

$$T(L \rightarrow L) = 0.3$$
 $T(R \rightarrow L) = 0.5$

$$T(L \rightarrow R) = 0.7$$
 $T(R \rightarrow R) = 0.5$

Timestamp: 1

Log: L

Timestamp: 2

Log: LR

Timestamp: 3

Log: LRR

Timestamp: 4

Log: LRRL

Timestamp: 5

Log: LRRLR

	p(Left)	p(Right)
x^1	1	0

	p(Left)	p(Right)
x^1	1	0
x^2	0.3	0.7

	p(Left)	p(Right)
x^1	1	0
x^2	0.3	0.7
x^3		

	p(Left)	p(Right)
x^1	1	0
x^2	0.3	0.7
x^3		

$$p(x^3) = p(x^3 | x^2 = L)p(x^2 = L) + p(x^3 | x^2 = R)p(x^2 = R)$$

	p(Left)	p(Right)
x^1	1	0
x^2	0.3	0.7
x^3	$0.3^2 + 0.7 \cdot 0.5$	

$$p(x^3) = p(x^3 | x^2 = L)p(x^2 = L) + p(x^3 | x^2 = R)p(x^2 = R)$$

	p(Left)	p(Right)
x^1	1	0
x^2	0.3	0.7
x^3	$0.3^2 + 0.7 \cdot 0.5$	$0.3 \cdot 0.7 + 0.7 \cdot 0.5$

$$p(x^3) = p(x^3 | x^2 = L)p(x^2 = L) + p(x^3 | x^2 = R)p(x^2 = R)$$

	p(Left)	p(Right)
x^1	1	0
x^2	0.3	0.7
x^3	0.44	0.56

	p(Left)	p(Right)
x^1	1	0
x^2	0.3	0.7
x^3	0.44	0.56
• • •	• • •	
	≈ 0.42	≈ 0.58

LRRLR...LL

LRRLR...LL

LRRLR...LL LRRLR...LR

LRRLR...LL LRRLR...LR LRLRR...RR LRRLL...LR LLRLR...RL

$$p(L) \approx 0.42$$

$$p(R) \approx 0.58$$

But what if there are 10 lilies? Or a billion?

But what if there are 10 lilies? Or a billion? Or maybe frog position is continuous?

But what if there are 10 lilies? Or a billion? Or maybe frog position is continuous? You can still sample!

• We want to sample from p(x)

- We want to sample from p(x)
- Build a Markov chain that converge to p(x)

- We want to sample from p(x)
- Build a Markov chain that converge to p(x)
- Start from any x^0

- We want to sample from p(x)
- Build a Markov chain that converge to p(x)
- Start from any x^0
- For k = 0, 1, ...

$$x^{k+1} \sim T(x^k \to x^{k+1})$$

- We want to sample from p(x)
- Build a Markov chain that converge to p(x)
- Start from any x^0
- For k = 0, 1, ...

$$x^{k+1} \sim T(x^k \to x^{k+1})$$

• Eventually x^k will look like samples from p(x)

Do Markov chains always converge?

Do Markov chains always converge?

	p(Left)	p(Right)
x^1	1	0
x^2	0	1
x^3	1	0
• • •	• • •	• • •

Does not converge

Definition:

A distribution π is called stationary if

$$\pi(x') = \sum_{x} T(x \to x') \pi(x)$$

Theorem:

If $T(x \to x') > 0$ for all x, x' then exists unique π :

$$\pi(x') = \sum_{x} T(x \to x') \pi(x)$$

Theorem:

If $T(x \to x') > 0$ for all x, x' then exists unique π :

$$\pi(x') = \sum_{x} T(x \to x') \pi(x)$$

And Markov chain converges to π from any starting point