

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICAL LITERACY P2

FEBRUARY/MARCH 2015

MEMORANDUM

MARKS: 150

Symbol	Explanation
M	Method
M/A	Method with accuracy
CA	Consistent accuracy
A	Accuracy
С	Conversion
S	Simplification
RT/RG	Reading from a table/Reading from a graph
SF	Correct substitution in a formula
O	Opinion/Example
P	Penalty, e.g. for no units, incorrect rounding off, etc.
R	Rounding off
NPR	No penalty for rounding

This memorandum consists of 14 pages.

Ques	Solution	Explanation	Level
1.1	Rental: R 12 600 ✓ RT	1RT Correct rental amount	L3
	Salaries: $R 9 715 + R 6 556 = R 16 271 \checkmark CA$	1MA adding 1CA total salaries	
	Packaging R 965,00 × 46,425% OR R 965,00 × (100% – 46,425%) = R 448,00 \checkmark M	1M multiplying %	
	$ \begin{array}{l} $	1CA decreased packaging cost	
	Telephone: R 240 × $\frac{11}{8}$ = R330 \checkmark CA	1M increase in given ratio 1CA telephone cost	
	Transport cost: \checkmark M \checkmark MA = R 34 238 - (R 16 271 + R 517 + R 330 + R 12 600)	1M subtracting 1MA adding values	
	= R 4 520 ✓CA	1CA transport cost (10)	
1.2	January: $\frac{46487}{142702} \times 100\% = 32,58\% \checkmark CA$	1MA Using correct values and calculating the mark	L2
	February: $\frac{466663}{150349} \times 100\% = 31,04\% \checkmark CA$	up 1CA for calculating January mark-up % 1CA for calculating February mark-up %	
	March: $\frac{59\ 046}{162\ 215} \times 100\% = 36,4\% \checkmark CA$	1CA for calculating March mark-up %	
	The highest average percentage mark-up was in March	10 Choice (5)	

Ques	Solution	Explanation	Level
1.3	Total net income for the first quarter = R19 885 + R18 936 + R24 808	1MA total net income	L4
	= R63 629 ✓MA Average net income per month = R63 629 ÷ 3 = R21 209,67 ✓CA	1CA ave. monthly income	
	Projected amount = R21 209,67 × 12 = R254 516 ✓ CA	1CA calculating estimated net income per year.	
	The projected amount is valid ✓O	1O validity	
	OR	OR	
	Total net income for the first quater = R19 885 + R18 936 + R24 808 = R63 629 ✓MA	1MA calculating total net income	
	Projected amount = R63 629 \times 4 \checkmark CA	1CA multiplying with 4	
	= R254 516 ✓CA	1CA estimated net income	
	The projected amount is valid	1O validity (4)	
1.4.1	Handbags ✓✓A	2A correct product (2)	L2
1.4.2	Width ≈ 5 cm ✓A	1 A measurement	L3
	∴ Actual width = $5 \times 100 \text{ cm } \checkmark \text{M}$	1M using scale	
	= 500 cm or 5 m√CA	1CA actual width	
		[Accept measurements from 4,8 cm to 5,2 cm] (3)	

Ques	Solution	Explanation	Level
1.5	Volume of a cylinder = $\pi \times (\text{radius})^2 \times \text{height}$		L3
	$100 \text{ ml} = 3,142 \times (\text{radius})^2 \times 4 \text{ cm} \checkmark \text{SF}$	1SF substitution	
	$100 \text{ cm}^3 = 12,568 \text{ (radius)}^2$	1C converting to cm ³	
	$\frac{100}{12,568} = \frac{12,568 (\text{radius})^2}{12,568} \checkmark MA$	1MA simplifying	
	$7,956715468 = (radius)^2$		
	$\sqrt{7,956715468} = \sqrt{(\text{radius})^2}$		
	$2,82076505 = \text{radius} \checkmark \text{CA}$	1CA radius	
	Diameter = 2,82076505 × 2 cm = 5,6415301 cm ✓ CA	1CA diameter (5)	

Ques	Solution	Explanation	Level
1.6.2	Approximately 540 km ✓✓ RG	2RG values between 520 km and 575 km (2)	L3
1.6.3	Toyota Yaris: Approx R2 390 ✓ RG ✓ O The Toyota Yaris will be the cheapest when travelling a distance of 1 850 km	1RG reading correct value 1O for choice (2)	L3

QUES	QUESTION 2 [31 MARKS]			
Ques	Solution	Explanation	Level	
2.1.1	South West ✓ ✓ A	2A direction (2)	L2	
2.1.2	Aqua scene ✓ A Darwin Entertainment Centre ✓ A	1A for each of the places of interest (2)	L2	
2.1.3	Turn left into McMinn Street continue till reaching Stuart HWY. ✓ A Turn right onto Stuart HWY continue till you reach Bagot Rd. ✓ A Turn left onto Bagot Rd continue north and at Rapid Creek, turn left onto Trower Rd. Proceed on this road till you see the shopping centre on your left hand side.	1A left into McMinn Street 1A right Stuart 1A left Bagot 1A left Trower	L2	
2.1.4	Distance = average speed × time 12,4 km = average speed × 18 min \checkmark SF 12,4 km = average speed × $\frac{18}{60}$ hours \checkmark C Average Speed = $\frac{12,4 \text{ km}}{\frac{18}{60}}$ hour = 41,3 km/h \checkmark CA The travel time is due to slow traffic flow since an average speed of 60 km/h is normal in built up areas.	1SF substitution 1C conversion 1CA average speed 1O justification	L4	
		(4)		

Ques	Solution	Explanation	Level
2.2.1	ATM cash withdrawal fee for R500 = R 3,50 + 1,1% of value = R 3,50 + 1,1% \times R500 \checkmark SF = R 9,00 \checkmark CA	1 SF Using correct fee and substitution 1CA Amount	L4
	Four ATM cash withdrawals of R500 each = $4 \times R9,00 = R36,00$	1CA Calculating fee	
	Five debit orders = $5 \times R12,00 = R60,00$ \checkmark CA	1CA Calculating fee	
	Seven debit card purchases = $7 \times R0,00 = R0,00 \checkmark A$	1A no fee for debit	
	Cash Deposit fee (in branch) = R 11,00 + 1,35% of value $<$ SF = R 11,00 + 1,35% \times R4 500 $<$ SF = R 71,75 \checkmark CA	1SF correct formula 1CA amount	
	Monthly fee = $R36,00 + R60,00 + R0,00 + R71,75$ \checkmark MA = $R167,75$ \checkmark CA	1MA adding values 1 CA monthly fee (9)	
2.2.2	Number of times more = $\frac{R167,75}{R53}$ MA = 3,165 \checkmark CA	1MA calculating the number of times 1CA the rounded value	L4
	More than three times the minimum monthly fee Elizabeth was correct.	10 verification	
	OR	OR	
	✓ M $3 \times R53 = R159$ ✓ CA R167,75 is more than three times the minimum monthly fee Elizabeth was correct ✓ O	1M multiplying 1CA the amount 1O verification	
		(3)	L2
2.2.3	Fixed monthly option = R 104,00 Four ATM cash withdrawals of R500,00 each = R0,00 Five debit orders = R0,00		
	Seven debit card purchases $= R0,00 \checkmark A$ One cash deposit of R 4 500,00 each $= R0,00$	2ACost of transactions	
	Monthly fee = $R104,00 \checkmark A$	1A for fee of R104,00 (3)	
2.2.4	She can use her bank/debit card to pay for these goods and services.	2 O reason	L4
	Once-off withdrawal equivalent to four times the weekly amount spend to deduct each month.	2 O reason	
		(4)	

QUES	STION 3 [25 MARKS]		
Ques		Explanation	Level
3.1.1	2 655 km : 1 650 miles $ \frac{2655 \text{ km}}{2655} : \frac{1650 \text{ miles}}{2655} \checkmark \text{MA} $ 1 km = 0,6214689266 miles 1 km ≈ 0,6215 miles \checkmark S 2 655 km : 1 650 miles $ \frac{2655 \text{ km}}{1650} : \frac{1650 \text{ miles}}{1650} \checkmark \text{MA} $ 1,6090909 km = 1 mile 1,6 km ≈ 1 mile \checkmark S	1MA dividing 1S simplification (2)	L3
3.1.2	Greenland is an irregular shape, $\checkmark\checkmark$ O and it is not a rectangle.	2O explanation (2)	L4
3.1.3	✓ A April 6 days + May 31 days + June 30 days + July 31 days + ✓ A August 18 days = 116 days ✓ C A The midnight sun lasts 116 days	1A 6 days in April 1A 18 days in August 1A rest of the months 1CA total days	L3
3.2.1	Population density = $\frac{\text{Total number of persons living on the island}}{\text{ice-free area (in km}^2)}$		L3
	$= \frac{56\ 370\ \text{persons}}{2\ 166\ 086 \times 19\%\ \text{km}^2} \checkmark \text{A}$	1SF substituting 1A 19 %	
	$= \frac{56370 \text{persons}}{411 556,34 \text{km}^2} \checkmark \text{CA}$ $= 0,1369678815 \text{persons/km}^2$ $\approx 0,1 \text{persons/km}^2 \checkmark \text{CA}$	1CA ice-free area 1CA population density (4)	
3.2.2	Number of indigenous persons living in Nuuk in 2003	1A 75 % 1RG number of inhabitants [accept values from 8 000 but less that 10 000] 1CA number of indigenous persons	L3

Please turn over

Ques	Solution	Explanation	Level
3.2.3	4 ✓A ✓A	2A number of towns (2)	L2
3.3.1	Range = Highest value – Lowest value = $(0.6 \text{ °C}) - (-28.9 \text{ °C})$ \checkmark MA = 29.5 °C \checkmark CA	1MA concept of range 1CA range (2)	L2
3.3.2	Monthly maximum and minimum 40 30 20 10 -10 -20 -30 -40 Jan Feb Mar Apr May Jun	temperature data for Ivituut	L3
	Months	S	
	$1A \times 6$ for each bar plotted correctly	(6)	

11

Questio	on 4 (27 marks)		
Ques	Solution	Explanation	Level
4.1.1	$P = \frac{342\ 171}{1300\ 771} \stackrel{\checkmark}{\checkmark} A$ $\approx 0,263 \stackrel{\checkmark}{\checkmark} CA$	1A total light vehicle learner licenses 1A total number of learner licences 1CA probability in decimal form (3)	L3
		(3)	L3
4.1.2	Gauteng: 102 191 : 293 094 1 : 293094 102191 ✓ MA ∴ 1 : 2,868 ✓ CA Limpopo: 8 234 : 98 151 98 151	1A working with the correct values 1MA dividing to find unit ratio 1CA simplification	
	$1: \frac{98151}{8234}$ $\therefore 1: 11,925 \checkmark CA$	1CA simplification	
	The ratio for Limpopo is higher than for Gauteng ✓ O	1O comparison (5)	
4.1.3	Gauteng: $\frac{415818}{1300771} \times 100\%$ $\approx 32\% \checkmark \text{CA}$ Limpopo: $\frac{107702}{1300771} \times 100\%$	1CA percentage	L2(2) L4(2)
	≈8,3% ✓ CA ✓ ✓ J	1CA percentage	
	The population of Limpopo is less than that of Gauteng. OR The main mode of transport in Gauteng is cars. OR Any other valid reason	2J reason (4)	
4.1.4	She needs to compare the number of learners who passed the Light Motor vehicle licence to the total number of learners who wrote the test for light motor vehicle licence. OR Table 4 data cannot be used to calculate the probability of passing	3J reason	L4
	OR		
	Incorrect data/wrong data was used	(3)	

Copyright reserved

Ques	Solution	Explanation	Level
4.2.1	Drivers have very little driving experience. ✓✓ O	2O explanation	L4
		(2)	
4.2.2 (a)	Amount to be paid by Keitumetse - compulsory excess payment of R2 000. - payment of R 1 000 for being under 25 years old. ✓ A - payment of R2 000 for drivers' licence of less than 2 years.	1A for R2 000 1A for other 2 amounts	L3
	Total excess to be paid = R5 000 ✓ CA	1CA the total amount	
	Percentage of claim amount = $\frac{5000}{13400,50} \times 100\%$ \checkmark M $\approx 37,31 \%$ \checkmark CA	1M calculating percentage 1CA percentage of his claim (5)	
4.2.2	Amount to be paid by Keitumetse's father		L4
(b)	- Payment of R2 000 for the compulsory excess. RT Insurance compensation = value of damage – excess value	1RT the amount	
	= R13 400,50 - R2 000 = R11 400,50 ✓ MA	1MA the total payable	
	$\frac{11400,50}{13400,50} \times 100\% = 85\% \checkmark \text{CA}$ He is correct; it is more than 80%.	1M percentage calculating 1CA percentage 1O verification	
	,	(5)	

Ques	Solution [30 MARKS]	Explanation	Level
5.1.1	$Median = \frac{P+55}{2} = 55 \checkmark M$	1M concept of median	L3
	$\therefore P = 55 \qquad \checkmark A$	1A value of P	
	Mean = $\frac{\text{sum of the marks}}{\text{total number of students}}$ $49,25 = \frac{1124 + Q}{24} \checkmark CA$	1CA the sum 1124	
	$ \begin{array}{c} 24 \\ 1182 = 1124 + Q \checkmark S \end{array} $	1S the total 1182	
	∴ Q = 58 ✓ CA	1CA value of Q (5)	
5.1.2	$P_{\text{(less than 80\%)}} = \frac{21}{24} \checkmark \text{CA}$	1CA probability	L2
	$=\frac{7}{8}$ OR 0,875 OR 87,5% \checkmark S	1S simplification	
		(2)	
5.1.3	Group A: Quartile $1 = 28$ OR $\frac{23+33}{2} = 28$	1RG estimate the value Q1	L3(5) L4(2)
	Quartile $3 = 75 \checkmark RG$	1RG estimate the value Q3	
	Inter quartile range = $75 - 28$ = $47 \checkmark CA$	1CA the IQR	
	Group B: Inter quartile range = 70 − 30 = 40 ✓ A ∴ Group B has a lower inter quartile range ✓ O	1A group B IQR 1O comparing IQRs	
	✓ A ∴ Group B performed better because they have a higher median and a smaller inter quartile range. ✓ O	1A comparing the median percentages 1O explaining group B did better (7)	

Ques	Solution	Explanation	Level
5.2.1(a)	Both the bath room door and Bedroom 2 door must open to the inside and not the outside as on the plan.	1A identifying the doors 1O explanation	L4
	✓ O If the doors open to the outside the open doors covers the entrance to Bedroom 1 and the master bedroom	1O explanation	
		(3)	T 4
5.2.1(b)	The toilet pans are positioned against the interior walls which make the sewer pipes to run in the walls or under the foundation, which is against building regulation.	10 identifying the position of the toilet pans	L4
	The toilet pans must be positioned next to exterior walls for the sewer pipes to go through the wall.	2O alternative position	
	The master bedroom toilet pan must be moved to the exterior wall next to the window.	(3)	
5.2.2	Family Room and Kitchen	2O identifying the rooms (2)	L4
5 2 2			L4
5.2.3	Actual length = $33 \text{ mm} \times 125$ = $4 \cdot 125 \text{ mm} = 412,5 \text{ cm} \checkmark \text{ CA}$	1A using scale	
	Actual breadth = 28 mm × 125 = 3500 mm = 350 cm ✓ CA	1CA length	
		1CA breadth 1C converting	
	Floor area of the room in $cm^2 = length \times breadth$		
	$= 412,5 \times 350 \\ = 144\ 375 \checkmark CA$	1CA area of room	
	∴ minimum area of the window in cm ² $= 144375 \times 11,5\%$ $= 16603,125 ✓ CA$	1CA area of the window	
	Area of the window in $cm^2 = width \times height$ $16\ 603,125 = 220 \times height$		
	∴ height in cm = $\frac{16603,125}{220}$ ✓ M = 75,46875	1M finding the height	
	≈ 75 ✓ CA	1CA rounding off	
		(8)	