CODE

properties of the anchor material and the physical dimensions of the anchors.

17.6.1.2 Nominal steel strength of an anchor in tension, N_{sa} , shall be calculated by:

$$N_{sa} = A_{se,N} f_{uta}$$
 (17.6.1.2)

where $A_{se,N}$ is the effective cross-sectional area of an anchor in tension, mm², and f_{uta} used for calculations shall not exceed either $1.9f_{va}$ or 860 MPa.

COMMENTARY

R17.6.1.2 The nominal strength of anchors in tension is best represented as a function of f_{uta} rather than f_{va} because the large majority of anchor materials do not exhibit a welldefined yield point. AISC has based tension strength of anchors on $A_{se,N}f_{uta}$ since the 1986 edition of their specifications. The use of Eq. (17.6.1.2) with the load factors provided in 5.3 and the ϕ -factors provided in 17.5.3 result in design strengths consistent with AISC 360.

The limitation of $1.9f_{ya}$ on f_{uta} is to ensure that, under service load conditions, the anchor does not exceed f_{va} . Although not a concern for standard structural steel anchors (maximum value of f_{uta}/f_{ya} is 1.6 for ASTM A307), the limitation is applicable to some stainless steels. The limit on f_{uta} of $1.9f_{va}$ was determined by converting the LRFD provisions to corresponding service level conditions. From 5.3, the average load factor of 1.4 (from 1.2D + 1.6L) divided by the highest ϕ -factor (0.75 for tension) results in a limit of f_{uta}/f_{ya} of 1.4/0.75 = 1.87.

For post-installed anchors having a reduced cross-sectional area anywhere along the anchor length, such as wedge-type anchors, the effective cross-sectional area of the anchor should be provided by the manufacturer. For threaded rods and headed bolts, ASME B1.1 defines $A_{se,N}$ as

$$A_{se,N} = \frac{\pi}{4} \left(d_a - \frac{0.9743}{n_t} \right)^2$$

where n_t is the number of threads per mm.

17.6.2 Concrete breakout strength of anchors in tension,

17.6.2.1 Nominal concrete breakout strength in tension, N_{cb} of a single anchor or N_{cbg} of an anchor group satisfying 17.5.1.3.1, shall be calculated by (a) or (b), respectively:

(a) For a single anchor

$$N_{cb} = \frac{A_{Nc}}{A_{Nco}} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_b \qquad (17.6.2.1a)$$

(b) For an anchor group

$$N_{cbg} = \frac{A_{Nc}}{A_{Nco}} \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_b \quad (17.6.2.1b)$$

where $\psi_{ec,N}$, $\psi_{ed,N}$, $\psi_{c,N}$, and $\psi_{cp,N}$ are given in 17.6.2.3, 17.6.2.4, 17.6.2.5, and 17.6.2.6, respectively.

R17.6.2 Concrete breakout strength of anchors in tension,

R17.6.2.1 The effects of multiple anchors, spacing of anchors, and edge distance on the nominal concrete breakout strength in tension are included by applying the modification factors A_{Nc}/A_{Nco} and $\psi_{ed,N}$ in Eq. (17.6.2.1a) and (17.6.2.1b).

Figure R17.6.2.1(a) shows A_{Nco} and the development of Eq. (17.6.2.1.4). A_{Nco} is the maximum projected area for a single anchor. Figure R17.6.2.1(b) shows examples of the projected areas for various single-anchor and multipleanchor arrangements. Because A_{Nc} is the total projected area for an anchor group, and A_{Nco} is the area for a single anchor, there is no need to include n, the number of anchors, in Eq. (17.6.2.1b). If anchor groups are positioned in such a way that their projected areas overlap, the value of A_{Nc} is required to be reduced accordingly.

