Basics of Statistical Learning

Notations

- X --> Predictors, Independent variables
- Y --> Response, Dependent variables
 Input X ---> Y Output

 $X=(X_1,X_2\ldots Xp) o Y$

General form:

 $Y = f(x) + \varepsilon$

- f(x): Fixed unknown function
- ε : Error term

We use Statistical Learning to estimate f(x)

Reasons to estimate f(x)

Prediction

 $\hat{Y} = \hat{f}(x)$

- \hat{f} estimate of f
- \hat{Y} result of the prediction

There is two types of errors :

- 1. Reducible Error $\hat{f} \to f$
- 2. Irreducible Error Y is a Function of ε too

$$\begin{split} E(Y-\hat{Y})^2 &= E(f(x) + \varepsilon - \hat{f}(x))^2 \\ &= (f(x) - \hat{f}(x)) + Var(\varepsilon) \end{split}$$

- $\circ \ f(x) \hat{f}(x)$ is the reducible Error
- ${}^{\circ}$ $Var(\varepsilon)$ is the variance of the irreducible Error

Note: In Prediction we treat \hat{f} as a black-box, What matter more is that we get \hat{Y} as close to Y as we can, Only the prediction matter

Inference

Here \hat{f} cannot be treated as a black-box, We want to know it exact form because we may be interested in answering these questions :

- ${}^{\circ}$ Which $predictors\ Xi$ are associated with the $response\ Y$, The ones with the most impact on the $response\ ?$
- \bullet . What is the relationship between the $response\ Y$ and each $predictor\ X_i$?
- ullet Can the relation between Y and each $predictor X_i$ be written as a Linear equation or its more complex then that ?
 - Because a Linear relationship is more interptiable so we always seek that

How do we Estimate F?

- $\, \bullet \,$ We always assume we observe n data points
- $\circ~$ The observation x_{ij} represent the value of the jth predictor
- ${\ }^{\circ}{\ }$ The response y_i represent the value of the ith observation
- * So $\{(x_1,y_1)(x_2,y_2)\dots(x_i,y_i)\}$ will be our <u>Training Data</u> with $x_i=(x_{i1},x_{i2}\dots x_{ip})$, with variables or fields $1\to p$ We want to find \hat{f} such that $Y\approx \hat{f}(x)$ for any observation (X,Y)-> unseen data

There is two types of approaches

Parametric Methods

This method require two steps:

1. make assumption about the Functional Form or Shape of f most simple approach is that f is Linear <u>Linear Regression</u>

$$f(x)=eta_0+eta_1X_1+eta_2X_2+\dotseta_pX_p$$

f(x) is so Simple we only need to estimate β_0 . β_p

2. Training or Fitting the model to estimate β_p such as:

 $Ypproxeta_0+eta_1X_1+\ldotseta_pX_p$

Disadvantage:

- \circ The model we choose usually wont match the unknown form of f if the model is too far true from of f our estimations will be poor
- ${}^{\circ}$ We can get around that by choosing more flexible model that fits many forms of f
- More flexible model requires more parameters which can lead to Overfitting
- The more flexible model be the more complex it become

Non-Parametric Methods:

- $\,{}^{\circ}\,$ Seek an estimate of f that get as close as possible to the Data points
- No assumptions needed
- ${}^{\circ}$ f Fit wider range of possible shapes and forms
- Avoid the danger of not Fitting

Disadvantage:

- Since the non-parametric methods don't reduce the number of parameters
- A very big number of Observations data points is need (Way more than usual) to estimate f

Trade off: Prediction Accuracy vs Model interpretability

- Interpretability helps when inference cause its easy to understand the relationship between Y and X
- · When Prediction is our goal more flexible models fits more
- Note : Sometimes a less flexible models gives better predictions than more flexible ones, it all depends on the type of relationship between Y and X

Supervised Versus Unsupervised Learning:

Supervised Learning:

- $\circ~$ For each $\underline{\text{Observation}}~x_i$ there is a $\underline{\text{Response}},$ Measurement y_i
- $\circ~$ We want to fit a $\underline{\text{model}}$ that $\underline{\text{Observation}} <\text{-->} \underline{\text{Response}}$
- $\,{}^{\bullet}\,$ With the aim to predict future unseen responses $\underline{\text{Prediction}}$
- Or better understanding of the relationship between Observations \emph{n} and the response \emph{y} Inference

Unsupervised Learning:

Deals with more challenging situations

- $\circ~$ We have the <code>Observation</code> x_i without the <code>Response</code> y
- Seek to understand the relationships between the variables or the Observations

Regression Vs Classification Problems:

It all depend on the type of $Variables\ 1 o p$ either

- Quantitative
- Regression Problems
- Qualitative (Categorical)
- Classification Problems
- So Selecting the Statistical Learning Method depends on --> The Response variable type (quan/quali)
- $\ ^{\circ}$ The predictors X variable type are way less important on the decision