Planning Parking Maneuvers for a Car-Trailer Vehicle

Autonomous and Mobile Robotics

Prof. Giuseppe Oriolo

Supervisors: Ph.D. Tommaso Belvedere

Ph.D. Michele Cipriano

Leandro Maglianella - 1792507

Lorenzo Nicoletti - 1797464

Olga Sorokoletova - 1937430

Outline of the project

Project Description

- framework
- car-trailer robot
- jackknifing problem
- experimental environments
- baseline planner (RRT)

Optimal Planning

- optimal planner (SST)
- optimization objectives
- comparing results with baseline

Handling problem

- introducing obstacles
- handling jackknifing (CL-RRT)

Conclusion

Project Description

Project Description: framework

- integrable into large variety of external systems
- environment specification, collision detection and visualization are left to the user

Project Description: car-trailer robot

Parameter	Value
l_1	0.25 m
l_2	0.26 m
m_1	0.07 m
$ \psi_{max} $	45°
$ \phi_{max} $	30°

State Space:

$$SE(2) \times SO(2) \times SO(2)$$

State:

$$q = \begin{bmatrix} x & y & \theta & \psi & \phi \end{bmatrix}^T$$

Kinematic model:

$$\dot{x} = v \cos \theta$$

$$\dot{y} = v \sin \theta$$

$$\dot{\theta} = \frac{v \tan \phi}{l_1}$$

$$\dot{\psi} = -\frac{v \tan \phi}{l_1} (1 + \frac{m_1}{l_2} \cos \psi) - \frac{v \sin \psi}{l_2}$$

$$\dot{\phi} = \omega$$

Project Description: jackknifing problem

Jackknifing phenomenon: while moving backward, the hitch angle can start to diverge (instability)

loss of maneuverability and risk of self-collision

Project Description: experimental environments

Project Description: baseline planner (RRT)

Rapidly-Exploring Random Tree (RRT) is a probabilistically complete sampling-based planning algorithm, which builds the exploration tree by performing the following steps:

- sampling of a random state in the configuration space
- searching for the closest amongst the visited states
- expansion until some new state is reached
- adding of a new state to the exploration tree, if no collisions

control inputs

driving velocity

steering velocity

Optimal Planning

SST planner

Optimal Planning: SST planner

Stable Sparse RRT (SST) is an asymptotically near-optimal incremental modification of RRT, that enables optimal planning.

It can:

- keep the number of stored nodes small
- quickly converge to high-quality paths
- be combined with desired optimization objectives

control inputs

driving velocity

steering velocity

For N iterations, a **selection/propagation/pruning** procedure is followed.

Optimal Planning: explaining SST

neighborhoods (maintained on the tree for

connectivity purposes).

Optimal Planning: optimization objectives

For **optimization problem**, formulated as: $\min_{v \in SearchTree} c(v)$

 Path Length Minimization objective optimizes the length of the path in order to avoid excessive wandering

$$c(v) = c(v.parent) + ||v - v.parent||$$

Path Clearance Maximization objective steers away from obstacles to efficiently increase safety

$$c(v) = c(v.parent) + \frac{1}{\gamma(q)}$$

where

$$\gamma(q) = \min_{s \in \partial C_{free}} \|q - s\|$$

Optimal Planning

Compare results with baseline planner

Compare results: simple forward motion

Planner	%	Avg r	number of	states	1	Avg length	1	Avg time
	/0	exact	approx.	total	exact	approx.	total	Avg time
RRT	58	23948	84691	49460	24.9	26.7	25.7	8.89
SST	54	9456	25962	17049	23.6	24.8	24.2	14.51

Compare results: simple backward motion

Planner	%	Avg r	number of	states	1	Avg length		Avg time
Tarmer	/0	exact	approx.	total	exact	approx.	total	Avg time
RRT	46	31096	60313	46873	57.1	57.7	57.4	16.93
SST	44	8062	14662	11758	54.0	57.0	55.7	20.46

Handling problem

Introducing obstacles

Introducing obstacles: collision checker

Collision-checking is performed considering a finite set of control points, defined along the robot's body:

Introducing obstacles: circular obstacles avoidance

SST Path Length

SST Path Clearance

Planner	%	Avg n	umber of s	states	1	Avg time		
	/0	exact	approx.	total	exact	approx.	total	Twg time
SST Length	92	4301	15663	5210	34.3	47.5	35.4	9.30

Handling problem

Handling jackknifing

Handling jackknifing: CL-RRT

Closed-Loop RRT (CL-RRT) is a modification of RRT which aims to overcome the problem of the hitch angle divergence by countersteering before reaching a jackknife state.

CL-RRT's underlined idea is to perform the cascaded control by means of introduction of a closed-loop dynamics.

Sampled desired steering angle is used to compute the reference steering angle:

driving velocity

desired steering angle

$$\phi_r = \phi_d - K_{stab}\psi$$

Then the steering velocity is used to track such reference quantity using the standard proportional feedback control:

$$\dot{\phi} = \omega = K_{reg}(\phi_r - \phi)$$

Handling jackknifing: three-point turn

CL-RRT

Planner	%	Avg r	number of	states	1	Avg time		
	/0	exact	approx.	total	exact	approx.	total	Avg time
RRT	76	19865	53277	27884	22.8	23.1	22.9	14.70
SST	26	777	1380	1223	18.1	14.4	15.4	20.56
CL-RRT	92	13084	56093	16524	24.4	21.5	24.2	8.87

Handling jackknifing: real parking test

Planner	%	Avg r	number of	states	1	Avg time		
	70	exact	approx.	total	exact	approx.	total	Avg time
RRT	30	25261	61613	50707	23.2	22.3	22.6	11.43
SST	36	4173	11036	8565	20.8	18.7	19.5	14.12
CL-RRT	82	23266	65609	30888	26.5	31.9	27.5	10.97

Conclusion

Conclusion

- we developed a programming pipeline that provides OMPL's omitted components to perform motion planning with a car-trailer vehicle
- all the three planners (RRT, SST, CL-RRT) have been tested and evaluated in a wide set of experiments and scenarios in order to fully explore their potentialities
- the optimal planning introduced with SST has allowed to achieve higher-quality paths and better performances with respect to the baseline RRT
- the jackknifing phenomenon has been efficiently handled in increasing-complexity environments
- the most satisfactory results were obtained with the introduction of the Closed-Loop in the dynamic system
- the project can be further extended to include new objectives, N-trailer structures and additional CL-based planners.

References

1. Evestedt N., Ljungqvist O., Axehill D.

"Motion planning for a reversing general 2-trailer configuration using Closed-Loop RRT", IROS 2016

2. Beglini M., Lanari L., Oriolo G.

"Anti-Jackknifing Control of Tractor-Trailer Vehicles", 2020 IEEE International Conference on Robotics and Automation (ICRA)

3. Open Motion Planning Library

http://ompl.kavrakilab.org/

4. Li Y., Littlefield Z., Bekris K. E.

"Asymptotically Optimal Sampling-based Kinodynamic Planning", 2016

Appendix

Environment	Boundaries		q_s					q_g				
Livironincit	$[x_l, x_h]$	$[y_l, y_h]$	x	y	θ	ψ	φ	x	y	θ	ψ	φ
Simple Forward	[-3, 3]	[-3,3]	-2	-2	0	0	0	2	2	$\frac{\pi}{2}$	0	0
Simple Backward	[-3, 3]	[-3,3]	2	2	$\frac{\pi}{2}$	0	0	-2	-2	0	0	0
Circular Obstacles	[-3,3]	[-3,3]	-2	-2	$\frac{\pi}{6}$	0	0	-2.1	1.5	$\frac{7\pi}{8}$	0	0
Three-point Turn	[0,3]	[0,1]	0.5	0.25	$-\pi$	0	0	2.5	0.25	0	0	0
Real Parking	[0,3]	[0,3]	2	2.3	$\frac{\pi}{4}$	0	0	1.5	0.5	$\frac{\pi}{2}$	0	0

Environmental parameters: state space bounds for the Cartesian components, initial and goal configuration.

Environment	Planner	v		ω/	ϕ_d	ϵ	Bias	Step	Dur.	Time
Environment	Tainer	min	max	min	max	C	Dias	otep	Dui.	Time
S. Forward	RRT SST	-0.25	0.5	-1	1	0.2				45
S. Backward	RRT SST	-0.5	0.25	-1	1	0.3			(1,10)	
Circular O-s	SST Min SST Max	-0.5	0.5	-1	1	0.25	0.3	0.1		
3-point Turn	RRT SST	-0.5	0.5	-1 -1	1 1	0.25	0.5	0.1		40
	CL-RRT			-25	25					
Real Parking	RRT	-0.5	0.5	-1	1	0.25				
	SST	0.5	0.5	-1	1	0.23				
	CL-RRT			-25	25					

Hyper-parameters: driving velocity, steering velocity, goal threshold ϵ , goal bias, propagation step size, control duration and maximum time limit to return an exact solution. SST Min and SST Max stand for SST with Minimum Path Length objective and SST with Maximum Path Clearance objective, respectively.

Appendix

```
1 t \leftarrow \text{Sample}(0, T_{prop}); \Upsilon \leftarrow \text{Sample}(\mathbb{U}, t);
2 return x_{new} \leftarrow \int_0^t f(x(t), \Upsilon(t)) dt + x_{prop};
 Algorithm 6: Best_First_Selection_SST(\mathbb{X}, \mathbb{V}, \delta_{BN})
1 x_{rand} \leftarrow \text{Sample State}(\mathbb{X});
2 X_{near} \leftarrow \text{Near}(\mathbb{V}, x_{rand}, \delta_{BN});
3 If X_{near} = \emptyset return Nearest(\mathbb{V}, x_{rand});
4 Else return arg \min_{x \in X_{near}} cost(x);
Algorithm 7: Is_Node_Locally_the_Best_SST(x_{new}, S, \delta_s)
1 s_{new} \leftarrow \text{Nearest}(S, x_{new});
2 if ||x_{new} - s_{new}|| > \delta_s then
S \vdash S \leftarrow S \cup \{x_{new}\};
\begin{array}{c|c} \mathbf{4} & s_{new} \leftarrow x_{new}; \\ \mathbf{5} & s_{new}.rep \leftarrow NULL; \end{array}
6 x_{peer} \leftarrow s_{new}.rep;
7 if x_{peer} == NULL \ or \ {\tt cost}(x_{new}) \ < \ {\tt cost}(x_{peer}) then
      return true;
9 return false;
```

Algorithm 3: MonteCarlo-Prop $(x_{prop}, \mathbb{U}, T_{prop})$

Appendix

```
Algorithm 8: Prune_Dominated_Nodes_SST(x_{new}, \mathbb{V}_{active}, \mathbb{V}_{inactive}, \mathbb{E})

1 s_{new} \leftarrow \text{Nearest}(S, x_{new});

2 x_{peer} \leftarrow s_{new}.rep;

3 if x_{peer}! = NULL then

4 \mid \mathbb{V}_{active} \leftarrow \mathbb{V}_{active} \setminus \{x_{peer}\};

5 \mid \mathbb{V}_{inactive} \leftarrow \mathbb{V}_{inactive} \cup \{x_{peer}\};

6 s_{new}.rep \leftarrow x_{new};

7 while x_{peer}! = NULL and \text{IsLeaf}(x_{peer}) and x_{peer} \in \mathbb{V}_{inactive} do

8 \mid x_{parent} \leftarrow \text{Parent}(x_{peer});

9 \mid \mathbb{E} \leftarrow \mathbb{E} \setminus \{\overline{x_{parent} \rightarrow x_{peer}}\};

10 \mid \mathbb{V}_{inactive} \leftarrow \mathbb{V}_{inactive} \setminus \{x_{peer}\};

11 \mid x_{peer} \leftarrow x_{parent};
```