学校代码: 10052

学 号: ******

密级:

什么学位学位论文

基于中央民族大学学位论文格式要求的 LaTeX 模板

姓名:民大某学生指导教师:某某某 教授学院:啥学院专业:并不专业完成日期:2077.01.01

摘 要

这里是中文摘要, 随便写写好毕业, 字数要求咱也不知道。

关键字: 中央民族大学; LATEX

Abstract

This is English abstract. Translate the Chinese version with Google Translate and paste it here.

Keywords: Minzu University of China; \LaTeX

目录

摘要		Ι
Abstract \cdot		II
第一章 约	者论	1
第一节	研究背景与意义	1
第二节	研究现状	1
– ,	小节下一级的小节	1
_,	咹?	1
第三节	本文主要研究工作	1
第四节	本文结构安排	1
第二章 数	数学公式	3
第一节	引言	3
第二节	简单方程	3
一、	神经元模型	3
_,	多行方程一并编号带花括号	3
三、	多行方程等号对齐	4
第三节	矩阵	4
— ,	大型矩阵	4

第三章	图文混排	5
第一节	引言	5
第二节	tikz	5
第三节	其他图像	5
第四节	tikz 多图排版	5
第四章	表格	7
第一节	引言	7
第二节	表格实例	7
第五章	总结与展望	9
第一节	工作总结	9
参考文献	†	11
致谢		13

插图目录

3.1	神经网络	5
3.2	YOLO 网络结构图 ^[1]	5
3.3	常见的激活函数及其导函数图像	6

表格目录

4.1 监控系统子网网络参数	
----------------	--

第一章绪论

第一节 研究背景与意义

背景? 啥背景啊,都是瞎研究的,随便攒一篇学术答辩而已。

第二节 研究现状

没有现状,笔者就是这个领域的开门宗室。

一、小节下一级的小节

随便写写填个空。

二、咹?

这里跟上面差不多。

第三节 本文主要研究工作

啥也没干, 盲审专家你看着办。

- (1) 这里给出带编号的段落的使用方法首先重置计数器,然后调用上一行的这个宏就可以了
- (2) 同一顺序的编号的话就不用重置计数器了

第四节 本文结构安排

本文总共包含五大章节,每个章节的内容如下:

第一章,绪论。

第二章。

第三章。

第四章。

第五章, 总结与展望。

第二章 数学公式

第一节 引言

本章演示如何插入公式并且创建标签进行交叉引用。

第二节 简单方程

一、神经元模型

神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所做出的交互反应。其基本单元为神经元,神经元的数学模型可用式 2.1描述。

$$y = f\left(\sum_{i=1}^{n} w_i x_i - b\right) \tag{2.1}$$

其中 y 表示神经元的输出, x_i 表示输入, w_i 表示对应输入的权重,b 表示阈值,函数 f 表示激活函数。

二、多行方程一并编号带花括号

$$\begin{cases} \theta_j = f_{\theta j} \left(\sum_i v_{ji} \cdot x_i - \mu_j \right) \\ y_k = f_{yk} \left(\sum_j w_{kj} \cdot \theta_i - \lambda_k \right) \end{cases}$$
(2.2)

$$G_{i} \leftarrow G_{i} + \left[\frac{\partial}{\partial \theta_{i}} J(\theta_{0}, \theta_{i}, \cdots, \theta_{n}) \right]^{2}$$

$$\theta_{i} \leftarrow \theta_{i} - \frac{\varepsilon}{\sqrt{G_{i}} + \epsilon} \frac{\partial}{\partial \theta_{i}} J(\theta_{0}, \theta_{i}, \cdots, \theta_{n})$$

$$(2.3)$$

三、多行方程等号对齐

$$\sigma\left(x\right) = \frac{1}{1 + e^{-x}}\tag{2.4}$$

$$\tanh(x) = \frac{1 - e^{-2x}}{1 + e^{-2x}} \tag{2.5}$$

$$ReLU(x) = \max(0, x) \tag{2.6}$$

$$LeakyReLU(x) = \max(\alpha x, x)$$
 (2.7)

$$SiLU = x \sigma(x) \tag{2.8}$$

$$Mish(x) = \tanh\left(\ln\left(1 + e^x\right)\right) \tag{2.9}$$

第三节 矩阵

一、大型矩阵

$$\mathbf{A} = \begin{pmatrix} a_{0,0} & a_{0,1} & a_{0,2} & \cdots & a_{0,n} \\ a_{1,0} & a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,0} & a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m,0} & a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix}, \mathbf{B} = \begin{pmatrix} b_{-1,-1} & b_{-1,0} & b_{-1,1} \\ b_{0,-1} & b_{0,0} & b_{0,1} \\ b_{1,-1} & b_{1,0} & b_{1,1} \end{pmatrix}$$

$$(2.10)$$

$$\mathbf{X} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_i \\ -1 \end{pmatrix}, \ \mathbf{Y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_{j-1} \\ y_j \end{pmatrix}, \ \mathbf{W} = \begin{pmatrix} w_{1,1} & w_{1,2} & w_{1,3} & \cdots & w_{1,i} & b_1 \\ w_{2,1} & w_{2,2} & w_{2,3} & \cdots & w_{2,i} & b_2 \\ w_{3,1} & w_{3,2} & w_{3,3} & \cdots & w_{3,i} & b_3 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ w_{j,1} & w_{j,2} & w_{j,3} & \cdots & w_{j,i} & b_j \end{pmatrix}$$
(2.11)

第三章图文混排

第一节 引言

本章演示如何插入图片并且创建标签进行交叉引用。

第二节 tikz

下图是使用 tikz 进行绘图的示例。

图 3.1: 神经网络

第三节 其他图像

插入 pdf 图像。

图 3.2: YOLO 网络结构图^[1]

第四节 tikz 多图排版

图 3.3由于太大有可能单独排版到一页。

图 3.3: 常见的激活函数及其导函数图像

第四章表格

第一节 引言

本章演示如何插入表格并设置标题。

第二节 表格实例

网络参数如表 4.1所示。

表 4 1.	监控系统子网网络参数	Ĵ
1C T.I.	- IIII.1エストラル J 「**J **J ** ** ** ** **	L

VC 2.2						
IPv4	子网掩码	默认网关	DHCP 池			
192.168.61.0	255.255.255.0	192.168.61.1	192.168.61.100-200			

第五章总结与展望

第一节 工作总结

本文提出了一个基于中央民族大学学位论文格式要求的 $ext{IFL}X$ 模板,别的啥也没干。

参考文献

[1] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[M/OL]. arXiv, 2015. https://arxiv.org/abs/1506.02640. DOI: 10.48550/ARXIV.1506. 02640.

致谢

感谢各位。