Travaux dirigés pour l'introduction au logiciel R

Marco Pascucci

25/10/2018

data.frame

C'est une liste de vecteurs de même longueur... un tableau! Avec des proprietés pratiques pour selectionner, ordonner, visualiser, manipuler les données.

Créer un data.frame

Les données sont entrées par colonne

```
enseignants <- data.frame(</pre>
  # nom des lignes (optionnel)
  row.names = c("Marie", "Yani", "Jildaz", "Jasmina"),
  # colonnes: <nom> = <liste>
  title = c("PostDoc", "Professor", "Doctorant", "Doctorant"),
  enseignement = c("TD", "cours", "TD", "TP"),
  genre = factor(c("F","M","M","F")),
  cours = c("bio", "bio", "bio", "math"),
  hours week = c(1,6,2,3),
  # option
  stringsAsFactors = FALSE
```

Ajouter une observation (ligne) au data.frame

on utilise la fonction rbind()

```
##
              title enseignement genre cours hours_week
## Marie
             PostDoc
                              TD
                                     F
                                         bio
          Professor
## Yani
                                         bio
                           cours
  Jildaz Doctorant
                              TD
                                        bio
## Jasmina Doctorant
                              TP
                                        math
## Marco
            PostDoc
                              TD
                                         1.5
                                                   stat
```

data.frame slicing ("trancher")

Marie PostDoc

```
enseignants[5] # colonne 5
##
          hours week
## Marie
## Yani
## Jildaz
## Jasmina
## Marco
           stat
enseignants[[5]] # colonne 5 comme vecteur
## [1] "1"
             "6"
                   "2"
                         "3"
                                 "stat"
enseignants[1,] # observation (lique) 1
##
          title enseignement genre cours hours week
```

TD

F

bio

Nom des observations

il est préférable avoir le nom de chaque observation dans une colonne comme les autres. la fonction rownames_to_column() en génère une automatiquement.

```
enseignants %<>% rownames_to_column(var="Nom")
enseignants
```

##		Nom	title	${\tt enseignement}$	genre	cours	hours_week
##	1	Marie	PostDoc	TD	F	bio	1
##	2	Yani	${\tt Professor}$	cours	M	bio	6
##	3	Jildaz	${\tt Doctorant}$	TD	M	bio	2
##	4	Jasmina	${\tt Doctorant}$	TP	F	\mathtt{math}	3
##	5	Marco	PostDoc	TD	М	1.5	stat

Manipulation de données with dyplr

dplyr est une grammaire de la manipulation des données, fournissant un ensemble cohérent de verbes (fonctions) qui vous aident à résoudre les défis de manipulation de données les plus courants:

- select() sélectionne les variables en fonction de leur nom.
- filter() sélectionne les observations en fonction de leurs valeurs.
- arrange() modifie l'ordre des lignes.
- mutate() ajoute de nouvelles variables qui sont des fonctions de variables existantes
- summarize() réduit plusieurs valeurs à un seul résumé.

Exemple: mutate()

La fonction mutate() permet d'ajouter une colonne à un data.frame en faisant des operation sur les données. ATTENTION : les fonctions dyplr retournent une nouvelle structure de données, ne modifient pas le data.frame de départ

```
data("iris") # observation sur des fleurs
iris

mutate(iris, Petal.Area=Petal.Length*Petal.Width)

iris %<>% mutate(Petal.Area=Petal.Length*Petal.Width)
iris

plot(iris$Petal.Area, col=iris$Species)
```


Exercice 1

- 0. charger les 25 premières entrées du dataset mtcars et ajouter une colonne avec le nom de chaque ligne
- 1. afficher un resumé des moyennes de poids "wt" des voitures et puissance "hp"
- selectionner seulement les modèles des voitures et les colonnes de "cyl" à "wt"
- ordonner par nombre décroissant de cylindres et puis croissant en poids
- 4. filtrer les voitures qui n'ont que 4 cylindres et pèsent plus de 2 tonnes
- 5. créer une colonne de poids en Kg (wt est en tonnes)
- 6. enchainer avec un PIPE les points 2 et 5

Solution ex. 1

```
data("mtcars")
mtcars %<>% head(25)
mtcars %<>% rownames_to_column(var="Model")
mtcars %>% summarize(poids_m=mean(wt), puissance_m=mean(hp))
mtcars %>% select(c(Model,cyl:wt))
mtcars %>% arrange(desc(cyl), wt)
mtcars %>% filter(cyl==4, wt>2)
mtcars %>% mutate(wt_kg=wt*1000)
mtcars %>% select(c(Model,cyl: wt)) %>%
    mutate(wt_kg=wt*1000)
```