Chuleta Gráficos en R

Fernando Villalba Bergado Febrero de 2017

${\rm \acute{I}ndice}$

PRIMER VISTAZO A LOS DATOS	1
SELECCIONAR SUBCONJUNTOS DE LOS DATOS	1
GENERAR SERIES ALEATORIAS	2
HISTOGRAMAS	2
Histograma con ggplot2	5
BOX WHISPER	6
DISPERSIÓN x-y	7
X~Y CON MODELOS DE REGRESION	9
GRÁFICOS DE LINEAS	10
MULTIGRÁFICAS	11
PALETA DE COLOR PERSONALIZADO	12
Colores con ggplot2:	14
PINTAR EN FICHERO	15
PDF	15
PNG	16
VARIAS ESCALAS	16

Índice de figuras

1.	Histogramas base system	2
2.	Histogramas base system	3
3.	Histogramas base system	4
4.	Histogramas	4
5.	Histogramas	5
6.	Histogramas ggplot	5
7.	Histogramas ggplot	6
8.	Graficos de caja Box-Whisper	6
9.	Graficos de caja Box-Whisper	7
10.	Graficos de dispersion	7
11.	Graficos de dispersion	8
12.	Graficos de dispersion	8
13.	Graficos de dispersion	9
14.	Graficos de lineas con modelo de regresion	10
15.	Graficos de lineas	11
16.	Uso del color en ggplot	15
17.	Uso del color en ggplot	15
18.	grafico con dos escalas distintas	16

PRIMER VISTAZO A LOS DATOS

Antes de hacer un gráfico vemos las dimensiones contenido etc. de forma rápida.

Para los ejemplos usaremos alguna veces datos incluidos en R de la librería datasets y otras veces generaremos series aleatorias rápidas.

Lectura de datsets que contiene tablas y dataframes de datos de ejemplo:

```
library(datasets) # cargamos el paquete de datos de muestra
head(cars)
dim(cars) # dimension de la tabla
names(cars) # para saber los nombres de las variables en la tabla cars
summary(cars$speed) # da el min, 25%, mediana=50%, media, 75% y max
quantile(cars$speed)
```

SELECCIONAR SUBCONJUNTOS DE LOS DATOS

Es muy importante saber seleccionar datos de un data frame. Aparte de librerías especificas como dplyr y plyr, la manera más sencilla suele ser usar el propio lenguaje R:

```
# Seleccionar una columna por numero
x[,1]
# Seleccionar columna por name
x[,"var1"]
# Seleccionar parte de una fila y columna a la vez
x[1:2,"var2"]
# Seleccionar con operadores lógicos
# selecciono los valores que cumplen esta condición en todas las columnas
x[(x\$var1<=3 \& x\$var3 >11),] # AND
x[(x$var1<=3 | x$var3>15),] # OR
# Seleccionar con which
x[which(x$var2>8),]
x[(x$var2>8),] # ver diferencia respecto a NA
# subset selecciona
subset(df, df$var1=="west")
# sumaparcial table suma frecuencias
table(cars$speed)
# split selecciona y agrupa subconjuntos
df_split<-split(df,list(df$year,df$type))</pre>
# aggregate suma parciales
sumaparcial<-aggregate(Emissions ~ year + type, data=BaltCity, sum)</pre>
# idem con dplyr
library(dplyr)
 xta <- nei %>%
    filter(fips == 24510) %>%
```



```
group_by(year, type) %>%
summarize(total.emissions = sum(Emissions))
```

GENERAR SERIES ALEATORIAS

Para muestra y ejemplos muchas veces necesitamos generar una serie de datos aleatoria rápida. Damos aquí una pequeña muestra de funciones útiles para este fin:

HISTOGRAMAS

```
# GRAFICAS DE HISTOGRAMAS
    hist(cars$speed, col="green")
# añadiendo rug para ver marcas de datos
    rug(cars$speed)
```

Histogram of cars\$speed

Figura 1: Histogramas base system


```
#0tro
    hist(y, col="tomato", breaks=5)
    rug(y)
# añadimos linea vertical
    abline(v= 1, lwd=2) # grosor 2)
# añadimos linea vertical en la media
    abline(v= median(y), col= "navy", lwd=4)
```


Figura 2: Histogramas base system

```
# lwd=line_width=grosor 2)
# lty=tipo linea
barplot(table(pollution$region), col="wheat", main="numero de condados por region")
```


numero de condados por region

Figura 3: Histogramas base system

```
set.seed(42)
par(mfrow=c(1,2))  # una fila con dos col de graficos
p1 <- hist(rnorm(500,4))  # centrado en 4
p2 <- hist(rnorm(500,6))  # centrado en 6</pre>
```

Histogram of rnorm(50Histogram of rnorm(50

Figura 4: Histogramas

```
plot( p1, col=rgb(0,0,1,1/4), xlim=c(0,10)) # primer histograma plot( p1, col=rgb(0,0,1,1/4), xlim=c(0,10)) # repetimos para la segunda grafica plot( p2, col=rgb(1,0,0,1/4), xlim=c(0,10), add=T) # ojo con add añadimos al mismo grafico
```


Histogram of rnorm(50Histogram of rnorm(50

Figura 5: Histogramas

```
dev.off()
## null device
## 1
```

Histograma con ggplot2

```
library(ggplot2)
ggplot(df, aes(y)) +
  geom_histogram(aes(fill=..count..)) +
  scale_fill_gradient("Count", low = "green", high = "red")+
  geom_density(position = "stack")
```


Figura 6: Histogramas ggplot


```
# funcion de densidad
ggplot(df, aes(x=y)) +
  geom_histogram(aes(y = ..density.., fill=..count..)) +
  geom_density(lwd=1,adjust = 1/2)
```


Figura 7: Histogramas ggplot

BOX WHISPER

Para los graficos de cajas es necesario si queremos hacr categorías convertir la variable de categoría a factor.

```
par(mar=c(3,3,0,2))#mar=c(bottom, left, top, right)
boxplot(cars$speed, col="lightblue", horizontal = TRUE)
#si queremos añadir una linea al boxplot, por ejemplo para marcar el limite de 12
abline(v=median(cars$speed), col= "red", lwd=1)
```


Figura 8: Graficos de caja Box-Whisper

Figura 9: Graficos de caja Box-Whisper

DISPERSIÓN x-y

```
library(datasets)
# head(cars)
# pintamos de la datatable cars, dos variables
    par(mar=c(3,3,3,2))#mar=c(bottom, left, top, right)
    with(cars, plot(speed,dist))
```


Figura 10: Graficos de dispersion

lo mismo con conlor transparente 0.3 : cex cambia las fuentes multiplica escala
with(cars, plot(speed,dist,col=rgb(0,.5,.5,0.3),pch=19, cex=0.8))


```
# Añadimos un texto al grafico
# lo situamos en la mitad (media), parte alta
        text(mean(cars$speed),max(cars$dist),"aquí va")
# añadimos etiquetas a cada punto
        with(cars, text(speed,dist, labels = dist,pos=4))#row.names(cars), pos = 4))
```


 ${\bf Figura~11:~Graficos~de~dispersion}$

```
# Añadir label de datos
#text(x = speed, y = dist, labels = rownames(dataFrame), pos=4, col="red")
#-----otra -----
with(pollution,plot(latitude,pm25, col=region ))
   abline(h=12,lwd=2,lty=2)
```


Figura 12: Graficos de dispersion


```
with(airquality,plot(Wind,Ozone,type = "n"))
    may <- subset(airquality, Month==5)

#pintamos ese conjunto
    points(may$Wind,may$Ozone,col="blue",pch=17)

# ahora los meses que no son mayo
    notmay <- subset(airquality, Month!=5)
    points(notmay$Wind,notmay$Ozone,col="red",pch=8)

#añadimos la legenda
    legend("topright",pch=c(17,8),col=c("blue","red"),legend=c("May","Other Months"))

#añadimos un titulo:
    title(main="Ejemplo de grafico x-y")
    mtext("Ozone y viento en New York",outer=TRUE)</pre>
```

Ejemplo de grafico x-y

Figura 13: Graficos de dispersion

X~Y CON MODELOS DE REGRESION

```
with(airquality, plot(Wind,Ozone, main="Ozono y viento en NY",pch=1))
# Añado que pinte los del mes de mayo en azul
with(subset(airquality, Month==5), points(Wind,Ozone,col="blue",pch=3))
# Añadimosuna leyenda
legend("topright", pch =c(1,3), col=c("blue","black"),legend=c("Mayo","otros"))
#añadimos linea de regresion
model<-lm(Ozone ~ Wind,airquality)
abline(model,lwd=2)</pre>
```


Ozono y viento en NY

Figura 14: Graficos de lineas con modelo de regresion

GRÁFICOS DE LINEAS

```
# Graficos de lineas
par(mar=c(3,3,0,2))#mar=c(bottom, left, top, right)
# cumsum es suma acumulada de la serie
plot(df$x, cumsum(df$y), ylab="eje y", xlab=" Eje X", type="n") # type n es que no lo pinta
lines(df$x, cumsum(df$y), type= "l", col="grey")
lines(df$x, cumsum(df$y)+10, type= "l", col="red")
lines(df$x, cumsum(df$y)-20, type= "l", col="blue")
legend("topright", pch =20, col=c("grey", "red", "blue"), legend=c("gris", "rojo", "azul"))
```


Figura 15: Graficos de lineas

MULTIGRÁFICAS

```
# MULTIGRÁFICAS
library(datasets)
# grafico de 3 graficas
par(mfrow = c(1, 3),mar = c(4, 4, 2, 1), oma = c(0, 0, 2, 0))
    plot(airquality$Wind,airquality$Ozone,main="Ozone y Viento")
    plot(airquality$Solar.R,airquality$Ozone,main="Ozone y Radiacion Solar")
    plot(airquality$Temp,airquality$Ozone,main="Ozone y Temperatura")
    mtext("Ozone y tiempo en New York City",outer=TRUE)
```


PALETA DE COLOR PERSONALIZADO

Los colores con nombre son los almacenados en el vector colors(), hay 627. Las paletas predefinidas están en grDevices color palette existen unas cuantas como: cm.colors, topo.colors, terrain.colors, heat.colors, rainbow.

```
# generar 10 colores aleatorios de la muestra colors
    sample(colors(),10)
##
    [1] "whitesmoke"
                         "grev27"
                                          "maroon4"
                                                           "seashell3"
        "plum4"
##
                         "mistyrose"
                                          "lightpink3"
                                                           "purple1"
    [9] "darkseagreen2" "gray83"
    par(mar = c(1, 1, 1, 1))
# FUNCION para ver las escalas en un gráfico de color
    verEscalas<-function(cv){</pre>
      myarg <- deparse(substitute(cv))</pre>
      z<- outer( 1:20,1:20, "+")
      obj<- list( x=1:20,y=1:20,z=z )
      image(obj, col=cv, main=myarg )
    }
    # Generamos una paleta personalizada aleatoria a partir de 3 colores
    coloresorigen<-sample(colors(),3)</pre>
    paletaFer<-colorRampPalette(coloresorigen,alpha=0.3)
    # vemos la paleta
    verEscalas(paletaFer(10))
```


Ejemplo de uso de la paleta en un gráfico
plot(x,y,col=paletaFer(20),pch=20,lwd=10)

#cambiando tamaño de los puntos según su valor
colorfondo<-paletaFer(20)#[3]
with(df,</pre>

symbols(x=x, y=y, circles=x, inches=1/10,ann=F,
bg=colorfondo, fg="black")) # fg="NULL"

#para generar colores a partir de una de las paletas persnalizadas:
rainbow(3) # genera 3 colores de la paleta rainbow

```
## [1] "#FF0000FF" "#00FF00FF" "#0000FFFF"

terrain.colors(5) # genera 5 colores de la paleta terrain.colors

## [1] "#00A600FF" "#E6E600FF" "#EAB64EFF" "#EEB99FFF" "#F2F2F2FF"

topo.colors(4, alpha = 0.5) # # genera 5 colores de la paleta topo.colors con alfa .5

## [1] "#4C00FF80" "#00E5FF80" "#00FF4D80" "#FFFF0080"

#heat.colors
```

Colores con ggplot2:

```
# Uso del color en ggplot
library(ggplot2)
par(mar = c(4, 4, 3, 1))
qplot(x, y, data = df, colour=y) +
    scale_colour_gradientn(colours=colorfondo)# cambia el color de gradiente
```


Figura 16: Uso del color en g
gplot $\,$

```
ggplot(df, aes(y)) +
    geom_histogram(aes(fill=..count..)) +
    scale_colour_gradientn(colours = terrain.colors(8))
```


Figura 17: Uso del color en ggplot

PINTAR EN FICHERO

PDF

```
# pdf
    pdf(file = "myplot.pdf") # abrimos el dispositivo gráfico
#creamos un grafico y lo mandamos al dispositivo pdf
```



```
with(faithful,plot(eruptions,waiting))
title(main="Datos de daños Geyser") # sobreescribimos el título
dev.off()# cerramos el dispositivo, para volver a dejar la pantalla por defecto
```

PNG

```
png('plot1.png',width = 480, height = 480, units = "px")
    hist(df$y, xlab="eje X", main="titulo del grafico", col="red")
dev.off()
```

VARIAS ESCALAS

Para pintar un gráfico con dos escalas distintas:

```
# grafico con dos escalas distintas
df$z<-df$y*10 # añado columna nueva a la df

with(df,plot(x, cumsum(y), ylab="eje y", xlab=" Eje X", type="n"))
    # type n es que no lo pinta
    lines(x, cumsum(y), type= "l", col="blue")
    title("grafico con dos escalas")
    # añado otro grafico
    par(new = T)
    lines(df$x, y, type= "l",lwd=2, col="red", xlab=NA, ylab=NA)
    axis(side=4,xlab="eje 2", at = pretty(range(y)),col="red",col.axis = "red")</pre>
```

grafico con dos escalas

Figura 18: grafico con dos escalas distintas

at puede omitirse y se calcula