

FIGURE 4.32 Forecasts for the liquor store sales for 2004 using the multiplicative model.

where significantly higher than anticipated counts of influenza-like illness might signal a potential bioterrorism attack.

As an example of such syndromic data, Fricker (2013) describes daily counts of respiratory and gastrointestinal complaints for more than 2 \(^1/_2\) years at several hospitals in a large metropolitan area. Table 4.12 presents the respiratory count data from one of these hospitals. There are 980 observations. Fifty observations were missing from the original data set. The missing values were replaced with the last value that was observed on the same day of the week. This type of data imputation is a variation of "Hot Deck Imputation" discussed in Section 1.4.3 and in Fricker (2013). It is also sometimes called last observation (or Value) carried forward (LOCF). For additional discussion see the web site: http://missingdata.lshtm.ac.uk/.

Figure 4.33 is a time series plot of the respiratory syndrome count data in Table 4.12. This plot was constructed using the Graph Builder feature in JMP. This software package overlays a smoothed curve on the data. The curve is fitted using **locally weighted regression**, often called **loess**. This is a variation of kernel regression that uses a weighted average of the data in a local neighborhood around a specific location to determine the value to plot at that location. Loess usually uses either first-order linear regression or a quadratic regression model for the weighted least squares fit. For more information on kernel regression and loess see Montgomery, et al. (2012).

TABLE 4.12 Counts of Respiratory Complaints at a Metropolitan Hospital

Count	29	56	36	31	25	31	32	30	31	29	30	35	24	27	22	33	29	37	29	32	27	22	33
Day	901	902	903	904	905	906	907	806	606	910	911	912	913	914	915	916	917	913	919	920	921	922	923
Count	41	50	42	99	36	51	40	29	61	42	99	09	38	52	32	43	54	36	51	57	48	70	48
Day	801	802	803	804	805	306	807	808	809	810	811	812	813	814	815	816	817	818	819	820	821	822	823
Count	19	12	17	22	20	22	21	24	16	14	14	30	24	25	17	27	25	14	25	25	26	20	21
Day	701	702	703	704	705	902	707	708	709	710	711	712	713	714	715	716	717	718	719	720	721	722	723
Count	26	31	23	24	27	24	31	29	36	31	30	27	27	25	34	33	36	26	20	27	25	36	30
Day	601	602	603	604	605	909	209	809	609	610	611	612	613	614	615	616	617	618	619	620	621	622	623
Count	35	27	33	30	30	29	30	22	40	40	41	34	30	33	17	32	40	30	27	30	38	22	27
Day	501	502	503	504	505	909	507	508	509	510	511	512	513	514	515	516	517	518	519	520	521	522	523
Count	28	56	28	29	33	36	62	31	30	31	27	35	45	37	23	31	33	27	28	46	39	53	33
Day	401	402	403	404	405	406	407	403	409	410	411	412	413	414	415	416	417	418	419	420	421	422	423
Count	12	16	24	21	14	15	23	10	16	11	16	16	12	23	10	15	11	17	13	14	20	10	15
Day	301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	315	317	318	319	320	321	322	323
Count	31	23	13	18	36	23	22	23	56	22	21	25	20	18	56	32	41	30	34	38	22	35	36
Day	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223
Count	30	21	32	32	43	25	32	31	33	40	37	34	29	50	27	28	23	27	27	41	59	56	28
Day	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123
Count Day	17	29	31	34	18	43	34	23	23	39	25	15	29	20	21	22	24	19	28	29	26	22	21
Day	_	2	3	4	5	9	7	∞	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23

TABLE 4.12 (Continued)

Count	53	37	29	20	13	27	23	17	56	23	27	28	21	20	25	30	13	19	20	27	14	21	32	18	25
Day	924	925	976	927	928	929	930	931	932	933	934	935	936	937	938	939	940	941	942	943	944	945	946	947	948
Count	54	36	51	52	48	70	48	57	38	4	34	50	39	65	55	46	57	43	20	39	55	38	29	32	27
Day	824	825	826	827	828	829	830	831	832	833	834	835	836	837	838	839	840	841	842	843	844	845	846	347	848
Count	29	16	24	42	44	34	33	26	29	33	34	42	43	33	31	30	35	34	43	21	42	30	29	29	41
Day	724	725	726	727	728	729	730	731	732	733	734	735	736	737	738	739	740	741	742	743	744	745	746	747	748
Count	39	26	20	27	36	43	46	33	26	33	24	23	51	35	26	32	29	24	18	36	15	33	21	25	25
Day	624	625	626	627	628	629	630	631	632	633	634	635	989	637	638	639	640	641	642	643	449	645	646	647	648
Count	19	19	33	45	34	27	31	19	22	23	13	56	13	20	20	23	17	31	21	56	20	21	25	35	24
Day	524	525	526	527	528	529	530	531	532	533	534	535	536	537	538	539	540	541	542	543	544	545	546	547	548
Count	32	45	21	47	23	39	32	27	29	37	32	28	42	33	36	25	19	34	34	33	56	43	31	30	41
Day	424	425	426	427	423	429	430	431	432	433	434	435	436	437	438	439	440	441	442	443	444	445	446	447	448
Count	14	9	17	17	17	23	6	21	13	13	14	25	15	18	21	18	12	10	10	17	12	24	22	14	14
Day	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340	341	342	343	344	345	345	347	348
Count	37	27	23	31	39	39	31	43	35	41	24	39	4	35	30	29	13	23	19	24	19	27	20	19	28
Day	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248
Count	30	49	43	27	32	13	56	34	27	33	42	59	56	59	28	35	33	38	23	28	23	31	59	24	22
Day	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148
Count	29	25	20	20	29	29	32	16	25	20	22	27	32	23	31	22	21	27	37	28	41	45	40	32	45
Day	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48

22 949 23 950 25 951 19 952 29 953 30 956 30 957 24 958 33 959 29 960 27 963 30 965 23 966 25 967 23 968	870 26 871 29	22 16	52 56
22	870 871		
		872 873	4 10
849 850 851 852 853 853 854 855 855 856 860 861 865 865 865 865 865 865 865 865 865 865	0		87.
2 6 2 8 8 3 3 4 4 5 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	ñ ñ	28 3	24
749 750 751 752 753 754 755 757 757 760 760 761 762 763 764 765 765 766 766	771	772	774
19	16	22 13	19 23
649 650 651 653 654 655 656 660 660 660 660 660 660 660 660	671	672	674 675
25 27 33 33 33 33 33 33 33 33 33 33 33 33 33	33 27	33	30
549 550 551 552 553 553 554 555 560 560 560 560 560 560 560 560 560	570 571	572 573	574 575
51 2 2 3 3 4 6 4 0 4 6 7 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	18 21	35	33
449 450 451 452 453 454 455 460 460 461 464 465 465 466 467 467 468 469 460 460 461 461 462 463 463 464 463 463 463 463 463 463 463	471	472	474 475
9 6 1 1 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	35	4 4 5	33 32
349 350 351 352 353 353 355 357 357 360 360 361 365 365 366 367 368 368 368 368 368 368 368 368 368 368	371	372	374 375
20 5 5 5 5 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	20	20 5	13
249 250 251 252 253 253 254 255 255 256 260 260 260 260 266 266 266 266 266 26	270 271	272 273	274 275
3	31	34	37
149 150 151 152 153 153 154 155 156 160 160 161 163 164 165 165 165 166 167 167 167 167 167 167 167 167 167	171	172	174
84	37	36	49 4C
50 50 50 50 50 50 50 50 50 60 60 60 60 60 60 60 60 60 60 60 60 60	71	72	74 75

TABLE 4.12 (Continued)

ınt -	6	7	~	,	~																				
Count	7	7	18	7	73																				
Day	926	977	878	979	086																				
Count	25	24	29	34	35	56	39	31	26	24	31	24	29	26	45	36	29	22	31	38	36	33	34	34	25
Day	928	877	878	879	880	881	882	883	884	885	988	887	888	688	890	891	892	893	894	895	968	897	868	668	006
Count	37	44	39	37	35	32	41	41	51	43	35	33	33	31	43	45	43	42	36	34	30	46	54	52	39
Day	922	777	778	779	780	781	782	783	784	785	786	787	788	789	790	791	792	793	794	795	962	797	262	799	800
Count	14	16	10	14	13	15	15	11	11	18	16	18	15	16	11	11	23	20	18	24	14	22	16	56	17
Day	929	<i>LL</i> 9	829	629	089	681	682	683	634	685	989	289	889	689	069	691	692	693	694	695	969	<i>L</i> 69	869	669	700
Count	33	56	56	23	24	32	24	32	41	56	28	25	29	40	34	41	37	36	56	42	40	34	41	37	36
Day	576	277	578	579	580	581	582	583	584	585	989	587	588	589	590	591	592	593	594	595	969	597	869	599	009
Count	35	20	36	34	35	36	59	19	36	35	31	23	31	59	4	42	31	31	24	30	56	56	39	35	34
Day	476	477	478	479	480	481	482	483	484	485	486	487	488	489	490	491	492	493	494	495	496	497	498	499	200
Count	28	42	27	25	32	27	35	26	32	42	38	36	26	26	24	30	32	14	27	26	25	23	27	36	40
Day	376	377	378	379	380	381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	368	397	398	399	400
Count	29	16	18	32	32	19	24	18	20	20	20	24	15	22	16	14	17	15	8	23	17	13	15	15	13
Day	276	277	278	279	280	281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300
Count	32	36	42	31	28	35	36	35	32	56	29	25	23	29	29	56	18	19	17	22	25	33	10	25	25
Day	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
Count	65	49	49	34	33	29	32	57	43	40	46	33	30	41	38	29	41	28	47	42	34	40	35	40	24
Day	92	77	78	79	80	81	82	83	84	85	98	87	88	68	06	91	92	93	94	95	96	26	86	66	100

FIGURE 4.33 Time series plot of daily respiratory syndrome count, with kernel-smoothed fitted line. ($\alpha = 0.1$).

Over the $2^{-1}/_2$ year period, the daily counts of the respiratory syndrome appear to follow a weak seasonal pattern, with the highest peak in November–December (late fall), a secondary peak in March–April, and then decreasing to the lowest counts in June–August (summer). The amplitude, or range within a year, seems to vary, but counts do not appear to be increasing or decreasing over time.

Not immediately evident from the time series plots is a potential day effect. The box plots of the residuals from the loess smoothed line in Figure 4.33 are plotted in Figure 4.34 versus day of the week. These plots exhibit variation that indicates slightly higher-than-expected counts on Monday and slightly lower-than-expected counts on Thursday, Friday, and Saturday.

The exponential smoothing procedure in JMP was applied to the respiratory syndrome data. The results of first-order or simple exponential smoothing are summarized in Table 4.13 and Figure 4.35, which plots only the last 100 observations along with the smoothed values. JMP reported the value of the smoothing constant that produced the minimum value of the error sum of squares as $\lambda = 0.21$. This value also minimizes the AIC and BIC criteria, and results in the smallest values of the mean absolute

FIGURE 4.34 Box plots of residuals from the kernel-smoothed line fit to daily respiratory syndrome count.

prediction error and the mean absolute, although there is very little difference between the optimal value of $\lambda = 0.21$ and the values $\lambda = 0.1$ and $\lambda = 0.4$.

The results of using second-order exponential smoothing are summarized in Table 4.14 and illustrated graphically for the last 100 observations in Figure 4.36. There is not a lot of difference between the two procedures, although the optimal first-order smoother does perform slightly better and the larger smoothing parameters in the double smoother perform more poorly.

Single and double exponential smoothing do not account for the apparent mild seasonality observed in the original time series plot of the data.

TABLE 4.13 First-Order Simple Exponential Smoothing Applied to the Respiratory Data

Model	Variance	AIC	BIC	MAPE	MAE
First-Order Exponential (min SSE, $\lambda = 0.21$)	52.66	6660.81	6665.70	21.43	5.67
First-Order Exponential ($\lambda = 0.1$) First-Order Exponential ($\lambda = 0.4$)	55.65 55.21	6714.67 6705.63	6714.67 6705.63		5.85 5.82

FIGURE 4.35 Respiratory syndrome counts using first-order exponential smoothing with $\lambda = 0.1$, $\lambda = 0.21$ (min SSE), and $\lambda = 0.4$.

We used JMP to fit Winters' additive seasonal model to the respiratory syndrome count data. Because the seasonal patterns are not strong, we investigated seasons of length 3, 7, and 12 periods. The results are summarized in Table 4.15 and illustrated graphically for the last 100 observations in Figure 4.37. The 7-period season works best, probably reflecting the daily seasonal pattern that we observed in Figure 4.34. This is also the best smoother of all the techniques that were investigated. The values of $\lambda = 0$ for the trend and seasonal components in this model are an indication that there is not a significant linear trend in the data and that the seasonal pattern is relatively stable over the period of available data.

TABLE 4.14 Second-Order Simple Exponential Smoothing Applied to the Respiratory Data

Model	Variance	AIC	BIC	MAPE	MAE
Second-Order Exponential (min SSE, $\lambda = 0.10$)	54.37	6690.98	6695.86	21.71	5.78
Second-Order Exponential $(\lambda = 0.2)$	58.22	6754.37	6754.37	22.44	5.98
Second-Order Exponential $(\lambda = 0.4)$	74.46	6992.64	6992.64	25.10	6.74

FIGURE 4.36 Respiratory syndrome counts using second-order exponential smoothing with $\lambda = 0.10$ (min SSE), $\lambda = 0.2$, and $\lambda = 0.4$.

TABLE 4.15 Winters' Additive Seasonal Exponential Smoothing Applied to the Respiratory Data

Model	Variance	AIC	BIC	MAPE	MAE
S=3					
Winters Additive (min SSE, $\lambda 1 = 0.21$, $\lambda 2 = 0$, $\lambda 3 = 0$)	52.75	6662.75	6677.40	21.70	5.72
Winters Additive ($\lambda 1 = 0.2$, $\lambda 2 = 0.1$, $\lambda 3 = 0.1$)	57.56	6731.59	6731.59	22.38	5.94
S = 7					
Winters Additive (min SSE, $\lambda 1 = 0.22$, $\lambda 2 = 0$, $\lambda 3 = 0$)	49.77	6593.83	6608.47	21.10	5.56
Winters Additive ($\lambda 1 = 0.2$, $\lambda 2 = 0.1$, $\lambda 3 = 0.1$)	54.27	6652.57	6652.57	21.47	5.70
S = 12					
Winters Additive (min SSE, $\lambda 1 = 0.21, \lambda 2 = 0, \lambda 3 = 0$)	52.74	6635.58	6650.21	22.13	5.84
Winters Additive ($\lambda 1 = 0.2$, $\lambda 2 = 0.1$, $\lambda 3 = 0.1$)	58.76	6703.79	6703.79	22.77	6.08

FIGURE 4.37 Respiratory syndrome counts using winters' additive seasonal exponential smoothing with S = 3, S = 7, and S = 12, and smoothing parameters that minimize SSE.

4.9 EXPONENTIAL SMOOTHERS AND ARIMA MODELS

The first-order exponential smoother presented in Section 4.2 is a very effective model in forecasting. The discount factor, λ , makes this smoother fairly flexible in handling time series data with various characteristics. The first-order exponential smoother is particularly good in forecasting time series data with certain specific characteristics.

Recall that the first-order exponential smoother is given as

$$\tilde{y}_T = \lambda y_T + (1 - \lambda)\tilde{y}_{T-1} \tag{4.58}$$

and the forecast error is defined as

$$e_T = y_T - \hat{y}_{T-1}. (4.59)$$

Similarly, we have

$$e_{T-1} = y_{T-1} - \hat{y}_{T-2}. (4.60)$$

By multiplying Eq. (4.60) by $(1 - \lambda)$ and subtracting it from Eq. (4.59), we obtain

$$e_{T} - (1 - \lambda)e_{T-1} = (y_{T} - \hat{y}_{T-1}) - (1 - \lambda)(y_{T-1} - \hat{y}_{T-2})$$

$$= y_{T} - y_{T-1} - \hat{y}_{T-1} + \underbrace{\lambda y_{T-1} + (1 - \lambda)\hat{y}_{T-2}}_{=\hat{y}_{T-1}}$$

$$= y_{T} - y_{T-1} - \hat{y}_{T-1} + \hat{y}_{T-1}$$

$$= y_{T} - y_{T-1}.$$

$$(4.61)$$

We can rewrite Eq. (4.61) as

$$y_T - y_{T-1} = e_T - \theta e_{T-1}, \tag{4.62}$$

where $\theta = 1 - \lambda$. Recall from Chapter 2 the **backshift** *operator*, *B*, defined as $B(y_t) = y_{t-1}$. Thus Eq. (4.62) becomes

$$(1 - B)y_T = (1 - \theta B)e_T. (4.63)$$

We will see in Chapter 5 that the model in Eq. (4.63) is called the **integrated moving average** model denoted as IMA(1,1), for the backshift operator is used only once on y_T and only once on the error. It can be shown that if the process exhibits the dynamics defined in Eq. (4.63), that is an IMA(1,1) process, the first-order exponential smoother provides minimum mean squared error (MMSE) forecasts (see Muth (1960), Box and Luceno (1997), and Box, Jenkins, and Reinsel (1994)). For more discussion of the equivalence between exponential smoothing techniques and the ARIMA models, see Abraham and Ledolter (1983), Cogger (1974), Goodman (1974), Pandit and Wu (1974), and McKenzie (1984).

4.10 R COMMANDS FOR CHAPTER 4

Example 4.1 The Dow Jones index data are in the second column of the array called dji.data in which the first column is the month of the year. We can use the following simple function to obtain the first-order exponential smoothing

```
firstsmooth<-function(y,lambda,start=y[1]){
    ytilde<-y
    ytilde[1]<-lambda*y[1]+(1-lambda)*start
    for (i in 2:length(y)){
        ytilde[i]<-lambda*y[i]+(1-lambda)*ytilde[i-1]
    }
ytilde
}</pre>
```

Note that this function uses the first observation as the starting value by default. One can change this by providing a specific start value when calling the function.

We can then obtain the smoothed version of the data for a specified lambda value and plot the fitted value as the following:

For the first-order exponential smoothing, measures of accuracy such as MAPE, MAD, and MSD can be obtained from the following function:

```
measacc.fs<- function(y,lambda){</pre>
            out <- firstsmooth (y, lambda)
            T<-length(y)
            #Smoothed version of the original is the one step
              ahead prediction
            #Hence the predictions (forecasts) are given as
            pred<-c(y[1],out[1:(T-1)])
            prederr<- y-pred
            SSE<-sum(prederr^2)
            MAPE<-100*sum(abs(prederr/y))/T
            MAD<-sum(abs(prederr))/T
            MSD<-sum(prederr^2)/T
            ret1<-c(SSE, MAPE, MAD, MSD)
            names(ret1) <-c("SSE", "MAPE", "MAD", "MSD")</pre>
            return(ret1)
}
measacc.fs(dji.data[,2],0.4)
         SSE
                      MAPE
                                     MAD
                                                   MSD
1.665968e+07 3.461342e+00 3.356325e+02 1.959962e+05
```

Note that alternatively we could use the Holt-Winters function from the stats package. The function requires three parameters (alpha, beta, and gamma) to be defined. Providing a specific value for alpha and setting beta and gamma to "FALSE" give the first-order exponential as the following

```
dji1.fit<-HoltWinters(dji.data[,2],alpha=.4, beta=FALSE, qamma=FALSE)
```

Beta corresponds to the second-order smoothing (or the trend term) and gamma is for the seasonal effect.

Example 4.2 The US CPI data are in the second column of the array called cpi.data in which the first column is the month of the year. For this case we use the firstsmooth function twice to obtain the double exponential smoothing as

Note that the fitted values are obtained using Eq. (4.23). Also the corresponding command using Holt–Winters function is

```
HoltWinters(cpi.data[,2],alpha=0.3, beta=0.3, gamma=FALSE)
```

Example 4.3 In this example we use the firstsmooth function twice for the Dow Jones Index data to obtain the double exponential smoothing as in the previous example.

```
dji.smooth1<-firstsmooth(y=dji.data[,2],lambda=0.3)
dji.smooth2<-firstsmooth(y=dji.smooth1,lambda=0.3)
dji.hat<-2*dji.smooth1-dji.smooth2 #Equation 4.23
plot(dji.data[,2],type="p", pch=16,cex=.5,xlab='Date',ylab='Dow Jones',xaxt='n')
axis(1, seq(1,85,12), cpi.data[seq(1,85,12),1])
lines(dji.hat)</pre>
```


Example 4.4 The average speed data are in the second column of the array called speed.data in which the first column is the index for the week. To find the "best" smoothing constant, we will use the firstsmooth function for various lambda values and obtain the sum of squared one-step-ahead prediction error (SS_E) for each. The lambda value that minimizes the sum of squared prediction errors is deemed the "best" lambda. The obvious option is to apply firstsmooth function in a for loop to obtain SS_E for various lambda values. Even though in this case this may not be an issue, in many cases for loops can slow down the computations in R and are to be avoided if possible. We will do that using sapply function.

Note that we can also use Holt–Winters function to find the "best" value for the smoothing constant by not specifying the appropriate parameter as the following:

HoltWinters(speed.data[,2], beta=FALSE, gamma=FALSE)

Example 4.5 We will first try to find the best lambda for the CPI data using first-order exponential smoothing. We will also plot ACF of the data. Note that we will use the data up to December 2003.

```
lambda.vec<-c(seq(0.1, 0.9, 0.1), .95, .99)
sse.cpi<-function(sc){measacc.fs(cpi.data[1:108,2],sc)[1]}
sse.vec<-sapply(lambda.vec, sse.cpi)
opt.lambda<-lambda.vec[sse.vec == min(sse.vec)]
plot(lambda.vec, sse.vec, type="b", main = "SSE vs. lambda\n",
    xlab='lambda\n',ylab='SSE', pch=16,cex=.5)
acf(cpi.data[1:108,2],laq.max=25)</pre>
```


We now use the second-order exponential smoothing with lambda of 0.3. We calculate the forecasts using Eq. (4.31) for the two options suggested in the Example 4.5.

Option 1: On December 2003, make the forecasts for the entire 2004 (1- to 12-step-ahead forecasts).

```
lcpi<-0.3
cpi.smooth1<-firstsmooth(y=cpi.data[1:108,2],lambda=lcpi)</pre>
cpi.smooth2<-firstsmooth(y=cpi.smooth1,lambda=lcpi)
cpi.hat<-2*cpi.smooth1-cpi.smooth2
tau<-1:12
T<-length(cpi.smooth1)
cpi.forecast<-(2+tau*(lcpi/(1-lcpi)))*cpi.smooth1[T]-(1+tau*(lcpi/
  (1-lcpi)))*cpi.smooth2[T]
ctau<-sqrt(1+(lcpi/((2-lcpi)^3))*(10-14*lcpi+5*(lcpi^2)+2*tau*lcpi
  *(4-3*lcpi)+2*(tau^2)*(lcpi^2)))
alpha.lev<-.05
sig.est<- sgrt(var(cpi.data[2:108,2] - cpi.hat[1:107]))
cl<-qnorm(1-alpha.lev/2)*(ctau/ctau[1])*sig.est</pre>
plot(cpi.data[1:108,2],type="p", pch=16,cex=.5,xlab='Date',
  ylab='CPI', xaxt='n', xlim=c(1,120), ylim=c(150,192))
axis(1, seq(1,120,24), cpi.data[seq(1,120,24),1])
points(109:120,cpi.data[109:120,2])
lines(109:120,cpi.forecast)
lines(109:120,cpi.forecast+cl)
lines(109:120,cpi.forecast-cl)
```


Option 2: On December 2003, make the forecast for January 2004. Then when January 2004 data are available, make the forecast for February 2004 (only one-step-ahead forecasts).

```
lcpi<-0.3
T < -108
tau<-12
alpha.lev<-.05
cpi.forecast<-rep(0,tau)
cl<-rep(0,tau)
cpi.smooth1<-rep(0,T+tau)
cpi.smooth2<-rep(0,T+tau)
for (i in 1:tau) {
      cpi.smooth1[1:(T+i-1)] < -firstsmooth(y=cpi.data[1:(T+i-1),2],
        lambda=lcpi)
      cpi.smooth2[1:(T+i-1)] < -firstsmooth(y=cpi.smooth1[1:(T+i-1)],
        lambda=lcpi)
      cpi.forecast[i] <- (2+(lcpi/(1-lcpi)))*cpi.smooth1[T+i-1] -</pre>
        (1+(lcpi/(1-lcpi)))*cpi.smooth2[T+i-1]
      cpi.hat<-2*cpi.smooth1[1:(T+i-1)]-cpi.smooth2[1:(T+i-1)]</pre>
      sig.est<- sqrt(var(cpi.data[2:(T+i-1),2]- cpi.hat[1:(T+i-2)]))</pre>
      cl[i] <-qnorm(1-alpha.lev/2)*sig.est
      }
plot(cpi.data[1:T,2],type="p", pch=16,cex=.5,xlab='Date',ylab='CPI',
  xaxt='n',xlim=c(1,T+tau),ylim=c(150,192))
axis(1, seq(1,T+tau,24), cpi.data[seq(1,T+tau,24),1])
points((T+1):(T+tau),cpi.data[(T+1):(T+tau),2],cex=.5)
lines((T+1):(T+tau),cpi.forecast)
lines((T+1):(T+tau),cpi.forecast+cl)
lines((T+1):(T+tau),cpi.forecast-cl)
```


Example 4.6 The function for the Trigg-Leach smoother is given as:

```
tlsmooth < -function(y, gamma, y.tilde.start = y[1], lambda.start = 1) 
      T<-length(y)
#Initialize the vectors
      Ot<-vector()
      Dt<-vector()
      y.tilde<-vector()
      lambda<-vector()
      err<-vector()
#Set the starting values for the vectors
      lambda[1] = lambda.start
      y.tilde[1] = y.tilde.start
      Ot[1]<-0
      Dt[1]<-0
      err[1]<-0
      for (i in 2:T) {
             err[i] <-y[i] -y.tilde[i-1]
             Qt[i]<-gamma*err[i]+(1-gamma)*Qt[i-1]
             Dt[i] < -gamma*abs(err[i]) + (1-gamma)*Dt[i-1]
             lambda[i] <- abs(Qt[i] /Dt[i])</pre>
             y.tilde[i] = lambda[i] * y[i] + (1-lambda[i]) * y.tilde[i-1]
return(cbind(y.tilde,lambda,err,Qt,Dt))
}
#Obtain the TL smoother for Dow Jones Index
out.tl.dji<-tlsmooth(dji.data[,2],0.3)
```



```
#Obtain the exponential smoother for Dow Jones Index
dji.smooth1<-firstsmooth(y=dji.data[,2],lambda=0.4)

#Plot the data together with TL and exponential smoother for
  comparison
plot(dji.data[,2],type="p", pch=16,cex=.5,xlab='Date',ylab='Dow
  Jones',xaxt='n')
axis(1, seq(1,85,12), cpi.data[seq(1,85,12),1])
lines(out.tl.dji[,1])
lines(dji.smooth1,col="grey40")
legend(60,8000,c("Dow Jones","TL Smoother","Exponential Smoother"),
  pch=c(16, NA, NA),lwd=c(NA,.5,.5),cex=.55,col=c("black",
  "black","grey40"))</pre>
```

Example 4.7 The clothing sales data are in the second column of the array called closales.data in which the first column is the month of the year. We will use the data up to December 2002 to fit the model and make forecasts for the coming year (2003). We will use Holt–Winters function given in stats package. The model is additive seasonal model with all parameters equal to 0.2.

FIGURE 5.26 Time series plot of $w_t = (1 - B)(1 - B^{12})y_t$ for the US clothing sales data.

decaying values at the first 8 lags suggest that a nonseasonal MA(1) model should be used.

The interpretation of the remaining seasonality is a bit more difficult. For that we should focus on the sample ACF and PACF values at lags 12, 24, 36, and so on. The sample ACF at lag 12 seems to be significant and the sample PACF at lags 12, 24, 36 (albeit not significant) seems to be alternating in sign. That suggests that a seasonal MA(1) model can be used as well. Hence an ARIMA(0, 1, 1) \times (0, 1, 1)₁₂ model is used to model the data, y_t . The output from Minitab is given in Table 5.9. Both MA(1) and seasonal MA(1) coefficient estimates are significant. As we can see from the sample ACF and PACF plots in Figure 5.28, while there are still some

FIGURE 5.27 Sample ACF and PACF plots of $w_t = (1 - B)(1 - B^{12})y_t$.

TABLE 5.9 Minitab Output for the ARIMA(0, 1, 1) \times (0, 1, 1)₁₂ Model for the US Clothing Sales Data

Final Esti	mates of	Parame	ters		
Type	Coef S	E Coef	Т	Р	
MA 1 0	.7626	0.0542	14.06	0.000	
SMA 12 0	.5080	0.0771	6.59	0.000	
differenci	observat ng 142 SS =	ions:	Origina 560 (ba	l series ckforeca	rder 12 155, after sts excluded
				-	re statistic
Lag		24			
Chi-Square					
DF	1.0	22	3.4	16	
			5 1	40	

small significant values, as indicated by the modified Box pierce statistic most of the autocorrelation is now modeled out.

The residual plots in Figure 5.29 provided by Minitab seem to be acceptable as well.

Finally, the time series plot of the actual and fitted values in Figure 5.30 suggests that the ARIMA(0, 1, 1) \times (0, 1, 1)₁₂ model provides a reasonable fit to this highly seasonal and nonstationary time series data.

FIGURE 5.28 Sample ACF and PACF plots of residuals from the ARIMA(0, $1, 1) \times (0, 1, 1)_{12}$ model.

FIGURE 5.29 Residual plots from the ARIMA $(0, 1, 1) \times (0, 1, 1)_{12}$ model for the US clothing sales data.

FIGURE 5.30 Time series plot of the actual data and fitted values from the ARIMA $(0, 1, 1) \times (0, 1, 1)_{12}$ model for the US clothing sales data.

5.10 ARIMA MODELING OF BIOSURVEILLANCE DATA

In Section 4.8 we introduced the daily counts of respiratory and gastrointestinal complaints for more than 2-1/2 years at several hospitals in a large metropolitan area from Fricker (2013). Table 4.12 presents the 980 observations from one of these hospitals. Section 4.8 described modeling the respiratory count data with exponential smoothing. We now present an ARIMA modeling approach. Figure 5.31 presents the sample ACF, PACF, and the variogram from JMP for these data. Examination of the original time series plot in Figure 4.35 and the ACF and variogram indicate that the daily respiratory syndrome counts may be nonstationary and that the data should be differenced to obtain a stationary time series for ARIMA modeling.

The ACF for the differenced series (d = 1) shown in Figure 5.32 cuts off after lag 1 while the PACF appears to be a mixture of exponential decays. This suggests either an ARIMA(1, 1, 1) or ARIMA(2, 1, 1) model.

The Time Series Modeling platform in JMP allows a group of ARIMA models to be fit by specifying ranges for the AR, difference, and MA terms. Table 5.10 summarizes the fits obtained for a constant difference (d = 1), and both AR (p) and MA (q) parameters ranging from 0 to 2.

FIGURE 5.31 ACF, PACF, and variogram for daily respiratory syndrome counts.

FIGURE 5.32 ACF, PACF, and variogram for the first difference of the daily respiratory syndrome counts.

TABLE 5.10 Summary of Models fit to the Respiratory Syndrome Count Data

Model	Variance	AIC	BIC	RSquare	MAPE	MAE
AR(1)	65.7	6885.5	6895.3	0.4	24.8	6.3
AR(2)	57.1	6748.2	6762.9	0.5	22.9	5.9
MA(1)	81.6	7096.9	7106.6	0.2	28.5	6.9
MA(2)	69.3	6937.6	6952.3	0.3	26.2	6.4
ARMA(1, 1)	52.2	6661.2	6675.9	0.5	21.6	5.6
ARMA(1, 2)	52.1	6661.2	6680.7	0.5	21.6	5.6
ARMA(2, 1)	52.1	6660.7	6680.3	0.5	21.6	5.6
ARMA(2, 2)	52.3	6664.3	6688.7	0.5	21.6	5.6
ARIMA(0, 0, 0)	104.7	7340.4	7345.3	0.0	33.2	8.0
$ARIMA(0, 1, 0)^*$	8 1.6	7088.2	7093.1	0.2	26.2	7.0
$ARIMA(0, 1, 1)^*$	52.7	6662.8	6672.6	0.5	21.4	5.7
ARIMA(0, 1, 2)	52.6	6662.1	6676.7	0.5	21.4	5.7
$ARIMA(1, 1, 0)^*$	62.2	6824.4	6834.2	0.4	23.2	6.2
ARIMA(1, 1, 1)	52.6	6661.4	6676.1	0.5	21.4	5.7
ARIMA(1, 1, 2)	52.6	6661.9	6681.5	0.5	21.4	5.7
ARIMA(2, 1, 0)	59.6	6783.5	6798.1	0.4	22.7	6.1
ARIMA(2, 1, 1)	52.3	6657.1	6676.6	0.5	21.4	5.6
ARIMA(2, 1, 2)	52.3	6657.8	6682.2	0.5	21.3	5.6

^{*}Indicates that objective function failed during parameter estimation.

FIGURE 5.33 ACF, PACF, and variogram for the residuals of ARIMA(1, 1, 1) fit to daily respiratory syndrome counts.

In terms of the model summary statistics variance of the errors, AIC and mean absolute prediction error (MAPE) several models look potentially reasonable. For the ARIMA(1, 1, 1) we obtained the following results from JMP:

	Parame	ter e	stimates				
							Constant
	Term	Lag	Estimate	Std error	t Ratio	Prob> t	estimate
	AR1	1	0.07307009	0.0394408	1.85	0.0642	0.00069557
•	MA1	1	0.81584055	0.0223680	36.47	<.0001*	
	Intercept	0	0.00075040	0.0036018	0.21	0.8350	

Figure 5.33 presents the ACF, PACF, and variogram of the residuals from this model. Other residual plots are in Figure 5.34.

For comparison purposes we also fit the ARIMA(2, 1, 1) model. The parameter estimates obtained from JMP are:

Parame	ter E	stimates						
Term	Lag	Estimate	Std Error	t Ratio	Prob> t	Constant Estimate		
AR1	1	0.09953471	0.0402040	2.48	0.0135*	0.00097496		
AR2	2	0.09408008	0.0375486	2.51	0.0124*			0 6
MA1	1	0.84755625	0.0231814	36.56	<.0001*	. 1	D J. I	0.0
Intercept	0	0.00120905	0.0088678	0.14	0.8916		P-value	ر کے کے
							Dice	19
							Ditt	is
							Sia	

FIGURE 5.34 Plots of residuals from ARIMA(1, 1, 1) fit to daily respiratory syndrome counts.

FIGURE 5.35 ACF, PACF, and variogram for residuals of ARIMA(2, 1, 1) fit to daily respiratory syndrome counts.

The lag 2 AR parameter is highly significant. Figure 5.35 presents the plots of the ACF, PACF, and variogram of the residuals from ARIMA(2, 1, 1). Other residual plots are shown in Figure 5.36. Based on the significant lag 2 AR parameter, this model is preferable to the ARIMA(1, 1, 1) model fit previously.

Considering the variation in counts by day of week that was observed previously, a seasonal ARIMA model with a seasonal period of 7 days may be appropriate. The resulting model has an error variance of 50.9, smaller than for the ARIMA(1, 1, 1) and ARIMA(2, 1, 1) models. The AIC is also smaller. Notice that all of the model parameters are highly significant. The residual ACF, PACF, and variogram shown in Figure 5.37 do not suggest any remaining structure. Other residual plots are in Figure 5.38.

Model	Variance	AIC	BIC	RSquare	MAPE	MAE
ARIMA(2, 1, 1)(0, 0, 1) ₇	50.9	6631.9	6656.4	0.5	21.1	5.6

FIGURE 5.36 Plots of residuals from ARIMA(2, 1, 1) fit to daily respiratory syndrome counts.

	Parameter estimates							
	Term	Factor	Lag	Estimate	Std error	t Ratio	Prob> t	Constant
,	AR1,1	1	1	0.1090685	0.0395388	2.76	0.0059*	estimate
	AR1,2	1	. 2	0.1186083	0.0376471	3.15	0.0017*	0.00083453
		_	_					0.00003433
	MA1,1	1		0.8730535		38.78	<.0001*	
	MA2,7	2	2 7	-0.1744415	0.0328363	-5.31	<.0001*	
	Intercept	1	. 0	0.0010805	0.0051887	0.21	0.8351	•
	Lag A	utoCorr8	642 0 .2	.4 .6 .8 Lag	Partial8642	2.4.6.8	Lag Variogra	am
	0	1.0000		0	1.0000		1 1.00	
	1	0.0046	::(1):	1	0.0046		2 0.99	
	2	0.0137 -0.0184		2 3	0.0136		3 1.02 4 1.09	
	4	-0.0184		3 4	-0.0185		5 0.99	
	5	0.0138		5	0.0152		6 0.94	
	6	0.0593		6	0.0619		7 1.00	
	7	-0.0031		: : : 7	-0.0073		8 0.93	
	8	0.0664		8	0.0579		9 0.98	
	9	0.0151		9	0.0198		10 1.03	
	10 11	-0.0300 -0.0467			-0.0225 -0.0483		11 1.05 12 1.01	
	12	-0.0467			-0.0483		13 0.94	
	13	0.0601		13	0.0638		14 1.00	
	14	0.0001			-0.0145		15 0.96	
	15	0.0386		15	0.0282		16 0.98	
	16	0.0173	:: :	16	0.0201		17 1.03	
	17	-0.0271			-0.0158		18 1.02	
	18 19	-0.0160 0.0076	: : N:	18	-0.0165 : : : 0.0148 : : :		19 0.99 20 0.97	
	20	0.0263		20	0.0329		21 0.96	
	21	0.0368		21	0.0179		22 0.98	
	22	0.0179		22	0.0098		23 1.05	44
	23	-0.0496	1		-0.0466		24 1.12	
	24	-0.1188	: : 4		-0.1142		25 0.99	981
	25	0.0065	::1':	25	0.0148	1111		

FIGURE 5.37 ACF, PACF, and variogram of residuals from ARIMA(2, 1, 1) \times (0, 0, 1)₇ fit to daily respiratory syndrome counts.

5.11 FINAL COMMENTS

ARIMA models (a.k.a. Box–Jenkins models) present a very powerful and flexible class of models for time series analysis and forecasting. Over the years, they have been very successfully applied to many problems in research and practice. However, there might be certain situations where they may fall short on providing the "right" answers. For example, in ARIMA models, forecasting future observations primarily relies on the past data and implicitly assumes that the conditions at which the data is collected will remain the same in the future as well. In many situations this assumption may (and most likely will) not be appropriate. For those cases, the transfer function–noise models, where a set of input variables that may have an effect on the time series are added to the model, provide suitable options. We shall discuss these models in the next chapter. For an excellent discussion of this matter and of time series analysis and forecasting in general, see Jenkins (1979).

FIGURE 5.38 Plots of residuals from ARIMA(2, 1, 1) \times (0, 0, 1)₇ fit to daily respiratory syndrome counts.

5.12 R COMMANDS FOR CHAPTER 5

Example 5.1 The loan applications data are in the second column of the array called loan.data in which the first column is the number of weeks. We first plot the data as well as the ACF and PACF.

plot(loan.data[,2],type="o",pch=16,cex=.5,xlab='Week',ylab='Loan
Applications')


```
par(mfrow=c(1,2),oma=c(0,0,0,0))
```

acf(loan.data[,2],lag.max=25,type="correlation",main="ACF for the Number $\setminus 1$ Loan Applications")

 $acf(loan.data[,2], lag.max=25, type="partial", main="PACF for the Number \nof Loan Applications")$

Fit an ARIMA(2,0,0) model to the data using arima function in the stats package.

```
loan.fit.ar2<-arima(loan.data[,2],order=c(2, 0, 0))</pre>
loan.fit.ar2
       Call:
       arima(x = loan.data[, 2], order = c(2, 0, 0))
       Coefficients:
                ar1
                         ar2
                              intercept
             0.2659
                      0.4130
                                66.8538
             0.0890
                      0.0901
                                 1.8334
       s.e.
       sigma^2 estimated as 38.32: log likelihood = -337.46,
       aic = 682.92
res.loan.ar2<-as.vector(residuals(loan.fit.ar2))
#to obtain the fitted values we use the function fitted() from
#the forecast package
library(forecast)
fit.loan.ar2<-as.vector(fitted(loan.fit.ar2))</pre>
Box.test(res.loan.ar2,lag=48,fitdf=3,type="Ljung")
                Box-Ljung test
       data: res.loan.ar2
       X-squared = 31.8924, df = 45, p-value = 0.9295
#ACF and PACF of the Residuals
par(mfrow=c(1,2),oma=c(0,0,0,0))
```

 $acf(res.loan.ar2,lag.max=25,type="correlation",main="ACF of the Residuals \nof AR(2) Model")$

 $acf(res.loan.ar2, lag.max=25, type="partial", main="PACF of the Residuals \nof AR(2) Model")$


```
#4-in-1 plot of the residuals
par(mfrow=c(2,2),oma=c(0,0,0,0))
qqnorm(res.loan.ar2,datax=TRUE,pch=16,xlab='Residual',main='')
qqline(res.loan.ar2,datax=TRUE)
plot(fit.loan.ar2,res.loan.ar2,pch=16, xlab='Fitted Value',
ylab='Residual')
abline(h=0)
hist(res.loan.ar2,col="gray",xlab='Residual',main='')
plot(res.loan.ar2,type="l",xlab='Observation Order',
ylab='Residual')
points(res.loan.ar2,pch=16,cex=.5)
abline(h=0)
```


Plot fitted values

```
plot(loan.data[,2],type="p",pch=16,cex=.5,xlab='Week',ylab='Loan
Applications')
lines(fit.loan.ar2)
legend(95,88,c("y(t)","yhat(t)"), pch=c(16, NA),lwd=c(NA,.5),
cex=.55)
```


Example 5.2 The Dow Jones index data are in the second column of the array called dji.data in which the first column is the month of the year. We first plot the data as well as the ACF and PACF.

```
plot(dji.data[,2],type="0",pch=16,cex=.5,xlab='Date',ylab='DJI',
xaxt='n')
axis(1, seq(1,85,12), dji.data[seq(1,85,12),1])
```



```
\label{lem:par(mfrow=c(1,2),oma=c(0,0,0,0))} $$ acf(dji.data[,2],lag.max=25,type="correlation",main="ACF for the Number \nof Dow Jones Index")
```

 $acf(dji.data[,2], lag.max=25,type="partial",main="PACF for the Number \nof Dow Jones Index ")$

We first fit an ARIMA(1,0,0) model to the data using arima function in the stats package.

```
dji.fit.ar1<-arima(dji.data[,2],order=c(1, 0, 0))</pre>
dji.fit.ar1
       Call:
       arima(x = dji.data[, 2], order = c(1, 0, 0))
       Coefficients:
                ar1
                       intercept
             0.8934
                     10291.2984
       s.e.
             0.0473
                        373.8723
       sigma^2 estimated as 156691: log likelihood = -629.8,
       aic = 1265.59
res.dji.ar1<-as.vector(residuals(dji.fit.ar1))
#to obtain the fitted values we use the function fitted() from
#the forecast package
library(forecast)
fit.dji.ar1<-as.vector(fitted(dji.fit.ar1))</pre>
Box.test(res.dji.ar1,lag=48,fitdf=3,type="Ljung")
        Box-Ljung test
        data: res.dji.ar1
        X-squared = 29.9747, df = 45, p-value = 0.9584
```

```
#ACF and PACF of the Residuals par(mfrow=c(1,2),oma=c(0,0,0,0))\\ acf(res.dji.ar1,lag.max=25,type="correlation",main="ACF of the Residuals \\nof AR(1) Model")
```

 $acf(res.dji.ar1, lag.max=25,type="partial",main="PACF of the Residuals \\nof AR(1) Model")$


```
#4-in-1 plot of the residuals
par(mfrow=c(2,2),oma=c(0,0,0,0))
qqnorm(res.dji.ar1,datax=TRUE,pch=16,xlab='Residual',main='')
qqline(res.dji.ar1,datax=TRUE)
plot(fit.dji.ar1,res.dji.ar1,pch=16, xlab='Fitted Value',
ylab='Residual')
abline(h=0)
hist(res.dji.ar1,col="gray",xlab='Residual',main='')
plot(res.dji.ar1,type="l",xlab='Observation Order',
ylab='Residual')
points(res.dji.ar1,pch=16,cex=.5)
abline(h=0)
```


We now consider the first difference of the Dow Jones index.

```
wt.dji<-diff(dji.data[,2])
plot(wt.dji,type="o",pch=16,cex=.5,xlab='Date',ylab='w(t)',
xaxt='n')
axis(1, seq(1,85,12), dji.data[seq(1,85,12),1])</pre>
```



```
par(mfrow=c(1,2),oma=c(0,0,0,0))
acf(wt.dji,lag.max=25,type="correlation",main="ACF for the
Number \nof w(t)")
acf(wt.dji, lag.max=25,type="partial",main="PACF for the
```


Number \nof w(t)")

Example 5.6 The loan applications data are in the second column of the array called loan.data in which the first column is the number of weeks. We use the AR(2) model to make the forecasts.

```
loan.fit.ar2<-arima(loan.data[,2],order=c(2, 0, 0))</pre>
#to obtain the 1- to 12-step ahead forecasts, we use the
#function forecast() from the forecast package
library(forecast)
loan.ar2.forecast<-as.array(forecast(loan.fit.ar2,h=12))</pre>
loan.ar2.forecast
   Point Forecast
                     Lo 80
                               Hi 80
                                          Lo 95
                                                  Hi 95
105
          62.58571 54.65250 70.51892 50.45291
                                                 74.71851
          64.12744 55.91858 72.33629 51.57307 76.68180
106
107
          64.36628 55.30492 73.42764 50.50812 78.22444
108
          65.06647 55.80983 74.32312 50.90965 79.22330
          65.35129 55.86218 74.84039 50.83895 79.86362
109
110
          65.71617 56.13346 75.29889 51.06068 80.37167
          65.93081 56.27109 75.59054 51.15754 80.70409
111
112
          66.13857 56.43926 75.83789 51.30475 80.97240
          66.28246 56.55529 76.00962 51.40605 81.15887
113
114
          66.40651 56.66341 76.14961 51.50572 81.30730
          66.49892 56.74534 76.25249 51.58211 81.41572
115
116
          66.57472 56.81486 76.33458 51.64830 81.50114
```

Note that forecast function provides a list with forecasts as well as 80% and 95% prediction limits. To see the elements of the list, we can do

```
ls(loan.ar2.forecast)
    [1] "fitted" "level" "lower" "mean" "method" "model"
    [7] "residuals" "upper" "x" "xname"
```

In this list, "mean" stands for the forecasts while "lower" and "upper" provide the 80 and 95% lower and upper prediction limits, respectively. To plot the forecasts and the prediction limits, we have

```
plot(loan.data[,2],type="p",pch=16,cex=.5,xlab='Date',ylab='Loan
Applications',xaxt='n',xlim=c(1,120))
axis(1, seq(1,120,24), dji.data[seq(1,120,24),1])
lines(105:116,loan.ar2.forecast$mean,col="grey40")
lines(105:116,loan.ar2.forecast$lower[,2])
lines(105:116,loan.ar2.forecast$upper[,2])
legend(72,88,c("y","Forecast","95% LPL","95% UPL"), pch=c(16, NA, NA,NA),lwd=c(NA,.5,.5,.5),cex=.55,col=c("black","grey40","black","black"))
```