數位系統導論

Introduction to Digital System

Pei-Yin Chen, 陳培殷

<u>Syllabus</u>

- Time and Place
 - □ Tuesday: 9:10 ~ 12:00 Rm.4263
- Contact Information
 - 。 雲平大樓 東棟 5F 501室 (06-2757575 EXT 62547)
 - E-mail: pychen@mail.ncku.edu.tw
- Office Hour
 - Monday: 9:00~12:00 Friday: 8:00~9:00
- Course Assistants
 - □ 雲平大樓 東棟 3F DIC (Digital IC Design) Lab 葉俊顯

Syllabus (continued)

Textbook

M. Morris Mano, "Digital Design," Prentice Hall,
 滄海書局

References

- □ 陳培殷, 數位邏輯概論,滄海書局, 2010
- 。陳培殷, 數位IC設計—Verilog, 滄海書局, 2008
- HDL chip design (Douglas J. Smith), Doone Publications

Grading Policies

Mid-term Exam-I: 30% Mid-term Exam-II: 30%
 Final Exam: 40~30% Homework: 0~10%

研讀方式: Attention + 上課投影片 + Text book

Goal

Goal:

- 1. Understand the basic concepts of digital circuit.
- 2. Understand the basic skills for digital circuit design

課程概述	介紹數位電路相關的基礎知識,包含: 邏輯閘、組合電路、循序電路與數位系 統架構設計等。
教學目標	讓學生具備數位電路的基本觀念,並熟 悉設計數位電路的相關技巧。

Overview of a Digital Circuit

A digital circuit accepts the input bit-stream (o and 1), processes it and produces the proper output results (o and 1).

Inside a Digital Circuit

A lot of logic gates which use the input bitstream to produce the output bitstream.

Half Adder

00 01 01 10

 Half Adder
 carry
 sum

 x
 y
 C
 S

 0
 0
 0
 0

 0
 1
 0
 1

 1
 0
 0
 1

 1
 1
 1
 0

Table 4.3

C = xy

Digital System

digital circuit === IC (integrated circuit)

semiconductor

Digital IC Design

Example:

```
always @(IN)
begin
 OUT = (IN[0] | IN[1]) & (IN[2] | IN[3]);
end
```

IC Industry in Taiwan

Chip/Circuit Everywhere!

p-substrate

2011 Top 20 Fabless IC Suppliers

15

16

17

19

14 12

17 27

15

18

ST-

Ericsson

Realtek

Spreadtru

PMC-

Sierra

Himax

Lantiq

HiSilicon China

(\$M)

1220

1198

845

825

742

710

674

654

633

540

Europe

Taiwan

US

Taiwan

		<u> </u>	1 01010	, ,,,	. Od P P 11 C 1 O
		•			
2011 rank	2010 rank	Company HQ	2011 (\$M)	2011 20 rank ra	nk Company HQ
1	1	Qualcom m US	9910	_	晨星 MStar Taiwan
2	2	Broadcom US	7160		Novatek Taiwan

6568

3939

3445

2969

2269

2064

2042

Singapore 1341

3

4

5

6

8

9

10

3

6

4

5

8

9

10

AMD

Nvidia

Marvell

Xilinx

Altera

Avago

LSI Corp

US

US

US

US

US

US

MediaTek Taiwan

聯發科

2011台灣IC設計公司營收

- 1. 強健的體魄
- 2. 優異的自制力
- 3. 高超的耐壓性

2010 排名	2011 排名	公司	2011年營收 (億新台幣/百萬美元)	年成長率 (台幣/美元)
1	1	聯發科	933/3167	-17.8%/-11.7%
3	2	晨星	357/1212	6.3%/14.1%
2	3	聯詠	351/1190	-3.5%/3.7%
4	4	群聯	323/1098	1.7%/9.2%
5	5	瑞昱	219/743	-1.7%/5.5%
6	6	奇景	182/617	-10.6%/-4.0%
7	7	立錡	110/373	-9.4%/-2.7%
8	8	創意	91.5/310	-10.9%/-4.4%
16	9	奕力	90.6/307	55.7%/67.2%
9	10	瑞鼎	90.6/307	-1.3%/6.0%

Outline

Chapter 1: Binary System

Chapter 2: Boolean Algebra and Logic Gates

Chapter 3: Gate-Level Minimization

Chapter 4: Combinational Logic

Chapter 5: Synchronous Sequential Logic

Chapter 6: Registers and Counters

Chapter 7: Memory and Programmable Logic

Chapter 8: Register Transfer Level

Chapter 9: Asynchronous Sequential Logic

Chapter 10: Digital Integrated Circuits

系上教育目標(工程認證)

					_		
LID (n	12 74		H	4	1,	11	工
課程	十、	- 三火	ᆖ	4		· باt	太ツ
元 十二	カソーボビ	5	电	///~	石。	1 PI -	1775
	/ / / / /	1	_		.,,	<i>,</i> ,	1/17

■紙筆測驗	■書面報告	□□□頭報告
□課堂問答	□實作表現	上課表現
■指定作業	□專題研究	■課堂出席

- 修習本課程後,學生可獲得以下核心能力
 - 1.1 具備基礎專業數學及資訊理論知識之基本能力
 - 1.2 具備理論推導及實驗數據分析歸納之能力
 - □ 1.3 具備終身學習之能力
 - 2.1 具備發掘、分析及解決資訊應用問題之能力
 - 2.2 具備資訊工程設計、創新、測試及驗證之能力
 - 2.3 具備系統整合之能力
 - □ 3.1 具備科技人文素養及資訊工程倫理之精神
 - □ 3.2 具備良好溝通技巧及國際觀
 - □ 3.3 具備負責之工作態度及團隊合作之能力