Previously.

This Section.

- Domains - Ideals

- Integral Domains - Principal Ideals

- Fields - Prime Ideals

- Maximal Ideals

Recall. Consider the ring $(R, +, \cdot)$. Recall that (R, +) is an abelian group. So any subgroup $S \leq R$ is automatically normal. In particular, we can construct R/S, the set of cosets of S in R as a group.

Example. The ring $R = \mathbb{Z}[i]$ is a group under addition and it has the subroup

$$S = \{ai : a \in \mathbb{Z}\} = i\mathbb{Z}.$$

The cosets of S are of the form $r+S=r+i\mathbb{Z}$ where $r\in R.$ Some cosets are

$$2 + S = \{2 + ai : a \in \mathbb{Z}\}\$$
$$(5 - i) + S = \{5 - i + ai : a \in \mathbb{Z}\} = \{5 + bi : b \in \mathbb{Z}\}\$$

On question we might ask is "Is R/S a ring?"

Exercise 1. Take the $R = \mathbb{Z}[i]$ and $S = i\mathbb{Z}$ as in the example above. Let's try multiplying cosets.

(a) (Elements) Try the following. Take generic elements $ai, bi \in S = \mathbb{Z}i$ and compute

$$(2+ai)((5-i)+bi).$$

(b) (Sets) What would we expect for the product

$$(2+S)((5-i)+S)$$
?

(c) (Verification) Is the value you computed for the first part of this exercise in this expected set?

Lemma. $(S,+) \leq (R,+)$, then

$$(a+S)(b+S) = (ab) + S$$

is well-defined if and only if

$$rS \subseteq S$$
 and $Sr \subseteq S$, for all $r \in R$.

Exercise 2. Do some FOILing of (a+S)(b+S) and see how this relates to the containment of $rS \subseteq S$ and $Sr \subseteq S$.

Definition. Let $(R, +, \cdot)$ be a ring. An additive subgroup (I, +) of (R, +) is an ideal of R if $rI \subseteq I$ and $Ir \subseteq I$ for all $r \in R$.

Exercise 3. Verify that $i\mathbb{Z}$ is an ideal of $\mathbb{Z}[i]$.

Definition. Equivalent definitions of an ideal I of a ring R: (given $(I, +) \leq (R, +)$)

- for all $i \in I$, $iR \subseteq I$ and $Ri \subseteq I$
- for all $i \in I$ and $r \in R$, $ir \in I$ and $ri \in I$.

Note. Some may call this a "two-sided ideal". By considering just one of the containments, we could also define "left ideals" and "right ideals". In a commutative ring, every ideal is two-sided. WHY??

Warning. Not all subgroups are ideals, as we will see in the following exercise!

Exercise 4. Show that \mathbb{Z} is not an ideal of the ring \mathbb{Q} .

Theorem 3.3.1. Let I be an ideal of the ring R (with unity). Then the additive group (R/I, +) becomes a ring with multiplication (r + I)(s + I) = rs + I called the factor ring or quotient ring. The unity of R/I is 1 + I and if R is commutative, then R/I is commutative.

Observations. Let R be a ring (with unity)

- 1. $\{0\}$ and R are ideals of R.
- **2.** $R/R \cong \{0\}$ and $R/\{0\} \cong R$
- 3. Everything from quotient groups extends to quotient rings
 - (a) r + I = s + I if and only if $r s \in I$
 - (b) (r+I) + (s+I) = (r+s) + I
 - (c) 0 + I = I
 - (d) -(r+I) = -r + I
 - (e) k(r+I) = kr + I for all $k \in \mathbb{Z}$

Theorem 3.3.2. If I is an ideal of the ring R (that has unity), then the following are equivalent

- **1.** $1 \in I$
- 2. I contains a unit
- **3.** I = R

Principal Ideals

Given a fixed element a in a ring R, we can get an ideal easily by taking all of the multiples of that element.

$$Ra = \{ra \mid r \in R\}$$
$$aR = \{ar \mid r \in R\}$$

Definition. If $a \in Z(R)$, then Ra = aR and we call this set the principal ideal of R generated by a. Denote this set by (a).

Exercise 5. Show that if $a \in Z(R)$, then Ra = aR is an ideal of R by showing that (1) Ra is a subgroup of R under addition and (2) for all $r \in R$, we have $r(Ra) \subseteq Ra$ and $(Ra)r \subseteq Ra$.

Warning. The book uses $\langle a \rangle$ for the ideal generated by a. To avoid mixing it up with cyclic groups, we'll use (a) in these notes.

Exercise 6. Is the set of multiples of 6 a principal ideal of \mathbb{Z} ?

Exercise 7. Consider $R = \mathbb{Z}[i]$ and I = (2+i). Follow the listed steps to show that

$$R/I = \{0+I, 1+I, 2+I, 3+I, 4+I\}.$$

(a) Show that $5 \in I$ by writing 5 = r(2+i) for some $r \in \mathbb{Z}[i]$.

(b) Show that if $n \in \mathbb{Z}$, then n + I is the same as one of 0 + I, 1 + I, 2 + I, 3 + I, 4 + I.

(c) Show that i + I = -2 + I. (Hint: Observation 3a on page 3 of the packet.)

(d) Show that if $a + bi \in \mathbb{Z}[i]$ then (a + bi) + I = (a - 2b) + I.

(e) Conclude that every coset of I in Z[i] is equal to one of 0+I, 1+I, 2+I, 3+I, 4+I.

(f) (Challenge) Show that if $0 \le m < n \le 4$, then $m + I \ne n + I$.

Note. There are many examples of ideals that are not principal. One example of this is the ideal

$$(2, 1 + \sqrt{-5}) = \{r(2) + s(1 + \sqrt{-5}) \mid r, s \in \mathbb{Z}[\sqrt{-5}]\}$$

of $\mathbb{Z}[\sqrt{-5}]$. See: https://math.stackexchange.com/questions/543216/proving-that-a-ring-is-not-a-principal-ideal-domain

Definition. We call a proper ideal P of a ring R prime if

$$rs \in P \implies r \in P \text{ or } s \in P.$$

Example. Let $R = \mathbb{Z}$, what ideals are prime? (This is a thought exercise, and the answer is what you expect, but why??)

Theorem 3.3.3. If R is a commutative ring, an ideal $P \neq R$ of R is a prime ideal if and only if R/P is an integral domain.

Theorem 3.3.4. Let I be an ideal of the ring R. There is a correspondence

$$\left\{ \begin{array}{l} \text{ideals of } R \\ \text{containing } I \end{array} \right\} \leftrightarrow \left\{ \text{ideals of } R/I \right\}.$$

Moreover, this correspondence respects containment.

Definition. Let R be a ring (not necessarily commutative), and let M be an ideal of R. We call M a maximal ideal of R if

- 1. $M \neq R$, and
- **2.** if I is an ideal of R satisfying $M \subseteq I \subseteq R$, then I = M or I = R.

Exercise 8. Is $5\mathbb{Z}$ maximal in \mathbb{Z} ?

Is $6\mathbb{Z}$ maximal in \mathbb{Z} ?

Definition. A ring R is a simple ring if $R \neq \{0\}$ and the only ideals of R are $\{0\}$ and R.

Example. \mathbb{Q} , \mathbb{R} , \mathbb{C} , \mathbb{Z}_p

Example. A less trivial example, $M_2(\mathbb{R})$, or any matrix ring over a field.

Theorem 3.3.5. If R is a commutative ring with identity, then R is simple if and only if it is a field.

Theorem 3.3.6. Let M be an ideal of a ring R. Then M is maximal if and only if R/A is simple.

Corollary 1. Let R be a commutative ring, with unity. Let M be an ideal of R. Then M is maximal if and only if R/M is a field.

Corollary 2. Let R be a commutative ring, with unity. If M is a maximal ideal of R, then M is a prime ideal.

Exercise 9. Show that the converse of the second corollary is false: Let $R = \mathbb{Z} \times \mathbb{Z}$ and $I = \{(a,0) \mid a \in \mathbb{Z}\}.$

- **1.** Verify I is an ideal of R.
- **2.** Verify that I is a prime ideal.
- **3.** Let $J = \{(a, 2b) \mid a, b \in \mathbb{Z}\}$. Show that J is also an ideal of R and $I \subset J \subset R$ with $I \neq J \neq R$. Thus showing I is not maximal.

These will be important in Math 426.

Lemma 3.3.3. Let R be a ring with unity and $n \ge 1$. Every ideal of $M_n(R)$ has the form $M_n(A)$ for some ideal A of R.

Theorem 3.3.7. If R is a ring with unity then $M_n(R)$ is simple if and only if R is simple.

Corollary. If R is a division ring then $M_n(R)$ is simple.

Note. This last one is HUGE in my research!