Xilinx Zynq FPGA, TI DSP,MCU 프로그래밍 및 회로 설계 전문가 과정

강사 - Innova Lee(이상훈)
gcccompil3r@gmail.com
학생 - 김 현 신호준
전병용 장유미
강유빈

Xilinx Zynq FPGA, TI DSP, MCU 프로그래밍 및 회로 설계 전문가 과정

강사 - Innova Lee(이상훈)
gcccompil3r@gmail.com
학생 - 신호준
joon4547@naver.com

- BLDC Motor 문서 번역 및 공부
 - 번역 완료
 - github 에 업로드 완료
 - 공부중

- BLDC Motor, ESC, 충전기 등을
 연결하기위해 바나나잭을 알아봄.
- 신도림 조이하비를 가서 조사 함
 바나나 플러그 대신 골드파워플러그? 를 추천함. (범용성이 넓어서)

BLDC Motor & ESC (배송완료)

압력센서 (배송완료)

솔레노이드 벨브 (배송완료)

차량용 시가 잭 케이블 (배송완료)

배터리 (배송중)

DC 모터 (배송중)

압력센서 (배송중)

엔코더 (배송중)

웹캠 (배송중)

서보모터 (전류정보 x)

가속도센서 (필요여부)

회로 소자 (나중에 하기로 함)

PVC (규격 더 알아보고 구매 예정)

골드 파워 플러그 (구매 결정)

배터리 충전기 (구매 결정)

엔코터 기어(엔코더 오면 결정)

TI 01 TI

CAN 모듈 (아직 안함)

- HSR 2645CR (360° 도는 서보모터) -전류 정보만 알 수 없음.
- 차단당한줄 알앗는데 전화 연결 됨.
 -담당자가 미팅을 나가서 연락처 남김.
 -전류 정보 알아내서 팀원과 상의 중.

어려움**&** 해결방안

- 생각해보니까 배터리 충전기를 아직 구매하지 않음.
 - 조이하비에서 수소 베터리 충전기를 구매하기로 함.
- 납땜의 어려움(골드 파워 플러그)
 - 우리가 사용하는 납땜기는 보드용이라서 끝이 얇음.
 - 조이하비에서 구매를 하면 납땜을 도와주시겟다고 하여 해결.
- 일의 우선순위가 제대로 안서서 판단이 안됨.
- 다이어트의 어려움.
 - 현이 언니 오빠 혼내줘요
 - 언니때문에 힘들다고 그랬어여!!

다음주 계획

- PI Control 구현
- ADC 구현
- github 번역 문서들 공부
- 부품 구매 (서보모터, 골드 파워 플러그, 배터리 충전기)

Xilinx Zynq FPGA, TI DSP, MCU 프로그래밍 및 회로 설계 전문가 과정

강사 - Innova Lee(이상훈)

gcccompil3r@gmail.com

학생 - 장유미

519864@naver.com

현재진행상황(배송완료)

차량용시가잭케이블

배터리- 현재 안양에 있음. 곧 올예정. 영국에서 시켰는데 빠르다.

DC모터- 아직도 중국에 있고, 5~10일예상합니다.

압력센서 -오늘 올것같다.

Honeywell

Mouser 부품 번호:

제조업체 부품 번호:

제조업체:

설명:

785-SSCDANN150PG2A3

SSCDANN150PG2A3

Honeywell

보드 장착 압력 센서 DIP Axial 150 PSI Gage 3.3V

Honeywell SSCDANN150PG2A3에 대해 자세히 알아보십 시오.

SSCDANN150PG2A3 데이터시트

확대
 이미지는 참조용으로만 사용하십시오
 제품 사양을 참조하세요

엔코더-곧 올예정.

문제점&해결과정

배터리 충전기를 사야한다는 사실을 월요일에 깨달음. 아뿔사..또..생겼다..

-소방차팀과 같은배터리를 사용하기때문에 하나 사서 같이 쓰기로함(IN신도림)

서보모터의 input 전류스펙을 알지못해서 아직 구입을 하지 못하였다.

-구매하고자 하는 서보모터 본사회사에 전화해서 스펙을 물어봐야함.수요일 구매

문제점&해결과정

PI제어 어떻게 하는지 감이안잡힘.(질문사항입니다)

- 1.뭐부터 시작해야하는지?
- 2.Matlab(수치해석및 프로그래밍 환경을 제공하는 공학용소프트웨어/행렬기반계산기능지원) 과 Simulink(그래픽편집기,Matlab알고리즘을모델로 통합) 설치 해야하는지? -> 어떻게 사용해야하는지?
- 3. 가속도센서와 엔코더의 역할의 차이점이 무엇인가요?
- 4.데이터시트 100장짜리 복붙이 안됨 ㅠㅠ...

앞으로의 계획

골드 플러그,서보모터 구매 예정.

PI알고리즘 구성해서 시뮬레이션 해보기?

모든 제품 구매완료(서보모터, 골드플러그, 배터리 충전기)

3.3v 2.5mA 압력센서 회로 데이터시트 분석완료하기

Xilinx Zynq FPGA, TI DSP, MCU 프로그래밍 및 회로설계 전문가 과정

강사 - Innova Lee(이상훈)

gcccompil3r@gmail.com

학생 - 강유빈

yubink94@gmail.com

현재 진행 과정

- compressor 구매 완료
- 바나나 케이블을 사기위해 rc매장 방문
 - 문의 한 결과

대신

를 사용하기로 결정

- datasheet
 - o Speed Control for Brushless DC Motors using PID Algorithm(번역 완료)
 - BRUSHLESS DC MOTOR CONTROLLER(10/26)
 - 12V 6A compressor 전원회로(20/47)

문제점 & 해결과정

• PI & ADC 뭐부터 해야하는지 감이 안잡힘 PI & ADC 다른 조와 함께 해결해 나갈 예정

• 문서 번역을 해도 이해가 가지 않음

- 그 와중에 3.3V 2.5mA 압력센서 전원 회로 문서가 생김
 - 유미언니가 해주시고 있음♡

계획

ADC

PI

- 배터리 오면 rc매장 방문
 - 납땜 및 배터리 충전기 구매

Xilinx Zynq FPGA, TI <u>DSP</u>,MCU 프로그래밍 및 회로 설계 전문가 과정

강사 - Innova Lee(이상훈)
gcccompil3r@gmail.com
학생 - 김 현

한 일

- •UART 드라이버 시작
- •UART 드라이버 자료 수집
- •UART 드라이버 코드 분석
- UART 드라이버 관련 소스 드라이빙
- •DSP 아이콘 만들기
- •디바이스 드라이버 관련 책 공부

UART 드라이버 코드 분석

- •자료 수집-> UART 드라이버 코드
- •코드에 사용한 함수들을 분석
- •내가 사용하려는 UART 모듈에 맞춰 변수를 변환?

어려운 점

- •코드 분석은 완료
- •기존의 커널에서 제공하는 함수에 대한 이해 떨어짐
- •변수만 바꾸면 될 줄 알았는데
- 어디서부터 어떻게 바꿔야 하는 거지?
- •실제 드라이버 코드를 작성하는 형식에 대한 아무런 지식 없음

극복 방법

- •UART에 대해
- •무작정 소스 드라이빙 시작
- •기존의 커널 함수는 검색을 통해
- •소스 드라이빙 하면서
- •분석한 드라이버 코드랑 비교
- 이게 맞는 건가?????

```
pm_state;
        struct circ buf
                                   xmit:
        struct uart_port
                                  *uart_port;
#define UART_XMIT_SIZE PAGE SIZE
^{\prime *} number of characters left in xmit buffer before we ask for more ^{*\prime}
#define WAKEUP CHARS
struct module:
struct tty_driver;
struct wart driver {
         struct module
                                   *owner;
         const char
                                   *driver_name;
         const char
                                   *dev_name;
         int
                                    major:
                                    minor;
         int
         struct console
                                   *cons;
          * these are private; the low level driver should not
          * touch these; they should be initialised to NULL
         struct uart state
         struct tty driver
                                   *tty_driver;
nvoid uart write wakeup(struct uart_port *port);
  * Baud rate helpers.
 void uart_update_timeout(struct uart_port *port, unsigned int cflag,
                           unsigned int baud);
 unsigned int uart_get_baud_rate(struct uart_port *port, struct ktermios *termios,
                                  struct ktermios *old, unsigned int min,
                                  unsigned int max);
 unsigned int uart_get_divisor(struct uart_port *port, unsigned int baud);
 /* Base timer interval for polling */
                                                                                   295,8
                                                                                                 63%
```

DSP 아이콘 만들기

- •디바이스 드라이버 멘붕
- •DSP 아이콘 만들기 돌입
- •선생님이 올려주신 글 참고
- •이거라도 성공하자!

DSP 아이콘 만들기

- 세팅-> Refresh Matrix를 해야
- 아이콘이 생성된다.
- •DSP 환경 구축을 하면서 했던
- CCS를 통한 remote 연결을
- •다시 한 번 실습할 수 있었다.
- •그래도 이건 성공!!ㅠ

어려운 점

- •무작정 소스 드라이빙은 못하겠다ㅠ
- •아무 것도 모르겠다-> 드바이스 드라이버에 대한 회의감
- 휴일에 공부는 안되고 디바이스 드라이버도 모르겠고
- 아주 고통스러움
- •실제 DSP가 작동하는 과정에 대한 이해 부족

극복 방법

- •결국 디바이스 드라이버에 관한 책을 구입
- •리눅스 버전은 예전 것이지만 흐름이라고 알기 위해 (지푸라기)
- •아직 깊이 읽지는 못했지만
- 아무 것도 모르는 것보다는 나아짐 (기분이)
- •리눅스 커널에서 기본으로 제공하는 함수에 대한 이해

할일

- •디바이스 드라이버 책 깊게 읽기 (특히, UART 부분)
- •책을 읽고 난 후 UART 드라이버 코드 작성 시작
- (UART 드라이버를 완성하면 다음은 이렇게 힘들지는 않겠지?)
- •도대체 드라이버를 작성하려면 얼마나 공부해야 하는가??
- •도와주세요!!! (드라이버 작성 하시는 분?)

Xilinx Zynq FPGA, TI <u>DSP</u>,MCU 프로그래밍 및 회로 설계 전문가 과정

강사 - Innova Lee(이상훈)
gcccompil3r@gmail.com
학생 - 전병용
river_orz@naver.com

진행 상황

- 1. 오전부로 OpenCV 책을 다읽음
- 2. 번역이 진행이 너무 느림

결과

히스토그램 처리 -> 영상화소의 분포에 대해 중요한 친구

a. 히스토 그램 역투영 을통해 추적 및 영상분할 및 추적 하고 싶은 영역을 추출 이 가능

b. MeanShift/CamShift 두 함수(선택)를 통해 추적을 할 수 있다. MeanShift 는 초기탐색 윈도우를 이용하여 물체의 중심을 반복적으로 탐색 CamShift는 초기탐색 윈도우를 이용하여 물체의 중심,크기,방향을 반복적으로 검출

c. KalmanFilter 를 같이 이용하여 잡음을 제거해서 최적화 시켜준다.

추후계획

- 1. TISDK 쪽에 올라가있는 예제를 분석 및OPENCV 연동
- 2. dsp 에서 사진 올라가게 만들기? OPENCV를 DSP에 올리는걸 우선
- 3. 이번주 안에 OEPNCL 연동하는 방법 참고해서 해보기
- 4. 번역을 다시 시작해야 겠다.
- 5. 우주여행
- 6. 찝쩍거리기(ㅁㅈ 마음속으로...)

