# Karar Ağaçları

M. Sinan İyisoy

### Karar Ağacı

- Bir karar ağacı karar vermeyi desteklemek amacıyla oluşturulmuş ve karar verme algoritmasını gösteren bir yapıdır.
- Karar ağacında dallar ve bu dallara atanmış olasılık değerleri vardır.

# Karar Ağacı

Titanik yolcuları için hayatta kalma karar ağacı

sibsp = gemideki kardeş ya da eş sayısı



# Karar Ağaçları ile Öğrenme

- Karar ağaçlarının bir tahmin modeli olarak kullanıldığı bu öğrenme modeli istatistik, makine öğrenmesinde ve veri madenciliğinde sıklıkla kullanılır.
- Bir bağımlı ve birden çok sayıda bağımsız değişken vardır.
- Bağımlı değişkenin kategorik olduğu durumda classification (sınıflama) ağacı, sürekli olduğu durumda regression ağacı olarak adlandırılır.

# Karar Ağaçlarının Avantajları

- Kendiliğinden değişken seçimi ve taraması yaparak en uygun değişkenleri seçer.
- Kullanıcının veri üzerinde düzenleme yapması çoğu zaman gerekli değildir. Standartlaştırma gerektirmez, eksik verileri iyi tolere eder.
- Değişkenler arasındaki doğrusal olmayan ilişkilerden etkilenmez. Doğrusallık varsayımı yoktur.
- Yorumlaması çok kolaydır.

#### **CART**

- Classification and Regression Trees karar ağaçları için genel bir addır. İlk olarak Breiman tarafından ortaya atılmıştır.
- Karar ağaçları için kullanılan değişik yöntemler vardır. Bu yöntemlerle birden çok karar ağacı üretilir. Bu ağaçlar birlikte değerlendirilerek sonuç üretilir.

#### Yöntemler

- Bagging: train (eğitim) verisinden yerine koyarak çekilen veri ile değişik karar ağaçları elde edilir. Bu şekilde üretilmiş birden çok train verisi kullanır. (Bootstrap aggregation)
- Random forest: sınıflama oranını arttırmak için birden çok karar ağacı kullanır. Aynı zamanda rastgele elde edilmiş bir bağımsız değişken kümesini kullanır. Elde edilen tahminlerin ortalamasını ya da modunu sonuç olarak verir.

- CART için geliştirilmiş değişik algoritmalar vardır.
- ID3: C4.5 algoritmasının atası olan bu algoritma Rose Quinlan tarafından 1986'da geliştirilmiştir. Karar vermekte entropiyi kullanır.
- C4.5: Yine Quinlan tarafından 1993 yılında geliştirilmiş bir algoritmadır. Entropiyi kullanır.

- CHAID: 1980 yılında Gordon V.Kass tarafından geliştirilen bu algoritma Bonferroni düzetmeli anlamlılık testi yaparak çıkarımda bulunur.
   CHi-squared Automatic Interaction Detection
- Pratikte pazarlama alanında sıklıkla kullanılan bu yöntemle müşteri grupları seçilir ve müşteriler davranış biçimlerinin başka değişkenleri nasıl etkilediği tahmin edilir.

- MARS: Multivariate Adaptive Regression Splines 1991 yılında Jerome Friedman tarafından geliştirilmiş nonparametrik bir regresyon yöntemidir.
- Regresyon modellerinden daha esnektir.
   Anlaması ve yorumlaması daha kolaydır.

- CART: Aynı isimli algoritma.
- CRUISE: Hyunjoong Kim ve Wei-Yin Loh tarafından sınıflama için geliştirilmiş bir algoritmadır.
- QUEST: Wei-Yin Loh ve Yu-Shan Sih tarafından geliştirilmiş iki parçalı bir sınıflama algoritmasıdır.
- GUIDE: Wei-Yin Loh tarafından geliştirilmiş bir sınıflama ve regresyon ağacı algoritmasıdır.

### Karşılaştırma

# Comparison of GUIDE, QUEST, CRUISE, CART, and C4.5 classification tree algorithms

|                   | GUIDE          | QUEST      | CRUISE    | CART        | C4.5    |
|-------------------|----------------|------------|-----------|-------------|---------|
| Unbiased splits   | Yes            | Yes        | Yes       | No          | No      |
| Splits per node   | 2              | 2          | $\geq 2$  | 2           | 2       |
| Interaction       | Yes            | No         | Yes       | No          | No      |
| detection         |                |            |           |             |         |
| Importance        | Yes            | No         | No        | Yes         | No      |
| ranking           |                |            |           |             |         |
| Class priors      | Yes            | Yes        | Yes       | Yes         | No      |
| Misclassification | Yes            | Yes        | Yes       | Yes         | No      |
| costs             |                |            |           |             |         |
| Linear splits     | Yes            | Yes        | Yes       | Yes         | No      |
| Categorical       | Subsets        | Subsets    | Subsets   | Subsets     | Atoms   |
| splits            |                |            |           |             |         |
| Node models       | S, K, N        | S          | S, L      | S           | S       |
| Missing values    | Special        | Imputation | Surrogate | Surrogate   | Weights |
| Tree diagrams     | Text and LaTeX |            |           | Proprietary | Text    |
| Bagging           | Yes            | No         | No        | No          | No      |
| Forests           | Yes            | No         | No        | No          | No      |

Node models: S = simple, K = kernel, L = linear discriminant, N = nearest-neighbor.

# Regresyon Ağaçları

- Sürekli bir bağımlı değişken Y ve iki adet sürekli bağımsız değişkenin  $X_1$  ve  $X_2$  olduğu bir regresyon modelini düşünelim.
- Feature space (özellik uzayı) değişik bölgelere ayrılır. Recursive binary splitting



# Regresyon Ağaçları

 Oluşan bu 5 bölge R<sub>m</sub> için birleşik bir regresyon modeli yazılır.

$$\hat{f}(X) = \sum_{m=1}^{5} c_m I\{(X_1, X_2) \in R_m\}.$$

 Bu model aşağıdaki ağaç ile gösterilir. Sol taraf Evet, Sağ taraf Hayır.





- p bağımsız değişkenli ve bir cevap değişkenli modelimizde N adet gözlem olsun.
- M adet bölgemiz olsun  $R_1, R_2, ... R_m$ . Modelimiz her bölge için sabit bir sonuç  $c_m$  üretsin. Bu durumda  $f(x) = \sum_{m=1}^{M} c_m I(x \in R_m)$ . olur.
- Kriter olarak kareler toplamını  $\sum (y_i f(x_i))^2$  minimize etmeyi alırsak,  $c_m$  olarak  $\hat{c}_m = \text{ave}(y_i|x_i \in R_m)$ . seçmek uygundur.

- Kareler toplamını minimize eden bölge ayrımını bulmak hesaplama açısından zordur.
- j ayırma değişkeni ve s ayırma değeri olarak alındığında aşağıdaki 2 bölge edilir.

$$R_1(j,s) = \{X | X_j \le s\}$$
 and  $R_2(j,s) = \{X | X_j > s\}.$ 

Aşağıdaki şartı sağlayan j ve s yi ararız.

$$\min_{j, s} \left[ \min_{c_1} \sum_{x_i \in R_1(j, s)} (y_i - c_1)^2 + \min_{c_2} \sum_{x_i \in R_2(j, s)} (y_i - c_2)^2 \right]$$

Parantez içini minimize eden değerler

```
\hat{c}_1 = \text{ave}(y_i | x_i \in R_1(j, s)) \text{ and } \hat{c}_2 = \text{ave}(y_i | x_i \in R_2(j, s)).
```

- Tüm değerler taranarak uygun j ve s değerleri bulunur. Bulunan bu değerlere göre veri iki parçaya bölünür ve daha sonra aynı işlem bu iki parça için devam eder.
- Buradaki önemli bir soru bu işlemin nereye kadar süreceğidir?

- Burada tercih edilen bir strateji T<sub>0</sub> ağacını büyütmek için belli mininum node sayısına ulaşınca durmaktır.
- Cost-complexity prunning
- $T \subset T_0$  şeklinde bir alt ağaç olsun. Bu ağaç  $T_0$  ağacının bazı nodlarını kapatarak elde edilmiştir. Terminal nodlar m ile indekslensin ve ilgili bölge  $R_m$  olsun.

$$N_m = \#\{x_i \in R_m\},\$$

$$\hat{c}_m = \frac{1}{N_m} \sum_{x_i \in R_m} y_i,\$$

$$Q_m(T) = \frac{1}{N_m} \sum_{x_i \in R_m} (y_i - \hat{c}_m)^2,\$$

 şeklinde tanımlanınca cost complexity criterion aşağıdaki gibi olur

$$C_{\alpha}(T) = \sum_{m=1}^{|T|} N_m Q_m(T) + \alpha |T|.$$

• Burada her  $\alpha$  değerine karşılık  $C_{\alpha}$  (T) yi minimize etmek için  $T_{\alpha}$  alt ağacını bulmak gereklidir.

- α bir tuning parametresi olarak ağacın büyüklüğü ile veriye uyumu arasındaki dengeyi sağlar. Büyük α değerleri küçük ağaçlara, küçük α değerleri büyük ağaçlar üretir.
- $\alpha$  nın kestirimi 5- ya da 10- kesimli çapraz geçerlilik ile kareler toplamının minimize edilmesi ile yapılır. Sonuçta elde edilen ağacımız  $T_{\widehat{\alpha}}$  dır.

# Sınıflama Ağaçları

 Cevap değişkeni kategorik olduğunda algoritmada bazı değişiklikler yapılması gerekir. Regresyon ağacında impurity measure

$$Q_m(T) = \frac{1}{N_m} \sum_{x_i \in R_m} (y_i - \hat{c}_m)^2$$

olarak tanımlanmıştı. Şimdi ise

$$\hat{p}_{mk} = \frac{1}{N_m} \sum_{x_i \in R_m} I(y_i = k),$$

kullanılır.

# Sınıflama Ağaçları

- m nodundaki gözlemleri  $k(m) = \arg \max_k \hat{p}_{mk}$  sınıfına atarız.
- Başka impurity measure lar da vardır.

```
Misclassification error: \frac{1}{N_m} \sum_{i \in R_m} I(y_i \neq k(m)) = 1 - \hat{p}_{mk(m)}. Gini index: \sum_{k \neq k'} \hat{p}_{mk} \hat{p}_{mk'} = \sum_{k=1}^K \hat{p}_{mk} (1 - \hat{p}_{mk}). Cross-entropy or deviance: -\sum_{k=1}^K \hat{p}_{mk} \log \hat{p}_{mk}.
```

 Bu üç ölçü de birbirine benzerdir. Ama Gini index ve cross-entropy ölçüsü türevlenebilir olduğu için nümerik optimizasyona daha uygundur.