

1. Qualità di prodotto

1.1 Scopo

Per garantire una buona qualità di prodotto, il gruppo 353 ha individuato dallo standard ISO/IEC 9126 le qualità che ritiene più importanti nell'arco del ciclo di vita del prodotto e le ha istanziate individuando obiettivi e metriche coerenti con i livelli di qualità perseguiti.

1.2 Qualità dei documenti

I documenti prodotti dal gruppo 353 dovranno essere leggibili, comprensibili e corretti dal punto di vista ortografico, sintattico, logico e semantico.

1.2.1 Comprensione

Obiettivi di qualità

- Leggibilità: i documenti prodotti dovranno essere leggibili e comprensibili a persone con licenza di istruzione media;
- Correttezza ortografica: i documenti prodotti non dovranno contenere errori ortografici.

Metriche

• Indice di Gulpease: è l'indice di leggibilità tarato sulla lingua italiana. Considera due variabili linguistiche: la lunghezza della parola e la lunghezza della frase rispetto al numero di lettere. La formulata per il suo calcolo è la seguente:

$$IG = 89 + \frac{300 * N_F - 10 * N_L}{N_P}$$

dove N_F è il numero delle frasi, N_P il numero delle lettere e N_P il numero delle parole. Il risultato I è un numero compreso tra 0 e 100. In generale risulta che i testi con indice inferiore a:

- 80 sono difficili da leggere per chi ha una licenza elementare;
- 60 sono difficili da leggere per chi ha una licenza media;
- 40 sono difficili da leggere per chi ha un diploma superiore.
- Formula di Flesch: è una formula che serve per misurare la leggibilità di un testo in inglese:

$$F = 206,835 - (0,846 * S) - (1,015 * P)$$

dove S è il numero delle sillabe, calcolato su un campione di 100 parole e P è il numero medio di parole per frase. La leggibilità è alta se F è superiore a 60, media se fra 50 e 60, bassa sotto a 50;

• Errori ortografici: gli errori ortografici possono essere identificati tramite lo strumento 'Controllo ortografico' presente in TexStudio. Sarà poi compito del Verificatore correggerli.

1.3 Qualità del software

1.3.1 Funzionalità

Rappresenta la capacità del prodotto di fornire tutte le funzioni che sono state individuate attraverso l'Analisi dei requisiti.

Obiettivi qualità

Il gruppo 353 si impegnerà affinché:

- Adeguatezza: le funzionalità fornite siano conformi rispetto le aspettative;
- Accuratezza: il prodotto fornisca i risultati attesi, con il livello di dettaglio richiesto.

Metriche

• Copertura requisiti obbligatori: indica la percentuale dei requisiti obbligatori coperti dall'implementazione. La formula di misurazione è

$$CRO = (\frac{N_{ROS}}{N_{RO}}) * 100$$

dove N_{ROS} è il numero di requisiti obbligatori soddisfatti e N_{RO} è il numero totale dei requisiti obbligatori;

• Copertura requisiti accettati: indica la percentuale dei requisiti desiderabili e facoltativi coperti dall'implementazione. La formula di misurazione è

$$CRA = \left(\frac{N_{RAS}}{N_{RA}}\right) * 100$$

dove N_{RAS} è il numero di requisiti accettati soddisfatti e N_{RA} è il numero totale dei requisiti accettati;

• Accuratezza rispetto alle attese: indica la percentuale di risultati concordi alle attese. La formula di misurazione è

$$ARA = (1 - \frac{N_{TD}}{N_{TE}}) * 100$$

dove N_{TD} è il numero di test che producono risultati discordi alle attese e N_{TE} è il numero di test-case eseguiti.

1.3.2 Affidabilità

Rappresenta la capacità del prodotto software di svolgere correttamente le sue funzioni durante il suo utilizzo, anche in caso in cui si presentino situazioni anomale.

Obiettivi di qualità

L'esecuzione del prodotto dovrà presentare le seguenti caratteristiche:

- Maturità: evitare che si verifichino malfunzionamenti, operazioni illegali e failure in seguito a fault;
- Tolleranza agli errori: nel caso in cui si presentino degli errori, dovuti a guasti o ad un uso scorretto dell'applicativo, questi devo essere gestiti in modo da mantenere alto il livello di prestazioni.

Metriche

• Densità di failure: indica la percentuale di testing che si sono concluse in failure. La sua formula di misurazione è

$$DF = (\frac{N_{FR}}{N_{TE}}) * 100$$

dove N_{FR} è il numero di failure rilevati durante l'attività di testing e N_{TE} è il numero di test-case eseguiti;

• Blocco di operazioni non corrette: indica la percentuale di funzionalità in grado di gestire correttamente i fault che potrebbero verificarsi . La sua formula di misurazione è

$$BNC = (\frac{N_{FE}}{N_{ON}}) * 100$$

dove N_{FE} è il numero di failure evitati durante i test effettuati e N_{ON} è il numero di test-case eseguiti che prevedono l'esecuzione di operazioni non corrette, causa di possibili failure.

1.3.3 Usabilità

Rappresenta la capacità del prodotto di essere facilmente comprensibile e attraente in ogni sua parte per qualsiasi utente che lo andrà ad utilizzare.

Obiettivi di qualità

Il prodotto dovrà puntare ai seguenti obiettivi di usabilità:

- Comprensibilità: l'utente deve essere in grado di riconoscere le funzionalità offerte dal software e deve comprendere le modalità di utilizzo per raggiungere i risultati attesi;
- Apprendibilità: deve essere data la possibilità all'utente di imparare ad utilizzare l'applicazione senza troppo impegno;
- Operabilità: le funzioni presenti devono essere coerenti con le aspettative dell'utente;
- Attrattiva: il software deve essere piacevole per chi ne fa uso.

Metriche

• Comprensibilità delle funzioni offerte: indica la percentuale di operazioni comprese in modo immediato dall'utente, senza la consultazione del manuale. La sua formula di misurazione è

$$CFC = (\frac{N_{FC}}{N_{FO}}) * 100$$

dove N_{FC} è il numero di funzionalità comprese in modo immediato dall'utente durante l'attività di testing del prodotto e N_{FO} è il numero di funzionalità offerte dal sistema;

- Facilità di apprendimento delle funzionalità: indica il tempo medio impiegato dall'utente nell'imparare ad usare correttamente una data funzionalità. Si misura tramite un indicatore numerico, che indica i minuti impiegati da un utente per apprendere il funzionamento di una certa funzionalità;
- Consistenza operazionale in uso: indica la percentuale di messaggi e funzionalità offerte all'utente che rispettano le sue aspettative riguardo al comportamento del software. La sua formula di misurazione è

$$COU = \left(\frac{N_{MFU}}{N_{MFO}}\right) * 100$$

dove N_{MFU} è il numero di messaggi e funzionalità che non rispettano le aspettative dell'utente e N_{MFO} è il numero di messaggi e funzionalità offerte dal sistema.

1.3.4 Efficienza

Rappresenta la capacità di eseguire le funzionalità offerte dal software nel minor tempo possibile utilizzando al tempo stesso il minor numero di risorse disponibili.

Obiettivi di qualità

Il prodotto dovrà essere efficiente, in particolare:

- Comportamento rispetto al tempo: per svolgere le sue funzioni il software deve fornire adeguati tempi di risposta ed elaborazione;
- Utilizzo delle risorse: il software quando esegue le sue funzionalità deve utilizzare un appropriato numero e tipo di risorse.

Metriche

• Tempo di risposta: indica il tempo medio che intercorre fra la richiesta software di una determinata funzionalità e la restituzione del risultato all'utente. La sua formula di misurazione è

$$TR = \frac{\sum_{i=1}^{n} T_i}{n}$$

dove T_i è il tempo intercorso fra la richiesta i di una funzionalità ed il comportamento delle operazioni necessarie a restituire un risultato a tale richiesta.

1.3.5 Manutenibilità

Rappresenta la capacità del prodotto di essere modificato, tramite correzioni, miglioramenti o adattamenti del software a cambiamenti negli ambienti, nei requisiti e nelle specifiche funzionali.

Obiettivi di qualità

Le operazioni di manutenzione andranno agevolate il più possibile adottando le seguenti caratteristiche:

- Analizzabilità: il software deve consentire una rapida identificazione delle possibili cause di errori e malfunzionamenti;
- Modificabilità: il prodotto originale deve permettere eventuali cambiamenti in alcune sue parti;
- Stabilità: non devono insorgere effetti indesiderati in seguito a modifiche effettuate sul software;
- **Testabilità:** il software deve poter essere facilmente testato per valiare le modifiche effettuate.

Metriche

• Capacità di analisi di failure: indica la percentuale di modifiche effettuate in risposta a failure che hanno portato all'introduzione di nuove failure in altre componenti del sistema. La sua formula di misurazione è

$$CAF = (\frac{N_{FI}}{N_{FR}}) * 100$$

dove N_{FI} è il numero di failure delle quali sono state individuate le cause e N_{FR} è il numero di failure rilevate;

• Impatto delle modifiche: indica la percentuale di modifiche effettuate in risposta a failure che hanno portato all'introduzione di nuove failure in altre componenti del sistema. La sua formula i misurazione è

$$IM = (\frac{N_{FRF}}{N_{FR}}) * 100$$

dove N_{FRF} è il numero di failure risolte con l'introduzione di nuove failure e N_{FR} è il numero di failure risolte.

1.3.6 Portabilità

Rappresenta la capacità del software di poter essere utilizzato su diversi ambienti.

Obiettivi di qualità

Sarò agevolata la portabilità del prodotto adottando i seguenti obiettivi:

- Adattabilità: il prodotto deve adattarsi a tutti quelli ambienti di lavoro nei quali è stato previsto un suo utilizzo, senza dover apportare modifiche dello stesso;
- Sostituibilità: l'applicativo deve poter sostituire un altro software che ha lo stesso scopo e lavora nel medesimo ambiente.

Metriche

• Versioni dei browser supportate: indica la percentuale di versioni di browser attualmente supportate, fra quelle individuate dai requisiti. La sua formula di misurazione è

$$VB = (\frac{N_{VS}}{N_{VI}}) * 100$$

dove N_{VS} è il numero di versioni di browser supportate dal prodotto e N_{VI} è il numero di versioni di browser che devono essere supportate dal prodotto;

• Inclusione di funzionalità da altri prodotti: indica la percentuale del software utilizzato in precedenza dall'utente che produce risultati simili a quelli ottenuti dal prodotto in oggetto. La sua formula di misurazione è

$$IFP = (\frac{N_{FPA}}{N_{FPP}}) * 100$$

dove N_{FPA} è il numero di funzionalità del software utilizzato in precedenza dall'utente che produce risultati simili a quelli ottenuti dal prodotto in oggetto e N_{FPP} è il numero di funzionalità offerte dal software utilizzato in precedenza dall'utente.

1.4 Tabella delle metriche

Questa tabella indica i **range** di accettazione e di ottimalità per le metriche utilizzate per la qualità di prodotto:

ID	Nome	Range di	Range di
ID	Nome	accettazione	ottimalità
MPDD001	Indice di Gulpease	50 - 100	60 - 100
MPDD002	Formula di Flesch	40 - 60	50 - 60
MPDD003	Errori ortografici	100% corretti	100% corretti
MPDS001	Copertura requisiti obbligatori	100%	100%
MPDS002	Copertura requisiti accettati	60% - $100%$	80% - $100%$
MPDS003	Accuratezza rispetto alle attese	90% - $100%$	100%
MPDS004	Densità di failure	0% - $10%$	0%
MPDS005	Blocco di operazioni non corrette	80% - $100%$	100%
MPDS006	Comprensibilità delle funzioni	80% - $100%$	90% - 100%
MPDS007	offerte Facilità di apprendimento delle funzionalità	0 - 20 min	0 - 10 min
MPDS008	Consistenza operazionale in uso	80% - $100%$	90% - $100%$
MPDS009	Tempo di risposta	$0 - 8 \sec$	$0 - 3 \sec$
MPDS010	Capacità di analisi di failure	60% - $100%$	80% - $100%$
MPDS011	Impatto delle modifiche	0% - $20%$	0% - $10%$
MPDS012	Versioni di browser supportate	70% - $100%$	100%
MPDS013	Inclusione di funzionalità da altri prodotti	80% - 100%	90% - 100%

Tabella 1.1: Tabella delle metriche della qualità di prodotto