CAD/VLSI Circuit Design 期末報告

在 FPGA 板上使用 CORDIC 演算法 搭配脈衝陣列的定點數 QR 分解 Fixed point QR decomposition using CORDIC Algorithms on FPGA with systolic array

學號:7111064109

學生:林軒宇

指導教授:范志鵬

日期:

目錄

- `	簡介	1 -
二、	理論	1 -
	given rotation 說明	1 -
	使用 CORDIC 達成 given rotation	2 -
三、	架構改良	2 -
	改良一:PE Element 改良	2 -
	改良二:input size 改良	2 -
	改良三: systolic array 改良	4 -
	改良四:重新定義 K	4 -
四、	設計規格	5 -
	系統方塊圖	5 -
	QR_CORDIC 輸入輸出介面	5 -
	GG 輸入輸出介面	5 -
	GR 輸入輸出介面	6 -
五、	模擬結果	6 -
	Matlab 模擬結果	6 -
	Vivado 模擬結果	8 -
	Cell based simulation	10 -
六、	FPGA 驗證	11 -
	系統架構圖	11 -
	Top module 輸入輸出介面	12 -
	Block Design	12 -
	Result	12 -
	SDK Result	13 -
せ、	結果與討論	13 -
八、	參考文獻	13 -

一、 簡介

QR 分解是數值線性代數中具備多種用途的計算工具,主要應用於線性方程、最小平方法和特徵值問題。常見的 QR 分解的計算方法包括 Householder 變換、Givens rotation 以及 Gram-Schmidt 正交法。本文使用 given rotation 搭配 CORDIC Alogorithms。

本次實作採用 8*4 矩陣,每個數字大小定義在±0.25~±1,預期得到一組 8*4 的上三角矩陣 R。實驗流程為先使用 MATLAB 估算預期使用定點數(fixed point) 的長度(浮點數與定點數的誤差需足夠小)以及 iteration 的次數,再將 MATLAB 生成的隨機 8*4 矩陣以定點數格式匯入 verilog,並將 verilog 算出答案與 matlab 算出答案做比較,最後使用 FPGA 做驗證。

二、 理論

➤ given rotation 說明

$$x' = x \cos \phi - y \sin \phi$$

 $y' = y \cos \phi + x \sin \phi$

找到角度①使得 y'=0,以圖一為例, $a_{1,1}$ 為 x'、 $a_{2,1}$ 為 y',找出角度①後,需將右側同一列的數值皆經過同樣的旋轉矩陣運算(原理同基本矩陣第二定理),之後依序將 $a_{3,1}$ 、 $a_{4,1}$...變成 0,直到第一行除了 $a_{1,1}$ 外均變成 0。同理第二行,將 $a_{2,2}$ 為 x'、 $a_{3,2}$ 為 y'進行相同動作,直到第二行除了 $a_{2,2}$ 外皆變 0。持續到第 n 行(最後一行),即可得到上三角矩陣 R。

(圖一)given rotation 範例圖

▶ 使用 CORDIC 達成 given rotation

$$x' = \cos\phi \cdot [x - y \tan\phi]$$
$$y' = |\cos\phi \cdot [y + x \tan\phi]$$

先將 $\cos \emptyset$ 提出,接著限制 $\tan(\emptyset) = \pm 2^{-i}$,即可將算式簡化如下:

$$\begin{aligned} x_{i+1} &= K_i \Big[x_i - y_i \cdot d_i \cdot 2^{-i} \Big] \\ y_{i+1} &= K_i \Big[y_i + x_i \cdot d_i \cdot 2^{-i} \Big] \end{aligned} \qquad K_i = \cos(\tan^{-1} 2^{-i}) = 1 / \sqrt{1 + 2^{-2i}} \\ d_i &= \pm 1 \end{aligned}$$

為了簡化運算量,將每次的運量係數省略,最後再乘上所有系數的乘積和(An)

$$A_n = \prod_n \sqrt{1 + 2^{-2i}}$$

n為疊代的次數

三、 架構改良

▶ 改良一: PE Element 改良

(圖二)為論文中一顆 PE 元件的架構,(圖三)為改良後一顆 PE 元件的架構,最大的改進在於完成一次計算所需花的 CLK 數變原先的一半(unfolding factor(J)=2)。缺點為會增加 Critical path,但此架構的 Critical path 為乘法器,因此可以近乎無代價的提高 Performance

(圖二)論文 PE 元件

(圖三)改良後 PE 元件

▶ 改良二:input size 改良

原論文疊代次數 n 為 9,為了使用上文圖三架構,我們須選擇偶數次疊代次數,因此此文選用疊代次數(n)為 8。此外原論文每個 input 為 16bits,此文將每個 input 改為 13bits(1 sign bit, 2 decimal bits, 10 fraction bits),找法如下文。首先定義 delta 函式如下:

$$\mathcal{S} = \frac{\sqrt{\sum (r_{ij} - \hat{r}_{ij})^2}}{\sqrt{\sum r_{ii}^2}}$$

接著使用 matlab 畫圖,做法如下:

先將 Fraction bit 設定為 5 bit, 皆著連續測試 10 組 δ 值, 如果不滿足 δ<0.01,就將 Fraction bit m1,結果如下圖:

横軸為 delta 值, 縱軸為 index(從 1~10),由上圖可以看出唯有 Fraction bit=10 時,delta 值會小於 0.01,最終測出 Fraction bit 最小需要 10 bit。

▶ 改良三:systolic array 改良

(圖四)為原論文架構,(圖五)為改良版架構,改良版為 pipeline 版本,在高頻下也可以成功運作。由於 R22 與 R12 間有資料相依,中間需要加 delay, delay 數由疊代次數(n)與 J(unfolding factor)有關,算式如下:

Delay >= (n/J+1)*2

n/J 為 X_{ij} 執行 Rotation mode 的次數,加 1 為乘法器,乘 2 為有兩級資料相依。 舉例:以 X₇₂、X₈₂ 為例,R22 執行需等到 R12 執行完 X₇₂、X₈₂ 才能計算。 同理(R13,R23)、(R14,R24)、(R34,R44)。

(R23,R33)、(R24,R34)多 delay 兩級目的為使用 pipeline 技巧,讓原先需要八顆乘法器降成 4 顆乘法器。最後結果如(圖五)。

(圖四)論文 systolic array

(圖五)改良後 systolic array

▶ 改良四:重新定義 K

從前文理論中,我們可以得知 An 如下:

$$A_n = \prod_n \sqrt{1 + 2^{-2i}}$$

其中 n 為疊代次數 ,將 n=8 帶入 ,並將其重新定義成 K ,可得結果如下: K=0.6074

最後將其轉為 FIXED POINT(共 11 bits, sign bit: 1, fraction bit: 10)

四、 設計規格

▶ 系統方塊圖

▶ QR_CORDIC 輸入輸出介面

Signal Name	I/O	Width	Simple Description
Clk	I	1	Clock Signal(posedge trigger)
Rst_n	I	1	Negedge reset
valid	I	1	valid 為 high,in 資料開始輸入
out_valid	0	1	out_valid 為 high,out 資料開始輸出
in	I	52	為第 i 列資料,4 筆 13bits 資料組成輸入
out	0	52	為第 i 列資料,4 筆 13bits 資料組成輸出

➤ GG 輸入輸出介面

Signal Name	1/0	Width	Simple Description
out_X	0	13	X _{ij} 資料輸出
out_Y	0	13	X _{i(j-1)} 資料輸出
Sign_d	0	2	決定第 i 與(i+1)次疊代旋轉方向
Iter_num	I	3	為第 i 次疊代, i 為 0、2、4、6
In_X	I	13	X _{ij} 資料輸入
In_Y	I	13	X _{i(j-1)} 資料輸入

▶ GR 輸入輸出介面

Signal Name	I/O	Width	Simple Description
out_X	0	13	X _{ij} 資料輸出
out_Y	0	13	X _{i(j-1)} 資料輸出
Sign_d	1	2	決定第 i 與(i+1)次疊代旋轉方向
Iter_num	I	3	為第 i 次疊代, i 為 0、2、4、6
In_X	I	13	X _{ij} 資料輸入
In_Y	I	13	X _{i(j-1)} 資料輸入

五、 模擬結果

▶ Matlab 模擬結果

1. 8*4 input matrix in floating

A1 =

-0.4453	-0.7188	-0.4297	-0.9297
0.3594	-0.5156	0.5625	0.5234
0.3516	-0.6328	-0.2813	0.3281
0.9063	0.5469	0.9297	-0.8359
-0.6875	0.3047	-0.9609	-0.5391
-0.6641	0.4297	-0.6172	-0.4297
-0.3594	-0.3359	0.6172	-0.5547
0.8906	0.3828	0.5000	0.3203

DataTypeMode: Fixed-point: binary point scaling

Signedness: Signed WordLength: 13 FractionLength: 10

2. 8*4 input matrix in sign decimal

-456	-736	-440	-952
368	-528	576	536
360	-648	-288	336
928	560	952	-856
-704	312	-984	-552
-680	440	-632	-440
-368	-344	632	-568
912	392	512	328

3. 8*4 output matrix in floating

R_hat_cordic =

-1.7646	-0.2178	-1.3789	-0.6240
0.0010	-1.4063	0.1191	0.3076
-0.0049	0.0029	-1.2158	0.3896
-0.0039	-0.0020	-0.0068	-1.4883
-0.0029	0.0049	-0.0098	-0.0020
0.0039	0.0049	-0.0020	0.0049
0	0	-0.0049	0.0010
0.0029	-0.0020	0.0010	-0.0010

DataTypeMode: Fixed-point: binary point scaling

Signedness: Signed WordLength: 13 FractionLength: 10

4. 8*4 input matrix in sign decimal

-1807	-223	-1412	-639
1	-1440	122	315
-5	3	-1245	399
-4	-2	-7	-1524
-3	5	-10	-2
4	5	-2	5
0	0	-5	1
3	-2	1	- 1

5. Delta

 $delta_p2 =$

0.0039

DataTypeMode: Fixed-point: binary point scaling

Signedness: Signed WordLength: 19

FractionLength: 10

Vivado 模擬結果

1. valid 拉起時

13bits 8*4 in_reg ,用 來存放 8*4 矩陣的值

2. 中間計算的 control 訊號

3. outvalid 拉起時

4. TESBED 最終測試結果

START!!! Simulation Start

```
Your input matrix is :
```

Tour Imput mat.	11x 15 .				
-456.000000	-736.00	0000	-440.000000	-952.000000	
368.000000	-528.00		576.000000	536.000000	
360.000000	-648.00		-288.000000	336.000000	
928.000000	560.00		952.000000	-856.000000	
-704.000000					
	312.00		-984.000000	-552.000000	
-680.000000	440.00		-632.000000	-440.000000	
-368.000000	-344.00		632.000000	-568.000000	
912.000000	392.00	JUUUU	512.000000	328.000000	
Your matrix[8]	[0] is	3,	expect matri	x[8][0] is	3
Your matrix[8]	[1] is		expect matri		-2
Your matrix[8]	[2] is	1,	expect matri	x[8][2] is	1
Your matrix[8]	[3] is	-1,	expect matri	x[8][3] is	-1
Your matrix[7]			expect matri		0
Your matrix[7]	[1] is		expect matri		0
Your matrix[7]	[2] is	-5,	expect matri	x[7][2] is	-5
Your matrix[7]	[3] is	1,	expect matri		1
Your matrix[6]			expect matri		4
Your matrix[6]			expect matri		5
Your matrix[6]			expect matri		-2
Your matrix[6]	[3] is	5,	expect matri	x[6][3] is	5
Your matrix[5]			expect matri		-3
Your matrix[5]			expect matri		5
Your matrix[5]	[2] is		expect matri		-10
Your matrix[5]	[3] is	-2,	expect matri	x[5][3] is	-2
Your matrix[4]			expect matri		-4
Your matrix[4]	[1] is		expect matri		-2
Your matrix[4]			expect matri		-7
Your matrix[4]	[3] is	-1524,	expect matri	x[4][3] is	-1524
V				101101	-
Your matrix[3]			_		-5 3
Your matrix[3]			expect matri		
Your matrix[3]					
Your matrix[3]					399
Your matrix[2]			expect matri		1
Your matrix[2]					-1440
Your matrix[2]			expect matri		122
Your matrix[2]					315

Your matrix[1]					-1807
Your matrix[1]			-		
Your matrix[1]			_		
Your matrix[1]					
	C	ongratul	ations!		

Your output matrix is :

```
-1807.000000
              -223.000000 -1412.000000
                                          -639.000000
   1.000000 -1440.000000
                            122.000000
                                           315.000000
  -5.000000
                 3.000000 -1245.000000
                                           399.000000
  -4.000000
                -2.000000
                              -7.000000 -1524.000000
  -3.000000
                 5.000000
                             -10.000000
                                            -2.000000
   4.000000
                 5.000000
                              -2.000000
                                             5.000000
   0.000000
                 0.000000
                              -5.000000
                                             1.000000
   3.000000
                -2.000000
                               1.000000
                                            -1.000000
```

The delta result is 0.0039, calculation time is 55 clk

Cell based simulation

使用 CIC 0.13um 製程

1. Area report (area.log)

Library(s) Used:

```
slow (File: /usr/cad/Design_Kit/CBDK_IC_Contest_v2.5/SynopsysDC/db/slow.db)
```

Number of ports: 108 Number of nets: 12830 Number of cells: 12213 Number of combinational cells: Number of sequential cells: 521 Number of macros/black boxes: Number of buf/inv: 1492 Number of references: 95

Combinational area: 91374.436870 Buf/Inv area: 5277.216517 Noncombinational area: 16863.668461 Macro/Black Box area: 0.000000

undefined (No wire load specified) Net Interconnect area:

Total cell area: 108238.105330 undefined

2. Timing report(timing.log)

Path Group: clk Path Type: max

Point	Incr	Path
clock clk (rise edge) clock network delay (ideal) row_index_ggl_reg[1]/Ck (DFFSX4) row_index_ggl_reg[1]/Q (DFFSX4) U12903/Y (NAND2BX1) U12904/Y (NOR2BX1) U7730/Y (INVX1) U12949/Y (OAI22XL) U12399/Y (NOR3XL) U12953/Y (NOR3XL) U12955/Y (AOI2BEXX1) U12955/Y (AOI2BEXX1) U12955/Y (OAI21XL) U12956/Y (XORZX1) U12956/Y (XORZX1) U12956/Y (NORZX1) U10369/Y (NORZX1) U10369/Y (NORZX1)	0.00 0.00 0.00 0.39 0.18 0.10 0.20 0.12 0.24 0.13 0.14 0.10 0.23 0.15 0.16	0.00 0.00 0.00 r 0.39 f 0.57 f 0.67 r 0.87 r 0.99 f 1.23 r 1.36 f 1.50 r 1.59 f 1.83 f 1.97 c 2.14 r 2.24 f
U12995/Y (0AI21X1)	0.14	2.39 r
U9069/Y (A0I21XL) U12505/Y (OAI21XL)	0.11 0.24	2.50 f 2.74 r
U8528/Y (A0I21XL)	0.14	2.88 f
U8525/Y (0AI21XL)	0.27	3.15 r
		-

U13040/Y (A0I21X1)	0.15	3.31 f
U13047/Y (OAI21X1)	0.16	3.46 r
U9104/Y (A0I21XL)	0.12	3.58 f
U12634/Y (OAI21XL)	0.21	3.79 r
U16823/C0 (ADDFHX1)	0.23	4.01 r
U17192/CO (ADDFHX1)	0.27	4.28 r
U8297/Y (X0R2X2)	0.18	4.47 f
U8006/Y (BUFX8)	0.15	4.61 f
U12574/Y (INVX3)	0.12	4.74 r
U16792/Y (X0R2X1)	0.16	4.90 r
U16796/Y (A0I21X1)	0.13	5.02 f
U7629/Y (0AI21XL)	0.30	5.33 r
U16822/Y (A0I21X1)	0.15	5.48 f
U7623/Y (0AI21XL)	0.30	5.77 r
U17195/Y (A0I21X1)	0.16	5.93 f
U17197/Y (OAI21X1)	0.19	6.12 r
U17208/Y (A0I21X1)	0.13	6.24 f
U17264/Y (OAI21X1)	0.18	6.42 r
U17275/Y (A0I21X1)	0.13	6.55 f
U17321/Y (OAI21X1)	0.16	6.70 r
U7936/Y (A021X1)	0.19	6.89 r
U7853/CO (ADDFXL)	0.26	7.15 r
U18594/Y (INVXL)	0.08	7.23 f
U7932/Y (MX2X2)	0.20	7.43 f
U12788/Y (MXI2X1)	0.13	7.56 r
U18954/Y (OAI222XL)	0.19	7.75 f
in_reg_reg[7][0][12]/D (DFFRX1)	0.00	7.75 f
data arrival time		7.75
clock clk (rise edge)	8.00	8.00
clock network delay (ideal)	0.00	8.00
in_reg_reg[7][0][12]/CK (DFFRX1)	0.00	8.00 r
library setup time	-0.25	7.75
data required time		7.75
data required time		7.75
data arrival time		-7.75
slack (MET)		0.00

六、 FPGA 驗證

> 系統架構圖

➤ Top module 輸入輸出介面

Signal Name	I/O	Width	Simple Description
S_AXIS_MM2S_TVALID		1	
S_AXIS_MM2S_TREADY	0	1	
S_AXIS_MM2S_TDATA	- 1	64	
S_AXIS_MM2S_TKEEP	- 1	8	
S_AXIS_MM2S_TLAST	- 1	1	
aclk	- 1	1	
aresetn	- 1	1	
M_AXIS_S2MM_TVALID	0	1	
M_AXIS_S2MM_TREADY	- 1	1	
M_AXIS_S2MM_TDATA	0	64	
M_AXIS_S2MM_TKEEP	0	8	
M_AXIS_S2MM_TLAST	0	1	

➤ Block Design

Result

1. Timing Report

Setup		Hold		Pulse Width	
Worst Negative Slack (WNS):	0.160 ns	Worst Hold Slack (WHS):	0.018 ns	Worst Pulse Width Slack (WPWS):	5.750 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	28306	Total Number of Endpoints:	28290	Total Number of Endpoints:	11347
All user specified timing constrain	ints are met				

2. Power Report

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 1.762 W Not Specified Design Power Budget: N/A Power Budget Margin: 45.3°C Junction Temperature: Thermal Margin: 39.7°C (3.3 W) Effective 9JA: 11.5°C/W Power supplied to off-chip devices: 0 W Confidence level: Medium Launch Power Constraint Advisor to find and fix invalid switching activity

3. Total Report

Name	Constraints	Status	WNS	TNS	WHS	THS	TPWS	Total Power	Failed Routes	LUT	FF	BRAMs	URAM	DSP
synth_1	constrs_1	synth_design Complete!								10437	10130	17.50	0	4
√ impl_1	constrs_1	route_design Complete!	0.160	0.000	0.018	0.000	0.000	1.762	0	9651	9571	17.50	0	4

> SDK Result

- 七、 結果與討論
- 八、 參考文獻
- [1] FPGA based Embedded Processing Architecture for the QRD-RLS Algorithm Deepak Boppana, Kully Dhanoa, Jesse Kempa Altera Corporation, San Jose CA
- [2] A survey of CORDIC algorithms for FPGA based computers Ray Andraka Andraka Consulting Group, Inc 16 Arcadia Drive North Kingstown, RI 02852 401/884-7930 FAX 401/884-7950