MA Final Bayesian Deep Learning for Medical Image Segmentation

<u>Presenter:</u> Jyotirmay Senapati Advisor:

Abhijit Guha Roy Dr. Sebastian Pölsterl Prof. Dr. Christian Wachinger

Learning?

- Network with probability distributions over weights.
- Enables uncertainty / confidence estimations.

Shridhar, K., Laumann, F. and Liwicki, M., 2018. Uncertainty Estimations by Softplus normalization in B Copyclutional Neural Networks with Variational Inference. arXiv preprint arXiv:1806.05978.

Inference

- Issues with Traditional Bayesian Neural Networks.
 - Scalability.
 - Difficulty in training.
 - More data hungry, often unstable.
- Approximate Variational Inference on Deep Networks
 - Variational Monte-Carlo Dropouts.
 - Probabilistic U-Net using Variational autoencoder.
 - Hierarchical Probabilistic U-Net.
 - The `Re-Parameterization `trick on DNNs.

Medical Image Data and Segmentation

- Modality: Dixon Sequence MRI
- Datasets:
 - KORA (xx scans)
 - UK Bio-Bank (yy scans)
 - NAKO (zz scans)
- Target organs: Liver, Spleen.
- Aim: Analyze Diabetes and Visualization, more details later ...

Dropout

- Addition of dropout lay
- Dropouts during infere

Roy, A.G., Conjeti, S., Navab, N., Wachinger, C. and Alzheimer's Disease Neuroimaging Initiative, 201 Bayesian QuickNAT: Model uncertainty in deep whole-brain segmentation for structure-wise quality of Neurolmage, 195, pp.11-22.

Probabilistic U-Net

- Learning latent of segmentation maps during training.
- Aids in generating all plausible segmentations while Kohl, S., Romera-Paredes, B., Meyer, C., De Pauw, J., Ledsam, J.R., Maier-Hein, K., Eslami, S.A., Rezend and Rome and Both and B

Net

 Build with the idea of extended probabilistic U-Net.

Kohl, S.A., Romera-Paredes, B., Maier-Hein, K.H., Rezende, D.J., Eslami, S.M., Kohli, P., Zisserman, A. a Romeberger, O., 2019. A Hierarchical Probabilistic U-Net for Modeling Multi-Scale Ambiguities. arXiv preprint arXiv:1905.13077.

Bayesian F-CNN using Re-parameterization

Reparameterization Trick: $g_{\theta}(\varepsilon) = \mu_{\theta} + \varepsilon \sigma_{\theta}$ $\varepsilon \sim \mathcal{N}(0, 1)$

Kipgina, D.P., Salimans, T. and Welling, M., 2015. Variational dropout and the local reparameterization in Advançes in Neural Information Processing Systems (pp. 2575-2583).

The Overall Task

 Stage 1: Liver and Spleen segmentation of whole-body Dixon MRI scans with their corresponding Uncertainty.

 Stage 2: Integrate and optimize the web app for whole-body segmentation visualization.

 Stage 3: Identify its impact for early onset Diabetes.

Training Strategy Part I

Training Strategy Part II

*Total Dataset = X diabetic volumes + Y non-diabetic volumes _Train-set = Test-set = X/2 + Y/2

Challenge

Multi-dataset setting (KORA, NAKO, UK Biobank) with annotations only in KORA dataset.

- Resolution is different across dataset.
- Orientation are not standardized.
- Difference in final size and contrast.

Challenge

- Standardized pre-processing pipeline helps.
 - Reorientation to a standard orientation.
 - Down-sampling to a standard orientation.
- Acceptable performance achieved across dataset.
- Results are not yet perfect, hence uncertainty plays a big role.

Stage 1: processed Outputs

Original Processed KORA NAKO UK-**BioBan** k

Outputs

Processed

Segmentation

KORA NAKO UK-BioBan k

Stage 1: Uncertainty

- Intersection over Union(IoU).
- Hausdorff Surface Distance.
- Normalized cross correlation.
- Generalised Energy Distance.
- Why IoU?
 - Independent of ground truth.
 - Alleviate labelled data scarcity.

Roy, A.G., Conjeti, S., Navab, N., Wachinger, C. and Alzheimer's Disease Neuroimaging Initiative, 201 Bayesian QuickNAT: Model uncertainty in deep whole-brain segmentation for structure-wise quality of planage, 195, pp.11-22.

Stage 1: Segmentation and Uncertainty Results Processed

Stage 1: More outputs

Models

KORA(2461885)

MC Dropou t

Probab ilistic U-Net

Hierarc hical U-Net

Full Bayesi ¿an

UK-Bio<u>bank(545255</u>8)

Stage 1: Other Findings

• Dice vs IoU relation in non-dropout models.

Models	Monte- Carlo Dropout	Probabilis tic-Net	Hierarchic al U-Net	Full Bayesian
Correlatio n Score	39.6%	50.9%	34.5%	59.2%

Stage 2: Web App

- Whole-Body segmentation integration.
- Inclusion of Uncertainty measures.
- Report Generation.

Outputs

Report

Al-Med Report 01/07/2020

Lab for Artificial Intelligence in Medical Imaging Waltherstr. 23 80337 München

Whole Body Matter Percentage with model Uncertainty

ID	Structure	Vol*	%ICV	U*	
1	Spleen	21922	6.59	0.15	

ID	Structure	Vol*	%ICV	U*	
2	Liver	118944	35.74	0.09	

Stage 2: Demo

http://abdomen.ai-med.de

Diabetes

Perform clinical analysis to identify possible imaging bio-markers relating to early onset of diabetes.

Datasets:

- KORA Diabetes Diagnosis
- UK Bio-Bank Diabetes Diagnosis

Preprocessing:

Drop highly uncertain segmentations(IoU<0.51)

Methodologies:

- Regressing Segmentation Volume.
- Classifying Diabetes State.
- 🝹 Transfer Learning.

Stage 3: Regression Models

· Raw Model TUDE 1)

```
Volume = a_0 + *a_1 *Age + a_2 *BMI + a_3 *Sex + a_4 *DiabetesStatus + err
```

- Use of Uncertainty as confounder (Type II)
 - Use of Uncertainty as confounder (Type II)

```
Volume = a_0 + * a_1 * Age + a_2 * BMI + a_3 * Sex + a_4 * DiabetesStatus + a_5 * Uncertainty + err
```

- Use of Uncertainty as instance weights
 - (Type III)

Uncertainty * (Volume $\sim a_0 + * a_1 * Age + a_2 * BMI + a_3 * Sex + a_4 * DiabetesStatus + err$)

Stage 3: Regression Outputs

	Type I	Type II	Type III
Dataset(KOR A)	0.009		
Monte-Carlo dropout	0.014	0.011	0.012
Probabilistic U-net	0.016	0.010	0.016
Hierarchical U-net	0.019	0.014	0.019
Full-	0.053	0.021	0.048

Table Special privature significance scores of diabetes status to various linear model with or without the inclusion of uncertainty.

Models

· Raw Model TUDEPE 1)

```
DiabetesStatus = a_0 + *a_1 *Age + a_2 *BMI **2 + a_3 *Sex + a_4 *Volume + err
```

- Use of Uncertainty as confounder (Type II)
 - Use of Uncertainty as confounder (Type II)

$$\bigcirc$$
 DiabetesStatus = $a_0 + *a_1 *Age + a_2 *BMI ** 2 + a_3 *Sex + a_4 *Age + a_5 *BMI ** 2 + a_5 *Sex + a_5$

- Use of Uncertainty as instance weights $a_4 * Volume + a_5 * IoU + err$ (Type III) $a_4 * Volume + a_5 * IoU + err$ $a_4 * Volume + a_5 * IoU + err$ $a_4 * Uncertainty * Volume + err$
 - Use of Uncertainty as instance weights (Type III)

Uncertainty * (DiabetesStatus =
$$a_0 + * a_1 * Age + a_2 *$$

 $BMI ** 2 + a_3 * Sex + a_4 * Volume + err$)

Outputs

	Type I	Type II-1	Type II-2	Type III
Monte-Carlo dropout	0.81403	0.81421	0.81691	0.80393
Probabilistic U-net	0.81565	0.81709	0.81818	0.80970
Hierarchical U-net	0.81295	0.81439	0.81583	0.80681
Full- bayesian	0.81421	0.81619	0.81097	0.80916

Table shows AUC-score for various linear model with or without the inclusion of Uncertainty on a validation set from same dataset i.e. KORA.

Classification

	Type I	Type II-1	Type II-2	Type III
Monte-Carlo dropout	0.71242	0.70164	0.69994	0.72018
Probabilistic U-net	0.70784	0.66972	0.68065	0.71268
Hierarchical U-net	0.69971	0.67642	0.68453	0.70949

Table shows AUC-score for various linear model with or without the inclusion of Uncertainty on a test set from different dataset i.e. UK-Biobank.

Stage 3: Other Findings

 Significant volume differences between diabetic and non-diabetic ground truth and inferenced segmentation.

Normal vs Diabetic Volume Differences

	Liver Volume	Spleen Volume
Dataset(KO RA)	1.01e-05	0.014
Monte-Carlo dropout	1.90e-06	0.111
Probabilistic U-net	1.05e-05	0.116
Hierarchical	3.35e-06	0.239

Table showy sighificance volume difference between normal and splanting for volume compare to spleen or the splanting for the spleen of the sp

Discussion

Future Work

- Exploration of Multi-Mode Segmentation
- 3D Segmentation Strategies.
- Statistical Analysis with more features.

Thank You and Questions

A special thanks to

Abhijit Guha Roy Google Health, London

Dr. Sebastian Pölsterl AI-Med, LMU Klinikum

Prof. Dr. Christian Wachinger AI-Med, LMU Klinikum

Prof. Dr.
Nassir Navab

