

Description

Image

Caption

1. Decorative ceiling plaster work © Richard Needham at en.wikipedia [CC BY-SA 3.0] 2. Teeth models of gypsum for dental applications © Humusak at Pixalbay [Public domain] 3. Joint fracture of a hand © Condesign at Pixalbay [Public domain]

The material

Plaster of Paris is exactly that: a plaster that, originally, came from Paris, France. It is made by calcining the mineral gypsum, CaSO4.2H2O, at about 180°C, driving off wat er to give the anhydrite 2CaSO4.H2O. When mixed with water it rehydrates and sets to a hard, white solid. It is used to make molds and casts for ceramics and sculptures, to make pre-cast ornamental plasterwork on ceilings and cornices, and for orthopedic bandages or casts. In medieval and renaissance times gesso (plaster of Paris mixed with glue) was applied to wood panels or canvas as the ground for tempera paintings.

Composition (summary)

2CaSO4.H2O, Gypsum

General properties

Density	1.18e3	-	1.8e3	kg/m^3
Price	* 1.45	-	2.07	USD/kg
Date first used	1730			

Mechanical properties

Young's modulus	4.5	-	8	GPa
Shear modulus	* 2	-	5	GPa
Bulk modulus	* 3	-	5.5	GPa
Poisson's ratio	0.25	-	0.3	
Yield strength (elastic limit)	* 1	-	4.5	MPa
Tensile strength	* 1	-	4.5	MPa
Compressive strength	14	-	20	MPa
Elongation	0			% strain

Hardness - Vickers	1	-	3	HV
Fatigue strength at 10^7 cycles	1.7	-	2	MPa
Fracture toughness	0.01	-	0.014	MPa.m^0.5
Mechanical loss coefficient (tan delta)	0.1	-	0.3	

Thermal properties

Melting point	* 300	-	500	$\mathcal C$
Maximum service temperature	110	-	180	${\mathfrak C}$
Minimum service temperature	-73	-	-23	$\mathcal C$
Thermal conductor or insulator?	Poor in:	sulat	or	
Thermal conductivity	0.4	-	0.6	W/m.℃
Specific heat capacity	600	-	1e3	J/kg.℃
Thermal expansion coefficient	8	-	10	µstrain/℃

Electrical properties

Electrical conductor or insulator?	Poor ins	ulat	or	
Electrical resistivity	* 1e8	-	1e10	μohm.cm
Dielectric constant (relative permittivity)	* 5	-	9	
Dissipation factor (dielectric loss tangent)	0.001	-	0.01	
Dielectric strength (dielectric breakdown)	* 2	-	4	1000000 V/m

Optical properties

Critical Materials Risk

High critical material risk?	
------------------------------	--

Processability

Moldability	4	- 5	
-------------	---	-----	--

Durability: water and aqueous solutions

Water (fresh)	Limited use
Water (salt)	Limited use
Soils, acidic (peat)	Limited use
Soils, alkaline (clay)	Limited use
Wine	Limited use

Durability: acids

Acetic acid (10%)	Unacceptable
Acetic acid (glacial)	Unacceptable
Citric acid (10%)	Unacceptable
Hydrochloric acid (10%)	Unacceptable

Page 3 of 5

Hydrochloric acid (36%)	Unacceptable
Hydrofluoric acid (40%)	Unacceptable
Nitric acid (10%)	Unacceptable
Nitric acid (70%)	Unacceptable
Phosphoric acid (10%)	Unacceptable
Phosphoric acid (85%)	Unacceptable
Sulfuric acid (10%)	Unacceptable
Sulfuric acid (70%)	Unacceptable

Durability: alkalis

Sodium hydroxide (10%)	Limited use
Sodium hydroxide (60%)	Limited use

Durability: fuels, oils and solvents

Amyl acetate	Excellent
Benzene	Excellent
Carbon tetrachloride	Excellent
Chloroform	Excellent
Crude oil	Unacceptable
Diesel oil	Excellent
Lubricating oil	Excellent
Paraffin oil (kerosene)	Excellent
Petrol (gasoline)	Excellent
Silicone fluids	Excellent
Toluene	Excellent
Turpentine	Excellent
Vegetable oils (general)	Excellent
White spirit	Excellent

Durability: alcohols, aldehydes, ketones

Acetaldehyde	Excellent
Acetone	Excellent
Ethyl alcohol (ethanol)	Excellent
Ethylene glycol	Excellent
Formaldehyde (40%)	Excellent
Glycerol	Excellent
Methyl alcohol (methanol)	Excellent

Durability: halogens and gases

Chlorine gas (dry)	Limited use
Fluorine (gas)	Limited use

O2 (oxygen gas)	Excellent			
Sulfur dioxide (gas)	Unacceptable			
Durability: built environments				
Industrial atmosphere	Unacceptable			
Rural atmosphere	Unacceptable			
Marine atmosphere	Unacceptable			
UV radiation (sunlight)	Excellent			
Durability: flammability				
Flammability	Non-flammable			
Durability: thermal environments				
Tolerance to cryogenic temperatures	Unacceptable			
Tolerance up to 150 C (302 F)	Excellent			
Tolerance up to 250 C (482 F)	Unacceptable			
Tolerance up to 450 C (842 F)	Unacceptable			
Tolerance up to 850 C (1562 F)	Unacceptable			
Tolerance above 850 C (1562 F)	Unacceptable			
	·			
Geo-economic data for principal component				
Annual world production, principal component	1.18e8 - 1.19e8 tonne/yr			
Reserves, principal component	3e9 - 3.1e9 tonne			
Primary material production: energy, CO2 and was	er			
Embodied energy, primary production	2.09 - 2.31 MJ/kg			
CO2 footprint, primary production	0.186 - 0.206 kg/kg			
Water usage	* 9.79 - 10.8 l/kg			
Motorial processing, energy				
Material processing: energy Grinding energy (per unit wt removed)	* 2.72 - 3.01 MJ/kg			
Chinding energy (per unit withermoved)	2.72 - 3.01 WJ/Kg			
Material processing: CO2 footprint				
Grinding CO2 (per unit wt removed)	* 0.204 - 0.225 kg/kg			
Material recycling: energy, CO2 and recycle fraction	n			
Recycle	×			
Recycle fraction in current supply	0.1 %			
Downcycle	√			
Combust for energy recovery	×			
Landfill	√			
Biodegrade	×			
•				

Toxicity rating	Non-toxic
A renewable resource?	×

Supporting information

Technical notes

In use plaster of Paris is mixed with half its weight of water. It remains usable for 20 minutes, starts to set after 30 and is solid after one hour.

Typical uses

External and internal molded decoration on walls and ceilings, as a mold material for casting low-melting metals, and as medical casts and splints.

Links

Reference ProcessUniverse Producers				
	Reference			
Producers	ProcessUniverse			
	Producers			