CLAIMS

What is claimed is:

1	1.	A composite ring for coupling a disk to a spindle, comprising:
2		a upper layer constructed of a material having a Young's modulus greater than or
3		equal to a primary material of the disk; and
4		a lower layer fixedly coupled to the upper layer and constructed of a material
5		having similar properties to that of the disk, the properties being selected
6		from a group consisting of a coefficient of thermal expansion, thermal
7		conductivity and Young's modulus.
1	2.	A composite ring as recited in claim 1, wherein the upper layer has a Young's
2		modulus between about 20 to about 250 GPa.
1	3.	A composite ring as recited in claim 1, wherein the upper layer has a Young's
2		modulus of between about 60 to about 300 GPa.
1	4.	A composite ring as recited in claim 1, wherein the upper layer is constructed of a
2		material selected from a group consisting of chrome, titanium, nickel, stainless
3		steel and composites thereof.

- 1 5. A composite ring as recited in claim 1, wherein the lower layer has a thermal 2 expansion of between about 1 and 25 $(10^{-6}/C)$. 1 6. A composite ring as recited in claim 1, wherein the lower layer is constructed of a 2 material selected from a group consisting of aluminum and glass. 1 7. A composite ring as recited in claim 1, further comprising a middle layer fixedly 2 coupled between the upper and lower layers. 1 8. A composite ring as recited in claim 1, wherein the layers are coupled together via 2 mechanical bonding. 1 9. A composite ring as recited in claim 1, wherein the layers are coupled together by 2 an adhesive. 1 10. A composite ring as recited in claim 1, wherein the layers are coupled together at 2 a molecular level. 1 11. A composite ring as recited in claim 1, wherein a ratio of a modulus of the upper 2 layer to a modulus of the lower layer is between about 1 and 5.

A composite ring for coupling a disk to a spindle, comprising:

1

12.

2		a upper layer constructed of a material having a Young's modulus greater than or
3		equal to a primary material of the disk; and
4		a lower layer fixedly coupled to the upper layer and constructed of a material
5		having similar properties to that of the disk, the properties being selected
6		from a group consisting of a coefficient of thermal expansion wherein the
7		upper layer has a hardness of greater than about 20 kg/mm ² ;
8		wherein the upper layer has a modulus of greater than about 60 GPa.
1	13.	A composite ring as recited in claim 12, wherein the upper layer is constructed of
2		a material selected from a group consisting of chrome, titanium, nickel, stainless
3		steel and composites thereof.
1	14.	A composite ring as recited in claim 12, wherein the lower layer has a thermal
2		expansion between about 1 and 25 (10 ⁻⁶ /C).
1	15.	A composite ring as recited in claim 12, wherein the lower layer is constructed of
2		a material selected from a group consisting of aluminum and glass.
1	16.	A composite ring as recited in claim 12, further comprising a middle layer fixedly
2		coupled between the upper and lower layers.
1	17.	A composite ring as recited in claim 12, wherein the layers are coupled together
2		via mechanical bonding.

HIT1P033/HSJ9-2003-0158US1

1	18.	A composite ring as recited in claim 12, wherein the layers are coupled together
2		by an adhesive.
1	19.	A composite ring as recited in claim 12, wherein the layers are coupled together at
2		a molecular level.
1	20.	A composite ring as recited in claim 12, wherein a ratio of a modulus of the upper
2		layer to a modulus of the lower layer is between about 1 and 5.
1	21.	A composite ring for coupling a disk to a spindle, comprising:
2		a upper layer; and
3		a lower layer fixedly coupled to the upper layer and constructed of a material
4		having similar properties to that of the disk, the properties being selected
5		from a group consisting of a coefficient of thermal expansion and thermal
6		conductivity;
7		wherein the upper layer has a Young's modulus greater than that of a primary
8		material of the disk;
9		wherein a ratio of the modulus of the upper layer to a modulus of the lower layer
10		is between about 1 and 5.
1	22.	A composite ring as recited in claim 21, wherein the lower layer has a thermal
2		expansion between about 1 and 25 $(10^{-6}/C)$.

HIT1P033/HSJ9-2003-0158US1

1	23.	A composite ring as recited in claim 21, wherein the lower layer is constructed of
2		a material selected from a group consisting of aluminum and glass.
1	24.	A composite ring as recited in claim 21, further comprising a middle layer fixedly
2		coupled between the upper and lower layers.
1	25.	A magnetic storage system, comprising:
2		magnetic media coupled to a spindle using the composite ring of claim 1;
3		at least one head for reading from and writing to the magnetic media, each head
4		having:
5		a sensor;
6		a write element coupled to the sensor;

a control unit coupled to the head for controlling operation of the head.

a slider for supporting the head; and

7

8