Homework #7 MATH270

Luke Tollefson

Wednesday, March 27th

- 1. Are the following functions?
 - (a) $f: \mathbb{R} \to \mathbb{R} = \{(x, y): x^2 + y^2 = 4\}$

No, if x > 2, then there is no corresponding y.

(b) $f : \mathbb{R} \to \mathbb{R}, f(x) = 1/(x+1)$

No, f is not defined at $-1 \in \mathbb{R}$.

(c) $f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = x + y$

Yes.

- (i) for all $(x, y) \in \mathbb{R}^2$ there is an element $x + y \in \mathbb{R}$.
- (ii) for all $(x, y) \in \mathbb{R}^2$, if f((x, y)) = a and f((x, y)) = b, then x + y = a and x + y = b, hence a = b.
- (d) $f: \mathbb{Q} \to \mathbb{R}$,

$$f(x) = \begin{cases} x+1, & x \in 2\mathbb{Z} \\ x-1, & x \in 3\mathbb{Z} \\ 0, & \text{otherwise.} \end{cases}$$

No, $(6,7) \in f$ and $(6,5) \in f$. Therefore failing the vertical line test.

(e) The domain of f is the set of all circles in the plane \mathbb{R}^2 , the codomain is \mathbb{R} , and if c is a circle in the domain, f(c) is the circumference of c.

Yes.

- (i) every circle in the domain has a corresponding radius f(c).
- (ii) for every circle, if f(a) = b and f(a) = c, then b = c as the circumference of the same circle is the same.
- 2. For $x \in \mathbb{R}$ we define the greatest integer of x by $\lfloor x \rfloor = n$, where $n \in \mathbb{Z}$ and $n \leq x < n+1$. The floor function $f : \mathbb{R} \to \mathbb{Z}$ is defined by $f(x) = \lfloor x \rfloor$.
 - (a) Prove that f is a well defined function.

Proof. We must prove two conditions.

- (i) for all $x \in \mathbb{R}$, there exists a $m \in \mathbb{Z}$ such that $m \leq x < m+1$. There is always two integers surrounding a real number.
 - (ii) for all $a \in \mathbb{R}$, if f(a) = n and f(a) = m, then $n = \lfloor a \rfloor$ and $m = \lfloor a \rfloor$, so n = m. Since the two conditions of a a function were met, f is a function.

(b) Determine the range of f. The range is \mathbb{Z} .

Proof. First we will show $ran(f) \subseteq \mathbb{Z}$. If $n \in ran(f)$, then $n \in \mathbb{Z}$.

Now we will show $\mathbb{Z} \subseteq \operatorname{ran}(f)$. Let $n \in \mathbb{Z}$. Let $n \leq x < n+1$ where $x \in \mathbb{R}$. Hence $x \in \operatorname{dom}(f)$. Now evaluate f(x) to find m where $m \leq x < nm+1$. Now m=n because in order for $x \in [n, n+1)$ and $x \in [m, m+1)$ they have to be the same integer. Hence f(x) = n.

(c) Define the function $g: \mathbb{R} \to \mathbb{R}$ as $g(x) = \lfloor x \rfloor + \lfloor -x \rfloor$. Find its range and prove that your answer is correct. The range is $\{-1,0\}$.

Proof. First we will show $\operatorname{ran}(f) \subseteq \{-1,0\}$. Let $y \in \operatorname{ran}(f)$. Then $y \in \mathbb{Z}$. So $\operatorname{ran}(f) \subseteq \mathbb{Z}$. To show that y is only -1 or 0 we will consider what will happen if x in f(x) is an integer. Then there is a n such that $n \leq x < n+1$ and an m such that $m \leq -x < m+1$. Since x is an integer, n=x and m=-x, so adding these together is 0. Now consider if x is a non-integer real number. Then there is an $n \leq x < n+1$ and $m \leq -x < m+1$. If x is positive, then n will be the first integer less than x, and m will be the first integer more negative than x. Hence, added together n+m will be -1. So $y \in \{-1,0\}$, and $\operatorname{ran}(f) \subseteq \{-1,0\}$.

Now we will show $\{-1,0\} \subseteq \operatorname{ran}(f)$. We know $-1 \in \operatorname{ran}(f)$ because f(1.5) = -1. We also know $0 \in \operatorname{ran}(f)$ because f(0) = 0. Hence $\{-1,0\} \subseteq \operatorname{ran}(f)$.

Since containment was proved in both directions equality is shown. \Box

- 3. For each of the functions below determine whether or not the function is one-to-one and whether or not the function is onto. If the function is not one-to-one, give an explicit example to show what goes wrong. If it is not onto, determine the range.
 - (a) $f: \mathbb{R} \to \mathbb{R}, f(x) = 1/(x^2 + 1)$ The function is not one-to-one because f(1) = f(-1) = 1/2, but $1 \neq -1$. The function is not onto, the range is (0, 1].
 - (b) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sin x$ The function is not one-to-one because $f(0) = f(2\pi) = 0$, but $0 \neq 2\pi$. The function is not onto, the range is [-1, 1].
 - (c) $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$, f(n, m) = nmThe function is not one-to-one because f(1, 2) = f(2, 1) = 2, but $(1, 2) \neq (2, 1)$. The function is onto. If n = 1, then f(1, m) = m, where m can be any integer.
 - (d) $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}, f((x,y),(u,v)) = xu + yv$ The function is not one-to-one because f((1,1),(0,0)) = f((0,0),(1,1)) = 0, but $((1,1),(0,0)) \neq ((0,0),(1,1))$.

The function is onto, f((x,0),(1,0)) = x where x can be any real number.

(e) $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$, $f((x,y),(u,v)) = \sqrt{(x-u)^2 + (y-v)^2}$ The function is not one-to-one because f((1,0),(0,0)) = f((0,1),(0,0)) = 1, but $((1,0),(0,0)) \neq ((0,1),(0,0))$.

The function is not onto because f is never negative. The range is $[0, \infty)$.

- (f) Let X be a nonempty set. Define $f: \mathcal{P}(X) \to \mathcal{P}(X)$ by $f(A) = X \setminus A$. The function is not one-to-one because if $A, B \not\subseteq X$, then f(A) = f(B) = X, but A isn't necessarily equivalent to B. The function is onto because any subset (hence any element of the power set) of X can be generated.
- 4. Define $f: \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} x^2 - 4x + 7, & x \le 1, \\ 5 - x^2, & x > 1. \end{cases}$$

This function is well defined, prove it is a bijection.

Proof. First we will show that the function is one-to-one. Let $f(x_1) = f(x_2)$, if $x_1, x_2 \le 1$, then $x_1^2 - 4x_1 + 7 = x_2^2 - 4x_2 + 7$, so $x_1 = x_2$. If $x_1, x_2 > 1$, then $5 - x_1^2 = 5 - x_2^2$. Hence $x_1 = x_2$. The last case we will show the contrapositive. If $x_1 \le 1$ and $x_2 > 1$. Then $x_1 \ne x_2$, then $f(x_1) = x_1^2 - 4x_1 + 7$ and $f(x_2) = 5 - x_2^2$, so $f(x_1) \ne f(x_2)$.

Next we will show the function is onto. Then $\operatorname{ran}(f) = \mathbb{R}$. If $y \in \operatorname{ran}(f)$. Then $y \in \mathbb{R}$. Now let $y \in \mathbb{R}$. If $y \geq 4$, then we can have $x = 2 + \sqrt{y - 3}$. If y < 4 then we can have $x = \sqrt{|5 - y|}$. So $x \in \mathbb{R} = \operatorname{dom}(f)$ and f(x) = y when $y \geq 4$ and f(x) = y when y < 4.

5. Define $f: \mathbb{R} \to (-1,1)$ by

$$f(x) = \frac{x}{1 + |x|}$$

Prove f is bijective.

Proof. First we need to prove that f is one-to-one. If $f(a_1) = f(a_2)$, then

$$\frac{a_1}{1+|a_1|} = \frac{a_2}{1+|a_2|}$$

so $a_1 = a_2$. Hence f is one-to-one.

Now we need to prove f is onto. So we must prove ran(f) = (-1, 1). First we will start with $y \in ran(f)$. Now let

$$x = \frac{y}{1+y}$$

x can be any real number as y varies from (-1,1) and f(x)=y.

Since f was shown to be one-to-one and onto it is bijective.