Let X_1 and X_2 represent two measurements' distributions,

Let X_1 and X_2 represent two measurements' distributions, $X_{1,i}$ represent the ith individual's (unknown) first measurement,

Let X_1 and X_2 represent two measurements' distributions, $X_{1,i}$ represent the ith individual's (unknown) first measurement, and $X_{2,i}$ represent the ith individual's second measurement.

Let X_1 and X_2 represent two measurements' distributions, $X_{1,i}$ represent the ith individual's (unknown) first measurement, and $X_{2,i}$ represent the ith individual's second measurement. Define $X_{\mathrm{diff},i} = X_{2,i} - X_{1,i}$

Let X_1 and X_2 represent two measurements' distributions, $X_{1,i}$ represent the ith individual's (unknown) first measurement, and $X_{2,i}$ represent the ith individual's second measurement. Define $X_{\rm diff,i} = X_{2,i} - X_{1,i}$ Our statistic is a mean of differences.

Let X_1 and X_2 represent two measurements' distributions, $X_{1,i}$ represent the ith individual's (unknown) first measurement, and $X_{2,i}$ represent the ith individual's second measurement. Define $X_{\rm diff,i} = X_{2,i} - X_{1,i}$ Our statistic is a mean of differences.

$$\overline{X_{\mathsf{diff}}} = \frac{\sum\limits_{i=1}^{n} (X_{2,i} - X_{1,i})}{n}$$

Let X_1 and X_2 represent two measurements' distributions, $X_{1,i}$ represent the ith individual's (unknown) first measurement, and $X_{2,i}$ represent the ith individual's second measurement. Define $X_{\mathsf{diff},\mathsf{i}} = X_{2,i} - X_{1,i}$

Our statistic is a mean of differences.

$$\overline{X_{\mathsf{diff}}} = \frac{\sum\limits_{i=1}^{n} (X_{2,i} - X_{1,i})}{n}$$

Usually, $\overline{X_{\rm diff}}$ approximately follows a normal distribution.

Let X_1 and X_2 represent two measurements' distributions, $X_{1,i}$ represent the ith individual's (unknown) first measurement, and $X_{2,i}$ represent the *i*th individual's second measurement.

Define $X_{\text{diff,i}} = X_{2,i} - X_{1,i}$

Our statistic is a mean of differences.

$$\overline{X_{\mathsf{diff}}} = \frac{\sum\limits_{i=1}^{n} (X_{2,i} - X_{1,i})}{n}$$

Usually, X_{diff} approximately follows a normal distribution.

$$\overline{X_{\mathsf{diff}}} \sim \mathcal{N}(\mu_{\mathsf{diff}}, SE)$$

Let X_1 and X_2 represent two measurements' distributions, $X_{1,i}$ represent the ith individual's (unknown) first measurement, and $X_{2,i}$ represent the ith individual's second measurement.

Define $X_{\text{diff,i}} = X_{2,i} - X_{1,i}$

Our statistic is a mean of differences.

$$\overline{X_{\mathsf{diff}}} = \frac{\sum\limits_{i=1}^{n} (X_{2,i} - X_{1,i})}{n}$$

Usually, $\overline{X_{\rm diff}}$ approximately follows a normal distribution.

$$\overline{X_{\text{diff}}} \sim \mathcal{N}(\mu_{\text{diff}}, SE)$$

$$\frac{\overline{X_{\mathsf{diff}}} - \mu_{\mathsf{diff}}}{SE} \sim \mathcal{N}(0, 1)$$

Let X_1 and X_2 represent two measurements' distributions, $X_{1,i}$ represent the ith individual's (unknown) first measurement, and $X_{2,i}$ represent the ith individual's second measurement. Define $X_{\rm diff,i} = X_{2,i} - X_{1,i}$

Our statistic is a mean of differences.

$$\overline{X_{\mathsf{diff}}} = \frac{\sum\limits_{i=1}^{n} (X_{2,i} - X_{1,i})}{n}$$

Usually, $\overline{X_{\rm diff}}$ approximately follows a normal distribution.

$$\overline{X_{\mathsf{diff}}} \sim \mathcal{N}(\mu_{\mathsf{diff}}, SE)$$

$$\frac{\overline{X_{\mathsf{diff}}} - \mu_{\mathsf{diff}}}{SE} \sim \mathcal{N}(0, 1)$$

$$SE = \frac{\sigma_{\rm diff}}{\sqrt{n}}$$

Now, imagine $\mu_{\rm diff}$ and $\sigma_{\rm diff}$ are unknown, but we want to infer about our parameter of interest:

Now, imagine $\mu_{\rm diff}$ and $\sigma_{\rm diff}$ are unknown, but we want to infer about our parameter of interest: $\mu_{\rm diff}$

- Now, imagine $\mu_{\rm diff}$ and $\sigma_{\rm diff}$ are unknown, but we want to infer about our parameter of interest: $\mu_{\rm diff}$
- ▶ We obtain a sample of differences, which has mean $\overline{x_{\text{diff}}}$ and standard deviation s_{diff} . We now have a point estimate:

- Now, imagine $\mu_{\rm diff}$ and $\sigma_{\rm diff}$ are unknown, but we want to infer about our parameter of interest: $\mu_{\rm diff}$
- We obtain a sample of differences, which has mean $\overline{x}_{\text{diff}}$ and standard deviation s_{diff} . We now have a point estimate: $\overline{x}_{\text{diff}}$

- Now, imagine $\mu_{\rm diff}$ and $\sigma_{\rm diff}$ are unknown, but we want to infer about our parameter of interest: $\mu_{\rm diff}$
- We obtain a sample of differences, which has mean $\overline{x_{\text{diff}}}$ and standard deviation s_{diff} . We now have a point estimate: $\overline{x_{\text{diff}}}$
- ▶ Due to our uncertainty in both μ_{diff} and σ_{diff} , we use a t distribution for inference.

- Now, imagine $\mu_{\rm diff}$ and $\sigma_{\rm diff}$ are unknown, but we want to infer about our parameter of interest: $\mu_{\rm diff}$
- We obtain a sample of differences, which has mean $\overline{x_{\text{diff}}}$ and standard deviation s_{diff} . We now have a point estimate: $\overline{x_{\text{diff}}}$
- ▶ Due to our uncertainty in both μ_{diff} and σ_{diff} , we use a t distribution for inference.

Standard Error:

- Now, imagine μ_{diff} and σ_{diff} are unknown, but we want to infer about our parameter of interest: μ_{diff}
- We obtain a sample of differences, which has mean $\overline{x_{\text{diff}}}$ and standard deviation s_{diff} . We now have a point estimate: $\overline{x_{\text{diff}}}$
- ▶ Due to our uncertainty in both $\mu_{\rm diff}$ and $\sigma_{\rm diff}$, we use a t distribution for inference.

Standard Error:

$$SE pprox rac{s_{
m diff}}{\sqrt{n}}$$

- Now, imagine $\mu_{\rm diff}$ and $\sigma_{\rm diff}$ are unknown, but we want to infer about our parameter of interest: $\mu_{\rm diff}$
- We obtain a sample of differences, which has mean $\overline{x}_{\text{diff}}$ and standard deviation s_{diff} . We now have a point estimate: $\overline{x}_{\text{diff}}$
- ▶ Due to our uncertainty in both μ_{diff} and σ_{diff} , we use a t distribution for inference.

Standard Error:

$$SE pprox rac{s_{
m diff}}{\sqrt{n}}$$

Degrees of freedom:

- Now, imagine $\mu_{\rm diff}$ and $\sigma_{\rm diff}$ are unknown, but we want to infer about our parameter of interest: $\mu_{\rm diff}$
- We obtain a sample of differences, which has mean $\overline{x_{\text{diff}}}$ and standard deviation s_{diff} . We now have a point estimate: $\overline{x_{\text{diff}}}$
- ▶ Due to our uncertainty in both μ_{diff} and σ_{diff} , we use a t distribution for inference.

Standard Error:

$$SE pprox rac{s_{
m diff}}{\sqrt{n}}$$

Degrees of freedom:

$$df = n - 1$$

- Now, imagine $\mu_{\rm diff}$ and $\sigma_{\rm diff}$ are unknown, but we want to infer about our parameter of interest: $\mu_{\rm diff}$
- We obtain a sample of differences, which has mean $\overline{x}_{\text{diff}}$ and standard deviation s_{diff} . We now have a point estimate: $\overline{x}_{\text{diff}}$
- ▶ Due to our uncertainty in both $\mu_{\rm diff}$ and $\sigma_{\rm diff}$, we use a t distribution for inference.

Standard Error:

$$SE pprox rac{s_{
m diff}}{\sqrt{n}}$$

Degrees of freedom:

$$df = n - 1$$

Confidence interval:

- Now, imagine $\mu_{\rm diff}$ and $\sigma_{\rm diff}$ are unknown, but we want to infer about our parameter of interest: $\mu_{\rm diff}$
- ▶ We obtain a sample of differences, which has mean $\overline{x_{\text{diff}}}$ and standard deviation s_{diff} . We now have a point estimate: $\overline{x_{\text{diff}}}$
- ▶ Due to our uncertainty in both $\mu_{\rm diff}$ and $\sigma_{\rm diff}$, we use a t distribution for inference.

Standard Error:

$$SE pprox rac{s_{
m diff}}{\sqrt{n}}$$

Degrees of freedom:

$$df = n - 1$$

Confidence interval:

$$\mu_{\text{diff}} \approx \overline{x_{\text{diff}}} \pm t^{\star} SE$$

- Now, imagine $\mu_{\rm diff}$ and $\sigma_{\rm diff}$ are unknown, but we want to infer about our parameter of interest: $\mu_{\rm diff}$
- ▶ We obtain a sample of differences, which has mean $\overline{x_{\text{diff}}}$ and standard deviation s_{diff} . We now have a point estimate: $\overline{x_{\text{diff}}}$
- ▶ Due to our uncertainty in both $\mu_{\rm diff}$ and $\sigma_{\rm diff}$, we use a t distribution for inference.

Standard Error:

$$SE pprox rac{s_{
m diff}}{\sqrt{n}}$$

Degrees of freedom:

$$df = n - 1$$

Confidence interval:

$$\mu_{\text{diff}} \approx \overline{x_{\text{diff}}} \pm t^{\star} SE$$

Hypothesis testing:

- Now, imagine $\mu_{\rm diff}$ and $\sigma_{\rm diff}$ are unknown, but we want to infer about our parameter of interest: $\mu_{\rm diff}$
- We obtain a sample of differences, which has mean $\overline{x_{\text{diff}}}$ and standard deviation s_{diff} . We now have a point estimate: $\overline{x_{\text{diff}}}$
- ▶ Due to our uncertainty in both $\mu_{\rm diff}$ and $\sigma_{\rm diff}$, we use a t distribution for inference.

Standard Error:

$$SE \approx \frac{s_{\rm diff}}{\sqrt{n}}$$

Degrees of freedom:

$$df = n - 1$$

Confidence interval:

$$\mu_{\text{diff}} \approx \overline{x_{\text{diff}}} \pm t^{\star} SE$$

Hypothesis testing:

$$t_0 = \frac{\overline{x_{\mathsf{diff}}} - (\mu_{\mathsf{diff}})_0}{SE}$$

Let X_1 and X_2 represent two distributions.

Let X_1 and X_2 represent two distributions.

Let $X_{1,i}$ represent the *i*th (out of n_1) value from the first distribution.

Let X_1 and X_2 represent two distributions.

Let $X_{1,i}$ represent the *i*th (out of n_1) value from the first distribution.

Let $X_{2,j}$ represent the jth (out of n_2) value from the second distribution.

Let X_1 and X_2 represent two distributions.

Let $X_{1,i}$ represent the *i*th (out of n_1) value from the first distribution.

Let $X_{2,j}$ represent the jth (out of n_2) value from the second distribution.

We are interested in a difference of means.

Let X_1 and X_2 represent two distributions.

Let $X_{1,i}$ represent the *i*th (out of n_1) value from the first distribution.

Let $X_{2,j}$ represent the jth (out of n_2) value from the second distribution.

We are interested in a difference of means.

$$\overline{X_2} - \overline{X_1} = \frac{\sum\limits_{j=1}^{n_2} X_{2,j}}{n_2} - \frac{\sum\limits_{i=1}^{n_1} X_{1,i}}{n_1}$$

Let X_1 and X_2 represent two distributions.

Let $X_{1,i}$ represent the *i*th (out of n_1) value from the first distribution.

Let $X_{2,j}$ represent the jth (out of n_2) value from the second distribution.

We are interested in a difference of means.

$$\overline{X_2} - \overline{X_1} = \frac{\sum\limits_{j=1}^{n_2} X_{2,j}}{n_2} - \frac{\sum\limits_{i=1}^{n_1} X_{1,i}}{n_1}$$

Usually, $\overline{X_2} - \overline{X_1}$ approximately follows a normal distribution.

Let X_1 and X_2 represent two distributions.

Let $X_{1,i}$ represent the *i*th (out of n_1) value from the first distribution.

Let $X_{2,j}$ represent the jth (out of n_2) value from the second distribution.

We are interested in a difference of means.

$$\overline{X_2} - \overline{X_1} = \frac{\sum\limits_{j=1}^{n_2} X_{2,j}}{n_2} - \frac{\sum\limits_{i=1}^{n_1} X_{1,i}}{n_1}$$

Usually, $\overline{X_2} - \overline{X_1}$ approximately follows a normal distribution.

$$\overline{X_2} - \overline{X_1} \sim \mathcal{N}(\mu_2 - \mu_1, SE)$$

Let X_1 and X_2 represent two distributions.

Let $X_{1,i}$ represent the *i*th (out of n_1) value from the first distribution.

Let $X_{2,j}$ represent the jth (out of n_2) value from the second distribution.

We are interested in a difference of means.

$$\overline{X_2} - \overline{X_1} = \frac{\sum\limits_{j=1}^{n_2} X_{2,j}}{n_2} - \frac{\sum\limits_{i=1}^{n_1} X_{1,i}}{n_1}$$

Usually, $\overline{X_2} - \overline{X_1}$ approximately follows a normal distribution.

$$\overline{X_2} - \overline{X_1} \sim \mathcal{N}(\mu_2 - \mu_1, SE)$$

$$SE = \sqrt{\frac{(\sigma_1)^2}{n_1} + \frac{(\sigma_2)^2}{n_2}}$$

Now, imagine μ_1 , μ_2 , σ_1 and σ_2 are unknown. From each population, we take a random sample, and then we wish to infer a confidence interval for $\mu_2 - \mu_1$ or test whether there is evidence to disprove $\mu_2 - \mu_1 = 0$.

- Now, imagine μ_1 , μ_2 , σ_1 and σ_2 are unknown. From each population, we take a random sample, and then we wish to infer a confidence interval for $\mu_2 \mu_1$ or test whether there is evidence to disprove $\mu_2 \mu_1 = 0$.
- ▶ How best to determine (from 2 samples) a confidence interval for $\mu_2 \mu_1$ and test whether $\mu_2 \mu_1 = 0$ is an open question, called the Behrens-Fisher problem.

- Now, imagine μ_1 , μ_2 , σ_1 and σ_2 are unknown. From each population, we take a random sample, and then we wish to infer a confidence interval for $\mu_2 \mu_1$ or test whether there is evidence to disprove $\mu_2 \mu_1 = 0$.
- ▶ How best to determine (from 2 samples) a confidence interval for $\mu_2 \mu_1$ and test whether $\mu_2 \mu_1 = 0$ is an open question, called the Behrens-Fisher problem.
- ▶ Different people use different strategies. Old people will probably be more familiar with Student's approach, which assumes $\sigma_1 = \sigma_2$.

- Now, imagine μ_1 , μ_2 , σ_1 and σ_2 are unknown. From each population, we take a random sample, and then we wish to infer a confidence interval for $\mu_2 \mu_1$ or test whether there is evidence to disprove $\mu_2 \mu_1 = 0$.
- ▶ How best to determine (from 2 samples) a confidence interval for $\mu_2 \mu_1$ and test whether $\mu_2 \mu_1 = 0$ is an open question, called the Behrens-Fisher problem.
- ▶ Different people use different strategies. Old people will probably be more familiar with Student's approach, which assumes $\sigma_1 = \sigma_2$.
- ▶ The modern approach (used in our text) is Welch's *t*-test. Along with randomization techniques (like we simulated with shuffling cards), this is the current standard approach.

- Now, imagine μ_1 , μ_2 , σ_1 and σ_2 are unknown. From each population, we take a random sample, and then we wish to infer a confidence interval for $\mu_2 \mu_1$ or test whether there is evidence to disprove $\mu_2 \mu_1 = 0$.
- ▶ How best to determine (from 2 samples) a confidence interval for $\mu_2 \mu_1$ and test whether $\mu_2 \mu_1 = 0$ is an open question, called the Behrens-Fisher problem.
- ▶ Different people use different strategies. Old people will probably be more familiar with Student's approach, which assumes $\sigma_1 = \sigma_2$.
- ► The modern approach (used in our text) is Welch's *t*-test. Along with randomization techniques (like we simulated with shuffling cards), this is the current standard approach.
- Welch test's main drawback is the annoyingly complicated formula for determining degrees of freedom.

Now, imagine μ_1 , μ_2 , σ_1 and σ_2 are unknown.

Now, imagine μ_1 , μ_2 , σ_1 and σ_2 are unknown. Let $\overline{x_1}$ represent the (known) mean of first measurements.

Now, imagine μ_1 , μ_2 , σ_1 and σ_2 are unknown.

Let $\overline{x_1}$ represent the (known) mean of first measurements.

Let $\overline{x_2}$ represent the (known) mean of second measurements.

Now, imagine μ_1 , μ_2 , σ_1 and σ_2 are unknown.

Let $\overline{x_1}$ represent the (known) mean of first measurements.

Let $\overline{x_2}$ represent the (known) mean of second measurements.

Due to our uncertainty in $\mu_2 - \mu_1$ and σ_1 and σ_2 , we use a t distribution.

Now, imagine μ_1 , μ_2 , σ_1 and σ_2 are unknown.

Let $\overline{x_1}$ represent the (known) mean of first measurements.

Let $\overline{x_2}$ represent the (known) mean of second measurements.

Due to our uncertainty in $\mu_2 - \mu_1$ and σ_1 and σ_2 , we use a t distribution.

Standard error:

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}}$$

Now, imagine μ_1 , μ_2 , σ_1 and σ_2 are unknown.

Let $\overline{x_1}$ represent the (known) mean of first measurements.

Let $\overline{x_2}$ represent the (known) mean of second measurements.

Due to our uncertainty in $\mu_2 - \mu_1$ and σ_1 and σ_2 , we use a t distribution.

Standard error:

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}}$$

Confidence interval:

$$\mu_2 - \mu_1 \approx (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

Now, imagine μ_1 , μ_2 , σ_1 and σ_2 are unknown.

Let $\overline{x_1}$ represent the (known) mean of first measurements.

Let $\overline{x_2}$ represent the (known) mean of second measurements.

Due to our uncertainty in $\mu_2 - \mu_1$ and σ_1 and σ_2 , we use a t distribution.

Standard error:

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}}$$

Confidence interval:

$$\mu_2 - \mu_1 \approx (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

Hypothesis testing:

$$t_0 = \frac{(\overline{x_2} - \overline{x_1}) - (\mu_2 - \mu_1)_0}{SE}$$

Now, imagine μ_1 , μ_2 , σ_1 and σ_2 are unknown.

Let $\overline{x_1}$ represent the (known) mean of first measurements.

Let $\overline{x_2}$ represent the (known) mean of second measurements.

Due to our uncertainty in $\mu_2 - \mu_1$ and σ_1 and σ_2 , we use a t distribution.

Standard error:

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}}$$

Confidence interval:

$$\mu_2 - \mu_1 \approx (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

Hypothesis testing:

$$t_0 = \frac{(\overline{x_2} - \overline{x_1}) - (\mu_2 - \mu_1)_0}{SE}$$

Degrees of freedom:

$$df = \frac{\left(\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}\right)^2}{\frac{(s_1)^4}{(n_1)^3 - (n_1)^2} + \frac{(s_2)^4}{(n_2)^3 - (n_2)^2}}$$

Approximation for calculations by hand

Welch's t test has a gnarly formula for df.

$$df = \frac{\left(\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}\right)^2}{\frac{(s_1)^4}{(n_1)^3 - (n_1)^2} + \frac{(s_2)^4}{(n_2)^3 - (n_2)^2}}$$

The formula for degrees of freedom is annoying to evaluate for mere mortals. So, unless otherwise instructed, we will use a conservative estimate (conservative w.r.t. type I error).

$$\mathsf{df} \approx \min(n_1,\,n_2) - 1$$

Approximation for calculations by hand

Welch's t test has a gnarly formula for df.

$$df = \frac{\left(\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}\right)^2}{\frac{(s_1)^4}{(n_1)^3 - (n_1)^2} + \frac{(s_2)^4}{(n_2)^3 - (n_2)^2}}$$

The formula for degrees of freedom is annoying to evaluate for mere mortals. So, unless otherwise instructed, we will use a conservative estimate (conservative w.r.t. type I error).

$$\mathsf{df} \approx \min(n_1,\,n_2) - 1$$

Don't be surprised if other texts (or people) tell you to use $df=n_1+n_2-2$. We only use this if we have a strong argument for why we believe $\sigma_1=\sigma_2$.

Hypotheses under paired and unpaired

With paired data, the statistic is a mean of differences. Usually we are wondering whether the population mean of differences is 0.

$$H_0: \quad \mu_{diff} = 0$$

$$H_A: \quad \mu_{diff} \neq 0$$

With unpaired data, the statistic is a difference of means. Usually we are wondering whether the difference of population means is 0.

$$H_0: \quad \mu_2 - \mu_1 = 0$$

$$H_A: \ \mu_2 - \mu_1 \neq 0$$

Hypotheses under paired and unpaired (other notation)

With paired data, the statistic is a mean of differences. Usually we are wondering whether the population mean of differences is 0.

$$H_0: E(X_2 - X_1) = 0$$

 $H_A: E(X_2 - X_1) \neq 0$

▶ With unpaired data, the statistic is a difference of means. Usually we are wondering whether the difference of population means is 0.

$$H_0: E(X_2) - E(X_1) = 0$$

$$H_A: E(X_2) - E(X_1) \neq 0$$

Example problem

An experiment has $n_1=4$ plants in the treatment group and $n_2=6$ plants in the control group. After some time, the plants' heights (in cm) are measured, resulting in the following data:

		value2	value3		value5	value6
sample 1:		14.2	19.4	17.3		
sample 2:	10.3	9.9	9.4	11	10.4	10.7

- 1. Determine degrees of freedom.
- 2. Determine t^* for a 98% confidence interval.
- 3. Determine SE.
- 4. Determine a lower bound of the 98% confidence interval of $\mu_2 \mu_1$.
- 5. Determine an upper bound of the 98% confidence interval of $\mu_2 \mu_1$.
- 6. Determine $|t_{\rm obs}|$ under the null hypothesis $\mu_2 \mu_1 = 0$.
- 7. Determine a lower bound of the two-tail *p*-value.
- 8. Determine an upper bound of two-tail p-value.
- 9. Do you reject the null hypothesis with a two-tail test using a significance level $\alpha=0.02?$ (yes or no)

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{x_1} = 16.8$$
 $\overline{x_2} = 10.3$
 $s_1 = 2.15$
 $s_2 = 0.571$

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{x_1} = 16.8$$
 $\overline{x_2} = 10.3$
 $s_1 = 2.15$
 $s_2 = 0.571$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{x_1} = 16.8$$
 $\overline{x_2} = 10.3$
 $s_1 = 2.15$
 $s_2 = 0.571$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

$$df = \min(n_1, n_2) - 1 = \min(4, 6) - 1 = 3$$

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{x_1} = 16.8$$
 $\overline{x_2} = 10.3$
 $s_1 = 2.15$
 $s_2 = 0.571$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

$$df = \min(n_1, n_2) - 1 = \min(4, 6) - 1 = 3$$

We use the t table to find t^{\star} such that $P(|T| < t^{\star}) = 0.98$

$$t^{\star} = 4.54$$

We use the SE formula for unpaired data.

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{x_1} = 16.8$$
 $\overline{x_2} = 10.3$
 $s_1 = 2.15$
 $s_2 = 0.571$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

$$df = \min(n_1, n_2) - 1 = \min(4, 6) - 1 = 3$$

We use the t table to find t^{\star} such that $P(|T| < t^{\star}) = 0.98$

$$t^* = 4.54$$

We use the SE formula for unpaired data.

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}} = \sqrt{\frac{(2.15)^2}{4} + \frac{(0.571)^2}{6}} = 1.1$$

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

 $CI = (-11.494, -1.506)$

We find t_{obs} .

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

 $CI = (-11.494, -1.506)$

We find t_{obs} .

$$t_{\text{obs}} = \frac{(\overline{x_2} - \overline{x_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(10.3 - 16.8) - 0}{1.1} = -5.91$$

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

 $CI = (-11.494, -1.506)$

We find t_{obs} .

$$t_{\rm obs} = \frac{(\overline{x_2} - \overline{x_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(10.3 - 16.8) - 0}{1.1} = -5.91$$

We find $|t_{obs}|$.

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

 $CI = (-11.494, -1.506)$

We find t_{obs} .

$$t_{\rm obs} = \frac{(\overline{x_2} - \overline{x_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(10.3 - 16.8) - 0}{1.1} = -5.91$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 5.91$$

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

 $CI = (-11.494, -1.506)$

We find t_{obs} .

$$t_{\rm obs} = \frac{(\overline{x_2} - \overline{x_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(10.3 - 16.8) - 0}{1.1} = -5.91$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 5.91$$

We use the table to determine bounds on p-value. Remember, $d\!f=3$ and p-value $=P(|T|>|t_{\rm obs}|).$

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

$$CI = (-11.494, -1.506)$$

We find t_{obs} .

$$t_{\rm obs} = \frac{(\overline{x_2} - \overline{x_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(10.3 - 16.8) - 0}{1.1} = -5.91$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 5.91$$

We use the table to determine bounds on p-value. Remember, $d\!f=3$ and p-value $=P(|T|>|t_{\rm obs}|).$

$$0.005 < p$$
-value < 0.01

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

$$CI = (-11.494, -1.506)$$

We find t_{obs} .

$$t_{\rm obs} = \frac{(\overline{x_2} - \overline{x_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(10.3 - 16.8) - 0}{1.1} = -5.91$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 5.91$$

We use the table to determine bounds on p-value. Remember, $d\!f=3$ and p-value $=P(|T|>|t_{\rm obs}|).$

$$0.005 < p$$
-value < 0.01

We should consider both comparisons to make our decision.

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

$$CI = (-11.494, -1.506)$$

We find t_{obs} .

$$t_{\rm obs} = \frac{(\overline{x_2} - \overline{x_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(10.3 - 16.8) - 0}{1.1} = -5.91$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 5.91$$

We use the table to determine bounds on p-value. Remember, $d\!f=3$ and p-value $=P(|T|>|t_{\rm obs}|).$

$$0.005 < p$$
-value < 0.01

We should consider both comparisons to make our decision.

$$|t_{\sf obs}| > t^{\star}$$
 p -value $< lpha$

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

$$CI = (-11.494, -1.506)$$

We find t_{obs} .

$$t_{\rm obs} = \frac{(\overline{x_2} - \overline{x_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(10.3 - 16.8) - 0}{1.1} = -5.91$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 5.91$$

We use the table to determine bounds on p-value. Remember, $d\!f=3$ and p-value $=P(|T|>|t_{\rm obs}|).$

$$0.005 < p$$
-value < 0.01

We should consider both comparisons to make our decision.

$$|t_{\rm obs}| > t^{\star}$$

$$p$$
-value $< \alpha$

Thus, we reject the null hypothesis. Also notice the confidence interval does not contain 0.

Answer list

- 1. 3
- 2. 4.54
- 3. 1.1
- 4. -11.494
- **5**. -1.506
- 6. 5.909
- 7. 0.005
- 8. 0.01
- 9. yes

Example problem 2

An experiment has $n_1 = 6$ plants in the treatment group and $n_2 = 8$ plants in the control group. After some time, the plants' heights (in cm) are measured, resulting in the following data:

	•		_ \							
		va	lue1	value2	value	3 value4	1 value!	5 value6	value7	value8
Ì	sample 1:	0	.81	0.98	1.39	1.34	0.78	1.11		
	sample 2:	1	.31	1.3	1.45	1.42	1.22	1.37	1.34	1.31

- 1. Determine degrees of freedom.
- 2. Determine t^* for a 98% confidence interval.
- 3. Determine SE.
- 4. Determine a lower bound of the 98% confidence interval of $\mu_2 \mu_1$.
- 5. Determine an upper bound of the 98% confidence interval of $\mu_2 \mu_1$.
- 6. Determine $|t_{\text{obs}}|$ under the null hypothesis $\mu_2 \mu_1 = 0$.
- 7. Determine a lower bound of the two-tail *p*-value.
- 8. Determine an upper bound of two-tail p-value.
- 9. Do you reject the null hypothesis with a two-tail test using a significance level $\alpha=0.02$? (yes or no)

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{x_1} = 1.07$$
 $\overline{x_2} = 1.34$
 $s_1 = 0.259$
 $s_2 = 0.0729$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

$$df = \min(n_1, n_2) - 1 = \min(6, 8) - 1 = 5$$

We use the t table to find t^{\star} such that $P(|T| < t^{\star}) = 0.98$

$$t^{\star} = 3.36$$

We use the SE formula for unpaired data.

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}} = \sqrt{\frac{(0.259)^2}{6} + \frac{(0.0729)^2}{8}} = 0.109$$

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

$$CI = (-0.096, 0.636)$$

We find t_{obs} .

$$t_{\rm obs} = \frac{(\overline{x_2} - \overline{x_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(1.34 - 1.07) - 0}{0.109} = 2.48$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 2.48$$

We use the table to determine bounds on p-value. Remember, $d\!f=5$ and p-value $=P(|T|>|t_{\rm obs}|).$

$$0.05 < p$$
-value < 0.1

We should consider both comparisons to make our decision.

$$|t_{\sf obs}| < t^{\star}$$
 $p ext{-value} > lpha$

Thus, we retain the null hypothesis. Also notice the confidence interval does contain 0.

Answer list

- 1. 5
- 2. 3.36
- 3. 0.109
- 4. -0.096
- **5**. 0.636
- 6. 2.481
- 7. 0.05
- 8. 0.1
- 9. no