

THWESTERN POLYTECHNICAL UNIVERSITY

徐爽

西北工业大学理学院概率统计教研室

第一节 大数定律

- 一、问题的提出
- 二、随机变量序列的收敛性
- 三、伯努利大数定律
- 四、常用的四种大数定律

一、问题的提出

万物看似随机,但有其统计的宿命。

统计规律性

引例 相同条件下射击, 命中率?

A:射击射中

P(A) = ?

n:射击次数

随机现象

随机试验

揭示内在规律

 μ_n :命中次数

$$f = \frac{\mu_n}{n} \approx P(A)$$

命中频率 令命中率

理论依据 😯

二、随机变量序列的收敛性

定义4.2 设随机变量序列 $\{Y_n\}$ 和随机变量 Y_n 若对

任意实数 $\varepsilon > 0$,有

$$\lim_{n\to\infty} P\{|Y_n - Y| < \varepsilon\} = 1$$

或

$$\lim_{n\to\infty} P\{|Y_n - Y| \ge \varepsilon\} = 0$$

则称随机变量序列 $\{Y_n\}$ 依概率收敛于随机变量 Y_n

$$Y_n \xrightarrow{P} Y$$

$$\lim_{n\to\infty} P\{|Y_n - Y| < \varepsilon\} = 1$$

依概率收敛表示: Y_n 与 Y 的绝对误差小于任意小的正数 ε 的可能性(即概率)将随着n增大而愈来愈大,直至趋于1.

定理4.1 设 $\{Y_n\}$ 为一随机变量序列, $Y_n \xrightarrow{P} C$ (常数),且函数 $g(\cdot)$ 在点C处连续,则有

$$g(Y_n) \xrightarrow{P} g(C)$$
.

三、伯努利大数定律

1. 频率的稳定性 将一枚硬币抛掷 5 次、50 次、500 次,各做 7 遍,观察正面出现的次数及频率.

西北工业大学概率统计教研室

试验者	n	μ_n	f
德.摩根	2048	1061	0.5181
蒲丰	4040	2048	0.5069
费勒	10000	4979	0.4979
皮尔逊	12000	6019	0.5016
杰万斯	20480	10379	0.5068
罗曼. 诺夫斯基	80640	39699	0.4932

$$f_n \approx 0.5 = P(\overline{\mathbb{E}}\overline{\mathbb{m}})$$

频率的稳定性

频率的稳定性: 概率统计定义的理论基础

随机现象在大量重复试验中呈现明显的统计规律性,即事件发生的频率具有稳定性.

数学上如何准确刻画频率的稳定性? 数列极限?

西北工业大学概率统计教研室

极端情况:
$$\frac{\mu_n}{n} = 1$$
, $\frac{\mu_n}{n} = 0 \Rightarrow \frac{\mu_n}{n} = 0$

$$P\left\{\frac{\mu_n}{n}=1\right\}=\frac{1}{2^n}, P\left\{\frac{\mu_n}{n}=0\right\}=\frac{1}{2^n}$$

$$P\left\{ \left| \frac{\mu_n}{n} - \frac{1}{2} \right| = \frac{1}{2} \right\} = P\left\{ \frac{\mu_n}{n} = 0 \right\} + P\left\{ \frac{\mu_n}{n} = 1 \right\}$$

一般情况:

$$=\frac{1}{2^{n-1}} \xrightarrow{n\to\infty} 0$$

西北工业大学概率统计教研室

瑞士数学家 伯努利 Jakob Bernoulli (1654-1705)

伯努利大数定律

2. 伯努利大数定律

设 μ_n 是n重伯努利试验中事件A发生的次数,

p为每次试验中事件A发生的概率,则对于任意 $\varepsilon \geq 0$,

有
$$\lim_{n\to\infty} P\left\{ \left| \frac{\mu_n}{n} - p \right| \ge \varepsilon \right\} = 0$$

依概率收敛性: $\lim_{n} \frac{\mu_n}{n} \xrightarrow{P} p$

当n很大,频率与概率有较大偏差的可能性很小

证明:

 $:: \mu_n$ 是 n 重伯努利试验中事件 A 发生的次数,且 P(A) = p

$$\therefore \mu_n \sim B(n,p)$$
 且有 $E(\mu_n) = np; D(\mu_n) = np(1-p);$

$$\Rightarrow E(X) = E(\frac{\mu_n}{n}) = p; \ D(X) = D(\frac{\mu_n}{n})$$
 $= \frac{D(\mu_n)}{n^2} = \frac{p(1-p)}{n}$ $= \frac{D(\mu_n)}{n} = \frac{p(1-p)}{n}$

$0 \le P\left\{ \left| \frac{\mu_n}{n} - p \right| \ge \varepsilon \right\} \le \frac{p(1-p)}{n\varepsilon^2} \qquad \xrightarrow{n \to \infty} 0$

历史上第一个大数定律,奠定了概率论的理论基础!

意义: 以严格的数学形式证明了频率的稳定性,

揭示了随机现象中的统计规律性。 $\frac{\mu_n}{n} \xrightarrow{P} p$

当 n → ∞ 时,

射中的频率 $f_n \approx$ 命中率P(A)

理论依据: 伯努利大数定律

四、常用的四种大数定律

在实践中,人们认识到单个随机现象没有规律,但大量随机现象**的算术平均值**具有稳定性. 大数定律就是用于研究**大量随机现象中平均结果**的稳定性的理论.

$$X \sim B(100, 0.3) \Rightarrow Y_n = \frac{1}{n} \sum_{i=1}^n X_i$$

$$n = 100$$

30.58, 29.91, 29.79.....

$$n = 10000$$

30.0019, 30.0494, 29.9655.....

30.0065, 30.0115, 29.9991

$$n \rightarrow \infty$$

$$|Y_n \approx 30| = EX = EY_n$$

西北工业大学概率统计教研室

$$X \sim N(4,3) \Longrightarrow$$

$$X \sim N(4,3) \Longrightarrow Y_n = \frac{1}{n} \sum_{i=1}^n X_i$$

$$n = 100$$

3.9481, 3.9846, 4.5133.....

$$n = 10000$$

4.0177, 3.9876.....

$$n = 1000000$$

4.0007, 4.0028,.

$$n \rightarrow \infty$$

$$|Y_n \approx 4| = EX = EY_n$$

定义4.5 大数定律

设 $X_1, X_2, \dots, X_n, \dots$ 是随机变量序列,

如果存在这样一个常数序列 $a_1,a_2,\cdots,a_n,\cdots$,对任意的 $\varepsilon > 0$,恒有

$$\lim_{n\to\infty} P\left\{ \left| Y_n - a_n \right| < \varepsilon \right\} = 1 \quad \text{Pr}_n \xrightarrow{P} a_n$$

则称随机变量序列 $\{X_n\}$ 服从大数定律.

描述了随机变量序列均值的收敛性

定理4.3 切比谢夫大数定律

设 $X_1, X_2, \dots, X_n, \dots$ 是两两不相关的随机变量序列,每一随机变量都有有限的方差并有公共的上界

$$D(X_1) \le C, D(X_2) \le C, \dots, D(X_n) \le C, \dots$$

则对任意的 $\varepsilon > 0$,恒有

$$\lim_{n\to\infty} P\left\{ \left| \frac{1}{n} \sum_{i=1}^n X_i - \frac{1}{n} \sum_{i=1}^n EX_i \right| < \varepsilon \right\} = 1$$

注1° 当 n 很大时,随机变量 X_1, X_2, \dots, X_n 的

算术平均值 $\frac{1}{n}\sum_{i=1}^{n}X_{i}$ 接近于它们的数学期望的

算术平均值 $\frac{1}{n}\sum_{i=1}^{n}E(X_{i})$.

这种接近是概率 意义下的!

通俗地说,在定理条件下,*n* 个随机变量的算术平均值,当 *n*无限增加时,几乎变成一个常数.

定理4.4 伯努利大数定律

设 μ_n 是n次独立重复伯努利试验中事件A

发生的次数,p是事件A在每次试验中发生的概率,

则对任意的 $\varepsilon > 0$,有

$$\lim_{n\to\infty} P\left\{ \left| \frac{\mu_n}{n} - p \right| < \varepsilon \right\} = 1$$

即
$$\frac{\mu_n}{n}$$
 \xrightarrow{p} p

证 引入随机变量

$$X_k = \begin{cases} 0, & \text{在第k次试验中事件A不发生} \\ 1, & \text{在第k次试验中事件A发生} \end{cases}$$

 $k=1,2,\cdots,n$.

显然,由于 $X_1, X_2, ..., X_n$ 是相互独立的,且同服从B(1,p)分布,故有

$$E(X_k) = p, D(X_k) = p(1-p) \le \frac{1}{4} \quad (k = 1, 2, \dots, n)$$

由定理4.3对任意的 $\varepsilon>0$,有

西北工业大学概率统计教研室

$$\lim_{n\to\infty} P\left\{ \left| \frac{1}{n} \sum_{i=1}^n X_i - p \right| < \varepsilon \right\} = 1$$

即

$$\lim_{n\to\infty} P\left\{ \left| \frac{\mu_n}{n} - p \right| < \varepsilon \right\} = 1$$

证毕.

定理4.4 推广 泊松大数定律*

如果在一个独立试验序列中,事件A在第k次试验中出现的概率等于 p_k ,以 μ_n 记在前n次试验中事件A出现的次数,则对任意的 $\varepsilon > 0$,

$$\lim_{n\to\infty} P\left\{ \left| \frac{\mu_n}{n} - \frac{1}{n} \sum_{k=1}^n p_k \right| < \varepsilon \right\} = 1$$

$$X_k = \begin{cases} 0, & \hat{\pi}_k x \times \hat{\pi}_k = A \times \hat{\pi}_k \\ 1, & \hat{\pi}_k \times \hat{\pi}_k \times \hat{\pi}_k \end{cases} (k = 1, 2, \dots, n)$$

 X_k 独立且服从 $B(1,p_k)$ 由定理4.3可得结论.

定理4.5 辛钦大数定律

设随机变量 X_1, X_2, \cdots, X_n 相互独立,服从同一分布,

且具有数学期望 $E(X_i) = \mu$ $(i = 1, 2, \dots, n)$,则对任意的 $\varepsilon > 0$,都有

$$\lim_{n\to\infty} P\left\{ \left| \frac{1}{n} \sum_{i=1}^n X_i - \mu \right| < \varepsilon \right\} = 1$$

$$\mathbb{P}\frac{1}{n}\sum_{i=1}^{n}X_{i}\xrightarrow{P}E(X_{i})$$

- 注1° 与切比谢夫大数定理相比,不要求方差存在 且有界.
 - 2° 伯努利大数定理是辛钦大数定理的特例.

例2 设 $X_1, X_2, ..., X_n$ 是独立同分布的随机变量 序列, $E(X_i) = \mu$, $D(X_i) = \sigma^2$ 均存在, 证明

$$Y_n = \frac{2}{n(n+1)} \sum_{i=1}^n iX_i$$

依概率收敛到 μ.

解 大数定律

$$\frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{P} \frac{1}{n} \sum_{i=1}^{n} EX_i = \mu$$

切比谢夫不等式

$$0 \le P\left\{ \left| Y_n - E(Y_n) \right| \ge \varepsilon \right\} \le \frac{D(Y_n)}{\varepsilon^2}$$

其中
$$Y_n = \frac{2}{n(n+1)} \sum_{i=1}^n iX_i$$

因为
$$E(Y_n) = E\left[\frac{2}{n(n+1)}\sum_{i=1}^n iX_i\right]$$

$$= \frac{2}{n(n+1)} \sum_{i=1}^{n} iE(X_i) = \frac{2\mu}{n(n+1)} \sum_{i=1}^{n} i = \mu$$

$$D(Y_n) = \frac{4}{n^2(n+1)^2} \sum_{i=1}^n i^2 D(X_i) = \frac{4\sigma^2}{n^2(n+1)^2} \sum_{i=1}^n i^2$$

$$=\frac{4n(n+1)(2n+1)\sigma^2}{6n^2(n+1)^2}=\frac{2(2n+1)\sigma^2}{3n(n+1)}$$

从而对任意给定的 $\varepsilon>0$,由切比谢夫不等式得

$$0 \le P\{|Y_n - \mu| \ge \varepsilon\} \le \frac{D(Y_n)}{\varepsilon^2}$$

$$=\frac{2(2n+1)\sigma^2}{3n(n+1)\varepsilon^2}\to 0 \quad (n\to\infty)$$

因此
$$Y_n \xrightarrow{P} \mu$$
.

例3 设随机变量 $X_1, X_2, \dots, X_n, \dots$ 独立同分布, 且 $E(X_k) = 0$, $D(X_k) = \sigma^2, k = 1, 2, \dots$,证明对任意 正数 ε ,有 $\lim_{n \to \infty} P\left\{\frac{1}{n}\sum_{k=1}^{n}X_k^2 - \sigma^2 < \varepsilon\right\} = 1$

解由辛钦大数定律知,

$$\frac{1}{n}\sum_{k=1}^{n}X_{k}^{2} \xrightarrow{P} \frac{1}{n}\sum_{k=1}^{n}E(X_{k}^{2}) = E(X_{k}^{2})$$

因为 $X_1, X_2, \dots, X_n, \dots$ 是相互独立的,所以 $X_1^2, X_2^2, \dots, X_n^2, \dots$ 也是相互独立的.由 $E(X_k) = 0$,

得 $E(X_k^2) = D(X_k) + [E(X_k)]^2 = \sigma^2$.

由辛钦大数定律知,对于任意正数 ε ,有

$$\lim_{n\to\infty} P\left\{\left|\frac{1}{n}\sum_{k=1}^n X_k^2 - \sigma^2\right| < \varepsilon\right\} = 1.$$

$$\mathbb{P} \frac{1}{n} \sum_{k=1}^{n} X_k^2 \xrightarrow{P} E(X_k^2)$$

该结论为数理统计中的矩估计法的理论基础。

内容小结

不相分

切比谢夫大数定律

不相关、方差有界:
$$\frac{1}{n}\sum_{i=1}^{n}X_{i} \xrightarrow{p} \frac{1}{n}\sum_{i=1}^{n}EX_{i}$$

伯努利大数定律

独立同分布,
$$X \sim B(1,p)$$
: $\frac{\mu_n}{n} \xrightarrow{p} p$

泊松大数定律

独立不同分布,
$$X \sim B(1, p_k) : \frac{\mu_n}{n} \xrightarrow{p} \frac{1}{n} \sum_{k=1}^n p_k$$

辛钦大数定律

独立同分布:
$$\frac{1}{n}\sum_{i=1}^{n}X_{i} \xrightarrow{p} E(X_{i})$$

四个大数定理

西北工業大學

NORTHWESTERN POLYTECHNICAL UNIVERSITY

