复变函数论期中考试复习题 20234544 毛华豪

Task1: 是否存在解析函数 f(z) = u(x,y) + iv(x,y), 其中 u 和 v 都是实值函数,且满足

$$u + v = (x - y)(x^2 + 4xy + y^2) - 2(x + y), \quad z = x + iy$$

若存在,求出 f(z); 否则,请说明理由.

证明 因为 f(z) 要求是一个解析函数,所以一定满足柯西黎曼方程

$$\begin{split} \frac{\partial u}{\partial x} &= \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} &= -\frac{\partial v}{\partial x} \end{split}$$

所以对等式两边同时求偏导得到:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial x} = 3x^2 + 6xy - 3y^2 - 2 = \frac{\partial u}{\partial x} - \frac{\partial u}{\partial y}$$
$$\frac{\partial u}{\partial y} + \frac{\partial v}{\partial y} = 3x^2 - 6xy - 3y^2 - 2 = \frac{\partial u}{\partial y} + \frac{\partial u}{\partial x}$$

所以有
$$\frac{\partial u}{\partial x} = 3x^2 - 3y^2 - 2$$
, $\frac{\partial u}{\partial y} = -6xy$ 。又因为

$$du = \frac{\partial u}{\partial x}dx + \frac{\partial u}{\partial y}dy$$

所以对两边求导,可以得出 u(x,y) 从而解出 v(x,y)

$$u(x,y) = x^3 - 3xy^2 - 2x$$
 $v(x,y) = -y^3 + 3x^2y - 2y$

从而 $f(z) = u + iv = x^3 - 3xy^2 - 2x - iy^3 + 3ix^2y - 2iy = z^3 - 2z$ (可以直接 代入 x = iy - z 或 y = -i(x+z) 得到),所以最终答案为 $f(z) = z^3 - 2z$ 口

Task2: 确定满足不等式

$$1 < \left| \frac{z - i}{z + i} \right| < 2$$

的 z 所构成的平面点集,并作出其图形.

图 1: 平面点集图形

解 图形如上,具体分析如下: 不妨设 $\left| \frac{z-i}{z+i} \right| = r, 1 < r < 2$,则这个不等式表示的是一个以 $(0, \frac{1-r}{1+r}), (0, -\frac{1+r}{r-1})$ 为直径,以 $(0, -\frac{r^2+1}{r^2-1})$ 为圆

心, $\frac{2r}{r^2-1}$ 为半径的一列圆的集合。由于 $r\to 1^+$ 时过 y 轴的直径的上顶点 $(0,\frac{1-r}{1+r})\to (0,0)$ 并且半径 $\frac{2r}{r^2-1}\to\infty$. 分析 y 轴上的两个直径顶点以及半径的变化趋势可以得到 $\left|\frac{z-i}{z+i}\right|=r_1$ 所表示的圆一定包含在 $\left|\frac{z-i}{z+i}\right|=r_2$ 内如果 $r_1< r_2$,那么,满足不等式的点集即为 x 轴下半平面挖去 $\left|\frac{z-i}{z+i}\right|=2$ 及内部的点得到的空间,解得 $\left|\frac{z-i}{z+i}\right|=2$ 表示的边界圆为 $\left|z+\frac{5i}{3}\right|=\frac{4}{3}$. 所以平面点集为 $\left\{z\in\mathbb{C}: Im(z)<0\cap\left|z+\frac{5i}{3}\right|>\frac{4}{3}\right\}$

Task3: 证明: 关于实轴的对称变换 $f(z) = \bar{z}$ 一定不是分式线性变换。

证明 分式线性变换具有保交比不变性,而 $f(z) = \bar{z}$ 不具有这个性质,所以一定不是分式线性变换。具体地考虑 $z_1 = 1 + i, z_2 = 2, z_3 = 0, z_4 = 1$ 则

$$(z_1, z_2, z_3, z_4) = \frac{(z_1 - z_3)(z_2 - z_4)}{(z_1 - z_4)(z_2 - z_3)} = \frac{1 + i}{2i}$$

$$(f(z_1), f(z_2), f(z_3), f(z_4)) =$$

$$\frac{(f(z_1) - f(z_3))(f(z_2) - f(z_4))}{(f(z_1) - f(z_4))(f(z_2) - f(z_3))} = \frac{1 - i}{-2i}$$

两者不相同, 所以不具有保交比不变性, 不是分式线性变换。

Task4: 计算复积分

$$\int_{|z|=2} \frac{dz}{z(z-1)^2}$$

其中积分曲线 |z|=2 取逆时针方向.

证明 函数 $\frac{1}{z(z-1)^2}$ 的奇点 z=0,1 都在圆周 |z|<2 中,所以考虑奇点外包围奇点足够小的圆周 C_1,C_2 ,方向取逆时针方向。则在 C_1,C_2 之外,

|z| < 2 之内函数是解析的,所以利用柯西积分定理得到积分的计算公式为

$$\int_{|z|=2} = \int_{C_1} + \int_{C_2} \tag{1}$$

再利用柯西积分公式计算 \int_{C_1} , \int_{C_2} 。回顾柯西积分公式,对于单连通区域或者多连通区域的边界 C 及其内部 D,如果 f 在 D 上解析,且在 $D \cup C$ 上连续,则

$$f(z) = \frac{1}{2\pi i} \int_C \frac{f(\xi)}{\xi - z} d\xi, \quad z \in D,$$

并且 f 在 D 内有各阶导数,还满足

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_C \frac{f(\xi)}{(\xi - z)^{(n+1)}} d\xi, \quad z \in D, n \in \mathbb{N}$$

所以原积分为

$$2\pi i \cdot \left(\frac{1}{(z-1)^2}\right)|_{z=0} + 2\pi i \cdot \left(\frac{1}{z}\right)'|_{z=1} = 0$$

所以积分为0.

Task5: 计算复积分

$$\int_C \frac{z^4}{(z^2+1)(z^2+2)^3} dz$$

其中 C 是取逆时针方向的圆周 |z|=4.

解 函数 $\frac{z^4}{(z^2+1)(z^2+2)^3}$ 的奇点 $\pm i, \pm \sqrt{2}i$ 都在圆周 |z|=4 内部,所以考虑在这些奇点外部做一个小圆周分别记为 C_1, C_2, C_3, C_4 都以逆时针为正,则在 C 内 C_1, C_2, C_3, C_4 外的区域函数解析,可以利用柯西积分定理得到原

积分的计算公式为

$$\int_{C} = \int_{C_1} + \int_{C_2} + \int_{C_3} + \int_{C_4}$$

再类似 Task4 利用柯西积分公式可以得到原积分: 假设 $f_1(z) = \frac{z^4}{(z-i)(z^2+2)^3}, f_2(z) = \frac{z^4}{(z^2+1)(z-\sqrt{2}i)^3}, f_4(z) = \frac{z^4}{(z^2+1)(z+\sqrt{2}i)^3}$ 则原积分变为

$$2\pi i [f_1(-i) + f_2(i) + f_3''(-\sqrt{2}i) + f_4''(\sqrt{2}i)]$$

前面两个值算出来分别是 $\frac{1}{2i}$ 和 $-\frac{1}{2i}$ 相互抵消,主要的困难在于求解 f_3, f_4 的二阶导数,我们采用对数微分法,即对函数两侧取自然对数

$$\ln f_3 = \ln z^4 - \ln(z^2 + 1) - \ln(z - \sqrt{2}i)^3$$
$$= 4 \ln z - \ln(z^2 + 1) - 3 \ln(z - \sqrt{2}i)$$

对等式两侧进行求导得到

$$\frac{f_3'}{f_3} = \frac{4}{z} - \frac{2z}{z^2 + 1} - \frac{3}{z - \sqrt{2}i}$$
$$f_3'(z) = f_3(z) \left(\frac{4}{z} - \frac{2z}{z^2 + 1} - \frac{3}{z - \sqrt{2}i}\right)$$

再对等式两侧求导得到

$$f_3''(z) = f_3'(z) \left(\frac{4}{z} - \frac{2z}{z^2 + 1} - \frac{3}{z - \sqrt{2}i} \right)$$
$$+ f_3(z) \left(-\frac{4}{z^2} - \frac{2(1 - z^2)}{(z^2 + 1)^2} + \frac{3}{(z - \sqrt{2}i)^2} \right)$$

Task6: 假设函数 f(z) 在开圆盘 $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ 上解析,f(0) = 0. 求证: 函数项级数 $\sum_{n=1}^{+\infty} f(z^n)$ 在 \mathbb{D} 上收敛,且其和函数在 \mathbb{D} 上解析.

证明 不妨令 $f_n(z) = f(z^n), n = 1, 2...$,则由于 $|z| < \Rightarrow |z^n| = |z|^n < 1$ 所以 $f_n(z) = f(z^n)$ 在 D 上解析,并且可以知道在开圆盘的任意一个闭子区间上解析,故函数在 D 上一致连续。由 f(0) = 0 和 $f_n(z) = f(z^n)$ 在原点的连续性可知

$$\forall \epsilon > 0, \exists \delta = \delta(\epsilon) > 0, \forall |z^n - 0| < \delta : |f(z^n) - 0| = |f_n(z)| < \frac{\epsilon}{2^n}$$

函数项级数 $\sum_{n=1}^{\infty} f(z^n) = \sum_{n=1}^{\infty} f_n(z)$ 的收敛性,对于上面的 $\epsilon, \delta(\epsilon)$ 以及 $\forall z \in D$ 考虑 $N = \frac{\log \delta}{\log z}$,有: 对于所有 $m > n > N \Rightarrow |z^n| = |z|^n < |z|^{\frac{\log \delta}{\log |z|}} = \delta$,故有

$$\left| \sum_{k=n+1}^{m} f_k(z) \right| < \sum_{k=n+1}^{m} |f_k(z)| \le \sum_{k=n+1}^{m} \frac{\epsilon}{2^k} < \epsilon$$

所以根据柯西收敛原理可知级数 $\sum_{n=1}^{\infty}$ 在 \mathbb{D} 上收敛,并且是内闭一致收敛的,因为若取 \mathbb{D} 内的一个闭子集,则一定存在 $|z_0|<1$ 使得 $|z|<|z_0|$,所以对于上述的 N 取 $\frac{\log \delta}{\log |z_0|}=N(\delta(\epsilon))=N(\epsilon)$ 可以控制所有闭子区域的点且只与 ϵ 有关。故由和函数的定义可以得出 $\sum_{n=1}^{\infty}f(z^n)=\sum_{n=1}^{\infty}f_n(z)$ 在 \mathbb{D} 上内闭一致 收敛于它的和函数,因为已知 $f_n(z)$ 在区域 \mathbb{D} 上是解析的,由 Weierstrass 定理知道其和函数在 \mathbb{D} 上解析。

Task7: 求将区域 $\{z\in\mathbb{C}:-\frac{\pi}{3}< arg(z)<\frac{\pi}{3}\}$ 单叶解析地映射为圆盘 $\Omega=\{w\in\mathbb{C}:|w-1|<1\}$ 的函数 w=f(z).

证明 我们需要先将区域 D 映射为右半平面,再将右半平面映射为上半平 面,再将上半平面映射为单位圆周,最后做一个平移映射为最后的圆周。考 虑将 D 映射为右半平面的映射 $u=h(z)=z^{\frac{3}{2}}=\sqrt{z^3}$ 并取根式函数的主 值分支。对于所有的 $z\in D$ 有 $z=|z|e^{i\theta}\Rightarrow z^{\frac{3}{2}}=|z|^{\frac{3}{2}}e^{\frac{3\theta}{2}i}$ 模长 $|z|^{\frac{3}{2}}>0$ 角度 $\frac{3\theta}{2} \in (-\frac{\pi}{2}, \frac{\pi}{2})$ 所以映射到右半平面,而对于右半平面上的任意一点 $|z'|e^{i\alpha}=z'$,所以这个映射是一个双射,即将扇形区域 D 映射为右半平 面。考虑右半平面 $\{z \in \mathbb{C} : Re(z) > 0\}$ 变为上半平面的映射,实际为 一个逆时针 90° 的旋转,即映射为 v=g(u)=iu。再考虑上半平面映 射到单位圆周的分式线性变换 $\xi = p(v)$,其一般形式为 $p(v) = e^{i\theta} \frac{v-a}{v-\bar{a}}$ 。 最后再考虑平移变换将 $|\xi| < 1$ 映射为 |w-1| < 1 的映射 $q(\xi)$,直接令 $\xi=w-1\Rightarrow w=q(\xi)=\xi+1$ 。所以最终的变换 $w=f(z)=q(\xi)=0$ $q(p(v)) = q(p(g(u))) = q(p(g(h(z)))) = qpgh(z) = e^{i\theta} \frac{iz^{\frac{3}{2}} - a}{iz^{\frac{3}{2}} - a} + 1$,其中我 们取 u = h(z) 的主值分支,而 g, p, q 都是分式线性变换,复合以后仍然是 单值解析的。所以最后的答案为 $f(z) = e^{i\theta} \frac{iz^{\frac{3}{2}} - a}{iz^{\frac{3}{2}} - \bar{a}} + 1$

Task8: 设函数 f 在闭圆盘 $\{z \in \mathbb{C} : |z| \leq R\}$ 上解析,且

$$|f(z)| > 2025, \quad |z| = R$$

f(0) < 2025. 证明:存在 z_0 使得 $|z_0| < R$ 满足 $f(z_0) = 0$

证明 假设不存在内点使得函数值为 0,那么考虑函数 $g(z) = \frac{1}{f(z)}$ 在闭圆盘上也是解析的。根据解析函数的最大模原理可以得出 $\left| \frac{1}{f(z)} \right| = |g(z)|$ 在 |z| = R 上取到最大值,故 $|g(z)| = \left| \frac{1}{f(z)} \right| > \left| \frac{1}{f(0)} \right| > \frac{1}{2025}$, |z| = R,又因为 |z| = R 上 |f(z)| > 2025 所以 $|g(z)| = \left| \frac{1}{f(z)} \right| < \frac{1}{2025}$ 矛盾,所以 $\frac{1}{f(z)}$ 解析于闭圆盘,则一定存在一个点 $z_0 \in \{z \in \mathbb{C} : |z| \le R\}$ 使得 $f(z_0) = 0$

且这个点 $|z_0| \neq R$ 否则与条件矛盾。所以 $\exists z_0 : |z_0| < Rs.t. f(z_0) = 0$

Task9:(1) 叙述解析函数的最大模原理,并给出证明;

- (2): 设函数 B(z) 满足下列三个条件:
- (i) 在单位圆盘 |z| < 1 内解析,在闭圆盘 $|z| \le 1$ 上连续;
- (ii) 在单位圆周 |z| = 1 上,|B(z)| = 1;
- (iii) 在 |z| < 1 内部 B(z) 只有有限个零点.

试利用 (1) 中的定理证明: B(z) 是一个有限 Blaschke 乘积:

$$B(z) = e^{i\theta} \prod_{k=1}^{N} \frac{z - z_k}{1 - \bar{z_k}z},$$

其中 $\theta \in \mathbb{R}, N \in \mathbb{N}, |z_k| < 1 \quad (1 \le k \le N).$

证明 (1): 定理叙述: 设 f 在 D 上解析,则 |f(z)| 在 D 内任何一点都不能取到最大值,除非它是常数函数.

Proof: 设 $M = \sup_{z \in D} |f(z)|$,由于 f 不恒为 0,所以 M > 0。用反证法,设 $\exists z_0 \in Ds.t. |f(x_0)| = M$,由此 $0 < M < +\infty$.则取 z_0 为心,充分小的 R 为 半径作圆周 $|z - z_0| = R$,取逆时针方向,使得:

$$\{z \in \mathbb{C} : |z - z_0| \le R\} \subset D$$

由平均值定理

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + Re^{i\theta}) d\theta$$

从而有

$$M = |f(z_0)| \le \frac{1}{2\pi} \int_0^{2\pi} \underbrace{|f(z_0 + Re^{i\theta})|}_{\le M} d\theta \le M$$

由此可知 $|f(z_0+Re^{i\theta})|=M, \forall \theta$,若不然, $\exists \theta_0 \in [0,2\pi)s.t.|f(z_0+Re^{i\theta})| < M$ 由连续函数的局部保号性可以知道 $\exists (\theta_0-\delta,\theta_0+\delta) \subset [0,2\pi)s.t.|f(z_0+Re^{i\theta})|$

 $|Re^{i\theta}| < M$, $\theta \in (\theta_0 - \delta, \theta_0 + \delta)$, 所以有:

$$\frac{1}{2\pi} \int_0^{2\pi} |f(z_0 + Re^{i\theta})| d\theta = M$$

$$= \frac{1}{2\pi} \int_{\theta_0 - \delta}^{\theta_0 + \delta} + \frac{1}{2\pi} \int_{[0, 2\pi) \setminus (\theta_0 - \delta, \theta_0 + \delta)}$$

$$\leq M \times \frac{2\delta}{2\pi} + \frac{M \times (2\pi - 2\delta)}{2\pi} = M$$

M < M 矛盾. 于是,以 z_0 为圆心,充分小的 R > 0 为半径的圆周上 $f(z) \equiv M$, $|z-z_0| = R$,由 R 的任意性可以知道,存在 z_0 的某个小邻域 $O(z_0,\delta) \subset Ds.t.|f(z)| \equiv M$, $z \in O(z_0,\delta)$,所以 $f(z) \equiv M$ 或者 $f(z) \equiv -M$,由解析函数零点孤立性的推论 f,g 在区域 D 上解析,且它们的 D 的某个子区域内的一段弧上相等,则 $f(z) \equiv g(z), z \in D$ 可以得出 $f(z) \equiv M$, $z \in D$ (或者取负值,总之是一个常数)

(2): 不妨设有限个零点为 z_1, z_2, \ldots, z_M ,根据函数 B(z) 在单位圆盘内解析,在闭圆盘上连续,且 |z|=1 上 |B(z)|=1,考虑单位圆盘内部的闭圆盘 $C_r:|z|\leq r$ 由最大模原理在这个闭圆盘上 $|B(z)|\leq \max\{B(z):z\in C_r\}=\max\{B(z):|z|=r\}$ 令 $r\to 1^-$ 由于函数 B(z) 的连续性可知 $|B(z)|\leq 1$ 且在内部 |B(z)|<1(类似第 11 次作业第 4 题做法可证) 对于确定的 z_k 在闭圆盘内有 $B(z_k)=0$,对于没有具体方向的函数,我们采用局部处理的方法,考虑 B(z) 的零点的函数因子 $b_k(z)=\frac{z-z_k}{1-\bar{z_k}z}$, $k=1,2\ldots,N$,对于每个函数因子 $1-\bar{z_k}z\neq 0$ 所以在 |z|<1 上也是解析的,并且 |z|=1 时, $|b_k|=\frac{|z-z_k|}{|1-\bar{z_k}z|}=\frac{|z-z_k|}{|1-\bar{z_k}z|\cdot|\bar{z}|}=\frac{|z-z_k|}{|\bar{z}-\bar{z_k}|}=1$, $B(z),b_k,k=1,2\ldots,M$ 在 |z|<1 上都是解析的并且在闭圆盘也是连续。因为 B(z) 在开圆盘上可以展开成级数形式,函数的零点一定可以提出因子 $(z-z_k)$ 即 $B(z)=(z-z_k)^{m_k}g(z),g(z_k\neq 0)$, $m_1+m_2+\cdots+m_M=N$,则我们考虑函数

$$F(z) = \frac{B(z)}{\prod_{k=1}^{N} b_k(z)}$$

其中 $b_k(z)$ 对应的指数 m_k 为多少就除以多少个 $b_k(z)$ 使得 F(z) 在开圆盘上没有零点。(需要注意的时 m_k 一定是有限的,若 $m_k = \infty$ 在 z_k 周围的小邻域内展开的泰勒级数恒为零,由解析函数的性质可以知道 B(z) 在整个区域上

为 0,而这与我们的条件矛盾,因为函数在闭圆盘上连续且在 |z|=1 上为 1,所以在靠近 |z|=1 的圆盘内一定接近 1,这就产生了矛盾,所以 m_k 有限,N 有限).我们得到了函数 F(z) 在开圆盘上解析,在闭圆盘上连续。由最大模原理可以证明 $|F(z)| \leq |F(1)| = \frac{1}{1} = 1$ 。 再考虑 $\frac{1}{F(z)}$ 同样满足在开圆盘上解析,在闭圆盘上连续有 $\left|\frac{1}{F(z)}\right| \leq \left|\frac{1}{F(1)}\right| = 1 \Rightarrow F(z) \geq 1$,所以 F(z) = 1(这说明圆周上恒为 1 的条件限制住了 F(z) 的取值),所以 $F(z) = e^{i\theta}$, $\theta \in \mathbb{R}$,故有 $B(z) = e^{i\theta} \prod_{k=1}^{N} \frac{z-z_k}{1-\bar{z_k}z}$ 其中 $\theta \in \mathbb{R}$, $n \in \mathbb{N}$, $|z_k| < q$ ($1 \leq k \leq N$) \square