

INSTRUCTION

Temperature Rise Test Procedure

Contents

1.	Test (Objective	2
		Equipment	
		uring Points	
	3.1.	Inside Gas Tank	4
	3.2.	Inside Cable Compartment	6
		Ambient Temperature	
4.	Test F	Procedures	8
	4.1.	Equipment Setup	8
•	4.2.	Starting the Test	8
5.	Revis	ion	.10

PROJECT NAME	BASED ON			
Safe Digital				
PROJECT ID.	EXTERNAL DOCUMENT I	D.		
	NA			
CUSTOMER	REFERENCE DESIGNATION	DN		
CNABB	NA			
PREPARED	STATUS	SECURITY LEVEL		
2022-01-06 Bob-Wei Fan	1022-01-06 Bob-Wei Fan Draft Internal		al	
APPROVED	DOCUMENT KIND			DCC
	Instruction			[DCC]
OWNING ORGANIZATION	DOCUMENT ID.	REV.	LANG.	PAGE
CNTC/ELDS/CNABB		1.2	EN	1/10
© Copyright 2022 ABB. All rights reserved.	·			'

1. Test Objectives

Determine the temperature rise warning and alarm limits of a secondary switchgear:

- Measure the steady-state temperature rise value of cable bushings by using intelligent temperature sensor STE202 under rated current
- Measure the steady-state temperature rise value of cable bushings by using thermocouple under rated current

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Draft	Internal	[1ABC123456]	1.2	EN	2/10

2. Test Equipment

Name	Abbreviation	Quantity
MDC4-M	MDC4-M	1
Ambient air T&H sensor	THS01	1
Intelligent temperature sensor	STE202	3
Lab temperature rise test system (thermocouple)		1

The data concentrator MDC4-M and ambient temp. & humidity sensor THS01 need to be installed inside LV, as where it should be on customer site.

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Draft	Internal	[1ABC123456]	1.2	EN	3/10
© Copyright 2022 ABB. All rights reser		[17.00120430]	11.2	LIV	57 10

3. Measuring Points

3.1. Inside Gas Tank

To determine the temperature steady state of a RMU, several temperature test points are required inside the gas tank using thermocouples.

The recommended measuring points are illustrated in Figure 1:

Figure 1 Temperature test points in C module

Thermocouple	Test point in Figure 1	Description
1	6	Connecting point between phase A upper static knife and moving knife
2	6	Connecting point between phase B upper static knife and moving knife
3	6	Connecting point between phase C upper static knife and moving knife
4	7	Phase A moving knife rotating shaft
5	7	Phase B moving knife rotating shaft
6	7	Phase C moving knife rotating shaft
7	8	Connecting point between phase A moving knife fixed end and branch busbar
8	8	Connecting point between phase B moving knife fixed end and branch busbar
9	8	Connecting point between phase C moving knife fixed end and branch busbar

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Draft	Internal	[1ABC123456]	1.2	EN	4/10

Figure 2 Temperature test points in V module

Thermocouple	Test points in Figure 2	Description
10	8	Phase A main busbar soft connector
11	8	Phase B main busbar soft connector
12	8	Phase C main busbar soft connector
13	9	Connecting point between phase A soft connector and vaccum interrupter moving conductive rod
14	9	Connecting point between phase B soft connector and vaccum interrupter moving conductive rod
15	9	Connecting point between phase C soft connector and vaccum interrupter moving conductive rod
16	10	Connecting point between phase A lower static knife and vaccum interrupter lower static end
17	10	Connecting point between phase B lower static knife and vaccum interrupter lower static end
18	10	Connecting point between phase C lower static knife and vaccum interrupter lower static end
19	11	Connecting point between phase A lower static knife and disconnecting knife
20	11	Connecting point between phase B lower static knife and disconnecting knife
21	11	Connecting point between phase C lower static knife and disconnecting knife
22	12	Phase A disconnecting moving knife rotating shaft
23	12	Phase B disconnecting moving knife rotating shaft
24	12	Phase C disconnecting moving knife rotating shaft
25		Measuring point hanging in the middle of the gas tank

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Draft	Internal	[1ABC123456]	1.2	EN	5/10

3.2. Inside Cable Compartment

Inside cable compartment, for each unit, the temperature of VPIS test point (as marked in Figure 3 need to be measured by using both thermocouples and STE202.

The thermocouples should be mounted on the head of STE202 firmly, as shown in Figure 4.

Figure 3 Bushing test point

Figure 4 Mounting of thermocouple on STE202

Thermocouple	STE202#	Description
26	1	Phase A cable bushing measuring marked in Figure 3
27	2	Phase B cable bushing measuring marked in Figure 3
28	3	Phase C cable bushing measuring marked in Figure 3

3.3. Ambient Temperature

Multiple points of ambient temperature need to be measured for the analysis of the optimal selection of ambient temperature measuring point.

Description	Description	Description
20	-! + - 1	Measuring point inside the first bottle of oil hanged and
29	oil_bottle_1	placed per general standard of temperature rise test
20		Measuring point inside the second bottle of oil hanged
30	oil_bottle_2	and placed per general standard of temperature rise test

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Draft	Internal	[1ABC123456]	1.2	EN	6/10

31	oil_bottle_3	Measuring point inside the third bottle of oil hanged and
31	OII_DOTTIE_3	placed per general standard of temperature rise test

		LANG.	REV.	DOCUMENT ID.	SECURITY LEVEL	STATUS
Draft Internal [1ABC123456] 1.2 EN	7/10	EN	1.2	[1ABC123456]	Internal	Draft

4. **Test Procedures**

Equipment Setup 4.1.

- 1. Setup switchgear (SafeRing/SafePlus 12kV CCV) as per temperature rise type test requirements
- 2. At least 3 environment test (oil_bottle_1, oil_bottle_2, oil_bottle_3) points must be placed one meter away from the switchgear
- 3. MDC4-M and Ambient air T&H sensor (THS01) must be installed in Low-voltage box per User Manual_Safe Digital Step A_Installation and Configuration_EN_Rev1.1_20211028.pdf
- 4. STE202 for each bushing of all three phases must be installed per User Manual_Safe Digital Step A_Installation and Configuration_EN_Rev1.1_20211028.pdf
- 5. Take pictures of the test site and configuration details

4.2. Starting the Test

6. Switch on the current generator based on the following table

Test Round	Phase A Current	Phase B Current	Phase C Current
1	630A	630A	630A

7. Record the temperature data by using "TR_Data_Logger_V1.0", its main interface is shown in Figure 5 below:

Figure 5 Main interface of TR_Data_Logger_V1.0

STATUS SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Draft Internal	[1ABC123456]	1.2	EN	8/10

- a) Execute TR_Data_Logger_V1.0.exe to open this tool
- b) Connect USB to RS485 adapter between configuration computer and MDC4-M
- c) Set "Read Cycle(s)" to 10; "Modbus Address" to 1, "Data directory" to the full path of the ".csv" file for data recoding.
- d) Select "COM" port used in step b), click the "Start" button
- e) If communication is built successfully, humidity and temperature data will be displayed in the bottom area marked with red rectangular in Figure 5
- 8. When the maximum increment of temperature rise value (of all 31 test points) is smaller than 1K per hour, the test is completed.
- 9. Stop the data recording by clicking "Stop" button on the TR_Data_Logger_V1.0

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Draft	Internal	[1ABC123456]	1.2	EN	9/10

5. Revision

Rev	Page	Description	Date
1.0	All	Initial draft	2022.01.06
1.1	8	Add one step for MDC4-M and THS01 installation Add data recording table as a reference Reduce two rounds of test to one round	2022.01.07
1.2	8,9	Update one test step of data recording	2022.01.13

STATUS	SECURITY LEVEL	DOCUMENT ID.	REV.	LANG.	PAGE
Draft	Internal	[1ABC123456]	1.2	EN	10/10