AUA CS108, Statistics, Fall 2020 Lecture 29

Michael Poghosyan

02 nov 2020

Contents

► Bias and Unbiasedness

Biased Estimator Case

Say, let us consider the Exponential Model:

$$X_1, X_2, ..., X_{10} \sim Exp(\lambda)$$

and we want to estimate λ .

Biased Estimator Case

Say, let us consider the Exponential Model:

$$X_1, X_2, ..., X_{10} \sim \textit{Exp}(\lambda)$$

and we want to estimate λ . We consider the following Estimator:

$$\hat{\lambda} = \frac{X_1 + X_2 + \dots + X_{10}}{10}.$$

Biased Estimator Case

Say, let us consider the Exponential Model:

$$X_1, X_2, ..., X_{10} \sim \textit{Exp}(\lambda)$$

and we want to estimate λ . We consider the following Estimator:

$$\hat{\lambda} = \frac{X_1 + X_2 + \dots + X_{10}}{10}.$$

Easy to see that $\hat{\lambda}$ is an Biased Estimator for λ (OTB!).

Example, cont'd

Now, the code:

observing once: generating a Sample just once and calculating one Estimate:

```
lambda <- 0.3
x <- rexp(10, rate = lambda)
lambda.hat <- mean(x)
lambda.hat</pre>
```

```
## [1] 4.088202
```

observing many times: ganarating Samples many times, calculating Estimates, and then averaging:

```
lambda <- 0.3; n <- 10; m <- 2000
x <- rexp(n*m, rate = lambda)
x <- as.data.frame(matrix(x, ncol = m))
lambda.hats <- sapply(x, mean)
boxplot(lambda.hats, horizontal = T);
abline(v = lambda, col="red", lwd = 2, lty = 2)</pre>
```



```
mean(lambda.hats)
```

[1] 3.354296

With a Histogram:

```
hist(lambda.hats)
rug(lambda.hats)
abline(v = lambda, col="red", lwd = 2, lty = 2)
```


Example: Assume we have a Random Sample for a some Distribution with the Mean μ and Variance σ^2 :

$$X_1, X_2, ..., X_n \sim \mathcal{F}_{\mu, \sigma^2},$$

and we want to estimate the Parameters μ and σ^2 .

Example: Assume we have a Random Sample for a some Distribution with the Mean μ and Variance σ^2 :

$$X_1, X_2, ..., X_n \sim \mathcal{F}_{\mu, \sigma^2},$$

and we want to estimate the Parameters μ and σ^2 .

We consider the following Estimators:

$$\hat{\mu} = \overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}$$

and

$$\widehat{\sigma^2} = \frac{\sum_{k=1}^{n} (X_k - \overline{X}_n)^2}{n} \quad \text{and} \quad \widehat{\sigma^2} = S^2 = \frac{\sum_{k=1}^{n} (X_k - \overline{X}_n)^2}{n - 1}$$

Example: Assume we have a Random Sample for a some Distribution with the Mean μ and Variance σ^2 :

$$X_1, X_2, ..., X_n \sim \mathcal{F}_{\mu, \sigma^2},$$

and we want to estimate the Parameters μ and σ^2 .

We consider the following Estimators:

$$\hat{\mu} = \overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}$$

and

$$\widehat{\sigma^2} = \frac{\sum_{k=1}^{n} (X_k - \overline{X}_n)^2}{n} \quad \text{and} \quad \widehat{\sigma^2} = S^2 = \frac{\sum_{k=1}^{n} (X_k - \overline{X}_n)^2}{n-1}$$

Let us see (OTB) which ones are Biased and which ones are not.