ORBITOPE PRESENTATION OUTLINE

SEAN RICHARDSON

1. Intro

/*give outline, some examples of orbitopes, etc.*/

2. Ingredients to Make an Orbitope

/*on small piece of paper so can carry it around*/

- INGREDIENTS:
- (1) A compact group G
- (2) A real vector space V
- (3) A group action acting linearly on the V.S $\rho: G \times V \to V$
- (4) An element of the V.S. x

STEPS:

Consider the orbit S of x by G with ρ . An orbitope is the convex hull of S. Don't need to be comfortable with everything now...

- 3. Example of a Diamond
- (1) $G = Z_4 = \langle r \rangle$ (2) $V = \mathbb{R}^2$
- (3) $(r, v) \mapsto /* rotation by \pi/2 counter clockwise*/$
- $(4) \ \dot{x} = (0,1)^T$

Show S with picture

show orbitope with separate picture

4. Octagon Example?

/*todo*/

5. Octahedron Example

/*simplify construction*/

- 6. A LITTLE REPRESENTATION THEORY?
 - 7. Convex Geometry

/*definition of convex as smallest convex set*/ add picture

/*definition of convex hull*/

add picture

/*Show Intersection gives existence and uniqueness*/

- 8. Return to Definition of an Orbitope
- 9. EVERY PLATONIC SOLID IS AN ORBITOPE

/*outline proof*/

10. Some More Convex Geometry

/*alternative definition of convex hull*/ /*Caratheodory's theorem and intuition*/

- 11. Application: Protein Folding Problem
- 11.1. Background and The Question.
- 11.2. Measurements an What we Know.
- 11.3. As a Mathematical Inverse Problem.
- 11.4. Construction of Orbitope.
- 11.5. What We Learn from the Orbitope.