Database Design and Implementation Final Project

CSC 460: Database Design Prof. Lester I. McCann, Ph.D. Team Members: Gavin Pogson, Huy Le, Noel Poothokaran, Mike Yu

Conceptual Database Design E-R Diagram

High-level clarification

Students get a 10% discount. Another discount would be if you are a club member and have accumulated points. Each point would equal .01% off

with a cap of 1000 points (10% off). These discounts are not able to be stacked and the higher one will always be chosen.

There are three different types of rooms. One is a Single and the other room is a Suite and the last one is a Deluxe Suite.

Amenities are not paid until the customers check out and get their whole bill back. This includes tips.

Logical database design

Table Schemas

Foreign Keys Italicized
Primary Keys Underlined

Guest

GuestID (integer) (cannot be null) (cannot be updated) (auto increment)
StudentStatus (number of length 1) (0-1) (String)
CreditCardCompany (String 10 char) (can be null)
FirstName (String 10 char) (cannot be null)
LastName (String 10 char) (cannot be null)

Constraint: STUDENTSTATUS HAS TO BE 0,1.

Rating

<u>GuestID</u> (Foreign key)
<u>AmenityID</u> (Foreign key)
<u>RatingDate</u> (partial key)
Rating (integer from 1 to 5)

ClubMember

<u>GuestID</u> (Foreign key) Points (Integer) (Default is 0)

Booking

BookingID (Integer) (auto increment)
StartDate (DATE)
EndDate (DATE)
RoomID (Integer)
GuestID

Transaction

TransactionNo (auto increment)

BookingID

AmenityID

ExtraCharge

Tips

Room (Superclass)

RoomID

Type (Single, Suite, DeluxeSuite)

RoomClassification

Type

Price

Beds

Baths

Single ("Is a" Room)

RoomID

Price

Suite ("Is a" Room)

RoomID

Price

Beds

Baths

Employee

EmployeeID (integer) (auto increment)

Position

First Name

Last Name

Shift (Weak Entity Set depending on Employee)

EmployeeID

StartTime (MILITARY TIME, 4 integer) EndTime (MILITARY TIME, 4 integer)

WeekStartDate

Constraint: TIME <= 0

TIME < 2400

Amenity

AmenityID (auto increment)

Name (String 10 char)

Price

Relationships:

- 1. Guest → Rating (0..1:0..M). Guest "rates" a rating.
- 2. Amenity \rightarrow Rating (1..1:0..M). Amenity is "rated" by a rating.
- 3. Guest → ClubMember (1..1:0..1) A guest "is a" club member.
- 4. Guest -> Booking (1..1:1..M) A guest "books" one booking or more.

- 5. Booking → Room (0..M:1..1) Booking "BookRoom" Room
- 6. Employee -> Shift (1...1:0..M) Employee "EmployeeShift" a shift.
- 7. Booking -> Transaction (1..1:0..M). Booking "log" transactions.
- 8. Transaction -> Amenity (0..M:1..M). Transaction "TranAmen" Amenity.

Normalization analysis

Functional Dependencies Guest

<u>GuestID</u> Determines StudentStatus, CreditCardCompany, FirstName, LastName

Rating

GuestID, AmenityID, RatingDate Determines Rating

ClubMembers

GuestID Determines Points

Booking

BookingID Determines StartDate, EndDate, RoomID, GuestID

Transaction

<u>TransactionNo</u> Determines: *BookingID, AmenityID,* ExtraCharge, Tips

Room

RoomID Determines Type

RoomClassification

Type Determines Price, Beds, Baths

Employee

EmployeeID Determines Position, First Name, Last Name

Shift

EmployeeID Determines StartTime, EndTime, WeekStartDate

Amenity

AmenityID Determines Name, Price

3rd Normal Form

Definition: Review: 3NF (version 1)

A relation R is in 3NF if, for every non–trivial FD $X \to A$ that	
holds in R , either (a) X is a superkey of R , or (b) A is a prime	
attribute of R .	

With this definition, we can apply it to our Functional Dependencies

Guest

<u>GuestID</u> -> StudentStatus <u>GuestID</u> -> CreditCardCompany <u>GuestID</u> -> FirstName

GuestID -> LastName

For each of these FDs Guestld is a Super Key of Guest
It also is in 2NF since every non-prime Attr is Dependent on the CK
It also is in 1NF since the attr are not Set Valued

Rating

GuestID, AmenityID, RatingDate -> Rating

For each of these FDs *GuestID*, *AmenityID*, RatingDate is a Super Key of Rating It also is in 2NF since ever non-prime Attr is Dependent on the CK It also is in 1NF since the attr are not Set Valued

ClubMembers

GuestID Determines Points

For each of these FDs Guestld is a Super Key of ClubMembers
It also is in 2NF since every non-prime Attr is Dependent on the CK
It also is in 1NF since the attr are not Set Valued

Booking

BookingID -> StartDate

BookingID -> EndDate

BookingID -> RoomID

BookingID -> GuestID

For each of these FDs BookingId is a Super Key of Booking
It also is in 2NF since every non-prime Attr is Dependent on the CK
It also is in 1NF since the attr are not Set Valued

Transaction

<u>TransactionNo</u> -> BookingID

<u>TransactionNo</u> -> AmenityID

<u>TransactionNo</u> -> ExtraCharge

TransactionNo -> Tips

For each of these FDs TransactionNo is a Super Key of Transaction It also is in 2NF since every non-prime Attr is Dependent on the CK It also is in 1NF since the attr are not Set Valued

Room

RoomID -> Type

For each of these FDs RoomID is a Super Key of Room
It also is in 2NF since every non-prime Attr is Dependent on the CK
It also is in 1NF since the attr are not Set Valued

RoomClassification

Type -> Price

Type -> Beds

Type -> Baths

For each of these FDs Type is a Super Key of RoomClassification It also is in 2NF since every non-prime Attr is Dependent on the CK It also is in 1NF since the attr are not Set Valued

Employee

EmployeeID -> Position

EmployeeID -> First Name

EmployeeID -> Last Name

For each of these FDs EmployelD is a Super Key of Employee
It also is in 2NF since every non-prime Attr is Dependent on the CK
It also is in 1NF since the attr are not Set Valued

Shift

EmployeeID -> StartTime

EmployeeID -> EndTime

EmployeeID -> WeekStartDate

For each of these FDs EmployeID is a Super Key of Shift
It also is in 2NF since every non-prime Attr is Dependent on the CK
It also is in 1NF since the attr are not Set Valued

Amenity

AmenityID -> Name

AmenityID -> Price

For each of these FDs AmenityID is a Super Key of Amenity
It also is in 2NF since every non-prime Attr is Dependent on the CK
It also is in 1NF since the attr are not Set Valued

Therefore all the tables adhere to 3NF

Query description

The question answered by the query: Who are the top X guests with the highest number of membership points?

(X is taken from the user, uses Guest and ClubMember tables)

This is useful since we can have competitions to see who has earned the most points and encourage guests to stay with Motel460 as much as possible. If the motel wants to reward their most loyal guests, say with a car for its 3 most loyal guests, this would be a useful query.