

# Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS14120104703

# FCC REPORT (BLE)

**Applicant:** SHENZHEN CHUANGXINQI COMMUNICATION CO., LTD.

Rm 501B, Block A1, kexing Science Park, Keyuan North Rd.,

Address of Applicant: Science and Technology Park, Nanshan, Shenzhen, Guangdong,

China

#### **Equipment Under Test (EUT)**

Product Name: Smart Phone

Model No.: V1,V1plus,V1A,V1B,V1C,V1D,V1F,V1G,V1Y,V1W,V1X

Trade mark: iNew

FCC ID: 2ACI4-V1

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 16 Dec., 2014

**Date of Test:** 16 Dec., to 22 Dec., 2014

Date of report issued: 23 Dec., 2014

Test Result: PASS \*

\* In the configuration tested, the EUT complied with the standards specified above.

#### Authorized Signature:



Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.





# 2 Version

| Version No. | Date          | Description                            |
|-------------|---------------|----------------------------------------|
| 00          | 23 Dec., 2014 | This report was amended on the report  |
|             |               | CCIS14110096403 which were tested and  |
|             |               | issued by Shenzhen Zhongjian Nanfang   |
|             |               | Testing Co., Ltd.                      |
|             |               | The differences between them as below: |
|             |               | MCP Capacity, Screen resolution, The   |
|             |               | camera resolution, Model Name and      |
|             |               | Structure size.                        |
|             |               |                                        |
|             |               |                                        |
|             |               |                                        |
|             |               |                                        |

Prepared by: Date: 23 Dec., 2014

Report Clerk

Reviewed by: Date: 23 Dec., 2014

**Project Engineer** 



# 3 Contents

|   |       |                                | Page |
|---|-------|--------------------------------|------|
| 1 | COV   | /ER PAGE                       | 1    |
| 2 | VER   | SION                           | 2    |
| 3 |       | NTENTS                         |      |
| 4 |       | T SUMMARY                      |      |
| - | _     |                                |      |
| 5 | GEN   | NERAL INFORMATION              | 5    |
|   | 5.1   | CLIENT INFORMATION             | 5    |
|   | 5.2   | GENERAL DESCRIPTION OF E.U.T   | 5    |
|   | 5.3   | TEST ENVIRONMENT AND MODE      |      |
|   | 5.4   | DESCRIPTION OF SUPPORT UNITS   | 7    |
|   | 5.5   | LABORATORY FACILITY            | 7    |
|   | 5.6   | LABORATORY LOCATION            | 7    |
|   | 5.7   | TEST INSTRUMENTS LIST          | 8    |
| 6 | TES   | T RESULTS AND MEASUREMENT DATA | 9    |
|   | 6.1   | ANTENNA REQUIREMENT:           | 9    |
|   | 6.2   | CONDUCTED EMISSION             | 10   |
|   | 6.3   | CONDUCTED OUTPUT POWER         | 13   |
|   | 6.4   | OCCUPY BANDWIDTH               | 15   |
|   | 6.5   | POWER SPECTRAL DENSITY         | 18   |
|   | 6.6   | BAND EDGE                      | 20   |
|   | 6.6.1 | 1 Conducted Emission Method    | 20   |
|   | 6.6.2 | 2 Radiated Emission Method     | 22   |
|   | 6.7   | Spurious Emission              | 27   |
|   | 6.7.1 | 1 Conducted Emission Method    | 27   |
|   | 6.7.2 | 2 Radiated Emission Method     | 30   |
| 7 | TES   | T SETUP PHOTO                  | 35   |
| ጸ | FUT   | CONSTRUCTIONAL DETAILS         | 36   |





# 4 Test Summary

| Test Item                        | Section in CFR 47 | Result |
|----------------------------------|-------------------|--------|
| Antenna requirement              | 15.203/15.247 (c) | Pass   |
| AC Power Line Conducted Emission | 15.207            | Pass   |
| Conducted Peak Output Power      | 15.247 (b)(3)     | Pass   |
| 6dB Emission Bandwidth           | 15.247 (a)(2)     | Pass   |
| Power Spectral Density           | 15.247 (e)        | Pass   |
| Band Edge                        | 15.247(d)         | Pass   |
| Spurious Emission                | 15.205/15.209     | Pass   |

Pass: The EUT complies with the essential requirements in the standard.

Note: Base on the differences description, the radiated emission was re-tested.



# 5 General Information

# **5.1 Client Information**

| Applicant:               | SHENZHEN CHUANGXINQI COMMUNICATION CO., LTD.                                                                               |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Address of Applicant:    | Rm 501B, Block A1, kexing Science Park, Keyuan North Rd., Science and Technology Park, Nanshan, Shenzhen, Guangdong, China |
| Manufacturer:            | SHENZHEN CHUANGXINQI COMMUNICATION CO., LTD.                                                                               |
| Address of Manufacturer: | Rm 501B, Block A1, kexing Science Park, Keyuan North Rd., Science and Technology Park, Nanshan, Shenzhen, Guangdong, China |
| Factory:                 | Hongjiada Electronics Co., Limited                                                                                         |
| Address of Factory:      | 4 <sup>th</sup> Floor, C16 Building, Jiuwei Fuyuan Industrial Zone, Xi Xiang, Bao'an District, Shenzhen China 518000       |

# 5.2 General Description of E.U.T.

| Product Name:          | Smart Phone                                                                                                                                                                                                                            |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Model No.:             | V1,V1plus,V1A,V1B,V1C,V1D,V1F,V1G,V1Y,V1W,V1X                                                                                                                                                                                          |
| Operation Frequency:   | 2402-2480 MHz                                                                                                                                                                                                                          |
| Channel numbers:       | 40                                                                                                                                                                                                                                     |
| Channel separation:    | 2 MHz                                                                                                                                                                                                                                  |
| Modulation technology: | GFSK                                                                                                                                                                                                                                   |
| Data speed :           | 1Mbps                                                                                                                                                                                                                                  |
| Antenna Type:          | Internal Antenna                                                                                                                                                                                                                       |
| Antenna gain:          | 0.14 dBi                                                                                                                                                                                                                               |
| Power supply:          | Rechargeable Li-ion Battery DC3.8V-2100mAh                                                                                                                                                                                             |
| AC adapter:            | Input:100-240V AC,50/60Hz 0.3A<br>Output:5.5V DC MAX700mA                                                                                                                                                                              |
| Remark:                | Item No.: V1,V1plus,V1A,V1B,V1C,V1D,V1F,V1G,V1Y,V1W,V1X were identical inside, the electrical ciruit design, layout, components used and internal wiring, with only difference being the appearance of colors, the battery cover mark. |



| Operation Frequency each of channel |           |         |           |         |           |         |           |  |
|-------------------------------------|-----------|---------|-----------|---------|-----------|---------|-----------|--|
| Channel                             | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency |  |
| 0                                   | 2402MHz   | 10      | 2422MHz   | 20      | 2442MHz   | 30      | 2462MHz   |  |
| 1                                   | 2404MHz   | 11      | 2424MHz   | 21      | 2444MHz   | 31      | 2464MHz   |  |
| 2                                   | 2406MHz   | 12      | 2426MHz   | 22      | 2446MHz   | 32      | 2466MHz   |  |
| 3                                   | 2408MHz   | 13      | 2428MHz   | 23      | 2448MHz   | 33      | 2468MHz   |  |
| 4                                   | 2410MHz   | 14      | 2430MHz   | 24      | 2450MHz   | 34      | 2470MHz   |  |
| 5                                   | 2412MHz   | 15      | 2432MHz   | 25      | 2452MHz   | 35      | 2472MHz   |  |
| 6                                   | 2414MHz   | 16      | 2434MHz   | 26      | 2454MHz   | 36      | 2474MHz   |  |
| 7                                   | 2416MHz   | 17      | 2436MHz   | 27      | 2456MHz   | 37      | 2476MHz   |  |
| 8                                   | 2418MHz   | 18      | 2438MHz   | 28      | 2458MHz   | 38      | 2478MHz   |  |
| 9                                   | 2420MHz   | 19      | 2440MHz   | 29      | 2460MHz   | 39      | 2480MHz   |  |

#### Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

| Channel             | Frequency |
|---------------------|-----------|
| The lowest channel  | 2402MHz   |
| The middle channel  | 2442MHz   |
| The Highest channel | 2480MHz   |



Report No: CCIS14120104703

#### 5.3 Test environment and mode

| Operating Environment: |                                                         |  |  |  |
|------------------------|---------------------------------------------------------|--|--|--|
| Temperature:           | 24.0 °C                                                 |  |  |  |
| Humidity:              | 54 % RH                                                 |  |  |  |
| Atmospheric Pressure:  | 1010 mbar                                               |  |  |  |
| Test mode:             |                                                         |  |  |  |
| Operation mode         | Keep the EUT in continuous transmitting with modulation |  |  |  |

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

### 5.4 Description of Support Units

N/A

### 5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### • FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

#### • IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

#### • CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

# 5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



# 5.7 Test Instruments list

| Rad  | Radiated Emission:                   |                                   |                             |          |                         |                             |  |  |  |
|------|--------------------------------------|-----------------------------------|-----------------------------|----------|-------------------------|-----------------------------|--|--|--|
| Item | Test Equipment                       | Manufacturer                      | turer Model No.             |          | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |  |  |  |
| 1    | 3m Semi- Anechoic<br>Chamber         | SAEMC                             | 9(L)*6(W)* 6(H)             | CCIS0001 | 08-23-2014              | 08-22-2017                  |  |  |  |
| 2    | BiConiLog Antenna                    | SCHWARZBECK<br>MESS-ELEKTRONIK    | VULB9163                    | CCIS0005 | 04-19-2014              | 04-19-2015                  |  |  |  |
| 3    | Double -ridged waveguide horn        | SCHWARZBECK<br>MESS-ELEKTRONIK    | BBHA9120D                   | CCIS0006 | 04-19-2014              | 04-19-2015                  |  |  |  |
| 4    | EMI Test Software                    | AUDIX                             | E3                          | N/A      | N/A                     | N/A                         |  |  |  |
| 5    | Amplifier<br>(10kHz-1.3GHz)          | HP                                | 8447D                       | CCIS0003 | 04-01-2014              | 03-31-2015                  |  |  |  |
| 6    | Amplifier<br>(1GHz-18GHz)            | Compliance Direction Systems Inc. | PAP-1G18                    | CCIS0011 | 06-09-2014              | 06-05-2015                  |  |  |  |
| 7    | Pre-amplifier<br>(18-26GHz)          | Rohde & Schwarz                   | AFS33-18002<br>650-30-8P-44 | GTS218   | 04-01-2014              | 03-31-2015                  |  |  |  |
| 8    | Horn Antenna                         | ETS-LINDGREN                      | 3160                        | GTS217   | 03-30-2014              | 03-29-2015                  |  |  |  |
| 9    | Printer                              | HP                                | HP LaserJet P1007           | N/A      | N/A                     | N/A                         |  |  |  |
| 10   | Positioning Controller               | UC                                | UC3000                      | CCIS0015 | N/A                     | N/A                         |  |  |  |
| 11   | Spectrum analyzer<br>9k-30GHz        | Rohde & Schwarz                   | FSP                         | CCIS0023 | 04-19-2014              | 04-19-2015                  |  |  |  |
| 12   | EMI Test Receiver                    | Rohde & Schwarz                   | ESPI                        | CCIS0022 | 04-01-2014              | 03-31-2015                  |  |  |  |
| 13   | Loop antenna                         | Laplace instrument                | RF300                       | EMC0701  | 04-01-2014              | 03-31-2015                  |  |  |  |
| 14   | Universal radio communication tester | Rhode & Schwarz                   | CMU200                      | CCIS0069 | 05-29-2014              | 05-28-2015                  |  |  |  |
| 15   | Signal Analyzer                      | Rohde & Schwarz                   | FSIQ3                       | CCIS0088 | 04-19-2014              | 04-19-2015                  |  |  |  |

| Con  | Conducted Emission: |                    |                       |                  |                         |                             |  |  |  |  |
|------|---------------------|--------------------|-----------------------|------------------|-------------------------|-----------------------------|--|--|--|--|
| Item | Test Equipment      | Manufacturer       | Model No.             | Inventory<br>No. | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |  |  |  |  |
| 1    | Shielding Room      | ZhongShuo Electron | 11.0(L)x4.0(W)x3.0(H) | CCIS0061         | 11-10-2012              | 11-09-2015                  |  |  |  |  |
| 2    | EMI Test Receiver   | Rohde & Schwarz    | ESCI                  | CCIS0002         | 04-10-2014              | 04-09-2015                  |  |  |  |  |
| 3    | LISN                | CHASE              | MN2050D               | CCIS0074         | 04-10-2014              | 04-10-2015                  |  |  |  |  |
| 4    | Coaxial Cable       | CCIS               | N/A                   | CCIS0086         | 04-01-2014              | 03-31-2015                  |  |  |  |  |
| 5    | EMI Test Software   | AUDIX              | E3                    | N/A              | N/A                     | N/A                         |  |  |  |  |



### 6 Test results and Measurement Data

### 6.1 Antenna requirement:

#### **Standard requirement:** FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

#### **E.U.T Antenna:**

The BLE antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 0.14 dBi.







# 6.2 Conducted Emission

| Test Requirement:     | FCC Part 15 C Section 15.207                                                                                                                                                                                                                                  | 7                                                                                                                                                                                                     |                                                                                                                                            |  |  |  |  |  |  |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Test Method:          | ANSI C63.4: 2003                                                                                                                                                                                                                                              |                                                                                                                                                                                                       |                                                                                                                                            |  |  |  |  |  |  |
| Test Frequency Range: | 150 kHz to 30 MHz                                                                                                                                                                                                                                             |                                                                                                                                                                                                       |                                                                                                                                            |  |  |  |  |  |  |
| Class / Severity:     | Class B                                                                                                                                                                                                                                                       |                                                                                                                                                                                                       |                                                                                                                                            |  |  |  |  |  |  |
| Receiver setup:       | RBW=9kHz, VBW=30kHz                                                                                                                                                                                                                                           |                                                                                                                                                                                                       |                                                                                                                                            |  |  |  |  |  |  |
| Limit:                |                                                                                                                                                                                                                                                               | Limit (c                                                                                                                                                                                              | dBuV)                                                                                                                                      |  |  |  |  |  |  |
|                       | Frequency range (MHz)                                                                                                                                                                                                                                         | Frequency range (MHz)  Quasi-peak  Average                                                                                                                                                            |                                                                                                                                            |  |  |  |  |  |  |
|                       | 0.15-0.5                                                                                                                                                                                                                                                      | 66 to 56*                                                                                                                                                                                             | 56 to 46*                                                                                                                                  |  |  |  |  |  |  |
|                       | 0.5-5                                                                                                                                                                                                                                                         | 56                                                                                                                                                                                                    | 46                                                                                                                                         |  |  |  |  |  |  |
|                       | 5-30 * Decreases with the logarithm                                                                                                                                                                                                                           | 60                                                                                                                                                                                                    | 50                                                                                                                                         |  |  |  |  |  |  |
| Test procedure        | 1. The E.U.T and simulators a line impedance stabilize 500hm/50uH coupling implement of the peripheral devices through a LISN that prowith 500hm termination. It is test setup and photograph of the positions of equipment changed according to measurement. | s are connected to the zation network (L.I.S.N) pedance for the measure also connected wides a 500hm/50uH (Please refer to the hs).  e are checked for a find the maximum early all of the interface. | N.), which provides a uring equipment.  to the main power coupling impedance block diagram of the maximum conducted emission, the relative |  |  |  |  |  |  |
| Test setup:           | LISN 40cm                                                                                                                                                                                                                                                     |                                                                                                                                                                                                       | er — AC power                                                                                                                              |  |  |  |  |  |  |
| Test Instruments:     | Refer to section 5.7 for details                                                                                                                                                                                                                              |                                                                                                                                                                                                       |                                                                                                                                            |  |  |  |  |  |  |
| Test mode:            | Refer to section 5.3 for details                                                                                                                                                                                                                              |                                                                                                                                                                                                       |                                                                                                                                            |  |  |  |  |  |  |
| Test results:         | Passed                                                                                                                                                                                                                                                        |                                                                                                                                                                                                       |                                                                                                                                            |  |  |  |  |  |  |

#### **Measurement Data**





#### Neutral:



Trace: 19 Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : 964RF Condition

Job. no : Smart Phone : V7 EUT Model

Test Mode : BLE mode
Power Rating : AC120V/60Hz
Environment : Temp: 23 C Huni:56% Atmos:101KPa

Test Engineer: MT

Remark

|                                           | Freq  |       | LISN<br>Factor | Cable<br>Loss | Level | Limit<br>Line |        | Remark  |
|-------------------------------------------|-------|-------|----------------|---------------|-------|---------------|--------|---------|
|                                           | MHz   | dBu∀  | dB             | dB            | dBu∀  | dBu∀          | dB     |         |
| 1                                         | 0.160 | 42.41 | 0.25           | 10.78         | 53.44 | 65.47         | -12.03 | QP      |
| 2                                         | 0.160 | 28.92 | 0.25           | 10.78         | 39.95 | 55.47         | -15.52 | Average |
| 3                                         | 0.205 | 36.94 | 0.25           | 10.76         | 47.95 | 63.40         | -15.45 | QP      |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 0.285 | 27.54 | 0.26           | 10.74         | 38.54 | 50.68         | -12.14 | Average |
| 5                                         | 0.289 | 34.91 | 0.26           | 10.74         | 45.91 | 60.54         | -14.63 | QP      |
| 6                                         | 0.365 | 35.52 | 0.25           | 10.73         | 46.50 | 58.61         | -12.11 | QP      |
| 7                                         | 0.365 | 30.83 | 0.25           | 10.73         | 41.81 | 48.61         | -6.80  | Average |
| 8                                         | 0.404 | 34.77 | 0.25           | 10.72         | 45.74 | 57.77         | -12.03 | QP      |
| 9                                         | 0.404 | 28.75 | 0.25           | 10.72         | 39.72 | 47.77         | -8.05  | Average |
| 10                                        | 0.444 | 26.03 | 0.27           | 10.74         | 37.04 | 46.98         | -9.94  | Average |
| 11                                        | 2.567 | 27.54 | 0.29           | 10.94         | 38.77 | 46.00         | -7.23  | Average |
| 12                                        | 2.608 | 39.26 | 0.29           | 10.93         | 50.48 | 56.00         | -5.52  | QP      |
|                                           |       |       |                |               |       |               |        |         |







Trace: 17

Site : CCIS Shielding Room Condition : FCC PART15 B QP LISN LINE

Job. no : 964RF EUT : Smart Phone Model : V7 Test Mode : BLE mode

Power Rating : AC120V/60Hz Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: MT

Remark

| nomark                                    | Freq  | Read<br>Level | LISN<br>Factor | Cable<br>Loss | Level | Limit<br>Line | Over<br>Limit | Remark  |
|-------------------------------------------|-------|---------------|----------------|---------------|-------|---------------|---------------|---------|
|                                           | MHz   | —dBu∜         | <u>dB</u>      | dB            | dBu₹  | —dBu∇         | āB            |         |
| 1                                         | 0.160 | 41.93         | 0.27           | 10.78         | 52.98 | 65.47         | -12.49        | QP      |
| 2                                         | 0.165 | 27.80         | 0.27           | 10.77         | 38.84 | 55.21         | -16.37        | Average |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 0.205 | 37.21         | 0.28           | 10.76         | 48.25 | 63.40         | -15.15        | QP      |
| 4                                         | 0.205 | 22.57         | 0.28           | 10.76         | 33.61 | 53.40         | -19.79        | Average |
| 5                                         | 0.285 | 33.60         | 0.26           | 10.74         | 44.60 | 60.68         | -16.08        | QP      |
| 6                                         | 0.285 | 19.53         | 0.26           | 10.74         | 30.53 | 50.68         | -20.15        | Average |
| 7                                         | 0.365 | 32.80         | 0.27           | 10.73         | 43.80 | 58.61         | -14.81        | QP      |
| 8                                         | 0.365 | 23.71         | 0.27           | 10.73         | 34.71 | 48.61         | -13.90        | Average |
| 9                                         | 0.404 | 30.50         | 0.28           | 10.72         | 41.50 | 57.77         | -16.27        | QP      |
| 10                                        | 0.404 | 20.26         | 0.28           | 10.72         | 31.26 | 47.77         | -16.51        | Average |
| 11                                        | 2.513 | 26.03         | 0.27           | 10.94         | 37.24 | 46.00         | -8.76         | Average |
| 12                                        | 2.581 | 38.18         | 0.27           | 10.93         | 49.38 | 56.00         | -6.62         | QP      |

#### Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



# **6.3 Conducted Output Power**

| Test Requirement: | FCC Part 15 C Section 15.247 (b)(3)                                          |
|-------------------|------------------------------------------------------------------------------|
| Test Method:      | ANSI C63.4:2003 and KDB558074                                                |
| Limit:            | 30dBm                                                                        |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane        |
| Test Instruments: | Refer to section 5.7 for details                                             |
| Test mode:        | Refer to section 5.3 for details                                             |
| Test results:     | Passed                                                                       |
| Remark:           | Test method refer to KDB558074 v03r01 (DTS Measure Guidance) section 9.2.2.2 |

#### Measurement Data

| Test CH | Maximum Conducted Output Power (dBm) | Limit(dBm) | Result |
|---------|--------------------------------------|------------|--------|
| Lowest  | -7.17                                |            |        |
| Middle  | -6.38                                | 30.00      | Pass   |
| Highest | -6.13                                |            |        |

Test plot as follows:







# 6.4 Occupy Bandwidth

| Test Requirement: | FCC Part 15 C Section 15.247 (a)(2)                                   |
|-------------------|-----------------------------------------------------------------------|
| Test Method:      | ANSI C63.4:2003 and KDB558074                                         |
| Limit:            | >500kHz                                                               |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |
| Test Instruments: | Refer to section 5.7 for details                                      |
| Test mode:        | Refer to section 5.3 for details                                      |
| Test results:     | Passed                                                                |

#### Measurement Data

| Test CH | 6dB Emission Bandwidth (MHz) | Limit(kHz) | Result |
|---------|------------------------------|------------|--------|
| Lowest  | 0.76                         |            |        |
| Middle  | 0.75                         | >500       | Pass   |
| Highest | 0.76                         |            |        |

| Test CH | 99% Occupy Bandwidth (MHz) | Limit(kHz) | Result |
|---------|----------------------------|------------|--------|
| Lowest  | 1.04                       |            |        |
| Middle  | 1.05                       | N/A        | N/A    |
| Highest | 1.05                       |            |        |

Test plot as follows:









Highest channel





Highest channel



# 6.5 Power Spectral Density

| Test Requirement: | FCC Part 15 C Section 15.247 (e)                                      |  |  |  |
|-------------------|-----------------------------------------------------------------------|--|--|--|
| Test Method:      | ANSI C63.4:2003 and KDB558074                                         |  |  |  |
| Limit:            | 8 dBm                                                                 |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |  |  |  |
| Test Instruments: | Refer to section 5.7 for details                                      |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                      |  |  |  |
| Test results:     | Passed                                                                |  |  |  |

#### Measurement Data

| Test CH | Power Spectral Density (dBm) | Limit(dBm) | Result |
|---------|------------------------------|------------|--------|
| Lowest  | -7.86                        |            |        |
| Middle  | -7.11                        | 8.00       | Pass   |
| Highest | -6.80                        |            |        |

Test plots as follow:









Highest channel



# 6.6 Band Edge

# 6.6.1 Conducted Emission Method

| Test Requirement: | FCC Part 15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Test Method:      | ANSI C63.4:2003 and KDB558074                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Test Instruments: | Refer to section 5.7 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Test results:     | Passed                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |

Test plots as follow:







Highest channel



### 6.6.2 Radiated Emission Method

| Toot Poquiroment:     | FCC Part 15 C                                                                                                                                                                      | Section 15 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and 15 205                                 |         |                                       |  |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------|---------------------------------------|--|
| Test Requirement:     |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | and 15.205                                 |         |                                       |  |
| Test Method:          | ANSI C63.4: 20                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                            |         |                                       |  |
| Test Frequency Range: | 2.3GHz to 2.5G                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                            |         |                                       |  |
| Test site:            | Measurement D                                                                                                                                                                      | Distance: 3m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |         |                                       |  |
| Receiver setup:       | Frequency<br>Above 1GHz                                                                                                                                                            | Above 1GHz Peak Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |         | Remark<br>Peak Value<br>Average Value |  |
| Limit:                | Freque                                                                                                                                                                             | nev I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Limit (dBuV/                               | /m @3m) | Remark                                |  |
|                       | Freque                                                                                                                                                                             | ency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54.0                                       |         | Average Value                         |  |
|                       | Above 1                                                                                                                                                                            | IGHz —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 74.0                                       |         | Peak Value                            |  |
| Test Procedure:       | the ground to determin 2. The EUT wantenna, watower. 3. The antenna the ground Both horizon make the result of find the specified E. 5. The test-result of the emission of the EUT | <ol> <li>The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.</li> <li>The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.</li> <li>The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.</li> <li>For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.</li> <li>The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.</li> <li>If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-</li> </ol> |                                            |         |                                       |  |
| Test setup:           | EUT → 3m  Turn v Table 0.8m                                                                                                                                                        | 4m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Antenna Horn Ante Spectrum Analyzer Amplif | enna    |                                       |  |
| Test Instruments:     | Refer to section                                                                                                                                                                   | 5.7 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                            |         |                                       |  |
| Test mode:            | Refer to section                                                                                                                                                                   | 5.3 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                            |         |                                       |  |
| Test results:         | Passed                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                            |         |                                       |  |





Test channel: Lowest

#### Horizontal:



Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Job No. : 964RF

: Smart Phone : V7 EUT Model Test mode : BLE-L mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

REMARK

|     | Freq                 |      | Antenna<br>Factor     |              |              |        | Limit<br>Line | Over<br>Limit | Remark          |
|-----|----------------------|------|-----------------------|--------------|--------------|--------|---------------|---------------|-----------------|
| -   | MHz                  | dBu∜ | —dB/m                 | dB           | dB           | dBuV/m | dBu∜/m        | dB            |                 |
| 1 2 | 2390.000<br>2390.000 |      | 77.5 (45.1.4 (45.7.4) | 5.67<br>5.67 | 0.00<br>0.00 |        |               |               | Peak<br>Average |





Test channel: Lowest

Vertical:



Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 964RF Job No. : Smart Phone : V7 EUT Model

Test mode : BLE-L mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT REMARK :

| Junio | S- 45-               |      | Antenna<br>Factor |    |              |        | Limit<br>Line |    | Remark          |   |
|-------|----------------------|------|-------------------|----|--------------|--------|---------------|----|-----------------|---|
| -     | MHz                  | dBuV | —dB/m             | d₿ | dB           | dBuV/m | dBuV/m        | dB |                 | - |
|       | 2390.000<br>2390.000 |      | 27.58<br>27.58    |    | 0.00<br>0.00 |        |               |    | Peak<br>Average |   |





Test channel: Highest

Horizontal:



Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Job No. 964RF EUT : Smart Phone

: V7
Test mode : BLE-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: MT
REMARK :

|     |                      |                                        | Antenna<br>Factor |    |    |                | Limit<br>Line |    | Remark          |   |
|-----|----------------------|----------------------------------------|-------------------|----|----|----------------|---------------|----|-----------------|---|
| •   | MHz                  | dBuV                                   | dB/m              | dB | dB | dBuV/m         | dBuV/m        | dB |                 | - |
| 1 2 | 2483.500<br>2483.500 | ************************************** |                   |    |    | 51.91<br>41.21 |               |    | Peak<br>Average |   |





Test channel: Highest

Vertical:



Site

3m chamber FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Job No. 964RF

EUT Smart Phone Model

Test mode : BLE-H mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT REMARK :

|        | Freq                 |      | Antenna<br>Factor |    |             |                     |                     | Over<br>Limit |                 |  |
|--------|----------------------|------|-------------------|----|-------------|---------------------|---------------------|---------------|-----------------|--|
|        | MHz                  | dBu∜ | dB/m              | dB | <u>dB</u>   | $\overline{dBuV/m}$ | $\overline{dBuV/m}$ | <u>dB</u>     |                 |  |
| 100 mg | 2483.500<br>2483.500 |      |                   |    | 17707-0-770 |                     | 74.00<br>54.00      |               | Peak<br>Average |  |



# 6.7 Spurious Emission

# 6.7.1 Conducted Emission Method

| Test Requirement: | FCC Part 15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Test Method:      | ANSI C63.4:2003 and KDB558074                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| Test Instruments: | Refer to section 5.7 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| Test results:     | Passed                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |

Test plot as follows:



#### Lowest channel



Date: 27.NOV.2014 08:58:51

#### 30MHz~25GHz

#### Middle channel



Date: 27.NOV.2014 08:59:54

30MHz~25GHz







Date: 27.NOV.2014 09:01:12

30MHz~25GHz





### 6.7.2 Radiated Emission Method

| Test Requirement:     | FCC Part 15 C Section 15.209 and 15.205                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |  |  |  |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--|--|--|--|
| Test Method:          | ANSI C63.4:2003                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |  |  |  |  |
| Test Frequency Range: | 9KHz to 25GHz                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |  |  |  |  |
| Test site:            | Measurement Distance: 3m                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |  |  |  |  |
| Receiver setup:       |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |  |  |  |  |
|                       | Frequency                                                                                                                                                                                                                                 | Detector                                                                                                                                                                                                                                                                            | RBW                                                                                                                                                                                                                                       | VBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Remark                                  |  |  |  |  |
|                       | 30MHz-1GHz                                                                                                                                                                                                                                | Quasi-peak                                                                                                                                                                                                                                                                          | 120KHz                                                                                                                                                                                                                                    | 300KHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Quasi-peak Value                        |  |  |  |  |
|                       | Above 1GHz                                                                                                                                                                                                                                | Peak                                                                                                                                                                                                                                                                                | 1MHz                                                                                                                                                                                                                                      | 3MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Peak Value                              |  |  |  |  |
|                       | Above 10112                                                                                                                                                                                                                               | Peak                                                                                                                                                                                                                                                                                | 1MHz                                                                                                                                                                                                                                      | 10Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Average Value                           |  |  |  |  |
| Limit:                |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |  |  |  |  |
|                       | Frequency                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                     | Limit (dBuV/m                                                                                                                                                                                                                             | @3m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Remark                                  |  |  |  |  |
|                       | 30MHz-88MHz                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                     | 40.0                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quasi-peak Value                        |  |  |  |  |
|                       | 88MHz-216MHz                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                     | 43.5                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quasi-peak Value                        |  |  |  |  |
|                       | 216MHz-960MH                                                                                                                                                                                                                              | Z                                                                                                                                                                                                                                                                                   | 46.0                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quasi-peak Value                        |  |  |  |  |
|                       | 960MHz-1GHz                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                     | 54.0<br>54.0                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quasi-peak Value                        |  |  |  |  |
|                       | Above 1GHz                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                   | 74.0                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Average Value Peak Value                |  |  |  |  |
| Test Procedure:       | the ground to determin 2. The EUT of antenna, we tower.  3. The antenry the ground Both horizon make the make the make the make the make to find the meters and to find the make the limit spends the limit spends to fine EUT have 10 dB | at a 3 meter e the position was set 3 meter was set 3 meter was more and height is we to determine the and verne assurement. Suspected emen the anter the rota table maximum reaspecies eandwidth with sion level of the ecified, then the would be reparation would be reparation. | the top of a camber. The camber. The camber. The camber is the highest eters away funted on the trained from one the maximutical polarizations was turned ding.  In Maximum Howe EUT in peresting could be corted. Other do be re-tested. | table was at radiation. The meter to the met | le 0.8 meters above rotated 360 degrees |  |  |  |  |









#### **Below 1GHz**

Horizontal:



Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL : 1047RF

Condition
Job No. : Smart Phone : V1 EUT Model Test mode : BLE mode Power Rating: AC 120V/60Hz
Environment: Temp:25.5°C Huni:55%
Test Engineer: MT
REMARK:

| MMNN        |         |       |         |       |           |                     |        |           |        |  |
|-------------|---------|-------|---------|-------|-----------|---------------------|--------|-----------|--------|--|
|             |         | Read  | Antenna | Cable | Preamp    |                     | Limit  | Over      |        |  |
|             | Freq    | Level | Factor  | Loss  | Factor    | Level               | Line   | Limit     | Remark |  |
| -           | MHz     | dBu∜  | dB/m    |       | <u>dB</u> | $\overline{dBuV/m}$ | dBu∜/m | <u>dB</u> |        |  |
| 1           | 109.412 | 46.67 | 12.30   | 1.04  | 29.46     | 30.55               | 43.50  | -12.95    | QP     |  |
| 1<br>2<br>3 | 139.361 | 44.63 | 8.19    | 1.25  | 29.28     | 24.79               | 43.50  | -18.71    | QP     |  |
| 3           | 162.041 | 43.50 | 8.72    | 1.34  | 29.12     | 24.44               | 43.50  | -19.06    | QP     |  |
| 4<br>5<br>6 | 195.822 | 41.01 | 10.57   | 1.38  | 28.86     | 24.10               | 43.50  | -19.40    | QP     |  |
| 5           | 298.268 | 36.16 | 13.00   | 1.76  | 28.45     | 22.47               | 46.00  | -23.53    | QP     |  |
| 6           | 528.246 | 33.86 | 17.15   | 2.48  | 29.04     | 24.45               | 46.00  | -21.55    | QP     |  |





#### Vertical:



Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

: 1047RF Job No. EUT : Smart Phone : V1 : V1
Test mode : BLE mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: MT
REMARK :

| Freq    |                                                          |                                                                               |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                               | Limit<br>Line                                                                                                                                                                                                     | Over<br>Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Remark                                                                                                                                                                                                                                                                                                                                       |
|---------|----------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MHz     | dBu₹                                                     | dB/π                                                                          | ₫B                                                                                                              | dB                                                                                                                                                                                                                                                                                                                                           | $\overline{dBuV/m}$                                                                                                                                                                                                                                                                                                                                                                                                           | dBuV/m                                                                                                                                                                                                            | <u>dB</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                              |
| 39.994  | 36.69                                                    | 13.58                                                                         | 0.52                                                                                                            | 29.90                                                                                                                                                                                                                                                                                                                                        | 20.89                                                                                                                                                                                                                                                                                                                                                                                                                         | 40.00                                                                                                                                                                                                             | -19.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | QP                                                                                                                                                                                                                                                                                                                                           |
| 82.938  | 42.14                                                    | 9.57                                                                          | 0.87                                                                                                            | 29.62                                                                                                                                                                                                                                                                                                                                        | 22.96                                                                                                                                                                                                                                                                                                                                                                                                                         | 40.00                                                                                                                                                                                                             | -17.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | QP                                                                                                                                                                                                                                                                                                                                           |
| 109.029 | 40.68                                                    | 12.35                                                                         | 1.04                                                                                                            | 29.46                                                                                                                                                                                                                                                                                                                                        | 24.61                                                                                                                                                                                                                                                                                                                                                                                                                         | 43.50                                                                                                                                                                                                             | -18.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | QP                                                                                                                                                                                                                                                                                                                                           |
| 203.523 | 37.45                                                    | 10.67                                                                         | 1.40                                                                                                            | 28.81                                                                                                                                                                                                                                                                                                                                        | 20.71                                                                                                                                                                                                                                                                                                                                                                                                                         | 43.50                                                                                                                                                                                                             | -22.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | QP                                                                                                                                                                                                                                                                                                                                           |
| 254.728 | 35.98                                                    | 12.06                                                                         | 1.63                                                                                                            | 28.53                                                                                                                                                                                                                                                                                                                                        | 21.14                                                                                                                                                                                                                                                                                                                                                                                                                         | 46.00                                                                                                                                                                                                             | -24.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | QP                                                                                                                                                                                                                                                                                                                                           |
| 390.723 | 35.81                                                    | 14.87                                                                         | 2.09                                                                                                            | 28.74                                                                                                                                                                                                                                                                                                                                        | 24.03                                                                                                                                                                                                                                                                                                                                                                                                                         | 46.00                                                                                                                                                                                                             | -21.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | QP                                                                                                                                                                                                                                                                                                                                           |
|         | MHz<br>39.994<br>82.938<br>109.029<br>203.523<br>254.728 | MHz dBuV  39.994 36.69 82.938 42.14 109.029 40.68 203.523 37.45 254.728 35.98 | MHz dBuV dB/m  39.994 36.69 13.58 82.938 42.14 9.57 109.029 40.68 12.35 203.523 37.45 10.67 254.728 35.98 12.06 | MHz         dBuV         dB/m         dB           39.994         36.69         13.58         0.52           82.938         42.14         9.57         0.87           109.029         40.68         12.35         1.04           203.523         37.45         10.67         1.40           254.728         35.98         12.06         1.63 | MHz         dBuV         dB/m         dB         dB           39.994         36.69         13.58         0.52         29.90           82.938         42.14         9.57         0.87         29.62           109.029         40.68         12.35         1.04         29.46           203.523         37.45         10.67         1.40         28.81           254.728         35.98         12.06         1.63         28.53 | MHz dBuV dB/m dB dB dBuV/m  39.994 36.69 13.58 0.52 29.90 20.89 82.938 42.14 9.57 0.87 29.62 22.96 109.029 40.68 12.35 1.04 29.46 24.61 203.523 37.45 10.67 1.40 28.81 20.71 254.728 35.98 12.06 1.63 28.53 21.14 | MHz         dBuV         dB/m         dB         dB         dB dBuV/m         dBuV/m           39.994         36.69         13.58         0.52         29.90         20.89         40.00           82.938         42.14         9.57         0.87         29.62         22.96         40.00           109.029         40.68         12.35         1.04         29.46         24.61         43.50           203.523         37.45         10.67         1.40         28.81         20.71         43.50           254.728         35.98         12.06         1.63         28.53         21.14         46.00 | Freq Level Factor Loss Factor Level Line Limit  MHz dBuV dB/m dB dB dBuV/m dBuV/m dB  39.994 36.69 13.58 0.52 29.90 20.89 40.00 -19.11 82.938 42.14 9.57 0.87 29.62 22.96 40.00 -17.04 109.029 40.68 12.35 1.04 29.46 24.61 43.50 -18.89 203.523 37.45 10.67 1.40 28.81 20.71 43.50 -22.79 254.728 35.98 12.06 1.63 28.53 21.14 46.00 -24.86 |



#### **Above 1GHz**

| Test channel:      |                         |                             | Lowest                |                          | Le                | vel:                   | Peak                  |              |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|--|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |  |
| 4804.00            | 48.46                   | 31.53                       | 8.90                  | 40.24                    | 48.65             | 74.00                  | -25.35                | Vertical     |  |
| 4804.00            | 47.84                   | 31.53                       | 8.90                  | 40.24                    | 48.03             | 74.00                  | -25.97                | Horizontal   |  |
| Test cha           | annel:                  | Lowest                      |                       |                          | Le                | vel:                   | A                     | verage       |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |  |
| 4804.00            | 38.65                   | 31.53                       | 8.90                  | 40.24                    | 38.84             | 54.00                  | -15.16                | Vertical     |  |
| 4804.00            | 36.77                   | 31.53                       | 8.90                  | 40.24                    | 36.96             | 54.00                  | -17.04                | Horizontal   |  |

| Test channel:      |                         |                             | Middle                |                          | Le                | vel:                   | Peak                  |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 4884.00            | 48.47                   | 31.58                       | 8.98                  | 40.15                    | 48.88             | 74.00                  | -25.12                | Vertical     |
| 4884.00            | 48.77                   | 31.58                       | 8.98                  | 40.15                    | 49.18             | 74.00                  | -24.82                | Horizontal   |
| Test cha           | annel:                  | Middle                      |                       |                          | Le                | vel:                   | A                     | verage       |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 4884.00            | 37.58                   | 31.58                       | 8.98                  | 40.15                    | 37.99             | 54.00                  | -16.01                | Vertical     |
| 4884.00            | 38.69                   | 31.58                       | 8.98                  | 40.15                    | 39.10             | 54.00                  | -14.90                | Horizontal   |

| Test channel:      |                         |                             | Highest               |                          | Le                | vel:                   | Peak                  |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 4960.00            | 46.88                   | 31.69                       | 9.08                  | 40.03                    | 47.62             | 74.00                  | -26.38                | Vertical     |
| 4960.00            | 48.76                   | 31.69                       | 9.08                  | 40.03                    | 49.50             | 74.00                  | -24.50                | Horizontal   |
| Test cha           | annel:                  | Highest                     |                       |                          | Le                | vel:                   | A                     | verage       |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 4960.00            | 36.74                   | 31.69                       | 9.08                  | 40.03                    | 37.48             | 54.00                  | -16.52                | Vertical     |
| 4960.00            | 38.57                   | 31.69                       | 9.08                  | 40.03                    | 39.31             | 54.00                  | -14.69                | Horizontal   |

#### Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366