End of the Term Test 26th April 2022

Duration: 2 hours

Answer the following:

Question 1: (3 Marks)

Let a = 8316 and b = 10920.

- (a) Find d = GCD (a, b), the greatest common divisor of a and b.
- (b) Find integers m and n such that d = ma + nb

Question 2: (6 Marks)

Which of the following are true?

- (a) $446 \equiv 278 \pmod{7}$, (c) $269 \equiv 413 \pmod{12}$, (e) $445 \equiv 536 \pmod{18}$
- (b) $793 \equiv 682 \pmod{9}$, (d) $473 \equiv 369 \pmod{26}$, (f) $383 \equiv 126 \pmod{15}$

Question 3: (4 Marks: 1 Mark each)

Find: (a) φ (81), φ (7⁶); (b) φ (72), φ (3000).

Question 4: (4 Marks: 2 Marks each)

Find a^{-1} in \mathbb{Z}_m where: (a) a = 37 and m = 249; (b) a = 15 and m = 234.

Question 5: (8 Marks: 2 Marks each)

Solve each linear congruence equation:

(a) $3x \equiv 2 \pmod{8}$; (b) $6x \equiv 5 \pmod{9}$; (c) $4x \equiv 6 \pmod{10}$

Question 6: (6 Marks)

Solve the congruence equation $1092x \equiv 213 \pmod{2295}$.

Question 7: (8 Marks: 2 Marks each)

Consider the following five relations on the set $A = \{1, 2, 3, 4\}$:

$$R1 = \{(1, 1), (1, 2), (2, 3), (1, 3), (4, 4)\}$$

$$R2 = \{(1,1), (1,2), (2,1), (2,2), (3,3), (4,4)\}$$

$$R3 = \{(1, 3), (2, 1)\}$$

 $R4 = \emptyset$, the empty relation

 $R5 = A \times A$, the universal relation

- a) Determine which of the relations are reflexive.
- b) Determine which of the relations are symmetric.
- c) Determine which of the relations are antisymmetric.
- d) Determine which of the relations are transitive.

Question 8: (8 Marks: 2 Marks each)

Let R and S be the following relations on $A = \{1, 2, 3\}$:

$$R = \{(1, 1), (1, 2), (2, 3), (3, 1), (3, 3)\}, S = \{(1, 2), (1, 3), (2, 1), (3, 3)\}$$

Find (a)
$$R \cup S$$
, $R \cap S$, $R^{\mathbb{C}}$; (b) $R \circ S$; (c) $S^2 = S \circ S$.

Question 9: (6 Marks: 2 Marks each)

Give an example of a relation R on $A = \{1, 2, 3\}$ such that:

- (a) R is both symmetric and antisymmetric.
- (b) R is neither symmetric nor antisymmetric.
- (c) R is transitive but $R \cup R^{-1}$ is not transitive.

Question 10: (6 Marks: 2 Marks each)

Consider the relation $R = \{(a, a), (a, b), (b, c), (c, c)\}$ on the set $A = \{a, b, c\}$. Find: (a) reflexive(R).

(b) symmetric(R); (c) transitive(R).

Question 11: (4 Marks)

Let R be the following equivalence relation on the set $A = \{1, 2, 3, 4, 5, 6\}$: $R = \{(1, 1), (1, 5), (2, 2), (2, 3), (2, 6), (3, 2), (3, 3), (3, 6), (4, 4), (5, 1), (5, 5), (6, 2), (6, 3), (6, 6)\}$

Find the partition of A induced by R, i.e., find the equivalence classes of R.

Question 12 (4 Marks)

For each pair of integers, a and b, find integers q and r such that a = bq + r and 0 < r < |b|

(a) a = -381 and b = 14