

5

10

**IMIDAZO[4,5-c]PYRIDINE COMPOUNDS AND METHODS OF
ANTIVIRAL TREATMENT**

15

FIELD OF THE INVENTION

The present invention relates to a series of novel imidazo[4,5-c]pyridine compounds, processes for their preparation, their use to treat or prevent viral infections and their use to manufacture a medicine to treat or prevent viral infections, particularly infections with viruses belonging to the family of the Flaviviridae and Picornaviridae and more preferably infections with hepatitis-C-virus (HCV).

BACKGROUND OF THE INVENTION

The family of the Flaviviridae consists of 3 genera, the pestiviruses, the flaviviruses and the hepaciviruses and also contains the hepatitis G virus (HGV/GBV-C) that has not yet been assigned to a genus. Pestiviruses such as the Classical Swine Fever Virus (CSFV), the Bovine Viral Diarrhea Virus (BVDV) and the Border Disease Virus (BDV) cause infections of domestic livestock (respectively pigs, cattle and sheep) and are responsible for significant economic losses world-wide. BVDV, the prototypic representative of the pestivirus genus is ubiquitous and causes a range of clinical manifestations, including abortion, teratogenesis, respiratory problems, chronic wasting disease, immune system dysfunction, and predisposition to secondary viral and bacterial infections and may also cause acute fatal disease. Fetuses of cattle can be infected persistently with BVDV, these animals remain viremic throughout life and serve as a continuous source for virus spread in herds.

Vaccines are used in some countries with varying degrees of success to control pestivirus disease. In other countries, animal culling and slaughter are used to contain pestivirus disease outbreaks.

AP2018064701/P10 32 JUN 2006

5 The World Health Organization estimates that world-wide 170 million people
 (3% of the world's population) are chronically infected with HCV. These chronic
 carriers are at risk of developing cirrhosis and/or liver cancer. In studies with a 10 to
 20 year follow-up, cirrhosis developed in 20 – 30% of the patients, 1 to 5% of who
 may develop liver cancer during the next ten years. The only treatment option
10 available today is the use of interferon α -2 (or its pegylated form) either alone or
 combined with ribavirin. However, sustained response is only observed in about 40%
 of the patients and treatment is associated with serious adverse effects. There is thus
 an urgent need for potent and selective inhibitors of the replication of the HCV in
 order to treat infections with HCV. Furthermore, the study of specific inhibitors of
15 HCV replication has been hampered by the fact that it is not possible to propagate
 HCV (efficiently) in cell culture. Since HCV and pestiviruses belong to the same
 virus family and share many similarities (organization of the genome, analogous gene
 products and replication cycle), pestiviruses have been adopted as a model and
 surrogate for HCV. For example, BVDV is closely related to hepatitis C virus (HCV)
20 and used as a surrogate virus in drug development for HCV infection.

25 The compound 3-[((2-dipropylamino)ethyl)thio]-5H-1,2,4-triazino[5,6-
 b]indole has been reported to selectively inhibit the replication of BVDV and other
 pestiviruses (Baginski SG et al., Proc. Natl. Acad. Sci. U.S.A. 2000 Jul
 5;97(14):7981-6). Currently, there is no treatment strategy available for controlling
 infections caused by pestiviruses.

30 Coxsackie viruses belong to the group of the enteroviruses, family of the
 Picornaviridae. They cause a heterogeneous group of infections including
 herpangina, aseptic meningitis, a common-cold-like syndrome, a non-paralytic
 poliomyelitis-like syndrome, epidemic pleurodynia (an acute, febrile, infectious
 disease generally occurring in epidemics), hand-foot-mouth syndrome, pediatric and
 adult pancreatitis and serious myocarditis.

35 Currently only pleconaril (3-(3,5-dimethyl-4-[[3-methyl-5-
 isoxazolyl]propyl]phenyl)-5-(trifluoromethyl-1,2,4-oxadiazole)) and enviroxime (2-
 amino-1-(isopropylsulfonyl)-6-benzimidazole phenyl ketone oxime) have been
 studied clinically for the treatment of infections with enteroviruses. Pleconaril is a so
 called "capsid function-inhibitor"; enviroxime prevents the formation of the RNA

5 replicative intermediate. Enviroxime resulted in only modest clinical and virological benefit in some studies and no benefits in others. Clinical response with pleconaril has been observed in some studies, but the compound has not been approved by the Food and Drug Administration (hearing of March 18th, 2002).

Relevant disclosures include U.S. Patent Nos. 4,914,108; 4,988,707;

- 10 4,990,518; 5,137,896; 5,208,242; 5,227,384; 5,302,601; 5,374,638; 5,405,964; 5,438,063; 5,486,525; 6,479,508; and U.S. Patent Publication No. US2003/0108862 A1, Canadian Patent No. 2423800 A1, German Patent Nos. 4211474 A1, 4236026, 4309969, 4318813, European Patent Nos. EP 0 138 552 A2, EP 0 706 795 A2, EP 1 132 381 A1, Great Britain Patent No. 2158440 A, PCT Patent Publication Nos. 15 WO 00/20416, WO 00/39127, WO 00/40583, WO 03/007945 A1, WO 03/010140 A2, WO 03/010141 A2, WO 93/02080, WO 93/14072, WO 96/11192, WO 96/12703, WO 99/27929, Akamatsu, et al., New Efficient Route for Solid-Phase Synthesis of Benzimidazole Derivatives", 4:475-483, *J. COMB. CHEM*, 2002, Cleve et al., "Derivate des Imidazo[4.5-b]- und Imidazo[4.5-c]pyridins", 747:158-171, *JUSTUS LIEBIGS ANNALEN DER CHEMICA*, 1971, Kiyama, et al., "Synthesis and Evaluation of Novel Nonpeptide Angiotensin II Receptor Antagonists: Imidazo[4,5-c]pyridine Derivatives with an Aromatic Substituent", 43(3):450-60, *CHEM PHARM BULL*, 1995, Mederski et al., "Synthesis and Structural Assignment of Some N-substituted Imidazopyridine Derivatives", 48(48):10549-58, *TETRAHEDRON*, 1992, 20 Yutilov et al., 23(1):56-9, *KHIMIKO-FARMATSEVTICHESKII ZHURNAL*, 1989.
- 25 The disclosures of all citations set forth herein are expressly incorporated by reference to the extent such disclosures are relevant to the contents herein.

A need exists for compounds having antiviral and other desirable properties, such as bioavailability, efficacy, nontoxicity, optimal clearance, potency and the like.

- 30 In particular, a need exists for compounds having selective activity against viruses belonging to the family of Flaviviridae including hepatitis C virus, and against viruses belonging to the family of Picornaviridae. These and other objects of this invention will be apparent to one skilled in the art from consideration of this specification as a whole.

SUMMARY OF THE INVENTION

An embodiment of the present invention provides compounds having the general formula (A),

10

wherein:

the dotted lines represent an optional double bond, provided that no two double bonds are adjacent to one another, and that the dotted lines represent at least 3, optionally 4 double bonds;

15 R¹ is selected from hydrogen, aryl, heterocyclic, C₁-C₁₀ alkoxy, C₁-C₁₀ thioalkyl, C₁-C₁₀ alkyl-amino, C₁-C₁₀ dialkyl-amino, C₃-C₁₀ cycloalkyl, C₄-C₁₀ cycloalkenyl, and C₄-C₁₀ cycloalkynyl, wherein each are optionally substituted with 1 or more R⁶;

Y is selected from single bond, O, S(O)_m, NR¹¹, or C₁-C₁₀ alkylene,
20 C₂-C₁₀ alkenylene, C₂-C₁₀ alkynylene, wherein each may optionally include 1 to 3 heteroatoms selected from O, S or N;

R² and R⁴ are independently selected from hydrogen, C₁-C₁₈ alkyl, C₂-C₁₈ alkenyl, C₂-C₁₈ alkynyl, C₁-C₁₈ alkoxy, C₁-C₁₈ alkylthio, halogen, -OH, -CN, -NO₂, -NR⁷R⁸, haloalkyloxy, haloalkyl, -C(=O)R⁹, -C(=S)R⁹, SH, aryl, aryloxy, arylthio, arylalkyl,
25 C₁-C₁₈ hydroxyalkyl, C₃-C₁₀ cycloalkyl, C₃-C₁₀ cycloalkyloxy, C₃-C₁₀ cycloalkylthio, C₃-C₁₀ cycloalkenyl, C₇-C₁₀ cycloalkynyl, or heterocyclic, provided that when one of R²⁵ or R²⁶ is present, then either R² or R⁴ is selected from (=O), (=S), and =NR²⁷;

X is selected from C₁-C₁₀ alkylene, C₂-C₁₀ alkenylene or C₂-C₁₀ alkynylene, where each may include one or more heteroatoms selected from O, S, or N, provided any such heteroatom is not adjacent to the N in the ring;

30 m is any integer from 0 to 2;

- 5 R³ is selected from aryl, aryloxy, arylthio, cycloalkyl, cycloalkenyl, cycloalkynyl, aryl-N(R¹⁰)-, or heterocyclic, where each said substituent may be optionally substituted with at least one R¹⁷, provided that for cycloalkenyl the double bond is not adjacent to a nitrogen, and provided R³-M-Q is not biphenyl;
- R⁵ is selected from hydrogen; C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, C₁₋₁₈
- 10 alkoxy, C₁₋₁₈ alkylthio, halogen, -OH, -CN, -NO₂, -NR⁷R⁸, haloalkyloxy, haloalkyl, -C(=O)R⁹, -C(=O)OR⁹, -C(=S)R⁹, SH, aryl, aryloxy, arylthio, arylalkyl, C₁₋₁₈ hydroxyalkyl, C₃₋₁₀ cycloalkyl, C₃₋₁₀ cycloalkyloxy, C₃₋₁₀ cycloalkylthio, C₃₋₁₀ cycloalkenyl, C₇₋₁₀ cycloalkynyl, or heterocyclic;
- R⁶ is selected from hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, C₁₋₁₈
- 15 alkoxy, C₁₋₁₈ alkylthio, C₁₋₁₈ alkylsulfoxide, C₁₋₁₈ alkylsulfone, C₁₋₁₈ halo-alkyl, C₂₋₁₈ halo-alkenyl, C₂₋₁₈ halo-alkynyl, C₁₋₁₈ halo-alkoxy, C₁₋₁₈ halo-alkylthio, C₃₋₁₀ cycloalkyl, C₃₋₁₀ cycloalkenyl, C₇₋₁₀ cycloalkynyl, halogen, OH, CN, cyanoalkyl, -CO₂R¹⁸, NO₂, -NR⁷R⁸, C₁₋₁₈ haloalkyl, C(=O)R¹⁸, C(=S)R¹⁸, SH, aryl, aryloxy, arylthio, arylsulfoxide, arylsulfone, arylsulfonamide, aryl(C₁₋₁₈)alkyl,
- 20 aryl(C₁₋₁₈)alkyloxy, aryl(C₁₋₁₈)alkylthio, heterocyclic, C₁₋₁₈ hydroxyalkyl, where each may be optionally substituted with at least 1 R¹⁹;
- R⁷ and R⁸ are independently selected from hydrogen, C₁₋₁₈ alkyl, C₁₋₁₈ alkenyl, aryl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, heterocyclic, -C(=O)R¹²; -C(=S)R¹², an amino acid residue linked through a carboxyl group thereof, or where R⁷ and R⁸
- 25 together with the nitrogen form a heterocyclic;
- R⁹ and R¹⁸ are independently selected from hydrogen, OH, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, C₁₋₁₈ alkoxy, -NR¹⁵R¹⁶, aryl, an amino acid residue linked through an amino group of the amino acid, CH₂OCH(=O)R^{9a}, or CH₂OC(=O)OR^{9a} where R^{9a} is C_{1-C₁₂} alkyl, C_{6-C₂₀} aryl, C_{6-C₂₀} alkylaryl or C_{6-C₂₀}
- 30 aralkyl;
- R¹⁰ and R¹¹ are independently selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, aryl, -C(=O)R¹², heterocyclic, or an amino acid residue;
- R¹² is selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈
- 35 alkenyl, aryl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, or an amino acid residue;

- 5 R¹³ and R¹⁴ are independently selected from hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, aryl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, -C(=O)R¹², -C(=S)R¹², or an amino acid residue;
- 10 R¹⁵ and R¹⁶ are independently selected from hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, aryl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, or an amino acid residue;
- 15 R¹⁷ is independently M-Q- wherein M is a ring optionally substituted with 1 or more R¹⁹, and Q is a bond or a linking group connecting M to R³ having 1 to 10 atoms and optionally substituted with 1 or more R¹⁹;
- 20 R¹⁹ is selected from hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, C₁₋₁₈ alkoxy, C₂₋₁₈ alkenyloxy, C₂₋₁₈ alkynyoxy, C₁₋₁₈ alkylthio, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, C₄₋₁₀ cycloalkynyl, halogen, -OH, -CN, cyanoalkyl, -NO₂, -NR²⁰R²¹, C₁₋₁₈ haloalkyl, C₁₋₁₈ haloalkyloxy, -C(=O)R¹⁸, -C(=O)OR¹⁸, -OalkenylC(=O)OR¹⁸, -OalkylC(=O)NR²⁰R²¹, -OalkylOC(=O)R¹⁸, -C(=S)R¹⁸, SH, -C(=O)N(C₁₋₆ alkyl), -N(H)S(O)(O)(C₁₋₆ alkyl), aryl, heterocyclic, C₁₋₁₈alkylsulfone, arylsulfoxide, arylsulfonamide, aryl(C₁₋₁₈)alkyloxy, aryloxy, aryl(C₁₋₁₈ alkyl)oxy, arylthio, aryl(C₁₋₁₈)alkylthio or aryl(C₁₋₁₈)alkyl, where each may be optionally substituted with 1 or more =O, NR²⁰R²¹, CN, C₁₋₁₈ alkoxy, heterocyclic, C₁₋₁₈ haloalkyl, heterocyclic alkyl, heterocyclic connected to R¹⁷ by alkyl, alkoxyalkoxy or halogen;
- 25 R²⁰ and R²¹ are independently selected from hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, aryl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, -C(=O)R¹², or -C(=S)R¹²;
- 30 R²² is selected from hydrogen, -OH, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₁₋₁₈ alkoxy, -NR²³R²⁴, aryl, C₃₋₁₀ cycloalkyl, and C₄₋₁₀ cycloalkenyl;
- 35 R²³ and R²⁴ are independently selected from hydrogen, C₁₋₁₈ alkyl, or a heterocyclic formed by taking C₂₋₃ alkyl together with N of R²², which heterocyclic is optionally substituted with OH or aryl, or an amino acid residue linked through a carboxyl group of the amino acid;
- R²⁵ and R²⁶ are not present, or are independently selected from hydrogen, C₁₋₁₈ alkyl, C₃₋₁₀ cycloalkyl, aryl, heterocyclic, where each is optionally independently substituted with 1 to 4 of C₁₋₆ alkyl, C₁₋₆ alkoxy, halo, CH₂OH, benzyloxy, and OH; and

5 R^{27} is selected from hydrogen, C₁₋₁₈ alkyl, C₃₋₁₀ cycloalkyl, (C₃₋₁₀ cycloalkyl)-C₁₋₆ alkyl, aryl, and aryl C₁₋₁₈ alkyl, and
 salts, tautomers, isomers and solvates thereof.

10 Another embodiment of the present invention provides compounds having the general formula (A),

wherein:

the dotted lines represent an optional double bond, provided that no two
 15 double bonds are adjacent to one another, and that the dotted lines represent at least 3,
 optionally 4 double bonds;

R^1 is selected from hydrogen, aryl, heterocyclic, C_{1-C₁₀} alkoxy,
 C_{1-C₁₀} thioalkyl, C_{1-C₁₀} alkyl-amino, C_{1-C₁₀} dialkyl-amino, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, and C₄₋₁₀ cycloalkynyl, wherein each are optionally substituted with 1
 20 or more R⁶;

Y is selected from single bond, O, S(O)_m, NR¹¹, or C₁₋₁₀ alkylene,
 C₂₋₁₀ alkenylene, C₂₋₁₀ alkynylene, wherein each may optionally include 1 to 3
 heteroatoms selected from O, S or N;

R^2 and R^4 are independently selected from hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl,
 25 C₂₋₁₈ alkynyl, C₁₋₁₈ alkoxy, C₁₋₁₈ alkylthio, halogen, -OH, -CN, -NO₂, -NR⁷R⁸,
 haloalkyloxy, haloalkyl, -C(=O)R⁹, -C(=S)R⁹, SH, aryl, aryloxy, arylthio, arylalkyl,
 C₁₋₁₈ hydroxyalkyl, C₃₋₁₀ cycloalkyl, C₃₋₁₀ cycloalkyloxy, C₃₋₁₀ cycloalkylthio, C₃₋₁₀ cycloalkenyl, C₇₋₁₀ cycloalkynyl, or heterocyclic, provided that when one of R²⁵ or
 R²⁶ is present, then either R² or R⁴ is selected from (=O), (=S), and =NR²⁷;

- 5 X is selected from C₁-C₁₀ alkylene, C₂₋₁₀ alkenylene or C₂₋₁₀ alkynylene, where each may include one or more heteroatoms selected from O, S, or N, provided any such heteroatom is not adjacent to the N in the ring;
- m is any integer from 0 to 2;
- R³ is a heterocycle optionally substituted with at least one R¹⁷ provided,
- 10 however, that R³ optionally substituted with at least one R¹⁷ is not pyridinyl or 5-chlorothienyl, provided that R³-MQ is not biphenyl;
- R⁵ is selected from hydrogen; C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, C₁₋₁₈ alkoxy, C₁₋₁₈ alkylthio, halogen, -OH, -CN, -NO₂, -NR⁷R⁸, haloalkyloxy, haloalkyl, -C(=O)R⁹, -C(=O)OR⁹, -C(=S)R⁹, SH, aryl, aryloxy, arylthio, arylalkyl, C₁₋₁₈
- 15 hydroxyalkyl, C₃₋₁₀ cycloalkyl, C₃₋₁₀ cycloalkyloxy, C₃₋₁₀ cycloalkylthio, C₃₋₁₀ cycloalkenyl, C₇₋₁₀ cycloalkynyl, or heterocyclic;
- R⁶ is selected from hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, heterocyclic, C₁₋₁₈ alkoxy, C₁₋₁₈ alkylthio, C₁₋₁₈ alkylsulfoxide, C₁₋₁₈ alkylsulfone, C₁₋₁₈ halo-alkyl, C₂₋₁₈ halo-alkenyl, C₂₋₁₈ halo-alkynyl, C₁₋₁₈ halo-alkoxy, C₁₋₁₈ halo-
- 20 alkylthio, C₃₋₁₀ cycloalkyl, C₃₋₁₀ cycloalkenyl, C₇₋₁₀ cycloalkynyl, halogen, OH, CN, cyanoalkyl, -CO₂R¹⁸, NO₂, -NR⁷R⁸, C₁₋₁₈ haloalkyl, C(=O)R¹⁸, C(=S)R¹⁸, SH, aryl, aryloxy, arylthio, arylsulfoxide, arylsulfone, arylsulfonamide, aryl(C₁₋₁₈)alkyl, aryl(C₁₋₁₈)alkyloxy, aryl(C₁₋₁₈)alkylthio, C₁₋₁₈ hydroxyalkyl, where each may be optionally substituted with at least 1 R¹⁹;
- 25 R⁷ and R⁸ are independently selected from hydrogen, C₁₋₁₈ alkyl, C₁₋₁₈ alkenyl, aryl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, heterocyclic, -C(=O)R¹²; -C(=S)R¹², an amino acid residue linked through a carboxyl group thereof, or where R⁷ and R⁸ together with the nitrogen form a heterocyclic;
- R⁹ and R¹⁸ are independently selected from hydrogen, OH, C₁₋₁₈ alkyl, C₂₋₁₈
- 30 alkenyl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, C₁₋₁₈ alkoxy, -NR¹⁵R¹⁶, aryl, an amino acid residue linked through an amino group of the amino acid, CH₂OCH(=O)R^{9a}, or CH₂OC(=O)OR^{9a} where R^{9a} is C₁-C₁₂ alkyl, C₆-C₂₀ aryl, C₆-C₂₀ alkylaryl or C₆-C₂₀ aralkyl;
- R¹⁰ and R¹¹ are independently selected from the group consisting of hydrogen,
- 35 C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, aryl, -C(=O)R¹², heterocyclic, or an amino acid residue;

- 5 R¹² is selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, aryl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, or an amino acid residue;
- R¹³ and R¹⁴ are independently selected from hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, aryl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, -C(=O)R¹², -C(=S)R¹², or an amino acid residue;
- 10 R¹⁵ and R¹⁶ are independently selected from hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, aryl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, or an amino acid residue;
- R¹⁷ is independently selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, C₁₋₁₈ alkoxy, C₁₋₁₈ alkylthio, C₁₋₁₈ alkylsulfoxide,
- 15 C₁₋₁₈ alkylsulfone, C₁₋₁₈ halogenated alkyl, C₂₋₁₈ halogenated alkenyl, C₂₋₁₈ halogenated alkynyl, C₁₋₁₈ halogenated alkoxy, C₁₋₁₈ halogenated alkylthio, C₃₋₁₀ cycloalkyl, C₃₋₁₀ cycloalkenyl, C₇₋₁₀ cycloalkynyl, halogen, OH, CN, CO₂H, CO₂R¹⁸, NO₂, NR⁷R⁸, haloalkyl, C(=O)R¹⁸, C(=S)R¹⁸, SH, aryl, aryloxy, arylthio, arylsulfoxide, arylsulfone, arylsulfonamide, arylalkyl, arylalkyloxy, arylalkylthio, heterocyclic, C₁₋₁₈ hydroxyalkyl, where each of said aryl, aryloxy, arylthio, arylsulfoxide, arylsulfone, arylsulfonamide, arylalkyl, arylalkyloxy, arylalkylthio, heterocycle, or C₁₋₁₈ hydroxyalkyl is optionally substituted with 1 or more R¹⁹;
- R¹⁹ is selected from hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, C₁₋₁₈ alkoxy, C₂₋₁₈ alkenyloxy, C₂₋₁₈ alkynyoxy, C₁₋₁₈ alkylthio, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, C₄₋₁₀ cycloalkynyl, halogen, -OH, -CN, cyanoalkyl, -NO₂, -NR²⁰R²¹, C₁₋₁₈ haloalkyl, C₁₋₁₈ haloalkyloxy, -C(=O)R¹⁸, -C(=O)OR¹⁸, -OalkenylC(=O)OR¹⁸, -OalkylC(=O)NR²⁰R²¹, -OalkylOC(=O)R¹⁸, -C(=S)R¹⁸, SH, -C(=O)N(C₁₋₆ alkyl), -N(H)S(O)(O)(C₁₋₆ alkyl), aryl, heterocyclic, C₁₋₁₈ alkylsulfone, arylsulfoxide, arylsulfonamide, aryl(C₁₋₁₈ alkyl)oxy, arylthio, aryl(C₁₋₁₈ alkylthio or aryl(C₁₋₁₈ alkyl), where each may be optionally substituted with 1 or more =O, NR²⁰R²¹, CN, C₁₋₁₈ alkoxy, heterocyclic, C₁₋₁₈ haloalkyl, heterocyclic alkyl, heterocyclic connected to R¹⁷ by alkyl, alkoxyalkoxy or halogen;
- R²⁰ and R²¹ are independently selected from hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, aryl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, -C(=O)R¹², carboxylester-substituted heterocyclic or -C(=S)R¹²;

- 5 R²² is selected from hydrogen, -OH, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₁₋₁₈ alkoxy, -NR²³R²⁴, aryl, C₃₋₁₀ cycloalkyl, and C₄₋₁₀ cycloalkenyl;
- 10 R²³ and R²⁴ are independently selected from hydrogen, C₁₋₁₈ alkyl, or a heterocyclic formed by taking C₂₋₃ alkyl together with N of R²², which heterocyclic is optionally substituted with OH or aryl, or an amino acid residue linked through a carboxyl group of the amino acid;
- 15 R²⁵ and R²⁶ are not present, or are independently selected from hydrogen, C₁₋₁₈ alkyl, C₃₋₁₀ cycloalkyl, aryl, heterocyclic, where each is optionally independently substituted with 1 to 4 of C₁₋₆ alkyl, C₁₋₆ alkoxy, halo, CH₂OH, benzyloxy, and OH; and
- 20 R²⁷ is selected from hydrogen, C₁₋₁₈ alkyl, C₃₋₁₀ cycloalkyl, (C₃₋₁₀ cycloalkyl)-C₁₋₆ alkyl, aryl, and aryl C₁₋₁₈ alkyl, and the salts, tautomers, isomers and solvates thereof.

An embodiment of the present invention provides compounds having the general formula (A),

wherein:

- the dotted lines represent an optional double bond, provided that no two double bonds are adjacent to one another, and that the dotted lines represent at least 3, optionally 4 double bonds;
- 25 R¹ is selected from hydrogen, aryl, heterocyclic, C_{1-C₁₀} alkoxy, C_{1-C₁₀} thioalkyl, C_{1-C₁₀} alkyl-amino, C_{1-C₁₀} dialkyl-amino, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, and C₄₋₁₀ cycloalkynyl, wherein each are optionally substituted with 1 or more R⁶;

- 5 Y is selected from single bond, O, S(O)_m, NR¹¹, or C₁₋₁₀ alkylene,
C₂₋₁₀ alkenylene, C₂₋₁₀ alkynylene, wherein each may optionally include 1 to 3
heteroatoms selected from O, S or N;
- 10 R² and R⁴ are independently selected from hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl,
C₂₋₁₈ alkynyl, C₁₋₁₈ alkoxy, C₁₋₁₈ alkylthio, halogen, -OH, -CN, -NO₂, -NR⁷R⁸,
haloalkyloxy, haloalkyl, -C(=O)R⁹, -C(=S)R⁹, SH, aryl, aryloxy, arylthio, arylalkyl,
C₁₋₁₈ hydroxyalkyl, C₃₋₁₀ cycloalkyl, C₃₋₁₀ cycloalkyloxy, C₃₋₁₀ cycloalkylthio, C₃₋₁₀
cycloalkenyl, C₇₋₁₀ cycloalkynyl, or heterocyclic, provided that when one of R²⁵ or
R²⁶ is present, then either R² or R⁴ is selected from (=O), (=S), and =NR²⁷;
- 15 X is selected from C_{1-C₁₀} alkylene, C₂₋₁₀ alkenylene or C₂₋₁₀ alkynylene, where
each may include one or more heteroatoms selected from O, S, or N, provided any
such heteroatom is not adjacent to the N in the ring;
- 20 m is any integer from 0 to 2;
R³ is a heterocycle optionally substituted with at least one R¹⁷, provided R³-M-
Q is not biphenyl;
- 25 R⁵ is selected from hydrogen; C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, C₁₋₁₈
alkoxy, C₁₋₁₈ alkylthio, halogen, -OH, -CN, -NO₂, -NR⁷R⁸, haloalkyloxy, haloalkyl,
-C(=O)R⁹, -C(=O)OR⁹, -C(=S)R⁹, SH, aryl, aryloxy, arylthio, arylalkyl, C₁₋₁₈
hydroxyalkyl, C₃₋₁₀ cycloalkyl, C₃₋₁₀ cycloalkyloxy, C₃₋₁₀ cycloalkylthio, C₃₋₁₀
cycloalkenyl, C₇₋₁₀ cycloalkynyl, or heterocyclic;
- 30 R⁶ is selected from hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, C₁₋₁₈
alkoxy, C₁₋₁₈ alkylthio, C₁₋₁₈ alkylsulfoxide, C₁₋₁₈ alkylsulfone, C₁₋₁₈ halo-alkyl, C₂₋₁₈
halo-alkenyl, C₂₋₁₈ halo-alkynyl, C₁₋₁₈ halo-alkoxy, C₁₋₁₈ halo-alkylthio, C₃₋₁₀
cycloalkyl, C₃₋₁₀ cycloalkenyl, C₇₋₁₀ cycloalkynyl, halogen, OH, CN, cyanoalkyl,
-CO₂R¹⁸, NO₂, -NR⁷R⁸, C₁₋₁₈ haloalkyl, C(=O)R¹⁸, C(=S)R¹⁸, SH, aryl, aryloxy,
arylthio, arylsulfoxide, arylsulfone, arylsulfonamide, aryl(C₁₋₁₈)alkyl,
aryl(C₁₋₁₈)alkyloxy, aryl(C₁₋₁₈)alkylthio, heterocyclic, C₁₋₁₈ hydroxyalkyl, where each
may be optionally substituted with at least 1 R¹⁹;
- 35 R⁷ and R⁸ are independently selected from hydrogen, C₁₋₁₈ alkyl, C₁₋₁₈ alkenyl,
aryl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, heterocyclic, -C(=O)R¹²; -C(=S)R¹², an
amino acid residue linked through a carboxyl group thereof, or where R⁷ and R⁸
together with the nitrogen form a heterocyclic;

- 5 R⁹ and R¹⁸ are independently selected from hydrogen, OH, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, C₁₋₁₈ alkoxy, -NR¹⁵R¹⁶, aryl, an amino acid residue linked through an amino group of the amino acid, CH₂OCH(=O)R^{9a}, or CH₂OC(=O)OR^{9a} where R^{9a} is C_{1-C12} alkyl, C_{6-C20} aryl, C_{6-C20} alkylaryl or C_{6-C20} aralkyl;
- 10 R¹⁰ and R¹¹ are independently selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, aryl, -C(=O)R¹², heterocyclic, or an amino acid residue;
- R¹² is selected from the group consisting of hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, aryl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, or an amino acid residue;
- 15 R¹³ and R¹⁴ are independently selected from hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, aryl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, -C(=O)R¹², -C(=S)R¹², or an amino acid residue;
- R¹⁵ and R¹⁶ are independently selected from hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, aryl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, or an amino acid residue;
- 20 R¹⁷ is M-Q-, wherein M is a C₃₋₁₀ cycloalkyl optionally substituted with 1 or more R¹⁹, and Q is a bond, or C₁₋₁₀ alkyl optionally substituted with 1 or more R¹⁹;
- R¹⁹ is selected from hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, C₁₋₁₈ alkoxy, C₂₋₁₈ alkenyloxy, C₂₋₁₈ alkynyoxy, C₁₋₁₈ alkylthio, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, C₄₋₁₀ cycloalkynyl, halogen, -OH, -CN, cyanoalkyl, -NO₂, -NR²⁰R²¹, C₁₋₁₈ haloalkyl, C₁₋₁₈ haloalkyloxy, -C(=O)R¹⁸, -C(=O)OR¹⁸, -OalkenylC(=O)OR¹⁸, -OalkylC(=O)NR²⁰R²¹, -OalkylOC(=O)R¹⁸, -C(=S)R¹⁸, SH, -C(=O)N(C₁₋₆ alkyl), -N(H)S(O)(O)(C₁₋₆ alkyl), aryl, heterocyclic, C₁₋₁₈ alkylsulfone, arylsulfoxide, arylsulfonamide, aryl(C₁₋₁₈)alkyloxy, aryloxy, aryl(C₁₋₁₈ alkyl)oxy, arylthio, aryl(C₁₋₁₈)alkylthio or aryl(C₁₋₁₈)alkyl, where each may be optionally substituted with 1 or more =O, NR²⁰R²¹, CN, C₁₋₁₈ alkoxy, heterocyclic, C₁₋₁₈ haloalkyl, heterocyclic alkyl, heterocyclic connected to R¹⁷ by alkyl, alkoxyalkoxy or halogen;
- R²⁰ and R²¹ are independently selected from hydrogen, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₂₋₁₈ alkynyl, aryl, C₃₋₁₀ cycloalkyl, C₄₋₁₀ cycloalkenyl, -C(=O)R¹², or -C(=S)R¹²;

- 5 R²² is selected from hydrogen, -OH, C₁₋₁₈ alkyl, C₂₋₁₈ alkenyl, C₁₋₁₈ alkoxy, -NR²³R²⁴, aryl, C₃₋₁₀ cycloalkyl, and C₄₋₁₀ cycloalkenyl;
- 10 R²³ and R²⁴ are independently selected from hydrogen, C₁₋₁₈ alkyl, or a heterocyclic formed by taking C₂₋₃ alkyl together with N of R²², which heterocyclic is optionally substituted with OH or aryl, or an amino acid residue linked through a carboxyl group of the amino acid;
- 15 R²⁵ and R²⁶ are not present, or are independently selected from hydrogen, C₁₋₁₈ alkyl, C₃₋₁₀ cycloalkyl, aryl, heterocyclic, where each is optionally independently substituted with 1 to 4 of C₁₋₆ alkyl, C₁₋₆ alkoxy, halo, CH₂OH, benzyloxy, and OH; and
- 20 R²⁷ is selected from hydrogen, C₁₋₁₈ alkyl, C₃₋₁₀ cycloalkyl, (C₃₋₁₀ cycloalkyl)-C₁₋₆ alkyl, aryl, and aryl C₁₋₁₈ alkyl, and the salts, tautomers, isomers and solvates thereof.

Yet another embodiment of the present invention provides compounds having the formula (B),

20

(B)

wherein:

- the dotted lines represent an optional double bond, provided that no two double bonds are adjacent to one another, and that the dotted lines represent at least 3, optionally 4 double bonds; and R¹, R², R³, R⁴, R⁵, R²⁵, R²⁶, X and Y are as disclosed above.

An embodiment of the present invention provides compounds of the formula (B) wherein Y is a single bond, and R¹ is aryl.

- 30 Another embodiment of the present invention provides compounds of formula (B) wherein X is C_{1-C10} alkylene, C₂₋₁₀ alkenylene or C₂₋₁₀ alkynylene.

5 Another embodiment of the present invention provides compounds of formula (B) wherein R³ is heterocyclic.

Another embodiment of the present invention provides compounds of formula (B) wherein R³ is heterocyclic substituted with R¹⁷ where Q is a bond and M is aryl.

10 Another embodiment of the present invention provides compounds of formula (B) wherein Y is a single bond, and R¹ is phenyl.

Another embodiment of the present invention provides compounds of formula (B) wherein R³ is isoxazole substituted with R¹⁷ where Q is a bond and M is aryl.

Another embodiment of the present invention provides compounds of formula (B) wherein R³ is isoxazole substituted with R¹⁷ where Q is a bond and M is phenyl.

15 Yet another embodiment of the present invention provides compounds having the formula (C),

(C)

20 wherein R¹, R², R³, R⁴, R⁵, R²⁵, R²⁶, X and Y are as disclosed above.

An embodiment of the present invention provides compounds of the formula (C) wherein Y is a single bond, and R¹ is aryl.

Another embodiment of the present invention provides compounds of formula

25 (C) wherein X is C₁-C₁₀ alkylene, C₂-C₁₀ alkenylene or C₂-C₁₀ alkynylene.

Another embodiment of the present invention provides compounds of formula (C) wherein R³ is heterocyclic.

Another embodiment of the present invention provides compounds of formula (C) wherein R³ is heterocyclic substituted with R¹⁷ where Q is a bond and M is aryl.

Another embodiment of the present invention provides compounds of formula (C) wherein Y is a single bond, and R¹ is phenyl.

5 Another embodiment of the present invention provides compounds of formula (C) wherein R³ is isoxazole substituted with R¹⁷ where Q is a bond and M is aryl.

Another embodiment of the present invention provides compounds of formula (C) wherein R³ is isoxazole substituted with R¹⁷ where Q is a bond and M is phenyl.

10 The compounds of formula (A) are optionally combined with pharmacologically acceptable excipients.

The compounds of formula (A) are administered in therapeutically effective amounts to subjects (humans or animals) in need of antiviral therapy, in particular for inhibiting the infection, growth or replication of Flaviviridae and Picornaviridae, especially BVDV, HCV and Coxsackie virus.

15 The invention further relates to a method of screening antiviral compounds which comprises providing a compound of formula (A) and determining the anti-viral activity of said compound.

Also within the scope of the invention is a metabolite of the compounds of formula (A) made by the process of administering a compound of formula (A) to a subject and recovering the metabolite from the subject.

The invention also comprises a method for structure-activity determination of analogues of formula (A) compounds

25, wherein the substituents are defined in WO 2004/005286, comprising

- (A) preparing a compound of formula (A) in which at least one substituent is not disclosed by WO 2004/005286; and
- (B) determining the anti-HCV activity of the compound of step (a).

5 “Alkyl” means saturated hydrocarbon moiety where the moiety may be acyclic, cyclic or a combination of acyclic and cyclic portions. The acyclic portion may contain 1 to 3 carbon atoms, and each ring may contain 3 to 6 carbon atoms (for example, 3-methylcyclohexyl). Within this definition, the term “cycloalkyl” refers to the saturated hydrocarbon moieties that are cyclic. Examples of “alkyl” include
10 methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-methyl-1-propyl(i-Bu), 2-butyl (s-Bu) 2-methyl-2-propyl (t-Bu), 1-pentyl (n-pentyl), 2-pentyl, 3-pentyl, 2-methyl-2-butyl, 3-methyl-2-butyl, 3-methyl-1-butyl, 2-methyl-1-butyl, 1-hexyl, 2-hexyl, 3-hexyl, 2-methyl-2-pentyl, 3-methyl-2-pentyl, 4-methyl-2-pentyl, 3-methyl-3-pentyl, 2-methyl-3-pentyl, 2,3-dimethyl-2-butyl, 3,3-dimethyl-2-butyl, cyclopropyl, cyclobutyl,
15 cyclopentyl and cyclohexyl, cyclopropyl, cyclobutyl, cyclopentyl, cycloheptyl, cyclooctyl and the like, or a C₇₋₁₀ polycyclic saturated hydrocarbon radical having from 7 to 10 carbon atoms such as, for instance, norbornyl, fenchyl, trimethyltricycloheptyl or adamantyl.

“Alkenyl” means a hydrocarbon moiety with at least one site of double bond
20 unsaturation where the moiety may be acyclic, cyclic or a combination of acyclic and cyclic portions. The acyclic portion may contain 1 to 3 carbon atoms, and each cyclic portion may contain 3 to 6 carbon atoms. A site of double bond unsaturation may be in a acyclic portion, a cyclic portion. In the instance of a moiety having a combination of acyclic and cyclic portions, there may be a site of double bond
25 unsaturation in each of the portions. Within this definition, the term “cycloalkenyl” refers to the double bond unsaturated hydrocarbon moieties that are cyclic. Examples the term “alkenyl” include, but are not limited to, ethylene or vinyl (-CH=CH₂), allyl (-CH₂CH=CH₂), cyclopentenyl (-C₅H₇), 5-hexenyl (-CH₂CH₂CH₂CH₂CH=CH₂), 1-cyclopent-1-enyl, 1-cyclopent-2-enyl, 1-cyclopent-3-enyl, 1-cyclohex-1-enyl, 1-cyclohex-2-enyl, and 1-cyclohex-3-enyl. The double bond optionally is in the cis or trans configuration.

“Alkynyl” means a hydrocarbon moiety with a least one site of triple bond unsaturation where the moiety may be acyclic, cyclic or a combination of acyclic and cyclic portions. The acyclic portion may contain contain 1 to 3 carbon atoms, and
35 each cyclic portion may contain 7 or more carbon atoms. Within this definition, the term “cycloalkynyl” refers to triple bond unsaturated hydrocarbon moieties that are

- 5 cyclic. Examples of the term "alkynyl" include, but are not limited to, -C≡CH, -CH₂C≡CH, -CH₂C≡C-cyclohexyl, or -CH₂-cycloheptynyl.

The suffix "-ene" used in connection with alkyl, alkenyl and alkynyl groups refers to such groups with at least 2 sites of substitution. Such polyvalent hydrocarbon radicals include, but are not limited to, methylene (-CH₂-), 1,2-ethylene (-CH₂CH₂-),

- 10 1,3-propylene (-CH₂CH₂CH₂-), 1,4-butylene (-CH₂CH₂CH₂CH₂-), 1,2-ethylene (-CH=CH-), -C□C-, propargyl (-CH₂C□C-), and 4-pentynyl (-CH₂CH₂CH₂C□CH-).

"Aryl" means an aromatic hydrocarbon containing 1 or more rings; generally 1, 2 or 3, with 4 to 6 carbon atoms in each, ordinarily 5 or 6 carbon atoms.

- 15 "Arylalkyl," "arylalkenyl" and "arylalkynyl" means an alkyl, alkenyl or alkynyl radical, respectively, in which one of the hydrogen atoms, typically a terminal or sp³ carbon atom, is replaced with an aryl radical. Typical arylalkyl groups include, but are not limited to, benzyl, 2-phenylethan-1-yl, 2-phenylethen-1-yl, naphthylmethyl, 2-naphthylethan-1-yl, 2-naphthylethen-1-yl, naphthobenzyl, 2-naphthophenylethan-1-yl and the like.

- 20 As noted, carbocycles optionally are found as single rings or multiple ring systems. Ordinarily the hydrocarbons of the compounds of formula (A) are single rings. Monocyclic carbocycles generally have 3 to 6 ring atoms, still more typically 5 or 6 ring atoms. Bicyclic carbocycles typically have 7 to 12 ring atoms, e.g. arranged as a bicyclo [4,5], [5,5], [5,6] or [6,6] system, or 9 or 10 ring atoms arranged as a bicyclo [5,6] or [6,6] system.

If the number of carbon atoms is unspecified for a hydrocarbon, typically the number of carbon atoms will range from 1 to 18, except that the number of carbons typically will range from 2 to 18 for unsaturated hydrocarbons and from 6 to 10 for

aryl.

- 30 " Heterocyclic" or "heterocycle" means any 4, 5, 6, 7, 8 or 9 membered single or fused ring system containing one or more heteroatoms selected from the group consisting of O, N or S. Heterocycles optionally are entirely aromatic, entirely saturated, or contain 1 or more intra-ring sites of unsaturation, typically double bonds. Multiple heterocyclic rings (one or more of which contains a heteroatom) are bridged or spiro. Generally, the heterocyclic rings will be aromatic, and usually they are single rings. Examples of heterocycles include oxazacycloalkyl, morpholinyl,

- 5 dioxacycloalkyl, thiacycloalkenyl, pyridyl, dihydroypyridyl, tetrahydropyridyl
(piperidyl), thiazolyl, tetrahydrothiophenyl, furanyl, thienyl, pyrrolyl, pyranyl,
pyrazolyl, pyrazolidinyl, pyrazolinyl, imidazolyl, tetrazolyl, benzofuranyl,
thianaphthalenyl, indolyl, indolenyl, quinolinyl, isoquinolinyl, benzimidazolyl,
piperidinyl, piperazinyl, pyrrolidinyl, 2-pyrrolidonyl, pyrrolinyl, tetrahydrofuranyl,
10 bis-tetrahydrofuranyl, tetrahydropyranyl, bis-tetrahydropyranyl, tetrahydroquinolinyl,
tetrahydroisoquinolinyl, decahydroquinolinyl, octahydroisoquinolinyl, azocinyl,
triazinyl, 6H-1,2,5-thiadiazinyl, 2H,6H-1,5,2-dithiazinyl, thianthrenyl, pyranyl,
isobenzofuranyl, chromenyl, xanthenyl, phenoxathinyl, 2H-pyrrolyl, isothiazolyl,
isothiazoledinyl, isoxazolyl, oxazolinyl, pyrazinyl, pyridazinyl, pyrimidinyl,
15 pyrrolidinyl, pyrrolinyl, indolizinyl, isoindolyl, 3H-indolyl, 1H-indazoly, purinyl, 4H-
quinolizinyl, isoquinolyl, quinolyl, phthalazinyl, naphthyridinyl, quinoxalinyl,
quinazolinyl, cinnolinyl, pteridinyl, 4aH-carbazolyl, carbazolyl, β -carbolinyl,
phenanthridinyl, acridinyl, pyrimidinyl, phenanthrolinyl, phenazinyl, phenothiazinyl,
furazanyl, phenoxazinyl, isochromanyl, chromanyl, imidazolidinyl, imidazolinyl,
20 pyrazolidinyl, pyrazolinyl, piperazinyl, indolinyl, isoindolinyl, quinuclidinyl,
oxazolidinyl, benzotriazolyl, benzisoxazolyl, oxindolyl, benzoxazolinyl, benzothienyl,
benzothiazolyl and isatinoyl. Other suitable heterocycles are exemplified in Rigaudy
et al., Nomenclature of Organic Chemistry, Sections A-H (1979) at pp. 53-76 and
Fletcher et al., Nomenclature of Organic Compounds, Adv. Chem. Ser. 126 (1974) at
25 pp 49-64.

The location on the heterocycle which provides the point of attachment(s) to
the rest of the compound of this invention is not critical, but those skilled in the art
will recognize substitution sites that are optimal for compound stability and/or ease of
~~synthesis~~. Carbon bonded heterocycles typically are bonded at position 2, 3, 4, 5, or
30 6 of a pyridine, position 3, 4, 5, or 6 of a pyridazine, position 2, 4, 5, or 6 of a
pyrimidine, position 2, 3, 5, or 6 of a pyrazine, position 2, 3, 4, or 5 of a furan,
tetrahydrofuran, thifuran, thiophene, pyrrole or tetrahydropyrrole, position 2, 4, or 5
of an oxazole, imidazole or thiazole, position 3, 4, or 5 of an isoxazole, pyrazole, or
isothiazole, position 2 or 3 of an aziridine, position 2, 3, or 4 of an azetidine, position
35 2, 3, 4, 5, 6, 7, or 8 of a quinoline or position 1, 3, 4, 5, 6, 7, or 8 of an isoquinoline.
Still more typically, carbon bonded heterocycles include 2-pyridyl, 3-pyridyl, 4-

- 5 pyridyl, 5-pyridyl, 6-pyridyl, 3-pyridazinyl, 4-pyridazinyl, 5-pyridazinyl, 6-pyridazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 6-pyrimidinyl, 2-pyrazinyl, 3-pyrazinyl, 5-pyrazinyl, 6-pyrazinyl, 2-thiazolyl, 4-thiazolyl, or 5-thiazolyl.

Nitrogen containing heterocycles are bonded at nitrogen or a carbon, typically a carbon atom. These include, for example, position 1 of aziridine, 1-aziridyl, 1-azetedyl, 1-pyrrolyl, 1-imidazolyl, 1-pyrazolyl, 1-piperidinyl, 2-pyrroline, 3-pyrroline, 2-imidazoline, 3-imidazoline, 9-carbazole, 4-morpholine, 9-alpha or β -carboline, 2-isoindole, 2-pyrazoline and 3-pyrazoline, and by analogy, azetidine, pyrrole, pyrrolidine piperidine, piperazine, indole, pyrazoline, indoline, imidazole, imidazolidine, 1H-indazole and isoindoline. These and other N-containing heterocycles are well-known to those skilled in the art, and their linkage sites are a matter of discretion.

Sulfur containing heterocycles are bonded through carbon or sulfur. They include oxidized states such as $-S(=O)(=O)$. In general, they are linked in the compounds of formula (A) analogous to N-containing heterocycles.

20 "Alkoxy", "cycloalkoxy", "aryloxy", "arylalkyloxy", "oxy heterocycle", "thioalkyl", "thiocycloalkyl", "arylthio", and "arylalkylthio" means substituents wherein an alkyl, cycloalkyl, aryl, or arylalkyl, respectively, are attached to an oxygen atom or a sulfur atom through a single bond, such as but not limited to methoxy, ethoxy, propoxy, butoxy, thioethyl, thiomethyl, phenoxy, benzyloxy, mercaptobenzyl and the like.

"Halogen" means any atom selected from the group consisting of fluorine, chlorine, bromine and iodine.

Any substituent designation that is found in more than one site in a compound of this invention shall be independently selected.

30 When a group is stated to be substituted with "one or more" of another group, this typically means 1 to 3 substituents, ordinarily 1, 2 or 3 substituents.

Those of skill in the art will also recognize that the compounds of the invention may exist in many different protonation states, depending on, among other things, the pH of their environment. While the structural formulae provided herein 35 depict the compounds in only one of several possible protonation states, it will be understood that these structures are illustrative only, and that the invention is not

- 5 limited to any particular protonation state—any and all protonated forms of the compounds are intended to fall within the scope of the invention.

Amino Acids

“Amino-acid” refers to a radical derived from a molecule having the chemical formula $\text{H}_2\text{N}-\text{CHR}^{28}-\text{COOH}$, wherein R^{28} is a side group of a naturally-occurring or known synthetic amino-acid. The amino acids optionally are substituted with hydrocarbon typically of 1 to 8 carbons at one or more carboxyl or amino groups, whether those groups are on the side chain or are free after linking the amino acid to the remainder of the compound of this invention.

15 Optionally the amino acid residue is a hydrophobic residue such as mono- or di-alkyl or aryl amino acids, cycloalkylamino acids and the like. Optionally, the residue does not contain a sulphydryl or guanidino substituent.

Naturally-occurring amino acid residues are those residues found naturally in plants, animals or microbes, especially proteins thereof. Polypeptides most typically 20 will be substantially composed of such naturally-occurring amino acid residues. These amino acids are glycine, alanine, valine, leucine, isoleucine, serine, threonine, cysteine, methionine, glutamic acid, aspartic acid, lysine, hydroxylysine, arginine, histidine, phenylalanine, tyrosine, tryptophan, proline, asparagine, glutamine and hydroxyproline. Additionally, unnatural amino acids, for example, valanine, 25 phenylglycine and homoarginine are also included.

Generally, only one of any site in the parental molecule is substituted with an amino acid, although it is within the scope of this invention to introduce amino acids at more than one permitted site. In general, the α -amino or α -carboxyl group of the 30 amino acid are bonded to the remainder of the molecule, i.e., carboxyl or amino groups in the amino acid side chains generally are not used to form the amide bonds with the parental compound (although these groups may need to be protected during synthesis of the conjugates).

The amino acid esters optionally are hydrolyzable *in vivo* or *in vitro* under acidic ($\text{pH} < 3$) or basic ($\text{pH} > 10$) conditions. Optionally, they are substantially stable 35 in the gastrointestinal tract of humans but are hydrolyzed enzymatically in blood or in intracellular environments.

5 R²⁸ usually is C₁-C₆ alkyl or C₁-C₆ alkyl substituted with amino, carboxyl, amide, carboxyl (as well as esters, as noted above), hydroxyl, C₆-C₇ aryl, guanidinyl, imidazolyl, indolyl, sulphydryl, sulfoxide, and/or alkylphosphate. R²⁸ also is nitrogen to form a proline residue taken together with the amino acid α-. However, R²⁸ is generally the side group of the naturally-occurring amino acid disclosed above, for
10 example H, -CH₃, -CH(CH₃)₂, -CH₂-CH(CH₃)₂, -CHCH₃-CH₂-CH₃, -CH₂-C₆H₅, -CH₂CH₂-S-CH₃, -CH₂OH, -CH(OH)-CH₃, -CH₂-SH, -CH₂-C₆H₄OH, -CH₂-CO-NH₂, -CH₂-CH₂-CO-NH₂, -CH₂-COOH, -CH₂-CH₂-COOH, -(CH₂)₄-NH₂ and -(CH₂)₃-NH-C(NH₂)-NH₂. R²⁸ also includes 1-guanidinoprop-3-yl, benzyl, 4-hydroxybenzyl, imidazol-4-yl, indol-3-yl, methoxyphenyl and ethoxyphenyl.

15

Exemplary Embodiments

R¹ is generally aryl or aromatic heterocycle substituted with 1, 2 or 3 R⁶ wherein R⁶ is halogen, C₁₋₁₈ alkoxy; or C₁₋₁₈ haloalkyl. Typically, R¹ is phenyl substituted with 1, 2 or 3 halogens, usually fluoro.

20

Y generally is a single bond, O, C₁₋₆ alkylene, C₂₋₆ alkenylene, C₂₋₆ alkynylene or one of said groups containing 1 to 3, usually 1, heteroatoms selected from O, S or NR¹¹. Examples include -O(CH₂)₁₋₅-, -(CH₂)₁₋₄-O-(CH₂)₁₋₄-, -S-(CH₂)₁₋₅-, -(CH₂)₁₋₄-S-(CH₂)₁₋₄-, -NR¹¹-(CH₂)₁₋₅-, -(CH₂)₁₋₄-NR¹¹-(CH₂)₁₋₄ or C₃₋₁₀ cycloalkylidene. Typically, Y is -OCH₂-, -CH₂O-, C₁₋₂ alkylene, C₂₋₃ alkenylene, C₂₋₃ alkynylene, O or a bond, but usually a bond.

In general, YR¹ is not any one of H, an unsubstituted C₃₋₁₀ cycloalkyl or C₁₋₆ alkyl. Typically YR¹ is halo or halomethyl-substituted (typically trihalomethyl) phenyl (and usually 1 to 2 substituents in ortho or meta).

25

X usually is alkylene, alkynylene or alkenylene, typically alkylene, or said hydrocarbons having an intrachain heteroatom, typically O or S. Examples include -CH₂-, -CH(CH₃)-, -CH₂-CH₂-, -CH₂-CH₂-CH₂-, -CH₂-CH₂-CH₂-CH₂-, -(CH₂)₂₋₄-O-(CH₂)₂₋₄-, -(CH₂)₂₋₄-S-(CH₂)₂₋₄-, -(CH₂)₂₋₄-NR¹⁰-(CH₂)₂₋₄-, C₃₋₁₀ cycloalkylidene, C₂₋₆ alkenylene (such as -CH=CH-CH₂-) and C₂₋₆ alkynylene. Usually, X is methylene.

30

R³ generally is aryl or a heterocycle, typically an aromatic heterocycle. The heterocycle generally will contain 1, 2 or 3 N, S or O atoms in the ring, usually is linked to X through a ring carbon atom and typically contains 4 to 6, usually 5, total

5 ring atoms. The R³ aryl or heterocycle ordinarily is substituted with 1, 2 or 3, usually 1, R¹⁷. R³ optionally is not indolyl.

When R³ is substituted with R¹⁷ then R¹⁷ typically is aryl or a heterocycle further substituted with 1 or more, usually 1, 2 or 3, R¹⁹.

10 R¹⁷ is M-Q in some embodiments of the invention. M is a ring. This means any cyclic organic structure, whether carbocyclic or heterocyclic, and whether saturated, unsaturated or aromatic or single or fused ring systems. M is chosen from rings that are structurally stable in biological systems. In general, M is a aryl or aromatic heterocycle where heterocycle is defined above.

15 Q is a spacer group, and is not critical. Typically it is not cyclic and contains from no to 3 atoms, generally C, O or S, usually C or O.

R¹⁷ typically is selected from the group consisting of C₃₋₁₀ cycloalkyl, C₃₋₁₀ cycloalkenyl, C₇₋₁₀ cycloalkynyl, halogen, aryl, aryloxy, arylthio, arylsulfoxide, arylsulfone, arylsulfonamide, arylalkyl; arylalkyloxy (optionally an benzyloxy); arylalkylthio (optionally a benzylthio); a heterocycle; C₁₋₁₈ hydroxyalkyl, but typically is an aryl or a heterocycle, and where each of said aryl, aryloxy, arylthio, arylsulfoxide, arylsulfone, arylsulfonamide, arylalkyl, arylalkyloxy, arylalkylthio, or heterocycle is optionally substituted with 1 or more R¹⁹. R¹⁷ generally is positioned distally to X. Optionally, R¹⁷ is not C(O)R¹⁸.

20 R⁹ and R¹⁸ typically are H, OH or alkyl. R¹⁸ optionally is not NR¹⁵R¹⁶.

25 R⁵ typically is H.

R⁶ generally is halogen. Optionally, R⁶ is not C(O)R¹⁸. R⁷, R⁸, R¹⁰, R¹¹, R¹³, R¹⁴, R¹⁵, R¹⁶, R²⁰, R²¹, R²³ and R²⁴ typically are independently H or C₁₋₁₈ alkyl.

20 R¹² and R²² typically are independently OH or alkyl.
 R¹⁹ usually is H; C₁₋₁₈ alkyl; C₂₋₁₈ alkenyl; C₂₋₁₈ alkynyl; C₁₋₁₈ alkoxy; alkenyloxy; alkynyloxy; C₁₋₁₈ alkylthio; C₃₋₁₀ cycloalkyl; C₄₋₁₀ cycloalkenyl; C₄₋₁₀ cycloalkynyl; halogen; OH; CN; cyanoalkyl; NO₂; NR²⁰R²¹; haloalkyl; haloalkyloxy; C(=O)R¹⁸; C(=O)OR¹⁸; -OalkenylC(=O)OR¹⁸; -OalkylC(=O)NR²⁰R²¹; aryl; heterocycle; -OalkylOC(=O)R¹⁸; C(=O)N(C₁₋₆ alkyl), N(H)S(O)(O)(C₁₋₆ alkyl); 35 arylalkyloxy; aryloxy; arylalkyloxy; and arylalkyl; each of which is unsubstituted or substituted with 1 or more =O; NR²⁰R²¹; CN; alkoxy; heterocycle; haloalkyl- or

5 alkyl-substituted heterocycle; heterocycle linked to R¹⁷ by alkyl; alkoxyalkoxy or halogen. R¹⁸ as a substituent in here is generally not H. R¹⁹ typically is independently halogen, N(R²⁰ R²¹), alkoxy or halo-substituted alkyl or alkoxy.

R²⁵ and R²⁶ usually are not present but if they are then typically they are cyclopentyl or cyclohexyl. If the compound is substituted at R²⁵ or R²⁶, either R² or 10 R⁴ is selected from (=O), (=S), and (=NR²⁷), usually =O.

M typically is an aromatic ring, usually single or two fused rings, and containing 4 to 10 atoms. Usually, M is hydrocarbon, but also optionally comprises 1 to 3 N, O and/or S heteroatoms.

Q usually is a hydrocarbon chain, typically a normal or secondary alkylene, 15 which optionally comprises at least one oxy or thio ester. Generally Q is 1 to 6 atoms, usually 1 to 3. Q typically is not substituted with R¹⁹, but if it is then typically it is substituted with one R¹⁹. R¹⁹ as substituted on Q usually is halogen, nitro or cyano. Substituents optionally are designated with or without bonds. Regardless of bond indications, if a substituent is polyvalent (based on its position in the structure referred 20 to), then any and all possible orientations of the substituent are intended.

Haloalkyl or haloalkyloxy typically are -CF₃ or -OCF₃.

The present invention provides a compound of Formula (A) of the following the structure,

25

5 having antiviral activity as determined following the procedures taught throughout the Specification, such as in Part B "Methodology For Determination Of Antiviral And Cytostatic Activity" in the Examples Section. Preparation of this compound is taught throughout the Specification, such as in Example 6.

10 The present invention further provides a compound of Formula (A) of the following structure,

15 having antiviral activity as determined following the procedures taught throughout the Specification, such as in Part B "Methodology For Determination Of Antiviral And Cytostatic Activity" in the Examples Section. Preparation of this compound is taught throughout the Specification, such as in Example 8A.

20 Formula (A) depicts optional single or double bonds. It will be understood that the bonds are present such that the aromatic nature of the nucleus of formula (A) is preserved, i.e., these formulas are intended to embrace all possible tautomers. For example R²⁵ or R²⁶ will be absent if the ring N to which they are bonded as indicated in the formula is linked to a flanking ring carbon atom by a double bond. On the other hand, R²⁵ or R²⁶ may be present when the N atom to which it is bonded as indicated in the formula is linked to its flanking carbon atoms by single bonds only; in this case aromaticity is accommodated by other substituents, e.g. where R² or R⁴ is oxo.

25 The term "prodrug" as used herein refers to any compound that when administered to a biological system generates the drug substance, i.e. active

5 ingredient, as a result of spontaneous chemical reaction(s), enzyme catalyzed chemical reaction(s), photolysis, and/or metabolic chemical reaction(s). A prodrug is thus a covalently modified analog or latent form of a therapeutically-active compound.

10

Prodrugs

Certain of the compounds herein when substituted with appropriate selected functionalities are capable of acting as prodrugs. These are labile functional groups which separate from an active inhibitory compound during metabolism, systemically, inside a cell, by hydrolysis, enzymatic cleavage, or by some other process (Bundgaard,

15 Hans, "Design and Application of Prodrugs" in Textbook of Drug Design and Development (1991), P. Krogsgaard-Larsen and H. Bundgaard, Eds. Harwood Academic Publishers, pp. 113-191). These prodrug moieties can serve to enhance solubility, absorption and lipophilicity to optimize drug delivery, bioavailability and efficacy. A "prodrug" is thus a covalently modified analog of a therapeutically-active 20 compound. A prodrug moiety of course can be therapeutically active in its own right.

Exemplary prodrug moieties include the hydrolytically sensitive or labile esters ($-CO_2R'$) of carboxylic acids ($-CO_2H$) or other functional groups with an acidic proton which is bound to the imidazo[4,5-c]pyridine compounds of the invention. The R' group of such hydrolytically sensitive or labile esters may include:

25 (i) acyloxymethyl esters $-CH_2OC(=O)R^{9a}$; and (ii) acyloxymethyl carbonates $-CH_2OC(=O)OR^{9a}$ where R^{9a} is C_1-C_6 alkyl, C_1-C_6 substituted alkyl, C_6-C_{20} aryl or C_6-C_{20} substituted aryl. A close variant of the acyloxyalkyl ester, the alkoxy carbonyloxyalkyl ester (carbonate), may also enhance oral bioavailability as a prodrug moiety in the compounds of the invention. An exemplary acyloxymethyl 30 ester R group is pivaloyloxymethoxy, (POM) $-CH_2OC(=O)C(CH_3)_3$. An exemplary acyloxymethyl carbonate prodrug moiety is pivaloyloxymethylcarbonate (POC) $-CH_2OC(=O)OC(CH_3)_3$. Cleavable moieties capable of acting as prodrug functionalities are optionally linked at any tolerant site on the compound of this invention, for example R^3 and any of its substituents.

35

Excluded Compounds

5 The present invention excludes all compounds expressly disclosed in any prior
 art reference (to the extent the reference is effective as novelty- or inventive
 step/obviousness-defeating as the case may be) set forth in this application (as well as
 any compounds disclosed in any reference patent family member) and any other
 compounds over which the claims of this application are not novel or do not posses an
 10 inventive step or are obvious under applicable law.

The present invention excludes, as required, compounds according to the
 general formula (A) where

- (a) Any of the substituents X, Y, R¹, R², R³, R⁴, R⁵ are a cephalosporin or
 wherein the substituents X, Y, R¹, R², R³, R⁴, R⁵ are an azabicyclo group, more
 15 particularly 5-Thia-1-aza-bicyclo[4.2.0]oct-2-en-8-one;
- (b) The compound is 5-(2-piperidin-1-yl-ethyl)-2-(4-hydroxyphenyl)-1H-
 imidazo[4,5-c]pyridin-5-ium bromide (X=ethyl, Y=bond, R¹= phenyl substituted in
 para with OH, R² = H, R³= piperidinyl, and R⁴, R⁵ = H) (as disclosed in example 52
 of EP 1132381);
- 20 (c) The compound is 4-[5-(2-{4-[Bis-(4-fluorophenyl)-methyl]-piperazin-
 1-yl}-ethyl)-5H-imidazo[4,5-c]pyridin-2-yl]phenol (X=ethyl, Y=bond, R¹= phenyl
 substituted in para with OH, R² = H, R³= heterocycle with 2 N heteroatoms, wherein
 one N is substituted with an arylalkyl consisting of CH(Phenyl)₂, wherein each phenyl
 carries an F in para) (as disclosed in example 54 of EP 1132381);
- 25 (d) The compound is 4-[5-(3-{4-[Bis-(4-fluorophenyl)-methyl]-piperazin-
 1-yl}-propyl)5H-imidazo[4,5-c]pyridin-2-yl]phenol (X=butyl, Y=bond, R¹= phenyl
 substituted in para with OH, R² = H, R³= heterocycle with 2 N heteroatoms, wherein
 one N is substituted with an arylalkyl consisting of CH(Phenyl)₂, wherein each
 phenyl carries an F in para) (as disclosed in example 55 of EP 1132381);
- 30 (e) The compound is 5-(phenylmethyl)-5H-imidazo[4,5-c]pyridine
 wherein phenyl is substituted with CONR¹⁵R¹⁶ and R¹⁵ is a branched C₃ alkyl and R¹⁶
 is phenyl (X=-CH₂- ; Y= bond ; R¹=hydrogen ; R²=H ; R³=phenyl substituted with 1
 C(=O) R¹⁸, wherein R¹⁸ is NR¹⁵R¹⁶, with R¹⁵ and R¹⁶ a branched C₆ alkyl ; R⁴ = H) (as
 disclosed in example 35 of US 5,302,601);
- 35 (f) The compound is 6-(5H-imidazo[4,5-c]pyridin-5-yl-methyl)-N-
 (1methylethyl)-N-phenyl-3-pyridinecarboxamide (X= -CH₂- ; Y= bond ; R¹=

- 5 hydrogen ; R²=H, R³=pyridine substituted with 1 R⁶, wherein R⁶=1 C=O R¹⁸, wherein R¹⁸ is NR¹⁵R¹⁶, wherein R¹⁵= isopropyl and R¹⁶= phenyl) (as disclosed in example 6 of US 4,990,518);
- 10 (g) The compound is a compound wherein X= -CH²- ; Y=bond ; R¹= hydrogen ; R²=H, R³= 5-6 membered heterocycle, in particular a pyridinyl or furanyl, substituted with 1 R¹⁷ wherein R¹⁷=C(=O)R¹⁸, and wherein R¹⁸=NR¹⁵R¹⁶ and R¹⁵ and R¹⁶ are either a C₁₋₁₈ alkyl, in particular methyl, ethyl or isopropyl, C₂₋₁₈ alkenyl, in particular 2-methyl allyl, or a C₃₋₁₀ cycloalkyl, in particular cyclopentyl or cyclohexyl (as disclosed in US 4,990,518);
- 15 (h) The compound is a compound wherein X= -CH²- ; Y=bond ; R¹= hydrogen ; R²=H, R³= 5-6 membered heterocycle, in particular a pyridinyl or furanyl, substituted with 1 R¹⁷ wherein R¹⁷=C(=O)R¹⁸, and wherein R¹⁸=C₃₋₁₀ cycloalkyl or C₄₋₁₀ cycloalkenyl.
- 20 (i) The compound is 2,6-bis(1,1,-dimethylethyl)-4-[[2-(5H-imidazo-[4,5-c]pyridin-5-yl)ethyl]thio]-phenol hydrate and/or 2,6-bis(1,1,-dimethylethyl)-4-[[2-(5H-imidazo-[4,5-c]pyridin-5-yl)propyl]thio]-phenol hydrate (X=CH²-CH²- ; Y=bond ; R¹=hydrogen, R²=H, R³=thioaryl substituted with three R⁶, wherein R⁶=2 branched C₄alkyl in meta and OH in para) (as disclosed in example 6 of WO96/12703);
- 25 (j) The compound is 5-[2-(Biphenyl-4-yloxy)-ethyl]-5H-imidazo[4,5-c]pyridine (X=CH₂CH₂, Y=bond, R¹=hydrogen, R²=H, R³=phenoxy substituted with 1 R¹⁷ in para, wherein R¹⁷=benzyl ; R⁴=H) (as disclosed in WO96/11192);
- 30 (k) The compound is 5-[2-(4-Phenoxy-phenoxy)-ethyl]-5H-imidazo[4,5-c]pyridine (X=CH₂CH₂, Y=bond, R¹=hydrogen, R²=H, R³=phenoxy substituted with 1 R¹⁷ in para, wherein R¹⁷=phenoxy ; R⁴=H) (as disclosed in WO96/11192);
- 35 (l) The compound is [5-(4-Fluorobenzyl)-5H-imidazo[4,5-c]pyridin-2-yl]-methylamine (X=CH₂, Y=NR¹¹, wherein R¹¹=methyl, R¹=R²=H, R³=phenyl substituted with 1 R¹⁷ in para, wherein R⁶ is F, R⁴=H, R⁵=H) (as disclosed in EP76530);
- (m) The compound is 2,6-bis(1,1,-dimethylethyl)-4-[[3-(5H-imidazo-[4,5-c]pyridin-5-yl)propyl]thio]-phenol hydrate (X=CH₂-CH₂-CH₂ , Y=bond; R¹=

- 5 hydrogen, R²=H, R³=thiophenyl substituted with 3 R⁶, wherein R⁶=2 branched C4
alkyl in meta and OH in para) (as disclosed in WO96/12703);
- (n) The compound is 5-[2-(4-Phenylmethoxy-phenoxy)-ethyl]-5H-imidazo[4,5-c]pyridine (X=CH₂CH₂, Y=bond, R¹=hydrogen, R²=H, R³=phenoxy substituted with 1 R¹⁷ in para, wherein R¹⁷=benzyl oxy) (as disclosed in
10 WO96/11192);
- (o) The compound is 5-[3-(4-Phenoxy-phenoxy)-propyl]-5H-imidazo[4,5-c]pyridine (X=CH₂CH₂CH₂, Y=bond, R¹=hydrogen, R²=H, R³=phenoxy substituted with 1 R⁶ in para, wherein R⁶=phenoxy substituted in para with F; R⁴=H) (as disclosed in WO96/11192);
- 15 (p) The compound is 5-{2-[4-(4-Fluorophenoxy)-phenoxy]-ethyl}-5H-imidazo[4,5-c]pyridine (X=CH₂CH₂, Y=bond, R¹=hydrogen, R²=H, R³=phenoxy substituted with 1 R⁶ in para, wherein R⁶=phenoxy, substituted in para with F; R⁴=H) (as disclosed in WO96/11192);
- (q) The compound is 5-[3-(4-Phenylmethyl-phenoxy)-propyl]-5H-imidazo[4,5-c]pyridine (X=CH₂CH₂CH₂, Y=bond, R¹=hydrogen, R²=H, R³=phenoxy substituted with 1 R⁶ in para, wherein R⁶=benzyl; R⁴=H) (as disclosed in
20 WO96/11192);
- (r) The compound is (1H-Indol-3-yl)-[3-(2-methyl-5H-imidazo[4,5-c]pyridine-5-carbonyl)-phenyl]-methanone (X=(C=O)- or SO₂, Y=CH₂, R¹=H,
25 R²=H, R³=phenyl substituted with 1 R⁶, wherein R⁶ is C(=O)R¹⁸, wherein R¹⁸ is indole) (as disclosed in US 5,486,525);
- (s) The compound is 4 or 3-[(2-methyl-5H-imidazo[4,5-c]pyridin-5-yl)methyl]-benzoic acid alkylester or 5-[4 or 3-(alkoxycarbonyl-phenyl)-methyl]-2-methyl-5H-imidazo[4,5-c]pyridine, in particular 4 or 3-[(2-methyl-5H-imidazo[4,5-c]pyridin-5-yl)methyl]-methyl ester (X=CH₂, Y=CH₂, R¹=H, R²=H, R³=phenyl substituted at the para or meta position with one R¹⁷, wherein R¹⁷ is (C=O)R¹⁸, wherein R¹⁸=alkoxy) (as disclosed in US 5,486,525)
- (t) The compound is 5-[(fluorophenyl)methyl]-2-amino-5-H-imidazo[4,5-c]pyridine (XR³=fluorobenzyl, Y=NR¹¹ with R¹¹=methyl, R¹=H, R², R³, R⁴=H) (as
35 disclosed in US 5,137,896);

- 5 (u) The compound is ((5-[4-(Fluorophenyl)methyl]-5-H-imidazo[4,5-c]-pyridine-2-yl) methyl)-carbamate, methyl ester (XR^3 = fluorobenzyl, Y = $C(=O)R^{12}$ with R^{12} = methyl, R^1 = H, R^2 , R^3 , R^4 = H) (as disclosed in US 5,137,896);
- 10 (v) The compound is 5-(4-Chlorophenylmethyl)-2-(piperidin-1-ylmethyl)-5H-imidazo[4,5-c]pyridine and its dihydrochloride salt (XR^3 = chlorobenzyl, Y = - CH_2- , R^1 = piperidinyl) (as disclosed in Justus Liebigs Annalen der Chemie (1971), 747, 158-171);
- 15 (w) The compound is 5-(4-Chlorophenylmethyl)-2-(4-methyl-piperazine-1-ylmethyl)-5H-imidazo[4,5-c]pyridine (XR^3 = chlorobenzyl, Y = - CH_2- , R^1 = piperazinyl, R^6 = methyl) (as disclosed in Journal of the Chemical Society [section B]: Physical Organic (1966), 4, 285-291);
- 15 (x) Compounds, particularly compound 9 on page 160, Cleve et al. "Liebigs Ann. Chem. 747:158-171 (1971);
- 20 (y) Compounds, particularly compounds 19 and 20, of Kiyama et al. "Chem. Pharm. Bull. 43(3):450-460 (1995); and
- 20 (z) Compounds, particularly compound 14, of Medereski et al. "Tet. Lt." 48(48):10549-10558 (1992)
- 25 The compounds of the invention optionally exclude those compounds according to the general formula (A) as described above, wherein (a) Y R^1 is not phenyl para substituted with OH, or (b) is H, an unsubstituted C_{3-10} cycloalkyl, or C_{1-6} alkyl.
- 25 The compounds of the invention optionally exclude those compounds according to the general formula (A) as described above, wherein R^1 is not H, Y is not NR^{11} with R^{11} C_{1-6} alkyl or methyl, and/or YR^1 is not monomethylamino.
- 30 The compounds of the invention optionally exclude those compounds according to the general formula (A) as described above, wherein R^1 is a phenyl substituted with 1 R^6 , R^6 is $C(=O)R^{18}$ and R^{18} is t-butoxy.
- 30 The compounds of the invention optionally exclude those compounds according to the general formula (A) as described above, wherein R^1 is not piperidinyl and is not piperazinyl substituted with methyl.
- 35 The compounds of this invention exclude those compounds disclosed by WO 2004/005286, in particular the compounds in table 8 thereof

5 The compounds of this invention optionally exclude those in which XR^3 is the definitional equivalent to the substructure $-(\text{CH}_2)_n-\text{Y}-\text{C}(\text{O})-\text{N}(\text{R}1)(\text{R}2)$ set forth on column 1, line 49 to column 2 line 38 of US Patent 5,302,601 and the comparable disclosure in any member of the patent family of US Patent 5,302,601, which disclosure is herewith expressly incorporated by reference..

10 The compounds of this invention optionally exclude those in which R^5 contains any of the substituents designated as « Ar » in WO 00/39127, in particular aryl, aryl phenoxy, or benzyl.

15 The compounds of this invention optionally do not include the compounds of Example 35 of US Patent 5,302,601, Example 6 of US Patent 4,990,518, Examples 1 to 5 of US Patent 4,988,707, Examples 1-5 of US Patent 5,208,241, Example 39 of US Patent 5,137,896, the azabenzimidazole compound of WO 99/27929, Examples 1-20 and 45 of US Patent 5,227,384, Examples 3 and/or 11 of WO 96/12703 and/or compounds 340A, 347C, 349C, 351C, 355C and/or 356 C of WO 96/11192.

20 The compounds of this invention optionally exclude those in which XR^3 is equivalent to the substructure $-(\text{CH}_2)_n-\text{Het}-\text{C}(\text{O})-\text{N}(\text{R}^1)(\text{R}^2)$ set forth on column 1, line 41 to column 2 line 24 of US Patent 4,990,518.

25 The compounds of this invention do not include the compounds expressly disclosed in the patents listed in the Background of the Invention above, in Chemical Abstracts acc no. 1987:18435 and in Chemical Abstracts acc no. 1983:594812.

30 The compounds of this invention do not include the compounds expressly disclosed in Justus Liebigs Annalen der Chemie (1971), 747, 158-171 or in the Journal of the Chemical Society [section B]: Physical Organic (1966), 4, 285-291.

35 Optionally, the compounds of this invention exclude those compounds wherein YR^1 is one of the substituents designated R^{13} in column 5, lines 22-38 of US Patent 5,486,525 and/or R^2 and/or R^5 are one of the substituents collectively designated R^{14} and R^{15} in column 5, lines 38-53 of US Patent 5,486,525.

40 Optionally, the compounds of this invention exclude the compounds found in any patent family member of any published or issued patent specifically recited in this application.

45 Finally, the compounds of this invention optionally also exclude the methylene homologues of the foregoing known compounds excluded from the scope

- 5 of this invention. It is understood that a compound optionally excluded also includes the salts thereof.

Utilities

The compounds of this invention, or the metabolites produced from these compounds *in vivo*, have a large number of uses. They are useful in immunology, 10 chromatography, diagnostics and therapeutics, among other fields.

The compounds of formula (A) are conjugated to immunogenic polypeptides as a reagent for eliciting antibodies capable of binding specifically to the polypeptide, to the compounds or to their metabolic products which retain immunologically recognized epitopes (sites of antibody binding). These immunogenic compositions 15 therefore are useful as intermediates in the preparation of antibodies for use in diagnostics, quality control, or the like, or in assays for the compounds of formula (A) or their novel metabolic products. The compounds are useful for raising antibodies against otherwise non-immunogenic polypeptides, in that the compounds serve as haptenic sites stimulating an immune response which cross-reacts with the 20 unmodified conjugated protein.

Conjugates of the compounds of formula (A) with immunogenic polypeptides such as albumin or keyhole limpet hemocyanin generally are useful as immunogens. The polypeptides are conjugated at the same sites denoted for amino acids. The metabolic products described above may retain a substantial degree of immunological 25 cross reactivity with the compounds of the invention. Thus, the antibodies of this invention will be capable of binding to the unprotected compounds of the invention without binding to the protected compounds. Alternatively the metabolic products will be capable of binding to the protected compounds and/or the metabolic products without binding to the protected compounds of the invention, or will be capable of 30 binding specifically to any one or all three. The antibodies desirably will not substantially cross-react with naturally-occurring materials. Substantial cross-reactivity is reactivity under specific assay conditions for specific analytes sufficient to interfere with the assay results.

The immunogens of this invention contain the compound of this invention 35 presenting the desired epitope in association with an immunogenic substance. Within the context of the invention such association means covalent bonding to form an

- 5 immunogenic conjugate (when applicable) or a mixture of non-covalently bonded materials, or a combination of the above. Immunogenic substances include adjuvants such as Freund's adjuvant, immunogenic proteins such as viral, bacterial, yeast, plant and animal polypeptides, in particular keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin or soybean trypsin inhibitor, and immunogenic polysaccharides.
- 10 Typically, the compound having the structure of the desired epitope is covalently conjugated to an immunogenic polypeptide or polysaccharide by the use of a polyfunctional (ordinarily bifunctional) cross-linking agent. Methods for the manufacture of hapten immunogens are conventional *per se*, and any of the methods used heretofore for conjugating haptens to immunogenic polypeptides or the like are
- 15 suitably employed here as well, taking into account the functional groups on the precursors or hydrolytic products which are available for cross-linking and the likelihood of producing antibodies specific to the epitope in question as opposed to the immunogenic substance.

Typically the polypeptide is conjugated to a site on the compound of the
20 invention distant from the epitope to be recognized.

The conjugates are prepared in conventional fashion. For example, the cross-linking agents N-hydroxysuccinimide, succinic anhydride or alkN=C=Nalk are useful in preparing the conjugates of this invention. The conjugates comprise a compound of the invention attached by a bond or a linking group of 1-100, typically, 1-25, more
25 typically 1-10 carbon atoms to the immunogenic substance. The conjugates are separated from starting materials and by products using chromatography or the like, and then are sterile filtered and vailed for storage.

Animals are typically immunized against the immunogenic conjugates or
derivatives and antisera or monoclonal antibodies prepared in conventional fashion.
30 The compounds of this invention are useful as linkers, spacers or affinity
(typically hydrophobic) moieties in preparing affinity absorption matrices. The
compounds of the invention optionally are bound covalently to an insoluble matrix
and used for affinity chromatography separations, depending on the nature of the
groups of the compounds, for example compounds with pendant aryl groups are
35 useful in making hydrophobic affinity columns.

- 5 They also are useful as linkers and spacers in preparing immobilized enzymes for process control, or in making immunoassay reagents. The compounds herein contain functional groups that are suitable as sites for cross-linking desired substances. For example, it is conventional to link affinity reagents such as hormones, peptides, antibodies, drugs, and the like to insoluble substrates. These
10 insolublized reagents are employed in known fashion to absorb binding partners for the affinity reagents from manufactured preparations, diagnostic samples and other impure mixtures. Similarly, immobilized enzymes are used to perform catalytic conversions with facile recovery of enzyme. Bifunctional compounds are commonly used to link analytes to detectable groups in preparing diagnostic reagents.
- 15 The compounds of this invention are labeled with detectable moieties such biotin, radioisotopes, enzymes and the like for diagnostic purposes. Suitable techniques for accomplishing the labeling of the compounds of formula (A) are well known and will be apparent to the artisan from consideration of this specification as a whole. For example, one suitable site for labeling is R17 or R19.
- 20 More typically, however, the compounds of the invention are employed for the treatment or prophylaxis of viral infections such as yellow fever virus, Dengue virus, hepatitis B virus, hepatitis G virus, Classical Swine Fever virus or the Border Disease Virus, but more particularly flaviviral or picornaviral infections, in particular, HCV and BVDV.
- 25 The therapeutic compound(s) of this invention are administered to a subject mammal (including a human) by any means well known in the art, i.e. orally, intranasally, subcutaneously, intramuscularly, intradermally, intravenously, intra-arterially, parenterally or by catheterization. The therapeutically effective amount of the compound(s) is a flaviviral or picornaviral growth inhibiting amount. More
30 preferably, it is a flaviviral or picornaviral replication inhibiting amount or a flaviviral or picornaviral enzyme inhibiting amount of the compounds of formula (A). This is believed to correspond to an amount which ensures a plasma level of between about 1 μ g/ml and 100 mg/ml, optionally of 10 mg/ml. This optionally is achieved by administration of a dosage of in the range of 0.001 mg to 60 mg, preferably 0.01 mg
35 to 10 mg, preferably 0.1 mg to 1 mg per day per kg bodyweight for humans. These are starting points for determining the optimal dosage of the compound of this

5 invention. The actual amount will depend upon many factors known to the artisan, including bioavailability of the compound, whether it contains a prodrug functionality, its metabolism and distribution in the subject and its potency, among others. It typically is necessary to determine the proper dosing in the clinical setting, and this is well within the skill of the ordinary artisan. The therapeutically effective
10 amount of the compound(s) of this invention optionally are divided into several sub-units per day or are administered at daily or more than one day intervals, depending upon the pathologic condition to be treated, the patient's condition and the nature of the compound of this invention.

As is conventional in the art, the evaluation of a synergistic effect in a drug
15 combination may be made by analyzing the quantification of the interactions between individual drugs, using the median effect principle described by Chou et al. in *Adv. Enzyme Reg.* (1984) 22:27 or tests such as, but not limited to, the isobogram method, as previously described by Elion et al. in *J. Biol. Chem.* (1954) 208:477-488 and by Baba et al. in *Antimicrob. Agents Chemother.* (1984) 25:515-517, using EC₅₀
20 for calculating the fractional inhibitory concentration.

Suitable anti-viral agents for inclusion in combination antiviral compositions or for coadministration in a course of therapy include, for instance, interferon alpha, ribavirin, a compound falling within the scope of disclosure of EP1162196, WO
03/010141, WO 03/007945 and WO 03/010140, a compound falling within the scope
25 of disclosure of WO 00/204425, and other patents or patent applications within their patent families, in amounts of 1 to 99.9% by weight compound of this invention, preferably from 1 to 99% by weight, more preferably from 5 to 95% by weight as can be readily determined by one skilled in the art. Such co-administered agents need not
be formulated in the same dosage form as the compound of the invention. They
30 optionally are simply administered to the subject in the course of treatment along with a course of treatment with a compound of formula (A).

The present invention further provides veterinary compositions comprising at least one active ingredient as above defined together with a veterinary carrier therefore, for example in the treatment of BVDV. Veterinary carriers are materials
35 useful for the purpose of administering the composition and are excipients which are otherwise inert or acceptable in the veterinary art and are compatible with the

- 5 compound of this invention. These veterinary compositions may be administered orally, parenterally or by any other desired route.

Salts

The term "pharmaceutically acceptable salts" as used herein means the
10 therapeutically active non-toxic salt forms formed by the compounds of formula (A). Such salts may include those derived by combination of appropriate cations such as alkali and alkaline earth metal ions or ammonium and quaternary amino ions with an acid anion moiety, typically a carboxylic acid.

The compounds of the invention may bear multiple positive or negative
15 charges. The net charge of the compounds of the invention may be either positive or negative. Any associated counter ions are typically dictated by the synthesis and/or isolation methods by which the compounds are obtained. Typical counter ions include, but are not limited to ammonium, sodium, potassium, lithium, halides, acetate, trifluoroacetate, etc., and mixtures thereof. It will be understood that the
20 identity of any associated counter ion is not a critical feature of the invention, and that the invention encompasses the compounds in association with any type of counter ion. Moreover, as the compounds can exist in a variety of different forms, the invention is intended to encompass not only forms of the compounds that are in association with counter ions (e.g., dry salts), but also forms that are not in association with counter
25 ions (e.g., aqueous or organic solutions).

Metal salts typically are prepared by reacting the metal hydroxide with a compound of this invention. Examples of metal salts which are prepared in this way are salts containing Li⁺, Na⁺, Ca⁺² and Mg⁺² and K⁺. A less soluble metal salt can be precipitated from the solution of a more soluble salt by addition of the suitable
30 metal compound. In addition, salts may be formed from acid addition of certain organic and inorganic acids to basic centers, typically amines, or to acidic groups. Examples of such appropriate acids include, for instance, inorganic acids such as hydrohalogen acids, e.g. hydrochloric or hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like; or organic acids such as, for example, acetic, propanoic,
35 hydroxyacetic, benzoic, 2-hydroxypropanoic, 2-oxopropanoic, lactic, fumaric, tartaric, pyruvic, maleic, malonic, malic, salicylic (i.e. 2-hydroxybenzoic), p-aminosalicylic, isethionic, lactobionic, succinic oxalic and citric acids; organic

5 sulfonic acids, such as methanesulfonic, ethanesulfonic, benzenesulfonic and p-toluenesulfonic acids; and inorganic acids, such as hydrochloric, sulfuric, phosphoric and sulfamic acids, C1-C6 alkylsulfonic, benzenesulfonic, p-toluenesulfonic, cyclohexanesulfamic, and the like. Preferred salts include mesylate and HCl.

10 The compounds of this invention include the solvates formed with the compounds of formula (A) and their salts, such as for example hydrates, alcoholates and the like. The compositions herein comprise compounds of the invention in their un-ionized, as well as zwitterionic form, and combinations with stoichiometric amounts of water as in hydrates.

15 Also included within the scope of this invention are the salts of the compounds of formula (A) with one or more amino acids as described above. The amino acid typically is one bearing a side chain with a basic or acidic group, e.g., lysine, arginine or glutamic acid, or a neutral group such as glycine, serine, threonine, alanine, isoleucine, or leucine.

20 Salts of acids or bases which are not physiologically acceptable may also find use, for example, in the preparation or purification of a compound of formula (A). All salts, whether or not derived from a physiologically acceptable acid or base, are within the scope of the present invention.

Isomers

25 The term "isomers" as used herein means all possible isomeric forms, including tautomeric and stereochemical forms, which the compounds of formula (A) may possess, but not including position isomers. Typically, the structures shown herein exemplify only one tautomeric or resonance form of the compounds, but the corresponding alternative configurations are contemplated as well. Unless otherwise stated, the chemical designation of compounds denotes the mixture of all possible stereochemically isomeric forms, said mixtures containing all diastereomers and enantiomers (since the compounds of formula (A) may have one or more chiral centers), as well as the stereochemically pure or enriched isomers. More particularly, stereogenic centers may have either the R- or S-configuration, and double or triple bonds optionally are in either the cis- or trans-configuration.

5 Enriched isomeric forms of a compound of this invention are defined as a single isomer substantially free of the compound's other enantiomers or diastereomers. In particular, the term "stereoisomerically enriched" or "chirally enriched" relates to compounds having a single stereoisomeric proportion of at least about 80% (i.e. at least 90% of one isomer and at most 10% of the other possible
10 isomers), preferably at least 90%, more preferably at least 94% and most preferably at least 97%. The terms "enantiomerically pure" and "diastereomerically pure" contain undetectable levels of any other isomer.

Separation of stereoisomers is accomplished by standard methods known to those in the art. One enantiomer of a compound of the invention can be separated
15 substantially free of its opposing enantiomer by a method such as formation of diastereomers using optically active resolving agents ("Stereochemistry of Carbon Compounds," (1962) by E. L. Eliel, McGraw Hill; Lochmuller, C. H., (1975) J. Chromatogr., 113:(3) 283-302). Separation of isomers in a mixture can be accomplished by any suitable method, including: (1) formation of ionic,
20 diastereomeric salts with chiral compounds and separation by fractional crystallization or other methods, (2) formation of diastereomeric compounds with chiral derivatizing reagents, separation of the diastereomers, and conversion to the pure enantiomers, or (3) enantiomers can be separated directly under chiral conditions. Under method (1), diastereomeric salts can be formed by reaction of
25 enantiomerically pure chiral bases such as brucine, quinine, ephedrine, strychnine, α-methyl-β-phenylethylamine (amphetamine), and the like with asymmetric compounds bearing an acidic functionality, such as carboxylic acid and sulfonic acid.

The diastereomeric salts optionally are induced to separate by fractional crystallization or ionic chromatography. For separation of the optical isomers of
30 amino compounds, addition of chiral carboxylic or sulfonic acids, such as camphorsulfonic acid, tartaric acid, mandelic acid, or lactic acid can result in formation of the diastereomeric salts. Alternatively, by method (2), the substrate to be resolved may be reacted with one enantiomer of a chiral compound to form a diastereomeric pair (Eliel, E. and Wilen, S. (1994). Stereochemistry of Organic
35 Compounds, John Wiley & Sons, Inc., p. 322). Diastereomeric compounds can be formed by reacting asymmetric compounds with enantiomerically pure chiral

5 derivatizing reagents, such as menthyl derivatives, followed by separation of the diastereomers and hydrolysis to yield the free, enantiomerically enriched xanthene. A method of determining optical purity involves making chiral esters, such as a menthyl ester or Mosher ester, a-methoxy-a-(trifluoromethyl)phenyl acetate (Jacob III. (1982) J. Org. Chem. 47:4165), of the racemic mixture, and analyzing the NMR spectrum for
10 the presence of the two atropisomeric diastereomers. Stable diastereomers can be separated and isolated by normal- and reverse-phase chromatography following methods for separation of atropisomeric naphthyl-isoquinolines (Hoye, T., WO 96/15111). Under method (3), a racemic mixture of two asymmetric enantiomers is separated by chromatography using a chiral stationary phase. Suitable chiral
15 stationary phases are, for example, polysaccharides, in particular cellulose or amylose derivatives. Commercially available polysaccharide based chiral stationary phases are ChiralCel™ CA, OA, OB5, OC5, OD, OF, OG, OJ and OK, and Chiraldpak™ AD, AS, OP(+) and OT(+). Appropriate eluents or mobile phases for use in combination with said polysaccharide chiral stationary phases are hexane and the like, modified
20 with an alcohol such as ethanol, isopropanol and the like. ("Chiral Liquid Chromatography" (1989) W. J. Lough, Ed. Chapman and Hall, New York; Okamoto, (1990). "Optical resolution of dihydropyridine enantiomers by High-performance liquid chromatography using phenylcarbamates of polysaccharides as a chiral stationary phase", J. of Chromatogr. 513:375-378).

25

Metabolites

The present invention also provides the *in vivo* metabolic products of the compounds described herein, to the extent such products are novel and unobvious over the prior art. Such products may result for example from the oxidation,
30 reduction, hydrolysis, amidation, esterification and the like of the administered compound, primarily due to enzymatic processes. Accordingly, the invention includes novel and unobvious compounds produced by a process comprising contacting a compound of this invention with a mammal for a period of time sufficient to yield a metabolic product thereof. Such products typically are identified
35 by preparing a radiolabelled (e.g. C14 or H3) compound of the invention, administering it parenterally in a detectable dose (e.g. greater than about 0.5 mg/kg) to

- 5 an animal such as rat, mouse, guinea pig, monkey, or to man, allowing sufficient time
for metabolism to occur (typically about 30 seconds to 30 hours) and isolating its
conversion products from the urine, blood or other biological samples. These
products are easily isolated since they are labeled (others are isolated by the use of
antibodies capable of binding epitopes surviving in the metabolite). The metabolite
10 structures are determined in conventional fashion, e.g. by MS or NMR analysis. In
general, analysis of metabolites is done in the same way as conventional drug
metabolism studies well-known to those skilled in the art. The conversion products,
so long as they are not otherwise found *in vivo*, are useful in diagnostic assays for
therapeutic dosing of the compounds of the invention even if they possess no antiviral
15 activity of their own.

Formulations

The compounds of the invention optionally are formulated with conventional
pharmaceutical carriers and excipients, which will be selected in accord with ordinary
20 practice. Tablets will contain excipients, glidants, fillers, binders and the like.
Aqueous formulations are prepared in sterile form, and when intended for delivery by
other than oral administration generally will be isotonic. Formulations optionally
contain excipients such as those set forth in the "Handbook of Pharmaceutical
Excipients" (1986) and include ascorbic acid and other antioxidants, chelating agents
25 such as EDTA, carbohydrates such as dextrin, hydroxyalkylcellulose,
hydroxyalkylmethylcellulose, stearic acid and the like.

Subsequently, the term "pharmaceutically acceptable carrier" as used herein
means any material or substance with which the active ingredient is formulated in
order to facilitate its application or dissemination to the locus to be treated, for
30 instance by dissolving, dispersing or diffusing the said composition, and/or to
facilitate its storage, transport or handling without impairing its effectiveness. The
pharmaceutically acceptable carrier may be a solid or a liquid or a gas which has been
compressed to form a liquid, i.e. the compositions of this invention can suitably be
used as concentrates, emulsions, solutions, granulates, dusts, sprays, aerosols,
35 suspensions, ointments, creams, tablets, pellets or powders.

Suitable pharmaceutical carriers for use in the said pharmaceutical
compositions and their formulation are well known to those skilled in the art, and

5 there is no particular restriction to their selection within the present invention. They may also include additives such as wetting agents, dispersing agents, stickers, adhesives, emulsifying agents, solvents, coatings, antibacterial and antifungal agents (for example phenol, sorbic acid, chlorobutanol), isotonic agents (such as sugars or sodium chloride) and the like, provided the same are consistent with pharmaceutical practice, i.e. carriers and additives which do not create permanent damage to mammals. The pharmaceutical compositions of the present invention may be prepared in any known manner, for instance by homogeneously mixing, coating and/or grinding the active ingredients, in a one-step or multi-steps procedure, with the selected carrier material and, where appropriate, the other additives such as surface-active agents. may also be prepared by micronisation, for instance in view to obtain them in the form of microspheres usually having a diameter of about 1 to 10 gm, namely for the manufacture of microcapsules for controlled or sustained release of the active ingredients.

Suitable surface-active agents, also known as emulgent or emulsifier, to be used in the pharmaceutical compositions of the present invention are non-ionic, cationic and/or anionic materials having good emulsifying, dispersing and/or wetting properties. Suitable anionic surfactants include both water-soluble soaps and water-soluble synthetic surface-active agents. Suitable soaps are alkaline or alkaline-earth metal salts, unsubstituted or substituted ammonium salts of higher fatty acids (C_{10} - C_{22}), e.g. the sodium or potassium salts of oleic or stearic acid, or of natural fatty acid mixtures obtainable from coconut oil or tallow oil. Synthetic surfactants include sodium or calcium salts of polyacrylic acids; fatty sulphonates and sulphates; sulphonated benzimidazole derivatives and alkylarylsulphonates. Fatty sulphonates or sulphates are usually in the form of alkaline or alkaline-earth metal salts, unsubstituted ammonium salts or ammonium salts substituted with an alkyl or acyl radical having from 8 to 22 carbon atoms, e.g. the sodium or calcium salt of lignosulphonic acid or dodecylsulphonic acid or a mixture of fatty alcohol sulphates obtained from natural fatty acids, alkaline or alkaline-earth metal salts of sulphuric or sulphonic acid esters (such as sodium lauryl sulphate) and sulphonic acids of fatty alcohol/ethylene oxide adducts. Suitable sulphonated benzimidazole derivatives preferably contain 8 to 22 carbon atoms. Examples of alkylarylsulphonates are the

- 5 sodium, calcium or alcoholamine salts of dodecylbenzene sulphonic acid or dibutyl-naphthalenesulphonic acid or a naphthalene-sulphonic acid/formaldehyde condensation product. Also suitable are the corresponding phosphates, e.g. salts of phosphoric acid ester and an adduct of p-nonylphenol with ethylene and/or propylene oxide, or phospholipids. Suitable phospholipids for this purpose are the natural
- 10 (originating from animal or plant cells) or synthetic phospholipids of the cephalin or lecithin type such as e.g. phosphatidylethanolamine, phosphatidylserine, phosphatidylglycerine, lysolecithin, cardiolipin, dioctanylphosphatidyl-choline, dipalmitoylphosphatidyl-choline and their mixtures.

Suitable non-ionic surfactants include polyethoxylated and polypropoxylated derivatives of alkylphenols, fatty alcohols, fatty acids, aliphatic amines or amides containing at least 12 carbon atoms in the molecule, alkylarenesulphonates and dialkylsulphosuccinates, such as polyglycol ether derivatives of aliphatic and cycloaliphatic alcohols, saturated and unsaturated fatty acids and alkylphenols, said derivatives preferably containing 3 to 10 glycol ether groups and 8 to 20 carbon atoms

20 in the (aliphatic) hydrocarbon moiety and 6 to 18 carbon atoms in the alkyl moiety of the alkylphenol. Further suitable non-ionic surfactants are water-soluble adducts of polyethylene oxide with polypropylene glycol, ethylenediaminopolypropylene glycol containing 1 to 10 carbon atoms in the alkyl chain, which adducts contain 20 to 250 ethyleneglycol ether groups and/or 10 to 100 propyleneglycol ether groups. Such compounds usually contain from 1 to 5 ethyleneglycol units per propyleneglycol unit. Representative examples of non-ionic surfactants are nonylphenol - polyethoxyethanol, castor oil polyglycolic ethers, polypropylene/polyethylene oxide adducts, tributylphenoxypropoxyethoxyethanol, polyethyleneglycol and octylphenoxypropoxyethoxyethanol. Fatty acid esters of polyethylene sorbitan (such as

30 polyoxyethylene sorbitan trioleate), glycerol, sorbitan, sucrose and pentaerythritol are also suitable non-ionic surfactants.

Suitable cationic surfactants include quaternary ammonium salts, particularly halides, having 4 hydrocarbon radicals optionally substituted with halo, phenyl, substituted phenyl or hydroxy; for instance quaternary ammonium salts containing as

35 N-substituent at least one C8-C22 alkyl radical (e.g. cetyl, lauryl, palmityl, myristyl,

5 oleyl and the like) and, as further substituents, unsubstituted or halogenated lower alkyl, benzyl and/or hydroxy-lower alkyl radicals.

A more detailed description of surface-active agents suitable for this purpose may be found for instance in "McCutcheon's Detergents and Emulsifiers Annual" (MC Publishing Crop., Ridgewood, New Jersey, 1981), "Tensid-Taschenbuch", 2 d 10 ed. (Hanser Verlag, Vienna, 1981) and "Encyclopaedia of Surfactants, (Chemical Publishing Co., New York, 1981).

Compounds of the invention and their physiologically acceptable salts (hereafter collectively referred to as the active ingredients) may be administered by any route appropriate to the condition to be treated, suitable routes including oral, 15 rectal, nasal, topical (including ocular, buccal and sublingual), vaginal and parenteral (including subcutaneous, intramuscular, intravenous, intradermal, intrathecal and epidural). The preferred route of administration may vary with for example the condition of the recipient.

While it is possible for the active ingredients to be administered alone it is 20 preferable to present them as pharmaceutical formulations. The formulations, both for veterinary and for human use, of the present invention comprise at least one active ingredient, as above described, together with one or more pharmaceutically acceptable carriers therefore and optionally other therapeutic ingredients. The carrier(s) optimally are "acceptable" in the sense of being compatible with the other ingredients 25 of the formulation and not deleterious to the recipient thereof. The formulations include those suitable for oral, rectal, nasal, topical (including buccal and sublingual), vaginal or parenteral (including subcutaneous, intramuscular, intravenous, intradermal, intrathecal and epidural) administration. The formulations may conveniently be presented in unit dosage form and may be prepared by any of the 30 methods well known in the art of pharmacy. Such methods include the step of bringing into association the active ingredient with the carrier which constitutes one or more accessory ingredients. In general the formulations are prepared by uniformly and intimately bringing into association the active ingredient with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.

35 Formulations of the present invention suitable for oral administration may be presented as discrete units such as capsules, cachets or tablets each containing a

5 predetermined amount of the active ingredient; as a powder or granules; as solution or a suspension in an aqueous liquid or a non-aqueous liquid; or as an oil-in-water liquid emulsion or a water-in-oil liquid emulsion. The active ingredient may also be presented as a bolus, electuary or paste.

A tablet may be made by compression or molding, optionally with one or

10 more accessory ingredients. Compressed tablets may be prepared by compressing in a suitable machine the active ingredient in a free-flowing form such as a powder or granules, optionally mixed with a binder, lubricant, inert diluent, preservative, surface active or dispersing agent. Molded tablets may be made by molding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent.

15 The tablets may optionally be coated or scored and may be formulated so as to provide slow or controlled release of the active ingredient therein. For infections of the eye or other external tissues e.g. mouth and skin, the formulations are optionally applied as a topical ointment or cream containing the active ingredient(s) in an amount of, for example, 0.075 to 20% w/w (including active ingredient(s) in a range

20 between 0.1% and 20% in increments of 0.1% w/w such as 0.6% w/w, 0.7% w/w, etc), preferably 0.2 to 15% w/w and most preferably 0.5 to 10% w/w. When formulated in an ointment, the active ingredients may be employed with either a paraffinic or a water-miscible ointment base. Alternatively, the active ingredients

25 may be formulated in a cream with an oil-in-water cream base. If desired, the aqueous phase of the cream base may include, for example, at least 30% w/w of a polyhydric alcohol, i.e. an alcohol having two or more hydroxyl groups such as propylene glycol, butane 1,3-diol, mannitol, sorbitol, glycerol and polyethylene glycol (including PEG400) and mixtures thereof. The topical formulations may desirably

include a compound which enhances absorption or penetration of the active ingredient
30 through the skin or other affected areas. Examples of such dermal penetration enhancers include dimethylsulfoxide and related analogs.

The oily phase of the emulsions of this invention may be constituted from known ingredients in a known manner. While the phase may comprise merely an emulsifier (otherwise known as an emulgent), it desirably comprises a mixture of at least one emulsifier with a fat or an oil or with both a fat and an oil. Optionally, a hydrophilic emulsifier is included together with a lipophilic emulsifier which acts as a

5 stabilizer. It is also preferred to include both an oil and a fat. Together, the emulsifier(s) with or without stabilizer(s) make up the so-called emulsifying wax, and the wax together with the oil and fat make up the so-called emulsifying ointment base which forms the oily dispersed phase of the cream formulations.

The choice of suitable oils or fats for the formulation is based on achieving the
10 desired cosmetic properties, since the solubility of the active compound in most oils likely to be used in pharmaceutical emulsion formulations is very low. Thus the cream should optionally be a non-greasy, non-staining and washable product with suitable consistency to avoid leakage from tubes or other containers. Straight or branched chain, mono- or dibasic alkyl esters such as di-isoadipate, isocetyl stearate,
15 propylene glycol diester of coconut fatty acids, isopropyl myristate, decyl oleate, isopropyl palmitate, butyl stearate, 2-ethylhexyl palmitate or a blend of branched chain esters known as Crodamol CAP may be used, the last three being preferred esters. These may be used alone or in combination depending on the properties required. Alternatively, high melting point lipids such as white soft paraffin and/or
20 liquid paraffin or other mineral oils can be used.

Formulations suitable for topical administration to the eye also include eye drops wherein the active ingredient is dissolved or suspended in a suitable carrier, especially an aqueous solvent for the active ingredient. The active ingredient is optionally present in such formulations in a concentration of 0.5 to 20%,

25 advantageously 0.5 to 10% particularly about 1.5% w/w. Formulations suitable for topical administration in the mouth include lozenges comprising the active ingredient in a flavored basis, usually sucrose and acacia or tragacanth; pastilles comprising the active ingredient in an inert basis such as gelatin and glycerin, or sucrose and acacia;
and mouthwashes comprising the active ingredient in a suitable liquid carrier.

30 Formulations for rectal administration may be presented as a suppository with a suitable base comprising for example cocoa butter or a salicylate. Formulations suitable for nasal administration wherein the carrier is a solid include a coarse powder having a particle size for example in the range 20 to 500 microns (including particle sizes in a range between 20 and 500 microns in increments of 5 microns such as 30
35 microns, 35 microns, etc), which is administered in the manner in which snuff is taken, i.e. by rapid inhalation through the nasal passage from a container of the

5 powder held close up to the nose. Suitable formulations wherein the carrier is a liquid, for administration as for example a nasal spray or as nasal drops, include aqueous or oily solutions of the active ingredient. Formulations suitable for aerosol administration may be prepared according to conventional methods and may be delivered with other therapeutic agents.

10 Formulations suitable for vaginal administration may be presented as pessaries, tampons, creams, gels, pastes, foams or spray formulations containing in addition to the active ingredient such carriers as are known in the art to be appropriate.

Formulations suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents. The formulations may be presented in unit-dose or multi-dose containers, for example sealed ampoules and vials, and may 20 be stored in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example water for injections, immediately prior to use. Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tablets of the kind previously described.

Preferred unit dosage formulations are those containing a daily dose or unit 25 daily sub-dose, as herein above recited, or an appropriate fraction thereof, of an active ingredient.

It should be understood that in addition to the ingredients particularly mentioned above the formulations of this invention may include other agents conventional in the art having regard to the type of formulation in question, for 30 example those suitable for oral administration may include flavoring agents.

Compounds of the invention can be used to provide controlled release pharmaceutical formulations containing as active ingredient one or more compounds of the invention ("controlled release formulations") in which the release of the active ingredient can be controlled and regulated to allow less frequency dosing or to 35 improve the pharmacokinetic or toxicity profile of a given invention compound.

Controlled release formulations adapted for oral administration in which discrete units

- 5 comprising one or more compounds of the invention can be prepared according to conventional methods.

Additional ingredients may be included in order to control the duration of action of the active ingredient in the composition. Control release compositions may thus be achieved by selecting appropriate polymer carriers such as for example

- 10 polyesters, polyamino acids, polyvinyl pyrrolidone, ethylene-vinyl acetate copolymers, methylcellulose, carboxymethylcellulose, protamine sulfate and the like. The rate of drug release and duration of action may also be controlled by incorporating the active ingredient into particles, e.g. microcapsules, of a polymeric substance such as hydrogels, polylactic acid, hydroxymethylcellulose, polymethyl
15 methacrylate and the other above-described polymers. Such methods include colloid drug delivery systems like liposomes, microspheres, microemulsions, nanoparticles, nanocapsules and so on. Depending on the route of administration, the pharmaceutical composition may require protective coatings. Pharmaceutical forms suitable for injectionable use include sterile aqueous solutions or dispersions and
20 sterile powders for the extemporaneous preparation thereof. Typical carriers for this purpose therefore include biocompatible aqueous buffers, ethanol, glycerol, propylene glycol, polyethylene glycol and the like and mixtures thereof.

- In view of the fact that, when several active ingredients are used in combination, they do not necessarily bring out their joint therapeutic effect directly at
25 the same time in the mammal to be treated, the corresponding composition may also be in the form of a medical kit or package containing the two ingredients in separate but adjacent repositories or compartments. In the latter context, each active ingredient may therefore be formulated in a way suitable for an administration route different from that of the other ingredient, e.g. one of them may be in the form of an oral or
30 parenteral formulation whereas the other is in the form of an ampoule for intravenous injection or an aerosol.

Synthetic Methods

- The compounds of formula (A) are prepared using a series of chemical reactions well known to those skilled in the art, altogether making up the process for preparing said compounds and exemplified further. The processes described further
35

5 are only meant as examples and by no means are meant to limit the scope of the present invention.

The invention also relates to methods of making the compositions of the invention. The compositions are prepared by any of the applicable techniques of organic synthesis. Many such techniques are well known in the art. However, many
10 of the known techniques are elaborated in "Compendium of Organic Synthetic Methods" (John Wiley & Sons, New York), Vol. 1, Ian T. Harrison and Shuyen Harrison, 1971; Vol. 2, Ian T. Harrison and Shuyen Harrison, 1974; Vol. 3, Louis S. Hegedus and Leroy Wade, 1977; Vol. 4, Leroy G. Wade, Jr., 1980; Vol. 5, Leroy G. Wade, Jr., 1984; and Vol. 6, Michael B. Smith; as well as March, J., "Advanced
15 Organic Chemistry, Third Edition", (John Wiley & Sons, New York, 1985), "Comprehensive Organic Synthesis. Selectivity, Strategy & Efficiency in Modern Organic Chemistry. In 9 Volumes", Barry M. Trost, Editor-in-Chief (Pergamon Press, New York, 1993 printing).

Exemplary methods for the preparation of the compositions of the invention
20 are provided below. These methods are intended to illustrate the nature of such preparations, and are not intended to limit the scope of applicable methods.

Generally, the reaction conditions such as temperature, reaction time, solvents, workup procedures, and the like, will be those common in the art for the particular reaction to be performed. The cited reference material, together with material cited
25 therein, contains detailed descriptions of such conditions. Typically the temperatures will be -100°C to 200°C, solvents will be aprotic or protic, and reaction times will be 10 seconds to 10 days. Workup typically consists of quenching any unreacted reagents followed by partition between a water/organic layer system (extraction) and separating the layer containing the product.

30 Oxidation and reduction reactions are typically carried out at temperatures near room temperature (about 20°C), although for metal hydride reductions frequently the temperature is reduced to 0°C to -100°C, solvents are typically aprotic for reductions and may be either protic or aprotic for oxidations. Reaction times are adjusted to achieve desired conversions.

35 Condensation reactions are typically carried out at temperatures near room temperature, although for non-equilibrating, kinetically controlled condensations

5 reduced temperatures (0°C to -100°C) are also common. Solvents can be either protic (common in equilibrating reactions) or aprotic (common in kinetically controlled reactions).

Standard synthetic techniques such as azeotropic removal of reaction by-products and use of anhydrous reaction conditions (e.g. inert gas environments) are
10 common in the art and will be applied when applicable.

General aspects of these exemplary methods are described below. Each of the products of the following processes is optionally separated, isolated, and/or purified prior to its use in subsequent processes.

The terms "treated", "treating", "treatment", and the like, mean contacting,
15 mixing, reacting, allowing to react, bringing into contact, and other terms common in the art for indicating that one or more chemical entities is treated in such a manner as to convert it to one or more other chemical entities. This means that "treating compound one with compound two" is synonymous with "allowing compound one to react with compound two", "contacting compound one with compound two",
20 "reacting compound one with compound two", and other expressions common in the art of organic synthesis for reasonably indicating that compound one was "treated", "reacted", "allowed to react", etc., with compound two.

"Treating" indicates the reasonable and usual manner in which organic chemicals are allowed to react. Normal concentrations (0.01M to 10M, typically
25 0.1M to 1M), temperatures (-100°C to 250°C, typically -78°C to 150°C, more typically -78°C to 100°C, still more typically 0°C to 100°C), reaction vessels (typically glass, plastic, metal), solvents, pressures, atmospheres (typically air for oxygen and water insensitive reactions or nitrogen or argon for oxygen or water sensitive), etc., are intended unless otherwise indicated. The knowledge of similar
30 reactions known in the art of organic synthesis is used in selecting the conditions and apparatus for "treating" in a given process. In particular, one of ordinary skill in the art of organic synthesis selects conditions and apparatus reasonably expected to successfully carry out the chemical reactions of the described processes based on the knowledge in the art.

5 Modification of the exemplified schemes and examples leads to various analogs of the specific exemplary materials produced above. The above citations describing suitable methods of organic synthesis are applicable to such modifications.

In the exemplary schemes it may be advantageous to separate reaction products from one another and/or from starting materials. The desired products of
10 each step or series of steps is separated and/or purified (hereinafter separated) to the desired degree of homogeneity by the techniques common in the art. Typically such separations involve multiphase extraction, crystallization from a solvent or solvent mixture, distillation, sublimation, or chromatography. Chromatography can involve any number of methods including, for example, size exclusion or ion exchange
15 chromatography, high, medium, or low pressure liquid chromatography, small scale and preparative thin or thick layer chromatography, as well as techniques of small scale thin layer and flash chromatography.

Another class of separation methods involves treatment of a mixture with a reagent selected to bind to or render otherwise separable a desired product, unreacted
20 starting material, reaction by product, or the like. Such reagents include adsorbents or absorbents such as activated carbon, molecular sieves, ion exchange media, or the like. Alternatively, the reagents can be acids in the case of a basic material, bases in the case of an acidic material, binding reagents such as antibodies, binding proteins, selective chelators such as crown ethers, liquid/liquid ion extraction reagents (LIX),
25 or the like.

Selection of appropriate methods of separation depends on the nature of the materials involved. For example, boiling point, and molecular weight in distillation and sublimation, presence or absence of polar functional groups in chromatography,
stability of materials in acidic and basic media in multiphase extraction, and the like.

30 One skilled in the art will apply techniques most likely to achieve the desired separation.

Suitable methods for making the compounds of this invention also are found in WO 2004/005286, in particular schemes 1 – 13 therein.

Another synthetic route to 5-benzyl-2-phenyl-5H-imidazo[4,5-c]pyridine and
35 analogues is shown in scheme 1.

5 Scheme 1:

The following list includes carboxylic acid reactants which may be employed in the condensation, ring closure reaction of Scheme 1. The compounds so produced
10 will bear the residue of the acid at the site of YR^1 . Optionally, the remainder of the molecule will be as in any of the compounds of examples 2-7.

5

Acid	MW	Acid	MW
	258.117		179.199
	258.117		124.099
	158.103		156.204
	174.558		189.173
	191.013		113.072
	214.219		146.144
	152.148		137.137

	244.22		174.158
	164.159		200.213
	190.12		200.213
	191.013		252.272
	165.191		250.256
	214.219		216.21
	206.118		216.21
	194.229		277.116

	164.159		215.251
	178.23		215.251
	125.126		126.114
	112.084		129.139
	128.151		143.165
	124.099		124.099
	200.213		127.099
	201.201		126.114
	112.088		222.238

	124.099		174.158
	174.158		230.266
	240.257		221.279
	166.175		257.107
	137.137		223.614
	204.267		140.141
	141.101		176.17

	154.139		188.128
	173.17		262.21
	173.17		187.197
	178.21		178.15
	187.197		176.17
	173.17		157.556
	154.139		234.2

	112.088		170.138
	192.169		
	187.197		

5

The following list includes alkylating reagents which may be employed in the pyridyl alkylation reaction of Scheme 1. Here, the residue of the alkylating agent is located at the X R³ site of the compound of this invention. Optionally, the remainder of the compound will be as found in any of the compounds of examples 2-7.

10

Alkylating reagent	MW	Alkylating reagent	MW
	195.475		203.053
	168.666		223.471

	154.639		253.109
	154.639		203.053
	145.588		203.053
	190.672		273.478
	338.832		269.059
	205.039		223.471
	325.225		289.478
	262.579		269.059

	228.721		253.06
	207.016		253.06
	307.03		253.06
	199.09		221.043
	175.057		285.567
	154.639		344.203
	216.663		261.569
	218.682		212.078

	275.144		195.57
	198.648		299.113
	294.907		228.077
	244.144		193.632
	222.084		223.471
	152.623		255.961
	118.523		252.11
	255.138		190.039

	328.828		176.012
	202.611		237.099
	281.123		238.087
	170.638		239.623
	257.023		198.648

	257.023		350.235
	257.023		252.11
	257.023		236.111
	257.023		320.206
	257.023		228.995
	255.032		273.478
	174.63		203.053

	186.637		214.036
	247.134		203.053
	190.672		214.036
	204.676		285.913
	257.023		241.462
	262.579		283.251

	224.646		177.064
	194.62		267.922
	262.617		350.235
	237.042		350.235
	275.144		196.7
	186.637		199.09
	169.035		199.09
	229.065		199.09

	250.727		199.09
	324.526		253.06
	261.569		258.103
	262.617		331.052
	273.699		88.5365
	249.127		132.988
	131.561		102.563
	210.581		144.644

	303.154	 (hydrochloride salt)	144.044
	223.471		296.239
	179.02		172.098
	273.478		158.071
	257.023		170.082
	257.023		186.081

	241.12		184.109
	166.61		149.663
	205.995		248.195
	188.613		313.064
	277.696		158.071
	133.602		186.124

	208.647		230.133
	272.144		129.589
	219.052		167.038
	229.065		
	209.699		
	226.648		
	132.613		

	207.659		
	223.471		
	276.549		
	168.047		
	162.566		
	224.646		
	186.637		

	154.639		
	277.16		
	263.133		
	231.088		
	200.648		
	215.727		
	291.469		
	273.478		

	237.498		
	237.498		
	223.471		

5

Scheme 2 shows a synthetic route to 5-biaryl methyl-2-phenyl-5H-imidazo[4,5-c]pyridines and 5-benzyl-2-biaryl-5H-imidazo[4,5-c]pyridines.

5 Scheme 2:

Scheme 3 shows a synthetic route to 5-(alkoxybenzyl)-2-phenyl-5H-imidazo[4,5-c]pyridines and 5-benzyl-2-alkoxybenzyl-5H-imidazo[4,5-c]pyridines.

10 R, R', and R'' can be any alkyl, benzylic or heterobenzylic groups.

5

Scheme 3:

- Analogous compounds may be synthesized in the same fashion as in the
 10 foregoing schemes by varying the starting materials, intermediates , solvents and conditions as will be known by those skilled in the art.

EXAMPLES

PART A

Compound synthesis

EXAMPLE 1

2-(2,3-difluorophenyl)-3H-imidazo[4,5-c]pyridine

- 20 Phosphorous pentoxide (24.56g) was dissolved in methanesulfonic acid (165.8mL) at 50°C with stirring. To the solution, 3,4-diaminopyridine (12.3g, 0.11moles) and

5 2,3-difluorobenzoic acid (19.4g, 0.12moles) were added. The reaction mixture was heated to 190°C for 3 hours. The reaction was done three times. The reaction mixtures was cooled to 50°C and poured into ice with stirring. At this stage, all three batches were combined. The reaction mixture was neutralized by the addition of NaOH with stirring until the pH is 8. Solid material precipitated out of solution, was 10 collected by filtration and air-dried. The final product was re-crystallized from ethanol/water twice to yield 36g of 2-(2,3-difluorophenyl)-3H-imidazo[4,5-c]pyridine. 1H 300Mhz (CD₃OD) sigma 7.3-7.42 (m, 1p); 7.43-7.58 (m, 1p); 7.70 (d, 1p); 8.0 (m, 1p); 8.34 (d, 1p); and 8.95 (s, 1p). LC/MS data M/z = 232.

15 Following the above taught procedure and substituting 2-fluorobenzoic acid in place of 2,3-difluorobenzoic acid, the compound 2-(2-fluorophenyl)-3H-imidazo[4,5-c]pyridine can be prepared.

EXAMPLE 2

20 5-((3-(4-chlorophenyl)isoxazol-5-yl)methyl)-2-(2-fluorophenyl)-5H-imidazo[4,5-c]pyridine

To a suspension of 2-(2-fluorophenyl)-3H-imidazo[4,5-c]pyridine (11.0g, 25 50.0mmoles) in DMF was added a 10% (w/v) solution of aqueous NaOH. To this solution, 5-(chloromethyl)-3-(4-chlorophenyl)isoxazole (13.68g, 60.0mmoles) dissolved in DMF was added. The reaction mixture was stirred at room temperature and monitored every half hour by LCMS. The reaction was stopped at 4 hours, after LCMS showed no progress between at 2 hour and 4 hour monitor points. The 30 reaction product was triturated with first with water and then with EtoAc (3x). The

5 material was crystallized by dissolving the material in MeOH with heat, followed by precipitation with water. This crystallization process was then repeated yielding 5-((3-(4-chlorophenyl)isoxazol-5-yl)methyl)-2-(2-fluorophenyl)-5H-imidazo[4,5-c]pyridine (15.385g, 38mmole) as white crystal at a yield of 74%. 1H 300Mhz (d_6 -DMSO) sigma 6.02 (s, 2p); 7.13 (s, 1p); 7.26-7.35 (m, 2p); 7.43-7.52 (m, 1p); 7.56 (d, 10 2p); 7.84 (d, 1); 7.89 (d, 2p); 8.24 (d, 1); 8.28-8.36 (m, 1p); and 9.19 (s, 1p). LCMS data M/Z = 405.31

EXAMPLE 3A

5-(4-(trifluoromethoxy)benzyl)-2-(2,3-difluorophenyl)-5H-imidazo[4,5-c]pyridine

15

First, 2-(2,3-difluorophenyl)-3H-imidazo[4,5-c]pyridine (20g, 86.6mmole) was added to 430mL of DMF. Some of the solid material did not dissolve. To this solution was added 43mL of a 10% NaOH (w/v) solution. With vigorous stirring, the un-dissolved material went into solution. The resulting solution was divided into 30 equal portions of 16.3mL, 3mmole of 2-(2,3-difluorophenyl)-3H-imidazo[4,5-c]pyridine so as to fit into a microwave reaction vessel. To each reaction vessel was added of 1-(chloromethyl)-4-(trifluoromethoxy)benzene (693mg, 3mmole). Each reaction mixture was microwaved for 1 minute at 110°C. Following the completion of all the microwave reactions, all of the reaction vessels were combined (one was lost due to breakage of the vessel) into three batches for workup. For each batch, DMF was removed by vacuum, and the resulting material was washed three times with deionized water. The resulting crude material was dissolved in CH_2Cl_2 , purified using a 330g SiO_2 column (Redisep (Isco) 0% to 0%/5min to 10%B/30min to 20%/5min), and the resulting material was re-crystallized from ethanol/ H_2O . The

5 three batches yielded 14g, 33.5mmole of 5-(4-(trifluoromethoxy)benzyl)-2-(2,3-difluorophenyl)-5H-imidazo[4,5-c]pyridine. 1H 300Mhz (CD3OD) sigma 5.79 (s, 2p); 7.25-7.35 (m, 1p); 7.37 (d, 2p); 7.38-7.42 (m, 2p); 7.55 (d, 2p); 7.88-7.95 (m, 1p); 8.25 (d, 1p); and 9.05 (s, 1p). LC/MS M/z = 406.23.

10

EXAMPLE 3B

Following the above-taught procedure, and substituting 1-(chloromethyl)-2,4-difluorobenzene in place of 1-(chloromethyl)-4-(trifluoromethoxy)benzene, the compound 5-(4-iodobenzyl)-2-(2,3-difluorophenyl)-5H-imidazo[4,5-c]pyridine can be prepared.

15

EXAMPLE 4

5-(2,4-difluoro-biphenyl)methyl-2-(2,3-difluorophenyl)-5H-imidazo[4,5-c]pyridine

20

2,4-difluorophenylboronic acid (196mg, 1.24mmole) was added to a solution of 5-(4-iodobenzyl)-2-(2,3-difluorophenyl)-5H-imidazo[4,5-c]pyridine (460mg, 1.03mmole) in DMF (10mL). Na₂CO₃ was dissolved in H₂O, added to the DMF solution and stirred. Pd(PPh₃)₄ was then added to the DMF reaction mixture. The reaction mixture was heated in a microwave at 200°C for 2 minutes. After extractive work-up using ethyl acetate/water, the crude product was purified in two batches using an Isco 40g SiO₂ column (0 to 10% B/20min, A=CH₂Cl₂, B=MeOH, flow rate =40ml/min) for each purification. The pure product fractions were combined and

5 concentrated. The resulting solid was re-crystallized from CH₂Cl/hexane. The collected crystals were dried under high vacuum overnight resulting in 5-(2,4-difluoro-biphenyl)methyl-2-(2,3-difluorophenyl)-5H-imidazo[4,5-c]pyridine (223mg, .515mmole) at 50% yield. 1H 300Mhz (CD3OD) sigma 5.8 (s, 2p); 7.0-7.1 (m, 2p); 7.25-7.35 (m, 1p); 7.35-7.45 (m, 1p); 7.45-7.60 (m, 5p); 7.85 (d, 1p); 7.85-8.0 (m, 1p); 8.3 (d, 1p); and 9.10 (s, 1p). LC/MS data M/z = 434.18.

EXAMPLE 5

5-((3-(4-chlorophenyl)isoxazol-5-yl)methyl)-2-(2,3-difluorophenyl)-5H-imidazo[4,5-c]pyridine
15

To a solution of azabenzimidazole (10g, 43.3mmole) in DMF was added 10%
20 (w/v) aqueous NaOH followed by a solution of 5-(chloromethyl)-3-(4-chlorophenyl)-isoxazole (11.8g, 51.9mmole) in DMF. The reaction mixture was stirred at room temperature for 7 hours, and then concentrated. The solid material was treated with EtOAc/H₂O, and collected by filtering. The solid material was then triturated with H₂O and EtOAc, and air-dried. The solid was further purified by re-crystallization
25 from MeOH to obtain 5-((3-(4-chlorophenyl)isoxazol-5-yl)methyl)-2-(2,3-difluorophenyl)-5H-imidazo[4,5-c]pyridine (8.5g, 20.1mmole) at 46.6% yield. 1H 300Mhz (DMSO-d6) sigma 6.03 (s, 2p); 7.12 (s, 1p); 7.25-7.35 (m, 1p); 7.44-7.53 (m, 1p); 7.55 (d, 2p); 7.88 (d, 3p); 8.11-8.18 (m, 1p); 8.24-8.29 (dd, 1p); and 9.23 (s, 1p). LC/MS data M/z = 423.34, 425.22

5

EXAMPLE 6

5-((3-(2, 4-trifluoromethylphenyl)isoxazol-5-yl)methyl)-2-(2-fluorophenyl)-5H-imidazo[4,5-c]pyridine

10

2,4-(bis-trifluoromethyl)benzaldoxime

To aromatic aldehyde (0.021 mol) suspended in EtOH/H₂O (1:2, 230 mL, 0.09 M) was added hydroxylamine hydrochloride (1.58 g, 0.023 mol) and cooled to 4°C. To this solution was added aqueous NaOH 50% w/w (4.13 mL, 0.052 mol) dropwise.

15 After stirring for 1.5 h at room temperature, the reaction mixture was acidified with 2N aqueous HCl and extracted with CH₂Cl₂ (3 × 50 mL). The organic solution was washed with saturated aqueous NaCl and dried over sodium sulfate. Removal of solvent gave crude oxime (5.3 g, quant.) that was used directly in the next step.

20 2,4-(bis-trifluoromethyl)phenyl chloromethyl isoxazole

2,4-(bis-trifluoromethyl)benzaldoxime (9.75 g, 0.038 mol) was suspended in CH₂Cl₂ (45 mL, 0.85 M) and cooled to 4°C. Propargyl chloride (2.72 mL, 0.038 mol) was added to the reaction solution followed by dropwise addition of NaOCl (10–13 % free chlorine, 37.6 mL, 0.061 mol). The reaction mixture was stirred at 4°C for 15 min

25 then heated to reflux for 3 h. After cooling to room temperature, the reaction was

- 5 partitioned between CH₂Cl₂ and H₂O. The organic layer was separated, washed with saturated aqueous NaCl, and dried over sodium sulfate. After removal of solvent, the crude product chloromethylisoxazole was purified by column chromatography on silica (10% CH₂Cl₂/hexanes)(6.5 g ,0.020 mol).

10 5-((3-(2, 4-trifluoromethylphenyl)isoxazol-5-yl)methyl)-2-(2-fluorophenyl)-5H-imidazo[4,5-c]pyridine

To imidazopyridine (14.28 g, 0.067 mol) suspended in DMF (40 mL) was added aqueous NaOH 10% w/w (32.2 mL, 0.080 mol) dropwise followed by addition of the chloromethyl isoxazole from the previous step (26.3 g, 0.080 mol) in DMF (16 mL).

15 After stirring for 12 h at room temperature, solvents were evaporated to give crude product as a tan solid. The crude solid was triturated with H₂O (7×) and crystallized (2×) from MeOH/H₂O (2:1) to provide pure title product.

NMR; 300Mhz D₆MSO

- 20 Chemical shift, multiplicity, # of protons:

6.1.s.2

7.0, s, 1

73, t 2

- 25 7.4-7.5, m, 1
7.8-7.9, d, 1
7.9-8.0, d, 1
8.2-8.4, m, 4
9.2, s, 1

S. S., S., A.

EXAMPLE 7

5-((3-(4-trifluoromethyl-2-fluorophenyl)isoxazol-5-yl)methyl)-2-(2-fluorophenyl)-5H-imidazo[4,5-c]pyridine

35 Isoxazole synthesis

5 A

Compound	MW	Amount	Moles	Equivalents
A	207.13	9.3 g	0.044	1
NaOCl (10 % free Cl)	74.44	43.0 mL	0.44	1.6
Propargyl chloride	74.51	3.14 mL	0.044	1
Dichloromethane		48.7 mL		

“A” was suspended in dichloromethane at 0°C and NaOCl was added at 0°C with vigorous stirring, followed by propargyl chloride. Reaction stirred at 0°C for 5 min and then heated to reflux for 2 h. It was then cooled to room temperature, washed with water, dried over sodium sulfate and concentrated in vacuo to obtain a yellow solid. It was purified on the combiflash on a silica gel column, eluting with 3-50% ethyl acetate-hexanes. 4.5 g of shiny white solid obtained.

15

Compound	MW	Amount	mMoles	Equivalents
A	279.62	2.0 g	7.6	1.2
B	213.21	1.373 g	6.4	1
10% w/v aq NaOH		2.26 mL		
DMF		13.73 mL +		

5

“B” was suspended in 13.73 mL DMF and 10% (w/v) aq. NaOH was added to it. “A” was dissolved in 6.56 mL DMF and this solution was added to the above with stirring. The reaction was stirred at room temperature for 5 hours. DMF was removed by concentrating in vacuo and the solid obtained was triturated with water two times and then with ethyl acetate. The solid thus obtained was recrystallized from methanol-water to obtain 533mg of the desired compound.

NMR (DMSO) Data:

Chemical shift, multiplicity, # of protons:

- 15 6.14, s, 2
 7.18, d, 1
 7.28-7.36, m, 2
 7.44-7.54, m, 1
 7.70-7.76, d, 1
20 7.86-7.90, d, 1
 7.90-7.96, d, 1
 8.08-8.16, t, 1
 8.28-8.36, t, 2
 9.24, s, 1

25

EXAMPLE 8A

30 5-((3-(2-trifluoromethyl-4-fluorophenyl)isoxazol-5-yl)methyl)-2-(2-fluorophenyl)-5H-imidazo[4,5-c]pyridine

To a solution of azabenzimidazole (12.7g, 59.6mmole) in DMF (120mL) was added 10% (w/v) aqueous NaOH (30.5mL, 76.6mmole) followed by a solution of 5-(chloromethyl)-3-(2-trifluoromethyl-4-fluorophenyl)-isoxazole (21.3g, 76.6mmole) in

- 10 DMF (60mL). The reaction mixture was stirred at room temperature for 18 hours, and then concentrated. The material was precipitated from MeOH/H₂O, and collected by filtering. The solid material was recrystallized from EtoAc/hexanes to obtain 5-((3-(2-trifluoromethyl-4-fluorophenyl)isoxazol-5-yl)methyl)-2-(2-fluorophenyl)-5H-imidazo[4,5-c]pyridine in 69% yield.

15

NMR Data

300Mhz D₆MSO

Chemical shift, multiplicity, # of protons:

- 20 6.15, s, 2
6.91, s, 1
7.3, t, 2
7.42-7.52, m, 1
7.65-7.9, m, 2
25 7.84-7.9, m, 2
8.22-8.45, m, 2
9.19, s, 1

30

EXAMPLE 8B

Salts of 5-((3-(2-trifluoromethyl-4-fluorophenyl)isoxazol-5-yl)methyl)-2-(2-fluorophenyl)-5H-imidazo[4,5-c]pyridine

5 Methanesulfonic acid salt

5-((3-(2-trifluoromethyl-4-fluorophenyl)isoxazol-5-yl)methyl)-2-(2-fluorophenyl)-5H-imidazo[4,5-c]pyridine free base (200 mg) was slurried in 2.0 mL acetone. Methanesulfonic acid (42.6 mg) was added and the mixture was warmed to ~60°C. Water was added in small increments until a solution was formed (110 µL required). The solution was cooled to ambient temperature and stirred overnight. The slurry was cooled in an ice bath before being filtered and washed with acetone. The solid obtained was dried at 40°C to give 149 mg of the desired salt. DSC endotherm 213.1°C. NMR was consistent with the desired structure.

10 HCl salt

15 5-((3-(2-trifluoromethyl-4-fluorophenyl)isoxazol-5-yl)methyl)-2-(2-fluorophenyl)-5H-imidazo[4,5-c]pyridine free base (200 mg) was slurried in 2.0 mL acetone. Concentrated hydrochloric acid (46 mg) was added and the mixture was warmed to ~60°C. Water was added to the thick slurry in small increments until a solution was formed (100 µL required). The solution was cooled to ambient temperature and stirred overnight. The slurry was cooled in an ice bath before being filtered and washed with acetone. The solid obtained was dried at 40°C to give 80 mg of the desired salt. DSC endotherm 241.5°C. NMR consistent with the desired structure.

25

EXAMPLE 8B

Formulation of 5-((3-(2-trifluoromethyl-4-fluorophenyl)isoxazol-5-yl)methyl)-2-(2-fluorophenyl)-5H-imidazo[4,5-c]pyridine salts

25 Either salt of Example 7B was mixed 1:1 by weight in dry pregelatinized starch. 100 mg of the mixture was loaded into a hard gel capsule.

Additional compounds of this invention were made by the methods of procedures A, C, D, E and F.

35

Procedure A; Alkylation

For compounds prepared in an array format, 100μm of the scaffold (in this case 2-(2,3-Difluoro-phenyl)-3H-imidazo[4,5-c]pyridine) was used for each reaction. The total amount of 2-(2,3-Difluoro-phenyl)-3H-imidazo[4,5-c]pyridine was dissolved in enough DMF to give 500μl/reaction. To each solution was added 60 μL of 10%(w/v)NaOH/H₂O. The alkylating agents were dissolved in DMF at a concentration 480 μmole/mL and 250 μL of these solutions were added to the respective reaction. Each reaction was then heated to 110°C for 1min using microwave irradiation. After cooling, the reactions were filtered through a 0.45μm filter. Each compound was then purified by mass based fractionation on a C-18 reverse phase column using 0.1%TFA/ H₂O and 0.1%TFA/Acetonitrile as the eluting solvents. Each compound was identified by its mass spectrum and purity was determined by UV absorbance at 254nm. The HPLC fractions were concentrated by centrifugal evaporation and weighed to determine quantity collected.

Procedure C; Suzuki Boronic Acid

5 The aryl boronic acid (1.2 eq.) was added to a solution of 5-(4-iodobenzyl)-2-(2,3-difluorophenyl)-5H-imidazo[4,5-c]pyridine (1 eq.) in DMF. Na₂CO₃ (2eq) was dissolved in H₂O, added to the DMF solution and stirred. Pd(PPh₃)₄ (5 mole%) was then added to the DMF reaction mixture. The reaction mixture was heated in a microwave at 200°C for 2 minutes. The reaction mixture was applied to a 1g solid
10 phase extraction cartridge (C-18) and the column was washed with 3 x 2mL of methanol. The eluents were filtered through a 0.45um filter and then concentrated to dryness. The resulting material was redissolved in DMF, and purified by reverse phase HPLC/MS.

15 Procedure D

General procedure for oxime formation

To aromatic aldehyde suspended in EtOH/H₂O (1:2) was added hydroxylamine hydrochloride (1.1 equiv.) and cooled to 4°C. To this solution was added aqueous NaOH 50% w/w (2.5 equiv.) dropwise. After stirring for 1.5 h at
20 room temperature, the reaction mixture was acidified with 2N aqueous HCl and extracted with CH₂Cl₂. The organic solution was washed with saturated aqueous NaCl and dried over sodium sulfate. Removal of solvent gave crude oxime that was used directly in the next step.

25 General procedure for cycloaddition

Oxime was suspended in CH₂Cl₂ and cooled to 4°C. Propargyl chloride (1 equiv.) was added to the reaction solution followed by dropwise addition of NaOCl (10–13 % free chlorine, 1 equiv.). The reaction mixture was stirred at 4°C for 15 min
then heated to reflux for 3 h. After cooling to room temperature, the reaction was
30 partitioned between CH₂Cl₂ and H₂O. The organic layer was separated, washed with saturated aqueous NaCl, and dried over sodium sulfate. After removal of solvent, the crude product was purified by trituration (hexanes) or by column chromatography on silica (10% CH₂Cl₂/hexanes).

35 General procedure for alkylation

5 To imidazopyridine suspended in DMF was added aqueous NaOH 10% w/w (1.2 equiv.) dropwise followed by addition of chloromethyl isoxazole (1.2 equiv.) in DMF. After stirring for 12 h at room temperature, solvents were evaporated to give crude product as a tan solid. The crude solid was triturated with H₂O and crystallized from MeOH/H₂O (2:1) to provide pure final product.

10

Procedure E; Suzuki bromides

15 The aryl bromide (1.2 eq.) was added to a solution of 4-((2-(2,3-difluorophenyl)-5H-imidazo[4,5-c]pyridin-5-yl)methyl)phenylboronic acid (1 eq.) in DMF. Na₂CO₃ (2eq) was dissolved in H₂O, added to the DMF solution and stirred. Pd(PPh₃)₄ (5 mole%) was then added to the DMF reaction mixture. The reaction mixture was heated in a microwave at 200°C for 2 minutes. The reaction mixture was applied to a 1g solid phase extraction cartridge (C-18) and the column was washed with 3 x 2 mL of methanol. The eluents were filtered through a 0.45um filter and then concentrated to dryness. The resulting material was redissolved in DMF, and purified by reverse phase HPLC/MS.

5 Procedure FPreparation of Biphenyl Array

10

The appropriately substituted *4'-(2,3-Difluoro-phenyl)-imidazo[4,5-c]pyridin-5-ylmethyl*-biphenyl-4-ol (**5**) scaffold was prepared by first treating 2-(2,3-Difluoro-phenyl)-3*H*-imidazo[4,5-c]pyridine (**1**) with 1-bromomethyl-4-iodobenzene (**2**) in DMF using aqueous sodium hydroxide as base. The resulting 2-(2,3-Difluoro-phenyl)-5-(4-iodo-benzyl)-5*H*-imidazo[4,5-c]pyridine (**3**) (1 equivalent) was treated with three different substituted 4-hydroxyphenyl boronic acids ((4-hydroxyphenyl)boronic acid, 4-Hydroxy-2-(trifluoromethyl)phenyl boronic acid and (4-hydroxy-2-methylphenyl)boronic acid) and (4-Fluoro-2-hydroxy)phenylboronic acid (1.1 equivalents) under Suzuki coupling conditions (sodium carbonate, water, palladium tetrakis(triphenyl)phosphine) to afford the appropriately substituted *4'-(2,3-Difluoro-phenyl)-imidazo[4,5-c]pyridin-5-ylmethyl*-biphenyl-4-ol or -[2-(2,3-Difluoro-phenyl)-imidazo[4,5-c]pyridin-5-ylmethyl]-biphenyl-2-ol. The products

5 were precipitated in ethyl acetate and filtered over a medium frit followed by washing with water to afford the pure product (5).

For compounds prepared in array format of the general type (7), 50 μ M of the scaffold (5) in 250 μ L DMF was used for each reaction. To each reaction was added 1.4
10 equivalents of Cesium Carbonate. The alkylating agents (6) were added as a 0.4M solution (0.05mMoles) in DMF. The reactions were shaken at 60°C for 4 hours and monitored by analytical LC/MS. Each reaction was filtered through a 0.45 μ M filter and purified by mass-based fractionation on a C-18 reverse phase column using 0.1%TFA/water and 0.1 %TFA/acetonitrile as the eluting solvents. Each compound
15 was identified by its mass spectrum and purity was determined by its UV absorbance at 254nm. The HPLC fractions were concentrated in vacuo and weighed to afford the product (7) as its trifluoroacetate salt.

The compounds produced according to these procedures and examples, and certain of
20 their properties, are described in the Table below. The substituent designated "C" is methyl.

25

30

Structures	Purity	MW	Obs. MW	Method
<p>Example 9</p> <p>The structure shows a central imidazole ring substituted at the 2-position with a 4-phenyl group, which is further substituted with a 4-(2,2,2-trifluoroethyl)phenyl group, and at the 4-position with a 4-fluorophenyl group.</p>	95	387.340	388.340	A
<p>Example 10</p> <p>The structure shows a central imidazole ring substituted at the 2-position with a 4-phenyl group, which is further substituted with a 4-phenylphenyl group, and at the 4-position with a 4-fluorophenyl group.</p>	90	395.440	396.440	A
<p>Example 11</p> <p>The structure shows a central imidazole ring substituted at the 2-position with a 4-phenyl group, which is further substituted with a 4-(4-fluorophenyl)phenyl group, and at the 4-position with a 4-fluorophenyl group.</p>	90	413.431	414.431	A

Structures	Purity	MW	Obs. MW	Method
Example 12 	92	404.451	405.451	A
Example 13 	95	407.451	408.451	A
Example 14 	85	405.479	406.479	A

Structures	Purity	MW	Obs. MW	Method
Example 15 	90	389.331	390.331	A
Example 16 	90	431.418	432.418	A
Example 17 	93	404.834	405.834	A

Structures	Purity	MW	Obs. MW	Method
Example 18 	90	370.389	371.389	A
Example 19 	95	389.331	390.331	A
Example 20 	95	389.331	390.331	A

Structures	Purity	MW	Obs. MW	Method
Example 21 	95	389.331	390.331	A
Example 22 	97	355.777	356.777	A
Example 23 	90	407.451	408.451	A

Structures	Purity	MW	Obs. MW	Method
Example 24 	90	461.134	462.134	A
Example 25 	90	401.404	402.404	A
Example 26 	95	371.377	372.377	A

Structures	Purity	MW	Obs. MW	Method
Example 27 	95	439.375	440.375	A
Example 28 	90	405.822	406.822	A
Example 29 	90	427.485	428.485	A

Structures	Purity	MW	Obs. MW	Method
Example 30 	85	456.833	457.833	A
Example 31 	95	439.375	440.375	A
Example 32 	90	386.454	387.454	A

Structures	Purity	MW	Obs. MW	Method
Example 33 	90	392.480	393.480	A
Example 34 	95	361.301	362.301	A
Example 35 	92	369.804	370.804	A

Structures	Purity	MW	Obs. MW	Method
Example 36 	90	405.785	406.785	A
Example 37 	92	421.785	422.785	A
Example 38 	90	401.367	402.367	A

Structures	Purity	MW	Obs. MW	Method
Example 39 	90	351.814	352.814	A
Example 40 	92	423.812	424.812	A
Example 41 	98	339.391	340.391	A

Structures	Purity	MW	Obs. MW	Method
Example 42 	92	449.408	450.408	A
Example 43 	95	422.825	423.825	A
Example 44 	93	388.380	389.380	A

Structures	Purity	MW	Obs. MW	Method
Example 45 	95	479.124	480.124	A
Example 46 	97	419.394	420.394	A
Example 47 	94	389.367	390.367	A

Structures	Purity	MW	Obs. MW	Method
Example 48 	92	457.366	458.366	A
Example 49 	90	363.778	364.778	A
Example 50 	92	445.476	446.476	A

Structures	Purity	MW	Obs. MW	Method
Example 51 	95	457.366	458.366	A
Example 52 	95	472.443	473.443	A
Example 53 	95	404.444	405.444	A

Structures	Purity	MW	Obs. MW	Method
Example 54 	95	395.393	396.393	A
Example 55 	90	410.470	411.470	A
Example 56 	92	457.329	458.329	A

Structures	Purity	MW	Obs. MW	Method
Example 57 	93	353.350	354.350	A
Example 58 	95	423.776	424.776	A
Example 59 	95	439.775	440.775	A

Structures	Purity	MW	Obs. MW	Method
Example 60 	92	419.357	420.357	A
Example 61 	90	390.222	391.222	A
Example 62 	90	405.330	406.330	A

Structures	Purity	MW	Obs. MW	Method
Example 63 	90	431.421	432.421	A
Example 64 	0	422.441	423.441	A
Example 65 	90	425.442	426.442	A

Structures	Purity	MW	Obs. MW	Method
Example 66 	95	431.876	432.876	C
Example 67 	95	442.429	443.429	C
Example 68 	95	411.458	412.458	C

Structures	Purity	MW	Obs. MW	Method
<p>Example 69</p> <chem>Cc1ccc(cc1)-c2ccc(cc2)CN3Cc4cc5nc6cc(F)c(F)cc6n5c4C3</chem>	95	411.458	412.458	C
<p>Example 70</p> <chem>Cc1ccc(cc1)-c2ccc(cc2)CN3Cc4cc5nc6cc(F)c(F)cc6n5c4C3</chem>	95	411.458	412.458	C
<p>Example 71</p> <chem>Fc1ccc(cc1)-c2ccc(cc2)CN3Cc4cc5nc6cc(F)c(F)cc6n5c4C3</chem>	95	415.422	416.422	C

Structures	Purity	MW	Obs. MW	Method
Example 72 	95	403.457	404.457	C
Example 73 	90	441.485	442.485	C
Example 74 	95	465.430	466.430	C

Structures	Purity	MW	Obs. MW	Method
Example 75 	95	431.876	432.876	C
Example 76 	95	415.422	416.422	C
Example 77 	95	441.485	442.485	C

Structures	Purity	MW	Obs. MW	Method
Example 78 	95	441.485	442.485	C
Example 79 	95	443.522	444.522	C
Example 80 	95	387.392	388.392	C

Structures	Purity	MW	Obs. MW	Method
Example 81 	95	433.412	434.412	C
Example 82 	95	439.469	440.469	C
Example 83 	95	439.469	440.469	C

Structures	Purity	MW	Obs. MW	Method
Example 84 	95	425.485	426.485	C
Example 85 	95	465.430	466.430	C
Example 86 	95	465.430	466.430	C

Structures	Purity	MW	Obs. MW	Method
Example 87 	95	415.422	416.422	C
Example 88 	95	466.321	467.321	C
Example 89 	95	433.412	434.412	C

Structures	Purity	MW	Obs. MW	Method
Example 90 	95	533.428	534.428	C
Example 91 	95	466.321	467.321	C
Example 92 	90	425.485	426.485	C

Structures	Purity	MW	Obs. MW	Method
Example 93 	90	457.484	458.484	C
Example 94 	90	447.492	448.492	C
Example 95 	90	489.529	490.529	C

Structures	Purity	MW	Obs. MW	Method
Example 96 	90	457.484	458.484	C
Example 97 	90	425.485	426.485	C
Example 98 	90	425.485	426.485	C

Structures	Purity	MW	Obs. MW	Method
Example 99 	90	440.500	441.500	C
Example 100 	90	429.449	430.449	C
Example 101 	90	437.902	438.902	C

Structures	Purity	MW	Obs. MW	Method
Example 102 	90	437.453	438.453	C
Example 103 	90	453.517	454.517	C
Example 104 	90	481.429	482.429	C

Structures	Purity	MW	Obs. MW	Method
Example 105 	90	481.429	482.429	C
Example 106 	90	453.517	454.517	C
Example 107 	90	449.867	450.867	C

Structures	Purity	MW	Obs. MW	Method
Example 108 	90	466.321	467.321	C
Example 109 	90	422.441	423.441	C
Example 110 	90	433.412	434.412	C

Structures	Purity	MW	Obs. MW	Method
Example 111 	90	442.429	443.429	C
Example 112 	90	427.458	428.458	C
Example 113 	90	427.458	428.458	C

Structures	Purity	MW	Obs. MW	Method
Example 114 	90	425.485	426.485	C
Example 115 	90	439.512	440.512	C
Example 116 	90	466.321	467.321	C

Structures	Purity	MW	Obs. MW	Method
Example 117 	90	503.556	504.556	C
Example 118 	90	443.522	444.522	C
Example 119 	90	422.441	423.441	C

Structures	Purity	MW	Obs. MW	Method
Example 120 	90	475.521	476.521	C
Example 121 	90	433.412	434.412	C
Example 122 	90	503.556	504.556	C

Structures	Purity	MW	Obs. MW	Method
Example 123 	90	429.449	430.449	C
Example 124 	90	453.540	454.540	C
Example 125 	90	466.321	467.321	C

Structures	Purity	MW	Obs. MW	Method
Example 126 	90	456.456	457.456	C
Example 127 	90	481.429	482.429	C
Example 128 	90	483.522	484.522	C

Structures	Purity	MW	Obs. MW	Method
Example 129 	90	445.448	446.448	C
Example 130 	90	392.870	393.870	A
Example 131 	90	358.425	359.425	A

Structures	Purity	MW	Obs. MW	Method
Example 132 	90	392.486	393.486	A
Example 133 	90	453.540	454.540	C
Example 134 	90	546.582	547.582	C

Structures	Purity	MW	Obs. MW	Method
Example 135 	90	445.448	446.448	C
Example 136 	0	456.378	457.378	A
Example 137 	95	472.378	473.378	A

Structures	Purity	MW	Obs. MW	Method
Example 138 	95	423.812	424.812	A
Example 139 	99	457.270	458.270	D
Example 140 	98	472.378	473.378	D

Structures	Purity	MW	Obs. MW	Method
Example 141 	98	524.377	525.377	D
Example 142 	0	474.369	475.369	D
Example 143 	99	454.387	455.387	D

Structures	Purity	MW	Obs. MW	Method
Example 144 	98	474.369	475.369	D
Example 145 	98	485.266	486.266	D
Example 146 	95	442.351	443.351	D

Structures	Purity	MW	Obs. MW	Method
Example 147 	90	420.397	421.397	D
Example 148 	90	402.407	403.407	D
Example 149 	98	448.433	449.433	D

Structures	Purity	MW	Obs. MW	Method
Example 150 	98	474.369	475.369	D
Example 151 	96	439.280	440.280	D
Example 152 	98	454.387	455.387	D

Structures	Purity	MW	Obs. MW	Method
Example 153 	98	506.386	507.386	D
Example 154 	98	456.378	457.378	D
Example 155 	98	436.397	437.397	D

Structures	Purity	MW	Obs. MW	Method
Example 156 	98	456.378	457.378	D
Example 157 	98	467.276	468.276	D
Example 158 	98	430.442	431.442	D

Structures	Purity	MW	Obs. MW	Method
Example 159 	98	456.378	457.378	D
Example 160 	85	473.725	474.725	D
Example 161 	98	488.832	489.832	D

Structures	Purity	MW	Obs. MW	Method
Example 162 	98	540.831	541.831	D
Example 163 	98	490.823	491.823	D
Example 164 	98	470.842	471.842	D

Structures	Purity	MW	Obs. MW	Method
Example 165 	98	490.823	491.823	D
Example 166 	98	501.721	502.721	D
Example 167 	90	415.422	416.422	C

Structures	Purity	MW	Obs. MW	Method
Example 168 	90	483.420	484.420	C
Example 169 	90	499.419	500.419	C
Example 170 	90	445.448	446.448	C

Structures	Purity	MW	Obs. MW	Method
Example 171 	90	461.513	462.513	C
Example 172 	90	451.402	452.402	C
Example 173 	90	465.430	466.430	C

Structures	Purity	MW	Obs. MW	Method
Example 174 	90	481.429	482.429	C
Example 175 	90	427.458	428.458	C
Example 176 	90	443.522	444.522	C

Structures	Purity	MW	Obs. MW	Method
Example 177 	90	433.412	434.412	C
Example 178 	90	431.876	432.876	C
Example 179 	90	515.874	516.874	C

Structures	Purity	MW	Obs. MW	Method
Example 180 	90	461.903	462.903	C
Example 181 	90	477.967	478.967	C
Example 182 	90	467.857	468.857	C

Structures	Purity	MW	Obs. MW	Method
Example 183 	90	501.410	502.410	C
Example 184 	90	397.431	398.431	C
Example 185 	95	479.556	480.556	E

Structures	Purity	MW	Obs. MW	Method
Example 186 	95	423.469	424.469	E
Example 187 	95	441.485	442.485	E
Example 188 	95	455.468	456.468	E

Structures	Purity	MW	Obs. MW	Method
Example 189 	95	469.495	470.495	E
Example 190 	95	483.522	484.522	E
Example 192 	95	436.468	437.468	E

Structures	Purity	MW	Obs. MW	Method
Example 193 	95	475.475	476.475	E
Example 194 	95	453.496	454.496	E
Example 195 	95	463.438	464.438	E

Structures	Purity	MW	Obs. MW	Method
Example 201 	90	499.419	500.419	C
Example 202 	90	445.448	446.448	C
Example 203 	90	461.513	462.513	C

Structures	Purity	MW	Obs. MW	Method
Example 204 	90	451.402	452.402	C
Example 205 	90	397.431	398.431	C
Example 206 	90	465.430	466.430	C

Structures	Purity	MW	Obs. MW	Method
Example 207 	90	481.429	482.429	C
Example 208 	90	427.458	428.458	C
Example 209 	90	443.522	444.522	C

Structures	Purity	MW	Obs. MW	Method
Example 210 	90	433.412	434.412	C
Example 211 	90	431.876	432.876	C
Example 212 	90	499.875	500.875	C

Structures	Purity	MW	Obs. MW	Method
Example 213 	90	477.967	478.967	C
Example 214 	95	462.506	463.506	E
Example 215 	95	421.840	422.840	A

Structures	Purity	MW	Obs. MW	Method
Example 216 	95	403.850	404.850	A
Example 217 	95	417.422	418.422	A
Example 218 	95	399.431	400.431	A

Structures	Purity	MW	Obs. MW	Method
Example 219 	95	434.400	435.400	A
Example 220 	95	416.409	417.409	A
Example 221 	98	424.361	425.361	D

Structures	Purity	MW	Obs. MW	Method
Example 222 	85	406.370	407.370	D
Example 223 	98	440.815	441.815	D
Example 224 	90	553.493	554.493	F

Structures	Purity	MW	Obs. MW	Method
Example 225 	90	567.520	568.520	F
Example 226 	90	579.575	580.575	F
Example 227 	84	551.521	552.521	F

Structures	Purity	MW	Obs. MW	Method
Example 228 	100	537.537	538.537	F
Example 229 	92	551.564	552.564	F
Example 230 	100	593.646	594.646	F

Structures	Purity	MW	Obs. MW	Method
Example 231 	81	567.520	568.520	F
Example 232 	78	539.510	540.510	F
Example 233 	77	583.563	584.563	F

Structures	Purity	MW	Obs. MW	Method
Example 234 	85	549.548	550.548	F
Example 235 	85	579.531	580.531	F
Example 236 	82	593.558	594.558	F

Structures	Purity	MW	Obs. MW	Method
Example 237 	90	535.521	536.521	F
Example 238 	85	551.564	552.564	F
Example 239 	85	595.574	596.574	F

Structures	Purity	MW	Obs. MW	Method
Example 240 	80	551.564	552.564	F
Example 241 	85	535.521	536.521	F
Example 242 	85	577.603	578.603	F

Structures	Purity	MW	Obs. MW	Method
Example 243 	100	595.574	596.574	F
Example 244 	83	533.505	534.505	F
Example 245 	90	487.529	488.529	F

Structures	Purity	MW	Obs. MW	Method
Example 246 	90	501.556	502.556	F
Example 247 	90	501.556	502.556	F
Example 248 	90	501.556	502.556	F

Structures	Purity	MW	Obs. MW	Method
Example 249 	90	539.485	540.485	F
Example 250 	90	483.497	484.497	F
Example 251 	90	483.566	484.566	F

Structures	Purity	MW	Obs. MW	Method
Example 252 	90	513.549	514.549	F
Example 253 	90	485.538	486.538	F
Example 254 	90	529.592	530.592	F

Structures	Purity	MW	Obs. MW	Method
Example 255 	90	525.560	526.560	F
Example 256 	90	481.550	482.550	F
Example 257 	90	541.603	542.603	F

Structures	Purity	MW	Obs. MW	Method
Example 258 	90	481.550	482.550	F
Example 259 	90	541.603	542.603	F
Example 260 	90	479.534	480.534	F

Structures	Purity	MW	Obs. MW	Method
Example 261 	90	522.559	523.559	F
Example 262 	90	469.539	470.539	F
Example 263 	90	471.511	472.511	F

Structures	Purity	MW	Obs. MW	Method
Example 264 	90	515.565	516.565	F
Example 265 	90	511.533	512.533	F
Example 266 	90	467.523	468.523	F

Structures	Purity	MW	Obs. MW	Method
Example 267 	90	527.576	528.576	F
Example 268 	90	521.494	522.494	F
Example 269 	80	465.507	466.507	F

Structures	Purity	MW	Obs. MW	Method
Example 270 	90	453.496	454.496	F
Example 271 	90	470.483	471.483	F
Example 272 	90	495.577	496.577	F

Structures	Purity	MW	Obs. MW	Method
Example 273 	90	481.550	482.550	F
Example 274 	90	610.644	611.644	F
Example 275 	90	506.560	507.560	F

Structures	Purity	MW	Obs. MW	Method
Example 276 	90	485.538	486.538	F
Example 277 	90	595.574	596.574	F
Example 278 	90	521.494	522.494	F

Structures	Purity	MW	Obs. MW	Method
Example 279 	90	538.481	539.481	F
Example 280 	90	563.576	564.576	F
Example 281 	85	565.548	566.548	F

Structures	Purity	MW	Obs. MW	Method
Example 282 	90	580.606	581.606	F
Example 283 	90	549.548	550.548	F
Example 284 	85	678.643	679.643	F

Structures	Purity	MW	Obs. MW	Method
Example 285 	90	574.558	575.558	F
Example 286 	90	588.585	589.585	F
Example 287 	90	659.599	660.599	F

Structures	Purity	MW	Obs. MW	Method
Example 288 	90	617.547	618.547	F
Example 289 	90	572.542	573.542	F
Example 290 	90	553.537	554.537	F

Structures	Purity	MW	Obs. MW	Method
Example 291 	90	629.514	630.514	F
Example 292 	85	571.502	572.502	F
Example 293 	80	545.566	546.566	F

Structures	Purity	MW	Obs. MW	Method
Example 294 	90	471.486	472.486	F
Example 295 	90	488.473	489.473	F
Example 296 	90	628.635	629.635	F

Structures	Purity	MW	Obs. MW	Method
Example 297 	90	524.550	525.550	F
Example 298 	90	538.577	539.577	F
Example 300 	90	503.529	504.529	F

Structures	Purity	MW	Obs. MW	Method
Example 301 	90	579.506	580.506	F
Example 302 	90	521.494	522.494	F
Example 303 	90	541.603	542.603	F

Structures	Purity	MW	Obs. MW	Method
Example 304 	90	467.523	468.523	F
Example 305 	90	483.566	484.566	F
Example 306 	90	509.604	510.604	F

Structures	Purity	MW	Obs. MW	Method
Example 307 	90	511.577	512.577	F
Example 308 	90	495.577	496.577	F
Example 309 	90	520.587	521.587	F

Structures	Purity	MW	Obs. MW	Method
Example 310 	90	534.614	535.614	F
Example 311 	90	605.627	606.627	F
Example 312 	90	563.576	564.576	F

Structures	Purity	MW	Obs. MW	Method
Example 316 	95	486.405	487.405	D
Example 317 	90	417.397	418.397	A
Example 318 	90	396.787	397.787	A

Structures	Purity	MW	Obs. MW	Method
<p>Example 319</p> <p>The structure shows a benzimidazole ring system. The 2-position is substituted with an ethyl group (-CH₂CH₃). The 4-position is substituted with a phenyl ring, which is further substituted at the para position with a fluorine atom (F).</p>	90	387.34		A
<p>Example 320</p> <p>The structure is identical to Example 319, showing a benzimidazole ring with a 2-ethyl group and a 4-fluorophenyl group at the 4-position.</p>	90	371.34		A
<p>Example 321</p> <p>The structure shows a benzimidazole ring system. The 2-position is substituted with an ethyl group (-CH₂CH₃). The 4-position is substituted with a phenyl ring, which is further substituted at the para position with a fluorine atom (F) and at the meta position with another fluorine atom (F).</p>	90	400.23		A

Structures	Purity	MW	Obs. MW	Method
Example 322 	90	401.37		A
Example 323 	90	405.33		A
Example 324 	90	345.42		A

Structures	Purity	MW	Obs. MW	Method
Example 325 	90	409.47		A
Example 326 	90	403.40		A
Example 327 	90	363.41		A

Structures	Purity	MW	Obs. MW	Method
Example 328 	90	389.33		A
Example 329 	90	359.45		A
Example 330 	90	385.37		A

Structures	Purity	MW	Obs. MW	Method
Example 331 	90	417.37		A
Example 332 	90	421.78		A
Example 333 	90	466.24		A

Structures	Purity	MW	Obs. MW	Method
Example 334 	90	393.90		A
Example 335 	90	416.68		A
Example 336 	90	405.79		A

Structures	Purity	MW	Obs. MW	Method
Example 337 	90	463.68		A
Example 338 	90	379.87		A
Example 339 	90	423.81		

Structures	Purity	MW	Obs. MW	Method
Example 340 	90	419.39		
Example 341 	90	403.39		
Example 342 	90	418.41		D

Structures	Purity	MW	Obs. MW	Method
Example 343 	90	402.41		D
Example 344 	90	378.34		D
Example 345 	90	394.41		D

Structures	Purity	MW	Obs. MW	Method
Example 346 	90	431.45		D
Example 347 	90	464.48		D
Example 348 	90	467.28		D

Structures	Purity	MW	Obs. MW	Method
Example 349 	90	494.51		D
Example 350 	90	434.47		D
Example 351 	90	432.43		D

Structures	Purity	MW	Obs. MW	Method
Example 352 	90	432.43		D
Example 353 	90	436.40		D
Example 354 	90	440.82		D

Structures	Purity	MW	Obs. MW	Method
Example 355 	90	446.46		D
Example 356 	90	480.48		D
Example 357 	90	391.38		D

Structures	Purity	MW	Obs. MW	Method
Example 358 	90	446.46		D
Example 359 	90	440.82		D
Example 360 	90	478.48		D

Structures	Purity	MW	Obs. MW	Method
Example 361 	90	428.85		D
Example 362 	90	460.49		D
Example 363 	90	428.47		D

Structures	Purity	MW	Obs. MW	Method
Example 364 	90	444.44		D
Example 365 	90	474.51		D
Example 366 	90	473.30		D

Structures	Purity	MW	Obs. MW	Method
Example 367 	90	378.34		D
Example 368 	90	500.55		D
Example 369 	90	500.55		D

Structures	Purity	MW	Obs. MW	Method
Example 370 	90	488.54		D
Example 371 	90	488.53		D
Example 372 	90	487.4		D

Structures	Purity	MW	Obs. MW	Method
Example 373 The structure consists of a central imidazolidine ring system. It has two nitrogen atoms at positions 1 and 2. At position 1, there is a methylene group (CH2) attached to a pyridine ring. The pyridine ring has a phenyl group attached at the 4-position. At position 2, there is another methylene group (CH2) attached to another pyridine ring. This second pyridine ring also has a phenyl group attached at its 4-position. Both phenyl groups are substituted with a fluorine atom (F).	90	417.4	C	

5

EXAMPLE 374

Isoxazole Analogues

10

$\text{Ar} = (\text{subst.}) \text{ phenyl}, (\text{subst.}) \text{ hetaryl}$
 $\text{X} = \text{Br}, \text{Cl}$

Synthesis of 374a:

15

To a stirred solution of 4-ethoxy-benzaldehyde (3.000 g) in 50% ethanol (7 mL) ice (10 g) and hydroxylamine hydrochloride (2.100 g) were added, followed by 30%

5 aqueous sodium hydroxide solution (3.5 mL). After completion of the reaction (1 h) hydrochloric acid was added to adjust pH to 1 and the suspension was cooled on an ice bath and filtered. The crude oxime can be used for the next step without purification. Alternatively, it can be recrystallized from a mixture of diisopropyl ether and ethyl acetate. Yield: 71 %.

10

To a solution of propargyl chloride (655 mg, 1 equ.) and triethylamine (35 mg, 0.1 equ.) in dichloromethane (9.5 mL) were subsequently added with cooling 10%

aqueous sodium hypochlorite solution (9.5 mL, 1.5 equ.) and then a solution of the oxime (1.40 g, ~1.3 M in dichloromethane) over a period of 15 minutes and stirring

15 was continued for an additional hour. The reaction was monitored by TLC (silicagel, eluent: 5 % MeOH in dichloromethane). After completion the reaction mixture was extracted 3 times with 30 mL dichloromethane. The combined organic phases were dried over anhydrous sodium sulphate and evaporated under reduced pressure. The crude 5-(chloromethyl)-3-(4-ethoxyphenyl)-isoxazole was purified by column 20 chromatography (silicagel, ethyl acetate / petroleum ether = 1:9). Yield: 1.1 g.

A mixture of 3,4-diaminopyridine (2.00 g), 2,3-difluorobenzoic acid (1 equivalent) and polyphosphoric acid (50 g) was heated at 180°C for 4 h with stirring. Then the mixture was cooled to ambient temperature and poured into ice/water. The resulting

25 mixture was neutralized by addition of solid NaOH. The crude 2-(2,3-difluorophenyl)-1(3)H-imidazo[4,5-c]pyridine was collected by filtration, washed with water and dried. It was used in the next step without further purification. Yield: 88 %.

30 2-(2,3-Difluorophenyl)-1(3)H-imidazo[4,5-c]pyridine (0.500 g) was dissolved in dry DMF (5 mL) and the resulting solution was cooled to 0°C. Aqueous 50% sodium hydroxide (1.5 equivalents) was added and the mixture was stirred for 15 min. Then 5-(chloromethyl)-3-(4-ethoxyphenyl)-isoxazole (1.2 equivalents) was added and the resulting mixture was stirred for 24 h at room temperature. Finally, water (50 mL) 35 was added, the precipitate was collected by filtration and dried to give the crude product.

5

Recrystallized from ethyl acetate; colorless crystals; yield: 35%

- ¹H NMR (200 MHz, DMSO-d₆) δ 9.24 (d, 1H, H4, J=1.2 Hz), 8.28 (dd, 1H, H6, J=6.6, 1.2 Hz), 8.15 (m, 1H, phenyl-H), 7.89 (d, 1H, H7, J=6.6 Hz), 7.77 (AA'BB', 10 2H, benzyl-H), 7.49 (m, 1H, phenyl-H), 7.31 (m, 1H, phenyl-H), 7.07-7.00 (m, 3H, arom. H), 6.02 (s, 2H, CH₂), 4.06 (q, 2H, OCH₂, J=6.9 Hz), 1.32 (t, 3H, CH₃, J=6.9 Hz).

The following examples were prepared by analogy to the above procedure:

15 374b

Starting from 4-methoxybenzaldehyde.

20

- ¹H NMR (200 MHz, DMSO-d₆) δ 9.23 (d, 1H, H4, J=1.2 Hz), 8.28 (dd, 1H, H6, J=6.6, 1.2 Hz), 8.15 (m, 1H, phenyl-H), 7.88 (d, 1H, H7, J=6.6 Hz), 7.79 (AA'BB', 2H, benzyl-H), 7.49 (m, 1H, phenyl-H), 7.31 (m, 1H, phenyl-H), 7.09-7.00 (m, 3H, arom. H), 6.01 (s, 2H, CH₂), 3.80 (s, 3H, OCH₃).

25

5 374c

Starting from 4-methylbenzaldehyde.

10

¹H NMR (200 MHz, DMSO-d₆) δ 9.24 (br s, 1H, H4), 8.29 (d, 1H, H6, J=6.7 Hz), 8.14 (m, 1H, phenyl-H), 7.88 (d, 1H, H7, J=6.7 Hz), 7.58-7.27 (m, 6H, arom. H), 7.00 (s, 1H, isoxazole-H), 6.04 (s, 2H, CH₂), 2.41 (s, 3H, CH₃).

15

374d

20 Starting from 2-furaldehyde

5 ¹H NMR (200 MHz, DMSO-d₆) δ 9.24 (br s, 1H, H4), 8.28 (d, 1H, H6, J=6.7 Hz), 8.15 (m, 1H, phenyl-H), 7.90-7.87 (m, 2H, arom. H), 7.51 (m, 1H, phenyl-H), 7.32 (m, 1H, phenyl-H), 7.15 (d, 1H, furane-H, J=3.6 Hz), 6.96 (s, 1H, isoxazole-H), 6.68 (m, 1H, furane-H), 6.02 (s, 2H, CH₂).

10 374e

Starting from thiophene-2-carboxaldehyde

15 ¹H NMR (200 MHz, DMSO-d₆) δ 9.23 (d, 1H, H4, J=1.6 Hz), 8.27 (dd, 1H, H6, J=7.0, 1.6 Hz), 8.14 (m, 1H, phenyl-H), 7.88 (d, 1H, H7, J=7.0 Hz), 7.75-7.70 (m, 2H, arom. H), 7.50 (m, 1H, phenyl-H), 7.31 (m, 1H, phenyl-H), 7.19 (dd, 1H, thiophene-H), 7.06 (s, 1H, isoxazole-H), 6.02 (s, 2H, CH₂).

20

5 374f

Starting from 4-dimethylaminobenzaldehyde

- 10 ^1H NMR (200 MHz, DMSO-d₆) δ 9.23 (d, 1H, H4, J=1.6 Hz), 8.27 (dd, 1H, H6, J=7.0, 1.6 Hz), 8.14 (m, 1H, phenyl-H), 7.88 (d, 1H, H7, J=7.0 Hz), 7.65 (AA'BB', 2H, benzyl-H), 7.49 (m, 1H, phenyl-H), 7.31 (m, 1H, phenyl-H), 6.98 (s, 1H, isoxazole-H), 6.76 (AA'BB', 2H, benzyl-H), 5.75 (s, 2H, CH₂), 2.95 (s, 6H, N(CH₃)₂).

15

374g

5 Starting from 4-biphenylcarboxaldehyde

¹H NMR (200 MHz, DMSO-d₆) δ 9.25 (d, 1H, H4, J=1.6 Hz), 8.30 (dd, 1H, H6, J=7.0, 1.6 Hz), 8.16 (m, 1H, phenyl-H), 7.98-7.70 (m, 7H, arom. H), 7.57-7.26 (m, 5H, arom. H), 7.18 (s, 1H, isoxazole-H), 6.05 (s, 2H, CH₂).

10

374h

Starting from 4-bromobenzaldehyde

15

¹H NMR (200 MHz, DMSO-d₆) δ 9.23 (d, 1H, H4, J=1.6 Hz), 8.28 (dd, 1H, H6, J=7.0, 1.6 Hz), 8.16 (m, 1H, phenyl-H), 7.90-7.68 (m, 4H, arom. H), 7.51 (m, 1H, phenyl-H), 7.31 (m, 1H, phenyl-H), 7.15 (s, 1H, isoxazole-H), 6.05 (s, 2H, CH₂).

5 374i

Starting from 4-benzylxybenzaldehyde

- 10 ¹H NMR (200 MHz, DMSO-d₆) δ 9.23 (d, 1H, H4, J=1.6 Hz), 8.27 (dd, 1H, H6, J=7.0, 1.6 Hz), 8.15 (m, 1H, phenyl-H), 7.90-7.76 (m, 3H, arom. H), 7.57-7.26 (m, 7H, arom. H), 7.15-7.05 (m, 3H, arom. H), 6.01 (s, 2H, N-CH₂), 5.16 (s, 2H, O-CH₂).

374j

15

Starting from 4-(methylthio)benzaldehyde

5

¹H NMR (200 MHz, DMSO-d₆) δ 9.23 (d, 1H, H4, J=1.2 Hz), 8.28 (dd, 1H, H6, J=6.6, 1.2 Hz), 8.15 (m, 1H, phenyl-H), 7.88 (d, 1H, H7, J=6.6 Hz), 7.79 (AA'BB', 2H, benzyl-H), 7.50 (m, 1H, phenyl-H), 7.38-7.25 (m, 3H, arom. H), 7.10 (s, 1H, isoxazole-H), 6.03 (s, 2H, CH₂), 2.51 (s, 3H, SCH₃).

10

374k

Starting from 2-fluoro-4-methoxybenzaldehyde

15

¹H NMR (200 MHz, DMSO-d₆) δ 9.26 (d, 1H, H4, J=1.2 Hz), 8.30 (dd, 1H, H6, J=6.6, 1.2 Hz), 8.14 (m, 1H, phenyl-H), 7.88 (d, 1H, H7, J=6.6 Hz), 7.80 (m, 1H, benzyl-H), 7.49 (m, 1H, phenyl-H), 7.31 (m, 1H, phenyl-H), 7.04-6.71 (m, 3H, arom. H), 6.03 (s, 2H, CH₂), 3.82 (s, 3H, OCH₃).

20

5

374w

Prepared as described above, starting from 4-chloro-2-fluorobenzaldehyde.

- 10 ^1H NMR (200 MHz, DMSO-d₆) δ 9.26 (d, 1H, H4, J=1.4 Hz), 8.30 (dd, 1H, H6, J=6.8, 1.4 Hz), 8.14 (m, 1H, phenyl-H), 7.90-7.87 (m, 2H, arom. H), 7.66 (dd, 1H, arom. H, J=10.8, 1.8 Hz), 7.53-7.41 (m, 2H, arom. H), 7.31 (m, 1H, phenyl-H), 7.10 (d, 1H, isoxazole- H, J=2.7 Hz), 6.06 (s, 2H, CH₂).

15 374l

Starting from 4-propoxybenzaldehyde

5 ¹H NMR (200 MHz, DMSO-d₆) δ 9.23 (d, 1H, H4, J=1.2 Hz), 8.29 (dd, 1H, H6, J=6.6, 1.2 Hz), 8.14 (m, 1H, phenyl-H), 7.88 (d, 1H, H7, J=6.6 Hz), 7.78 (AA'BB', 2H, benzyl-H), 7.49 (m, 1H, phenyl-H), 7.31 (m, 1H, phenyl-H), 7.06-7.00 (m, 3H, arom. H), 6.01 (s, 2H, CH₂), 3.97 (t, 2H, OCH₂, J=6.5 Hz), 1.73 (hex, 2H, CH₂), 0.97 (t, 3H, CH₃, J=7.3 Hz).

10

374m

Starting from 4-phenoxybenzaldehyde

15

15 ¹H NMR (200 MHz, DMSO-d₆) δ 9.25 (d, 1H, H4, J=1.2 Hz), 8.29 (dd, 1H, H6, J=6.6, 1.2 Hz), 8.16 (m, 1H, phenyl-H), 7.92-7.83 (m, 3H, arom. H), 7.58-7.05 (m, 10H, arom. H), 6.04 (s, 2H, CH₂).

20 374n

5

Starting from 1-methylpyrrole-2-carboxaldehyde

- ¹H NMR (200 MHz, DMSO-d₆) δ 9.24 (d, 1H, H4, J=1.2 Hz), 8.28 (dd, 1H, H6, J=6.8, 1.2 Hz), 8.16 (m, 1H, phenyl-H), 7.89 (d, 1H, H7, J=6.8 Hz), 7.50 (m, 1H, phenyl-H), 7.31 (m, 1H, phenyl-H), 6.98 (dd, 1H, pyrrole-H), 6.92 (s, 1H, isoxazole-H), 6.68 (dd, 1H, pyrrole-H), 6.12 (dd, 1H, pyrrole-H), 6.00 (s, 2H, CH₂).
10

3740

15

Starting from 4-isopropoxybenzaldehyde.

- ¹H NMR (200 MHz, DMSO-d₆) δ 9.24 (d, 1H, H4, J=1.4 Hz), 8.28 (dd, 1H, H6, J=7.0, 1.4 Hz), 8.15 (m, 1H, phenyl-H), 7.89 (d, 1H, H7, J=7.0 Hz), 7.76 (AA'BB', 20, 2H, benzyl-H), 7.50 (m, 1H, phenyl-H), 7.31 (m, 1H, phenyl-H), 7.05-6.98 (m, 3H, arom. H), 6.01 (s, 2H, CH₂), 4.67 (hept, 1H, OCH, J=6.2 Hz), 1.26 (d, 6H, (CH₃)₂, J=6.2 Hz).

5 374p

Synthesized as described above, starting from 5-chlorothiophene-2-carboxaldehyde.

- 10 ^1H NMR (200 MHz, DMSO-d₆) δ 9.23 (d, 1H, H4, J=1.4 Hz), 8.27 (dd, 1H, H6, J=7.0, 1.4 Hz), 8.14 (m, 1H, phenyl-H), 7.89 (d, 1H, H7, J=7.0 Hz), 7.63 (d, 1H, thiophene-H, J=4.0 Hz), 7.51 (m, 1H, phenyl-H), 7.37-7.24 (m, 2H, arom. H), 7.07 (s, 1H, isoxazole-H), 6.03 (s, 2H, CH₂).

15 374q

Synthesized as described above, starting from 5-bromothiophene-2-carboxaldehyde.

- 20 ^1H NMR (200 MHz, DMSO-d₆) δ 9.23 (d, 1H, H4, J=1.4 Hz), 8.27 (dd, 1H, H6, J=6.6, 1.4 Hz), 8.14 (m, 1H, phenyl-H), 7.89 (d, 1H, H7, J=6.6 Hz), 7.59 (d, 1H, thiophene-H, J=3.6 Hz), 7.50 (m, 1H, phenyl-H), 7.36-7.27 (m, 2H, arom. H), 7.06 (s, 1H, isoxazole-H), 6.02 (s, 2H, CH₂).

5 374r

Synthesized as described above, starting from 4-butoxybenzaldehyde (prepared by alkylation of 4-hydroxybenzaldehyde).

10 ^1H NMR (200 MHz, DMSO-d₆) δ 9.24 (d, 1H, H4, J=1.2 Hz), 8.28 (dd, 1H, H6, J=6.6, 1.2 Hz), 8.15 (m, 1H, phenyl-H), 7.89 (d, 1H, H7, J=6.6 Hz), 7.78 (AA'BB', 2H, benzyl-H), 7.50 (m, 1H, phenyl-H), 7.31 (m, 1H, phenyl-H), 7.07-7.01 (m, 3H, arom. H), 6.01 (s, 2H, CH₂), 4.01 (t, 2H, OCH₂, J=6.5 Hz), 1.72 (m, 2H, CH₂), 1.42 (m, 2H, CH₂), 0.93 (t, 3H, CH₃, J=7.2 Hz).

15

374s

5 Synthesized as described above, starting from 4-propoxybenzaldehyde and using 2-(2-fluorophenyl)-1(3)H-imidazo[4,5-c]pyridine instead of 2-(2,3-difluorophenyl)-1(3)H-imidazo[4,5-c]pyridine.

10 ^1H NMR (200 MHz, DMSO- d_6) δ 9.18 (d, 1H, H4, $J=1.2$ Hz), 8.38-8.23 (m, 2H, arom. H), 7.85 (d, 1H, H7, $J=6.6$ Hz), 7.78 (AA'BB', 2H, benzyl-H), 7.54-7.25 (m, 3H, phenyl- H), 7.06-7.00 (m, 3H, arom. H), 6.00 (s, 2H, CH_2), 3.98 (t, 2H, OCH_2 , $J=6.6$ Hz), 1.73 (hex, 2H, CH_2), 0.97 (t, 3H, CH_3 , $J=7.3$ Hz).

374t

Starting from 4-allyloxybenzaldehyde

20 ^1H NMR (200 MHz, DMSO- d_6) δ 9.23 (d, 1H, H4, $J=1.2$ Hz), 8.27 (dd, 1H, H6, $J=6.7, 1.2$ Hz), 8.14 (m, 1H, phenyl-H), 7.89 (d, 1H, H7, $J=6.7$ Hz), 7.79 (AA'BB', 2H, benzyl-H), 7.50 (m, 1H, phenyl-H), 7.31 (m, 1H, phenyl-H), 7.09-7.00 (m, 3H, arom. H), 6.15-5.98 (m, 3H), 5.45-5.24 (m, 2H), 4.62 (d, 2H, $J=4.8$ Hz).

5 374u

A mixture of 5-(chloromethyl)-3-(4-chlorophenyl)-isoxazole (2.00 g), NCS (11.75 g, 10 equivalents), glacial acetic acid (35 mL) and 20 drops of concentrated sulphuric acid is heated to reflux for 3 days. After cooling to room temperature dichloromethane (100 mL) is added, and the resulting mixture is extracted with water (2 x 100 mL) and saturated aqueous sodium bicarbonate solution (2 x 100 mL). Then the organic phase was dried over anhydrous sodium sulphate and evaporated. The crude product, thus obtained, was purified by column chromatography (silica gel, 15 eluent: petroleum ether / ethyl acetate = 19 / 1) to give 1.14 g.

The final step was performed as described above. Recrystallized from a mixture of ethyl acetate and ethanol. Yield: 60%.

20 ^1H NMR (200 MHz, DMSO-d₆) □ 9.20 (d, 1H, H4, J=1.4 Hz), 8.25 (dd, 1H, H6, J=6.8, 1.4 Hz), 8.15 (m, 1H, phenyl-H), 7.89 (d, 1H, H7, J=6.8 Hz), 7.83 (AA'BB', 2H, benzyl-H), 7.66 (AA'BB', 2H, benzyl-H), 7.51 (m, 1H, phenyl-H), 7.31 (m, 1H, phenyl-H), 6.14 (s, 2H, CH₂).

5 374v

- ¹H NMR (200 MHz, DMSO-d₆) δ 9.18 (d, 1H, H4, J=1.4 Hz), 8.22 (dd, 1H, H6, J=6.8, 1.4 Hz), 8.14 (m, 1H, phenyl-H), 7.89 (d, 1H, H7, J=6.8 Hz), 7.80 (AA'BB', 2H, benzyl-H), 7.65 (AA'BB', 2H, benzyl-H), 7.49 (m, 1H, phenyl-H), 7.30 (m, 1H, phenyl-H), 6.11 (s, 2H, CH₂).

Synthesized in analogy to the chloroisoxazole derivative 374u: 4 equ. NBS, 2.5 h reflux, yield: 91%.

15

EXAMPLE 375

To a solution of 500 mg 3-methyl-1-phenylpyrazole in 4 mL carbontetrachloride is
10 added in portions at 70°C a mixture of 678 mg (1.2 equi.) NBS and AIBN (62.3 mg,
0.12 equ.). The resulting mixture is heated at reflux for an additional 15 minutes and
then cooled to room temperature. The precipitate is filtered off and the filtrate is
concentrated to precipitate the crude product (380 mg), which – after collecting by
filtration and drying - was used in the next step without further purification.

15

The final step was performed as described above. Recrystallized from ethyl acetate.
Yield: 35%.

EXAMPLE 376

imidazo[4,5-c]pyridin-4-one analogues

10

A mixture of 4-chloro-3-nitro-pyridin-2-one (1.00 g), 4-(trifluoromethyl)benzyl chloride (1.226 g), anhydrous potassium carbonate (0.871 g) and anhydrous DMF (10 mL) was stirred at ambient temperature for 24 hours. Then water (100 mL) was added and the resulting precipitate was collected by filtration, washed with water and dried. Yield: 58.2% 4-chloro-3-nitro-1-(4-trifluoromethyl)benzyl-pyridin-2-one.

4-Chloro-3-nitro-1-(4-trifluoromethyl)benzyl-pyridin-2-one (500 mg) was dissolved in anhydrous THF (10 mL). Then concentrated aqueous ammonia (7.5 mL) was added and the resulting mixture was stirred at room temperature for 24 hours. Water (50 mL) was added and the resulting precipitate was collected by filtration, washed with water and dried. Yield: 45.8% of 4-amino-3-nitro-1-(4-trifluoromethyl)benzyl-pyridin-2-one.

5

A mixture of 4-amino-3-nitro-1-(4-trifluoromethyl)benzyl-pyridin-2-one (1.400 g), saturated aqueous ammoniumchloride solution (9.4 mL), zink powder (1.400 g) and methanol (235 mL) was stirred at room temperature for 1 hour. Then additional zink powder (1.400 g) was added and the resulting mixture was stirred for an additional 23 hours. After evaporation of the solvent water (30 mL) was added and the pH was adjusted to 8-9 by addition of 2N NaOH. The resulting mixture was extracted with ethyl acetate (3 x 30 mL) and the combined organic phases were washed with water (30 mL), dried over anhydrous sodium sulphate and evaporated. Yield: 53.4% 3,4-diamino-1-(4-trifluoromethyl)benzyl-pyridin-2-one.

15

A mixture of 3,4-diamino-1-(4-trifluoromethyl)benzyl-pyridin-2-one (0.200 mg), 2,3-difluorobenzaldehyde (100 mg), sodium pyrosulfite (0.134 g) and N,N-dimethylacetamide (4.6 mL) was heated at 130°C for 24 hours. Then water (30 mL) was added and the resulting precipitate was collected by filtration, washed with water and dried. The crude product was purified by column chromatography (silicagel, eluent: dichloromethane/methanol = 12/1) and then recrystallized from a mixture of diisopropyl ether and ethyl acetate. Yield: 16.8%.

Melting point: 279-283°C

25 ^1H NMR (200 MHz, DMSO-d₆) δ 13.05 (br s, 1H, NH), 7.88 (m, 1H, phenyl-H), 7.74-7.32 (m, 7H, arom. H), 6.69 (br d, 1H, H7, J=6.0 Hz), 5.34 (s, 2H, CH₂).

EXAMPLE 377

Synthesis of the 4-methyl analogue 377

- 10 A mixture of 2-(2,3-difluorophenyl)-1(3)*H*-imidazo[4,5-*c*]pyridine (2.00 g), 50 mg methyltrioxorhenium, 100 mL methanol and 30 % aqueous hydrogen peroxide (4 mL) was stirred at room temperature for 4 days. Then, additional 50 mg of methyltrioxorhenium and 30% hydrogen peroxide (4 mL) were added and the resulting mixture was stirred for another 2 days. After evaporation of the methanol water (200 mL) was added and the pH was adjusted to 9 by addition of 2N NaOH. The resulting precipitate was filtered, dried and recrystallized from a mixture of ethyl acetate (20 mL) and ethanol (53 mL) to give 1.208 g (56.5%) of 2-(2,3-difluorophenyl)-1(3)*H*-imidazo[4,5-*c*]pyridine 5-oxide.
- 15
- 20 2-(2,3-Difluorophenyl)-1(3)*H*-imidazo[4,5-*c*]pyridine 5-oxide (1.00 g) was dissolved in dry tetrahydrofuran (100 mL) and MeMgBr-solution (14 mL, 3M in diethyl ether)

5 was added dropwise under argon. The resulting mixture was stirred for 1.5 hours at ambient temperature. Then water (100 mL) was added slowly and the pH was adjusted to 8.5. Extraction with ethyl acetate (3 x 70 mL), drying of the combined organic phases over anhydrous sodium sulphate and evaporation of the solvent afforded 0.630 g (60 %) of crude 2-(2,3-difluorophenyl)-4-methyl-1(3)H-imidazo[4,5-c]pyridine. Recrystallization from a mixture of diisopropyl ether (20 mL) and ethyl acetate (34 mL) gave 240 mg (24.2 %) of pure 2-(2,3-difluorophenyl)-4-methyl-1(3)H-imidazo[4,5-c]pyridine.

10 The final step was performed as described above. Purification by column chromatography (silica gel, eluent: dichloromethane/methanol = 20/1). Yield: 22.4 %.

15 ¹H NMR (200 MHz, DMSO-d₆) δ 8.25 (d, 1H, H6, J=6.8 Hz), 8.11 (m, 1H, phenyl-H), 7.89 (AA'BB', 2H, benzyl-H), 7.77 (d, 1H, H7, J=6.8 Hz), 7.60-7.41 (m, 3H, arom. H), 7.30 (m, 1H, phenyl-H), 7.12 (s, 1H, isoxazole-H), 6.05 (s, 2H, CH₂), 3.05
20 (s, 3H, CH₃).

5

EXAMPLE 378

Synthesis of 7-substituted analogues

378a

5

3-Methyl-4-nitropyridine 1-oxide (5.85 g) was dissolved in glacial acetic acid (115 mL) and hydrogenated in a Parr hydrogenation apparatus (catalyst: 220 mg PtO₂ x 2 H₂O, 50 psi) at ambient temperature for 2.5 h. Then the catalyst was filtered off and the solvent was evaporated. After addition of 150 mL of water the pH was adjusted to

10 12 by addition of 2N NaOH. The resulting solution was extracted 10 times with 100 mL of dichloromethane (containing 5 % methanol). The combined organic phases were dried over anhydrous sodium sulphate and evaporated to give 3.81 g (83.6%) of 4-amino-3-methylpyridine.

15 4-Amino-3-methylpyridine (3.00 g) was dissolved with icecooling in concentrated sulfuric acid (36 mL). Then, fuming nitric acid (4.72 g) was added dropwise. After stirring at room temperature for 1 h, the solution was heated at 60°C for 14 hours. After cooling to ambient temperature, the reaction mixture was poured on ice and the resulting solution was adjusted to pH 13 by addition of solid KOH. The precipitate 20 was filtered off, washed with water and dried. Yield: 1.198 g (31.3%) 4-amino-3-methyl-5-nitropyridine.

A mixture of 4-amino-3-methyl-5-nitropyridine (1.198 g), iron powder (1.748 g), ethanol (52 mL) and hydrochloric acid (13 mL) was heated to reflux for 3 hours.

25 After cooling to room temperature the ethanol was distilled off and the resulting suspension was diluted with water to 50 mL and the pH was adjusted to 13 by addition of 2N NaOH. Extraction with ethyl acetate (3 x 70 mL), drying of the combined organic phases of anhydrous sodium sulphate and evaporation of the solvent afforded 0.579 g (60%) of 3,4-diamino-5-methylpyridine.

30

The cyclization with 2,3-difluorbenzoic acid in PPA was performed as described above. Purified by column chromatography (silica gel, eluent: dichloromethan/methanol = 12/1). Yield: 22.2%.

35 The final step was performed as described above. Recrystallized from a mixture of ethyl acetate and ethanol. Yield: 42.9% 378a.

5

¹H NMR (200 MHz, DMSO-d₆) δ 9.14 (d, 1H, H4, J=1.2 Hz), 8.17-8.10 (m, 2H, arom. H), 7.90 (AA'BB', 2H, benzyl-H), 7.60-7.42 (m, 3H, arom. H), 7.32 (m, 1H, phenyl-H), 7.15 (s, 1H, isoxazole-H), 5.99 (s, 2H, CH₂), 2.58 (s, 3H, CH₃).

10 The following compounds were prepared in analogy to the above procedures:

378b

15 ¹H NMR (200 MHz, DMSO-d₆) δ 9.32 (d, 1H, H4, J=1.4 Hz), 8.67 (d, 1H, H6, J=1.4 Hz), 8.16 (m, 1H, phenyl-H), 7.78 (AA'BB', 2H, benzyl-H), 7.54 (m, 1H, phenyl-H), 7.34 (m, 1H, phenyl-H), 7.07-7.00 (m, 3H, arom. H), 6.00 (s, 2H, CH₂), 4.07 (q, 2H, OCH₂, J=7.0 Hz), 1.33 (t, 3H, CH₃, J=7.0 Hz).

5 378c

¹H NMR (200 MHz, DMSO-d₆) δ 9.47 (d, 1H, H4, J=1.4 Hz), 8.94 (d, 1H, H6, J=1.4 Hz), 8.16 (m, 1H, phenyl-H), 7.89 (AA'BB', 2H, benzyl-H), 7.63-7.50 (m, 3H, arom. H), 7.35 (m, 1H, phenyl-H), 7.16 (s, 1H, isoxazole-H), 6.10 (s, 2H, CH₂).

10

378d

¹H NMR (200 MHz, DMSO-d₆) δ 9.30 (br s, 1H, H4), 8.66 (dd, 1H, H6, J=7.4, 1.4 Hz), 8.15 (m, 1H, phenyl-H), 7.89 (AA'BB', 2H, benzyl-H), 7.61-7.47 (m, 3H, arom. H), 7.33 (m, 1H, phenyl-H), 7.16 (s, 1H, isoxazole-H), 6.04 (s, 2H, CH₂).

5 EXAMPLE 379

1,2,4-oxadiazoles

379a

- 10 A mixture of 4-methoxybenzonitrile (1.00 g), hydroxylamine hydrochloride (0.785 g), KOH (0.640 g) and methanol (20 mL) was heated to reflux for 3 hours. After cooling to room temperature the precipitate was filtered off and the filtrate was evaporated. The resulting residue was dissolved in 1N HCl (100 mL) and the resulting solution was extracted with diethyl ether (100 mL). The aqueous phase was neutralized by
- 15 addition of solid NaHCO₃ and extracted with diethyl ether (2 x 100 mL). The combined organic phases were dried over anhydrous sodium sulphate and evaporated to give 450 mg of the desired amidoxime, which was used without further purification.
- 20 A solution of 700 mg of (4-methoxyphenyl)amidoxime and 1.08 g (1.5 equivalents) chloroacetic anhydride in toluene (30 mL) was heated to reflux for 3 hours. After cooling to ambient temperature the reaction mixture was extracted subsequently with water (twice 50 mL), saturated sodium bicarbonate solution (twice 50 mL) and water (50 mL). Finally, the toluene phase was dried over anhydrous sodium sulphate and
- 25 evaporated to give 660 mg of the desired oxadiazole, which was used without further purification.

5 The final step was performed as described above (see, for example, isoxazole analogues). Recrystallized from a mixture of ethyl acetate and ethanol. Yield: 35%

¹H NMR (200 MHz, DMSO-d₆) δ 9.23 (d, 1H, H4, J=1.4 Hz), 8.28 (dd, 1H, H6, J=6.8, 1.4 Hz), 8.15 (m, 1H, phenyl-H), 7.92-7.77 (m, 3H, arom. H), 7.49 (m, 1H, phenyl-H), 7.33 (m, 1H, phenyl-H), 7.08-7.00 (m, 3H, arom. H), 6.01 (s, 2H, CH₂), 3.80 (s, 3H, OCH₃).
10

379b

15

Prepared as described above, starting from 4-methylbenzonitrile.

¹H NMR (200 MHz, DMSO-d₆) δ 9.23 (d, 1H, H4, J=1.4 Hz), 8.31 (dd, 1H, H6, J=6.8, 1.4 Hz), 8.14 (m, 1H, phenyl-H), 7.93-7.78 (m, 3H, arom. H), 7.50 (m, 1H, phenyl-H), 7.35-7.27 (m, 3H, arom. H), 6.25 (s, 2H, CH₂), 2.35 (s, 3H, CH₃).
20

5 379c

Prepared as described above, starting from pyridine-2-carbonitrile.

10

¹H NMR (200 MHz, DMSO-d₆) δ 9.24 (d, 1H, H4, J=1.4 Hz), 8.72 (ddd, 1H, pyridine-H), 8.32 (dd, 1H, H6, J=6.8, 1.4 Hz), 8.15 (m, 1H, phenyl-H), 8.00-7.90 (m, 3H, arom. H), 7.64-7.27 (m, 3H, arom. H), 6.30 (s, 2H, CH₂).

15 379d

Prepared as described above, starting from 4-chlorobenzonitrile.

20

5 ¹H NMR (200 MHz, DMSO-d₆) δ 9.24 (d, 1H, H4, J=1.4 Hz), 8.31 (dd, 1H, H6, J=6.8, 1.4 Hz), 8.16 (m, 1H, phenyl-H), 7.96-7.90 (m, 3H, arom. H), 7.60 (AA'BB', 2H, benzyl-H), 7.49 (m, 1H, phenyl-H), 7.34 (m, 1H, phenyl-H), 6.28 (s, 2H, CH₂).

379e

10

Prepared as described above, starting from pyridine-4-carbonitrile.

15 ¹H NMR (200 MHz, DMSO-d₆) δ 9.24 (d, 1H, H4, J=1.4 Hz), 8.77 (AA'BB', 2H, pyridine-H2/6), 8.32 (dd, 1H, H6, J=7.0, 1.4 Hz), 8.15 (m, 1H, phenyl-H), 7.93 (d, 1H, H7, J=7.0 Hz), 7.86 (AA'BB', 2H, pyridine-H3/5), 7.51 (m, 1H, phenyl-H), 7.32 (m, 1H, phenyl-H), 6.32 (s, 2H, CH₂).

20

PART B

METHODOLOGY FOR DETERMINATION OF ANTIVIRAL AND CYTOSTATIC ACTIVITY

25

Cells and viruses

Madin-Darby Bovine Kidney (MDBK) cells were maintained in Dulbecco's modified Eagle medium (DMEM) supplemented with BVDV-free 5% fetal calf serum

- 5 (DMEME-FCS) at 37°C in a humidified, 5% CO₂ atmosphere. BVDV-1 (strain PE515) was used to assess the antiviral activity in MDBK cells.

Anti-BVDV assay

Ninety-six-well cell culture plates were seeded with MDBK cells in DMEM-FCS so that cells reached 24 hr later confluency. Then medium was removed and serial 5-fold dilutions of the test compounds were added in a total volume of 100 µL, after which the virus inoculum (100 µL) was added to each well. The virus inoculum used resulted in a greater than 90% destruction of the cell monolayer after 5 days incubation at 37°C. Uninfected cells and cells receiving virus without compound were included in each assay plate. After 5 days, medium was removed and 90 µL of DMEM-FCS and 10 µL of MTS/PMS solution (Promega) was added to each well. Following a 2 hr incubation period at 37°C the optical density of the wells was read at 498 nm in a microplate reader. The 50% effective concentration (EC₅₀) value was defined as the concentration of compound that protects 50% of the cell monolayer from virus-induced cytopathic effect.

Anti-HCV assay/ Replicon assay - 1

Huh-5-2 cells [a cell line with a persistent HCV replicon I389luc-ubi-neo/NS3-3'/5.1; replicon with firefly luciferase-ubiquitin-neomycin phosphotransferase fusion protein and EMCV-IRES driven NS3-5B HCV polyprotein] was cultured in RPMI medium (Gibco) supplemented with 10% fetal calf serum, 2mM L-glutamine (Life Technologies), 1x non-essential amino acids (Life Technologies); 100 IU/mL penicillin and 100 ug/ml streptomycin and 250 ug/mL G418 (Geneticin, Life Technologies). Cells were seeded at a density of 7000 cells per well in 96 well View Plate™ (Packard) in medium containing the same components as described above, except for G418. Cells were allowed to adhere and proliferate for 24 hr. At that time, culture medium was removed and serial dilutions of the test compounds were added in culture medium lacking G418. Interferon alfa 2a (500 IU) was included as a positive control. Plates were further incubated at 37°C and 5% CO₂ for 72 hours. Replication of the HCV replicon in Huh-5 cells results in luciferase activity in the cells. Luciferase activity is measured by adding 50 µL of 1 x

- 5 Glo-lysis buffer (Promega) for 15 minutes followed by 50 µL of the Steady-Glo
Luciferase assay reagent (Promega). Luciferase activity is measured with a
luminometer and the signal in each individual well is expressed as a percentage of the
untreated cultures. Parallel cultures of Huh-5-2 cells, seeded at a density of 7000
cells/ well of classical 96- well cell culture plates (Becton-Dickinson) are treated in a
10 similar fashion except that no Glo-lysis buffer or Steady-Glo Luciferase reagent is
added. Instead the density of the culture is measured by means of the MTS method
(Promega).

Quantitative analysis of HCV RNA by Taqman real-time RT-PCR

- 15 Replicon cells were plated at 7.5×10^3 cells per well in a 96-well plate plates
at 37°C and 5% CO₂ in Dulbecco's modified essential medium containing 10% fetal
calf serum, 1% nonessential amino acids and 1 mg/ml Geneticin. After allowing 24 h
for cell attachment, different dilutions of compound were added to the cultures.
Plates were incubated for 5 days, at which time RNA was extracted using the Qiamp
20 Rneazy Kit (Qiagen, Hilden, Germany). A 50 µL PCR reaction contained TaqMan
EZ buffer (50 mmol/L Bicine, 115 mmol/L potassium acetate, 0.01 mmol/L EDTA,
60 nmol/L 6-carboxy-X-rhodamine, and 8% glycerol, pH 8.2; Perkin Elmer
Corp./Applied Biosystems), 300 µmol/L deoxyadenosine triphosphate, 300 µmol/L
deoxyguanosine triphosphate, 300 µmol/L deoxycytidine triphosphate, 600 µmol/L
25 deoxyuridine triphosphate, 200 µmol/L forward primer [5'-ccg gcT Acc Tgc ccA
TTc], 200 µmol/L reverse primer [ccA GaT cAT ccT gAT cgA cAA G], 100 µmol/L
TaqMan probe [6-FAM-AcA Tcg cAT cgA gcg Agc Acg TAc-TAMRA], 3 mmol/L
manganese acetate, 0.5 U AmpErase uracil-*N*-glycosylase, 7.5 U rTth DNA
polymerase, and 10 µl of RNA elution. After initial activation of uracil-*N*-
30 glycosylase at 50°C for 2 minutes, RT was performed at 60°C for 30 minutes,
followed by inactivation of uracil-*N*-glycosylase at 95°C for 5 minutes. Subsequent
PCR amplification consisted of 40 cycles of denaturation at 94°C for 20 seconds and
annealing and extension at 62°C for 1 minute in an ABI 7700 sequence detector. For
each PCR run, negative template and positive template samples were used. The cycle
35 threshold value (Ct-value) is defined as the number of PCR cycles for which the
signal exceeds the baseline, which defines a positive value. The sample was

- 5 considered to be positive if the Ct-value was <50. Results are expressed as genomic equivalents (GE).

Anti-HCV assay/ Replicon assay - 2

HCV Replicon Media

- 10 DMEM w/ High Glucose (or MEM)

1x Glutamine

1x Sodium Pyruvate

10% Heat Inactivated FBS

1x Antibiotics

- 15 Cell Culture Preparation

1. Unthaw frozen stock in 10-12 mls of Media

2. Allow cells to attach before adding G418 (4-6hrs)

3. Add G418 for a final concentration of 200ug/mL (higher amounts are possible but cells grow slowly)

- 20 4. Split cells 1:4 to 1:6 for optimal growth

5. In-house replicon seems to maintain Luciferase signal for ~20 passages

HCV Replicon Assay

1. Dilute compounds in 100uL of HCV Replicon Media (without G418). If compounds are diluted in DMSO add DMSO to media (Final DMSO

- 25 concentration should be < 1%)

2. Once cells have reached 80-90% confluency, trypsinize with 1x Trypsin

3. Do not over trypsinize. These cells tend to clump if over trypsinized

4. For 96 well format add 6,000-8,000 cells per well (G418 is withheld during compound testing)

- 30 5. Incubate for 3 days at 37°C. Cells should be very close to confluent.

6. Remove media and wash cells with 1x PBS

7. Remove PBS and add 100 µL of 1x Promega Lysis Buffer

8. Incubate cells at Room Temperature for 5-20 minutes

9. Add 100 µL of room temperature Luciferase Substrate Solution (Promega) to

- 35 Microfluor Black Plate (VWR)

10. Thoroughly Mix Cell lysate (pipet up and down) before adding to Luciferase substrate

- 5 11. Add 75 µL of lysate to the Luciferase substrate solution
12. Read Plate On Top Count (FusionLucB program ~ 5 second read)
13. Left over lysate can be frozen and used for later analysis

Determination of cytostatic effect on MDBK cells

- 10 The effect of the drugs on exponentially growing MDBK cells was assessed as follows. Cells were seeded at a density of 5000 cell/well in 96 well plates in MEM medium (Gibco) supplemented with 10% fetal calf serum, 2mM L-glutamine (Life Technologies) and bicarbonate (Life Technologies). Cells were cultured for 24 hr after which serial dilutions of the test compounds were added. Cultures were then
- 15 again further incubated for 3 days after which the effect on cell growth was quantified by means of the MTS method (Promega). The concentration that results in 50% inhibition of cell growth is defined as the 50% cytostatic concentration (CC₅₀)

HCV CC50 Assay Protocol

- 20 HCV Replicon Media

DMEM w/ High Glucose (or MEM)

1x Glutamine

1x Sodium Pyruvate

- 25 10% Heat Inactivated FBS

1x Antibiotics

Cell Culture Preparation

1. Unthaw frozen stock in 10-12 mls of Media
2. Allow cells to attach before adding G418 (4-6hrs)
- 30 3. Add G418 for a final concentration of 200ug/ml (higher amounts are possible but cells grow slowly)
4. Split cells 1:4 to 1:6 for optimal growth
5. In-house replicon seems to maintain Luciferase signal for ~20 passages

5 HCV Replicon Assay

1. Dilute compounds in 100uL of HCV Replicon Media (without G418). If compounds are diluted in DMSO add DMSO to media (Final DMSO concentration should be < 1%)
2. Once cells have reached 80-90% confluency, trypsinize with 1x Trypsin
- 10 3. Do not over trypsinize. These cells tend to clump if over trypsinized
4. For 96 well format add 6,000-8,000 cells per well (G418 is withheld during compound testing)
5. Incubate for 3 days at 37° C. Cells should be very close to confluent.
6. Remove media and add 200 μ L of a 0.2mg/mL MTT solution prepared in
- 15 media.
7. Incubate for 1.5 hours to 2 hours.
8. Remove media and add 150 μ L of DMSO
9. Mix and incubate for 5 mins at room temperature
10. Read plate at 530nm in the plate reader.

20

Results

The compounds of Examples 2, 3A, 4 and 5 were found to have an EC50 in Replicon assay 2 of, respectively in micromoles, 0.01, 0.02, 0.01 and 0.0039, and to have a CC50 in the CC50 assay protocol of, respectively in micromoles, 26, 34, 19 and 10.8 (replicate 13.4).

Substantially all of the compounds in Table 1 demonstrated activity of at least 1 micromolar in an anti-HCV/Replicon assay system. In addition, a number of the compounds also exhibited anti-BVDV activity.