Practical No. 1

Title: Muite a proguean to implement DDA algorithm for line. Ain: White a C/C++ preogream for DDA algorithm. Theory DDA Algorithm (Digital Differential Analyzen) The Vector generation algorithms which step along the line to determine the pixel which should be turned on are sometimes called Digital Differential Analyzer (DDA). • The slope of a straight line is given as $M = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$ The above differential equation can be used to obtain a Masterized Straight line. Pour any given x interval Are along a line, we can compute the conveyonding y interval by from equation as $\Delta y = \frac{y_2 - y_1}{x_2 - x_1} \Delta x$ · Similarly, we can obtain the x interval 1x courses - bonding to a specified by as

Page No.

 $\Delta x = \frac{x_2 - x_1}{y_2 - y_1}$

• Once the intervals are known the values for next and next y on the straight line can be obtained of follows:

$$x_{i+1} = x_i + \Delta x$$

$$= x_i + x_2 - x_1 \Delta y \cdots (1)$$

$$y_2 - y_1$$

· The equations (1) and (2) represent a recursion vielation for successive values of x and y along the viequisied line. Such a way of viasterizing a line is called Digital Differential Analyzer (DDA). For Simple DDA either Ax and Dy, whichever is larger, is chosen as one waster unit, i.e.

elee

	We have
	we have
	40 1 40 4
anno d'	Ji+1 = yi + y2-y1 and
Hanalan	21 - 2 xi+1 = xi+1 + 1 = xi
J' 910 9	Le rest and
	The Ay = 1 then
	we have yith = y; +1 and
	(Agraba garate 1835
	2i+1 = 2i + 22 - 21
DU XHOE	Here SIB-2 Enction makes The algerithm
to Bi as	Let us see the vector generation DDA voutine for wasterizing a line.
ly. The	wasterizing a line.
miles 9	Parton Cos makes it benible to wound it
ating the	· Vector Generation / DDA like Algorithm
	1. Read the line end points (x1, y1) and (x2, y2) such
	that. They are not equal.
	that, they are not equal. (if equal then plot that point and excit)
[hattall	our short down that it down the single
	9. $\Delta x = x_2 - x_1 $ and $\Delta y = y_2 - y_1 $
	Catonal 2. 7) alialled
	9 10 (A- ×A.) 40
	3. if (Ax >Ay) then
	$Length = \Delta x$
	$length = \Delta x$ $elee$ $length = \Delta y$
	length = Ay most of tol
	end if

4. $\Delta x = (x_2 - x_1) / length$ $\Delta y = (y_2 - y_1) / length$ This makes either Δx or Δy equal to 1 because length is either $|x_2-x_1|$ or $|y_2-y_1|$. Therefore, the incremental value for either x or y is one T. 5. χ=χ, +0°5* Sign (Δχ)
y=y, +0°5* Sign (Δχ) Here, Sign function makes the algorithm work in all quadrant. It returns - 1,0,1 depending on whether the argument le <0, 70, ×0 verpectively. The factor 0.5 makes it possible to round the values in the integer function wather than truncating them. plot (Integer (x), Integer (y)) Begins the loop, in this loop points are plotted] While (i & length) plot (Integer (x), Integer (y))

7	PLJ (21) = 10 × 31016 × 2100
	Stop (12) api2 * 200 + 1x - 20 : 2 4952
J-	Trample - Consider the line from (0,0) to (4,6). Use the simple DDA algorithm to varieuize this line.
	Use the simple DDD all with to use 1.
	this line
	3.0 =
	Step 1: The line endpoints are
	$x_1 = 0$ $x_2 = 4$
	$y_1 = 0$ $y_2 = 6$
	Steb 6: i=1
	3tep 2: $\Delta x = x_2 - x_1 $ $\Delta y = y_2 - y_1 $ = 4-0 = 6-0
	= 4-0 = 6-0
	$\Delta x = 4$ $\Delta y = 6$
99	20 1-9 (-1 c) × × × × × × × × × × × × × × × × × ×
5	tep 3: Here, Dx=4 2 Dy=6
	Larry Dy PAR along
	So, length = Δy = 6
2	tep 4:
	$\Delta x = (x_2 - x_1) / length$ $= (4-0) / 6$ $= 4 / 6$
	1 = 1 (= 4) (8 = 1 (8)
200	0 + 84 0 - 0 × 0 × 0 + 68 0 1 = >0
	2014
1	+ 2 Du = 4 42-41) Denath 1- 2-6
	$\Delta y = (42-41)$ length = $(6-0)/6$
	= 6/6
	$\Delta y = 1$
	J

Page No.
Step 5: $x = x_1 + 0.5 * Sign(Ax)$ = $0 + 0.5 * (i)$
= 0.5
Step 6: i=1
$\frac{1-3}{3} = \frac{1}{1-3} = \frac{1}{3} = $
$x = x + \Delta x$ = 1.16 + 0.66 = 0.6 + 0.66 + = 1.82 + $x = 1.16$ $y = y + \Delta y$
$y = y + \Delta y$ = 1.5+1 = 2.5 = 0.5+1
3) i=3
x = 1.82 + 0.66 $= 2.48$ $= 2.5 + 1$ $= 3.5$
23.5

	5	i=5			6) i= 6
		x=3	014+0.	66	x=3.80 +0.66 = 4.46
		= 3	.80		
		y=4.5+1 =5.5			9 = 5.5 +1
					= 6.5
		Now,	i= i+.	1	
			i=7	9 9	100 1 2 3 4
			7 4 16	ength	i.e 7×6 No
				<u> </u>	1 moluina
AL	5-1	ep 7:	Stop	indo d	There I've love
10 00	-111 -	1 halman	dal a	of our	has (Agg) usque
V	i	x	y	Plot	marport 115
	0	0.50	0.50		0
	1	1.16	1.5		
	2	1082	2.5	(1,2)	
	3	2.48	3.5	(2,3)	
	4	3.14	4.5	(3,4)	
	5	3.80		(3,5)	
	6	4.46	6.5	(4,6)	

