Trabajo Práctico Final EDMNA

GRUPO 1

CASTELLI, MATEO
CEJAS MATÍAS IGNACIO
DI PAOLO, FELIPE
ROLDAN BLANCO, TOMÁS IGNACIO

20 de Diciembre de 2023

PROBLEMA 1:

$$\begin{cases} P_0 = 10 \\ K = 20 \\ r = \frac{1}{2} \\ \lambda = 2 \end{cases}$$

Apartado 1:

$$\begin{cases} \frac{dP}{dt} = rP(1 - \frac{P}{K}), & t \in (0, 1) \\ P(0) = P_0 \end{cases} \begin{cases} \frac{dP}{dt} = \frac{1}{2}P(1 - \frac{P}{20}), & t \in (0, 1) \\ P(0) = 10 \end{cases}$$

La solución trivial P(t) = 0 no satisface la condición inicial. Por ello, no es solución del PVI.

Dado que nos encontramos en presencia de una ecuación diferencial de Bernoulli, la metodología de resolución es, mediante trabajo algebráico y sustitución de la variable, buscamos expresar a la ecuación diferencial como una ecuación diferencial lineal para luego resolver por el método de factor integrante.

De manera genérica se despeja el término elevado a la n-esima potencia, se divide m.a.m por P^n y luego se multiplica por (1-n). Se realiza la sustitución $v(t) = [P(t)]^{-1}$. Y luego se procede a resolver por aplicación de factor integrante. Para nuestro PVI resulta:

$$\frac{dP}{dt} = \frac{1}{2} \cdot P - \frac{1}{2} \cdot \frac{P^2}{20}$$

Donde n = 2.

$$\frac{dP}{dt} - \frac{1}{2}$$
. $P = -\frac{P^2}{40}$

Dividimos ambos términos por $[P(t)]^2$:

$$\frac{1}{R^2} \frac{dP}{dt} - \frac{1}{2} \frac{1}{P} = -\frac{1}{40}$$

Multiplicamos miembro a miembro por (1 - n): 1 - 2 = -1

$$- \frac{1}{p^2} \frac{dP}{dt} + \frac{1}{2} \frac{1}{P} = \frac{1}{40}$$

Aplicamos la sustitución $v(t) = \frac{1}{P}$ de forma tal que $\frac{dv}{dt} = -\frac{1}{P^2} \frac{dP}{dt}$:

$$\frac{dv}{dt} + \frac{1}{2}v(t) = \frac{1}{40}$$

Ahora resolvemos la ecuación diferencial por medio del factor integrante I(t):

$$\int E(t)dt$$
 Resulta ser $E(t)=\frac{1}{2}$ y $I(t)=e$; Donde $E(t)=\int \frac{1}{2}\,dt=\frac{1}{2}\,t+C$, $C\in R$

En particular, tomamos C = 0 tal que $E(t) = \frac{1}{2}t$ y $I(t) = e^{\frac{1}{2}t}$.

Multiplicamos ambos miembros por I(t):

$$e^{\frac{1}{2}t}\frac{dv}{dt} + e^{\frac{1}{2}t}\frac{1}{2}v(t) = e^{\frac{1}{2}t}\frac{1}{40}$$

$$\frac{d}{dt}\left[e^{\frac{1}{2}t}.v(t)\right] = e^{\frac{1}{2}t}\frac{1}{40}$$

Integramos ambos términos:

1.
$$\frac{1}{40} \int e^{\frac{1}{2}t} dt = \frac{2}{40} e^{\frac{1}{2}t} + C_1 = \frac{1}{20} e^{\frac{1}{2}t} + C_1, C_1 \in \mathbb{R}$$

2.
$$\int \frac{d}{dt} \left[e^{\frac{1}{2}t} \cdot v(t) \right] dt = e^{\frac{1}{2}t} v(t) + C_2, C_2 \in \mathbb{R}$$

Por (1) y (2) resulta:

$$e^{\frac{1}{2}t}v(t) = \frac{1}{20}e^{\frac{1}{2}t} + C_3, \quad C_3 = C_1 - C_2, \quad C_3 \in R$$

Multiplicamos ambos miembros por $e^{-\frac{1}{2}t}$ dado que $e^{-\frac{1}{2}t} \neq 0$, $\forall t \in R$

$$v(t) = \frac{1}{20} + e^{-\frac{1}{2}t} C_3, C_3 \in R$$

Como $v(t) = \frac{1}{P}$, teniendo en cuenta que $P(t) \neq 0$, $\forall t \in R$

$$\frac{1}{P(t)} = \frac{1}{20} + e^{-\frac{1}{2}t} C_3, C_3 \in R$$

$$P(t) = \frac{1}{\frac{1}{20} + e^{-\frac{1}{2}t}}, C_3 \in R$$

Reemplazamos con la condición inicial: $P(0) = P_0 = 10$

$$P(t) = \frac{1}{\frac{1}{20} + e^{-\frac{1}{2} \cdot 0}} = P_0 = 10 , C_3 \in R$$

$$P(0) = \frac{1}{\frac{1}{20} + C_3} = \frac{20}{1 + 20 C_3} = P_0 = 10, C_3 \in R$$

$$20 = 10 + 200 C_3 \Rightarrow C_3 = \frac{20 - 10}{200} = \frac{1}{20} = 0,05$$

Obtenemos la solución exacta al PVI:

$$P(t) = \frac{1}{\frac{1}{20} + \frac{1}{20}e^{-\frac{1}{2}t}} = \frac{20}{1 + e^{-\frac{1}{2}t}} = \frac{20}{1 + e^{-\frac{1}{2}t}} = \frac{e^{\frac{1}{2}t}}{1 + e^{\frac{1}{2}t}} = \frac{20e^{\frac{1}{2}t}}{1 + e^{\frac{1}{2}t}}$$

Finalmente, la solución exacta al problema de valores iniciales es:

$$P(t) = \frac{20 e^{\frac{1}{2}t}}{1 + e^{\frac{1}{2}t}}$$

Gráfica solución exacta del PVI, dentro del intervalo [0, 15]

Gráfica solución exacta al PVI, dentro del intervalo [0, 1]

Apartado 2:

$$\begin{cases} \frac{dP}{dt} = f(t; P) \\ t_{i+1} \\ P_{i+1} = P_i + \int_{t_i}^{t} f(t; P) dt \end{cases}$$

<u>Método de Euler</u>: (h = 0, 1, h = 0, 05 y h = 0, 02)

El método de Euler consiste en aproximar la solución de una ecuación diferencial a través de considerar la pendiente m_1 de la curva solución en un punto t_i constante sobre cierto intervalo de longitud h. Primero, debemos discretizar el intervalo en el que se desea aproximar la función con n puntos t_i , donde la longitud de cada intervalo es $h = \frac{t_{final} - t_{inicial}}{n}$. Luego, definimos a una función f(t,P) como la razón de cambio $\frac{dP}{dt}$ cuya ley viene dada por la ecuación diferencial del PVI. Apoyándonos en la regla de Barrow, podemos expresar $t_{i+1} = P_i + \int\limits_{t_i}^{t_{i+1}} f(t;P) \, dt \, \text{y si consideramos la aproximación} \int\limits_{t_i}^{t_i} f(t;P) dt \, \simeq \, h \, f(t_i;P_i),$

propia del método de Euler, podemos expresar la aproximación $P_{i+1} = P_i + h f(t_i; P_i)$.

Gráfica asociada a la explicación del método

Para nuestro problema de valores iniciales en particular podemos expresar al método como:

$$P_{i+1} = P_i + h f(t_i; P_i) = P_i + h \frac{1}{2} P_i (1 - \frac{P_i}{20})$$

Para h = 0, 1:

$$P_{i+1} = P_i + \frac{1}{20} P_i (1 - \frac{P_i}{20})$$

Tabla aproximación solución del PVI por método de Euler h=0,1

i	$t_{i}^{}$	P_{i}
0	0	10,000
1	0,1	10.250
2	0,2	10,500
3	0,3	10,749
4	0,4	10,998
5	0,5	11,245
6	0,6	11,491
7	0,7	11.736
8	0,8	11,978
9	0,9	12,219
10	1	12,456

Gráfica aproximación solución del PVI por método de Euler h=0,1

Para h = 0,05:

$$P_{i+1} = P_i + \frac{1}{40} P_i (1 - \frac{P_i}{20})$$

Tabla aproximación solución del PVI por método de Euler h=0,05

i	$t^{}_i$	P_{i}
0	0	10,000
1	0,05	10,125
2	0,10	10250
3	0,15	10375
4	0,20	10,500
5	0,25	10,624
6	0,30	10,749
7	0,35	10,873
8	0,40	10,997
9	0,45	11,121
10	0,50	11,244
11	0,55	11,368
12	0,60	11,490
13	0,65	11,612
14	0,70	11,734
15	0,75	11,855
16	0,80	11,976
17	0,85	12,096
18	0,90	12,216
19	0,95	12,335
20	1	12,453

Gráfica aproximación solución del PVI por método de Euler h=0,05

Para h = 0,02:

$$P_{i+1} = P_i + \frac{1}{100} P_i (1 - \frac{P_i}{20})$$

Tabla aproximación solución del PVI por método de Euler h=0,02

i	$t_{i}^{}$	P_{i}
0	0	10,000
1	0,02	10,050
2	0,04	10,100
3	0,06	10,150
4	0,08	10,200
5	0,10	10,250
6	0,12	10,300
7	0,14	10,350
8	0,16	10,400
9	0,18	10,450
10	0,20	10,500
11	0,22	10,550
12	0,24	10,599
13	0,26	10,649
14	0,28	10,699
15	0,30	10,749
16	0,32	10,798

i	$t_{i}^{}$	P_{i}
17	0,34	10,848
18	0,36	10,898
19	0,38	10,947
20	0,40	10,997
21	0,42	11,046
22	0,44	11,096
23	0,46	11,145
24	0,48	11.195
25	0,50	11,244
26	0,52	11,293
27	0,54	11,342
28	0,56	11,391
29	0,58	11,440
30	0,60	11,489
31	0,62	11,538
32	0,64	11,587
33	0,66	11,636

i	t_{i}	P_{i}
34	0,68	11,685
35	0,70	11,733
36	0,72	11,782
37	0,74	11,830
38	0,76	11,878
39	0,78	11,927
40	0,80	11,975
41	0,82	12,023
42	0,84	12,071
43	0,86	12,119
44	0,88	12,166
45	0,90	12,214
46	0,92	12,262
47	0,94	12,309
48	0,96	12,356
49	0,98	12,404
50	1	12,451

Gráfica aproximación solución del PVI por método de Euler h=0, 02

Gráfica comparación aproximaciones de la solución del PVI por método de Euler

Observando la gráfica podemos afirmar que no encontramos cambios en la aproximación de la función en dicho tramo dado que la misma es aproximadamente lineal en dicho intervalo. Analizando los valores obtenidos los mismos resultan ser aproximadamente los mismos. Podemos concluir entonces que al disminuir la longitud h del intervalo y tomar más puntos, no encontramos mejoras en la aproximación, comparándola con la solución exacta.

<u>Método de Heun</u>: (h = 0, 1, h = 0, 05 y h = 0, 02)

El método de Heun funciona, al igual que el método de Euler, en aproximar la solución de una ecuación diferencial a través de considerar su razón de cambio en un punto t_i constante sobre cierto intervalo de longitud h. La diferencia con el método anterior es la aproximación

$$\text{de la integral } \int\limits_{t_i}^{t_{i+1}} f(t;P) \ dt \ , \ \text{la cual en este caso resulta ser} \ \frac{h}{2} \left(f(t_i;P_i) \ + \ f(t_{i+1};u_{i+1}^o) \right).$$

Así, podemos trabajar la expresión de la regla de Barrow $P_{i+1} - P_i = \int_{t_i}^{t_{i+1}} f(t; P) dt$ para

expresar
$$P_{i+1} \text{ como } P_{i+1} = P_i + \int_{t_i}^{t_{i+1}} f(t; P) dt \simeq P_i + \frac{h}{2} (f(t_i; P_i) + f(t_{i+1}; u_{i+1}^o))$$
.

La interpretación geométrica de la aproximación por el método de Heun es considerar a la razón de cambio de la función P(t) constante sobre cierto intervalo h, donde la pendiente m_3 de la curva resulta ser el promedio de dos pendientes m_1 y m_2 . Cada una de ellas es la evaluación de la función $f(t,P)=\frac{dP}{dt}$ respectivamente en los puntos $(t_i;P_i)$ y $(t_{i+1};u_{i+1}^o)$; donde la ordenada u_{i+1}^o se obtiene a través de la aplicación del método de Euler en el punto $(t_i;P_i)$, para aproximarla como $u_{i+1}^o=P_i+h\,f(t_i;P_i)$ (Ver gráficas de ilustración). Para la aplicación del método de Heun, debemos discretizar el intervalo en el que se desea aproximar la función con n puntos t_i , donde la longitud de cada intervalo es $\frac{t_{final}-t_{inicial}}{n}=h$. Evaluamos la función $f(t,P)=\frac{dP}{dt}$ en el punto $(t_i;P_i)$. Luego, definimos al punto u_{i+1}^o tal que $u_{i+1}^o=P_i+h\,f(t_i;P_i)$. Evaluamos la función en dicho punto como $f(t_{i+1},u_{i+1}^o)$. Por último, la ordenada P_{i+1} en la abscisa t_{i+1} es $P_{i+1}=P_i+\frac{h}{2}(f(t_i;P_i)+f(t_{i+1};u_{i+1}^o))$.

Gráficas asociadas a la explicación del método

En particular, para nuestro PVI:

$$f(t_i; P_i) = \frac{1}{2} P_i (1 - \frac{P_i}{20})$$

$$u_{i+1}^{o} = P_{i} + h f(t_{i}; P_{i}) = P_{i} + h \frac{1}{2} P_{i} (1 - \frac{P_{i}}{20})$$

$$f(t_{i+1}; u_{i+1}^o) = \frac{1}{2} u_{i+1}^o (1 - \frac{u_{i+1}^o}{20})$$

$$P_{i+1} = P_i + \frac{h}{2} (f(t_i; P_i) + f(t_{i+1}; u_{i+1}^o))$$

Para h = 0, 1:

$$P_{i+1} = P_i + \frac{1}{20} (f(t_i; P_i) + f(t_{i+1}; u_{i+1}^o))$$

Tabla aproximación solución del PVI por método de Heun h = 0, 1

i	$t_{i}^{}$	P_{i}
0	0	10,0000
1	0,1	10,2499
2	0,2	10,4995
3	0,3	10,7485
4	0,4	10,9966
5	0,5	11,2434
6	0,6	11,4887
7	0,7	11,7322
8	0,8	11,9735
9	0,9	12,2125
10	1	12,4489

Gráfica aproximación solución del PVI por método de Heun h=0,1

Para h = 0,05:

$$P_{i+1} = P_i + \frac{1}{40} (f(t_i; P_i) + f(t_{i+1}; u_{i+1}^o))$$

Tabla aproximación solución del PVI por método de Heun h=0,05

i	$t_{i}^{}$	$p_{_{i}}$
0	0	10,0000
1	0,05	10,1250
2	0,10	10,2499
3	0,15	10,3748
4	0,20	10,4996
5	0,25	10,6242
6	0,30	10,7486
7	0,35	10,8728
8	0,40	10,9967
9	0,45	11,1202
10	0,50	11,2435
11	0,55	11,3664
12	0,60	11,4888
13	0,65	11,6108
14	0,70	11,7323
15	0,75	11,8533
16	0,80	11,9737
17	0,85	12,0935
18	0,90	12,2127
19	0,95	12,3313
20	1	12,4491

Gráfica aproximación solución del PVI por método de Heun h=0,05

Para h = 0,02:

$$P_{i+1} = P_i + \frac{1}{100} (f(t_i; P_i) + f(t_{i+1}; u_{i+1}^o))$$

Tabla aproximación solución del PVI por método de Heun h=0,02

i	t_{i}	P_{i}
0	0	10.0000
1	0,02	10.0500
2	0,04	10.1000
3	0,06	10.1500
4	0,08	10.2000
5	0,10	10.2499
6	0,12	10.2999
7	0,14	10.3499
8	0,16	10.3998
9	0,18	10.4497
10	0,20	10.4996
11	0,22	10.5494
12	0,24	10.5993
13	0,26	10.6491
14	0,28	10.6989
15	0,30	10.7486
16	0,32	10.7983

i	$t_{i}^{}$	P_{i}
17	0,34	10.8480
18	0,36	10.8976
19	0,38	10.9471
20	0,40	10.9967
21	0,42	11.0462
22	0,44	11.0956
23	0,46	11.1450
24	0,48	11.1943
25	0,50	11.2435
26	0,52	11.2927
27	0,54	11.3419
28	0,56	11.3909
29	0,58	11.4399
30	0,60	11.4888
31	0,62	11.5377
32	0,64	11.5865
33	0,66	11.6352

35 0,70 11.7323 36 0,72 11.7803 37 0,74 11.8293 38 0,76 11.8773 39 0,78 11.9255 40 0,80 11.973 41 0,82 12.021 42 0,84 12.069 43 0,86 12.1173 44 0,88 12.1653 45 0,90 12.2123 46 0,92 12.2603 47 0,94 12.307 48 0,96 12.3543			
35 0,70 11.7323 36 0,72 11.7803 37 0,74 11.8293 38 0,76 11.8773 39 0,78 11.9253 40 0,80 11.973 41 0,82 12.021 42 0,84 12.0693 43 0,86 12.1173 44 0,88 12.1653 45 0,90 12.2123 46 0,92 12.2603 47 0,94 12.3073 48 0,96 12.3543	i	t_{i}	P_{i}
36 0,72 11.7806 37 0,74 11.8296 38 0,76 11.8776 39 0,78 11.9256 40 0,80 11.973 41 0,82 12.021 42 0,84 12.069 43 0,86 12.1176 44 0,88 12.1656 45 0,90 12.2126 46 0,92 12.2606 47 0,94 12.3546 48 0,96 12.3546	34	0,68	11.6838
37 0,74 11.829 38 0,76 11.877 39 0,78 11.925 40 0,80 11.973 41 0,82 12.021 42 0,84 12.069 43 0,86 12.117 44 0,88 12.165 45 0,90 12.212 46 0,92 12.260 47 0,94 12.354 48 0,96 12.354	35	0,70	11.7323
38 0,76 11.8773 39 0,78 11.9256 40 0,80 11.973 41 0,82 12.021 42 0,84 12.069 43 0,86 12.1173 44 0,88 12.165 45 0,90 12.2126 46 0,92 12.2603 47 0,94 12.3543 48 0,96 12.3543	36	0,72	11.7808
39 0,78 11.9250 40 0,80 11.973 41 0,82 12.021 42 0,84 12.069 43 0,86 12.1173 44 0,88 12.165 45 0,90 12.212 46 0,92 12.260 47 0,94 12.307 48 0,96 12.354	37	0,74	11.8292
40 0,80 11.973 41 0,82 12.021 42 0,84 12.069 43 0,86 12.1179 44 0,88 12.165 45 0,90 12.212 46 0,92 12.260 47 0,94 12.307 48 0,96 12.3549	38	0,76	11.8775
41 0,82 12.021 42 0,84 12.069 43 0,86 12.1173 44 0,88 12.165 45 0,90 12.212 46 0,92 12.260 47 0,94 12.307 48 0,96 12.354	39	0,78	11.9256
42 0,84 12.069 43 0,86 12.1179 44 0,88 12.165 45 0,90 12.212 46 0,92 12.2609 47 0,94 12.307 48 0,96 12.3549	40	0,80	11.9737
43 0,86 12.1173 44 0,88 12.1655 45 0,90 12.2126 46 0,92 12.2603 47 0,94 12.307 48 0,96 12.3548	41	0,82	12.0217
44 0,88 12.165 45 0,90 12.212 46 0,92 12.260 47 0,94 12.307 48 0,96 12.354	42	0,84	12.0697
45 0,90 12.2126 46 0,92 12.2603 47 0,94 12.307 48 0,96 12.3548	43	0,86	12.1175
46 0,92 12.2603 47 0,94 12.3073 48 0,96 12.3543	44	0,88	12.1652
47 0,94 12.307 48 0,96 12.354	45	0,90	12.2128
48 0,96 12.354	46	0,92	12.2603
	47	0,94	12.3077
49 0,98 12.402	48	0,96	12.3549
	49	0,98	12.4021
50 1 12.4492	50	1	12.4492

Gráfica aproximación solución del PVI por método de Heun h=0,02

Gráfica comparación aproximaciones de la solución del PVI por método de Heun

Nuevamente, comparando las gráficas de las 3 aproximaciones, no notamos cambios significativos en la aproximación de la función debido a que es aproximadamente lineal en

dicho intervalo. Realizando un análisis sobre los valores obtenidos resultan ser aproximadamente iguales entre sí. Concluimos entonces que al disminuir la longitud h del intervalo y tomar más puntos, no se encontraran significativas mejoras en la aproximación. Podemos afirmar esto ya que conocemos la solución exacta.

Gráfica comparación aproximaciones de la solución del PVI por método de Euler y Heun

Comparando las aproximaciones a través de los métodos de Euler y Heun con un h=0,02 y 50 puntos, en particular para la función solución de ecuación diferencial en el intervalo (0;1) no se pueden ver mejoras significativas en la utilización de un método u otro.

Apartado 3:

$$\begin{cases} \frac{dP}{dt} = 0.5 P (1 - \frac{P}{20}) - 2 [\cos(4\pi t) + 1], t \in (0, 1) \\ P(0) = P_0 = 10 \end{cases}$$

<u>Método de Euler</u>: (h = 0, 1, h = 0, 05 y h = 0, 02)

$$\int_{t_i}^{t_{i+1}} f(t; P) dt \simeq h f(t_i; P_i)$$

Luego,
$$P_{i+1} = P_i + h f(t_i; P_i) = P_i + h \{\frac{1}{2}P_i(1 - \frac{P_i}{20}) - 2[cos(4\pi t_i) + 1]\}, t_i \in (0, 1)$$

Para $h = 0, 1$:

$$P_{i+1} = P_i + \frac{1}{10} f(t_i; P_i) = P_i + \frac{1}{10} \left\{ \frac{1}{2} P_i (1 - \frac{P_i}{20}) - 2 \left[cos(4\pi t_i) + 1 \right] \right\}$$

Tabla aproximación solución del PVI por método de Euler h = 0, 1

i	$t_{i}^{}$	P_{i}
0	0	10.0000
1	0,1	9.8500
2	0,2	9.8381
3	0,3	10.0499
4	0,4	10.2617
5	0,5	10.2497
6	0,6	10.0995
7	0,7	10.0877
8	0,8	10.2995
9	0,9	10.5111
10	1	10.4986

Gráfica aproximación solución del PVI por método de Euler h=0,1

Para h = 0,05:

$$P_{i+1} = P_i + \frac{1}{20} f(t_i; p_i) = P_i + \frac{1}{20} \left\{ \frac{1}{2} P_i (1 - \frac{P_i}{20}) - 2 \left[cos(4\pi t_i) + 1 \right] \right\}$$

Tabla aproximación solución del PVI por método de Euler h=0,05

i	$t_{_i}$	P_{i}
ι		
0	0	10.0000
1	0,05	9.9250
2	0,10	9.8691
3	0,15	9.8632
4	0,20	9.9190
5	0,25	10.0249
6	0,30	10.1499
7	0,35	10.2558
8	0,40	10.3116
9	0,45	10.3056
10	0,50	10.2496
11	0,55	10.1745
12	0,60	10.1186
13	0,65	10.1127
14	0,70	10.1685
15	0,75	10.2744
16	0,80	10.3993
17	0,85	10.5050
18	0,90	10.5606
19	0,95	10.5543
20	1	10.4980

Gráfica aproximación solución del PVI por método de Euler h=0,05

Para h = 0,02:

$$P_{i+1} = P_i + \frac{1}{50} f(t_i; P_i) = P_i + \frac{1}{50} \left\{ \frac{1}{2} P_i (1 - \frac{P_i}{20}) - 2 \left[cos(4\pi t_i) + 1 \right] \right\}$$

Tabla aproximación solución del PVI por método de Euler h=0,02

i	$t_{i}^{}$	P_{i}
0	0	10.0000
1	0,02	9.9700
2	0,04	9.9413
3	0,06	9.9162
4	0,08	9.8970
5	0,10	9.8856
6	0,12	9.8832
7	0,14	9.8907
8	0,16	9.9082
9	0,18	9.9352
10	0,20	9.9707
11	0,22	10.0131
12	0,24	10.0603
13	0,26	10.1100
14	0,28	10.1596
15	0,30	10.2068
16	0,32	10.2492

i	$t_{i}^{}$	P_{i}
17	0,34	10.2846
18	0,36	10.3116
19	0,38	10.3291
20	0,40	10.3365
21	0,42	10.3341
22	0,44	10.3226
23	0,46	10.3034
24	0,48	10.2783
25	0,50	10.2495
26	0,52	10.2195
27	0,54	10.1907
28	0,56	10.1656
29	0,58	10.1465
30	0,60	10.1350
31	0,62	10.1326
32	0,64	10.1401
33	0,66	10.1576

i	$t_{i}^{}$	P_{i}
34	0,68	10.1846
35	0,70	10.2201
36	0,72	10.2624
37	0,74	10.3096
38	0,76	10.3592
39	0,78	10.4089
40	0,80	10.4560
41	0,82	10.4982
42	0,84	10.5336
43	0,86	10.5605
44	0,88	10.5778
45	0,90	10.5851
46	0,92	10.5826
47	0,94	10.5710
48	0,96	10.5517
49	0,98	10.5265
50	1	10.4976

Gráfica aproximación solución del PVI por método de Euler h=0, 02

Gráfica comparación aproximaciones a la solución del PVI por método de Euler

Al observar las distintas aproximaciones por el método de Euler de la solución del PVI notamos una mejora significativa en cuanto a la gráfica que describe la función, a medida que disminuye h. Al aumentar la cantidad de intervalos la curva se vuelve más suave y describe una trayectoria mucho más semejante a lo que se puede esperar, dado que la ley de la ecuación diferencial contiene un término con $cos(4\pi t)$.

En particular se puede destacar que los puntos \boldsymbol{y}_i al comienzo y fin del intervalo poseen aproximadamente los mismos valores en las 3 aproximaciones y, a medida que disminuye h los puntos intermedios alcanzan valores de \boldsymbol{y}_i más grandes.

<u>Método de Heun</u>: (h = 0, 1, h = 0, 05 y h = 0, 02)

$$\int_{t_{i}}^{t_{i+1}} f(t; P) dt \simeq \frac{h}{2} (f(t_{i}; P_{i}) + f(t_{i+1}; u_{i+1}^{o}))$$

Donde
$$u_{i+1}^o = P_i + h f(t_i; P_i)$$

Luego,

$$P_{i+1} = P_i + \frac{h}{2} (f(t_i; P_i) + f(t_{i+1}; u_{i+1}^0))$$

Para nuestro PVI:

$$f(t_i; P_i) = \frac{1}{2} P_i (1 - \frac{P_i}{20}) - 2 [cos(4\pi t) + 1]$$

$$u_{i+1}^{o} = P_{i} + h f(t_{i}; P_{i}) = P_{i} + h \{\frac{1}{2}P_{i}(1 - \frac{P_{i}}{20}) - 2 [cos(4\pi t) + 1]\}$$

$$f(t_{i+1}; u_{i+1}^o) = \frac{1}{2} u_{i+1}^o (1 - \frac{u_{i+1}^o}{20})$$

$$P_{i+1} = P_i + \frac{h}{2} (f(t_i; P_i) + f(t_{i+1}; u_{i+1}^o))$$

Para h = 0, 1:

$$P_{i+1} = P_i + \frac{1}{10} f(t_i; p_i) = P_i + \frac{1}{10} \left\{ \frac{1}{2} P_i (1 - \frac{P_i}{20}) - 2 \left[cos(4\pi t_i) + 1 \right] \right\}$$

Tabla aproximación solución del PVI por método de Heun h=0,1

i	$t_{_i}$	P_{i}
0	0	10.0000
1	0,1	9.9191
2	0,2	10.0191
3	0,3	10.2308
4	0,4	10.3305
5	0,5	10.2493
6	0,6	10.1683
7	0,7	10.2683
8	0,8	10.4797
9	0,9	10.5788
10	1	10.4971

Gráfica aproximación solución del PVI por método de Heun h=0,1

Para h = 0,05:

$$P_{i+1} = P_i + \frac{1}{20} f(t_i; p_i) = P_i + \frac{1}{20} \left\{ \frac{1}{2} P_i (1 - \frac{P_i}{20}) - 2 \left[cos(4\pi t_i) + 1 \right] \right\}$$

Tabla aproximación solución del PVI por método de Heun h=0,05

i	$t_{i}^{}$	P_{i}
0	0	10.0000
1	0,05	9.9345
2	0,10	9.9036
3	0,15	9.9286
4	0,20	10.0095
5	0,25	10.1250
6	0,30	10.2404
7	0,35	10.3212
8	0,40	10.3460
9	0,45	10.3150
10	0,50	10.2494
11	0,55	10.1839
12	0,60	10.1530
13	0,65	10.1779
14	0,70	10.2588
15	0,75	10.3741
16	0,80	10.4893
17	0,85	10.5698
18	0,90	10.5944
19	0,95	10.5631
20	1	10.4972

Gráfica aproximación solución del PVI por método de Heun h=0,05

Para h = 0,02:

$$P_{i+1} = P_i + \frac{1}{50} f(t_i; p_i) = P_i + \frac{1}{50} \left\{ \frac{1}{2} P_i (1 - \frac{P_i}{20}) - 2 \left[cos(4\pi t_i) + 1 \right] \right\}$$

Tabla aproximación solución del PVI por método de Heun h=0,02

i	t_{i}	P_{i}
0	0	10.0000
1	0,02	9.9706
2	0,04	9.9437
3	0,06	9.9216
4	0,08	9.9063
5	0,10	9.8994
6	0,12	9.9020
7	0,14	9.9145
8	0,16	9.9367
9	0,18	9.9680
10	0,20	10.0069
11	0,22	10.0517
12	0,24	10.1001
13	0,26	10.1100
14	0,28	10.1596
15	0,30	10.2068
16	0,32	10.2492

i	t_{i}	P_{i}
17	0,34	10.1498
18	0,36	10.1982
19	0,38	10.2430
20	0,40	10.2819
21	0,42	10.3131
22	0,44	10.3353
23	0,46	10.3477
24	0,48	10.3502
25	0,50	10.3433
26	0,52	10.3279
27	0,54	10.3058
28	0,56	10.2788
29	0,58	10.2494
30	0,60	10.1350
31	0,62	10.1326
32	0,64	10.1401
33	0,66	10.1576

i	$t_{i}^{}$	P_{i}
34	0,68	10.2200
35	0,70	10.1931
36	0,72	10.1710
37	0,74	10.1557
38	0,76	10.1488
39	0,78	10.1513
40	0,80	10.1638
41	0,82	10.1860
42	0,84	10.2173
43	0,86	10.2562
44	0,88	10.3009
45	0,90	10.3493
46	0,92	10.3989
47	0,94	10.5710
48	0,96	10.5517
49	0,98	10.5265
50	1	10.4976

Gráfica aproximación solución del PVI por método de Heun h=0,02

Gráfica comparación aproximaciones solución del PVI por método de Heun

Respecto a las distintas aproximaciones por el método de Heun, las conclusiones son las mismas respecto a Euler, en comparación las aproximaciones son más similares independientemente de la cantidad de puntos adoptados.

Gráfica comparación aproximaciones solución del PVI por métodos de Euler y Heun:

Al comparar ambos, las aproximaciones por ambos métodos con el mismo valor de h, notamos que la curvatura descrita resulta ser muy similar, por no decir idénticas, sin embargo, la aproximación de Euler presenta valores de P_{ij} menores a los de Heun.

PROBLEMA 2 y 3:

Apartado 1:

$$\mathsf{PVC} \left\{ \begin{array}{l} u_{xx} + u_{yy} = 0 & (x\,;\,y) \, \epsilon \, D \\ u_{x}(0\,,\,y) = 0 & 0 \leq y \leq 2 \\ u_{x}(2\,,\,y) = 0 & 0 \leq y \leq 2 \\ u(x\,,\,0) = 0 & 0 \leq x \leq 2 \\ u(x\,,\,2) = f(x) & 0 \leq x \leq 2 \end{array} \right.$$

$$f(x) = \begin{cases} x, & 0 \le x \le 1 \\ x - 2, & 1 \le x \le 2 \end{cases}$$

Suponemos como solución:

u(x,t) = X(x)Y(y); $X(x) \neq 0$, $Y(y) \neq 0$ (Método de separación de variables)

$$\left. \begin{array}{l} u_{xx} = X''(x)Y(y) \\ \\ u_{yy} = X(x)Y''(y) \end{array} \right\} \Rightarrow X''(x)Y(y) + X(x)Y''(y) = 0 \Rightarrow \frac{X''(x)}{X(x)} = -\frac{Y''(y)}{Y(y)}$$

Dado que ambas funciones dependen de distintas variables, la condición de igualdad se dará únicamente cuando ambas expresiones sean iguales a una constante.

$$\frac{X''(x)}{X(x)} = -\frac{Y''(y)}{Y(y)} = -\lambda, \lambda \in R$$

Trabajando algebraicamente obtenemos:

$$\begin{cases} X''(x) + \lambda X(x) = 0 \\ Y''(y) - \lambda Y(y) = 0 \end{cases}$$

Condiciones de contorno:

$$\begin{aligned} u_{_X}(0\,,\,y) &= 0 = X'(0)\,Y(y) \Rightarrow X'(0) = 0 \\ u_{_X}(2\,,\,y) &= 0 = X'(2)\,Y(y) \Rightarrow X'(2) = 0 \end{aligned} \right\} \Rightarrow \begin{cases} X''(0) + \lambda\,X(x) = 0 \\ X'(0) &= 0 \\ X'(2) &= 0 \end{cases}$$

Para $\lambda < 0$:

$$\lambda = -k^2$$
; $k \in R^+ \Rightarrow X''(x) - k^2 X(x) = 0$

Ecuación característica: $r^2 - k^2 = 0 \Rightarrow r_1 = k \land r_2 = -k$

Por ser las raíces reales: $X(x) = A e^{kx} + B e^{-kx}$; $A, B \in R$

$$X'(x) = A k e^{kx} - B k e^{-kx}$$

$$X'(0) = 0 = A k - B k \Rightarrow A = B$$

$$X'(2) = 0 = A k(e^{kx} - e^{-kx}) = 2 A k \frac{e^{kx} - e^{-kx}}{2} = 2 A k \operatorname{senh}(2k) = 0$$

 $senh(2k) \neq 0$ ya que $2k \neq 0$

$$\Rightarrow A = 0$$

⇒ No nos interesa dado que es la solución trivial.

Para $\lambda = 0$:

$$\begin{cases} X''(x) = 0 \\ X'(0) = X'(2) = 0 \end{cases}$$

Dada la condición de que su segunda derivada es cero, suponemos que X(x) es una función de la forma Ax + B (lineal).

$$X(x) = Ax + B \Rightarrow X'(x) = A$$

$$X'(0) = X'(2) = 0 \Rightarrow A = 0$$

Por lo tanto:
$$X_0(x) = B_0$$
; $B_0 \in \Re$

Para $\lambda > 0$:

$$\begin{cases} X''(x) + \lambda . X(x) = 0 \\ X'(0) = X'(2) = 0 \end{cases}$$

Dado que nos encontramos con una ecuación diferencial lineal de segundo orden, planteamos la ecuación característica: $r^2+\lambda=0 \Rightarrow r_1=\sqrt{\lambda}.i$, $r_2=-\sqrt{\lambda}.i$

Por ser las raíces complejas adoptamos:

$$X(x) = A\cos(\sqrt{\lambda}x) + B\sin(\sqrt{\lambda}x)$$

$$X'(x) = -A\sqrt{\lambda}\sin(\sqrt{\lambda}x) + B\sqrt{\lambda}\cos(\sqrt{\lambda}x)$$

Dadas las demás condiciones de contorno:

$$X'(0) = 0 = -A \operatorname{sen}(0) \sqrt{\lambda} + B \cos(0) \sqrt{\lambda} = B \sqrt{\lambda} = 0 \quad \Rightarrow B = 0$$

$$X'(2) = -A \sqrt{\lambda} \operatorname{sen}(\sqrt{\lambda} 2) = 0$$

Consideramos que $A \neq 0$ ya que sino sería la solución trivial

Por lo tanto necesariamente:

$$sen(\sqrt{\lambda} 2) = 0 \Rightarrow \sqrt{\lambda} 2 = n \pi \Rightarrow \lambda_n = \frac{(n \pi)^2}{4}$$

Para familia de $\lambda_n = \frac{(n \pi)^2}{4}$, $n \in N$ tenemos soluciones no triviales.

$$X_n = A_n cos(\sqrt{\lambda_n} x), \ A_n \in R$$

$$X_n = A_n cos(\frac{n\pi}{2} x), A_n \in R, n \in N$$

Reescribiendo

$$\begin{cases}
X_n''(x) + \lambda_n X_n(x) = 0 \\
Y_n''(y) - \lambda_n Y_n(y) = 0
\end{cases}$$

donde sabemos que λ_n puede adoptar los valores $\lambda_0=0$ y $\lambda_n=\frac{(n\,\pi)^2}{4}$, $n\in N$.

Ahora debemos resolver Y(y) para estos λ_n :

Siendo
$$u(x, 0) = 0 = X(x) Y(0)$$
; Donde $X(x) \neq 0 \Rightarrow Y(0) = 0$

$$\begin{cases} Y_n''(y) - \lambda_n Y_n(y) = 0 \\ Y_n(0) = 0 \end{cases}$$

Para $\lambda_0 = 0$:

Dada la condición de que su segunda derivada es cero, suponemos que Y(y) es una función de la forma Ay + B (lineal).

$$Y''(y) = 0 \Rightarrow Y(y) = Ay + B$$

$$Y(0) = 0 \Rightarrow A0 + B \Rightarrow B = 0$$

$$Y_0(y) = A_0 y$$

$$\lambda_n > 0$$
:

Ecuación característica:
$$r^2 - \lambda_n = 0 \Rightarrow r_1 = \sqrt{\lambda_n} = \frac{n\pi}{2} \land r_2 = -\sqrt{\lambda_n} = -\frac{n\pi}{2}$$

$$Y(y) = A e^{\frac{n\pi}{2}y} + B e^{-\frac{n\pi}{2}y}, A, B \in R$$

$$Y(0) = 0 = A + B \Rightarrow A = -B \Rightarrow Y(y) = A(e^{\frac{n\pi}{2}y} - e^{-\frac{n\pi}{2}y}) = 2A(e^{\frac{n\pi}{2}y} - e^{-\frac{n\pi}{2}y})$$

Si consideramos $B_n = 2A$, para cada Y_n :

$$Y_n(y) = B_n \operatorname{senh}(\frac{n\pi}{2} y), \qquad B_n \in R$$

A partir de las conclusiones que realizamos sobre $X_n(x)$ e $Y_n(y)$ reescribimos $u_n(x,y)$:

$$u_n(x, y) = X_n(x) Y_n(y), n \in N$$

$$u_n(x,y) = A_n cos(\frac{n\pi}{2} x) B_n senh(\frac{n\pi}{2} y), A_n, B_n \in R, n \in N$$

Considerando $C_n = A_n . B_n, n \in N$

$$u_n(x,y) = C \cos(\frac{n\pi}{2} x) \operatorname{senh}(\frac{n\pi}{2} y), C_n \in R, n \in N$$

Para el caso particular de u_0 :

$$u_{0}(x, y) = X_{0}(x) Y_{0}(y)$$

$$u_{0}(x, y) = B_{0} A_{0} y = C_{0} y, C_{0} = A_{0} B_{0}, C_{0} \in R$$

<u>Principio de superposición</u>: Debido a que obtenemos un conjunto de infinitas soluciones, la sumatoria de las mismas corresponderá a la solución general.

Proponemos:

$$\begin{split} u(x,y) &= \sum_{n=0}^{\infty} u_n(x,y) = u_0(x,y) + u_1(x,y) + u_2(x,y) + \dots \\ u(x,y) &= C_0 y + \sum_{n=1}^{\infty} C_n cos(\frac{n\pi}{2} x) senh(\frac{n\pi}{2} y), C_0 \in R, C_n \in R \end{split}$$

Tan solo falta verificar la restante condición de frontera:

$$u(x,2) = f(x) = C_0 2 + \sum_{n=1}^{\infty} C_n cos(\frac{n\pi}{2} x) senh(\frac{n\pi}{2} 2) = 2 C_0 + \sum_{n=1}^{\infty} C_n cos(\frac{n\pi}{2} x) senh(n\pi)$$

Donde

$$f(x) = \begin{cases} x, & 0 \le x \le 1 \\ x - 2, & 1 \le x \le 2 \end{cases}$$

Por lo expresado anteriormente, dado que $f(x) = 2 C_0 + \sum_{n=1}^{\infty} C_n cos(\frac{n\pi}{2}x) senh(n\pi)$ buscamos aproximar a f(x) por medio de una serie de cosenos.

Para esto, nos ayudamos de una función $\hat{f}(x)$ que resulta ser una función <u>par</u> en el intervalo [-2, 2], de manera que $\hat{f}(x) = f(x)$ dentro del intervalo [0, 2].

En particular, tenemos que:

$$f(x) \simeq \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(\frac{\pi n}{L}x), L = 2, \text{ en el intervalo } [0; 2]$$

$$a_0 = \frac{4}{2L} \int_0^L \hat{f}(x) dx = \frac{2}{L} \int_0^L f(x) dx = \frac{2}{2} \left[\int_0^1 x dx + \int_1^2 (2 - x) dx \right] = (\frac{1^2}{2}) - 0 + \left[(4 - 2) - (2 - \frac{1}{2}) \right] = 1$$

$$a_n = \frac{4}{2L} \int_0^L \hat{f}(x) \cos(\frac{\pi n}{L}) dx = \frac{2}{L} \int_0^L f(x) \cos(\frac{\pi n}{L}x) dx$$

$$= \int_0^1 x \cos(\frac{\pi n}{2}x) dx + \int_1^2 (2 - x) \cos(\frac{\pi n}{2}x) dx$$

Obtenemos dichas integrales mediante el uso de programas:

$$\int_{0}^{1} x \cos(\frac{\pi n}{2} x) dx = \frac{2[\pi n \sec(\frac{\pi n}{2}) + 2\cos(\frac{\pi n}{2}) - 2]}{\pi^{2} n^{2}} = \frac{2\pi n \sec(\frac{\pi n}{2}) + 4\cos(\frac{\pi n}{2}) - 4}{\pi^{2} n^{2}}$$

$$\int_{1}^{2} (2 - x) \cos(\frac{\pi n}{2} x) dx = -\frac{2[\pi n \sec(\frac{\pi n}{2}) - 2\cos(\frac{\pi n}{2}) + 2\cos(\pi n))]}{\pi^{2} n^{2}}$$

$$= \frac{-2\pi n \sec(\frac{\pi n}{2}) + 4\cos(\frac{\pi n}{2}) - 4(-1)^{n}}{\pi^{2} n^{2}}$$

Reemplazando las expresiones obtenidas y trabajando algebraicamente:

$$a_{n} = \frac{2\pi n \operatorname{sen}(\frac{\pi n}{2}) + 4 \cos(\frac{\pi n}{2}) - 4}{\pi^{2} n^{2}} + \frac{-2\pi n \operatorname{sen}(\frac{\pi n}{2}) + 4 \cos(\frac{\pi n}{2}) - 4 (-1)^{n}}{\pi^{2} n^{2}}$$

$$a_{n} = \frac{8 \cos(\frac{\pi n}{2}) - 4 (-1)^{n} - 4}{\pi^{2} n^{2}} = \frac{4 \left[2 \cos(\frac{\pi n}{2}) - (-1)^{n} - 1\right]}{\pi^{2} n^{2}}$$

Ahora bien

$$u(x; y) = f(x)$$

$$2 C_0 + \sum_{n=1}^{\infty} C_n cos(\frac{n \pi}{2} x) senh(n \pi) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n cos(\frac{\pi n}{L} x)$$

Para que se cumpla dicha igualdad debe darse: $\frac{a_0}{2} = 2 C_0$ y $C_n senh(n\pi) = a_n$:

$$\frac{a_0}{2} = 2 C_0 \Rightarrow 2 C_0 = \frac{1}{2} \Rightarrow C_0 = \frac{1}{4}$$

$$C_n senh(n\pi) = a_n = \frac{4\left[2\cos(\frac{n\pi}{2}) - (-1)^n - 1\right]}{\pi^2 n^2} \Rightarrow C_n = \frac{4\left[2\cos(\frac{\pi n}{2}) - (-1)^n - 1\right]}{\pi^2 n^2 senh(n\pi)}$$

Recordando que:

$$u(x,y) = C_0 y + \sum_{n=1}^{\infty} C_n cos(\frac{n\pi}{2} x) senh(\frac{n\pi}{2} y), C_0 \in R, n \in N$$

Llegamos a la siguiente expresión:

$$u(x,y) = \frac{1}{4}y + \sum_{n=1}^{\infty} \frac{4\left[2\cos(\frac{n\pi}{2}) - (-1)^n - 1\right]}{\pi^2 n^2 senh(n\pi)} \cos(\frac{n\pi}{2}x) senh(\frac{n\pi}{2}y)$$

Gráfica de la solución del problema de valores iniciales.

Apartado 2:

Resolución Mediante Diferencias Finitas

$$\mathsf{PVC} \left\{ \begin{array}{l} u_{xx} + u_{yy} = 0 & (x\,;\,y) \, \epsilon \, D \\ u_{x}(0\,,\,y) = 0 & 0 \leq y \leq 2 \\ u_{x}(2\,,\,y) = 0 & 0 \leq y \leq 2 \\ u(x\,,\,0) = 0 & 0 \leq x \leq 2 \\ u(x\,,\,2) = f(x) & 0 \leq x \leq 2 \end{array} \right.$$

$$f(x) = \begin{cases} x, & 0 \le x \le 1 \\ x - 2, & 1 \le x \le 2 \end{cases}$$

La aplicación del Método de Diferencias Finitas busca aproximar la solución a la ecuación diferencial dentro de cierto dominio finito delimitado por las condiciones de contorno por medio del uso de los operadores en diferencia, los cuales son aproximaciones de las derivadas parciales en x y en y.

Primero, debemos dividir el dominio donde buscamos aproximar la función solución en una grilla con intervalos Δx , Δy , ambos mayores a cero. Con el objetivo de aproximar el valor que adopta la solución de la ecuación diferencial en cada punto u_i y F_i .

Para la resolución aproximamos las derivadas parciales mediante los siguientes operadores en diferencia:

$$u_{x}(i,j) \approx D_{x,i,j}^{C} = \frac{z_{i+1,j} - z_{i-1,j}}{2 \Delta x}$$

$$u_{y}(i,j) \approx D_{y,i,j}^{C} = \frac{z_{i,j+1} - z_{i,j-1}}{2 \Delta y}$$

Luego, a partir de dichas aproximaciones:

$$u_{xx}(i,j) \approx D_{xx,i,j}^{C} = \frac{z_{i+1,j}^{C} - 2z_{i,j}^{C} + z_{i-1,j}^{C}}{\Delta x^{2}}$$
$$u_{yy}(i,j) \approx D_{yy,i,j}^{C} = \frac{z_{i,j+1}^{C} - 2z_{i,j}^{C} + z_{i,j-1}^{C}}{\Delta y^{2}}$$

A partir de esto, la ley de la ecuación diferencial $u_{xx}+u_{yy}=0$ puede ser aproximada y podemos plantear para cada $u_{i,j}$ dicha aproximación, la cuál queda descrita en función de los puntos que lo rodean. Así, planteamos un sistema de ecuaciones conformado por una ecuación por cada $u_{i,j}$ presente en la grilla.

Además, dentro de la grilla podemos podemos distinguir además los puntos F_i los cuales se conoce por las condiciones de contorno que cumplen con $u_{_{\chi}}(0\,,\,y)=0\,$ y $u_{_{\chi}}(2\,,\,y)=0.$ Dado que los F_i son puntos cuyo valor se desconoce, contamos con más incógnitas que ecuaciones, por lo cual resulta necesario plantear más ecuaciones. Para esto, nos ayudamos de los puntos auxiliares $P_{_{Fi}}$, de los cuales no tenemos información pero nos serán útiles para la resolución.

Para resolver este problema, planteamos la aproximación de la condición de contorno, donde podemos concluir que los puntos P_{Fi} adoptan el mismo valor que los u_i . De esta forma, podemos plantear finalmente un sistema de ecuaciones con tantas ecuaciones e incógnitas como el número de u_i y P_{Fi} presentes en la grilla. A partir de plantear el sistema matricial correspondiente se pueden obtener las soluciones por medio de un software.

Gráfico ilustrativo acerca de la aplicación del método de diferencias finitas para h=2/3:

Resolución aplicada al caso para $\Delta x = \Delta y = \frac{2}{3}$

$$u_{xx} \approx \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{\Delta x^2} = \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{\frac{4}{9}}$$

$$u_{yy} \approx \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{\Delta y^2} = \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{\frac{4}{9}}$$

Aproximación de la ecuación diferencial:

$$u_{xx} + u_{yy} = 0 \Rightarrow \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{\frac{4}{9}} + \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{\frac{4}{9}} = 0 \Rightarrow_{1}$$

$$\Rightarrow_{1} - 4u_{i,j} + u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1} = 0$$
 (1)

Aproximación de las condiciones de contorno

$$u_{x}(0, y) = u_{x}(2, y) = 0 \approx \frac{u_{i+1,j} - u_{i-1,j}}{\Delta x^{2}} = \frac{u_{i+1,j} - u_{i-1,j}}{\frac{9}{4}} \Rightarrow_{2}$$

$$\Rightarrow_{2} u_{i+1,j} = u_{i-1,j} \text{ para } x = 0 \text{ } y/o \text{ } x = 2 \text{ (2)}$$

Para x = 0:

• En
$$y = \frac{4}{3} : P_{F1} = u_1$$

• En
$$y = \frac{2}{3}$$
: $P_{F2} = u_2$

Para x = 2:

• En
$$y = \frac{4}{3}$$
: $P_{F3} = u_3$

• En
$$y = \frac{2}{3}$$
: $P_{F4} = u_4$

Utilizando las ecuaciones (1) y (2) planteamos el sistema de ecuaciones:

$$\begin{pmatrix} -4u_1 + F_1 + u_2 + u_3 + \frac{2}{3} = 0 \\ -4u_2 + F_2 + u_4 + u_1 = 0 \\ -4u_3 + F_3 + u_1 + u_4 + \frac{2}{3} = 0 \\ -4u_4 + F_4 + u_2 + u_3 = 0 \\ -4F_1 + 2u_1 + F_2 = 0 \\ -4F_2 + 2u_2 + F_1 = 0 \\ -4F_3 + 2u_3 + F_4 = 0 \\ -4F_4 + 2u_4 + F_3 = 0 \end{pmatrix}$$

A partir de este sistema de ecuaciones podemos plantear una matriz equivalente, la cual por medio de MatLab, obtuvimos las siguientes soluciones:

$$u_{1} = \frac{37}{108}$$

$$u_{2} = \frac{17}{108}$$

$$u_{3} = \frac{37}{108}$$

$$u_{4} = \frac{17}{108}$$

$$F_{1} = \frac{11}{54}$$

$$F_{2} = \frac{7}{54}$$

$$F_{3} = \frac{11}{54}$$

$$F_{4} = \frac{7}{54}$$

Utilizando código Latex graficamos las aproximaciones de la solución a la ecuación diferencial en el dominio definido. Notamos que a medida que disminuimos el tamaño de Δx y Δy los valores que toma la aproximación en cada punto se vuelven más precisos a comparación de la función original y la gráfica también adopta una forma más "suave" y semejante a la solución real de la ecuación diferencial.

(*) Anexo gráficas - Siguiente hoja.

Observando las gráficas de las distintas aproximaciones por diferencias finitas podemos observar que, como se esperaba, a medida que disminuimos la longitud de los intervalos Δx y Δy la función se suaviza y se asemeja más a la solución exacta del problema de valores iniciales dado.

Gráfica función aproximada por diferencias finitas con $\Delta x = \Delta y = \frac{2}{3}$:

Gráfica función aproximada por diferencias finitas con $\Delta x = \Delta y = \frac{1}{2}$:

Gráfica función aproximada por diferencias finitas con $\Delta x = \Delta y = \frac{1}{4}$:

Gráfica función aproximada por diferencias finitas con $\Delta x = \Delta y = \frac{1}{8}$:

