

Chapter 12

Multicollinearity

<u>Overivew</u>

• Nonsingularity of X'X

Multicollinearity

Tolerance and Variance Inflation Factor

Eignevalues and Conditional Indices

12.1 Introduction

• The quality of estimates, as measured by their variances, can be seriously affected if the predictor variables are closely related to each other.

• If the columns of X are linearly dependent, then (X'X) is singular and we cannot estimate β .

 When near singularity exists, the variance of estimates can be adversely affected

12.2 Near Singularity

• X'X is considered as near singular if there exists a unit vector \underline{c} such that $\underline{c}'X'X$ $\underline{c} = \delta$ is small.

• This will usually result in some of the $\hat{\beta}_i$'s have large variances.

Near Singularity (Continued)

• We may also get some counter intuitive results, especially in signs of the $\hat{\beta}_i$'s

• Moreover, near singularity can magnify effects of inaccuracies in the elements of *X*.

 Therefore it is most desirable to detect the presence of near singularity and to identify its causes when it is there.

12.3 Multicollinearity

- **Multicollinearity** is the special case of near singularity where there is a (linear) near relationship between two or more $\underline{x}_{[j]}$'s, where $\underline{x}_{[j]}$'s are the columns of X.
- i.e. the length of $\sum_{j=0}^{p} c_j \underline{x}_{[j]}$ be small with at least two $\underline{x}_{[j]}$'s and corresponding c_j 's are not small.
- Since $\sum_{j=0}^{p} c_j \underline{x}_{[j]}$ is affected by the units in which the variables are measured, when assessing the smallness it is desirable to scale X.

CYM

Instead of considering

$$\underline{y} = X\underline{\beta} + \underline{\epsilon},$$

we consider

$$\underline{y} = X_{(s)}\underline{\beta}_{(s)} + \underline{\epsilon}$$

where

$$X_{(s)} = XD_{(s)}^{-1}$$
 $\underline{\beta}_{(s)} = D_{(s)}\underline{\beta}$

and

$$D_{(s)} = \operatorname{diag}(\|\underline{x}_{[0]}\|, \dots, \|\underline{x}_{[p]}\|)$$

Example

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = \begin{pmatrix} 1 & 0.1 & 20 \\ 1 & -0.2 & -10 \\ 1 & 0.1 & 0 \\ 1 & 0 & -10 \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \epsilon_4 \end{pmatrix}$$

Then

$$\left\| \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \right\| = \sqrt{4}, \left\| \begin{pmatrix} 0.1 \\ -0.2 \\ 0.1 \\ 0 \end{pmatrix} \right\| = \sqrt{0.06}, \left\| \begin{pmatrix} 20 \\ -10 \\ 0 \\ -10 \end{pmatrix} \right\| = \sqrt{600}$$

• Example (Continued)

$$D_{(s)} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & \sqrt{0.06} & 0 \\ 0 & 0 & \sqrt{600} \end{pmatrix}$$

and

$$D_{(s)}^{-1} = \begin{pmatrix} 1/2 & 0 & 0\\ 0 & 1/\sqrt{0.06} & 0\\ 0 & 0 & 1/\sqrt{600} \end{pmatrix}$$

• Example (Continued)

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = \begin{pmatrix} 0.5 & 0.1/\sqrt{0.06} & 20/\sqrt{600} \\ 0.5 & -0.2/\sqrt{0.06} & -10/\sqrt{600} \\ 0.5 & 0.1/\sqrt{0.06} & 0 \\ 0.5 & 0 & -10/\sqrt{600} \end{pmatrix} \begin{pmatrix} \beta_{1(s)} \\ \beta_{2(s)} \\ \beta_{3(s)} \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \epsilon_4 \end{pmatrix}$$

where
$$\beta_{0(s)} = 2\beta_0$$
, $\beta_{1(s)} = \sqrt{0.06} \, \beta_1$ and $\beta_{2(s)} = \sqrt{600} \beta_2$

• The least squares estimates of $\underline{\beta}_{(s)}$ is given by

$$\underline{\hat{\beta}}_{(s)} = D_{(s)}\underline{\hat{\beta}}$$

and

$$Var\left(\underline{\hat{\beta}}_{(s)}\right) = D_{(s)}Var\left(\underline{\hat{\beta}}\right)D_{(s)}$$

• A consequence of this scaling is that it removes from consideration near singularity caused by a single $\underline{x}_{[i]}$ being of small length.

• For $\underline{d} = D_{(s)} \underline{c}$,

$$\underline{c'X'X\underline{c}} = \underline{c'D_{(s)}D_{(s)}^{-1}X'XD_{(s)}^{-1}D_{(s)}\underline{c} = \underline{d'X'_{(s)}X_{(s)}\underline{d}}$$

It can be shown that

$$\underline{d}'X'_{(s)}X_{(s)}\underline{d} \ge \lambda_{\min} \|\underline{d}\|^2$$

where λ_{\min} is the smallest characteristic root of $X'_{(s)}X_{(s)}$.

• Therefore, if multicollinearity is present [$(\underline{c}'X'X\underline{c})$ is small with $\|\underline{d}\|$ not too small], λ_{\min} will be small.

- Conversely, if we have a small eigenvalue of $X'_{(s)}X_{(s)}$, and if $\underline{\gamma}_0$ is the corresponding eigenvector,
- then $\underline{\gamma}_0' X'_{(s)} \underline{\gamma}_0$ is small and it may easily be shown that multicollinearity would be present.
- Since the eigenvectors are mutually orthogonal, each small eigenvalue represents a different near relationship

12.4 Tolerance and Variance Inflation Factor

- Let R_j^2 be the R^2 obtained by regressing x_j against all other x's.
- Hence R_j^2 can be used to assess the degree to which one predictor variable is related to all other predictor variables.

The tolerance TOL_i is defined as

$$TOL_j = 1 - R_j^2.$$

• TOL $_j$ is close to one if x_j is not closely related to other predictor variables.

Variance Inflation Factor

• The variance inflation factor VIF_j is given by $VIF_j = TOL_i^{-1}$.

• A value of VIF_j , close to one indicates no relationship between x_j and other predictors, while a large value indicates presence of multicollinearity.

How large is large?

12.5 Eigenvalues and Condition Indices

• Since the sum of eigenvalues is equal to the trace, and each diagonal element of $X'_{(s)}X_{(s)}$ is 1,

therefore

$$\sum_{j=0}^{\lambda} \lambda_j = tr\left(X'_{(s)}X_{(s)}\right) = p+1$$

where λ_j 's are the eigenvalues of $X'_{(s)}X_{(s)}$.

Condition index η_i

$$\eta_j = \sqrt{\lambda_{\max}/\lambda_j}$$
 where $\lambda_{\max} = \max_{0 \le j \le p} \lambda_j$.

• It is suggested that an eigenvalue with $\eta_j > 30$ be flagged for further investigation.

12.6 Example

- If we wish to determine which linear combinations of columns of X are causing the multicollinearity, we study the variance of the coefficients of x_i 's.
- How this can be done is illustrated in the following example.

Example 1

- Consider a data set with 5 predictor variables, x_1 , x_2 , x_3 , x_4 , and x_5 .
- The data set "ch12ex1.txt" can be found in the IVLE

SAS program

```
proc reg;
  model y = x1 x2 x3 x4 x5 /tol vif collin;
run;
```

Partial SAS Printout

Parameter Estimates

			Variance
Variable	DF	Tolerance	Inflation
Intercept	1	•	0
x1	1	0.00213	469.48738
x 2	1	0.28215	3.54427
x 3	1	0.00189	528.22431
x4	1	0.00876	114.10379
x 5	1	0.28273	3.53694

• Partial SAS Printout

Collinearity Diagnostics

		Condition	Propo	iation	
Number	Eigenvalue	Index	Intercept	x1	x2
1	5.88361	1.00000	0.00035009	0.00000226	0.00031808
2	0.09618	7.82142	0.00101	0.00012175	0.03473
3	0.01368	20.73540	0.73465	0.00018846	0.04731
4	0.00628	30.60737	0.00004340	0.00000439	0.87707
5	0.00021047	167.19513	0.26365	0.07563	0.03759
6	0.00003890	388.90457	0.00029382	0.92405	0.00298

• Partial SAS Printout

Collinearity Diagnostics

	Pr	oportion of Var	ciation
Number	x3	x4	x 5
1	0.00000196	0.00000862	0.00030262
2	0.00009996	0.00045541	0.02991
3	0.00015342	0.00016611	0.04180
4	6.0 <u>65364E-8</u>	4.212776E-7	0.88588
5	0.03840	0.97312	0.00415
6	0.96134	0.02625	0.03796

R program

```
> model1=lm(y~x1+x2+x3+x4+x5)
 library(car)
> vif(model1)
                 \times 2
                             x3
                                         x4
                                                    x5
                    528.22431
469.48737
          3.54427
                                 114.103786
                                             3.536941
> 1/vif(model1)
                               x3
        x1
                   x2
                                          x4
                                                      x5
0.0021299 0.2821454 0.0018931 0.0087639 0.2827301
```


- > #Condition indices
- > library(perturb)
- > colldiag(model1)

Condition

	Index	Variance Decomposition		Proportions			
		intercept	x1	x2	x 3	x4	x5
1	1.000	0.000	0.000	0.000	0.000	0.000	0.000
2	7.821	0.001	0.000	0.035	0.000	0.000	0.030
3	20.735	0.735	0.000	0.047	0.000	0.000	0.042
4	30.607	0.000	0.000	0.877	0.000	0.000	0.886
5	167.195	0.264	0.076	0.038	0.038	0.973	0.004
6	388.905	0.000	0.924	0.003	0.961	0.026	0.038

• TOL's for x_1 (0.00213), x_3 (0.00189) and x_4 (0.00876) are small.

 Hence they may be associated and should be tagged for further study.

• The condition indices corresponding to the two smallest eigenvalues are greater 30.

• The proportions of variance indicate that the following possible linear combinations.

- The last row with the smallest condition index shows a linear combination of x_1 and x_3 as they have the large proportions of variance (0.9241 and 0.9613).
- The only large variance component in the second last row is associated with x_4 (0.9731).

- However, the 0.0756 in the $Var(\hat{\beta}_1)$ column accounts for most of the variance of $Var(\hat{\beta}_1)$ not accounted for by the smallest eigenvalue and a similar situation exists in the $Var(\hat{\beta}_3)$ column (0.0384).
- Therefore, there is a linear combination involving x_1, x_3 and x_4 , which also contributes to small eigenvalues.

Further study

• Since the TOL for x_3 is the smallest among the 3 potential collinear predictors, we remove it from the full model.

```
> model2=lm(y~x1+x2+x4+x5)
> vif2=vif(model2)
> vif2
                    \times 2
                                 \times 4
        x1
                                             \times 5
98.995919 3.543295 99.981578 3.391114
> tol2=1/vif2
> tol2
                       x2
         x1
                                      \times 4
                                                    x5
0.01010143
                            0.01000184
              0.28222315
                                           0.29488835
```


> colldiag(model2)

Condition

	Index Variance Decomposition Proportions					
		intercept	x1	x2	x4	x 5
1	1.000	0.001	0.000	0.000	0.000	0.000
2	7.822	0.000	0.001	0.038	0.001	0.033
3	19.368	0.755	0.002	0.044	0.001	0.042
4	27.933	0.000	0.000	0.878	0.000	0.924
5	165.018	0.245	0.997	0.040	0.998	0.001

Further study

• Since the TOL for x_4 is the smallest among the 2 potential collinear predictors, we remove it from the previous model.

```
All VIFs are not large
> model3=lm(y\sim x1+x2+x5)
> vif3=vif(model3)
> vif3
                                   x5
        x1
                     x2
 1.010440
           3.402556
                            3.388926
> tol3=1/vif3
                                            All TOLs are not small
> tol3
        x1
                        \times 2
                                        x5
0.9896682
               0.2938967
                               0.2950787
```


> colldiag(model3)

```
Condition
 Index
          Variance Decomposition Proportions
            intercept x1
                              \times 2
                                       x5
1
     1.000
            0.001
                      0.002
                              0.001
                                       0.001
     8.409
            0.011
                      0.361
                              0.048
                                       0.040
3
                      0.635
    17.897
            0.988
                              0.037
                                       0.035
            0.000
    25.002
4
                     0.002
                              0.914
                                       0.924
              The largest condition
              index is larger than 30
```

