

Présentation du stage

Analyse numérique d'équations aux dérivées partielles par différences finies et implémentation optimisée pour le calcul haute performance

par Jean-Baptiste Gaillot

Introduction

Explications

- Projet mathématique et informatique
- Résolution d'EDP par la méthode des différences finies
- Utilisation d'outils :
 - Analyse numérique
 - Calcul numérique
 - Algorithmique séquentielle
 - Algorithmique parallèle
 - Programmation C, OpenMP, MPI

Introduction – Partie mathématiques

Organisation

- Concevoir un schéma numérique pour obtenir une solution approchée du problème
- S'assurer de l'existence et de l'unicité de la solution approchée
- S'assurer des bonnes propriétés du schéma (consistance, convergence, erreur locale, ...)
- Concevoir des schémas de résolution de l'éventuel système linéaire associé à cette méthode

Introduction – Partie mathématiques

Conventions

Notations

- N + 1 est le nombre de noeuds dans une direction, $N_t + 1$ est le nombre de noeuds en temps,
 - $-x_i := ih, y_j := jh \text{ et } t_k := kh_t \text{ pour } i, j \in \{0, \ldots, N\}, t \in \{0, \ldots, N_t\},$
 - $-\ u\left(x_{i},y_{j},t_{k}\right):\approx u_{i,j}^{k},$
- $-u:=\begin{pmatrix}u_1&\cdots&u_{N-1}\end{pmatrix}^T$ est le vecteur de la solution approchée (en 1D),
- $-u_j:=egin{pmatrix} u_{1,j} & \cdots & u_{N-1,j} \end{pmatrix}^T$ est le vecteur de la solution approchée (en 2D),
- h est le pas de discrétisation en espace, h_t est le pas de discrétisation en temps,
- E_h est l'erreur de troncature en espace, E_{h_t} est l'erreur de troncature en temps,
- $-\|e\|_{\infty}$ est l'erreur locale.

Introduction - Partie mathématiques

Définitions

- Un schéma numérique est consistant en espace lorsque $\lim_{h\to 0} |E_h| = 0$ et est consistant en temps lorsque $\lim_{h\to 0} |E_{h_t}| = 0$.
- Un schéma numérique est convergent lorsque $\lim_{h \to 0} \|e\|_{\infty} = 0$.

Introduction – Partie informatique

Organisation

- Le dossier Fonctions-communes contient des fichiers de fonctions qui seront appelées pour chaque problème
- Pour chaque problème, il y a les dossiers Sources, Objets, Librairies,
 Binaires et Textes. A l'intérieur de chaque dossier, il y a des sous-dossiers pour chaque version du problème.
- Pour chaque problème, il y a un Makefile et un script.
- Pour chaque version d'un problème, il y a les fichiers suivants :
 - main.c: programme principal
 - resolution.c : fonctions de résolution
 - parallele.c : fonctions pour préparer les données MPI
- Certaines fonctions qui sont appelées de nombreuses fois sont mises inline.
- Les flags de compilations utilisés à chaque fois sont -03 et -Wall.
- Les résultats qui seront présentés ont été exécutés sur une machine ordinaire (8
 CPU, 16 Go de mémoire) et non un cluster de calcul.

Problèmes étudiés

Équation de Poisson en dimension 1

Équation de Poisson en dimension 2

Équation des ondes en dimension 1

Équation de la chaleur en dimension 2

Équation de Poisson en

dimension 1

Problème

Soit $f:]0,1[
ightarrow \mathbb{R}$ continue. Soit le problème suivant :

Trouver u de classe C^4 telle que :

$$\begin{cases} -u''(x) = f(x) & \forall x \in]0,1[\\ u(0) = 0, \ u(1) = 0 \end{cases}.$$

Si
$$f \equiv 1$$
, alors $u(x) = \frac{1}{2}x(1-x)$, ou si $f(x) = \pi^2 \sin(\pi x)$, alors $u(x) = \sin(\pi x)$.

Discrétisation

$$-u''(x) = \frac{1}{h^2} \left(-u(x+h) + 2u(x) - u(x-h) \right) + E_h$$

avec

$$E_h := \frac{1}{12} h^2 u^{(4)} (x + \theta h)$$

Schéma

$$\frac{1}{h^2}(-u_{i+1}+2u_i-u_{i-1})=f_i.$$

Équation de Poisson en dimension 1 – Analyse numérique Schéma numérique

Schéma sous forme matricielle

Équation de Poisson en dimension 1 – Analyse numérique Schéma numérique

Remarques

- La valeur en un point du maillage dépend de valeurs d'au plus 3 points du maillage.
- A est une matrice creuse : elle comporte 3 diagonales (centrales).

Équation de Poisson en dimension 1 – Analyse numérique Existence et unicité de la solution approchée

Proposition A est définie-positive et Au = f admet une unique solution.

Démonstration Soit $x \in \mathbb{R}^N$, alors :

$$x^T A x = \frac{1}{h^2} \left(\sum_{i=1}^{N-2} (x_i - x_{i+1})^2 + x_1^2 + x_{N-1}^2 \right) \ge 0.$$

Si $\sum_{i=0}^{N-2} (x_i - x_{i+1})^2 + x_1^2 + x_{N-1}^2 = 0$, alors $x = 0_{\mathbb{R}^N}$.

Équation de Poisson en dimension 1 – Analyse numérique Consistance du schéma et majoration de l'erreur de troncature

Proposition Le schéma est consistant : $\lim_{h\to 0} |E_h| = 0$ et

$$|E_h| \leq \frac{1}{12} h^2 \sup_{x \in [0,1]} |f''(x)|.$$

Démonstration Comme on a $x+\theta h\in [0,1]$ et $-u^{(4)}=-f''$, alors on peut majorer l'erreur de troncature comme ceci :

$$|u^{(4)}(x + \theta h)| = |f''(x + \theta h)| \le \sup_{x \in [0,1]} |f''(x)|,$$

on obtient :

$$\left|\frac{1}{12}h^2u^{(4)}\left(x+\theta h\right)\right| \leq \frac{1}{12}h^2\sup_{x\in[0,1]}|f''(x)| \underset{h\to 0}{\longrightarrow} 0.$$

Équation de Poisson en dimension 1 – Analyse numérique Convergence du schéma et majoration de l'erreur locale

Proposition (admise) $\forall i, j \in \{0, ..., N\} : a_{i,j}^{-1} \geq 0.$

Proposition Soit
$$e := (u_i - u(x_i))_{0 \le i \le N}$$
. Alors, le schéma est convergent :

$$\lim_{h\to 0} \lVert e\rVert_{\infty} = 0$$

et

$$||e||_{\infty} \leq \frac{1}{96} h^2 \sup_{x \in [0,1]} |f''(x)|.$$

Démonstration

Poser $\varepsilon := Ae \ (A^{-1}\varepsilon = e)$.

Équation de Poisson en dimension 1 – Analyse numérique Convergence du schéma et majoration de l'erreur locale

Remarques

- On vérifiera cette propriété avec un exemple qui utilise une implémentation utilisant une méthode de résolution directe.
- On a aussi montré que $||A^{-1}||_{\infty} \leq \frac{1}{8}$.

Équation de Poisson en dimension 1 – Analyse numérique Convergence du schéma et majoration de l'erreur locale

Proposition Si u est de classe C^2 , alors le schéma est convergent : $\lim_{h\to 0} \|e\|_{\infty} = 0$.

Méthode de Jacobi

$$Du^{(k+1)} = (E+F)u^{(k)} + f.$$

Schéma

$$Du^{(k+1)} = \frac{1}{h^2} \begin{pmatrix} 2u_1^{(k+1)} \\ \vdots \\ \vdots \\ 2u_{N-1}^{(k+1)} \end{pmatrix}$$

et

$$(E+F) u^{(k)} + f = \frac{1}{h^2} \begin{pmatrix} u_0^{(k)} + u_2^{(k)} \\ \vdots \\ \vdots \\ u_{k}^{(k)} + u_{k}^{(k)} \end{pmatrix} + \begin{pmatrix} f_1^{(k)} \\ \vdots \\ \vdots \\ f_{k}^{(k)} \end{pmatrix}.$$

Équation de Poisson en dimension 1 – Analyse numérique Méthode de résolution itérative

$$Du^{(k+1)} = (E+F)u^{(k)} + f \Leftrightarrow \frac{2}{h^2}u_i^{(k+1)} = \frac{1}{h^2}\left(u_{i-1}^{(k)} + u_{i+1}^{(k)}\right) + f_i$$
$$\Leftrightarrow u_i^{(k+1)} = \frac{1}{2}\left(u_{i-1}^{(k)} + u_{i+1}^{(k)} + h^2f_i\right).$$

Équation de Poisson en dimension 1 – Analyse numérique Méthode de résolution directe

Factorisation de Cholesky

Ainsi de suite...

$$\ell_{i,i} = \sqrt{a_{i,i} - \sum_{k=1}^{i-1} \ell_{i,k}^2}$$
 et $\ell_{i,j} = \frac{1}{\ell_{j,j}} \left(a_{i,j} - \sum_{k=1}^{j-1} \ell_{i,k} \ell_{j,k} \right)$.

On calcule d'abord en colonnes puis en lignes.

Proposition Soit A une matrice tridiagonale, symétrique et définie-positive. Alors, la matrice L de la décomposition de Cholesky de A est bidiagonale inférieure.

Démonstration On a : Si
$$i > j+1$$
, alors $a_{i,j} = 0$. On calcule la colonne $j = 1$: $L|_{j=1} = \begin{pmatrix} \ell_{1,1} & \ell_{2,1} & 0 & \cdots & 0 \end{pmatrix}^T$. On calcule la colonne $j = 2$: $L|_{j=2} = \begin{pmatrix} 0 & \ell_{2,2} & \ell_{3,2} & 0 & \cdots & 0 \end{pmatrix}^T$.

Équation de Poisson en dimension 1 – Analyse numérique Méthode de résolution directe

On peut résoudre Au = f en résolvant Ly = f puis $L^T u = y$ avec :

$$y_1 = \frac{f_1}{\ell_{1,1}}$$
 et pour *i* de 2 à $N-1: y_i = \frac{f_i - \ell_{i,j-1}y_{i-1}}{\ell_{i,i}}$

et

$$u_{N-1} = \frac{y_{N-1}}{\ell_{N-1,N-1}}$$
 et pour i de $N-2$ à $1: u_i = \frac{y_i - \ell_{i,j+1}u_{i+1}}{\ell_{i,i}}$.

Pour la suite, la fonction à approcher sera $f(x) := \pi^2 \sin(\pi x)$ et $\varepsilon := 1 \cdot 10^{-10}$.

Équation de Poisson en dimension 1 – Implémentation Version de base

Étapes :

- créer des fonctions qui font le travail :
 - construire la matrice A (voir la fonction construire_matrice),
 - calculer le second membre f,
 - calculer la solution approchée u (voir la fonction resoudre_gauss).

Version de base

Commentaires

- Pour calculer u, on résout le système linéaire avec la méthode de Gauss.
- On note ces résultats :

N	5	10	50	100	300	500	1500
$\ e\ _{\infty}$	0.031916	0.008265	0.000329	0.000082	0.000009	0.000003	<0.000001
Tps d'ex. (s)	< 0.01	< 0.01	< 0.01	< 0.01	0.01	0.05	1.00

- A est de taille O(N) et la méthode de Gauss est $O(N^3)$ donc la complexité algorithmique est $O(N^3)$.

Version de base

Commentaire On vérifie la proposition énoncée avec $f(x) = \pi^2 \sin(\pi x)$, d'après la proposition : $\|e\|_{\infty} \leq \frac{1}{96} \pi^4 h^2$.

Ν	2	3	4	5	10	100	1000
$\ e\ _{\infty}$ max. th.	0.253669	0.112742	0.063417	0.040587	0.010146	0.000101	0.000001
$\ e\ _{\infty}$ obs.	0.233701	0.083678	0.053029	0.031916	0.008265	0.000082	0.000001

Version avec méthode de résolution itérative en séquentiel

Fonction principale :

```
void calculer_u_jacobi(double *f, double *u){
    nb iteration = 0:
    h_{carre} = 1.0 / pow(N, 2);
    int nb_iteration_max = INT_MAX; double norme = DBL_MAX;
    double *u_anc; double *permut;
    init_u_anc(&u_anc);
    for (int iteration = 0 ; iteration < nb_iteration_max && norme > 1e-10 ;
        iteration ++){
        for (int i = 1; i < nb_pt - 1; i ++){
            u[i] = schema(f, u anc, i):
        norme = norme_infty_iteration(u, u_anc);
        permut = u: u = u anc: u anc = permut: nb iteration ++:
    terminaison(&permut, &u, &u_anc);
}
```

Version avec méthode de résolution itérative en séquentiel

Rappel du schéma :
$$u_i^{(k+1)} = \frac{1}{2} \left(u_{i-1}^{(k)} + u_{i+1}^{(k)} + h^2 f_i \right)$$
.

Fontion qui applique le schéma à un point

```
static inline __attribute__((always_inline))
double schema(double *f, double *u_anc, int i){
   double res = 0.5 * ((u_anc[i - 1] + u_anc[i + 1]) + h_carre * f[i]);
   return res;
}
```

Version avec méthode de résolution itérative en séquentiel

Fonction pour calculer la norme infinie relative :

```
static inline __attribute__((always_inline))
double norme_infty_iteration(double *u, double *u_anc){

   double norme_nume = 0.0;   double norme_deno = 0.0;   double norme;

   for (int i = 0; i < nb_pt * nb_pt; i ++) {
        double diff = fabs(u[i] - u_anc[i]);
        if (diff > norme_nume) {
            norme_nume = diff;
        }
        if (fabs(u_anc[i]) > norme_deno) {
                norme_deno = fabs(u_anc[i]);
        }
   }
   norme = norme_nume / norme_deno;
   return norme;
}
```

(Le test d'arrêt est défini avec formule suivante : $\frac{\|u^{(k+1)}-u^{(k)}\|_{\infty}}{\|u^{(k)}\|_{\infty}}<\varepsilon$.)

Version avec méthode de résolution itérative en séquentiel

Fonction pour terminer:

```
void terminaison(double **permut, double **u, double **u_anc){
   if (nb_iteration % 2 != 0) {
        *permut = *u; *u = *u_anc; *u_anc = *permut;
   }
   free(*u_anc);
}
```

Version avec méthode de résolution itérative en séquentiel

Commentaire On note ces résultats :

N	5	10	50	100	300	500	1500
Nb. d'itérations	102	400	8506	31227	241002	617699	4557543
$\ e\ _{\infty}$	0.031916	0.008265	0.000329	0.000082	0.000007	0.000002	0.000045
Tps d'ex. (s)	< 0.01	< 0.01	< 0.01	0.01	0.14	0.54	11.83

Version avec méthode de résolution itérative en parallèle avec OpenMP

Commentaire On ajoute une directive for dans la boucle de la fonction calculer_u_jacobi et une directive for dans la boucle du calcul de la norme relative.

Équation de Poisson en dimension 1 – Implémentation Version avec méthode de résolution itérative en parallèle avec MPI

Illustration Schéma des dépendances pour 4 processus et N=15:

Version avec méthode de résolution itérative en parallèle avec MPI

Fonctions pour MPI

void creer_topologie(){

```
int tore = 0:
    dims = 0:
    MPI_Dims_create(nb_cpu, 1, &dims);
    MPI Cart create (MPI COMM WORLD, 1, &dims, &tore, 0, &comm 1D):
    MPI Barrier (comm 1D):
}
void infos_processus(){
     i_debut = (coords * nb_pt) / dims;
    i_fin = ((coords + 1) * nb_pt) / dims - 1;
nb_pt_div = i_fin - i_debut + 1;
    MPI_Barrier(comm_1D);
}
```

Version avec méthode de résolution itérative en parallèle avec MPI

Fonction principale :

```
void calculer_u_jacobi(double *f_div, double *u_div){
    nb_{iteration} = 0; h_{carre} = 1.0 / pow(N, 2);
    int nb iteration max = INT MAX: double norme = DBL MAX:
    int i_boucle_debut; int i_boucle_fin;
    double *u div anc: double *permut:
    init_u_div_anc(&u_div_anc);
    for (int i = 0; i < nb_pt_div + 2; i ++){
        u \operatorname{div}[i] = 0.0:
    infos bornes boucles (&i boucle debut. &i boucle fin):
    for (int iteration = 0 ; iteration < nb_iteration_max && norme > 1e-10 ;
        iteration ++){
        echanger_halos(u_div_anc);
        for (int i = i_boucle_debut ; i < i_boucle_fin ; i ++){</pre>
            u div[i] = schema(f div. u div. u div anc. i):
        norme = norme_infty_iteration(u_div, u_div_anc);
        permut = u_div; u_div = u_div_anc; u_div_anc = permut; nb_iteration ++;
    terminaison (&permut, &u_div, &u_div_anc);
```

Version avec méthode de résolution itérative en parallèle avec MPI

Fonction pour obtenir les indices de départ et d'arrivé de la boucle principale :

```
void infos bornes boucles(int *i boucle debut. int *i boucle fin) {
    *i_boucle_debut = 1;
    *i_boucle_fin = nb_pt_div + 1;
    if (i debut == 0){
        (*i_boucle_debut) ++;
    if (i fin == nb pt - 1){
       (*i boucle fin) --:
```

Fonction pour échanger les halos :

}

```
void echanger_halos(double *u_div){
     // Envoi gauche, reception droite
     MPI_Sendrecv(&(u_div[1]), 1, MPI_DOUBLE, voisins[0], etiquette,
     &(u_div[nb_pt_div + 1]), 1, MPI_DOUBLE, voisins[1], etiquette, comm_1D,
     &statut):
     // Envoi droite, reception gauche
    MPI_Sendrecv(&(u_div[nb_pt_div]), 1, MPI_DOUBLE, voisins[1], etiquette, &(u_div[0]), 1, MPI_DOUBLE, voisins[0], etiquette, comm_1D, &statut);
}
```

Version avec méthode de résolution directe en séguentiel

Structure mat 2bandes:

}

```
struct mat_2bandes{
    int N:
    double *diag: // taille N - 1
    double *sous diag: // taille N - 2
};
```

Fonction pour allouer la structure :

```
void init mat 2bandes(struct mat 2bandes *A){
    A \rightarrow N = N:
    A -> diag = (double *) malloc(idx_max * sizeof(double));
    A -> sous_diag = (double *) malloc((idx_max - 1) * sizeof(double));
```

Fonction pour libérer la structure :

```
void liberer_mat_2bandes(struct mat_2bandes *A){
    free(A -> diag);
    free(A -> sous_diag);
```

Version avec méthode de résolution directe en séquentiel

Fonction pour obtenir la décomposition de Cholesky en utilisant la structure :

```
void calculer_cholesky(struct mat_2bandes *L){
    h_carre = 1.0 / pow(N, 2);
    double alpha = 2.0 / h_carre;
    double beta = -1.0 / h_carre;

(L -> diag)[0] = sqrt(alpha);
    (L -> sous_diag)[0] = beta / (L -> diag)[0];

for (int i = 1; i < idx_max - 1; i ++){
        (L -> diag)[i] = sqrt(alpha - pow((L -> sous_diag[i - 1]), 2));
        (L -> sous_diag)[i] = beta / (L -> diag[i]);
}

(L -> diag)[idx_max - 1] = sqrt(alpha - pow((L -> sous_diag[idx_max - 2]), 2));
}
```

Version avec méthode de résolution directe en séquentiel

Test pour avoir un aperçu de la compression

```
Illustration de la structure mat 2bandes (exemple pour N petit) :
Structure mat2 bandes :
N = 7
                         8.573214
                                     8.082904
                                                 7.826238
                                                            7.668116
                                                                         7.560864
diag
             9.899495
sou\bar{s}_diag = -4.949747
                        -5.715476
                                    -6.062178
                                                -6.260990
                                                            -6.390097
Matrice reelle correspondante
  9.899495
              0.000000
                         0.000000
                                     0.000000
                                                 0.000000
                                                             0.000000
 -4.949747
              8.573214
                         0.000000
                                     0.000000
                                                 0.000000
                                                             0.000000
  0.000000
             -5.715476
                         8.082904
                                     0.000000
                                                 0.000000
                                                             0.000000
  0.000000
            0.000000
                         -6.062178
                                     7.826238
                                                 0.000000
                                                             0.000000
  0.000000
             0.000000
                         0.000000
                                     -6.260990
                                                 7.668116
                                                             0.000000
  0.000000
             0.000000
                         0.000000
                                     0.000000
                                                -6.390097
                                                             7.560864
```

Version avec méthode de résolution directe en séquentiel

Fonction principale:

```
void resoudre_cholesky(double *f, double *u){
    struct mat_2bandes L;
    double *y = (double *)malloc(idx_max * sizeof(double));

    u[0] = 0; u[nb_pt - 1] = 0;

    init_mat_2bandes(&L);
    calculer_cholesky(&L);

    resoudre_cholesky_descente(&L, &(f[1]), y);
    resoudre_cholesky_remontee(&L, y, &(u[1]));
    liberer_mat_2bandes(&L);
    free(y);
}
```

Version avec méthode de résolution directe en séquentiel

```
Fonction pour résoudre Ly = f:
```

```
void resoudre_cholesky_descente(struct mat_2bandes *L, double *f, double *y){
    y[0] = f[0] / (L -> diag)[0];
    for (int i = 1; i < idx_max; i ++){
        y[i] = (f[i] - (L -> sous_diag)[i - 1] * y[i - 1]) / (L -> diag)[i];
    }
}
```

```
Rappel du schéma : u_{N-1} = \frac{y_{N-1}}{\ell_{N-1,N-1}} et pour i de N-2 à 1: u_i = \frac{y_i - \ell_{i,j+1}u_{i+1}}{\ell_{i,i}}
```

Fonction pour résoudre $L^T u = y$:

```
void resoudre_cholesky_remontee(struct mat_2bandes *L, double *y, double *u){
    u[idx_max - 1] = y[idx_max - 1] / (L -> diag)[idx_max - 1];
    for (int i = idx_max - 2; i >= 0; i --){
        u[i] = (y[i] - (L -> sous_diag)[i] * u[i + 1]) / (L -> diag)[i];
    }
}
```

Version avec méthode de résolution directe en séquentiel

Commentaires

- Cette méthode est impossible à paralléliser à cause des dépendances.
- On note ces résultats :

N	5	10	50	100	300	500	1500
$\ e\ _{\infty}$	0.031916	0.008265	0.000329	0.000082	0.000009	0.000003	<0.000001
Tps d'ex. (s)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

- A possède O(N) colonne. Pour chaque colonne, il y a O(1) lignes à calculer. Pour chaque case, il y a O(1) opérations. Donc la complexité algorithmique est O(N).

Comparaison des performances des méthodes

Équation de Poisson en

dimension 2

Problème

Soit $f:]0,1[\times]0,1[\to \mathbb{R}$ continue Soit $D:=]0,1[\times]0,1[$. Soit le problème suivant :

Trouver u de classe C^4 telle que :

$$\left\{ \begin{array}{l} -\Delta u\left(x,y\right) = f\left(x,y\right) \quad \forall \left(x,y\right) \in D \\ u\left(x,y\right) = 0 \quad \forall \left(x,y\right) \in \partial D \end{array} \right. .$$

Si
$$f(x,y) = \sin(2\pi x)\sin(2\pi y)$$
, alors $u(x,y) = \frac{1}{8\pi^2}(2\pi x)\sin(2\pi y)$.

Discrétisation

Schéma numérique

$$-\Delta u(x,y) = \frac{1}{h_x^2} \delta_x^2 + \frac{1}{h_y^2} \delta_y^2 + E_{h_x,h_y}$$

avec :

$$\delta_x^2 := -u(x - h_x, y) + 2u(x, y) - u(x + h_x, y),$$

$$\delta_y^2 := -u(x, y - h_y) + 2u(x, y) - u(x, y + h_y)$$

et

$$E_{h_x,h_y} := \frac{1}{12} \left(h_x^2 \frac{\partial^4 u}{\partial x^4} \left(x + \theta_x h_x, y \right) + h_y^2 \frac{\partial^4 u}{\partial y^4} \left(x, y + \theta_y h_y \right) \right).$$

Schéma

$$\frac{1}{h^2} \left(-u_{i-1,j} - u_{i,j-1} + 2u_{i,j} - u_{i+1,j} - u_{i,j+1} \right) = f_{i,j}.$$

Équation de Poisson en dimension 2 – Analyse numérique Schéma numérique

Schéma sous forme matricielle

$$Au = f$$

$$\Leftrightarrow \underbrace{\frac{1}{h^2} \begin{pmatrix} 4 & -1 & \cdot & -1 & \cdot & \cdot & \cdot & \cdot & \cdot \\ -1 & 4 & -1 & \cdot & -1 & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & -1 & 4 & \cdot & \cdot & -1 & \cdot & \cdot & \cdot & \cdot \\ -1 & \cdot & \cdot & 4 & -1 & \cdot & -1 & \cdot & \cdot & \cdot \\ \cdot & -1 & \cdot & -1 & 4 & -1 & \cdot & -1 & \cdot \\ \cdot & \cdot & -1 & \cdot & -1 & 4 & \cdot & \cdot & -1 \\ \cdot & \cdot & \cdot & -1 & \cdot & -1 & 4 & -1 & \cdot \\ \cdot & \cdot & \cdot & \cdot & -1 & \cdot & -1 & 4 & -1 \\ \cdot & \cdot & \cdot & -1 & \cdot & -1 & 4 & -1 \\ \cdot & \cdot & \cdot & -1 & \cdot & -1 & 4 & -1 \\ \cdot & \cdot & \cdot & -1 & \cdot & -1 & 4 & -1 \\ \cdot & \cdot & \cdot & -1 & \cdot & -1 & 4 & -1 \\ \cdot & \cdot & \cdot & -1 & \cdot & -1 & 4 & -1 \\ \cdot & \cdot & \cdot & -1 & \cdot & -1 & 4 & -1 \\ \cdot & \cdot & \cdot & -1 & \cdot & -1 & 4 & -1 \\ \cdot & \cdot & \cdot & -1 & \cdot & -1 & 4 & -1 \\ \cdot & \cdot & \cdot & -1 & \cdot & -1 & 4 & -1 \\ \cdot & \cdot & \cdot & -1 & -1 & 4 & -1 \\ \cdot & \cdot & \cdot & -1 & -1 & 4 & -1 \\ \cdot & \cdot & -1 & -1 & -1 & 4 & -1 \\ \cdot & \cdot & -1 & -1 & -1 & 4 & -1 \\ \cdot & \cdot & -1 & -1 & -1 & 4 & -1 \\ \cdot & \cdot & -1 & -1 & -1 & -1 & -1 \\ \cdot & \cdot & -1 & -1 & -1 & -1 & -1 \\ \cdot & \cdot & -1 & -1 & -1 & -1 & -1 \\ \cdot & \cdot & -1 & -1 & -1 & -1 \\ \cdot & \cdot & -1 & -1 & -1 & -1 \\ \cdot & \cdot & -1 & -1 & -1 & -$$

Équation de Poisson en dimension 2 – Analyse numérique Schéma numérique

Schéma sous forme matricielle par blocs

$$\underbrace{\frac{1}{h^2} \begin{pmatrix} \boxed{M} & \boxed{-I} & \cdot & \cdot \\ \boxed{-I} & \cdot \cdot & \cdot & \cdot \\ \cdot & \cdot \cdot & \ddots & \ddots \\ \cdot & \cdot & \boxed{-I} & \boxed{M} \end{pmatrix}}_{=A} \underbrace{\begin{pmatrix} u_1 \\ \vdots \\ \vdots \\ u_{N-1} \end{pmatrix}}_{=u} = \underbrace{\begin{pmatrix} f_1 \\ \vdots \\ \vdots \\ f_{N-1} \end{pmatrix}}_{=f}$$

avec

$$M:=\left(egin{array}{ccccc} 4 & -1 & \cdot & \cdot \ -1 & \ddots & \ddots & \cdot \ \cdot & \ddots & \ddots & -1 \ \cdot & \cdot & -1 & 4 \end{array}
ight).$$

Équation de Poisson en dimension 2 – Analyse numérique Schéma numérique

Remarques

- La valeur en un point du maillage dépend de valeurs d'au plus 5 points du maillage.
- A est une matrice creuse : elle comporte 5 diagonales (dont 3 centrales) et 3 blocs de diagonales, où les blocs sont M et -I.

Équation de Poisson en dimension 2 – Analyse numérique Existence et unicité de la solution approchée

Proposition A est définie-positive et Au = f admet une unique solution.

Démonstration Soit $x \in \mathbb{R}^{(N-1) \times (N-1)}$ avec $x = (x_j)_{1 \le j \le N-1}$ et $x_j = (x_{i,j})_{1 \le j \le N-1}$, alors :

$$x^{T}Ax = \frac{1}{h^{2}} \left(\sum_{i=1}^{N-1} x_{j}^{T} M x_{j} - 2 \sum_{i=1}^{N-2} x_{j}^{T} x_{j+1} \right).$$

De plus,

$$x_j^T M x_j = x_j^T (h^2 B + 2I) x = h^2 x_j^T B x_j + 2 \sum_{i,j}^{N-1} x_{i,j}^2 = h^2 x_j^T B x_j + 2 ||x_j||^2$$

Démonstration (suite) avec

$$B := \frac{1}{h^2} \begin{pmatrix} 2 & -1 & \cdot & \cdot \\ -1 & \ddots & \ddots & \cdot \\ \cdot & \cdot & \cdot & \cdot & -1 \\ \cdot & \cdot & -1 & 2 \end{pmatrix}.$$

Donc on obtient :

$$x^{T}Ax = \frac{1}{h^{2}} \left(\sum_{j=1}^{N-2} \|x_{j} + x_{j+1}\|^{2} + \|x_{1}\|^{2} + \|x_{N-1}\|^{2} + h^{2} \sum_{j=1}^{N-1} x_{j}^{T} B x_{j} \right)$$

et *B* est définie-positive donc $\forall x_j \in \mathbb{R}^N : x_j^T B x_j \ge 0$, donc $x^T A x \ge 0$.

Équation de Poisson en dimension 2 – Analyse numérique Consistance du schéma et majoration de l'erreur de troncature

Notation Soit $d \in \{1, ..., 4\}$. Alors, $C_{u,d} := \max \left\{ \sup_{(x,y) \in [0,1]^2} \left| \frac{\partial^d u}{\partial x^d}(x,y) \right|, \sup_{(x,y) \in [0,1]^2} \left| \frac{\partial^d u}{\partial y^d}(x,y) \right| \right\}.$

Proposition Le schéma est consistant :
$$\lim_{h\to 0} |E_h| = 0$$
 et $|E_h| \le \frac{1}{6}h^2 |C_{u,4}|$.

Démonstration Majoration...

Remarque Le schéma est d'ordre 2 pour x et pour y.

Équation de Poisson en dimension 2 – Analyse numérique Convergence du schéma et majoration de l'erreur locale

Proposition (admise) Soit
$$e_j := (\|u_j - u(x_j)\|_{\infty})_{0 \le j \le N}$$
. Alors, le schéma utilisé est convergent :

$$\forall j \in \{1, \dots, N-1\} : \lim_{h \to 0} ||e_j||_{\infty} = 0$$

et

$$\exists \ C>0, \ \forall \ j\in\{1,\ldots,N-1\}: \|e_j\|_{\infty} \leq Ch^2\left(C_{u,4}+hC_{u,3}\right).$$

Méthode de résolution itérative

Méthode de Jacobi

$$Du^{(k+1)} = (E + F) u^{(k)} + f.$$

$$E+F=rac{1}{h^2}egin{pmatrix} D_{\star} & I & \cdot & \cdot & \cdot \ I & \ddots & \ddots & \cdot \ \cdot & \ddots & \ddots & I \ \cdot & \ddots & \ddots & I \ \cdot & \ddots & I & D_{\star} \end{pmatrix} \quad ext{où} \quad D_{\star}:=egin{pmatrix} \cdot & 1 & \cdot & \cdot \ 1 & \cdot & \ddots & \cdot \ \cdot & \ddots & \cdot & 1 \ \cdot & \ddots & 1 & \cdot \end{pmatrix}.$$

$$=egin{pmatrix} \cdot & 1 & \cdot & \cdot \\ 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 \end{pmatrix}$$

Équation de Poisson en dimension 2 – Analyse numérique Méthode de résolution itérative

$$\left(Du^{(k+1)}\right)_{i,j} = \frac{1}{h^2} 4u^{(k+1)}_{i,j},$$

$$\left((E+F)u^{(k)} + f\right)_{i,j} = \frac{1}{h^2} \left(u^{(k)}_{i,j-1} + u^{(k)}_{i-1,j} + u^{(k)}_{i+1,j} + u^{(k)}_{i,j+1}\right) + f_{i,j},$$

$$\Leftrightarrow \boxed{u^{(k+1)}_{i,j} = \frac{1}{4} \left(u^{(k)}_{i-1,j} + u^{(k)}_{i,j-1} + u^{(k)}_{i+1,j} + u^{(k)}_{i,j+1} + h^2 f_{i,j}\right)}.$$

Équation de Poisson en dimension 2 – Analyse numérique Méthode de résolution directe

Proposition Soit A une matrice avec N diagonales inférieures, symétrique et définie-positive. Alors, la matrice L de la décomposition de Cholesky de A de A possède N diagonales inférieures.

On remarque que la structure de A est telle que :

$$a_{i,j} = \left\{ egin{array}{ll} lpha & ext{si } i = j \ eta & ext{si } i = j+1 ext{ et } j
ot\equiv 0 \pmod{N-1} \ \gamma & ext{si } i = j+N-1 \ 0 & ext{sinon} \end{array}
ight. .$$

avec

$$\alpha:=\frac{4}{\mathit{h}^2}\quad \text{et}\quad \beta:=\gamma:=-\frac{1}{\mathit{h}^2}.$$

Factorisation de Cholesky

Soit d:=i-j la diagonale de A (i=d+j, $d\in\{0,\ldots,N-1\}$). On calcule : pour j de 1 à $(N-1)^2$ puis pour d de 0 à N-1. Si d=0, alors on calcule $\ell_{i,i}$, sinon, on calcule $\ell_{i,j}$. Avec la structure de A, on obtient :

$$\begin{cases} \ell_{i,i} = \sqrt{\alpha - \sum_{k=\max\{1,j-N+d+1\}}^{i-1} \ell_{i,k}^2} & \text{si } d = 0 \\ \ell_{i,j} = \left(a_{i,j} - \sum_{k=\max\{1,j-N+d+1\}}^{j-1} \ell_{i,k}\ell_{j,k}\right) / \ell_{j,j} & \text{si } d > 0. \end{cases}$$

Équation de Poisson en dimension 2 – Analyse numérique Méthode de résolution directe

Remarque Si A était pleine, la complexité algorithmique du calcul de L aurait été $O(N^6)$. Ici, on calcule $O(N^2)$ colonnes comportants O(N) diagonales. Le calcul d'une case est O(N). Donc on a réduit la complexité algorithmique du calcul de L à $O(N^4)$.

Équation de Poisson en dimension 2 – Analyse numérique

Méthode de résolution directe

On peut résoudre Au = f en résolvant Ly = f puis $L^T u = y$ avec :

$$y_1 = \frac{f_1}{\ell_{1,1}}$$
 et pour i de 2 à $(N-1)^2 : y_i = \left(f_i - \sum_{k=\max\{1,i-N+1\}}^{i-1} \ell_{i,k} y_k\right) / \ell_{i,i}$

et

$$\boxed{u_{(N-1)^2} = \frac{y_{(N-1)^2}}{\ell_{(N-1)^2,(N-1)^2}} \quad \text{et pour } i \text{ de } (N-1)^2 - 1 \text{ à } 1 : u_i = \left(y_i - \sum_{k=i+1}^{\min\{i+N-1,(N-1)^2\}} \ell_{k,i}u_k\right) / \ell_{i,i}}.$$

Pour la suite, la fonction à approcher sera $f(x,y) := \sin(2\pi x)\sin(2\pi y)$ et $\varepsilon := 1 \cdot 10^{-10}$.

Version de base

Étapes :

- créer des fonctions qui font le travail :
 - construire la matrice A (voir les fonctions connaître_bord et construire_matrice),
 - calculer le second membre f,
 - calculer la solution approchée u (voir la fonction resoudre_gauss).

Version de base

Commentaires

- Tout les tableaux utilisés sont linéarisés pour garantir la contiguité.
- Les numéros du type de bord de la fonction connaître_bord sont les suivants :

Version de base

Commentaires (suite)

- Pour calculer u, on résout le système linéaire avec la méthode de Gauss.
- On note ces résultats :

N 10		50	100	
$\ e\ _{\infty}$	0.00038444	0.00001661	0.00000417	
Tps d'ex. (s)	<0.1	4.1	278.9	

- A est de taille $O(N^2)$ et la méthode de Gauss est $O(N^3)$ donc la complexité algorithmique est $O(N^6)$.

Version avec méthode de résolution itérative en séquentiel

```
Rappel du schéma : u_{i,j}^{(k+1)} = \frac{1}{4} \left( u_{i-1,j}^{(k)} + u_{i,j-1}^{(k)} + u_{i+1,j}^{(k)} + u_{i,j+1}^{(k)} + h^2 f_{i,j} \right).
```

Fonction qui applique le schéma à un point :

Version avec méthode de résolution itérative en séquentiel

Commentaire On note ces résultats :

N	10	50	100	300	500	700
Nb. d'itérations	102	2298	8506	66569	171980	320379
$\ e\ _{\infty}$	0.00038444	0.00001661	0.00000417	0.00000046	0.00000015	0.00000005
Tps d'ex. (s)	<0.1	<0.1	0.1	4.8	34.6	128.4

Version avec méthode de résolution itérative en parallèle avec OpenMP

Commentaires

- On ajoute une directive for dans la boucle interne de la fonction calculer_u_jacobi et une directive for dans la boucle du calcul de la norme relative.
- On note ces résultats du temps d'exécution (en s) en fonction de N et du nombre de threads :

↓ Nombre de threads	$N \rightarrow$	300	500	700
1		5.1	35.7	130.0
2		4.2	21.4	80.0
4		3.1	13.3	53.5
6		3.6	18.0	62.5
8		4.0	15.9	56.3

Version avec méthode de résolution itérative en parallèle avec MPI

Illustration Schéma de la structure de u_div :

Version avec méthode de résolution itérative en parallèle avec MPI

Fonctions MPI

```
void creer_types(){
    int taille_send[2] = {nb_pt_div_j + 2, nb_pt_div_i + 2};
    int sous_taille_send[2] = {nb_pt_div_j, nb_pt_div_i};
    int debut_send[2] = {1, 1};

    MPI_Type_contiguous(nb_pt_div_i, MPI_DOUBLE, &ligne);
    MPI_Type_vector(nb_pt_div_j, 1, nb_pt_div_i + 2, MPI_DOUBLE, &colonne);

    MPI_Type_create_subarray(2, taille_send, sous_taille_send, debut_send, MPI_ORDER_C, MPI_DOUBLE, &bloc_send);

    MPI_Type_commit(&ligne);
    MPI_Type_commit(&colonne);
    MPI_Type_commit(&colonne);
    MPI_Type_commit(&bloc_send);

    MPI_Barrier(comm_2D);
}
```

Version avec méthode de résolution itérative en parallèle avec MPI

```
void echanger_halos(double *u_div){
    // Envoi haut, reception bas
    MPI_Sendrecv(&(u_div[IDX(1, nb_pt_div_j)]), 1, ligne, voisins[1],
    etiquette, &(u_div[IDX(1, 0)]), 1, ligne, voisins[3], etiquette, comm_2D,
    &statut):
    // Envoi bas, reception haut
    MPI_Sendrecv(\&(u_div[IDX(1, 1)]), 1, ligne, voisins[3], etiquette, &(u_div[IDX(1, nb_pt_div_j + 1)]), 1, ligne, voisins[1], etiquette,
    comm 2D. &statut):
    // Envoi gauche, reception droite
    MPI_Sendrecv(&(u_div[IDX(1, 1)]), 1, colonne, voisins[0], etiquette.
    &(u div[IDX(nb pt div i + 1, 1)]), 1, colonne, voisins[2], etiquette,
    comm_2D, &statut);
    // Envoi droite, reception gauche
    MPI_Sendrecv(&(u_div[IDX(nb_pt_div_i, 1)]), 1, colonne, voisins[2],
    etiquette, &(u_div[IDX(0, 1)]), 1, colonne, voisins[0], etiquette, comm_2D,
    &statut):
}
```

Version avec méthode de résolution itérative en parallèle avec MPI

Commentaires

- Pour regrouper les résultats sur le rang 0, on utilise un type dérivé bloc_recv crée dynamiquement par le rang 0 (voir la fonction regrouper_u).
- On note ces résultats du temps d'exécution (en s) en fonction de N et du nombre de processus :

↓ Nombre de processus	$N \rightarrow$	300	500	700
1		5.3	37.1	133.4
2		3.0	20.8	76.8
4		1.9	12.8	47.1
6		2.7	18.1	62.5
8		2.5	18.9	110.4

Équation de Poisson en dimension 2 – Implémentation

Version avec méthode de résolution itérative en parallèle avec MPI

Version avec un mode de communication non bloquant

Commentaires

- Dès que la communication est lancée, on fait les calculs sur l'intérieur du sous-domaine (en excluant les bords locaux), après on vérifie / attend que la communication soit terminée et on fait les calculs sur les bords locaux avec la fonction test_fin_echange_halos.
- Pour calculer sur les bords du sous-domaine (2 bandes verticales, 2 bandes horizontales et 4 coins), on utilise la fonction calculer_u_jacobi_bords.

Version avec méthode de résolution directe en séquentiel

Structure mat Nbandes:

```
struct mat_Nbandes{
   int N;
   double **diags;
};
```

```
Fonction pour libérer la structure :

void liberer_mat_Nbandes(struct mat_Nbandes *A){
   int N = A -> N;
   for (int i = 0; i < N; i ++){
        free((A -> diags)[i]);
   }
   free(A -> diags);
}
```

Équation de Poisson en dimension 2 – Implémentation Version avec méthode de résolution directe en séguentiel

$$\text{Rappel du schéma}: \begin{bmatrix} \left\{\ell_{i,j} = \sqrt{\alpha - \sum\limits_{k=\max\{1,j-N+d+1\}}^{i-1} \ell_{i,k}^2} & \text{si } d = 0 \\ \ell_{i,j} = \left(a_{i,j} - \sum\limits_{k=\max\{1,j-N+d+1\}}^{j-1} \ell_{i,k}\ell_{j,k}\right)/\ell_{j,j} & \text{si } d > 0. \end{bmatrix}.$$

Version avec méthode de résolution directe en séquentiel

Fonction pour obtenir la décomposition de Cholesky en utilisant la structure :

```
void calculer_cholesky(struct mat_Nbandes *L){
    h_{carre} = 1.0 / pow(N, 2);
    double alpha = 4.0 / h_carre;
   for (int j = 0 ; j < idx_max ; j ++){</pre>
        for (int d = 0; d < N && j + d < idx_max; d ++){
            int i = d + i:
            if (d == 0) {
                (L -> diags)[0][j] = alpha;
                for (int k = max(0, j - N + d + 1); k < i; k + +) {
                     int d_1 = i - k;
                     (L \rightarrow diags)[0][j] -= pow((L \rightarrow diags)[d_1][k], 2);
                (L -> diags)[0][j] = sqrt((L -> diags)[0][j]);
            else{
                (L -> diags)[d][j] = valeur_a(i, j);
                for (int k = max(0, j - N + d + 1); k < j; k + + ){
                     int d_1 = i - k;
                    int d_2 = j - k;
                     (L -> diags)[d][j] -= (L -> diags)[d_1][k] * (L -> diags)[d_2][k];
                (L -> diags)[d][j] /= (L -> diags)[0][j];
       }
```

Version avec méthode de résolution directe en séquentiel

Fonction pour obtenir la valeur de $a_{i,j}$ en fonction des paramètres i et j :

```
static inline __attribute__((always_inline)) double valeur_a(int i, int j){
    double res;
    if (i == j){
        res = 4.0 / h_carre;
    }
    else if (i == j + 1 && j % (N - 1) != (N - 2)){
        res = -1.0 / h_carre;
    }
    else if (i == j + N - 1){
        res = -1.0 / h_carre;
    }
    else{
        res = 0.0;
    }
    return res;
}
```

Version avec méthode de résolution directe en séquentiel

Test pour avoir un aperçu de la compression

```
Illustration de la structure mat Nbandes (exemple pour N petit) :
Structure mat_Nbandes :
N = 4
diag[0] =
          8.0000 7.7460
                           7.7287
                                   7.7275
                                           7.3829
                                                              7.6995
                                                                               7.3139
                                                     7.3668
                                                                       7.3261
diag[1] = -2.0000 - 2.0656 - 0.1380
                                   -2.2184 -2.3331 -0.2074 -2.2717
                                                                     -2.4056
diag[2] = 0.0000 - 0.5164 - 0.5521
                                    -0.0370 -0.6222 -0.6863
                                                             -0.0585
diag[3] = -2.0000 - 2.0656 - 2.0702
                                   -2.0705 -2.1672 -2.1719
Matrice reelle correspondante :
 8.0000
         0.0000
                  0.0000
                          0.0000
                                   0.0000
                                           0.0000
                                                   0.0000
                                                            0.0000
                                                                    0.0000
         7.7460
                  0.0000
                          0.0000
                                   0.0000
                                           0.0000
                                                   0.0000
                                                            0.0000
                                                                    0.0000
-2.0000
 0.0000
        -2.0656
                 7.7287
                          0.0000
                                   0.0000
                                           0.0000
                                                   0.0000
                                                            0.0000
                                                                    0.0000
        -0.5164
                 -0.1380
                          7.7275
                                   0.0000
                                           0.0000
                                                            0.0000
                                                                    0.0000
-2.0000
                                                    0.0000
 0.0000 -2.0656
                 -0.5521
                         -2.2184
                                   7.3829
                                           0.0000
                                                   0.0000
                                                            0.0000
                                                                    0.0000
 0.0000
         0.0000 - 2.0702
                         -0.0370
                                 -2.3331
                                           7.3668
                                                   0.0000
                                                            0.0000
                                                                    0.0000
         0.0000
                         -2.0705
                                 -0.6222
                                          -0.2074
                                                   7.6995
                                                                    0.0000
 0.0000
                 0.0000
                                                            0.0000
 0.0000
         0.0000
                 0.0000
                         0.0000 -2.1672
                                          -0.6863
                                                  -2.2717
                                                            7.3261
                                                                    0.0000
 0.0000
         0.0000
                 0.0000
                          0.0000
                                   0.0000 - 2.1719
                                                  -0.0585
                                                           -2.4056
                                                                    7.3139
```

Version avec méthode de résolution directe en séquentiel

Fonction principale :

```
void resoudre_cholesky(double *f, double *u){
    struct mat_Nbandes L;
    double *v, *u_int, *f_int;
    init_u_bord(u);
    u_int = (double *)malloc(idx_max * sizeof(double));
    f_int = (double *)malloc(idx_max * sizeof(double));
    extraire_interieur(u, u_int, nb_pt);
    extraire_interieur(f, f_int, nb_pt);
    v = (double *)malloc(idx_max * sizeof(double));
    init mat Nbandes(&L):
    calculer_cholesky(&L);
    resoudre_cholesky_descente(&L, f_int, y);
    resoudre cholesky remontee(&L. v. u int):
    inserer_interieur(u_int, u, nb_pt);
    liberer_mat_Nbandes(&L);
    free(u_int);
    free(f_int);
    free(y);
}
```

Version avec méthode de résolution directe en séquentiel

```
Fonction pour résoudre Ly = f :

void resoudre_cholesky_descente(struct mat_Nbandes *L, double *f, double *y){

y[0] = f[0] / (L -> diags)[0][0];

for (int i = 1; i < idx_max; i ++) {

y[i] = f[i];

for (int k = max(0, i - N + 1); k < i; k ++) {

int d = i - k;

y[i] -= (L -> diags)[d][k] * y[k];

}

y[i] /= (L -> diags)[0][i];
}
```

Version avec méthode de résolution directe en séquentiel

 $\text{Rappel du schéma} : \quad \boxed{ u_{(N-1)^2} = \frac{y_{(N-1)^2}}{\ell_{(N-1)^2,(N-1)^2}} \quad \text{et} \quad \text{pour } i \text{ de } (N-1)^2 - 1 \text{ å } 1 : u_i = \left(y_i - \frac{\min\{i + N - 1,(N-1)^2\}}{\sum_{k=i+1}^{k} \ell_{k,i} u_k} \right) / \ell_{i,i} }$

Fonction pour résoudre $L^T u = y$:

```
void resoudre_cholesky_remontee(struct mat_Nbandes *L, double *y, double *u){
    u[idx_max - 1] = y[idx_max - 1] / (L -> diags)[0][idx_max - 1];

    for (int i = idx_max - 2; i >= 0; i --){
        u[i] = y[i];
        for (int k = i + 1; k < min(i + N, idx_max); k ++){
            int d = k - i;
            u[i] -= (L -> diags)[d][i] * u[k];
    }
    u[i] /= (L -> diags)[0][i];
}
```

Équation de Poisson en dimension 2 – Implémentation Version avec méthode de résolution directe en séquentiel

Commentaires

- Comme on calcule u sur l'intérieur, on fait la résolution avec $u|_{\rm int}$ et $f|_{\rm int}$. On utilise les fonctions extraire_interieur pour extraire l'intérieur d'une matrice linéarisée et inserer_interieur pour remettre l'intérieur d'une matrice linéarisé dans la matrice initiale.
- On note ces résultats :

N		10	50	100	300	500	700
$\ e\ _{c}$	×	0.00038444	0.00001661	0.00000417	0.00000046	0.00000017	0.00000009
Tps d'e	k. (s)	< 0.1	< 0.1	< 0.1	4.6	35.8	383.5

– A possède $O(N^2)$ colonne. Pour chaque colonne, il y a O(N) lignes à calculer. Pour chaque case, il y a O(N) opérations. Donc la complexité algorithmique est $O(N^4)$.

Équation de Poisson en dimension 2 – Implémentation Version avec méthode de résolution directe en séquentiel

Bibliothèque Cholmod

Étapes :

- créer une fonction pour définir la structure de matrice creuse en créant des tableaux :
 - lignes qui contient les indices des lignes où se trouve une valeur non nulle,
 - valeurs qui contient les valeurs aux indices stockés,
 - offsets qui contient le nombre de valeurs non nulles d'une colonne,
 - (voir les fonctions construire_matrice_creuse et connaitre_bord).
- créer une fonction qui fait le travail

Version avec méthode de résolution directe en séquentiel

Fonction principale:

```
void resoudre(cholmod_sparse *A, double *f, double *u){
    h carre = 1.0 / pow(N. 2):
    double *f int = (double *) malloc(idx max * sizeof(double));
    double *u int = (double *) malloc(idx_max * sizeof(double));
    extraire_interieur(f, f_int, nb_pt);
    extraire_interieur(u, u_int, nb_pt);
    cholmod_dense *f_dense =
    cholmod allocate dense(A -> nrow, 1, A -> nrow, CHOLMOD REAL, &c):
    memcpv(f dense -> x, f int, A -> nrow * sizeof(double));
    cholmod factor *L = cholmod analyze(A, &c);
    cholmod factorize (A. L. &c):
    cholmod_dense *u_dense = cholmod_solve(CHOLMOD_A, L, f_dense, &c);
    memcpy(u int, u dense -> x. A -> nrow * sizeof(double));
    inserer_interieur(u_int, u, nb_pt);
    cholmod_free_factor(&L, &c);
    cholmod_free_dense(&f_dense, &c);
    cholmod free dense (&u dense, &c);
    free(f_int):
    free(u int):
}
```

Version avec méthode de résolution directe en séquentiel

Commentaires

- Le nombre d'éléments non nuls de A est de (5N+1)(N-3)+12.
- On note ces résultats :

N	1000	2000	3000	4000	5000
$\ e\ _{\infty}$	0.00000004	0.00000001	< 0.00000001	< 0.00000001	<0.00000001
Tps d'ex. (s)	0.7	15.7	39.3	79.3	174.5

Comparaison des performances des méthodes

Équation des ondes en

dimension 1

Problème

Soient L, T > 0, D :=]0, L[. Soit le problème suivant :

Trouver u de classe C^2 telle que :

$$\begin{cases} \frac{\partial^{2} u}{\partial t^{2}} - c^{2} \frac{\partial^{2} u}{\partial x^{2}} = 0 & x \in D \ \forall \ t \in]0, T], c > 0 \\ u(x) = 0 & \forall \ x \in \partial D \ \forall \ t \in [0, T] \\ u(x, 0) =: u_{0}(x) & \forall \ x \in D \\ \frac{\partial u}{\partial t}(x, 0) =: u_{1}(x) & \forall \ x \in D \end{cases}$$

Si
$$u_0(x) = \sin(\pi x)$$
 et $u_1(x) = 0$, alors $u(x, t) = \cos(\pi x)\sin(\pi x)$.

Équation des ondes en dimension 1 – Analyse numérique

Discrétisation

Schéma numérique

$$\frac{\partial^2 u}{\partial t^2}(x,t) = \frac{1}{h_t^2} \left(u(x,t+h_t) - 2u(x,t) + u(x,t-h_t) \right) + E_{h_t}.$$

avec

$$E_{h_t} := -\frac{1}{12} h_t^2 \frac{\partial^4 u}{\partial t^4} (x, t + \theta h_t).$$

Schéma

$$\begin{cases} u_i^1 = h_t u_1(x_i) + u_0(x_i) \\ u_i^{k+1} = -u_i^{k-1} + 2\left(1 - \frac{c^2 h_t^2}{h^2}\right) u_i^k + \frac{c^2 h_t^2}{h^2} \left(u_{i-1}^k + u_{i+1}^k\right) & \text{si } k > 0 \end{cases}.$$

Remarques

- Le schéma est explicite.
- Pour k > 0, le schéma dépend de valeurs en k 1 et en k 2.

Équation des ondes en dimension 1 – Analyse numérique Stabilité et convergence du schéma

Proposition (admise) Le schéma est convergent si $c\frac{h_t}{h} \leq 1$.

Remarques

- On vérifiera cette propriété avec un exemple.
- Cette proposition s'appelle la condition de Courant-Friedrich-Levy (CFL).

Fonction principale:

}

```
void calculer u(double *u){
    const 1 = pow(c, 2) * pow(h t, 2) / pow(h, 2):
    double *u_anc_0; double *u_anc_1; double *permut;
    init_u_0(u_0, &u_anc_1); init_u_1(u_1, u_anc_1, &u_anc_0);
    for (int i = 0 : i < nb pt : i ++) {
        u[i] = 0.0:
    for (int k = 1 : k \le N t : k ++) {
        # ifdef ECRITURE
        ecrire_double_iteration(u_anc_0);
        # endif
        for (int i = 1 : i < nb pt - 1 : i ++){}
            u[i] = schema(u_anc_0, u_anc_1, i, k);
        permut = u anc 1: u anc 1 = u anc 0: u anc 0 = u: u = permut:
    # ifdef ECRITURE
    ecrire_double_iteration(u);
    # endif
    terminaison(&permut, &u, &u anc 0, &u anc 1):
```

Équation des ondes en dimension 1 – Implémentation

- Un tableau pour u à chaque pas de temps.
- 2 fonctions de résolutions : une qui calcule uniquement la solution approchée (pour mesurer le temps et/ou faire des entrées/sorties pour la visualisation) et une qui calcule la solution approchée en même temps que la solution exacte à chaque itération pour avoir l'erreur.
- On définiera l'erreur erreur_infty comme : $\|e\|_{\infty}^{\infty} := \max_{1 \leq k \leq N_t} \|e_k\|_{\infty}$ avec $\|e_k\|_{\infty} = \|e\|_{\infty}$ à l'itération k.
- Différents modes d'exécution pour le stockage et le choix du calcul (macros EXACTE et ECRITURE).

Équation des ondes en dimension 1 – Implémentation

static inline __attribute__((always_inline))

+ 2 * (1 - const 1) * u anc 0[i]

-u anc 1[i]

Rappel du schéma : $\begin{cases} u_i^1 = h_t u_1(x_i) + u_0(x_i) \\ u_i^{k+1} = -u_i^{k-1} + 2\left(1 - \frac{c^2 h_t^2}{h^2}\right) u_i^k + \frac{c^2 h_t^2}{h^2} (u_{i-1}^k + u_{i+1}^k), & \text{si } k > 0 \end{cases}$

Fonctions qui appliquent le schéma à un point (pour k > 0 puis pour k = 0)

double schema(double *u_anc_0, double *u_anc_1, int i, int k){
 double res = // const_1 = pow(c, 2) * pow(h_t, 2) / pow(h, 2)

+ const_1 * (u_anc_0[i - 1] + u_anc 0[i + 1]):

Équation des ondes en dimension 1 - Implémentation

Fonction pour terminer :

Équation des ondes en dimension 1 – Implémentation

Commentaires

 $-\|e\|_{\infty}^{\infty}$ en fonction de h et de h_t (avec L=1, T=1 et c=1):

$\downarrow h h_t \rightarrow$	1/100	1/200	1/500	1/1000
1/100	0.01570926	0.00780545	0.00307972	0.00150733
1/200	∞_f	0.00785414	0.00312801	0.00155531
1/500	∞_f	∞_f	0.00314160	0.00156886
1/1000	∞_f	∞_f	∞_f	0.00157080

où ∞_f est ou bien l'infini des flottants double précision (inf), ou bien une valeur très élevée. On vérifie la proposition énoncée, les valeurs ∞_f sont bien atteintes lorsque $c\frac{h_t}{h}>1$.

- Lorsque h/h_t est fixé, le schéma semble bien converger.
- On ne s'intéresse pas ici aux temps d'exécutions.
- La complexité algorithmique est $O(N \cdot N_t)$.

dimension 2

Équation de la chaleur en

Problème

Soient
$$L, T > 0, f :]0, L[\times]0, L[\times]0, T] \rightarrow \mathbb{R}$$
 continue et bornée, $D :=]0, L[\times]0, L[$. Soit le problème suivant :

Trouver u de classe C^2 telle que :

$$\begin{cases} \frac{\partial u}{\partial t} - a\Delta u = f(x, y, t) & \forall (x, y) \in D \ \forall \ t \in]0, T], a > 0 \\ u(x, y, t) = 0 & \forall (x, y) \in \partial D \ \forall \ t \in [0, T] \\ u(x, y, 0) =: u_0(x, y) & \forall (x, y) \in D \end{cases}$$

Si
$$f(x, y, t) = (-\lambda + 2a\pi^2) \sin(\pi x) \sin(\pi y) e^{-\lambda t}$$
 et $u_0(x, y) = \sin(\pi x) \sin(\pi y)$, alors $u(x, y, t) = \sin(\pi x) \sin(\pi y) e^{-\lambda t}$.

Équation de la chaleur en dimension 2 – Analyse numérique

Schémas numériques - Méthode explicite

Discrétisation

$$\frac{\partial u}{\partial t}(x,y,t) = \frac{1}{h_t}(-u(x,y,t) + u(x,y,t+h_t)) + E_{h_t}$$

avec:

$$E_{h_t} := -\frac{1}{2}h_t \frac{\partial^2 u}{\partial t^2} (x, y, t + \theta_t h_t).$$

Schéma

$$u_{i,j}^{k+1} = \alpha u_{i,j}^k + \beta \left(u_{i-1,j}^k + u_{i,j-1}^k + u_{i+1,j}^k + u_{i,j+1}^k \right) + h_t f_{i,j}^k$$

avec :

$$\alpha := 1 - \frac{4ah_t}{h^2}$$
 et $\beta := \frac{ah_t}{h^2}$.

Équation de la chaleur en dimension 2 – Analyse numérique

Schémas numériques - Méthode implicite

Discrétisation

$$\frac{\partial u}{\partial t}(x, y, t + h_t) = \frac{1}{h_t}(u(x, y, t + h_t) - u(x, y, t)) + E_{h_t}$$

avec:

$$E_{h_t} := \frac{1}{2} h_t \frac{\partial^2 u}{\partial t^2} (x, y, t + (\theta_t + 1) h_t).$$

Schéma

$$\alpha u_{i,j}^{k+1} + \beta \left(u_{i-1,j}^{k+1} + u_{i,j-1}^{k+1} + u_{i+1,j}^{k+1} + u_{i,j+1}^{k+1} \right) = u_{i,j}^{k} + h_t f_{i,j}^{k+1}$$

avec :

$$\alpha := 1 + \frac{4ah_t}{h^2}$$
 et $\beta := -\frac{ah_t}{h^2}$.

Équation de la chaleur en dimension 2 – Analyse numérique

Schémas numériques - Méthode implicite

Schéma sous forme matricielle par blocs

$$\boxed{Au^{k+1} = b^k} \Leftrightarrow \underbrace{\begin{pmatrix} \boxed{M} & \boxed{N} & \cdot & \cdot \\ \boxed{N} & \cdot \cdot & \cdot & \cdot \\ \cdot & \cdot \cdot & \ddots & \boxed{N} \\ \cdot & \cdot & \boxed{N} & \boxed{M} \end{pmatrix}}_{=:A} \underbrace{\begin{pmatrix} u_1^{k+1} \\ \vdots \\ \vdots \\ u_{N-1}^{k+1} \end{pmatrix}}_{=u^{k+1}} = \underbrace{\begin{pmatrix} b_1^{k+1} \\ \vdots \\ \vdots \\ b_{N-1}^{k+1} \end{pmatrix}}_{=b^{k+1}}$$

avec

Équation de la chaleur en dimension 2 – Analyse numérique Existence et unicité des solutions approchées

Méthode explicite

Évident.

Méthode implicite

Proposition A est définie-positive et Au = f admet une unique solution.

Démonstration Montrer que A est à diagonale strictement dominante.

Équation de la chaleur en dimension 2 – Analyse numérique Consistance des schémas

Proposition Les schémas explicite et et implicite sont consistants en espace et en temps : $\lim_{h\to 0} |E_h| = 0$ et $\lim_{h\to 0} |E_{h_t}| = 0$.

Remarque Les schémas explicite et implicite sont d'ordre 2 pour x et pour y et d'ordre 1 pour t.

Équation de la chaleur en dimension 2 – Analyse numérique Stabilité et convergence des schémas – Méthode explicite

Proposition (admise) Le schéma explicite est convergent $\Leftrightarrow \beta \leq \frac{1}{4}$.

Remarques

- On vérifiera cette propriété avec un exemple.
- Cette proposition s'appelle la condition de Courant-Friedrich-Levy (CFL).

Équation de la chaleur en dimension 2 – Analyse numérique Stabilité et convergence des schémas – Méthode implicite

Proposition (admise) Soit
$$(\lambda_i)_{1 \leq i \leq N-1}$$
 l'ensemble des valeurs propres de A avec $\lambda_1 < ... < \lambda_{N-1}$. Alors, $\lambda_1 \geq 1$.

Proposition Si $f \equiv 0$, alors le schéma implicite est stable : $\forall k \geq 0 : ||u^{k+1}|| \leq ||u^0||$.

 $N-1 \ N-1$

Démonstration

- Définir $\langle u,v \rangle := \sum_{i=1}^{n} \sum_{j=1}^{n} u_{i,j} v_{i,j}$ une application produit scalaire.
- Multiplier le schéma par $u_{i,i}^{k+1}$.
- Passer à la somme.
- Reconnaitre le produit scalaire défini et utiliser le fait que A est diagonalisable.
- Utiliser l'inégalité de Cauchy-Schwarz.
- Faire une récurrence.

Pour la suite, la fonction à approcher sera

$$f(x,y,t) = (-\lambda + 2a\pi^2)\sin(\pi x)\sin(\pi y)e^{-\lambda t}$$
 avec $u_0(x,y) = \sin(\pi x)\sin(\pi y)$.

Version avec schéma explicite en séquentiel

Fonction principale:

```
void calculer u(double *u){
    double *u_anc; double *permut;
    init_u_zero(u_zero, &u_anc);
    for (int i = 0 : i < nb pt * nb pt : i ++) {
        u[i] = 0.0:
    for (int k = 1; k <= N_t; k ++) {
        # ifdef ECRITURE
        ecrire_double_iteration(u_anc);
        # endif
        for (int j = 1 ; j < nb_pt - 1 ; j ++) {
            for (int i = 1; i < nb_pt - 1; i ++){
                double f = f source(i * h, i * h, k * h t):
                u[IDX(i, j)] = schema(f, u_anc, i, j, k);
        }
        permut = u: u = u anc: u anc = permut:
    7
    # ifdef ECRITURE
    ecrire_double_iteration(u);
    # endif
    terminaison (&permut, &u, &u_anc);
```

Version avec schéma explicite en séquentiel

```
\text{Rappel du schéma}: \boxed{\alpha u_{i,j}^{k+1} + \beta \left( u_{i-1,j}^{k+1} + u_{i,j-1}^{k+1} + u_{i+1,j}^{k+1} + u_{i,j+1}^{k+1} \right) = u_{i,j}^k + h_t f_{i,j}^{k+1}}.
```

```
Fonction qui applique le schéma à un point :

static inline __attribute__((always_inline))
double schema(double *f, double *u_anc, int i, int j, int k){

double res = alpha * u_anc[IDX(i, j)]
+ beta * (u_anc[IDX(i - 1, j)] + u_anc[IDX(i, j - 1)] + u_anc[IDX(i + 1, j)]
+ u_anc[IDX(i, j + 1)])
+ h_t * f[IDX(i, j)];

return res;
```

Version avec schéma explicite en séquentiel

Commentaires

– $\|e\|_{\infty}^{\infty}$ en fonction de h et de h_t (avec $L=1,\,T=1,\,a=1$ et $\lambda=2a\pi^2$) :

$\downarrow h h_t \rightarrow$	1/10000	1/20000	1/50000	1/100000
1/10	0.00266777	0.00284805	0.00295614	0.00299216
1/20	0.00039394	0.00057533	0.00068410	0.00072034
1/50	0.00024223	0.00006052	0.00004843	0.00008473
1/100	∞_f	∞_f	0.00004237	0.00000605

On vérifie la proposition énoncée, les valeurs ∞_f sont bien atteintes lorsque $\beta > 1/4$.

Version avec schéma explicite en séquentiel

Commentaires (suite)

- Temps d'exécution (en s) pour N = 200 et $N_t = 160000$ en fonction de l'activation ou non de l'écriture dans un fichier :

Mode	Sans écriture	Avec écriture	
Temps d'exécution (en s)	52.1	57.8	

- La condition sur β est très contraignante : si l'on souhaite diviser par 2 le pas spatial, alors il faut diviser par 4 le pas temporel. Et la constante 1/4 implique que $h_t \leq \frac{1}{4a}h^2$, forçant des pas temporel très petits comparés aux pas spatiaux.
- La complexité algorithmique est $O(N^2 \cdot N_t)$.

Version avec schéma explicite en parallèle avec OpenMP

Fonction principale :

```
void calculer_u(double *u){
    double *u anc: double *permut:
    init_u_zero(u_zero, &u_anc);
    for (int i = 0; i < nb_pt * nb_pt; i ++){
        u[i] = 0.0:
     pragma omp parallel firstprivate(u, u_anc, permut)
        for (int k = 1 : k <= N t : k ++) {
            # ifdef ECRITURE
            # pragma omp single
            ecrire_double_iteration(u_anc);
            # endif
            # pragma omp for schedule(static)
            for (int j = 1 ; j < nb_pt - 1 ; j ++){
                for (int i = 1; i < nb_pt - 1; i ++){
                    double f = f source(i * h, i * h, k * h t):
                    u[IDX(i, j)] = schema(f, u_anc, i, j, k);
            3
            permut = u; u = u_anc; u_anc = permut;
        # ifdef ECRITURE
        ecrire double iteration(u):
        # endif
        terminaison(&permut, &u, &u_anc);
}
```

Fonction pour terminer :

```
void terminaison(double **permut, double **u, double **u_anc){
   if (N_t % 2 != 0){
        *permut = *u; *u = *u_anc; *u_anc = *permut;
   }
   # pragma omp single
   free(*u_anc);
}
```

Commentaires

 A la différence des implémentations OpenMP des problèmes stationnaires, on définit la zone parallèle (de fork) à l'extérieur des boucles. Les tableaux u et u_anc sont toujours sur le tas mais chaque thread possède une copie privée des pointeurs. Un seul thread effectue la libération de u_anc.

Équation de la chaleur en dimension 2 – Implémentation Version avec schéma explicite en parallèle avec OpenMP

Commentaires (suite)

- L'écriture dans un fichier se fait en séquentiel.
- Temps d'exécution (en s) pour N=200 et $N_t=160000$ en fonction du nombre de threads de l'activation ou non de l'écriture dans un fichier :

↓ Nombre de threads	$Mode \to$	Sans écriture	Avec écriture
1		52.0	58.2
2		30.1 1.7	36.4 1.6
4		20.9 2.5	24.3 2.4
6		25.0 2.1	28.5 2.0
8		21.7 2.4	25.6 2.3

Version avec schéma explicite en parallèle avec MPI

Fonction pour écrire u^k dans un fichier en parallèle (qui utilise un type dérivé $vue_fichier$):

```
static inline __attribute__((always_inline, unused))
void ecrire double iteration(double *u. int k){
    uint64_t offset = (uint64_t)k * (uint64_t)nb_pt * (uint64_t)nb_pt *
    (uint64_t) size of (double);
    int taille[2] = {nb_pt, nb_pt};
    int sous_taille[2] = {nb_pt_div_j, nb_pt_div_i};
int debut[2] = {j_debut, i_debut};
    MPI Datatype vue fichier:
    MPI Type create subarray (2, taille, sous taille, debut, MPI ORDER C,
    MPI_DOUBLE, &vue_fichier);
    MPI_Type_commit(&vue_fichier);
    MPI File set view(descripteur, offset, MPI DOUBLE, vue fichier, "native",
    MPI_INFO_NULL);
    MPI File write all(descripteur, u, 1, bloc send, MPI STATUS IGNORE):
    MPI_Type_free(&vue_fichier);
}
```

Équation de la chaleur en dimension 2 – Implémentation Version avec schéma explicite en parallèle avec MPI

Commentaires

- Pour le calcul de la solution exacte (en séquentiel), on réutilise la fonction regrouper_u (voir la fonction calculer_u_u_exact.
- Temps d'exécution (en s) pour N=200 et $N_t=160000$ en fonction du nombre de processus de l'activation ou non de l'écriture dans un fichier :

\downarrow Nombre de processus $Mode \to$	Sans écriture	Avec écriture
1	53.3	98.3
2	33.7 1.6	63.7 1.5
4	25.9 2.1	74.2 1.3
6	35.4 1.5	88.5 1.1
8	38.4 1.4	132.0 0.7

Version avec schéma implicite en séguentiel

Fonction principale:

7

```
void resoudre(cholmod sparse *A. double *u){
    double *b_int = (double *)malloc(idx_max * sizeof(double));
    double *u_int = (double *) malloc(idx_max * sizeof(double));
    init u zero(u zero, u);
    cholmod_dense *b_dense = cholmod_allocate_dense(A -> nrow, 1, A -> nrow, CHOLMOD_REAL, &c);
cholmod_dense *u_dense;
    cholmod factor *L = cholmod analyze(A, &c);
    cholmod_factorize(A, L, &c);
    for (int k = 1 : k <= N t : k ++) {
        # ifdef ECRITURE
        ecrire double iteration(u):
        # endif
        extraire interieur(u, u int, nb pt);
        calculer b(k + 1, u int, b int);
        memcpy(b_dense -> x, b_int, A -> nrow * sizeof(double));
        u dense = cholmod solve(CHOLMOD A, L, b dense, &c);
        memcpv(u int, u dense -> x, A -> nrow * sizeof(double));
        inserer_interieur(u_int, u, nb_pt);
    # ifdef ECRITURE
    ecrire double iteration(u):
    # endif
    cholmod free factor(&L, &c):
    cholmod free dense (&b dense, &c);
    cholmod free dense (&u dense, &c);
    free(b int):
    free(u int);
```

Version avec schéma implicite en séquentiel

```
Fonction pour calculer b^k:

static inline __attribute__((always_inline))
void calculer_b(double t, double *u, double *b){

for (int i = 0 ; i < idx_max ; i ++){
    int x = i % (N - 1);
    int y = i / (N - 1);
    b[i] = u[i] + h_t * f_source(x, y, t + 1);
}
```

Version avec schéma implicite en séquentiel

Commentaires

– $\|e\|_{\infty}^{\infty}$ en fonction de h et de h_t (avec $L=1,\,T=1,\,a=1$ et $\lambda=2a\pi^2$) :

$\downarrow h h_t \rightarrow$	1/10000	1/20000	1/50000	1/100000
1/10	0.00338798	0.00320815	0.00310018	0.00306418
1/20	0.00111862	0.00093767	0.00082903	0.00079281
1/50	0.00048370	0.00030244	0.00019361	0.00015732
1/100	0.00039301	0.00021171	0.00010286	0.00006656

Version avec schéma implicite en séquentiel

Commentaires

- Temps d'exécution (en s) en fonction de N (avec $N_t = N$) et de l'activation ou non de l'écriture dans un fichier :

$\downarrow N (= N_t) \mod \rightarrow$	Sans écriture	Avec écriture
600	12.6	12.3
800	32.0	29.2
1000	60.4	58.4
1200	97.7	99.0
1400	159.1	162.8

- Discussion sur les pas entre le schéma explicite et le schéma implicite.
- Il y a la possibilité de paralléliser certaines parties du code (hors calcul principal).

Équation de la chaleur en dimension 2 - Visualisation avec Python

Diffusion de la chaleur

État initial

État après diffusion

Bibliographie et supports

- Rappels de calcul scientifique. (2008) par Patrick Ciarlet
- Finite-Difference Approximations to the Heat Equation (2004) par Gerald W.
 Recktenwald
- Numerical Methods for Ordinary Differential Equations par Habib Ammari et Konstantinos Alexopoulos
- Lecture 6: Finite difference methods par Habib Ammari
- SUITESPARSE: A SUITE OF SPARSE MATRIX SOFTWARE
- Direct Methods for Sparse Linear Systems par Timothy A. Davis
- Cours de calcul numérique (M1 CHPS) par Serge Dumont
- Cours d'analyse et calcul numérique (L3 Maths) par Francesco Bonaldi
- Cours d'algorithmique et programmation parallèle (M1 CHPS) par David Defour
- Forums d'aides

Conclusion

Lien vers le GitHub du projet

https://github.com/gaillot18/Stage-EDP.git (contient le rapport écrit, la présentation et le projet)

Merci pour votre attention. Des questions?