Attention Based Models for Cell Type Classification on Single-Cell RNA-Seq Data

Tianxu Wanga; Yue Fanb; Xiuli Maa;*

^a Key Laboratory of Machine Perception(MOE), School of Intelligence Science and Technology, Peking University, Beijing, China

^b Beijing Institute for General Artificial Intelligence, Beijing, China

Contents

• Introduction and Background

• Related Work

Methods

• Experiments

Introduction and Background

- Traditional Bulk sequencing technology
 - Produces average gene expression values in mixtures of cells
- Single-Cell RNA-sequencing(scRNA-seq) technology
 - Profile the whole transcriptome of each cell
 - Measure the expression values of all genes in every single cell
- Example of single-cell RNA-seq data

Introduction and Background

- Challenges
 - High dimensional
 - Marker genes
 - House-keeping genes
 - Sparsity and Dropouts
 - Large percentage of zeros
 - True zeros: genes not expressed in cells
 - False zeros: genes expressed but fail to be detected by scRNA-seq technology

Introduction and Background

- Cell Type Classification
 - Fundamental analysis in bioinformatics
 - Recognize various cells in cancer microenvironment
 - Discover new cell types
 - Facilitate other downstream tasks
- Detailed Problem Statement
 - Input:
 - Matrix $M^{c \times g}$: expression values of g genes in c cells
 - Cells with cell type label in training set
 - Mission: predict cell type for cells without labels

Related Work

- Methods make use of prior knowledge
 - Reference Datasets
 - SingleR
 - Scmap
 - Marker genes
 - SCINA
- Challenges
 - Require high quality markers for every cell type
 - Rare cell types

Related Work

- Methods using neural network
 - More independent from prior knowledge
 - ACTINN
 - Cell BLAST
 - ScCapsNet
 - EpiAnno
- Challenges
 - Hard to effectively interpret the biological meanings hidden in the parameters

Methods

- Motivation
 - Both accurate and interpretable, providing insights into the underlying biological mechanism
 - Self-Attention Mechanism
 - Great success in diverse types of data
 - Attention weights serves as strong indicator of the affinities among tokens
 - Applying self-attention to cell type classification
 - Obstacles: tokens / features
 - Basic model: Cell Feature Attention Network (CFAN)
 - Further interpretability: Cell-Gene Representation Attention Network(CGRAN)

CFAN

- Cell Feature Extraction
 - Extract hidden features of a cell using *u* feature extractors (implemented as dense layer)
 - $f_i = Norm(ReLU(W_ie + b_i))$
- Renew Features
 - Single-head self-attention renew
 - $F = Norm(Softmax\left(\frac{QK^T}{\sqrt{d}}\right)V)$
- Cell type classification
 - 1D convolution
 - Fully connected layer

CFAN Architecture

Insights from CFAN

- Visualizations of attention weights and output features produced by CFAN
- Similar patterns in cells from same cell type
- Attention weights serves as indicator, however, not interpretable enough in CFAN

CGRAN

- Concretize every token as a biological entity, i.e. a cell or a gene
 - 'Representation learning' for cells and genes
 - Embedding vector for each cell and gene
 - Cell embeddings —— Classification
 - Attention scores among cells and genes —— contribution of the gene to a cell for cell type classification

CGRAN Architecture

CGRAN PART 1: Initialize Cell embeddings and Gene embedding

- Obtain initial Cell embedding vectors $A^{c \times m}$ and gene embedding vectors $B^{g \times m}$
- SVD decomposition:
 - $M = X \sum Y^T$
 - Cell embedding vectors: $A = (X \sum_{S}):$,:m
 - Gene embedding vectors: $B = (Y \sum_{s}^{T}):,:m$
- Embedding vectors learned by gradient descent
 - $\underset{A,B}{\operatorname{argmin}} MSE(M, AB^T)$

CGRAN PART 2: Multi-head Local Attention

• Input:

- For each cell *i*, input sequence $S = \{s_0, s_1, \dots s_g\}$
- $s_0 = A_{i,:}$, $s_j = B_{j,:} + s_0$, $j \in \{1, 2, \dots g\}$
- Two Sequential attention blocks
- Problems:
 - Fully attention on long sequence leads to low classification accuracy
 - Large g: most of the attention weight closed to zeros
- Introduce Local Attention
 - Genes are divided into several groups: only attention weights among genes from the same group are preserved
 - Uniform Grouping
 - Gene Cluster Grouping

Experiments

• Datasets Description

Table 1: Descriptions of Single-Cell RNA-Seq Datasets.

Dataset	Cell Number	Gene Number	Cell Type Number
CRC	8496	12547	20
GSE70580	647	26087	4
GSE72056	4636	22280	7
GSE75688	515	27420	5
GSE96993	334	10827	4
NSCLC	9051	12415	16
PBMC	5356	14218	5
Spleen human	4406	14064	7
Spleen mouse	4432	12699	7

Interpretations of CGRAN(I)

- Identification of marker genes
 - For each cell and its input $S = \{s_0, s_1, \dots s_g\}$, consider attention weights of the gene tokens $\{s_1, \dots, s_g\}$ to the cell token s_0 in the first attention block
 - 'Picked' by a cell: if the gene is among the top-50 genes with highest attention weights
 - 'highly differential gene': If a gene is 'picked' by most of the cells from a certain cell type exclusively

Interpretations of CGRAN(II)

- Analysis on 'Gene Sets'
 - Gene with high attention weights
 - Illustrations of the attention weights among all highly differential genes identified by CGRAN in PBMC dataset

Interpretations of CGRAN(III)

Classification-Friendly Embeddings

• t-SNE visualizations of cell embeddings output by CGRAN

Classification Performance

Table 2: Accuracy of CFAN, CGRAN and baseline methods.

	CFAN	CGRAN	SVM	RF	scCapsNet	ACTINN	Cell Blast	scVI	Moana	XGBoost
CRC	88.20%	88.12%	89.64%	81.47%	83.80%	86.29%	68.79%	84.71%	45.29%	85.47%
GSE70580	96.92%	97.30%	96.92%	94.15%	96.15%	96.15%	95.52%	91.54%	93.84%	96.15%
GSE72056	93.75%	92.78%	92.34%	91.59%	92.21%	92.56%	87.62%	91.59%	78.44%	93.53%
GSE75688	94.17%	93.20%	92.23%	92.23%	90.77%	91.26%	79.61%	92.23%	91.26%	93.20%
GSE96993	82.83%	80.59%	82.08%	82.08%	77.61%	79.10%	70.96%	80.60%	56.71%	79.10%
NSCLC	83.26%	84.10%	83.26%	79.01%	79.14%	82.72%	69.14%	83.99%	34.67%	83.05%
PBMC	97.94%	97.39%	97.57%	98.00%	97.94%	97.85%	91.86%	97.57%	97.94%	97.76%
Spleen human	91.49%	92.29%	91.26%	87.64%	90.28%	91.04%	87.20%	89.23%	39.45%	91.72%
Spleen mouse	96.73%	96.39%	97.29%	92.33%	95.38%	96.73%	91.54%	95.26%	95.60%	96.28%

Table 3: Accuracy of CFAN, CGRAN and baseline methods.

	scnym	singleR	scmap	SCINA
CRC	88.12%	80.52%	84.17%	43.56%
GSE70580	96.15%	97.69%	96.92%	61.70%
GSE72056	92.34%	86.85%	89.22%	79.80%
GSE75688	91.26%	87.37%	86.40%	81.55%
GSE96993	83.58%	73.13%	73.13%	50.93%
NSCLC	84.04%	76.03%	80.56%	26.13%
PBMC	97.39%	97.57%	96.82%	70.70%
Spleen human	92.06%	83.56%	84.80%	-
Spleen mouse	96.27%	90.98%	94.81%	-

Table 4: Accuracy of CGRAN under different settings, abbreviations in table: matrix factorization via Gradient Descent (GD), Fully Attention (FA), Uniform Grouping of local attention (UG), gene Cluster Grouping of local attention (CG).

Dataset	GD + FA	GD + UG	GD + CG	SVD + UG
CRC	77.58%	85.52%	84.88%	88.12%
GSE70580	95.38%	97.30%	96.92%	96.15%
GSE72056	88.68%	92.78%	92.45%	92.62%
GSE75688	86.40%	93.20%	93.20%	93.20%
GSE96993	73.13%	80.59%	79.10%	77.61%
NSCLC	75.15%	81.15%	79.95%	84.10%
PBMC	97.35%	97.39%	97.29%	97.13%
Spleen human	89.79%	91.38%	91.72%	92.29%
Spleen mouse	88.38%	95.15%	93.79%	96.39%

Robustness Test

Experiments on Transferability of Models across Datasets

- From GSE72056 to PBMC
- Select top 1000 most variable genes in PBMC which appear in GSE72056
- Pretrained on GSE72056 on nine-cell-type classification

Table 5: GSE72056 and PBMC cell types.

	Tumor cells	T cells	B cells	Macrop -hages	Endoth -elial	Cancer- associated -fibroblasts	NK cells	Monoc -ytes	Megakary -ocytes
GSE72056	1751	2066	515	126	65	61	52	0	0
PBMC	0	2660	696	0	0	0	583	1398	19

Table 6: Transferability of CGRAN from GSE72056 to PBMC. Accuracy of the finetuned CGRAN model on PBMC dataset is shown. Pretrained CGRAN model achieves an accuracy of 92.13% on GSE72056. 80% of PBMC is used for finetune and 20% for test.

Epoch	setting A	setting B	setting C
1	19.59%	29.66%	67.63%
25	74.72%	92.72%	96.18%
75	83.40%	97.39%	96.83%

Novel Cell Type Discovery

- Visualizations of cell embeddings produced by CFAN(left) and CGRAN(right)
- Blue cell types(B cells) masked during training

Conclusion and Future Work

- CFAN
 - Feature attention
- CGRAN
 - Cell-Gene attention
 - Interpretation
 - Marker genes discovery
 - Gene-Gene relationship
 - Visualization
 - Transfer
 - Novel Cell Type Discovery
- Future Work
 - Gene Embedding Initialization & Gene Groups

References

- [1] Dvir Aran, Agnieszka P Looney, Leqian Liu, Esther Wu, Valerie Fong, Austin Hsu, Suzanna Chak, Ram P Naikawadi, Paul J Wolters, Adam R Abate, et al., 'Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage', *Nature immunology*, **20**(2), 163–172, (2019).
- [2] Zhi-Jie Cao, Lin Wei, Shen Lu, De-Chang Yang, and Ge Gao, 'Searching large-scale scrna-seq databases via unbiased cell embedding with cell blast', *Nature communications*, **11**(1), 1–13, (2020).
- [3] Oscar Franzen, Li-Ming Gan, and Johan LM Bjorkegren, 'Panglaodb: a web server for exploration of mouse and human single-cell rna sequencing data', *Database*, **2019**, (2019).
- [4] Vladimir Yu Kiselev, Andrew Yiu, and Martin Hemberg, 'scmap: projection of single-cell rna-seq data across data sets', *Nature methods*, **15**(5), 359–362, (2018)
- [5] Feiyang Ma and Matteo Pellegrini, 'Actinn: automated identification of cell types in single cell rna sequencing', *Bioinformatics*, **36**(2), 533–538, (2020).
- [6] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin, 'Attention is all you need', *Advances in neural information processing systems*, **30**, (2017).
- [7] Lifei Wang, Rui Nie, Zeyang Yu, Ruyue Xin, Caihong Zheng, Zhang Zhang, Jiang Zhang, and Jun Cai, 'An interpretable deep-learning architecture of capsule networks for identifying cell-type gene expression programs from single-cell rna-sequencing data', *Nature Machine Intelligence*, **2**(11), 693–703, (2020).
- [8] Xinxin Zhang, Yujia Lan, Jinyuan Xu, Fei Quan, Erjie Zhao, Chunyu Deng, Tao Luo, Liwen Xu, Gaoming Liao, Min Yan, et al., 'Cellmarker: a manually curated resource of cell markers in human and mouse', *Nucleic acids research*, **47**(D1), D721–D728, (2019).

Thanks For your Attention