<u>DNA</u> is a nucleic acid present in the bodies of living things. Each piece of DNA contains a number of genes, some of which are beneficial and increase the DNA's total health. Each gene has a health value, and the total health of a DNA is the sum of the health values of all the beneficial genes that occur as a substring in the DNA. We represent genes and DNA as non-empty strings of lowercase English alphabetic letters, and the same gene may appear multiple times as a susbtring of a DNA.

Given the following:

- An array of beneficial gene strings, $genes = [g_0, g_1, \dots, g_{n-1}]$. Note that these gene sequences are *not* guaranteed to be distinct.
- An array of gene health values, $health = [h_0, h_1, \ldots, h_{n-1}]$, where each h_i is the health value for gene q_i .
- A set of s DNA strands where the definition of each strand has three components, start, end, and d, where string d is a DNA for which genes $g_{start}, \ldots, g_{end}$ are healthy.

Find and print the respective total healths of the unhealthiest (minimum total health) and healthiest (maximum total health) strands of DNA as two space-separated values on a single line.

Input Format

The first line contains an integer, n, denoting the total number of genes.

The second line contains n space-separated strings describing the respective values of $g_0, g_1, \ldots, g_{n-1}$ (i.e., the elements of *genes*).

The third line contains n space-separated integers describing the respective values of $h_0, h_1, \ldots, h_{n-1}$ (i.e., the elements of *health*).

The fourth line contains an integer, \boldsymbol{s} , denoting the number of strands of DNA to process. Each of the s subsequent lines describes a DNA strand in the form start end d, denoting that the healthy genes for DNA strand d are $g_{start}, \ldots, g_{end}$ and their respective correlated health values are $h_{start}, \ldots, h_{end}$.

Constraints

- $1 \le n, s \le 10^5$
- $egin{array}{ll} & 0 \leq h_i \leq 10^7 \ ullet 0 \leq first \leq last < n \end{array}$
- $1 \le$ the sum of the lengths of all genes and DNA strands $\le 2 \times 10^6$
- It is guaranteed that each g_i consists of lowercase English alphabetic letters only (i.e., a to z).

Output Format

Print two space-separated integers describing the respective total health of the unhealthiest and the healthiest strands of DNA.

Sample Input 0

```
a b c aa d b
1 2 3 4 5 6
1 5 caaab
0 4 xyz
2 4 bcdybc
```

Sample Output 0

0 19

Explanation 0

In the diagrams below, the ranges of beneficial genes for a specific DNA on the left are highlighed in green and individual instances of beneficial genes on the right are bolded. The total healths of the s=3 strands are:

d = caaab, first = 1, last = 5												
indices	0	1	2	3	4	5]					
genes	a	b	С	aa	d	b	gene	caaab	c aa ab	ca aa b	caaa b	caaa b
health	1	2	3	4	5	6	value	3	4	4	2	6

The total health of caaab is 3+4+4+2+6=19.

1.

3.

	d	= xyz,	first =	O, last	= 4		
0	1	2	3	4	5] ,	
а	b	С	aa	d	b	gene	xyz
1	2	3	4	5	6	value	0
	0 a 1	0 1	0 1 2	0 1 2 3	0 1 2 3 4	a b c aa d b	0 1 2 3 4 5 a b c aa d b gene

2. The total health of xyz is $\mathbf{0}$, because it contains no beneficial genes.

d = bcdybc, first = 2, last = 4												
indices	0	1	2	3	4	5						
genes	а	b	С	aa	d	b	gene	b c dybc	bc d ybc	bcdyb c		
health	1	2	3	4	5	6	value	3	5	3		

The total health of bodybo is 3+5+3=11.

The unhealthiest DNA strand is xyz with a total health of $\bf 0$, and the healthiest DNA strand is caaab with a total health of $\bf 19$. Thus, we print 0 19 as our answer.