# Introduction to machine learning

Gianluca Campanella

## **Contents**

**Definitions** 

Prediction

Bias-variance trade-off

**Definitions** 

#### Differences

#### **Statistics**

- Predates computers
- ightarrow Understand why something happens in the face of uncertainty

#### Differences

#### **Statistics**

- Predates computers
- ightarrow Understand why something happens in the face of uncertainty

### **Machine Learning**

- 'Algorithmic modelling' (L. Breiman)
- → Computers can learn rules without explicit programming

## Two types of Data Science

## **Analysis-focused**

- Maths and Statistics
- Business Intelligence
- → Assist human decision-making

## **Building-focused**

- Machine Learning
- Software Engineering
- → Develop and deploy data-driven products

## The five questions

- 1. How much/many?
- 2. Is this A or B?
- 3. How is this organised?
- 4. Is this weird?
- 5. What should I do next?

## How much/many?

#### **Examples**

- How many people will develop cancer in the next 10 years?
- How long will this patient stay in hospital?

 $\downarrow$ 

**Regression** algorithms

#### Is this A or B?

#### **Examples**

- How likely is this patient to be readmitted in the next year?
- What's the 10-year CVD risk of this patient?

 $\downarrow$ 

**Classification** algorithms

# How is this organised?

#### **Examples**

- Which patients develop similar diseases?
- Which diseases frequently occur together?

 $\downarrow$ 

**Clustering** algorithms

## Is this weird?

#### **Examples**

- Is the number of cases higher than expected?
- Is this biomarker measurement abnormal?

**Anomaly detection** algorithms

## What should I do next?

#### **Examples**

- How should warfarin be dosed in this patient?
- How much insulin is needed to stabilise blood glucose?

 $\downarrow$ 

Reinforcement learning algorithms

# Supervised vs unsupervised algorithms

## Supervised algorithms

- Are trained on existing data
- Can be compared according to some 'goodness' metric

## **Unsupervised algorithms**

- Don't use examples with known outcomes
- Give clues, not 'right answers'

# The five questions... revisited

| Supervised Regression Classification Is this A or B?  Unsupervised Clustering How is this organised? Anomaly detection Is this weird?  Reinforcement learning What should I do next? | Family       | Class                  | Question               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------|------------------------|
| Anomaly detection Is this weird?                                                                                                                                                     | Supervised   |                        | •                      |
| Reinforcement learning What should I do next?                                                                                                                                        | Unsupervised | •                      | •                      |
|                                                                                                                                                                                      |              | Reinforcement learning | What should I do next? |

**Prediction** 

## **Guessing values**

- Y = 'length of hospital stay'
- You have some realisations  $y_1, y_2, \dots$  collected over time
- You want to predict the value of Y for a new patient

## **Guessing values**

- Y = 'length of hospital stay'
- You have some realisations  $y_1, y_2, \dots$  collected over time
- You want to predict the value of Y for a new patient

# How do you do this?

If you prefer, what's the **optimal point forecast** for *Y*?

#### **Loss functions**

Before you can answer, you need a loss function that...

- Measures how big an error you're making with your guess g
- Can be minimised to obtain the 'best' g

#### **Loss functions**

Before you can answer, you need a loss function that...

- Measures how big an error you're making with your guess g
- Can be minimised to obtain the 'best' g

Mean squared error 
$$MSE(g) = \mathbb{E}[(Y-g)^2]$$

Mean absolute error  $MAE(g) = \mathbb{E}[|Y - g|]$ 

## Regression versus classification

#### Regression

Aim Predict a continuous value

Loss How 'off' (numerically) our predictions are

#### Classification

Aim Predict a class

Loss How 'inaccurate' the predicted classes are

## Towards prediction...

Usually we have at least another variable X that we believe to be related to Y...

## Towards prediction...

Usually we have at least another variable X that we believe to be related to Y...

#### Idea

Using some function f of X, we should be able to predict Y 'better' (i.e. reduce the mean error) than by ignoring it

$$g \rightsquigarrow f(X)$$
 and thus  $MSE(f) = \mathbb{E}[(Y - f(X))^2]$ 

# What should *f* be?

#### Consider the decomposition

$$Y|X=f^{\star}(X)+\epsilon$$

- $f^*$  is the optimal prediction (conditional on knowing X)
- $\epsilon$  is a random variable (since  $f^*$  is not)
- $\mathbb{E}[\epsilon] = 0$  without loss of generality

# What should f be?

For the MSE, it can be shown that

$$f^{\star}(x) = \mathbb{E}[Y|X=x]$$

 $f^*$  is what we'd like to know when we want to predict Y given X

...but can we?

#### Suppose that...

- The 'true' regression function is  $f^*$
- We have to make do with some suboptimal f

Let's start by expanding the MSE...

$$(Y-f)^{2} = (Y-f^{*}+f^{*}-f)^{2}$$

$$= [(Y-f^{*})+(f^{*}-f)]^{2}$$

$$= (Y-f^{*})^{2}+2(Y-f^{*})(f^{*}-f)+(f^{*}-f)^{2}$$

Now take the expectation...

$$\mathbb{E}[(Y - f^*)^2 + 2(Y - f^*)(f^* - f) + (f^* - f)^2]$$

Since  $Y - f^* = \epsilon$  and  $\mathbb{E}[\epsilon] = 0$ , we have...

$$\mathbb{E}[(Y - f^*)^2] = \mathbb{V}[\epsilon]$$

$$\mathbb{E}[Y - f^*] = \mathbb{E}[\epsilon] = 0$$

$$\mathbb{E}[(f^* - f)^2] = (f^* - f)^2$$

$$\mathbb{E}[\mathsf{MSE}(f)] = \mathbb{V}[\epsilon] + (f^* - f)^2$$

## Variance $\mathbb{V}[\epsilon]$

- Doesn't depend on f, just on 'how hard' it is to predict Y | X = x
- → Unpredictable, irreducible fluctuation

$$\mathbb{E}[\mathsf{MSE}(f)] = \mathbb{V}[\epsilon] + (f^* - f)^2$$

Bias 
$$(f^* - f)^2$$

- 'Extra error' we get from not knowing  $f^*$
- $\rightarrow$  Amount by which we are systematically off

Since f is itself estimated from a sample (it's actually  $\hat{f}$ ), we have...

- ullet The irreducible variance  $\mathbb{V}[\epsilon]$
- The **bias** in approximating  $f^*$  using f
- The additional (estimation) variance of  $\hat{f}$

#### **Consistent methods**

- ullet Bias and estimation variance  $\to 0$  as the sample size increases
- Different consistent methods may converge at different rates



From Andrew Ng's Machine Learning course

# Bias-variance trade-off and generalisability



From The Elements of Statistical Learning

#### **Cross-validation**

#### General idea

- Fit several models on subsets of the data
- Measure performance of each
- Compute the mean performance

#### k-fold cross-validation

- Split the data into *k* groups (a.k.a. 'folds')
- Repeat for each fold:
  - Fit the model using all but the selected fold
  - Measure performance on the selected fold
- Compute the mean performance across folds

## Regularisation

- Penalise 'large' coefficients by shrinking them
- Helps avoid overfitting
- Requires **tuning** of an additional parameter  $\alpha$  representing the 'weight' of the penalty (relative to the prediction error)

| $L_1$ | LASSO             | $\sum_{j}  \beta_{j} $   |
|-------|-------------------|--------------------------|
| $L_2$ | Tikhonov or ridge | $\sum_{j} \beta_{j}^{2}$ |