

Machine Learning
Evaluation &
Supervised
Learning

Ensemble Methods

Rezki Trianto

Data guy who spent the last 7 years to work around data analytics and machine learning. Working in a unicorn company with various domain expertise to work with, from an e-commerce, OTA, and ride-hailing company.

Education Background

Hands On Required

Hands - On: 4. Ensemble Method

Klik disini untuk mengakses folder Hands On

P	Introduction: Ensemble Method	P	Stacking
ф	Bagging	, p	Hands On - Stacking
 	Hands On - Bagging	 	Explainable Al
P	Boosting	Ċ	Hands On - Shap Values
\Box	Hands On - Boosting		

	Introduction: Ensemble Method	口	Stacking
į.	Bagging	$\dot{\Box}$	Hands On - Stacking
	Hands On - Bagging	ψ.	Explainable Al
\rightarrow	Boosting	$\dot{\Box}$	Hands On - Shap Values
\Box	Hands On - Boosting		

Apa itu Ensemble Methods

Ensemble learning membantu meningkatkan performa model machine learning dengan melakukan kombinasi dari beberapa model menjadi 1 predictive model saja dengan tujuan:

- Mengurangi bias (mencegah underfitting) boosting
- Mengurangi variance(mencegah overfitting) (bagging)
- Mengurangi bias/variance dengan kombinasi algoritma yang berbeda (stacking)

Advantages & Disadvantages

Keuntungan:

- Prediksi model lebih akurat
- Model lebih stabil dan robust

Kerugian:

- Semakin sulit untuk interpretasi model untuk ditarik business insightnya
- Proses komputasi yang cukup tinggi
- Pemilihan model yang tepat untuk dilakukan ensemble cukup sulit

Simple Ensemble Method

Terdapat chart dari hasil review di apps store sebagai berikut Sebagai seorang DS, kita mau summary hasil reviewnya dengan cara:

- Majority Voting
 - a. Major Rating = 3
- 2. Average
 - a. Avg. Rating = 2.8
- 3. Weighted Average

Simple Ensemble Method

Contoh pada algoritma:

Logistic Regression	kNN	Decision Tree
0	1	1
0.4	0.5	0.6
1 (Karena mayoritas prediksi label 1)		
(0.4 + 0.5 + 0.6)/3 = 0.5 -> label 1 (karena melebihi threshold $>= 0.5$)		
(0.4 + 2*0.5 + 2*0.6)/5 = 0.52 -> label 1 (karena melebihi threshold >= 0.5)		
	0 0.4 1 (Karena mayoritas p (0.4 + 0.5 + 0.6)/3 = 0.5 (0.4 + 2*0.5 + 2*0.6)/5	0 1 0.4 0.5 1 (Karena mayoritas prediksi label 1) (0.4 + 0.5 + 0.6)/3 = 0.5 -> label 1 (karena me

	Introduction: Ensemble Method	P	Stacking
†	Bagging	¢	Hands On - Stacking
†	Hands On - Bagging		Explainable Al
 	Boosting	Ġ	Hands On - Shap Values
\Box	Hands On - Boosting		

	Introduction: Ensemble Method	P	Stacking
	Bagging	þ	Hands On - Stacking
	Hands On - Bagging	þ	Explainable AI
į.	Boosting	Ġ	Hands On - Shap Values
<u></u>	Hands On - Boosting		

Bagging

Bootstrap AGGregatING

Contoh Algoritma: Random Forest

 Random Forest terdiri dari beberapa subset decision tree yang memiliki training set berbeda pada masing-masing tree (yang di generate secara random)

Step by Step Bagging

 Langkah awalnya adalah dengan melakukan bootstrap dan membuat random sample dari training set.

Step by Step Bagging

2. Dari masing-masing sample tersebut akan dibentuk sebuah model.

Step by Step Bagging

3. Hasil prediksi dari model-model tersebut akan dikombinasikan dengan majority voting

Bagging

 Bagging dapat membantu untuk mengurangi variance error (mencegah overfitting), karena tidak terlalu terpusat menggunakan data training lengkap yang sama pada sebuah model.

	Introduction: Ensemble Method	P	Stacking
	Bagging	¢	Hands On - Stacking
 	Hands On - Bagging	ļ.	Explainable Al
ψ̈́	Boosting	Ġ	Hands On - Shap Values
占	Hands On - Boosting		

	Introduction: Ensemble Method	早	Stacking
	Bagging	†	Hands On - Stacking
	Hands On - Bagging	ψ.	Explainable Al
†	Boosting	$\dot{\Box}$	Hands On - Shap Values
	Hands On - Boosting		

Contoh Implementasi Random Forest

```
from sklearn.ensemble import RandomForestClassifier

clf = RandomForestClassifier()
clf.fit(X_train, y_train)
```


Dokumentasi sklearn Random Forest:

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

Hands On

	Introduction: Ensemble Method	P	Stacking
	Bagging	†	Hands On - Stacking
	Hands On - Bagging	ļ þ	Explainable Al
ψ̈́	Boosting	i i	Hands On - Shap Values
Ь	Hands On - Boosting		

	Introduction: Ensemble Method	早	Stacking
	Bagging	¢	Hands On - Stacking
	Hands On - Bagging	†	Explainable AI
	Boosting	$\dot{\Box}$	Hands On - Shap Values
6	Hands On - Boosting		

Boosting

Apa itu Boosting?

- Boosting menurunkan bias dengan membuat model prediksi yang lebih kuat dari sebelumnya.
- Boosting melakukan perbaikan weight dari hasil klasifikasi sebelumnya. Jika hasil prediksi tidak tepat, proses boosting mencoba meningkatkan weight dari data tersebut
- Hasil prediksi cenderung dapat lebih baik daripada bagging, namun ada kecenderungan overfitting
- Penting untuk dilakukan parameter tuning untuk menghindari overfitting

Step by step Boosting

- Dibentuk model dengan menggunakan keseluruhan data training
- Dari hasil prediksi model pertama, boosting akan memberikan weight lebih besar pada data yang diprediksi kurang tepat pada model sebelumnya
- Proses yang digunakan adalah proses iteratif dengan menambahkan algoritma baru pada data yang sudah diberi bobot hingga limit yang telah ditentukan

Contoh

- Hasil prediksi dari classifier 1 memberikan bobot yang lebih pada data yang terprediksi salah pada classifier 2, dst.
- Pada akhir proses ensemble, dilakukan majority voting

Contoh Implementasi: Adaboost

```
from sklearn.ensemble import AdaBoostClassifier
```

```
clf = AdaBoostClassifier()
clf.fit(X train, y train)
```

Dokumentasi sklearn Adaboost:

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html

XGBoost

- XGBoost melakukan perbaikan terhadap model tree yang dibangun pada iterasi sebelumnya
- Memanfaatkan konsep regularization untuk mencegah overfitting

Contoh Implementasi: XGBoost

```
from xgboost import XGBClassifier
```

```
xg = XGBClassifier()
xg.fit(X_train,y_train)
```

Dokumentasi XGBoost:

https://xgboost.readthedocs.io/en/latest/parameter.html

Algoritma lainnya

Jenis algoritma lain yang dapat kamu explore

Naive Bayes
Support Vector Machine
LightGBM
Neural Network
dll.

Introduction: Ensemble Method	P	Stacking
Bagging	¢	Hands On - Stacking
Hands On - Bagging	<u></u>	Explainable Al
Boosting	Ġ	Hands On - Shap Values
Hands On - Boosting		

Hands On

口	Stacking
ф	Hands On - Stacking
†	Explainable AI
Ġ	Hands On - Shap Values

& P	Stacking
φ	Hands On - Stacking
<u></u>	Explainable AI
Ġ	Hands On - Shap Values

Stacking

Apa itu Stacking?

- Stacking melakukan kombinasi dari banyak model klasifikasi/regresi.
- Model (level-1) awalnya dilatih pada keseluruhan train set, lalu meta-model selanjutnya (level-2) akan dilatih dari hasil prediksi model sebelumnya.

Bagaimana memilih model pada Stacking?

 There's no free lunch. Coba kombinasi model yang berbeda dengan parameter yang berbeda juga. Hingga akhirnya kita paham bahwa beberapa jenis algoritma baik dalam beberapa kasus dan bisa kita lakukan stacking.

Topik Supervised Learning: Ensemble Methods

Topik Supervised Learning: Ensemble Methods

Hands On Contoh Implementasi

```
from sklearn.ensemble import StackingClassifier
level1 = list()
level1.append(('lr', LogisticRegression()))
level1.append(('knn', KNeighborsClassifier()))
level1.append(('cart', DecisionTreeClassifier()))
level1.append(('svm', SVC()))
level1.append(('bayes', GaussianNB()))
# definisikan model level 2
level2 = LogisticRegression()
# define the stacking ensemble
model = StackingClassifier(estimators=level1, final estimator=level2,
cv=5)
# fit the model on all available data
model.fit(X train, y train)
```


Hands On

Topik Supervised Learning: Ensemble Methods

Topik Supervised Learning: Ensemble Methods

Explainable Al

Explainable AI (XAI)

Cara bagaimana manusia memahami bagaimana hasil prediksi dari sebuah model machine learning melakukan prediksi.

Grad-CAM gives you a class-discriminative visual explanation for the predictions of your CNN model.

LIME for interpret your model

Mengapa penting untuk masing-masing stakeholder?

XAI digunakan oleh masing-masing stakeholder sesuai dengan kebutuhannya: untuk memahami model lebih jelas, serta meningkatkan transparansi dan trust.

Engineers	Consumers	Regulators
Increase Understanding	Increase Trust	Increase Trust
Improve Performance	Bias & Transparency	Bias & Transparency
Create Better Algorithms	Understand Impact	Compliance
Produce Models	Reports & Analyses	Reports

Apakah model butuh di interpretasi?

Komunikasikan dengan stakeholder, jika butuh di interpretasi dan diambil keputusan dari feature importance, atau model yang black box sudah cukup?

Complexity vs. Explainability

Feature Importance salah satu XAI sederhana

Beberapa algoritma sederhana menyediakan Feature Importance untuk dipahami pengaruh dari masing-masing feature namun secara global atau menyeluruh. Bagaimana cara interpretasi per-data point?

Metode Populer untuk XAI

Beberapa metode XAI populer:

- SHAP (SHapley Additive exPlanations)
- Local interpretable model-agnostic explanations (LIME)
- Partial Dependence Plot (PDP)
- Individual Conditional Expectation (ICE)
- Feature Interaction
- Scoped Rules (Anchors)

SHAP Values (Referensi)

Secara teknis, metode Shapley Value menggunakan konsep <u>game theory</u> yang melihat bagaimana gain & cost dari masing-masing aktor dalam sebuah koalisi (dalam hal ini pengaruh dari feature dalam prediksi targetnya).

SHAP Values

```
import shap
explainer = shap.TreeExplainer(trained_model)
shap_values = explainer.shap_values(X_test)
shap.summary_plot(shap_values[1], X_test)
```

Interpretasi:

- Masing-masing data point adalah interpretasi dari masing-masing data test
- Feature total_accepted_campaign berkorelasi secara positif (merah). Semakin besar total_accepted_campaign, semakin besar shap valuenya (probabilitas untuk respon campaign)
- Semakin kecil nilai recency (biru), semakin besar probabilitas untuk respon campaign

SHAP Values - Force Plot

 $shap.force_plot(explainer.expected_value[1], shap_values[1][0:1], X_test.iloc[0,:])$

Interpretasi:

- Force plot melakukan plot terhadap pengaruh feature untuk melakukan prediksi di masing-masing data point
- Pada hasil diatas, terlihat bahwa feature yang berpengaruh terbesar adalah MntMeatProducts, total_accepted_campaign, Recency, dan Education_mapped yang mempengaruhi customer tidak respon campaign

Topik Supervised Learning: Ensemble Methods

Hands On - Bagging

Boosting

Hands On - Boosting

Hands On - Shap Values

Topik Supervised Learning: Ensemble Methods

Boosting

Hands On - Boosting

Hands On

Topik Supervised Learning: Ensemble Methods

Introduction: Ensemble Method

Bagging

Hands On - Bagging

Boosting

Hands On - Boosting

Stacking

Hands On - Stacking

Explainable Al

Hands On - Shap Values