The Pleistocene Ice Ages

EES 3310/5310
Global Climate Change
Jonathan Gilligan

Class #14: Friday, February 7 2020

Oxygen & Hydrogen Isotopes

Oxygen & Hydrogen Isotopes

$$\delta^{18}O = \left(\frac{\left(\frac{^{18}O}{^{16}O}\right)_{\text{sample}} - \left(\frac{^{18}O}{^{16}O}\right)_{\text{ref}}}{\left(\frac{^{18}O}{^{16}O}\right)_{\text{ref}}}\right) \times 1000\%$$

- Lighter isotopes (¹H and ¹6O) evaporate faster
 - Vapor has less of heavier isotopes (lower δ^{18} O, δ D)
 - Ocean is richer in heavier isotopes (higher δ^{18} O, δ D)
 - Warmer \rightarrow greater δ^{18} O, δ D in vapor

Rain, Snow, Ice

Rain, Snow, Ice

- Rain, snow are richer in heavier isotopes
 - More precipitation \rightarrow less deuterium and 18 O left in vapor
 - Farther from source region \rightarrow smaller δD and δ^{18} O.
- Reduction in δD and $\delta^{18} O$ depends on air temperature.
 - Different for H and O.
- Comparing δD and $\delta^{18}O$ can tell us about both sea-surface temperature and air temperature over glaciers.
- Higher air temperature over glacier \to higher δD and $\delta^{18} {\rm O}$ in glacier snow/ice.

Sediments and History

Bottom \rightarrow top = oldest \rightarrow youngest

Solving the Ice-Age Puzzle

Deep-Sea Sediments

Past Sea Levels

- Water vapor, rain, snow is always isotopically lighter than sea water
- Snow, ice on land remove light isotopes from ocean
- Bigger glaciers:
 - Lower sea-level
 - Greater (positive) δ^{18} O in ocean sediments
- Smaller glaciers:
 - Higher sea-level
 - Smaller δ^{18} O in ocean sediments

Sediment Climate Record

Florida Through History

Florida 10,000 years ago End of last ice age: Sea level 400 feet lower

Florida 5 million years ago Last time CO₂ was at today's levels. Sea level ~20 meters higher

Florida 50 million years ago CO₂ levels we might reach around 2100. Sea level >70 meters higher

Summary of Past Sea Levels

Other Evidence of Past Climates ...

Other Evidence of Past Climates ...

- Sediments tell us about history:
 - Bottom \rightarrow top = oldest \rightarrow youngest
- White carbonate sediments
- Red clay layer:
 - ~55 million years ago
 - Almost no carbonates
- What does red layer tell us?

Other Evidence of Past Climates...

$$CaCO_3 \rightleftharpoons Ca^{2+} + CO_3^{2-}$$

- Alkaline Ocean:
 - High CO_3^{2-} : Reaction runs \Leftarrow
 - Carbonates survive on sea floor
- Acid Ocean:
 - Low CO_3^{2-} : Reaction runs \Rightarrow
 - Carbonates dissolve
 - Only clay is left
- Red clay layer \Rightarrow ocean acidification
 - Large burst of CO₂ into atmosphere.

Other Evidence of Past Climates...

$$CaCO_3 \rightleftharpoons Ca^{2+} + CO_3^{2-}$$

- Just below red clay layer, $\delta^{13} \mathbf{C}$ drops suddenly.
- What does that tell us?
- Lower ¹³C means rise in CO₂ came from organic source.

Paleocene-Eocene Thermal Maximum

- 55 million years ago
- 1500–4500 GT carbon added to atmosphere in 1000 years
 - Compare:
 - 600 GT in atmosphere in 1700s,
 - 760 GT today
 - Known fossil fuels: ~5000 GT
- Temperature rose 5–9°C (9–16°F)
- Lasted ~120,000 years
 - Transition to cooler temperatures took ~40,000 years
- Eocene $\rightarrow \cdots \rightarrow$ Pliocene \rightarrow Pleistocene
 - Gradual cooling for 50 million years
 - Permanent ice on Antarctica ~35 MYA
 - Permanent ice on Greenland, Alaska ~5 MYA
 - Ice age glaciation of North America, Europe begins ~2.8 MYA

Summary of Oxygen Isotopes

- Two different uses:
 - δ^{18} O in **glacial ice** tells us about **air temperature** near glacier
 - \circ δ^{18} O is always negative,
 - o but it can be more negative (lower) or less negative (higher).
 - \circ Higher (less negative) $\delta^{18} O$ means warmer temperature.
 - δ^{18} O in skeletons of deep-sea organisms tells us about sea level
 - \circ δ^{18} O is always positive.
 - \circ Greater (more positive) $\delta^{18} O$ means lower sea-level.
 - Changes in ocean δ^{18} O are generally opposite to changes in glacial ice δ^{18} O.
 - Growth of glaciers:
 - Transfers more light isotopes from ocean to ice.
 - More heavy isotopes left behind in oceans.