

G H Patel College of Engineering & Technology (The Charutar Vidhya Mandal (CVM) University) Bakrol, Anand

COMPUTER ENGINEERING DEPARTMENT

Project Report On Car Selling Price Prediction

Submitted By

Name of Student : Het Patel

Enrolment Number: 12202130501025

Name of Student : Krish Dalsaniya

Enrolment Number: 12202130501034

ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING (202046702) A.Y. 2024-25

Car Price Predictor

Objective

The primary objective of this project is to develop a **machine learning-based web application** that predicts the **resale value** of a used car. This tool is designed to aid both **car buyers and sellers** in making **informed decisions** regarding the pricing of second-hand vehicles. The application considers several critical features such as:

- Car brand and model
- Year of manufacturing
- Kilometers driven
- Fuel type

By utilizing these inputs, the system delivers an estimated resale price, streamlining the pricing process in the used car market.

Dataset Used

- Source: Quikr.com a popular Indian classifieds website
- File Name: quikr car.csv
- Size: Approximately 8,000 rows after cleaning

Dataset Description

The dataset was obtained by scraping listings of used cars on Quikr. It originally contained a mix of structured and unstructured data, including:

- car name
- company (brand)
- year of manufacture
- fuel type
- price
- kms driven

Preprocessing Steps

To make the data suitable for machine learning, several preprocessing steps were performed:

- **Null and irrelevant data removal** Dropped rows with missing values and non-car entries.
- **Feature extraction** Separated brand and model from combined text fields.
- **Data type conversion** Converted price and kilometers driven from strings (with commas, "kms", etc.) into numeric types.
- Encoding categorical variables Applied one-hot encoding to convert categorical features like fuel type and company into numerical format.

Model Chosen

Algorithm Used: Linear Regression

Justification:

- **Simplicity and Interpretability:** Linear Regression is easy to understand and provides interpretable coefficients for each feature.
- Suitable for Regression Tasks: This algorithm is designed to predict continuous numerical values, which makes it ideal for predicting car prices.
- Good Baseline Performance: When used with properly cleaned and encoded data, linear regression often provides strong baseline results.

Understanding Linear Regression

Linear Regression is one of the most fundamental algorithms in supervised machine learning. It works by modeling the relationship between the **independent variables** (features such as brand, year, kms driven, etc.) and the **dependent variable** (car price).

Mathematical Equation:

Mathematical Equation:

 $Price = eta_0 + eta_1 \cdot (Year) + eta_2 \cdot (KMsDriven) + eta_3 \cdot (FuelType) + \ldots + \epsilon$

Where:

- β_0 is the intercept
- β_1, β_2, \ldots are the **coefficients** (weights) for each feature
- ϵ is the error term

The algorithm tries to minimize the sum of squared differences between the actual and predicted prices.

Model Evaluation

• Train/Test Split: 80% training data, 20% test data

• Metric Used: R² Score (Coefficient of Determination)

Test R² Score: ~0.92

Interpretation:

An R² score of **0.92** indicates that the model can explain **92% of the variability** in car prices. This reflects a **highly accurate** prediction capability, given the quality of the cleaned dataset.

Challenges & Learnings

Data Cleaning:

- The raw data was unstructured.
- Required conversion of values like "45,000 kms" to integers.
- Removed symbols like "₹", commas, and unwanted strings.

***** Feature Engineering:

- Separated combined fields like "Maruti Swift" into:
 - Brand = Maruti
 - Model = Swift

***** Model Versioning Issues:

- Initially faced issues loading saved models due to differences in scikit-learn versions.
- Learned to use Pipeline and joblib to save both preprocessing and model steps together for consistent deployment.

Deployment Experience:

- Deployed the model using **Flask**, a lightweight Python web framework.
- Gained hands-on experience in:
 - o Integrating ML model with a web app
 - o Handling user inputs from HTML forms
 - Displaying predictions in a user-friendly format.

Project Glimps

Conclusion

The Car Price Predictor project successfully demonstrates the use of a **Linear Regression model** in solving a real-world problem. It highlights the importance of **data preprocessing**, **feature engineering**, and **model deployment** in building a complete machine learning solution. The web application can be effectively used by individuals or car dealerships to estimate fair resale values based on objective criteria.

References

- 1. **Quikr.com** Source of the dataset used in the project. https://www.quikr.com
- 2. Géron, A. (2019). *Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow* (2nd ed.). O'Reilly Media.
- 3. Pedregosa, F., Varoquaux, G., Gramfort, A., et al. (2011). *Scikit-learn: Machine Learning in Python*. Journal of Machine Learning Research, 12, 2825–2830. https://jmlr.org/papers/v12/pedregosa11a.html
- 4. Scikit-learn Documentation Linear Regression. https://scikit-learn.org/stable/modules/linear_model.html#linear-regression
- 5. Flask Documentation The Python Microframework for Building Web Applications. https://flask.palletsprojects.com/
- 6. Stack Overflow Various threads related to model version compatibility and deployment troubleshooting.