الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: جوان 2014

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

المدة: 03 سا و30 د

اختبار في مادة: العلوم الفيزيائية

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول

التمرين الأول: (04) نقاط)

لدراسة حركية التفاعل الكيميائي البطيء والتام بين الماء الأكسجيني $II_2O_2(aq)$ ومحلول يود البوتاسيوم $(K_-(aq)+I^-(aq))$

$$II_2O_2(aq) + 2I_1(aq) + 2II_3O^+(aq) = I_2(aq) + 4II_2O(\ell)$$

مزجنا في بيشر عند اللحظة t=0 ودرجة الحرارة C 25° محممًا $V_1=100~mL$ من محلول الماء الأكسجيني t=0 ودرجة الحرارة $V_2=100~mL$ مع حجم t=0 مع محلول يود البوثاسيوم تركيزه المولي تركيزه المولي $V_2=100~mL$ مع حجم t=0 مع محلول يود البوثاسيوم تركيزه المولي . $(2H_3O^+(aq)+SO_4^{2-}(aq))$ من محلول حمض الكبريث المركز t=0 و يضع قطرات من محلول حمض الكبريث المركز t=0 و يضع قطرات من محلول حمض الكبريث المركز t=0 و يضع قطرات من محلول حمض الكبريث المركز t=0 و يضع قطرات من محلول حمض الكبريث المركز t=0 و يضع قطرات من محلول حمض الكبريث المركز t=0 و يضع قطرات من محلول حمض الكبريث المركز t=0 و يضع قطرات من محلول حمض الكبريث المركز t=0 و يضع قطرات من محلول حمض الكبريث المركز t=0

اكتب المعادلتين النصفيتين للأكسدة والإرجاع. -1

- احسب كميتى المادة $n_0(H_2O_2)$ للماء الأكسجيني و $n_0(I^-)$ لشوارد اليود في المزيج الابتدائي.
 - 3) أعد كتابة جدول التقدم للتفاعل وأكمله.

معادلة التفاعل		$II_2O_2(aq) + 2I(aq) + 2II_3O^+(aq) = I_2(aq) + 4II_2O(\ell)$					
حالة الجملة	التقدم		$(mo\ell)$ —	ات المادة	کمی		
الابتدائية	0			Tr.		٦٠	
الانتقالية	X			ب عر		ري عر	
النهائية	\boldsymbol{X}_f			ុភ	3×10^{-3}	\$A .	

- استنتج المتفاعل المحد.

المتشكلة في لحظات زمنية مختلفة t، نأخذ في كل مرة نفس الحجم من $I_2(aq)$ المتشكلة في لحظات زمنية مختلفة t، نأخذ في كل مرة نفس الحجم من المزيج التفاعلي ويضع فيه (ماء + جليد) ويضع قطرات من صمغ النشاء ويعايره بمحلول لثيوكبريتات الصوديوم $\left(2Na^+(aq)+S_2O_3^{2-}(aq)\right)$ معلوم التركيز .

معالجة النتائج المتحصل عليها مكنتنا من رسم المنحنى $X=f\left(t
ight)$ الممثل لتطور تقدم التفاعل الكيميائي المدروس في المزيج الأصلي بدلالة الزمن (الشكل-1).

ب- ضع رسمًا تخطيطيًا للتجهيز التجريبي المستخدم في عملية المعايرة.

$$t_1 = 9 \min$$
 و اللحظتين $t_0 = 0$

 $I^-(aq)$ جبر عن سرعة اختفاء شوارد بدلالة السرعة الحجمية للتقاعل واحسب قيمتها في اللحظة .t.

التمرين الثاني: (04 نقاط)

يُستعمل البلوبتونيوم 239 كوقود في المحطات النووية، عندما تُقذف نواته بنينزونات تنشطر إلى نواتين ونينزونات. $^{239}_{94}Pu+^{1}_{0}n\longrightarrow ^{102}_{42}Mo+^{135}_{27}Te+X\,^{1}_{0}n$ ينمذج أحد النقاعات الممكنة لانشطار $^{239}_{94}Pu+^{1}_{0}n$ بالمعادلة:

1) اكتب قانوني الانحفاظ في التفاعلات النووية ثمّ عين قيمة Z و X.

 Δm المكافئ. أ- احسب الطاقة المحرّرة عن انسُطار نواة واحدة من البلوتونيوم 239 واستنتج النقص في الكتلة

ب- ضع مخططا طاقويا يمثل الحصيلة البلوتونيوم 239.

الطاقوية لتفاعل انشطار نواة

3) يستهلك مفاعل نووي كل يوم (24h) كتلة من البلويونيوم 239 قدرها g 35. احسب الاستطاعة المتوسطة للمفاعل.

4) أ- ماذا يمثل المنحنى المقابل؟ (الشكل-2) و ما الفائدة منه؟ ب- أعد رسم المنحنى بشكل كيفي وحدّد عليه مواضع الأنوية التالية: $^{135}_{Z}Te$ $^{102}_{42}Mo$ $^{239}_{94}Pu$

تعطى طاقة الربط لكل نكليون $\frac{F_\ell}{4}$ للأنوية السابقة:

 $^{135}\!Te:~8,3\,MeV/nucl\acute{e}on~~ \cdot ~^{102}_{42}Mo:~8,6\,MeV/nucl\acute{e}on~ \cdot ~^{239}_{94}Pu:7,5\,MeV/nucl\acute{e}on$ $1MeV = 1,6.10^{-13}J + N_A = 6,02.10^{23} mol^{-1} + 1u = 931,5 MeV/c^2$

التمرين الثالث: (14 نقاط)

حققنا الدارة الكهربائية المتكونة من العناصر الكهربائية التالية:

، $R=50\Omega$ مولد توتر كهربائي ئابت E، وشيعة ذاتيتها E ومقاومتها $E=10\Omega$ ، ناقل أومي مقاومته $E=10\Omega$ وقاطعة E، موصولة على التسلسل (الشكلE=10).

t=0 غلق القاطعة K عند اللحظة

- 1) أ- أعد رسم الدارة الكهربائية وحدّد جهة النيار الكهربائي مع التّعليل. أعط عبارة شدة التيار الكهربائي I_0 في النظام الدائم.
- 2) لمشاهدة التوتر الكهربائي بين طرفي الناقل الأومي $u_R=u_{BC}$ على شاشة راسم اهتزاز مهبطى ذى ذاكرة.
- أ- بيّن كيفية التوصيل براسم الاهتزاز المهبطي لمشاهدة تطور $u_{BC}\left(t
 ight)$ ، مثّله كيفيًا بدلالة الزمن وما هو المقدار الفيزيائي الذي يُمائله في التطور؟
 - ب- جد المعادلة التفاضلية لتطور شدة التيار I(t) المار في الدارة.
- ج- إنّ حل المعادلة التفاضلية السابقة هو au(s)=0, $2(1-e^{-50t})$ حيث الزمن بالثانية au(s) وشدة التيار بالأمبير au(A). استنتج قيمة كل من au(s) (ثابت الزمن) و au(s).
 - t = au د- اكتب العبارة اللحظية للطاقة المخزنة في الوشيعة واحسب قيمتها في اللحظة

التمرين الرابع: (04 نقاط)

يخضع الجسم (S) أثناء حركته لقوى احتكاك تكافئ قوة معاكسة لجهة الحركة وثابتة الشدة f (الشكل-4).

- (S) أ- مثل القوى الخارجية المطبقة على مركز عطالة الجسم (S). بتطبيق القانون الثاني لنيوتن بيّن أن المعادلة التفاضلية $\frac{dv}{dt} = -\frac{f}{m}$.
 - x=- باعتبار النقطة x=- مبدأ للغواصل، اكتب المعادلتين الزمنيتين y=- و y=- و y=- الزمنيتين y=- استنتج العلاقة النظرية y=- استنتج العلاقة النظرية y=-
 - 2) المنحنى (الشكل 5) يُمثُّل تغيرات v^2 بدلالة x . استنج قيمة السرعة الابتدائية v_0 وشدة قوة الاحتكاك \vec{f} .

. $\overline{BD} = 0.5m$ حيث F حيث $\overline{BD} = 0.5m$ في النقطة \overline{B} بسرعة \overline{V}_B ليسقط في الموضع $\overline{BD} = 0.5m$ حيث $\overline{BD} = 0.5m$ أ- ادرس طبيعة حركة مركز عطالة الجسم $\overline{BD} = 0.5m$ بعد مغادرته النقطة \overline{B} في المعلم $\overline{BD} = 0.5m$.

y = f(x) معادلة مسار الحركة اكتب معادلة

E جدد المسافة الأفقية DE وسرعة الجسم (S) في الموضع

يعطى $g=10m\cdot s^{-2}$ ، تهمل مقاومة الهواء ودافعة أرخميدس.

التمرين التجريبي: (04 نقاط)

في حصة الأعمال التطبيقية، طلب الأستاذ من ثلامنته تحضير محاليل مائية لأحد الأحماض الصلبة HA بتراكيز مولية مختلفة وقياس pH كل محلول في درجة الحرارة $25^{\circ}C$ ، فكانت النتائج كالتالي:

$c(mo\ell/L)$	1,0.10-2	$5,0\cdot 10^{-3}$	1,0.10-3	$5,0\cdot 10^{-4}$	$1,0\cdot 10^{-4}$
pН	3,10	3, 28	3,65	3,83	4, 27
$\left[H_3O^+ \right]_{\acute{e}q} (mol \cdot L^1)$					
A = A = A = A = A = A = A = A = A = A =					
$[HA]_{\acute{e}q} (mol \cdot L^{-1})$					
$Log \frac{[A]_{\epsilon_q}}{[HA]_{\epsilon_q}}$					

- .V وحجمه c وحجمه نووكو لا تجريبيا توضح فيه كيفية تحضير محلو لا للحمض الصلب d تركيزه المولي
 - 2) عرف الحمض HA حسب برونشند واكنب معادلة تفاعله مع الماء.
 - 3) أكمل الجدول السابق.
 - . $(H\!A/A^-)$ المحلول المائي الحمض $H\!A$ بدلالة الثابت pK_a المتائية (4 محلول المائي الحمض المحلول المائي الحمض المحلول المائي الحمض المحلول المائي ال

. واكتب معادلته.
$$pH=f\left(Lograc{\left[A^{-}
ight]_{\acute{e}q}}{\left[HA
ight]_{\acute{e}q}}
ight)$$
 واكتب معادلته. (5

ب- حدِّد بيانيا قيمة الثابت pK_a للثنائية (HA/A^-) ثم استنج صيغة الحمض HA من الجدول الثالي:

الثنائية	НСООН / НСОО⁻	$C_2H_5COOH/C_2H_5COO^-$	$C_6H_5COOH/C_6H_5COO^-$
pK_{a}	3,8	4,87	4,2

ج- رئب هذه الأحماض حسب نزايد قوتها الحمضية مع التعليل.

الموضوع الثاني

التمرين الأول: (04 نقاط)

وضعنا في بيشر حجما $I_2(aq)$ من مادة مطهرة تحتوي على ثنائي اليود $I_2(aq)$ بتركيز $I_2(aq)$ من مادة مطهرة تحتوي على ثنائي اليود Zn(s) ثمّ أضفنا له عند درجة حرارة ثابتة، قطعة من معدن الزنك $C_0=2.0\cdot 10^{-2}\,mo\ell\cdot L^{-1}$. m=0.5g

التحول الكيميائي البطيء والتام الحادث بين ثنائي اليود والزنك ينمذج بتفاعل كيميائي معادلته:

$$Zn(s) + I_2(aq) = Zn^{2+}(aq) + 2I^{-}(aq)$$

متابعة التحول عن طريق قياس الناقلية النوعية σ للمزيج التفاعلي في لحظات زمنية مختلفة مكنتنا من الحصول على جدول القياسات التالى:

$t(\times 10^2 s)$	0	1	2	4	6	8	10	12	14	16
$\sigma(S \cdot m^{-1})$	0	0,18	0, 26	0,38	0,45	0,49	0,50	0,51	0,52	0,52
$x (mmo\ell)$										

- 1) اشرح لماذا يمكن متابعة هذا التحول عن طريق قباس الناقلية النوعية.
 - 2) احسب كمية المادة الابتدائية للمتفاعلين.
 - 3) أنجز جدولا لتقدم التقاعل الحادث.
 - . $_{X}$ أ- اكتب عبارة الناقلية النوعية σ للمزيج التقاعلي بدلالة النقدم

ب- أكمل الجدول السابق.

X = f(t) ج- ارسم المنحنى

5) أ- عرق زمن نصف التفاعل t_{y_2} ئم عيِّن قيمته.

 $t_1 = 1000s$ و $t_1 = 400s$ ب $t_2 = 1000s$ و المحظنين $t_1 = 400s$ و ب

ج- فسر مجهرياً تطور السرعة الحجمية للتقاعل.

 $. \ \lambda_{T} = 7,70 \text{mS} \cdot m^{2} \cdot \text{mol}^{-1} \quad : \lambda_{Zn^{2+}} = 10,56 \text{mS} \cdot m^{2} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 65,4 \text{g} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 65,4 \text{g} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 65,4 \text{g} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 65,4 \text{g} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 65,4 \text{g} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 65,4 \text{g} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 65,4 \text{g} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 65,4 \text{g} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 65,4 \text{g} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 65,4 \text{g} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 65,4 \text{g} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 65,4 \text{g} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 65,4 \text{g} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 65,4 \text{g} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 65,4 \text{g} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 65,4 \text{g} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 65,4 \text{g} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 65,4 \text{g} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 65,4 \text{g} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 65,4 \text{g} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 65,4 \text{g} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 65,4 \text{g} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 65,4 \text{g} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 65,4 \text{g} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 65,4 \text{g} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 65,4 \text{g} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 65,4 \text{g} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 65,4 \text{g} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 65,4 \text{g} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 65,4 \text{g} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 65,4 \text{g} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 65,4 \text{g} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 65,4 \text{g} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 65,4 \text{g} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 65,4 \text{g} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 65,4 \text{g} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 65,4 \text{g} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 65,4 \text{g} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 65,4 \text{g} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 65,4 \text{g} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 65,4 \text{g} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 65,4 \text{g} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 65,4 \text{g} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 65,4 \text{g} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 65,4 \text{g} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 65,4 \text{g} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 65,4 \text{g} \cdot \text{mol}^{-1} \quad : M \left(Zn \right) = 6$

التمرين الثاني: (04 نقاط)

 eta^- : المشع يحتوي على نظير السيزيوم المشع المشع لـــ: eta^-

- 1) عرق ما يلي:
- النظير المشع.
- eta^- الإشعاع –
- . اكتب معادلة النشاط الإشعاعي للسيزيوم ^{134}Cs
- 3) من إحدى الموسوعات العلمية الخاصة بالبحث العلمي $A=f\left(t
 ight)$ في الفيزياء النووية تم استخراج المنحنى (الشكل-1) والذي يعبّر عن تطور النشاط الإشعاعي Aلمنبع مشع من السيزيوم 134 مماثل للمنبع السابق

- $\cdot m_0$ کثلته
- t=0 في اللحظة A_{0} أ- استنج من المنحنى قيمة النشاط الإشعاعي أ A_{0}
- . au ما هي قيمة النشاط الإشعاعي في اللحظة au= au استنتج قيمة ثابت الزمن
- ج- بيّن أن $\ell_{1/2}= au\cdot \ln 2$ نصف العمر لنظير السيزيوم Cs يعطى بالعلاقة: $t_{1/2}= au\cdot \ln 2$ واحسب قيمته.
 - m'(t) د- احسب كتلة العينة m_0 ثم بيّن أن الكتلة المنفككة m'(t) من السيزيوم m_0 نعطى بالعلاقة:

$$m'(t) = m_0 (1 - e^{-\lambda t})$$

ه- مثَّ كيفياً تطور الكتلة m'(t) بدلالة الزمن ℓ

يعطى الجدول المقابل والمستخرج من الجدول الدوري:
$N_{\perp} = 6.02 \cdot 10^{23} mo\ell^{-1}$

$\Lambda(\times 10^{10}$	Bq)	٠,
		Η
NIII		
		<u>∃</u>
		∄
		╡
		∄
		╡
_ `		
1	\	-
		╡
0 2		<u>is)</u>
	الشكل – 1	

CsLa

التمرين الثالث: (04 نقاط)

تتكون الدارة الكهربائية (السُكل-2) من مولد لتونز کھر بائی ٹابت E، مکٹفہ سعتھا C، ناقلین أو میین EK وبادله $R_2=2k\Omega$ وبادله $R_1=1k\Omega$ مقاومتهما Y_2 و Y_1 توصل الدارة براسم اهتزاز مهبطی ذي مدخلين ا

) نضع البادلة K في الوضع 1، ماذا بمثّل المنحنيان المشاهدان Kبالمدخلين Y_1 و Y_2 لمراسم الاهتزاز المهبطى؟

2) يظهر على شاشة راسم الاهتزاز المهبطي المنحنيان (a) و (b) (الشكل-3).

أ- ما هو المنحنى المعطى بالمدخل Y ؛ برّر إجابتك.

اكتب المعادلة التفاضلية الموافقة لتطور المقدار
 الفيزيائي الذي يمثله هذا المنحني.

ب- جد قيمة ثابت الزمن au_1 للدارة.

Cو کالاً من Eو کالاً من E

t=0 احسب شدة التيار (t) في اللحظة (t) احسب شدة التيار (t) في اللحظة (t)

5) بعد نهاية شحن المكثفة نضع البادلة K في الوضع 2 في لحظة نعتبرها مبدأ الأزمنة.

أ- احسب قيمة au_2 للدارة في هذه الحالة وقارنها بقيمة au_1 ، ماذا تستتج؟

 $t= au_2$ بنعل جول في اللحظة ولمحولة في الناقل الأومى R_2 بنعل جول في اللحظة au_2

التمرين الرابع: (04 نقاط)

في مرجع جيومركزي نعتبر حركة الأقمار الاصطناعية دائرية حول مركز الأرض التي نفرض أنها كرة متجانسة كتلتها $M_{_T}$ ونصف قطرها R.

نقبل أن القمر الاصطناعي في مداره يخضع لقوة جذب الأرض $ar{F}_{T/s}$ فقط.

أ- عرتف المرجع الجيو مركزي.

ب- اكتب العبارة الشعاعية للقوة $ec F_{T/s}$ بدلالة G (ثابت الجذب العام)، M_{σ} ، R ، M_{τ} ، الاصطناعي) و h ارتفاعه عن سطح الأرض.

ج- استنتج عبارة à شعاع تسارع حركة القمر الاصطناعي، ما طبيعة الحركة؟

2) الجدول التّالي يعطي بعض خصائص حركة قمرين اصطناعيين حول الأرض.

أ- أحد القمرين الاصطناعيين جيومستقرًا، عيّنه مع التعليل.

ب- احسب تسارع الجاذبية الأرضية (g) عند نقطة من
 مدار القمر الاصطناعي Alsat1. ماذا تستتنج؟

ج- بين اعتمادًا على معطيات الجدول أنّ القانون الثالث لكبار مُحقّق.

 M_{π} د - استتنج قيمة تقريبية للكتلة M_{π} .

 $1~four=23h~56\,\mathrm{min}$ ، R=6380~km ، $G=6,67 imes10^{-11}~N\cdot m^2\cdot kg^{-2}$: تسار ع الجانبية عند سطح الأرض: $g_0=9.8\,\mathrm{m}\cdot s^{-2}$

القمر الاصطناعي	Alsat1	Astra
$T(s) \times 10^3$	5,964	86,160
$h(m) \times 10^6$	0,70	35,65

التمرين التجريبي: (04 نقاط)

مزجنا عند اللحظة $m_0=38.4\,g$ من حمض كربوكسيلي مزجنا عند اللحظة $m_0=0.4~mo\ell$ ، t=0 من حمض كربوكسيلي مزجنا عند اللحظة C_2H_5OH ويضع قطرات من حمض الكبريت المركز.

قسمنا المزيج بالتساوي على عشرة أنابيب لختبار تسد بإحكام وتوضع في حمام مائي درجة حرارته ئابتة C = 60 (الشكل-4).

- 1) اكتب معادلة التقاعل المنمذج للتحول الكيميائي الحادث. - ما هي خصائص هذا التقاعل؟
- 2) قمنا بإجراء تجربة مكنتنا من قباس كمية مادة الأستر المتشكل في كل أنبوب خلال الزمن ورسم المنحنى $n_{ester} = f(t)$.
 - أعط البرونوكول التجريبي الموافق.
 - 3) أ- علما أن ثابت التوازن لتقاعل الأسترة المدروس هو K=4. حدّد كمية مادة الحمض في المزيج الابتدائي.
 - ب- جد الصيغة المجملة للحمض الكربوكسيلي وأعط واستنتج الصيغة نصف المفصلة للأستر وأعط اسمه النظامي.

ج- لحسب مردود النفاعل وقارنه بمردود النفاعل لمزيج ابتدائي متساوي المولات، كيف نفسر ذلك؟ $t = 120 \, \mathrm{min}$ جد النركيب المولى للمزيج النفاعلي في كل أنبوب عند اللحظة $t = 120 \, \mathrm{min}$

 $M\left(O \right)=16g\cdot mol^{-1}$; $M\left(C \right)=12g\cdot mol^{-1}$; $M\left(H \right)=1g\cdot mol^{-1}$;