Practice Design Problems for Midterm Exam 2

Instructor: Dieter van Melkebeek

The following are some old exam problems and one problem from this semester's ICPC regional that you can use as design practice. Don't forget to do the additional problems on each of the assignments!

1. You are given an even number of distinct positive integers a_1, a_2, \ldots, a_{2n} , and want to find the maximum value of

$$\sum_{(i,j)\in P} (a_i - a_j),$$

where P ranges over all collections of disjoint pairs (i, j).

- (a) Design an O(n) algorithm for the case where all pairs (i, j) are allowed.
- (b) Design an $O(n \log n)$ algorithm for the case where only pairs (i, j) with $a_i \geq 2a_j$ are allowed.

For example, if the given input sequence is $(a_1, a_2, a_3, a_4) = (7, 4, 5, 3)$, then an optimal choice of P for part (a) is $\{(1, 2), (3, 4)\}$, resulting in the maximum value of (7 - 4) + (5 - 3) = 5. For (b) the only allowable pair is (1, 4), so the only optimal choice for P is $\{(1, 4)\}$, resulting in the maximum value of (7 - 3) = 4.

2. For a dinner after a sports event, you want to assign seats such that no two members of the same team sit at the same table. There are n teams of size s_1, s_2, \ldots, s_n , respectively, and m tables, of size t_1, t_2, \ldots, t_m , respectively.

Design an algorithm that determines whether such a seating arrangement is possible. Your algorithm should run in time $O(N \log N)$, where $N = (\sum_{i=1}^{n} s_i) + (\sum_{j=1}^{m} t_j)$.

3. You collect coupons and aim to have a collection containing each of the *n* types of coupons that exist. Your current collection consists of exactly *n* coupons but contains duplicates. You are hoping to achieve your goal by a sequence of exchanges of a coupon of one type for a coupon of another type, but only certain types of exchanges are possible.

For example, suppose that your current collection consists of one coupon of type 1, and 3 coupons of type 2, and that it is possible to exchange a coupon of type 2 for a coupon of type 3, and a coupon of type 3 for a coupon of type 4. In this case, it is possible for you to achieve your goal, namely by exchanging two of your coupons of type 2 for coupons of type 3, and one of the obtained coupons of type 3 for a coupon of type 4.

Develop a polynomial-time algorithm that, given your current collection and the possible exchanges, determines whether your goal is achievable or not.

4. You would like to make a network of wireless sensors more reliable by selecting some number of "backup" sensors for each sensor in the network.

More specifically, you are given the coordinates (x_i, y_i) of sensor s_i for i = 1, ..., n, and positive integers d, r, and $b \ge r$. Your goal is to find backup sets B_j for j = 1, ..., n such that $B_j \subseteq \{s_1, ..., s_n\} - \{s_j\}$, every sensor in B_j is within distance d of s_j , every B_j contains exactly r sensors, and every sensor s_i for i = 1, ..., n belongs to at most b sets B_j .

Develop a polynomial-time algorithm that realizes the goal or reports that it is impossible.

5. Design an $O(N^3)$ algorithm for the problem "Code Names" of our 2019 ICPC regional contest. See the next two pages for the statement.

ICPC North Central NA Regional Contest

Problem B Code Names

You are given W, a set of N words that are anagrams of each other. There are no duplicate letters in any word. A set of words $S \subseteq W$ is called "swap-free" if there is no way to turn a word $x \in S$ into another word $y \in S$ by swapping only a single pair of (not necessarily adjacent) letters in x. Find the size of the largest swap-free set S chosen from the given set W.

Input

The first line of input contains an integer N ($1 \le N \le 500$). Following that are N lines each with a single word. Every word contains only lowercase English letters and no duplicate letters. All N words are unique, have at least one letter, and every word is an anagram of every other word.

Output

6

Sample Input 1

Output the size of the largest swap-free set.

acb cba bac bca Sample Input 2 Sample Output 2 11 alerts alters artels estral laster ratels salter slater staler stelar talers	abc	
cba bac bca Sample Input 2 Sample Output 2 11 alerts alters artels estral laster ratels salter slater staler stelar	acb	
bac bca Sample Input 2 Sample Output 2 11	cab	
Sample Input 2 Sample Output 2 11 alerts alters artels estral laster ratels salter slater staler stelar	cba	
Sample Input 2 11 alerts alters artels estral laster ratels salter slater staler stelar	bac	
11 alerts alters artels estral laster ratels salter staler staler	bca	
11 alerts alters artels estral laster ratels salter staler staler		
alerts alters artels estral laster ratels salter slater staler	Sample Input 2	Sample Output 2
alters artels estral laster ratels salter slater staler stelar	11	8
artels estral laster ratels salter slater staler stelar	alerts	
estral laster ratels salter slater staler stelar	alters	
laster ratels salter slater staler stelar	artels	
ratels salter slater staler stelar	estral	
salter slater staler stelar	laster	
slater staler stelar	ratels	
staler stelar	salter	
stelar		
talers		
	talers	

Sample Output 1

3

ICPC North Central NA Regional Contest

Sample Input 3	Sample Output 3
6	4
ates	
east	
eats	
etas	
sate	
teas	