第六章 微分中值定理及其应用

$$\star$$
 已知 $f(x)$, 求 $f'(x)$.

(工具)

- → 从导函数的信息得到函数的信息 . (目的)
- 例: 从 $f'(x) \equiv 0$, 推出 f(x) = C.

从f'(x) > 0,推出f(x)单增.

从
$$f''(x) > 0$$
,推出 $\frac{f(x) + f(y)}{2} \ge f(\frac{x + y}{2})$.
从 $f^{(n)}(x_0) (n \in N)$,推出 $f(x)$ 的表达式.

• 微分学的理论:

费马定理 → 罗尔中值定理拉格朗日中值定理柯西中值定理 → 泰勒公式

• 微分学的应用:

函数的单调性和凸性 最值问题

6.1 拉格朗日定理和 函数的单调性

一、罗尔(Rolle)中值定理

费马定理: 设 x_0 为 f(x) 的极值点, 若 f(x) 在 x_0 可导,则 $f'(x_0) = 0$.

定理1(罗尔): 设函数 y = f(x)满足

$$(1) f(x) 在 [a,b]$$
连续;

(2) f(x) 在 (a,b)可导;

$$(3) f(a) = f(b),$$

则 $\exists \xi \in (a,b)$,使得 $f'(\xi) = 0$.

例1、设 f(x) = (x-1)(x-2)(x-3)(x-4),问: f'(x) = 0 有几个实根?

思考: f''(x) = 0有几个实根?

例2、设 f(x) 在 [a,b](a>0) 上连续,在 (a,b)内可导,且 f(a)=f(b)=0,则存在 $\xi \in (a,b)$,使得 $f'(\xi)=\frac{f(\xi)}{\xi}$.

二、拉格朗日(Lagrange)中值定理

定理2(拉格朗日):设函数 f(x)满足

(1) f(x) 在 [a,b]连续;

则
$$\exists \xi \in (a,b)$$
,使得 $f'(\xi) = \frac{f(b) - f(a)}{b - a}$.

(法, 1736-1813)

拉格朗日(Lagrange)中值定理的变形:

(1)
$$f(b) - f(a) = f'(\xi)(b-a), \ \xi \in (a,b);$$

(2)
$$f(b) - f(a) = f'(a + \theta(b - a))(b - a), \ \theta \in (0,1);$$

$$(3) \Delta y = f(x + \Delta x) - f(x)$$
$$= f'(x + \theta \Delta x) \Delta x, \ \theta \in (0,1). \ \ \text{有限增量形式}$$

应用一 得到不等式

•
$$|f'(x)| \le M \Rightarrow |f(x_1) - f(x_2)| \le M|x_1 - x_2|$$
.

例3、证明
$$\frac{x}{1+x^2}$$
 < arctan $x < x$ (其中 $x > 0$).

例4、设 f(x) 在区间 I 上可微, 且| f'(x)| $\leq M$, 则函数 f(x) 在区间 I 上一致连续.

练习: 证明 $f(x) = \sqrt{x}$ 在 [1,+∞)上一致连续.

◆ 应用二 得到等式

推论1: 若 f(x) 在区间 I 上满足 $f'(x) \equiv 0$,则 f(x) 在区间 I 上是一个常函数.

推论2: 若 f(x), g(x)在区间 I 上满足 $f'(x) \equiv g'(x)$, 则存在常数 C , 使得

$$f(x) = g(x) + C (x \in I).$$

例5、设|x|<1,证明:

$$\arctan x - \arctan \frac{1+x}{1-x} = -\frac{\pi}{4}.$$

推论3:设 f(x) 在某 $U(x_0)$ 上连续,在 $U^o(x_0)$ 内

可导,且 $\lim_{x\to x_0} f'(x)$ 存在,则 f 在 x_0 可导

且
$$f'(x_0) = \lim_{x \to x_0} f'(x).$$

注:可能 $f'(x_0)$ 存在,但 $\lim_{x\to x_0} f'(x)$ 不存在.

如: 设
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

则
$$f'(0) = 0$$
, 但 $\lim_{x\to 0} f'(x)$ 不存在.

例6、求
$$f(x) = \begin{cases} x + \sin x^2, x \le 0 \\ \ln(1+x), x > 0 \end{cases}$$
的导数。

三、单调函数

定理3: 设 f(x) 在区间 I 上可导,则 f(x) 在 I 上递增(减)的充要条件是 $f'(x) \ge 0$ ($f'(x) \le 0$).

定理4: 设 f(x) 在区间 I 上可导,则 f(x) 在 I 上 严格递增(减)的充要条件是

- (i) 对任意 $x \in I$, 有 $f'(x) \ge 0$ ($f'(x) \le 0$);
- (ii) 在 I 的任何子区间上 f'(x) 不恒为 0.

推论4:设 f(x) 在区间 I 上可导.

- (1) 若 f'(x) > 0,则 f(x) 在 I 上严格递增.
- (2) 若 f'(x) < 0,则 f(x) 在 I 上严格递减.

推论5: 设 f(x) 在区间 [a,b] 上连续.

- (1) 若在(a,b)上, f'(x) > 0,则 f(x) 在 [a,b]上严格递增.
- (2) 若在(a,b)上, f'(x) < 0,则 f(x) 在 [a,b] 上严格递减.

例7、讨论下列函数的单调性

(1)
$$y = \sqrt[3]{x^2}$$
;

$$(2) y = x - \sin x.$$

注:单调区间的分点可能是函数的稳定点,也有可能是不可导点。

例8、证明下列不等式。

$$(1) 当 x > 0 时, \ln(1+x) > \frac{\arctan x}{1+x};$$

(2)当b > a > e时, $a^b > b^a$.

定理5 (达布定理): 若函数 f 在 [a,b]上可导,且 $f'_{+}(a) \neq f'_{-}(b)$,则对介于 $f'_{+}(a)$ 与 $f'_{-}(b)$ 之间的任一实数 k,存在 $\xi \in (a,b)$,使得 $f'(\xi) = k$.

作 业

习题6-1:5(2)、6(2)、7(3)

练习题

- 1、设 f(x) 在 [a,b] 上连续, 在 (a,b) 内可导且 f(a) = f(b) = 0. 证明 $\exists \xi \in (a,b)$, 使得 $f(\xi) + f'(\xi) = 0.$
- 2、设 $0 < x < \pi$,证明: $\frac{\sin x}{x} > \cos x$.