1924B Mini Boîte Noire

Enregistreur de données de vol

Ali Zoubir 4 octobre 2023

ETML-ES

Sommaire

Introduction

Pré-étude

Développement schématique

Développement du PCB

Développement du firmware

Conclusion

Introduction

Introduction

Figure 1 – Boîte noire

Les enregistreurs de données de vol jouent un rôle crucial dans la sécurité aérienne et la compréhension des phénomènes aéronautiques en capturant de manière inaltérable des informations vitales.

Ce projet a pour but la collecte et le stockage des données de mesures et de localisation d'un aéronef au moyen d'une centrale inertielle et d'un système de positionnement GPS/GNSS.

Principe

Figure 2 – Schéma de principe.

- Données de localisation, trajectoire.
- Accéléromètre et Gyroscope.
- · Miniaturisation.
- Bonne autonomie / Low power.
- Configuration des temps de sauvegardes.
- Charge, lecture et configuration par USB-C.

Pré-étude

Schéma bloc

Figure 3 - Schéma bloc.

Choix des composants clés

Microcontrôleur : PIC32MX274F256D

Centrale inertielle : BNO055

GNSS : CAM-M8C-0

Carte SD : 256MB

Batterie : LI-ION 1600mAh

Régulateur : MCP73871T-2CCI/ML

Microcontrôleur

Figure 4 – Caractéristiques PIC32.

Le MCU choisis dispose de différentes configurations de gestion de puissance, notamment des modes d'économie d'énergie, afin de permettre une meilleure autonomie.

Centrale inertielle

Figure 5 – Illustration BNO055.

Caractéristiques importantes:

Résolution gyroscope	:	16	[bits]
Résolution accéléromètre	:	14	[bits]
Résolution magnétomètre	:	\sim 0.3	$[\muT]$
I_{DD}	:	12.3	[mA]
Dérive de température	:	$\pm \ 0.03$	[%/K]
Dérive accéléromètre	:	0.2	[%/V]
Dérive gyroscope	:	< 0.4	[%/V]

GNSS

Model	Category			ory GNSS			Sup	ply	ı	nter	face	s				F	eatu	res				(irad	e			
	Standard Precision GNSS	High Precision GNSS	Dead Reckoning	Timing	GPS / QZSS	GLONASS	Galileo	BeiDou	Number of Concurrent GNSS	1.65 V - 3.6 V	2.7 V - 3.6 V	UART	USB	SPI	DDC (PC compliant)	Programmable (Flash)	Data logging	Additional SAW	Additional LNA	RTC crystal	Oscillator	Built-in antenna	Built-in antenna supply and supervisor	Timepulse	Standard	Professional	Automotive
CAM-M8Q	•				•	•	٠	•	3		•	•		•	•			•	•	•	Т	•		1			
CAM-M8C	•				•	•	•	•	3	•		•		•	•			•	•	•	C	•		1			

Figure 6 - Caractéristiques du GNSS.

Carte SD

$$S_{gyro} \qquad 16 \quad [Bytes] \\ S_{accel} \qquad 16 \quad [Bytes] \\ S_{gnss} \qquad 100 \quad [Bytes] \\ T_{inertiel} \qquad 0.5 \quad [s] \\ T_{gnss} \qquad 5 \quad [s] \\ T_{mesMin} \qquad 900 \quad [s] \\ S_{single} = \frac{T_{gnss}}{T_{inertiel}} S_{accel} + S_{gnss} = \frac{5}{0.5} 16 + 100 = 260 \; [Bytes] \\ S_{mesures} = \frac{S_{single}}{T_{gnss}} * T_{mesMin} = \frac{260}{5} * 900 = 46'800 \; [Bytes] = 49.8 \; [KB] \\ T_{mesures} = \frac{S_{SD} * T_{gnss}}{S_{single}} = \frac{256 * 10^6 * 5}{260} = \sim 82'051 \; Minutes = \sim 1368 \; H.$$

256 [*MB*]

 S_{SD}

10

Batterie

Liste des consonniations principales										
Microcontrôleur	24	[mA]	Тур.							
Carte-SD	100	[mA]	Max.							
Carte-SD	60	[mA]	Moyenne							
IMU	12.3	[mA]	Тур.							
GNSS	71	[mA]	Max.							
GNSS	29	[mA]	Тур.							
Totale max	207.3	[mA]	Max.							

Liste des consommations principales

Table 1 - Tableau des consommations de courant.

Moyenne

Totale moyennes 125.3 [mA]

Temps minimum avec tolérance désiré : $10h \Rightarrow \min \sim 1300mAh$

Synthèse pré-étude

Choix des composants et technologies :

- Microcontrôleur: PIC32MX274F256D privilégié, 2 UART, 1 SPI, 1 I2C, économie d'énergie.
- Centrale inertielle: BNO055 de BOSCH, mesures avancées, facile à implémenter.
- GPS/GNSS: CAM-M8C-0 d'ublox, antenne interne omnidirectionnelle, facile à implémenter.
- Carte SD : Capacité de 256MB, suffisante pour données de vol.
- Batterie : Nécessité de 1253 mAh pour autonomie minimale.

Développement schématique

Blocs du systèmes

Figure 7 – Blocs du système.

MCU - Microcontrôleur

Figure 8 - Connexions du microcontrôleur

Peripherals - Carte SD

Figure 9 - Branchement carte SD.

Peripherals - Centrale inertielle

Figure 10 – Schéma centrale inertielle.

Peripherals - GNSS

Figure 11 - Schéma du GNSS.

Peripherals - USB-FTDI

Figure 12 - Schéma connecteur USB et FTDI.

Power - Chargeur de batterie

Figure 13 – Schéma chargeur de batterie.

Power - Enclenchement

Figure 14 – Schéma allumage du système.

Développement du PCB

Choix du boîtier

Figure 15 - Dimensions du SIC5-9-3B TAKACHI.

Placement des composants

Figure 16 – Placement des composant et dimensions de la carte.

Intégration

Figure 17 – Vues 3d de l'assemblage.

Routage

Figure 18 - Routage des différentes couches.

Développement du firmware

Configuration des périphériques

ID du timer	Description	Période
Timer 1	sert pour les attentes bloquantes précises.	1 [ms]
Timer 2	gère les délais entre les mesures et l'affichage des LEDs.	10 [ms]

ID du BUS	Utilité	Fréquence	Interruption	Trame	Parité
UART ID1	Réceptions commandes USB.	9600 [Baud]	Priorité 1	8bits + 1stop	Non
UART ID2	Communication avec le GNSS.	9600 [Baud]	Non	8bits + 1stop	Non
SPI	Communication avec la carte SD en FAT32.	12'000 [MHz]	Priorité 1	-	-
I2C	Communication avec la centrale inertielle.	400 [kbit/s]			

Table 2

Diagramme application principale

Figure 19 – Diagramme d'état principal.

Diagramme de séquence principale

Flowchart Logging

Carte SD

Machine d'état carte SD - Initialisation

Machine d'état carte SD - Logging

Conclusion

Conclusion

Résumons ce que nous avons appris.

Questions?