

- 1 one inch + \hoffset
- 3 \oddsidemargin = 22pt
- 5 \headheight = 12pt
- 7 \textheight = 595pt
- 9 \marginparsep = 7pt
- 11 \footskip = 27pt
 \hoffset = 0pt
 \paperwidth = 597pt
- 2 one inch + \voffset
- 4 \topmargin = 22pt
- 6 \headsep = 19pt
- 8 \textwidth = 360pt
- 10 \marginparwidth = 106pt
 \marginparpush = 5pt (not shown)
 \voffset = 0pt
 \paperheight = 845pt

- 1 one inch + \hoffset
- 3 \evensidemargin = 70pt
- 5 \headheight = 12pt
- 7 \textheight = 595pt
- 9 \marginparsep = 7pt
- 11 \footskip = 27pt
 \hoffset = 0pt
 \paperwidth = 597pt
- 2 one inch + \voffset
- 4 \topmargin = 22pt
- 6 \headsep = 19pt
- 8 \textwidth = 360pt
- \marginparwidth = 106pt
 \marginparpush = 5pt (not shown)
 \voffset = 0pt
 \paperheight = 845pt

Zum Zusammenhang zwischen Spatial-Suppression, Mental-Speed und psychometrischer Intelligenz

In augural dissertation

der Philosophisch-humanwissenschaftlichen Fakultät der Universität Bern zur Erlangung der Doktorwürde

vorgelegt von
Philipp Thomas
St. Gallen

Bern, Januar 2017

Originaldokument gespeichert auf dem Webserver der Universitätsbibliothek Bern.

Dieses Werk ist unter einem Creative Commons Namensnennung - Keine kommerzielle Nutzung - Keine Bearbeitung 2.5 Schweiz Lizenzvertrag lizenziert. Um die Lizenz anzusehen, gehen Sie bitte zu http://creativecommons.org/licenses/by-nc-nd/2.5/ch oder schicken Sie einen Brief an Creative Commons, 171 Second Street, Suite 300, San Francisco, California 94105, USA.

Urheberrechtlicher Hinweis

Dieses Dokument steht unter einer Lizenz der Creative Commons Namensnennung - Keine kommerzielle Nutzung - Keine Bearbeitung 2.5 Schweiz.

http://creativecommons.org/licenses/by-nc-nd/2.5/ch

Sie dürfen dieses Werk zu den folgenden Bedingungen vervielfältigen, verbreiten und öffentlich zugänglich machen:

Namensnennung. Sie müssen den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen (wodurch aber nicht der Eindruck entstehen darf, Sie oder die Nutzung des Werkes durch Sie würden entlohnt).

Keine kommerzielle Nutzung. Dieses Werk darf nicht für kommerzielle Zwecke verwendet werden.

Keine Bearbeitung. Dieses Werk darf nicht bearbeitet oder in anderer Weise verändert werden.

Im Falle einer Verbreitung müssen Sie anderen die Lizenzbedingungen, unter welche dieses Werk fällt, mitteilen. Jede der vorgenannten Bedingungen kann aufgehoben werden, sofern Sie die Einwilligung des Rechteinhabers dazu erhalten. Diese Lizenz lässt die Urheberpersönlichkeitsrechte nach Schweizer Recht unberührt.

Eine ausführliche Fassung des Lizenzvertrags befindet sich unter http://creativecommons.org/licenses/by-nc-nd/2.5/ch/legalcode.de.

Zusammenfassung

DGP Richtlinien weisen auf folgende Punkte hin:

- Vollständigkeit
- Genauigkeit
- Objektivität
- Kürze
- Verständlichkeit
- Trotz Kürze sollte über die zu prüfenden psychologischen Hypothesen, die Methode, die Ergebnisse und die Interpretation informiert werden

Generelle Hinweise:

- Fragestellung und die zu prüfenden Hypothesen sollten dargestellt werden
- Zentrale Merkmale der Teilnehmer sollen angegeben werden (Anzahl, Alter, Geschlecht)
- Die experimentelle Methode inklusive verwendeter Apparaturen und Formen der Datenerhebung
- Zentrale Befunde angeben
- Schlussfolgerung aus den Befunden inklusive deren Bedeutung für die psychologische Hypothese

Inhalte

D	anks	agung							ix
1	Ein	leitung	5						1
	1.1	Konze	pt der allgemeinen Intelligenz						1
	1.2	Kognit	tive Korrelate von Intelligenz						4
		1.2.1	Der Mental-Speed-Ansatz						4
		1.2.2	Der Spatial-Suppression-Ansatz						8
	1.3	Messu	ng kognitiver Prozesse						12
		1.3.1	Ausgangslage						12
		1.3.2	Lösungsansätze						13
	1.4	Frages	etellungen	•					17
2	Met	thode							21
	2.1	Stichp	robe						21
	2.2	Die Sp	oatial-Suppression-Aufgabe						22
		2.2.1	Apparatur und Material						22
		2.2.2	Versuchsablauf						22
	2.3	Die Hi	ick-Aufgabe						25
		2.3.1	Apparatur und Material						25
		2.3.2	Versuchsablauf						26
	2.4	Erfass	ung der psychometrischen Intelligenz						28
	2.5		re Instrumente						32
		2.5.1	Fragebögen						32
		2.5.2	Zeitverarbeitungsaufgaben						33
		2.5.3	Inspection-Time-Aufgabe						

vi Inhalte

	2.6	Unters	suchungsablauf	34
		2.6.1	Sitzung 1	34
		2.6.2	Sitzung 2	35
	2.7	Statist	tische Analyse	36
3	Res	ultate		41
	3.1	Deskri	iptiv- und Inferenzstatistik	41
		3.1.1	Spatial-Suppression-Aufgabe	41
		3.1.2	Hick-Aufgabe	44
		3.1.3	BIS-Test	47
		3.1.4	Zusammenhänge zwischen den Aufgaben	50
	3.2	1. Frag	gestellung	52
	3.3	2. Frag	gestellung	54
	3.4	3. Frag	gestellung	60
	3.5	4. Fra	gestellung	62
		3.5.1	Fixed-Links-Messmodell	62
		3.5.2	Fixed-Links-Strukturgleichungsmodell	66
	3.6	5. Frag	gestellung	68
		3.6.1	Analyse auf manifester Ebene	68
		3.6.2	Analyse auf latenter Ebene	76
4	Disl	kussioi	n	85
	4.1	Frages	stellungen	85
		4.1.1	Eine Bestätigung des Befunds von Melnick, Harrison,	
			Park, Bennetto und Tadin (2013)?	85
		4.1.2	Ein alternatives Mass für Spatial-Suppression?	87
		4.1.3	Der latente Zusammenhang zwischen der Spatial-Sup-	
			pression-Aufgabe und dem g -Faktor	90
		4.1.4	Leidet die Spatial-Suppression-Aufgabe unter dem Im-	
			purity-Problem?	91
		4.1.5	Spatial-Suppression, Mental-Speed und psychometri-	
			sche Intelligenz	92
	4.2	Gener	elle Diskussion	92
	13	Limits	ationen	02

Inhalte			vii
	4.3.1 4.3.2	Programmcode der Spatial-Suppression-Aufgabe Stichprobenfehler	
4.4		tigkeit des Erkenntnisgewinns	
Literat	ur		95
Abbild	ungen	1	111

113

115

117

121

Tabellen

A Anhang - Datenaufbereitung

C Anhang - Online-Material

B Anhang - Nonparametrische Analysen

Danksagung

Diese Arbeit ist das Produkt meiner dreijährigen Forschungstätigkeit. Mein Dank gilt allen Personen, die mit ihrer Unterstützung zum Gelingen dieser Arbeit beigetragen haben.

Namentlich möchte ich mich bei Herr Prof. Dr. Stefan Troche bedanken, der mir mit zahlreichen Tipps und Hinweisen geholfen hat, und mit seinen.

Prof. Dr. Thomas Rammsayer möchte ich für zu jeder Zeit als Ansprechperson zur Verfügung stand seine zahlreichen Tipps und Anregungen bezüglich

Prof. Dr. Duje Tadin

Philipp Thomas

14. Dezember 2016

1.1 Konzept der allgemeinen Intelligenz

Die Annahme eines Generalfaktors der Intelligenz, kurz g-Faktor genannt, stellt eine der einflussreichsten Ideen in der Psychologie dar. Spearman (1904, 1927) machte mit seinen Untersuchungen zu Beginn des zwanzigsten Jahrhunderts die Entdeckung, dass zwischen Tests zur Erfassung kognitiver Leistung positive Zusammenhänge bestanden. Diesen sogenannten positive manifold erklärte Spearman mit dem g-Faktor seiner Zwei-Faktoren-Theorie. Gemäss der Zwei-Faktoren-Theorie setzt sich eine kognitive Leistung aus zwei Anteilen zusammen. Dem g-Faktor, der alle Bereiche intellektueller Fähigkeit beeinflusst und einem spezifischen Faktor (s), der das Spezifische repräsentiert und keiner anderen kognitiven Leistung gemeinsam ist. Weil die spezifischen Faktoren unabhängig voneinander sind, kann der positive manifold folglich nur aufgrund des g-Faktors zustande gekommen sein. Individuelle Unterschiede auf diesem g-Faktor können also als Ausdruck individueller Differenzen in der allgemeinen Fähigkeit angesehen werden, kognitive Leistung zu erbringen.

Es folgte eine jahrzehntelange Auseinandersetzung unter Forschern, ob der g-Faktor, wie ihn Spearman annahm, existiert oder nicht. So sah zum Beispiel Thurstone (1938) den g-Faktor nicht als die Ursache unterschiedlicher kognitiver Fähigkeiten, sondern vielmehr als die Folge von mehreren, relativ unabhängigen mentalen Fähigkeiten. Andere Modelle wie das von Vernon (1950), das von Cattell (1971), oder das von Jäger (1984) postulierten eine hierarchische Struktur mit spezifischen Fähigkeiten auf tieferer Ebene und dem g-Faktor auf höchster Ebene. Die Vielzahl an unterschiedlichen Auffas-

sungen und Modellen psychometrischer Intelligenz veranlasste Carroll (1993) dazu eine umfassende, metaanalytisch begründete Taxonomie der menschlichen kognitiven Fähigkeiten zu entwickeln. Er reanalysierte dafür nahezu alle Datensätze, die für die Entwicklung früherer Modelle verwendet wurden und versuchte ein Modell zu finden, das den Daten am besten entsprach. Seine Ergebnisse formulierte Carroll in der Three-Stratum-Theorie (TS-Theorie). Das faktorenanalytisch bestimmte Modell unterscheidet zwischen drei Ebenen kognitiver Fähigkeiten, die in der TS-Theorie als Schichten bezeichnet werden. Die erste Schicht beinhaltet 69 spezifische kognitive Fähigkeiten. Diese 69 spezifischen Fähigkeiten können in der zweiten Schicht acht übergeordneten Faktoren zugewiesen werden: Fluide Intelligenz (Gf), kristalline Intelligenz (Gc), allgemeines Gedächtnis und Lernen (Gy), allgemeine visuelle Wahrnehmung (Gv), allgemeine akustische Wahrnehmung (Gu), allgemeine Zugriffsfähigkeit (Gr), allgemeine kognitive Geschwindigkeit (Gs) und Verarbeitungsgeschwindigkeit (Gt). Auf höchster Hierarchiestufe lässt sich der q-Faktor wiederfinden, welcher aus der dritten Schicht alle kognitiven Fähigkeiten beeinflusst. Carroll stellte mit der TS-Theorie eine wichtige Integration bestehender Modelle dar. Sie vereint viele der bis dahin postulierten Modellstrukturen und Differenzierungsgrade, mit der Intelligenz betrachtet werden kann, namentlich die Idee des q-Faktors (Spearman, 1904, 1927), die mehreren Faktoren von Thurstone (1938), Gf und Gc aus dem Modell von Cattell (1971) und den hierarchischen Aufbau, wie er zum Beispiel in den Modellen von Vernon (1950) oder Jäger (1984) zu finden ist (für Erweiterungen der TS-Theorie siehe McGrew, 2005, 2009).

Alternative Theorien, welche die positiven Zusammenhänge zwischen verschiedenen Tests zur Erfassung von kognitiver Leistung nicht mit dem g-Faktor erklären, sind selten. So geht zum Beispiel das Bond-Modell (Thomson, 1916) davon aus, dass das Bearbeiten einer kognitiven Aufgabe spezifische Module (kognitive Prozesse, sogenannte bonds) benötigt, die unkorreliert sind. Werden die Module während der Erfassung kognitiver Fähigkeiten mit unterschiedlichen kognitiven Tests aktiviert, kann es vorkommen, dass ein Modul von mehreren Tests beansprucht wird. Ein Modul fliesst folglich in die Leistung mehrerer Tests ein, was schlussendlich zu positiven Korrelationen zwischen verschiedenen Tests führen kann. Unter dieser

Betrachtungsweise stellt der g-Faktor somit ein Artefakt dar, der auf die unzureichende Messgüte von kognitiven Tests zurückzuführen ist (für einen Gegenüberstellung zwischen dem g-Faktor und dem Bond-Modell siehe Bartholomew, Allerhand & Deary, 2013). Die Mutualism-theory-of-g (van der Maas et al., 2006) erklärt die positiven Zusammenhänge zwischen kognitiven Tests auf eine andere Weise. Die Theorie geht davon aus, dass kognitive Prozesse zu Beginn ihrer Entwicklung unabhängig sind. Mit zunehmender Ausbildung der kognitiven Prozessen entwickeln sich allerdings reziproke vorteilhafte Abhängigkeiten zwischen einzelnen Prozessen, womit sich positive Zusammenhänge zwischen kognitiven Tests ebenso gut erklären lassen, wie mit dem g-Faktor. Gignac (2014, 2016) zeigte mit seinen kürzlich erschienen Untersuchungen jedoch, dass der g-Faktor zum jetzigen Zeitpunkt die zu bevorzugende Erklärung für das Auftreten des positive manifold ist.

Um den g-Faktor aus einer Korrelationsmatrix kognitiver Tests zu extrahieren, müssen zwei Bedingungen erfüllt sein (Jensen, 1998a, S. 73). Zum einen muss die Anzahl an kognitiver Tests genügend gross sein, damit die extrahierten Faktoren reliabel sind und zum anderen muss eine genügend grosse Bandbreite an unterschiedlicher Tests kognitiver Fähigkeiten verwendet werden. Der g-Faktor tritt dann unabhängig von der eingesetzten Testbatterie auf (Johnson, Bouchard, Krueger, McGue & Gottesman, 2004; Johnson, te Nijenhuis & Bouchard, 2008). Weiter haben Untersuchungen gezeigt, dass der q-Faktor von der eingesetzten faktorenanalytischen Methode (Hauptachsenoder Hauptkomponentenanalyse) so gut wie nicht beeinflusst wird (Jensen & Weng, 1994; Ree & Earles, 1991). Diese Robustheit des q-Faktors gegenüber der eingesetzten Testbatterie und der verwendeten Analysemethode lässt sich gut mit der Annahme vereinen, dass der q-Faktor die allgemeine Fähigkeit widerspiegelt, kognitive Leistung zu erbringen. Der g-Faktor erfasst kognitive Leistungsfähigkeit folglich so generell, dass die verwendete Testbatterie respektive die eingesetzte faktorenanalytische Methode zu vernachlässigen sind.

Mit zahlreichen Untersuchungen zur Kriteriumsvalidität des g-Faktors wurde belegt, dass er Bedeutsamkeit besitzt. So konnten zum Beispiel zwischen dem g-Faktor und der Lernfähigkeit (Christal, 1991), schulischer Leistung (Jensen, 1998a) oder beruflicher Leistung (Schmidt & Hunter, 2004)

Zusammenhäng beobachtet werden. Aber auch mit generelleren Variablen wie der Gesundheit, dem Sozialverhalten, der Straffälligkeit, der Neigung zu Rassismus oder Alkoholismus konnten Zusammenhänge festgestellt werden (für eine Übersicht siehe Brand, 1987). Neben diesen Beispielen für die praktische Bedeutsamkeit des Konzepts der allgemeinen Intelligenz kommt dem g-Faktor eine zentrale Rolle zu, wenn es um die Bestimmung der kognitiven Grundlagen für Intelligenzunterschiede geht.

g-Faktor, allgemeine Int., psychomoetrische Int? Definiert?

1.2 Kognitive Korrelate von Intelligenz

Es bestehen unterschiedliche Ansätze, um Intelligenzunterschiede auf kognitive Ebene zu erklären. Konstrukte wie sensorische Diskriminationsfähigkeit (z. B. Deary, Bell, Bell, Campbell & Fazal, 2004; Galton, 1883; Meyer, Hagmann-von Arx, Lemola & Grob, 2010; Spearman, 1904), Zeitverarbeitung (z. B. Rammsayer & Brandler, 2002), Aufmerksamkeit (z. B. Schweizer & Moosbrugger, 2004) oder Arbeitsgedächtniskapazität (für eine Übersichtsarbeit siehe Ackerman, Beier & Boyle, 2005) hängen alle mit Intelligenz zusammen und können als kognitive Grundlage für individuelle Unterschiede in kognitiver Leistung angesehen werden.

Einer der ältesten und einer der neusten Ansätze zur Erklärung individueller Intelligenzunterschiede stellen der Mental-Speed-Ansatz respektive der Spatial-Suppression-Ansatz dar. Diese zwei Ansätze stehen im Zentrum der vorliegenden Arbeit und werden in den folgenden Abschnitten besprochen.

1.2.1 Der Mental-Speed-Ansatz

Untersuchungen der letzten Jahrzehnte haben gezeigt, dass Verarbeitungsgeschwindigkeit (Mental-Speed) und Intelligenz zusammenhängen (für Übersichtsarbeiten siehe Deary, 2000; Jensen, 2006; Sheppard & Vernon, 2008).

(spezifische Faktoren oder g? KLAR MACHEN!)

Mental-Speed wird dabei oft mit Hilfe einer sogenannten elementary cognitive task (ECT) erfasst. Eine ECT (Carroll, 1993, S. 11; Jensen, 1998a, S. 203–209) ist eine Aufgabe, die gesunde Personen mit genügend Zeit ohne

grosse mentale Anstrengung und Erfahrung fehlerfrei lösen können. Die Stimuli sind gross abgebildet und klar erkennbar, sodass sie von allen Personen mit normalem Sehvermögen gut wahrzunehmen sind. Bei einer reaktionszeitbasierten ECT werden Personen aufgefordert, so schnell wie möglich eine Antwort abzugeben und dabei Fehler zu vermeiden. Weil das Lösen der Aufgabe nur sehr simple mentale Prozesse beansprucht, sind individuelle Strategien, die das Lösen der Aufgabe erleichtern, nicht effektiv. Unterschiede in der Reaktionszeit zwischen Personen können dann nur durch die Geschwindigkeit verursacht werden, mit welcher die Personen die Aufgabe verarbeiten und auf Stimuli reagieren. Beispiele für solche reaktionszeitbasierten ECTs sind die Coincidence-Timing-Aufgabe (bei welcher eine zeitliches Zusammentreffen von zwei Stimuli so rasch als möglich erkannt werden muss; Smith & McPhee, 1987), die Hick-Aufgabe (zur Erfassung einfacher Reaktionszeit und der Reaktionszeit für eine Mehrfachauswahl; Hick, 1952), das Short-Term-Memory-Scan-Paradigma (zur Erfassung der benötigten Zeit für einen Zugriff auf das Kurzzeitgedächtnis; Sternberg, 1966, 1969), die Odd-Man-Out-Aufgabe (zur Erfassung der Reaktionszeit für eine Mehrfachauswahl; Frearson & Eysenck, 1986), oder die Posner-Aufgabe (zur Erfassung der benötigten Zeit für einen Zugriff auf das Langzeitgedächtnis; Posner, Boies, Eichelman & Taylor, 1969).

Eine der ältesten und am häufigsten benutzte ECT ist die Hick-Aufgabe (Hick, 1952). Die Hick-Aufgabe erfasst einfache Reaktionszeit und die Reaktionszeit für eine Mehrfachauswahl (für eine ausführliche Beschreibung der Aufgabe siehe Abschnitt 2.3).

4, 5 SÄTZE wie die Aufgabe aussieht!

Die Reaktionszeit in der Hick-Aufgabe kann mit der linearen Funktion $Reaktionszeit = a + b\log_2 n$ beschrieben werden, wobei a durch den y-Achsenabschnitt, b durch die Steigung der Regressionsgeraden und $\log_2 n$ durch den Logarithmus zur Basis 2 der Anzahl Antwortalternativen (n) bestimmt ist (Jensen, 1987, S. 105). Der Term $\log_2 n$ wurde von Hick (1952) als Bit bezeichnet und entspricht derjenigen Menge an Information, welche die Entscheidung zwischen zwei gleich wahrscheinlichen Antwortalternativen

ermöglicht¹ (siehe auch Jensen, 2006, S. 27).

Für die Differentielle Psychologie wurde die Hick-Aufgabe mit der Untersuchung von Roth (1964; zitiert nach Jensen, 1987, S. 105) interessant. Er berichtete über einen Zusammenhang von r = -.39 zwischen der aus den Reaktionszeiten abgeleiteten Steigung (b) und psychometrischer Intelligenz. Intelligentere Personen zeigten demnach mit zunehmender Anzahl Antwortalternativen einen weniger starken Anstieg ihrer Reaktionszeit als weniger intelligente Personen. Weiter fand Roth keinen Zusammenhang zwischen dem y-Achsenabschnitt (a) und psychometrischer Intelligenz. Diese ersten Resultate legten die Vermutung nahe, dass Unterschiede in komplexer kognitiver Leistung erfasst mit Intelligenztests mitunter von der Geschwindigkeit abhängen, mit der Information verarbeitet wird. Spätere Untersuchungen haben dann gezeigt, dass auch der y-Achsenabschnitt (a) negativ mit psychometrischer Intelligenz zusammenhängt (Jensen, 1982b, 1987; Neubauer & Knorr, 1997; Neubauer, Riemann, Mayer & Angleitner, 1997). Intelligentere Personen zeigten folglich kürzere einfache Reaktionszeiten als weniger intelligente Personen. Im Gegensatz zur Steigung, welche die Verarbeitungsgeschwindigkeit von Informationen abbildet, wird beim y-Achsenabschnitt angenommen, dass er ein Mass für die Zeitdauer ist, welche sensorische und motorische Prozesse benötigen, um den Reiz im Kortex wahrzunehmen und die Muskeln über efferente Nerven anzusteuern (Jensen, 1998b).

Neben dem negativen Zusammenhang zwischen diesen regressionsanalytisch abgeleiteten Aufgabenparametern und psychometrischer Intelligenz hängen sämtliche Reaktionszeiten der Hick-Aufgabe negativ mit psychometrischer Intelligenz zusammen. Eine Meta-Analyse von Sheppard und Vernon (2008) hat ergeben, dass die Reaktionszeiten der Hick-Aufgabe im Bereich von r=-.22 bis -.40 mit dem g-Faktor korrelieren. Intelligentere Personen zeigen somit tendenziell kürzere Reaktionszeiten als weniger intelligente Personen.

Entsprechend dieser Definition gab das Bit den Bedingungen der Hick-Aufgabe ihre Namen: In der 0-bit-Bedingung steht eine Antwortalternative zur Verfügung ($\log_2 1 = 0$), in der 1-bit-Bedingung zwei Antwortalternativen ($\log_2 2 = 1$), in der 2-bit-Bedingung vier Antwortalternativen ($\log_2 4 = 2$) und in der 2.58-bit-Bedingung stehen sechs Antwortalternativen zur Verfügung ($\log_2 6 = 2.58$).

Teilweise zurückgeführt wurde der Zusammenhang zwischen Mental-Speed und psychometrischer Intelligenz mit Eigenschaften des Kurz- und Arbeitsgedächtnisses (z. B. Jensen, 1982a, 1982b, 2006; Vernon, 1983). Die Kapazität dieser beiden Speicher ist begrenzt und aufgenommene respektive zu verarbeitende Information zerfällt rasch SOLANGE KEINE AUF-MERKSAMKEIT ZUGEWENDET (REHEARSAL?) - Rascher Verfall nur im sensorischen GEdächtnis.

Je schneller ein kognitiver Prozess abläuft, umso geringer ist die Wahrscheinlichkeit, dass die Kapazitätsgrenze der Speicher erreicht wird (weil Info da landet wo sie landen muss -> Handlung oder Überführung in LTM) und dass keine Information zerfällt.

Eine Person mit einer langsamen Verarbeitungsgeschwindigkeit stösst bei einer komplexen kognitiven Aufgabe (wie sie im Rahmen eines Intelligenztests vorgelegt wird) schneller an den Punkt, an welchem Informationen im Arbeitsgedächtnis verloren gehen und neu aufgenommen werden müssen (Lehrl & Fischer, 1988, 1990). Umgekehrt hilft eine schnelle Verarbeitungsgeschwindigkeit dabei, eine Antwort abzugeben bevor die Menge an Informationen die Kapazitätsgrenze erreicht respektive Informationen zerfallen. Andere Autoren erklären den Zusammenhang zwischen Mental-Speed und kognitiver Leistung mit biologischen Bottom-Up-Mechanismen. So gehen Bates (1995), Hendrickson und Hendrickson (1980) oder Reed und Jensen (1992) davon aus, dass intelligentere Personen Informationen neuronal effizienter verarbeiten. E. M. Miller (1994) vermutet, dass die Myelinisierung der Neuronen für den Zusammenhang verantwortlich sei, während Garlick (2002) die höhere neuronale Plastizität von intelligenteren Personen für den Zusammenhang verantwortlich sieht. Ungeachtet dieser verschiedener Erklärungsmöglichkeiten für den Zusammenhang zwischen Mental-Speed und psychometrischer Intelligenz kann festgehalten werden, dass zwischen der Geschwindigkeit, mit der Information verarbeitet wird, und höherer kognitive Leistung eine bedeutsame Verbindung besteht (auf manifester wie auch auf latenter Ebene; Neubauer & Bucik, 1996; Sheppard & Vernon, 2008).

8 EINLEITUNG

1.2.2 Der Spatial-Suppression-Ansatz

Das Phänomen der Spatial-Suppression wurde von Tadin, Lappin, Gilroy und Blake (2003) unabhängig von psychometrischer Intelligenz beschrieben. Tadin et al. untersuchten, mit welcher zeitlichen Dauer ein hoch kontrastiertes, sich horizontal bewegendes Streifenmuster präsentiert werden muss, damit die Bewegungsrichtung des Musters korrekt wahrgenommen wird. Dabei haben sie die Grösse des Musters manipuliert und mit Erstaunen festgestellt, dass die Bewegungsrichtung mit zunehmender Grösse des Streifenmusters schwieriger zu erkennen war. Für die Erkennung der horizontalen Bewegungsrichtung von kleinen Mustern wurde folglich weniger Zeit benötigt, als für die Erkennung der horizontalen Bewegungsrichtung von grossen Mustern. Dieses perzeptuelle Phänomen wurde von Tadin et al. Spatial-Suppression genannt.

PARADIGMA ERKLÄREN -> Zeit für Erkennung erfasst -> wie kommt es zur Schwellenschätzung -> deutlicher machen -> Abbildung?

Tadin et al. erklärten die Ergebnisse mit dem bewegungsbezogenen Zentrum-Umfeld-Antagonismus von Neuronen im mediotemporalen Areal (MT-Areal) des Okzipitallappens (Allman, Miezin & McGuinness, 1985).

was ist okzipitallappen und was ist das mediotemporale areal? funktionen des lappens?

Das Zentrum und das Umfeld eines bewegungssensitiven Neurons im MT-Areal reagieren entgegengesetzt. Fällt eine Bewegung auf das erregende Zentrum des Neurons, reagiert die Zelle mit einer erhöhten Feuerungsrate. Wird bei einer Bewegung auch das hemmende Umfeld des Neurons stimuliert, führt der Zentrum-Umfeld-Antagonismus dazu, dass die Feuerungsrate des Neurons reduziert wird. Die Zelle reagiert folglich maximal bei einer Bewegung, die auf das Zentrum des rezeptiven Felds fällt und minimal, wenn die Bewegung das Umfeld des rezeptiven Felds stimuliert. Einen starken Hinweis für die Beteiligung des MT-Areals am Phänomen Spatial-Suppression lieferte einige Jahre später eine Untersuchung, die mit transkranieller Magnetstimulation Neuronen im MT-Areal gehemmt hat (Tadin, Silvanto, Pascual-Leone & Battelli, 2011). Dabei hat sich eine direkte Abhängigkeit zwischen Bewegungswahrnehmungsleistung und Hemmung der Neuronen ge-

zeigt. Die Hemmung der Neuronen mittels transkranieller Magnetstimulation führte verglichen mit der Kontrollbedingung zu einer besseren Erkennung der Bewegungsrichtung von grossen Streifenmustern, weil der Zentrum-Umfeld-Antagonismus bewegungssensitiver Neuronen gehemmt wurde (Tadin et al., 2011).

guter hinweis, beleg

Dieser Kausalzusammenhang lieferte den Nachweis, dass Neuronen im MT-Areal eine zentrale Funktion beim Phänomen der Spatial-Suppression zuzuschreiben sind und die Vermutung von Tadin et al. (2003) über die neuronalen Grundlagen ihrer Beobachtung korrekt/zu hart/nicht falsch war.

Mit psychometrischer Intelligenz in Verbindung gebracht wurde Spatial-Suppression von Melnick et al. (2013). Das Ausmass an Spatial-Suppression wurde von Melnick et al. mit dem Suppression-Index quantifiziert, wobei dieser als Differenz zwischen der Schwellenschätzung für grosse Muster und der Schwellenschätzung (WIRD ERKLÄRT OBEN?) für kleine Muster gebildet wurde. Ein grosser Suppression-Index steht somit relativ betrachtet für eine starke Verschlechterung der Wahrnehmungsleistung bei zunehmender Mustergrösse (das heisst einer stark ausgeprägten Spatial-Suppression; Tadin et al., 2006). Melnick et al. berichteten über stark positive Zusammenhänge zwischen dem Suppression-Index und psychometrischer Intelligenz (Studie 1 [N=12]: r=.64 und Studie 2 [N=53]: r=.71). Diese Korrelationen kamen durch zwei Effekte zustande: Zum einen benötigten intelligentere Personen weniger Zeit, um die Bewegungsrichtung eines kleinen Musters zu erkennen und zum anderen zeigten intelligentere Personen mit zunehmender Mustergrösse eine stärkere Verschlechterung ihrer Wahrnehmungsleistung, WAS AUF ANHIEB NICHT INTUITIV ERSCHEINT, IM SINNE VON INTELLIGENZ ALS VORTEIL LÄSST SICH ERKLÄREN (SIEHE UNTEN). Keiner dieser beiden Effekte war in der Lage, den aufgetretenen Zusammenhang alleine zu erklären. Sowohl die rasche Erkennung der Bewegungsrichtung von kleinen Mustern als auch die verminderte Fähigkeit, die Bewegungsrichtung von grossen Mustern zu erkennen, stellten wichtige Bestandteile des Suppression-Index dar.

Warum korrelierte der Suppression-Index deutlich höher (r=.64 und r=.71; Melnick et al., 2013) als herkömmliche Mental-Speed-Masse

(r = -.24; Sheppard & Vernon, 2008) mit psychometrischer Intelligenz? Diesen vergleichsweise hohen Zusammenhang erklärten Melnick et al. (2013) mit den zwei Bestandteilen des Suppression-Index, (1) der Geschwindigkeit der Verarbeitung kleiner Muster und (2) der Verschlechterung der Wahrnehmungsleistung bei zunehmender Mustergrösse. Während sich die schnellere Verarbeitung (höhere Mental-Speed) <- KLAR VERWENDEN! von kleinen Mustern bei intelligenteren Personen gut mit gesicherten Befunden zum Zusammenhang zwischen Mental-Speed und psychometrischer Intelligenz vereinen lässt (Sheppard & Vernon, 2008), bedarf die stärkere Verschlechterung der Wahrnehmungsleistung von intelligenteren Personen mehr Erklärung. Untersuchungen an Primaten haben gezeigt, dass eine Bewegung, die auf das erregende Zentrum eines Neurons fällt (was für Neuronen? MT-AREAL?) mit der Wahrnehmung von Objekten in Verbindung steht, während eine Bewegung, die auch das hemmende Umfeld des Neurons stimuliert eher mit der Bewegung eines Hintergrunds assoziiert wird (Born, Groh, Zhao & Lukasewycz, 2000; Churan, Khawaja, Tsui & Pack, 2008; Regan, 2000). Ein stark ausgeprägter Zentrum-Umfeld-Antagonismus hilft somit dabei, Bewegung in bestimmte Bereiche oder Objekte zu trennen, das heisst sie perzeptuell zu segmentieren (Braddick, 1993). Melnick et al. glauben, dass diese Fähigkeit die Grundlage für den beobachteten Zusammenhang zwischen dem Suppression-Index und psychometrischer Intelligenz darstellt. Die schnelle Verarbeitung relevanter Information und Unterdrückung irrelevanter Information ist sowohl in der visuellen Wahrnehmung von Vorteil (Trennung zwischen bewegtem Objekt und Hintergrund), als auch bei höherer kognitiver Leistung (Aufmerksamkeitslenkung auf relevante Information und Unterdrückung von Interferenzen; siehe Burgess, Gray, Conway & Braver, 2011; Engle, Tuholski, Laughlin & Conway, 1999; Zanto & Gazzaley, 2009) wichtig.

AUSFÜHRLICHER ERKLÄREN? diese Annahmen sind mit MSA kongruent, insofern haben wir die gleich erklärung, die dem MSA zugrunde liegt. Bezug zu MS ausführlicher erklären?

Mit anderen Worten ist eine schnelle Verarbeitung eines Stimulus von wenig Bedeutung, solange sich die Verarbeitung nicht auf die relevante Information des Stimulus bezieht. In dieser für das Funktionieren des Menschen kritischen Fähigkeit sahen Melnick et al. die Erklärung, weshalb der Sup-

pression-Index stärker mit psychometrischer Intelligenz korrelierte als herkömmliche Mental-Speed-Masse.

Der Spatial-Suppression-Ansatz zur Erklärung individueller Intelligenzunterschiede (Melnick et al., 2013) bietet einen neuen und interessanten Erweiterung?????Erweiterungsmöglichtkeit, wenn es um die Bestimmung der kognitiven Grundlagen für Intelligenzunterschiede geht. Er weist aber auch einige Stellen auf, die anfechtbar oder klärungsbedürftig sind. (1) Der Spatial-Suppression-Ansatz beruht auf einer einzigen Untersuchung, die mit kleinen Stichproben gearbeitet hat (Studie 1: N = 12 und Studie 2: N = 53; Melnick et al., 2013). Somit kann nicht ausgeschlossen werden, dass Stichprobenfehler die Zusammenhänge beeinflusst haben. Um Spatial-Suppression als Prädiktor von psychometrischer Intelligenz zu festigen, bedarf es einer Bestätigung der Resultate von Melnick et al. (2013) mit einer grossen Stichprobe. (2) Mit dem Suppression-Index liegt eine Variable vor, die als Differenz zwischen zwei Schwellenschätzungen gebildet wurde. Dabei wurde nicht berücksichtigt, dass Differenzmasse unter bestimmten, in empirischen Studien oft vorliegenden Bedingungen, problematisch sind: Weisen der Minuend beziehungsweise der Subtrahend keine perfekte Reliabilität auf und hängen sie zusammen, reduziert sich die Reliabilität des Differenzmasses. Beträgt beispielsweise die Reliabilität vom Minuend $r_{xx} = .80$, die Reliabilität vom Subtrahend $r_{yy} = .80$ und die Korrelation von Minuend und Subtrahend $r_{xy} = .50$, reduziert sich die Reliabilität der Differenz auf $r_{DD} = .60$ (Murphy & Davidshofer, 2005, S. 145). Wird der Suppression-Index als Differenzmass gebildet, kann folglich nicht ausgeschlossen werden, dass ein verhältnismässig wenig reliables Mass vorliegt. Um valide Schlussfolgerungen über den Zusammenhang zwischen der Spatial-Suppression-Aufgabe und psychometrischer Intelligenz zu treffen, wäre ein alternatives Mass zur Quantifizierung von Spatial-Suppression (das nicht auf einer Differenz beruht) dem Suppression-Index vorzuziehen. (3) Aufschlussreich wäre auch eine Analyse des Zusammenhangs zwischen Spatial-Suppression und psychometrischer Intelligenz auf latenter Ebene. Melnick et al. (2013) haben bereits in ihrer Untersuchung darauf hingewiesen, dass eine Analyse zwischen Variablen auf latenter Ebene der Analyse auf manifester Ebene vorzuziehen ist, weil sie die der manifesten Korrelationen zugrunde liegende Beziehung zutage bringt.

Damit wäre gleichzeitig die Problematik der Differenzbildung zur Ableitung des Suppression-Index angegangen, was zu valideren Schlussfolgerungen beitragen kann. (4) Darüber hinaus lässt eine Analyse auf latenter Ebene zu, mithilfe SOGENANNTER Fixed-Links-Modelle (Schweizer, 2006a, 2006b) die an der Beobachtung von Melnick et al. beteiligten kognitiven Prozesse auf statistischer Ebene voneinander zu trennen. Damit könnte sich ein besseres Verständnis darüber ergeben, warum Spatial-Suppression mit psychometrischer Intelligenz zusammenhängt. (5) Die wichtigste Frage ist, ob der Spatial-Suppression-Ansatz einen Aspekt der menschlichen Informationsverarbeitung erfasst, der neuartig ist und nicht bereits vom Mental-Speed-Ansatz erklärt wird. Dafür bedarf es einer Einbettung der Spatial-Suppression-Aufgabe in ihr nomologisches Netzwerk (Cronbach & Meehl, 1955).

der zusammenhang zwischen ss und intelligenz mit mental speed erweitern (nomologisches Netzwerk)!

Im Zusammenhang mit einem Mental-Speed-Mass kann dann geprüft werden, ob Spatial-Suppression einen eigenständigen Beitrag zur Erklärung individueller Intelligenzunterschiede leistet oder ob die Spatial-Suppression-Aufgabe lediglich Mental-Speed erfasst.

-> Stärker auf Aussage von Melnick verweisen, wenn annahme stimmt, dass ss MS beinhaltetn, sollte ein teil des zusammenhangs mit mental speed erklärt werden.

Damit könnte sich ein ganzheitlicheres Verständnis davon ergeben, was sich hinter dem Phänomen Spatial-Suppression verbirgt.

Die unter Punkt vier angesprochene Modellierungstechnik nimmt in der vorliegenden Arbeit eine wichtige Rolle ein. Die Modellierungstechnik, deren Zweck und zugrundeliegenden Logik werden deshalb im nächsten Abschnitt gründlich erklärt.

1.3 Messung kognitiver Prozesse

1.3.1 Ausgangslage

Die Messung kognitiver Prozesse ist anspruchsvoller, als sie auf den ersten Blick erscheint. Dies deshalb, weil für eine Antwortabgabe mehrere Prozesse

nötig sind (Jensen, 1982b; J. Miller & Ulrich, 2013; Neubauer & Knorr, 1997; Schweizer, 2007; Unsworth & Engle, 2007; van Zomeren & Brouwer, 1994). Experimentelle Aufgaben zur Erfassung kognitiver Prozesse erfassen folglich nicht nur Varianz aufgrund der experimentellen Manipulation (z. B. der zunehmenden Aufgabenkomplexität in der Hick-Aufgabe), sondern auch Varianz verursacht durch Prozesse, die nichts mit der experimentellen Manipulation zu tun haben.

Wenn im rahmen von exp kognitve prozesse an gruppen erwfasst werden geht varianz nicht nur auf experimentellen manipulation zurück, sondern auch auf andere prozesse

Wenn man zum Beispiel annimmt, dass die Wachsamkeit, Motivation oder Motorik einer Person einen Einfluss auf die Reaktionszeit in der Hick-Aufgabe haben, weiss man nicht, ob der Zusammenhang zwischen der Reaktionszeit und einem Konstrukt (beispielsweise psychometrischer Intelligenz) durch die experimentelle Manipulation (AUF AUFGABENEBENE?!) zustande kam (die unterschiedliche Anzahl an Antwortalternativen), oder durch Unterschiede in der Wachsamkeit, Motivation oder Motorik von Personen (HIER ABER AUF INDIVIDUELLER EBENE).

Wird dieser Umstand der Überlagerung von Prozessen nicht berücksichtigt, können ungültige Schlussfolgerungen entstehen. WARUM? AUS-FÜHRLICHER! SPATIAL-SUPRRESSION ALS BEISPIEL? IN FRAGE-STELLUNG PLÜNDERN?

Diese Verunreinigung von Massen zur Erfassung kognitiver Prozesse nannte Schweizer (2007) Impurity-Problem.

1.3.2 Lösungsansätze

Ideen zur Bewältigung des Impurity-Problems gibt es mehrere. Diese lassen sich nach Ansätzen auf manifester und latenter Ebene unterscheiden.

Auf manifester Ebene hat Donders (1969) mit seiner Subtraktionsmethode einen Verfahren vorgeschlagen, mit dem die Zeit für einen einzelnen kognitiven Prozess (z. B. die Entscheidung für eine korrekte Antwort in der Hick-Aufgabe) aus der Reaktionszeit herausgerechnet werden kann. WIE DENN?

Spätere Untersuchungen haben jedoch gezeigt, dass sich kognitive Komponenten nicht additiv verhalten und die Subtraktionsmethode eine zu starke Vereinfachung darstellt (z. B. Friston et al., 1996; Ilan & Miller, 1994). Jensen und Munro (1979) haben mit einer cleveren technischen Neuerung bei der Erfassung der Reaktionszeit eine Methode vorgeschlagen, um die Reaktionszeit um motorische Prozesse zu bereinigen (sensorische und kognitive Prozesse von motorischen Prozessen zu trennen). WIE DENN? MOTORISCHE ANTEILE SIND DIE GLEICHE?

Dabei hat sich allerdings herausgestellt, dass die von Jensen und Munro (1979) isolierte motorische Komponente mit kognitiven Prozessen konfundiert war (Jensen & Munro, 1979; Smith & Carew, 1987).

Die auf manifester Ebene am häufigsten angewandte Methode zur Trennung von Prozessen stellt die Regressionsanalyse dar. Bei der Analyse der Reaktionszeiten der Hick-Aufgabe können diese dabei mit einem regressionsanalytischen Modell beschrieben werden. Mit den daraus abgeleiteten Aufgabenparametern lässt sich die Geschwindigkeit mit der Information kognitiv verarbeitet wird von den restlichen an der Reaktionszeit beteiligten Prozessen trennen (Hick, 1952; Jensen, 1998b; Roth 1964; zitiert nach Jensen, 1987, S. 105).

Im Gegensatz zur Analyse von kognitiven Prozessen auf manifester Ebene ergibt sich auf latenter Ebene ein hilfreicher Vorteil. Eine latente Analyse berücksichtigt, dass sich ein beobachteter Messwert (z. B. die Reaktionszeit in der Hick-Aufgabe) immer aus einem wahren Anteil der Merkmalsausprägung und einem zufällig zustande gekommenen Fehleranteil, der unabhängig von der wahren Merkmalsausprägung ist, zusammensetzt (Moosbrugger, 2007). Mit Hilfe der Faktorenanalyse lässt sich der Messfehler von den inhaltlich relevanten, an der Reaktionszeit beteiligten Prozessen trennen (Kline, 2011, S. 9). Diese Isolierung des Messfehlers erhöht dann zwar die Validität von Schlussfolgerungen, das Problem der Überlagerung von Prozessen ist aber nicht komplett gelöst.

Hier setzen Fixed-Links-Modelle an (Schweizer, 2006a, 2006b). Während herkömmliche Faktorenanalysen gemeinsame Varianz von experimentellen Bedingungen mit einer latenten Variable abbilden, trennen Fixed-Links-Modelle gemeinsame Varianz in zwei systematische Varianzquellen (Faktoren)

auf. Eine latente Variable bindet Varianz aufgabenrelevanter Prozesse, deren Einflüsse sich über die experimentellen Bedingungen hinweg nicht verändern. Diese erste latente Variable bildet folglich Varianz von Prozesse ab, die für das Lösen der Aufgabe zwar notwendig sind, aber einen gleichbleibenden konstanten Einfluss auf die abhängigen Variable(Reaktionszeit?, Leistungn in der Bedingung!) Bedingungen der Aufgabe ausüben. Diese gebundenen Prozesse sind somit unabhängig von der experimentellen Manipulation.

Abbildung mit 4 Bedingungen?

Eine zweite latente Variable beinhaltet Varianz aufgabenrelevanter Prozesse, deren Einflüsse sich über die experimentellen Bedingungen hinweg verändern. In dieser zweiten latenten Variable werden somit Varianz von Prozesse abgebildet, die für das Lösen der Aufgabe nötig sind und sich mit der experimentellen Manipulation verändern. Die Idee der Fixed-Links-Modelle ist, dass sich mit diesen zwei latenten Variablen die Prozesse der experimentellen Manipulation von allen anderen (konstanten) Prozessen trennen lassen. Erreicht wird diese Trennung von Prozessen, indem die unstandardisierten Faktorladungen der manifesten Indikatoren auf die beiden latenten Faktoren vor der Modellschätzung fixiert werden. Die unstandardisierten Faktorladungen der ersten latenten Variablen werden dabei alle auf den gleichen Wert gesetzt. Die unstandardisierten Faktorladungen der zweiten latenten Variable folgen einem Verlauf, der sich aus theoretischen Überlegungen zum Einfluss der erfassten, experimentell manipulierten Prozesse ergibt. Weil durch die Fixierung der unstandardisierten Faktorladungen im Rahmen der Parameterschätzung die Matrix der Faktorladungen nicht mehr geschätzt wird (sie wird a priori bestimmt), muss die latente Varianz der Faktoren auf Signifikanz geprüft werden. In Kombination mit einem guten Modell-Fit lässt erst eine signifikante latente Varianz eines Faktors die Interpretation der erfassten Prozesse zu. Verfehlt die latente Varianz eines Faktors das Signifikanzniveau, wurden darin keine bedeutsamen Prozesse abgebildet und das gesamte Modell kann nicht interpretiert werden.

Unabhängigkeit der Latenten Variablen! Statischte Trennung von Prozessen

Fixed-Links-Modelle stellen somit eine Möglichkeit dar, dem Impurity-Problem entgegenzutreten und Prozesse voneinander zu trennen. Sie haben

gegenüber anderen Methoden zur Analyse von experimentell manipulierten Aufgaben entscheidende Vorteile. Im Vergleich mit Analysemethoden auf manifester Ebene berücksichtigen Fixed-Links-Modelle, dass ein beobachteter Messwert Messfehler enthält (Moosbrugger, 2007). Dieser Messfehler wird bei einer latenten Analyse isoliert, womit die den manifesten Zusammenhängen zugrunde liegende Beziehung aufgedeckt wird und validere Schlussfolgerungen gezogen werden können. Im Vergleich mit herkömmlichen Faktorenanalysen, welche gemeinsame Varianz von manifesten Variablen auf einen einzigen Faktor zurückführen, trennen Fixed-Links-Modelle latente Varianz in Prozesse, die über die experimentelle Manipulation hinweg einen gleichbleibenden Einfluss auf die manifesten Variablen ausüben von solchen, die sich mit der experimentellen Manipulation verändern. Dadurch lässt sich auf statistischer Ebene die an der experimentellen Manipulation beteiligten Prozesse von allen andere Prozessen trennen. Hiermit unterscheiden sich Fixed-Links-Modelle auch von bifaktoriellen Modellen (Moosbrugger, Goldhammer & Schweizer, 2006; Schweizer, Altmeyer, Reiss & Schreiner, 2010). Bifaktorielle Modelle trennen wie Fixed-Links-Modelle gemeinsame Varianz von manifesten Variablen in zwei latente Faktoren, die Faktorladungen werden jedoch nicht a priori aufgrund theoretischer Überlegungen zum Einfluss der Prozesse auf die manifesten Variablen fixiert. Mit bifaktoriellen Modellen lässt sich folglich die von der experimentellen Manipulation verursachte Varianz in den manifesten Variablen nicht von der Varianz der Prozesse trennen, welche unabhängig der experimentellen Manipulation sind.

Untersuchungen, die Fixed-Links-Modelle benützt haben, um die Verunreinigung von kognitiven Korrelaten psychometrischer Intelligenz auf statistischer Ebene rückgängig zu machen, gibt es einige (z. B.) (Schweizer STankov ren, wang,). Die formulierten theoretischen Modelle beschrieben dabei die empirischen Daten jeweils sehr gut (oder besser als herkömmliche Faktorenanalysen). Diese Ergebnisse belegen, dass Fixed-Links-Modelle bei der Bestimmung der kognitiven Grundlagen individueller Intelligenzunterschiede nicht nur aus theoretischer, sondern auch aus praktischer Sichtweise zu bevorzugen sind. Wenn immer eine Aufgabe zur Erfassung eines Konstrukts experimentell manipuliert wird, bieten sich somit Fixed-Links-Modelle als eine elegante Modellierungstechnik an, die Verunreinigung von Massen zur

Fragestellungen 17

Erfassung kognitiver Konstrukte auf statistischer Ebene rückgängig zu machen.

1.4 Fragestellungen

Der Spatial-Suppression-Ansatz zur Erklärung individueller Intelligenzunterschiede ist neu und unterscheidet sich von der Art der Aufgabenstellung her deutlich von reaktionszeitbasierten Mental-Speed-Massen. Das übergeordnete Ziel dieser Arbeit besteht darin, zu überprüfen, ob sich die Spatial-Suppression-Aufgabe als Prädiktor psychometrischer Intelligenz bewährt und inwiefern der Spatial-Suppression-Ansatz zur Aufklärung individueller Intelligenzunterschiede neuartige Erklärungsmöglichkeiten liefert, welche nicht bereits der Mental-Speed-Ansatz bietet. Dieses Ziel soll durch die Erarbeitung von fünf Punkten erreicht werden :):

1. Die Arbeit von Melnick et al. (2013) berichtet bis heute als einzige über den Zusammenhang zwischen der Spatial-Suppression-Aufgabe und psychometrischer Intelligenz. Um die Aufgabe in Zusammenhang mit psychometrischer Intelligenz als Prädiktor zu festigen, bedarf es zuerst einer Bestätigung dieses Befundes. Dafür werden für die vorliegende Arbeit die experimentellen Bedingungen von Melnick et al. bestmöglich übernommen und die Aufgabe wird einer grossen, betreffend der Intelligenzausprägung heterogenen Stichprobe vorgelegt. Die aus der Aufgabe abgeleitete abhängige Variable, der Suppression-Index, wird entsprechend dem Vorgehen in der Originalarbeit gebildet. Der Suppression-Index wurde in der Arbeit von Melnick et al. mit IQ-Punkten in Zusammenhang gesetzt. Der IQ wurde dabei für jede Person aus der Kurzform der Wechsler-Adult-Intelligence-Scale III (Axelrod, 2002) und aus der Wechsler-Adult-Intelligence-Scale IV (Wechsler, 2008) gebildet (siehe Studie 1 und 2 bei Melnick et al., 2013). Wenn die Annahme gilt, dass der Suppression-Index – IQ Zusammenhang robust ist, sollte dieser auch unter Einsatz eines anderen Instruments zur Erfassung der psychometrischen Intelligenz auftreten. In der vorliegenden Arbeit wird der Berliner Intelligenzstruktur-Test (Jäger, Süss 18 EINLEITUNG

& Beauducel, 1997) eingesetzt, welcher sich empirisch als Indikator für psychometrische Intelligenz bewährt hat (Beauducel & Kersting, 2002; Valerius & Sparfeldt, 2014). Die Verwendung von nicht exakt demselben Intelligenzmass erscheint hinsichtlich einer beabsichtigten Bestätigung des Befundes von Melnick et al. als Schwachpunkt dieser Arbeit. Führt man sich aber vor Augen, dass die Spatial-Suppression-Aufgabe beansprucht, einen grundlegenden Aspekt der menschlichen Informationsverarbeitung zu erfassen, erscheint die Verwendung eines Intelligenzmasses, welches noch nie mit der Spatial-Suppression-Aufgabe in Zusammenhang gebracht wurde, weniger als Schwachpunkt, sondern vielmehr als eine Notwendigkeit.

2. Der Suppression-Index, die in der Arbeit von Melnick et al. (2013) abhängige Variable, wurde für jede Person als Differenz zwischen zwei Schwellenschätzungen gebildet.

Dabei wurde nicht berücksichtigt, dass Differenzmasse unter bestimmten, in empirischen Studien oft vorliegenden Bedingungen, problematisch sind: Weisen der Minuend beziehungsweise der Subtrahend keine perfekte Reliabilität auf und hängen sie zusammen, reduziert sich die Reliabilität des Differenzmasses. Beträgt beispielsweise die Reliabilität vom Minuend $r_{xx}=.80$, die Reliabilität vom Subtrahend $r_{yy}=.80$ und die Korrelation von Minuend und Subtrahend $r_{xy}=.50$, reduziert sich die Reliabilität der Differenz auf $r_{DD}=.60$ (Murphy & Davidshofer, 2005, S. 145). Wird der Suppression-Index als Differenzmass gebildet, kann folglich nicht ausgeschlossen werden, dass ein verhältnismässig wenig reliables Mass vorliegt.

Um diesem Umstand Rechnung zu tragen, wird in der vorliegenden Arbeit zusätzlich eine abhängige Variable eingesetzt, welche nicht auf einer Differenz zwischen zwei Schwellenschätzungen beruht. Melnick et al. haben sich in ihrer Arbeit bereits bemüht, ein alternatives Mass herzuleiten. Sie haben die Wahrnehmungsschwellen jeder Person mit einer exponentiellen Regression vorhergesagt, jedoch nicht beide daraus resultierenden Parameter, die Asymptote und die Steigung, mit psychometrischer Intelligenz in Verbindung gesetzt. <- Unflüssig! Um

Fragestellungen 19

die Spatial-Suppression-Aufgabe mit ihren Bestandteilen besser zu verstehen, werden deshalb in dieser Arbeit beide aus der exponentiellen Regression abgeleiteten Aufgabenparameter benutzt, um psychometrische Intelligenz vorherzusagen.

- 3. Eine weitere Möglichkeit zur Quantifizierung von Spatial-Suppression besteht darin, die Aufgabenbedingungen auf latenter Ebene zu analysieren und damit die Zusammenhänge der Aufgabenbedingungen auf einen oder mehrere unbeobachtete Faktoren zurückzuführen. Im Gegensatz zur manifesten Auswertung (vgl. Punkt 1 und 2) berücksichtigt die Analyse auf latenter Ebene die Tatsache, dass sich ein beobachteter Messwert immer aus einem wahren Anteil der Merkmalsausprägung und einem zufällig zustande gekommenen Fehleranteil, der unabhängig von der wahren Merkmalsausprägung ist, zusammensetzt (Moosbrugger, 2007). Ein latenter Faktor beinhaltet nur die wahren Merkmalsausprägungen von Personen, womit sich, verglichen mit einer Analyse auf manifester Ebene, Zusammenhänge mit anderen Variablen valider bestimmen lassen (Kline, 2011, S. 9). Die Bedeutung der Spatial-Suppression-Aufgabe als Prädiktor von g, der latenten Operationalisierung psychometrischer Intelligenz, sollte demnach auf latenter Ebene deutlicher erkennbar sein als auf manifester Ebene. Mit einer klassischen Faktorenanalyse!!!
- 4. Um bei der Beschreibung der Spatial-Suppression-Aufgabe auf latenter Ebene eine vergleichbare Trennung von Prozessen zu erhalten wie unter Punkt 2 auf manifester Ebene, wird versucht die Aufgabenbedingungen mit einem Fixed-Links-Modell zu beschreiben . Dafür werden zwei latente Variablen angenommen: Die erste latente Variable bildet durch konstantgehaltene Faktorladungen aufgabenrelevante Prozesse ab, deren Einflüsse sich über die vier Bedingungen hinweg nicht ändern. Die zweite latente Variable weist sich unterscheidende Faktorladungen auf, welche bestimmten Annahmen folgend gewählt werden. Durch die sich unterscheidenden Faktorladungen werden in der zweiten latenten Variable aufgabenrelevante Prozesse gebunden, die durch die vier Bedingungen systematisch manipuliert wurden. Weil die Aufgabe noch nie

/autoref auf FLM einfügen

mit einem Fixed-Links-Modell beschrieben wurde, werden unterschiedliche Ladungsverläufe gegeneinander getestet und das beste Modell für die weiteren Analysen ausgewählt. Diese Trennung von aufgabenrelevanten Prozessen auf latenter Ebene kann dann zum einen benutzt werden um die Spatial-Suppression-Aufgabe mit ihren Bestandteilen besser zu verstehen und zum anderen lässt sich damit der Zusammenhang der Aufgabe mit dem g-Faktor differenzierter betrachten, als mit herkömmlichen Faktorenanalysen.

Anpassen

5. Nach dieser ausführlichen, aber auch isolierten Aufarbeitung des Zusammenhangs zwischen der Spatial-Suppression-Aufgabe und psychometrischer Intelligenz folgt in einem letzten Schritt die Einbettung der Spatial-Suppression-Aufgabe in ihr nomologisches Netzwerk (Cronbach & Meehl, 1955). Dafür wird die Hick-Aufgabe als ein etabliertes Mental-Speed-Mass hinzugezogen. Die Spatial-Suppression-Aufgabe kann auf manifester wie auch auf latenter Ebene mit der Hick-Aufgabe und psychometrischer Intelligenz in Verbindung gebracht werden und es kann der Frage nachgegangen werden, welche Prozesse sich hinter den unter Punkt 2 und Punkt 4 erarbeiten Parametern (Asymptote und Steigung respektive latente Variable mit konstanten Faktorladungen und latente Variable mit sich unterscheidenden Faktorladungen) verbergen. Mit der Einbettung der Spatial-Suppression-Aufgabe in dieses nomologische Netzwerk soll sichergestellt werden, dass die Aufgabe in Zusammenhang mit psychometrischer Intelligenz einen Aspekt der menschlichen Informationsverarbeitung abbildet, der neuartig ist und nicht bereits von bestehenden, etablierten Aufgaben erfasst beziehungsweise erklärt wird. Schlussendlich soll dadurch die Frage beantwortet werden, ob der Spatial-Suppression-Ansatz zur Aufklärung individueller Intelligenzunterschiede neuartige Erklärungsmöglichkeiten bietet oder ob der Mental-Speed-Ansatz den Zusammenhang zwischen der Spatial-Suppression-Aufgabe und psychometrischer Intelligenz vollständig zu erklären vermag.

2 Methode

2.1 Stichprobe

An den Testungen haben 206 Versuchspersonen (Vpn) teilgenommen, wovon 29 Vpn (14%) aufgrund von technischen Problemen, nicht auswertbarer Subtests oder im Vergleich zu den restlichen Vpn stark abweichenden Werten ausgeschlossen wurden (siehe Anhang A für eine genaue Erläuterung der Vorgehensweise).

Analysiert wurden die Daten von 177 Vpn. Die 116 Frauen und 61 Männer waren zwischen 18 und 30 Jahre alt und wiesen ein mittleres Alter \pm Standardabweichung (SD) von 21.14 ± 2.71 Jahren auf. Um eine bezüglich der Intelligenzausprägung heterogene Stichprobe zu erhalten, nahmen Vpn aus verschiedenen Bildungsgruppen an der Untersuchung teil: Neun Vpn haben als höchsten Bildungsabschluss die obligatorische Schulzeit genannt, 55 Vpn eine Berufslehre, 31 Vpn eine Berufsmatura, 23 Vpn eine gymnasiale Maturität, 45 Vpn ein Bachelor-Studium, drei Vpn ein Master-Studium und 11 Vpn eine andere Ausbildung. 160 der 177 Vpn waren deutscher Muttersprache. Die anderen 17 Vpn sprachen akzentfrei deutsch. Alle Vpn berichteten über eine normale Sehschärfe, eine normale Hörfähigkeit, waren Nichtraucher, konsumierten keine Medikamente und waren nicht chronisch krank. Um Einflüsse von Koffein auf die Wahrnehmungsleistung (Stough et al., 1995) der Vpn zu minimieren, wurden die Vpn gebeten, bis zwei Stunden vor der Teilnahme keine koffeinhaltigen Getränke zu konsumieren. Die Vpn hatten keine Erfahrung mit den Testverfahren. Für die Teilname an der Untersuchung erhielten Berner Studierende des Fachs Psychologie vier Versuchspersonen-Stunden, die sie an ihr Studium anrechnen lassen konnten.

22 Methode

Alle anderen Vpn wurden für die Teilnahme mit CHF 50.- entlöhnt.

2.2 Die Spatial-Suppression-Aufgabe

Als Grundlage für die Aufgabe diente der Programmcode von Melnick et al. (2013).

2.2.1 Apparatur und Material

Präsentiert wurde die Aufgabe auf einem ASUS Vento A2 Computer, der mit einem 2.6 GHz Prozessor, 4 GB Arbeitsspeicher und 512 MB Videospeicher (Nvidia GeForce 9800 GT) ausgestattet war. Als Betriebssystem diente Windows 7. Der verwendete ASUS VG248QE Monitor wies bei einer Bildschirmbreite von 53.2 cm und einer Bildschirmhöhe von 29.9 cm eine Auflösung von 1920×1080 Pixel auf. Er wurde linearisiert und mit einer Bildwiederholungsrate von 144 Hz betrieben. Die Antworten der Vpn wurden mit einer PC-Tastatur erfasst.

Die visuellen Reize wurden in MATLAB® (MathWorks Inc., 2013) erzeugt. Die vertikal schwarz-grau gestreiften Muster (Ortsfrequenz von 1° Sehwinkel pro Periode) wurden mit einem Kontrast von 99% auf einem grauen Hintergrund präsentiert, welcher eine Leuchtdichte von 178 cd/m² aufwies. Die Leuchtdichte des Raumes betrug in unmittelbarer Umgebung des Monitors 9 cd/m². Die drei in Melnick et al. (2013) verwendeten Mustergrössen mit den Sehwinkeln 1.8°, 3.6° und 7.2° wurden um die Mustergrösse von 5.4° ergänzt, wodurch sich für diese Arbeit die Mustergrössen mit den Sehwinkeln 1.8°, 3.6°, 5.4° und 7.2° ergaben (siehe ??). Die Sehwinkel der Muster wurden mit einer Kinnstütze, die 61 cm vom Monitor entfernt war, sichergestellt. Der verwendete Ton wies bei einer Frequenz von 2900 Hz und einer Lautstärke von 70 dB eine Länge von 50 ms auf.

2.2.2 Versuchsablauf

Ein Durchgang sah folgendermassen aus: Nach einer Zeitspanne von 440 ms erschien in der Mitte des Monitors für 560 ms ein Kreis, der sich über die ersten 200 ms von einer Grösse von 1.6° auf eine Grösse von 0.26° zusam-

menzog, für 360 ms diese Grösse beibehielt und anschliessend ausgeblendet wurde. Dieses Vorgehen diente dazu, den Blick der Vpn in die Bildschirmmitte zu lenken. Nach einem Intervall von 300 ms erschien in der Mitte des Monitors ein sich nach links oder rechts bewegendes vertikal schwarz-grau gestreiftes Musters. Die Stelle, an welcher die Vpn das Muster auf dem Monitor sahen, war stationär. Hinter dieser stationären Stelle bewegte sich das Muster mit einer Geschwindigkeit von 4°/s nach links oder nach rechts. Nach der Darbietungszeit mussten die Vpn mit einem Tastendruck entscheiden, in welche Richtung sich das Muster bewegt hat. Die Vpn erhielten die Instruktion, bei einer wahrgenommenen Bewegung nach links mit ihrem linken Zeigefinger die linke Pfeiltaste und bei einer wahrgenommen Bewegung nach Rechts mit ihrem rechten Zeigefinger die rechte Pfeiltaste zu drücken. Bei einer korrekten Antwort wurde ein Ton abgegeben und die Darbietungszeit des nächsten Musters verringert, bei einer falschen Antwort wurde kein Ton abgegeben und die Darbietungszeit des nächsten Musters erhöht. Die Darbietungszeit des Musters wurde entsprechend dem QUEST-Verfahren (Watson & Pelli, 1983) angepasst. Das QUEST-Verfahren ist adaptiv und arbeitet mit logarithmierten Werten, das heisst alle Berechnungen des Verfahrens finden im logarithmierten Raum statt. Der Algorithmus schätzt dabei mit Hilfe von Grundprinzipien der Bayes-Statistik nach jeder Antwort eine log₁₀-Erkennungsschwelle für einen im Voraus bestimmten Prozentsatz an korrekten Antworten (in der hier vorliegenden Aufgabe betrug der Prozentsatz 82%). Die geschätzte \log_{10} -Erkennungsschwelle wird dann vom Algorithmus benutzt, um die Darbietungszeit des nächsten Stimulus zu bestimmen. Die Vpn wurden instruiert, sich bei der Antwortabgabe genügend Zeit zu lassen und möglichst fehlerfrei zu arbeiten. Nach Antwortabgabe startete der nächste Durchgang.

Als Erstes bearbeiteten die Vpn eine Übungsaufgabe. Dabei wurden die vier Mustergrössen allen Vpn je drei Mal in einer pseudorandomisierten Abfolge präsentiert. Die Darbietungszeit aller Mustergrössen betrug zu Beginn der Aufgabe 80 ms und wurde adaptiv angepasst. Die Übungsaufgabe dauerte etwa eine Minute und wurde nicht ausgewertet. Die 12 Durchgänge der Übungsaufgabe dienten dazu, dass sich die Vpn mit der Art der Stimuluspräsentation, der Antworteingabe und dem Ton vertraut machen konnten.

24 Methode

Als Zweites folgte eine etwas längere Aufgabe. Die Vpn bearbeiteten drei Wiederholungen, die durch eine Pause von etwa 30 Sekunden getrennt waren. Eine Wiederholung bestand aus zwei Schätzungen der 82%-log₁₀-Erkennungsschwelle pro Mustergrösse. Jede der vier Mustergrössen wurde innerhalb einer Schätzung sieben Mal präsentiert. Gesamthaft bearbeiteten die Vpn folglich $3\times2\times4\times7=168$ Durchgänge. Die Mustergrössen wurde allen Vpn in einer pseudorandomisierten Abfolge präsentiert. Die Darbietungszeit der Mustergrössen betrug zu Beginn der Aufgabe 30 ms und wurde für jede Mustergrösse einzeln über den gesamten Verlauf der 42 Durchgänge adaptiv angepasst. Die Aufgabe dauerte etwa 7 Minuten und wurde nicht ausgewertet, weil sich bei einigen Vpn die Wahrnehmungsleistung während der ersten Durchgänge stark verbessern kann (D. Tadin, persönl. Mitteilung, 19.08.2014). Dieser Aufgabenblock diente dazu, diese Trainingseffekte zuzulassen und die Leistung der Vpn auf ihrem individuellem Niveau zu festigen.

Als Drittes wurde den Vpn die eigentliche Aufgabe vorgelegt. Die Vpn bearbeiteten drei Wiederholungen, die durch eine Pause von etwa einer Minute getrennt waren. Eine Wiederholung bestand aus zwei Schätzungen der $82\,\%$ -log₁₀-Erkennungsschwelle pro Mustergrösse. Jede der vier Mustergrössen wurde innerhalb einer Schätzung 22 Mal präsentiert. Gesamthaft bearbeiteten die Vpn somit $3\times2\times4\times22=528$ Durchgänge. Daraus resultierten für jede Vp 24 Schätzungen der $82\,\%$ -log₁₀-Erkennungsschwelle (sechs pro Mustergrösse). Die Mustergrössen wurde allen Vpn in einer pseudorandomisierten Abfolge präsentiert. Die Darbietungszeit der Mustergrössen betrug bei Start der Aufgabe 30 ms und wurde für jede Mustergrösse einzeln über den gesamten Verlauf der 132 Durchgänge adaptiv angepasst. Die Aufgabe dauerte etwa 25 Minuten.

Für jede Vp wurden die sechs pro Mustergrösse erhaltenen 82%- \log_{10} -Erkennungsschwellen in eine Rangreihenfolge gebracht, die tiefste und höchste Schätzung entfernt und die restlichen vier 82%- \log_{10} -Erkennungsschwellen gemittelt. Damit resultierte für jede Vp pro Mustergrösse $(1.8^{\circ}, 3.6^{\circ}, 5.4^{\circ}$ und 7.2°) eine 82%- \log_{10} -Erkennungsschwelle für horizontale Bewegung. Alle Berechnungen wurden mit diesen 82%- \log_{10} -Erkennungsschwellen getätigt. Ausnahme bildete die exponentielle Regression (siehe Abschnitt 3.3), bei welcher die vier 82%- \log_{10} -Erkennungsschwellen auf Anraten von D. Tadin

DIE HICK-AUFGABE 25

(persönl. Mitteilung, 11.02.2016) als Exponenten zur Basis 10 verrechnet und in dieser invertierten Form analysiert wurden. Um die Interpretation der logarithmierten Werte zu erleichtern, wurden sie für die Ergebnisdarstellung (in Tabellen und Abbildungen) invertiert. Der Suppression-Index wurde gemäss der Vorgehensweise von Melnick et al. (2013) als Differenz zwischen der 82%-log₁₀-Erkennungsschwelle für die Mustergrösse 7.2° und der 82%-log₁₀-Erkennungsschwelle für die Mustergrösse 1.8° gebildet.

2.3 Die Hick-Aufgabe

Angelehnt an die Versuchsanordnung von Rammsayer und Brandler (2007) wurde als Mass für Mental-Speed eine Hick-Aufgabe eingesetzt.

2.3.1 Apparatur und Material

Präsentiert wurde die Aufgabe auf dem in Unterabschnitt 2.2.1 beschriebenen Computer, mit dem einzigen Unterschied, dass die Auflösung des Monitors für die Hick-Aufgabe 1280×1024 Pixel betrug. Die Antworten der Vpn wurden mit einer Cedrus RB-830 Tastatur erfasst.

Die Stimuli wurden mit E-Prime[®] (Psychology Software Tools, 2012) generiert. Die weissen Stimuli wurden auf einem schwarzen Hintergrund präsentiert, welcher eine Leuchtdichte von 2 cd/m² aufwies. Der horizontale und vertikale Sehwinkel der verwendeten Rechtecke betrug 1.8° respektive 1.5°. Die Rechtecke wurden auf dem Monitor zentriert dargeboten. Die Stimulianordnung der verwendeten Bedingungen sah folgendermassen aus (siehe ??): In der 0-Bit-Bedingung wurde ein Rechteck präsentiert. In der 1-Bit-Bedingung wurden horizontal nebeneinander zwei Rechtecke präsentiert. Die beiden Rechtecke erschlossen zusammen einen horizontalen und vertikalen Sehwinkel von 4.5° respektive 1.5°. In der 2-Bit-Bedingung wurden in U-Form vier Rechtecke präsentiert. Die vier Rechtecke erschlossen gemeinsam einen horizontalen und vertikalen Sehwinkel von 7.5° respektive 4.3°. In der 2.58-Bit-Bedingung wurden zu den in U-Form angeordneten vier Rechtecken der 2-Bit-Bedingung in der oberen Reihe je links und rechts ein Rechteck hinzugefügt. Die sechs Rechtecke erschlossen zusammen einen horizontalen

und vertikalen Sehwinkel von 12.9° respektive 4.3°. Der Sehwinkel des imperativen Reizes, einem «+», betrug 0.5° und wurde immer in der Mitte eines Rechtecks präsentiert. Die Sehwinkel der Stimuli wurden mit einer Kinnstütze, die 61 cm vom Monitor entfernt war, sichergestellt. Der verwendete Ton wies bei einer Frequenz von 1000 Hz und einer Lautstärke von 70 dB eine Länge von 200 ms auf.

2.3.2 Versuchsablauf

In der 0-Bit-Bedingung bearbeiteten die Vpn 32 Durchgänge. Jeder Durchgang startete nach 1100 ms mit der Präsentation eines Rechtecks. Nach einer variablen Zeitdauer, Stimulus-Onset-Asynchrony (SOA) genannt, welche 1000, 1333, 1666 oder 2000 ms betrug, wurde der imperative Reiz, ein «+», eingeblendet. Die Vpn wurden angewiesen, mit dem Zeigefinger ihrer dominanten Hand so rasch als möglich auf die vorgesehene Antworttaste zu drücken. Bei einer Antwortabgabe nach Einblenden des imperativen Reizes folgte ein Ton. Bei einer Antwortabgabe vor Einblenden des imperativen Reizes folgte kein Ton. In beiden Fällen führte eine Antwortabgabe zur Ausblendung der Stimuli und zum Start des nächsten Durchganges.

Die 1-Bit-Bedingung unterschied sich von der 0-Bit-Bedingung in der Anzahl dargebotener Rechtecke und der Tonabgabe. Der imperative Reiz trat im linken oder im rechten Rechteck auf. Die Vpn erhielten die Anweisung, beim Auftreten des imperativen Reizes im linken Rechteck mit ihrem linken Zeigefinger und beim Auftreten des imperativen Reizes im rechten Rechteck mit ihrem rechten Zeigefinger so rasch als möglich auf die dem jeweiligen Finger zugewiesene Antworttaste zu drücken. Bei einer korrekten Antwortabgabe nach Einblendung des imperativen Reizes folgte ein Ton. Bei einer Antwortabgabe vor Einblendung des imperativen Reizes oder bei einer falschen Antwortabgabe folgte kein Ton.

Die 2-Bit-Bedingung unterschied sich von der 1-Bit-Bedingung lediglich in der Anzahl präsentierter Rechtecke. Der imperative Reiz trat entweder im oberen linken, unteren linken, oberen rechten oder unteren rechten Rechteck auf. Die Vpn wurden angewiesen, beim Auftreten des imperativen Reizes im oberen linken Rechteck mit ihrem linken Mittelfinger, beim Auftreten des

DIE HICK-AUFGABE 27

imperativen Reizes im unteren linken Rechteck mit ihrem linken Zeigefinger, beim Auftreten des imperativen Reizes im oberen rechten Rechteck mit ihrem rechten Mittelfinger und beim Auftreten des imperativen Reizes im unteren rechten Rechteck mit ihrem rechten Zeigefinger so rasch als möglich auf die dem jeweiligen Finger zugewiesene Antworttaste zu drücken.

Die 2.58-Bit-Bedingung unterschied sich von der 2-Bit-Bedingung nur in der Anzahl präsentierter Rechtecke. Der imperative Reiz trat entweder im oberen äusseren linken, oberen inneren linken, unteren linken, oberen äusseren rechten, oberen inneren rechten oder unteren rechten Rechteck auf. Die Vpn wurden angewiesen, beim Auftreten des imperativen Reizes im oberen äusseren linken Rechteck mit ihrem linken Ringfinger, beim Auftreten des imperativen Reizes im oberen inneren linken Rechteck mit ihrem linken Mittelfinger, beim Auftreten des imperativen Reizes im unteren linken Rechteck mit ihrem linken Zeigefinger, beim Auftreten des imperativen Reizes im oberen äusseren Rechteck mit ihrem rechten Ringfinger, beim Auftreten des imperativen Reizes oberen inneren rechten Rechteck mit ihrem rechten Mittelfinger und beim Auftreten des imperativen Reizes im unteren rechten Rechteck mit ihrem rechten Rechteck mit ihrem rechten Rechteck mit ihrem rechten Zeigefinger so rasch als möglich auf die dem jeweiligen Finger zugewiesene Antworttaste zu drücken.

Die Bedingungen wurden von allen Vpn in aufsteigender Reihenfolge (0-, 1-, 2-, 2.58-Bit-Bedingung) bearbeitet. Jeder Bedingung gingen acht Übungsdurchgänge voraus, damit sich die Vpn mit der Art der Stimuluspräsentation, der Antworteingabe und dem Ton vertraut machen konnten. Der imperative Reiz trat in der 1-, 2- und 2.58-Bit-Bedingung für alle Vpn in einer pseudorandomisierten Abfolge mit der identischen, ausbalancierten SOA am identischen, über die 32 Durchgänge der Bedingungen ausbalancierten Ort auf. Insgesamt dauerte die Aufgabe etwa 15 Minuten.

Pro Bedingung wurde für jede Vp der Mittelwert und die Standardabweichung aller korrekten Antworten bestimmt, die zwischen 100 und 2500 ms lagen. Basierend auf diesen Berechnungen wurden für jede Vp in jeder Bedingung diejenigen Durchgänge entfernt, welche eine Reaktionszeit (RZ) \geq Mittelwert $(M) + 3 \times SD$ aufwiesen. Nach dieser intraindividuellen Ausreisserkontrolle wurden die verbliebenen Durchgänge innerhalb einer Bedingung gemittelt und für jede Vp als Leistungsmass der Bedingung der Hick-Aufgabe

verwendet.

2.4 Erfassung der psychometrischen Intelligenz

Psychometrische Intelligenz wurde mit einer modifizierten Kurzversion des Berliner Intelligenzstruktur-Test (BIS-Test; Jäger et al., 1997) erfasst. Die fähigkeitstheoretische Grundlage des Tests ist das integrativ konzipierte bimodale und hierarchische Berliner Intelligenzstrukturmodell (BIS) von Jäger (1984, siehe Abbildung 1).

Abbildung 1. Das Berliner Intelligenzstrukturmodell von Jäger (1984).

Als integratives Modell ist das BIS zu bezeichnen, weil Jäger (1984) bei

der Konstruktion des Modells versucht hat, die Vielfalt intellektueller Leistungsformen möglichst umfassend zu repräsentieren. Bimodal ist das BIS, weil das Modell zwei Modalitäten aufweist, unter welchen Leistungen und Fähigkeiten klassifiziert werden können. Das BIS trennt dabei zwischen sogenannten Operationen und Inhalten. Innerhalb der Modalität Operationen werden die vier Fähigkeitsbündel Verarbeitungskapazität, Bearbeitungsgeschwindigkeit, Merkfähigkeit und Einfallsreichtum unterschieden. Verarbeitungskapazität (K) steht für die Fähigkeit, komplexe Informationen von Aufgaben zu verarbeiten, die nicht auf Anhieb zu lösen sind, sondern die erst durch vielfältiges Beziehungsstiften, formallogisch exaktes Denken und sachgerechtes Beurteilen von Informationen zu lösen sind. Bearbeitungsgeschwindigkeit (B) beschreibt das Arbeitstempo, die Auffassungsleichtigkeit und die Konzentrationskraft beim Lösen von einfach strukturierten Aufgaben mit geringem Schwierigkeitsgrad. Merkfähigkeit (M) spiegelt die Fähigkeit wider, sich etwas aktiv einzuprägen, etwas kurzfristig wieder zu erkennen oder zu reproduzieren. Einfallsreichtum (E) beschreibt die Fähigkeit, flexible Ideen zu produzieren und über vielfältige Vorstellungen von Problemen zu verfügen. Innerhalb der Modalität Inhalte lässt sich nach Jäger (1984) sprachgebundenes Denken von zahlengebundenem Denken und anschauungsgebundenem, figural-bildhaftem Denken unterscheiden. Sprachgebundenes Denken (V) beschreibt den Grad der Aneignung und der Verfügbarkeit des Beziehungssystems Sprache. Zahlengebundenes Denken (N) steht für das Ausmass der Aneignung und der Verfügbarkeit des Beziehungssystems Zahlen. Anschauungsgebundenes, figural-bildhaftes Denken (F) spiegelt die Fähigkeit wider, Aufgabenmaterial zu verarbeiten, welches bildhaftes beziehungsweise räumliches Vorstellen erfordert.

Auf höchster Hierarchiestufe des BIS steht als Integral aller sieben Fähigkeiten (K, B, M, E, V, N und F) die Allgemeine Intelligenz (AI). Die AI und die Fähigkeiten unterscheiden sich aber lediglich im Differenzierungsgrad. AI bildet Intelligenzleistungen gemäss Jäger (1984) aus grosser Distanz ab, während die sieben Fähigkeiten auf der Ebene darunter Intelligenzleistungen aus geringerer Distanz mit feinerem Auflösungsgrad abbilden. Untersuchungen zum BIS konnten die postulierte Struktur des BIS-Tests replizieren und Zusammenhänge mit anderen Intelligenzmodellen wie denjenigen

K und g. Breite Testbatterie -> gfaktor ableitbar. Parallelen zwischen BIS und Carroll erwähnen? von Cattell (1971) oder von Carroll (1993) herstellen (Beauducel & Kersting, 2002; Bucik & Neubauer, 1996; Süss, Oberauer, Wittman, Wilhelm & Schulze, 2002).

Die von Jäger et al. (1997) vorgeschlagene Kurzversion des BIS-Tests enthält 15 Subtests. Die Operationen B, M und E werden darin mit je einem Subtest pro Inhalt erfasst, wobei K mit zwei Subtests pro Inhalt erfasst wird. Bei der Modellierung der Daten mittels Strukturgleichungsmodellen hätte dies bei der vorliegenden Arbeit zu einer Überrepräsentation von K im q-Faktor geführt. Um dies zu vermeiden, wurden die Operationen B und M um je einen Subtest pro Inhalt angereichert. Grundlage für die Auswahl der Subtests bildeten die Erkenntnisse von Wicki (2014), wobei bei der Entscheidung über die Aufnahme der Subtests ökonomische (Bearbeitungszeit der Subtests) und teststatistische (Trennschärfe und Reliabilität der Subtests) Gesichtspunkte berücksichtigt wurden. Die Kurzversion von Jäger et al. (1997) wurde mit folgenden Subtests ergänzt: Klassifizieren von Wörtern, Old English, Rechen-Zeichen, Wege-Erinnern, Worte Merken und Zweistellige Zahlen. Wicki (2014) berichtet für diese modifizierte Kurzversion für die Operationen K, B und M interne Konsistenzen von Cronbachs $\alpha = .61 - .73$ und Konstruktreliabilitäten, gemessen mit McDonalds (1999) Omegakoeffizienten, von $\Omega = .58 - .64$. Auf Subtests der Operation E wurde gänzlich verzichtet, weil zum einen unklar ist, wie Einfallsreichtum und Intelligenz zusammenhängen (K. H. Kim, 2005) und zum anderen weil Jäger et al. (1997) unbefriedigende Objektivitätswerte berichten. Alle eingesetzten Subtests, deren Beschreibung sowie Zuordnung zu den jeweiligen Operationen und Inhalte sind Tabelle 1 zu entnehmen.

Die 19 Subtests wurden den Vpn nach der in Tabelle 1 aufgeführten Reihenfolge vorgelegt und gemäss dem Manual des BIS-Tests instruiert. Die Bearbeitung der Subtests dauerte insgesamt 50 Minuten. Die Aufwärmaufgabe Unvollständige Wörter (UW) wurde nicht ausgewertet. Die Rohwerte der restlichen 18 Subtests wurden z-standardisiert. Für die Beantwortung der Fragestellungen 1 und 2 wurden alle 18 z-standardisierten Subtests gemittelt. Dadurch resultierte für jede Vpn ein z-standardisiertes Mittel ihrer Leistung. Um für die Beantwortung der Fragestellungen 3, 4 und 5 einen g-Faktor zu bilden, wurden die 18 z-standardisierten Subtests innerhalb ihrer

Tabelle 1
Beschreibung und Reihenfolge der eingesetzten Subtests des BIS-Tests

			Operation	Inhalt	
Ŋŗ.	Name	Abkürzung	K B M	V N F	Beschreibung
-	Unvollständige Wörter*	MO	>	>	In vorgegebenen Wörtern fehlen einige Buchstaben, welche zu ergänzen sind (z.B. F_scher)
2	Orientierungs-Gedächtnis	90	>	>	Auf einem Stadtplanausschnitt markierte Gebäude müssen eingeprägt und unmittelbar danach wiedergegeben werden
3	Zahlenreihen	ZN	`	>	Nach bestimmten Regeln aufgebaute Zahlenreihen sind um ein weiteres Glied zu ergänzen (z.B. 2 5 8 11 14 17 ?)
4	Analogien	AN	`	>	Analogien mit Form $A: B = C: ?$ müssen ergänzt werden, wobei die Analogien aus geometrischen Formen bestehen
5	X-Grösser	XG	>	>	Zahlen, die um 3 grösser sind als die unmittelbar vorangegangene Zahl müssen so schnell wie möglich durchgestrichen
					werden (z.B. 18 20 24 $\mathcal P$ 1 13 18 $\mathcal P$ 1)
9	Wortanalogien	WA	`	`>	Wortanalogien der Form «Huhn zu Küken» wie «Kuh zu ?» müssen vervollständigt werden
7	Zahlenpaare	ZP	>	>	Zahlenpaare der Form 71 – 918 sind einzuprägen. Das jeweils zweite Glied ist anschliessend unter vier Distraktoren zu
					identifizieren
_∞	Tatsache-Meinung	TM	`	`>	Sätze müssen daraufhin geprüft werden, ob sie eher eine Tatsache oder eher eine Meinung wiedergeben
6	Buchstaben-Durchstreichen	BD	>	>	Alle «x» müssen in Zeilen von Buchstaben durchgestrichen werden (z.B. syszkdihij x \ldots)
10	Schätzen	$_{ m SC}$	`	>	Rechenaufgaben der Form 118492 – 3684 – 2106 – 4768 = ? müssen durch einfache rechnerische Überlegungen geschätzt
					bzw. gelöst werden
11	Sinnvoller Text	$^{\mathrm{L}}$	>	`>	Verbale Detailangaben in einem Text sind einzuprägen und unmittelbar danach zu reproduzieren
12	Charkow	CH	`	>	Eine Folge von Strichzeichnungen, die nach einer bestimmten Regel aufgebaut ist, ist um die beiden folgenden Glieder
					zu ergänzen
13	Teil-Ganzes	TG	>	>	In Wortlisten sind zwei aufeinander folgende Wörter, die in der Beziehung Ganzes/zugehöriger Teil zueinander stehen
					zu markieren (z.B. Baum, Blatt, Stein, Haus, Dactl,)
14	Rechen-Zeichen	RZ	>	>	In einfachen vorgegebenen Gleichungen stehen austelle von Plus- oder Minuszeichen leere Kästchen. Die richtigen Re-
					chenzeichen sind einzutragen
15	Worte merken	$_{ m WM}$	>	>	Eine Liste von Wörtern ist einzuprägen und unmittelbar danach in beliebiger Reihenfolge zu reproduzieren
16	Klassifizieren von Wörtern	KW	>	>	In Spalten von Wörtern sind alle Worte, die Pflanzen bezeichnen, durchzustreichen
17	Zweistellige Zahlen	ZZ	>	>	Eine Reihe zweistelliger Zahlen ist einzuprägen und unmittelbar danach in beliebiger Reihenfolge zu reproduzieren
18	Old English	OE	>	>	In Buchstabenreihen sind alle in einem vorgegebenen Schrifttyp gedruckten Buchstaben durchzustreichen
19	Wege-Erinnern	WE	>	>	Ein in einem Stadtplanausschnitt eingezeichneter Weg ist einzuprägen und unmittelbar danach zu reproduzieren

Annerkungen. K = Verarbeitungskapazität; B = Bearbeitungsgeschwindigkeit; M = Merkfähigkeit; V = verbal; N = numerisch; F = figural-bildhaft.

*Der Subtest UW wurde als Aufwärmaufgabe verwendet und floss nicht in die Auswertung mit ein.

zugehörigen Operation gemittelt. Damit flossen in jede Operation (K, B und M) zwei Subtests aus dem Bereich V, zwei Subtests aus dem Bereich N und zwei Subtests aus dem Bereich F (insgesamt sechs Subtests) ein. Der g-Faktor wurde anschliessend aus den drei gemittelten z-Werten der Operationen K, B und M abgeleitet.

2.5 Weitere Instrumente

Im Rahmen der Untersuchung wurden den Vpn Fragebögen und weitere Computer-Aufgaben zur Bearbeitung vorgelegt. Sie sind für die Fragestellungen dieser Arbeit nicht relevant und werden deshalb im folgenden Abschnitt nur kurz beschrieben.

2.5.1 Fragebögen

Persönliche Angaben

Die Erfassung persönlicher Angaben fand in zwei Teilen statt. In einem ersten Teil machten die Vpn schriftlich Angaben zu ihrer Muttersprache, Sehund Hörfähigkeit, ihren chronischen Krankheiten und ihrem Medikamentensowie Nikotinkonsum. In einem zweiten Teil machten sie computergestützt Angaben zu ihrem Alter, Geschlecht, Bildungsniveau, Koffeinkonsum, Videospielhäufigkeit, Musikinstrumenterfahrung und Vertrautheit mit dem Zehnfingersystem beim Computerschreiben.

Kurzform der deutschen Übersetzung des revidierten Eysenck-Personality-Questionnaire (EPQ-RK)

Die Vpn haben computergestützt die Kurzform der deutschen Übersetzung des EPQ-RK von Ruch (1999) bearbeitet. Der Fragebogen enthält insgesamt 50 Fragen, darunter 14 Items zur Erfassung von Psychotizismus, 12 Items zur Erfassung von Neurotizismus und 12 Items zur Erfassung der individuellen Neigung, sozial erwünschte Antworten abzugben.

Deutsche Übersetzung des Dickman-Impulsivity-Inventory (DII)

Die deutsche Übersetzung des DII stammt von Kuhmann und Ising (1996) und beinhaltet insgesamt 23 Items, darunter 11 Items zur Erfassung der funktionalen Impulsivität und 12 Items zur Erfassung der dysfunktionalen Impulsivität. Der Fragebogen wurde von den Vpn computergestützt bearbeitet.

2.5.2 Zeitverarbeitungsaufgaben

Zeitdauerdiskrimination im Millisekundenbereich mit gefüllten und leeren Intervallen

Angelehnt an die Versuchsanordnung von Stauffer, Haldemann, Troche und Rammsayer (2011) bekamen die Vpn über Lautsprecher hintereinander eine Standardtondauer und eine variable Vergleichstondauer dargeboten. Danach mussten die Vpn jeweils mit einem Tastendruck entscheiden, ob die erste oder die zweite Tondauer länger war. Bei einer korrekten Antwort verringerte sich die Differenz zwischen der Standard- und der Vergleichstondauer und bei einer falschen Antwort erhöhte sich diese Differenz. Die Aufgabe wurde einmal mit gefüllten Zeitintervallen (das heisst mit jeweils zwei kontinuierlichen Tönen) und einmal mit leeren Zeitintervallen (das heisst die Töne waren durch einen Klick am Anfang und einen Klick am Schluss des Intervalls gekennzeichnet) durchgeführt. Diese Aufgaben dauerte insgesamt etwa 15 Minuten.

Zeitgeneralisation im Millisekundenbereich

Die Aufgabe der Vpn war es, in einer Lernphase die über Lautsprecher fünf Mal präsentierte Standardtonlänge einzuprägen. Danach folgte die eigentliche Aufgabe: Es wurden in zufälliger Reihenfolge die Standardtonlänge und sechs Vergleichstonlängen präsentiert. Die Vpn mussten nach jeder Tonlänge mit einem Tastendruck entscheiden, ob die präsentierte Tonlänge von gleicher Länge war wie die Standardtonlänge oder nicht. Diese Aufgabe dauerte insgesamt etwa 5 Minuten (in Anlehnung an Stauffer et al., 2011).

Rhythmuswahrnehmung

Die Vpn hatten die Aufgabe, sechs über Lautsprecher in unregelmässigen Abständen präsentierte Töne von jeweils 3 ms Dauer auf rhythmische Darbietung hin zu beurteilen. Gaben die Vpn an, den Rhythmus als regelmässig wahrgenommen zu haben, wurde die Abweichung des Interstimulusintervalls beim nächsten Durchgang erhöht. Gaben die Vpn an, den Rhythmus als unregelmässig wahrgenommen zu haben, wurde die Abweichung des Interstimulusintervalls beim nächsten Durchgang verringert. Die Aufgabe dauerte insgesamt etwa 5 Minuten (siehe Stauffer et al., 2011).

2.5.3 Inspection-Time-Aufgabe

Die auf einem Computermonitor präsentierten Stimuli der Inspection-Time-Aufgabe (Vickers, Nettelbeck & Willson, 1972) bestanden aus zwei ungleich langen vertikalen Linien, die an ihren oberen Enden mit einer horizontalen Linie verbunden waren. Bei jedem Durchgang wurde die kürzere vertikale Linie zufällig links oder rechts präsentiert und nach der Darbietungszeit mit einer Pi-förmigen Abbildung, die gleich lange vertikale Linien aufwies, maskiert. Die Aufgabe der Vpn bestand darin anzugeben, ob die linke oder die rechte vertikale Linie länger war. Eine korrekte Antwort verringerte und eine falsche Antwort erhöhte die Darbietungszeit des nächsten Stimulus. Die Aufgabe dauerte insgesamt etwa 5 Minuten.

2.6 Untersuchungsablauf

Die Untersuchung wurde vor Datenerhebungsbeginn von der Ethikkomission der philosophisch-humanwissenschaftlichen Fakultät der Universität Bern gutgeheissen. Die Vpn nahmen an zwei Sitzungen teil, welche 2 bis 14 Tage voneinander getrennt waren. Zwei Vpn hatten krankheitsbedingt ein längeres Intervall zwischen den beiden Sitzungen (18 und 30 Tage).

2.6.1 Sitzung 1

Die Vpn wurden in Gruppen von zwei bis sechs Personen in einem $18 \,\mathrm{m}^2$ grossen Raum an Einzeltische gesetzt. Die Tische waren so weit voneinan-

der entfernt, dass die Vpn nicht durch den Nachbarn gestört werden oder abschreiben konnten. Ohne die Fragestellungen der Arbeit zu offenbaren, klärte der Versuchsleiter² die Vpn über den Zweck der Untersuchung auf, informierte sie über den Ablauf der bevorstehenden Sitzung und nahm die Einverständniserklärungen der Vpn entgegen. Danach wurden der Reihenfolge nach folgende Daten erhoben und Instrumente eingesetzt:

- 1. Persönliche Angaben Teil 1
- 2. BIS-Test
- 3. Persönliche Angaben Teil 2
- 4. EPQ-RK
- 5. DII

Diese erste Sitzung dauerte insgesamt etwa 90 Minuten.

2.6.2 Sitzung 2

Die zweite Sitzung fand als Einzeltestung in einer $5\,\mathrm{m}^2$ grossen, schallgedämpften Kabine statt. Der Versuchsleiter informierte die Vpn über den Ablauf der bevorstehenden Sitzung und legte ihnen am Computer der Reihenfolge nach folgende Aufgaben vor:

- 1. Spatial-Suppression-Aufgabe
- 2. Die fünf Aufgaben
 - ™ Hick-Aufgabe
 - Zeitdauerdiskrimination im Millisekundenbereich mit gefüllten Intervallen
 - Zeitdauerdiskrimination im Millisekundenbereich mit leeren Intervallen
 - ™ Zeitgeneralisation im Millisekundenbereich

In dieser Arbeit wird der Einfachheit halber nur die m\u00e4nnliche Form verwendet. Die weibliche Form ist selbstverst\u00e4ndlich immer mit eingeschlossen.

Rhythmuswahrnehmung

wurden über alle Vpn hinweg vollständig permutiert, was in 5! = 120 unterschiedlichen Reihenfolgen resultierte. Nach 120 Vpn wurden die Reihenfolgen wiederholt, das heisst Vp 121 bearbeitete die Aufgaben in der gleichen Reihenfolge wie Vp 1, Vp 122 bearbeitete die Aufgaben in der gleichen Reihenfolge wie Vp 2 und so weiter.

3. Inspection-Time-Aufgabe

Nach der letzten Aufgabe wurden die Vpn vollständig über das Ziel der Untersuchung aufgeklärt und entlöhnt. Diese zweite Sitzung dauerte inklusive einer fünfminütigen Pause nach 50 Minuten insgesamt etwa 120 Minuten.

2.7 Statistische Analyse

Alle Berechnungen wurden in R (R Core Team, 2016) durchgeführt, dessen Basisfunktionen mit folgenden Paketen ergänzt wurde: coin (Hothorn, Hornik, van de Wiel & Zeileis, 2008), dplyr (Wickham & Francois, 2014), effsize (Torchiano, 2016), ez (Lawrence, 2015), ggplot2 (Wickham, 2016), lavaan (Rosseel, 2012), lm.beta (Behrendt, 2014), lmSupport (Curtin, 2016), MASS (Venables & Ripley, 2015), Metrics (Hamner, 2012), multcomp (Hothorn, Bretz & Westfall, 2008), nlme (Pinheiro, Bates, DebRoy, Sarkar & R Core Team, 2016), nlstools (Baty et al., 2015), pacman (Rinker & Kurkiewicz, 2015), pbapply (Solymos & Zawadzki, 2016), plotrix (Lemon, 2006), ppcor (S. Kim, 2015), psych (Revelle, 2015), readxl (Wickham, 2015), reshape2 (Wickham, 2007), rprime (Mahr, 2015), R.matlab (Bengtsson, 2014) und semPlot (Epskamp, 2014). Als Editor diente RStudio (RStudio Team, 2012).

Die Fragestellungen 3, 4 und 5 wurden mittels konfirmatorischer Faktorenanalysen beantwortet. Die Güte einer konfirmatorischen Faktorenanalyse kann anhand einer Vielzahl von unterschiedlichen Kennwerten beurteilt werden, weshalb hier die für diese Arbeit wichtigen Kennwerte kurz vorgestellt werden.

Chi-Quadrat-Test (χ^2 -Test)

Der χ^2 -Test ist ein Modelltest, der angibt, wie stark sich die theoretische, vom Modell implizierte Varianz-Kovarianzmatrix von der empirischen Varianz-Kovarianzmatrix unterscheidet (Kline, 2011). Die dafür berechnete Teststatistik folgt in grossen Stichproben und unter der Voraussetzung der multivariaten Normalverteilung einer zentralen Chi Quadrat-Verteilung und wird deshalb auch als χ^2_m bezeichnet. Die Freiheitsgrade für den $\chi^2\text{-Test}$ ergeben sich aus den Freiheitsgraden des zu testenden Modells (df_m) . Wenn $\chi_m^2 = 0$ ist, stimmt die empirische Varianz-Kovarianzmatrix mit der vom Modell implizierten Varianz-Kovarianzmatrix ohne Abweichung überein und die empirischen Daten passen perfekt zum theoretischen Modell. Bildet das Modell die Daten nicht gut ab, wird $\chi_m^2 > 0$. Liegt χ_m^2 über dem kritischen χ_{df}^2 , sind die Abweichungen zwischen der empirischen und der theoretischen Varianz-Kovarianzmatrix grösser als durch den Stichprobenfehler erwartet, und die Nullhypothese wird verworfen. Wenn ein korrekt spezifiziertes Modell mit mehreren Zufallsstichproben geprüft wird, liegt der Erwartungswert von χ_m^2 bei df_m und χ^2_m würde bei einem α -Fehler von 5 % bei 19 von 20 Stichproben im nicht-signifikanten Bereich liegen.

Bei der Bewertung der berichteten konfirmatorischen Faktorenanalysen wurde das Ergebnis des Modelltests (im Vergleich zu den weiter unten beschriebenen Kennwerten) am stärksten gewichtet. Diese Art der Modellbeurteilung entspricht der Vorstellung von Jöreskog (1985, zitiert nach McIntosh, 2012, S. 1620), der sich dafür aussprach alle andere Kennwerte weniger zu gewichten (siehe auch Hayduk, Cummings, Boadu, Pazderka-Robinson & Boulianne, 2007).

Comparative-Fit-Index (CFI)

Der CFI lässt sich der Klasse der inkrementellen Fit Indizes zuordnen und wurde von Bentler (1990) entworfen. Die Formel lautet

$$CFI = 1 - \frac{\chi_m^2 - df_m}{\chi_b^2 - df_b}$$

Im Zähler wird df_m von χ_m^2 subtrahiert. Im Nenner des Bruchs wird die gleiche Differenz mit den Werten des Baseline Modells $(df_b$ und $\chi_b^2)$ gebildet. Das

Baseline-Modell nimmt keinerlei Zusammenhänge zwischen den manifesten Variablen an und wird deshalb auch als «independence model» bezeichnet. Zieht man den beschriebenen Quotienten von Eins ab, ergibt sich ein Mass für die relative Verbesserung des angenommenen Modells gegenüber dem Baseline-Modell. Aus der Formel folgt, dass CFI = 1 ergibt, wenn $\chi_m^2 \leq df_m$ ist. Das bedeutet aber auch, dass ein CFI von Eins nicht mit einem perfekten Fit ($\chi_m^2 = 0$) gleichzusetzen ist. Ein CFI von .95 ist laut Hu und Bentler (1999) als guter Fit zu bezeichnen.

Root-Mean-Square-Error-of-Approximation (RMSEA)

Die Anzahl Freiheitsgrade eines Modells geben an, auf wie vielen Dimensionen die empirischen Daten vom Modell abweichen können. Der RMSEA (Steiger, 1990) ist ein Fit Index, der die durchschnittliche Abweichung des Modells pro mögliche Dimension der Abweichung angibt. Die Formel lautet

RMSEA =
$$\sqrt{\frac{\chi_m^2 - df_m}{df_m(N-1)}}$$

Wie beim CFI ergibt sich der beste Wert, wenn $\chi_m^2 \leq df_m$ ist (dann ist RMSEA = 0). Das bedeutet jedoch wie beim CFI auch, dass ein RMSEA von Null keinen perfekten Modell-Fit ($\chi_m^2 = 0$) ergibt. Im Nenner wird df_m mit der Stichprobengrösse minus Eins multipliziert. Dies führt dazu, dass der RMSEA bei Modellen mit vielen Freiheitsgraden und grossen Stichproben kleiner wird. Ein RMSEA \leq .08 deutet laut Browne und Cudeck (1993) auf einen guten Modell-Fit hin.

Standardized-Root-Mean-Square-Residual (SRMR)

Das SRMR ist ein Mass dafür, wie hoch die durchschnittlichen Korrelationsresiduen der manifesten Variablen sind (Kline, 2011). Anders formuliert gibt das SRMR den durchschnittlichen Zusammenhang der manifesten Variablen wieder, welcher nicht durch das Modell erklärt werden kann. Das SRMR sollte möglichst nahe bei Null zu liegen kommen, was bedeutet, dass das theoretische Modell die empirische Varianz-Kovarianzmatrix angemessen abbildet. Gemäss Hu und Bentler (1999) kann ein SRMR \leq .08 als guter

Modell-Fit interpretiert werden.

3.1 Deskriptiv- und Inferenzstatistik

3.1.1 Spatial-Suppression-Aufgabe

Die Mittelwerte, Verteilungsangaben und Reliabilitäten der Bedingungen sind in Tabelle 2 abgetragen. Die Splithalf-Reliabilitäten der vier Bedingungen fielen mit $r_{tt}=.96$ sehr hoch aus und bestätigten die von Melnick et al. (2013) berichteten Reliabilitäten. Die Streudiagramme der 82%-Erkennungsschwellen sind in Abbildung 2 zu sehen.

Als Erstes wurde geprüft, ob die experimentelle Manipulation (die Mustergrösse) einen Einfluss auf die abhängige Variable (die 82 %-Erkennungsschwelle) ausübte. Dafür wurde eine einfaktorielle Varianzanalyse mit Mess-

Tabelle 2

Deskriptive Angaben zu den 82 %-Erkennungsschwellen der Spatial-Suppression-Aufgabe in Millisekunden (Mittelwert, Standardabweichung, Minimum, Maximum) sowie Kennwerte zur Verteilungsform und der Reliabilität der Daten

Bedingung	M	SD	Min	Max	Schiefe	Kurtosis	S-W p -Wert	r_{tt}
1.8°	82	28	31	216	-0.25	0.19	.39	.96
3.6°	89	31	37	282	0.02	0.80	.03	.96
5.4°	109	40	45	422	0.73	1.78	<.001	.96
7.2°	136	60	61	705	1.14	1.86	<.001	.96

Anmerkungen. Min = Minimum; Max = Maximum; S-W = Shapiro-Wilk-Test; r_{tt} = nach der Odd-Even-Methode berechnete, mit der Spearman-Brown-Formel (Spearman 1910; Brown 1910; zitiert nach Schermelleh-Engel & Werner, 2007, S. 123) korrigierte Splithalf-Reliabilität.

42 RESULTATE

Abbildung 2. Streudiagramme der 82 %-Erkennungsschwellen für horizontale Bewegung in der Spatial-Suppression-Aufgabe. Die horizontale Linie kennzeichnet jeweils den Mittelwert innerhalb einer Bedingung (vgl. Tabelle 2). Siehe Anhang A für eine Beschreibung der Ausreisserkontrolle. Vp = Versuchsperson.

wiederholung³ gerechnet. Weil Sphärizität gemäss einem Mauchly-Test nicht gegeben war, $\chi^2(5) = 202.12$, p < .001, wurden die Freiheitsgrade des F-Tests mit der Greenhouse-Geisser-Methode korrigiert ($\hat{\varepsilon} = .55$). Der F-Test hat ergeben, dass die Unterschiede zwischen den Bedingungsmittelwerten signifikant von 0 abwichen, $F(1.65, 290.40) = 275.26, p < .001, \eta_G^2 = .27$. Der Effekt der Mustergrösse auf die 82 %-Erkennungsschwelle konnte dabei gemäss generalisiertem η_G^2 (Olejnik & Algina, 2003) als gross bezeichnet werden (Bakeman, 2005, S. 383). Um zu erfahren, ob sich alle oder nur bestimmte Mittelwertpaare signifikant voneinander unterschieden, wurden post hoc alle Mittelwerte miteinander verglichen. Tukey-Tests haben gezeigt, dass sich alle Mittelwertpaare signifikant voneinander unterschieden (alle ps < .001). Die 82 %-Erkennungsschwellen der Vpn erhöhten sich folglich mit zunehmender Mustergrösse signifikant. Die Effektstärken für die Mittelwertsunterschiede wurden mit Cohens d für abhängige Stichproben (Gibbons, Hedeker & Davis, 1993) bestimmt. Dabei hat sich gezeigt, dass die Effektstärken im mittleren bis hohen Bereich (Cohen, 1988, S. 40) lagen (siehe Tabelle 3).

Tabelle 3

Effektstärken (Cohens d für abhängige Stichproben) der Mittelwertsunterschiede in der Spatial-Suppression-Aufgabe

Bedingung	1.8°	3.6°	5.4°
1.8°			
3.6°	0.51		
5.4°	1.12	1.07	
7.2°	1.39	1.42	1.08

Anmerkung. Alle Mittelwertsunterschiede waren statistisch signifikant (p < .001).

Die Abweichung der Daten von der Normalverteilung (siehe Kennwerte zur Verteilung in Tabelle 2) erforderten eigentlich verteilungsfreie Analyseverfahren. Da die Ergebnisse dieser nonparametrischen Analyseverfahren aber nicht bedeutend von den mit parametrischen Verfahren ermittelten Ergebnissen abwichen, werden im Folgenden die Ergebnisse der traditionellen (parametrischen) Verfahren berichtet. Siehe Anhang B für die Analyse der Aufgaben mittels nonparametrischer Verfahren.

Produkt-Moment-Korrelationen zwischen den vier Bedingungen der Spatial-Suppression-Aufgabe sind in Tabelle 8 abgetragen. Sie deuteten ausnahmslos auf stark positive Zusammenhänge zwischen den Bedingungen hin.

Der Suppression-Index wies einen Mittelwert \pm Standardabweichung von 0.222 ± 0.160 auf (Minimum = -0.185, Maximum = 0.886). Die Verteilung des Suppression-Index (siehe Abbildung 3) hatte eine Schiefe von 0.91 und sowie Kurtosis von 1.80 und wich damit gemäss einem Shapiro-Wilk-Test signifikant von der Normalverteilung ab (p < .001).

Abbildung 3. Dichtefunktion des Suppression-Index. Der Suppression-Index wurde als Differenz zwischen der 82 %-log₁₀-Erkennungsschwelle für die Mustergrösse 7.2° und der 82 %-log₁₀-Erkennungsschwelle für die Mustergrösse 1.8° gebildet. Alle Datenpunkte sind auf der x-Achse mit vertikalen Strichen markiert.

3.1.2 Hick-Aufgabe

In Abbildung 4 sind die mittleren Reaktionszeiten aller Vpn als Streudiagramme abgebildet. Die Mittelwerte, Verteilungsangaben und Reliabilitäten der Bedingungen finden sich in Tabelle 4.

Wie bei der Spatial-Suppression-Aufgabe wurde bei der Hick-Aufgabe als Erstes geprüft, ob die experimentelle Manipulation (die Anzahl der Antwortalternativen) einen Einfluss auf die abhängige Variable (die Reaktionszeit) ausübte. Dafür wurde eine einfaktorielle Varianzanalyse mit Messwiederholung gerechnet. Weil Sphärizität gemäss einem Mauchly-Test nicht gegeben war, $\chi^2(5) = 219.06$, p < .001, wurden die Freiheitsgrade des F-

Abbildung 4. Streudiagramme der mittleren Reaktionszeiten in der Hick-Aufgabe. Die horizontale Linie kennzeichnet jeweils den Mittelwert innerhalb einer Bedingung (vgl. Tabelle 4). Siehe Unterabschnitt 2.3.2 für eine Beschreibung der Datenaufbereitung. Vp = Versuchsperson.

Tabelle 4

Deskriptive Angaben zu den mittleren Reaktionszeiten der Hick-Aufgabe in Millisekunden (Mittelwert, Standardabweichung, Minimum, Maximum) sowie Kennwerte zur Verteilungsform und der Reliabilität der Daten

Bedingung	M	SD	Min	Max	Schiefe	Kurtosis	S-W p-Wert	r_{tt}
0-bit	240	29	188	394	1.58	4.99	<.001	.90
1-bit	296	32	234	416	0.94	1.33	<.001	.93
2-bit	377	54	280	590	0.88	1.01	<.001	.94
2.58-bit	438	67	315	650	0.82	0.41	<.001	.93

Anmerkungen. Min = Minimum; Max = Maximum; S-W = Shapiro-Wilk-Test; r_{tt} = nach der Odd-Even-Methode berechnete, mit der Spearman-Brown-Formel (Spearman 1910; Brown 1910; zitiert nach Schermelleh-Engel & Werner, 2007, S. 123) korrigierte Splithalf-Reliabilität.

Tests mit der Greenhouse-Geisser-Methode korrigiert ($\hat{\varepsilon}=.57$). Der F-Test hat ergeben, dass die Unterschiede zwischen den Bedingungsmittelwerten signifikant von 0 abwichen, $F(1.71,\,300.96)=1434.32,\,p<.001,\,\eta_G^2=.71.$ Der Effekt der Anzahl Antwortalternativen auf die Reaktionszeit konnte dabei gemäss generalisiertem η_G^2 (Olejnik & Algina, 2003) als gross bezeichnet werden (Bakeman, 2005, S. 383). Um zu erfahren, ob sich alle oder nur bestimmte Mittelwertpaare signifikant voneinander unterschieden, wurden post hoc alle Mittelwerte miteinander verglichen. Tukey-Tests haben gezeigt, dass sich alle Mittelwertpaare signifikant voneinander unterschieden (alle ps<.001). Die Reaktionszeiten der Vpn erhöhten sich folglich mit zunehmender Anzahl Antwortalternativen signifikant. Die Effektstärken für die Mittelwertsunterschiede wurden mit Cohens d für abhängige Stichproben (Gibbons et al., 1993) bestimmt und lagen alle im hohen Bereich (Cohen, 1988, S. 40; siehe Tabelle 5).

Produkt-Moment-Korrelationen zwischen den vier Bedingungen der Hick-Aufgabe sind in Tabelle 8 abgetragen. Sie deuteten auf stark positive Zusammenhänge zwischen den Bedingungen hin.

Tabelle 5

Effektstärken (Cohens d für abhängige Stichproben) der Mittelwertsunterschiede in der Hick-Aufgabe

Bedingung	0-bit	1-bit	2-bit
0-bit			
1-bit	2.67		
2-bit	3.13	2.13	
2.58-bit	3.43	2.71	1.62

Anmerkung. Alle Mittelwertsunterschiede waren statistisch signifikant (p < .001).

3.1.3 BIS-Test

Deskriptive Angaben zu den Subtests des BIS-Tests sind in Tabelle 6 zu finden. Wie aufgrund der Modellannahmen des BIS-Tests zu erwarten war, liessen sich zwischen der Mehrheit der Subtests signifikante positive Zusammenhänge beobachten (siehe Tabelle 7). Dieser positive manifold bildete die Voraussetzung für die Beantwortung der dritten, vierten und fünften Fragestellung, bei welchen aus den Aufgaben des BIS-Tests mit Hilfe von Faktorenanalysen ein g-Faktor extrahiert wurde.

Der z-Wert des BIS-Tests, gebildet als Mittelwert aller 18 z-standardisierter Subtests, wies einen Mittelwert \pm Standardabweichung von 0.02 \pm 0.53 auf (Minimum = -1.60, Maximum = 1.40). Die Verteilung des z-Werts (siehe Abbildung 5) hatte eine negative Schiefe (-0.02) und eine positive Kurtosis (0.16), wich damit aber gemäss einem Shapiro-Wilk-Test nicht signifikant von der Normalverteilung ab (p = .82).

48 RESULTATE

Tabelle 6

Deskriptive Angaben zur Anzahl richtig gelöster Items der Subtests im BISTest (Mittelwert, Standardabweichung, Minimum, Maximum) und Kennwerte zur Verteilungsform der Daten

Subtest	M	SD	Min	Max	Schiefe	Kurtosis	S-W p-Wert
OG	15.31	4.82	3	27	-0.35	-0.05	.03
ZN	3.86	2.44	0	9	0.50	-0.83	<.001
AN	3.23	1.62	0	7	0.08	-0.41	<.001
XG	19.45	6.52	1	36	0.14	0.08	.05
WA	3.23	1.87	0	7	0.10	-0.71	<.001
ZP	5.95	2.28	1	12	0.27	-0.12	.003
TM	9.25	3.62	1	16	-0.03	-0.83	.002
BD	51.01	10.76	2	78	-1.46	5.86	<.001
SC	3.16	1.97	0	7	0.06	-1.01	<.001
ST	8.59	3.68	0	18	-0.04	-0.34	.12
СН	2.76	1.66	0	6	-0.01	-0.81	<.001
TG	11.72	3.20	1	20	-0.66	1.01	<.001
RZ	10.80	4.02	1	20	-0.19	-0.49	.06
WM	7.15	2.89	2	17	0.77	0.83	<.001
KW	23.31	6.46	2	37	-0.24	0.13	.04
ZZ	6.41	2.94	1	14	0.32	-0.33	.002
OE	34.33	5.93	9	47	-0.46	1.08	.007
WE	18.25	6.07	1	31	-0.25	-0.33	.14

 $\label{eq:Anmerkungen} Anmerkungen. \mbox{ Siehe Tabelle 1 für eine Beschreibung der Subtests. Min = Minimum; } \mbox{Max} = \mbox{Maximum; S-W} = \mbox{Shapiro-Wilk-Test.}$

Abbildung 5. Dichtefunktion des z-Werts des BIS-Tests. Der z-Wert wurde als Mittelwert aller 18 z-standardisierter Subtests gebildet. Alle Datenpunkte sind auf der x-Achse mit vertikalen Strichen markiert.

Tabelle 7
Produkt-Moment-Korrelationen zwischen den Subtests des BIS-Tests

	Subtest	1	2	3	4	2	9	7	∞	6	10	11	12	13	14	15	16	17
П	90																	
2	ZN	.27***																
3		.31***	.42***															
4		.21**	.56***	.32***														
2	WA	.34***	.41***	.49**	.34***													
9		.22**	.17*	.13	.31***	.17*												
7		.30***	.26***	.44**	.33***	.51***	.22**											
∞		20.	80.	.05	.111	01	.04	.03										
6	$_{ m SC}$.14		.35***	.47***	$.23^{**}$.17*	.32***	.20**									
10	$^{\mathrm{LS}}$.38***		.24**	$.31^{***}$.32***	.24**	.39***	01	.22**								
11		.36***	.51***	.52***	$.31^{***}$.52***	.13	.33**	.07	.31***	.17*							
12	$^{\mathrm{LG}}$.32***	.33***	.27***	.43***	.43***	$.16^{*}$.43***	.11	.28***	.38**	.22**						
13	RZ	.30***	.53***	.41***	.55***	.43***	.27***	.42***	.08	.44**	.34***	.38***	.33***					
14	$\overline{\mathrm{WM}}$.40***	.12	.29***	.17*	.26**	.27***	.39***	.08	.10	.40***	.18*	.18*	.13				
15	KW	.26***	.23**	.28***	.35***	.40***	.23**	***99	.14	.29***	.52***	.21**	.54***	.36***	.32***			
16	ZZ	.29***	.05	.04	$.21^{**}$.01	.37***	.10	60.	.05	.30***	20.	.08	60.	.39***	.13		
17	OE	60.	.04	.03	.08	.01	.03	.13	.34***	.16*	.03	90	.15*	.15*	.02	.16*	03	
18	WE	.39***	.31***	.27***	.22**	.28***	.28***	- 60:	02	.16*	.23**	.27***	.20**	.34***	.16*	.22**	.19*	10

 $An merkung. \ {\rm Siehe\ Tabelle\ 1\ für\ eine\ Beschreibung\ der\ Subtests.}$ $^*p<.05.~^{**}p<.01.~^{***}p<.001\ (zweiseitig).$

3.1.4 Zusammenhänge zwischen den Aufgaben

Bevor ausgewählte Zusammenhänge zwischen den Aufgaben in den folgenden Abschnitten anhand der Fragestellungen abgearbeitet werden, ist der Vollständigkeit halber in Tabelle 8 eine Korrelationsmatrix abgebildet.

Abgesehen von den bereits erwähnten Zusammenhängen zwischen den Bedingungen der Spatial-Suppression-Aufgabe, der Hick-Aufgabe respektive den Subtests des BIS-Tests ist an dieser Stelle zusätzlich auf Folgendes hinzuweisen: Der Suppression-Index wies eine negative Korrelation mit der 1.8° -Bedingung auf $(r=-.28,\,p<.001)$ und korrelierte positiv mit der 7.2° -Bedingung $(r=.66,\,p<.001)$. Diese Zusammenhänge können als Hinweis dafür gesehen werden, dass der Suppression-Index als Differenz zwischen der $82\,\%$ -log₁₀-Erkennungsschwelle für die Mustergrösse 7.2° und der $82\,\%$ -log₁₀-Erkennungsschwelle für die Mustergrösse 1.8° korrekt gebildet wurde.

Weiter korrelierte einzig die 0-bit-Bedingung der Hick-Aufgabe signifikant mit der 1.8° -, der 3.6° - und der 5.4° -Bedingung der Spatial-Suppression-Aufgabe. Alle anderen Zusammenhänge zwischen den Bedingungen der beiden Aufgaben fielen so gering aus, dass sie bei der gewählten Irrtumswahrscheinlichkeit von weniger als $5\,\%$ nicht von 0 unterschieden werden konnten.

Die Bedingungen der Hick-Aufgabe korrelierten erwartungsgemäss signifikant negativ mit psychometrischer Intelligenz (r=-.19 bis -.28, alle ps < .05; vgl. Sheppard & Vernon, 2008).

Die Bedingungen der Spatial-Suppression-Aufgabe korrelierten mit Ausnahme des Zusammenhangs zwischen der 7.2°-Bedingung und dem z-Wert des BIS-Tests ($r=-.12,\ p=.10$) alle signifikant negativ mit psychometrischer Intelligenz (r=-.16 bis -.19, alle ps<.05).

Tabelle 8

Produkt-Moment-Korrelationen zwischen den Bedingungen der Spatial-Suppression-Aufgabe, dem Suppression-Index, den Bedingungen der Hick-Aufgabe, dem z-Wert und dem g-Faktor des BIS-Tests

		S	patial-Su	Spatial-Suppression-Aufgabe	n-Aufg	abe		Hick-A	Hick-Aufgabe		BIS-	BIS-Test
	Mass	1	2	3	4	ಬ	9	2	∞	6	10	11
	1.8°											
2	3.6°	***58.										
က	5.4°	.73***	.87**									
4	7.2°	.54***	.72***	.87***								
ಬ	$_{ m IS}$	28***	.05	.34***	***99							
9	0-bit	.17*	.24**	.25***	.14	.01						
7	1-bit	60.	.11	.13	20.	00.	***92.					
∞	2-bit	.12	80.	80.	.04	90.—	***82.	.72***				
6	2.58-bit	.14	60.	.12	20.	04	.52***	***99.	.83**			
10	10 z -Wert 1	16^{*}	17*	16*	12	00.	19^{*}	27***	28***	28***		
11	11 g -Faktor 18^*	. –.18*	19^{*}	19*	16*	01	20**	28***	28***	27***	***86.	

Anmerkungen. SI = Suppression-Index; z-Wert = Mittelwert aller 18 z-standardisierten Subtests.

^{*}p < .05. **p < .01. ***p < .001 (zweiseitig).

52 RESULTATE

3.2 1. Fragestellung

Mit der ersten Fragestellung sollte geprüft werden, ob die von Melnick et al. (2013) berichteten Zusammenhänge zwischen der Spatial-Suppression-Aufgabe und psychometrischer Intelligenz bestätigt werden können.

Der von Melnick et al. (2013) berichtete Zusammenhang zwischen dem Suppression-Index und IQ-Punkten (Studie 1 [N=12]: r=.64, p=.02 und Studie 2 [N=53]: r=.71, p<.001) konnte in der vorliegenden Arbeit nicht bestätigt werden: Der Zusammenhang zwischen dem Suppression-Index und dem z-Wert aus dem BIS-Test betrug r=.00 (p=.98; siehe Abbildung 6). Um zu prüfen, ob diese Korrelation signifikant tiefer ausfiel als bei Melnick et al., wurden die Korrelationskoeffizienten in Fisher-Z-Werte umgerechnet und auf Unterschiedlichkeit geprüft (Cohen & Cohen, 1983, S. 54). Dabei hat sich ergeben, dass sich der in der vorliegenden Arbeit ermittelte Korrelationskoeffizient r=.00 signifikant von den von Melnick et al. (2013) berichteten r=.64 und r=.71 unterschied (z=2.22, p=.03 respektive z=5.53, p<.001).

Auch der von Melnick et al. (2013) in Studie 2 berichtete Zusammenhang zwischen der kleinsten Mustergrösse (1.8°-Bedingung) und IQ-Punkten (r=-.46, p<.001) konnte nicht bestätigt werden: Die Korrelation zwischen der 1.8°-Bedingung und dem z-Wert aus dem BIS-Test betrug in der vorliegenden Arbeit r=-.16 (p=.03) und fiel damit signifikant tiefer aus als bei Melnick et al. (z=2.09, p=.04).

Gleichermassen nicht bestätigt werden konnten die von Melnick et al. (2013) berichteten Semipartialkorrelationen zwischen der kleinsten Mustergrösse (1.8°-Bedingung), der grössten Mustergrösse (7.2°-Bedingung) und psychometrischer Intelligenz: In Studie 2 von Melnick et al. betrug die Semipartialkorrelation zwischen der kleinsten Mustergrösse und IQ-Punkten bei Kontrolle für die grösste Mustergrösse r=-.71 (p<.001) und zwischen der grössten Mustergrösse und IQ-Punkten bei Kontrolle für die kleinste Mustergrösse r=.55 (p<.001). Hoher IQ war bei Melnick et al. im Vergleich zu tiefem IQ somit mit tieferen 82 %-Erkennungsschwellen bei kleiner Mustergrösse und mit höheren 82 %-Erkennungsschwellen bei grosser Mustergrösse verbunden. In der vorliegenden Arbeit betrugen die Semipartial-

1. Fragestellung 53

Abbildung 6. Streudiagramm des Zusammenhangs zwischen dem Suppression-Index und dem z-Wert aus dem BIS-Test $(r=.00,\,p=.98)$.

korrelationskoeffizienten bei Kontrolle für die grösste Mustergrösse (z) zwischen der kleinsten Mustergrösse (x) und dem z-Wert (y) aus dem BIS-Test $r_{y(x.z)} = -.11$ (p=.15) und bei einer Kontrolle für die kleinste Mustergrösse (z) zwischen der grössten Mustergrösse (x) und dem z-Wert (y) aus dem BIS-Test $r_{y(x.z)} = -.04$ (p=.57). Ein Vergleich dieser unabhängigen Semipartialkorrelationskoeffizienten hat ergeben, dass die in der vorliegenden Arbeit erhaltenen Zusammenhänge signifikant schwächer ausfielen als bei Melnick et al. (z=4.84, p<.001 respektive z=4.10, p<.001).

Abschliessend zur Beantwortung der ersten Fragestellung kann festgehalten werden, dass sowohl die von Melnick et al. (2013) berichteten Zusam-

54 RESULTATE

menhänge zwischen dem Suppression-Index und psychometrischer Intelligenz als auch die Zusammenhänge der einzelnen Bedingungen der Spatial-Suppression-Aufgabe mit psychometrischer Intelligenz nicht bestätigt werden konnten.

3.3 2. Fragestellung

Mit der zweiten Fragestellung sollte geprüft werden, ob die aus der Spatial-Suppression-Aufgabe mit einer exponentiellen Regression abgeleiteten Aufgabenparameter benutzt werden können, um psychometrische Intelligenz vorherzusagen.

Für jede Vp wurden die vier 82%-Erkennungsschwellen mit einer exponentiellen Regression der von Melnick et al. (2013) vorgeschlagenen Form $y=a\times e^{bx}$ vorhergesagt (siehe Abbildung 7). Deskriptive Angaben zu den daraus resultierenden Parametern, der Asymptote a und der Steigung b, sind in Tabelle 9 zu finden. Weil der Determinationskoeffizient R^2 bei nichtlinearen Modellen kein adäquates Mass für die Anpassungsgüte des Modells an die Daten darstellt (Spiess & Neumeyer, 2010), wurde für jede Person der Root-Mean-Square-Error (RMSE) berechnet. Der RMSE ist die Quadratwurzel aus dem Mittelwert der quadrierten Fehler und damit ein Mass für die durchschnittliche Abweichung der vorhergesagten Werte von den empirischen Werten. Obwohl der RMSE für einige Vpn sehr gross ausfiel, eignete sich ein exponentielles Modell zur Beschreibung der Daten für einen grossen Teil der Vpn sehr gut (siehe Abbildung 8). Der Median betrug 6 ms und das

Tabelle 9
Deskriptive Angaben zur exponentiellen Regression $(y = a \times e^{bx})$ für die Vorhersage der 82 %-Erkennungsschwellen durch die Mustergrössen der Spatial-Suppression-Aufgabe und Kennwerte zur Verteilungsform der Daten

Parameter	M	SD	Min	Max	Schiefe	Kurtosis	S-W p-Wert
a	70	28	5	195	0.97	1.87	<.001
b	0.103	0.081	-0.079	0.650	2.17	10.80	<.001

 $\label{eq:anisotropy} \textit{Anmerkungen. } a = \text{Asymptote (in ms); } b = \text{Steigung; Min} = \text{Minimum; Max} = \text{Maximum; S-W} = \text{Shapiro-Wilk-Test.}$

2. Fragestellung 55

Abbildung 7. Exponentieller Einfluss der Mustergrösse auf die 82%-Erkennungsschwelle für horizontale Bewegung in der Spatial-Suppression-Aufgabe. Eingezeichnet sind die Mittelwerte \pm Standardfehler der Mittelwerte. Die xund die y-Achse sind beide logarithmiert. $y=70\times e^{0.103x}$.

dritte Quartil lag bei 9 ms (Minimum = 0.47 ms, Maximum = 65.47 ms).

Um erkennen zu können, ob der Zusammenhang zwischen den beiden Aufgabenparametern (Asymptote und Steigung), der Zusammenhang zwischen der Steigung und dem Suppression-Index oder der Zusammenhang zwischen der Asymptote respektive der Steigung mit dem z-Wert des BIS-Tests durch diejenigen Vpn verzerrt wurde, bei welchen eine Beschreibung der Daten mit einem exponentiellen Modell nicht angebracht war, wurden diese Zusammenhänge in Abhängigkeit des RMSE bestimmt. Dafür wurde

Abbildung 8. Dichtefunktion des Root-Mean-Square-Error (RMSE; in Millisekunden), der sich aus dem exponentiellen Modell zur Beschreibung der Erkennungsschwellen der Spatial-Suppression-Aufgabe ergeben hat. Alle Datenpunkte sind auf der x-Achse mit vertikalen Strichen markiert.

Caption der Abbildung inhaltlich korrekt? für jeden RMSE zwischen 1 und 70 ms eine Teilstichprobe mit Vpn gebildet, welche den gewählten RMSE (RMSE-Grenzwert) nicht überschritten haben. Die erste Teilstichprobe (n=4) bestand folglich aus Vpn, welche einen RMSE von nicht grösser als 1 ms aufwiesen. Die zweite Teilstichprobe (n=11) setzte sich aus Vpn zusammen, welche einen RMSE von nicht grösser als 2 ms aufwiesen. Die dritte Teilstichprobe (n=32) beinhaltete Vpn, welche einen RMSE von nicht grösser als 3 ms aufwiesen (usw.). Dieses Vorgehen wurde solange weitergeführt, bis die Teilstichprobe bei einem RM-SE-Grenzwert von 65.47 ms alle Vpn (N=177) beinhaltete. Damit liessen sich die Zusammenhänge über den ganzen RMSE-Grenzwert bereich bestimmen. Eine Teilstichprobe bei einem tiefen RMSE-Grenzwert umfasste somit Vpn, welche Modell-konforme Daten aufwiesen, während eine Teilstichprobe bei einem hohen RMSE-Grenzwert auch Vpn beinhaltete, deren Werte stärker vom exponentiellen Modell abwichen.

Die Analyse hat ergeben, dass die Asymptote und die Steigung ab einem RMSE-Grenzwert von 1.4 ms stark negativ miteinander zusammenhingen (r = -.57 bis -.98, alle ps < .05). Eine visuelle Inspektion des Verlaufs deutete darauf hin, dass der RMSE-Grenzwert einen negativen Einfluss auf die Höhe des Zusammenhangs ausübte (siehe Abbildung 9a).

Die Steigung korrelierte über den ganzen RMSE-Grenzwertbereich stark

2. Fragestellung 57

a. Zusammenhang (r) zwischen der Asymptote und der Steigung.

b. Zusammenhang (r) zwischen der Steigung und dem Suppression-Index.

Abbildung 9. Einfluss des RMSE-Grenzwerts auf (a) den Zusammenhang zwischen den aus der Spatial-Suppression-Aufgabe mit einer exponentiellen Regression abgeleiteten Aufgabenparametern Asymptote und Steigung respektive auf (b) den Zusammenhang zwischen der Steigung und dem Suppression-Index. Die durchgezogene Linie kennzeichnet den Verlauf des Zusammenhangs. Der graue Bereich beschreibt das 95 %-Konfidenzintervall.

positiv mit dem Suppression-Index (r = .96 bis .99, alle ps < .001; siehe Abbildung 9b). Die tiefste Schätzung (r = .96, p < .001) unterschied sich dabei signifikant (z = 7.85, p < .001) von dem von Melnick et al. (2013) berichteten Zusammenhang (r > .996).

Der Zusammenhang zwischen der Asymptote und dem z-Wert des BISTests fiel in Abhängigkeit des RMSE-Grenzwerts weniger eindeutig aus (siehe Abbildung 10a). Während der Zusammenhang über einen grossen Teil des tieferen RMSE-Grenzwertbereichs nicht signifikant war, unterschritt die Korrelation zwischen 8.6 und 9.5 ms (r = -.17, p = .049), zwischen 26.1 und 35.7 ms (r = -.15 bis -.16, alle ps < .048) und ab 36.5 ms (r = -.16 bis -.18, alle ps < .03) die Signifikanzgrenze. In den erwähnten Bereichen war eine tiefe Asymptote somit tendenziell mit einem hohen z-Wert verbunden. Eine visuelle Inspektion des Verlaufs liess keine Aussage darüber zu, ob der RMSE-Grenzwert einen positiven oder negativen Einfluss auf die Höhe des Zusammenhangs ausübte.

Die Steigung und der z-Wert des BIS-Tests korrelierten unabhängig vom RMSE-Grenzwert nicht signifikant miteinander (r=-.16 bis .62, alle ps > .08; siehe Abbildung 10b). Um für den Vergleich zwischen dem von Melnick et al. (2013) berichteten Zusammenhang zwischen ihrer Steigung (Studie 1: b=0.116 und Studie 2: b=0.139) und IQ-Punkten und dem in der vorliegenden Arbeit ermittelten Zusammenhang zwischen der Steigung (b=0.103) und dem z-Wert die bestmögliche Teststärke zu erhalten, wurde die Gesamtstichprobe (RMSE-Grenzwert = 65.47 ms) verwendet. Die Analyse hat ergeben, dass sich der in der vorliegenden Arbeit ermittelte Zusammenhang (r=.00, p=.97) signifikant von dem von Melnick et al. berichteten Zusammenhang (r=.68) unterschied (z=5.61, p<.001).

Betrachtet man die mit der Gesamtstichprobe erhaltenen Ergebnisse, kann abschliessend zur Beantwortung der zweiten Fragestellung Folgendes festgehalten werden: Die Asymptote, der erste aus der Spatial-Suppression-Aufgabe abgeleitete Aufgabenparameter, korrelierte in der vorliegenden Arbeit schwach negativ mit dem z-Wert des BIS-Tests (r=-.16, p=.03). Die Steigung, der zweite abgeleitete Aufgabenparameter, hing nicht signifikant mit dem z-Wert zusammen (r=.00, p=.97) und bestätigte damit den von Melnick et al. (2013) berichteten Zusammenhang nicht.

2. Fragestellung 59

a. Zusammenhang (r) zwischen der Asymptote und dem z-Wert des BIS-Tests.

b. Zusammenhang (r)zwischen der Steigung und dem z-Wert des BIS-Tests.

Abbildung 10. Einfluss des RMSE-Grenzwerts auf die Zusammenhänge der aus der Spatial-Suppression-Aufgabe mit einer exponentiellen Regression abgeleiteten Aufgabenparameter (a) Asymptote und (b)Steigung mit dem z-Wert des BIS-Tests. Die durchgezogene Linie kennzeichnet den Verlauf des Zusammenhangs. Der graue Bereich beschreibt das 95 %-Konfidenzintervall.

3.4 3. Fragestellung

Mit der dritten Fragestellung sollte der Zusammenhang zwischen der Spatial-Suppression-Aufgabe und psychometrischer Intelligenz auf latenter Ebene untersucht werden. Alle konfirmatorischen Faktorenanalysen wurden mit der Satorra-Bentler Maximum-Likelihood Schätzmethode (Satorra & Bentler, 1994) berechnet, weil diese bei nicht-normalverteilten, intervallskalierten Daten empfohlen wird (z.B. Curran, West & Finch, 1996; Finney & DiStefano, 2006). Um die aus den Aufgaben extrahierten Faktoren auf latenter Ebene miteinander in Verbindung zu bringen, wurde als Erstes für jede Aufgabe ein kongenerisches Messmodell (Jöreskog, 1971) gerechnet. Diese dem Strukturgleichungsmodell vorausgehende Prüfung der Modellannahmen erlaubte es, allfällige Fehlspezifikationen bereits auf Aufgabenebene zu erkennen.

Das kongenerische Messmodell der Spatial-Suppression-Aufgabe (Modell 1; siehe Abbildung 11) bildete die empirischen Varianzen und Kovarianzen unzureichend ab. Der χ^2 -Test zeigte eine überzufällig hohe Abweichung zwischen der theoretischen und der empirischen Varianz-Kovarianzmatrix an und der CFI und der RMSEA lagen weit ausserhalb des akzeptablen Bereichs, $\chi^2(2) = 103.13$, p < .001, CFI = .78, RMSEA = .53, SRMR = .06.

Um den g-Faktor aus dem BIS-Test zu bilden, wurden die gemittelten z-Werte der Operationen K, B und M als Indikatoren verwendet (für ein gleiches Vorgehen siehe Pahud, 2017; Stauffer, Troche, Schweizer & Rammsayer, 2014). Weil dieses kongenerische Messmodell mit drei Indikatoren genau identifiziert war, konnte es nicht getestet werden (Kline, 2011, S. 125).

Trotz des schlechten kongenerischen Modell-Fits der Spatial-Suppression-Aufgabe wurden die beiden Messmodelle in einem Strukturgleichungsmodell miteinander in Verbindung gebracht. Das theoretische Modell (Modell 2; siehe Abbildung 12) bildete die empirischen Daten erneut schlecht ab. Der χ^2 -Test zeigte eine überzufällig hohe Abweichung zwischen der theoretischen und der empirischen Varianz-Kovarianzmatrix an und der CFI und der RMSEA lagen nicht im akzeptablen Bereich, $\chi^2(13) = 123.88$, p < .001, CFI = .85, RMSEA = .22, SRMR = .06. Der standardisierte Regressionskoeffizient zwischen der aus den vier Bedingungen der Spatial-Suppression-Aufgabe extrahierten latenten Variable und dem q-Faktor aus dem BIS-Test

Abbildung 11. Modell 1: Kongenerisches Messmodell der Spatial-Suppression-Aufgabe (S). Eingezeichnet sind die standardisierten Koeffizienten.

¹Um die Identifizierung der Varianz der latenten Variable zu ermöglichen, wurde diese unstandardisierte Faktorladung auf 1 fixiert.

$$^{***}p$$
 < .001.

Abbildung 12. Modell 2: Latenter Zusammenhang zwischen der Spatial-Suppression-Aufgabe (S) und dem g-Faktor des BIS-Tests. Eingezeichnet sind die standardisierten Koeffizienten. K = Kapazität; B = Bearbeitungsgeschwindigkeit; M = Merkfähigkeit.

¹Um die Identifizierung der Varianz der latenten Variable zu ermöglichen, wurde diese unstandardisierte Faktorladung auf 1 fixiert.

62 RESULTATE

betrug $\beta=-.23$ (p=.01). Die aus der Spatial-Suppression-Aufgabe extrahierte latente Variable erklärte damit 5 % der Varianz im q-Faktor.

Abschliessend zur dritten Fragestellung kann festgehalten werden, dass sich zwischen der Spatial-Suppression-Aufgabe und psychometrischer Intelligenz auf latenter Ebene ein schwacher bis mittlerer negativer Zusammenhang zeigte. Tiefe Faktorwerte auf der aus den vier Bedingungen der Spatial-Suppression-Aufgabe extrahierten latenten Variable waren somit tendenziell mit hohen Faktorwerten im g-Faktor verbunden. Dieser Zusammenhang muss jedoch aufgrund des schlechten theoretischen Modells mit Vorsicht interpretiert werden.

3.5 4. Fragestellung

Mit der vierten Fragestellung sollte versucht werden, die Spatial-Suppression-Aufgabe mit einem Fixed-Links-Modell zu beschreiben und die zwei aus der Aufgabe abgeleiteten latenten Variablen mit dem g-Faktor des BIS-Tests in Verbindung zu bringen.

3.5.1 Fixed-Links-Messmodell

Weil die Spatial-Suppression-Aufgabe noch nie mit einem Fixed-Links-Modell beschrieben wurde, sind unterschiedliche Modelle getestet und miteinander verglichen worden. Bei allen berechneten Modellen wurden zwei voneinander unabhängige latente Variablen angenommen:

Die erste latente Variable beinhaltete aufgabenrelevante Prozesse, deren Einflüsse sich über die vier Bedingungen hinweg nicht verändert haben. In den Messmodellen wurde dieser gleichbleibende Einfluss hergestellt, indem die unstandardisierten Faktorladungen aller manifesten Variablen auf den Wert 1 fixiert wurden. Diese latente Variable wird im Folgenden konstante latente Variable genannt.

Die zweite latente Variable beinhaltete aufgabenrelevante Prozesse, die durch die vier Bedingungen systematisch manipuliert wurden. Der unterschiedlich starke Einfluss der in der latenten Variable abgebildeten Prozesse auf die 82 %- \log_{10} -Erkennungsschwellen der Spatial-Suppression-Aufgabe wurde in den Messmodellen durch sich unterscheidende unstandardisierte

Faktorladungen hergestellt. Diese latente Variable wird im Folgenden dynamische latente Variable genannt.

Die konstante latente Variable wurde in allen Messmodellen unabhängig von der dynamischen latenten Variable gehalten. Diese Unabhängigkeit der beiden extrahierten Variablen ist im Rahmen der Anwendung von Fixed-Links-Modellen üblich (z.B. Schweizer, 2007; Wagner, Rammsayer, Schweizer & Troche, 2014; Wang, Ren & Schweizer, 2015), weil sich dadurch die Interpretation der latenten Variablen vereinfacht. Alle Modell-Fits der in den folgenden Paragraphen berichteten Fixed-Links-Modelle sind in Tabelle 10 aufgeführt.

Das erste berechnete Fixed-Links-Modell (Modell 3) berücksichtigte das Ergebnis der exponentiellen Regression (siehe Abschnitt 3.3), welches auf manifester Ebene eine Steigung von $e^{0.103x}$ ergeben hat. Die unstandardisierten Faktorladungen der dynamischen latenten Variable wurden deshalb mit diesem Parameter ($y = e^{0.103x}$, $x \in \{1, 2, 3, 4\}$) gebildet. Modell 3 bildete die empirischen Varianzen und Kovarianzen der Spatial-Suppression-Aufgabe nicht gut ab. Der χ^2 -Test war hochsignifikant und der CFI, der RMSEA und das SRMR lagen nicht im akzeptablen Bereich.

Modell 4 beachtete die Tatsache, dass die den Vpn vorgelegten Mustergrössen (1.8°, 3.6°, 5.4°, 7.2°) ein Vielfaches von 1.8 waren. Die unstandardisierten Faktorladungen der dynamischen latenten Variable in Modell 4 wurden deshalb linear ansteigend ($y=x, x \in \{1,2,3,4\}$) fixiert. Modell 4 bildete die empirischen Varianzen und Kovarianzen der Spatial-Suppression-Aufgabe ebenfalls nicht gut ab. Der χ^2 -Wert reduzierte sich im Vergleich zu Modell 3 zwar beträchtlich, war aber immer noch hochsignifikant. Die schlechte Passung des Modells wurde weiter durch einen hohen RMSEA und ein hohes SRMR angezeigt.

Nach diesen zwei Modellen, welche klare Annahmen über den Verlauf der Faktorladungen der dynamischen latenten Variable beinhalteten, wurden Verläufe von Faktorladungen gesucht, welche die empirischen Daten bestmöglich beschreiben. Die unstandardisierten Faktorladungen der dynamischen latenten Variable von Modell 5 wurden mit einer exponentiellen Funktion $(y = 2^x, x \in \{1, 2, 3, 4\})$ bestimmt. Dieses Modell konnte nicht interpretiert werden, weil die Fehlervarianz der 7.2°-Bedingung negativ ge-

64 RESULTATE

Tabelle 10

Modell-Fits der berichteten Fixed-Links-Modelle der Spatial-Suppression-Aufgabe

Modell	Ladungsverlauf	χ^2	df	p	CFI	RMSEA	SRMR
3	$y = e^{0.103x}$	68.43	4	<.001	.861	.302	.084
4	y = x	22.67	4	<.001	.960	.162	.317
5*	$y = 2^x$	16.70	4	.001	.973	.134	.182
6	$y = \log_e x$	14.13	4	.007	.978	.120	.215
7	$y = x^2$	9.20	4	.056	.989	.086	.127
8	y = x	6.09	4	.193	.995	.054	.123

Anmerkungen. Der Ladungsverlauf bezieht sich auf die unstandardisierten Faktorladungen der dynamischen latenten Variable. Die unstandardisierten Faktorladungen der konstanten latenten Variable betrugen immer 1. Es gilt für alle Funktionen $x \in \{1,2,3,4\}$ (ausgenommen Modell 8, in welchem $x \in \{0,1,2,3\}$). $\chi^2 = \text{Satorra-Bentler (1994) korrigierter } \chi^2\text{-Wert}; df = \text{Freiheitsgrade}; \text{CFI} = \text{Comparative-Fit-Index}; \text{RMSEA} = \text{Root-Mean-Square-Residual}.$

*Das Modell konnte nicht interpretiert werden, weil die Fehlervarianz der 7.2° -Bedingung negativ geschätzt wurde.

schätzt wurde.

In Modell 6 wiesen die unstandardisierten Faktorladungen der dynamischen latenten Variable einen logarithmischen Verlauf ($y = \log_e x, x \in \{1,2,3,4\}$) auf. Das Modell bildete die empirischen Varianzen und Kovarianzen der Spatial-Suppression-Aufgabe nicht adäquat ab. Zwar reduzierte sich der χ^2 -Wert im Vergleich zu Modell 4 erneut, der χ^2 -Test war aber immer noch signifikant. Weiter deuteten der RMSEA und das SRMR mit Werten ausserhalb des akzeptablen Bereichs auf eine schlechte Modellpassung hin.

Die unstandardisierten Faktorladungen der dynamischen latenten Variable von Modell 7 wurden mit einer quadratischen Funktion $(y=x^2, x \in \{1,2,3,4\})$ bestimmt. Der χ^2 -Test erkannte keine signifikante Abweichung zwischen der von Modell 7 implizierten und der empirischen Varianz-Kovarianzmatrix. Obwohl der CFI im akzeptablen Bereich lag, deuteten der RMSEA und das SRMR auf eine schlechte Passung des Modells hin.

In Modell 8 (siehe Abbildung 13) wurden die unstandardisierten Faktorladungen der dynamischen latenten Variable erneut linear ansteigend fixiert. Im Gegensatz zu Modell 4 wurde die Faktorladung der ersten Bedingung aber auf 0 gesetzt ($y=x,\,x\in\{0,1,2,3\}$). Verglichen mit den Modellen 3 bis 7 wich die von Modell 8 implizierte Varianz-Kovarianzmatrix am wenigsten von der empirische Varianz-Kovarianzmatrix ab. Der χ^2 -Test war nicht signifikant und der CFI und RMSEA deuteten auf eine gute Modellpassung hin. Das SRMR lag nicht unter dem von Hu und Bentler (1999) vorgegebenen Wert von \leq .08, fiel aber deshalb nicht tiefer aus, weil die beiden latenten Variablen unabhängig voneinander gehalten wurden⁴. Die Varianz der konstanten latenten Variable betrug 0.018 (z = 8.45, p < .001) und die Varianz der dynamischen latenten Variable betrug 0.002 (z = 5.53, p < .001). Der relative Anteil dieser beiden Varianzen an der in den manifesten Variablen erklärten Varianz liess sich aufgrund der in konfirmatorischen Faktorenanalysen gegebenen multiplikativen Verknüpfung von Faktorladungen und Varianzen nicht direkt ermitteln. Um die Varianzen miteinander vergleichen zu können, wurde der Einfluss der Faktorladungen auf die Varianzen deshalb mit der Methode von Schweizer (2011) kontrolliert. Die Skalierung der Varianzen hat ergeben, dass die konstante latente Variable 72 % und die dynamische latente Variable 28 % der in den manifesten Variablen gemeinsamen Varianz band.

Im Vergleich zum kongenerischen Messmodell (Modell 1) vermochte das Fixed-Links-Messmodell (Modell 8) die empirischen Daten deutlich besser abzubilden. Die bessere Passung von Modell 8 äusserte sich im Vergleich zu Modell 1 in einem nicht-signifikanten χ^2 -Wert, im akzeptablen CFI und RMSEA sowie in zwei zusätzlichen Freiheitsgraden. Modell 8 war Modell 1 somit aufgrund adäquaterer Abbildung der empirischen Daten und höherer Sparsamkeit vorzuziehen.

Diese Erklärung wurde durch die Tatsache gestützt, dass das SRMR deutlich tiefer ausfiel, wenn die Unabhängigkeit zwischen der konstanten latenten Variable und der dynamischen latenten Variable aufgehoben wurde, $\chi^2(3) = 1.98$, p = .58, CFI > .999, RMSEA = .036, SRMR = .023. Die beiden latenten Variablen korrelierten in diesem Fall mit r = -.22 (p = .02). Das SRMR wurde bei der Beurteilung der folgenden Modelle deshalb nicht mehr berücksichtigt.

66 Resultate

Abbildung 13. Modell 8: Fixed-Links-Messmodell der Spatial-Suppression-Aufgabe (S). Eingezeichnet sind die standardisierten Koeffizienten. Hochgestellt sind die fixierten unstandardisierten Faktorladungen. $_{\mathsf{kon}} = \mathsf{konstante}$ latente Variable; $_{\mathsf{dyn}} = \mathsf{dynamische}$ latente Variable.

3.5.2 Fixed-Links-Strukturgleichungsmodell

Als Nächstes wurde Modell 8 mit dem g-Faktor aus dem BIS-Test in Verbindung gebracht (Modell 9; siehe Abbildung 14). Das Modell bildete die empirischen Varianzen und Kovarianzen gut ab. Der χ^2 -Test war nicht signifikant und der CFI und RMSEA lagen im akzeptablen Bereich, $\chi^2(14)=19.06$, p=.16, CFI = .99, RMSEA = .05, SRMR = .09. Der standardisierte Regressionskoeffizient zwischen der konstanten latenten Variable und dem g-Faktor betrug $\beta=-.25$ (p=.02). Der standardisierte Regressionskoeffizient zwischen der dynamischen latenten Variable und dem g-Faktor betrug $\beta=-.08$ (p=.43). Gemeinsam erklärten die konstante und die dynamische latente Variable der Spatial-Suppression-Aufgabe 7% der Varianz im g-Faktor.

Im Vergleich zum herkömmlichen Strukturgleichungsmodell (Modell 2) bildete das Fixed-Links-Strukturgleichungsmodell (Modell 9) die empirischen Daten deutlich besser ab. Die bessere Passung von Modell 9 äusserte sich im Vergleich zu Modell 2 in einem nicht-signifikanten χ^2 -Wert, im akzeptablen CFI und RMSEA sowie in einem zusätzlichen Freiheitsgrad. Bezüglich der Varianzaufklärung im g-Faktor waren sich Modell 2 (5 %) und Modell 9 (7 %)

Abbildung 14. Modell 9: Latenter Zusammenhang zwischen dem Fixed-Links-Messmodell (Modell 8) der Spatial-Suppression-Aufgabe (S) und dem g-Faktor aus dem BIS-Test. Eingezeichnet sind die standardisierten Koeffizienten. Hochgestellt sind die fixierten unstandardisierten Faktorladungen. $_{\mathsf{kon}} = \mathsf{kon}$ -stante latente Variable; $_{\mathsf{dyn}} = \mathsf{dynamische}$ latente Variable. $\mathsf{K} = \mathsf{Kapazit\"{at}};$ $\mathsf{B} = \mathsf{Bearbeitungsgeschwindigkeit};$ $\mathsf{M} = \mathsf{Merkf\"{a}higkeit}.$ $^*p < .05.$ $^{***}p < .001.$

vergleichsweise ähnlich. Modell 9 war Modell 2 folglich aufgrund adäquaterer Abbildung der empirischen Daten und höherer Sparsamkeit vorzuziehen.

Abschliessend zur vierten Fragestellung kann Folgendes festgehalten werden: Auf Messmodellebene vermochte das Fixed-Links-Modell (Modell 8) die empirischen Daten der Spatial-Suppression-Aufgabe besser zu beschreiben als das kongenerische Messmodell (Modell 1). Auch im Zusammenhang mit dem g-Faktor war die Beschreibung der empirischen Daten mittels Fixed-Links-Strukturgleichungsmodell (Modell 9) dem herkömmlichen Strukturgleichungsmodell (Modell 9) dem herkömmlichen Strukturgleichungsmodell (Modell 2) deutlich überlegen. In Modell 9 zeigte sich zwischen der konstanten latenten Variable der Spatial-Suppression-Aufgabe und dem g-Faktor ein schwacher bis mittlerer negativer Zusammenhang. Tiefe Faktorwerte auf der konstanten latenten Variable waren demnach tendenziell mit hohen Faktorwerten im g-Faktor verbunden. Zwischen der dynamischen latenten Variable der Spatial-Suppression-Aufgabe und dem g-Faktor bestand ein so schwacher Zusammenhang, dass er bei der gewählten Irrtumswahrscheinlichkeit von 5 % nicht von 0 unterschieden werden konnte.

68 Resultate

3.6 5. Fragestellung

Mit der fünften Fragestellung sollte die Frage geklärt werden, ob die Spatial-Suppression-Aufgabe zur Aufklärung individueller Intelligenzunterschiede neuartige Erklärungsmöglichkeiten bietet oder ob die Hick-Aufgabe den Zusammenhang zwischen der Spatial-Suppression-Aufgabe und psychometrischer Intelligenz vollständig zu erklären vermag. Geprüft wurde diese Frage auf manifester und latenter Ebene.

3.6.1 Analyse auf manifester Ebene

Die Vorhersage psychometrischer Intelligenz durch die Aufgabenbedingungen der Hick- und Spatial-Suppression-Aufgabe

Die korrelative Analyse der Aufgaben in Unterabschnitt 3.1.4 hat gezeigt, dass alle vier Bedingungen der Hick-Aufgabe und drei von vier Bedingungen der Spatial-Suppression-Aufgabe mit dem z-Wert des BIS-Tests zusammenhingen. Auch zwischen den Bedingungen der beiden Aufgaben bestanden signifikante Zusammenhänge. Um diese Abhängigkeiten bei der Vorhersage des z-Werts zu berücksichtigen, wurden die Bedingungen in Gruppen zusammengefasst und nacheinander blockweise in eine multiple Regressionsanalyse aufgenommen.

Ausgangslage für die Beantwortung der Fragestellung bildete Modell 10, in welchem der z-Wert des BIS-Tests mit den vier Bedingungen der Hick-Aufgabe vorhergesagt wurde (siehe Tabelle 11). Die Regressionsanalyse hat ergeben, dass die Prädiktoren gemeinsam mit 9% einen signifikanten Varianzanteil im z-Wert erklärten, F(4, 172) = 4.40, p = .002, $R^2 = .09$. Bei einer Kontrolle für die Zusammenhänge zwischen den Bedingungen sagte jedoch keiner der Prädiktoren den z-Wert signifikant vorher (alle ps > .22). Der Umstand, dass die einzelnen Prädiktoren nicht signifikante Regressionskoeffizienten aufwiesen, das gesamte Regressionsmodell hingegen einen signifikanten Varianzanteil im z-Wert erklärte, konnte durch die hohen Abhängigkeiten zwischen den Prädiktoren (Multikollinearität) erklärt werden (Eid, Gollwitzer & Schmitt, 2013, S. 686). Während Multikollinearität die Interpretation der einzelnen Regressionskoeffizienten erschwert, ist sie bei einterpretation erschwert.

Tabelle 11

Multiple Regression zur Vorhersage des z-Werts des BIS-Tests durch die Bedingungen der Hick-Aufgabe (Modell 10) respektive durch die Bedingungen der Hick- und der Spatial-Suppression-Aufgabe (Modell 11)

Prädiktor	: B	SE(B)	β	p	F	R^2	ΔF	ΔR^2
Modell 10					4.40**	.09		
0-bit	0.0008	0.0020	.04	.70				
1-bit	-0.0027	0.0022	16	.22				
2-bit	-0.0008	0.0014	08	.56				
2.58-bit	-0.0010	0.0010	12	.36				
Modell 11					2.71**	.11	1.02	.02
0-bit	0.0018	0.0021	.10	.40				
1-bit	-0.0031	0.0022	19	.16				
2-bit	-0.0009	0.0014	09	.51				
2.58-bit	-0.0008	0.0010	11	.41				
1.8°	-0.0536	0.5444	01	.92				
3.6°	-0.4192	0.7062	11	.55				
5.4°	-0.1077	0.7183	03	.88				
7.2°	0.0157	0.4532	.01	.97				

Anmerkungen. B= unstandardisiertes Regressionsgewicht; $\beta=$ standardisiertes Regressionsgewicht; F=F-Wert des Regressionsmodells; $R^2=$ erklärte Varianz; $\Delta F=F$ -Wert der Veränderung der erklärten Varianz; $\Delta R^2=$ zusätzlich erklärte Varianz. **p<.01 (zweiseitig).

ner reinen Prädiktion eines Kriteriums, wie sie hier vorlag, unproblematisch.

Modell 11 beinhaltete als Prädiktoren sowohl die Bedingungen der Hickals auch die der Spatial-Suppression-Aufgabe (siehe Tabelle 11). Zusammen sagten die Prädiktoren den z-Wert signifikant vorher und erklärten 11% der Varianz im z-Wert, F(8, 168) = 2.71, p = .008, $R^2 = .11$. Keiner der Prädiktoren sagte den z-Wert hingegen alleine signifikant vorher (alle ps > .16).

Um zu prüfen, ob die Bedingungen der Spatial-Suppression-Aufgabe gegenüber der Hick-Aufgabe einen inkrementellen Beitrag zur Varianzauf-

70 Resultate

klärung im z-Wert des BIS-Tests leisteten, wurde der Zuwachs an erklärter Varianz im z-Wert zwischen Modell 10 und Modell 11 auf Signifikanz getestet. Dabei hat sich ergeben, dass $\Delta R^2 = .02$ kein signifikanter Zuwachs an erklärter Varianz darstellte, F(4, 168) = 1.02, p = .40. Die Bedingungen der Spatial-Suppression-Aufgabe haben somit auf Ebene der Aufgabenbedingungen keinen inkrementellen Beitrag zur Aufklärung individueller Intelligenzunterschiede geleistet.

Die Vorhersage psychometrischer Intelligenz durch die Aufgabenparameter der Hick- und Spatial-Suppression-Aufgabe

Um den z-Wert des BIS-Tests mit den abgeleiteten Aufgabenparametern beider Aufgaben vorherzusagen, mussten die Aufgabenparameter der Hick-Aufgabe noch bestimmt werden (für die Bestimmung der Aufgabenparameter der Spatial-Suppression-Aufgabe siehe Abschnitt 3.3).

Dafür wurden die Reaktionszeiten der Hick-Aufgabe für jede Person mit einer linearen Regression der Form $y=a+b\log_2 n$ (Jensen, 1987, S. 105) vorhergesagt (siehe Abbildung 15). Deskriptive Angaben zu den daraus resultierenden Parametern, dem y-Achsenabschnitt a und der Steigung b, sind in Tabelle 12 zu finden. Als Mass für die Anpassungsgüte des Modells an die Daten wurde analog zum Vorgehen bei der Spatial-Suppression-Aufgabe für jede Person der RMSE berechnet. Dabei hat sich gezeigt, dass sich ein lineares Modell zur Beschreibung der Daten für einen grossen Teil der Vpn gut eignete (siehe Abbildung 16). Der Median betrug 12 ms und das

Tabelle 12 Deskriptive Angaben zur linearen Regression $(y = a + b \log_2 n)$ für die Vorhersage der Reaktionszeiten durch die Anzahl Antwortalternativen n der Hick-Aufgabe und Kennwerte zur Verteilungsform der Daten

Parameter	M	SD	Min	Max	Schiefe	Kurtosis	S-W p-Wert
a	232	28	168	347	1.18	2.95	<.001
b	76	22	33	142	0.53	-0.12	.003

 $\label{eq:anisotropy} Anmerkungen. \ a = \mbox{y-Achsenabschnitt (in ms);} \ b = \mbox{Steigung;} \ \mbox{Min} = \mbox{Minimum;} \\ \mbox{Max} = \mbox{Maximum;} \ \mbox{S-W} = \mbox{Shapiro-Wilk-Test.}$

Abbildung 15. Linearer Einfluss des Bits auf die Reaktionszeit in der Hick-Aufgabe. Eingezeichnet sind die Mittelwerte \pm Standardfehler der Mittelwerte. n = Anzahl Antwortalternativen. $y=232+76\log_2\,n$.

dritte Quartil lag bei 19 ms (Minimum = 0.96 ms, Maximum = 54.23 ms).

Wie bei der Spatial-Suppression-Aufgabe (siehe Abschnitt 3.3) wurde der Zusammenhang zwischen den Aufgabenparametern (y-Achsenabschnitt und Steigung) und dem z-Wert des BIS-Tests in Abhängigkeit des RMSE betrachtet. Die Analysen haben ergeben, dass der y-Achsenabschnitt und der z-Wert bei RMSE-Grenzwerten zwischen 9.6 und 10.4 ms (r=-.28 bis -.29, alle ps<.03), zwischen 11 und 15.7 ms (r=-.24 bis -.31, alle ps<.04), zwischen 17.2 und 22.2 ms (r=-.17 bis -.20, alle ps<.04) sowie ab 23.3 ms (r=-.15 bis -.17, alle ps<.049) signifikant negativ

72 RESULTATE

Abbildung 16. Dichtefunktion des Root-Mean-Square-Error (RMSE; in Millisekunden), der sich aus dem linearen Modell zur Beschreibung der Reaktionszeiten der Hick-Aufgabe ergeben hat. Alle Datenpunkte sind auf der x-Achse mit vertikalen Strichen markiert.

Caption der Abbildung inhaltlich korrekt? miteinander korrelierten (siehe Abbildung 17a). In den erwähnten Bereichen war ein tiefer y-Achsenabschnitt folglich tendenziell mit einem hohen z-Wert verbunden. Eine visuelle Inspektion des Verlaufs liess keine Aussage darüber zu, ob der RMSE-Grenzwert einen positiven oder negativen Einfluss auf die Höhe des Zusammenhangs ausübte.

Die Steigung und der z-Wert des BIS-Tests korrelierten bei RMSE-Grenzwerten zwischen 8.9 und 10.7 ms (r=-.24 bis -.37, alle ps<.048) und ab 15.7 ms (r=-.19 bis -.28, alle ps<.046) signifikant negativ miteinander (siehe Abbildung 17b). In diesen Bereichen waren geringe Steigungen folglich tendenziell mit hohen z-Werten verbunden. Wie beim Zusammenhang zwischen dem y-Achsenabschnitt und dem z-Wert konnte eine visuelle Inspektion des Verlaufs keine klaren Hinweise dafür liefern, ob der RMSE-Grenzwert einen positiven oder negativen Einfluss auf die Höhe des Zusammenhangs zwischen der Steigung und dem z-Wert ausübte. Betrachtet man die mit der Gesamtstichprobe ermittelten Ergebnisse, kann festgehalten werden, dass sowohl der y-Achsenabschnitt (r=-.17, p=.02) als auch die Steigung (r=-.23, p=.002) der Hick-Aufgabe schwach negativ mit dem z-Wert des BIS-Tests korrelierten.

Nachdem die Aufgabenparameter der Hick-Aufgabe bestimmt waren, konnte der z-Wert des BIS-Tests mit den Aufgabenparameter der Hick- und

a. Zusammenhang (r) zwischen dem y-Achsenabschnitt und dem z-Wert des BIS-Tests.

b. Zusammenhang (r)zwischen der Steigung und dem z-Wert des BIS-Tests.

Abbildung 17. Einfluss des RMSE-Grenzwerts auf die Zusammenhänge der aus der Hick-Aufgabe mit einer linearen Regression abgeleiteten Aufgabenparameter (a) y-Achsenabschnitt und (b) Steigung mit dem z-Wert des BISTests. Die durchgezogene Linie kennzeichnet den Verlauf des Zusammenhangs. Der graue Bereich beschreibt das 95 %-Konfidenzintervall.

74 RESULTATE

der Spatial-Suppression-Aufgabe vorhergesagt werden. Für diese multiple Regressionsanalyse wurde die Gesamtstichprobe verwendet, weil die Analysen zum Einfluss des *RMSE*-Grenzwerts auf die Zusammenhänge der Aufgabenparameter mit dem z-Wert kein eindeutiges Ergebnis lieferten (siehe Abbildung 10 und Abbildung 17). Um die Abhängigkeiten der Aufgabenparameter innerhalb und zwischen den beiden Aufgaben (siehe Tabelle 13) bei der Vorhersage des z-Werts zu berücksichtigen, wurden die Aufgabenparameter in Gruppen zusammengefasst und nacheinander blockweise in die multiple Regressionsanalyse aufgenommen.

Grundlage für die Beantwortung der Fragestellung bildete Modell 12, in welchem der z-Wert des BIS-Tests mit den Aufgabenparametern der Hick-Aufgabe vorhergesagt wurde (siehe Tabelle 14). Die Regressionsanalyse hat ergeben, dass die Prädiktoren gemeinsam mit 9% einen signifikanten Varianzanteil im z-Wert erklärten, F(2, 174) = 8.52, p < .001, $R^2 = .09$. Bei einer Kontrolle für den Zusammenhang zwischen den Aufgabenparametern hat sich ergeben, dass sowohl der y-Achsenabschnitt ($\beta = -.19$, p = .009) als auch die Steigung ($\beta = -.24$, p < .001) den z-Wert signifikant vorhersagten. Tiefe y-Achsenabschnitte und geringe Steigungen gingen somit tendenziell mit hohen z-Werten einher.

Model 13 beinhaltete als Prädiktoren die Aufgabenparameter der Hick-

Tabelle 13

Produkt-Moment-Korrelationen zwischen den aus der Spatial-Suppressionund der Hick-Aufgabe regressionsanalytisch abgeleiteten Aufgabenparametern
und dem z-Wert des BIS-Tests

		Hick-Aufgabe		Spatial-Suppres	Spatial-Suppression-Aufgabe		
	Parameter	1	2	3	4	5	
1	y-Achsenabschnitt						
2	Steigung	08					
3	Asymptote	.16*	.03				
4	Steigung	02	03	57***			
5	z-Wert	17*	23**	16*	.00		

 $\label{eq:annerholder} \textit{Anmerkung.} \ \textit{z-} \text{Wert} = \text{Mittelwert aller 18} \ \textit{z-} \text{standardisierten Subtests}.$

p < .05. **p < .01. ***p < .001 (zweiseitig).

und der Spatial-Suppression-Aufgabe (siehe Tabelle 14). Die Regressions-analyse hat ergeben, dass die Prädiktoren gemeinsam mit 12% einen signifikanten Varianzanteil im z-Wert vorhersagten, F(4, 172) = 5.58, p < .001, $R^2 = .12$. Bei einer Kontrolle für die Zusammenhänge zwischen den Aufgabenparametern hat sich gezeigt, dass der y-Achsenabschnitt der Hick-Aufgabe ($\beta = -.16$, p = .03), die Steigung der Hick-Aufgabe ($\beta = -.24$, p = .001) und die Asymptote der Spatial-Suppression-Aufgabe ($\beta = -.20$, p = .03) den z-Wert signifikant vorhersagten. Die Steigung der Spatial-Suppression-Aufgabe war mit $\beta = -.12$ (p = .17) kein signifikanter Prädiktor des z-Werts.

Um zu prüfen, ob die Aufgabenparameter der Spatial-Suppression-Aufgabe gegenüber denjenigen der Hick-Aufgabe einen inkrementellen Beitrag zur Varianzaufklärung im z-Wert des BIS-Tests leisteten, wurde der Zuwachs an erklärter Varianz im z-Wert zwischen Modell 12 und Modell 13 auf Signifikanz getestet. Dabei hat sich ergeben, dass $\Delta R^2 = .03$ kein signifikanter Zuwachs an erklärter Varianz darstellte, F(2, 172) = 2.49, p = .09. Die

Tabelle 14

Multiple Regressionen zur Vorhersage des z-Werts des BIS-Tests durch die Aufgabenparameter der Hick-Aufgabe (Modell 12) respektive durch die Aufgabenparameter der Hick- und der Spatial-Suppression-Aufgabe (Modell 13)

Prädiktor	B	SE(B)	β	p	F	R^2	ΔF	ΔR^2
Modell 12					8.52***	.09		
H-y-Achsenabschnitt	t - 0.0037	0.0014	19	.009				
H-Steigung	-0.0058	0.0017	24	<.001				
Modell 13					5.58***	.12	2.49	.03
H-y-Achsenabschnit	t - 0.0031	0.0014	16	.03				
H-Steigung	-0.0057	0.0017	24	.001				
S-Asymptote	-0.0037	0.0017	20	.03				
S-Steigung	-0.7887	0.5695	12	.17				

Anmerkungen. B= unstandardisiertes Regressionsgewicht; $\beta=$ standardisiertes Regressionsgewicht; F=F-Wert des Regressionsmodells; $R^2=$ erklärte Varianz; $\Delta F=F$ -Wert der Veränderung der erklärten Varianz; $\Delta R^2=$ zusätzlich erklärte Varianz; H= Hick-Aufgabe; S= Spatial-Suppression-Aufgabe.

***p<.001 (zweiseitig).

76 Resultate

Asymptote und die Steigung der Spatial-Suppression-Aufgabe haben folglich auf Ebene der Aufgabenparameter keinen inkrementellen Beitrag zur Aufklärung individueller Intelligenzunterschiede geleistet.

3.6.2 Analyse auf latenter Ebene

Mess- und Strukturgleichungsmodelle

Bevor die Hick-Aufgabe mit der Spatial-Suppression-Aufgabe und dem g-Faktor in Verbindung gesetzt werden konnte, musste für die Hick-Aufgabe das kongenerische Messmodell bestimmt werden. Das Modell (Modell 14; siehe Abbildung 18) bildete die empirischen Varianzen und Kovarianzen der Hick-Aufgabe schlecht ab. Der χ^2 -Test zeigte eine überzufällig hohe Abweichung zwischen der theoretischen und der empirischen Varianz-Kovarianzmatrix an und der CFI und der RMSEA lagen weit ausserhalb des akzeptablen Bereichs, $\chi^2(2) = 42.58$, p < .001, CFI = .87, RMSEA = .33, SRMR = .06.

Abbildung 18. Modell 14: Kongenerisches Messmodell der Hick-Aufgabe (H). Eingezeichnet sind die standardisierten Koeffizienten.

¹Um die Identifizierung der Varianz der latenten Variable zu ermöglichen, wurde diese unstandardisierte Faktorladung auf 1 fixiert.

$$***p < .001.$$

Trotz des schlechten kongenerischen Modell-Fits der Hick-Aufgabe wurde Modell 14 in einem Strukturgleichungsmodell mit dem kongenerischen Messmodell der Spatial-Suppression-Aufgabe (Modell 1; siehe Abbildung 11)

und dem g-Faktor des BIS-Tests in Verbindung gebracht. Das theoretische Modell (Modell 15; siehe Abbildung 19) bildete die empirischen Daten ebenfalls schlecht ab. Der χ^2 -Test zeigte eine überzufällig hohe Abweichung zwischen der theoretischen und der empirischen Varianz-Kovarianzmatrix an

Abbildung 19. Modell 15: Latenter Zusammenhang zwischen der Spatial-Suppression-Aufgabe (S), der Hick-Aufgabe (H) und dem g-Faktor des BIS-Tests. K = Kapazität; B = Bearbeitungsgeschwindigkeit; M = Merkfähigkeit. $^1\mathrm{Um}$ die Identifizierung der Varianz der latenten Variable zu ermöglichen, wurde diese unstandardisierte Faktorladung auf 1 fixiert. $^*p~<~.05.~^{***}p~<~.001.$

78 RESULTATE

und der CFI und der RMSEA lagen nicht im akzeptablen Bereich, $\chi^2(41) = 205.68, \ p < .001, \ \text{CFI} = .86, \ \text{RMSEA} = .15, \ \text{SRMR} = .06.$ Der standardisierte Regressionskoeffizient zwischen der aus den vier Bedingungen der Spatial-Suppression-Aufgabe extrahierten latenten Variable und dem g-Faktor betrug $\beta = -.19$ (p = .03). Der standardisierte Regressionskoeffizient zwischen der aus den vier Bedingungen der Hick-Aufgabe extrahierten latenten Variable und dem g-Faktor betrug $\beta = -.33$ (p < .001). Der Korrelationskoeffizient zwischen den aus den vier Bedingungen der Spatial-Suppression- und der Hick-Aufgabe extrahierten latenten Variablen betrug r = .14 (p = .16). Gemeinsam erklärten diese beiden latenten Variablen 16% der Varianz im g-Faktor.

Fixed-Links-Mess- und Strukturgleichungsmodelle

Für die Analyse der Zusammenhänge auf latenter Ebene mittels Fixed-Links-Modellen musste für die Hick-Aufgabe zuerst ein Fixed-Links-Mess-modell gefunden werden. Das Vorgehen zur Bestimmung des Fixed-Links-Messmodells war dabei identisch mit dem Vorgehen zur Bestimmung des Fixed-Links-Messmodells für die Spatial-Suppression-Aufgabe (siehe Unterabschnitt 3.5.1). Alle Modell-Fits der in den folgenden Paragraphen berichteten Fixed-Links-Modelle sind in Tabelle 15 aufgeführt.

Das erste berechnete Fixed-Links-Modell (Modell 16) berücksichtige die von Blank (1934; zitiert nach Hick, 1952, S. 11) formulierte logarithmische Beziehung zwischen der Anzahl Antwortalternativen und der Reaktionszeit. Die unstandardisierten Faktorladungen der dynamischen latenten Variable wurden deshalb mit einer logarithmischen Funktion ($y = \log_e x, x \in \{1, 2, 3, 4\}$) bestimmt. Dieses Modell konnte nicht interpretiert werden, weil die Fehlervarianz der 0-bit-Bedingung negativ geschätzt wurde.

Schweizer (2006b) hat in seiner Untersuchung für die dynamische latente Variable der Hick-Aufgabe einen linearen Verlauf eingesetzt. Die unstandardisierten Faktorladungen der dynamischen latenten Variable in Modell 17 wurden deshalb linear ansteigend $(y = x, x \in \{1, 2, 3, 4\})$ fixiert. Das Modell bildete die empirischen Varianzen und Kovarianzen der Hick-Aufgabe nicht gut ab. Der χ^2 -Wert war hochsignifikant und der CFI, der RMSEA und das

Tabelle 15
Modell-Fits der Fixed-Links-Messmodelle der Hick-Aufgabe

Modell	Ladungsverlauf	χ^2	df	p	CFI	RMSEA	SRMR
16*	$y = \log_e x$	57.55	4	<.001	.825	.275	.197
17	y = x	37.60	4	<.001	.890	.218	.169
18	$y = \log_2 x$	32.20	4	<.001	.908	.200	.136
19	$y = 2^x$	13.33	4	.010	.970	.115	.072
20	$y = x^2$	11.37	4	.023	.976	.102	.070
21	y = x	8.76	4	.067	.984	.082	.089
22	$y = \frac{1}{1 + e^{(-x/.8)}}$	4.50	4	.342	.998	.027	.076

Anmerkungen. Der Ladungsverlauf bezieht sich auf die unstandardisierten Faktorladungen der dynamischen latenten Variable. Die unstandardisierten Faktorladungen der konstanten latenten Variable betrugen immer 1. Für Modelle 16, 17, 19 und 20 gilt $x \in \{1,2,3,4\}$. Für Modelle 18 und 21 gilt $x \in \{1,2,4,6\}$ und für Modelle 21 gilt $x \in \{-3,-1,1,3\}$. $\chi^2 = \text{Satorra-Bentler}$ (1994) korrigierter χ^2 -Wert; df = Freiheitsgrade; CFI = Comparative-Fit-Index; RMSEA = Root-Mean-Square-Error-of-Approximation; SRMR = Standardized-Root-Mean-Square-Residual.

SRMR lagen ausserhalb des akzeptablen Bereichs.

In Modell 18 wiesen die unstandardisierten Faktorladungen der dynamischen latenten Variable einen Verlauf entsprechend den verwendeten Bit-Bedingungen auf ($y = \log_2 x, x \in \{1, 2, 4, 6\}$). Das Modell bildete die empirischen Varianzen und Kovarianzen der Hick-Aufgabe nicht adäquat ab. Zwar reduzierte sich der χ^2 -Wert im Vergleich zu Modell 17 leicht, der χ^2 -Test war aber immer noch signifikant. Weiter deuteten der CFI, der RMSEA und das SRMR mit Werten ausserhalb des akzeptablen Bereichs auf eine schlechte Modellpassung hin.

Die unstandardisierten Faktorladungen der dynamischen latenten Variablen von Modell 19 wurden mit einer exponentiellen Funktion $(y=2^x, x \in \{1,2,3,4\})$ bestimmt. Der χ^2 -Test zeigte eine überzufällig hohe Abweichung zwischen der theoretischen und der empirischen Varianz-Kovarianzmatrix an. Gemeinsam mit dem hohen RMSEA wies dies darauf hin, dass das Modell die

^{*}Das Modell konnte nicht interpretiert werden, weil die Fehlervarianz der 0-bit-Bedingung negativ geschätzt wurde.

80 Resultate

empirischen Varianzen und Kovarianzen der Hick-Aufgabe nicht angemessen abbildete.

In Modell 20 wurden die unstandardisierten Faktorladungen der dynamischen latenten Variable mit dem von Schweizer (2006b) verwendeten quadratischen Verlauf ($y = x^2$, $x \in \{1, 2, 3, 4\}$) gebildet. Der χ^2 -Wert reduzierte sich im Vergleich zu Modell 19 zwar leicht, war aber immer noch signifikant. Die schlechte Passung des Modells wurde weiter durch einen hohen RMSEA angezeigt.

Modell 21 testete die Annahme, dass die Ladungen der unstandardisierten Faktorladungen der dynamischen latenten Variable entsprechend der Anzahl Antwortalternativen verlaufen $(y = x, x \in \{1, 2, 4, 6\})$. Der χ^2 -Test erkannte keine signifikante Abweichung zwischen der von Modell 21 implizierten und der empirischen Varianz-Kovarianzmatrix. Der RMSEA und das SRMR hingegen lagen ausserhalb des akzeptablen Bereichs.

Die unstandardisierten Faktorladungen der dynamischen latenten Variable von Modell 22 (siehe Abbildung 20) wurden mit einer logistischen Funktion bestimmt $\{y=1/[1+e^{(-x/.8)}], x\in\{-3,-1,1,3\}\}$. Verglichen mit den Modellen 17 bis 21 wich die von Modell 22 implizierte Varianz-Kovarianzmatrix am wenigsten von der empirischen Varianz-Kovarianzmatrix ab. Der χ^2 -Test war nicht signifikant und der CFI, der RMSEA und das SRMR deuteten auf eine gute Modellpassung hin. Die Varianz der konstanten latenten Variable betrug 653.98 (z=5.75, p<.001) und die Varianz der dynamischen latenten Variable betrug 2573.97 (z=6.90, p<.001). Die Skalierung der Varianzen (Schweizer, 2011) hat ergeben, dass die konstante latente Variable 39 % und die dynamische latente Variable 61 % von der in den manifesten Variablen gemeinsamen Varianz banden.

Im Vergleich zum kongenerischen Messmodell der Hick-Aufgabe (Modell 14) vermochte das Fixed-Links-Messmodell (Modell 22) die empirischen Daten deutlich besser abzubilden. Die bessere Passung von Modell 22 äusserte sich im Vergleich zu Modell 14 in einem nicht-signifikanten χ^2 -Wert, in den akzeptablen CFI und RMSEA sowie in zwei zusätzlichen Freiheitsgraden. Modell 22 war Modell 14 somit aufgrund adäquaterer Abbildung der empirischen Daten und höherer Sparsamkeit vorzuziehen.

In einem letzten Schritt wurde das Fixed-Links-Messmodell der Spatial-

Abbildung 20. Modell 22: Fixed-Links-Messmodell der Hick-Aufgabe (H). Eingezeichnet sind die standardisierten Koeffizienten. Hochgestellt sind die fixierten unstandardisierten Faktorladungen. $_{\mathsf{kon}} = \mathrm{konstante}$ latente Variable; $_{\mathsf{dyn}} = \mathrm{dynamische}$ latente Variable.

Suppression-Aufgabe (Modell 8) mit dem Fixed-Links-Messmodell der Hick-Aufgabe (Modell 22) und dem g-Faktor aus dem BIS-Test in Verbindung gebracht (Modell 23; siehe Abbildung 21). Das Modell bildete die empirischen Varianzen und Kovarianzen gut ab. Der χ^2 -Test war nicht signifikant und der CFI, der RMSEA und das SRMR lagen im akzeptablen Bereich, $\chi^2(40) = 48.81, p = .16, CFI = .99, RMSEA = .04, SRMR = .04$ Die standardisierten Regressionskoeffizienten betrugen zwischen der konstanten latenten Variable der Spatial-Suppression-Aufgabe und dem g-Faktor $\beta = -.21$ (p = .06), zwischen der dynamischen latenten Variable der Spatial-Suppression-Aufgabe und dem g-Faktor $\beta = -.08$ (p = .38), zwischen der konstanten latenten Variable der Hick-Aufgabe und dem q-Faktor $\beta = -.17$ (p = .06) und zwischen der dynamischen latenten Variable der Hick-Aufgabe und dem g-Faktor $\beta = -.26$ (p = .002). Die Korrelationskoeffizienten betrugen zwischen den beiden konstanten latenten Variablen r = .21 (p = .005), zwischen den beiden dynamischen latenten Variablen r = -.13 (p = .11), zwischen der konstanten latenten Variable der Hick-Aufgabe und der dynamischen latenten Variable der Spatial-Suppression-Aufgabe r = .15 (p = .09) und zwischen der konstanten latenten Variable 82 RESULTATE

der Spatial-Suppression-Aufgabe und der dynamischen latenten Variable der Hick-Aufgabe r=.00~(p=.97). Gemeinsam erklärten die konstanten und dynamischen latenten Variablen der Spatial-Suppression- und Hick-Aufgabe 16% der Varianz im g-Faktor.

Im Vergleich zum herkömmlichen Strukturgleichungsmodell (Modell 15) vermochte das Fixed-Links-Strukturgleichungsmodell (Modell 23) die empirischen Daten deutlich besser abzubilden. Die bessere Passung von Modell 23

Abbildung 21. Modell 23: Latenter Zusammenhang zwischen dem Fixed-Links-Messmodell der Spatial-Suppression-Aufgabe (S; Modell 8), dem Fixed-Links-Messmodell der Hick-Aufgabe (H; Modell 22) und dem g-Faktor aus dem BIS-Test. Abgebildet ist das Strukturmodell. Eingezeichnet sind die standardisierten Koeffizienten. $_{\mathsf{kon}} = \mathrm{konstante}$ latente Variable; $_{\mathsf{dyn}} = \mathrm{dynamische}$ latente Variable.

^{**}p < .01.

äusserte sich im Vergleich zu Modell 15 in einem nicht-signifikanten χ^2 -Wert sowie in akzeptablen CFI und RMSEA. Bezüglich der Varianzaufklärung im g-Faktor waren Modell 15 (16%) und Modell 23 (16%) identisch. Modell 23 war Modell 15 somit aufgrund adäquaterer Abbildung der empirischen Daten vorzuziehen.

Abschliessend zur fünften Fragestellung kann Folgendes festgehalten werden: Auf manifester Ebene vermochte die Spatial-Suppression-Aufgabe (sowohl auf Stufe der Aufgabenbedingungen als auch auf Stufe der Aufgabenparameter) bei einer Kontrolle des Zusammenhangs zwischen der Hick-Aufgabe und psychometrischer Intelligenz keinen inkrementellen Beitrag zur Aufklärung individueller Intelligenzunterschiede zu leisten. Auf latenter Ebene zeigte sich in einem herkömmlichen Strukturgleichungsmodell (Modell 15) ein schwacher bis mittlerer negativer Zusammenhang zwischen der aus den vier Bedingungen der Spatial-Suppression-Aufgabe abgeleiteten latenten Variable und dem q-Faktor. Tiefe Faktorwerte auf der latenten Variable der Spatial-Suppression-Aufgabe waren folglich tendenziell mit hohen Faktorwerten im q-Faktor verbunden. Dieser latente Zusammenhang erklärte knapp 4% der Varianz im g-Faktor und leistete damit bei Berücksichtigung des Zusammenhangs zwischen der Hick-Aufgabe und dem g-Faktor einen inkrementellen Beitrag zur Aufklärung individueller Intelligenzunterschiede. Diese Resultate müssen jedoch aufgrund des schlechten Modell-Fits mit Vorsicht interpretiert werden. Bei der Analyse der Zusammenhänge mittels Fixed-Links-Strukturgleichungsmodell zeigte sich zwischen der konstanten latenten Variable der Spatial-Suppression-Aufgabe und der konstanten latenten Variable der Hick-Aufgabe ein schwacher bis mittlerer positiver Zusammenhang. Hohe Faktorwerte auf der einen latenten Variable waren somit tendenziell mit hohen Faktorwerten auf der anderen latenten Variable verbunden. Ein signifikanter Prädiktor des q-Faktors war bei dem gewählten α-Fehler von 5 % einzig die dynamische latente Variable der Hick-Aufgabe, welche einen schwachen bis mittleren negativen Zusammenhang mit dem q-Faktor aufwies. Tiefe Faktorwerte auf der dynamischen latenten Variable der Hick-Aufgabe waren folglich tendenziell mit hohen Faktorwerten im q-Faktor verbunden.

4 Diskussion

Der Spatial-Suppression-Ansatz zur Erklärung individueller Intelligenzunterschiede (Melnick et al., 2013) bietet einen neuen und vielversprechenden Ausgangspunkt, wenn es um die Bestimmung der kognitiven Grundlagen für Intelligenzunterschiede geht. Das Ziel der vorliegenden Arbeit war es zu prüfen, ob sich die Spatial-Suppression-Aufgabe als Prädiktor psychometrischer Intelligenz bewährt und inwiefern der Spatial-Suppression-Ansatz (Melnick et al., 2013) zur Erklärung individueller Intelligenzunterschiede neuartige Erklärungsmöglichkeiten liefert, welche nicht bereits der Mental-Speed-Ansatz (z. B. Deary, 2000; Jensen, 1982a, 1982b, 2006; Vernon, 1983) bietet.

4.1 Fragestellungen

4.1.1 Eine Bestätigung des Befunds von Melnick et al. (2013)?

Die von Melnick et al. berichteten manifesten Zusammenhänge zwischen der Spatial-Suppression-Aufgabe und psychometrischer Intelligenz konnten in der vorliegenden Arbeit durchwegs nicht bestätigt werden. Während Melnick et al. einen starken Zusammenhang zwischen dem Suppression-Index und psychometrischer Intelligenz angaben (Studie 1: r=.64 und Studie 2: r=.71) konnte in der vorliegenden Arbeit kein bedeutsamer Zusammenhang festgestellt werden (r=.00). Weiter fiel die von Melnick et al. in Studie 2 geschilderte Korrelation zwischen der 1.8° -Bedingung und psychometrischer Intelligenz (r=-.46) in der vorliegenden Arbeit signifikant tiefer aus und deutete lediglich auf einen schwachen Zusammenhang hin (r=-.16). Auch die von Melnick et al. in Studie 2 angegebenen Semipartialkorrelationen zwischen der kleinsten Mustergrösse (1.8° -Bedingung), der grössten

86 Diskussion

Mustergrösse (7.2°-Bedingung) und psychometrischer Intelligenz (r = -.71 respektive r = .55) konnten nicht bestätigt werden, da sie signifikant tiefer zu liegen kamen und bei einer Irrtumswahrscheinlichkeit von weniger als 5 % nicht von 0 unterschieden werden konnten (r = -.11 respektive r = -.04).

Welche Gründe könnten für die widersprüchlichen Ergebnisse verantwortlich sein? Die Erkennungsschwellen der Spatial-Suppression-Aufgabe wiesen wie bei Melnick et al. (2013; $r_{tt} = .99$) sehr hohe Splithalf-Reliabilitäten auf ($r_{tt} = .96$). Die Erkennungsschwellen haben somit sehr genau die Zeitdauer erfasst, die benötigt wurde um die Bewegungsrichtung korrekt zu erkennen. Gemeinsam mit den mit zunehmender Mustergrösse ansteigenden Erkennungsschwellen scheint die Reliabilität der Spatial-Suppression-Aufgabe folglich keine Ursache für die fehlende Bestätigung der Befunde von Melnick et al. zu sein.

... den theoretisch zu erwartenden? beobachteten?

Auch der Suppression-Index scheint bei näherer Betrachtung keine Erklärung für das Ergebnis zu sein. Zwar lag der Mittelwert des Suppression-Index in Studie 2 von Melnick et al. (2013) höher (Mittelwert ± Standardabweichung = 0.320 ± 0.155, Minimum = 0.016, Maximum = 0.703; D. Tadin, persönl. Mitteilung, 25.09.2015) als in der vorliegenden Arbeit (Mittelwert ± Standardabweichung = 0.222 ± 0.160, Minimum = -0.185, Maximum = 0.886)⁵, die Streuungen hingegen unterschieden sich nicht⁶. Weil bei der Berechnung einer Produkt-Moment-Korrelation die Streuungen der Variablen und nicht die Mittelwerte einen Einfluss auf den Zusammenhang haben (Eid et al., 2013, S. 506), kann der vorliegende Mittelwert des Suppression-Index nicht der Grund für die beobachtete Null-Korrelation zwischen dem Suppression-Index und psychometrischer Intelligenz sein. Zusätzlich sah auch D. Tadin (persönl. Mitteilung, 30.08.2015) die absolute Höhe des Mittelwerts des Suppression-Index nicht als entscheidend, um den von Melnick et al. berichteten Zusammenhang zu bestätigen.

Ein t-Test für unabhängige Stichproben ergab, dass sich die beiden Mittelwerte signifikant voneinander unterschieden, t(88) = 4.01, p < .001. Die Effektstärke (Cohens d für unabhängige Stichproben) für diesen Mittelwertsunterschied betrug d = .61.

Gemäss einem Levene-Test musste die Annahme der Varianzgleichheit der beiden Streuungen nicht verworfen werden, F(1, 228) = 0.18, p = .67.

Fragestellungen 87

Bezüglich der erfassten psychometrischen Intelligenz lassen sich die vorliegenden Daten nicht direkt mit den Daten von Melnick et al. (2013) vergleichen. In der Untersuchung von Melnick et al. wurde psychometrische Intelligenz mit der Kurzform der Wechsler-Adult-Intelligence-Scale III (Axelrod, 2002; Studie 1) und mit der Wechsler-Adult-Intelligence-Scale IV (Wechsler, 2008; Studie 2) erfasst. Diese beiden Instrumente sind genormt und ermöglichen eine Bestimmung von IQ-Punkten. In der vorliegenden Arbeit wurde zur Erfassung der psychometrischen Intelligenz eine modifizierte Kurzversion des BIS-Tests eingesetzt (siehe Abschnitt 2.4). Weil für diese modifizierte Kurzversion keine Normen bestehen, konnten keine IQ-Punkte bestimmt werden. Als Alternative zu IQ-Punkten wurden deshalb als Mass für psychometrische Intelligenz alle vorgelegten z-standardisierten Subtests gemittelt. Damit liess sich für jede Vpn ein z-standardisiertes Mittel (ein z-Wert) ihrer Leistung bestimmen. Dieser z-Wert lieferte jedoch keine Informationen darüber, ob die vorliegende Stichprobe im Durchschnitt eher niedrig-, mittel- oder hochintelligent war. Diese Ungewissheit lässt sich mit der Tatsache entkräften, dass an der Untersuchung nicht nur Vpn mit höherem Bildungsabschluss teilnahmen, sondern auch viele Vpn mit niedrigerem Bildungsniveau (siehe Abschnitt 2.1). Zudem wich die Verteilung des z-Werts nicht von der Normalverteilung ab (siehe Unterabschnitt 3.1.3), was als Hinweis dafür gesehen werden kann, dass die Stichprobe ausreichend heterogen zusammengesetzt war und die in der Population erwartete Merkmalsverteilung angemessen reproduzierte. Diese Anhaltspunkte lassen die Schlussfolgerung zu, dass die Befunde von Melnick et al. nicht alleine deshalb nicht bestätigt werden konnten, weil ein anderer Intelligenztest eingesetzt wurde.

4.1.2 Ein alternatives Mass für Spatial-Suppression?

In bisherigen Untersuchungen wurde das Ausmass an Spatial-Suppression mit dem Suppression-Index quantifiziert (Melnick et al., 2013; Tadin et al., 2006, 2011). Gebildet wurde der Suppression-Index dabei (wie auch in der vorliegenden Arbeit) als Differenz zwischen der Schwellenschätzung für grosse Muster und der Schwellenschätzung für kleine Muster. Diese Differenzbildung wirkt sich in Situationen, in welchen der Minuend beziehungsweise

88 Diskussion

der Subtrahend korreliert sind und die Reliabilität der beiden nicht perfekt ist, negativ auf die Reliabilität des Differenzmasses aus (Murphy & Davidshofer, 2005, S. 145). Auch Melnick et al. (2013) haben erkannt, dass der Suppression-Index als Mass für Spatial-Suppression nicht ideal ist. Sie haben in ihrer Untersuchung richtigerweise darauf hingewiesen, dass die Höhe des Suppression-Index davon abhängig ist, welche Mustergrössen in einer Untersuchung verwendet werden respektive zwischen welchen Mustergrössen die Differenz gebildet wird. So lassen sich beispielsweise die Ergebnisse zum Suppression-Index zwischen den Untersuchungen von Tadin et al. (2006), Tadin et al. (2011) und Melnick et al. nicht direkt vergleichen, weil sie den Suppression-Index als Differenz zwischen unterschiedlichen Mustergrössen gebildet haben. Als Lösung dafür haben Melnick et al. vorgeschlagen, die Erkennungsschwellen mit einem exponentiellen Modell zu beschreiben und die daraus abgeleitete Steigung als Mass für Spatial-Suppression zu verwenden. Damit sind beide Schwachpunkte des Suppression-Index behoben: Die Steigung stellt kein Differenzmass dar (das heisst sie leidet nicht unter einer verminderten Reliabilität; Murphy & Davidshofer, 2005, S. 145) und sie lässt sich unabhängig von den verwendeten Mustergrössen zwischen verschiedenen Untersuchungen vergleichen.

Melnick et al. (2013) haben die Erkennungsschwellen mit einem exponentiellen Modell beschrieben und einen starken Zusammenhang zwischen der ermittelten Steigung und dem Suppression-Index (r=.99) festgestellt. Dieser Befund konnte in der vorliegenden Arbeit bestätigt werden (r=.96). Nicht bestätigt werden konnte der von Melnick et al. berichtete starke Zusammenhang zwischen der Steigung und psychometrischer Intelligenz (r=.68). In der vorliegenden Arbeit bestand keine Beziehung zwischen der Steigung und psychometrischer Intelligenz (r=.00).

Grundsätzlich festzuhalten ist, dass sich ein exponentielles Modell zur Beschreibung der Erkennungsschwellen sehr gut eignete. Ebenso schienen die Zusammenhänge der abgeleiteten Aufgabenparameter (Asymptote und Steigung) mit psychometrischer Intelligenz nicht massgeblich durch Personen beeinflusst worden zu sein, deren Erkennungsschwellen schlecht mit einem exponentiellen Modell abgebildet werden konnten. Dieser Umstand vereinfachte die Interpretation der Resultate. Der bestätigte starke Zusammen-

Fragestellungen 89

hang zwischen dem Suppression-Index und der Steigung deutete darauf hin, dass die Steigung ziemlich genau dasselbe wie der Suppression-Index erfasste. In Anbetracht des nicht bestätigten Zusammenhangs zwischen dem Suppression-Index und psychometrischer Intelligenz war es somit nicht erstaunlich, dass zwischen der Steigung und psychometrischer Intelligenz eine Null-Korrelation beobachtet wurde. Die Erfassung von Spatial-Suppression mittels der Steigung scheint gegenüber dem Suppression-Index bei einem ersten Blick auf die hier berichteten Resultate keinen Mehrwert zu haben, weil die Steigung psychometrische Intelligenz nicht besser vorhersagte als der Suppression-Index. Aus Gründen der höheren Reliabilität und der besseren Vergleichbarkeit zwischen Studien (siehe erster Paragraph dieses Unterabschnitts) ist die exponentielle Steigung jedoch das geeignetere Mass für Spatial-Suppression als der Suppression-Index.

Melnick et al. (2013) haben in Ihrer Untersuchung nur die Steigung mit psychometrischer Intelligenz in Verbindung gebracht. Den Zusammenhang zwischen der Asymptote und der Steigung respektive die Beziehung zwischen der Asymptote und psychometrischer Intelligenz haben sie nicht berichtet. Um die Spatial-Suppression-Aufgabe und die mit einem exponentiellen Modell abgeleiteten Aufgabenparameter besser zu verstehen, wurden diese Zusammenhänge in der vorliegenden Arbeit untersucht. Dabei hat sich ein starker negativer Zusammenhang zwischen der Asymptote und der Steigung ergeben (r = -.57). Ein tiefer Ursprung des exponentiellen Verlaufs der Wahrnehmungsverschlechterung ging folglich tendenziell mit einer stärkeren Wahrnehmungsverschlechterung (einer stärkeren Spatial-Suppression) einher. Interessant ist, dass die Asymptote schwach negativ mit psychometrischer Intelligenz zusammenhing (r = -.16). Ein tiefer Ursprung des exponentiellen Verlaufs der Wahrnehmungsverschlechterung hing somit tendenziell mit hoher psychometrischer Intelligenz zusammen. Diese Erkenntnis ist neu und deutet darauf hin, dass die Geschwindigkeit, mit der die sich bewegenden Muster wahrgenommen werden auch einen Einfluss darauf hat, wie gut (im Rahmen eines Intelligenztests) komplexe kognitive Leistung erbracht wird. Gestützt wird diese Interpretation mit den beobachteten bivariaten Produkt-Moment-Korrelationen zwischen den Bedingungen der Spatial-Suppression-Aufgabe und psychometrischer Intelligenz. Die Be90 Diskussion

dingungen der Spatial-Suppression-Aufgabe korrelierten mit Ausnahme des Zusammenhangs zwischen der 7.2° -Bedingung und dem z-Wert des BIS-Tests alle schwach negativ mit psychometrischer Intelligenz (r=-.16 bis -.19; siehe Tabelle 8). Dies Zusammenhänge deuten darauf hin, dass die Asymptote die grundlegende Geschwindigkeit abbildet, mit der sich bewegende Muster wahrgenommen und verarbeitet werden – also Mental-Speed (LIT?) abbildet.

Unpräsizer Abschnitt

4.1.3 Der latente Zusammenhang zwischen der Spatial-Suppression-Aufgabe und dem g-Faktor

Um den Umstand zu berücksichtigen, dass sich ein beobachteter Messwert immer aus einem wahren Anteil der Merkmalsausprägung und einem zufällig zustande gekommenen Fehleranteil zusammensetzt (Moosbrugger, 2007), wurde der Zusammenhang zwischen der Spatial-Suppression-Aufgabe und psychometrischer Intelligenz auf latenter Ebene untersucht. Damit konnte der Messfehler identifiziert und von der Analyse ausgeschlossen werden (Kline, 2011, S. 9), was eine validere Schlussfolgerung über den Zusammenhang zwischen der Spatial-Suppression-Aufgabe und dem g-Faktor zuliess.

Das kongenerische Messmodell der Spatial-Suppression-Aufgabe, das einen Faktor für die Erklärung der Zusammenhänge unter den Bedingungen annahm, bildete die empirischen Daten schlecht ab. Das kongenerische Messmodell des BIS-Tests zur Extraktion des g-Faktors, der latenten Operationalisierung psychometrischer Intelligenz, konnte aus Gründen mangelnder Identifizierbarkeit (Kline, 2011, S. 125) nicht isoliert getestet werden. Bei der Zusammenführung dieser beiden Modelle in einem Strukturgleichungsmodell hat sich dann ein schwacher bis mittlerer negativer Zusammenhang ($\beta = -.23$) zwischen der Spatial-Suppression-Aufgabe und dem g-Faktor gezeigt. Nicht zu vernachlässigen ist dabei, dass das Modell die empirischen Zusammenhänge schlecht abbildete und die aus den vier Bedingungen der Spatial-Suppression-Aufgabe extrahierte latente Variable lediglich 5 % der Varianz im g-Faktor erklärte.

Was verbirgt sich hinter der aus den vier Bedingungen der Spatial-Suppression-Aufgabe extrahierten latenten Variable? Die durchwegs hohen posiFragestellungen 91

tiven Faktorladungen der vier Bedingungen auf den Faktor legen kombiniert mit dem negativen Zusammenhang zum g-Faktor die Vermutung nahe, dass darin die Geschwindigkeit abgebildet wurde, mit der die Bewegungsrichtung der Muster erkannt wurde. Die Annahme, dass der Faktor Spatial-Suppression abbildete ist aus zwei Gründen unwahrscheinlich: Zum einen hätten sich negative oder zumindest sehr geringe Faktorladungen auf der 1.8°- oder der 3.6°-Bedingung zeigen müssen, da Spatial-Suppression als die relative mit zunehmender Mustergrösse beobachtete Wahrnehmungsverschlechterung definiert ist (Melnick et al., 2013; Tadin et al., 2006, 2003, 2011). Zum anderen hätte sich zwischen der latenten Variable Spatial-Suppression und psychometrischer Intelligenz ein positiver Zusammenhang zeigen müssen, weil Spatial-Suppression (operationalisiert mit dem Suppression-Index) bei Melnick et al. (2013) stark positiv mit psychometrischer Intelligenz zusammenhing.

4.1.4 Leidet die Spatial-Suppression-Aufgabe unter dem Impurity-Problem?

Die Analyse von Zusammenhängen mittels herkömmlicher Faktorenanalysen erlaubt es, wahre Varianz von Fehlervarianz zu trennen (Kline, 2011, S. 9). Nicht gelöst wird dabei das Impurity-Problem (Schweizer, 2007), welches

92 Diskussion

4.1.5 Spatial-Suppression, Mental-Speed und psychometrische Intelligenz

- konsistent über alle modelle, zusammenhang da latent
- Anderes Resultate, weil anderer IQ-Test eingesetzt?
- Anderes Resultat, weil nicht Projektor eingesetzt?
- für diese kurzversion betsehenkeine normen, wir sind aber auch nicht am iq sondern an der varianzaufklärung interessiert, deshalb nicht relevant.

•

- BD und OE einzig n.s. negative korrelationen, kurz aufnehmen
- Fixed-links modellierungen lohnen sich (wie auch bei AGK oder Speed prozessen -> LIT)

p-Wert problematisch:

Gelman und Stern (2006)

Wasserstein und Lazar (2016)

Nuzzo (2014) Hayduk (2014) Shame on disrespecting evividenc p 6 of 10

fixed-links als Lösung für exponentielle Regression, da hats einfach ein paar Leute mit hohem RMSE gehabt. im sem drückt lässt sich der missfit quantifizieren (modelltest)

zusammenfassen - fragestellungen - literatur - konsequenz

4.2 Generelle Diskussion

4.3 Limitationen

4.3.1 Programmcode der Spatial-Suppression-Aufgabe

- Code (D. Tadin, persönl. Mitteilung, 13.09.2016)
- 360-Hz Code auf 144-Hz Monitor? Lappin, Tadin, Nyquist und Corn (2009); Tadin et al. (2006) haben Schwellen von 10 ms!

• Vs. Splithalf-Reliabilitäten

4.3.2 Stichprobenfehler

• Fixierungen der Fixed-Links-Modelle stichprobenabhängig

•

4.4 Wichtigkeit des Erkenntnisgewinns

Literatur

- Ackerman, P. L., Beier, M. E. & Boyle, M. O. (2005). Working memory and intelligence: The same or different constructs? *Psychological Bulletin*, 131 (1), 30–60. doi:10.1037/0033-2909.131.1.30
- Allman, J., Miezin, F. & McGuinness, E. (1985). Stimulus specific responses from beyond the classical receptive field: Neurophysiological mechanisms for local-global comparisons in visual neurons. *Annual Review of Neuroscience*, 8 (1), 407–430. doi:10.1146/annurev.ne.08.030185.002203
- Axelrod, B. N. (2002). Validity of the Wechsler abbreviated scale of intelligence and other very short forms of estimating intellectual functioning.

 Assessment, 9 (1), 17–23. doi:10.1177/1073191102009001003
- Bakeman, R. (2005). Recommended effect size statistics for repeated measures designs. *Behavior Research Methods*, 37 (3), 379–384. doi:10.3758/bf03192707
- Bartholomew, D. J., Allerhand, M. & Deary, I. J. (2013). Measuring mental capacity: Thomson's Bonds model and Spearman's g-model compared. Intelligence, 41 (4), 222–233. doi:10.1016/j.intell.2013.03.007
- Bates, T. (1995). Intelligence and complexity of the averaged evoked potential: An attentional theory. Intelligence, 20 (1), 27-39. doi:10.1016/0160-2896(95)90004-7
- Baty, F., Ritz, C., Charles, S., Brutsche, M., Flandrois, J.-P. & Delignette-Muller, M.-L. (2015). A toolbox for nonlinear regression in R: The package nlstools. *Journal of Statistical Software*, 66 (5), 1–21. doi:10.18637/jss.v066.i05
- Beauducel, M. & Kersting, M. (2002). Fluid and crystallized intelligence

96 Literatur

and the Berlin Model of Intelligence Structure (BIS). European Journal of Psychological Assessment, 18 (2), 97-112. doi:10.1027//1015-5759.18.2.97

- Behrendt, S. (2014). lm.beta: Add standardized regression coefficients to lm-objects (Version 1.5-1) [Software]. Verfügbar unter https://CRAN .R-project.org/package=lm.beta
- Bengtsson, H. (2014). R.matlab: Read and write of mat files together with r-to-matlab connectivity (Version 3.1.1) [Software]. Verfügbar unter http://CRAN.R-project.org/package=R.matlab
- Bentler, P. M. (1990). Comparative fit indexes in structural models. *Psychological Bulletin*, 107 (2), 238–246. doi:10.1037/0033-2909.107.2.238
- Born, R., Groh, J., Zhao, R. & Lukasewycz, S. (2000). Segregation of object and background motion in visual area MT: Effects of microstimulation on eye movements. *Neuron*, 26 (3), 725–734. doi:10.1016/s0896-6273(00)81208-8
- Braddick, O. (1993). Segmentation versus integration in visual motion processing. *Trends in Neurosciences*, 16 (7), 263–268. doi:10.1016/0166-2236(93)90179-p
- Brand, C. (1987). The importance of general intelligence. In S. Modgil & C. Modgil (Hrsg.), *Arthur Jensen: Consensus and controversy* (S. 251–265). New York, NY: Falmer.
- Browne, M. W. & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen & J. S. Long (Hrsg.), *Testing structural equation models* (S. 136–162). Newbury Park, CA: Sage.
- Bucik, V. & Neubauer, A. C. (1996). Bimodality in the Berlin Model of Intelligence Structure (BIS): A replication study. *Personality and Individual Differences*, 21 (6), 987–1005. doi:10.1016/S0191-8869(96)00129-8
- Burgess, G. C., Gray, J. R., Conway, A. R. A. & Braver, T. S. (2011). Neural mechanisms of interference control underlie the relationship between fluid intelligence and working memory span. *Journal of Experimental Psychology*, 140 (4), 674–692. doi:10.1037/a0024695
- Carroll, J. B. (1993). Human cognitive abilites: A survey of factor-analytic studies. New York, NY: Cambridge University Press.
- Cattell, R. B. (1971). Abilities: Their structure, growth, and action. Boston,

MA: Mifflin.

Christal, R. E. (1991). Comparative validities of ASVAB and LAMP tests for logic gates learning (AL-TP-1991-0031). Brooks Air Force Base, TX: Manpower and Personnel Division, Air Force Human Resources Laboratory. Verfügbar unter http://files.eric.ed.gov/fulltext/ED364568.pdf

- Churan, J., Khawaja, F. A., Tsui, J. M. & Pack, C. C. (2008). Brief motion stimuli preferentially activate surround-suppressed neurons in macaque visual area MT. Current Biology, 18 (22), R1051–R1052. doi:10.1016/j.cub.2008.10.003
- Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2. Aufl.). New York, NY: Psychology Press.
- Cohen, J. & Cohen, P. (1983). Applied multiple regression/correlation analysis for the behavioral sciences (2. Aufl.). Hillsdale, NJ: Erlbaum.
- Cronbach, L. J. & Meehl, P. E. (1955). Construct validity in psychological tests. *Psychological Bulletin*, 52 (4), 281–302. doi:10.1037/h0040957
- Curran, P. J., West, S. G. & Finch, J. F. (1996). The robustness of test statistics to nonnormality and specification error in confirmatory factor analysis. *Psychological Methods*, 1 (1), 16–29. doi:10.1037/1082-989X.1.1.16
- Curtin, J. (2016). lmSupport: Support for linear models (Version 2.9.4) [Software]. Verfügbar unter http://CRAN.R-project.org/package=lmSupport
- Deary, I. J. (2000). Looking down on human intelligence. New York, NY: Oxford University Press.
- Deary, I. J., Bell, P. J., Bell, A. J., Campbell, M. L. & Fazal, N. D. (2004). Sensory discrimination and intelligence: Testing Spearman's other hypothesis. *The American Journal of Psychology*, 117 (1), 1–19. doi:10.2307/1423593
- Donders, F. C. (1969). On the speed of mental processes. *Acta Psychologica*, $30, 412-431. \ doi:10.1016/0001-6918(69)90065-1$
- Eid, M., Gollwitzer, M. & Schmitt, M. (2013). Statistik und Forschungsmethoden (3., korrigierte Aufl.). Basel, Schweiz: Beltz.
- Engle, R. W., Tuholski, S. W., Laughlin, J. E. & Conway, A. R. A. (1999).

Working memory, short-term memory, and general fluid intelligence: A latent-variable approach. *Journal of Experimental Psychology*, 128 (3), 309–331. doi:10.1037/0096-3445.128.3.309

- Epskamp, S. (2014). semPlot: Path diagrams and visual analysis of various sem packages' output (Version 1.0.1) [Software]. Verfügbar unter ht tp://CRAN.R-project.org/package=semPlot
- Finney, S. J. & DiStefano, C. (2006). Non-normal and categorical data in structural equation modeling. In G. R. Hancock & R. O. Mueller (Hrsg.), *Structural equation modeling: A second course* (S. 269–314). Greenwich, CT: Information Age.
- Frearson, W. & Eysenck, H. (1986). Intelligence, reaction time (RT) and a new 'odd-man-out' RT paradigm. *Personality and Individual Differences*, 7 (6), 807–817. doi:10.1016/0191-8869(86)90079-6
- Friston, K., Price, C., Fletcher, P., Moore, C., Frackowiak, R. & Dolan, R. (1996). The trouble with cognitive subtraction. *NeuroImage*, 4 (2), 97–104. doi:10.1006/nimg.1996.0033
- Galili, T. (2010, 22. Februar). Post hoc analysis for Friedman's Test (R code) [Blog-Eintrag]. Verfügbar unter http://www.r-statistics.com/2010/02/post-hoc-analysis-for-friedmans-test-r-code/
- Galton, F. (1883). *Inquiries into human faculty and its development*. London, England: Macmillan.
- Garlick, D. (2002). Understanding the nature of the general factor of intelligence: The role of individual differences in neural plasticity as an explanatory mechanism. *Psychological Review*, 109 (1), 116–136. doi:10.1037/0033-295x.109.1.116
- Gelman, A. & Stern, H. (2006). The difference between "significant" and "not significant" is not itself statistically significant. *The American Statistician*, 60 (4), 328–331. doi:10.1198/000313006X152649
- Gibbons, R. D., Hedeker, D. R. & Davis, J. M. (1993). Estimation of effect size from a series of experiments involving paired comparisons. *Journal of Educational Statistics*, 18 (3), 271–279. doi:10.2307/1165136
- Gignac, G. E. (2014). Dynamic mutualism versus g factor theory: An empirical test. *Intelligence*, 42, 89–97. doi:10.1016/j.intell.2013.11.004
- Gignac, G. E. (2016). Residual group-level factor associations: Possibly

negative implications for the mutualism theory of general intelligence. *Intelligence*, 55, 69–78. doi:10.1016/j.intell.2016.01.007

- Hamner, B. (2012). Metrics: Evaluation metrics for machine learning (Version 0.1.1) [Software]. Verfügbar unter https://CRAN.R-project.org/package=Metrics
- Hayduk, L. (2014). Shame for disrespecting evidence: the personal consequences of insufficient respect for structural equation model testing. BioMed Central: Medical Research Methodology, 14 (124), 1–10. doi:10.1186/1471-2288-14-124
- Hayduk, L., Cummings, G., Boadu, K., Pazderka-Robinson, H. & Boulianne, S. (2007). Testing! testing! one, two, three Testing the theory in structural equation models! Personality and Individual Differences, 42 (5), 841–850. doi:10.1016/j.paid.2006.10.001
- Hendrickson, D. E. & Hendrickson, A. E. (1980). The biological basis of individual differences in intelligence. *Personality and Individual Differences*, 1 (1), 3–33. doi:10.1016/0191-8869(80)90003-3
- Hick, W. E. (1952). On the rate of gain of information. Quarterly Journal of Experimental Psychology, 4 (1), 11–26. $\label{eq:continuous} \text{doi:} 10.1080/17470215208416600}$
- Hollander, M., Wolfe, D. A. & Chicken, E. (2014). Nonparametric statistical methods. doi:10.1002/9781119196037
- Hothorn, T., Bretz, F. & Westfall, P. (2008). Simultaneous inference in general parametric models. *Biometrical Journal*, 50 (3), 346–363. doi:10.1002/bimj.200810425
- Hothorn, T., Hornik, K., van de Wiel, M. A. & Zeileis, A. (2008). Implementing a class of permutation tests: The coin package. *Journal of Statistical Software*, 28 (8), 1–23. doi:10.18637/jss.v028.i08
- Hu, L. & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Coventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6 (1), 1–55. doi:10.1080/10705519909540118
- Ilan, A. B. & Miller, J. (1994). A violation of pure insertion: Mental rotation and choice reaction time. *Journal of Experimental Psychology: Human Perception and Performance*, 20 (3), 520–536. doi:10.1037/0096-

1523.20.3.520

Jensen, A. R. (1982a). The chronometry of intelligence. In R. J. Sternberg (Hrsg.), Advances in the psychology of human intelligence (Bd. 1, S. 255–310). Hillsdale, NJ: Erlbaum.

- Jensen, A. R. (1982b). Reaction time and psychometric g. In H. J. Eysenck (Hrsg.), A model for intelligence (S. 93–132). Heidelberg, Deutschland: Springer.
- Jensen, A. R. (1987). Individual differences in the Hick paradigm. In P. A. Vernon (Hrsg.), *Speed of information-processing and intelligence* (S. 101–175). Norwood, NJ: Ablex.
- Jensen, A. R. (1998a). The g factor: The science of mental ability. Westport, CT: Praeger.
- Jensen, A. R. (1998b). The suppressed relationship between IQ and the reaction time slope parameter of the Hick function. *Intelligence*, 26 (1), 43–52. doi:10.1016/s0160-2896(99)80051-8
- Jensen, A. R. (2006). Clocking the mind: Mental chronometry and individual differences. Oxford, England: Elsevier.
- Jensen, A. R. & Munro, E. (1979). Reaction time, movement time, and intelligence. Intelligence, 3 (2), 121–126. doi:10.1016/0160-2896(79)90010-2
- Jensen, A. R. & Weng, L.-J. (1994). What is a good g? Intelligence, 18 (3), 231-258. doi:10.1016/0160-2896(94)90029-9
- Johnson, W., Bouchard, T. J., Krueger, R. F., McGue, M. & Gottesman, I. I. (2004). Just one g: consistent results from three test batteries. Intelligence, 32 (1), 95–107. doi:10.1016/s0160-2896(03)00062-x
- Johnson, W., te Nijenhuis, J. & Bouchard, T. J. (2008). Still just 1 g: Consistent results from five test batteries. *Intelligence*, 36 (1), 81–95. doi:10.1016/j.intell.2007.06.001
- Jäger, A. O. (1984). Intelligenzstrukturforschung: Konkurrierende Modelle, neue Entwicklungen, Perspektiven. *Psychologische Rundschau*, 35 (1), 21–35.
- Jäger, A. O., Süss, H.-M. & Beauducel, A. (1997). Berliner Intelligenzstruktur-Test. Göttingen, Deutschland: Hogrefe.
- Jöreskog, K. G. (1971). Statistical analysis of sets of congeneric tests. Psy-

- chometrika, 36 (2), 109-133. doi:10.1007/BF02291393
- Kim, K. H. (2005). Can only intelligent people be creative? A metaanalysis. The Journal of Secondary Gifted Education, 16 (2/3), 57–66. doi:10.4219/jsge-2005-473
- Kim, S. (2015). ppcor: Partial and semi-partial (part) correlation (Version 1.1) [Software]. Verfügbar unter http://CRAN.R-project.org/package=ppcor
- Kline, R. B. (2011). Principles and practice of structural equation modeling (3. Aufl.). New York, NY: Guilford Press.
- Kuhmann, W. & Ising, M. (1996). *Dickman Impulsivitätsskala (DIS)* (Unveröffentlichter Fragebogen). Institut für Psychologie, Pädagogischen Hochschule Erfurt, Deutschland.
- Lappin, J. S., Tadin, D., Nyquist, J. B. & Corn, A. L. (2009). Spatial and temporal limits of motion perception across variations in speed, eccentricity, and low vision. *Journal of Vision*, 9 (1), 1–14. doi:10.1167/9.1.30
- Lawrence, M. A. (2015). ez: Easy analysis and visualization of factorial experiments (Version 4.3) [Software]. Verfügbar unter https://CRAN .R-project.org/package=ez
- Lehrl, S. & Fischer, B. (1988). The basic parameters of human information processing: Their role in the determination of intelligence. *Personality and Individual Differences*, 9 (5), 883–896. doi:10.1016/0191-8869(88)90006-2
- Lehrl, S. & Fischer, B. (1990). A basic information psychological parameter (BIP) for the reconstruction of concepts of intelligence. *European Journal of Personality*, 4 (4), 259–286. doi:10.1002/per.2410040402
- Lemon, J. (2006). plotrix: Various plotting functions (Version 3.6-2) [Software]. Verfügbar unter https://CRAN.R-project.org/package=plotrix
- Mahr, T. (2015). rprime: Functions for working with 'eprime' text files (Version 0.1.0) [Software]. Verfügbar unter http://CRAN.R-project.org/package=rprime
- MathWorks Inc. (2013). Matlab (Version 8.1.0.604, r2013a) [Software]. Verfügbar unter http://mathworks.com/downloads/
- McDonald, R. P. (1999). Test theory: A unified treatment. Mahwah, NJ:

Erlbaum.

McGrew, K. S. (2005). The Cattell–Horn–Carroll theory of cognitive abilities. In D. P. Flanagan & P. L. Harrison (Hrsg.), *Contemporary intellectual assessment: Theories, tests, and issues* (2. Aufl., S. 136–181). New York, NY: Guildford Press.

- McGrew, K. S. (2009). CHC theory and the human cognitive abilites project: Standing on the shoulders of the giants of psychometric intelligence research. *Intelligence*, 37 (1), 1–10. doi:10.1016/j.intell.2008.08.004
- McIntosh, C. N. (2012). Improving the evaluation of model fit in confirmatory factor analysis: A commentary on Gundy, C.M., Fayers, P.M., Groenvold, M., Petersen, M. Aa., Scott, N.W., Sprangers, M.A.J., Velikov, G., Aaronson, N.K. (2011). Comparing higher-order models for the EORTC QLQ-C30. Quality of Life Research, doi:10.1007/s11136-011-0082-6. Quality of Life Research, 21 (9), 1619–1621. doi:10.1007/s11136-011-0084-4
- Melnick, M., Harrison, B. R., Park, S., Bennetto, L. & Tadin, D. (2013). A strong interactive link between sensory discrimination and intelligence. Current Biology, 23 (11), 1013–1017. doi:10.1016/j.cub.2013.04.053
- Meyer, C. S., Hagmann-von Arx, P., Lemola, S. & Grob, A. (2010). Correspondence between the general ability to discriminate sensory stimuli and general intelligence. *Journal of Individual Differences*, 31 (1), 46–56. doi:10.1027/1614-0001/a000006
- Miller, E. M. (1994). Intelligence and brain myelination: A hypothesis. *Personality and Individual Differences*, 17 (6), 803–832. doi:10.1016/0191-8869(94)90049-3
- Miller, J. & Ulrich, R. (2013). Mental chronometry and individual differences: Modeling reliabilities and correlations of reaction time means and effect sizes. *Psychonomic Bulletin & Review*, 20 (5), 819–858. doi:10.3758/s13423-013-0404-5
- Moosbrugger, H. (2007). Klassische Testtheorie. In H. Moosbrugger & A. Kelava (Hrsg.), *Testtheorie und Fragebogenkonstruktion* (S. 99–112). Heidelberg, Deutschland: Springer.
- Moosbrugger, H., Goldhammer, F. & Schweizer, K. (2006). Latent factors underlying individual differences in attention measures. *European Jour-*

- $nal\ of\ Psychological\ Assessment,\ 22\ (3),\ 177-188.\ doi:10.1027/1015-5759.22.3.177$
- Murphy, K. R. & Davidshofer, C. O. (2005). *Psychogological testing: Principles and applications* (6. Aufl.). Upper Saddle River, NJ: Pearson.
- Neubauer, A. C. & Bucik, V. (1996). The mental speed–IQ relationship: Unitary or modular? Intelligence, 22 (1), 23–48. doi:10.1016/S0160-2896(96)90019-7
- Neubauer, A. C. & Knorr, E. (1997). Elementary cognitive processes in choice reaction time tasks and their correlations with intelligence. *Personality and Individual Differences*, 23 (5), 715–728. doi:10.1016/s0191-8869(97)00108-6
- Neubauer, A. C., Riemann, R., Mayer, R. & Angleitner, A. (1997). Intelligence and reaction times in the Hick, Sternberg and Posner paradigms. *Personality and Individual Differences*, 22 (6), 885–894. doi:10.1016/s0191-8869(97)00003-2
- Nuzzo, R. (2014). Scientific method: Statistical errors. *Nature*, 506 (7487), 150–152. doi:10.1038/506150a
- Olejnik, S. & Algina, J. (2003). Generalized eta and omega squared statistics: Measures of effect size for some common research designs. *Psychological Methods*, 8 (4), 434–447. doi:10.1037/1082-989x.8.4.434
- Pahud, O. (2017). The influence of attention on the relationship between temporal resolution power and general intelligence (Unveröffentlichte Dissertation). Institut für Psychologie, Universität Bern, Schweiz.
- Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. (2016). nlme: Linear and nonlinear mixed effects models (Version 3.1-128) [Software]. Verfügbar unter http://CRAN.R-project.org/package=nlme
- Posner, M. I., Boies, S. J., Eichelman, W. H. & Taylor, R. L. (1969). Retention of visual and name codes of single letters. *Journal of Experimental Psychology*, 79 (1), 1–16. doi:10.1037/h0026947
- Psychology Software Tools (2012). E-prime 2 (Version 2.0.10.242) [Software]. Verfügbar unter https://www.pstnet.com/eprime.cfm
- R Core Team (2016). R: A language and environment for statistical computing (Version 3.3.0) [Software]. Verfügbar unter http://www.R-project.org/

Rammsayer, T. H. & Brandler, S. (2002). On the relationship between general fluid intelligence and psychophysical indicators of temporal resolution in the brain. *Journal of Research in Personality*, 36 (5), 507–530. doi:10.1016/S0092-6566(02)00006-5

- Rammsayer, T. H. & Brandler, S. (2007). Performance on temporal information processing as an index of general intelligence. *Intelligence*, 35 (2), 123–139. doi:10.1016/j.intell.2006.04.007
- Ree, M. J. & Earles, J. A. (1991). The stability of g across different methods of estimation. *Intelligence*, 15 (3), 271–278. doi:10.1016/0160-2896(91)90036-D
- Reed, T. E. & Jensen, A. R. (1992). Conduction velocity in a brain nerve pathway of normal adults correlates with intelligence level. *Intelligence*, 16 (3–4), 259–272. doi:10.1016/0160-2896(92)90009-g
- Regan, D. (2000). Human perception of objects. Sunderland, MA: Sinauer.
- Revelle, W. (2015). psych: Procedures for psychological, psychometric, and personality research (Version 1.5.8) [Software]. Verfügbar unter http://CRAN.R-project.org/package=psych
- Rinker, T. W. & Kurkiewicz, D. (2015). pacman: Package management for R (Version 0.4.1) [Software]. Verfügbar unter http://github.com/trinker/pacman
- Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. *Journal of Statistical Software*, 48 (2), 1–36. doi:10.18637/jss.v048.i02
- RStudio Team (2012). Rstudio: Integrated development environment for R (Version 0.99.903) [Software]. Verfügbar unter http://www.rstudio.com/
- Ruch, W. (1999). Die revidierte Fassung des Eysenck Personality Questionnaire und die Konstruktion des deutschen EPQ-R bzw. EPQ-RK. Zeitschrift für Differentielle und Diagnostische Psychologie, 20 (1), 1–24. doi:10.1024//0170-1789.20.1.1
- Satorra, A. & Bentler, P. M. (1994). Corrections to test statistics and standard errors in covariance structure analysis. In A. von Eye & C. C. Clogg (Hrsg.), Latent variable analysis: Applications to developmental research (S. 399–419). Thousand Oaks, CA: Sage.
- Schermelleh-Engel, K. & Werner, C. (2007). Methoden der Reliabilitätsbe-

stimmung. In H. Moosbrugger & A. Kelava (Hrsg.), *Testtheorie und Fragebogenkonstruktion* (S. 113–133). Heidelberg, Deutschland: Springer.

- Schmidt, F. L. & Hunter, J. (2004). General mental ability in the world of work: Occupational attainment and job performance. *Journal of Personality and Social Psychology*, 86 (1), 162–173. doi:10.1037/0022-3514.86.1.162
- Schweizer, K. (2006a). The fixed-links model for investigating the effects of general and specific processes on intelligence. *Methodology*, 2 (4), 149–160. doi:10.1027/1614-2241.2.4.149
- Schweizer, K. (2006b). The fixed-links model in combination with the polynomial function as a tool for investigating choice reaction time data. Structural Equation Modeling: A Multidisciplinary Journal, 13 (3), 403–419. doi:10.1207/s15328007sem1303 4
- Schweizer, K. (2007). Investigating the relationship of working memory tasks and fluid intelligence tests by means of the fixed-links model in considering the impurity problem. *Intelligence*, 35 (6), 591–604. doi:10.1016/j.intell.2006.11.004
- Schweizer, K. (2011). Scaling variances of latent variables by standardizing loadings: Applications to working memory and the position effect. *Multivariate Behavioral Research*, 46 (6), 938–955. doi:10.1080/00273171.2011.625312
- Schweizer, K., Altmeyer, M., Reiss, S. & Schreiner, M. (2010). The c-bifactor model as a tool for the construction of semi-homogeneous upper-level measures. *Psychological Test and Assessment Modeling*, 52 (3), 298–312. Verfügbar unter http://www.psychologie-aktuell.com/fileadmin/download/ptam/3-2010 20100928/05 Schweizer.pdf
- Schweizer, K. & Moosbrugger, H. (2004). Attention and working memory as predictors of intelligence. *Intelligence*, 32 (4), 329–347. doi:10.1016/j.intell.2004.06.006
- Sheppard, L. D. & Vernon, P. A. (2008). Intelligence and speed of information-processing: A review of 50 years of research. *Personality and Individual Differences*, 44, 535–551. doi:10.1016/j.paid.2007.09.015
- Smith, G. A. & Carew, M. (1987). Decision time unmasked: Individuals

- adopt different strategies. Australian Journal of Psychology, 39 (3), 339–351. doi:10.1080/00049538708259058
- Smith, G. A. & McPhee, K. (1987). Performance on a coincidence timing task correlates with intelligence. *Intelligence*, 11 (2), 161–167. doi:10.1016/0160-2896(87)90003-1
- Solymos, P. & Zawadzki, Z. (2016). pbapply: Adding progress bar to '*apply' functions (Version 1.2-1) [Software]. Verfügbar unter https://CRAN.R-project.org/package=pbapply
- Spearman, C. (1904). "General intelligence," objectively determined and measured. The American Journal of Psychology, 15 (2), 201–292. doi:10.2307/1412107
- Spearman, C. (1927). The abilities of man. London, England: Macmillan.
- Spiess, A.-N. & Neumeyer, N. (2010). An evaluation of R² as an inadequate measure for nonlinear models in pharmacological and biochemical research: a Monte Carlo approach. *BioMed Central: Pharmacology*, 10 (6), 1–11. doi:10.1186/1471-2210-10-6
- Stauffer, C. C., Haldemann, J., Troche, S. J. & Rammsayer, T. H. (2011). Auditory and visual temporal sensitivity: Evidence for a hierarchical structure of modality-specific and modality-independent levels of temporal information processing. *Psychological Research*, 76 (1), 20–31. doi:10.1007/s00426-011-0333-8
- Stauffer, C. C., Troche, S. J., Schweizer, K. & Rammsayer, T. H. (2014). Intelligence is related to specific processes in visual change detection: Fixed-links modeling of hit rate and reaction time. *Intelligence*, 43, 8–20. doi:10.1016/j.intell.2013.12.003
- Steiger, J. H. (1990). Structural model evaluation and modification: An interval estimation approach. Multivariate Behavioral Research, 25 (2), 173–180. doi:10.1207/s15327906mbr2502 4
- Sternberg, S. (1966). High-speed scanning in human memory. *Science*, 153 (3736), 652–654. Verfügbar unter http://www.jstor.org/stable/1719418
- Sternberg, S. (1969). Memory-scanning: Mental processes revealed by reaction-time experiments. *American Scientist*, 57 (4), 421–457. Verfügbar unter http://www.jstor.org/stable/27828738

Stough, C., Mangan, G., Bates, T., Frank, N., Kerkin, B. & Pellett, O. (1995). Effects of nicotine on perceptual speed. *Psychopharmacology*, 119 (3), 305–310. doi:10.1007/BF02246296

- Süss, H.-M., Oberauer, K., Wittman, W. W., Wilhelm, O. & Schulze, R. (2002). Working-memory capacity explains reasoning ability and a little bit more. *Intelligence*, 30 (3), 261–288. doi:10.1016/S0160-2896(01)00100-3
- Tadin, D., Kim, J., Doop, M. L., Gibson, C., Lappin, J. S., Blake, R. & Park, S. (2006). Weakened center-surround interactions in visual motion processing in schizophrenia. *Journal of Neuroscience*, 26 (44), 11403–11412. doi:10.1523/JNEUROSCI.2592-06.2006
- Tadin, D., Lappin, J. S., Gilroy, L. A. & Blake, R. (2003). Perceptual consequences of centre-surround antagonism in visual motion processing. Nature, 424, 312–315. doi:10.1038/nature01800
- Tadin, D., Silvanto, J., Pascual-Leone, A. & Battelli, L. (2011). Improved motion perception and impaired spatial suppression following disruption of cortical area MT/V5. *Journal of Neuroscience*, 31 (4), 1279–1283. doi:10.1523/JNEUROSCI.4121-10.2011
- Thomson, G. H. (1916). A hierarchy without a general factor. British Journal of Psychology, 8 (3), 271-281. doi:10.1111/j.2044-8295.1916.tb00133.x
- Thurstone, L. L. (1938). *Primary mental abilities*. Chicago, IL: The University of Chicago Press.
- Torchiano, M. (2016). effsize: Efficient effect size computation (Version 0.6.2) [Software]. Verfügbar unter http://CRAN.R-project.org/package=effsize
- Unsworth, N. & Engle, R. W. (2007). The nature of individual differences in working memory capacity: Active maintenance in primary memory and controlled search from secondary memory. *Psychological Review*, 114 (1), 104–132. doi:10.1037/0033-295X.114.1.104
- Valerius, S. & Sparfeldt, J. R. (2014). Consistent g- as well as consistent verbal-, numerical- and figural-factors in nested factor models? Confirmatory factor analyses using three test batteries. *Intelligence*, 44, 120–133. doi:10.1016/j.intell.2014.04.003

van der Maas, H. L., Dolan, C. V., Grasman, R. P., Wicherts, J. M., Huizenga, H. M. & Raijmakers, M. E. (2006). A dynamical model of general intelligence: The positive manifold of intelligence by mutualism. *Psychological Review*, 113 (4), 842–861. doi:10.1037/0033-295x.113.4.842

- van Zomeren, A. H. & Brouwer, W. H. (1994). Clinical neuropsychology of attention. New York, NY: Oxford University Press.
- Venables, W. N. & Ripley, B. D. (2015). MASS: Support functions and datasets for Venables and Ripley's mass (Version 7.3-45) [Software]. Verfügbar unter https://CRAN.R-project.org/package=MASS
- Vernon, P. A. (1950). The structure of human abilites. London, England: Methuen.
- Vernon, P. A. (1983). Speed of information processing and general intelligence. *Intelligence*, 7 (1), 53–70. doi:10.1016/0160-2896(83)90006-5
- Vickers, D., Nettelbeck, T. & Willson, R. J. (1972). Perceptual indices of performance: The measurement of 'inspection time' and 'noise' in the visual system. *Perception*, 1 (3), 263–295. doi:10.1068/p010263
- Wagner, F. L., Rammsayer, T. H., Schweizer, K. & Troche, S. J. (2014).
 Relations between the attentional blink and aspects of psychometric intelligence: A fixed-links modeling approach. *Personality and Individual Differences*, 58, 122–127. doi:10.1016/j.paid.2013.10.023
- Wang, T., Ren, X. & Schweizer, K. (2015). The modeling of temporary storage and its effect on fluid intelligence: Evidence from both Brown–Peterson and complex span tasks. *Intelligence*, 49, 84–93. doi:10.1016/j.intell.2015.01.002
- Wasserstein, R. L. & Lazar, N. A. (2016). The ASA's statement on p-values: Context, process, and purpose. The American Statistician, 70 (2), 129–133. doi:10.1080/00031305.2016.1154108
- Watson, A. B. & Pelli, D. G. (1983). Quest: A Bayesian adaptive psychometric method. *Perception & Psychophysics*, 33 (2), 113–120. doi:10.3758/BF03202828
- Wechsler, D. (2008). Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV). San Antonio, TX: Pearson.
- Wickham, H. (2007). Reshaping data with the reshape package. *Journal of Statistical Software*, 21 (12), 1–20. doi:10.18637/jss.v021.i12

Wickham, H. (2015). readxl: Read excel files (Version 0.1.0) [Software]. Verfügbar unter http://CRAN.R-project.org/package=readxl

- Wickham, H. (2016). ggplot2: An implementation of the grammar of graphics (Version 2.1.0) [Software]. Verfügbar unter https://CRAN.R-project.org/package=ggplot2
- Wickham, H. & Francois, R. (2014). dplyr: A grammar of data manipulation (Version 0.3.0.2) [Software]. Verfügbar unter http://CRAN.R-project.org/package=dplyr
- Wicki, J. (2014). Struktur- und Reliabilitätsanalyse einer modifizierten Kurzversion des Berliner Intelligenzstruktur-Tests (Unveröffentlichte Masterarbeit). Institut für Psychologie, Universität Bern, Schweiz.
- Zanto, T. P. & Gazzaley, A. (2009). Neural suppression of irrelevant information underlies optimal working memory performance. *Journal of Neuroscience*, 29 (10), 3059–3066. doi:10.1523/jneurosci.4621-08.2009

Abbildungen

1	Das Berliner Intelligenzstrukturmodell	28
2	Streudiagramme der 82 %-Erkennungsschwellen in der Spat-	
	ial-Suppression-Aufgabe	42
3	Dichtefunktion des Suppression-Index	44
4	Streudiagramme der Reaktionszeiten in der Hick-Aufgabe $$	45
5	Dichtefunktion des z-Werts des BIS-Tests	48
6	Zusammenhang zwischen dem Suppression-Index und $z\textsc{-Wert}$	
	des BIS-Tests	53
7	Exponentielles Modell zur Vorhersage der $82\%\text{-Erkennungs-}$	
	schwelle durch die Mustergrösse der Spatial-Suppression-Auf-	
	gabe	55
8	Dichtefunktion des aus der Spatial-Suppression-Aufgabe mit	
	einer exponentiellen Regression abgeleiteten $RMSE$	56
9	Einfluss des $RMSE$ -Grenzwerts der Spatial-Suppression-Auf-	
	gabe auf den Zusammenhang zwischen der Asymptote, der	
	Steigung und dem Suppression-Index	57
10	Einfluss des $RMSE$ -Grenzwerts der Spatial-Suppression-Auf-	
	gabe auf den Zusammenhang zwischen der Asymptote, der	
	Steigung und dem z -Wert des BIS-Tests	59
11	Modell 1: Kongenerisches Messmodell der Spatial-Suppres-	
	sion-Aufgabe	61
12	Modell 2: Strukturgleichungsmodell zur Vorhersage des g -Fak-	
	tors durch die Spatial-Suppression-Aufgabe	61
13	Modell 8: Fixed-Links-Messmodell der Spatial-Suppression-	
	Aufgabe	66

112 Abbildungen

14	Modell 9: Fixed-Links-Strukturgleichungsmodell zur Vorher-	
	sage des $g\mbox{-}\mathrm{Faktors}$ durch die Spatial-Suppression-Aufgabe $$	67
15	Lineares Modell zur Vorhersage der Reaktionszeit durch das	
	Bit der Hick-Aufgabe	71
16	Dichtefunktion des aus der Hick-Aufgabe mit einer linearen	
	Regression abgeleiteten $RMSE$	72
17	Einfluss des $RMSE$ -Grenzwerts der Hick-Aufgabe auf den Zu-	
	sammenhang zwischen dem y-Achsenabschnitt, der Steigung	
	und dem z-Wert des BIS-Tests $\ \ldots \ \ldots \ \ldots \ \ldots$	73
18	Modell 14: Kongenerisches Messmodell der Hick-Aufgabe	76
19	Modell 15: Strukturgleichungsmodell zur Vorhersage des g -	
	Faktors durch die Spatial-Suppression- und die Hick-Aufgabe	77
20	Modell 22: Fixed-Links-Messmodell der Hick-Aufgabe	81
21	Modell 23: Fixed-Links-Strukturgleichungsmodell zur Vorher-	
	sage des g -Faktors durch die Spatial-Suppression- und die Hi-	
	ck-Aufgabe	82

Tabellen

1	Die verwendeten Subtests des BIS-Tests	31
2	Deskriptive Angaben zu den 82 %-Erkennungsschwellen in der	
	Spatial-Suppression-Aufgabe	41
3	Effektstärken für die Mittelwertsunterschiede in der Spatial-	
	Suppression-Aufgabe	43
4	Deskriptive Angaben zu den Reaktionszeiten in der Hick-Auf-	
	gabe	46
5	Effektstärken für die Mittelwertsunterschiede in der Hick-Auf-	
	gabe	47
6	Deskriptive Angaben zur Anzahl richtig gelöster Items der	
	Subtests im BIS-Test	48
7	Produkt-Moment-Korrelationen zwischen den Subtests des BIS-	
	Tests	49
8	Produkt-Moment-Korrelationen zwischen der Spatial-Suppres-	
	sion-Aufgabe, dem Suppression-Index, der Hick-Aufgabe, dem	
	z-Wert und dem g -Faktor des BIS-Tests	51
9	Deskriptive Angaben zur exponentiellen Regression für die	
	Vorhersage der 82 %-Erkennungsschwellen durch die Muster-	
	grössen der Spatial-Suppression-Aufgabe	54
10	Modell-Fits der Fixed-Links-Messmodelle der Spatial-Suppres-	
	sion-Aufgabe	64
11	Multiple Regression zur Vorhersage des z -Werts des BIS-Tests	
	durch die Bedingungen der Spatial-Suppression- und der Hi-	
	ck-Aufgabe	69

Tabellen Tabellen

12	Deskriptive Angaben zur linearen Regression für die Vorher-
	sage der Reaktionszeiten durch die Bits der Hick-Aufgabe $$ $$ 70 $$
13	Produkt-Moment-Korrelationen zwischen dem z -Wert des BIS-
	Tests und den Aufgabenparameter der Spatial-Suppression-
	und der Hick-Aufgabe
14	Multiple Regressionen zur Vorhersage des z -Werts des BIS-
	Tests durch die Aufgabenparameter der Spatial-Suppression-
	und der Hick-Aufgabe
15	${\it Modell-Fits der Fixed-Links-Messmodelle der Hick-Aufgabe} . 79$
A1	Übersicht über die Datenbereinigung
В1	Spearmans Rangkorrelationen zwischen den Subtests des BIS-
	Tests
B2	Spearmans Rangkorrelationen zwischen der Spatial-Suppres-
	sion-Aufgabe, dem Suppression-Index, der Hick-Aufgabe, dem
	z-Wert und dem <i>q</i> -Faktor des BIS-Testss

A Anhang

Dieser Anhang beschreibt die Vorgehensweise bei der Datenaufbereitung, welche zum Ausschluss von Vpn geführt hat (vgl. Abschnitt 2.1). Am Ende des Anhangs fasst Tabelle A1 die Datenbereinigung zusammen.

Alter

Trotz sorgfältiger Auswahl der Vpn hat sich nachträglich bei der Altersberechnung herausgestellt, dass drei Vpn zum Testzeitpunkt noch nicht 18 Jahre alt waren. Sie wurden vor der Analyse entfernt.

Spatial-Suppression-Aufgabe

Zu Beginn der Datenerhebung wurde die Spatial-Suppression-Aufgabe mit einem Kontrast von 74 % dargeboten. Nach Inspektion der Daten der sieben ersten getesteten Vpn wurde in Absprache mit Duje Tadin entschieden, den Kontrast der Aufgabe auf 99 % zu erhöhen. Mit dieser Erhöhung des Kontrasts wurde sichergestellt, dass die über die vier Mustergrössen hinweg erwartete Verschlechterung der Wahrnehmungsleistung möglichst gross ausfällt (für den Zusammenhang zwischen Kontrast und Wahrnehmungsleistung siehe Tadin et al., 2003). Den restlichen Vpn wurde die Aufgabe mit einem Kontrast von 99 % dargeboten und die Daten der ersten sieben Vpn wurden von der Analyse ausgeschlossen.

Der Code, welcher die Darbietungszeiten generierte, hatte eine programmierte Darbietungszeitlimite von 1000 ms. Immer wenn der adaptive Alogrithmus des QUEST-Verfahrens (Watson & Pelli, 1983) eine Darbietungszeit von > 1000 ms ermittelte, wurde den Vpn deshalb der Stimulus mit einer Darbietungszeit von exakt 1000 ms präsentiert. Die Daten von 12 Vpn

mussten vor der Analyse entfernt werden, weil sie bei den sechs Schätzungen der 82 %-Erkennungsschwelle innerhalb einer Mustergrösse mehr als ein Mal eine 82 %-Erkennungsschwelle von > 1000 ms erzielt hatten. Dasselbe Ausschlussverfahren verwendeten Melnick et al. (2013).

Die Daten von zwei Vpn wurden von der Analyse ausgeschlossen, weil sie verglichen mit den restlichen Vpn in der 1.8° -Bedingung eine gemittelte 82%- \log_{10} -Erkennungsschwelle hatten, die über das dreifache der SD der 82%- \log_{10} -Erkennungsschwelle der Gesamtstichprobe betrug. Diese drei Vpn wurden nicht zur Grundpopulation gezählt und vor der Analyse entfernt.

BIS-Test

Bei den Subtests Buchstaben-Durchstreichen (BD), Klassifizieren von Wörtern (KW), Old English (OE), Rechen-Zeichen (RZ), Teil-Ganzes (TG), UW und X-Grösser (XG) ist der Rohwert Null im Manual des BIS-Tests (Jäger et al., 1997) keinem Punktwert zugeordnet. Vier Vpn erzielten beim Subtest XG einen Rohwert von Null, was den Subtest nicht auswertbar machte. Die Daten dieser vier Vpn wurden vor der Analyse aufgrund dieses nicht auswertbaren Subtests entfernt. Eine Vp wurde von der Analyse ausgeschlossen, weil sie bei den B-Subtests deutlich schlechter Abschnitt als der Rest der Stichprobe und damit einen Einfluss auf die berechneten Zusammenhänge gehabt hätte.

Tabelle A1

Übersicht über die Datenbereinigung

			abso	olut	r	elativ	v (%)
Beschrieb	Korrektur für	\overline{N}	D	D kum.	\overline{N}	D	D kum.
Getestet	-	206			100		
	Alter	203	-3	-3	99	-2	-2
	Spatial-Suppression-Aufgabe	182	-21	-24	88 -	-10	-12
	BIS-Test	177	-5	-29	86	-2	-14
Analysiert	-	177			86		

 $\label{eq:Anmerkungen} \textit{Anmerkungen}. \ \textit{N} = \textit{Stichprobengr\"{o}sse}; \ \textit{D} = \textit{Differenz}; \ \textit{D} \ \textit{kum.} = \textit{kumulierte Differenz}.$

B Anhang

Dieser Anhang beinhaltet Ergebnisse der Deskriptiv- und Inferenzstatistik, welche sich bei der Anwendung nonparametrischer Analyseverfahren ergeben haben. Die Ergebnisse dieser nonparametrischer Analyseverfahren wichen nicht bedeutend von den mit parametrischen Verfahren ermittelten Ergebnissen ab (vgl. Abschnitt 3.1).

Spatial-Suppression-Aufgabe

Um zu prüfen, ob die experimentelle Manipulation (die Musterrösse) einen Einfluss auf die abhängige Variable (die 82 %-Erkennungsschwelle) ausübte, wurde ein Friedman-Test durchgeführt. Der Globaltest hat gezeigt, dass die Unterschiede zwischen den Bedingungen signifikant waren, $\chi^2(3) = 345.26$, p < .001. Um zu erfahren, welche Bedingungen sich voneinander unterschieden, wurden Post-hoc-Tests (Galili, 2010; Hollander, Wolfe & Chicken, 2014) gerechnet. Diese haben ergeben, dass sich von den (durch die vier Bedingungen bestimmten) sechs Einzelvergleichen nur die 1.8°- und 3.6°-Bedingung nicht signifikant voneinander unterschieden (p = .09). Die restlichen fünf Einzelvergleiche waren mit p < .001 alle statistisch signifikant.

Hick-Aufgabe

Um zu testen, ob die experimentelle Manipulation (die Anzahl an Antwortalternativen) einen Einfluss auf die abhängige Variable (die Reaktionszeit) ausübte, wurde ein Friedman-Test durchgeführt. Der Globaltest belegte, dass die Unterschiede zwischen den Bedingungen signifikant waren, $\chi^2(3) = 516.12$, p < .001. Welche Bedingungen sich voneinander unterschieden, wurde mit Post-hoc-Tests (Galili, 2010; Hollander et al., 2014) geprüft. Diese haben ge-

zeigt, dass sich alle Bedingungen signifikant von einander unterschieden (alle ps < .001).

BIS-Test

Die Zusammenhänge der Subtests wurden mit Spearmans Rangkorrelationen bestimmt und sind in Tabelle B1 unterhalb der Diagonale abgetragen. Oberhalb der Diagonale sind die Differenzen zwischen den Produkt-Moment-Korrelationen und Spearmans Rangkorrelationen abgetragen.

Zusammenhangsmasse

Die Zusammenhänge der Subtests wurden mit Spearmans Rangkorrelationen bestimmt und sind in Tabelle B2 unterhalb der Diagonale abgetragen. Oberhalb der Diagonale sind die Differenzen zwischen den Produkt-Moment-Korrelationen und Spearmans Rangkorrelationen abgetragen.

Tabelle B1

Spearmans Rangkorrelationen (unterhalb der Diagonale) zwischen den Subtests des BIS-Tests. Oberhalb der Diagonale sind die Differenzen zwischen der Produkt-Moment-Korrelation und Spearmans Rangkorrelation abgetragen

	Subtest	1	2	က	4	ಬ	9	7	∞	6	10	11	12	13	14	15	16	17	18
П	90		.02	.05	00.	.04	05	.01	12	02	.04	.03	01	02	00.	.01	02	.04	03
2	ZN	.25***		00.	.01	00.	.02	00.	00.	.01	.04	.02	03	.01	.01	00.	.03	90.	.04
3		.26***	.42***		03	.02	02	.03	12	01	.01		03	01	.05	00.	.01	.05	.02
4	XG	.21**		.35***		.01	.01	04	08	00.	.01	.02	05	00.	00.	03	.01	.01	.03
ಬ		.31***	.41***		.34***		01	.03	03	.01	.01		02	01	90.	.01	.01	.05	00.
9		.27***			.30***	.17*	ı	03	04	00.	.02		03	02	.01	00.	.03	02	.02
7		.29***		.41***	.36***	*	.24**		07	00.	.02		04	03	.05	.02	.01	.01	.02
∞	BD	.19*		.17*	.19*	.02	80.	.10			.02		07	05	05	04	02	12	90
6	$^{\mathrm{SC}}$.16*	.51***	.35***	.48***	.22**	.17*	.32***	.25***		.01	.01	.01	00.	03	.02	.01	.01	.01
10	$_{ m LS}$.34***	.15*	.23**	.30***	.31***	.22**	.37***	03				.02	00.	05	.03	.02	.04	.03
Π	$_{ m CH}$.33***	.49***	.51***	.29***	.50***	.14	.30	.12	.31***	.13		01	.01	.01	00.	.02	20.	.02
12		.33***		.30***	.48***	.45***	.19*	.47***	.18*		.36***			08	00.	05	.02	00.	00.
13		.32***		.42***	.55***	.44***	.29***	.45***	.13	.44***	.34**	.37***	.41***		03	.01	.01	.02	.01
14		.41***		.24**	.18*	.20**	.26***	.34**	.13	.13	.45**	.16*	.18*	.15*		01	.01	02	03
15	KW	.26***		.28***	.39***	.39***	.24**	.54**	.19*		.49***	.21**	***09.	.35***	.34***		.03	.04	01
16		.31***	.02	.03	.20**	.00	.34***	60.	.11	.04	.28***	.05	.05	.08	.38***	.10		.02	.01
17	OE	90.	01	01	- 20.	05	.04	.12	.46***	.15*	01	13	.15*	.13	.03	.13	05		.02
18		.42***	.27***	.26***	.19*	.29***	.25***	90.	.04	.14	.21**	.25**	.20**	.33***	.19*	.23**	.18*	12	

Anmerkung. Siehe Tabelle 1 für eine Beschreibung der Subtests.

^aDer exakte Zusammenhang betrug $r_s = ..47$, p = .051. Alle restlichen in der Tabelle mit $r_s = ..15$ bezeichneten Korrelationskoeffizienten wiesen p-Werte < .05 auf.

^{*}p < .05. **p < .01. ***p < .001 (zweiseitig).

Spearmans Rangkorrelationen (unterhalb der Diagonale) zwischen den Bedingungen der Spatial-Suppression-Aufgabe, dem Suppression-Index, den Bedingungen der Hick-Aufgabe, dem z-Wert und dem g-Faktor des BIS-Tests. Oberhalb der Diagonale sind Tabelle B2 die Differenzen zwischen der Produkt-Moment-Korrelation und Spearmans Rangkorrelation abgetragen

Anmerkungen. SI = Suppression-Index. z-Wert = Mittelwert aus allen 18 z-standardisierten Subtests. *p < .05. **p < .01. ***p < .001 (zweiseitig).

C Anhang

Der LATEX-Code für die Reproduktion dieses Dokuments ist verfügbar unter http://pipomas.github.io/PhD_thesis. Der R-Code für die Reproduktion der berichteten Ergebnisse ist verfügbar unter http://pipomas.github.io/PhD_thesis.

Erklärung zur Dissertation

Hiermit bestätige ich, dass ich die Dissertation (Titel):

Im Fach:

unter der Leitung von Prof. Dr.

ohne unerlaubte Hilfsmittel ausgeführt habe und an keiner anderen Universität zur Erlangung eines akademischen Grades eingereicht habe.

Datum: Unterschrift: