Math 302 Theorem 2.7

Raiden van Bronkhorst

29 January 2020

Proof. Suppose gcd(a,b) = 1 and gcd(b,c) = 1.

Case 1. b = 0.

Because gcd(b,c)=1 and b=0, c must equal 1. Thus gcd(ab,c)=gcd(0,c)=gcd(0,1)=1.

Case 2. $b \neq 0$.

Since gcd(a, c) = 1, then by Theorem 2.3, we can write $ax_1 + cy_1 = 1$ for some integers x_1 and y_1 . So, $abx_1 + cy_1b = b$. Since gcd(b, c) = 1, we can also write $bx_2 + cy_2 = 1$ for some integers x_2 and y_2 , so $abx_2 + cy_2a = a$.

We then have $(abx_2 + cy_2a)bx_1 + cy_1b = b$. So, $(abx_2 + cy_2a)x_1 + cy_1 = 1$. Then, $ab(x_1x_2) + c(y_2ax_1 + y_1) = 1$.

Because $abk_1 + ck_2 = 1$ for some integers k_1 and k_2 , gcd(ab, c) = 1 by Corollary 2.4.

Therefore gcd(ab, c) = 1.