

Set Theory

Practice Set - 3 Equivalence Relations 30 Standard Questions

Instructor:

Deepak Poonia MTech, IISc Bangalore GATE CSE AIR 53; AIR 67; AIR 107; AIR 206; AIR 256

Discrete Mathematics Complete Course:

https://www.goclasses.in/courses/Discrete-Mathematics-Course

lest

Series

GO Classes

Here it Comes!!

GATE Overflow + GO Classes

2-IN-1 TEST SERIES

Most Awaited

GO Test Series

is Here

REGISTER NOW

http://tests.gatecse.in/

Number of tests

Number of Full Length Mock Tests

× 15 APRIL 2023

+91 - 7906011243

+91-6398661679

On

GATE Overflow

Website

Join GO+ GO Classes Combined Test Series for BEST quality tests, matching

GATE CSE Level:

Visit <u>www.gateoverflow.in</u> website to join Test Series.

- 1. Quality Questions: No Ambiguity in Questions, All Well-framed questions.
- 2. Correct, Detailed Explanation, Covering Variations of questions.
- 3. Video Solutions.

https://gateoverflow.in/blog/14987/gate-overflow-and-go-classes-test-series-gate-cse-2024

Join GO Classes GATE CSE Complete Course now:

https://www.goclasses.in/s/pages/gatecompletecourse

- 1. Quality Learning: No Rote-Learning. Understand Everything, from
- basics, In-depth, with variations.
- 2. Daily Homeworks, Quality Practice Sets, Weekly Quizzes.
- 3. Summary Lectures for Quick Revision.
- 4. Detailed Video Solutions of Previous ALL GATE Questions.
- 5. Doubt Resolution, Revision, Practice, a lot more.

Download the GO Classes Android App:

https://play.google.com/store/apps/details?id=c om.goclasses.courses

Search "GO Classes" on Play Store.

Hassle-free learning
On the go!

Gain expert knowledge

NOTE:

Complete Discrete Mathematics & Complete Engineering

Mathematics Courses, by GO Classes, are FREE for ALL learners.

Visit here to watch: https://www.goclasses.in/s/store/

SignUp/Login on Goclasses website for free and start learning.

We are on Telegram. Contact us for any help.

Link in the Description!!

Join GO Classes **Doubt Discussion** Telegram Group:

Username:

@GATECSE_GOCLASSES

We are on Telegram. Contact us for any help.

Join GO Classes Telegram Channel, Username: @GOCLASSES_CSE

Join GO Classes **Doubt Discussion** Telegram Group:

Username: @GATECSE_Goclasses

(Any doubt related to Goclasses Courses can also be asked here.)

Join GATEOverflow Doubt Discussion Telegram Group:

Username: @GateOverflow_CSE

- 15. Determine which of the following congruence relations are true and which are false.
 - **a.** $17 \equiv 2 \pmod{5}$

b. $4 \equiv -5 \pmod{7}$

c. $-2 \equiv -8 \pmod{3}$

d. $-6 \equiv 22 \pmod{2}$

Congruence.

Definition. Let a and b be integers and m be a natural number. Then a is congruent to b modulo m:

$$a \equiv b \pmod{m}$$

if m|(a-b).

The number m is called the *modulus* of the congruence. Congruence modulo m divides the set \mathbb{Z} of all integers into m subsets called *residue classes*. For example, if m=2, then the two residue classes are the *even integers* and the *odd integers*. Integers a and b are in the same class if and only if $a \equiv b \pmod{m}$. The following basic properties follow from the definition of congruence.

Property 1. Congruence if *reflexive*, i.e., $a \equiv a \pmod{m}$ for every integer a and natural number m.

Property 2. Congruence is *symmetric*, i.e., if $a \equiv b \pmod{m}$, then $b \equiv a \pmod{m}$.

Property 3. Congruence is *transitive*, i.e., if $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$, then $a \equiv c \pmod{m}$.

7. Equivalence Classes. Let $A = \{0, 1, 2, 3\}$ and let

$$r = \{(0,0), (1,1), (2,2), (3,3), (1,2), (2,1), (3,2), (2,3), (3,1), (1,3)\}$$

- (a) Verify that r is an equivalence relation on A.
- (b) Let $a \in A$ and define $c(a) = \{b \in A \mid arb\}$. c(a) is called the **equivalence class of** a **under** r. Find c(a) for each element $a \in A$.
- (c) Show that $\{c(a) \mid a \in A\}$ forms a partition of A for this set A.

Q 3,4

In each of 3–14, the relation R is an equivalence relation on the set A. Find the distinct equivalence classes of R.

3.
$$A = \{0, 1, 2, 3, 4\}$$

 $R = \{(0, 0), (0, 4), (1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 0), (4, 4)\}$

4.
$$A = \{a, b, c, d\}$$

 $R = \{(a, a), (b, b), (b, d), (c, c), (d, b), (d, d)\}$

Q 5:

5. $A = \{1, 2, 3, 4, ..., 20\}$. R is defined on A as follows:

For all
$$x, y \in A$$
, $x R y \Leftrightarrow 4 | (x - y)$.

Discrete Mathematics

Q 6

6. $A = \{-4, -3, -2, -1, 0, 1, 2, 3, 4, 5\}$. R is defined on A as follows:

For all $x, y \in A$, $x R y \Leftrightarrow 3 | (x - y)$.

) |

Discrete Mathematics

Q7

7. $A = \{(1, 3), (2, 4), (-4, -8), (3, 9), (1, 5), (3, 6)\}$. R is defined on A as follows: For all $(a, b), (c, d) \in A$,

$$(a,b) R (c,d) \Leftrightarrow ad = bc.$$

+

Discrete Mathematics

Q 8:

8. $X = \{a, b, c\}$ and $A = \mathscr{P}(X)$. R is defined on A as follows: For all sets U and V in $\mathscr{P}(X)$,

$$U R V \Leftrightarrow N(U) = N(V).$$

(That is, the number of elements in U equals the number of elements in V.)

Q 9:

- 9. $X = \{-1, 0, 1\}$ and $A = \mathcal{P}(X)$. R is defined on $\mathcal{P}(X)$ as follows: For all sets s and t in $\mathcal{P}(X)$,
 - $s R T \Leftrightarrow the sum of the elements in s equals the sum of the elements in T.$

Q 10:

10.
$$A = \{-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5\}$$
. R is defined on A as follows: For all $m, n \in \mathbb{Z}$,

$$m R n \Leftrightarrow 3 \mid (m^2 - n^2).$$

D

Discrete Mathematics

Q 11:

11. $A = \{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$. R is defined on A as follows: For all $(m, n) \in A$,

$$m R n \Leftrightarrow 4 \mid (m^2 - n^2).$$

+ +

Discrete Mathematics

Q 12:

12.
$$A = \{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$$
. R is defined on A as follows: For all $(m, n) \in A$,

$$m R n \Leftrightarrow 5 \mid (m^2 - n^2).$$

)

Discrete Mathematics

Q 13:

13. A is the set of all strings of length 4 in a's and b's. R is defined on A as follows: For all strings s and t in A,

 $s R t \Leftrightarrow s$ has the same first two characters as t.

Q 14

- 14. A is the set of all strings of length 2 in 0's, 1's, and 2's. R is defined on A as follows: For all strings s and t in A,
 - $s R t \Leftrightarrow the sum of the characters in s equals the sum of the characters in t.$

44. Let $A = \mathbb{Z}^+ \times \mathbb{Z}^+$. Define a relation R on A as follows: For all (a, b) and (c, d) in A,

$$(a,b) R (c,d) \Leftrightarrow a+d=c+b.$$

- **a.** Prove that R is reflexive.
- b. Prove that *R* is symmetric.
- **H** c. Prove that R is transitive.
 - **d.** List five elements in [(1, 1)].
 - e. List five elements in [(3, 1)].
 - f. List five elements in [(1, 2)].
 - **g.** Describe the distinct equivalence classes of R.

+ +

Discrete Mathematics

Q 16:

16. **a.** Let *R* be the relation of congruence modulo 3. Which of the following equivalence classes are equal?

$$[7], [-4], [-6], [17], [4], [27], [19]$$

b. Let *R* be the relation of congruence modulo 7. Which of the following equivalence classes are equal?

$$[35], [3], [-7], [12], [0], [-2], [17]$$

Q 17:

- 2. Each of the following partitions of {0, 1, 2, 3, 4} induces a relation *R* on {0, 1, 2, 3, 4}. In each case, find the ordered pairs in *R*.
 - **a.** {0, 2}, {1}, {3, 4} c. {0}, {1, 2, 3, 4}
- b. {0}, {1, 3, 4}, {2}

18:

Test Yourself

- 1. For a relation on a set to be an equivalence relation, it must be _____.
- 2. The notation $m \equiv n \pmod{d}$ is read "____" and means that
- 3. Given an equivalence relation R on a set A and given an element a in A, the equivalence class of a is denoted _____ and is defined to be _____.
- 4. If A is a set, R is an equivalence relation on A, and a and b are elements of A, then either [a] = [b] or _____.

- 5. If A is a set and R is an equivalence relation on A, then the distinct equivalence classes of Rform _____.
- 6. Let $A = \mathbb{Z} \times (\mathbb{Z} \{0\})$, and define a relation R on A by specifying that for all (a, b) and (c, d) in A, (a, b) R (c, d)if, and only if, ad = bc. Then there is exactly one equivalence class of *R* for each _____.

Q 19

41. For the set $A = \{1, 2, 3, \dots, 8\}$. consider

$$P = \{\{1,3\},\{4\},\{2,5,6\},\{7,8\}\}.$$

Show P is a partition of A and define the induced equivalence relation (ala the Equivalence Class Theorem). Find $\bar{1}$, $\bar{2}$, $\bar{3}$, ..., $\bar{8}$.

- 3. Consider the following relations R. (36 + 10 points)
 - a) xRy iff x y is even e) xRy iff 4|x + y i) xRy iff $x^2 y^2 = 0$
 - b) xRy iff x + y is even f) xRy iff 3|2x y j) xRy iff $(x 1)^2 (y 1)^2 = 0$
 - c) xRy iff x-y is odd g) xRy iff 3|4x-y k) xRy iff $x^2-4x=y^2-4y$
 - d) xRy iff 4|x-y h) xRy iff $3|x^2-y^2$ l) xRy iff x|y and y|x

- (a) In each case, decide whether the relation R on Z is reflexive, symmetric and transitive (three answers in each case). If you find that certain property fails, give concrete numbers showing that the given property fails. E.g.: The relation divides '|' is not symmetric because 3|6 but ¬6|3.
- (b) Which ones are equivalence relations? For each equivalence relation above, **partition** the set $X = \{-3, -2, ..., 4, 5\}$ into the corresponding equivalence classes.

Q 21:

1. Define the relation R on $\mathbb{N}_0 \times \mathbb{N}_0$ by

$$R = \{((m, n), (p, q)) : m + q = n + p\}$$

- (a) Prove that R is an equivalence relation.
- (b) Determine the following equivalence classes:
 - i. [(0,0)]
 - ii. [(1,0)]
 - iii. [(0,1)]

4. Define a relation R on $\mathbb{Z} \times \mathbb{Z}$ by

$$(a,b) R (c,d) \text{ iff } a^2 = c^2.$$

- (a) (10 points) Verify that R is an equivalence relation.
- (b) (10 points) Find the equivalence class [(2,4)], and draw the set in the xy-plane.

Consider the following relation \mathcal{R} on the set $A = \{1, 2, 3, 4, 5\}$.

Q 23:

$$\mathcal{R} = \{(1,1), (1,2), (2,1), (2,2), (3,3), (4,4), (4,5), (5,4), (5,5)\}$$

Given that \mathcal{R} is an equivalence relation on A, which of the following is the partition of A into equivalence classes?

Select the correct response.

A.
$$\mathcal{P} = \{\{1\}, \{1, 2\}, \{3\}, \{3, 4\}, \{4\}, \{5\}\}$$

B.
$$\mathcal{P} = \left\{ \{1, 2, 3, 4, 5\} \right\}$$

C.
$$\mathcal{P} = \{\{1, 2\}, \{3, 4\}, \{5\}\}$$

D.
$$\mathcal{P} = \{\{1\}, \{2,3\}, \{4,5\}\}$$

E.
$$\mathcal{P} = \{\{1, 2, 3\}, \{4, 5\}\}$$

F.
$$\mathcal{P} = \{\{1\}, \{2\}, \{3\}, \{4\}, \{5\}\}$$

G.
$$\mathcal{P} = \{\{1,2\},\{3\},\{4,5\}\}$$

5 2 Relations-Equivalence Classes: Problem 3

Q 24

(2 pts) Consider the equivalence relation on $A = \{1, 2, 3, 4, 5\}$ given by,

$$R = \{(1,1),(1,2),(1,3),(2,2),(2,3),(2,1),(3,3),(3,1),(3,2),(4,4),(4,5),(5,5),(5,4)\}$$

Clearly,
$$[1] = [2]$$

Part 1

How many different equivalence classes does this relation have?

Part 2

Decide if the following statements are true or false (Enter 'true' or 'false'):

(a)
$$[1] = [3]$$
.

(b)
$$[4] = [3]$$
.

(c)
$$[5] = [3]$$
.

(d)
$$[4] = [5]$$
.

(e)
$$[2] = [3]$$
.

(f)
$$[2] = [4]$$
.

Q 25:

- (4) Let A be the set of all ordered pairs of positive integers. So some members of A are (3,6), (7,7), (11,4), (1,2981). A relation on A is defined by the rule (a,b)R(c,d) if and only if ad = bc. For example (3,5)R(6,10) is true since (3)(10) = (5)(6).
 - (a) Explain why R is an equivalence relation on A.
 - (b) List four ordered pairs in the equivalence class of (2,3).
- (5) Let $A = \{1, 2, 3, 4, 5, 6\}$. The sets $\{1, 2\}, \{3, 4, 5\}$, and $\{6\}$ form a partition of A. These are the equivalence classes for an equivalence relation, E, on A. Draw the **digraph** of E.

Q 26:

Question 5.(4 points each)

Let R be the relation on the set of ordered pairs of positive integers such that

$$((a,b),(c,d)) \in R$$
 if and only if $ad = bc$.

- (1) Show that R is an equivalence relation
- (2) What is the equivalence class of of (1,2), i.e. [(1,2)]?

GO Classes

Definition: Let S be a set, and let R be an equivalence relation on S. For a ∈ S, the equivalence class of a with respect to R, denoted by [a], is defined by

$$[a] = \{ x \in S \mid (x,a) \in R \}.$$

EXAMPLE 8. Let $S = \{2,3,5,7,11,13,17\}$, and let R be the equivalence relation on S defined by

$$R = \{ (2,2), (2,7), (2,17), (3,3), (5,5), (5,11), (7,2), (7,7), (7,17), (11,5), (11,11), (13,13), (17,2), (17,7), (17,17) \}.$$

- Find [11]. a.
- Find [3].
- Find [7].
- Find [17].
- Find the set of all equivalence classes of R. e.

Q 28:

[4] Suppose that R is an equivalence relation on the set $\{1, 2, 3, 4, 5\}$ such that

$$(2,5) \in R \text{ and } (1,3) \in R,$$

$$(2,3) \notin R$$
 and $(4,5) \notin R$

- (a) [1] Explain why (3,5) cannot be in R.
- (b) [1] List all of the elements of the equivalence class [2]. Justify your list.
- (c) [2] Is it possible for R to have exactly three equivalence classes? If so, give an example of one such R, expressed as a set of ordered pairs. If not, explain why not.

Q 29

Problem 5. For the given set A, determine whether \mathcal{P} is a partition of A.

- (a) $A = \{1, 2, 3, 4\}, \quad \mathcal{P} = \{\{1, 2\}, \{2, 3\}, \{3, 4\}\}\}$
- (b) $A = \{1, 2, 3, 4, 5, 6, 7\}, \quad \mathcal{P} = \{\{1, 2\}, \{3\}, \{4, 5\}\}\}$
- (c) $A = \{1, 2, 3, 4, 5, 6, 7\}, \quad \mathcal{P} = \{\{1, 3\}, \{5, 6\}, \{2, 4\}, \{7\}\}\}$
- (d) $A = \mathbb{N}, \quad \mathcal{P} = \{1, 2, 3, 4, 5\} \cup \{n \in \mathbb{N} : n > 5\}$
- (e) $A = \mathbb{R}, \quad \mathcal{P} = (-\infty, 1) \cup [-1, 1] \cup (1, \infty)$

Q 30:

- 10. Given that $A = \{0, 1, 2, 3, 4\}$
 - (a) Find the smallest equivalence relation on A containing the ordered pairs $\{(1,1),(1,2),(3,4),(4,0)\}$
 - (b) Draw the graph of the equivalence relation for found in part (a).
 - (c) List the equivalence classes of the relation for found in (a).

$$|R|=13$$
, equivalent class =2

