Math 510B Notes

Peter Kagey

January 15, 2019

Definition. Let R be a commutative domain with unity. Then R is called Euclidean if it has a "division algorithm". This is, there exists $\phi \colon R - \{0\} \to \mathbb{N}$ satisfying

- 1. $\phi(a) \leq \phi(ab)$ if $ab \neq 0$, and
- 2. a = qb + r with $\phi(r) < \phi(b)$ for some $q, r \in R$ if $a, b \neq 0$.

Examples.

- 1. If $R = \mathbb{Z}$, then $\phi(a) = |a|$.
- 2. If R = k[x], then $\phi(f) = \deg(f)$

Lemma. If R is Euclidean then R is a PID.

Proof. Need to show any ideal $I \subset R$ is principal. First, if $I = \langle 0 \rangle$, we're done. Otherwise I contains a nonzero element. Pick such an element $b \neq 0$ such that $\phi(a)$ is minimal. If a is another nonzero element, then a = qb + r where $\phi(r) < \phi(b)$, so r = 0. Thus $b = qa \in \langle a \rangle = I$.

Example. Let $F = \mathbb{Q}(\sqrt{m})$, and let $\mathcal{O}_F = \{a \in F : a \text{ is integral over } \mathbb{Z}\}.$

- 1. If $m \cong 2, 3 \mod 4$, then $\mathcal{O}_F = \mathbb{Z} \oplus \mathbb{Z}(\sqrt{m})$.
- 2. if $m \cong 1 \mod 4$, then $\mathcal{O}_F = \mathbb{Z} \oplus \mathbb{Z}(1/2 + \sqrt{m}/2)$.

Note. An element $a \in \mathbb{Q}(\sqrt{m})$ is integral over \mathbb{Z} if there exists $\alpha_i \in \mathbb{Z}$ such that $a^k + \alpha_{k-1}a^{k-1} + \ldots + \alpha_0 = 0$

Note. A048981 gives the twenty one values of m such that \mathcal{O}_F is Euclidean.

Lemma. Let R be a PID, then greatest common divisors exist, and given $a, b \neq 0$ and $d = \gcd(a, b)$ (...?)

Proof. Omitted.
$$\Box$$

Corollary If R is Euclidean is it a PID, so it has greatest common divisors as usual.

Theorem. Let R be an integral domain. Then R is a UFD if and only if

- (a) R has an ascending chain condition on principal ideals. (That is, every chain $\langle a_1 \rangle \subseteq \langle a_2 \rangle \subseteq \dots$ is eventually constant.)
- (b) Irreducible elements are prime. (i.e. if p|ab then p|a or p|b.)

Proof.

 (\Longrightarrow) Assume R is a UFD.

Proof of (a). First note that for any $a, b \in R$, $\langle a \rangle \subseteq \langle b \rangle$ if and only if b|a. So suppose there is a chain of principal ideals $\langle a_1 \rangle \subseteq \langle a_2 \rangle \subseteq \ldots$; since $a_{i+1}|a_i$, we can write $a_{i+1} = p_1 \ldots p_n$ and write $a_i = up_{j_1} \ldots p_{j_k}$ where u is a unit and $k \leq n$. Therefore the number of prime factors of the generators weakly decreases, and so the chain must eventually stop or become constant.

Proof of (b). Assume a is irreducible, and assume a|bc where $b=p_1\cdots p_r$ and $c=q_1\cdots q_s$; that is, there exists $x\in R$ such that $xa=bc=p_1\cdots p_rq_1\cdots q_s$. Since a is irreducible, $a=up_i$ or $a=uq_i$, so either a|b or a|c.

 (\Leftarrow) Assume (a) and (b).

Existence. Let $S = \{a \in R : a \text{ is not the product of irreducible polynomials}\}$. Then assume for the sake of contradiction that $a \in S$ is chosen so that $\langle a \rangle$ is maximal among the ideals $\langle b \rangle$, which can be done by (1). But since $a \in S$, a is not irreducible (or else is could be written as the one-term product a) so it factors as $a = a_1 \cdots a_k$. But since $a \in S$ was chosen so that $\langle a \rangle$ is maximal, and $\langle a \rangle \subset \langle a_i \rangle$, $a_i \notin S$, and so can be written as a product of irreducible elements, and thus a can be written as a product of irreducible elements. Thus $a \notin S$ so $S = \emptyset$.

Uniqueness. Say $a = q_1 \dots q_s = p_1 \dots p_r$ where p_i and q_i are irreducible. By (2) this means p_i and q_i are prime, so since $p_1|a, p_1|q_1 \dots q_s \dots q_s$. In particular, after relabeling, $q_1 = u_1p_1$. By the cancellation property, it follows that $q_2 \dots q_s = u_1p_2 \dots p_r$. By induction, it follows that s = r and $s = u_ip_i$ for all $s = u_ip_$