תשובות לשאלות על יחסי סדר

תשובה לשאלה 1.4.7

```
A = \{1,2,3,4,5,6,7,8,9,10\} נתונה קבוצה A = \{1,2,3,4,5,6,7,8,9,10\}
              S = \{(x, y) | (x \le 5 \land y \le 5) \lor (x > 5 \land y > 5) \}
                                 1. נוכיח שהיחס S הוא רפלקסיבי, סימטרי וטרנזטיבי.
                                                                            א. רפלקסיבי:
               (x,x) \in S מתקיים (x>5 \land x>5) או (x \le 5 \land x \le 5). לכן x \in A
                                                                              ב. סימטרי:
                                                                               (x,y) \in S יהא
(y \le 5 \land x \le 5) \lor (y > 5 \land x > 5) לכן (x \le 5 \land y \le 5) \lor (x > 5 \land y > 5) כלומר
                                                                           (y,x) \in S כלומר,
                                                                            ג. טרנזטיבי:
                                                                       (x,y),(y,z) \in S יהא
(y \le 5 \land z \le 5) \lor (y > 5 \land z > 5) וגם (x \le 5 \land y \le 5) \lor (x > 5 \land y > 5) כלומר,
                  (x \le 5 \land y \le 5 \land z \le 5) \lor (x > 5 \land y > 5 \land z > 5) במלים אחרות,
                                               (x \le 5 \land z \le 5) \lor (x > 5 \land z > 5) בפרט,
                                                                            (x,z) \in S ,כלומר
```

2. מחלקות השקילות הן:

$$[1]^S = \{x | (1,x) \in S\} = \{1,2,3,4,5\}$$
$$[6]^S = \{x | (6,x) \in S\} = \{6,7,8,9,10\}$$

תשובה לשאלה 2.4.7

יהא $a,b \in A$ יוהיו שני איברים, A ויהיו שני במחלקות שקילות.

$$[a]^S = \{x | (a, x) \in S\}$$

 $[b]^S = \{x | (b, x) \in S\}$

 $(a,b) \in S$:נתון. $[a]^S = [b]^S$ צריך להוכיח: הוכחה: נוכיח שוויון באמצעות הכלה דו-כיוונית. $[a]^S \subseteq [b]^S$ בשלב ראשון נוכיח שמתקיים $x \in [b]^S$ יהא $x \in [a]^S$ נראה כי $(a,x) \in S$ פירושו שמתקיים $x \in [a]^S$ הנתון $(b,a) \in S$ ולכן (a,b) וולכן $(a,b) \in S$ היחס היחס שקילות, ולכן הוא סימטרי: נתון כי $(b,x) \in S$ ולכן $(b,a),(a,x) \in S$ בנוסף היחס S הוא טרנזטיבי: מתקיים $[a]^S \subseteq [b]^S$ נלומר, $x \in [b]^S$ ואכן בשלב שני נוכיח שמתקיים $[a]^S \subseteq [a]^S$ בדיוק באותו אופן. $[a]^S = [b]^S$ ובסך הכל $[a]^S = [b]^S$.2 $(a,b) \in S$:צריך להוכיח $\{x | (a,x) \in S\} = \{x | (b,x) \in S\}$ פירושו: $\{a\}^S = [b]^S$ הוכחה: הנתון $a \in [a]^S$ נתון שהיחס S הוא יחס שקילות, ולכן הוא רפלקסיבי. לפיכך S נתון שהיחס S הוא יחס שקילות, ולכן הוא $a \in [b]^S$ נתון $[a]^S = [b]^S$ ולכן ולכן $(a,b) \in S$ ולכן (b,a) בתון שהיחס S הוא היחס שקילות, ולכן הוא סימטרי: S הוא היחס שקילות, ולכן הוא סימטרי

תשובה לשאלה 3.4.7

- א. נוכיח שהיחס S הוא רפלקסיבי, אנטי-סימטרי וטרנזטיבי. $(x,x) \in S$ מתקיים $x \subseteq x$, ולכן $x \in S$ מתקיים $x \in S$, ולכן $x \in S$ אנטי-סימטרי: נניח כי $x \in S$ וגם $x \in S$ וגם $x \in S$ נניח כי $x \in S$ וגם $x \in S$ וגם $x \in S$ וגם $x \in S$ טרנסטיבי: נניח כי $x \in S$ וגם $x \in S$ וגם $x \in S$ כלומר $x \in S$ וגם $x \in S$ וגם $x \in S$ כלומר $x \in S$ וגם $x \in S$ נוכיח כי $x \in S$ וגם $x \in S$ כלומר $x \in S$
- $|x,y \in A|$ ב. נניח כי $|x| \ge 2$ כלומר, קיימים שני איברים שונים $|x| \ge 2$ ב. נניח כי $|x| \ge 2$ גוניח כי $|x| \ne 3$ גוניח ($|x| \ne 3$ גובין ביר אינו יחס סדר קוי.
- . $\{\phi,\{1\},\{1,2\},\{1,2,3\},\{1,2,3,4\}\}$ ג. שרשרת עם חמישה איברים: $\{\{1\},\{2\},\{3\},\{4\}\}\}$.

תשובה לשאלה 4.4.7

מתקיים: $\phi \in P(A)$. בנוסף $\phi = \phi \cap \phi$ ולכן $S \not \in P(A)$. כלומר היחס S אינו רפלקסיבי, ולכן אינו יחס סדר על P(A). הערה: הנתון על עוצמת הקבוצה A אינו נחוץ.

תשובה לשאלה 5.4.7

נתון שהיחס S (על קבוצה A) הוא טרנזיטיבי. $S^* = S \cup \{(a,a)\}$ עבור $S^* = S \cup \{(a,a)\}$ גם הוא טרנזיטיבי. S^* שהיחס S^* אינו טרנזיטיבי. S^* אינו טרנזיטים: S^* המקיימים: S^* המקיימים: S^* וגם S^* , אבל S^* , אבל S^* (S^*). אבל S^* ונון שהיחס S^* (שהוא ללא האיבר S^*) הוא טרנזיטיבי. S^* שפרויות:

- (x=y=a, c) (כלומר, (x,y)=(a,a)) .1 (כלומר, $(a,z) \notin S^*$ אבל $(a,z) \in S^*$ אבל $(a,z) \notin S^*$ אבל (מירה, ולכן המקרה הזה אינו אפשרי.
- (z=y=a (כלומר, (y,z)=(a,a) .2 (כלומר, $(x,a) \notin S^*$ אבל $(a,a) \in S^*$ אבל $(x,a) \notin S^*$ אבל (מירה, ולכן המקרה הזה אינו אפשרי.

תשובה לשאלה 6.4.7

נתון שהאיבר a הכי גדול, כלומר, לכל איבר a מתקיים: a מתקיים: a מתקיים: a מתקיים: a בפרט, עבור a מתקיים: a מתקיים: a מתקיים: a בול מיעבר a הוא מירבי, כלומר, לכל איבר a מתקיים: אם a הוא מירבי, כלומר, לכל a מתקיים: a ולכו a ולכו a שלור. מתקיים: a ולכו a ולכו a

תשובה לשאלה 7.4.7

x=a וא מירבי, כלומר, לכל איבר $x \in A$ אם: $x \in A$ נתון, שאיבר a הוא מירבי, כלומר, לכל איבר $x \in A$ נתון, שהיחס $x \in A$ הוא סדר קוי, ולכן: לכל איבר x או $x \in A$ ווא סדר קוי, ולכן: לכל איבר x מתקיים: $x \in A$ או $x \in A$ ווא כלומר, האיבר $x \in A$ הוא הכי גדול.

תשובה לשאלה 8.4.7

יהיו S_1,S_2 שני יחסי סדר חלקי. נתון כי S_1 הוא צמצום של S_2 וגם S_2 שני יחסי סדר חלקי. נתון כי S_1 הוא צמצום של S_2 וגם S_1 שלינו S_1 כלומר, ביחס S_1 קיים איבר S_2 , ולכן S_1 אינו יחס סדר קוי. S_1 אינו נמצא ביחס S_2 , ולכן S_2 אינו יחס סדר חלקי הוא רפלקסיבי. S_2 כי יחס סדר חלקי הוא רפלקסיבי. S_2 בנוסף, אם גם S_2 , נמצא ביחס S_2 , אז S_2 , ולכן אינו נמצא ביחס S_2 , ולכן אינו נמצא גם ביחס S_2 . לפיכך היחס S_2 הוא סדר חלקי ולא קוי. S_2 אינו נמצא ביחס S_2 , ולכן אינו נמצא גם ביחס S_2 .

תשובה לשאלה 9.4.7

יהיו x,y שני מספרים ממשיים, ובה"כ אני מספרים ממשיים, ובה $z \in A$ וכן x < z < y וכן ממשי z מספר ממשי

.z = $\lfloor x \rfloor + 1$ אם z = x > 1, אז נבחר z = x > 1. אם z = x > 1, אם z = x < x < x, אז נבחר z = x < x < x < y מתקיים

 $\dot{b} = \min\{1, y - \lfloor x \rfloor\}$, $a = x - \lfloor x \rfloor$ נסמן: $y - x \le 1$ אם .2

 $0 \le a < b \le 1$ מתקיים:

 $A \cap [0,1]$ נתון כי $A \cap (0,1)$, צפופה בקטע (0,1). בנוסף $A \cap (0,1)$ (כמספרים שלמים), והקבוצה $A \cap (0,1)$ צפופה בקטע $C \in A$ מספר מספר מספר מספר צפופה בקטע [0,1]. כלומר, קיים מספר

z = c + |x| לכן נבחר

 $a + \lfloor x \rfloor < c + \lfloor x \rfloor < b + \lfloor x \rfloor \le (y - \lfloor x \rfloor) + \lfloor x \rfloor = y$ מתקיים:

x < z < y :כלומר

בנוסף, a סגורה לחיבור A מכילה את השלמים), ונתון, שהקבוצה c סגורה לחיבור.

.על כן $z = c + \lfloor x \rfloor \in A$ על כן

תשובה לשאלה 10.4.7

 $\mathbb{R}\setminus A\neq \phi$ שהקבוצה $A\subseteq \mathbb{R}$ צפופה ב- \mathbb{R} וסגורה לחי**ח**ור. ונניח כי $A\neq \emptyset$. צפופה ב-A צפופה ב-A ממשיים. מתקיים: $a^*\in A$ ולכן מצפיפות $a^*\in \mathbb{R}\setminus A$ קיימת נקודה $a^*\in \mathbb{R}\setminus A$ יהא $a_0\in A$ ויהיו $a^*\in A$ ממשיים. מתקיים: $a_0+a^*\notin A$ ועל כן $a^*\notin A$ אבל $a_0+a^*\in A$. אבל $a_0+a^*\in A$ ועל כן $a_0+a^*\in A$ ועל כן $a_0+a^*\in A$ וגם $a_0+a^*\in A$ וגם $a_0+a^*\in A$ אז $a_0\in A$ וגם $a_0+a^*\in A$ ועם אבל אחרת, אם