Please amend the claims as follows:

1. (Original) A method for fabricating a steel part having a target bulk composition T of iron (Fe) and N additional basic elements E_1 , E_2 , ... E_N , where $N \geq 1$, each present in a respective mass percentage $M_{1,T}$, $M_{2,T}$, ... $M_{N,T}$, and a melting point depressant agent E_{MPD} , present in a mass percentage $M_{MPD,T}$, comprising the steps of:

- a. providing a skeleton of interconnected adhered metal particles having a network of interconnected porosities throughout, said particles packed at a packing fraction V_{pf} , said particles having a composition consisting essentially of:
 - i. iron and said N basic elements E_1 , E_2 , ... E_N , each present in a respective mass percentage $M_{1,K}$, $M_{2,K}$, ... $M_{N,K}$; and
 - ii. said Melting Point Depressant agent E_{MPD} , present in a mass percentage $M_{\text{MPD},K}$;
- b. providing an infiltrant having a composition consisting essentially of:
 - i. iron and said same N elements E_1 , E_2 , ... E_N , each present in a respective mass percentage $M_{1,I}$, $M_{2,I}$, ... $M_{N,I}$; and
 - ii. said Melting Point Depressant agent E_{MPD} , present in a mass percentage $M_{\text{MPD},I}$, where $M_{\text{MPD},I} > M_{\text{MPD},T}$ $> M_{\text{MPD},K}$;

said infiltrant composition being complementary to said skeleton composition, relative to said bulk target composition T; and

- d. infiltrating said skeleton with said infiltrant, at an infiltration temperature $T_{\rm infil}$, said infiltration being driven primarily by capillary pressure, said infiltration temperature, said infiltrant composition and said skeleton composition being such that:
 - i. $\mathbf{T}_{\text{infil}}$ is below a solidus temperature for said skeleton;
 - ii. T_{infil} is above a liquidus temperature for said infiltrant; and
 - iii. at said infiltration temperature, T_{infil} , at chemical equilibrium, a body having said target composition T, has at least about 7 vol% liquid, and is less than about 50 vol% liquid.
- 2. (Original) The method of claim 1, said Melting Point Depressant agent E_{MPD} , further having relatively high diffusivity in said skeleton.
- 3. (Original) The method of claim 1, said Melting Point Depressant agent E_{MPD} , further having relatively high solubility in said skeleton.

- 4. (Original) The method of claim 2, said Melting Point Depressant agent E_{MPD} , further having relatively high solubility in said skeleton.
- 5. (Original) The method of claim 1, said melting point depressant agent having a maximum solubility $M_{\text{MPD-max}}$ in iron (Fe), said melting point depressant mass percentage in said target composition $M_{\text{MPD,T}}$ being less than about $2*M_{\text{MPD-max}}$.
- 6. (Original) The method of claim 2, said melting point depressant agent having a maximum solubility $M_{\text{MPD-max}}$ in iron (Fe), said melting point depressant mass percentage in said target composition $M_{\text{MPD,T}}$ being less than about $2*M_{\text{MPD-max}}$.
- 7. (Original) The method of claim 1, said melting point depressant element having a maximum solubility $M_{\text{MPD-max}}$ in iron (Fe), said melting point depressant mass percentage in said target composition $M_{\text{MPD,T}}$ being less than about $M_{\text{MPD-max}}$.
- 8. (Original) The method of claim 1, said melting point depressant agent comprising carbon (C).
- 9. (Original) The method of claim 1, said melting point depressant agent comprising silicon (Si).
- 10. (Original) The method of claim 1, said melting point depressant agent consisting essentially of C and Si.

- 11. (Original) The method of claim 1, said melting point depressant agent consisting essentially of elements selected from the group consisting of C and Si.
- 12. (Currently Amended) The method of claim 1, further comprising the step of subjecting said infiltrated skeleton to conditions such that a portion of said melting point depressant diffuses from said infiltrated porosities into said metal particles powder, and at least partial diffusional solidification occurs.
- 13. (Original) The method of claim 12, further where at least 10% of said infiltrated infiltrant volume solidifies at said infiltration temperature $T_{\rm infil}$.
- 14. (Original) The method of claim 1, said step of providing infiltrant comprising providing an infiltrant having a composition that is complementary to said composition of said skeleton with respect to said target bulk composition, in a mode that is between a near tie-line mode and a reverse slope mode.
- 15. (Original) The method of claim 1, said step of providing infiltrant comprising providing an infiltrant having a composition that is complementary to said composition of said skeleton with respect to said target bulk composition, in a mode that is between a near tie-line mode and a basic mode.

- 16. (Currently Amended) The method of claim $\frac{1}{2}$, said step of providing infiltrant comprising providing an infiltrant having a composition that is complementary to said composition of said skeleton with respect to said target bulk composition, in an off tie-line mode.
- 17. (Original) The method of claim 1, said melting point depressant agent consisting essentially of carbon.
- 18. (Original) The method of claim 17, said target bulk composition comprising a steel selected from the group consisting of: D2, M2, 440C, Austenitic Manganese Grade C, A3, O6, 410 and T8.
- 19. (Original) The method of claim 1, said melting point depressant agent consisting essentially of silicon.
- 20. (Original) The method of claim 19, said target bulk composition comprising CN-7MS.
- 21. (Original) The method of claim 19, said target bulk composition comprising CF-10SMnN.
- 22. (Original) The method of claim 16, said target bulk composition comprising a steel selected from the group consisting of: H13, S6 And ACI-HF.
- 23. (Original) The method of claim 1, said steel target composition comprising D2.

Attorney Docket No.: MIT 10327 US

- 24. (Original) The method of claim 1, said steel target composition comprising M2.
- 25. (Original) The method of claim 1, said steel target composition comprising 440C.
- 26. (Original) The method of claim 1, said steel target composition comprising Austenitic Manganese Grade C.
- 27. (Original) The method of claim 1, said steel target composition comprising A3.
- 28. (Original) The method of claim 1, said steel target composition comprising O6.
- 29. (Original) The method of claim 1, said steel target composition comprising T8.
 - 30. (Original) The method of claim 1, further wherein:
 - a. said melting point depressant agent is present in said skeleton in a mass percentage $M_{\text{MDP},K}$ between zero and the mass percentage of said melting point depressant agent in an equilibrium solid phase at a temperature where the target composition is 93 vol% solid;
 - b. said N basic additional elements are present in said skeleton in respective mass percentages, as follows, for n = 1 to N: $M_{n,K} = M_{n,T} + R_n * (M_{n,S} M_{n,T})$, with $-1 \le R_n \le 1$ for each basic additional element;

c. said melting point depressant agent is present in said infiltrant in a mass percentage as follows: $M_{MPD,I} = M_{MPD,K} + (M_{MPD,T} - M_{MPD,K})/M_{I}$; and

d. said N basic additional elements are present in said infiltrant in respective mass percentages, as follows, for n = 1 to N: $M_{n,I} = M_{n,T} + R_n * (M_{n,L} - M_{n,T})$, with $-1 \le R_n \le 1$ for each basic additional element;

wherein said variables are used as defined in the specification hereof.

- 31. (Original) The method of claim 30, further wherein, for both said basic additional elements present in said skeleton and said infiltrant, $0 \le R_n \le 1$ for each basic additional element.
- 32. (Original) The method of claim 1, said melting point depressant agent having a diffusivity in said skeleton at 1100°C of greater than 2 x 10^{-15} cm²/sec.
- 33. (Original) The method of claim 1, said melting point depressant agent having a diffusivity in said skeleton at 1100° C of greater than 4 x 10^{-16} cm²/sec.
- 34. (Original) The method of claim 1, said skeleton comprising particles of a nominal diameter L said diffusivity D of said melting point depressant agent being such that a

Attorney Docket No.: MIT 10327 US

Metric = L^2/D is less than or equal to approximately 1.4 x 10^6 seconds.

- 35. (Original) The method of claim 1, further comprising the step of maintaining said skeleton after infiltration at said infiltration temperature for a period of time less than fifteen hours, said melting point depressant having a diffusivity such that substantial homogeneity is achieved.
- 36. (Original) The method of claim 1, further comprising the step of maintaining said skeleton after infiltration at said infiltration temperature for a period of time less than 3 hours, said melting point depressant having a diffusivity such that substantial homogeneity is achieved.
- 37. (Original) The method of claim 1, further comprising the step of maintaining said skeleton after infiltration at an austenitizing temperature for a period of time less than 3 hours, said melting point depressant having a diffusivity such that substantial homogeneity is achieved.

Attorney Docket No.: MIT 10327 US

38. (Original) A method for fabricating a steel part having a target bulk composition T as set forth in the row entitled Target range in the immediately following table:

	С	Cr	. Mn	Мо	Ni	Si	V	Fe
Target Range	1.4-1.6	11-13	0.6 max	0.7-1.0	0.3 max	0.6 max	1.1 max	balance
Infiltrant - B	3.50	17.20	0.6 max	2.0	0.3 max	0.6 max	2.30	balance
Skeleton - B	0.30	9.76	0.6 max	0.57	0.3 max	0.6 max	0.48	balance
Infiltrant - D	3.79	9.84	0.6 max	0.58	0.3 max	0.6 max	0.46	balance
Skeleton - D	0.13	12.93	0.6 max	1.18	0.3 max	0.6 max	1.22	balance

of iron (Fe) and carbon, present in a mass percentage within a range as specified in a column headed by symbol C, and additional basic elements listed, each present in a respective mass percentage within a range set forth in a column headed by said respective element symbol, said method of fabricating comprising the steps of:

- a. providing a skeleton of interconnected adhered metal particles having a network of interconnected porosities throughout, said particles packed at a packing fraction V_{pf} , said particles having a composition consisting essentially of:
 - i. iron and said additional basic elements each present in a respective mass percentage between those as specified in a column headed by said respective element symbol in: a row entitled Skeleton-B; and a row entitled Skeleton-D; and

ii. Carbon, present in a mass percentage between zero and the mass percentage of carbon in an equilibrium solid phase at a temperature where said target composition T is 93 vol% solid;

b. providing an infiltrant having a composition consisting essentially of:

- i. iron and said same additional basic elements each present in a respective mass percentage between approximately as specified in a column headed by said respective element symbol in: a row entitled Infiltrant-B; and a row entitled Infiltrant-D; and
- ii. Carbon, present in a mass percentage of at least the mass percentage of carbon in an equilibrium liquid phase, at a temperature where the target composition is 50 vol% liquid;

said infiltrant composition and said skeleton composition further being complementary relative to said target composition T; and

- c. infiltrating said skeleton with said infiltrant, at said infiltration temperature T_{infil} , said infiltration being driven primarily by capillary pressure, said infiltration temperature, said infiltrant composition and said skeleton composition further being such that:
 - i. T_{infil} is below a solidus temperature for said skeleton;

Attorney Docket No.: MIT 10327 US

ii. T_{infil} is above a liquidus temperature for said infiltrant; and

- iii. at said infiltration temperature, $T_{\rm infil}$, at chemical equilibrium, a body having said target composition T, has at least about 7% vol liquid, and is less than about 50% vol liquid.
- 39. (Original) The method of claim 38, further wherein:
- a. said step of providing a skeleton further comprising providing a skeleton of particles having a composition consisting essentially of:
 - i. iron and said additional basic elements, each present in a respective mass percentage between approximately as specified in said column headed by said respective element symbol in: a row entitled Skeleton-A of the immediately following table:

	С	Cr	Mn	Мо	Ni	Si	V	Fe
Infiltrant - A	3.50	12.00	0.6 max	1.00	0.4 max	0.6 max	1.00	balance
Skeleton - A	0.30	12.00	0.6 max	1.00	0.4 max	0.6 max	1.00	balance

and in said row entitled Skeleton-B; and

- ii. Carbon, present in said mass percentage between zero and the mass percentage of carbon in an equilibrium solid phase at a temperature where said target composition T is 93 vol% solid;
- b. said step of providing an infiltrant further comprising providing an infiltrant having a composition consisting essentially of:

Attorney Docket No.: MIT 10327 US

i. iron and said same additional basic elements each present in a respective mass percentage between approximately as specified in said column headed by said respective element symbol in: said row entitled Infiltrant-A; and said row entitled Infiltrant-B; and

ii. Carbon, present in said mass percentage of at least the mass percentage of carbon in an equilibrium liquid phase, at a temperature where the target composition is 50 vol% liquid.

Attorney Docket No.: MIT 10327 US

40. (Original) A method for fabricating a steel part having a target bulk composition T as set forth in the row entitled Target range in the immediately following table:

	С	Cr	Mn	Мо	Ni	Si	V	Fe
Target Range	0.32-0.45	4.75-5.5	0.2-0.5	1.1-1.75	0.3 max	0.8-1.0	0.8-1.0	bal
Infiltrant - B	0.88	5.73	0.33	1.80	0.3 max	2.00	1.31	bal
Skeleton - B	0.05	4.78	0.33	1.18	0.3 max	0.37	0.81	bal
Infiltrant - D	0.88	4.86	0.33	1.23	0.3 max	2.09	0.85	bal
Skeleton - D	0.05	5.34	0.33	1.54	0.3 max	0.31	1.10	bal

of iron (Fe) and Silicon, present in a mass percentage within a range as specified in a column headed by symbol Si, and Carbon, present in a mass percentage within a range as specified in a column headed by symbol C, and additional basic elements listed, each present in a respective mass percentage within a range set forth in a column headed by said respective element symbol, said method of fabricating comprising the steps of:

- a. providing a skeleton of interconnected adhered metal particles having a network of interconnected porosities throughout, said particles packed at a packing fraction V_{pr} , said particles having a composition consisting essentially of:
 - i. iron and said additional basic elements each present in a respective mass percentage between those as specified in a column headed by said

Attorney Docket No.: MIT 10327 US

respective element symbol in: a row entitled Skeleton-B; and a row entitled Skeleton-D; and

ii. Silicon and Carbon, each present in a mass percentage between zero and the mass percentage of silicon and carbon, respectively, in an equilibrium solid phase at a temperature where said target composition T is 93 vol% solid;

b. providing an infiltrant having a composition consisting essentially of:

- i. iron and said same additional basic elements each present in a respective mass percentage between approximately as specified in a column headed by said respective element symbol in: a row entitled Infiltrant-B; and a row entitled Infiltrant-D; and
- ii. silicon and Carbon, each present in a mass percentage of at least the mass percentage of silicon and carbon, respectively, in an equilibrium liquid phase, at a temperature where the target composition is 50 vol% liquid;

said infiltrant composition and said skeleton composition further being complementary relative to said target composition T; and

c. infiltrating said skeleton with said infiltrant, at said infiltration temperature $T_{\rm infil}$, said infiltration being driven primarily by capillary pressure, said infiltration temperature, said infiltrant composition and said skeleton composition further being such that:

- i. T_{infil} is below a solidus temperature for said skeleton;
- ii. T_{infil} is above a liquidus temperature for said infiltrant; and
- iii. at said infiltration temperature, $T_{\rm infil}$, at chemical equilibrium, a body having said target composition T, has at least about 7% vol liquid, and is less than about 50% vol liquid.
- 41. (Original) The method of claim 40, further wherein:
- a. said step of providing a skeleton further comprising providing a skeleton of particles having a composition consisting essentially of:
 - i. iron and said additional basic elements, each present in a respective mass percentage between approximately as specified in said column headed by said respective element symbol in: a row entitled Skeleton-A of the immediately following table:

	С	Cr	Mn	Мо	Ni	Si	V	Fe
Infiltrant - A								
Skeleton - A	0.05	5.15	0.33	1.42	0.3 max	0.37	1.00	balance

and in said row entitled Skeleton-B; and

ii. Silicon and Carbon, each present in a mass percentage between zero and the mass percentage of silicon and carbon, respectively, in an equilibrium solid phase at a temperature where said target composition T is 93 vol% solid;

Attorney Docket No.: MIT 10327 US

b. said step of providing an infiltrant further comprising providing an infiltrant having a composition consisting essentially of:

- i. iron and said same additional basic elements each present in a respective mass percentage between approximately as specified in said column headed by said respective element symbol in: said row entitled Infiltrant-A; and said row entitled Infiltrant-B; and
- ii. silicon and Carbon, each present in a mass percentage of at least the mass percentage of silicon and carbon, respectively, in an equilibrium liquid phase, at a temperature where the target composition is 50 vol% liquid.

42. (Original) A method for fabricating a steel part having a target bulk composition T as set forth in the row entitled Target range in the immediately following table:

	С	Cr	Mn	Мо	Ni	Si	Cu	Fe
Target Range	0.07 max	18.0-20.0	1.5 max	2.5-3.0	22.0-25.0	1.5 max	1.5-2.0	bal
Infiltrant - B	0.11	21.51	1.5 max	3.04	17.52	6.84	1.68	bal
Skeleton - B	0.02	17.53	1.5 max	2.58	27.00	0.75	1.79	bal
Infiltrant - D	0.05	17.75	1.5 max	2.61	26.49	6.92	1.79	bal
Skeleton - D	0.05	19.74	1.5 max	2.84	21.75	0.71	1.73	bal

of iron (Fe) and silicon, present in a mass percentage within a range as specified in a column headed by symbol Si, and additional basic elements listed, each present in a respective mass percentage within a range set forth in a column headed by said respective element symbol said method of fabricating comprising the steps of:

Attorney Docket No.: MIT 10327 US

a. providing a skeleton of interconnected adhered metal particles having a network of interconnected porosities throughout, said particles packed at a packing fraction $V_{\rm pr}$, said particles having a composition consisting essentially of:

- i. iron and said additional basic elements each present in a respective mass percentage between those as specified in a column headed by said respective element symbol in: a row entitled Skeleton-B; and a row entitled Skeleton-D; and
- ii. silicon, present in a mass percentage between zero and the mass percentage of silicon in an equilibrium solid phase at a temperature where said target composition T is 93 vol% solid;
- b. providing an infiltrant having a composition consisting essentially of:
 - i. iron and said same additional basic elements each present in a respective mass percentage between approximately as specified in a column headed by said respective element symbol in: a row entitled Infiltrant-B; and a row entitled Infiltrant-D; and
 - ii. silicon, present in a mass percentage of at least the mass percentage of silicon in an equilibrium liquid phase, at a temperature where the target composition is 50 vol% liquid;

said infiltrant composition and said skeleton composition further being complementary relative to said target composition T; and

Attorney Docket No.: MIT 10327 US

c. infiltrating said skeleton with said infiltrant, at said infiltration temperature $T_{\rm infil}$, said infiltration being driven primarily by capillary pressure, said infiltration temperature, said infiltrant composition and said skeleton composition further being such that:

- i. T_{infil} is below a solidus temperature for said skeleton;
- ii. T_{infil} is above a liquidus temperature for said infiltrant; and
- iii. at said infiltration temperature, $T_{\rm infil}$, at chemical equilibrium, a body having said target composition T, has at least about 7% vol liquid, and is less than about 50% vol liquid.
- 43. (Original) The method of claim 42, further wherein:
- a. said step of providing a skeleton further comprising providing a skeleton of particles having a composition consisting essentially of:
 - i. iron and said additional basic elements, each present in a respective mass percentage between approximately as specified in said column headed by said respective element symbol in: a row entitled Skeleton-A of the immediately following table:

-	С	Cr	Mn	Мо	Ni	Si	Cu	Fe
Infiltrant - A	0.05	19.00	1.5 max	2.75	23.50	6.84	1.75	bal
Skeleton - A	0.05	19.00	1.5 max	2.75	23.50	0.75	1.75	bal

and in said row entitled Skeleton-B; and

Attorney Docket No.: MIT 10327 US

ii. silicon, present in said mass percentage between zero and the mass percentage of silicon in an equilibrium solid phase at a temperature where said target composition T is 93 vol% solid;

b. said step of providing an infiltrant further comprising providing an infiltrant having a composition consisting essentially of:

- i. iron and said same additional basic elements each present in a respective mass percentage between approximately as specified in said column headed by said respective element symbol in: said row entitled Infiltrant-A; and said row entitled Infiltrant-B; and
- ii. silicon, present in said mass percentage of at least the mass percentage of silicon in an equilibrium liquid phase, at a temperature where the target composition is 50 vol% liquid.