Problem set 1

November 1, 2021

- 1. Download the data for annual US real GDP for the years 1947-2021 (u can download it from the BEA website). Plot the growth rate of the series
- 2. Suppose the statistical model for the change in log output is

$$y_t = \mu_t + \sigma_\epsilon \epsilon_t$$

$$\mu_{t+1} = \mu_t + \sigma_\nu \nu_{t+1}$$

where ϵ_t, ν_{t+1} are i.i.d standard Gaussian. Use a prior that μ_0 is Gaussian with mean and variance of about 2%.

- (a) For a given $\sigma_{\epsilon}, \sigma_{\nu}$ and apply the Kalman recursions to obtain the best estimate of μ_t given past data y^{t-1}
- (b) Check the if code is correct:
 - i. Instead of using actual data on output that you downloaded generate a "test" sample by simulating the system y_t, μ_t using the state space representation
 - ii. Using only your simulated y^t apply the Kalman filter code to obtain $\mathbb{E}\mu_{t+1}|y^t$ and $\sigma(\mu_{t+1}|y^t)$
 - iii. Plot the $\mathbb{E}\mu_{t+1}|y^t, \mathbb{E}\mu_{t+1}|y^t \pm 2\sigma(\mu_{t+1}|y^t)$ against the simulated μ_t series from step (i)
- 3. Now write code that takes as input σ_{ϵ} , σ_{v} and yields the log likelihood of the actual data that you downloaded.
 - (a) Estimate $\sigma_{\epsilon}, \sigma_{v}$ by maximizing the likelihood function.
 - (b) Plot the $\mathbb{E}\mu_{t+1}|y^t$ at the estimated $\sigma_{\epsilon}, \sigma_{\nu}$
- 4. Instead of directly maximizing the likelihood estimate $\{\sigma_{\epsilon}, \sigma_{v}\}$ using the expected maximization method that we discussed in the class.