Linear Regression

GA DAT3

Agenda

- 1. Overview
- 2. Cost Function
- 3. Gradient Descent
- 4. Normal Equation
- 5. Probabilistic Interpretation
- 6. Locally Weighted Linear Regression

Linear Regression Overview

Supervised Learning

Regression: predict real-value

output

Classification: predict discrete value

output

Training set of	Size in feet ² (x)	Price (\$) in 1000's (y)
housing prices	2104	460
(Portland, OR)	1416	232
(* ***********************************	1534	315
	852	178

Notation:

```
m = Number of training examples
```

x's = "input" variable / features

y's = "output" variable / "target" variable

Linear regression with one variable : Univariate linear regression

Cost Function : Squared Error Loss

Minimize:
$$J(heta) = rac{1}{2} \sum_{i=1}^m (h_{ heta}(x^{(i)}) - y^{(i)})^2.$$

WHY?

General Multivariate Form

$$h_{ heta}(x) = heta_0 + heta_1 x_1 + heta_2 x_2$$
 + ... + theta(n)x(n)

$$h(x) = \sum_{i=0}^n heta_i x_i = heta^T x_i$$

Cost Function : Squared Error Loss

Minimize:
$$J(heta) = rac{1}{2} \sum_{i=1}^m (h_{ heta}(x^{(i)}) - y^{(i)})^2.$$

Gradient Descent

Update Rule:

Learning rate

$$\theta_j := \theta_j - \alpha \frac{1}{\partial \theta_j} J(\theta).$$

Repeat until convergence {

$$\begin{split} \frac{\partial}{\partial \theta_j} J(\theta) &= \frac{\partial}{\partial \theta_j} \frac{1}{2} \left(h_{\theta}(x) - y \right)^2 \\ &= 2 \cdot \frac{1}{2} \left(h_{\theta}(x) - y \right) \cdot \frac{\partial}{\partial \theta_j} \left(h_{\theta}(x) - y \right) \\ &= \left(h_{\theta}(x) - y \right) \cdot \frac{\partial}{\partial \theta_j} \left(\sum_{i=0}^n \theta_i x_i - y \right) \\ &= \left(h_{\theta}(x) - y \right) x_j \\ &= (h_{\theta}(x) - y) x_j \\ &= \exp(-1) \\ \text{original value} \end{split}$$

$$\theta_j := \theta_j + \alpha \sum_{i=1}^m \left(y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)} \qquad \text{(for every } j\text{)}.$$

For sufficiently small α , θ should decrease on every iteration. But if α is too small, gradient descent can be slow to converge.'\

learning rate can be made smaller after every iteration, see stochastic descent in later slide

if alpha too big, might overshoot global min. if alpha too small, takes too much time.

What are the axes?

Batch vs Stochastic Descent

for theta:

for each example:

...

for each example:

for theta:

• • •

will be covered at later session when dealing with very large data sets

Normal Equations

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \frac{1}{2} (X\theta - \vec{y})^T (X\theta - \vec{y})$$

$$= \frac{1}{2} \nabla_{\theta} \left(\theta^T X^T X \theta - \theta^T X^T \vec{y} - \vec{y}^T X \theta + \vec{y}^T \vec{y} \right)$$

$$= \frac{1}{2} \nabla_{\theta} \operatorname{tr} \left(\theta^T X^T X \theta - \theta^T X^T \vec{y} - \vec{y}^T X \theta + \vec{y}^T \vec{y} \right)$$

$$= \frac{1}{2} \nabla_{\theta} \left(\operatorname{tr} \theta^T X^T X \theta - 2 \operatorname{tr} \vec{y}^T X \theta \right)$$

$$= \frac{1}{2} \left(X^T X \theta + X^T X \theta - 2 X^T \vec{y} \right)$$

$$= X^T X \theta - X^T \vec{y}$$

$$\theta = (X^T X)^{-1} X^T \vec{y}.$$

works only if we can get this. if we cannot, then we use a pseudo inverse matrix

Gradient Descent vs Normal Equation

Gradient Descent

Normal Equation

Need to choose **a** No need to choose **a**

Need many iterationa Don't need to iterate

Work well even with large n Need to compute $(X^TX)^{-1}$

Slow if n is large

n = number of features n too large = in 1000s

Probabilistic Interpretation

$$y^{(i)} = \theta^T x^{(i)} + \epsilon^{(i)}$$

$$p(\epsilon^{(i)}) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(\epsilon^{(i)})^2}{2\sigma^2}\right).$$

We can minimise **cost** or

maximise likelihood

max likelihood of a point on the regressed line that is the same as observed point

What's the likelihood?

Likelihood

This is a conditional probability density

$$L(\theta) = \prod_{i=1}^{m} p(y^{(i)} \mid x^{(i)}; \theta)$$

$$= \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - \theta^{T}x^{(i)})^{2}}{2\sigma^{2}}\right)$$

Can you write this as a sum?

Likelihood - For you advanced folks

$$\begin{split} \ell(\theta) &= \log L(\theta) \\ &= \log \prod_{i=1}^m \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - \theta^T x^{(i)})^2}{2\sigma^2}\right) \\ &= \sum_{i=1}^m \log \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - \theta^T x^{(i)})^2}{2\sigma^2}\right) \\ &= m \log \frac{1}{\sqrt{2\pi}\sigma} - \frac{1}{\sigma^2} \cdot \frac{1}{2} \sum_{i=1}^m (y^{(i)} - \theta^T x^{(i)})^2. \end{split}$$

Hence, maximizing $\ell(\theta)$ gives the same answer as minimizing

$$\frac{1}{2}\sum_{i=1}^m (y^{(i)} - \theta^T x^{(i)})^2,$$
 which is the cost function

classic tradeoff

Instead of doing:

- 1. Fit θ to minimize $\sum_{i} (y^{(i)} \theta^T x^{(i)})^2$.
- 2. Output $\theta^T x$.

We do:

- 1. Fit θ to minimize $\sum_i w^{(i)} (y^{(i)} \theta^T x^{(i)})^2$
- 2. Output $\theta^T x$.

introduce weight

Good examples of weights?

$$w^{(i)} = \exp\left(-\frac{(x^{(i)} - x)^2}{2\tau^2}\right)$$

Parametric vs Non-Parametric

What was k-Nearest Neighbours?

http://learning.cis.upenn.edu/cis520_fall2009/index.php?n=Lectures.LocalLearning#toc8

Q??