Exercises 7.5.5 — Problem 7

Problem. If f is C^1 on [a,b] prove that there exists a cubic polynomial P such that f-P and its first derivative vanish at the endpoints of the interval.

Proof. Note that we are able to use the fact that there exists a polynomial of degree 2n-1 that satisfies $f(x_k)=a_k$ and $f'(x_k)=b_k$ for $k=1,\ldots,n$. Let n=2 and take $x_1=a$ and $x_2=b$. Let $a_1=f(a)$, $b_1=f'(a)$ and $a_2=f(b), b_2=f'(b)$. We apply our fact and say that there is some polynomial P of degree 2n-1=3 that satisfies $P(a)=a_1=f(a), P'(a)=b_1=f'(a), P(b)=a_2=f(b),$ and $P'(b)=b_2=f'(b).$

Then we have the following four equations:

$$(f - P)(a) = f(a) - P(a) = f(a) - f(a) = 0$$

$$(f - P)'(a) = f'(a) - P'(a) = f'(a) - f'(a) = 0$$

$$(f - P)(b) = f(b) - P(b) = f(b) - f(b) = 0$$

$$(f - P)'(b) = f'(b) - P'(b) = f'(b) - f'(b) = 0$$

Thus we have the desired equalities for a cubic polynomial P.