# Formal Languages and Automata Chapter 7 Pushdown Automata

Chuan-Ming Liu

cmliu@csie.ntut.edu.tw

Department of Computer Science and Information Engineering
National Taipei University of Technology
Taipei, TAIWAN



## **Objectives**

- Study the connection between pushdown automata (pda's) and context-free languages
- Pushdown automata:
  - nondeterministic → context-free languages
  - deterministic → a subset of context-free languages



#### **Contents**

- Nondeterministic Pushdown Automata
- Pushdown Automata and Context-free Languages
- Deterministic Pushdown Automata and Deterministic Context-free Languages
- Grammars for Deterministic Context-free Languages



## Nondeterministic PDA's





#### **Definition**

A nondeterministic pushdown automata (npda) is defined by the septuple  $M=(Q,\Sigma,\Gamma,\delta,q_0,z,F)$  where

Q: finite set of states

 $\Sigma$ : input alphabet

 $\Gamma$ : stack alphabet

 $\delta: Q \times (\Sigma \cup \{\lambda\}) \times \Gamma \longrightarrow \text{ finite subsets of } Q \times \Gamma^*$ 

is the transition function

 $q_0$ : initial state

z: stack start symbol

F: set of final states



#### **Notes on Transition Functions**

- 1. the second argument of  $\delta$  may be  $\lambda$ , indicating that a move that does not consume an input symbol is possible. ( $\lambda$ -transition)
- 2. no move is possible if the stack is empty
- 3. the range of  $\delta$  is finite
- 4. the insertion of a string into a stack is done symbol by symbol from right to left
- 5. Au unspecific transition is to the null set and represents a *dead configuration* for the npda.



Consider an nondeterministic pushdown automaton with  $Q = \{q_0, q_1, q_2, q_3\}, \Sigma = \{a, b\}, \Gamma = \{0, 1\},$   $z = \emptyset$ , and  $F = \{q_3\}$  with initial state  $q_0$  and

$$\delta(q_0, a, 0) = \{(q_1, 10), (q_3, \lambda)\}$$
  
 $\delta(q_0, \lambda, 0) = \{(q_3, \lambda)\}$ 
  
 $\delta(q_1, a, 1) = \{(q_1, 11)\}$ 
  
 $\delta(q_1, b, 1) = \{(q_2, \lambda)\}$ 
  
 $\delta(q_2, b, 1) = \{(q_2, \lambda)\}$ 
  
 $\delta(q_2, \lambda, 0) = \{(q_3, \lambda)\}$ 



## Transition Graphs for Npda's

One can also use *transition graphs* to represent npda's (in a similar way to fa) and each edge is labeled with

- 1. current input symbol,
- 2. symbol at the top of the stack, and
- 3. string that replaces the top of the stack



Consider the npda in Example 1. The transition graph is as follows.



## **Instantaneous Description**

An *instantaneous description* of a pushdown automaton is the triplet (q, w, u), where

q: the state of the control unit

w: the unread part of the input string

u: the stack contents

#### Note:

- 1. notation to describe the successive configurations
- 2. a move from one instantaneous description to another is denoted by  $\vdash$ , and

$$(q_1, aw, bx) \vdash (q_2, w, yx) \Leftrightarrow (q_2, y) \in \delta(q_1, a, b)$$

3. A series of steps is denoted by  $\vdash^*$ 



# Languages Accepted by a PDA

Let  $M=(Q,\Sigma,\Gamma,\delta,q_0,z,F)$  be a npda. The language accepted by M is the set

$$L(M) = \{ w \in \Sigma^* : (q_0, w, z) \vdash_M^* (p, \lambda, u), p \in F, u \in \Gamma^* \}.$$

#### Note:

- 1. the language accepted by M is the set of all strings that can put M into a finite state at the end of the string.
- 2. the final stack content u is irrelevant.



Construct an npda for

$$L = \{w \in \{a, b\}^* : n_a(w) = n_b(w)\}.$$



Construct an npda for

$$L = \{ww^R : w \in \{a, b\}^+\}.$$



#### **Contents**

- Nondeterministic Pushdown Automata
- Pushdown Automata and Context-free Languages
- Deterministic Pushdown Automata and Deterministic Context-free Languages
- Grammars for Deterministic Context-free Languages



## PDA's and CFL's

- For any context-free language, there exists an nondeterministic pushdown automaton that accepts, and the language accepted by any nondeterministic pushdown automaton is context-free
- For finite automata, the deterministic and nondeterministic models are equivalent with respect to the languages accepted. However, this is NOT TRUE for pushdown automata.

## NPDA v.s. DPDA

Consider

$$L = \{ww^R : w \in \{a, b\}^+\}.$$

This language is accepted by an npda but no dpda.





## **Acceptance by Empty Stack**

Recall that the definition about the language L accepted by a pushdown automaton:

$$L(M) = \{ w \in \Sigma^* : (q_0, w, z) \vdash_M^* (p, \lambda, u), p \in F, u \in \Gamma^* \}.$$

The final stack content u is then ignored.

Actually, we can define the language accepted by a pda as the set of all inputs for which some sequence of moves cause the pda to empty the stack – accepted by empty stack.



#### **Definitions**

For a pushdown automaton M,

- 1. T(M)(=L(M)) is the language accepted by final states.
- 2. N(M) is the language accepted by empty stack.

**Note:** When accepting by empty stack, the set of final states is irrelevant and can be the empty set, *i.e.*,

$$M = (Q, \Sigma, \Gamma, \delta, q_0, z, \emptyset).$$



## Theorem 1

 $\overline{L} = \overline{N(M_1)}$  for some pda  $M_1 \Leftrightarrow \overline{L} = T(M_2)$  for some pda  $M_2$ 



## Theorem 2

For any context-free language L, there exists an nondeterministic pushdown automaton M such that

$$L = L(M).$$

Consider the grammar

$$S \rightarrow aA$$

$$A \rightarrow aABC|bB|a$$

$$B \rightarrow b$$

$$C \rightarrow c$$

Construct an npda M.



## Theorem 3

If L = N(M) for some pda M, the L is a context-free language.



Let  $M = (\{q_0, q_1\}, \{0, 1\}, \{X, Z_0\}, \delta, q_0, Z_0, \emptyset)$  where  $\delta$  includes

$$\delta(q_0, 0, Z_0) = \{(q_0, XZ_0)\} \quad \delta(q_1, 1, X) = \{(q_1, \lambda)\}$$
  

$$\delta(q_0, 0, X) = \{(q_0, XX)\} \quad \delta(q_1, \lambda, X) = \{(q_1, \lambda)\}$$
  

$$\delta(q_0, 1, X) = \{(q_1, \lambda)\} \quad \delta(q_1, \lambda, Z_0) = \{(q_1, \lambda)\}$$

Construct a context-free grammar G such that L(G) = N(M).



Consider an nondeterministic pushdown automaton

$$\delta(q_0, a, z) = \{(q_0, Az)\}$$
 $\delta(q_0, a, A) = \{(q_0, A)\}$ 
 $\delta(q_0, b, A) = \{(q_1, \lambda)\}$ 
 $\delta(q_1, \lambda, z) = \{(q_2, \lambda)\}$ 

Construct a context-free grammar G.



#### **Notes**

The following three statements are equivalent:

- 1. L is a context-free language
- 2.  $L = N(M_1)$  for some pushdown automata  $M_1$
- 3.  $L = T(M_2)$  for some pushdown automata  $M_2$



#### **Contents**

- Nondeterministic Pushdown Automata
- Pushdown Automata and Context-free Languages
- Deterministic Pushdown Automata and Deterministic Context-free Languages
- Grammars for Deterministic Context-free Languages



#### DPDA's and DCFL's

**Definition:**(deterministic pushdown automaton)

A dpda  $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$  is a pushdown automaton in which

- 1. for each  $q \in Q$  and  $z \in \Gamma$ , whenever  $\delta(q, \lambda, z)$  is nonempty, then  $\delta(q, a, z)$  is empty for all  $a \in \Sigma$ .
- 2. for no  $q \in Q$ ,  $z \in \Gamma$ , and  $a \in \Sigma \cup \{\lambda\}$  does  $\delta(q, a, z)$  contain more than one element.

**Definition:** (deterministic context-free languages) A language L is said to be deterministic context-free if and only if there exists a dpda M such that L = L(M).



The language

$$L = \{a^n b^n : n \ge 0\}$$

is a dcfl, where the dpda

$$M = (\{q_0, q_1, a_2\}, \{a, b\}, \{1, 0\}, \delta, q_0, 0, \{q_0\}\})$$
 with

$$\delta(q_0, a, 0) = \{(q_1, 10)\}$$
 $\delta(q_1, a, 1) = \{(q_1, 11)\}$ 
 $\delta(q_1, b, 1) = \{(q_2, \lambda)\}$ 
 $\delta(q_2, b, 1) = \{(q_2, \lambda)\}$ 
 $\delta(q_2, \lambda, 0) = \{(q_0, \lambda)\}$ 



#### **Contents**

- Nondeterministic Pushdown Automata
- Pushdown Automata and Context-free Languages
- Deterministic Pushdown Automata and Deterministic Context-free Languages
- Grammars for Deterministic Context-free Languages



#### Grammars for dcfl's

- The importance of deterministic context-free languages lies in the fact that they can be parsed efficiently.
- Consider to parse a string w top-down for deriving the leftmost derivation

$$w : a_1 a_2 \cdots a_{i-1} | a_i \cdots a_n$$

sentential form : 
$$a_1 a_2 \cdots a_{i-1} | A$$

Is there a production rule for each step?

Question: whether are there grammars that allow us to do so?



#### **S-Grammars**

Recall the S-grammar where  $A \rightarrow aX$  and the pair (A, a) appears once in the productions.

- given a string  $w = w_1 w_2$  and we have derived  $w = w_1 Ax$ .
- suppose the leftmost symbol of  $w_2$  is a.
- If there is a rule  $A \to ay$ , then the approach continues; otherwise,  $w \notin L(G)$ .

So, S-grammar is possible but restrictive for the syntax of programming languages.



## LL-Grammars

- by looking ahead part of the input, one can predict exactly which production rule must be used
- the first L stands for the fact that the input is scanned from left to right
- the second L indicates that leftmost derivation is considered.

**Example 8:**  $S \rightarrow aSb|ab$  is not an s-grammar, but is an LL-grammar.



#### **Definition**

Let G = (V, T, S, P) be a cfg. If for each pair of leftmost derivations

$$S \Rightarrow^* w_1 A x_1 \Rightarrow w_1 y_1 x_1 \Rightarrow^* w_1 w_2$$
  
 $S \Rightarrow^* w_1 A x_2 \Rightarrow w_1 y_2 x_2 \Rightarrow^* w_1 w_3$ 

with  $w_1, w_2, w_3 \in T^*$ , the equality of the k leftmost symbols of  $w_2$  and  $w_3$  implies  $y_1 = y_2$ , then G is said to be an LL(k) grammar.

In other words, a grammar is an LL(k) grammar if we can uniquely identify the correct production, given the current scanned symbol and a "look-ahead" of the next k-1 symbols.

