Lecture 24: Detection

Stephen Huang

UNIVERSITY of HOUSTON

1. Adversarial Tactics

- Ukrainian Power Grid Attack
- In December 2015, attackers disrupted three energy distribution companies in Ukraine
 - several outages that caused approximately 225,000 customers to lose power across various areas
 - Widely reported

Ukraine power cut 'was cyber-attack' UNIVERSITY of HOUSTON

Content

- 1. Adversarial Tactics
- 2. Intrusion Detection
- 3. Anonymity Networks

UNIVERSITY of HOUSTON

Attacker Tactics

- Reportedly, the attackers
- used spearphishing to gain access to business networks, deploying the "BlackEnergy" malware
- stole user credentials from business network
- used VPN to enter the control-system network
- abused existing remote access tools to issue malicious commands, switching power substations off
- uploaded malicious firmware, erased master boot records, and misconfigured UPS to cause further disruption of availability

UNIVERSITY of HOUSTON

Modeling Intrusions

- Different cyber-attacks may have different goals, use different techniques, etc.
- However, there are some common techniques and approaches
- Cyber Kill Chain®
 - intrusion model developed by Lockheed Martin
- MITRE ATT&CK™
 - knowledge base of adversary

MITRE ATT&CK

- 1. Initial Access
 - -gain initial foothold in target network or system
 - examples techniques: spearphishing, drive-by-compromise, exploiting public-facing service, supply chain compromise

UNIVERSITY of HOUSTON

MITRE ATT&CK 1. Initial Access 2. Execution - execute malicious code on the system – examples techniques: command line interface, PowerShell, graphical interface, scripting, execution through API UNIVERSITY of HOUSTON

MITRE ATT&CK

- 1. Initial Access
- Execution
- 3. Persistence
 - maintain access across system or process restarts
 - examples techniques:
 bash profile,
 browser extensions,
 account creation,
 local job or task scheduling,
 kernel modules

UNIVERSITY of HOUSTON

MITRE ATT&CK

- 1. Initial Access
- 2. Execution
- 3. Persistence
- 4. Privilege Escalation
 - gain higher-level permissions on the system
 - examples techniques: vulnerability exploitation, setuid or setgid abuse, DLL search hijacking, path interception

UNIVERSITY of HOUSTON

- examples techniques:

history and local files, keylogging, network sniffing

UNIVERSITY of HOUSTON

brute forcing, reading bash

MITRE ATT&CK

- 1. Initial Access
- 2. Execution
- Persistence
- 4. Privilege Escalation
- 5. Defense Evasion
 - avoid detection
 - examples techniques: disabling security tools, file deletion or obfuscation, rootkits, clearing command history

MITRE ATT&CK 1. Initial Access 2. Execution 3. Persistence 4. Privilege Escalation 5. Defense Evasion 6. Credential Access - steal credentials (e.g., usernames and passwords)

MITRE ATT&CK

- Initial Access
- 2. Execution
- 3. Persistence
- 4. Privilege Escalation
- 5. Defense Evasion
- Credential Access
- 7. Discovery
 - gain knowledge about the system or internal network
 - examples techniques: network service scanning, network sniffing, browser bookmarks, file and directory discovery, user discovery

MITRE ATT&CK

- Initial Access
- 2. Execution
- 3. Persistence
- Privilege Escalation
- Defense Evasion
- Credential Access
- 7. Discovery
 - gain knowledge about the system or internal network
 - examples techniques: network service scanning, network sniffing, browser bookmarks, file and directory discovery, user discovery

MITRE ATT&CK

- 1. Initial Access
- 2. Execution
- 3. Persistence
- 4. Privilege Escalation
- Defense Evasion
- 6. Credential Access
- Discovery
- 8. Lateral Movement
- 9. Command and Control
- establish C&C, preferably in a stealthy way
- examples techniques:
 remote access tools or custom C&C
 protocols, existing web services,
 commonly used ports, data
 obfuscation

UNIVERSITY of HOUSTON

MITRE ATT&CK 1. Initial Access 2. Execution 3. Persistence 4. Privilege Escalation 5. Defense Evasion 6. Credential Access 7. Discovery 8. Lateral Movement 9. Command and Control 10.Collection — gather sensitive information

UNIVERSITY of **HOUSTON**

- examples techniques:

keylogging, local files,

shared network drives

audio or screen capture,

MITRE ATT&CK Initial Access Execution Persistence Privilege Escalation Defense Evasion Credential Access Discovery Lateral Movement 9. Command and Control 10. Collection 11. Exfiltration 12. Impact disrupt availability or compromise integrity example techniques: shutdown, wiping or encrypting data, firmware corruption, defacement UNIVERSITY of HOUSTON

Stealthy Attacks

- Attackers often aim to keep compromises covert in order to maximize impact. Examples
 - cyber-espionage: attacker can spy on the victim only as long as the victim is unaware.
 - botnets: attacker can remotely control and benefit from compromised computers as long as owners are unaware.
- In practice, compromises may remain covert for long periods of time
 - FirEye M-Trends: median time to detect compromise was 24 days in 2020.
- Detection of attacks is crucial for minimizing cybersecurity risks.
 - timely mitigation can reduce impact.

UNIVERSITY of HOUSTON

Intrusion Detection Systems

- Intrusion Detection System (IDS): application or device that monitors a network or system for malicious activity
 - malicious activity is reported to administrators (e.g., send an alarm, log activity)
- Classification by the monitoring location
 - Network-based IDS: Monitor network traffic
 - Host-based IDS: Monitor activities on a host

UNIVERSITY of HOUSTON

21

Characteristics

- Scope
 - Host-based,
 - Multi-host based,
 - Network-based
- Operation
 - Off-line,
 - Real-time
- Types of errors
 - false positive (i.e., false alarm): wasting system administrators' time/effort
 - false negative: undetected attack

UNIVERSITY of HOUSTON

22

Terminologies

		True Class	
		Pos	Neg
		True	False
zed	Yes	Positives	Positives
othesi Class		(TP)	(FP)
Hypothesized Class		False	True
¥	No	Negatives	Negatives
		(FN)	(TN)

$$TP \quad Rate = \frac{TP}{P} = recall$$

$$FP \quad Rate = \frac{FP}{N}$$

$$TN$$
 $Rate = \frac{TN}{N}$

FN Rate = $\frac{FN}{P}$

UNIVERSITY of HOUSTON

23

Accuracy

		True Class	
		Pos	Neg
		1	0
esized SS	Yes	(TP)	(FP)
Hypothesized Class	No	1 (FN)	988 (TN)

N

$Accuracy = \frac{7}{2}$	$\frac{TP + TN}{P + N}$
= -	+998 +998
= 99	9.9%

By mixing Positives and Negatives in one measure, we cannot get a correct picture of the test.

We are failing to detect every other patient.

UNIVERSITY of HOUSTON

Recall

		True Class	
		Pos	Neg
		1	0
pəz	Yes	(TP)	(FP)
othesi; Class			
Hypothesized Class		1	998
Α̈́	No	(FN)	(TN)
		Р	N

 $Recall = \frac{TP}{TP + FN}$

=50%

Recall shall be the model metric we use to select our best model when there is a high cost associated with False Negative

UNIVERSITY of HOUSTON

Detection Models

- Signature-based (Misuse Detection): recognize known attacks
 - Define a set of attack signatures
 - Detect actions that match a signature
 - Can detect known attacks only, add new signatures often
- · Anomaly-Based: recognize atypical behavior
 - Define a set of metrics for the system
 - Build a statistical model for those metrics during "normal" operation
 - Detect when metrics differ significantly from normal
- Hybrid
 - Examples: CMDS, DIDS, EMERALD, INBOUNDS, NIDES, RealSecure

UNIVERSITY of HOUSTON

26

Snort

- Intrusion Prevention System (IPS)
 - also called Intrusion Detection and Prevention System (IDPS)
 - can actively prevent or block intrusions (e.g., block IP addresses, drop
- Snort is a free and open-source network intrusion detection system
 - can detect a variety of attacks based on signatures
 - can be extended with custom rules and plug-ins
- · Currently owned and developed by Cisco
- · High-level components

read packets from

network interface

(or a file)

are constructed

according to

decode HTTP URI,

re-assemble TCP

apply rules to each

output

ogging and

JNIVERSITY of **HOUSTON**

27

Snort Rule Type

- Alert rules: Snort generates an alert when a suspicious packet is detected.
- **Block** rules: Snort blocks the suspicious packet and all subsequent packets in the network flow.
- **Drop** rules: Snort drops the packet as soon as the alert is generated.
- Logging rules: Snort logs the packet as soon as the alert is generated.
- Pass rules: Snort ignores the suspicious packet and marks it as passed.

UNIVERSITY of HOUSTON

Snort Detection Rules

· Rule example:

alert tcp any any -> 192.0.2.1 80 (msg: "Connect to webserver"; flags: S;)

- Rule header
 - Rule Action: what action to take when the rule matches (e.g., alert or pass)
 - Protocol: IP, ICMP, TCP, UDP, ...
 - Source IP and Port: single or multiple hosts / network addresses
 - Flow: ->
 - Destination IP and Port: TCP or UDP ports (or port ranges)
- Rule options
 - list of keyword: argument pairs, separated by ; and enclosed in
 - may define constraints on header fields or payload contents

UNIVERSITY of HOUSTON

29

Rule Examples

- Directory traversal attack
 - example file-inclusion exploit: GET /index.php?file=../../etc/passwd
 - detection rule

drop tcp any any -> \$WEBSERVER 80 (msg: "Directory
traversal";

content: "../"; http_uri;)

- . \$WEBSERVER: address defined in the configuration file
- content with http_uri: search for the argument of content in the HTTP URI
- · Spam sent from compromised computers
 - botnets of compromised computers are often used to send spam e-mail
 - detection rule:

alert tcp !\$SMTP_SERVERS any - !\$SMTP_SERVERS 25 (msg:
"Botnet

spam"; flags: A+;)

- · !: negation operator for address
- . flags: A+: that the ACK and at least one other TCP flag is set

UNIVERSITY of HOUSTON

31

More Examples alert tcp 192.168.1.0/24 any -> 131.171.127.1 25 (content: "hacking"; msg: "malicious packet"; sid:2000001;) alert tcp any 21 -> 10.199.12.8 any (msg:"TCP Packet is detected"; Sdi:1000010 Destination Address Source Address **Destination Port** Protocol Source Port Action Direction -> 10.199.12.8 any (msg: "TCP Packet is detected"; Sid: 1000010 **Rule Header Rule Option**

Anomaly-Based Detection

https://cyvatar.ai/write-configure-snort-rules/

- · Disadvantages of signature-based detection
 - detects only known attacks (and basic traffic anomalies)
 - large number of signatures (thousands or more) → expensive
- · Anomaly-based detection

UNIVERSITY of HOUSTON

- characterize normal traffic or system behavior
 → raise alarm for anything "abnormal"
- normal operations can be characterized
 - · using AI / machine learning from training data
 - · by expert from domain knowledge
- example: monitor short sequences of system calls
 - if a previously unseen sequence is observed → raise alarm

UNIVERSITY of HOUSTON

32

Challenges in Anomaly-Based Detection

- Training data
 - abundant data for normal behavior
 - very little data on abnormal behavior (i.e., attacks)
- Modeling system behavior
 - computationally tractable and correct representation of normal behavior
- Large number of false positive errors
 - unusual but non-malicious activity may be detected as an attack

UNIVERSITY of HOUSTON

33

3. Anonymity Networks

- An anonymity network protects users' identity and privacy while using the internet.
- These networks employ a sophisticated system, routing data through a complex series of nodes and using multiple layers of encryption to effectively mask a user's IP address and other identifying information.
- Unfortunately, these networks may also be used to hide the identity of the intruders.

UNIVERSITY of HOUSTON

Next Topic

- Intrusion Detection
- Isolation
- Denial of Service

UNIVERSITY of HOUSTON