Differensial tenglamalar fanidan TEST savollari

1	1	1	$\begin{cases} y' = 4x^3 \\ y(0) = 1 \end{cases}$ Koshi masalasining yechimini ko`rsating.	$y = x^4 + 1$	$y = x^4$	$y = x^2 + 1$	$y = x^4 - 1$
1	1	2	$y' = \frac{1}{2\sqrt{1-x}}$ tenglamaning umumiy yechimini ko`rsating.	$y = -\sqrt{1-x} + C\left(x < 1\right)$	$y = \sqrt{1 - x} + C\left(x \in R\right)$	$y = 2\sqrt{1 - x} + C\left(x \in R\right)$	$y = 2\sqrt{x-1} + C \ (x > 1)$
1	1	2	$y' = 1 + y^2$ tenglamaning y(0) = 0 boshlang'ich shartni qanoatlantiruvchi yechimini toping.	$y = tgx, -\frac{\pi}{2} < x < \frac{\pi}{2}$	$y = \sin x, x \in R$	$y = ctgx, 0 < x < \pi$	$y = \cos x, x \in R$
1	1	2	$x(1-y^2)dx - y(1+x^2)dy = 0$ tenglamaning umumiy yechimini toping.	$(1+x^2)(1-y^2)=C$	$x^2 - y^2 = C$	$x^2 + y^2 = C$	$y = x^2 + C$
1	1	2	$y' = \frac{x+y}{x}$ tenglamani yeching.	$y = \left(\ln\left x\right + C\right)x$	$y = e^x + C$	$y = \ln x + C$	y = x + C
1	1	1	$y' = \cos^2 x$ tenglamaning umumiy yechimini toping.	$y = \frac{1}{2} \left(x + \frac{1}{2} \sin 2x \right) + \epsilon$	$y = \sin 2x + \cos 2x + C$	$y = \sin 2x + C$	y = tgx + C
1	1	1	$y' = \frac{1}{\sqrt{4 - x^2}}$ tenglamani yeching.	$y = \arcsin\frac{x}{2} + C$	$y = \arccos x + C$	$y = -\arccos\frac{x}{2} + C$	y = tg 2x + C
1	1	2	Ushbu $y_1 = e^x$, $y_2 = e^{-x}$ ($x \in R$) funksiyalar qaysi tenglamaning bazis yechimlari bo'ladi?	y'' - y = 0	y''-2y-1=0	y'' + 1 = 0	y'' + y' = 0
1	1	2	Ushbu $y'' - 2y' + y = 0$ tenglamani chiziqli erkli yechimlarini aniqlang.	$y_1 = e^x, y_2 = xe^x (x \in R)$	$y_1 = \cos x, \ y_2 = \sin x \ (x \in$	$\left[\mathcal{Y}_{T} \mathcal{H} e_{r}^{x} \mathcal{H} v \right] = e^{-x} \left(x \in R \right)$	$y_1 = e^{-x}, y_2 = xe^{-x} (x \in R)$
1	1	2	$y = C_1 \cos x + C_2 \sin x$ funksiya qaysi differensial tenglamaning umumiy yechimi bo'ladi?	y'' + y = 0	y'' - y = 0	y'' + 2y = 0	y'' + y' = 0
1	1	2	y'' + 2y' = 0 tenglamaning umumiy yechimini toping.	$y = C_1 + C_2 e^{-2x}$	$y = C_1 + C_2 e^{2x}$	$y = Ce^{-3x}$	$y = C_1 e^{2x}$

1	1	2	$y_1 = e^{-x} \cos x$, $y_2 = e^{-x} \sin x$ funksiyalar qaysi tenglamaning bazis yechimlari bo'ladi?	y'' + 2y' + 2y = 0	y'' + y' + y = 0	y'' - 2y' - 2 = 0	y'' - 4y = 0
1	1	2	Xarakteristik tenglamasining ildizlari $k_{1:2} = \frac{1}{2} \pm \frac{\sqrt{3}}{2}i$ bo'lgan differensial tenglamani ko'rsating.	y'' - y' + y = 0	y'' + y' - y = 0	y'' - y' = 0	y'' + 2y = 0
1	1	2	$y'' = xe^x$, $y(0) = y'(0) = 0$ boshlang`ich masala yechimini toping.	$y = (x-2)e^x + x + 2$	$y = (x-2)e^x$	y = x + 2	$y = 2e^x$
1	1	3	y'' - 4y' + 3y = 0, $y(0) = 6$, $y'(0) = 10Koshi masalasining yechimini toping.$	$y = 4e^x + 2e^{3x}$	$y = (x-2)e^x + x + 2$	$y = 4e^x + 2e^{-3x}$	$y = e^{-x} + e^{-3x}$
1	1	3	y'' + y = 1 tenglamani yeching.	$y = C_1 \cos x + C_2 \sin x - $	$y = x\sin x + 1$	$y = \ln \left \cos x \right $	$y = C_1 \cos x + C_2 \sin x$
1	1	3	y'' = 6x + 2, $y(0) = y'(0) = 0$ masala yechimini aniqlang.	$y = x^3 + x^2$	$y = x^3 + x^2 + x + 1$	$y = x^3 + 2x^2$	$y = x^3 + x^2$
1	1	2	y' + 1 = y tenglamaning umumiy yechimini toping.	$y = 1 + Ce^{x}$	$y = 1 - Ce^x$	$y = Ce^{-x}$	$y = Ce^x$
1	1	3	$y = 5\sin(3t + \varphi_0), y = y(t), y' = \frac{dy}{dt}$ funksiya qaysi differensial tenglamaning yechimi?	y'' = -9y	y'' = 5y	y'' = -5y	y'' = 3y
1	1	2	Quyidagi differensial tenglamalarning qaysi birlari 1- tartibli ozgaruvchilariga nisbatan bir jinsli differensial tenglama?	1,3	1,4	2,3	2,4

			1) $y' = \frac{x^2 + xy}{x^2 - y^2}$; 2) $y' = \frac{x^2y}{x^4 - y^4}$; 3) $(x^2 + y^2 - xy)dx + (x^2 - y^2)dy = 4$ 4) $y' = \sin\frac{y}{x} + x$	0;			
1	2	3	Moddiy nuqta $a(t) = 8 \frac{m}{\min^2}$ o'zgarmas tezlanish bilan to'g'ri chiziqli harakat qilmoqda. Agar u 2 minutda $50m$ masofa o'tgan va $30 \frac{m}{\min}$ tezlikka erishgan bo'lsa, nuqtaning harakat tenglamasini aniqlang (vaqt boshi $t = 0$).	$x(t) = 4t^2 + 14t + 6$	$x(t) = 4t^2 + 14t$	$x(t) = 4t^2$	$x(t) = 4t^2 + 6$
2	2	3	$y(x) = \int_{0}^{x} y(t)dt + x + 1 \text{ tenglamani}$ yeching.	$y = 2e^x - 1$	$y = 2e^x$	$y = e^x + 3$	$y = e^x$
2	2	2	Quyidagi differensial tenglamalarning qaysilari to`liq differensialli? 1) $2xydx + (x^2 - y^2)dy = 0$; 2) $2xdx + (x - y)dy = 0$; 3) $y' + a(x) = 0$; 4) $xy' + y = 0$	1,3,4	Hammasi	2,3	1,3
2	2	3	$y' = \sqrt{x + 2y} - x$ tenglama yechimlarining yagonalik sohasini toping.	x > -2y	x = -2y	y + 2x > 0	$-2y \le x \le 2y$

2	2	3	$f(x,y) = y^2 x$ funksiya	Ha, $L=2$	Ha, $L=4$	Yo`q	Ha, $L=6$
			$D = \{(x, y) \in R^2 \mid x \in [0; 1] \land y \in [0; 1$	1]}			
			sohada Lipshits shartini qanoatlantiradimi? Qanoatlantirsa, eng kichik Lipshits doimiysi $L-$?				
2	2	3	$yy'' = y'^2 - y'^3$ tenglamani qanday almashtirish bilan tartibi pasaytiriladi?	y' = p(y)	$t = \varphi(x)$	y'' = p(t)	y' = u(x)y
2	2	3	$yy'' = y'^2 + 18y^2\sqrt{x}$ differensial tenglama (y, y', y'') larga nisbatan bir jinslimi? Qanday almashtirish bilan tartibi pasaytiriladi?	Ha, $y' = u(x)y$	Yo`q	Ha, $y = e^{mx}$	Yo'q, $y' = p(y)$
2	2	3	Quyidagi differensial tenglamalardan qaysilari umumlashgan bir jinsli? $1. \frac{y^2}{x^2} + y'^2 = 3xy'' + \frac{2yy'}{x};$ $2. x^2(y'^2 - 2yy'') = y^2;$ $3. yy' + xyy'' - xy'^2 = x;$ $4. x^2yy'' + y'^2 = 0$	1,3	1,4	4,1	3,4,1
2	2	3	Quyidagi funksiyalarning qaysilari chiziqli erkli: 1. $\{e^x, e^{2x}, e^{3x}\}$, 2. $\{1, \sin^2 x, \cos 2x\}$, 3. $\{1, x, x^2\}$, 4. $\{2^x, 3^x, 6^x\}$	1,3,4	Hammasi	2,3,4	1
2	2	2	x , e^x funksiyalar xususiy yechimi bo`lgan chiziqli bir jinsli differensial tenglama qaysi?	(x-1)y'' + y = xy'	$y'' = ye^x$	$y'' = y'e^x + xy$	y''' + x = 0

2	2	2	$y'' - 2y' - 3y = e^{4x}$ tenglamaga mos normal sistema qaysi?	$ \begin{vmatrix} \dot{y}_1 \\ \dot{y}_2 \end{vmatrix} = \begin{pmatrix} 0 & 1 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\$	$\begin{cases} \dot{y}_1 = y_2 \\ \dot{y}_2 = 2y_1 + 3y_2 + e^{4x} \end{cases}$	$ \begin{vmatrix} \dot{y}_1 \\ \dot{y}_2 \end{vmatrix} = \begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} $	Normal sistemaga kelmaydi
2	2	2	$\begin{cases} x' = 8y - x \\ y' = x + y \end{cases}$ normal sistemani 2-tartibli chiziqli differensial tenglamaga keltiring.	x'' - 7x = 0	x'' + x = 0	y'' + x = 0	y'' - 10y = 21
2	2	3	$\begin{cases} y'=1+y^2\\ y(0)=0 \end{cases}$ Koshi masalasining davomsiz yechimi qaysi oraliqda aniqlangan?	$\left(-\frac{\pi}{2};\frac{\pi}{2}\right)$	$(0;\pi)$	$\left(-\frac{\pi}{2};\frac{\pi}{4}\right)$	$\left(-\frac{\pi}{2};\pi\right)$
2	2	3	$\begin{cases} \dot{x} = 2x + y \\ \dot{y} = 3x + 4y \end{cases}$ chiziqli sistema turg`unmi?	Yo`q	x > y bo`lsa, turg`un	aniqlab bo`lmaydi	На
2	2	3	$\begin{cases} \dot{x} = x - y + 1 \\ \dot{y} = y - 4x - 1 \end{cases}$ chiziqli sistema turg`unmi?	Yo`q	x = y boʻlsa, turgʻun	aniqlab bo`lmaydi	ha
2	2	3	$\begin{cases} \dot{x} = 2y - 3x \\ \dot{y} = y - 2x \end{cases}$ chiziqli sistema turg`unmi?	На	aniqlab bo`lmaydi	x = -y boʻlganda turgʻun	Yo`q
2	2	3	Yechimlar oilasi $x^2 + y^2 = C$ bo`lgan differensial tenglamani tuzing.	x + yy' = 0	$x^2 + y^2 = y'$	$y' = \frac{x}{y}$	$\frac{dy}{dx} = 10$
2	2	1	xy'-ay=0 tenglamaning umumiy yechiini toping.	$y = cx^a$	$y = e^{cx}$	y = 0	$y = x^a$
2	2	2	$\left(x - y\cos\frac{y}{x}\right)dx + x\cos\frac{y}{x}dy = 0$ tenglamaning umumiy yechiini toping.	$x = ce^{-\sin\frac{y}{x}}$	$x = y \ln x$	$x = e^y$	y = c

2	2	2	$xdy + ydx = e^x(1+x)dx$	1-0	1-0	y = x(1-e)	$y = e^x$
_	-	_	xdy + ydx = e(1+x)dx tenglamaning (1;1) nugtadan	$y = \frac{1-e}{r} + e^{x}$	$y = \frac{1 - e}{x}$	y = x(1 - C)	$y - \epsilon$
			o`tuvchi integral chizig`i topilsin.	\mathcal{X}	X		
2	2	2	$xy' + y = y^2 \ln x \text{ tenglamaning}$	1	$y = (\ln x + 2)x - 1$	1	1
_				$y = \frac{1}{\ln x - \frac{1}{2}x + 1}$	$y = (\ln x + 2)x - 1$	$y = \ln x - \frac{1}{2}$	$y = \ln x - \frac{1}{2}$
			(1;2) nuqtadan oʻtadigan integral	$\ln x - \frac{1}{2}x + 1$		2	2
			chizig`ini toping.	2			
2	2	3	1 , r+1 r	$2c(1-x^2)-2x+1$	$4c(1-x^2)-2x+1$	$y = 4, \ y = 2c(x^2 - 1)$	$2(1-x^2)$ $2x+1$
_			$y' = \frac{1}{(x-1)^2} y^2 - \frac{x+1}{(x-1)^2} y + \frac{x}{(x-1)^2}$	$y = 1, y = \frac{2c(1-x^2)-1}{2c(1-x^2)-1}$	$y = 0, \ y = \frac{1}{2c(x^2 + 1)}$	y = 1, $y = 2e(x - 1)$	$y = 1, y = \frac{2(1-x^2)-2x+1}{2c(x^2-1)}$
			Rikkati tenglamasining xususiy va				
			umumiy yechimlarini toping.				
2	2	2	To`liq differensialli tenglama	$x^3 + 3x^2y - y^3 = c$	$x^3 + y^3 = c$	$3x^2y - y^3 = c$	y = c
			$(x^2 + 2xy)dx + (x^2 - y^2)dy = 0$				
			ning umumiy yechimini toping.				
2	2	2	$(x^2 + y)dx - xdy = 0$ tenglama	$\lambda(x) = \frac{1}{x^2}$	$\lambda(x) = \frac{1}{x^2} + 1$	$\lambda(y) = \frac{1}{v^2}$	$\lambda(x,y) = \frac{1}{x}$
			uchun integrallovchi ko`paytuvchi	$x(x) = \frac{1}{x^2}$	$x(x) = \frac{1}{x^2}$	$y(y) = \frac{y^2}{y^2}$	$\lambda(x,y) = \frac{1}{x^2 y}$
			topilsin.				
2	2	3	$y^2y'^2 - 9 = 0$ tenglamani yeching.	$(y^2+c)^2-36x^2=0$	На	$(y^2+c)^2+36=c$	Yo`q
			Uning maxsus yechimi bormi?	maxsus yechimi yoʻq.		,	
2	2	3	$xy' + \sqrt{1 + {y'}^2} = y \text{ Klero}$	Yo`q	$y = x^2$	$y = x^2$	$y=1-x^2$
			tenglamasining maxsus yechimini				
			ko`rsating.				
2	2	3	y' = P(x)y + Q(x) tenglamada	Yo`q	Aniq bitta(maxsus)	На	Ha, $y=1$
			$P(x), Q(x) \in C(R)$ boʻlsa, maxsus		yechim bor.		Tid,
			vechim bormi?				
2	2	3	Aniq ikkita maxsus yechimi bor	Maxsus yechimi yo`q	y = 0	y = 1	3/2
			$9yy'^2 - 4 = 0$ tenglamaning	, , , , , 1			$y = \left(\frac{4}{9}x + 1\right)^{\frac{3}{2}}$
			maxsus yechimini ko`rsating.				(9)
			maxous yeominin no roading.				
2	2	3	$y'' = xe^x$ ning yechimini toping		$y = xe^x + x^3$	$y = xe^x + 2e^x + cx^2 + cx$	yechim mavjud emas
				$y = xe^x - 2e^x + c_2 x + c_1$			
l							
					<u> </u>	<u> </u>	

2	2	3	$y''(e^x + 1) + y' = 0$ tenglamani	$y = c_1(x - e^{-x}) + c_2$	$y = -c_1 e^x + c_2$	$y = c(x - e^x)$	$y = tgx + c_1x$
			yeching.	1	1		
2	2	3	y''' = 2xy'' tenglamani yeching.	1	$y = e^x$		integrallanmaydi
				$y = c_1 \left[x \int_0^x e^{t^2} dt - \frac{1}{2} \left(e^{x^2} - \frac{1}{2} \right) \right]$	$\begin{bmatrix} -1 \\ +c_2x+c_3 \end{bmatrix}$	$y = c_1 \left(\int_0^x e^t dt + c_2 x + c_3 \right)$	
2	2	3	xy'' = 2yy' - y' tenglamaning tartibi	$xy' = y^2 + c$	$xy' + y^3 = c$	pasaymaydi	x + y' = c
<u> </u>			bittaga pasaytirilganini toping.	<u> </u>			
2	2	3	$yy'' = 2xy'^2$, $y(2) = 2$, $y'(2) = 0.5$	$y = \sqrt[5]{12}$	y = 0	y = 24	$y = \sqrt[5]{4}$
			masalaning yechimi $x = 1$ da qanday qiymatni qabul qiladi?				
2	2	2	y'' + 4y = 0 tenglamaning chiziqli erkli xususiy yechimlarini toping.	$\cos 2x, \sin 2x$	y = ax	e^x, e^{-x}	e^{2x}, e^x
2	2	2	$y^{(IV)} + 4y = 0$ tenglamaning		$y = c_1 e^x + c_2 e^{-2x} + c_3 e^{-x} + c_3 e^{-x} + c_4 e^{-x} + c_5 e^{-x} + c$	+ X ₄ e ² 9	$y = tgx + c_1x + c_2x^3 + c_3x^4 + \frac{c_4}{x}$
			umumiy yechimi qaysi?	$y = e^x (c_1 \cos x + c_2 \sin x)$	$x) + e^{-x} \left(c_3 \cos x + c_4 \sin x\right)$		$y - igx + c_1x + c_2x + c_3x$
2	2	2	$y'' + y = 4\sin x$ ning xususiy	$y = -2x\cos x$	$y = 3x \cos x$	$y = \cos 2x$	$y = -4\cos x$
			yechimini toping.	1			
2	2	2	$y'' + y = x \sin x$ tenglamaning		$\left(\begin{array}{c} x^2 \\ \end{array}\right)_{circ}$	$y = e^x$	(x, y)
			umumiy yechimini toping.	$y = \left(c_1 - \frac{x^2}{4}\right)\cos x + \left(c_2\right)$	$\begin{cases} y = \left(\frac{c_1 + \frac{1}{4}}{4}\right) \sin x \\ + \frac{1}{4} \sin x \end{cases}$		$y = c_1 \cos x + \left(c_2 + \frac{x}{4}\right) \sin x$
2	2	2	y' = a(x)y + b(x)ning integrallovchi		$\int e^{b(x)} dx, \ x \in R$	$\int e^{a(x)} dx, \ x \in R$	$e^{-\int b(x)dx}, x \in R$
			ko`paytuvchisi qaysi? Bu yerda	e , $\lambda \in \Lambda$	J	J	e , $\lambda \in \Lambda$
			$a(x),b(x) \in C(R)$	1			
2	2	3	y'' + 4y'' + 3y = 0 tenglamaning		Yo`q	$\cos x$, $\sin x$, $\cos \sqrt{2}x$, $\sin x$	$n \cos 3x \sqrt{3}x = \Re \sqrt{3}x, \cos 3x, \sin x$
			bazis yechilari (fundamental sistemasi) qaysi?	$\cos x$, $\sin x$, $\cos \sqrt{3}x$, $\sin x$	$ \ln \sqrt{3}x, \ x \in R $		
3	2	2	Xarakteristik tenglamalasining	y''' - y'' + y' - 2y = 0	y'''-2y'+2y=0	y'''-2y''=0	y''' + 10 = 0
			ildizlari $k_{1,2} = \pm i, k_3 = 2$ boʻlgan	1			
			differensial tenglamani ko`rsating.	1			

3	2	2	Xarakteristik tenglamasining ildizlari	y'' + 4y'' + 3y = 0	$y^{IV} + y = 0$	$y^{IV} + 3y''' + 6y = 0$	$y^V + 3y'' + y = 0$
			$k_{1,2} = \pm \sqrt{3}i, k_{3,4} = \pm i$ boʻlgan				
		1	differensial tenglamani ko`rsating.				
3	2	1	f(x) va $g(y)$ funksiyalar uzluksiz	$\int_{y_0}^{y} \frac{dy}{g(y)} = \int_{x_0}^{x} f(x) dx$	$\int_{0}^{y} g(y)dy = f(x)$	$v = \int_{0}^{x} f(x)dx$	$y = \int_{x_0}^{x} f(x)dx + c$
			bo'lib, $g(y_0) \neq 0$ bo'lsa,	$\int_{y_0} g(y) \int_{x_0}^{y} f(x) dx$	$\int_{y_0}^{y} g(y)dy = f(x)$	$y = \int_{x_0} f(x) dx$	$\int_{x_0}^{y} \int_{x_0}^{y} (x^y) dx^y + C$
			$\begin{cases} y' = f(x) \cdot g(y) \\ y(x_0) = y_0 \end{cases}$ masalaning				
			yechimi quyidagi tengliklarning qaysi biri bilan beriladi?				
3	2	1	$y' = \frac{y + \sqrt{x^2 - y^2}}{\text{tenglama}}$	Bir jinsli tenglama	Bir jinsli tenglama	Chiziqli differensial	To`la differensial
			$y' = \frac{y'' - y''' - y'''}{x}$ tenglama	$y_1 = x, \ y_2 = -x$	$y_1 = x, \ y_2 = -3x$	tenglama	tenglama
			mansub bo`lgan sinf va xususiy yechimini aniqlang.			$y_1 = x + 1, \ y_2 = -x + 1$	
3	2	1	$y' + a(x)y = 0, \ a(x) \in C(R)$	$-\int_{0}^{x}a(t)dt$	y = 2xy + a(x)	$\int_{0}^{x} a(t)dt$	$\int_{0}^{x} a(t)dt$
			tenglamaning umumiy yechimini toping.	$y = ce^{-0}$		$y = ce^{0}$	$y = ce^{0}$
3	2	1	$y' + \frac{y}{x} = x$ tenglamaning	X	x+1	x + y	$\frac{1}{x}$
			integrallovchi ko`paytuvchisini toping.				
3	2	1	Agar $y' = y^2 + y = 0$, $y(0) = -2$	$y(1) = \frac{2}{1 - 2e}$	$y(1) = \frac{3}{1-e}$	v(1) - 2	$y(1) = \frac{3}{1-2e}$
			boʻlsa, $y(1)-?$	y(1) = 1 - 2e		$y(1) = \frac{2}{1 - e}$	1 20
3	2	2	M(x, y)dx + N(x, y)dy = 0 uchun,	$\mu(x) = e^{\int \frac{M_y' - N_x'}{N} dx}$	$\mu(x) = e^{\int \frac{M_y' - N_x'}{M} dx}$	$\mu(x) = e^{\int \frac{N}{M_y' - N_x'} dx}$	$\mu(x) = e^{\int \frac{N_y - M_x'}{M} dx}$
			agar mavjud boʻlsa, $\mu = \mu(x)$	$\mu(x) - e$	$\mu(x) - e$	$\mu(x) = e^{-x}$	$\mu(x) - e$
			ko`rinishdagi integrallovchini				
3	2	1	ko`rsating.		• M' -N	c M	M'
٥	2	'	M(x, y)dx + N(x, y)dy = 0 uchun,	$\mu(y) = \mu(y) = e^{-\int \frac{M'_y - N_x}{M}}$	$\mu(y) = e^{-\int \frac{M_y}{N} dy}$	$\mu(y) = \mu(y) = e^{-\int \frac{M}{M_y - N_x} dy}$	$u(y) = e^{-\int \frac{My}{M - N_x'} dy}$
			agar mavjud bo`lsa, $\mu = \mu(y)$	$\mu(y) = \mu(y) = e^{-\int \frac{ x-y + x}{M}}$	dy · · · · ·		FV
			ko`rinishdagi integrallovchi ko`paytuvchi qaysi?	No. 70 To No. 70			

3	2	1	$M(x,y)dx + N(x,y)dy = 0$ uchun, agar mavjud bo`lsa, $\mu = \mu(z(x,y))$ ko`rinishdagi integrallovchi ko`paytuvchi qaysi?	$\mu(z(x,y)) = e^{\int \frac{M'_y - N'_x}{z'_x \cdot N - z'_y \cdot M} dz}$	$\mu(z(x,y)) = e^{\int \frac{M'_y - N'_x}{z'_x \cdot M} dz}$	$\mu(z(x,y)) = e^{\int \frac{z'_x \cdot N - z'_y \cdot M_x}{N'_x - M'_y} dz}$	$\mu(z(x,y)) = e^{\int \frac{M_y' - N_x'}{z_y' \cdot N} dz}$
3	2	3	$y' = f(x) \cdot g(y)$ tenglama $D = \{(x, y) a \le x \le b, c \le y \le d\}$ da f, g funksiyalar qanday shartni bajarganda yechimga ega bo`ladi?	$f(x) \in C([a,b]),$ $g(y) \in C([c,d])$	$f(x) \in C([a,b]), g(y)$ - ixtiyoriy	f(x), g(y) - ixtiyoriy	f(x) - ixtiyoriy, $g(y) \in C([c,d])$
3	2	3	Agar $y' + p(x)y = 0$ tenglamaning $y = u(x)e^{-\int p(x)dx}$ yechimi bo`lsa, $u(x)$ qanday funksiya?	u(x) = C	u(x) = x	u(x) = x + C	$u(x) = x^2$
3	2	3	$\begin{cases} y' = f(x,y) \\ y(x_0) = y_0 \end{cases}$ Koshi masalasida $f(x,y) \text{ funksiyasi}$ $P = \{(x,y) x-x_0 \le a, y-y_0 \le b \}$ da uzluksiz bo`lsa, Koshi masalasi yechimi uchun qaysi javob to`g`ri?	Yechim mavjud, lekin bir nechta bo`lishi mumkin	(x_0, y_0) dan yagona yechim oʻtadi	Yechim mavjud emas	Yechim mavjud va yagona
3	2	3	$P = \{(x,y) x-x_0 \le a, y-y_0 \le b\}$ da $\begin{cases} y' = f(x,y) \\ y(x_0) = y_0 \end{cases}$ Koshi masalasi berilgan. Agar f - uzluksiz va $ f_y'(x,y) \le const$ bo`lsa, mavjudlik va yagonalik teoremasining shartlari bajariladimi?	Ha, bajariladi	Yo`q, bajarilmaydi	Bir qismi bajariladi	Bajarilmaydi.
3	2	3	$y'' - y' - 2y = 0$, $y(0) = 2$, $y'(+\infty) = 0$ masalaning yechimi qaysi?	$y = -2e^{-x}$	$y = e^{-x} + e^x$	$y = 2e^{-x} + 3e^x$	$y = 2e^x$

3	2	3	$\begin{cases} \dot{y} = 2x + z \\ \dot{z} = y \end{cases}, \ y(1) = 1, z(1) = 0$ Koshi masalasi uchun ikkinchi yaqinlashishni ko`rsating.	$y_2 = \frac{1}{2} - x + \frac{3}{2}x^2, z_2 = \frac{1}{2}x^2 + \frac{3}{2}x^2 + \frac{3}$	$y_2 = x + \frac{3}{2}x^2, z_2 = \frac{1}{3}x^3$	$y_2 = \frac{1}{2} - x + \frac{1}{2}x^2, z_2 = 0$	$x^3 y_2 = \frac{1}{4} - x, \ z_2 = x^2 - 1$
3	2	2	$\ln x^2$, $\ln 3x$ va 7 funksiyalar chiziqli erklimi ($x > 0$)?	Yo`q	aniqlab bo`lmaydi	Ha, $x = 0$ nuqtada	Ha, $x > 0$ da
3	2	2	Quyidagi shartlarning qaysi bajarilganda ushbu $F(x,y,y')=0, y(x_0)=y_0,$ $y'(x_0)=p_0, \ F(x_0,y_0,p_0)=0$ masala yagona yechimga ega bo`ladi ($P=\begin{cases} (x,y,p)\in R^3 \big x-x_0 \leq a,\\ y-y_0 \leq b, p-p_0 \leq c \end{cases}$)?	$F(x, y, p) \in C^{1}(P),$ $\frac{\partial F}{\partial p} \neq 0$	$F(x, y, p) \in C^{1}(P),$ $\frac{\partial F}{\partial p} = 0$	$F(x, y, p) \in C^{1}(P),$ $\frac{\partial F}{\partial x} \neq 0$	$F(x, y, p) \in C^{1}(P),$ $\frac{\partial F}{\partial y} \neq 0$
3	2	2	Agar differensial tenglamaning maxsus yechimi bo`lsa, u qaysi sistemadan topiladi $(p = y')$:	$\begin{cases} F(x, y, p) = 0 \\ F_p(x, y, p) = 0 \end{cases}$	$\begin{cases} F(x, y, p) = 0 \\ F'_{y}(x, y, p) = 0 \end{cases}$	$\begin{cases} F(x, y, p) = 0 \\ F_p(x, y, p) = 1 \end{cases}$	$\begin{cases} F(x, y, p) = 0 \\ F_x(x, y, p) = 0 \end{cases}$
3	2	2	Birinchi tartibli differensial tenglamanining $\Phi(x, y, c) = 0$ yechimlar oilasining o`ramasi qaysi sistemaning yechimi bo`ladi?	$ \begin{cases} \Phi(x, y, c) = 0 \\ \Phi'_c(x, y, c) = 0 \end{cases} $	$ \begin{cases} \Phi(x, y, c) = 0 \\ \Phi'_x(x, y, c) = 0 \end{cases} $	$ \begin{cases} \Phi(x, y, c) = 0 \\ \Phi'_x(x, y, c) = 0 \end{cases} $	$ \begin{cases} \Phi(x, y, c) = 1 \\ \Phi'_c(x, y, c) = 1 \end{cases} $
3	2	2	Ushbu $\begin{cases} y^{(n)} = f\left(x,y,y',,y^{(n-1)}\right) \\ y(x_0) = y_0,y'(x_0) = y_0^1,,y^{(n-1)}(x_0), y_0,,y_0^{(n-1)} \end{cases}$, bunda $f \in C(D,R)\left(D \subset R^{n+1}\right)$ $\left(x_0,y_0,,y_0^{(n-1)}\right) \in D$ masala qaysi shartlar bajarilganda yagona yechimga ega?	$f \in C^{n}(D)$ y_{0}^{n-1}	$f \in C(D)$	$\frac{\partial f}{\partial y^{n-1}} \neq 0$	A) shart kerak emas

3	2	3	$f(x,x_1,x_2)$ funksiya $\mathbf{D} \subset \mathbf{R}^3$ sohada x_1,x_2 argumentlari bo`yicha Lipshits shartini qanoatlantirishi uchun qaysi shartlarning bajarilishi yetarli?	$\left f_{x_1}'\right < +\infty, \left f_{x_2}'\right < +\infty, \left(x, x_1, x_2\right)$	$\left f_{x_1}'\right > \infty, \left f_{x_2}'\right > \infty, (x, x_1, x_2)$	$\left f_{x_1}'\right < +\infty, \left f_{x_2}'\right > \infty, (x,$	$\left f_{x_1}'\right > \infty, \left f_{x_2}'\right < +\infty, \left(x, x_1\right)$
			y ⁽ⁿ⁾ +a₁(x)y ⁽ⁿ⁻¹⁾ ++aₙ(x)y=0, a₁(x)∈C([c;d]), c < , tenglama uchun qaysi tasdiqlar to`g`ri? 1. Yechim mavjud emas. 2. Yechimlar cheksiz ko`p 3. Ko`pi bilan n ta yechim mavjud 4. Yechim birato`la [c;d]da aniqlangan 5. n ta chiziqli erkli yechim mavjud.		2	2,4	1,2
3	2	3	Ushbu $y_1 = \begin{cases} (x-1)^4, \text{ agar } 0 < x \le 1 \text{ bo`lsa} \\ 0, \text{ agar } 1 \le x \le 2 \text{ bo`lsa} \end{cases}$ funksiyalarning $W(x)$ Vroskianni uchun quyidagilarning qaysi to`g`ri?	$W(1) = 0$ A, $y_2 = \begin{cases} 0, & \text{agar } 0 < x \le \\ (x-1)^4, & \text{agar } 1 \le \end{cases}$	W(0)=1 1 bo`lsa $\leq x \leq 2$ bo`lsa	$W(2) = \frac{3}{2}$	$W\left(\frac{3}{2}\right) = 2$
3	2	1	Quyidagilarning qaysi biri chegaraviy masala?	$\begin{cases} y'' + y' = 1 \\ y(1) = 1 \\ y'(0) = 0 \end{cases}$	$\begin{cases} y'' - y' = 3 \\ y(0) = 0 \\ y'(0) = 0 \end{cases}$	$\begin{cases} y'' - y' - 2y = 0 \\ y(1) = 3 \\ y'(1) = 4 \end{cases}$	$\begin{cases} y'' + y' = 1 \\ y(0) = 1 \\ y'(0) = 0 \end{cases}$
3	2	3	$\begin{cases} a_0(x)y'' + a_1(x)y' + a_2(x)y = f(x) \\ \alpha y'(x_0) + \beta y(x_0) = 0 \\ \gamma y'(x_1) + \delta y(x_1) = 0 \end{cases}, \ x_0 \leq x \leq x \\ \text{chegaraviy masala berilgan. Agar} $ $G(x,s), \ x_0 \leq x \leq x_1, \ x_0 \leq s \leq x_1 - \\ \text{Grin funksiyasi mavjud bo`lsa,} $ $\text{chegaraviy masalaning yechimi} $ qaysi?	$y(x) = \int_{x_0}^{x_1} G(x, s) f(s) ds$	$y(x) = \int_{x_0}^{x_1} G(x, s) f(s) ds$	$y(x) = \int_{x_0}^{x_1} G(x, s) f'(s) ds$	$y(x) = \int_{x_0}^{x_1} G(x, s) ds$

3	2	2	Differensial tenglamalarni ko`rsating: 1. $y''(x) + \int_{1}^{x} \frac{e^{t}}{t} dt \cdot y^{2}(x) = x, \ x > 0$ 2. $y''(x) + \int_{1}^{x} \frac{e^{t}}{t} dt \cdot y^{2}(x-1) = x, \ x > 0$ 3. $y'(x) + \int_{0}^{1} y(x-s)e^{s} ds = 1$ 4. $y'(x) + \frac{e^{x}}{x} y(x) = x, \ x > 0$	1,4	1,2	4,	1,2,3
3	2	1	Quyidagilarning qaysi differensial tenglama emas?	$\int_{1}^{x} y(s)y'(x-s)dx + y'(x-s)dx$	$\int \left(\frac{x- x }{1}\right)y''(x)+y^2=1$	$x^{2}y(x) - \left(\sqrt{1 - x^{2}} - \sqrt[4]{x^{2} - 1}\right)y'(x) = \sqrt{x}$	$y(x) \cdot y'(x) \cdot y''(x) = x^2$
1	2	2	Quyidagi tasdiqlarning qaysilari toʻgʻri? 1. Agar $f: R \to R$ uzluksiz funksiya uchun $f(x_0) \neq 0$ boʻlsa, $\begin{cases} x' = f(x) \\ x(t_0) = x_0 \end{cases}$ Koshi masalasi t_0 nuqtaning yetarli kichik atrofida yagona yechimga ega. 2. Agar $f \in C(R^2)$ boʻlsa, $\begin{cases} x' = f(x,y) \\ x(t_0) = x_0 \end{cases}$ Koshi masalasi t_0 nuqtaning yetarli kichik atrofida yagona yechimga ega. 3. Ushbu $y^V + y^{IV} + y''' + y'' + y' + y + y = 0, \ (y = 1)$	1,3	1,2	4,	1,2,3

			differensial tenglama beshta chiziqli erkli yechimga ega. 4. Ushbu $y^{V} + y^{IV} + y''' + y'' + y' + y = 0, (y = 0)$ differensial tenglama cheksiz ko`p chiziqli erkli yechimga ega.	= y(x)			
1	2	1	y'=1+y tenglamaning $y(0)=1shartni qanoatlantiruvchiyechimining x=1 dagi qiymatinitoping$	2e-1	3e-1	4e-1	5e-1
1	2	1	y'' + y = 0 tenglamaning umumiy yechimini toping.	$y = C_1 \cos x + C_2 \sin x$	$y = C_1 \cos x$	$y = C\sin x$	$y = C_1 e^x + C_2 e^{-x}$
1	2	1	$y = C_1 + C_2 e^{-2x}$ funksiya qaysi tenglamaning umumiy yechimi bo`ladi?	$y = C_1 \cos x + C_2 \sin x$ $y'' + 2y' = 0$	y'' + y' = 0	y'' - 2y' = 0	y'' + 5y' = 0
1	2	1	y'' + 2y' + 2y = 0 tenglamaning bazis yechimini toping.	$y_1 = e^{-x} \cos x, \ y_2 = e^{-x} \sin x$	$y_1 = e^x \cos x, \ y_2 = e^x \sin x$	$y_1 = \cos x, \ y_2 = \sin x$	$y_1 = e^x, \ y_2 = e^{-x}$
2	3	2	$\begin{cases} x' = 2x + y + z \\ y' = -2x - z \end{cases}$ tenglamalar $z' = 2x + y + 2z$ sistemasi uchun xarakteristik tenglamaning ildizlaridan tuzilgan to`plamni ko`rsating.	{1;2}	{2;3}	{3;4}	{4;5}
2	3	2	$\begin{cases} x' = 4x - y + e^{3t} (t + \sin t) \\ y' = x + 2y + te^{3t} \cos t \\ \text{tenglamalar sistemasiga mos bir jinsli tenglamalar sistemasini ko`rsating.} \end{cases}$	$\begin{cases} x' = 4x - y \\ y' = x + 2y \end{cases}$	shu tenglamaning o`zi bo`ladi.	$\begin{cases} x' = e^{3t} \\ y' = e^{3t} \end{cases}$	$\begin{cases} x' = e^{3t} (t + \sin t) \\ y' = te^{3t} \cos t \end{cases}$
2	3	2	Quyidagi $x = (C_1 + C_2 t)e^{3t}, y = (C_1 + C_2 + C_2)e^{3t}$	$t)e^{3t} \begin{cases} x' = 2x + y \\ y' = 4y - z \end{cases}$	$\begin{cases} x' = x \\ y' = 2x + y \end{cases}$	$\begin{cases} x' = 2y \\ y' = x + y \end{cases}$	$\begin{cases} x' = 1 \\ y' = x + 3y \end{cases}$

			funksiyalar qaysi differensial tenglamalar sistemasining yechimi bo`ladi?				
2	3	2	Agar tenglama terkibida noma`lum funksiyaning hosilasi qatnashgan bo`lsa, bu tenglamani differensial tenglama deb atash mumkinmi?	Yo`q	На	Yo`q, bu tenglama integral tenglama bo`ladi	Ha, agar noma`lum funksiyaning o`zi ham qatnashgan bo`lsa
2	3	2	Quyidagi funksiyalardan qaysi biri $y\frac{\partial z}{\partial x}-x\frac{\partial z}{\partial y}=0 \text{ xususiy hosilasi}$ differensial tenglamaning yechimi bo`la oladi? $1. z=f\left(x^2+y^2\right), \ f\in C^1(R);$ $2. z=C_1x+C_2y^2, \ C_1\neq C_2, \ (x;y)\in R^2;$ $3. z=x^2+y^2, \ (x;y)\in R^2;$ $4. z=x^2+1, \ x\in R$	1,3	3,4	1,2,4	4
2	2	3	Ushbu $xy \frac{\partial z}{\partial x} + xz \frac{\partial z}{\partial y} = y^2, \ z \mid_{x=1} = 1 + y^2$ Koshi masalasini yeching.	$xz - y^2 - 1 = 0$	$xz^2 - y^2 - 1 = 0$	$x^2z - y^2 - 1 = 0$	$x^2z^2 - y^2 - 1 = 0$
2	3	2	$\frac{\partial z}{\partial x} - 2\frac{\partial z}{\partial y} = 0 \text{ tenglamaning}$ yechimlarini toping. 1. $z = (2x - y)^2$; 2. $z = (x + 2y)^2$; 3. $z = f(2x + y)$, $f \in C^1(R)$; 4. $z = 2xy$; 5. $z = (2x + y)^2$	3,5	1,3,5	2,4	1,2,4

2	3	2	Ushbu			_	
			$x + C\sqrt{1 + x^2} - y = 0$		$(x+y)^2 y'=1$	$y'' - xy = y^2$	$y' = 3 + x^2 - y^2$
			chiziqlar oilasi qanoatlantiruvchi	$(1+x^2)y' = xy + 1$			
			differentsial tenglamani tuzing.				
1	2	1	Qanday koʻrinishdagi differensial		y' = f(ax + by + c)	$y' = g\left(\frac{y}{x}\right)$	y' + p(x)y = q(x)
			tenglamaga oʻzgaruvchilari	M(x)N(y)dx + P(x)Q(y)dy = 0	$y - g\left(\frac{-}{x}\right)$	
			ajraladigan differensial tenglama				
			deyiladi.				
2	3	2	Ushbu	$x = \xi + 1$	$x = \xi + 2$	$x = 2\xi + 1$	$x = \xi + 1$
			$\int_{c}^{c} (2x+y-3)$	$y = \eta + 2$	$y = \eta + 1$	$y = \eta + 2$	$y = 2\eta + 1$
			$y' = f\left(\frac{2x + y - 3}{x - y + 1}\right)$				
			tenglamani bir jinsli tenglamaga				
			keltiruvchi almashtirishni koʻrsating.				
2	3	2	Ushbu	$y = x^{\alpha}u$	α-1	y = xu	$y = x^{\alpha+1}u$
				y - x u	$y = x^{\alpha - 1}u$,	y - x u
			$y' = \frac{y}{x} g\left(\frac{y}{x^{\alpha}}\right)$				
			tenglamani oʻzgaruvchilari				
			ajraladigan tenglamaga keltiruvchi				
			almashtirishni koʻrsating.				
2	3	2	Ushbu	1	1	1	1
			$y' + p(x)y = q(x)y^m$	$u = \frac{1}{v^{m-1}}$	$u = \frac{1}{y^m}$	$u = \frac{1}{v^{m+1}}$	$u=\frac{1}{v^{m-2}}$
				y^{m-1}	y	y 1	y 2
			$(m \neq 0, m \neq 1)$				
			tenglamani chiziqli tenglamaga				
			keltiruvchi almashtirishni koʻrsating.		_	-	
2	3	2	Ushbu	$\frac{\partial M}{\partial x} = \frac{\partial N}{\partial x}$	$\frac{\partial M}{\partial x} = \frac{\partial N}{\partial y}$	$\frac{\partial^2 M}{\partial x^2} = \frac{\partial^2 N}{\partial x^2}$	$\partial^2 M \partial^2 N$
				$\partial y \partial x$	$\partial x \partial y$	$\frac{\partial}{\partial x \partial y} = \frac{\partial}{\partial x \partial y}$	$\frac{\partial}{\partial x^2} = \frac{\partial}{\partial y^2}$
<u></u>							<u> </u>

			M(x,y)dx + N(x,y)dy = 0 $M, N \in C^1(D), D$ – bir bog`lamli s differensial tenglama toʻla differensialli tenglama boʻlishi uchun qanday shart bajarilishi kerak?				
2	3	2	Ushbu $y' = \sqrt[3]{y^2}$ differensial tenglamaning maxsus yechimlarini koʻrsating.	y = 0	y = -1, y = 0	y = x	x = 0, y = 0
2	3	2	Ushbu $y''' = 2xy''$ tenglamaning umumiy yechimini toping.	$y = \int_{x_0}^{x} c_1 e^{t^2} (x - t) dt + c_2 (x - x_0) + c_3$	$y = \int_{x_0}^{x} e^{t^2} (x - t) dt + c_1(x - x_0) + c_2$ $(-\infty;0), (-1;+\infty)$	$y = c_1 e^{x^2} + c_2 x + c_3$	$y = \int_{x_0}^{x} c_1 e^{t^2} dt + c_2(x - x_0) + c_3$
2	3	2	Ushbu $y_1(x) = e^x, y_2(x) = x^{-1}$ funktsiyalar qanday eng katta oraliqlarda chiziqli erkli.	$(-\infty;0),(0;+\infty)$	(-∞;0),(-1;+∞)	(−1;2),(3;+∞)	(-∞;0),(1;+∞)
2	3	2	Ushbu $y''' - 2y'' - y' + 2y = 0$ tenglamaning bazis yechimlarini toping.	e^{-x}, e^x, e^{2x}	e^{-2x},e^x,e^{-x}	e^{x}, e^{3x}, e^{-2x}	e^{-5x},e^x,e^{3x}
2	3	2	Ushbu $y'' + 4y' + 4y = \sin 2x$ tenglamaning xususiy yechimini toping.	$y = -\frac{1}{8}\cos 2x$	$y = -\frac{1}{8}\sin 2x$	$y = \frac{1}{4}\cos 2x$	$y = \frac{1}{8}\cos 2x$

2	3	2	Ushbu $(x'-y)$	$\begin{cases} x = c_1 e^{-t} + c_2 e^{t} \end{cases}$	$\begin{cases} x = c_1 e^{-2t} + c_2 e^t \\ y = -c_1 e^{-2t} + c_2 e^t \end{cases}$	$\begin{cases} x = c_1 e^{-t} + c_2 t e^{t} \\ -t & \text{otherwise} \end{cases}$	$\begin{cases} x = c_1 t e^{-t} + c_2 e^t \\ -t & t \end{cases}$
			$\begin{cases} x' = y \\ y' = x \end{cases}$	$\begin{cases} y = -c_1 e^{-t} + c_2 e^{t} \\ y = -c_1 e^{-t} + c_2 e^{t} \end{cases}$	$y = -c_1 e^{-2t} + c_2 e^{t}$	$y = c_1 e^{-1} + c_2 t e^{-1}$	$y = -c_1 t e^{-t} + c_2 e^{t}$
			sistemani yeching.	2			
2	3	2	Ushbu	$\lambda_1 = 2, \lambda_2 = -1$	$\lambda_1 = 1, \lambda_2 = -1$	$\lambda_1 = 2, \lambda_2 = 1$	$\lambda_1 = -2, \lambda_2 = 1$
			$\int x' = y + z$	1 / 2	1 / 2	1 , 7	1 , 2
			$\begin{cases} y' = x + z \\ z' = x + y \end{cases}$				
			z' = x + y				
			sistemaning xarakteristik sonlarini				
0	2	0	toping.	(1.1) (1.1)	(4.0) (4.4)	(0.4) (4. 0)	(4.4) (4. 4)
2	3	2	Ushbu	(1;1),(1;-1)	(1;2),(1;-1)	(2;1),(1;-2)	(1;1),(-1;-1)
			$\begin{cases} x' = 2x - y^2 - 1 \\ y' = x - y^2 \end{cases}$				
			sistemaning muvozanat nuqtalarini				
			toping.				
2	3	2	Ushbu	$dx _ dy _ dz$	$\frac{dx}{x} = \frac{dy}{y} = \frac{dz}{xy}$	$dx _dy _dz$	$\frac{dx}{2x^2} = \frac{dy}{2y^2} = 2\frac{dz}{xy}$
			$x^{2} \frac{\partial u}{\partial x} + y^{2} \frac{\partial u}{\partial y} + xy \frac{\partial u}{\partial z} = 0$	$\frac{dx}{x^2} = \frac{dy}{y^2} = \frac{dz}{xy}$	x y xy	$\frac{dx}{y^2} = \frac{dy}{x^2} = \frac{dz}{xy}$	$2x^2 - 2y^2 - xy$
			tenglamaning xarakteristik				
			sistemasini tuzing.				
2	3	2	Ushbu	y = xu	$y = x^2 u$	u	oʻzgaruvchilari ajraladigan
			$y' = \frac{y}{x} + g\left(\frac{y}{x}\right)h(x)$		y - x u	$y = \frac{u}{x}$	tenglamaga keltiruvchi almashtirish yoʻq.
			tenglamani oʻzgaruvchilari				
			ajraladigan tenglamaga keltiruvchi				
			almashtirishni koʻrsating.				
2	3	2	Ushbu	$y = -x \ln(c - x)$	$y = -x^2 \ln(c - x)$	$y = -\ln(c - x)$	$y = -x \ln(c + x)$
			$xy' = y + x^2 e^{y/x}$				

			tenglamani yeching.				
2	3	2	Ushbu $xy' - 2y = 2x^4, (x > 0)$	$y = x^4$	$y = 2x^4$	$y = \frac{1}{2}x^4$	$y = x^4 + x$
			tenglamaning xususiy yechimini toping.				
2	3	2	Ushbu $y' = f(ax + by + c), (b \neq 0)$ tenglama $u(x) = ax + by + c$ almashtirish bilan qanday koʻrinishga keladi.	u' = a + bf(u)	u' = a - bf(u)	u' = a + f(u)	u' = -a + bf(u)
2	3	2	Ushbu $y^{(4)} + 2y^{(2)} + y = 0$ tenglamaning bazis yechimlarini toping.	$\cos x$, $x \cos x$, $\sin x$,			$\cos 3x, x \cos 3x, \sin 3x, x$
1	2	2	Chrgaraviy masala uchun Grin funksiyasini quring: $y'' = 0$, $y(0) = 0$, $y(1) = 0$.	$G(x,\xi) = \begin{cases} (1-\xi)x, & x \le \xi; \\ (1-x)\xi, & x \ge \xi. \end{cases}$	$G(x,\xi) = \begin{cases} \xi x, & x \le \xi; \\ 1 - \xi, & x \ge \xi. \end{cases}$	$G(x,\xi) = \begin{cases} x, & x \le \xi; \\ \xi, & x \ge \xi. \end{cases}$	$G(x,\xi) = \begin{cases} (1-x)\xi, & x \le \xi; \\ (1-\xi)x, & x \ge \xi. \end{cases}$
1	2	2	Chrgaraviy masala uchun Grin funksiyasini quring: $y'' = 0$, $y(0) = 0$, $y'(1) = 0$.	$G(x,\xi) = \begin{cases} x, & x \le \xi; \\ \xi, & x \ge \xi. \end{cases}$	$G(x,\xi) = \begin{cases} (1-\xi)x, & x \le x \\ (1-x)\xi, & x \ge x \end{cases}$	$ \xi' \cdot G(x,\xi) = \begin{cases} (1-x)\xi, & x \le \xi; \\ (1-\xi)x, & x \ge \xi. \end{cases} $	$G(x,\xi) = \begin{cases} \xi x, & x \le \xi; \\ 1 - \xi, & x \ge \xi. \end{cases}$
1	1	3	$y' = \sin xy$ differensial tenglamaning noldan farqli davomsiz yechimi	birorta nuqtada ham nolga teng emas	monoton o`suvchi	monoton kamayuvchi	chegaralangan oraliqda aniqlangan
1	3	2	Sistemani koordinatalar boshi atrofida chiziqlilashtiring:	$\begin{cases} x' = 2y - x \\ y' = -3y \end{cases}$	$\begin{cases} x' = 2y + x \\ y' = 3y \end{cases}$	$\begin{cases} x' = x + 2y \\ y' = x - y \end{cases}$	$\begin{cases} x' = 1 + \sin(x + 2y) - e^{2x} \\ y' = \cos(x - y) - (1 + y)^3 \end{cases}$

			$\begin{cases} x' = 1 + \sin(x + 2y) - e^{2x}, \\ y' = \cos(x - y) - (1 + y)^3. \end{cases}$				
3	1	2	Sistema muvozanat nuqtasining turini (tipini) aniqlang: $\begin{cases} x' = x + 2y \\ y' = -3x + 4y \end{cases}$	Noturg`un fokus	Turg`un fokus	Noturg`un tugun	Egar
3	1	2	Sistema muvozanat nuqtasining turini (tipini) aniqlang: $\begin{cases} x' = x + y \\ y' = 2x - 4y \end{cases}$	Egar	Noturg`un tugun	Turg`un fokus	Markaz
3	1	2	Sistema muvozanat nuqtasining turini (tipini) aniqlang: $\begin{cases} x' = x - 3y \\ y' = 2x - 4y \end{cases}$	Turg`un tugun	Noturg`un tugun	Egar	Turg`un fokus
3	1	2	Sistema muvozanat nuqtasining turini (tipini) aniqlang: $\begin{cases} x' = -2x + 3y \\ y' = x + 2y \end{cases}$	Egar	Turg`un tugun	Markaz	Turg`un fokus
3	1	2	Sistema muvozanat nuqtasining turini (tipini) aniqlang: $\begin{cases} x' = x - 2y \\ y' = 4x - 4y \end{cases}$	Turg`un fokus	Noturg`un fokus	Egar	Turg`un tugun
3	1	2	Sistema muvozanat nuqtasining turini (tipini) aniqlang: $\begin{cases} x' = x - 2y \\ y' = -x + 3y \end{cases}$	Noturg`un tugun	Egar	Turg`un tugun	Noturg`un fokus
2	3	2	y''-y'-2y=0 ning umumiy yechimi topilsin	$*y = c_1 e^{-x} + c_2 e^{2x}$	$y = c_1 e^{-x} + c_2 e^{-2x}$	$y = c_1 e^x + c_2 e^{-2x}$	$y = c_1 e^x + c_2 e^{2x}$

1	2	2	y''-5y'+6y=0 ning umumiy	$*y = c_1 e^{2x} + c_2 e^{3x}$	$y = c_1 e^{2x} + c_2 e^{-3x}$	$y = c_1 e^{-2x} + c_2 e^{3x}$	$y = c_1 e^{-2x} + c_2 e^{-3x}$
			yechimi topilsin				
1	2	2	$xy^{(4)} - y''' = 0 \text{ning} \text{umumiy}$	$*y = c_1 x^4 + c_2 x^2 + \dots$	$y = c_1 x^4 + {}_{+c_3 x} + {}_{+c_4}$	$y = c_2 x^2 + c_3 x + c_4$	$*y = c_1 x^4 + c_2 x^2 +$
			yechimi topilsin	$+c_3x + c_4$			$+c_3x$
1	1	3	$xy''-y'^2=0$ ning umumiy	$*y = c_2 e^{c_1 x}$	$y = c_1 e^{c_1 x}$	$y = e^{c_1 x}$	$y = c_1 e^x$
			yechimi topilsin	_	-		-
3	1	2	$xyy'' + y'^2 - yy' = 0$ ning	$*y = c_1 \sqrt{x^2 + c_2}$	$y = \sqrt{x^2 + c_2}$	$y = c_1 \sqrt{x^2 + c_1}$	$y = c_1 x$
			umumiy yechimi topilsin	2 1 V 2	2 4 2	7 1 V 1	
2	3	2	$e^{x}, 2e^{x}, e^{-x}$ ning Vronskiani	0	1	4	2
			topilsin				
1	2	2	$y''' = 8\sin 2x$ tenglamani biror	$*y = \cos 2x$	$y = -\sin 2x$	$y = -\cos 2x$	$y = \sin x + \cos x$
			xususiy yechimini ko'rsating				
1	2	2	$y''' = \frac{1}{8}\sin\frac{x}{2}$ tenglamani biror	$y = \cos \frac{x}{2}$	$y = -\sin\frac{x}{2}$	$y = -\cos x$	$y = \sin x + \cos x$
			xususiy yechimini ko'rsating				
1	1	3	y''-y'-2y=0 ning umumiy	$y = c_1 e^{-x} + c_2 e^{2x}$	$y = c_1 e^{-x} + c_2 e^{-2x}$	$y = c_1 e^x + c_2 e^{-2x}$	$y = c_1 e^x + c_2 e^{2x}$
			yechimi topilsin				
1	3	2	y''-5y'+6y=0 ning umumiy	$y = c_1 e^{2x} + c_2 e^{3x}$	$y = c_1 e^{2x} + c_2 e^{-3x}$	$y = c_1 e^{-2x} + c_2 e^{3x}$	$y = c_1 e^{-2x} + c_2 e^{-3x}$
2		0	yechimi topilsin	4 2	4	2	4 2
3	1	2	$xy^{(4)} - y''' = 0 \text{ning} \text{umumiy}$	$*y = c_1 x^4 + c_2 x^2 + \dots$	$y = c_1 x^4 + {}_{+c_3 x} + {}_{+c_4}$	$y = c_2 x^2 + c_3 x + c_4$	$*y = c_1 x^4 + c_2 x^2 + \cdots$
			yechimi topilsin	$+c_3x + c_4$			$+c_3x$
1	2	3	Ushbu $ (x^2 + y)dx - xdy = 0$	$\mu(x) = \frac{1}{x^2}$	$\mu(x) = -\frac{1}{x^2} - x$	$\mu(y) = \frac{1}{y^2}$	$\mu(x) = x^2$
			tenglamaning integrallovchi ko'paytuvchisini ko'rsating.	x^2	x^2	y^2	
1	2	3	$y-4y''=-3e^{-x}$ tenglamaning	$y = c_1 e^{0.5x} + c_2 e^{-0.5x} - e^{-x}$	$y = c_1 e^{3x} + c_2 e^{-3x} + e^x$	$y = c_1 \cos x + c_2 \sin x + e^x$	$y = c_1 + c_2 e^{-x} - e^x$
			umumiy yechimini toping				

1	2	3	Sistemani yeching:	$x(t) = c_1 e^t + c_2 e^{5t}$	$x(t) = c_1 e^{2t} + c_2 e^t$	$x(t) = -c_1 e^t + c_2 e^{5t}$	$x(t) = -c_1 e^t - c_2 e^{2t}$
			$\int \dot{x}(t) = 2x + y$	$y(t) = -c_1 e^t + 3c_2 e^{5t}$	$v(t) = -c_1 e^{-t} + 3c_2 e^{5t}$		$y(t) = -c_1 e^t + 3c_2 e^{5t}$
			$\int \dot{y}(t) = 3x + 4y$	7(0) 310 1 2 32	7(4) 515 1525		7(7) 515 1 5525
1	2	3	$dy = \ln(2x + y - 2)dx$	z = 2x + y - 2	$y = zx^n$	y = zx	$y = 3e^{2x}$
			tenglama qanday almashtirish yordamida o'zgaruvchilari ajralgan tenglamaga keladi?				
1	2	3	Birinchi tartibli chiziqli tenglamani		$dy = \sin(ax + by)dx$	$\sin x \cdot y dx + y x dy = 0$	0 mxdx + nydy = 0
			aniqlang:	$xy' + \sin x \cdot y = \cos x$			
1	2	3	Ushbu $y' + 2xy = e^{-x^2} \sin x$	$\mu(x) = e^{x^2}$	$\mu(x) = -\frac{1}{x^2}$	$\mu(y) = \frac{1}{v^2}$	$\mu(x) = x^2$
			tenglamaning integrallovchi		x^2	y^2	
			ko'paytuvchisini ko'rsating				
1	2	3	$y''^2 + y'y + xy'y'' = 0 \text{ tenglama}$	y' = zy	y'=zx	y'=z	$y' = ze^x$
			tartibi almashtirish orqali bittaga				
			kamaytiriladi	7 - X N		5 — 114	
1	2	2	$y' = f\left(\frac{x - y + 1}{2x - 2y - 3}\right) \text{tengla-}$	z = x - y	$z = yx^2$	z = yx	$z = ye^{ax}$
			ma qanday almashtirish yordamida				
			o'zgaruvchilari ajralgan tenglamaga keladi?				
1	2	2	$yy'' + xy'^2 = 0$ tenglama tartibi	y' = zy	y' = zx	y'=z	$y'=ze^x$
			almashtirish orqali bittaga				
1	2	2	kamaytiriladi	u = co(x)	u = a(v)	11 - (a(-m.)	u = (o(= + = v)
'	4	4	Ushbu $2xy^2dx - (1+3x^2y)dy = 0$	$\mu = \varphi(y)$	$\mu = \varphi(x)$	$\mu = \varphi(xy)$	$\mu = \varphi(x+y)$
			tenglamaning integral-lovchi ko'paytuvchisini ko'rsating				

1	2	2	$y''^2 + yy' + y'y'' = 0$ tenglama tartibi almashtirish orqali bittaga kamaytiriladi	y' = zy	$y'=ze^x$	y' = zx	y'=z
1	2	2	Ushbu $(x^2 + xy^2)dx - 2x^2ydy = 0$ tenglamaning integrallov-chi ko'paytuvchisini ko'rsating	$\mu = \varphi(x)$	$\mu = \varphi(xy)$	$\mu = \varphi(x+y)$	$\mu = \varphi(x - y)$
1	2	3	Ushbu $(x^2 + xy)dx - x^2dy = 0$ tenglamaning integrallov-chi ko'paytuvchisini ko'rsating	$\mu(x) = \frac{1}{x^3}$	$\mu(x) = -\frac{1}{x^2}$	$\mu(y) = \frac{1}{y^2}$	$\mu(x) = x^2$
1	2	2	Ushbu $(\ln x + xy)dx + x^2dy = 0$ tenglamaning integrallov-chi ko'paytuvchisini ko'rsating	$\mu(x) = \frac{1}{x}$	$\mu(x) = -\frac{1}{x^2}$	$\mu(y) = \frac{1}{y^2}$	$\mu(x) = x^2$
1	2	2	Agar $y_1(x)$ va $y_2(x)$ biror bir jinsli boʻlmagan chiziqli differensial tenglama yechimi boʻlsa, u holda funksiya mos birjinsli tenglama xususiy yechimi boʻladi	$y_1(x) - y_2(x)$	$y_1(x) \cdot y_2(x)$	$y_1(x) + y_2(x)$	$\sqrt{y_1(x)y_2(x)}$
1	2	1	$y' = \frac{3x - y}{2x + y}$ tenglama qanday almashtirish yordamida o'zgaruvchilari ajralgan tenglamaga keladi?	$z = \frac{y}{x}$	$y = zx^n$	y' = zy	$y = \frac{z}{x}$
1	2	1	y'-2xy=1-2x tenglamaning umumiy yechimini toping	$y = c \cdot e^{x^2} + x$	$y = c + e^{x^2/2}$	$y = c \cdot e^{2x^2} + x$	$y = c \cdot x^2$
1	2	1	$y'' - 6y' = -5e^x$ tenglamaning umumiy yechimini toping	$y = c_1 + c_2 e^{6x} + e^x$	$y = c_1 \cos 6x + c_2 \sin 6x$	$y = ce^{-6x} + e^x$	$y = e^{-6x} \left(c_1 \cos x + c_2 \sin x \right)$
1	2	1	3y - xy' = 2x tenglamaning umumiy yechimini toping	$y = cx^3 + x$	$y^3 = cx + x^2$	$xy + y^3 = c$	y = 0

1	2	1	Ushbu $2y = xy' + \sqrt{\sin y'}$	Lagranj	Bernulli	Klero	Rikkati
			tenglama tenglamasi deb				
			bo'ladi.				
1	2	2	Qanday almashtirish bajarilsa ushbu	$z = \sqrt[3]{y}$	y = zx	z – <u>1</u>	$y = zx^2$
			$y' - x^2 y = x\sqrt[3]{y^2} $ tenglama	**		$z = \frac{1}{\sqrt{y}}$	
			chiziqli tenglamaga keladi?				
1	2	1	Eyler tenglamasi qaysi javobda ko'rsatilgan?	$(x-0.5)y'' - \frac{3y}{2x-1} = 0$	xy'' - 2y' - 3xy = 0	$xy'-x^2y+1=0$	y'' + 2y' + y = 0
1	2	1	y''' - 2y'' = 0 tenglamaning	$y = c_1 + c_2 x + c_3 e^{2x}$	$y = ce^{2x}$	$y = c_1 e^{2x} + c_2 e^{-2x}$	$y = ce^{-6x} \sin 6x$
			umumiy yechimini toping				
1	2	3	Berilgan differensial tenglamaning	$y = c_1 e^{2x} + c_2 x e^{2x} + e^x$	$y = c_1 e^{2x} + c_2 e^{2x} + 1$	$y = c_1 e^{-x} + c_2 x e^x + 1$	y = bx + c
			yeching: $y'' - 4y' + 4y = e^x$				
1	2	3	Hususiy yechimi $y_1 = x e^{2x}$	y''-4y'+4y=0	y''' - y' = 0	y'' - y = 0	y''' + 3y' = 0
			bo'lgan chiziqli o'zgarmas koeffisientli differensial tenglamani ko'rsating.				
1	2	3	y''' = x tenglamani yeching	$y = \frac{x^4}{24} + \frac{c_1}{2} x^2 +$	$y = \frac{x^4}{24} + \frac{c_1}{2} x^2$	$y = \frac{c_1}{2}x^2 + c_2 x$	$y = \frac{x^4}{24}$
				$+c_2x+c_3$			
1	2	3	2xy'' = y' ning umumiy yechimi topilsin	$*y = c_1 x^{\frac{3}{2}} + c_2$	$y = -c_1 x^3$	$y = -c_1 \cos x + c_2$	y = c
1	2	3	Ushbu $(x^2 + y)dx - xdy = 0$	$u(x) = \frac{1}{x}$	$u(x) = -\frac{1}{x} + x$	$u(x) = \frac{1}{x}$	$\mu(x) = x^2$
			tenglamaning integrallovchi ko'paytuvchisini ko'rsating.	$\mu(x) = \frac{1}{x^2}$	$\mu(x) = -\frac{1}{x^2} + x$	$\mu(y) = \frac{1}{y^2}$	
1	2	2	$y-4y''=-3e^{-x}$ tenglamaning	$y = c_1 e^{0.5x} + c_2 e^{-0.5x} - e^{-x}$	$y = c_1 e^{3x} + c_2 e^{-3x} + e^x$	$y = c_1 \cos x + c_2 \sin x + e^{x}$	$y = c_1 + c_2 e^{-x} - e^x$
			umumiy yechimini toping	. 1 2	. 1 2	. 1 2	. 1 2

1	2	2	Berilgan tenglamaning tipini aniqlang: $ (x-x^2)y' + (x-1)y \ln x = 0 $	o'zgaruvchilari ajraladigan	to'la differensial	y ga nisbatan chiziqli	Bernulli
1	2	2	Tenglamaning tipini aniqlang $x^2y' = 3y^2 + x^2e^{\frac{2y}{x}}$	Bir jinsli differensial tenglama	Bernulli	o'zgaruvchilari ajraladigan	to'la differensial
1	2	2	$y'x = \cos x - y$ tenglamani yechimini aniqlang.	$y = \frac{\sin x + c}{x}$	$y = \cos x + cx^2$	$y = cx + \sin x$	$y = cx + \cos x$
1	2	3	$(3x^2 - \sin x)dx - 2ydy = 0$ tenglamaning umumiy yechimini toping	$y^2 = x^3 + \cos x + c$	$y\sin x + y^3 = c$	$y^2 \cos x + x^3 = c$	$y^2 = x^3 - \cos x + c$
1	2	3	Tenglamaning tipini aniqlang $y = x \sin^2 y' + y'^2$	Lagranj	Bernulli	Klero	Eyler
1	2	3	Ushbu $y = cx^2$ chiziqlar sinfining differensial tenglamasini toping	xy' = 2y	$y' = y^{\frac{2}{x}}$	yx = 3y	$y'x^2 = y^2$
1	2	3	$y' = \frac{y}{x \ln x}$ tenglamani yechimini aniqlang.	$y = c \ln x$	$y = c + \ln x$	$y = c \ln x + x$	$y = ce^x$
1	2	3	y'' - 2y' = 0 tenglamaning umumiy yechimini toping.	$y = c_1 + c_2 e^{2x}$	$y = c_1 e^{2x} + c_2 e^{-2x}$	$y = ce^{-2x}$	$y = c_1 \cos 2x + c_2$
1	2	3	$y'' + 5y' + 4y = xe^{-x}$ tenglamaning xususiy yechimi qanday ko'rinishda qidiriladi	$y = \left(ax^2 + bx\right)e^{-x}$	$y = x(ax^2 + bx + c)e^x$	$y = x(ax+b)e^x$	$y = ax^2e^{-x}$
1	2	3	Hususiy yechimi $y_1 = xe^{-x}$ bo'lgan chiziqli o'zgarmas koeffisientli differensial tenglamani ko'rsating	y'' + 2y' + y = 0	y'' - 2y' - 3y = 0	y'-y=0	y''' - 2y'' + y = 0
1	2	3	$2y - y' = e^{-x}$ tenglamaning yechimini toping:	$y = ce^{-2x} + \frac{1}{3}e^{-x}$	$y = ce^{-2x} - \frac{1}{3}e^x$	$y = ce^{-x} + 2$	$y = ce^{-2x} + \frac{x}{3}e^x$

1	2	2	Ushbu $2xydx + (x^2 + 3y^2)dy = 0$	$x^2y + y^3 = c$	$x^2y^2 - y = c$	$xy - y^2 = c$	$xy^2 + y = c$
			tenglamaning umumiy yechimini				
			toping:				
1	2	2	y'' + 2y = 0 tenglamaning umumiy		$y = c_1 e^{\sqrt{2}x} + c_2 e^{-\sqrt{2}x}$	$y = c_1 \cos 2x + c_2 \sin 2x$	$y = c_1 + c_2 e^{2x}$
			yechimini toping:	$y = c_1 \cos \sqrt{2}x + c_2 \sin \sqrt{2}x$			
1	2	1	$y''' = \cos x$ ning biror yechimi topilsin	$*y = -\sin x$	$y = \sin x$	$y = -\cos 2x$	$y = \cos x$
1	2	2	$xyy"+y'^2-yy'=0 \text{ ning umumiy}$	$*y = c_1 \sqrt{x^2 + c_2}$	$y = \sqrt{x^2 + c_2}$	$y = c_1 \sqrt{x^2 + c_1}$	$y = c_1 x$
			yechimi topilsin	·	·	,	
1	2	1	$e^x, 2e^x, e^{-x}$ ning Vronskiani topilsin	0	1	4	2
1	2	1	$y''' = 8\sin 2x$ tenglamani biror	$*y = \cos 2x$	$y = -\sin 2x$	$y = -\cos 2x$	$y = \sin x + \cos x$
			xususiy yechimini ko'rsating				
1	2	1	$y''' = \frac{1}{8}\sin\frac{x}{2}$ tenglamani biror xususiy	$*y = \cos\frac{x}{2}$	$y = -\sin\frac{x}{2}$	$y = -\cos x$	$y = \sin x + \cos x$
			yechimini ko'rsating				

Izoh:

- I.1.Birinchi tartibli tenglamalar
- 1.2. Yuqori tartibli tenglamalar
- 1,3. Nochiziqli normal sistemalar
- II. Chiziqli normal sistemalar
- 2.1.Umumiy xossalari
- 2.2.Bir jinsli sistemalar
- 2.3.Birjinslimas sistemalar
- III. Avtonom sistemalar. Хусусий ҳосилали тенгламалар
- 3.1. Muvozanat nuqta turlari
- 3.2. Xususiy hosilali tenglamalar

Tuzuvchilar: dots.N.Dilmurodov,