Statistical learning and prediction

Tom F. Wilderjans
Leiden University
Faculty of Social and Behavioral Sciences
Institute of Psychology
Methodology and Statistics Unit
Room 3B18
071-5276058
t.f.wilderjans@fsw.leidenuniv.nl

Overview

Today

- unsupervised methods (Chapter 10 of ISRL)
 - dimension reduction: Principal Components Analysis (PCA)
 - cluster analysis
- step back to prediction (regression) situation: combinations of supervised and unsupervised ideas (Section 6.3 of ISRL)
 - Principal Components Regression (PCR)
 - Partial Least Squares (PLS) regression

Supervised and unsupervised methods

Unsupervised vs supervised methods

- no criterion (Y) to supervise the learning
- searching for structure in the data (vs prediction)
 - → groups of similar objects/variables, directions explaining most variance
- more explorative in nature
- more difficult to assess the performance of the method: how to do validation/cross-validation?
- interesting alternatives for high-dimensional problems
- sometimes used as pre-processing for supervised methods
 - → identifying important variables when having many predictors

Unsupervised techniques

Different types of techniques

- dimension reduction techniques
 - Principal Component Analysis (PCA), Factor Analysis (FA), Independent Component Analysis (ICA), Nonnegative Matrix Factorization (NMF), Correspondence Analysis
 - Canonical Correlation Analysis: (cor)relation between sets of variables
- clustering techniques
 - one-mode clustering: K-means, mixture analysis, latent class analysis, hierarchical clustering
 - two-mode clustering: clustering objects and variables (biclustering)
- scaling techniques: multidimensional scaling (MDS)

- first view: find (uncorrelated) linear combinations of the (correlated) variables with largest variance across the samples
 - summarizes (the variance in) the data into a small number of components (i.e., main directions in the data)
 - low-dimensional representation of the data set
- second view: line (1D) or subspace (2D/3D) closest to the data in terms of squared distances (i.e., least squares approximation)
 - (with centered variables): approximate x_{ij} with $\sum_{m=1}^{M} z_{im} \phi_{jm}$
 - find z_{im} and ϕ_{jm} 's such that $\sum_{i=1}^N \sum_{j=1}^P (x_{ij} \sum_{m=1}^M z_{im}\phi_{jm})^2$ is minimal
 - ightarrow with ϕ_1, \ldots, ϕ_m of length one and orthogonal to each other

- three important concepts
 - component loadings (ϕ_{jm}) : weight of each variable in the components (for interpretation of the components)
 - component scores (z_{im}) : score of each case on the components (to see structure among the cases)
 - the variance of each component denotes the importance of that component
 - → proportion explained variance of each component

- considerations
 - always: centering of the variables (default option in many programs for PCA)
 - depending on the context: normalization of the variables (i.e., variance of one)
 - rotational freedom: rotate loadings to simple structure (varimax)

- number of components
 - maximum number of components is min(N, P)
 - elbow in the scree plot
 - → component number against proportion variance explained
 - → component number against cumulative proportion variance explained
 - Kaiser's rule (do not use): eigenvalue larger than one
 - many procedures: parallel analysis, CHull

Improving least squares regression

Three methods to improve least squares linear regression model (see lecture 3)

- selection of predictors and fit least squares: subset selection
- shrinkage of regression coefficients (fit least squares with a constraint)
 - reduces the variance and can perform variable selection
- dimension reduction methods (fit least squares on derived predictors/features)
 - based on forming linear combinations of the original variables
 - no explicit selection of variables
 - not always easy to interpret the linear combinations
 - reduces the variance because some constraint on the coefficients is imposed (but may lead to bias)
 - → penalty methods also constrain the coefficients
 - \rightarrow adding constraints is the only option when n « p!!

Dimension reduction methods

Dimension reduction methods

- two step procedure
 - step 1: compute new variables as linear combinations of the original predictors (e.g., z_m 's in PCA)
 - step 2: perform least squares regression with the new variables
- bias-variance trade off
 - the constraint increases the bias (it's a simpler model, less flexible)
 - but it may reduce the variance (especially when n ≪ p)

Dimension reduction methods

Dimension reduction methods: some examples

- Principal Components Regression (PCR)
 - step 1: perform PCA (on standardized data) and take the first M components
 - * principal components are linear combinations of the original variables that have the largest variance
 - * when predictors are correlated: a few principal components will capture most of the data
 - * later principal components are uncorrelated to former ones (no issue of multicollinearity)
 - * when M=P: original least squares regression is obtained
 - st larger M gives a smaller bias but a larger variance
 - step 2: perform least squares regression with these M components
 - use cross-validation to determine M

Dimension reduction methods

Dimension reduction methods: some examples

- Partial Least Squares (PLS) regression
 - PCR assumes that the direction of variation of the predictors is also the direction where the response is varying (i.e., the linear combinations are related to the response)
 - supervised way of selecting the linear combinations
 - → simultaneously look for "components" that explain a lot of variance in the predictors and that are strongly related with the response
 - coefficients are obtained from univariate regressions: directions are strongly determined by variables having the largest correlation with the response
 - → use standardized predictors and response

PCA, PCR and PLS: Lab and exercises

How to perform PCA, PCR and PLS in R

Exercises: College dataset from the ISLR package (the variable Apps is the dependent variable, so this variable should be left out for the first part of the question)

- perform PCA to detect the structure (i.e., relations between variables) in this data set (you probably want to use standardized data).
 - how many components would you extract?
 - which variables load high on each component?
 - give an interpretation of the components?
 - do you see some structure in the component scores?

PCA, PCR and PLS: Lab and exercises

Exercises: College dataset from the ISLR package (the variable Apps is the dependent variable)

- perform PCR and PLS to this data set and use the variable Apps as response variable
 - use 10-fold cross-validation to determine the optimal number of components
 - do the first two PLS components differ much from the first two PCR/PCA components?
 - give an interpretation of these two components
 - compare both methods with respect to the amount of variance in the predictors and the response that is explained by the components
 - what are the regression weights associated with the first two components for both methods?
 - which method works (i.e., generalizes) best for this data set?

Cluster Analysis

Cluster analysis techniques

- goal is to find subgroups of samples that are similar to each other (within a group)
- partitional versus hierarchical methods
 - partition: each element belongs to one and only one cluster (K-means)
 - hierarchical: agglomerative (bottom up) versus divisive (top down)

K-means clustering

K-means clustering

ullet group similar objects such that within-cluster variations (WCV) are minimal

•
$$WCV_k = \frac{1}{|C_k|} \sum_{i,i' \in C_k} d(|x_i|, |x_{i'}|)^2$$

 $\rightarrow d(|x_i|, |x_{i'}|)^2 = \sum_{j=1}^P (x_{ij} - x_{i'j})^2$

$$\begin{array}{l} \bullet \;\; WCV_k = \frac{1}{|C_k|} \; \sum_{i,i' \in C_k} \; d(\; \boldsymbol{x}_i \; , \; \boldsymbol{x}_{i'} \;)^2 = 2 \; \sum_{i \in C_k} \; d(\; \boldsymbol{x}_i \; , \; \bar{\boldsymbol{x}}_k \;)^2 \\ \\ \to \; \bar{\boldsymbol{x}}_k = \frac{1}{|C_k|} \; \sum_{i \in C_k} \; \boldsymbol{x}_i \\ \\ \to \; d(\; \boldsymbol{x}_i \; , \; \bar{\boldsymbol{x}}_k \;)^2 = \sum_{j=1}^P \; (x_{ij} - \bar{x}_{k(i)j})^2 \\ \end{array}$$

• minimize total WCV by minimize $\sum_{k=1}^K \sum_{i \in C_k} \sum_{j=1}^P (x_{ij} - \bar{x}_{k(i)j})^2$

K-means clustering

K-means clustering

- algorithm
 - find partition and centroids leading to smallest total WCV
 - ightarrow a partition of the objects (i.e., a binary matrix with rows summing to 1)
 - \rightarrow centroid vector for each cluster m
 - alternating algorithm
 - → compute centroid per cluster
 - ightarrow assign each sample to its closest cluster (in terms of Euclidean distance)
 - \rightarrow the loss function (i.e., total WCV) will decrease in each step

K-means clustering

K-means clustering

- problem of local optima (non-convex optimization problem): always use a multi-start procedure
- normalization (and/or centering) of the variables (or the samples)?
- How to determine K: scree plot
 - -K against total WCV
 - K against percentage explained
 - \rightarrow ratio of (total variance in data total WCV) to (total variance in data)
- how robust is the clustering? Try a subset of the data and see whether you find the same clusters

Hierarchical clustering

Hierarchical clustering

- two types of procedures: agglomerative (bottom up) and divisive (top down)
- depends on the choice of distance measure and the type of linkage
 - distance measure: Euclidean or correlation-based
 - type of linkage: complete, single, average, centroid, Ward
- results are presented in a dendrogram: see the evolution of the clustering (vs K-means)
- cut the dendrogram at a certain height to get a partition of the samples
 - cutting at different heights gives you nested clusterings
- normalization (and/or centering) of the variables (or the samples)?

How to perform K-means and hierarchical clustering in R

Exercises

ullet take the matrix below and calculate 2 iterations of the K-means algorithm with K=2 by hand. Start with an initial clustering with clusters of the same size

$$\begin{pmatrix}
3 & 4 \\
6 & 6 \\
7 & 2 \\
2 & 5
\end{pmatrix}$$

Exercises

• take the matrix below (i.e., different last row) and calculate the dendrogram obtained by complete, single and average hierarchical clustering (using Euclidean distance) by hand.

$$\begin{pmatrix}
3 & 4 \\
6 & 6 \\
7 & 2 \\
5 & 2
\end{pmatrix}$$

• prove that for two samples x_1 and x_2 (measured on $j=1,\ldots,P$ variables) the squared (Euclidean) distance between the samples is (inversely) proportional to the correlation between both samples when the P scores for each sample are standardized (i.e., each sample has a mean of zero and a variance of one)

Exercises

- take the data set *College* from the *ISLR* package
 - only use the following three variables
 - ightarrow (variable 5) *Top10perc* Percentage new students from top 10% of class
 - → (variable 12) Personal Estimated personal spending
 - \rightarrow (variable 13) *PhD* Percentage of faculty staff with a Ph.D.
 - perform a K-means clustering
 - \rightarrow which value for K in the K-means analysis would you suggest? Why?
 - → try to interpret the obtained clustering

Exercises

- take the data set *College* from the *ISLR* package
 - perform a hierarchical clustering (select 20 cases at random)
 - → which dissimilarity measure will you use?
 - → which linkage method(s) will you use?
 - → how many clusters will you select?
 - → perform K-means clustering (with the chosen number of clusters) and compare both clusterings (hierarchical vs K-means)