Projet de Maths

Christolomme Alice, Coërchon Colin, El Gerssifi Adam, Martinez Benoît 9 mai 2023

Table des matières

1	Par	tie 1
	1.1	Q3
	1.2	Intervalle de confiance Q3
	1.3	$\mathbb{Q}5$
	1.4	Intervalle de confiance Q5
	1.5	Q6
2	Par	tie 2
	2.1	Q1
		2.1.1 a
		2.1.2 Intervalle de confiance Q1.a
		2.1.3 b
		2.1.4 Intervalle de confiance Q1.b
	2.2	Q2
	2.3	Q3
		2.3.1 intervalle de confiance
	2.4	Q4
		2.4.1 intervalle de confiance
3	Anı	nexes 17
	3.1	
	· · -	3.1.1 Dans le cadre général
		3.1.2 Dans le cadre d'un couple de chaînes de Markoy

1 Partie 1

1.1 Q3

On se donne X_1, X_2, \dots, X_N des aléatoires i.i.d. de Rademacher. C'est-à-dire que :

$$\forall i \in [1, N], \quad \mathbb{P}(X_i = 1) = p \in [0; 1]$$

et $\mathbb{P}(X_i = -1) = q = 1 - p \in [0; 1]$

Donc $\forall i \in [1, N], \quad \Omega(X_i) = \{-1, 1\}.$

Soit S_n la marche aléatoire (avec $n \in [1, N]$) définie par : $S_n = S_0 + \sum_{i=1}^n X_i$. Dans cette question, l'objectif final est de déterminer :

$$\mathbb{P}(S_N \ge 5) = \mathbb{P}\left(\sum_{i=1}^N X_i \ge 0\right)$$

Commençons alors par déterminer : $\forall k \in [-N, N], \quad \mathbb{P}\left(\sum_{i=1}^{N} X_i = k\right)$

• Pour commencer, on pose :

$$\forall n \in [1, N], \quad D_n \triangleq \sum_{i=1}^n \mathbb{1}_{\{X_i=1\}} \text{ et } G_n \triangleq \sum_{i=1}^n \mathbb{1}_{\{X_i=-1\}}$$

On remarque que:

$$D_n + G_n = \sum_{i=1}^n \left(\mathbb{1}_{\{X_i = 1\}} + \mathbb{1}_{\{X_i = -1\}} \right) = \sum_{i=1}^n \mathbb{1}_{\{X_i \in \Omega(X_i)\}} = n$$

Donc:

$$\forall n \in [1, N], \quad D_n + G_n = n$$

Et, on remarque aussi que:

$$D_n - G_n = \sum_{i=1}^n \left(\mathbb{1}_{\{X_i = 1\}} - \mathbb{1}_{\{X_i = -1\}} \right)$$
$$= \sum_{i=1}^n \left(X_i \mathbb{1}_{\{X_i = 1\}} + X_i \mathbb{1}_{\{X_i = -1\}} \right)$$
$$= \sum_{i=1}^n X_i$$

Donc:

$$\forall n \in [1, N], \quad D_n - G_n = \sum_{i=1}^n X_i$$

• On sait par définition des X_k que : $\forall i \in [\![1,n]\!]$, $\mathbb{1}_{\{X_i=1\}} \sim \mathcal{B}(1,p)$. Et, comme les $(X_i)_{1 \leq i \leq n}$ sont indépendantes, les v.a. $(\mathbb{1}_{\{X_i=1\}})_{1 \leq i \leq n}$ le sont aussi. On en déduit alors que :

$$\forall n \in [1, N], \quad D_n \sim \mathcal{B}(n, p)$$

• De ce qui précède, on peut écrire :

$$\forall n \in [1, N], \quad \sum_{i=1}^{n} X_i = D_n - G_n = D_n - (n - D_n) = 2D_n - n$$

Et, comme $D_n \sim \mathcal{B}(n,p)$, on en déduit que :

$$\forall n \in [1, N], \ \forall k \in [0, n], \quad \mathbb{P}(D_n = k) = \binom{n}{k} p^k (1 - p)^{n - k}$$

• Ainsi, $\forall n \in [1, N], \forall k \in [-n, n],$

$$\mathbb{P}\left(\sum_{i=1}^{n} X_{i} = k\right) = \mathbb{P}\left(2D_{n} - n = k\right)$$
 (Si n et k sont de même parité)
$$= \mathbb{P}\left(D_{n} = \frac{n+k}{2}\right)$$
 (On a bien $\frac{n+k}{2} \in \llbracket 0, n \rrbracket$)
$$= \binom{n}{\frac{n+k}{2}} p^{\frac{n+k}{2}} (1-p)^{n-\frac{n+k}{2}}$$

$$= \binom{n}{\frac{n+k}{2}} p^{\frac{n+k}{2}} (1-p)^{\frac{n-k}{2}}$$

• Et si n et k ne sont pas de même parité, c'est-à-dire que $n \not\equiv k$ [2], on a $\frac{n+k}{2} \notin \mathbb{Z}$. Et donc, $\forall n \in [1, N], \forall k \in [-n, n],$

$$\mathbb{P}(2D_n - n = k) = \mathbb{P}\left(D_n = \frac{n+k}{2}\right) = \mathbb{P}(D_n = q) \text{ avec } q \notin \mathbb{Z}$$

Donc, par définition des $D_n \sim \mathbb{B}(n, p)$, on a : $\mathbb{P}\left(\sum_{i=1}^n X_i = k\right) = 0$.

• Finalement, $\forall n \in [1, N], \forall k \in [-n, n],$

$$\left| \mathbb{P}\left(\sum_{i=1}^{n} X_i = k\right) = \begin{cases} \binom{n}{\frac{n+k}{2}} p^{\frac{n+k}{2}} (1-p)^{\frac{n-k}{2}} & \text{si } n \equiv k \ [2] \\ 0 & \text{sinon} \end{cases} \right| \tag{1}$$

Nous pouvons maintenant déterminer $\mathbb{P}(S_N \geq 5)$. On suppose ici que N est pair (on prendra effectivement N = 100 à la fin). On a alors :

$$\mathbb{P}(S_N \ge 5) = \mathbb{P}\left(\sum_{i=1}^N X_i \ge 0\right)$$

$$= \mathbb{P}\left(\bigcup_{k=0}^{N/2} \left\{\sum_{i=1}^N X_i = 2k\right\}\right)$$

$$= \sum_{k=0}^{N/2} \left[\mathbb{P}\left(\sum_{i=1}^N X_i = 2k\right)\right] \qquad \text{(car l'union est disjointe)}$$

$$= \sum_{k=0}^{N/2} \binom{N}{\frac{N}{2} + k} p^{\frac{N}{2} + k} (1 - p)^{\frac{N}{2} - k}$$

Dans notre exemple, la marche aléatoire est symétrique, c'est-à-dire que $p=\frac{1}{2}$. On a donc :

$$\mathbb{P}(S_N \ge 5) = \frac{1}{2^N} \sum_{k=0}^{N/2} \binom{N}{\frac{N}{2} + k}$$

Nous allons maintenant simplifier cette somme:

$$\sum_{k=0}^{N/2} \binom{N}{\frac{N}{2}+k} = \sum_{k=0}^{N/2} \binom{N}{N-\left(\frac{N}{2}+k\right)} = \sum_{k=0}^{N/2} \binom{N}{\frac{N}{2}-k} = \sum_{k'=0}^{N/2} \binom{N}{k'}$$

Et d'après l'identité du binôme de Newton, on a : $\sum_{k=0}^{N} {N \choose k} = 2^{N}$. Donc :

$$2^{N} = \sum_{k=0}^{N} \binom{N}{k} = \sum_{k=0}^{N/2} \binom{N}{k} + \sum_{k=N/2}^{N} \binom{N}{k} - \binom{N}{\frac{N}{2}}$$

$$= 2 \sum_{k=0}^{N/2} \binom{N}{k} - \binom{N}{\frac{N}{2}} \qquad (\operatorname{car} \binom{N}{k}) = \binom{N}{N-k}$$

$$\Longrightarrow \sum_{k=0}^{N/2} \binom{N}{k} = \frac{1}{2} \left(2^{N} + \binom{N}{\frac{N}{2}} \right)$$

Donc, finalement:

$$\mathbb{P}(S_N \ge 5) = \frac{1}{2^N} \sum_{k=0}^{N/2} \binom{N}{k} = \frac{1}{2} \left(1 + \frac{1}{2^N} \binom{N}{\frac{N}{2}} \right)$$

Remarque:

On retrouve la même formule en remarquant, par symétrie, lorsque $p=\frac{1}{2}$, que :

$$\forall n \in [1, N], \forall k \in [0, n], \quad \mathbb{P}(S_n - S_0 = k) = \mathbb{P}(S_n - S_0 = -k)$$

$$\implies \quad \mathbb{P}(S_n - S_0 > 0) = \mathbb{P}(S_n - S_0 < 0)$$

Et, en sachant que : $\forall n \in [1, N], \ \mathbb{P}(S_n - S_0 < 0) + \mathbb{P}(S_n - S_0 = 0) + \mathbb{P}(S_n - S_0 > 0) = 1.$ On a :

$$2 \mathbb{P}(S_N - S_0 > 0) + \mathbb{P}(S_N - S_0 = 0) = 1$$

$$\Rightarrow 2 \mathbb{P}(S_N - S_0 \ge 0) - \mathbb{P}(S_N - S_0 = 0) = 1$$

$$\Rightarrow \mathbb{P}(S_N - S_0 \ge 0) = \frac{1}{2} \left[1 + \mathbb{P}(S_N - S_0 = 0) \right]$$

$$\Rightarrow \mathbb{P}(S_N \ge 5) = \frac{1}{2} \left[1 + \mathbb{P}\left(\sum_{i=1}^N X_i = 0\right) \right]$$

$$\Rightarrow \mathbb{P}(S_N \ge 5) = \frac{1}{2} \left(1 + \frac{1}{2^N} \binom{N}{\frac{N}{2}} \right)$$
(en utilisant 1 avec $p = \frac{1}{2}$)

On applique alors notre formule avec N = 100. On a alors :

$$\boxed{\mathbb{P}(S_{100} \ge 5) = \frac{1}{2} \left(1 + \frac{1}{2^{100}} {100 \choose 50} \right) \approx 0,5398}$$

1.2 Intervalle de confiance Q3

Nous venons de déterminer la *vraie* probabilité associée à $\mathbb{P}(S_N \geq 5)$, que l'on note ici θ^* . Et, empiriquement, nous avons déterminé une estimation $\hat{\theta}_M$ de $\mathbb{P}(S_N \geq 5)$. Pour cela, on a simulé M trajectoires que l'on note : $\forall i \in [1, M]$, $S_N^{(i)}$. Et on s'intéresse alors à :

$$\hat{\theta}_{M} = \frac{\# \left(\text{trajectoires } i \text{ telles que } S_{N}^{(i)} \geq 5 \right)}{M}$$

On peut alors réécrire $\hat{\theta}$ tel que :

$$\hat{\theta}_M = \frac{1}{M} \sum_{i=1}^{M} \mathbb{1}_{\{S_N^{(i)} \ge 5\}}$$

On note pour simplifier : $\forall i \in [1, M]$, $p_i \triangleq \mathbb{1}_{\{S_N^{(i)} \geq 5\}}$. Or, par définition de l'indicatrice, les $(p_i)_{1 < i < M}$ suivent alors chacun une loi de Bernoulli de paramètre θ^* puisque :

$$\forall i \in \llbracket 1, M \rrbracket, \quad \mathbb{E}[p_i] = \mathbb{E}\left[\mathbb{1}_{\{S_N^{(i)} \geq 5\}}\right] = \mathbb{P}\left(S_N^{(i)} \geq 5\right) = \theta^*.$$

Et donc,

$$\forall i \in [1, M], \quad p_i \sim \mathcal{B}(1, \theta^*) \Longrightarrow \begin{cases} \mathbb{E}[p_i] = \theta^* < \infty \\ \operatorname{Var}(p_i) = \theta^* (1 - \theta^*) < \infty \end{cases}$$

Finalement, $\hat{\theta}_M$ est la moyenne empirique de M variables i.i.d de Bernoulli (les p_i). Donc, d'après le **Théorème Central Limite**, on a :

$$\sqrt{M} \frac{\hat{\theta}_M - \theta^*}{\sqrt{\theta^*(1 - \theta^*)}} \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1)$$

Seulement, nous voulons déterminer un intervalle de confiance à 95% de notre estimation, pour ensuite vérifier si θ^* se trouve dans cet intervalle.

Si on ne change rien, notre intervalle de confiance va dépendre de θ^* , ce qui n'est pas du tout souhaitable. On va donc utiliser le théorème de Slutsky pour se ramener à un intervalle de confiance indépendant de θ^* .

Premièrement, comme p_1, p_2, \ldots, p_M sont des variables aléatoires i.i.d, **la loi forte des grands nombres** nous assure que :

$$\hat{\theta}_M = \frac{1}{M} \sum_{i=1}^{M} p_i \xrightarrow{p.s.} \mathbb{E}[p_1] = \theta^*$$

Et donc, on a nécessairement le résultat plus faible suivant :

$$\hat{\theta}_M \xrightarrow{\mathbb{P}} \theta^*$$

Ainsi, en appliquant le théorème de continuité avec la fonction $x \longmapsto \frac{1}{\sqrt{x(1-x)}}$ sur]0,1[, on a :

$$\frac{1}{\sqrt{\hat{\theta}_M(1-\hat{\theta}_M)}} \xrightarrow{\mathbb{P}} \frac{1}{\sqrt{\theta^*(1-\theta^*)}}$$

Par conséquent, d'après le théorème de Slutsky, on en déduit que :

$$\sqrt{M} \frac{\hat{\theta}_M - \theta^*}{\sqrt{\hat{\theta}_M (1 - \hat{\theta}_M)}} \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1)$$

On en déduit donc, en notant u_{α} les quantiles d'ordre α pour la loi $\mathcal{N}(0,1)$, que :

$$\mathbb{P}\left(u_{\frac{\alpha}{2}} \leq \sqrt{M} \frac{\hat{\theta}_{M} - \theta^{*}}{\sqrt{\hat{\theta}_{M}(1 - \hat{\theta}_{M})}} \leq u_{1 - \frac{\alpha}{2}}\right) = 1 - \alpha$$

$$\implies \mathbb{P}\left(\sqrt{\frac{\hat{\theta}_{M}(1 - \hat{\theta}_{M})}{M}} u_{\frac{\alpha}{2}} \leq \hat{\theta}_{M} - \theta^{*} \leq \sqrt{\frac{\hat{\theta}_{M}(1 - \hat{\theta}_{M})}{M}} u_{1 - \frac{\alpha}{2}}\right) = 1 - \alpha$$

Or, on cherche un intervalle de confiance à 95%. Et, on sait que pour $\mathcal{N}(0,1)$, on a : $u_{0,975} \approx 1,96$. On en déduit donc l'intervalle de confiance de notre estimation $\hat{\theta}_M$:

$$C = \left[\hat{\theta}_M - 1,96 \sqrt{\frac{\hat{\theta}_M (1 - \hat{\theta}_M)}{M}}; \, \hat{\theta}_M + 1,96 \sqrt{\frac{\hat{\theta}_M (1 - \hat{\theta}_M)}{M}} \, \right]$$

On trouve pour notre estimateur : $\hat{\theta}_M \approx \text{A REMPLIR}$ (avec M=1000). Et voici alors notre intervalle de confiance à 95% correspondant :

$$IC = [A REMPLIR]$$

Or, on a avait trouvé que $\theta^* = \mathbb{P}(S_N \geq 5) \approx 0,5398$. Ainsi, on remarque effectivement que :

$$\theta^* \in IC$$

1.3 Q5

On a supposé que $(X_i)_{i\geq 0}$ est une chaîne de Markov. Dans notre cas, c'est une suite de variables aléatoires i.i.d à valeurs dans [1,10]. Elle simule le déplacement d'un étudiant à travers les zones numérotées de 1 à 10, selon une matrice de probabilité de transition $P=(p_{i,j})_{1\leq i,j\leq 10}\in]0,1[^{10\times 10}$ (puisque $\forall (i,j)\in [1,10]^2,\ p_{i,j}>0$).

De plus, on peut facilement noter que cette matrice de transition P est nécessairement une matrice stochastique.

En effet, en partant d'une zone i, l'élève doit forcément aller dans une zone j où $j \in [1, 10]$. Ainsi, $(\mathbb{P}(X_{n+1} = j | X_n = i))_{1 \leq j \leq 10}$ définit une probabilité sur [1, 10] (car $(X_n)_{n \geq 0}$ est une chaîne de Markov). Par conséquent :

$$\forall i \in [1, 10], \quad \sum_{j=1}^{10} \mathbb{P}(X_{n+1} = j | X_n = i) = \sum_{j=1}^{10} p_{i,j} = 1$$

On s'intéresse alors ici à $\mathbb{P}(X_3 = 10)$.

On sait que P est la matrice de transition entre les zones. On en déduit que chaque coefficient $p_{i,j}$ de P correspond à la probabilité pour un étudiant de passer de la zone i à la zone j. Et alors, de la même manière, chaque coefficient $p'_{i,j}$ de la matrice P élevée au carré correspond à la probabilité d'aller de la zone i à la zone j en $\mathbf{2}$ étapes. Et en suivant ce raisonnement, chaque coefficient $p''_{i,j}$ de la matrice P^3 correspond à la probabilité d'aller de la zone i à la zone j en $\mathbf{3}$ étapes.

Ainsi, comme $X_0 = 1$ d'après l'énoncé, on a :

Si
$$P^3 = (a_{i,j})_{1 \le i,j \le 10}$$
, alors, $P(X_3 = 10) = a_{1,10}$

1.4 Intervalle de confiance Q5

De la même manière qu'à la question 3, nous venons de déterminer la *vraie* probabilité associée à $\mathbb{P}(X_3 = 10)$, que l'on note encore ici θ^* .

Et, empiriquement, nous avons déterminé une estimation $\hat{\theta}_M$ de $\mathbb{P}(X_3 = 10)$. Pour cela, on a simulé M trajectoires que l'on note : $\forall i \in [1, M], X_3^{(i)}$. Et on s'intéresse alors à :

$$\hat{\theta}_{M} = \frac{\# \left(\text{trajectoires } i \text{ telles que } X_{3}^{(i)} = 10 \right)}{M}$$

Et en suivant strictement les mêmes étapes que dans la question 3, on en déduit donc l'intervalle de confiance de notre estimation $\hat{\theta}_M$ à 95% :

$$C = \left[\hat{\theta}_M - 1,96 \sqrt{\frac{\hat{\theta}_M (1 - \hat{\theta}_M)}{M}}; \, \hat{\theta}_M + 1,96 \sqrt{\frac{\hat{\theta}_M (1 - \hat{\theta}_M)}{M}} \, \right]$$

On trouve pour notre estimateur : $\hat{\theta}_M \approx \text{A REMPLIR}$ (avec M=1000). Et voici alors notre intervalle de confiance à 95% correspondant :

$$IC = [A REMPLIR]$$

Or, on a avait trouvé que $\theta^* = \mathbb{P}(X_3 = 10) \approx A$ REMPLIR. Ainsi, on remarque effectivement que :

$$\theta^* \in IC$$

1.5 Q6

On réitère ce que nous avons fait aux questions 4 et 5, mais cette fois-ci $N \neq 3$ puisque l'étudiant effectue maintenant 100 déplacements à travers ces 10 zones : N = 100.

Donc, comme $X_0 = 1$ d'après l'énoncé, on a :

Si
$$P^{100} = (a_{i,j})_{1 \le i,j \le 10}$$
, alors, $P(X_{100} = 10) = a_{1,10}$

Et, en posant:

$$\hat{\theta}_M = \frac{\# (\text{trajectoires } i \text{ telles que } X_{100}^{(i)} = 10)}{M}$$

L'expression de notre intervalle de confiance à 95% ne change pas :

IC =
$$\left[\hat{\theta}_{M} - 1,96\sqrt{\frac{\hat{\theta}_{M}(1-\hat{\theta}_{M})}{M}}; \hat{\theta}_{M} + 1,96\sqrt{\frac{\hat{\theta}_{M}(1-\hat{\theta}_{M})}{M}}\right]$$

On trouve, cette fois-ci, pour notre estimateur : $\hat{\theta}_M \approx \mathbf{A}$ REMPLIR (avec M=1000). Et voici alors notre intervalle de confiance à 95% correspondant :

$$IC = [A REMPLIR]$$

Or, on a avait trouvé que $\theta^* = \mathbb{P}(X_{100} = 10) \approx A$ REMPLIR. Ainsi, on remarque effectivement que :

 $\theta^* \in IC$

2 Partie 2

2.1 Q1

2.1.1 a

Soit $(X_n)_{n\in\mathbb{N}}$ la chaîne de Markov décrivant la richesse du joueur dans le jeu « la ruine du joueur ».

Soit le temps d'arrêt $\tau_{0,a}$ défini tel que :

$$\tau_{0,a} = \min \{ n \ge 0 \mid X_n = a \text{ ou } X_n = 0 \}$$

On supposera ici que $\mathbb{P}(\tau_{0,a} < \infty) = 1$, et on définit pour tout $x \in \{0,...,a\}$:

$$f(x) = \mathbb{P}(X_{\tau_0} = a | X_0 = x)$$

On sait que f(0) = 0 et que f(a) = 1, et que pour tout entier i tel que 0 < i < a, on a :

$$f(i) = \mathbb{P}(X_{\tau_{0,a}} = a \mid X_0 = i)$$

$$= \sum_{j=0}^{a} \mathbb{P}(X_{\tau_{0,a}} = a \mid X_0 = i, X_1 = j) \mathbb{P}(X_1 = j \mid X_0 = i) \qquad \text{(loi des probabilités totales)}$$

$$= \sum_{j=0}^{a} f(j) p(i, j) \qquad \text{(propriété de Markov)}$$

$$= \sum_{j=0}^{a-1} f(j) p(i, j) + p(i, a) \qquad \text{(car } f(0) = 0 \text{ et } f(a) = 1)$$

D'où le système suivant :

$$\forall i \in \mathbb{N}, \ 0 < i < a, \quad f(i) = p(i, a) + \sum_{j=1}^{a-1} f(j) p(i, j)$$

On peut alors écrire ce système sous forme matricielle, en notant $b=(p(i,a))_{0< i< a}, x=(f(i))_{0< i< a}$ et $M=(p(i,j))_{0< i,j< a}$:

$$\forall i \in \mathbb{N}, \ 0 < i < a, \quad f(i) = p(i, a) + \sum_{j=1}^{a-1} f(j) p(i, j)$$

$$\implies x = b + Mx$$

$$\implies \boxed{[I_{a-1} - M] x = b]}$$

Or, $P = (p(i,j))_{0 \le i,j \le a}$ est une matrice stochastique à coefficients non nuls (déjà vu dans la première partie du projet). Donc, on peut en déduire que la matrice $A = [I_{a-1} - M]$ est une matrice à diagonale strictement dominante.

En effet, on a:

$$\forall i \in [1, a-1], \quad a_{i,i} = 1 - p(i, i)$$
 et
$$\sum_{\substack{j=1\\j \neq i}}^{a-1} a_{i,j} = \sum_{\substack{j=1\\j \neq i}}^{a-1} p(i, j)$$

Et par définition de P, comme $\sum_{i=0}^{a} p(i,j) = 1$ avec p(i,0), p(i,a) > 0, on en déduit que :

$$\forall i \in [1, a - 1], \quad 1 - p(i, i) = \sum_{\substack{j=0 \ j \neq i}}^{a} p(i, j) > \sum_{\substack{j=1 \ j \neq i}}^{a - 1} p(i, j)$$

$$\implies \forall i \in [1, a - 1], \quad |a_{i,i}| > \sum_{\substack{j=1 \ j \neq i}}^{a - 1} a_{i,j}$$

Donc, d'après le **lemme d'Hadamard**, on en déduit que A **est inversible**. Donc, **notre** système admet une unique solution.

Le système matricielle peut être facilement résolue grâce à Python :

. . .

Dans le cadre fixé par le sujet, c'est-à-dire $a=10,\,p=0.5,\,$ on a :

$$\forall x \in [1, a-1], \quad \mathbb{P}(X_{\tau_{0,a}} = a \mid X_0 = x) = \frac{x}{a}$$

Avec évidemment $\mathbb{P}(X_{\tau_{0,a}}=a\,|\,X_0=0)=0$ et $\mathbb{P}(X_{\tau_{0,a}}=a\,|\,X_0=a)=1$. On en conclut donc que :

$$P(X_{\tau_{0,a}} = a \mid X_0 = 5) = 0.5$$

2.1.2 Intervalle de confiance Q1.a

Nous venons de déterminer la *vraie* probabilité associée à $\mathbb{P}(X_{\tau_{0,a}} = a \mid X_0 = 5)$, que l'on note ici p^* .

Et, empiriquement, nous avons déterminé une estimation \widetilde{p} de $\mathbb{P}(X_{\tau_{0,a}} = a \mid X_0 = 5)$. Pour cela, on a simulé M trajectoires que l'on note : $\forall i \in [1, M], X_{\tau}^{(i)}$. Et on s'intéresse alors à :

$$\widetilde{p} = \frac{\# \left(\text{trajectoires } i \text{ pour lesquelles } \tau \leq N \text{ et } X_{\tau}^{(i)} = a \right)}{M}$$

On peut alors réécrire \widetilde{p} tel que :

$$\widetilde{p} = \frac{1}{M} \sum_{i=1}^{M} \mathbb{1}_{\{X_{\tau}^{(i)} = a\}}$$

On note pour simplifier : $\forall i \in [1, M]$, $p_i \triangleq \mathbb{1}_{\{X_{\tau}^{(i)} = a\}}$. Or, par définition de l'indicatrice, les $(p_i)_{1 \leq i \leq M}$ suivent alors chacun une loi de Bernoulli de paramètre p^* puisque :

$$\forall i \in \llbracket 1, M \rrbracket, \quad \mathbb{E}[p_i] = \mathbb{E}\left[\mathbb{1}_{\{X_{\tau}^{(i)} = a\}}\right] = \mathbb{P}\left(X_{\tau}^{(i)} = a\right) = p^*.$$

Et donc,

$$\forall i \in [1, M], \quad p_i \sim \mathcal{B}(1, p^*) \Longrightarrow \begin{cases} \mathbb{E}[p_i] = p^* < \infty \\ \operatorname{Var}(p_i) = p^*(1 - p^*) < \infty \end{cases}$$

Finalement, \widetilde{p} est la moyenne empirique de M variables i.i.d de Bernoulli (les p_i). Donc, d'après le **Théorème Central Limite**, on a :

$$\boxed{\sqrt{M} \frac{\widetilde{p} - p^*}{\sqrt{p^*(1 - p^*)}} \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1)}$$

Seulement, nous voulons déterminer un intervalle de confiance à 95% de notre estimation, pour ensuite vérifier si p^* se trouve dans cet intervalle.

Si on ne change rien, notre intervalle de confiance va dépendre de p^* , ce qui n'est pas du tout souhaitable. On va donc utiliser le théorème de Slutsky pour se ramener à un intervalle de confiance indépendant de p^* .

Premièrement, comme p_1, p_2, \ldots, p_M sont des variables aléatoires i.i.d, **la loi forte des grands nombres** nous assure que :

$$\widetilde{p} = \frac{1}{M} \sum_{i=1}^{M} p_i \xrightarrow{p.s.} \mathbb{E}[p_1] = p^*$$

Et donc, on a nécessairement le résultat plus faible suivant :

$$\widetilde{p} \xrightarrow{\quad \mathbb{P} \quad} p^*$$

Ainsi, en appliquant le théorème de continuité avec la fonction $x \longmapsto \frac{1}{\sqrt{x(1-x)}}$ sur]0,1[, on a :

$$\boxed{\frac{1}{\sqrt{\widetilde{p}(1-\widetilde{p})}} \xrightarrow{\mathbb{P}} \frac{1}{\sqrt{p^*(1-p^*)}}}$$

Par conséquent, d'après le théorème de Slutsky, on en déduit que :

$$\sqrt{M} \frac{\widetilde{p} - p^*}{\sqrt{\widetilde{p}(1 - \widetilde{p})}} \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1)$$

On en déduit donc, en notant u_{α} les quantiles d'ordre α pour la loi $\mathcal{N}(0,1)$, que :

$$\mathbb{P}\left(u_{\frac{\alpha}{2}} \leq \sqrt{M} \frac{\widetilde{p} - p^*}{\sqrt{\widetilde{p}(1 - \widetilde{p})}} \leq u_{1 - \frac{\alpha}{2}}\right) = 1 - \alpha$$

$$\implies \mathbb{P}\left(\sqrt{\frac{\widetilde{p}(1 - \widetilde{p})}{M}} u_{\frac{\alpha}{2}} \leq \widetilde{p} - p^* \leq \sqrt{\frac{\widetilde{p}(1 - \widetilde{p})}{M}} u_{1 - \frac{\alpha}{2}}\right) = 1 - \alpha$$

Or, on cherche un intervalle de confiance à 95%. Et, on sait que pour $\mathcal{N}(0,1)$, on a : $u_{0,975} \approx 1,96$. On en déduit donc l'intervalle de confiance de notre estimation \tilde{p} :

$$\boxed{ \text{IC} = \left[\widetilde{p} - 1,96\sqrt{\frac{\widetilde{p}(1-\widetilde{p})}{M}}; \ \widetilde{p} + 1,96\sqrt{\frac{\widetilde{p}(1-\widetilde{p})}{M}} \right] }$$

On trouve pour notre estimateur : $\widetilde{p} \approx \mathbf{A}$ REMPLIR (avec M=1000). Et voici alors notre intervalle de confiance à 95% correspondant :

$$IC = [A REMPLIR]$$

Or, on a avait trouvé que $p^* = \mathbb{P}(X_{\tau_{0,a}} = a \mid X_0 = 5) = 0.5$. Ainsi, on remarque effectivement que :

 $p^* \in IC$

2.1.3 b

On rappelle que le temps d'arrêt $\tau_{0,a}$ est défini tel que :

$$\tau_{0,a} = \min \{ n \geqslant 0 \mid X_n = a \text{ ou } X_n = 0 \}$$

Le **théorème du temps moyen d'atteinte** (cf. annexe) énonce alors qu'en posant $\forall i \in [0, a], \ g(i) = \mathbb{E}[\tau_{0,a} \mid X_0 = i], \ (g(i))_{0 \le i \le a}$ est la plus petite solution positive du système suivant :

$$\begin{cases} g(i) = 0 & \text{si } i \in \{0, a\} \\ g(i) = 1 + \sum_{j=1}^{a-1} p(i, j) g(j) & \text{sinon} \end{cases}$$

On peut alors écrire ce système sous forme matricielle, en notant $b=(1)_{0< i< a}, x=(g(i))_{0< i< a}$ et $M=(p(i,j))_{0< i,j< a}$:

$$\forall i \in \mathbb{N}, \ 0 < i < a, \quad g(i) = 1 + \sum_{j=1}^{a-1} p(i,j) g(j)$$

$$\implies \quad x = b + Mx$$

$$\implies \quad \left[[I_{a-1} - M] x = b \right]$$

On remarque, de la même manière d'après le **lemme d'Hadamard**, que la matrice $A = I_{a-1} - M$ est inversible, et on peut alors déterminer les différents valeurs des g(i) dans le cadre de notre exemple qui est le jeu « ruine du joueur ».

. . .

On trouve alors : $\mathbb{E}[\tau_{0,a} | X_0 = 5] = 25$.

2.1.4 Intervalle de confiance Q1.b

De la même manière qu'à la question 1.a, nous venons de déterminer la *vraie* probabilité associée à $\mathbb{E}\left[\tau_{0,a} \mid X_0 = 5\right]$, que l'on note ici θ^* .

Notre estimateur est ici une moyenne empirique:

$$\hat{\theta} = \overline{\tau_{0,a}} = \frac{1}{M} \sum_{i=1}^{M} \tau_{0,a}^{(i)}$$

Donc, on a bien : $\mathbb{E}[\hat{\theta} \mid X_0 = 5] = \mathbb{E}_5[\hat{\theta}] = \mathbb{E}_5[\tau_{0,a}^{(1)}] = 25$ en théorie (par identique distribution et linéarité de l'espérance).

Il est nécessaire de trouver $\operatorname{Var}_5[\hat{\theta}]$ pour pouvoir par la suite utiliser le Théorème Central Limite.

Pour cela, on pose:

$$\widehat{S}^{2} = \frac{1}{n-1} \sum_{i=1}^{M} \left(\tau_{0,a}^{(i)} - \overline{\tau_{0,a}} \right)^{2}$$

Et il se trouve que \widehat{S}^2 est un estimateur sans biais convergent vers $\operatorname{Var}_5[\hat{\theta}]$. Ainsi, on peut alors appliquer le Théorème Central Limite :

$$\sqrt{M} \frac{\hat{\theta} - \theta^*}{\sqrt{\widehat{S}^2}} \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1)$$

On en déduit donc, en notant u_{α} les quantiles d'ordre α pour la loi $\mathcal{N}(0,1)$, que :

$$\mathbb{P}\left(u_{\frac{\alpha}{2}} \leq \sqrt{M} \frac{\hat{\theta} - \theta^*}{\sqrt{\widehat{S}^2}} \leq u_{1-\frac{\alpha}{2}}\right) = 1 - \alpha$$

$$\implies \mathbb{P}\left(\sqrt{\frac{\widehat{S}^2}{M}} u_{\frac{\alpha}{2}} \leq \hat{\theta} - \theta^* \leq \sqrt{\frac{\widehat{S}^2}{M}} u_{1-\frac{\alpha}{2}}\right) = 1 - \alpha$$

Or, on cherche un intervalle de confiance à 95%. Et, on sait que pour $\mathcal{N}(0,1)$, on a : $u_{0.975} \approx 1,96$. On en déduit donc l'intervalle de confiance de notre estimation $\hat{\theta}$:

$$\boxed{ \text{IC} = \left[\hat{\theta} - 1,96\sqrt{\frac{\widehat{S}^2}{M}}; \, \hat{\theta} + 1,96\sqrt{\frac{\widehat{S}^2}{M}} \, \right] }$$

2.2 Q2

Soit $\pi = (\pi_i)_{1 \leq i \leq 10}$ la solution de l'équation $\pi^\top P = \pi^\top$ avec $\pi_i \in [0, 1]$ et $\sum_{i=1}^n \pi_i = 1$. Un tel vecteur s'appelle une probabilité invariante pour P. Or,

$$\pi^{\top}P = \pi^{\top} \iff (\pi^{\top}P)^{\top} = (\pi^{\top})^{\top}$$

$$\iff P^{\top}\pi = \pi$$

$$\iff \pi \text{ est un vecteur propre associé à la valeur propre 1 de }P^{\top}$$

Et le fait que $\pi_i \in [0,1]$ et $\sum_{i=1}^n \pi_i = 1$ nous permet de conclure que π est le vecteur propre stochastique de la matrice P^{\top} associé à la valeur propre 1.

À partir de maintenant, on note $A = P^{\top}$, avec P notre matrice stochastique à coefficients strictement positifs. Montrons pour commencer ce premier résultat :

1 est valeur propre de
$$P$$
 et toute valeur propre complexe λ de P vérifie $|\lambda| \leq 1$.

En effet, soit $U=(1)_{1\leq i\leq 10}$. Alors, comme P est une matrice stochastique, on sait que : $\sum_{j=1}^{10} p_{i,j}=1$, ce qui équivaut à dire que : PU=U.

Cela prouve que 1 est bien valeur propre de P, et U est un vecteur propre associé. À noter que 1 est donc aussi valeur propre de $A = P^{\top}$.

Soit $\lambda \in \operatorname{Sp}(P)$, et soit $X = (x_i)_{1 \leq i \leq 10}$ un vecteur propre associé. Soit $i \in [1, 10]$ tel que $|x_i| = \max_{1 \leq k \leq 10} |x_k|$. Comme par définition $PX = \lambda X$, en regardant la *i*-ième coordonnée, on obtient :

$$p_{i,1} x_1 + \dots + p_{i,10} x_{10} = \lambda x_i$$

En passant au module, on obtient donc que :

$$|\lambda x_i| = |\lambda||x_i| = |p_{i,1} x_1 + \dots + p_{i,10} x_{10}| \le (p_{i,1} + \dots + p_{i,10})|x_i| = |x_i|$$

On en conclut donc que : $|\lambda| \leq 1$.

Il est alors temps d'utiliser le théorème de Perron-Frobenius. Bien qu'ici, le théorème de Perron nous suffira.

Page 13

À noter que l'écriture la plus connue de ce théorème concerne les matrices réelles primitives, mais on s'intéressera ici uniquement aux matrices réelles strictement positives (pour simplifier un peu).

Théorème 2.1 : Théorème de Perron (1907)

Soit A une matrice réelle strictement positive. Son rayon spectral $\rho(A)$ est une valeur propre simple et dominante (i.e. de module strictement supérieur à celui des autres valeurs propres). Elle admet un vecteur propre strictement positif. [1]

Or, dans notre cas, on vient de montrer que : $\forall \lambda \in \operatorname{Sp}(P), \ |\lambda| \leq 1$, et que 1 est bien valeur propre de P. Donc,

$$\rho(P) = 1 \implies \rho(A) = 1$$

Donc, d'après le théorème de Perron appliqué à la matrice A, 1 est une valeur propre **simple** et dominante de A. Mais on en déduit aussi que A **admet un vecteur propre** v **strictement positif**.

Et, comme l'espace propre associé à la valeur propre 1 est de dimension 1 (d'après le théorème de Perron), il est engendré par le vecteur v > 0. Donc, en le normalisant, c'est-à-dire en posant π tel que :

$$\pi = \frac{v}{\|v\|}$$

On vient donc de prouver que :

P admet une unique probabilité invariante π (avec $\pi > 0$)

Il est également possible de déterminer explicitement une approximation de ce vecteur π à epsilon près à l'aide de la méthode de la puissance itérée.

En effet, comme la valeur propre 1 est dominante, c'est-à-dire que :

$$\forall \lambda \in \operatorname{Sp}(A) \setminus \{1\}, \quad |\lambda| < 1$$

on peut appliquer le théorème correspondant à la méthode de la puissance itérée qui s'écrit comme suit :

Théorème 2.2 : Méthode de la puissance itérée

On définit la suite $(v_k)_{k\in\mathbb{N}}$ telle que :

$$\begin{cases} v_0 \text{ choisi arbitrairement dans } \mathbb{R}^{10} \\ \forall k \in \mathbb{N}, \quad v_{k+1} = \frac{A \, v_k}{\|A \, v_k\|} \end{cases}$$

La valeur propre dominante est 1, donc le théorème [2] peut alors s'écrire de cette manière :

- Si v_0 n'appartient pas au sous-espace engendré par les vecteurs propres associés aux autres valeurs propres, avec $||v_0|| = 1$,
- Alors $v_k \xrightarrow[k \to +\infty]{} \pi$

Dans la vraie version du théorème, on aurait :

 $v_k \underset{k \to +\infty}{\longrightarrow} v$ où v est un vecteur unitaire de A associé à la valeur propre 1

Mais cela se ramène bien ici à $v_k \underset{k \to +\infty}{\longrightarrow} \pi$ puisque, par **unicité** de π , si v est un vecteur propre associé à la valeur propre 1 tel que v > 0 et ||v|| = 1, alors $v = \pi$.

Pour ce qui est de la preuve de ce théorème, voici quelques liens qui permettent d'y voir plus clair :

- Une preuve sympathique de la méthode de la puissance itérée : https://moodle.utc.fr/file.php/665/MT09-ch8.pdf
- Les corollaires 2.8 et 2.10 permettent de mieux comprendre le pourquoi de l'utilisation de cette méthode dans le cadre des matrices stochastiques aux coefficients strictements positifs : https://www.imo.universite-paris-saclay.fr/~daniel.perrin/CAPES/algebre/Markov1.pdf

Voici alors l'implémentation de cette méthode algorithmique sur notre matrice $A = P^{\top}$:

2.3 Q3

Soit $(X_n)_{n\in\mathbb{N}}$ la chaîne de Markov associé à l'étudiant. Le monstre reste ici immobile dans une zone précise noté a.

On note ici:

$$\tau_a = \min \{ n \geqslant 0 \mid X_n = a \}$$

L'objectif ici est de calculer le temps de survie moyen exact de l'étudiant. C'est-à-dire le nombre de tour où l'étudiant n'atteint pas la zone a. Par conséquent, à l'image de la question 1.b, on s'intéresse ici au temps d'atteinte moyen de la zone a pour la chaîne de Markov (X_n) .

Ainsi, on cherche ici à calculer :

$$\forall i \in [1, a], \quad \mathbb{E}_i[\tau_a] = \mathbb{E}\left[\tau_a \mid X_0 = i\right]$$

D'après Le **théorème du temps moyen d'atteinte** (cf. annexe), on peut alors énoncer que $(\mathbb{E}_i[\tau_a])_{1 \le i \le a}$ est la plus petite solution positive du système suivant :

$$\begin{cases} y_i = 0 & \text{si } i = a \\ y_i = 1 + \sum_{j=1}^{a-1} p(i,j) y_j & \text{sinon} \end{cases}$$

On peut alors écrire ce système sous forme matricielle, en notant $b=(1)_{0\leq i\leq a}, x=(\mathbb{E}_i[\tau_a])_{0\leq i\leq a}$ et $P=(p(i,j))_{0\leq i,j\leq a}$:

$$\forall i \in \mathbb{N}, \ 0 < i < a, \quad \mathbb{E}_i[\tau_a] = 1 + \sum_{j=1}^{a-1} p(i,j) \, \mathbb{E}_j[\tau_a]$$

$$\implies \quad x = b + Px$$

$$\implies \quad [I_{a-1} - P] \, x = b$$

On remarque, de la même manière d'après le **lemme d'Hadamard**, que la matrice $A = I_{a-1} - P$ est inversible, et on peut alors déterminer les différents valeurs des $\mathbb{E}_i[\tau_a]$.

. . .

2.3.1 intervalle de confiance

En suivant la méthode de la question 1.b, on peut alors déterminer un intervalle de confiance à 95% notre estimation de Monte-Carlo, pour pouvoir comparer notre estimateur à la vraie valeur de $\mathbb{E}_1[\tau_a]$.

En notant $\hat{\theta}$ notre estimateur, et $\widehat{S^2}$ l'estimateur sans biais de la variance, on en déduit que l'intervalle de confiance correspondant est alors :

IC =
$$\left[\hat{\theta} - 1,96\sqrt{\frac{\widehat{S}^2}{M}}; \, \hat{\theta} + 1,96\sqrt{\frac{\widehat{S}^2}{M}}\right]$$

2.4 Q4

Soient les chaînes de Markov $(X_{k,\text{monstre}})$ et $(X_{k,\text{élève}})$ traduisant le déplacement de l'élève et du monstre sur les 10 zones en fonction du temps. Ces déplacements sont régis par la matrice stochastique P. La suite des $X_k = (X_{k,\text{monstre}}, X_{k,\text{élève}})$ forme elle-même une chaîne de Markov.

Soit le temps d'arrêt τ défini par :

$$\tau = \min \{ k \geqslant 0 \mid X_{k,\text{monstre}} = X_{k,\text{\'el\`eve}} \}$$

On cherche ici à calculer :

$$\forall i, j \in [|1, 10|], \quad \mathbb{E}_{(i,j)}[\tau] = \mathbb{E}[\tau \mid X_0 = (i, j)]$$

D'après le théorème sur le temps moyen d'atteinte (cf. annexe), on peut alors énoncer que $(\mathbb{E}_{(i,j)}[\tau])_{1 \le i,j \le 10}$ est la plus petite solution positive du système suivant :

$$\begin{cases} y_{(i,j)} = 0 & \text{si } i = j \\ y_{(i,j)} = 1 + \sum_{k \neq l} p((i,j), (k,l)) y_{(k,l)} & \text{sinon} \end{cases}$$

On peut alors écrire ce système sous forme matricielle, en notant $b=(1)_{1\leq n\leq 90}, x=(\mathbb{E}_{(i,j)}[\tau])_{i\neq j}$ et $P'=(p((i,j),(k,l)))_{i\neq j,k\neq l}$ matrice extraite de P:

$$\forall (i,j) \in \mathbb{N}^2, \ 1 \leq i, j \leq 10, i \neq j, \quad \mathbb{E}_{(i,j)}[\tau] = 1 + \sum_{k \neq l} p((i,j),(k,l)) \, \mathbb{E}_{(k,l)}[\tau]$$

$$\implies x = b + P'x$$

$$\implies \boxed{[I_{90} - P'] \, x = b}$$

On remarque, de la même manière d'après le **lemme d'Hadamard**, que la matrice $A = I_{90} - P'$ est inversible, et on peut alors déterminer les différents valeurs des $\mathbb{E}_{(i,j)}[\tau]$.

2.4.1 intervalle de confiance

En suivant la méthode de la question 1.b, on peut alors déterminer un intervalle de confiance à 95% notre estimation de Monte-Carlo, pour pouvoir comparer notre estimateur à la vraie valeur de $\mathbb{E}_{(10,1)}[\tau]$.

En notant $\hat{\theta}$ notre estimateur, et $\widehat{S^2}$ l'estimateur sans biais de la variance, on en déduit que l'intervalle de confiance correspondant est alors :

$$\boxed{ \text{IC} = \left[\hat{\theta} - 1,96\sqrt{\frac{\widehat{S}^2}{M}}; \, \hat{\theta} + 1,96\sqrt{\frac{\widehat{S}^2}{M}} \right] }$$

3 Annexes

3.1 Théorème du temps moyen d'atteinte

Le théorème qui suit provient de ce document : [3]

3.1.1 Dans le cadre général

Soit $(X_n)_{n\in\mathbb{N}}$ une chaîne de Markov homogène avec comme matrice de transition $P=(p_{i,j})_{(i,j)\in E^2}$ sur un espace d'état fini ou dénombrable E.

Soit $A \subseteq E$, on définit :

• Le temps d'atteinte de A par :

$$T_A = \inf\{n \in \mathbb{N} \mid X_n \in A\}$$

 \bullet Le temps moyen d'atteinte de A partant de i

$$v_i^A = \mathbb{E}_i[T_A].$$

On rappelle également que la notation \mathbb{P}_i (idem pour \mathbb{E}_i):

$$\forall i \in E$$
, Pour tout évènement B , $\mathbb{P}_i(B) = \mathbb{P}(B \mid X_0 = i)$.

Le théorème peut alors s'écrire de cette manière :

Théorème 3.1 : Théorème du temps moyen d'atteinte

Le vecteur des temps moyen d'atteinte $(v_i)_{i\in E}$ est la plus petite solution positive du système

$$\begin{cases} y_i = 0 & \text{si } i \in A \\ y_i = 1 + \sum_{j \notin A} p_{i,j} y_j & \text{sinon} \end{cases}$$

Démonstration. On supposera dans cette démonstration pour simplifier (et car c'est dans le cadre du projet de maths) que $\mathbb{P}(T_A < \infty) = 1$.

Montrons tout d'abord que $(v_i)_{i\in E}$ est solution du système.

- Si $X_0 = i \in A$ alors on a bien sûr $T_A = 0$ et donc $v_i = \mathbb{E}_i[T_A] = 0$
- Si $X_0 = i \notin A$ alors on a:

$$v_i = \mathbb{E}_i[T_A] = \sum_{j \in E} \mathbb{E}_i \left[T_A \, \mathbb{1}_{\{X_1 = j\}} \right]$$

Et pour tout $j \in E$, on a :

$$\begin{split} \mathbb{E}_{i}\left[T_{A}\,\mathbb{1}_{\{X_{1}=j\}}\right] &= \left(\sum_{k\in\mathbb{N}^{*}}k\,\mathbb{P}_{i}(T_{A}=k,X_{1}=j)\right) \\ &= \left(\sum_{k\in\mathbb{N}^{*}}k\,\mathbb{P}_{i}(T_{A}=k\,|\,X_{1}=j)\,\mathbb{P}_{i}(X_{1}=j)\right) \text{ (formule des probabilités totales)} \\ &= \left(\sum_{k\in\mathbb{N}^{*}}k\,\mathbb{P}_{j}(T_{A}=k-1)\,p_{i,j}\right) \\ &= p_{i,j}\left(\sum_{k\in\mathbb{N}^{*}}k\,\mathbb{P}_{j}(T_{A}=k-1)\right) \\ &= p_{i,j}\left(\left(\sum_{k\in\mathbb{N}}k\,\mathbb{P}_{j}(T_{A}=k)\right) + \left(\sum_{k\in\mathbb{N}}\mathbb{P}_{j}(T_{A}=k)\right)\right) \text{ (chgt. de var. } k=\widetilde{k}+1) \\ &= p_{i,j}\left(\mathbb{E}_{j}[T_{A}]+1\right) \end{split}$$

D'où

$$\mathbb{E}_{i}[T_{A}] = \sum_{j \in E} p_{i,j} \left(\mathbb{E}_{j}[T_{A}] + 1 \right) = \sum_{j \in E} p_{i,j} + \sum_{j \in E} p_{i,j} \, \mathbb{E}_{j}[T_{A}]$$

Et donc:

$$v_i = 1 + \sum_{j \in E} p_{i,j} v_j = 1 + \sum_{j \notin A} p_{ij} v_j$$
 (car $v_j = 0$ lorsque $j \in A$)

On en conclut donc que $(v_i)_{i\in E}$ est solution du système.

Montrons maintenant la **minimalité** de $(v_i)_{i\in E}$. Soit $(y_i)_{i\in E}$ solution du système. Alors si $i\in A$, on a immédiatement $y_i=0=u_i$. Et si $i\notin A$ on a

$$\begin{split} y_i &= 1 + \sum_{j \notin A} p_{i,j} \, y_j \\ &= 1 + \sum_{j \notin A} p_{i,j} \left(1 + \sum_{k \notin A} p_{j,k} \, y_k \right) \\ &= 1 + \sum_{j \notin A} p_{i,j} + \sum_{j \notin A} \sum_{k \notin A} p_{i,j} \, p_{j,k} \, y_k \qquad \qquad \text{(car } y_j \text{ est, lui aussi, solution du système)} \\ &= \mathbb{P}_i(T_A \geq 1) + \mathbb{P}_i(T_A \geq 2) + \sum_{j \notin A} \sum_{k \notin A} p_{i,j} \, p_{j,k} \, y_k. \end{split}$$

En guise de petite explication de cette dernière ligne, on a $i \notin A$ donc $\mathbb{P}_i(T_A \ge 1) = 1$, et par définition de l'ensemble A, et sachant que $i \notin A$, on a bien : $\mathbb{P}_i(T_A \ge 2) = \sum_{j \notin A} p_{i,j}$.

Et par récurrence sur n (qu'il faudrait normalement bien rédiger, mais que nous admettrons ici), on obtient que, pour tout $n \ge 1$

$$y_i = \sum_{k=1}^n \mathbb{P}_i(T_A \ge k) + \sum_{j_1 \notin A} \sum_{j_2 \notin A} \cdots \sum_{j_n \notin A} p_{i,j_1} p_{j_1,j_2} \dots p_{j_{n-1},j_n} y_{j_n}.$$

On a de plus supposé que $y_i \ge 0$ pour tout $i \in E$ (car on a posée $(y_i)_{i \in E}$ comme solution positive du système), d'où :

$$y_k \ge \sum_{k=1}^n \mathbb{P}_i(T_A \ge k)$$

Ceci étant vrai pour tout $n \ge 1$, on a :

$$y_i \ge \sum_{k=1}^{+\infty} \mathbb{P}_i(T_A \ge k)$$

et le passage à la limite est autorisé car la suite $\left(\sum_{k=1}^n \mathbb{P}_i(T_A \ge k)\right)_{n \ge 1}$ est croissante.

De plus, par propriété de l'espérance dans le cadre des variables aléatoires discrètes :

$$\sum_{k=1}^{+\infty} \mathbb{P}(T_A \ge k) = \sum_{k=1}^{\infty} k \, \mathbb{P}(T_A = k) = \mathbb{E}_i(T_A)$$

Donc
$$\forall i \in E, \quad y_i \ge \mathbb{E}_i(T_A) = v_i$$
.

Et ainsi, le vecteur des temps moyen d'atteinte $(v_i)_{i\in E}$ est la plus petite solution positive du système.

3.1.2 Dans le cadre d'un couple de chaînes de Markov

On note ici $E = [1, 10]^2$, et $A = \{(i, j) \in E \mid i = j\}$.

On s'intéresse ici à la suite des $X_k = (X_{k,\text{monstre}}, X_{k,\text{élève}})$, qui forme elle-même une chaîne de Markov.

Le théorème du temps moyen d'atteinte peut alors s'écrire de cette manière :

Théorème 3.2 : Théorème du temps moyen d'atteinte

Le vecteur des temps moyen d'atteinte $(v_{(i,j)})_{(i,j)\in E}$ est la plus petite solution positive du système

$$\begin{cases} y_{(i,j)} = 0 & \text{si } i \in A \\ y_{(i,j)} = 1 + \sum_{(k,l) \notin A} p_{(i,j) \to (k,l)} y_{(k,l)} & \text{sinon} \end{cases}$$

Démonstration. On supposera dans cette démonstration pour simplifier (et car c'est dans le cadre du projet de maths) que $\mathbb{P}(T_A < \infty) = 1$.

Montrons tout d'abord que $(v_{(i,j)})_{(i,j)\in E}$ est solution du système.

- Si $X_0 = (i, j) \in A$ alors on a bien sûr $T_A = 0$ et donc $v_{(i,j)} = \mathbb{E}_{(i,j)}[T_A] = 0$
- Si $X_0 = (i, j) \notin A$ alors on a :

$$v_{(i,j)} = \mathbb{E}_{(i,j)}[T_A] = \sum_{(k,l)\in E} \mathbb{E}_{(i,j)} [T_A \mathbb{1}_{\{X_1=(k,l)\}}]$$

Et pour tout $(k, l) \in E$, on a :

$$\mathbb{E}_{(i,j)}\left[T_{A}\,\mathbb{1}_{\{X_{1}=(k,l)\}}\right] = \left(\sum_{n\in\mathbb{N}^{*}} n\,\mathbb{P}_{(i,j)}(T_{A}=k,X_{1}=(k,l))\right)$$

$$= \left(\sum_{n\in\mathbb{N}^{*}} n\,\mathbb{P}_{(i,j)}(T_{A}=k\,|\,X_{1}=(k,l))\,\mathbb{P}_{(i,j)}(X_{1}=(k,l))\right)$$
(probabilités totales)
$$= \left(\sum_{n\in\mathbb{N}^{*}} n\,\mathbb{P}_{(k,l)}(T_{A}=n-1)\,p_{(i,j)\to(k,l)}\right) \qquad \text{(par propriété de Markov)}$$

$$= p_{(i,j)\to(k,l)}\left(\sum_{n\in\mathbb{N}^{*}} n\,\mathbb{P}_{(k,l)}(T_{A}=n-1)\right)$$

$$= p_{(i,j)\to(k,l)}\left(\left(\sum_{n\in\mathbb{N}} n\,\mathbb{P}_{(k,l)}(T_{A}=n)\right) + \left(\sum_{n\in\mathbb{N}} \mathbb{P}_{(k,l)}(T_{A}=n)\right)\right)$$
(chgt. de var. $n=\tilde{n}+1$)
$$= p_{(i,j)\to(k,l)}\left(\mathbb{E}_{(k,l)}[T_{A}]+1\right)$$

D'où

$$\mathbb{E}_{(i,j)}[T_A] = \sum_{j \in E} p_{(i,j) \to (k,l)} \left(\mathbb{E}_{(k,l)}[T_A] + 1 \right) = \sum_{(k,l) \in E} p_{(i,j) \to (k,l)} + \sum_{(k,l) \in E} p_{(i,j) \to (k,l)} \mathbb{E}_{(k,l)}[T_A]$$

Et donc:

$$v_{(i,j)} = 1 + \sum_{(k,l) \in E} p_{(i,j) \to (k,l)} v_{(k,l)} = 1 + \sum_{(k,l) \notin A} p_{(i,j) \to (k,l)} v_{(k,l)} \quad (\text{car } v_{(k,l)} = 0 \text{ lorsque } (k,l) \in A)$$

On en conclut donc que $(v_{(i,j)})_{(i,j)\in E}$ est solution du système.

La minimalité de $(v_{(i,j)})_{(i,j)\in E}$ se montre de la même manière que dans le cas plus classique. (On se passera donc de la réécriture en adaptant seulement les notations.)

Ainsi, le vecteur des temps moyen d'atteinte $(v_{(i,j)})_{(i,j)\in E}$ est la plus petite solution positive du système.

Références

- [1] Françoise Guimier. Sur les matrices stochastiques. https://agreg-maths.univ-rennes1.fr/documentation/docs/agreg-Sto.pdf, 6 2004.
- [2] Wikipedia. Méthode de la puissance itérée. https://fr.wikipedia.org/wiki/MÃl'thode_de_la_puissance_itÃl'rÃl'e, 5 2023.
- [3] Michel Bonnefont. Temps d'atteinte et probabilité d'absorption. https://www.math.u-bordeaux.fr/~mibonnef/mimse-markov/proba-absorption.pdf, 2023.