.

Um zu bestimmen welcher Term am schnellsten nach ∞ geht, stellen wir die folgende Rangordnung auf (von langsam nach schnell):

$$1, \quad \log(n), \quad \sqrt{n}, \quad n, \quad , n^2, \quad n^3, \quad n^4, \dots \quad c^n \text{ (für } c > 1), \quad c^{(n^2)}, \quad c^{(n^3)}, \dots$$

Beispiel 2.11 (i) $\lim_{n\to\infty} \frac{n^2+\sqrt{n}}{n^4} = 0$, denn n^4 geht schneller nach ∞ als n^2 und \sqrt{n} .

(ii)
$$\lim_{n\to\infty} \frac{2^n n^2}{3^n} = \lim_{n\to\infty} \frac{n^2}{(3/2)^n} = 0$$
, denn n^2 geht langsamer nach ∞ als $(3/2)^n$.

2.5 Summenzeichen und Produktzeichen

Seien a_1, a_2, a_3, \ldots reelle Zahlen. Wir schreiben abkürzend

$$\sum_{i=1}^{n} a_i = a_1 + a_2 + \ldots + a_n$$

für die Summe der ersten n der a_i .

Beispiel 2.12 (i)

$$\sum_{i=1}^{10} i = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 55.$$

(ii)

$$\sum_{i=1}^{100} i = 1 + 2 + 3 + \dots + 99 + 100$$

$$= (1 + 100) + (2 + 99) + (3 + 98) + \dots + (50 + 51)$$

$$= 101 \cdot 50 = 5050.$$

(iii) Allgemein ist

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$$

(iv)

$$\sum_{i=1}^{6} i^2 = 1 + 4 + 9 + 16 + 25 + 36 = 91.$$

Allgemein ist

$$\sum_{i=1}^{n} i^2 = \frac{1}{3}n^3 + \frac{1}{2}n^2 + \frac{1}{6}n.$$

Ist $m \leq n$, so schreiben wir

$$\sum_{i=m}^{n} a_i = a_m + a_{m+1} + \ldots + a_{n-1} + a_n.$$

Beispiel 2.13

$$\sum_{i=0}^{10} 2^{i} = 1 + 2 + 4 + 8 + 16 + 32 + \dots + 1024$$

$$= 3 + 4 + 8 + 16 + 32 + \dots + 1024$$

$$= 7 + 8 + 16 + 32 + \dots + 1024$$

$$= 15 + 16 + 32 + \dots + 1024$$

$$\vdots$$

$$= 1023 + 1024 = 2047 = 2^{11} - 1$$

Allgemein gilt:

$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1.$$

Für $a \neq 1$ lässt sich mit einer kleinen Rechnung zeigen, dass

$$\sum_{i=0}^{n} a^{i} = \frac{a^{n+1} - 1}{a - 1}.$$
(2.10)

Beispiel 2.14 (i) $\sum_{i=0}^{5} 3^i = 1 + 3 + 9 + 27 + 81 + 243 = 364$. Probe für die Formel: $\frac{3^6 - 1}{3 - 1} = \frac{729 - 1}{2} = 364$

(ii)
$$\sum_{i=0}^{100} \left(\frac{1}{8}\right) = \frac{(1/8)^{101} - 1}{\frac{1}{8} - 1} = \frac{1 - (1/8)^{101}}{7/8} \approx \frac{1}{7/8} = \frac{8}{7}, \text{ denn } (1/8)^{101} \approx 6.14 \cdot 10^{-92} \text{ ist fast gleich Null.}$$

Wie durch das vorangehende Beispiel nahe gelegt, ist für -1 < a < +1

$$\sum_{i=0}^{n} a^{i} = \frac{1 - a^{n+1}}{1 - a} \xrightarrow{n \to \infty} \frac{1}{1 - a}.$$

Wir können also die Summe von allen $a^i, i = 0, 1, 2, \dots$ definieren durch

$$\sum_{i=0}^{\infty} a^i := \lim_{n \to \infty} \sum_{i=0}^n a^i = \frac{1}{1-a}.$$
 (2.11)

Beispiel 2.15 (i) $\sum_{i=0}^{\infty} \left(\frac{1}{3}\right)^i = \frac{1}{1 - \frac{1}{3}} = \frac{1}{2/3} = \frac{3}{2}$.

(ii)
$$\sum_{i=0}^{\infty} \left(-\frac{1}{4} \right)^i = \frac{1}{1 - (-1/4)} = \frac{1}{5/4} = \frac{4}{5}.$$

Wir können Summen mit unendlich vielen Summanden auch für andere Folgen $(a_n)_{n\in\mathbb{N}}$ als die geometrische Folge definieren. Wir nennen

$$\sum_{i=1}^{\infty} a_i := \lim_{n \to \infty} \sum_{i=1}^{n} a_i$$

die **unendliche Reihe** der a_1, a_2, a_3, \ldots , falls der Limes existiert. Falls der Limes endlich ist, sagen wir, dass die Reihe konvergiert, andernfalls (auch wenn der Grenzwert nicht existiert) sagen wir, dass die Reihe divergiert.

Beispiel 2.16 (i)
$$\sum_{i=1}^{\infty} 2^i = \lim_{n \to \infty} 2^{n+1} - 2 = \infty$$
.

(ii)
$$\sum_{i=1}^{\infty} (-2)^i = \lim_{n \to \infty} \frac{(-2)^{n+1} - 2}{-3}$$
. Dieser Grenzwert existiert nicht, also divergiert die Reihe.

(iii) (Harmonische Reihe)

$$\begin{split} \sum_{i=1}^{\infty} \frac{1}{i} &= 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \dots \\ &= 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) \\ &\quad + \left(\frac{1}{9} + \frac{1}{10} + \frac{1}{11} + \frac{1}{12} + \frac{1}{13} + \frac{1}{14} + \frac{1}{15} + \frac{1}{16}\right) + \dots \\ &\geq 1 + \frac{1}{2} + \underbrace{\left(\frac{1}{4} + \frac{1}{4}\right)}_{=1/2} + \underbrace{\left(\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}\right)}_{=1/2} \\ &\quad + \underbrace{\left(\frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16}\right)}_{=1/2} + \dots \\ &= 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots \\ &= \infty. \end{split}$$

Die so genannte harmonische Reihe divergiert also. Man kann zeigen, dass $\sum_{i=1}^{n} \frac{1}{i} \approx \log(n)$ für große n.

(iv) Man kann zeigen, dass

$$\sum_{i=1}^{\infty} \left(\frac{1}{i}\right)^2 = \frac{\pi^2}{6} < \infty \qquad \text{und} \qquad \sum_{i=1}^{\infty} \left(\frac{1}{i}\right)^4 = \frac{\pi^4}{90} < \infty.$$

Erstaunlicherweise ist für ungerade Exponenten k der exakte Wert $\sum_{i=1}^{\infty} (1/i)^k$ unbekannt. \diamond

Fazit Die Reihe $\sum_{i=1}^{\infty} a_i$ konvergiert nur, wenn $\lim_{n\to\infty} a_n = 0$ gilt. Dies reicht aber nicht, sondern a_n muss schnell genug nach 0 gehen. Wir halten hier nur die wichtigsten Aussagen fest:

Satz 2.17 Für die geometrische Reihe gilt:

$$(i) \sum_{i=1}^{\infty} a^{i} = \frac{a}{1-a} \text{ konvergiert genau dann wenn } |a| < 1.$$

$$(ii) \sum_{i=1}^{\infty} a^{i} = \infty, \text{ falls } a \ge 1.$$

$$(iii) \sum_{i=1}^{\infty} a^{i} \text{ existiert nicht, falls } a \le -1.$$

$$Ferner \text{ gilt}$$

$$(iv) \sum_{i=1}^{\infty} i^{-x} \begin{cases} < \infty, & \text{falls } x > 1, \\ = \infty, & \text{falls } x \le 1. \end{cases}$$

(ii)
$$\sum_{i=1}^{\infty} a^i = \infty$$
, falls $a \ge 1$

(iii)
$$\sum_{i=1}^{\infty} a^i$$
 existiert nicht, falls $a \leq -1$

(iv)
$$\sum_{i=1}^{\infty} i^{-x} \begin{cases} < \infty, & \text{falls } x > 1, \\ = \infty, & \text{falls } x \leq 1. \end{cases}$$

Wenn wir bei der harmonischen Reihe die Vorzeichen wechseln lassen, so konvergiert die Reihe, und man kann den genauen Wert angeben:

$$\sum_{i=1}^{\infty} \frac{(-1)^i}{i} = -\log(2) \approx -0.69\dots$$

Wir wollen hier keine genauen Kriterien angeben, wann Reihen konvergieren. Manchmal ist jedoch das Dominanzprinzip nützlich: Gilt $a_n \ge 0$ für jedes $n \in \mathbb{N}$ und $\sum_{n=1}^{\infty} a_n < \infty$ sowie $|b_n| \le a_n$ für jedes n, so konvergiert $\sum_{n=1}^{\infty} b_n$, und es gilt

$$\sum_{n=1}^{\infty} b_n < \sum_{n=1}^{\infty} |b_n| \le \sum_{n=1}^{\infty} a_n < \infty.$$

Produkte

Ähnlich wie für Summen definieren wir Produkte mehrerer Zahlen a_1, a_2, \ldots durch

$$\prod_{i=1}^{n} a_i = a_1 \cdot a_2 \cdots a_{n-1} \cdot a_n.$$

Beispiel 2.18 (i)
$$\prod_{i=1}^{5} (2+i) = 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 = 2520.$$

(ii)
$$n! = \prod_{i=1}^{n} i = 1 \cdot 2 \cdot 3 \cdots n$$
 (sprich: "n Fakultät").

Analog wie für unendliche Reihen definiert man auch unendliche Produkte

$$\prod_{i=1}^{\infty} a_i = \lim_{n \to \infty} \prod_{i=1}^{n} a_i,$$

falls der Limes existiert.

Kapitel 3

Varia

3.1 Dreisatz

Der so genannte Dreisatz ist keine mathematische Regel. Streng genommen handelt es sich beim Dreisatz gar nicht um Mathematik, sondern um ein Gesetz konstanter Proportionen, das aus der jeweiligen Anwendung heraus begründet wird. Der Dreisatz steht damit an der Stelle, wo ein Problem einer Anwendung formalisiert wird. Das formale Problem ist eine geradezu simple lineare Gleichung, die nach der einen Unbekannten aufgelöst wird.

Wir bringen zwei Beispiele, die dies verdeutlichen sollen.¹

(a) (Direkter Dreisatz) 6 kg Kartoffeln kosten DM 5. Wie viel kosten 3 kg Kartoffeln? Als Ansatz wird ein Gesetz konstanter Proportionen aufgestellt, es wird nämlich angenommen, dass der Quotient Preis Gewicht konstant ist. Es gilt also

$$\frac{P_1}{G_1} = \frac{P_2}{G_2},$$

wenn P_1 den Preis von Kartoffeln des Gewichts G_1 und P_2 den Preis von Kartoffeln des Gewichts G_2 bezeichnet. Im Beispiel sind $P_1 = \mathrm{DM}$ 5, $G_1 = 6\,kg$ und $G_2 = 3\,kg$ vorgegeben. Die unbekannte Größe ist mithin P_2 . Der mathematische Anteil des Problems besteht darin, die Gleichung nach P_2 aufzulösen:

$$P_2 = G_2 \, \frac{P_1}{G_1}.$$

Das war einfach. Jetzt setzen wir die Zahlenwerte ein und erhalten

$$P_2 = 3 kg \frac{\text{DM } 5}{6 kg} = \text{DM } 2.5.$$

(b) (Indirekter Dreisatz) Ein Trinkwasserspeicher reicht bei 20 Personen für 15 Tage. Wie lange reicht der Trinkwasserspeicher bei 30 Personen?

Auch hier wird zunächst wieder ein Gesetz konstanter Proportionen aufgestellt:

$$P_1 \cdot T_1 = P_2 \cdot T_2,$$

 $^{^1 \}mathrm{Brockhaus}, \, \mathrm{Enzyklop\"{a}die}$ in 24 B\"{a}nden.

26 Varia

wobei T_i die Anzahl der Tage bezeichnet, die der Trinkwasserspeicher reicht, falls P_i Personen trinken (i=1,2). Dieses Gesetz lässt sich nicht mathematisch begründen. Tatsächlich ist es eine vereinfachende Annahme an die Realität, beispielsweise, dass der Trinkwasserspeicher keinen Zulauf und keine Verluste hat, dass die Personen gleich viel trinken, egal wie viel Personen da sind (dabei werden knappe Ressourcen oft viel gieriger verbraucht) und so fort. Im konkreten Problem ist $P_1=15$, $T_1=20$ und $T_2=10$ 0. Die unbekannte Größe T_2 1 ist gesucht. Das Auflösen der Gleichung nach T_2 2 ist einfach:

$$T_2 = \frac{P_1 T_1}{P_2}.$$

Einsetzen der Zahlenwerte liefert

$$T_2 = \frac{15 \cdot 20}{30} = 10.$$

Die Antwort lautet also: Der Trinkwasserspeicher reicht bei 30 Personen für 10 Tage.

Beiden Problemen (a) und (b) ist gemein, dass man zunächst ein Gesetz konstanter Proportionen aufstellt und dann nach einer Größe auflöst. Im Falle (a) ist der Quotient der Größen konstant, während im Falle (b) das Produkt konstant ist. Daher (warum eigentlich genau?) wird (a) manchmal direkter Dreisatz genannt und (b) indirekter Dreisatz.

3.2 Lineare Gleichungen / Gauß Algorithmus

Lineare Gleichungen sind Gleichungen, in denen die Unbekannte(n) nur linear auftauchen, also nicht etwa als Potenz, Wurzel, Produkt mehrerer Unbekannter oder als noch kompliziertere Ausdrücke.

Beispiel 3.1 Wir betrachten die lineare Gleichung mit einer Unbekannten x:

$$5x + 3 = 7x + 4$$
.

Um diese Gleichung zu lösen, bringen wir zunächst alle Ausdrücke, die x enthalten, nach links und die anderen nach rechts:

$$5x - 7x = 4 - 3$$
.

Dies können wir ausrechnen zu

$$-2x = 1.$$

Indem wir beide Seiten mit $-\frac{1}{2}$ multiplizieren, erhalten wir die Lösung

$$x = -\frac{1}{2}$$
.

Beispiel 3.2 Wir betrachten nun zwei lineare Gleichungen mit zwei Unbekannten x und y

$$5x + 3 = 4y$$
$$y + 3x = 7.$$

Als ersten Schritt stellen wir die Gleichungen so um, dass sie in Normalform erscheinen

$$5x - 4y = -3$$
$$3x + y = 7.$$

 \Diamond

 \Diamond

Wir multiplizieren die erste Gleichung mit $\frac{1}{5}$

$$x - \frac{4}{5}y = -\frac{3}{5}$$
$$3x + y = 7.$$

Jetzt ziehen wir die erste Gleichung dreimal von der zweiten ab

$$x - \frac{4}{5}y = -\frac{3}{5}$$
$$\frac{17}{5}y = \frac{44}{5}.$$

Die zweite Gleichung wird mit $\frac{5}{17}$ multipliziert

$$x - \frac{4}{5}y = -\frac{3}{5}$$
$$y = \frac{44}{17} .$$

Schließlich wird die zweite Gleichung $\frac{4}{5}$ -mal zu der ersten addiert

$$x = \frac{25}{17}$$
$$y = \frac{44}{17}.$$

Dies ist die Lösung der beiden ursprünglichen Gleichungen.

Beispiel 3.3 Wir betrachten wieder zwei lineare Gleichungen mit zwei Unbekannten x und y

$$2x + 3y = 5$$
$$4x + 6y = 10.$$

Die Gleichungen haben schon Normalform. Wir multiplizieren die erste Gleichung mit $\frac{1}{2}$ und die zweite mit $\frac{1}{4}$ und erhalten

$$x + \frac{3}{2}y = \frac{5}{2}$$
$$x + \frac{3}{2}y = \frac{5}{2}.$$

Indem wir die erste Gleichung von der zweiten abziehen, bekommen wir

$$x + \frac{3}{2}y = \frac{5}{2}$$

Zu **jeder** reellen Zahl x erhalten wir also eine Lösung unserer Gleichung, indem wir $y=-\frac{2}{3}\,x+\frac{5}{3}$ setzen. Mit anderen Worten: Es gibt nicht nur eine Lösung der Gleichungen, sondern gleich mehrere, nämlich eine ganze Menge L von Lösungen

$$L = \left\{ (x, y) : x \in \mathbb{R} \text{ und } y = -\frac{2}{3}x + \frac{5}{3} \right\}$$

Die Menge L heißt **Lösungsmenge** des Problems.

28 Varia

In Beispiel 3.2 war $L = \{(25/17, 44/17)\}$. Wenn die Menge L nur aus einem Punkt besteht (eben wie in Beispiel 3.2), so sagen wir, dass das Problem eindeutig lösbar ist. Ist L eine größere Menge, so sagen wir, dass die Lösung des Problems nicht eindeutig ist. Es kann der dritte Fall eintreten, dass es gar keine Lösung gibt, also $L = \emptyset$. Dies wird im nächsten Beispiel erläutert:

Beispiel 3.4 Wir betrachten wieder zwei lineare Gleichungen mit zwei Unbekannten x und y

$$2x + 3y = 5$$
$$4x + 6y = 11.$$

Die Gleichung haben schon Normalform. Wir multiplizieren die erste Gleichung mit $\frac{1}{2}$ und die zweite mit $\frac{1}{4}$ und erhalten

$$x + \frac{3}{2}y = \frac{5}{2}$$
$$x + \frac{3}{2}y = \frac{11}{4}.$$

Indem wir die erste Gleichung von der zweiten abziehen bekommen wir

$$x + \frac{3}{2}y = \frac{5}{2}$$
$$0 = \frac{1}{4}.$$

Dies stimmt offenbar nicht. Also besitzen die beiden Gleichung keine Lösung, es ist also $L = \emptyset$. \diamond

Beispiel 3.5 Als letztes Beispiel wollen wir drei Gleichungen mit drei Unbekannten x_1 , x_2 und x_3 betrachten

1.Schritt Wir vertauschen die erste und die zweite Zeile, damit in der ersten Zeile keine 0 am x_1 steht.

2.Schritt Wir ziehen die erste Zeile von der dritten zweimal ab (sodass in der dritten x_1 nicht mehr auftaucht)

3.Schritt Wir multiplizieren die zweite Zeile mit $\frac{1}{9}$ (sodass vor dem x_2 eine Eins steht)

4.Schritt Die zweite Zeile wird neun mal zur dritten addiert (sodass x_2 in der dritten Zeile nicht mehr auftaucht)

5.Schritt Die dritte Zeile wird mit $\frac{1}{10}$ multipliziert

6.Schritt Der Wert $x_3 = -15$ wird in die zweite Zeile eingesetzt

$$x_2 + \frac{2}{3} \cdot (-15) = 2.$$

Es folgt $x_2 = 12$.

7.Schritt Die Werte $x_3 = -15$ und $x_2 = 12$ werden in die erste Zeile eingesetzt

$$x_1 + 12 - 2 \cdot (-15) = 90.$$

Es folgt $x_1 = 63$. Wir erhalten also als eindeutige Lösung des Problems

$$x_1 = 63, \qquad x_2 = 12, \qquad x_3 = -15.$$

Wir können dies auch so schreiben, dass die Lösungsmenge L nur aus einem Punkt besteht:

$$L = \{ (63, 12, -15) \}.$$

Gauß Algorithmus

Ein Algorithmus² ist ein mechanisiertes Vorgehen, das es erlaubt, ein bestimmtes Problem nach einem festen Schema zu lösen. Dieses Schema wird so exakt beschrieben, dass es durch (stumpfsinniges) Abarbeiten immer zu dem gewünschten Ergebnis führt.

Das Verfahren zur Lösung linearer Gleichungssysteme, das wir in den vorangehenden Beispielen kennen gelernt haben, folgt dem so genannten Gauß Algorithmus.³

Das Vorgehen aus dem letzten Beispiel lässt sich folgendermaßen abstrakt formulieren: Zu lösen ist ein System von linearen Gleichungen für die Unbekannten x_1, \ldots, x_n .

- 1. Schritt Steht in der ersten Zeile vor dem x_1 ein Null (taucht also x_1 dort nicht auf), so vertauschen wir die erste Zeile mit einer Zeile, in der x_1 auftaucht.
- 2. Schritt Die erste Zeile wird so multipliziert, dass x_1 den Faktor 1 hat.
- 3. Schritt Die erste Zeile wir so oft von den anderen Zeilen abgezogen, dass dort x_1 nicht mehr auftaucht.
- **4. Schritt** Wiederhole die Schritte 1 3 für jede Zeile, wobei in 1. nur mit weiter unten stehenden Zeilen vertauscht wird und in 3. nur von weiter unten stehenden Zeilen abgezogen wird.

Es gibt prinzipiell (d.h. bis auf Umsortierung der x_1, \ldots, x_n) drei Typen von Ergebnissen, die diese Prozedur liefert:

1. Möglichkeit

$$x_1$$
 +... ... $= b_1$
 x_2 +... ... $= b_2$
 \vdots
 x_n $= b_n$

 $^{^2\}mathrm{Nach}$ dem arabischen Mathematiker Muhammad ibn Musa al-Chwarizmi (ca. 783–850)

 $^{^3\}mathrm{Nach}$ Carl Friedrich Gauß, Mathematiker, Geodät und Astronom in Göttingen, 1777–1855

30 Varia

(Hierbei bezeichnen b_1, \ldots, b_n die Zahlen, die rechts stehen, nachdem wir die Schritte 1-4 ausgeführt haben.) In diesem Fall gibt es eine eindeutige Lösung, die wir bekommen, indem wir $x_n = b_n$ in die (n-1)te Zeile einsetzen und damit x_{n-1} ausrechnen. Dann werden x_{n-1} und x_n in die (n-2)te Zeile eingesetzt und so weiter, bis wir alle Werte x_1, \ldots, x_n ausgerechnet haben.

2. Möglichkeit

$$x_1 + \dots = b_1$$
 \vdots
 $x_k + \dots = b_k$
 $0 = 0$
 $\vdots = \vdots$
 $0 = 0$

(Hierbei ist k < n die Nummer der letzten Zeile, die noch Einträge besitzt, die ungleich Null sind.) Jetzt gibt es mehrere Lösungen. Zunächst können wir x_{k+1}, \ldots, x_n frei wählen. Für jede solche Wahl liefert die k-te Zeile genau einen Wert für x_k . Jetzt setzen wir die Werte x_k, \ldots, x_n nacheinander in die Zeilen darüber ein und erhalten so eine Lösung. Die Menge aller Lösungen hat in diesem Fall n-k freie Parameter (nämlich x_{k+1}, \ldots, x_n).

3. Möglichkeit

wobei wenigstens eine der Zahlen b_{k+1}, \ldots, b_m ungleich Null ist. In diesem Fall gibt es keine Lösung.

3.3 Quadratische Gleichungen

Seien a, b, c reelle Zahlen, $a \neq 0$. Wir wollen die Lösungen der Gleichung

$$0 = ax^2 + bx + c$$

bestimmen. Sei die **Diskriminante** Δ definiert durch $\Delta=b^2-4ac$. Durch quadratische Ergänzung können wir die beiden Lösungen angeben

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}, \qquad x_2 = \frac{-b + \sqrt{\Delta}}{2a}.$$
 (3.1)

Satz 3.6 Es tritt stets genau einer der drei Fälle auf:

- (i) $\Delta = 0$: x_1 und x_2 sind reell und $x_1 = x_2$.
- (ii) $\Delta > 0$: x_1 und x_2 sind reell und $x_1 \neq x_2$.
- (iii) $\Delta < 0$: Dann sind x_1 und x_2 keine reellen Zahlen.

Im ersten Fall heißt x_1 eine doppelte Nullstelle. Im zweiten Fall heißen die Nullstellen einfach.

Beweis (i) Ist $\Delta = 0$, so ist $x_1 = x_2 = -\frac{a}{2} \in \mathbb{R}$.

(ii) Ist $\Delta > 0$, so ist $\sqrt{\Delta} > 0$ reell.

(iii) Ist $\Delta < 0$, so ist $\sqrt{\Delta}$ keine reelle Zahl.

Beispiele 3.7 (i) $2x^2 - 4x + 2 = 2(x-1)^2$, $\Delta = 0$.

(ii)
$$x^2 - 3x + 2 = (x - 1)(x - 2), \Delta = 1.$$

(iii)
$$x^2 + 2x + 2$$
: $\Delta = -4$, also gibt es keine reelle Lösung von $0 = x^2 + 2x + 2$.

32 Varia

Kapitel 4

Abbildungen

Aus der Schule sind Funktionen bekannt, deren Definitions- und Wertebereich die reellen Zahlen sind. Das Konzept der Abbildungen (oder Funktionen) ist jedoch auch in solchen Fällen nützlich, wo diese beiden Bereiche von allgemeinerer Natur ist. Die Sprache, die zur Beschreibung von Abbildungen benutzt wird, ist so mächtig, dass sie über reelle Funktionen in weiten Teilen mit dem Vokabular reden kann, das für einfache Tabellen verwendet wird. Wir stellen in diesem Abschnitt die elementarsten Begriffe zusammen und gehen dann im Detail auf reelle Funktionen einer Veränderlichen ein.

4.1 Allgemeines

Seien M und N Mengen. Wir nehmen, um triviale Fälle auszuschließen, an, dass weder M noch N leer ist.

Definition 4.1 (Abbildungen) Eine Vorschrift $f: M \to N$, $x \mapsto f(x)$, die jedem $x \in M$ genau ein $f(x) \in N$ zuordnet, heißt **Abbildung** von M nach N.

M heißt **Definitionsbereich**, und N heißt **Wertebereich** von f,

Die Menge der tatsächlich angenommenen Werte $f(M) := \{f(x) : x \in M\} \subset N$ heißt **Bild** von f.

Die Angabe $x \mapsto f(x)$ heißt **Abbildungsvorschrift**.

Eine Abbildung ist also vollständig bestimmt durch Angabe der folgenden drei Zutaten:

- Definitionsbereich,
- Wertebereich,
- Abbildungsvorschrift.

Beispiele 4.2 (i) $M, N = \mathbb{R}, x \mapsto \sin(x)$.

(ii)
$$M = [0, \infty), N = [0, \infty), x \mapsto \sqrt{x}$$
.

Abbildung 4.1: Schematische Darstellung einer Abbildung $f: M \to N$

- (iii) Sei $B \in \mathbb{N}$ durch drei teilbar und $M = \{1, 2, \dots, B\}$ sowie $N = \{C, G, A, U\}$ die Menge der Nukleotide Adenin (A), Uracil (T), Guanin (G) und Cytosin (C). Die Abfolge der Nukleotide auf einem mRNA-Strang lässt sich durch eine Funktion $f: M \to N$ beschreiben. Dabei ist f(m) das Nukleotid an der m-ten Stelle des Strangs.
- (iv) Je drei aufeinander folgende Nukleotide bilden einen so genannten Kodon. Die Menge aller Kodons ist also $N^3:=\{(a,b,c): a\in N, b\in N, c\in N\}$. Sei $M'=\{1,\ldots,B/3\}$. Die Abbildung $g:M'\to N^3, n\mapsto (f(3n-2),f(3n-1),f(3n))$ ordnet jeder dritten Position ihren Kodon zu.
- (v) Es gibt zwanzig Aminosäuren, die typischerweise mit dreibuchstabigen Kürzeln (Ala für Alanin, Arg für Arginin, ..., Val für Valin) abgekürzt werden. Jeder Kodon kodiert eine Aminosäure. Beispielsweise kodiert UUU für Phe(nylalanin), UCA für Ser(in), GCA für Ala(nin). Die Kodierung ist nicht ein-eindeutig, denn (beispielsweise) sowohl CGU wie auch auch AGG kodieren für Arg(ginin). Zusätzlich gibt gibt es Kodons, die keine Aminosäure kodieren, sondern so genannte Stoppkodons sind (UAA, UAG und UGA). Wir schreiben $S := \{Ala,Arg,...,Tyr,Val,STOPP\}$ für die Menge der Aminosäuren plus dem Stopp-Code. Dann können wir eine Abbildung $h : N^3 \to S$ definieren, die jedem Kodon den Code zuordnet. Diese Abbildung h wird sinnvollerweise als Tabelle angegeben.

Wie bekommen wir zu einer gegebenen Position 3n in der mRNA die kodierte Aminosäure (bzw. Stopp-Code)? Wir müssen zunächst mit g(n) den Kodon bestimmen und diesen dann in der Tabelle nachschauen, also h(g(n)) ausrechnen. Dieses Verfahren bezeichnet man als $Verkn \ddot{u}pfung$ von Abbildungen.

Definition 4.3 Sind $f: L \to M$ und $g: M \to N$ Abbildungen, so heißt die Abbildung

$$\begin{aligned} h: L \to & N \\ x \mapsto & h(x) = g(f(x)) \end{aligned}$$

die Verknüpfung von g mit f. Symbolisch schreiben wir $g \circ f = h$.

Beispiel 4.4 L = M = N, $f(x) = x^2$, $g(y) = \sin(y)$. Dann ist $g \circ f(x) = \sin(x^2)$. Warnung: Im Allgemeinen ist $f \circ g \neq g \circ f!$ In diesem Fall wäre z.B. $f \circ g(x) = (\sin(x))^2$.

Aminosäure	en	mRNA - Kodons					
Alanin	Ala	GCA	GCC	GCG	GCU		
Argenin	Arg	AGA	AGG	CGA	CGC	CGG	CGU
Asparagin	Asn	AAC	AAU				
Asparaginsäure	Asp	GAC	GAU				
Cystein	Cys	UGC	UGU				
Glutamin	Gln	CAA	CAG				
Glutaminsäure	Glu	GAA	GAG				
Glycin	Gly	GGA	GGC	GGG	GGU		
Histidin	His	CAC	CAU				
Isoleucin	Ile	AUA	AUC	AUU			
Leucin	Leu	CUA	CUA	CUG	CUU	UUA	UUG
Lysin	Lys	AAA	AAG				
Methionin	Met	AUG					
Phenylalanin	Phe	UUC	UUU				
Prolin	Pro	CCA	CCC	CCG	CCU		
Serin	Ser	AGC	AGU	UCA	UCC	UCG	UCU
Threonin	Thr	ACA	ACC	ACG	ACU		
Tryptophan	Trp	UGG					
Tyrosin	Tyr	UAC	UAU				
Valin	Val	GUA	GUC	GUG	GUU		
STOPP		UAG	UGA	UAA			

(Die Kodons "AUG" und "GUG" kodieren zudem noch "START".)

Abbildung 4.2: Zuordnung der mRNA Kodons zu den Aminosäuren

4.2 Umkehrabbildung

Wenn man in der Tabelle mit den Elementen nach der Ordnungszahl eines Elementes sucht, muss man in der rechten Spalte der Tabelle das Element suchen und dann die links stehende Zahl ablesen. Natürlich ist diese Suche mühsam, weil die Tabelle (so nehmen wir mal an) nach der linken Spalte geordnet ist und nicht nach der rechten. Es wäre also praktisch, wenn wir eine weitere Tabelle besäßen, die uns diesen Vorgang erleichterte. In der Sprache der Abbildungen heißt das gewünschte Objekt (denn bisher haben wir es uns ja nur gewünscht und noch nicht hergestellt, oder überhaupt erstmal sichergestellt, dass eine solche Tabelle existiert) eine **Umkehrabbildung**.

Definition 4.5 (Umkehrabbildung) Sind $f: M \to N$ und $g: N \to M$ Abbildungen mit der Eigenschaft, dass

$$g(f(x)) = x$$
 für jedes $x \in M$,
 $f(g(y)) = y$ für jedes $y \in N$,

so heißen f und g Umkehrabbildungen zueinander. Symbolisch schreiben wir $f=g^{-1}$ und $g=f^{-1}$.

Abbildung 4.3: Verknüpfung der Abbildungen $f:L\to M$ und $g:M\to N$ zu $g\circ f:L\to N$

Abbildung 4.4: Umkehrabbildung $g: N \to M$ der Abbildung $f: M \to N$.

Beispiel 4.6 (i)
$$M = [0, \infty), N = [1, \infty), f(x) = x^2 + 1, g(y) = \sqrt{y - 1}$$
. Dann ist

$$f(g(y)) = \left(\sqrt{y-1}\right)^2 + 1 = y - 1 + 1 = y$$

und

$$g(f(x)) = \sqrt{(x^2 + 1) - 1} = \sqrt{x^2} = x$$
, weil $x \ge 0$.

(ii) Sei $M=\{UUU,UUC,\ldots,GGA,GGG\}$ die Menge aller Kodons sowie $N=\{\text{Ala,Arg,}\ldots,\text{Tyr,Val,STOP}\}$ die Menge der Aminosäuren plus Stopp-Code. Ferner sei $h:M\to N$ die Abbildung, die jedem Kodon seinen Code zuordnet. Dann ist beispielsweise h(CGU)=h(AGG)=Arg. Also kann man zu h keine Umkehrabbildung finden.

 \Diamond

Das letzte Beispiel zeigt schon ganz klar, worauf es ankommt, wenn man nach Umkehrabbildungen sucht: verschiedene Argumente müssen unterschiedliche Funktionswerte liefern.

Definition 4.7 (Ein-eindeutigkeit) Eine Abbildung $f: M \to N$ heißt **ein-eindeutig** (oder 1–1, oder injektiv), falls

$$f(x) \neq f(y)$$
, wann immer $x \neq y$.

Die Ein-eindeutigkeit ist schon fast alles, was man braucht, damit es eine Umkehrabbildung gibt. Als zweites ist noch eine kleine technische Spitzfindigkeit zu beachten: Wenn f und g Umkehrfunktionen zueinander sind, so kehren sich die Rollen von Werte- und Definitionsbereich um. Damit das richtig klappt, muss $f: M \to N$ auch wirklich jeden Wert in N annehmen, oder in Formeln ausgedrückt: es muss f(M) = N gelten. Praktisch ist das nie ein Problem. Man hat ja meist schon eine Vorstellung davon, welches Bild eine Funktion hat, die Sinusfunktion beispielsweise das Intervall [-1,1], und wählt dann N so, dass es mit diesem Bereich übereinstimmt. Wir werden in den Beispielen sehen, wie das geht.

Satz 4.8 Die Abbildung $f: M \to N$ besitzt eine Umkehrabbildung f^{-1} genau dann, wenn f eine eindeutig ist und f(M) = N gilt.

Beispiel 4.9 $M = [0, \infty), \ N = [1, \infty), \ f(x) = x^2 + 1$. Offenbar ist f ein-eindeutig. Außerdem wird jeder Wert in N tatsächlich angenommen. Wir können, weil das Problem so einfach ist, die Umkehrfunktion sogar explizit angeben: $g: N \to M, \ g(y) = \sqrt{y-1}$.

Wenn wir, unvorsichtigerweise, $N = \mathbb{R}$ gewählt hätten, so hätten wir keine Umkehrabbildung angeben können. Das liegt daran, dass in diesem Fall die Gleichheit y = f(g(y)) für y < 1 nicht gelten kann, weil f den Wert y nicht annimmt. Ganz so spitzfindig war die Voraussetzung f(M) = N also nicht, wie sich hier zeigt. Natürlich könnten wir uns auf den Standpunkt stellen, dass wir sowieso nur an der Gleichung f(g(x)) = x interessiert sind. In diesem Fall wäre die Bedingung an den Bildbereich hinfällig.

Beispiel 4.10 Es sei ein Zusammenhang zwischen zwei reellen Größen x und y gegeben durch $x^2 + y^2 = 1$. Unser Ziel ist es, y als Funktion von x zu schreiben.

Schritt 1: Wir trennen die Variablen

$$y^2 = 1 - x^2.$$

Schritt 2: Die Umkehrfunktion von $y\mapsto y^2$ ist $y\mapsto \sqrt{y}$, jedenfalls, wenn wir uns auf $y\geq 0$ einschränken. Der Definitionsbereich der Umkehrabbildung ist $[0,\infty)$, also müssen wir $|x|\leq 1$ fordern.

Insgesamt folgt, dass wir y = f(x) schreiben können, wo $f: [-1,1] \to [0,1]$,

$$f(x) = \sqrt{1 - x^2}.$$

Ist allgemeiner g(y) = h(x) als Zusammenhang gegeben, so können wir y = f(x) schreiben, wo $f(x) = g^{-1}(h(x))$ für einen Bereich $I \subset \mathbb{R}$, sodass (wenn J = h(I) den Wertebereich von h bezeichnet) $g: J \to \mathbb{R}$ ein-eindeutig ist.

Wie gehen wir vor, wenn wir die Umkehrabbildung einer zusammen gesetzten Abbildung bestimmen wollen? Dazu zunächst ein Beispiel.

Beispiel 4.11 Sei $L = M = N = \mathbb{R}$ und $f: L \to M$ sowie $g: M \to N$ gegeben durch $f(x) = x^3 + 1$ und g(y) = 5x. Die jeweiligen Umkehrabbildungen sind $f^{-1}(x) = \sqrt[3]{x-1}$ und $g^{-1}(x) = \frac{x}{5}$. Die

verknüpfte Abbildung $g \circ f : \mathbb{R} \to \mathbb{R}$ ist gegeben durch $g \circ f(x) = 5(x^3 + 1)$. Die Umkehrabbildung ist $(g \circ f)^{-1}(y) = \sqrt[3]{\frac{y}{5} - 1}$, denn

$$(g \circ f) \left(\sqrt[3]{\frac{y}{5} - 1}\right) = 5\left(\left(\sqrt[3]{\frac{y}{5} - 1}\right)^3 + 1\right) = 5\left(\frac{y}{5} - 1 + 1\right) = y$$

und

$$\sqrt[3]{\frac{g \circ f(x)}{5} - 1} = \sqrt[3]{\frac{5(x^3 + 1)}{5} - 1} = \sqrt[3]{x^3} = x.$$

Es gilt also $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$. In Worten, man erhält die Umkehrabbildung einer verknüpften Abbildung, indem man die jeweiligen Umkehrabbildungen in umgekehrter Reihenfolge verknüpft.

Dies gilt auch allgemeiner als nur für die oben betrachteten Abbildungen.

Satz 4.12 Sind $f: L \to M$ und $g: M \to N$ umkehrbare Abbildungen mit Umkehrabbildungen f^{-1} und g^{-1} , so ist die zusammengesetzte Abbildung $g \circ f: L \to N$ umkehrbar und hat die Umkehrabbildung

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$

4.3 Winkelfunktionen

Die Winkelfunktionen Sinus, Kosinus und Tangens können als (eventuell negativ gemessene) Längen in einem Dreieck im Einheitskreis mit gegebenem Winkel definiert werden. Dabei messen wir stets den Winkel im Bogenmaß, der Bereich der Winkel erstreckt sich also über $[0, 2\pi)$ und nicht über $[0^{\circ}, 360^{\circ})$. Ein rechter Winkel, beispielsweise, hat im Bogenmaß die Größe $\frac{\pi}{2}$. Wir stellen hier nur knapp ein paar der wichtigsten Eigenschaften der Winkelfunktionen zusammen. Sei im Folgenden $x \in \mathbb{R}$ beliebig.

Periodizität

$$\sin(x) = \sin(x + 2\pi k)$$
 für jedes $k \in \mathbb{Z}$,
 $\cos(x) = \cos(x + 2\pi k)$ für jedes $k \in \mathbb{Z}$. (4.1)

Symmetrie

$$\sin(x) = -\sin(-x)$$
 "ungerade Funktion", $\cos(x) = \cos(-x)$ "gerade Funktion",
$$\cos(x) = \sin\left(x + \frac{\pi}{2}\right).$$

Satz von Pythagoras

$$\sin(x)^2 + \cos(x)^2 = 1.$$

Unter Addition der Argumente verhalten sich die Winkelfunktion nicht so einfach wie die Wurzelfunktion oder Potenzen. Es gelten statt dessen die **Additionstheoreme**: Für beliebige $x, y \in \mathbb{R}$ ist

$$\sin(x+y) = \sin(x)\cos(y) + \sin(y)\cos(x),$$

$$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y).$$
(4.2)

4.3 Winkelfunktionen 39

Man erhält durch einfache geometrische Überlegungen die folgende Tabelle mit einigen Werte	en der
Sinus- und Kosinusfunktion.	

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
$x \cdot \frac{360^{\circ}}{2\pi}$	0°	30°	45°	60°	90°	120°	135°	150°	180°
$\sin(x)$	0	$\frac{1}{2}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{3}$	1	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}$	0
$\cos(x)$	1	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{1}{2}\sqrt{2}$	$-\frac{1}{2}\sqrt{3}$	-1

4.4 Exponentialfunktion und Logarithmus

Sei e=2.71828... die Euler'sche Zahl. Dann können wir eine Abbildung exp: $\mathbb{R} \to (0,\infty)$ definieren durch $\exp(x)=e^x$. Diese Abbildung heißt *Exponentialfunktion*. Aus den Rechengesetzen für Potenzen erhalten wir sofort die Eigenschaften:

- (i) $\exp(0) = 1$ und $\exp(1) = e$.
- (ii) $\exp(x+y) = \exp(x) \cdot \exp(y)$ für alle $x, y \in \mathbb{R}$.
- (iii) $\exp(x-y) = \frac{\exp(x)}{\exp(y)}$ für alle $x, y \in \mathbb{R}$.
- (iv) $\exp(x) > 1$ für x > 0 und $\exp(x) < 1$ für x < 0.
- (v) Ist y > x, so ist $\exp(y) = \exp(x) \cdot \exp(y x) > \exp(x)$. Wir sagen, dass \exp (streng) monoton wachsend ist.
- (vi) Strebt $x \to \infty$, so strebt $\exp(x)$ gegen ∞ .
- (vii) Strebt $x \to -\infty$, so strebt $\exp(x)$ gegen 0.

Da exp streng monoton wächst, wird kein Wert zweimal angenommen, und wir können die Umkehrabbildung von exp definieren: Die Logarithmusfunktion log : $(0, \infty) \to \mathbb{R}$ ist die Umkehrfunktion der Exponentialfunktion. Für die Logarithmusfunktion gelten die folgenden Rechenregeln:

- (i) $\log(1) = 0$ und $\log(e) = 1$.
- (ii) $\log(x \cdot y) = \log(x) + \log(y)$ für alle x, y > 0.
- (iii) $\log\left(\frac{x}{y}\right) = \log(x) \log(y)$ für alle x, y > 0.
- (iv) $\log(x) > 0$ für x > 1 und $\log(x) < 0$ für jedes $x \in (0, 1)$.
- (v) Ist y > x > 0, so ist $\log(y) = \log(x) + \left(\frac{y}{x}\right) > \log(x)$. Also ist \log (streng) monoton wachsend.
- (vi) Strebt $x \to \infty$, so strebt $\log(x)$ gegen ∞ .
- (vii) Strebt $x \to 0$ (von rechts), so strebt $\log(x)$ gegen $-\infty$.

Sei a>0 und $a=e^x$ für ein $x\in\mathbb{R}$. Dann ist $x=\log(a)$. Dies ist gerade die Definition der Umkehrfunktion. Ist also $y\in\mathbb{R}$, dann ist

$$a^y = (e^x)^y = e^{xy} = e^y \log(a)$$
.

Ist z > 0 und $a^y = z$, so folgt $z = e^{y \log(a)}$, also $\log(z) = y \log(a)$ und damit $y = \frac{\log(z)}{\log(a)}$. Wir nennen

$$\log_a(z) := \frac{\log(z)}{\log(a)}, \qquad a > 0, \ z > 0$$

den Logarithmus von z zur Basis a. Offenbar ist $\log_a:(0,\infty)\to\mathbb{R}$ die Umkehrfunktion der Abbildung $\mathbb{R}\to(0,\infty), x\mapsto a^x$. Für \log_a gelten die Rechenregeln (i), (ii), (iii) (mit der Ausnahme $\log_a(e)=1/\log(a)$) wie für \log . Ist a>1, so gelten auch (iv)-(vii).

Zur Unterscheidung wird log manchmal auch natürlicher Logarithmus genannt. Manche (oder besser: viele) Autoren, besonders aus den technischen Bereichen, schreiben statt " $\log(x)$ " lieber " $\ln(x)$ " für logarithmus naturalis und bezeichnen mit $\log(x)$ oder $\lg(x) = \log_{10}(x)$ den so genannten dekadischen Logarithmus, oder Logarithmus zur Basis 10. Wir folgen hier aber der in der Mathematik gebräuchlichen Notation.

4.5 Reelle Funktionen einer Veränderlichen

Ist $M \subset \mathbb{R}^n = \{(x_1, \dots, x_n) : x_1, \dots, x_n \in \mathbb{R}\}$, und $N \subset \mathbb{R}$ so heißt jede Abbildung $f : M \to N$ eine reelle Funktion von n (reellen) Veränderlichen.

Wir wollen hier nur den Fall n=1 betrachten, also reelle Funktionen einer Veränderlichen. Außerdem wollen wir annehmen, dass $I:=M\subset\mathbb{R}$ ein Intervall ist. Dies kann offen oder abgeschlossen, beschränkt oder unbeschränkt sein.

In welcher Weise kann man Abbildungsvorschriften von Abbildungen $I \to \mathbb{R}$ angeben?

- (i) **Elementar**, durch algebraische Ausdrücke wie $x \mapsto x^2$.
- (ii) Durch **geometrische Konstruktion**, z.B. $x \mapsto \sin(x)$.
- (iii) Durch Definition "von Hand": Vorzeichenfunktion

$$sign: x \mapsto \begin{cases} -1, & \text{falls } x < 0, \\ +1, & \text{falls } x \ge 0. \end{cases}$$

$$(4.3)$$

(iv) Implizit, durch Angabe von Eigenschaften. Beispielsweise kann man eine Funktion f als Umkehrfunktion einer anderen Funktion g definieren, wenn man weiß, dass g umkehrbar ist. Praktisch liefert einem das natürlich keine Hilfe, wenn man ganz konkret Funktionswerte berechnen möchte.

Ein anderes Beispiel sind etwa die Rechenregeln (i) und (ii) bei der Exponentialfunktion. Bei impliziten Definitionen beschreibt man eine Funktion durch Angabe einer "Wunschliste" von Eigenschaften. Danach muss man prüfen, ob eine solche Funktion überhaupt existiert, und ob sie durch Angabe der Eigenschaften eindeutig beschrieben ist. Schließlich muss man sich irgendwann noch darum kümmern, konkrete Werte wirklich auszurechnen.

(v) Durch Darstellung als (konvergente) Reihe: Beispielsweise kann man zeigen, dass für jedes $x \in \mathbb{R}$

$$\exp(x) = \sum_{n=0}^{\infty} \frac{1}{n!} x^n$$

und

$$\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}, \qquad \cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}.$$

Funktionen dieser Bauart heißen transzendente Funktionen (von lat. trans scandere, weil sie über den Rahmen der algebraischen Funktionen hinaus führen).

Man muss aber aufpassen: Nicht jede Funktion besitzt eine solche Darstellung als so genannte **Taylorreihe** oder **Potenzreihe**.

Zahlenbeispiel: Mit dem Taschenrechner berechnen wir die Zahlenwerte von $\exp(2)=7.389\ldots$ und der Näherung $\sum_{n=0}^{6}\frac{1}{n!}\,2^n=1+\tfrac{2}{1}+\tfrac{4}{2}+\tfrac{8}{6}+\tfrac{16}{24}+\tfrac{32}{120}+\tfrac{64}{720}=7.3\overline{5}.$

Eine Funktion $f: I \to \mathbb{R}$ wird oft dadurch veranschaulicht, dass man ihren **Graphen** zeichnet. Formal handelt es sich dabei um die Menge von Punkten in der Ebene

$$Graph(f) = \{(x, f(x)) : x \in I\}.$$
 (4.4)

Durch die Angabe des Graphen (und genau genommen: des Wertebereichs) ist eine Funktion natürlich eindeutig bestimmt. Wenn man nur genau genug zeichnen könnte, wäre es also möglich, Funktionen alleine durch Zeichnung zu definieren. Im Allgemeinen geht das nicht, aber der Graph ist dennoch hilfreich, wenn man wesentliche qualitative Aussagen verstehen oder mitteilen möchte.

Wir kommen jetzt zu dem wichtigen Begriff der Monotonie.

Definition 4.13 Die Funktion f heißt

monoton wachsend, falls $f(y) \ge f(x)$ wann immer y > x, streng monoton wachsend, falls f(y) > f(x) wann immer y > x, monoton fallend, falls $f(y) \le f(x)$ wann immer y > x, streng monoton fallend, falls f(y) < f(x) wann immer y > x.

Satz 4.14 Ist $f: I \to N \subset \mathbb{R}$ streng monoton wachsend (oder fallend), so ist f ein-eindeutig.

Ist zusätzlich f(I) = N, so ist f umkehrbar. Die Umkehrabbildung ist dann ebenfalls streng monoton wachsend (beziehungsweise fallend). Der Graph der Umkehrfunktion ergibt sich durch Spiegelung des ursprünglichen Graphen an der Diagonalen $\{(x,x): x \in \mathbb{R}\}$.

Beispiele 4.15 (i) Die Vorzeichenfunktion sign (siehe (4.3)) ist monoton wachsend, aber nicht streng monoton wachsend. Sie ist nicht umkehrbar.

(ii) Die Abbildung $[0,1] \to [-1,0], x \mapsto -x^2$ ist streng monoton fallend. Die Abbildungsvorschrift der Umkehrfunktion lautet $y \mapsto \sqrt{-y}$.

(iii) Ist r > 0, so ist die Abbildung $[0, \infty) \to [0, \infty)$, $x \mapsto x^r$ streng monoton wachsend. Die Umkehrabbildung lautet $[0, \infty) \to [0, \infty)$, $y \mapsto y^{\frac{1}{r}}$.

(iv) Die Abbildung $[-\frac{\pi}{2}, \frac{\pi}{2}] \to [-1, 1], x \mapsto \sin(x)$ ist streng monoton wachsend. Die Umkehrabbildung, die wir nicht explizit kennen, aber die nach dem vorangehenden Satz existiert, heißt **Arcus-Sinusfunktion**. Symbolisch arcsin : $[-1, 1] \to [-\frac{\pi}{2}, \frac{\pi}{2}]$.

(v) Die Abbildung $[0,\pi] \to [-1,1], x \mapsto \cos(x)$ ist wieder streng monoton fallend. Die Umkehrfunktion $\arccos: [-1,1] \to [0,\pi]$ heißt **Arcus-Kosinusfunktion**.

(vi) Die Abbildung $(-\frac{\pi}{2}, \frac{\pi}{2}) \to \mathbb{R}, x \mapsto \tan(x)$ ist streng monoton wachsend. Die Umkehrabbildung arctan : $\mathbb{R} \to (-\frac{\pi}{2}, \frac{\pi}{2})$ heißt **Arcus-Tangensfunktion**.

(vii) Die Abbildung exp : $\mathbb{R} \to (0, \infty)$ ist streng monoton wachsend. Die Umkehrabbildung ist die (natürliche) Logarithmusfunktion log : $(0, \infty) \to \mathbb{R}$.

(viii) Die Abbildung $f:[0,\infty)\to (0,1], \ x\mapsto f(x)=\exp(-x^2)$ (siehe Zehnmarkschein) ist streng monoton fallend. Die Umkehrfunktion lautet $f^{-1}:(0,\infty)\to [0,\infty), \ f^{-1}(y)=\sqrt{-\log(y)}$.

(ix) Die Abbildung $\mathbb{R} \to \mathbb{R}$, $x \mapsto x^2$ ist weder monoton wachsend noch monoton fallend. Man kann keine Umkehrfunktion angeben.

Beispiel 4.16 Wollen wir die Umkehrfunktion einer komplizierten, zusammen gesetzten Funktion bestimmen, so wenden wir Satz 4.12 mehrfach an und suchen nach geeigneten Monotoniebereichen für die einzelnen Funktionen. Betrachten wir beispielsweise f gegeben durch

$$f(x) = \sqrt[3]{1 - \sin\left(\frac{\pi}{3} - x\right)}.$$

Dann können wir schreiben

$$f(x) = f_1(f_2(f_3(f_4(x)))),$$

wobei $f_1(x) = \sqrt[3]{x}$, $f_2(x) = 1-x$, $f_3(x) = \sin(x)$, $f_4(x) = \frac{\pi}{3}-x$. Damit wir die einzelnen Funktionen umkehren können, müssen wir ihre Definitionsbereiche so wählen, dass sie ein-eindeutig sind. Eine mögliche Wahl ist

$$\begin{array}{ll} f_1 &: [0,\infty) \to [0,\infty), & f_1^{-1}(y) = y^3, \\ f_2 &: \mathbb{R} \to \mathbb{R}, & f_2^{-1}(y) = 1 - y, \\ f_3 &: [-\frac{\pi}{2}, \frac{\pi}{2}] \to [-1, 1], & f_3^{-1}(y) = \arcsin(y), \\ f_4 &: \mathbb{R} \to \mathbb{R}, & f_4^{-1}(y) = \frac{\pi}{3} - y. \end{array}$$

Offenbar müssen wir für f_4 zusätzlich annehmen, dass die Werte $f_4(x)$ im Definitionsbereich von f_3 liegen, also $f_4(x) \in [-\frac{\pi}{2}, \frac{\pi}{2}]$. Damit wird der Definitionsbereich von f_4 festgelegt als $[-\frac{\pi}{6}, \frac{5\pi}{6}]$. Offenbar ist der Wertebereich $f([-\frac{\pi}{6}, \frac{5\pi}{6}]) = [0, \sqrt[3]{2}]$. Die Umkehrabbildung f^{-1} ist jetzt durch umgedrehte Anwendung der einzelnen Umkehrabbildungen gegeben

$$f^{-1}(y) = f_4^{-1}(f_3^{-1}(f_2^{-1}(f_1^{-1}(y)))).$$

Insgesamt folgt:

$$f:\left[-\frac{\pi}{6},\frac{5\pi}{6}\right] \rightarrow \left[0,\sqrt[3]{2}\right]$$

ist umkehrbar, und die Umkehrabbildung ist gegeben durch

$$f^{-1}(y) = \frac{\pi}{3} - \arcsin\left(1 - y^3\right).$$

4.6 Reelle Funktionen mehrerer Veränderlicher

Sei $n=2,3,4,\ldots$ und $M\subset\mathbb{R}^n$ der Definitionsbereich der reellen Funktion $f:M\to\mathbb{R}$ von n Veränderlichen.

Beispiel 4.17 Das Gesetz des idealen Gases lautet

$$pV = NkT, (4.5)$$

wobei p der Druck, V das Volumen, N die Anzahl der Moleküle, T die absolute Temperatur und k die Boltzmann Konstante ist. Ist im Experiment das Volumen und die Temperatur einstellbar, sowie der Druck zu messen, so wollen wir p als Funktion von V und T schreiben:

$$p = f(V, T)$$
.

Dabei ist $M = (0, \infty) \times (0, \infty)$ und

$$f: M \to (0, \infty), \qquad (V, T) \mapsto Nk \frac{T}{V}.$$

Der Graph einer reellen Funktionen mehrerer Veränderlicher ist genauso wie oben definiert als

$$Graph(f) = \{(x, f(x)) : x \in M\}.$$

Die Darstellung des Graphen ist allerdings schwieriger als bei Funktionen von nur einer Veränderlichen. Für Funktionen von zwei Veränderlichen bieten sich immerhin noch zwei Möglichkeiten an:

1. Perspektivische Darstellung

In einer perspektivischen Darstellung wird der Parameterbereich (die Veränderlichen) als Fläche und der Funktionswert nach oben dargestellt. Oft wird der Graph mit einem Gitter belegt, damit die Werte optisch besser erkennbar sind. Das ist von Hand sehr aufwändig, allerdings mit Computern heutzutage kein Problem mehr.

2. Niveaulinien

Definition 4.18 Die Niveaulinie der Funktion $f: M \to \mathbb{R}$ zur Höhe h ist die Menge

$$N_f(h) = \{(x_1, x_2) \in M : f(x_1, x_2) = h\}.$$

Beispiel 4.19 Betrachte die Funktion

$$f: \mathbb{R}^2 \to [0, \infty)$$

 $(x_1, x_2) \mapsto |x_1|^{5/2} + 2|x_2|^{5/2}.$

Für $h \geq 0$ ist

$$N_f(h) = \left\{ (x_1, x_2) : |x_1|^{5/2} + 2|x_2|^{5/2} = h \right\}.$$

Bemerkung 4.20 Offenbar ist f nicht ein-eindeutig. Das ist die typische Situation für reelle Funktionen mehrerer Veränderlicher. Für die Naturwissenschaften relevante reelle Funktionen mehrerer Veränderlicher sind nie ein-eindeutig (und damit auch nie umkehrbar).

0.5

FIGUR. Niveaulinien und perspektivische Darstellung von $f(x,y) = \sin(x)\cos(y)$

4.7 Vektorwertige Funktionen einer Veränderlichen

Definition 4.21 Sei $n=2,3,4,\ldots$ und $M\subset\mathbb{R}$ sowie $N\subset\mathbb{R}^n$. Eine Abbildung $f:M\to N$ heißt vektorwertige Funktion von einer Veränderlichen. Wir schreiben auch

$$f(x) = \begin{pmatrix} f_1(x) \\ \vdots \\ f_n(x) \end{pmatrix}.$$

Vektorwertige Funktionen benutzt man, um mehrere Messgrößen f_1, \ldots, f_n als Funktion, beispielsweise, der Zeit t, oder auch einer anderen, frei einstellbaren Größe, zu beschreiben.

Darstellung: Für n=2 kann man die Kurve $\{f(x): x\in M\}$ in der (y,z)-Ebene zeichnen und mit den x-Werten beschriften. Für n=3 bietet sich eine perspektivische Darstellung mit Beschriftung an.

4.22 Beispiel Drehung mit konstanter Winkelgeschwindigkeit ω . Sei $\omega \in \mathbb{R}$, $z = \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \in \mathbb{R}^2$ und $f:[0,\infty) \to \mathbb{R}^2$ definiert durch

$$f(t) = \begin{pmatrix} z_1 + \cos(\omega t) \\ z_2 + \sin(\omega t) \end{pmatrix} \quad \text{für } t \ge 0.$$
 (4.6)

Dann beschreibt f eine Drehung um die Achse z.

FIGUR. Darstellung von f aus (4.6) mit $\omega = \frac{\pi}{2}$

Beispiel 4.23 Zerfall von Stickstoffdioxid. $2 \text{ NO}_2 \longrightarrow 2 \text{ NO} + \text{O}_2$.

 $f_1(t) = \text{Konzentration } c(\text{NO}_2) \text{ zur Zeit } t.$

 $f_2(t) = \text{Konzentration } c(\text{NO}) \text{ zur Zeit } t.$

 $f_3(t) = \text{Konzentration } c(O_2) \text{ zur Zeit } t.$

Annahme $f_2(0) = f_3(0) = 0$ und $f_1(0) = c_0 > 0$. Der Zerfall ist eine Reaktion zweiter Ordnung, das heißt, es sind zwei Reaktionspartner (die zwei NO₂ Moleküle) an der Reaktion beteiligt. Die Menge des pro Zeiteinheit umgesetzten Stoffes ist nach dem Massenwirkungsgesetz proportional zum Quadrat der Konzentration an NO₂. Insgesamt ergibt sich folgende Gleichung, die hier nicht

hergeleitet werden soll,

$$f(t) = \begin{pmatrix} \frac{c_0}{c_0 kt + 1} \\ \frac{c_0^2 kt}{c_0 kt + 1} \\ \frac{1}{2} \frac{c_0^2 kt}{c_0 kt + 1} \end{pmatrix}.$$
 (4.7)

Dabei ist k die Reaktionskonstante, z.B. k=0.755 l/(mol s) bei einer Temperatur von 603K. \diamondsuit

Kapitel 5

Differenziation von Funktionen

5.1 Einführung

Sei im Folgenden stets $I \subset \mathbb{R}$ ein offenes Intervall, $f: I \to \mathbb{R}$ eine Abbildung und $x_0 \in I$. Wir wollen die Steigung der Funktion f an der Stelle x_0 bestimmen. Dazu müssen wir diesen Begriff erst einmal genau fassen. Eine Möglichkeit ist, die Steigung der (eindeutig festgelegten) **Tangente** an den Graphen von fan der Stelle $(x_0, f(x_0))$ zu definieren. Dies stößt allerdings in der praktischen Berechnung dieser Größe auf Schwierigkeiten. Etwas einfacher zu handhaben ist die Idee, dass man die Sekante durch $(x_0, f(x_0))$ sowie einen weiteren Punkt (x, f(x)) betrachtet. Wenn man x gegen x_0 schiebt (von rechts oder links), so sollte die Steigung der Sekante immer näher an die Steigung der obigen Tangente geraten.

FIGUR.

Sekante an f mit Steigung des Differenzenquotienten

FIGUR.

Definition 5.1 Die Funktion f heißt **differenzierbar** in x_0 , falls der Grenzwert $x \to x_0$ der **Differenzenquotienten** $\frac{f(x) - f(x_0)}{x - x_0}$ existiert und endlich ist. Wir schreiben dann

$$f'(x_0) := \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

und nennen $f'(x_0)$ die **Ableitung** von f an der Stelle x_0 .

Ist f in jedem Punkt $x_0 \in I$ differenzierbar, so heißt f differenzierbar schlechthin.

Weitere Schreibweisen für die Ableitung sind

$$f'(x_0) = \frac{df}{dx}(x_0) = \frac{d}{dx}f(x)\Big|_{x=x_0} = \dot{f}(x_0) = Df(x_0).$$
(5.1)

Dies ist eine sehr formale Definition, und für unsere Zwecke ist es hinreichend, dass wir unter Differenzierbarkeit im Punkt x verstehen, dass die Funktion f in x ein Steigung besitzt. Hilfreicher als die formale Definition mag sein, die wichtigsten Fälle zu betrachten, wo f in x_0 keine Steigung hat:

- (i) falls f in x_0 eine Sprungstelle hat (unstetig ist) 1 ,
- (ii) falls f in x_0 einen "Knick" macht,
- (iii) falls f in x_0 gegen $-\infty$, gegen $+\infty$ oder beides geht (wie etwa f(x) = 1/x in $x_0 = 0$).

In den meisten anderen Fällen von Belang ist f differenzierbar. Um Ableitungen auszurechnen, geht man praktisch so vor: Für viele wichtige Funktionen sind die Ableitungen tabelliert. Für Funktionen, die aus den tabellierten Funktionen zusammengesetzt sind, rechnet man die Ableitungen mit Hilfe von Rechenregeln aus, die wir gleich kennen lernen.

¹Ist $I \subset \mathbb{R}$ ein Intervall, so ist jede Funktion $f: I \to \mathbb{R}$, deren Graphen man in einem Stück zeichnen kann, stetig. Besteht der Graph aus zwei, oder mehreren Stücken, die nicht miteinander verbunden sind, so ist f unstetig. Die Stellen, an denen der Graph getrennt ist, sind die Unstetigkeitsstellen.

f(x)	f'(x)	I
c (konstant)	0	\mathbb{R}
$x^n, n \in \mathbb{N}$	$n x^{n-1}$	\mathbb{R}
$x^k, k \in \mathbb{Z}$	$k x^{k-1}$	$\mathbb{R}\setminus\{0\}$
$x^r, r \in \mathbb{R}$	$r x^{r-1}$	$(0,\infty)$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$	$(0,\infty)$
$\exp(x)$	$\exp(x)$	\mathbb{R}
$\log(x)$	$\frac{1}{x}$	$(0,\infty)$
$\sin(x)$	$\cos(x)$	\mathbb{R}
$\cos(x)$	$-\sin(x)$	\mathbb{R}
tan(x)	$1 + \tan(x)^2 = \frac{1}{\cos(x)^2}$	$\mathbb{R}\setminus\{(2k+1)\frac{\pi}{2},k\in\mathbb{Z}\}$
$\arcsin(x)$	$\frac{1}{\sqrt{1-x^2}}$	(-1, 1)
$\arccos(x)$	$\frac{-1}{\sqrt{1-x^2}}$	(-1, 1)
$\arctan(x)$	$\frac{1}{1+x^2}$	\mathbb{R}

5.2 Rechenregeln für Ableitungen

Satz 5.2 (Summen-, Produkt,- und Quotientenregel) Sind $f, g : I \to \mathbb{R}$ differenzierbar, so lassen sich auch die folgenden Ableitungen bilden, und es gilt

$$(f+g)' = f' + g'$$

$$(f-g)' = f' - g'$$

$$(fg)' = f'g + fg'$$

$$\left(\frac{f}{g}\right)'(x) = \frac{f'g - fg'}{g^2}(x), \quad \text{falls } g(x) \neq 0.$$

Beispiele 5.3 (i) $f(x) = x^7 + 3x^4 + 1$, $f'(x) = 7x^6 + 12x^3$.

- (ii) $f(x) = x^9 \sin(x), f'(x) = 9 x^8 \sin(x) + x^9 \cos(x).$
- (iii) $f(x) = x^3(x^2 + \cos(x)), f'(x) = 3x^2(x^2 + \cos(x)) + x^3(2x \sin(x)).$

(iv)
$$f(x) = x^7 \tan(x) \log(x)$$

$$f'(x) = 7x^{6} \tan(x) \log(x) + x^{7} \left(\tan(x) \log(x) \right)'$$

$$= 7x^{6} \tan(x) \log(x) + x^{7} \frac{1}{\cos(x)^{2}} \log(x) + x^{7} \tan(x) \frac{1}{x}$$

$$= x^{6} \tan(x) \left(7 \log(x) + 1 \right) + \frac{x^{7} \log(x)}{\cos(x)^{2}}$$

(v)
$$f(x) = \tan(x) = \frac{\sin(x)}{\cos(x)}, f'(x) = \frac{\cos(x)^2 - \sin(x)(-\sin(x))}{\cos(x)^2} = \frac{1}{\cos(x)^2}.$$

Satz 5.4 (Kettenregel) (i) Sind $I, J \subset \mathbb{R}$ offene Intervalle und $f: I \to J$ und $g: J \to \mathbb{R}$ differenzierbar, so ist auch $h = g \circ f$ in I differenzierbar mit Ableitung

$$h'(x) = (g \circ f)'(x) = f'(x) \cdot g'(f(x)).$$

Die Sprechweise für diese Regel lautet oft: "Innere Ableitung mal äußere Ableitung".

Ist f nur in x_0 und g nur in $f(x_0)$ differenzierbar, so ist h in x_0 differenzierbar.

(ii) Ist speziell $h(x) = g(\lambda x)$ für ein $\lambda \in \mathbb{R}$, so ist $h'(x) = \lambda g'(\lambda x)$.

Beispiele 5.5 (i)
$$h(x) = \sin(x^2)$$
, $f(x) = x^2$, $g(x) = \sin(x)$. Dann ist

$$h'(x) = f'(x) \cdot g'(f(x)) = 2x \cos(x^2).$$

(ii)
$$h(x) = 2^x = \exp(x \cdot \log(2))$$
. Dann ist

$$h'(x) = \log(2) \exp(x \log(2)) = \log(2) \cdot 2^x$$
.

(iii)
$$h(x) = \sqrt{\tan(e^{-x^2})} = f_1(f_2(f_3(f_4(x)))),$$
 wobei

$$f_1(x) = \sqrt{x}, f_1'(x) = \frac{1}{2\sqrt{x}}$$

$$f_2(x) = \tan(x), f_2'(x) = 1 + \tan(x)^2$$

$$f_3(x) = e^x, f_3'(x) = e^x$$

$$f_4(x) = -x^2, f_4'(x) = -2x.$$

Sukzessive Anwendung der Kettenregel liefert

$$h'(x) = f'_4(x) \cdot f'_3(f_4(x)) \cdot f'_2(f_3(f_4(x))) \cdot f'_1(f_2(f_3(f_4(x))))$$
$$= -2x \cdot e^{-x^2} \cdot \left(1 + \tan\left(e^{-x^2}\right)^2\right) \cdot \frac{1}{2\sqrt{\tan(e^{-x^2})}}.$$

Dieser Ausdruck ist zwar etwas länglich, lässt sich aber durch stures Anwenden der Rechenregeln ohne Sinn und Verstand ausrechnen. Das kann im Prinzip eine Maschine erledigen, und in der Tat gibt es Computerprogramme, die genau das tun.

Noch allgemeiner als im Beispiel (iii) kann man Verknüpfungen von n Funktionen ableiten. Die genaue Regel gibt das folgende Korollar (=Schlussfolgerung des letzten Satzes) der Kettenregel an.

Korollar 5.6 Ist $n \in \mathbb{N}$ und $h(x) = f_1(f_2(\dots f_n(x))\dots)$, wobei f_1, \dots, f_n differenzierbar sind, so ist h differenzierbar mit Ableitung

$$h'(x) = f'_n(x) \cdot f'_{n-1}(f_n(x)) \cdot f'_{n-2}(f_{n-1}(f_n(x))) \cdots f'_1(f_2(f_3(\cdots f_n(x))\cdots).$$

Ein weiteres wichtiges Korollar zur Kettenregel gibt an, wie die Ableitungen von Umkehrfunktionen aussehen.

Korollar 5.7 Ist $f: I \to J$ umkehrbar und differenzierbar, so ist $g:=f^{-1}$ ebenfalls differenzierbar in allen Punkten $x \in J$ mit $f'(f^{-1}(x)) \neq 0$, und es ist dort

$$(f^{-1})'(x) = g'(x) = \frac{1}{f'(f^{-1}(x))}.$$

Beweis Wir zeigen hier nicht die Differenzierbarkeit von f^{-1} , sondern lediglich, wie man die Ableitung von f^{-1} ausrechnet. Sei $h(x) = f(f^{-1}(x))$. Dann ist nach der Kettenregel $h'(x) = (f^{-1})'(x) \cdot f'(f^{-1}(x))$. Andererseits ist h(x) = x, also h'(x) = 1, also $1 = (f^{-1})'(x) \cdot f'(f^{-1}(x))$. Teilt man jetzt durch $f'(f^{-1}(x))$, so folgt die Aussage des Korollars.

Beispiele 5.8 (i) Die Logarithmusfunktion log ist die Umkehrfunktion der Exponentialfunktion exp . Also ist

$$\log'(x) = \frac{1}{\exp(\log(x))} = \frac{1}{\exp(\log(x))} = \frac{1}{x}.$$

Das erklärt die Formel aus der Tabelle in Abschnitt 5.1.

(ii) Wir benutzen die Identität $\sin(x)^2 + \cos(x)^2 = 1$, um zu zeigen, dass

$$\arcsin'(x) = \frac{1}{\sin'(\arcsin(x))}$$

$$= \frac{1}{\cos(\arcsin(x))}$$

$$= \frac{1}{\sqrt{1 - \sin(\arcsin(x))^2}} = \frac{1}{\sqrt{1 - x^2}}.$$

5.3 Höhere Ableitungen

Sei $I \subset \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ eine differenzierbare Funktion. Wir haben bisher die Ableitung f' von f kennen gelernt. Ist f' selber jedoch wieder differenzierbar, so kann uns nichts daran hindern, diese Funktion auch abzuleiten.

Definition 5.9 (Höhere Ableitungen) Ist die Ableitung f' von f differenzierbar, so heißt die Ableitung f'' von f' die zweite Ableitung von f oder die Ableitung zweiter Ordnung von f.

Wir können dies Verfahren fortführen, solange die jeweilige Ableitung differenzierbar ist und nennen die Funktionen f''', f'''' usw. die dritte, vierte usw. Ableitung von f, oder die Ableitung dritter, vierter usw. Ordnung.

Die Ableitung n-ter Ordnung wird auch bezeichnet mit

$$f^{(n)}(x) = \frac{d^n}{dx^n} f(x) = D^n f(x).$$

Die Funktion f heißt n-mal differenzierbar, wenn wir die n-te Ableitung bilden können. Ist $f^{(n)}$ stetig, so heißt f n-mal stetig differenzierbar.

Beispiel 5.10 Bezeichnet f(t) die Position eines Fahrzeugs auf einer Straße zur Zeit t, so ist f'(t) die Geschwindigkeit des Fahrzeugs und f''(t) seine Beschleunigung.

Kapitel 6

Kurvendiskussion

Eine der wichtigsten Anwendungen der Differentialrechnung ist es zu bestimmen, wo eine Funktion minimal beziehungsweise maximal wird. Wir definieren im ersten Abschnitt die Begriffe, bringen sie im nächsten Abschnitt in Zusammenhang mit den Monotonieeigenschaften der Funktion und stellen in einem dritten und vierten Abschnitt zusammen, wo die Verbindung zu den Ableitungen der Funktion liegt. Schließlich wird die Diskussion in einem fünften Abschnitt zusammengefasst und eine Art Checkliste angegeben für die Fragen, die durch die Kurvendiskussion beantwortet werden sollen.

6.1 Extremalstellen

Definition 6.1 (Extremalstellen) Sei $f: M \to \mathbb{R}$ eine Funktion. Eine Zahl $m^* \in \mathbb{R}$ heißt **Maximum** von f, symbolisch $m^* = \max(f)$, falls

$$f(x) \le m^*$$
 für alle $x \in M$ (6.1)

und

$$f(x^*) = m^*$$
 für (wenigstens) ein $x^* \in M$. (6.2)

Die (im Allgemeinen nicht eindeutige) Zahl x^* heißt **Maximalstelle** von f, symbolisch $x^* = \arg\max(f)$. Man sagt, dass f in x^* das Maximum annimmt, oder dass f in x^* das Maximum hat.

Analog wird das **Minimum** $m_* = \min(f)$ von f definiert und die Minimalstelle $x_* = \arg\min(f)$ (mit dem " \geq "-Zeichen in (6.1)).

Beide Punkte x_* und x^* werden **Extremalstellen** genannt.

Beispiele 6.2 (i) $M = [0, 2\pi], f(x) = \sin(x)$. Dann ist

$$m^* = 1$$
, $x^* = \frac{\pi}{2}$ und $m_* = -1$, $x_* = \frac{3\pi}{2}$.

Bei dem hier gewählten Intervall $[0, 2\pi]$ sind die Punkte x_* und x^* eindeutig bestimmt.

(ii) $M = \mathbb{R}$, $f(x) = \cos(x)$. Dann ist

$$m^* = 1, \quad x^* \in \{2k \cdot \pi, k \in \mathbb{Z}\} = \text{Menge der Maximalstellen}$$

58 Kurvendiskussion

und

$$m_* = -1, \quad x_* \in \{(2k+1) \cdot \pi, k \in \mathbb{Z}\} = \text{Menge der Minimalstellen}.$$

(iii) $M = \mathbb{R}$, $f(x) = x^2 - 2x = (x - 1)^2 - 1$. Dann ist $m_* = -1$ und $x_* = 1$, jedoch gibt es keine Maximalstelle.

- (iv) $M = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right), f(x) = \tan(x)$. Es gibt keine Extremalstellen.
- (v) $M = \mathbb{R}$, $f(x) = \exp(-x^2)$. Dann ist $m^* = 1$, $x^* = 0$, jedoch gibt es keine Minimalstelle. In der Tat ist $\lim_{x \to \infty} \exp(-x^2) = 0$. Andererseits ist $\exp(-x^2) > 0$ für jedes $x \in \mathbb{R}$. Somit käme für das Minimum nur 0 als Wert in Frage, dieser Wert wird jedoch nicht angenommen. \diamondsuit

Es tritt öfter der Fall ein, dass eine Funktion lokal, also in einer kleinen Umgebung betrachtet, ein Maximum (oder Minimum) annimmt, das jedoch global betrachtet (also im gesamten Definitionsbereich gesehen) keines ist.

FIGUR. f nimmt in 0 ein lokales Maximum an, das jedoch global kein Maximum ist.

Dies motiviert die folgende Definition.

Definition 6.3 (lokale Extremalstellen) *Ist* $M \subset \mathbb{R}$, *so* heißt $x_* \in M$ eine **lokale Minimalstelle** von $f: M \to \mathbb{R}$, falls es ein $\varepsilon > 0$ gibt mit

$$f(x) \ge f(x_*)$$
 für alle $x \in (x_* - \varepsilon, x_* + \varepsilon) \cap M$. (6.3)

 $f(x_*)$ heißt dann **lokales Minimum** von f. Ein lokales Minimum heißt **isoliert**, falls in (6.3) die strikte Ungleichung gilt (für $x \neq x_*$).

Analog definieren wir lokale Maximalstelle, lokales Maximum, isoliertes lokales Maximum, sowie lokale Extremalstelle usf.

Manchmal spricht man zur Unterscheidung von lokalen Extrema zu Extrema in letzterem Fall auch von **globalen** Extrema.

6.2 Monotonie 59

Beispiel 6.4 $M = \mathbb{R}$, $f(x) = x^4 - 2x^2 + 1$. Die Funktion nimmt in 0 ein lokales Maximum an, denn f(x) < f(0) = 1 für jedes $x \in \mathbb{R}$ mit 0 < |x| < 1, also für jedes $x \in (x_* - \varepsilon, x_* + \varepsilon) \setminus \{0\}$, wobei $x_* = 0$ und $\varepsilon = 1$. Die lokale Maximalstelle $x_* = 0$ ist also auch isoliert.

Dieses lokale Maximum ist kein globales Maximum, weil beispielsweise f(2) = 9 > 1 = f(0).

Zumindest auf abgeschlossenen Intervallen und bei stetigen Funktionen brauchen wir uns keine Sorgen um die Existenz von Extremalstellen zu machen. Auskunft gibt der folgende Satz, der hier nicht bewiesen werden kann.

Satz 6.5 *Ist* $f : [a, b] \to \mathbb{R}$ *stetig, so nimmt* f *Minimum und Maximum an.*

Um Extremalstellen nachzuweisen, sind die ersten und zweiten Ableitungen einer Funktion (falls existent) hilfreich. Ein erster Schritt ist der folgende Satz.

Satz 6.6 Sei $I \subset \mathbb{R}$ ein Intervall, $c \in I$ ein innerer Punkt und $f : I \to \mathbb{R}$ eine in c differenzierbare Funktion. Hat f in c eine lokale Extremalstelle, so ist f'(c) = 0.

Beweis Ohne Einschränkung der Allgemeinheit sei hier nur der Fall betrachtet, wo c eine lokale Maximalstelle ist. Dann ist für x hinreichend nahe an c: $f(x) - f(c) \le 0$, also

$$0 \le \lim_{x \uparrow c} \frac{f(x) - f(c)}{x - c} = f'(c) = \lim_{x \downarrow c} \frac{f(x) - f(c)}{x - c} \le 0.$$

Also ist f'(c) = 0.

Beispiele 6.7 (i) Sei $I = \mathbb{R}$ und $f(x) = x^2 - 2x$. Dann ist $x_* = 1$ Minimalstelle. Es gilt f'(x) = 2x - 2, also $f'(x_*) = 2x_* - 2 = 0$.

- (ii) Sei $I = \mathbb{R}$ und $f(x) = \exp(-x^2)$. Dann ist $x_* = 0$ Maximalstelle. Es gilt $f'(x) = -2x \exp(-x^2)$, also $f'(x_*) = 0$.
- (iii) Sei $I = \mathbb{R}$ und $f(x) = \arctan(x)$. Dann ist $f'(x) = \frac{1}{1+x^2} > 0$. Da die erste Ableitung keine Nullstelle hat, hat f keine (lokalen oder globalen) Extremalstellen.
- (iv) Hat f in einem Randpunkt des Intervalls ein lokales Extremum, so muss dort die (einseitige) Ableitung nicht notwendigerweise verschwinden. Seien nämlich I = [0, 1] und f(x) = x. Dann hat f in $x^* = 1$ eine Maximalstelle, aber f'(x) = 1 verschwindet nirgends.
- (v) Die Umkehrung des Satzes gilt nicht: Sei $I = \mathbb{R}$ und $f(x) = x^3$. Dann ist $f'(x) = 3x^2$ und f'(x) = 0. Jedoch hat f in 0 kein lokales Extremum, weil f(x) < 0 für x < 0 und f(x) > 0 für x > 0.

6.2 Monotonie

Wir wollen hier die Monotonieeigenschaften einer differenzierbaren Funktion näher betrachten. Zunächst brauchen wir ein paar vorbereitende Sätze.

Satz 6.8 (Satz von Rolle) Sei $f:[a,b] \to \mathbb{R}$ stetig und in (a,b) differenzierbar sowie f(a) = f(b). Dann gibt es ein $c \in (a,b)$ mit f'(c) = 0.

60 Kurvendiskussion

Beweis Da f stetig ist, nimmt f das Minimum m_* sowie das Maximum m^* in [a, b] an (Satz 6.5). Ist $m_* = m^*$, so ist wegen $m_* \le f(x) \le m^*$ für jedes $x \in [a, b]$ auch $f(x) = f(a) = f(b) = m_* = m^*$. Damit ist f konstant, also f'(x) = 0 für jedes $x \in (a, b)$.

Ist andererseits $m_* < m^*$, so ist entweder $m_* < f(a)$ oder $m^* > f(a)$, oder beides. Betrachten wir den Fall $m_* < f(a)$. Dann gibt es ein $x_* \in (a,b)$ mit $f(x_*) = m_*$. Weil x_* eine Minimalstelle von f und ein innerer Punkt von [a,b] ist, ist $f'(x_*) = 0$ nach Satz 6.6. Der Fall $m^* > f(a)$ funktioniert genauso.

Beispiel 6.9 $f: [-1,1] \to \mathbb{R}$, $f(x) = x^4 - 2x^2$. Dann ist f(-1) = f(1) = -1. Weiter ist $f'(x) = 4x^3 - 4x$ und damit f'(0) = 0.

Korollar 6.10 (Mittelwertsatz der Differentialrechnung) Ist $f:[a,b] \to \mathbb{R}$ stetig und in (a,b) differenzierbar, so existiert ein $c \in (a,b)$ mit

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Beweis Setze

$$h(x) = f(x) - (x - a)\frac{f(b) - f(a)}{b - a}.$$

Dann ist h(a) = f(a), $h(b) = f(b) - (b-a)\frac{f(b) - f(a)}{b-a} = f(a) = h(a)$. Also existiert ein $c \in (a,b)$ mit h'(c) = 0. Es ist aber

$$h'(x) = f'(x) - \frac{f(b) - f(a)}{b - a},$$

also

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Korollar 6.11 *Ist* $f : [a,b] \to \mathbb{R}$ *stetig und in* (a,b) *differenzierbar mit Ableitung* f'(x) = 0 *für alle* $x \in (a,b)$, *so ist* f *konstant:* f(x) = f(a) = f(b) *für alle* $x \in [a,b]$.

Eine weitere wichtige Schlussfolgerung aus dem Mittelwertsatz gibt uns an, wie der Zusammenhang zwischen der Monotonie einer Abbildung und dem Vorzeichen ihrer Ableitung ist. Aufgrund der Wichtigkeit der Aussage formulieren wir sie hier als Satz.

Satz 6.12 Sei $I \subset \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ stetig und (im Inneren von I) differenzierbar. Dann gilt

(i)

 $f'(x) \ge 0$ für alle inneren Punkte $x \in I \iff f$ ist monoton wachsend

 $f'(x) \leq 0$ für alle inneren Punkte $x \in I \iff f$ ist monoton fallend

(ii)

f'(x) > 0 für alle inneren Punkte $x \in I \implies f$ ist streng monoton wachsend

f'(x) < 0 für alle inneren Punkte $x \in I \implies f$ ist streng monoton fallend

Beispiele 6.13 (i) $I = \mathbb{R}$, $f(x) = \arctan(x)$. Dann ist $f'(x) = \frac{1}{1+x^2} > 0$. Also ist die Funktion arctan streng monoton wachsend.

- (ii) $I = \mathbb{R}$, $f(x) = \exp(x)$. Dann ist $f'(x) = \exp(x) > 0$, also exp streng monoton wachsend.
- (iii) $I = \mathbb{R}$, $f(x) = x^2$. Dann ist f'(x) = 2x. Die Ableitung ist strikt negativ für x < 0 und strikt positiv für x > 0. Wir wenden also den Satz für $(-\infty, 0]$ und $[0, \infty)$ und erhalten, dass f streng monoton fallend ist in $(-\infty, 0]$ und streng monoton wachsend in $[0, \infty)$.

$$f'(x) = \begin{cases} 4x, & \text{falls } x \le 0, \\ 0, & \text{falls } x > 0. \end{cases}$$

Also ist $f'(x) \leq 0$ für alle $x \in \mathbb{R}$ und damit f monoton fallend. Allerdings ist f nicht streng monoton fallend, da f(x) = 0 für alle $x \geq 0$.

FIGUR. $f(x) = (1 - \operatorname{sign}(x))x^2$

(v) $I = \mathbb{R}$, $f(x) = x^3$. Dann ist $f'(x) = 3x^2 \ge 0$. Also ist f monoton wachsend. Man kann sogar zeigen, dass f streng monoton wachsend ist, aber dies liefert unser Satz nicht, denn f'(0) = 0, also haben wir nicht die strikte Ungleichung, die in Teil (ii) des Satzes benötigt wurde.

6.3 Bestimmung der Extremalstellen

Wir haben in Abschnitt 6.1 gesehen, dass lokale Extremalstellen einer differenzierbaren Funktion nur dort vorliegen, wo die Ableitung verschwindet. Wie das Beispiel $f(x) = x^3$ zeigt, wo f'(0) = 0 ist, jedoch kein lokales Extremum in 0 vorliegt, müssen wir zusätzliche Informationen über f haben, um eine Extremalstelle zu detektieren. Ist c eine Stelle, sodass f links von c monoton wachsend ist und rechts von c monoton fallend, so liegt in c offenbar ein lokales Maximum vor. Nach den Ergebnissen des letzten Abschnitts geht dies mit einem Vorzeichenwechsel von f' einher. Wir wollen zunächst den Begriff des Vorzeichenwechsels präzise fassen und dann das hier anschaulich gewonnene Ergebnis in einem Satz formulieren.

Definition 6.14 Sei $I \subset \mathbb{R}$ ein Intervall und $a \in I$ ein innerer Punkt. Wir sagen, dass das Vorzeichen einer Funktion $q: I \to \mathbb{R}$ im Punkt a von - nach + wechselt, falls q(a) = 0 und

$$\lim_{x\uparrow a} \operatorname{sign}(g(x)) = -1, \qquad \lim_{x\downarrow a} \operatorname{sign}(g(x)) = +1,$$

falls also:

für alle x < a hinreichend nahe an a gilt q(x) < 0

und

für alle x > a hinreichend nahe an a gilt g(x) > 0.

 $Analog f \ddot{u}hren wir die Sprechweise ein, dass das Vorzeichen von + nach - wechselt.$

Lemma 6.15 Ist g differenzierbar und g(a) = 0, g'(a) > 0 (beziehungsweise g'(a) < 0), so wechselt das Vorzeichen von g in a von - nach + (beziehungsweise von + nach -).

Beispiele 6.16 (i) $I = \mathbb{R}$, $g(x) = x^2 - 1$, a = -1. Dann ist g'(x) = 2x und g(-1) = 0, g'(-1) = -2 < 0. Das Vorzeichen wechselt also in -1 von + nach -.

62 Kurvendiskussion

(ii) $I = \mathbb{R}$, $g(x) = x^3$, a = 0. Das Vorzeichen wechselt in 0 von – nach +, jedoch ist g'(0) = 0. Das Kriterium in dem Lemma ist also nur hinreichend und nicht notwendig.

Satz 6.17 Sei $f: I \to \mathbb{R}$ differenzierbar und $a \in I$ ein innerer Punkt mit f'(a) = 0.

- (i) Ist f sogar zweimal differenzierbar und f''(a) < 0 (beziehungsweise f''(a) > 0), so hat f in a ein isoliertes lokales Maximum (beziehungsweise Minimum).
- (ii) We chselt das Vorzeichen von f' in a von + nach (beziehungsweise von nach +), so hat f in a ein isoliertes lokales Maximum (beziehungsweise Minimum).
- (iii) Hat die Funktion f' in a ein isoliertes lokales Extremum, so hat f in a **kein** lokales Extremum.

Offenbar folgt aus (i) schon (ii) (Lemma 6.15). Fall (ii) tritt also häufiger auf. In der Praxis ist jedoch (i) oftmals einfacher zu prüfen. Man wird also so vorgehen (um bei hinreichend oft differenzierbaren Funktionen ein lokales Extremum im Inneren des Definitionsbereichs zu detektieren):

6.18 Rezept (zur lokalen Extremalstellenanalyse im Inneren des Definitionsbereichs)

- (1) Sei $a \in I$ ein innerer Punkt mit f'(a) = 0. Man prüft, ob f in a zweimal differenzierbar ist. Ist dies der Fall und die Ableitung ohne größere Umstände zu berechnen, so prüft man, ob f''(a) < 0 (beziehungsweise f''(a) > 0). Ist dies richtig, so hat f in a ein isoliertes lokales Maximum (beziehungsweise Minimum).
- (2) Führt (1) nicht zum Erfolg, so prüft man, ob f' in a das Vorzeichen wechselt. Ist dies der Fall, so hat f in a ein isoliertes lokales Extremum und man ist fertig.
- (3) Führen weder (1) noch (2) zu einem Ergebnis, so hat f vermutlich (aber nicht sicher) in a kein isoliertes lokales Extremum. Um dies nachzuweisen, muss man testen, ob f' in a ein isoliertes lokales Extremum hat. Dazu geht man wie oben vor, nur eben für f' statt für f. Hat jetzt f' in a ein isoliertes lokales Extremum, so hat f in a kein ein isoliertes lokales Extremum, und man ist fertig.
- (4) Bringen weder (1), (2) noch (3) ein Ergebnis, dann wird die Sache wirklich schwierig. Hier gibt es dann keine Patentrezepte mehr, und man muss sich neue Methoden überlegen.
- (5) Ein paar der "üblichen verdächtigen" Stellen, die man zudem prüfen sollte, sind
 - (a) die Intervallenden,
 - (b) die Nicht-Differenzierbarkeitsstellen,
 - (c) die Nullstellen der Ableitungen an den Differenzierbarkeitsstellen.

Diese Stellen muss man, bei (c) eventuell mit (1)–(4), individuell untersuchen.

(6) Interessiert man sich nur für globale Extremalstellen einer stetigen Funktion auf einem abgeschlossenen Intervall und gibt es nur wenige Kandidaten der Typen (a), (b), (c) (es reicht auch, wenn einzelne Punkte nur im Verdacht stehen, zu einem der drei Typen zu gehören, solange man nur alle tatsächlich dazu gehörigen erfasst), dann braucht man nur die Funktionswerte dieser Kandidaten zu vergleichen und die mit dem Kleinsten bzw. dem Größten heraus zu picken. Ist das Definitionsintervall nicht abgeschlossen, so muss man zusätzlich noch das Grenzverhalten an den offenen Intervallenden untersuchen.

6.4 Krümmung 63

Beispiele 6.19 (i) $I = \mathbb{R}$, $f(x) = \cos(x)$, a = 0. Die erste und zweite Ableitung sind $f'(x) = -\sin(x)$ und $f''(x) = -\cos(x)$. Also ist f'(0) = 0 und f''(0) = -1 < 0. Nach Punkt (1) unseres Rezeptes haben wir also ein isoliertes lokales Maximum von f bei a = 0 festgestellt.

- (ii) $I = \mathbb{R}$, $f(x) = x^2$, a = 0. Die erste und zweite Ableitung sind f'(x) = 2x und f''(x) = 2. Also ist f'(0) = 0 und f''(0) = 2 > 0. Nach Punkt (1) unseres Rezeptes haben wir also ein isoliertes lokales Minimum von f bei a = 0 festgestellt.
- (iii) $I = \mathbb{R}$, $f(x) = x^4$, a = 0. Dann ist $f'(x) = 4x^3$ und $f''(x) = 12x^2$. Also ist f'(0) = 0 und f''(0) = 0. Punkt (1) unseres Rezeptes bringt kein Ergebnis, wir machen also bei Punkt (2) weiter. Für x < 0 ist f'(x) < 0 und für x > 0 ist f'(x) > 0. Also wechselt f' in 0 das Vorzeichen von nach +. Ergebnis: f hat in 0 ein isoliertes lokales Minimum.
- (iv) $I=(-\frac{\pi}{2},\frac{\pi}{2}),\ f(x)=\tan(x)-x,\ a=0.$ Die ersten beiden Ableitungen sind $f'(x)=1+(\tan(x))^2-1=(\tan(x))^2$ und (nach der Kettenregel) $f''(x)=2\tan(x)((\tan(x))^2+1).$ Wegen $\tan(0)=0$ ist $f'(0)=\tan(0)^2=0$ und f''(0)=0. Also führt Punkt (1) zu keinem Ergebnis. Weiter geht es mit Punkt (2): Für $x\neq 0$ ist $\tan(x)\neq 0$, also f'(x)>0. Mithin wechselt f' in 0 nicht das Vorzeichen. Punkt (2) schlägt also auch fehl. Bei Punkt (3) stellen wir fest, dass f'(x) das globale Minimum 0 genau in dem einen Punkt x=0 annimmt (klar, denn f'(x)>0 für alle anderen x). Also hat f in 0 kein isoliertes lokales Extremum.
- (v) Sei $I = \left[-\frac{1}{2}, 1\right], f: I \to \mathbb{R}, x \mapsto \sqrt{|x|} + x$. Für $x \in I \setminus \{0\}$ hat man $f'(x) = \operatorname{sign}(x) \cdot \frac{1}{2\sqrt{|x|}} + 1$, für x = 0 ist f nicht differenzierbar. Einzige Nullstelle von f' auf $I \setminus \{0\}$ ist $x = -\frac{1}{4}$. Damit ergeben sich als Kandidaten für globale Extremalstellen: $0, -\frac{1}{4}$ sowie die Intervallenden $-\frac{1}{2}$, und 1. Die zugehörigen Funktionswerte sind $0, \frac{1}{4}, \sqrt{\frac{1}{2}} \frac{1}{2} \approx 0.2071$ und 2. Damit ist 0 mit f(0) = 0 globale Minimalstelle und 1 mit f(1) = 2 globale Maximalstelle.

Weitere Untersuchungen würden ergeben, dass $-\frac{1}{2}$ lokale Minimalstelle und $-\frac{1}{4}$ lokale Maximalstelle ist.

Bemerkung 6.20 Kann man eine Extremalstelle nicht explizit ausrechnen, so muss man sich anders behelfen, beispielsweise mit einem Intervallschachtelungsverfahren. Hat man so, beispielsweise, die lokale Minimalstelle x_* von f im Intervall [a,b] nachgewiesen (also mit einem Fehler von höchstens b-a), so ist $\left|m_* - \frac{f(b) + f(a)}{2}\right| \leq \frac{b-a}{2} \max\{|f'(x)| : x \in [a,b]\}$. Als Näherungswert bietet sich also $\frac{1}{2}(f(a) - f(b))$, mit Fehler $\leq \frac{b-a}{2} \max\{|f'(x)| : x \in [a,b]\}$ an.

6.4 Krümmung

Ist der Graph einer Funktion f nach links gekrümmt, wie beispielsweise bei $f(x) = x^2$, so wollen wir f konvex nennen. Ist andererseits der Graph nach rechts gekrümmt, so wollen wir f konkav nennen. Diese Begriffe sind etwas willkürlich, und man muss sie an dieser Stelle schlicht auswendig lernen.

Wir müssen jetzt mathematisch präziser fassen, was wir mit der Redeweise "nach links gekrümmt" beziehungsweise "nach rechts gekrümmt" meinen.

64 Kurvendiskussion

Definition 6.21 Sei $I \subset \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ eine Funktion. und $a, b \in I$, a < b. Wir nennen die Funktion f

• konvex, falls für jedes Teilintervall $[a,b] \subset I$ und jedes $x \in [a,b]$ der Punkt (x, f(x)) unter der Verbindungsgeraden G von (a, f(a)) und (b, f(b)) liegt, falls also

$$f(x) \le f(a) + \frac{x-a}{b-a} \left(f(b) - f(a) \right) \quad \text{für alle } x \in [a,b]. \tag{6.4}$$

• konkav, falls für jedes Teilintervall $[a,b] \subset I$ und jedes $x \in [a,b]$ der Punkt (x,f(x)) über der Verbindungsgeraden G von (a,f(a)) und (b,f(b)) liegt, falls also

$$f(x) \ge f(a) + \frac{x-a}{b-a} \big(f(b) - f(a) \big) \quad \text{für alle } x \in [a,b].$$
 (6.5)

Ist $J \subset I$ ein Teilintervall und gelten die obigen Aussagen nur für Teilintervalle $[a,b] \subset J$, so heißt f konvex (beziehungsweise konkav) über J.

Wir sprechen von **strikter** Konvexität (beziehungsweise Konkavität), falls in (6.4) (beziehungsweise (6.5)) die strikte Ungleichung gilt (für $x \in (a,b)$).

Der Begriff der Striktheit der Konvexität beziehungsweise Konkavität steht für uns nicht im Mittelpunkt und wird gleichsam nur am Rande erwähnt.

Obacht!! In einer in Bayern gebräuchlichen mathematischen Formelsammlung für das Gymnasium sind die Definitionen der Begriffe "konvex" und "konkav" genau umgekehrt.

Den Zusammenhang zwischen den gerade eingeführten Begriffen und der zweiten Ableitung einer Funktion stellt der folgende Satz her.

Satz 6.22 *Ist* $f: I \to \mathbb{R}$ *zweimal differenzierbar, so ist* f

• konvex genau dann, wenn $f''(x) \ge 0$ für alle inneren Punkte $x \in I$.

6.4 Krümmung 65

• konkav genau dann, wenn $f''(x) \le 0$ für alle inneren Punkte $x \in I$.

Beispiele 6.23 (i) $I = \mathbb{R}$, $f(x) = x^2$, f''(x) = 2 > 0. Also ist f konvex (tatsächlich sogar strikt konvex).

- (ii) $I = \mathbb{R}$, $f(x) = \sin(x)$. $f''(x) = -\sin(x)$. In $[0, \pi]$ ist $-\sin(x) \le 0$, also sin konkav (tatsächlich sogar strikt konkav). In $[\pi, 2\pi]$ ist $-\sin(x) \ge 0$, also sin konvex (tatsächlich sogar strikt konvex).
- (iii) $I=(0,\infty), f(x)=\log(x)$. Dann ist $f'(x)=\frac{1}{x}, f''(x)=-\frac{1}{x^2}<0$. Also ist log strikt konkav.
- (iv) $I = \mathbb{R}$. f(x) = |x| ist konvex, aber in 0 nicht differenzierbar. Außerdem ist f nicht strikt konvex.

Definition 6.24 Ist $c \in I$ ein innerer Punkt und f konvex (beziehungsweise konkav) auf einem Teilintervall [a, c] sowie konkav (beziehungsweise konvex) auf einem Teilintervall [c, b], so heißt c ein **Wendepunkt** von f.

Satz 6.25 Ist f zweimal differenzierbar und wechselt f'' in c das Vorzeichen, so ist c ein Wendepunkt von f.

Beispiel 6.26 $I=\mathbb{R}, f(x)=x^4-2x^2+1$ (siehe Figur auf Seite 58). Die erste und zweite Ableitung sind $f'(x)=4x^3-4x$ und $f''(x)=12x^2-4=12\left(x^2-\frac{1}{3}\right)$. Also ist genau dann f''(x)<0, wenn $|x|<\sqrt{\frac{1}{3}}$ und genau dann f''(x)>0, wenn $|x|>\sqrt{\frac{1}{3}}$. Es folgt, dass f über $\left(-\infty,-\sqrt{\frac{1}{3}}\right)$ und $\left(\sqrt{\frac{1}{3}},\infty\right)$ konvex ist, über $\left(-\sqrt{\frac{1}{3}},\sqrt{\frac{1}{3}}\right)$ aber konkav. Also besitzt f zwei Wendepunkte: bei $-\sqrt{\frac{1}{3}}$ mit $f\left(-\sqrt{\frac{1}{3}}\right)=\frac{4}{9}$ und bei $\sqrt{\frac{1}{3}}$ mit $f\left(\sqrt{\frac{1}{3}}\right)=\frac{4}{9}$.

66 Kurvendiskussion

6.5 Programm: Kurvendiskussion

Das Zusammentragen sämtlicher relevanter Daten einer Funktion f bezeichnet man als **Kurven-diskussion**. Was relevant ist (und was nicht), hängt natürlich vom Einzelfall sowie der Interessenlage des Betrachters, also von der jeweiligen Anwendung, die man im Blick hat, ab. Typischerweise umfasst die Kurvendiskussion wenigstens die Angabe der folgenden Informationen.

- (1) Falls nur die Vorschrift $x \mapsto f(x)$ vorgegeben ist, muss ein sinnvoller maximaler Definitionsbereich angegeben werden.
- (2) Verhalten von f an den Rändern des Definitionsbereiches. Also beispielsweise $\lim_{x\to\infty}\frac{1}{x^2}=0$, $\lim_{x\to-\infty}\frac{1}{x^2}=0$ und $\lim_{x\to0}\frac{1}{x^2}=\infty$.
- (3) Nullstellen.
- (4) Stetigkeit/Unstetigkeit (Sprungstellen) von f.
- (5) Differenzierbarkeit, gegebenenfalls Ausnahmestellen.
- (6) Monotonieverhalten.
- (7) Lage und Art der Extremalstellen (mit Angabe der Funktionswerte).
- (8) Der Wertebereich von f.
- (9) Krümmungsverhalten von f (Konkavitäts- und Konvexitätsbereiche, Wendepunkte).
- (10) Skizze des Graphen an Hand dieser Informationen
 - Manchmal kommt die Angabe besonderer Eigenschaften hinzu, wie beispielsweise "f ungerade" (d.h. f(-x) = -f(x) wie bei $f(x) = \sin(x)$), "f gerade" (d.h. f(-x) = f(x) wie bei $f(x) = \cos(x)$), Periodizität oder Ähnliches.

Wir führen das Programm der Kurvendiskussion im Folgenden an drei Beispielen durch.

6.5 Krümmung 67

Beispiel 6.27 Sei $f(x) = x^4 - 2x^2 + 1$.

- (1) f ist ein Polynom, also auf ganz \mathbb{R} definiert.
- (2) $\lim_{x \to \infty} f(x) = \infty$, weil x^4 schneller wächst als x^2 . Ebenso $\lim_{x \to -\infty} f(x) = \infty$.
- (3) $f(x) = (x^2 1)^2$. Also ist f(x) = 0 genau für x = -1 und x = 1.
- (4),(5) Polynome sind stetig und beliebig oft differenzierbar.

(6)
$$f'(x) = 4x^3 - 4x = 4x(x^2 - 1)$$
. Für $x < -1$ ist $4x < 0$ und $x^2 - 1 > 0$, also $f'(x) < 0$, $x \in (-1,0)$ ist $4x < 0$ und $x^2 - 1 < 0$, also $f'(x) > 0$, $x \in (0,1)$ ist $4x > 0$ und $x^2 - 1 < 0$, also $f'(x) < 0$, $x > 1$ ist $4x > 0$ und $x^2 - 1 > 0$, also $f'(x) > 0$.

Also ist f streng monoton wachsend in den Bereichen [-1,0] und $[1,\infty)$, sowie streng monoton fallend in Bereichen $(-\infty,-1]$ und [0,1].

(7) Nach (6) ist klar, dass -1, 0, 1 die kritischen Stellen sind. Es ist $f''(x) = 12x^2 - 4$, also f''(-1) = f''(1) = 8 und f''(0) = -4. f hat also isolierte lokale Minimalstellen in -1 und 1 mit f(-1) = f(1) = 0, sowie ein isoliertes lokales Maximum in 0 mit f(0) = 1.

Zusammen mit (6) folgt, dass -1 und 1 sogar globale Minimalstellen sind, während nach (3) kein globales Maximum existiert.

- (8) Der Wertebereich (genauer: das Bild) von f ist $[0, \infty)$.
- (9) Krümmung: Siehe Beispiel 6.26 auf Seite 65.
- (10) Skizze: Siehe Figur auf Seite 58.

Beispiel 6.28 Sei $f(x) = x + 2\sin(x)$.

- (1) Definitionsbereich ist ganz \mathbb{R} .
- (2) Wegen $|\sin(x)| \le 1$ für alle x, ist

$$f(x) \ge x - 2$$
 und $f(x) \le x + 2$ für alle $x \in \mathbb{R}$ (6.6)

 \Diamond

Also ist $\lim_{x \to \infty} f(x) = \infty$ und

$$\lim_{x \to -\infty} f(x) = -\infty.$$

- (4),(5) $x \mapsto x$ und $x \mapsto \sin(x)$ sind stetig und beliebig oft differenzierbar und damit auch f.
 - (6) $f'(x) = 1 + 2\cos(x)$. Also ist

$$f'(x) > 0 \iff \cos(x) > -\frac{1}{2}$$

 $\iff x \in \left(2k\pi - \frac{2\pi}{3}, 2k\pi + \frac{2\pi}{3}\right)$ für ein $k \in \mathbb{Z}$,

68 Kurvendiskussion

und analog

$$f'(x) < 0 \iff x \in \left(2k\pi + \frac{2\pi}{3}, 2k\pi + \frac{4\pi}{3}\right)$$
 für ein $k \in \mathbb{Z}$,

sowie

$$f'(x) = 0 \iff x = 2k\pi \pm \frac{2\pi}{3}$$
 für ein $k \in \mathbb{Z}$.

Es folgt: f ist streng monoton wachsend in den Intervallen

$$\left(2k\pi - \frac{2\pi}{3}, 2k\pi + \frac{2\pi}{3}\right), \qquad k \in \mathbb{Z}$$

und streng monoton fallend in den Intervallen

$$\left(2k\pi + \frac{2\pi}{3}, 2k\pi + \frac{4\pi}{3}\right), \qquad k \in \mathbb{Z}.$$

- (7) Aus (2) folgt, dass es keine globalen Extremalstellen gibt. Nach (6) ist klar, dass f isolierte lokale Minimalstellen hat bei $x=2k\pi-\frac{2\pi}{3},\,k\in\mathbb{Z}$ mit $f(2k\pi-\frac{2\pi}{3})=2k\pi-\frac{2\pi}{3}-\sqrt{3}$, sowie isolierte lokale Maximalstellen bei $x=2k\pi+\frac{2\pi}{3}$ mit $f(2k\pi+\frac{2\pi}{3})=2k\pi+\frac{2\pi}{3}+\sqrt{3}$.
- (3) Offenbar ist f(0)=0. f wächst streng monoton zwischen $-\frac{2\pi}{3}$ und $\frac{2\pi}{3}$ und nimmt dort die Werte $\pm(\frac{2\pi}{3}+\sqrt{3})\approx\pm3.8$ an. Also hat f in $[-\frac{2\pi}{3},\frac{2\pi}{3}]\approx[-2.1,2.1]$ keine weiteren Nullstellen. Wegen (6.6) kann es aber auch keine Nullstellen für |x|>2 geben. Insgesamt haben wir also: f hat genau eine Nullstelle bei x=0.
- (8) Nach (2) und (4) ist der Wertebereich ganz \mathbb{R} .
- (9) Die zweite Ableitung ist $f''(x) = -2\sin(x)$. Mithin ist f''(x) < 0 für $x \in (2k\pi, (2k+1)\pi)$, $k \in \mathbb{Z}$, also f dort strikt konkav, und f''(x) > 0 für $x \in ((2k-1)\pi, 2k\pi)$, $k \in \mathbb{Z}$, also f dort strikt konvex. Die Wendepunkte sind die Punkte $x = k\pi$, $k \in \mathbb{Z}$.
- (10) Skizze:

 \Diamond

6.5 Krümmung 69

Beispiel 6.29 (Lenard-Jones Potential) Ein Modell für das Potential von Teilchen im kernnahen Bereich ist das Lenard-Jones Potential. Eine extrem kurzreichweitige Abstoßung $c_1 x^{-12}$ (dabei ist x der Abstand des Teilchens von dem Kern und $c_1 > 0$ eine Konstante) wird von einer langreichweitigen Anziehung $-c_2 x^{-6}$ überlagert $(c_2 > 0)$. Also ist

$$f(x) = c_1 x^{-12} - c_2 x^{-6}.$$

(1) Da x einen Abstand darstellt, ist nur $x \ge 0$ sinnvoll. Da f(0) nicht definiert ist, setzen wir als Definitionsbereich $I = (0, \infty)$ an.

(2) $\lim_{x \downarrow 0} f(x) = \lim_{x \downarrow 0} x^{-6} \left(c_1 x^{-6} - c_2 \right) = \infty.$ $\lim_{x \to \infty} f(x) = c_1 \lim_{x \to \infty} x^{-12} - c_2 \lim_{x \to \infty} x^{-6} = 0.$

- (3) f(x) = 0 gilt genau dann, wenn $x^6 = \frac{c_1}{c_2}$. Da x > 0 sein muss, ist $x = \sqrt[6]{\frac{c_1}{c_2}}$ die einzige Nullstelle von f.
- (4) $x \mapsto x^{-6}$ und $x \mapsto x^{-12}$ sind in I stetig, also ist auch f stetig.
- (5) Ebenso ist f beliebig oft differenzierbar.
- (6) Die erste Ableitung ist

$$f'(x) = -12 c_1 x^{-13} + 6 c_2 x^{-7} = 6 c_2 \frac{x^6 - 2\frac{c_1}{c_2}}{x^{13}}.$$

Also ist

$$f'(x) < 0 \quad \Longleftrightarrow \quad x^6 < 2\frac{c_1}{c_2} \quad \Longleftrightarrow \quad x < \sqrt[6]{2\frac{c_1}{c_2}}$$

$$f'(x) > 0 \quad \Longleftrightarrow \quad x^6 > 2\frac{c_1}{c_2} \quad \Longleftrightarrow \quad x > \sqrt[6]{2\frac{c_1}{c_2}}.$$

Es folgt, dass f streng monoton fallend ist in $(0, \sqrt[6]{2c_1/c_2})$ und streng monoton wachsend in $(\sqrt[6]{2c_1/c_2}, \infty)$.

- (7) Aus (6) folgt sofort, dass f in $\sqrt[6]{2c_1/c_2}$ die eindeutige globale Minimalstelle hat mit dem Wert $f(\sqrt[6]{2c_1/c_2}) = -\frac{c_2^2}{4c_1}$, und dass es keine weiteren Extremalstellen gibt.
- (8) Aus (2) und (7) folgt, dass der Wertebereich $\left[-\frac{c_2^2}{4c_1},\infty\right)$ ist.
- (9) Die zweite Ableitung ist

$$f''(x) = 156 c_1 x^{-14} - 42 c_2 x^{-8} = 42 c_2 \frac{x^6 - \frac{26c_1}{7c_2}}{x^{10}}.$$

Also ist f''(x) > 0 genau dann, wenn $x < \sqrt[6]{\frac{26}{7} \frac{c_1}{c_2}}$ und f''(x) < 0, falls $x > \sqrt[6]{\frac{26}{7} \frac{c_1}{c_2}}$. Mithin ist f strikt konvex in $\left(0, \sqrt[6]{\frac{26}{7} \frac{c_1}{c_2}}\right)$, strikt konkav in $\left(\sqrt[6]{\frac{26}{7} \frac{c_1}{c_2}}\right)$ und hat einen Wendepunkt in $\sqrt[6]{\frac{26}{7} \frac{c_1}{c_2}}$ mit $f\left(\sqrt[6]{\frac{26}{5} \frac{c_1}{c_2}}\right) = -\frac{133}{676} \frac{c_2^2}{c_1}$.

70 Kurvendiskussion

(10) Skizze für $c_1 = 1$ und $c_2 = 5$.

 \Diamond

Kapitel 7

Integration von Funktionen

7.1 Definition des Integrals

Wir nehmen an, dass a < b reelle Zahlen sind und $f:[a,b] \to \mathbb{R}$ eine Abbildung ist. Für den Moment wollen wir auch annehmen, dass $f \geq 0$ ist. Das Ziel ist es, den Inhalt F der Fläche zu bestimmen, der von dem Graphen von f und der Koordinatenachse eingeschlossen wird.

FIGUR. Die Fläche F unter dem Graphen von f wird hier durch n=4 Rechtecke angenähert.

Zu diesem Zweck zerlegen wir das Intervall [a,b] in n (in der Abbildung: n=4) gleich große Teilintervalle $I_{n,1}, I_{n,2}, \ldots, I_{n,n}$ der Länge $\frac{b-a}{n}$. Also ist

$$I_{n,k} = \left[a + (k-1)\frac{b-a}{n}, \ a + k\frac{b-a}{n} \right], \qquad k = 1, 2, \dots, n.$$

In jedem Teilintervall wollen wir nun das größte Rechteck bestimmen, das noch unterhalb des Graphen von f liegt. Die Höhe dieses Rechtecks im k-ten Teilintervall ist (zumindest bei stetigem

f) der kleinste Funktionswert, der dort von f angenommen wird

$$m_{n,k} = \min(f(x), x \in I_{n,k}), \qquad k = 1, 2, \dots, n.$$

Der Flächeninhalt des k-ten Rechtecks beträgt also (Breite \times Höhe) $\frac{b-a}{n}m_{n,k}$. Alle n Rechtecke zusammen genommen haben den Flächeninhalt

$$U_n(f) := \sum_{k=1}^n \frac{b-a}{n} m_{n,k}.$$
 (7.1)

Die Größe $U_n(f)$ wird als die n-te **Untersumme** von f bezeichnet. Offenbar ist $F \geq U_n(f)$ für jedes n.

Das Gleiche können wir auch mit Rechtecken machen, die den Graphen von oben einschließen. Diese Rechtecke haben die Höhen

$$M_{n,k} = \max(f(x), x \in I_{n,k}), \qquad k = 1, 2, \dots, n.$$

Wir bezeichnen mit

$$O_n(f) := \sum_{k=1}^n \frac{b-a}{n} M_{n,k}$$
 (7.2)

die nte **Obersumme** von f. Offenbar ist jetzt

$$U_n(f) \le F \le O_n(f)$$
.

Die Idee ist nun, dass mit wachsendem n sich die Werte von Unter- und Obersumme immer mehr annähern sollten. Der gemeinsame Grenzwert muss dann die gesuchte Fläche F sein.

Definition 7.1 Konvergieren die Folgen der Untersummen $(U_n(f))_{n\in\mathbb{N}}$ und der Obersummen $(O_n(f))_{n\in\mathbb{N}}$ gegen denselben Grenzwert, so bezeichnen wir den gemeinsamen Grenzwert als das **Integral** von f im Intervall [a,b] (oder von a bis b) und schreiben

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} U_n(f) = \lim_{n \to \infty} O_n(f).$$

Die Funktion f heißt dann **integrierbar** (in [a,b]).

Zur Unterscheidung von anderen Integralbegriffen, die in der Mathematik gebräuchlich sind, wird dieses Integral auch **Riemann–Integral**¹ genannt.

Wir wollen später auch die folgende Notation benutzen:

$$\int_{b}^{a} f(x) dx := -\int_{a}^{b} f(x) dx. \tag{7.3}$$

Die Bedingung an die Ober- und Untersummen ist natürlich in der Praxis nicht sehr handlich nachzuprüfen. Daher wollen wir hier ohne Beweis festhalten, dass wir uns beispielsweise bei stetigen oder bei monotonen (wachsend oder fallend) Funktionen keine Sorgen zu machen brauchen.

Satz 7.2 *Ist* $f : [a,b] \to \mathbb{R}$ *stetig oder monoton, so ist* f *integrierbar.*

 $^{^{1}}$ nach Bernhard Riemann, Mathematiker in Göttingen (1826–1866)

7.2 Hauptsatz der Differential- und Integralrechnung

Sei $f:[a,b] \to \mathbb{R}$ stetig. Wir betrachten die Funktion

$$F(t) = \int_{a}^{t} f(x) dx \quad \text{ für } t \in [a, b].$$

Das ist die Fläche, die zwischen den Punkten a und t unter der Kurve von f liegt.

FIGUR. Lässt man t auf t+h wachsen, so vergrößert sich die Fläche unter dem Graphen um etwa $h\cdot f(t)$.

Um wie viel wächst F(t), wenn wir t um eine kleine Zahl h > 0 vergrößern?

Es kommt bei der Fläche ein Stück dazu, das ungefähr gleich dem Rechteck mit Breite h und Höhe f(t) ist. Also ist

$$F(t+h) \approx F(t) + h \cdot f(t)$$
.

Das können wir umformen zu

$$\frac{F(t+h) - F(t)}{h} \approx f(t),\tag{7.4}$$

wobei Gleichheit gelten sollte, falls h gegen 0 strebt. Das heißt, wir erwarten:

$$\lim_{h \downarrow 0} \frac{F(t+h) - F(t)}{h} = f(t). \tag{7.5}$$

Damit haben wir den folgenden Satz hergeleitet (naja: plausibel gemacht).

Satz 7.3 Sei $f:[a,b] \to \mathbb{R}$ stetig und $F(t):=\int_a^t f(x) dx$.

Dann ist F differenzierbar mit der Ableitung F'(t) = f(t).

Definition 7.4 Eine Funktion F heißt **Stammfunktion**von f, falls F differenzierbar ist mit Ableitung F' = f.

Beispiele 7.5 (i) Ist $f(x) = x^2$, so ist $F(x) = \frac{1}{3}x^3$ eine Stammfunktion von f.

 \Diamond

(ii) Ist $f(x) = \sin(x)$, so ist $F(x) = -\cos(x)$ eine Stammfunktion von f.

Bemerkung 7.6 (i) Ist F eine Stammfunktion von f und $c \in \mathbb{R}$, so ist auch c + F eine Stammfunktion von f.

- (ii) Sind F_1 und F_2 Stammfunktionen von f und $G := F_1 F_2$, so ist $G'(x) = F'_1(x) F'_2(x) = f(x) f(x) = 0$ für alle x. Also ist G konstant.
- (iii) Zusammengefasst ist die Stammfunktion von f bis auf eine additive Konstante eindeutig.

Wir können jetzt den zentralen Satz formulieren, der den Zusammenhang zwischen Integration und Differentiation angibt.

Satz 7.7 (Hauptsatz der Differential- und Integralrechnung) Ist $f:[a,b] \to \mathbb{R}$ stetig und F eine Stammfunktion von f, so ist

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

Beweis Nach Satz 7.3 ist auch die Funktion $G: t \mapsto \int_a^t f(x) dx$ eine Stammfunktion von f. Nach Bemerkung 7.6 gibt es ein $c \in \mathbb{R}$ mit F-G=c. Auswertung an der Stelle a ergibt $c=F(a)-G(a)=F(a)-\int_a^a f(x) dx=F(a)$. Auswertung an der Stelle b liefert damit F(a)=c=F(b)-G(b), also

$$\int_a^b f(x) dx = G(b) = F(b) - F(a).$$

Manchmal wird für die auftretende Differenz von Werten der Stammfunktion die folgende Schreibweise verwendet.

Definition 7.8

$$F(x)\Big|_a^b := F(b) - F(a).$$

Mit dieser Schreibweise ist

$$\int_{a}^{b} f(x) \, dx = F(x) \bigg|_{a}^{b}.$$

Beispiele 7.9 (i) Wir wollen $\int_0^{\pi} \sin(x) dx$ bestimmen. Eine Stammfunktion von sin ist $-\cos$, also ist

$$\int_0^{\pi} \sin(x) \, dx = -\cos(x) \Big|_0^{\pi} = -\cos(\pi) - (-\cos(0)) = 1 + 1 = 2.$$

(ii) Wir wollen $\int_0^2 x^2 dx$ bestimmen. Eine Stammfunktion von $f(x) = x^2$ ist $F(x) = \frac{1}{3}x^3$. Also ist

$$\int_0^2 x^2 dx = \frac{1}{3}x^3 \Big|_0^2 = \frac{1}{3} \cdot 8 - \frac{1}{3} \cdot 0 = \frac{8}{3}.$$

(iii) Wir wollen $\int_1^2 \frac{1}{x} dx$ bestimmen. Eine Stammfunktion von $f(x) = \frac{1}{x}$ ist $F(x) = \log(x)$. Also ist

$$\int_{1}^{2} \frac{1}{x} dx = \log(x) \Big|_{1}^{2} = \log(2) - \log(1) = \log(2) \approx 0.693.$$

7.3 Berechnung von Integralen

Die Berechnung von Integralen läuft meist auf das Bestimmen von Stammfunktionen hinaus. Man sucht also eine Funktion F, die abgeleitet die gewünschte Funktion f liefert. Für das Ableiten hatten wir einen ganz komfortablen Kalkül zusammengestellt. Für ein paar Grundfunktionen konnte man die Ableitung aus einer Tabelle entnehmen. Alle daraus zusammengesetzten Funktionen konnte man mit Hilfe von einfachen Regeln systematisch ausrechnen. Für das Auffinden von Stammfunktionen funktioniert dies eben nicht. Während man schon eine Tabelle mit Grundfunktionen aufstellen kann und auch Addition und Multiplikation mit Zahlen keine Probleme bereiten, kann man für Produkte, Quotienten und Verknüpfungen von Funktionen keine allgemein gültigen nützlichen Regeln aufstellen. Hier ist man auf einen guten Instinkt und eventuell eine sehr große Formelsammlung angewiesen.

In diesem Abschnitt stellen wir nun die Rechenregeln bereit, die es zum Glück doch noch gibt.

Ist

$$f(x) = \sum_{k=0}^{n} c_k x^k$$

ein Polynom, so ist

$$F(x) = \sum_{k=0}^{n} \frac{c_k}{k+1} x^{k+1}$$

eine Stammfunktion von f. Zum Nachweis muss man einfach nur F ableiten. Allgemeiner ist für eine konvergente Potenzreihe um den Punkt $a \in \mathbb{R}$

$$f(x) = \sum_{k=0}^{\infty} c_k (x - a)^k$$

die Reihe

$$F(x) = \sum_{k=0}^{\infty} \frac{c_k}{k+1} (x-a)^{k+1}$$
 (7.6)

mit selbem Konvergenzradius eine Stammfunktion und zwar mit F(a) = 0. Auch hier muss man zum Nachweis einfach F ableiten und die Regeln aus Kapitel 5.2 beachten. Für viele andere Funktionen kann man einfach die Tabelle der Ableitung aus Abschnitt 5.1 von rechts nach links lesen. Beispielsweise erhalten wir:

Beispiele 7.10 (i) $f(x) = \exp(x)$, dann ist $F(x) = \exp(x)$ eine Stammfunktion.

- (ii) $f(x) = x^{-2}$, dann ist $F(x) = -x^{-1}$ eine Stammfunktion.
- (iii) $f(x) = \frac{1}{1+x^2}$, dann ist $F(x) = \arctan(x)$ eine Stammfunktion.

(iv)
$$f(x) = \frac{1}{\sqrt{1-x^2}}, x \in (-1,1), \text{ dann ist } F(x) = \arcsin(x) \text{ eine Stammfunktion.}$$

Für Funktionen, die sich als Summe oder Vielfache von Funktionen aus der Tabelle ergeben, kann man leicht Regeln angeben, die sich direkt aus den entsprechenden Regeln für die Differentiation ergeben.

Satz 7.11 (Linearität des Integrals) Seien $f, g : [a, b] \to \mathbb{R}$ integrierbar und $\lambda \in \mathbb{R}$, sowie $c \in (a, b)$. Dann ist

$$\int_{a}^{b} (\lambda f(x)) dx = \lambda \int_{a}^{b} f(x) dx$$
 (i)

$$\int_{a}^{b} (f(x) + g(x)) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$
 (ii)

$$\int_{a}^{b} (f(x) - g(x)) dx = \int_{a}^{b} f(x) dx - \int_{a}^{b} g(x) dx$$
 (iii)

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx.$$
 (iv)

Beweis (Nur für stetiges f und $a \le c \le b$.) Nur Punkt (iv) ist neu. Hierzu bemerken wir, dass nach dem Hauptsatz gilt (mit F eine Stammfunktion von f)

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

$$= (F(c) - F(a)) + (F(b) - F(c))$$

$$= \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx.$$

Beispiele 7.12 (i) Sei $f(x) = 5\sin(x)$. Dann ist $F(x) = -5\cos(x)$ eine Stammfunktion von f.

(ii)
$$\int_{2}^{4} \left(x + \frac{1}{x} \right) dx = \int_{2}^{4} x \, dx + \int_{2}^{4} \frac{1}{x} \, dx$$
$$= \frac{1}{2} x^{2} \Big|_{2}^{4} + \log(x) \Big|_{2}^{4} = 8 - 2 + \log(4) - \log(2) = 6 + \log(2).$$

(iii) Wir wollen die Vorzeichenfunktion sign im Bereich -2 bis 5 integrieren. Das Problem dabei ist natürlich die Unstetigkeitsstelle in der Null. An der Stelle können wir uns aber mit Regel (iv) (aus Satz 7.11) behelfen:

$$\int_{-2}^{5} \operatorname{sign}(x) \, dx = \int_{-2}^{0} \operatorname{sign}(x) \, dx + \int_{0}^{5} \operatorname{sign}(x) \, dx$$
$$= \int_{-2}^{0} (-1) \, dx + \int_{0}^{5} (+1) \, dx$$
$$= -2 + 5 = 3.$$

Allgemeiner kann man sogar zeigen, dass die Betragsfunktion $x\mapsto |x|$ eine Stammfunktion von sign ist. \diamondsuit

Die Produktregel und die Kettenregel (siehe Abschnitt 5.2) übertragen sich leider nicht so einfach von der Differentiation auf die Integration. Man kann nur Folgendes angeben.

Satz 7.13 (Substitutionsregel) Es seien $a,b,c,d \in \mathbb{R}$ mit a < b und c < d. Ist $g : [a,b] \rightarrow [c,d]$ stetig differenzierbar und $f : [c,d] \rightarrow \mathbb{R}$ stetig, so gilt

$$\int_{a}^{b} f(g(x))g'(x) \, dx = \int_{g(a)}^{g(b)} f(y) \, dy.$$

Mit anderen Worten: Ist F eine Stammfunktion von f, so ist $x \mapsto F(g(x))$ eine Stammfunktion von $x \mapsto f(g(x))g'(x)$.

Beweis Zum Beweis sei F eine Stammfunktion von f. Wir setzen H(x) = F(g(x)). Dann ist nach der Kettenregel für Ableitungen

$$H'(x) = g'(x)F'(g(x)) = g'(x) \cdot f(g(x)).$$

Dabei haben wir in der zweiten Gleichung ausgenutzt, dass F' = f ist. Also ist H eine Stammfunktion von $x \mapsto g'(x) \cdot f(g(x))$. Nach dem Hauptsatz der Differential- und Integralrechnung ist also

$$\int_{a}^{b} f(g(x))g'(x) dx = H(x) \Big|_{a}^{b} = F(g(b)) - F(g(a)) = \int_{g(a)}^{g(b)} f(y) dy.$$

Bemerkung 7.14 Nimmt man die Schreibweise $\frac{dg(x)}{dx} = g'(x)$ als Bruch ernst, so kann man ihn umformen zu dg(x) = g'(x) dx. Setzen wir jetzt noch y = g(x), so sagen wir, dass wir x durch die neue Integrationsvariable y substituiert haben mit dy = g'(x)dx.

Beispiele 7.15 (i) Mit $f(x) = \sin(x)$ und $y = g(x) = x^2$ ist

$$\int_0^{\pi} x \sin(x^2) dx = \frac{1}{2} \int_0^{\pi} 2x \sin(x^2) dx = \frac{1}{2} \int_0^{\pi^2} \sin(y) dy$$
$$= -\frac{1}{2} \cos(y) \Big|_0^{\pi^2} = \frac{1}{2} (1 - \cos(\pi^2)).$$

(ii) Mit $f(x) = x^2$ und $y = g(x) = \tan(x)$ (sowie: $g'(x) = 1 + (\tan(x))^2$) ist

$$\int_0^{\pi/4} (\tan(x))^2 + (\tan(x))^4 dx = \int_0^{\pi/4} (1 + (\tan(x))^2) \cdot (\tan(x))^2 dx$$
$$= \int_{\tan(0)}^{\tan(\pi/4)} y^2 dy$$
$$= \frac{1}{3} y^3 \Big|_{\tan(0)}^{\tan(\pi/4)} = \frac{1}{3} \tan(\pi/4)^3 = \frac{1}{3}.$$

(iii) Sei $c \in \mathbb{R}$. Mit g(x) = x + c ist

$$\int_{a}^{b} f(x+c) \, dx = \int_{a+c}^{b+c} f(y) \, dy.$$

(iv) Sei $c \neq 0$. Mit g(x) = cx ist

$$\int_a^b f(cx) dx = \frac{1}{c} \int_{ac}^{bc} f(y) dy.$$

(v) Wir wollen eine Stammfunktion von tan bestimmen. Dazu setzen wir $f(x) = -\frac{1}{x}$ und $g(x) = \cos(x)$. Dann ist $g'(x) = -\sin(x)$ und $F(x) = -\log(x)$ ist eine Stammfunktion von f. Nach der Substitutionsregel ist von

$$\tan(x) = \frac{\sin(x)}{\cos(x)} = g'(x)f(g(x))$$

eine Stammfunktion

$$x \mapsto F(g(x)) = -\log(\cos(x)).$$

Mit der Substitutionsregel haben wir die Kettenregel rückwärts angewandt. Als nächstes wollen wir die Produktregel rückwärts anwenden. Die resultierende Integrationsregel nennt man dann partielle Integration.

Satz 7.16 (Partielle Integration) Seien f und g stetige Abbildungen $[a,b] \to \mathbb{R}$ mit stetigen Ableitungen f' und g'. Dann gilt

$$\int_{a}^{b} f(x)g'(x) \, dx = f(x)g(x) \Big|_{a}^{b} - \int_{a}^{b} f'(x)g(x) \, dx.$$

Mit anderen Worten: $x \mapsto H(x) := f(x)g(x) - \int_a^x f'(t)g(t) dt$ ist eine Stammfunktion von $x \mapsto h(x) := f(x)g'(x)$.

Beweis Es reicht zu zeigen, dass H'(x) = h(x) ist. Nach der Produktregel für Ableitungen (Satz 5.2) ist aber

$$\frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x).$$

Nach dem Hauptsatz der Differential- und Integralrechnung ist andererseits

$$\frac{d}{dx} \int_{a}^{x} f'(t)g(t) dt = f'(x)g(x).$$

Also ist (nach Satz 7.3)

$$H'(x) = f'(x)q(x) + f(x)q'(x) - f'(x)q(x) = f(x)q'(x) = h(x).$$

Natürlich ist partielle Integration nur dann nützlich, wenn das Integral, das man auf der rechten Seite abziehen muss, leichter zu berechnen ist als das Integral, für das man sich ursprünglich interessiert hat. Das ist manchmal, aber durchaus nicht immer, der Fall. Wir wollen hier ein paar Beispiele angeben, bei denen es funktioniert.

Beispiele 7.17 (i) Wir wollen $\int_0^y x \sin(x) dx$ bestimmen. Dazu setzen wir f(x) = x und $g(x) = -\cos(x)$. Also $g'(x) = \sin(x)$, f'(x) = 1 und $f'(x)g(x) = -\cos(x)$. Mit Hilfe

der partiellen Integration bekommen wir

$$\int_0^y x \sin(x) \, dx = -x \cos(x) \Big|_0^y - \int_0^y (-\cos(x)) \, dx$$
$$= -y \cos(y) + \sin(x) \Big|_0^y = \sin(y) - y \cos(y).$$

(ii) Wir wollen $\int_1^y \log(x) dx$ berechnen. Dazu setzen wir $f(x) = \log(x)$ und g(x) = x. Dann ist $f'(x) = \frac{1}{x}$ und g'(x) = 1. Also ist mit partieller Integration

$$\int_{1}^{y} \log(x) \, dx = x \log(x) \bigg|_{1}^{y} - \int_{1}^{y} \frac{1}{x} \cdot x \, dx = y \log(y) - y + 1.$$

Also ist $x \mapsto x(\log(x) - 1)$ eine Stammfunktion von log.

(iii) Wir wollen $\int_0^\pi x^2 \cos(x) dx$ bestimmen. Dazu setzen wir $f(x) = x^2$ und $g(x) = \sin(x)$. Damit ist f'(x) = 2x und $g'(x) = \cos(x)$, also

$$\int_0^\pi x^2 \cos(x) \, dx = x^2 \sin(x) \Big|_0^\pi - \int_0^\pi 2x \sin(x) \, dx = -\int_0^\pi 2x \sin(x) \, dx,$$

weil $\sin(\pi) = \sin(0) = 0$.

Um das verbleibende Integral auszurechnen, wenden wir Beispiel (i) an:

$$\int_0^{\pi} 2x \sin(x) \, dx = 2(\sin(\pi) - \pi \cos(\pi)) = 2\pi.$$

Insgesamt haben wir also

$$\int_0^\pi x^2 \cos(x) \, dx = -2\pi.$$

(iv) (Fläche des Einheitskreises) Als letzte und schwierigste Anwendung wollen nun noch die Fläche eines Kreises mit Radius 1 ausrechnen. Hierzu reicht es sicher aus, die Fläche des halben Kreises auszurechnen, der oberhalb der x-Achse liegt und im Ursprung zentriert ist. Nach dem Satz von Pythagoras ist für jeden Punkt (x,y) auf dem Kreisrand $x^2 + y^2 = 1$, also $y = \sqrt{1-x^2}$. Wir müssen also das folgende Integral ausrechnen:

$$I := \int_{-1}^{1} \sqrt{1 - y^2} \, dy.$$

Wir gehen dazu in zwei Schritten vor.

Schritt 1. (Verwendung der Substitutionsregel)

Man substituiere $y = g(x) := \sin(x)$ (also $x = \arcsin(y) = g^{-1}(y)$). Dann muss man dy ersetzen durch $g'(x) dx = \cos(x) dx$ und die Intervallgrenzen -1, 1 durch $g^{-1}(-1), g^{-1}(1)$. Damit erhält man

$$I = \int_{-\pi/2}^{\pi/2} \sqrt{1 - (\sin(x))^2} \cdot \cos(x) \, dx = \int_{-\pi/2}^{\pi/2} (\cos(x))^2 \, dx.$$

 \Diamond

Schritt 2. (partielle Integration)

Wir wenden partielle Integration an mit $f(x) = \cos(x)$ und $g'(x) = \cos(x)$, also $f'(x) = -\sin(x)$ und $g(x) = \sin(x)$:

$$I = \int_{-\pi/2}^{\pi/2} \cos(x) \cdot \cos(x) dx$$

$$= \cos(x) \cdot \sin(x) \Big|_{-\pi/2}^{\pi/2} + \int_{-\pi/2}^{\pi/2} (\sin(x))^2 dx$$

$$= 0 + \int_{-\pi/2}^{\pi/2} (1 - (\cos(x))^2) dx = \pi - I.$$

Damit ist $I = \pi/2$.

7.4 Uneigentliche Integrale

Wir betrachten die Funktion $f:(0,1]\to\mathbb{R},\ x\mapsto\frac{1}{\sqrt{x}}$. Wir würden gerne den Flächeninhalt unter dem Graphen von f im Intervall (0,1] als Integral $\int_0^1 f(x)\,dx$ angeben. Im Rahmen dessen, wie das Integral in Abschnitt 7.1 eingeführt wurde, funktioniert dies aus zwei Gründen nicht:

- (1) Wir hatten bisher für die Integration vorausgesetzt, dass f im gesamten abgeschlossenen Intervall [0,1] definiert ist.
- (2) Schlimmer noch: $\lim_{x\downarrow 0} f(x) = \infty$. Deshalb ist jede Obersumme $O_n(f) = \infty$.

Da wir aber zu f die Stammfunktion $F(x)=2\sqrt{x}$ angeben können, lassen wir uns durch die obigen Bedenken nicht abschrecken, sondern suchen nach einem etwas allgemeineren Integralbegriff. In diesem Fall bietet sich Folgendes an: Für jedes h>0 ist

$$\int_{h}^{1} f(x) \, dx = F(1) - F(h) = 2(1 - \sqrt{h}).$$

Die rechte Seite ist für alle $h \geq 0$ definiert und stetig in h. Also definieren wir

$$\int_0^1 f(x) \, dx = \lim_{h \downarrow 0} \int_h^1 f(x) \, dx = F(1) - F(0) = 2.$$

Wir nennen $\int_0^1 f(x) dx$ ein uneigentliches Integral – eine der schönsten Wortschöpfungen in der Mathematik! Ähnlich wollen wir verfahren, um Integrationsgrenzen ins Unendliche auszudehnen.

Definition 7.18 (Uneigentliches Integral) (i) Seien $a \in \mathbb{R}$ und b > a oder $b = \infty$ sowie $f: [a,b) \to \mathbb{R}$ eine reelle Funktion. Für jedes $R \in [a,b)$ sei f auf [a,R] integrierbar. Wir definieren das uneigentliche Integral

$$\int_{a}^{b} f(x) dx = \lim_{R \uparrow b} \int_{a}^{R} f(x) dx,$$

falls der Limes existiert (wobei wir $-\infty$ und $+\infty$ als Grenzwerte zulassen wollen). In diesem Fall heißt das Integral $\int_a^b f(x) dx$ auch konvergent (bzw. uneigentlich konvergent, falls der Grenzwert nicht endlich ist). Andernfalls heißt $\int_a^b f(x) dx$ divergent.

(ii) Analog gehen wir vor, falls $b \in \mathbb{R}$ und a < b oder $a = -\infty$ sowie $f : (a, b] \to \mathbb{R}$ ist. Hier ist

$$\int_{a}^{b} f(x) dx = \lim_{R \downarrow a} \int_{R}^{b} f(x) dx.$$

(iii) Seien a < b, wobei wir $a = -\infty$ und/oder $b = \infty$ zulassen, und $f : (a,b) \to \mathbb{R}$. Wir wählen ein $c \in (a,b)$ und setzen (vergleiche Satz 7.11(iv))

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx,$$

falls wenigstens einer der Summanden endlich ist, oder beide das gleiche Vorzeichen haben.

Bemerkung 7.19 In (iii) hängt der Wert der Summe nicht von der Wahl von c ab. Im übrigen verwenden wir die Konvention $x+\infty=\infty,\ x-\infty=-\infty,$ falls $x\in\mathbb{R}$ und $\infty+\infty=\infty,\ -\infty-\infty=-\infty$. Der Ausdruck $\infty-\infty$ kann nicht sinnvoll definiert werden.

Beispiele 7.20 (i) a=0, b=1, $f:(0,1]\to\mathbb{R}$, $f(x)=\log(x)$. Aus Beispiel 7.17(ii) wissen wir, dass $F(x)=x(\log(x)-1)$ eine Stammfunktion von f ist. Die de l'Hospital'sche Regel liefert $\lim_{x\to 0} F(x)=0$ Also konvergiert das uneigentliche Integral

$$\int_0^1 \log(x) \, dx = \lim_{R \downarrow 0} \int_R^1 \log(x) \, dx = F(1) - \lim_{R \downarrow 0} F(R) = F(1) = -1.$$

(ii) $a=0,\,b=\infty,\,f:[0,\infty)\to\mathbb{R},\,f(x)=\exp(-x).$ Offenbar ist

$$\int_0^R e^{-x} dx = -e^{-x} \Big|_0^R = 1 - e^{-R}.$$

Also konvergiert das uneigentliche Integral

$$\int_0^\infty e^{-x} \, dx = \lim_{R \to \infty} 1 - e^{-R} = 1.$$

(iii) $a=-\infty,\ b=\infty,\ f:\mathbb{R}\to\mathbb{R},\ x\mapsto\frac{1}{K+x^2},$ wobei K>0 eine Konstante ist. Dann ist $F(x)=\frac{1}{\sqrt{K}}\arctan(\frac{x}{\sqrt{K}})$ eine Stammfunktion, denn

$$F'(x) = \frac{1}{\sqrt{K}} \cdot \frac{1}{\sqrt{K}} \arctan'\left(\frac{x}{\sqrt{K}}\right) = \frac{1}{K} \cdot \frac{1}{1 + x^2/K} = \frac{1}{K + x^2}.$$

Wegen $\lim_{R\to\infty}\arctan(R)=-\lim_{R\to-\infty}\arctan(R)=\frac{\pi}{2}$ ist für $c\in\mathbb{R}$

$$\int_{c}^{\infty} f(x) dx = \lim_{R \to \infty} \frac{1}{\sqrt{K}} \arctan\left(\frac{x}{\sqrt{K}}\right) \Big|_{c}^{R} = \frac{1}{\sqrt{K}} \cdot \frac{\pi}{2} - \frac{1}{\sqrt{K}} \arctan\left(\frac{c}{\sqrt{K}}\right).$$

und

$$\int_{-\infty}^{c} f(x) \, dx = \lim_{R \to -\infty} \frac{1}{\sqrt{K}} \arctan\left(\frac{x}{\sqrt{K}}\right) \Big|_{R}^{c} = \frac{1}{\sqrt{K}} \arctan\left(\frac{c}{\sqrt{K}}\right) + \frac{1}{\sqrt{K}} \cdot \frac{\pi}{2}.$$

Also existiert das uneigentliche Integral

$$\int_{-\infty}^{\infty} \frac{1}{K + x^2} \, dx = \frac{\pi}{\sqrt{K}}.$$

(iv) $a=1, b=\infty, f:[1,\infty)\to\mathbb{R}, f(x)=\frac{1}{x}$. Dann ist $F(x)=\log(x)$ eine Stammfunktion. Wegen $\lim_{x\to\infty}F(x)=\infty$ konvergiert das uneigentliche Integral nur uneigentlich

$$\int_{1}^{\infty} \frac{1}{x} dx = \lim_{R \to \infty} \log(x) \Big|_{1}^{R} = \lim_{R \to \infty} \log(R) = \infty.$$

(v) $a = 0, b = \infty, f : [0, \infty) \to \mathbb{R}, f(x) = \sin(x)$. Dann ist $F(x) = -\cos(x)$ eine Stammfunktion. Jedoch existiert der Grenzwert von F(x) für $x \to \infty$ nicht. Also existiert auch das uneigentliche Integral $\int_0^\infty \sin(x) dx$ nicht.

An diesem Beispiel sieht man auch, dass für die Existenz von $\int_{-\infty}^{\infty} f(x) dx$ nicht ausreichend ist, dass $\lim_{R\to\infty} \int_{-R}^{R} f(x) dx$ existiert. In dem hier betrachteten Fall ist nämlich

$$\int_{-R}^{R} \sin(x) \, dx = -\cos(x) \Big|_{-R}^{R} = -\cos(R) + \cos(-R) = 0.$$

Also ist auch

$$\lim_{R \to \infty} \int_{-R}^{R} \sin(x) \, dx = 0.$$

Aber $\int_{-\infty}^{\infty} \sin(x) dx$ existiert nicht, wie wir gesehen haben.

Oft ist man in der Situation, dass man den Wert eines bestimmten (uneigentlichen) Integrals ausrechnen möchte, obwohl man eine Stammfunktion nicht, oder nur schwer, ausrechnen kann. Oft ist es so verzwickt, diese Integrale auszurechnen, dass man auf Tabellen angewiesen ist, in denen solche Integrale aufgelistet sind.

Beispiel 7.21 Wir wollen $I_n := \int_0^\infty x^n e^{-x} dx$ ausrechnen (für $n \in \mathbb{N}$). Im Prinzip könnte man schon eine Stammfunktion angeben, aber es geht hier einfacher. Mit partieller Integration $(f(x) = x^n, g(x) = -e^{-x})$ erhalten wir

$$\int_0^R x^n e^{-x} dx = -x^n e^{-x} \Big|_0^R + \int_0^R nx^{n-1} e^{-x} dx.$$

Wegen $\lim_{R\to\infty}R^ne^{-R}=0$ verschwindet der erste Summand, wenn R nach ∞ geht, also ist

$$\int_0^\infty x^n e^{-x} \, dx = \int_0^\infty n x^{n-1} e^{-x} \, dx.$$

Also ist $I_n = nI_{n-1}$. Wir haben aber I_0 schon ausgerechnet:

$$I_0 = \int_0^\infty e^{-x} dx = 1.$$

Also ist $I_1=1\cdot I_0=1,\ I_2=2\cdot I_1=2\cdot 1=2,\ I_3=3\cdot I_2=3\cdot 2\cdot 1=3!=6,\ldots,I_n=n(n-1)(n-2)\cdots 2\cdot 1=n!.$ Insgesamt haben wir also

$$\int_0^\infty x^n e^{-x} \, dx = n! \tag{7.7}$$

 \Diamond

Beispiel 7.22 Für die Gauß'sche Fehlerfunktion $f(x)=e^{-x^2}$ kann man keine Stammfunktion explizit angeben. Aber man kann (wenn auch mit viel Mühe) ausrechnen, dass

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}.$$
 (7.8)

 \Diamond

Beispiel 7.23 Man kann berechnen, dass

$$\int_0^\infty \frac{\sin(x)}{x} \, dx = \frac{\pi}{2}.$$

Kapitel 8

Ergänzungen zur Differentialrechnung

8.1 Partielle Ableitungen und Gradient

Wir betrachten eine Funktion $f: \mathbb{R}^2 \to \mathbb{R}$, die gegeben ist durch

$$f(x,y) = 2x^2 \sin(y) + 3y^2$$
.

Für festes y können wir g(x) = f(x, y) nach x ableiten und erhalten

$$\frac{d}{dx}f(x,y) := g'(x) = 4x\sin(x).$$

Andererseits können wir für festes x die Funktion h(y) = f(x, y) nach y ableiten und bekommen

$$\frac{d}{dy}f(x,y) := h'(y) = 2x^2 \cos(y) + 6y.$$

Man nennt $\frac{d}{dx}f(x,y)$ und $\frac{d}{dy}f(x,y)$ die partiellen Ableitungen von f nach x und y. Übliche Schreibweisen sind:

$$f_1(x,y) = f_x(x,y) = D_1 f(x,y) = \frac{\partial}{\partial x} f(x,y) = \frac{d}{dx} f(x,y)$$

und

$$f_2(x,y) = f_y(x,y) = D_2 f(x,y) = \frac{\partial}{\partial y} f(x,y) = \frac{d}{dy} f(x,y).$$

Dabei deutet die 1 in D_1 an, dass nach der ersten Koordinate abgeleitet wird (also nach x), die 2 in D_2 , dass nach der zweiten abgeleitet wird (nach y).

Was wir hier für eine Funktion von zwei Variablen gemacht haben, geht natürlich auch für Funktionen von mehreren Veränderlichen.

Definition 8.1 Für hinreichend glatte Funktion $f : \mathbb{R}^n \to \mathbb{R}$ und jedes k = 1, ..., n definieren wir die partielle Ableitung nach der k-ten Koordinate als

$$f_k(x_1,\ldots,x_n):=D_k f(x_1,\ldots,x_n):=\frac{\partial}{\partial x_k} f(x_1,\ldots,x_n):=\frac{d}{dx_k} f(x_1,\ldots,x_n).$$

 \Diamond

Wir können die partiellen Ableitungen in einen Vektor mit n Einträgen zusammen fassen

$$\nabla f(x_1, \dots, x_n) := \begin{pmatrix} D_1 f(x_1, \dots, x_n) \\ D_2 f(x_1, \dots, x_n) \\ \vdots \\ D_2 f(x_1, \dots, x_n) \end{pmatrix}.$$

Der Vektor $\nabla f(x_1, \ldots, x_n)$ heißt **Gradient** von f an der Stelle $\vec{x} = (x_1, \ldots, x_n)$.

Der Gradient gibt die Richtung des stärksten Wachstums der Funktion f an, sowie deren Stärke. Er steht immer senkrecht auf den Niveaulinien und ist größer, je enger die Niveaulinien beieinander liegen. Von Wanderkarten her ist dies bekannt: Der Steilste Anstieg ist senkrecht zu den Höhenlinien und umso steiler, je enger die Linien zusammen liegen.

Ist f hinreichend glatt und hat f an der Stelle \vec{x} eine Minimalstelle oder Maximalstelle, so ist notwendigerweise $\nabla f(\vec{x}) = 0$. Ein Punkt \vec{x} mit $\nabla f(\vec{x}) = 0$ heißt daher **kritische Stelle**. Ähnlich wie bei Funktionen, die nur von einer Variablen abhängen, muss an einer kritischen Stelle nicht notwendigerweise auch ein lokale Extremalstelle vorliegen. Allerdings kann man in vielen Fällen durch Untersuchung der zweiten Ableitungen ein lokales Minimum oder ein lokales Maximum detektieren.

Definition 8.2 Wir nennen für k, l = 1, ..., n

$$D_k D_l f(x_1, \dots, x_n) := \frac{d}{dx_k} \left(\frac{d}{dx_l} f(x_1, \dots, x_n) \right)$$

die zweite partielle Ableitung von f nach den Koordinaten l und k.

Satz 8.3 Ist f hinreichend glatt¹, so kann man die Reihenfolge der partiellen Ableitungen vertauschen:

$$D_k D_l f(x_1, \ldots, x_n) = D_l D_k f(x_1, \ldots, x_n)$$
 für alle $k, l = 1, \ldots, n$.

Beispiel 8.4 Wir betrachten das Beispiel vom Eingang dieses Abschnitts:

$$f(x_1, x_2) = 2x_1^2 \sin(x_2) + 3x_2^2.$$

Dann ist

$$D_1 f(x_1, x_2) = 4x_1 \sin(x_2)$$

$$D_2 f(x_1, x_2) = 2x_1^2 \cos(x_2) + 6x_2$$

$$D_1 D_1 f(x_1, x_2) = 4 \sin(x_2)$$

$$D_2 D_1 f(x_1, x_2) = D_2 (4x_1 \sin(x_2)) = 4x_1 \cos(x_2)$$

$$D_1 D_2 f(x_1, x_2) = D_1 (2x_1^2 \cos(x_2) + 6x_2) = 4x_1 \cos(x_2)$$

$$D_2 D_2 f(x_1, x_2) = -2x_1^2 \sin(x_2) + 6.$$

Tatsächlich gilt also $D_1D_2f = D_2D_1f$.

Wir betrachten nun speziell die Situation von zwei Veränderlichen.

¹es reicht, dass die zweiten partiellen Ableitungen $D_k D_l f(x_1, \dots, x_n)$ stetige Funktionen von $(x_1, \dots, x_n) \in \mathbb{R}^n$ sind

Satz 8.5 Sei $f: \mathbb{R}^2 \to \mathbb{R}$ glatt und $(x, y) \in \mathbb{R}^2$ mit $\nabla f(x, y) = 0$.

(i) Gelten die drei Bedingungen

$$- D_1 D_1 f(x, y) > 0$$

$$- D_2 D_2 f(x, y) > 0$$

$$- D_1 D_1 f(x, y) D_2 D_2 f(x, y) - (D_1 D_2 f(x, y))^2 > 0,$$

so hat f in (x, y) eine isolierte lokale Minimalstelle.

(ii) Gelten die drei Bedingungen

$$-D_1D_1 f(x,y) < 0$$

$$-D_2D_2 f(x,y) < 0$$

$$-D_1D_1f(x,y) D_2D_2f(x,y) - (D_1D_2f(x,y))^2 > 0,$$
so hat f in (x,y) eine isolierte lokale Maximalstelle.

Wie bei Funktionen einer Veränderlichen, muss also die zweite Ableitung positiv sein für ein Minimum und negativ für ein Maximum. Dies erklärt jeweils die ersten beiden Bedingungen. Die dritte Bedingung ergibt sich, weil es nicht ausreicht, nur entlang der x-Achse und der y-Achse positive Krümmung für ein Minimum zu fordern, sondern entlang jeder Richtung muss die Krümmung positiv sein. Die fehlende Bedingung ist gerade die jeweils dritte Bedingung. (Dies genau einzusehen, ist allerdings etwas kniffliger.) Ein ähnliche Argumentation kann man auch für drei oder auch mehr Veränderliche führen. Hier werden die Bedingungen jedoch immer unübersichtlicher (für drei Variable sind es schon sieben Bedingungen), deshalb lassen wir das an dieser Stelle weg.

Beispiel 8.6 Betrachte die Abbildung $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x_1, x_2) = \exp(-(x_1^2 + x_2^2))$. Wir bilden die partiellen Ableitungen

$$D_1 f(x_1, x_2) = -2x_1 \exp\left(-(x_1^2 + x_2^2)\right)$$

$$D_2 f(x_1, x_2) = -2x_2 \exp\left(-(x_1^2 + x_2^2)\right)$$

$$D_1 D_1 f(x_1, x_2) = (-2 + 4x_1^2) \exp\left(-(x_1^2 + x_2^2)\right)$$

$$D_2 D_1 f(x_1, x_2) = -4x_1 x_2 \exp\left(-(x_1^2 + x_2^2)\right)$$

$$D_2 D_2 f(x_1, x_2) = (-2 + 4x_2^2) \exp\left(-(x_1^2 + x_2^2)\right)$$

Wir suchen zunächst nach kritischen Stellen und müssen daher die Gleichung

$$\nabla f(x_1, x_2) = 0$$

nach x_1 und x_2 auflösen. Es folgt, dass die einzige kritische Stelle bei $(x_1, x_2) = (0, 0)$ liegt. Nun untersuchen wir die zweiten Ableitungen:

$$D_1D_1f(0,0) = -2 < 0,$$
 $D_2D_2f(0,0) = -2 < 0.$

Schließlich ist

$$D_1 D_1 f(0,0) D_2 D_2 f(0,0) - (D_1 D_2 f(0,0))^2 = (-2)(-2) - 0 = 4 > 0.$$

Es sind also alle Bedingungen aus Satz 8.5(ii) erfüllt, daher hat f in (0,0) eine isolierte lokale Maximalstelle.

Tatsächlich ist es nicht schwer zu sehen, dass dies sogar eine globale Maximalstelle ist. ♦

8.2 Differentialgleichungen erster Ordnung

Wir betrachten eine Situation, bei der wir in einem wissenschaftlichen Experiment einen Parameter x frei einstellen können (bzw. wo x die Zeit ist) und y = y(x) ist eine Messgröße, die von x abhängt. Die Naturwissenschaft formuliert als Naturgesetz einen Zusammenhang zwischen x und y(x). Der Zusammenhang kann allerdings derart formuliert sein, dass nicht unmittelbar klar wird, wie man y(x) bei gegebenem x auch wirklich berechnet. Die Aufgabe der Mathematik ist es, Formeln für die Abbildungsvorschrift $x \mapsto y(x)$ zu finden.

Beispiel 8.7 (Reaktion zweiter Ordnung) Wir betrachten die chemische Reaktion

$$2NO_2 \longrightarrow 2NO + O_2$$
.

Wir interessieren uns hier für die Reaktionskinetik. Mit x bezeichnen wir die verstrichene Zeit, mit y(x) die Konzentration von Stickstoffdioxid zur Zeit x. Aus elementaren chemischen Überlegungen heraus wird ein Gesetz formuliert, dass der Stoffumsatz pro Zeiteinheit proportional zu $y^2(x)$ sein muss. Das entsprechende Naturgesetz lautet also

$$y'(x) = \frac{d}{dx}y(x) = -ky^{2}(x).$$
 (8.1)

Hierbei ist $k \ge 0$ die Reaktionskonstante. Wir nehmen an, dass die Messung zur Zeit x = 0 beginnt und die Anfangskonzentration $y(0) = y_0 \ge 0$ ist.

Wir werden später sehen, wie man diese Gleichung systematisch so löst, dass man die Zuordnungsvorschrift $x \mapsto y(x)$ erhält. An dieser Stelle geben wir die Lösung nur an:

$$y(x) = y_0 \frac{1}{1 + kxy_0}. (8.2)$$

Hat man die Formel für y erst einmal an der Hand, so kann man leicht prüfen, dass y die Gleichung (8.2) löst. Probe:

$$y'(x) = y_0 \frac{-ky_0}{(1+kxy_0)^2} = -ky^2(x)$$
 $\sqrt{.}$

Der schwierige Teil besteht stets darin, eine Lösung zu raten oder sich systematisch zu verschaffen. Das Nachprüfen ist stets einfach. In diesem Sinne haben wir eine ähnliche Situation wie bei der Integration: Auch dort war es schwierig, eine Stammfunktion zu raten. Das Nachprüfen, ob eine Funktion tatsächlich eine Stammfunktion ist, ist stets einfach.

Eine Differentialgleichung (DGL) gibt einen Zusammenhang zwischen einer (gesuchten) Funktion y und ihren Ableitungen an. Taucht nur die erste Ableitung y' auf, so sagen wir, dass die Differentialgleichung von erster Ordnung ist. Taucht auch y'' so heißt die DGL von zweiter Ordnung usw. Wir betrachten im Rest dieses Abschnitts eine Differentialgleichung erster Ordnung

$$y'(x) = F(x, y(x)).$$
 (8.3)

Die Abbildungsvorschriften $x \mapsto y(x)$ sowie $x \mapsto y'(x)$ kennen wir nicht. Die Abbildung $(x,y) \mapsto F(x,y)$ ist vorgegeben. Im Allgemeinen kann man noch einen Startwert frei wählen

$$y(x_0) = y_0. (8.4)$$

Definition 8.8 (Lösung einer DGL) Eine differenzierbare Funktion y, die (8.3) erfüllt, heißt Lösung der DGL (8.3). Gilt zusätzlich noch (8.4), so heißt y eine Lösung des Anfangswertproblems (AWP) [(8.3), (8.4)].

Zunächst wollen wir zunächst eine geometrische Interpretation der DGL angeben. Danach behandeln wir die Frage, ob es stets eine Lösung der DGL gibt, und wenn ja, ob diese eindeutig ist, oder ob es eventuell mehrere Lösungen (mit selben Anfangswerten) geben kann. Danach wenden wir uns einer konkreten Methoden zu, mit ein gewisser Typ von Differentialgleichungen erster Ordnung gelöst werden kann.

Geometrische Interpretation

Zu jedem Wert der unabhängigen Variablen x und der abhängigen Variablen y können wir die Ableitung $\frac{dy}{dx} = F(x,y)$ einer Lösungskurve ausrechnen. Wir tragen in einem Diagramm Pfeile auf, die in (x,y) fußen und die Steigung F(x,y) haben. Die Lösungen der DGL sind dann die Integralkurven des Richtungsfeldes, d.h. sie haben in jedem Punkt (x,y) die vorgegebene Richtung als Tangente.

FIGUR. Richtungsfeld der DGL $y'(x) = y - y^2(x) + \frac{1}{3}\cos(x)$ mit Lösungskurven zu den Anfangsbedingungen $(x_0, y_0) = (2, 1.5), (2, 1.08), (2, 1.05), (2, 1.01), (2, 0.8)$

Lösbarkeit und Eindeutigkeit

Um die Lösbarkeit der DGL sowie die Eindeutigkeit der Lösung zu garantieren, braucht man gewisse Regularitätsannahmen an die Funktion F.

Satz 8.9 (Existenz und Eindeutigkeit) Sei $(x,y) \mapsto F(x,y)$ stetig und differenzierbar in den Variablen x und y und seien die partiellen Ableitungen $\frac{d}{dx}F(x,y)$ und $\frac{d}{dy}F(x,y)$ stetig in x und y.

Dann existiert zu (x_0, y_0) genau eine Lösung des Anfangswertproblems

$$y' = F(x, y),$$
 $y(x_0) = y_0.$

Der Satz kann in diesem Rahmen nicht bewiesen werden.

Beispiel 8.10 Sei F(x,y) = -2xy. Dann ist $\frac{d}{dx}F(x,y) = -2y$ und $\frac{d}{dy}F(x,y) = -2x$. Also sind die partiellen Ableitungen stetig und damit die Voraussetzungen des Satzes erfüllt. Wir haben damit zwar noch keine Lösung an der Hand, aber wir wissen, dass es eine gibt. Außerdem wissen wir, wenn wir eine Lösung geraten haben, dass es die einzige Lösung ist. In diesem Fall müssen wir also nicht weiter suchen.

In diesem Beispiel kann man eine Lösung angeben (wir werden später noch sehen, wie man darauf kommt): Für $x_0 = 0$ und y(0) = 1 ist $y(x) = e^{-x^2}$ eine Lösung des AWP (Nachrechnen!). Der Satz sagt uns nun, dass dieses y die einzige Lösung ist.

8.2.1 DGL 1. Ordnung mit getrennten Variablen

Wir nehmen jetzt an, dass F die besondere Gestalt hat:

$$F(x,y) = -\frac{g(x)}{h(y)} \tag{8.5}$$

für gewisse stetige Funktionen g und h. Wir sagen dann, dass die Variablen x und y getrennt sind, denn wir können, zumindest formal, schreiben

$$h(y)dy = -g(x)dx.$$

Die Strategie ist nun, beide Seiten zu integrieren und dann nach y aufzulösen. Wir setzen

$$H(y) = \int_{y_0}^{y} h(t) dt, \qquad G(x) = \int_{x_0}^{x} g(t) dt.$$

Dann ist (nach der Kettenregel)

$$\frac{d}{dx}H(y(x)) = y'(x)H'(y(x)).$$

Nach dem Hauptsatz der Differential- und Integralrechnung ist dies gleich bedeutend mit

$$\frac{d}{dx}H(y(x)) = y'(x)h(y(x)).$$

Etwas einfacher erhält man

$$\frac{d}{dx}G(x) = g(x).$$

Addieren wir die beiden Gleichungen, so bekommen wir

$$\frac{d}{dx}\Big(H(y(x)) + G(x)\Big) = y'(x)h(y(x)) + g(x) = 0,$$

wobei wir in der zweiten Gleichung die DGL eingesetzt haben. Eine Funktion mit verschwindender Ableitung ist konstant, also gilt

$$H(y(x)) + G(x) = H(y(x_0)) + G(x_0) = 0.$$
(8.6)

Um das AWP zu lösen, müssen wir jetzt (8.6) nach y auflösen.

Beispiel 8.11 Wir betrachten die DGL

$$y'(x) = -\frac{x-a}{y-b},$$

wobei a und b reelle Zahlen sind. Dann ist g(x) = x - a und h(y) = y - b. Wir erhalten

$$H(y) = \int_{y_0}^{y} (t - b) dt = \frac{1}{2} (y - b)^2 - \frac{1}{2} (y_0 - b)^2,$$

$$G(x) = \int_{x_0}^{x} (t - a) dt = \frac{1}{2} (x - a)^2 - \frac{1}{2} (x_0 - a)^2.$$

Es folgt, dass

$$(x-a)^2 + (y(x)-b)^2 = (x_0-a)^2 + (y_0-b)^2 =: R^2.$$

Auflösen nach y ergibt

$$y(x) = b \pm \sqrt{R^2 - (x - a)^2}, \qquad x \in (a - |R|, a + |R|),$$

wobei das Vorzeichen, das Vorzeichen von $y_0 - b$ ist. Die Lösungskurve ist also ein Halbkreis um den Punkt (a, b) in der Ebene, der durch den Punkt (x_0, y_0) geht.

FIGUR. Richtungsfeld der DGL y'(x) = -x/y(x) mit Lösungskurve für $x_0 = 0, y_0 = 1$.

Die Lösung ist nicht für alle x definiert und $y_0 = b$ ist offenbar als Startwert nicht zugelassen. Das liegt daran, dass die Funktion $F(x,y) = -\frac{x-a}{y-b}$ hier unstetig ist. (Im Diagramm wechseln die Pfeile in der x-Achse die Richtung schlagartig.)

Beispiel 8.12 (Malthus'sches Wachstumsgesetz) Wir betrachten ein einfaches Wachstumsgesetz für Populationen, das auf Malthus zurück geht. Hier ist x die Zeit und y(x) die Größe der Population zur Zeit x. Wir nehmen an, dass die Vermehrung der Population proportional zur Anzahl der lebenden Individuen ist

$$y'(x) = \lambda y(x),$$

dabei ist $\lambda > 0$ ein Parameter. Als Anfangswert nehmen wir x_0 und $y_0 > 0$ an. In der Notation von (8.5) ist also etwa (man hat natürlich immer Wahlmöglichkeiten indem man g und h mit der selben Funktion multipliziert)

$$g(x) = -\lambda, \qquad h(y) = \frac{1}{y}.$$

Wir berechnen für y > 0

$$H(y) = \int_{y_0}^{y} \frac{1}{t} dt = \log(y) - \log(y_0) = \log(y/y_0),$$

$$G(x) = -\lambda(x - x_0).$$

Also ist

$$\log\left(\frac{y(x)}{y_0}\right) = \lambda(x - x_0).$$

Auflösen nach y(x) ergibt

$$y(x) = y_0 \exp(\lambda(x - x_0)).$$

Tatsächlich haben wir im vorangehenden Beispiel gar nicht benötigt, dass $\lambda > 0$ ist. Wir können also ganz allgemein das Anfangswertproblem lösen:

$$y'(x) = \lambda y(x), \qquad y(x_0) = y_0.$$

Differentialgleichungen von diesem Typ heißen lineare Differentialgleichung (mit konstanten Koeffizienten) von erster Ordnung. Die eindeutige Lösung (im Fall $\lambda \neq 0$) ist

$$y(x) = y_0 e^{\lambda(x - x_0)}.$$

(Im Fall $\lambda = 0$ ist die Lösung offenbar $y(x) = y_0$ für alle x.)

Beispiel 8.13 (Reaktion erster Ordnung) Bei einer Reaktion erster Ordnung ist der Stoffumsatz proportional zur vorhandenen Stoffmenge. Sei also x die Zeit und y(x) die Stoffmenge, die zur Zeit x noch vorhanden ist. Das Gesetz der Reaktionskinetik lässt sich als die homogene lineare Differentialgleichung fassen

$$y'(x) = -ky(x)$$
.

Dabei ist k>0 die Reaktionskonstante. Sei y_0 die zum Startzeitpunkt $x_0=0$ vorhandene Stoffmenge. Dann ist

$$y(x) = y_0 e^{-kx}.$$

Bemerkung 8.14 In vielen Fällen muss man die Differentialgleichung erst durch eine geeignete Transformation in die Form (8.5) bringen, damit man die Methode der Trennung der Variablen anwenden kann.

Wir wollen uns dies in einem einfachen Fall anschauen. Wir betrachten die DGL

$$y'(x) = f(ax + by(x) + c),$$

wobei f eine stetig differenzierbare Funktion ist und $a, b, c \in \mathbb{R}$. Interessant ist hier nur der Fall $b \neq 0$. Wir ersetzen jetzt die abhängige Variable y durch

$$z(x) = ax + by(x) + c.$$

Dann ist

$$z'(x) = a + by'(x) = a + bf(z(x)).$$

Wie oben erhalten wir nun eine Lösung für z indem wir

$$x - x_0 = \int_{z_0}^{z(x)} \frac{1}{a + bf(t)} dt$$

nach z(x) auflösen. Daraus können wir sofort y(x) berechnen.

Beispiel 8.15

$$y'(x) = (x+y)^2.$$

Dann erfüllt z(x) = x + y(x) die DGL

$$z'(x) = z^2(x) + 1.$$

Die explizite Lösung ist

$$z(x) = \tan(x + C),$$

wobei die Zahl C noch von den Anfangswerten abhängt. Die allgemeine Lösung ist also

$$y(x) = \tan(x+C) - x.$$

8.3 Lineare Differentialgleichung 2. Ordnung

Eine Differentialgleichung von der Form

$$y''(x) + by'(x) + cy(x) = 0 (8.7)$$

(wobei $b, c \in \mathbb{R}$ sind) heißt (homogene) lineare Differentialgleichung zweiter Ordnung (mit konstanten Koeffizienten). In diesem Abschnitt wollen wir zeigen, wie die allgemeinen Lösungen dieser Gleichung aussehen, abhängig davon, welche Werte b und c haben.

Betrachte die quadratische Gleichung für λ

$$\lambda^2 + b\,\lambda + c = 0. \tag{8.8}$$

Die Lösung ist bekanntlich, mit $\Delta = b^2 - 4c$:

$$\lambda_1 = -\frac{b}{2} - \frac{\sqrt{\Delta}}{2} \qquad \lambda_2 = -\frac{b}{2} + \frac{\sqrt{\Delta}}{2}. \tag{8.9}$$

Wir unterscheiden die drei Fälle $\Delta > 0, \, \Delta < 0$ und $\Delta = 0, \, da$ hier entweder zwei, keine, oder eine reelle Lösung vorliegt.

Fall 1 ($\Delta > 0$). Die allgemeine Lösung ergibt sich als Linearkombination

$$y(x) = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x} = C_1 e^{x(-b - \sqrt{\Delta})/2} + C_2 e^{x(-b + \sqrt{\Delta})/2}.$$
 (8.10)

Dabei werden $C_1, C_2 \in \mathbb{R}$ so gewählt, dass das AWP gelöst wird. Den Nachweis, dass sich alle Lösungen so schreiben lassen, bleiben wir an dieser Stelle schuldig. Dass aber jede Funktion aus (8.10) eine Lösung ist, kann jeder schnell nachrechnen:

$$y'(x) = \lambda_1 C_1 e^{\lambda_1 x} + \lambda_2 C_2 e^{\lambda_2 x} = \lambda$$

und

$$y''(x) = \lambda_1^2 C_1 e^{\lambda_1 x} + \lambda_2^2 C_2 e^{\lambda_2 x}.$$

Es folgt

$$y''(x) + by'(x) + cy(x) = \underbrace{(\lambda_1^2 + b\lambda_1 + c)}_{=0} C_1 e^{\lambda_1 x} + \underbrace{(\lambda_2^2 + b\lambda_2 + c)}_{=0} C_2 e^{\lambda_2 x} = 0.$$

Also ist y(x) aus (8.10) tatsächlich eine Lösung der DGL.

FIGUR. Lösungskurve für b = 3, c = 1, y(0) = 1 und y'(0) = 0

Fall 2 ($\Delta < 0$). Hier hat die Gleichung (8.8) keine reelle Lösung. Wir schreiben $\omega = \sqrt{-\Delta}/2$. Die allgemeine Lösung hat die Form

$$y(x) = A \cdot e^{-(b/2)x} \sin(\omega x + \varphi). \tag{8.11}$$

Dabei werden die **Amplitude** A und die **Phasenverschiebung** φ so gewählt, dass das Anfangswertproblem gelöst wird. Man sagt auch, dass hier der Fall einer **gedämpften Schwingung** vorliegt. Dass y(x) aus (8.11) tatsächlich eine Lösung ist, lässt sich wieder einfach durch Ausrechnen bestätigen:

$$y'(x) = -\frac{b}{2}y(x) + A \cdot e^{-(b/2)x}\omega \cos(\omega x + \varphi)$$

und

$$y''(x) = \frac{b^2}{4}y(x) - bA \cdot e^{-(b/2)x}\omega \cos(\omega x + \varphi) - \omega^2 y(x).$$

Es folgt

$$y''(x) + by'(x) + cy(x) = \left(\frac{b^2}{4} - \omega^2 - \frac{b^2}{2} + c\right)y(x) = \left(\frac{\Delta}{4} - \frac{b^2}{4} + c\right)y(x) = 0.$$

Also ist y(x) eine Lösung der DGL.

FIGUR. Lösungskurve für $b=3,\,c=1,\,y(0)=1$ und y'(0)=0

Fall 3 ($\Delta = 0$). In diesem Fall hat die quadratische Gleichung nur die eine Lösung $\lambda = -\frac{b}{2}$. Wir haben in diesem Fall als allgemeine Lösung der Differentialgleichung

$$y(x) = (C_1 + C_2 x) e^{-(b/2)x}. (8.12)$$

FIGUR. Lösungskurve für $b=2,\,c=1,\,y(0)=1$ und y'(0)=0

Kapitel 9

Elemente der Wahrscheinlichkeitstheorie

9.1 Grundbegriffe

9.1.1 Zufallsvariablen

Eine **Zufallsvariable** X mit Wertebereich \mathbb{W} beschreibt die Werte eines Zufallsexperiments. Beispiele:

- Werfen eines Würfels. X = Augenzahl. Wertebereich $\mathbb{W} = \{1, \dots, 6\}$.
- Temperatur um 1200 Uhr. X= Temperatur in Kelvin. $\mathbb{W}=[0,\infty).$
- Position einer Flaschenpost im Atlantik. X= ebene Koordinaten, $\mathbb{W}=\mathbb{R}^2.$
- Waldsterben: X = Gesundheitszustand eines zufällig gewählten Baumes, $\mathbb{W} = \{gesund, krank, tot \},$
- Bakterienwachstum, X = Anzahl der Bakterien nach einem Tag, $\mathbb{W} = \mathbb{N}_0 = \{0, 1, 2, \ldots\}$.

Der Wertebereich kann jede beliebige Menge sein, die zur Beschreibung des Experiments geeignet ist. Die Zufallsvariable heißt **diskret**, falls \mathbb{W} endlich oder abzählbar ist (etwa $\mathbb{W} = \mathbb{N}$, oder $\mathbb{W} = \mathbb{Z}$), und reell, falls $\mathbb{W} = \mathbb{R}$, oder $\mathbb{W} \subset \mathbb{R}$ ein Intervall ist. X heißt d-dimensional, falls $\mathbb{W} \subset \mathbb{R}^d$ ist

Zwei Zufallsvariablen X und Y können verschiedene Aspekte eines Experiments beschreiben:

Beispiel 9.1 (i)
$$X = \text{Temperatur um } 12^{00} \text{ Uhr}$$
 $Y = \text{Niederschlagsmenge (in mm) am selben Tag.}$

(ii) Eine zufällige Person wird nach der Meinung zum Ausbau des Frankfurter Flughafens befragt $(X, \text{Wertebereich } \mathbb{W}_X = \{\text{für, gegen}\})$ und zur Präferenz von politischen Parteien $(Y \text{ mit Wertebereich } \mathbb{W}_Y = \{\text{CDU, SPD, Grüne, FDP, }\dots\}).$

Die Zufallsvariablen X und Y werden in den beiden genannten Beispielen jeweils nicht unabhängig sein. Wir sprechen daher auch von abhängigen Zufallsvariablen.

Werfen wir jedoch einen Würfel zweimal und nennen

X =Ergebnis des ersten Wurfs

Y = Ergebnis des zweiten Wurfs,

so haben wir unabhängige Zufallsvariablen vorliegen. Werfen wir einen Würfel beliebig oft hintereinander und nennen X_n die Augenzahl des n-ten Wurfs, so sind

$$X_1, X_2, X_3, \dots$$

unabhängige Zufallsvariablen. Eine mathematisch präzise Definition des Begriffs der Unabhängigkeit, werden wir später noch kennen lernen.

9.1.2 Ereignisse

Jede Aussage, deren Wahrheitsgehalt durch die Werte einer oder mehrerer Zufallsvariablen bestimmt werden kann, heißt **Ereignis**. Wir sagen, dass ein Ereignis eintritt, wenn die entsprechende Aussage bei den tatsächlich beobachteten Werten der Zufallsvariablen wahr ist.

Beispiel 9.2 (i) Würfelwurf: X =Augenzahl. A = "Augenzahl höchstens drei". Wir schreiben dieses Ereignis formal auch als

$$A = \{X \le 3\}.$$

(ii) Dreifacher Würfelwurf: X_1, X_2, X_3 Ergebnisse der drei Würfe.

A := "Augensumme ist höchstens zehn",

B :=, Augensumme ist gerade",

C := "Augenzahl des zweiten Wurfs ist vier",

D := "Augenzahl des zweiten Wurfs ist gerade".

Dann ist

$$A = \{X_1 + X_2 + X_3 \le 10\}$$

$$B = \{X_1 + X_2 + X_3 \text{ durch 2 teilbar}\} = \{X_1 + X_2 + X_3 \in \{4, 6, 8, 10, 12, 14, 16, 18\}\}$$

$$C = \{X_2 = 4\}$$

$$D = \{X_2 \in \{2, 4, 6\}\}.$$

(iii) X = Mittagstemperatur, A = Temperatur ist zwischen 290K und 295K". Dann ist

$$A = \{290 \le X \le 295\} = \{X \in [290, 295]\}.$$

Für die logischen Verknüpfungen von Ereignissen führen wir die folgenden Schreibweisen ein:

9.1 Grundbegriffe 99

Im obigen Beispiel (ii) bekommen wir etwa:

•
$$A \cap B = \{X_1 + X_2 + X_3 \in \{4, 6, 8, 10\}\},\$$

•
$$A \cup B = \{X_1 + X_2 + X_3 \in \{3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18\}\},\$$

•
$$A \cap C = \{X_2 = 4 \text{ und } (X_1 + X_2) \le 6\},\$$

•
$$B^c = \{X_1 + X_2 + X_3 \in \{3, 5, 7, 9, 11, 13, 15, 17\}\},\$$

•
$$C \setminus B = \{X_2 = 4 \text{ und } X_1 + X_3 \in \{3, 5, 7, 9, 11\}\},\$$

• Es gilt $C \subset D$.

Das logische "und" sowie das logische "oder" lassen sich auch auf beliebig viele Mengen ausdehnen: Sind A_1, A_2, A_3, \ldots Ereignisse, so ist

$$\bigcup_{i=1}^n A_i = A_1 \cup A_2 \cup \ldots \cup A_n$$

$$= \text{ wenigstens eines der } A_1, \ldots, A_n \text{ tritt ein}$$

$$\bigcup_{i=1}^\infty A_i = A_1 \cup A_2 \cup \ldots$$

$$= \text{ wenigstens eines der } A_1, A_2, \ldots \text{ tritt ein}$$

$$\bigcap_{i=1}^n A_i = A_1 \cap A_2 \cap \ldots \cap A_n$$

$$= \text{ jedes der } A_1, \ldots, A_n \text{ tritt ein}$$

$$\bigcap_{i=1}^\infty A_i = A_1 \cap A_2 \cap \ldots$$

$$= \text{ jedes der } A_1, A_2, \ldots \text{ tritt ein}$$

Das Gegenereignis zu $A \cup B$ ist das Ereignis, wo weder A noch B eintritt. Anders gesagt: A^c und B^c treten beide ein, oder formal

$$(A \cup B)^c = A^c \cap B^c$$
.

Analog erhalten wir

$$(A \cap B)^c = A^c \cup B^c$$

Dies ist der Spezialfall einer allgemeineren Regel:

 $^{^1}$ Mathematisch schließt der Begriff "oder" stets die Möglichkeit ein, dass beide Aussagen wahr sind. Das ausschließende "oder" wird stets gesondert benannt.

Satz 9.3 (De Morgan'sche Regeln) Seien A_1, A_2, \ldots Ereignisse. Dann gilt für jedes $n \in \mathbb{N}$

$$\left(\bigcup_{i=1}^{n} A_i\right)^c = \bigcap_{i=1}^{n} (A_i)^c \qquad und \qquad \left(\bigcup_{i=1}^{\infty} A_i\right)^c = \bigcap_{i=1}^{\infty} (A_i)^c$$

sowie

$$\left(\bigcap_{i=1}^{n} A_i\right)^c = \bigcup_{i=1}^{n} (A_i)^c \qquad und \qquad \left(\bigcap_{i=1}^{\infty} A_i\right)^c = \bigcup_{i=1}^{\infty} (A_i)^c$$

Beispiel 9.4 Seien X_1, X_2, \dots, X_{10} die Ergebnisse von Würfelwürfen und

$$A_i = \{X_i = 6\}$$
 für $i = 1, \dots, 10$.

Dann ist $A_i^c = \{X_i \leq 5\}$ und

$$\bigcup_{i=1}^{10} A_i = \text{wenigstens}$$
eine Sechs in den zehn Würfen

$$\left(\bigcup_{i=1}^{10} A_i\right)^c$$
 = keine Sechs in den zehn Würfen

= jeder der zehn Würfe ergibt höchstens "Fünf" =
$$\bigcap_{i=1}^{10} A_i^c$$
.

Gilt $A \cap B = \emptyset$, so ist das gemeinsame Eintreten von A und B unmöglich, beispielsweise, wenn $A = \{X = 6\}$ und $B = \{X = 5\}$ ist.

Gilt $A \cup B = \Omega$, so tritt immer wenigstens A oder B ein. Beispiel: beim Würfelwurf $A = \{X \leq 3\}$ und $B = \{X \geq 2\}$.

Gilt $A \cap B = \emptyset$ und $A \cup B = \Omega$, so tritt immer genau eines der Ereignisse A und B ein. Wir nennen A und B dann auch **Alternativen**. Wir nennen n Ereignisse A_1, \ldots, A_n Alternativen, wenn $A_i \cap A_j = \emptyset$ für jede Wahl $i \neq j$, und falls $A_1 \cup A_2 \cup \ldots \cup A_n = \Omega$.

9.1.3 Wahrscheinlichkeit

Jedem Ereignis A wird eine Zahl $\mathbf{P}[A] \in [0,1]$ zugeordnet, die misst, wie "wahrscheinlich" das Eintreten von A ist. Wir sagen: $\mathbf{P}[A]$ ist die **Wahrscheinlichkeit** (dafür), dass A eintritt.

Beispiel 9.5 Seien $X_1, X_2, ...$ die Ergebnisse von (unabhängigen) Würfelwürfen und $A = \{X_1 = 6\}$. Aus Symmetriegründen ist $\mathbf{P}[A] = \frac{1}{6}$. Wie interpretieren wir aber "Wahrscheinlichkeit"? Sei hierzu

$$H_n = \text{Anzahl der Würfe } X_i \text{ mit } i \leq n \text{ und } X_i = 6$$

die Anzahl der Sechsen bis zum n-ten Wurf und

$$h_n = \frac{H_n}{n}$$

die $relative\ H\"{a}ufigkeit$ der Sechsen unter den ersten n Würfen. Bei einem fairen Würfel erwarten wir, dass jede Zahl etwa gleich h\"{a}ufig kommt, also

$$h_n \approx \frac{1}{6} = \mathbf{P}[A]$$
 für großes n .

Hierdurch sind Wahrscheinlichkeiten in wiederholbaren Experimenten gut zu interpretieren.

9.1 Grundbegriffe 101

Definition 9.6 (Verteilung einer Zufallsvariable) Ist X eine Zufallsvariable mit Werten in \mathbb{W} , so heißt die Familie $\mathbf{P}_X := (\mathbf{P}[X \in A], A \subset \mathbb{W})$ aller Wahrscheinlichkeiten für Werte, die X annehmen kann, die **Verteilung** von X.

Nimmt X Werte in einer endlichen Menge W an, so ist in vielen (aber nicht in allen) Fällen aus Symmetriegründen jeder Wert $w \in \mathbb{W}$ gleich wahrscheinlich, nämlich $\mathbf{P}[X=w] = \frac{1}{\#\mathbb{W}}$. Es folgt dann für beliebiges $A \subset \mathbb{W}$

$$\mathbf{P}[X \in A] = \frac{\#A}{\#\mathbb{W}}.$$

Wir sagen dann, dass X uniform verteilt (oder gleichverteilt) ist auf \mathbb{W} . \mathbf{P}_X heißt dann die Gleichverteilung (oder uniforme Verteilung) auf \mathbb{W} .

Beispiel 9.7 Wir betrachten ein Kartendeck mit 52 Karten.

$$\mathbb{W} = \{ \heartsuit 2, \, \heartsuit 3, \dots, \heartsuit A, \, \diamondsuit 2, \dots, \clubsuit A \}.$$

X = oberste Karte eines gemischten Stapels.

$$\mathbf{P}[X=w] = \frac{1}{52} \quad \text{für jedes } w \in \mathbb{W}.$$

Beispiel 9.8 Zweifacher Würfelwurf mit Ergebnissen X_1 und X_2 . Setze $X = (X_1, X_2)$ als gemeinsames Ergebnis beider Würfe (unter Beachtung der Reihenfolge). Dann ist der Wertebereich

$$\mathbb{W} = \{(1,1), (1,2), \dots, (1,6), (2,1), (2,2), \dots, (6,6)\}.$$

Offenbar ist $\#\mathbb{W} = 36$ und X uniform auf \mathbb{W} verteilt.

Sei A = "Augensumme ist fünf", also $A = \{X \in B\}$, wo

$$B = \{(1,4), (2,3), (3,2), (4,1)\}.$$

Dann ist

$$\mathbf{P}[A] = \mathbf{P}[X \in B] = \frac{\#B}{\#\mathbb{W}} = \frac{4}{36} = \frac{1}{9}.$$

Die Zufallsvariable $Y=X_1+X_2$ ist allerdings nicht gleichverteilt auf dem Wertebereich $\mathbb{W}_Y=$

 $^{^2}$ Mathematisch ganz korrekt muss man hier solche Mengen A betrachten, für die $\mathbf{P}[X \in A]$ sinnvoll ist. Die Mengen, für die dies nicht zutrifft, sind jedoch pathologische Beispiele, die uns hier nicht interessieren. Praktisch ist für jede Menge $A \subset \mathbb{W}$, die man angeben kann, der Ausdruck $\mathbf{P}[X \in A]$ wohldefiniert.

 $\{2,\ldots,12\}$. In der Tat ist

$$\mathbf{P}[Y=2] = \mathbf{P}[X=(1,1)] = \frac{1}{36}$$

$$\mathbf{P}[Y=3] = \mathbf{P}[X \in \{(1,2),(2,1)\}] = \frac{2}{36}$$

$$\mathbf{P}[Y=4] = \mathbf{P}[X \in \{(1,3),(2,2),(3,1)\}] = \frac{3}{36}$$

$$\vdots$$

$$\mathbf{P}[Y=7] = \frac{6}{36}$$

$$\mathbf{P}[Y=8] = \frac{5}{36}$$

$$\vdots$$

$$\mathbf{P}[Y=12] = \frac{1}{36}.$$

Wir halten die folgenden Rechenregeln für Wahrscheinlichkeiten als Satz fest:

Satz 9.9 (Rechenregeln für Wahrscheinlichkeiten) Es gelten:

- (i) P[∅] = 0, P[Ω] = 1,
 (ii) P[A ∪ B] = P[A] + P[B], falls A ∩ B = ∅,
 (iii) P[A ∪ B] = P[A] + P[B] P[A ∩ B] im allgemeinen Fall,

9.1.4 Wichtige Verteilungen

(i) Sei W endlich oder abzählbar (z.B. $\mathbb{W} = \{1, \dots, n\}, \mathbb{W} = \mathbb{N} \text{ oder } \mathbb{W} = \mathbb{Z}$). Dann nennen wir die Wahrscheinlichkeit dafür, dass X den Wert w annimmt,

$$p_w = \mathbf{P}[X = w],$$

auch das Gewicht von w. Offenbar gelten $p_w \in [0,1], \sum_{w \in \mathbb{W}} p_w = 1$ und

$$\mathbf{P}[X \in A] = \sum_{w \in A} p_w \quad \text{für jedes } A \subset \mathbb{W}.$$

Beispiel: X = Summe zweier Würfelwürfe. $\mathbb{W} = \{2, \dots, 12\}, p_2 = \frac{1}{36}, p_3 = \frac{2}{36}, \dots, p_7 = \frac{6}{36}$ $p_8 = \frac{5}{36}, \dots, p_{12} = \frac{1}{36}.$

(ii) Sei $\mathbb{W} = \mathbb{R}$ (oder $\mathbb{W} \subset \mathbb{R}$ z.B. ein Intervall). Wir nehmen an, dass für je zwei Zahlen a < bgilt

$$\mathbf{P}[a \le X \le b] = \int_a^b f(x) \, dx,$$

9.1 Grundbegriffe 103

wobei $f \geq 0$ integrierbar ist mit $\int_{-\infty}^{\infty} f(x) \, dx = 1$. Wir sagen dann, dass die Verteilung von X stetig ist und die **Dichte** f hat. Man prüft leicht nach, dass in diesem Fall gilt

$$\mathbf{P}[a < X < b] = \mathbf{P}[a < X \le b] = \mathbf{P}[a \le X < b] = \mathbf{P}[a \le X \le b] = \int_a^b f(x) \, dx$$

für alle $-\infty \le a < b \le \infty$.

Beispiel:

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$
.

Die Verteilung heißt (Standard-)**Normalverteilung** und wird mit $\mathcal{N}_{0,1}$ bezeichnet. Wir schreiben oft kurz $X \sim \mathcal{N}_{0,1}$, wenn X die Verteilung $\mathcal{N}_{0,1}$ hat.

(iii) $\mathbb{W} = \mathbb{R}$. Wenn wir nicht annehmen, dass die Verteilung eine Dichte hat, so können wir immer noch die Funktion

$$F(x) := \mathbf{P}[X \le x], \qquad x \in \mathbb{R}$$

definieren. F heißt **Verteilungsfunktion** von X. F hat folgende Eigenschaften:

- -F legt die Verteilung von X eindeutig fest,
- -F ist monoton wachsend,
- $-\lim_{x\to\infty} F(x) = 1$ und $\lim_{x\to-\infty} F(x) = 0$.
- Für jedes X gilt: F ist genau dann unstetig in x, wenn $\mathbf{P}[X=x] > 0$ ist. In diesem Fall ist $\mathbf{P}[X=x]$ die Höhe des Sprunges von F in x.
- Hat \mathbf{P}_X die Dichte f, so ist F differenzierbar mit Ableitung F'(x) = f(x), und es gilt

$$F(x) = \int_{-\infty}^{x} f(t) dt$$
 für alle $x \in \mathbb{R}$.

Beispiel 9.10 Eine der wichtigsten diskreten Verteilungen auf \mathbb{N}_0 ist die **Binomialverteilung**, die wir mit $b_{n,p}$ bezeichnen. Dabei sind $n \in \mathbb{N}$ und $p \in [0,1]$ Parameter. Es ist für $k = 0, \ldots, n$

$$\mathbf{P}[X = k] = b_{n,p}(k) := \binom{n}{k} p^k (1-p)^{n-k},$$

wobei (siehe Beispiel 2.18(ii) auf Seite 24)

$$\binom{n}{k} := \frac{n!}{k! (n-k)!} = \frac{n(n-1)(n-2)\cdots(n-k+1)}{k(k-1)(k-2)\cdots 2\cdot 1}$$

der Binomialkoeffizient von n und k ist (sprich: "n über k").

Interpretation: In einer Population der Größe N hat ein gewisses Merkmal, sagen wir A, einen Anteil von p. Ziehen wir n Individuen nacheinander (und mit Zurücklegen) und nennen X die Gesamtzahl der gezogenen Individuen mit Merkmal A, so ist $X \sim b_{n,p}$.

Beispiel 9.11 Im vorangehenden Beispiel sei K=pN die Gesamtzahl der Individuen mit dem Merkmal. Wir wollen das gleiche Experiment durchführen, jedoch die Individuen nach der Entnahme nicht wieder zurücklegen (um Doppelzählungen zu vermeiden). Wir nennen wieder X die Zahl der registrierten Individuen mit dem Merkmal. Diesmal erhalten wir die Formel

$$\mathbf{P}[X=k] = \mathrm{Hyp}_{K,N-K,n}(k) := \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}.$$

Wir nennen $\text{Hyp}_{K,N-K,n}$ die **hypergeometrische Verteilung** mit Parametern K, N-K und n.

Anwendung. Wie groß ist beim Skat die Wahrscheinlichkeit, dass der Geber genau drei Asse erhält? N = 32, K = 4, n = 10, also ist die Wahrscheinlichkeit

$$\operatorname{Hyp}_{4,28,10}(3) = \frac{\binom{4}{3}\binom{28}{7}}{\binom{32}{10}} = \dots = \frac{66}{899}.$$

Für große N (aber konstanten Anteil p = K/N) gilt

$$\operatorname{Hyp}_{K,N-K,n}(k) \xrightarrow{N \to \infty} (K/N \to p) b_{n,p}(k).$$

Intuitiv ist das klar: Wenn die Population groß genug ist, sollte es keine Rolle spielen, ob wir die Individuen zurücklegen oder nicht. Die Chance, eines zweimal zu zählen ist sehr gering.

Zahlenbeispiel: $N = 10\,000,\, K = 3\,000,\, p = 0.3,\, n = 50,\, k = 14.$ Dann ist

$$\text{Hyp}_{3000,7000,50}(14) \approx 0.119207$$

 $b_{50,0,3}(14) \approx 0.118948$

Beispiel 9.12 (Seltenes Merkmal) Wenn p sehr klein ist, muss n groß gewählt werden, damit wir in der Stichprobe überhaupt Individuen mit dem Merkmal A finden. Die Idee ist, n von der Größenordnung 1/p zu wählen. Genauer wollen wir ein $\lambda>0$ wählen und annehmen, dass $n\approx \lambda/p$. Dann sollten im Mittel $n\cdot p=\lambda$ Individuen mit Merkmal in der Stichprobe sein. Tatsächlich kann man zeigen, dass für $p_n=\lambda/n$ und großes n gilt

$$\lim_{n \to \infty} b_{n,p_n}(k) = \operatorname{Poi}_{\lambda}(k) := e^{-\lambda} \frac{\lambda^k}{k!}.$$
(9.1)

Die Verteilung Poi $_{\lambda}$ heißt **Poisson Verteilung**³ mit Parameter λ .

In den Jahren von 1982 bis 1992 gab es in Deutschland (West) im Mittel 7,7 Tote durch Blitzschlag. Man kann die Anzahl der Toten in einem Jahr als Zufallsexperiment auffassen, wo in einer sehr großen Population $N=60\,000\,000$ mit sehr geringer Wahrscheinlichkeit $p=\frac{7.7}{60\,000\,000}$ ein einzelnes Individuum den Tod durch Blitzschlag erleidet. In der obigen Terminologie ist n=N, da wir annehmen, dass alle Blitztoten gemeldet werden. Für die Anzahl der Blitztoten in kommenden Jahr ergibt sich also die Poisson-Verteilung Poi $_{7.7}$ mit Parameter $\lambda=7.7$. In den Jahren 1998 und 1999 wurden Vier bzw. Zehn Blitztote registriert. Wie groß ist jeweils die Wahrscheinlichkeit für solche Ereignisse?

$$\mathbf{P}[X=4] = \text{Poi}_{7.7}(4) = e^{-7.7} \frac{7.7^4}{4!} = 0.06633 = 6.633\%$$

$$\mathbf{P}[X=10] = \text{Poi}_{7.7}(10) = e^{-7.7} \frac{7.7^{10}}{10!} = 0.09142 = 9.142\%.$$

9.1.5 Urnenmodelle

Zur Berechnung der Gleichverteilung auf einer endlichen Menge W ist es nötig, dass wir #W kennen. Wenn W die Gestalt $\{1, \ldots, n\}$ oder $\{1, \ldots, n\}^k$ hat, ist dies simpel $(n, \text{ bzw. } n^k)$. Bei

 $^{^3{\}rm Nach}$ Siméon Poisson, französischer Mathematiker, 1781–1840

9.2 Grundbegriffe 105

komplizierterem \mathbb{W} muss man etwas arbeiten, um $\#\mathbb{W}$ zu bestimmen. Wir werden hier vier wichtige Situationen betrachten, die immer wieder auftreten: Aus einer Urne mit N Kugeln (von 1 bis N nummeriert) werden n Kugeln zufällig gezogen.

(i) mit Zurücklegen / mit Beachtung der Reihenfolge Hier ist

$$\mathbb{W} = \{1, \dots, N\}^n = \{(x_1, \dots, x_n) : x_i \in \{1, \dots, N\} \text{ für jedes } i = 1, \dots, n\}.$$

Tatsächlich ist jeder Vektor (x_1, \ldots, x_n) ein mögliches Ergebnis des sukzessiven Ziehens, und jede Kombination sollte aus Symmetriegründen die gleiche Wahrscheinlichkeit haben. Man sieht leicht ein, dass es für x_1 genau N Möglichkeiten gibt, für x_2 genau N Möglichkeiten usw., also ist $\#\mathbb{W} = N^n$.

(ii) ohne Zurücklegen / mit Beachtung der Reihenfolge Jetzt ziehen wir die Kugeln wie in (i), jedoch werden einmal gezogene Kugeln nicht wieder in die Urne zurückgelegt. Damit ist klar $x_2 \neq x_1$, und allgemeiner $x_i \neq x_j$ für jede Wahl $i \neq j$. Wir erhalten

$$\mathbb{W} = \{(x_1, \dots, x_n) : x_1, \dots, x_n \in \{1, \dots, N\} \text{ und } x_i \neq x_j \text{ für alle } i \neq j\}.$$

In diesem Fall ist $\#\mathbb{W} = \frac{N!}{(N-n)!}$.

(iii) ohne Zurücklegen / ohne Beachtung der Reihenfolge Wie in (ii), jedoch wollen wir diesmal die Reihenfolge der gezogenen Kugeln unbeachtet lassen. Eine Möglichkeit, die tatsächliche Reihenfolge zu vergessen, ist, die Kugeln, wie bei der Bekanntgabe der Lottozahlen, der Größe nach zu sortieren. Wir erhalten also

$$W = \{(x_1, \dots, x_n) : 1 \le x_1 < \dots < x_n \le N\}.$$

Es ist hier $\#\mathbb{W} = \binom{N}{n}$. Beim Lotto "6 aus 49" ist etwa die Anzahl der Möglichkeiten $\binom{49}{6} = 13\,983\,816$, und damit die Chance auf Sechs Richtige $\frac{1}{13\,983\,816}$.

(iv) mit Zurücklegen / ohne Beachtung der Reihenfolge Wie in (iii), jedoch werden die Kugeln jeweils nach dem Ziehen wieder in die Urne gelegt. Daher sind mehrfache Nennungen möglich, und wir erhalten

$$\mathbb{W} = \{(x_1, \dots, x_n) : 1 \le x_1 \le \dots \le x_n \le N\}.$$

In diesem Fall muss man ein bisschen kniffeln, um #W zu bestimmen. Das Ergebnis ist

$$\#\mathbb{W} = \binom{N+n-1}{n}.$$

9.2 Unabhängigkeit

Sind $X_1, X_2, ...$ die Ergebnisse von unabhängigen Zufallsexperimenten (also solchen, deren Ausgänge die anderen Zufallsexperimente nicht beeinflussen), so gilt

- Für zwei Zufallsvariablen: $\mathbf{P}[X_1 \in A_1 \text{ und } X_2 \in A_2] = \mathbf{P}[X_1 \in A_1] \cdot \mathbf{P}[X_2 \in A_2]$ für je zwei mögliche Wertemengen A_1 und A_2 .
- Für drei Zufallsvariablen: $\mathbf{P}[X_1 \in A_1 \text{ und } X_2 \in A_2 \text{ und } X_3 \in A_3] = \mathbf{P}[X_1 \in A_1] \cdot \mathbf{P}[X_2 \in A_2] \cdot \mathbf{P}[X_3 \in A_3]$ für je drei mögliche Wertemengen $A_1, A_2 \text{ und } A_3$.
- \bullet Für n Zufallsvariablen:

$$\mathbf{P}\left[\bigcap_{i=1}^{n} \{X_i \in A_i\}\right] = \prod_{i=1}^{n} \mathbf{P}[X_i \in A_i].$$

Für jede endliche Auswahl $i_1 < i_2 < \ldots < i_k$ von Zufallsvariablen X_{i_1}, \ldots, X_{i_k} und jede Auswahl von Wertemengen A_{i_1}, \ldots, A_{i_k} gilt

$$\mathbf{P}\left[\bigcap_{l=1}^{k} \{X_{i_l} \in A_{i_l}\}\right] = \prod_{l=1}^{k} \mathbf{P}[X_{i_l} \in A_{i_l}].$$

Wir nehmen dies als mathematische Definition von Unabhängigkeit.

Definition 9.13 (Unabhängigkeit) (i) Die Zufallsvariablen X_1, \ldots, X_n heißen **unabhängig**, wenn für jedes $k \leq n$ und jede Wahl $1 \leq i_1 < i_2 < \ldots < i_k \leq n$ und jede Wahl von A_{i_1}, \ldots, A_{i_k} die Produktformel gilt:

$$\mathbf{P}\left[\bigcap_{l=1}^{k} \{X_{i_{l}} \in A_{i_{l}}\}\right] = \prod_{l=1}^{k} \mathbf{P}[X_{i_{l}} \in A_{i_{l}}]. \tag{9.2}$$

(ii) Die Ereignisse B_1, \ldots, B_n heißen unabhängig, wenn für jedes $k \leq n$ und jede Wahl $1 \leq i_1 < i_2 < \ldots < i_k \leq n$ die **Produktformel** gilt:

$$\mathbf{P}\left[\bigcap_{l=1}^{k} B_{i_l}\right] = \prod_{l=1}^{k} \mathbf{P}[B_{i_l}]. \tag{9.3}$$

Speziell sind zwei Ereignisse A und B genau dann unabhängig, wenn $P[A \cap B] = P[A] \cdot P[B]$.

Beispiel 9.14 (Warten auf den ersten Erfolg) Seien $X_1, X_2, ...$ unabhängige Zufallsvariablen, die uniform auf $\mathbb{W} = \{1, ..., 6\}$ verteilt sind. Dann modellieren diese Zufallsvariablen die Ergebnisse von beliebig oft wiederholten Würfen eines (fairen) Würfels. Wie lange muss man warten, bis die erste "Sechs" fällt?

Sei T= Wartezeit auf die erste "Sechs". Wir zählen den ersten Wurf noch nicht als Warten und setzen

```
\begin{split} T &= 0, & \text{falls } X_1 = 6, \\ T &= 1, & \text{falls } X_1 \neq 6 \text{ und } X_2 = 6, \\ T &= 2, & \text{falls } X_1 \neq 6, X_2 \neq 6 \text{ und } X_3 = 6, \\ T &= 3, & \text{falls } X_1 \neq 6, X_2 \neq 6, X_3 \neq 6 \text{ und } X_4 = 6, \\ \vdots & \vdots \end{split}
```

Wir erhalten in den einzelnen Fällen die Wahrscheinlichkeiten

$$\mathbf{P}[T=0] = \mathbf{P}[X_1 = 6] = \frac{1}{6},
\mathbf{P}[T=1] = \mathbf{P}[X_1 \neq 6 \text{ und } X_2 = 6]
= \mathbf{P}[\{X_1 \neq 6\} \cap \{X_2 = 6\}]
= \mathbf{P}[X_1 \neq 6] \cdot \mathbf{P}[X_2 = 6] = \frac{5}{6} \cdot \frac{1}{6} = \frac{5}{36},
\mathbf{P}[T=2] = \mathbf{P}[\{X_1 \neq 6\} \cap \{X_2 \neq 6\} \cap \{X_3 = 6\}]
= \mathbf{P}[X_1 \neq 6] \cdot \mathbf{P}[X_2 \neq 6] \cdot \mathbf{P}[X_3 = 6] = \left(\frac{5}{6}\right)^2 \frac{1}{6} = \frac{25}{216},
\mathbf{P}[T=3] = \mathbf{P}[\{X_1 \neq 6\} \cap \{X_2 \neq 6\} \cap \{X_3 \neq 6\} \cap \{X_4 = 6\}]
= \mathbf{P}[X_1 \neq 6] \cdot \mathbf{P}[X_2 \neq 6] \cdot \mathbf{P}[X_3 \neq 6] \cdot \mathbf{P}[X_4 = 6] = \left(\frac{5}{6}\right)^3 \frac{1}{6} = \frac{125}{1296},
\vdots
\mathbf{P}[T=n] = \mathbf{P}[X_i \neq 6 \text{ für alle } i \leq n \text{ und } X_{n+1} = 6]
= \left(\prod_{i=1}^{n} \mathbf{P}[X_i \neq 6]\right) \cdot \mathbf{P}[X_{n+1} = 6] = \left(\frac{5}{6}\right)^n \frac{1}{6}.$$

Etwas allgemeiner können wir auf den ersten Erfolg bei unabhängigen Zufallsexperimenten warten, wo die Erfolgswahrscheinlichkeit $p \in (0,1)$ ist (statt hier $p = \frac{1}{6}$ für die "Sechs"). Seien hierzu Y_1, Y_2, \ldots unabhängige Zufallsvariablen mit Werten in $\mathbb{W} = \{0,1\}$ mit $\mathbf{P}[Y_i = 1] = p$ und $\mathbf{P}[Y_i = 0] = 1 - p$ für jedes $i = 1, 2 \ldots$ Wir interpretieren das Auftreten einer 1 als "Erfolg" und nennen p daher auch die Erfolgswahrscheinlichkeit. Wie lange müssen wir warten, bis die erste 1 (der erste Erfolg) auftritt?

Sei T diese Wartezeit, also

$$T=n$$
 genau dann, wenn $Y_1=Y_2=\ldots=Y_{n-1}=0$ und $Y_n=1$.

Wie oben gezeigt, ist

$$\mathbf{P}[T=n] = \left(\prod_{i=1}^{n} \mathbf{P}[Y_i=0]\right) \cdot \mathbf{P}[Y_{n+1}=p] = (1-p)^n p.$$

Wir nennen die entsprechende Verteilung γ_p auf $\mathbb{W} = \mathbb{N}_0$ mit

$$\gamma_p(k) = (1-p)^k p, \qquad k = 0, 1, 2, \dots$$

die **geometrische Verteilung** mit (Erfolgs-)parameter p.

Obacht: Manche Autoren nennen die um Eins nach rechts verschobene Verteilung auf N, also die Verteilung von T+1, die geometrische Verteilung.

Bemerkung 9.15 Seien A und B unabhängige Ereignisse. Dann ist

$$\mathbf{P}[A^c \cap B] + \mathbf{P}[A \cap B] = \mathbf{P}[(A \cup A^c) \cap B] = \mathbf{P}[B], \text{ weil } (A^c \cap B) \cap (A \cap B) = \emptyset.$$

Es folgt

$$P[A^c \cap B] = P[B] - P[A \cap B] = P[B] - P[A] P[B] = P[B](1 - P[A]) = P[B] P[A^c].$$

Also sind A und B genau dann unabhängig, wenn A^c und B unabhängig sind.

9.3 Bedingte Wahrscheinlichkeiten / Bayes'sche Formel

Beispiel 9.16 Wir werfen einen fairen sechsseitigen Würfel, nennen das Ergebnis X und betrachten die Ereignisse

$$A := \{X \le 3\} =$$
 "Augenzahl drei oder kleiner", $B := \{X \in \{2, 4, 6\}\} =$ "Augenzahl gerade".

Offenbar ist $\mathbf{P}[A] = \frac{1}{2}$ und $\mathbf{P}[B] = \frac{1}{2}$. Wie groß ist aber die Wahrscheinlichkeit, dass B eintritt, wenn wir schon wissen, dass A eintritt?

Wenn A eintritt, nimmt X einen der Werte 1,2,3 an. Jeder der Werte hat die gleiche Wahrscheinlichkeit. Wenn wir also schon wissen, dass A eintritt, haben wir ein Zufallsexperiment mit Gleichverteilung auf den drei noch möglichen Ergebnissen. Nur einer der Werte (nämlich die 2) liefert B, also ist die gesucht Wahrscheinlichkeit $\frac{1}{3}$.

Durch das Beispiel motiviert treffen wir die folgende Definition.

Definition 9.17 (Bedingte Wahrscheinlichkeit) Seien A und B Ereignisse. Wir definieren die bedingte Wahrscheinlichkeit für das Eintreten von B gegeben, dass A eintritt durch

$$\mathbf{P}[B|A] = \begin{cases} \frac{\mathbf{P}[A \cap B]}{\mathbf{P}[A]}, & \text{falls } \mathbf{P}[A] > 0, \\ 0, & \text{sonst.} \end{cases}$$
(9.4)

Im Beispiel 9.16 ist $A \cap B = \{X = 2\}$, also $\mathbf{P}[A \cap B] = \frac{1}{6}$, und $\mathbf{P}[A] = \frac{1}{2}$.. Wir erhalten also

$$\mathbf{P}[B|A] = \frac{1/6}{1/2} = \frac{1}{3}.$$

Bemerkung 9.18 Die Festsetzung in (9.4) für den Fall $\mathbf{P}[A] = 0$ ist völlig willkürlich. In der Literatur findet man gelegentlich auch andere Festsetzungen.

Beispiel 9.19 In Deutschland gibt es etwa $80\,000\,000$ Einwohner. Pro Jahr treten $40\,000$ Lunge-krebserkrankungen neu auf. Von der Erkrankten sind $36\,000$ Raucher. Wie groß ist die Wahrscheinlichkeit p, dass die nächste in einem Krankenhaus eingelieferte Person mit Lungenkrebs Raucher ist?

Wir wählen zufällig eine Person in Deutschland aus und setzen

A := "in diesem Jahr erstmals an Lungenkrebs erkrankt", B := "Raucher"

Wir erhalten $\mathbf{P}[A] = \frac{40\,000}{80\,000\,000} = 0.0005$ und $\mathbf{P}[A \cap B] = \frac{36\,000}{80\,000\,000} = 0.00045$. Es ist also

$$p = \mathbf{P}[B|A] = \frac{0.00045}{0.0005} = 0.9 = 90\%.$$

Problem: Wie kann man P[B] berechnen, wenn nur P[B|A], $P[B|A^c]$ und P[A] bekannt sind? Offenbar ist

$$\mathbf{P}[B] = \mathbf{P}[B \cap A] + \mathbf{P}[B \cap A^c] = \mathbf{P}[B|A] \cdot \mathbf{P}[A] + \mathbf{P}[B|A^c] \cdot \mathbf{P}[A^c].$$

Etwas allgemeiner können wir den Fall betrachten, wo wir statt zwei Alternativen (nämlich A oder A^c) n Alternativen A_1, \ldots, A_n vorliegen haben, also Ereignisse mit den Eigenschaften: $A_i \cap A_j = \emptyset$, falls $i \neq j$, und $A_1 \cup A_2 \cup \ldots \cup A_n = \Omega$. In dieser Situation gilt der folgende Satz:

Satz 9.20 (Formel von der totalen Wahrscheinlichkeit)

$$\mathbf{P}[B] = \sum_{i=1}^{n} \mathbf{P}[B|A_i] \mathbf{P}[A_i]. \tag{9.5}$$

Wir nutzen die Formel von der totalen Wahrscheinlichkeit, um aus den Wahrscheinlichkeiten $\mathbf{P}[B|A_i]$ und $\mathbf{P}[A_i]$, $i=1,\ldots,n$ nun die bedingte Wahrscheinlichkeit $\mathbf{P}[A_k|B]$ auszurechnen (für gegebenes $k=1,\ldots,n$).

Satz 9.21 (Bayes'sche Formel) Seien A_1, \ldots, A_n Alternativen und B ein Ereignis. Dann gilt

$$\mathbf{P}[A_k | B] = \frac{\mathbf{P}[B | A_k] \mathbf{P}[A_k]}{\sum_{i=1}^n \mathbf{P}[B | A_i] \mathbf{P}[A_i]}.$$
(9.6)

$$Speziell \ ist \ \mathbf{P}[A \,|\, B] = \frac{\mathbf{P}[B \,|\, A]\,\mathbf{P}[A]}{\mathbf{P}[B \,|\, A]\,\mathbf{P}[A] + \mathbf{P}[B \,|\, A^c]\,\mathbf{P}[A^c]}.$$

Beweis Es gilt

$$\mathbf{P}[A_k | B] = \frac{\mathbf{P}[A_k \cap B]}{\mathbf{P}[B]} = \frac{\mathbf{P}[B | A_k] \mathbf{P}[A_k]}{\mathbf{P}[B]}.$$

Setze jetzt (9.5) für P[B] ein.

Beispiel 9.22 Bei der Produktion gewisser elektronischer Bauteile sind 2% der Ware defekt. Ein schnelles Testverfahren erkennt ein defektes Bauteil mit Wahrscheinlichkeit 95%, meldet aber bei 10% der intakten Bauteile falschen Alarm.

Mit welcher Wahrscheinlichkeit ist ein als defekt erkanntes Bauteil wirklich defekt?

Wir machen die folgende Modellierung. Seien

 $A := \{ \text{Bauteil ist defekt} \}$

 $B := \{ \text{Bauteil wird als defekt deklariert} \}$

sowie

$$P[A] = 0.02, P[A^c] = 0.98,$$

$$P[B|A] = 0.95, P[B|A^c] = 0.1.$$

Die Bayes'sche Formel liefert

$$\mathbf{P}[A|B] = \frac{\mathbf{P}[B|A]\mathbf{P}[A]}{\mathbf{P}[B|A]\mathbf{P}[A] + \mathbf{P}[B|A^c]\mathbf{P}[A^c]}$$
$$= \frac{0.95 \cdot 0.02}{0.95 \cdot 0.02 + 0.1 \cdot 0.98} = \frac{19}{117} \approx 0.162.$$

Andererseits ist die Wahrscheinlichkeit, dass ein nicht erkanntes Bauteil dennoch defekt ist

$$\mathbf{P}[A|B^c] = \frac{0.05 \cdot 0.02}{0.05 \cdot 0.02 + 0.9 \cdot 0.98} = \frac{1}{883} \approx 0.00113.$$

9.4 Kenngrößen von Verteilungen

Wir wollen wesentliche Eigenschaften von Verteilungen reeller Zufallsvariablen durch Angabe einiger weniger Zahlen angeben. Dabei unterscheiden wir zwei Kategorien von Kenngrößen:

- Lagemaße geben an, wo die Verteilung konzentriert ist,
- Streumaße geben an, wie groß die Variabilität der Werte ist.

Im Folgenden ist X stets eine reelle Zufallsvariable mit Verteilung \mathbf{P}_X .

9.4.1 Lagemaße

Der Median m ist das einfachste Lagemaß. Es ist diejenige Zahl, sodass X mit Wahrscheinlichkeit $\frac{1}{2}$ Werte kleiner als m annimmt und mit Wahrscheinlichkeit $\frac{1}{2}$ Werte größer als m. In gewisser Weise ist der Median also die Mitte der Verteilung von X. Ganz genau lässt sich dies aber nicht in allen Fällen einrichten:

- (i) Sei X gleichverteilt auf $\mathbb{W} = \{1, 2, 3, 4\}$. Dann hat jede Zahl zwischen 2 und 3 die Eigenschaft, die wir oben für den Median gefordert haben. Der Median muss also nicht eindeutig sein.
- (ii) Sei X gleichverteilt auf $\mathbb{W} = \{1, 2, 3\}$. Dann ist klar 2 die Mitte der Verteilung. Allerdings ist $\mathbf{P}[X \le 2] = \frac{2}{3}$ und nicht $\frac{1}{2}$. Genauso ist $\mathbf{P}[X \ge 2] = \frac{2}{3}$ und nicht $\frac{1}{2}$.

Das Problem (ii) können wir beheben, wenn wir die Definition des Median etwas vorsichtiger fassen. Das Problem (i) bleibt hingegen. Im Allgemeinen gibt es ein ganzes Intervall von Zahlen (hier [2,3]), die als Median in Frage kommen. Für Verteilungen mit Dichte f, die überall echt positiv ist, ist der Median jedoch eindeutig.

Definition 9.23 (Median) Wir nennen jede Zahl $m \in \mathbb{R}$ mit

$$\mathbf{P}[X \le m] \ge \frac{1}{2}$$
 und $\mathbf{P}[X \ge m] \ge \frac{1}{2}$

einen **Median** von \mathbf{P}_X .

Etwas allgemeiner können wir die
jenige Stelle m_{α} (für $\alpha \in (0,1)$ betrachten, für die der Anteil α der Verteilung links von m_{α} liegt und der Anteil $1-\alpha$ rechts von m_{α} .

Definition 9.24 (Quantile) Sei $\alpha \in (0,1)$. Jede Zahl $m_{\alpha} \in \mathbb{R}$ mit der Eigenschaft

$$\mathbf{P}[X \le m_{\alpha}] \ge \alpha$$
 und $\mathbf{P}[X \ge m_{\alpha}] \ge 1 - \alpha$

heißt ein α -Quantil von \mathbf{P}_X . Speziell ist $m_{1/2}$ ein Median.

Manchmal wird ein $(1 - \alpha)$ -Quantil auch α -**Fraktil** genannt.

 \Diamond

Beispiel 9.25 Betrachte die Binomialverteilung $b_{20,0.6}$. Wir suchen die α -Quantile für $\alpha = 0.05$, $\alpha = \frac{1}{2}$ und $\alpha = 0.9$. Dazu berechnen wir die Tabelle der Verteilungsfunktion

$$F(k) := \sum_{i=0}^{k} b_{20,0.6}(i) = \sum_{i=0}^{k} {20 \choose i} 0.6^{i} \cdot 0.4^{20-i}$$

mit dem Taschenrechner (oder Computer):

k	F(k)	k	F(k)
0	$1.096 \cdot 10^{-8}$		
1	$3.408 \cdot 10^{-7}$	11	0.4044
2	$5.041 \cdot 10^{-6}$	12	0.5841
3	$4.734 \cdot 10^{-5}$	13	0.75
4	$3.170 \cdot 10^{-4}$	14	0.8744
5	$1.612 \cdot 10^{-3}$	15	0.949
6	0.0064	16	0.984
7	0.0210	17	0.9964
8	0.0565	18	0.9995
9	0.1275	19	0.99996
10	0.2447	20	1

Wir lesen ab: $m_{0.05} = 8$, $m_{1/2} = 12$ und $m_{0.9} = 15$.

Beispiel 9.26 Wir betrachten die Normalverteilung $\mathcal{N}_{0,1}$ mit Dichte $f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$. Um die Quantile zu berechnen, brauchen wir zunächst eine Tabelle der Werte für die Verteilungsfunktion

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt.$$
 (9.7)

Siehe hierzu die Tabelle in Anhang A.1. Mit Hilfe der Tabelle bestimmen wir:

α	m_{lpha}
0.001	-3.090
0.005	-2.576
0.01	-2.326
0.025	-1.960
0.05	-1.645
0.1	-1.282
0.5	0.000
0.9	1.282
0.95	1.645
0.975	1.960
0.99	2.326
0.995	2.576
0.999	3.090

Es gilt also z.B. $\mathbf{P}[X \ge 1.96] = 1 - 0.975 = 0.025 = 2.5\%$. Andererseits ist aus Symmetriegründen $\mathbf{P}[X \le -1.96] = \mathbf{P}[X \ge 1.96]$. Wir erhalten also

$$P[|X| \ge 1.96] = P[X \le -1.96] + P[X \ge 1.96] = 2P[X \le -1.96] = 5\%.$$

Analog erhalten wir etwa

$$\mathbf{P}[|X| \ge 2.576] = 1\%.$$

Änderung von Dichte und Quantilen unter Verschiebung und Streckung

Sei X eine reelle Zufallsvariable mit Dichte f und Verteilungsfunktion F. Sei $a \in \mathbb{R}$ und b > 0. Wir definieren eine neue Zufallsvariable Y, indem wir die Werte von X um den Faktor b strecken und dann um a verschieben:

$$Y := a + bX$$
.

Wie können wir die Verteilungsfunktion G und die Dichte g von Y bestimmen?

Es ist

$$\begin{split} G(y) &= \mathbf{P}[Y \le y] = \mathbf{P}[a + bX \le y] \\ &= \mathbf{P}[bX \le y - a] \\ &= \mathbf{P}[X \le (y - a)/b] = F\left(\frac{y - a}{b}\right). \end{split}$$

Es gilt also

$$F(x) = G(a + bx).$$

Die Dichte erhalten wir durch Ableiten von G mit der Kettenregel

$$g(y) = G'(y) = \frac{1}{b}F'\left(\frac{y-a}{b}\right) = \frac{1}{b}f\left(\frac{y-a}{b}\right). \tag{9.8}$$

Es folgt für das α -Quantil m_{α}^{Y} von Y:

$$m_{\alpha}^{Y} = a + b m_{\alpha}^{X}$$
.

Beispiel 9.27 Es sei X standard-normalverteilt, also $X \sim \mathcal{N}_{0,1}$ mit Dichte $f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$. Dann hat Y = a + bX die Dichte

$$g(y) = \frac{1}{\sqrt{2\pi b^2}} \exp\left(-\frac{(y-a)^2}{2b^2}\right).$$

Wir nennen die Verteilung mit dieser Dichte die **Normalverteilung** mit Parametern a und b^2 und schreiben \mathcal{N}_{a,b^2} .

Ist $Y \sim \mathcal{N}_{20,3}$ (das heißt, a=20 und $b=\sqrt{3}$), so ist etwa der Median $m_{1/2}=20$ und das 10%-Quantil $m_{0.1}=20+\sqrt{3}\cdot(-1.282)=17.78$ (vergleiche Tabelle in Beispiel 9.26).

Erwartungswert

Das zweite wichtige Lagemaß ist der Erwartungswert einer Zufallsvariablen.

Definition 9.28 (Erwartungswert) Sei X eine Zufallsvariable mit Wertebereich $\mathbb{W} \subset \mathbb{R}$.

(i) Ist $\mathbb{W} \subset \mathbb{R}$ diskret, so definieren wir den Erwartungswert von X durch

$$\mathbf{E}[X] := \sum_{w \in \mathbb{W}} w \, \mathbf{P}[X = w].$$

(ii) Ist $\mathbb{W} \subset \mathbb{R}$ ein Intervall (möglicherweise ganz \mathbb{R}), und hat X die Dichte f, so setzen wir

$$\mathbf{E}[X] := \int_{-\infty}^{\infty} x f(x) \, dx.$$

Wir nehmen dabei jeweils an, dass die Summe (mit evtl. unendlich vielen Summanden) endlich ist, bzw. dass das Integral existiert (und endlich ist). In diesem Fall sagen wir, dass der Erwartungswert von X existiert.

Beispiel 9.29 (i) Binomialverteilung: $X \sim b_{n,p}$. Dann ist (mit der Substitution l = k - 1)

$$\mathbf{E}[X] = \sum_{k=0}^{n} k \binom{n}{k} p^{k} (1-p)^{n-k} = \sum_{k=1}^{n} k \binom{n}{k} p^{k} (1-p)^{n-k}$$

$$= np \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)!((n-1)-(k-1))!} p^{k-1} (1-p)^{(n-1)-(k-1)}$$

$$= np \sum_{l=0}^{n-1} \frac{(n-1)!}{l!((n-1)-l)!} p^{l} (1-p)^{(n-1)-l}$$

$$= np \sum_{l=0}^{n-1} b_{n-1,p}(l) = np,$$

wobei wir im letzten Schritt ausgenutzt haben, dass sich die Gewichte der Wahrscheinlichkeitsverteilung $b_{n-1,p}$ zu 1 summieren.

(ii) Poisson-Verteilung: $X \sim \text{Poi}_{\lambda}$. Dann ist

$$\begin{split} \mathbf{E}[X] &= \sum_{k=0}^{\infty} e^{-\lambda} \, \frac{\lambda^k}{k!} \cdot k = \sum_{k=1}^{\infty} e^{-\lambda} \, \frac{\lambda^k}{k!} \cdot k \\ &= \lambda \sum_{k=1}^{\infty} e^{-\lambda} \, \frac{\lambda^{k-1}}{(k-1)!} = \lambda \sum_{l=0}^{\infty} e^{-\lambda} \, \frac{\lambda^l}{l!} \\ &= \lambda \sum_{l=0}^{\infty} \mathrm{Poi}_{\lambda}(l) = \lambda, \end{split}$$

wobei wir im letzten Schritt ausgenutzt haben, dass sich die Gewichte der Wahrscheinlichkeitsverteilung Poi $_\lambda$ zu 1 summieren.

 \Diamond

 \Diamond

(iii) Normalverteilung $X \sim \mathcal{N}_{0,1}$, Dichte $f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$. Dann ist

$$\mathbf{E}[X] = \int_{-\infty}^{\infty} x \, \frac{1}{\sqrt{2\pi}} \, e^{-x^2/2} \, dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0} x \, e^{-x^2/2} \, dx + \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} x \, e^{-x^2/2} \, dx$$
$$= \frac{1}{\sqrt{2\pi}} (-e^{-x^2/2}) \Big|_{-\infty}^{0} + \frac{1}{\sqrt{2\pi}} (-e^{-x^2/2}) \Big|_{0}^{+\infty} = -1 + 1 = 0.$$

(iv) Exponentialverteilung. Dichte $f(x) = \vartheta e^{-\vartheta x}$ für $x \ge 0$, wo $\vartheta > 0$ ein Parameter ist. Dann ist (siehe (7.7) in Beispiel 7.21)

$$\mathbf{E}[X] = \int_0^\infty x \vartheta \, e^{-\vartheta x} \, dx = \frac{1}{\vartheta} \int_0^\infty y \, e^{-y} \, dy = \frac{1}{\vartheta}.$$

(v) Cauchy-Verteilung. X mit Dichte $f(x) = \frac{1}{\pi} \frac{1}{1+x^2}$. Eine Stammfunktion von $\frac{x}{1+x^2}$ ist $\frac{1}{2} \log(1+x^2)$. Also ist

$$\int_{-\infty}^{\infty} x f(x) dx = \int_{-\infty}^{0} \frac{1}{\pi} \frac{x}{1+x^2} dx + \int_{0}^{\infty} \frac{1}{\pi} \frac{x}{1+x^2} dx$$
$$= \frac{1}{2\pi} \log(1+x^2) \Big|_{-\infty}^{0} + \frac{1}{2\pi} \log(1+x^2) \Big|_{0}^{\infty} = -\infty + \infty.$$

Mit anderen Worten: Der Erwartungswert ist für die Cauchyverteilung nicht definiert. \diamond

Satz 9.30 (Linearität des Erwartungswertes) Es seien X und Y reelle Zufallsvariablen mit Erwartungswert sowie $a, b \in \mathbb{R}$. Dann gelten

- (i) $\mathbf{E}[a+bX] = a+b\mathbf{E}[X],$
- (ii) $\mathbf{E}[X + Y] = \mathbf{E}[X] + \mathbf{E}[Y]$.

Die Formel in (i) gilt ähnlich für den Median und die anderen Quantile. Eine vergleichbare Aussage zu (ii) gibt es aber für den Median nicht. Allein schon durch diese Additivitätseigenschaft ist der Erwartungswert in vielen Situationen nützlicher als der Median. Wir werden später noch sehen, dass der Erwartungswert das typische Verhalten von Summen von Zufallsvariablen besser beschreibt als der Median.

Beispiel 9.31 Sei $Y \sim \mathcal{N}_{\mu,\sigma^2}$ für gewisse Zahlen $\mu \in \mathbb{R}$ und $\sigma^2 > 0$. Dann ist $Y = \mu + \sigma X$, wo $X \sim \mathcal{N}_{0,1}$ ist. Also ist

$$\mathbf{E}[Y] = \mu + \sigma \, \mathbf{E}[X] = \mu.$$

Übung: Man zeige diese Aussage direkt mit Hilfe der Dichteformel für $\mathcal{N}_{\mu,\sigma^2}$.

Beispiel 9.32 Die Binomialverteilung $b_{n,p}$ erhalten wir als Verteilung einer Zufallsvariable X, wenn X die Anzahl von Erfolgen n unabhängiger Experimente mit Erfolgswahrscheinlichkeit p ist, also

$$X = \sum_{i=1}^{n} Y_i,$$

wo Y_1, \ldots, Y_n unabhängig sind und $\mathbf{P}[Y_i = 1] = p$, $\mathbf{P}[Y_i = 0] = 1 - p$. Offenbar ist $\mathbf{E}[Y_i] = p$. Aus dem Satz folgt nun

$$\mathbf{E}[X] = \sum_{i=1}^{n} \mathbf{E}[Y_i] = np.$$

Diese Aussage hatten wir in Beispiel 9.29(i) noch viel mühsamer gezeigt.

9.4.2 Streuung

Ein einfaches Maß dafür, wie weit die Werte einer Zufallsvariablen streuen, ist die Varianz, die wir als mittlere quadratische Abweichung vom Erwartungswert definieren.

Definition 9.33 Sei X eine reelle Zufallsvariable (mit Wertebereich $\mathbb{W} \subset \mathbb{R}$) mit endlichem Erwartungswert. Dann definieren wir die **Varianz** von X durch

$$Var[X] := \mathbf{E}[(X - \mathbf{E}[X])^2] = \mathbf{E}[X^2] - \mathbf{E}[X]^2.$$

Konkret ist dies für W diskret:

$$\operatorname{Var}[X] = \left(\sum_{w \in \mathbb{W}} w^2 \mathbf{P}[X = w]\right) - \left(\sum_{w \in \mathbb{W}} w \mathbf{P}[X = w]\right)^2.$$

 $F\ddot{u}r \ \mathbb{W} \subset \mathbb{R}$ ein Intervall und X mit Dichte f:

$$Var[X] = \left(\int_{-\infty}^{\infty} x^2 f(x) dx\right) - \left(\int_{-\infty}^{\infty} x f(x) dx\right)^2.$$

Wir nennen $\sigma := \sqrt{\operatorname{Var}[X]}$ die **Streuung** oder Standardabweichung von X.

Beispiel 9.34 (i) Binomialverteilung. $X \sim b_{n,p}$. Dann ist

$$\mathbf{E}[X^2] = \sum_{k=0}^{n} k^2 \binom{n}{k} p^k (1-p)^{n-k} = \dots = np(1-p) + (np)^2.$$

Die Rechnung verläuft dabei ähnlich wie für den Erwartungswert. Wir wissen schon, dass $\mathbf{E}[X] = np$ ist, also ist

$$\operatorname{Var}[X] = \mathbf{E}[X^2] - \mathbf{E}[X]^2 = np(1-p)$$
 und $\sigma = \sqrt{np(1-p)}$.

(ii) **Poisson-Verteilung.** Sei $X \sim \text{Poi}_{\lambda}$. Dann ist

$$\begin{split} \mathbf{E}[X^2] &= \sum_{k=1}^{\infty} k^2 \, e^{-\lambda} \frac{\lambda^k}{k!} \\ &= \sum_{k=2}^{\infty} k(k-1) \, e^{-\lambda} \frac{\lambda^k}{k!} + \underbrace{\sum_{k=1}^{\infty} k \, e^{-\lambda} \frac{\lambda^k}{k!}}_{=\mathbf{E}[X] = \lambda} \\ &= \lambda + \lambda^2 \sum_{k=2}^{\infty} e^{-\lambda} \frac{\lambda^{k-2}}{(k-2)!} \\ &= \lambda + \lambda^2 \sum_{l=0}^{\infty} e^{-\lambda} \frac{\lambda^l}{l!} \\ &= \lambda + \lambda^2. \end{split}$$

Es folgt

$$Var[X] = \mathbf{E}[X^2] - \mathbf{E}[X]^2 = \lambda^2 + \lambda - \lambda^2 = \lambda$$

und

$$\sigma = \sqrt{\lambda}$$
.

(iii) Normalverteilung. $X \sim \mathcal{N}_{0,1}$, Dichte $f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$. Dann ist mit partieller Integration

$$\mathbf{E}[X^{2}] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x^{2} e^{-x^{2}/2} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x \cdot \left(x e^{-x^{2}/2} \right) dx$$
$$= \frac{1}{\sqrt{2\pi}} \left(-x e^{-x^{2}/2} \right) \Big|_{-\infty}^{\infty} + \underbrace{\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-x^{2}/2} dx}_{=1}.$$

Es gilt $\lim_{x\to\infty} \frac{x}{e^{x^2/2}} = 0$, weil x langsamer nach ∞ geht als $e^{x^2}/2$ (siehe Faustregel 2.10 auf Seite 20). Analog ist $\lim_{x\to-\infty} \frac{x}{e^{x^2/2}} = 0$. Daher ist $\left(-xe^{-x^2/2}\right)\Big|_{-\infty}^{\infty} = 0$, und wir erhalten $\mathbf{E}[X^2] = 1$. Wegen $\mathbf{E}[X] = 0$ folgt

$$Var[X] = 1.$$

(iv) **Exponentialverteilung.** $X \sim \exp_{\vartheta}$ mit Dichte $f(x) = \vartheta e^{-\vartheta x}$. Dann ist (mit der Substitution $y = \vartheta x$ und unter Benutzung von (7.7) in Beispiel 7.21)

$$\mathbf{E}[X^{2}] = \int_{0}^{\infty} x^{2} \, \vartheta \, e^{-\vartheta x} \, dx = \frac{1}{\vartheta^{2}} \int_{0}^{\infty} y^{2} \, e^{-y} \, dy = \frac{2}{\vartheta^{2}}.$$

Wegen $\mathbf{E}[X] = \frac{1}{\vartheta}$ folgt

$$Var[X] = \frac{2}{\vartheta^2} - \frac{1}{\vartheta^2} = \frac{1}{\vartheta^2}.$$

Wenn die Varianz von X gleich Null ist, streut X gar nicht, nimmt also nur einen einzigen Wert an. Dieser ist dann automatisch der Erwartungswert. Wir haben also den folgenden Satz.

Satz 9.35 Es gilt Var[X] = 0 genau dann, wenn $X = \mathbf{E}[X]$ mit Wahrscheinlichkeit 1.

Satz 9.36 Es seien X und Y unabhängig und mit endlicher Varianz. Es seien $a,b \in \mathbb{R}$. Dann gelten

- (i) $Var[a + bX] = b^2 Var[X],$
- (ii) Var[X + Y] = Var[X] + Var[Y].

Beispiel 9.37 Sei $Y = \mathcal{N}_{\mu,\sigma^2}$. Dann ist $Y = \mu + \sigma X$, wo $X \sim \mathcal{N}_{0,1}$ ist. Es folgt

$$Var[Y] = Var[\sigma X] = \sigma^2 Var[X] = \sigma^2.$$

Wegen $\mathbf{E}[Y] = \mu$ wird jetzt klar, welche Bedeutung die Parameter in der Bezeichnung $\mathcal{N}_{\mu,\sigma^2}$ haben!

Folgerung: Sind $X_1, X_2, ...$ unabhängig und mit der selben Verteilung (mit Varianz $Var[X_i] < \infty$), wir sagen auch, dass $X_1, X_2, ...$ unabhängig und identisch verteilt (u.i.v.) sind, und ist $S_n = X_1 + ... + X_n$, so gilt

$$\operatorname{Var}\left[\frac{1}{n}S_n\right] = \frac{1}{n^2}\operatorname{Var}[S_n] = \frac{1}{n^2}\sum_{i=1}^n\operatorname{Var}[X_i] = \frac{1}{n}\operatorname{Var}[X_1] \stackrel{n \to \infty}{\longrightarrow} 0.$$

Dies legt nahe, dass $\frac{1}{n}S_n$ für große n nahe bei $\mathbf{E}\left[\frac{1}{n}S_n\right] = \mathbf{E}[X_1]$ liegt. In der Tat:

Satz 9.38 (Gesetz der großen Zahl) Unter den obigen Bedingungen gilt

$$\lim_{n \to \infty} \frac{1}{n} S_n = \mathbf{E}[X_1] \quad mit \ Wahrscheinlichkeit \ 1.$$

Für jedes $\varepsilon > 0$ gilt

$$\mathbf{P}\left[\left|\frac{1}{n}S_n - \mathbf{E}[X_1]\right| > \varepsilon\right] \stackrel{n \to \infty}{\longrightarrow} 0.$$

Wie schnell geht die Konvergenz in diesem Satz? Auskunft gibt der Zentrale Grenzwertsatz. Sei

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt$$

die Verteilungsfunktion von $\mathcal{N}_{0,1}$ mit der Festsetzung $\Phi(-\infty) = 0$ und $\Phi(\infty) = 1$.

Satz 9.39 (Zentraler Grenzwertsatz) Seien X_1, X_2, \dots wie oben und $\sigma := \sqrt{\operatorname{Var}[X_1]}$ sowie $\mu = \mathbf{E}[X_1]$. Setze

$$S_n^* := \frac{S_n - n \, \mu}{\sqrt{n\sigma^2}} \quad \text{für } n \in \mathbb{N}.$$

 $Dann \ gilt \ f\ddot{u}r - \infty \leq a < b \leq \infty$

$$\mathbf{P}\left[a \le S_n^* \le b\right] \stackrel{n \to \infty}{\longrightarrow} \Phi(b) - \Phi(a). \tag{9.9}$$

Hat X eine Dichte f, so hat S_n^* eine Dichte, die wir f_n nennen, und es gilt

$$f_n(x) \xrightarrow{n \to \infty} \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$
 für jedes $x \in \mathbb{R}$.

Ist speziell $Y_n \sim b_{n,p}$ für gewisses $p \in (0,1)$, so gilt die Formel von der **Normalapproximation**

$$\frac{Y_n - np}{\sqrt{np(1-p)}} \approx \mathcal{N}_{0,1} \quad \text{für großes } n \in \mathbb{N}, \tag{9.10}$$

also

$$\mathbf{P}[Y_n \le x] \approx \Phi\left(\frac{x - np}{\sqrt{np(1 - p)}}\right) \quad \text{für jedes } x \in \mathbb{R}.$$
 (9.11)

Fazit: Wenn man viele unabhängige Summanden betrachtet, sind die wichtigen Kenngrößen: Erwartungswert und Varianz.

- Faustregel 9.40 (i) Bei sehr vielen (n groß) Versuchen, die jeweils mit sehr geringer Wahrscheinlichkeit $p \approx \lambda/n$ erfolgreich sind, ist die Gesamtzahl der Erfolge in etwa Poissonverteilt mit Parameter λ . Der Parameter muss dann oft empirisch bestimmt werden. (Siehe Beispiel mit den Blitztoten.)
 - (ii) Bei sehr vielen zufälligen Einflüssen, die jeweils einen kleinen Beitrag liefern, ist der Gesamteffekt in etwa normalverteilt mit gewissen Parametern μ und σ^2 . Auch hier müssen die Parameter oft empirisch bestimmt werden.

Für die Binomialverteilung $b_{n,p}$ etwa liefert die Normalapproximation brauchbare Ergebnisse, falls np(1-p) > 9.

Beispiel 9.41 Bei einer bestimmten Bohnensorte sind 25% der Bohnen schwarz und die anderen weiß. Wie groß ist bei einer Probe von $n = 10\,000$ Bohnen die Wahrscheinlichkeit, mehr als 2600 schwarze Bohnen zu haben?

Sei X = Anzahl der schwarzen Bohnen in der Stichprobe. Dann ist $X \sim b_{n,p}$ mit p = 0.25 und $n = 10\,000$. Es ist $np(1-p) = 1875 \gg 9$, also wird die Normalapproximation verwendet.

$$\mathbf{P}[X > 2600] = 1 - \mathbf{P}[X \le 2600] \approx 1 - \Phi\left(\frac{2600 - 10000 \cdot 0.25}{\sqrt{10000 \cdot 0.25 \cdot 0.75}}\right)$$
$$= 1 - \Phi(2.31) = 1 - 0.9896 = 0.0104,$$

wobei wir den Wert $\Phi(2.31)$ in der Tabelle der Normalverteilung abgelesen haben.

Die Wahrscheinlichkeit dafür, mehr als 2600 schwarze Bohnen in der Stichprobe zu haben ist also etwa 1.04%.

Zum Vergleich: Der exakte Wert (ohne Normalapproximation) ist

$$\sum_{k=2601}^{10\,000} {10\,000 \choose k} 0.25^k \, 0.75^{10\,000-k} = 0.0103697\dots$$

Beispiel 9.42 (Polygene Vererbung) Wir nehmen an, dass ein phänotypisches Merkmal polygen vererbt wird, also als Summe vieler beteiligter Geneinflüsse. In vielen Fällen kann dann die Ausprägung des Merkmals mit brauchbarer Genauigkeit durch eine Normalverteilung beschrieben werden.

Solange man nicht besseres weiß, wird daher in vielen Fällen die Normalverteilung angenommen und dann probiert, die Parameter μ und σ^2 empirisch zu schätzen.

Beispiel 9.43 (Bakterienkultur) Wir nehmen an, dass ein gewisser Bakterientyp sich im Mittel alle 20 Minuten teilt. Dabei kann die tatsächliche Teilungszeit aber erheblichen Schwankungen unterworfen sein. Wenn wir mit einem Bakterium beginnen, wie groß ist dann die Population X nach fünf Stunden? Wir erwarten größenordnungsmäßig 15 Teilungen, also $2^{15} = 32\,768$ Bakterien. Dies ist als Zahl groß genug, um die Normalverteilung anzusetzen, aber in diesem Fall funktioniert das nicht: Wenn die erste Zelle sich sehr schnell teilt, haben wir doppelt so viele Zellen, wenn sich die erste Zelle erst nach 40 Minuten teilt, haben wir nur halb so viele Zellen. Der Effekt, den die erste Zelle hat, ist also so groß, dass X nicht die Summe vieler kleiner Effekte ist. Daher ist die Normalverteilung hier kein gutes Modell.

Beispiel 9.44 Wir nehmen an, dass eine Messgröße, etwa elektrische Spannung, einen wahren Wert u hat, jedoch wird die fehlerbehaftete Größe

$$U = u + X$$

gemessen. Dabei ist X ein zufälliger kleiner Fehler. Es ist nicht rigoros zu rechtfertigen, kann aber als Arbeitshypothese angenommen werden, dass X die Summe vieler kleiner Einflüsse darstellt, etwa Messgerätefehler, atmosphärische Störungen, Rauschen jedweder Art,... Daher wird oft $X \sim \mathcal{N}_{0,\sigma_x^2}$, als normalverteilt mit Erwartungswert 0 und kleiner Streuung σ_X angenommen.

Wenn wir statt u eine abgeleitete Größe f(u) betrachten, etwa die elektrische Leistung $f(u) = \frac{u^2}{R}$ (wo R ein Ohm'scher Widerstand ist), wie sieht dann der Fehler von f(U) aus? Präzise gefragt: welche Verteilung hat der Fehler Y := f(U) - f(u)? Wenn f differenzierbar ist, ist für kleine Werte f

$$f(u+x) \approx f(u) + f'(u) \cdot x.$$

Da wir X als klein angenommen haben, können wir Y annähern durch

$$Y = f(U) - f(u) = f(u + X) - f(u) \approx f'(u) \cdot X.$$

Da $X \sim \mathcal{N}_{0,\sigma_X^2}$ ist, ist also Y ungefähr wie $\mathcal{N}_{0,\sigma_Y^2}$ verteilt mit $\sigma_Y = |f'(u)| \cdot \sigma_X$. Die Aussage wird auch **Fehlerfortpflanzungsgesetz** genannt.

9.4.3 Kovarianz

Wir betrachten (abhängige) Zufallsvariablen X und Y. Gesucht ist ein Maß für die Abhängigkeit. Die gemeinsame Verteilung von X und Y lässt sich vollständig beschreiben durch die Verteilungsfunktion

$$F(x,y) = \mathbf{P}[X \le x \text{ und } Y \le y].$$

Besonders wichtig ist der Fall, wo F nach x und y (stetig) differenzierbar ist. Wir nennen dann

$$f(x,y) := \frac{d}{dx}\frac{d}{dy}F(x,y)$$

die gemeinsame Dichte von X und Y. Es gilt für kleine Δx und Δy

$$\mathbf{P}[X \in [x, x + \Delta x], Y \in [y, y + \Delta y]] \approx f(x, y) \cdot \Delta x \cdot \Delta y.$$

Genauer gilt für $-\infty \le a < b \le \infty$ und $-\infty \le c < d \le \infty$

$$\mathbf{P}[a \le X \le b, c \le Y \le d] = \int_a^b \left(\int_c^d f(x, y) \, dy \right) \, dx = \int_c^d \left(\int_a^b f(x, y) \, dx \right) \, dy \tag{9.12}$$

Die Zufallsvariablen X und Y sind in diesem Falle genau dann unabhängig, wenn es Funktionen g und h gibt mit $f(x,y) = g(x) \cdot h(y)$, und g und h sind dann die Dichten von X und Y. In der Tat: ist f(x,y) = g(x)h(y), so ist

$$\begin{aligned} \mathbf{P}[a \leq X \leq b, \ c \leq Y \leq d] &= \int_{c}^{d} \left(\int_{a}^{b} g(x)h(y) \, dx \right) \, dy \\ &= \int_{c}^{d} h(y) \left(\int_{a}^{b} g(x) \, dx \right) \, dy \\ &= \left(\int_{a}^{b} g(x) \, dx \right) \left(\int_{c}^{d} h(y) \, dy \right) \\ &= \mathbf{P}[a \leq X \leq b] \cdot \mathbf{P}[c \leq Y \leq d]. \end{aligned}$$

Also sind X und Y dann unabhängig.

Sind X und Y diskret (nehmen also nur abzählbar viele Werte an, etwa ganzzahlige), so ist

$$F(x,y) = \sum_{u \le x} \sum_{v \le y} \mathbf{P}[X = u, Y = v].$$

Abbildung 9.1: Realisierungen von 1000 normalverteilten Zufallsvariablen, unkorreliert

Abbildung 9.2: Realisierungen von 1000 normalverteilten Zufallsvariablen, positiv korreliert

Abbildung 9.3: Realisierungen von 1000 normalverteilten Zufallsvariablen, negativ korreliert

X und Y sind genau dann unabhängig, wenn $\mathbf{P}[X=u,\,Y=v]=\mathbf{P}[X=u]\cdot\mathbf{P}[Y=v]$ für alle u,v ist.

Wie bekommen wir ein rechnerisches Maß für die Korrelation?

Definition 9.45 (Kovarianz) Sind X und Y Zufallsvariablen mit $Var[X], Var[Y] < \infty$, so nennen wir

$$Cov[X, Y] := \mathbf{E}[XY] - \mathbf{E}[X] \cdot \mathbf{E}[Y]$$

die Kovarianz von X und Y.

Haben speziell X und Y die gemeinsame Dichte f, so ist

$$Cov[X, Y] = \left(\int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} xy \, f(x, y) \, dy \right) \, dx \right) - \mathbf{E}[X] \, \mathbf{E}[Y].$$

Sind X und Y diskret, so ist

$$Cov[X, Y] = \left(\sum_{x,y} xy \mathbf{P}[X = x, Y = y]\right) - \mathbf{E}[X] \mathbf{E}[Y].$$

Ist Var[X] > 0 und Var[Y] > 0, so nennen wir

$$\varrho_{X,Y} := \frac{\operatorname{Cov}[X,Y]}{\sqrt{\operatorname{Var}[X]\operatorname{Var}[Y]}}$$

den Korrelationskoeffizienten von X und Y. Es ist stets $\varrho \in [-1, 1]$.

Interpretation:

- Figur 9.1: $\varrho = 0$, unkorrelierte Zufallsvariablen
- Figur 9.2: $\varrho > 0$, positiv korrelierte Zufallsvariablen
- Figur 9.3: $\varrho < 0$, negativ korrelierte Zufallsvariablen.

Je näher ϱ an 1 oder -1 liegt, desto mehr liegt die Verteilung von X und Y auf der Diagonalen konzentriert.

Definition 9.46 Die Zufallsvariablen X und Y heißen

- unkorreliert, falls $\varrho_{X,Y} = 0$,
- perfekt korreliert, falls $\varrho_{X,Y} = 1$ oder = -1,
- positiv korreliert, falls $\varrho_{X,Y} > 0$,
- negativ korreliert, falls $\varrho_{X,Y} < 0$.

Satz 9.47 (Rechenregeln) Seien X, Y, Z Zufallsvariablen mit endlicher Varianz und $a, b \in \mathbb{R}$. Dann gelten die folgenden Aussagen:

- (i) Cov[X, X] = Var[X],
- (ii) Cov[X, Y] = Cov[Y, X],
- (iii) $\operatorname{Cov}[aX + Y + b, Z] = a \operatorname{Cov}[X, Z] + \operatorname{Cov}[Y, Z].$
- (iv) Sind X und Y unabhängig, so gilt Cov[X, Y] = 0.

Beispiel 9.48 Wir nutzen die Rechenregeln aus dem vorigen Satz, um die Korrelation von Zufallsvariablen in einem Beispiel auszurechnen. Seien U, V unabhängig mit $\mathbf{E}[U] = \mathbf{E}[V] = 0$ und $\mathrm{Var}[U] = \mathrm{Var}[V] = 1$ (etwa $U, V \sim \mathcal{N}_{0,1}$) und $a, b, c \in \mathbb{R}$, wobei a und b nicht beide gleich Null sind.

Wir setzen

$$X := U$$
 und $Y := aU + bV + c$.

Intuitiv ist klar: $a=0 \iff X$ und Y unkorreliert. Und: je größer $\frac{a}{b}$ ist, desto besser sind X und Y korreliert, weil der gemeinsame Teil aU in Y gegenüber dem unabhängigen Teil bV dann dominiert.

Wir berechnen nun

$$\begin{aligned} \operatorname{Cov}[X,Y] &= \operatorname{Cov}[U,aU+bV+c] \\ &= a\operatorname{Cov}[U,U] + b\operatorname{Cov}[U,V] \\ &= a\operatorname{Var}[U] = a. \end{aligned}$$

Die Varianz von X ist Var[X] = Var[U] = 1, und die von Y ist

$$\begin{split} \operatorname{Var}[Y] &= \operatorname{Cov}[Y,Y] = \operatorname{Cov}[aU + bV, aU + bV] \\ &= a \operatorname{Cov}[U, aU + bV] + b \operatorname{Cov}[V, aU + bV] \\ &= a^2 \operatorname{Var}[U] + b^2 \operatorname{Var}[V] = a^2 + b^2. \end{split}$$

Wir erhalten so

$$\varrho_{X,Y} = \frac{\operatorname{Cov}[X,Y]}{\sqrt{\operatorname{Var}[X]\operatorname{Var}[Y]}} = \frac{a}{\sqrt{a^2 + b^2}}.$$

Tatsächlich liegt dies nahe bei 1, falls a > 0 und b betragsmäßig viel kleiner als a ist, und nahe bei -1, falls a < 0 und b betragsmäßig viel kleiner als a ist.

Ist speziell b = 0, also Y = aX + c (mit $a \neq 0$), so ist

$$\varrho_{X,Y} = \begin{cases} 1, & \text{falls } a > 0, \\ -1, & \text{falls } a < 0. \end{cases}$$

Kapitel 10

Deskriptive Statistik

10.1 Empirische Verteilungsfunktion

Eine Datenerhebung liefert die Daten $x_1, \ldots, x_n \in \mathbb{R}$. Die Reihenfolge spiele bei der Erhebung keine Rolle. Dann sind die Daten vollständig beschrieben, wenn wir die Häufigkeit jeder einzelnen Zahl $x \in \mathbb{R}$ angeben:

$$H_n(x) := \#\{i = 1, \dots, n : x_i = x\} = \text{Anzahl der } i \leq n \text{ mit } x_i = x$$

oder die relative Häufigkeit

$$h_n(x) := \frac{1}{n} H_n(x).$$

Gleichwertig damit ist die Angabe, welcher Anteil der Daten einen Wert von x oder kleiner liefert:

$$F_n(x) := \frac{1}{n} \# \{ i \le n : x_i \le x \} = \sum_{y \le x} h_n(x).$$

Wir nennen die Abbildung $x \mapsto F_n(x)$ die **empirische Verteilungsfunktion** der Beobachtungen x_1, \ldots, x_n .

Eine Standardannahme der Statistik ist, dass die erhobenen Daten unabhängige Realisierungen eines Zufallsexperiments sind und jeweils die gleiche Verteilung haben. Unter dieser Annahme nähert sich die empirische Verteilungsfunktion für große n der Verteilungsfunktion des Zufallsgesetzes an.

Satz 10.1 (Glivenko-Cantelli) Seien $X_1, X_2, ...$ unabhängige identisch verteilte Zufallsvariablen mit Verteilungsfunktion F. Dann gilt

$$\frac{1}{n}\#\{i \le n: X_i \le x\} \stackrel{n \to \infty}{\longrightarrow} F(x) \quad \text{für jedes } x \in \mathbb{R}.$$

Grafisch kann man erhobene Daten auf viele unterschiedliche Arten darstellen. Die Geläufigste ist das **Histogramm**. Hierbei werden die Häufigkeiten $H_n(x)$ oder die relativen Häufigkeiten als vertikale Balken in ein Koordinatensystem eingetragen. Wenn alle Zahlen unterschiedlich sind, etwa weil die Genauigkeit bei der Messung eines Merkmals so groß ist, dass keine zwei Werte übereinstimmen, werden Histogramme verwendet, bei denen die Daten zuvor zu Kategorien zusammen gefasst werden.

10.2 Kenngrößen

Ziel einer jeder empirischen Wissenschaft ist es, Zusammenhänge zwischen Wahrnehmungsdaten zu entdecken. Dies ist äquivalent damit, dass die Komplexität der Daten durch eine einfache Beschreibung reduziert wird. Wir geben hier die gebräuchlichsten Kenngrößen an, die einen Datensatz grob beschreiben. Diese Kenngrößen sind an diejenigen aus dem letzten Kapitel angelehnt: Erwartungswert, Quantile und Median, sowie Streuung.

Wir nehmen im Folgenden stets an, dass n Zahlen x_1, \ldots, x_n gegeben sind.

Definition 10.2 Wir definieren das arithmetische Mittel oder Stichprobenmittel durch

$$\overline{x} := \frac{1}{n} \sum_{i=1}^{n} x_i.$$

Offenbar ist \overline{x} ein Maß für die Lage der Stichprobe. Es beschreibt die Lage in dem Sinne optimal, dass es unter allen Zahlen a die folgende Fehlerfunktion minimiert

$$Q(a) := \sum_{i=1}^{n} (x_i - a)^2.$$

Also gilt $Q(a) > Q(\overline{x})$ für jedes $a \neq \overline{x}$. Wir nennen Q die Summe der Fehlerquadrate. Das Verfahren, eine Größe zu wählen, die eine quadratische Fehlerfunktion minimiert, heißt **Methode der kleinsten Quadrate**¹. Um zu prüfen, dass \overline{x} tatsächlich Q minimiert, müssen wir Q ableiten und erhalten

$$0 \stackrel{!}{=} Q'(a) = -2\sum_{i=1}^{n} (x_i - a) = 2n(a - \overline{x}).$$

Die einzige kritische Stelle von Q liegt also bei $a = \overline{x}$, und die zweite Ableitung ist Q''(a) = 2n > 0, also liegt ein (globales) Minimum bei $a = \overline{x}$ vor.

Der **Stichprobenmedian** m ist diejenige Zahl, sodass die Hälfte der beobachteten Werte kleiner ist, die andere Hälfte größer. Genauer gesagt:

$$\#\{i \le n : x_i \le m\} \ge \frac{n}{2} \quad \text{und} \quad \#\{i \le n : x_i \ge m\} \ge \frac{n}{2}.$$

Mit anderen Worten: m ist der Median, der zu der empirischen Verteilungsfunktion F_n gehört. Eine bequeme Methode, den Median zu beschreiben liefert die so genannte **Ordnungsstatistik**: Hier werden die Werte x_1, \ldots, x_n der Größe nach sortiert aufgeschrieben:

$$x_{(1)} \le x_{(2)} \le \ldots \le x_{(n)}.$$

Die Zahlen $x_{(1)}, \ldots, x_{(n)}$ sind also die selben wie x_1, \ldots, x_n , auch mit der jeweils gleichen Häufigkeit des Auftretens, jedoch eben der Größe nach sortiert.

Beispiel 10.3 Sind $(x_1, \ldots, x_6) = (2, 3, 5, 1, 3, -1)$ gegeben, so ist die Ordnungsstatistik

$$(x_{(1)}, \dots, x_{(6)}) = (-1, 1, 2, 3, 3, 5).$$

 \Diamond

¹nach Carl Friedrich Gauß

10.2 Kenngrößen 125

Für die Definition des Median müssen wir zwischen geraden und ungeraden n unterscheiden.

Definition 10.4 (Median) Der empirische Median m einer Stichprobe wird definiert als

$$m := \left\{ \begin{array}{c} x_{((n+1)/2)}, & \textit{falls } n \textit{ ungerade}, \\ \\ \frac{x_{(n/2)} + x_{((n/2)+1)}}{2}, & \textit{falls } n \textit{ gerade}. \end{array} \right.$$

Analog zum empirischen Median kann man für jedes $\alpha \in (0,1)$ ein **empirisches** α -Quantil definieren

$$m_{\alpha} := x_{\lceil \alpha n \rceil},$$

wobei die eckigen Klammern andeuten, dass wir auf ganze Zahlen aufrunden. Bis auf Rundungsungenauigkeiten ist also der Median $m = m_{1/2}$.

Bemerkung 10.5 Man kann zeigen, dass der empirische Median die lineare Fehlerfunktion

$$G(a) := \sum_{i=1}^{n} |x_i - a|$$

minimiert. Die Funktion G ist sehr viel weniger empfindlich für das Auftreten von exzeptionell großen oder kleinen Werten (so genannten $Ausrei\betaern$), als es der Quadratische Fehler Q ist. Liegen m und \overline{x} weit auseinander, so deutet dies darauf hin, dass es Ausreißer gibt, die eventuell gesondert untersucht werden müssen, weil sie

- interessante Informationen wiedergeben,
- oder schlicht auf Ablesefehlern, Übermittlungsfehlern oder Ähnlichem beruhen.

Als Stichprobenvarianz (oder empirische Varianz) bezeichnen wir die Größe

$$s_n^2 := \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2 = \overline{x^2} - \overline{x}^2,$$
 wobei $\overline{x^2} = \frac{1}{n} \sum_{i=1}^n x_i^2;$

als empirische Streuung oder empirische Standardabweichung die Größe $s_n := \sqrt{s_n^2}$.

Oftmals wird statt der empirischen Varianz die so genannte **erwartungstreue Varianzschätzung**² verwendet:

$$s_{n-1}^2 := \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2 = \frac{n}{n-1} (\overline{x^2} - \overline{x}^2).$$
 (10.1)

Wir setzen zudem $s_{n-1} = \sqrt{s_{n-1}^2}$.

Beispiel 10.6 Wir messen eine Größe, die einen wahren, aber unbekannten Wert μ hat, mehrmals, jeweils mit einem gewissen Fehler behaftet. Wie können wir den wahren Wert ermitteln, wie den Fehler unserer Schätzung?

²die Begriffsbildung wird später noch klar werden

Dazu folgende Überlegung: Sind X_1, \ldots, X_n unabhängig und identisch verteilt, so ist s_{n-1}^2 ein Schätzwert für die Varianz $\operatorname{Var}[X_1]$. Nach dem zentralen Grenzwertsatz gilt für großes n approximativ

$$\overline{X} := \frac{1}{n}(X_1 + \ldots + X_n) \sim \mathcal{N}_{\mu,\sigma^2/n}.$$

Die Streuung von \overline{X} ist also $\frac{\sigma}{\sqrt{n}}$. Es gilt also (approximativ),

$$\mathbf{P}\left[\left|\overline{X} - \mu\right| \ge \frac{\sigma}{\sqrt{n}}\right] \approx 1 - \Phi(1) - \Phi(-1) \approx 31.74\%$$

$$\mathbf{P}\left[\left|\overline{X} - \mu\right| \ge 2\frac{\sigma}{\sqrt{n}}\right] \approx 1 - \Phi(2) - \Phi(-2) \approx 4.54\%.$$

Der Fehler bewegt sich also in der $Gr\"{o}\beta enordnung$ von σ/\sqrt{n} . Den Wert von σ kennt man im Allgemeinen nicht, er wird daher durch s_{n-1} geschätzt. Daher wird in den Experimentalwissenschaften ein fehlerbehaftetes Messergebnis oft der Form

$$\overline{x} \pm (s_{n-1}/\sqrt{n})$$

angegeben. Oft werden von \overline{x} nur die Dezimalstellen bis zur ersten Stelle angegeben, die sich durch den Fehler ändern würde, der Fehler wird dann oft aufgerundet. Beispielsweise würde man 1.7561092 ± 0.0231 angeben als 1.76(3). Manchmal werden zwei Stellen angegeben 1.756(23).

Wir wollen beispielsweise den Radius einer Kreisscheibe messen und erhalten als Messwerte

i	1	2	3	4	5	6	7	8	9	10
x_i in m	2.05	2.01	1.98	1.97	1.92	2.03	2.02	2.02	2.00	1.95

Es ist also n = 10 und

$$\overline{x} = 1.995 m$$

$$s_{n-1}^2 = 0.00158\overline{3} m^2$$

$$s_{n-1} = 0.0397911 m$$

$$s_{n-1}/\sqrt{n} = 0.01258 m$$

Das Messergebnis ist also $1.995\,m \pm 0.01258\,m$. Sinnvoll anzugeben ist dann (gerundet): $2.00(2)\,m$ (entsprechend $2.00\,m \pm 0.02\,m$) oder $1.995(13)\,m$ (entsprechend $1.995\,m \pm 0.013\,m$). \diamondsuit

Wie verändert sich der Schätzwert, wenn wir nicht an x direkt interessiert sind, sondern an einer abgeleiteten Größe, etwa f(x)?

Wir geben dann als Schätzwert $f(\overline{x})$ an und berechnen den Fehler nach dem **Fehlerfortpflanzungsgesetz** als

$$\left| f'(\overline{x}) \right| \cdot \frac{s_{n-1}}{\sqrt{n}}.\tag{10.2}$$

Beispiel 10.7 Wir setzen das obige Beispiel fort und schätzen die Fläche $f(x) = \pi x^2$ des Kreises. Es ist $f'(x) = 2\pi x$. Wir erhalten

Schätzwert:
$$f(\overline{x}) = \pi \cdot (1.995 \, m)^2 = 12.504 \, m^2$$

Fehler: $|f'(\overline{x})| \cdot \frac{s_{n-1}}{\sqrt{n}} = 2\pi \cdot 1.995 \, m \cdot 0.01258 \, m = 0.1577 \, m^2$.

Das Ergebnis wird angegeben als: Fläche ist $(12.5 \pm 0.16) \, m^2$ oder $12.5(2) \, m^2$ (aufgerundet).

(10.3)

10.3 Lineare Regression

In einem Experiment sei ein Parameter x frei einstellbar, eine Größe y=f(x) wird, allerdings Fehler behaftet, gemessen. Es wird ein linearer Zusammenhang unterstellt

$$y = f(x) = ax + b,$$

wobei a und b unbekannt sind und aus dem Experiment heraus bestimmt werden sollen.

Angenommen wir haben n Messwerte $(x_1, y_1), \ldots, (x_n, y_n)$. Wie lassen sich a und b am besten an die Daten anpassen? Dazu müssen wir zunächst einmal klären, was wir mit "am besten" meinen. Eine plausible Möglichkeit ist es, ein Maß für den Fehler einzuführen, etwa die Summe der Abweichungsquadrate

$$Q(a,b) := \sum_{i=1}^{n} (y_i - ax_i - b)^2.$$

Wir suchen nun diejenigen Werte a und b, die Q minimieren. Dieses Vorgehen wird **Methode der** kleinsten Quadrate genannt.

Um die Minimalstelle zu bestimmen, bilden wir die partiellen Ableitungen $\frac{dQ(a,b)}{da}$ und $\frac{dQ(a,b)}{db}$ und setzen sie gleich Null.

$$0 \stackrel{!}{=} \frac{d}{db}Q(a,b) = -2\sum_{i=1}^{n}(y_i - ax_i - b) = 2n(b + a\overline{x} - \overline{y}).$$

Es folgt

$$b + \overline{x}a - \overline{y} = 0.$$

Die zweite Gleichung ist

$$0 \stackrel{!}{=} \frac{d}{da}Q(a,b) = -2\sum_{i=1}^{n} x_i(y_i - ax_i - b) = -2n(\overline{xy} - a\overline{x^2} - b\overline{x}),$$

wobei

$$\overline{xy} = \frac{1}{n} \sum_{i=1}^{n} x_i y_i.$$

Es folgt

$$\overline{x}\,b + \overline{x^2}\,a - \overline{x}\overline{y} = 0. \tag{10.4}$$

Das lineare Gleichungssystem (10.3) und (10.4) lässt sich eindeutig lösen, und es ist

$$a = \frac{\overline{x}\overline{y} - \overline{x} \cdot \overline{y}}{\overline{x^2} - \overline{x}^2}, \qquad b = \frac{\overline{x^2} \cdot \overline{y} - \overline{x} \cdot \overline{x}\overline{y}}{\overline{x^2} - \overline{x}^2}.$$
 (10.5)

Man prüft relativ leicht nach, dass Q in (a, b) tatsächlich ein globales Minimum hat.

Satz 10.8 (Lineare Regression) Durch a und b aus (10.5) wird der quadratische Fehler Q minimiert. Ein Maß für die Güte der linearen Approximation f(x) = ax + b an die Messdaten ist der empirische Korrelationskoeffizient

$$\varrho := \frac{\overline{xy} - \overline{x} \cdot \overline{y}}{\sqrt{\overline{x^2} - \overline{x}^2} \sqrt{\overline{y^2} - \overline{y}^2}}.$$

Ist $|\varrho|$ nahe bei 1, so ist die Anpassung gut.

Beispiel 10.9 Wir führen sechs Messungen durch (mit nicht notwendigerweise unterschiedlichen x_i) und erhalten

i	1	2	3	4	5	6
x_i	1.0	2.2	2.7	2.7	3.5	5.0
y_i	4.9	7.5	8.6	8.4	9.8	13.2

Aus diesen Daten berechnen wir

$$\overline{x} = 2.85$$

$$\overline{y} = 8.7\overline{3}$$

$$\overline{x^2} = 9.611\overline{6}$$

$$\overline{y^2} = 82.51$$

$$\overline{xy} = 27.9\overline{3}.$$

Es folgt

$$a = \frac{\overline{xy} - \overline{x} \cdot \overline{y}}{\overline{x^2} - \overline{x}^2} = 2.0436$$

$$b = \frac{\overline{x^2} \cdot \overline{y} - \overline{x} \cdot \overline{xy}}{\overline{x^2} - \overline{x}^2} = 2.9089$$

$$\varrho = \frac{\overline{xy} - \overline{x} \cdot \overline{y}}{\sqrt{\overline{x^2} - \overline{x}^2}} \sqrt{\overline{y^2} - \overline{y}^2} = 0.9984$$

Abbildung 10.1: Grafik der Daten aus Beispiel 10.9. Die Ausgleichsgerade genügt der Gleichung $f(x)=2.0436\,x\,+\,2.9089$

Nichtlineare Zusammenhänge

In vielen Situationen sind die Naturgesetze nicht linear, etwa im Lambert-Beer'schen Gesetz

$$h(c) = h_0 \, 10^{-\varepsilon L c},$$

wo c die Konzentration eines Stoffes in der Küvette ist (in mol/liter), h_0 die Helligkeit am Empfänger des Photometers bei Konzentration c=0,l die Breite der Küvette (in cm) und ε der dekadische Extinktionskoeffizient (molar und pro cm Breite). Um ε zu bestimmen, wird bei verschiedenen bekannten Konzentrationen c_1, \ldots, c_n die Helligkeiten h_1, \ldots, h_n gemessen. Dabei wird die Breite L als bekannt vorausgesetzt. Wir betrachten nun statt h(c) den dekadischen Logarithmus des Helligkeit

$$H(c) := \log_{10}(h(c)) = \log_{10}(h_0) - \varepsilon Lc.$$

Ferner berechnen wir aus den Messwerten die Zahlen $H_i = \log_{10}(h_i)$. Es gilt also

$$H(c) = a \cdot c + b$$
,

wo $b = \log_{10}(h_0)$ ist und $a = -L \varepsilon$. Wir können nun mit Hilfe der linearen Regression für die Daten $(c_1, H_1), \ldots, (c_n, H_n)$ die Werte a und b schätzen und hieraus h_0 und ε berechnen

$$h_0 = 10^b, \qquad \varepsilon = -\frac{a}{L}.$$

Allgemeiner versucht man, das nichtlineare Gesetz zu einem linearen Gesetz umzuformen und hierauf lineare Regression anzuwenden. Ein offensichtliches Problem, was hierbei entsteht, ist, dass der quadratische Fehler nun bezüglich einer anderen Größe berechnet wird. Dabei werden unter Umständen manche Messwerte zu stark gewichtet.

Schätzen mehrerer Parameter

Oftmals sollen nicht nur zwei Parameter geschätzt werden, sondern gleich mehrere. Ein Naturgesetz habe etwa die Gestalt

$$f(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_m x^m$$
.

Die Zahlen a_0, \ldots, a_m seien unbekannt. Mit Hilfe der Methode der kleinsten Quadrate können auch hier wieder die Zahlen a_0, \ldots, a_m and die Messwerte $(x_1, y_1), \ldots, (x_n, y_n)$ angepasst werden. Hierfür müssen mindestens $n \geq m+1$ Messwerte vorliegen. Die Formeln hierfür werden etwas unübersichtlich, sind aber in den üblichen Statistik Paketen auf Computern eingebaut.

Kapitel 11

Schätzen von Parametern

11.1 Das Likelihood-Prinzip

Wir nehmen an, dass in einem Restaurant zwei Köche arbeiten. Koch A versalzt die Suppe mit Wahrscheinlichkeit 10%, Koch B mit Wahrscheinlichkeit 40%. Sie sitzen im Restaurant, die Suppe ist versalzen. Wer war der Koch?

Die Idee ist, aus einer möglichen Menge von Hypothesen $\Theta = \{A, B\}$ diejenige auszuwählen, unter der die Beobachtung am wahrscheinlichsten ist. Von den möglichen Beobachtungen $\mathfrak{X} = \{\text{versalzen}, \text{nicht versalzen}\}$ haben wir die Beobachtung x = versalzen gemacht. Wir wissen, dass $p_A(\text{versalzen}) = 0.1$, $p_A(\text{nicht versalzen}) = 0.9$, $p_B(\text{versalzen}) = 0.4$, $p_B(\text{nicht versalzen}) = 0.6$. Jetzt suchen wir diejenige Hypothese $\vartheta \in \Theta$, für die $p_\vartheta(x)$ maximal wird. In diesem Beispiel mit x = versalzen ist dies offenbar $\vartheta = B$. Die Antwort auf die obige Frage lautet also: Man kann vermuten, dass B der Koch war.

Dieses intuitive Vorgehen, das wir gerade etwas formalisiert haben, nennt man das Maximum-Likelihood Prinzip (ML Prinzip). Eine Stärke ist die universelle Anwendbarkeit und Plausibilität. Eine Schwäche ist, dass es Vorkenntnisse (etwa: Koch A hat an 80% aller Tage Dienst, Koch B nur an 20%) außer Acht lässt. Auf diesen letzten Punkt gehen wir in diesem Rahmen aber nicht ein.

Im Folgenden formalisieren wir das Vorgehen des ML-Prinzips und berechnen dann in speziellen Situationen ML-Schätzer für Modellparameter.

Formaler Rahmen des Schätzproblems

• Es sei \mathfrak{X} die Menge möglicher Beobachtungswerte der gesamten Stichprobe. Besteht die Stichprobe aus n einzelnen Stichproben, die Werte in einer Menge \mathbb{W} annehmen, so hat \mathfrak{X} die Gestalt

$$\mathfrak{X} = \mathbb{W}^n = \{ x = (x_1, \dots, x_n) : x_1, \dots, x_n \in \mathbb{W} \}.$$

- Mit Θ bezeichnen wir eine Parametermenge für die Wahrscheinlichkeitsverteilungen p_{ϑ} , $\vartheta \in \Theta$, (=Hypothesen), die für die Verteilung der Beobachtungen auf \mathfrak{X} in Frage kommen.
- Ist $\mathfrak X$ diskret, so ist $p_{\vartheta}(y)$ die Wahrscheinlichkeit, dass die Beobachtung $y \in \mathfrak X$ gemacht

wird, falls die Hypothese $\vartheta \in \Theta$ richtig ist. In diesem Falle nennen wir

$$\vartheta \mapsto L_x(\vartheta) = p_{\vartheta}(x)$$

die Likelihoodfunktion.

Ist hingegen $\mathfrak{X} \subset \mathbb{R}^n$ und hat die zu ϑ gehörige Verteilung eine Dichte f_{ϑ} auf \mathfrak{X} , so definieren wir die Likelihoodfunktion durch

$$L_x(\vartheta) = f_{\vartheta}(x).$$

Definition 11.1 Derjenige Wert $\hat{\vartheta} \in \Theta$, für den die Likelihoodfunktion $L_x(\hat{\vartheta})$ maximal wird (also $L_x(\vartheta) \leq L_x(\hat{\vartheta})$ für jedes $\vartheta \in \Theta$), heißt **Maximum-Likelihood Schätzer** (ML Schätzer) für den Parameter ϑ bei der Beobachtung $x \in \mathfrak{X}$.

Die wohl wichtigste Situation ist diejenige mit n unabhängigen Stichproben x_1, \ldots, x_n mit Werten in \mathbb{W} , die jeweils unter den Hypothesen ϑ die gleiche Verteilung auf \mathbb{W} haben. In diesem Fall ist $\mathfrak{X} = \mathbb{W}^n$, und es gilt der folgende Satz.

Satz 11.2 Seien die Beobachtungen unabhängig.

(i) Ist \mathbb{W} diskret und $p_{\vartheta}(y_i)$ das Gewicht der Beobachtung $y_i \in \mathbb{W}$ unter der Hypothese ϑ , so ist die Likelihoodfunktion für $x = (x_1, \ldots, x_n) \in \mathfrak{X}$

$$L_x(\vartheta) = \prod_{i=1}^n p_{\vartheta}(x_i).$$

(ii) Ist $\mathbb{W} \subset \mathbb{R}$ ein Intervall (oder ganz \mathbb{R}) und hat die Verteilung der einzelnen Beobachtung unter der Hypothese ϑ eine Dichte f_{ϑ} , so ist die Likelihoodfunktion für $x = (x_1, \dots, x_n) \in \mathfrak{X}$

$$L_x(\vartheta) = \prod_{i=1}^n f_{\vartheta}(x_i).$$

Bemerkung 11.3 Gerade bei unabhängigen Beobachtungen ist es oft vorteilhaft, statt der Likelihoodfunktion L_x die logarithmierte Likelihoodfunktion $\mathcal{L}_x(\vartheta) = \log(L_x(\vartheta))$ zu betrachten. Da die Abbildung $t \mapsto \log(t)$ streng monoton wachsend ist, ist $\mathcal{L}_x(\vartheta)$ genau für diejenigen Werte ϑ maximal, für die auch $L_x(\vartheta)$ maximal ist. Da uns nur das ϑ interessiert (und nicht der Werte von L_x an der Stelle), reicht es aus, Maximalstellen von \mathcal{L}_x zu suchen. Dies geht für \mathcal{L}_x etwas leichter, weil es eine einfache additive Struktur hat:

$$\mathcal{L}_x(\vartheta) = \sum_{i=1}^n \log(p_{\vartheta}(x)),$$
 beziehungsweise $\mathcal{L}_x(\vartheta) = \sum_{i=1}^n \log(f_{\vartheta}(x)).$

Beispiel 11.4 Es soll geschätzt werden, welcher Anteil ϑ einer gewissen Bohnensorte schwarz ist (der Rest sei weiß). Dazu wird eine Stichprobe der Größe n gezogen. Es sei nur bekannt, dass von diesen n genau x schwarz waren. Wie groß ist ϑ ?

Wir bilden das formale Modell: Als Anteil kommt zunächst jede Zahl $\vartheta \in [0,1]$ in Betracht, also ist $\Theta = [0,1]$. Die möglichen Beobachtungen sind die Werte von 0 bis n, also ist $\mathfrak{X} = \{0,\ldots,n\}$ (es

ist nur die Gesamtzahl notiert worden, nicht die Reihenfolge). \mathfrak{X} ist diskret (da endlich) und unter der Annahme ϑ hat die Stichprobe eine Binomialverteilung mit Parametern n und ϑ , es gilt also

$$p_{\vartheta}(x) = b_{n,\vartheta}(x) = \binom{n}{x} \vartheta^x (1 - \vartheta)^{n-x}.$$

Wir erhalten als Likelihoodfunktion

$$L_x(\vartheta) = p_{\vartheta}(x) = \binom{n}{x} \vartheta^x (1 - \vartheta)^{n-x}.$$

Die Aufgabe ist nun, die globale Maximalstelle von $L_x(\vartheta)$ zu bestimmen. Wie in Bemerkung 11.3 angedeutet, reicht es, die globale Maximalstelle von

$$\mathcal{L}_x(\theta) = \log\left(\binom{n}{x}\right) + \log\left(\theta^x\right) + \log\left((1-\theta)^{n-x}\right) = \log\left(\binom{n}{x}\right) + x\log(\theta) + (n-x)\log(1-\theta)$$

zu bestimmen. Hierzu leiten wir $\mathcal{L}_x(\vartheta)$ ab (nach ϑ) und setzen die Ableitung gleich Null

$$0 \stackrel{!}{=} \frac{d}{d\vartheta} \mathcal{L}_x(\vartheta) = \frac{d}{d\vartheta} \left(x \log(\vartheta) + (n-x) \log(1-\vartheta) \right)$$
$$= \frac{x}{\vartheta} - \frac{n-x}{1-\vartheta}.$$

Auflösen nach ϑ ergibt $\vartheta = \frac{x}{n}.$ Die zweite Ableitung an der Stelle $\vartheta = \frac{x}{n}$ ist

$$\frac{d^2}{d\vartheta^2} \mathcal{L}_x(\vartheta) = -\frac{x}{\vartheta^2} + \frac{n-x}{(1-\vartheta)^2}$$
$$= -\frac{n^2}{x} + \frac{n-x}{(1-(x/n))^2} = -\frac{n^3}{(n-x)x} < 0.$$

Also liegt tatsächlich eine lokale Maximalstelle vor. Da es nur eine kritische Stelle gibt, ist dies eine globale Maximalstelle. Wir erhalten also als ML-Schätzer

$$\hat{\vartheta} = \hat{\vartheta}(x) = \frac{x}{n}.$$

Dieses ist natürlich der intuitive Schätzwert, den wir auch ohne Theorie angegeben hätten.

⋄

Beispiel 11.5 Die Wartezeit bis zur Teilung einer Zelle sei gleichverteilt auf dem Intervall $[0, \vartheta]$, wo ϑ unbekannt sei. Es werden von n Zellen die Zeiten x_1, \ldots, x_n bis zur Zellteilung gemessen.

Formal besteht unser Modell also aus folgenden Zutaten: Hypothesenraum $\Theta=(0,\infty)$ und Ergebnisraum

$$\mathfrak{X} = [0, \infty)^n = \{(t_1, \dots, t_n) : t_1, \dots, t_n > 0\}.$$

Die einzelne Beobachtung ist unter der Hypothese ϑ gleichverteilt auf $[0,\vartheta]$, hat also die Dichte

$$f_{\vartheta}(t) = \begin{cases} \frac{1}{\vartheta}, & \text{falls } 0 \le t \le \vartheta, \\ 0, & \text{falls } t > \vartheta. \end{cases}$$

Nach Satz 11.2 ist die Likelihoodfunktion für $x = (x_1, \dots, x_n)$

$$L_x(\vartheta) = \begin{cases} \frac{1}{\vartheta^n}, & \text{falls } x_1, \dots, x_n \le \vartheta, \\ 0, & \text{sonst.} \end{cases}$$

Dies wird maximal wenn $\vartheta = \max\{x_1, \dots, x_n\}$ ist. Der ML-Schätzer für ϑ ist also

$$\hat{\vartheta} = \hat{\vartheta}(x) = \max\{x_1, \dots, x_n\}.$$

 \Diamond

Beispiel 11.6 (Normalverteilung) Der minütliche Energieumsatz einer Zellenart sei normalverteilt mit bekannter Varianz σ^2 und unbekanntem Erwartungswert μ . Nach Untersuchung von n Zellen mit Energieumsätzen x_1, \ldots, x_n soll μ geschätzt werden. Der Stichprobenraum ist $\mathfrak{X} = \mathbb{R}^n$, der Parameterraum $\Theta = (0, \infty)$. Die Likelihoodfunktion ist das Produkt der Dichten der Normalverteilungen, also

$$L_x(\mu) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x_i - \mu)^2 / 2\sigma^2}.$$

Die log-Likelihoodfunktion ist hier nützlich:

$$\mathcal{L}_x(\mu) = \log(L_x(\mu)) = -\frac{n}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^n(x_i - \mu)^2.$$

Wir maximieren \mathcal{L}_x durch Ableiten (nach μ) und Nullsetzen der Ableitung

$$0 \stackrel{!}{=} \frac{d}{d\mu} \mathcal{L}_x(\mu) = \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu).$$

Hieraus erhalten wir den ML-Schätzer

$$\hat{\mu} = \hat{\mu}(x) = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x}.$$

(Tatsächlich ist die zweite Ableitung von $\mathcal{L}_x(\mu)$ gerade $-n/\sigma^2 < 0$, also liegt ein globales Maximum bei $\hat{\mu}$ vor.)

Beispiel 11.7 Ist in Beispiel 11.6 auch die Varianz unbekannt, so ist immer noch

$$\hat{\mu} = \hat{\mu}(x) = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x}$$

der ML-Schätzer für μ , weil der Wert von $\hat{\mu}$ gar nicht von σ^2 abhängt.

11.2 Güte von Schätzern

11.2.1 Erwartungstreue und Bias

Wir betrachten im Folgenden einen Schätzer $\hat{\vartheta}_n$, der auf n Beobachtungen beruht, also ist $\mathfrak{X} = \mathbb{W}^n$, und mit Parametermenge $\Theta \subset \mathbb{R}$. Eine tatsächlich gemachte Gesamtbeobachtung bezeichnen wir mit $x = (x_1, \ldots, x_n)$, eine zufällige, nach p_{ϑ} verteilte Beobachtung mit $X = (X_1, \ldots, X_n)$.

Definition 11.8 Der Schätzer $\hat{\vartheta}_n$ heißt **erwartungstreu**, falls

$$\mathbf{E}_{\vartheta}[\hat{\vartheta}_n(X)] = \vartheta \quad \text{für alle } \vartheta \in \Theta.$$

Gilt lediglich

$$\mathbf{E}_{\vartheta}[\hat{\vartheta}_n(X)] \stackrel{n \to \infty}{\longrightarrow} \vartheta \quad \text{für alle } \vartheta \in \Theta,$$

so heißt $\hat{\vartheta}_n$ asymptotisch erwartungstreu. Die Differenz zum Erwartungswert heißt **Bias**:

$$\operatorname{Bias}_{\vartheta}(\hat{\vartheta}_n) := \mathbf{E}_{\vartheta}[\hat{\vartheta}_n] - \vartheta.$$

Falls der Bias ungleich Null ist, so enthält der Schätzer $\hat{\vartheta}_n$ eine systematische Verzerrung (in Richtung des Bias'), wir nennen den Schätzer dann auch **verzerrt** (englisch *biased*). Ein erwartungstreuer Schätzer wird auch als **unverzerrt** (englisch *unbiased*) bezeichnet.

Beispiel 11.9 Für $\mu \in \Theta = \mathbb{R}$ seien X_1, \ldots, X_n identisch verteilt mit $\mathbf{E}_{\mu}[X_i] = \mu$ für jedes $i = 1, \ldots, n$. Die genaue Verteilung steckt natürlich im Modell, soll hier aber nicht spezifiziert werden.

Unter diesen Annahmen ist das arithmetische Mittel $\hat{\mu}_n(x) = \overline{x} = \frac{1}{n} \sum_{i=1}^n x_i$ ein erwartungstreuer Schätzer für μ , denn

$$\mathbf{E}_{\mu}[\hat{\mu}(X)] = \mathbf{E}_{\mu}[\overline{X}] = \frac{1}{n} \Big(\mathbf{E}_{\mu}[X_1] + \ldots + \mathbf{E}_{\mu}[X_n] \Big) = \frac{1}{n} \Big(\mu + \ldots + \mu \Big) = \mu.$$

In vielen Situationen ist ϑ eine zusammengesetzte Größe, etwa $\vartheta = (\mu, \sigma^2)$, von der nur eine der beiden Komponenten geschätzt werden soll. Wir betrachten daher jetzt etwas allgemeiner als in der vorangehenden Definition Abbildungen $\tau : \Theta \to \mathbb{R}$, die geschätzt werden sollen, etwa: $\tau(\mu, \sigma^2) = \mu$ oder $\tau(\mu, \sigma^2) = \sigma^2$, aber auch $\tau(\mu, \sigma^2) = \mu^2$.

Definition 11.10 Ein Schätzer $\hat{\tau}_n$ für τ heißt **erwartungstreu**, falls

$$\mathbf{E}_{\vartheta}[\hat{\tau}_n(X)] = \tau(\vartheta) \quad \text{ für alle } \vartheta \in \Theta.$$

 $Gilt\ lediglich$

$$\mathbf{E}_{\vartheta}[\hat{\tau}_n(X)] \stackrel{n \to \infty}{\longrightarrow} \tau(\vartheta) \quad \text{für alle } \vartheta \in \Theta,$$

so heißt $\hat{\tau}_n$ asymptotisch erwartungstreu. Die Differenz zum Erwartungswert heißt **Bias**:

$$\operatorname{Bias}_{\vartheta}(\hat{\tau}_n; \tau) := \mathbf{E}_{\vartheta}[\hat{\tau}_n(X)] - \tau(\vartheta).$$

Beispiel 11.11 Sei $\Theta = \mathbb{R} \times (0, \infty)$. Für $\vartheta = (\mu, \sigma^2)$ seien X_1, \dots, X_n unabhängig und identisch verteilt mit $\mathbf{E}_{(\mu, \sigma^2)}[X_i] = \mu$ und $\mathrm{Var}_{(\mu, \sigma^2)}[X_i] = \sigma^2$. Die genaue Verteilung steckt natürlich im Modell, soll hier aber nicht genau spezifiziert werden.

Ist nun auch \overline{x}^2 ein erwartungstreuer Schätzer für $\tau(\mu, \sigma^2) = \mu^2$?

Wir berechnen dazu

$$\frac{\sigma^2}{n} = \operatorname{Var}_{(\mu,\sigma^2)} \left[\overline{X} \right] = \mathbf{E}_{(\mu,\sigma^2)} \left[(\overline{X})^2 \right] - \mathbf{E}_{(\mu,\sigma^2)} \left[\overline{X} \right]^2 = \mathbf{E}_{(\mu,\sigma^2)} \left[(\overline{X})^2 \right] - \mu^2.$$

Also ist

$$\mathbf{E}_{(\mu,\sigma^2)}\big[(\overline{X})^2\big] = \mu^2 + \frac{\sigma^2}{n}$$

und damit

$$\operatorname{Bias}_{(\mu,\sigma^2)}\left(\overline{X}^2;\,\mu^2\right) = \frac{\sigma^2}{n}.$$

Beispiel 11.12 Seien X_1, \ldots, X_n wie in Beispiel 11.11. Wir suchen einen Schätzer für $\tau(\mu, \sigma^2) = \sigma^2$

Wir betrachten zunächst

$$s_n^2(x) := \overline{x^2} - \overline{x}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2.$$

 \Diamond

Dann ist

$$\mathbf{E}_{(\mu,\sigma^2)}[s_n^2(X)] = \mathbf{E}_{(\mu,\sigma^2)}\left[\overline{X^2}\right] - \underbrace{\mathbf{E}_{(\mu,\sigma^2)}\left[\overline{X}^2\right]}_{=\mu^2 + \sigma^2/n}.$$

Nun ist

$$\mathbf{E}_{(\mu,\sigma^{2})} \left[\overline{X^{2}} \right] = \mathbf{E}_{(\mu,\sigma^{2})} \left[\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} \right] = \frac{1}{n} \sum_{i=1}^{n} \mathbf{E}_{(\mu,\sigma^{2})} \left[X_{i}^{2} \right]$$
$$= \frac{1}{n} \sum_{i=1}^{n} \left(\operatorname{Var}_{(\mu,\sigma^{2})} [X_{i}] + \mathbf{E}_{(\mu,\sigma^{2})} [X_{i}]^{2} \right) = \sigma^{2} + \mu^{2}.$$

Es folgt

$$\mathbf{E}_{(\mu,\sigma^2)}\big[s_n^2(X)\big] = \frac{n-1}{n}\sigma^2.$$

Damit ist s_n^2 nicht erwartungstreu, aber asymptotisch erwartungstreu. Allerdings können wir aus s_n^2 einen erwartungstreuen Schätzer für σ^2 herstellen, indem wir einfach mit $\frac{n}{n-1}$ multiplizieren:

$$s_{n-1}^2(x) := \frac{n}{n-1} s_n^2(x) := \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2 = \frac{n}{n-1} \left(\overline{x^2} - \overline{x}^2 \right)$$
 (11.1)

ist ein erwartungstreuer Varianzschätzer.

Beispiel 11.13 (Zellteilungsproblem) Wir betrachten die Situation von Beispiel 11.5: $\Theta = (0, \infty), \mathfrak{X} = [0, \infty)^n$, die Dichte für die einzelne Beobachtung ist

$$f_{\vartheta}(t) = \begin{cases} \frac{1}{\vartheta}, & \text{falls } t \leq \vartheta, \\ 0, & \text{falls } t > \vartheta. \end{cases}$$

Als Maximum-Likelihood Schätzer für ϑ hatten wir den Schätzer

$$\hat{\vartheta}_n(x) = \max\{x_1, \dots, x_n\}$$

gefunden. Ist dies ein erwartungstreuer Schätzer? Wir berechnen die Verteilungsfunktion G_{ϑ} von $\hat{\vartheta}_n$ bei wahrem Parameter ϑ :

$$G_{\vartheta}(t) = \mathbf{P}_{\vartheta}[\hat{\vartheta}_n(X) \le t] = \mathbf{P}_{\vartheta}[X_1 \le t, \dots, X_n \le t]$$
$$= \mathbf{P}_{\vartheta}[X_1 \le t] \cdots \mathbf{P}_{\vartheta}[X_n \le t] = \left(\frac{t}{\vartheta}\right)^n.$$

Die Dichte erhalten wir durch Ableiten (nach t)

$$g_{\vartheta}(t) = G'_{\vartheta}(t) = n \frac{t^{n-1}}{\vartheta^n}.$$

Hiermit berechnen wir den Erwartungswert

$$\mathbf{E}_{\vartheta} \left[\hat{\vartheta}_n(X) \right] = \int_0^\infty t \, g_{\vartheta}(t) \, dt = \frac{n}{\vartheta^n} \int_0^\vartheta t^n \, dt = \frac{n}{n+1} \, \vartheta.$$

Analog können wir die Varianz berechnen (was wir später noch benutzen wollen):

$$\mathbf{E}_{\vartheta} \left[\left(\hat{\vartheta}_n(X) \right)^2 \right] = \int_0^\infty t^2 g_{\vartheta}(t) \, dt = \frac{n}{\vartheta^n} \int_0^\vartheta t^{n+1} \, dt = \frac{n}{n+2} \, \vartheta^2.$$

Hieraus folgt

$$\operatorname{Var}_{\vartheta} \left[\hat{\vartheta}_{n}(X) \right] = \mathbf{E}_{\vartheta} \left[\left(\hat{\vartheta}_{n}(X) \right)^{2} \right] - \mathbf{E}_{\vartheta} \left[\hat{\vartheta}_{n}(X) \right]^{2}$$

$$= \frac{n}{n+2} \vartheta^{2} - \left(\frac{n}{n+1} \right)^{2} \vartheta^{2}$$

$$= \frac{n}{(n+1)^{2} (n+2)} \vartheta^{2}.$$
(11.2)

Diese Formel werden wir bei der Berechnung des mittleren quadratischen Fehlers benötigen.

⋄

11.2.2 Mittlerer quadratischer Fehler

Die Erwartungstreue eines Schätzers sagt noch nichts darüber aus, wie weit der Schätzer streut. Ein Schätzer, der sehr wenig streut aber einen kleinen Bias hat, kann unter Umständen besser sein, als ein Schätzer, der zwar erwartungstreu ist, aber sehr weit streut. Wir brauchen ein Qualtitätsmaß, das beide Aspekte berücksichtigt.

Definition 11.14 Wir nennen

$$\operatorname{mqF}_{\vartheta}(\hat{\tau}; \tau) = \mathbf{E}_{\vartheta} [(\hat{\tau}(X) - \tau(\vartheta))^{2}]$$

den mittleren quadratischen Fehler des Schätzers $\hat{\tau}$ für die Größe τ unter der Hypothese ϑ . Ist speziell $\tau(\vartheta) = \vartheta$ und $\hat{\tau} = \hat{\vartheta}$, so schreiben wir auch kurz $\operatorname{mqF}_{\vartheta}(\hat{\vartheta}) = \operatorname{mqF}_{\vartheta}(\hat{\vartheta}; \vartheta)$.

Die der englischsprachigen Literatur entlehnte Bezeichnung \mathbf{MSE} für mean squared error ist ebenfalls sehr gebräuchlich.

Der mittlere quadratische Fehler ist das wichtigste Maß für die Qualität eines Schätzers.

Satz 11.15 Es gilt
$$\operatorname{mqF}_{\vartheta}(\hat{\tau}; \tau) = \operatorname{Var}_{\vartheta}[\hat{\tau}(X)] + \operatorname{Bias}_{\vartheta}(\hat{\tau}; \tau)^{2}.$$
 (11.3)

Beispiel 11.16 (Schätzung des Anteils schwarzer Bohnen) Wir betrachten die Situation von Beispiel 11.4. Dort ist X reell und $b_{n,\vartheta}$ -verteilt unter der Hypothese $\vartheta \in \Theta = [0,1]$. Als Maximum-Likelihood Schätzer für ϑ hatten wir

$$\hat{\vartheta}(x) = \frac{x}{n}$$

hergeleitet. Es gilt

$$\mathbf{E}_{\vartheta} \big[\hat{\vartheta}(X) \big] = \frac{n\vartheta}{n} = \vartheta,$$

also ist $\operatorname{Bias}_{\vartheta}(\hat{\vartheta}) = 0$. Weiter gilt

$$\operatorname{Var}_{\vartheta}[\hat{\vartheta}(X)] = \frac{n\,\vartheta(1-\vartheta)}{n^2} = \frac{\vartheta(1-\vartheta)}{n},$$

also ist

$$\mathrm{mqF}_{\vartheta}(\hat{\vartheta}) = \vartheta(1 - \vartheta) \cdot \frac{1}{n}.$$

Der mqF wird also mit wachsendem Stichprobenumfang kleiner (und damit die Schätzung genauer), wie man dies ja auch erwarten würde.

Beispiel 11.17 (Zellteilung) Wir setzen Beispiel 11.13 (und damit Beispiel 11.5) fort. Dort hatten wir für $\hat{\vartheta}(x) = \max\{x_1, \dots, x_n\}$ berechnet:

$$\operatorname{Bias}_{\vartheta}(\hat{\vartheta}) = -\frac{1}{n+1}\vartheta, \quad \operatorname{und} \operatorname{Var}_{\vartheta}[\hat{\vartheta}(X)] = \frac{n}{(n+1)^2(n+2)}\vartheta^2.$$

Wir berechnen den mqF mit der Formel (11.3)

$$\operatorname{mqF}_{\vartheta}(\hat{\vartheta}) = \frac{n}{(n+1)^2(n+2)} \, \vartheta^2 + \frac{1}{(n+1)^2} \, \vartheta^2 = \frac{2}{(n+1)(n+2)} \, \vartheta^2.$$

Eine möglicherweise plausible Alternative für diesen Schätzer bekommen wir durch

$$\overline{\vartheta}(x) := 2\overline{x} = \frac{2(x_1 + \ldots + x_n)}{n}.$$

Wir berechnen

$$\mathbf{E}_{\vartheta}[X_1] = \int_0^{\vartheta} \frac{1}{\vartheta} t \, dt = \frac{1}{2} \vartheta$$

und

$$\mathbf{E}_{\vartheta}[X_1^2] = \int_0^{\vartheta} \frac{1}{\vartheta} t^2 dt = \frac{1}{3} \vartheta^2.$$

Es folgt

$$\mathbf{E}_{\vartheta} \left[\, \overline{\vartheta} \, \right] = 2 \, \mathbf{E}_{\vartheta} [X_1] = \vartheta$$

und

$$\operatorname{Var}_{\vartheta}\left[\overline{\vartheta}\right] = \frac{4}{n^2} \sum_{i=1}^{n} \operatorname{Var}_{\vartheta}[X_i] = \frac{4}{n} \operatorname{Var}_{\vartheta}[X_1] = \frac{4}{n} \left(\mathbf{E}_{\vartheta}[X_1^2] - \mathbf{E}_{\vartheta}[X_1]^2\right) = \frac{\vartheta^2}{3} \cdot \frac{1}{n}.$$

Der Schätzer $\overline{\vartheta}$ ist also erwartungstreu und hat den mqF

$$\mathrm{mqF}_{\vartheta}\big(\overline{\vartheta}\big) = \frac{\vartheta^2}{3} \cdot \frac{1}{n}.$$

Anders als $\hat{\vartheta}$ ist $\overline{\vartheta}$ erwartungstreu. Jedoch ist der mqF von $\hat{\vartheta}$ kleiner als der von $\overline{\vartheta}$, falls $n \geq 5$ ist. Mehr noch: für große n wird der mqF von $\hat{\vartheta}$ wie $\frac{1}{n^2}$ kleiner, der von $\overline{\vartheta}$ jedoch nur wie $\frac{1}{n}$.

11.3 Konfidenzbereiche

Oftmals ist es sinnvoll, nicht nur eine Punktschätzung $\hat{\vartheta} = \hat{\vartheta}(x)$ für einen unbekannten Parameter $\vartheta \in \Theta$ anzugeben (wie in Abschnitt 11.1 und 11.2), sondern ein ganzes Intervall $C(x) \subset \Theta$, das für möglichst viele der zufälligen Beobachtungen X den wahren Wert enthält.

Wir geben eine Definition an, die in (i) bei einer eindimensionalen Parametermenge Θ den (einzigen) Parameter schätzt, und in (ii) bei einer k-dimensionalen Parametermenge $\Theta \subset \mathbb{R}^k$ einen der Parameter $\vartheta_1, \ldots, \vartheta_k$. Die typische Situation für (ii) ist die, wo k = 2 ist und

$$\Theta = \left\{ (\mu, \sigma^2) : \mu \in \mathbb{R}, \, \sigma^2 > 0 \right\},\,$$

wo also Erwartungswert μ und Varianz σ^2 unbekannt sind und meist μ geschätzt werden soll.

Definition 11.18 Sei $\alpha \in (0,1)$.

11.3 Konfidenzbereiche 139

(i) Sei $\Theta \subset \mathbb{R}$. Eine Vorschrift $x \mapsto C(x)$, die jedem $x \in \mathfrak{X}$ ein Intervall $C(x) \subset \Theta$ zuordnet mit

$$\mathbf{P}_{\vartheta}[C(X) \ni \vartheta] \ge 1 - \alpha$$
 für alle $\vartheta \in \Theta$,

heißt Konfidenzintervall zum Niveau α .

(ii) Sei $\Theta \subset \mathbb{R}^k$ und i = 1, ..., k fest gewählt. Eine Vorschrift $x \mapsto C(x)$, die jedem $x \in \mathfrak{X}$ ein Intervall C(x) zuordnet mit

$$\mathbf{P}_{\vartheta}[C(X) \ni \vartheta_i] \ge 1 - \alpha \quad \text{für alle } \vartheta \in \Theta,$$

heißt Konfidenzintervall für ϑ_i zum Niveau α .

Beispiel 11.19 (Normalverteilung mit bekannter Varianz) Sei $\Theta = \mathbb{R}$, $\mathfrak{X} = \mathbb{R}^n$, und seien X_1, \ldots, X_n unabhängig und $\mathcal{N}_{\mu,\sigma^2}$ -verteilt unter der Hypothese, dass $\mu \in \Theta$ der wahre Wert sei. Dabei ist $\sigma^2 > 0$ ein fester (bekannter) Wert.

Sei

$$T_{\mu}(x) = T_{\mu}((x_1, \dots, x_n)) = \sqrt{\frac{n}{\sigma^2}} (\overline{x} - \mu).$$

Da der Mittelwert \overline{X} $\mathcal{N}_{\mu,\sigma^2/n}$ -verteilt ist (falls μ wahr ist), ist $T_{\mu}(X) \sim \mathcal{N}_{0,1}$, falls μ wahr ist. Die Verteilung hängt also nicht von μ ab, aber wir müssen μ kennen, um T_{μ} auszurechnen.

Die Idee ist nun, dass wir das Konfidenzintervall C(x) symmetrisch um den natürlichen Schätzwert \overline{x} für μ wählen, also

$$C(x) = [\overline{x} - r, \overline{x} + r],$$

wobei wir allerdings r noch so wählen müssen, dass das Niveau α eingehalten wird.

Es ist genau dann $\mu \in C(x)$, wenn $\overline{x} - r \leq \mu \leq \overline{x} + r$, also genau dann, wenn $\mu - r \leq \overline{x} \leq \mu + r$, und dies gilt wiederum genau dann, wenn $|T_{\mu}(x)| \leq \sqrt{\frac{n}{\sigma^2}} r$. Wir bekommen also (mit Φ die Verteilungsfunktion der Standardnormalverteilung) als Bedingung für r

$$1 - \alpha \stackrel{!}{=} \mathbf{P}_{\mu} \left[C(X) \ni \mu \right] = \mathbf{P}_{\mu} \left[|T_{\mu}| \le \sqrt{\frac{n}{\sigma^2}} \, r \right]$$
$$= \Phi \left(\sqrt{\frac{n}{\sigma^2}} \, r \right) - \Phi \left(-\sqrt{\frac{n}{\sigma^2}} \, r \right) = 2 \Phi \left(\sqrt{\frac{n}{\sigma^2}} \, r \right) - 1,$$

wobei wir im letzten Schritt die Symmetrie von Φ ausgenutzt haben:

$$\Phi(t) - \Phi(-t) = 2\Phi(t) - 1$$
 für jedes $t \in \mathbb{R}$.

Wir erhalten also $r = \frac{\sigma}{\sqrt{n}} z_{1-\alpha/2}$, wobei z_{β} das β -Quantil der Standardnormalverteilung ist.

Das Konfidenzintervall für den Erwartungswert der Normalverteilung bei bekannter Varianz σ^2 ist also:

$$C(x) = \left[\overline{x} - \frac{\sigma}{\sqrt{n}} z_{1-\alpha/2}, \ \overline{x} + \frac{\sigma}{\sqrt{n}} z_{1-\alpha/2} \right]. \tag{11.4}$$

Tabelle der wichtigsten Werte der Quantile z_{β} der Normalverteilung

β	z_{eta}
0.8	0.84162
0.9	1.28155
0.95	1.64485
0.975	1.95996
0.98	2.05375
0.99	2.32635
0.995	2.57583
0.9975	2.80703
0.998	2.87816
0.999	3.09023
0.9995	3.29053

Beispiel 11.20 (Binomialverteilung) Wir wollen den Erfolgsparameter einer Binomialverteilung des Stichprobenumfangs n schätzen. Es sei also $\mathfrak{X} = \{0, \ldots, n\}$ und $\mathbf{P}_{\vartheta} = b_{n,\vartheta}$ für $\vartheta \in \Theta = [0,1]$.

Wir nehmen an, dass n so groß ist, dass wir die Normalapproximation für die Binomialverteilung verwenden dürfen. Dann ist unter der Annahme ϑ die Größe

$$\tilde{T}_{\vartheta}(X) := \frac{X - \vartheta \, n}{\sqrt{n\vartheta(1 - \vartheta)}}$$

ungefähr $\mathcal{N}_{0,1}$ -verteilt. Den Wert von ϑ im Nenner schätzen wir durch X/n und erhalten so für jeden Wert von ϑ , dass

$$T_{\vartheta}(X) := \frac{X - \vartheta n}{\sqrt{X(1 - X/n)}} \sim_{\text{approx}} \mathcal{N}_{0,1}.$$

Hieraus leiten wir (ähnlich wie oben für die Normalverteilung) als Konfidenzintervall für ϑ zum Niveau α ab:

$$C(x) = [L(x), R(x)],$$

mit

$$L(x) = \frac{x}{n} - \frac{1}{n} \sqrt{x \left(1 - \frac{x}{n}\right)} z_{1-\alpha/2}$$

$$R(x) = \frac{x}{n} + \frac{1}{n} \sqrt{x \left(1 - \frac{x}{n}\right)} z_{1-\alpha/2}.$$

$$(11.5)$$

Dieses Konfidenzintervall ist nur für große n eine gute Wahl, weil sonst die Normalapproximation versagt!

Für kleine Werte von n können wir die exakten Formeln benutzen:

$$L(x) = 1 - \beta_{n-x+1,x;1-\alpha/2}, \qquad R(x) = \beta_{x+1,n-x;1-\alpha/2}, \tag{11.6}$$

wo $\beta_{m,n;\,\gamma}$ das γ -Quantil der Beta-Verteilung $\beta_{m,n}$ mit Parametern m und n ist. Wir wollen hier nicht genauer auf die Beta-Verteilung eingehen, sondern nur anmerken, dass die Quantile der Beta-Verteilung für kleine Parameterwerte tabelliert sind (in Anhang A.7).

Ist etwa n = 20, x = 12 und $\alpha = 0.05$, so lesen wir in der Tabelle ab: $1 - \beta_{9,12;0.975} = 1 - 0.639 = 0.361$ und $\beta_{13,8;0.975} = 0.809$. Wir erhalten so als Konfidenzintervall zum Niveau 5%: C(12) = [0.361, 0.809].

11.3 Konfidenzbereiche 141

Bemerkung 11.21 In den beiden vorangehenden Beispielen wurde jeweils eine Abbildung T_{ϑ} : $\mathfrak{X} \to \mathbb{R}$ konstruiert, die unter \mathbf{P}_{ϑ} eine Verteilung hat, die unabhängig vom Parameter ϑ ist (in den beiden Beispielen die Standardnormalverteilung). Eine solche Abbildung T_{ϑ} wird **Statistik** genannt. Aus den Quantilen dieser Verteilung wurde das Konfidenzintervall berechnet: Ist $B_{\alpha} \subset \mathbb{R}$ ein Intervall mit $\mathbf{P}_{\vartheta}[T_{\vartheta} \in B_{\alpha}] \geq 1 - \alpha$ (man beachte, dass die Wahrscheinlichkeit nicht von ϑ abhängt), so ist

$$C(x) = \{\vartheta : T_{\vartheta}(x) \in B_{\alpha}\}\$$

ein Konfidenzintervall zum Niveau α .

Beispiel 11.22 (Normalverteilung mit unbekannter Varianz) In den meisten Fällen, bei denen eine Normalverteilung angenommen wird, ist die Varianz der Verteilung unbekannt und muss erst noch aus den Daten geschätzt werden.

Wir haben etwa das Gewicht zehn australischer Straußeneier gemessen (in Gramm):

i	1	2	3	4	5	6	7	8	9	10
x_i	106	110	100	103	109	101	97	103	111	99

Unter der Annahme, dass das Gewicht der Eier $\mathcal{N}_{\mu,\sigma^2}$ -verteilt ist (mit μ und σ^2 unbekannt), wollen wir nun ein Konfidenzintervall C für μ zum Niveau $\alpha = 5\%$ bestimmen.

Wir betrachten zunächst die allgemeine Situation und kommen dann auf die konkreten Zahlen zurück. Bei einem Stichprobenumfang von n ist $\mathfrak{X} = \mathbb{R}^n$, und X_1, \ldots, X_n sind unabhängig und \mathcal{N}_{u,σ^2} -verteilt, falls $\vartheta = (\mu, \sigma^2) \in \Theta = \mathbb{R} \times (0, \infty)$ der wahre Parameter ist.

Die Idee ist, wie in Beispiel 11.19 vorzugehen, jedoch σ^2 durch s_{n-1}^2 zu schätzen. Wir setzen also für $x = (x_1, \dots, x_n)$

$$T_{\mu}(x) := \sqrt{\frac{n}{s_{n-1}^2}} (\overline{x} - \mu).$$
 (11.7)

Man kann zeigen, dass für jedes $\mu \in \mathbb{R}$ und $\sigma^2 > 0$ unter $\mathbf{P}_{(\mu,\sigma^2)}$ gilt

$$T_{\mu}(X) \sim t_{n-1},\tag{11.8}$$

wobei t_n die so genannte **t-Verteilung** mit n Freiheitsgraden ist. Die Quantile dieser Verteilung sind für viele Werte von n tabelliert (siehe Anhänge A.3 und A.4). Für große n gilt $t_n \sim_{\text{approx.}} \mathcal{N}_{0,1}$. Die t_n -Verteilung hat eine Dichte, die symmetrisch um 0 ist. Es gilt also für das γ -Quantil t_n ; γ

$$t_{n;1-\gamma} = -t_{n;\gamma}. (11.9)$$

Sei nun $t_{n-1;1-\alpha/2}$ das $(1-\alpha/2)$ -Quantil von t_{n-1} . Dann ist

$$\begin{aligned} \mathbf{P}_{(\mu,\sigma^{2})}\big[|T_{\mu}(X)| &\leq t_{n-1;\,1-\alpha/2}\big] = \mathbf{P}_{(\mu,\sigma^{2})}\big[T_{\mu}(X) \leq t_{n-1;\,1-\alpha/2}\big] - \mathbf{P}_{(\mu,\sigma^{2})}\big[T_{\mu}(X) \leq -t_{n-1;\,1-\alpha/2}\big] \\ &= \mathbf{P}_{(\mu,\sigma^{2})}\big[T_{\mu}(X) \leq t_{n-1;\,1-\alpha/2}\big] - \mathbf{P}_{(\mu,\sigma^{2})}\big[T_{\mu}(X) \leq t_{n-1;\,\alpha/2}\big] \\ &= (1-\alpha/2) - \alpha/2 \\ &= 1-\alpha. \end{aligned}$$

Nach dem Schema von Bemerkung 11.21 erhalten wir hieraus als Konfidenzintervall für den Erwartungswert der Normalverteilung bei unbekannter Varianz

$$C(x) = \left[\overline{x} - \frac{s_{n-1}}{\sqrt{n}} t_{n-1; 1-\alpha/2}, \ \overline{x} + \frac{s_{n-1}}{\sqrt{n}} t_{n-1; 1-\alpha/2} \right]. \tag{11.10}$$

Im Beispiel mit den Straußeneiern ist: $n=10, \overline{x}=103.9, s_{n-1}=4.886, 1-\alpha/2=0.975$ und (Tabelle in Anhang A.3) $t_{9;\;0.975}=2.2622$. Wir erhalten also als Konfidenzintervall zum Niveau 5%: $C=[100.4,\,107.4]$. Da die Normalverteilungsannahme meistens nicht genau erfüllt ist, und die t-Verteilung sehr empfindlich auf solche Abweichungen reagiert, empfiehlt es sich, großzügig zu runden, in diesem Fall geben wir daher als Konfidenzintervall [100, 108] an.

Kapitel 12

Tests

12.1 Einführung

Beispiel 12.1 (Bohnen) Ein Lieferant für Bohnen behauptet (H_0) , dass ein Anteil von $\vartheta = \frac{1}{4}$ der gelieferten Bohnen schwarz sei (die anderen weiß). Wir haben jedoch den Verdacht (H_1) , dass der Anteil schwarzer Bohnen geringer als $\frac{1}{4}$ ist. Eine Stichprobe im gelieferten Sack Bohnen soll die Angelegenheit klären.

Die Idee ist: Es werden n Bohnen entnommen und gezählt, wie viele (sagen wir x) davon schwarz sind. Ist x kleiner als eine kritische Zahl K (die vorher festgelegt werden muss), so wird die Behauptung des Lieferanten als falsch verworfen. \diamondsuit

Es treten drei Probleme auf:

- H_0 könnte wahr sein und dennoch verworfen werden, weil der Anteil schwarzer Bohnen in der Stichprobe zufälligerweise besonders klein ist (Fehler 1. Art).
- H_0 könnte falsch sein und dennoch nicht verworfen werden, weil der Anteil schwarzer Bohnen in der Stichprobe zufälligerweise besonders groß ist (Fehler 2. Art).
- Wie müssen *n* und *K* gewählt werden, damit Wahrscheinlichkeiten für die Fehler 1. Art und 2. Art möglichst klein werden?

Das Vorgehen in einer solchen Situation folgt einem festem Fahrplan:

- (i) Es wird eine Schranke $\alpha \in (0,1)$ für die Wahrscheinlichkeit eines Fehlers 1. Art festgelegt (das so genannte **Niveau**). Oftmals ist $\alpha = 0.05$ oder $\alpha = 0.01$.
- (ii) n wird möglichst groß gewählt (dabei sind Kosten und Zeit für die Stichprobe die wesentlichen Randbedingungen).
- (iii) K wird gerade so groß gewählt, dass unter der Hypothese, dass H_0 wahr ist, die Wahrscheinlichkeit für die Beobachtung $\{X \leq K\}$ höchstens α ist.

Die Wahrscheinlichkeit β für den Fehler 2. Art hängt bei diesem Aufbau maßgeblich von der Wahl von n ab (wenn K optimal gewählt ist). Eine Variante im Vorgehen kann darin bestehen, dass

 α und β vorab festgelegt werden und dann das minimale n berechnet wird, dass hierfür nötig ist (Fallzahlplanung).

Formal haben wir es mit der folgenden statistischen Situation zu tun:

- $\alpha \in (0,1)$ ist das Niveau (vor allem anderen festgelegt)
- $\mathfrak{X} = \text{Beobachtungsraum}$
- Θ = Parameter menge
- \mathbf{P}_{ϑ} Wahrscheinlichkeitsverteilung der zufälligen Beobachtung X (mit Werten in \mathfrak{X}), falls $\vartheta \in \Theta$ der wahre Parameter ist.
- $H_0 \subset \Theta$: "konservative Hypothese" oder Nullhypothese.
- $H_1 = \Theta \setminus H_0$: "Gegenhypothese" oder Alternative.

Die Hypothese H_0 (bzw. H_1) heißt **einfach**, falls $\#H_0 = 1$, falls also $H_0 = \{\vartheta_0\}$ für ein $\vartheta_0 \in \Theta$, und andernfalls **zusammengesetzt**.

- **Definition 12.2** (i) Eine Abbildung $\varphi : \mathfrak{X} \to \{0,1\}$ heißt **Test** (für H_0 gegen H_1). $\varphi(x) = 1$ wird als Ablehnung von H_0 interpretiert, $\varphi(x) = 0$ als Beibehaltung von H_0 (falls x beobachtet wird).
- (ii) Ist $\mathbf{P}_{\vartheta}[\varphi(X) = 1] \leq \alpha$ für jedes $\vartheta \in H_0$ (das ist die Wahrscheinlichkeit für fälschliches Ablehnen von H_0), so sagen wir, dass der Test das **Niveau** α einhält.
- (iii) Die Abbildung $\vartheta \mapsto G_{\varphi}(\vartheta) = \mathbf{P}_{\vartheta}[\varphi(X) = 1]$ heißt **Gütefunktion** von φ . Für $\varphi \in H_1$ heißt $G_{\varphi}(\vartheta)$ **Macht** oder **Schärfe** des Tests φ .
- (iv) Gibt es eine Abbildung $T: \mathfrak{X} \to \mathbb{R}$ und eine Menge $R \subset \mathbb{R}$ mit

$$\varphi(x) = 1 \iff T(x) \in R,$$

so heißt T **Teststatistik** für φ mit Verwerfungsbereich R.

12.2 Binomialtest

Im Beispiel 12.1 mit den Bohnen ist:

- $\mathfrak{X} = \{0, \dots, n\},\$
- $\Theta = [0, \frac{1}{4}],$
- $\mathbf{P}_{\vartheta}[X=k] = b_{n,\vartheta}(k) = \binom{n}{k} \vartheta^k (1-\vartheta)^{n-k},$
- $H_0 = \{\frac{1}{4}\},\$
- $H_1 = [0, \frac{1}{4}),$

12.2 Binomialtest 145

• T(x) = x und $R = \{0, \dots, K\}$, also $\varphi(x) = 1 \iff x \leq K$. Also ist

$$G_{\varphi}(\vartheta) = \mathbf{P}_{\vartheta}[\varphi(X) = 1] = \sum_{l=0}^{K} b_{n,\vartheta}(l).$$

Es muss K so gewählt werden, dass

$$\alpha \ge \mathbf{P}_{1/4}[\varphi(X) = 1] = \sum_{l=0}^{K} b_{n,1/4}(l) \approx \Phi\left(\frac{K - \frac{n}{4}}{\sqrt{n \frac{1}{4} \frac{3}{4}}}\right),$$

wobei wir im letzten Schritt die Normalapproximation für die Binomialverteilung verwendet haben, die aber nur für große Werte von n eine gute Näherung ist (vergleiche (9.7) und (9.10)).

Bezeichnen wir mit z_{β} das β -Quantil der Standardnormalverteilung, so folgt

$$K = \frac{n}{4} + \sqrt{\frac{3}{16} n} \ z_{\alpha}$$
$$= \frac{n}{4} - \sqrt{\frac{3}{16} n} \ z_{1-\alpha}.$$

Diesen Test φ bezeichnen wir auch als **Binomialtest**.

Wählen wir ganz konkret n=500 Bohnen als Stichprobenumfang und als Niveau $\alpha=0.05=5\%$, so ist $z_{0.95}=1.644485$ und $K=125-15.928\approx 109$ (wobei wir abgerundet haben).

Konklusion: Auf dem Niveau $\alpha = 0.05$ lehnt der Test φ die Hypothese $H_0 = \{\frac{1}{4}\}$ ab, wenn $T(x) = x \le 109$ Bohnen in der Stichprobe schwarz sind.

Wie groß ist die Schärfe des Tests? Klarerweise gilt: $\vartheta \mapsto G_{\varphi}(\vartheta) = \mathbf{P}_{\vartheta}[\varphi(X) = 1] = \mathbf{P}_{\vartheta}[X \leq K]$ ist monoton fallend und stetig. Für $\vartheta \to \vartheta_0 = \frac{1}{4}$ geht also $G_{\varphi}(\vartheta) \to G_{\varphi}(\vartheta_0) \leq \alpha$. Mit anderen Worten: Die minimale Schärfe $G_{\varphi}(\vartheta)$, wenn ϑ alle Werte in $H_1 = [0, \frac{1}{4})$ durchläuft, ist gerade das Niveau α des Tests. Und zwar unabhängig davon, wie groß n gewählt wird.

Dies ist natürlich unbefriedigend, denn α soll ja klein sein, die Schärfe hingegen groß. Der Grund für dieses nicht auflösbare Dilemma liegt darin, dass $H_1 = [0, \frac{1}{4})$ und $H_0 = \{\frac{1}{4}\}$ direkt aneinander grenzen. Wenn wir eine "Lücke" lassen, so können wir die Schärfe $1 - \beta$ auf jeden beliebigen Wert erhöhen, wenn wir n groß genug wählen:

Wir wählen etwa $H_1=,\vartheta$ ist höchstens $\frac{1}{5}$ ", also $H_1=[0,\frac{1}{5}]$. Da $G_{\varphi}(\vartheta)$ monoton fallend ist, gilt

$$\min_{\vartheta \in H_1} G_{\varphi}(\vartheta) = G_{\varphi}(1/5),$$

der kleinste Wert auf H_1 wird also in $\vartheta = \frac{1}{5}$ angenommen. Wir verlieren mithin keine Allgemeinheit, wenn wir die einfache Gegenhypothese $H_1 = \{\frac{1}{5}\}$ betrachten.

Normalapproximation liefert (für großes n)

$$\mathbf{P}_{1/5}[\varphi(X) = 1] = \mathbf{P}_{1/5}[X \le K] \approx \Phi\left(\frac{K - \frac{1}{5}n}{\sqrt{n\frac{1}{5}\frac{4}{5}}}\right).$$

Dabei ist K der Wert von oben, also $K = \frac{n}{4} - \sqrt{\frac{3}{16}} z_{1-\alpha}$ und damit

$$\Phi\left(\frac{\frac{1}{20}n + \sqrt{\frac{3}{16}n} z_{1-\alpha}}{\frac{2}{5}\sqrt{n}}\right) = \Phi\left(\frac{\sqrt{n}}{8} - \frac{5\sqrt{3}}{2} z_{1-\alpha}\right) \stackrel{!}{=} 1 - \beta.$$

Es folgt

$$z_{1-\beta} = \frac{\sqrt{n}}{8} - \frac{5\sqrt{3}}{2} z_{1-\alpha}.$$

Auflösen nach n ergibt

$$n = 64 \left(z_{1-\beta} + \frac{5\sqrt{3}}{2} z_{1-\alpha} \right)^2.$$

Wählen wir (wie oben) $\alpha = 0.05$ und $\beta = 0.2$, so ist $z_{1-\alpha} = z_{0.95} = 1.644485$, $z_{0.8} = 0.84162$ und damit $n \approx 900$.

Wir führen die selbe Rechnung wie für das Beispiel durch, nur jetzt mit allgemeinen Platzhaltern ϑ_0 (statt $\frac{1}{4}$) und $\vartheta_1 < \vartheta_0$ (statt $\frac{1}{5}$): Die Bedingung, dass das Niveau höchstens α ist, ergibt

$$\mathbf{P}_{\vartheta_0}[\varphi(X) = 1] = \Phi\left(\frac{K - \vartheta_0 n}{\sqrt{n \,\vartheta_0(1 - \vartheta_0)}}\right) \stackrel{!}{=} \alpha,$$

und damit

$$\frac{K - \vartheta_0 n}{\sqrt{n \vartheta_0 (1 - \vartheta_0)}} = z_\alpha,$$

also

$$K = \vartheta_0 n + \sqrt{n \vartheta_0 (1 - \vartheta_0)} z_{\alpha}$$

= $\vartheta_0 n - \sqrt{n \vartheta_0 (1 - \vartheta_0)} z_{1-\alpha}$. (12.1)

Die Bedingung an die Schärfe des Tests liefert (wie oben, nur mit ϑ_1 statt ϑ_0)

$$K = \vartheta_1 n + \sqrt{n \vartheta_1 (1 - \vartheta_1)} z_{1-\beta}. \tag{12.2}$$

Auflösen von (12.1) und (12.2) nach n liefert für die Fallzahlplanung des **Binomialtests** zum Niveau α und mit Schärfe $1-\beta$

$$n = \left(\frac{\sqrt{\vartheta_1(1-\vartheta_1)} z_{1-\beta} + \sqrt{\vartheta_0(1-\vartheta_0)} z_{1-\alpha}}{\vartheta_0 - \vartheta_1}\right)^2.$$
 (12.3)

12.3 Gaußtest

Wir betrachten ein Merkmal, das $\mathcal{N}_{\mu,\sigma}$ -verteilt ist, wobei $\sigma^2 > 0$ bekannt ist (das ist allerdings meist sehr unrealistisch) und $\mu \in \mathbb{R}$ unbekannt ist. Die Nullhypothese $H_0 = \{\mu_0\}$ soll gegen einseitige oder zweiseitige Alternativen getestet werden.

Dazu wird eine Stichprobe von n unabhängigen Beobachtungen X_1, \ldots, X_n erhoben.

Wir unterscheiden zwei Fälle:

12.3 Gaußtest 147

12.3.1 1. Fall: zweiseitige Alternative

Hier ist $H_0 = \{\mu_0\}$ und $H_1 = \mathbb{R} \setminus \{\mu_0\} = \{\mu \in \mathbb{R} : \mu \neq \mu_0\}$ oder $H_1 \subset \mathbb{R} \setminus \{\mu_0\}$, aber auf beiden Seiten von μ_0 gelegen.

Die einfachste Herleitung eines Tests φ für H_0 gegen H_1 beginnt damit, ein Konfidenzintervall C(x) zum Niveau α herzunehmen (vergleiche Kapitel 11.4):

$$C(x) = \left(\overline{x} - \frac{\sigma}{\sqrt{n}} z_{1-\alpha/2}, \, \overline{x} + \frac{\sigma}{\sqrt{n}} z_{1-\alpha/2}\right).$$

Hierbei ist z_{β} (mit $\beta = 1 - \alpha/2$) das β -Quantil der Standardnormalverteilung und $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ das arithmetische Mittel der Beobachtungen. Wir definieren die Regel für φ durch

$$\varphi(x) = 1 \iff C(x) \not\ni \mu_0.$$

Offenbar gilt dann $\mathbf{P}_{\mu_0}[\varphi(X)=1]=\mathbf{P}_{\mu_0}[C(x)\not\ni\mu_0]\leq\alpha$, da das Konfidenzintervall C(x) das Niveau α einhält. Konkret ist also

$$\varphi(x) = 1 \quad \Longleftrightarrow \quad \overline{x} \notin \left(\mu_0 - \frac{\sigma}{\sqrt{n}} z_{1-\alpha/2}, \ \mu_0 + \frac{\sigma}{\sqrt{n}} z_{1-\alpha/2}\right).$$
(12.4)

Auf das selbe Ergebnis kommen wir, wenn wir den etwas standardisierteren Ansatz über die Teststatistik T machen, wobei

$$T(x) := \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}.$$

Nach Konstruktion ist $T(X) \sim \mathcal{N}_{0,1}$, wenn H_0 wahr ist. Als Ablehnungsbereich R für diese Teststatistik müssen wir also $R = \mathbb{R} \setminus (-z_{1-\alpha/2}, z_{1-\alpha/2})$ wählen, denn $\mathbf{P}_{\mu_0}[T(X) \in R] = \mathbf{P}_{\mu_0}[|T(X)| \ge z_{1-\alpha/2}] = \alpha$. Wir erhalten auch mit diesem Ansatz als Verwerfungsregel

$$\varphi(x) = 1 \iff |T(x)| \ge z_{1-\alpha/2}.$$
 (12.5)

Man prüft leicht nach, dass (12.4) und (12.5) die selbe Regel beschreiben.

Fallzahlplanung

Ist $H_1 = \mathbb{R} \setminus \{\mu_0\}$, so ist, wie beim Binomialtest, die minimale Schärfe $G_{\varphi}(\mu)$ höchstens $G_{\varphi}(\mu_0) \leq \alpha$. Wir können also auch hier keine Schärfe erwarten, die besser als das Niveau ist, wenn wir die Alternative so unspezifisch formulieren. Besser sieht es aus, wenn wir uns auf einen gewissen Mindestabstand d > 0 der Alternative zur Nullhypothese festlegen können. In diesem Fall ist

$$H_1 = \{ \mu : |\mu - \mu_0| \ge d \}.$$

Jetzt können wir zu vorgegebener Schärfe $1-\beta$ ein n berechnen, sodass der oben beschriebene zweiseitige Gaußtest die Schärfe $1-\beta$ und das Niveau α hat.

Tatsächlich ist $G_{\varphi}(\mu)$ minimal in $\mu_0 - d$ und $\mu_0 + d$. Wir erhalten also als Bedingung für die Schärfe

$$\begin{aligned} 1 - \beta &\stackrel{!}{=} G_{\varphi}(\mu_{0} - d) \\ &= \mathbf{P}_{\mu_{0} - d} \big[|T(X)| \geq z_{1 - \alpha/2} \big] \\ &= \mathbf{P}_{\mu_{0} - d} \big[T(X) \leq -z_{1 - \alpha/2} \big] + \mathbf{P}_{\mu_{0} - d} \big[T(X) \geq z_{1 - \alpha/2} \big] \\ &\approx \mathbf{P}_{\mu_{0} - d} \big[T(X) \leq -z_{1 - \alpha/2} \big] \quad \text{(der zweite Summand ist viel kleiner als der erste)} \\ &= \mathbf{P}_{\mu_{0}} \left[T(X) \leq d\sqrt{n/\sigma^{2}} - z_{1 - \alpha/2} \right] \\ &= \Phi \big(d\sqrt{n/\sigma^{2}} - z_{1 - \alpha/2} \big). \end{aligned}$$

Also ist

$$z_{1-\beta} = d\sqrt{n/\sigma^2} - z_{1-\alpha/2}.$$

Auflösen nach n ergibt als minimale Fallzahl des zweiseitigen Gaußtests mit Schärfe $1-\beta$ und Niveau α

$$n = \sigma^2 \left(\frac{z_{1-\beta} + z_{1-\alpha/2}}{d} \right)^2.$$
 (12.6)

Abbildung 12.1: Steinlaus Weibchen (Petrophaga lorioti)

Beispiel 12.3 Das Gewicht der (sehr seltenen) Steinläuse (in Mikrogramm) ist bekanntermaßen zufällig und normalverteilt mit Varianz $\sigma^2 = 25$. Die Lehrmeinung ist, dass $\mu_0 = 80$ ist. Allerdings ist in letzter Zeit der Verdacht aufgekommen, dass bei den Weibchen dieser Gattung dieser Wert falsch sein könnte, ohne dass man wüsste, in welcher Richtung der tatsächliche Wert hiervon abweichen sollte. Um dies zu prüfen, sollen Daten erhoben und ein Test durchgeführt werden.

Die Nullhypothese ist $H_0 = \{80\}$, die Gegenhypothese $H_1 = \{\mu \in \mathbb{R} : \mu \neq 80\}$. Es soll (sehr konservativ) H_0 gegen H_1 auf dem Niveau von $\alpha = 1\%$ getestet werden. Dazu werden n = 10 Daten erhoben. Um den Verwerfungsbereich zu bestimmen, schauen wir $z_{0.995} = 2.57583$ in der Tabelle nach und erhalten als Verwerfungsbereich für den Test

$$\varphi(x) = 1 \quad \Longleftrightarrow \quad \frac{|\overline{x} - 80|}{5/\sqrt{10}} \ge z_{1-\alpha/2} \approx 2.57583.$$

Nun werden die Daten bei zehn Weibchen der Petrophaga lorioti erhoben:

i	1	2	3	4	5	6	7	8	9	10
x_i	80	70	82	71	73	75	95	76	68	72

Wir erhalten: $\overline{x} = 76.2$, also $|\overline{x} - 80|/(5/\sqrt{10}) = 2.403 < 2.57583$. Damit kann der Test die Nullhypothese zum Niveau 0.01 nicht verwerfen.

Wie groß müsste die Stichprobe sein, um die modifizierte Gegenhypothese $H_1 = \{\mu \in \mathbb{R} : |\mu - 80| > 3\}$ zum Niveau $\alpha = 0.01$ und mit Mindestschärfe $1 - \beta = 0.95$ zu testen?

Nach Gleichung (12.6) ist (mit $z_{0.95} = 1.64485$) der erforderliche Stichprobenumfang

$$n = 25 \left(\frac{1.64485 + 2.57583}{3} \right)^2 = 49.484.$$

12.4 t-Test

Es müssen also n = 50 Steinläuse gewogen werden.

12.3.2 2. Fall: einseitige Alternative

Hier ist $H_0 = \{\mu_0\}$ und $H_1 \subset (-\infty, \mu_0)$ (linksseitige Alternative) oder $H_1 \subset (\mu_0, \infty)$ (rechtsseitige Alternative). Aufgrund der Symmetrie des Problems reicht es, die linksseitige Alternative zu betrachten. Sei also $H_0 = \{\mu_0\}$ und $H_1 \subset (-\infty, \mu_0)$.

Wir definieren die Teststatistik T wie im zweiseitigen Fall. Offenbar deuten besonders kleine Werte von T(X) an, dass die Nullhypothese zugunsten der Alternative verworfen werden kann. Wir wählen daher als Ablehnungsbereich

$$\varphi(x) = 1 \iff T(x) \le -z_{1-\alpha}.$$

Dabei ist die kritische Zahl $-z_{1-\alpha}=z_{\alpha}$ so gewählt, dass das Niveau α eingehalten wird. Es ist nämlich

$$\mathbf{P}_{\mu_0}[\varphi(X) = 1] = \mathbf{P}_{\mu_0}[T(X) \le -z_{1-\alpha}] = \Phi(-z_{1-\alpha}) = \Phi(z_{\alpha}) = \alpha.$$

Ausgeschrieben heißt dies: der linksseitige Gaußtest hat den Verwerfungsbereich

$$\varphi(x) = 1 \iff T(x) = \frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}} \le -z_{1-\alpha}.$$
 (12.7)

 \Diamond

Analog hat der rechtsseitige Gaußtest $(H_1 \subset (\mu_0, \infty))$ zum Niveau α den Verwerfungsbereich

$$\varphi(x) = 1 \quad \Longleftrightarrow \quad T(x) = \frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}} \ge z_{1-\alpha}.$$
 (12.8)

Fallzahlplanung

Um eine vorgegebene Mindestschärfe $1-\beta$ für die linksseitige Alternative $H_1=(-\infty,\mu_1]$ (mit $\mu_1<\mu_0$), beziehungsweise für die rechtsseitige Alternative $H_1=[\mu_1,\infty)$ (mit $\mu_1>\mu_0$), zu erhalten, müssen wir n hinreichend groß wählen. Eine ähnliche Rechnung wie bei der zweiseitigen Alternative ergibt als Mindestgröße

$$n = \sigma^2 \left(\frac{z_{1-\beta} + z_{1-\alpha}}{\mu_1 - \mu_0} \right)^2. \tag{12.9}$$

Beispiel 12.4 Nachdem die Erhebung der Daten bei den Steinlaus-Weibchen ein im Mittel geringeres Gewicht als das der Männchen ergeben hat, könnte man nun die einseitige Hypothese $H_1 = \{\mu : \mu < 77\}$ gegen $H_0 = \{80\}$ testen wollen. Wie groß muss eine Stichprobe gewählt werden, um den Test auf dem Niveau $\alpha = 0.01$ und mit Schärfe $1 - \beta = 0.95$ durchzuführen? Mit Gleichung (12.9) (und $z_{0.95} = 1.64485$, $z_{0.99} = 2.32635$) erhalten wir

$$n = n = 25 \left(\frac{1.64485 + 2.32635}{3} \right)^2 = 43.807.$$

Anders als beim zweiseitigen (und damit unspezifischeren Test) kommen wir hier mit einer Stichprobengröße von n=44 Steinläusen aus.

12.4 t-Test

Wir betrachten genau die gleiche Situation wie beim Gauß-Test, jedoch soll nun die Varianz σ^2 der Verteilung $\mathcal{N}_{\mu,\sigma^2}$ unbekannt sein.

Als Nullhypothese wird $H_0 = \{\mu_0\}$ formuliert (für ein $\mu_0 \in \mathbb{R}$) und als Alternative H_1 beidseitig, linksseitig oder rechtsseitig (wie beim Gaußtest). Der Test soll zum Niveau α durchgeführt werden.

Wir müssen nun aus den Beobachtungen x_1, \ldots, x_n , ähnlich wie beim Konfidenzintervall bei unbekannter Varianz, die Varianz durch den erwartungstreuen Varianzschätzer

$$s_{n-1}^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2 = \frac{1}{n-1} \left(\sum_{i=1}^n x_i^2 - \frac{1}{n} \left(\sum_{i=1}^n x_i \right)^2 \right) = \frac{n}{n-1} \left(\overline{x^2} - \overline{x}^2 \right)$$
(12.10)

schätzen. Wir verwenden also die t-Statistik

$$T(x) = \frac{\overline{x} - \mu_0}{s_{n-1}/\sqrt{n}}.$$

Unter der Nullhypothese ist $T(X) \sim t_{n-1}$, wo t_k die t-Verteilung mit k Freiheitsgraden ist. Wie üblich bezeichnet t_{n-1} ; α das α -Quantil der t_{n-1} -Verteilung. Ähnlich wie beim Gaußtest erhalten wir die folgenden Verwerfungsregeln:

Beidseitiger t-Test zum Niveau α

Es ist $H_1 = \mathbb{R} \setminus \{\mu_0\}$ (oder etwas schwächer: $H_1 \subset \mathbb{R} \setminus \{\mu_0\}$ (auf beiden Seiten gelegen)). Bei Beobachtung $x = (x_1, \dots, x_n)$ verwirft der Test H_0 , falls

$$|T(x)| \ge t_{n-1; 1-\alpha/2}$$
.

Linksseitiger t-Test zum Niveau α

Es ist $H_1 \subset (-\infty, \mu_0)$. Besonders kleine Werte von T(x) stützen die Gegenhypothese. Bei Beobachtung $x = (x_1, \dots, x_n)$ verwirft der Test H_0 also, falls

$$T(x) \leq -t_{n-1:1-\alpha}$$
.

Rechtsseitiger t-Test zum Niveau α

Es ist $H_1 \subset (\mu_0, \infty)$. Besonders große Werte von T(x) stützen die Gegenhypothese. Bei Beobachtung $x = (x_1, \dots, x_n)$ verwirft der Test H_0 also, falls

$$T(x) \ge t_{n-1; 1-\alpha}.$$

Beispiel 12.5 Das Gewicht australischer Straußeneier (in Gramm) ist normalverteilt mit unbekanntem μ und unbekannter Varianz. Ein alter Häuptling verrät uns die Weisheit, dass $\mu = \mu_0 = 110$ der wahre Parameter ist. σ^2 kennt auch der weise Mann nicht.

Wir haben unsere Zweifel an den Kenntnissen des Mannes, allerdings keine Ahnung, ob wir μ kleiner oder größer als $\mu_0=110$ vermuten sollen. Wir formulieren also die Gegenhypothese: $H_1=$ " $\mu\neq 110$ " = $\mathbb{R}\setminus\{110\}$. Ein Test soll auf dem Niveau $\alpha=0.05$ die Angelegenheit klären. Dazu sollen n=10 Eier gewogen werden und die Messergebnisse mit x_1,\ldots,x_{10} bezeichnet werden. Der zweiseitige t-Test verwirft H_0 zugunsten von H_1 , falls

$$|T(x)| = \left| \frac{\overline{x} - 110}{s_{n-1}/\sqrt{10}} \right| \ge t_{9;0.975} = 2.2622.$$

12.4 t-Test 151

Nachdem dieses Kriterium festgelegt worden ist, werden die Eier gesammelt und gewogen:

i	1	2	3	4	5	6	7	8	9	10
x_i	106	110	100	103	109	101	97	103	111	99

Aus diesen Daten erhalten wir

$$\sum_{i=1}^{10} x_i = 1039 \quad \text{und} \quad \sum_{i=1}^{10} x_i^2 = 108167.$$

Wir berechnen

$$\overline{x} = \frac{1}{10} \sum_{i=1}^{10} x_i = 103.9$$

und

$$s_{n-1}^2 = \frac{1}{9} \left(\sum_{i=1}^{10} x_i^2 - \frac{1}{10} \left(\sum_{i=1}^{10} x_i \right)^2 \right) = \frac{1}{9} (108167 - 107952.1) = 23.8\overline{7},$$

also

$$s_{n-1} = \sqrt{s_{n-1}^2} = \sqrt{23.87} = 4.886.$$

Wir erhalten den Wert $T(x) = \frac{103.9 - 110}{4.886/\sqrt{10}} = -3.948$, also ist |T(x)| = 3.948 > 2.2622, und der Test verwirft die H_0 zugunsten von H_1 auf dem Niveau 5%.

Beispiel 12.6 Das Gewicht (in kg) in den Bohnensäcken eines Lieferanten sei $\mathcal{N}_{\mu,\sigma}$ -verteilt mit μ und σ^2 beide unbekannt. Der Lieferant behauptet, dass im Mittel mindestens 100kg in den Säcken ist, also:

$$H_0 := \{ \mu : \mu \ge \mu_0 := 100 \}.$$

Wir haben den Verdacht, dass μ kleiner als 100 sein könnte, also

$$H_1 = (-\infty, 100).$$

Es soll mit einem (linksseitigen) t-Test H_0 gegen H_1 auf dem Niveau $\alpha=0.01$ getestet werden. Wir verwerfen also H_0 genau dann, wenn

$$T(x) = \frac{\overline{x} - 100}{s_{n-1}/\sqrt{n}} \le -t_{n-1;0.99}.$$

Jetzt werden acht Säcke geprüft:

i	1	2	3	4	5	6	7	8
x_i	98.3	98.6	99.2	99.1	99.3	98.8	98.9	99

Aus diesem Werten berechnen wir

$$\sum_{i=1}^{8} x_i = 791.2 \quad \text{und } \sum_{i=1}^{8} x_i^2 = 78250.44.$$

Hieraus berechnen wir

$$\overline{x} = \frac{1}{8} \sum_{i=1}^{8} x_i = 98.9$$

und

$$s_{n-1}^2 = \frac{1}{7} \left(\sum_{i=1}^8 x_i^2 - \frac{1}{8} \left(\sum_{i=1}^8 x_i \right)^2 \right) = \frac{1}{7} \left(78225.44 - \frac{625997.44}{8} \right) = 0.108571429,$$

also

$$s_{n-1} = \sqrt{s_{n-1}^2} = 0.3295.$$

Schließlich schauen wir in der Tabelle nach: $t_{7:0.99} = 2.998$.

Wir erhalten den Wert T(x) = -9.44 < -2.998, also verwirft der Test H_0 zugunsten von H_1 auf dem Niveau 1%.

Fallzahlplanung für den t-Test

Wie beim Gaußtest benötigt man eine "Lücke" d zwischen H_0 und H_1 . Es muss also $H_1 = (-\infty, \mu_0 - d]$ (linksseitiger Fall), $H_1 = [\mu_0 + d, \infty)$ (rechtsseitiger Fall) oder $H_1 = \{\mu : |\mu - \mu_0| \ge d\}$ (beidseitiger Fall) sein. Da σ^2 unbekannt ist, kann man keine a priori Abschätzung für die kleinste Fallzahl n angeben, die ein Mindestschärfe $1 - \beta$ sichert.

Ein mögliches Vorgehen sieht so aus: Zunächst wird eine (kleine) Stichprobe x_1, \ldots, x_m erhoben, aus der heraus mit s_{m-1}^2 die Varianz σ^2 geschätzt wird. Die Fallzahl für die eigentliche Stichprobe wird dann fest gesetzt als

$$n \ge s_{m-1}^2 \left(\frac{z_{1-\beta} + z_{1-\alpha/2}}{d}\right)^2$$
 im zweiseitigen Fall

und

$$n \ge s_{m-1}^2 \left(\frac{z_{1-\beta} + z_{1-\alpha}}{d}\right)^2$$
 im einseitigen Fall.

Jetzt wird eine Stichprobe der Größe n erhoben, wobei die Daten x_1, \ldots, x_m nicht noch einmal verwendet werden dürfen.

12.5 *p*-Werte

Die meisten Statistik-Programme erwarten für die Auswertung eines Tests nicht die Eingabe eines Niveaus, sondern geben stattdessen einen so genannten **p-Wert** aus. Die Bedeutung diese: Ist der p-Wert kleiner als das gewählte Niveau α , so verwirft der Test zum Niveau α . Ist hingegen $p > \alpha$, so verwirft der Test nicht zum Niveau α . Etwas vereinfachend (und auch leicht fehlerhaft) ausgedrückt: Der p-Wert ist das kleinste Niveau, zu dem der Test noch verwerfen würde.

Diese Interpretation ist deshalb fehlerhaft, weil eine statistische Auswertung vorsieht, dass wir das Niveau **vor** der Auswertung festlegen und nicht erst **nachdem** wir den p-Wert kennen. Sie ist vereinfachend, weil sie einen Aspekt unberücksichtigt lässt: wir haben bei den Formulierungen implizit angenommen, dass wir für jedes Niveau α einen Test φ_{α} haben, der genau das Niveau α hat und so, dass für jede feste Beobachtung x gilt: $\varphi_{\alpha}(x) \leq \varphi_{\alpha'}(x)$, falls $\alpha \leq \alpha'$. Nur dann ist die Formulierung "ist das kleinste Niveau, zu dem der Test noch verwerfen würde" sinnvoll.

Bevor wir die allgemeine Situation betrachten, betrachten wir ein Beispiel.

12.5 p-Werte 153

12.5.1 Gaußtest

Wir betrachten zunächst die Situation des linksseitigen Gaußtests.

Die Messgrößen X_1, \ldots, X_n seien unabhängig und $\mathcal{N}_{\mu,\sigma^2}$ -verteilt mit bekanntem $\sigma^2 > 0$ und unbekanntem $\mu \in \mathbb{R}$. Wir wollen mit einem linksseitigen Gaußtest die Hypothese $H_0 = \mu_0$ gegen die Alternative $H_1 = \mu_0$ testen. Dabei ist $\mu_0 \in \mathbb{R}$ ein vorgegebener Wert.

Die Teststatistik ist (mit $x = (x_1, \ldots, x_n)$)

$$T(x) = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}.$$

Für $\alpha \in (0,1)$ ist der linksseitige Gaußtest φ_{α} zum Niveau α gegeben durch

$$\varphi(x) = 1 \iff T(x) \le -z_{1-\alpha}.$$

Hierbei ist z_{β} das β -Quantil der Standardnormalverteilung $\mathcal{N}_{0,1}$. Offenbar gilt $z_{\beta} \leq z_{\beta'}$, falls $\beta \leq \beta'$ ist. Also gilt $-z_{1-\alpha} \leq -z_{1-\alpha'}$, falls $\alpha \leq \alpha'$ ist. Es folgt, dass für jede Beobachtung $x \in \mathfrak{X}$ und für $\alpha \leq \alpha'$ gilt:

$$\varphi_{\alpha}(x) = 1 \iff T(x) \le -z_{1-\alpha} \implies T(x) \le -z_{1-\alpha'} \iff \varphi_{\alpha'}(x) = 1.$$

Mit anderen Worten:

$$(0,1) \to \{0,1\}, \quad \alpha \mapsto \varphi_{\alpha}(x) \quad \text{ist monoton wachsend (für jedes } x \in \mathfrak{X}).$$
 (12.11)

Es gibt also eine Zahl $p = p(x) \in [0, 1]$ mit der Eigenschaft:

$$\varphi_{\alpha}(x) = \begin{cases} 1, & \text{falls } \alpha > p(x), \\ 0, & \text{falls } \alpha < p(x). \end{cases}$$
 (12.12)

Dieses p(x) wird **p-Wert** des linksseitigen Gaußtests bei Beobachtung x genannt.

Wichtig ist festzuhalten, dass der *p*-Wert einer Beobachtung sich danach bemisst, welcher Test verwendet wird. Würden wir den zweiseitigen Gaußtest verwenden, so erhielten wir einen anderen *p*-Wert für unsere Beobachtung. Daher ist es wichtig, zunächst einen Test festzulegen und dann die Auswertung durchzuführen. Das umgekehrte Verfahren, erst die Daten zu erheben und dann im Statistik-Programm alle Tests anzuklicken, bis einer einen kleinen *p*-Wert ausgibt, führt zu unbrauchbaren, weil unwissenschaftlichen Ergebnissen.

Wie können wir nun das p(x) von oben explizit berechnen? Für $\alpha < p(x)$ ist $T(x) > -z_{1-\alpha}$, für $\alpha > p(x)$ hingegen $T(x) < -z_{1-\alpha}$. Aus Stetigkeitsgründen gilt Gleichheit für $\alpha = p(x)$, also $T(x) = -z_{1-p(x)}$. Nach der Definition des Quantils folgt (mit Φ die Verteilungsfunktion von $\mathcal{N}_{0,1}$) $(1-p(x)) = \Phi(-T(x))$, also

$$p(x) = 1 - \Phi(-T(x)) = \Phi(T(x)). \tag{12.13}$$

Beispiel 12.7 Im Beispiel mit den Steinläusen (Beispiel 12.3) hatten wir $\mu_0 = 80$, $\sigma^2 = 25$ und die folgenden zehn Messwerte erhoben:

i	1	2	3	4	5	6	7	8	9	10
x_i	80	70	82	71	73	75	95	76	68	72

Wir erhalten: $\overline{x} = 76.2$, also

$$T(x) = \frac{\overline{x} - 80}{5/\sqrt{10}} = -2.403,$$

und damit den p-Wert

$$p(x) = \Phi(T(x)) = \Phi(-2.403) = 0.0081232.$$

Der linksseitige Gaußtest verwirft also $H_0 = \mu = 80$ zu Gunsten von $H_1 = \mu < \mu_0$, falls das Niveau **größer** als 0.81232% gewählt wurde.

Zum Vergleich: Der in Beispiel 12.3 verwendete **zweiseitige** Gaußtest hatte zum Niveau 1% die Nullhypothese nicht verworfen. Wenn wir (vor Erhebung der Daten!) die linksseitige Alternative formulieren, so können wir gegen diese Alternative die Nullhypothese zum Niveau 1% verwerfen, da p(x) < 1% ist.

Für den rechtsseitigen und beidseitigen Gaußtest erhalten wir mit einer ähnlichen Argumentation die p-Werte. Wir lassen die Rechnungen aus und stellen lediglich die Ergebnisse in einem Satz zusammen.

Satz 12.8 (p-Werte des Gaußtests) Für den Gaußtest (mit Teststatistik $T(x) = \frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}}$) erhalten wir folgende p-Werte:

linksseitiger Gaußtest (
$$H_1 = ,, \mu < \mu_0$$
"): $p(x) = \Phi(T(x)) = 1 - \Phi(-T(x))$.

rechtsseitiger Gaußtest (
$$H_1 = ,, \mu > \mu_0$$
"): $p(x) = \Phi(-T(x)) = 1 - \Phi(T(x))$.

beidseitiger Gaußtest
$$(H_1 = ,, \mu \neq \mu_0): p(x) = 2(1 - \Phi(|T(x)|)).$$

Beispiel 12.9 Im Beispiel mit den Steinläusen hatten wir ursprünglich einen beidseitigen Gaußtest benutzt. Für diesen bekommen wir bei der obigen Beobachtung den p-Wert

$$p(x) = 2(1 - \Phi(2.403)) = 1.6247\%.$$

Der zweiseitige Gaußtest zum Niveau α verwirft also H_0 , falls $\alpha > 1.6247\%$ gewählt wurde, sonst nicht. Im ursprünglichen Beispiel war $\alpha = 1\%$, also konnte nicht verworfen werden.

12.5.2 *t*-Test

Wir betrachten nun die Situation wie oben, jedoch mit unbekanntem σ^2 . Wir müssen also als Teststatistik

$$T(x) = \frac{\overline{x} - \mu_0}{s_{n-1}/\sqrt{n}}$$

wählen, wo

$$s_{n-1}^2 = \frac{1}{n-1} \left(\sum_{i=1}^n x_i^2 - \frac{1}{n} \left(\sum_{i=1}^n x_i \right)^2 \right)$$

der erwartungstreue Varianzschätzer ist. Wir bezeichnen mit t_{n-1} die Verteilungsfunktion der t-Verteilung mit n-1 Freiheitsgraden. Es gilt also für jedes $y \in \mathbb{R}$ unter H_0

$$\mathbf{P}[T(X) \le y] = t_{n-1}(y).$$

Die Werte von t_{n-1} sind tabelliert (Anhang A.4). Ähnlich wie für den Gaußtest können wir den p-Wert explizit berechnen:

Satz 12.10 (p-Werte des t-Tests) Für den t-Test erhalten wir folgende p-Werte:

linksseitiger t-Test (
$$H_1 = ,, \mu < \mu_0$$
 "): $p(x) = t_{n-1}(T(x)) = 1 - t_{n-1}(-T(x))$.
rechtsseitiger t-Test ($H_1 = ,, \mu > \mu_0$ "): $p(x) = t_{n-1}(-T(x)) = 1 - t_{n-1}(T(x))$.
beidseitiger t-Test ($H_1 = ,, \mu \neq \mu_0$ "): $p(x) = 2(1 - t_{n-1}(|T(x)|))$.

Beispiel 12.11 (Straußeneier) Wir betrachten das Beispiel 11.22 mit Straußeneiern noch einmal. Dort war $H_0 = \mu = 110$ und $H_1 = \mu \neq 110$. Es wurden n = 10 Eier gewogen mit den Ergebnissen:

i	1	2	3	4	5	6	7	8	9	10
x_i	106	110	100	103	109	101	97	103	111	99

Hieraus folgt: $T(x) = \frac{103.9 - 110}{4.886/\sqrt{10}} = -3.9476$ Wir schauen in der Tabelle den Wert (Abrunden zur Sicherheit!) $t_9(3.9) = 0.99819$ nach. Als p-Wert erhalten wir

$$p(x) = 2(1 - t_9(|T(x)|)) = 2(1 - t_9(3.90)) = 0.00362 = 0.362\%.$$

Der beidseitige t-Test verwirft also zum Niveau α , falls $\alpha > 0.362\%$ gewählt wurde. Tatsächlich hatten wir als Niveau $\alpha = 5\%$ festgelegt und der Test hatte H_0 verworfen.

12.5.3 Formale Definition des p-Werts

Zum Ende dieses Abschnitts wollen wir noch die formale Definition des p-Werts bringen, die unabhängig von dem gewählten Testverfahren ist.

Definition 12.12 (p-Wert) Sei $(\varphi_{\alpha})_{\alpha}$ eine Familie von Tests mit der Eigenschaft: φ_{α} hat Niveau α für jedes α .

Für eine Beobachtung $x \in \mathfrak{X}$ heißt p(x) der p-Wert, falls

$$\varphi_{\alpha}(x) = \begin{cases} 1, & falls \ \alpha > p(x), \\ 0, & falls \ \alpha < p(x). \end{cases}$$

12.6 Lagetests bei unbekannten Verteilungen

Ein Bauer düngt seine Felder mit dem klassischen "Düngefix 2000". Ein Vertreter der Firma "Guanoforte" behauptet, der Ertrag wäre bei Verwendung seines Düngers größer. Dies soll getestet werden.

Das erste Problem, das sich stellt, ist: was **genau** heißt besser? Wäre der Ertrag einfach eine (deterministische) Zahl, so wäre die größere Zahl besser. Wir nehmen aber an, dass der Ertrag (in Doppelzentnern/Hektar) auf einzelnen (gleich großen) Feldern zufällig ist mit einer Verteilung gemäß der Verteilungsfunktion F_1 bei dem konventionellen Mittel und F_2 bei dem neuen Mittel. Außerdem nehmen wir an, dass die Erträge auf unterschiedlichen Feldern unabhängig sind. Es bieten sich zwei einfache Kriterien an, um F_1 und F_2 zu vergleichen:

(i) Ist $F_1(x) \geq F_2(x)$ für jedes $x \in \mathbb{R}$, so ist F_2 besser als F_1 in dem Sinne, dass jedes Quantil von F_2 rechts vom entsprechenden Quantil von F_1 liegt. Bei jeder Bewertung der Erträge, die mehr als besser einstuft, wird F_2 gegen F_1 zu bevorzugen sein.

(ii) In vielen Fällen ist die Überlegenheit eines Mittels nicht so eindeutig wie in (i). Stattdessen werden von F_2 nur gewisse Eigenschaften besser sein als bei F_1 . Etwa der Erwartungswert oder der Median. Aber auch viele andere Bewertungsmaßstäbe sind möglich und werden verwendet.

Wir werden in diesem Abschnitt zwei Testverfahren untersuchen, die sich durch ihre Einfachheit auszeichnen: den Mediantest (als einen Test zur Kategorie (ii)) und den Wilcoxon Rangtest (als Test für die Kategorie (i)).

12.6.1 Mediantest (ein 1-Stichprobentest)

Bei diesem Test wird angenommen, dass vom konventionellen Mittel der Median bekannt ist und gleich m_0 ist. Dagegen soll getestet werden, ob das neue Mittel einen anderen Median hat. Es werden also nur Stichproben mit dem neuen Mittel erhoben und ein Test für dessen Median durchgeführt. Da in diesem Zusammenhang F_1 gar nicht auftaucht, werden wir kurz $F = F_2$ schreiben.

Der Einfachheit halber wollen wir annehmen, dass F stetig ist.

Wir formulieren als Testproblem: Der Beobachtungsraum ist $\mathfrak{X} = \mathbb{R}^n$. Falls F die wahre Verteilungsfunktion ist, sind die einzelnen (reellwertigen) Beobachtungen X_1, \ldots, X_n unabhängig und verteilt mit Verteilungsfunktion $F(t) = \mathbf{P}_F[X_i \leq t]$ für jedes $t \in \mathbb{R}$. Die Nullhypothese ist: der Median m_F von F ist m_0 , also $F(m_0) = \frac{1}{2}$.

Die rechtsseitige Gegenhypothese lautet: $H_1 = , m_F > m_0$ ". Als Teststatistik ermitteln wir einfach die Anzahl der Beobachtungen von den x_1, \ldots, x_n , die größer als m_0 sind. Sind dies erheblich mehr als die Hälfte der Beobachtungen, so scheint H_1 zu stimmen. Formal definieren wir also

$$T(x) = \#\{i = 1, ..., n : x_i > m_0\} = \text{Anzahl der } i \text{ mit } x_i > m_0.$$

Unter H_0 ist $\mathbf{P}_F[X_i > m_0] = \frac{1}{2}$, also ist T(X) binomial verteilt mit Parametern n und $\frac{1}{2}$:

$$T(x) \sim b_{n,1/2}$$
, unter H_0 .

Der Mediantest φ zum Niveau α verwirft H_0 zu Gunsten von H_1 , falls $T(x) \geq K_{\alpha}$ ist, wobei K_{α} so zu wählen ist, dass $\mathbf{P}_F[T(X) \geq K_{\alpha}] \leq \alpha$ gilt, falls F den Median m_0 hat. Es folgt als Bedingung an das K_{α}

$$\sum_{l=K_{\alpha}}^{n} b_{n,1/2}(l) = \sum_{l=K_{\alpha}}^{n} \binom{n}{l} 2^{-n} \stackrel{!}{\leq} \alpha.$$
 (12.14)

Als p-Wert für die Beobachtung x bekommen wir

$$p(x) = 2^{-n} \sum_{l=T(x)}^{n} \binom{n}{l}.$$
 (12.15)

Ist n groß, so können wir K_{α} und p(x) durch Normalapproximation annähern:

$$K_{\alpha} \approx \frac{n}{2} + \frac{\sqrt{n}}{2} z_{1-\alpha} \tag{12.16}$$

und

$$p(x) \approx 1 - \Phi\left(\frac{2T(x) - n}{\sqrt{n}}\right),$$
 (12.17)

wobei z_{β} das β -Quantil der Normalverteilung bezeichnet und Φ deren Verteilungsfunktion.

Analog erhalten wir für die linksseitige Alternative $H_1 = m_F < m_0$ den Verwerfungsbereich $T(x) \le n - K_{\alpha}$, wobei K_{α} wie oben gewählt wird, und den p-Wert

$$p(x) = 2^{-n} \sum_{l=0}^{T(x)} \binom{n}{l}.$$
 (12.18)

Speziell gilt für die Normalapproximation

$$\varphi(x) = 1 \quad \iff \quad T(x) \le \frac{n}{2} - \frac{\sqrt{n}}{2} z_{1-\alpha}$$
 (12.19)

und

$$p(x) \approx 1 - \Phi\left(\frac{n - 2T(x)}{\sqrt{n}}\right).$$
 (12.20)

Beispiel 12.13 Mit den klassischen Autoreifen einer Firma beträgt der Bremsweg im Mittel (Median) $m_0 = 100$ Meter. Ein neuer Reifen soll getestet werden. Die Nullhypothese ist, dass der Median m mit den neuen Reifen ebenfalls 100 ist (oder größer), die Gegenhypothese ist m < 100. Als Niveau legen wir $\alpha = 0.05$ fest.

Nun wird festgelegt, dass n = 8 Bremsversuche gemacht werden. Es ist

$$\sum_{l=6}^{8} {8 \choose l} 2^{-8} = \frac{1}{256} \left[{8 \choose 6} + {8 \choose 7} + {8 \choose 8} \right] = \frac{28+8+1}{256} \approx 0.145 = 14.5\% > 5\%$$

und

$$\sum_{l=7}^{8} {8 \choose l} 2^{-8} = \frac{1}{256} \left[{8 \choose 7} + {8 \choose 8} \right] = \frac{8+1}{256} \approx 0.0352 = 3.52\% < 5\%.$$

Also ist $K_{0.05} = 7$, und der Test verwirft H_0 , falls $T(x) \le 8 - 7 = 1$. Jetzt werden die Daten erhoben:

i	1	2	3	4	5	6	7	8
x_i	98.3	98.1	100.7	98.5	98.2	98.6	99.6	100.2

Zwei Werte sind größer als 100. Es ist also T(x)=2. Damit kann der Test H_0 zum Niveau 5% nicht verwerfen. Als p-Wert berechnen wir

$$p(x) = \frac{1}{256} \sum_{l=0}^{2} {8 \choose l} \approx 14.5\%.$$

Dieser p-Wert liefert keine besondere Signifikanz des Ergebnisses.

Was wäre herausgekommen, wenn wir statt des Mediantests den linksseitigen t-Test verwendet hätten? Aus den Daten berechnen wir $\overline{x}=99.025$ und $s_{n-1}=1.002496883$, also als Wert der t-Statistik $\frac{\overline{x}-100}{s_{n-1}/\sqrt{8}}=-2.750847901$. In der Tabelle schauen wir $t_7(2.75)=0.98575$ nach und erhalten als p-Wert unserer Beobachtung

$$p(x) = 1 - t_{n-1}(-2.75) = 1 - t_7(2.75) = 0.01425 \approx 1.4\%.$$

Wieso kommt hier ein so viel besserer Wert heraus als bei dem Mediantest? Der t-Test macht die Annahme, dass die zugrunde liegenden Verteilungen Normalverteilungen sind. Nur in diesem Fall

ist die t-Statistik auch wirklich t_{n-1} -verteilt. Ist diese Annahme erfüllt, so ist der t-Test besser als alle anderen Tests. Ist die Annahme jedoch nicht erfüllt, so kann man den t-Test schlichtweg nicht anwenden, weil das Niveau nicht eingehalten wird, bzw. die Berechnung des p-Wertes in diesem Fall nicht korrekt ist.

Kurz: ist die Verteilung nicht normal, so kann der t-Test nicht verwendet werden. Ist die Verteilung normal, so ist der t-Test sehr gut. \diamond

12.6.2 Wilcoxon Test (ein 2-Stichprobentest)

Es soll hier getestet werden, ob die unbekannte Verteilungsfunktion F_2 besser ist als die ebenfalls unbekannte Verteilungsfunktion F_1 , und zwar besser in dem Sinne, dass $F_2 \leq F_1$ ist. Wir stellen hier knapp das wichtigste Testverfahren vor, das auf so genannten Rangsummen basiert.

Als Nullhypothese formulieren wir

$$H_0 = F_1 = F_2$$

und als Gegenhypothese

$$H_1 = F_2 \le F_1, F_2 \ne F_1$$
.

Wir wollen, um technische Probleme zu vermeiden und den Blick auf des Wesentlich zu lenken, annehmen, dass F_1 und F_2 stetig sind. Diese Annahme stellt sicher, dass keine zwei Beobachtungen den selben Wert haben. Wir sehen gleich, wozu das nützlich ist.

Um H_0 gegen H_1 zu testen, müssen zwei Stichproben erhoben werden:

- \bullet eine, bei der die Beobachtungen X_1, \ldots, X_m unabhängig sind und nach F_1 verteilt,
- \bullet und eine, bei der die Beobachtungen Y_1, \ldots, Y_n unabhängig sind und nach F_2 verteilt.

Zusätzlich nehmen wir an, dass die Stichproben unabhängig voneinander erhoben werden (also an unterschiedlichen Patienten, auf unterschiedlichen Feldern usw.).

Sei $i \in \{1, ..., n\}$. Als **Rang** der Beobachtung y_i bezeichnen wir die Anzahl der Beobachtung von $x_1, ..., x_m$ und $y_1, ..., y_n$, die kleiner oder gleich y_i sind. Also

Rang_i^y :=
$$\#\{k : x_k \le y_i\} + \#\{l : y_l \le y_i\}.$$

Analog setzen wir

$$\operatorname{Rang}_{i}^{x} := \#\{k : x_{k} \le x_{i}\} + \#\{l : y_{l} \le x_{i}\}.$$

Ist also $\operatorname{Rang}_i^y = 1$, so ist y_i die kleinste aller Beobachtungen. Ist $\operatorname{Rang}_i^y = 2$, so ist y_i die zweitkleinste aller Beobachtungen und so weiter.

Beispiel 12.14 Seien m = 3 und n = 4 und $x_1 = 8$, $x_2 = 4.2$, $x_3 = 3.5$, $y_1 = 1$, $y_2 = 19$, $y_3 = -4$, $y_4 = 4.6$. Wir ordnen *alle* Beobachtungen der Reihe nach:

Rang	1	2	3	4	5	6	7
Wert	-4	1	3.5	4.2	4.6	8	19
Herkunft	y_3	y_1	x_3	x_2	x_1	y_4	y_2

Dann ist beispielsweise $Rang_2^x = 4$ und $Rang_1^y = 2$.

Unter der Gegenhypothese sind die Werte von Y_1, \ldots, Y_n tendenziell größer als die der X_1, \ldots, X_m , das heißt, die Ränge dieser Beobachtungen sind groß. Um aus den vielen Rängen eine Maßzahl zu erzeugen, summieren wir alle Ränge der Y-Beobachtungen auf und nennen

$$W(x,y) := \sum_{i=1}^{n} \operatorname{Rang}_{i}^{y}$$

die Rangsumme der Beobachtungen y_1, \ldots, y_n . Die Rangsumme wird oft auch Wilcoxon Statistik genannt. In Beispiel 12.14 ist

$$W(x,y) = 1 + 2 + 6 + 7 = 16.$$

Die Verteilung der Wilcoxon Statistik W(X, y) (bei zufälliger Beobachtung X und fester Beobachtung y) hängt unter der Hypothese H_0 nicht von der konkreten Verteilungsfunktion F_1 ab. Daher können wir mit ihrer Hilfe einen Test konstruieren, der immer das gewünschte Niveau einhält, egal, welches die zugrunde liegende Verteilung ist. Solche Tests nennen wir verteilungsfrei.

Die Verteilung von W(X,Y) unter H_0 heißt **Wilcoxon Verteilung** mit Parametern m und n, kurz Wil $_{m,n}$.

Für kleine Werte von m und n sind die Quantile $c_{m,n;\beta}$ von Wil $_{m,n}$ tabelliert. Meist findet man jedoch nicht $c_{m,n,\beta}$ selber, sondern die Größe

$$u_{m,n;\beta} = c_{m,n;\beta} - \frac{m(m+1)}{2}.$$
 (12.21)

Diese Quantile der so genannten U-Statistik sind in Anhang A.8 tabelliert bis m=45 und n=50. Für große Werte von m und n gilt eine Normalapproximation:

Satz 12.15 (i) Für alle $m, n \in \mathbb{N}$ gilt

$$\mathbf{E}_{H_0}[W(X,Y)] = \frac{1}{2}mn + \frac{n(n+1)}{2}$$
 und $\operatorname{Var}_{H_0}[W(X,Y)] = \frac{mn(m+n+1)}{12}$.

(ii) Für große m, n gilt unter H_0

$$\widetilde{W}(X,Y) := \frac{W - \frac{n(m+n+1)}{2}}{\sqrt{\frac{mn(m+n+1)}{12}}} \sim_{approx.} \mathcal{N}_{0,1}.$$
 (12.22)

Das heißt,

$$c_{m,n;1-\alpha} \approx \frac{n(m+n+1)}{2} + \sqrt{\frac{mn(m+n+1)}{12}} \ z_{1-\alpha}.$$

Der rechtsseitige Wilcoxon-Test für $H_0 = F_2 = F_1$ gegen $H_1 = F_2 \leq F_1$

• verwirft H_0 gegen H_1 auf dem Niveau α , falls

$$W(x,y) > c_{m,n;1-\alpha} = u_{m,n;1-\alpha} + \frac{m(m+1)}{2}$$

 \bullet hat p-Wert

$$p(x,y) = 1 - \operatorname{Wil}_{m,n}(W(x,y)) \approx 1 - \Phi(\widetilde{W}(x,y)),$$

wobei die Approximation für große m, n gilt.

Der linksseitige Wilcoxon-Test für $H_0 = "F_2 = F_1"$ gegen $H_1 = "F_2 \ge F_1"$

• verwirft H_0 gegen H_1 auf dem Niveau α , falls

$$W(x,y) > c_{m,n;\alpha} = (m+n+1)n - c_{m,n;1-\alpha}$$
$$= \frac{n(n+1)}{2} + u_{m,n;\alpha} = \frac{(2m+n+1)n}{2} - u_{m,n;1-\alpha}$$

• hat p-Wert

$$p(x,y) = 1 - \operatorname{Wil}_{m,n}(W(x,y)) \approx 1 - \Phi(-\widetilde{W}(x,y)),$$

wobei die Approximation für große m, n gilt.

Beispiel 12.16 Wir kommen zu unserem Bauern und seinem Düngeproblem zurück. Um die Behauptung des Vertreters zu testen, wird eine Stichprobe von m=8 Beobachtungen X_1,\ldots,X_8 mit dem bisherigen Dünger und eine Stichprobe von n=10 Beobachtungen Y_1,\ldots,Y_{10} mit dem neuen Dünger geplant. Mit dem rechtsseitigen Wilcoxon-Test zum Niveau $\alpha=5\%$ soll $H_0={}_{\circ}F_1=F_2{}^{\circ}$ gegen $H_1={}_{\circ}F_1\geq F_2{}^{\circ}$ getestet werden.

In der Tabelle schauen wir den Wert $u_{m,n;1-\alpha}=u_{8,10;0.95}=59$ nach und berechnen

$$c_{8,10;0.95} = 59 + \frac{10(10+1)}{2} = 59 + 55 = 114.$$

Zum Vergleich der Wert, den die Normalapproximation liefert: Aus der Tabelle nehmen wir den Wert $z_{0.95}=1.64485$ und bestimmen

$$c_{8,10;\,0.95}\approx 1.64485\sqrt{\frac{8\cdot 10\cdot (8+10+1)}{12}}+\frac{10(10+8+1)}{2}=18.51+95=113.51.$$

Auch die Normalapproximation liefert also $c_{8,10;0.95} = 114$.

Jetzt werden die Daten erhoben:

i	1	2	3	4	5	6	7	8
x_i	105.7	95.3	85.4	102.6	98.1	97.1	104	102.4

und

	i	1	2	3	4	5	6	7	8	9	10
ſ	y_i	96.2	99.1	116	112	114.9	108.9	107	82	99.4	105.3

Um die Rangsumme der y_i zu bestimmen, sortieren wir die Daten der Größe nach und unterstreichen die Zahlen, die Werte von einem der y_i waren:

Rang	1	2	3	4	5	6	7	8	9
Wert	<u>82</u>	85.4	95.3	<u>96.2</u>	97.1	98.1	<u>99.1</u>	<u>99.4</u>	102.4
Rang	10	11	12	13	14	15	16	17	18
Wert	102.6	104	105.3	105.7	<u>107</u>	108.9	112	114.9	<u>116</u>

Wir erhalten als Rangsumme der y_1, \ldots, y_{10}

$$W(x,y) = 1 + 4 + 7 + 8 + 12 + 14 + 15 + 16 + 17 + 18 = 112 < 114 = c_{8,10;0.95}.$$

Also verwirft der Wilcoxon-Test zum Niveau5% die Nullhypothese nicht.

Mit Hilfe der Normalapproximation können wir einen Näherungswert für den p-Wert der Beobachtung angeben:

$$p(x,y) = 1 - \Phi(\widetilde{W}(x,y)) = 1 - \Phi((112 - 95)/11.2546) \approx 1 - \Phi(1.51) = 1 - 0.9332 = 6.68\%.$$

Dies deutet an, dass die Gegenhypothese nicht ganz abwegig ist, aber mehr Daten erhoben werden müssten, um ein klareres Ergebnis zu erhalten. \diamondsuit

162 Anhang: Tabellen

A.1 Tabelle der Normalverteilung

Tabelle des Integrals $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt$. Beispiel: $\Phi(1.23) = 0.89065$.

x	0	1	2	3	4	5	6	7	8	9
0.00	.50000	.50399	.50798	.51197	.51595	.51994	.52392	.52790	.53188	.53586
0.10	.53983	.54380	.54776	.55172	.55567	.55962	.56356	.56749	.57142	.57535
0.20	.57926	.58317	.58706	.59095	.59483	.59871	.60257	.60642	.61026	.61409
0.30	.61791	.62172	.62552	.62930	.63307	.63683	.64058	.64431	.64803	.65173
0.40	.65542	.65910	.66276	.66640	.67003	.67364	.67724	.68082	.68439	.68793
0.50	.69146	.69497	.69847	.70194	.70540	.70884	.71226	.71566	.71904	.72240
0.60	.72575	.72907	.73237	.73565	.73891	.74215	.74537	.74857	.75175	.75490
0.70	.75804	.76115	.76424	.76730	.77035	.77337	.77637	.77935	.78230	.78524
0.80	.78814	.79103	.79389	.79673	.79955	.80234	.80511	.80785	.81057	.81327
0.90	.81594	.81859	.82121	.82381	.82639	.82894	.83147	.83398	.83646	.83891
0.90	.01034		.02121		.02009			.00000	.040040	.00031
1.00	.84134	.84375	.84614	.84849	.85083	.85314	.85543	.85769	.85993	.86214
1.10	.86433	.86650	.86864	.87076	.87286	.87493	.87698	.87900	.88100	.88298
1.20	.88493	.88686	.88877	.89065	.89251	.89435	.89617	.89796	.89973	.90147
1.30	.90320	.90490	.90658	.90824	.90988	.91149	.91309	.91466	.91621	.91774
1.40	.91924	.92073	.92220	.92364	.92507	.92647	.92785	.92922	.93056	.93189
1.50	.93319	.93448	.93574	.93699	.93822	.93943	.94062	.94179	.94295	.94408
1.60	.94520	.94630	.94738	.94845	.94950	.95053	.95154	.95254	.95352	.95449
1.70	.95543	.95637	.95728	.95818	.95907	.95994	.96080	.96164	.96246	.96327
1.80	.96407	.96485	.96562	.96638	.96712	.96784	.96856	.96926	.96995	.97062
1.90	.97128	.97193	.97257	.97320	.97381	.97441	.97500	.97558	.97615	.97670
0.00	07705		05001		05000	0,7000		00077		00100
2.00	.97725	.97778	.97831	.97882	.97932	.97982	.98030	.98077	.98124	.98169
2.10	.98214	.98257	.98300	.98341	.98382	.98422	.98461	.98500	.98537	.98574
2.20	.98610	.98645	.98679	.98713	.98745	.98778	.98809	.98840	.98870	.98899
2.30	.98928	.98956	.98983	.99010	.99036	.99061	.99086	.99111	.99134	.99158
2.40	.99180	.99202	.99224	.99245	.99266	.99286	.99305	.99324	.99343	.99361
2.50	.99379	.99396	.99413	.99430	.99446	.99461	.99477	.99492	.99506	.99520
2.60	.99534	.99547	.99560	.99573	.99585	.99598	.99609	.99621	.99632	.99643
2.70	.99653	.99664	.99674	.99683	.99693	.99702	.99711	.99720	.99728	.99736
2.80	.99744	.99752	.99760	.99767	.99774	.99781	.99788	.99795	.99801	.99807
2.90	.99813	.99819	.99825	.99831	.99836	.99841	.99846	.99851	.99856	.99861
3.00	.99865	.99869	.99874	.99878	.99882	.99886	.99889	.99893	.99896	.99900
3.10	.99903	.99906	.99910	.99913	.99916	.99918	.99921	.99924	.99926	.99929
3.20	.99931	.99934	.99936	.99938	.99940	.99942	.99944	.99946	.99948	.99950
3.30	.99952	.99953	.99955	.99957	.99958	.99960	.99961	.99962	.99964	.99965
3.40	.99966	.99968	.99969	.99970	.99971	.99972	.99973	.99974	.99975	.99976
3.50	.99977	.99978	.99978	.99979	.99980	.99981	.99981	.99982	.99983	.99983
3.60	.99984	.99985	.99985	.99986	.99986	.99987	.99987	.99988	.99988	.99989
3.70	.99989	.99990	.99990	.99990	.99991	.99991	.99992	.99992	.99992	.99992
3.80	.99993	.99993	.99993	.99994	.99994	.99994	.99994	.99995	.99995	.99995
3.90	.99995	.99995	.99996	.99996	.99996	.99996	.99996	.99996	.99997	.99997

A.2 Quantile der Normalverteilung

Tabelliert ist das β -Quantil z_{β} der Normalverteilung $\mathcal{N}_{0,1}.$

β	z_{eta}
0.8	0.84162
0.9	1.28155
0.95	1.64485
0.975	1.95996
0.98	2.05375
0.99	2.32635
0.995	2.57583
0.9975	2.80703
0.998	2.87816
0.999	3.09023
0.9995	3.29053

164 Anhang: Tabellen

A.3 Quantile der t-Verteilung

Tabelliert ist das $\alpha\text{-Quantil }t_{n;\,\alpha}$ der t-Verteilung mit n Freiheitsgraden.

n	$t_{n;0.9}$	$t_{n;0.95}$	$t_{n;0.975}$	$t_{n;0.99}$	$t_{n;0.995}$	n	$t_{n;0.9}$	$t_{n;0.95}$	$t_{n;0.975}$	$t_{n;0.99}$	$t_{n;0.995}$
1	3.0777	6.3138	12.7062	31.8205	63.6567	46	1.3002	1.6787	2.0129	2.4102	2.6870
2	1.8856	2.9200	4.3026	6.9646	9.9248	47	1.2998	1.6779	2.0117	2.4084	2.6846
3	1.6377	2.3534	3.1824	4.5407	5.8409	48	1.2994	1.6772	2.0106	2.4066	2.6822
4	1.5332	2.1318	2.7764	3.7470	4.6041	49	1.2991	1.6766	2.0096	2.4049	2.6800
5	1.4759	2.0150	2.5706	3.3649	4.0321	50	1.2987	1.6759	2.0086	2.4033	2.6778
6	1.4398	1.9432	2.4469	3.1427	3.7074	54	1.2974	1.6736	2.0049	2.3974	2.6700
7	1.4149	1.8946	2.3646	2.9980	3.4995	59	1.2961	1.6711	2.0010	2.3912	2.6618
8	1.3968	1.8596	2.3060	2.8965	3.3554	64	1.2949	1.6690	1.9977	2.3860	2.6548
9	1.3830	1.8331	2.2622	2.8214	3.2498	69	1.2939	1.6672	1.9950	2.3816	2.6490
10	1.3722	1.8125	2.2281	2.7638	3.1693	74	1.2931	1.6657	1.9925	2.3778	2.6439
11	1.3634	1.7959	2.2010	2.7181	3.1058	79	1.2924	1.6644	1.9904	2.3745	2.6395
12	1.3562	1.7823	2.1788	2.6810	3.0545	84	1.2917	1.6632	1.9886	2.3716	2.6356
13	1.3502	1.7709	2.1604	2.6503	3.0123	89	1.2911	1.6622	1.9870	2.3690	2.6322
14	1.3450	1.7613	2.1448	2.6245	2.9768	94	1.2906	1.6612	1.9855	2.3667	2.6292
15	1.3406	1.7530	2.1314	2.6025	2.9467	99	1.2902	1.6604	1.9842	2.3646	2.6264
16	1.3368	1.7459	2.1199	2.5835	2.9208	104	1.2897	1.6596	1.9830	2.3627	2.6239
17	1.3334	1.7396	2.1199	2.5669	2.8982	109	1.2894	1.6590	1.9820	2.3610	2.6239 2.6217
18	1.3304	1.7341	2.1098	2.5524	2.8784	114	1.2890	1.6583	1.9810	2.3595	2.6196
19	1.3277	1.7341 1.7291	2.1009	2.5324	2.8609	119	1.2887	1.6578	1.9801	2.3581	2.6178
20	1.3253	1.7247	2.0860	2.5280	2.8453	124	1.2884	1.6572	1.9793	2.3568	2.6161
21	1.3232	1.7207	2.0796	2.5176	2.8314	129	1.2882	1.6568	1.9785	2.3556	2.6145
22	1.3212	1.7171	2.0739	2.5083	2.8188	134	1.2879	1.6563	1.9778	2.3545	2.6130
23	1.3195	1.7139	2.0687	2.4999	2.8073	139	1.2877	1.6559	1.9772	2.3535	2.6117
24	1.3178	1.7109	2.0639	2.4922	2.7969	144	1.2875	1.6555	1.9766	2.3525	2.6104
25	1.3164	1.7081	2.0595	2.4851	2.7874	149	1.2873	1.6551	1.9760	2.3516	2.6092
26	1.3150	1.7056	2.0555	2.4786	2.7787	154	1.2871	1.6548	1.9755	2.3508	2.6081
27	1.3137	1.7033	2.0518	2.4727	2.7707	159	1.2869	1.6545	1.9750	2.3500	2.6071
28	1.3125	1.7011	2.0484	2.4671	2.7633	164	1.2867	1.6542	1.9745	2.3493	2.6061
29	1.3114	1.6991	2.0452	2.4620	2.7564	169	1.2866	1.6539	1.9741	2.3486	2.6052
30	1.3104	1.6973	2.0423	2.4573	2.7500	174	1.2864	1.6537	1.9737	2.3480	2.6044
31	1.3095	1.6955	2.0395	2.4528	2.7440	179	1.2863	1.6534	1.9733	2.3474	2.6036
32	1.3086	1.6939	2.0369	2.4487	2.7385	184	1.2862	1.6532	1.9729	2.3468	2.6028
33	1.3077	1.6924	2.0345	2.4448	2.7333	189	1.2860	1.6530	1.9726	2.3462	2.6021
34	1.3070	1.6909	2.0322	2.4412	2.7284	194	1.2859	1.6528	1.9723	2.3457	2.6014
35	1.3062	1.6896	2.0301	2.4377	2.7238	199	1.2858	1.6526	1.9720	2.3452	2.6008
36	1.3055		2.0281	2.4345	2.7195	219			1.9709	2.3435	
37	1.3048	1.6871	2.0262	2.4314	2.7154	239	1.2851	1.6512	1.9699	2.3420	2.5966
38	1.3042	1.6860	2.0244	2.4286	2.7116	259	1.2848	1.6508	1.9692	2.3408	2.5949
39	1.3036	1.6849	2.0227	2.4258	2.7079	279	1.2846	1.6503	1.9685	2.3398	2.5936
40	1.3031	1.6838	2.0211	2.4233	2.7045	299	1.2844	1.6500	1.9679	2.3389	2.5924
41	1.3025	1.6829	2.0195	2.4208	2.7012	349	1.2840	1.6492	1.9668	2.3371	2.5900
42	1.3020	1.6820	2.0181	2.4185	2.6981	399	1.2837	1.6487	1.9659	2.3357	2.5882
43	1.3016	1.6811	2.0167	2.4162	2.6951	499	1.2832	1.6479	1.9647	2.3338	2.5857
44	1.3011	1.6802	2.0154	2.4141	2.6923	999	1.2824	1.6464	1.9623	2.3301	2.5808
45	1.3006	1.6794	2.0141	2.4121	2.6896	∞	1.2816	1.6449	1.9600	2.3264	2.5758

A.4 Tabelle der t-Verteilung

$x \setminus n$	1	2	3	4	5	6	7	8	9	14	19
1.00	.75000	.78868	.80450	.81305	.81839	.82204	.82469	.82670	.82828	.83286	.83506
1.05	.75776	.79806	.81458	.82352	.82910	.83292	.83569	.83780	.83945	.84425	.84655
1.10	.76515	.80698	.82416	.83346	.83927	.84325	.84614	.84834	.85006	.85506	.85746
1.15	.77217	.81545	.83325	.84289	.84892	.85305	.85604	.85832	.86011	.86530	.86779
1.20	.77886	.82350	.84187	.85182	.85805	.86232	.86541	.86777	.86961	.87497	.87756
1.25	.78522	.83113	.85004	.86028	.86669	.87108	.87427	.87669	.87859	.88410	.88676
1.30	.79129	.83838	.85777	.86827	.87485	.87935	.88262	.88510	.88705	.89270	.89542
1.35	.79706	.84525	.86508	.87582	.88255	.88714	.89048	.89302	.89501	.90078	.90356
1.40	.80257	.85176	.87200	.88295	.88980	.89448	.89788	.90046	.90249	.90836	.91118
1.45	.80782	.85794	.87853	.88967	.89663	.90138	.90483	.90745	.90950	.91545	.91832
1.50	.81283	.86380	.88471	.89600	.90305	.90786	.91135	.91400	.91607	.92209	.92498
1.55	.81762	.86936	.89054	.90196	.90908	.91394	.91746	.92013	.92222	.92828	.93118
1.60	.82219	.87463	.89605	.90758	.91475	.91964	.92318	.92587	.92797	.93404	.93695
1.65	.82656	.87964	.90125	.91286	.92007	.92498	.92854	.93122	.93333	.93940	.94231
1.70	.83075	.88438	.90615	.91782	.92506	.92998	.93354	.93622	.93833	.94439	.94728
1.75	.83475	.88889	.91079	.92249	.92974	.93465	.93820	.94088	.94298	.94900	.95187
1.80	.83859	.89317	.91516	.92688	.93412	.93902	.94256	.94522	.94730	.95328	.95612
1.85	.84226	.89723	.91929	.93101	.93823	.94310	.94662	.94926	.95132	.95723	.96004
1.90	.84579	.90109	.92318	.93488	.94207	.94692	.95040	.95302	.95506	.96089	.96364
1.95	.84917	.90476	.92686	.93852	.94566	.95047	.95392	.95650	.95852	.96425	.96696
2.00	.85242	.90825	.93034	.94194	.94903	.95379	.95719	.95974	.96172	.96736	.97000
2.05	.85554	.91157	.93362	.94515	.95218	.95688	.96023	.96275	.96469	.97021	.97279
2.10	.85854	.91472	.93672	.94817	.95512	.95976	.96306	.96553	.96744	.97283	.97534
2.15	.86142	.91773	.93965	.95101	.95788	.96245	.96569	.96811	.96998	.97524	.97768
2.20	.86420	.92060	.94241	.95367	.96045	.96495	.96813	.97050	.97233	.97745	.97981
2.25	.86688	.92332	.94503	.95618	.96286	.96728	.97040	.97272	.97450	.97947	.98175
2.30	.86945	.92593	.94751	.95853	.96511	.96945	.97250	.97476	.97650	.98132	.98352
2.35	.87194	.92841	.94985	.96074	.96722	.97147	.97446	.97666	.97835	.98302	.98513
2.40	.87433	.93077	.95206	.96282	.96919	.97335	.97627	.97841	.98005	.98457	.98660
2.45	.87665	.93304	.95416	.96478	.97103	.97510	.97795	.98003	.98162	.98598	.98793
2.50	.87888	.93519	.95615	.96662	.97275	.97674	.97950	.98153	.98307	.98727	.98913
2.55	.88104	.93726	.95803	.96835	.97437	.97825	.98095	.98291	.98440	.98844	.99022
2.60	.88312	.93923	.95981	.96998	.97588	.97967	.98229	.98419	.98563	.98951	.99121
2.65	.88514	.94112	.96150	.97151	.97729	.98099	.98353	.98537	.98676	.99049	.99210
2.70	.88709	.94292	.96311	.97295	.97861	.98221	.98468	.98646	.98780	.99137	.99291
2.75	.88898	.94465	.96463	.97431	.97984	.98335	.98575	.98747	.98876	.99218	.99363
2.80	.89081	.94630	.96607	.97559	.98100	.98442	.98674	.98840	.98964	.99291	.99429
2.85	.89258	.94789	.96745	.97680	.98209	.98541	.98766	.98926	.99046	.99358	.99488
2.90	.89430	.94941	.96875	.97794	.98310	.98633	.98851	.99005	.99120	.99418	.99541
2.95	.89597	.95087	.96999	.97902	.98406	.98719	.98930	.99079	.99189	.99473	.99589

Anhang: Tabellen

Tabelle der t-Verteilung

		2	3	4	5	6	7	8	9	14	19
3.00	.89758	.95227	.97117	.98003	.98495	.98800	.99003	.99146	.99252	.99522	.99632
3.05	.89915	.95361	.97229	.98099	.98579	.98874	.99071	.99209	.99310	.99568	.99671
3.10	.90067	.95490	.97335	.98189	.98657	.98944	.99134	.99267	.99364	.99608	.99705
3.15	.90215	.95614	.97437	.98274	.98731	.99009	.99192	.99320	.99413	.99645	.99736
3.20	.90359	.95733	.97533	.98355	.98800	.99070	.99247	.99369	.99458	.99679	.99764
3.25	.90498	.95847	.97626	.98431	.98865	.99127	.99297	.99415	.99500	.99709	.99789
3.30	.90634	.95958	.97713	.98503	.98926	.99180	.99344	.99457	.99538	.99737	.99812
3.35	.90766	.96064	.97797	.98572	.98984	.99229	.99387	.99496	.99574	.99762	.99832
3.40	.90895	.96166	.97877	.98636	.99037	.99275	.99428	.99532	.99606	.99784	.99850
3.45	.91020	.96264	.97953	.98697	.99088	.99318	.99465	.99565	.99636	.99805	.99866
3.50	.91141	.96359	.98026	.98755	.99136	.99359	.99500	.99596	.99664	.99823	.99880
3.55	.91260	.96450	.98020	.98810	.99181	.99396	.99533	.99625	.99689	.99840	.99893
3.60	.91375	.96538	.98162	.98862	.99223	.99432	.99563	.99651	.99713	.99855	.99995
3.65	.91488	.96623	.98225	.98911	.99263	.99465	.99591	.99675	.99734	.99869	.99915
3.70	.91598	.96705	.98223	.98958	.99300	.99496	.99617	.99698	.99754	.99881	.99913
3.70	.91090	.90103	.90200	.90990	.99300	.99490	.99017		.99194	.99001	.99924
3.75	.91705	.96784	.98344	.99003	.99335	.99525	.99642	.99719	.99772	.99892	.99932
	.91809	.96860	.98400	.99045	.99369	.99552	.99664	.99738	.99789	.99902	.99940
3.85	.91911	.96934	.98453	.99085	.99400	.99577	.99685	.99756	.99805	.99912	.99946
3.90	.92010	.97005	.98504	.99123	.99430	.99601	.99705	.99773	.99819	.99920	.99952
3.95	.92107	.97074	.98553	.99159	.99457	.99623	.99723	.99788	.99832	.99927	.99957
4.00	.92202	.97140	.98600	.99193	.99484	.99644	.99740	.99803	.99844	.99934	.99962
4.05	.92295	.97205	.98644	.99226	.99509	.99664	.99756	.99816	.99856	.99940	.99966
4.10	.92385	.97267	.98687	.99257	.99532	.99682	.99771	.99828	.99866	.99946	.99970
4.15	.92473	.97327	.98729	.99287	.99554	.99699	.99785	.99840	.99876	.99951	.99973
4.20	.92560	.97386	.98768	.99315	.99576	.99716	.99798	.99850	.99885	.99955	.99976
4.25	.92644	.97442	.98806	.99342	.99595	.99731	.99810	.99860	.99893	.99960	.99978
4.30	.92727	.97497	.98843	.99368	.99614	.99745	.99822	.99869	.99900	.99963	.99981
4.35	.92807	.97550	.98878	.99392	.99632	.99759	.99832	.99878	.99907	.99967	.99983
4.40	.92887	.97602	.98912	.99415	.99649	.99772	.99842	.99886	.99914	.99970	.99985
4.45	.92964	.97652	.98944	.99438	.99665	.99784	.99851	.99893	.99920	.99973	.99986
4.50	.93040	.97700	.98975	.99459	.99680	.99795	.99860	.99900	.99926	.99975	.99988
4.55	.93114	.97747	.99005	.99479	.99694	.99805	.99868	.99906	.99931	.99977	.99989
4.60	.93186	.97792	.99034	.99498	.99708	.99815	.99876	.99912	.99935	.99979	.99990
4.65	.93257	.97837	.99062	.99517	.99721	.99825	.99883	.99918	.99940	.99981	.99991
4.70	.93327	.97879	.99089	.99535	.99733	.99834	.99890	.99923	.99944	.99983	.99992
4.75	.93395	.97921	.99115	.99551	.99745	.99842	.99896	.99928	.99948	.99984	.99993
4.80	.93462	.97962	.99140	.99568	.99756	.99850	.99902	.99932	.99951	.99986	.99994
4.85	.93528	.98001	.99164	.99583	.99766	.99857	.99907	.99936	.99955	.99987	.99994
4.90	.93592	.98039	.99187	.99598	.99776	.99864	.99912	.99940	.99958	.99988	.99995
4.95	.93655	.98076	.99209	.99612	.99786	.99871	.99917	.99944	.99960	.99989	.99996

Tabelle der t-Verteilung

$x \setminus n$	24	29	39	49	59	69	79	89	99	149	199
1.00	.83636	.83721	.83826	.83889	.83930	.83960	.83982	.83999	.84013	.84053	.84074
1.05	.84791	.84880	.84991	.85057	.85100	.85131	.85154	.85172	.85186	.85229	.85250
1.10	.85888	.85981	.86096	.86165	.86210	.86242	.86266	.86285	.86300	.86345	.86367
1.15	.86926	.87023	.87143	.87214	.87261	.87294	.87319	.87339	.87354	.87401	.87424
1.20	.87907	.88007	.88131	.88205	.88253	.88288	.88314	.88334	.88350	.88398	.88422
1.25	.88832	.88935	.89063	.89138	.89188	.89224	.89250	.89271	.89288	.89337	.89362
1.30	.89703	.89808	.89938	.90016	.90067	.90104	.90131	.90152	.90169	.90220	.90245
1.35	.90519	.90627	.90760	.90839	.90891	.90929	.90956	.90978	.90995	.91047	.91073
1.40	.91285	.91394	.91529	.91609	.91662	.91700	.91729	.91751	.91768	.91820	.91846
1.45	.92000	.92111	.92247	.92329	.92382	.92421	.92449	.92471	.92489	.92542	.92568
1.50	.92667	.92779	.92917	.92998	.93053	.93091	.93120	.93142	.93160	.93213	.93240
1.55	.93289	.93401	.93539	.93621	.93676	.93714	.93743	.93765	.93783	.93837	.93863
1.60	.93866	.93978	.94117	.94199	.94253	.94292	.94320	.94343	.94361	.94414	.94441
1.65	.94401	.94513	.94651	.94733	.94787	.94826	.94854	.94877	.94894	.94948	.94974
1.70	.94897	.95008	.95145	.95226	.95280	.95318	.95347	.95369	.95386	.95439	.95465
1.75	.95355	.95465	.95601	.95681	.95734	.95772	.95800	.95822	.95839	.95891	.95917
1.80	.95778	.95886	.96020	.96099	.96151	.96188	.96216	.96238	.96255	.96306	.96331
1.85	.96167	.96274	.96405	.96483	.96534	.96570	.96597	.96618	.96635	.96685	.96710
1.90	.96524	.96629	.96758	.96834	.96884	.96919	.96946	.96966	.96983	.97032	.97056
1.95	.96852	.96955	.97080	.97155	.97203	.97238	.97264	.97284	.97300	.97347	.97371
2.00	.97153	.97253	.97375	.97447	.97494	.97528	.97553	.97573	.97588	.97634	.97657
2.05	.97428	.97525	.97643	.97713	.97759	.97792	.97816	.97835	.97850	.97894	.97916
2.10	.97679	.97773	.97888	.97955	.97999	.98031	.98054	.98072	.98086	.98129	.98151
2.15	.97908	.97999	.98109	.98174	.98217	.98247	.98269	.98287	.98300	.98342	.98362
2.20	.98116	.98204	.98310	.98372	.98413	.98442	.98464	.98480	.98493	.98533	.98552
2.25	.98306	.98390	.98492	.98551	.98590	.98618	.98638	.98654	.98667	.98704	.98723
2.30	.98478	.98558	.98656	.98713	.98750	.98776	.98796	.98811	.98823	.98858	.98876
2.35	.98633	.98710	.98804	.98858	.98893	.98918	.98936	.98951	.98962	.98996	.99012
2.40	.98774	.98848	.98937	.98988	.99022	.99045	.99063	.99076	.99087	.99119	.99134
2.45	.98902	.98972	.99056	.99105	.99136	.99159	.99175	.99188	.99198	.99228	.99242
2.50	.99017	.99084	.99163	.99209	.99239	.99260	.99275	.99287	.99297	.99325	.99339
2.55	.99121	.99184	.99259	.99302	.99331	.99350	.99365	.99376	.99385	.99411	.99424
2.60	.99215	.99274	.99345	.99386	.99412	.99430	.99444	.99454	.99463	.99487	.99499
2.65	.99299	.99355	.99422	.99460	.99484	.99501	.99514	.99524	.99531	.99554	.99565
2.70	.99375	.99427	.99490	.99525	.99548	.99564	.99576	.99585	.99592	.99613	.99623
2.75	.99443	.99492	.99551	.99584	.99605	.99620	.99631	.99639	.99646	.99665	.99675
2.80	.99504	.99550	.99605	.99635	.99655	.99669	.99679	.99687	.99693	.99711	.99719
2.85	.99558	.99602	.99652	.99681	.99699	.99712	.99721	.99728	.99734	.99750	.99758
2.90	.99607	.99648	.99695	.99721	.99738	.99750	.99758	.99765	.99770	.99785	.99792
2.95	.99651	.99689	.99732	.99757	.99772	.99783	.99791	.99797	.99802	.99815	.99822

168 Anhang: Tabellen

Tabelle der t-Verteilung

$x \setminus n$	24	29	39	49	59	69	79	89	99	149	199
3.00	.99690	.99725	.99766	.99788	.99802	.99812	.99819	.99825	.99829	.99842	.99848
3.05	.99725	.99757	.99795	.99816	.99829	.99838	.99844	.99849	.99853	.99865	.99870
3.10	.99756	.99786	.99821	.99840	.99852	.99860	.99866	.99870	.99874	.99884	.99889
3.15	.99783	.99812	.99843	.99861	.99872	.99879	.99885	.99889	.99892	.99901	.99906
3.20	.99808	.99834	.99863	.99879	.99889	.99896	.99901	.99905	.99908	.99916	.99920
3.25	.99830	.99854	.99881	.99896	.99905	.99911	.99915	.99919	.99921	.99929	.99932
3.30	.99849	.99872	.99896	.99910	.99918	.99923	.99927	.99930	.99933	.99940	.99943
3.35	.99867	.99887	.99910	.99922	.99929	.99934	.99938	.99941	.99943	.99949	.99952
3.40	.99882	.99901	.99922	.99933	.99939	.99944	.99947	.99949	.99951	.99957	.99959
3.45	.99896	.99913	.99932	.99942	.99948	.99952	.99955	.99957	.99959	.99964	.99966
3.50	.99908	.99924	.99941	.99950	.99955	.99959	.99962	.99964	.99965	.99969	.99971
3.55	.99919	.99933	.99949	.99957	.99962	.99965	.99967	.99969	.99970	.99974	.99976
3.60	.99928	.99941	.99956	.99963	.99967	.99970	.99972	.99974	.99975	.99978	.99980
3.65	.99937	.99949	.99962	.99968	.99972	.99975	.99977	.99978	.99979	.99982	.99983
3.70	.99944	.99955	.99967	.99973	.99976	.99979	.99980	.99981	.99982	.99985	.99986
3.75	.99951	.99961	.99971	.99977	.99980	.99982	.99983	.99984	.99985	.99987	.99988
3.80	.99956	.99966	.99975	.99980	.99983	.99985	.99986	.99987	.99987	.99989	.99990
3.85	.99962	.99970	.99979	.99983	.99985	.99987	.99988	.99989	.99990	.99991	.99992
3.90	.99966	.99974	.99982	.99985	.99988	.99989	.99990	.99991	.99991	.99993	.99993
3.95	.99970	.99977	.99984	.99987	.99989	.99991	.99992	.99992	.99993	.99994	.99995
4.00	.99974	.99980	.99986	.99989	.99991	.99992	.99993	.99993	.99994	.99995	.99996
4.05	.99977	.99983	.99988	.99991	.99992	.99993	.99994	.99995	.99995	.99996	.99996
4.10	.99980	.99985	.99990	.99992	.99994	.99994	.99995	.99995	.99996	.99997	.99997
4.15	.99982	.99987	.99991	.99993	.99995	.99995	.99996	.99996	.99996	.99997	.99998
4.20	.99984	.99988	.99992	.99994	.99995	.99996	.99997	.99997	.99997	.99998	.99998
4.25	.99986	.99990	.99994	.99995	.99996	.99997	.99997	.99997	.99998	.99998	.99998
4.30	.99988	.99991	.99994	.99996	.99997	.99997	.99998	.99998	.99998	.99998	.99999
4.35	.99989	.99992	.99995	.99997	.99997	.99998	.99998	.99998	.99998	.99999	.99999
4.40	.99990	.99993	.99996	.99997	.99998	.99998	.99998	.99998	.99999	.99999	.99999
4.45	.99992	.99994	.99997	.99998	.99998	.99998	.99999	.99999	.99999	.99999	.99999
4.50	.99993	.99995	.99997	.99998	.99998	.99999	.99999	.99999	.99999	.99999	.99999
4.55	.99993	.99996	.99997	.99998	.99999	.99999	.99999	.99999	.99999	.99999	1
4.60	.99994	.99996	.99998	.99998	.99999	.99999	.99999	.99999	.99999	1	1
4.65	.99995	.99997	.99998	.99999	.99999	.99999	.99999	.99999	.99999	1	1
4.70	.99996	.99997	.99998	.99999	.99999	.99999	.99999	1	1	1	1
4.75	.99996	.99997	.99999	.99999	.99999	.99999	1	1	1	1	1
4.80	.99997	.99998	.99999	.99999	.99999	1	1	1	1	1	1
4.85	.99997	.99998	.99999	.99999	1	1	1	1	1	1	1
4.90	.99997	.99998	.99999	.99999	1	1	1	1	1	1	1
4.95	.99998	.99999	.99999	1	1	1	1	1	1	1	1
2.00	.00000	.00000	.00000	1 -	-	_				1 -	

A.5 Quantile der χ^2 -Verteilung

Tabelliert ist das $\alpha\text{-Quantil}\ \chi^2_{n;\,\alpha}$ der $\chi^2\text{-Verteilung mit}\ n$ Freiheitsgraden.

$n \setminus \alpha$	0.01	0.025	0.050	0.100	0.250	0.500	0.750	0.900	0.950	0.975	0.990	0.995
1	.0002	.0010	.0039	.0158	.1015	.4549	1.323	2.706	3.841	5.024	6.635	7.879
2	.0201	.0507	.1026	.2107	.5754	1.386	2.773	4.605	5.991	7.378	9.210	10.60
3	.1148	.2158	.3518	.5844	1.213	2.366	4.108	6.251	7.815	9.348	11.34	12.84
4	.2971	.4844	.7107	1.064	1.923	3.357	5.385	7.779	9.488	11.14	13.28	14.86
5	.5543	.8312	1.145	1.610	2.675	4.351	6.626	9.236	11.07	12.83	15.09	16.75
6	.8721	1.237	1.635	2.204	3.455	5.348	7.841	10.64	12.59	14.45	16.81	18.55
7	1.239	1.690	2.167	2.833	4.255	6.346	9.037	12.02	14.07	16.01	18.48	20.28
8	1.646	2.180	2.733	3.490	5.071	7.344	10.22	13.36	15.51	17.53	20.09	21.95
9	2.088	2.700	3.325	4.168	5.899	8.343	11.39	14.68	16.92	19.02	21.67	23.59
10	2.558	3.247	3.940	4.865	6.737	9.342	12.55	15.99	18.31	20.48	23.21	25.19
11	3.053	3.816	4.575	5.578	7.584	10.34	13.70	17.28	19.68	21.92	24.72	26.76
12	3.571	4.404	5.226	6.304	8.438	11.34	14.85	18.55	21.03	23.34	26.22	28.30
13	4.107	5.009	5.892	7.042	9.299	12.34	15.98	19.81	22.36	24.74	27.69	29.82
14	4.660	5.629	6.571	7.790	10.17	13.34	17.12	21.06	23.68	26.12	29.14	31.32
15	5.229	6.262	7.261	8.547	11.04	14.34	18.25	22.31	25.00	27.49	30.58	32.80
16	5.812	6.908	7.962	9.312	11.91	15.34	19.37	23.54	26.30	28.85	32.00	34.27
17	6.408	7.564	8.672	10.09	12.79	16.34	20.49	24.77	27.59	30.19	33.41	35.72
18	7.015	8.231	9.390	10.86	13.68	17.34	21.60	25.99	28.87	31.53	34.81	37.16
19	7.633	8.907	10.12	11.65	14.56	18.34	22.72	27.20	30.14	32.85	36.19	38.58
20	8.260	9.591	10.85	12.44	15.45	19.34	23.83	28.41	31.41	34.17	37.57	40.00
21	8.897	10.28	11.59	13.24	16.34	20.34	24.93	29.62	32.67	35.48	38.93	41.40
22	9.542	10.98	12.34	14.04	17.24	21.34	26.04	30.81	33.92	36.78	40.29	42.80
23	10.20	11.69	13.09	14.85	18.14	22.34	27.14	32.01	35.17	38.08	41.64	44.18
$\frac{1}{24}$	10.86	12.40	13.85	15.66	19.04	23.34	28.24	33.20	36.42	39.36	42.98	45.56
25	11.52	13.12	14.61	16.47	19.94	24.34	29.34	34.38	37.65	40.65	44.31	46.93
26	12.20	13.84	15.38	17.29	20.84	25.34	30.43	35.56	38.89	41.92	45.64	48.29
27	12.88	14.57	16.15	18.11	21.75	26.34	31.53	36.74	40.11	43.19	46.96	49.64
28	13.56	15.31	16.93	18.94	22.66	27.34	32.62	37.92	41.34	44.46	48.28	50.99
29	14.26	16.05	17.71	19.77	23.57	28.34	33.71	39.09	42.56	45.72	49.59	52.34
30	14.95	16.79	18.49	20.60	24.48	29.34	34.80	40.26	43.77	46.98	50.89	53.67
40	22.16	24.43	26.51	29.05	33.66	39.34	45.62	51.81	55.76	59.34	63.69	66.77
50	29.71	32.36	34.76	37.69	42.94	49.33	56.33	63.17	67.50	71.42	76.15	79.49
60	37.48	40.48	43.19	46.46	52.29	59.33	66.98	74.40	79.08	83.30	88.38	91.95
70	45.44	48.76	51.74	55.33	61.70	69.33	77.58	85.53	90.53	95.02	100.4	104.2
80	53.54	57.15	60.39	64.28	71.14	79.33	88.13	96.58	101.9	106.6	112.3	116.3
90	61.75	65.65	69.13	73.29	80.62	89.33	98.65	107.6	113.1	118.1	124.1	128.3
100	70.06	74.22	77.93	82.36	90.13	99.33	109.1	118.5	124.3	129.6	135.8	140.2
150	112.7	118.0	122.7	128.3	138.0	149.3	161.3	172.6	179.6	185.8	193.2	198.4
200	156.4	162.7	168.3	174.8	186.2	199.3	213.1	226.0	234.0	241.1	249.4	255.3
250	200.9	208.1	214.4	221.8	234.6	249.3	264.7	279.1	287.9	295.7	304.9	311.3
300	246.0	253.9	260.9	269.1	283.1	299.3	316.1	331.8	341.4	349.9	359.9	366.8
400	337.2	346.5	354.6	364.2	380.6	399.3	418.7	436.6	447.6	457.3	468.7	476.6
500	429.4	439.9	449.1	459.9	478.3	499.3	521.0	540.9	553.1	563.9	576.5	585.2
600	522.4	534.0	544.2	556.1	576.3	599.3	623.0	644.8	658.1	669.8	683.5	693.0
700	615.9	628.6	639.6	652.5	674.4	699.3	724.9	748.4	762.7	775.2	790.0	800.1
800	709.9	723.5	735.4	749.2	772.7	799.3	826.6	851.7	866.9	880.3	896.0	906.8
900	804.3	818.8	831.4	846.1	871.0	899.3	928.2	954.8	970.9	985.0	1002	1013
1000	898.9	914.3	927.6	943.1	969.5	999.3	1030	1058	1075	1090	1107	1119

170 Anhang: Tabellen

A.6 Quantile der Fisher'schen $F_{m,n}$ -Verteilung: 90%-Quantil

Tabelliert ist das α -Quantil $F_{m,n;\,0.90}$.

$n \setminus m$	1	2	3	4	5	6	7	8	9	10
1	39.863	49.500	53.593	55.833	57.240	58.204	58.906	59.439	59.858	60.195
2	8.526	9.000	9.162	9.243	9.293	9.326	9.349	9.367	9.381	9.392
3	5.538	5.462	5.391	5.343	5.309	5.285	5.266	5.252	5.240	5.230
4	4.545	4.325	4.191	4.107	4.051	4.010	3.979	3.955	3.936	3.920
5	4.060	3.780	3.619	3.520	3.453	3.404	3.368	3.339	3.316	3.297
6	3.776	3.463	3.289	3.181	3.108	3.055	3.014	2.983	2.958	2.937
7	3.589	3.257	3.074	2.961	2.883	2.827	2.785	2.752	2.725	2.703
8	3.458	3.113	2.924	2.806	2.726	2.668	2.624	2.589	2.561	2.538
9	3.360	3.006	2.813	2.693	2.611	2.551	2.505	2.469	2.440	2.416
10	3.285	2.924	2.728	2.605	2.522	2.461	2.414	2.377	2.347	2.323
11	3.225	2.860	2.660	2.536	2.451	2.389	2.342	2.304	2.274	2.248
12	3.177	2.807	2.606	2.480	2.394	2.331	2.283	2.245	2.214	2.188
13	3.136	2.763	2.560	2.434	2.347	2.283	2.234	2.195	2.164	2.138
14	3.102	2.726	2.522	2.395	2.307	2.243	2.193	2.154	2.122	2.095
15	3.073	2.695	2.490	2.361	2.273	2.208	2.158	2.119	2.086	2.059
16	3.048	2.668	2.462	2.333	2.244	2.178	2.128	2.088	2.055	2.028
17	3.026	2.645	2.437	2.308	2.218	2.152	2.102	2.061	2.028	2.001
18	3.007	2.624	2.416	2.286	2.196	2.130	2.079	2.038	2.005	1.977
19	2.990	2.606	2.397	2.266	2.176	2.109	2.058	2.017	1.984	1.956
20	2.975	2.589	2.380	2.249	2.158	2.091	2.040	1.999	1.965	1.937
21	2.961	2.575	2.365	2.233	2.142	2.075	2.023	1.982	1.948	1.920
22	2.949	2.561	2.351	2.219	2.128	2.060	2.008	1.967	1.933	1.904
23	2.937	2.549	2.339	2.207	2.115	2.047	1.995	1.953	1.919	1.890
24	2.927	2.538	2.327	2.195	2.103	2.035	1.983	1.941	1.906	1.877
25	2.918	2.528	2.317	2.184	2.092	2.024	1.971	1.929	1.895	1.866
26	2.909	2.519	2.307	2.174	2.082	2.014	1.961	1.919	1.884	1.855
27	2.901	2.511	2.299	2.165	2.073	2.005	1.952	1.909	1.874	1.845
28	2.894	2.503	2.291	2.157	2.064	1.996	1.943	1.900	1.865	1.836
29	2.887	2.495	2.283	2.149	2.057	1.988	1.935	1.892	1.857	1.827
30	2.881	2.489	2.276	2.142	2.049	1.980	1.927	1.884	1.849	1.819
35	2.855	2.461	2.247	2.113	2.019	1.950	1.896	1.852	1.817	1.787
40	2.835	2.440	2.226	2.091	1.997	1.927	1.873	1.829	1.793	1.763
45	2.820	2.425	2.210	2.074	1.980	1.909	1.855	1.811	1.774	1.744
50	2.809	2.412	2.197	2.061	1.966	1.895	1.840	1.796	1.760	1.729
55	2.799	2.402	2.186	2.050	1.955	1.884	1.829	1.785	1.748	1.717
60	2.791	2.393	2.177	2.041	1.946	1.875	1.819	1.775	1.738	1.707
65	2.784	2.386	2.170	2.033	1.938	1.867	1.811	1.767	1.730	1.699
70	2.779	2.380	2.164	2.027	1.931	1.860	1.804	1.760	1.723	1.691
75	2.774	2.375	2.158	2.021	1.926	1.854	1.798	1.754	1.716	1.685
80	2.769	2.370	2.154	2.016	1.921	1.849	1.793	1.748	1.711	1.680
85	2.765	2.366	2.149	2.012	1.916	1.845	1.789	1.744	1.706	1.675
90	2.762	2.363	2.146	2.008	1.912	1.841	1.785	1.739	1.702	1.670
95	2.759	2.359	2.142	2.005	1.909	1.837	1.781	1.736	1.698	1.667
100	2.756	2.356	2.139	2.002	1.906	1.834	1.778	1.732	1.695	1.663
150	2.739	2.338	2.121	1.983	1.886	1.814	1.757	1.712	1.674	1.642
200	2.731	2.329	2.111	1.973	1.876	1.804	1.747	1.701	1.663	1.631
300	2.722	2.320	2.102	1.964	1.867	1.794	1.737	1.691	1.652	1.620
400	2.718	2.316	2.098	1.959	1.862	1.789	1.732	1.686	1.647	1.615
500	2.716	2.313	2.095	1.956	1.859	1.786	1.729	1.683	1.644	1.612
∞	2.706	2.303	2.084	1.945	1.847	1.774	1.717	1.670	1.632	1.599

Fisher'sche $F_{m,n}$ -Verteilung: 95%-Quantil

Tabelliert ist das α -Quantil $F_{m,n;\,0.95}$.

$n \setminus m$	1	2	3	4	5	6	7	8	9	10
1	161.448	199.500	215.707	224.583	230.162	233.986	236.768	238.883	240.543	241.882
2	18.513	19.000	19.164	19.247	19.296	19.330	19.353	19.371	19.385	19.396
3	10.128	9.552	9.277	9.117	9.013	8.941	8.887	8.845	8.812	8.786
4	7.709	6.944	6.591	6.388	6.256	6.163	6.094	6.041	5.999	5.964
5	6.608	5.786	5.409	5.192	5.050	4.950	4.876	4.818	4.772	4.735
6	5.987	5.143	4.757	4.534	4.387	4.284	4.207	4.147	4.099	4.060
7	5.591	4.737	4.347	4.120	3.972	3.866	3.787	3.726	3.677	3.637
8	5.318	4.459	4.066	3.838	3.687	3.581	3.500	3.438	3.388	3.347
9	5.117	4.256	3.863	3.633	3.482	3.374	3.293	3.230	3.179	3.137
10	4.965	4.103	3.708	3.478	3.326	3.217	3.135	3.072	3.020	2.978
11	4.844	3.982	3.587	3.357	3.204	3.095	3.012	2.948	2.896	2.854
12	4.747	3.885	3.490	3.259	3.106	2.996	2.913	2.849	2.796	2.753
13	4.667	3.806	3.411	3.179	3.025	2.915	2.832	2.767	2.714	2.671
14	4.600	3.739	3.344	3.112	2.958	2.848	2.764	2.699	2.646	2.602
15	4.543	3.682	3.287	3.056	2.901	2.790	2.707	2.641	2.588	2.544
16	4.494	3.634	3.239	3.007	2.852	2.741	2.657	2.591	2.538	2.494
17	4.451	3.592	3.197	2.965	2.810	2.699	2.614	2.548	2.494	2.450
18	4.414	3.555	3.160	2.928	2.773	2.661	2.577	2.510	2.456	2.412
19	4.381	3.522	3.127	2.895	2.740	2.628	2.544	2.477	2.423	2.378
20	4.351	3.493	3.098	2.866	2.711	2.599	2.514	2.447	2.393	2.348
21	4.325	3.467	3.072	2.840	2.685	2.573	2.488	2.420	2.366	2.321
22	4.301	3.443	3.049	2.817	2.661	2.549	2.464	2.396	2.342	2.297
23	4.279	3.422	3.028	2.796	2.640	2.528	2.442	2.375	2.320	2.275
$\frac{1}{24}$	4.260	3.403	3.009	2.776	2.621	2.508	2.423	2.355	2.300	2.255
25	4.242	3.385	2.991	2.759	2.603	2.490	2.405	2.337	2.282	2.236
26	4.225	3.369	2.975	2.743	2.587	2.474	2.388	2.321	2.265	2.220
$\frac{1}{27}$	4.210	3.354	2.960	2.728	2.572	2.459	2.373	2.305	2.250	2.204
28	4.196	3.340	2.947	2.714	2.558	2.445	2.359	2.291	2.236	2.190
29	4.183	3.328	2.934	2.701	2.545	2.432	2.346	2.278	2.223	2.177
30	4.171	3.316	2.922	2.690	2.534	2.421	2.334	2.266	2.211	2.165
35	4.121	3.267	2.874	2.641	2.485	2.372	2.285	2.217	2.161	2.114
40	4.085	3.232	2.839	2.606	2.449	2.336	2.249	2.180	2.124	2.077
45	4.057	3.204	2.812	2.579	2.422	2.308	2.221	2.152	2.096	2.049
50	4.034	3.183	2.790	2.557	2.400	2.286	2.199	2.130	2.073	2.026
55	4.016	3.165	2.773	2.540	2.383	2.269	2.181	2.112	2.055	2.008
60	4.001	3.150	2.758	2.525	2.368	2.254	2.167	2.097	2.040	1.993
65	3.989	3.138	2.746	2.513	2.356	2.242	2.154	2.084	2.040 2.027	1.980
70	3.978	3.128	2.736	2.503	2.346	2.231	2.143	2.074	2.017	1.969
75	3.968	3.119	2.727	2.494	2.337	2.222	2.134	2.064	2.007	1.959
80	3.960	3.111		2.486	2.329	2.214	2.126	2.056		1.951
85	3.953	3.104	2.712	2.479	2.322	2.207	2.119	2.049	1.992	1.944
90	3.947	3.098	2.706	2.473	2.316	2.201	2.113	2.043	1.986	1.938
95	3.941	3.092	2.700	2.467	2.310	2.196	2.108	2.037	1.980	1.932
100	3.936	3.087	2.696	2.463	2.305	2.191	2.103	2.032	1.975	1.927
150	3.904	3.056	2.665	2.432	2.274	2.160	2.071	2.001	1.943	1.894
200	3.888	3.041	2.650	2.417	2.259	2.144	2.056	1.985	1.927	1.878
300	3.873	3.026	2.635	2.402	2.244	2.129	2.040	1.969	1.911	1.862
400	3.865	3.018	2.627	2.394	2.237	2.121	2.032	1.962	1.903	1.854
500	3.860	3.014	2.623	2.390	2.232	2.117	2.028	1.957	1.899	1.850
∞	3.842	2.996	2.605	2.372	2.215	2.099	2.010	1.939	1.880	1.831

172 Anhang: Tabellen

Fisher'sche $F_{m,n}$ -Verteilung: 97.5%-Quantil

Tabelliert ist das α -Quantil $F_{m,n;\,0.975}$.

$n \setminus m$	1	2	3	4	5	6	7	8	9	10
1	647.789	799.500	864.163	899.583	921.848	937.111	948.217	956.656	963.285	968.627
2	38.506	39.000	39.165	39.248	39.298	39.331	39.355	39.373	39.387	39.398
3	17.443	16.044	15.439	15.101	14.885	14.735	14.624	14.540	14.473	14.419
4	12.218	10.649	9.979	9.605	9.364	9.197	9.074	8.980	8.905	8.844
5	10.007	8.434	7.764	7.388	7.146	6.978	6.853	6.757	6.681	6.619
6	8.813	7.260	6.599	6.227	5.988	5.820	5.695	5.600	5.523	5.461
7	8.073	6.542	5.890	5.523	5.285	5.119	4.995	4.899	4.823	4.761
8	7.571	6.059	5.416	5.053	4.817	4.652	4.529	4.433	4.357	4.295
9	7.209	5.715	5.078	4.718	4.484	4.320	4.197	4.102	4.026	3.964
10	6.937	5.456	4.826	4.468	4.236	4.072	3.950	3.855	3.779	3.717
11	6.724	5.256	4.630	4.275	4.044	3.881	3.759	3.664	3.588	3.526
12	6.554	5.096	4.474	4.121	3.891	3.728	3.607	3.512	3.436	3.374
13	6.414	4.965	4.347	3.996	3.767	3.604	3.483	3.388	3.312	3.250
14	6.298	4.857	4.242	3.892	3.663	3.501	3.380	3.285	3.209	3.147
15	6.200	4.765	4.153	3.804	3.576	3.415	3.293	3.199	3.123	3.060
16	6.115	4.687	4.077	3.729	3.502	3.341	3.219	3.125	3.049	2.986
17	6.042	4.619	4.011	3.665	3.438	3.277	3.156	3.061	2.985	2.922
18	5.978	4.560	3.954	3.608	3.382	3.221	3.100	3.005	2.929	2.866
19	5.922	4.508	3.903	3.559	3.333	3.172	3.051	2.956	2.880	2.817
20	5.871	4.461	3.859	3.515	3.289	3.128	3.007	2.913	2.837	2.774
21	5.827	4.420	3.819	3.475	3.250	3.090	2.969	2.874	2.798	2.735
22	5.786	4.383	3.783	3.440	3.215	3.055	2.934	2.839	2.763	2.700
23	5.750	4.349	3.750	3.408	3.183	3.023	2.902	2.808	2.731	2.668
24	5.717	4.319	3.721	3.379	3.155	2.995	2.874	2.779	2.703	2.640
25	5.686	4.291	3.694	3.353	3.129	2.969	2.848	2.753	2.677	2.613
26	5.659	4.265	3.670	3.329	3.105	2.945	2.824	2.729	2.653	2.590
27	5.633	4.242	3.647	3.307	3.083	2.923	2.802	2.707	2.631	2.568
28	5.610	4.221	3.626	3.286	3.063	2.903	2.782	2.687	2.611	2.547
29	5.588	4.201	3.607	3.267	3.044	2.884	2.763	2.669	2.592	2.529
30	5.568	4.182	3.589	3.250	3.026	2.867	2.746	2.651	2.575	2.511
35	5.485	4.106	3.517	3.178	2.956	2.796	2.676	2.581	2.504	2.440
40	5.424	4.051	3.463	3.126	2.904	2.744	2.624	2.529	2.452	2.388
45	5.377	4.008	3.422	3.086	2.864	2.705	2.584	2.489	2.412	2.348
50	5.340	3.975	3.390	3.054	2.833	2.674	2.553	2.458	2.381	2.317
55	5.310	3.948	3.364	3.029	2.807	2.648	2.528	2.433	2.355	2.291
60	5.286	3.925	3.343	3.008	2.786	2.627	2.507	2.412	2.334	2.270
65	5.265	3.906	3.324	2.990	2.769	2.610	2.489	2.394	2.317	2.252
70	5.247	3.890	3.309	2.975	2.754	2.595	2.474	2.379	2.302	2.237
75	5.232	3.876	3.296	2.962	2.741	2.582	2.461	2.366	2.289	2.224
80	5.218	3.864	3.284	2.950	2.730	2.571	2.450	2.355	2.277	2.213
85	5.207	3.854	3.274	2.940	2.720	2.561	2.440	2.345	2.268	2.203
90	5.196	3.844	3.265	2.932	2.711	2.552	2.432	2.336	2.259	2.194
95	5.187	3.836	3.257	2.924	2.703	2.544	2.424	2.328	2.251	2.186
100	5.179	3.828	3.250	2.917	2.696	2.537	2.417	2.321	2.244	2.179
150	5.126	3.781	3.204	2.872	2.652	2.494	2.373	2.278	2.200	2.135
200	5.100	3.758	3.182	2.850	2.630	2.472	2.351	2.256	2.178	2.113
300	5.075	3.735	3.160	2.829	2.609	2.451	2.330	2.234	2.156	2.091
400	5.062	3.723	3.149	2.818	2.598	2.440	2.319	2.224	2.146	2.080
500	5.054	3.716	3.142	2.811	2.592	2.434	2.313	2.217	2.139	2.074
∞	5.024	3.689	3.116	2.786	2.566	2.408	2.288	2.192	2.114	2.048

Fisher'sche $F_{m,n}$ -Verteilung: 99%-Quantil

Tabelliert ist das α -Quantil $F_{m,n;\,0.99}$.

$n \setminus m$	1	2	3	4	5	6	7	8	9	10
2	98.503	99.000	99.166	99.249	99.299	99.333	99.356	99.374	99.388	99.399
3	34.116	30.817	29.457	28.710	28.237	27.911	27.672	27.489	27.345	27.229
4	21.198	18.000	16.694	15.977	15.522	15.207	14.976	14.799	14.659	14.546
5	16.258	13.274	12.060	11.392	10.967	10.672	10.456	10.289	10.158	10.051
6					8.746	8.466				
7	13.745 12.246	10.925	9.780	9.148 7.847		7.191	8.260	8.102 6.840	7.976 6.719	7.874 6.620
8	12.240 11.259	9.547 8.649	8.451	7.006	7.460	6.371	6.993 6.178			
9	11.259 10.561	8.022	7.591 6.992	6.422	$6.632 \\ 6.057$	5.802	5.613	6.029 5.467	5.911 5.351	5.814 5.257
10	10.301 10.044	7.559	6.552	5.994	5.636	5.386	5.013 5.200	5.467 5.057	4.942	4.849
11	9.646	7.206	6.217	5.668	5.316	5.069	4.886	4.744	4.632	4.539
12	9.330	6.927	5.953	5.412	5.064	4.821	4.640	4.499	4.388	4.296
13	9.074	6.701	5.739	5.205	4.862	4.620	4.441	4.302	4.191	4.100
14	8.862	6.515	5.564	5.035	4.695	4.456	4.278	4.140	4.030	3.939
15	8.683	6.359	5.417	4.893	4.556	4.318	4.142	4.004	3.895	3.805
16	8.531	6.226	5.292	4.773	4.437	4.202	4.026	3.890	3.780	3.691
17	8.400	6.112	5.185	4.669	4.336	4.102	3.927	3.791	3.682	3.593
18	8.285	6.013	5.092	4.579	4.248	4.015	3.841	3.705	3.597	3.508
19	8.185	5.926	5.010	4.500	4.171	3.939	3.765	3.631	3.522	3.434
20	8.096	5.849	4.938	4.431	4.103	3.871	3.699	3.564	3.457	3.368
21	8.017	5.780	4.874	4.369	4.042	3.812	3.640	3.506	3.398	3.310
22	7.945	5.719	4.817	4.313	3.988	3.758	3.587	3.453	3.346	3.258
23	7.881	5.664	4.765	4.264	3.939	3.710	3.539	3.406	3.299	3.211
24	7.823	5.614	4.718	4.218	3.895	3.667	3.496	3.363	3.256	3.168
25	7.770	5.568	4.675	4.177	3.855	3.627	3.457	3.324	3.217	3.129
26 27	7.721	5.526	4.637	4.140	3.818	3.591	3.421	3.288	3.182	$3.094 \\ 3.062$
28	7.677	5.488	4.601	4.106	3.785	3.558	3.388	3.256	3.149	
	7.636	5.453	4.568	4.074	3.754	3.528	3.358	3.226	3.120	3.032
29 30	7.598 7.562	5.420 5.390	4.538 4.510	4.045 4.018	$3.725 \\ 3.699$	3.499 3.473	3.330 3.304	$3.198 \\ 3.173$	3.092 3.067	3.005 2.979
35	7.419	5.268	4.396	3.908	3.592	3.368	3.200	3.069	2.963	2.876
40	7.314	5.179	4.313	3.828	3.514	3.291	3.124	2.993	2.888	2.801
45	7.234	5.110	4.249	3.767	3.454	3.232	3.066	2.935	2.830	2.743
50	7.171	5.057	4.199	3.720	3.408	3.186	3.020	2.890	2.785	2.698
55	7.119	5.013	4.159	3.681	3.370	3.149	2.983	2.853	2.748	2.662
60	7.077	4.977	4.126	3.649	3.339	3.119	2.953	2.823	2.718	2.632
65	7.042	4.947	4.098	3.622	3.313	3.093	2.928	2.798	2.693	2.607
70	7.011	4.922	4.074	3.600	3.291	3.071	2.906	2.777	2.672	2.585
75	6.985	4.900	4.054	3.580	3.272	3.052	2.887	2.758	2.653	2.567
80	6.963	4.881	4.036	3.563	3.255	3.036	2.871	2.742	2.637	2.551
85	6.943	4.864	4.021	3.548	3.240	3.022	2.857	2.728	2.623	2.537
90	6.925	4.849	4.007	3.535	3.228	3.009	2.845	2.715	2.611	2.524
95	6.909	4.836	3.995	3.523	3.216	2.998	2.833	2.704	2.600	2.513
100	6.895	4.824	3.984	3.513	3.206	2.988	2.823	2.694	2.590	2.503
150	6.807	4.749	3.915	3.447	3.142	2.924	2.761	2.632	2.528	2.441
200	6.763	4.713	3.881	3.414	3.110	2.893	2.730	2.601	2.497	2.411
300	6.720	4.677	3.848	3.382	3.079		2.699	2.571		2.380
300	2.571	2.467	2.380	5.502	5.515	1 2.002	2.000	2.011	2.101	2.500
400	6.699	4.659	3.831	3.366	3.063	2.847	2.684	2.556	2.452	2.365
500	6.686	4.648	3.821	3.357	3.054	2.838	2.675	2.547	2.443	2.356
∞	6.635	4.605	3.782	3.319	3.017	2.802	2.640	2.511	2.408	2.321

Fisher'sche $F_{m,n}$ -Verteilung: 99.5%-Quantil

Tabelliert ist das α -Quantil $F_{m,n;\,0.995}$.

$n \setminus m$	1	2	3	4	5	6	7	8	9	10
3	55.552	49.799	47.467	46.195	45.392	44.838	44.434	44.126	43.882	43.686
4	31.333	26.284	24.259	23.154	22.456	21.975	21.622	21.352	21.139	20.967
5	22.785	18.314	16.530	15.556	14.940	14.513	14.200	13.961	13.772	13.618
6	18.635	14.544	12.917	12.028	11.464	11.073	10.786	10.566	10.391	10.250
7	16.236	12.404	10.882	10.050	9.522	9.155	8.885	8.678	8.514	8.380
8	14.688	11.042	9.596	8.805	8.302	7.952	7.694	7.496	7.339	7.211
9	13.614	10.107	8.717	7.956	7.471	7.134	6.885	6.693	6.541	6.417
10	12.826	9.427	8.081	7.343	6.872	6.545	6.302	6.116	5.968	5.847
11	12.226	8.912	7.600	6.881	6.422	6.102	5.865	5.682	5.537	5.418
12	11.754	8.510	7.226	6.521	6.071	5.757	5.525	5.345	5.202	5.085
13	11.374	8.186	6.926	6.233	5.791	5.482	5.253	5.076	4.935	4.820
14	11.060	7.922	6.680	5.998	5.562	5.257	5.031	4.857	4.717	4.603
15	10.798	7.701	6.476	5.803	5.372	5.071	4.847	4.674	4.536	4.424
16	10.575	7.514	6.303	5.638	5.212	4.913	4.692	4.521	4.384	4.272
17	10.384	7.354	6.156	5.497	5.075	4.779	4.559	4.389	4.254	4.142
18	10.218	7.215	6.028	5.375	4.956	4.663	4.445	4.276	4.141	4.030
19	10.073	7.093	5.916	5.268	4.853	4.561	4.345	4.177	4.043	3.933
20	9.944	6.986	5.818	5.174	4.762	4.472	4.257	4.090	3.956	3.847
21	9.830	6.891	5.730	5.091	4.681	4.393	4.179	4.013	3.880	3.771
22	9.727	6.806	5.652	5.017	4.609	4.322	4.109	3.944	3.812	3.703
23	9.635	6.730	5.582	4.950	4.544	4.259	4.047	3.882	3.750	3.642
24	9.551	6.661	5.519	4.890	4.486	4.202	3.991	3.826	3.695	3.587
25	9.475	6.598	5.462	4.835	4.433	4.150	3.939	3.776	3.645	3.537
26	9.406	6.541	5.409	4.785	4.384	4.103	3.893	3.730	3.599	3.492
27	9.342	6.489	5.361	4.740	4.340	4.059	3.850	3.687	3.557	3.450
28	9.284	6.440	5.317	4.698	4.300	4.020	3.811	3.649	3.519	3.412
29	9.230	6.396	5.276	4.659	4.262	3.983	3.775	3.613	3.483	3.377
30	9.180	6.355	5.239	4.623	4.228	3.949	3.742	3.580	3.450	3.344
35	8.976	6.188	5.086	4.479	4.088	3.812	3.607	3.447	3.318	3.212
40	8.828	6.066	4.976	4.374	3.986	3.713	3.509	3.350	3.222	3.117
45	8.715	5.974	4.892	4.294	3.909	3.638	3.435	3.276	3.149	3.044
50	8.626	5.902	4.826	4.232	3.849	3.578	3.376	3.219	3.092	2.988
55	8.554	5.843	4.773	4.181	3.800	3.531	3.330	3.173	3.046	2.942
60	8.495	5.795	4.729	4.140	3.760	3.492	3.291	3.134	3.008	2.904
65	8.445	5.755	4.692	4.105	3.726	3.459	3.259	3.103	2.977	2.873
70	8.403	5.720	4.661	4.076	3.698	3.431	3.232	3.076	2.950	2.846
75	8.366	5.691	4.635	4.050	3.674	3.407	3.208	3.052	2.927	2.823
80	8.335	5.665	4.611	4.028	3.652	3.387	3.188	3.032	2.907	2.803
85	8.307	5.643	4.591	4.009	3.634	3.368	3.170	3.014	2.889	2.786
90	8.282	5.623	4.573	3.992	3.617	3.352	3.154	2.999	2.873	2.770
95	8.260	5.605	4.557	3.977	3.603	3.338	3.140	2.985	2.860	2.756
100	8.241	5.589	4.542	3.963	3.589	3.325	3.127	2.972	2.847	2.744
150	8.118	5.490	4.453	3.878	3.508	3.245	3.048	2.894	2.770	2.667
200	8.057	5.441	4.408	3.837	3.467	3.206	3.010	2.856	2.732	2.629
300	7.997	5.393	4.365	3.796	3.428	3.167	2.972	2.818	2.694	2.592
400	7.968	5.369	4.343	3.775	3.408	3.148	2.953	2.800	2.676	2.573
500	7.950	5.355	4.330	3.763	3.396	3.137	2.941	2.788	2.665	2.562
∞	7.879	5.298	4.279	3.715	3.350	3.091	2.897	2.744	2.621	2.519

Fisher'sche $F_{m,n}$ -Verteilung: 99.9%-Quantil

Tabelliert ist das α -Quantil $F_{m,n;\,0.999}$.

$n \setminus m$	1	2	3	4	5	6	7	8	9	10
6	35.507	27.000	23.703	21.924	20.803	20.030	19.463	19.030	18.688	18.411
7	29.245	21.689	18.772	17.198	16.206	15.521	15.019	14.634	14.330	14.083
8	25.415	18.494	15.829	14.392	13.485	12.858	12.398	12.046	11.767	11.540
9 10	22.857 21.040	16.387 14.905	13.902 12.553	12.560 11.283	11.714 10.481	11.128 9.926	10.698 9.517	10.368 9.204	$10.107 \\ 8.956$	$9.894 \\ 8.754$
11 12	19.687 18.643	13.812 12.974	11.561 10.804	10.346 9.633	$9.578 \\ 8.892$	$9.047 \\ 8.379$	8.655 8.001	8.355 7.710	8.116 7.480	7.922 7.292
13	17.815	12.313	10.209	9.073	8.354	7.856	7.489	7.206	6.982	6.799
14	17.143	11.779	9.729	8.622	7.922	7.436	7.077	6.802	6.583	6.404
15	16.587	11.339	9.335	8.253	7.567	7.092	6.741	6.471	6.256	6.081
16	16.120	10.971	9.006	7.944	7.272	6.805	6.460	6.195	5.984	5.812
17	15.722	10.658	8.727	7.683	7.022	6.562	6.223	5.962	5.754	5.584
18	15.379	10.390	8.487	7.459	6.808	6.355	6.021	5.763	5.558	5.390
19 20	15.081 14.819	10.157 9.953	8.280 8.098	7.265 7.096	6.622 6.461	6.175 6.019	5.845 5.692	5.590 5.440	5.388 5.239	$5.222 \\ 5.075$
$\frac{21}{22}$	14.587 14.380	9.772 9.612	7.938 7.796	6.947 6.814	6.318 6.191	5.881 5.758	5.557 5.438	5.308 5.190	5.109 4.993	4.946 4.832
23	14.195	9.468	7.669	6.696	6.078	5.649	5.331	5.085	4.890	4.730
24	14.028	9.339	7.554	6.589	5.977	5.550	5.235	4.991	4.797	4.638
25	13.877	9.223	7.451	6.493	5.885	5.462	5.148	4.906	4.713	4.555
26	13.739	9.116	7.357	6.406	5.802	5.381	5.070	4.829	4.637	4.480
27	13.613	9.019	7.272	6.326	5.726	5.308	4.998	4.759	4.568	4.412
28	13.498	8.931	7.193	6.253	5.656	5.241	4.933	4.695	4.505	4.349
29 30	13.391 13.293	8.849 8.773	7.121 7.054	6.186 6.125	5.593 5.534	5.179 5.122	4.873 4.817	4.636 4.581	4.447 4.393	4.292 4.239
35 40	12.896 12.609	8.470 8.251	6.787 6.595	5.876 5.698	5.298 5.128	4.894 4.731	4.595 4.436	4.363 4.207	4.178 4.024	4.027 3.874
45	12.392	8.086	6.450	5.564	5.001	4.608	4.316	4.090	3.909	3.760
50	12.222	7.956	6.336	5.459	4.901	4.512	4.222	3.998	3.818	3.671
55	12.085	7.853	6.246	5.375	4.822	4.435	4.148	3.925	3.746	3.600
60	11.973	7.768	6.171	5.307	4.757	4.372	4.086	3.865	3.687	3.541
65	11.879	7.697	6.109	5.249	4.702	4.320	4.035	3.815	3.638	3.493
70	11.799	7.637	6.057	5.201	4.656	4.275	3.992	3.773	3.596	3.452
75 80	11.731 11.671	7.585 7.540	6.011 5.972	5.159 5.123	4.617 4.582	4.237 4.204	3.955 3.923	3.736 3.705	$3.561 \\ 3.530$	3.416 3.386
85 90	11.619 11.573	7.501 7.466	5.938 5.908	5.092 5.064	4.552 4.526	4.175 4.150	3.895 3.870	3.677 3.653	3.503 3.479	3.359 3.336
95	11.573 11.532	7.435	5.881	5.004 5.039	4.520 4.503	4.130 4.127	3.848	3.632	$\frac{3.479}{3.458}$	3.315
100	11.495	7.408	5.857	5.017	4.482	4.107	3.829	3.612	3.439	3.296
120	11.380	7.321	5.781	4.947	4.416	4.044	3.767	3.552	3.379	3.237
150	11.267	7.236	5.707	4.879	4.351	3.981	3.706	3.493	3.321	3.179
200	11.154	7.152	5.634	4.812	4.287	3.920	3.647	3.434	3.264	3.123
300	11.044	7.069	5.562	4.746	4.225	3.860	3.588	3.377	3.207	3.067
400 500	$10.989 \\ 10.957$	7.028 7.004	5.527	4.713	4.194	3.830	3.560	3.349	3.179	3.040
500			5.506	4.693	4.176	3.813	3.542	3.332	3.163	3.023
∞	10.828	6.908	5.422	4.617	4.103	3.743	3.475	3.266	3.097	2.959

$m \setminus n$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	.900	.684	.536	.438	.369	.319	.280	.250	.226	.206	.189	.175	.162	.152	.142
2	.949	.804	.680	.584	.510	.453	.406	.368	.337	.310	.287	.268	.251	.236	.222
3	.965	.857	.753	.667	.596	.538	.490	.450	.415	.386	.360	.337	.317	.300	.284
4	.974	.888	.799	.721	.655	.599	.552	.511	.475	.444	.417	.393	.371	.352	.334
5	.979	.907	.830	.760	.699	.646	.599	.559	.523	.492	.464	.439	.416	.396	.378
		001									5 04				
6	.983	.921	.853	.790	.733	.682	.638	.598	.563	.532	.504	.478	.455	.434	.415
7	.985	.931	.871	.812	.759	.712	.669	.631	.596	.565	.537	.512	.489	.467	.448
8	.987	.939	.884	.831	.781	.736	.695	.658	.625	.594	.567	.541	.518	.497	.477
9	.988	.945	.895	.846	.799	.757	.718	.682	.650	.620	.592	.567	.544	.523	.503
10	.990	.951	.904	.858	.815	.774	.737	.703	.671	.642	.615	.590	.568	.546	.526
11	.990	.955	.912	.869	.828	.790	.754	.721	.690	.662	.636	.611	.589	.567	.548
12	.991	.958	.919	.878	.839	.803	.769	.737	.707	.679	.654	.630	.608	.587	.567
13	.992	.961	.924	.886	.849	.815	.782	.751	.722	.695	.670	.647	.625	.604	.585
14	.993	.964	.929	.893	.858	.825	.793	.764	.736	.710	.685	.662	.641	.620	.601
15	.993	.966	.933	.899	.866	.834	.804	.775	.748	.723	.699	.676	.655	.635	.616
16	.993	.968	.937	.905	.873	.842	.813	.786	.759	.735	.711	.689	.669	.649	.630
17	.993	.970	.941	.910	.879	.850	.822	.795	.770	.746	.723	.701	.681	.662	.643
18	.994	.972	.944	.914	.885	.857	.830	.804	.779	.756	.733	.712	.692	.673	.655
19	.994	.973	.946	.914	.890	.863	.837	.812	.788	.765	.743	.723	.703	.684	.667
20	.995	.974	.949	.922	.895	.869	.843	.819	.796	.774	.752	.732	.713	.695	.677
21	.995	.976	.951	.925	.899	.874	.849	.826	.803	.782	.761	.741	.722	.704	.687
22	.995	.977	.953	.928	.903	.879	.855	.832	.810	.789	.769	.749	.731	.713	.696
23	.995	.978	.955	.931	.907	.883	.860	.838	.817	.796	.776	.757	.739	.722	.705
24	.996	.979	.957	.934	.911	.888	.865	.843	.823	.802	.783	.765	.747	.730	.713
25	.996	.979	.958	.936	.914	.891	.870	.849	.828	.809	.790	.772	.754	.737	.721
26	.996	.980	.960	.938	.917	.895	.874	.853	.833	.814	.796	.778	.761	.744	.729
27	.996	.981	.961	.941	.919	.898	.878	.858	.838	.820	.802	.784	.767	.751	.736
28	.996	.982	.963	.943	.922	.902	.882	.862	.843	.825	.807	.790	.773	.758	.742
29	.996	.982	.964	.944	.924	.905	.885	.866	.848	.830	.812	.795	.779	.764	.749
30	.996	.983	.965	.946	.927	.907	.888	.870	.852	.834	.817	.801	.785	.769	.755
91	007	.983	066	0.40	020	010	909	079	OF C	020	000	906	700	775	760
31 32	.997 .997	.983	.966 .967	.948 .949	.929 .931	.910 .913	.892 .894	.873 .877	.856 .859	.838 .843	.822 .826	.806 .810	.790 .795	.775 .780	.760 .766
33	.997	.984	.968	.949	.933	.915	.897	.880	.863	.846	.830	.815	.800	.785	.771
34	.997	.985	.969	.952	.935	.917	.900	.883	.866	.850	.834	.819	.804	.790	.776
35	.997	.985	.970	.953	.936	.919	.902	.886	.870	.854	.838	.823	.809	.795	.781
36	.997	.986	.971	.955	.938	.921	.905	.889	.873	.857	.842	.827	.813	.799	.785
37	.997	.986	.971	.956	.939	.923	.907	.891	.876	.860	.845	.831	.817	.803	.790
38	.997	.986	.972	.957	.941	.925	.909	.894	.878	.863	.849	.835	.821	.807	.794
39	.997	.987	.973	.958	.942	.927	.911	.896	.881	.866	.852	.838	.824	.811	.798
40	.997	.987	.973	.959	.944	.928	.913	.898	.884	.869	.855	.841	.828	.815	.802
41	.997	.987	.974	.960	.945	.930	.915	.900	.886	.872	.858	.844	.831	.818	.806
42	.997	.988	.975	.961	.946	.932	.917	.903	.888	.874	.861	.847	.834	.822	.809
43	.998	.988	.975	.962	.947	.933	.919	.905	.891	.877	.863	.850	.838	.825	.813
44	.998	.988	.976	.962	.948	.934	.920	.906	.893	.879	.866	.853	.841	.828	.816
45	.998	.988	.976	.963	.950	.936	.922	.908	.895	.882	.869	.856	.843	.831	.819
46	.998	.989	.977	.964	.951	.937	.924	.910	.897	.884	.871	.858	.846	.834	.823
47	.998	.989	.977	.965	.952	.938	.925	.912	.899	.886	.873	.861	.849	.837	.826
48	.998	.989	.978	.965	.952	.939	.926	.913	.901	.888	.876	.863	.852	.840	.828
49	.998	.989	.978	.966	.953	.941	.928	.915	.902	.890	.878	.866	.854	.843	.831
50	.998	.990	.979	.967	.954	.942	.929	.917	.904	.892	.880	.868	.856	.845	.834

$m \setminus n$	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
1	.134	.127	.120	.114	.109	.104	.099	.095	.091	.088	.085	.082	.079	.076	.074
2	.210	.199	.190	.181	.173	.166	.159	.153	.147	.142	.137	.132	.128	.124	.120
3	.269	.257	.245	.234	.224	.215	.207	.199	.192	.185	.179	.173	.168	.163	.158
4	.319	.304	.291	.279	.268	.258	.248	.239	.231	.223	.216	.209	.203	.197	.191
5	.361	.345	.331	.318	.306	.295	.284	.275	.265	.257	.249	.241	.234	.228	.221
c	207	901	266	250	940	200	917	206	207	207	270	971	969	256	240
6 7	.397 .430	.381 .413	.366 .398	.352 .383	.340 .370	.328 .358	.317 .346	.306 .335	.297 .325	.287 .315	.279 .306	.271 .297	.263 .289	.256 .282	.249 .274
8	.459	.413	.426	.363	.397	.385	.372	.361	.350	.340	.331	.322	.313	.305	.274
9	.484	.442	.451	.436	.422	.409	.397	.385	.374	.364	.354	.345	.336	.327	.319
10	.508	.491	.475	.459	.445	.432	.419	.407	.396	.385	.375	.366	.357	.348	.340
			.110	.100	.110			.101	.550						
11	.529	.512	.496	.481	.466	.453	.440	.428	.416	.406	.395	.385	.376	.367	.359
12	.549	.532	.515	.500	.486	.472	.459	.447	.435	.424	.414	.404	.394	.385	.377
13	.567	.550	.533	.518	.504	.490	.477	.465	.453	.442	.431	.421	.412	.402	.394
14	.583	.566	.550	.535	.521	.507	.494	.481	.470	.458	.448	.438	.428	.418	.409
15	.599	.582	.566	.551	.536	.522	.509	.497	.485	.474	.463	.453	.443	.434	.425
16	.613	.596	.580	.565	.551	.537	.524	.512	.500	.489	.478	.467	.457	.448	.439
17	.626	.609	.594	.579	.564	.551	.538	.526	.514	.502	.492	.481	.471	.462	.452
18	.638	.622	.606	.591	.577	.564	.551	.539	.527	.515	.505	.494	.484	.475	.465
19	.650	.634	.618	.603	.589	.576	.563	.551	.539	.528	.517	.507	.497	.487	.478
20	.660	.645	.629	.615	.601	.588	.575	.563	.551	.540	.529	.518	.508	.499	.489
0.1	071	CFF	C 40	COF	C10	500	F00	F 17 4	F.C.0	FF1	F 40	F90	F10	F10	F01
21	.671	.655	.640	.625	.612	.598	.586	.574	.562	.551	.540	.530 .540	.519	.510	.501
22 23	.680	.665	.650	.636	.622 .632	.609	.596	.584	.573	.561	.551		.530	.521 .531	.511 .521
23	.689 .698	.674 .683	.659 .668	.645 .654	.641	.619 .628	.606 .616	.594 .604	.583 .592	.571 .581	.561 .570	.550 .560	.540 .550	.541	.531
25	.706	.691	.677	.663	.650	.637	.625	.613	.601	.590	.580	.569	.560	.550	.541
2.0	.700	.091	.077	.005	.050	.057	.025	.015	.001	.590	.560	.509	.500	.550	.041
26	.713	.699	.685	.671	.658	.645	.633	.621	.610	.599	.589	.578	.569	.559	.550
27	.721	.706	.692	.679	.666	.653	.641	.630	.618	.608	.597	.587	.577	.568	.558
28	.727	.713	.699	.686	.673	.661	.649	.638	.626	.616	.605	.595	.585	.576	.567
29	.734	.720	.706	.693	.681	.668	.657	.645	.634	.623	.613	.603	.593	.584	.575
30	.740	.726	.713	.700	.688	.675	.664	.652	.641	.631	.621	.611	.601	.592	.582
31	.746	.733	.719	.707	.694	.682	.671	.659	.649	.638	.628	.618	.608	.599	.590
32	.752	.738	.725	.713	.701	.689	.677	.666	.655	.645	.635	.625	.615	.606	.597
33	.757	.744	.731	.719	.707	.695	.684	.673	.662	.652	.641	.632	.622	.613	.604
34	.763	.749	.737	.724	.712	.701	.690	.679	.668	.658	.648	.638	.629	.620	.611
35	.768	.755	.742	.730	.718	.707	.696	.685	.674	.664	.654	.645	.635	.626	.617
36	.772	.760	.747	.735	.723	.712	.701	.690	.680	.670	.660	.651	.641	.632	.624
37	.777	.764	.752	.740	.729	.717	.707	.696	.686	.676	.666	.656	.647	.638	.630
38	.781	.769	.757	.745	.734	.723	.712	.701	.691	.681	.672	.662	.653	.644	.635
39	.785	.773	.761	.750	.738	.728	.717	.706	.696	.687	.677	.668	.659	.650	.641
40	.790	.777	.766	.754	.743	.732	.722	.711	.701	.692	.682	.673	.664	.655	.647
41	.793	.782	.770	.759	.748	.737	.726	.716	.706	.697	.687	.678	.669	.660	.652
42	.797	.785	.774	.763	.752	.741	.731	.721	.711	.702	.692	.683	.674	.666	.657
43 44	.801 .804	.789 .793	.778	.767	.756 760	.746 .750	.735	.725 .730	.716 .720	.706 .711	.697	.688 .693	.679 .684	.671 .675	.662 .667
44 45	.804	.793	.782 .785	.771 .775	.760 .764	.754	.740 .744	.734	.724	.711	.702 .706	.693	.688	.680	.672
40	.000		.100		.104	.104	.144	.104	.124	.,110	.700	.091	.000	.000	.012
46	.811	.800	.789	.778	.768	.758	.748	.738	.729	.719	.710	.702	.693	.685	.676
47	.814	.803	.792	.782	.772	.761	.752	.742	.733	.724	.715	.706	.697	.689	.681
48	.817	.806	.796	.785	.775	.765	.755	.746	.737	.728	.719	.710	.702	.693	.685
49	.820	.809	.799	.789	.779	.769	.759	.750	.740	.731	.723	.714	.706	.697	.689
50	.823	.812	.802	.792	.782	.772	.763	.753	.744	.735	.727	.718	.710	.701	.694

$m \setminus n$	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
1	.072	.069	.067	.065	.064	.062	.060	.059	.057	.056	.055	.053	.052	.051	.050
2	.116	.113	.110	.107	.104	.101	.099	.096	.094	.092	.089	.087	.086	.084	.082
3	.153	.149	.145	.141	.138	.134	.131	.128	.125	.122	.119	.116	.114	.112	.109
4	.186	.181	.176	.172	.167	.163	.159	.156	.152	.149	.146	.142	.139	.137	.134
5	.216	.210	.205	.199	.195	.190	.186	.181	.177	.174	.170	.166	.163	.160	.157
c	242	226	220	ากะ	220	015	210	205	201	106	100	100	105	101	170
6	.242	.236	.230	.225	.220	.215 .237	.210	.205	.201	.196	.192	.188	.185	.181	.178
7 8	.267 .290	.261 .283	.254 .277	.248 .270	.243 .264	.257	.232 .253	.227 .248	.222 .243	.218 .238	.213 .233	.209 .229	.205 .224	.201 .220	.197 .216
9	.312	.203			.285	.259	.253		.243	.256	.253		.242	.238	.210
10	.332	.324	.298 .317	.291		.219		.267	.280	.274	.269	.247 .264	.242	.255	.254
10	.552	.324	.517	.310	.304	.291	.291	.285	.200	.214	.209	.204	.209	.255	.230
11	.351	.343	.335	.328	.322	.315	.309	.303	.297	.291	.286	.281	.276	.271	.266
12	.368	.360	.353	.346	.339	.332	.325	.319	.313	.307	.302	.296	.291	.286	.281
13	.385	.377	.369	.362	.355	.348	.341	.335	.329	.323	.317	.311	.306	.301	.296
14	.401	.393	.385	.377	.370	.363	.356	.350	.343	.337	.331	.326	.320	.315	.310
15	.416	.408	.399	.392	.384	.377	.370	.364	.357	.351	.345	.339	.334	.328	.323
16	.430	.422	.414	.406	.398	.391	.384	.377	.371	.364	.358	.352	.347	.341	.336
17	.444	.435	.427	.419	.411	.404	.397	.390	.383	.377	.371	.365	.359	.353	.348
18	.456	.448	.440	.432	.424	.417	.409	.402	.396	.389	.383	.377	.371	.365	.360
19	.469	.460	.452	.444	.436	.429	.421	.414	.408	.401	.395	.388	.383	.377	.371
20	.480	.472	.463	.455	.448	.440	.433	.426	.419	.412	.406	.400	.394	.388	.382
21	.492	.483	.475	.466	.459	.451	.444	.437	.430	.423	.417	.410	.404	.398	.393
22	.502	.494	.485	.477	.469	.462	.454	.447	.440	.433	.427	.421	.414	.409	.403
23	.512	.504	.495	.487	.479	.472	.464	.457	.450	.443	.437	.431	.424	.418	.413
24	.522	.514	.505	.497	.489	.482	.474	.467	.460	.453	.447	.440	.434	.428	.422
25	.532	.523	.515	.506	.499	.491	.484	.476	.469	.462	.456	.449	.443	.437	.431
26	.541	.532	.524	.516	.508	.500	.493	.485	.478	.471	.465	.458	.452	.446	.440
27	.549	.541	.532	.524	.516	.509	.501	.494	.487	.480	.474	.467	.461	.455	.449
28	.558	.549	.541	.533	.525	.517	.510	.502	.495	.489	.482	.475	.469	.463	.457
29	.566	.557	.549	.541	.533	.525	.518	.511	.504	.497	.490	.484	.477	.471	.465
30	.574	.565	.557	.549	.541	.533	.526	.519	.511	.505	.498	.491	.485	.479	.473
91	E01	E79	EG1	EE6	E 10	E / 1	E99	E06	E10	E10	FOG	400	402	107	180
31 32	.581 .588	.573 .580	.564 .572	.556 .564	.548 .556	.541 .548	.533 .541	.526 .534	.519 .527	.512 .520	.506 .513	.499 .506	.493 .500	.487 .494	.480 .488
33	.595	.587	.579	.571	.563	.555	.548	.541	.534	.527	.520	.514	.507	.501	.495
34	.602	.594	.585	.578	.570	.562	.555	.548	.541	.534	.520	.521	.514	.508	.502
35	.609	.600	.592	.584	.576	.569	.562	.554	.547	.541	.534	.527	.521	.515	.502
36	.615	.607	.598	.591	.583	.575	.568	.561	.554	.547	.540	.534	.528	.521	.515
37	.621	.613	.605	.597	.589	.582	.574	.567	.560	.553	.547	.540	.534	.528	.522
38	.627	.619	.611	.603	.595	.588	.580	.573	.566	.560	.553	.547	.540	.534	.528
39	.633	.624	.616	.609	.601	.594	.586	.579	.572	.566	.559	.553	.546	.540	.534
40	.638	.630	.622	.614	.607	.599	.592	.585	.578	.571	.565	.558	.552	.546	.540
41	.644	.636	.628	.620	.612	.605	.598	.591	.584	.577	.571	.564	.558	.552	.546
42	.649	.641	.633	.625	.618	.610	.603	.596	.589	.583	.576	.570	.564	.557	.551
43	.654	.646	.638	.630	.623	.616	.609	.602	.595	.588	.582	.575	.569	.563	.557
44	.659	.651	.643	.636	.628	.621	.614	.607	.600	.593	.587	.581	.574	.568	.562
45	.664	.656	.648	.640	.633	.626	.619	.612	.605	.599	.592	.586	.579	.573	.567
46	.668	.660	.653	.645	.638	.631	.624	.617	.610	.604	.597	.591	.585	.578	.573
47	.673	.665	.657	.650	.643	.635	.628	.622	.615	.608	.602	.596	.589	.583	.577
48	.677	.669	.662	.654	.647	.640	.633	.626	.620	.613	.607	.600	.594	.588	.582
49	.682	.674	.666	.659	.652	.645	.638	.631	.624	.618	.611	.605	.599	.593	.587
50	.686	.678	.671	.663	.656	.649	.642	.635	.629	.622	.616	.610	.604	.598	.592

$m \setminus n$	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
1	.049	.048	.047	.046	.045	.044	.043	.043	.042	.041	.040	.040	.039	.038	.038
2	.080	.079	.077	.076	.074	.073	.071	.070	.069	.068	.067	.065	.064	.063	.062
3	.107	.105	.103	.101	.099	.097	.096	.094	.092	.091	.089	.088	.086	.085	.084
4	.131	.129	.126	.124	.122	.120	.117	.115	.113	.112	.110	.108	.106	.105	.103
5	.154	.151	.148	.145	.143	.140	.138	.135	.133	.131	.129	.127	.125	.123	.121
c	174	171	160	165	169	150	157	15/	150	140	1.47	144	149	140	190
6 7	.174 .194	.171 .190	.168 .187	.165 .184	.162	.159 .177	.157	.154 .172	.152 .169	.149 .166	.147 .164	.144	.142	.140	.138 .154
8	.194	.208	.205	.201	.180 .198	.195	.175 .191	.172	.185	.183	.180	.177	.174	.172	.169
9	.212	.226	.222	.218	.214	.211	.208	.204	.201	.198	.195	.192	.189	.187	.184
10	.246	.242	.238	.234	.230	.226	.223	.219	.216	.213	.210	.207	.204	.201	.198
11	.262	.257	.253	.249	.245	.241	.238	.234	.230	.227	.224	.221	.217	.214	.212
12	.277	.272	.268	.264	.259	.255	.252	.248	.244	.241	.237	.234	.231	.228	.224
13	.291	.286	.282	.277	.273	.269	.265	.261	.257	.254	.250	.247	.243	.240	.237
14	.305	.300	.295	.291	.286	.282	.278	.274	.270	.266	.263	.259	.256	.252	.249
15	.318	.313	.308	.304	.299	.295	.291	.286	.282	.279	.275	.271	.267	.264	.261
16	.331	.326	.321	.316	.311	.307	.303	.298	.294	.290	.286	.283	.279	.275	.272
17	.343	.338	.333	.328	.323	.319	.314	.310	.306	.302	.298	.294	.290	.286	.283
18	.354	.349	.344	.339	.334	.330	.325	.321	.317	.312	.308	.304	.301	.297	.293
19	.366	.360	.355	.350	.345	.341	.336	.332	.327	.323	.319	.315	.311	.307	.303
20	.377	.371	.366	.361	.356	.351	.346	.342	.337	.333	.329	.325	.321	.317	.313
21	.387	.382	.376	.371	.366	.361	.357	.352	.347	.343	.339	.335	.331	.327	.323
22	.397	.392	.386	.381	.376	.371	.366	.362	.357	.353	.348	.344	.340	.336	.332
23	.407	.401	.396	.391	.386	.381	.376	.371	.366	.362	.358	.353	.349	.345	.341
24	.416	.411	.405	.400	.395	.390	.385	.380	.376	.371	.367	.362	.358	.354	.350
25	.425	.420	.414	.409	.404	.399	.394	.389	.384	.380	.375	.371	.367	.362	.358
26	.434	.429	.423	.418	.413	.407	.402	.398	.393	.388	.384	.379	.375	.371	.367
27	.443	.429	.423	.426	.413	.416	.411	.406	.401	.396	.392	.387	.383	.379	.375
28	.451	.445	.440	.434	.429	.424	.419	.414	.409	.405	.400	.395	.391	.387	.383
29	.459	.453	.448	.442	.437	.432	.427	.422	.417	.412	.408	.403	.399	.394	.390
30	.467	.461	.456	.450	.445	.440	.435	.430	.425	.420	.415	.411	.406	.402	.398
31	.475	.469	.463	.458	.452	.447	.442	.437	.432	.427	.423	.418	.414	.409	.405
32	.482	.476	.471	.465	.460	.454	.449	.444	.439	.435	.430	.425	.421	.416	.412
33	.489 .496	.483 .490	.478	.472	.467 .474	.462 .468	.456	.451	.446	.442	.437 .444	.432	.428 .435	.423	.419 .426
34 35	.503	.490	.485 .491	.479 .486	.480	.475	.463 .470	.458 .465	.453	.455	.450	.439	.441	.437	.432
36	.509	.504	.498	.492	.487	.482	.477	.471	.467	.462	.457	.452	.448	.443	.439
37	.516	.510	.504	.499	.493	.488	.483	.478	.473	.468	.463	.459	.454	.449	.445
38	.522	.516	.511	.505	.500	.494	.489	.484	.479	.474	.469	.465	.460	.456	.451
39	.528	.522	.517	.511	.506	.500	.495	.490	.485	.480	.475	.471	.466	.462	.457
40	.534	.528	.523	.517	.512	.506	.501	.496	.491	.486	.481	.477	.472	.468	.463
41	.540	.534	.528	.523	.518	.512	.507	.502	.497	.492	.487	.482	.478	.473	.469
42	.545	.540	.534	.529	.523	.518	.513	.508	.503	.498	.493	.488	.483	.479	.474
43	.551	.545	.540	.534	.529	.523	.518	.513	.508	.503	.498	.494	.489	.484	.480
44	.556	.551	.545	.539	.534	.529	.524	.518	.513	.509	.504	.499	.494	.490	.485
45	.562	.556	.550	.545	.539	.534	.529	.524	.519	.514	.509	.504	.500	.495	.491
46	.567	.561	.555	.550	.544	.539	.534	.529	.524	.519	.514	.510	.505	.500	.496
47	.572	.566	.560	.555	.550	.544	.539	.534	.529	.524	.519	.515	.510	.505	.501
48	.577	.571	.565	.560	.554	.549	.544	.539	.534	.529	.524	.520	.515	.510	.506
49	.581	.576	.570	.565	.559	.554	.549	.544	.539	.534	.529	.524	.520	.515	.511
50	.586	.580	.575	.569	.564	.559	.554	.549	.544	.539	.534	.529	.525	.520	.515

$m \setminus n$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	.950	.776	.632	.527	.451	.393	.348	.312	.283	.259	.238	.221	.206	.193	.181
2	.975	.865	.751	.657	.582	.521	.471	.429	.394	.364	.339	.316	.297	.279	.264
3	.983	.902	.811	.729	.659	.600	.550	.507	.470	.438	.410	.385	.363	.344	.326
4	.987	.924	.847	.775	.711	.655	.607	.564	.527	.495	.466	.440	.417	.396	.377
5	.990	.937	.871	.807	.749	.696	.650	.609	.573	.540	.511	.484	.461	.439	.419
6	.991	.947	.889	.831	.778	.729	.685	.645	.610	.577	.548	.522	.498	.476	.456
7	.993	.954	.902	.850	.800	.755	.713	.675	.640	.609	.580	.554	.530	.508	.487
8	.994	.959	.913	.865	.819	.776	.736	.700	.667	.636	.608	.582	.558	.536	.515
9	.994	.963	.921	.877	.834	.794	.756	.721	.689	.659	.632	.606	.583	.561	.540
10	.995	.967	.928	.887	.847	.809	.773	.740	.709	.680	.653	.628	.605	.583	.563
11	.995	.970	.934	.896	.858	.822	.788	.756	.726	.698	.672	.647	.625	.603	.583
12	.996	.972	.939	.903	.868	.834	.801	.770	.741	.714	.689	.665	.642	.621	.602
13	.996	.974	.943	.910	.876	.844	.812	.783	.755	.729	.704	.681	.659	.638	.618
14	.996	.976	.947	.915	.884	.853	.823	.794	.767	.742	.718	.695	.673	.653	.634
15	.997	.977	.950	.920	.890	.860	.832	.804	.778	.754	.730	.708	.687	.667	.648
16	.997	.979	.953	.925	.896	.868	.840	.814	.788	.764	.742	.720	.699	.680	.661
17	.997	.980	.956	.929	.901	.874	.848	.822	.798	.774	.752	.731	.711	.692	.673
18	.997	.981	.958	.932	.906	.880	.854	.830	.806	.783	.762	.741	.721	.703	.685
19	.997	.982	.960	.935	.910	.885	.861	.837	.814	.792	.771	.750	.731	.713	.695
20	.997	.983	.962	.938	.914	.890	.866	.843	.821	.800	.779	.759	.740	.722	.705
21	.998	.984	.963	.941	.918	.894	.871	.849	.828	.807	.787	.767	.749	.731	.714
22	.998	.984	.965	.943	.921	.899	.876	.855	.834	.813	.794	.775	.757	.740	.723
23	.998	.985	.966	.946	.924	.902	.881	.860	.839	.820	.801	.782	.764	.747	.731
24	.998	.986	.968	.948	.927	.906	.885	.865	.845	.825	.807	.789	.771	.755	.739
25	.998	.986	.969	.950	.930	.909	.889	.869	.850	.831	.813	.795	.778	.762	.746
	.550	.500	.505	.500	.550	.505	.000	.005	.000	.001	.010	.130	.110	.102	
26	.998	.987	.970	.951	.932	.912	.893	.873	.854	.836	.818	.801	.784	.768	.753
27	.998	.987	.971	.953	.934	.915	.896	.877	.859	.841	.823	.807	.790	.774	.759
28	.998	.988	.972	.955	.936	.918	.899	.881	.863	.845	.828	.812	.796	.780	.765
29	.998	.988	.973	.956	.938	.920	.902	.884	.867	.850	.833	.817	.801	.786	.771
30	.998	.988	.974	.958	.940	.923	.905	.888	.871	.854	.837	.822	.806	.791	.777
31	.998	.989	.975	.959	.942	.925	.908	.891	.874	.858	.842	.826	.811	.796	.782
32	.998	.989	.976	.960	.944	.927	.910	.894	.877	.861	.846	.830	.816	.801	.787
33	.998	.989	.976	.961	.945	.929	.913	.896	.880	.865	.849	.834	.820	.806	.792
34	.998	.990	.977	.962	.947	.931	.915	.899	.883	.868	.853	.838	.824	.810	.796
35	.999	.990	.978	.963	.948	.933	.917	.902	.886	.871	.856	.842	.828	.814	.801
36	.999	.990	.978	.964	.949	.934	.919	.904	.889	.874	.860	.846	.832	.818	.805
37	.999	.991	.979	.965	.951	.936	.921	.906	.891	.877	.863	.849	.835	.822	.809
38	.999	.991	.979	.966	.952	.937	.923	.908	.894	.880	.866	.852	.839	.826	.813
39	.999	.991	.980	.967	.953	.939	.925	.910	.896	.882	.869	.855	.842	.829	.817
40	.999	.991	.980	.968	.954	.940	.926	.912	.899	.885	.871	.858	.845	.833	.820
41	.999	.991	.981	.968	.955	.942	.928	.914	.901	.887	.874	.861	.848	.836	.824
42	.999	.992	.981	.969	.956	.943	.929	.916	.903	.890	.877	.864	.851	.839	.827
43	.999	.992	.982	.970	.957	.944	.931	.918	.905	.892	.879	.866	.854	.842	.830
44	.999	.992	.982	.970	.958	.945	.932	.919	.907	.894	.881	.869	.857	.845	.833
45	.999	.992	.982	.971	.959	.946	.934	.921	.908	.896	.884	.871	.859	.848	.836
46	.999	.992	.983	.972	.960	.948	.935	.923	.910	.898	.886	.874	.862	.850	.839
47	.999	.993	.983	.972	.961	.949	.936	.924	.912	.900	.888	.876	.864	.853	.842
48	.999	.993	.983	.973	.961	.950	.938	.926	.914	.902	.890	.878	.867	.856	.845
49	.999	.993	.984	.973	.962	.950	.939	.927	.915	.903	.892	.880	.869	.858	.847
50	.999	.993	.984	.974	.963	.951	.940	.928	.917	.905	.894	.882	.871	.860	.850

$m \setminus n$	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
1	.171	.162	.153	.146	.139	.133	.127	.122	.117	.113	.109	.105	.101	.098	.095
2	.250	.238	.226	.216	.207	.198	.190	.183	.176	.170	.164	.159	.153	.149	.144
3	.310	.296	.283	.271	.259	.249	.240	.231	.223	.215	.208	.202	.195	.189	.184
4	.359	.344	.329	.316	.304	.292	.282	.272	.263	.254	.246	.239	.232	.225	.219
5	.401	.384	.369	.355	.342	.330	.318	.308	.298	.288	.280	.271	.264	.256	.249
6	.437	.420	.404	.389	.375	.363	.351	.339	.329	.319	.310	.301	.293	.285	.277
7	.468	.451	.435	.420	.405	.392	.380	.368	.357	.347	.337	.328	.319	.311	.303
8	.496	.479	.462	.447	.432	.419	.406	.394	.383	.372	.362	.352	.343	.334	.326
9	.521	.504	.487	.471	.457	.443	.430	.418	.406	.395	.385	.375	.365	.356	.348
10	.544	.526	.509	.494	.479	.465	.452	.439	.428	.416	.406	.396	.386	.377	.368
11	.564	.547	.530	.514	.499	.485	.472	.460	.448	.436	.425	.415	.405	.396	.387
12	.583	.565	.549	.533	.518	.504	.491	.478	.466	.455	.444	.433	.423	.414	.405
13	.600	.583	.566	.550	.536	.522	.508	.496	.483	.472	.461	.450	.440	.431	.421
14	.616	.598	.582	.567	.552	.538	.524	.512	.500	.488	.477	.466	.456	.446	.437
15	.630	.613	.597	.581	.567	.553	.540	.527	.515	.503	.492	.481	.471	.461	.452
16	.643	.627	.611	.595	.581	.567	.554	.541	.529	.517	.506	.495	.485	.475	.466
17	.656	.639	.623	.608	.594	.580	.567	.554	.542	.531	.520	.509	.499	.489	.479
18	.667	.651	.635	.620	.606	.593	.579	.567	.555	.543	.532	.521	.511	.501	.492
19	.678	.662	.647	.632	.618	.604	.591	.579	.567	.555	.544	.533	.523	.513	.504
20	.688	.672	.657	.643	.629	.615	.602	.590	.578	.567	.555	.545	.535	.525	.515
21	.698	.682	.667	.653	.639	.626	.613	.601	.589	.577	.566	.556	.545	.536	.526
22	.707	.691	.677	.662	.649	.635	.623	.611	.599	.587	.577	.566	.556	.546	.537
23	.715	.700	.685	.671	.658	.645	.632	.620	.608	.597	.586	.576	.566	.556	.546
24	.723	.708	.694	.680	.667	.654	.641	.629	.618	.606	.596	.585	.575	.565	.556
25	.731	.716	.702	.688	.675	.662	.650	.638	.626	.615	.605	.594	.584	.574	.565
26	.738	.723	.709	.696	.683	.670	.658	.646	.635	.624	.613	.603	.593	.583	.574
27	.744	.730	.716	.703	.690	.678	.666	.654	.643	.632	.621	.611	.601	.591	.582
28	.751	.737	.723	.710	.697	.685	.673	.662	.650	.640	.629	.619	.609	.600	.590
29 30	.757 .763	.743 .749	.730 .736	.717 .723	.704 .711	.692 .699	.680 .687	.669 .676	.658 .665	.647 .654	.637 .644	.626 .634	.617 .624	.607 .615	.598 .605
31 32	.768	.755	.742	.729	.717	.705	.693	.682	.671	.661	.651	.641	.631	.622	.613 .620
33	.773 .778	.760 .765	.747 .753	.735 .740	.723 .729	.711 .717	.700 .706	.689 .695	.678 .684	.667 .674	.657 .664	.647 .654	.638 .644	.635	.626
34	.783	.770	.758	.746	.734	.723	.711	.701	.690	.680	.670	.660	.651	.642	.633
35	.788	.775	.763	.751	.739	.728	.717	.706	.696	.686	.676	.666	.657	.648	.639
36 37	.792	.780	.768	.756 761	.744	.733	.722	.712	.701	.691	.682	.672	.663	.654	.645
37 38	.797 .801	.784 .788	.772 .777	.761 .765	.749 .754	.738 .743	.727 .732	.717 .722	.707 .712	.697 .702	.687 .692	.678 .683	.668 .674	.659 .665	.651 .656
39	.804	.793	.781	.765	.754	.748	.737	.727	.712	.702	.697	.688	.679	.670	.662
40	.808	.796	.785	.774	.763	.752	.742	.732	.722	.712	.702	.693	.684	.676	.667
41	.812	.800	.789	.778	.767	.756	.746	.736	.726	.717	.707	.698	.689	.681	.672
42	.815	.804	.793	.782	.771	.761	.750	.740	.731	.721	.712	.703	.694	.685	.677
43	.819	.807	.796	.785	.775	.765	.755	.745	.735	.726	.716	.707	.699	.690	.682
44	.822	.811	.800	.789	.779	.768	.759	.749	.739	.730	.721	.712	.703	.695	.686
45	.825	.814	.803	.793	.782	.772	.762	.753	.743	.734	.725	.716	.708	.699	.691
46	.828	.817	.806	.796	.786	.776	.766	.757	.747	.738	.729	.720	.712	.704	.695
47	.831	.820	.810	.799	.789	.779	.770	.760	.751	.742	.733	.725	.716	.708	.700
48	.834	.823	.813	.803	.793	.783	.773	.764	.755	.746	.737	.728	.720	.712	.704
49	.836	.826	.816	.806	.796	.786	.777	.767	.758	.749	.741	.732	.724	.716	.708
50	.839	.829	.819	.809	.799	.789	.780	.771	.762	.753	.744	.736	.728	.720	.712

$m \setminus n$	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
1	.092	.089	.087	.084	.082	.080	.078	.076	.074	.072	.070	.069	.067	.066	.064
2	.140	.136	.132	.129	.125	.122	.119	.116	.113	.111	.108	.106	.103	.101	.099
3	.179	.174	.169	.165	.161	.157	.153	.149	.146	.142	.139	.136	.133	.131	.128
4	.213	.207	.202	.196	.192	.187	.183	.178	.174	.171	.167	.163	.160	.157	.154
5	.243	.236	.231	.225	.220	.214	.210	.205	.200	.196	.192	.188	.184	.181	.177
C	270	262	257	051	945	220	.234	220	.224	220	015	011	207	202	.199
6	.270	.263	.257	.251	.245	.239		.229		.220	.215	.211	.207	.203	
7 8	.295	.288 .311	.281	.275	.269	.263 .284	.257	.252	.246	.241	.236	.232	.227	.242	.219 .238
9	.318	.332	.304 .325	.297	.290	.304	.278	.272 .292	.267 .286	.262 .281	.257 $.275$.252 .270	.247	.242	.256
10	.340 .360	.352	.344	.318 .337	.311 .330	.323	.298		.304	.299	.273		.265 .283	.278	.273
10	.500	.552	.544	.551	.550	.525	.317	.310	.504	.299	.293	.288	.203	.210	.213
11	.379	.370	.362	.355	.348	.341	.334	.328	.322	.316	.310	.304	.299	.294	.289
12	.396	.388	.380	.372	.365	.358	.351	.344	.338	.332	.326	.320	.315	.309	.304
13	.413	.404	.396	.388	.381	.373	.366	.360	.353	.347	.341	.335	.329	.324	.319
14	.428	.420	.411	.403	.396	.388	.381	.374	.368	.361	.355	.349	.344	.338	.333
15	.443	.434	.426	.418	.410	.403	.395	.388	.382	.375	.369	.363	.357	.351	.346
16	.457	.448	.440	.432	.424	.416	.409	.402	.395	.388	.382	.376	.370	.364	.359
17	.470	.461	.453	.445	.437	.429	.422	.415	.408	.401	.395	.388	.382	.376	.371
18	.483	.474	.465	.457	.449	.441	.434	.427	.420	.413	.407	.400	.394	.388	.382
19	.495	.486	.477	.469	.461	.453	.446	.439	.432	.425	.418	.412	.406	.400	.394
20	.506	.497	.489	.480	.472	.465	.457	.450	.443	.436	.429	.423	.416	.410	.405
21	.517	.508	.499	.491	.483	.475	.468	.460	.453	.446	.440	.433	.427	.421	.415
22	.527	.518	.510	.502	.493	.486	.478	.471	.464	.457	.450	.443	.437	.431	.425
23	.537	.528	.520	.511	.503	.496	.488	.481	.474	.467	.460	.453	.447	.441	.435
24	.547	.538	.529	.521	.513	.505	.498	.490	.483	.476	.469	.463	.456	.450	.444
25	.556	.547	.539	.530	.522	.514	.507	.499	.492	.485	.478	.472	.465	.459	.453
26	.565	.556	.547	.539	.531	.523	.516	.508	.501	.494	.487	.481	.474	.468	.462
27	.573	.564	.556	.548	.540	.532	.524	.517	.510	.503	.496	.489	.483	.476	.470
28	.581	.572	.564	.556	.548	.540	.532	.525	.518	.511	.504	.497	.491	.485	.478
29	.589	.580	.572	.564	.556	.548	.540	.533	.526	.519	.512	.505	.499	.492	.486
30	.597	.588	.579	.571	.563	.555	.548	.541	.533	.526	.520	.513	.506	.500	.494
91	604	FOF	107	570	E 71	E62	E E E	E 10	E 41	E94	F97	F20	E14	E00	501
31 32	.604	.595 .602	.587 .594	.579 .586	.571 .578	.563 .570	.555 .563	.548 .555	.541 .548	.534 .541	.527 .534	.520 .528	.514 .521	.508 .515	.501 .509
33	.611 .617	.602	.601	.592	.585	.577	.569	.562	.555	.548	.541	.535	.521	.522	.516
34	.624	.615	.607	.592	.591	.584	.576	.569	.562	.555	.548	.541	.535	.522	.523
35	.630	.622	.614	.606	.598	.590	.583	.575	.568	.561	.555	.548	.542	.535	.529
36	.636	.628	.620	.612	.604	.596	.589	.582	.575	.568	.561	.554	.548	.542	.536
37	.642	.634	.626	.618	.610	.602	.595	.588	.581	.574	.567	.561	.554	.548	.542
38	.648	.639	.631	.624	.616	.608	.601	.594	.587	.580	.573	.567	.560	.554	.548
39	.653	.645	.637	.629	.622	.614	.607	.600	.593	.586	.579	.573	.566	.560	.554
40	.659	.650	.642	.635	.627	.620	.612	.605	.598	.591	.585	.578	.572	.566	.560
41	.664	.656	.648	.640	.632	.625	.618	.611	.604	.597	.590	.584	.578	.571	.565
42	.669	.661	.653	.645	.638	.630	.623	.616	.609	.602	.596	.589	.583	.577	.571
43	.674	.666	.658	.650	.643	.635	.628	.621	.614	.608	.601	.595	.588	.582	.576
44	.678	.670	.663	.655	.648	.640	.633	.626	.619	.613	.606	.600	.593	.587	.581
45	.683	.675	.667	.660	.652	.645	.638	.631	.624	.618	.611	.605	.598	.592	.586
46	.687	.680	.672	.664	.657	.650	.643	.636	.629	.622	.616	.610	.603	.597	.591
47	.692	.684	.676	.669	.662	.654	.647	.640	.634	.627	.621	.614	.608	.602	.596
48	.696	.688	.681	.673	.666	.659	.652	.645	.638	.632	.625	.619	.613	.607	.601
49	.700	.692	.685	.677	.670	.663	.656	.649	.643	.636	.630	.624	.617	.611	.605
50	.704	.696	.689	.682	.674	.667	.660	.654	.647	.641	.634	.628	.622	.616	.610

$m \setminus n$	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
1	.063	.062	.061	.059	.058	.057	.056	.055	.054	.053	.052	.051	.050	.050	.049
2	.097	.095	.093	.091	.090	.088	.086	.085	.083	.082	.081	.079	.078	.077	.075
3	.125	.123	.121	.118	.116	.114	.112	.110	.108	.106	.105	.103	.101	.100	.098
4	.151	.148	.145	.142	.140	.137	.135	.133	.130	.128	.126	.124	.122	.120	.118
5	.174	.171	.167	.164	.162	.159	.156	.153	.151	.148	.146	.144	.142	.139	.137
6	.195	.192	.188	.185	.182	.179	.176	.173	.170	.167	.165	.162	.160	.157	.155
7	.215	.211	.208	.204	.201	.197	.194	.191	.188	.185	.182	.179	.177	.174	.172
8	.234	.230	.226	.222	.218	.215	.211	.208	.205	.202	.199	.196	.193	.190	.187
9	.251	.247	.243	.239	.235	.231	.228	.224	.221	.217	.214	.211	.208	.205	.202
10	.268	.264	.259	.255	.251	.247	.243	.240	.236	.233	.229	.226	.223	.220	.217
11	.284	.279	.275	.271	.266	.262	.258	.254	.251	.247	.243	.240	.237	.233	.230
11 12	.204	.279	.273	.285	.281	.202	.238	.268	.265	.247	.243	.254	.250	.233	.230
13	.314	.309	.304	.299	.295	.290	.286	.282	.278	.274	.270	.266	.263	.259	.243
14	.327	.322	.317	.313	.308	.303	.299	.295	.273	.287	.283	.279	.275	.272	.268
15	.340	.335	.330	.325	.321	.316	.312	.307	.303	.299	.295	.291	.287	.283	.280
16	.353	.348	.343	.338	.333	.328	.324	.319	.315	.311	.307	.303	.299	.295	.291
17	.365	.360	.355	.350	.345	.340	.335	.331	.326	.322	.318	.314	.310	.306	.302
18	.377	.371	.366	.361	.356	.351	.346	.342	.337	.333	.329	.324	.320	.316	.313
19 20	.388	.382 .393	.377 .388	.372 .382	.367 .377	.362 .372	.357 .367	.352 .363	.348 .358	.343 .354	.339 .349	.335	.331 .341	.327	.323 .333
20	.599	.აჟა	.300	.362	.511	.312		.505	.556	.554	.549	.345	.541	.557	
21	.409	.404	.398	.393	.388	.382	.378	.373	.368	.363	.359	.355	.350	.346	.342
22	.419	.413	.408	.403	.397	.392	.387	.382	.378	.373	.368	.364	.360	.356	.351
23	.429	.423	.417	.412	.407	.402	.397	.392	.387	.382	.378	.373	.369	.365	.360
24	.438	.432	.427	.421	.416	.411	.406	.401	.396	.391	.387	.382	.378	.373	.369
25	.447	.441	.436	.430	.425	.420	.414	.410	.405	.400	.395	.391	.386	.382	.378
26	.456	.450	.444	.439	.433	.428	.423	.418	.413	.408	.404	.399	.395	.390	.386
27	.464	.458	.453	.447	.442	.436	.431	.426	.421	.417	.412	.407	.403	.398	.394
28	.472	.467	.461	.455	.450	.445	.439	.434	.429	.424	.420	.415	.411	.406	.402
29	.480	.474	.469	.463	.458	.452	.447	.442	.437	.432	.427	.423	.418	.414	.409
30	.488	.482	.476	.471	.465	.460	.455	.450	.445	.440	.435	.430	.426	.421	.417
31	.495	.490	.484	.478	.473	.467	.462	.457	.452	.447	.442	.437	.433	.428	.424
32	.503	.497	.491	.485	.480	.475	.469	.464	.459	.454	.449	.445	.440	.435	.431
33	.510	.504	.498	.492	.487	.481	.476	.471	.466	.461	.456	.451	.447	.442	.438
34	.516	.511	.505	.499	.494	.488	.483	.478	.473	.468	.463	.458	.454	.449	.444
35	.523	.517	.511	.506	.500	.495	.490	.484	.479	.474	.470	.465	.460	.456	.451
36	.530	.524	.518	.512	.507	.501	.496	.491	.486	.481	.476	.471	.466	.462	.457
37	.536	.530	.524	.519	.513	.508	.502	.497	.492	.487	.482	.477	.473	.468	.464
38	.542	.536	.530	.525	.519	.514	.508	.503	.498	.493	.488	.483	.479	.474	.470
39	.548	.542	.536	.531	.525	.520	.514	.509	.504	.499	.494	.489	.485	.480	.476
40	.554	.548	.542	.536	.531	.525	.520	.515	.510	.505	.500	.495	.491	.486	.481
41	.559	.553	.548	.542	.537	.531	.526	.521	.516	.511	.506	.501	.496	.492	.487
42	.565	.559	.553	.548	.542	.537	.531	.526	.521	.516	.511	.506	.502	.492	.493
43	.570	.564	.559	.553	.547	.542	.537	.532	.527	.522	.517	.512	.507	.503	.498
44	.575	.569	.564	.558	.553	.547	.542	.537	.532	.527	.522	.517	.512	.508	.503
45	.580	.575	.569	.563	.558	.553	.547	.542	.537	.532	.527	.522	.518	.513	.508
$\frac{46}{47}$.585 .590	.580 .584	.574	.568	.563	.558 .562	.552	.547	.542	.537 .542	.532 .537	.527 .532	.523 .528	.518	.514 .518
47	.595	.584	.579 .584	.573 .578	.568 .573	.567	.557 .562	.552 .557	.547 .552	.542	.542	.532	.533	.523	.523
49	.600	.594	.588	.583	.577	.572	.567	.562	.557	.552	.547	.542	.537	.533	.528
50	.604	.598	.593	.587	.582	.577	.571	.566	.561	.556	.551	.547	.542	.537	.533
50	.004	.590	.ჟყა	.501	.002	.511	.011	.500	.501	.550	.001	.547	.042	.557	.თაა

$m \setminus n$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	.975	.842	.708	.602	.522	.459	.410	.369	.336	.308	.285	.265	.247	.232	.218
2	.987	.906	.806	.716	.641	.579	.527	.482	.445	.413	.385	.360	.339	.319	.302
3	.992	.932	.853	.777	.710	.651	.600	.556	.518	.484	.454	.428	.405	.383	.364
4	.994	.947	.882	.816	.755	.701	.652	.610	.572	.538	.508	.481	.456	.434	.414
5	.995	.957	.901	.843	.788	.738	.692	.651	.614	.581	.551	.524	.499	.476	.456
6	.996	.963	.915	.863	.813	.766	.723	.684	.649	.616	.587	.560	.535	.512	.491
7	.996	.968	.925	.878	.833	.789	.749	.711	.677	.646	.617	.590	.566	.543	.522
8	.997	.972	.933	.891	.848	.808	.770	.734	.701	.671	.643	.616	.592	.570	.549
9	.997	.975	.940	.901	.861	.823	.787	.753	.722	.692	.665	.639	.616	.593	.573
10	.997	.977	.945	.909	.872	.837	.802	.770	.740	.711	.685	.660	.636	.615	.594
11	.998	.979	.950	.916	.882	.848	.816	.785	.756	.728	.702	.678	.655	.634	.613
12	.998	.981	.953	.922	.890	.858	.827	.797	.769	.743	.718	.694	.672	.651	.631
13	.998	.982	.957	.927	.897	.867	.837	.809	.782	.756	.732	.709	.687	.666	.647
14	.998	.983	.960	.932	.903	.874	.846	.819	.793	.768	.744	.722	.701	.681	.661
15	.998	.984	.962	.936	.909	.881	.854	.828	.803	.779	.756	.734	.713	.694	.675
16	.998	.985	.964	.939	.913	.887	.861	.836	.812	.789	.766	.745	.725	.706	.687
17	.999	.986	.966	.943	.918	.893	.868	.844	.820	.798	.776	.755	.736	.717	.698
18	.999	.987	.968	.946	.922	.898	.874	.851	.828	.806	.785	.765	.745	.727	.709
19	.999	.988	.970	.948	.925	.902	.879	.857	.835	.814	.793	.773	.755	.736	.719
20	.999	.988	.971	.950	.929	.906	.884	.862	.841	.821	.801	.782	.763	.745	.728
21	.999	.989	.972	.953	.932	.910	.889	.868	.847	.827	.808	.789	.771	.754	.737
22	.999	.989	.973	.955	.934	.914	.893	.873	.853	.833	.814	.796	.778	.761	.745
23	.999	.990	.975	.956	.937	.917	.897	.877	.858	.839	.820	.803	.785	.769	.752
24	.999	.990	.976	.958	.939	.920	.901	.881	.863	.844	.826	.809	.792	.775	.760
25	.999	.991	.976	.960	.942	.923	.904	.885	.867	.849	.831	.814	.798	.782	.766
26	.999	.991	.977	.961	.944	.925	.907	.889	.871	.854	.837	.820	.804	.788	.773
27	.999	.991	.978	.962	.945	.928	.910	.893	.875	.858	.841	.825	.809	.794	.779
28	.999	.992	.979	.964	.947	.930	.913	.896	.879	.862	.846	.830	.814	.799	.784
29	.999	.992	.980	.965	.949	.932	.916	.899	.882	.866	.850	.834	.819	.804	.790
30	.999	.992	.980	.966	.950	.934	.918	.902	.886	.870	.854	.839	.824	.809	.795
												.003			
31	.999	.992	.981	.967	.952	.936	.920	.904	.889	.873	.858	.843	.828	.814	.800
32	.999	.993	.981	.968	.953	.938	.923	.907	.892	.876	.861	.847	.832	.818	.805
33	.999	.993	.982	.969	.955	.940	.925	.909	.894	.879	.865	.850	.836	.823	.809
34	.999	.993	.982	.970	.956	.941	.927	.912	.897	.882	.868	.854	.840	.827	.813
35	.999	.993	.983	.971	.957	.943	.928	.914	.900	.885	.871	.857	.844	.830	.817
36	.999	.993	.983	.971	.958	.944	.930	.916	.902	.888	.874	.861	.847	.834	.821
37	.999	.994	.984	.972	.959	.946	.932	.918	.904	.891	.877	.864	.851	.838	.825
38	.999	.994	.984	.973	.960	.947	.934	.920	.906	.893	.880	.867	.854	.841	.829
39	.999	.994	.985	.973	.961	.948	.935	.922	.909	.895	.882	.869	.857	.844	.832
40	.999	.994	.985	.974	.962	.949	.937	.924	.911	.898	.885	.872	.860	.847	.835
41	.999	.994	.985	.975	.963	.951	.938	.925	.912	.900	.887	.875	.862	.850	.839
42	.999	.994	.986	.975	.964	.952	.939	.927	.914	.902	.889	.877	.865	.853	.842
43	.999	.994	.986	.976	.965	.953	.941	.928	.916	.904	.892	.880	.868	.856	.845
44	.999	.995	.986	.976	.965	.954	.942	.930	.918	.904	.894	.882	.870	.859	.847
45	.999	.995	.987	.977	.966	.954	.943	.931	.919	.907	.896	.884	.873	.861	.850
46	.999	.995	.987	.977	.967	.956	.944	.933	.921	.909	.898	.886	.875	.864	.853
47	.999	.995	.987	.978	.967	.956	.945	.934	.922	.911	.900	.888	.877	.866	.855
48	.999	.995	.987	.978	.968	.957	.946	.935	.924	.913	.901	.890	.879	.868	.858
49	.999	.995	.988	.979	.969	.958	.947	.936	.925	.914	.903	.892	.881	.871	.860
50	.999	.995	.988	.979	.969	.959	.948	.937	.927	.916	.905	.894	.883	.873	.862

$m \setminus n$	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
1	.206	.195	.185	.176	.168	.161	.154	.148	.142	.137	.132	.128	.123	.119	.116
2	.287	.273	.260	.249	.238	.228	.219	.211	.204	.196	.190	.183	.178	.172	.167
3	.347	.331	.317	.304	.292	.280	.270	.260	.251	.243	.235	.228	.221	.214	.208
4	.396	.379	.363	.349	.336	.324	.312	.302	.292	.282	.274	.265	.258	.250	.243
5	.437	.419	.403	.388	.374	.361	.349	.337	.327	.317	.307	.298	.290	.282	.275
6	.472	.454	.437	.422	.407	.394	.381	.369	.358	.347	.337	.328	.319	.311	.303
7	.502	.484	.467	.451	.436	.423	.410	.397	.386	.375	.364	.355	.345	.336	.328
8	.529	.511	.494	.478	.463	.449	.435	.423	.411	.400	.389	.379	.369	.360	.352
9	.553	.535	.518	.502	.487	.472	.459	.446	.434	.423	.412	.401	.392	.382	.373
10	.575	.557	.540	.524	.508	.494	.480	.467	.455	.444	.433	.422	.412	.402	.393
11	.594	.576	.559	.543	.528	.514	.500	.487	.475	.463	.452	.441	.431	.421	.412
12	.612	.594	.577	.561	.546	.532	.518	.505	.493	.481	.470	.459	.449	.439	.429
13	.628	.611	.594	.578	.563	.549	.535	.522	.510	.498	.487	.476	.465	.455	.446
14	.643	.626	.609	.594	.579	.564	.551	.538	.525	.514	.502	.491	.481	.471	.461
15	.657	.640	.623	.608	.593	.579	.565	.552	.540	.528	.517	.506	.495	.485	.476
16	.669	.653	.636	.621	.606	.592	.579	.566	.554	.542	.531	.520	.509	.499	.490
17	.681	.665	.649	.634	.619	.605	.592	.579	.567	.555	.544	.533	.522	.512	.502
18	.692	.676	.660	.645	.631	.617	.604	.591	.579	.567	.556	.545	.535	.525	.515
19	.702	.686	.671	.656	.642	.628	.615	.603	.590	.579	.568	.557	.546	.536	.526
20	.712	.696	.681	.666	.652	.639	.626	.613	.601	.590	.578	.568	.557	.547	.538
21	.721	.705	.690	.676	.662	.649	.636	.623	.612	.600	.589	.578	.568	.558	.548
22	.729	.714	.699	.685	.671	.658	.645	.633	.621	.610	.599	.588	.578	.568	.558
23	.737	.722	.707	.693	.680	.667	.654	.642	.631	.619	.608	.598	.587	.578	.568
24	.744	.730	.715	.702	.688	.675	.663	.651	.639	.628	.617	.607	.597	.587	.577
25	.751	.737	.723	.709	.696	.683	.671	.659	.648	.637	.626	.615	.605	.596	.586
26	.758	.744	.730	.717	.704	.691	.679	.667	.656	.645	.634	.624	.614	.604	.594
27	.764	.750	.737	.723	.711	.698	.686	.675	.663	.652	.642	.632	.622	.612	.603
28	.770	.756	.743	.730	.717	.705	.693	.682	.671	.660	.649	.639	.629	.620	.610
29	.776	.762	.749	.736	.724	.712	.700	.689	.678	.667	.657	.646	.637	.627	.618
30	.781	.768	.755	.742	.730	.718	.707	.695	.684	.674	.663	.653	.644	.634	.625
31	.786	.773	.760	.748	.736	.724	.713	.702	.691	.680	.670	.660	.650	.641	.632
32	.791	.778	.766	.753	.742	.730	.719	.708	.697	.687	.676	.667	.657	.648	.639
33	.796	.783	.771	.759	.747	.735	.724	.713	.703	.693	.683	.673	.663	.654	.645
34	.801	.788	.776	.764	.752	.741	.730	.719	.709	.698	.688	.679	.669	.660	.651
35	.805	.792	.780	.769	.757	.746	.735	.724	.714	.704	.694	.685	.675	.666	.657
36	.809	.797	.785	.773	.762	.751	.740	.730	.719	.709	.700	.690	.681	.672	.663
37	.813	.801	.789	.778	.766	.756	.745	.735	.724	.714	.705	.695	.686	.677	.669
38	.817	.805	.793	.782	.771	.760	.750	.739	.729	.719	.710	.701	.692	.683	.674
39	.820	.809	.797	.786	.775	.764	.754	.744	.734	.724	.715	.706	.697	.688	.679
40	.824	.812	.801	.790	.779	.769	.758	.748	.739	.729	.720	.710	.702	.693	.684
41	.827	.816	.805	.794	.783	.773	.763	.753	.743	.733	.724	.715	.706	.698	.689
42	.830	.819	.808	.797	.787	.777	.767	.757	.747	.738	.729	.720	.711	.702	.694
43	.833	.822	.812	.801	.791	.780	.771	.761	.751	.742	.733	.724	.715	.707	.698
44	.836	.825	.815	.804	.794	.784	.774	.765	.755	.746	.737	.728	.720	.711	.703
45	.839	.829	.818	.808	.798	.788	.778	.768	.759	.750	.741	.732	.724	.715	.707
46	.842	.831	.821	.811	.801	.791	.782	.772	.763	.754	.745	.736	.728	.720	.711
47	.845	.834	.824	.814	.804	.794	.785	.776	.767	.758	.749	.740	.732	.724	.716
48	.847	.837	.827	.817	.807	.798	.788	.779	.770	.761	.753	.744	.736	.728	.720
49	.850	.840	.830	.820	.810	.801	.791	.782	.773	.765	.756	.748	.739	.731	.723
50	.852	.842	.832	.823	.813	.804	.795	.786	.777	.768	.760	.751	.743	.735	.727

$m \setminus n$	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
1	.112	.109	.106	.103	.100	.097	.095	.093	.090	.088	.086	.084	.082	.080	.079
2	.162	.158	.153	.149	.145	.142	.138	.135	.132	.129	.126	.123	.120	.118	.115
3	.202	.197	.192	.187	.182	.177	.173	.169	.165	.162	.158	.155	.151	.148	.145
4	.237	.231	.225	.219	.214	.209	.204	.199	.195	.191	.187	.183	.179	.175	.172
5	.267	.261	.254	.248	.242	.237	.231	.226	.221	.217	.212	.208	.204	.200	.196
6	.295	.288	.281	.274	.268	.262	.256	.251	.246	.241	.236	.231	.227	.222	.218
7	.320	.313	.305	.298	.292	.285	.279	.274	.268	.263	.257	.252	.248	.243	.239
8	.343	.335	.328	.321	.314	.307	.301	.295	.289	.283	.278	.272	.267	.263	.258
9	.365	.356	.349	.341	.334	.327	.321	.314	.308	.302	.297	.291	.286	.281	.276
10	.385	.376	.368	.360	.353	.346	.339	.333	.326	.320	.314	.309	.303	.298	.293
11	.403	.395	.386	.378	.371	.364	.357	.350	.343	.337	.331	.325	.320	.314	.309
12	.420	.412	.403	.395	.388	.380	.373	.366	.360	.353	.347	.341	.335	.330	.324
13	.437	.428	.419	.411	.403	.396	.389	.382	.375	.368	.362	.356	.350	.344	.339
14	.452	.443	.435	.426	.418	.411	.403	.396	.389	.383	.376	.370	.364	.358	.353
15	.466	.458	.449	.441	.433	.425	.417	.410	.403	.397	.390	.384	.378	.372	.366
16	.480	.471	.463	.454	.446	.438	.431	.423	.416	.410	.403	.397	.390	.384	.379
17	.493	.484	.475	.467	.459	.451	.443	.436	.429	.422	.415	.409	.403	.397	.391
18	.505	.496	.488	.479	.471	.463	.456	.448	.441	.434	.427	.421	.414	.408	.402
19	.517	.508	.499	.491	.483	.475	.467	.460	.452	.445	.439	.432	.426	.419	.413
20	.528	.519	.510	.502	.494	.486	.478	.471	.463	.456	.450	.443	.437	.430	.424
0.1	F20	F20	F01	F10	F0.4	100	100	401	474	107	100	450	4.47	4.41	494
21	.539	.530	.521	.513	.504	.496	.489	.481	.474	.467	.460	.453	.447	.441	.434
22 23	.549	.540	.531	.523	.515	.507	.499	.491	.484	.477	.470	.463	.457	.451	.444
23	.559 .568	.550 .559	.541 .550	.532	.524 .534	.516 .526	.509	.501	.494 .503	.487 .496	.480 .489	.473	.466	.460 .469	.454 .463
25	.577	.568	.559	.542 .551	.543	.535	.518 .527	.510 .519	.512	.505	.498	.482 .491	.476 .485	.478	.403
20	.511	.000	.003	.001	.040	.000	.021	.013	.012	.000	.430	.431	.400	.410	.412
26	.585	.576	.568	.559	.551	.543	.536	.528	.521	.514	.507	.500	.493	.487	.481
27	.593	.585	.576	.568	.559	.552	.544	.536	.529	.522	.515	.508	.502	.495	.489
28	.601	.592	.584	.576	.567	.560	.552	.544	.537	.530	.523	.516	.510	.503	.497
29	.609	.600	.592	.583	.575	.567	.560	.552	.545	.538	.531	.524	.517	.511	.505
30	.616	.607	.599	.591	.583	.575	.567	.560	.552	.545	.538	.532	.525	.519	.512
31	.623	.614	.606	.598	.590	.582	.574	.567	.560	.553	.546	.539	.532	.526	.520
32	.630	.621	.613	.605	.597	.589	.581	.574	.567	.560	.553	.546	.539	.533	.527
33	.636	.628	.619	.611	.603	.596	.588	.581	.573	.566	.559	.553	.546	.540	.534
34	.642	.634	.626	.618	.610	.602	.594	.587	.580	.573	.566	.559	.553	.546	.540
35	.649	.640	.632	.624	.616	.608	.601	.593	.586	.579	.573	.566	.559	.553	.547
36	.654	.646	.638	.630	.622	.614	.607	.600	.593	.586	.579	.572	.566	.559	.553
37	.660	.652	.644	.636	.628	.620	.613	.606	.598	.592	.585	.578	.572	.565	.559
38	.665	.657	.649	.641	.633	.626	.619	.611	.604	.597	.591	.584	.578	.571	.565
39	.671	.663	.655	.647	.639	.631	.624	.617	.610	.603	.596	.590	.583	.577	.571
40	.676	.668	.660	.652	.644	.637	.630	.622	.615	.609	.602	.595	.589	.583	.576
41	.681	.673	.665	.657	.649	.642	.635	.628	.621	.614	.607	.601	.594	.588	.582
42	.686	.678	.670	.662	.655	.647	.640	.633	.626	.619	.613	.606	.600	.593	.587
43	.690	.682	.675	.667	.659	.652	.645	.638	.631	.624	.618	.611	.605	.599	.592
44	.695	.687	.679	.672	.664	.657	.650	.643	.636	.629	.623	.616	.610	.604	.598
45	.699	.691	.684	.676	.669	.662	.654	.647	.641	.634	.627	.621	.615	.609	.602
46	.704	.696	.688	.681	.673	.666	.659	.652	.645	.639	.632	.626	.619	.613	.607
47	.708	.700	.692	.685	.678	.670	.663	.657	.650	.643	.637	.630	.624	.618	.612
48	.712	.704	.696	.689	.682	.675	.668	.661	.654	.648	.641	.635	.629	.623	.617
49	.716	.708	.701	.693	.686	.679	.672	.665	.659	.652	.646	.639	.633	.627	.621
50	.719	.712	.704	.697	.690	.683	.676	.669	.663	.656	.650	.644	.637	.631	.625

$m \setminus n$	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
1	.077	.075	.074	.073	.071	.070	.068	.067	.066	.065	.064	.063	.062	.061	.060
2	.113	.111	.109	.106	.104	.103	.101	.099	.097	.096	.094	.092	.091	.089	.088
3	.143	.140	.137	.135	.132	.130	.127	.125	.123	.121	.119	.117	.115	.113	.112
4	.169	.165	.162	.159	.157	.154	.151	.149	.146	.144	.141	.139	.137	.135	.133
5	.192	.189	.185	.182	.179	.176	.173	.170	.167	.165	.162	.159	.157	.155	.152
c	914	210	207	202	200	106	109	100	107	101	101	170	176	179	170
6 7	.214 .234	.210 .230	.207 .226	.203 .222	.200 .219	.196 .215	.193 .212	.190 .208	.187	.184	.181	.178 .196	.176 .193	.173	.170 .187
8	.253	.249	.245	.241	.219	.213	.212	.226	.203	.202	.199	.212	.209	.206	.203
9	.253	.249	.243	.258	.254	.250	.246	.242	.239	.219	.232	.212	.209	.222	.203
10	.288	.283	.279	.274	.270	.266	.262	.258	.254	.250	.232	.243	.240	.236	.213
10				.214	.210	.200			.204	.200	.211	.240	.240	.250	
11	.304	.299	.294	.290	.285	.281	.277	.273	.269	.265	.261	.257	.254	.250	.247
12	.319	.314	.309	.304	.300	.295	.291	.287	.283	.279	.275	.271	.267	.264	.260
13	.334	.328	.323	.318	.314	.309	.305	.300	.296	.292	.288	.284	.280	.277	.273
14	.347	.342	.337	.332	.327	.322	.318	.313	.309	.305	.301	.297	.293	.289	.285
15	.360	.355	.350	.345	.340	.335	.330	.326	.321	.317	.313	.309	.305	.301	.297
16	.373	.367	.362	.357	.352	.347	.342	.338	.333	.329	.324	.320	.316	.312	.308
17	.385	.379	.374	.369	.364	.359	.354	.349	.344	.340	.336	.331	.327	.323	.319
18	.397	.391	.385	.380	.375	.370	.365	.360	.355	.351	.346	.342	.338	.334	.330
19	.408	.402	.396	.391	.386	.381	.376	.371	.366	.361	.357	.353	.348	.344	.340
20	.418	.413	.407	.401	.396	.391	.386	.381	.376	.372	.367	.363	.358	.354	.350
0.1	400	400	417	410	100	401	200	201	900	901	077	270	9.00	964	250
21	.429	.423	.417	.412	.406	.401	.396	.391	.386	.381	.377	.372	.368	.364	.359
22	.438	.433	.427	.421	.416	.411	.406	.401	.396	.391	.386	.382	.377	.373	.369
23 24	.448 .457	.442 .451	.436	.431	.425 .434	.420 .429	.415 .424	.410	.405 .414	.400 .409	.395 .404	.391	.386 .395	.382 .391	.378 .386
25	.466	.460	.445 .454	.440 .449	.443	.429	.433	.419 .427	.414	.418	.413	.408	.404	.399	.395
2.0	.400	.400	.404	.449	.445	.450	.455	.421	.422	.410	.415	.400	.404	.599	.595
26	.475	.469	.463	.457	.452	.446	.441	.436	.431	.426	.421	.416	.412	.407	.403
27	.483	.477	.471	.465	.460	.454	.449	.444	.439	.434	.429	.424	.420	.415	.411
28	.491	.485	.479	.473	.468	.462	.457	.452	.447	.442	.437	.432	.428	.423	.419
29	.499	.493	.487	.481	.476	.470	.465	.460	.454	.449	.445	.440	.435	.431	.426
30	.506	.500	.494	.489	.483	.478	.472	.467	.462	.457	.452	.447	.443	.438	.433
31	.514	.508	.502	.496	.490	.485	.480	.474	.469	.464	.459	.454	.450	.445	.441
32	.521	.515	.509	.503	.497	.492	.487	.481	.476	.471	.466	.461	.457	.452	.447
33	.527	.521	.516	.510	.504	.499	.493	.488	.483	.478	.473	.468	.463	.459	.454
34	.534	.528	.522	.517	.511	.505	.500	.495	.490	.485	.480	.475	.470	.465	.461
35	.541	.535	.529	.523	.517	.512	.507	.501	.496	.491	.486	.481	.477	.472	.467
36	.547	.541	.535	.529	.524	.518	.513	.508	.503	.497	.492	.488	.483	.478	.474
37	.553	.547	.541	.536	.530	.524	.519	.514	.509	.504	.499	.494	.489	.484	.480
38	.559	.553	.547	.542	.536	.530	.525	.520	.515	.510	.505	.500	.495	.490	.486
39	.565	.559	.553	.547	.542	.536	.531	.526	.521	.515	.510	.506	.501	.496	.492
40	.570	.565	.559	.553	.547	.542	.537	.531	.526	.521	.516	.511	.507	.502	.497
41	.576	.570	.564	.559	.553	.548	.542	.537	.532	.527	.522	.517	.512	.507	.503
42	.581	.575	.570	.564	.558	.553	.548	.542	.537	.532	.527	.522	.518	.513	.508
43	.586	.581	.575	.569	.564	.558	.553	.548	.543	.537	.533	.528	.523	.518	.514
44 45	.592 .597	.586 .591	.580 .585	.574 .579	.569 .574	.563 .568	.558 .563	.553 .558	.548 .553	.543 .548	.538 .543	.533 .538	.528 .533	.523 .528	.519 .524
40	.081		.505	.018	.014	.506	.505	.556	.000		.040	.556	.000		
46	.601	.596	.590	.584	.579	.573	.568	.563	.558	.553	.548	.543	.538	.533	.529
47	.606	.600	.595	.589	.584	.578	.573	.568	.563	.558	.553	.548	.543	.538	.534
48	.611	.605	.599	.594	.588	.583	.578	.572	.567	.562	.557	.553	.548	.543	.539
49	.615	.609	.604	.598	.593	.587	.582	.577	.572	.567	.562	.557	.552	.548	.543
50	.620	.614	.608	.603	.597	.592	.587	.582	.576	.572	.567	.562	.557	.552	.548

$m \setminus n$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	.990	.900	.785	.684	.602	.536	.482	.438	.401	.369	.342	.319	.298	.280	.264
2	.995	.941	.859	.778	.706	.643	.590	.544	.504	.470	.440	.413	.389	.368	.349
3	.997	.958	.894	.827	.764	.707	.656	.612	.572	.537	.506	.478	.453	.430	.410
4	.997	.967	.915	.858	.802	.750	.703	.660	.622	.588	.557	.529	.503	.480	.458
5	.998	.973	.929	.879	.829	.782	.738	.698	.661	.627	.597	.569	.543	.520	.498
C	000	077	000	005	050	000	705	707	coo	cco	COO	COD		FF 4	F90
6	.998	.977	.939	.895	.850	.806	.765	.727	.692	.660	.630	.603	.577	.554	.532
7	.999	.980 .983	.947	.907	.866	.825	.787	.751	.718	.687	.658	.631	.606	.583	.561
8	.999		.952	.916	.879	.841	.805	.771	.739	.709	.681	.655	.631	.608	.587
9	.999	.984	.957	.924	.889	.854	.821	.788	.758	.729	.702	.677	.653	.630	.609
10	.999	.986	.961	.931	.898	.865	.834	.803	.774	.746	.720	.695	.672	.650	.630
11	.999	.987	.964	.936	.906	.875	.845	.816	.788	.761	.736	.712	.689	.668	.648
12	.999	.988	.967	.941	.912	.883	.855	.827	.800	.774	.750	.727	.705	.684	.664
13	.999	.989	.969	.945	.918	.890	.863	.837	.811	.786	.763	.740	.719	.698	.679
14	.999	.990	.971	.948	.923	.897	.871	.845	.821	.797	.774	.752	.731	.711	.692
15	.999	.990	.973	.951	.927	.902	.878	.853	.829	.806	.784	.763	.743	.723	.705
16	.999	.991	.975	.954	.931	.908	.884	.860	.837	.815	.794	.773	.753	.734	.716
17	.999	.992	.976	.956	.935	.912	.889	.867	.845	.823	.802	.782	.763	.744	.727
18	.999	.992	.977	.959	.938	.916	.894	.873	.851	.831	.810	.791	.772	.754	.736
19	.999	.992	.978	.961	.941	.920	.899	.878	.857	.837	.818	.799	.780	.763	.746
20	.999	.993	.979	.962	.943	.923	.903	.883	.863	.843	.824	.806	.788	.771	.754
				.502								.000		.111	
21	1.00	.993	.980	.964	.946	.927	.907	.888	.868	.849	.831	.813	.795	.778	.762
22	1.00	.993	.981	.966	.948	.930	.911	.892	.873	.855	.837	.819	.802	.785	.769
23	1.00	.994	.982	.967	.950	.932	.914	.896	.877	.860	.842	.825	.808	.792	.776
24	1.00	.994	.983	.968	.952	.935	.917	.899	.882	.864	.847	.830	.814	.798	.783
25	1.00	.994	.983	.969	.954	.937	.920	.903	.886	.869	.852	.836	.820	.804	.789
26	1.00	.994	.984	.970	.955	.939	.923	.906	.889	.873	.856	.840	.825	.810	.795
27	1.00	.995	.985	.972	.957	.941	.925	.909	.893	.876	.861	.845	.830	.815	.800
28	1.00	.995	.985	.972	.958	.943	.927	.912	.896	.880	.865	.849	.834	.820	.806
29	1.00	.995	.986	.973	.960	.945	.930	.914	.899	.883	.868	.853	.839	.825	.811
30	1.00	.995	.986	.974	.961	.946	.932	.917	.902	.887	.872	.857	.843	.829	.815
31	1.00	.995	.986	.975	.962	.948	.934	.919	.904	.890	.875	.861	.847	.833	.820
32	1.00	.995	.987	.976	.963	.949	.935	.921	.907	.893	.878	.864	.851	.837	.824
33	1.00	.996	.987	.976	.964	.951	.937	.923	.909	.895	.881	.868	.854	.841	.828
34	1.00	.996	.988	.977	.965	.952	.939	.925	.912	.898	.884	.871	.858	.845	.832
35	1.00	.996	.988	.978	.966	.953	.940	.927	.914	.900	.887	.874	.861	.848	.836
36	1.00	.996	.988	.978	.967	.955	.942	.929	.916	.903	.890	.877	.864	.852	.839
37	1.00	.996	.989	.979	.968	.956	.943	.931	.918	.905	.892	.880	.867	.855	.843
38	1.00	.996	.989	.979	.969	.957	.945	.932	.920	.907	.895	.882	.870	.858	.846
39	1.00	.996	.989	.980	.969	.958	.946	.934	.921	.909	.897	.885	.873	.861	.849
40	1.00	.996	.989	.980	.970	.959	.947	.935	.923	.911	.899	.887	.875	.864	.852
41	1.00	.996	.990	.981	.971	.960	.948	.937	.925	.913	.901	.889	.878	.866	.855
42	1.00	.997	.990	.981	.971	.961	.949	.938	.926	.915	.903	.892	.880	.869	.858
43	1.00	.997	.990	.982	.972	.961	.951	.939	.928	.917	.905	.894	.883	.871	.860
43	1.00	.997	.990	.982	.973	.962	.952	.941	.929	.918	.907	.896	.885	.874	.863
45	1.00	.997	.991	.982	.973	.963	.953	.941	.931	.920	.909	.898	.887	.876	.865
	1.00		.001	.502			.555	.542		.520	.505	.090	.001	.010	.000
46	1.00	.997	.991	.983	.974	.964	.954	.943	.932	.921	.910	.900	.889	.878	.868
47	1.00	.997	.991	.983	.974	.965	.954	.944	.933	.923	.912	.901	.891	.880	.870
48	1.00	.997	.991	.984	.975	.965	.955	.945	.935	.924	.914	.903	.893	.883	.872
49	1.00	.997	.991	.984	.975	.966	.956	.946	.936	.926	.915	.905	.895	.885	.875
50	1.00	.997	.991	.984	.976	.967	.957	.947	.937	.927	.917	.907	.896	.886	.877

$m \setminus n$	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
1	.250	.237	.226	.215	.206	.197	.189	.181	.175	.168	.162	.157	.152	.147	.142
2	.332	.316	.302	.289	.277	.266	.256	.246	.237	.229	.222	.215	.208	.202	.196
3	.391	.374	.358	.344	.330	.318	.307	.296	.286	.277	.268	.260	.252	.245	.238
4	.439	.421	.404	.389	.374	.361	.349	.337	.326	.316	.307	.298	.289	.281	.273
5	.478	.460	.443	.427	.412	.398	.385	.373	.361	.350	.340	.331	.322	.313	.305
6	.512	.493	.476	.460	.444	.430	.417	.404	.392	.381	.370	.360	.351	.342	.333
7	.541	.522	.505	.488	.473	.458	.445	.432	.420	.408	.397	.387	.377	.367	.358
8	.567	.548	.531	.514	.498	.484	.470	.457	.444	.432	.421	.411	.401	.391	.382
9	.590	.571	.554	.537	.521	.507	.493	.479	.467	.455	.443	.433	.422	.412	.403
10	.610	.592	.574	.558	.542	.527	.513	.500	.487	.475	.464	.453	.442	.432	.423
11	.628	.610	.593	.577	.561	.546	.532	.519	.506	.494	.483	.472	.461	.451	.441
12	.645	.627	.610	.594	.579	.564	.552	.537	.524	.512	.500	.489	.478	.468	.458
13	.660	.643	.626	.610	.595	.580	.566	.553	.540	.528	.516	.505	.494	.484	.474
14	.674	.657	.640	.624	.609	.595	.581	.568	.555	.543	.531	.520	.510	.499	.489
15	.687	.670	.654	.638	.623	.609	.595	.582	.569	.557	.546	.534	.524	.513	.504
16	.699	.682	.666	.650	.636	.622 .634	.608	.595	.583	.570	.559	.548	.537	.527 .539	.517 .529
17 18	.710 .720	.693 .704	.677 .688	.662 .673	.648 .659	.645	.620 .632	.607 .619	.595 .607	.583 .595	.571 .583	.560 .572	.550 .562	.551	.541
19	.729	.704	.698	.683	.669	.655	.642	.630	.617	.606	.594	.583	.573	.563	.553
20	.738	.722	.707	.693	.679	.665	.652	.640	.628	.616	.605	.594	.583	.573	.563
21	.746	.731	.716	.702	.688	.675	.662	.650	.638	.626	.615	.604	.594	.583	.574
22	.754	.739	.724	.710	.697	.684	.671	.659	.647	.635	.624	.614	.603	.593	.583
23	.761	.746	.732	.718	.705	.692	.680	.667	.656	.644	.633	.623	.612	.602	.593
24	.768	.754	.739	.726	.713	.700	.688	.676	.664	.653	.642	.631	.621	.611	.602
25	.774	.760	.746	.733	.720	.708	.695	.683	.672	.661	.650	.640	.629	.620	.610
26	.781	.767	.753	.740	.727	.715	.703	.691	.680	.669	.658	.648	.637	.628	.618
27	.786	.773	.759	.746	.734	.721	.710	.698	.687	.676	.665	.655	.645	.635	.626
28	.792	.778	.765	.752	.740	.728	.716	.705	.694	.683	.672	.662	.652	.643	.633
29	.797	.784	.771	.758	.746	.734	.723	.711	.700	.690	.679	.669	.659	.650	.641
30	.802	.789	.776	.764	.752	.740	.729	.718	.707	.696	.686	.676	.666	.657	.647
31	.807	.794	.781	.769	.757	.746	.734	.723	.713	.702	.692	.682	.673	.663	.654
32	.811	.799	.786	.774	.763	.751	.740	.729	.719	.708	.698	.688	.679	.669	.660
33	.815	.803	.791	.779	.768	.756	.745	.735	.724	.714	.704	.694	.685	.676	.667
34	.820	.807	.795	.784	.772	.761	.750	.740	.729	.719	.710	.700	.691	.681	.672
35	.823	.811	.800	.788	.777	.766	.755	.745	.735	.725	.715	.705	.696	.687	.678
36	.827	.815	.804	.793	.781	.771	.760	.750	.740	.730	.720	.711	.701	.692	.684
37	.831	.819	.808	.797	.786	.775	.765	.754	.744	.735	.725	.716	.707	.698	.689
38	.834	.823	.812	.801	.790	.779	.769	.759	.749	.739	.730	.721	.712	.703	.694
39	.838	.826	.815	.804	.794	.783	.773	.763	.753	.744	.734	.725	.716	.708	.699
40	.841	.830	.819	.808	.798	.787	.777	.767	.758	.748	.739	.730	.721	.712	.704
41	.844	.833	.822	.812	.801	.791	.781	.771	.762	.752	.743	.734	.726	.717	.709
42	.847	.836	.825	.815	.805	.795	.785	.775	.766	.757	.747	.739	.730	.721	.713
43	.850	.839	.828	.818	.808	.798	.788	.779	.770	.760	.752	.743	.734	.726	.717
44	.852	.842	.831	.821	.811	.802	.792	.783	.773	.764	.755	.747	.738	.730	.722
45	.855	.845	.834	.824	.815	.805	.795	.786	.777	.768	.759	.751	.742	.734	.726
46	.857	.847	.837	.827	.818	.808	.799	.790	.780	.772	.763	.754	.746	.738	.730
47	.860	.850	.840	.830	.821	.811	.802	.793	.784	.775	.766	.758	.750	.742	.734
48	.862	.852	.843	.833	.823	.814	.805	.796	.787	.778	.770	.762	.753	.745	.737
49	.865	.855	.845	.836	.826	.817	.808	.799	.790	.782	.773	.765	.757	.749	.741
50	.867	.857	.848	.838	.829	.820	.811	.802	.793	.785	.777	.768	.760	.752	.745

$m \setminus n$	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
1	.138	.134	.130	.127	.123	.120	.117	.114	.111	.109	.106	.104	.102	.099	.097
2	.190	.185	.180	.175	.171	.166	.162	.158	.155	.151	.148	.145	.142	.139	.136
3	.231	.225	.219	.214	.208	.203	.199	.194	.190	.185	.181	.178	.174	.170	.167
4	.266	.259	.253	.247	.241	.235	.230	.225	.220	.215	.211	.206	.202	.198	.194
5	.297	.290	.283	.276	.270	.264	.258	.252	.247	.242	.237	.232	.228	.223	.219
6	.325	.317	.310	.303	.296	.289	.283	.277	.271	.266	.261	.256	.251	.246	.242
7	.350	.342	.334	.327	.320	.313	.306	.300	.294	.288	.283	.277	.272	.267	.262
8	.373	.364	.356	.349	.341	.334	.328	.321	.315	.309	.303	.297	.292	.287	.282
9	.394	.385	.377	.369	.362	.354	.347	.341	.334	.328	.322	.316	.311	.305	.300
10	.414	.405	.396	.388	.381	.373	.366	.359	.352	.346	.340	.334	.328	.322	.317
11	.432	.423	.414	.406	.398	.391	.383	.376	.369	.363	.356	.350	.344	.339	.333
12	.449	.440	.431	.423	.415	.407	.400	.392	.385	.379	.372	.366	.360	.354	.348
13	.465	.456	.447	.439	.430	.423	.415	.408	.401	.394	.387	.381	.375	.369	.363
14	.480	.471	.462	.453	.445	.437	.430	.422	.415	.408	.401	.395	.389	.382	.377
15	.494	.485	.476	.467	.459	.451	.443	.436	.429	.422	.415	.408	.402	.396	.390
16	.507	.498	.489	.481	.472	.464	.456	.449	.442	.434	.428	.421	.415	.408	.402
17	.520	.511	.502	.493	.485	.477	.469	.461	.454	.447	.440	.433	.427	.420	.414
18	.532	.523	.514	.505	.497	.488	.481	.473	.466	.458	.452	.445	.438	.432	.426
19	.543	.534	.525	.516	.508	.500	.492	.484	.477	.470	.463	.456	.449	.443	.437
20	.554	.545	.536	.527	.519	.511	.503	.495	.488	.480	.473	.467	.460	.453	.447
21	.564	.555	.546	.537	.529	.521	.513	.505	.498	.491	.484	.477	.470	.464	.457
22	.574	.565	.556	.547	.539	.531	.523	.515	.508	.500	.493	.487	.480	.473	.467
23	.583	.574	.565	.557	.548	.540	.532	.525	.517	.510	.503	.496	.489	.483	.476
24	.592	.583	.574	.566	.557	.549	.541	.534	.526	.519	.512	.505	.498	.492	.485
25	.601	.592	.583	.574	.566	.558	.550	.542	.535	.528	.521	.514	.507	.501	.494
26	.609	.600	.591	.583	.574	.566	.559	.551	.543	.536	.529	.522	.516	.509	.503
27	.617	.608	.599	.591	.582	.574	.567	.559	.552	.544	.537	.530	.524	.517	.511
28	.624	.615	.607	.598	.590	.582	.574	.567	.559	.552	.545	.538	.532	.525	.519
29	.631	.623	.614	.606	.598	.590	.582	.574	.567	.560	.553	.546	.539	.533	.526
30	.638	.630	.621	.613	.605	.597	.589	.582	.574	.567	.560	.553	.546	.540	.534
31	.645	.636	.628	.620	.612	.604	.596	.589	.581	.574	.567	.560	.554	.547	.541
32	.652	.643	.634	.626	.618	.610	.603	.595	.588	.581	.574	.567	.560	.554	.548
33	.658	.649	.641	.633	.625	.617	.609	.602	.595	.587	.581	.574	.567	.561	.554
34	.664	.655	.647	.639	.631	.623	.616	.608	.601	.594	.587	.580	.574	.567	.561
35	.670	.661	.653	.645	.637	.629	.622	.614	.607	.600	.593	.586	.580	.573	.567
36	.675	.667	.658	.650	.643	.635	.628	.620	.613	.606	.599	.592	.586	.579	.573
37	.680	.672	.664	.656	.648	.641	.633	.626	.619	.612	.605	.598	.592	.585	.579
38	.686	.677	.669	.661	.654	.646	.639	.631	.624	.617	.611	.604	.597	.591	.585
39	.691	.683	.674	.667	.659	.651	.644	.637	.630	.623	.616	.610	.603	.597	.590
40	.696	.687	.679	.672	.664	.657	.649	.642	.635	.628	.622	.615	.608	.602	.596
41	.700	.692	.684	.677	.669	.662	.654	.647	.640	.633	.627	.620	.614	.607	.601
42	.705	.697	.689	.681	.674	.666	.659	.652	.645	.638	.632	.625	.619	.613	.606
43	.709	.701	.694	.686	.679	.671	.664	.657	.650	.643	.637	.630	.624	.618	.611
44	.714	.706	.698	.690	.683	.676	.669	.662	.655	.648	.641	.635	.629	.622	.616
45	.718	.710	.702	.695	.687	.680	.673	.666	.659	.653	.646	.640	.633	.627	.621
46	.722	.714	.707	.699	.692	.685	.678	.671	.664	.657	.651	.644	.638	.632	.626
47	.726	.718	.711	.703	.696	.689	.682	.675	.668	.662	.655	.649	.642	.636	.630
48	.730	.722	.715	.707	.700	.693	.686	.679	.672	.666	.659	.653	.647	.641	.635
49	.733	.726	.718	.711	.704	.697	.690	.683	.677	.670	.664	.657	.651	.645	.639
50	.737	.729	.722	.715	.708	.701	.694	.687	.681	.674	.668	.661	.655	.649	.643

$m \setminus n$	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
1	.095	.093	.091	.090	.088	.086	.085	.083	.082	.080	.079	.078	.076	.075	.074
2	.133	.130	.128	.126	.123	.121	.119	.117	.115	.113	.111	.109	.107	.106	.104
3	.164	.161	.158	.155	.152	.149	.147	.144	.142	.139	.137	.135	.133	.131	.129
4	.191	.187	.184	.180	.177	.174	.171	.168	.166	.163	.160	.158	.155	.153	.151
5	.215	.211	.207	.204	.200	.197	.194	.190	.187	.184	.181	.179	.176	.173	.171
6	.237	.233	.229	.225	.221	.218	.214	.211	.207	.204	.201	.198	.195	.192	.189
7	.258	.253	.249	.245	.241	.237	.233	.229	.226	.222	.219	.216	.213	.210	.207
8	.277	.272	.268	.263	.259	.255	.251	.247	.243	.240	.236	.233	.229	.226	.223
9	.295	.290	.285	.281	.276	.272	.268	.264	.260	.256	.252	.249	.245	.242	.239
10	.312	.307	.302	.297	.292	.288	.284	.279	.275	.271	.268	.264	.260	.257	.253
11	.328	.322	.317	.313	.308	.303	.299	.294	.290	.286	.282	.278	.274	.271	.267
12	.343	.337	.332	.327	.322	.318	.313	.309	.304	.300	.296	.292	.288	.284	.281
13	.357	.352	.346	.341	.336	.331	.327	.322	.318	.313	.309	.305	.301	.297	.293
14	.371	.365	.360	.355	.350	.345	.340	.335	.331	.326	.322	.318	.314	.310	.306
15	.384	.378	.373	.367	.362	.357	.352	.348	.343	.338	.334	.330	.325	.321	.317
16	.396	.391	.385	.380	.374	.369	.364	.359	.355	.350	.346	.341	.337	.333	.329
17	.408	.402	.397	.391	.386	.381	.376	.371	.366	.361	.357	.352	.348	.344	.340
18	.420	.414	.408	.403	.397	.392	.387	.382	.377	.372	.368	.363	.359	.354	.350
19	.431	.425	.419	.413	.408	.403	.397	.392	.387	.383	.378	.373	.369	.365	.360
20	.441	.435	.429	.424	.418	.413	.408	.403	.398	.393	.388	.383	.379	.374	.370
21	.451	.445	.439	.434	.428	.423	.418	.412	.407	.402	.398	.393	.388	.384	.380
22	.461	.455	.449	.443	.438	.432	.427	.422	.417	.412	.407	.402	.398	.393	.389
23	.470	.464	.458	.453	.447	.442	.436	.431	.426	.421	.416	.411	.407	.402	.398
24	.479	.473	.467	.462	.456	.450	.445	.440	.435	.430	.425	.420	.415	.411	.406
25	.488	.482	.476	.470	.465	.459	.454	.448	.443	.438	.433	.428	.424	.419	.415
26	.496	.490	.484	.479	.473	.467	.462	.457	.452	.446	.441	.437	.432	.427	.423
27	.505	.498	.492	.487	.481	.475	.470	.465	.460	.454	.449	.445	.440	.435	.431
28	.512	.506	.500	.495	.489	.483	.478	.472	.467	.462	.457	.452	.448	.443	.438
29	.520	.514	.508	.502	.496	.491	.485	.480	.475	.470	.465	.460	.455	.450	.446
30	.527	.521	.515	.509	.504	.498	.493	.487	.482	.477	.472	.467	.462	.458	.453
31	.534	.528	.522	.517	.511	.505	.500	.494	.489	.484	.479	.474	.469	.465	.460
32	.541	.535	.529	.523	.518	.512	.507	.501	.496	.491	.486	.481	.476	.471	.467
33	.548	.542	.536	.530	.525	.519	.513	.508	.503	.498	.493	.488	.483	.478	.473
34	.555	.548	.543	.537	.531	.525	.520	.515	.509	.504	.499	.494	.489	.485	.480
35	.561	.555	.549	.543	.537	.532	.526	.521	.516	.511	.506	.501	.496	.491	.486
36	.567	.561	.555	.549	.544	.538	.533	.527	.522	.517	.512	.507	.502	.497	.492
37	.573	.567	.561	.555	.550	.544	.539	.533	.528	.523	.518	.513	.508	.503	.498
38	.579	.573	.567	.561	.555	.550	.544	.539	.534	.529	.524	.519	.514	.509	.504
39	.584	.578	.572	.567	.561	.556	.550	.545	.540	.534	.529	.524	.520	.515	.510
40	.590	.584	.578	.572	.567	.561	.556	.550	.545	.540	.535	.530	.525	.520	.516
41	.595	.589	.583	.578	.572	.566	.561	.556	.551	.545	.540	.535	.531	.526	.521
42	.600	.594	.589	.583	.577	.572	.566	.561	.556	.551	.546	.541	.536	.531	.526
43 44	.605 .610	.599 .604	.594 .599	.588	.582 .587	.577	.572	.566	.561 .566	.556 .561	.551	.546 .551	.541 .546	.536 .541	.532
44 45	.615	.609	.604	.593 .598	.592	.582 .587	.577 .581	.571 .576	.571	.566	.556 .561	.556	.551	.546	.537 .542
46	.620	.614	.608	.603	.597	.592	.586	.581	.576	.571	.566	.561	.556	.551	.547
47 48	.624 .629	.619 .623	.613	.607	.602 .606	.596 .601	.591	.586 .590	.581 .585	.575 .580	.571	.566	.561	.556	.551
48	.633	.627	.617 .622	.612 .616	.611	.605	.596 .600	.595	.590	.585	.575 .580	.570 .575	.565 .570	.561	.556 .561
50	.637	.632	.626	.621	.615	.610	.604	.599	.594	.589	.584	.579	.574	.570	.565
50	.001	.002	.020	.041	.010	.010	.004	.000	.034	.009	.004	.019	.U14	.010	.505

$m \setminus n$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	.995	.929	.829	.734	.653	.586	.531	.484	.445	.411	.382	.357	.335	.315	.298
2	.997	.959	.889	.815	.746	.685	.632	.585	.544	.509	.477	.449	.424	.402	.381
3	.998	.971	.917	.856	.797	.742	.693	.648	.608	.573	.541	.512	.486	.463	.441
4	.999	.977	.934	.882	.830	.781	.735	.693	.655	.621	.589	.561	.534	.510	.488
5	.999	.981	.945	.900	.854	.809	.767	.728	.691	.658	.627	.599	.573	.549	.527
C	000	004	053	019	979	091	701	755	720	600	CEO	691	COL	ron	560
$\frac{6}{7}$.999	.984	.953	.913	.872	.831	.791	.755	.720	.688	.658	.631	.605	.582	.560 .588
8	.999 .999	.986 .988	.958 .963	.923 .931	.886 .897	.848 .862	.811 .828	.777 .795	.744 .764	.713 .734	.685 .707	.658 .681	.633 .657	.610 .634	.612
9	.999	.989	.967	.938	.906	.873	.841	.810	.781	.753	.726	.701	.677	.655	.634
10	.999	.990	.970	.943	.913	.883	.853	.824	.795	.768	.743	.718	.695	.674	.653
	.555	.990	.310			.000			.195	.100	.140			.014	
11	1.00	.991	.972	.947	.920	.891	.863	.835	.808	.782	.758	.734	.712	.690	.670
12	1.00	.992	.974	.951	.925	.899	.872	.845	.819	.795	.771	.748	.726	.705	.686
13	1.00	.992	.976	.955	.930	.905	.879	.854	.829	.805	.782	.760	.739	.719	.700
14	1.00	.993	.978	.957	.935	.910	.886	.862	.838	.815	.793	.772	.751	.731	.713
15	1.00	.993	.979	.960	.938	.915	.892	.869	.846	.824	.803	.782	.762	.743	.724
16	1.00	.994	.980	.962	.942	.920	.898	.875	.854	.832	.811	.791	.772	.753	.735
17	1.00	.994	.981	.964	.945	.924	.903	.881	.860	.839	.819	.800	.781	.763	.745
18	1.00	.994	.982	.966	.947	.927	.907	.887	.866	.846	.827	.808	.789	.772	.754
19	1.00	.995	.983	.968	.950	.931	.911	.891	.872	.852	.833	.815	.797	.780	.763
20	1.00	.995	.984	.969	.952	.934	.915	.896	.877	.858	.840	.822	.804	.787	.771
21	1.00	.995	.985	.971	.954	.936	.918	.900	.881	.863	.845	.828	.811	.794	.778
22	1.00	.995	.985	.972	.956	.939	.921	.904	.886	.868	.851	.834	.817	.801	.785
23	1.00	.996	.986	.973	.958	.941	.924	.907	.890	.873	.856	.839	.823	.807	.792
24	1.00	.996	.987	.974	.959	.944	.927	.910	.894	.877	.861	.844	.829	.813	.798
25	1.00	.996	.987	.975	.961	.946	.930	.913	.897	.881	.865	.849	.834	.819	.804
26	1.00	.996	.988	.976	.962	.947	.932	.916	.900	.885	.869	.854	.839	.824	.809
27	1.00	.996	.988	.977	.963	.949	.934	.919	.903	.888	.873	.858	.843	.829	.815
28	1.00	.996	.988	.977	.965	.951	.936	.921	.906	.891	.877	.862	.847	.833	.819
29	1.00	.996	.989	.978	.966	.952	.938	.924	.909	.894	.880	.866	.852	.838	.824
30	1.00	.997	.989	.979	.967	.954	.940	.926	.912	.897	.883	.869	.855	.842	.828
31	1.00	.997	.989	.980	.968	.955	.942	.928	.914	.900	.886	.873	.859	.846	.833
32	1.00	.997	.990	.980	.969	.956	.943	.930	.914	.903	.889	.876	.863	.849	.837
33	1.00	.997	.990	.981	.970	.958	.945	.932	.919	.905	.892	.879	.866	.853	.840
34	1.00	.997	.990	.981	.970	.959	.946	.934	.921	.908	.895	.882	.869	.856	.844
35	1.00	.997	.991	.982	.971	.960	.948	.935	.923	.910	.897	.885	.872	.860	.848
36	1.00	.997	.991	.982	.972	.961	.949	.937	.924	.912	.900	.887	.875	.863	.851
37	1.00	.997	.991	.983	.973	.962	.950	.938	.926	.914	.902	.890	.878	.866	.854
38	1.00	.997	.991	.983	.973	.963	.951	.940	.928	.916	.904	.892	.880	.869	.857
39	1.00	.997	.992	.984	.974	.964	.953	.941	.930	.918	.906	.894	.883	.871	.860
40	1.00	.997	.992	.984	.975	.964	.954	.943	.931	.920	.908	.897	.885	.874	.863
41	1.00	.998	.992	.984	.975	.965	.955	.944	.933	.921	.910	.899	.888	.876	.865
42	1.00	.998	.992	.985	.976	.966	.956	.945	.934	.923	.912	.901	.890	.879	.868
43	1.00	.998	.992	.985	.976	.967	.957	.946	.935	.925	.914	.903	.892	.881	.871
44	1.00	.998	.993	.985	.977	.967	.958	.947	.937	.926	.915	.905	.894	.883	.873
45	1.00	.998	.993	.986	.977	.968	.958	.948	.938	.928	.917	.906	.896	.886	.875
4.0		000				060									
46	1.00	.998	.993	.986	.978	.969	.959	.949	.939	.929	.919	.908	.898	.888	.877
47	1.00	.998	.993	.986	.978	.969	.960	.950	.940	.930	.920	.910	.900	.890	.880
48	1.00	.998	.993	.987	.979	.970	.961	.951	.941	.932	.922	.912	.902	.892	.882
49 50	1.00	.998	.993	.987	.979	.971	.962	.952	.943	.933	.923	.913	.903	.893	.884
50	1.00	.998	.993	.987	.979	.971	.962	.953	.944	.934	.924	.915	.905	.895	.886

$m \setminus n$	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
1	.282	.268	.255	.243	.233	.223	.214	.206	.198	.191	.184	.178	.172	.167	.162
2	.363	.346	.331	.317	.304	.292	.281	.271	.262	.253	.245	.237	.230	.223	.216
3	.422	.404	.387	.372	.358	.345	.332	.321	.310	.300	.291	.282	.274	.266	.259
4	.468	.449	.432	.416	.401	.387	.374	.362	.351	.340	.330	.320	.311	.303	.295
5	.507	.488	.470	.453	.438	.424	.410	.397	.385	.374	.363	.353	.344	.335	.326
6	.539	.520	.502	.485	.470	.455	.441	.428	.416	.404	.393	.383	.373	.363	.354
7	.567	.548	.530	.514	.498	.483	.469	.455	.443	.431	.419	.409	.398	.389	.379
8	.592	.573	.555	.538	.523	.508	.493	.480	.467	.455	.443	.432	.422	.412	.402
9	.614	.595	.578	.561	.545	.530	.516	.502	.489	.477	.465	.454	.443	.433	.424
10	.633	.615	.597	.581	.565	.550	.536	.522	.509	.497	.485	.474	.463	.453	.443
11	.651	.633	.616	.599	.583	.569	.554	.541	.528	.515	.504	.492	.482	.471	.461
12	.667	.649	.632	.616	.600	.585	.571	.558	.545	.533	.521	.509	.498	.488	.478
13	.681	.664	.647	.631	.616	.601	.587	.574	.561	.548	.537	.525	.514	.504	.494
14	.695	.677	.661	.645	.630	.615	.601	.588	.575	.563	.551	.540	.529	.519	.509
15	.707	.690	.674	.658	.643	.629	.615	.602	.589	.577	.565	.554	.543	.532	.522
16	.718	.701 .712	.685	.670	.655	.641 .653	.627	.614	.602	.590 .602	.578	.567	.556	.545	.535
17 18	.728 .738	.712	.696 .706	.681 .692	.667 .677	.663	.639 .650	.626 .637	.614 .625	.613	.590 .602	.579 .590	.568 .580	.558	.548 .559
19	.747	.731	.716	.701	.687	.674	.661	.648	.636	.624	.612	.601	.591	.580	.570
20	.755	.740	.725	.710	.697	.683	.670	.658	.646	.634	.623	.612	.601	.591	.581
21	.763	.748	.733	.719	.705	.692	.679	.667	.655	.643	.632	.621	.611	.601	.591
22	.770	.755	.741	.727	.714	.701	.688	.676	.664	.653	.641	.631	.620	.610	.600
23	.777	.762	.748	.735	.722	.709	.696	.684	.672	.661	.650	.639	.629	.619	.609
24	.783	.769	.755	.742	.729	.716	.704	.692	.681	.669	.658	.648	.638	.628	.618
25	.790	.776	.762	.749	.736	.723	.711	.700	.688	.677	.666	.656	.646	.636	.626
26	.795	.782	.768	.755	.743	.730	.718	.707	.695	.684	.674	.663	.653	.644	.634
27	.801	.787	.774	.761	.749	.737	.725	.714	.702	.692	.681	.671	.661	.651	.642
28	.806	.793	.780	.767	.755	.743	.731	.720	.709	.698	.688	.678	.668	.658	.649
29	.811	.798	.785	.773	.761	.749	.737	.726	.715	.705	.694	.684	.675	.665	.656
30	.815	.803	.790	.778	.766	.755	.743	.732	.721	.711	.701	.691	.681	.672	.662
31	.820	.807	.795	.783	.771	.760	.749	.738	.727	.717	.707	.697	.687	.678	.669
32	.824	.812	.800	.788	.776	.765	.754	.743	.733	.723	.713	.703	.693	.684	.675
33	.828	.816	.804	.792	.781	.770	.759	.749	.738	.728	.718	.709	.699	.690	.681
34	.832	.820	.808	.797	.786	.775	.764	.754	.743	.733	.724	.714	.705	.696	.687
35	.836	.824	.812	.801	.790	.779	.769	.758	.748	.738	.729	.719	.710	.701	.692
36	.839	.828	.816	.805	.794	.784	.773	.763	.753	.743	.734	.724	.715	.706	.697
37	.842	.831	.820	.809	.798	.788	.777	.767	.758	.748	.738	.729	.720	.711	.703
38	.846	.835	.824	.813	.802	.792	.782	.772	.762	.752	.743	.734	.725	.716	.708
39	.849	.838	.827	.816	.806	.796	.786	.776	.766	.757	.747	.738	.730	.721	.712
40	.852	.841	.830	.820	.810	.799	.790	.780	.770	.761	.752	.743	.734	.725	.717
41	.855	.844	.833	.823	.813	.803	.793	.784	.774	.765	.756	.747	.738	.730	.721
42	.857	.847	.837	.826	.816	.806	.797	.787	.778	.769	.760	.751	.743	.734	.726
43	.860	.850	.839	.829	.820	.810	.800	.791	.782	.773	.764	.755	.747	.738	.730
44	.863	.852	.842	.832	.823	.813	.804	.794	.785	.776	.768	.759	.751	.742	.734
45	.865	.855	.845	.835	.826	.816	.807	.798	.789	.780	.771	.763	.754	.746	.738
46	.867	.858	.848	.838	.829	.819	.810	.801	.792	.783	.775	.766	.758	.750	.742
47	.870	.860	.850	.841	.831	.822	.813	.804	.795	.787	.778	.770	.762	.754	.746
48	.872	.862	.853	.843	.834	.825	.816	.807	.798	.790	.781	.773	.765	.757	.749
49	.874	.865	.855	.846	.837	.828	.819	.810	.801	.793	.785	.776	.768	.761	.753
50	.876	.867	.857	.848	.839	.830	.822	.813	.804	.796	.788	.780	.772	.764	.756

$m \setminus n$	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
1	.157	.153	.148	.144	.140	.137	.133	.130	.127	.124	.121	.119	.116	.113	.111
2	.210	.204	.199	.194	.189	.184	.180	.176	.172	.168	.164	.160	.157	.154	.151
3	.252	.245	.239	.233	.227	.222	.217	.212	.207	.203	.198	.194	.190	.186	.183
4	.287	.280	.273	.266	.260	.254	.248	.243	.238	.233	.228	.223	.219	.215	.210
5	.318	.310	.303	.296	.289	.283	.276	.271	.265	.259	.254	.249	.244	.240	.235
	.010				.200										
6	.346	.337	.330	.322	.315	.308	.302	.296	.290	.284	.278	.273	.268	.263	.258
7	.371	.362	.354	.346	.339	.332	.325	.318	.312	.306	.300	.295	.289	.284	.279
8	.393	.385	.376	.368	.361	.353	.346	.339	.333	.327	.321	.315	.309	.304	.298
9	.414	.405	.397	.389	.381	.373	.366	.359	.352	.346	.340	.333	.328	.322	.317
10	.434	.425	.416	.408	.400	.392	.384	.377	.370	.364	.357	.351	.345	.339	.334
11	.452	.443	.434	.425	.417	.409	.402	.394	.387	.380	.374	.368	.361	.355	.350
12	.468	.445	.450	.442	.433	.425	.418	.410	.403	.396	.390	.383	.377	.371	.365
13	.484	.475	.466	.457	.449	.441	.433	.425	.418	.411	.404	.398	.391	.385	.379
14	.499	.489	.480	.472	.463	.455	.447	.440	.432	.425	.418	.412	.405	.399	.393
15	.513	.503	.494	.485	.477	.469	.461	.453	.446	.439	.432	.425	.419	.412	.406
16	.526	.516	.507	.498	.490	.482	.474	.466	.459	.451	.444	.438	.431	.425	.418
17	.538	.529	.520	.511	.502	.494	.486	.478	.471	.464	.457	.450	.443	.437	.430
18	.550	.540	.531	.522	.514	.506	.498	.490	.482	.475	.468	.461	.454	.448	.442
19	.561	.551	.542	.534	.525	.517	.509	.501	.493	.486	.479	.472	.465	.459	.453
20	.571	.562	.553	.544	.536	.527	.519	.512	.504	.497	.490	.483	.476	.469	.463
0.1			F.00	1		F 00	700		F1.4	F.0.	F00	400		470	
21	.581	.572	.563	.554	.546	.538	.530	.522	.514	.507	.500	.493	.486	.479	.473
22	.591	.582	.573	.564	.555	.547	.539	.531	.524	.517	.509	.502	.496	.489	.483
23	.600	.591	.582	.573	.565	.556	.548	.541	.533	.526	.519	.512	.505	.498	.492
24	.609	.599	.591	.582	.573	.565	.557	.550	.542	.535	.528	.521	.514	.507	.501
25	.617	.608	.599	.590	.582	.574	.566	.558	.551	.543	.536	.529	.522	.516	.509
26	.625	.616	.607	.598	.590	.582	.574	.566	.559	.552	.544	.537	.531	.524	.518
27	.632	.623	.615	.606	.598	.590	.582	.574	.567	.559	.552	.545	.539	.532	.526
28	.640	.631	.622	.614	.605	.597	.590	.582	.574	.567	.560	.553	.546	.540	.533
29	.647	.638	.629	.621	.613	.605	.597	.589	.582	.575	.567	.561	.554	.547	.541
30	.653	.645	.636	.628	.620	.612	.604	.596	.589	.582	.575	.568	.561	.554	.548
31	.660	.651	.643	.634	.626	.618	.611	.603	.596	.589	.582	.575	.568	.561	.555
32	.666	.657	.649	.641	.633	.625	.617	.610	.602	.595	.588	.581	.575	.568	.562
33	.672	.664	.655	.647	.639	.631	.624	.616	.609	.602	.595	.588	.581	.575	.568
34	.678	.669	.661	.653	.645	.637	.630	.622	.615	.608	.601	.594	.587	.581	.575
35	.683	.675	.667	.659	.651	.643	.636	.628	.621	.614	.607	.600	.594	.587	.581
36	.689	.681	.672	.664	.657	.649	.641	.634	.627	.620	.613	.606	.600	.593	.587
37	.694	.686	.678	.670	.662	.654	.647	.640	.632	.625	.619	.612	.605	.599	.593
38	.699	.691	.683	.675	.667	.660	.652	.645	.638	.631	.624	.617	.611	.605	.598
39	.704	.696	.688	.680	.672	.665	.657	.650	.643	.636	.630	.623	.616	.610	.604
40	.709	.701	.693	.685	.677	.670	.663	.655	.648	.641	.635	.628	.622	.615	.609
41	.713	.705	.697	.690	.682	.675	.667	.660	.653	.647	.640	.633	.627	.620	.614
42	.718	.710	.702	.694	.687	.679	.672	.665	.658	.651	.645	.638	.632	.625	.619
43	.722	.714	.706	.699	.691	.684	.677	.670	.663	.656	.650	.643	.637	.630	.624
44	.726	.718	.711	.703	.696	.688	.681	.674	.668	.661	.654	.648	.641	.635	.629
45	.730	.722	.715	.707	.700	.693	.686	.679	.672	.665	.659	.652	.646	.640	.634
46	.734	.726	.719	.711	.704	.697	.690	.683	.676	.670	.663	.657	.650	.644	.638
47	.738	.730	.723	.715	.708	.701	.694	.687	.681	.674	.667	.661	.655	.649	.643
48	.742	.734	.727	.719	.712	.705	.698	.691	.685	.678	.672	.665	.659	.653	.647
49	.745	.738	.730	.723	.716	.709	.702	.695	.689	.682	.676	.669	.663	.657	.651
50	.749	.741	.734	.727	.720	.713	.706	.699	.693	.686	.680	.673	.667	.661	.655
50	.170	.111	.104	.141	.140	.110	.100	.000	.000	.000	.000	.010	.001	.001	.000

$m \setminus n$	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
1	.109	.107	.105	.102	.101	.099	.097	.095	.093	.092	.090	.089	.087	.086	.085
2	.148	.145	.142	.139	.137	.134	.132	.130	.127	.125	.123	.121	.119	.117	.116
3	.179	.176	.173	.169	.166	.163	.161	.158	.155	.153	.150	.148	.145	.143	.141
4	.207	.203	.199	.196	.192	.189	.186	.183	.180	.177	.174	.171	.169	.166	.164
5	.231	.227	.223	.219	.215	.212	.208	.205	.202	.198	.195	.192	.189	.187	.184
c	252	240	245	9.41	997	ากก	220	ากะ	222	210	015	919	200	206	202
6 7	.253 .274	.249 .269	.245 .265	.241 .261	.237 .256	.233 .252	.229 .248	.225 .244	.222 .241	.218 .237	.215 .233	.212	.209 .227	.206 .224	.203 .220
8	.293	.288	.284	.279	.275	.232	.246	.262	.258	.254	.253	.247	.244	.244	.237
9	.311	.306	.301	.219	.273	.287	.283	.202	.275	.271	.267	.263	.259	.256	.252
10	.328	.323	.318	.313	.308	.304	.299	.219	.273	.286	.282	.278	.275	.271	.267
10								.230							
11	.344	.339	.334	.328	.324	.319	.314	.310	.305	.301	.297	.293	.289	.285	.281
12	.359	.354	.348	.343	.338	.333	.328	.324	.319	.315	.311	.307	.302	.299	.295
13	.374	.368	.362	.357	.352	.347	.342	.337	.333	.328	.324	.320	.315	.311	.307
14	.387	.381	.376	.370	.365	.360	.355	.350	.346	.341	.337	.332	.328	.324	.320
15	.400	.394	.389	.383	.378	.373	.368	.363	.358	.353	.349	.344	.340	.336	.332
16	.412	.407	.401	.395	.390	.385	.379	.374	.370	.365	.360	.356	.351	.347	.343
17	.424	.418	.412	.407	.401	.396	.391	.386	.381	.376	.371	.367	.362	.358	.354
18	.435	.430	.424	.418	.412	.407	.402	.397	.392	.387	.382	.377	.373	.369	.364
19	.446	.440	.434	.429	.423	.418	.412	.407	.402	.397	.392	.388	.383	.379	.374
20	.457	.451	.445	.439	.433	.428	.423	.417	.412	.407	.402	.398	.393	.389	.384
0.1	407	401	455		449	490		407	400	417	410		400	900	
21	.467	.461	.455	.449	.443	.438	.432	.427	.422	.417	.412	.407	.403	.398	.394
22	.476	.470	.464	.458	.453	.447	.442	.436	.431	.426	.421	.416	.412	.407	.403
23 24	.486 .494	.479 .488	.473 .482	.468	.462 .471	.456 .465	.451 .460	.446 .454	.440 .449	.435 .444	.430 .439	.425 .434	.421 .429	.416	.411 .420
25	.503	.497	.491	.476 .485	.479	.474	.468	.463	.449	.452	.447	.442	.438	.433	.420
20	.505	.431	.431	.400	.413	.414	.400	.405	.401	.402	.441	.442	.450	.400	.420
26	.511	.505	.499	.493	.487	.482	.476	.471	.466	.460	.455	.451	.446	.441	.436
27	.519	.513	.507	.501	.495	.490	.484	.479	.474	.468	.463	.458	.454	.449	.444
28	.527	.521	.515	.509	.503	.497	.492	.487	.481	.476	.471	.466	.461	.456	.452
29	.534	.528	.522	.516	.511	.505	.499	.494	.489	.483	.478	.473	.469	.464	.459
30	.542	.535	.529	.524	.518	.512	.507	.501	.496	.491	.486	.481	.476	.471	.466
31	.549	.542	.536	.531	.525	.519	.514	.508	.503	.498	.493	.488	.483	.478	.473
32	.555	.549	.543	.537	.532	.526	.520	.515	.510	.504	.499	.494	.489	.485	.480
33	.562	.556	.550	.544	.538	.533	.527	.522	.516	.511	.506	.501	.496	.491	.487
34	.568	.562	.556	.550	.545	.539	.533	.528	.523	.518	.512	.507	.502	.498	.493
35	.575	.568	.562	.557	.551	.545	.540	.534	.529	.524	.519	.514	.509	.504	.499
36	.581	.574	.568	.563	.557	.551	.546	.540	.535	.530	.525	.520	.515	.510	.505
37	.586	.580	.574	.569	.563	.557	.552	.546	.541	.536	.531	.526	.521	.516	.511
38	.592	.586	.580	.574	.569	.563	.557	.552	.547	.542	.536	.531	.527	.522	.517
39	.598	.592	.586	.580	.574	.569	.563	.558	.552	.547	.542	.537	.532	.527	.523
40	.603	.597	.591	.585	.580	.574	.569	.563	.558	.553	.548	.543	.538	.533	.528
41		600							F69	EEO					
41 42	.608	.602	.596	.591	.585	.579	.574	.568	.563	.558	.553	.548	.543	.538	.534
42	.613	.607	.601	.596	.590	.584	.579	.574	.568	.563	.558	.553	.548	.544	.539
43	.618 .623	.612 .617	.606 611	.601	.595 .600	.590 .594	.584	.579	.574 .578	.568 .573	.563	.558	.553 .558	.549 .554	.544 .549
44 45	.628	.622	.611 .616	.606 .610	.605	.594	.589 .594	.584 .589	.583	.578	.568 .573	.563 .568	.563	.559	.554
4.0			.010	.010	.000	.099	.034	.505	.505		.515	.506	.505	.558	
46	.632	.626	.621	.615	.609	.604	.599	.593	.588	.583	.578	.573	.568	.563	.559
47	.637	.631	.625	.619	.614	.609	.603	.598	.593	.588	.583	.578	.573	.568	.563
48	.641	.635	.630	.624	.618	.613	.608	.602	.597	.592	.587	.582	.577	.573	.568
49	.645	.640	.634	.628	.623	.617	.612	.607	.602	.597	.592	.587	.582	.577	.572
50	.649	.644	.638	.632	.627	.622	.616	.611	.606	.601	.596	.591	.586	.581	.577

A.8 Quantile der Wilcoxon $U_{m,n}$ -Verteilung: 0.1%-Quantil

Tabelliert ist das 0.1%-Quantil $U_{m,n;\,0.001}$.

$m \setminus$	n	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
	5	0	0	0	1	2	2	3	3	4	4	5	6	6	7	8	8	9	9	10	11	11
	6	0	0	1	2	3	4	5	5	6	7	8	9	10	11	12	13	13	14	15	16	17
	7	0	1	2	3	4	6	7	8	9	10	11	12	14	15	16	17	19	20	21	22	23
	8	$\frac{1}{2}$	2 3	3 4	5 6	6 8	7 9	9 11	10 13	12 15	13 16	15 18	16 20	18 22	19 24	21 26	22 27	24 29	25 31	27 33	28 35	30 37
	10	2	4	6	7	9	11	13	15 15	18	20	22	24	26	28	30	33	35	37	39	41	44
						_																
	11 12	3	5 5	7 8	9 10	11 13	13 15	16 18	18 21	21 24	23 26	25 29	28 32	30 35	33 38	35 41	38 43	41 46	43 49	46 52	48 55	51 58
	13	4	6	9	12	15	18	21	24	27	30	33	36	39	43	46	49	52	55	59	62	65
	14	4	7	10	13	16	20	23	26	30	33	37	40	44	47	51	55	58	62	65	69	73
	15	5	8	11	15	18	22	25	29	33	37	41	44	48	52	56	60	64	68	72	76	80
	16	6	9	12	16	20	24	28	32	36	40	44	49	53	57	61	66	70	74	79	83	87
	17	6	10	14	18	22	26	30	35	39	44	48	53	58	62	67	71	76	81	86	90	95
	18	7	11	15	19	24	28	33	38	43	47	52	57	62	67	72	77	82	87	92	97	103
	19	8	12	16	21	26	30	35	41	46	51	56	61	67	72	78	83	88	94	99	105	110
	20	8	13	17	22	27	33	38	43	49	55	60	66	71	77	83	89	95	100	106	112	118
	21	9	13	19	24	29	35	41	46	52	58	64	70	76	82	88	95	101	107	113	119	126
	22	9	14	20	25	31	37	43	49	55	62	68	74	81	87	94	100	107	113		127	133
	23 24	10	15	21 22	27 28	33	39	46 48	52 55	59 62	65	72 76	79	86 90	92 97	99 105	106 112	113	$\frac{120}{127}$	127 134	134 141	141 149
	$\frac{24}{25}$	11 11	16 17	23	30	$\frac{35}{37}$	41 44	51	58	65	69 73	80	83 87	95	103	110	112	119 126	133	141	141	156
	26 27	12 13	18 19	25 26	32 33	39 41	46 48	53 56	61 64	69 72	76 80	84 88	92 96	$100 \\ 105$	108 113	116 121	124 130	132 138	$140 \\ 147$	148 155	156 164	164 172
	28	13	20	27	35	42	50	58	67	75	84	92	101	109	118	$121 \\ 127$		144	153		171	180
	29	14	21	28	36	44	53	61	70	78	87	96	105	114	123	132	141	151	160	169	178	188
	30	15	22	30	38	46	55	64	73	82	91	100	109	119	128	138	147	157	167	176	186	196
	31	15	23	31	39	48	57	66	76	85	95	104	114	124	133	143	153	163	173	183	193	203
	32	16	24	32	41	50	59	69	78	88	98	108	118	128	139	149	159	170	180	190	201	211
	33	16	25	33	42	52	62	71	81	92	102	112	123	133	144	154	165		187	197	208	219
	34	17	26	35	44	54	64	74	84	95	106	116	127	138	149	160	171	182	193	205	216	227
	35	18	26	36	46	56	66	77	87	98	109	120	132	143	154	166	177	189	200	212	223	235
	36	18	27	37	47	58	68	79	90	102	113	124	136	148	159	171	183	195	207	219	231	243
	37	19	28	38	49	59	71	82	93	105	117	128	140	152	165	177	189	201	214	226	238	251
	38 39	$\frac{20}{20}$	29 30	40 41	50 52	61 63	73 75	84 87	96 99	108 111	$\frac{120}{124}$	132 137	145 149	157 162	170 175	182 188	195 201	$\frac{208}{214}$	$\frac{220}{227}$	233 240	246 253	259 267
	40	21	31	42	53	65	77	90	102	115	124	141	154	167		193				247	261	275
	41 42	22 22	32 33	43 45	55 57	67 69	80 82	92 95	105									227 233			269 276	
	43	23	34	46	58	71	84	97		125								239			284	
	44	24	35	47	60	73	86											246			291	
	45	24	36	48	61	75	89	103	117	131	146	161	176	191	206	221	237	252	268	283	299	314
	46	25	37	50	63	77	91	105	120	135	150	165	180	196	211	227	243	259	274	290	306	322
	47	25	38	51	64	79		108	123	138	154	169	185	201	217	233	249	265	281	298	314	330
	48	26	39	52	66	80			126						222			271	288		322	
	49	27	40	53	68	82		113		145		177						278				
	50	27	41	55	69	84	100	116	132	148	165	181	198	215	232	249	267	284	302	319	337	354

Quantile der $U_{m,n}$ -Verteilung: 0.1%-Quantil

Tabelliert ist das 0.1%-Quantil $U_{m,n;\,0.001}$.

$m \setminus n$	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
5	12	13	13	14	15	15	16	16	17	18	18	19	20	20	21	22	22	23	24	24
6	18	19	20	21	22	23	24	25	26	26	27	28	29	30	31	32	33	34	35	36
7	25	26	27	28	30	31	32	33	35	36	37	38	40	41	42	43	45	46	47	48
8	32	33	35	36	38	39	41	42	44	46	47	49	50	52	53	55	57	58	60	61
9	39	41	42	44	46	48	50	52	54	56	58	59	61	63	65	67	69	71	73	75
10	46	48	50	53	55	57	59	62	64	66	68	71	73	75	77	80	82	84	86	89
11	53	56	58	61	64	66	69	71	74	77	79	82	84	87	90	92	95	97	100	103
12	61	64	67	70	73	76	78	81	84	87	90	93	96	99	102	105	108	111	114	117
13	69	72	75	78	82	85	88	92	95	98	102	105	108	111	115	118	121	125	128	131
14	76	80	84	87	91	95	98	102	106	109	113	117	120	124	128	131	135	139	142	146
5	84	88	92	96	100	104	108	112	116	120	124	128	132	137	141	145		153	157	161
16	92	96	101	105	109	114	118	123	127	132	136		145	149	154		163	167	171	176
17	100	105	109	114	119	124	128	133	138	143	148	152	157	162	167	172	177	181	186	191
18	108	113	118	123	128	133	139	144		154	159	165	170	175	180	185	191	196	201	206
19	116	121	127	132	138	143	149	154	160	166	171	177	182	188	193	199	205	210	216	221
20	124	130	136	141	147	153	159	165	171	177	183	189	195	201	207	213	219	225	231	237
21	132	138	144	151	157	163	170	176	182	189	195	201	208	214	220	227	233	239	246	252
22	140	147	153	160	167	173	180	187	193	200	207	214	220	227	234	241	247	254	261	268
23	148	155	162	169	176	183	190	197	205	212	219	226	233	240	247	255	262	269	276	283
24	156	164	171	178	186	193	201	208	216	223	231	238	246	253	261	269	276	284	291	299
25	164	172	180	188	196	203	211	219	227	235	243	251	259	267	275	283	291	299	306	314
26	172	181	189	197	205	214	222	230	238	247	255	263	272	280	288	297	305	313	322	330
$\frac{20}{27}$	181	189	198	206	215	224	232	241	250	258	267	276	285	293	302	311	320	328	337	346
28	189	198	207	216	225	234	243	252	261	270	279	288	298	307	316	325	334	343	352	362
29	197	206	216	225	235	244	254	263	273	282	292	301	311	320	330	339	349	358	368	377
30	205	215	225	235	245	254	264	274	284	294	304	314	324	334	343	353	363	373	383	393
0.1	014		00.4			005	075	005			91.0								200	
$\frac{31}{32}$	214 222	224 232	234 243	244	254 264	$\frac{265}{275}$	275 285	285	295	306 318	316		337	347 360	357	368 382	378 393	388	399	409 425
33		241	243				200	296	307	329	328	339	350	374	371	396	407	404	414	
34	230 238	$\frac{241}{250}$	261	263 273	274 284	205	$\frac{290}{307}$	307 318	318 330	341	341 353	352 364	363 376	387	385 399	411	422	419 434	430 445	441 457
35	$\frac{236}{247}$	$\frac{250}{258}$	$\frac{201}{270}$	282	294	306	318	329	341	353	365	377	389	401	413	425	437	449	461	473
33	241	200	210	202	294	300	310	329	341	555	303	311	309	401	410	420	457	449	401	413
36	255	267	279	292	304		328	341	353	365	377	390	402	415	427	439	452	464	477	489
37	263	276	288	301	314		339	352	364	377	390	403	415	428	441	454	466	479	492	505
38	272	285		311	324		350	363	376	389	402	415	428	442	455	468	481	495	508	521
39	280	293	307	320	334	347	360	374	387	401	415	428	442	455	469	482	496	510	523	537
40	288	302	316	330	343	357	371	385	399	413	427	441	455	469	483	497	511	525	539	553
41	297	311	325	339	353	368	382	396	411	425	439	454	468	482	497	511	526	540	555	569
42				349													541			585
43	313	328	343	358			404	419	434	449	464	479	495				556	571	586	602
44	322	337	352	368	383	399	414	430	445	461	477	492	508	523	539	555	570	586	602	618
45	330	346	362		393		425	441	457	473	489	505	521	537	553	569	585	602	618	634
46	339	355	371	387	403	420	436	452	469	485	501	518	534	551	567	584	600	617	633	650
47		363			413		447		480	497		531			581		615	632		666
48		372			423		458		492							613		648		682
49			398		433		468		504					592		627		663	681	699
50			408		443				515			569				642		678	697	715
50	012	550	100	120	110	101	110	101	010	555	001	555	551	000	024	0.12	000	010	001	110

Quantile der $U_{m,n}$ -Verteilung: 0.25%-Quantil

Tabelliert ist das 0.25%-Quantil $U_{m,n;\;0.0025}$.

$m \setminus n$	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
$\frac{m \setminus n}{5}$	0	1	1	2	3	4	4	5	6	7	7	8	9	10	10	11	12	13	13	14	15
6	1	2	3	$\frac{2}{4}$	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
7	1	3	4	5	6	8	9	10	12	13	14	16	17	19	20	21	23	24	26	27	28
8	2	4	5	7	8	10	12	13	15	17	18	20	22	23	25	27	29	30	32	34	36
9	3	5	6	8	10	12	14	16	18	20	22	24	26	28	30	32	35	37	39	41	43
10	4	6	8	10	12	14	17	19	21	24	26	28	31	33	36	38	41	43	45	48	50
11	4	7	9	12	14	17	19	22	25	27	30	33	36	38	41	44	47	50	52	55	58
12	5	8	10	13	16	19	22	25	28	31	34	37	40	44	47	50	53	56	59	62	66
13	6	9	12	15	18	21	25	28	31	35	38	42	45	49	52	56	59	63	66	70	73
14	7	10	13	17	20	24	27	31	35	39	42	46	50	54	58	62	66	69	73	77	81
15	7	11	14	18	22	26	30	34	38	42	47	51	55	59	63	68	72	76	81	85	89
16	8	12	16	20	24	28	33	37	42	46	51	55	60	65	69	74	78	83	88	92	97
17	9	13	17	22	26	31	36	40	45	50	55	60	65	70	75	80	85	90	95	100	105
18	10	14	19	23	28	33	38	44	49	54	59	65	70	75	81	86	91	97	102	108	113
19	10	15	20	25	30	36	41	47	52	58	63	69	75	81	86	92	98	104	109	115	121
20	11	16	21	27	32	38	44	50	56	62	68	74	80	86	92	98	104	111	117	123	129
21	12	17	23	29	35	41	47	53	59	66	72	78	85	91	98	104	111	118	124	131	137
22	13	18	$\frac{23}{24}$	30	37	43	50	56	63	69	76	83	90	97	104	111	118	124	131	138	145
23	13	19	26	32	39	45	52	59	66	73	81	88	95	102	109	117	124	131	139	146	154
24	14	20	27	34	41	48	55	62	70	77	85	92	100	108	115	123	131	138	146	154	162
25	15	21	28	36	43	50	58	66	73	81	89	97	105	113	121	129	137	145	154	162	170
26	16	23	30	37	45	53	61	69	77	85	93	102	110	119	127	135	144	153	161	170	178
27	16	24	31	39	47	55	64	72	81	89	98	106	115	124	133	142	151	160	169	177	186
28	17	25	33	41	49	58	66	75	84	93	102	111	120	129	139	148	157	167	176	185	
29	18	26	34	43	51	60	69	78	88	97	106	116	125	135	145	154	164	174	183	193	203
30	19	27	35	44	53	63	72	82	91	101	111	121	131	140	150	161	171	181	191	201	211
31	20	28	37	46	56	65	75	85	95	105	115	125	136	146	156	167	177	188	198	209	220
32	20	29	38	48	58	68	78	88	98	109	119	130	141	151	162	173		195	206	217	228
33	21	30	40	50	60	70	81	91	102	113	124	135	146	157	168	179	191	202	213	225	236
34	22	31	41	51	62	73	83	94	106	117	128	139	151	162	174	186		209	221	233	244
35	23	32	43	53	64	75	86	98	109	121	132	144	156	168	180	192	204	216	228	241	253
36	23	33	44	55	66	77	89	101	113	125	137	149	161	174	186	198	211	223	236	248	261
37	24	35	45	57	68	80	92	104	116	129	141	154	166	179	192	205	218	230	243	256	269
38	25	36	47	58	70	82	95	107	120	133	146	158	171	185	198	211	224	238	251	264	278
39	26	37	48	60	72	85	98		123	137	150		177	190	204	217		245	258	272	286
40	27	38	50	62	75	87	100	114	127	141	154	168	182	196	210	224	238	252	266	280	294
41	27	39	51	64	77	90											244			288	303
42	28	40	53	65	79	92		120					192				251			296	
43	29	41	54	67	81	95		123					197				258			304	
44	30	42	55	69 71	83	97		127					202				265			312	
45	30	43	57	71	85	100	115	130	145	101	1/6	192	208	223	239	255	271	288	<i>3</i> ∪4	320	336
46		44	58	73	87		118		149				213			262			311	328	
47		46	60	74	89				152				218				285			336	
48	33	47	61	76 70	92	107	123		156				223				292			344	
49		48	63	78	94		126		160				228				298				
50	34	49	64	80	96	112	129	146	163	180	198	216	233	251	269	287	305	323	342	360	378

Quantile der $U_{m,n}$ -Verteilung: 0.25%-Quantil

Tabelliert ist das 0.25%-Quantil $U_{m,n;\;0.0025}$.

$m \setminus n$	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
5	16	16	17	18	19	20	20	21	22	23	23	24	25	26	27	27	28	29	30	30
6	23	24	25	26	27	28	29	30	31	32	33	35	36	37	38	39	40	41	42	43
7	30	31	33	34	35	37	38	40	41	43	44	45	47	48	50	51	53	54	55	57
8	37	39	41	43	44	46	48	50	51	53	55	57	58	60	62	64	65	67	69	71
9	45	47	49	51	53	56	58	60	62	64	66	68	70	72	75	77	79	81	83	85
10	53	55	58	60	63	65	68	70	73	75	77	80	82	85	87	90	92	95	97	100
11	61	64	66	69	72	75	78	81	83	86	89	92	95	98	100	103	106	109	112	115
12	69	72	75	78	82	85	88	91	94	98	101	104	107	110	114	117	120	123	127	130
13	77	81	84	88	91	95	98	102			113	116	120	123	127	131	134	138	141	145
14	85	89	93	97	101	105	109	113	117	121	125	129	133	137	141	145	149	153	157	161
15	93	98	102	106	111	115	119	124	128	132	137	141	146	150	154	159	163	167	172	176
16	102	106	111	116	121	125	130	135	139	144	149	154	158	163	168	173	177	182	187	192
17	110	115	120	125	131	136	141	146	151	156	161	166	171	177	182		192	197	202	208
18	119	124	129	135	140	146	151	157	162	168	174	179	185	190	196		207	212	218	223
19	127	133	139	145	150	156	162	168		180	186	192	198	204	210	216	221	227	233	239
20	135	142	148	154	161	167	173	179	186	192	198	205	211	217	224	230	236	243	249	255
21	144	151	157	164	171	177	184	191	197	204	211	218	224	231	238	244	251	258	265	271
22	153	160	167	174	181	188	195	202		216			238	245	252		266	273	280	288
23	161		176	183	191	198	206		221	228	236	243	251	258	266		281	289	296	304
24	170	177	185	193	201	209	217	225		241	248	256	264	272	280	288	296	304	312	320
25	178	186	195	203	211	220	228	236	244	253	261	269	278	286	294	303	311	319	328	336
26	187	195	204	213	221	230	239	248	256	265	274	282	291	300	309	317	326	335	344	353
27	195	205			232	241	250	259	268	277	286		305	314	323		341	351	360	369
28	204		223		242	251	261			290			318	328	337		357	366	376	385
29	213	223	232		252	262	272	282	292	302	312	322	332	342	352		372	382	392	402
30	221	232	242	252	263	273	283	293	304	314	325	335	345	356	366	376	387	397	408	418
31	230	241	251	262	273	284	294	305	316	327	337	348	359	370	380	391	402	413	424	435
32	239	250	261	272	283	294	305	317	328	339	350	361	372	384	395		417	429	440	451
33		259			293		317	328	340	351		374	386	398	409		433	444	456	468
34	256	268	280		304		328	340	352	364	376	388	400	412	424		448	460	472	484
35	265	277	290	302	314	327	339	351	364	376	389	401	413	426	438	451	463	476	488	501
36	274	286	299	312	325	337	350	363	376	389	401	414	427	440	453	466	479	492	504	517
37	282		309	322	335	348	361	374	388	401	414	427	441	454	467	481	494	507	521	534
38	291	305		332	345	359	372	386		413	427	441	454	468	482		509	523	537	551
39	300		328		356		384	398	412	426	440	454		482	496		525	539	553	567
40	509	ა <i>2</i> ა	337	302	900	380	999	409	424	438	403	407	462	490	911	520	540	999	509	584
41			347														556			
42		341					417		448								571			617
43				382													586			634
44				392					472											651
45		369	<i>ა</i> გე	402	418	435	451	408	484				551				617	034	160	668
46			395		429		462			513			564					650	667	684
47		387			439		474			526			578		613		648	666	683	701
48		397		432	450		485			538							664		700	718
49		406			460				533							661		698	716	735
50	397	415	433	452	4/0	489	908	ə <i>2</i> 6	545	504	o82	001	020	038	007	010	695	114	733	751

Quantile der $U_{m,n}$ -Verteilung: 0.5%-Quantil

Tabelliert ist das 0.5%-Quantil $U_{m,n;\,0.005}$.

5 1 2 2 3 4 5 6 7 8 8 9 10 11 12 13 14 15 15 16 6 2 3 4 5 6 7 8 10 11 12 13 14 16 17 18 19 20 22 23 7 2 4 5 7 8 10 11 13 14 16 17 19 20 22 23 25 26 28 30 8 3 5 7 8 10 12 14 16 18 19 21 23 25 27 29 31 33 35 36 9 4 6 8 10 12 14 17 19 22 25 28 30 32 35 38 40 43 45 48	17
7 2 4 5 7 8 10 11 13 14 16 17 19 20 22 23 25 26 28 30 8 3 5 7 8 10 12 14 16 18 19 21 23 25 27 29 31 33 35 36 9 4 6 8 10 12 14 17 19 21 23 25 28 30 32 34 37 39 41 44 10 5 7 10 12 14 17 19 22 25 27 30 32 35 38 40 43 45 48 51 11 6 8 11 14 17 19 22 25 28 31 34 37 40 43 46 49 52 55 58 12 7 10 13 16 19 22 25	31 33 38 40 46 48 53 56 61 64 69 72 76 80 84 88 92 95 100 108 116 122 124 130
8 3 5 7 8 10 12 14 16 18 19 21 23 25 27 29 31 33 35 36 9 4 6 8 10 12 14 17 19 21 23 25 28 30 32 34 37 39 41 44 10 5 7 10 12 14 17 19 22 25 27 30 32 35 38 40 43 45 48 51 11 6 8 11 14 17 19 22 25 28 31 34 37 40 43 46 49 52 55 58 12 7 10 13 16 19 22 25 28 32 35 38 42 45 48 52 55 59 62 65 13 8 11 14 18 21 25 28	38
9	46 48 53 56 61 62 69 72 76 86 84 88 92 95 100 108 113 116 122 124 130
10 5 7 10 12 14 17 19 22 25 27 30 32 35 38 40 43 45 48 51 11 6 8 11 14 17 19 22 25 28 31 34 37 40 43 46 49 52 55 58 12 7 10 13 16 19 22 25 28 32 35 38 42 45 48 52 55 59 62 65 13 8 11 14 18 21 25 28 32 35 38 42 45 48 52 55 59 62 65 13 8 11 14 18 21 25 28 32 35 39 43 46 50 54 58 61 65 69 73 14 8 12 16 19 23 27 31 35	53 56 61 64 69 72 76 86 84 88 92 97 100 103 108 113 116 122 124 130
11 6 8 11 14 17 19 22 25 28 31 34 37 40 43 46 49 52 55 58 12 7 10 13 16 19 22 25 28 32 35 38 42 45 48 52 55 59 62 65 13 8 11 14 18 21 25 28 32 35 39 43 46 50 54 58 61 65 69 73 14 8 12 16 19 23 27 31 35 39 43 47 51 55 59 64 68 72 76 80 15 9 13 17 21 25 30 34 38 43 47 52 56 61 65 70 74 79 83 88 16 10 14 19 23 28 32	61 64 69 72 76 80 84 88 92 97 100 103 108 113 116 122 124 130
12 7 10 13 16 19 22 25 28 32 35 38 42 45 48 52 55 59 62 65 13 8 11 14 18 21 25 28 32 35 39 43 46 50 54 58 61 65 69 73 14 8 12 16 19 23 27 31 35 39 43 47 51 55 59 64 68 72 76 80 15 9 13 17 21 25 30 34 38 43 47 52 56 61 65 70 74 79 83 88 16 10 14 19 23 28 32 37 42 46 51 56 61 66 71 75 80 85 90 95 17 11 16 20 25 30 35 <t< th=""><th>69 72 76 86 84 88 92 97 100 108 108 113 116 122 124 130</th></t<>	69 72 76 86 84 88 92 97 100 108 108 113 116 122 124 130
13 8 11 14 18 21 25 28 32 35 39 43 46 50 54 58 61 65 69 73 14 8 12 16 19 23 27 31 35 39 43 47 51 55 59 64 68 72 76 80 15 9 13 17 21 25 30 34 38 43 47 52 56 61 65 70 74 79 83 88 16 10 14 19 23 28 32 37 42 46 51 56 61 66 71 75 80 85 90 95 17 11 16 20 25 30 35 40 45 50 55 61 66 71 76 82 87 92 97 103 18 12 17 22 27 32 38	76 80 84 88 92 97 100 108 108 113 116 122 124 130
14 8 12 16 19 23 27 31 35 39 43 47 51 55 59 64 68 72 76 80 15 9 13 17 21 25 30 34 38 43 47 52 56 61 65 70 74 79 83 88 16 10 14 19 23 28 32 37 42 46 51 56 61 66 71 75 80 85 90 95 17 11 16 20 25 30 35 40 45 50 55 61 66 71 76 82 87 92 97 103 18 12 17 22 27 32 38 43 48 54 59 65 71 76 82 88 93 99 105 110 19 13 18 23 29 34 40	84 88 92 97 100 103 108 113 116 122 124 130
15 9 13 17 21 25 30 34 38 43 47 52 56 61 65 70 74 79 83 88 16 10 14 19 23 28 32 37 42 46 51 56 61 66 71 75 80 85 90 95 17 11 16 20 25 30 35 40 45 50 55 61 66 71 76 82 87 92 97 103 18 12 17 22 27 32 38 43 48 54 59 65 71 76 82 88 93 99 105 110 19 13 18 23 29 34 40 46 52 58 64 70 75 82 88 94 100 106 112 118 20 14 19 25 31 37 43 49 55 61 68 74 80 87 93 100 106 113 119 126 21	92 97 100 105 108 113 116 122 124 136
16 10 14 19 23 28 32 37 42 46 51 56 61 66 71 75 80 85 90 95 17 11 16 20 25 30 35 40 45 50 55 61 66 71 76 82 87 92 97 103 18 12 17 22 27 32 38 43 48 54 59 65 71 76 82 88 93 99 105 110 19 13 18 23 29 34 40 46 52 58 64 70 75 82 88 94 100 106 112 118 20 14 19 25 31 37 43 49 55 61 68 74 80 87 93 100 106 113 119 126 21 15 20 26 33 39 45 52 59 65 72 79 85 92 99 106 113 119 126 133	100 108 108 113 116 122 124 130
17 11 16 20 25 30 35 40 45 50 55 61 66 71 76 82 87 92 97 103 18 12 17 22 27 32 38 43 48 54 59 65 71 76 82 88 93 99 105 110 19 13 18 23 29 34 40 46 52 58 64 70 75 82 88 94 100 106 112 118 20 14 19 25 31 37 43 49 55 61 68 74 80 87 93 100 106 113 119 126 21 15 20 26 33 39 45 52 59 65 72 79 85 92 99 106 113 119 126 133	108 113 116 122 124 130
18 12 17 22 27 32 38 43 48 54 59 65 71 76 82 88 93 99 105 110 19 13 18 23 29 34 40 46 52 58 64 70 75 82 88 94 100 106 112 118 20 14 19 25 31 37 43 49 55 61 68 74 80 87 93 100 106 113 119 126 21 15 20 26 33 39 45 52 59 65 72 79 85 92 99 106 113 119 126 133	116 122 124 130
19 13 18 23 29 34 40 46 52 58 64 70 75 82 88 94 100 106 112 118 20 14 19 25 31 37 43 49 55 61 68 74 80 87 93 100 106 113 119 126 21 15 20 26 33 39 45 52 59 65 72 79 85 92 99 106 113 119 126 133	124 130
21 15 20 26 33 39 45 52 59 65 72 79 85 92 99 106 113 119 126 133	132 139
	140 147
22 15 22 28 35 41 48 55 62 69 76 83 90 97 105 112 119 126 134 141	148 156
23 16 23 30 36 44 51 58 65 73 80 88 95 103 110 118 126 133 141 149	156 164
24 17 24 31 38 46 53 61 69 76 84 92 100 108 116 124 132 140 148 156	165 173
25 18 25 33 40 48 56 64 72 80 88 97 105 113 122 130 139 147 156 164	173 183
26 19 26 34 42 50 59 67 75 84 93 101 110 119 128 136 145 154 163 172	181 190
27 20 28 36 44 53 61 70 79 88 97 106 115 124 133 143 152 161 170 180	189 198
28 21 29 37 46 55 64 73 82 92 101 110 120 129 139 149 158 168 178 187	197 207
29 22 30 39 48 57 67 76 86 95 105 115 125 135 145 155 165 175 185 195 30 23 31 41 50 59 69 79 89 99 109 120 130 140 151 161 171 182 192 203	205 216 214 224
1	
31 23 33 42 52 62 72 82 93 103 114 124 135 146 156 167 178 189 200 211	222 233
32	230 241 238 250
34 26 36 47 58 69 80 91 103 114 126 138 150 162 174 186 198 210 222 234	246 259
35 27 38 48 60 71 83 94 106 118 130 143 155 167 180 192 204 217 230 242	255 267
36 28 39 50 61 73 85 97 110 122 135 147 160 173 185 198 211 224 237 250	263 276
37 29 40 52 63 76 88 100 113 126 139 152 165 178 191 204 218 231 244 258	271 285
38 30 41 53 65 78 91 103 117 130 143 156 170 183 197 211 224 238 252 266	279 293
39 31 42 55 67 80 93 107 120 134 147 161 175 189 203 217 231 245 259 273	288 302
40 32 44 56 69 82 96 110 123 137 151 166 180 194 209 223 238 252 267 281	296 313
41 32 45 58 71 85 99 113 127 141 156 170 185 200 214 229 244 259 274 289	304 319
	313 328
	321 337
	329 346
45 36 50 64 79 94 109 125 141 156 173 189 205 221 238 254 271 287 304 321	337 354
46 37 51 66 81 96 112 128 144 160 177 193 210 227 243 260 277 294 311 329	346 363
47 38 52 67 83 99 115 131 147 164 181 198 215 232 249 267 284 301 319 336	354 372
48 39 54 69 85 101 117 134 151 168 185 203 220 238 255 273 291 308 326 344 49 40 55 70 87 103 120 137 154 172 189 207 225 243 261 279 297 316 334 352	362 380 371 389
50 41 56 72 89 105 123 140 158 176 194 212 230 248 267 285 304 323 341 360	

Quantile der $U_{m,n}$ -Verteilung: 0.5%-Quantil

Tabelliert ist das 0.5%-Quantil $U_{m,n;\,0.005}$.

$m \setminus n$	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
5	19	20	21	22	23	23	24	25	26	27	28	29	30	31	32	32	33	34	35	36
6	26	28	29	30	31	33	34	35	36	38	39	40	41	42	44	45	46	47	49	50
7	34	36	37	39	41	42	44	45	47	48	50	52	53	55	56	58	59	61	63	64
8	42	44	46	48	50	52	54	56	58	60	61	63	65	67	69	71	73	75	77	79
9	50	53	55	57	59	62	64	66	69	71	73	76	78	80	82	85	87	89	92	94
10	59	61	64	67	69	72	75	77	80	83	85	88	91	93	96	99	101	104	107	109
11	67	70	73	76	79	82	85	88	91	94	97	100	103	107	110	113	116	119	122	125
12	75	79	82	86	89	93	96	99	103	106	110	113	117	120	123	127	130	134	137	141
13	84	88	92	95	99	103	107	111	114	118	122	126	130	134	137	141	145	149	153	156
14	93	97	101	105	109	114	118	122	126	130	135	139	143	147	151		160	164	168	173
15	101	106		115	120	124	129	133	138	143	147	152	156	161	166		175	179	184	189
16	110	115	120	125	130	135	140	145	150	155	160	165	170	175	180	185	190	195	200	205
17	119	124	129	135	140	146	151	156	162	167	173	178	183	189	194	200	205	210	216	221
18	128	133	139	145	151	156	162	168		180	185	191	197	203	209	214	220	226	232	238
19	136	143	149	155	161	167	173	180	186	192	198	204	211	217	223	229	235	242	248	254
20	145	152	158	165	171	178	185	191	198	204	211	218	224	231	238	244	251	257	264	271
21	154	161	168	175	182	189	196	203	210	217	224	231	238	245	252	259	266	273	280	287
22	163	170	178	185	192	200	207	215	222	230	237	244	252	259	267	274	282	289	297	304
23	172	180	187	195	203	211	219	226	234	242	250	258	266	273	281	289	297	305	313	321
24	181	189	197	205	214	222	230	238	246	255	263	271	279	288	296	304	313	321	329	337
25	190	198	207	216	224	233	241	250	259	267	276	285	293	302	311	319	328	337	346	354
26	100	200	917	226	กาะ	944	25.5	262	971	200	200	200	207	216	205	225	944	253	269	971
26 27	199 208	$\frac{208}{217}$	$217 \\ 227$	226 236	$235 \\ 245$		253 264	262 274	271 283	280 293	289	298 312	307	316 331	325 340	335 350	344 359	353	362	371 388
28	217	$\frac{217}{227}$	236	246	245	255 266	276	286	296	305	302 315	325	321 335	345	355	365	375	369 385	378 395	405
29											$\frac{313}{329}$									422
30	226 235	236 245	246 256	256 267	267 277	277 288	287 299	298 309	308 320	318 331	342	339 352	349 363	$\frac{360}{374}$	370 385	380 396	391 406	$401 \\ 417$	411 428	439
30	233	240	250	207	211	200		309	320	331	342	332	303	314	303	390	400	411	420	459
31	244	255	266	277	288	299	310	321	333	344	355		377	388	400	411	422	433	444	456
32		264	276	287	299	310	322	333	345	357	368	380	391	403	414	426	438	449	461	473
33	262	274	286	298	309	321	333	345	357	369	381	393	405	417	429	441	453	466	478	490
34	271	283	296	308	320	333	345	357	370	382	395	407	419	432	444	457	469	482	494	507
35	280	293	305	318	331	344	357	369	382	395	408	421	434	446	459	472	485	498	511	524
36	289	302	315	329	342	355	368	381	395	408	421	434	448	461	474	488	501	514	528	541
37		312	325	339	352	366	380	393	407	421	434	448	462	475	489	503	517	530	544	558
38		321	335	349	363	377	391	405	419	434	448	462	476	490	504		533	547	561	575
39		331	345	360	374	388	403	417	432	446	461	475	490	505	519	534	548	563	578	592
40							414		444			489				549		579	594	609
41																	580			627
42		359															596			644
43		369					449										612			661
44 45		378 388			428		461		507	524			575		594 609		628 644		678	678 695
40	3/1	300	400	422	409	400	473							092	009	021	044	001	010	090
46		397		432	450		484		519			572			624		660	677	695	712
47		407			460				532								676	694		730
48		417			471				544				618			673	691		728	747
49		426			482			538		576				651	670		707	726	745	764
50	417	436	455	474	493	512	531	550	569	589	608	627	646	665	685	704	723	743	762	781

Quantile der $U_{m,n}$ -Verteilung: 1%-Quantil

Tabelliert ist das 1%-Quantil $U_{m,n;\,0.01}$.

$m \setminus i$	n	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
	5	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
	6	3	4	5	7	8	9	10	12	13	14	16	17	19	20	21	23	24	25	27	28	30
	7	4	5	7	8	10	12	13	15	17	18	20	22	24	25	27	29	31	32	34	36	37
	8	5	7	8	10	12	14	16	18	21	23	25	27	29	31	33	35	37	39	41	43	46
1	9	6 7	8	10 12	12 14	$\frac{15}{17}$	17 20	19 23	22 25	24 28	27 31	29 34	32 37	34 39	37 42	39 45	41 48	44 51	46 54	49 56	51 59	54 62
1	U																		54			
1		8	10	13	16	19	23	26	29	32	35	38	42	45	48	51	54	58	61	64	67	71
1		9 10	12 13	15 17	18 21	$\frac{22}{24}$	25 28	29 32	32	36 40	39	43	47	50 56	54	57 64	61 68	65	68 76	72	76	79
1 1		11	14	18	23	27	31	$\frac{32}{35}$	36 39	40	44 48	48 52	52 57	61	60 66	70	74	72 79	83	80 88	84 92	88 96
1		12	16	20	25	29	34	38	43	48	52	57	62	67	71	76	81	86	91	95	100	105
1	6	13	17	22	27	32	37	42	47	52	57	62	67	72	77	83	88	93	98	103	109	114
1		14	19	24	29	34	39	45	50	56	61	67	72	78	83	89	94	100	106	111	117	123
1		15	20	25	31	37	42	48	54	60	66	71	77	83	89	95	101	107	113	119	125	131
1		16	21	27	33	39	45	51	57	64	70	76	83	89	95	102	108	114	121	127	134	140
2	0	17	23	29	35	41	48	54	61	68	74	81	88	94	101	108	115	122	128	135	142	149
2	1	18	24	31	37	44	51	58	65	72	79	86	93	100	107	114	122	129	136	143	151	158
2		19	25	32	39	46	54	61	68	76	83	91	98	106		121	128	136	144	151	159	167
2	3 5	20	27	34	41	49	56	64	72	80	88	95	103	111	119	127	135	143	151	159	168	176
2		21	28	36	43	51	59	67	76	84	92	100	109	117	125	134	142	151	159	168	176	185
2	5 5	22	30	37	46	54	62	71	79	88	96	105	114	123	131	140	149	158	167	176	185	193
2		23	31	39	48	56	65	74	83	92	101	110	119	128	137	147	156		174	184	193	202
2		24	32	41	50	59	68	77	86	96	105	115	124	134	143	153	163		182	192	202	211
2		25	34	43	52	61	71	80	90	100	110	120		140		160		180	190	200	210	220
3		26 27	35 36	44 46	54 56	64 66	$\frac{74}{77}$	84 87	94 97	104 108	114 119	124 129	135 140	145 151	156 162	166 173	177 183	187 194	198 205	208 216	219 227	229 238
3		28 29	38	48 50	58 60	69 71	79	90 93	101	112 116	123 128	134	145	157	168 174	179	190	202 209	213 221	224	236 244	247
3 3		30	39 41	51	62	74	82 85	93 97	105 108	120	132	139 144	151 156	162 168	180	186 192	197 204		229	233 241	253	256 265
3		31	42	53	65	76	88	100	112	124	136	149		174	186	199	211	224	236	249	262	274
3	5	32	43	55	67	79	91	103		128	141	154	166		192	205	218	231	244	257	270	283
3	6	33	45	57	69	81	94	107	119	132	145	159	172	185	198	212	225	238	252	265	279	292
3		34	46	58	71	84	97	110	123	136	150	163	177	191	204	218	232	246	260	274	287	301
3	8	35	47	60	73	86	100	113	127	140	154	168	182	196	210	225	239	253	267	282	296	310
3		36	49	62	75	89	102	116	130	145	159	173		202		231	246	260	275	290	305	
4	0 3	37	50	64	77	91	105	120	134	149	163	178	193	208	223	238	253	268	283	298	313	329
4	1 :	38	52	65	79	94	108	123										275			322	
4		39	53	67	82		111			157					235		267		299			
		40	54	69	84		114			161								290				
		41 42	56 57	71 72		101 104				165 169		198 202			247 253			297 305		331	348 356	
		43	59 60	74 76	90	106				173		207		242			294			347	365	
		45 46	60 61	76 78	92 94	109 111		143146		177 181		212 217		248 253	266 272			319 327			374 382	
		47	63	79		114						222						334				
		48	64	81		116												342			400	

Quantile der $U_{m,n}$ -Verteilung: 1%-Quantil

Tabelliert ist das 1%-Quantil $U_{m,n;\,0.01}$.

$m \setminus n$	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
5	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42
6	31	32	34	35	36	38	39	41	42	43	45	46	47	49	50	52	53	54	56	57
7	39	41	43	44	46	48	50	51	53	55	57	58	60	62	64	65	67	69	71	72
8	48	50	52	54	56	58	60	62	65	67	69	71	73	75	77	79	82	84	86	88
9	56	59	61	64	66	69	71	74	76	79	81	84	86	89	91	94	96	99	101	104
10	65	68	71	74	77	79	82	85	88	91	94	97	100	102	105	108	111	114	117	120
11	74	77	80	84	87	90	93	97	100	103	107	110	113	116	120	123	126	129	133	136
12	83	86	90	94	97	101	105	108	112	116	119	123	127	130	134	138	141	145		152
13	92	96	100	104	108	112	116		124	128	132	136	140	145	149	153	157	161	165	169
14	101	105	110	114	119	123	128	132	136	141	145	150	154	159	163	168	172	177	181	186
15	110	115	120	124	129	134	139	144	149	154	159	163	168	173	178	183	188	193	198	202
16	119	124	130	135	140	145	151	156	161	166	172	177	182	188	193	198	203	209	214	219
17	128	134	140	145	151	157	162	168	174	179	185	191	196	202	208	213	219	225	231	236
18	137	143	150	156	162	168	174	180	186	192	198	204	210	217	223	229	235	241	247	253
19	147	153	160	166	173	179	186	192	199	205	212	218	225	231	238	244	251	257	264	270
20	156	163	170	177	183	190	197	204	211	218	225	232	239	246	253	260	267	274	281	287
21	165	172	180	187	194	202	209	216	224	231	238	246	253	260	268	275	283	290	297	305
22	174	182	190	198			221	229	236	244	252	260	267	275	283	291	299	306	314	322
23	184	192	200	208	216		233	241	249	257	265	274	282	290	298	306	315	323		339
24	193	202	210	219	227	236	244	253	262	270	279	287	296	305	313	322	331	339	348	356
25	202	211	220	229	238	247	256	265	274	283	292	301	310	319	329	338	347	356	365	374
26	212	221	231	240	249	259	268	278	287	296	306	315	325	334	344	353	363	372	382	391
27	$\frac{212}{221}$	231	241	251	260	$\frac{259}{270}$	280		300	310	320	329	339	349	359	369	379	389	399	409
28	231	241	251		271	282	292	302	313	323	333	343	354	364	374	385	395	405		426
29	240	251	261	272	283	293		315	325	336	347	357	368	379	390	400	411	422	433	444
30	249	260	271	283	294	305	316	327	338	349	360	372	383	394	405	416	427	439	450	461
91	250	970				216		220	251	260	974	206		400	490	499	444	155	167	470
$\frac{31}{32}$	259 268	270 280	282 292	293 304	305 316	316 328	328 340	339 352	351 364	362 376	374 388	386 400	397 412	409 424	420 436	432 448	444 460	$455 \\ 472$	467 484	479 496
33	$\frac{208}{278}$	290		315	327	339	352	364	377	389	401	414	426	439	451	464	476	489	501	514
34	287	300		325	338	351	364	377	389	402	415	428	441	454	467	480	492	505		531
35	296	310	323	336	349	362	376	389	402	415	429	442	455	469	482	495	509	522	535	549
36	306	320	333	347	360	374	388	401	415	429	442	456	470	484	497	511	525	539	553	566
$\begin{array}{c} 37 \\ 38 \end{array}$	$\frac{315}{325}$	329 339	343 354	357 368	372 383	386 397	$400 \\ 412$	414 426	428 441	442 455	456 470	470 485	485 499	499 514	513 528	527 543	541 558	556 572	570 587	584 602
39	$\frac{325}{334}$	349	364	379	394	409	424	439	454	469	484	499	514	529	544	559	574	589	604	619
40		359			405								528	544			590	606		637
41		369			416												607	623		655
42		379			427		460			509			558		590		623	639		672
43				422 433								570			606		639 656	656 673		690 708
44 45				444				514		549			602		621 637		672	690		708
46		419	436		472	490		526		562			616		652		689	707		743
47		428			483		520			576			631		668		705	724		761
48	420	438			495		532			589			646		684		722	741	760	779
49 50		448			506			564 576		602			660 675	680			738	757 774		796
50	409	458	410	491	517	991	990	970	990	010	099	000	675	695	715	735	754	774	794	814

Quantile der $U_{m,n}$ -Verteilung: 2.5%-Quantil

Tabelliert ist das 2.5%-Quantil $U_{m,n;\,0.025}$.

$m \setminus n$	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
5	3	4	6	7	8	9	10	12	13	14	15	16	18	19	20	21	23	24	25	26	28
6	4	6	7	9	11	12	14	15	17	18	20	22	23	25	26	28	30	31	33	34	36
7	6	7	9	11	13	15	17	19	21	23	25	27	29	31	33	35	37	39	41	43	45
8	7	9	11	14	16	18	20	23	25	27	30	32	35	37	39	42	44	46	49	51	54
9	8	11	13	16	18	21	24	27	29	32	35	38	40	43	46	49	51	54	57	60	63
10	9	12	15	18	21	24	27	30	34	37	40	43	46	49	53	56	59	62	65	68	72
11	10	14	17	20	24	27	31	34	38	41	45	48	52	56	59	63	66	70	74	77	81
12	12	15	19	23	27	30	34	38	42	46	50	54	58	62	66	70	74	78	82	86	90
13	13	17	21	25	29	34	38	42	46	51	55	60	64	68	73	77	81	86	90	95	99
14	14	18	23	27	32	37	41	46	51	56	60	65	70	75	79	84	89	94	99	103	108
15	15	20	25	30	35	40	45	50	55	60	65	71	76	81	86	91	97	102	107	112	118
16	16	22	27	32	38	43	48	54	60	65	71	76	82	87	93	99	104	110	116	121	127
17	18	23	29	35	40	46	52	58	64	70	76	82	88	94	100	106	112	118	124	130	136
18	19	25	31	37	43	49	56	62	68	75	81	87	94	100	107	113	120	126	133	139	146
19	20	26	33	39	46	53	59	66	73	79	86	93	100	107	114	120	127	134	141	148	155
20	21	28	35	42	49	56	63	70	77	84	91	99	106	113	120	128	135	142	150	157	164
21	23	30	37	44	51	59	66	74	81	89	97	104	112	120	127	135	143	151	158	166	174
22	24	31	39	46	54	62	70	78	86	94	102	110	118	126	134	142	151	159	167	175	183
23	25	33	41	49	57	65	74	82	90	99	107	116	124	133	141	150	158	167	176	184	193
24	26	34	43	51	60	68	77	86	95	103	112	121	130	139	148	157	166	175	184	193	202
25	28	36	45	54	63	72	81	90	99	108	118	127	136	146	155	164	174	183	193	202	212
26	29	38	47	56	65	75	84	94	103	113	123	133	142	152	162	172	182	192	201	211	221
27	30	39	49	58	68	78	88	98	108	118	128	138	148	159	169	179	189	200	210	220	231
28	31	41	51	61	71	81	91	102	112	123	133	144	155	165	176	187	197	208	219	229	240
29	33	43	53	63	74	84	95	106	117	128	139	150	161	172	183	194	205	216	227	239	250
30	34	44	55	66	77	88	99	110	121	132	144	155	167	178	190	201	213	224	236	248	259
31	35	46	57	68	79	91	102	114	126	137	149	161	173	185	197	209	221	233	245	257	269
32	36	47	59	70	82	94	106	118	130	142	154	167	179	191	204	216	228	241	253	266	278
33	38	49	61	73	85	97	109	122	134	147	160	172	185	198	211	223	236	249	262	275	288
34	39	51	63	75	88	100	113	126	139	152	165	178	191	204	218	231	244	257	271	284	298
35	40	52	65	78	90	104	117	130	143	157	170	184	197	211	225	238	252	266	279	293	307
36	41	54	67	80	93	107	120	134	148	162	175	189	203	217	232	246	260	274	288	302	317
37	42	56	69	82	96	110	124	138	152	166	181	195	210	224	239	253	268	282	297	312	326
38	44	57	71	85	99	113	128	142	157	171	186	201	216	231	246	260	276	291	306	321	336
39	45	59	73	87	102	116	131	146	161	176	191	207	222	237	253	268	283	299	314	330	345
40	46	60	75	90	104	120	135	150	166	181	197	212	228	244	259	275	291	307	323	339	355
41	47	62	77	92	107	123	138	154	170	186	202	218	234	250	266	283	299	315	332	348	365
42	49	64	79														307				
43	50	65	81	97	113	129	146	162	179	196	212	229	246	263	280		315				
44	51	67	83	99	116										287		323		358	376	393
45	52	68	85	102	118	136	153	170	188	205	223	241	259	277	294	312	330	349	367	385	403
46	54	70	87	104	121	139	156	174	192	210	228	247	265	283	301	320	338	357	375	394	413
47	55	72	89		124			178						290				365		403	422
48	56	73	91	109	127	145	164							296			354		393	412	432
49	57	75		111	130				206					303			362				441
50	59	77	95	114	132	152	171	190	210	230	250	269	289	309	329	350	370	390	410	431	451

Quantile der $U_{m,n}$ -Verteilung: 2.5%-Quantil

Tabelliert ist das 2.5%-Quantil $U_{m,n;\,0.025}$.

$m \setminus n$	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
5	29	30	31	33	34	35	36	38	39	40	41	42	44	45	46	47	49	50	51	52
6	38	39	41	43	44	46	47	49	51	52	54	56	57	59	60	62	64	65	67	68
7	47	49	51	53	55	57	59	61	63	65	67	69	71	73	75	77	79	81	83	85
8	56	58	61	63	66	68	70	73	75	78	80	82	85	87	90	92	94	97	99	102
9	65	68	71	74	77	79	82	85	88	90	93	96	99	102	104	107	110	113	116	118
10	75	78	81	84	88	91	94	97	100	104	107	110	113	116	120	123	126	129	132	136
11	84	88	91	95	99	102	106	109	113	117	120	124	128	131	135	138	142	146	149	153
12	94	98	102	106	110	114	118	122	126	130	134	138	142	146	150	154	158	162	166	170
13	103	108	112	117	121	126	130	134	139	143	148		157	161	166		174	179	183	188
14	113	118	123	128	132	137	142	147		157	162	166		176	181	186	191	196	200	205
15	123	128	133	139	144	149	154	160	165	170	175	181	186	191	197	202	207	212	218	223
16	133	138	144	150	155	161	167	172	178	184	189	195	201	207	212	218	224	229	235	241
17	142	148	155	161	167	173	179	185	191	197	203	210	216	222	228	234	240	246	252	259
18	152	159		172	178	185	191	198		211	217	224	231	237	244		257	263	270	277
19	162	169	176	183	190	197	204	211	218	225	232	239	246	253	259	266	273	280	287	294
20	172	179	187	194	201	209	216	223	231	238	246	253	260	268	275	283	290	298	305	312
21	182	189	197	205	213	221	228	236	244	252	260	268	276	283	291	299	307	315	323	330
22	192	200	208	216	224	233	241	249	257	266	274	282	291	299	307	315	324	332	340	349
23	201	210		227	236		253	262	271	279	288	297	306	314	323		340	349	358	367
24	211	220	229	239	248	257	266	275	284	293	302	312	321	330	339	348	357	366	376	385
25	221	231	240	250	259	269	278	288	298	307	317	326	336	345	355	365	374	384	393	403
26	231	241	251	261	271	281	291	301	311	321	331	341	351	361	371	381	391	401	411	421
27	241	251	262	272	283	293	303	314	324	335	345		366	377	387	397	408	418	429	439
28	251	262	273	283	294	305	316	327	338	349	359	370	381	392	403	414	425	436	447	458
29	261	272	283	295	306		329	340	351	362	374	385	396	408	419	430	442	453	464	476
30	271	283	294	306	318	329	341	353	365	376	388	400	412	423	435	447	459	471	482	494
31	281	293	305	317	329	342	354	366	378	390	402	415	427	439	451	463	476	488	500	512
32	291	303	316	329	341	354	366	379	392	404	417	429	442	455	467	480	493	505	518	531
33	301	314	327	340	353	366	379	392	405	418	431	444	457	470	483	497	510	523	536	549
34	311	324	338	351	365		392	405	419	432	446	459	473	486		513	527	540	554	567
35	321	335	349	362	376	390	404	418	432	446	460	474	488	502	516	530	544	558	572	586
36	331	345	359	374	388	402	417	431	446	460	474	489	503	517	532	546	561	575	590	604
37	341	356		385	400	415	429	444	459	474	489	504	518	533	548	563	578	593	608	623
38	351	366		396	412	427	442	457	473	488	503		534	549		580	595	610	626	641
39	361		392	408	423		455		486				549	565	580		612	628	644	659
40	371	387	403	419	435	451	467	483	500	516	532	548	564	580	597	613	629	645	661	678
41	381	397	414	430	447	463	480	497	513	530	546	563	580	596	613	629	646	663	679	696
42		408			459		493					578					663		697	715
43		418		453	471			523	540	558	575	593	610				680	698	715	733
44		429																715		752
45	421	439	458	476	494	512	531	549	567	586	604	623	641	659	678	696	715	733	752	770
46	431	450	468	487	506	525	543	562	581	600	619	637	656	675	694	713	732	751	770	788
47	441	460			518				595			652		691				768	788	807
48	451		490		530		569					667		707			766		806	825
49		481			541		581	602				682		723						844
50	471	492	512	533	553	574	594	615	635	656	676	697	718	738	759	780	800	821	842	862

Quantile der $U_{m,n}$ -Verteilung: 5%-Quantil

Tabelliert ist das 5%-Quantil $U_{m,n;\,0.05}$.

$m \setminus n$	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
5	5	6	7	9	10	12	13	14	16	17	19	20	21	23	24	26	27	29	30	31	33
6	6	8	9	11	13	15	17	18	20	22	24	26	27	29	31	33	35	37	38	40	42
7	7	9	12	14	16	18	20	22	25	27	29	31	34	36	38	40	42	45	47	49	51
8	9	11	14	16	19	21	24	27	29	32	34	37	40	42	45	48	50	53	55	58	61
9	10 12	13 15	16 18	19	22 25	25 28	28 32	31 35	34 38	37 42	40	43	46 52	49	52	55 63	58	61	64 73	67	70 80
10				21					30	42	45	49	32	56	59	03	66	69		76	
11	13	17	20	24	28	32	35	39	43	47	51	55	58	62	66	70	74	78	82	86	90
12	14	18	22	27	31	35	39	43	48	52	56	61	65	69	73	78	82	86	91	95	99
13	16	20	25	29	34	38	43	48	52	57	62	66	71	76	81	85	90	95	99	104	109
14 15	17 19	22 24	27 29	$\frac{32}{34}$	37 40	42 45	47 51	52 56	57 62	62 67	67 73	72 78	78 84	83 89	88 95	93 101	98 106	103 112	108 117	114 123	119 129
									02								100				
16	20	26	31	37	43	49	55	61	66	72	78	84	90	96	102	108	114	120	126	132	138
17	21	27	34	40	46	52	58	65	71	78	84	90	97	103	110	116	122	129	135	142	148
18 19	23 24	29 31	36 38	42 45	49 52	56 59	62 66	69 73	76 81	83 88	89 95	96 102	103 110	$\frac{110}{117}$	117 124	124 131	131 139	137 146	144 153	151 161	158 168
20	26	33	40	48	55	63	70	78	85	93	101	102	116	124	131	139	147	155	162	170	178
21 22	27 29	$\frac{35}{37}$	42 45	50 53	58 61	66	74 78	82	90	98	106	114	122 129	131 137	139	147	155	163	171	180 189	188 198
23	30	38	45	55	64	69 73	82	86 91	95 99	103 108	112 117	120 126	135	144	146 153	155 162	163 171	172 180	180 190	199	208
$\frac{23}{24}$	31	40	49	58	67	76	86	95	104	114	123	132	142	151	161	170	180	189	199	208	218
25	33	42	51	61	70	80	90	99	109	119	129	138	148	158	168	178	188	198	208	218	228
26	34	44	54	63	73	83	93	104	114	124	134		155	165	175	186	196	206	217	227	238
27	36	46	56	66	76	87	97	104	118	129	140	150	161	172	183	193	204	215	226	237	$\frac{238}{248}$
28	37	47	58	69	79	90	101	112	123	134	145	157	168	179	190	201	213	224	235	246	258
29	39	49	60	71	83	94	105	117	128	139	151	163	174	186	197	209	221	232	244	256	268
30	40	51	62	74	86	97	109	121	133	145	157	169	181	193	205	217	229	241	253	265	278
31	41	53	65	77	89	101	113	125	137	150	162	175	187	200	212	225	237	250	262	275	288
32	43	55	67	79	92	104	117	129	142	155	168	181	194	207	219	232	245	258	272	285	298
33	44	57	69	82	95	108	121	134	147	160	173	187	200	213	227	240	254	267	281	294	308
34	46	58	71	85	98	111	125	138	152	165	179	193	207	220	234	248	262	276	290	304	318
35	47	60	74	87	101	115	129	142	157	171	185	199	213	227	242	256	270	285	299	313	328
36	49	62	76	90	104	118	132	147	161	176	190	205	220	234	249	264	278	293	308	323	338
37	50	64	78	92	107	122	136	151	166	181	196	211	226	241	256	272	287	302	317	332	348
38	51	66	80	95	110	125	140	155	171	186	202	217	233	248	264	279		311	326	342	358
39	53	68	83	98	113	129	144	160	176	191	207	223	239	255	271	287	303	319	336	352	368
40	54	69	85	100	116	132	148		180	197	213	229	246	262	279	295		328	345	361	378
41	56	71	87														320				
42	57	73															328				
43	59	75 77															336				
44 45	60 61	77 79			128 132		164 168		199 204		$\frac{235}{241}$		272		308		345 353		391	400 409	
46	63	80			135				209		247		285			342		380	400	419	
47	64	82			138 141				214		252						369		409		
48 49	66 67	84 86	105						218 223					318 325			378 386			438 448	
50	69		103		144 147									$\frac{325}{332}$			394				
50	UÐ	00	101	141	1.41	101	101	200	440	443	209	43U	OII	JJZ	JJ2	919	034	410	400	401	413

Quantile der $U_{m,n}$ -Verteilung: 5%-Quantil

Tabelliert ist das 5%-Quantil $U_{m,n;\,0.05}$.

$m \setminus n$	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
5	34	36	37	39	40	41	43	44	46	47	49	50	51	53	54	56	57	59	60	61
6	44	46	47	49	51	53	55	57	58	60	62	64	66	68	69	71	73	75	77	79
7	54	56	58	60	62	65	67	69	71	74	76	78	80	83	85	87	89	92	94	96
8	63	66	69	71	74	77	79	82	85	87	90	92	95	98	100	103	106	108	111	114
9	73	76	79	83	86	89	92	95	98	101	104	107	110	113	116	119	122	125	128	132
10	83	87	90	94	97	101	104	108	111	115	118	122	125	129	132	136	139	143	146	150
11	93	97	101	105	109	113	117	121	125	129	132	136	140	144	148	152	156	160	164	168
12	104	108	112	117	121	125	129	134	138	142	147	151	155	160	164	168	173	177	182	186
13	114	118	123	128	133	137	142	147	152	157	161	166	171	176	180	185	190	195	199	204
14	124	129	134	139	145	150	155	160	165	171	176	181	186	191	197	202	207	212	217	223
15	134	140	145	151	157	162	168	173	179	185	190	196	202	207	213	218	224	230	235	241
16	144	150	157	163	169	175	181	187	193	199	205	211	217	223	229	235	241	247	253	260
17	155	161	168	174	181	187	194	200	207	213	220	226	233	239	246	252	259	265	272	278
18	165	172	179	186	193	200	207	213	220	227	234	241	248	255	262	269	276	283	290	297
19	175	183	190	197	205	212	219	227	234	242	249	256	264	271	279	286	293	301	308	315
20	186	193	201	209	217	225	232	240	248	256	264	272	279	287	295	303	311	319	326	334
21	196	204	919	221	229	237	245	254	262	270	278	287	295	303	312	320	328	336	345	353
$\frac{21}{22}$	206	215		232	241	$\frac{257}{250}$	$\frac{245}{258}$	267	276	285	293	302	311	319	328	$\frac{320}{337}$	346	354		372
23	$\frac{200}{217}$	226	235	244	253	262	272	281	290	299	308	317	326	336	345	354	363	372	381	391
24	$\frac{217}{227}$	237	246	256	265	275	285	294	304	313	323	332	342	352	361	371	381	390	400	409
25	238	248	258	268	278	288	298	308	318	328	338	348	358	368	378	388	398	408	418	428
26	248	258	269	279	290	300	311	321	332	342	353	363	374	384	395	405	416	426	437	447
27 28	258 269	269 280	280 292	291 303	302 314	313 326	324 337	335 348	346 360	$357 \\ 371$	367 382	378 394	389 405	$400 \\ 417$	411 428	422 439	433 451	444 462	455 474	466 485
29	279	291	303	315	326	338	350	362	374	385	397	409	421	433	445	456	468	480	492	504
30	290	302	314	326	339	351	363	375	388	400	412	424	437	449	461	474	486	498	511	523
31	300	313		338	351	364	376	389	402	414		440	453	465	478	491	504	516		542
32	311	324	337	350	363	376	389	403	416	429	442	455	468	482	495	508	521	534		561
33	321 332	335		362	375	389	403	416	430	443	457	471	484	498 514	512	525	539	552	566	580
34 35	342	346 357	360 371	374 385	388 400	402 414	416 429	430 443	444	$458 \\ 472$	472 487	486 501	500 516	530	528 545	542 560	556 574	571 589	585 603	599 618
33	542	551	3/1	300	400	414	429	440	458		401	301	210	000	040	500	014	509	003	010
36	353	367	382	397	412	427	442	457	472	487	502	517	532	547	562	577	592	607	622	637
37	363	378	394	409	424	440	455	471	486	501	517	532	548	563	579	594	609	625	640	656
38	374	389	405	421	437	453	468	484	500	516	532	548	564	579	595	611	627	643		675
39	384	400	417	433	449	465	482	498	514	530	547	563	579	596	612	629	645	661	678	694
40	395	411	428	445	461	478	495	512	528	545	562	579	595	612	629	646	663	679	696	713
41	405	422	439	456											646		680			732
42		433					521								663		698	716		751
43				480						589			643		679		716			770
44				492			548					640			696					789
45	447	466	485	504	523	542	561	580	599	618	637	656	675	694	713	732	751	770	789	809
46	458	477	496	516	535	555	574	593	613	632	652	671	691	710	730	749	769	789	808	828
47	468	488	508		547			607		647			707	727	747		787	807		847
48	479	499	519	539			600	621	641	662	682	702	723	743	764	784	805			866
49		510			572		614				697		739	760					864	
50	500	521	542	563	584	606	627	648	669	691	712	733	755	776	797	819	840	861	883	904

Quantile der $U_{m,n}$ -Verteilung: 95%-Quantil

Tabelliert ist das 95%-Quantil $U_{m,n;\,0.95}$.

$m \setminus n$	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
5	20	24	28	31	35	38	42	46	49	53	56	60	64	67	71	74	78	81	85	89	92
6	24	28	33	37	41	45	49	54	58	62	66	70	75	79	83	87	91	95	100	104	108
7	28	33	37	42	47	52	57	62	66	71	76	81	85	90	95	100	105	109	114	119	124
8	31	37	42	48	53	59	64	69	75	80	86	91	96	102	107	112	118	123	129	134	139
9	35	41	47	53	59	65	71	77	83	89	95	101	107	113	119	125		137	143	149	155
10	38	45	52	59	65	72	78	85	92	98	105	111	118	124	131	137	144	151	157	164	170
11	42	49	57	64	71	78	86	93	100	107	114	121	129	136	143	150	157	164	171	178	185
12	46	54	62	69	77	85	93	101	108	116	124	131	139	147	155	162	170	178	185	193	201
13	49	58	66	75	83	92	100	108	117	125	133	142	150	158	166	175		191	200	208	216
14	53	62	71	80	89	98	107	116	125	134	143	152	160	169	178	187	196	205	214	222	231
15	56	66	76	86	95	105	114	124	133	143	152	162	171	181	190	199	209	218	228	237	246
16	60	70	81	91	101	111	121	131	142	152	162	172	182	192	202	212	222	232	242	252	262
17	64	75	85	96	107	118	129		150	160	171		192		213	224		245	256	266	
18	67	79	90	102	113	124	136	147	158	169	181	192	203		225	236		259	270	281	292
19	71	83	95	107	119	131	143	155	166	178	190	202	213		237	249	260	272	284	295	307
20	74	87	100	112	125	137	150	162	175	187	199	212	224	236	249	261	273	285	298	310	322
21	78	91	105	118	131	144	157	170	183	196	209	222	235	247	260	273	286	299	312	324	337
22	81	95	109	123	137	151	164	178	191	205	218	232	245		272	285		312	326	339	352
23	85		114	129	143	157	171	185	200	214	228	242	256		284	298	312	326	339	353	367
24	89	104	119	134	149	164	178	193	208	222	237	252	266	281	295	310		339	353	368	382
25	92	108	124	139	155	170	185	201	216	231	246	262	277	292	307	322	337	352	367	382	397
26	96	112	128	145	161	177	193	208	224	240	256	272	287	303	319	334	350	366	381	397	412
27	99	_	133	150	167	183	200		233	249	265	282	298	314	330	347	363	379	395	411	427
28	103	121	138	155	173		207			258	275	291	308		342	359		392	409	426	442
29	106		143	161	178	196	214	231	249	267	284	301	319	336	354	371	388	406	423	440	457
30	110	129	148	166	184	203	221	239	257	275	293	311	329	347	365	383	401	419	437	455	472
31	114	133	152	171	190	209	228	247	266	284	303	321	340	358	377	395	414	432	451	469	487
32	117	137	157	177	196	216	235		274	293	312	331	350	369	389	408	427	446	464	483	502
33	121	141	162		202		242		282		322	341	361	381	400	420		459	478	498	517
34	124		167	187	208		249	270	290	311	331	351	371	392	412	432	452	472	492	512	532
35	128	150	171	193	214	235	256	278	298	319	340	361	382	403	423	444	465	485	506	527	547
36	131	154	176	198	220	242	264	285	307	328	350	371	392	414	435	456	478	499	520	541	562
37	135	158	181	204	226	248	271	293	315	337	359	381	403	425	447	468	490	512	534	556	577
38	139		186		232	255	278	301	323	346	368	391	413		458	481	503		548	570	592
39		166	190		238		285		331	355	378	401	424		470	493	516 528	539	561	584	607
40					244									458						599	
41	149																				
42					256												554			627	
	156																		617		
	160																		631		
	164								381										644	0/1	097
	167				279		334		389				497				605			685	
		200	229		285									535			618			699	
	174				291				406					546			630			714	
	178 181								414					557			643		700	728	
50	181	<i>Z</i> 12	243	213	3 ∪3	აპპ	303	392	422	451	481	910	539	800	998	027	oco	085	114	743	771

Quantile der $U_{m,n}$ -Verteilung: 95%-Quantil

Tabelliert ist das 95%-Quantil $U_{m,n;\,0.95}$.

$m \setminus n$	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
5	96	99	103	106	110	114	117	121	124	128	131	135	139	142	146	149	153	156	160	164
6	112	116	121	125	129	133	137	141	146	150	154	158	162	166	171	175	179	183	187	191
7	128	133	138	143	148	152	157	162	167	171	176	181	186	190	195	200	205	209	214	219
8	145	150	155	161	166	171	177	182	187	193	198	204	209	214	220	225	230	236	241	246
9	161	167	173	178	184	190	196	202	208	214	220	226	232	238	244	250	256	262	268	273
10	177	183	190	196	203	209	216	222	229	235	242	248	255	261	268	274	281	287	294	300
11	193	200	207	214	991	ววฉ	225	242	249	256	264	271	278	285	292	299	306	313	320	327
	$\frac{133}{208}$							262	$\frac{249}{270}$	$\frac{250}{278}$	285	293	301	308	316	$\frac{233}{324}$	331	339	346	354
	$\frac{208}{224}$							$\frac{202}{282}$	290	298	307	$\frac{295}{315}$	323	331	340	348	356	364	373	381
	$\frac{224}{240}$							302	311	$\frac{298}{319}$	328	$\frac{313}{337}$	$\frac{323}{346}$	355	363	372	381	390	399	407
	256							322	331	340		359	368		$\frac{303}{387}$	397	406	415		434
10	250	200	210	204	293	505	312	322	991			559	300	310	301	391		410	420	454
	272							341	351	361	371	381	391	401	411	421	431	441	451	460
								361	371	382	392	403	413	424	434	445	455	466		487
	303							381	392	403	414	425	436		458	469	480	491	502	513
	319							400	412	423	435	447	458	470	481	493	505	516	528	540
20	334	347	359	371	383	395	408	420	432	444	456	468	481	493	505	517	529	541	554	566
21	350	363	375	388	401	414	427	439	452	465	478	490	503	516	528	541	554	567	579	592
								459	472	485	499	512	525	539	552	565	578	592	605	618
	381							478	492	506	520	534	548	561	575	589	603	617	631	644
24		411						498	512	527	541	556	570	584	599	613	627	642	656	671
25	412							517	532	547	562	577	592	607	622	637	652	667	682	697
26	428	111	450	175	400	506	501	537	552	568	583	599	614	630	645	661	676	692	707	723
$\frac{20}{27}$		460						556	572	588	605	621	637	653	669	685	701	717	733	749
	459							576	592	609	626	642	659	675	692	709	725	742	758	775
	475							595	612	630	647	664	681	698	715	733	750	767	784	801
	490							615	632	650	668	686	703	721	739	756	774	792	809	827
								013	032	050	000	000	703	121	139	150		192	009	041
	506							634	652	671	689	707	725	744	762	780	798	817	835	853
	521							653	672	691	710	729	748	766	785	804	823	842	860	879
	537							673	692	712	731	750	770	789	808	828	847	867	886	905
	552							692	712	732	752	772	792	812	832	852	872	891	911	931
35	568	588	609	630	650	671	691	712	732	753	773	794	814	835	855	875	896	916	937	957
36	583	605	626	647	668	689	710	731	752	773	794	815	836	857	878	899	920	941	962	983
37	599	621	642	664	686	707	729	750	772	794	815	837	858	880	901	923	945	966	988	1009
38	614	637	659	681	703	725	748	770	792	814	836	858	880	903	925	947	969	991	1013	1035
39	630	653	675	698	721	744	766	789	812	835	857	880	903	925	948	970	993	1016	1038	1061
40	645	669	692	715	739	762	785	808	832	855	878	901	925	948	971	994	1017	1041	1064	1087
41	661	685	709	733	756	780	804	828	852	875	899	923	947	970	994	1018	1042	1065	1089	1113
							823			896							1066			
							842	867		916							1090			
							860			937							1114			
	723							905	931	957							1139			
	738																			
	754							925 944	951 971								$\frac{1163}{1187}$			
							917 936										1211			
							950 954										1236			
																	1260			
50	000	029	000	001	910	944	913	1002	1091	1099	1000	111/	1140	11/4	1403	1791	1200	1209	1911	1540

Quantile der $U_{m,n}$ -Verteilung: 97.5%-Quantil

Tabelliert ist das 97.5%-Quantil $U_{m,n;\,0.975}$.

$m \setminus n$	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
5	22	26	29	33	37	41	45	48	52	56	60	64	67	71	75	79	82	86	90	94	97
6	26	30	35	39	43	48	52	57	61	66	70	74	79	83	88	92	96	101	105	110	114
7	29	35	40	45	50	55	60	65	70	75	80	85	90	95	100	105		115	120	125	130
8	33	39	45	50	56	62	68	73	79	85	90	96	101	107	113	118	124	130	135	141	146
9	37	43	50	56	63	69	75	81	88	94	100	106	113	119	125	131	138	144	150	156	162
10	41	48	55	62	69	76	83	90	96	103	110	117	124	131	137	144	151	158	165	172	178
11	45	52	60	68	75	83	90	98	105	113	120	128	135	142	150	157	165	172	179	187	194
12	48	57	65	73	81	90	98	106	114		130		146			170		186	194	202	210
13	52	61	70	79	88	96	105	114	123	131	140	148	157	166	174	183		200	209	217	226
14	56	66	75	85	94	103	113	122	131	140	150	159	168	177	187	196		214	223	233	
15	60	70	80	90	100	110	120	130	140	150	160	169	179	189	199	209	218	228	238	248	257
16	64	74	85	96	106	117	128	138	148	159	169		190		211	221	232	242	252	263	
17	67	79	90		113	124	135		157	168	179			212	223	234		256	267	278	289
18	71	83	95	107	119	131	142	154	166		189	201	212		235	247	258	270	281	293	
19 20	75 79	88 92	100 105	113 118	125 131	137 144	150 157	162 170	174 183	187 196	199 209	211 221	$\begin{array}{c} 223 \\ 234 \end{array}$		247260	260 272	272 285	284 298	296 310	308 323	320 336
	13	32	100																		
21	82	96	110	124	138		165	178	192	205	218	232	245		272	285		311	325	338	351
22	86		115	130	144	158	172		200		228		256		284	298	311	325	339	353	
23 24	90 94		$\frac{120}{125}$	135 141	150 156	$105 \\ 172$	179 187	194 202	209 217	223 233	238 248	252 263	267 278	281 293	296 308	310 323		339 353	353 368	368 383	382 398
25	97	114	130	146	162	178	194		226	242	257	273	289	304	320	336	351	367	382	398	413
26	101	118	135	152	169	185	202	218	235	251	267	283	300		332	348	364	380	397	413	429
27 28	105	123 127	140 145		175 181	192 199	209 217		243 252	260	277 287	294 304	311	327 339	344 356	361 373	378 391	394 408	411 425	428 443	444 460
29	112		150	169	187	206	224		260	278	296		332	350	368	386	404	422	440	457	475
30	116		155	174	193		231	250	269	288	306		343	362	380	399	417	436	454	472	491
31 32	120 124	140 145	160 165	180 186	200 206	219 226	239 246	258 266	277 286	297 306	316 326		354 365	373 385	392 404	411 424	430 444	449 463	468 483	487 502	506 522
33		149	170		212					315	335		376		416			477	497	517	537
34		153	175		218	240	261	282	303	324	345		387		428	449	470	491	511	532	552
35	135		180	202	225	246	268	290	312	333	355		398	419	440	462	483	504	526	547	568
36	139	162	185	208	231	253	276	298	320	342	365	387	409	431	452	474	496	518	540	562	583
37	143	166	190	214	237	260	283	306	329	352	374	397	419	442	464	487	509	532	554	576	599
38	146		195		243	267	290	314	337	361	384	407	430		476	500		545	568	591	614
39		175	200		249		298			370	394	417	441	465	488	512		559	583	606	630
40	154	180	205	230	256	280	305	330	354	379	403	428	452	476	501	525	549	573	597	621	645
41	158	184	210	236	262	287	313	338	363	388	413	438	463	488	513	537	562	587	611	636	660
42					268									499				600		651	
	165	193	220	247	274	301	327	354	380	406				511		562	588	614	640	666	691
	169																	628		680	
45	173	202	230	258	287	314	342	370	397	425	452	479	506	533	561	588	615	641	668	695	722
46	176	206	235	264	293	321	350	378	406	434	462	489	517	545	573	600	628	655	683	710	737
	180		240	270	299			386	414	443		500	528	556	585	613	641	669	697	725	753
	184					335			423					568				683	711	740	
	188				311				431					579			667			755	
50	191	223	255	286	318	348	379	410	440	470	500	531	561	591	621	650	680	710	740	769	799

Quantile der $U_{m,n}$ -Verteilung: 97.5%-Quantil

Tabelliert ist das 97.5%-Quantil $U_{m,n;\,0.975}$.

$m \setminus n$	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
5	101	105	109	112	116	120	124	127	131	135	139	143	146	150	154	158	161	165	169	173
6	118	123	127	131	136	140	145	149	153	158	162	166	171	175	180	184	188	193	197	202
7	135	140	145	150	155	160	165	170	175	180	185	190	195	200	205	210	215	220	225	230
8	152	158	163	169	174	180	186	191	197	202	208	214	219	225	230	236	242	247	253	258
9	169	175	181	187	193	200	206	212	218	225	231	237	243	249	256	262	268	274	280	287
10	185	192	199	206	212	219	226	233	240	246	253	260	267	274	280	287	294	301	308	314
11	202	200	217	224	231	230	246	254	261	268	276	283	290	298	305	313	320	327	335	342
	$\frac{202}{218}$						266	274	282	290	298	306	$\frac{250}{314}$	322	330	338	346	354	362	370
	$\frac{216}{235}$						286	295	303	312	$\frac{290}{320}$	329	337	346	354	363	372	380		397
	$\frac{255}{251}$						306	$\frac{295}{315}$	324	333	$\frac{320}{342}$	$\frac{329}{352}$	361	370	379	388	397	406		425
	$\frac{251}{267}$						326	335	345	355	365	374	384	394	403	413	423	433		452
							320	555	040				304	334	400	410	420			402
	283						345	356	366	376	387	397	407	417	428	438	448	459		479
17		311					365	376	387	398	409	419	430	441	452	463	474	485		506
	316						385	396	408	419	431	442	453	465	476	488	499	511	522	533
							404	416	428	440	452	464	476	488	501	513	525	537		561
20	348	361	373	386	399	411	424	437	449	462	474	487	500	512	525	537	550	562	575	588
21	364	378	391	404	417	430	444	457	470	483	496	509	522	536	549	562	575	588	601	615
22	380	394	408	422	436	449	463	477	491	504	518	532	545	559	573	587	600	614	628	641
23	397	411	425	440	454	468	483	497	511	526	540	554	568	583	597	611	626	640	654	668
24	413	428	443	457	472	487	502	517	532	547	562	576	591	606	621	636	651	666	680	695
25	429	444	460	475	491	506	522	537	552	568	583	599	614	630	645	660	676	691	707	722
26	445	461	477	493	509	525	541	557	573	589	605	621	637	653	669	685	701	717	733	749
27		478					561	577	594	610	627	643	660	676	693	710	726	743		776
	477						580	597	614	631	649	666	683	700	717	734	751	768	785	802
	493						599	617	635	653	670	688	706	723	741	759	776	794	812	829
	509						619	637	655	674	692	710	728	747	765	783	801	819		856
							620	GE7	676	COL	71.4	732	751	770	790		826	845	864	883
	525						$638 \\ 658$	657 677	676 696	695 716	714	755	751 774	770 793	789 813	808 832	851	871	890	909
	541										735									
	557 573						677 696	697	717	737 758	757	777 799	797 819	817 840	837 860	856 881	876 901	896 922	916 942	936 963
							716	717	737		778 800	821	842	863		905	901	947	-	
	589						110	737	758	779		021	042		884	905		941	900	989
	605						735	757	778	800	822	843	865	887	908	930	951	973		1016
	_						755	777	799	821	843	865	888	910	932	954	976		1020	
	637						774	797	819	842	865	888	910	933	956				1046	
	653						793	817	840	863	887	910	933	956					1072	
40	669	693	717	741	765	789	813	837	860	884	908	932	956	980	1003	1027	1051	1075	1099	1122
41	685	710	734	759	783	808	832	856	881	905	930	954	978	1003	1027	1052	1076	1100	1125	1149
42	701	726	751	776	801	826	851	876	901	926	951								1151	
43	717	743	768	794	819	845	871	896	922	947	973	998	1024	1049	1075	1100	1126	1151	1177	1202
						864	890	916	942	968	994								1203	
						883	909	936	963	989									1228	
46	765	792	820	847	874	901	929	956	983	1010	1037	1065	1092	1119	1146	1173	1200	1227	1254	1282
						920				1031										
						939				1052										
						958				1073										
																				1388
50	049	000	000	911	J±1	910	1000	1000	1009	1034	1124	1100	1102	1414	1441	1410	1000	1029	1990	1900

Quantile der $U_{m,n}$ -Verteilung: 99%-Quantil

Tabelliert ist das 99%-Quantil $U_{m,n;\,0.99}$.

$m \setminus n$	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
5	23	27	31	35	39	43	47	51	55	59	63	67	71	75	79	83	87	91	95	99	103
6	27	32	37	41	46	51	56	60	65	70	74	79	83	88	93	97	102	107	111	116	120
7	31	37	42	48	53	58	64	69	74	80	85	90	95	101	106	111	116	122	127	132	138
8	35	41	48	54	60	66	72	78	83	89	95	101	107	113	119	125	131	137	143	149	154
9	39	46	53	60	66	73	80	86	93	99	106	112	119	125	132	139	145	152	158	165	171
10	43	51	58	66	73	80	87	95	102	109	116	123	131	138	145	152	159	166	174	181	188
11	47	56	64	72	80	87	95	103	111	119	127	134	142	150	158	166	173	181	189	197	204
12	51	60	69	78	86	95	103	112	120	129	137	145	154	162	171	179	187	196	204	212	221
13	55	65	74	83	93	102	111	120	129	138	147		165		183	192	201	210	219	228	237
14	59	70	80	89	99	109	119	129	138	148	158	167	177	186	196	206		225	234	244	254
15	63	74	85	95	106	116	127	137	147	158	168	178	188	199	209	219	229	239	250	260	270
16	67	79	90	101	112	123	134	145	156	167	178	189	200	211	221	232	243	254	265	275	286
17	71	83	95	107	119	131	142	154	165	177	188	200	211	223	234	246		268	280	291	302
18	75	88	101	113	125	138	150	162	174	186	199	211	223		247	259	271	283	295	307	319
19	79	93	106	119	132	145	158	171	183	196	209	221	234		259	272	285	297	310	322	335
20	83	97	111	125	139	152	166	179	192	206	219	232	246	259	272	285	298	312	325	338	351
21	87	102	116	131	145	159	173	187	201	215	229	243	257		285	298	312	326	340	353	367
22	91	107	122		152	166	181			225	239	254	268		297	312	326	340	355	369	383
23	95		127	143	158	174	189	204	219	234	250	265	280		310	325	340	355	370	384	399
24	99		132	149	165	181	197	212	228	244	260	275	291	307	322	338	353	369	384	400	415
25	103	120	138	154	171	188	204	221	237	254	270	286	302	319	335	351	367	383	399	415	432
26	107	125	143		178	195	212	229	246	263	280	297	314		347	364	381	398	414	431	448
27	111	130	148		184	202	220	238	255	273	290		325		360	377	395	412	429	446	464
28		134	153		191		228		264		300		336		372	390	408	426	444	462	480
29 30	119 123		159	178 184	197 204	216 223	235 243	254 263	273 282	292 301	311 321	329 340	348 359	366 378	385 397	403 417	422 436	440 455	459 474	477 493	$496 \\ 512$
30	123	144	164	104	204	223	243	203	202	301	321	340	559	310	391	417	450	455	4/4	490	312
31	127	148	169	190	210	231	251	271	291	311	331	351	370	390	410	430	449	469	489	508	528
32	131	153	174		217	238	259	279	300	320	341	361	382	402	422	443		483	503	524	544
33 34	135	157 162	180 185	202	223 230	245252	266 274	288 296	309 318	330 340	351 361	372 383	393 404		435 447	456 469	477 490	497 512	518 533	539 554	560 576
35	143		190	213	236	259	282	304	327	349	371	394	416		460	482	504	526	548	570	592
36	147	171	195	219	243	266	289	313	336	359	381	404	427	450	472	495	518	540	563	585	608
37 38	151 155	176 181	201 206	$225 \\ 231$	249 256	273 280	297 305	321 329	345 354	368 378	392 402	415 426	438 450	462 474	$485 \\ 497$	508 521	531 545	554 569	577 592	601 616	624 640
39		185	211	237	262	288	313	338	362	387	412		461	485	510	534		583	607	631	656
40		190												497		547		597	622	647	671
41 42	167	194 199												509			599			662 677	
	175								398								613				
	179													545			627			708	
	183								416					557			640		696	724	
	187		248		308		367		425				540			626			711	739	
	190				314				434				551		610		668		725	754	
	194				321				443				563		622	652		711	740	770	
	198								452					604			695			785	
	202																708		770		
50	202	∠30	209	201	JJ4	900	990	449	401	432	υZO	JJ4	909	010	041	010	100	199	110	000	091

Quantile der $U_{m,n}$ -Verteilung: 99%-Quantil

Tabelliert ist das 99%-Quantil $U_{m,n;\,0.99}$.

$m \setminus n$	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
5	107	111	115	119	123	127	131	135	139	143	147	151	155	159	163	167	171	175	179	183
6	125	130	134	139	144	148	153	157	162	167	171	176	181	185	190	194	199	204	208	213
7		148				169	174	180	185	190	195	201	206	211	216		227	232	237	243
8		166				190	196	202	207	213	219	225	231	237	243		254	260	266	272
9		184				210	217	223	230	236	243	249	256	262	269	275	282	288	295	301
10	195	202	209	216	223	231	238	245	252	259	266	273	280	288	295	302	309	316	323	330
11	212	220	228	235	243	251	259	266	274	282	289	297	305	313	320	328	336	344	351	359
12	229	238	246	254	263	271	279	288	296	304	313	321	329	338	346	354	363	371	379	388
13	246					291	300	309	318	327	336	345	354	362	371	380	389	398	407	416
14						311	320	330	340	349	359	368	378	387	397	406	416	425	435	444
15	280	290	300	311	321	331	341	351	361	371	381	392	402	412	422	432	442	452	462	473
16	297	308	318	329	340	351	361	372	383	394	404	415	426	436	447	458	469	479	490	501
17	314	325	336	348	359	370	382	393	404	416	427	438	450	461	472	484	495	506	517	529
18	331	343	354	366	378	390	402	414	426	438	450	462	474	485	497	509	521	533	545	557
19	347	360	372	385	397	410	422	435	447	460	472	485	497	510	522	535	547	560	572	585
20	364	377	390	403	417	430	443	456	469	482	495	508	521	534	547	560	573	586	599	613
21	381	395	408	422	436	449	463	477	490	504	518	531	545	559	572	586	599	613	627	640
22		412				469	483	497	512	526	540	554	569	583	597	611	625	640	654	668
23		429				489	503	518	533	548	563	577	592	607	622	637	651	666	681	696
24	431	446	462	477	493	508	524	539	554	570	585	601	616	631	647	662	677	693	708	724
25	448	464	480	496	512	528	544	560	576	592	608	624	640	656	671	687	703	719	735	751
26	161	481	407	514	521	547	564	580	597	614	630	647	663	680	696	713	729	746	762	779
$\frac{20}{27}$		498				567	584	601	618	635	652	670	687	704	721	738	755	772	789	806
28		515				586	604	622	639	657	675	693	710	728	746		781	799	816	834
29		532				606	624	642	661	679	697	716	734	752	770	789	807	825	843	861
30		550				625	644	663	682	701	720	738	757	776	795		833	851	870	889
9.1																				
31		567				645	664 684	684	703 724	$723 \\ 744$	742 764	761	781	800 824	820	839	858	878	897 924	916
32	580	584				664 684	704	704 725	745	766	787	784 807	804 828	848	844 869		884 910	904 930	951	944 971
34		618				703	$704 \\ 724$	745	767	788	809	830	851	872	893		936	957	978	999
35		635				723	744	766	788	810	831	853	875	896	918	940	961		1005	
36		652				742	764	787	809	831	854	876	898	920	943				1031	
37		670				761	784	807	830	853	876	899	921	944	967		1013			
38		$687 \\ 704$				781 800	804 824	828 848	851 872	875 896	898 920	921 944	945 968	968		3	$1038 \\ 1064$			
39 40	696					820	844	869	893	918	943	967								1163
	713					839		889												1190
	729					858							1038							
	746					878							1062							
	762												1085							
	779					916	944	971	999	1026	1054	1081	1108	1136	1103	11190	1218	1245	1272	1300
	795					936							1132							
	812					955							1155							
	828												1178							
	845																			1409
50	861	892	922	953	983	1013	1044	1074	1104	1134	1165	1195	1225	1255	1285	1315	1346	1376	1406	1436

Quantile der $U_{m,n}$ -Verteilung: 99.5%-Quantil

Tabelliert ist das 99.5%-Quantil $U_{m,n;\,0.995}$.

$m \setminus n$	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
5	24	28	33	37	41	45	49	53	57	62	66	70	74	78	82	86	90	95	99	103	107
6	28	33	38	43	48	53	58	62	67	72	77	82	86	91	96	101	106	110	115	120	125
7	33	38	44	49	55	60	66	71	77	82	88	93	99	104	110	115	121	126	131	137	142
8	37	43	49	56	62	68	74	80	86	93	99	105	111	117	123	129	135	141	148	154	
9	41	48	55	62	69	76	82	89	96	103	110	116	123	130	137	143		157	163	170	177
10	45	53	60	68	76	83	91	98	105	113	120	128	135	142	150	157	165	172	179	187	194
11	49	58	66	74	82	91	99	107	115	123	131	139	147	155	163	171	179	187	195	203	211
12	53	62	71	80	89	98	107	116	124	133	142		159	168	176	185	193	202	211	219	228
13	57	67	77	86	96	105	115	124	134	143	152	162	171	180	189	199		217	226	236	245
14	62	72	82	93	103	113	123		143	153	163		183		202	212	222	232	242	252	262
15	66	77	88	99	110	120	131	142	152	163	173	184	194	205	215	226	236	247	257	268	278
16	70	82	93	105	116	128	139	150	162	173	184	195	206	217	229	240	251	262	273	284	295
17	74	86	99	111	123	135	147		171	183	194	206	218		241	253		277	288	300	
18	78	91	104	117	130	142	155		180	193	205	217	230		254	267	279	291	304	316	
19	82	96	110	123	137	150	163		189	202	215	229	241	254	267	280	293	306	319	332	345
20	86	101	115	129	143	157	171	185	199	212	226	240	253	267	280	294	307	321	334	348	361
21	90	106	121	135	150		179		208	222	236	251	265		293	307	322	336	350	364	
22	95	_	126		157	172	187			232	247	262	277	291	306	321	336	350	365	380	
23	99		131	148	163		195	211	226		257	273	288		319	334	350	365	380	396	
24	103		137	154	170	187	203		236		268	284	300	316	332	348	364	380	396	411	427
25	107	125	142	160	177	194	211	228	245	262	278	295	312	328	345	361	378	394	411	427	444
26	111	130	148		184		219	237	254	271	289		323		358	375	392	409	426	443	460
27	115		153	172			227	245	263	281	299		335		370	388	406	424	441	459	477
28		139	159		197		235		272	291	310		347		383	402	420	438	457	475	493
29 30	123 127	144 149	164 169		204 211		243251	262 271	282 291	301 311	320 330		$\begin{array}{c} 358 \\ 370 \end{array}$	377 389	396 409	415 429	434 448	453 468	472 487	491 506	509 526
30	141	149	109	190	211	231	231	211	291			330	370	309	409	429	440	400	401		520
31	132	153	175		217	238	259	279	300	320	341	361	381	402	422	442	462	482	502	522	542
32		158	180		224	245	267	288	309	330	351	372	393		435	455		497	517	538	559
33 34		163 168	186 191		231 237	253 260	275 283	297 305	318 328	$\frac{340}{350}$	362 372		416	426 438	447 460	469 482	490 504	511 526	533 548	554 570	575 591
35	144		197	220	244	267	291	314	337	360	382	405	428	450	473	496		540	563	585	608
36	152	177	202	227	251	275	299	322	346	369	393		439	463	486	509	532	555	578	601	624
37 38	156 160		207 213	233 239	257 264	282 289	307 315	331 339	355 364	379	403 414	427 438	451 463	475 487	499 511	522 536	546 560	570 584	593 608	617 633	640 657
39			218		271		322	348	373	399	424		474		524	549		599	624	648	673
40					278														639		
41 42					284 291									524 536						680	
					291									548			630			711	738
					304				419					560						727	
					311				429					572			658			743	
	193		256		318			408	438	167	497			585			672		729	758	
	193		262		324		386		447				567				686			774	
48					331			425						609			700		760	790	
					338				465					621			713		775	805	
					345														790		
50	209	<i>Z</i> 44	218	311	345	3//	410	442	4/4	906	ექგ	970	002	033	005	090	121	759	790	821	802

Quantile der $U_{m,n}$ -Verteilung: 99.5%-Quantil

Tabelliert ist das 99.5%-Quantil $U_{m,n;\;0.995}$.

$m \setminus n$	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
5	111	115	119	123	127	132	136	140	144	148	152	156	160	164	168	173	177	181	185	189
6	130	134	139	144	149	153	158	163	168	172	177	182	187	192	196	201	206	211	215	220
7	148	153	159	164	169	175	180	186	191	197	202	207	213	218	224	229	235	240		251
8		172			190	196	202	208	214	220	227	233	239	245	251	257	263	269	275	281
9		190			211	217	224	231	237	244	251	257	264	271	278	284	291	298	304	311
10	201	209	216	223	231	238	245	253	260	267	275	282	289	297	304	311	319	326	333	341
11	219	227	235	243	251	259	267	275	283	291	299	307	315	322	330	338	346	354	362	370
		245			271	279	288	297	305	314	322	331	339	348	357	365	374	382	391	399
		263			291	300	309	318	328	337	346	355	364	373	383	392	401	410	419	429
		281			311	320	330	340	350	360	369	379	389	399	409	418	428	438	448	457
15	289	299	310	320	330	341	351	362	372	382	393	403	414	424	434	445	455	466	476	486
16	306	317	328	339	350	361	372	383	394	405	416	427	438	449	460	471	482	493	504	515
		335			370	381	393	405	416	428	439	451	463	474	486		509	521	532	544
		353			389	402	414	426	438	450	463	475	487	499	511	524	536	548	560	572
		370			409	422	435	447	460	473	486	499	511	524	537	550	563	575	588	601
20	375	388	402	415	429	442	455	469	482	496	509	522	536	549	562	576	589	603	616	629
21	392	406	420	434	448	462	476	490	504	518	532	546	560	574	588	602	616	630	644	658
		424			468	482	497	511	526	540	555	570	584	599	613	628	642	657	671	686
		441			487	502	517	533		563	578	593	608	624	639	654	669	684	699	714
		459			506	522	538	554	570	585	601	617	633	648	664	680	695	711	727	743
25	460	477	493	509	526	542	559	575	591	608	624	640	657	673	689	706	722	738	754	771
26		494			545	562	579	596	613	630	647	664	681	698	715	731	748	765	782	799
27	-	512			565	582	600	617	635	652	670	687	705	722	740	757	775	792	810	827
		529			584	602	620	638		675	693	711	729	747	765	783	801	819		855
		547			603	622	641	659	678	697	715	734	753	771	790	809	827	846	865	883
30	545	565	584	003	623	642	661	681	700	719	738	758	777	796	815	834	854	873	892	911
		582			642	662	682	702	721	741	761	781	801	821	840	860	880	900	920	939
		600			661	682	702	723	743	763	784	804	825	845	866	886	906	927	947	967
		617			681	702	723	744	765	786	807	828	849	870	891	912	933	953		995
		635 652			700 719	721 741	743 763	765 786	786 808	808 830	829 852	851 874	873 896	894 919	916 941	937 963	959		$1002 \\ 1029$	
		670			738	761	784	807	829	852	875	898	920	943	966				1056	
37		687			758	781	804	828	851	874	898	921	944	968		-			1084	
$\frac{38}{39}$		705 722			777 796	801 821	825 845	849 870	873 894	896 919	920 943	944 968	968						1111 1138	
		740			815	840		891	916	941	966								1166	
				809		860		912											1193	
		775		827 846	854			933											1220 1247	1246
				865				953	$\frac{980}{1002}$											
				883		939			1002											
		845			930				1045											
				920 939					$1066 \\ 1088$											
		879 897							$1088 \\ 1109$											
																				1441 1469
50	000	014	J 10	010	1001	1000	1000	1100	1101	1101	1102	1220	1204	1200	1010	1010	1011	1 101	1 100	1 100

Quantile der $U_{m,n}$ -Verteilung: 99.75%-Quantil

Tabelliert ist das 99.75%-Quantil $U_{m,n;\,0.9975}$.

$m \setminus n$	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
5	25	29	34	38	42	46	51	55	59	63	68	72	76	80	85	89	93	97	102	106	110
6	29	34	39	44	49	54	59	64	69	74	79	84	89	94	99	104	109	114	119	124	129
7	34	39	45	51	57	62	68	74	79	85	91	96	102	107	113	119	124	130	135	141	147
8	38	44	51	57	64	70	76	83	89	95	102	108	114	121	127	133	139	146	152	158	164
9	42	49	57	64	71	78	85	92	99	106	113	120	127	134	141	148	154	161	168	175	182
10	46	54	62	70	78	86	93	101	109	116	124	132	139	147	154	162	169	177	185	192	200
11	51	59	68	76	85	93	102	110	118	127	135	143	151	160	168	176	184	192	201	209	217
12	55	64	74	83	92	101	110	119	128	137	146	155	164	172	181	190	199	208	217	226	234
13	59	69	79	89	99	109	118	128	138	147	157	166	176	185	195	204	214	223	233	242	252
14	63	74	85	95	106	116	127	137	147	157	168	178	188	198	208	218	228	239	249	259	269
15	68	79	91	102	113	124	135		157	168	178	189	200	211	222	232	243	254	264	275	286
1.6	79	0.1	O.G	100	190	199					100		919	กกร	225		250	260	280	202	303
16	72 76	84	96 102	108	$\frac{120}{127}$	132 139	143	155	166		189 200	201	212 224	223 236	235 248	246 260	258 272	269 284	296	292 308	320
17 18	80	89 94	102	114 121	134	147	151 160	164 172	176 185	188 198	211	212 223	236		261	274	287	299	312	324	$\frac{320}{337}$
19	85	99	113	121	141	154	168	181	195	208	222	235	248	261	275	288	301	314	328	341	354
20	89	104	119		141	162	176		204	218	232		260		288	302	316	329	343	357	371
21	93		124		154		184		214		243		272	287	301	316	330	344	359	373	388
22	97		130	146	161	177	192		223	239	254	269	284		314	329	344	360	375	390	405
23	102		135	152	168	185	201	217	233	249	264	280	296		328	343	359	375	390	406	421
24	106	124	141	158	175	192	209		242	259	275	292	308	324	341	357	373	390	406	422	438
25	110	129	147	164	182	200	217	234	252	269	286	303	320	337	354	371	388	405	421	438	455
26	114	133	152	171	189	207	225	243	261	279	297	314	332	349	367	385	402	419	437	454	472
27	119	138	158	177	196		233	252	270	289	307	326	344	362	380	398	416	434	452	471	489
28	123	143	163	183	203	222	242	261	280	299	318	337	356	375	393	412	431	449	468	487	505
29	127	148	169	189	210	230	250	270	289	309	329	348	368	387	406	426	445	464	484	503	522
30	131	153	175	196	217	237	258	278	299	319	339	359	379	400	420	439	459	479	499	519	539
31	135	158	180	202	223	245	266	287	308	329	350	371	391	412	433	453	474	494	515	535	555
32	140	163	186	208	230	252	274	296	318	339	361	382	403	425	446	467	488	509	530	551	572
33	144	168	191	214	237	260	282	305	327	349	371	393	415	437	459	481	502	524	546	567	589
34	148	173	197	221	244	267	291	314	336	359	382	405	427	450	472	494	517	539	561	583	606
35	152	178	202	227	251	275	299	322	346	369	393	416	439	462	485	508	531	554	577	599	622
36	157	183	208	233	258	283	307	331	355	379	403	427	451	474	498	522	545	569	592	616	639
37	161	187	214	239	265	290	315	340	365	389	414	438	463	487	511	535	559	584	608	632	656
38	165	192	219	246	272	298	323	349	374	399	424	450	475	499	524	549	574	598	623	648	672
39	169	197	225	252	279	305	331	358	384	409	435	461	486	512	537	563	588	613	639	664	689
40	173	202	230	258	285	313	340	366	393	419	446	472	498	524	550	576	602	628	654	680	706
41	178	207	236	264	292	320	348	375	402	429	456	483	510	537	563	590	617	643	669	696	722
	182													549				658		712	
	186													562						728	
	190							401						574		631				744	
	195		258		320		380		440		499		557		616		674	702	731	760	
	199				327	352	388		449		510	520	569	599	629			717	747	776	805
	203								459				581						762	792	
	207													624				747		808	
	211								477					636			731	762	793	824	
	216													649			745			840	
	210	201	200	520	00T	500	141	101	101	020	004	001	011	0.10	001	110	1.10		000	0.10	0,2

Quantile der $U_{m,n}$ -Verteilung: 99.75%-Quantil

Tabelliert ist das 99.75%-Quantil $U_{m,n;\,0.9975}$.

$m \setminus n$	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
5	114	119	123	127	131	135	140	144	148	152	157	161	165	169	173	178	182	186	190	195
6	133	138	143	148	153	158	163	168	173	178	183	187	192	197	202	207	212	217	222	227
7			163		175	180	186	191	197	202	208	214	219	225	230	236	241	247	253	258
	171				196	202	208	214		227	233	239	246	252	258	264	271	277	283	289
	189				217	223	230	237	244	251	258	265	272	279	285	292	299	306	313	320
10	207	215	222	230	237	245	252	260	267	275	283	290	298	305	313	320	328	335	343	350
11	225	233	242	250	258	266	274	282	291	299	307	315	323	331	340	348	356	364	372	380
12	243	252	261	270	278	287	296	305	314	322	331	340	349	358	366	375	384	393	401	410
13	261	270	280	289	299	308	318	327	336	346	355	365	374	384	393	402	412	421	431	440
	279				319	329	339	349		369	379	389	399	409	419	429	439	449	459	469
15	297	307	318	329	339	350	361	371	382	393	403	414	424	435	446	456	467	478	488	499
16	314	326	337	348	359	371	382	393	405	416	427	438	450	461	472	483	495	506	517	528
17	332	344	356	368	379	391	403	415	427	439	451	463	475	486	498	510	522	534	546	557
18	349	362	375	387	400	412	425	437	450	462	474	487	499	512	524	537	549	562	574	587
19	367	380	393	406	420	433	446	459	472	485	498	511	524	537	550	563	577	590	603	616
20	385	398	412	426	439	453	467	481	494	508	522	535	549	563	576	590	604	617	631	645
21	402	416	431	445	459	474	488	502	517	531	545	559	574	588	602	617	631	645	659	674
22	419	434	449	464	479	494	509	524	539	554	569	584	598	613	628	643	658	673	688	702
23	437	452	468	484	499	515	530	546	561	577	592	608	623	639	654	669	685	700	716	731
24	454	471	487	503	519	535	551	567	583	599	616	632	648	664	680	696	712	728	744	760
25	472	489	505	522	539	555	572	589	606	622	639	656	672	689	706	722	739	756	772	789
26	489	507	524	541	559	576	593	610	628	645	662	680	697	714	731	749	766	783	800	817
$\frac{1}{27}$			542	-	578	596	614	632	650	668	686	703	721	739	757	775	793	810	828	846
28	524				598	617	635	654	672	690	709	727	746	764	783	801	819	838	856	875
	541				618	637	656	675	694	713	732	751	770	789	808	827	846	865	884	903
30	559	578	598	618	637	657	677	697	716	736	755	775	795	814	834	854	873	893	912	932
31	576	596	617	637	657	677	698	718	738	758	779	799	819	839	860	880	900	920	940	960
	593				677	698	719	739	760	781	802	823	844	864	885	906		947	968	989
	610				697	718	739	761	782	804	825	847	868	889	911	932	953	975	996	1017
34			672		716	738	760	782	804	826	848	870	892	914	936	958	980		1024	
35	645				736	758	781	804	826	849	871	894	917	939	962				1052	
36	662	686	709	732	755	779	802	825	848	871	895	918	941	964	987	1010	1033	1056	1080	1103
37			727		775	799	823	847	870	894	918	942	965						1107	
38	697				795	819	844	868	892	917	941	965							1135	
39			764		814	839	864	889	914	939	964	989							1163	
40					834	860	885	911	936	962			1						1191	
Л 1				827	854	880	906	932	058	024	1010	1036	1062	1088	1114	1140	1166	1109	191♀	1244
				846																1244 1273
	783				893				1002											
	800				912															1329
	817				932				1046											
	835				951				1068											
	852								1008 1090											
				$941 \\ 960$					1090 1111											
																				1442 1470
																				1470 1499
50	500	555	501	530	1000	1001	1002	1144	1100	1100	1210	1443	1200	1012	1040	1014	1400	1400	1401	1700

Quantile der $U_{m,n}$ -Verteilung: 99.9%-Quantil

Tabelliert ist das 99.9%-Quantil $U_{m,n;\,0.999}.$

$m \setminus n$	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
	25	30	35	39	43	48	52	57	61	66	70	74	79	83	87	92	96	101	105	109	114
ϵ	30	36	41	46	51	56	61	67	72	77	82	87	92	97	102	107	113	118	123	128	133
7		41	47	53	59	64	70	76	82	88	94	100	105	111	117	123	128	134	140	146	
8		46	53	59	66	73	79	86	92	99	105	112	118	125	131	138	144	151	157	164	
9		51	59	66	73	81	88	95	102	110	117	124	131	138	145	153		167	174	181	188
10	48	56	64	73	81	89	97	105	112	120	128	136	144	152	160	167	175	183	191	199	206
11		61	70	79	88	97	105		122	131	140	148	157		174	182	190	199	207	216	224
12		67	76	86	95	105	114		132	142	151		169		187	197		215	224	233	
13		72	82	92	102	112	122		142	152	162	172	182	191	201	211	221	231	240	250	260
$\begin{array}{c c} 14 \\ 15 \end{array}$		77 82	88 94	99 105	$\frac{110}{117}$	120 128	131 140	142 151	152 162	163 173	173 184	184	194 207		$\begin{array}{c} 215 \\ 229 \end{array}$	225 240	236 251	246 262	257 273	267 284	277 295
10	1 10																				
16		87	100	112	124	136	148		172	184	196		219		243		266		289	301	313
17		92	105		131	144	157		182	194	207		231	244				293	305	318	330
18		97	111	125	138	152	165	178	191	205 215	218 229	231	244		270	283		309	322	335	347
19 20		102 107	117 123	131 138	145 153	160 167	174 182	187 197	201 211	$\frac{215}{225}$	240	243 254	256 269	270 283	283 297	297 311	311 325	324 340	338 354	351 368	365 382
21			128	144	160		190		221	236	251		281	296	311	325		355	370	385	
22		118	134		167		199			246	262		293		324	340		371	386	401	417
$\frac{23}{24}$		123 128	140 146	157 164	174 181	191 199	207 216	224 233	240 250	257267	273 284	289 301	305 318		338 351	354 368	370 385	386 401	402 418	418 435	434 451
25		133	152	170	188	206	224	242	260	277	295		330		365	382	399	417	434	451	469
26		138	157		195	214	233	251	269	288	306		342	360	378	396		432	450	468	486
27 28		143 148	163 169		202 210		241 250		279 289	298 308	317 328	336 347	354 367		392 405	410 424		447 463	466 482	484 501	503 520
29		153	175		217	237	258	278	299	319	339	359	379	399	419	439		478	498	518	537
30			180		224	245	266	287	308	329	350	371	391	412	432	453		493	514	534	554
$\frac{31}{32}$		163 168	186 192	209 215	231 238	253 261	275 283		318 328	339 350	361 372	382 394	403 416		$446 \\ 459$	467 481	488 502	509 524	530 546	551 567	572 589
33		173	198		245	268	292		337	360	383	405		450	473	495		539		584	
34			203	228	252	276	300	324	347	370	394		440	463	486	509		555	577	600	623
35			209	234	259	284	308	333	357	381	405	428	452	476	499	523	546	570	593	617	640
36	162	189	215	241	266	292	317	342	366	391	416	440	464	489	513	537	561	585	609	633	657
37		194	221	247	274	299	325	351	376	401	427	452	477	501	526	551	576	600	625	650	674
38	170	199	226		281	307	334	360	386	412	438		489	514	540	565		616	641	666	
39	175		232		288		342	369			448			527	553	579	605	631	657	683	
40	179	209	238	267	295	323	350	378	405	432	459	486	513	540	567	593	620	646	673	699	725
41	183	214	244	273	302	330	359	387	415	443	470	498	525	553	580	607	634	661	688	715	742
42	188	219	249	279	309	338	367		425					565			649			732	
	192							405	434	463				578			664		720	748	
	196							414						591			678				
45	201	234	267	299	330	361	392	423	454	484	514	544	574	604	634	663	693	722	752	781	811
46	205	239	272	305	337	369	401	432	463	494	525	556	586	617	647	677	707	738	768	798	828
47		244					409		473		536		598		660				783	814	
48		249			352		418		483		547				674		737	768	799		
	218				359				492					655		719		783		847	
50	223	259	295	331	366	400	434	468	502	535	569	602	635	668	701	733	766	798	831	863	896

Quantile der $U_{m,n}$ -Verteilung: 99.9%-Quantil

Tabelliert ist das 99.9%-Quantil $U_{m,n;\,0.999}$.

$m \setminus n$	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
5	118	122	127	131	135	140	144	149	153	157	162	166	170	175	179	183	188	192	196	201
6	138	143	148	153	158	163	168	173	178	184	189	194	199	204	209	214	219	224	229	234
7	157	163	169	175	180	186	192	198	203	209	215	221	226	232	238	244	249	255	261	267
8	176	183	189	196	202	209	215	222	228	234	241	247	254	260	267	273	279	286	292	299
9	195	202	210	217	224	231	238	245	252	259	266	274	281	288	295	302	309	316	323	330
10	214	222	230	237	245	253	261	268	276	284	292	299	307	315	323	330	338	346	354	361
11	233	241	250	258	266	275	283	292	300	308	317	325	334	342	350	359	367	376	384	392
	251			278	287	296	306	315	324	333	342	351	360	369	378	387	396		414	423
	$\frac{261}{269}$			299	308	$\frac{230}{318}$	328	337	347	357	366	376	386	396	405	415	425	434	444	454
	$\frac{203}{288}$			319	329	339	350	360	370	381	391	401	412	422	432	443	453	463	474	484
	$\frac{200}{306}$			339	350	361	372	383	394	405	416	427	438	448	459	470	481	492	503	514
	324			359	371	382	394	405	417	428	440	452	463	475	486	498	509	521	533	544
	342			379	391	403	416	428	440	452	464	477	489	501	513	525	537	550	562	574
	360			399	412	425	437	450	463	476	489	501	514	527	540	553	565	578	591	604
		392		419	432	446	459	473	486	499	513	526	540	553	567	580	593	607	620	634
20	396	410	424	439	453	467	481	495	509	523	537	551	565	579	593	607	621	635	649	663
21	414	429	444	458	473	488	502	517	532	546	561	576	590	605	620	634	649	664	678	693
22	432	447	463	478	493	509	524	539	555	570	585	600	616	631	646	661	677	692	707	722
23	450	466	482	498	514	530	546	562	577	593	609	625	641	657	673	688	704	720	736	752
24	468	484	501	518	534	551	567	584	600	617	633	650	666	683	699	715	732	748	765	781
25	486	503	520	537	554	572	589	606	623	640	657	674	691	708	725	742	759	776	794	811
26	504	521	539	557	575	592	610	628	646	663	681	699	716	734	752	769	787	805	822	840
	521			577	595	613	632	650	668	687	705	723	741	760	778	796	814	833		869
				596	615	634	653	672	691	710	729	748	766	785	804	823	842	861	880	898
	557			616	635	655	674	694	713	733	752	772	791	811	830	850	869	889	908	928
	575			635	655	676	696	716	736	756	776	796	816	836	857	877	897	917	937	957
31	592	613	634	655	676	696	717	738	759	779	800	821	841	862	883	903	924	945	965	986
	610			674	696	717	739	760	781	802	824	845	866	888	909	930		972		1015
	628			694	716	738	760	782	804	826	847	869	891	913	935	957			1022	
	646			713	736	759	781	804	826	849	871	894	916	939	961				1051	
_	663			733	756	779	802	826	849	872	895	918	941	964					1079	
	681			752	776		824	847	871	895	919	942	966						1107	
	699			772	796 816		845	869 891	894	918 941	942 966	966							1136	
			766	791 811		841 862	866	913	916 939	941									$1164 \\ 1193$	
	$734 \\ 752$			830	836 857	883	888 909	915	959										1193 1221	
			823		877															1276
			842		897															1305
			861		917														1306	
			880		937														1334	
45	840	869	898	928	957	986	1015	1044	1073	1102	1131	1160	1189	1218	1247	1276	1305	1333	1362	1391
			917																1391	
			936																1419	
			955																1447	
				1005																
50	928	960	992	1025	1057	1089	1121	1153	1185	1217	1249	1281	1313	1344	1376	1408	1440	1472	1503	1535

Index

Abbildung, 33	Diskriminante, 30
$1-1,\ 37$	Distributivgesetz, 13
ein-eindeutig, 37	divergent, 19
injektiv, 37	Dreisatz, 25
Verknüpfung von, 34	
Abbildungsvorschrift, 33	empirische Verteilungsfunktion, 123
Ableitung, 52	empirisches Quantil, 125
höhere, 55	Ereignis, 98
Kettenregel, 54	erwartungstreu, 134, 135
Produktregel, 53, 54	erwartungstreue Varianzschätzung, 125
Quotientenregel, 53	Erwartungswert, 112
Summenregel, 53	Euler'sche Zahl, 10
Umkehrfunktion, 55	Exponential funktion, 40
Additionstheoreme für Winkelfunktionen, 38	reelle, 44
Alternative, 100	Exponentialreihe, 42
Alternativen, 100	Extinktionskoeffizient, 7
Arcus Funktionen, 43	Extremalstelle, 57, 57
arithmetische Mittel, 124	globale, 58
Assoziativgesetz, 13	lokale, 58
asymptotisch erwartungstreu, 134, 135	Extremalstellenanalyse, 62
Ausreißer, 125	
	Fakultät, 24
Bayes'sche Formel, 109	Fallzahlplanung, 144
bedingte Wahrscheinlichkeit, 108	Binomialtest, 146
Beta-Verteilung, 140	Gaußtest, 147
Bias, 134, 135	t-Test, 152
Bild einer Abbildung, 33	Fehlerfortpflanzungsgesetz, 119, 126
Binomialkoeffizient, 103	Fibonacci Zahl, 4
Binomialtest, 145, 146	Folgen, 17
Binomialverteilung, 103	Konvergenzgeschwindigkeit, 20
binomische Formeln, 13	Fraktil, 110
	Funktion
Cosinus, siehe Kosinus	Ableitung einer, 52
	differenzierbare, 52
De Morgan'sche Regeln, 99	Extremalstelle, 57
Definitionsbereich, 33	gerade, 66
Dichte, 103	Graph, 42
Differentialgleichung, 88	konkave, 63
lineare, 93	konvexe, 63
Lösung, 88	Maximum, 57
Trennung der Variablen, 90	mehrerer Veränderlicher, 45
Differentialrechnung, 51	Minimum, 57
Differenzenquotient, 52	monotone, 42
differenzierbar, 52	reelle, 41
diskret, 97	ungerade, 66

222 Index

dekadischer, 41 vektorwertige, 48 Wendepunkt, 65 lokale Extremalstelle, 58 Lösungsmenge, 27 ganze Zahl, 9 Gegenereignis, 99 Macht, 144 gemeinsame Dichte, 119 Malthus'sches Wachstumsgesetz, 92 geometrische Folge, 18 Matrix, 17 geometrische Reihe, 24 Maximum, 57 geometrische Verteilung, 107 Maximum-Likelihood Prinzip, 131 Gesetz der großen Zahl, 117 Maximum-Likelihood Schätzer, 132 gleichverteilt, 101 Maximumstelle globale Extremalstelle, 58 lokale, 58 goldener Schnitt, 4 Median, 110 Gradient, 86 Stichproben-, 124 Graph einer Funktion, 42 Mediantest, 156 Grenzwert, 19 Methode der kleinsten Quadrate, 124, 127 Gütefunktion, 144 Minimalstelle lokale, 58 harmonische Reihe, 23 Minimum, 57 Hauptsatz der Differential- und Integralrechnung, 74 Mittelwertsatz, 60 Histogramm, 123 mittlerer quadratischer Fehler, 137 hypergeometrische Verteilung, 104 ML-Schätzer, 132 monotone Funktion, 42 ideales Gas, 45 MSE, 137 Integral, 72 uneigentliches, 80 nichtparametrische Tests, 155 Intervall, 12 Niveau, 143, 144 irrationale Zahl, 11 Niveaulinien, 46 Normalapproximation, 117 Kenngrößen, 110 Normalform, 26 Kettenregel, 54, 76 Normalverteilung, 103, 112 Kommutativgesetz, 13 Tabelle, 163 Konfidenzintervall, 139 Nullhypothese, 144 Binomialverteilung, 140 Normalverteilung, bekannte Varianz, 139 Obersumme einer Funktion, 72 Normalverteilung, unbekannte Varianz, 141 Ordnungsstatistik, 124 konkav, 63 konvergent, 19 p-Wert, 152, 155 konvex, 63 partielle Ableitung, 85 Korrelationskoeffizient, 121 partielle Integration, 78 Kosinus, 38 perfekt korreliert, 121 Reihendarstellung, 42 Poisson Verteilung, 104 Kovarianz, 121 polygene Vererbung, 118 kritische Stelle, 86 Potenzreihe, 42 Krümmung, 63 Produkt, 24 Kurvendiskussion, 57, 66 Produktformel, 106 Produktregel, **54**, 76 Lagemaß, 110 Lambert-Beer'sches Gesetz, 6 Quantil, 110 Lenard-Jones Potential, 69 empirisches, 125 Likelihoodfunktion, 132 Limes, 19 Rang, 158 lineare Regression, 127 Rangsumme, 159 log-Likelihood Funktion, 132 rationale Zahl, 10 Logarithmus, 41, 44 reelle Zahl, 10

Index 223

Regression, 127	U-Statistik, 159
Reihe	Umkehrabbildung, 35
Exponential funktion, 42	unabhängig, 106
geometrische, 24	unabhängig und identisch verteilt (u.i.v.), 116
harmonische, 23	uneigentliches Integral, 80
unendliche, 22	unendliche Reihe, 22
Winkelfunktionen, 42	uniform verteilt, 101
Rekursionsgleichung, 3, 18	unkorreliert, 121
Rezept	Untersumme einer Funktion, 72
Extremalstellenanalyse, 62	77 . 115
Kurvendiskussion, 66	Varianz, 115
Riemann–Integral, 72	Vektor, 16
~	Verknüpfung von Abbildungen, 34
Satz	Verteilung, 101
Rolle, 60	Beta-, 140 Binomial-, 103
Schärfe, 144	Cauchy-, 114
Schätzer	geometrische, 107
Bias, 134	hypergeometrische, 104
erwartungstreu, 134, 135	Kenngrößen, 110
erwartungstreuer Varianz-, 136	Normal, 112
ML, 132	Normal-, 103
verzerrt, 135	Poisson, 104
Sekante, 51	t-, 141
sign, 41	Wilcoxon, 159
Sinus, 38	Verteilungsfunktion, 103
Reihendarstellung, 42	empirische, 123
Stammfunktion, 73	verzerrt, 135
Statistik, 141	Vorzeichenfunktion, 41
stetig, 52	,,
Stichprobenmedian, 124	Wahrscheinlichkeit, 100
Stichprobenmittel, 124	Wendepunkt, 65
Stichprobenvarianz, 125 Streumaße, 110	Wertebereich, 33
Streuung, 115	Wilcoxon Statistik, 159
Substitutionsregel, 77	Wilcoxon Test, 158
Summen, 21	Wilcoxon Verteilung, 159
Summen, 21	Winkelfunktionen, 38
t-Test, 150	Additions theoreme, 38
t-Verteilung, 141	
Tangens, 38	Zahl
Tangente, 51	Euler'sche, 10
Taylorreihe, 42	ganze, 9
Test, 144	irrationale, 11
Binomial-, 144	rationale, 10
Gauß, 146	reelle, 10
Median-, 156	Zahlengerade, 10
nichtparametrischer, 155	Zentraler Grenzwertsatz, 117
t, 150	Zufallsvariable, 97
verteilungsfreier, 159	
Wilcoxon, 158	
Teststatistik, 144	
totale Wahrscheinlichkeit, 109	
transzendente Funktionen, 42	
Trennung der Variablen, 90	