Learning to generate: Concept-to-text generation using machine learning

Ioannis Konstas

Institute for Language, Cognition and Computation University of Edinburgh

Aberdeen, NLG Summer School 21 July 2015

Full Descriptor

Introduction

Full Descriptor	rime
SETTING; VENTIL; FiO2 (36%)	10.30
MEDICATION; Morphine	10.44
ACTION;CARE;TURN/	
CHANGE POSITION; SUPINE	10.46-10.47
ACTION;RESP;HAND BABY	10.47-10.51
SETTING;VENTIL;FiO2 (60%)	10.47
ACTION;RESP;INTUBATE	10.51-10.52

Action Records

Sensor Data

Time

Concept-to-text generation refers to the task of automatically producing textual output from nonlinguistic input (Reiter and Dale, 2000)

Concept-to-text generation refers to the task of automatically producing textual output from nonlinguistic input (Reiter and Dale, 2000)

Sky Cover

Temperature Time Min Mean Max 06-21 52 61 70 Rain Chance

_)	V	Wind Speed			
x	Time	Min	Mean	Max	
J	06-21	11	22	29	
Snow Chance					

)	Gust			
1	Time	Min	Mean	Max
J	06-21	0	20	39
	$\overline{}$			

h	Precip	itatio	n Pot	ential
	Time	Min	Mean	Max
ш	06 21	26	01	100

. ,		
Time	Percent (%)	
06-21	75-100	
06-09	75-100	
06-13	50-75	
09-21	75-100	
13-21	75-100	

Time	Mode
06-21	Def
06-09	Lkly
06-13	Def
09-21	Def
13-21	Def

SHOW	Chance
Time	Mode
06-21	_
06-09	-
06-13	-
09-21	-
13-21	-

Sleet (Sleet Chance		
Time	Mode		
06-21	-		
06-09	-		
06-13	-		
09-21	-		
13-21	-		
(

Freezing Rain Chan			
	Time	Mode	
	06-21	-	
	06-09	-	
	06-13	-	
	09-21	-	
	13-21	-	

Thunder	Chance
Time	Mode
06-21	Def
06-09	Lkly
06-13	Chc
09-21	Def
13-21	Def

Showers and thunderstorms. High near 70.

Cloudy, with a south wind around 20mph, with gusts as high as 40 mph.

Chance of precipitation is 100%.

Concept-to-text generation refers to the task of automatically producing textual output from nonlinguistic input (Reiter and Dale, 2000)

Navigate Window		
Cmd Name Type		
left-click	accounts and users	window

	Con	text Men	u
	Cmd	Name	Туре
Ī	eft-click	advanced	tab

Action	Context	Menu
Cmd	Name	Туре
left-click	advanced	button

Window Target				
Cmd	Name		Туре	
double-click	users	and	passwords	item

Click start, point to settings, and then click control panel.

Double-click users and passwords.

On the advanced tab, click advanced.

What has been done so far?

What has been done so far?

 Expert knowledge deployed for the creation of hand-crafted rules single domain

What has been done so far?

- Expert knowledge deployed for the creation of hand-crafted rules single domain
- Manually annotated corpora discourse relations, alignments

What has been done so far?

- Expert knowledge deployed for the creation of hand-crafted rules single domain
- Manually annotated corpora discourse relations, alignments
- Breakdown of process into a pipeline of modules

What we will look into today?

What we will look into today?

• Recast NLG into a generative model

What we will look into today?

- Recast NLG into a generative model
- Learn parameters from (un)-annotated data multiple domains

What we will look into today?

- Recast NLG into a generative model
- Learn parameters from (un)-annotated data multiple domains
- Search for the best parameters that fit the input and decode into text

Outline

- Problem Formulation
- Learning Alignments
- Pipeline Approach
- Joint Approaches

Outline

- Problem Formulation
- Learning Alignments
- Pipeline Approach
- Joint Approaches

- Input: database records d
- Output: words w corresponding to some records of d
- Each record $r \in \mathbf{d}$ has a type r.t and fields f
- Fields have values f.v and types f.t (integer, categorical, string)

Cloud Sky Cover		
Time	Percent (%)	
06:00-09:00	25-50	
09:00-12:00	50-75	

- Input: database records d
- Output: words w corresponding to some records of d
- Each record $r \in \mathbf{d}$ has a type r.t and fields f
- Fields have values f.v and types f.t (integer, categorical, string)

Cloud Sky Cover		
Time	Percent (%)	
06:00-09:00	25-50	
09:00-12:00	50-75	

- Input: database records d
- Output: words w corresponding to some records of d
- Each record $r \in \mathbf{d}$ has a type r.t and fields f
- Fields have values f.v and types f.t (integer, categorical, string)

Cloud Sky Cover		
Time	Percent (%)	
06:00-09:00	25-50	
09:00-12:00	50-75	

- Input: database records d
- Output: words w corresponding to some records of d
- Each record $r \in \mathbf{d}$ has a type r.t and fields f
- Fields have values f.v and types f.t (integer, categorical, string)

Cloud Sky Cover		
Time	Percent (%)	
06:00-09:00	25-50	
09:00-12:00	50-75	

- Input: database records d
- Output: words w corresponding to some records of d
- Each record $r \in \mathbf{d}$ has a type r.t and fields f
- Fields have values f.v and types f.t (integer, categorical, string)

Cloud Sky Cover		
Time	Percent (%)	
06:00-09:00	25-50	
09:00-12:00	50-75	

Temperature			
Time	Min	Mean	Max
06:00-21:00	9	15	21

Cloud Sky Cover			
Time	Percent (%)		
06:00-09:00	25-50		
09:00-12:00	50-75		

Wind Speed			
Time	Min	Mean	Max
06:00-21:00	15	20	30

Wind Direction		
Time	Mode	
06:00-21:00	S	

Ĺ	Temperature				
	Time	Min	Mean	Max	
l	06:00-21:00	9	15	21	

Cloud Sky Cover			
Time	Percent (%)		
06:00-09:00	25-50		
09:00-12:00	50-75		

vvina Speea				
	Time	Min	Mean	Max
	06:00-21:00	15	20	30

Wind Direction		
Time	Mode	
06:00-21:00	S	

Temperature				
	Time	Min	Mean	Max
l	06:00-21:00	9	15	21

Cloud Sky Cover			
Time	Percent (%)		
06:00-09:00	25-50		
09:00-12:00	50-75		

Wind Speed				
	Time	Min	Mean	Max
	06:00-21:00	15	20	30

Wind Direction		
Time	Mode	
06:00-21:00	S	

Temperature				
	Time	Min	Mean	Max
l	06:00-21:00	9	15	21

Cloud Sky Cover			
Time	Percent (%)		
06:00-09:00	25-50		
09:00-12:00	50-75		

Wind Speed			
Time	Min	Mean	Max
06:00-21:00	15	20	30

Wind Direction		
Time	Mode	
06:00-21:00	S	

Temperature				
Time	Min	Mean	Max	
06:00-21:00	9	15	21	

Cloud Sky Cover		
Time	Percent (%)	
06:00-09:00	25-50	
09:00-12:00	50-75	

Wind Speed			
Time	Min	Mean	Max
06:00-21:00	15	20	30

Wind Direction		
Time	Mode	
06:00-21:00	S	

Temperature			
Time	Min	Mean	Max
06:00-21:00	9	15	21

Cloud Sky Cover		
Time	Percent (%)	
06:00-09:00	25-50	
00.00-12.00	50-75	

Wind Speed			
Time	Min	Mean	Max
06:00-21:00	15	20	30

Wind Direction		
Time	Mode	
06:00-21:00	S	

Cloudy, with a low around 10. South wind between 15 and 30 mph.

Partly cloudy, with a low around 9. Breezy, with a south wind between 15 and 30 mph.

Traditional NLG Pipeline

Traditional NLG Pipeline

Liang et al., ACL 2009

Learning Semantic Correspondences with Less Supervision

Alignment Task

Generative Story

① Record choice: choose a sequence of records $\mathbf{r} = \left(r_1, \ldots, r_{|\mathbf{r}|}\right)$

$$p(\mathbf{r} \mid \mathbf{d}) = \prod_{i}^{|\mathbf{r}|} p(r_i.t \mid r_{i-1}.t) \frac{1}{|\mathbf{s}(r_i.t)|}$$

$$p(\mathbf{r}, \mathbf{f}, \mathbf{c}, \mathbf{w}|\mathbf{d}) = p(\mathbf{r}|\mathbf{d})p(\mathbf{f}|\mathbf{r})p(\mathbf{c}, \mathbf{w}|\mathbf{r}, \mathbf{f}, \mathbf{d})$$

Generative Story

① Record choice: choose a sequence of records $\mathbf{r} = (r_1, \dots, r_{|\mathbf{r}|})$

$$p(\mathbf{r} \mid \mathbf{d}) = \prod_{i}^{|\mathbf{r}|} p(r_i.t \mid r_{i-1}.t) \frac{1}{|\mathbf{s}(r_i.t)|}$$

② Field choice: for each chosen record r_i , select a sequence of fields $f_i = (f_{i1}, \dots, f_{i|f_i|})$

$$p(\mathbf{f} \mid r_i.t) = \prod_{k}^{|r_i.f|} p(r_i.f_k \mid r_i.f_{k-1})$$

$$p(\mathbf{r}, \mathbf{f}, \mathbf{c}, \mathbf{w}|\mathbf{d}) = p(\mathbf{r}|\mathbf{d})p(\mathbf{f}|\mathbf{r})p(\mathbf{c}, \mathbf{w}|\mathbf{r}, \mathbf{f}, \mathbf{d})$$

Generative Story

① Record choice: choose a sequence of records $\mathbf{r} = (r_1, \dots, r_{|\mathbf{r}|})$

$$p(\mathbf{r} | \mathbf{d}) = \prod_{i}^{|\mathbf{r}|} p(r_i.t | r_{i-1}.t) \frac{1}{|\mathbf{s}(r_i.t)|}$$

② Field choice: for each chosen record r_i , select a sequence of fields $f_i = (f_{i1}, \dots, f_{i|f_i|})$

$$p(\mathbf{f} | r_i.t) = \prod_{k=1}^{|r_i.f|} p(r_i.f_k | r_i.f_{k-1})$$

③ Word choice: for each chosen field f_{ik} , choose a number $c_{ik} > 0$ uniformly, and generate a sequence of c_{ik} words.

$$p(\mathbf{w} | r_i, r_i.f_k, r_i.f_k.t, c_{ik}) = \prod_{i}^{|\mathbf{w}|} p(w_i | r_i.t, r_i.f_k.v)$$

$$p(\mathbf{r}, \mathbf{f}, \mathbf{c}, \mathbf{w} | \mathbf{d}) = p(\mathbf{r} | \mathbf{d}) p(\mathbf{f} | \mathbf{r}) p(\mathbf{c}, \mathbf{w} | \mathbf{r}, \mathbf{f}, \mathbf{d})$$

Hierarchical Semi-Markov Model (HSMM)

EM Training: dynamic program similar to the inside-outside algorithm

Konstas (ILCC) Concept-to-Text Generation 21 July 2015 13 / 56

Aligned Output

Outline

- Problem Formulation
- Learning Alignments
- Pipeline Approach
- Joint Approaches

Traditional NLG Pipeline

Angeli et al., EMNLP 2010

A Simple Domain-Independent Probabilistic Approach to Generation

for
$$i = 1, 2, ...$$
:

① choose a record $r_i \in \mathbf{d}$

```
for i = 1, 2, ...:
```

- **1 choose** a record $r_i \in \mathbf{d}$
- ② if $r_i = \text{STOP}$: return

for i = 1, 2, ...:

- **1 choose** a record $r_i \in \mathbf{d}$
- ② if $r_i = \text{STOP}$: return
- **3 choose** a field $f_i \in r_i.t.\mathbf{f}$

```
for i = 1, 2, ...:
```

- **1 choose** a record $r_i \in \mathbf{d}$
- ② if $r_i = \text{STOP}$: return
- **3 choose** a field $f_i \in r_i.t.\mathbf{f}$
- **o** choose a template $T_k \in r_i.t.f_j.T$

```
for i = 1, 2, ...:
```

- **1 choose** a record $r_i \in \mathbf{d}$
- ② if $r_i = \text{STOP}$: return
- **3 choose** a field $f_i \in r_i.t.\mathbf{f}$
- **o** choose a template $T_k \in r_i.t.f_j.T$

```
for i = 1, 2, ...:
```

- **1 choose** a record $r_i \in \mathbf{d}$
- ② if $r_i = \text{STOP}$: return
- **3 choose** a field $f_i \in r_i.t.\mathbf{f}$
- **4 choose** a template $T_k \in r_i.t.f_i.T$

Each decision is governed by a set of feature templates

Record	R1	list of $k = 1, 2$ record types	$r_2.t$ =temp \land $(r_1.t, r_0.t)$ =(skyCover, START)
	R2	set of prev record types	$r_2.t$ =temp $\land \{r_1.t\}$ ={skyCover}
	R3	record type already gen	$r_2.t$ =temp $\land r_j.t \neq$ temp, $\forall j < 2$
	R4	field values	$r_2.t$ =temp $\land r_2.v[min]=10, r_2.v[max]=20$
	R5	STOP under LM	$r_3.t = STOP \times p_{LM}(STOP degrees .)$

Record	R2 R3	list of $k = 1, 2$ record types set of prev record types record type already gen	$r_2.t = \text{temp} \land (r_1.t, r_0.t) = (\text{skyCover}, \text{START})$ $r_2.t = \text{temp} \land \{r_1.t\} = \{\text{skyCover}\}$ $r_2.t = \text{temp} \land r_j.t \neq \text{temp}, \forall j < 2$
	K4	field values	$r_2.t$ =temp $\land r_2.v[min]=10, r_2.v[max]=20$
	R5	STOP under LM	$r_3.t = STOP \times p_{LM}(STOP degrees .)$
Field	F1	field set	$f_2 = \{ time, min, mean, max \}$
	F2	field values	$f_2 = \{ min, max \} \land f_2.v[min] = 10, \dots$

Record	R1	list of $k = 1, 2$ record types	$r_2.t$ =temp \land $(r_1.t, r_0.t)$ =(skyCover, START)
	R2	set of prev record types	$r_2.t$ =temp $\land \{r_1.t\}$ ={skyCover}
	R3	record type already gen	$r_2.t$ =temp $\land r_j.t \neq$ temp, $\forall j < 2$
	R4	field values	$r_2.t$ =temp $\land r_2.v[min]=10, r_2.v[max]=20$
	R5	STOP under LM	$r_3.t = STOP \times p_{LM}(STOP degrees .)$
Field	F1	field set	$f_2 = \{ \text{time, min, mean, max} \}$
	F2	field values	$f_2 = \{ min, max \} \land f_2.v[min] = 10, \dots$
Templat	eW1	base/coarse	$B(T_2) = \langle with a low around [min] \rangle$
			$C(T_2) = \langle with a [time] around [min] \rangle$
	W2	field values	
	W3	1_{st} word of T under LM	$ ho_{LM}(exttt{with} exttt{cloudy}$,)

Record	R1	list of $k = 1, 2$ record types	$r_2.t$ =temp $\land (r_1.t, r_0.t)$ =(skyCover, START)
	R2	set of prev record types	$r_2.t$ =temp $\land \{r_1.t\}$ ={skyCover}
	R3	record type already gen	$r_2.t$ =temp $\land r_j.t \neq$ temp, $\forall j < 2$
	R4	field values	$r_2.t$ =temp $\land r_2.v[min]=10, r_2.v[max]=20$
	R5	STOP under LM	$r_3.t = \text{STOP} \times p_{LM}(\text{STOP} \text{degrees} .)$
Field	F1	field set	$f_2 = \{ time, min, mean, max \}$
	F2	field values	$f_2 = \{ min, max \} \land f_2.v[min] = 10, \dots$
Templat	eW1	base/coarse	$B(T_2) = \langle with \; a \; low \; around \; [min] \rangle$
			$C(T_2) = \langle with a [time] around [min] \rangle$
	W2	field values	
	W3	1_{st} word of T under LM	$p_{LM}(\text{with} \text{cloudy ,})$

$$p(\mathbf{c}|\mathbf{d}; heta) = \prod_{j=1}^{|\mathbf{c}|} p(c_j|c_{< j}; heta)$$

Record	R1	list of $k = 1, 2$ record types	$r_2.t = \text{temp} \land (r_1.t, r_0.t) = (\text{skyCover, START})$
	R2	set of prev record types	$r_2.t$ =temp $\land \{r_1.t\}$ ={skyCover}
	R3	record type already gen	$r_2.t$ =temp $\land r_j.t \neq$ temp, $\forall j < 2$
	R4	field values	$r_2.t$ =temp $\land r_2.v[min]=10, r_2.v[max]=20$
	R5	${\tt STOP} \ \textbf{under} \ LM$	$r_3.t = STOP \times p_{LM}(STOP degrees .)$
Field	F1	field set	$f_2 = \{ \text{time, min, mean, max} \}$
	F2	field values	$f_2 = \{ min, max \} \land f_2.v[min] = 10, \dots$
Templat	eW1	base/coarse	$B(T_2) = \langle with a low around [min] \rangle$
			$C(T_2) = \langle with a [time] around [min] \rangle$
	W2	field values	
	W3	$1_{\it st}$ word of T under LM	$ ho_{LM}(exttt{with} exttt{cloudy}$,)

$$p(\mathbf{c}|\mathbf{d}; heta) = \prod_{j=1}^{|\mathbf{c}|} p(c_j|c_{< j}; heta)$$

L-BFGS learning: Use Liang et al. (2009) alignments to compute features

$$\hat{c}_j = \arg\max_{c_j} p(c_j | c_{< j}; \theta)$$

• Greedy search: choose the best decision $\hat{c_i}$ until the STOP record is drawn

$$\hat{c}_j = \arg\max_{c_j} p(c_j|c_{< j};\theta)$$

- Greedy search: choose the best decision $\hat{c_i}$ until the STOP record is drawn
- Alternatively, sample from the distribution $p(c_i|c_{< i};\theta)$;

$$\hat{c}_j = \arg\max_{c_j} p(c_j|c_{< j};\theta)$$

- Greedy search: choose the best decision \hat{c}_i until the STOP record is drawn
- Alternatively, sample from the distribution $p(c_i|c_{< i};\theta)$;
- Viterbi search over arg $\max_{c_i} p(c_i | \mathbf{d}; \theta)$

Conclusions

- Generation recast into a generative story
- Ensemble of local decisions
- Discriminatively trained end-to-end generation system

Conclusions

- Generation recast into a generative story
- Ensemble of local decisions
- Discriminatively trained end-to-end generation system
- How about we model generation jointly and learn without supervision?

Outline

- Problem Formulation
- Learning Alignments
- Pipeline Approach
- Joint Approaches

Traditional NLG Pipeline

Konstas and Lapata, NAACL 2012

Unsupervised Concept-to-text Generation with Hypergraphs

Konstas and Lapata, JAIR 2013

A Global Model for Concept-to-Text Generation

Konstas (ILCC)

- \bullet S \rightarrow R(start)

 $\mathsf{R}(\mathit{skyCover}_1.t) \to \mathsf{FS}(\mathit{temperature}_1, \mathit{start}) \mathsf{R}(\mathit{temperature}_1.t)$

 $R(skyCover_1.t) \rightarrow FS(temperature_1, start)R(temperature_1.t)$

- \bullet S \rightarrow R(start)
- $R(r_i,t) \rightarrow FS(r_i, start)R(r_i,t) \mid FS(r_i, start)$
- \bullet FS $(r, r.f_i) \rightarrow F(r, r.f_i)$ FS $(r, r.f_i) \mid F(r, r.f_i)$

 $\mathsf{FS}(wSpeed_1, min) \to \mathsf{F}(wSpeed_1, max) \mathsf{FS}(wSpeed_1, max)$

- \bullet S \rightarrow R(start)
- $R(r_i,t) \rightarrow FS(r_i, start) R(r_i,t) \mid FS(r_i, start)$
- \bullet FS $(r, r.f_i) \rightarrow F(r, r.f_i)$ FS $(r, r.f_i) \mid F(r, r.f_i)$

 $F(gust_1, min) \rightarrow W(gust_1, mean)F(gust_1, mean)$

- \bullet S \rightarrow R(start)
- $R(r_i,t) \rightarrow FS(r_i, start) R(r_i,t) \mid FS(r_i, start)$
- \bullet FS $(r, r.f_i) \rightarrow F(r, r.f_i)$ FS $(r, r.f_i) \mid F(r, r.f_i)$
- **6** W $(r, r, f) \rightarrow \alpha \mid g(f, v)$

$$W(skyCover_1, \%) \rightarrow cloudy [\%.v = '75-100']$$

- $\mathbf{0} \ \mathsf{S} \to \mathsf{R}(\mathit{start})$
- $R(r_i,t) \rightarrow FS(r_j, start) R(r_j,t) \mid FS(r_j, start)$

EM Training: dynamic program similar to the inside-outside algorithm

$$\hat{g} = f\left(\arg\max_{g,h} p(g) \cdot p(g,h \mid \mathbf{d})\right)$$

$$\hat{g} = f\left(\arg\max_{g,h} p(g) \cdot p(g,h \mid \mathbf{d})\right)$$

- Bottom-up Viterbi search
- Keep k-best derivations at each node, cube pruning (Chiang, 2007)
- p(g) rescores derivations by linearly interpolating:
 - n-gram language model
 - dependency model (DMV; Klein and Manning, 2004)
- Implement using hypergraphs (Klein and Manning, 2001)

Leaf nodes ϵ emit a k-best list of words


```
mostly cloudy ★ the morning; JJ
mostly cloudy * after 11am; JJ
mostly cloudy * then becoming; JJ
                                                           FS_{0.5}(skyCover_1.t,start)
 mostly cloudy; RB
 mostly clouds; NNS cloudy ,; JJ
                                     F_{0,2}(skyCover_1.t,\%)
                                                                                    W_{4,5}(skyCover_1.t,time)
                                                                                          morning; NN \
11am; NN
after; PREP
               W_{0,1}(skyCover_1.t,\%)
                                                          W_{1,2}(skyCover_1.t,\%)
```

```
mostly cloudy ★ the morning; JJ
mostly cloudy * after 11am; JJ
                                                        FS_{0.5}(skyCover_1.t,start)
mostly cloudy * then becoming; JJ
 mostly cloudy; RB
                                    F_{0,2}(skyCover_1.t,\%)
 mostly clouds; NNS cloudy ,; JJ
                                                                                W_{4,5}(skyCover_1.t,time)
                                                                                      morning; NN \ 11am; NN
                                                                                      after; PREP
                                                       W_{1,2}(skyCover_1.t,\%)
               W_{0,1}(skyCover_1.t,\%)
                    mostly ; RB
cloudy ; JJ
sunny ; JJ
                                                            mostly ; RB
cloudy ; JJ
sunny ; JJ
```

Decoding

```
mostly cloudy * the morning; JJ
mostly cloudy * after 11am; JJ
                                              FS_{0.5}(skyCover_1.t,start)
mostly cloudy * then becoming; JJ
 mostly cloudy; RB
                             F_{0,2}(skyCover_1.t,\%)
 mostly clouds; NNS
                                                                  W_{4,5}(skyCover_1.t,time)
 cloudy ,; JJ
                                                                      morning; NN `
                                                                        11am; NN
                                                                       after; PREP
            W_{0,1}(skyCover_1.t,\%)
                                             W_{1,2}(skyCover_1.t,\%)
```

Experimental Setup

Data

- ROBOCUP: simulated sportscasting [214 words] (Chen and Mooney, 2008)
- WEATHERGOV: weather reports [4 sents, 345 words] (Liang et al., 2009)
- ATIS: flight booking [1 sent, 927 words]
 (Zettlemoyer and Collins, 2007)
- WINHELP: troubleshooting guides [4.3 sents, 629 words] (Branavan et al., 2009)

Experimental Setup

Data

- ROBOCUP: simulated sportscasting [214 words] (Chen and Mooney, 2008)
- WEATHERGOV: weather reports [4 sents, 345 words] (Liang et al., 2009)
- ATIS: flight booking [1 sent, 927 words]
 (Zettlemoyer and Collins, 2007)
- WINHELP: troubleshooting guides [4.3 sents, 629 words]
 (Branavan et al., 2009)

Evaluation

- Automatic evaluation: BLEU-4
- Human evaluation: Fluency, Semantic Correctness

Experimental Setup

Data

- ROBOCUP: simulated sportscasting [214 words] (Chen and Mooney, 2008)
- WEATHERGOV: weather reports [4 sents, 345 words] (Liang et al., 2009)
- ATIS: flight booking [1 sent, 927 words]
 (Zettlemoyer and Collins, 2007)
- WINHELP: troubleshooting guides [4.3 sents, 629 words]
 (Branavan et al., 2009)

Evaluation

- Automatic evaluation: BLEU-4
- Human evaluation: Fluency, Semantic Correctness

System Comparison

- 1-best, k-Best-lm, k-Best-lm-dmv
- Angeli et al. (2010)

Results: Automatic Evaluation

Results: Human Evaluation (Fluency)

Output

WeatherGov

,	Tem	perat	ure	
	Time		Mean	Max
	06:00-21:00	30	38	44

Cloud Sky Cover	
	Percent (%)
06:00-21:00	75-100

	Chance	e of Rain
	Time	Mode
	06:00-11:00	Slight Chance
`		

	Wind Speed			
	Time	Min	Mean	Max
[06:00-21:00	6	6	7

ction	
Mode	
ENE	

Precipitation Potential (%)			
Time	Min	Mean	Max
06:00-21:00	9	20	35

k-Best: A chance of rain showers before 11am. Mostly cloudy, with a high near 44. East wind between 6 and 7 mph.

Angell: A chance of showers. Patchy fog before noon. Mostly cloudy, with a high near 44. East wind between 6 and 7 mph. Chance of precipitation is 35%

 ${
m Human:}$ A 40 percent chance of showers before 10am. Mostly cloudy, with a high near 44. East northeast wind around 7 mph.

Output

Atis

Input:

Ĺ	Flig	ht		Day
	from	to	day	dep/ar/ret
	milwaukee	phoenix	saturday	y departure

Search type what query flight

What are the flights from Milwuakee to Phoenix on Saturday k-Best:

Show me the flights between Milwuakee and Phoenix on Saturday Angeli:

Milwuakee to Phoenix on Saturday HUMAN:

Dependency Output

Conclusions

- Generation as parsing problem
- Unsupervised end-to-end generation system
- Performance comparable to state-of-the-art

Conclusions

- Generation as parsing problem
- Unsupervised end-to-end generation system
- Performance comparable to state-of-the-art
- What about document planning?

Traditional NLG Pipeline

Traditional NLG Pipeline

Konstas and Lapata, EMNLP 2013

Inducing Document Plans for Concept-to-text Generation, EMNLP 2013

Desktop

Cmd Name Type

left-click start button

Start

Cmd Name Type

left-click settings button

Name Type
start menu button
control panel window

Start Target

Cmd Name Type

left-click control panel button

Navigate Window

Cmd Name Type

left-click accounts and users window

Context Menu

Cmd Name Type

left-click advanced tab

Action Context Menu
Cmd Name Type
left-click advanced button

Window Target

Cmd Name Type
double-click users and passwords item

Click start, point to settings, and then click control panel.

Double-click users and passwords.

On the advanced tab, click advanced.

	Navigate	Wii	ndow	
Cmd	₽ l d	me	<	Туре
left elick	accounts	and	users	window

Con	text Men	u
Cmd	Name	Туре
left-click	advanced	tab

Window Target				
Cmd		Na	me	Туре
double-click	users	and	passwords	item

Click start, point to settings, and then click control panel.

Double-click users and passwords.

On the advanced tab, click advanced.

	Start	
Cmd	Name	Туре
left-click	settings	button
$\overline{}$		

	Start	Target)
Cm		lame	Туре
left-cl	lick contr	rol panel	button

Window Target							
Cmd	Name	Туре					
double-click	users and passwords	item					

Ì	Context Menu							
	Cmd	Name	Туре					
	left-click	advanced	tab					

Click start, point to settings, and then click control panel. Double-click users and passwords.

On the advanced tab, click advanced.

Key Idea: Grammar-based document plans

Key Idea: Grammar-based document plans

• Re-use the generation model based on a PCFG grammar of input

Key Idea: Grammar-based document plans

- Re-use the generation model based on a PCFG grammar of input
- Replace existing locally coherent **Content Selection** model and incorporate global **Document Planning** (explore two solutions):

Key Idea: Grammar-based document plans

- Re-use the generation model based on a PCFG grammar of input
- Replace existing locally coherent **Content Selection** model and incorporate global **Document Planning** (explore two solutions):

Key Idea: Grammar-based document plans

- Re-use the generation model based on a PCFG grammar of input
- Replace existing locally coherent Content Selection model and incorporate global **Document Planning** (explore two solutions):

Patterns of record sequences within a sentence and among sentences

Rhetorical Structure Theory (Mann and Thompson, 1988) inspired plans

Key idea: Grammar on sequences of record types

Key idea: Grammar on sequences of record types

Click start, point to settings, and then click control panel. || Double-click users and passwords. || On the advanced tab, click advanced. ||

Split a document into sentences, each terminated by a full-stop.

Key idea: Grammar on sequences of record types

① Click start, point to settings, and then click control panel. || Double-click users and passwords. || On the advanced tab, click advanced. ||

Split a document into sentences, each terminated by a full-stop.

desktop | start | start-target

Click start, point to settings, and then click control panel.

window-target
Double-click users and passwords.

| contextMenu | action-contextMenu |
| On the advanced tab, click advanced.

Then split a sentence further into a sequence of record types.

Key idea: Grammar on sequences of record types

Click start, point to settings, and then click control panel. || Double-click users and passwords. || On the advanced tab, click advanced. ||

Split a document into sentences, each terminated by a full-stop.

desktop | start | start-target

Click start, point to settings, and then click control panel.

window-target
Double-click users and passwords.

| contextMenu | action-contextMenu |
| On the advanced tab, click advanced.

Then split a sentence further into a sequence of record types.

Goal: Learn patterns of record type sequences within and among sentences

- \bullet S \rightarrow R(start)
- $R(r_i,t) \rightarrow FS(r_i,start)R(r_i,t) \mid FS(r_i,start)$
- \bullet FS $(r, r.f_i) \rightarrow F(r, r.f_i)$ FS $(r, r.f_i) \mid F(r, r.f_i)$

Konstas (ILCC)

- \bullet FS $(r, r.f_i) \rightarrow F(r, r.f_i)$ FS $(r, r.f_i) \mid F(r, r.f_i)$
- \bullet $\mathsf{F}(r,r.f) \rightarrow \mathsf{W}(r,r.f) \mathsf{F}(r,r.f) \mid \mathsf{W}(r,r.f)$
- \bullet W(r, r.f) $\rightarrow \alpha \mid g(f.v) \mid gen str(f.v, i)$

Konstas (ILCC)

- \bullet $FS(r, r.f_i) \rightarrow F(r, r.f_j) FS(r, r.f_j) | F(r, r.f_j)$

Straightforward solution: Embed the parameters with the original grammar and train using ${\sf EM}$

Konstas (ILCC)

- \bullet FS $(r, r.f_i) \rightarrow F(r, r.f_i)$ FS $(r, r.f_i) \mid F(r, r.f_i)$
- \bullet $F(r,r.f) \rightarrow W(r,r.f)F(r,r.f) \mid W(r,r.f)$
- **6** W(r, r.f) $\rightarrow \alpha \mid g(f.v) \mid gen_str(f.v, i)$

Straightforward solution: Embed the parameters with the original grammar and train using EM

Plan B: Extract grammar rules from training data

Konstas (ILCC) Concept-to-Text Generation 42 / 56

de	sktop	start		start-	target	window-target		
Clicl	k start,	point to set	tings,	and then click control panel.		Double-click users and passwords.		
	contextMenu actio			n-contextMenu				
On t	On the advanced tab , cl		clic	k advanced.		1:1 (2000)		

Liang et al. (2009)

desktop	start		start-	target	window-target		
Click start,	point to settings,		and then click control panel.		Double-click users and passwords.		
contex	tMenu	action	n-contextMenu				
On the advanced tab , cli		clic	k advanced.		Liang et al. (2009)		

 $\left[\text{ desktop start start-target} \parallel \text{window-target} \parallel \text{contextMenu action-contMenu} \parallel \right]$

deskton

	uesktop	Start		Start-target		Willdow-target			
	Click start,	point to settings,		and then click control panel.		Double-click users and password			
	contextMenu action			n-contextMenu					
	On the advanced tab , click advanced.			ck advanced.		Liang et al. (2009)			
	П								
$\left[\begin{array}{c c} desktop \ start \ start-target \ \ \ window-target \ \ \ contextMenu \ action-contMenu \ \ \ \end{array}\right]$									
	D								
SENT	SENT(desk, start, start-target) SENT(win-target) SENT(contMenu, action-contMenu)								

start-target

R(desk) R(start) R(start-target) R(win-target) R(contMenu) R(action-contMenu)

window-target

	desktop	start	start-target			window-target				
	Click start,	point to set	tings,	and then click control panel.		Double-click users and passwords.		nd passwords.		
	contex	tMenu	action-contextMenu							
	On the advanced tab , cli				k advanced. Liang et al. (et al. (2009)		
	77									
	$\Big[\ desktop\ start\ start\text{-}target\ \ \ window\text{-}target\ \ \ contextMenu\ action\text{-}contMenu\ \ \ \Big]$									
	D									
SENT	SENT(desk, start, start-target) SENT(win-target) SENT(contMenu, action-contMenu)									
R(desk	R(desk) R(start) R(start-target) R(win-target) R(contMenu) R(action-contMenu)									
	D									
	SENT(desk, start, start-target) [SENT(win-target)-SENT(contMenu, action-contMenu)]									
	R(desk) SENT(start, start-targ					SENT(v	win-target)	SENT(contMenu	u, action-contMenu)	
R(start) R(start-target)						t) R(wir	n-target)	R(contMenu)	R(action-contMenu)	

RST (Mann and Thompson, 1988)

Open the control panel, and click on the sound settings.

RST (Mann and Thompson, 1988)

Open the control panel, and click on the sound settings.

RST (Mann and Thompson, 1988)

Open the control panel, and click on the sound settings.

RST (Mann and Thompson, 1988)

Key idea: Grammar using RST relations (G_{RST})

Key idea: Grammar using RST relations (G_{RST})

Assumption

Each record in the database input corresponds to a unique non-overlapping span in the collocated text, and can be therefore mapped to an EDU.

desktop	start		start-target		window-target	
Click start,	point to settings,		and then click control panel.		Double-click users and passwords.	
contextMenu		action	n-contextMenu			
On the advanced tab ,		click advanced.			Liang et al. (2009)	

21 July 2015

46 / 56

desktop	start		start-target		window-target	
Click start,	point to settings,		and then click control panel.		Double-click users and passwords.	
contextMenu		actio	n-contextMenu			
On the advanced tab ,		click advanced.			Liang et al. (2009)	

[Click start,] desktop [point to settings,] start [and then click control panel.] $^{start-target}$ [Double-click users and passwords.] $^{window-target}$ [On the advanced tab,] contextMenu [click advanced.] $^{action-contextMenu}$

Extended Grammar

- GRST

Experimental Setup

Data

- WEATHERGOV: weather reports [4 sents, 345 words] (Liang et al., 2009)
- WINHELP: troubleshooting guides [4.3 sents, 629 words] (Branavan et al., 2009)

Experimental Setup

Data

- WEATHERGOV: weather reports [4 sents, 345 words] (Liang et al., 2009)
- WINHELP: troubleshooting guides [4.3 sents, 629 words]
 (Branavan et al., 2009)

Evaluation

- Automatic evaluation: BLEU-4
- Human evaluation: Fluency, Semantic Correctness, Coherence

Experimental Setup

Data

- WEATHERGOV: weather reports [4 sents, 345 words] (Liang et al., 2009)
- WINHELP: troubleshooting guides [4.3 sents, 629 words]
 (Branavan et al., 2009)

Evaluation

- Automatic evaluation: BLEU-4
- Human evaluation: Fluency, Semantic Correctness, Coherence

System Comparison

- GRSE, GRST
- Konstas and Lapata (2012a)
- Angeli et al. (2010)

Results: Automatic Evaluation (BLEU-4)

Results: Human Evaluation (Coherence)

Click start, point to settings, and then click control panel. Double-click network and dial-up connections. Right-click local area connection, and then click properties. Click install, and then click add. Click network monitor driver, and then click ok.

K&L

Click start, point to settings, and then click control panel. Double-click network and dial-up connections. Double-click network and dial-up connections. Right-click local area connection, and then click ok.

HUMAN

Click start, point to settings, click control panel, and then doubleclick network and dial-up connections. Right-click local area connection, and then click properties. Click install, click protocol, and then click add. Click network monitor driver, and then click ok.

Conclusions

- End-to-end generation system that incorporates document planning
- Grammar-based approach allows for document planning naturally: all we need is a discourse grammar
- Provide two solutions for document plans:
 - Linguistically naive record sequence grammar (G_{RSE})
 - RST-inspired grammar (G_{RST})

Recap

- Recast NLG into a generative model
 - History-based local decisions Add more features
 - Hierarchical joint model Add more layers
- Learn parameters from (un)-annotated data multiple domains
- Decoding: greedy search, k-best Viterbi search

Where do we go from here?

- Generate from more open-ended formalisms: AMR
- More challenging factual domains: biographies from Wikipedia
- More sophisticated sentence planning: aggregation, referring expressions
- More engineering: address sparsity, with Deep Learning
- Apply document planning grammars to summarisation

Thank you

Questions?

Definition

Definition

Definition

Definition

$$\begin{split} f(e) = & f(\mathsf{FS}_{5,7}(\mathsf{flight}_1.t, \mathit{start})) \otimes f(\mathsf{R}_{7,9}(\mathsf{flight}_1.t)) \otimes \\ & w(\mathsf{R}(\mathsf{search}_1.t) \to \mathsf{FS}(\mathsf{flight}_1, \mathit{start}) \ \mathsf{R}(\mathsf{flight}_1.t)) \end{split}$$

$$R(r_i.t) \rightarrow FS(r_j, start)R(r_j.t)$$

$$\begin{split} f(e) = & f(\mathsf{FS}_{5,7}(\mathsf{flight}_1.t, start)) \otimes f(\mathsf{R}_{7,9}(\mathsf{flight}_1.t)) \otimes \\ & w(\mathsf{R}(\mathsf{search}_1.t) \to \mathsf{FS}(\mathsf{flight}_1, start) \; \mathsf{R}(\mathsf{flight}_1.t)) \end{split}$$

$$R(r_i.t) \rightarrow FS(r_j, start)R(r_j.t)$$

$$\begin{split} f(e) = & f(\mathsf{FS}_{5,7}(\mathsf{flight}_1.t, \mathit{start})) \otimes f(\mathsf{R}_{7,9}(\mathsf{flight}_1.t)) \otimes \\ & w(\mathsf{R}(\mathsf{search}_1.t) \to \mathsf{FS}(\mathsf{flight}_1, \mathit{start}) \ \mathsf{R}(\mathsf{flight}_1.t)) \end{split}$$

$$R(r_i.t) \rightarrow FS(r_j, start)R(r_j.t)$$

$$f(e) = f(\mathsf{FS}_{5,7}(\mathsf{flight}_1.t, \mathit{start})) \otimes f(\mathsf{R}_{7,9}(\mathsf{flight}_1.t)) \otimes \\ w(\mathsf{R}(\mathsf{search}_1.t) \to \mathsf{FS}(\mathsf{flight}_1, \mathit{start}) \ \mathsf{R}(\mathsf{flight}_1.t))$$

$$R(r_i.t) \rightarrow FS(r_j, start)R(r_j.t)$$

$$\begin{split} f(e) = & f(\mathsf{FS}_{5,7}(\mathsf{flight}_1.t, \mathit{start})) \otimes f(\mathsf{R}_{7,9}(\mathsf{flight}_1.t)) \otimes \\ & w(\mathsf{R}(\mathsf{search}_1.t) \to \mathsf{FS}(\mathsf{flight}_1, \mathit{start}) \ \mathsf{R}(\mathsf{flight}_1.t)) \end{split}$$

$$\mathsf{R}(r_i.t) \rightarrow \mathsf{FS}(r_j, start) \mathsf{R}(r_j.t)$$

$$\begin{split} f(e) = & f(\mathsf{FS}_{5,7}(\mathsf{flight}_1.t, \mathit{start})) \otimes f(\mathsf{R}_{7,9}(\mathsf{flight}_1.t)) \otimes \\ & w(\mathsf{R}(\mathsf{search}_1.t) \to \mathsf{FS}(\mathsf{flight}_1, \mathit{start}) \ \mathsf{R}(\mathsf{flight}_1.t)) \end{split}$$

$$\mathsf{R}(r_i.t) \rightarrow \mathsf{FS}(r_j, start) \mathsf{R}(r_j.t)$$

Hypergraph Example

Hypergraph Example

Hypergraph Example

Determining Text Length

- Train a linear regression model
- ullet Idea: The more records and fields that have values in the database o the more facts need to be uttered
- Input to the model: Flattened version of the database input, i.e. each feature is a record-field pair
- Feature values: Values vs Counts of Fields