Planning

Propositional and first-order logic

- formalism for representing the knowledge about the world and ways of reasoning
- Statements about the world are true or false

• The real-world:

- is dynamic; can change over time
- an agent can actively change the world through its actions
- **Planning problem:** find sequence of actions that lead to a goal

Challenges:

- Build a representation language for modeling action and change
- Design of special search algorithms for a given representation

Planning and search

Planning – a special type of a search problem

What if we use a standard search formulation?

Search problem:

- State space a set of states of the world among which we search for the solution.
- Initial state. A state we start from.
- Operators. Map states to new states.
- Goal condition. Test whether the goal is satisfied.
- Assume a simple problem of buying things:
 - Get a quarter of milk, bananas, cordless drill

Planning search - Example

A huge branch factor !!! Goals can take multiple steps to reach!!!

Planning systems. Representation.

Design of planning systems:

- Situation calculus
 - based on FOL,
 - a situation variable models new states of the world
- STRIPS like planners
 - STRIPS STanford Research Institute Problem Solver
 - Restricted language as compared to situation calculus
 - Allows for more efficient planning algorithms

Situation calculus

- Logic for reasoning about changes in the state of the world
- The world is described by:
 - Sequences of situations of the current state
 - Changes from one situation to another are caused by actions
- The situation calculus allows us to:
 - Describe the initial state and goal state
 - Build the KB that describes the effect of actions (operators)
 - Prove that the KB implies the goal state (and thereby allow us to extract a plan)

Situation calculus

Language:

- Variables s,a objects of type situation and action
- Action functions that return actions.
 - E.g. Move(A, TABLE, B) represents a move action
 - -Move(x,y,z) represents an action schema
- Two special function symbols of type situation
 - $-s_0$ initial situation
 - DO(a,s) denotes the situation obtained after performing an action a in situation s
- Situation-dependent functions and relations (also called fluents)
 - Relation: On(x,y,s) object x is on object y in situation s;
 - Function: Above(x,s) object that is above x in situation s.

Situation calculus - Blocks world example

A B B C Initial state Goal $On(A, Table, s_0)$ On(A,B,s)On(B,C,s) $On(B, Table, s_0)$ $On(C, Table, s_0)$ On(C,Table,s) $Clear(A, s_0)$ Clear(B, s_0) $Clear(C, s_0)$ Clear(Table, s_0)

Blocks world example - Axioms

Knowledge in the KB - Two types of axioms:

- Effect axioms
 - changes in situations that result from actions
- Frame axioms
 - things preserved from the previous situation

Blocks world - Effect axioms

Effect axioms:

Moving x from y to z. MOVE(x, y, z)

Effect of move changes on On relations:

$$On(x, y, s) \land Clear(x, s) \land Clear(z, s) \rightarrow On(x, z, DO(MOVE(x, y, z), s))$$

$$On(x, y, s) \land Clear(x, s) \land Clear(z, s) \rightarrow \neg On(x, y, DO(MOVE(x, y, z), s))$$

Effect of move changes on Clear relations:

$$On(x, y, s) \land Clear(x, s) \land Clear(z, s) \rightarrow Clear(y, DO(MOVE(x, y, z), s))$$

$$On(x, y, s) \land Clear(x, s) \land Clear(z, s) \land (z \neq Table)$$

 $\rightarrow \neg Clear(z, DO(MOVE(x, y, z), s))$

Blocks world - Frame axioms

Frame axioms

- Represent things that remain unchanged after an action.

On relations:

$$On(u, v, s) \land (u \neq x) \land (v \neq y) \rightarrow On(u, v, DO(MOVE(x, y, z), s))$$

Clear relations:

$$Clear(u, s) \land (u \neq z) \land \rightarrow Clear(u, DO(MOVE(x, y, z), s))$$

Inference - Plan derivation

Action:
$$MOVE(B, Table, C)$$

$$s_1 = DO(MOVE(B, Table, C), s_0)$$

 $On(A, Table, s_1)$ $Clear(A, s_1)$ $Clear(Table, s_1)$

$$On(B,C,s_1)$$
 $Clear(B,s_1)$ $On(C,Table,s_1)$ $\neg Clear(C,s_1)$

Action:
$$MOVE(A, Table, B)$$

$$s_2 = DO(MOVE(A, Table, B), s_1)$$

= $DO(MOVE(A, Table, B), DO(MOVE(B, Table, C), s_0))$

$$On(A, B, s_2)$$
 $Clear(A, s_2)$ $Clear(Table, s_2)$ $On(B, C, s_2)$ $Clear(B, s_2)$

$$On(B,C,S_2)$$
 $\neg Clear(B,S_2)$
 $On(C,Table,S_2)$ $\neg Clear(C,S_2)$

STRIPS planner

- Restricted representation language as compared to the situation calculus
- Leads to more efficient planning algorithms:
 - State-space search with structured representations of states, actions and goals
 - Action representation avoids the frame problem
- STRIPS planning problem
 - much like a standard search problem;

Objective: find a sequence of operators from the initial state to the goal

STRIPS planner

States:

conjunction of literals
 On(A,B), On(B,Table), Clear(A)
 represent facts that are true at a specific point in time

Actions:

- Action: Move (x,y,z)
- **Preconditions:** conjunctions of literals with variables On(x,y), Clear(x), Clear(z)
- Effects. Two lists:
 - Add list: On(x,z), Clear(y)
 - Delete list: On(x,y), Clear(z)

Forward search (goal progression)

- Main idea: Given a state s
 - Unify the preconditions of some operator a with s
 - Add and delete sentences from the add and delete list of an operator a from s to get a new state (can be repeated)

Forward search (goal progression)

• Use operators to generate new states to search

Backward search (goal regression)

Main idea: Given a goal G

- Unify the addition list of some operator a with a subset of G
- If the delete list of a does not removes elements of G, then the goal regresses to a new goal G' that is obtained from G by:
 - deleting add list of a
 - adding preconditions of a

Backward search (goal regression)

- Use operators to generate new goals
- Check whether the initial state satisfies the goal

