

Teil 2

.

Floating point - arith - decimal add

- 1. Anpassung der Dezimalpunkte (Zahl mit kleineren exponent "shiften" bis exponent gleich)
- 2. Addition der significands
- 3. Normalisieren
- 4. Runden

- Beispiel (4-Stellen): 9.999 * 10^1 + 1.610 *10^-1
 - 1.: 9.999 * 10^1 + 0.01610 *10^1
 - 2.: 9.999+ 0.01610=10.015 ->10.015 *10^1
 - 3.: 1.0015 *10^2
 - 4.: 1.002 *10^2

Floating point - arith - decimal add - Übung

- 1. Anpassung der Dezimalpunkte (Zahl mit kleineren exponent "shiften" bis exponent gleich)
- 2. Addition der significands
- 3. Normalisieren
- 4. Runden

- Beispiel (4-Stellen): 2.320 *10^1 + 7.325 *10^0
 - 1.:
 - **2**.:

- **■** 3.:
- **4**::

Floating point - arith - binary add

- 1. Anpassung der Dezimalpunkte (Zahl mit kleineren exponent "shiften" bis exponent gleich)
- 2. Addition der significands
- 3. Normalisieren
- 4. Runden

- Beispiel (4-Stellen): dezimal: 0.5 + -0.4375 binär: 1.000 *2^-1 + -1.110 *2^-2
 - 1.: 1.000 *2^-1 + -0.111 *2^-1
 - 2.: 1.000 + -0.111=0.001 ->0.001 *2^-1
 - 3.: 1.000 *2^-4
 - 4.:1.000 *2^-4 (hier keine Änderung durch Runden)

//dec: 1*1/16 -> 0.0625

Floating point - arith - binary add - Übung

- 1. Anpassung der Dezimalpunkte (Zahl mit kleineren exponent "shiften" bis exponent gleich)
- 2. Addition der significands
- 3. Normalisieren
- 4. Runden

- Beispiel (5-Stellen): dezimal: 23.25 + 7.375 binär: 101.1101*2^2 + 111.011 *2^0
 - 1.:
 - **2**.:

- **3**.:
- **4**.:

Floating point - arith - decimal mult

- 1. Addition der Exponenten
- 2. Multiplikation der significands
- 3. Normalisieren
- 4. Runden
- 5. Bestimmung des Vorzeichens

```
Beispiel (4-Stellen):
1.110 *10^10 * 9.200 *10^-5
  1 ·
   10 + -5 = 5
  2:1.110 * 9.200
   1110 * 9200
        9990
          2220
       10212000
   ->10.212
   ->10.212*10^5
  3.
    1.0212*10^6
  4.:
   1.021*10^6
  5:
   +1 021*10^6
```


Floating point - arith - decimal mult - Übung

- 1. Addition der Exponenten
- 2. Multiplikation der significands
- 3. Normalisieren
- 4. Runden
- 5. Bestimmung des Vorzeichens

- Beispiel (4-Stellen): 2.320*10^1 * -7.325*10^0
 - 1.:
 - **2**:

3.:

4.:

5.:

Floating point - arith - binary mult

- 1. Addition der Exponenten
- 2. Multiplikation der significands
- 3. Normalisieren
- 4. Runden
- 5. Bestimmung des Vorzeichens

```
Beispiel (4-Stellen):
  dezimal: 0.5 * -0.4375
  binär: 1.000 *2^-1 * -1.110 *2^-2
   -1 + -2 = -3
  2:: 1.000 * -1.110
    1110 * 1000
        1110
        1110000
   -> 1.110
   -> 1.110*2^-3
  3.:
   1.110*2^-3 (hier keine Änderung)
  4 ·
   1.110*2^-3 (hier keine Änderung)
  5:
   -1.110*2^-3 //"+"*"-" -> "-"
   //dec: ->-0.21875
```


Floating point - arith - binary mult - Übung

- 1. Addition der Exponenten
- 2. Multiplikation der significands
- 3. Normalisieren
- 4. Runden
- 5. Bestimmung des Vorzeichens

- Beispiel (8-Stellen, truncate): dezimal: 3.25 * -6.5 binär: 11.01 *2^0 * -11.01 *2^1
 - 1.:
 - **2**:

3.:

4.:

5:

Floating point - rounding (Q)

- nicht alle gebrochenen Zahlen innerhalb der Wertegrenzen sind mit floating point darstellbar
- Beispiel

darstellbar: 0.5

darstellbar: 12345

• nicht darstellbar: 0.1

- Rounding = Bestimme eine geeignete darstellbare Zahl x^* für eine möglicherweise nicht darstellbare Zahl x.
 - x^* kann eine der beiden darstellbaren Zahlen x^+, x^- sein, für die gilt:

$$x^- \le x \le x^+$$

• verschiedene Rundungsregeln sind möglich

Floating point - rounding - decimal

Beispiel: Runden auf einen glatten Euro Betrag

Rule	1,50 €	2,50 €	- 1,50 €
Round-to-even	2€	2€	- 2 €
Round-toward-zero	1 €	2 €	-1€
Round-down	1 €	2 €	- 2 €
Round-up	2 €	3 €	-1€

Data rep - floating point - rounding - "Round-to-even" (B)

- Warum ist round-to-even sinnvoll?
 - systematisches Runden (entweder nach oben oder nach unten) kann zu einem statistischen Fehler (bias, Verschiebung) führen
- Veranschaulichung im Dezimalbereich:
 - Folgende Messwerte werden gerundet. Danach wird der Mittelwert bestimmt

wirklicher Mittelwert:	16 / 4 = 4.0 = 4
- WII KIICHEI MILLEIWELL.	10 / 4 = 4.0 = 4

• Mittelwert bei round-down
$$14/4 = 3.5 = 3$$

• Mittelwert bei round-up:
$$18/4 = 4.5 = 5$$

• Mittelwert bei round-to-even:
$$16 / 4 = 4.0 = 4$$

Floating point - rounding - binar 1/2

- b_i , $i = 0 \dots n$ sind darstellbare Binärziffern
- b_0 ist die nach dem Runden niederwertigste (least significant) Bitziffer, -> Runden bedeutet: Bestimmung von b_0
- für $b_n \dots b_{m+1} \dots b_m \dots b_0 \dots$ klar -> abrunden und $b_n \dots b_{m+1} \dots b_m \dots b_0 \dots 1$ klar -> aufrunden
- unklar nur $b_n \dots b_{m+1} \cdot b_m \dots b_0 1000 \dots 0$

Rule	$\cdots b_1[b_0=0]100\cdots>0$	$\cdots b_1[b_0=0]100\cdots<0$
Round-to-even	$\cdots b_1 0000 \cdots$	$\cdots b_1 0000 \cdots$
Round-toward-zero	$\cdots b_1 0000 \cdots$	$\cdots b_1 0000 \cdots$
Round-down	$\cdots b_1 0000 \cdots$	$\cdots b_1 1000 \cdots$
Round-up	$\cdots b_1 1000 \cdots$	$\cdots b_1 0000 \cdots$

Floating point - rounding - binar 2/2 - Beispiel

Beispiel runden auf zwei Stellen nach Binärpunkt

Floating point - arith - precision 1/3 (R)

- Was passiert eigentlich wirklich beim Rechnen mit floating point Werten?
- Für eine beliebige Berechnung wird definiert: $x \odot y$
 - ■D.h. man ersetzt \odot z.B. durch +, -, \times oder /
- Das Ergebnis der Berechung ist round $(x \odot y)$
 - •D.h. für $x \odot y$ wird das **mathematisch exakte** Ergebnis der Operation eingesetzt

Data rep - floating point - arith 2/3 - Beispiel (R)

Beispiel 1:

```
(3.14 + 1e10) - 1e10 =
round ( round ( 3.14 + 1e10) - 1e10) =
round (1e10 - 1e10) = 0
```

■ Beispiel 2:

```
3.14 + (1e10 - 1e10) =
round ( 3.14 + round ( 1e10 - 1e10)) =
round ( 3.14 + 0) = 3.14
```


Data rep - floating point - arith 3/3 (R)

- Folgerung:
 - Es ist also nicht vernachlässigbar, in welcher Reihenfolge floating point Operationen durchgeführt werden
 - -> d.h. das Assoziativgesetz ist bei floating point nicht mehr gültig!
- Beispiel:

$$x = a + b + c;$$

 $y = b + c + d;$
 $t = b + c;$
 $x = a + t;$
 $y = t + d;$

- Anwendung/Auswirkungen:
 - Bestimmte Optimierungen dürfen für floating point nicht durchgeführt werden! (Wissenschaftliche Software/ Compilerbau)