Gitlab 集群现状

当前现状

35台集群搭建的主节点及一个 all in one 的geo节点

风险点

以下情况下会出现整个集群完全不可用

所属 方	组件	状况	表现形式	修复手段	预计修复时间(需要验 证)
集群内部	External HA	所有HA组件完全Down	用户完全无法访问, 一般报错为链接超时	1. 新建ha 节点并配置相关IP	1. 30min ~ 1h
	Rails	所有rails节点完全down	用户完全无法访问, 一般报错为502	1. 新建rails 节点挂载到ha上	1. 10min
	Internal HA	所有HA组件完全Down	用户完全无法访问, 一般报错为500异常	1. 新建ha 节点并配置相关IP	1. 30min ~ 1h
	Pgbouncer	所有pgbouncer组件完全 Down	用户完全无法拉取代码, 一般报错为500异常	1. 新建pgbouncer节点,添加到集群中	1. 30min ~ 2h
	PG	所有PG 故障	用户完全无法拉取代码, 一般报错为500异常	1. 新建pg节点,添加到集群中	1. 6 ~ 12h (需要做数据恢 复)
	Praefect	所有Praefect 故障	用户完全无法拉取代码, 一般报错为500异常	1. 新建raefect节点,添加到集群中	1. 30min ~ 1h

	Gitaly	所有Gitaly 故障	用户完全无法拉取代码, 一般报错为500异常	1. 新建gitaly节点,添加到集群中	1. 4d
	Sidekiq	所有Sidekiq 故障	用户合入MR缓慢,CI任务无法进行等	1. 新建sidekiq节点,添加到集群中	1. 30min ~ 1h
	Redis	所有Redis 故障	会影响Sidekiq的正常运行(猜测)	1. 新建redis节点,添加到集群中	1. 2 ~ 6h
外部依 赖	DNS	DNS 故障	DNS 故障导致用户无法解析git域名,无法访问	寻求DNSteam的帮助	Case By Case
	S3存储	存储故障	 无法运行gitlab CI 无法获取用户头像 无法获取mr diff信息 无法使用page 	寻求存储团队的帮助	Case By Case
	机房故障	所有机器无法连接	git完全瘫痪	等待机房恢复	未知
		i	V://_ CO/_		in COL

风险点测试与应急响应方案

针对上述不可用的情况,我们目前具体修复步骤与修复时间无法保证,所以需要一套测试环境来模拟各种故障情况,针对故障情况输出相关的SOP文档及快速恢复机制。

由于目前我们的集群现状只有一个单点Geo节点,当线上集群完全不可用,当前Geo节点也无法承接所有线上流量,但可以缓解重要业务线的服务,以避免业务损失,但是相关操作切换需要时间约为2h+(根据上次集群迁移情况),同时这种没有反向同步机制,所以当主集群恢复时,在geo为主的数据,一是重新让客户推送一遍,二是让geo当主,10k 集群挂载为geo,进行数据同步(此种方案可以忽略);

针对上述情况,我们有两种方案:

- 1、申请35台机器,搭建一个集群,做geo,当目前10k的主节点挂了,切换到geo集群,当10k恢复后,将10k当作geo挂载到这个geo(10k-backup)集群中;
- 2、将现有10k集群做成多机房,以免一个机房故障导致完全无法使用,需要调研;

测试环境

针对现状我们需要申请机器来做相关验证(如集群升级,上述故障现象及恢复手册,后续相关代码修改验证测试,自动化能力建设)

- 1. 申请VM机器,但Gitaly 节点存储需要超过2T,将现在的数据可以导入到其中;
- 2. 申请物理机,当我们完成测试后,可以当作GEO节点挂载到现有集群中,以防机房故障导致完全不可用;

两种机器的优缺点

VM

优点:配置可以低一些,来满足相关的功能测试,同时可以保留测试环境,方便各种测试;

缺点:无法当作GEO节点挂载到现有集群中;

物理机

优点:可以在测试完成后,挂载到集群中,当作Backup;

缺点:资源严重浪费,机房完全故障的几率较小,个人认为没有必要;