

Pontifícia Universidade Católica de Minas Gerais

Computação Distribuída

Aluna: Carolina Lima Professor: Marco Birchal

- 1. Descreva o que é um sistema distribuído.
 - É um sistema que possui componentes localizados em computadores interligados em rede e que se comunicam e coordenam suas ações através da troca de mensagens entre os componentes.
- 2. Cite três tipos de recursos de hardware e três tipos de recursos de software que podem ser compartilhados em um sistema distribuído. Dê exemplos de como alguns destes recursos podem ser compartilhados.
 - Hardware: discos, impressora, switch.
 - Software: arquivos, banco de dados, protocolos de comunicação.
 - Exemplos: Compartilhamento de impressora entre vários computadores em um escritório; Compartilhamento de documentos no google docs.
- 3. Cite dois fatores que permitiram o surgimento de sistemas distribuídos.
 - surgimento das redes locais de alto (ou de mais) desempenho e maior confiabilidade
 - Os avanços e melhorias da rede de computadores e comunicação entre hardwares e softwares.
- 4. Explique o que é transparência no contexto de sistemas distribuídos, e dê exemplos de diferentes tipos de transparência possíveis.
 - O objetivo da transparência é esconder do usuário e do programador de aplicação a separação de componentes em um SD.

Tipos de transparências possíveis:

- Acesso: Oculta diferenças na representação de dados e no modo de acesso a um recurso.
- Localização: Oculta o lugar em que um recurso está localizado.
- Replicação: Oculta que um recurso é replicado.
- 5. Descreva o que escalabilidade significa no contexto de sistemas distribuídos.

Os sistemas distribuídos são escaláveis, ou seja, é possível que os recursos do sistema sejam aumentados; A escalabilidade de um sistema reflete sua capacidade de oferecer um serviço de alta qualidade.

6. Quais os principais desafios para permitir que um sistema distribuído possua escalabilidade? Dê exemplos.

O sistema deve operar satisfatoriamente com um número crescente de dispositivos; O desempenho do sistema deve aumentar à medida em que aumentem os seus recursos. o sistema deve ser escalável, na medida da necessidade.

7. A Internet pode ser considerada um exemplo de sistema distribuído? Cite três ou mais características que confirmem sua resposta.

Sim. Ela conecta usuários através de sites e serviços, e-mail, transferência de arquivos, chat, etc. Os serviços estão localizados em máquinas dispersas que são interligadas por algum tipo de rede.

8. Dê um exemplo de heterogeneidade que pode ocorrer em um sistema distribuído.

Computação em grade: podem ter alta grau de heterogeneidade, no qual nenhuma premissa é adotada em relação ao hardware, sistemas operacionais ou infraestrutura de redes.

9. Explique o que é um middleware.

Para suportar computadores e redes simultaneamente, oferecendo uma visão de um sistema único, os sistemas distribuídos são organizados por meio de uma camada de software. O termo é usado para referir ao software que fica no meio entre os componentes distribuídos do sistema.

10. Quais são os requisitos necessários para que um sistema distribuído seja aberto?

As interfaces devem ser públicas e estarem disponíveis para facilitar a inserção de novos componentes; deve-se ter um ambiente "aberto", com amplas possibilidades de integração.

- 1. Defina cada um dos tipos de Modelos de Sistemas Distribuídos (Físico, Arquitetura e Fundamental).
 - Modelo físico: Um modelo físico é uma representação dos elementos de hardware de um sistema distribuído, abstraindo os detalhes específicos do computador e das tecnologias de rede empregadas. É o nível de realização da computação (rede real).
 - Modelo de Arquitetura: está preocupado com a disposição das partes do sistema distribuído e da relação entre elas. A arquitetura de um Sistema é sua estrutura em termos de componentes especificados separadamente, e assim fazer um sistema confiável, gerenciável, adaptável e de custo razoável.
 - Modelo Fundamental: Os modelos fundamentais envolvem uma descrição mais formal das propriedades comuns a todos os modelos de arquitetura. Cada modelo é destinado a fornecer uma descrição abstrata e simplificada, mas consistente, de um aspecto relevante do projeto de um sistema distribuído.
- 2. Com relação ao Modelo Físico, diferencie os Sistemas distribuídos adaptados para a Internet dos Sistemas distribuídos contemporâneos. Sistemas distribuídos adaptados para a Internet: Consiste em um conjunto extensível de nós interconectados pela internet, sistemas distribuídos globais. A heterogeneidade era no nível de compreender, por exemplo, redes, arquiteturas de computador, sistemas operacionais, linguagens empregadas.
 - Sistemas distribuídos contemporâneos: Arquitetura física com um aumento no nível de heterogeneidade. A heterogeneidade era no nível de compreender, por exemplo, os menores equipamentos incorporados utilizados na computação ubíqua, por meio de elementos computacionais complexos
- 3. Defina Ubíquo e Pervasivo, diferenciando essas duas características.
 - A computação ubíqua, também denominada computação pervasiva, é a utilização de vários dispositivos computacionais pequenos e baratos, que estão presentes nos ambientes físicos dos usuários, incluindo suas casas, escritórios e até na rua.
 - Pervasivo se destina a sugerir que pequenos equipamentos de computação finalmente se tornarão tão entranhados nos objetos diários que mal serão notados. Isto é, seu comportamento computacional será transparente e intimamente vinculado à sua função física.

4. Com relação ao Modelo de Arquitetura, quais são os seus elementos? Defina cada um deles.

- Paradigmas de Comunicação: São os modelos de comunicação utilizados para a interligação dos equipamentos
- Estilos Básicos: São os modelos básicos da arquitetura que pode ser utilizada nos sistemas distribuídos.
- Posicionamento: São as maneiras que será feita a comunicação interna dos equipamentos no sistema distribuído.
- Camadas: Dividido em 2 camadas, logica e física. A camada logica e um sistema complexo é particionado em várias camadas, com cada uma utilizando os serviços oferecidos pela camada lógica inferior. A camada física representa os equipamentos reais pertencentes na arquitetura, por exemplo, computadores, servidores.

5. Trace um paralelo entre os paradigmas de comunicação do modelo de Arquitetura para Sistemas Distribuídos.

Entre os três tipos de paradigmas, sendo eles: Comunicação entre processos, invocação remota e comunicação indireta, podemos afirmar que possuem uma característica em comum que é o uso de protocolos ou entidades para que seja possível realizar a comunicação. Os protocolos servem justamente para unificar a comunicação entre diferentes dispositivos.

6. Diferencie Agente Móvel de Código Móvel e os posicione em relação aos Modelos de SD.

Código Móvel denomina um conjunto de tecnologias de linguagem e plataforma de sistemas distribuídos que suportam a construção de programas de computador que são instalados em computadores servidores; transferidos sob demanda para computadores clientes e; automaticamente executados, da forma mais segura possível, sobre a plataforma dos computadores clientes.

Os Agentes Móveis são programas com a capacidade de migrarem de uma máquina para outra, interrompendo sua execução no momento da migração e retomando na máquina de destino do ponto onde pararam.

7. Explique, em linhas gerais, cada um dos Modelos Fundamentais.

O modelo de interação ocorre com o uso de troca de mensagem. Ele deve considerar que ocorrem atrasos e isso pode limitar a coordenação dos processos. O modelo de falhas define e classifica as falhas para que os sistemas projetados sejam capazes de tolerar certos tipos de falhas e continuar funcionando corretamente. O modelo de segurança define e classifica as formas que os ataques podem assumir, dando uma base para a análise de possíveis ameaças a um

sistema e guiar o desenvolvimento de sistemas capazes de resistir a eles.

1. Quais são as primitivas de passagem de mensagem e por que elas são necessárias?

As primitivas de passagem de mensagem são síncronas ou assíncronas e elas são necessárias para que seja possível a troca de mensagens. As primitivas podem ser consideradas um conjunto de regras, procedimentos e formatos para garantir a comunicação entre duas entidades geograficamente distintas.

2. Explique como se dá a Comunicação Síncrona e a Comunicação Assíncrona.

- Na comunicação síncrona o processo origem ao enviar a mensagem fica bloqueado até que o processo destino até que a recepção correspondente seja realizada. Quando uma recepção é realizada o processo fica bloqueado até que a mensagem chegue. Assim, tanto a operação send quanto a operação receive são bloqueantes na comunicação síncrona.
- Na comunicação assíncrona o processo origem ao enviar a mensagem fica liberado para prosseguir seu processamento, quanto a mensagem é enviada ao destino. Neste caso, a recepção da mensagem pode ser bloqueante ou não bloqueante. Na recepção não bloqueante o processo destino prossegue seu processamento até que a mensagem seja entregue. Na recepção bloqueante o processo destino é bloqueado enquanto e mensagem é transmitida e somente é liberado quando a mensagem é entregue.

3. Quais são e o que significam os requisitos da Confiabilidade.

São dois aspectos: Validade e Integridade. A validade possui a garantia de entrega da mensagem e na integridade a mensagem entregue não pode estar corrompida.

4. Explique a Orientação à Conexão.

Um protocolo de comunicação orientado a conexão significa que um host estabelece uma conexão com outro host, de forma que um pode enviar dados para o outro, garantindo sequência.

5. O que é e para que serve o Marshalling?

Marshalling é uma técnica de transformar um objeto binário e primitivo adequado para a memória em um objeto externo em formato adequado para transporte entre processos. O processo serve primariamente para que seja possível a troca de dados e informações em máquinas diferentes.

6. Por que é necessária a utilização de uma representação externa de dados num sistema distribuído?

É necessária essa representação externa de dados porque nenhum sistema em comunicação necessariamente é igual, por isso, a utilização da representação externa auxilia no entendimento e troca de mensagens entre as máquinas.

7. Trace um paralelo entre o HTML e o XML.

Ambos utilizam o formato de tags na codificação, mas seus objetivos variam. A grande diferença entre HTML e XML é que o HTML descreve a aparência e a ações em uma página na rede enquanto o XML não descreve nem aparência e ações, mas sim o que cada trecho de dados é ou representa. Em outras palavras, o XML descreve o conteúdo do documento.

- 1. Quais são as possibilidades de Invocação Remota e qual é a proposta de cada uma delas?
 - Protocolos de requisição-resposta, em que um cliente requisita ao servidor um conteúdo e o mesmo responde com a informação pedida.
 - Chamada de procedimento remoto e invocação a método remoto.
- 2. Liste e explique a função de cada uma das primitivas de Requisição-Resposta, relacionando-as com as funções send e receive.

Na requisição-respostas, existem métodos que servem para enviar (send) e receber (receive). O protocolo HTTP oferece o método GET, que serve para resgatar um determinado dado ou informação, enquanto o método POST serve para enviar uma informação, já o PUT é um método normalmente utilizado para atualizar informações do banco, e o DELETE como o próprio nome diz, para deletar algo.

3. Explique a comunicação entre um servidor e um cliente através das primitivas da técnica Requisição-Resposta.

O estabelecimento de uma conexão envolve dois pares extras de mensagens, além do par exigido por uma requisição e uma resposta. O controle de fluxo é redundante para a maioria das invocações, que passam apenas pequenos argumentos e resultados.

4. O HTTP pode ser considerado um protocolo requisição-resposta? Explique.

Sim. O protocolo HTTP é baseado em requisições e respostas entre clientes e servidores. O cliente — navegador ou dispositivo que fará a requisição. O servidor recebe estas informações e envia uma resposta, que pode ser um recurso ou um simplesmente um outro cabeçalho.

5. O que é e para o que serve uma Interface? O que pode ser descrito numa interface de SD?

As interfaces definem o que pode ser acessado a partir de um objeto ou módulo remoto. Em sistemas distribuídos apenas métodos são acessíveis através de interfaces.

6. Discuta a Transparência em RPC.

RPC tenta oferecer pelo menos transparência de localização e de acesso, ocultando o local físico do procedimento (potencialmente remoto) e também acessando procedimentos locais e remotos da mesma maneira.

7. Faça um diagrama com os principais componentes do RPC e explique

client process server process client server routines routines local procedure call = (1) (10) server stub client stub system call = (2) (9) (7) (4) (8) network network routines routines (3) network communications local kernel renote Kernel

a função de cada um deles.

• Client stub

- intercepta a chamada
- empacota os parâmetros (marshalling)
- envia mensagem de request ao servidor

• Server stub

- recebe a mensagem de request
- desempacota os parâmetros (unmarshalling
- chama o procedimento, passando os parâmetros
- empacota o resultado
- envia mensagem de reply ao cliente

• Client stub

- recebe a mensagem de reply

- desempacota o resultado
- passa o resultado para o cliente
- 8. Ilustre a invocação de métodos locais e remotos.

9. Quais são os diferentes tipos de interfaces RMI? Explique.

A camada de stub/skeleton, responsável por receber as chamadas da aplicação cliente feitas à interface e por reencaminhá-las para o objecto remoto. A camada de Referências Remotas (Remote Reference Layer), que lida com a gestão e com a interpretação das referências remotas. A camada de Transporte, que assegura a ligação entre as máquinas virtuais através de TCP/IP.