Versuchsprotokoll

> Gruppe 6MO: Frederik Edens Dennis Eckermann

> > {Datum}

Inhaltsverzeichnis

1 Einleitung

1.1 Arten von Strahlung

In diesem Versuch werden β -und γ -Zerfälle gemessen.

Diese sind zwei von drei Arten den radioaktiven Zerfalls, die Dritte Art ist die α -Strahlung. Bei der α -Strahlung handelt es sich um Heliumatomkerne, bestehend aus zwei Protonen und zwei Neutronen, die aus dem radioaktiven Atom hinausgeschleudert werden, dabei nimmt die Masse des Atoms um vier atomare Masseneinheiten ab (4 atomare Masseneinheiten= $4u\approx 6,64\cdot 10^{-27}kg$) und die Ordnungszahl wird um zwei verringert, dadurch entsteht ein neues Element. Die α - Strahlung besitzt diskrete Energiebeträge.

Da die α -Strahlung nicht in diesem Versuch vorkommt, wird nicht weiter darauf eingegangen.

Bei der β -Strahlung gibt es zwei mögliche Zerfälle die stattfinden können. Zum einen der β -Zerfall bei dem ein Neutron im Atomkern zu einem Proton sowie Elektron und einem Neutrino zerfällt, dabei verbleibt das Proton im Atomkern, das Elektron ist das Teilchen, welches als β -Strahlung gemessen werden kann, das Neutrino ist nur sehr schwer nachweisbar. Neben dem β -Zerfall gibt es noch den β +-Zerfall bei dem ein Proton in ein Neutron, ein Positron und ein Neutrino zerfällt, das Positron kann als β -Strahlung gemessen werden, auch hier ist das Neutrino nur sehr schwer nachweisbar.

Im Gegensatz zur α - und γ - Strahlung besitzt die β - Strahlung keine diskreten sondern kontinuierliche Energiebeträge bis hin zu einer gewissen Maximalenergie, dieses Phänomen liegt an dem Neutrino, welches die fehlende Energie aufnimmt.

Die γ - Strahlung besteht aus hochenergetischen Photonen, den sogenannten γ - Quanten, diese entstehen aus angeregten Atomen dadurch, dass die Protonen und Neutronen im Atomkern ihren Energiezustand ändern und die Energiedifferenz wird als γ - Quant ausgesendet, diese haben wie die α - Strahlung diskrete Energiebeträge.

1.2 Absorption von Strahlung

1.2.1 Absorption von γ - Strahlung

Bei der Absorption von γ - Strahlung gibt es drei Absorptionsmechanismen, dem Photoeffekt bei welchem das γ -Quant von einem Atom absorbiert wird und dieses emittiert ein Elektron auf einer der inneren Schalen der Elektronenhülle. Der zweite Absorptionsmechanismus ist der Comptoneffekt, bei dem eine inelastische Streuung des γ - Quants stattfindet, in welchem es die Frequenz und die Richtung ändert. Der dritte Absorptionsmechanismus ist die Paarbildung, dort entstehen aus einem γ - Quant hoher Energie (E>2 $m_e c^2 \approx 1 MeV$) ein Elektron und ein Positron.

Der Absorptionskoeffizient μ setzt sich aus allen drei Absorptionsmechanismen zusammen

$$\mu = \mu_{Photo} + \mu_{Compton} + \mu_{Paar} \tag{1.1}$$

diese Größe ist ebenfalls vom Absorbermaterial abhängig.

Treffen nun N γ - Quanten auf einen Absorber der Dicke dx so wird folgende Relation erhalten

$$dN = -\mu N dx \tag{1.2}$$

gelegentlich wird auch die Massenbelegung ρ eingeführt, welches die Dichte des Absorbermaterials darstellt. Dadurch wird μ zu $\mu_m = \frac{\mu}{\rho}$, also

$$dN = -\mu_m N \rho dx \tag{1.3}$$

durch Integration ergibt sich eine exponentielle Abnahme der Teilchenzahl mit der Absorberdicke.

$$N(x) = N_0 \cdot exp(-\mu) = N_0 \cdot exp(-\mu_m \rho x) \tag{1.4}$$

1.2.2 Absorption von β -Strahlung

Die exponentielle Abnahme gilt nicht für β -Strahlung, der Grund hierfür ist, dass die β -Absorption nicht durch einen einzigen Prozess erfolgt. Die Elektronen verlieren ihre Energie durch mehrere inelastische Stöße mit den Atomen des Absorbermaterials, auch ist es möglich, dass sie durch eine Richtungsänderung aus dem Strahl ausscheiden. Somit wird für β -Strahlung die "mittlere Reichweite" R_m definiert, dass ist die Absoberdicke bei der noch 50% der Anfangsstrahlung vorhanden ist, daneben wird die "praktische Reichweite" definiert, diese ist als Schnittpunkt des extrapolierten linearen Abfalls der Reichweitenverteilung mit der Achse N(x)=0 definiert.

1.3 Nachweis der Strahlung

Zum Nachweis der Strahlung wird ein Geiger-Müller-Zählrohr verwendet. Im luftdichten Zählrohr befindet sich Argon unter einem Druck von ungefähr 100mbar und Alkoholdampf, welches einen Partialdruck von etwa 10mbar hat. Es wird praktisch jedes α - und β -Teilchen vom Zählrohr erfasst, die γ - Strahlen werden mit einer kleineren Menge nachgewiesen.

Im wesentlichen wird der Nachweismechanismus durch eine Ionisierung eines Argon Atoms, da sich im Inneren des Zählrohrs ein elektrisches Feld befindet, wird das Ionenpaar, welches aus Elektron und dem Argon-Ion besteht, jeweils zur Anode bzw. zur Kathode hin beschleunigt.

Auf diesem Weg ionisieren das Elektron andere Atome und es kommt zu einer Entladungslawine. Wenn das Argon-Ion auf die Zählrohrwand auftrifft, werden Sekundärelektronen emittiert, diese tragen zur Erhaltung des Entladungsprozesses bei. Die Alkoholmoleküle stoppen diesen Entladungsprozesse.

Nach jedem Entladungsstoß bleibt das Zählrohr für einige 10^{-4} s für neue Teilchen unempfindlich, diese Zeit wird "Totzeit" genannt. Erst nach diese Zeit kann ein neues Teilchen detektiert werden.

1.4 Poisson-Verteilung

Der Erfahrung nach ist die Rate mit der Radioaktive-Zerfälle stattfinden mit der Poisson-Verteilung beschreibbar. Die Poisson-Verteilung geht aus der Binomial-Verteilung für eine große Zahl von Objekten und einer geringen Ereigniswahrscheinlichkeit hervor. Die allgemeine Gleichung lautet

$$\psi_n = \frac{\bar{k}^k \cdot e^{-\bar{k}}}{k!} \tag{1.5}$$

 $ar{k}$ entspricht dem Erwartungswert

$$\bar{k} = np \tag{1.6}$$

n entspricht hier der Anzahl der Atome und p entspricht der Wahrscheinlichkeit für einen Zerfall. Bei einer Poisson-Verteilung sind Erwartungswert und Varianz gleich.

$$\sigma^2 = np = \bar{k} \tag{1.7}$$

Um nun die Poisson-Verteilung auf den radioaktiven Zerfall anzuwenden muss der Mittelwert für die gemessenen Zerfälle \bar{N} bestimmt werden. Dazu werden n-mal die Zahl der zerfallenen Kerne N_i jeweils in einem festen Zeitintervall ΔT gemessen. Dann wird aus ??

$$\psi(N) = \frac{\bar{N}^N \cdot e^{-\bar{N}}}{N!} \tag{1.8}$$

darauf ergibt sich für die mittlere Streuung,

$$\sigma = \sqrt{\bar{N}}$$

dieses wird \sqrt{N} – Gesetz genannt.