به نام خدا

دانشگاه تهران پردیس دانشکدههای فنی دانشکده برق و کامپیوتر

درس تحقیق در عملیات

پروژه نهایی

نام و نام خانوادگی: محمدرضا بختیاری

شماره دانشجویی: 810197468

فهرست سوالات

3	Dataset Generation
4	Model Graph
6	

Dataset Generation

ابتدا 15 مکان که 8 تای آن ها از ناحیه 3 و 7 تای دیگر نیز از ناحیه 6 را طوری انتخاب می کنیم که به خوبی ناحیه ها را پوشش دهد .

سپس با توجه به معیارهایی نظیر : ترافیک , مدت زمان و مسافت برای هر مکان , 2 الی 4 همسایه انتخاب می کنیم و با توجه به معیار های مذکور برای هر همسایه وزن دهی مناسب را انجام می دهیم . (به عنوان مثال برای دو همسایه که مسافت یکسانی از مرجع دارند , وزن بیشتر را به همسایه ای اختصاص می دهیم که ترافیک بیشتری دارد و به همین صورت وزن دهی را تکمیل می کنیم) .

در نهایت همان طور که در شکل زیر می بینیم دادگان مورد نظر را تولید کرده و در فایلی به نام Dataset ذخیره می کنیم .

Place_index	Place_name	Coordinates	Neighbors_indice	Neighbors_weight
1	Mellat Park	35.77808,51.41011	5,11,13	1,1,2
2	Arghavan Park	35.78647,51.45938	5,12	2,1
3	Baqiatallah Hospital	35.75600,51.39518	6,13,14	1,1,2
4	ICRO	35.74450,51.42702	5,7,12	2,2,1
5	Pazriz Hotel	35.76505,51.42059	1,4,12,13	2,1,1,2
6	Sadaf Swimming Pool	35.74677,51.38968	3,8,14	2,1,2
7	Dey General Hospital	35.74826,51.41158	4,9,14	4,1,1
8	Tehran Heart Center	35.72094,51.38793	6,10	2,2
9	Salmas Square	35.72364,51.40231	7,10,15	1,1,1
10	Tehran Museum of Contemporary Art	35.71205,51.39064	8,9,15	3,2,1
11	Enghelab Sports Complex	35.78404,51.39777	1,13	1,2
12	Paris Center	35.77014,51.45982	2,4,5	2,1,1
13	Sheikh Bahaei Square	35.76625,51.39534	1,3,5	2,1,2
14	Mom Fertility and Infertility Center	35.74840,51.40151	3,6,7	3,2,1
15	Raees Coffe	35.72177,51.42273	9,10	1,1

شکل 1 : نمای کلی از دادگان تولید شده

Model Graph

در این قسمت با استفاده از DrawIO گراف خواسته شده را رسم می کنیم .

شکل 2 : گرافی از مکان های انتخاب شده به همراه همسایگی ها و وزن دهی های به دست آمده در قسمت قبل

همچنین نقشه مکان های انتخاب شده به شکل زیر می باشد:

شكل 3 : نقشه مكان هاى انتخاب شده

و اسامی مکان های انتخاب شده نیز به صورت زیر است :

شکل 4: مکان های انتخاب شده

Minimum Cost Routing

با استفاده از اصل بهینگی بلمن , می دانیم هر زیرمجموعه ای از مسیر بهینه از A به B خود یک مسیر بهینه است . با استفاده از این اصل می توانیم تابع هزینه مورد نظر را به صورت $\sum_{i,j} w_{ij} x_{ij}$ تعریف کنیم که هدف کمینه کردن مقدار فوق است . به صورتی که می دانیم x_{ij} متغیر باینری بوده و مقادیر مجاز آن x_{ij} می باشد و همچنین رابطه ی زیر به ازای تمامی x_{ij} ها بر قرار است :

$$\sum_j x_{ij} - \sum_j x_{ji} = egin{cases} 1, & ext{if } i = s; \ -1, & ext{if } i = t; \ 0, & ext{otherwise.} \end{cases}$$

 x_{ij} به نحوی که s همان نقطه ی شروع و t نقطه ی پایان است . که نشان دهنده این است که متغیر مشخص می کند که آیا یال (i,j) بخشی از مسیر بهینه ما است یا خیر , مقدار این متغیر زمانی یک است که یال مذکور بخشی از مسیر بهینه ما باشد در غیر این صورت x_{ij} برابر با صفر خواهد بود .

در نهایت هدف انتخاب مجموعه ای از یال ها با کمترین وزن است به صورتی که از نقطه ی شروع s به نقطه ی پایانی t برسیم .

در ادامه با استفاده از قطعه کدی در پایتون , به طراحی و پیاده سازی مساله بهینه سازی فوق می پردازیم .

ابتدا لیستی از اسامی مکان ها به کاربر نمایش داده می شود و کاربر باید دقیقا نام مبدا و سپس نام مقصد را به درستی وارد کند و در نهایت مسیر بهینه به همراه مختصات مبدا و مقصد و هزینه بهینه مسیر نمایش داده می شود .

به عنوان مثال پارک ملت را مبدا و بیمارستان دی را به عنوان مقصد وارد می کنیم و خروجی را مشاهده می کنیم :

```
The Names of Places:
1- Mellat Park 2- Arghavan Park
                                   3- Baqiatallah Hospital
                                                             4- ICRO
                                                                         5- Pazriz Hotel
6- Sadaf Swimming Pool
                        7- Dey General Hospital 8- Tehran Heart Center 9- Salmas Square
10- Tehran Museum of Contemporary Art 11- Enghelab Sports Complex
                                                                     12- Paris Center
13- Sheikh Bahaei Square
                          14- Mom Fertility and Infertility Center
                                                                     15- Raees Coffe
Enter exactly the name of your starting point :Mellat Park
Enter exactly the name of your destination point :Dey General Hospital
Index of starting point is: 1 and the cordinate is: 35.77808,51.41011
Index of destination point is: 7 and the cordinate is: 35.74826,51.41158
The indices of all places on the way of the optimal rout is: [1, 5, 4, 7]
The total cost of the optimal rout is: 4
```

شکل 5 : خروجی به ازای مبدا : پارک ملت و مقصد : بیمارستان دی

مشاهده می کنیم خروجی شبیه سازی همان گونه شد که انتظار داشتیم .