Consideriamo solo le T_funzioni calcolabili ad una sola variabile.

Enumeriamole (Lista)

$$f_0$$
, f_1 , f_2 , f_3

Chiamiamo questa lista, Lista.

Sia il problema dell'alt decidibile, allora esiste una funzione H

Tale che

$$H(n)=s(i)$$
 se $f_n(n)$ converge; $n(o)$ se $f_n(n)$ diverge

Usando H possiamo calcolare una tabella cosi definita

	f_o ,	f_1 ,	f_2 ,	f_3	••••
0	S	S	n	S	•••
1	n	n	S	n	•••
2	S	n	S	S	••••
3	S	S	S	, LJ	•••

Letta in questo modo per esempio

$$(2, f_3) = s$$

vuol dire H(3)=s ovvero f_3 (2) converge.

$$(3, f_1) = n$$

vuol dire H(1)=n ovvero f_1 (3) converge.

Prendiamo la diagonale

$$f_o(0), \quad f_1(1), \quad f_2(2), \quad f_3(3).$$

la diagonale definisce una nuova funzione calcolabile ad una sola variabile

questa funzione è cosi definita

$$D(n)=f_n(n),$$

Nel nostro caso

Essendo D una funzione ad una sola variabile calcolabile sarà nella Lista,

ora costruiamo il complemento di D, chiamiamola C

cosi definita

C(n)= s se D(n)=n e C(n)=n se D(n)=s.

Anche C è calcolabile, sia f_C .

Quindi esiste una riga nella matrice che la descrive

Sia k il punto della matrice in cui C(la riga che descrive C) incontra D (la diagonale)

Cosa accade?

$$f_{\mathcal{C}}(\mathcal{C})$$

deve essere il complemento di

$$f_{\mathcal{C}}(\mathcal{C}).$$