

HV3D: Human Visual System Based 3D Video Quality Metric

Amin Banitalebi-Dehkordi¹, Mahsa T. Pourazad^{1,2}, Panos Nasiopoulos¹
¹University of British Columbia
^{1,2}TELUS Communications Inc.

Introduction

- Subjective quality evaluation: not always practical, time-consuming
- No standard 3D Quality Metric (QM) available yet
- MPEG is looking for a QM for 3D video compression standard
- 2D metrics fail for 3D picture quality evaluation. They do not take into account:
 - depth perception
 - binocular properties of HVS (Human Visual System)
 - size of the screen (not important in 2D; 3D content has different depth effect on different 3D screen sizes)

Our proposed 3D quality metric: HV3D

- HV3D is a full reference metric, which is designed based on human visual 3D perception
- HV3D takes into account the specifications of the 3D display

Available Views + Depth Quality of Cyclopean View
$$Q_{g'}, Q_{g'}$$
 Assigning Weights $W_{i}Q_{g'}, W_{i}Q_{g'}$ Combined Quality Components $W_{i}Q_{g'}, W_{i}Q_{g'}$ Assigning $W_{i}Q_{g'}, W_{i}Q_{g'}$ Components $W_{i}Q_{g'}, W_{i}Q_{g'}$ $W_{i}Q_{g'}$ $W_{i}Q_{g'$

$HV3D = w_1Q_{R'} + w_1Q_{L'} + w_2Q_{R'L'} + w_3Q_{D'}$

$$\begin{split} w_{1}Q_{R'} &= [w_{1}VIF(Y_{R},Y_{R'}) + w_{4}VIF(U_{R},U_{R'}) + w_{4}VIF(Y_{R},V_{R'}) \\ w_{1}Q_{L'} &= w_{1}VIF(Y_{L},Y_{L'}) + w_{4}VIF(U_{L},U_{L'}) + w_{4}VIF(V_{L},V_{L'}) \\ w_{2}Q_{R'L'} &= w_{2}VIF(D,D')^{\beta}.\sum_{i=1}^{N} \frac{SSIM(IDCT(XC_{i}),IDCT(XC_{i}'))}{N} \\ w_{3}Q_{D'} &= w_{3}VIF(D,D')^{\beta}.\sum_{i=1}^{N} \frac{\sigma_{d_{i}}^{2}}{N.\max(\sigma_{d_{i}}^{2} \mid j=1,2,...,N)}] \\ &= \frac{IV3D}{IV3D_{\max}} \quad HV3D_{\max} = 2w_{1} + 4w_{4} + w_{2} + w_{3}.\sum_{i=1}^{N} \frac{\sigma_{d_{i}}^{2}}{N\max\{\sigma_{d_{i}}^{2} \mid j=1,2,...,N\}} \end{split}$$

Cyclopean view

- HVS fuses left & right views into a single cyclopean view.
- We model the cyclopean view:
 - Finding matching blocks
 - 3D-DCT transform
 - CSF (Contrast Sensitivity Function) mask modeling

Quality of depth map

- The quality of depth map is measured over the projected picture area on the viewer's eye fovea
- The size of this picture area is measured based on the size and resolution of the display, as well as the viewer's distance from the display

Some applications of HV3D

Experimental results

Typical metric values (only left view is shown):

Correlation with MOS (Mean Opinion Score):

Quality assessment of 3D videos on different sizes of 3D screens

Quality assessment of the 3D compressed videos

