

SAR TEST REPORT

FCC ID: VSFCP3

Product: AGM X2 4G LTE Cellular Phone and Data Collector

Model No.: AGM X2 Cedar CP3

Additional Model: N/A

Trade Mark: Cedar CP3

Report No.: TCT180713E007

Issued Date: Sep. 05, 2018

Issued for:

Juniper Systems, Inc.

1132 W 1700 N, Logan Utahc 84321, United States

Issued By:

Shenzhen Tongce Testing Lab.

1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District,

Shenzhen, Guangdong, China

TEL: +86-755-27673339

FAX: +86-755-27673332

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Tongce Testing Lab..

This document may be altered or revised by Shenzhen Tongce Testing Lab. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

114	rest certification			•••••	s
2.	Facilities and Accreditations				4
	2.1. FACILITIES				4
	2.2. LOCATION				4
	2.3. ENVIRONMENT CONDITION:	(.6)			4
3.	Test Result Summary				5
4.	EUT Description				7
5.	RF Exposure Limit				8
6.	SAR Measurement System Configuration	(C)	(₂ C ₂ ')		9
	6.1. SAR MEASUREMENT SET-UP				9
	6.2. E-FIELD PROBE				10
	6.3. PHANTOM				10
	6.4. DEVICE HOLDER				11
	6.5. DATA STORAGE AND EVALUATION				12
	6.6. Position of the Wireless Device in Relation T				
	6.7. TISSUE DIELECTRIC PARAMETERS				
	6.8. TISSUE-EQUIVALENT LIQUID PROPERTIES				
	6.9. SYSTEM CHECK				
7.	Measurement Procedure				
7. 8.	Conducted Output Power				
9.	Exposure Position Consideration				
-	9.1. EUT ANTENNA LOCATION				
	9.2. Test Position Consideration				
10.	SAR Test Results Summary				
	10.1. HEAD 1G SAR DATA				
	10.2. BODY-WORN 1G SAR DATA				
	10.3. Hotspot 1g SAR Data				
	10.4. SIMULTANEOUS TRANSMISSION CONCLUSION				_
	10.5. SAR SIMULTANEOUS TRANSMISSION ANALYSIS10.6. MEASUREMENT UNCERTAINTY (450MHz-3GHz)				
	10.7. TEST EQUIPMENT LIST				
11.	System Check Results				
12.	SAR Test Data				
	endix A: EUT Photos				
	endix B: Test Setup Photosendix B: Test Setup Photosendix C: Probe Calibration Certificate				
	endix C: Probe Calibration Certificateendix D: Dipole Calibration Report				
) [[endix E: SAR SYSTEM VALIDATION				
	endix F: The Check Data of Impedance and Return				
, ,bb	onance in the one of bata of impedance and Netall				20 !

1. Test Certification

Report No.: TCT180813E007

Product:	AGM X2 4G LTE Cellular Phone and Data Collector
Model No.:	AGM X2 Cedar CP3
Additional Model No.	N/A
Trade Mark:	Cedar CP3
Applicant:	Juniper Systems, Inc.
Address:	1132 W 1700 N, Logan Utahc 84321, United States
Manufacturer:	Juniper Systems, Inc.
Address:	1132 W 1700 N, Logan Utahc 84321, United States
Date of Test:	Aug. 13 – Sep. 04, 2018
SAR Max. Values:	0.23 W/Kg (1g) for head; 0.73W/Kg (1g) for Body-worn; 0.79 W/Kg (1g) for Hotspot;
Applicable Standards:	FCC 47 CFR § 2.1093 IEEE1528-2013:Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate in the Human Head from Wireless Communications Devices: Measurement Techniques KDB447498 D01:General RF Exposure Guidance v06 KDB865664 D01:SAR measurement 100MHz to 6GHz v01r04 KDB865664 D02:RF Exposure Reporting v01r02. KDB941225 D01:3G SAR Procedures v03r01 KDB248227 D01:802.11 wi-fi SAR v02r02 KDB941225 D05:SAR for LTE devices v02r05 KDB941225 D06:Hotspot Mode v02r01 KDB941225 D07:UMPC Mini Tablet v01r02 KDB690783 D01:SAR Listings on Grant v01r03

The above equipment has been tested by Shenzhen Tongce Testing Lab. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By:	Laron Mo	Date:	Sep. 04, 2018
	Aaron Mo	_	(0)
Reviewed By:	Benyl zhao	Date:	Sep. 05, 2018
	Beryl Zh-KongCE		
Approved By:	TCT)	Date:	Sep. 05, 2018
	Tomsir Hs 84		

2. Facilities and Accreditations

2.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

Shenzhen Tongce Testing Lab

The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

• IC - Registration No.: 10668A-1

The 3m Semi-anechoic chamber of Shenzhen Tongce Testing Lab.. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

2.2. Location

Shenzhen Tongce Testing Lab

Address: 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China

2.3. Environment Condition:

Temperature:	18°C ~25°C		
Humidity:	35%~75% RH		
Atmospheric Pressure:	1011 mbar	(C)	(,c)

Page 4 of 232

Test Result Summary

The maximum results of Specific Absorption Rate (SAR) found during test as bellows: <Highest Reported standalone SAR Summary>

<	:Highest Reported	standalone SAR			
	Exposure Position	Frequency Band	Reported SAR (W/kg)	Equipment Class	Highest Reported SAR (W/kg)
		GSM 850	0.13		
		GSM 1900	0.18		
		WCDMA Band II	0.19		
		WCDMA Band IV	0.25		
		WCDMA Band V	0.08		
١	Head	LTE Band 2	0.23	PCE	0.23
	1-g SAR	LTE Band 4	0.17		0.23
		LTE Band 5	0.06		
		LTE Band 7	0.13		
		LTE Band 12	0.03		
		LTE Band 17	0.07		
		WLAN 2.4 GHz	0.11	DTS	
J		GSM 850	0.67		
		GSM 1900	0.59		
		WCDMA Band II	0.56		
		WCDMA Band IV	0.56		
	5 .	WCDMA Band V	VCDMA Band V 0.16		
	Body-worn 1-g SAR	LTE Band 2	0.53	PCE	0.73
	(10 mm Gap)	LTE Band 4	0.73		0.75
	` ' '	LTE Band 5	0.31		
		LTE Band 7	0.47		
ı		LTE Band 12	0.15		
		LTE Band 17	0.24		
		WLAN 2.4 GHz	0.09	DTS	
		GSM 850	0.71		
		GSM 1900	0.60		
		WCDMA Band II	0.66		
ļ		WCDMA Band IV	0.60		
J	11.1	WCDMA Band V	0.17		
J	Hotspot 1-g SAR	LTE Band 2	0.57	PCE	0.79
J	(10 mm Gap)	LTE Band 4	0.79		0.73
		LTE Band 5	0.32		
J		LTE Band 7	0.54		
J		LTE Band 12	0.15		
		LTE Band 17	0.24		
		WLAN 2.4 GHz	0.09	DTS	

Page 5 of 232

<Highest Reported simultaneous SAR Summary>

Exposure Position	Frequency Band	Highest Reported Simultaneous Transmission SAR (W/kg)
Head 1-g SAR	WCDMA Band IV + BT	0.38
Body-worn 1-g SAR (10 mm Gap)	LTE Band 4 + BT	0.86
Hotspot 1-g SAR (10 mm Gap)	LTE Band 4 + WIFI	0.88

Note:

- 1. The highest simultaneous transmission is scalar summation of Reported standalone SAR per FCC KDB 690783 D01 v01r03, and scalar SAR summation of all possible simultaneous transmission scenarios are < 1.6W/kg.
- 2. This device is compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2005, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013.
- 3. This EUT owns two SIM cards, after we perform the pretest for these two SIM card; we found the SIM 1 is the worst case, so its result is recorded in this report.

TESTING CENTRE TECHNOLOGY Report No.: TCT180813E007

4. EUT Description

Product Name:	AGM X2 4G LTE Cellular Phone and Data Collector		
Model:	AGM X2 Cedar CP3		
Additional Model:	N/A		
Trade Mark:	Cedar CP3		
Hardware Version:	LA862T_MB_V1.00		
Software Version:	L1372.6.01.03.EU00		
Power Supply:	Rechargeable Li-ion Battery DC3.7V		
	2G		
Operation Band:	GSM850, GSM900, GSM1800, GSM1900		
Supported type:	GSM/GPRS/EGPRS		
Power Class:	GSM850:Power Class 5; GSM1900:Power Class 0		
Modulation Type:	GMSK for GSM/GPRS; ; 8PSK for EGPRS		
GSM Release Version:	R99		
GPRS Multislot Class:	12		
EGPRS Multislot Class:	12		
	3G		
Operation Band:	FDD Band I & FDD Band II & FDD Band IV & FDD Band V FDD Band VIII		
Power Class:	Power Class 3		
Modulation Type:	QPSK for WCDMA/HSDPA/HSUPA		
WCDMA Release Version:	R99		
HSDPA Release Version:	Release 5		
HSUPA Release Version:	Release 6		
DC-HSUPA Release Version:	Not Supported		
	LTE		
Operation Band:	LTE Band 1 & LTE Band 2 & LTE Band 3 <E Band 4 & LTE Band 5 &		
	LTE Band 7 & LTE Band 8 & LTE Band 12 & LTE Band 17		
	& LTE Band 20		
Power Class:	Power Class 3		
Modulation Type:	QPSK &16-QAM for LTE		
	Wi-Fi		
Supported type:	802.11b/802.11g/802.11n		
Modulation:	802.11b: DSSS 802.11g/802.11n:OFDM		
Operation frequency:	802.11b/802.11g/802.11n(HT20):2412MHz~2462MHz;		
Channel number:	802.11b/802.11g/802.11n(HT20):11;		
Channel separation:	5MHz		
	Bluetooth		
Bluetooth Version:	Supported 3.0+EDR		
Modulation:	GFSK(1Mbps) , π/4-DQPSK(2Mbps) , 8-DPSK(3Mbps)		
Operation frequency:	2402MHz~2480MHz		
Channel number:	79/40		
Channel separation:	1MHz/2MHz		

RF Exposure Limit

Type Exposure	SAR (W/kg)
71.	Uncontrolled Exposure Limit
Spatial Peak SAR (averaged over any 1 g of tissue)	1.60
Spatial Peak SAR (hands/wrists/feet/ankles averaged over 10g)	4.00
Spatial Peak SAR (averaged over the whole body)	0.08

Note:

- The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

 The Spatial Average value of the SAR averaged over the whole body.

 The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the
- 2.
- 3. shape of a cube) and over the appropriate averaging time.

6. SAR Measurement System Configuration

6.1. SAR Measurement Set-up

The OPENSAR system for performing compliance tests consist of the following items:

A standard high precision 6-axis robot (KUKA) with controller and software.

KUKA Control Panel (KCP)

A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with a Video Positioning System (VPS).

The stress sensor is composed with mechanical and electronic when the electronic part detects a change on the electro-mechanical switch; it sends an "Emergency signal" to the robot controller that to stop robot's moves A computer operating Windows XP.

OPENSAR software Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc.

The SAM phantom enabling testing left-hand right-hand and body usage.

The Position device for handheld EUT

Tissue simulating liquid mixed according to the given recipes.

System validation dipoles to validate the proper functioning of the system.

KUKA SAR Test Sysytem Configuration

6.2. E-field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by MVG).

The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

This probe has a built in optical surface detection system to prevent from collision with phantom.

Probe Specification

Construction Symmetrical design with triangular core

Interleaved sensors

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

Calibration ISO/IEC 17025 calibration service available.

IVG
SE5
N 07/15 EP248
.45 GHz-3GHz
ipole 1:R1=0.218MΩ ipole 2:R3=0.217MΩ ipole 3:R3=0.215MΩ
۰٬۰ ii

6.3. Phantom

The SAM Phantom SAM120 is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is in compliance with the specification set in IEEE P1528 and CENELEC IEC 62209-1, IEC 62209-2:2010.

The phantom enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region.

A cover prevents the evaporation of the liquid.

Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections.

Body SAR testing also used the flat section between the head profiles.

Name: COMOSAR IEEE SAM PHANTOM

S/N: SN 19/15 SAM 120 Manufacture: MVG

Report No.: TCT180813E007

O7 (111 1111111

6.4. Device Holder

In combination with the Generic Twin Phantom SAM120, the Mounting Device enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatedly positioned according to the FCC and CENELEC specifications.

The device holder can be locked at different phantom locations (left head, right head, flat phantom).

COMOSAR Mobile phone positioning system

6.5. Data Storage and Evaluation

Data Storage

The OPENSAR software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

Hotline: 400-6611-140

The OPENSAR software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity	Normi, ai0, ai1, ai2
- Conversion factor	ConvFi
- Diode compression point	Dcpi
Device parameters: - Frequency	f
- Crest factor	cf
Media parameters: - Conductivity	σ
- Density	0

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the OPENSAR components. In the direct measuring mode of the millimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

```
Vi = Ui + Ui2 \cdot cf/dcpi
With Vi = compensated signal of channel i
                                                (i = x, y, z)
      Ui = input signal of channel i
                                         (i = x, y, z)
      cf = crest factor of exciting field
                                              (MVG parameter)
      dcpi = diode compression point
                                              (MVG parameter)
```

E-field probes: Ei = (Vi / Normi · ConvF)1/2

Tel: 86-755-27673339

From the compensated input signals the primary field data for each channel can be evaluated:

= magnetic field strength of channel i in A/m

```
H-field probes: Hi = (Vi)1/2 \cdot (ai0 + ai1 f + ai2f2)/f
With Vi
                        = compensated signal of channel i
                                                                 (i = x, y, z)
                  = sensor sensitivity of channel i
                                                                 (i = x, y, z)
      Normi
                  [mV/(V/m)2] for E-field Probes
      ConvF
                  = sensitivity enhancement in solution
                 = sensor sensitivity factors for H-field probes
       aij
                       = carrier frequency [GHz]
                        = electric field strength of channel i in V/m
         Εi
```

Fax: 86-755-27673332

http://www.tct-lab.com

The RSS value of the field components gives the total field strength (Hermitian magnitude):

Etot = (Ex2+ EY2+ Ez2)1/2

The primary field data are used to calculate the derived field units.

SAR = (Etot) $2 \cdot \sigma / (\rho \cdot 1000)$

with SAR = local specific absorption rate in mW/g

Etot = total field strength in V/m

σ = conductivity in [mho/m] or [Siemens/m] ρ = equivalent tissue density in g/cm3

p = equivalent tissue density in groms

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

6.6. Position of the wireless device in relation to the phantom

Handset Reference Points

Ppwe = Etot2 / 3770 or Ppwe = Htot2 \cdot 37.7

With Ppwe = equivalent power density of a plane wave in mW/cm2

Etot = total electric field strength in V/m

Htot = total magnetic field strength in A/m

Wt Width of the handset at the level of the acoustic

Wb Width of the bottom of the handset

A Midpoint of the width wt of the handset at the level of the acoustic output

B Midpoint of the width wb of the bottom of the handset

Positioning for Cheek / Touch

Positioning for Ear / 15° Tilt

Body Worn Accessory Configurations

To position the device parallel to the phantom surface with either keypad up or down.

To adjust the device parallel to the flat phantom.

To adjust the distance between the device surface and the flat phantom to 15mm or holster surface and the flat phantom to 0 mm.

Illustration for Body Worn Position

Ireless Router (Hotspot) Configurations

Some battery-operated handsets have the capability to transmit and receive internet connectivity through simultaneous transmission of WIFI in conjunction with a separate licensed transmitter. The FCC has provided guidance in KDB Publication 941225 D06 where SAR test considerations for handsets (L x W >

9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device with antennas 2.5 cm or closer to the edge of the device, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions. Therefore, SAR must be evaluated for each frequency transmission and mode separately and summed with the WIFI transmitter according to KDB 648474 publication procedures. The "Portable Hotspot" feature on the handset was NOT activated, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal.

Illustration for Hotspot Position

Limb-worn device

A limb-worn device is a unit whose intended use includes being strapped to the arm or leg of the user while transmitting (except in idle mode). It is similar to a body-worn device. Therefore, the test positions of 6.1.4.4 also apply. The strap shall be opened so that it is divided into two parts as shown in Figure 9. The device shall be positioned directly against the phantom surface with the strap straightened as much as possible and the back of the device towards the phantom.

If the strap cannot normally be opened to allow placing in direct contact with the phantom surface, it may be necessary to break the strap of the device but ensuring to not damage the antenna.

Test position for limb-worn devices

6.7. Tissue Dielectric Parameters

Report No.: TCT180813E007

The liquid used for the frequency range of 100MHz-6G consisted of water, sugar, salt and Cellulose. The liquid has been previously proven to be suited for worst-case. The following Table shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209. The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the determine of the dielectric parameter are within the tolerances of the specified target values. The measured conductivity and relative permittivity should be within $\pm 5\%$ of the target values.

The following materials are used for producing the tissue-equivalent materials

Targets for tissue simulating liquid

Frequency (MHz)	Liquid Type	Liquid Type (σ)	± 5% Range	Permittivity (ε)	± 5% Range
300	Head	0.87	0.83~0.91	45.3	43.04~47.57
450	Head	0.87	0.83~0.91	43.5	41.33~45.68
835	Head	0.90	0.86~0.95	41.5	39.43~43.58
900	Head	0.97	0.92~1.02	41.5	39.43~43.58
1800-2000	Head	1.40	1.33~1.47	40.0	38.00~42.00
2450	Head	1.80	1.71~1.89	39.2	37.24~41.16
2600	Head	1.96	1.86~2.06	39.0	37.05~40.95
3000	Head	2.40	2.28~2.52	38.5	36.58~40.43
5800	Head	5.27	5.01~5.53	35.3	33.54~37.07
300	Body	0.92	0.87~0.97	58.2	55.29~61.11
450	Body	0.94	0.89~0.99	56.7	53.87~59.54
835	Body	0.97	0.92~1.02	55.2	52.44~57.96
900	Body	1.05	1.00~1.10	55.0	52.25~57.75
1800-2000	Body	1.52	1.44~1.60	53.3	50.64~55.97
2450	Body	1.95	1.85~2.05	52.7	50.07~55.34
2600	Body	2.16	2.05~2.27	52.5	49.88~55.13
3000	Body	2.73	2.60~2.87	52.0	49.40~54.60
5800	Body	6.00	5.70~6.30	48.2	45.79~50.61

(εr = relative permittivity, σ = conductivity and ρ = 1000 kg/m3)

Page 16 of 232

6.8. Tissue-equivalent Liquid Properties

Test Date dd/mm/yy	Temp ℃	Tissue Type	Measured Frequency (MHz)	εr	σ(s/m)	Dev εr(%)	Dev σ(%)
			825	41.43	0.86	-0.17	-4.44
08/15/2018	22 ℃	835H	835	41.42	0.87	-0.19	-3.33
			850	40.39	0.88	-2.67	-2.22
			1710	39.11	1.34	-2.23	σ(%) -4.44 -3.33
00/47/2040	22°C	400011	1720 39.10 1.35 -2.25 -3	-3.57			
08/17/2018	22 ℃	1800H	1750	39.08	1.37	-2.30	-2.14
			1800	39.07	1.38	-2.33	
			1850	39.11	1.34	-2.23	-4.29
00/04/0040	00°0	400011	1880	39.10	1.35	-2.25	-3.57
08/21/2018	22 ℃	1900H	1900	39.08	1.37	-2.30	σ(%) -4.44 -3.33 -2.22 -4.29 -3.57 -2.14 -1.43 -4.29 -3.57 -2.14 -1.43 -0.56 0.56 1.67 2.22 -1.53 -2.04 -3.06 -4.12 -3.09 0.00 -1.97 -1.32 -0.66 0.66 1.03 1.54 3.08 4.10 -2.78 -2.31
			1910	39.07	1.38	-2.33	
			2410	37.84	1.79	-3.47	σ(%) 7 -4.44 9 -3.33 57 -2.22 23 -4.29 25 -3.57 30 -2.14 33 -1.43 23 -4.29 25 -3.57 30 -2.14 33 -1.43 47 -0.56 44 0.56 52 1.67 57 2.22 36 -1.53 39 -2.04 28 -3.06 1 -4.12 7 -3.09 2 0.00 8 -1.97 4 -1.32 2 -0.66 0 1.03 6 1.54 4 3.08 9 4.10 02 -2.78 03 -2.31
	0000		2435	37.85	1.81	-3.44	
08/24/2018	22 ℃	2450H	2450	37.82	1.83	-3.52	1.67
			2460	37.80	1.84	-3.57	2.22
			20850	38.86	1.93	-0.36	-1.53
08/30/2018	22 ℃	2600H	21100	38.85	1.92	-0.39	
(.c.)	J		21350	38.89	1.90	-0.28	4
			825	55.26	0.93	0.11	
08/15/2018	22 ℃	835B	835	55.24	0.94	0.07	
00,10,2010		22 0 0000	850	55.21	0.97	0.02	
			1710	53.34	1.49	0.08	
)	1720	53.32	1.50	0.04	
08/17/2018	22 ℃	1800B	1750	53.31	1.51	0.02	
			1800	53.29	1.53	-0.02	
			1850	53.34	1.49	0.08	
(0)	0		1880	53.32	1.50	0.04	σ(%) -4.44 -3.33 -2.22 -4.29 -3.57 -2.14 -1.43 -4.29 -3.57 -2.14 -1.43 -0.56 0.56 1.67 2.22 -1.53 -2.04 -3.06 -4.12 -3.09 0.00 -1.97 -1.32 -0.66 0.66 -1.97 -1.32 -0.66 0.66 1.03 1.54 3.08 4.10 -2.78 -2.31
08/21/2018	22 ℃	1900B	1900	53.31	1.51	0.02	
			1910	53.29	1.53	-0.02	σ(%) -4.44 -3.33 -2.22 -4.29 -3.57 -2.14 -1.43 -4.29 -3.57 -2.14 -1.43 -0.56 0.56 1.67 2.22 -1.53 -2.04 -3.06 -4.12 -3.09 0.00 -1.97 -1.32 -0.66 0.66 -1.97 -1.32 -0.66 0.66 1.03 1.54 3.08 4.10 -2.78 -2.31
			2410	54.65	1.97	3.70	
)		0.4	2435	54.63	1.98	3.66	
08/24/2018	22 ℃	2450B	2450	54.62	2.01	3.64	
			2460	54.59	2.03	3.59	
(A)			20850	51.96	2.10	-1.02	
08/30/2018	22 ℃	2600B	21100	52.01	2.11	-0.93	
			21350	52.13	2.13	-0.70	

Page 17 of 232

6.9. System Check

Report No.: TCT180813E007

The SAR system must be validated against its performance specifications before it is deployed. When SAR probe and system component or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such component. Reference dipoles are used with the required tissue-equivalent media for system validation.

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (±10 %).

System check is performed regularly on all frequency bands where tests are performed with the OPENSAR system.

System Check Set-up

Verification Results

Frequency Liquid (MHz) Type	Measured Value in 100mW (W/kg)		Normalized to 1W (W/kg)			t Value /kg)	Deviation (%)				
	1 g Average	10 g Average	1 g Average	10 g Average	1 g Average	10 g Average	1 g Average	10 g Average			
835	Head	0.89	0.57	8.90	5.70	9.60	6.24	-7.29	-8.65		
1800	Head	3.75	2.20	37.53	21.98	37.69	20.28	-0.42	8.38		
1900	Head	3.58	1.90	35.80	19.00	39.19	20.43	-8.65	-7.00		
2450	Head	4.99	2.36	49.90	23.60	53.21	24.14	-6.22	-2.24		
2600	Head	5.41	2.40	54.05	23.97	54.11	24.03	-0.11	-0.25		
835	Body	0.95	0.63	9.50	6.30	9.60	6.36	-1.04	-0.94		
1800	Body	3.78	2.05	37.79	20.46	37.63	20.53	0.43	-0.34		
1900	Body	3.77	1.99	37.70	19.90	38.73	20.48	-2.66	-2.83		
2450	Body	5.07	2.42	50.70	24.16	50.72	23.43	-0.04	3.12		
2600	Body	5.31	2.38	53.10	23.81	53.17	23.86	-0.13	-0.21		

Comparing to the original SAR value provided by MVG, the verification data should be within its specification of 10%. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table as below indicates the system performance check can meet the variation criterion and the plots can be referred to Section 10 of this report.

7. Measurement Procedure

Conducted power measurement

For WWAN power measurement, use base station simulator to configure EUT WWAN transition in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.

Report No.: TCT180813E007

Read the WWAN RF power level from the base station simulator.

For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band. Connect EUT RF port through RF cable to the power meter or spectrum analyser, and measure WLAN/BT output power.

Conducted power measurement

Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel.

Place the EUT in positions as Appendix B demonstrates.

Set scan area, grid size and other setting on the MVG software.

Measure SAR results for the highest power channel on each testing position.

Find out the largest SAR result on these testing positions of each band.

Measure SAR results for other channels in worst SAR testing position if the Reported SAR or highest power channel is larger than 0.8 W/kg.

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

Power reference measurement Area scan Zoom scan Power drift measurement

Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The MVG software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10 g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

Extraction of the measured data (grid and values) from the Zoom Scan.

Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters).

Generation of a high-resolution mesh within the measured volume.

Interpolation of all measured values form the measurement grid to the high-resolution grid

Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface

Calculation of the averaged SAR within masses of 1g and 10g.

Page 19 of 232

Power Reference Measurement

The Power Reference Measurement and Power Drift Measurement are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties

Area & Zoom Scan Procedures

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10g. Area scan and zoom scan resolution setting follows KDB 865664 D01v01r03 quoted below.

doted below.							
			≤3 GHz	> 3 GHz			
Maximum distance fro (geometric center of pr			5 mm ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$			
Maximum probe angle surface normal at the n			30° ± 1° 20° ± 1°				
			\leq 2 GHz: \leq 15 mm 3 - 4 GHz: \leq 12 m 2 - 3 GHz: \leq 12 mm 4 - 6 GHz: \leq 10 m				
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}			When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.				
Maximum zoom scan s	spatial res	olution: Δxz _{00m} , Δyz _{00m}	\leq 2 GHz: \leq 8 mm 2 – 3 GHz: \leq 5 mm*	$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$			
	uniform	grid: Δz _{Zoom} (n)	≤ 5 mm	$3 - 4 \text{ GHz: } \le 4 \text{ mm}$ $4 - 5 \text{ GHz: } \le 3 \text{ mm}$ $5 - 6 \text{ GHz: } \le 2 \text{ mm}$			
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δzz _{com} (1): between 1 st two points closest to phantom surface	≤ 4 mm	$3 - 4 \text{ GHz: } \le 3 \text{ mm}$ $4 - 5 \text{ GHz: } \le 2.5 \text{ mm}$ $5 - 6 \text{ GHz: } \le 2 \text{ mm}$			
bety		Δz _{Zoom} (n>1): between subsequent points	≤ 1.5·Δzz₀₀	m(n-1) mm			
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm			

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD post-processor scan combine and subsequently superpose these measurement data to calculating the multiband SAR.

Page 20 of 232

^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

SAR Averaged Methods

In MVG, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

Report No.: TCT180813E007

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1g and 10g cubes, the extrapolation distance should not be larger than 5 mm.

Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In MVG measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

Power Drift measurement

The drift job measures the field at the same location as the most recent reference job within the same procedure, and with the same settings. The drift measurement gives the field difference in dB from the reading conducted within the last reference measurement. Several drift measurements are possible for

Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100KHz to 6GHz ,when the highest measurement 1-g SAR within a frequency band is <1.5W/kg, the extensive SAR measurement uncertainty analysis described IEEE Std 1528-2013 is not required in SAR report submitted for equipment approval.

Page 21 of 232

8. Conducted Output Power

Band: GSM 850	Measu	red Power	(dBm)		Avera	ged Power	(dBm)
Channel	128	190	251	Calculation (dB)	128	190	251
Frequency	824.2	836.6	848.8	(,	824.2	836.6	848.8
GSM (GMSK, Voice)	33.52	33.45	33.51	-9.03	24.49	24.42	24.48
GPRS (GMSK, 1-slot)	32.43	32.40	32.42	-9.03	23.40	23.37	23.39
GPRS (GMSK, 2-slot)	31.39	31.41	31.44	-6.02	25.37	25.39	25.42
GPRS (GMSK, 3-slot)	30.33	30.35	30.37	-4.26	26.07	26.09	26.11
GPRS (GMSK, 4-slot)	29.23	29.25	29.20	-3.01	26.22	26.24	26.19
EGPRS (GMSK, 1-slot)	31.78	31.75	31.77	-9.03	22.75	22.72	22.74
EGPRS (GMSK, 2-slot)	30.45	30.47	30.50	-6.02	24.43	24.45	24.48
EGPRS (GMSK, 3-slot)	29.12	29.14	29.16	-4.26	24.86	24.88	24.90
EGPRS (GMSK, 4-slot)	28.06	28.08	28.03	-3.01	25.05	25.07	25.02

Note:

- 1. Division Factors
 - To average the power, the division factor is as follows:
 - 1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB
 - 2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB
 - 3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB
 - 4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB
- According to the conducted power as above, the body measurements are performed with 4Txslots for 850MHz for GPRS.
- 3. The device do not support power reduction, so power of hotspot activated as the same as hotspot disabled

Band: GSM 1900	Meas	ured Powe	r (dBm)		Averag	ged Power	(dBm)
Channel	512	661	810	Calculation (dB)	512	661	810
Frequency	1850.2	1880.0	1909.8	-	1850.2	1880.0	1909.8
GSM (GMSK, Voice)	30.21	30.18	30.15	-9.03	21.18	21.15	21.12
GPRS (GMSK, 1-slot)	29.69	29.95	29.57	-9.03	20.66	20.92	20.54
GPRS (GMSK, 2-slot)	28.05	28.01	28.03	-6.02	22.03	21.99	22.01
GPRS (GMSK, 3-slot)	27.52	27.50	27.48	-4.26	23.26	23.24	23.22
GPRS (GMSK, 4-slot)	26.20	26.19	26.17	-3.01	23.19	23.18	23.16
EGPRS (GMSK, 1-slot)	29.10	29.35	29.27	-9.03	20.07	20.32	20.24
EGPRS (GMSK, 2-slot)	27.77	27.73	27.75	-6.02	21.75	21.71	21.73
EGPRS (GMSK, 3-slot)	26.97	26.95	26.93	-4.26	22.71	22.69	22.67
EGPRS (GMSK, 1-slot)	25.68	25.67	25.65	-3.01	22.67	22.66	22.64

Note:

- 1. Division Factors
- To average the power, the division factor is as follows:
 - 1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB
 - 2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB
 - 3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB
 - 4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB
- According to the conducted power as above, the body measurements are performed with 3 TX slots for 1900MHz for GPRS.
- 3. The device do not support power reduction, so power of hotspot activated as the same as hotspot disabled

Band	W	CDMA Band	!	W	CDMA Band	I IV
Channel	9262	9400	9538	1312	1412	1513
Frequency	1852.40	1880.00	1907.60	1712.4	1732.4	1752.6
RMC 12.2Kbps	22.67	22.59	22.71	22.84	22.78	22.83
HSDPA Subtest-1	22.6	22.58	22.46	22.55	22.63	22.54
HSDPA Subtest-2	21.69	21.78	21.49	21.41	21.51	21.54
HSDPA Subtest-3	21.66	21.66	21.35	21.43	21.43	21.56
HSDPA Subtest-4	21.56	21.46	21.4	21.47	21.45	21.41
HSUPA Subtest-1	22.33	22.4	22.43	22.37	22.47	22.38
HSUPA Subtest-2	21.34	21.33	21.32	21.36	21.45	21.39
HSUPA Subtest-3	21.38	21.37	21.36	21.38	21.48	21.34
HSUPA Subtest-4	21.34	21.33	21.32	21.36	21.45	21.4
HSUPA Subtest-5	21.38	21.37	21.36	21.38	21.48	21.38

Note:

- 1. According to the power listed above, the HSDPA and HSUPA were not determined for SAR testing.
- 2.The default test configuration is to measure SAR with an established radio link between the EUT and a communication test set using a 12.2kbps RMC(reference measurement channel) configuration in test loop mode
- 3. The device do not support power reduction, so power of hotspot activated as the same as hotspot disabled

Band		WCDMA Band V	
Channel	4132	4182	4233
Frequency	826.40	836.40	846.60
RMC 12.2Kbps	22.84	22.75	22.65
HSDPA Subtest-1	22.59	22.67	22.57
HSDPA Subtest-2	21.41	21.51	21.54
HSDPA Subtest-3	21.43	21.43	21.56
HSDPA Subtest-4	21.47	21.45	21.41
HSUPA Subtest-1	22.37	22.47	22.38
HSUPA Subtest-2	21.36	21.45	21.39
HSUPA Subtest-3	21.38	21.48	21.34
HSUPA Subtest-4	21.36	21.45	21.39
HSUPA Subtest-5	21.38	21.48	21.34
HSUPA Subtest-5	21.38	21.48	21.34

Note:

- 1. According to the power listed above, the HSDPA and HSUPA were not determined for SAR testing.
- 2.The default test configuration is to measure SAR with an established radio link between the EUT and a communication test set using a 12.2kbps RMC(reference measurement channel) configuration in test loop mode
- 3. The device do not support power reduction, so power of hotspot activated as the same as hotspot disabled

		WLAN 2.4	G			
Mode		802.11b		100	802.11g	
Channel	1	6	11	1	6	11
Frequency	2412	2437	2462	2412	2437	2462
Average Power (dBm)	13.14	13.59	13.00	13.05	13.45	12.90
Mode	8	302.11n(HT20	0)	8	02.11n(HT4	0)
Channel	1	6	11	3	6	9
Frequency	2412	2437	2462	2422	2437	2452
Average Power (dBm)	13.20	13.23	13.00	1	/	1

Note

- Per KDB 248227 D01 v02r02, choose the highest output power channel to test SAR and determine further SAR exclusion.
- 2. The output power of all data rate were prescan , just the worst case (the lowest data rate) of all mode were shown in report.

Page 25 of 232

		Bluetooth	ı			
Mode		GFSK		(c)	Pi/4DQPSK	
Channel	0	39	78	0	39	78
Frequency	2402	2441	2480	2402	2441	2480
Average Power (dBm)	4.19	4.63	4.11	3.45	3.32	3.33
Mode	(0)	8DPSK	(0)		BLE	
Channel	0	39	78	0	20	39
Frequency	2402	2441	2480	2402	2440	2480
Average Power (dBm)	2.38	2.27	2.20	0.85	2.06	0.25

Channel	Frequency (GHz)	Max. Tune-up Power (dBm)	Max. Power (mW)	Test distance (mm)	Result	Exclusion thresholds for 1-g SAR	Exclusion thresholds for 10-g SAR
39	2.441	5	3.16	5	0.99	3.0	7.5

Note

- 1. Per KDB 447498 D01v06, the 1-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* ≤ 50 mm are determined by:
 - [(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR, where
 - ·f(GHz) is the RF channel transmit frequency in GHz
 - ·Power and distance are rounded to the nearest mW and mm before calculation
 - ·The result is rounded to one decimal place for comparison
- 2. Base on the result of note1, RF exposure evaluation of BT is not required.
- 3. Per KDB 248227 D01 v02r02, choose the highest output power channel to test SAR and determine further SAR exclusion.
- 4. The output power of all data rate were prescan, just the worst case (the lowest data rate) of all mode were shown in report.

LTE Band 2

Conducted Power of LTE Band 2										
Don dwidth	Modulation	RB size	RB	Channel	Channel	Channel				
Bandwidth	Modulation	RB SIZE	offset	18607	18900	19193				
			0.00	22.75	22.68	22.73				
		(10)	2.00	22.46	22.31	22.42				
			5.00	22.62	22.58	22.63				
	QPSK		0.00	22.41	22.26	22.39				
		3	1.00	22.23	22.11	22.33				
	(60)		2.00	21.75	21.90	22.20				
4 4MU=		6	0.00	22.51	22.75	22.48				
1.4MHz			0.00	22.03	21.90	22.09				
160		10	2.00	21.68	21.51	21.74				
			5.00	22.45	22.37	22.27				
	16QAM		0.00	22.38	22.25	22.30				
		3	1.00	22.21	22.26	22.14				
	(YQ,)		2.00	22.38	22.45	22.72				
		6	0.00	22.00	22.01	21.84				
Bandwidth	Modulation	DD cizo	RB	Channel	Channel	Channe				
Sanuwium	Modulation	RB size	offset	18615	18900	19185				
			0.00	22.73	22.67	22.35				
		1	8.00	21.50	21.61	22.16				
			14.00	22.35	21.51	21.85				
	QPSK		0.00	21.84	21.63	21.52				
		8	4.00	21.98	22.10	22.21				
			7.00	21.75	22.04	21.27				
3MHz		15	0.00	21.69	21.99	21.70				
SIVIFIZ		((0))	0.00	21.93	21.71	22.04				
		1	8.00	22.23	21.98	21.74				
			14.00	22.50	22.42	22.43				
	16QAM		0.00	22.25	22.04	21.74				
		8	4.00	21.81	21.33	21.49				
			7.00	21.72	21.94	22.10				
		15	0.00	22.45	22.43	22.55				

		Conduc	ted Power of	LTE Band 2		
D 1 1 11			RB	Channel	Channel	Channel
Bandwidth	Modulation	RB size	offset	18625	18900	19175
			0.00	22.22	22.14	22.02
		(10)	13.00	22.15	21.71	22.02
			24.00	22.19	21.83	22.28
	QPSK		0.00	21.64	21.96	21.93
		12	6.00	21.83	21.99	21.50
	(40.)		13.00	22.07	21.92	22.04
		25	0.00	22.05	21.91	22.15
5MHz			0.00	21.44	22.09	21.26
		1	13.00	21.45	22.02	22.13
			24.00	21.81	22.45	22.48
	16QAM		0.00	21.47	21.41	21.62
		12	6.00	21.63	21.83	22.11
			13.00	22.01	22.22	21.38
		25	0.00	22.25	22.26	22.38
Danahuri alth	Modulation	DD size	RB	Channel	Channel	Channel
Bandwidth	Modulation	RB size	offset	18650	18900	19150
		(0)	0.00	22.44	22.37	22.42
		1	25.00	22.17	22.07	22.32
			49.00	22.23	22.06	22.19
	QPSK		0.00	21.56	22.46	21.59
		25	13.00	22.45	22.32	22.52
			25.00	22.38	22.33	22.54
10MU-		50	0.00	22.58	22.32	22.59
10MHz		(C)	0.00	21.39	21.79	21.81
		1	25.00	21.88	21.85	21.37
			49.00	21.94	22.37	21.70
	16QAM		0.00	21.81	22.24	21.72
	(0)	25	13.00	22.13	21.91	22.04
			25.00	22.12	21.89	21.98
		50	0.00	22.14	21.99	22.01

		Conduc	ted Power o	f LTE Band 2		
.		DD :	RB	Channel	Channel	Channe
Bandwidth	Modulation	RB size	offset	18675	18900	19125
			0.00	22.72	22.66	22.71
		1(0)	38.00	22.45	22.30	22.52
			74.00	22.15	21.83	22.21
	QPSK		0.00	21.57	21.42	21.74
	(65)	36	18.00	22.30	22.16	21.61
		<u> </u>	39.00	22.21	22.24	21.62
458811-		75	0.00	21.42	22.31	21.61
15MHz			0.00	21.74	22.06	22.15
		1,0	38.00	22.25	21.62	21.84
			74.00	22.29	21.70	21.77
	16QAM		0.00	21.43	21.41	21.75
		36	18.00	21.37	22.14	21.60
		<u> </u>	39.00	22.30	22.13	21.92
		75	0.00	22.23	22.04	21.65
Bandwidth	Modulation	RB size	RB	Channel	Channel	Channe
Janawiath	Woddiation	ND 3126	offset	18700	18900	19100
			0.00	22.56	22.34	22.60
		1	50.00	22.25	21.96	22.26
			99.00	21.90	22.10	22.36
	QPSK		0.00	21.77	22.53	21.75
		50	25.00	22.49	22.34	22.47
			50.00	21.94	22.07	21.90
20MHz		100	0.00	22.36	22.16	21.42
ZUMHZ			0.00	22.77	22.40	22.59
		1	50.00	21.99	22.00	22.28
			99.00	22.04	22.26	22.11
	16QAM	<u></u>	0.00	21.57	21.56	21.79
		50	25.00	22.42	22.26	22.35
			50.00	22.14	22.31	22.26
		100	0.00	21.40	22.20	22.38

LTE Band 4

		Conduc	ted Power o	f LTE Band 4		
Bandwidth	Madulation	DD circ	RB	Channel	Channel	Channel
Bandwidth	Modulation	RB size	offset	19957	20175	20393
			0.00	22.27	22.57	22.12
		(10)	2.00	22.23	22.15	22.27
			5.00	22.13	22.14	22.53
	QPSK		0.00	21.91	21.72	22.13
		3	1.00	22.24	22.01	22.18
			2.00	22.22	21.90	21.96
4 4MU=		6	0.00	22.32	22.46	22.10
1.4MHz			0.00	22.34	22.21	22.11
		10	2.00	22.17	22.31	22.24
			5.00	21.96	22.05	22.12
	16QAM		0.00	21.90	21.89	21.91
		3	1.00	21.98	21.99	21.81
	(C_{σ})		2.00	21.93	22.04	21.63
		6	0.00	22.19	22.14	21.95
Bandwidth N	Modulation	RB size	RB	Channel	Channel	Channe
	Modulation		offset	19965	20175	20385
			0.00	22.24	22.12	22.18
		1	8.00	22.04	21.86	21.71
			14.00	22.13	21.94	21.93
	QPSK		0.00	22.24	22.09	21.75
		8	4.00	22.08	22.03	21.86
			7.00	22.14	21.86	21.78
2MU-		15	0.00	22.22	22.26	22.03
3MHz		((0,))	0.00	22.03	21.77	21.37
		1	8.00	22.04	21.81	21.82
			14.00	21.67	21.80	21.84
	16QAM		0.00	21.75	21.83	21.75
		8	4.00	21.90	22.10	21.66
			7.00	21.95	21.90	21.93
		15	0.00	22.12	21.86	21.78

Conducted Power of LTE Band 4							
Danish dalah	Mad Jacan	DD at a	RB	Channel	Channel	Channel	
Bandwidth	Modulation	RB size	offset	19975	20175	20375	
			0.00	22.11	22.01	22.30	
		10	13.00	22.30	21.94	22.01	
			24.00	21.77	21.62	22.01	
	QPSK		0.00	22.14	21.78	21.94	
		12	6.00	22.19	21.83	21.88	
			13.00	22.08	21.75	21.74	
C8411-		25	0.00	22.18	21.82	21.91	
5MHz			0.00	22.20	22.03	21.92	
		(1.0)	13.00	21.76	22.17	21.64	
			24.00	21.22	22.20	21.25	
	16QAM		0.00	22.07	21.94	21.06	
		12	6.00	21.79	21.72	21.79	
	(60)		13.00	22.27	22.21	22.24	
		25	0.00	22.02	21.82	22.00	
D d '- 161-	Modulation	RB size	RB offset	Channel	Channel	Channel	
Bandwidth				20000	20175	20350	
			0.00	22.08	22.03	22.28	
		1	25.00	21.57	22.04	21.94	
			49.00	21.41	22.12	21.35	
	QPSK		0.00	21.24	21.93	22.11	
		25	13.00	21.65	21.70	21.89	
			25.00	22.18	21.92	22.09	
10M⊔~		50	0.00	22.03	21.69	21.86	
10MHz		(0)	0.00	21.58	21.58	22.00	
		1	25.00	22.05	21.52	22.05	
			49.00	21.27	21.99	21.62	
	16QAM		0.00	21.56	21.83	21.90	
		25	13.00	22.14	21.68	22.10	
			25.00	21.04	21.99	21.36	
		50	0.00	21.89	21.88	21.70	

		Conduc	ted Power	of LTE Band 4		
Dan deside	Madulatian	DD si-s	RB	Channel	Channel	Channel
Bandwidth	Modulation	RB size	offset	20025	20175	20325
			0.00	22.15	22.00	22.24
		1.0	38.00	22.04	21.72	21.96
			74.00	21.87	21.67	21.40
	QPSK		0.00	21.56	22.40	22.13
		36	18.00	21.41	21.61	21.87
			39.00	22.02	22.43	22.01
45801-		75	0.00	22.04	21.87	21.34
15MHz			0.00	22.10	21.98	22.05
		1.6	38.00	21.38	22.19	21.69
			74.00	21.68	22.29	21.96
	16QAM		0.00	22.31	22.22	22.12
		36	18.00	21.73	21.36	21.85
	(C)		39.00	21.92	22.09	22.18
		75	0.00	22.05	22.18	21.12
D 141	Modulation	RB size	RB	Channel	Channel	Channel
Bandwidth			offset	20050	20175	20300
			0.00	22.31	22.26	22.39
		1	50.00	22.10	21.82	21.74
			99.00	22.18	21.99	22.37
	QPSK		0.00	21.95	22.23	22.30
		50	25.00	21.57	22.00	22.03
			50.00	21.97	21.83	22.06
20MHz		100	0.00	21.95	21.99	21.72
ZUIVITZ		(C)	0.00	22.14	22.18	22.26
		1	50.00	21.99	22.03	22.18
			99.00	22.30	22.20	22.34
	16QAM		0.00	21.84	21.96	21.87
	(60)	50	25.00	22.10	22.25	22.19
			50.00	22.29	22.12	21.54
		100	0.00	22.28	22.13	21.86

LTE Band 5

			DD	Channel	Channel	Channe
Bandwidth	Modulation	RB size	RB offset	20407	20525	20643
			0.00	21.25	22.34	22.05
		10	3.00	21.36	21.89	21.85
			5.00	21.44	22.21	21.76
	QPSK		0.00	21.56	22.30	21.60
		3	2.00	21.17	21.85	21.85
	$(C_{\mathcal{O}})$		3.00	21.67	22.34	21.61
		6	0.00	21.85	22.46	22.11
1.4MHz			0.00	21.55	22.16	21.91
		10	3.00	21.77	22.54	21.69
			5.00	21.48	22.26	21.92
	16QAM		0.00	21.17	21.87	21.59
		3	2.00	22.00	22.81	22.16
	(,0')		3.00	21.70	22.68	21.88
		6	0.00	21.72	22.36	22.05
Bandwidth	Modulation	RB size	RB	Channel	Channel	Channe
	iviodulation		offset	20415	20525	20635
		(2)	0.00	21.27	21.97	21.57
		1	3.00	21.36	21.88	21.72
			5.00	21.56	21.91	21.74
	QPSK		0.00	21.17	21.71	21.37
		8	2.00	21.36	21.76	21.47
			3.00	21.56	21.57	21.59
3MHz		15	0.00	21.86	21.95	21.69
ЭМПТ		('C')	0.00	21.45	21.57	21.83
		1	3.00	21.64	21.60	21.71
			5.00	21.14	21.79	21.56
	16QAM		0.00	21.16	22.28	21.91
		8	2.00	21.37	21.89	21.69
		Ī	3.00	21.38	21.60	21.36
		15	0.00	21.48	21.80	21.92

		Conduc	ted Power of	LTE Band 5		
Danah dalah	Ma abole Con	DD ci	RB	Channel	Channel	Channel
Bandwidth	Modulation	RB size	offset	20425	20525	20625
			0.00	22.03	22.73	22.87
		(10)	13.00	21.70	22.26	22.21
			24.00	21.48	22.46	22.27
	QPSK		0.00	21.89	22.74	22.64
		12	6.00	21.51	21.95	21.84
	(40.)		13.00	21.48	22.03	21.96
534 11		25	0.00	21.85	22.35	22.28
5MHz			0.00	21.78	22.26	22.30
		1	13.00	21.71	22.30	22.31
			24.00	21.51	22.49	22.51
	16QAM		0.00	21.86	22.45	22.32
		12	6.00	21.51	22.18	22.11
			13.00	21.48	22.26	22.21
		25	0.00	21.87	22.65	22.72
5 1 1 1 1	Modulation	RB size	RB offset	Channel	Channel	Channel
Bandwidth				20450	20525	20600
		(0)	0.00	21.61	22.04	21.75
		1	25.00	21.70	22.26	21.98
			49.00	21.99	22.62	22.25
	QPSK		0.00	21.67	22.41	21.98
		25	13.00	21.87	22.42	21.93
			25.00	21.63	22.31	21.95
10MU-		50	0.00	21.14	21.99	21.51
10MHz		(C)	0.00	21.59	22.32	21.89
		1	25.00	21.48	22.11	21.66
			49.00	21.40	21.92	21.48
	16QAM		0.00	21.58	22.13	21.37
	(60)	25	13.00	21.64	22.25	21.88
			25.00	21.61	22.19	21.81
		50	0.00	21.62	22.19	21.72

LTE Band 7

		RB size	RB	Channel	Channel	Channel
Bandwidth	Modulation		offset	20775	21100	21425
			0.00	22.41	22.22	22.52
		(10)	13.00	22.46	22.26	22.54
			24.00	22.07	22.40	22.46
	QPSK		0.00	22.17	22.33	22.47
		12	6.00	22.33	22.57	22.55
			13.00	22.34	22.49	22.56
EMU-		25	0.00	22.17	22.33	22.57
5MHz			0.00	21.99	22.47	22.43
		(1,0)	13.00	22.36	22.49	22.49
			24.00	22.34	22.29	22.46
	16QAM		0.00	22.40	22.23	22.51
		12	6.00	22.06	22.22	22.46
	(C_{i})		13.00	21.95	22.31	22.55
		25	0.00	21.97	22.22	22.56
Bandwidth	Modulation	RB size	RB	Channel	Channel	Channe
Danuwium	Modulation		offset	20800	21100	21400
			0.00	22.32	22.48	22.46
		1	25.00	22.39	22.47	22.41
			49.00	22.50	22.36	22.48
	QPSK		0.00	22.32	22.33	22.51
		25	13.00	22.12	22.45	22.34
			25.00	22.32	22.46	22.32
10MHz		50	0.00	22.22	22.39	22.49
I OIVII IZ		(0)	0.00	22.03	22.53	22.47
		1	25.00	22.41	22.53	22.45
			49.00	22.50	22.52	22.44
	16QAM		0.00	22.32	22.26	22.42
		25	13.00	22.54	22.36	22.43
			25.00	22.51	22.42	22.51
		50	0.00	22.42	22.57	22.53

		Conduct	ted Power o	f LTE Band 7		
D 141	Mad Info	DD die	RB	Channel	Channel	Channel
Bandwidth	Modulation	RB size	offset	20825	21100	21375
			0.00	22.46	22.49	22.48
		10	38.00	22.46	22.50	22.45
			74.00	22.31	22.23	22.49
	QPSK		0.00	22.42	22.31	22.47
		36	18.00	22.32	22.41	22.45
	(40.)		39.00	22.35	22.43	22.39
458811-		75	0.00	22.41	22.28	22.30
15MHz			0.00	22.29	22.39	22.42
			38.00	22.41	22.26	22.34
			74.00	22.32	22.34	22.45
	16QAM		0.00	22.33	22.27	22.38
		36	18.00	22.45	22.39	22.43
	$(C_{C_{i}})$		39.00	22.40	22.43	22.49
		75	0.00	22.33	22.26	22.37
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel
Sandwidth				20850	21100	21350
			0.00	22.11	22.22	22.63
		1	50.00	22.10	22.23	22.48
			99.00	21.95	22.38	22.35
	QPSK		0.00	22.44	22.52	22.20
		50	25.00	22.28	22.36	22.36
			50.00	22.52	22.17	22.12
20MHz		100	0.00	22.33	22.51	22.45
ZUMII IZ			0.00	22.10	22.42	22.46
		1	50.00	21.99	22.18	22.38
			99.00	22.10	22.57	22.23
	16QAM		0.00	22.34	22.52	22.48
		50	25.00	22.19	22.59	22.47
			50.00	22.17	22.25	22.47
		100	0.00	21.97	22.36	22.48

LTE Band 12

			T		Channal	Channa
Bandwidth	Modulation	RB size	RB offset			Channe
					Innel Channel Ch 17 23095 23 38 22.44 2 33 22.04 2 75 21.99 2 78 21.93 2 27 21.88 2 33 22.05 2 21.97 2 39 22.04 2 32 22.00 2 39 22.19 2 44 22.08 2 39 22.42 2 44 22.08 2 39 22.42 2 48 22.39 2 48 22.23 2 48 22.23 2 38 22.13 2 30 21.86 2 31 22.26 2 32 22.14 2 33 22.14 2	23173
		46	0.00	et 23017 23095 2 0 22.38 22.44 2 0 21.83 22.04 2 0 21.75 21.99 2 0 21.78 21.93 2 0 21.83 22.05 2 0 21.83 22.05 2 0 21.91 22.03 2 0 21.89 22.04 2 0 21.89 22.04 2 0 21.89 22.49 2 0 21.89 22.42 2 0 21.89 22.42 2 0 21.76 21.89 2 0 21.76 21.89 2 0 22.48 22.23 2 0 22.48 22.23 2 0 21.97 22.27 2 0 21.58 21.86 2 0 22.08 22.26	22.56	
		(10)	2.00			22.58
	ODOK		5.00			22.48
	QPSK	_	0.00			22.47
	(,c)	3	1.00			22.45
			2.00			22.41
1.4MHz		6	0.00			22.49
			0.00			22.35
		(10)	2.00			22.48
			5.00			22.34
	16QAM	_	0.00			22.38
		3	1.00	22.14	(-2)	22.35
	(60)		2.00	21.89	22.42	22.37
		6	0.00	21.76	21.89	22.33
Bandwidth	Modulation	RB size	RB	Channel	Channel	Channe
			offset	23025	23095	23165
			0.00	22.48	22.23	22.58
		1	8.00	22.38	22.13	22.20
			14.00	21.66	21.92	22.30
	QPSK		0.00	21.97	22.27	22.44
		8	4.00	21.58	21.86	22.43
			7.00	22.08	22.26	22.10
3MHz		15	0.00	22.02	22.31	22.07
SIVIFIZ		(C_{i})	0.00	22.31	22.14	21.99
		1	8.00	21.80	22.14	21.98
		Ī	15.00	21.89	22.13	22.51
	16QAM		0.00	21.82	22.08	22.44
		8	4.00	22.25	22.11	22.25
		Ī	7.00	21.97	22.02	22.37
		15	0.00	21.98	22.33	22.41

		Conduct	ad Power of	ITE Band 12	, , , , , , , , , , , , , , , , , , , ,	101100013E
		Conduct	eu Powei oi	LIE Ballu 12		
Dan deridek	Madulatian	DD sins	RB	Channel	Channel	Channel
Bandwidth	Modulation	RB SIZE	offset	23035	23095	23155
			0.00	22.18	22.30	22.39
		1	13.00	21.88	22.08	22.25
		((0))	24.00	21.79	21.92	22.19
	QPSK		0.00	21.88	22.12	22.23
		12	6.00	22.14	22.09	21.95
			13.00	21.83	21.99	21.85
CN411-		25	0.00	21.99	22.22	21.86
5MHz			0.00	21.80	21.82	21.89
		1	13.00	22.05	22.08	21.92
		(c)	24.00	21.83	21.98	21.88
	16QAM		0.00	21.75	22.38	22.23
		12	6.00	21.74	21.79	21.96
		AM	21.95			
		25	0.00	21.85	22.20	21.83
Dan duvidle	Modulation	DD size	RB	Channel	Channel	Channel
Bandwidth	Modulation	RD SIZE	offset	23060	23095	23130
		(c)	0.00	22.28	22.14	22.45
		1	25.00	22.21	22.11	22.07
			49.00	21.83	21.65	21.44
	QPSK		0.00	22.09	22.04	21.92
	$(C_{\mathcal{O}})$	25	13.00	21.78	21.94	21.79
			25.00	22.07	22.08	21.96
400011-		50	0.00	21.76	21.96	21.61
10MHz			0.00	22.07	22.13	22.00
			25.00	21.66	21.79	21.47
			49.00	21.98	22.14	21.99
	16QAM		0.00	21.79	21.94	21.78
		25	13.00	22.23	22.07	22.03
			25.00	22.00	22.05	22.03
		50	0.00	21.89	22.11	21.87

LTE Band 17

		Conduct	ted Power of	LTE Band 17		
Bandwidth	Madulation	DD size	RB	Channel	Channel	Channel
Bandwidth	Modulation	RB size	offset	t 23755 23790 2 22.17 21.53 2 22.22 21.57 2 21.84 21.89 2 21.94 21.63 2 22.10 21.86 2 22.11 21.79 2 21.94 21.63 2 21.76 21.86 2 22.13 21.79 2 22.17 21.54 2 21.83 21.53 2 21.72 21.61 2 21.74 21.53 2 Channel	23825	
			0.00	Channel Channel Channel 23755 23790 2382 22.17 21.53 22.0 22.22 21.57 22.0 21.84 21.89 21.9 21.94 21.63 22.0 22.10 21.86 22.0 22.11 21.79 22.2 21.94 21.63 22.4 21.76 21.86 22.5 22.13 21.79 22.3 22.17 21.59 22.4 22.17 21.54 22.4 21.72 21.61 22.0 21.74 21.53 22.1 Channel Channel Channel Channel Channel Channel 23780 23790 2380 21.76 22.07 22.2 22.16 22.08 22.4 22.26 22.05 22.0 22.08 22.10 22.4 21.80 22.19 22.4 2	22.06	
		(10)	13.00	22.22	21.57	22.08
			24.00	21.84	21.89	21.99
	QPSK		0.00	21.94	21.63	22.00
		12	6.00	22.10	21.86	22.09
	(60)		13.00	22.11	21.79	22.29
5MHz 16Q andwidth Modul		25	0.00	21.94	21.63	22.40
SIVIFIZ			0.00	21.76	21.86	22.50
		1.0	13.00	22.13	21.79	22.32
			24.00	22.11	21.59	22.41
	16QAM		0.00	22.17	21.54	22.43
		12	6.00	21.83	21.53	22.29
	((C))		13.00	21.72	21.61	22.09
		25	0.00	21.74	21.53	22.10
Pandwidth	Modulation	RB size	RB	Channel	Channel	Channe
Danuwium	Modulation	KD SIZE	offset	23780	23790	23800
		(0)	0.00	21.76	22.07	22.29
		1	25.00	22.16	22.08	22.41
			49.00	22.26	22.05	22.02
	QPSK		0.00	22.08	22.10	22.48
		25	13.00	21.88	21.94	22.37
			25.00	22.08	22.14	22.35
40MU=		50	0.00	21.99	21.94	22.32
10MHz		(0)	0.00	21.80	22.02	22.40
		1	25.00	22.17	21.94	22.00
			49.00	22.26	22.01	21.97
	16QAM		0.00	22.08	21.57	21.95
		25	13.00	22.40	21.66	21.96
			25.00	22.48	22.01	22.14
		50	0.00	21.76	22.07	22.29

9. Exposure Position Consideration

9.1. EUT Antenna Location

9.2. Test Position Consideration

	Test Positions												
Mode	Back	Front	Top Side	Bottom Side	Right Side	Left Side							
GSM/WCDMA/LTE HOTSPOT	Yes	Yes	No	Yes	Yes	Yes							
WIFI 2.4G/BT	Yes	Yes	Yes	No	No	Yes							

10. SAR Test Results Summary

Report No.: TCT180813E007

10.1. Head 1g SAR Data

Band	Mode	Test Position	CH.	Freq. (MHz)	Ave. Power (dBm)	Tune-Up Limit (dBm)	Power Drift (%)	Meas. SAR1g (W/kg)	Scaling Factor	Reported SAR1g (W/kg)	Limit (W/Kg)
	(C)	Left Cheek	128	824.2	33.52	34.00	-3.20	0.09	1.117	0.10	
0011050		Left Tilt	128	824.2	33.52	34.00	-0.37	0.06	1.117	0.07	
GSM850	voice	Right Cheek	128	824.2	33.52	34.00	2.82	0.12	1.117	0.13	
		Right Tilt	128	824.2	33.52	34.00	1.73	0.06	1.117	0.07	KC
		Left Cheek	512	1850.2	30.21	30.50	-0.24	0.14	1.069	0.15	
00144000		Left Tilt	512	1850.2	30.21	30.50	2.14	0.05	1.069	0.05	
GSM1900	voice	Right Cheek	512	1850.2	30.21	30.50	0.44	0.17	1.069	0.18	
		Right Tilt	512	1850.2	30.21	30.50	-4.07	0.06	1.069	0.06	
		Left Cheek	9538	1907.6	22.71	23.00	-0.47	0.14	1.069	0.15	(.c
WCDMA	5110	Left Tilt	9538	1907.6	22.71	23.00	0.05	0.09	1.069	0.10	
Band II	RMC	Right Cheek	9538	1907.6	22.71	23.00	-1.36	0.18	1.069	0.19	
		Right Tilt	9538	1907.6	22.71	23.00	0.09	0.09	1.069	0.10	
		Left Cheek	1312	1712.4	22.84	23.00	1.08	0.23	1.038	0.24	1.60
WCDMA	DMC	Left Tilt	1312	1712.4	22.84	23.00	-2.06	0.13	1.038	0.13	
Band IV	RMC	Right Cheek	1312	1712.4	22.84	23.00	-0.07	0.24	1.038	0.25	160
		Right Tilt	1312	1712.4	22.84	23.00	-0.99	0.12	1.038	0.12	
	(C)	Left Cheek	4132	826.4	22.84	23.00	-4.70	0.06	1.038	0.06	
WCDMA		Left Tilt	4132	826.4	22.84	23.00	3.00	0.04	1.038	0.04	
Band V	RMC	Right Cheek	4132	826.4	22.84	23.00	-1.04	0.08	1.038	0.08	
		Right Tilt	4132	826.4	22.84	23.00	1.75	0.05	1.038	0.05	(c)
		Left Cheek	06	2437	13.59	14.00	3.37	0.08	1.099	0.09	
0.40	00011	Left Tilt	06	2437	13.59	14.00	2.50	0.05	1.099	0.05	
2.4G	802.11b	Right Cheek	06	2437	13.59	14.00	1.22	0.10	1.099	0.11	
		Right Tilt	06	2437	13.59	14.00	3.00	0.09	1.099	0.10	

Page 41 of 232

Band	Mode	Test Position	CH.	Freq. (MHz)	RB allocation	RB offset	Ave. Power (dBm)	Tune-U p Limit (dBm)	Power Drift (%)	Meas. SAR1g (W/kg)	Scaling Factor	Reported SAR1g (W/kg)
		Right	12207		1	0	22.75	23.00	0.98	0.22	1.059	0.23
		Cheek	18607	1850.7	3	0	22.41	23.00	1.53	0.18	1.146	0.21
		Right	10007	1050 7	1	0	22.75	23.00	3.18	0.08	1.059	0.08
LTE	QPSK	Tilt	18607	1850.7	3	0	22.41	23.00	0.41	0.06	1.146	0.07
Band 2	(1.4MHz)	Left	40007	4050 7	1	0	22.75	23.00	-1.46	0.21	1.059	0.22
		Cheek	18607	1850.7	3	0	22.41	23.00	-1.69	0.16	1.146	0.18
			10007	4050.7	1	0	22.75	23.00	0.94	0.08	1.059	0.08
		Left Tilt	18607	1850.7	3	0	22.41	23.00	-1.71	0.05	1.146	0.06
		Right			1	0	22.57	23.00	0.74	0.15	1.104	0.17
		Cheek	20175	1732.5	3	1	22.01	23.00	2.99	0.09	1.256	0.11
	(, G)	Right		(<u>()</u> 1	0	22.57	23.00	-2.54	0.07	1.104	0.08
LTE	QPSK	Tilt	20175	1732.5	3	1	22.01	23.00	-1.03	0.04	1.256	0.05
Band 4	(1.4MHz)	Left			1	0	22.57	23.00	-1.46	0.15	1.104	0.17
		Cheek	20175	1732.5	3	1	22.01	23.00	-1.99	0.08	1.256	0.10
					1	0	22.57	23.00	0.09	0.08	1.104	0.09
		Left Tilt	20175	1732.5	3	1	22.01	23.00	0.41	0.05	1.256	0.06
		Right			1	0	22.87	23.00	-1.25	0.06	1.030	0.06
	(, c)	Cheek	20625	846.5	12	0	22.64	23.00	2.65	0.03	1.086	0.03
		Right	00005	040.5	1	0	22.87	23.00	1.34	0.04	1.030	0.04
LTE	QPSK	Tilt	20625	846.5	12	0	22.64	23.00	-1.83	0.03	1.086	0.03
Band 5	(5MHz)	Left	2225	0.40.5	1	0	22.87	23.00	-1.64	0.05	1.030	0.05
(\mathcal{O})		Cheek	20625	846.5	12	0	22.64	23.00	2.55	0.02	1.086	0.02
			00005	0.40.5	1	0	22.87	23.00	0.14	0.04	1.030	0.04
		Left Tilt	20625	846.5	12	0	22.64	23.00	-1.07	0.02	1.086	0.02
	(.c.	Right	04050	2522	1	0	22.63	23.00	-4.20	0.07	1.089	0.08
		Cheek	21350	2560	50	25	22.36	23.00	-0.09	0.03	1.159	0.03
		Right	04050	0500	1	0	22.63	23.00	-1.04	0.03	1.089	0.03
LTE	QPSK	Tilt	21350	2560	50	25	22.36	23.00	3.24	0.01	1.159	0.01
Band 7	(20MHz)	Left	04050	0500	1	0	22.63	23.00	1.75	0.12	1.089	0.13
		Cheek	21350	2560	50	25	22.36	23.00	-1.57	0.07	1.159	0.08
		1.4.7"	04050	0500	1	0	22.63	23.00	-0.34	0.04	1.089	0.04
		Left Tilt	21350	2560	50	25	22.36	23.00	-0.94	0.02	1.159	0.02

Page 42 of 232

		Right	23165	714.5	1	0	22.58	23.00	0.57	0.03	1.102	0.03
(C_{i})		Cheek	23103	7 14.5	8	0	22.44	23.00	-1.46	0.02	1.138	0.02
		Right	23165	74.4.5	1	0	22.58	23.00	-0.35	0.02	1.102	0.02
LTE	QPSK	Tilt	23100	714.5	8	0	22.44	23.00	-0.78	0.01	1.138	0.01
Band 12	(3MHz)	Left	00405	74.4.5	1	0	22.58	23.00	-3.34	0.03	1.102	0.03
		Cheek	23165	714.5	8	0	22.44	23.00	2.31	0.01	1.138	0.01
		Late Tile	00405	7445	1	0	22.58	23.00	-1.39	0.02	1.102	0.02
		Left Tilt	23165	714.5	8	0	22.44	23.00	-1.62	0.01	1.138	0.01
(C_{i})		Right	Right 22000		1	25	22.40	23.00	3.02	0.06	1.148	0.07
		Cheek	23800	711	25	0	22.48	23.00	-0.07	0.05	1.127	0.06
		Right	22000	744	1	25	22.40	23.00	-0.68	0.03	1.148	0.03
LTE	QPSK	Tilt	23800	711	25	0	22.48	23.00	-0.98	0.01	1.127	0.01
Band 17	(10MHz)	Left	22000	711	1	25	22.40	23.00	1.29	0.03	1.148	0.03
		Cheek	23800	/11	25	0	22.48	23.00	-0.21	0.02	1.127	0.02
		1 -4 Til	22000	744	1	25	22.40	23.00	-1.44	0.02	1.148	0.02
		Left Tilt	23800	711	25	0	22.48	23.00	-1.62	0.01	1.127	0.01
	•			•	•			•				

10.2. Body-Worn 1g SAR Data

Band	Mode	Test Position with 10mm	CH.	Freq. (MHz)	Ave. Power (dBm)	Tune-U p Limit (dBm)	Power Drift (%)	Meas. SAR1g (W/kg)	Scaling Factor	Reported SAR1g (W/kg)	Limit (W/Kg)
	of The s	Front	128	824.2	33.52	34.00	-1.92	0.11	1.117	0.12	
0014050	voice	Back	128	824.2	33.52	34.00	2.40	0.31	1.117	0.35	
GSM850	GPRS	Front	190	836.6	29.25	29.50	1.25	0.35	1.059	0.37	
-	4 slots	Back	190	836.6	29.25	29.50	-1.73	0.63	1.059	0.67	
0)		Front	512	1850.2	30.21	30.50	-0.44	0.13	1.069	0.14	10
00144000	voice	Back	512	1850.2	30.21	30.50	-1.63	0.25	1.069	0.27	
GSM1900	GPRS	Front	512	1850.2	27.52	28.00	-1.38	0.26	1.117	0.29	
	3 slots	Back	512	1850.2	27.52	28.00	0.19	0.53	1.117	0.59	
WCDMA	DMO	Front	9538	1907.6	22.71	23.00	1.28	0.42	1.069	0.45	1.60
Band II	RMC	Back	9538	1907.6	22.71	23.00	-0.05	0.52	1.069	0.56	
WCDMA	DMO	Front	1312	1712.4	22.84	23.00	0.17	0.37	1.038	0.38	
Band IV	RMC	Back	1312	1712.4	22.84	23.00	0.62	0.54	1.038	0.56	
WCDMA		Front	4132	826.4	22.84	23.00	1.74	0.09	1.038	0.09	
Band V	RMC	Back	4132	826.4	22.84	23.00	-1.16	0.15	1.038	0.16	
2.40	000 441	Front	06	2437	13.59	14.00	0.58	0.07	1.099	0.08	C.
2.4G	802.11b	Back	06	2437	13.59	14.00	-0.56	0.08	1.099	0.09	100

Page 44 of 232

Band	Mode	Test Position with 10mm	CH.	Freq. (MHz)	RB allocation	RB offset	Ave. Power (dBm)	Tune-U p Limit (dBm)	Power Drift (%)	Meas. SAR1g (W/kg)	Scaling Factor	Reported SAR1g (W/kg)
		Frant	10007	1050.7	1	0	22.75	23.00	-0.18	0.39	1.059	0.41
LTE	QPSK	Front	18607	1850.7	3	0	22.41	23.00	3.07	0.28	1.146	0.32
Band 2	(1.4MHz)	Back	18607	1850.7	<u>)</u> 1	0	22.75	23.00	-0.12	0.50	1.059	0.53
		Dack	10007	1030.7	3	0	22.41	23.00	-1.65	0.39	1.146	0.45
		Front	20175	1732.5	1	0	22.57	23.00	-1.72	0.43	1.104	0.47
LTE Band	QPSK (1.4MHz	FIOIIL	20175	1732.5	3	1	22.01	23.00	1.38	0.37	1.256	0.46
4	(1.41/1112	Back	20175	1732.5	1	0	22.57	23.00	-0.35	0.66	1.104	0.73
		Dack	20173	1732.3	3	7	22.01	23.00	0.55	0.49	1.256	0.62
		Front	20625	846.5	1	0	22.87	23.00	-0.70	0.08	1.030	0.08
LTE Band	QPSK	FIOR	20023	040.5	12	0	22.64	23.00	-2.68	0.05	1.086	0.05
5	(5MHz)	Back	20625	846.5	1	0	22.87	23.00	-1.54	0.30	1.030	0.31
		Dack	20023	040.5	12	0	22.64	23.00	-2.09	0.22	1.086	0.24
		Front	21350	2560	1	0	22.63	23.00	2.14	0.30	1.089	0.33
LTE Band	QPSK (20MHz	TTOTIL	21330	2300	50	25	22.36	23.00	-3.41	0.24	1.159	0.28
7)	Back	21350	2560	1	0	22.63	23.00	0.77	0.43	1.089	0.47
		Dack	21330	2300	50	25	22.36	23.00	-1.44	0.35	1.159	0.41
		Front	23165	714.5	1	0	22.58	23.00	-1.74	0.04	1.102	0.04
LTE Band	QPSK	TTOTIL	23103	714.5	8	0	22.44	23.00	-1.64	0.02	1.138	0.02
12	(3MHz)	Back	23165	714.5	1	0	22.58	23.00	-1.16	0.14	1.102	0.15
	(_k C	Dack	23103	714.5	8	0	22.44	23.00	2.10	0.08	1.138	0.09
		Front	23800	711	1	25	22.40	23.00	0.82	0.07	1.148	0.08
LTE Band	QPSK (10MHz	1 TOTAL	23000	, , , ,	25	0	22.48	23.00	1.24	0.03	1.127	0.03
17)	Back	23800	711	1	25	22.40	23.00	0.08	0.21	1.148	0.24
(G)		Dack	23000	/ 11	25	0	22.48	23.00	0.14	0.18	1.127	0.20

Note:

- Per KDB 447498 D01 v06, for each exposure position, if the highest output power channel Reported SAR ≤ 0.8W/kg, other channels SAR testing is not necessary.
- 2. Per KDB 447498 D01 v06, body-worn use is evaluated with the device positioned at 10 mm from a flat phantom filled with head tissue-equivalent medium.
- 3. Per KDB 447498 D01 v06, the report SAR is measured SAR value adjusted for maximum tune-up tolerance. Scaling Factor=10^[(tune-up limit power(dBm) Ave.power power (dBm))/10], where tune-up limit is the maximum rated power among all production units.

 Reported SAR(W/kg)=Measured SAR (W/kg)*Scaling Factor.
- 4. Per KDB865664D01 v01r04 perform a second repeated measurement only the ratio of largest to smallest SAR for the original and first repeated measurement is >1.20 or when the original or repeated measurement is ≥1.45W/kg.
- 5. Perform a second measurement only if the original, first and second repeated measurement is ≥3.5w/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurement is >1.20.

10.3. Hotspot 1g SAR Data

		·									
Band	Mode	Test Position with10mm	CH.	Freq. (MHz)	Ave. Power (dBm)	Tune-U p Limit (dBm)	Power Drift (%)	Meas. SAR1g (W/kg)	Scaling Factor	Reported SAR1g (W/kg)	Limit (W/Kg)
		Front	190	836.6	29.25	29.50	0.77	0.36	1.059	0.38	
		Back	190	836.6	29.25	29.50	2.16	0.67	1.059	0.71	
GSM850	GPRS 4 slots	Right	190	836.6	29.25	29.50	-1.54	0.28	1.059	0.30	
		Left	190	836.6	29.25	29.50	0.04	0.12	1.059	0.13	
		Bottom	190	836.6	29.25	29.50	-2.63	0.30	1.059	0.32	
(0)		Front	512	1850.2	27.52	28.00	1.17	0.28	1.117	0.31	
		Back	512	1850.2	27.52	28.00	0.06	0.54	1.117	0.60	
GSM1900	GPRS 3 slots	Right	512	1850.2	27.52	28.00	-0.56	0.11	1.117	0.12	
		Left	512	1850.2	27.52	28.00	-1.37	0.07	1.117	0.08	
		Bottom	512	1850.2	27.52	28.00	-1.55	0.20	1.117	0.22	
		Front	9538	1907.6	22.71	23.00	-0.41	0.43	1.069	0.46	
(C)		Back	9538	1907.6	22.71	23.00	-1.00	0.62	1.069	0.66	(,C)
UMTS Band II	RMC	Right	9538	1907.6	22.71	23.00	0.47	0.11	1.069	0.12	
		Left	9538	1907.6	22.71	23.00	0.20	0.25	1.069	0.27	
		Bottom	9538	1907.6	22.71	23.00	-1.59	0.41	1.069	0.44	1.60
		Front	1312	1712.4	22.84	23.00	-0.38	0.41	1.038	0.43	
		Back	1312	1712.4	22.84	23.00	-1.53	0.58	1.038	0.60	
UMTS Band IV	RMC	Right	1312	1712.4	22.84	23.00	0.30	0.11	1.038	0.11	(c)
		Left	1312	1712.4	22.84	23.00	-1.31	0.18	1.038	0.19	
		Bottom	1312	1712.4	22.84	23.00	3.15	0.39	1.038	0.40	
		Front	4132	826.4	22.84	23.00	-1.36	0.12	1.038	0.12	
		Back	4132	826.4	22.84	23.00	-2.42	0.16	1.038	0.17	
UMTS Band V	RMC	Right	4132	826.4	22.84	23.00	-1.54	0.09	1.038	0.09	
(1)		Left	4132	826.4	22.84	23.00	1.33	0.03	1.038	0.03	(, c)
		Bottom	4132	826.4	22.84	23.00	-1.70	0.08	1.038	0.08	
		Front	06	2437	13.59	14.00	0.01	0.07	1.099	0.08	
		Back	06	2437	13.59	14.00	-0.95	0.08	1.099	0.09	
2.4G	802.11b	Left	06	2437	13.59	14.00	-2.93	0.02	1.099	0.02	
		Тор	06	2437	13.59	14.00	-1.94	0.04	1.099	0.04	

Band	Mode	Test Position with 10mm	CH.	Freq. (MHz)	RB allocatio n	RB offset	Ave. Power (dBm)	Tune-Up Limit (dBm)	Power Drift (%)	Meas. SAR1g (W/kg)	Scaling Factor	Reported SAR1g (W/kg)
		Front	18607	1850.7	1	0	22.75	23.00	2.34	0.40	1.059	0.42
		11011	10007	1000.7	3	0	22.41	23.00	2.87	0.31	1.146	0.36
		Back	18607	1850.7	1	0	22.75	23.00	-1.03	0.54	1.059	0.57
	KC	Buok	10007	1000.7	3	0	22.41	23.00	1.08	0.42	1.146	0.48
LTE Band	QPSK	Right	18607	1850.7	1	0	22.75	23.00	1.97	0.10	1.059	0.11
2	(1.4MHz)	rtigitt	10007	1000.7	3	0	22.41	23.00	-3.69	0.06	1.146	0.07
		Left	18607	1850.7	1	0	22.75	23.00	1.03	0.21	1.059	0.22
(C)		Lon	10007	1000.7	3	0	22.41	23.00	-0.49	0.30	1.146	0.34
		Bottom	18607	1850.7	1	0	22.75	23.00	-0.76	0.24	1.059	0.25
		Dottom	10007	1050.7	3	0	22.41	23.00	1.62	0.16	1.146	0.18
		Front	20175	1732.5	1	0	22.57	23.00	1.09	0.46	1.104	0.51
	(.c.	Tion	20173	1732.5	3	1	22.01	23.00	1.05	0.35	1.256	0.44
		Pook	20175	1732.5	1	0	22.57	23.00	-0.29	0.72	1.104	0.79
		Back	20175	1732.5	3	1	22.01	23.00	-2.96	0.59	1.256	0.74
LTE Band	QPSK	Diaht	20175	1732.5	1	0	22.57	23.00	-0.58	0.14	1.104	0.15
4	(1.4MHz)	Right	20175	1732.5	3	1	22.01	23.00	-3.22	0.09	1.256	0.11
		Left	20175	1732.5	1	0	22.57	23.00	0.09	0.20	1.104	0.22
		Len	20175	1732.5	3	1	22.01	23.00	-0.77	0.16	1.256	0.20
		Dattom	20175	4722 F	1	0	22.57	23.00	-0.02	0.42	1.104	0.46
		Bottom	20175	1732.5	3	1	22.01	23.00	1.04	0.30	1.256	0.38
	120	") Front	20625	0.46 F	1	0	22.87	23.00	-0.75	0.10	1.030	0.10
		Front	20625	846.5	12	0	22.64	23.00	4.13	0.07	1.086	0.08
		Dools	20625	046 5	1	0	22.87	23.00	-1.09	0.31	1.030	0.32
		Back	20625	846.5	12	0	22.64	23.00	1.15	0.25	1.086	0.27
LTE	QPSK	Diaht	20025	046.5	1	0	22.87	23.00	-1.74	0.02	1.030	0.02
Band 5	(5MHz)	Right	20625	846.5	12	0	22.64	23.00	3.69	0.01	1.086	0.01
		1 -44	00005	0.40 5	1	0	22.87	23.00	0.36	0.09	1.030	0.09
		Left	20625	846.5	12	0	22.64	23.00	-1.68	0.05	1.086	0.05
	(.c.	Dattom	20625	0.46 F	1	0	22.87	23.00	-1.74	0.01	1.030	0.01
		Bottom	20625	846.5	12	0	22.64	23.00	-1.75	0.01	1.086	0.01
		Frant	24250	2560	1	0	22.63	23.00	-0.34	0.36	1.089	0.39
		Front	21350	2560	50	25	22.36	23.00	-4.08	0.28	1.159	0.32
		Daal	04050	0500	1	0	22.63	23.00	1.28	0.50	1.089	0.54
(0)		Back	21350	2560	50	25	22.36	23.00	-0.67	0.37	1.159	0.43
LTE	QPSK	Dialet	04050	0500	1	0	22.63	23.00	-1.22	0.10	1.089	0.11
Band 7	(20MHz)	Right	21350	2560	50	25	22.36	23.00	2.35	0.06	1.159	0.07
		1 -6	04050	0500	1	0	22.63	23.00	0.94	0.07	1.089	0.08
	(20)	Left	21350	2560	50	25	22.36	23.00	2.43	0.04	1.159	0.05
		D.::	04050	0505	1	0	22.63	23.00	-1.05	0.18	1.089	0.20
		Bottom	21350	2560	50	25	22.36	23.00	-1.84	0.11	1.159	0.13

		Front	23165	714.5	1	0	22.58	23.00	2.14	0.05	1.102	0.06
C^{\prime}		Front	23105	714.5	8	0	22.44	23.00	-1.01	0.02	1.138	0.02
		Back	23165	714.5	1	0	22.58	23.00	-0.46	0.14	1.102	0.15
		Баск	23100	714.5	8	0	22.44	23.00	0.14	0.09	1.138	0.10
LTE	QPSK	Diaht	23165	714.5	1	0	22.58	23.00	0.37	0.05	1.102	0.06
Band 12	(3MHz)	Right	23100	714.5	8	0	22.44	23.00	-1.47	0.02	1.138	0.02
		Left	23165	7115	1	0	22.58	23.00	-0.58	0.03	1.102	0.03
		Len	23165	714.5	8	0	22.44	23.00	1.24	0.01	1.138	0.01
		Dottom	23165	7115	1	0	22.58	23.00	-0.99	0.02	1.102	0.02
		Bottom	23100	714.5	8	0	22.44	23.00	2.31	0.01	1.138	0.01
		Front	22000	744	1	25	22.40	23.00	-0.03	0.06	1.148	0.07
		Front	23800	711	25	0	22.48	23.00	-2.39	0.04	1.127	0.05
		Dools	22200	711	1	25	22.40	23.00	-0.23	0.21	1.148	0.24
		Back	23800	711	25	0	22.48	23.00	2.14	0.17	1.127	0.19
LTE	QPSK	Dialet		744) 1	25	22.40	23.00	1.73	0.07	1.148	0.08
Band 17	(10MHz)	Right	23800	711	25	0	22.48	23.00	-1.51	0.02	1.127	0.02
	Le	1 -44	00000	744	1	25	22.40	23.00	0.85	0.05	1.148	0.06
		Left	23800	711	25	0	22.48	23.00	-0.44	0.04	1.127	0.05
G^{\prime}		Pottom	23800	711	1	25	22.40	23.00	-1.24	0.03	1.148	0.03
		Bottom	23600	711	25	0	22.48	23.00	-0.36	0.01	1.127	0.01
		_					_	_				

Note:

- 1. Per KDB 447498 D01 v06, for each exposure position, if the highest output power channel Reported SAR ≤ 0.8W/kg, other channels SAR testing is not necessary.
- 2. Per KDB 447498 D01 v06, body-worn with hotspot use is evaluated with the device positioned at 10 mm from a flat phantom filled with head tissue-equivalent medium.
- 3. Per KDB 447498 D01 v06, the report SAR is measured SAR value adjusted for maximum tune-up tolerance. Scaling Factor=10^[(tune-up limit power(dBm) Ave. power (dBm))/10], where tune-up limit is the maximum rated power among all production units.

 Reported SAR(W/kg)=Measured SAR (W/kg)*Scaling Factor.
- 4. Per KDB865664D01 v01r04 perform a second repeated measurement only the ratio of largest to smallest SAR for the original and first repeated measurement is >1.20 or when the original or repeated measurement is ≥1.45W/kg.
- 5. Perform a second measurement only if the original, first and second repeated measurement is *₹.5w/kg* and the ratio of largest to smallest SAR for the original, first and second repeated measurement is *₹.5w/kg* and the ratio

10.4. Simultaneous Transmission Conclusion

Multi-Band Simultaneous Transmission Considerations

According to FCC KDB Publication 447498 D01v05r02, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds. Possible transmission paths for the EUT are shown in below Figure and are color-coded to indicate communication modes which share the same path. Modes which share the same transmission path cannot transmit simultaneously with one another.

Path 1 Path 2 WIFI/BT

Simultaneous Transmission Paths

Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB 447498 D01v05r02, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤ 1.6 W/kg. When standalone SAR is not required to be measured, per FCC KDB 447498 D01v05r02 4.3.2.2), the following equation must be used to estimate the standalone 1g SAR and 10g extremity SAR for simultaneous transmission assessment involving that transmitter.

Estimated SAR =
$$\frac{\sqrt{f(GHz)}}{7.5(18.75)} \cdot \frac{\text{Max. power of channel, mW}}{\text{Min. Separation Distance, mm}}$$

Mode	Max. tune-up	Exposure Position	Head	Body -worn
ivioue	Power (dBm)	Test Distance (mm)	5	5
BT	5	Estimated SAR (W/kg)	0.13	0.13

Note:

- 1. When the minimum test separation distance is < 5 mm, a distance of 5 mm according is applied to determine estimated SAR.
- (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[√f(GHz)/x] W/kg for test separation distances ≤ 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.
- 3. Next to the mouth exposure requires 1-g SAR, and the wrist-worn condition requires 10-g extremity SAR.

Simultaneous Transmission Possibilities

The Simultaneous Transmission Possibilities of this device are as below:

N	О.	Configuration	Head	Body-Worn	Hotspot
	1	GSM850/1900(Voice)+WIFI	YES	YES	NO
	2	GPRS 850/1900(DATA)+WIFI	NO	YES	YES
	3	WCDMA+ WIFI	YES	YES	YES
4	4.	LTE+WIFI	YES	YES	YES
	5.	GSM850/1900(Voice)+BT	YES	YES	NO
	6	GPRS/EDGE 850/1900(DATA)+BT	YES	YES	NO
	7.	WCDMA+ BT	YES	YES	NO
	8.	LTE+BT	YES	YES	NO

Page 49 of 232

Report No.: TCT180813E007

10.5. SAR Simultaneous Transmission Analysis

10.5.	AN SIIIIUIL	ancous n	ansiiis	SIOII AI	larysis		
Dand	Took Donities	S	caled SAR		ΣSAR	CDI CD	Damade
Band	Test Position	Head	WIFI	ВТ	(W/kg)	SPLSR	Remark
	Left Cheek	0.10	0.09	0.13	0.23	N/A	N/A
GSM850	Left Tilt	0.07	0.05	0.13	0.20	N/A	N/A
(voice)	Right Cheek	0.13	0.11	0.13	0.26	N/A	N/A
	Right Tilt	0.07	0.10	0.13	0.20	N/A	N/A
	Left Cheek	0.15	0.09	0.13	0.28	N/A	N/A
GSM1900	Left Tilt	0.05	0.05	0.13	0.18	N/A	N/A
(voice)	Right Cheek	0.18	0.11	0.13	0.31	N/A	N/A
	Right Tilt	0.06	0.10	0.13	0.19	N/A	N/A
	Left Cheek	0.15	0.09	0.13	0.28	N/A	N/A
WCDMA	Left Tilt	0.10	0.05	0.13	0.23	N/A	N/A
Band II	Right Cheek	0.19	0.11	0.13	0.32	N/A	N/A
	Right Tilt	0.10	0.10	0.13	0.23	N/A	N/A
	Left Cheek	0.24	0.09	0.13	0.37	N/A	N/A
WCDMA	Left Tilt	0.13	0.05	0.13	0.26	N/A	N/A
Band IV	Right Cheek	0.25	0.11	0.13	0.38	N/A	N/A
	Right Tilt	0.12	0.10	0.13	0.25	N/A	N/A
	Left Cheek	0.06	0.09	0.13	0.19	N/A	N/A
WCDMA	Left Tilt	0.04	0.05	0.13	0.17	N/A	N/A
Band V	Right Cheek	0.08	0.11	0.13	0.21	N/A	N/A
	Right Tilt	0.05	0.10	0.13	0.18	N/A	N/A

		RB		Scaled				
Band	Test Position	allocation	Head	WIFI2.4G	Bluetooth	Σ SAR (W/kg)	SPLSR	Remark
CK	Left	1	0.22	0.09	0.13	0.35	N/A	N/A
(40)	Cheek	3	0.18	0.09	0.13	0.31	N/A	N/A
	Left Tilt	1	0.08	0.05	0.13	0.21	N/A	N/A
LTE Band 2 QPSK	Len IIII	3	0.06	0.05	0.13	0.19	N/A	N/A
(1.4MHz)	Right	1	0.23	0.11	0.13	0.36	N/A	N/A
)	Cheek	3	0.21	0.11	0.13	0.34	N/A	N/A
	Right Tilt	1	0.08	0.10	0.13	0.21	N/A	N/A
	Right filt	3	0.07	0.10	0.13	0.20	N/A	N/A
	Left	1	0.17	0.09	0.13	0.30	N/A	N/A
	Cheek	3	0.1	0.09	0.13	0.23	N/A	N/A
	1 - 6 Th	1	0.09	0.05	0.13	0.22	N/A	N/A
LTE Band 4	Left Tilt	3	0.06	0.05	0.13	0.19	N/A	N/A
QPSK (1.4MHz)	Right Cheek Right Tilt	1	0.17	0.11	0.13	0.30	N/A	N/A
		3	0.11	0.11	0.13	0.24	N/A	N/A
		1	0.08	0.10	0.13	0.21	N/A	N/A
		3	0.05	0.10	0.13	0.18	N/A	N/A
(,c)	Left	1	0.06	0.09	0.13	0.19	N/A	N/A
	Cheek	12	0.03	0.09	0.13	0.16	N/A	N/A
		1	0.04	0.05	0.13	0.17	N/A	N/A
LTE Band 5	Left Tilt	12	0.03	0.05	0.13	0.16	N/A	N/A
QPSK (5MHz)	Right	G 1	0.05	0.11	0.13	0.18	N/A	N/A
	Cheek	12	0.02	0.11	0.13	0.15	N/A	N/A
	D: 1. T::	1	0.04	0.10	0.13	0.17	N/A	N/A
	Right Tilt	12	0.02	0.10	0.13	0.15	N/A	N/A
KO	Left	1	0.13	0.09	0.13	0.26	N/A	N/A
	Cheek	50	0.08	0.09	0.13	0.21	N/A	N/A
		1	0.04	0.05	0.13	0.17	N/A	N/A
LTE Band 7	Left Tilt	50	0.02	0.05	0.13	0.15	N/A	N/A
QPSK (20MHz)	Right	1	0.08	0.11	0.13	0.21	N/A	N/A
	Cheek	50	0.03	0.11	0.13	0.16	N/A	N/A
	5	1	0.03	0.10	0.13	0.16	N/A	N/A
	Right Tilt	50	0.01	0.10	0.13	0.14	N/A	N/A

Page 51 of 232

	Left	1	0.03	0.09	0.13	0.16	N/A	N/A
	Cheek	8	0.01	0.09	0.13	0.14	N/A	N/A
		1	0.02	0.05	0.13	0.15	N/A	N/A
LTE Band 12	Left Tilt	8	0.01	0.05	0.13	0.14	N/A	N/A
QPSK (3MHz)	Right	1	0.03	0.11	0.13	0.16	N/A	N/A
(20)	Cheek	8	0.02	0.11	0.13	0.15	N/A	N/A
	Dialet Tilt	1	0.02	0.10	0.13	0.15	N/A	N/A
Rig	Right Tilt	8	0.01	0.10	0.13	0.14	N/A	N/A
	Left	1	0.03	0.09	0.13	0.16	N/A	N/A
	Cheek	25	0.02	0.09	0.13	0.15	N/A	N/A
	Left Tilt	1	0.02	0.05	0.13	0.15	N/A	N/A
LTE Band 17 QPSK	Leit IIIt	25	0.01	0.05	0.13	0.14	N/A	N/A
(10MHz)	Right	1	0.07	0.11	0.13	0.20	N/A	N/A
	Cheek	25	0.06	0.11	0.13	0.19	N/A	N/A
	Diaht Tilt	1	0.03	0.10	0.13	0.16	N/A	N/A
	Right Tilt	25	0.01	0.10	0.13	0.14	N/A	N/A

		S	Scaled SAR		E 04D		
Band	Test Position -	Body-Worn	WIFI	ВТ	Σ SAR (W/kg)	SPLSR	Remark
GSM850	Front	0.12	0.08	0.13	0.25	N/A	N/A
(voice)	Back	0.35	0.09	0.13	0.48	N/A	N/A
GSM850	Front	0.37	0.08	0.13	0.50	N/A	N/A
(GPRS 4slot	Back	0.67	0.09	0.13	0.80	N/A	N/A
GSM1900	Front	0.14	0.08	0.13	0.27	N/A	N/A
(voice)	Back	0.27	0.09	0.13	0.40	N/A	N/A
GSM1900	Front	0.29	0.08	0.13	0.42	N/A	N/A
(GPRS 3slot)	Back	0.59	0.09	0.13	0.72	N/A	N/A
WCDMA	Front	0.45	0.08	0.13	0.58	N/A	N/A
Band II	Back	0.56	0.09	0.13	0.69	N/A	N/A
WCDMA	Front	0.38	0.08	0.13	0.51	N/A	N/A
Band IV	Back	0.56	0.09	0.13	0.69	N/A	N/A
WCDMA	Front	0.09	0.08	0.13	0.22	N/A	N/A
Band V	Back	0.16	0.09	0.13	0.29	N/A	N/A

		RB		Scaled				
Band	Test Position	allocation	Head	WIFI2.4G	Bluetooth	Σ SAR (W/kg)	SPLSR	Remark
	Farat	1	0.41	0.08	0.13	0.54	N/A	N/A
LTE Band 2	Front	3	0.32	0.08	0.13	0.45	N/A	N/A
QPSK (1.4MHz)	Daali	1	0.53	0.09	0.13	0.66	N/A	N/A
	Back	3	0.45	0.09	0.13	0.58	N/A	N/A
K)	Enant /	1	0.47	0.08	0.13	0.60	N/A	N/A
LTE Band 4	Front	3	0.46	0.08	0.13	0.59	N/A	N/A
QPSK (1.4MHz)	Daali	1	0.73	0.09	0.13	0.86	N/A	N/A
	Back	3	0.62	0.09	0.13	0.75	N/A	N/A
		1	0.08	0.08	0.13	0.21	N/A	N/A
LTE Band 5	Front	12	0.05	0.08	0.13	0.18	N/A	N/A
(5MHz)	QPSK	1	0.31	0.09	0.13	0.44	N/A	N/A
	васк	12	0.24	0.09	0.13	0.37	N/A	N/A
		1	0.33	0.08	0.13	0.46	N/A	N/A
LTE Band 7 QPSK	Front	50	0.28	0.08	0.13	0.41	N/A	N/A
(20MHz)	Daal	1	0.47	0.09	0.13	0.60	N/A	N/A
	Back	50	0.41	0.09	0.13	0.54	N/A	N/A
(.6)	Frant	1	0.04	0.08	0.13	0.17	N/A	N/A
LTE Band 12	Front	8	0.02	0.08	0.13	0.15	N/A	N/A
QPSK (3MHz)	Dool	1	0.15	0.09	0.13	0.28	N/A	N/A
	Back	8	0.09	0.09	0.13	0.22	N/A	N/A
	Frant	()1	0.08	0.08	0.13	0.21	N/A	N/A
LTE Band 17 QPSK	Front	25	0.03	0.08	0.13	0.16	N/A	N/A
(10MHz)	Pook	1	0.24	0.09	0.13	0.37	N/A	N/A
	Back	25	0.20	0.09	0.13	0.33	N/A	N/A

	T (D %	Scaled SA	AR	ΣSAR	00100	
Band	Test Position -	Hotspot	WIFI	(W/kg)	SPLSR	Remark
	Front	0.38	0.08	0.46	N/A	N/A
	Back	0.71	0.09	0.80	N/A	N/A
GSM850	Right	0.3	/	0.30	N/A	N/A
(GPRS)	Left	0.13	0.02	0.15	N/A	N/A
	Bottom	0.32	/	0.32	N/A	N/A
	Тор	/	0.04	0.04	N/A	N/A
	Front	0.31	0.08	0.39	N/A	N/A
	Back	0.60	0.09	0.69	N/A	N/A
GSM1900(G	Right	0.12	/	0.12	N/A	N/A
PRS)	Left	0.08	0.02	0.10	N/A	N/A
	Bottom	0.22	/	0.22	N/A	N/A
	Тор	1	0.04	0.04	N/A	N/A
	Front	0.46	0.08	0.54	N/A	N/A
	Back	0.66	0.09	0.75	N/A	N/A
WCDMA	Right	0.12		0.12	N/A	N/A
Band II	Left	0.27	0.02	0.29	N/A	N/A
	Bottom	0.44	/	0.44	N/A	N/A
	Тор	1	0.04	0.04	N/A	N/A
	Front	0.43	0.08	0.51	N/A	N/A
	Back	0.60	0.09	0.69	N/A	N/A
WCDMA	Right	0.11	/	0.11	N/A	N/A
Band IV	Left	0.19	0.02	0.21	N/A	N/A
	Bottom	0.4	1	0.40	N/A	N/A
	Тор	/	0.04	0.04	N/A	N/A
	Front	0.12	0.08	0.20	N/A	N/A
	Back	0.17	0.09	0.26	N/A	N/A
WCDMA	Right	0.09	/	0.09	N/A	N/A
Band V	Left	0.03	0.02	0.05	N/A	N/A
	Bottom	0.08	1	0.08	N/A	N/A
	Тор	1	0.04	0.04	N/A	N/A

		RB	Sca	led			
Band	Test Position	allocation	Hotspot	WIFI2.4G	Σ SAR (W/kg)	SPLSR	Remark
		1	0.42	0.08	0.50	N/A	N/A
(.c.)	Front	3	0.36	0.08	0.44	N/A	N/A
		1	0.57	0.09	0.66	N/A	N/A
	Back	3	0.48	0.09	0.57	N/A	N/A
	D: I.	1	0.11	/	0.11	N/A	N/A
LTE Band 2	Right	3	0.07	1	0.07	N/A	N/A
QPSK (1.4MHz)	1.6	1	0.22	0.02	0.24	N/A	N/A
	Left	3	0.34	0.02	0.36	N/A	N/A
		1	0.25	1	0.25	N/A	N/A
	Bottom	3	0.18	1(0)	0.18	N/A	N/A
	_	1	/	0.04	0.04	N/A	N/A
	Тор	3	/	0.04	0.04	N/A	N/A
	(1	0.51	0.08	0.59	N/A	N/A
	Front	3	0.44	0.08	0.52	N/A	N/A
	Deal	1	0.79	0.09	0.88	N/A	N/A
	Back	3	0.74	0.09	0.83	N/A	N/A
	Distri	1	0.15	1	0.15	N/A	N/A
LTE Band 4	Right	3	0.11	1	0.11	N/A	N/A
QPSK (1.4MHz)	1.0#	1	0.22	0.02	0.24	N/A	N/A
	Left	3	0.2	0.02	0.22	N/A	N/A
	Dattau	1	0.46	1	0.46	N/A	N/A
	Bottom	3	0.38	1	0.38	N/A	N/A
	Ton	1	/	0.04	0.04	N/A	N/A
	Тор	3	1	0.04	0.04	N/A	N/A
(,0)	Front	1	0.1	0.08	0.18	N/A	N/A
	Front	12	0.08	0.08	0.16	N/A	N/A
	Back	1	0.32	0.09	0.41	N/A	N/A
	Dack	12	0.27	0.09	0.36	N/A	N/A
)	Right	9 1	0.02) /	0.02	N/A	N/A
LTE Band 5 QPSK	Kigiit	12	0.01	1	0.01	N/A	N/A
(5MHz)	l off	1	0.09	0.02	0.11	N/A	N/A
	Left	12	0.05	0.02	0.07	N/A	N/A
10	Dotto	1	0.01	1	0.01	N/A	N/A
	Bottom	12	0.01	/	0.01	N/A	N/A
	Ton	1	/	0.04	0.04	N/A	N/A
	Тор	12	1	0.04	0.04	N/A	N/A

		1	0.39	0.08	0.47	N/A	N/A
	Front	50	0.32	0.08	0.40	N/A	N/A
		1	0.54	0.09	0.63	N/A	N/A
	Back	50	0.43	0.09	0.52	N/A	N/A
	D'ala	1	0.11	1	0.11	N/A	N/A
LTE Band 7	Right	50	0.07	1(0)	0.07	N/A	N/A
QPSK (20MHz)	1.6	1	0.08	0.02	0.10	N/A	N/A
	Left	50	0.05	0.02	0.07	N/A	N/A
0	Dettern	1	0.2	1	0.20	N/A	N/A
	Bottom	50	0.13) 1	0.13	N/A	N/A
	Т	1	/	0.04	0.04	N/A	N/A
	Тор	50	/	0.04	0.04	N/A	N/A
	Frent	1	0.06	0.08	0.14	N/A	N/A
	Front	8	0.02	0.08	0.10	N/A	N/A
	D I	1	0.15	0.09	0.24	N/A	N/A
	Back	8	0.10	0.09	0.19	N/A	N/A
	Distri	1	0.06	1	0.06	N/A	N/A
LTE Band 12	Right	8	0.02	1	0.02	N/A	N/A
QPSK (3MHz)	1 - 6	1	0.03	0.02	0.05	N/A	N/A
	Left	8	0.01	0.02	0.03	N/A	N/A
	Dettern	1	0.02	1(0)	0.02	N/A	N/A
	Bottom	8	0.01	1	0.01	N/A	N/A
	T	1	/	0.04	0.04	N/A	N/A
	Тор	8	1	0.04	0.04	N/A	N/A
, `)	Frank	<u>()</u> 1	0.07	0.08	0.15	N/A	N/A
	Front	25	0.05	0.08	0.13	N/A	N/A
	DI-	1	0.24	0.09	0.33	N/A	N/A
	Back	25	0.19	0.09	0.28	N/A	N/A
	Dialet	1	0.08	1	0.08	N/A	N/A
LTE Band 17	Right	25	0.02	/	0.02	N/A	N/A
QPSK (10MHz)	1 - 6	1	0.06	0.02	0.08	N/A	N/A
	Left	25	0.05	0.02	0.07	N/A	N/A
	Do#===	1	0.03	1	0.03	N/A	N/A
	Bottom	25	0.01	/	0.01	N/A	N/A
	T	1	/	0.04	0.04	N/A	N/A
	Тор	25		0.04	0.04	N/A	N/A

Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore measured volumetric simultaneous SAR summation is not required per FCC KDB Publication 447498 D01v05r02.

10.6. Measurement Uncertainty (450MHz-3GHz)

	NCERTAI		/ 6.7/		/	2.71	0	0: 1	1
Uncertainty Component	Descriptio n	Uncertainty Value(%)	Probably Distribution	Div.	(Ci) 1g	(Ci) 10g	Std. Unc. 1g(%)	Std. Unc. 10g(%)	v
Measurement system Probe calibration	7.2.1	5.8	N	1	1	1	5.8	5.8	∞
	7.2.1	3.5	R	$\sqrt{3}$	$(1-C_p)^{1/2}$	(1-C _{p)} ^{1/2}	1.43	1.43	~
Axial isotropy		~ /			/ <u>-</u>				~
Hemispherical isotropy	7.2.1.1	5.9	R	√3 =	$\sqrt{C_p}$	$\sqrt{C_p}$	2.41	2.41	∞
Boundary Effects	7.2.1.4	1.00	R	$\sqrt{3}$	1	1	0.58	0.58	∞
inearity	7.2.1.2	4.70	R	$\sqrt{3}$	1	1	2.71	2.71	8
System detection limits	7.2.1.2	1	R	$\sqrt{3}$	1	(01)	0.58	0.58	∞
Modulation Response	7.2.1.3	3	N	1	1	1	3.00	3.00	∞
Readout Electronics	7.2.1.5	0.5	N	1	1	1	0.50	0.50	∞
Response Time	7.2.1.6	0	R	$\sqrt{3}$	1	1	0.00	0.00	∞
Integration Time	7.2.1.7	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
RF Ambient Conditions-Noise	7.2.3.7	3	R	$\sqrt{3}$	1	1	1.73	1.73	∞
RF Ambient Conditions-Reflection	7.2.3.7	3	R	$\sqrt{3}$	1	1	1.73	1.73	∞
Probe positioned mechanical Tolerance	7.2.2.1	1.4	R	$\sqrt{3}$	1	(1)	0.81	0.81	∞
Probe positioning with respect to phantom shell	7.2.2.3	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
Extrapolation interpolation and integration algorithms for Max.SAR evaluation	7.2.4	2.3	R	1	1	1	1.33	1.33	∞
Test sample related									
Test sample positioning	7.2.2.4.4	2.6	N	1	1	1	2.60	2.60	∞
Device holder uncertainty	7.2.2.4.2 7.2.2.4.3	3	N	1	1	1	3.00	3.00	∞
output power variation-SAR drift measurement	7.2.3.6	5	R	$\sqrt{3}$	1	1	2.89	2.89	∞
SAR scaling	7.2.5	2	R	$\sqrt{3}$	1	1	1.15	1.15	∞
Phantom and tissue parame	eters				•				
Phantom uncertainty (shape and thickness tolerances)	7.2.2.2	4	R	$\sqrt{3}$	1	1	2.31	2.31	8
uncertainty in SAR correction for deviation (in permittivity and conductivity)	7.2.6	2	N	1	1	0.84	2.00	1.68	∞
Liquid conductivity (temperature uncertainty)	7.2.3.5	2.5	N	1	0.78	0.71	1.95	1.78	∞
Liquid conductivity -measurement uncertainty	7.2.3.3	4	N	1	0.23	0.26	0.92	1.04	8
Liquid permittivity (temperature uncertainty)	7.2.3.5	2.5	N	1	0.78	0.71	1.95	1.78	∞
Liquid permittivity measurement uncertainty	7.2.3.4	5	N	1	0.23	0.26	1.15	1.30	∞
Combined standard uncertainty			RSS				10.83	10.54	
Expanded uncertainty (95%CONFIDENCEINTER VAL			k				21.26	21.08	

	UNCERT	AINTY FO	R PERFOR	WAN	CE CHE	CK			
Uncertainty Component	Description	Uncertainty Value(%)	Probably Distribution	Div.	(Ci) 1g	(Ci) 10g	Std. Unc. 1g(%)	Std. Unc. 10g(%)	V
Measurement system				1 .	, I .				
Probe calibration	7.2.1	5.8	N -	1	1	1 1/2	5.8	5.8	∞
Axial isotropy	7.2.1.1	3.5	R	$\sqrt{3}$	$(1-C_p)^{1/2}$	(1-C _{p)} ^{1/2}	1.43	1.43	∞
Hemispherical isotropy	7.2.1.1	5.9	R	$\sqrt{3}$	$\sqrt{C_p}$	$\sqrt{C_p}$	2.41	2.41	∞
Boundary Effects	7.2.1.4	1.00	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Linearity	7.2.1.2	4.70	R	$\sqrt{3}$	1	1	2.71	2.71	8
System detection limits	7.2.1.2	1	R	√3	1	(01)	0.58	0.58	∞
Modulation Response	7.2.1.3	3	N	1	1	1	0.00	0.00	∞
Readout Electronics	7.2.1.5	0.5	N	1	1	1	0.50	0.50	∞
Response Time	7.2.1.6	0	R	$\sqrt{3}$	1	1	0.00	0.00	∞
Integration Time	7.2.1.7	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
RF Ambient Conditions-Noise	7.2.3.7	3	R	$\sqrt{3}$	1	1	1.73	1.73	∞
RF Ambient Conditions-Reflection	7.2.3.7	3	R	$\sqrt{3}$	1	1	1.73	1.73	∞
Probe positioned mechanical Tolerance	7.2.2.1	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	~
Probe positioning with respect to phantom shell	7.2.2.3	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
Extrapolation interpolation and integration algorithms for Max.SAR evaluation	7.2.4	2.3	R	1	1	1	1.33	1.33	∞
Dipole									
Deviation of experimental source from numerical		4	N	1	1	1	4.00	4.00	∞
source Input power and SAR drift measurement	7.2.3.6	5	R	$\sqrt{3}$	1	1	2.89	2.89	∞
Dipole axis to liquid distance	(6)	2	R	$\sqrt{3}$	1	1			8
Phantom and tissue paran	neters								
Phantom uncertainty (shape and thickness tolerances)	7.2.2.2	4	R	$\sqrt{3}$	1	1	2.31	2.31	∞
uncertainty in SAR correction for deviation (in permittivity and conductivity)	7.2.6	2	N	1	1	0.84	2.00	1.68	∞
Liquid conductivity (temperature uncertainty)	7.2.3.5	2.5	N	1	0.78	0.71	1.95	1.78	∞
Liquid conductivity -measurement uncertainty	7.2.3.3	4	N	1	0.23	0.26	0.92	1.04	∞
Liquid permittivity (temperature uncertainty)	7.2.3.5	2.5	N	1	0.78	0.71	1.95	1.78	∞
Liquid permittivity measurement uncertainty	7.2.3.4	5	N	1	0.23	0.26	1.15	1.30	∞
Combined standard uncertainty			RSS		/		10.15	10.05	
Expanded uncertainty (95%CONFIDENCEINTE RVAL			k				20.29	20.10	

10.7. Test Equipment List

	T		_			
		(χG^*)		Calibration		
Test Equipment	Manufacturer	Model	Serial Number	Calibration Date (D.M.Y)	Calibration Due (D.M.Y)	
PC	Lenovo	H3050	N/A	N/A	N/A	
Signal Generator	Angilent	N5182A	MY47070282	Sep. 28, 2017	Sep. 27, 2018	
Multimeter	Keithley	Multimeter 2000	4078275	Sep. 28, 2017	Sep. 27, 2018	
Network Analyzer	Agilent	8753E	US38432457	Sep. 28, 2017	Sep. 27, 2018	
Wireless Communication Test Set	R&S	CMU200	111382	Sep. 28, 2017	Sep. 27, 2018	
Wideband Radio Communication Tester	R&S	CMW500	114220	Sep. 28, 2017	Sep. 27, 2018	
Power Meter	Agilent	E4418B	GB43312526	Sep. 28, 2017	Sep. 27, 2018	
Power Meter	Agilent	E4416A	MY45101555	Sep. 28, 2017	Sep. 27, 2018	
Power Meter	Agilent	N1912A	MY50001018	Sep. 28, 2017	Sep. 27, 2018	
Power Sensor	Agilent	E9301A	MY41497725	Sep. 28, 2017	Sep. 27, 2018	
Power Sensor	Agilent	E9327A	MY44421198	Sep. 28, 2017	Sep. 27, 2018	
Power Sensor	Agilent	E9323A	MY53070005	Sep. 28, 2017	Sep. 27, 2018	
Power Amplifier	PE	PE15A4019	112342	N/A	N/A	
Directional Coupler	Agilent	722D	MY52180104	N/A	N/A	
Attenuator	Chensheng	FF779	134251	N/A	N/A	
E-Field PROBE	MVG	SSE5	SN 07/15 EP248	Jan. 09, 2018	Jan. 08, 2019	
DIPOLE 835	MVG	SID835	SN 16/15 DIP 0G835-369	Jun. 05, 2018	Jun. 04, 2021	
DIPOLE 1800	MVG	SID 1800	SN 16/15 DIP 1G800-371	Jun. 05, 2018	Jun. 04, 2021	
DIPOLE 1900	MVG	SID1900	SN 16/15 DIP 1G900-372	Jun. 05, 2018	Jun. 04, 2021	
DIPOLE 2450	MVG	SID 2450	SN 16/15 DIP 2G450-374	Jun. 05, 2018	Jun. 04, 2021	
DIPOLE 2600	MVG	SID 2600	SN 16/15 DIP 2G600-375	Jun. 05, 2018	Jun. 04, 2021	
Limesar Dielectric Probe	MVG	SCLMP	SN 19/15 OCPG71	Jun. 05, 2018	Jun. 04, 2021	
Communication Antenna	MVG	ANTA59	SN 39/14 ANTA59	N/A	N/A	
Mobile Phone Position Device	MVG	MSH101	SN 19/15 MSH101	N/A	N/A	
Dummy Probe	MVG	DP66	SN 13/15 DP66	N/A	N/A	
SAM PHANTOM	MVG	SAM120	SN 19/15 SAM120	N/A	N/A	
PHANTOM TABLE	MVG	TABP101	SN 19/15 TABP101	N/A	N/A	
Robot TABLE	MVG	TABP61	SN 19/15 TABP61	N/A	N/A	
6 AXIS ROBOT	KUKA	KR6-R900	501822	N/A	N/A	

Note: 1.N/A means this equipment no need to calibrate

- 2.Each Time means this device need to calibrate every use time
- 3. The dipole was not damaged properly repaired.
- 4. The measured SAR deviates from the calibrated SAR value by less than 10%
- 5. The most recent return-loss result meets the required 20 dB minimum return-loss requirement
- 6. The most recent measurement of the real or imaginary parts of the impedance deviates by less than 5 Ω from the previous measurement.

Page 59 of 232

11. System Check Results

Date of measurement: 08/15/2018 Test mode: 835 (Head)

Product Description: Validation

Dipole Model: SID835

E-Field Probe: SSE5 (SN 07/15 EP248)

Validation plane
100mW
1.0
5.05
835.000000
41.417760
18.129852
0.874923
-0.090000
0.570250
0.886135

SURFACE SAR

SAN Virualization Graphical Interface Surface Endiated Interface (V/R_Z) 1:27548 1:198041 1:198041 1:198041 1:198041 1:108120

VOLUME SAR

Z (mm)	0.00	4.00	9.00	14.00	19.00	
SAR (W/Kg)	0.8625	0.5302	0.2594	0.1302	0.1025	
	0.85 - 0.75 - 0.65 - 0.55 - 0.45 -					
	0. 25 0. 15 0. 03 -	2 4 6 8 10	12 14 16 18 20 2 Z(mm)	22 24 26 28 30		
		Hot spot	position			
	(C)	E C	3)			

Date of measurement: 08/15/2018 Test mode: 835 (Body)

Product Description: Validation

Dipole Model: SID835

E-Field Probe: SSE5 (SN 07/15 EP248)

Phantom	Validation plane		
Input Power	100mW		
Crest Factor	1.0		
Probe Conversion factor	5.22		
Frequency (MHz)	835.000000		
Relative permittivity (real part)	55.242077		
Relative permittivity (imaginary part)	21.378187		
Conductivity (S/m)	0.938883		
Variation (%)	-0.150000		
SAR 10g (W/Kg)	0.633123		
SAR 1g (W/Kg)	0.949446		

SURFACE SAR

VOLUME SAR

Z (mm)	0.00	4.00	9.00	14.00	19.00	
SAR (W/Kg)	0.9625 0.95 0.85 0.75 0.65 0.55 0.45 0.25 0.08	4 6 8 10 12	14 16 18 20 22	0.2202	0.0725	
		Z	position			
		(
			3)			

Date of measurement: 08/17/2018 Test mode: 1800MHz (Head)

Product Description: Validation

Dipole Model: SID1800

E-Field Probe: SSE5 (SN 07/15 EP248)

Phantom	Validation plane		
Input Power	100mW		
Crest Factor	1.0		
Probe Conversion factor	5.05		
Frequency (MHz)	1800.000000		
Relative permittivity (real part)	39.070000		
Relative permittivity (imaginary part)	14.000000		
Conductivity (S/m)	1.38000		
Variation (%)	1.250000		
SAR 10g (W/Kg)	2.201458		
SAR 1g (W/Kg)	3.752497		

SURFACE SAR

VOLUME SAR

Z (mm)	0.00	4.00	9.00	14.00	19.00	
SAR (W/Kg)	3.7625 3.75 -	2.6254	2.0245	1.6254	1.0214	• (
	3.50 -					
	3.00 -					
	2.75 2.50 2.25 -					
	2.00 -					
	1.75 -					
	1.02 -	4 6 8 10 12	14 16 18 20 22	24 26 28 30		
			z (mm)			
		пот ѕрот	position			
			_			
		_				

Date of measurement: 08/17/2018 Test mode: 1800MHz (Body)

Product Description: Validation

Dipole Model: SID1800

E-Field Probe: SSE5 (SN 07/15 EP248)

Validation plane		
100mW		
1.0		
5.05		
1800.000000		
53.292699		
15.200000		
1.530000		
3.050000		
2.053687		
3.782547		

SURFACE SAR

VOLUME SAR

Z (mm)	0.00	4.00	9.00	14.00	19.00	
SAR (W/Kg)	3.7545 3.75 -	2.4524	1.3520	0.8214	0.5525	5
	3.35 - 2.95 - 2.55 2.15 1.75 -					
	0.95 - 0.30 - 0 2		Z (mm)	24 26 28 30		
		Hot spot	position			
		(
			ı			

Date of measurement: 08/21/2018 Test mode: 1900MHz (Head)

Product Description: Validation

Dipole Model: SID1900

E-Field Probe: SSE5 (SN 07/15 EP248)

Phantom	Validation plane		
Input Power	100mW		
Crest Factor	1.0		
Probe Conversion factor	4.86		
Frequency (MHz)	1900.000000		
Relative permittivity (real part)	39.076721		
Relative permittivity (imaginary part)	12.607061		
Conductivity (S/m)	1.367609		
Variation (%)	-0.910000		
SAR 10g (W/Kg)	1.899324		
SAR 1g (W/Kg)	3.576354		

SURFACE SAR

VOLUME SAR

Z (mm)	0.00	4.00	9.00	14.00	19.00	
SAR (W/Kg)	3.5325	2.5687	1.7025	1.3025	0.1125	
	3.50 - 3.20 - 2.90 - 2.60 2.30 2.00 - 1.70 -					
	0.90 - 0 2			24 26 28 30		
		Hot spot	(mm)			
(0)		Hot spot	розион			
		(
						(

Date of measurement: 08/21/2018 Test mode: 1900MHz (Body)

Product Description: Validation

Dipole Model: SID1900

E-Field Probe: SSE5 (SN 07/15 EP248)

Phantom	Validation plane		
Input Power	100mW		
Crest Factor	1.0		
Probe Conversion factor	5.05		
Frequency (MHz)	1900.000000		
Relative permittivity (real part)	53.309999		
Relative permittivity (imaginary part)	14.329440		
Conductivity (S/m)	1.510354		
Variation (%)	1.250000		
SAR 10g (W/Kg)	1.994255		
SAR 1g (W/Kg)	3.766112		

SURFACE SAR

VOLUME SAR

Z (mm)	0.00	4.00	9.00	14.00	19.00	
SAR (W/Kg)	3.7752	2.7154	1.9525	1.5694	0.9014	
	3.75 - 3.45 - 3.15 - 2.85 2.55 1.95 -					
	1.65 -	2 4 6 8 10 12	2 14 16 18 20 22 Z(mm)	24 26 28 30		
		Hot spot	position			
		(
			_			

Date of measurement: 08/24/2018 Test mode: 2450MHz (Head)

Product Description: Validation

Dipole Model: SID2450

E-Field Probe: SSE5 (SN 07/15 EP248)

Phantom	Validation plane		
Input Power	100mW		
Crest Factor	(,0) 1.0 (,0)		
Probe Conversion factor	4.21		
Frequency (MHz)	2450.000000		
Relative permittivity (real part)	37.821613		
Relative permittivity (imaginary part)	13.546980		
Conductivity (S/m)	1.834111		
Variation (%)	-0.470000		
SAR 10g (W/Kg)	2.364445		
SAR 1g (W/Kg)	4.994244		

SURFACE SAR

VOLUME SAR

Z (mm) 0.00 4.00 9.00 14.00 19.00 SAR (W/Kg) 5.0262 2.7584 1.5026 0.8252 0.4125	TESTI					TCT180813E00
5.03 - 4.50 - 3.50 - 2.50 - 1.50 - 1.00 - 0.03 - 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Z (mm)	Z (mm)					
3.50 - 3.00 2.50 2.50 1.50 - 1.00 - 0.03 - 1.00 - 2.4 6 8 10 12 14 16 18 20 22 24 26 28 30 Z(mm)	SAR (W/Kg)	5.0262	2.7584	1.5026	0.8252	0.4125
3.00 2.50 1.50- 1.00- 0.03- 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Z(mm)		\		++++	+++-	
1.50 - 1.00 - 1.						
1.50 - 1.00 - 1.		2.50				
0.03 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Z(mm)		2.00 -	+N++	+++++	+++	
0.03 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Z (mm)						
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Z(mm)						
Z (mm)				14 15 10 20 22	24 25 28 20	
Hot spot position		0 4	2 4 6 8 10 1.		24 26 20 30	
			Hot spot	position		
			1			

Date of measurement: 08/24/2018 Test mode: 2450MHz (Body)

Product Description: Validation

Dipole Model: SID2450

E-Field Probe: SSE5 (SN 07/15 EP248)

Phantom	Validation plane
Input Power	100mW
Crest Factor	1.0
Probe Conversion factor	4.36
Frequency (MHz)	2450.000000
Relative permittivity (real part)	54.616199
Relative permittivity (imaginary part)	14.930150
Conductivity (S/m)	2.012159
Variation (%)	-0.230000
SAR 10g (W/Kg)	2.416669
SAR 1g (W/Kg)	5.066368

SURFACE SAR

VOLUME SAR

Date of measurement: 08/30/2018 Test mode: 2600MHz (Head)

Product Description: Validation

Dipole Model: SID2600

E-Field Probe: SSE5 (SN 07/15 EP248)

Phantom	Validation plane
Input Power	100mW
Crest Factor	(,0) 1.0 (,0)
Probe Conversion factor	4.36
Frequency (MHz)	2535.000000
Relative permittivity (real part)	38.853477
Relative permittivity (imaginary part)	13.545489
Conductivity (S/m)	1.922567
Variation (%)	-1.360000
SAR 10g (W/Kg)	2.430127
SAR 1g (W/Kg)	5.413744

SURFACE SAR

VOLUME SAR

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	5.7893	3.2375	0.2098	0.0387	0.0249

Hot spot position

Date of measurement: 08/30/2018 Test mode: 2600MHz (Body)

Product Description: Validation

Dipole Model: SID2600

E-Field Probe: SSE5 (SN 07/15 EP248)

Phantom	Validation plane
Input Power	100mW
Crest Factor	1.0
Probe Conversion factor	4.50
Frequency (MHz)	2535.000000
Relative permittivity (real part)	52.013887
Relative permittivity (imaginary part)	14.935214
Conductivity (S/m)	2.114821
Variation (%)	-1.800000
SAR 10g (W/Kg)	2.382177
SAR 1g (W/Kg)	5.365098

SURFACE SAR

VOLUME SAR

				•	
Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	5.7721	3.2210	0.1937	0.0321	0.0203

Hot spot position

12. SAR Test Data

GSM850

B 4	_ ^	\sim	_		1		-
11//	EΑ	•		$-\mathbf{w}$			-
IVI				_ 10	-	4 I	

Lower Band SAR (Channel 128):	Date: 08/15/2018
Frequency (MHz)	824.200000
Relative permittivity (real part)	41.432883
Relative permittivity (imaginary part)	18.129634
Conductivity (S/m)	0.857241
Variation (%)	2.820000
Crest Factor:	8.3
Probe Conversion factor	5.50
E-Field Probe:	SSE5 (SN 07/15 EP248)
Area Scan	<u>dx=8mm dy=8mm, h= 5.00 mm</u>
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete/ndx=8mm dy=8mm, h= 5.00 mm
Phantom	Right head
Device Position	<u>Cheek</u>
Band	GSM850(voice)

SURFACE SAR

VOLUME SAR

Maximum location: X=-57.00,	Y=-47.00 SAR Peak: 0.17 W/kg
SAR 10g (W/Kg)	0.087152
SAR 1g (W/Kg)	0.122235

Z (mm) SAR (W/Kg)	0.00 0.1674	4.00 0.1263	9.00	14.00 0.0674	19.00 0.053	
	0.14- 0.12- 0.10- 0.00- 0.08-					
	0.06 - 0.04 - 0 2		14 16 18 20 22 2 Z (mm)	24 26 28 30		
		Hot spot	position			
						(

MEASU	REMENT 2
Lower Band SAR (Channel 128):	Date: 08/15/2018
Frequency (MHz)	824.200000
Relative permittivity (real part)	55.262457
Relative permittivity (imaginary part)	18.128360
Conductivity (S/m)	0.932668
Variation (%)	2.400000
Crest Factor:	8.3
Probe Conversion factor 5.65	
E-Field Probe:	SSE5 (SN 07/15 EP248)
Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete/ndx=8mm dy=8mm, h=
	<u>5.00 mm</u>
Phantom	<u>Validation plane</u>
Device Position	Body back(10mm)
Band	GSM850(Voice)
OUDEAGE GAD	VOLUME OAD

VOLUME SAR

 Maximum location: X=7.00, Y=-35.00 SAR Peak: 0.43 W/kg

 SAR 10g (W/Kg)
 0.192914

 SAR 1g (W/Kg)
 0.305770

Z (mm)	0.00	4.00	9.00	14.00	19.00	
SAR (W/Kg)	0.4300	0.3357	0.2419	0.1707	0.1169	(6
	0. 43 - 0. 40 -					
	0.35					
(0)	(a) 0.30 - (a) 0.25 -					
	¥ 0.20-					
	0.15	++++	+			
(0)	0.08-					(0
	Ó Ź		. 16 18 20 22 (mm)	24 26 28 30		
		Hot spot p				
(0)					(0)	
-<-						
						(60
						100
100						
					Page 83 of 232	2

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

MEASU	REMENT 3
Middle Band SAR (Channel 190):	Date: 08/15/2018
Frequency (MHz)	836.600000
Relative permittivity (real part)	55.242927
Relative permittivity (imaginary part)	21.378266
Conductivity (S/m)	0.941230
Variation (%)	-1.730000
Crest Factor:	2.0
Probe Conversion factor	5.65
E-Field Probe:	SSE5 (SN 07/15 EP248)
Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete/ndx=8mm dy=8mm, h=
	<u>5.00 mm</u>
Phantom	<u>Validation plane</u>
Device Position	Body back(10mm)
Band	GSM850(GPRS 4slot)
OUDEAGE GAD	VOLUME OAD

VOLUME SAR

 Maximum location: X=-16.00, Y=-32.00 SAR Peak: 1.10 W/kg

 SAR 10g (W/Kg)
 0.328419

 SAR 1g (W/Kg)
 0.633129

Z (mm)	0.00	4.00	9.00	14.00	19.00	
SAR (W/Kg)	1.1002	0.6857	0.3690	0.2009	0.1168	3
	1.0-					
	0.8-					
	-8.0 (#/kg)					
	¥¥ 0.4-	$\perp \downarrow \downarrow \downarrow \downarrow$				
	0.2-					
	0.1-	4 6 8 10 12	14 16 18 20 22	24 26 28 30		
	0 2		I (mm)	24 20 20 30		
		Hot spot	position			
			•			
			•			
			_			
		\sim				
^						
					Page 85 of 2	32

MEASU	REMENT 4
Middle Band SAR (Channel 190):	Date: 08/15/2018
Frequency (MHz)	836.600000
Relative permittivity (real part)	55.242927
Relative permittivity (imaginary part)	21.378266
Conductivity (S/m)	0.941230
Variation (%)	2.160000
Crest Factor:	2.0
Probe Conversion factor	5.65
E-Field Probe:	SSE5 (SN 07/15 EP248)
Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete/ndx=8mm dy=8mm, h= 5.00 mm
Phantom	<u>Validation plane</u>
Device Position	Body back(10mm)
Band	GSM850(GPRS 4slot hotspot)

SURFACE SAR

VOLUME SAR

 Maximum location: X=-10.00, Y=-33.00 SAR Peak: 1.23 W/kg

 SAR 10g (W/Kg)
 0.337694

 SAR 1g (W/Kg)
 0.672629

Z (mm)	0.00	4.00	9.00	14.00	19.00	
SAR (W/Kg)	1.2058	0.7195	0.3640	0.1881	0.1080	40
	1.2-					
	1.0-					
	-8.0 (kg)					
	SAR (#/kg) - 9.0 (#/kg)					
	^{t7} 0.4-	++				
	0.2-	+++				
	0.1-	4 6 8 10 12		24 26 28 30		
			Z (mm)			
		Hot spot	position			
		_				
(60)						
			_			
(,0)						
					Page 87 of 23.	2

GSM1900

MEASUREMENT 1 Lower Band SAR (Channel 512): Date: 08/21/2018 1850.20000 Frequency (MHz) 39.112437 Relative permittivity (real part) 12.607241 Relative permittivity (imaginary part) 1.342279 Conductivity (S/m) Variation (%) 0.440000 **Crest Factor** 8.3 **Probe Conversion factor** 4.85 **E-Field Probe:** SSE5 (SN 07/15 EP248) Area Scan dx=8mm dy=8mm, h= 5.00 mm ZoomScan 5x5x7,dx=8mm dy=8mm dz=5mm,Complete/ndx=8mm dy=8mm, h= 5.00 mm **Phantom** Right head **Device Position** Cheek Band GSM1900(voice)

SURFACE SAR

VOLUME SAR

 Maximum location: X=-47.00, Y=-52.00 SAR Peak: 0.26 W/kg

 SAR 10g (W/Kg)
 0.101845

 SAR 1g (W/Kg)
 0.174785

Z (mm)	0.00	4.00	9.00	14.00	19.00) ,
SAR (W/Kg)	0.2621	0.1862	0.1195	0.0763	0.048	
	0. 26 - 0. 20 - 0. 15 - 0. 10 -					
	0. 05 - 0. 03 - 0 2		4 16 18 20 22 (mm)	24 26 28 30		
		Hot spot p				

MEASU	REMENT 2
Lower Band SAR (Channel 512):	Date: 08/21/2018
Frequency (MHz)	1850.199951
Relative permittivity (real part)	53.341337
Relative permittivity (imaginary part)	14.232400
Conductivity (S/m)	1.491736
Variation (%)	-1.630000
Crest Factor	8.3
Probe Conversion factor	5.01
E-Field Probe:	SSE5 (SN 07/15 EP248)
Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete/ndx=8mm dy=8mm, h= 5.00 mm
Phantom	<u>Validation plane</u>
Device Position	Body back(10mm)
Band	GSM1900(voice)
OUDEA OF OAD	VOLUME OAD

VOLUME SAR

 Maximum location: X=24.00, Y=-10.00 SAR Peak: 0.39 W/kg

 SAR 10g (W/Kg)
 0.145589

 SAR 1g (W/Kg)
 0.250076

Z (mm)	0.00	4.00	9.00	14.00	19.00	
SAR (W/Kg)	0.3928	0.2657	0.1599	0.0962	0.0589	
	0.35					
	0.30	$\overline{}$				
	(Na) 0.25 - Na) (Na) (Na) (Na) (Na) (Na) (Na) (Na)					
	₩ 0.15-	++++				
	0.10-	++++				
	0.03-	4 6 8 10 12	14 16 18 20 22	24 26 28 30		
		2	Z (mm)			
		Hot spot	position			
						(6
						(X
			~			100
(.c.)						
					Page 91 of 232	2

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

MEASU	REMENT 3
Lower Band SAR (Channel 512):	Date: 08/21/2018
Frequency (MHz)	1850.199951
Relative permittivity (real part)	53.341337
Relative permittivity (imaginary part)	14.232400
Conductivity (S/m)	1.491736
Variation (%)	0.190000
Crest Factor	2.0
Probe Conversion factor	5.01
E-Field Probe:	SSE5 (SN 07/15 EP248)
Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	5x5x7,dx=8mm dy=8mm
	dz=5mm,Complete/ndx=8mm dy=8mm, h=
	<u>5.00 mm</u>
Phantom	<u>Validation plane</u>
Device Position	Body back(10mm)
Band	GSM1900(GPRS 3slot)
0115-1.05-01-5	1/0111115 0/45

SURFACE SAR

VOLUME SAR

 Maximum location: X=-1.00, Y=-10.00 SAR Peak: 0.85 W/kg

 SAR 10g (W/Kg)
 0.303660

 SAR 1g (W/Kg)
 0.534967

Z (mm)	0.00	4.00	9.00	14.00	19.00	
SAR (W/Kg)	0.8473	0.5679	0.3373	0.1999	0.1205	
	0.8-	++++				
	0.7-					
	WY (%/\kg) WY (%) WY (%) WY (%)					
	≥ 0.5 ≥ 0.4					
	W 0.3-					
K \	0.2-	++++				
4)	0.1-	++++				
	Ó Ź		14 16 18 20 22	24 26 28 30		
			Z (mm)			
		Hot spot	position			
(60)						
					Page 93 of 2	22
					i aye yo ul Z	<u></u>

MEASU	REMENT 4
Lower Band SAR (Channel 512):	Date: 08/21/2018
Frequency (MHz)	1850.199951
Relative permittivity (real part)	53.341337
Relative permittivity (imaginary part)	14.232400
Conductivity (S/m)	1.491736
Variation (%)	0.060000
Crest Factor	2.0
Probe Conversion factor	5.01
E-Field Probe:	SSE5 (SN 07/15 EP248)
Area Scan	<u>dx=8mm dy=8mm, h= 5.00 mm</u>
ZoomScan	5x5x7,dx=8mm dy=8mm
	dz=5mm,Complete/ndx=8mm dy=8mm, h=
	<u>5.00 mm</u>
Phantom	<u>Validation plane</u>
Device Position	Body back(10mm)
Band	GSM1900(GPRS 3slot hotspot)

SURFACE SAR

VOLUME SAR

 Maximum location: X=-5.00, Y=-10.00 SAR Peak: 0.87 W/kg

 SAR 10g (W/Kg)
 0.308172

 SAR 1g (W/Kg)
 0.543292

WCDMA Band II

VVCDIV	A Bariu II
MEASU	REMENT 1
Higher Band SAR (Channel 9538):	Date: 08/21/2018
Frequency (MHz)	1907.600000
Relative permittivity (real part)	39.072741
Relative permittivity (imaginary part)	12.607061
Conductivity (S/m)	1.377304
Variation (%)	-1.360000
Crest Factor	1.0
Probe Conversion factor	4.85
E-Field Probe:	SSE5 (SN 07/15 EP248)
Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	5x5x7,dx=8mm dy=8mm
	dz=5mm,Complete/ndx=8mm dy=8mm, h=
	<u>5.00 mm</u>
Phantom	Right head
Device Position	<u>Cheek</u>
Band	BAND1_WCDMA2100

SURFACE SAR

VOLUME SAR

 Maximum location: X=-48.00, Y=-57.00 SAR Peak: 0.28 W/kg

 SAR 10g (W/Kg)
 0.106065

 SAR 1g (W/Kg)
 0.179751

Z (mm)	0.00	4.00	9.00	14.00	19.00	
SAR (W/Kg)	0.2752	0.1908	0.1196	0.0761	0.0501	
	0. 28 - 0. 25 -					
	0.20-					
	€ 0.15-	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$				
	% 0.10-	++				
	0.03-	4 6 8 10 12		24 26 28 30		
	0 2		I (mm)	20 20 30		
		Hot spot	position			
						

MEASUREMENT 2					
Higher Band SAR (Channel 9538):	Date: 08/21/2018				
Frequency (MHz)	1907.600000				
Relative permittivity (real part)	53.293554				
Relative permittivity (imaginary part)	14.225424				
Conductivity (S/m)	1.532961				
Variation (%)	-0.050000				
Crest Factor	1.0				
Probe Conversion factor	5.01				
E-Field Probe:	SSE5 (SN 07/15 EP248)				
Area Scan	dx=8mm dy=8mm, h= 5.00 mm				
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete/ndx=8mm dy=8mm, h= 5.00 mm				
Phantom	Validation plane				
Device Position	Body back(10mm)				
Band BAND1_WCDMA2100					
0115-1-0-1-0-1-0					

SURFACE SAR

VOLUME SAR

 Maximum location: X=18.00, Y=-7.00 SAR Peak: 0.83 W/kg

 SAR 10g (W/Kg)
 0.294218

 SAR 1g (W/Kg)
 0.518497

Z (mm)	0.00	4.00	9.00	14.00	19.00	
SAR (W/Kg)	0.8301	0.5529	0.3259	0.1923	0.1160	
	0.7-					
(5)	0.6-					
	- 4.0 (%//kg)	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$				
	0.3- 0.2-					
						(6
	0.1-	4 6 8 10 12	14 16 18 20 22 Z (mm)	24 26 28 30		
		Hot spot	t position			
(6)						
						66
			~			
					Page 99 of 23	2

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

MEASUREMENT 3					
Higher Band SAR (Channel 9538):	Date: 08/21/2018				
Frequency (MHz)	1907.600000				
Relative permittivity (real part)	53.293554				
Relative permittivity (imaginary part)	14.225424				
Conductivity (S/m)	1.532961				
Variation (%)	-1.070000				
Crest Factor	1.0				
Probe Conversion factor	5.01				
E-Field Probe:	SSE5 (SN 07/15 EP248)				
Area Scan	dx=8mm dy=8mm, h= 5.00 mm				
ZoomScan	5x5x7,dx=8mm dy=8mm				
	dz=5mm,Complete/ndx=8mm dy=8mm, h=				
	<u>5.00 mm</u>				
Phantom	<u>Validation plane</u>				
Device Position	Body bottom(10mm)				
Band	BAND1_WCDMA2100(hotspot)				

SURFACE SAR

VOLUME SAR

 Maximum location: X=24.00, Y=-8.00 SAR Peak: 1.01 W/kg

 SAR 10g (W/Kg)
 0.347134

 SAR 1g (W/Kg)
 0.621439

