Assignment 2: Robot navigation

a)

From the subject we know that the robot is moving along the X-axis.

Figure 1.1 Robot position

We assume that ICR is located at a distance L from the center of the robot, so

$$v_L = \dot{\varphi}(L - R)$$

$$v_R = \dot{\varphi}(L+R)$$

So,
$$v_L = V - \dot{\varphi}R \rightarrow \dot{\varphi}R = V - v_L \rightarrow \dot{\varphi} = \frac{V - v_L}{R}$$

Then, put $\dot{\varphi}$ into v_R , we solve the Robot velocity $V = \frac{(v_R + v_L)}{2}$

$$v_L = V - \dot{\varphi}R \rightarrow V = v_L + \dot{\varphi}R$$
 put V into $v_R, v_R = v_L + 2\dot{\varphi}R$

We get the angle velocity $\dot{\varphi} = \frac{v_R - v_L}{2R}$

Finally, we calculate each velocity separately,

$$V_{r} = V \cos \varphi$$

$$V_{v} = V \sin \varphi$$

From the robotic kinematics we know that, at time t_1 , the pose of the robot is (x_1, y_1, φ_1) . By using the following formulas, we can calculate the exact value.

$$x_1 = x_0 + \int_{t_0}^{t_1} V_x(t)dt = x_0 + \int_{t_0}^{t_1} \frac{v_R(t) + v_L(t)}{2} cos\varphi(t)dt \quad (1 - 1)$$

$$y_1 = y_0 + \int_{t_0}^{t_1} V_y(t) dt = y_0 + \int_{t_0}^{t_1} \frac{v_R(t) + v_L(t)}{2} sin\varphi(t) dt$$
 (1 - 2)

$$\varphi_1 = \varphi_0 + \int_{t_0}^{t_1} \dot{\varphi}(t)dt = \varphi_0 + \int_{t_0}^{t_1} \frac{v_R(t) - v_L(t)}{2R}dt$$
 (1-3)

The question gives us the following conditions, so we know the left wheel speed and right wheel speed,

$$v_L(t) = v_0(t/t_1) \quad (1-4)$$

$$v_R(t) = v_0(t/t_2)$$
 (1 – 5)

Then, the robot starts at $x_0 = 0$, $y_0 = 0$, $\varphi_0 = 0$, $t \in [0, 10]$, We bring the known conditions into the above equation.

$$x_1 = \int_0^{t_1} V_x(t) dt = \int_0^{t_1} \frac{v_0\left(\frac{1}{t_2} + \frac{1}{t_1}\right) * t}{2} \cos\varphi(t) dt = \frac{v_0\left(\frac{1}{t_2} + \frac{1}{t_1}\right)}{2} \int_0^{t_1} t \cdot \cos\varphi(t) dt \qquad (1 - 6)$$

$$y_1 = \int_0^{t_1} V_y(t) dt = \int_0^{t_1} \frac{v_0\left(\frac{1}{t_2} + \frac{1}{t_1}\right) * t}{2} sin\varphi(t) dt = \frac{v_0\left(\frac{1}{t_2} + \frac{1}{t_1}\right)}{2} \int_0^{t_1} t \cdot sin\varphi(t) dt \quad (1 - 7)$$

$$\varphi_1 = \int_0^{t_1} \dot{\varphi}(t)dt = \int_0^{t_1} \frac{v_0\left(\frac{1}{t_2} - \frac{1}{t_1}\right) * t}{2R} dt = \frac{v_0\left(\frac{1}{t_2} - \frac{1}{t_1}\right)}{2R} \int_0^{t_1} t dt$$
 (1 - 8)

calculate φ_1

$$\varphi_t = \frac{v_0 \left(\frac{1}{t_1} - \frac{1}{t_2}\right)}{2R} \cdot \frac{t^2}{2} = \frac{v_0 \left(\frac{1}{t_2} - \frac{1}{t_1}\right)}{4R} \cdot t^2 \qquad (1 - 9)$$

Then, bringing φ_1 into x_t , y_t

$$x_{t} = \frac{v_{0}}{2} \left(\frac{1}{t_{2}} + \frac{1}{t_{1}} \right) \int_{0}^{t_{1}} t \cdot \cos \left(\frac{v_{0}}{4R} \left(\frac{1}{t_{2}} - \frac{1}{t_{1}} \right) \cdot t^{2} \right) dt \qquad (1 - 10)$$

$$y_t = \frac{v_0}{2} \left(\frac{1}{t_2} + \frac{1}{t_1} \right) \int_0^{t_1} t \cdot \sin\left(\frac{v_0}{4R} \left(\frac{1}{t_2} - \frac{1}{t_1} \right) \cdot t^2 \right) dt \qquad (1 - 11)$$

Then bring in the constants,

$$\varphi_t = \frac{v_0 \left(\frac{1}{t_1} - \frac{1}{t_2}\right)}{2R} \cdot \frac{t^2}{2} = \frac{5}{48} \cdot t^2 \qquad (1 - 12)$$

$$x_t = \frac{3}{40} \int_0^{t_1} t \cdot \cos(\frac{5}{48} \cdot t^2) dt \qquad (1 - 13)$$

$$y_t = \frac{3}{40} \int_0^{t_1} t \cdot \sin(\frac{5}{48} \cdot t^2) dt \qquad (1 - 14)$$

I plot the resulting trajectory by MATLAB as follow:

Figure 1.2 Trajectory of the car

b)

First, we need to build two docker images, one for *opendlv-virtual-motor-kiwi*, run the following command:

cd opendly-virtual-motor-kiwi

 $docker\ build\ \hbox{--}t\ registry. opendlv. org/community/\ opendlv-virtual-motor-kiwi: 1.0\ .$

the other for *opendlv-logic-test-kiwi*, run the following command:

cd opendlv-logic-test-kiwi

docker build -t registry.opendlv.org/community/ opendlv-logic-test-kiwi:1.1.

Then, open two terminals, both have to run the following command:

cd kiwi-simulation-2023

in one terminal, run

docker compose -f interface-kiwi.yml up

open the web in OpenDLV, point your browser to http://localhost:8081 in other terminal, run

docker-compose -f simulate-kiwi.yml up

Finally, we will see the simulation result, the coordinate is (0.18, -0.39).

Then, I plot the path of robot movement

Figure 2.1 Path

ction(s)	ID	senderStamp	message name	sample timestamp [µs]	signal(s)
<u>[.iil</u>	1002	0	opendlv_sim_KinematicState	1682672229342767	vx: 0 vy: 0 vz: 0 rollRate: 0 pitchRate: 0 yawRate: 0
<u>.lid</u>	1039	0	opendlv_proxy_DistanceReading	1682672229272028	distance: 1.617842
111	1094	0	opendlv_proxy_AxleAngularVelocityRequest	1682672229305980	axleAngularVelocity: 0
Litt	1094	1	opendlv_proxy_AxleAngularVelocityRequest	1682672229305980	axleAngularVelocity: 0
<u>lılıl</u>	1037	3	opendlv_proxy_VoltageReading	1682672229330853	voltage: 0
List	1039	3	opendlv_proxy_DistanceReading	1682672229331068	distance: 0.34
Lid	1039	1	opendlv_proxy_DistanceReading	1682672229324204	distance: 1.982415
<u>.iil</u>	1001	0	opendlv_sim_Frame	1682672229335109	x: 0.1822912 y: -0.389835 z: 0 roll: 0 pitch: 0 yaw: 0.01210688