Teoria Sygnałów w zadaniach

$$f(t) = A \cdot \Pi\left(\frac{t}{2 \cdot t_0}\right) \cdot \cos\left(\frac{2\pi}{t_0} \cdot t\right) \qquad F(\jmath \omega) = A \cdot t_0 \cdot [Sa\left(\omega \cdot t_0 + 2\pi\right) - Sa\left(\omega \cdot t_0 - 2\pi\right)]$$

Tomasz Grajek, Krzysztof Wegner

POLITECHNIKA POZNAŃSKA Wydział Informatyki i Telekomunikacji Instytut Telekomunikacji Multimedialnej

pl. M. Skłodowskiej-Curie 5 60-965 Poznań

www.et.put.poznan.pl www.multimedia.edu.pl

Copyright © Krzysztof Wegner, 2019 Wszelkie prawa zastrzeżone ISBN 978-83-939620-1-3 Wydrukowano w Polsce

Podstawowe własności sygnałów

- 1.1 Podstawowe parametry i miary sygnałów ciągłych
- 1.1.1 Wartość średnia
- 1.1.2 Energia sygnału
- 1.1.3 Moc i wartość skuteczna sygnału

Analiza sygnałów okresowych za pomocą szeregów ortogonalnych

2.1 Trygonometryczny szereg Fouriera

2.2 Zespolony szerego Fouriera

Zadanie 1. Wyznacz współczynniki zespolonego szeregu Fouriera dla okresowego sygnału f(t) przedstawionego na rysunku. Narysuj widmo amplitudowe i fazowe sygnału.

W pierwszej kolejności należy opisać sygnał za pomocą wzoru.

$$f(x) = \begin{cases} A & t \in \left(0 + k \cdot T; \frac{T}{2} + k \cdot T\right) \\ 0 & t \in \left(\frac{T}{2} + k \cdot T; T + k \cdot T\right) \end{cases} \land k \in C$$
 (2.1)

Współczynnik F_0 wyznaczamy ze wzoru:

$$F_0 = \frac{1}{T} \int_T f(t) \cdot dt \tag{2.2}$$

Podstawiamy do wzoru wzór naszej funkcji w pierwszym okresie k=0

$$F_{0} = \frac{1}{T} \int_{T} f(t) \cdot dt =$$

$$= \frac{1}{T} \left(\int_{0}^{\frac{T}{2}} A \cdot dt + \int_{\frac{T}{2}}^{T} 0 \cdot dt \right) =$$

$$= \frac{1}{T} \left(A \cdot \int_{0}^{\frac{T}{2}} dt + 0 \right) =$$

$$= \frac{1}{T} \left(A \cdot t \Big|_{0}^{\frac{T}{2}} \right) =$$

$$= \frac{A}{T} \cdot t \Big|_{0}^{\frac{T}{2}} =$$

$$= \frac{A}{T} \cdot \left(\frac{T}{2} - 0 \right) =$$

$$= \frac{A}{T} \cdot \left(\frac{T}{2} \right) =$$

$$= \frac{A}{2}$$

$$(2.3)$$

Wartość współczynnika F_0 wynosi $\frac{A}{2}$.

Współczynniki F_k wyznaczamy ze wzoru

$$F_k = \frac{1}{T} \int_T f(t) \cdot e^{-\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt$$
 (2.4)

Podstawiamy do wzoru wzór naszej funkcji w pierwszym okresie k=0

$$F_{k} = \frac{1}{T} \int_{T} f(t) \cdot e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt =$$

$$= \frac{1}{T} \int_{0}^{\frac{T}{2}} A \cdot e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt =$$

$$= \frac{A}{T} \int_{0}^{\frac{T}{2}} e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt =$$

$$= \begin{cases} z = -j \cdot k \cdot \frac{2\pi}{T} \cdot t \\ dz = -j \cdot k \cdot \frac{2\pi}{T} \cdot dt \\ dt = \frac{dz}{-j \cdot k \cdot \frac{2\pi}{T}} \end{cases} =$$

$$= \frac{A}{T} \int_{0}^{\frac{T}{2}} e^{z} \cdot \frac{dz}{-j \cdot k \cdot \frac{2\pi}{T}} =$$

$$= -\frac{A}{T \cdot j \cdot k \cdot \frac{2\pi}{T}} \int_{0}^{\frac{T}{2}} e^{z} \cdot dz =$$

$$= -\frac{A}{j \cdot k \cdot 2\pi} e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \Big|_{0}^{\frac{T}{2}} =$$

$$= -\frac{A}{j \cdot k \cdot 2\pi} \left(e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot \frac{T}{2}} - e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot 0} \right) =$$

$$= -\frac{A}{j \cdot k \cdot 2\pi} \left(e^{-j \cdot k \cdot \pi} - e^{0} \right) =$$

$$= -\frac{A}{j \cdot k \cdot 2\pi} \left(e^{-j \cdot k \cdot \pi} - 1 \right) =$$

$$= j \cdot \frac{A}{k \cdot 2\pi} \cdot \left(e^{-j \cdot k \cdot \pi} - 1 \right)$$

$$= j \cdot \frac{A}{k \cdot 2\pi} \cdot \left((-1)^k - 1 \right)$$

Wartość współczynnika F_k wynosi $\jmath \cdot \frac{A}{k \cdot 2\pi} \cdot \left((-1)^k - 1 \right)$

Ostatecznie współczynniki zespolonego szeregu Fouriera dla funkcji przedstawionej na rysunku przyjmują wartości.

$$F_0 = \frac{A}{2}$$

$$F_k = \jmath \cdot \frac{A}{k \cdot 2\pi} \cdot \left((-1)^k - 1 \right)$$

Możemy wyznaczyć kilka wartości współczynników ${\cal F}_k$

k	-5	-4	-3	-2	-1	0	1	2	3	4	5
F_k	$j \cdot \frac{A}{5\pi}$	0	$j \cdot \frac{A}{3\pi}$	0	$j \cdot \frac{A}{\pi}$	$\frac{A}{2}$	$-\jmath\cdot\frac{A}{\pi}$	0	$-\jmath \cdot \frac{A}{3\pi}$	0	$-\jmath \cdot \frac{A}{5\pi}$
$ F_k $	$\frac{A}{5\pi}$	0	$\frac{A}{3\pi}$	0	$\frac{A}{\pi}$	$\frac{A}{2}$	$\frac{A}{\pi}$	0	$\frac{A}{3\pi}$	0	$\frac{A}{5\pi}$
$Arg\{F_k\}$	$\frac{\pi}{2}$	0	$\frac{\pi}{2}$	0	$\frac{\pi}{2}$	0	$-\frac{\pi}{2}$	0	$-\frac{\pi}{2}$	0	$-\frac{\pi}{2}$

Moduł liczby zespolonej wyznaczamy ze wzoru:

$$|F_k| = \sqrt{\operatorname{Re}(F_k)^2 + \operatorname{Im}(F_k)^2}$$

Natomiast argument liczby zespolonej wyznaczamy ze wzoru:

$$\operatorname{Arg}\left\{F_{k}\right\} = \arctan\left(\frac{\operatorname{Im}\left(F_{k}\right)}{\operatorname{Re}\left(F_{k}\right)}\right)$$

W tym celu musimy wydzielić jawnie część rzeczywista i część urojoną wartości współczynnika F_k .

$$F_k = \jmath \cdot \frac{A}{k \cdot 2\pi} \cdot \left((-1)^k - 1 \right) \Rightarrow \left\{ \begin{array}{l} \operatorname{Re}\left(F_k\right) = 0 \\ \operatorname{Im}\left(F_k\right) = \frac{A}{k \cdot 2\pi} \cdot \left((-1)^k - 1 \right) \end{array} \right.$$

A wiec moduł wartości współczynników F_k wynosi

$$\begin{split} |F_k| &= \sqrt{\operatorname{Re}\left(F_k\right)^2 + \operatorname{Im}\left(F_k\right)^2} = \\ &= \sqrt{0^2 + \left(\frac{A}{k \cdot 2\pi} \cdot ((-1)^k - 1)\right)^2} = \end{split}$$

$$\begin{split} &=\sqrt{\left(\frac{A}{k \cdot 2\pi}\right)^2 \cdot ((-1)^k - 1)^2} = \\ &=\sqrt{\frac{A^2}{(k \cdot 2\pi)^2} \cdot ((-1)^k - 1)^2} = \\ &=\sqrt{\frac{A^2}{k^2 \cdot (2\pi)^2} \cdot ((-1)^k - 1)^2} = \\ &=\sqrt{\frac{A^2}{k^2 \cdot (2\pi)^2} \cdot \sqrt{((-1)^k - 1)^2}} = \\ &=\sqrt{\frac{A^2}{k^2 \cdot (2\pi)^2} \cdot \sqrt{((-1)^k - 1)^2}} = \\ &=\frac{A}{\sqrt{k^2} \cdot \sqrt{(2\pi)^2}} \cdot \left| (-1)^k - 1 \right| = \\ &=\frac{A}{|k| \cdot 2\pi} \cdot \left| (-1)^k - 1 \right| = \\ &=\frac{A}{|k| \cdot 2\pi} \cdot \left| (-1)^k - 1 \right| \text{ dla } k = 2 \cdot n \wedge n \in \mathcal{Z} \\ &=\frac{A}{|k| \cdot 2\pi} \cdot \left| (-1)^k - 1 \right| \text{ dla } k = 2 \cdot n \wedge n \in \mathcal{Z} \\ &=\frac{A}{|k| \cdot 2\pi} \cdot \left| (-1)^{2n} - 1 \right| \text{ dla } k = 2 \cdot n \wedge n \in \mathcal{Z} \\ &=\frac{A}{|k| \cdot 2\pi} \cdot \left| (-1)^{2n+1} - 1 \right| \text{ dla } k = 2 \cdot n \wedge n \in \mathcal{Z} \\ &=\frac{A}{|k| \cdot 2\pi} \cdot \left| (-1)^{2n+1} - 1 \right| \text{ dla } k = 2 \cdot n \wedge n \in \mathcal{Z} \\ &=\frac{A}{|k| \cdot 2\pi} \cdot \left| (-1)^{2n} \cdot (-1)^1 - 1 \right| \text{ dla } k = 2 \cdot n \wedge n \in \mathcal{Z} \\ &=\frac{A}{|k| \cdot 2\pi} \cdot \left| (-1)^{2n} \cdot (-1)^1 - 1 \right| \text{ dla } k = 2 \cdot n \wedge n \in \mathcal{Z} \\ &=\frac{A}{|k| \cdot 2\pi} \cdot \left| (-1)^{2n} \cdot (-1) - 1 \right| \text{ dla } k = 2 \cdot n \wedge n \in \mathcal{Z} \\ &=\frac{A}{|k| \cdot 2\pi} \cdot \left| (1)^n - 1 \right| \text{ dla } k = 2 \cdot n \wedge n \in \mathcal{Z} \\ &=\frac{A}{|k| \cdot 2\pi} \cdot \left| (1)^n \cdot (-1) - 1 \right| \text{ dla } k = 2 \cdot n \wedge n \in \mathcal{Z} \\ &=\frac{A}{|k| \cdot 2\pi} \cdot \left| (1)^n \cdot (-1) - 1 \right| \text{ dla } k = 2 \cdot n \wedge n \in \mathcal{Z} \\ &=\frac{A}{|k| \cdot 2\pi} \cdot \left| (-1) - 1 \right| \text{ dla } k = 2 \cdot n \wedge n \in \mathcal{Z} \\ &=\frac{A}{|k| \cdot 2\pi} \cdot \left| (-1) - 1 \right| \text{ dla } k = 2 \cdot n \wedge n \in \mathcal{Z} \\ &=\frac{A}{|k| \cdot 2\pi} \cdot \left| (-1) - 1 \right| \text{ dla } k = 2 \cdot n \wedge n \in \mathcal{Z} \\ &=\frac{A}{|k| \cdot 2\pi} \cdot \left| (-1) - 1 \right| \text{ dla } k = 2 \cdot n \wedge n \in \mathcal{Z} \\ &=\frac{A}{|k| \cdot 2\pi} \cdot \left| (-1) - 1 \right| \text{ dla } k = 2 \cdot n \wedge n \in \mathcal{Z} \\ &=\frac{A}{|k| \cdot 2\pi} \cdot \left| (-1) - 1 \right| \text{ dla } k = 2 \cdot n \wedge n \in \mathcal{Z} \\ &=\frac{A}{|k| \cdot 2\pi} \cdot \left| (-1) - 1 \right| \text{ dla } k = 2 \cdot n \wedge n \in \mathcal{Z} \\ &=\frac{A}{|k| \cdot 2\pi} \cdot \left| (-1) - 1 \right| \text{ dla } k = 2 \cdot n \wedge n \in \mathcal{Z} \\ &=\frac{A}{|k| \cdot 2\pi} \cdot \left| (-1) - 1 \right| \text{ dla } k = 2 \cdot n \wedge n \in \mathcal{Z} \\ &=\frac{A}{|k| \cdot 2\pi} \cdot \left| (-1) - 1 \right| \text{ dla } k = 2 \cdot n \wedge n \in \mathcal{Z} \\ &=\frac{A}{|k| \cdot 2\pi} \cdot \left| (-1) - 1 \right| \text{ dla } k = 2 \cdot n \wedge n \in \mathcal{Z} \\ &=\frac{A}{|k| \cdot 2\pi} \cdot \left| (-1) - 1 \right| \text{ dla } k = 2 \cdot n \wedge n \in \mathcal{Z} \\ &=\frac{A}{|k| \cdot 2\pi} \cdot \left| (-1) - 1 \right| \text{ dla } k = 2 \cdot n \wedge n \in \mathcal{Z} \\ &=\frac{A}{|k| \cdot 2\pi} \cdot \left| (-1) - 1 \right| \text{ dla } k = 2 \cdot$$

Podobnie argument wartości współczynników F_k wynosi

$$\begin{split} & \operatorname{Arg}\left\{F_{k}\right\} = \arctan\left(\frac{\operatorname{Im}\left(F_{k}\right)}{\operatorname{Re}\left(F_{k}\right)}\right) = \\ & = \arctan\left(\frac{\frac{A}{k\cdot2\pi}\cdot\left((-1)^{k}-1\right)}{0}\right) = \\ & = \left\{ \begin{array}{l} \arctan\left(\frac{\frac{A}{k\cdot2\pi}\cdot\left((-1)^{k}-1\right)}{0}\right) & dla \quad k=2\cdot n \wedge n \in \mathcal{Z} \\ \arctan\left(\frac{\frac{A}{k\cdot2\pi}\cdot\left((-1)^{k}-1\right)}{0}\right) & dla \quad k=2\cdot n+1 \wedge n \in \mathcal{Z} \\ \end{array} \right. \\ & = \left\{ \begin{array}{l} \arctan\left(\frac{\frac{A}{k\cdot2\pi}\cdot\left((-1)^{2\cdot n}-1\right)}{0}\right) & dla \quad k=2\cdot n \wedge n \in \mathcal{Z} \\ \arctan\left(\frac{\frac{A}{k\cdot2\pi}\cdot\left((-1)^{2\cdot n}-1\right)}{0}\right) & dla \quad k=2\cdot n+1 \wedge n \in \mathcal{Z} \end{array} \right. \\ & = \left\{ \begin{array}{l} \arctan\left(\frac{\frac{A}{k\cdot2\pi}\cdot\left((-1)^{2\cdot n}-1\right)}{0}\right) & dla \quad k=2\cdot n \wedge n \in \mathcal{Z} \\ \arctan\left(\frac{\frac{A}{k\cdot2\pi}\cdot\left(((-1)^{2}\right)^{n}\cdot\left(-1\right)^{1}-1\right)}{0}\right) & dla \quad k=2\cdot n \wedge n \in \mathcal{Z} \end{array} \right. \\ & = \left\{ \begin{array}{l} \arctan\left(\frac{\frac{A}{k\cdot2\pi}\cdot\left(((-1)^{2}\right)^{n}\cdot\left(-1\right)^{1}-1\right)}{0}\right) & dla \quad k=2\cdot n \wedge n \in \mathcal{Z} \\ \arctan\left(\frac{\frac{A}{k\cdot2\pi}\cdot\left(((-1)^{2}\right)^{n}\cdot\left(-1\right)^{1}-1\right)}{0}\right) & dla \quad k=2\cdot n \wedge n \in \mathcal{Z} \end{array} \right. \\ & = \left\{ \begin{array}{l} \arctan\left(\frac{\frac{A}{k\cdot2\pi}\cdot\left(((-1)^{2}\right)^{n}\cdot\left(-1\right)^{1}-1\right)}{0}\right) & dla \quad k=2\cdot n \wedge n \in \mathcal{Z} \\ \arctan\left(\frac{\frac{A}{k\cdot2\pi}\cdot\left(((-1)^{2}\right)^{n}\cdot\left(-1\right)^{1}-1\right)}{0}\right) & dla \quad k=2\cdot n \wedge n \in \mathcal{Z} \end{array} \right. \\ & = \left\{ \begin{array}{l} \arctan\left(\frac{\frac{A}{k\cdot2\pi}\cdot\left(((-1)^{1}\right)^{1}-1\right)}{0}\right) & dla \quad k=2\cdot n \wedge n \in \mathcal{Z} \\ \arctan\left(\frac{\frac{A}{k\cdot2\pi}\cdot\left((-1)^{1}\right)}{0}\right) & dla \quad k=2\cdot n \wedge n \in \mathcal{Z} \\ \arctan\left(\frac{\frac{A}{k\cdot2\pi}\cdot\left((-1)^{1}\right)}{0}\right) & dla \quad k=2\cdot n \wedge n \in \mathcal{Z} \end{array} \right. \\ & = \left\{ \begin{array}{l} \arctan\left(\frac{\frac{A}{k\cdot2\pi}\cdot\left((-1)^{1}\right)}{0}\right) & dla \quad k=2\cdot n \wedge n \in \mathcal{Z} \\ \arctan\left(\frac{\frac{A}{k\cdot2\pi}\cdot\left((-1)^{1}\right)}{0}\right) & dla \quad k=2\cdot n \wedge n \in \mathcal{Z} \\ -\frac{\pi}{2}\operatorname{sign}\left(k\right) & dla \quad k=2\cdot n \wedge n \in \mathcal{Z} \end{array} \right. \\ & = \left\{ \begin{array}{l} \arctan\left(\frac{0}{0}\right) & dla \quad k=2\cdot n \wedge n \in \mathcal{Z} \\ -\frac{\pi}{2}\operatorname{sign}\left(k\right) & dla \quad k=2\cdot n \wedge n \in \mathcal{Z} \\ -\frac{\pi}{2}\operatorname{sign}\left(k\right) & dla \quad k=2\cdot n \wedge n \in \mathcal{Z} \end{array} \right. \\ \end{array} \right. \\ & = \left\{ \begin{array}{l} \operatorname{dla} \quad k=2\cdot n \wedge n \in \mathcal{Z} \\ -\frac{\pi}{2}\operatorname{sign}\left(k\right) & dla \quad k=2\cdot n \wedge n \in \mathcal{Z} \\ -\frac{\pi}{2}\operatorname{sign}\left(k\right) & dla \quad k=2\cdot n \wedge n \in \mathcal{Z} \end{array} \right. \\ \end{array} \right. \\ \end{array} \right.$$

Podstawiając wyznaczone wartości współczynników F_k do wzoru aproksymacyjnego funkcje f(t) możemy wyrazić jako

$$f(t) = \sum_{k=-\infty}^{\infty} F_k \cdot e^{j \cdot k \cdot \frac{2\pi}{T} \cdot t}$$

$$f(t) = \frac{A}{2} + \sum_{\substack{k=-\infty\\k \neq 0}}^{\infty} \left[j \cdot \frac{A}{k \cdot 2\pi} \cdot \left((-1)^k - 1 \right) \right] \cdot e^{j \cdot k \cdot \frac{2\pi}{T} \cdot t}$$

W przypadku sumowania od $k_{min} = -1$ do $k_{max} = 1$ otrzymujemy:

W przypadku sumowania od $k_{\min}=-3$ do $k_{\max}=3$ otrzymujemy:

W przypadku sumowania od $k_{\min}=-5$ do $k_{\max}=5$ otrzymujemy:

W przypadku sumowania od $k_{\min} = -11$ do $k_{\max} = 11$ otrzymujemy:

W przypadku sumowania od $k_{\min}=-21$ do $k_{\max}=21$ otrzymujemy:

W granicy sumowania od $k_{min} = -\infty$ do $k_{max} = \infty$ otrzymujemy oryginalny sygnał.

Na podstawie wyznaczonych współczynników F_k możemy narysować widmo amplitudowe $|F_k|$ sygnału f(t).

Widmo aplitudowe sygnału rzeczywistego jest zawsze parzyste.

Podobnie n podstawie wyznaczonych współczynników F_k możemy narysować widmo fazowe $\arg\{F_k\}$ sygnału f(t).

Widmo fazowe sygnału rzeczywistego jest zawsze nieparzyste.

2.3 Obliczenia mocy sygnałów - twierdzenie Parsevala

Analiza sygnałów nieokresowych. Przekształcenie całkowe Fouriera

- 3.1 Wyznaczanie transformaty Fouriera z definicji
- 3.2 Wykorzystanie twierdzeń do obliczeń transformaty Fouriera
- 3.3 Obliczenia energii sygnału za pomocą transformaty Fouriera. Twierdzenie Parsevala

Transmisja sygnałów przez układy liniowe o stałych parametrach (LTI)

- 4.1 Obliczanie splotu ze wzoru
- 4.2 Filtry

