电路与模拟电子技术实验 实验报告

班级___04022306__ 姓名_谢宝玛__ 学号_1120233506_ 成绩____

实验三 一阶电路响应的研究						
实验日期	12.6	实验分组	下午			
桌号	12	同组同学姓名 或编号	无			

一、实验目的

- (1) 学习多级放大电路静态工作点的调试方法。
- (2) 掌握测试多级和负反馈放大电路性能指标的基本方法。
- (3)加深了解负反馈对放大电路性能的影响。

二、实验仪器和设备

- (1) 直流电源 (2) 万用表 (3) 信号发生器
- (4) 交流毫伏表 (5) 示波器
- (6)面包板 (7)三极管、电阻、电容、电位器

三、实验内容与要求

- (一)、调整和测试两级放大电路的静态工作点
- 1, 仿真电路

2,实验电路

表格

	UB1	UE1	UC1	UB2	UE2	UC2
测量值	2.57V	2.08V	10V	4.76V	4.12V	7.87V

- (二)测量无反馈时,两级放大电路的电压放大倍数 和通频带 。
- A、测量两级放大电路的开环放大倍数
- 1, 仿真电路

2, 示波器波形

3,实验电路

4,交流毫伏表结果

Ui=2mv

Uo=1.26V

Au=Uo/Ui=530

B、测量两级放大电路的通频带

1, 仿真电路

Fh=120kHz

FI=85Hz

Fbw=Fh-Fl=119.015kHz

- (三),测量负反馈放大电路的 和通频带。
- A、测量两级放大电路的开环放大倍数
- 1, 仿真电路

2, 示波器波形

流毫伏表结果

Ui=5mV

Uo=210mV

Au=Uo/Ui=42

B、测量两级放大电路的通频带

1, 仿真电路

Fh=3.26MHz

Fl=17.7Hz

Fbw=Fh-Fl=3.26MHz

实验表格

	测量值(电压)	计算值			
无反馈	Us	Uo	Fh	F1	Au
	2mV	1.26V	120kHz	85Hz	530
有反馈	Usf	Uof	Fhf	Flf	Auf
	2mV	210mV	3.26MHz	17.7Hz	42

四、实验总结、收获体会和建议(包括实验出现的问题及处理方法)

- 1,出现的问题:接线太多,出现故障排查困难
- 2, 处理方法: 少接线。

五, 思考题

(1) 分析电压串联负反馈对电路性能的影响。

- 1, 电压负反馈的重要作用是稳定输出电压,
- 2, 电压串联负反馈电路可作为压控电压源(电压放大电路)。
- 3, 电压串联负反馈会显著提高电路的输入阻抗。
- 4, 负反馈拓宽了电路的频率响应带宽