Algebraic Geometry 1 - Assignment 5

Matteo Durante, 2303760, Leiden University

27th November 2018

Exercise 7.9.12

Furthermore, we will use the fact that $v_y(fg) = v_y(f) + v_y(g)$ and therefore $v_y(f^n) = n \cdot v_y(f)$.

(i) Notice that, by [1, ex. 7.3.6], since $\mathcal{O}_U(U) = A = \mathbb{K}[x,y]/(f)$, $\Omega^1(U) \cong \Omega^1_A \cong (A \cdot dx \oplus A \cdot dx)$ $dy)/(A \cdot df)$.

Now, since $f = -y^n + x^{n-1} - 1$, $df = -ny^{n-1}dy + (n-1)x^{n-2}dx$.

In $\Omega^1(U)$, this implies that $(n-1)x^{n-2}dx = ny^{n-1}dy$.

(iii) By [1, ex. 7.9.10], it is sufficient to prove that, given $P = (x_P, y_P) \in U \cap D(x)$, $(\partial f/\partial x)(P) \neq 0$, from which will follow that y - y(P) is a uniformizer of U at P.

By definition, a point P lying there is s.t. $x_P \neq 0$, hence $(\partial f/\partial x)(P) = (n-1)x_P^{n-2} \neq 0$ and

(iv) Again, we only have to prove that $(\partial f/\partial y)(P) \neq 0$ for every $P = (x_P, y_P) \in U \cap D(y)$.

By definition, a point P lying there is s.t. $y_P \neq 0$, hence $(\partial f/\partial y)(P) = -ny_P^{n-1} \neq 0$ and we are

(v) We may distinguish among two cases: $P \in U \cap D(x)$ and $P \in U \cap D(y)$. In the former, since $\omega_0 = \frac{dy}{(n-1)x^{n-2}}$ and y - y(P) is a uniformizer of U at P, having $\omega_0 = g \cdot dy$ for $g = \frac{1}{(n-1)x^{n-2}} \in K(X)$, we have that $v_P(\omega_0) = v_P(g)$.

Furthermore, g is a rational function well defined on $U \cap D(x)$ and $\neq 0$ for every $P \in U \cap D(x)$, therefore $g \in \mathcal{O}_U(U)$. It follows that $g = (y - y(P))^0 g$ and thus $v_P(\omega_0) = v_P(g) = 0$.

In the latter, since $\omega_0 = \frac{dx}{ny^{n-1}}$ and x - x(P) is a uniformizer of U at P, having $\omega_0 = g \cdot dx$ for $g = \frac{1}{nv^{n-1}} \in K(X)$, we have that $v_P(\omega_0) = v_P(g)$.

Furthermore, g is a rational function well defined on $U \cap D(y)$ and $\neq 0$ for every $P \in U \cap D(y)$, therefore $g \in \mathcal{O}_U(U)$. It follows that $g = (x - x(P))^0 g$ and thus $v_P(\omega_0) = v_P(g) = 0$.

- (ii) We see that ω_0 has no poles in $U = (U \cap D(x)) \cup (U \cap D(y))$, for it has order 0 at every point $P \in U$.
- (vi) $Q \in X \cap Z(x_2) \subset X \cap U_0$, hence we may work with $A = \mathcal{O}_X(X \cap U_0) \cong \mathbb{K}[x_{01}, x_{02}]/(x_{01}^n + x_{02}^n)$ $x_{02}^n - x_{02} \cong \mathbb{K}[u,v]/(u^n + v^n - v)$ under the isomorphism induced by ϕ_0 . In particular, $\phi_0(Q) =$ $(0,0) \in Z(u^n + v^n - v) \subset \mathbb{A}^2_{\mathbb{K}}$. Notice that $X = (X \cap U_2) \cup \{Q\}$.

We will show that u = u - u(0,0) $(x_{01} = x_{01} - x_{01}(Q))$ is a uniformizer of $Z(u^n + v^n - v)$ $(X \cap U_0, \text{ and hence } X) \text{ at } (0,0) = \phi_0(Q) (Q) \text{ by applying again } [1, \text{ ex. } 7.9.10].$

Indeed, given $f := u^n + v^n - v$, $\partial f/\partial v = -1 \neq 0$ and the thesis follows.

(vii) Remember that $\mathcal{O}_X(X \cap U_0) \cong \mathbb{K}[x_{01}, x_{02}]/(x_{01}^n + x_{02}^n - x_{02})$ and $x = x_{20} = x_{02}^{-1}, y = x_{21} = x_{02}^{-1}$ $x_{01}x_{20} = x_{01}x_{02}^{-1}.$

Notice that $x_{02}(1-x_{02}^{n-1})=x_{01}^n$, hence $x_{02}=\frac{x_{01}^n}{1-x_{02}^{n-1}}=x_{01}^n\frac{1}{1-x_{02}^{n-1}}$ and $x=x_{01}^{-n}\cdot(1-x_{02}^{n-1})$.

Since $1 - x_{02}^{n-1} \in \mathcal{O}(X \cap U_0)$ and $(1 - x_{02}^{n-1})(Q) \neq 0$, we get that $v_Q(x) = -n$.

In the same way, $y = x_{01}^{-(n-1)} \cdot (1 - x_{02}^{n-1})$, hence $v_Q(y) = -(n-1)$. (viii) Remembering that $\omega_0 = \frac{dx}{ny^{n-1}} = \frac{dy}{(n-1)x^{n-2}}$ and having $x = v^{-1}$ and $y = uv^{-1}$ on $X \cap U_0$, we get the following:

$$\begin{split} \omega_0 &= \frac{dx}{ny^{n-1}} = \frac{d(v^{-1})}{nu^{n-1}(v^{-1})^{n-1}} \\ &= -\frac{v^{n-3}}{nu^{n-1}} dv \\ \omega_0 &= \frac{dy}{(n-1)x^{n-2}} = \frac{d(uv^{-1})}{(n-1)(v^{-1})^{n-2}} = -\frac{v^{n-4}u}{n-1} dv + \frac{v^{n-3}}{n-1} du \\ &= \frac{u}{(n-1)v} nu^{n-1} \omega_0 + \frac{v^{n-3}}{n-1} du \\ \omega_0 &= \frac{v^{n-2}}{(n-1)v - nu^n} du = \frac{v^{n-2}}{(n-1)v + nv^n - nu} du = \frac{(1-u^{n-1})v^{n-2}}{(1-u^{n-1})((n-1)v + nv^n - nu)} du \\ &= \frac{(1-u^{n-1})v^{n-3}}{(1-u^{n-1})((n-1) + nv^{n-1}) - nv^{n-1}} du \end{split}$$

Now, $v_Q(\omega_0) = v_Q(v^{n-3} \frac{1-u^{n-1}}{(1-u^{n-1})((n-1)+nv^{n-1})-nv^{n-1}} du)$. Notice that $\frac{(1-u^{n-1})}{(1-u^{n-1})((n-1)+nv^{n-1})-nv^{n-1}}$ is a rational function which is well defined and non-zero in Q, hence regular on a neighbourhood.

Remembering that $v = x^{-1}$, it follows that $v_Q(\omega_0) = n(n-3)$.

(ix) Let $p(x,y) \in \mathcal{O}_X(X \cap U_0) \cong \mathbb{K}[x,y]/(x^{n-1}-y^n-1)$.

Then, since $y^n = 1 - x^{n-1}$, we may substitute y^n with $1 - x^{n-1}$ until the maximum exponent yappears with is < n. Now, p(x,y) is a linear combination of the $x^i y^j$, where $i \ge 0$ and $0 \le j < n$. This means that the $x^i y^j$ considered form a system of generators.

If $\sum_{i\geq 0,0\leq j< n}a_{ij}x^iy^j=0$ in $\mathcal{O}_X(X\cap U_0)$ for some $a_{ij}\in\mathbb{K}$, then $x^{n-1}-y^n-1|\sum_{i\geq 0,0\leq j< n}a_{ij}x^iy^j$ in $\mathbb{K}[x,y]$. Since y appears with degree < n, this implies that $\sum_{i\geq 0,0\leq j< n}a_{ij}x^iy^j=0$ in $\mathbb{K}[x,y]$, where they are linearly independent and hence $a_{ij}=0$ for every i,j.

Remembering that we have $v_Q(x) = -n, v_Q(y) = -(n-1)$, we get that $v_Q(x^iy^j) = i \cdot v_Q(x) + i \cdot v_Q(x)$ $j \cdot v_Q(y) = -ni - (n-1)j = -n(i+j) - j.$

We only have to prove the injectivity of $\mathbb{N} \times \{0, \dots, n-1\} \xrightarrow{h_n} \mathbb{N}$ maping (i, j) to n(i + j) + j. If n(i+j)+j=n(i'+j')+j', then n(i+j-i'-j')=j'-j. Since $n \ge 2$ and -n < j-j' < n, n|j-j'| implies that j-j'=0, thus j=j'. Since n(i-i')=0, i=i' and we are done.

(x) Remember that $\Omega^1(X)$ is a $\mathcal{O}_X(X) \cong \mathbb{K}$ -module, hence a \mathbb{K} -vector space.

Furthermore, by (v) we know that $\Omega^1(X \cap U_2) = \mathcal{O}_X(X \cap U_2) \cdot \omega_0$, where the latter is a free $\mathcal{O}_X(X \cap U_2)$ -module. It follows that $\Omega^1(X \cap U_2)$ has a basis, as a K-vector space, given by $x^i y^j \omega_0$, where $i \geq 0$ and $0 \leq j < n$.

Here, I will consider an element of $\Omega^1(X) \subset \Omega^1(X \cap U_0) \oplus \Omega^1(X \cap U_2)$ not as a pair of elements agreeing on the intersection, but as the 1-form obtained by glueing them: indeed, it is equivalent.

Notice that, if two 1-forms defined on X coincide on $X \cap U_2$, then they coincide on X by the irreducibility. Because of this, all of them will be unique extensions of elements of $\Omega^1(X \cap U_2)$, as, given two extensions of one element, they would coincide on $X \cap U_2$.

It follows that all we have to do is to check which elements of $\Omega^1(X \cap U_2)$ are restrictions of the ones in $\Omega^1(X)$; to do this, we may just check their order at Q, the only point of X not lying in $X \cap U_2$.

Since $v_Q(x^iy^j\omega_0)=i\cdot v_Q(x)+j\cdot v_Q(y)+v_Q(\omega_0)=n(n-3-i-j)+j$, we only require $n(n-3-i-j)+j\geq 0$. Since j< n, it means that $n\geq 3+i+j$.

Notice that an element in $\Omega^1(X \cap U_2)$ is of the form $g\omega_0$, where $g = \sum_{i \geq 0, 0 \leq j < n} a_{ij} x^i y^j$. Furthermore, since $v_Q(g\omega_0) = v_Q(g) + v_Q(\omega_0)$ and, having every $x^i y^j$ different order, $v_Q(g) = \min\{v_Q(x^i y^j) \mid a_{ij} \neq 0\}$, the only 1-forms in $\Omega^1(X \cap U_2)$ extensible to X are precisely those achievable through linear combinations of the $x^i y^j \omega_0$ which extend to X.

This means that the extended $x^i y^j \omega_0$ generate $\Omega^1(X)$, while the linear independence comes from the fact that their restrictions to $X \cap U_2$ are linearly independent.

Now, for n=2, the inequality has no solutions, hence $\Omega^1(X)=0$ with basis \emptyset .

For n=3, we only have i=j=0, thus $\Omega^1(X)=\mathbb{K}\cdot\omega_0$ and it has dimension 1, with basis $\{\omega_0\}$. For n=4, the solutions are (0,0),(1,0),(0,1), hence $\Omega^1(X)=\mathbb{K}\cdot\omega_0\oplus\mathbb{K}\cdot x\omega_0\oplus\mathbb{K}\cdot y\omega_0$ and it has dimension 3, with basis $\{\omega_0,x\omega_0,y\omega_0\}$.

References

[1] B. Edixhoven, D. Holmes, A. Kret, L. Taelman, Algebraic Geometry, 2018.