# CSE-217: Theory of Computation REGULAR LANGUAGES

Lec Md Jakaria

Department of Computer Science and Engineering Military Institute of Science and Technology

June 29, 2019



# Computational Model

What is a computer?



# Computational Model

What is a computer?

Computational Model: An idealized computer



### Computational Model

What is a computer?

Computational Model: An idealized computer

finite state machine or finite automaton.



### Automata



### Finite Automata

Finite automata are good models for computers with an extremely limited amount of memory.



### Finite Automata

Finite automata are good models for computers with an extremely limited amount of memory.

What can a computer do with such a small memory?



Hopcroft, Motowani and Ullman: Figure 1.1



Figure: A finite automaton modeling an on/off switch



Michael Sipser: Figure 1.1



Figure: Top view of an automatic door



Michael Sipser: Figure 1.2



Figure: State diagram for an automatic door controller



7/20

Lec Md Jakaria MIST Theory of Computation June 29, 2019

Michael Sipser: Figure 1.4



Figure: A finite automaton that has three states



8/20

Lec Md Jakaria MIST Theory of Computation June 29, 2019

### Finite Automata

#### State diagram

- States
- Start State
- Accept State
- Transitions



### Automata

#### Automata

- Finite Automata
- Infinite Automata



#### Automata

#### Automata

- Finite Automata
- Infinite Automata

### Finite Automata

- Deterministic
- Non-deterministic



### Finite Automata



### Formal Definition

#### DEFINITION 1.5

A *finite automaton* is a 5-tuple  $(Q, \Sigma, \delta, q_0, F)$ , where

- 1. Q is a finite set called the *states*,
- **2.**  $\Sigma$  is a finite set called the *alphabet*,
- **3.**  $\delta: Q \times \Sigma \longrightarrow Q$  is the *transition function*, <sup>1</sup>
- **4.**  $q_0 \in Q$  is the **start state**, and
- **5.**  $F \subseteq Q$  is the **set of accept states**.<sup>2</sup>



### Formal Definition

### Language

- A is the set of all strings that machine M accepts.
- We say that A is the language of machine M.
- Write L(M) = A.
- We say that *M* recognizes *A* or that *M* accepts *A*.



# Example - 3 continued

Michael Sipser: Figure 1.4



Figure: A finite automaton called  $M_1$  that has three states



14 / 20

Lec Md Jakaria MIST Theory of Computation June 29, 2019

### Example - 3 continued

We can describe  $M_1$  formally by writing  $M_1 = (Q, \Sigma, \delta, q_1, F)$ , where

- 1.  $Q = \{q_1, q_2, q_3\},\$
- **2.**  $\Sigma = \{0,1\},$
- **3.**  $\delta$  is described as

$$\begin{array}{c|cccc} & 0 & 1 \\ \hline q_1 & q_1 & q_2 \\ q_2 & q_3 & q_2 \\ q_3 & q_2 & q_2, \end{array}$$

- **4.**  $q_1$  is the start state, and
- 5.  $F = \{q_2\}.$



# Example - 3 continued

 $A = \{w | w \text{ contains at least one 1 and}$ an even number of 0s follow the last 1 $\}$ .

Then  $L(M_1) = A$ , or equivalently,  $M_1$  recognizes A.



Michael Sipser: Figure 1.9



Figure: State diagram of the two-state finite automaton  $M_2$ 



Michael Sipser: Figure 1.10



Figure: State diagram of the two-state finite automaton  $M_3$ 



Michael Sipser: Figure 1.11



Figure: State diagram of the two-state finite automaton M<sub>4</sub>



Michael Sipser: Figure 1.12



Figure: State diagram of the two-state finite automaton M<sub>5</sub>

