Fundamentals of Solid State Physics

Origin of Optical Properties

Xing Sheng 盛 兴

Department of Electronic Engineering Tsinghua University

xingsheng@tsinghua.edu.cn

Outline

$$|\tilde{n}=n+i\kappa|$$

- Refractive index
 - dipole polarization oscillator model
- Absorption
 - damped oscillator
 - □ free carriers, band transitions, optical phonons, defects, ...

Origin of ε_r and \tilde{n}

- Interaction between EM wave and charges (electrons, ions, etc.) in the solids
 - Oscillation between electrons and nuclei

The Dipole Polarization

atom

Polarization (极化)

$$\mathbf{P} = nq\mathbf{x}$$

n - density of dipoles

q - unit charge

x - displacement

$$\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}$$

$$= \varepsilon_0 \mathbf{E} + \sum \mathbf{P}_{\text{dipole}}$$

$$= \varepsilon_0 \mathbf{E} + \sum nq\mathbf{x}$$

$$\mathbf{D} = \varepsilon_0 \varepsilon_r \mathbf{E}$$

$$\varepsilon_r = 1 + \sum \frac{nq\mathbf{x}}{\varepsilon_0 \mathbf{E}}$$

oscillation frequency

$$\omega_0 = \sqrt{\frac{K}{m}}$$

$$m\frac{dv}{dt} + m\frac{v}{\tau} + Kx = eE(t)$$
 Lorentz Model

acceleration

damping relaxation

Spring force

Electric force

Lorentz Model

$$\left| m \frac{d^2x}{dt^2} + \frac{m}{\tau} \frac{dx}{dt} + m\omega_0^2 x = eE(t) \right|$$

$$x = x_0 e^{-i\omega t}$$

$$x = x_0 e^{-i\omega t} \longrightarrow x = \frac{e}{m(\omega_0^2 - \omega^2 - i\omega/\tau)} E$$

$$\varepsilon_r = 1 + \frac{nq\mathbf{x}}{\varepsilon_0 \mathbf{E}} = 1 + \frac{ne^2}{\varepsilon_0 m} \cdot \frac{1}{\omega_0^2 - \omega^2 - i\omega/\tau}$$

contribution of one resonance

$$\left| \tilde{\varepsilon}_r = \varepsilon_1 + i \varepsilon_2 \right|$$

$$\tilde{n} = \sqrt{\tilde{\varepsilon}_r} = n + i\kappa$$

resonance at ω_0

Multiple resonances

$$\varepsilon_r = 1 + \sum \frac{nq\mathbf{x}}{\varepsilon_0 \mathbf{E}}$$

$$= 1 + \frac{ne^2}{\varepsilon_0 m} \cdot \sum_j \frac{1}{\omega_j^2 - \omega^2 - i\omega/\tau_j}$$

When $\omega \sim 0$, n and ε_r is constant (dielectric) in DC field

When ω is at resonance, strong absorption

When $\omega = +\infty$, n = 1, $\kappa = 0$. Transparent like vacuum (High frequency x-rays and γ -rays can penetrate most materials)

Example: SiO₂ glass

dipole resonances

The Drude Model: Free electron 'gas'

positive ions
+
electron cloud

- Independent
 - electrons do not interact with each other
- Free
 - electrons do not interact with ions, except collision
- Collision
 - electrons are scattered by the ions instantaneously
- Relaxation time τ
 - average time between two collisions
 - □ electron mean free path $I = v^*\tau$
- Maxwell-Boltzmann distribution
 - average kinetic energy

$$\frac{1}{2}mv^2 = \frac{3}{2}kT$$

P. Drude 1863–1906

Drude-Lorentz Model
$$F = m \frac{dv}{dt} + m \frac{v}{\tau} = eE(t)$$

 τ - relaxation time (s)

when *E* is constant, *v* is constant

$$v = eE \frac{\tau}{m}$$

$$\mu = \frac{v}{E} = e \frac{\tau}{m}$$

$$\sigma = ne\mu = ne^2 \frac{\tau}{m}$$

$$j = nev = \sigma E$$

mobility

conductivity

Ohm's law

Drude-Lorentz Model
$$F = m \frac{dv}{dt} + m \frac{v}{\tau} = eE(t)$$

when interacting with AC field (Optical wave)

$$m\frac{d^2x}{dt^2} + \frac{m}{\tau}\frac{dx}{dt} = eE(t) = eE_0e^{-i\omega t}$$

$$x = x_0 e^{-i\omega t} \longrightarrow x = -\frac{e}{m(\omega^2 + i\omega/\tau)} E$$

$$\varepsilon_r = 1 + \frac{nq\mathbf{x}}{\varepsilon_0 \mathbf{E}} = 1 - \frac{ne^2}{\varepsilon_0 m} \cdot \frac{1}{\omega^2 + i\omega/\tau}$$

$$\varepsilon_r = 1 + \frac{nq\mathbf{x}}{\varepsilon_0 \mathbf{E}} = 1 - \frac{ne^2}{\varepsilon_0 m} \cdot \frac{1}{\omega^2 + i\omega/\tau}$$

For a weakly damp system, $1/\tau \approx 0$

$$\varepsilon_r = 1 - \frac{ne^2}{\varepsilon_0 m} \cdot \frac{1}{\omega^2} = 1 - \frac{\omega_p^2}{\omega^2}$$

$$\omega_p = \sqrt{\frac{ne^2}{\varepsilon_0 m}}$$

plasma frequency (Hz)

Plasma frequency (ω_p) represents the oscillation of the whole electron gas in the solid.

$$\tilde{n} = \sqrt{\varepsilon_r} = \sqrt{1 - \frac{\omega_p^2}{\omega^2}}$$

$$R = \left| \frac{\tilde{n} - 1}{\tilde{n} + 1} \right|^2$$

When $\omega < \omega_p$, \tilde{n} is purely imaginary. R = 100%.

Metals are like a mirror at low frequency.

When $\omega > \omega_p$, \tilde{n} is real. R decreases when ω increases When $\omega = +\infty$, $\tilde{n} = 1$, R = 0. Transparent like vacuum

(High frequency x-rays and γ -rays can penetrate most materials)

Reflectivities of Metals

$$\tilde{n} = \sqrt{\varepsilon_r} = \sqrt{1 - \frac{\omega_p^2}{\omega^2}}$$

$$R = \left| \frac{\tilde{n} - 1}{\tilde{n} + 1} \right|^2$$

Example: Silver

reflection at long wavelength Transmission at short wavelength (infrared and visible) (ultraviolet) infrared visible UV 1.0 0.8 Reflectivity 0.6 silver 0.4 0.2 0.1 10 1.0

Wavelength (µm)

Silver mirror

Example: Metals

Figure 1: Spectral reflectivity of perfectly smooth metal surfaces [3]

dx.doi.org/10.3929/ethz-a-006206911

Example - X-ray Transmission

- X-ray has higher transmission for light atoms (water, skin, fat, etc.)
- X-ray has higher absorption and reflection for heavy atoms (bones, metals, etc.)

Origin of Optical Absorption κ

above band gap (electronic band theory)

optical phonons (Lorentz Model)

free carriers (Drude Model)20

energy levels (atoms, defects, ...)

Example: Helium

Example: NaCl

Example: SiO₂ glass

transparent in the visible (n = 1.4)

ultraviolet absorption above band gap $(E_g \approx 9 \text{ eV})$

Impurities in SiO₂

- Why is desert yellow?
 - because of Fe₂O₃

- Why is beer bottle green?
 - because of FeO

Pure SiO₂ - Optical Fibers

minimum loss at 1550 nm, 0.2 dB/km ~ 2% loss every kilometer

Example - Silicon

Example - Silicon (with dopants)

increased absorption caused by free carriers

Absorption and Colors

Example: Hemoglobin (Hb, 血红蛋白)

Hb 脱氧血红蛋白 HbO₂ 氧合血红蛋白 Hb has higher red absorption than HbO₂

Arterial blood Venous blood 动脉血 静脉血

Thank you for your attention