Departamento de Matemáticas — Universidad de los Andes

Cálculo Vectorial – Examen Final – Tema A

Diciembre 6 de 2018

Este es un examen **individual**, no se permite el uso de libros, apuntes, calculadoras o cualquier otro medio electrónico. Marque todas las hojas con su nombre completo.

Toda respuesta debe estar **justificada** matemáticamente.

Tiempo máximo: 60 minutos.

Nombre y apellido:

1. Se requiere construir un tanque cilíndrico abierto (sin tapa superior, pero con piso, ver la figura) con una capacidad fija de $125\pi\,m^3$. Encuentre, usando el método de *multiplicadores de Lagrange*, las dimensiones del tanque que minimizan su área.

- 2. La integral $\int_0^{\sqrt{\frac{\pi}{2}}} \int_x^{\sqrt{\frac{\pi}{2}}} \int_1^3 \cos(y^2) \, dz dy dx$ calcula la masa de un sólido E en \mathbb{R}^3 cuya densidad está dada por la función $\rho = \cos(y^2)$.
 - i. Haga una gráfica del sólido E cuya masa calcula esta integral, indicando precisamente sus límites en los tres ejes coordenados.
 - ii. Utilice un cambio adecuado en el orden de integración para calcular la masa del sólido ${\cal E}.$

- **3.** Considere el campo vectorial $\mathbf{F}(x,y,z) = (x,2x,3y^2)$ y las superficies $S_1 = \{(x,y,z) \in \mathbb{R}^3 \mid z = 9 x^2 y^2, z \ge 0\}$ y $S_2 = \{(x,y,z) \in \mathbb{R}^3 \mid x^2 + y^2 \le 9, z = 0\}$, ambas orientadas respecto a la normal que apunta hacia arriba (ver figura).
 - i. Enuncie el Teorema de Stokes.
 - ii. Explique por qué $\iint_{S_1} \nabla \times \mathbf{F} \cdot d\mathbf{S} = \iint_{S_2} \nabla \times \mathbf{F} \cdot d\mathbf{S}$.
 - iii. Calcule la integral de la parte ii.

Departamento de Matemáticas — Universidad de los Andes

Cálculo Vectorial – Examen Final – Tema A

Diciembre 6 de 2018

Nombre y apellido:

1. La curva de intersección de la superficie $x^2+y^2-z^2=1$ con el plano y-z en \mathbb{R}^3 es:

(a) Una hipérbola

(b) Una parábola

(c) Una elipse

(d) Un par de rectas.

2. Sea S la superficie del elipsoide en \mathbb{R}^3 definido por la ecuación $2x^2+3y^2+4z^2=9$. La ecuación del plano tangente al elipsoide S en el punto (1,1,1) es:

(a) 2x + 3y + 4z = 9

(b) 4x + 6y + 8z = 9

(c) 2(x-1) + 3(y-1) + 4(z-1) = 9 (d) 4(x-1) + 6(y-1) + 8(z-1) = 0.

3. La derivada direccional de la función $f(x,y,z) = \sqrt{xyz}$ en el punto (2,4,2) en la dirección del vector $2\hat{\mathbf{i}} + 4\hat{\mathbf{j}} + 4\hat{\mathbf{k}}$ es:

(a) $-\frac{1}{6}$

(b) $\frac{4}{3}$

(c) $\frac{1}{6}$

(d) $\frac{1}{2}$.

4. ¿Cuál de las siguientes gráficas representa correctamente al campo vectorial en \mathbb{R}^2 dado por $\mathbf{F}(x,y)=$ (2y - 4, 2x)?

- **5.** La función z = g(x, y) está dada implícitamente por $zx + zy^2 = 1$. El vector $\nabla g(1, 1)$ es igual a:
 - (a) (-1, -1)

- (b) $\left(-\frac{1}{4}, -\frac{1}{2}\right)$ (c) $\left(-1, -\frac{1}{2}\right)$ (d) $\left(-\frac{1}{2}, -\frac{1}{4}\right)$.
- 6. Considere la función f(x,y) = y 3x. La figura a continuación muestra un punto P y cuatro vectores unitarios \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{u}_3 y \mathbf{u}_4 .

¿Cuál de los vectores unitarios \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{u}_3 o \mathbf{u}_4 indica la dirección de mayor incremento instantáneo de la función f en el punto P?

- (a) \mathbf{u}_1
- (b) \mathbf{u}_2
- (c) \mathbf{u}_3
- (d) ${\bf u}_4$.
- 7. Sea $S \subset \mathbb{R}^3$ la superficie en \mathbb{R}^3 parametrizada como:

$$x = \operatorname{sen}(\phi)\cos(\theta)$$

$$y = \operatorname{sen}(\phi)\operatorname{sen}(\theta)$$

$$z = \cos(\phi)$$

donde $0 \le \theta \le \pi/4$ y $0 \le \phi \le \pi/2$. ¿Cuál es el área de la superficie S?

- (a) 1
- (b) $\pi/4$
- (c) $\pi/2$
- (d) $\pi/8$.
- 8. Si f(x,y) es una función continua, entonces la integral $\int_{-2}^{3} \int_{x}^{3} f(x,y) \, dy \, dx$ es igual a:
 - (a) $\int_{x}^{3} \int_{-3}^{3} f(x, y) dx dy$ (b) $\int_{-3}^{3} \int_{-3}^{3} f(x, y) dx dy$ (c) $\int_{-3}^{3} \int_{-3}^{y} f(x, y) dx dy$ (d) $\int_{-3}^{3} \int_{y}^{3} f(x, y) dx dy$.
- 9. Sea E la región sólida en \mathbb{R}^3 descrita por las desigualdades $x^2+y^2+z^2\leq 4,\,z\geq 0.$ El valor de la integral $\iiint_E (1+x+y) \ dV$ es:
 - (a) 0
- (b) $16\pi/3$
- (c) $32\pi/3$
- (d) $4\pi/3$.
- 10. La integral de trayectoria $\int_{c} x^{2} dx + y^{2} dy z dz$, donde la curva c está parametrizada por las ecuaciones $x(t) = \operatorname{sen}(t) + \cos(t)$, $y(t) = 1 + \cos(t)$ y $z(t) = \operatorname{sen}(t)$, con $t \in [0, 2\pi]$, es igual a:
 - (a) 2π
- (b) 0
- (c) -2π
- (d) 1.

- 11. Si la función $f: \mathbb{R}^3 \to \mathbb{R}$ no tiene puntos críticos, entonces:
 - (a) En todos los puntos $(x, y, z) \in \mathbb{R}^3$ se tiene que f(x, y, z) no es cero.
 - (b) En todos los puntos $(x, y, z) \in \mathbb{R}^3$ la derivada direccional $D_{\vec{v}}f(x, y, z)$ no es cero, para cualquier vector $\vec{v} \neq \vec{0}$.
 - (c) En todos los puntos $(x, y, z) \in \mathbb{R}^3$ las derivadas parciales $\frac{\partial f}{\partial x}$ y $\frac{\partial f}{\partial y}$ son constantes.
 - (d) En todos los puntos $(x,y,z) \in \mathbb{R}^3$ existe una dirección $\vec{v} \neq \vec{0}$ tal que la derivada direccional $D_{\vec{v}}f(x,y,z)$ no es cero.
- 12. Sea S la superficie cilíndrica $x^2 + y^2 = 4$, $0 \le z \le 1$, orientada con la normal exterior. Observe que esta superficie no incluye ni la tapa superior ni la tapa inferior. ¿Para cuál de los siguientes campos vectoriales \mathbf{F} se tiene que $\iint_{S} \mathbf{F} \cdot d\mathbf{S}$, el flujo de \mathbf{F} a través de S, es igual a cero?
 - (a) $\mathbf{F}(x,y) = (x,y,0)$

(b) $\mathbf{F}(x,y) = (x,0,y)$

(c) $\mathbf{F}(x,y) = (0,y,0)$

- (d) $\mathbf{F}(x,y) = (0,0,z)$.
- 13. El ruido R(x,y) (en decibeles) que se genera al revolver una cuchara en un tarro depende de la cantidad de agua x en el tarro (en litros) y de la velocidad y al girar la cuchara (en revoluciones por minuto, rpm). ¿Cuál de las siguientes afirmaciones interpreta correctamente la igualdad $\frac{\partial R}{\partial u}(2,7) = 10$?
 - (a) Si la velocidad de la cuchara aumenta en 7 rpm y la cantidad de agua es igual a 2 litros, entonces el ruido aumentará aproximadamente en 10 decibeles.
 - (b) Si la velocidad de la cuchara es igual a 7 rpm y la cantidad de agua aumenta en 2 litros, entonces el ruido será aproximadamente igual a 10 decibeles.
 - (c) Si la cantidad de agua es de 2 litros y la velocidad de la cuchara es de 7 rpm, entonces aumentar la velocidad en 0.5 rpm hará que el ruido aumente aproximadamente en 5 decibeles.
 - (d) Si la cantidad de agua es de 2 litros y la velocidad de la cuchara es de 7 rpm, entonces aumentar la velocidad en 0.5 rpm hará que el ruido sea aproximadamente igual a 5 decibeles.
- 14. Los puntos sobre la curva $x^2 y^2 = 4$ que están más cerca del punto (0,4) son:
 - (a) $(3, -\sqrt{5})$ y $(3, \sqrt{5})$ (c) $(-2\sqrt{2}, 2)$ y $(2\sqrt{2}, 2)$
- (b) $(2, -2\sqrt{2})$ y $(2, 2\sqrt{2})$
- (d) (-2,0) v (2,0).
- 15. Considere la región E debajo del paraboloide $z = kx^2 + 3y^2$ y encima del cuadrado en el plano xycon vértices (0,0), (1,0), (0,1) y (1,1) (donde k es una constante positiva). ¿Para qué valor de la constante k tenemos que Vol(E) = 10?
 - (a) 9
- (b) 16
- (c) 27
- (d) 36.
- 16. Si σ_1 es el círculo $x^2 + y^2 = 1$ y σ_2 es la elípse $x^2 + 2y^2 = 1$, ambas curvas en el plano, y consideramos la función $f(x,y) = x^2 + y^2$, entonces
 - (a) $\int_{-\infty}^{\infty} \nabla f \cdot d\mathbf{s} = 2\pi$

- (b) $\int_{\mathbf{r}} \nabla f \cdot d\mathbf{s} = \int_{\mathbf{r}} \nabla f \cdot d\mathbf{s}$
- (a) $\int_{\sigma_1} \nabla f \cdot d\mathbf{s} = 2\pi$ (b) $\int_{\sigma_1} \nabla f \cdot d\mathbf{s} = \int_{\sigma_2} \nabla f \cdot d\mathbf{s}$ (c) $\int_{\sigma_1} \nabla f \cdot d\mathbf{s} < \int_{\sigma_2} \nabla f \cdot d\mathbf{s}$ (d) $\int_{\sigma_1} f \, ds = \int_{\sigma_2} f \, ds$.

- 17. Sea $S \subset \mathbb{R}^3$ la superficie del cubo definido por $-1 \le x \le 1$, $-1 \le y \le 1$ y $-1 \le z \le 1$, orientado con la normal exterior. Si \mathbf{F} es el campo vectorial $\mathbf{F}(x,y,z) = (x^4 + yz^3, \operatorname{sen}(y)z + \cos(2^x), e^{xyz})$, entonces la integral $\iint_S \nabla \times \mathbf{F} \cdot d\mathbf{S}$ es igual a:
 - (a) $2\pi \ln(4)$
- (b) -1
- (c) 0
- (d) $4\pi^2 + 16e^3$.
- 18. Dada la superficie esférica S de ecuación $x^2 + y^2 + z^2 = 1$, orientada con la normal unitaria exterior \mathbf{n} , considere las integrales
 - i. $\iint_{S} \hat{\mathbf{i}} \cdot \mathbf{n} \, dS.$
 - ii. $\iint_{S} \hat{\mathbf{j}} \cdot \mathbf{n} \, dS.$
 - iii. $\iint_{S} \hat{\mathbf{k}} \cdot \mathbf{n} \, dS.$

donde $\hat{\mathbf{i}} = (1,0,0), \hat{\mathbf{j}} = (0,1,0)$ y $\hat{\mathbf{k}} = (0,0,1)$. De las siguientes afirmaciones, ¿cuál es verdadera?

- (a) Las tres integrales son iguales a un mismo valor positivo.
- (b) Las tres integrales son iguales a un mismo valor negativo.
- (c) Las tres integrales son iguales todas a cero.
- (d) Las tres integrales tienen todas valores diferentes entre sí.
- 19. Sea S el disco elíptico sobre el plano y+z=1, al interior del cilindro $x^2+y^2=1$, orientado con la normal unitaria $\mathbf n$ con componente z positiva. Considere el campo vectorial $\mathbf F(x,y,z)=(0,xz,xy)$. Entonces la integral $\iint_S \nabla \times \mathbf F \cdot \mathbf n \, dS$ es igual a:
 - (a) 0
- (b) π
- (c) $\frac{\pi}{2}$
- (d) 2π .
- **20.** Sea $\mathbf{F}: \mathbb{R}^3 \to \mathbb{R}^3$ un campo vectorial diferenciable y conservativo. Considere las siguientes afirmaciones:
 - i. $\int_{0} \mathbf{F} \cdot d\mathbf{s} = 0$ para cualquier curva cerrada c.
 - ii. Si c_1 y c_2 son curvas que empiezan en un punto A y terminan en un punto B, entonces

$$\int_{c_1} \mathbf{F} \cdot d\mathbf{s} = \int_{c_2} \mathbf{F} \cdot d\mathbf{s}.$$

- iii. Para cualquier superficie cerrada S se tiene que $\iint_S \mathbf{F} \cdot d\mathbf{S} = 0.$
- iv. $\nabla \times \mathbf{F} = \mathbf{0}$.

¿Cuántas de estas cuatro afirmaciones son verdaderas?

(a) Exactamente una

(b) Exactamente dos

(c) Exactamente tres

(d) Exactamente cuatro.