College Football Excitement Index

Jill Reiner Raj Dasani

Competitive Games Breed the Highest Excitement

College Football Overview

- Three divisions: DI, DII, DIII
- Division I Season
 - 15 weeks in a season
 - 12 games, 8-9 coming in conference play
 - 10 conferences
- Basic Game Logistics
 - 4 15-minute quarters of back and forth play
 - 6 points for a touchdown
 - with 1 or 2 pt try after
 - o 3 points for a FG

The Dataset: 2019 College Football Games

849 Regular Season College Football Games

Interesting Given Variables:

- conference_game: boolean indicating if teams that played were in the same conference
- home_points, away_points
- excitement_index: index of excitement based on total change in win probability
- home_1_points, home_2_points,
 away_3_points, away_4_points: points
 for each quarter by each team
- **score_difference**: absolute value

<u>Created Variables:</u>

- margin_1st_half: home 1st half points - away 1st half points
- margin_game: home away
- comeback: boolean indicating if team winning in first half is different than second half
- overtime: boolean indicating if game went into overtime (if total points does not equal total quarter points)

The Response Variable: Excitement Index

- Index of Excitement based on total change in win probability
- Approximately Normal
- Most Unique/Unknown Variable in our Dataset to us

Exploratory Data Analysis

Common Assumptions Surrounding Excitement

- 1) The more points scored in a single game, the more exciting the game.
- 2) If the home team wins, the more exciting the game.
 - a) Aka: Crowd excitement plays into the excitement index.
- If the game occurs at a later week in the season, the more exciting the game.

Assumption 1 Debunked: Points, on its own, does not lead to Excitement

4th Quarter Points showed some correlation when teams totaled 30+ points

 Back and forth games and successful big comebacks probably fill up that 30+ range

Assumption 2 Debunked: Home Team Wins are NOT the Most Exciting

Home
 Advantage ->
 A home team
 winning has
 less fluctuation
 to win
 probability
 model used to
 define
 Excitement
 Index

Trends of Home vs Away Wins Reversed when considering Comeback games

Assumption 3 Challenged: Total Excitement Peaks in Early and Late Season

- Confounding Variable: Number of Games
- All teams play first and last weeks, but teams have bye weeks throughout season
- In 2019, week 8 seemed particularly exciting

Assumption 3 Debunked: Average Excitement did not vary much throughout the season

Most Exciting Inter-Conference Matchups

H.Line at Average Excitement Index for All Games, about 3.96

Pac-12, Big 12, ACC had the most above average games in terms of Excitement Index

- Power 5 conferences: top conferences in college football
- Blue line: average Excitement Index across these 5 conferences
- Competitive vs.
 Top-Dominated
 Conferences

Linear Modeling

Variable Selection: Score Difference

- Strong negative correlation
- "Blowout" games tend to be not so exciting from a fan standpoint
- Included in our final model

Variable Selection: Conference Games

 We initially thought conference games would be an important factor, and it looked to be as the difference was 95% significant

 Small margin between best fit lines between conference and non-conference games in terms of El

Conference Game

- Did not add to our Model (slope of -0.01)
- Not included in our final model

Variable Selection: Comebacks

- Large margin between comeback and non comeback games in terms of El
- Included in our final model
- Big Gap led us to test and add a quantitative stat related to this stat

RMSE Values of Score Variables Combination

RMSE Values of All Variables Combination

Final Regression Model

excitement index =
comeback + overtime +
(score difference * margin 1st half)

Model Results

Slopes in order of importance/significance

Score Difference: -1.18 1st Half Margin: -0.47

Comeback: 0.98

Score Difference * 1st

Half Margin: 0.33 Overtime: 0.49

Intercept: 3.53

Predicted vs. Observed Excitement Index

- Pretty strong relationship between our model's predicted excitement index and the observed excitement index
- Does not predict the extremes well, especially the games with a high excitement index
 - Starting at around x = 6.0

- As score difference increases, predicted El decreases
- Comeback games and games with a low point differential are predicted by our model to be the most exciting

- As score difference increases, predicted El decreases
- Overtime games and games with a low point differential are predicted by our model to be more exciting

Conclusions

3) A linear model was a good representation of the middle excitement levels, but not a great representation of the least and most exciting ones

Future Research

- If we were to do additional modeling, we would look into a logarithmic/quadratic version
- 2) Another interesting variable that we thought could have an impact on Excitement Index was rank
 - a) whether a team was considered to be an "underdog"
 - b) if teams were ranked closely (better matchup)

Thanks!

Questions?

