CSE 255 – Lecture 2

Data Mining and Predictive Analytics

Supervised learning – Regression

Supervised versus unsupervised learning

Learning approaches attempt to model data in order to solve a problem

Unsupervised learning approaches find patterns/relationships/structure in data, but **are not** optimized to solve a particular predictive task

Supervised learning aims to directly model the relationship between input and output variables, so that the output variables can be predicted accurately given the input

Regression

Regression is one of the simplest supervised learning approaches to learn relationships between input variables (features) and output variables (predictions)

Linear regression

Linear regression assumes a predictor of the form $O = M_i$

(or Ax = b if you prefer)

Linear regression

Linear regression assumes a predictor of the form

$$X\theta = y$$

Q: Solve for theta

A:
$$\theta = (X^T X)^{-1} X^T y$$

How do preferences toward certain beers vary with age?

Beeradvocate

Beers:

Displayed for educational use only; do not reuse.

Ratings/reviews:

4.35/5 rDev -5.2%

look: 4 | smell: 4.25 | taste: 4.5 | feel: 4.25 | overall: 4.25

Serving: 355 mL bottle poured into a 9 oz Libbey Embassy snifter ("bottled on: 08AUG14 1109").

Appearance: Deep, dark near-black brown. Hazy, light brown fringe of foam and limited lacing; no head.

Smell: Roasted malt, vanilla, and some warming alcohol.

Taste: Roasted malts, cocoa, burnt caramel, molasses, vanilla and dark fruit. Bourbon barrel is hinted at but never takes over.

Mouthfeel: Medium to full body and light carbonation with a very lush, silky smooth feel.

Overall: Not as complex or intense as some newer barrel-aged stouts, but so smooth and balanced with all the elements tightly integrated.

HipCzech, Yesterday at 05:38 AM

User profiles:

50,000 reviews are available on http://jmcauley.ucsd.edu/cse255/data/beer/beer 50000.json (see course webpage)

See also – non-alcoholic beers:

http://jmcauley.ucsd.edu/cse255/data/beer/non-alcoholic-beer.json

Real-valued features

How do preferences toward certain beers vary with age? How about **ABV**?

Preferences vs ABV

$$O_0 + O_1 \times ABV$$

$$+ O_2 \times ABV^3$$

$$+ O_3 \times ABV^3$$

Real-valued features

What is the interpretation of:

$$\theta = (3.4, 10e^{-7})$$
3. 4 + $10e^{-7}$ × yr. h Seconds

Categorical features

How do beer preferences vary as a function of **gender**?

$$F = O_{c} + O_{c} \times gende$$

$$fanole = [i] \quad nele = [o]$$

$$male = O_{o} \quad Penale = O_{o} \rightarrow O_{i}$$

(code for all examples is on http://jmcauley.ucsd.edu/cse255/code/week1.py)

Linearly dependent features

$$Male = [0, 1] \quad formle = [1, 0]$$

$$Male = [0, 1] \quad formle = [0, 1]$$

$$Nale = [0, 1] \quad formle = [0, 1]$$

$$X = [0, 1] \quad formle = [0, 1]$$

$$X = [0, 1] \quad formle = [0, 1]$$

$$X = [0, 1] \quad formle = [0, 1]$$

$$X = [0, 1] \quad formle = [0, 1]$$

$$X = [0, 1] \quad formle = [0, 1]$$

$$X = [0, 1] \quad formle = [0, 1]$$

$$X = [0, 1] \quad formle = [0, 1]$$

$$X = [0, 1] \quad formle = [0, 1]$$

$$X = [0, 1] \quad formle = [0, 1]$$

$$X = [0, 1] \quad formle = [0, 1]$$

$$X = [0, 1] \quad formle = [0, 1]$$

$$X = [0, 1] \quad formle = [0, 1]$$

$$X = [0, 1] \quad formle = [0, 1]$$

$$X = [0, 1] \quad formle = [0, 1]$$

$$X = [0, 1] \quad formle = [0, 1]$$

$$X = [0, 1] \quad formle = [0, 1]$$

$$X = [0, 1] \quad formle = [0, 1]$$

$$X = [0, 1] \quad formle = [0, 1]$$

$$X = [0, 1] \quad formle = [0, 1]$$

$$X = [0, 1] \quad formle = [0, 1]$$

$$X = [0, 1] \quad formle = [0, 1]$$

$$X = [0, 1] \quad formle = [0, 1]$$

$$X = [0, 1] \quad formle = [0, 1]$$

$$X = [0, 1] \quad formle = [0, 1]$$

$$X = [0, 1] \quad formle = [0, 1]$$

$$X = [0, 1] \quad formle = [0, 1]$$

$$X = [0, 1] \quad formle = [0, 1]$$

$$Y = [0, 1] \quad formle = [0, 1]$$

$$Y = [0, 1] \quad formle = [0, 1]$$

$$Y = [0, 1] \quad formle = [0, 1]$$

$$Y = [0, 1] \quad formle = [0, 1]$$

$$Y = [0, 1] \quad formle = [0, 1]$$

$$Y = [0, 1] \quad formle = [0, 1]$$

$$Y = [0, 1] \quad formle = [0, 1]$$

$$Y = [0, 1] \quad formle = [0, 1]$$

$$Y = [0, 1] \quad formle = [0, 1]$$

$$Y = [0, 1] \quad formle = [0, 1]$$

$$Y = [0, 1] \quad formle = [0, 1]$$

$$Y = [0, 1] \quad formle = [0, 1]$$

$$Y = [0, 1] \quad formle = [0, 1]$$

$$Y = [0, 1] \quad formle = [0, 1]$$

$$Y = [0, 1] \quad formle = [0, 1]$$

$$Y = [0, 1] \quad formle = [0, 1]$$

$$Y = [0, 1] \quad formle = [0, 1]$$

$$Y = [0, 1] \quad formle = [0, 1]$$

$$Y = [0, 1] \quad formle = [0, 1]$$

$$Y = [0, 1] \quad formle = [0, 1]$$

$$Y = [0, 1] \quad formle = [0, 1]$$

$$Y = [0, 1] \quad formle = [0, 1]$$

$$Y = [0, 1] \quad formle = [0, 1]$$

$$Y = [0, 1] \quad formle = [0, 1]$$

$$Y = [0, 1] \quad formle = [0, 1]$$

$$Y = [0, 1] \quad formle = [0, 1]$$

$$Y = [0, 1] \quad formle = [0, 1]$$

$$Y = [0, 1] \quad formle = [0, 1]$$

$$Y = [0, 1] \quad formle = [0, 1]$$

$$Y = [0, 1] \quad formle = [0, 1]$$

$$Y = [0, 1] \quad formle = [0, 1]$$

$$Y = [0, 1] \quad formle = [0, 1]$$

$$Y = [0, 1] \quad formle = [0, 1]$$

$$Y = [0, 1] \quad formle = [0, 1]$$

$$Y = [0, 1] \quad formle = [0, 1]$$

$$Y = [0, 1] \quad formle$$

Exercise

How would you build a feature to represent the **month**, and the impact it has on people's rating behavior?

Exercise

What does the data actually look like?

Season vs. rating (overall)

Random features

What happens as we add more and more **random** features?

CSE 255 – Lecture 2

Data Mining and Predictive Analytics

Regression Diagnostics

Today: Regression diagnostics

Mean-squared error (MSE)

$$\frac{1}{N} \|y - X\theta\|_2^2$$

$$= \frac{1}{N} \sum_{i=1}^{N} (y_i - X_i \cdot \theta)^2$$

$$= \frac{1}{N} \sum_{i=1}^{N} (y_i - X_i \cdot \theta)^2$$

Q: Why MSE (and not mean-absolute-error or something else)

$$y_{i} = x_{i} \cdot \theta + \mathcal{N}(0, \sigma)$$

$$y_{i} - x_{i} \cdot \theta \sim \mathcal{N}(0, \sigma)$$

$$[5.5, -0.5, 3, 1, -2, 4, 0]$$

 $[-2, -0.5, 6, 1, 3, 4, 5.5]$
 $[-6, -3, -1, 6, 1, 3, 6]$

Quantile-Quantile (QQ)-plot

Coefficient of determination

Q: How low does the MSE have to be before it's "low enough"?

A: It depends! The MSE is proportional to the **variance** of the data

Coefficient of determination

(R² statistic)

Mean: $\sqrt{2}$ $\sqrt{3}$ \sqrt

MSE: \(\frac{1}{\text{N}} \leq \left(\frac{1}{\text{N}} \left(\frac{1}{\text{N}} \left(\frac{1}{\text{N}} \left(\frac{1}{\text{N}} \left(\frac{1}{\text{N}} \right) \right)^2

Coefficient of determination

(R^2 statistic)

$$FVU(f) = \frac{MSE(f)}{Var(y)}$$

(FVU = fraction of variance unexplained)

$$FVU(f) = 1$$
 — Trivial predictor $FVU(f) = 0$ — Perfect predictor

Coefficient of determination (R^2 statistic)

$$R^{2} = 1 - FVU(f) = 1 - \frac{MSE(f)}{Var(y)}$$

$$R^2 = 0$$
 — Trivial predictor $R^2 = 1$ — Perfect predictor

Overfitting

Q: But can't we get an R^2 of 1 (MSE of 0) just by throwing in enough random features?

A: Yes! This is why MSE and R^2 should always be evaluated on data that **wasn't** used to train the model

A good model is one that generalizes to new data

Overfitting

When a model performs well on training data but doesn't generalize, we are said to be overfitting

Q: What can be done to avoid overfitting?

"Among competing hypotheses, the one with the fewest assumptions should be selected"

Q: What is a "complex" versus a "simple" hypothesis?//////////

A1: A "simple" model is one where theta has few non-zero parameters (only a few features are relevant)

A2: A "simple" model is one where theta is almost uniform

(few features are significantly more relevant than others)

A1: A "simple" model is one where theta has few non-zero parameters

$$\longrightarrow \| \theta \|_1$$
 is small

A2: A "simple" model is one where theta is almost uniform

$$\rightarrow \|\theta\|_2$$
 is small

"Proof"

height =
$$0_0 + 0_1 \times \text{waght}$$

 $+ 0_2 \times \text{shoe size}$
 $0_1 \times 0_2 \times 0_1 \times 0$

Regularization

Regularization is the process of penalizing model complexity during training

$$\arg\min_{\theta} = \frac{1}{N}\|y - X\theta\|_2^2 + \lambda\|\theta\|_2^2$$

MSE (I2) model complexity

Regularization

Regularization is the process of penalizing model complexity during training

$$\arg\min_{\theta} = \frac{1}{N} ||y - X\theta||_2^2 + \lambda ||\theta||_2^2$$

How much should we trade-off accuracy versus complexity?

$$\arg\min_{\theta} = \frac{1}{N} \|y - X\theta\|_2^2 + \lambda \|\theta\|_2^2$$

$$f(\theta)$$

- We no longer have a convenient closed-form solution for theta
- Need to resort to some form of approximation algorithm

Gradient descent:

- 1. Initialize θ at random
- 2. While (not converged) do

$$\theta := \theta - \alpha f'(\theta)$$

All sorts of annoying issues:

- How to initialize theta?
- How to determine when the process has converged?
- How to set the step size alpha

These aren't really the point of this class though

$$f(\theta) = \frac{1}{N} \|y - X\theta\|_{2}^{2} + \lambda \|\theta\|_{2}^{2}$$

$$\frac{\partial f}{\partial \theta_{k}}? \qquad f = \frac{1}{N} \left\{ \left(\alpha_{i}, \phi - y_{i} \right) + \lambda \right\} \left\{ \phi_{k} \right\}$$

$$\frac{\partial f}{\partial \theta_{k}} = \frac{1}{N} \left\{ \left(\alpha_{i}, \phi - y_{i} \right) + \lambda \right\} \left\{ \phi_{k} \right\}$$

Gradient descent in scipy:

(code for all examples is on http://jmcauley.ucsd.edu/cse255/code/week1.py)

(see "ridge regression" in the "sklearn" module)

$$\arg\min_{\theta} = \frac{1}{N} \|y - X\theta\|_{2}^{2} + \lambda \|\theta\|_{2}^{2}$$

How much should we trade-off accuracy versus complexity?

Each value of lambda generates a different model. **Q:** How do we select which one is the best?

How to select which model is best?

A1: The one with the lowest training error?

A2: The one with the lowest test error?

We need a **third** sample of the data that is not used for training or testing

A **validation set** is constructed to "tune" the model's parameters

- Training set: used to optimize the model's parameters
- Test set: used to report how well we expect the model to perform on unseen data
- Validation set: used to **tune** any model parameters that are not directly optimized

A few "theorems" about training, validation, and test sets

- The training error increases as lambda increases
- The validation and test error are at least as large as the training error (assuming infinitely large random partitions)
- The validation/test error will usually have a "sweet spot" between under- and over-fitting

Summary of Week 1: Regression

- Linear regression and least-squares
 - (a little bit of) feature design
 - Overfitting and regularization
 - Gradient descent
 - Training, validation, and testing
 - Model selection

Coming up!

An exciting case study (i.e., my own research)!

This photo recently one the Andrews award for the 'most perfect timing of a Nature photograph', I can see why.

submitted 29 days ago by SICK OF to /r/pics

In points

1 comment

NOM! (Photo by: Bohemian Waxwing) submitted 2 months ago by favoritehello [deleted] to /r/PerfectTiming

1117 points

11 comments

Perfect moment bird (ex-post from r/pics)

submitted 25 days ago by 123imAwesome to /r/photoshopbattles

36 points

111 comments

A bohemian waxwing eating a berry

submitted 4 months ago by HazeySynth to /r/pics

39 points

1 comment

Bird shot at the perfect moment

submitted 25 days ago by arbili to /r/pics

2712 points

166 comments

Perfect timing.

submitted 4 months ago by animalpath to /r/pics

2555 points

71 comments

Perfect timing.

submitted 2 months ago by presaging to /r/aww

12 points

1 comment

Timing is Everything

submitted 5 months ago by Xnicko378X to /r/pics

10 points

1 comment

Homework

Homework is **available** on the course webpage

http://cseweb.ucsd.edu/classes/fa15/cse255a/files/homework1.pdf

Please submit it at the beginning of the week 3 lecture (Oct 12)

Questions?