

Sciences Industrielles de l'ingénieur Interrogation de cours 4 – B

[Aucun document - Calculatrice interdite - Répondre directement sur le sujet]

Nom:.....

Cours

Question 1 Après avoir dessiné une liaison glissière de centre 0 et d'axe \vec{z} , paramétrer le mouvement de la liaison.

Question 2 Après avoir dessiné une liaison sphère – plan (ponctuelle) de centre 0 en 2D, paramétrer les mouvements de la liaison.

EXERCICE

On donne le système bielle manivelle suivant :

On note $\mathcal{R}_0 = (A, \overrightarrow{X_0}, \overrightarrow{Y_0}, \overrightarrow{Z_0}), \mathcal{R}_1 = (A, \overrightarrow{X_1}, \overrightarrow{Y_1}, \overrightarrow{Z_0}), \mathcal{R}_2 = (A, \overrightarrow{X_2}, \overrightarrow{Y_2}, \overrightarrow{Z_0}).$ Par ailleurs :

- $\overrightarrow{AB} = r\overrightarrow{x_1}$
- $\overrightarrow{BC} = R\overrightarrow{x_2}$
- $\overrightarrow{AC} = \lambda(t)\overrightarrow{x_0}$
- $(\widehat{\overline{x_0}}, \widehat{\overline{x_1}}) = \alpha(t)$
- $(\widehat{x_1}, \widehat{x_2}) = \beta(t)$

Question 1	Resituer r, R, L, $\lambda(t)$, $\alpha(t)$, $\beta(t)$ sur les différents schémas.
Question 2	Écrire l'équation de fermeture de chaîne cinématique.
Question 3	Exprimer l'équation précédente en projection sur $\overrightarrow{x_0}$ et sur $\overrightarrow{y_0}$.
Question 4	Exprimer $\alpha(t)$ en fonction de $\lambda(t)$, r et R . ($\beta(t)$ ne devra donc pas paraître!)
Question 5	Bonus – Dériver cette relation pour calculer la vitesse $lpha(t)$ en fonction des
autres param	ètres et de leur dérivée.

2