Week 6: Importance Sampling and Metropolis-Hastings' algorithm

Morten Hjorth-Jensen Email morten.hjorth-jensen@fys.uio.no^{1,2}

¹Department of Physics and Center fo Computing in Science Education, University of Oslo, Oslo, Norway ²Department of Physics and Astronomy and Facility for Rare Ion Beams, Michigan State University, East Lansing, Michigan, USA

February 5-9, 2024

Overview of week 6, February 5-9, 2024 Topics.

- Finalize discussion on importance sampling and Fokker-Planck and Langevin equations and computational aspects
- Gradient Descent methods, getting started

Teaching Material, videos and written material.

- On importance sampling, see notes from last week at http://compphysics.github.io/ComputationalPhysics2/doc/pub/week4/html/week4-reveal.html
- These lecture notes
- Recommended background literature, Convex Optimization by Boyd and Vandenberghe. Their lecture slides are very useful (warning, these are some 300 pages).
- Video of lecture TBA
- Handwritten notes

Importance sampling and overview of what needs to be coded, from last week

For a diffusion process characterized by a time-dependent probability density P(x,t) in one dimension the Fokker-Planck equation reads (for one particle /walker)

$$\frac{\partial P}{\partial t} = D \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} - F \right) P(x, t),$$

where F is a drift term and D is the diffusion coefficient.

Importance sampling

The new positions in coordinate space are given as the solutions of the Langevin equation using Euler's method, namely, we go from the Langevin equation

$$\frac{\partial x(t)}{\partial t} = DF(x(t)) + \eta,$$

with η a random variable, yielding a new position

$$y = x + DF(x)\Delta t + \xi \sqrt{\Delta t},$$

where ξ is gaussian random variable and Δt is a chosen time step. The quantity D is, in atomic units, equal to 1/2 and comes from the factor 1/2 in the kinetic energy operator. Note that Δt is to be viewed as a parameter. Values of $\Delta t \in [0.001, 0.01]$ yield in general rather stable values of the ground state energy.

Importance sampling

The process of isotropic diffusion characterized by a time-dependent probability density $P(\mathbf{x},t)$ obeys (as an approximation) the so-called Fokker-Planck equation

$$\frac{\partial P}{\partial t} = \sum_{i} D \frac{\partial}{\partial \mathbf{x_i}} \left(\frac{\partial}{\partial \mathbf{x_i}} - \mathbf{F_i} \right) P(\mathbf{x}, t),$$

where $\mathbf{F_i}$ is the i^{th} component of the drift term (drift velocity) caused by an external potential, and D is the diffusion coefficient. The convergence to a stationary probability density can be obtained by setting the left hand side to zero. The resulting equation will be satisfied if and only if all the terms of the sum are equal zero,

$$\frac{\partial^2 P}{\partial \mathbf{x_i}^2} = P \frac{\partial}{\partial \mathbf{x_i}} \mathbf{F_i} + \mathbf{F_i} \frac{\partial}{\partial \mathbf{x_i}} P.$$

Importance sampling

The drift vector should be of the form $\mathbf{F} = g(\mathbf{x}) \frac{\partial P}{\partial \mathbf{x}}$. Then,

$$\frac{\partial^2 P}{\partial \mathbf{x_i}^2} = P \frac{\partial g}{\partial P} \left(\frac{\partial P}{\partial \mathbf{x}_i} \right)^2 + P g \frac{\partial^2 P}{\partial \mathbf{x}_i^2} + g \left(\frac{\partial P}{\partial \mathbf{x}_i} \right)^2.$$

The condition of stationary density means that the left hand side equals zero. In other words, the terms containing first and second derivatives have to cancel each other. It is possible only if $g = \frac{1}{P}$, which yields

$$\mathbf{F} = 2\frac{1}{\Psi_T} \nabla \Psi_T,$$

which is known as the so-called *quantum force*. This term is responsible for pushing the walker towards regions of configuration space where the trial wave function is large, increasing the efficiency of the simulation in contrast to the Metropolis algorithm where the walker has the same probability of moving in every direction.

Importance sampling

The Fokker-Planck equation yields a (the solution to the equation) transition probability given by the Green's function

$$G(y, x, \Delta t) = \frac{1}{(4\pi D\Delta t)^{3N/2}} \exp\left(-(y - x - D\Delta t F(x))^2/4D\Delta t\right)$$

which in turn means that our brute force Metropolis algorithm

$$A(y,x) = \min(1, q(y,x)),$$

with $q(y,x) = |\Psi_T(y)|^2/|\Psi_T(x)|^2$ is now replaced by the Metropolis-Hastings algorithm as well as Hasting's article,

$$q(y,x) = \frac{G(x,y,\Delta t)|\Psi_T(y)|^2}{G(y,x,\Delta t)|\Psi_T(x)|^2}$$

Code example for the interacting case with importance sampling

We are now ready to implement importance sampling. This is done here for the two-electron case with the Coulomb interaction, as in the previous example. We have two variational parameters α and β . After the set up of files

```
# Common imports
import os

# Where to save the figures and data files
PROJECT_ROOT_DIR = "Results"
FIGURE_ID = "Results/FigureFiles"
DATA_ID = "Results/VMCQdotImportance"

if not os.path.exists(PROJECT_ROOT_DIR):
    os.mkdir(PROJECT_ROOT_DIR)

if not os.path.exists(FIGURE_ID):
    os.makedirs(FIGURE_ID)
```

```
if not os.path.exists(DATA_ID):
    os.makedirs(DATA_ID)

def image_path(fig_id):
    return os.path.join(FIGURE_ID, fig_id)

def data_path(dat_id):
    return os.path.join(DATA_ID, dat_id)

def save_fig(fig_id):
    plt.savefig(image_path(fig_id) + ".png", format='png')

outfile = open(data_path("VMCQdotImportance.dat"),'w')
```

we move on to the set up of the trial wave function, the analytical expression for the local energy and the analytical expression for the quantum force.

```
# 2-electron VMC code for 2dim quantum dot with importance sampling
# Using gaussian rng for new positions and Metropolis- Hastings
# No energy minimization
from math import exp, sqrt
from random import random, seed, normalvariate
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import sys
from numba import jit,njit
# Trial wave function for the 2-electron quantum dot in two dims
def WaveFunction(r,alpha,beta):
   r1 = r[0,0]**2 + r[0,1]**2
   r2 = r[1,0]**2 + r[1,1]**2
   r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2)
   deno = r12/(1+beta*r12)
   return exp(-0.5*alpha*(r1+r2)+deno)
# Local energy for the 2-electron quantum dot in two dims, using analytical local energy
def LocalEnergy(r,alpha,beta):
   r1 = (r[0,0]**2 + r[0,1]**2)
   r2 = (r[1,0]**2 + r[1,1]**2)
   r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2)
   deno = 1.0/(1+beta*r12)
   deno2 = deno*deno
   return 0.5*(1-alpha*alpha)*(r1 + r2) +2.0*alpha + 1.0/r12+deno2*(alpha*r12-deno2+2*beta*deno-
# Setting up the quantum force for the two-electron quantum dot, recall that it is a vector
def QuantumForce(r,alpha,beta):
   qforce = np.zeros((NumberParticles,Dimension), np.double)
   r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2)
    deno = 1.0/(1+beta*r12)
   qforce[0,:] = -2*r[0,:]*alpha*(r[0,:]-r[1,:])*deno*deno/r12
   qforce[1,:] = -2*r[1,:]*alpha*(r[1,:]-r[0,:])*deno*deno/r12
   return qforce
```

The Monte Carlo sampling includes now the Metropolis-Hastings algorithm, with the additional complication of having to evaluate the **quantum force** and the Green's function which is the solution of the Fokker-Planck equation.

```
# The Monte Carlo sampling with the Metropolis algo
    jit decorator tells Numba to compile this function.
# The argument types will be inferred by Numba when function is called.
@jit()
def MonteCarloSampling():
        NumberMCcycles= 100000
        # Parameters in the Fokker-Planck simulation of the quantum force
        D = 0.5
        TimeStep = 0.05
        # positions
        PositionOld = np.zeros((NumberParticles, Dimension), np.double)
        PositionNew = np.zeros((NumberParticles, Dimension), np.double)
        # Quantum force
        QuantumForceOld = np.zeros((NumberParticles, Dimension), np.double)
        QuantumForceNew = np.zeros((NumberParticles, Dimension), np.double)
        # seed for rng generator
        seed()
        # start variational parameter loops, two parameters here
        alpha = 0.9
        for ia in range(MaxVariations):
                alpha += .025
                AlphaValues[ia] = alpha
                beta = 0.2
                for jb in range(MaxVariations):
                         beta += .01
                         BetaValues[jb] = beta
                         energy = energy2 = 0.0
DeltaE = 0.0
                         #Initial position
                         for i in range(NumberParticles):
                                 for j in range(Dimension):
                                         PositionOld[i,j] = normalvariate(0.0,1.0)*sqrt(TimeStep)
                         wfold = WaveFunction(PositionOld, alpha, beta)
                         QuantumForceOld = QuantumForce(PositionOld, alpha, beta)
                         #Loop over MC MCcycles
                         for MCcycle in range(NumberMCcycles):
                                 #Trial position moving one particle at the time
                                 for i in range(NumberParticles):
                                          for j in range (Dimension):
                                                  Position New[i,j] = Position Old[i,j] + normal variate(0.0,1.0) * sqrt(TimeStep) + normal variate(0.0,1.0) * 
                                                                                          {\tt QuantumForceOld[i,j]*TimeStep*D}
                                         wfnew = WaveFunction(PositionNew,alpha,beta)
                                         QuantumForceNew = QuantumForce(PositionNew,alpha, beta)
                                          GreensFunction = 0.0
                                          for j in range (Dimension):
                                                  GreensFunction += 0.5*(QuantumForceOld[i,j]+QuantumForceNew[i,j])*\
                                                                               (D*TimeStep*0.5*(QuantumForceOld[i,j]-QuantumForceNew[i,j])\\
                                                                               PositionNew[i,j]+PositionOld[i,j])
                                          GreensFunction = exp(GreensFunction)
                                         ProbabilityRatio = GreensFunction*wfnew**2/wfold**2
                                          #Metropolis-Hastings test to see whether we accept the move
                                          if random() <= ProbabilityRatio:</pre>
```

The main part here contains the setup of the variational parameters, the energies and the variance.

```
#Here starts the main program with variable declarations
NumberParticles = 2
Dimension = 2
MaxVariations = 10
Energies = np.zeros((MaxVariations, MaxVariations))
AlphaValues = np.zeros(MaxVariations)
BetaValues = np.zeros(MaxVariations)
(Energies, AlphaValues, BetaValues) = MonteCarloSampling()
outfile.close()
# Prepare for plots
fig = plt.figure()
ax = fig.gca(projection='3d')
# Plot the surface
X, Y = np.meshgrid(AlphaValues, BetaValues)
surf = ax.plot_surface(X, Y, Energies,cmap=cm.coolwarm,linewidth=0, antialiased=False)
# Customize the z axis.
zmin = np.matrix(Energies).min()
zmax = n\bar{p}.matrix(Energies).max()
ax.set_zlim(zmin, zmax)
ax.set_xlabel(r'$\alpha$')
ax.set_ylabel(r'$\beta$')
ax.set_zlabel(r'$\langle E \rangle$')
ax.zaxis.set_major_locator(LinearLocator(10))
ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
# Add a color bar which maps values to colors.
fig.colorbar(surf, shrink=0.5, aspect=5)
save_fig("QdotImportance")
plt.show()
```

Importance sampling, program elements

The general derivative formula of the Jastrow factor is (the subscript C stands for Correlation)

$$\frac{1}{\Psi_C} \frac{\partial \Psi_C}{\partial x_k} = \sum_{i=1}^{k-1} \frac{\partial g_{ik}}{\partial x_k} + \sum_{i=k+1}^N \frac{\partial g_{ki}}{\partial x_k}$$

However, with our written in way which can be reused later as

$$\Psi_C = \prod_{i < j} g(r_{ij}) = \exp\left\{ \sum_{i < j} f(r_{ij}) \right\},\,$$

the gradient needed for the quantum force and local energy is easy to compute. The function $f(r_{ij})$ will depend on the system under study. In the equations below we will keep this general form.

Importance sampling, program elements

In the Metropolis/Hasting algorithm, the acceptance ratio determines the probability for a particle to be accepted at a new position. The ratio of the trial wave functions evaluated at the new and current positions is given by (OB for the onebody part)

$$R \equiv \frac{\Psi_T^{new}}{\Psi_C^{old}} = \frac{\Psi_{OB}^{new}}{\Psi_{OB}^{old}} \frac{\Psi_C^{new}}{\Psi_C^{old}}$$

Here Ψ_{OB} is our onebody part (Slater determinant or product of boson single-particle states) while Ψ_C is our correlation function, or Jastrow factor. We need to optimize the $\nabla \Psi_T/\Psi_T$ ratio and the second derivative as well, that is the $\nabla^2 \Psi_T/\Psi_T$ ratio. The first is needed when we compute the so-called quantum force in importance sampling. The second is needed when we compute the kinetic energy term of the local energy.

$$\frac{\nabla \Psi}{\Psi} = \frac{\nabla (\Psi_{OB} \, \Psi_C)}{\Psi_{OB} \, \Psi_C} = \frac{\Psi_C \nabla \Psi_{OB} + \Psi_{OB} \nabla \Psi_C}{\Psi_{OB} \Psi_C} = \frac{\nabla \Psi_{OB}}{\Psi_{OB}} + \frac{\nabla \Psi_C}{\Psi_C}$$

Importance sampling

The expectation value of the kinetic energy expressed in atomic units for electron i is

$$\langle \hat{K}_i \rangle = -\frac{1}{2} \frac{\langle \Psi | \nabla_i^2 | \Psi \rangle}{\langle \Psi | \Psi \rangle},$$
$$\hat{K}_i = -\frac{1}{2} \frac{\nabla_i^2 \Psi}{\Psi}.$$

Importance sampling

The second derivative which enters the definition of the local energy is

$$\frac{\nabla^2 \Psi}{\Psi} = \frac{\nabla^2 \Psi_{OB}}{\Psi_{OB}} + \frac{\nabla^2 \Psi_C}{\Psi_C} + 2 \frac{\nabla \Psi_{OB}}{\Psi_{OB}} \cdot \frac{\nabla \Psi_C}{\Psi_C}$$

We discuss here how to calculate these quantities in an optimal way,

Importance sampling

We have defined the correlated function as

$$\Psi_C = \prod_{i < j} g(r_{ij}) = \prod_{i < j}^N g(r_{ij}) = \prod_{i=1}^N \prod_{j=i+1}^N g(r_{ij}),$$

with $r_{ij} = |\mathbf{r}_i - \mathbf{r}_j| = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2 + (z_i - z_j)^2}$ in three dimensions or $r_{ij} = |\mathbf{r}_i - \mathbf{r}_j| = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$ if we work with two-dimensional systems.

In our particular case we have

$$\Psi_C = \prod_{i < j} g(r_{ij}) = \exp\left\{ \sum_{i < j} f(r_{ij}) \right\}.$$

Importance sampling

The total number of different relative distances r_{ij} is N(N-1)/2. In a matrix storage format, the relative distances form a strictly upper triangular matrix

$$\mathbf{r} \equiv \begin{pmatrix} 0 & r_{1,2} & r_{1,3} & \cdots & r_{1,N} \\ \vdots & 0 & r_{2,3} & \cdots & r_{2,N} \\ \vdots & \vdots & 0 & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & r_{N-1,N} \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}.$$

This applies to $\mathbf{g} = \mathbf{g}(r_{ij})$ as well.

In our algorithm we will move one particle at the time, say the kth-particle. This sampling will be seen to be particularly efficient when we are going to compute a Slater determinant.

Importance sampling

We have that the ratio between Jastrow factors R_C is given by

$$R_C = \frac{\Psi_C^{\text{new}}}{\Psi_C^{\text{cur}}} = \prod_{i=1}^{k-1} \frac{g_{ik}^{\text{new}}}{g_{ik}^{\text{cur}}} \prod_{i=k+1}^N \frac{g_{ki}^{\text{new}}}{g_{ki}^{\text{cur}}}.$$

For the Pade-Jastrow form

$$R_C = \frac{\Psi_C^{\text{new}}}{\Psi_C^{\text{cur}}} = \frac{\exp U_{new}}{\exp U_{cur}} = \exp \Delta U,$$

where

$$\Delta U = \sum_{i=1}^{k-1} \left(f_{ik}^{\text{new}} - f_{ik}^{\text{cur}} \right) + \sum_{i=k+1}^{N} \left(f_{ki}^{\text{new}} - f_{ki}^{\text{cur}} \right)$$

Importance sampling

One needs to develop a special algorithm that runs only through the elements of the upper triangular matrix \mathbf{g} and have k as an index.

The expression to be derived in the following is of interest when computing the quantum force and the kinetic energy. It has the form

$$\frac{\nabla_i \Psi_C}{\Psi_C} = \frac{1}{\Psi_C} \frac{\partial \Psi_C}{\partial x_i},$$

for all dimensions and with i running over all particles.

Importance sampling

For the first derivative only N-1 terms survive the ratio because the g-terms that are not differentiated cancel with their corresponding ones in the denominator. Then,

$$\frac{1}{\Psi_C} \frac{\partial \Psi_C}{\partial x_k} = \sum_{i=1}^{k-1} \frac{1}{g_{ik}} \frac{\partial g_{ik}}{\partial x_k} + \sum_{i=k+1}^N \frac{1}{g_{ki}} \frac{\partial g_{ki}}{\partial x_k}.$$

An equivalent equation is obtained for the exponential form after replacing g_{ij} by $\exp(f_{ij})$, yielding:

$$\frac{1}{\Psi_C} \frac{\partial \Psi_C}{\partial x_k} = \sum_{i=1}^{k-1} \frac{\partial g_{ik}}{\partial x_k} + \sum_{i=k+1}^{N} \frac{\partial g_{ki}}{\partial x_k},$$

with both expressions scaling as $\mathcal{O}(N)$.

Importance sampling

Using the identity

$$\frac{\partial}{\partial x_i}g_{ij} = -\frac{\partial}{\partial x_j}g_{ij},$$

we get expressions where all the derivatives acting on the particle are represented by the second index of g:

$$\frac{1}{\Psi_C} \frac{\partial \Psi_C}{\partial x_k} = \sum_{i=1}^{k-1} \frac{1}{g_{ik}} \frac{\partial g_{ik}}{\partial x_k} - \sum_{i=k+1}^N \frac{1}{g_{ki}} \frac{\partial g_{ki}}{\partial x_i},$$

and for the exponential case:

$$\frac{1}{\Psi_C} \frac{\partial \Psi_C}{\partial x_k} = \sum_{i=1}^{k-1} \frac{\partial g_{ik}}{\partial x_k} - \sum_{i=k+1}^N \frac{\partial g_{ki}}{\partial x_i}.$$

Importance sampling

For correlation forms depending only on the scalar distances r_{ij} we can use the chain rule. Noting that

$$\frac{\partial g_{ij}}{\partial x_j} = \frac{\partial g_{ij}}{\partial r_{ij}} \frac{\partial r_{ij}}{\partial x_j} = \frac{x_j - x_i}{r_{ij}} \frac{\partial g_{ij}}{\partial r_{ij}}$$

we arrive at

$$\frac{1}{\Psi_C} \frac{\partial \Psi_C}{\partial x_k} = \sum_{i=1}^{k-1} \frac{1}{g_{ik}} \frac{\mathbf{r_{ik}}}{r_{ik}} \frac{\partial g_{ik}}{\partial r_{ik}} - \sum_{i=k+1}^{N} \frac{1}{g_{ki}} \frac{\mathbf{r_{ki}}}{r_{ki}} \frac{\partial g_{ki}}{\partial r_{ki}}.$$

Importance sampling

Note that for the Pade-Jastrow form we can set $g_{ij} \equiv g(r_{ij}) = e^{f(r_{ij})} = e^{f_{ij}}$ and

$$\frac{\partial g_{ij}}{\partial r_{ij}} = g_{ij} \frac{\partial f_{ij}}{\partial r_{ij}}.$$

Therefore,

$$\frac{1}{\Psi_C} \frac{\partial \Psi_C}{\partial x_k} = \sum_{i=1}^{k-1} \frac{\mathbf{r_{ik}}}{r_{ik}} \frac{\partial f_{ik}}{\partial r_{ik}} - \sum_{i=k+1}^{N} \frac{\mathbf{r_{ki}}}{r_{ki}} \frac{\partial f_{ki}}{\partial r_{ki}},$$

where

$$\mathbf{r}_{ij} = |\mathbf{r}_i - \mathbf{r}_i| = (x_i - x_i)\mathbf{e}_1 + (y_i - y_i)\mathbf{e}_2 + (z_i - z_i)\mathbf{e}_3$$

is the relative distance.

Importance sampling

The second derivative of the Jastrow factor divided by the Jastrow factor (the way it enters the kinetic energy) is

$$\left[\frac{\nabla^2 \Psi_C}{\Psi_C}\right]_x = 2\sum_{k=1}^N \sum_{i=1}^{k-1} \frac{\partial^2 g_{ik}}{\partial x_k^2} + \sum_{k=1}^N \left(\sum_{i=1}^{k-1} \frac{\partial g_{ik}}{\partial x_k} - \sum_{i=k+1}^N \frac{\partial g_{ki}}{\partial x_i}\right)^2$$

Importance sampling

But we have a simple form for the function, namely

$$\Psi_C = \prod_{i < j} \exp f(r_{ij}),$$

and it is easy to see that for particle k we have

$$\frac{\nabla_k^2 \Psi_C}{\Psi_C} = \sum_{ij \neq k} \frac{(\mathbf{r}_k - \mathbf{r}_i)(\mathbf{r}_k - \mathbf{r}_j)}{r_{ki}r_{kj}} f'(r_{ki}) f'(r_{kj}) + \sum_{j \neq k} \left(f''(r_{kj}) + \frac{2}{r_{kj}} f'(r_{kj}) \right)$$

A stochastic process is simply a function of two variables, one is the time, the other is a stochastic variable X, defined by specifying

- the set $\{x\}$ of possible values for X;
- the probability distribution, $w_X(x)$, over this set, or briefly w(x)

The set of values $\{x\}$ for X may be discrete, or continuous. If the set of values is continuous, then $w_X(x)$ is a probability density so that $w_X(x)dx$ is the probability that one finds the stochastic variable X to have values in the range [x, x + dx].

Importance sampling, Fokker-Planck and Langevin equations

An arbitrary number of other stochastic variables may be derived from X. For example, any Y given by a mapping of X, is also a stochastic variable. The mapping may also be time-dependent, that is, the mapping depends on an additional variable t

$$Y_X(t) = f(X, t).$$

The quantity $Y_X(t)$ is called a random function, or, since t often is time, a stochastic process. A stochastic process is a function of two variables, one is the time, the other is a stochastic variable X. Let x be one of the possible values of X then

$$y(t) = f(x, t),$$

is a function of t, called a sample function or realization of the process. In physics one considers the stochastic process to be an ensemble of such sample functions.

Importance sampling, Fokker-Planck and Langevin equations

For many physical systems initial distributions of a stochastic variable y tend to equilibrium distributions: $w(y,t) \to w_0(y)$ as $t \to \infty$. In equilibrium detailed balance constrains the transition rates

$$W(y \to y')w(y) = W(y' \to y)w_0(y),$$

where $W(y' \to y)$ is the probability, per unit time, that the system changes from a state $|y\rangle$, characterized by the value y for the stochastic variable Y, to a state $|y'\rangle$.

Note that for a system in equilibrium the transition rate $W(y' \to y)$ and the reverse $W(y \to y')$ may be very different.

Consider, for instance, a simple system that has only two energy levels $\epsilon_0 = 0$ and $\epsilon_1 = \Delta E$.

For a system governed by the Boltzmann distribution we find (the partition function has been taken out)

$$W(0 \to 1) \exp{-(\epsilon_0/kT)} = W(1 \to 0) \exp{-(\epsilon_1/kT)}$$

We get then

$$\frac{W(1 \rightarrow 0)}{W(0 \rightarrow 1)} = \exp{-(\Delta E/kT)},$$

which goes to zero when T tends to zero.

Importance sampling, Fokker-Planck and Langevin equations

If we assume a discrete set of events, our initial probability distribution function can be given by

$$w_i(0) = \delta_{i,0},$$

and its time-development after a given time step $\Delta t = \epsilon$ is

$$w_i(t) = \sum_{j} W(j \to i) w_j(t = 0).$$

The continuous analog to $w_i(0)$ is

$$w(\mathbf{x}) \to \delta(\mathbf{x}),$$

where we now have generalized the one-dimensional position x to a generic-dimensional vector \mathbf{x} . The Kroenecker δ function is replaced by the δ distribution function $\delta(\mathbf{x})$ at t=0.

Importance sampling, Fokker-Planck and Langevin equations

The transition from a state j to a state i is now replaced by a transition to a state with position \mathbf{y} from a state with position \mathbf{x} . The discrete sum of transition probabilities can then be replaced by an integral and we obtain the new distribution at a time $t + \Delta t$ as

$$w(\mathbf{y}, t + \Delta t) = \int W(\mathbf{y}, t + \Delta t | \mathbf{x}, t) w(\mathbf{x}, t) d\mathbf{x},$$

and after m time steps we have

$$w(\mathbf{y}, t + m\Delta t) = \int W(\mathbf{y}, t + m\Delta t | \mathbf{x}, t) w(\mathbf{x}, t) d\mathbf{x}.$$

When equilibrium is reached we have

$$w(\mathbf{y}) = \int W(\mathbf{y}|\mathbf{x}, t)w(\mathbf{x})d\mathbf{x},$$

that is no time-dependence. Note our change of notation for W

Importance sampling, Fokker-Planck and Langevin equations

We can solve the equation for $w(\mathbf{y},t)$ by making a Fourier transform to momentum space. The PDF $w(\mathbf{x},t)$ is related to its Fourier transform $\tilde{w}(\mathbf{k},t)$ through

$$w(\mathbf{x},t) = \int_{-\infty}^{\infty} d\mathbf{k} \exp{(i\mathbf{k}\mathbf{x})} \tilde{w}(\mathbf{k},t),$$

and using the definition of the δ -function

$$\delta(\mathbf{x}) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\mathbf{k} \exp{(i\mathbf{k}\mathbf{x})},$$

we see that

$$\tilde{w}(\mathbf{k},0) = 1/2\pi.$$

Importance sampling, Fokker-Planck and Langevin equations

We can then use the Fourier-transformed diffusion equation

$$\frac{\partial \tilde{w}(\mathbf{k}, t)}{\partial t} = -D\mathbf{k}^2 \tilde{w}(\mathbf{k}, t),$$

with the obvious solution

$$\tilde{w}(\mathbf{k},t) = \tilde{w}(\mathbf{k},0) \exp\left[-(D\mathbf{k}^2 t)\right] = \frac{1}{2\pi} \exp\left[-(D\mathbf{k}^2 t)\right].$$

Importance sampling, Fokker-Planck and Langevin equations

With the Fourier transform we obtain

$$w(\mathbf{x},t) = \int_{-\infty}^{\infty} d\mathbf{k} \exp\left[i\mathbf{k}\mathbf{x}\right] \frac{1}{2\pi} \exp\left[-(D\mathbf{k}^2 t)\right] = \frac{1}{\sqrt{4\pi Dt}} \exp\left[-(\mathbf{x}^2/4Dt)\right],$$

with the normalization condition

$$\int_{-\infty}^{\infty} w(\mathbf{x}, t) d\mathbf{x} = 1.$$

The solution represents the probability of finding our random walker at position \mathbf{x} at time t if the initial distribution was placed at $\mathbf{x} = 0$ at t = 0.

There is another interesting feature worth observing. The discrete transition probability W itself is given by a binomial distribution. The results from the central limit theorem state that transition probability in the limit $n \to \infty$ converges to the normal distribution. It is then possible to show that

$$W(il - jl, n\epsilon) \to W(\mathbf{y}, t + \Delta t | \mathbf{x}, t) = \frac{1}{\sqrt{4\pi D\Delta t}} \exp\left[-((\mathbf{y} - \mathbf{x})^2/4D\Delta t)\right],$$

and that it satisfies the normalization condition and is itself a solution to the diffusion equation.

Importance sampling, Fokker-Planck and Langevin equations

Let us now assume that we have three PDFs for times $t_0 < t' < t$, that is $w(\mathbf{x}_0, t_0), w(\mathbf{x}', t')$ and $w(\mathbf{x}, t)$. We have then

$$w(\mathbf{x},t) = \int_{-\infty}^{\infty} W(\mathbf{x}.t|\mathbf{x}'.t')w(\mathbf{x}',t')d\mathbf{x}',$$

and

$$w(\mathbf{x},t) = \int_{-\infty}^{\infty} W(\mathbf{x}.t|\mathbf{x}_0.t_0)w(\mathbf{x}_0,t_0)d\mathbf{x}_0,$$

and

$$w(\mathbf{x}',t') = \int_{-\infty}^{\infty} W(\mathbf{x}'.t'|\mathbf{x}_0,t_0)w(\mathbf{x}_0,t_0)d\mathbf{x}_0.$$

Importance sampling, Fokker-Planck and Langevin equations

We can combine these equations and arrive at the famous Einstein-Smoluchenski-Kolmogorov-Chapman (ESKC) relation

$$W(\mathbf{x}t|\mathbf{x}_0t_0) = \int_{-\infty}^{\infty} W(\mathbf{x},t|\mathbf{x}',t')W(\mathbf{x}',t'|\mathbf{x}_0,t_0)d\mathbf{x}'.$$

We can replace the spatial dependence with a dependence upon say the velocity (or momentum), that is we have

$$W(\mathbf{v},t|\mathbf{v}_0,t_0) = \int_{-\infty}^{\infty} W(\mathbf{v},t|\mathbf{v}',t')W(\mathbf{v}',t'|\mathbf{v}_0,t_0)d\mathbf{x}'.$$

We will now derive the Fokker-Planck equation. We start from the ESKC equation

$$W(\mathbf{x}, t|\mathbf{x}_0, t_0) = \int_{-\infty}^{\infty} W(\mathbf{x}, t|\mathbf{x}', t') W(\mathbf{x}', t'|\mathbf{x}_0, t_0) d\mathbf{x}'.$$

Define $s = t' - t_0$, $\tau = t - t'$ and $t - t_0 = s + \tau$. We have then

$$W(\mathbf{x}, s + \tau | \mathbf{x}_0) = \int_{-\infty}^{\infty} W(\mathbf{x}, \tau | \mathbf{x}') W(\mathbf{x}', s | \mathbf{x}_0) d\mathbf{x}'.$$

Importance sampling, Fokker-Planck and Langevin equations

Assume now that τ is very small so that we can make an expansion in terms of a small step xi, with $\mathbf{x}' = \mathbf{x} - \xi$, that is

$$W(\mathbf{x}, s | \mathbf{x}_0) + \frac{\partial W}{\partial s} \tau + O(\tau^2) = \int_{-\infty}^{\infty} W(\mathbf{x}, \tau | \mathbf{x} - \xi) W(\mathbf{x} - \xi, s | \mathbf{x}_0) d\mathbf{x}'.$$

We assume that $W(\mathbf{x}, \tau | \mathbf{x} - \xi)$ takes non-negligible values only when ξ is small. This is just another way of stating the Master equation!!

Importance sampling, Fokker-Planck and Langevin equations

We say thus that \mathbf{x} changes only by a small amount in the time interval τ . This means that we can make a Taylor expansion in terms of ξ , that is we expand

$$W(\mathbf{x},\tau|\mathbf{x}-\xi)W(\mathbf{x}-\xi,s|\mathbf{x}_0) = \sum_{n=0}^{\infty} \frac{(-\xi)^n}{n!} \frac{\partial^n}{\partial x^n} \left[W(\mathbf{x}+\xi,\tau|\mathbf{x})W(\mathbf{x},s|\mathbf{x}_0) \right].$$

Importance sampling, Fokker-Planck and Langevin equations

We can then rewrite the ESKC equation as

$$\frac{\partial W}{\partial s}\tau = -W(\mathbf{x},s|\mathbf{x}_0) + \sum_{n=0}^{\infty} \frac{(-\xi)^n}{n!} \frac{\partial^n}{\partial x^n} \left[W(\mathbf{x},s|\mathbf{x}_0) \int_{-\infty}^{\infty} \xi^n W(\mathbf{x}+\xi,\tau|\mathbf{x}) d\xi \right].$$

We have neglected higher powers of τ and have used that for n = 0 we get simply $W(\mathbf{x}, s|\mathbf{x}_0)$ due to normalization.

We say thus that \mathbf{x} changes only by a small amount in the time interval τ . This means that we can make a Taylor expansion in terms of ξ , that is we expand

$$W(\mathbf{x},\tau|\mathbf{x}-\xi)W(\mathbf{x}-\xi,s|\mathbf{x}_0) = \sum_{n=0}^{\infty} \frac{(-\xi)^n}{n!} \frac{\partial^n}{\partial x^n} \left[W(\mathbf{x}+\xi,\tau|\mathbf{x})W(\mathbf{x},s|\mathbf{x}_0) \right].$$

Importance sampling, Fokker-Planck and Langevin equations

We can then rewrite the ESKC equation as

$$\frac{\partial W(\mathbf{x}, s|\mathbf{x}_0)}{\partial s}\tau = -W(\mathbf{x}, s|\mathbf{x}_0) + \sum_{n=0}^{\infty} \frac{(-\xi)^n}{n!} \frac{\partial^n}{\partial x^n} \left[W(\mathbf{x}, s|\mathbf{x}_0) \int_{-\infty}^{\infty} \xi^n W(\mathbf{x} + \xi, \tau|\mathbf{x}) d\xi \right].$$

We have neglected higher powers of τ and have used that for n=0 we get simply $W(\mathbf{x}, s|\mathbf{x}_0)$ due to normalization.

Importance sampling, Fokker-Planck and Langevin equations

We simplify the above by introducing the moments

$$M_n = \frac{1}{\tau} \int_{-\infty}^{\infty} \xi^n W(\mathbf{x} + \xi, \tau | \mathbf{x}) d\xi = \frac{\langle [\Delta x(\tau)]^n \rangle}{\tau},$$

resulting in

$$\frac{\partial W(\mathbf{x}, s | \mathbf{x}_0)}{\partial s} = \sum_{n=1}^{\infty} \frac{(-\xi)^n}{n!} \frac{\partial^n}{\partial x^n} \left[W(\mathbf{x}, s | \mathbf{x}_0) M_n \right].$$

Importance sampling, Fokker-Planck and Langevin equations

When $\tau \to 0$ we assume that $\langle [\Delta x(\tau)]^n \rangle \to 0$ more rapidly than τ itself if n > 2. When τ is much larger than the standard correlation time of system then M_n for n > 2 can normally be neglected. This means that fluctuations become negligible at large time scales.

If we neglect such terms we can rewrite the ESKC equation as

$$\frac{\partial W(\mathbf{x},s|\mathbf{x}_0)}{\partial s} = -\frac{\partial M_1 W(\mathbf{x},s|\mathbf{x}_0)}{\partial x} + \frac{1}{2} \frac{\partial^2 M_2 W(\mathbf{x},s|\mathbf{x}_0)}{\partial x^2}.$$

In a more compact form we have

$$\frac{\partial W}{\partial s} = -\frac{\partial M_1 W}{\partial x} + \frac{1}{2} \frac{\partial^2 M_2 W}{\partial x^2},$$

which is the Fokker-Planck equation! It is trivial to replace position with velocity (momentum).

Importance sampling, Fokker-Planck and Langevin equations

Langevin equation. Consider a particle suspended in a liquid. On its path through the liquid it will continuously collide with the liquid molecules. Because on average the particle will collide more often on the front side than on the back side, it will experience a systematic force proportional with its velocity, and directed opposite to its velocity. Besides this systematic force the particle will experience a stochastic force $\mathbf{F}(t)$. The equations of motion are

- $\frac{d\mathbf{r}}{dt} = \mathbf{v}$ and
- $\frac{d\mathbf{v}}{dt} = -\xi\mathbf{v} + \mathbf{F}$.

Importance sampling, Fokker-Planck and Langevin equations

Langevin equation. From hydrodynamics we know that the friction constant ξ is given by

$$\xi = 6\pi \eta a/m$$

where η is the viscosity of the solvent and a is the radius of the particle . Solving the second equation in the previous slide we get

$$\mathbf{v}(t) = \mathbf{v}_0 e^{-\xi t} + \int_0^t d\tau e^{-\xi(t-\tau)} \mathbf{F}(\tau).$$

Importance sampling, Fokker-Planck and Langevin equations

Langevin equation. If we want to get some useful information out of this, we have to average over all possible realizations of $\mathbf{F}(t)$, with the initial velocity as a condition. A useful quantity for example is

$$\langle \mathbf{v}(t) \cdot \mathbf{v}(t) \rangle_{\mathbf{v}_0} = v_0^{-\xi 2t} + 2 \int_0^t d\tau e^{-\xi (2t - \tau)} \mathbf{v}_0 \cdot \langle \mathbf{F}(\tau) \rangle_{\mathbf{v}_0}$$
$$+ \int_0^t d\tau' \int_0^t d\tau e^{-\xi (2t - \tau - \tau')} \langle \mathbf{F}(\tau) \cdot \mathbf{F}(\tau') \rangle_{\mathbf{v}_0}.$$

Langevin equation. In order to continue we have to make some assumptions about the conditional averages of the stochastic forces. In view of the chaotic character of the stochastic forces the following assumptions seem to be appropriate

$$\langle \mathbf{F}(t) \rangle = 0,$$

and

$$\langle \mathbf{F}(t) \cdot \mathbf{F}(t') \rangle_{\mathbf{v}_0} = C_{\mathbf{v}_0} \delta(t - t').$$

We omit the subscript \mathbf{v}_0 , when the quantity of interest turns out to be independent of \mathbf{v}_0 . Using the last three equations we get

$$\langle \mathbf{v}(t) \cdot \mathbf{v}(t) \rangle_{\mathbf{v}_0} = v_0^2 e^{-2\xi t} + \frac{C_{\mathbf{v}_0}}{2\xi} (1 - e^{-2\xi t}).$$

For large t this should be equal to 3kT/m, from which it follows that

$$\langle \mathbf{F}(t) \cdot \mathbf{F}(t') \rangle = 6 \frac{kT}{m} \xi \delta(t - t').$$

This result is called the fluctuation-dissipation theorem .

Importance sampling, Fokker-Planck and Langevin equations

Langevin equation. Integrating

$$\mathbf{v}(t) = \mathbf{v}_0 e^{-\xi t} + \int_0^t d\tau e^{-\xi(t-\tau)} \mathbf{F}(\tau),$$

we get

$$\mathbf{r}(t) = \mathbf{r}_0 + \mathbf{v}_0 \frac{1}{\xi} (1 - e^{-\xi t}) + \int_0^t d\tau \int_0^\tau \tau' e^{-\xi(\tau - \tau')} \mathbf{F}(\tau'),$$

from which we calculate the mean square displacement

$$\langle (\mathbf{r}(t) - \mathbf{r}_0)^2 \rangle_{\mathbf{v}_0} = \frac{v_0^2}{\xi} (1 - e^{-\xi t})^2 + \frac{3kT}{m\xi^2} (2\xi t - 3 + 4e^{-\xi t} - e^{-2\xi t}).$$

Importance sampling, Fokker-Planck and Langevin equations

Langevin equation. For very large t this becomes

$$\langle (\mathbf{r}(t) - \mathbf{r}_0)^2 \rangle = \frac{6kT}{m\xi}t$$

from which we get the Einstein relation

$$D = \frac{kT}{m\xi}$$

where we have used $\langle (\mathbf{r}(t) - \mathbf{r}_0)^2 \rangle = 6Dt$.

Motivation

Our aim with this part of the project is to be able to

- find an optimal value for the variational parameters using only some few Monte Carlo cycles
- use these optimal values for the variational parameters to perform a largescale Monte Carlo calculation

To achieve this will look at methods like standard Gradtient Descent, Sochastic gradient descent, Stochastic reconfigurations, Steepest descent and the conjugate gradient method. All these methods allow us to find the minima of a multivariable function like our energy (function of several variational parameters). Alternatively, you can always use Newton's method. In particular, since we will normally have one variational parameter, Newton's method can be easily used in finding the minimum of the local energy. However, as we will see, the latter requires that we can evaluate the second derivative of the energy with respect to the variational parameters.

Simple example and demonstration

Let us illustrate what is needed in our calculations using a simple example, the harmonic oscillator in one dimension. For the harmonic oscillator in onedimension we have a trial wave function and probability

$$\psi_T(x;\alpha) = \exp{-(\frac{1}{2}\alpha^2x^2)},$$

which results in a local energy

$$\frac{1}{2}\left(\alpha^2 + x^2(1-\alpha^4)\right).$$

We can compare our numerically calculated energies with the exact energy as function of α

$$\overline{E}[\alpha] = \frac{1}{4} \left(\alpha^2 + \frac{1}{\alpha^2} \right).$$

Simple example and demonstration

The derivative of the energy with respect to α gives

$$\frac{d\langle E_L[\alpha]\rangle}{d\alpha} = \frac{1}{2}\alpha - \frac{1}{2\alpha^3}$$

and a second derivative which is always positive (meaning that we find a minimum)

$$\frac{d^2 \langle E_L[\alpha] \rangle}{d\alpha^2} = \frac{1}{2} + \frac{3}{2\alpha^4}$$

The condition

$$\frac{d\langle E_L[\alpha]\rangle}{d\alpha} = 0,$$

gives the optimal $\alpha = 1$, as expected.

*

Exercise 1: Find the local energy for the harmonic oscillator paragraph>aragraph!paragraph>-0.5em

a) Derive the local energy for the harmonic oscillator in one dimension and find its expectation value.

paragraph>aragraph!paragraph>-0.5em

- b) Show also that the optimal value of optimal $\alpha=1$ paragraph>-aragraph!paragraph>-0.5em
- c) Repeat the above steps in two dimensions for N bosons or electrons. What is the optimal value of α ?

Variance in the simple model

We can also minimize the variance. In our simple model the variance is

$$\sigma^{2}[\alpha] = \frac{1}{4} \left(1 + (1 - \alpha^{4})^{2} \frac{3}{4\alpha^{4}} \right) - \overline{E}^{2}.$$

which yields a second derivative which is always positive.

Computing the derivatives

In general we end up computing the expectation value of the energy in terms of some parameters $\alpha_0, \alpha_1, \ldots, \alpha_n$ and we search for a minimum in this multivariable parameter space. This leads to an energy minimization problem where we need the derivative of the energy as a function of the variational parameters.

In the above example this was easy and we were able to find the expression for the derivative by simple derivations. However, in our actual calculations the energy is represented by a multi-dimensional integral with several variational parameters. How can we can then obtain the derivatives of the energy with respect to the variational parameters without having to resort to expensive numerical derivations?

Expressions for finding the derivatives of the local energy

To find the derivatives of the local energy expectation value as function of the variational parameters, we can use the chain rule and the hermiticity of the Hamiltonian. Let us define

$$\bar{E}_{\alpha} = \frac{d\langle E_L[\alpha] \rangle}{d\alpha}.$$

as the derivative of the energy with respect to the variational parameter α (we limit ourselves to one parameter only). In the above example this was easy and we obtain a simple expression for the derivative. We define also the derivative of the trial function (skipping the subindex T) as

$$\bar{\psi}_{\alpha} = \frac{d\psi[\alpha]\rangle}{d\alpha}.$$

Derivatives of the local energy

The elements of the gradient of the local energy are then (using the chain rule and the hermiticity of the Hamiltonian)

$$\bar{E}_{\alpha} = 2 \left(\langle \frac{\bar{\psi}_{\alpha}}{\psi[\alpha]} E_{L}[\alpha] \rangle - \langle \frac{\bar{\psi}_{\alpha}}{\psi[\alpha]} \rangle \langle E_{L}[\alpha] \rangle \right).$$

From a computational point of view it means that you need to compute the expectation values of

$$\langle \frac{\bar{\psi}_{\alpha}}{\psi[\alpha]} E_L[\alpha] \rangle$$
,

and

$$\langle \frac{\bar{\psi}_{\alpha}}{\psi[\alpha]} \rangle \langle E_L[\alpha] \rangle$$

*

Exercise 2: General expression for the derivative of the energy paragraph>aragraph!paragraph>-0.5em

a) Show that

$$\bar{E}_{\alpha} = 2 \left(\langle \frac{\bar{\psi}_{\alpha}}{\psi[\alpha]} E_{L}[\alpha] \rangle - \langle \frac{\bar{\psi}_{\alpha}}{\psi[\alpha]} \rangle \langle E_{L}[\alpha] \rangle \right).$$

paragraph>aragraph!paragraph>-0.5em

b) Find the corresponding expression for the variance.