Experimental Physics 3 - Em-Waves, Optics, Quantum mechanics

Lecture 14

2.3 Diffraction

Diffraction Grating

Diffraction Grating

Diffraction Grating

Diffraction Grating - Spectral Resolution

Fresnel Zones

Fraunhofer / Fresnel Diffraction

Complementary diffraction objects have the same far field diffraction pattern

3. Electromagnetic Optics

Electromagnetic Spectrum

Electromagnetic Waves in Vacuum

vacuum

$$\rho = 0 \qquad \vec{j} = 0$$

$$\nabla \times \overrightarrow{E} = -\frac{\partial \overrightarrow{B}}{\partial t} \qquad \nabla \cdot \overrightarrow{E} = 0$$

$$\nabla \times \overrightarrow{B} = \epsilon_0 \mu_0 \frac{\partial \overrightarrow{E}}{\partial t} \qquad \nabla \cdot \overrightarrow{B} = 0$$

Electromagnetic Waves - Plane Waves, Spherical Waves

plane wave

spherical wave

Right Circularly Polarized

Left Circularly Polarized

