Introdução à teoria espectral em espaços de Hilbert e aplicações

Aluno: Lucas Nunes Fernandes Teles Orientadora: Nataliia Goloshchapova Instituto de Matemática e Estatística - USP

O Teorema Espectral em \mathbb{C}^n

Dizemos que $\lambda \in \mathbb{C}$ é um **autovalor** de uma transformação linear $T: \mathbb{C}^n \to \mathbb{C}^n$ se existir um vetor não-nulo $\mathbf{x} \in \mathbb{C}^n$, chamado de **autovetor** de T, tal que

$$(T - \lambda I)\mathbf{x} = 0.$$

Um dos focos de cursos introdutórios de álgebra linear é expor a vasta utilidade de autovetores e autovalores. A importância do Teorema Espectral reflete esse fato ao simples custo de uma condição a mais, a de T ser **auto-adjunta**. Isto é, de T satisfazer a seguinte condição:

$$\langle \mathbf{x}, T\mathbf{y} \rangle = \langle T\mathbf{x}, \mathbf{y} \rangle, \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{C}^n.$$

Onde $\langle \cdot, \cdot \rangle : \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}$ é um produto interno em \mathbb{C}^n dado por $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{k=1}^n x_k \overline{y_k}$, para $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$.

Teorema 1 (Teorema Espectral em \mathbb{C}^n). Seja $T: \mathbb{C}^n \to \mathbb{C}^n$ uma transformação linear. T é auto-adjunta se, e somente se, T é diagonalizável, isto é, se existe uma base ortogonal $\mathbf{x}_1, ..., \mathbf{x}_n$ de \mathbb{C}^n de autovetores de T associados a autovalores $\lambda_1, ..., \lambda_n$ reais, onde

$$T\mathbf{x} = \sum_{k=1}^{n} \lambda_k \langle \mathbf{x}, \mathbf{x}_k \rangle \mathbf{x}_k, \quad \forall \mathbf{x} \in \mathbb{C}^n.$$

O espectro de um operador limitado

Adiante trataremos de espaços de dimensão infinita, onde X representará um espaço de Banach e H um espaço de Hilbert, em ambos os casos sobre o corpo \mathbb{C} . Além disso, N(T) denotará o núcleo de um operador linear T. O espectro surge nesse contexto como uma generalização do conjunto de autovalores de um operador linear (neste caso, limitado).

Definição 2. Seja $T:\mathrm{Dom}(T)\subseteq X\to X$ um operador linear. Chamamos de **conjunto resolvente de** T o conjunto de valores $\lambda\in\mathbb{C}$ tais que

$$(T - \lambda I)^{-1}$$
 existe e é limitado,

e o denotamos por $\rho(T)$. Chamamos de **espectro de** T o complementar de $\rho(T)$ e o denotamos por $\sigma(T)$.

Asim, $T-\lambda I$ é um isomorfismo se, e somente se, $\lambda\in\rho(T)$. Com isso em mente, um resultado fundamental é o seguinte:

Teorema 3. Todo operador linear limitado $T:X\to X$ tem espectro $\sigma(T)\subseteq\mathbb{C}$ não-vazio e compacto.

Operadores compactos e operadores auto-adjuntos

Na teoria espectral, duas classes de operadores contínuos são particularmente interessantes:

Operadores compactos, operadores lineares contínuos $T: X \to X$ tais que a imagem da bola unitária $T[B_X(0,1)]$ é relativamente compacta $(\overline{T}[B_X(0,1)]$ é compacto). Uma das características que traz destaque à esses operadores é a seguinte

Proposição 4. O conjunto de autovalores de um operador $T: X \to X$ compacto é enumerável (podendo ser finito) e, quando existem infinitos autovalores, pode ser ordenado como uma sequência de escalares convergindo a origem.

Operadores auto-adjuntos, operadores lineares contínuos $T: H \to H$ que satisfazem

$$\langle x, Ty \rangle = \langle Tx, y \rangle, \quad \forall x, y \in H.$$

Estes, por sua vez, tem um espectro real.

Teorema 5. O espectro de um operador auto-adjunto é real e contido em um intervalo fechado [a,b].

No âmbito de generalizar o Teorema 1, podemos assumir essas duas hipóteses e conseguir uma decomposição do espaço ${\cal H}$ através dos autoespaços de ${\cal T}$ e do seu núcleo.

Teorema 6 (Hilbert-Schmidt). Se $T: H \to H$ é um operador linear compacto e auto-adjunto e $\{\lambda_j: j \in J\}$ é o conjunto de seus autovalores nãonulos, então

$$H = \left[\bigoplus_{j \in J} N(T - \lambda_j I) \right] \oplus N(T).$$

O Teorema espectral em espaços de dimensão infinita

Em espaços de dimensão infinita, teremos o conceito de uma projeção ortogonal como uma alternativa às transformações $\mathbf{x} \mapsto \langle \mathbf{x}, \mathbf{x}_k \rangle \mathbf{x}_k$ do Teorema 1.

Definição 7. Se H é um espaço de Hilbert e E é um subespaço fechado de H, chamamos o operador linear $P: H \to H$ de **projeção ortogonal** sobre E se P é idempotente ($P^2 = P$), P(H) = E e P é auto-adjunto.

Como o nome sugere, P leva os vetores de H ao seus componentes no subespaço E. Com isso podemos generalizar o Teorema Espectral para o caso dos **operadores compactos e auto-adjuntos**:

Teorema 8. Sejam T um operador linear compacto e auto-adjunto em H e $\{\lambda_j: j \in J\}$ o conjunto de autovalores não-nulos de T. Então

$$T = \sum_{j \in J} \lambda_j P_j,$$

onde a série converge em B(H) e P_j são as projeções ortogonais sobre $N(T-\lambda_j I)$ para todo $j \in J$.

Para generalizar ainda mais o Teorema 1 será necessário abandonar a hipótese de T compacto, e com isso, de um espectro enumerável. Surge então a questão:

Como "somar" uma quantidade possivelmente não-enumerável de valores espectrais? Como prática usual na matemática, recorreremos à integração.

Definição 9. Sejam Ω um intervalo fechado da reta real, $\mathcal{B}(\Omega)$ a σ -álgebra de Borel sobre Ω e $\operatorname{Proj}(H)$ o conjunto projeções ortogonais $H \mapsto H$. Dizemos que $E : \mathcal{B}(\Omega) \to \operatorname{Proj}(H)$ é uma **medida espectral** se

- $E(\Omega) = I$.
- $E(\bigcup_{n=1}^{\infty} M_n) = \sum_{n=1}^{\infty} E(M_n)$ para toda sequência $(M_n)_{n \in \mathbb{N}}$ em \mathcal{A} de subconjuntos 2-a-2 disjuntos de Ω .

Com uma medida espectral E podemos seguir um processo análogo ao de Lebesgue para definir uma noção de **integração espectral**. Com esta encontrarmos uma generalização ainda maior do Teorema Espectral:

Teorema 10. Para qualquer operador auto-adjunto $T: H \to H$, existe uma medida espectral E em $\mathcal{B}(\mathbb{R})$ tal que

$$T = \int_{\mathbb{D}} \lambda dE(\lambda).$$

Observação. Para um operador compacto e auto-adjunto a medida espectral correspondente tem forma: $E(\Lambda) = \sum_j P_j, \ \Lambda \in \mathcal{B}(\mathbb{R}).$

Agradecimentos

Agradecemos à FAPESP pelo financiamento deste projeto de Iniciação Científica (processo n° 05997-5), que possibilitou o estudo e preparo do material aqui incluso.

Referências

- [1] Sheldon Axler. Linear Algebra Done Right. Springer, 2024.
- [2] César R. De Oliveira. Introdução à análise funcional. IMPA, 2018.
- [3] Erwin Kreyszig. Functional Analysis. John Wiley & Sons, 1978.
- [4] Konrad Schmudgen. *Unbounded Self-adjoint Operators on Hilbert Space*. Springer Dordrecht, 2012.