

UL Grant-Free for URLLC in 5G NR

資策會 前瞻行動通訊系統中心 簡均哲 博士 2017-12-27

Agenda

- 5G 低延遲高可靠度(URLLC)應用實例
- 5G URLLC 設計需求與解決方案
- 5G URLLC UL-GF 標準制訂現況

URLLC 應用情境

URLLC Use Cases

低時延應用

Ericsson

人體反應時間

https://www.youtube.com/watch?v=0k3MSq6XMV8

ITU

數據分散服務

(Data Distribution Service, DDS)

 A control system is based on distributed intelligence and decentralized control, to handle the rapidly expanding complexity in dynamic manufacturing environments for cooperation between robots and humans.

Fig. 1. (a) The difference between a hierarchical system and (b) a heterarchical system.

Fig. 2. (a-d) Industrial robot production planning paradigms.

Evaluating a data distribution service system for dynamic manufacturing environments: a case study, Elsvier 2014.

遠端控制

運輸車隊

Hot use case for today – Truck platooning

Online business has significantly increased the transport of goods.

Platooning can reduce transportation cost:

- 15 to 20 meters 5 to 7 % less
- 5 meters 15 to 20 % less diesel
- semi-automatic driving changes driver time

For high speeds and short distance low latency radio control with 99.999% is needed to keep platoon oscillations to a minimum level

Page 6

HUAWEI

Safety, Efficiency (同時起步), Cost-Saver (等速, 風阻)

自動車駕駛

無人機遠端控制

Requirements for URLLC in 3GPP RAN

Latency definition:

- User Plane
 - Deliver an application layer packet/message from the radio protocol layer 2/3 SDU ingress point to the radio protocol layer 2/3 SDU egress point via the radio interface in both uplink and downlink directions, where neither device nor Base Station reception is restricted by DRX.
- Control Plane
 - Control plane latency refers to the time to move from a battery efficient state (e.g., IDLE) to start of continuous data transfer (e.g., ACTIVE).
- Latency requirement
 - User plane
 - UL: 0.5ms, DL: 0.5ms
 - Control plane
 - 10ms
- Reliability requirement for one transmission
 - 1-10⁻⁵ (99.999%) for 32 bytes with 1ms latency

URLLC 時間延遲

URLLC 訊框結構

Samsung

載波間距可調

Qualcomm

排程單元間隔

(Transmission Time Interval, TTI)

Scalable TTI for diverse latency and QoS requirements

Efficient multiplexing of long & short TTIs to allow transmissions to start on symbol boundaries^{2,3}

NR SCS Table

	Item	<6GHz	>6GHz	Note
Initial Access	SS Block (NPSS, NSSS, NPBCH)	15kHz/30kHz	120kHz/240kHz	Default value in each RAN4 specified band
Random Access Procedure	PRACH (Preamble, Msg. 1)	1.25kHz/5kHz (L= 839) 15kHz/30KHz (L=139)	60KHz/120kHz (L=139)	Configured in the RMSI
	Random Access Response (RAR, Msg. 2)	15kHz/30kHz	60kHz/120kHz	Same as the numerology of RMSI
	Msg. 3	15kHz/30kHz	60kHz/120kHz	Configured in the RMSI
	Msg. 4	15kHz/30kHz	<mark>60kHz/120kHz</mark>	Same as Msg.2
RMSI (Remaining Minimum	RMSI PDCCH	15kHz/30kHz	60kHz/120kHz	PBCH Indication
System Info.)	RMSI PDSCH	15kHz/30kHz	60kHz/120kHz	Same as RMSI PDCCH
OSI (Other System Info.)	OSI PDCCH	15kHz/30kHz	60kHz/120kHz	PBCH Indication
	OSI PDSCH	15kHz/30kHz	60kHz/120kHz	Same as OSI PDCCH
Paging	Paging PDCCH	15kHz/30kHz	60kHz/120kHz	Same as RMSI
	Paging PDSCH	15kHz/30kHz	<mark>60kHz/120kHz</mark>	Same as RMSI
Data part in		15kHz/30kHz/60kHz	<mark>60kHz/120kHz/240kHz/480kH</mark>	As per RAN4
general			z(FFS)	TR 38.803

Self-Contained Frame Structure

Configuration	HARQ Timing Parameter	Units	15 KHz SCS	30 KHz SCS	60 KHz SCS	120 KHz SCS
Front-loaded DMRS only	N1	Symbols	8	10	17	20
Front-loaded + additional DMRS	N1	Symbols	13	13	20	24
Frequency-first RE-mapping	N2 ¹	Symbols	10	12	23	36

UE Processing Time and HARQ Timing (Capability #1)

Configuration	HARQ Timing Parameter	Units	15 KHz SCS	30 KHz SCS
Front-loaded DMRS only	N1	Symbols	3	5
		us	214	178
Front-loaded + additional DMRS	N1	Symbols	12	12
		us	214	178
Frequency-first RE-mapping	N2¹	Symbols	[4] ²	6
		us	285	214

UE Processing Time and HARQ Timing (Capability #2)

eMBB 與 URLLC DL 共存

資源破壞性共存

III Grant-based v.s. Grant Free Transmission

UL-GF Types

RAN1 AH#2 Agreements:

- Type of UL data transmission without grant
 - **Type 1:** UL data transmission without grant is only based on RRC (re)configuration without any L1 signalling
 - **Type 2:** UL data transmission without grant is based on both RRC configuration and L1 signalling to activation/deactivation for UL data transmission without grant
 - Note: functionality of modification is achieved the L1 signalling by activation
 - **Type 3:** UL data transmission without grant is based on RRC configuration, and allows L1 signalling to modify some parameters configured by RRC but no L1 signalling for activation

RAN1 AH#3 Agreements:

• Type 3 UL transmission without UL grant is not supported in Rel.15.

LTE Semi-Persistent Scheduling (SPS)->Type2

Example of Semi-Persistent Scheduling.

Type1/Type2 RRC Parameters

UL GR Type	Parameter name in text	Description
Type1/Type2	UL-TWG-periodicity	Periodicity for UL transmission without UL grant
Type1	UL-TWG-offset	Offset for UL transmission without UL grant
Type1/Type2	UL-TWG-power-control	Set of power control related parameters for UL transmission without UL grant
Type1	UL-TWG-tim-dom	Time domain resource allocation for UL transmission without UL grant
Type1	UL-TWG-freq-dom	Frequency domain resource allocation for UL transmission without UL grant
Type1	UL-TWG-DMRS	UE-specific DMRS configuration for UL transmission without UL grant
Type1	UL-TWG-MCS-TBS	MCS/TBS for UL transmission without UL grant
Type1	UL-TWG-repK	The number or repetitions of K for UL transmission without UL grant

Repetition Behavior

Resource for both Initial & Repetition

(R1-1715888, LG)

Alt 1: Configured resource are used for both initial and repetition

Alt 2: Resource for initial and following repetition(s) are configured separately

Alt 2-1: Resource(s) for following repetition(s) is/are configured explicitly

Alt 2-2: Resource(s) for following repetition(s) is/are configured implicitly

Complexity	Latency	Reliability
*	©	©
9	*	*
©	*	*

Figure 1 Possible options of resource configuration for K repetitions

Resource implicitly configured for following repetition

Issue of Option 1

- Ambiguity at gNB
- Additional indication for different repetition

Issue of Option2

Repetition longer than resource period

Larger resource period induce additional latency

Extra latency of 4 TUs due to a larger resource periodicity

RV pattern

RAN1#90bis E-Mail Working Assumption:

- For UL transmission without UL grant, for a TB transmission with K repetitions
 - The repetitions follow an RV sequence and it is configured by UE-specific RRC signalling to be one of the following:
 - Sequence 1: {0, 2, 3, 1}
 - Sequence 2: {0, 3, 0, 3}
 - Sequence 3: {0, 0, 0, 0}
- 10Z -> Encode -> 52Z -> Puncture -> 50Z (circular buffer)
 - 50/4 = 12.5
- 50Z bits are in the circular buffer
- The first 8Z in the circular buffer are systematic bits

3GPP R1-1718409 (ZTE)

Latest Agreement on RV Pattern

RAN1#91 E-Mail Agreements:

- For UL transmission without UL grant,
 - The n-th transmission occasion of a K repetitions is associated with the (mod(n-1,4)+1)-th value in the configured RV sequence {RV1, RV2, RV3, RV4}, where n=1, 2, ..., K.
 - For RV sequence {0, 2, 3, 1},
 - The initial transmission of a TB shall start at the first transmission occasion of the K repetitions.
 - For RV sequence {0, 3, 0, 3},
 - The initial transmission of a TB can start at any of the transmission occasions of the K repetitions that are associated with RV=0.
 - (working assumption) For RV sequence {0, 0, 0, 0},
 - The initial transmission of a TB can start at any of the transmission occasions of the K repetitions when K=1, 2 or 4;
 - The initial transmission of a TB can start at any of the transmission occasions of the K repetitions, except-the last transmission occasion when K=8.
 - For any RV sequence, repetition end at the last transmission occasion within the period P.

RV Pattern for Repetition

- The transmission occasion (TO)
 - time domain resource allocation of one repetition in an aggregation with factor K where the aggregated transmission occasions start in resources configured by the offset and the period.

RV Pattern {RV1, RV2, RV3, RV4}	Initial Transmission	Supported Repetition Number (K)	Note
{0, 2, 3, 1}	First TO	K = 1, 2, 4, 8	Agreed
{0, 3, 0, 3}	Any TO at RV = 0	K = 1, 2, 4, 8	Agreed
{0, 0, 0, 0}	Any TO	K = 1, 2, 4	Working Assumption
	Any TO except last TO	K = 8	Working Assumption

Repetition Termination Conditions

RAN1#88 Agreement:

- For UE configured with K repetitions for a TB transmission with/without grant, the UE can continue repetitions for the TB until one of the following conditions is met
 - If an UL grant is successfully received for a slot/mini-slot for the same TB
 - FFS: An acknowledgement/indication of successful receiving of that TB from gNB
 - The number of repetitions for that TB reaches K
 - Note that this does not assume that UL grant is scheduled based on the slot whereas grant free allocation is based on mini-slot (vice versa)

GF Resource Periodicity

Subcarrier spacing (kHz)	Supported periodicities [ms]
15	2 symbols, 7 symbols, 1, 2, 5, 10, 20, 32, 40, 64, 80, 128, 160, 320, 640
30	2 symbols, 7 symbols, 0.5, 1, 2, 5, 10, 20, 32, 40, 64, 80, 128, 160, 320, 640
60	2 symbols, 7 symbols (6 symbols for ECP), 0.25,0.5,1,2,5,10,20, , 32, 40, 64, 80, 128, 160, 320, 640
120	2 symbols, 7 symbols, 0.125,0.25,0.5,1,2,5,10,20, 32, 40, 64, 80, 128, 160, 320, 640

RAN1#91 Agreements:

 For grant-free UL transmission, the UE is not expected to be configured with the time duration for the transmission of K repetitions larger than the time duration derived by the periodicity P.

Multiple Grant-free Resource Configuration (for Type 1)

Different Periodicity

Ена оправать	GFRC2					GFRC2					GFRC2					Periodicity of 5
Frequency	GFRC1	GFRC1	GFRC1	GFRC1	GFRC1	GFRC1	GFRC1	GFRC1	GFRC1	GFRC1	GFRC1	GFRC1	GFRC1	GFRC1	GFRC1	Periodicity of 1
	time unit n	n+1	n+2	n+3	n+4	n+5	n+6	n+7	n+8	n+9	n+10	n+11	n+12	n+13	n+14	

- a) Multiple GF resource with different periodicity
- Different MCS/TBS

| Frequency | GFRC2 | | GFRC2 | MCS/TBS2 |
|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|
| | GFRC1 | MCS/TBS1 |

a) Multiple GF resource with different MCS/TBS

RAN1 AH#3 Agreements:

- Multiple resource configurations for UL tx without UL grant can be configured to a UE
- For UL tx without UL grant, the same resource configuration is used for K repetitions for a TB including the initial transmission

HARQ Feedback

RAN1#90 Agreement:

- If HARQ feedback is supported, to indicate HARQ feedback of UL transmission without grant, following options and related UE behavior should be further studied.
 - Option 1: Based on UL grant to indicate "ACK"
 - Option 2: Group-common DCI
 - 2-1: Only ACK
 - 2-2: ACK and NACK
 - Option 3: Define a Timer, UE assumes following, when the Timer expires
 - 3-1: ACK if an NACK is not received after the K repetitions
 - 3-2: NACK if an ACK is not received
- Note: UL grant for the same TB initially transmitted without grant can indicate "NACK"

Re-transmission Behavior

GF2GB retransmission

GF2GF retransmission

(R1-1709992, Huawei)

HARQ Process ID

RAN1#90bis E-Mail Agreements:

- For UL transmission without UL grant, for each configuration
 - The number of configured HARQ processes is explicitly configured by RRC
 - Each configuration can have multiple HARQ processes
 - The value range is {1, 2, ..., M}, where M value is FFS
- For UL transmission without UL grant,
 - The HARQ ID for a TB should be the same during the repetitions and retransmissions if any.

RAN1#91 Agreements:

- For UL transmission without UL grant, the HARQ ID associated with the K repetitions of a TB is derived from the following equation:
 - HARQ Process ID = floor (X / UL-TWG-periodicity) mod UL-TWG-numbHARQproc
 - Where X= (SFN * SlotPerFrame * SymbolPerSlot + Slot_index_In_SF * SymbolPerSlot + Symbol_Index_In_Slot)
 - X refers to the symbol index of the first transmission occasion of repetition bundle that takes place.

HARQ Process ID Determination

UE Identification

RAN2# 97bis Agreements

- From RAN2 point of view it would be beneficial to be able to share "SPS/grant free" UL resources amongst different UE.
- Mechanism to identify the UE for collision resolution purpose may be needed.
- The details can be discussed in RAN1.

Agreements:

• RAN1 considers that UE transmitting UL transmission without UL grant can be identified based on time/frequency resources and RS parameter(s).

UE Identification Scheme

										
	<u> </u>									
Scheme 1: fixed RS	<u>ح</u>	RS	Repetion 0	RS	Repetion 1	RS	Repetion 2	RS	Repetion 3	
UE1 with CS_index=0	en	////	UE1	////	UE7	////	UE2/UE8			
UE2 with CS_index=3	edr	////	UE2	////	UE8	////	UE1/UE7			
	i.	////	UE7	////	UE2			////	UE1/UE8	
UE7 with CS_index=21		////	UE8	////	UE1			////	UE2/UE7	
UE8 with CS_index=24									Tir	me _