Name:	

1. Find $\lim_{x\to 0} x^2 + x + 2$.

2. Find $\lim_{t \to 1} \frac{t^2 + t - 2}{t^2 - 1}$.

3. Let g(x) be a function such that $x^2 \leq g(x) \leq x^3$ for $x \in [1, \infty)$ and $x^3 \leq g(x) \leq x^2$ for $x \in (-\infty, 1]$. Find $\lim_{x\to 0} g(x)$.

 $4. \ \mathrm{Find} \ \lim_{\alpha \to 3^+} \frac{\alpha^2 - 2\alpha + 2}{\alpha^3 - 5\alpha^2 + 8\alpha - 6}.$

5. Suppose f(x) is a continuous function such that $\lim_{x\to a^-} f(x) \ge 0$ and $\lim_{x\to a^+} f(x) \le 0$. What is f(a)?

6. Let $g(x) = x^2$. Find $\lim_{h\to 0} \frac{g(x+h) - g(x)}{h}$.

7.	Let $b_n = \sum_{j=1}^n 2^{-j}$ be the <i>n</i> th partial sum of the geometric series with common ratio $r = 1/2$, and let $\varepsilon = 1/1000$. Find the smallest natural number N such that $ b_n - 1 < \varepsilon$ for all $n \ge N$. (Hint: $2^{10} = 1024$).
8.	Suppose $f(x)$ is a strictly increasing function with domain $(-\infty, \infty)$, and $f(3) = 6$. If $f^{-1}(5) = 2$ and $f^{-1}(7) = 9$, find the largest $\delta > 0$ such that $ x - 3 < \delta$ implies $ f(x) - 6 < 1$.
9.	Consider the sequence $(a_n)_{n=1}^{\infty} = 1.1, 1.01, 1.001, 1.0001, \dots$ whose n th term is $a_n = 1 + 10^{-n}$. Prove this sequence converges to the value 1 by finding the smallest natural number N , for any $\varepsilon > 0$ such that $ a_n - 1 < \varepsilon$ whenever $n \ge N$. Write your solution in terms of ε . (Hint: you will need to use a logarithm and the least integer function $\lceil x \rceil$).
10.	Prove the function $f(x) = x^2$ is continuous at the point $(1,1)$ using the ε - δ definition of limit. That is, given an $\varepsilon > 0$, find a $\delta > 0$ in terms of ε such that $ x^2 - 1 < \varepsilon$ whenever $ x - 1 < \delta$. Your answer should be an equation for δ in terms of ε . (Hint: $ x - 1 < \delta$ means $-\delta < x - 1 < \delta$. Use the difference of squares on $ x^2 - 1 $. Assume $\delta < 1$, so that $\delta^2 < \delta$).