Part 1

Prof. Bisbee

Seoul National University

Slides Updated: 2024-07-11

Agenda

- 1. Modeling Conditional Variation
- 2. Adding Regression to the **Process**
- 3. Introducing the Data
- 4. Demonstrating Regressions

Regression & Conditional Analysis

- Recall our discussion of conditional analysis
 - Conditional → depends on
 - Analyze with conditional means

Conditional means for continuous data

People with hourly wages < \$20 spend ~\$50 on entertainment per week

People with hourly wages > \$40 spend ~\$95 on entertainment per week

• Theory: the more you earn, the more you spend

But conditional means make a lot of mistakes. Can we do better?

• But conditional means make a lot of mistakes. Can we do better?

- Calculating a **line** that minimizes mistakes *for every observation*
 - NB: could be a curvey line! For now, just assume straight
- Recall from geometry how to graph a straight line
- Y = a + bX
 - a: the "intercept" (where the line intercepts the y-axis)
 - \circ b: the "slope" (how much Y changes for each increase in X)
- ullet (Data scientists use lpha and eta instead of a and b b/c nerds)
- Regression analysis simply chooses the best line
 - "Best"?
 - The line that minimizes the mistakes (the line of best fit)

- **Error/Residual**: mistake made by a line
 - \circ In math: $u_i = y_i \hat{y}_i$
 - \circ In English: difference between true outcome value (y_i) and prediction (\hat{y}_i)

- Use errors to find line of best fit
- RMSE (Root Mean Squared Error)
 - Square the errors
 - Take their average
 - Take the square root
- **RMSE** = 1.23

- Use errors to find line of best fit
- RMSE (Root Mean Squared Error)
 - Square the errors
 - Take their average
 - Take the square root
- **RMSE** = 1.48

- Use errors to find line of best fit
- RMSE (Root Mean Squared Error)
 - Square the errors
 - Take their average
 - Take the square root
- **RMSE** = 2.19

- Use errors to find line of best fit
- RMSE (Root Mean Squared Error)
 - Square the errors
 - Take their average
 - Take the square root
- **RMSE** = 1.03

Visual Intuition

Visual Intuition

- The line is substantively meaningful
- ullet Red line on scatter plot of spending and wages: $Y=\underbrace{12}_{lpha}+\underbrace{2}_{eta}*X$
- α tells us the value of Y when X is zero
 - People who don't make any money spend \$12 per week on entertainment
- ullet eta tells us how much Y increases for each additional X
 - People spend an additional \$2 per week for each additional \$1 in hourly wages

- These are called "linear models"
 - **Not** because the line is straight (it might not be)
 - \circ but because the components are additive (lpha + eta X)
- ullet Can extend to multiple predictors (X 's)

$$\circ Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \cdots + \varepsilon$$

- $\circ X_1$ might be wages and X_2 might be age (for example)
- \circ The final term ε measures how bad our mistakes are

Let's demonstrate with the debt data

```
require(tidyverse)

debt <-
read_rds('https://github.com/jbisbee1/ISP_Data_Science_2024/raw/main/da
glimpse(debt)</pre>
```

```
## Rows: 2,546
## Columns: 16
## $ unitid
                    <int> 100654, 100663, 100690, 100706, 100...
                    <chr> "Alabama A & M University", "Univer...
## $ instnm
                    <chr> "AL", "AL", "AL", "AL", "AL", "AL", ...
## $ stabbr
                    <int> 33375, 22500, 27334, 21607, 32000, ...
## $ grad debt mdn
## $ control
                    <chr> "Public", "Public", "Private", "Pub...
## $ region
                    <chr> "Southeast", "Southeast", "Southeas...
## $ preddeg
                    <chr> "Bachelor's", "Bachelor's", "Associ...
## $ openadmp
                    <int> 2, 2, 1, 2, 2, 1, NA, 2, 2, 2, 1...
## $ adm rate
                    <dbl> 0.9175, 0.7366, NA, 0.8257, 0.9690,...
## $ ccbasic
                    <int> 18, 15, 20, 16, 19, 15, 2, 22, 18, ...
## $ sat avg
                    <int> 939, 1234, NA, 1319, 946, 1261, NA,...
```

Research Camp

- Research Question: What is the relationship between SAT scores and median future earnings?
- Theory: Students with higher SAT scores work harder and have learned more. Employers reward these attributes with higher wages in the private market.
- Hypothesis: The relationship between SAT scores and future earnings should be positive.
 - NB: Important caveats to this simplistic theory!
 - Socioeconomic status: predicts both higher SAT scores and higher wages
 - \circ Correlation eq Causation

Set Up

- Linking Theory to Data
- Our SAT scores are theorized to explain future earnings
 - \circ Thus the SAT scores are the independent / explanatory / predictor variable X
 - $\circ~$ And earnings are the dependent / outcome variable Y

- There is a simple recipe to follow
- And it is exactly how the syllabus for the class is designed!
 - 1. Look at your data to identify missingness (Wrangling: Lecture 3)
 - 2. Univariate visualization of your variables (Lecture 4)
 - 3. **Multivariate** visualization of your variables (**Lecture 5**)
 - 4. Regression (today)
 - 5. Evaluation of **errors** (today)

Step 1: Look

- Why worry about missingness?
- 1. Substantive: external validity
- 2. **Technical:** cross validation won't work!

```
summary(debt %>% select(sat_avg,md_earn_wne_p6))
```

```
##
      sat avg
                 md earn wne p6
   Min. : 737
                Min. : 10600
##
##
   1st Qu.:1053
                1st Qu.: 26100
   Median :1119
                Median : 31500
##
                Mean : 33028
##
   Mean :1141
##
   3rd Qu.:1205
                3rd Qu.: 37400
                 Max. :120400
##
   Max. :1557
                 NA's :240
##
   NA's :1317
```

Step 2: Univariate Viz

- Why visualize both Y and X?
- 1. Substantive: See which units you are talking about
- 2. **Technical:** Adjust for *skew*

Step 2: Univariate Viz

• Why visualize both Y and X?

```
debt %>%
  ggplot(aes(x = sat_avg)) +
  geom_histogram()
```


Step 2: Univariate Viz

• Why visualize both Y and X?

```
debt %>%
  ggplot(aes(x = md_earn_wne_p6)) +
  geom_histogram()
```


• Eyeball the relationship first!

```
debt %>%
  ggplot(aes(x = sat_avg,y = md_earn_wne_p6)) +
  geom_point()
```


• Adding regression line

```
debt %>%
  ggplot(aes(x = sat_avg,y = md_earn_wne_p6)) +
  geom_point() + geom_smooth(method = 'lm',se = F)
```


Let's focus on two schools

```
toplot <- debt %>%
  mutate(hl = ifelse(unitid %in% c(100654,179265), 'hl', 'none')) #
Choosing two examples
p2 <- toplot %>%
  ggplot(aes(x = sat avg, y = md earn wne p6, color = h1, group =
1,alpha = hl)) +
  geom point(data = toplot %>% filter(hl == 'none')) +
  geom point(data = toplot %>% filter(hl == 'hl'), size =3) +
  scale alpha manual(values = c(1,.3)) +
  scale color manual(values = c('red', 'black')) +
  geom smooth(method = 'lm',se = F) +
  theme(legend.position = 'none') +
  labs(title = "Graduate Earnings and SAT Scores",
       subtitle = "By School",
       x = "Average SAT Score",
       y = "Median Earnings of Grads")
```

• Adding regression line

p2

• Defining ε

```
p3 <- toplot %>%
  ggplot(aes(x = sat avg, y = md earn wne p6, color = h1, group =
1,alpha = hl)) +
  geom point(data = toplot %>% filter(hl == 'none')) +
  geom point(data = toplot %>% filter(hl == 'hl'), size =3) +
  scale alpha manual(values = c(1,.3)) +
  scale color manual(values = c('red', 'black')) +
  geom smooth(method = 'lm',se = F) +
  annotate(geom = 'segment',
           x = toplot %>% filter(hl == 'hl') %>% .$sat avg,
           y = toplot %>% filter(hl == 'hl') %>% .$md earn wne p6,
           xend = toplot %>% filter(hl == 'hl') %>% .$sat avg,
           yend = c(27500,41000), color = 'red', lwd = 1.2) +
  theme(legend.position = 'none') +
  labs(title = "Graduate Earnings and SAT Scores",
       subtitle = "By School",
       x = "Average SAT Score",
       y = "Median Earnings of Grads")
```

Measuring errors

р3

The Data Scientist's Trade-off

- Those mistakes seem pretty big!
- Why not use a curvier line?

- Those mistakes seem pretty big!
- Why not use a curvier line?

- Those mistakes seem pretty big!
- Why not use a curvier line?

- Those mistakes seem pretty big!
- Why not use a curvier line?

- Those mistakes seem pretty big!
- Why not use a curvier line?

- Want to reduce complexity
- But also want to be accurate
- What is the right answer?
 - It depends on your theory and the data
 - It is context-dependent
- And this is still only using linear regression models!
 - This is a deep area of study, for those interested

Step 4: Regression

- Introducing the lm(formula, data) function
- Two inputs to care about:
 - \circ formula: Code for Y=lpha+eta X
 - o data: What is the data we are using?
- formula is written as Y ~ X
 - \circ R will calculate lpha and eta for us
 - \circ Just need to tell it what is Y (md_earn_wne_p6) and X (sat_avg)
 - The tilde (~) is R's version of the equals sign in a regression equation
- Save the model to an object

```
model_earn_sat <- lm(formula = md_earn_wne_p6 ~ sat_avg,data = debt)</pre>
```

- What is in this object?
- The regression results! Look at them with summary()

```
summary(model_earn_sat)
```

```
##
## Call:
  lm(formula = md earn wne p6 ~ sat avg, data = debt)
##
  Residuals:
     Min 10 Median 30
##
                             Max
  -23239 -4311 -852 2893 78695
##
  Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
  (Intercept) -12053.87 1939.80 -6.214 7.12e-10
  sat avg 42.60
                         1.69 25.203 < 2e-16 ***
##
  Signif. codes:
    '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
```

- Starting with the first column called Estimate
- 1st Row (Intercept) is lpha: the predicted value of Y when X is zero
 - Schools with average SAT scores of 0 produce graduates who earn -\$12,053.87
 - Sensible?
- ullet 2nd Row sat_avg is the eta: the increase in Y when X increases by one
 - For each unit increase in the average SAT score, recent graduates earn \$42.60 more
 - Sensible?

- Other 3 columns?
 - Std. Error is the "standard error"
 - o t value is the "t-statistic"
 - Pr(>|t|) is the "p-value"
- t-statistic = Estimate / standard error
- p-value = function(t-statistic)
 - Only really need to remember the p-value for this course
 - This is 1 minus confidence
 - The lower the p-value, the more confident we are that the Estimate is not zero

```
summary(model_earn_sat)
```

```
##
## Call:
  lm(formula = md earn wne p6 ~ sat avg, data = debt)
##
## Residuals:
    Min 10 Median 30 Max
##
## -23239 -4311 -852 2893 78695
##
## Coefficients:
##
      Estimate Std. Error t value Pr(>|t|)
## sat avg 42.60 1.69 25.203 < 2e-16 ***
##
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7594 on 1196 degrees of freedom
    (1348 observations deleted due to missingness)
##
## Multiple R-squared: 0.3469, Adjusted R-squared: 0.3463
## F-statistic: 635.2 on 1 and 1196 DF, p-value: < 2.2e-16
```

• Kinda ugly? Use tidy() function from the broom package

Another Example

- We will come back to the RMSE after the break
- For now, let's try with a different research question!
- What is the relationship between admissions and future earnings?
 - Theory: More selective schools are more prestigious
 - Hypothesis: There should be a negative relationship between the admissions rate and future earnings

Do It Together!

- 1. Look at the data and acknowledge missingness
- 2. Univariate visualization of X and Y
- 3. Multivariate visualization of X and Y
- 4. Regression

BREAK

Learning Goals

- 1. Skew, logs, and coefficients
- 2. Evaluating a regression: Univariate and multivariate visualization of errors
- 3. Root Mean Squared Error (RMSE)
- 4. Cross Validation

Evaluating Regression Results

- Understanding the **errors** helps us evaluate the model
- ullet Define the errors $arepsilon = Y \hat{Y}$
 - \circ True outcome values Y
 - \circ Predicted outcome values \hat{Y}
- Useful to assess model performance
- 1. **Look** with univariate and multivariate visualization of the errors
- 2. Calculate the RMSE

Introducing the Data

- New dataset on movies
 - require tidyverse, and plotly packages
 - Load mv.Rds from Github to object mv

```
require(tidyverse)

mv <-
read_rds('https://github.com/jbisbee1/ISP_Data_Science_2024/raw/main/da</pre>
```

RQ: Hollywood Finances

- Research Question: What is the relationship between a movie's budget (how much it costs to make a movie) and a movie's earnings (how much money people pay to see the movie in theaters)?
- Theory: More money spent means more famous actors, better special effects, stronger marketing
- Hypothesis: earnings (gross) and costs (budget) should be positively correlated
 - ∘ *X*:?
 - ∘ *Y*:?

Follow the process: Look

TONS of missingness!

```
summary(mv %>% select(gross,budget))
```

```
##
                          budget
       gross
                      Min.
##
   Min. :7.140e+02
                                   5172
##
                     1st Qu.: 16865322
   1st Qu.:1.121e+07
   Median :5.178e+07
                     Median : 37212044
##
##
   Mean :1.402e+08
                     Mean : 57420173
##
   3rd Qu.:1.562e+08
                     3rd Qu.: 77844746
##
   Max. :3.553e+09
                      Max.
                             :387367903
##
   NA's :3668
                      NA's
                             :4482
```

Missingness

- What does this mean for "generalizability"
 - "Generalizability": Do our conclusions from this data extend ("generalize") to the population at large?

```
p <- mv %>%
  mutate(missing = ifelse(is.na(gross) | is.na(budget),1,0)) %>%
  group_by(year) %>%
  summarise(propMissing = mean(missing)) %>% # Calculate the
  proportion of observations missing either gross or budget
  ggplot(aes(x = year,y = propMissing)) +
  geom_bar(stat = 'identity') +
  labs(x = 'Year',y = '% Missing') +
  scale_y_continuous(labels = scales::percent) # Format the y-axis
  labels
```

Missingness

• We can only speak to post-2000s Hollywood!

р

Follow the process: Look

What type of variables are earnings (gross) and costs (budget)?

```
mv %>%
  drop_na(gross,budget) %>%
  select(gross,budget) %>% glimpse()
```

```
## Rows: 3,179
## Columns: 2
## $ gross <dbl> 73677478, 53278578, 723586629, 11490339, 62...
## $ budget <dbl> 93289619, 10883789, 160147179, 6996721, 139...
```

Looks like continuous measures to me!

2. Univariate Visualization

```
mv %>%
  select(title,gross,budget) %>%
  pivot_longer(names_to = "metric",values_to = "dollars",cols =
  c("gross","budget")) %>%
  ggplot(aes(x = dollars,color = metric)) +
  geom_density()
```


Log and Skew

- Univariate visualization highlights significant **skew** in both measures
 - Most movies don't cost a lot and don't make a lot, but there are a few blockbusters that pull the density way out
- Let's wrangle two new variables that take the log of these skewed measures
 - Logging transforms skewed measures to more "normal" measures
 - This is helpful for regression!

```
mv <- mv %>%
  mutate(gross_log = log(gross),
        budget_log = log(budget))
```

2. Univariate Visualization

```
mv %>%
  select(title,gross_log,budget_log) %>%
  pivot_longer(names_to = "metric",values_to = "log_dollars",cols =
  c("gross_log","budget_log")) %>%
   ggplot(aes(x = log_dollars,color = metric)) +
   geom_density()
```


3. Conditional Analysis

Continuous X continuous variables? Scatter with geom_point()!

```
mv %>%
  ggplot(aes(x = budget_log,y = gross_log)) +
  geom_point()
```


3. Conditional Analysis

• (BTW, I know I've been violating the tenets of data viz for several slides now. Let's fix that.)

```
pSimple <- mv %>%
  drop na(budget,gross) %>%
  mutate(profitable = ifelse(gross >
budget, 'Profitable', 'Unprofitable')) %>%
  ggplot(aes(x = budget,y = gross,text = paste0(title,' (',genre,',
',year,')'))) +
  geom point() +
  scale x log10(labels = scales::dollar) +
  scale y log10(labels = scales::dollar) +
  labs(title = "Movie Costs and Returns",
       x = "Costs (logged budget)",
       y = "Returns (logged gross)")
pFancy <- pSimple + geom point(aes(color = profitable)) +</pre>
  scale color manual(guide = 'none', values = rev(c('red', 'black')))
```

3. Conditional Analysis

pFancy

Look with plotly

• If curious, can use plotly to see outliers

```
require(plotly)
ggplotly(pFancy,tooltip = 'text')
```


4. Regression!

```
pSimple +
  geom_smooth(aes(group = 1), method = 'lm', se = F)
```


4. Regression!

```
m <- lm(gross_log ~ budget_log,data = mv)
tidy(m)</pre>
```

Interpretation

- ullet Remember the equation: Y=lpha+eta*X
- ullet Our Y is logged gross
- Our X is logged budget
- ullet Thus we can rewrite as $gross_log = lpha + eta * budget_log$
- What is α ? What is β ?

$$gross_log = \underbrace{1.26}_{lpha} + \underbrace{0.96}_{eta} * budget_log$$

Interpreting with Logs

- Previously, we said:
 - $\circ \ \alpha$ is the value of Y when X is zero
 - We need to convert back out of logged values using the exp() function
 - When budget_log is zero, the budget is exp(0) or \$1
- Thus, we say when the budget is \\$1, the movie makes 1.26 logged dollars, or \$3.53

```
exp(1.26107)
```

```
## [1] 3.529196
```

Interpreting with Logs

- ullet For the eta coefficient, it depends on where the logged variable appears:
 - 1. $\log({\sf Y}) \sim {\sf X}$: 1 unit change in $X \to (exp(\beta)-1)*100$ percent change in Y
 - 2. Y $\sim \log(x)$: 1% increase in $X \rightarrow \beta/100$ unit change in Y
 - 3. $\log(Y) \sim \log(X)$: 1% increase in $X \to \beta$ percent change in Y
- In our example, a 1% increase in the budget corresponds to a 0.96% increase in gross
- You will either need to memorize these rules, or (like me) just look them up every time

Evaluation

- Every regression line makes mistakes
 - If they didn't, they wouldn't be good at reducing complexity!
- How bad do ours look?
 - How should we begin to answer this question!?
- Are there patterns to the mistakes?
 - We overestimate gross for movies that cost between \$1m and \$10m
 - These are the "indies"
 - We also underestimate gross to the "blockbusters"
- Why?

Understanding Regression Lines

- ullet Regression lines choose lpha and eta to minimize mistakes
 - \circ Mistakes (aka "errors" or "residuals") are captured in the ε term
 - We can apply the process to these!

```
# Wrangle data to drop missingness!
mv_analysis <- mv %>% drop_na(gross_log,budget_log)
m <- lm(gross_log ~ budget_log,data = mv_analysis)
mv_analysis$predictions <- predict(m)
mv_analysis$errors <- mv_analysis$gross_log - mv_analysis$predictions
summary(mv_analysis$errors)</pre>
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -8.2672 -0.6354 0.1648 0.0000 0.7899 8.5599
```

Univariate Viz of Errors

```
mv_analysis %>%
  ggplot(aes(x = errors)) +
  geom_histogram() +
  labs(x = 'Errors: Gross - Predicted',y = 'Number of movies')
```


Univariate Viz of Errors

- Note that they are on average zero
 - Don't feel too proud! Mean 0 error is baked into the method
 - More concerned about **skew**...there is evidence of overestimating
- Can we do more? Conditional Analysis
 - \circ Conditional on the **predictor** (the X variable)

Multivariate Viz of Errors

- Ideal is where errors are unrelated to predictor
 - This **should** appear as a rectangular cloud of points around zero

pIdeal

Multivariate Viz of Errors

This is not the case for us!

```
mv_analysis %>%
  ggplot(aes(x = budget,y = errors)) +
  geom_point() + geom_hline(yintercept = 0,linetype = 'dashed') +
  scale_x_log10(label = scales::dollar) + geom_smooth()
```


Multivariate Viz of Errors

- Evidence of a U-shape → underpredict low and high budgets, overpredict middle budgets
- Ergo, our model is **not great!**
 - \circ Could add additional predictors X_2 , X_3 , etc.
 - Next lecture!

- Univariate / Multivariate visualization of errors is **important**
- But we want to summarize model quality in a simpler way
- **RMSE**: summarizes model performance with a *single number*
 - Useful for comparing multiple models to each other

- ullet Error (arepsilon): actual outcome (Y_i) predicted outcome (\hat{Y}_i)
 - The "distance" between the data and the model
- Squared: ε^2
 - 1. Makes all values positive
 - 2. Exaggerates the presence of larger errors
- Mean: average these squared errors
- Root: take their square root (un-exaggerate)

$$RMSE = \sqrt{rac{1}{n}\sum_{i=1}^n (Y_i - \hat{Y_i})^2}$$

- ullet Error ($oldsymbol{arepsilon}$): actual outcome (Y_i) predicted outcome (\hat{Y}_i)
 - The "distance" between the data and the model
- Squared: ε^2
 - 1. Makes all values positive
 - 2. Exaggerates the presence of larger errors
- Mean: average these squared errors
- Root: take their square root (un-exaggerate)

$$RMSoldsymbol{E} = \sqrt{rac{1}{n}\sum_{i=1}^n (\underbrace{Y_i - \hat{Y_i}}_{arepsilon})^2}$$

- ullet Error (arepsilon): actual outcome (Y_i) predicted outcome (\hat{Y}_i)
 - The "distance" between the data and the model
- Squared: ε^2
 - 1. Makes all values positive
 - 2. Exaggerates the presence of larger errors
- Mean: average these squared errors
- Root: take their square root (un-exaggerate)

$$RMSE = \sqrt{rac{1}{n}\sum_{i=1}^{n}(arepsilon)^2}$$

- ullet Error (arepsilon): actual outcome (Y_i) predicted outcome (\hat{Y}_i)
 - The "distance" between the data and the model
- Squared: ε^2
 - 1. Makes all values positive
 - 2. Exaggerates the presence of larger errors
- Mean: average these squared errors
- Root: take their square root (un-exaggerate)

$$RMSE = \sqrt{rac{1}{n}\sum_{i=1}^{n}(SE)}$$

- ullet Error (arepsilon): actual outcome (Y_i) predicted outcome (\hat{Y}_i)
 - The "distance" between the data and the model
- Squared: ε^2
 - 1. Makes all values positive
 - 2. Exaggerates the presence of larger errors
- Mean: average these squared errors
- Root: take their square root (un-exaggerate)

$$m{R}MSE = \sqrt{(MSE)}$$

• RMSE is a single measure that summarizes model performance

```
e <- mv_analysis$gross_log - mv_analysis$predictions
se <- e^2
mse <- mean(se)
rmse <- sqrt(mse)
# Or
(rmseBudget <- sqrt(mean(mv_analysis$errors^2)))</pre>
```

```
## [1] 1.280835
```

• Is this good?

Predicting with uncertainty

- Say we're talking to investors about a new movie that costs \$10m
 - How do we plug 10m into our model?

```
summary(m)$coefficients
```

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.03776401 0.03153666 1.197464 0.2314101
## X 2.07852434 0.03152731 65.927738 0.0000000
```

- $\hat{Y}_i = \alpha + \beta * X$
 - $\circ~lpha=1.26$ and eta=0.96
 - \circ where \hat{Y}_i is predicted gross (log) and X is \$10m budget (log)

```
pred_gross_log <- 1.26 + 0.96*log(1e7)
```

Predicted Gross

Again, convert back out of logged values with exp()

```
scales::dollar(exp(pred_gross_log))
```

```
## [1] "$18,501,675"
```

- Cool! We'll make \$8.5m!
 - But we know our model isn't perfect
 - Need to adjust for it's errors via RMSE

Incorporating RMSE

• Simple idea: add and subtract RMSE from this prediction

```
pred_gross_log_ub <- 1.26 + 0.96*log(1e7) + rmseBudget
pred_gross_log_lb <- 1.26 + 0.96*log(1e7) - rmseBudget
scales::dollar(exp(c(pred_gross_log_ub,pred_gross_log_lb)))</pre>
```

```
## [1] "$66,599,457" "$5,139,861"
```

- So we'll either make a \$56m profit or we'll lose almost \$5m?
- CONCLUSION PART 2: maybe our model isn't very good?

Introducing Cross Validation

- We ran a model on the full data and calculated the RMSE
- But this approach risks "overfitting"
 - Overfitting is when we get a model that happens to do well on our specific data, but isn't actually that useful for predicting elsewhere.
 - "Elsewhere": Other periods, other movies, other datasets
- Theory: Why care about external validity?
 - What is the point of measuring relationship if they don't generalize?

Introducing Cross Validation

- In order to avoid overfitting, we want to "train" our model on one part of the data, and then "test" it on a different part of the data.
 - Model "can't see" the test data → better way to evaluate performance
- Cross Validation: randomly split our data into a train set and test set
 - Similar to bootstrapping

Introducing Cross Validation (CV)

```
set.seed(1021)
# Sample our data WITHOUT replacement
train <- mv_analysis %>%
   sample_n(size = round(nrow(.)*.5),
        replace = F)

# New function...remove all the rows that are the same as train
test <- mv_analysis %>%
   anti_join(train)
```

```
## Joining with `by = join_by(title, rating, genre, year,
## released, score, votes, director, writer, star, country,
## budget, gross, company, runtime, id, imdb_id,
## bechdel_score, boxoffice_a, language, gross_log,
## budget_log, predictions, errors)`
```

 We now have two datasets of roughly the same number of observations, but none of them are the same!

- We want to estimate a model based on the test data
- And evaluate RMSE based on the train data

```
m2 <- lm(gross_log ~ budget_log,train)
# predict() function on a new dataset
test$preds <- predict(m2,newdata = test)
# Now calculate RMSE on the new dataset
e <- test$gross_log - test$preds
se <- e^2
mse <- mean(se,na.rm=T)
rmse <- sqrt(mse)
rmse</pre>
```

```
## [1] 1.28959
```

- We did worse with CV! This is a *feature*
 - We are not being overconfident
 - We are avoiding "overfitting"
- Want to do this many times (like bootstrapping)

```
set.seed(123)
bsRes <- NULL
for(i in 1:100) {
  # Create training dataset
  train <- mv analysis %>%
    sample n(size = round(nrow(.)*.5),
           replace = F)
  # Create test dataset
  test <- mv analysis %>%
    anti join(train)
  mTrain <- lm(gross log ~ budget log,train)</pre>
  test$preds <- predict(mTrain,newdata = test)</pre>
  rmse <- sqrt(mean((test$gross log - test$preds)^2,na.rm=T))</pre>
  bsRes <- c(bsRes,rmse)
mean(bsRes)
```

```
data.frame(rmseBS = bsRes) %>%
  ggplot(aes(x = rmseBS)) +
  geom_density() +
  geom_vline(xintercept = mean(bsRes),linetype = 'dashed')
```


Cross Validation

- In this example, we used a 50-50 split
- Often, data scientists prefer an 80-20 split
 - **Improves** the model (80% of the data is more to learn from)...
 - ...but still protects against overfitting