

Key Questions?

PROBLEM STATEMENT

PROJECT GOALS

. . . .

. . . .

Sales Orders Trend

Analyse datasets
Time series perspective

0

Forecasting Model

Test and build model to forecast sales demand for next 2 months

Forecast App

Forecast and visualize time-series data

METHODOLOGY

Overview of trends Time-series plots

0

Stationary Test Time-Series models (4) Hyperparameter Tuning Model Selection

EDA

& Feature Engineering

Modeling

Resampling to Day Transforming Data (4) Forecating model + Streamlit

Model Deploy

Data Preparation

Null values. Duplicates, Merging

Olist E-Commerce Dataset 100K+ rows, 40 columns

Payment Records

Types, Method, Time

Sellers Records +

IDs, Geolocation

Orders Records

Timestamp of Purchase, Approval, Delivered, Received, Estimated

Customers Records +

IDs, Geolocation

Orders_Items

IDs, Time

Products Records

Product categories, IDs, Descriptions, Size

02 EDA & FEATURE ENGINEERING

•

E-Commerce Purchase Order Statistic

E-Commerce Sales Trends in Brazil

Comparison between 2017 and 2018

26013 orders registered in 2017 between January and August

61632

orders registered in 2018 between January and August

+142%

E-commerce Evolution in Brazil by Location

Customers Distribution in Brazil

Timeframe: Jan-Aug 2018 *red region – high concentration

Product price and freight over time

Obvious outliers: 24 Nov 2017 – Black Friday Daily,
Weekly,
and Monthly
Products Sold
with Rolling
Means

Top 10 Product Categories Share of Monthly Products Sold

^{*}Furniture_decor's monthly share drops early 2017

^{*}Computer_accessories' monthly share spikes in March 2018

PRE-PROCESSING & MODELLING

Time Series Model Preprocessing

N	Α	В	С
1		order_purchase_timestamp	order_id
2	0	2/10/2017 10:56	e481f51cbdc54
3	1	24/7/2018 20:41	53cdb2fc8bc7do
4	2	8/8/2018 8:38	47770eb9100c2
5	3	18/11/2017 19:28	949d5b44dbf5d
6	4	13/2/2018 21:18	ad21c59c0840e
7	5	9/7/2017 21:57	a4591c265e18c
8	6	11/4/2017 12:22	136cce7faa42fd

A	Α	В
1	ds	у
2	1/1/2017	0
3	2/1/2017	0
4	3/1/2017	0
5	4/1/2017	0
6	5/1/2017	32
7	6/1/2017	4
8	7/1/2017	5

Original Data

Sequence does matter!

Processed data

Seasonal Decomposition

Observations:

Inconsistent trends

 Strong weekly seasonality

Noisy Residual

PRE-PROCESSING & MODELLING

Tested 16 models
*5-fold cross validation

(HWES)

Performance Metrics

Root Mean Square Error (RMSE)

$$RMSE = \sqrt{\sum_{i=1}^{n} \frac{(\hat{y}_i - y_i)^2}{n}}$$

- Average distance from the predicted value (magnitude of error)
- The lower RMSE, the better model performance.
- Scale dependent of Y
- Heavily affected by outliers

Symmetric Mean Absolute Percentage error (SMAPE)

$$ext{SMAPE} = rac{100\%}{n} \sum_{t=1}^{n} rac{|F_t - A_t|}{(|A_t| + |F_t|)/2}$$

where A_t is the actual value and F_t is the forecast value.

- Fixed the shortcoming of original MAPE when value is as small as o
- The lower %, the better model performance
- If underpredict, the % is higher

EVALUATION

MODEL UNDERSTANDING – Exponential Smoothing + STL

Data: STL transformed data (remove seasonalities).

Model: Holt-Winters/ Triple Exponential Smoothing (for univariate data)

O

- explicitly uses weight averages of past observations.
- weights decaying exponentially as the observations get older.

$$\hat{y}_{t+h|t} = \ell_t + hb_t + s_{t+h-m(k+1)}$$
Future Level Smoothing (γ)
Forecast Smoothing (γ)

Pipeline: Grid search over the parameters (smallest RMSE).

2-Month FORECAST

Forecast upward trend rather than original data

News about Olist being backed by investment and its expansion.

- source: https://www.bloomberg.com/news/articles/2020-12-21/softbank-backed-olist-buys-brazil-logistics-firm-in-online-push
- https://www.reuters.com/technology/goldman-sachs-redpoint-finance-new-round-brazils-olist-2021-04-15/

LIMITATIONS

- 1) The selected models are Univariate only.
- No exogenous variables added (holidays, product nature, geolocation, etc).
- 3) Yet to test on other advanced tsforecasting models
- 4) Limited data (2017-01-01 to 2018-08-17).

0

RECOMMENDATION

- Businesses manage more aspects of the supply chain, reduces 10% lower weekly error
- 2) Or consider expanding vendor-managed inventory programs and leveraging such data
- 3) Practice more proactive demand forecas (i.e. both historical data & external factors)
- Storesellers examine product category(le
 on a national level.. taking in economic is
 (e.g. employment and cost of living)

LIMITATIONS

- The selected models are Univariate only
- 2) No exogenous variables added (holidays product nature, geolocation, etc).
- 3) Yet to test on other advanced tsforecasting models
- 4) The current complete data available is only from 2017-01-01 to 2018-08-17.

0

RECOMMENDATION

- Businesses increase aspects of the supply chain, reduces 10% lower weekly error*.
- Expanding vendor-managed inventory programs and leveraging data
- 3) Practice more proactive demand forecasting (both historical data & external factors.)
- Store-sellers examine product categories on a national level, taking in economic factors (employment and cost of living)

0

DEPLOYMENT

User Input

Upload a tablular file in correct format (contains time & target column):

A	Α	В
1	ds	у
2	1/1/2017	0
3	2/1/2017	0
4	3/1/2017	0

Select forecast horizon (0-365)

Process

Streamlit processes and analyzes data seamlessly.

It loads and fits the model with data given.

Output

Visualization through plots and tables are shown.

Forecast were generated and can be downloaded.

Streamlit Demo

Steps:

- 1. Import Data
- 2. Select Forecast Horizon

- 3. Visualize Forecast Data
- 4. Download the Forecast

CONCLUSIONS

- Enables sales team to set realistic short-term goal which leads to securing of sales.
- Enables data-driven inventory management.
 - Enables budget planning optimization
- Enables better customer segmentation profiling.

 \bigcirc

)

THANKS!

Do you have any questions?

https://github.com/ Janet-THY

janettinghy@gmail..com

0

CREDITS: This presentation template was created by <u>Slidesgo</u>, including icons by <u>Flaticon</u>, infographics & images by <u>Freepik</u>