NCSU Python Exploratory Data Analysis

Bivariate EDA: Correlation & Covariance

- Visualizing pairwise relationships (scatterplot matrix)
- Visualization: Hexagonal Binning and Contours
- Centering and standardizing
- Correlation and covariance matrix and visualization
- Statistical significance of the correlation

Prof. Nagiza F. Samatova

samatova@csc.ncsu.edu

Department of Computer Science North Carolina State University

Bivariate Analysis: Correlation, Covariance, Scatter

Measure	Description	Comments	
Correlation coefficient	metric that measures the extent to which two numeric variables are associated with one another	ranges from -1 to +1 cor (x,y)	
Correlation matrix	table where variables are shown on both rows and columns; cell values are correlations between variables	<pre>corrplot::corrplot(), corrplot::corrplot.mixed(),</pre>	
Correlation test	test that measures statistical significance of the correlation coefficient	cor.test()	
Scatterplot	plot in which the x-axis is the value of one variable, and the y-axis is the value of the other variable	<pre>car::scatterplotMatrix(), gpairs::gpairs()</pre>	
Centering	subtracting the mean from original values	xc = x - mean(x)	
Covariance	average association between two centered variables	cov (x,y)	
Correlation	covariance scaled by sd(x) * sd(y); Pearson correlation	cor(x,y) = cov(x,y) / (sd(x)*sd(y))	
Z-score, z	centered variable divided by its $sd(x)$: $z = xc /sd(x)$	mean $(z) = 0$, $sd(z) = 1$	
Hexagonal binning	plot of two numeric variables with the records binned into hexagons		
Contour plot	plot showing the density of two numeric variables	like a topographic map	

Visualizing Pairwise Relationships

Scatterplot Matrix

```
import seaborn as sns
df = sns.load_dataset("iris")
sns.pairplot(df, hue="species")
plt.show()
```


Visualizing Relationships: Continuous & Categorical Variables

Visualizing Relationships: Continuous & Categorical Variables

Hexagonal Binning Scatterplots for large-size data

Contour Plots Scatterplots for large-size data

Quantitative Variable Transformation CENTERING AND STANDARDIZING

Mean

Let $x = (x_1, x_2, ..., x_n)$ be the quantitative variable over n observations

The mean of the variable:

$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

import numpy as np

3.05

$$\overline{x} = \frac{2.1 + 2.5 + 4.0 + 3.6}{4} = 3.08$$

Economic Growth % (x _i)	S & P 500 Returns % (y _i)
2.1	8
2.5	12
4.0	14
3.6	10

Centering

Let $x = (x_1, x_2, ..., x_n)$ be the column: quantitative variable over n observations

The mean of the vector:

$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{1}{1} \sum_{i=1}^{n} x_i + \text{scalar, number}$$

Centering the variable: center *x* at its mean

$$x_c = x - \overline{x} = (x_1 - \overline{x}, x_2 - \overline{x}, ..., x_n - \overline{x})$$
 centered variable

Note: The mean of the centered vector is zero: $\overline{x_c} = 0$

$$\overline{x} = \frac{2.1 + 2.5 + 4.0 + 3.6}{4} = 3.05$$

$$x_c = (2.1 - 3.05, 2.5 - 3.05, 4.0 - 3.05, 3.6 - 3.05)$$

$$= (-.95, -0.55, 0.95, 0.55)$$

Economic Growth % (x _i)	S & P 500 Returns % (y _i)
2.1	8
2.5	12
4.0	14
3.6	10

0.00: mean of x c

Standardizing

Let $x = (x_1, x_2, ..., x_n)$ be the column: variable over n observations

Centered variable:
$$x_c = x - \overline{x} = (x_1 - \overline{x}, x_2 - \overline{x}, ..., x_n - \overline{x})$$

Variance:
$$var(x) = \frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \dots + (x_n - \bar{x})^2}{n-1}$$

Standard Deviation:
$$sd(x) = \sqrt{var(x)}$$

Standardizing using standard deviation:

$$x_s = \frac{x}{sd(x)}$$

Standardizing using mean & standard deviation (*Z*-score):

Z-score =
$$\frac{x-\overline{x}}{sd(x)} = \frac{x_c}{sd(x)}$$

Economic Growth % (x _i)	S & P 500 Returns % (y _i)	
2.1	8	
2.5	12	
4.0	14	
3.6	10	

Pair-wise Association of Quantitative Variables CORRELATION AND COVARIANCE

Covariance and Correlation

Covariance and correlation describe how two quantitative variables are related.

- Variables are positively related if they move in the same direction.
- Variables are inversely related if they move in opposite directions.

Covariance: Formula

 $x = (x_1, x_2, ..., x_n)$: the independent variable

 $y = (y_1, y_2, ..., y_n)$: the dependent variable

 \overline{x} : the mean of x

 \overline{y} : the mean of y

n: the number of points in the sample

$$cov(x,y) = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{n-1}$$

$$cov(x,y) = \frac{1}{n-1} x_c^T y_c$$

Cross-product (inner product) of centered variables normalized by the sample size minus 1 (n-1).

Covariance: Example

$$cov(x,y) = \frac{1}{n-1} x_c^T y_c$$

Cross-product (inner product) of centered variables normalized by the sample size minus 1 (n-1).

Economic Growth % (x _i)	S & P 500 Returns % (y _i)
2.1	8
2.5	12
4.0	14
3.6	10

$$cov(x,y) = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{n-1}$$

centering

normalized cross-product covariance

Correlation

$$cor(x, y) = \frac{cov(x, y)}{sd(x) \times sd(y)}$$

- Correlation is a scaled version of covariance (i.e., scaled by the standard deviations)
- Correlation and covariance always have the same sign (positive, negative, or 0)
 - when the sign is positive, the variables are said to be positively correlated
 - when the sign is negative, the variables are said to be negatively correlated
 - and when the sign is 0, the variables are said to be uncorrelated
- Correlation is dimensionless, since the numerator and denominator have the same physical units.
- Correlation will always take on a value between 1 and 1:
 - If the correlation coefficient is +1, the variables have a perfect positive correlation. This means that if one variable moves a given amount, the second moves proportionally in the same direction.
 - If correlation coefficient is -1, the variables are perfectly negatively correlated (or inversely correlated) and move in opposition to each other. If one variable increases, the other variable decreases proportionally.
 - If correlation coefficient is zero, no relationship exists between the variables. If one variable moves, no predictions about the movement of the other variable can be made.

Correlation: Examples

In each of the graphs, are job performance and test performance shown to be positively related, inversely related, or unrelated?

Answers:

- a) positively related
- b) unrelated
- c) inversely related
- d) unrelated

Exercise: Compute Covariance & Correlation

Month	Return of Stock A	Return of Market Index
1	2.3	1.3
2	2.5	5.0
3	1.9	0.8
4	2.4	1.9
5	2.1	1.1

- 1. Using the table, show your calculations and Python codes for computing the correlation of Stock A's returns and the return of the market index.
- 2. Do the same for the covariance.

Exercise: Solution

Month	Return of Stock A	Return of Market Index
1	2.3	1.3
2	2.5	5.0
3	1.9	0.8
4	2.4	1.9
5	2.1	1.1

			step 1	step 2
	Stock A	Market Return	$(x_i - \overline{x})^2$	$(y_i - \overline{y})^2$
	2.30	1.30	0.0036	0.5184
	2.50	5.00	0.0676	8.8804
	1.90	0.80	0.1156	1.4884
	2.40	1.90	0.0256	0.0144
	2.10	1.10	0.0196	0.8464
Sum			0.2320	11.7480
Average	2.24	2.02		
Sum ÷ 4			0.0580	2.9370
Standard deviation			0.2408	1.7138

$$cor(x,y) = \frac{cov(x,y)}{sd(x)sd(y)} = \frac{0.31}{(0.24)(1.71)} = \frac{0.31}{0.41} = 0.76$$

Correlation Matrix: Pairwise Correlations: Visualization

```
import seaborn as sns
df = sns.load_dataset("iris")
df.head()
```

```
df corr matrix = df.corr()
    df corr matrix.head()
             sepal length sepal width petal length
                                                    petal_width
                             -0.999205
                                                      0.999485
sepal_length
                 1.000000
                                          0.999661
sepal width
                -0.999205
                             1.000000
                                         -0.999904
                                                      -0.999969
petal_length
                0.999661
                             -0.999904
                                          1.000000
                                                      0.999982
 petal_width
                 0.999485
                             -0.999969
                                          0.999982
                                                       1.000000
```

```
from biokit.viz import corrplot
c = corrplot.Corrplot(df_corr_matrix)
c.plot()
```


Correlation: Statistical Significance

```
import seaborn as sns
    df = sns.load dataset("iris")
    from scipy import stats
    pearson coef, p value = stats.pearsonr(df["petal length"],
                                            df["petal width"])
    print ("Pearson Correlation Coefficient: ", pearson coef,
          "\nand a P-value of:", p value)
Pearson Correlation Coefficient: 0.962865431403
and a P-value of: 4.67500390733e-86
                                       p-value < 0.05: statistically significant
```

Other Resources

- https://seaborn.pydata.org/generated/seaborn.pairplot.html
- https://machinelearningmastery.com/visualize-machine-learning-data-python-pandas/
- https://towardsdatascience.com/visualizing-data-with-pair-plots-in-python-f228cf529166
- http://thomas-cokelaer.info/blog/2014/10/corrplot-function-in-python/