Modelovanje i predikcija koncentracije polena u Srbiji korišćenjem geostatistike i mašinskog učenja

Diplomski rad

Student: Luka Milutinović

Mentor: prof. dr Predrag Tadić

Beograd, Oktobar 2025

Sadržaj

Sadržaj

- Motivacija
- Podaci o polenu
- Metodologija
- Rezultati
- Diskusija i zaključak

Motivacija

- Polen izaziva alergijske reakcije kod velikog broja ljudi u Srbiji čak oko trećine stanovništva.
- Veća izloženost dovodi do jačih simptoma i smanjenog kvaliteta života (san, produktivnost, opšte stanje).
- Pravovremena **prognoza koncentracije polena** pomaže u smanjenju rizika:
 - omogućava izbegavanje visokih koncentracija,
 - olakšava preventivno lečenje.
- Postoje servisi poput iqair.com i accuweather.com, ali njihovi modeli nisu javno dostupni.

Podaci o polenu

Lokacije praćenja polena u Srbiji

Podaci su prikupljeni sa sajta **Portala otvorenih podataka Republike Srbije**, iz baze "Polen – obiedinjeni podaci od 2016. godine".

Ova baza sadrži podatke o koncentraciji polena za **29 mernih mesta** širom Srbije i obuhvata **26** različitih alergena.

Primer merenja - Ambrozija (Požarevac)

Dnevna koncentracija polena - AMBROZIJA (POŽAREVAC)

Sezonska koncentracija polena - AMBROZIJA (POŽAREVAC)

Meteorološki parametri

Zavisnost koncentracije polena od meteoroloških parametara AMBROZIJA - POŽAREVAC

Uz polenske podatke, analizirani su i **meteorološki parametri** koji značajno utiču na koncentraciju polena u vazduhu:

- Temperatura vazduha (+).
- Brzina vetra (+).
- Vlažnost vazduha (-).
- Padavine (-).
- Pravac vetra.

Transformacije i evaluacija modela

Transformacije:

• Log transformacija: y = log(1 + x/30)

• Box-Cox transformacija:

$$y = \begin{cases} \frac{x^{\lambda} - 1}{\lambda}, & \lambda \neq 0 \\ \log(x), & \lambda = 0 \end{cases}$$

Evaluaciia: RMSLE

RMSLE =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (\log(1 + \hat{y}_i/30) - \log(1 + y_i/30))^2}$$

- n broj primera u skupu podataka
- y_i stvarna koncentracija polena za i-ti primer
- \hat{y}_i predviđena koncentracija polena za *i*-ti primer

Efekat transformacija na koncentraciju polena

Sezonska koncentracija polena - AMBROZIJA (POŽAREVAC)

Imputacija podataka

Sezonska dekompozicija - AMBROZIJA, lokacija: POŽAREVAC

Slika: Signal nakon uklanjanja trenda

Kriging i prostorno-vremenski variogram

Na osnovu dobijenih prostornog i vremenskog variograma, zajednički (prostorno-vremenski) variogram određen je prema sledećoj formuli:

$$\gamma(u,v) = \gamma(u,o) + \gamma(o,v) - k\,\gamma(u,o)\gamma(o,v)$$

gde je:

- $\gamma(u, o)$ prostorni variogram
- $\gamma(o, v)$ vremenski variogram
- k parametar određen optimizacijom za najbolje zadovoljenje uslova separabilnosti

Modelovanje vremenskih serija: SARIMAX i Prophet

• **SARIMAX** — sezonski ARIMA model sa egzogenim promenljivama Definisan parametrima $(p, d, q) \times (P, D, Q, s)$:

$$\Phi_{P}(L^{s})\phi_{p}(L)(1-L)^{d}(1-L^{s})^{D}\mathbf{y}_{t} = \Theta_{Q}(L^{s})\theta_{q}(L)\varepsilon_{t} + \beta^{\mathsf{T}}\mathbf{x}_{t}$$

gde su:

- $-\phi_p(L)$, $\theta_q(L)$ AR i MA operatori
- $-\Phi_P(L^s), \Theta_Q(L^s)$ sezonski AR i MA operatori
- d, D red diferenciranja
- s dužina sezonskog perioda
- \mathbf{x}_t egzogene promenljive
- **Prophet** model razvijen od strane kompanije *Meta* (bivši *Facebook*), pri čemu je u ovom radu primenjena njegova **multiplikativna varijanta**:

$$y(t) = g(t) \times (1 + s(t)) + \varepsilon_t$$

Modelovanje vremenskih serija pomoću Random Foresta

- Model baziran na atributima izvedenim iz vremenskih serija:
 - Vrednosti koncentracije polena sa zaostatkom od nekoliko dana
 - Prosečna koncentracija u prethodnih 7 dana
 - Prosečna koncentracija u istom periodu prethodne godine (± 3 dana)
 - Koncentracija na isti dan prethodne godine
 - Broj dana od početka sezone i godina
 - Furijeovi redovi za modelovanje sezonalnosti
- Ovim pristupom model ne koristi vremensku zavisnost direktno, već model uči obrasce iz generisanih vremenskih karakteristika.

Rezultati imputacije podataka

Slika: Primer imputacije vremenske serije

Metod	Bez meteo	Sa meteo	
Naivna interpolacija	0.309	-	
IDW interpolacija	1.085	-	
Kriging + Box-Cox	0.260	0.262	

Tabela: Uporedni rezultati imputacije (RMSLE).

Predikcija 7 dana unapred — SARIMAX

Slika: Primer predikcije 7 dana unapred (SARIMAX model sa logaritamskom transformacijom).

Model	Bez meteo	Sa meteo	
SARIMAX	2.7	2.6	
Prophet	3.6	3.3	
Random Forest	4.0	4.0	

Predikcija 1 dan unapred — Random Forest

Slika: Primer predikcije 1 dan unapred (Random Forest model sa logaritamskom transformacijom).

Model	Bez meteo	Sa meteo	
SARIMAX	0.912	0.918	
Prophet	0.887	0.906	
Random Forest	0.911	0.922	

Značaj karakteristika u Random Forest modelu

Analiza značaja ulaznih karakteristika:

- Najuticajnije promenljive:
 - Vremensko kašnjenje koncentracije polena do 3 dana
 - Prosečna koncentracija u prethodnih 7
 dana
 - Temperatura i relativna vlažnost vazduha
 - Furijeovi redovi
- Pokazuje koje meteorološke i istorijske komponente najviše utiču na predikciju.

Slika: Značaj karakteristika u Random Forest modelu.

Uporedna evaluacija modela — RMSLE

	1 dan unapred		7 dana unapred	
Model	Bez meteo	Sa meteo	Bez meteo	Sa meteo
SARIMAX	0.45	0.42	0.50	0.46
Prophet	0.50	0.46	0.59	0.59
Random Forest	0.46	0.41	0.58	0.55
Naivna predikcija	0.54	-	0.78	-

Tabela: RMSLE rezultati modela — ambrozija, Požarevac.

Motivacija Podaci o polenu Metodologija Rezultati Diskusija i zaključak ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

Zaključak — Glavni rezultati i doprinos

- Razvijen je i implementiran sistem za **predikciju koncentracija polena u Srbiji**, koji kombinuje:
 - Prostorno-vremenski kriging za imputaciju nedostajućih podataka.
 - SARIMAX, Prophet i Random Forest modele za predikciju koncentracije polena.
- **Kriging** uspešno smanjuje diskontinuitet u podacima i omogućava pouzdano modelovanje vremenskih serija.
- SARIMAX najpogodniji za višednevne prognoze (iskorišćava sezonalnost i meteorološke faktore).
- Random Forest najbolji za kratkoročne prognoze (1 dan unapred), jer prepoznaje nelinearne odnose.
- **Prophet** jednostavan za implementaciju i brz za treniranje, pogodan za dugoročne vremenske serije.
- Meteorološki podaci doprinose tačnosti **kratkoročnih predikcija**, dok kod višednevnih dominira sezonska komponenta.

Sadržai

Sadržaj Motivacija Podaci o polenu Metodologija Rezultati Diskusija i zaključak ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

Zaključak — Značaj, ograničenja i budući rad

Praktični značaj:

- Pravovremeno informisanje i planiranje terapija kod alergičnih osoba.
- Podrška poljoprivredi i pčelarstvu kroz predikciju perioda cvetanja i polinacije.

Ograničenja:

- Ograničena prostorna rezolucija meteoroloških podataka.
- Nemogućnost modela da prate iznenadne promene koncentracija.
- Nedostatak real-time podataka prilikom treniranja.

Preporuke za budući rad:

- Integracija sa real-time meteorološkim i satelitskim podacima.
- Proširenje **prostorno-vremenskog kriging-a** na interpolaciju i rekonstrukciju serija.
- Razvoj **operativne platforme** za javno obaveštavanje o očekivanim koncentracijama polena.

Hvala na pažnji!

Pitanja i diskusija

Beograd, Oktobar 2025.

