

Cr离子激活近红外荧光粉的研制

答辩人: 宋冠洲

指导老师: 邵起越

目录

- 1. 研究背景
- 2.研究目的与思路
- 3.实验方法与内容
- 4.实验结果与分析
- 5.实验结论

研究背景

1879 白炽灯 1938 荧光灯 1969 LED

LED 发光二极管 通过电子空穴复合,将电能转换为光能

节能环保,效率高,寿命长

产生特定波长光线,应用于特种照明领域

近红外光

波长位于780~2500nm的电磁波 穿透性好,受干扰少 应用于军事侦查,弱光监控,生物分析等领域

近红外线的应用

虹膜扫描

遥控装置

近红外光获取

- 1. 传统光源过滤
- 2. 陶瓷棒光源
- 3. 红外LED—直接激发

蓝光激发近红外LED

蓝光芯片发射450nm光->蓝光激发荧光粉->荧光粉发射近红外光

优势

大功率蓝光芯片已量产,成本大幅下降 波长可控,调节荧光粉可获得不同波长近红外光 发光稳定

直接激发近红外LED

蓝光激发近红外LED

PN结直接发射红外光

蓝光芯片激发荧光粉

荧光粉发射固定波长近红外光

单颗功率小 (< 1W)

功率可达数十w

固定发射波长

发射波长可控

chromium

Why Cr?

Cr具有丰富的能级。由于外层电子易受晶体场影响,可产生不同波长光线,发射光分布于红光至近红外光。

Cr掺杂荧光粉对蓝光的吸收好。由于在448nm具有吸收峰,导致Cr掺杂的发光材料能够很好的匹配蓝光芯片450nm左右的发射波长,对450nm波长的光线强烈吸收。

Cr离子与AI具有很好的晶体匹配性。由于匹配度良好,在Cr代替AI离子后晶体结构未发生非常大的改变,在能够形成单相晶体的情况下发挥Cr离子的光学性能。

研究目的与内容

研究目的

制备相组成纯净且发光特性优异的YAB:Cr,Yb荧光粉

研究内容

1.制备工艺

烧结温度,预烧结,升温曲线等的影响

2. 化学成分

Cr含量影响,掺杂元素含量影响,硼酸过量分数影响

实验内容与方法

YAB:Cr,Yb荧光粉的制备

$$\left(1-\frac{x}{2}\right)Y_{2}O_{3}+xYb_{2}O_{3}+\left(\frac{3-y}{2}\right)Al_{2}O_{3}+\frac{y}{2}Cr_{2}O_{3}+4H_{3}BO_{3}\overset{\text{\text{Rightarpooney}}}{=}>Y_{1-x}Yb_{x}Al_{3-y}Cr_{y}(BO_{3})_{4}$$

荧光粉性能测试

荧光光度计,积分球,XRD等

测试项目

激发光谱,发射光谱,XRD图谱,量子效率等

实验结果与分析

保持化学成分一致(2at% Cr)

制备工艺只改变烧结温度

分别在1000,1100,1200,1250,1300℃烧结10小时

1300℃样品已熔融,无法得到产物

不同烧结温度产物发射光谱

不同烧结温度产物量子效率

样品烧结温	入射光子	剩余光子数	发射光子数	内量子效率	蓝光吸收率
	数数				
1100°C	1.70E16	1.02E16	1.28E15	18.82%	40%
1200°C	1.68E16	9.68E5	3.94E15	55.34%	42.38%
1250°C	1.70E16	8.89E15	7.2E15	88.78%	47.71%

量子效率的增加——同等条件下发光效率更高,发光强度越大

1250°C烧结产物XRD图谱

预烧结的作用

直接烧结后发现,产物硬度极高,粉碎后颗粒粗大,为细化产物颗粒,研究预烧结工艺对细化颗粒的作用。

在1250℃烧结前,预先在500℃停留数小时,能够有效细化颗粒。

二次研磨

粉末预烧结后呈蜂窝状疏松多孔结构,通过二次研磨可以促进颗粒接触,同时进一步均匀粉末。

不同烧结升温曲线

产物颗粒大小

无预烧结处理

预烧结处理+二次研磨

第一组 直接烧结

第二组 500℃预烧结

第三组 500℃预烧结+二次研磨

不同升温曲线产物发射光谱

过量硼酸的影响

由于硼酸熔点低,在烧结时容易挥发,化学计量比改变,导致无法形成预定产物,因此需要添加过量的硼酸。需要研究最佳的硼酸过量比。

通过添加不同含量硼酸,对比烧结产物水洗后的发射光谱。

硼酸过量分率对产物性能的影响

Cr含量的影响

制备条件均为500℃预烧结二次研磨,1250℃烧结10小时 化学成分除Y₂O₃,Al₂O₃,H₃BO₃外分别添加1,3,5,7,9,11at%Cr₂O₃。

7%Cr的YAB:Cr荧光粉XRD图谱

Yb含量影响

7%Cr,不同含量Yb产物的发射光谱

7%Cr, 9%Yb的YAB:Cr,Yb荧光粉XRD图谱

实验结论

$Y_{0.91}Yb_{0.09}Al_{2.93}Cr_{0.07}(BO_3)_4$

7% Cr 9% Yb

最佳制备条件

化学成分

7at% Cr, 9%Yb, 140%硼酸

制备工艺

500℃预烧结3小时, 二次研磨

1250摄氏度烧结10小时,水洗

内量子效率

91.2%

蓝光吸收率

47.7%

YAB:0.07Cr,0.09Yb荧光粉发射光谱

Thank you