

Recent advances in Digital Music Processing and Indexing

Acoustics'08 warm-up

TELECOM ParisTech

Gaël RICHARD
Telecom ParisTech (ENST)
www.enst.fr/~grichard/

三選動 Content

Introduction and Applications

- Components of an Audio indexing system
 - Architecture
 - Features extraction and selection
 - Classification: the example of automatic musical instrument recognition

■ Signal Decomposition and source separation

- An alternative to Bag of frames approaches
- Non-Negative Matrix decomposition
- Main melody estimation and extraction

Other audio indexing examples

- Drum Processing: on combining tempo, source separation and transcription
- Drum loop Retrieval: on combining Speech recognition and transcription
- "Cross-modal" Retrieval: On combining visual and audio correlations for audio-based music video retrieval (or video-based audio retrieval).
- (The evaluation problem)
- Conclusion

TENTE Introduction

- Audio is now widely available in digital format and in huge databases
 - New means of interaction with audio information are possible and desirable
 - Strong needs for efficient audio indexing techniques to automatically obtain a detailed and meaningful symbolic representation

国選擇 Introduction

■ For music signals?

Music signal

+ emotions, playing style, performers,...

Enter a keyword, record a query or drag an example clip.

Search Audio

Audio Preferences Audio Help

Steve Jobs interview 7 min 14 sec Speech

Metric - Raw Sugar 3 min 47 sec Music - Indie Pop

Grenade explosion 23 sec Sound effect

similarly random recordings »

Google Labs - Discuss - Terms of use - About Google Audio - Submit your recording

@2005 Google

Applications: for content providers

Ease composition

- Search/Retrieval of sound samples or drum loops in large databases of sounds (drum loops retrieval)
- Content-aware Musical edition software
- Automatic musical analysis for expressive music synthesis
- Musical "Oracle": predict which kind of public will like a given piece.
- Hit predictor...
- Search/Retrieval of video scenes from Audio (use of multimodal correlations)

Drum loops retrieval reference:

O. Gillet and G. Richard, « *Drum loops retrieval from spoken queries* », Journal of Intelligent Information Systems, 24:2/3, pp 159-177, Springer Science, 2005

Applications: for broadcasters

- Ease radio program set up
 - Navigation interfaces in large data collections
 - Automatic play lists (podcast,...)
 - Mixing/Remixing/DJing: Tempo, rhythm, texture synchronization (Tempo)
- Identify what is broadcasted
 - Plagiarism detection.
 - Broadcast monitoring.

Tempo extraction reference:

M. Alonso, G. Richard and B. David, "Accurate tempo estimation based on harmonic+noise decomposition", *EURASIP Journal on Advances in Signal Processing*, vol. 2007, Article ID 82795, 14 pages, 2007.

Applications: for consumers

- Increase listening capabilities
 - Automatic analysis of user taste for music recommendation.
 - Automatic play list by emotion, genre.
 - Structured navigation in music: « skip the intro, « replay the chorus »,....)
 - Personalized listening (Remixing)
- Allow new usages
 - Search by content (Query by humming)
 - Smart Karaoke
 - Active listening.

Drum Extraction and Remixing:

O. Gillet, G. Richard. *Transcription and separation of drum signals from polyphonic music*. in IEEE Trans. on Audio, Speech and Language Proc., Volume 16, N°3, March 2008 Page(s):529 - 540.

Classification systems

■ Several problems, a similar approach

- Automatic musical genre recognition
- Automatic music instruments recognition.
- Sound samples classification.
- Sound track labeling (speech, music, special effects etc...).
- Automatically generated Play list
- Hit predictor...

Traditional "Bag-of-Frames" approach

一選家 Features extraction

- A need for a compact representation of the audio space using descriptors:
 - **Temporal parameters**: (Zero crossing rate, envelope, amplitude modulation (4 Hz, or 10-40 Hz), crest factor, signal impulsivity, tempo,...
 - Spectral or Cepstral parameters: (MFCC, LPCC, Warped LPCC, spectral centroïd, spectral slope, high order spectral moments, filter banks, harmonic to noise ratio,...)
 - Perceptual parameters: (Relative specific loudness, sharpness and spread,....)

Most of these features described in

- G. Peeters. "A large set of audio features for sound description (similarity and classification) in the cuidado project."
 Technical report, IRCAM (2004)
- S. Essid. "Classification automatique des signaux audio-fréquences: reconnaissance des instruments de musique", Ph.D. thesis, Univ. Paris 6 (in French).

Feature extraction

« Harmonic » + noise decomposition

Example from Subspace decomposition From R. Badeau

Classification methods for automatic musical instrument recognition

Different strategies were proposed

 Early studies based on K-Nearest Neighbors (K-NN) on isolated notes and later on solos

- Current trend: to use more sophisticated modelling approaches such as Discriminant analysis, neural networks, Gaussian Mixtures Models (GMM) and Support Vector Machines
- See for a recent review:
 - P. Herrera, A. Klapuri, M. Davy. Chap.6 Automatic Classification of Pitched Musical Instrument Sounds. *in Signal Processing methods for Music transcription,* Edited by A. Klapuri and M. Davy, Springer (2006)

Automatic instrument recognition in polyphonic signals

From isolated notes to polyphonic signals : a problem of increased complexity

- In fact, in most cases the methods designed for the monophonic case will not work:
 - Features extraction is non-linear
 - The "additivity" of the sources cannot be used

Automatic instrument recognition in polyphonic signals

Some directions:

- Ignore the features perturbed by other sources (missing features theory) (see Eggink, 2003)
- Apply a source separation approach before recognising the different instruments (see Gillet 2008 for percussive instruments)
- Use specific models such as pitch dependent instrument models (Kitahara, 2005)
- Learn a model for each combination of instruments with an automatically induced hierarchical taxonomy (Essid, 2006)

An alternative to "bag-of-frames" approaches

- Sparse atomic decomposition of polyphonic music signals
 - Principle: Derive an "atomic" decomposition of the audio signal.

In other words, the signal is approximated as a linear combination of atoms $h_{\lambda}(t)$ from a fixed dictionary:

$$x(t) = \sum_{\lambda \in \Lambda_x} \alpha_{\lambda} h_{\lambda}(t)$$

Sparse atomic decomposition of polyphonic music signals

■ Atoms used: harmonic chirp Gabor atoms

$$h_{s,u,f_0,c_0,A,\Phi}(t) = \sum_{m=1}^{M} a_m e^{j\phi_m} g_{s,u,m \times f_0,m \times c_0}(t)$$

- $-am(\text{resp}\,\phi m)$ vector of partials amplitude (resp. phases)
- s scale parameter
- u time localization
- f_0 (resp c_0) fundamental frequency and chirp rate

(from P. Leveau, "Décompositions parcimonieuses structurées: Application à la représentation objet de la musique", Ph.D. thesis, Univ. Paris 6, 2007)

Sparse atomic decomposition of polyphonic music signals

- The atomic decomposition is obtained by means of (for example) matching pursuit:
 - First, the most prominent atom (*i.e.* the most correlated with the signal) is extracted and subtracted from the original signal.
 - Iterate the procedure until a predefined number of atoms have been extracted or until a pre-defined SNR of the representation is reached.

Sparse atomic decomposition of polyphonic music signals

■ For musical instrument recognition

- Use Instrument specific atoms
- Obtain representatives atoms for each instrument and for each fundamental frequency
- Use a decomposition algorithm such as matching pursuit
- Instrument-specific harmonic "Molecule" can be obtained as a group of successive atoms

For more details, see

P. Leveau, E. Vincent, G. Richard, L. Daudet, "Instrument-specific harmonic atoms for mid-level music representation", in IEEE Trans. on ASLP, Volume 16, N°1 Jan. 2008 Page(s):116 - 128.

Signal Decomposition and source separation for music transcription

■ Non Negative Matrix factorization

Spectrogram ≈

W(basis) * H(activation)

See for example

N. Bertin, R. Badeau, G. Richard, "Blind Signal Decompositions for Automatic transcription of polyphonic music: NMF and K-SVD on the Benchmark", in Proc. of ICASSP'07

■ Towards improved transcription

For example use of harmonicity constraints

Classic NMF "Harmonic" NMF

$$X_{tf} = \sum_{i=1}^{I} H_{it} W_{if} + R_{tf} \longrightarrow X_{ft} = \sum_{p=p_{\text{low}}}^{p_{\text{high}}} \sum_{i=1}^{I_p} A_{pit} S_{pif} + R_{ft}$$

with

Amplitude coefficients (model the spectral envelope)

Narrowband spectra
(represent adjacent partials at harmonic frequencies)

Towards improved transcription

An example of transcription

More details in:

E. Vincent, N. Bertin and R. Badeau Harmonic and inharmonic nonnegative matrix factorization for polyphonic pitch transcription,, in Proc of ICASSP'08.

See also for another approach:

V. Emiya, R. Badeau, B. David, "Automatic transcription of piano music based on HMM tracking of jointly-estimated pitches, Proc. of EUSIPCO'08

and numerous piano transcription examples:

http://perso.telecom-paristech.fr/~emiya/EUSIPCO08/bench1.html

Main melody (Singing voice) extraction

■ Combine NMF (or GMM) and a production model

■ Background music model: instantaneous mixtures of R Gaussian sources

$$M(f,t) \sim \mathcal{N}_c(0, \sum_{r=1}^R a_r^2(t)\sigma_r^2(f))$$

Main melody (Singing voice) extraction

Singing voice Model

$$V(f,t) \sim \mathcal{N}_c(0, \sum_k a_k^2(t)\sigma_k^2(f) \times \sum_{f_0} a_{f_0}^2(t)\sigma_{f_0}^2(f))$$
 $V_{K}(f,t) \sim V_{K}(f,t)$

Main melody extraction

Main melody (Singing voice) extraction

■ Source Separation (by Wiener Filtering)

$$\hat{V}(f,t) = \frac{V_K(f,t) \times V_{F_0}(f,t)}{D(f,t)} X(f,t) \qquad \hat{M}(f,t) = \frac{D_R(f,t)}{D(f,t)} X(f,t)$$

■ Two examples

Signals	Original (mp3)	Main voice	Music
Opera (fem. Voice)	()	4	4
Jazz (take 5)	4	4	4

More examples at

http://perso.telecom-paristech.fr/~durrieu/en/results_en.html

More details in

J-L. Durrieu, G. Richard, B. David, "Singer Melody Extraction in Polyphonic signals using source spearation methods", in Proc of ICASSP'08.

Some other examples

Drum Processing

On Combining tempo, source separation and transcription for drum processing

Drum loop Retrieval

 On Combining <u>Speech recognition</u> and <u>transcription</u> for drum loop retrieval

"Cross-modal" Retrieval

 On combining <u>visual</u> and <u>audio correlations</u> for audiobased music video retrieval (or video-based audio retrieval).

Combining tempo, source separation and transcription for drum processing

Reference:

O. Gillet, G. Richard. Transcription and separation of drum signals from polyphonic music. in IEEE Trans. on ASLP, Volume 16, N°3, March 2008 Page(s):529 - 540.

relecon

Combining Speech recognition and transcription for drum loop retrieval

- Drum loop retrieval from spoken queries
 - An automatic drum loop transcriber
 - A simple HMM based speech recognition engine
 - A retrieval engine that search for the best drum loops based on both textual transcription

Combining visual and audio correlations for music video retrieval

- Music similarity search (or genre classification)
- For video-based audio retrieval

Demo

- Reference
- O. Gillet and G. Richard, « On the Correlation of Automatic Audio and Visual Segmentations of Music Videos » I ÉEE Trans. on CSVT, 2007

relecor

The evaluation problem

The evaluation problem in Music information indexing and retrieval

- The domain does not have the historic background of other related domains such as Speech recognition for example.
- There is a lack of common and public databases and of common protocols for the evaluation
- Difficulty of obtaining signal annotation under the form of « metadata » (the use of MIDI signals can only partly resolve the problem since MIDI signals are far less complex to process than real audio signals)
- A big step forward in evaluation: the MIREX experience
 - http://www.music-ir.org/mirex/2008/index.php/Main_Page

Evaluation: some results...(from MIREX http://www.music-ir.org/mirex/2007/abs/MIREX2007_overall_results.pdf)

Multi F0 Note Tracking		
Rank	Participant	Avg. F- Measure
1	Ryynänen & Klapuri (2)	0.614
2	Vincent, Bertin & Badeau (4)	0.527
3	Poliner & Ellis (2)	0.485

Audio Cover Song Identification		
Rank	Participant	Avg. Precision
1	Serrà & Gómez	0.521
2	Ellis & Cotton	0.330
3	Bello, J.	0.267

Audio Mood Classification		
Rank	Participant	Avg. Raw Accuracy
1	Tzanetakis, G.	61.50%
2	Laurier, C.	60.50%
3	Lidy, Rauber, Pertusa & Iñesta	59.67%

Audio Genre Classification		
Rank	Participant	Avg. Raw Accuracy
1	IMIRSEL (svm)	68.29%
2	Lidy, Rauber, Pertusa & Iñesta	66.71%
3	Mandel & Ellis	66.60%

MIREX 2006 Audio Tempo Extraction Summary Results

	At least 1 tempo	
Contestant	correct	Both tempi correct
klapuri	94.29%	61.43%
davies	92.86%	45.71%
alonso 2	89.29%	43.57%

Evaluation: some conclusions

- A overall *percentage of correct recognition* has some meaning if:
 - The database is known and well described
 - The evaluation protocol and metrics are well described
- Comparative evaluations are very important
- But....evaluations (such as Mirex) are only an instantaneous picture of current algorithms on a given task on a given database with a given protocol...

三選家 Conclusions

■ There is a great interest in exploiting "separation" and "transcription" jointly (and this for both individual tasks)

Audio indexing technology

- …is rapidly progressing
-is supported by numerous applications
- ... still has some limitations especially for the complex case of polyphonic music.
- ... still suffers from the lack of common corpora and protocols for rigourous evaluation

■Thank you for you attention

Contact info and publications:

www.enst.fr/~grichard/

Gael.Richard@enst.fr

