Results

August 30, 2018

1 Obtaining Estimation and Simulation Results

We now create a base instance of the model (constant discount rates). This is useful for starting other specifications

```
In [2]: sp = models.sp
       base = sp('ref')
       base.chgoption('iload','T')
Default options:
isurvival = T
iload = F
iestimate = T
data = hrs_final_ref.csv
info = info_ref.dat
includeratings = F
icomplement = T
ihetero = T
icorr = T
iunitary = F
idiscount = F
idirect = F
arf = 0.06
drc = 0.08
reprate = 0.6
ishufheter = F
ishufwages = F
iblockcomp = F
changed item iload with value F to T ...
```

We estimate parameters and simulate data post estimation

Out[3]: -2846.719602855049

In [4]: base.params

Out[4]:		par	se
	alpha_c	0.66633373417180419	5.6122670691351358E-002
	alpha_lm_cons	-3.0011251508001253	0.90449244271695561
	alpha_lm_age	0.69651389820926191	0.11056314226474352
	alpha_lm_hlim	2.9463469185950322	1.0225535662574339
	alpha_lm_college	0.35886169711893634	0.55527179177383701
	alpha_lm_male	0.44031879426277948	0.68699947514119597
	alpha_lm_job	0.20787813231521524	0.68948447312626215
	alpha_lf	0.0000000000000000	0.0000000000000000
	alpha_lm_lf	0.30981760501449634	3.8083770834153111E-002
	beta_c	0.42943333470586809	4.2108751479773922E-002
	beta_lf_cons	-1.0268780702287061	0.69129338175150190
	beta_lf_age	0.90656799405118504	0.12554348079751254
	beta_lf_hlim	2.5284402973200382	0.94499320947253129
	beta_lf_college	-0.44275407423888347	0.46670677513903536
	beta_lf_male	1.7532283661526034	0.64109115481058654
	beta_lf_job	-0.61245625259324421	0.51096473475580906
	beta_lm	0.0000000000000000	0.0000000000000000
	beta_lm_lf	0.16779176648036098	3.3464716365136843E-002
	mu	6.2343344910625103E-003	0.32768342063301836
	wageratio	0.52072685658633933	0.29421109815920543
	log_rho_m	-5.1293294387550578E-002	0.0000000000000000
	log_rho_f	-5.1293294387550578E-002	0.0000000000000000
	tau_m_0	-3.0000000000000000	0.0000000000000000
	log_tau_m	1.0000000000000000	0.000000000000000
	log_tau_m	1.0000000000000000	0.000000000000000
	log_tau_m	1.0000000000000000	0.000000000000000
	log_tau_m	1.0000000000000000	0.0000000000000000
	log_tau_m	1.0000000000000000	0.0000000000000000
	tau_f_0	-3.0000000000000000	0.0000000000000000
	log_tau_f	1.0000000000000000	0.000000000000000
	log_tau_f	1.0000000000000000	0.000000000000000
	log_tau_f	1.0000000000000000	0.000000000000000
	log_tau_f	1.0000000000000000	0.0000000000000000
	log_sig_m	0.000000000000000	0.0000000000000000
	log_sig_f	0.0000000000000000	0.0000000000000000
	L_nm_nm	5.1786890765854103	0.45632695764220993

L_nf_nm	3.7585532220113662	0.34959386488950961
L_nf_nf	0.18930154935525897	0.80190150709707797
scale_m	1.0000000000000000	0.0000000000000000
scale_f	1.0000000000000000	0.0000000000000000
scale_h	1.0000000000000000	0.0000000000000000

Here are some stats on the simulations:

In [5]: base.sim.describe()

Out[5]:	count	hhidpn 464.000000	insim 464.0	j] 464.000	prob 0000	_	ret_sim .000000	_	ret_sim .000000		eisure_m 4.000000	\	
	mean	303.915948	1.0	0.084	1052	65	.974138	63	.661638	(0.094745		
	std	174.229335	0.0	0.27	7765	4	.989771	3	. 134796	4	4.308279		
	min	1.000000	1.0	0.000		54	.000000	54	.000000	-6	9.093125		
	25%	155.750000	1.0	0.000	0000	62	.000000	62	.000000	-3	3.401245		
	50%	300.500000	1.0	0.000	0000	67	.000000	64	.000000	-(0.072925		
	75%	454.250000	1.0	0.000	0000	70	.000000	66	.000000	3	3.325566		
	max	604.000000	1.0	1.000	0000	80	.000000	78	.000000	15	5.364392		
					_		_						
		leisure_f	rage	rcol	_		hwho_m	• •	•		rhlth62	\	
	count	464.000000	464.0	464.000			000000	• •	•		.000000		
	mean	0.070270	0.0	0.44			538793	• •	•		.400431		
	std	3.133871	0.0	0.49			499031	• •			. 277485		
	min	-6.581606	0.0	0.000			000000	• •	•		.000000		
	25%	-2.461458	0.0	0.000			000000	• •			. 200000		
	50%	-0.024315	0.0	0.000			000000	• •	•		.400000		
	75%	2.391943	0.0	1.000			000000	• •			.500000		
	max	11.174369	0.0	1.000	0000	1.	000000	• •	•	1.	.000000		
		shlth62	rli	v75r	sli	v75r	rı	age	SW	age	rho	urs	\
	count	464.000000	464.00		34.00		464.000	_	164.000		464.000		`
	mean	0.395948	0.96		0.91		32.615		25.620		42.728		
	std	0.265845	0.32		0.24		35.582		60.577		10.666		
	min	0.000000	0.13		0.06		0.000		0.000		2.000		
	25%	0.200000	0.72		0.74		16.347		12.967		40.000		
	50%	0.400000	1.01		0.968		25.092		18.000		40.000		
	75%	0.500000	1.17		1.06		36.758		27.415		50.000		
	max	1.000000	1.49		1.29		365.000		916.666		80.000		
		shours	re	xpret	s	expre	t						
	count	464.000000	200.0	00000	257.0	00000	0						
	mean	35.831897	2019.1	50000 2	2019.	66926	1						
	std	12.125414	5.3	25345	5.	15724	9						
	min	1.000000	2010.0	00000	2010.0	00000	0						
	25%	30.000000	2015.0	00000	2016.0	00000	0						
	50%	40.000000	2019.0	00000	2019.	00000	0						
	75%	40.000000	2022.0	00000	2023.	00000	0						

```
max 75.000000 2040.000000 2034.000000 [8 rows x 147 columns]
```

We will now create a model that estimates discount rates

```
Default options:
isurvival = T
iload = F
iestimate = T
data = hrs_final_ref.csv
info = info_ref.dat
includeratings = F
icomplement = T
ihetero = T
icorr = T
iunitary = F
idiscount = F
idirect = F
arf = 0.06
drc = 0.08
reprate = 0.6
ishufheter = F
ishufwages = F
iblockcomp = F
```

In [6]: disc = sp('discount')

We need to flag that we want to estimate discount rates

We now estimate parameters

0+ [0] .			
Out[9]:	olmbo o	par 0.15381251390660106	se 3.6869215116319499E-002
	alpha_c		
	alpha_lm_cons	-1.6856245225335307	0.47626887892585534
	alpha_lm_age	0.43392941685436398 1.6092484441292974	6.4713050539400324E-002
	alpha_lm_hlim		0.58108601683515682
	alpha_lm_college	0.16824997567175534	0.29412243048848907
	alpha_lm_male	0.18781045293783144	0.35008985490206834
	alpha_lm_job	9.4708005159917244E-002	0.34833985097243253
	alpha_lf	0.0000000000000000	0.000000000000000
	alpha_lm_lf	0.13429416621238721	2.2565647993691720E-002
	beta_c	0.11485127235506647	3.6719465085222336E-002
	beta_lf_cons	-0.73837181779287142	0.35302862062213530
	beta_lf_age	0.47235191825346212	8.4960703057416681E-002
	beta_lf_hlim	1.4110382629231570	0.50161809249363210
	beta_lf_college	-0.19834138811438137	0.23843295986957000
	beta_lf_male	0.98612606625759591	0.35689987927312755
	beta_lf_job	-0.20854353827235886	0.25751032640971322
	beta_lm	0.000000000000000	0.0000000000000000
	beta_lm_lf	8.0452567730378247E-002	2.1847676823783656E-002
	mu	1.4218698111350370E-002	0.33004677361013668
	wageratio	0.51733841891843568	0.30799050211924672
	log_rho_m	2.9898035462288353E-002	9.8538846325579230E-003
	log_rho_f	1.8250032086581467E-002	1.2313067799274637E-002
	tau_m_0	-3.0000000000000000	0.0000000000000000
	log_tau_m	1.0000000000000000	0.0000000000000000
	tau_f_0	-3.000000000000000	0.0000000000000000
	log_tau_f	1.0000000000000000	0.0000000000000000
	log_sig_m	0.0000000000000000	0.0000000000000000
	log_sig_f	0.0000000000000000	0.0000000000000000
	L_nm_nm	2.8009577500976697	0.33090153486995239
	L_nf_nm	1.9209082908103476	0.29135905373494486
	L_nf_nf	0.19384219823655499	0.38542195318519701
	scale_m	1.0000000000000000	0.0000000000000000
	scale_f	1.0000000000000000	0.0000000000000000

Some stats again on types

In [10]: disc.sim.describe()

Out[10]:		hhidpn	insim		jprob	rovn	ret_sim	sexpret_s	rim 7	leisure_m \	
out[10].	count	464.000000	464.0	464 0)00000	_	.000000	464.000		34.000000	
	mean	303.915948	1.0		.01293		.728448	63.829		0.002458	
	std	174.229335	0.0		302042		.670523	3.130		2.323502	
	min	1.000000	1.0		000000		.000000	54.000		-4.755283	
	25%	155.750000	1.0		00000		.000000	62.0000		-1.981291	
	50%	300.500000	1.0		00000		.000000	64.0000		-0.072990	
	75%	454.250000	1.0		00000		.000000	66.0000		1.905043	
	max	604.000000	1.0		00000		.000000	80.0000		7.262594	
	max	004.000000	1.0	1.0	,00000	00	.000000	00.000	700	7.202034	
		leisure_f	rage	rco	llege		hwho_m			rhlth62 \	
	count	464.000000	464.0	464.0	00000	464.	000000		464	1.000000	
	mean	0.003629	0.0	0.4	41810	0.	538793		(.400431	
	std	1.603933	0.0	0.4	197139		499031		(.277485	
	min	-3.287411	0.0	0.0	00000		000000		(0.00000	
	25%	-1.329474	0.0	0.0	00000	0.	000000		(200000	
	50%	-0.036837	0.0	0.0	00000	1.	000000		(.400000	
	75%	1.306682	0.0		00000	1.	000000		(.500000	
	max	5.025972	0.0	1.0	00000	1.	000000		1	1.000000	
		-1-1-1-00	7 4	75	-7.4	75				1	,
		shlth62		v75r		v75r		age	swage	rhours	\
	count	464.000000	464.00		464.00		464.000 32.615		000000	464.000000	
	mean std	0.395948 0.265845	0.90			2592 5628	35.582		577724	42.728448 10.666330	
	min	0.203043	0.32			2038	0.000		000000	2.000000	
		0.200000					16.347			40.000000	
	25%	0.200000	0.72			4456 8663			967500	40.000000	
	50% 75%	0.500000	1.01 1.17			5559	25.092 36.758		115630	50.000000	
		1.000000	1.17			1550	365.000		666687	80.000000	
	max	1.000000	1.49	1040	1.29	1550	365.000	000 916.0	000001	80.000000	
		shours	re	xpret	s	expre	t				
	count	464.000000	200.0	00000	257.	00000	0				
	mean	35.831897	2019.1	50000	2019.	66926	1				
	std	12.125414	5.3	25345	5.	15724	9				
	min	1.000000	2010.0	00000	2010.	00000	0				
	25%	30.000000	2015.0	00000	2016.	00000	0				
	50%	40.000000	2019.0	00000	2019.	00000	0				
	75%	40.000000	2022.0	00000	2023.	00000	0				
	max	75.000000	2040.0	00000	2034.	00000	0				

[8 rows x 147 columns]

1.1 Robustness of Specification

We will collect a few loglikelihoods to do LR tests (Table in main text). We will also present some results in the appendix for these alternative models.

1.1.1 Model with uncorrelated types

```
In [11]: uncor = sp('nocorr')
Default options:
isurvival = T
iload = F
iestimate = T
data = hrs_final_ref.csv
info = info_ref.dat
includeratings = F
icomplement = T
ihetero = T
icorr = T
iunitary = F
idiscount = F
idirect = F
arf = 0.06
drc = 0.08
reprate = 0.6
ishufheter = F
ishufwages = F
iblockcomp = F
In [12]: uncor.chgoption('icorr', 'F')
        uncor.chgoption('idiscount','T')
        uncor.chgoption('iload','T')
changed item icorr with value T to F ...
changed item idiscount with value F to T ...
changed item iload with value F to T \dots
In [13]: uncor.estimate()
        uncor.loglike
Out[13]: -2899.3527710927633
In [14]: uncor.params
Out[14]:
                                              par
                                                                       se
        alpha_c
                              0.12731889866088533 3.0793642209440010E-002
        alpha_lm_cons
                              -1.5340243266839209
                                                       0.47945605981721146
        alpha_lm_age
                              0.39959661401166141 5.8654178709795030E-002
```

```
alpha_lm_hlim
                        1.4796758136882329
                                                 0.60728068532669932
alpha_lm_college
                       0.21884688256894691
                                                 0.29863194186991587
alpha_lm_male
                       0.22277046305399947
                                                 0.35158817513263235
alpha_lm_job
                       0.12915273291347937
                                                 0.34171748043423017
alpha lf
                        0.0000000000000000
                                                  0.0000000000000000
alpha_lm_lf
                       0.11893090796036433
                                             2.1113741139981653E-002
beta c
                   9.4144062988514118E-002
                                             3.1454041356208925E-002
beta_lf_cons
                      -0.84182049609971144
                                                 0.37781248924237981
beta_lf_age
                       0.44524137818253967
                                             8.1350730522594977E-002
beta_lf_hlim
                        1.2684062614991500
                                                 0.49471347401235893
beta_lf_college
                  -7.5722918536815828E-002
                                                 0.22820658644093911
beta_lf_male
                                                 0.33902077474246961
                       0.80703656001555546
beta_lf_job
                      -0.22046245986825083
                                                 0.26158173418095548
beta_lm
                        0.000000000000000
                                                  0.000000000000000
beta_lm_lf
                   7.5134992166190268E-002
                                             2.0575888540385206E-002
                                                 0.33514908430768803
                   9.1925408253605317E-002
mu
wageratio
                       0.39074813730495450
                                                 0.29067227658565292
log_rho_m
                   3.7794156247160038E-002
                                             9.3437135167809913E-003
log_rho_f
                   2.5829822321673510E-002
                                             1.2149064440757213E-002
tau m 0
                       -3.0000000000000000
                                                  0.0000000000000000
log_tau_m
                        1.00000000000000000
                                                  0.0000000000000000
log_tau_m
                         1.0000000000000000
                                                  0.000000000000000
log_tau_m
                         1.00000000000000000
                                                  0.0000000000000000
                         1.00000000000000000
                                                  0.000000000000000
log_tau_m
log_tau_m
                         1.00000000000000000
                                                  0.000000000000000
log_tau_m
                         1.0000000000000000
                                                  0.000000000000000
                         1.0000000000000000
                                                  0.000000000000000
log_tau_m
log_tau_m
                         1.0000000000000000
                                                  0.000000000000000
tau_f_0
                                                  0.000000000000000
                        -3.0000000000000000
log_tau_f
                         1.0000000000000000
                                                  0.000000000000000
log_tau_f
                         1.00000000000000000
                                                  0.0000000000000000
log_tau_f
                         1.0000000000000000
                                                  0.000000000000000
log_tau_f
                         1.0000000000000000
                                                  0.000000000000000
log_tau_f
                         1.0000000000000000
                                                  0.000000000000000
                                                  0.000000000000000
log tau f
                         1.0000000000000000
log_tau_f
                         1.00000000000000000
                                                  0.0000000000000000
log tau f
                         1.0000000000000000
                                                  0.000000000000000
log_sig_m
                         0.0000000000000000
                                                  0.0000000000000000
log_sig_f
                        0.000000000000000
                                                  0.000000000000000
L_nm_nm
                         2.6889485082915456
                                                 0.32260868339714660
L_nf_nm
                        0.000000000000000
                                                  0.000000000000000
L_nf_nf
                         1.7604243970895372
                                                 0.27809241139621660
scale_m
                         1.0000000000000000
                                                  0.000000000000000
scale_f
                         1.0000000000000000
                                                  0.000000000000000
scale_h
                         1.0000000000000000
                                                  0.000000000000000
```

In [15]: uncor.sim.describe()

Out[15]: hhidpn insim jprob rexpret sim sexpret sim leisure m \

```
464.000000
                                                                     464.000000
       464.000000
                    464.0
                            464.000000
                                                        464.000000
count
mean
       303.915948
                       1.0
                              0.088362
                                           65.646552
                                                         63.909483
                                                                       -0.079614
                                                                        2.043431
                       0.0
std
       174.229335
                              0.284127
                                            4.561089
                                                           2.697971
                       1.0
min
          1.000000
                              0.000000
                                           54.000000
                                                         58.000000
                                                                       -4.379481
                                           62.000000
25%
       155.750000
                       1.0
                              0.000000
                                                         62.000000
                                                                       -1.756941
50%
       300.500000
                       1.0
                              0.000000
                                           65.000000
                                                         64.000000
                                                                       -0.070071
75%
       454.250000
                       1.0
                              0.000000
                                           70.000000
                                                         65.000000
                                                                        1.500670
max
       604.000000
                       1.0
                              1.000000
                                           80.00000
                                                         80.000000
                                                                        5.754107
        leisure_f
                     rage
                              rcollege
                                             hwho_m
                                                                        rhlth62
                                                          . . .
       464.000000
                    464.0
                            464.000000
                                         464.000000
                                                                    464.000000
count
mean
         0.060195
                       0.0
                              0.441810
                                           0.538793
                                                                       0.400431
          1.103602
                       0.0
                                           0.499031
std
                              0.497139
                                                                       0.277485
                                                          . . .
min
         -2.488377
                       0.0
                              0.000000
                                           0.000000
                                                                       0.000000
                                                          . . .
25%
        -0.687988
                       0.0
                              0.000000
                                           0.00000
                                                                       0.200000
                       0.0
50%
         0.045366
                              0.000000
                                           1.000000
                                                                       0.400000
75%
          0.794043
                       0.0
                              1.000000
                                           1.000000
                                                                       0.500000
         2.775941
                       0.0
                              1.000000
                                                                       1.000000
max
                                           1.000000
           shlth62
                        rliv75r
                                     sliv75r
                                                                 swage
                                                                             rhours
                                                    rwage
                                 464.000000
count
       464.000000
                    464.000000
                                               464.000000
                                                            464.000000
                                                                         464.000000
          0.395948
                       0.962090
                                    0.912592
                                                32.615540
                                                             25.620789
                                                                          42.728448
mean
std
         0.265845
                       0.322436
                                    0.245628
                                                35.582619
                                                             60.577724
                                                                          10.666330
min
         0.000000
                       0.137999
                                    0.062038
                                                 0.000000
                                                              0.000000
                                                                           2.000000
25%
         0.200000
                       0.720568
                                    0.744456
                                                16.347501
                                                             12.967500
                                                                          40.000000
50%
         0.400000
                                    0.968663
                                                25.092495
                                                             18.000000
                                                                          40.000000
                       1.012476
                                                                          50.000000
75%
         0.500000
                       1.175370
                                    1.065559
                                                36.758401
                                                             27.415630
max
          1.000000
                       1.491040
                                    1.291550
                                               365.000000
                                                            916.666687
                                                                          80.00000
            shours
                         rexpret
                                       sexpret
       464.000000
                      200.000000
                                    257.000000
count
        35.831897
                    2019.150000
                                   2019.669261
mean
std
        12.125414
                        5.325345
                                      5.157249
min
         1.000000
                    2010.000000
                                   2010.000000
25%
        30.000000
                    2015.000000
                                   2016.000000
50%
        40.000000
                    2019.000000
                                   2019.000000
75%
         40.000000
                    2022.000000
                                   2023.000000
        75.000000
                    2040.000000
                                   2034.000000
max
```

[8 rows x 147 columns]

1.1.2 Model without Survival Risk

```
In [16]: nosurv = sp('nosurv')
Default options:
isurvival = T
iload = F
```

```
iestimate = T
data = hrs_final_ref.csv
info = info_ref.dat
includeratings = F
icomplement =
ihetero = T
icorr = T
iunitary = F
idiscount = F
idirect = F
arf = 0.06
drc = 0.08
reprate = 0.6
ishufheter =
ishufwages
iblockcomp
In [17]: nosurv.chgoption('isurvival', 'F')
        nosurv.chgoption('idiscount','T')
        nosurv.chgoption('iload','T')
changed item isurvival with value T to F
changed item idiscount with value F
                                      to T ...
changed item iload with value F to T ...
In [18]: nosurv.estimate()
        nosurv.loglike
Out[18]: -2818.120226635457
In [19]: nosurv.params
Out [19]:
                                              par
                                                                         se
        alpha c
                           5.7937437701925977E-002
                                                   1.8685959777645762E-002
         alpha_lm_cons
                               -1.5569891225270480
                                                        0.44541774572065673
         alpha_lm_age
                              0.39753938236519670
                                                   6.3788681427956087E-002
         alpha_lm_hlim
                                                        0.52879474065546739
                                1.3336471853986134
         alpha_lm_college
                              0.18752700990462692
                                                        0.26597546774532815
         alpha_lm_male
                              0.14628562356290978
                                                       0.30977343355771275
         alpha_lm_job
                              0.12593483425053939
                                                       0.31756201519433302
                               0.000000000000000
                                                        0.000000000000000
         alpha_lf
         alpha_lm_lf
                               0.10550926148941667
                                                   1.9630021307509786E-002
        beta_c
                                                   2.5578055813741288E-002
                           6.7583277293491339E-002
        beta_lf_cons
                             -0.68082625194673874
                                                        0.33382649050123009
        beta_lf_age
                              0.44117277786824077
                                                   8.1720893523168789E-002
        beta_lf_hlim
                                1.2820647657970310
                                                        0.47500928823973809
        beta_lf_college
                             -0.15853861591137058
                                                       0.22226425154498003
```

beta_lf_male	0.90430251699161335	0.32951909189810158
beta_lf_job	-0.19157453827138776	0.24123765560475949
beta_lm	0.0000000000000000	0.0000000000000000
beta_lm_lf	7.3899559015865909E-002	1.9620054787783094E-002
mu	1.3585435371352695E-002	0.32614823410856181
wageratio	0.45996365684047502	0.29604261692535994
log_rho_m	3.0342494520804571E-002	1.0385765026975080E-002
log_rho_f	1.6703383253027140E-002	1.2436078705210020E-002
tau_m_0	-3.000000000000000	0.0000000000000000
log_tau_m	1.0000000000000000	0.0000000000000000
tau_f_0	-3.000000000000000	0.0000000000000000
log_tau_f	1.0000000000000000	0.0000000000000000
log_sig_m	0.000000000000000	0.0000000000000000
log_sig_f	0.000000000000000	0.0000000000000000
L_nm_nm	2.5521059687009942	0.31077235161910743
L_nf_nm	1.8028811124829329	0.27673469133903150
L_nf_nf	0.18438574202742528	0.35149314714567520
scale_m	1.0000000000000000	0.000000000000000
scale_f	1.0000000000000000	0.000000000000000
scale_h	1.0000000000000000	0.000000000000000

In [20]: nosurv.sim.describe()

Out[20]:		hhidpn	insim	jprob	rexpret_sim	sexpret_sim	leisure_m	\
	count	464.000000 464		464.000000	464.000000	464.000000	464.000000	
	mean	303.915948	1.0	0.135776	65.659483	63.698276	-0.000398	
	std	174.229335	0.0	0.342920	4.757215	3.162195	2.121325	
	min	1.000000	1.0	0.000000	54.000000	55.000000	-4.258304	
	25%	155.750000	1.0	0.000000	62.000000	62.000000	-1.785382	
	50%	300.500000	1.0	0.000000	65.000000	63.500000	-0.073973	
	75%	454.250000	1.0	0.000000	70.000000	66.000000	1.709255	
	max 604.000000		1.0	1.000000	80.000000	80.000000	7.040929	
		leisure_f	rage	rcollege	hwho_m	• • •	rhlth62	\

count	464.000000	464.0 464.0	000000 464.	000000	464	1.000000	
mean	0.001453	0.0 0.4	441810 0.	538793		.400431	
std	1.507879	0.0 0.4	497139 0.	499031).277485	
min	-3.059676	0.0 0.0	000000 0.	000000		0.00000	
25%	-1.244012	0.0 0.0	000000 0.	000000		.200000	
50%	-0.073523	0.0 0.0	000000 1.	000000		.400000	
75%	1.216423	0.0 1.0	000000 1.	000000		.500000	
max	5.008634	0.0 1.0	000000 1.	000000	1	1.000000	
	shlth62	rliv75r	sliv75r	rwage	swage	rhours	\
count	464.000000	464.000000	464.000000	464.000000	464.000000	464.000000	
mean	0.395948	0.962090	0.912592	32.615540	25.620789	42.728448	
std	0.265845	0.322436	0.245628	35.582619	60.577724	10.666330	
min	0.000000	0.137999	0.062038	0.000000	0.000000	2.000000	
25%	0.200000	0.720568	0.744456	16.347501	12.967500	40.000000	
50%	0.400000	1.012476	0.968663	25.092495	18.000000	40.000000	
75%	0.500000	1.175370	1.065559	36.758401	27.415630	50.000000	
max	1.000000	1.491040	1.291550	365.000000	916.666687	80.000000	
	shours	rexpret	sexpre	et			
count	464.000000	200.000000	257.00000				
mean	35.831897	2019.150000	2019.66926	31			
std	12.125414	5.325345	5.15724	9			
min	1.000000	2010.000000	2010.00000	00			
25%	30.000000	2015.000000	2016.00000				
50%	40.000000	2019.000000	2019.00000				
75%	40.000000	2022.000000	2023.00000				
max	75.000000	2040.000000	2034.00000				

[8 rows x 147 columns]

1.1.3 Model without Complementarity

```
In [21]: nocomp = sp('nocomp')

Default options:
isurvival = T
iload = F
iestimate = T
data = hrs_final_ref.csv
info = info_ref.dat
includeratings = F
icomplement = T
ihetero = T
icorr = T
iunitary = F
idiscount = F
```

```
0.06
arf
drc =
       0.08
           0.6
reprate =
ishufheter
ishufwages
               F
iblockcomp
In [22]: nocomp.chgoption('idiscount','T')
         nocomp.chgoption('icomplement','F')
         nocomp.chgoption('iload','T')
changed item
              idiscount with value F
                                      to T
changed item
              icomplement with value T to F
changed item
              iload with value F to
In [23]: nocomp.estimate()
In [24]: nocomp.loglike
Out [24]: -2855.7661896271484
In [25]: nocomp.params
Out [25]:
                                                 par
                                                                           se
                            6.7684114800481102E-002
                                                      2.1125315408699219E-002
         alpha_c
                                -1.2170811179200167
         alpha_lm_cons
                                                          0.40079968589044540
         alpha_lm_age
                                0.45481435809495274
                                                      6.7766162367306010E-002
         alpha_lm_hlim
                                 1.3604653358285910
                                                          0.52278416175670195
         alpha_lm_college
                            9.3951859449528441E-002
                                                          0.25667368427848036
         alpha_lm_male
                                0.54276941604783990
                                                          0.30397804670483097
         alpha_lm_job
                                0.12313002674575364
                                                          0.30475058014360912
         alpha_lf
                                 0.000000000000000
                                                           0.000000000000000
         alpha_lm_lf
                                 0.000000000000000
                                                           0.000000000000000
         beta c
                            6.4138939825550037E-002
                                                      2.0747345557093864E-002
         beta_lf_cons
                               -0.43329039766274519
                                                          0.29745350194114933
         beta_lf_age
                                0.45705866120729566
                                                      8.0737929200789801E-002
         beta_lf_hlim
                                                          0.44742368823001244
                                 1.2415022846946957
         beta_lf_college
                               -0.18990553568380528
                                                          0.21077746783058879
         beta_lf_male
                                 1.1698775542079083
                                                          0.32330953633726717
         beta_lf_job
                               -0.15210009976387934
                                                          0.22640318484424771
                                 0.000000000000000
                                                           0.000000000000000
         beta_lm
         beta_lm_lf
                                 0.000000000000000
                                                           0.000000000000000
                           -6.3526427342565167E-002
                                                          0.32045305829599025
         wageratio
                                0.53306770597258557
                                                          0.29010031828782473
         log_rho_m
                            4.4053589133654925E-002
                                                      1.1749315117099739E-002
         log_rho_f
                            2.9382550901632078E-002
                                                      1.2279142500165945E-002
         tau_m_0
                                -3.0000000000000000
                                                           0.0000000000000000
```

log_tau_m	1.0000000000000000	0.0000000000000000
log_tau_m	1.0000000000000000	0.0000000000000000
tau_f_0	-3.000000000000000	0.0000000000000000
log_tau_f	1.0000000000000000	0.0000000000000000
log_sig_m	0.000000000000000	0.0000000000000000
log_sig_f	0.000000000000000	0.0000000000000000
L_nm_nm	2.4620823263829235	0.33736996351434723
L_nf_nm	1.7112125845760651	0.26203155150501378
L_nf_nf	0.15818941692517388	0.33801943004323448
scale_m	1.0000000000000000	0.0000000000000000
scale_f	1.0000000000000000	0.0000000000000000
scale_h	1.0000000000000000	0.0000000000000000

In [26]: nocomp.sim.describe()

Out[26]:		hhidpn	insim	jprob	rexpret_sim	sexpret_sim	leisure_m	\
	count	464.000000	464.0	464.000000	464.000000	464.000000	464.000000	
	mean	303.915948	1.0	0.116379	65.790948	64.478448	-0.006056	
	std	174.229335	0.0	0.321025	4.161617	2.939191	2.041977	
	min	1.000000	1.0	0.000000	57.000000	56.000000	-4.148323	
	25%	155.750000	1.0	0.000000	62.000000	62.000000	-1.690364	
	50%	300.500000	1.0	0.000000	66.000000	65.000000	-0.080175	
	75%	454.250000	1.0	0.000000	69.000000	67.000000	1.687099	
	max 60		1.0	1.000000	80.000000	79.000000	5.436692	
		leisure_f	rage	rcollege	${\tt hwho_m}$		rhlth62	\
	count	464.000000	464.0	464.000000	464.000000		464.000000	
	mean	-0.002523	0.0	0.441810	0.538793		0.400431	
	std	1.427030	0.0	0.497139	0.499031		0.277485	
	min	-2.877898	0.0	0.000000	0.000000		0.00000	
	25%	-1.162311	0.0	0.000000	0.000000		0.200000	
	50%	-0.075648	0.0	0.000000	1.000000		0.400000	
	75%	1.162369	0.0	1.000000	1.000000		0.500000	
	max	3.831154	0.0	1.000000	1.000000		1.000000	

```
sliv75r
          shlth62
                       rliv75r
                                                                swage
                                                                           rhours
                                                   rwage
                   464.000000
                                464.000000
                                             464.000000
count
       464.000000
                                                          464.000000
                                                                       464.000000
         0.395948
                      0.962090
                                   0.912592
                                              32.615540
                                                           25.620789
                                                                        42.728448
mean
std
                                              35.582619
         0.265845
                      0.322436
                                   0.245628
                                                           60.577724
                                                                        10.666330
min
         0.000000
                      0.137999
                                   0.062038
                                                0.000000
                                                            0.000000
                                                                         2.000000
25%
                      0.720568
         0.200000
                                   0.744456
                                              16.347501
                                                           12.967500
                                                                        40.000000
50%
         0.400000
                      1.012476
                                   0.968663
                                              25.092495
                                                           18.000000
                                                                        40.000000
75%
         0.500000
                      1.175370
                                   1.065559
                                              36.758401
                                                           27.415630
                                                                        50.000000
         1.000000
                      1.491040
                                   1.291550
                                             365.000000
                                                          916.666687
                                                                        80.00000
max
           shours
                        rexpret
                                      sexpret
                     200.000000
                                   257.000000
count
       464.000000
        35.831897
                    2019.150000
                                  2019.669261
mean
std
        12.125414
                       5.325345
                                     5.157249
min
         1.000000
                    2010.000000
                                  2010.000000
25%
        30.000000
                    2015.000000
                                  2016.000000
50%
        40.000000
                    2019.000000
                                  2019.000000
75%
        40.000000
                    2022.000000
                                  2023.000000
        75.000000
                    2040.000000
                                  2034.000000
max
```

[8 rows x 147 columns]

1.1.4 Unitary Model

```
In [27]: unitary = sp('unitary')
        unitary.chgoption('iunitary','T')
        unitary.chgoption('idiscount','T')
        unitary.chgoption('iload','T')
Default options:
isurvival = T
iload = F
iestimate = T
data = hrs_final_ref.csv
info = info ref.dat
includeratings = F
icomplement = T
ihetero = T
icorr = T
iunitary = F
idiscount = F
idirect = F
arf = 0.06
drc = 0.08
reprate = 0.6
ishufheter =
ishufwages
              F
iblockcomp =
```

```
idiscount
                         with value F
changed item
                                        to
changed item
              iload with value F to
In [28]: unitary.estimate()
         unitary.loglike
Out [28]: -2821.128273333861
In [29]: unitary.params
Out [29]:
                                0.15182406589585989
         alpha_c
                                                     3.6515442807415519E-002
         alpha_lm_cons
                                -1.6332190463212242
                                                          0.47920257905411873
         alpha_lm_age
                                0.43978975451722974
                                                     6.5674456817966145E-002
         alpha_lm_hlim
                                 1.6016682028999958
                                                          0.57991010763889972
         alpha_lm_college
                                0.18890444304578757
                                                          0.29514226604767002
         alpha_lm_male
                                                          0.35310262979713164
                                0.17241043919956345
         alpha_lm_job
                            3.1270538303150297E-002
                                                          0.35129118557519690
         alpha lf
                                 0.000000000000000
                                                           0.0000000000000000
         alpha_lm_lf
                                0.13156460331229886
                                                     2.2219316196333432E-002
         beta_c
                                0.11644184827948612
                                                     3.7494000762092340E-002
         beta_lf_cons
                               -0.76121050924083900
                                                          0.35431469034514063
         beta_lf_age
                                0.47550737984740393
                                                     8.7280864075439293E-002
         beta_lf_hlim
                                 1.3998530431902385
                                                          0.50242822559667200
         beta_lf_college
                               -0.18990389663978482
                                                          0.24037187392418863
         beta_lf_male
                                                          0.35745048652950767
                                0.95489005492934931
         beta_lf_job
                               -0.19990931749879925
                                                          0.25972725877600911
         beta lm
                                 0.0000000000000000
                                                           0.0000000000000000
         beta_lm_lf
                            8.3377570799921752E-002
                                                     2.2062729677311068E-002
                            5.4465499281290214E-002
         mıı
                                                          0.31442616883468111
         wageratio
                                 0.000000000000000
                                                           0.000000000000000
         log_rho_m
                            3.0513754669652459E-002
                                                     9.7806943730015285E-003
         log_rho_f
                            1.7548533291637688E-002
                                                     1.2426394396677639E-002
         tau m 0
                                -3.0000000000000000
                                                           0.000000000000000
         log_tau_m
                                 1.00000000000000000
                                                           0.0000000000000000
         log_tau_m
                                 1.00000000000000000
                                                           0.000000000000000
         log_tau_m
                                 1.00000000000000000
                                                           0.0000000000000000
         log_tau_m
                                 1.00000000000000000
                                                           0.000000000000000
         log_tau_m
                                 1.00000000000000000
                                                           0.000000000000000
                                 1.0000000000000000
                                                           0.0000000000000000
         log_tau_m
                                 1.00000000000000000
                                                           0.000000000000000
         log_tau_m
         log_tau_m
                                 1.00000000000000000
                                                           0.000000000000000
         tau_f_0
                                -3.0000000000000000
                                                           0.000000000000000
         log_tau_f
                                 1.00000000000000000
                                                           0.000000000000000
         log_tau_f
                                 1.00000000000000000
                                                           0.000000000000000
         log_tau_f
                                 1.00000000000000000
                                                           0.000000000000000
         log tau f
                                 1.00000000000000000
                                                           0.000000000000000
```

iunitary with value F

changed item

log_tau_f	1.0000000000000000	0.0000000000000000
log_tau_f	1.0000000000000000	0.0000000000000000
log_tau_f	1.0000000000000000	0.0000000000000000
log_tau_f	1.0000000000000000	0.0000000000000000
log_sig_m	0.000000000000000	0.0000000000000000
log_sig_f	0.000000000000000	0.0000000000000000
L_nm_nm	2.8174463204995299	0.33258627578260586
L_nf_nm	1.9342076271723192	0.29597088083342304
L_nf_nf	0.19511085082811300	0.38799314915048322
scale_m	1.0000000000000000	0.0000000000000000
scale_f	1.0000000000000000	0.0000000000000000
scale_h	1.0000000000000000	0.0000000000000000

In [30]: unitary.sim.describe()

mean

Out[30]:		hhidpn	insim		jprob	rexp	ret_sim	sexpret_sim	leisure	_m \	
	count	464.000000	464.0	464.0	000000	464	.000000	464.000000	464.00000	00	
	mean	303.915948	1.0	0.3	127155	65	.635776	63.903017	-0.00068	35	
	std	174.229335	0.0	0.3	333506	4	.632369	3.098329	2.33527	76	
	min	1.000000	1.0	0.0	000000	55	.000000	55.000000	-4.75843	35	
	25%	155.750000	1.0	0.0	000000	62	.000000	62.000000	-1.9652	14	
	50%	300.500000	1.0	0.0	000000	65	.000000	64.000000	-0.07342	20	
	75%	454.250000	1.0	0.0	000000	69	.000000	66.000000	1.90172	28	
	max	604.000000	1.0	1.0	000000	80	.000000	78.000000	7.34966	35	
		leisure_f	rage	rco	ollege		$hwho_m$		rhlth62	2 \	
	count	464.000000	464.0	464.0	000000	464.	000000		464.000000)	
	mean	0.001419	0.0	0.4	441810	0.	538793		0.400433	1	
	std	1.613392	0.0	0.4	497139	0.	499031		0.27748	5	
	min	-3.293268	0.0	0.0	000000	0.	000000		0.00000)	
	25%	-1.347942	0.0	0.0	000000	0.	000000		0.200000)	
	50%	-0.055019	0.0	0.0	000000	1.	000000		0.40000)	
	75%	1.310731	0.0	1.0	000000	1.	000000		0.500000)	
	max	5.090378	0.0	1.0	000000	1.	000000		1.000000)	
		shlth62		v75r		.v75r		-	0	hours	\
	count	464.000000	464.00	0000	464.00	0000	464.000	000 464.000	000 464.00	00000	
	mean	0.395948	0.96	2090	0.91	2592	32.615	540 25.620	789 42.72	28448	
	std	0.265845	0.32	2436	0.24	5628	35.582	619 60.577	724 10.66	66330	
	min	0.000000	0.13	7999	0.06	2038	0.000	0.000	2.00	00000	
	25%	0.200000	0.72	0568	0.74	4456	16.347	501 12.967	500 40.00	00000	
	50%	0.400000	1.01	2476	0.96	8663	25.092	495 18.000	000 40.00	00000	
	75%	0.500000	1.17	5370	1.06	5559	36.758	401 27.415	50.00	00000	
	max	1.000000	1.49	1040	1.29	1550	365.000	000 916.666	80.00	00000	
		shours		xpret		expre					
	count	464.000000	200.0	00000	257.	00000	0				

35.831897 2019.150000 2019.669261

```
min
                  1.000000 2010.000000 2010.000000
         25%
                 30.000000 2015.000000 2016.000000
         50%
                 40.000000 2019.000000 2019.000000
         75%
                 40.000000 2022.000000 2023.000000
                 75.000000 2040.000000 2034.000000
         max
         [8 rows x 147 columns]
1.1.5 Table with LR Tests
In [31]: import pandas as pd
         data = [disc.loglike,base.loglike,uncor.loglike,nocomp.loglike,unitary.loglike]
         lr = [0]
         for i in range(1,len(data)):
             lr.append(-2.0*(data[i]-data[0]))
         names = ['Baseline','Fixed Discount Rates (2)','No Correlation UH (1)','No Complements
         table = pd.DataFrame(data=list(zip(data,lr)),index=names,columns=['Loglikehood Value'
         def f(x):
             return '{:1.3f}'.format(x)
         with open('../tex/tables/lrtests.tex','w') as tf:
             tf.write(table.to_latex(formatters=[f,f]))
         table
Out[31]:
                                   Loglikehood Value LR Statistic
         Baseline
                                        -2818.344871
                                                           0.000000
         Fixed Discount Rates (2)
                                        -2846.719603
                                                          56.749464
         No Correlation UH (1)
                                        -2899.352771
                                                         162.015800
         No Complementarity (2)
                                        -2855.766190
                                                          74.842637
         Unitary (1)
                                        -2821.128273
                                                           5.566805
  Critical values at 5% for these tests:
In [32]: from scipy.stats import chi2
         [chi2(1).ppf(0.95),chi2(2).ppf(0.95)]
Out [32]: [3.8414588206941236, 5.99146454710798]
1.2 Correlation with Expected Retirement in HRS
In [33]: disc.sim['rexpret'] = disc.sim['rage_mod'] + (disc.sim['rexpret']-2011)
         disc.sim['sexpret'] = disc.sim['sage_mod'] + (disc.sim['sexpret']-2011)
In [34]: disc.sim[['rexpret', 'sexpret']].describe()
Out [34]:
                   rexpret
                               sexpret
                200.000000
                            257.000000
         count
```

5.157249

12.125414

5.325345

std

64.459144

64.870000

mean

```
std
         4.203743
                    4.221328
        54.000000
                    54.000000
min
25%
        62.000000
                    62.000000
50%
        65.000000
                    64.000000
75%
        68.000000
                    66.000000
        84.000000
                    80.000000
max
```

Correlations with simulated expected retirement age

```
In [35]: print('Males : ',disc.sim[['rexpret','rexpret_sim']].corr())
        print('Females : ',disc.sim[['sexpret','sexpret_sim']].corr())
Males
                        rexpret rexpret_sim
rexpret
             1.000000
                          0.208299
rexpret_sim 0.208299
                          1.000000
Females :
                         sexpret sexpret_sim
             1.000000
                          0.245102
sexpret
sexpret_sim 0.245102
                          1.000000
```

We will do a figure to check correlation

```
In [36]: from scipy.stats import linregress
    data = disc.sim[['rexpret_sim','rexpret']].dropna()
    x = data['rexpret_sim']
    y = data['rexpret']
    slope, intercept, r_value, p_value, std_err = linregress(x,y)
    line = slope*x+intercept
    plt.figure()
    plt.scatter(x,y,label='')
    plt.plot(x, line, 'r', label='y={:.2f}x+{:.2f}: $R^2$={:.2f}'.format(slope,intercept,intercept)
    plt.xlabel('expected retirement age (Model)')
    plt.ylabel('expected retirement age (HRS)')
    plt.legend(loc=4)
    plt.savefig('../tex/figures/match_males.eps')
    plt.show()
```



```
In [37]: from scipy.stats import linregress
    data = disc.sim[['sexpret_sim', 'sexpret']].dropna()
    x = data['sexpret_sim']
    y = data['sexpret']
    slope, intercept, r_value, p_value, std_err = linregress(x,y)
    line = slope*x+intercept
    plt.figure()
    plt.scatter(x,y,label='')
    plt.plot(x, line, 'r', label='y={:.2f}x+{:.2f}: $R^2$={:.2f}'.format(slope,intercept,intercept)
    plt.xlabel('expected retirement age (Model)')
    plt.ylabel('expected retirement age (HRS)')
    plt.legend(loc=4)
    plt.savefig('../tex/figures/match_females.eps')
    plt.show()
```


1.3 Distribution of Retirement Ages

```
In [38]: %matplotlib inline
         from scipy.stats import gaussian_kde
         from numba import jit
         import numpy as np
         x = disc.sim['rexpret_sim'].tolist()
         y = disc.sim['sexpret_sim'].tolist()
         print(disc.sim[['rexpret_sim','sexpret_sim']].describe())
         print('correlation : ', disc.sim[['rexpret_sim', 'sexpret_sim']].corr())
         X, Y = np.mgrid[60:69:10j, 60:69:10j]
         positions = np.vstack([X.ravel(), Y.ravel()])
         values = np.vstack([x, y])
         kernel = gaussian_kde(values)
         Z = np.reshape(kernel(positions).T, X.shape)
         plt.figure()
         plt.contour(X,Y,Z)
         plt.xlabel('Expected Retirement Age Husband')
         plt.ylabel('Expected Retirement Age Wife')
         plt.savefig('../tex/figures/retages.eps')
       rexpret_sim sexpret_sim
count
        464.000000
                     464.000000
         65.728448
                      63.829741
mean
          4.670523
                       3.130547
std
```

```
55.000000
                       54.000000
min
25%
         62.000000
                       62.000000
50%
         65.000000
                       64.000000
75%
         69.000000
                       66.000000
         80.000000
                       80.000000
max
correlation :
                             rexpret_sim
                                          sexpret_sim
rexpret_sim
                1.000000
                              0.741182
                0.741182
                              1.000000
sexpret_sim
```



```
In [39]: disc.sim['distance_m'] = disc.sim['rexpret_sim'] - disc.sim['rage_mod']
    disc.sim['distance_f'] = disc.sim['sexpret_sim'] - disc.sim['sage_mod']
    print(disc.sim[['distance_m', 'distance_f']].describe())
    print('correlation: ', disc.sim[['distance_m', 'distance_f']].corr())

    %matplotlib inline
    from scipy.stats import gaussian_kde
    from numba import jit
    import numpy as np
    x = disc.sim['distance_m'].tolist()
    y = disc.sim['distance_f'].tolist()

X, Y = np.mgrid[0:20:20j, 0:20:20j]
    positions = np.vstack([X.ravel(), Y.ravel()])

values = np.vstack([x, y])
```

```
kernel = gaussian_kde(values)
         Z = np.reshape(kernel(positions).T, X.shape)
         plt.figure()
         plt.contour(X,Y,Z)
         xx = np.linspace(0,20,20)
         plt.fill_between(xx, xx-1, xx+1, color='grey', alpha='0.1')
         plt.xlim([0,20])
         plt.ylim([0,20])
         plt.xlabel('Expected Distance (yrs) to Retirement Husband')
         plt.ylabel('Expected Distance (yrs) to Retirement Wife')
         plt.savefig('../tex/figures/distances.eps',dpi=600)
       distance_m distance_f
       464.000000
                   464.000000
count
         9.092672
                     8.168103
mean
         5.640990
                     4.582549
std
min
         0.000000
                     0.000000
25%
         5.000000
                     5.000000
50%
         9.000000
                     8.000000
75%
        13.000000
                    11.000000
        23.000000
                    23.000000
max
correlation:
                          distance_m distance_f
distance_m
              1.000000
                          0.766069
                          1.000000
distance_f
              0.766069
```


1.4 Joint Retirement

We will now re-rerun the discount model (baseline) with three scenarios: reshuffling heterogeneity, reshuffling wages and shutting down complementarity.

```
In [40]: wages = sp('discount')
        wages.chgoption('iload','T')
        wages.chgoption('idiscount','T')
        wages.chgoption('ishufwages','T')
        wages.estimate()
Default options:
isurvival = T
iload = F
iestimate = T
data = hrs_final_ref.csv
info = info ref.dat
includeratings = F
icomplement = T
ihetero = T
icorr = T
iunitary = F
idiscount = F
idirect = F
arf = 0.06
drc = 0.08
reprate = 0.6
ishufheter = F
ishufwages = F
iblockcomp = F
changed item iload with value F to T ...
changed item idiscount with value F to T ...
changed item ishufwages with value F to T ...
In [41]: heter = sp('discount')
        heter.chgoption('iload','T')
        heter.chgoption('idiscount','T')
        heter.chgoption('ishufheter','T')
        heter.estimate()
Default options:
isurvival = T
iload = F
iestimate = T
data = hrs_final_ref.csv
info = info_ref.dat
includeratings = F
icomplement = T
```

```
ihetero = T
icorr = T
iunitary = F
idiscount = F
idirect = F
arf = 0.06
drc = 0.08
reprate = 0.6
ishufheter = F
ishufwages = F
iblockcomp = F
changed item iload with value F to T ...
changed item idiscount with value F to T
changed item ishufheter with value F to T ...
In [46]: comp = sp('discount')
        comp.chgoption('iload','T')
        comp.chgoption('idiscount','T')
        comp.chgoption('iblockcomp','T')
        comp.estimate()
Default options:
isurvival = T
iload = F
iestimate = T
data = hrs_final_ref.csv
info = info_ref.dat
includeratings = F
icomplement = T
ihetero = T
icorr = T
iunitary = F
idiscount = F
idirect = F
arf = 0.06
drc = 0.08
reprate = 0.6
ishufheter = F
ishufwages = F
iblockcomp = F
changed item iload with value F to T ...
changed item idiscount with value F to T ...
changed item iblockcomp with value F to T ...
In [47]: specs = [disc,wages,heter,comp]
        names = ['Baseline','Shuffling Wages','Shuffling UH','No Complementarity']
```

```
data = []
plt.figure()
for i,s in enumerate(specs):
    s.sim['distance_m'] = s.sim['rexpret_sim'] - s.sim['rage_mod']
    s.sim['distance_f'] = s.sim['sexpret_sim'] - s.sim['sage_mod']
    s.sim['joint'] = np.abs(s.sim['distance_m'] - s.sim['distance_f']) <= 1.0
    s.sim['joint_yrs'] = s.sim['distance_m'] - s.sim['distance_f']
    x = s.sim['joint_yrs'].values
    x.sort()
    ff = gaussian_kde(x)
    plt.plot(x,ff(x),label=names[i])
    data.append([s.sim['rexpret_sim'].mean(),s.sim['sexpret_sim'].mean(),s.sim['joint
table = pd.DataFrame(data=data,index=names,columns=['Ret Age Males','Ret Age Females'
def f(x):
    return '{:1.3f}'.format(x)
with open('../tex/tables/joint.tex','w') as tf:
    tf.write(table.to_latex(formatters=[f,f,f]))
plt.legend(loc=2)
plt.xlabel('difference in distance to retirement')
plt.ylabel('density')
plt.xlim([-15,15])
plt.savefig('../tex/figures/compare_distances.eps')
plt.show()
table
```



```
Out [47]:
                               Ret Age Males Ret Age Females Fraction Joint
         Baseline
                                   65.728448
                                                      63.829741
                                                                        0.336207
         Shuffling Wages
                                   65.629310
                                                      63.803879
                                                                        0.368534
         Shuffling UH
                                   65.765086
                                                      63.892241
                                                                        0.176724
         No Complementarity
                                                      64.471983
                                                                        0.303879
                                   66.142241
In [48]: %matplotlib inline
         from scipy.stats import gaussian_kde
         from numba import jit
         import numpy as np
         x = comp.sim['distance_m'].tolist()
         y = comp.sim['distance_f'].tolist()
         X, Y = np.mgrid[0:20:20j, 0:20:20j]
         positions = np.vstack([X.ravel(), Y.ravel()])
         values = np.vstack([x, y])
         kernel = gaussian_kde(values)
         Z = np.reshape(kernel(positions).T, X.shape)
         plt.figure()
         plt.contour(X,Y,Z)
         xx = np.linspace(0,20,20)
         plt.fill_between(xx, xx-1, xx+1, color='grey', alpha='0.1')
         plt.xlim([0,20])
         plt.ylim([0,20])
         plt.xlabel('Expected Distance (yrs) to Retirement Husband')
         plt.ylabel('Expected Distance (yrs) to Retirement Wife')
         plt.savefig('../tex/figures/distances nocomp.eps',dpi=600)
          20.0
       Expected Distance (yrs) to Retirement Wife
          17.5
          15.0
          12.5
          10.0
           7.5
           5.0
           2.5
           0.0
              0.0
                      2.5
                                      7.5
                                             10.0
                                                     12.5
                                                             15.0
                                                                    17.5
                                                                             20.0
```

Expected Distance (yrs) to Retirement Husband

```
In [45]: disc.sim['agediff'] = disc.sim['rage_mod'] - disc.sim['sage_mod']
         print(comp.sim[['distance_m', 'distance_f']].describe())
         print(disc.sim[['distance_m', 'distance_f']].describe())
                   distance_f
       distance_m
       464.000000
                   464.000000
count
         9.810345
                      9.519397
mean
std
         5.755889
                      4.703711
min
         0.000000
                      0.000000
25%
         6.000000
                      6.000000
50%
        10.000000
                      9.000000
75%
        14.000000
                     13.000000
        24.000000
                     23.000000
max
                   distance_f
       distance_m
       464.000000
                   464.000000
count
mean
         9.092672
                      8.168103
std
         5.640990
                      4.582549
min
         0.000000
                      0.000000
25%
         5.000000
                      5.000000
50%
         9.000000
                      8.000000
        13.000000
75%
                     11.000000
max
        23.000000
                     23.000000
```

2 Policy Simulation

Finally, we have to check what happens when we do policy simulations. We will do policy simulations over two parameters, the ARF (actuarial reduction factor) and the generosity of the pension (replacement rate).

```
In []: arf = [0,0.09]
    drc = [0,0.11]
    rep = [0.4,0.8]
    factors = zip(arf,drc)
    experiments = [disc]
    for a,d in factors:
        this = sp('discount')
        this.chgoption('iload','T')
        this.chgoption('idiscount','T')
        this.chgoption('arf',a)
        this.chgoption('drc',d)
        this.estimate()
        this.sim['distance_m'] = this.sim['rexpret_sim'] - this.sim['rage_mod']
        this.sim['distance_f'] = this.sim['sexpret_sim'] - this.sim['sage_mod']
        this.sim['joint'] = np.abs(this.sim['distance_m'] - this.sim['distance_f'])<=1.0</pre>
```

```
experiments.append(this)
        for r in rep:
            this = sp('discount')
            this.chgoption('iload','T')
            this.chgoption('idiscount','T')
            this.chgoption('reprate',r)
            this.estimate()
            this.sim['distance_m'] = this.sim['rexpret_sim'] - this.sim['rage_mod']
            this.sim['distance_f'] = this.sim['sexpret_sim'] - this.sim['sage_mod']
            this.sim['joint'] = np.abs(this.sim['distance_m'] - this.sim['distance_f'])<=1.0</pre>
            experiments.append(this)
In []: data = [[e.sim['rexpret_sim'].mean(),e.sim['sexpret_sim'].mean(),e.sim['joint'].mean()]
        names = ['Baseline','No Penalty','High Penalty','Low Generosity','High Generosity']
        table = pd.DataFrame(data=data,columns=['Ret Age Males','Ret Age Females','Fraction Re
        print(table)
        def f(x):
            return '{:1.3f}'.format(x)
        with open('.../tex/tables/policy.tex','w') as tf:
            tf.write(table.to_latex(formatters=[f,f,f]))
```