

Q1: Which gas phase and liquid phase deposition processes are applied in advanced integrated circuit technology?

Gas Phase	Liquid Phase
PVD (Sputtering)	Electroplating / ECD
ALD	Spin on
CVD	Electroless Deposition
Epitaxy	

Q2: Gas phase deposition processes: which are materials to be deposited and its applications(s) in advanced integrated circuit technology?

Gas Phase	Materials	Application	Process Module
Sputtering	Al Cu Co	Interconnects (lines = horizontal interconnects) Seed layer for ECD (interconnect) S/D/G contact silicidation (SALICIDE)	Vx/Mx Vx/Mx Contact formation
CVD	TiN, WN SiO2 SiN W Poly-Si	Diffusion barrier (Cu), liner (W) Isolate transistors, ILD/IMD Passivation, CMP stop, Etch stop Vertical interconnects (via), LI Gate electrode	Vx/Mx, LI STI, Vx/Mx Bondpad/Passiv., STI, LI+Vx/Mx Vx/Mx, LI Gate formation
Epitaxy	p ⁻ Si SiGe/Si on SiGe	Prevent latch effect Strain inducing templates, raised S/D → increase channel mobility	STI
ALD	HfOx, ZrOx, AlOx, mixed oxides TiN, W(C)N, TaN Cu	High-k gate or capacitor dielectric Diffusion barrier (in Cu interconnects) Seed layer for Cu ECD	Gate formation Vx/Mx Vx/Mx
	Metal nitrides	Work function adjustment for high-k/metal gate	Gate formation

Q3: Liquide phase deposition processes: which are materials to be deposited and its applications(s) in advanced integrated circuit technology?

Gas Phase	Materials	Application	Process Module
ECD	Cu	SD/DD Interconnects	Vx/Mx
Electroless Dep.	CoWP	Cap layer on Cu interconnects → increase electromigration resistance/lifetime	Vx/Mx
Spin on	Photoresist	Mask material in doping (II) and patterning	Twin well, LDD, S/D Nearly all (except spacer formation and contact formation)
	Low-k/porous low-k dielectrics	ILD/IMD	Vx/Mx

Questions Seminar 4+5

- 1. Please explain the specifics of ALD in comparison to CVD!
- 2. What are the steps of an ALD cycle?
- 3. Please name potential applications of ALD thin films!
- 4. Please name the basic process steps in the process flow of lithography and patterning!
- 5. Please name and discuss the equation for the resolution! (How to lower critical dimension CD = min. printable feature size)
- 6. Please name the applied resolution enhancement techniques (RET)
- 7. Please define the terms "anisotropy" and "selectivity"!
- 8. What are potential dry etching techniques? Please name the respective etching mechanisms and the achievable anisotropy!
- Please draw a reactor for reactive ion etching and name the different parts!

Q1 Please explain the specifics of ALD in comparison to CVD!

ALD

- Highly reactive precursors
- precursors react separately on the substrate
- precursors must not decompose at process temperature
- Uniformity ensured by the saturation mechanism at the surface
- thickness controlled by amount of cycles (growth per cycle GPC)
- Surplus precursor dosing acceptable

CVD

- Less reactive precursors
- Precursors react at the same time on the substrate
- Precursors can decompose at process temperature
- Uniformity requires uniform flux of reactants and temperature (in reaction rate limited case)
- Thickness control by precise process control and monitoring
- Precursor dosing important

Seminar 4: Deposition Processes (2) -ALD

Q2 What are the steps of an ALD cycle?

How many steps per cycle (min.)? 4 steps

- Step 1: Precursor A chemisorbs at the surface (chemical reaction, saturation of all available reaction sites)
- Step 2: Purge: removal of unreacted precursor & reaction byproducts
- Step 3: Precursor B chemisorbs at the surface (chemical reaction, saturation of all available reaction sites)
- Step 4: Purge: removal of unreacted precursor & reaction byproducts

How many cycles are combined for complete film deposition?

- For approx. 5 nm we may need 50 ... 100 cycles (given a GPC 0.05 ... 0.1 nm/cycle)

Atomic Layer-by-layer Growth

The intrinsic surface control mechanism:

Saturation of all the reaction/adsorpion sites

Purging step

ALD Cycle

Seminar 4: Deposition Processes (2) -ALD

Q3 Please name potential applications of ALD thin films! (in production)

Applications	Materials
 High-k dielectrics for: MOS gate insulator integrated capacitors (memory) Diffusion barrier films Seed layers for the electrochem. Dep. (ECD) Capacitor electrodes 	HfOx, HfSixOy Al2O3 TiN, TaN, WCN Cu Ru, TiN, TaN

Atomic Layer Deposition: Processes for IC Industry

High-k gate dielectrics

- Replacement of current SiO₂/Si₃N₄ films
- Processes available for ZrO₂, HfO₂, mixed materials
- Targeted (equivalent) oxide thickness EOT: ~ 1.0 nm

High-k capacitor dielectrics

- Replacement of current SiO₂/Si₃N₄, Ta₂O₅ films
- ALD processes for Al₂O₃, Ta₂O₅

Diffusion barriers (to avoid Cu diffusion)

- Replacement current sputtered diffusion barriers
- ALD processes for TiN, W(C)N, Ta(C)N, mixed nitrides

Conducting/Metal films

- ALD Cu seed layers for Cu electroplating
- Electrodes for high k gate and capacitor applications (metals & metal nitrides)

EOT – equivalent oxide thickness

Seminar 4: Lithography

Q4 Please name the basic process steps in the process flow of lithography and patterning!

- 1) pre-treatment: dehydration bake / adhesion promotor deposition
- 2) spin-on deposition / coating of the wafer with photoresist (PR)
- Pre-exposure bake (drive of solvent)
- Exposure (mask): positive resist: exposed areas will change ist properties and get resolvable
- 5) Post-exposure bake
- Development of PR (patterning the PR, etching the exposed areas in a liquid solution)
- Hard bake: making the PR more crosslinked, resistive to the etching process
- B) Dry Etching pattern the film using the PR mask (additional hard mask may be required)
- 9) PR stripping / removal by combination of dry/wet process
- 10) [cleaning]

Seminar 4: Lithography

Q5 Please name and discuss the equation for the resolution! (How to lower critical dimension CD = min. printable feature size)

$$I_{min} = k_1 \cdot \frac{\lambda}{NA}$$

Ways to reduce I_{min}:

- 1) Reduce exposure wavelength (some 100 nm ... DUV 248/193 nm ... EUV/soft X-ray 13.5 nm)
- 2) Increase the numerical aperture NA: improving optics, increase n (move from air \rightarrow water = immersion litho; NA = n * sin(beta)
- 3) RET resolution enhancement techniques!
- reduce λ (\rightarrow DUV \rightarrow EUV \rightarrow X-ray)
- increase NA (immersion litho)
- reduce k₁ (RET)

Seminar 4: Lithography

Q6 Please name the applied resolution enhancement techniques (RET)

- Optical Proximity Correction (OPC)
- 2) off-axis illumination (OAI)
- 3) Double Exposure (or even triple or more)
- 4) phase shift mask (PSM)

Combination of RET Solutions

- This is what the designer drew
- Added 'scattering bars' and serifs to make the polygon print more exactly
- Added additional phase features to allow printing smaller features at the same wavelength

Accurate and flexible modeling is key!

Q7 Please define the terms "anisotropy" and "selectivity"!

Degree of Anisotropy:

$$A_f = 1 - \frac{l}{h_f} = 1 - \frac{R_1 t}{R_v t} = 1 - \frac{R_1}{R_v}$$

For isotropic etching: $R_I = R_v$ and $A_f = 0$

For completely anisotropic etching: $R_I = 0$ and $A_f = 1$

Selectivity: Ratio of etch rates of different materials

$$S_{(to) resist} = R_{etched film} / R_{resist}$$

$$S_{(to) underlayer} = R_{etched film} / R_{underlayer}$$

Seminar 4 : Patterning – dry etching

Q8 What are potential dry etching techniques? Please name the respective etching mechanisms and the achievable anisotropy!

Technique	Mechanism	Directional behavior	Application
Barrel Etching	chemical	isotropic	film removal (PR)
Plasma Etching (PE) Reactive Ion Etching Reactive Ion Beam Etching (RIBE)	phys. & chem. phys. & chem. phys. & chem.	isotropic with anisotropic component anisotropic with isotropic component anisotropic with isotropic component	film patterning
Sputter Etching Ion Beam Etching (IBE)	physical physical	anisotropic anisotropic	surface cleaning

Comparison of dry etching methods

Technique	Mechanism	Etching particles	Pressure [Pa]	Directional behavior
Barrel Etching	chemical	reactive radicals	100	isotropic
Plasma Etching (PE)	phys. & chem.	reactive radicals, weakly ion assisted	10 - 100	isotropic with anisotropic component
Reactive Ion Etching (RIE)	phys. & chem.	reactive radicals, strongly ion assisted	1 - 10	anisotropic with isotropic component
Reactive Ion Beam Etching (RIBE)	phys. & chem.	reactive ions	≤ 0.01	anisotropic with isotropic component
Sputter Etching	physical	inert ions	1 - 10	anisotropic
Ion Beam Etching (IBE)	physical	inert ions	≤ 0.01	anisotropic

Seminar 4: Patterning - dry etching

Q9 Please draw a reactor for reactive ion etching and name the different parts!

