1.1 Motion

MCQ

Easy

Physical quantities may be vectors or scalars.

Which row of the table is correct?

	Force	Mass	Acceleration
Α	scalar	vector	scalar
В	scalar	scalar	vector
С	vector	vector	scalar
D	vector	scalar	vector

The diagram shows a student during a parachute jump on a windy day. The vertical component of her velocity is $5.0\,\mathrm{m\,s^{-1}}$. The horizontal component of her velocity is $8.0\,\mathrm{m\,s^{-1}}$. She descends at an angle θ to the vertical.

Which row of the table gives expressions for the magnitude and angle of the student's resultant velocity?

	Magnitude / m s ⁻¹	θ/°
Α	$\sqrt{8^2-5^2}$	$\tan^{-1}\frac{8}{5}$
В	$\sqrt{8^2-5^2}$	$\sin^{-1}\frac{5}{8}$
С	$\sqrt{8^2 + 5^2}$	$\tan^{-1}\frac{8}{5}$
D	$\sqrt{8^2 + 5^2}$	sin ⁻¹ ⁵ / ₈

Graphs can be used to represent the motion of an object.

Which row in the table gives a quantity plotted on the y-axis and the corresponding quantity represented by the gradient of the graph?

	Quantity plotted on y-axis	Gradient of graph
Α	displacement	acceleration
В	velocity	acceleration
С	acceleration	velocity
D	acceleration	displacement

A tennis ball is moving through the air. The diagram shows the horizontal and vertical components of its velocity.

Which of the following expressions gives the magnitude of the velocity in $\rm m\;s^{-1}$?

A.
$$\frac{13.2}{\sin 22.6^{\circ}}$$

B.
$$13.2 \times \sin 22.6^{\circ}$$

C.
$$\frac{5.5}{\sin 22.6^{\circ}}$$

D.
$$5.5 \times \sin 22.6^{\circ}$$

A block of wood is stationary on a frictionless ramp as shown.

The block is held in place by a string. The weight of the block is W. The force applied to the block by the string is F.

A triangle of forces can be used to determine the magnitude and direction of the normal contact force N acting on the block.

Which of the following triangles is correct?

Medium

A student walks for 6 seconds. The displacement-time graph for the student is shown.

Which row of the table shows the final displacement and velocity of the student?

	Displacement /	Velocity / m s ⁻¹	
	m		
Α	2.0	0.5	
В	3.0	0.5	
С	5.0	2.0	
D	3.0	2.0	

An object on the Moon falls a vertical distance of $0.32\,m$, from rest, in a time of $0.63\,s$.

Which of the following expressions gives the acceleration due to gravity on the Moon in $\,\mathrm{m}\,\mathrm{s}^{-2}$?

- **A.** $\frac{0.32}{2 \times 0.63}$
- **B.** $\frac{0.32}{2 \times 0.63^2}$
- **c.** $\frac{2 \times 0.32}{0.63^2}$
- **D.** $\frac{2 \times 0.32}{0.63}$

3

1 mark

A ball bearing falls vertically from rest through a distance of 50cm in a time of 0.32s.

Which expression gives the acceleration of the ball bearing in m s $^{-2}$?

- **A.** $1 \div 0.32^2$
- **B.** $0.5 \div 0.32$
- **C.** $100 \div 0.32^2$
- **D.** $50 \div 0.32$

D

C

Hard

Two identical objects with the same initial speed fall from the same height in a vacuum chamber, as shown. The arrows in the diagram show initial directions of travel of the objects.

Which of the following quantities are not the same for both objects?

- A. The accelerations of the objects during the fall.
- **B.** The velocities of the objects as they reach the floor.
- C. The increase in the speeds of the objects during the fall.
- **D.** The kinetic energies of the objects as they reach the floor.

Structured Questions

Medium

A sledge accelerates, due to gravity, from rest down a frictionless slope. Air resistance can be ignored. The slope is at an angle of 6.9° to the horizontal, as shown.

Complete the free-body force diagram below for the sledge.

1b	✓ ■	6 marks	
The slope has a total length of 60m			
i) Show that the initial acceleration of the sledge along the slope is about 1 m $$ s $^{-2}$			
Initial acceleration = (ii) Determine the speed of the sledge at the end of the slo			
Speed at end of slope = (2) (iii) Determine the time taken for the sledge to travel to the end of the slope.			
Time taken =(2)			

A trolley accelerates from rest at point A, down a straight track to point B. The trolley then continues along a horizontal track to point C, as shown.

The effects of air resistance and friction are negligible.

Show that the trolley reaches point B with a speed of about 3 m s^{-1} .

A skier moving at $25 \,\mathrm{m\,s^{-1}}$ skis off a ramp. The ramp is angled upwards at 10° to the horizontal, as shown.

There is a flat surface that starts 30 m from the ramp. The flat surface is 2.9 m below the ramp.

Deduce whether the skier reaches the flat surface before landing. You may ignore any effects of air resistance.

3b

3 marks

Another skier travels along the horizontal surface with an initial speed of $23 \, \text{m}$ s-1.

She comes to rest after travelling a distance of 43 m.

Calculate the average force required to bring the skier to rest.

mass of skier = 63 kg

Average force =

An explosion projects a rock into the air with a speed of $50 \, \text{m s}^{-1}$ at an angle to the horizontal of 40° .

Show that the rock would reach its maximum height about $3\,\mathrm{s}$ after the explosion.

The rock moves in the direction of a hill. The side of the hill is at 20° to the horizontal, as shown.

After a certain distance, the rock lands on the side of the hill.

Deduce whether the rock hits the ground before it reaches its maximum possible height.

A stunt motorcyclist wants to jump across a river to land on the other side. The diagram shows the motorcyclist driving off a ramp at the edge of a river.

The ramp is at an angle of 25° to the horizontal and the height at the end of the ramp is 3.0 m. The width of the river is 100 m. The initial velocity of the motorcyclist is 35 m s⁻¹.

Calculate the horizontal and vertical components of the motorcycle's initial velocity as it leaves the ramp.

Horizontal component =

Vertical component =

The effects of air resistance can be ignored.

Explain how air resistance would affect the jump.