Hubble Space Telescope Coronagraphs

John Krist

JPL

HST Cameras with Coronagraphs

• NICMOS Camera 2

- 20" x 20", 76 mas pixels
- $-\lambda = 0.9 2.2 \mu m$, multiple filters

• STIS (will be repaired in next mission)

- 52" x 52", 50 mas pixels
- $-\lambda = 0.2 1.0 \mu m$ (no filter)

ACS High Resolution Camera (HRC)

- 26" x 29", 25 mas pixels
- $-\lambda = 0.2$ 1.0 μ m, multiple filters

NICMOS Coronagraph

- 76 mas pixels, 20" x 20" field
- Multiple filters over $\lambda = 0.9 2.2 \,\mu m$
- Occulting spot is r = 0.3" (1.7 3.5 λ /D) hole drilled in mirror at intermediate focal plane
- Spot and Lyot stop always in-place

NICMOS Coronagraph Pupil Models

Pupil after spot

With an Aligned
Lyot Stop

With a Misaligned Lyot Stop

Effects of NICMOS Lyot Stop Misalignment

F110W (~J band)

Aligned Lyot Stop Model

Misaligned Lyot Stop Model

Observed

Misalignment results in 2x more light in the wings + spikes

NICMOS Image of HD 141569

F110W (~J band)

Science results in Weinberger et al. (1999)

STIS Coronagraph

- Primarily a spectrograph
- CCD, 50 mas pixels, 52" x 52" field
- Unfiltered imaging over $\lambda = 0.2 1.0 \mu m$
- Occulters are crossed wedges: d = 0.5"-2.8" $(r = 5\lambda/D 30\lambda/D @ V)$
- Lyot stop always in the beam

STIS Occulters

STIS Coronagraph Computed Intensity at Lyot Stop

After Occulter, Before Lyot Stop

After Lyot Stop

STIS Image of HD 141569

HD 141569 - Reference Star

Science results in Mouillet et al. (2001)

ACS/HRC Coronagraph

- CCD, 25 mas pixels, PSF FWHM=50 mas @ 0.5 μm
- Multiple filters over $\lambda = 0.2 1.0 \mu m$
- Selectable mode in the HRC: the occulting spots and Lyot stop flip in on command
- Two occulting spots: r = 0.9" and 1.8" (38 λ /D 64 λ /D @ V)
- Occulting spots in the aberrated beam from HST, before corrective optics

ACS Coronagraph 1st (Aberrated) Image Plane Model

ACS Coronagraph Pupil Models

Pupil After Spot

Pupil After Lyot Stop

ACS Coronagraph Image of HD 141569

V band (F606W)

Science results in Clampin et al. (2003)

PSF Subtraction

Reference PSF Subtraction

Beta Pictoris Alpha Pic Beta - Alpha Pic ACS coronagraph ACS Science Team (Golimowski et al. 2006)

Roll Subtraction

ACS Coronagraph Images of Beta Pic

Separated by 10 degrees in orientation, 5 hours in time

Spectral Deconvolution

Sparks & Ford (2002) Images courtesy of Bill Sparks

HD 130948 (ACS Coronagraph)

After Spectral Deconvolution & **Unsharp Masking**

ACS PSF Mean Brightness Profiles (V)

HST vs. Ground: HD 141569

ACS Direct (V)

STIS Coronagraph $(U \rightarrow I)$

ACS Coronagraph (V)

NICMOS Coronagraph (J)

Palomar AO
Coronagraph (2.2 μm)
Boccaletti et al. 2003
(Their image)

HST vs. Ground Coronagraphs

- HST limited to inner radius of r>0.6" (near-IR) and r>0.7" (visible, if STIS repaired, else 1.1" with ACS); on ground, $4\lambda/D$ at 2 μ m with a 10 m scope is 0.17"
- HST stability allows PSF subtraction providing up to an additional 200x improvement in contrast (coronagraph improves contrast up to 7x); ground scope stability limited in most cases to <10x (PSF subtraction or SDI) and limited AO correction radius
- HST is much better than ground for most disk imaging at radii > 1"; large scopes on ground better for point sources closer in

