Introdução ao R

Ma. Pétala Tuy

Cientista de Dados – ATOS Brasil

Pesquisadora associada do Centro de Excelência em Pesquisa Aplicada

em Inteligência Artificial para a Industria do SENAI CIMATEC/ATOS

Conteúdo

- O que é R? Por que R?
- Como Instalar
- Primeiro Contato com o R
- Help no R
- R como Calculadora
- If, else e else if, For, Ifelse, While
- Vetorização / Reciclagem
- Funções
- Estruturas de dados
- Dimensões e comprimento
- Subsetting
- Explorando o conjunto de dados!

O que é R?

• R é uma linguagem com **foco explícito em estatística**. Se a matemática é o fator de maior peso na construção do seu projeto, não hesite em escolhê-la.

• R foi desenvolvida por **estatísticos para estatística**. Possui excelente documentação e um riquíssimo ecossistema de pacotes para diferentes áreas de aplicação.

Por que R?

- De graça!
- Menor curva de aprendizado
- Escrito por estatísticos, para estatísticos
- Atualizado e com grande gama de funções analíticas
- Comunidade ativa e crescente
- Permite analisar, manusear e limpar dados com mais facilidade e agilidade
- Possui sistema e pacotes de visualização de dados que é referência
- Tem, potencialmente, capacidade de interagir com qualquer software e linguagem de programação, inclusive com o SAS Excel
- Facilita a análise de dados colaborativa

Como Instalar

• Baixar o R:

https://cran.r-project.org/bin/windows/base/

• Baixar o RStudio:

https://rstudio.com/products/rstudio/download/

Primeiro Contato com o R

- getwd()
- setwd()
- install.packages("<nome_do_pacote>")
- library(<nome_do_pacote>)
- Instale o pacote "ggplot2"

Help no R

R RDocumentation

Google

R Como Calculadora Operadores Aritméticos

Operador	Descrição
x + y	Adição de x com y
× - y	Subtração de y em x
× * y	Multiplicação de x e y
x / y	Divisão de x por y
x^y ou x**y	x elevado a y-ésima potência
×%%y	Resto da divisão de x por y (módulo)
×%/%y	Parte inteira da divisão de x por y

R Como Calculadora

Operadores Lógicos

operador	descricao
x < y	x menor que y?
$x \le y$	x menor ou igual a y?
x > y	x maior que y?
x >= y	x maior ou igual a y?
x == y	x igual a y?
x != y	x diferente de y?
!X	Negativa de x
x \	y
x & y	x e y são verdadeiros?
xor(x, y)	x ou y são verdadeiros (apenas um deles)?

If, else e else if

```
# If, else e else if
condicao_1 = T
condicao_2 = F
if(condicao_1){
  print('Condição 1 é verdadeira')
} else if (condicao_2){
  print('Condição 2 é verdadeira')
} else {
  print('Nenhuma condição é verdadeira')
```

If, else e else if

• Além de TRUE e FALSE, o R aceita 1 e 0, respectivamente

• Objetos character, NA, NaN e list não são interpretáveis como lógicos

• Else e else if são opcionais.

For()

```
# For
for (i in 1:10){
  print(paste0('i = ',i))
[1] "i = 1"
[1] "i = 2"
[1] "i = 3"
[1] "i = 7"
[1] "i = 9"
[1] "i = 10"
```

Ifelse()

```
x < -c(6:-4)
sqrt(x) #- gives warning
sqrt(ifelse(x >= 0, x, NA)) # no warning
> x < -c(6:-4)
> X
 [1] 6 5 4 3 2 1 0 -1 -2 -3 -4
> sqrt(x) #- gives warning
 [1] 2.449490 2.236068 2.000000 1.732051 1.414214 1.000000 0.000000
                                                                    NaN
 [9]
                 NaN
         NaN
                          NaN
Warning message:
In sqrt(x) : NaNs produced
>
>  sqrt(ifelse(x >= 0, x, NA)) # no warning
 [1] 2.449490 2.236068 2.000000 1.732051 1.414214 1.000000 0.000000
                                                                     NΑ
 [9]
          NA
                  NA
                           NA
```

While()

```
# While (NÃO EXECUTAR)
while(T){
  print('Loop infinito')
}
```

Vetorização

Vetorização

• Vetores são objetos que guardam dados.

```
numeros = 1:5
numeros
log10(numeros)
2∧numeros
> numeros = 1:5
> numeros
[1] 1 2 3 4 5
> log10(numeros)
[1] 0.0000000 0.3010300 0.4771213 0.6020600 0.6989700
> 2\numeros
[1] 2 4 8 16 32
```

Reciclagem

• Exemplo: Soma de vetores de tamanhos diferentes

```
# Reciclagem
x < -c(1,5)
X
y \leftarrow c(1,10,100,1000)
У
x + y
> x <- c(1,5)
> X
[1] 1 5
> y <- c(1,10,100,1000)
     1 10 100 1000
> X + Y
    2 15 101 1005
```

Funções

- Funções também são objetos!
- Funções podem ser passadas como argumentos de outras funções
- Use suas funções como se tivessem vindas com o R: nome_da_funcao(...)
- Crie uma função sempre que for repetir o código e for mudar poucas coisas entre essas repetições

Funções

```
# função que ecoa uma palavra
ecoar <- function(palavra, n_ecos = 3) {
 paste(c(rep(palavra, n_ecos), "!"), collapse = " ")
ecoar("eco")
ecoar("eco",5)
> ecoar("eco")
[1] "eco eco eco !"
> ecoar("eco",5)
[1] "eco eco eco eco eco !"
```

Funções

Funções básicas	Significado
require(nome do pacote)	Ativa o pacote entre parênteses
install.packages("pacotes")	Instala o pacote selecionado, quando está conectada a internet
Help(nome da função)	Fornece informações da função entre parênteses
read.table(nome do arquivo)	Importação de arquivos no formato txt, para o R

Funções estatísticas	Significado
max(x)	Valor máximo
min(x)	Valor mínimo
sum(x)	Soma dos valores
mean(x)	Média
median(x)	Mediana
sd(x)	Desvio padrão
var(x)	Variância

Funções matemáticas	Significado
length(x)	Tamanho do vetor
log(x)	Logaritmo na base e
exp(x)	Exponencial
sqrt(x)	Raiz quadrada

Estruturas de dados básicas no R:

Vetores - Fatores - Matrizes - Listas — DataFrames

- Vetor: homogêneo e unidimensional
- Fator: heterogêneo e unidimensional
- Matriz: homogêneo e bidimensional
- Lista: heterogêneo
- Data frame: heterogêneo

• Vetores: Sequências de valores numéricos ou não

```
x <- c(1, 2, 5, 7,10) ;x ;typeof(x)
x <- c(1, 2, 5, 7, 10.5) ;x ;typeof(x)
x <- c(T, F, TRUE, FALSE) ;x ;typeof(x)
x <- c("string 1", "string 2") ;x ;typeof(x)</pre>
```

 Quando dois tipos de objetos são inseridos uma estrutura homogênea (vetores ou matrizes), o R converte converterá o objeto para o tipo mais flexível, na ordem:

- 1. Logical
- 2. Integer
- 3. Double
- 4. Character

• Na lista acima, character é o tipo mais flexível.

• Fatores: Vetores de inteiros utilizados para ordenar strings

• Contém apenas valores pré-definidos, chamados levels;

```
c5 <- c("M", "F", "F", "F", "M", "M"); c5; typeof(c5)
f5 <- as.factor(c5); f5; typeof(f5)
f5 <- factor(c5, levels = c("M", "F")); f5; typeof(f5)</pre>
```

• Sempre tome cuidado ao converter factors em objetos numéricos

```
f <- factor(c("2", "3", "1", "10"))
as.numeric(f)
as.numeric(as.character(f))

> as.numeric(f)
[1] 3 4 1 2
> as.numeric(as.character(f))
[1] 2 3 1 10
```

• Matrizes: Combinações de vetores

```
> matrix(1:12, ncol=3)
      [,1] [,2] [,3]
[1,] 1 5 9
[2,] 2 6 10
[3,] 3 7 11
[4,] 4 8 12
```

• **Listas**: Utilizados para combinar diferentes objetos em um objeto único.

```
pessoa <_ list(idade=21, nome='Fred', score=c(65,78,55))
> pessoa$idade
[1] 21
> pessoa$nome
[1] "Fred"
> pessoa$score
[1] 65 78 55
```

 Data Frames: Tabela de uma base de dados, em que cada linha corresponde a um registo (linha) da tabela

```
> df
    x     y     z
1 1     um TRUE
2 2     dois TRUE
3 3     tres TRUE
4 4 quatro TRUE
```

• É possível combinar data frames usando as funções rbind() e cbind()

```
df1 \leftarrow data.frame(x = 3:4, y = c("s", "s"), z = T)
df2 \leftarrow data.frame(x = 1:2, y = c("n", "n"), z = F)
rbind(df1, df2)
cbind(df1, df2)
> rbind(df1, df2)
 X V Z
1 3 s TRUE
2.4 s TRUE
3 1 n FALSE
4 2 n FALSE
> cbind(df1, df2)
 xy zxy z
1 3 s TRUE 1 n FALSE
2 4 s TRUE 2 n FALSE
```

Subsetting

• Chamamos de *subsetting* a seleção de um subconjunto de um objeto. No R, existem três tipos principais de operação de subsetting:

```
x <- c(13, 8, 5, 3, 2, 1, 1)
x[c(1,2,3)]
order(x)
x[order(x)]
x[-c(2, 5,6)]</pre>
```

```
> x <- c(13, 8, 5, 3, 2, 1, 1)
> x[c(1,2,3)]
[1] 13     8     5
> order(x)
[1] 6 7 5 4 3 2 1
> x[order(x)]
[1] 1 1 2 3 5 8 13
> x[-c(2, 5,6)]
[1] 13 5 3 1
```

Lendo um data frame no formato excel.

```
df <- read_excel("banco_estadual_COVID19_15_07_2020_reduzido.xlsx")</pre>
 head(df)
> df
      DATA DA COLETA DO TESTE IDADE EM ANOS
                                                      TIPO DE TESTE RESULTADO DO TESTE
                  07/06/2020
                                               RT-PCR EM TEMPO REAL
                                                                             NEGATIVO
                        <NA>
                                                               < NA >
                                                                                 < NA >
                        < NA >
                                              RT-PCR EM TEMPO REAL
                                                                             NEGATIVO
                  30/06/2020
                                               RT-PCR EM TEMPO REAL
                                                                             POSITIVO
                  25/05/2020
                                        50 TESTE RAPIDO - ANTICORPO
                                                                             POSITIVO
```

Escrevendo um data frame no formato csv

Lendo um data frame no formato csv

```
# Escrevendo arquivo csv
write.csv(head(df), file = 'Covid.csv')
# Lendo arquivo csv
read.csv('Covid.csv')
```

Dimensões e comprimentos

```
dim(c(1,2,3))
nrow(c(1,2,3))
ncol(c(1,2,3))
length(c(1,2,3))

dim(df)
nrow(df)
ncol(df)
length(df)
```

```
> dim(c(1,2,3))
NULL
> nrow(c(1,2,3))
NULL
> ncol(c(1,2,3))
NULL
> length(c(1,2,3))
[1] 3
> dim(df)
[1] 5837
           29
> nrow(df)
[1] 5837
> ncol(df)
[1] 29
> length(df)
```

Explorando o conjunto de dados

- Renomear colunas
- Configurar datas
- Removendo colunas desnecessárias
- Transformando variáveis em numéricas
- Subsetting data frame