1.2, 2.2, 2.9, 2.10, 2.11, 2.23, 2.32, 2.40, 2.41.

Exercise 1.2 Let (X, d_X) and (Y, d_Y) be metric spaces, and let E be a subset of X. Let $f: E \to Y$ be a function, and let p be a limit point of E in X. Prove that $f(x) \to q$ as $x \to p$ if and only if for every $\epsilon > 0$, there exists $\delta > 0$ such that $x \in E$ and $0 < d_X(x, p) < \delta$ imply together that $d_Y(f(x), q) < \epsilon$.

For \to , let $x \in E$ and for some $\delta > 0$. Since p is a lim point of E, \exists some δ s.t. $x \in B_X(p,\delta)$. $x \to p$ means for every $\delta > 0 \exists N \in \mathbb{N}$ s.t. $n \ge N$ that $x_n \in B_X(p,\delta)$. $f(x) \to q$ means for every $\epsilon > 0 \exists N \in \mathbb{N}$ s.t. for $n \ge \mathbb{N}$, $f(x_n) \in B_Y(q,\epsilon)$. This says that $d(f(x),q) < \epsilon$. For \leftarrow , since p is limit point, \exists a sequence $(x_n)_{n=1}^{\infty}$ in $E \setminus \{p\}$ which converges to p in X so $x \to p$. This satisfies $x \in E$ and $0 < d_X(x,p) < \delta$ for some $\delta > 0$. For every $\epsilon > 0$ if $d_Y(f(x),q) < \epsilon$ implies $f(x_n) \in B_Y(q,\epsilon)$ s.t. $\exists N \in \mathbb{N}$ s.t. for $n \ge \mathbb{N}$.

Exercise 2.2 Let (X, d_X) and (Y, d_Y) be metric spaces; let $f : X \to Y$ be a function. Prove that f is continuous at $p \in X$ if and only if for every $\epsilon > 0$, there exists $\delta > 0$ such that $x \in B_X(p, \delta)$ implies $f(x) \in B_Y(f(p), \epsilon)$.

Let $x \in B_X(p, \delta)$ for some $\delta > 0$. By def. of f being continuous, $x \in B_X(p, \delta)$ implies for every neighborhood V of f(p), $f(x) \in V$. This includes neighborhoods with every $\epsilon > 0$ so $f(x) \in B_Y(f(p), \epsilon)$. For \to , for every $\epsilon > 0$, $\exists \delta > 0$ s.t. $x \in B_X(p, \delta) \to f(x) \in B_Y(f(p), \epsilon)$. Let $B_Y(f(p), \epsilon)$ be a neighborhood V of f(p). If $f(x) \in B_Y(f(p), \epsilon)$, $x \in B_X(p, \delta)$ for some δ which is a neighborhood of p in X so f is continuous.

Exercise 2.9 Assume $f : \mathbb{R} \to \mathbb{R}$ is a function satisfying $\lim_{h\to 0} [f(x+h) - f(x-h)] = 0$, for all $x \in \mathbb{R}$. Does it follow that f must be continuous? If so, give a proof; if not, give a counterexample.

No, define $f(x) \in \mathbb{R}$ to be x if $x < x_0, -x_0 if x = x_0, xif x > x_0$. So essentially, there is a hole in the linear function such that it is defined at another point. x_0 is a limit point of f(x) but $\lim_{x\to x_0} f(x) \neq f(x_0)$.

Exercise 2.10 Let (X, d_X) and (Y, d_Y) be metric spaces and $f: X \to Y$ a function.

- 1. Show that f is continuous if and only if $f^{-1}(C)$ is closed on X whenever C is closed in Y.
- 2. Show that $f: X \to Y$ is continuous if and only if $f(\overline{A}) \subset \overline{f(A)}$ for every subset A of X.
- 3. Consider the (continuous) function $g : \mathbb{R} \to \mathbb{R}$ given by $g(x) = \frac{1}{1+x^2}$. Give an example of a subset A of \mathbb{R} such that $g(\overline{A}) \neq \overline{g(A)}$.

- 1. Let $C \subset Y$ and C is closed. For \rightarrow , because f is continuous, $B = f^{-1}(A)$ is open in X. So, $X \setminus B$ is closed in X. So, $f^{-1}(C) = X \setminus B$. For \leftarrow , $Y \setminus C$ is open in Y. $f^{-1}(Y \setminus C) = X \setminus f^{-1}(C)$ is open so f is continuous by Prop 2.6.
- 2. For \to , $f^{-1}(\overline{f(A)})$ is closed in X. Let $x \in \overline{A} \to f(x) \subset f(\overline{A})$. Since \overline{A} is the smallest closed set containing A, $\overline{A} \subset f^{-1}(\overline{f(A)})$. So $f(\overline{A}) \subset \overline{f(A)}$. For \leftarrow , C is closed in Y so $D = f^{-1}(C)$ needs to be closed in X for f to be continuous. $f(\overline{D}) \subset \overline{f(D)} = f(f^{-1}(C)) \subset \overline{C} = C$. This means that $\overline{D} \subset f^{-1}(C) = D$, making D closed. So, then f is continuous.
- 3. Let $A = [0, \infty)$. $g(\overline{A}) = g([0, \infty]) = (0, 1]$ and $\overline{g(A)} = [0, 1]$.

Exercise 2.11 Let (X, d_X) and (Y, d_Y) be metric spaces and let f and g be continuous functions from X to Y. Assume E is a dense subset of X.

- 1. Prove that f(E) is dense in f(X). (Hint: Use Exercise 1.30) in Chapter 4 and Exercise 2.10 above.)
- 2. Prove that if f(x) = g(x) for all $x \in E$, then f(x) = g(x) for all $x \in X$.
- 1. By 2.10, $f(\overline{E}) \subset \overline{f(E)}$. We want to prove that for an open subset f(C) of Y that $f(E) \cap f(C) \neq \emptyset$. So, $Y \setminus f(C)$ is a closed set in Y then also $f^{-1}(Y \setminus f(C))$ is a closed set in X. $f^{-1}(Y \setminus f(C)) = X \setminus f^{-1}(f(C))$ is closed so $f^{-1}(f(C))$ is open in X. So, $E \cap f^{-1}(f(C)) \neq \emptyset$. So there exists an element $x \in E$ s.t. $x \in f^{-1}(f(C))$ so $f(x) \in f(C)$. So, $f(x) \in f(E) \to f(C) \cap f(E) \neq \emptyset$. So f(E) is dense in f(X).
- 2. Assume by contradiction that $f(a) \neq g(a), a \in X$. Let d(f(a), g(a)) = r > 0. Since f is continuous at a so $\exists \delta_1 > 0$ s.t. $f(B(a, \delta_1)) \subset B(f(a), \frac{r}{4})$. g is continuous at a so $\exists \delta_2 > 0$ s.t. $g(B(a, \delta_2)) \subset B(g(a), \frac{r}{4})$. Take $\delta = \min(\delta_1, \delta_2)$. Then, $f(B(a, \delta)) \subset B(f(a), \frac{r}{4})$ and $g(B(a, \delta)) \subset B(g(a), \frac{r}{4})$. Since E is dense in E so E

Exercise 2.23

- 1. Find a closed subset of E of \mathbb{R} and a continuous function $f : \mathbb{R} \to \mathbb{R}$ is continuous such that f(E) is not closed.
- 2. Find a bounded subset E of \mathbb{R} and a continuous function $f: E \to \mathbb{R}$ such that f(E) is not bounded.
- 3. Show that if *E* is a bounded subset of \mathbb{R} and $f : \mathbb{R} \to \mathbb{R}$ is continuous, then f(E) is bounded.

- 1. Consider the function $f = \arctan(x)$ on the closed interval $[0, \infty)$. f is continuous but does not yield a closed set as f(0) = 0 and $f(\infty) = \frac{\pi}{2}$ so the interval was $[0, \frac{\pi}{2})$.
- 2. Let *E* be the set [0,1] for $\frac{1}{x}$ defined on E. \nexists any *r* such that any ball in \mathbb{R} can contain $\frac{1}{0}$.
- 3. For some $\delta > 0$, $E \subset B_X(p,\delta)$ since E is bounded for some $p \in X$. So by definition of continuity of f, $f(B_X(p,\delta)) \subset B_Y f(p)$, ϵ) so f(E) is bounded.

Exercise 2.32 Prove that the set $R^2 \setminus \{0,0\}$ is path-connected, and therefore connected. Then, use the function $\frac{x}{|x|}$ to show that $S = \{x \in \mathbb{R}^2 : |x| = 1\}$ is connected.

Let $a_0, a_1 \in \mathbb{R}^2 \setminus \{0, 0\}$. So, use polar coordinates for a curve: $a_i = r_i(\cos \theta_i, \sin \theta_i)$ with $r_i > 0$ and let $f(t) = r(t)(\cos \theta(t), \sin \theta(t))$ where $r(t) = (1 - t)r_0 + tr_1$ and $\theta(t) = (1 - t)\theta_0 + t\theta_1$. Then $\theta(0) = \theta_0, \theta(1) = \theta_1, r(0) = r_0, r(1) = r_1 \to f(0) = a_0$ and $f(1) = a_1$. $\forall t \in [0, 1], r(t) > 0$ since $t, 1 - t, r_0, r_1 > 0$. So, $f(t) \neq 0 \forall t$ and therefore f defines path from a_0 to a_1 . So, $\mathbb{R}^2 \setminus \{0, 0\}$ is path-connected and is connected.

Set $f(t) = \frac{a(1-t)+tb}{|a(1-t)+tb|}$. Since $|a(1-t)+tb| \in S$, this will always be constrained to 1. So then f(0) = a, f(1) = b and S is path-connected and thus connected.

Exercise 2.40 Assume $f: X \to Y$ and $g: Y \to Z$ are uniformly continuous functions, where (X, d_X) , (Y, d_Y) , and (Z, d_Z) are metric spaces. Prove that $g \circ f$ is uniformly continuous.

Take (x,y) in X s.t. $d_X(x,y) < \delta(\delta > 0)$ then $d_Y(f(x),f(y)) < \epsilon$. Set $\delta_1 = \epsilon$ so that $d_Y(f(x),f(y)) < \delta_1$ then $d_Z(g(f(x)),g(f(y))) < \epsilon_2$. So for any choice of arbitrary ϵ_2 so $g \circ f$ is uniformly continuous.

Exercise 2.41 Let E be a bounded subset of \mathbb{R}^k and let $f: E \to \mathbb{R}$ be a uniformly continuous function. Show that f is bounded. (Hint: You will need to use compactness of \overline{E} at some point.)

 \overline{E} is closed and bounded so it is compact. Because \overline{E} is compact, it can be written as $\bigcup_{i=1}^n B_{R^k}(x_i, \delta)$ which is a finite open cover. Uniform continuity of f states that for $d(x, y) < \delta$ in $x, y \in \mathbb{R}^k$ then $d(f(x), f(y)) < \epsilon$. Get the max distance of all $f(x_i)$ with each other and add ϵ and set this quantity to r. Then choose any $f(x_i)$ as center as $B_X(f(x_i), r)$ so f is bounded.