

		DATE
<u> </u>	$K_1 = h f(x_1, y_1)$	
	= 0.1 f (0.1, 1.111463)	= 0.124535
	$K_2 = h + (x_1 + \frac{h}{2}, y_1 + \frac{k_1}{3})$	
	= 0.1 f 0.1 + 0.1 , 1.1114	63+0.124535
	= 0.1 + (0.15, 1.173731)	/ /
	$k_3 = h f(x_1 + \frac{h}{2}, y_1 + \frac{k_2}{2})$	
	= 0.1 f(0.15, 1.18147)	
	= 0.141837	
_	$K_{y} = h f(x_{1} + h, y_{1} + k_{3})$	
	= 0.1 f(0.2, 1.2533)	
	= 0.161076	
1.	y (0.2) = 1.11/463+ 1/6 (K)	+2k2+2k3+k4)
	= 1.253015	

	DAT	re The Theorem
	Now,	
	$\dot{p} = -\frac{\partial H}{\partial y} = mg - k(y+1)$	
	$\dot{y} = \frac{2H}{2P} = \frac{P}{m}$	·
	. ij - P - mg-k(y	+h)
	m m	
	$= g - \frac{k}{m} y - k \frac{h}{m}$	
	$\dot{y} = -\frac{k}{m}y$	$h = \frac{mg}{K}$
2	Put $y = x - h$	
	$\dot{x} = \frac{-k}{m} (x-h)$	
	$\dot{x} = \frac{-k}{m} \left(x - \frac{mg}{k} \right)$	
	which is the required eq	uation of motion.
	classmate	PAGE
		Scanned with CamScanner

70) Find the equations of 100 valor
Tc) Find the equations of the system of curves on the cylinder $2y = x^2$ orthogonal to its intersections with the hyperboloids of the one-parameter system $xy = z + c$.
orthogonal to it interesting
the hyperbolaids of the mith
System 24 - 716
System $xy = z + c$. (5m)
Colven Suplace is
Griven Surface is, $f(x,y,z) = 2y-x^2$ _0)
$f(x, y, z) = 2y - x \qquad \qquad 0)$
Hyperboloids of the one-parameter system is
$xy = z + c \qquad -(2)$
Then the system of D.Es. of the given www es of intersection of (1) and (2) is
(1) and (2) is
9 1 1 9 11 = 0
-2ndx + 2dy = 0;
y dx + x dy - dz = 0
0
Solving these equation for dx, dy, dz
Solving Party Strain
dx _ dy _ dz _
$-2-0$ $0-2x$ $-2x^2-2y$
dx dy _ dz
$1 \times x^2 + y$
Hence the system of D.E. of the required orthogonal trajectories of the given curves is
scarived athogonal trajectories
of the milen curves is
10 grow 00000
-x dx + dy + o dz = 0;
$dx + x dy + (x^2 + y) dz = 0$
$\frac{dx}{(x^2+y)} = \frac{dy}{x(x^2+y)} = \frac{dz}{-x^2-1}$
$=\frac{1}{(x^2+y)} = \frac{1}{x(x^2+y)} = -x^2-1$
II .

