

Dashboard > Courses > School Of Engineering & Applied Sciences > B.Tech. > B.Tech. Cohort 2020-2024 > Semester-I Cohort 2020-24 > EMAT101L-Odd 2020 > 15 January - 21 January > Group 2 Quiz Test 6

Started on	Wednesday, 27 January 2021, 3:05 PM
State	Finished
Completed on	Wednesday, 27 January 2021, 3:20 PM
Time taken	15 mins
Grade	10.00 out of 10.00 (100 %)

Question 1

Correct

Mark 2.00 out of

2.00

Find the value of
$$\int_0^\infty 2x^4e^{1-x}dx$$
 .

Select one or more:

- a. It diverges to ∞ .
- b. 12e
- c.48
- d. 48e

Your answer is correct.

The correct answers are: 12e

,48e

, 48

Question 2

Correct

Mark 2.00 out of

2.00

Which among the following is a correct integral representation of Gamma function?

Select one:

$$\bigcirc$$
 a. $\Gamma(x)=\int_0^1 t^{x-1}e^{-t}dt$

$$lacksquare \int_0^\infty t^{x-1}e^{-t}dt$$

√

$$igcup {f c}$$
 . C. $\Gamma(x)=\int_0^1 t^x e^t dt$

$$\bigcirc$$
 d. $\Gamma(p)=\int_{1}^{\infty}x^{p-1}e^{-x}dx$

Your answer is correct.

The correct answer is: $\Gamma(x)=\int_0^\infty t^{x-1}e^{-t}dt$

Question 3

Correct

Mark 2.00 out of

2.00

Evaluate the value of $\int_0^\infty x^3 e^{-rac{1}{2}x^2} dx$.

Select one:

- a. not defined
- b :

- $c. \frac{1}{2}$
- d. 4

Your answer is correct.

The correct answer is: 2

Question 4

Correct

Mark 2.00 out of

2.00

Which among the following is NOT correct?

Select one:

$$igcup b. rac{\int_0^1 x^{p-1} (1-x)^{q-1} dx}{\int_0^1 t^{q-1} (1-t)^{p-1} dt} = 1$$

- c. For nonnegative integer values, Gamma function is not defined.
- \bigcirc d. $\Gamma\left(rac{3}{4}
 ight)\Gamma\left(rac{1}{4}
 ight)=\sqrt{2}\pi$

Your answer is correct.

The correct answer is: $eta\left(rac{2}{7},rac{5}{7}
ight)=eta\left(rac{3}{7},rac{4}{7}
ight)$

Question 5

Correct

Mark 2.00 out of

2.00

Find the value of $\int_0^{\frac{\pi}{4}} \sin^2 2x \, \cos^4 2x \, dx$.

Select one:

- \bigcirc a. $\frac{\pi}{32}$

- \circ c. $\frac{\sqrt{\pi}}{32}$
- O d. $\frac{\sqrt{\pi}}{64}$

Your answer is correct.

The correct answer is: $\frac{\pi}{64}$