Leçon 203. Utilisation de la notion de compacité.

I. Premières applications dans les espaces vectoriels normés

I.1. Espaces compacts

- 1. DÉFINITION (propriété de Borel-Lebesgue). Un espace topologique X est compact s'il est séparé et, de toute recouvrement de X par des ouverts, on peut en extraire un sous-recouvrement fini.
- 2. Exemple. La droite réelle n'est pas compacte.
- 3. Proposition. Tout espace métrique compact est fermé et borné.
- 4. Contre-exemple. La réciproque est fausse : la boule unité fermé de l'espace des fonctions bornées de ${\bf R}$ dans ${\bf R}$ n'est pas compacte.
- 5. Théorème (propriété de Bolzano-Weierstrass). Un espace métrique E est compact si et seulement si toute suite de E admet une valeur d'adhérence.
- 6. Théorème (Bolzano-Weierstrass). Tout intervalle fermé de la droite réelle est compact, c'est-à-dire toute suite d'un intervalle fermé admet une sous-suite convergente.
- 7. PROPOSITION. Soit $(F_n)_{n\in\mathbb{N}}$ une suite décroissantes de compacts non vide d'un espace métrique E. Alors l'union $\bigcap_{n\in\mathbb{N}} F_n$ n'est pas vide.
- 8. APPLICATION (premier théorème de Dini). Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions d'un intervalle [a,b] dans \mathbf{R} . On suppose qu'elle converge simplement vers une fonction continue f. Si la suite $(f_n)_{n\in\mathbb{N}}$ est croissante, alors la convergence est uniforme;

I.2. Compacité dans les espaces vectoriels normés

- 9. Théorème. Soit E un espace vectoriel normé de dimension finie. Les parties fermées et bornées de E sont compactes.
- 10. Exemple. La boule unité fermée de E pour la norme associée à une base quelconque de E est compacte.
- 11. APPLICATION. Toutes les normes sur E sont équivalentes.
- 12. Théorème (Riesz). Soit E un espace vectoriel normé. Alors il est de dimension finie si et seulement si sa boule unité fermée est compacte.
- 13. Exemple. Les boules fermées de l'espace $\mathbf{R}[X]$ pour n'importe quelles normes ne sont pas compactes.
- 14. Théorème (Carathéodory). Soit E un \mathbf{R} -espace vectoriel de dimension $n \geqslant 1$. Toute combinaison convexe de vecteurs de E est une combinaison convexe de n+1 vecteurs de E.
- 15. COROLLAIRE. L'enveloppe convexe d'une partie compacte de E est compacte.

I.3. Une application de la compacité dans les espaces de matrices

- 16. Proposition. Le groupe orthogonal O(n) est compact.
- 17. Application (décomposition polaire). L'application

$$\begin{array}{c}
O(n) \times \mathscr{S}_n^{++}(\mathbf{R}) \longrightarrow \mathrm{GL}_n(\mathbf{R}), \\
(O, S) \longmapsto OS
\end{array}$$

est un homéomorphisme.

18. Remarque. Avec ce résultat 16, on peut déterminer un algorithme qui donne la décomposition QR d'une matrice.

II. Compacité et fonctions continues

II.1. Fonctions continues ou dérivables sur un espace compact

- 19. Proposition. Soient E un espace métrique compact et F un espace métrique. Alors l'image de toute application continue de E dans F est compacte.
- 20. Théorème (Heine). Soient E un espace métrique compact et F un espace métrique. Alors une application continue de E dans F est uniformément continue.
- 21. Contre-exemple. L'hypothèse de compacité est nécessaire : la fonction racine carrée sur \mathbf{R}_{+}^{*} n'est pas uniformément continue tout comme la fonction carrée sur \mathbf{R} .
- 22. APPLICATION (second théorème de Dini). Soit $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions d'un intervalle [a, b] dans \mathbb{R} . On suppose qu'elle converge simplement vers une fonction continue f. Alors si les fonctions f_n sont croissantes, alors la convergence est uniforme.
- 23. Théorème (Weierstrass). Toute fonction continue d'un intervalle fermé de ${\bf R}$ à valeurs dans ${\bf C}$ est une limite uniforme d'une suite de fonctions polynomiales.
- 24. Contre-exemple. Le théorème est faux si l'intervalle de départ n'est pas compact. Par exemple, toute limite uniforme de fonction polynomiale sur ${\bf R}$ est polynomiale.
- 25. APPLICATION. Soit $f:[0,1] \longrightarrow \mathbf{R}$ une fonction continue telle que

$$\forall n \in \mathbf{N}, \qquad \int_0^1 t^n f(t) \, \mathrm{d}t = 0.$$

Alors f = 0.

26. Théorème. Soit E un espace métrique compact. Toute application $f \colon E \longrightarrow E$ vérifiant

$$\forall x, y \in E, \qquad x \neq y \quad \Longrightarrow \quad d(f(x), f(y)) < d(x, y) \tag{*}$$

admet un unique point fixe.

27. Contre-exemple. La compacité est centrale : la fonction $\frac{1}{2}\operatorname{Id}_{\mathbf{R}_{+}^{*}}:\mathbf{R}_{+}^{*}\longrightarrow\mathbf{R}_{+}^{*}$ vérifie bien l'hypothèse (*), mais elle n'admet pas de point fixe.

II.2. Optimisation des fonctions continues sur des espaces compacts

- 28. Théorème. Soit E un espace métrique compact. Alors toute application de E dans ${\bf R}$ est bornée et atteint ses bornes.
- 29. Exemple. Soit $K \subset \mathbf{C}$ un compact. Alors les quantités $\sup_{z \in K} |z|$ et $\inf_{z \in K} \operatorname{Re} z$ sont finies. Cela sert beaucoup lorsqu'on veut appliquer le théorème de convergence dominée sur tout compact.
- 30. APPLICATION (point de Fermat). Soient A, B et C trois points non alignés du plan ${\bf R}^2$. On suppose que le trois angles du triangle ABC sont inférieurs à $2\pi/3$. Alors la fonction

$$\begin{vmatrix} \mathbf{R}^2 \longrightarrow \mathbf{R}, \\ M \longmapsto AM + BM + CM \end{vmatrix}$$

- elle est équicontinue et, pour tout $x \in X$, la partie $\{f(x)\}_{f \in \mathscr{A}}$ est relativement

42. Exemple. Soient M, L > 0 deux réels. Soient X et E un espace vectoriel normé de dimension finie. La famille

$$\begin{cases}
f \in \mathscr{C}_{\mathrm{b}}(X, E) \mid \|f\|_{\infty} \leqslant M, \\
\forall x, y \in X, \|f(x) - f(y)\| \leqslant L \|x - y\|
\end{cases}$$

est compacte.

 $f'(c) = \frac{f(b) - f(a)}{b - a}.$

31. Théorème (Rolle). Soient $a, b \in \mathbf{R}$ deux réels avec a < b. Soit $f: [a, b] \longrightarrow \mathbf{R}$

une fonction continue sur [a,b] et dérivable sur [a,b] vérifiant f(a)=f(b). Alors il

32. COROLLAIRE (accroissements finis). Soit $f:[a,b] \longrightarrow \mathbf{R}$ une fonction continue

33. COROLLAIRE (formule de Taylor-Lagrange). Soit $f: [a, b] \longrightarrow \mathbf{R}$ une fonction de classe \mathscr{C}^n sur [a,b] et de classe \mathscr{C}^{n+1} sur [a,b]. Alors il existe un réel $c \in [a,b]$ tel que

$$f(b) = \sum_{k=0}^{n} \frac{(b-a)^k}{k!} f^{(k)}(a) + \frac{(b-a)^{n+1}}{(n+1)!} f^{(n+1)}(c).$$

II.3. Compacité faible et optimisation dans les espaces de Hilbert

sur [a, b] et dérivable sur [a, b]. Alors il existe un réel $c \in [a, b]$ tel que

34. DÉFINITION. Soit H un espace de Hilbert réel. Une suite $(x_n)_{n\in\mathbb{N}}$ de H converge faiblement vers un élément $x \in H$ si

$$\forall y \in H, \qquad \langle x_n, y \rangle \longrightarrow \langle x, y \rangle.$$

35. EXEMPLE. La suite $(e^{in\cdot})_{n\in\mathbb{N}}$ de l'espace $L^2(]0,2\pi[,\mathbb{C})$ converge faiblement vers la fonction nulle grâce au lemme de Riemann-Lebesgue.

36. Théorème. Toute suite bornée de l'espace H admet une sous-suite faiblement convergente.

37. Proposition. Soient $C \subset H$ une partie convexe fermée non vide et $J: C \longrightarrow \mathbf{R}$ une application convexe continue. On suppose qu'elle est coercive si la partie C n'est pas bornée. Alors elle atteint son minimum sur C.

38. APPLICATION. Soient $u \in \mathcal{L}(H)$ un endomorphisme symétrique défini positif et $b \in H$ un vecteur. Alors l'application

$$\begin{vmatrix} H \longrightarrow \mathbf{R}, \\ x \longmapsto \frac{1}{2} \langle u(x), x \rangle - \langle b, x \rangle \end{vmatrix}$$

admet un unique minimum au point $u^{-1}(b)$.

III. Compacité dans les espaces de fonctions

III.1. Le théorème d'Ascoli

admet un unique minimum.

existe un réel $c \in [a, b]$ tel que f'(c) = 0.

39. DÉFINITION. Soient X un espaces métrique compact et Y un espace métrique. L'espace $\mathscr{C}(X,Y)$ des fonctions continues de X dans Y est muni de la distance de la convergence uniforme définie par l'égalité

$$d_{\infty}(f,g) \coloneqq \sup_{x \in X} d(f(x), g(x)), \qquad f, g \in \mathscr{C}(X, Y).$$

40. DÉFINITION. Une partie $\mathscr{A} \subset \mathscr{C}(X,Y)$ est

- relativement compacte si l'adhérence $\overline{\mathscr{A}}$ est compacte :

- équicontinue si, pour tout réel $\varepsilon > 0$, il existe un réel $\delta > 0$ tel que

$$\forall x, y \in X, \quad d(x, y) \leq \delta \implies [\forall f \in \mathscr{A}, \ d(f(x), f(y)) \leq \varepsilon].$$

III.2. Applications

43. Théorème (Montel). Soient $\Omega \subset \mathbf{C}$ un ouvert et $(f_n)_{n \in \mathbf{N}}$ une suite de fonctions holomorphes sur Ω qui est uniformément bornée sur tout compact de Ω . Alors elle admet une sous-suite qui converge uniformément sur tout compact de Ω vers une fonction holomorphe sur Ω .

44. Théorème (de la représentation conforme de Riemann). Tout ouvert simplement connexe $\Omega \subset \mathbf{C}$ distinct de \mathbf{C} est conformément équivalent au disque unité $\mathbf{D} \subset \mathbf{C}$, c'est-à-dire qu'il existe un biholomorphisme $\Omega \longrightarrow \mathbf{D}$.

45. COROLLAIRE. On munit l'espace $Hol(\Omega)$ des fonctions holomorphes sur Ω de la topologie de la convergence uniforme sur tout compact de Ω . Alors les parties bornées de $Hol(\Omega)$ sont relativement compactes dans $Hol(\Omega)$.

46. THÉORÈME (Cauchy-Arzela-Peano). Soient $I \subset \mathbf{R}$ un intervalle et $\Omega \subset \mathbf{R}^n$ un ouvert. Soit $f: I \times \Omega \longrightarrow \mathbf{R}^n$ une fonction continue. Soient $t_0 \in I$ et $x_0 \in \Omega$. Alors le problème de Cauchy

$$\begin{cases} x'(t) = f(x(t), t) \\ x(t_0) = x_0 \end{cases}$$
 (1)

admet une solution définie sur un intervalle $[t_0 - T, t_0 + T]$ avec T > 0.

47. CONTRE-EXEMPLE. Le théorème ne donne pas d'unicité. En effet, la problème

$$\begin{cases} x'(t) = 3x^{2/3} \\ x(0) = 0 \end{cases}$$

admet les solutions nulle et $t \mapsto t^3$ sur **R**.

48. Contre-exemple. Le théorème est faux si on remplace l'espace \mathbb{R}^n pour un espace vectoriel normé de dimension infinie : en notant $c_0(\mathbf{R})$ l'espace des suites réels qui tendent vers zéro, le problème (1) avec

$$f: \begin{bmatrix} \mathbf{R} \times c_0(\mathbf{R}) \longrightarrow c_0(\mathbf{R}), \\ (t, (u_n)_{n \in \mathbf{N}}) \longmapsto (\sqrt{u_n} + (n+1)^{-1})_{n \in \mathbf{N}} \end{bmatrix}$$

n'admet pas de solution de classe \mathscr{C}^1 .

Haïm Brézis. Analyse fonctionnelle. 2e tirage. Masson, 1983.

Vincent Beck, Jérôme Malick et Gabriel Peyré. Objectif Agrégation. 2º édition. H&K, 2005.

^[2] [3] Philippe Ciarlet. Introduction à l'analyse numérique matricielle et à l'optimisation. 3e tirage. Masson, 1982.

Hervé Queffélec et Claude Zuily. Analyse pour l'agrégation. 5° édition. Dunod, 2020.