Raport CARN-tema2

	Acuratete	Link
#nr		
1.	0.60640	https://www.kaggle.com/code/andreimurgulet/config-3
2.	0.76600	https://www.kaggle.com/code/andreimurgulet/config-2
3.	0.76930	https://www.kaggle.com/code/andreimurgulet/config-1
4.	0.79420	https://www.kaggle.com/code/andreimurgulet/carn-
		tema2

Augumentari & Optimizatori

1. 100_epochs	 RandomHorizontalFlip, ColorJitter(0.4, 0.4, 0.4, 0.1) RandomCrop(32, padding=4) RandomErasing(p=0.2, scale=(0.02, 0 .15)) 	 SGD(Lr= 0.01, momentum 0.9, weigh_decay = 3e-4) CosineAnnealingLR pentru scheduler
	Cutmix si mixup	
2. 150_epochs	 TrivialAugmentWide RandomAffine(degrees=0, translate=(0.1, 0.1)scale=(0.9, 1.1)) RandomCrop(32, padding=4) Cutmix si mixup 	 ADAMW(Lr=3e-4,weigh_decay = 1e-4) CosineAnnealingLR pentru scheduler
3. 150_epochs	 RandAugment(num_ops=2, magnitud e=9) RandomCrop(32, padding=4) RandomHorizontalFlip() Cutmix si mixup 	 SGD(Lr= 0.005, momentum 0.9 9, weigh_decay = 3e-4) CosineAnnealingLR pentru scheduler
4. 185_epochs (version 88)	 RandomCrop(32, padding=4) RandomHorizontalFlip() Cutmix si mixup 	 SGD(Lr= 0.005, momentum 0.9 9, weigh_decay = 3e-4) CosineAnnealingLR pentru scheduler

Alte mentiuni

- Toate modelele folosesc CrossEntropyLoss cu label_smoothing setat la 0.1
- Toate modelele folosesc TTA
- Modelele 1 si 2 nu folosesc split pentru validare
- Normalizarea datelor a fost obtinuta cu deviatia standard si media datelor de pe train

Observatii

O augumentare mult prea agresiva (precum in 1.) duce la un rezultat instabil si de proasta calitate.

SGD a fost cel mai bun optimizator daca se alegea un learning rate mic si momentum mare, dar necesita un numar mai mare de epoci.