Hledání kořenů rovnic jedné reálné proměnné – metoda půlení intervalů –

Michal Čihák

18. října 2011

• jeden ze základních problémů numerické matematiky

- zároveň i jeden z nejstarších problémů
- například Babylonské hliněné destičky z období 1700 před n. l. uvádějí přibližnou hodnotu jednoho z kořenů rovnice $x^2-2=0$ v šedesátkové soustavě
- v dnešní zápisu po převedení do desítkové soustavy se jedná o hodnotu 1.414 222
- shoda se skutečnou hodnotou čísla $\sqrt{2}$ je na desetitisíciny
- výzkum v této oblasti pokračuje i dnes

- jeden ze základních problémů numerické matematiky
- zároveň i jeden z nejstarších problémů
- například Babylonské hliněné destičky z období 1700 před n. l. uvádějí přibližnou hodnotu jednoho z kořenů rovnice $x^2-2=0$ v šedesátkové soustavě
- v dnešní zápisu po převedení do desítkové soustavy se jedná o hodnotu 1.414 222
- shoda se skutečnou hodnotou čísla $\sqrt{2}$ je na desetitisíciny
- výzkum v této oblasti pokračuje i dnes

- jeden ze základních problémů numerické matematiky
- zároveň i jeden z nejstarších problémů
- například Babylonské hliněné destičky z období 1700 před n. l. uvádějí přibližnou hodnotu jednoho z kořenů rovnice $x^2-2=0$ v šedesátkové soustavě
- v dnešní zápisu po převedení do desítkové soustavy se jedná o hodnotu 1.414 222
- shoda se skutečnou hodnotou čísla $\sqrt{2}$ je na desetitisíciny
- výzkum v této oblasti pokračuje i dnes

- jeden ze základních problémů numerické matematiky
- zároveň i jeden z nejstarších problémů
- například Babylonské hliněné destičky z období 1700 před n. l. uvádějí přibližnou hodnotu jednoho z kořenů rovnice $x^2-2=0$ v šedesátkové soustavě
- v dnešní zápisu po převedení do desítkové soustavy se jedná o hodnotu 1,414 222
- shoda se skutečnou hodnotou čísla $\sqrt{2}$ je na desetitisíciny
- výzkum v této oblasti pokračuje i dnes

- jeden ze základních problémů numerické matematiky
- zároveň i jeden z nejstarších problémů
- například Babylonské hliněné destičky z období 1700 před n. l. uvádějí přibližnou hodnotu jednoho z kořenů rovnice $x^2-2=0$ v šedesátkové soustavě
- v dnešní zápisu po převedení do desítkové soustavy se jedná o hodnotu 1,414 222
- ullet shoda se skutečnou hodnotou čísla $\sqrt{2}$ je na desetitisíciny
- výzkum v této oblasti pokračuje i dnes

- jeden ze základních problémů numerické matematiky
- zároveň i jeden z nejstarších problémů
- například Babylonské hliněné destičky z období 1700 před n. l. uvádějí přibližnou hodnotu jednoho z kořenů rovnice $x^2-2=0$ v šedesátkové soustavě
- v dnešní zápisu po převedení do desítkové soustavy se jedná o hodnotu 1,414 222
- ullet shoda se skutečnou hodnotou čísla $\sqrt{2}$ je na desetitisíciny
- výzkum v této oblasti pokračuje i dnes

nejjednodušší metoda

- s její pomocí můžeme nalézt řešení rovnice f(x)=0 na intervalu $\langle a,b\rangle$ v podstatě s libovolnou přesností (kterou umožňuje náš počítač)
- předpokladem ale je, že funkce f(x) je na intervalu $\langle a,b\rangle$ spojitá a f(a) a f(b) mají rozdílná znaménka
- pro jednoduchost budeme předpokládat, že rovnice má na intervalu $\langle a,b \rangle$ jeden kořen
- tato metoda však funguje i pro případ, že na intervalu $\langle a,b\rangle$ má rovnice více než jeden kořen

- nejjednodušší metoda
- s její pomocí můžeme nalézt řešení rovnice f(x)=0 na intervalu $\langle a,b\rangle$ v podstatě s libovolnou přesností (kterou umožňuje náš počítač)
- předpokladem ale je, že funkce f(x) je na intervalu $\langle a,b\rangle$ spojitá a f(a) a f(b) mají rozdílná znaménka
- pro jednoduchost budeme předpokládat, že rovnice má na intervalu $\langle a,b \rangle$ jeden kořen
- tato metoda však funguje i pro případ, že na intervalu $\langle a,b\rangle$ má rovnice více než jeden kořen

- nejjednodušší metoda
- s její pomocí můžeme nalézt řešení rovnice f(x)=0 na intervalu $\langle a,b\rangle$ v podstatě s libovolnou přesností (kterou umožňuje náš počítač)
- předpokladem ale je, že funkce f(x) je na intervalu $\langle a,b\rangle$ spojitá a f(a) a f(b) mají rozdílná znaménka
- pro jednoduchost budeme předpokládat, že rovnice má na intervalu $\langle a,b \rangle$ jeden kořen
- tato metoda však funguje i pro případ, že na intervalu $\langle a,b\rangle$ má rovnice více než jeden kořen

- nejjednodušší metoda
- s její pomocí můžeme nalézt řešení rovnice f(x)=0 na intervalu $\langle a,b\rangle$ v podstatě s libovolnou přesností (kterou umožňuje náš počítač)
- předpokladem ale je, že funkce f(x) je na intervalu $\langle a,b\rangle$ spojitá a f(a) a f(b) mají rozdílná znaménka
- pro jednoduchost budeme předpokládat, že rovnice má na intervalu $\langle a,b \rangle$ jeden kořen
- tato metoda však funguje i pro případ, že na intervalu $\langle a,b\rangle$ má rovnice více než jeden kořen

- nejjednodušší metoda
- s její pomocí můžeme nalézt řešení rovnice f(x)=0 na intervalu $\langle a,b\rangle$ v podstatě s libovolnou přesností (kterou umožňuje náš počítač)
- předpokladem ale je, že funkce f(x) je na intervalu $\langle a,b\rangle$ spojitá a f(a) a f(b) mají rozdílná znaménka
- pro jednoduchost budeme předpokládat, že rovnice má na intervalu $\langle a,b \rangle$ jeden kořen
- tato metoda však funguje i pro případ, že na intervalu $\langle a,b \rangle$ má rovnice více než jeden kořen

na začátku položíme $a_1=a, b_1=b$ a najdeme střed intervalu $\langle a_1,b_1\rangle$ pomocí vztahu

$$p_1 = a_1 + \frac{b_1 - a_1}{2}$$

pokud je $f(p_1) = 0$, pak je p_1 hledaným kořenem rovnice

v opačném případě má $f(p_1)$ stejné znaménko buď jako $f(a_1)$, nebo jako $f(b_1)$

pokud má $f(p_1)$ stejné znaménko jako $f(a_1)$ stejná znaménka, pak hledaný kořen rovnice leží v intervalu $\langle p_1,b_1\rangle$ a položíme $a_2=p_1,b_2=b_1$

pokud má $f(p_1)$ stejné znaménko jako $f(b_1)$, pak hledaný kořen rovnice leží v intervalu $\langle a_1,p_1\rangle$ a položíme $a_2=a_1,b_2=p_1$

nyní opakujeme stejný proces na interval $\langle a_2,b_2\rangle$, poté na interval $\langle a_3,b_3\rangle$, atd.

každý nově vzniklý interval obsahuje hledaný kořen a jeho délka je poloviční oproti předchozímu intervalu – odtud název metody

Algoritmus metody půlení intervalů - shrnutí

Interval $\langle a_{n+1},b_{n+1}\rangle$ obsahující kořen rovnice f(x)=0 získáme z intervalu $\langle a_n,b_n\rangle$ tak, že nejprve určíme střed intervalu $\langle a_n,b_n\rangle$ pomocí vztahu

$$p_n = a_n + \frac{b_n - a_n}{2}.$$

Poté položíme $a_{n+1}=a_n$ a $b_{n+1}=p_n$, pokud je $f(a_n)\cdot f(p_n)<0$, nebo $a_{n+1}=p_n$ a $b_{n+1}=b_n$, pokud je $f(a_n)\cdot f(p_n)>0$.

Existují 3 základní kritéria pro ukončení algoritmu metody půlení intervalu:

- 1. některý střed intervalu je přímo kořenem rovnice
- 2. délka intervalu $\langle a_n,b_n\rangle$ klesne pod nějakou předem danou toleranci označme ji TOL
- 3. počet iterací algoritmu překročí předem danou mez $N_{
 m 0}$

Existují 3 základní kritéria pro ukončení algoritmu metody půlení intervalu:

- 1. některý střed intervalu je přímo kořenem rovnice
- 2. délka intervalu $\langle a_n,b_n \rangle$ klesne pod nějakou předem danou toleranci
 - označme ji TOL
- 3. počet iterací algoritmu překročí předem danou mez $N_{
 m 0}$

Existují 3 základní kritéria pro ukončení algoritmu metody půlení intervalu:

- 1. některý střed intervalu je přímo kořenem rovnice
- 2. délka intervalu $\langle a_n,b_n \rangle$ klesne pod nějakou předem danou toleranci
 - označme ji TOL
- 3. počet iterací algoritmu překročí předem danou mez $N_{
 m 0}$

Pro zahájení metody půlení intervalů musíme nejprve nalézt interval $\langle a,b\rangle$ tak, aby platilo

$$f(a) \cdot f(b) < 0.$$

Pro zahájení metody půlení intervalů musíme nejprve nalézt interval $\langle a,b\rangle$ tak, aby platilo

$$f(a) \cdot f(b) < 0.$$

Pro vzdálenost středu p_1 intervalu $\langle a,b\rangle$ od kořene p ležícího v tomto intervalu platí

$$|p_1 - p| \le \frac{b - a}{2}.$$

Pro zahájení metody půlení intervalů musíme nejprve nalézt interval $\langle a,b\rangle$ tak, aby platilo

$$f(a) \cdot f(b) < 0.$$

Pro vzdálenost středu p_1 intervalu $\langle a,b\rangle$ od kořene p ležícího v tomto intervalu platí

$$|p_1 - p| \le \frac{b - a}{2}.$$

Každá následující iterace zmenší délku uvažovaného intervalu na polovinu a tedy obecně platí

$$|p_n - p| \le \frac{b - a}{2^n}.$$

Pro zahájení metody půlení intervalů musíme nejprve nalézt interval $\langle a,b \rangle$ tak, aby platilo

$$f(a) \cdot f(b) < 0.$$

Pro vzdálenost středu p_1 intervalu $\langle a,b\rangle$ od kořene p ležícího v tomto intervalu platí

$$|p_1 - p| \le \frac{b - a}{2}.$$

Každá následující iterace zmenší délku uvažovaného intervalu na polovinu a tedy obecně platí

$$|p_n - p| \le \frac{b - a}{2^n}.$$

Pokud zajistíme, aby

$$\frac{b-a}{2^n} < TOL,$$

potom máme zaručeno, že absolutní chyba aproximace kořene nepřekročí předem danou hodnotu TOL.

Pro zahájení metody půlení intervalů musíme nejprve nalézt interval $\langle a,b\rangle$ tak, aby platilo

$$f(a) \cdot f(b) < 0.$$

Pro vzdálenost středu p_1 intervalu $\langle a,b\rangle$ od kořene p ležícího v tomto intervalu platí

$$|p_1 - p| \le \frac{b - a}{2}.$$

Každá následující iterace zmenší délku uvažovaného intervalu na polovinu a tedy obecně platí

$$|p_n - p| \le \frac{b - a}{2^n}.$$

Pokud zajistíme, aby

$$\frac{b-a}{2^n} < TOL,$$

potom máme zaručeno, že absolutní chyba aproximace kořene nepřekročí předem danou hodnotu TOL. Z předchozí nerovnice můžeme určit počet iterací potřebný k dosažení předem dané přesnosti

$$\frac{b-a}{TOL} < 2^n \qquad \Rightarrow \qquad n > \log_2\left(\frac{b-a}{TOL}\right).$$

Volba výchozího intervalu

- Protože odhad počtu iterací závisí na délce výchozího intervalu $\langle a,b \rangle$, snažíme se jej volit co nejkratší.
- Například pro $f(x)=2x^3-x^2+x-1=0$ můžeme použít výchozí interval $\langle -4,4\rangle$, protože $f(-4)\cdot f(4)<0$, nebo výchozí interval $\langle 0,1\rangle$, protože $f(0)\cdot f(1)<0$. Pokud použijeme druhý z intervalů namísto prvního, počet iterací se třikrát sníží.

Volba výchozího intervalu

- Protože odhad počtu iterací závisí na délce výchozího intervalu $\langle a,b \rangle$, snažíme se jej volit co nejkratší.
- Například pro $f(x)=2x^3-x^2+x-1=0$ můžeme použít výchozí interval $\langle -4,4\rangle$, protože $f(-4)\cdot f(4)<0$, nebo výchozí interval $\langle 0,1\rangle$, protože $f(0)\cdot f(1)<0$. Pokud použijeme druhý z intervalů namísto prvního, počet iterací se třikrát sníží.

Příklad

Zadání: Najděte kořen rovnice $x^3+4x^2-10=0$ v intervalu $\langle 1,2\rangle$ s tolerancí $0{,}0005$.

Příklad

Zadání: Najděte kořen rovnice $x^3 + 4x^2 - 10 = 0$ v intervalu $\langle 1, 2 \rangle$ s tolerancí 0.0005.

Řešení: Nejprve určíme počet iterací potřebný k dosažení předem dané přesnosti

$$n > \log_2\left(\frac{2-1}{0,0005}\right) \doteq 10,96.$$

Příklad

 Zadání: Najděte kořen rovnice $x^3+4x^2-10=0$ v intervalu $\langle 1,2\rangle$ s tolerancí $0{,}0005.$

Řešení: Nejprve určíme počet iterací potřebný k dosažení předem dané přesnosti

$$n > \log_2\left(\frac{2-1}{0,0005}\right) \doteq 10,96.$$

Měli bychom tedy provést alespoň 11 iterací algoritmu půlení intervalu. Výsledky jsou shrnuty v tabulce:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	1.0000000000	2.00000000000	1.5000000000	2.3750000000
2	1.00000000000	1.50000000000	1.25000000000	-1.7968750000
3	1.25000000000	1.50000000000	1.37500000000	0.1621093750
4	1.25000000000	1.37500000000	1.3125000000	-0.8483886719
5	1.3125000000	1.37500000000	1.3437500000	-0.3509826660
6	1.3437500000	1.37500000000	1.3593750000	-0.0964088440
7	1.3593750000	1.37500000000	1.3671875000	0.0323557854
8	1.3593750000	1.3671875000	1.3632812500	-0.0321499705
9	1.3632812500	1.3671875000	1.3652343750	0.0000720248
10	1.3632812500	1.3652343750	1.3642578125	-0.0160466908
11	1.3642578125	1.3652343750	1.3647460938	-0.0079892628

Výhody metody půlení intervalů

- jednoduchý princip a snadná implementace (naprogramování algoritmu v konkrétním programovacím jazyce)
- jsou-li dodrženy předpoklady metody, pak metoda vždy konverguje k některému z kořenů v daném intervalu
- je k dispozici jednoduché kritérium pro stanovení počtu iterací potřebného pro dosažení dané přesnosti

Výhody metody půlení intervalů

- jednoduchý princip a snadná implementace (naprogramování algoritmu v konkrétním programovacím jazyce)
- jsou-li dodrženy předpoklady metody, pak metoda vždy konverguje k některému z kořenů v daném intervalu
- je k dispozici jednoduché kritérium pro stanovení počtu iterací potřebného pro dosažení dané přesnosti

Výhody metody půlení intervalů

- jednoduchý princip a snadná implementace (naprogramování algoritmu v konkrétním programovacím jazyce)
- jsou-li dodrženy předpoklady metody, pak metoda vždy konverguje k některému z kořenů v daném intervalu
- je k dispozici jednoduché kritérium pro stanovení počtu iterací potřebného pro dosažení dané přesnosti

Nevýhody metody půlení intervalů

- oproti jiným metodám je konvergence pomalá
- ačkoliv se v průběhu algoritmu k přesné hodnotě kořenu někdy velmi přiblížíme, v následujícím kroku se můžeme zase od kořenu vzdálit viz hodnoty p₉ a p₁₀ v tabulce u předchozího příkladu

Nevýhody metody půlení intervalů

- oproti jiným metodám je konvergence pomalá
- ačkoliv se v průběhu algoritmu k přesné hodnotě kořenu někdy velmi přiblížíme, v následujícím kroku se můžeme zase od kořenu vzdálit viz hodnoty p_9 a p_{10} v tabulce u předchozího příkladu

Rizika implementace metody na počítači

- při výpočtech musíme vzít v úvahu riziko ztráty přesnosti v důsledku zaokrouhlovacích chyb proto například používáme vztah $p_n = a_n + \frac{b_n a_n}{2} \text{ namísto matematicky ekvivalentního vztahu}$ $p_n = \frac{a_n + b_n}{2}$
- při výpočtu součinu v kritériu $f(a_n) \cdot f(p_n) < 0$ by se mohlo stát, že absolutní hodnota výsledku bude menší než nejmenší kladné číslo, které lze uložit v daném číselném formátu v počítači (nebo naopak tato hodnota překročí maximální hodnotu daného číselného formátu) proto raději používáme kritérium $\mathrm{sgn}(f(a_n)) \cdot \mathrm{sgn}(f(p_n)) < 0$, kde sgn je tzv. znaménková funkce.

Rizika implementace metody na počítači

- při výpočtech musíme vzít v úvahu riziko ztráty přesnosti v důsledku zaokrouhlovacích chyb proto například používáme vztah $p_n = a_n + \frac{b_n a_n}{2} \text{ namísto matematicky ekvivalentního vztahu}$ $p_n = \frac{a_n + b_n}{2}$
- při výpočtu součinu v kritériu $f(a_n)\cdot f(p_n)<0$ by se mohlo stát, že absolutní hodnota výsledku bude menší než nejmenší kladné číslo, které lze uložit v daném číselném formátu v počítači (nebo naopak tato hodnota překročí maximální hodnotu daného číselného formátu) proto raději používáme kritérium $\mathrm{sgn}(f(a_n))\cdot\mathrm{sgn}(f(p_n))<0$, kde sgn je tzv. znaménková funkce.