

Theory of Computation **CS F351**

Vishal Gupta
Department of Computer Science and Information Systems
Birla Institute of Technology and Science

Agenda

- Recursive Languages
- Recursive Functions
- Recursively Enumerable Languages
- Prove: "If L is recursive, then it is Recursively enumerable"
- Prove: "If L is recursive, then its complement L' is also recursive".

"M decides L"

Let Σ_0 the alphabet over which input string is defined. Thus we allow the TM to use extra symbols during the computation.

M decides a language if for any string $w \in \Sigma_0^*$ the following is true:

"If w ∈ L then M accepts w; and if w does not belong to L, then M reject w"

Recursive Language / Turing decidable language

 A language L is recursive if there is a TM that "decides" it.

Recursive functions

- Let Σ_0 be Σ $\{\Delta, \bot\}$.
- Suppose M halts on input w and from configuration $\triangleright \underline{\ }$ w the TM halts in configuration $\triangleright \underline{\ }$ y, where y $\in \Sigma_0^*$. y is called the output of M on w and is denoted as M(w).
- So M(w) is defined only if M halts on input w.
- Let f be any function from Σ_0^* to Σ_0^* . TM M computes function f if for all w $\in \Sigma_0^*$, M(w) = f(w).
- In other words, for all $w \in \Sigma_0^*$, M eventually halts on w and when it halts that tape contents are $\Delta \sqcup f(w)$.
- A function f is recursive if there is a TM that computes f.

"M semi-decides L"

TM M semidecide L if for any string $w \in \sum_0^*$ the following is true:

w ∈ L iff M halts on input w

Recursively Enumerable Languages

 A language L is recursively enumerable iff there is a TM that semi-decides it.

TM's that semi-decides languages are no algorithms

If a language is recursive, then it is recursively enumerable:

Proof:

Let $M = (K, \Sigma, \delta, s \{y, n\})$ be a TM that decides L. We can define a machine M' that semi-decides L as follows:

 $M' = (K, \sum, \delta', s \{y\})$, where δ' contains additionally the transitions of the form:

δ'(n, a) = (n, a) for all a ∈ Σ and n is not a halting state.

- A recursive language is Recursively Enumerable, but not vice versa.
- If L is recursive, then its complement L' is also recursive.
- Recursively Enumerable languages are not closed under complement.

innovate ac

lead

BITS Pilani

Plani | Dubai | Goa | Hyderabad

Thank You