CdL Fisica - Meccanica - 11/01/2023 Prof. Spurio (AL) - Prof.ssa Margiotta (MZ)

Esercizio A

Una semisfera omogenea, di massa m=170 g e raggio R=3.0 cm, si trova appoggiata su un piano orizzontale ed è tirata da una forza orizzontale F, di modulo incognito, applicata nel punto B (vedi Figura). In queste condizioni la semisfera si muove con velocità costante senza oscillazioni, inclinata di un angolo incognito θ rispetto alla posizione di equilibrio. Il coefficiente di attrito dinamico presente tra semisfera e piano orizzontale vale μ_D = 0.25. Il centro di massa della semisfera dista 3R/8 dalla superficie piana della semisfera (a partire dal punto O e perpendicolare al diametro AB). Determinare:

- 1. La densità di massa della semisfera;
- 2. il modulo della forza orizzontale responsabile del movimento della semisfera;
- 3. il momento totale delle forze \overline{M} rispetto al punto O;
- 4. l'angolo θ di inclinazione della semisfera;
- 5. spiegare (brevemente) perché in casi come questo il momento \overline{M} non dipende dalla scelta del polo;
- 6. Dimostrare che il centro di massa si trova a una distanza di 3R/8 dalla superficie piana della semisfera.

[Suggerimento: si disegni la semisfera capovolta, con il diametro AB sul piano orizzontale, e asse z perpendicolare e uscente da 0; il raggio r della circonferenza nel piano parallelo a AB a una altezza $0 \le z \le R$ vale $r = \sqrt{R^2 - z^2}$].

Esercizio B

Un corpo di massa m=2.5 kg (inclusa una piccola quantità di massa trascurabile di esplosivo) viene lanciato verticalmente verso l'alto con velocità iniziale di modulo v_0 . Giunto alla massima quota h=250 m, il corpo esplode in due frammenti di masse m_1 = m/4 e m_2 = 3/4m. I due frammenti cadono e arrivano simultaneamente a terra, alla quota da cui era stato lanciato il corpo m. L'esplosione, che può essere considerata istantanea, fornisce ai due frammenti un'energia cinetica addizionale complessivamente pari all'8.3% dell'energia cinetica posseduta dal corpo di massa m al momento del lancio.

Trascurando ogni sorta di attrito, si determini:

- 1. La velocità iniziale v_0 con cui è lanciato m;
- 2. i vettori velocità dei corpi di massa m_1 e m_2 immediatamente dopo l'esplosione;
- 3. l'energia cinetica totale di m_1 e m_2 nell'istante in cui giungono al suolo;
- 4. la distanza tra le posizioni con cui m_1 e m_2 arrivano a terra.

Risposte numeriche

hisposte numeriene	
A.1) 3000 kg/m ³	B.1) 70 m/s
A.2) 0.42 N	B.2) $v1,x=-35.0$ m/s; $v2,x=11.6$ m/s; nulle le altre componenti
$A.3) \vec{M} = 0$	B.3) T=6640 J
A.4) θ = 23.6° = 0.41 rad	B.4) 333 m