THE OTHER CONNECTIVES

Exclusive OR

which the connective V is called an exclusive OR, is true whenever either P or Q, but not both, is true. Let P and Q be any two formulas. Then the formula P V Q, in

Table

	Exclusive OR	
P	g A Q	PVQ
T	T	F
T	F	T
F	T	T
(collain F to lon)	AFONG	$\mathbf{F}^{(1)}$

ovilaborea ton oals (N. J. Cr)

NAND (1)

"NAND" is a word which is a combination of the words "NOT" and "AND" when NOT stands for negation and "AND" stands for conjunction. It is denoted by the symbol "↑".

Let P and Q be any two statement formulas, then "P NAND Q" is denoted by "P \uparrow Q" and is defined as P \uparrow Q \Leftrightarrow \neg (P \land Q)

♦ NOR (↓)

The word "NOR" is a combination of "NOT" and "OR" where NOT stands for negation and "OR" stands for disjunction. It is denoted by "\u21e4".

Let P and Q be any two statement formulas, then "P NOR Q" is denoted by "P \downarrow Q" and is defined as P \downarrow Q $\Leftrightarrow \neg$ (P \lor Q).

Some basic properties of NAND and NOR.

1.
$$P \uparrow Q \Leftrightarrow Q \uparrow P$$
, $P \downarrow Q \Leftrightarrow Q \downarrow P$ (commutative)

2.
$$P \uparrow (Q \uparrow R) \Leftrightarrow P \uparrow \neg (Q \land R)$$

$$\Rightarrow \neg (P \land \neg (Q \land R))$$

$$\Rightarrow \neg P \lor (Q \land R)$$

$$(P \uparrow Q) \uparrow R \Leftrightarrow (P \land Q) \lor \neg R$$
 (not associative)

Similarly, $P \downarrow (Q \downarrow R)$ also not associative.

Example 7: Prove that { ↑ } and \ are functionally complete sets functionally complete set. of conectives. They are also known as minimal