Homework IV

I. REMARK

• Reading materials: Ch 6, 7, 10 in the textbook.

Due: 12/9 23:59 PM

II. PROBLEM SET

1). Below are two lists, one of time-domain functions and one of frequency-domain functions. Match the frequency-domain functions to their inverse CTFTs in the list of time-domain functions. (A match may not exist.)

(a) Time Domain

1. $-(1/2)\delta_{1/8}(t)$

(1, =) = 1/8 (1)

2. $5\operatorname{sinc}(2(t+2))$

3. $3\delta(3t-9)$

4. $-7 \operatorname{sinc}^2(t/12)$

5. $5\operatorname{sinc}(2(t-2))$

6. $5\cos(200\pi t)$

7. $2 \operatorname{tri}((t+5)/10)$

8. $3\delta(t-3)$

9. -24[u(t+1) - u(t-3)]

10. $-2\delta_{1/4}(-t)$

11. $9 \operatorname{rect}((t-4)/20)$

12. $2 \operatorname{tri}((t+10)/5)$

13. -24[u(t+3)-u(t-1)]

14. $10\cos(400\pi t)$

Frequency Domain

A $5[\delta(f-200)+\delta(f+200)]$

B $(5/2) \operatorname{rect}(f/2) e^{-j4\pi f}$

C $180 \operatorname{sinc}(20f) e^{-j8\pi f}$

D $-84 \operatorname{tri}(12 f)$

E $-96\operatorname{sinc}(4f)e^{j2\pi f}$

F $-4\delta_8(-f)$

G $e^{-j6\pi f}$

H $10 \operatorname{sinc}^2(5 f) e^{j10\pi f}$

2) Find the Nyquist rates for these signals.

(a) $x(t) = 15 \operatorname{rect}(300t) \cos(10^4 \pi t)$

(b) $x(t) = 7 \operatorname{sinc}(40t) \cos(150\pi t)$

3) A signal $x(t) = 4 \sin(10t)$ is impulse sampled at a sampling rate of 20 Hz. Graph the impulse-sampled signal $x_{\delta}(t)$ on the interval -0.5 < t < 0.5. Then graph three fundamental periods, centered at f = 0, of the CTFT $X_{\delta}(f)$ of the impulse-sampled signal $x_{\delta}(t)$. Also, graph the DTFT X(F) of the x[n]=x(n/20).

4) A signal x [n] has a DTFT X(F). Some of the values of x[n] are

Let Y(F) = X(2F) with $y[n] \xleftarrow{\mathcal{F}} Y(F)$. Find the numerical values of y[n] for $-2 \le n < 4$.

 Fill in the blanks with correct numbers for this DFT harmonic function of a real-valued signal with N = 8.