

PEA Data Science

Aprendizaje No Supervisado

MÓDULO 1

Docente: Marcos Santa Cruz Vásquez

Reglas

Se requiere **puntualidad** para un mejor desarrollo del curso.

Para una mayor concentración **mantener silenciado el micrófono** durante la sesión.

Las preguntas se realizarán **a través del cha**t y en caso de que lo requieran **podrán activar el micrófono**.

Realizar las actividades y/otareasencomendadas en los plazos determinados.

Identificarse en la sala Zoom con el primer nombre y primer apellido.

ITINERARIO

Lunes y Viernes

06:40 PM – 07:00 PM **Soporte técnico DMC**

07:00 PM - 08:30 PM **Agenda**

08:30 PM – 08:45 PM **Pausa Activa**

08:45 PM - 10:00 PM **Agenda**

Horario de Atención Área Académica y Soporte

Lunes a Viernes 09:00 am a 10:30 pm / Sábado 09:00 am a 02:00pm

Modelos más comunes

Existen múltiples modelos, siendo los más comunes

Idea de K-Means Entendiendo K-Means

Para qué sirve K-Means

Antes de K-Means

Para qué sirve K-Means

Para qué sirve K-Means

Cómo funciona

PASO 1: Elegir el número K de clusters

PASO 2: Seleccionar al azar K puntos, los baricentros (no necesariamente de nuestro dataset)

PASO 3: Asignar cada punto al baricentro más cercano

■ Esto formará los K clusters

PASO 4: Calcular y asignar el nuevo baricentro de cada cluster

PASO 5: Reasignar cada punto de los datos a su baricentro más cercano. Si ha habido nuevas asignaciones, ir al PASO 4, si no ir FIN.

El Modelo está Listo

PASO 1: Elegir el número K de clusters: K = 2

PASO 2: Seleccionar al azar K puntos, los baricentros (no necesariamente de nuestro dataset)

PASO 2: Seleccionar al azar K puntos, los baricentros (no necesariamente de nuestro dataset)

PASO 3: Asignar cada punto al baricentro más cercano clusters

Esto formará los K

Esto formará los K

PASO 4: Calcular y asignar el nuevo baricentro de cada cluster

PASO 4: Calcular y asignar el nuevo baricentro de cada cluster

PASO 5: Reasignar cada punto de los datos a su baricentro más cercano. Si ha habido nuevas asignaciones, ir al PASO 4, si no ir FIN.

PASO 5: Reasignar cada punto de los datos a su baricentro más cercano. Si ha habido nuevas asignaciones, ir al PASO 4, si no ir FIN.

PASO 4: Calcular y asignar el nuevo baricentro de cada cluster

PASO 4: Calcular y asignar el nuevo baricentro de cada cluster

PASO 5: Reasignar cada punto de los datos a su baricentro más cercano. Si ha habido nuevas asignaciones, ir al PASO 4, si no ir FIN.

PASO 5: Reasignar cada punto de los datos a su baricentro más cercano. Si ha habido nuevas asignaciones, ir al PASO 4, si no ir FIN.

PASO 4: Calcular y asignar el nuevo baricentro de cada cluster

PASO 4: Calcular y asignar el nuevo baricentro de cada cluster

PASO 5: Reasignar cada punto de los datos a su baricentro más cercano. Si ha habido nuevas asignaciones, ir al PASO 4, si no ir FIN.

PASO 5: Reasignar cada punto de los datos a su baricentro más cercano. Si ha habido nuevas asignaciones, ir al PASO 4, si no ir FIN.

PASO 4: Calcular y asignar el nuevo baricentro de cada cluster

PASO 4: Calcular y asignar el nuevo baricentro de cada cluster

PASO 5: Reasignar cada punto de los datos a su baricentro más cercano. Si ha habido nuevas asignaciones, ir al PASO 4, si no ir FIN.

FIN: El modelo está listo

FIN: El modelo está listo

PASO 2: Seleccionar al azar K puntos, los baricentros (no necesariamente de nuestro dataset)

FIN: Your Model Is Ready

Idea de K-Means Intuition: Elegir el número correcto de clusters

Elegir el número correcto de clusters

Elegir el número correcto de clusters

$$WCSS = \sum_{P_i \in Cluster \ 1} d(P_i, C_1)^2 + \sum_{P_i \in Cluster \ 2} d(P_i, C_2)^2 + \sum_{P_i \in Cluster \ 3} d(P_i, C_3)^2$$

Rebobinemos...

La técnica del codo

La técnica del codo

Idea del Clustering Jeráriquico: Cómo funciona

Cómo funciona el Clustering

<u>Jerárquico</u>

Antes del CJ

Cómo funciona el Clustering

Cómo funciona el Clustering

Igual que K-Means pero con diferente proceso

NOTA: Aglomerativo Divisitivo

PASO 1: Hacer que cada punto sea un propio cluster. Así tendremos N clusters

PASO 2: Elegir los dos puntos más cercanos y juntarlos en un único cluster → N-1 clusters

PASO 3: Elegir los dos clusters más cercanos y juntarlos en un único cluster → N - 2 clusters

PASO 4: Repetir el PASO 3 hasta solo tener un único cluster

Distancia Euclídea

Euclidean Distance between P₁ and P₂ =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Distancia entre Clusters

Distancia entre dos Clusters:

- Opción 1: Puntos más cercanos
- Opción 2: Puntos más alejados
- Opción 3: Distancia media
- Opción 4: Distancia entre sus baricentros

Consideremos el siguiente data set de N = 6 puntos

PASO 2: Elegir los dos puntos más cercanos y juntarlos en un único cluster Así nos quedan 5 clusters

PASO 3: Elegir los dos clusters más cercanos y juntarlos en un único cluster

Así tenemos 4 clusters

PASO 4: Repetir el PASO 3 hasta que quede un solo cluster

PASO 4: Repetir el PASO 3 hasta que quede un solo cluster

PASO 4: Repetir el PASO 3 hasta que quede un solo cluster

Idea del Clustering Jerárquico: ¿Cómo funcionan los dendrogramas?

VAMOS AL CÓDIGO!!