MATH2111 Tutorial 4

QUAN Xueyang (xquan@connect.ust.hk)

T1A: Tue (18:00-18:50) 2465

T1B: Thu (18:00-18:50) 6591

1 Linear Independence

1. Definition (Linear Independence):

(a) An indexed set of vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ in \mathbb{R}^n is said to be **linearly independent** if the vector equation

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \dots + x_p\mathbf{v}_p = \mathbf{0}$$

has only the trivial solution.

(b) The set $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is said to be **linearly dependent** if there exist weights c_1, \dots, c_p , not all zero, such that

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_p\mathbf{v}_p = \mathbf{0}$$

2. Theorem (Linear Independence of Columns of Matrix):

The columns of a matrix A are linearly independent if and only if the equation $A\mathbf{x} = \mathbf{0}$ has **only** the trivial solution.

3. Theorem (Characterization of Linearly Dependent Sets):

An indexed set $S = \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ of two or more vectors is linearly dependent iff at least one of the vectors in S is a linear combination of the others.

4. Theorem (Conditions For Linear Dependence):

- (a) If a set contains more vectors than the entries in each vector, then the set is linearly dependent. That is, any set $\{v_1, \ldots, v_p\}$ in \mathbb{R}^n is linearly dependent if p > n.
- (b) If a set $S = \{v_1, \dots, v_p\}$ in \mathbb{R}^n contains the zero vector, then the set is linearly dependent.

2 Transformations

1. **Definition (Transformation):**

A transformation (or function or mapping) T from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector \mathbf{x} in \mathbb{R}^n to a vector $T(\mathbf{x})$ in \mathbb{R}^m .

The set \mathbb{R}^n is called the domain of T, and \mathbb{R}^m is called the codomain of T.

The notation $T: \mathbb{R}^n \to \mathbb{R}^m$ indicates that the domain of T is \mathbb{R}^n and the codomain is \mathbb{R}^m .

For \mathbf{x} in \mathbb{R}^n , the vector $T(\mathbf{x})$ in \mathbb{R}^m is called the image of \mathbf{x} (under the action of T). The set of all images $T(\mathbf{x})$ is called the range of T.

3 **Exercises**

1(a). Express the general solutions of the following non-homogeneous systems in terms of the given particular solutions.

$$\begin{cases} x_1 + x_2 + 3x_3 + 4x_4 + 3x_5 = 5 \\ 2x_1 + 2x_2 + 2x_4 + 4x_5 = 4 \\ -x_1 - x_2 + x_3 - x_5 = -1 \end{cases}$$

1 1 is a solution of the above linear system. 0

1(a). For $A\vec{x} = \vec{b}$, let \vec{p} be a particular solution, \vec{x}_h is any solution of $A\vec{x} = \vec{0}$ Then solution set of Ax=b is of form: $\vec{w} = \vec{p} + \vec{\chi}_{h}$

O Solve Ax=0:

$$\begin{bmatrix} 1 & 1 & 3 & 4 & 3 & 0 \\ 2 & 2 & 0 & 2 & 4 & 0 \\ -1 & -1 & 1 & 0 & -1 & 0 \end{bmatrix} \xrightarrow{R_2 - 2R_1 \to R_2} \begin{bmatrix} 1 & 1 & 3 & 4 & 3 & 0 \\ 0 & 0 & -b & -b - 2 & 0 \\ R_3 + R_1 \to R_3 & 0 & 0 & 4 & 4 & 2 & 0 \end{bmatrix}$$

$$\frac{R_2 - \frac{1}{3}R_3 \rightarrow R_2}{R_1 - 3R_3 \rightarrow R_1} \begin{bmatrix} 1 & 1 & 3 & 4 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\overrightarrow{X}_{h} = \begin{bmatrix} X_{1} \\ X_{2} \\ X_{3} \\ X_{4} \\ X_{5} \end{bmatrix} = \begin{bmatrix} -X_{2} & -X_{4} \\ X_{2} & -X_{4} \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \times_{2} + \begin{bmatrix} -1 \\ 0 \\ -1 \\ 1 \\ 0 \end{bmatrix} \times_{4} \times_{4} \in \mathbb{R}$$

Deck
$$\vec{p} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$
 is a solution to $\vec{A}\vec{x} = \vec{b}$

Thus, solution Set for AZ=B is

$$\overrightarrow{w} = \overrightarrow{p} + \overrightarrow{\chi}_{h} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \times_{2} + \begin{bmatrix} -1 \\ 0 \\ -1 \\ 1 \\ 0 \end{bmatrix} \times_{4} \times_{2} \cdot \chi_{4} \in \mathbb{R}$$

- 1(b). Denote the coefficient matrix as A. Use as many columns of A as possible to construct a matrix B with the property that the equation Bx = 0 has only the trivial solution. (Solve Bx = 0 to verify your work.)
- 1(b). According to the RREF of A,
 the first third and fifth columns are pivot columns

If use the corresponding columns of A to form B. we have:

$$B = \begin{bmatrix} 1 & 3 & 3 \\ 2 & 0 & 4 \\ -1 & 1 & -1 \end{bmatrix}$$

If do now reduction on [BIO], we get [1 0].

Since $B\vec{X} = \vec{0}$ has no free variable, it has only trivial solution.

If use any colditional columns of A to form B, then $B\vec{x} = \vec{0}$ will have free variable, so $B\vec{x} = \vec{0}$ has nontrivial solution.

2. Find conditions on p and q such that the set of vectors

$$\left\{ \begin{bmatrix} 1\\2\\3\\0 \end{bmatrix}, \begin{bmatrix} 2\\5\\5\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\4\\p \end{bmatrix}, \begin{bmatrix} 3\\8\\9\\q \end{bmatrix} \right\}$$

$$\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 3\\0\\0\\0 \end{bmatrix}$$

is linearly independent.

2. Denote
$$A = \begin{bmatrix} 1 & 2 & 1 & 3 \\ 2 & 5 & 2 & 8 \\ 3 & 5 & 4 & f \\ 0 & 1 & P & 9 \end{bmatrix}, \quad \chi_{1}\overrightarrow{a_{1}} + \chi_{2}\overrightarrow{a_{1}} + \chi_{3}\overrightarrow{a_{3}} + \chi_{4}\overrightarrow{a_{4}} = 0$$

$$A \Rightarrow -\overrightarrow{a_{1}}$$

By thm, we need to governtee $A\vec{x} = \vec{b}$ has only trivial solution.

The matrix already has pivots in columns 1,2,3, to have a pivot in column 4, we must have $q-2-2p \neq 0$.

3. Consider matrix A,

$$A = \begin{bmatrix} | & | & | & | \\ a_1 & a_2 & a_3 & a_4 \\ | & | & | & | \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 & 3 \\ 2 & 5 & 2 & 8 \\ 3 & 5 & 4 & 9 \end{bmatrix},$$

Find a vector which is in Span $\{a_1, a_2\}$ and also in Span $\{a_3, a_4\}$, or explain why such a vector cannot exist.

(Given $\begin{bmatrix} 3 \\ -2 \\ -2 \\ 1 \end{bmatrix}$ is a solution to Ax = 0.)

3. $\vec{v} \in \text{Span}\{\vec{a_1}, \vec{a_2}\}\ \text{if} \ \vec{v} = c_1\vec{a_1} + c_2\vec{a_1}\ \text{for some } G, C_2.$ $\vec{v} \in \text{Span}\{\vec{a_3}, \vec{a_4}\}\ \text{if} \ \vec{v} = c_3\vec{a_3} + c_4\vec{a_4}\ \text{for some } C_3, C_4.$

$$\therefore c_1 \overrightarrow{a_1} + c_2 \overrightarrow{a_2} = \overrightarrow{V} = c_3 \overrightarrow{a_3} + c_4 \overrightarrow{a_4}$$

$$\therefore c_1 \vec{a_1} + c_2 \vec{a_2} - c_3 \vec{a_3} - c_4 \vec{a_4} = \vec{0}$$

$$\therefore A \begin{bmatrix} c_1 \\ c_2 \\ -c_3 \\ -c_4 \end{bmatrix} = 0$$

Since
$$\begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix}$$
 is a solution to $A\vec{x} = \vec{0}$.

$$-: \vec{V} = 3 \begin{bmatrix} \frac{1}{2} \\ \frac{1}{3} \end{bmatrix} - 2 \begin{bmatrix} \frac{1}{5} \\ \frac{1}{5} \end{bmatrix} = \begin{bmatrix} -1 \\ -4 \\ -1 \end{bmatrix}, \text{ which is also } 2 \begin{bmatrix} \frac{1}{2} \\ \frac{1}{4} \end{bmatrix} - 1 \begin{bmatrix} \frac{3}{4} \\ \frac{1}{4} \end{bmatrix}$$

4. State whether each of the following statement is true or false. (If it is true, give a brief justification; if it is false, give a counterexample.)

(a) If
$$A \begin{bmatrix} 4 \\ 0 \\ 2 \\ -3 \end{bmatrix} = \mathbf{0}$$
, then Ae_4 is a linear combination of the first three columns of A .

(b) Let A be a 4×3 matrix with columns a_1 , a_2 , a_3 , and suppose b is a vector in \mathbb{R}^4 such that $\{a_1, a_2, a_3, b\}$ is linearly dependent. Then Ax = b has a solution.

4 (a) True

$$A \begin{bmatrix} 4 \\ 0 \\ 2 \\ -3 \end{bmatrix} = \frac{1}{0} \text{ means } 4\vec{a_1} + 2\vec{a_2} - 3\vec{a_4} = \vec{0},$$

$$A \vec{e_4} = \vec{a_4} = 4\vec{a_1} + 2\vec{a_2} + 3\vec{a_3} + 0.\vec{a_2}$$

$$\vec{e_i} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \leftarrow \text{ith row.}$$

$$\vec{e}_i := \begin{bmatrix} i \\ 0 \\ i \end{bmatrix}$$
 ϵ ith row.

4(b). False.

Take
$$\vec{a_1} = \vec{e_1}$$
, $\vec{a_2} = \vec{e_2}$, $\vec{a_3} = \vec{e_1} + \vec{e_2}$, and $\vec{b} = \vec{e_3}$

 $\{\vec{a}_1, \vec{a}_2, \vec{b}\}$ Easy to check these 4 vectors are linearly dependent $(\vec{a}_3 = \vec{a}_1 + \vec{a}_2)$.

However, \vec{b} can't be expressed as a linear combination $r \Rightarrow \vec{c} = \vec{c} \cdot \vec{c}$ of $\vec{a_1}$, $\vec{a_2}$ and $\vec{a_3}$.

Remark: linear olependance only implies some vector can be expressed as a linear combination of rest vectors.

5. Consider

$$F\left(\left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right]\right) = \left[\begin{array}{c} x_1 + x_3 \\ 0 \\ 0 \\ 3x_1 - x_2 \end{array}\right]$$

- (a) What is the domain of F?
- (b) Find the image of $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ under F.

5(a). domain: R3

(b).
$$F\left(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}\right) = \begin{bmatrix} 1+0 \\ 0 \\ 0 \\ 3x1-0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 3 \end{bmatrix}$$