On gradual LNL-models

Harley Eades III and Richard Blair

Computer Science, Augusta University Computer Science, University of Iowa

1 Gradual LNL model

Definition 1. A gradual LNL-model consists of

- 1. a gradual λ -model $G\lambda^* = (\mathcal{T}, \mathcal{C}, *_{\mathcal{C}}, \mathsf{T}, \mathsf{split}, \mathsf{squash}, \mathsf{box}, \mathsf{unbox}, \mathsf{error})$
- 2. a symmetric monoidal closed category $(\mathcal{L}, I, \otimes, \neg)$ with distinguished object $*_{\mathcal{L}}$
- 3. a pair of symmetric monoidal functors $(G,n): \mathcal{L} \longrightarrow C$ and $(F,m): C \longrightarrow \mathcal{L}$ forming a symmetric monoidal adjunction with $F \dashv G$.

that satisfy the following additional conditions:

```
1. F* \multimap F* is a retract of F(*\Rightarrow *). That is, there exist morphisms m_r: F(*) \multimap F(*) \longrightarrow F(*\Rightarrow *) and m_l: F(*\Rightarrow *) \longrightarrow F(*) \multimap F(*) with m_r; m_l = \mathsf{id}_{F(*) \multimap F(*)}.
```

2. $G(*) \cong *$

The subscript on * shall be omitted below where the meaning is clear from the context

We now show that F preserves the retract properties of squash_S and split_S in C for $* \Rightarrow *$ and $* \times *$. That is, we shall show that $F(*) \multimap F(*)$ is a retract of F*, as is $F * \otimes F*$.

Lemma 2. $F(*) \multimap F(*)$ is a retract of F* with morphisms \mathcal{L} squash $_{F*\multimap F*} := m_{*,*}$; Fsquash $_{*\Rightarrow *}$ and \mathcal{L} split := Fsplit $_{*\Rightarrow *}$; $p_{*,*}$.

Proof. Observe that:

References

- [1] G. M. Bierman. *On Intuitionistic Linear Logic*. PhD thesis, Wolfson College, Cambridge, December 1993.
- [2] Jean-Yves Girard. Linear logic. *Theoretical Computer Science*, 50(1):1 101, 1987.
- [3] Harley Eades III. Proposing foundation of attack new a trees in monoidal categories. Online: https://github.com/ MonoidalAttackTrees/attack-trees-in-monoidal-cats/blob/master/drafts/ Proposal-the-Project-Short/main.pdf, 2016.
- [4] Joachim Lambek. The mathematics of sentence structure. *American Mathematical Monthly*, pages 154–170, 1958.