Formulaire sur les inégalités

Inégalité 1 (Inégalité triangulaire et généralisation)

$$|a+b| \leqslant |a| + |b| \Longrightarrow \left| \sum_{i=0}^{n} x_i \right| \leqslant \sum_{i=0}^{n} |x_i|$$

Inégalité 2 (Inégalité triangulaire-bis)

$$||a| - |b|| \leqslant |a - b|$$

Inégalité 3 (Inégalité de Taylor-Lagrange)

Soient $a, b \in \mathbb{R}$, tel que a < b et $f : [a; b] \longrightarrow \mathbb{K}$. Soit $n \in \mathbb{N}$ et f de classe $C^{(n+1)}$. Soit M un majorant de $|f^{(n+2)}|$ sur [a; b]. Alors,

$$\forall x \in [a; b], |f(x) - \underbrace{T_{n,f,a}(x)}_{\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k}} | \leq M \frac{|x-a|^{n+1}}{(n+1)!}$$

Inégalité 4 (Inégalité de convexité)

f est convexe sur I si et seulement si :

$$- \forall a, b \in I, \forall t \in [0, 1], f(ta + (1 - t)b) \leq tf(a) + (1 - t)f(b)$$

$$-- \forall x_0 \in I, \forall x \in I, f(x) \ge f(x_0) + f'(x_0)(x - x_0)$$

$$- \forall a < b, \forall t \in [a; b], f(t) \leqslant \frac{f(b) - f(a)}{b - a} (t - a) + f(a)$$

Inégalité 5 (Inégalité de concavité)

f est concave sur I si et seulement si :

$$-- \forall a, b \in I, \forall t \in [0, 1], f(ta + (1 - t)b) \ge tf(a) + (1 - t)f(b)$$

$$- \forall x_0 \in I, \forall x \in I, f(x) \leq f(x_0) + f'(x_0)(x - x_0)$$

$$\forall a < b, \forall t \in [a; b], f(t) \geqslant \frac{f(b) - f(a)}{b - a} (t - a) + f(a)$$

Exemple 1 (Exemples d'inégalité de concavité et de convexité)

$$\forall x \in \mathbb{R}, x - 1 \geqslant \ln(x)$$

$$\forall x \in \mathbb{R}, e^x \geqslant x + 1$$

$$\forall x \in [0; \frac{\pi}{2}], \sin(x) \geqslant \frac{2}{\pi}x$$

$$\forall a, b \ge 0, (a + b)^p \le 2^{p-1}(a^p + b^p)$$

Inégalité 6 (Inégalité de Jensen)

Soit $f: I \longrightarrow \mathbb{R}$, convexe. Alors $\forall n \in \mathbb{N}^*, \forall i \in [1; n], x_i \in I, \lambda_i \in \mathbb{R}_+$ vérifiant $\sum_{i=1}^n \lambda_i = 1$, on a $f(\sum_{i=1}^n \lambda_i x_i) \leqslant \sum_{i=1}^n \lambda_i f(x_i)$.

Exemple 2 (Inégalité de Jensen en probabilité)

Soit X une variable aléatoire et f une fonction convexe, alors on a $f(\mathbb{E}(X)) \leq \mathbb{E}(f(X))$.

Exemple 3 (Conséquences de $\mathbb{E}(X^2) < +\infty$)

$$\mathbb{E}(X^2) < +\infty \Longrightarrow \mathbb{E}(X) < +\infty \text{ et } Var(X) < +\infty$$

Inégalité 7 (Inégalité des accroissements finis)

 $f:I\subset\mathbb{R}\longrightarrow\mathbb{R},$ dérivable telle que f' est bornée. Soient $m=\inf_If'$ et $M=\sup_If'.$ Alors, $\forall a,b\in I, a\leqslant b, m(b-a)\leqslant f(b)-f(a)\leqslant M(b-a).$

Inégalité 8 (Inégalité des accroissements finis-bis)

Soient $a,b \in \mathbb{R}$ avec a < b. $f:[a;b] \longrightarrow \mathbb{C}$ et $g:[a;b] \longrightarrow \mathbb{R}$, continues sur [a;b] et dérivable sur]a;b[.

On suppose $\forall t \in]a; b[, |f'(t)| \leq g'(t)$. Alors $|f(b) - f(a)| \leq g(b) - g(a)$.

Inégalité 9 (Inégalité des moyennes)

Si
$$n \in \mathbb{N}^*, \forall k \in [1; n], a_k \in \mathbb{R}_+, \text{ on a}$$

$$\underbrace{\frac{n}{\sum_{k=1}^{n} \frac{1}{a_k}}}_{m_{geom}(a_1, \dots, a_n)} \leqslant \underbrace{\frac{1}{n} \sum_{k=1}^{n} a_k}_{m_{arith}(a_1, \dots, a_n)}$$

Inégalité 10 (Lemme de Gauss)

Soient $a, b \in \mathbb{R}_+, (p, q)$ un couple d'exposants conjugués (id, $\frac{1}{p} + \frac{1}{q} = 1$).

Alors
$$ab \leqslant \frac{a^p}{p} + \frac{b^q}{q}$$
.

Inégalité 11 (Inégalité de Hölder)

Soit $n \in \mathbb{N}^*, \forall i \in [1; n], x_i \in \mathbb{R}_+, y_i \in \mathbb{R}_+$. $(p; q) \in (\mathbb{R}_+^*)^2$, un couple d'exposants conjugués (ie $\frac{1}{p} + \frac{1}{q} = 1$),

on a
$$\sum_{i=1}^{n} x_i y_i \le \left(\sum_{i=1}^{n} (x_i)^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} (y_i)^q\right)^{\frac{1}{q}}$$
.

Inégalité 12 (Inégalité de Minkowski)

Soit
$$n \in \mathbb{N}^*, p \ge 1, \forall i \in [[1; n]], x_i \in \mathbb{R}_+, y_i \in \mathbb{R}_+$$
. Alors
$$\left(\sum_{i=1}^n (x_i + y_i)^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1}^n (x_i)^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^n (y_i)^p\right)^{\frac{1}{p}}.$$

Inégalité 13 (Inégalité de Bernoulli)

Soit
$$h \in \mathbb{R}_+, n \in \mathbb{N}, (1+h)^n \geqslant 1+nh$$
.

Inégalité 14 (Inégalité de Cauchy-Schwartz)

Soit E un \mathbb{R} -espace vectoriel, $\forall x, y \in E, \langle x, y \rangle^2 \leqslant \langle x, x \rangle \langle y, y \rangle$

Exemple 4 (Exemples d'inégalité de Cauchy-Schwartz)

$$\forall n \in \mathbb{N}^*, \forall (\alpha_i), (\beta_i) \in \mathbb{R}^n, \left(\sum_{i=1}^n \alpha_i \beta_i\right)^2 \leqslant \sum_{i=1}^n \alpha_i^2 \sum_{i=1}^n \beta_i^2$$

$$\forall f, g \in \mathcal{C}([a; b], \mathbb{R}), \left(\int_a^b fg\right)^2 \leqslant \int_a^b f^2 \int_a^b g^2$$

$$\forall A, B \in M_n(\mathbb{R}), \left(\operatorname{Tr}({}^tAB)\right)^2 \leqslant \operatorname{Tr}({}^tAA)\operatorname{Tr}({}^tBB)$$

Inégalité 15 (Inégalité de Markov classique)

Soit $\mathbb P$ une loi de probabilité. Alors, $\forall t>0,\, \mathbb P(X\geq t)\leq \frac{\mathbb E(X)}{t}.$

Inégalité 16 (Inégalité de Markov généralisée)

Soit $\mathbb P$ une loi de probabilité et f une fonction croissante et positive. Alors,

$$\forall t > 0, \, \mathbb{P}(X \ge t) \le \frac{\mathbb{E}(f(X))}{f(t)}.$$

Inégalité 17 (Inégalité de Bienaymé-Tchebychev)

Soit X une variable aléatoire d'espérance μ et de variance finie σ^2 . Alors,

$$\forall \alpha > 0, \mathbb{P}(|X - \mu| \ge \alpha) \le \frac{\sigma^2}{\alpha^2}.$$

Inégalité 18 (Inégalité préliminaire de Hoeffding)

Soit Y une variable aléatoire réelle bornée et centrée Soient a et b deux nombres réels tels que a < b et tels que $\mathbb{P}(a \le Y \le b) = 1$.

Alors,
$$\forall s > 0, \mathbb{E}\left[e^{sY}\right] \le \exp\left(\frac{s^2(b-a)^2}{8}\right)$$

Inégalité 19 (Inégalité de Hoeffding)

Soit une suite $(X_k)_{k\in \llbracket 1;n\rrbracket}$ de variables aléatoires réelles indépendantes vérifiant, pour deux suites $(a_k)_{k\in \llbracket 1;n\rrbracket}, (b_k)_{k\in \llbracket 1;n\rrbracket}$ de nombres réels tels que :

 $\forall k, a_k < b_k \text{ et } \mathbb{P}(a_k \leq X_k \leq b_k) = 1 \text{ En posant } S_n = \frac{1}{n} \sum_{k=1}^n X_k, \text{ on a alors}$

$$\forall t > 0, \, \mathbb{P}(S_n - \mathbb{E}(S_n) \ge t) \le \exp\left(-\frac{2n^2t^2}{\sum\limits_{k=1}^{n} (b_k - a_k)^2}\right)$$

Inégalité 20 (Théorème de la projection sur un convexe complet)

Soient E un espace préhilbertien réel, x un vecteur et C un ensemble convexe complet non vide de E. Il existe une unique application P_C de E dans C, dite projection sur le convexe, qui à x associé le point $P_C(x)$ de C, tel que la distance de x à C soit égale à celle de x à $P_C(x)$. Le vecteur $P_C(x)$ est l'unique point de C vérifiant les deux propositions suivantes, qui sont équivalentes :

1.
$$\forall y \in C, ||x - P_C(x)|| \le ||x - y||$$

2.
$$\forall y \in C, \langle x - P_C(x), y - P_C(x) \rangle \leq 0$$

Inégalité 21 (Inégalité sur la vitesse de convergence lors du TCL)

Il existe une constante C telle que si $X_1, ..., X_n$ sont des variables aléatoires iid admettant des moments d'ordre de 1 à 3, d'espérance nulle et de variance $\sigma^2 > 0$ et $\mathbb{E}[|X_1|^3] = \rho < \infty$, et si on note $Y_n = \frac{1}{n} \sum_{i=1}^n X_i$ la moyenne d'échantillon de ces variables, F_n la fonction de répartition de $\frac{Y_n\sqrt{n}}{\sigma}$ et Φ la fonction de répartition de la loi normale, alors

$$\forall x, \forall n, |F_n(x) - \Phi(x)| \le \frac{C\rho}{\sigma^3 \sqrt{n}}.$$