

The experiment.

I used a Neato Robot in a simplify environment to log the robot and laser information while driving it to perform a trajectory

Getting inside

	What to do	Description		What to read or practice or integrate
	Getting familiar with logged dat of the in Workspace		data_enc	Contains all the encoders information.
				Has 9 columns which represents:
				Timestamp, LeftWheel_RPM, RightWheel_RPM, LeftWheel_Load%,
		Workspace Name		RightWheel_Load%, LeftWheel_PositionInMM, RightWheel_PositionInMM,
				LeftWheel_Speed, RightWheel_Speed
			lds_dis	Contains the laser information. Has 361 columns which represents:
		☐ Ids_dis 523x361 double ☐ Idx 524x360 double ☐ Idy 524x360 double		Timestamp, DistInMM (For each line, one record for each degree 0-359)
1		pk 1x1 struct r_wheel 38.5000	Lndmrk	Contains the measured landmarks. LanMark has two columns which represents x
		Robot 4x3 double trajec 524x3 double width 243	ldx	and y coordinates.
			ldy	ldx and ldy are separated variables
			pk	Is the covariance matrix for each point in the trajectory. Is a data estructure.
			r_wheel	Is the radius of the wheels in mm.
			trajec	Contains the calculated trajectory. Has 3 columns
			width	Is the wheel axes distance of the robot in mm.

What to do	Description	What to read or practice or integrate
Getting familiar with the script to plot information.	The case where their beauty window step. The case where their beauty window step. Some where the case of the case	<pre>x = inputdlg('Enter step time to visualize', %Introducing the snapshot to visualize</pre>

	What to do	Description	What to read or practice or integrate
3	Implement your own pose integration algortihm and compare results	Trajectory	Use the matlab code of the previous Lab's to generate the trajectory. Compare resulkts
4	Add some noise to the odometry	$v = \begin{pmatrix} \sigma_d^2 & 0 \\ 0 & \sigma_\theta^2 \end{pmatrix}$ $odo = \begin{pmatrix} \frac{R+L}{2} \\ \frac{R-L}{2S} \end{pmatrix} + randn(2,1)^T * v$	Add noise to the trajectory. Use different noise covariance matrix, display the ellipses and compare results.

What to deliver:

A pdf report and a mlx file, commented code and workspace variable you use for implementing the blocks of the suggested architecture.

- 1. **Pose estimated**. A figure of a noisy trajectory with the ellipses representing the covariance error in position. Make a zoom in to see in detail.
- 2. Polar 2 Cartesian. A figure of the Land Mark seeing in Robot Reference Frame.
- 3. **Robot to World**. Generate the workspace 'laserW' variable and include in the report a figure of the Land Mark seeing in World Reference Frame.
- 4. **Associated Land Mark**. Filter out the lidar data by detecting the landMark (datacloud) and Identifying the LandMark (nearest_to). Add to the report a figure with colored Land Mark seeing by the Robot.
- 5. Similarity Transform. Adapt the Similarity Transform to output the error in pose given a time.
- 6. Plot the following information
 - plot $(t, \sqrt{\det(P_k)})$
 - plot (t, \mathcal{E}_r)
 - plot (t, \mathcal{E}_{ν})
 - plot $(t, \mathcal{E}_{\theta})$
 - plot(t, #LM)% LM: number of Land Marks used in the Similarity Transform {0 1 2 3 4}
 - plot(t, #LM)% LM: number of Land Marks {0 1 2 3 4} used in the Similarity Transform (ST)
 - plot(t, LM1) % LM1 = 1 when used by the ST, 0 othewise
 - plot(t, LM2) % LM2 = 1 when used by the ST, 0 othewise
 - plot(t, LM3) % LM1 = 1 when used by the ST, 0 othewise
 - plot(t, LM4) % LM1 = 1 when used by the ST, 0 othewise