

Aprendizagem Guiada para Análise Morfossintática usando Redes Neurais Recursivas

Marcos Vinícius Treviso marcos vtreviso@gmail.com

Orientador: Fábio Natanael Kepler Trabalho de Conclusão de Curso I

8 de julho de 2015

Universidade Federal do Pampa

Roteiro

- Introdução
 - Part-of-speech (POS) Tagging
 - O problema
 - Objetivos
- Fundamentação
 - Aprendizado de máquina
 - Córpus
 - Representação de palavras
 - Redes neurais
 - Aprendizagem profunda
- Trabalhos relacionados
- Metodologia
 - Representação de palavras
 - Pontuações para classes gramaticais
 - Treinamento
- Cronograma

Roteiro

Introdução

Part-of-speech (POS) Tagging

O problema

Objetivos

• Fundamentação

Aprendizado de máquina

Córpus

Representação de palavras

Redes neurais

Aprendizagem profunda

- Trabalhos relacionados
- Metodologia

Representação de palavras

Pontuações para classes gramaticais

Treinamento

Cronograma

POS Tagging

É conhecido em Processamento de Linguagem Natural (PLN) como o ato de classificar uma palavra pertencente a um conjunto de textos em uma classe gramatical.

- Qual a medida de eficiência?
 - Acurácia
 - Atualmente cerca de 97%
- Quais são as aplicações?
 - Tradução automática
 - Sumarização

4

O problema

- Linguagens naturais são ambíguas
- Estratégia trivial não é eficaz
- Necessário analisar o contexto
- Aprendizado de máquina

Objetivos

- Desenvolver novo modelo para POS Tagging
 - A príncipio para o português brasileiro
- Alcançar estado da arte
 - Combinar abordagens existentes
- Analisar a eficiência
 - Acurácia
 - Tempo de treinamento

Roteiro

Introdução

Part-of-speech (POS) Tagging

O problema

Objetivos

• Fundamentação

Aprendizado de máquina

Córpus

Representação de palavras

Redes neurais

Aprendizagem profunda

- Trabalhos relacionados
- Metodologia

Representação de palavras

Pontuações para classes gramaticais

Treinamento

Cronograma

7

Aprendizado de máquina

- Aprendizado supervisionado
 - Regressão
 - Classificação
- Aprendizado não supervisionado

$$h_{\theta}(x) = \theta_0 + \theta_1 f(x_1) + \theta_2 f(x_2) + \dots + \theta_n f(x_n)$$

8

Aprendizado de máquina

- Aprendizado supervisionado
 - Regressão
 - Classificação
- Aprendizado não supervisionado

Córpus

- Coleções de textos agrupados
- Anotação gramatical manual
- Córpus para o português brasileiro:

Córpus	Sentenças	Palavras	Classes gramaticais
Mac-Morpho original	53,374	1,221,465	41
Mac-Morpho revisado ¹	49,932	945,958	26
Tycho Brahe	55,932	1,541,654	265

• Por que não combiná-los?

1. Revisado por: Fonseca, Rosa e Aluísio (2015).

Representação de palavras

- Vetores reais valorados em um espaço multidimensional (word embeddings)
- Mais desempenho de aplicações em PLN e menos engenharia de features
- Conseguem capturar informações sintáticas e semânticas
- Geradas de maneiras diferentes dependendo da técnica utilizada
- Palavras fora do vocábulario de treinamento também tem seu próprio vetor

Técnicas para geração de word embeddings

Palavras similares estão próximas

Imagem criada pelo t-SNE Fonte: Turian, Ratinov e Bengio (2010)

Técnicas para geração de word embeddings

- Matriz de coocorrência
- Neural Language Model (NLM): Através de redes neurais
- Hyperspace Analogue to Language (HAL): Matriz de coocorrência com um método de decomposição (Escalamento Multidimensional)
- Modelação Skip-Gram (SG): Previsão de palavras vizinhas num conjunto de tamanho finito: word2vec
- Global Vectors (GloVe): Razão das probabilidades na matriz de coocorrência em relação ao contexto de uma outra palavra do vocabulário

 $W: word \rightarrow \mathbb{R}^n$

- Simulação do cérebro humano
- Unidades de ativação: $a_i^{(j)}$
- Pesos: $\theta^{(j)}$
- Parâmetros: $z^{(j+1)} = \theta^{(j)} a^{(j)}$
- Função de ativação: g(z)
- $a^{(j+1)} = g(z^{(j+1)})$

- Simulação do cérebro humano
- Unidades de ativação: $a_i^{(j)}$
- Pesos: $\theta^{(j)}$
- Parâmetros: $z^{(j+1)} = \theta^{(j)} a^{(j)}$
- Função de ativação: g(z)
- $a^{(j+1)} = g(z^{(j+1)})$

- Processo de aprendizagem (Forward Propagation):

Fonte: Ng (2015)

- Processo de aprendizagem (Backpropagation):

Fonte: Ng (2015)

Roteiro

- Introdução
 - Part-of-speech (POS) Tagging
 - O problema
 - Objetivos
- Fundamentação
 - Aprendizado de máquina
 - Córpus
 - Representação de palavras
 - Redes neurais
 - Aprendizagem profunda
- Trabalhos relacionados
- Metodologia
 - Representação de palavras
 - Pontuações para classes gramaticais
 - Treinamento
- Cronograma

Trabalhos relacionados

• Escopo do português brasileiro

Autores	Modelo	Rep. palavras	Córpus	Acurácia
Kepler (2005)	VLMC	Seq. de carac.	Tycho Brahe	95,51%
Santos e Zadrozny (2014)	Redes neurais profundas	Vetores	Tycho Brahe; Mac-Morpho	97,47%
Fonseca, Rosa e Aluísio (2015)	Redes neurais	Vetores	Tycho Brahe; Mac-Morpho	97,57%
Este trabalho	Redes neurais recursivas	Vetores	Tycho Brahe; Mac-Morpho	-

- Estado da arte com 97,57% de acurácia para todas palavras.
 Treinado com o Mac-Morpho original (FONSECA; ROSA; ALUÍSIO, 2015)
- Estado da arte com 94,34% de acurácia para palavras fora do vocábulario. Treinado com o Mac-Morpho revisado (FONSECA; ROSA; ALUÍSIO, 2015)

Roteiro

- Introdução
 - Part-of-speech (POS) Tagging
 - O problema
 - Objetivos
- Fundamentação
 - Aprendizado de máquina
 - Córpus
 - Representação de palavras
 - Redes neurais
 - Aprendizagem profunda
- Trabalhos relacionados
- Metodologia
 - Representação de palavras
 - Pontuações para classes gramaticais
 - Treinamento
- Cronograma

Representação de palavras

- Técnicas:
 - NLM
 - SG
 - GloVe

$$w_i \in \omega \to v_i \in \mathbb{R}^d$$

 $c_i \in \gamma \to z_i \in \mathbb{R}^d$

- Capitalização
- Prefixos

Pontuações para classes gramaticais

• Janela de palavras com tamanho t:

$$V_n = \{v_{n-(t-1)/2}, ..., v_n, ..., v_{n+(t-1)/2}\}$$

• Pontuações para classes gramaticais:

$$s_c(V_n)$$
 $A_{c,d,e}$

• Pontuação final para w_i^t dado c_1^t :

$$S(w_1^t, c_1^t) = \sum_{k=1}^t \left(\argmax_{1 \leq i \leq t, i \notin Q} (s_{c_i}(V_i) + A_{c_{i-1}, c_i, c_{i+1}}) \right)$$

Treinamento

- Treinamento supervisionado
- Rede neural recursiva
- Aprendizagem guiada por palavras mais fáceis (SHEN; SATTA; JOSHI, 2007)

• Composição dos vetores:

$$\beta(v_n, z_c) \mapsto v_n + z_c$$

21

Modelo Proposto

Modelo Proposto

• Ajustes feitos para maximizar:

$$\sum_{(w_1^t,c_1^t)\in\phi}P(c_1^t\big|w_1^t;\theta)$$

Função de custo:

$$J(\theta) = log\left(\sum_{u_1^t \in \gamma^t} e^{S(w_1^t, u_1^t)}\right) - S(w_1^t, c_1^t)$$

 Gradiente Descendente, Gradiente Descendente Estocástico, Adagrad, Adadelta, etc. (BENGIO; GOODFELLOW; COURVILLE, 2015)

Roteiro

- Introdução
 - Part-of-speech (POS) Tagging
 - O problema
 - Objetivos
- Fundamentação
 - Aprendizado de máquina
 - Córpus
 - Representação de palavras
 - Redes neurais
 - Aprendizagem profunda
- Trabalhos relacionados
- Metodologia
 - Representação de palavras
 - Pontuações para classes gramaticais
 - Treinamento
- Cronograma

Cronograma

- A1 Implementação do modelo neural recursivo
- A2 Treinamento do modelo
- A3 Avaliação dos resultados obtidos
- A4 Escrita da monografia

	Agosto	Setembro	Outubro	Novembro	Dezembro
A1	X	Χ	Χ		
A2		X	X	X	
A3			Χ	X	X
A 4	Χ	Χ	X	Χ	Χ

Referências I

BENGIO, Y.; GOODFELLOW, I. J.; COURVILLE, A. Deep learning. Book in preparation for MIT Press. 2015. Disponível em: http://www.iro.umontreal.ca/~bengioy/dlbook.

FONSECA, E. R.; ROSA, J. L. G.; ALUÍSIO, S. M. Evaluating word embeddings and a revised corpus for part-of-speech tagging in portuguese. *Journal of the Brazilian Computer Society*, Springer, v. 21, n. 1, p. 1–14, 2015.

KEPLER, F. N. *Um etiquetador morfo-sintático baseado em cadeias de Markov de tamanho variável*. Tese (Doutorado) — Instituto de Matemática e Estatística da Universidade de São Paulo, 12/04/2005., 2005.

NG, A. Course of Machine Learning. [S.I.], 2015. Disponível em: https://www.coursera.org/learn/machine-learning/. SANTOS, C. N. dos; ZADROZNY, B. Training state-of-the-art portuguese pos taggers without handcrafted features. In: Computational Processing of the Portuguese Language. [S.I.]: Springer, 2014. p. 82–93.

Referências II

SHEN, L.; SATTA, G.; JOSHI, A. Guided learning for bidirectional sequence classification. In: CITESEER. *ACL*. [S.I.], 2007. v. 7, p. 760–767.

TURIAN, J.; RATINOV, L.; BENGIO, Y. Word representations: a simple and general method for semi-supervised learning. In: ASSOCIATION FOR COMPUTATIONAL LINGUISTICS. *Proceedings of the 48th annual meeting of the association for computational linguistics.* [S.I.], 2010. p. 384–394.

Aprendizagem Guiada para Análise Morfossintática usando Redes Neurais Recursivas

Marcos Vinícius Treviso

marcosvtreviso@gmail.com

Orientador: Fábio Natanael Kepler

Trabalho de Conclusão de Curso I

8 de julho de 2015

Universidade Federal do Pampa

Aprendizagem profunda

- Muitas tranformações não lineares
- Objetivo de aprender automaticamente boas features
- Crescimento do desempenho computacional e criação de novos algoritmos

• Redes neurais com múltiplas Adaptado de: Bengio, Goodfellow e camadas Courville (2015)

Redes neurais recursivas

- Grafo computacional parece como uma árvore
- Aplica-se transformações recursivamente
- Composição da saída com entrada

