

SOLUTION OF EXERCISESHEET 3

Exercise 3-1

Trying some values:

$$k=2$$
 $a=27$ $b=72$ $c=|b-a|=72-27=45$ $d=45$ $e=54$ $k=3$ $a=398$ $b=983$ $c=|983-398|=585$ $d=585$ $e=558$ $k=3$ $a=398$ $b=938$ $c=|983-398|=441$ $d=441$ $e=144$ $k=3$ $a=321$ $b=213$ $c=|321-213|=108$ $d=18$ $e=81$

In the table above one can see that the sum of the digits of d, respectivly e is always a multiple of 9.

The reason for this lies in the construction of the 'pseudorandom generator'. b has the same digits like a only in an other order. To get c we subtract the greater number of those from the smaller, so c is always positive. Then we remove all 0-digits to get d and scramble the letters again for e. The sum of digits didn't change after the computation of c, so we look at c to argue that this sum is always a multiple of g.

If a > b we compute for the sum of the digits of c = a - b: $(a_1 - b_1) + (a_2 - b_2) + ... + (a_n - b_n) = a_1 + a_2 + ... + a_n - (b_1 + b_2 + ... + b_n)$. But this only hold if $a_n > b_n$.

If
$$a_i < b_i$$
 then it is $(a_1 - b_1) + (a_2 - b_2) + \dots + (a_{i-1} - b_{i-1} - 1) + (a_i - b_i + 10) + \dots + (a_n - b_n) = a_1 + a_2 + \dots + a_n - (b_1 + b_2 + \dots + b_n) + 9$

The sum of the digit of a has to be the same like the sum of the digits from b, because b has the same digits like a only in an other order, so $a_1 + a_2 + ... + a_n - (b_1 + b_2 + ... + b_n) = 0$.

If $a_i < b_i$ holds for y positions the sum of the digits is $9 \cdot y$. a and b have the same digits, so $a_i < b_i$ holds at least for one position, so $y \ge 1$.

This argumentation is the same for b > a, so the sum of the digits from c, respectively d or e, is always a multiple from 9.

If now all but the last digit of e are given one can always determine the last digit, because the sum of all digits has to be a multiple of 9. So the described generator does not pass the next-character test.

If the sum of the digits is already 9, the last bit has to be 9 as well, because all 0-digits had erased. If this is not the case, we could not determine if the last digit has to be 0 or 9.

Exercise 3-2

(a) Is $G_a(s) = G(s)||0$ a secure PRG?

No since the last bit is always 0. This bit is not uniformly at random because the probablity of that bit being 0 is 100% instead of 50%.

 \Rightarrow G_a is a not a PRG

(b) Is $G_b(s||b) = G(s)||b$ where |b| = 1 a secure PRG?

Yes because adding a single random but fixed bit has the probability 50% being 1 and 50% being 0 meaning b is uniformly random. $b = \{0,1\}$ is a pseudorandom generator and the concatination of two pseudorandom number generators is a pseudorandom number generator itself. Also since b is part of the argument G_b is deterministic.

 \Rightarrow G_b is a secure PRG

Introduction to Modern Cryptography

Theresa, Celine, Prisca, Saibaba November 9, 2022

SOLUTION OF EXERCISESHEET 3

(c) Is $G_c(s) = G(s||0)$ a secure PRG?

Assume $G_c(s)$ is not a secure PRG and an adversary A that can distinguish $G_c(s)$ from a random generator g(s).

We construct \mathcal{B} that invokes \mathcal{A} and answers any query s by asking s||0 to its own oracle, concatenating the answers and returning them to \mathcal{A} .

 \mathcal{A} has to decide if this is a random generator or not. Since G(s) is a secure PRG and therefore its values uniformly distributed it follows that \mathcal{B} is as efficient as \mathcal{A} .

Now there are two cases: If G(s||0) is a PRG, \mathcal{B} perfektly simulates $G_c(s)$. In the case when G(s||0) is a random generator, \mathcal{B} also simulates a random generator. It follows, that \mathcal{B} can distinguish whenever \mathcal{A} can. As this would contradict the security of G(s), such an \mathcal{A} can not exist

 \Rightarrow G_c(s) is a secure PRG.

(d) Is $G_d(s) = G(s||0^{|s|})$ a secure PRG?

Assume $G_d(s)$ is not a secure PRG and an adversary A that can distinguish between $G_d(s)$ and a random generator g(s).

We construct \mathcal{B} that \mathcal{A} and adds I(|s|)-times 0 to each string s.

Since G(s) is a secure PRG and therfore its values uniformly distributed it follows that \mathcal{B} is as efficient as \mathcal{A} .

 \Rightarrow $G_d(s)$ is a secure PRG.

(e) Is $G_e(s) = G(s) \oplus 1^{l(|s|)}$ a secure PG?

Assume $G_e(s)$ is not a secure PRG and an adversary A that can distinguish between $G_e(s)$ and a random generator g(s).

We construct \mathcal{B} that calls the function $F(s) = s \oplus 1^{l(|s|)} = G(s)$ for $s = G_e(s)$. For \mathcal{B} to distinguish the one case where b is set correctly from g(s) has to distinguish (G(trunc(s))) from g(s).

However since G(s) is a secure definition by definition. \Rightarrow contradiction \Rightarrow $G_f(s)$ is a secure PRG.

(f) Is $G_f(s) = trunc(G(trunc(s)))$ a secure PRG?

where trunc(x) for a nonempty string x denotes all but the last bit of x.

(For this part, assume that I(n) > n + 2, and ignore the fact that G_f is undefined on input strings of length 1.)

Assume $G_f(s)$ is not a secure PRG and an adversary \mathcal{A} can distinguish between $G_f(s)$ and a random generator g(s).

We construct an adversary \mathcal{B} that evokes \mathcal{A} adds one bit $b = \{0,1\}$ to $G_f(s)$.

For \mathcal{B} to distinguish the one case where b is set correctly from g(s) \mathcal{B} would have to distinguish G(trunc(s)) from g(s).

However G(s) is a secure definition by definition. Furthermore $\mathcal B$ can't know what value trunc has deleted from the string since G(s) is uniformly distributed. \Rightarrow contradiction

 \Rightarrow $G_f(s)$ is a secure PRG.