

TFG del Grado en Ingeniería de la Salud

título del TFG Documentación Técnica

Presentado por nombre alumno en Universidad de Burgos

9 de abril de 2025

Tutores: nombre tutor – nombre tutor 2

Índice general

Indice general	
Índice de figuras	ii
Índice de tablas	iv
Apéndice A Plan de Proyecto Software A.1. Introducción	1
Apéndice B Documentación de usuario B.1. Requisitos software y hardware para ejecutar el proyecto B.2. Instalación / Puesta en marcha	
Apéndice C Manual del desarrollador / programador / investigador. C.1. Estructura de directorios	
Apéndice D Descripción de adquisición y tratamiento de datos D.1. Descripción formal de los datos D.2. Descripción clínica de los datos.	7 7 10
Apéndice E Manual de especificación de diseño E.1. Planos	11 11

II	Índice general

E.2. Diseño arquitectónico	11
Apéndice F Especificación de Requisitos	13
F.1. Diagrama de casos de uso	13
F.2. Explicación casos de uso	13
F.3. Prototipos de interfaz o interacción con el proyecto	13
Apéndice G Estudio experimental	15
G.1. Cuaderno de trabajo.	15
G.2. Configuración y parametrización de las técnicas	15
G.3. Detalle de resultados	15
Apéndice H Anexo de sostenibilización curricular	17
H.1. Introducción	17
Bibliografía	19

Índice de figuras

Índice de tablas

F.1.	CU-1 Nombre	del caso	de uso.	 	 	 	 	14

Apéndice A

Plan de Proyecto Software

A.1. Introducción

Ojo ¹

A.2. Planificación temporal

Planificación económica

Viabilidad legal

 $^{^1{\}rm Los}$ anexos deben de tener su propia bibliografía, es
o es tan fácil como utilizar referencias igual que en la memoria
 $\cite{referencias}$

Apéndice B

Documentación de usuario

- B.1. Requisitos software y hardware para ejecutar el proyecto.
- B.2. Instalación / Puesta en marcha
- B.3. Manuales y/o Demostraciones prácticas

Apéndice C

Manual del desarrollador / programador / investigador.

C.1. Estructura de directorios

Descripción de los directorios y ficheros entregados.

C.2. Compilación, instalación y ejecución del proyecto

En caso de ser necesaria esta sección, porque la compilación o ejecución no sea directa.

C.3. Pruebas del sistema

Esta sección puede ser opcional.

Puede tratarse de validación de la interfaz por parte de los usuarios, mediante escuestas o similar o validación del funcionamiento mediante pruebas unitarias.

C.4. Instrucciones para la modificación o mejora del proyecto.

Instrucciones y consejos para que el trabajo pueda ser mejorado en futuras ediciones.

Apéndice D

Descripción de adquisición y tratamiento de datos

Tablas, imágenes, señales, secuencias de ADN...

D.1. Descripción formal de los datos

Los datos empleados para la elaboración del trabajo provienen de la plataforma Our World in Data (OWD). Las variables consideradas son la prevalencia de la enfermedad de Parkinson, la tasa de mortalidad por contaminación del aire Número estimado de muertes atribuidas a diferentes tipos de contaminación atmosférica, la tasa de carga de morbilidad por exposición al plomo, las muertes atribuidas a fuentes de agua insalubres, el uso de plaguicidas y la precipitación anual.

Prevalencia de la enfermedad del parkinson (Variable dependiente)

- Definición y unidad de medida: Esta variable se define como el numero estimado de personas con enfermedad del Parkinson, cuya unidad de medida se expresa por cada 100.000 habitantes.
- Estrucutura de los datos: Los datos se encuentra organizados por país y año, con un rango temporal que abarca desde 1990 hasta 2021.
- Decripción: es la variable dependiente en este trabajo, ya que con el estudio de esta se busca entender como factores como la contaminación,

el uso de pepticidas u otras variables pueden estar relacionadas con la prevalencia de la enfermedad del Parkinson.

Variables independientes

Las variables independientes son aquellas que se consideran factores que pueden influir o tener un impacto sobre la prevalencia de la enfermedad de Parkinson.

1. Tasa de mortalidad por contaminación del aire

- **Definición y unidad de medida:** Representa el numero estimado de muertes atribuidas a diferentes tipos de contaminación del aire por cada 100.000 habitantes.
- Estructura:Los datos están disponibles por país y año desde 1990 hasta 2021.
- Descripción: Esta variable mide el impacto de la contaminación del aire en la mortalidad. A través de esta variable, se puede evaluar como la exposición a ciertos contaminantes como las partículas PM2.5, podría estar relacionada con la prevalencia de la enfermedad.

2. Tasa de carga de enferemdad por exposición al plomo

- **Definición y unidad de medida:** Numero estimado de años de vida ajustados por discapacidad (AVAD) debido a la exposición al plomo, estandarizados por edad, provenientes de todas las causas, por cada 100.000 habitantes.
- Estructura: Los datos se encuentran organizados por pais y año, con un rango temporal que abarca desde 1990 hasta 2021.
- Descripción: Los años de vida ajustado por discapacidad (AVAD) miden la carga total sobre la salud de la población, considerando los años de vida perdidos por muertes prematuras y los años vividos con discapacidad. En este caso, la exposición al plomo se asocia con diversos problemas de salud que afectan a la calidad de vida y la mortalidad. La carga total se calcula sumando todos los efectos de salud relacionados con esta exposición, sin especificar las causas exactas de las muertes o discapacidades.

3. Muertes atribuidas a fuentes de agua inseguras

- Definición y unidad de medida: Se define como el número total de muertes causadas por fuentes de agua no seguras.
- Estructura: Los datos están organizados por país y año, con un rango temporal que abarca desde 1990 hasta 2021.
- **Descripción:** Esta variable mide el impacto del consumo de agua no segura en la mortalidad, sumando todas las muertes que pueden estar relacionadas con el agua insalubre, como enfermedades transmitidas por el agua o infecciones gastrointestinales. Se considera el total de muertes atribuidas a esta causa, sin especificar cada enfermedad o condición que causó la muerte.

4. Uso total de pesticidas

- Definición y unidad de medida: Se define como el uso total de pesticidas medido en toneladas.
- Estructura: Los datos se encuentran organizados por país y año, con un rango temporal que cubre desde 1990 hasta 2022.
- Descripción: Los pesticidas totales, incluyen los insecticidas, fungicidas y bactericidas, herbicidas, reguladores de crecimiento de las plantas, rodenticidas, desifenctantes entre otros.

5. Precipitaciones anuales

- Definición y unidad de medida: Se define como las precipitaciones anuales totales (lluvia y nieve), calculada como la suma de los promedios diarios y expresada como la profundidad del agua que cae a la superficie de la Tierra, excluyendo la niebla y el rocío.La variable se mide por milímetros de precipitación.
- Estructura:Los datos están organizados por país y por año, con un rango temporal que abarca desde 1940 hasta 2024.
- Descripción: Esta variable representa la cantidad total de precipitación que ocurre en un área durante un año, incluyendo tanto la lluvia como la nieve derretida. La medida se expresa en milímetros, indicando la profundidad del agua que caería sobre la superficie terrestre si se recogiera toda la precipitación. Los valores no incluyen fenómenos como la niebla o el rocío, que no aportan agua de manera significativa al suelo.

Estas variables están organizadas a nivel mundial para cada país, en series temporales anuales. Los datos correspondientes a la tasa de Parkinson

abarcan el periodo de 1990 a 2021, que es el rango temporal de análisis para esta variable.

Sin embargo, algunas de las variables, como el uso de pesticidas y las precipitaciones, cubren periodos más amplios. Para asegurar la coherencia temporal en el análisis, se ha realizado un ajuste de los años, limitando todas las variables al rango de 1990 a 2021.

D.2. Descripción clínica de los datos.

Descripción y explicaciones clinicas del significado o interpretación de los datos.

Apéndice E

Manual de especificación de diseño

Si es necesario.

Planos (Si procede) Diseño arquitectonico (Si procede) Diagrama de clases, diagrama de despliegue

E.1. Planos

Si procede

E.2. Diseño arquitectónico

Si procede.

Diagramas de clases, diagramas de despliegue . . .

Apéndice F

Especificación de Requisitos

Si procede.

F.1. Diagrama de casos de uso

F.2. Explicación casos de uso.

Se puede describir mediante el uso de tablas o mediante lenguaje natural. Una muestra de cómo podría ser una tabla de casos de uso:

F.3. Prototipos de interfaz o interacción con el proyecto.

CU-1	Ejemplo de caso de uso
Versión	1.0
Autor	Alumno
Requisitos	RF-xx, RF-xx
asociados	
Descripción	La descripción del CU
Precondición	Precondiciones (podría haber más de una)
Acciones	
	1. Pasos del CU
	2. Pasos del CU (añadir tantos como sean necesa-
	rios)
Postcondición	Postcondiciones (podría haber más de una)
Excepciones	Excepciones
Importancia	Alta o Media o Baja

Tabla F.1: CU-1 Nombre del caso de uso.

Apéndice G

Estudio experimental

G.1. Cuaderno de trabajo.

Enumeración de todos los métodos probados con resultados positivos o no.

- G.2. Configuración y parametrización de las técnicas.
- G.3. Detalle de resultados.

Apéndice H

Anexo de sostenibilización curricular

H.1. Introducción

Este anexo incluirá una reflexión personal del alumnado sobre los aspectos de la sostenibilidad que se abordan en el trabajo. Se pueden incluir tantas subsecciones como sean necesarias con la intención de explicar las competencias de sostenibilidad adquiridas durante el alumnado y aplicadas al Trabajo de Fin de Grado.

Más información en el documento de la CRUE https://www.crue.org/wp-content/uploads/2020/02/Directrices_Sosteniblidad_Crue2012.pdf.

Este anexo tendrá una extensión comprendida entre 600 y 800 palabras.

Bibliografía