Конспект по курсу

Теория колец и полей

Contributors: Андрей Степанов Лектор: Ильинский Д.

МФТИ

Последнее обновление: 25 февраля 2015 г.

Содержание

1	Базовые определения.	2
2	Факториальные кольца.	4

nograhol@gmail.com

Курс состоит из 3 частей:

- 1. Теория делимости. Обобщение ОТА (основная теорема арифметики).
- Расширения полей. Основная теорема алгебры. Конечные поля. Коды БЧХ.
- 3. Как из \mathbb{Q} перейти в \mathbb{R} . \mathbb{Q}_p .

1 Базовые определения.

Определение 1.1. Кольцо - это тройка $(K, +, \cdot)$. Причем:

- 1. (K, +) абелева группа
- 2. $\forall a, b, c \in K : (a+b) \cdot c = a \cdot c + b \cdot c$
- 3. $\forall a, b, c \in K : c \cdot (a+b) = c \cdot a + c \cdot b$

Определение 1.2. Свойство $\forall a,b,c:(ab)c=a(bc)$ называют ассоциативностью.

Определение 1.3. Свойство $\exists 1: \forall a: a\cdot 1 = 1\cdot a = a$ называют существованием нейтрального элемента

Определение 1.4. Свойство $\forall a, b : ab = ba$ называют коммутативностью.

Определение 1.5. Свойство $\forall a \neq 0: \exists b: ab = ba = 1$ называют существованием обратного элемента.

Определение 1.6. Ассоциативное кольцо – это такое кольцо, что для умножения выполнена ассоциативность.

Определение 1.7. Кольцо с единицей – это такое кольцо, где есть нейтральный элемент относительно умножения.

Определение 1.8. Коммутативное кольцо — это такое кольцо, что для умножения выполнена коммутативность и (внезапно) ассоциативность и существование нейтрального элемента.

3амечание. Буквой K будем обозначать коммутативное кольцо (т.е. коммутативное с единицей и ассоциативностью).

Определение 1.9. Кольцо с обратными – это такое кольцо, что умножения обратимо.

Пример.

- 1. \mathbb{Z} является коммутативным кольцом с единицей и ассоциативностью
- 2. $\{0\}$ тривиальное кольцо

- 3. $2\mathbb{Z}$ кольцо без единицы, но ассоциативное и коммутативное.
- 4. $\mathbb{R}^{n \times n}$ ассоциативная кольцо с единицей, но не коммутативное

Пример. Более интересный пример: Множество матриц со сложением и операцией $[\cdot,\cdot]$: [A,B]=AB-BA. Ассоциативность не выполнена. Но выполнено:

1.
$$[[A, B], C] + [[B, C], A] + [[C, A], B] = 0$$

2.
$$[A, B] = -[B, A]$$

Определение 1.10. Пусть K – коммутативное кольцо. Тогда $a \neq 0$ называется делителем нуля, если: $\exists b \neq 0 : ab = 0$.

Определение 1.11. Коммутативное кольцо без делителей нуля называется областью целостности.

Упраженение. $a \cdot 0 = 0$

Определение 1.12. F – поле, если:

- 1. F ассоциативное коммутативное кольцо с единицей
- $2. 1 \neq 0$
- 3. Любой элемент обратим относительно сложения.

Утверждение 1.1. В поле нет делителей нуля.

Доказательство. Пусть a — делитель нуля, т.е. $\exists b \neq 0 : ab = 0$. Но у a есть обратный элемент относительно умножения a^{-1} . Умножив слева на a^{-1} , придем к противоречию.

Определение 1.13. Гауссовы числа ($\mathbb{Z}[i]$) — это комплексные числа с целой мнимой и действительной частью.

Утверждение 1.2. Гауссовы числа – это область целостности

Доказательство. Замкнутость относительно операций проверяется тривиальным образом. Коммутативность, дистрибутивность и ассоциативность следует из соответствующих свойств для \mathbb{C} . 0 + 0i — нейтральный элемент относительно сложения, а 1 + 0i — нейтральный элемент относительно умножения, проверяется тривиальным образом. А делителей нуля в гауссовых числах нет, потому что их нет в комплексных числах (\mathbb{C} — это поле).

Определение 1.14. Говорят, что $a|b\ (a\ {\rm делит}\ b),\ {\rm если}\ \exists c:ac=b.$

Утверждение 1.3. Свойства делимости:

- 1. $a|b,b|c \Leftarrow a|c$
- 2. $a|b,a|c \Leftarrow a|(b+c)$

3. $a|1 \Leftrightarrow \exists b: ab = 1 \Leftrightarrow a - oбратимый элемент$

 ${\it Замечание}.\ \ {\it B}\ \ {\it cлучае},\ \ {\it когда}\ \ a|1,\ \ {\it любой}\ \ {\it элемент}\ \ {\it поля}\ \ {\it делится}\ \ {\it нa}\ \ a:$ $x=1\cdot x=a\cdot a^{-1}\cdot x$

Определение 1.15. K^* (множество обратимых элементов K) — мультипликативная группа кольца.

Определение 1.16. Будем называть два элемента a и b ассоциированными, если $a=rb, r\in K^*$.

Упраженение. Ассоциированность – это отношение эквивалентности.

Замечание. План доказательства ОТА:

- 1. Докажем, что любое число раскладывается на произведение простых.
- 2. Докажем лемму Евклида.
- Докажем единственность разложения на простые с помощью леммы Евклида.

Определение 1.17. Элемент $x \neq 0$ кольца K называется неприводимым или неразложимым, если:

- 1. $x \notin K^*$
- 2. $x = ab \Rightarrow \exists a^{-1} \lor \exists b^{-1}$

Определение 1.18. Элемент $0 \neq x \notin K^*$ кольца K называется простым, если: $x|ab \Rightarrow x|a \lor x|b$

2 Факториальные кольца.

Определение 2.1. Область целостности K называется факториальным кольцом, если:

- 1. $\forall x \neq 0 : \exists u \in K^*, p_1, \dots, p_k$ неприводимые : $x = up_1p_2 \dots p_k$
- 2. Если существует два разложения, то они равны по подулю перестановки и ассоциируемости

Замечание. Чтобы доказать, что область целостности является факториальным, нужно выполнить 3 шага:

- 1. ∃ разложение
- 2. Доказываем, что каждый неразложимый элемент простой
- 3. Доказываем единственность разложения

Утверждение 2.1. Простой элемент неразложим.

Доказательство. Пусть x=ab — простой. Тогда a|x,b|x. Кроме того x|ab. Если x|a, то $x\approx a$. А значит, $b\in K^*$. Если же $x\approx b$, то проводим аналогичное доказательство.

Замечание. Обратное верно не всегда.

Утверждение 2.2. Если для кольца мы уже доказали n.1 и n.2, то единственность разложения будет из этого следовать.

Доказательство. Мы хотим доказать единственность. Пусть $x=up_1\dots p_k, x=vq_1\dots q_l$, где $u,v\in K^*$. Возьмем какое-нибудь p_i , если $\exists q_j:q_j\approx p_i$, то их сократим, и так далее, пока можем. Получили, что какое-нибудь $p_i|wq_{j_1}q_{j_2}\dots q_{j_s}$. Поскольку p_i простое, то получим, что $p_i|q_j$. Тогда $p_iu=q_j$, но така как q_j неразложим, получаем, что $u\in K^*$. А значит, $p_i\approx q_j$. Противоречие

Определение 2.2. Область целостности K называется Евклидовым кольцом, если: $\exists ||x||: K \setminus \{0\} \mapsto \mathbb{N}_0$ — норма, для которой выполнено:

- 1. $\forall a, b \neq 0 : ||ab|| \geq ||a||$
- 2. $\forall a, b \neq 0 : \exists q, r \in K : a = bq + r \Rightarrow (r = 0 \lor ||r|| < ||b||)$

Утверждение 2.3. Свойство 1 лишнее.

Доказательство. Положим

$$N(a) = \min_{b \neq 0, b \in K} ||ab||$$

Заметим, что свойство 1 выполнено. Докажем, что свойство 2 выполнено: пусть $0 \neq a,b \in K$. N(b) = ||bc||. Разделим a на bc с остатком. a = q(bc) + r. Если $r \neq 0$, то $N(r) \leq |r| < ||bc|| = N(b)$

Пример.

- 1. Z
- 2. $K[x_1, ..., x_n]$, где K поле, ||P|| = degP
- 3. $\mathbb{Z}[i]$