Введение в анализ данных

Лекция 7

Метрики качества регрессии и классификации.

Многоклассовая классификация.

Евгений Соколов

esokolov@hse.ru

НИУ ВШЭ, 2018

Подготовка признаков

Важность признаков

• Если признаки масштабированы, то вес характеризует важность признака в модели

Term	Coefficient	Std. Error	Z Score
Intercept	2.46	0.09	27.60
lcavol	0.68	0.13	5.37
${\tt lweight}$	0.26	0.10	2.75
age	-0.14	0.10	-1.40
lbph	0.21	0.10	2.06
svi	0.31	0.12	2.47
lcp	-0.29	0.15	-1.87
${\tt gleason}$	-0.02	0.15	-0.15
pgg45	0.27	0.15	1.74

Квадратичные признаки

- Можно добавлять новые признаки, зависящие от исходных
- Модель может восстанавливать более сложные зависимости
- Пример: квадратичные признаки

[площадь, этаж, число комнат]

• Новые признаки:

[площадь, этаж, число комнат, площадь^2, этаж^2, число комнат^2, площадь* этаж, площадь* число комнат, этаж* число комнат,]

Категориальные признаки

- Пример: город клиента банка
- Три объекта со значениями [Москва, Санкт-Петербург, Москва]
- Закодируем двумя числовыми признаками:

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$$

One-hot-кодирование

- Заводим столько новых признаков, сколько значений у категориального
- Каждый соответствует одному возможному значению
- Единице равен тот, который встретился на данном объекте

One-hot-кодирование

- Пример: предсказать, купит ли пользователь данный товар в интернетмагазине
- Признаки:
 - Идентификатор пользователя
 - Идентификатор товара
 - Идентификатор категории товара
 - Стоимость товара
 - •
- Могут иметь смысл квадратичные признаки
 - например, пользователь + категория товара
- После one-hot кодирования получим миллионы признаков
- Линейные модели способны справиться с такими задачами

Метрики качества

- Не все алгоритмы подходят для решения задачи
- Как выбрать лучший?
- Если много способов определить, что такое «лучший»
- Метрики качества
 - Насколько алгоритм подходит для решения задачи?
 - Какой из двух алгоритмов лучше подходит?

Метрики качества регрессии

Среднеквадратичная ошибка

MSE
$$(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2$$

- Легко минимизировать
- Сильно штрафует за большие ошибки

MAE
$$(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} |a(x_i) - y_i|$$

- Сложнее минимизировать
- Выше устойчивость к выбросам

Устойчивые оценки

- Оценка среднего значения матожидание
- Оценка разброса дисперсия

Математическое ожидание

• Характеризует среднее значение случайной величины

$$\mathbb{E} \xi = \left\{ egin{aligned} \sum_{i=1}^n x_i p_i, & \text{для дискретных величин} \\ \int_{-\infty}^{+\infty} x \ p(x) dx \, , \text{для непрерывных величин} \end{aligned}
ight.$$

Медиана

- Такое число m, что попасть левее и правее равновероятно
- $P(\xi \le m) \ge 0.5 \text{ u } P(\xi \ge m) \ge 0.5$

Мода

- Для дискретных величин: точка с максимальной вероятностью
- Для непрерывных величин: точка максимума плотности

Средняя величина

Средняя величина

В чем разница?

- Опросили 100 человек
- 99 имеют доход 10.000 рублей
- 1 имеет доход 1.000.000 рублей
- Среднее: $\frac{99*10000+1000000}{100} = 19900$
- Медиана: 10000
- Мода: 10000

Дисперсия

- Опросили 100 человек
- 99 имеют доход 10.000 рублей
- 1 имеет доход 1.000.000 рублей
- Дисперсия: 9702990000
- Стандартное отклонение (корень из дисперсии): ~98503
- Что-нибудь более устойчивое?

Квантиль

- Q_p-p -квантиль
- Такое число m, что вероятность попасть левее равна p
- Медиана 0.5-квантиль

Квантиль

- $Q_{0.25}$, $Q_{0.75}$ квартили
- $Q_{0.01}$, ..., $Q_{0.99}$ перцентили

Интерквартильный размах

• Устойчивая к выбросам мера разброса:

$$IQR = Q_{0.75} - Q_{0.25}$$

• В нашем примере: IQR = 0

Среднеквадратичная ошибка

MSE
$$(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2$$

- Подходит, чтобы сравнивать разные модели
- Чем меньше, тем лучше
- Не позволяет понять, хорошая ли модель получилась
- MSE = 32955 хорошо или плохо?

Коэффициент детерминации

$$R^{2}(a,X) = 1 - \frac{\sum_{i=1}^{\ell} (a(x_{i}) - y_{i})^{2}}{\sum_{i=1}^{\ell} (y_{i} - \overline{y})^{2}}$$

- $\bar{y} = \frac{1}{\ell} \sum_{i=1}^{\ell} y_i$ средний ответ
- Доля дисперсии, объясненная моделью, в общей дисперсии ответов
- Значение можно интерпретировать

Коэффициент детерминации

$$R^{2}(a,X) = 1 - \frac{\sum_{i=1}^{\ell} (a(x_{i}) - y_{i})^{2}}{\sum_{i=1}^{\ell} (y_{i} - \overline{y})^{2}}$$

- $0 \le R^2 \le 1$ (для разумных моделей)
- $R^2 = 1$ идеальная модель
- $R^2 = 0$ модель на уровне константной
- $R^2 < 0$ модель хуже константной

Метрики качества классификации

Качество классификации

• Доля правильных ответов (accuracy):

$$\frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) = y_i]$$

Улучшение метрики

- Два алгоритма
- Доли правильных ответов: r_1 и r_2
- Абсолютное улучшение: $r_2 r_1$
- Относительное улучшение: $\frac{r_2-r_1}{r_1}$

Улучшение метрики

•
$$r_1 = 0.8$$

•
$$r_2 = 0.9$$

$$\cdot \frac{r_2 - r_1}{r_1} = 12.5\%$$

•
$$r_1 = 0.5$$

•
$$r_2 = 0.75$$

$$\bullet \, \frac{r_2 - r_1}{r_1} = 50\%$$

•
$$r_1 = 0.001$$

•
$$r_2 = 0.01$$

$$\cdot \frac{r_2 - r_1}{r_1} = 900\%$$

Матрица ошибок

	y = 1	y = -1
a(x) = 1	True Positive (TP)	False Positive (FP)
a(x) = -1	False Negative (FN)	True Negative (TN)

Точность (precision)

• Можно ли доверять классификатору при a(x) = 1?

$$precision(a, X) = \frac{TP}{TP + FP}$$

Полнота (recall)

• Как много положительных объектов находит классификатор?

$$recall(a, X) = \frac{TP}{TP + FN}$$

Точность и полнота

- Точность можно ли доверять классификатору при a(x) = 1?
- Полнота как много положительных объектов находит a(x)?

- Оптимизировать две метрики одновременно очень неудобно
- Как объединить?

Арифметическое среднее

$$A = \frac{1}{2}(\text{precision} + \text{recall})$$

Арифметическое среднее

$$A = \frac{1}{2}(\text{precision} + \text{recall})$$

- precision = 0.1
- recall = 1
- A = 0.55

• Плохой алгоритм

Арифметическое среднее

$$A = \frac{1}{2} (precision + recall)$$

- precision = 0.55
- recall = 0.55
- A = 0.55
- Нормальный алгоритм
- Но качество такое же, как у плохого

 $M = \min(\text{precision, recall})$

 $M = \min(\text{precision}, \text{recall})$

- precision = 0.05
- recall = 1
- M = 0.05

 $M = \min(\text{precision}, \text{recall})$

- precision = 0.55
- recall = 0.55
- M = 0.55

 $M = \min(\text{precision}, \text{recall})$

- precision = 0.4, recall = 0.5
- M = 0.4

- precision = 0.4, recall = 0.9
- M = 0.4

• Но второй лучше!

$$F = \frac{2 * precision * recall}{precision + recall}$$

$$F = \frac{2 * precision * recall}{precision + recall}$$

- precision = 0.4, recall = 0.5
- F = 0.44

- precision = 0.4, recall = 0.9
- M = 0.55

$$F_{\beta} = (1 + \beta^2) \frac{\text{precision} * \text{recall}}{\beta^2 * \text{precision} + \text{recall}}$$

$$F_{\beta} = (1 + \beta^2) \frac{\text{precision} * \text{recall}}{\beta^2 * \text{precision} + \text{recall}}$$

- $\beta = 0.5$
- Важнее полнота

$$F_{\beta} = (1 + \beta^2) \frac{\text{precision} * \text{recall}}{\beta^2 * \text{precision} + \text{recall}}$$

- $\beta = 2$
- Важнее точность

Оценки принадлежности классу

Классификатор

• Частая ситуация:

$$a(x) = [b(x) > t]$$

• b(x) — оценка принадлежности классу +1

Линейный классификатор

$$a(x) = [\langle w, x \rangle > t]$$

- $b(x) = \langle w, x \rangle$ оценка принадлежности классу +1
- Обычно t = 0

- Как оценить качество b(x)?
- Порог выбирается позже
- Порог зависит от ограничений на точность или полноту

- Высокий порог:
 - Мало объектов относим к +1
 - Точность выше
 - Полнота ниже
- Низкий порог:
 - Много объектов относим к +1
 - Точность ниже
 - Полнота выше

-1	-1	+1	-1	-1	-1	+1	+1	-1	+1
0.01	0.09	0.12	0.15	0.29	0.4	0.48	0.6	0.83	0.9

-1	-1	+1	-1	-1	-1	+1	+1	-1	+1
0.01	0.09	0.12	0.15	0.29	0.4	0.48	0.6	0.83	0.9

-1	-1	+1	-1	-1	-1	+1	+1	-1	+1
0.01	0.09	0.12	0.15	0.29	0.4	0.48	0.6	0.83	0.9

- Пример: кредитный скоринг
- b(x) оценка вероятности возврата кредита
- a(x) = [b(x) > 0.5]
- precision = 0.1, recall = 0.7
- В чем дело в пороге или в алгоритме?

PR-кривая

- Кривая точности-полноты
- Ось X полнота
- Ось Ү точность
- Точки значения точности и полноты при последовательных порогах

PR-кривая

$$b(x)$$
 | 0.14 | 0.23 | 0.39 | 0.52 | 0.73 | 0.90
 y | 0 | 1 | 0 | 0 | 1 | 1

PR-кривая в реальности

PR-кривая

- Левая точка: (0, 0)
- Правая точка: (1,r), r доля положительных объектов
- Для идеального классификатора проходит через (1, 1)
- AUC-PRC площадь под PR-кривой

- Receiver Operating Characteristic
- Ось X False Positive Rate

$$FPR = \frac{FP}{FP + TN}$$

• Ось Y — True Positive Rate $TPR = \frac{TP}{TPR}$

- Receiver Operating Characteristic
- Ось X False Positive Rate

$$FPR = \frac{FP}{FP + TN}$$

Число отрицательных объектов

• Ось Y — True Positive Rate TP TPR = TR + FN

Число положительных объектов

$$b(x)$$
 | 0.14 | 0.23 | 0.39 | 0.52 | 0.73 | 0.90
 y | 0 | 1 | 0 | 0 | 1 | 1

ROC-кривая в реальности

- Левая точка: (0, 0)
- Правая точка: (1, 1)
- Для идеального классификатора проходит через (0, 1)
- AUC-ROC площадь под ROC-кривой

AUC-ROC

$$FPR = \frac{FP}{FP + TN};$$

$$TPR = \frac{TP}{TP + FN}$$

- FPR и TPR нормируются на размеры классов
- AUC-ROC не поменяется при изменении баланса классов
- Идеальный алгоритм: AUC ROC = 1
- Худший алгоритм: $AUC-ROC \approx 0.5$

AUC-PRC

$$precision = \frac{TP}{TP + FP}; recall = \frac{TP}{TP + FN}$$

- Точность поменяется при изменении баланса классов
- AUC-PRC идеального алгоритма зависит от баланса классов
- Проще интерпретировать, если выборка несбалансированная
- Лучше, если задачу надо решать в терминах точности и полноты

Пример

- AUC-ROC = 0.95
- AUC-PRC = 0.001

50000 объектов

y = -1

100 объектов y = +1

> 950000 объектов

> > y = -1

Пример

- Выберем конкретный классификатор
- a(x) = 1 50095 объектов
- Из них FP = 50000, TP = 95
- TPR = 0.95, FPR = 0.05
- precision = 0.0019, recall = 0.95

50000 объектов

y = -1

100 объектов у – +1

> 950000 объектов

> > y = -1

Параметры и гиперпараметры

Простой пример

- Максимизируем удовлетворённость студентов
- Обучающая выборка время до сессии
- Контрольная выборка сессия
- Параметр продолжительность лекции
- Гиперпараметр минимальная продолжительность лекции

Простой пример

- Максимизируем удовлетворённость студентов
- Обучающая выборка время до сессии
- Контрольная выборка сессия
- Параметр продолжительность лекции
- Гиперпараметр минимальная продолжительность лекции
- Максимальная удовлетворённость на обучении если не ограничивать продолжительность
- Но оценки во время сессии будут ужасными

Переобучение

Регуляризация

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (\langle w, x_i \rangle - y_i)^2 + \lambda ||w||^2 \to \min_{w}$$

Гиперпараметры

- Параметры модели веса w
 - Позволяют подогнать модель под обучающую выборку
 - Настраиваются по обучающей выборке
- Гиперпараметр модели коэффициент регуляризации λ
 - Определяют сложность модели
 - Лучшее качество на обучении достигается при $\lambda=0$
 - Необходимо настраивать по другим данным

Гиперпараметры

Без регуляризации

Высокое качество на обучении

С регуляризацией

Качество на обучении ниже

Гиперпараметры

Без регуляризации

Низкая обобщающая способность

С регуляризацией

Высокая обобщающая способность

Многоклассовые задачи

Многоклассовая классификация

• $\mathbb{Y} = \{1, 2, ..., K\}$

Бинарная классификация

$$a(x) = sign \langle w, x \rangle$$

- Способ сведения многоклассовой задачи к набору бинарных классификаций
- Обучаем свой классификатор для каждого класса
- Задача: отделение класса от всех остальных

- К задач бинарной классификации
- *k*-я задача:
 - $X = (x_i, [y_i = k])_{i=1}^{\ell}$
 - Классификатор $a_k(x) = \operatorname{sign} \langle w_k, x \rangle$
- Алгоритм:

$$a(x) = \arg \max_{k \in \{1, \dots, K\}} \langle w_k, x \rangle$$

Матрица ошибок

	y = 1	y = 2	•••	y = K
a(x) = 1	q_{11}	q_{12}		q_{1K}
a(x) = 2	q_{21}	q_{22}	•••	q_{2K}
•••	•••	•••	•••	•••
a(x) = K	q_{K1}	q_{K2}	•••	q_{KK}

Доля правильных ответов

$$accuracy(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) = y_i]$$

Точность и полнота

- Относительно каждого класса
- Можно усреднить точность и полноту по всем классам
- Можно усреднить F-меру

Резюме

- Два вида классификаторов:
 - Ответ класс
 - Ответ оценка принадлежности классу
- Метрики в первом случае: доля правильных ответов, точность, полнота, F-мера
- Метрики во втором случае: AUC-ROC, AUC-PRC
- В регрессии: MSE, MAE, R^2
- Кросс-валидация
- Многоклассовая классификация: one-vs-all