Journal Club

THE PREPRINT SERVER FOR BIOLOGY

New Results

Follow this preprint

A deep learning framework for characterization of genotype data

Kristiina Ausmees, (D) Carl Nettelblad

doi: https://doi.org/10.1101/2020.09.30.320994

https://github.com/richelbilderbeek/ journal club 20220120

Why this article

Google 'GWAS + "machine learning"' for 2021
Start of collaboration

Carl Nettelblad

Kristiina Ausmees

Background

Can we order genomes?

Similar genomes close

Because then we can ...

See amount of genetic variation

Identify population structure

Do ancestry mapping

Simulate genotypes

It is easy to order genomes

$$d(p,q) = \sqrt{(p_1-q_1)^2 + (p_2-q_2)^2 + \dots + (p_i-q_i)^2 + \dots + (p_n-q_n)^2}.$$

Background

Can we order genomes in a <u>smart</u> way?

Similar genomes close

Because then we can ...

See amount of genetic variation

Identify population structure

Do ancestry mapping

Simulate genotypeş

Problem Americas -100Central/South Asia Oceania 100 Middle East [200 300 400 Sub-Saharan Africa 500 150 -100-5050 100 PC2

PCA reduces dimensionality linearily Typical V shape Overlap in first 2 dimensions

Hypothesis

Convolutional autoencoders seem promising

Can work with noisy data as well

https://commons.wikimedia.org/wiki/ File:Reconstruction_autoencoders_vs_PCA.png

Method

Set up a convolutional autoencoder See how well it performs

What is a convolutional autoencoder?

Convolutional: preprocess the data, i.e. do not only use the raw data Autoencoder: type of neural network that learns how to encode data

What is an autoencoder?

Goal: *learn* to represent/label data, nonlinearily

$$Y = \{ y_1, y_2, ... \}$$

 $Y' = \{ y'_1, y'_2, ... \}$
Loss function = E = Y - Y'

GCAE

encoder decoder

Article

How well does GCAE perform?

genotype separation
deduce genotype origin
rare and common alleles
LD

Separating genotypes

Affymetrix Human Origins SNP array 2,067 unrelated humans from 166 populations

No sex chromosomes

Remove MAF < 1%

LD pruning, remove $R^2 > 0.2$

160,858 biallelic sites

Show genotypes in first 2 PCs

PCA dimensionality reduction

Ausmees, Kristiina, and Carl Nettelblad. "A deep learning framework for characterization of genotype data." bioRxiv (2020).

Americas

t-SNE dimensionality reduction

UMAP dimensionality reduction

GCAE dimensionality reduction

GCAE dimensionality reduction

Ausmees, Kristiina, and Carl Nettelblad. "A deep learning framework for characterization of genotype data." bioRxiv (2020). Adapted by Richel Bilderbeek

Questions

How well can genotypes be separated by eye?

How well can we deduce the origin of a genotype?

Clustering similar to ADMIXTURE

F1 scrore

Other measurements

How well can we deduce the origin of a genotype?

Go through all individuals (x axis)

Assign the likelihood it belong to a subcontinent (the rows)

Ideally, all individuals are assigned their correct subcontinent

How well can we deduce the origin of a genotype?

Go through all individuals (x axis)

Assign the likelihood it belong to a subcontinent (the rows)

Ideally, all individuals are assigned their correct subcontinent

Use five clusters

GCAE: ADMIXTURE ↔ plot

PCA: ADMIXTURE

Figure 4

What is the F1 score?

A metric for the trade-off between precision and recall →

https://developers.google.com/machine-learning/crash-course/classification/precision-and-recall https://github.com/richelbilderbeek/journal_club_20211216/f1_score.R

What is precision?

Precision:

how often is the classifier right? the number of true positives of all **estimated** positives

precision

$$= n_{tp} / (n_{tp} + n_{fp})$$

$$= 8 / (8 + 2) = 8/10$$

where

 $n_{tp} = \#$ of true positives

$$n_{fp} = \#$$
 of false positives

What is recall?

Recall:

how often are the positive cases recognized as such? the number of true positives of all *known* positives

recall

$$= n_{tp} / (n_{tp} + n_{fn})$$

= 8 / (8 + 3) = 8/11

where

 $n_{tp} = \#$ of true positives $n_{fn} = \#$ of false negatives

Trade-off between precision and recall

F1 Score

A metric for the trade-off between precision and recall:

The harmonic mean of precision and recall

F_1

```
= 2 / (precision^{-1} + recall^{-1})
```

$$= n_{tp} / (n_{tp} + \frac{1}{2}(n_{fp} + n_{fn}))$$

where

 $n_{to} = \#$ of true positives

 $n_{fp} = \#$ of false positives

 $n_{fn} = \#$ of false negatives

Number of nearest neighbors

Number of neighbors

https://en.wikipedia.org/wiki/File:Map1NN.png https://en.wikipedia.org/wiki/File:Map5NN.png

Optimal number for k?

Nontrivial to determine a priori

Possible to determine from data

e.g. calculate the k with the lowest error problem: these may differ between different methods (i.e. PCA, GCAE)

k = number of neighborsn = the number of categories

Figure 4a

num dimensions

num dimensions

Figure 4 revisited

Questions

How well can genotypes be separated by eye? How well can we deduce the origin of a genotype?

Other measurements

Representing rare alleles

Representing linkage disequilibrium

Representing of rare alleles

Representing LD

GCAE 'feels' all alleles are in LD Proof it takes local structure into account

Allele independent

Ausmees, Kristiina, and Carl Nettelblad. "A deep learning framework for characterization of genotype data." bioRxiv (2020). Adapted by Richel Bilderbeek

Discussion

Dimensionality reduction ADMIXTURE F1 scores

GCAE versus t-SNE and UMAP again

GCAE versus UMAP

GCAE versus UMAP

While in the Supplementary Materials ...

Comparisons by other study

ADMIXTURE

So, which one is better?

No figure legend on purpose :-)

ADMIXTURE

So, which one is better?

No figure legend on purpose :-)

Method

How is the ADMIXTURE-like plot generated?

Reproducible from text only?

No code

[...] what you see is not
ADMIXTURE w/PCA vs ADMIXTURE w/GenoCAE,
but rather ADMIXTURE vs. k-pop softmaxed GenoCAE

F1 Scores

So, which one is better?

"The F1 score of a classification model based on the dimensionality reduction is not a simple metric for which the method with the highest score is the most correct"

Discussion

Novel approach

- ... but there are others (non-convolutional) autoencoders
- ... best for non-linear effects on common SNPs

Dimensionality reduction looks impressive

... how well do other autoencoders do?

Performance is measured

... but how conclusively?

Performance is compared

... but how much care/tuning for these comparisons?

The end

https://github.com/richelbilderbeek/journal_club_20220220

Data removal procedure

Human Origins data set

[....]

The data was filtered to exclude sex chromosomes and non-informative sites, and one sample (NA13619) was removed due to relation to another (HGDP01382).

Because of ADMIXTURE assumption

Equations

$$E(y, \hat{y}) = \sum_{i}^{3} y_{i} log(\hat{y}_{i}) + \alpha \sum_{j}^{d} e_{j}^{2}$$

```
E(y, y<sup>hat</sup>): error
i: one of the three variants, i.e. AA,
AC, CC
y<sub>i</sub>: the actual value of a variant, i.e.
```

```
AA = 0.0, AC = 0.5, CC = 1.0
y<sup>hat</sup><sub>i</sub>: the decoded value of a variant
```

```
"loss": {
    "module": "tf.keras.losses",
    "class": "CategoricalCrossentropy",
    "args": {
    "from_logits": false}},
    "regularizer": {
        "reg_factor": 1.0e-07,
        "module": "tf.keras.regularizers",
        "class": "l2"
    },
```

Equations

$$E(y, \hat{y}) = \sum_{i}^{3} y_{i} log(\hat{y}_{i}) + \alpha \sum_{j}^{d} e_{j}^{2}$$
Lower
$$= better$$

$$G \quad y_{i} \quad y^{hat} \quad E$$

$$AA \quad 0 \quad 0.5 \quad 0$$

$$AC \quad 1 \quad 0.1 \quad -2.3$$

$$CC \quad 0 \quad 0.3 \quad 0$$

$$One-hot \quad encoding$$

$$= best \quad better$$

Equations

$$E(y, \hat{y}) = \sum_{i}^{3} y_i log(\hat{y}_i) + \alpha \sum_{j}^{d} e_j^2$$

i: one of the three variants, i.e. AA, AC, CC

y_i: the actual value of a variant, i.e.

AA = 0.0, AC = 0.5, CC = 1.0

yhat;: the decoded value of a variant

```
"loss": {
    "module": "tf.keras.losses",
    "class": "CategoricalCrossentropy",
    "args": {
    "from_logits": false}},
    "regularizer": {
        "reg_factor": 1.0e-07,
        "module": "tf.keras.regularizers",
        "class": "l2"
    },
```