R V College of Engineering Department of Computer Science and Engineering CIE - I: (Test1) Question Paper APPLIED DIGITAL LOGIC DESIGN AND Course: COMPUTER ORGANIZATION (CS234AI) (Code) Semester: 3rd BE Date: 9th Jan 2024 Duration: 90 minutes Staff: KB/PSB/MH/DD Name:

USN:

SI.	ne:	USN:		SB/WIH/DB							
1			Section: A/I				B/C/D/CD/CY				
I.	TOP I SUPERINGE										
10	THE STREET	Answer all the ques	4		Ma	L1-	CO				
1		ranswer an the ques	uons		rks	L6	001				
1	Simplify the Poo	loon frantisa value O			10	L2	COI				
-	E (P O P S)	plean function using QN	M Method.				1				
	Simplify the fell	$= \sum_{n=1}^{\infty} m (0, 1, 2, 4, 5, 7, 8, 8, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,$	9,14,15)								
L	E (ny vy vy -)	owing Boolean express	sions using K maps.			3.33	1				
	1 (w, x, y, z) =	\sum m (0,1,4,5,8,9,14,13	(5) + dc(11,12)	-			1				
2					10	1 72	CO				
	Represent the follow	wing numbers of indic	oted by 1		10	L2	100				
	(i) 40 and -32 i	wing numbers, as indic n 8 bit signed magnitud	de representation			1					
			de representation			1					
		BCD representation									
		excess 3 representation				1					
		32 bit (single precision	on) floating point	number	1						
	represer					3					
		n 32 bit (single	precision floatin	g poin			1				
	represer	ntation)									
_					1	0 I	_3 (
	10000	1 '41	sumbers: +14 x	-7							
13	Using booths a	algorithm, multiply the	divides ±12 / ±7								
(ii) Using Restorir	ng Division Algorithm	, divide: +13/1/								
			4 10			10	L3				
					1						
		1 A Jan (write Truth	Table, KMap Sim	plificati	on	1					
		el Adder (write Truth									
	and final expression	ons) and using foil r	with suitable cont	rol inpu							
	and final expression parallel(ripple) add select addition/sub	ler/subtractor circuit, traction. Describe the	with suitable cont working of the ci	rol inpurcuit.	t to						
	and final expression parallel(ripple) add select addition/sub	ler/subtractor circuit, traction. Describe the	with suitable cont working of the ci	rol inpurcuit.	t to						
	and final expression parallel(ripple) add select addition/substitution.	ler/subtractor circuit, traction. Describe the esign, Write the answ	with suitable cont working of the ci	rol inpurcuit.	t to						
	and final expression parallel(ripple) add select addition/substitution.	ler/subtractor circuit, traction. Describe the esign, Write the answ	with suitable cont working of the ci	rol inpurcuit.	t to						
	and final expression parallel(ripple) add select addition/subtraction addition /subtraction	der/subtractor circuit, traction. Describe the esign, Write the answon.	with suitable cont working of the ci-	rol inpurcuit.	t to						
	and final expression parallel(ripple) add select addition/subtraction. Using the above de addition /subtraction.	der/subtractor circuit, traction. Describe the esign, Write the answon. =1101 ADD/SUB = 1	with suitable cont working of the ci- wer for the follow	rol inpurcuit.	t to						
	and final expression parallel(ripple) add select addition/subtraction. Using the above de addition /subtraction.	der/subtractor circuit, traction. Describe the esign, Write the answon. =1101 ADD/SUB = 1	with suitable cont working of the ci- wer for the follow	rol inpurcuit.	t to						
	and final expression parallel(ripple) add select addition/subtraction. Using the above de addition /subtraction.	der/subtractor circuit, traction. Describe the esign, Write the answon.	with suitable cont working of the ci- wer for the follow	rol inpurcuit.	t to						
1	and final expression parallel(ripple) add select addition/subtraction and the select addition subtraction at the select addition at the select	ler/subtractor circuit, traction. Describe the esign, Write the answon. =1101 ADD/SUB = 1010 ADD/SUB = 1010 ADD/SUB = 1010 ADD/SUB	with suitable cont working of the ci- wer for the follow	rol inpurcuit.	t to						
	and final expression parallel(ripple) add select addition/subtraction and the select addition subtraction at X=1001 Years. X=0011, Years.	ler/subtractor circuit, traction. Describe the esign, Write the answon. =1101 ADD/SUB = 1010 ADD/SUB = 1010 ADD/SUB = 1010 ADD/SUB	with suitable cont working of the ci- wer for the follow	rol inpurcuit.	t to						
	and final expression parallel(ripple) add select addition/subtraction. Using the above de addition /subtraction.	ler/subtractor circuit, traction. Describe the esign, Write the answon. =1101 ADD/SUB = 1010 ADD/SUB = 1010 ADD/SUB = 1010 ADD/SUB	with suitable cont working of the ci- wer for the follow	rol inpurcuit.	t to						

5	Discuss the merits of CLA adder over normal ripple adders. Derive diagram, clearly indications, C1 to C4 for 4-bit CLA adder. Draw the circuit		7.1	TCO2
	the Carry equations, C1 to C4 for 4-bit CLA adder. Draw the circuit diagram, clearly indicating the circuits and all the connections	10	L4	1002
	diagram, clearly indicating the circuits and all the connections.		-311	1
	and all the connections.			1
	Suggest time calculations of		1 BBB	3
	Suggest time calculations, for designing 16 bit adder using Ripple adder, CLA adder, cascading CLA adders and any other methods			
	CLA adders and any other methods			
	ENITY Adders and any other methods			

Course	Outcomes: After completi
CO 1	Apply design requirements for digital systems and Computer organization Analyze, the models in the models of the students will be able to: Analyze the models of the students will be able to:
CO 2	Analyze the models used for designing various Ccombinational and Sequential circuits
CO 3	Develop applications of synchronous sequential networks using flip flops, registers and counters
CO 4	Design optimized modern processors and memories for given specifications
CO 5	Investigate techniques of digital system design for building industry relevant real- world systems using electronic components and modern tools

Course Outcomes:

								~ .	TO	TO	TA	L5	L6
	Particul	lars	CO1	CO2	CO3	CO4	CO5	Ll	L2	L3	L4	Lo	Lo
	2 300 000							1.0	100	20	10	**	**
Marks Distribution	Test	Max Marks	30	20	**	**	**	**	20	20	10		

ADLD-TO I

R V College of Engineering

Department of Computer Science and Engineering

CIE - II: (Test2) Question Paper

Course: (Code)

APPLIED DIGITAL LOGIC DESIGN AND COMPUTER ORGANIZATION (CS234AI)

Semester: 3rd BE

Date: 22nd Feb 2024 Duration: 90 minutes Staff: KB/PSB/MH/DD

Name: USN: Section: A/B/C/D/CD/CY

Sl.		Answer all the qu	estions	Ma rks	L1- L6	СО				
1	a. Implen	nent f (A, B, C) = Σ	m (0, 1, 4, 5, 6, 7) using a, b, c as select lines.	4+ 2	L3	CO2				
	Multiple	 (ii) 4:1 MUX with a, b as select lines. b. Design a digital circuit for full adder using Dual 4:1 Multiplexer IC (Ex.74153)with necessary gates. c. Construct 5-to-32-line decoder from two 4 to 16-line decoder. 								
	b. Design J	T flip-flops.	Counter, using positive edglip-flop, a 2 to 1 mux and a 1 the steps.		L4	CO2				
	gates. Sh b. Explain v	ow the timing diagram with proper timing diag Universal Shift Register	h/Flip Flop using only Na and function table. rams 0's and 1's catching or, Which supports follow	- '	4	3 C				
1	S1	S0	Operations							
1	0	0	Hold							
11-	0	1	Shift Right Data							
1		0	Circular Shift	Left						
1	1 •		Data							

	Justify how the shift registers can be used as counters (Ring and Johnson). (4 M)			CO3
5	Design Synchronous Counter using JK Positive Edge Triggered Flip Flops, which produces the following sequence: 111,110,101,011,001, 000.	2	L4	COS
	Verify the above design as a self-correcting counter or not.			1

Course	Outcomes: After completing the course, the students will be able to:-
CO 1	Apply design requirements for digital systems and Computer organization Apply design requirements for digital systems and Computer organization Apply design requirements for digital systems and Computer organization
CO 2	Analyze the models used for designing various combinations
CO 3	Develop applications of synchronous sequential networks using hip hops, register
00.4	Design optimized modern processors and memories for given specifications Design optimized modern processors and memories for given specifications
CO 4	Design optimized modern processors and memories to be industry relevant real-world
CO 5	Investigate techniques of digital system design for building industry relevant real-world systems using electronic components and modern tools

Course Outcomes:

	Parti	culars	CO1	CO2	CO 3	CO4	CO5	LI	L2	L3	4	5	L
Marks Distribution	Test	Max Mark s	**	20	30	**	**	**	**	30	20	**	*

ADLD - !!

R V College of Engineering Department of Computer Science and Engineering

CIE - I: (ReTest) Question Paper

APPLIED DIGITAL LOGIC DESIGN AND Course: COMPUTER ORGANIZATION (CS234AI) (Code)

Semester: 3rd BE

Duration: 90 minutes Date: 27th March 2024

Staff: KB/PSB/MH/DD USN: Name: Section: A/B/C/D/CD/CY

SI. no	Answer all the questions	Ma rks	L1- L6	СО
	Design a digital circuit for full adder and full subtractor using 4:1 Multiplexers. Draw the truth table and demonstrate the circuit with all the connections.	10	L3	CO2
2	i) Using booths algorithm, multiply the numbers: +8 x -5 ii) Using Restoring Division Algorithm, divide: +11 / +3	10	L2	CO1
3	Design 4 bit Parallel and 4bit CLA adders. Draw the circuits for both type of adders.	10	L3	CO2
4	-Simplify the Boolean function into Sum of products (SOP) and Products of sum (POS) form. $f(A, B, C, D) = \sum m(0, 1, 2, 5, 8, 9, 10)$ -Simplify the following Boolean expressions using K maps. $F(w, x, y, z) = \sum m(0, 1, 4, 5, 8, 9, 14, 15) + dc(11, 12)$	10	L3	CO1
5	Design a single bit comparator, by writing the truth table and realize the circuits. Indicate the circuits for designing n bit comparator using cascading one bit comparator	10	L4	CO2

CO 1	Apply design requirements for digital systems and Computer organization
CO 2	Analyze the models used for designing various Ccombinational and Sequential circuits
CO 3	Develop applications of synchronous sequential networks using flip flops, registers and counters
CO 4	Design optimized modern processors and memories for given specifications
CO 5	Investigate techniques of digital system design for building industry relevant real- world systems using electronic components and modern tools

Course Outcomes:

Course Out	COIMICO.				000					* 0	TA	15	16	ш
	Parti	culars	CO1	CO2	CO3	CO4	CO5	Ll	L2	L3	L4	Lo	LO	1
Marks Distribution	Test	Max	30	20	**	**	**	**	10	30	10	**	**	
		Marks												

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution Affiliated to VTU) III Semester B. E. Examinations Apr/May-2024

Computer Science Engineering

APPLIED DIGITAL LOGIC DESIGN AND COMPUTER ORGANIZATION

Time: 03 Hours

Instructions to candidates:

Maximum Marks: 100

1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.

2. Answer FIVE full questions from Part B. In Part B question number 2 is compulsory. Answer any one full question from 3 and 4, 5 and 6, 7 and 8, 9 and 10.

	PART-A	M	BT	СО
1.1	What are state diagrams and state tables?	02	2	1
1.2	Draw the logical diagram of a 1bit magnitude comparator.	01	3	2
1.3	Assume that a $4 - bit$ serial in/serial out shift register is initially clear. We wish to store the nibble 1100. What will be the $4 - bit$			
1.4	pattern after the second clock pulse? (Right-most bit first). Draw the timing diagram of a 2 bit down counter with negative	01	2	1
	edge triggered flip flops.	02	2	2
1.5	Simplify the Boolean expression: $Y = \overline{(A + \overline{B} + C) + (B + \overline{C})}$.	01	3	3
1.6	Given $F = \Sigma m(1, 5, 6, 7, 11, 12, 13, 15)$, find the number of	02	12	4
1.7	implicants, prime implicants and essential prime implicants. List and discuss various conditional codes.	02		
1.8	How many JK flipflops are required to achieve the frequency division of 8?		1	4
1.9	Determine the number of min-terms after minimizing the following Boolean expression $[D' + AB' + A'C + AC'D + A'C'D]'$.	0	1 :	3 1
1.10			1	3 1
1.11	Consider the following bit pattern represents the floating poin number in <i>IEEE</i> 754 single precision format: 1 10000111 11100000000000000000000000		1	
1000	decimal format.		02	2
1.12	Summarize the algorithm for non-restoring division.		02	2
1.13	Realize the function $f(a, b, c, d) = \Sigma m(1, 4, 5, 7, 9, 12, 13)$ using a 4	to		Mill
	1 mux.		02	3

PART-B

Multiply each of the following pairs of signed 2's complement numbers using Bit Pair recoding. Assume that A is multiplicand and B is multiplier. i) $A = 010111$ and $B = 110110$ ii) $A = 001111$ and $B = 001111$	08	2	2
ii) $A = 001111$ and B Simplify the following Boolean function, $f(w,x,y,z) = \Sigma(0,2,5,7,10,13,14,15)$ using Quine-McClukey tabular method.	08	3	2

	3	a b	With a neat diagram explain a decimal adder in detail. Implement the Boolean function using 8:1 and also using 4:1 multiplexer $F(A,B,C,D) = \sum m(0,1,2,4,6,9,12,14)$.
			= 2m(0,1,2,4,6,9,12,2)
	1		OR
	4	a	Explain Master Slave JK flip-flop with the help of circuit diagram and waveforms.
		b	With the help of logic diagram, explain the 4 bit universal shift register using D flip-flops and 4: 1 MUX.
	5	a	Construct the excitation table, transition table, state table and state diagram for the following sequential circuit shown in Fig. 5.a
			CLK Rous
		ь	Fig. 5.a Design a Mod 4 synchronous up-counter using JK flipflop. O8 3 2 08 3 2
		D	
			OR
6		a	Derive the next state, the output table and the state diagram for the sequential circuit in Fig. 6.a
			FF1
			CIK FF2
		b	Fig. 6.a Design a synchronous counter to count the following sequence $7,4,3,1,5,0,7,4,3,$ implement the circuit using T –flipflops. $T = T = T = T = T = T = T = T = T = T =$
,	7	a b	With a neat diagram of connections between the processor and memory, list and explain the basic steps needed to execute the machine instruction Move LOCA, RO in terms of transfers between the components of processor, memory and some control commands. Define subroutine linkage. With an example explain different mechanism of pages.
			mechanism of passing parameters to subroutines.
			OR

8	a b	Describe with an example, usage of stack frame in nested subroutine. In the example demonstrate how the main program calls subroutine1 further subroutine1 calls subroutine2. Write an ALP that finds the number of negative integers in a list Write an ALP that finds the number of negative integers in a list of $n 32 - bit$ integers and stores the count in location $NEGNUM$. The value n is stored in memory location N , and the first integer in the list is stored in location $NUMBERS$. Include the necessary assembler directives and a sample list that contains six	10	3	4
		numbers, some of which are negative			
9	а	With a neat diagram of three bus organization of the data path, demonstrate the control sequence for the instruction Add	08	2	3
	b	R4, R5, R6. Design $2M \times 32$ memory module using $512k \times 8$ memory chip and explain various external connections.	08	3	4
		OR			
10	a b	Discuss direct mapped, associative mapped and set associative mapped cache memory system with suitable diagrams. Consider main memory size of 4GB, cache size of 16MB and		2	3
		block size of 1KB determine the tag size for an 8 way associative cache.	04	2	3

SEE