ROBOVOX Speaker Verification Challenge

Signal Processing Cup ICASSP 2024, Seoul, South Korea

Atharv Ramesh^{1,2}, Anirudh Srinivasan^{1,3}, Tejadhith Sankar^{1,2}, Vaideeshwaran AP², Sreekanth Sankala², K Sri Rama Murty², Himanshu Gupta ⁴

 $\begin{array}{c} {\sf Presenting\ Authors}^1 \\ {\sf Department\ of\ Electrical\ Engineering}^2,\ {\sf Computer\ Science\ and\ Engineering}^3,\ {\sf Artificial\ Intelligence}^4 \\ {\sf Indian\ Institute\ of\ Technology\ Hyderabad} \end{array}$

Table of Contents

- Robovox Challenge
 - Problem Description
 - Evaluation Dataset
- Background
 - Speaker Verification Pipeline
- Solution Approaches
 - Enhanced Res2Net Architecture
 - 3D-Speaker Dataset
 - Further Attempts
 - Data Augmentation
 - Speech Enhancement
- Summary and Future work

Problem Description

Text Independent Far Field Speaker Verification

Robovox (E4): a mobile robot

- Challenges
 - Ambient noise, Reverberation, Babble noise, Far-field speech
 - 1m, 2m, and 3m. Hall, Open space, Small and medium rooms.
 - Near the wall, Center of the room, or corner.
 - Robot internal noise, Angle between speaker and robot

Evaluation Dataset

- Robovox Dataset Conversations between robot and speakers
 - Sampling frequency: 16000, Language: French
 - Enrollment No.of Speakers: 75, Utts per speaker: 3, Avg dur: 6.5 sec
 - Test No.of utterances: 10332, Avg duration: 3.37 sec
 - Sample Data 30 minutes of data from 2 speakers

Evaluation Dataset

- Robovox Dataset Conversations between robot and speakers
 - Sampling frequency: 16000, Language: French
 - Enrollment No.of Speakers: 75, Utts per speaker: 3, Avg dur: 6.5 sec
 - Test No.of utterances: 10332, Avg duration: 3.37 sec
 - Sample Data 30 minutes of data from 2 speakers

- Task1: Far-field single-channel tracks: Ch 5 vs Ch 4
- Task2: Far-field multi-channel tracks: Ch 5 vs. All excluding Ch 5

Evaluation Dataset

- Robovox Dataset Conversations between robot and speakers
 - Sampling frequency: 16000, Language: French
 - Enrollment No.of Speakers: 75, Utts per speaker: 3, Avg dur: 6.5 sec
 - Test No.of utterances: 10332, Avg duration: 3.37 sec
 - Sample Data 30 minutes of data from 2 speakers

- Task1: Far-field single-channel tracks: Ch 5 vs Ch 4
- Task2: Far-field multi-channel tracks: Ch 5 vs. All excluding Ch 5
- Evaluation Metrics
 - Minimum Decision Cost Function (min_DCF)
 - Equal Error Rate (EER)

Spectrograms

Channel 4

Channel 5

Basic Pipeline of Speaker Verification

Speaker Verification

Basic Pipeline of Speaker Verification

Speaker Verification

Speaker Embedding Extractor

Basic Pipeline of Speaker Verification

Speaker Verification

Speaker Embedding Extractor

- Frame-level encoder: DNN, CNN, ResNet, Transformer encoders, etc.
- Stats pooling: Mean, Standard deviation (Equal importance to all frames), Self-attention (Relative importance to the frames), etc

Enhanced Res2Net Architecture

 ERes2Net: An Enhanced Res2Net with Local and Global Feature Fusion for Speaker Verification

Overview of the enhanced Res2Net framework

ERes2Net Architecture: Key Features

Attentively fuses the local and global information

Local feature fusion

$$\mathbf{y}_{i} = \begin{cases} \mathbf{x}_{i} & i = 1 \\ \mathbf{K}_{i}(\mathbf{x}_{i}) & i = 2 \\ \mathbf{K}_{i}(\mathbf{x}_{i} + \mathbf{y}_{i-1}) & i \geq 2 \end{cases}$$

$$U = tanh(\mathbf{W}_{2} \cdot g(\mathbf{W}_{1}([\mathbf{x}_{i}, \mathbf{y}_{i-1}])))$$

$$\mathbf{y}_{i} = \begin{cases} \mathbf{K}_{i}(\mathbf{x}_{i}) & i = 1 \\ \mathbf{K}_{i}((U(\mathbf{x}_{i}, \mathbf{y}_{i-1}) + 1) \cdot \mathbf{x}_{i}) & i > 1 \\ +(1 - U(\mathbf{x}_{i}, \mathbf{y}_{i-1})) \cdot \mathbf{y}_{i-1})) \end{cases}$$

ERes2Net Architecture: Key Features

Stage	Structure	Output size		
	$3 \times 3, 32$	$T \times 80 \times 32$		
Stage 1	$\begin{bmatrix} 1 \times 1 & 32 \\ 3 \times 3, 16, s = 2 \\ 1 \times 1 & 64 \end{bmatrix} \times 3$	$T \times 80 \times 64$		
Stage 2	$\begin{bmatrix} 1 \times 1 & 64 \\ 3 \times 3, 32, s = 2 \\ 1 \times 1 & 128 \end{bmatrix} \times 4$	$T/2 \times 40 \times 128$		
Stage 3	$\begin{bmatrix} 1 \times 1 & 128 \\ 3 \times 3, 64, s = 2 \\ 1 \times 1 & 256 \end{bmatrix} \times 6$	$T/4 \times 20 \times 256$		
Stage 4	$\begin{bmatrix} 1 \times 1 & 256 \\ 3 \times 3, 128, s = 2 \\ 1 \times 1 & 512 \end{bmatrix} \times 3$	$T/8 \times 10 \times 512$		
	Temporal statistics pooling			
	Fully connected layer			
	Softmax layer			

Architecture

Global feature fusion

System Specifications

- Feature Extraction:
 - 80 dim Log-Mel Filter Bank energies
 - 25 ms window size, 10 ms shift
 - 3 sec cropped/padded utterances
- Data Augmentation:
 - RIRS(room impulse response), MUSAN (additive noise)
 - speed perturbation (0.9,1,1.1)
- Optimization
 - Loss Function : Angular Additive Margin Softmax (AAM-Softmax)
 - margin 0.3
 - scale : 32
 - SGD with momentum (0.2), Weight Decay (1e-4)
 - Cosine annealing Scheduler with linear warm-up schedule
- Cosine Similarity for scoring

Training Dataset

- VoxCeleb: 16 kHz sampled signal
 - Celebrity interviews in YouTube: 16 kHz sampled signal
 - 7000 speakers, Around 2000 hours of speech
 - Gender balanced data
- CN-Celeb: 16 kHz sampled signal
 - Chinese Speaker Recognition Corpus
 - 3000 Chinese celebrities and 1200+ hours of speech
 - Gender balanced data

Training Dataset

- VoxCeleb: 16 kHz sampled signal
 - Celebrity interviews in YouTube: 16 kHz sampled signal
 - 7000 speakers, Around 2000 hours of speech
 - Gender balanced data
- CN-Celeb: 16 kHz sampled signal
 - Chinese Speaker Recognition Corpus
 - 3000 Chinese celebrities and 1200+ hours of speech
 - Gender balanced data
- 3D-Speaker: Both 16 kHz & 48 kHz sampled signal
 - Multi-device, Multi-distance, and Multi-dialect
 - Distance: 0.1 meter to 4 meter
 - Dialect: 13 Chinese Dialects
 - Devices: 8 devices
 - 10000 speakers, Around 1124 hours of speech
 - Combination of Far Field and Near-field speech

Performance Evaluation - Training Dataset influence

- Multichannel Data used as Validation
- ERes2Net model trained with different data sets
 - Performance on Channel 5 Channel 5 is better with VoxCeleb data
 - Performance on Channel 5 Channel 4 is better with 3D-speaker data

Enrollment - Test	VoxCeleb CN-Celeb		3D Speaker	
Channel 5 - Channel 5	4.05	5.2	7.57	
Channel 5 - Channel 4	12.4	14.71	10.77	

Table: Performance evaluation on RoboVox data

Performance Evaluation - Training Dataset influence

- Multichannel Data used as Validation
- ERes2Net model trained with different data sets
 - Performance on Channel 5 Channel 5 is better with VoxCeleb data
 - Performance on Channel 5 Channel 4 is better with 3D-speaker data

Enrollment - Test	VoxCeleb CN-Cele		3D Speaker	
Channel 5 - Channel 5	4.05	5.2	7.57	
Channel 5 - Channel 4	12.4	14.71	10.77	

Table: Performance evaluation on RoboVox data

- VoxCeleb dataset contains more of near-field data
- 3D Speaker dataset includes a significant amount of far-field data

t-SNE Plots

t-SNE Plots

- No. of Speakers = 8
- Utterance per speaker = 40

t-SNE Plots

- No. of Speakers = 8
- Utterance per speaker = 40
- Better clustering
 - Voxceleb: Channel 5
 - 3D-Speaker: Channel-4

Performance Evaluation - Model influence

- Processing spectral magnitude features (Log-Mel filterbank energies)
 - ECAPA, SEResNet34V2, ERes2Net
- Direct processing of wave samples
 - wavLM self-supervised model pre-trained with 94k hours of speech.
 - ECAPA model as backend classifier on wavLM representations

Evaluation Type	wavLM	ECAPA	SEResNet34V2	ERes2Net
5 vs 5	6.16	7.14	7.2	5.9
5 vs 3	14.6	14.2	14.1	11.2
5 vs 4	17.7	17.1	16.8	12.8

Table: Performance evaluation on RoboVox data

Score Normalisation Results

Adaptive Score Normalisation

Table: EER and EER (after score norm)

Model	EER	Avg MinDCF
ERes2Net Large	11.22	0.63
ERes2Net Large (after)	9.93	0.59

• Significant improvement observed in multi-channel data

Score Fusion

Table: EER and MinDCF Performance of different model on Multichannel Data

S.No	Model	EER	MinDCF (Day)	MinDCF (Night)	Avg MinDCF
1	ERes2Net-Large	10.77	0.40	0.99	0.69
2	ERes2Net-base	11.91	0.45	0.99	0.72
3	ResNet34	11.54	0.41	0.90	0.65
4	ECAPA-TDNN	11.76	0.44	0.99	0.72
5	CAM++	10.61	0.41	0.912	0.66
	Fusion(All)	9.33	0.35	0.92	0.63
	Fusion (1+3+5)	9.26	0.35	0.809	0.57

- Day $(P_{target} = 0.8, C_{Miss} = 1, C_{FA} = 20)$
- Night ($P_{target} = 0.01, C_{Miss} = 10, C_{FA} = 100$)
- Note: Scoring is done here after centering

Data Augmentation & Speech Enhancement

- Speech enhancement as a preprocessing step
 - Facebook denoiser, CMGAN, TVCN
 - Speech enhancement on clean data acts as identity transformation
 - Performance on noisy data: $\approx 13\%$
- Data augmentation to mimic the RoboVox challenge
 - Estimate channel 4 data from channel 5

$$x_4[n] = h[n] * x_5[n] + v[n]$$
 (1)

• Use $\hat{h}[n]$, $\hat{v}[n]$ and generate augmented noisy sample

$$\hat{x}_4[n] = \hat{h}[n] * x_5[n] + \hat{v}[n]$$
 (2)

- Include $\hat{x}_4[n]$ in the training data.
- Wiener Filter Approach: 11.7% (+1%)

Summary & Future work

- Summary
 - Features: Log-Mel filter bank energies
 - Speaker embedding extractor: ERes2Net architecture
 - Training database: 3D-speaker database with 10,000 speakers
 - Score normalization & Speech enhancement as preprocessor
- Future work
 - Speech Enhancement: De-noising followed by de-reverberation models
 - Data Augmentation: Optimal estimation of channel 4 from channel 5
 - Distance and Device invariant features: Adversarial Training to learn it (metadata available in 3D-Speaker Dataset)

Thank You Any Questions?