

Segundo Cuatrimestre 2025

Pau Frangi Mahiques, Pablo Pardo Cotos y Diego Rodríguez Cubero $Ciencias\ Matemáticas\ e$ $Ingeniería\ Informática$

¹basado en la apuntes de Jesús Jaramillo

Contents

1 Superficies paramétricas

Definición 1.0.1 [Superficie Paramétrica]

Una parametrización de una superficie paramétrica S en \mathbb{R}^3 es una aplicación $\varphi: U \to \mathbb{R}^3$ de clase C^1 definida en un abierto conexo $U \subset \mathbb{R}^2$ tal que:

$$Im(\varphi) = \{ \varphi(u, v) \in \mathbb{R}^3 : (u, v) \in U \} = S$$

Diremos que la parametrización φ es regular cuando la pareja de vectores $\left\{\frac{\partial \varphi}{\partial u}, \frac{\partial \varphi}{\partial v}\right\}$ es linealmente independiente en todo punto de U. Equivalentemente, cuando el vector normal asociado a φ es no nulo en todo punto de U:

$$\vec{N}_{\varphi} = \frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial v} \neq \vec{0}$$

En este caso, el plano tangente a la superficie en el punto $\varphi(u_0, v_0)$ tiene como ecuaciones paramétricas:

$$\begin{cases} x = \varphi_1(u_0, v_0) + \lambda \frac{\partial \varphi_1}{\partial u}(u_0, v_0) + \mu \frac{\partial \varphi_1}{\partial v}(u_0, v_0) \\ y = \varphi_2(u_0, v_0) + \lambda \frac{\partial \varphi_2}{\partial u}(u_0, v_0) + \mu \frac{\partial \varphi_2}{\partial v}(u_0, v_0) \\ z = \varphi_3(u_0, v_0) + \lambda \frac{\partial \varphi_3}{\partial u}(u_0, v_0) + \mu \frac{\partial \varphi_3}{\partial v}(u_0, v_0) \end{cases} \qquad \lambda, \mu \in \mathbb{R}$$

Ejemplo

Dada la superficie $z=x^2+y^2$, podemos parametrizarla con $\varphi:\mathbb{R}^2\to\mathbb{R}^3$ dada por $\varphi(x,y)=(x,y,x^2+y^2)$. Calculemos el vector normal:

$$\vec{N}_{\varphi} = \frac{\partial \varphi}{\partial x} \times \frac{\partial \varphi}{\partial y} = \begin{vmatrix} \vec{e}_{1} & \vec{e}_{2} & \vec{e}_{3} \\ \frac{\partial \varphi_{1}}{\partial x} & \frac{\partial \varphi_{2}}{\partial x} & \frac{\partial \varphi_{3}}{\partial x} \\ \frac{\partial \varphi_{1}}{\partial y} & \frac{\partial \varphi_{2}}{\partial y} & \frac{\partial \varphi_{3}}{\partial y} \end{vmatrix} = \begin{vmatrix} \vec{e}_{1} & \vec{e}_{2} & \vec{e}_{3} \\ 1 & 0 & 2x \\ 0 & 1 & 2y \end{vmatrix} = \vec{e}_{1} - 2x\vec{e}_{3} + 2y\vec{e}_{2} \neq (0, 0, 0)$$

Ejemplo

Superficies explícitas: Sean $U \subset \mathbb{R}^2$ abierto conexo y $f: U \to \mathbb{R}$ de clase C^1 . Entonces la gráfica de f es una superficie regular con parametrización $\varphi: U \to \mathbb{R}^3$ dada por $\varphi(x,y) = (x,y,f(x,y))$. Veamos que $\vec{N}_{\varphi} \neq (0,0,0)$:

$$\vec{N}_{\varphi} = \frac{\partial \varphi}{\partial x} \times \frac{\partial \varphi}{\partial y} = \begin{vmatrix} \vec{e}_{1} & \vec{e}_{2} & \vec{e}_{3} \\ \frac{\partial \varphi_{1}}{\partial x} & \frac{\partial \varphi_{2}}{\partial x} & \frac{\partial \varphi_{3}}{\partial x} \\ \frac{\partial \varphi_{1}}{\partial y} & \frac{\partial \varphi_{2}}{\partial y} & \frac{\partial \varphi_{3}}{\partial y} \end{vmatrix} = \begin{vmatrix} \vec{e}_{1} & \vec{e}_{2} & \vec{e}_{3} \\ 1 & 0 & \frac{\partial f}{\partial x} \\ 0 & 1 & \frac{\partial f}{\partial y} \end{vmatrix} = \vec{e}_{1} - \frac{\partial f}{\partial x} \vec{e}_{3} + \frac{\partial f}{\partial y} \vec{e}_{2} \neq (0, 0, 0)$$

$$Im(\varphi) = \{(x, y, z) \in \mathbb{R}^3 : (x, y) \in U, z = f(x, y)\}$$

Ejemplo

Dado el cilindro de ecuaciones $x^2 + y^2 = 1$, 0 < z < 1, buscamos una parametrización de la superficie. Tomando la siguiente parametrización:

$$\begin{cases} x = \cos(\theta) \\ y = \sin(\theta) \\ z = z \end{cases} \quad \theta \in \mathbb{R}, \quad z \in (0, 1)$$

entonces vemos que $\underbrace{x^2 + y^2}_{1} = r^2 \implies r = 1.$

Por tanto, obtenemos que nuestra parametrización es:

$$\varphi : \mathbb{R} \times (0,1) \to \mathbb{R}^3 \quad \varphi(\theta,z) = (\cos(\theta),\sin(\theta),z)$$

Calculemos el vector normal:

$$\vec{N}_{\varphi} = \begin{vmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ \frac{\partial \varphi_1}{\partial \theta} & \frac{\partial \varphi_2}{\partial \theta} & \frac{\partial \varphi_3}{\partial \theta} \\ \frac{\partial \varphi_1}{\partial z} & \frac{\partial \varphi_2}{\partial z} & \frac{\partial \varphi_3}{\partial z} \\ \end{vmatrix} = \begin{vmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ -\sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{vmatrix} = (\cos(\theta), \sin(\theta), 0) \neq (0, 0, 0)$$

Ejemplo

Tomando el cilindro $x^2 + y^2 = 1$, 0 < z < 1 del ejemplo anterior, podemos parametrizarlo de otra forma.

Consideramos el siguiente conjunto:

$$U = \{(u, v) : 1 < \sqrt{u^2 + v^2} < 2, \quad 0 < v < 2\pi\}$$

entonces definimos nuestra parametrización $\varphi: U \to \mathbb{R}^3$ sobre este conjunto tal que

$$\varphi(u,v) = \left(\frac{u}{\sqrt{u^2 + v^2}}, \frac{v}{\sqrt{u^2 + v^2}}, \sqrt{u^2 + v^2} - 1\right)$$

Definición 1.0.2 [Equivalencia de parametrizaciones]

Dieremos que dos parametrizaciones $\varphi: U \to \mathbb{R}^3$ y $\psi: V \to \mathbb{R}^3$ son equivalentes si existe una aplicación $h: V \to U$ difeomorfismo de clase C^1 tal que $\psi = \varphi \circ h$.

Observación 1.0.1

- 1. En este caso, $\varphi(U) = \psi(V)$.
- 2. En la definicion se pide que U y V sean conexos. Como $\forall (s,t) \in V$, $Dh(s,t) : \mathbb{R}^2 \to \mathbb{R}^2$ es un isomorfismo lineal, sabemos que $det(Dh(s,t)) \neq 0$. Por conexión det(Dh(s,t)) conserva el signo en V.

Definición 1.0.3 [Conservación de la orientación]

- 1. Se dice que h conserva la orientación si det(Dh(s,t)) > 0, $\forall (s,t) \in V$. Es decir, si φ y ψ tienen la misma orientación.
- 2. Se dice que h invierte la orientación si det(Dh(s,t)) < 0, $\forall (s,t) \in V$. Es decir, si φ y ψ tienen orientación opuesta.

Lema 1.0.1

En el caso anterior se tiene que:

$$\frac{\partial \psi}{\partial s} \times \frac{\partial \psi}{\partial t}(s,t) = \det(Dh(s,t)) \cdot \frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial v}(h(s,t))$$

Equivalentemente:

$$\vec{N}_{\psi}(s,t) = \det(Dh(s,t)) \cdot \vec{N}_{\varphi}(h(s,t))$$

Demostración. Ejercicio, como consecuencia dela regla de la cadena: $D\psi(s,t) = D\varphi(h(s,t)) \cdot Dh(s,t)$

Definición 1.0.4 [Vectores normales asociados]

Asociados a φ y ψ obtenemos los vectores normales asociados:

$$ec{n}_{arphi} = rac{ec{N}_{arphi}}{||ec{N}_{arphi}||} \qquad ec{n}_{\psi} = rac{ec{N}_{\psi}}{||ec{N}_{\psi}||}$$

Entonces:

• φ y ψ tienen la misma orientación $\Leftrightarrow \vec{n}_{\psi}(s,t) = \vec{n}_{\varphi}(h(s,t))$

O analogamente:

• φ y ψ tienen orientacion opuesta $\Leftrightarrow \vec{n}_{\psi}(s,t) = -\vec{n}_{\varphi}(h(s,t))$

Definición 1.0.5 [Superficies como conjuntos]

- 1. Diremos que $S \subset \mathbb{R}^3$ es una superficie simple regular si: $S = \varphi(\overline{D})$, donde D = int(C) con $C \subset \mathbb{R}^2$ curva de Jordan regular a trozos $y \varphi : U \to \mathbb{R}^3$ es una parametrización C^1 , que es inyectiva y regular en \overline{D} .
- 1' En el caso anterior, se dice que la curva $\varphi(C)$ es el borde de S. Asi $\Gamma = \varphi(C)$ es una curva cerrada y regular a trozos en \mathbb{R}^3 .
- 2. Diremos que $S \subset \mathbb{R}^3$ es una superficie casi simple regular si $S = \varphi(\overline{D})$, donde D = int(C) con $C \subset \mathbb{R}^2$ curva de Jordan regular a trozos y $\varphi : U \to \mathbb{R}^3$ es una parametrización C^1 , que es inyectiva y regular en D.

Definición 1.0.6 [Area de una superficie]

En los casos anteriores definimos:

1. El area de S es:

$$a(S) = \int_{D} ||\frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial v}||dudv$$

En la cercania de un punto (u_0, v_0) ocurre que $\varphi \approx D_{\varphi}(u_0, v_0)$

2. Si $f: S \to \mathbb{R}$ es una función continua, entonces la integral de superficie de f sobre S es:

$$\int_{S} f = \int_{D} f(\varphi(u, v)) || \frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial v} || du dv$$

Ejemplo

Calculemos el area de $S = \{(x, y, z) : x^2 + y^2 = z^2, 1 \le z \le 2\}$. Usaremos el cambio a cordenadas cilindricas:

$$\begin{cases} x = r\cos(\theta) \\ y = r\sin(\theta) \\ z = z \end{cases} \implies \begin{cases} 1 \le r \le 2 \\ 0 \le \theta < 2\pi \\ r^2 = z^2 \implies r = z \end{cases} \implies \begin{cases} x = z\cos(\theta) \\ y = z\sin(\theta) \\ z = z \end{cases}$$

Entonces tenemos: $\overline{D} = [0, 2\pi] \times [1, 2], \text{ y } S = \varphi(\overline{D}.$

Ahora tenemos el vector normal:

$$\vec{N}_{\varphi} = \begin{vmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ -z\sin(\theta) & z\cos(\theta) & 0 \\ \cos(\theta) & \sin(\theta) & 1 \end{vmatrix} = (z\cos(\theta), z\sin(\theta), -z)$$

Cuyo modulo es:

$$||\vec{N}_{\varphi}||^{2} = z^{2}\cos^{2}(\theta) + z^{2}\sin^{2}(\theta) + z^{2} = 2z^{2} \implies ||\vec{N}_{\varphi}|| = \sqrt{2}z \neq 0, \quad \forall (\theta, z) \in D$$

Ademas φ es inyectiva y regular en D (aunque no lo es en \overline{D}).

Por tanto, el area de S es:

$$a(S) = \int_{D} ||\vec{N}_{\varphi}|| = \int_{\theta=0}^{\theta=2\pi} \int_{z=1}^{z=2} \sqrt{2}z dz d\theta = \sqrt{2} \cdot 2\pi \left[\frac{z^2}{2}\right]_{1}^{2} = \sqrt{2}2\pi(4-1) = 3\sqrt{2}\pi$$

Ejemplo

Sea $\overline{f(x,y,z)} = x^2 + y^2 + z^2$ y S del ejercicio anterior:

$$\int_{S} f = \int_{D} f(\varphi(\theta, z)) ||\vec{N}_{\varphi}(\theta, z)|| d\theta dz = \int_{\theta=0}^{\theta=2\pi} \int_{z=1}^{z=2} 2z^{2} \cdot \sqrt{2}z dz d\theta = 15\sqrt{2}\pi$$

Ademas: $\int_{S} f dA = \int_{S} f dS$