

# PATENT ABSTRACTS OF JAPAN

(11)Publication number : **62-203123**  
 (43)Date of publication of application : **07.09.1987**

(51)Int.Cl. **G02F 1/133**  
**G02F 1/133**  
**G09F 9/35**

(21)Application number : **61-044157** (71)Applicant : **ASAHI CHEM IND CO LTD**  
 (22)Date of filing : **03.03.1986** (72)Inventor : **INOUE AKIO**

## (54) FLEXIBLE LIQUID CRYSTAL DISPLAY ELEMENT

### (57)Abstract:

**PURPOSE:** To hold the thickness of a thin liquid crystal layer uniform with accuracy, to obtain a liquid crystal display surface of large area or optional desired size or in an optional desired shape, and to facilitate handling by fixing a weir between flexible substrates.

**CONSTITUTION:** A transparent electrode film 2, an oriented film 4, cells 5 of a liquid crystal material sectioned by a weir 4, an oriented film 6, a transparent electrode film 7, and a flexible substrate 8 are arranged on a flexible substrate 1 in this order. The weir 4 needs to be adhered or fixed completely to at least one substrate side surface, e.g. entire oriented films 3 and 6 by a printing method, etc., and not merely sandwiched between the substrates. The weir 4 may be sectioned in, for example, a proper shape, e.g. triangular or hexagonal shape in addition to a square and a rectangular shape, but the shape needs to form continuous cells in a matrix.



## LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

**THIS PAGE BLANK (USPTO)**

⑨ 日本国特許庁 (JP)

⑩ 特許出願公開

⑪ 公開特許公報 (A) 昭62-203123

⑫ Int.Cl.<sup>1</sup>

G 02 F 1/133

識別記号

302

序内整理番号

8205-2H

G 09 F 9/35

321

8205-2H

6731-5C 検査請求 未請求 発明の数 1 (全 6 頁)

⑬ 発明の名称 フレキシブル液晶表示素子

⑭ 特願 昭61-44157

⑮ 出願 昭61(1986)3月3日

⑯ 発明者 井上 昭夫 富士市駿島2番地の1 旭化成工業株式会社内

⑰ 出願人 旭化成工業株式会社 大阪市北区堂島浜1丁目2番6号

⑱ 代理人 弁理士 谷 義一

明細書

1. 発明の名称

フレキシブル液晶表示素子

2. 特許請求の範囲

1) 1対の割れ配線された透明フレキシブル基板の間にそれぞれ透明電極を介して液晶物質を封止した液晶表示素子において、前記フレキシブル基板間に、厚さ均一でマトリックス状に連続する高分子物質からなる壁を囲着し、該壁により互いに分離された複数のセル内に、液晶物質を互いに独立して封入したことを特徴とするフレキシブル液晶表示素子。

(以下余白)

3. 発明の詳細な説明

【従来上の利用分野】

本発明は、フレキシブルな液晶表示素子、特に大面積あるいは任意所望の形状やサイズの表示に適した液晶表示素子に関するものである。

【従来の技術】

近年、液晶表示装置はますます大面積化されつつあるが、従来のガラス基板を用いたものは耐衝撃性、重量、加工性等の面で不都合であり、ガラス基板に代わるフレキシブルな透明基板の実用化が期待されている。

ところで、液晶表示装置の製造における遮光技術の一つとして、基板間の液晶物質の厚さを均一に保持することが挙げられるが、フレキシブル基板の場合には特にこの技術が重要である。そのため、従来は、繊維、金属酸化物粒子、高分子マイクロビーズ、メッシュ状導板、高分子多孔膜等をスペーサーに用いる方法、あるいは基板の所々にリブやサポートを形成する方法等が提案されてはいるものの、加工性、均一性、長期安定性、液品

導電特性等の点からそれぞれ難点があり、各々使用条件に制限がある。

さるにまた、従来の液晶表示素子では、保持された液晶物質は基板間で連続層を形成しており、基板の割面からの剥れ出しを防止するには割面を完全にシールする必要がある。そのためには、液晶物質を長尺の基板間に連続的に封入し、その後、任意の位置で切断し、任意のサイズや形状の表示素子を製造することは極めて難かしい。

#### [発明が解決しようとする問題]

そこで、本発明の目的は、上記の従来の難点を解決し、フレキシブルで大面積の液晶表示を容易に実現でき、特に、強誘電体使用時のように、数ミクロン程度の薄い液晶層を厚さの精度よくかつ均一に保持することが必要な場合に有効なフレキシブル液晶表示素子を提供することにある。

本発明の他の目的は、連続した長尺の表示素子を効率的に製造でき、しかもまた、特別なシールを必要とせずとも液晶物質の漏れ出しがなく、任意所望の大きさや形状の表示素子を製造でき

る（液晶物質配向膜塗布装置等に対する耐药品）、耐熱性（透明電極蒸着、周辺部加熱シール等のプロセスにおける耐熱性）、に優れた部分子材料からなるフィルムまたはシートが好ましい。

その中でも、液柱折反射の小さな非晶性高分子材料は干渉による着色がなく、視野角が広くなるから特に好ましい。

一般に、これらフィルム・シートとしては、厚さが50～300 μのものが使用される。

フレキシブル基板の表面に形成される透明電極としては、インジウム、錫、カドミウム、アンチモン等の金属酸化物あるいはこれらの金属の複合酸化物、あるいは金、パラジウム等を蒸着法あるいはスパッタリング法で通常100～2000Åの厚さとしたもの、あるいはシリコーン、ポリオフエン等の電解質膜等公知のものを使用することができます。透明電極は、従来の液晶表示素子の場合と同様に、液晶と接触する側に、基板の全体あるいは部分的に所謂パターン電極やメタマト

る、經濟的で加工性や取り扱い性のよいフレキシブル基板表示素子を提供することにある。

#### [問題点を解決するための手段]

このような目的を達成するために、本発明では、1対の基板間に液晶物質をスペーサーを用い連続層として保持する従来の方法の代わりに、一方のフレキシブル基板間に固定された、高分子物質からなるマトリックス状の連続する厚み均一な層で完全に分離された多数の小さなセル内に液晶物質を互いに独立して封入する。

なお、ここで、図は、單に基板間にさみ込まれるのではなく、印刷などの手段により基板に固定する。

本発明に使用される透明フレキシブル基板としては、ポリエチレン、ポリカーボネート、ポリスルホン、ポリエーチルスルホン、ポリエーテルケトン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリアリルエステル、ポリアクリロニトリル、ポリビニルフルオライド、ポリビニリデンフルオライド、ポリアセテート等の透明性、耐熱

マトリックス電極として形成される。

また、フレキシブル基板には、必要に応じて、透明電極面上に、液晶物質を配向させるための配向膜を形成させることができる。かかる配向膜は、通常、ポリイミド、エポキシ、ポリアミド、ポリエステル、ポリイソシアネート、ポリビニアルコール、シリブタジエン、ポリイソブレン、有機シラン等を、所定の溶媒で希釈溶解して塗布し、ついで乾燥して薄膜形成させ、その後、一定方向にラビングすることにより得られる。あるいはまた、かかる配向膜は、 $\text{SiO}_2$ 、 $\text{SiO}_2$ を斜め蒸着する方法、電子線ビームやプラズマを照射する方法、レシチン、ステアリン酸、有機シラン等を接着塗布する方法等によっても形成することができる。

フレキシブル基板面へのセルの形成は、透明電極あるいはその上に更に配向膜をあらかじめ形成した一方の基板面に、高分子物質からなるマトリックス状の厚み均一な層を倒答することにより達成される。

## 【作用】

本発明によれば、フレキシブル基板間に塗を固定することにより、薄い液晶層を厚さの格段よく、かつ均一に保持でき、大面積のあるいは任意所望の形状やサイズの液晶表示面をもち、しかも取り扱い性のよいフレキシブル液晶表示装置を構成でき、しかもその製造も容易である。

## 【実施例】

以下に、図面を参照して本発明を詳細に説明する。

第1図および第2図は本発明のフレキシブル液晶表示装置の構成例を示し、ここで、1および8はフレキシブル基板であり、この基板1上には、透明電極膜2、配向膜3、第2回からわかるように、塗4で区画された液晶物質のセル5、配向膜6、透明電極膜7、フレキシブル基板8をこの順序で配置する。第1回において、塗4は、少なくとも一方の反射鏡の面、この側では配向膜3または6に全面にわたり印刷などの手段により完全に接着あるいは固定したものである必要があり、単

反であることが好ましい。 $10^{-3}\text{mm}^2$  以下であると、液晶物質の作動に対するセル空間の影響が認められ、逆に  $10^1\text{ mm}^2$  以上であると、近くから液晶表示を眺めた場合に塗4の存在が目につき易い。

セル5のより好ましい大きさは  $10^{-2}\sim10^0\text{ mm}^2$  である。

一方、塗4の幅(最小部分)については、 $10\sim100\text{ }\mu\text{m}$  であることが好ましい。 $10\mu\text{m}$  より小さくしては、フレキシブル基板側の面との接着シール性の点で不完全になり易く、他方、 $100\text{ }\mu\text{m}$  以上では、液晶物質の有効表示面積が減少し好ましくない。塗4の高さ、すなわち、液晶物質の層の厚さについては、使用される液晶物質にもよるが、通常は  $2\sim100\text{ }\mu\text{m}$  の範囲で使用される。液晶物質をセル5内に完全に分離して封入することが必要であり、そのためには、塗4の高さは基板全面にわたり高い均一性が要求される。一般に、液晶層が厚くなると、その作動に高電圧が必要となり、好ましくない。

に基板間にはさみ込んだものではない。

塗4の断面形状は、第2回に示すような正方形や長方形などの矩形の外に、たとえば第3回に示すような三角形や第4回に示すような六角形など適宜の形状とすることができるが、かかる形状がマトリックスの形態で連続したセルを形成することが必要である。

特に、セル5の内部の形状に関しては、液晶物質のより均一な作動性や塗4による光の反射の抑制等の面から、円形であることがより好ましい。

さらにまた、表示に有効な液晶物質の固積比率の向上の面から、第5回に示す如く、塗4が六角形のハニカム配列をとると共に、セル5の内部が円形をなす形状をとることが最も好ましい。

第5回において、A、B、Cは円形セル5の中心を示し、A-A'、B-B'、C-C'はセル5の半径、A-B、B-C、C-Aはセル5の周の距離を示す。

セル5の大きさについては、 $10^{-3}\sim10^1\text{ mm}^2$  程

度の形成方法については、印刷法、リソグラフィ法、電子写真法、エンボス法等を用いることができる。その中でも、印刷法およびリソグラフィ法は、塗の厚さや厚さの均一性の点において好ましい方法である。

印刷法では、高分子物質のエマルジョンや溶液を、オフセット、グラビア、凸版、スクリーンなどの方法で基板面に転写して塗を形成するが、中でもオフセット法は高さ改めの塗を格段よく形成できるので、液晶層の軽めて薄いものが必要な場合に、より好ましい方法である。

一方、リソグラフィ法では、基板上に一定算みに追加した遮光性高分子物質を、可視光、紫外線、電子線、X線等によって部分的に硬化あるいは分解させ、任意の所望のパターンを形成するが、この方法は、高価ではあるものの、より精度の高い塗を形成することができ、好ましい。

本発明における塗として用いられる高分子物質としては、ポリアミド系、ポリエスチル系、ポリイミド系、ポリシロキサン系、ポリスルホン系、

ポリエーテルスルホン系、ポリビニルアルコール系、ポリ塩化ビニル系、ポリブタジエン系、ポリイソブレン系、ポリアクリロニトリル系、ポリアクリルアミド系、ポリアクリレート系、エポキシ系、シロキサン系、フッ素系、フェノール系、ウレタン系、セルロール、ニステル系等の混合体であり、液晶物質に対する耐溶性があり、屈折率や誇電率が液晶物質と近い値のものが好ましい。

これらの高分子物質には、必要に応じて、基板との接着性を向上させるための改良剤や、コントラストの向上のための染料等の着色剤を添加することができる。

感光性高分子物質としては、前記の種に用いられたような混合体を基本骨格とし、紫外線、電子線、X線等の照射により硬化あるいは分離する物質が用いられる。このような物質としては、アクリロイル基、アクリルアミド基、グリシル基等の光重合性单量体型、シアゾ基、アクリル基、シナモイル基、ベンザルアセトフェノン（カルコ）

セル内の気泡の発生を防止するためには、充填や複層を其上下で行なうことがより好ましい。

複数面と対面層との接着は、プレスロール等で軽くプレスするだけでもある程度の接着力が出てそのまま使用できる場合もあるが、より強力な接着が必要な場合には、膜を形成する高分子物質や対面層としての配向膜材料等に熱硬化性物質を使用したり、接着改良剤を添加する方法、熱ロールプレスする方法、あるいは配向膜の表面に接着剤を部分塗布する方法等を用いることができる。

このようにして液晶物質を封入して得られた基板は、そのままで、フレキシブルな液晶表示素子として使用されることもあるが、通常は基板表面に偏光子、防滑膜、反射板、カラーフィルタ、光拡散板、補強板等を更に設けて使用される。さらにまた、一方の透明電極に、トランクスター駆動あるいは非線形駆動のための素子を設けることもできる。

さらにまた、本発明の膜で互いに分離された独立のセルに、3色の色深を配合したゲスト・ホス

ト等の顔料反応性感光系を側面を末端にもつ混合型、芳香族シアジド、芳香族ナイトレン、アントラゼン等の感光性化合物と反応性高分子高分子からなる低分子感光反応型、ポリメチルビニルケトンやポリビニルフェニルケトン、ポリスルホン等の光脂液型等のものがあるが、本発明における膜としては、これらのいずれをも使用することができる。

本発明における液晶性物質としては、電光学効果や熱光学効果を示す、所定、スマートィック型、オマティック型、コレステリック型、更にはこれらの混合型など将来の液晶ディスプレイに使用できるものはいずれのものを適応することができる。

液晶物質のセル内への封入にあたっては、膜を形成した基板面への液晶物質の塗布、印刷あるいは液晶物質中への基板の浸漬等の方法によりセル内に液晶物質を充填させ、その上にもう一方の対面膜を、配向膜や電極を形成した面を内部にして、プレスロール等を用いて機器する。この際、

ト液晶物質を従来のカラーフィルタでの配列と同様に、交互に封入することにより、フルカラー表示素子とすることも可能である。

次に本発明の具体的実施例を示すが、本発明はこれら実施例にのみ限定されるものではない。

#### 実施例1

酸化インジクムを蒸着したポリエスチル透明導電フィルム（120 μm）の透明面にゼリビニルアルコールの1%水溶液をスプレー塗布し、150℃で熱処理した後に、ポリエスチル布で一方に向かって配向膜を形成した。この配向膜上にニボキシアクリレートを主体としたUV硬化型インキを用いてオフセット印刷法により、第5図の如きハニカム配列で内壁を円形とした形状の窓を印刷し、そのセル間距離（A-B）が300 μm、セル半径（A-A'）が135 μm、高さが5 μmの膜（乾燥後）を形成した。ビフェニル系TR型液晶（BDH社E-7）を塗布法により上記セル内に充填した後、同様に、透明導電フィルム上にポリビニルアルコールの配向膜を形成したポリエス

特開昭62-203123 (5)

ルフィルムを、配向膜のラビング方向が直行するようこの配向膜を内側にして横回し、80℃のプレスロールにて軽く圧着した。

かくして得られた基板は自在に切断しても液品が漏れ出ることがない。また、基板の片表面に偶光子を配向膜方向に合わせて設け、電極間に電圧を印加し、あるいは電圧を遮断すると、静かに対応した明暗を示した。

実施例2。

実施例1で用いた透明導電フィルムの導電層にエゴキシ系樹脂の1%メチルエチルケトン溶液をロールコーティングし、150℃で熱処理した後、ポリエステル布で一方向にラビングして配向膜を形成した。強化ポリイソブレン系フォトレジスト（東京応化社ORR-63）をロールコーティング後、乾燥させて厚さ8μmの被膜を得た。実施例1の場合と同様に、第5図の如きパターンのマスクを通してフォトレジスト膜に露光した後、現像および rinsing を施して、堤を形成した。得られたセルはセル間距離 (A-A') が120μm、セル半

取り扱い性のよいフレキシブル液晶表示電子を構成でき、しかもその製造も容易である。

本発明のフレキシブル液晶表示電子は、電極にパターン形成あるいはX-Yマトリックス形成したもの用い、文字、数字、記号、圖像等の表示用として、パーソナルコンピュータ、テレビジョン、ワードプロセッサ、時計、電卓、測定機器のディスプレーに、あるいはまた、掲示板、標識表示板、さらには、光シャッタ、ライティングボード等に、フレキシブルで任意所望のサイズが可能であり、しかも軽量である等の利点を活かして使用することができます。

4. 図面の簡単な説明

第1図は本発明のフレキシブル液晶表示電子の一実施例を示す側面図。

第2図は第1図のA-A' 側面図。

第3図および第4図はマトリックス状の堤の形状の2例を示す断面図。

第5図はハニカム配列し、かつ内部を円形にした堤の形状例を示す断面図である。

径 (A-A') が80μm であり、堤の高さは±5%の範囲で均一であった。

このセル内に、2色性染料を添加したゲストホスト型ネマティック液晶（B.D.H社、ビフェニル系液晶E-8、染料D-6 2wt%）を注入法により充填した後、透明導電面に半硬化エポキシ系樹脂の配向膜を形成した透明導電ポリエチルフィルムを、ホモジニアス配列となるよう配向方向を合わせ、配向膜面を内側にして、80℃のプレスロールで軽く圧着した。これにより得られた積層基板は、自在に切断しても液品が漏れ出ることはなく、また、基板の片表面に偶光子を配向膜方向に合わせて設け、端部より外品に取り出した電極間に電圧を印加することにより、君色-緑色の応答を示した。

【発明の効果】

以上から明らかなように、本発明によれば、堤を設けることにより、薄い液晶層を厚さの範囲よく、かつ均一に保持でき、大面積のあるいは任意所望の形状やサイズの液品表示箇をもち、しかも

1. 8—フレキシブル基板。
2. 7—透明電極版。
3. 6—配向膜。
- 4—堤。
- 5—液品セル。

第1図 本発明の構成物の  
一例の側面図



第2図 第1図のA-A'線の断面図



- 1, 8: フレキシブル基板
- 2, 7: 透明電極膜
- 3, 6: 粘着膜
- 4: 層
- 5: 槌目セル

第3図 槌目セルの断面形状の断面図



第4図 槌目セルの断面形状の断面図



第5図 槌目セルの断面形状の断面図



特開昭62-203123

【公報登別】特許法第17条の2の規定による補正の抵触

【部門区分】第6部門第2区分

【発行日】平成6年(1994)1月21日

【公開番号】特開昭62-203123

【公開日】昭和62年(1987)9月7日

【年造号】公開特許公報62-2032

【出願番号】特願昭61-44157

【国際特許分類第5版】

G02F 1/1339 500 7348-2K

1/1333 500 9225-2K

1/1339 505 7348-2K

### 手 続 補 正 書

平成5年2月25日

特許庁長官 殿

#### 1. 事件の表示

特願昭61-44157号

#### 2. 発明の名称

液晶表示装置

#### 3. 補正をする者

事件との関係 特許出願人  
旭化成工業株式会社

#### 4. 代理人

〒107  
東京都港区赤坂5丁目1番31号  
第6セイコビル3階  
電話 (03)3530-1201 (代表)  
(7748)弁理士 谷 義一

#### 5. 補正命令の日付 自 梅

#### 6. 補正の対象 明細書および図面

#### 7. 補正の内容

(1) 発明の名称を「液晶表示装置」に補正する。

(2) 特許請求の範囲を別紙の通り補正する。

(3) 明細書第2頁第3行および第13頁第12行に  
「フレキシブルな」とあるをそれぞれ削除す  
る。

(4) 明細書第2頁第7行～第15行を下記の通り補  
正する。

「近年、液晶表示装置はますます大型化され  
つつある。液晶表示装置の製造における主要技術  
の1つとして、基板間の液晶効率の厚さを均  
一に保持することが挙げられるが、大型基板、  
特にフレキシブルな大型基板の場合にはこの技  
術が重要である。そのた」

(5) 図面第4頁第1行～第2行、第5頁第11行、  
第6頁第2行、同頁第16行、第7頁第2行、同  
頁第6行、同頁第11行、同頁第19行、同頁第18  
行、第9頁第16行、第17頁第1行、同頁第3  
行、同頁第14行および第18頁第1行に「フレキ  
シブル」とあるをそれぞれ削除する。

(6) 同書第3頁第6行～第16行を下記の通り補正する。

「完全にシールする必要がある。そのために、液晶物質を長尺の基板間に逆張りに封入した後、任意の位置で切断し、任意のサイズや形状の表示界面を製造することは難しい。」

【発明が解決しようとする課題】

そこで、本発明の目的は、上記の従来の難点を解決し、大面積の液晶表示を容易に実現できる、特に、フレキシブルな基板や、強誘電体焼成時のように、数ミクロン程度の薄い液晶層の厚さを精度よくかつ均一に保持することが必要な場合に有効な液晶表示装置を提供することにある。」

(7) 同書第4頁第6行～第7行を下記の通り補正する。

「複層として保持する従来の方法の代わりに、少なくとも一方の基板に囲まれた、高分子物質」

(8) 同書第4頁第14行～第15行を下記の通り補正

する。

「本発明に使用される透明基板としては、プラスチック、ガラス、石英等の基板が用いられる。プラスチック基板としてはポリエスチル、ポリカーボネート、ポリス」

(9) 同書第5頁第4行～第5行を下記の通り補正する。

「子材料からなるフレキシブルなフィルムまたはシートが巻きられる。これらの基板は異種のものを組み合せて使用することもできる。また、上記で述べた基板の中でも、複層率の小さな非晶性高分子材料」

(10) 同書第5頁第9行に「これらフィルム・シート」とあるを「フレキシブルなフィルム・シート」に補正する。

(11) 同書第10頁第13行に「塗布した」とあるを「塗布または接着した」に補正する。

(12) 同書第17頁第10行に「フレキシブルで」とあるを削除する。

(13) 第1図、第2図を明紙の通り補正する。

## 別紙

### 特許請求の範囲

1) 1対の対向配置された透明基板の間にそれぞれ透明基板を介して液晶物質を封止した液晶表示素子において、前記基板間に、厚さ均一でマトリックス状に連続する高分子物質からなる層を少なくとも一方の基板に囲めし、該層により互いに分離された複数のセル内に、液晶物質を互いに独立して封入したことを特徴とする液晶表示素子、

(以下余白)

特開昭62-203123  
第1図



第1図のA-A'断面図

第2図

