Rumor Source Obfuscation

Peter Kairouz

University of Illinois at Urbana-Champaign

Joint work with
Giulia Fanti, Sewoong Oh, and Pramod Viswanath

Political activism

Some people have important, sensitive things to say.

Personal confessions

Others have less important, but sensitive things to say.

secret whisper

Alice

secret whisper

Alice

centralized networks are not truly anonymous!

Compromises in anonymity

anonymity loss extends beyond the network

Distributed messaging

Distributed messaging

Distributed messaging

what can an adversary do?

the adversary can figure out who got the message

lacksquare is the graph representing the social network

Alice passes the message to her friends

her friends pass the message to theirs

■ the message spreads in all directions at the same rate

■ the message spreads in all directions at the same rate

■ the message spreads in all directions at the same rate

this spreading model is known as the diffusion model

Adversary's observation

can the adversary locate the message author?

Concentration around the center

■ the message author is in the "center" with high probability

Rumor source identification

diffusion does not provide anonymity

Our goal

Probability of detection

 $lacktriangleq N_T$: expected number of nodes with the message at time T

Main result: adaptive diffusion

Main result: adaptive diffusion

provides provable anonymity guarantees!

Line graphs

let's start with line graphs

$$T = 0$$

lacktriangle the message author starts a rumor at T=0

$$T=1$$

• with probability α , the left (right) node receives the message

$$T = 1$$

■ the node to the right of the author receives the message

$$T = 2$$

■ the rumor propagates in **both directions** at the **same rate**

$$T = 2$$

■ the rumor propagates in **both directions** at the **same rate**

$$T = 3$$

lacktriangleq lpha is independent of time or hop distance to message author

$$T=3$$

diffusion on a line is equivalent to two independent random walks

Adversary's observation

N = 5 nodes with the message

can the adversary locate the message author?

Maximum likelihood detection

the node in the middle is the mostly likely author

Maximum likelihood detection

consider a line graph

$$T = 0$$

■ node 0 starts a rumor at T=0

$$T=1$$

• with probability 1/2, the left (right) node receives the message

$$T=1$$

■ right node 1 receives the message

$$T = 2$$

$$T = 2$$

right node 2 receives the message

$$T = 3$$

$$T=3$$

■ left node 1 receives the message

Adversary's observation

 $N_T=4$ nodes with the message

can the adversary locate the message author?

Maximum likelihood detection

Maximum likelihood detection

 N_T

d-regular trees

adaptive diffusion for regular trees?

Maximum likelihood detection

all nodes except for the final virtual source are equally likely

Main Theorem

- 1. We spread fast: $N_T \approx (d-1)^{\frac{1}{2}}$
- 2. All nodes except for the final virtual source are equally likely to be the source, hence

$$P(\hat{v}_{ML} = v^*) = \frac{1}{N_T - 1}$$

3. The expected distance between the estimated and true source is at least $\frac{T}{2}$.

General graphs

adaptive diffusion for general graphs?

Simulation results: Facebook graph

likelihoods can be approximated numerically

Adversary with timing

Alice

Adversary with timing

Alice

Adversary with timing

Alice

adaptive diffusion is order "optimal" for trees!

Extensions and related work

Theoretical

Systems

- Adversaries with timing information
- Peer-to-peer dynamic networks
- Hiding relays
- Multiple message sources

- Cyber-bullying detection
- Anonymous video sharing
- Message caching
- Bootstrapping contacts