Von der Schulmathematik zur Benfordverteilung

(Taylor's Version)

Aufbau der Präsentation

Wiederholung: Zufall und Wahrscheinlichkeitsverteilungen Was ist Benfords Gesetz? Wiederholung: Zahlensystem und Logarithmen Exponentielle (wissenschaftliche) Schreibweise Die Benfordverteilung und Logarithmen Skalenunabhängigkeit und Logarithmen Schlussbemerkungen: mathematisches Denken

Wiederholung: Zufall

Intuitives Beispiel von Zufall: Würfel

Gezinkter Würfel: Zufall?

Wiederholung: Wahrscheinlichkeitsverteilung

Was ist Benfords Gesetz?

Benford's Law for Leading Digits

https://statisticsbyjim.com/probability/benfords-law/

Anwendbarkeit von Benfords Gesetz

Gilt Benfords Gesetz nur für natürliche Datensätze? Oder auch für beliebige menschliche Datensätze?

Beispiel: die Anzahl der Streams der Top 500 Songs von Taylor Swift auf Spotify?

Ja? Nein? Warum?

Probier's mal selber!

- 1. Scanne den QR-Code
- 2. Betrachte die 2. Spalte
- 3. Überprüfe, ob sich beim Runterscrollen die Anzahl der Einträge je nach führende Ziffer ändert

Führende Ziffer der Top 500 Titel von Taylor Swift

Gleichmäßigkeit im benfordschen Gesetz?

Gleichmäßigkeit (Taylor's version)

Zahlen und Logarithmen

```
Dezimalsystem (Basis-10)

10 Ziffern (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

Stelle bestimmt den Wert (mal 10 multipliziert)
```

```
Basis-10 Logarithmus log10(10) = 1, log10(100) = 2, log10(1000) = 3, ...
```

Exponentielle ("wissenschaftliche") Schreibweise

Vereinfachte Zahlendarstellung

```
"Anti-Hero" : 1.528.306.561 -> 1,5 * 10^9

"Shake It Off" : 1.385.891.279 -> 1,4 * 10^9

"Love Story" : 877.220.622 -> 8,8 * 10^8
```

Exponentielle Schreibweise und Logarithmen

Wenn man den Logarithmus aus der exp. Schreibweise nimmt:

```
"Anti-Hero" : log10(1,5 * 10^9) -> 9,18

"Shake It Off" : log10(1,4 * 10^9) -> 9,14

"Love Story" : log10(8,8 * 10^8) -> 8,94
```

Logarithmen und Benfords Gesetz

```
"Anti-Hero" : 9,18

"Shake It Off" : 9,14

"Love Story" : 8,94
```


Gleichmäßigkeit im benfordschen Gesetz

Benfordverteilung und Logarithmen

FRANK BENFORD

The frequency of first digits thus follows closely the logarithmic relation

$$F_a = \log\left(\frac{a+1}{a}\right),\tag{1}$$

where F_a is the frequency of the digit a in the first place of used numbers.

Skalenabhängigkeit?

Macht es einen Unterschied für die Verteilung der führenden Ziffern, ob man z.B. Flüsse in Meter oder Yard misst?

Skalenunabhängigkeit (Taylor's Version)

Führende Ziffer der Top 500 Titel von Taylor Swift (gestreamte Sekunden)

Skalenunabhängigkeit und Logarithmen

Multipliziert man eine Zahl x mit einem Skalierungsfaktor c, erhält man:

$$log10(c*x) = log10(x) + log10(c)$$

Horizontale Verschiebung = Verteilung bleibt unverändert!

Schlussbemerkungen: mathematisches Denken

Ausgangslage

Benfordsverteilung unintuitiv (keine gleichmäßige Verteilung)

Anwendbarkeit unklar (nur Naturdatensätze?)

Logik hinter der Benfordverteilung unsichtbar

Endlage

Benfordsverteilung intuitiver (gleichmäßige Verteilung der Logarithmen)

Anwendbarkeit verständlicher (skalenunabhängige Datensätze)

Logik hinter der Benfordverteilung klarer