CpE 5430 / EE 5430 / SysEngg 5323: Wireless Networking

Maciej Zawodniok Exam 2 Review

News

- Exam 2
 - Exam on Nov 4 (W)
- Lab 4
 - Nov 9 updates Nov 10 final report
- Lab 5 Ns3 Extra Credit
- Semester project
 - Update presentations starting Nov 11th
 - Suggested content:
 - Introduction + motivation and application context
 - Accomplishments until now
 - Survey: present selected papers
 - Implementation/programming: what have you got done
 - Planned work for the rest of semester

Today's Outline

- Orthogonal Frequency Division
- Spread Spectrum
- Error Detection, Correction and Handling

Figure 8.1 Conceptual
Understanding of
Orthogonal Frequency
Division Multiplexing

Orthogonality

- Given an OFDM subcarrier bit time of
 - f_b must be a multiple of 1/T
- Example: IEEE 802.11n wireless LAN
 - 20 MHz total bandwidth
 - Only 15 MHz can be used
 - 48 subcarriers
 - $-f_b = 0.3125 \text{ MHz}$
 - Signal is translated to 2.4 GHz or 5 GHz bands

Benefits of OFDM

- Frequency selective fading only affects some subcarriers
 - Can easily be handled with a forward errorcorrecting code
- More importantly, OFDM overcomes inter-symbol interference (ISI)
 - ISI is a caused by multipath signals arriving in later bits
 - OFDM bit times are much, much longer (by a factor of N)
 - · ISI is dramatically reduced
 - N is chosen so the root-mean-square delay spread is significantly smaller than the OFDM bit time
 - It may not be necessary to deploy equalizers to overcome ISI
 - Eliminates the use of these complex and expensive devices.

Figure 8.3 IFFT Implementation of OFDM

FFT = fast Fourier transform

IFFT = inverse fast Fourier transform

Example 8.1

- OFDM in LTE 15kHz subcarriers, 1024 subcariers per symbol
 - 600 subcarriers for data (rest for pilots+nulls)
 - 10MHz bandwidth and 16QAM
 - What data rate is possible?
- Nominal CP with 7% (0.07*1024=72)
 - -R=10MHz (600/1024+72)*4 = 21.9Mbps
- Extended CP with 25% (0.25*1024=256)
 - -R=10MHz (600/1024+256)*4 = 18.8Mbps

Difficulties of OFDM

- Peak-to-average power ratio (PAPR)
 - For OFDM signals, this ratio is much higher than for single-carrier signals
 - OFDM signal is a sum of many subcarrier signals
 - Total can be very high or very low
- Power amplifiers need to amplify all amplitudes equally

$$V_{out} = KV_{in}$$

- Should have a linear characteristic with slope K on a V_{out} vs. V_{in} curve
- Yet practical amplifiers have limited linear ranges
 - Causing distortion if outside the linear range

Figure 8.7 OFDM and OFDMA

Frequency of subcarrier

(a) OFDM

Frequency of subcarrier

(b) OFDMA (adjacent subcarriers)

Figure 8.8 Simplified Block Diagram of OFDMA and SC-FDMA

Today's Outline

- Orthogonal Frequency Division
- Spread Spectrum
- Error Detection, Correction and Handling

Frequency Hoping Spread Spectrum

Figure 7.2 Frequency Hopping Example

FHSS Using MFSK

- MFSK signal is translated to a new frequency every T_c seconds by modulating the MFSK signal with the FHSS carrier signal
- For data rate of R:
 - duration of a bit: T = 1/R seconds
 - duration of signal element: $T_s = LT$ seconds
- $T_c \ge T_s$ slow-frequency-hop spread spectrum
- $T_c < T_s$ fast-frequency-hop spread spectrum

FHSS Performance Considerations

- Large number of frequencies used
- Results in a system that is quite resistant to jamming
 - Jammer must jam all frequencies
 - With fixed power, this reduces the jamming efficiency in any one frequency band
- Reduces the average interference (noise to others) caused by the signal at any one frequency band

Time	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Input data	0	1	1	1	1	1	1	0	0	0	1	0	0	1	1	1	1	0	1	0
Frequencies	f1		f3		f27		f26		f8	•	f10		fl		f3	•	f2	•	f2	
PN Sequence	001				110				011		•		001				001			·

- The period of the PN sequence
 - 15 bit-times of the PN sequence bit. Or 20 time units
- 4 frequencies in Multiple FSK (MFSK)
- 2 input bits per MFSK symbol
- The length of a PN sequence per hop is equal to 3 bits (PN sequence)
 - Note: the frequency changes twice for a single hop, but the change of frequency within 3-bit word of PN sequence is due to MFSK, not the frequency hopping.
- Assuming that the table represents complete PN sequence (and it will repeat afterwards), there are 5 hops.
 - However, when you assume that the whole range of 3-bit word of PN sequence can be used, the overall number of possible hops is equal to 8.

Direct Sequence Spread Spectrum (DSSS)

Figure 7.6 Example of Direct Sequence Spread Spectrum

SNR Gain and Immunity to Jamming

• Gain due to DSSS is expressed as $G_p = T/T_c = R_c/R \approx W_s/W_d$

where

- T and T_c are periods of user data and spreading sequence,
- R and R_c are data rates for user data and spreading sequence respectively
- W_s and W_d are the signal bandwidth and spread spectrum signal bandwidth
- Power of a jamming signal is reduced by 1/Gp factor
 - Due to bandpass filtering behind DS despreader

CDMA Principles

 What if we will select two spreading sequences c₁(t) and c₂(t) such that:

$$-c_1(t) \times c_2(t) = 0$$
,

$$-c_{i}(t) \times c_{i}(t) = 1$$
 ?

Orthogonal codes!

In other words:

$$-[s_1(t) c_1(t) + s_2(t) c_2(t)] c_1(t) = ????$$

(a) User's codes

User A	1	-1	-1	1	-1	1
User B	1	1	-1	-1	1	1
User C	1	1	-1	1	1	-1

Table 7.1 CDMA Example

Successful coding and decoding of a transmitted bits

(b) Transmission from A

Transmit (data bit = 1)	1	-1	-1	1	-1	1	
Receiver codeword	1	-1	-1	1	-1	1	
Multiplication	1	1	1	1	1	1	= 6
Multiplication	1	1	1	1	1	1	

Transmit (data bit $= 0$)	-1	1	1	-1	1	-1	
Receiver codeword	1	-1	-1	1	-1	1	
Multiplication	-1	-1	-1	-1	-1	-1	= -6

(a) User's codes

User A	1	-1	-1	1	-1	1
User B	1	1	-1	-1	1	1
User C	1	1	-1	1	1	-1

Table 7.1 CDMA Example

Decoding of a transmitted bits using a wrong user code

(c) Transmission from B, receiver attempts to recover A's transmission

Transmit (data bit = 1)	1	1	-1	-1	1	1	
Receiver codeword	1	-1	-1	1	-1	1	
Multiplication	1	-1	1	-1	-1	1	= 0

(d) Transmission from C, receiver attempts to recover B's transmission

MISS
C
70

Transmit (data bit = 1)	1	1	-1	1	1	-1	
Receiver codeword	1	1	-1	-1	1	1	
Multiplication	1	1	1	-1	1	-1	= 2

(a) User's codes

User A	1	-1	-1	1	-1	1
User B	1	1	-1	-1	1	1
User C	1	1	-1	1	1	-1

Table 7.1 CDMA Example

What if signal has been corrupted?

B (data bit = 1)	1	1	-1	-1	1	1	
C (data bit = 1)	1	1	-1	1	1	-1	
Combined signal	2	2	-2	0	2	0	-2
Receiver codeword	1	1	-1	-1	1	1	
Multiplication	2	2	2	0	2	0	= 8

Still it gives a correct indication (>0)

-2 6

ECHNOLOGY

Definitions

Correlation

- The concept of determining how much similarity one set of data has with another
- Range between -1 and 1
 - 1 The second sequence matches the first sequence
 - 0 There is no relation at all between the two sequences
 - -1 The two sequences are mirror images

Cross correlation

 The comparison between two sequences from different sources rather than a shifted copy of a sequence with itself

Advantages of Cross Correlation

- The cross correlation between an msequence and noise is low
 - This property is useful to the receiver in filtering out noise
- The cross correlation between two different m-sequences is low
 - This property is useful for CDMA applications
 - Enables a receiver to discriminate among spread spectrum signals generated by different m-sequences

PN Sequences and Orthogonal Codes – Example

- FHSS and DSSS
 - PN sequence ("ordinary") used for spreading
 - No well-defined orthogonality between
 PN sequences

PN Sequences and Orthogonal Codes – <u>DSSS CDMA</u> Example

Gold Sequences

- Multi-user case in CDMA requires that
 - Codes have well-defined cross correlation properties
- Gold sequences
 - Constructed by the XOR of two msequences with the same clocking
 - Only simple circuitry needed to generate large number of unique codes

Typical Multiple Spreading Approach

- Spread data rate by an orthogonal code (channelization code)
 - Provides mutual orthogonality among all users in the same cell
- Further spread result by a PN sequence (scrambling code)
 - Provides mutual randomness (low cross correlation) between users in different cells

DSSS CDMA

Today's Outline

- Spread Spectrum
- Error Detection, Correction and Handling
- Satellite Communication
- Cellular Communication

Coping with Data Transmission Errors

- Error detection codes
 - Detects the presence of an error
- Automatic repeat request (ARQ) protocols
 - Block of data with error is discarded
 - Transmitter retransmits that block of data
- Error correction codes, or forward correction codes (FEC)
 - Designed to detect and correct errors

Error Detection Probabilities

Definitions

- $-P_b$: Probability of single bit error (BER Bit Error Rate)
- P₁: Probability that a frame arrives with no bit errors
- P₂: Probability that error detection mechanism does not detects error(s)
- P₃: Probability that all errors are detected for a frame

$$P_1 = (1 - P_b)^F \qquad \text{where} \\ P_2 = 1 - P_3 \qquad \qquad \text{Pb - probability of a bit error}$$

MISSOURI

MISSOURI S&T

Error Detection Schemes

- Parity Check
 - Only detects odd number of bit-errors
- Cyclic Redundancy Check (CRC)
 - Modulo 2 mathematical representation
 - Polynomial algorithmic representation
 - Digital Logic structural representation

CRC using Polynomials

- Widely used versions of P(X)
 - CRC-12

•
$$X^{12} + X^{11} + X^3 + X^2 + X + 1$$

- CRC-16

•
$$X^{16} + X^{15} + X^2 + 1$$

- CRC CCITT
 - $X^{16} + X^{12} + X^5 + 1$
- -CRC 32
 - $X^{32} + X^{26} + X^{23} + X^{22} + X^{16} + X^{12} + X^{11} + X^{10} + X^{8} + X^{7} + X^{5} + X^{4} + X^{2} + X + 1$

Digital Logic CRC

Figure 8.4 General CRC Architecture to Implement Divisor $1 + A_1X + A_2X^2 + ... + A_{n-1}X^{n-k-1} + X^{n-k}$

Figure 8.5 Forward Error Correction Process

MISSOURI

37

SS

Block Code Principles

- Hamming distance
 - number of different bits between two blocks
- Redundancy ratio of redundant bits to data bits
 - (n-k)/k
- Code rate ratio of data bits to total bits
 n/k
- Coding gain the reduction, in decibels, in the required E_b/N_0 to achieve a specified BER of an error-correcting coded system

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Block Code Principles - Capabilities

Minimal Humming distance for a given scheme

$$-d_{min}=min[d(v_i, v_j)], for all i\neq j$$

Correction of t error bits

 Correction of *t-1* error bits and detection of *t* error bits

Block Code Principles - Example

• For k = 2 and n = 5, we can make the following assignment:

Data block	Codeword	
00	00000	
01	00111	min Humming
10	11001	distance = 3

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

11110

Invalid Codeword	Minimum distance	Valid codeword
00001	1	00000
00010	1	00000
00011	1	00111
00100	1	00000
00101	1	00111
00110	1	00111
01000	1	00000
01001	1	11001
01010	2	00000 or 11110
01011	2	00111 or 11001
01100	2	00000 or 11110

Hamming Code

- Designed to correct single bit errors
- Family of (n, k) block errorcorrecting codes with parameters:
 - Block length: $n = 2^m 1$
 - Number of data bits: $k = 2^m m 1$
 - Number of check bits: n k = m
 - Minimum distance: $d_{min} = 3$
- Single-error-correcting (SEC) code
 - SEC double-error-detecting (SEC-DED) code with $d_{min} = 4$

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Table 8.1. Hamming Code Requirements (page 220)

	Single-Error Correction		Single-Error Correction/Double- Error Detection	
Data Bits	Check Bits	% Increase	Check Bits	% Increase
8	4	50.00	5	62.5
16	5	31.25	6	37.5
32	6	18.75	7	21.875
64	7	10.94	8	12.5
128	8	6.25	9	7.03
256	9	3.52	10	3.91

Cyclic Codes for Error Correction

- Cyclic Codes
 - Based on CRC principles
 - Syndrome indicates if there is an error
 - But syndrome also provides info where the error happened
- Categories of CRC for Error Correction
 - BCH Codes (powerful ones)
 - Reed-Salomon Codes
- In contrast, CRC error-detecting code accepts arbitrary length input for fixedlength check code

Note: The numbers in the matrix indicate the order in which bits are read in. Interleaver output sequence: 1, n + 1, 2n + 1, ...

Figure 8.8 Block Interleaving

Convolutional Codes

- Generates redundant bits continuously
- Error checking and correcting carried out continuously
 - -(n, k, K) code
 - Input processes k bits at a time
 - Output produces n bits for every k input bits
 - *K* = constraint factor
 - k and n generally very small
 - *n*-bit output of (*n*, *k*, *K*) code depends on:
 - Current block of k input bits
 - Previous K-1 blocks of k input bits

Trellis Diagram Example

- Trellis diagram expanded encoder diagram
- Viterbi code error correction algorithm

input bit = 0 input bit = 1

Figure 8.10 Trellis Diagram for Encoder of Figure 8.9

Turbo Coding

- Bit-error probability close to Shannon limit
- Suitable for high speed communication

(b) Decoder

Flow Control Methods

- Stop-and-wait
 - Send one message and wait for acknowledgement
 - Slower than sliding window methods
- Sliding Window
 - Go-back-N
 - Selective-reject

MISSOURI UNIVERSITY

Program Completed

Missouri University of Science and Technology

© 2020 University of Missouri Curators

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY