Delta Lake vs Iceberg

Porównanie:

Delta Lake i Iceberg to dwa formaty do przechowywania danych, które wspierają transakcyjność, time travel i ewolucję schematów.

Delta działa najlepiej w Databricks – ma super integrację, jest prosta w obsłudze i dobra na start.

Iceberg z kolei lepiej radzi sobie w dużych środowiskach – ma mocniejsze zarządzanie metadanymi i łatwiej go połączyć z różnymi silnikami. Technicznie Iceberg jest bardziej skalowalny, ale Delta ma przewagę w ekosystemie Databricks.

Kiedy co wybrać:

Jeśli trzeba szybko ruszyć, mamy Databricks i nie chcemy się rozdrabniać – wybór to Delta Lake. A jeśli budujemy coś większego, zależy nam na multi-platformowym dostępie i mamy dużo danych,wtedy Iceberg może być lepszym wyborem.

Krytyka architektury medalionowej

1. Nadmierna złożoność warstw

Trzy warstwy (bronze/silver/gold) mogą wprowadzać zbędne komplikacje przy prostych pipeline'ach.

2. Duplikacja danych

Dane są kopiowane między warstwami, co zwiększa koszty storage i utrzymania.

3. Wydłużenie czasu przetwarzania

Każda warstwa to osobny krok – może to spowolnić cały proces ETL.

4. Trudność w zarządzaniu wersjami danych

Synchronizacja i wersjonowanie między warstwami może prowadzić do niespójności.

5. Zwiększony koszt operacyjny

Więcej warstw to więcej pipeline'ów, monitoringów, testów i błędów do obsługi.

6. Nieelastyczność dla ad-hoc analiz

Czasem trzeba poczekać, aż dane przejdą do warstwy gold, zanim będzie można je analizować.

7. Zależność od konwencji nazewnictwa i katalogów

Brak standaryzacji struktury danych może prowadzić do bałaganu w dużych zespołach.

8. Przerost formy nad treścią dla małych zespołów

Dla małych firm to często overengineering.

9. Podatność na opóźnienia i zależności

Awaria w bronze wstrzyma cały proces aż do gold.

10. Mało elastyczne dla danych nieustrukturyzowanych

Tradycyjna forma medalionu sprawdza się lepiej przy tabelarycznych danych.

11. Potrzeba dokładnego planowania schematów

Ewolucja danych między warstwami musi być przemyślana, inaczej wprowadza bałagan.

12. Trudniejsze debugowanie

Błąd w gold wymaga cofnięcia się do silver/bronze i prześledzenia całego procesu.

13. Niepotrzebna standaryzacja w niektórych projektach

Czasem dane mogą być gotowe do użycia bez konieczności "oczyszczania" w kilku krokach.

14. Wydłużony czas dostarczenia wartości

Business value może być odłożona w czasie, bo dane muszą przejść cały cykl.

15. Ograniczona przydatność w czasie rzeczywistym

Architektura zakłada przetwarzanie batchowe, co może być za wolne dla streamingu.

16. Zbyt ogólna koncepcja

"Bronze/Silver/Gold" nie definiuje konkretnych reguł – różne zespoły rozumieją to różnie.

17. Brak uniwersalności między narzędziami

Architektura jest silnie związana z Databricks i Delta Lake – trudna do przeniesienia np. na Snowflake lub BigQuery.

18. Trudniejsze testowanie danych

Każda warstwa wymaga osobnych testów jakości i reguł walidacyjnych.

19. Powielanie logiki biznesowej

Często ta sama logika jest aplikowana w różnych warstwach, tylko inaczej sformatowana.

20. Zamknięcie w schemacie "pipeline-centric"

Trudno wdrożyć podejście bardziej event-driven lub API-first przy tej strukturze.