CWRU DSCI351-451: Intro to LinRegr-ISLR2

Roger H. French, JiQi Liu 08 November, 2018

Contents

10.2.1.1 Reading, Homeworks, Projects, SemProjects	1
10.2.1.2 Syllabus	1
10.2.1.3 ISLR Chapter 2 Regression and IntroR Lab Excerise	3
10.2.1.3.1 Regression is the case of supervised learning	3
10.2.1.4 Function Notation for a Predictive model	3
10.2.1.4.1 Variables	3
10.2.1.4.2 Expected Values of a Predictive Model	4
10.2.1.4.3 The ideal or optimal predictor of Y	4
10.2.1.4.4 An estimate (one version) of $f(X)$	5
10.2.1.4.5 And then we are left with the irreducible error	5
10.2.1.4.6 So by better model building	5
10.2.1.5 Overview of the Regression Function and its nature	5
10.2.1.5.1 How do we estimate the function $f(X)$?	6
10.2.1.6 The Curse of Dimensionality	6
10.2.1.7 Parametric and Structured Models	6
10.2.1.7.1 Some tradeoffs in regression modeling	6
10.2.1.7.2 Interpretability vs Flexibility	9
10.2.1.8 Assessing Model Accuracy	9
10.2.1.8.1 Have to use training (Tr) and testing (Te) datasets	9
10.2.1.9 The Bias vs. Variance Trade-off	9
10.2.1.9.1 How does all this play out in Classification Problems	12
10.2.1.10 Citations	12

License: CC-BY-SA 4.0

10.2.1.1 Reading, Homeworks, Projects, SemProjects

- Homework:
 - HW6 is given out Thursday November 8th, 2018
 - Due in 1 week on Thursday November 15th, 2018
- Readings:
 - ISLR Chapter 3
- Projects: We will have four 2 week EDA projects
 - Project 3 given out today, November 6th, 2018
 - Due Thursday November 20, 2018
- 451 SemProjects:
 - Third SemProj Report Outs Dec. 4,6 2018
 - Final full SemProject Written Report Due 12/17/2018
- Final Exam
 - Monday December 17th, 12 noon to 3pm, Olin 313

10.2.1.2 Syllabus

Day:Date	Foundation	Practicum	Reading	Due
w1a:Tu:8/28/18	ODS Tool Chain	R, Rstudio, Git		
w1b:Th:8/30/18	Setup ODS Tool Chain	Bash, Git, Twitter	PRP4-33	HW1
w2a:Tu:9/4/18	What is Data Sci- ence	OIS:Intro2R	PRP35-64	HW1 Due
w2b:Th:9/6/18	Data Analytic Style, Git	451SempProj, Git	PRP65-93, OI1-1.9	HW2
w3a:Tu:9/11/18*	Struct. of Data Analysis	ISLR:Intro2R, Loops	PRP94-116, OIS3	HW2 Due
w3b:Th:9/13/18*	OIS3 Intro to Data	GapMinder, Dplyr, Magrittr		
w4a:Tu:9/18/18	OIS3, Intro2Data part 2, Data	EDA: PET Degr.	EDA1-31	Proj1
w4b:Th:9/20/18	Hypothesis Testing	GGPlot2 Tutorial	EDA32-58	HW3
w5a:Tu:9/25/18	Distributions	SemProj RepOut1	R4DS1-3	HW3 Due
w5b:Th:9/27/18	Wickham DSCI in Tidyverse	SemProj RepOut1	R4DS4-6	SemProj1,
w6a:Tu:10/2/18	OIS Found. of Infer- ence	Inference	R4DS7-8	Proj1 Due
w6b:Th:10/4/18		Midterm Review	R4DS9-16 Wrangle	
w7a:Tu:10/9/18*	Summ. Stats & Vis.	Data Wrangling		
w7b:Th:10/11/18*	MIDTERM EXAM			HW4
w8a:Tu:10/16/18	Numerical Inference	Tidy Check Explore	OIS4	HW4 Due
w8b:Th:10/18/18	Algorithms, Models	Pairwise Corr. Plots	OIS5.1-4	Proj 2, HW5
Tu:10/23	CWRU FALL BREAK		R4DS17-21 Program	
w9b:Th:10/25/18	Categorical Infer	Predictive Analytics	OIS6.1,2	
w10a:Tu:10/30/18	SemProj	SemProj	OIS7	SemProj2 HW5 Du
w10b:Th:11/1/18	Lin. Regr.	Lin. Regr.	OIS8	Proj.2 due
w11a:Tu:11/6/18	Inf. for Regression	Curse of Dim.	OIS8	Proj 3
w11b:Th:11/8/18	Model Accuracy	Training Testing	ISLR3	HW6
w12a:Tu:11/13/18	Multiple Regr.	Mul. Regr. & Pred.	ISLR4	HW6 due
w12b:Th:11/15/18	Classification		ISLR6	
w13a:Tu:11/20/18	Classification	Clustering	ISLR5	Proj 3 due
Th:11/22/18	THANKSGIVING			Proj 4
w14a:Tu:11/27/18	Big Data	Hadoop		
w14b:Th:11/29/18	InfoSec	VerisDB		SemProj3
w15a:Tu:12/4/18	SemProj Re-			
151./TL.19/6/10	portOut3			D!4
w15b:Th:12/6/18	SemProj Re- portOut3			Proj4
	FINAL EXAM	Monday12/17,	Olin 313	SemProj4 due
		12:00-3:00pm		

Figure 1: DSCI351/451 Syllabus

10.2.1.3 ISLR Chapter 2 Regression and IntroR Lab Excerise

From Hastie and Tibshirani

- They have good notation
- And a good intro to R

10.2.1.3.1 Regression is the case of supervised learning

Where we have a response that is associated with the predictors

- And we want to develop a predictive model
 - that relates predictors with response

10.2.1.4 Function Notation for a Predictive model

Some notation for predictive models

- Response Y which we want to predict
- And the Predictors we will use are $X = X_1 + X_2 + X_3$
 - when we have P number of predictors,
 - * and P = 3 in this example
 - where the predictors X is a vector
 - And X is a column vector containing (X_1, X_2, X_3)
 - Which has 3 components $X_1 + X_2 + X_3$
 - We also have to have an error term ϵ
- Our predictive model will then be
 - $-Y = f(X) + \epsilon$
- ϵ error term is a catch all
 - captures measurement error, and other discrepancies
 - we can never model something perfectly
- And for the predictor X
 - A single instance of X is x
 - i.e. (x_1, x_2, x_3)
 - three specific values of the 3 components
 - of 1 individual observation, i.e. x
 - of the predictor X

10.2.1.4.1 Variables

- Independent Variables X are called
 - independent variables
 - predictors
 - exogenous variables
- Dependent Variables Y are called
 - dependent variables
 - responses
 - endogenous variables

In some cases, such as network models

- Some variables may be both.
 - independent, predictors
 - and also dependent response
- Such as in our group's netSEM structural equation models
 - take a look at SEM package

```
# install.packages("sem")
library(sem)
help(sem)
# install.packages("lavaan")
library(lavaan)
## This is lavaan 0.6-3
## lavaan is BETA software! Please report any bugs.
##
## Attaching package: 'lavaan'
## The following objects are masked from 'package:sem':
##
##
       cfa, sem
help(lavaan)
# install.packages("netSEM")
library(netSEM)
help(netSEM)
```

10.2.1.4.2 Expected Values of a Predictive Model

Now, once you have a predictive model

How well does it do, fitting your actual response?

- Remember a function is by definition single-valued
 - for a given value x_1 of the independent variable X
 - there is only dependent value y_1 for the dependent variable Y
- Therefore it can never actually predict
 - the exact observed value of the response
- this is why we keep the error term ϵ explicit

The Expected Value of a Regression Function

- Our regression function is $Y = f(X) + \epsilon$
- Gives the Expected value of the response for X=4

Notation for this is:

$$f(4) = E(Y|X=4)$$

Or for our vector X

$$f(x) = f(x_1, x_2, x_3) = E(Y|X_1 = x_1, X_2 = x_2, X_3 = x_3)$$

10.2.1.4.3 The ideal or optimal predictor of Y

- Minimizes the loss function between the function and the data
- For example minimizing the sum of squared errors

The regression function f(x)

- Is also defined for vector X; e.g. $f(x) = f(x_1, x_2, x_3) = E(Y|X_1 = x_1, X_2 = x_2, X_3 = x_3)$
- Is the *ideal* or *optimal* predictor of Y with regard to mean-squared prediction error: f(x) = E(Y|X=x) is the function that minimizes $E[(Y-g(X))^2|X=x]$ over all functions g at all points X=x.
- $\epsilon = Y f(x)$ is the *irreducible* error i.e. even if we knew f(x), we would still make errors in prediction, since at each X = x there is typically a distribution of possible Y values.
- For any estimate $\hat{f}(x)$ of f(x), we have

$$E[(Y - \hat{f}(X))^{2} | X = x] = \underbrace{[f(x) - \hat{f}(x)]^{2}}_{Reducible} + \underbrace{\operatorname{Var}(\epsilon)}_{Irreducible}$$

Figure 2: the regression function and its nature

10.2.1.4.4 An estimate (one version) of f(X)

- is called $\hat{f}(X)$
- since we could determine many versions of f(X)

And then we'll determine the best one of these $\hat{f}(X)$ functions

• That reduces the loss function

10.2.1.4.5 And then we are left with the irreducible error

• Which is just the variance of the errors.

10.2.1.4.6 So by better model building

- we can reduce the reducible error
- and we're left with the irreducible error.
 - Which I think of as the true "noise" in the data

10.2.1.5 Overview of the Regression Function and its nature

10.2.1.5.1 How do we estimate the function f(X)?

We can perform the loss function minimization, at each specific value x of X.

- Or at least in the neighborhood of x,
 - which is denonte by $\mathcal{N}(x)$
 - and called Nearest Neighbor Averaging

Note that the regression function f(X) is not an algebraic function

- We didn't guessestimate it should be quadratic or some such.
- It is a numerical function defined for each value x of X

10.2.1.6 The Curse of Dimensionality

When we are doing our nearest neighborhood averaging

- in high dimensional datasets
- we are hit by the curse of dimensionality
 - We can't define who are nearest neighbors
 - Because they tend to be far away in high dimensions

This hits us in many places of Prediction, Modeling and Statistical Learning

• The Curse of Dimensionality

10.2.1.7 Parametric and Structured Models

One way to get around the curse of dimensionality,

• Use Parametric Models

$$f_l(X) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p$$

Where there are p+1 parameters in the model

• Which are estimated by fitting the model to the data

Estimated values of a parameter β

• are denoted as $\hat{\beta}$

10.2.1.7.1 Some tradeoffs in regression modeling

- Prediction accuracy versus interpretability.
 - Linear models are easy to interpret;
 - thin-plate splines are not.
- Good fit versus over-fit or under-fit.
 - How do we know when the fit is just right?
- Parsimony versus black-box.
 - We often prefer a simpler model
 - * involving fewer variables
 - Over a black-box predictor
 - * involving them all.

How to estimate f

- Typically we have few if any data points with X = 4 exactly.
- So we cannot compute E(Y|X=x)!
- Relax the definition and let

$$\hat{f}(x) = \text{Ave}(Y|X \in \mathcal{N}(x))$$

where $\mathcal{N}(x)$ is some neighborhood of x.

Figure 3: how to determine the regression function f(X)

A linear model $\hat{f}_L(X) = \hat{\beta}_0 + \hat{\beta}_1 X$ gives a reasonable fit here

A quadratic model $\hat{f}_Q(X) = \hat{\beta}_0 + \hat{\beta}_1 X + \hat{\beta}_2 X^2$ fits slightly better.

Figure 4: Examples of Parametric Models

Figure 5: Interpretability vs Flexibility

10.2.1.7.2 Interpretability vs Flexibility

Here are some of the approaches we'll look at this semester

- Simpler models could be more interpretable
 - Or could be too naive
- Flexibility makes for good fits
 - But can lead to overfitting

10.2.1.8 Assessing Model Accuracy

10.2.1.8.1 Have to use training (Tr) and testing (Te) datasets

To determine the best predictive model

10.2.1.9 The Bias vs. Variance Trade-off

- The hat is the estimated value of something. $\hat{f}(X)$
- We can see the variance of $\hat{f}(X)$
- And the bias in $\hat{f}(X)$

Choosing the flexibility of your fitting function

- (i.e the number of predictors, or coefficients, in your model function)
- ullet based on average test error
- amounts to what we call a bias-variance trade-off

Assessing Model Accuracy

Suppose we fit a model $\hat{f}(x)$ to some training data $\mathsf{Tr} = \{x_i, y_i\}_1^N$, and we wish to see how well it performs.

 We could compute the average squared prediction error over Tr:

$$MSE_{\mathsf{Tr}} = Ave_{i \in \mathsf{Tr}} [y_i - \hat{f}(x_i)]^2$$

This may be biased toward more overfit models.

• Instead we should, if possible, compute it using fresh test data $Te = \{x_i, y_i\}_1^M$:

$$MSE_{Te} = Ave_{i \in Te}[y_i - \hat{f}(x_i)]^2$$

Figure 6: Assessing Model Accuracy

Bias-Variance Trade-off

Suppose we have fit a model $\hat{f}(x)$ to some training data Tr, and let (x_0, y_0) be a test observation drawn from the population. If the true model is $Y = f(X) + \epsilon$ (with f(x) = E(Y|X = x)), then

$$E(y_0 - \hat{f}(x_0))^2 = Var(\hat{f}(x_0)) + [Bias(\hat{f}(x_0))]^2 + Var(\epsilon).$$

The expectation averages over the variability of y_0 as well as the variability in Tr. Note that $\operatorname{Bias}(\hat{f}(x_0)) = E[\hat{f}(x_0)] - f(x_0)$.

Typically as the *flexibility* of \hat{f} increases, its variance increases, and its bias decreases. So choosing the flexibility based on average test error amounts to a *bias-variance trade-off*.

Figure 7: Bias vs. Variance Trade-off

Training- versus Test-Set Performance

Figure 8: Bias vs. Variance in a Training & Testing Framework

And we use training datasets and testing datasets

- which we apply our model to
- to determine the optimal tradeoff we should use
- for a specific problem and model

10.2.1.9.1 How does all this play out in Classification Problems

As opposed to Regression Problems, which we just discussed

10.2.1.10 Citations

- R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing, 2014..
- Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An Introduction to Statistical Learning: With Applications in R. 1st ed. 2013, Corr. 5th printing 2015 edition. Springer Texts in Statistics. New York: Springer, 2013.
- Abbass Al Sharif. "Applied Modern Statistical Learning Techniques." [Abbass-Al-Sharif. Accessed January 17, 2016.(http://www.alsharif.info/).

- Diez, David M., Christopher D. Barr, and Mine Çetinkaya-Rundel. OpenIntro Statistics: Third Edition. 3 edition. S.l.: OpenIntro, Inc., 2015.
- Mayor, Eric. Learning Predictive Analytics with R. Packt Publishing ebooks, 2015.