Digitaltechnik Wintersemester 2017/2018 6. Vorlesung

Inhalt

- 1. Einleitung
- 2. Algorithmische Logikminimierung
- 3. Mehrwertige Logik
- 4. Zeitverhalten
- 5. Zusammenfassung

Einleitung

01110111010010011100000010010011101000	11
00111000011101001001010110110111100010	00
11001100011100111000010000011011010100	0 1
110100010000100111111111011110100001101	11
01000011100111000110101010110101011011	0 1
111010110000010100110101111111110001001	0 1
01101011000000000111101110100011010110	11
100100001111011100000111101010001111001	00
10100010101100000010111001110010010011	11
00101101011000001000101011010000101000	10
1010011101110110000000010100011001001	00
0101000110010010100101011100100001001	11
100100101100100111111100010111100110	0 1
01110101111010111001010110001011100000	10
1000110000010001111111100111111110010	0 1
1101110100100000110000110001110001011	11

Rückblick auf die letzte Vorlesung

- Kombinatorische Logik
 - Bubble Pushing
 - Logik-Realisierung mit Basis-Gattern
 - Karnaugh Diagramme

Harris 2013 Kap. 2.4,2.5,2.7,2.8

7-Segment Anzeige: $\mathbb{B}^4 \to \mathbb{B}^7$

- ▶ (typ.) vier Eingänge für dargestelltes Zeichen
- ▶ sieben unabhängig ein-/ausschaltbare Segmente
- ⇒ jedes Segment nur für bestimmte Zeichen aktiv

Hexadezimale 7-Segment Anzeige

Hexadezimale 7-Segment Anzeige Wahrheitswertetabelle

A_3	A_2	A_1	A_0	S_0	S_1	S_2	S_3	S_4	S_5	S_6
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1
1	0	1	0	1	1	1	0	1	1	1
1	0	1	1	0	0	1	1	1	1	1
1	1	0	0	0	0	0	1	1	0	1
1	1	0	1	0	1	1	1	1	0	1
1	1	1	0	1	0	0	1	1	1	1
1	1	1	1	1	0	0	0	1	1	1

Hexadezimale 7-Segment Anzeige Normalformen

$$S_{0} = \overline{A_{3}} \ \overline{A_{2}} \ \overline{A_{1}} \ \overline{A_{0}} \qquad [m_{0}]$$

$$+ \overline{A_{3}} \ \overline{A_{2}} \ A_{1} \ \overline{A_{0}} \qquad [m_{2}]$$

$$+ \overline{A_{3}} \ \overline{A_{2}} \ A_{1} \ A_{0} \qquad [m_{3}]$$

$$+ \overline{A_{3}} \ A_{2} \ \overline{A_{1}} \ A_{0} \qquad [m_{5}]$$

$$+ \overline{A_{3}} \ A_{2} \ \overline{A_{1}} \ \overline{A_{0}} \qquad [m_{6}]$$

$$+ \overline{A_{3}} \ A_{2} \ A_{1} \ \overline{A_{0}} \qquad [m_{7}]$$

$$+ A_{3} \ \overline{A_{2}} \ \overline{A_{1}} \ \overline{A_{0}} \qquad [m_{8}]$$

$$+ A_{3} \ \overline{A_{2}} \ \overline{A_{1}} \ \overline{A_{0}} \qquad [m_{9}]$$

$$+ A_{3} \ \overline{A_{2}} \ A_{1} \ \overline{A_{0}} \qquad [m_{10}]$$

$$+ A_{3} \ A_{2} \ A_{1} \ \overline{A_{0}} \qquad [m_{14}]$$

$$+ A_{3} \ A_{2} \ A_{1} \ A_{0} \qquad [m_{15}]$$

$$S_{0} = (A_{3} + A_{2} + A_{1} + \overline{A_{0}}) \qquad [M_{1}]$$

$$\cdot (A_{3} + \overline{A_{2}} + A_{1} + A_{0}) \qquad [M_{4}]$$

$$\cdot (\overline{A_{3}} + A_{2} + \overline{A_{1}} + \overline{A_{0}}) \qquad [M_{11}]$$

$$\cdot (\overline{A_{3}} + \overline{A_{2}} + A_{1} + A_{0}) \qquad [M_{12}]$$

$$\cdot (\overline{A_{3}} + \overline{A_{2}} + A_{1} + \overline{A_{0}}) \qquad [M_{13}]$$

Hexadezimale 7-Segment Anzeige Verkürzte Minterm/Maxterm-Schreibweise

- ▶ Boole'sche Funktion eindeutig spezifiziert durch
 - ► Indizes der 1-Minterme ("on set") bzw.
 - Indizes der 0-Maxterme ("off set")
- ⇒ erlaubt kompaktere Schreibweise
 - Achtung: Bezug zu (Reihenfolge der) Eingangsvariablen geht verloren

$$S_0 = m_0 + m_2 + m_3 + m_5 + m_6 + m_7 + m_8 + m_9 + m_{10} + m_{14} + m_{15}$$

$$= \sum m(0, 2, 3, 5, 6, 7, 8, 9, 10, 14, 15)$$

$$= M_1 M_4 M_{11} M_{12} M_{13}$$

$$= \prod M(1, 4, 11, 13)$$

Hexadezimale 7-Segment Anzeige Karnaugh Diagramm

Dezimale 7-Segment Anzeige Wahrheitswertetabelle mit Don't Cares

A_3	A_2	A_1	A_0	S_0	S_1	S_2	S_3	S_4	S_5	S_6
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1
1	0	1	0	*	*	*	*	*	*	*
1	0	1	1	*	*	*	*	*	*	*
1	1	0	0	*	*	*	*	*	*	*
1	1	0	1	*	*	*	*	*	*	*
1	1	1	0	*	*	*	*	*	*	*
1	1	1	1	*	*	*	*	*	*	*

Dezimale 7-Segment Anzeige Minterm/Maxterm-Schreibweise mit Don't Cares

- ▶ Don't Cares können als 0 oder 1 realisiert werden
- in DNF und KNF gleichermaßen enthalten
- Achtung: nur für verkürzte Schreibweise in einem Ausdruck möglich

$$S_0 = m_0 + m_2 + m_3 + m_5 + m_6 + m_7 + m_8 + m_9 + d_{10} + d_{11} + d_{12} + d_{13} + d_{14} + d_{15}$$

$$= \sum m(0, 2, 3, 5, 6, 7, 8, 9) + \sum d(10, 11, 12, 13, 14, 15)$$

$$= M_1 M_4 D_{10} D_{11} D_{12} D_{13} D_{14} D_{15}$$

$$= \prod M(1, 4) \prod D(10, 11, 12, 13, 14, 15)$$

Dezimale 7-Segment Anzeige Karnaugh Diagramm mit Don't Cares

Dezimale 7-Segment Anzeige Karnaugh Diagramm mit Maxtermen

Überblick der heutigen Vorlesung

- Algorithmische Logikminimierung
- Vierwertige Logik
- Zeitverhalten

Harris 2013 Kap. 2.6,2.2.9

> Katz 2005 Kap 3.2

Algorithmische Logikminimierung

0000000000011111001000111011000110011	1 1
011111001101111010111110000001010011010) 1
11100111011100111011101101001010010111	10
0010001000000101011111010110010011111001	10
1000000000000100101111010101011111100010	0 (
001101111100000111111110001010101011011	10
00000000101110010110101001001011110101	1 1
100000001011010001001001111111000001011	10
010100000100001101111011010011001011101	10
010001111010110101111100110011011011011	0 (
01101011100000110101101010010010111001110	0 (
010111110111100010001110010011100010101	1 1
101101001010001000000101010101001001111011	10
0110100000100101111111111000010011111100	0 (
11101001000010100111100000111111010101100) 1
101010100110100100100100101101011011011	1 1

Beispiele für Verfahren zur Logikminimierung

- Algebraisch:
 - Umformen nach Axiomen/Thermen
- Grafisch:
 - Karnaugh Diagramme
 - Hyperwürfel
- Algorithmisch

exakt: Quine-McCluskey

heuristisch: Espresso

⇒ Minimiere Anzahl der zur Darstellung einer Funktion notwendigen Implikanten

Verwendbarkeit der Verfahren

- Grafische Verfahren:
 - ▶ für viele (> 6) Eingänge nicht mehr praktikabel
 - keine Optimierung zwischen Ausdrücken für mehrere Ausgänge
- Quine-McCluskey-Methode
 - berechnet zunächst alle möglichen Implikanten
 - ermittelt danach minimale Teilmenge für vollständige Überdeckung
 - ⇒ Rechzeit steigt exponentiell mit Anzahl der Eingänge
- ⇒ für wirklich große Probleme (> 50 Variablen) nur Heuristiken sinnvoll
 - geringere Laufzeitkomplexität
 - geringere Lösungsqualität

Espresso-Heuristik

- ▶ in 1980er Jahren bei IBM und UC Berkeley entwickel
- unterstützt auch mehrere (zusammen optimierte) Ausgänge
- Details des Algorithmus hier nicht relevant (vgl. Katz 2005 bzw. Rudell 1986)
- hier nur Anwendung einer konkreten Implementierung
 - https://embedded.eecs.berkeley.edu/pubs/downloads/espresso
 - Anleitung / Quellen auch im Moodle verfügbar
 - spezielles Dateiformat für boole'sche Funktionen
 - erlaubt auch exakte Minimierung (als Referenz für Heuristik):

```
espresso -D exact input.esp > output.esp
espresso -D ESPRESSO input.esp > output.esp
```

Espresso Dateiformat

- relevante Informationen zeilenweise nach Keywords
 - .i Anzahl ni der Eingänge (erforderlich)
 - .o Anzahl no der Ausgänge (erforderlich)
 - .ilb Name(n) der Eingänge
 - . ob Name(n) der Ausgänge
 - .p Anzahl der Tabellenzeilen
 - e Dateiende
- Wahrheitswertetabelle im ASCII Format
 - ▶ jede Zeile beschreibt einen Implikanten mit n_i Zeichen ...
 - Eingang negiert im Implikanten
 - 1 Eingang nicht-negiert im Implikanten
 - Eingang nicht im Implikanten (kein Minterm)
 - ... und n_o Ausgangsfunktionen mit je einem Zeichen
 - Implikant im off set des Ausgangs
 - 1 Implikant im on set des Ausgangs
 - Implikant im on set oder off set des Ausgangs (Don't Care)
- "#" leitet Kommentar ein

Espresso Minimalbeispiel

xor.esp

```
# Espresso description of Y = A xor B

i i 2

i o 1

ilb A B # optional

ob Y # optional

ob Y # optional

output

out
```

Espresso 7-Segment Anzeige Eingabedateien


```
sevenseg/s0.esp
                                                              sevenseg/all.esp
      S0
             7-segment display
                                                         7-segment display
          of
          4
                                                       .i
    . 0
                                                       . 0
3
   0000 1
                                                      0000
                                                             1111110
   0010 1
                                                      0001
                                                             0110000
   0011 1
                                                      0010
                                                            1101101
   0101 1
                                                      0011 1111001
   0110 1
                                                      0100 0110011
   0111 1
                                                      0101
                                                             1011011
   1000 1
                                                      0110 1011111
10
   1001 1
                                                      0111
                                                            1110000
11
   1010 -
                                                       1000
                                                             1111111
12
                                                   12
   1011 -
                                                      1001
                                                             1111011
13
   1100
                                                      1010
14
   1101
                                                      1011
   1110 -
                                                      1100
16
                                                   16
17
   1111 -
                                                      1101
                                                   17
                                                      1110
                                                      1111
                                                   19
```

Espresso 7-Segment Anzeige Ausgabedateien


```
espresso -D ESPRESSO sevenseg/s0.esp
```

```
# SO of 7-segment display
.i 4
.o 1
.p 4
-0-0 1
1--- 1
7 --1- 1
8 -1-1 1
9 .e
```

espresso -D ESPRESSO sevenseg/all.esp

```
# 7-segment display
   . 0
   .p 9
   -0-0 1001100
   -0-1 0110000
   --10 1001100
   -01- 0101001
   -1-0 0010011
   --11 1110000
   --00 0110010
   -101 1011011
   1--- 1001011
14
   . е
```

Espresso kann noch viel mehr

- Mehrwertige Logik
- Mehrstufige Realisierung
- Optimierung von Zustandsautomaten
 - Reduktion der Anzahl der Zustände
 - Erkennung von äquivalenten Zuständen
 - Optimierungen der Zustandskodierung

Mehrwertige Logik

0000111100110010001010011010110011010	011
1110001110110011110010110010010010010000	001
1010011101111111000100011001000100100	000
110100111100001110111001110011110111	100
11010111110101100110101100111111011010	011
100001100100110010011010110010010111	110
10111101110010111111101011010100000111	000
000111010000001101 0011 00110010101011	010
100001101011111001111100001100010110	101
0111010001001100000001010101011011000	000
1010011111111101011001111000010101101	001
111000101111001101101010110110110110010	010
0001111110111100111100000011001111110	110
1010100011000100101110011101111100011	010
110011100100010001010111101000000111	001
01010010111100100111110111100001100010	101

Mehrwertige Logik

- bisher galt:
 - jeder Schaltungsknoten (außer Eingänge) wird von genau einem Schaltungselement auf 0 oder 1 getrieben
 - ▶ Axiome der boole'schen Algebra basieren auf $\mathbb{B} = \{0, 1\}$
- ⇒ ignoriert wichtige Teile der Realität
 - Wie breiten sich ungültige Spannungen in Schaltung aus?
 - Können ungültige Spannungsbereiche gezielt eingesetzt werden?
- ⇒ Unterscheidung von zwei weiteren Logikwerten zwischen 0 und 1
 - X mehrfach getrieben (fehlerhaft)
 - Z ungetrieben (gezielt)
 - Achtung:
 - nicht mit "Don't Care" (*) verwechseln
 - tatsächliche Spannung kann auch im 0- oder 1-Bereich liegen, das Schaltungsdesign stellt dies aber nicht sicher

Konkurrierende Ausgänge: X

- mehrere (unabhängige) Treiber für den selben Schaltungsknoten
- Konflikt, sobald Treiber in entgegengesezte Richtung ziehen
 - instabil: abhängig von Betriebsspannung, Temperatur, etc.
 - destruktiv: Kurzschluss verursacht hohen Energieverbrauch
- fast immer ein Entwurfsfehler
 - bspw. doppelte Zuweisung in Hardwarebeschreibung
 - ⇒ Konflikt-Quelle muss in Simulation leicht nachvollziehbar sein

Tristate-Buffer: Z

ΕN	Α	Υ
0	0	Z
0	1	Z
1	0	0
1	1	1

- zusätzliches Enable-Signal an Buffer
 - EN=1: Funktion wie normaler Buffer
 - ► EN=0: Ausgang hochomig (offen, ungetrieben, floating, high-impedance)
- ► Achtung: $Z \neq 0$

Tristate-Buffer für Busse

- mehrere Treiber an gemeinsamer Leitung
- zu jedem Zeitpunkt genau ein aktiver Treiber
- erlaubt Wechsel der Kommunikationsrichtung

Tristate-Buffer für Multiplexer

S	Α	В	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Mehrwertige Logik in Schaltnetzen

- Resolutionstabellen definieren Ausbreitung von X und Z
- mehr Konvention (für Simulator) als physikalische Realität
- bspw. IEEE 1164:

$$A > \longrightarrow Y$$
 $B > \longrightarrow Y$

Zeitverhalten

101100101101011101100011011001000001	1001
01110011110010011000111111010011000100	0001
01110111101111001010111111111100110111	010
10010110000000001110001101000000111	1110
1111010110111010101000001100001001101	1101
1000110000010110101101011110111101011	1000
100100101101100011000001100011010101	1101
001001110110011101 0100 011000100000000	111
010101100001011011100011001110001000	0001
1100011000100111101000111100111110010	0000
011010010000111100010000001111010100	0001
111001001100111100001110011010110110110	110
11100000011010110011000101011110001111	1010
110000010111010010000011101100001101	1100
101111101110001000111001001110001110	1000
01000110101101010101101010100011111010	0001

Abstrakte Eigenschaften logischer Schaltungen

- Eingängen
- Ausgängen
- Spezifikation der realisierten (boolschen) Funktion
- Spezifikation des Zeitverhaltens

Zeitverhalten einer kombinatorischen Schaltung

- Werte der Ausgänge hängen nur von Werten an Eingängen ab
- reale Schaltungselemente benötigen aber endliche Zeit, um Änderung am Eingang auf Ausgang zu übertragen
 - bspw. für Umladen von CMOS Gate-Kapazitäten
- ⇒ Zentrale Fragen
 - Gibt es funktional äquivalente Schaltungen mit geringerer Verzögerung?
 - Wann sind die Ausgänge stabil?
 - Timing-Analyse anspruchsvoll, denn
 - Eingang kann Ausgang über verschiedene Pfade beeinflussen
 - Verzögerung kann für steigende/fallende Flanken unterschiedlich sein
 - Verzögerungen im (Sub-)Nanosekundenbereich

Ausbreitungs- und Kontaminationsverzögerung propagation and contamination delay

t_{pd} maximale Zeit vom Eingang zum Ausgang (Ausbreitungsverzögerung)
 t_{cd} minimale Zeit vom Eingang zum Ausgang (Kontaminationsverzögerung)

Ausbreitungs- und Kontaminationsverzögerung

- Ursachen für Verzögerung
 - Kapazitäten, Induktivitäten und Widerstände in der Schaltung
 - Lichtgeschwindigkeit als maximale Ausbreitungsgeschwindigkeit: 30 cm/ns
- Warum können t_{pd} und t_{cd} unterschiedlich sein?
 - unterschiedliche Verzögerungen für steigende (t_{pd,LH}) und fallende (t_{pd,HL}) Flanken
 - mehrere Ein- und Ausgänge mit unterschiedlich langen Pfaden
 - Schaltungen werden
 - ... langsamer bei Erwärmung
 - ... schneller bei Abkühlung

Beispiele aus der Praxis: CMOS Inverter

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Dual Complementary Pair Plus Inverter

The MC14007UB multi–purpose device consists of three N–channel and three P–channel enhancement mode devices packaged to provide access to each device. These versatile parts are useful in inverter circuits, pulse–shapers, linear amplifiers, high input impedance amplifiers, threshold detectors, transmission gating, and functional gating.

- · Diode Protection on All Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low–power TTL Loads or One Low–power Schottky TTL Load Over the Rated Temperature Range
- Pin-for-Pin Replacement for CD4007A or CD4007UB
- This device has 2 outputs without ESD Protection. Anti-static precautions must be taken.

MC14007UB

L SUFFIX CERAMIC CASE 632

P SUFFIX PLASTIC CASE 646

D SUFFIX SOIC CASE 751A

ORDERING INFORMATION

Beispiele aus der Praxis: $t_{ m pd,HL} pprox$ 36 ns

Beispiele aus der Praxis: $t_{ m pd,LH} pprox$ 18 ns

Kritische (lange) und kurze Pfade

22.11.2017 | TU Darmstadt | Andreas Engel | 6. Vorlesung Digitaltechnik | 40 / 45

 $= t_{cd.AND}$

Störimpulse (Glitches)

- eine Änderung eines Eingangs verursacht mehrere Änderungen des Ausgangs
- können durch geeignete Entwurfsdisziplin entschärft werden
 - Ausgänge nur zu bestimmten Zeiten auswerten (synchroner Entwurf)
 - Pfade modifizieren / hinzufügen
 - nicht alle Störimpulse können eliminiert werden (bspw. gleichzeitiges Schalten mehrerer Eingänge)
- können durch Timing- und Karnaugh-Diagramme analysiert werden

Beispiel für Störimpuls: Erkennen

► Was passiert, wenn (A, B, C) von (0, 1, 1) nach (0, 0, 1) schaltet?

Beispiel für Störimpuls: Beheben

► Kritische Stelle im Karnaugh-Diagramm mit zusätzlichem Implikanten \overline{A} C überdecken

Zusammenfassung

01101001100011001100001111001100100	010001
101011100110000001001100010010010	00000
11001111011100001111000001101000010	010001
11110010001101011101001111001011101	110100
11110111110010001010111110010010101	110111
01101111010000110111100101101000001	111001
00101111011111011001010011010011100	001000
101101111100100000 <mark>0101</mark> 0100000110011	100100
101010011000100111111001100000010111	100111
11010000110010110111101010000010011	100011
0010110000001011111010000000000111	100000
00000111011110011000001000011101000	001011
11011101101010110010110011100010010	011000
11001001100111110011010111001001011	100101
010101000110000000110010101110111	100101
010101111110101111101010110001000001	101111

Zusammenfassung und Ausblick

- Kombinatorische Logik
 - Algorithmische Logikminimierung
 - Vierwertige Logik
 - Zeitverhalten
- Nächste Vorlesung behandelt
 - Sequentielle Schaltungen