zad.1

Celem zadania było napisać funkcję obliczającą ilorazy różnicowe. Dla realizacji pomysłu algorytmu, wykorzystałem pseudokod z książki:

[1] D. Kincaid, W. Cheney, Analiza numeryczna, WNT, 2005. Iloraz różnicowy str.314

```
egin{aligned} & 	ext{for } i=0 	ext{ to } n 	ext{ do} \ & d_i \leftarrow f(x_i) \end{aligned} end do for j=1 	ext{ to } n 	ext{ do} \ & 	ext{for } i=n 	ext{ to } j 	ext{ step } -1 	ext{ do} \ & d_i \leftarrow (d_i-d_{i-1})/(x_i-x_{i-j}) \end{aligned} end do
```

Dane:

x – wektor długosci n + 1 zawierajacy wezły x_0 , ..., x_n

$$x[1] = x_0$$
,..., $x[n+1] = x_n$

f – wektor długosci n + 1 zawierajacy wartosci interpolowanej funkcji w wezłach $f(x_0), \ldots, f(x_n)$

Wyniki:

 $f_{\rm x}$ — wektor długości n+1 zawierający obliczone ilorazy różnicowe

Teoria:

Podejście do implementacji funkcji obliczającej ilorazy różnicowe może być zoptymalizowane poprzez wykorzystanie jednowymiarowej tablicy zamiast macierzy dwuwymiarowej. Skupiamy się wyłącznie na danych z pierwszego wiersza tej tablicy, a ponieważ każda kolumna zależy tylko od poprzedniej, proponujemy efektywne rozwiązanie. Inicjalnie przechowujemy wartości pierwszej kolumny w jednowymiarowej tablicy, korzystając z dostępnych danych funkcji w odpowiadających węzłach. W kolejnych krokach wpisujemy odpowiednie wartości z kolejnych kolumn na ostatnie miejsca w tablicy. W efekcie otrzymujemy tablicę zawierającą jedynie wartości ilorazów różnicowych z pierwszego wiersza, co może przynieść bardziej wydajne rozwiązanie.

Idea algorytnu polega na tym, że w danym momencie pamiętamy tylko jedną kolumnę macierzy trójkątnej reprezentującej wszystkie ilorazy różnicowe:

zad.2

Celem zadania była implementacja funkcji obliczającej wartość wielomianu interpolacyjnego stopnia n w postaci Newtona $N_{\rm n}(x)$ w punkcie x=t za pomoca uogólnionego algorytmu Hornera, w czasie O(n).

$$N_n(x) = \sum_{i=0}^n f[x_0, x_1, ..., x_i] \prod_{j=0}^{i-1} (x - x_j)$$

Dla realizacji pomysłu algorytmu, wykorzystałem pseudokod z książki:

[6] J. i M. Jankowscy, Przegląd metod i algorytmów numerycznych, cz. 1, WNT, 1988

Newton str.42

$$w := b[n];$$

for $i := n-1$ step -1 until 0 do
 $w := w \times (x-x[i]) + b[i];$

Dane:

x – wektor długosci n + 1 zawierajacy wezły x_0 , ... , x_n

$$x[1] = x_0$$
, ..., $x[n+1] = x_n$

 $f_{\rm x}$ – wektor długosci n + 1 zawierajacy ilorazy różnicowe

$$f_{\mathbf{x}}\left[1\right] = \mathsf{f}[x_0],$$

$$f_{x}[2] = f[x_0, x_1], ..., f_{x}[n] = f[x_0, ..., x_{n-1}], f_{x}[n+1] = f[x_0, ..., x_n]$$

t – punkt, w którym nalezy obliczyc wartosc wielomianu

Wyniki:

nt – wartosc wielomianu w punkcie t.

zad.3

Celem zadania była implementacja funkcji obliczającej współczynniki a_0,\ldots,a_n postaci naturalnej wielomianu interpolacyjnego dla zadanych współczynników $d_0=f[x_0],\ d_1=f[x_0,x_1],\ldots,d_n=f[x_0,\ldots,x_n]$ tego wielomianu w postaci Newtona oraz węzłów x_0,\ldots,x_n . Funkcja miała działać w czasie $O(n^2)$.

Dla realizacji pomysłu algorytmu, wykorzystałem pseudokod z książki:

[6] J. i M. Jankowscy, Przegląd metod i algorytmów numerycznych, cz. 1, WNT, 1988

Postać naturalna str.43

$$a[n] := b[n];$$

for $i := n-1$ step -1 until 0 do
begin
 $xi := x[i];$
 $a[i] := b[i];$
for $k := i$ step 1 until $n-1$ do
 $a[k] := a[k] - xi \times a[k+1]$
end;

Dane:

x – wektor długosci n + 1 zawierajacy wezły x_0, \ldots, x_n

$$x[1] = x_0, \dots, x[n+1] = x_n$$

 $f_{\rm x}$ – wektor długosci n + 1 zawierajacy ilorazy róznicowe

$$f_{\rm x}$$
 [1]=f[x_0],

$$f_{\mathbf{x}}$$
 [2]=f[x_0 , x_1],..., fx[n]=f[x_0 , ..., x_{n-1}], fx[n+1]=f[x_0 , ..., x_n]

Wyniki:

a – wektor długosci n + 1 zawierajacy obliczone współczynniki postaci naturalnej a [1] = a_0 ,

$$a$$
 [2] = a_1 ,..., a[n]= a_{n-1} , a[n+1]= a_n .

zad.4

Celem zadania była implementacja funkcji, która zainterpeluje zadaną funkcję f(x) w przedziale [a, b] za pomocą wielomianu interpolacyjnego stopnia n w postaci Newtona. Następnie narysuje wielomian interpolacyjny i interpolowaną funkcję. Do rysowania użyłem pakiet **Plots**.

W interpolacji użyłem węzłów równoodległych:

$$x_k = a + kh \text{ dla } h = \frac{b-a}{n}, k = 0,1, \dots, n.$$

Prowadzone testy dla zadań 1-4:

Dla testów obrałem przykład z wykładu:

Korzystając z Twierdzenia 3 konstruujemy tablicę ilorazów różnicowych

Źródło obrazku: Obliczenia Naukowe, prof. dr. hab. Paweł Zieliński, Wykład nr.6

Test dla zadania 1:

Wynik testu:

х0	x1	x2	х3
1.0	2.0	-0.375	0.1750000000000000002

Wyniki są zgodne z macierzą.

Ostatni iloraz ma lekki błąd 2 * 10⁻¹⁷, to błąd, którego nie da się uniknąć, ponieważ to wynika z błędu przy wykonaniu jakichkolwiek działań.

Test dla zadania 2:

Wynik testu:

x	5.0
f(x)	2.0

Czyli dla punktu 5.0 mamy wynik 2.0, co zgadza się.

Test dla zadania 3:

Wynik testu:

a4	a3	a2	a0
-8.75	7.525	-1.95000000000000002	0.175000000000000002

Wyniki są zgodne z macierzą.

Przy współczynnikach a2 i a1 ponownie występują nam lekkie błędy 2 * 10⁻¹⁷, jak powiedziano wcześniej to błąd, którego nie da się uniknąć, ponieważ to wynika z błędu przy wykonaniu jakichkolwiek działań.

Obliczone współczynniki przy pomocy Wolfram Alpha dla sprawdzenia:

$$w_0 x = \frac{7x^3}{40} - \frac{39x^2}{20} + \frac{301x}{40} - \frac{35}{4}$$

Test dla zadania 4:

Dla testu wybrałem funkcję cos(x).

p(x) - wielomian, f(x) - funkcja.

Dla funkcji cos(x) przy stopniu n=1, f(x) jest zwykłą cosinusoidą, a p(x) jest ciągła prosta w 1. Krzywa p(x) jest różna od f(x), ale z każdym stopniem o jeden większy zaczynając od n=1 powoli zbiega się do f(x), najwyraźniej zaczynają się nakładać przy stopniu n=10.

Wykresy dla stopni: n = 1, 3, 5, 7, 10, 15:

Wniosek:

Przy stosowaniu interpolacji wielomianowej na równoodległych węzłach, zwłaszcza przy zwiększaniu stopnia wielomianu, może wystąpić efekt Rungego. Efekt ten wykazuje się poprzez oscylacje wielomianu interpolacyjnego wokół funkcji na krańcach przedziału interpolacji. W praktyce, dla wysokich stopni interpolacji, zjawisko to może prowadzić do znaczących odchyleń wielomianu interpolacyjnego od interpolowanej funkcji, zwłaszcza w obszarach blisko krańców przedziału.

Wybór odpowiednich węzłów interpolacyjnych może być kluczowy dla uzyskania stabilnych i dokładnych wyników interpolacji, szczególnie dla funkcji o skomplikowanych wzorcach oscylacyjnych, takich jak cos(x).

zad.5

Funkcja(a):

$$f(x) = e^x$$
, $dla n = 5, 10, 15$.

Funkcja (b):

$$f(x) = x^2 * \sin x$$
, $dla n = 5, 10, 15$.
dla n = 5

Wniosek:

Wyniki wykresów zgadzają się z przewidywaniami - oryginalna funkcja i jej interpolacja praktycznie nakładają się na siebie, co sugeruje, że interpolacja doskonale odwzorowuje pierwotną funkcję, w odróżnieniu od badanej wcześniej funkcji cos(x) To zjawisko występuje z powodu ciągłości i gładkości analizowanych funkcji (ich wszystkie pochodne są również ciągłe). W rezultacie przybliżanie tych funkcji za pomocą wielomianu interpolacyjnego jest niezwykle skuteczne.

<u>zad.6</u>

Funkcja (a):

$$f(x) = |x|, w \ przedziale [-1; 1], dla \ n = 5, 10, 15.$$

Funkcja (b):

$$f(x) = \frac{1}{1+x^2}, w \ przedziale [-5; 5] \ dla \ n = 5, 10, 15.$$

$$dla \ n = 5$$

Wnioski:

W obecnej sytuacji obserwujemy znaczne rozbieżności między wielomianem interpolacyjnym a funkcją wejściową. Pojawia się tu zjawisko Rungego (podobnie jak przy badanej funkcji cos(x)), szczególnie widoczne w przypadku funkcji niespójnych (f(x) = |x|) lub przy interpolacji funkcji dużego stopnia wielomianu i równoodległych węzłów ($f(x) = \frac{1}{1+x^2}$). Warto zauważyć, że duże odchylenia występują głównie na krawędziach określonego przedziału. Aby zwiększyć precyzję, zaleca się zwiększenie liczby węzłów w tych obszarach, gdzie pojawiają się trudności. Jednym z potencjalnych rozwiązań jest użycie węzłów Czebyszewa, które są uzyskiwane z miejsc zerowych wielomianów Czebyszewa i posiadają większą gęstość na końcach przedziału.