retour sur le dernier cours

 (G, \bullet) c'est un groupe

 $S_E = \{\sigma: E \to E | \sigma \text{ inversible }\} \quad \text{ est une groupe pour la composition }$

Un cycle est un élément de S_n de la forme

$$\sigma(a_1) = a_{i \neq 1}, \ \sigma(a_k) = a_1, i = 1, \cdots, k$$

On le note $(a_1 a_2 a_3 \cdots a_k)$

Fait important

Toute permutation se décompose de manière unique en cycles disjoint Exemple :

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 5 & 4 & 3 \end{pmatrix} = (12) \circ (35) = (35) \circ (12)$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 3 & 4 & 1 & 6 & 2 & 5 \end{pmatrix} = (1\,7\,5\,6\,2\,3\,4)$$

Le signe (ou la signature) d'un cycle de longeur ℓ est

 $(-1)^{\ell-1}$ $\begin{cases} +1 : \text{la permutation est paire} \\ -1 : \text{la permutation est imparire} \end{cases}$

On a la relation $\operatorname{sgn}(\sigma_1 \circ \sigma_2) = \operatorname{sgn}(\sigma_1)\operatorname{sgn}(\sigma_2)$

On peut utiliser une manière graphique pour calculer la signature d'une permutation (graph : compter le nombre d'intersections)

Action de G sur X: deux définitions

- 1. \bullet : $G \times X \to X$
- 2. homomorphisme $f: G \to S_x$

Représentation de G: action linéaire de G sur un espace vectoriel V

Exemple : La Représentation vectoriel sur V

$$g \circ \mathbf{v} = \mathbf{v} \quad \forall g \in G, v \in V$$

 $\rho: G \to GL(V)$

$$g\mapsto \mathbb{1}$$

Pour G fixé, on a la représentation régulière (R) (pour chaque élément du groupe on a un vecteur)

$$\langle e_{g_1}, \cdots, e_{g_n} \rangle$$
 où $G = \{g_1, \cdots, g_n\}$

On définit $g \bullet e_g = e_{g \bullet g}$

Exemple:

$$Z_3 = \{0, 1, 2\}$$

$$V = \langle e_0 e_1 e_2 \rangle$$

$$R(0) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$R(1) = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

$$R(2) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

Les éléments du groupe \mathbb{Z}_3 sont ici representé par les matrices 3x et l'addition (modulaire) est remplacé par la multiplication matriciel des éléments de la représentation.

Autre exemple:

$$S_3 = \{e, (12), (13), (23), (123), (132)\}\$$

Plus généralement , si G agit sur E (ensemble fixé), on définit une représentation de permutation sur $\langle e_1, e_2, \cdots, e_n \rangle$ $E = \{e_1, \cdots, e_n\}$ par $\rho(g)(e_i) = g \bullet e_1$ (action de G sur E)

exemple : $V=\mathbb{C}$ Ou on prend \mathbb{C} comme un espace vectoriel

$$G = \mathbb{Z}_3$$

$$\rho: \mathbb{Z}_3 \to \mathbb{C}^* = \mathrm{GL}(1,\mathbb{C})$$

$$n \mapsto \omega^n \quad \text{où} \quad \omega = e^{2\pi i/3}$$

<u>Définition</u>: Un sous-représentaation de

$$\rho: G \to \mathrm{GL}(V)$$

est la restriction de ρ à un sous-espace $U \subset V$ invariant par ρ . c-à-d, si $u \in U$, alors $\rho(g)u \in U \forall g \in G$

Exemple: Pour $R: S_3 \to \mathrm{GL}(6,\mathbb{C})$ Le sous-espace $\left\{ \begin{pmatrix} z \\ z \\ z \\ z \\ z \end{pmatrix} \in \mathbb{C}^6 | z \in \mathbb{C} \right\}$ est une sous représentation <u>triviale</u>

Le sous-espace $U_0 = \left\{ \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_6 \end{pmatrix} \in \mathbb{C}^6 | z_1 + z_2 + \dots + z_6 = 0 \right\}$ est aussi une sous-représentation de R de dimension 5

<u>Définition</u>: Une représentation est <u>irréductible</u> si elle n'admet aucune sous représentation propre $(\neq 0, \neq V)$

Exemple: S_3 :

 $\rho: S_3 \to \operatorname{GL}(3, \to \mathbb{C})$ la représentation de permutation induite par l'action $\underline{???}$ de S_3 sur $\{1, 2, 3\}$ $\rho(12) = \cdots 3x3$, $\rho(123) = \cdots 3x3$

 ρ est elle irréductible? non,

$$\left\langle \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\rangle = \{ \begin{pmatrix} z \\ z \\ z \end{pmatrix} \in \mathbb{C}^3 | z \in \mathbb{C} \}$$

est invariant est irréductible

Également,
$$U_0 = \left\langle \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \right\rangle = \left\{ \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} | z_1 + z_2 + z_3 = 0 \right\}$$
 est invariant

Es-ce que U_0 est irréducibleÉ

Cherchons un sous-espace invariant de dim 1

$$\rho(12) \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} = \begin{pmatrix} z_2 \\ z_1 \\ z_1 - z_2 \end{pmatrix} = \lambda \begin{pmatrix} z_1 \\ z_2 \\ -z_1 - z_2 \end{pmatrix}$$

. . .

Conculsion : U_0 est une représentation irréductible. On l'appelle représentation standard de S_3

 $\underline{\operatorname{Ex}}:S_3$

$$\operatorname{sgn}: S_3 \to \mathbb{C}^* = \operatorname{GL}(1, \mathbb{C})$$

$$\sigma \mapsto \operatorname{sgn}(\sigma)$$

Si $\rho_1:G \to GL(u)$, $\rho_2:G \to GL(v)$ sont 2 représentation de G, leurs somme directe est la représentation $\rho_1 \oplus \rho_2:GGL(u \oplus v)$

$$(\rho_1 \oplus \rho_2)(g)(u \oplus v) = \rho_1(g)u \oplus \rho_2(g)v$$

Exemple : si $U = \mathbb{R}^n \ V = \mathbb{R}^m$

$$U \oplus V = \mathbb{R}^{n+m}$$

 $U \oplus v$ contient $u \oplus 0$ et $0 \oplus v$ comme sous représentation

Proposition : Soit $U \subset V$ une sous-repr/sentation de $\rho : G \to \mathrm{Gl}(V)$. Alors, il existe une sous-représentation $W \subset V$ telle que $\overline{V = U \oplus W}$

Attention!

Faux en général pour les groupes infinis

Exemple : $\rho : \mathbb{Z} \to \mathrm{GL}(2,\mathbb{C})$

$$n \mapsto \begin{pmatrix} 1 & n \\ 0 & 2 \end{pmatrix}$$

est une représentation de \mathbb{Z} , $\langle e_1 \rangle$ est une sous-représentation triviale, mais il n'en existe par d'autre

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x+y \\ y \end{pmatrix}$$

<u>Démonstration</u>:

Soit $V_0\subset V$ n'importe quel complément de U $(V=U\oplus W_0)$

Ce n'est pas un sous-espace en général

$$\rho(g)w \notin W_o \quad \text{pour} \quad w \in W_0$$

Soit $\pi: V \to U$ la projection complémentaire à W_0

Définissons $\pi' = \frac{1}{|G|} \sum_{g \in G} \rho(g) \circ \pi \circ \rho(g^{-1})$ si $u \in U$

$$\pi'(u) = \frac{1}{|G|} \sum_{g \in G}^{\infty} \rho(g) \pi \left[\rho(g') u \right]$$

$$\frac{1}{|G|} \sum_{g \in G} \underline{\rho(g)} \rho(g^{-1}) u$$

$$\frac{1}{|G|}|G|u=u$$

 $\implies \pi': V \to U \quad \text{est surjectif et indentit\'e sur}$

 $W=Ker(\pi')$ est notre candidat de sous-représentation

Vérifions que W est $\rho(G)$ invariant

$$h \in G \quad V \in \mathrm{Ker}\pi'$$

$$\pi'(\rho(h)V) = \frac{1}{|G|} \sum_{g \in G}^{\infty} \rho(g)\pi\rho(g')\rho(h)v = \dots = 0$$

comme $\pi'/i=\mathbb{1}_u$

$$U \cup, , , , , ,$$