Few-Shot Learning

Сабина Даянова

План

Few-Shot Learning - тип задач в машинном обучении, в котором доступно малое количество данных

Мотивация?

Постановка задачи

$$R(h) = \int \ell(h(x), y) dp(x, y) = \mathbb{E}[\ell(h(x), y)].$$

$$R_I(h) = \frac{1}{I} \sum_{i=1}^{I} \ell(h(x_i), y_i)$$

$$p(x,y)$$
 - распределение x, y - пространство гипотез, определяемое моделью I - количество объектов в датасете

- $\hat{h} = \arg\min_{h} R(h)$
- $h^* = \arg\min_{h \in \mathcal{H}} R(h)$
- $h_I = \arg\min_{h \in \mathcal{H}} R_I(h)$

Разложение ошибки:

$$\mathbb{E}[R(h_I) - R(\hat{h})] = \underbrace{\mathbb{E}[R(h^*) - R(\hat{h})]}_{\mathcal{E}_{app}} + \underbrace{\mathbb{E}[R(h_I) - R(h^*)]}_{\mathcal{E}_{est}(\mathcal{H}, I)}$$

приближаемся к оптимальной гипотезе

насколько хорошо

штраф за минимизацию эмпирического риска вместо ожидаемого

Проблема: минимизатор эмпирического риска ненадежен

$$\mathbb{E}[R(h_I) - R(\hat{h})] = \underbrace{\mathbb{E}[R(h^*) - R(\hat{h})]}_{\mathcal{E}_{app}} + \underbrace{\mathbb{E}[R(h_I) - R(h^*)]}_{\mathcal{E}_{est}(\mathcal{H}, I)}$$

Решение: использовать априорные знания

Prior knowledge in Data

Prior knowledge in Model

стратегия	априорные знания	как ограничить ${\cal H}$					
multitask learning	датасеты других задач	делить/связывать параметры					
embedding learning	эмбеддинги, обученные на/вместе с другими задачами	спроецировать выборку на пространство меньшей размерности					
generative modeling	априорная модель, обученная на других задачах	делать ограничения на вид распределения					

Multitask learning

- задачи обучаются одновременно
- параметры каждой задачи ограничиваются другими задачами

Hard parameter sharing

- Есть общие (shared) слои
- Есть личные (task-specific) слои для каждой задачи отдельно
- target задачи обновляют только task-specific слои
- source задачи обновляют task-specific и shared слои
- этот метод уменьшает риск переобучения

Soft parameter sharing

- у каждой задачи своя модель и свои параметры
- для схожести параметров регуляризуем расстояния между ними

Embedding learning

- проецируем данные на пространство меньшей размерности за счет эмбеддинга
- в уменьшенном пространстве гипотез похожие объекты находятся ближе, разные объекты более различимы

Siamese networks

- 2 одинаковые сети
- в конце сети объединяются с помощью метрики расстояния
- веса связаны между сетями

Generative modeling

 используя априорные данные и наш датасет, хотим оценить распределение

$$x \sim \int p(x|z;\theta)p(z;\gamma)dz$$

 априорные модели обучаются на других датасетах

Neural statistician

а). Базовая модель

б). Neural statistician

- есть глобальная латентная переменная *с (context)*
- каждая латентная переменная z декомпозирована на несколько слоев для работы с датасетами со сложной структурой
 - при классификации объекта выбираем тот класс, чье распределение наиболее близко к распределению объекта

Prior knowledge in Algorithm

стратегия	априорные знания	как искать $ heta$ у h^* в $oldsymbol{\mathcal{H}}$
улучшение существующих параметров	взять начальное приближение модели, обученной на похожей задаче	адаптировать к θ с помощью обучающего датасета
улучшение мета-параметров	использовать мета-обучатель	адаптировать к θ с помощью обучающего датасета
обучить оптимизатор	использовать мета-обучатель	использовать шаги поиска. полученные с помощью мета-обучателя

Примеры

Charge prediction (MTL)

Datasets		Crim	inal-S		ĺ	Crimi	nal-M		Criminal-L				
Metrics	Acc.	MP	MR	F1	Acc.	MP	MR	F1	Acc.	MP	MR	F1	
TFIDF+SVM	85.8	49.7	41.9	43.5	89.6	58.8	5 0.1	52.1	91.8	67.5	54.1	57.5	
CNN	91.9	50.5	44.9	46.1	93.5	57.6	48.1	50.5	93.9	66.0	50.3	54.7	
CNN-200	92.6	51.1	46.3	47.3	92.8	56.2	50.0	50.8	94.1	61.9	50.0	53.1	
LSTM	93.5	59.4	58.6	57.3	94.7	65.8	63.0	62.6	95.5	69.8	67.0	66.8	
LSTM-200	92.7	60.0	58.4	57.0	94.4	66.5	62.4	62.7	95.1	72.8	66.7	67.9	
Fact-Law Att.	92.8	57.0	53.9	53.4	94.7	66.7	60.4	61.8	95.7	73.3	67.1	68.6	
Our Model	93.4	66.7	69.2	64.9	94.4	68.3	69.2	67.1	95.8	75.8	73.7	73.1	

Attributes
Profit Purpose
Buying and Selling
Death
Violence
State Organ
Public Place
Illegal Possession
Physical Injury
Intentional Crime

Production

Image recognition (siamese nets)

Method	Test
Humans	95.5
Hierarchical Bayesian Program Learning	95.2
Affine model	81.8
Hierarchical Deep	65.2
Deep Boltzmann Machine	62.0
Simple Stroke	35.2
1-Nearest Neighbor	21.7
Siamese Neural Net	58.3
Convolutional Siamese Net	92.0

Video object segmentation

		Semi-Supervised								Unsupervised							Bounds		
	Measure	Ours	OFL	BVS	FCP	JMP	HVS	SEA	TSP	FST	NLC	MSG	KEY	CVOS	TRC	SAL	COB SP	COB	MCG
Î	Mean M↑	79.8	68.0	60.0	58.4	57.0	54.6	50.4	31.9	55.8	55.1	53.3	49.8	48.2	47.3	39.3	86.5	79.3	70.7
J	Recall O↑	93.6	75.6	66.9	71.5	62.6	61.4	53.1	30.0	64.9	55.8	61.6	59.1	54.0	49.3	30.0	96.5	94.4	91.7
	Decay D↓	14.9	26.4	28.9	-2.0	39.4	23.6	36.4	38.1	0.0	12.6	2.4	14.1	10.5	8.3	6.9	2.8	3.2	1.3
	Mean M↑	80.6	63.4	58.8	49.2	53.1	52.9	48.0	29.7	51.1	52.3	50.8	42.7	44.7	44.1	34.4	87.1	75.7	62.9
F	Recall O↑	92.6	70.4	67.9	49.5	54.2	61.0	46.3	23.0	51.6	51.9	60.0	37.5	52.6	43.6	15.4	92.4	88.5	76.7
	Decay D↓	15.0	27.2	21.3	-1.1	38.4	22.7	34.5	35.7	2.9	11.4	5.1	10.6	11.7	12.9	4.3	2.3	3.9	1.9
\mathcal{T}	Mean M↓	37.6	21.7	34.5	29.6	15.3	35.0	14.9	41.2	34.3	41.4	29.1	25.2	24.4	37.6	64.1	27.4	44.1	69.8

References

- https://arxiv.org/pdf/1904.05046.pdf a survey on FSL
- https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf Siamese Networks for One-shot Learning
- https://arxiv.org/pdf/1606.02185.pdf Neural Statistician
- https://www.aclweb.org/anthology/C18-1041.pdf Charge prediction
- https://openaccess.thecvf.com/content_cvpr_2017/papers/Caelles_0 ne-Shot_Video_Object_CVPR_2017_paper.pdf Video object segmentation