Complejidad computacional de buscar árboles generadores con una sucesión de grados específica

Maria Elena Martinez Cuero

Universidad Autónoma Metropolitana-Iztapalapa

29 de febrero de 2020

XXXV Coloquio Víctor Neumann-Lara de Teoría de las Gráficas, Combinatoria y sus Aplicaciones

Demostración

Si la gráfica G_m tiene una trayectoria hamiltoniana con vértice inicial v_1 y vértice final v_2 ,

Demostración

Si la gráfica G_m tiene una trayectoria hamiltoniana con vértice inicial v_1 y vértice final v_2 , entonces la gráfica G_n tiene un árbol generador T tal que $d_T(w_i) = d_i$ con $1 \le i \le n$.

Demostración. F subgráfica de G y $F \cong G_m$

 G_m tiene $\overline{h_{v_1v_2}}$, entonces F tiene $\overline{h_{w_1w_2}}$

Demostración

 $T = H_{w_1w_2} \cup (E(G) \setminus E(F))$ subgráfica de G_n es el árbol generador deseado de G_n

Si la gráfica G con $V(G) = \{w_1, w_2, w_3, \ldots, w_n\}$ tiene un árbol generador T tal que $d_T(w_i) = d_i$ con $1 \le i \le n$, entonces la gráfica G^* tiene una trayectoria hamiltoniana con vértice inicial v_1 y vértice final v_2 .

Finalmente, veamos que al hacer $G_n = f(G_m)$, $k-2 = |G_n| \setminus |G_m|$ es el número de vértices que se le pega a G_m y dado que cada uno de estos vértices nuevos es adyacente a un v_i de G_m con $3 \le i \le m$ se usan $k-2 = |E(G_n)| \setminus |E(G_m)|$ aristas para hacer esto y el número de vértices que se reetiquetan son m. Por lo cual el trabajo que realiza la tranformación f es $2(k-2) + m \le 2n$ en un tiempo lineal.