COMPTE RENDU TP1 VIBRATION:

INTRODUCTION AUX VIBRATIONS DES STRUCTURES

GROUPE 2F:

JALLALI MOHAMED P0907035 DE LAURIERE MALVIN P1411717 SAID ABDALLAH MOUSTOIFA P1109381

Introduction:

Le but de notre TP est de déterminer les trois premières modes de vibration d'une poutre mince et droite en flexion pur, en faisant l'étude et l'analyse du comportement vibratoire de notre structure dans le domaine des basses fréquences.

1. Dispositif expérimentale :

Le système que nous étudions est une poutre mince à section droite circulaire, de diamètre 16mm en acier de module de Young de $1,8\ 10^{11}$ Pa. Elle est encastrée d'un coté dans un socle massif en acier, et l'autre coté est libre.

Pour réaliser nos mesures, nous disposons d'une chaine d'excitation qui est constituée d'un amplificateur de puissance, d'un générateur de signaux et d'un excitateur magnétique qui fait vibrer la structure en régime harmonique d'amplitudes et de fréquences réglables ; mais également d'une chaine de mesure qui est composée de deux accéléromètres et d'un oscilloscope qui permet de mesurer la tension (l'amplitude d'oscillation) ainsi que la fréquence d'oscillation.

2. Pulsation modales: Mode 1, 2 et 3:

Afin de trouver les trois premiers modes de résonances de la poutre, on a effectué un scan de fréquences entre 50 Hz et 1250 Hz. Les amplitudes mesurées par l'accéléromètre sont moyennées à l'aide d'un oscilloscope.

Les valeurs prélevées : (voir tableau 1 dans l'annexe).

L'amplitude en fonction de la fréquence.

On identifie 3 pics qui correspondent aux 3 premiers modes de résonance de la poutre ainsi que des zones lisses qui correspondent à des zones de non résonances. À partir du graphe, on peut dédire que :

$$w_1 \approx 66 \; Hz; \; w_2 \approx 421 \; Hz; \; w_3 \approx 1175 \; Hz$$

En théorie, l'amplitude de la première résonance est supérieure à celle qui la suit.

Amplitude de M_i > Amplitude de M_{i+1}

Mais cela ne correspond pas à ce que on a tracé. La solution pour avoir une courbe correcte serait de refaire la même étude expérimentale sur un support plus rigide (support fixer à une table équipée d'amortisseur de vibration ou directement fixer au sol).

On peut aussi retrouver les amortissements modaux ξ_1 ; ξ_2 et ξ_3 , en utilisant la méthode à -3 dB. Le principe de la méthode est dans L'annexe :

On retrouve donc:

$$\xi_1 \approx 4{,}39.\,10^{-2}; \quad \xi_2 \approx 1{,}6.\,10^{-2}; \quad \xi_3 \approx 2{,}44.\,10^{-3}$$

On trouve $\xi_1 > \xi_2 > \xi_3$, mais le facteur de perte n'est pas respecter cela est peut être du aux valeurs qui sont utilisé dans le calcul qui ne vérifient pas la condition de $X/\sqrt{2}$ avec X est l'amplitude du pic max.

On peut conclure que cette méthode ne montre pas le vrai comportement de la poutre donc elle n'est pas utilisable dans notre cas.

3. Modélisation des déformées du mode 2 et du mode 3 :

Pour étudier la déformée de la poutre, on a ajouté un deuxième accéléromètre, qui sera mobile permettant ainsi de balayer toute la longueur de la poutre cm par cm. A chaque nouvelle position de l'accéléromètre, on prélève l'amplitude affiché par l'oscilloscope et la position de l'accéléromètre mobile afin de tracer les déformée.

Les valeurs prélevées : (voir tableau 2 et 3 dans l'annexe).

La déformée du mode 2 :

Sur la figure 2, on a tracé l'amplitude de la résonance en fonction de la position de l'accéléromètre 2. On remarque que les deux courbes ne commencent pas à l'origine 0. La courbe verte constitue une image lisse de la courbe bleue. La courbe bleu est le résultat des valeurs prélevés sur l'oscilloscope.

On peut déduire que quand l'accéléromètre mobile est à $x=31\ cm$, l'amplitude est nulle donc on est sur un nœud de vibration. À partir de cette position ($x=31\ cm$), l'amplitude mesuré de l'accéléromètre 2 change de signe.

Au niveau de l'encastrement, on remarque que la rotation n'est pas immédiate d'ou la concordance avec la théorie. À x=0 la rotation est nulle.

Pour valider nos résultats, on a comparé nos résultats expérimentaux avec des résultats d'une autre manipulation qui avait comme objectif de tracer la déformée d'une poutre encastrée libre. La figure suivante représente le mode 1 : la déformée obtenue numériquement en utilisant la méthode des éléments finis et la déformée obtenu analytiquement.

Les figures se ressemble donc on peut conclure que la méthode de scan nous a permis de tracer la déformée de la poutre et d'identifier la position du nœud de vibration.

La déformée du mode 3 :

Pour le mode 3, la déformée a changé de signe plusieurs fois. On trouve un changement de signe à x = 18 cm et à x = 34 cm.

La comparaison avec une manipulation numérique et analytique nous permet de valider nos résultats. On a bien deux nœuds et deux ventres ce qui correspond aux caractéristiques du mode 3 de résonances.

Les graphes obtenus se ressemblent, dans la forme ainsi que dans le nombre de nœuds et de ventre mais pas au niveau de l'encastrement, vu qu'analytiquement, la rotation est nulle à x=0. On peut supposer que cela est du aux pertes au niveau de la table vue que le socle ne constitue une base assez dirige pour les fréquences de résonance qu'on utilise.

4. L'influence de la masse additionnelle sur les pulsation w1 et w2 :

Le second accéléromètre a une masse (m_2 = 20g), cette masse a modifié l'énergie cinétique du système donc elle a modifié la pulsation. Pour ce la on a cherché la nouvelle pulsation du mode 2 et du mode 3 exacte (le maximum local avec la prise en compte de m_2) en scannant la poutre. Les valeurs prélevées : (voir tableau 2 et 3 dans l'annexe).

Localisation des nœuds et des ventres de vibration :

Pour le mode 2 :

Pour le mode 3:

Avec : : Correspond aux ventres : Correspond aux nœuds

La masse du système en utilisant les données du TP : $m_{totale} = m_{poutre} + m_{accé.1} \approx 647g$ La masse ajoutée à la poutre n'est que : $m_{acc.2} = 20g$ mais portant, elle a modifiée considérablement l'énergie cinétique du système d'ou le changement de la valeur des résonances comparer aux valeurs prélevés lors de la première manipulation.

Au début de chaque courbe, on remarque une certaine stabilité du graphe dû à l'encastrement de la poutre sur son socle.

5.Partie mécanique:

5.1 : Estimation de la pulsation de résonance du mode 1 :

Par la méthode de la résistance des matériaux :

On utilise le principe fondamental de la statique pour étudier le comportement de la poutre à un état d'équilibre.

Pour simplifier les équations, on a utilisé les hypothèses données dans l'énoncé du TP.

Les conditions aux limites :

En x=0, en un encastrement donc :v(x = 0) = 0 et $\frac{\partial v(x=0)}{\partial x} = 0$

L'équation de la déformée : $v(x) = \frac{F.(3.L.x^2-x^3)}{6.E.I_z}$

On déduit la raideur de la poutre en (x=L), $v(L) = \frac{F.L^3}{3.E.I_z}$

$$k(L) = \frac{3 \cdot E \cdot I_z}{L^3}$$

On remarque qu'on a un grand encadrement de la résonance. Cela est du a la d une masse qui peut être négligée. Dans la suite, on utilisera la méthode de Rayleigh qui nous donnera une meilleure approximation de la pulsation.

Par la méthode de Rayleigh:

Soit la formule de Rayleigh pour la résonance d'une poutre mince :

$$R(\omega)=Vmax/Tmax$$

L'énergie potentielle maximale $V max = 1/2 \int_0^L EI\left(\frac{\partial^2 X}{\partial x^2}\right)^2 dx$

L'énergie cinétique maximale $Tmax = 1/2 \int_0^L \rho SX^2 dx$

$$w_{acc}^{2} = \frac{\frac{1}{2} \cdot \int_{0}^{L} E \cdot I_{Z} \cdot \left(\frac{\partial^{2} v}{\partial x^{2}}\right)^{2} dx}{\frac{1}{2} \cdot \left(\int_{0}^{L} \rho \cdot S \cdot (v(x))^{2} dx + m_{acc} \cdot (v(x=L))^{2}\right)}$$

Le choix du polynôme v(x) doit satisfaire les conditions aux limites :

$$v(x) = a_0 + a_1 \cdot \frac{x}{L} + a_2 \cdot \left(\frac{x}{L}\right)^2$$

$$avec \ a_0 = 0 \ et \ a_1 = 0$$

$$\frac{2 \cdot E \cdot I_z}{L^3} \cdot a_2^2 = \frac{4 \cdot E \cdot I_z}{\left(\frac{1}{5} \cdot \rho \cdot S \cdot L + m_{acc}\right) \cdot a_2^2} = \frac{4 \cdot E \cdot I_z}{\left(\frac{1}{5} \cdot \rho \cdot S \cdot L + m_{acc}\right) \cdot L^3}$$

$$w_{acc} \approx 499 \ \text{rad. s}^{-1}$$

Le résultat trouvé est beaucoup plus significatif. Donc la méthode énergétique permet une meilleure approximation de la fréquence de résonance que la méthode Newtonienne.

7

5.2 : Estimation de l'influence de l'accéléromètre 2 sur la résonance :

Soit la fréquence de résonance :

$$w_1 = \sqrt{rac{k_{cute{e}q}}{m_{cute{e}q}}}; avec \ m_{cute{e}q} = m_{poutre} + m_{acc2}$$

Soit la formule de Rayleigh:

$$w_{acc}^2 = \frac{\frac{1}{2} \cdot \int_0^L E I_Z \cdot \left(\frac{\partial^2 v}{\partial x^2}\right)^2 dx}{\frac{1}{2} \cdot \left(\int_0^L \rho \cdot S \cdot (v(x))^2 dx + M_{acc} \cdot (v(x=L))^2\right)}$$

Afin de simplifier le calcul, on suppose que la masse de la poutre = $m_{poutre} + m_{acc1}$

Donc la première résonance w1:

$$w_1 = \sqrt{\frac{3.E.I_z}{(\rho.S.L + m_{acc}).L^3}} = 205 \ rad. s^{-1}$$

On a une résonance plus petite que la résonance propre w1 calculer précédemment. On peut dire que la masse ajouté à diminuer la résonance du système donc la masse a agit comme un amortisseur de vibration.

6.Conclusion:

Le Tp nous a permit d'étudier le comportement d'une poutre encastré libre. Dans ces trois premiers modes de vibration. On a pu tracer la déformée à partir des valeurs prélevées expérimentalement. Ainsi on a pu validé les tracer obtenu analytiquement en Td, puisque la poutre encastré est un problème très souvent fréquenté en cours et en TD.

On a pu aussi mesuré l'impacte de la masse de l'accéléromètre mobile ajouté à la poutre sur l'énergie cinétique. La masse ajoutée a une poutre influe sur sa fréquence de résonance et agit comme un amortisseur de vibration. Cela à était vérifier expérimentalement et calculer analytiquement pour la première fréquence de résonance.

La comparaison avec une autre manipulation utilisant la méthode des éléments finis, nous à donner l'idée de modéliser la poutre en 3D, choisir un maillage adéquat et effectuer une simulation numérique pour déterminer les caractéristiques des modes vibratoires plus avancés.

Annexe:

Méthode d'Oberst (-3dB):

Principe: La méthode de la demi-puissance ou du '-3dB' est une méthode simple de mesure de l'amortissement. Il faut pour cela fixer deux points correspondant à une diminution de l'amplitude du pic d'un facteur $\sqrt{2}$ correspond à une réduction de -3dB. L'amortissement se calcule alors avec:

$$\xi = \frac{w_2 - w_1}{2.w_n}$$

L'amplitude du pics (X) et l'amplitude des valeurs de w1 et w2 doivent respecter un facteur de $X/\sqrt{2}$.

Le facteur d'amortissement η « sans unité » traduit la capacité d'un matériau à diminuer les amplitudes de vibration. Il mesure aussi son aptitude à dissiper l'énergie mécanique en chaleur.

NB : La méthode et le schéma sont élaborées avec l'aide précieuse du Groupe G2 + le cours.

Comparaison des résultats :

Les résultats obtenus en été comparer avec une étude analytique et numérique effectuer sur une poutre en utilisant la méthode des éléments finis.

http://www.autofemsoft.com/examples/fr/determining_natural_frequencie.html

Étude des 3 premiers modes

Fréquence (Hz)	Amplitude (mV)
50	540
54	504
58	440
60	536
62	760
64	928
<mark>66</mark>	<mark>1000</mark>
68	992
70	880
72	870
74	976

75	944
76	872
78	688
80	560
82	480
84	416
90	312
100	248
200	80
300	27
400	102
410	226
415	408
416	520
417	680
418	920
419	1480
420	2820
<mark>421</mark>	<mark>3520</mark>
422	1720
423	1160
424	920
425	640
435	244
450	132
500	72
700	32
900	29
1100	24
1150	22
1172	134
1173	230
1174	380
<mark>1175</mark>	<mark>412</mark>
1176	288
1177	208
1178	136
1200	40
1250	22

Tableau 2:

Mode 2 ≈ 416 Hz

Position (cm)	Fréquence CH1 (Hz)	Amplitude CH2 (mV)
0	418	418
1	416	452
2	416	880
3	416	1380
4	418	1880
5	416	2440
6	416	2800
7	416	3240
8	416	2000
9	415	4320
10	413	4880
11	413	4880
12	411	4800
13	409	4720
14	411	4400
15	411	4000
16	409	3760
17	408	4000
18	409	6000
19	409	6400
20	409	4480
21	409	4480
22	411	5600
23	413	5600
24	413	5120
25	414	5600
26	414	4240
27	414	3340
28	416	2560
29	416	1760
30	417	880
31	416	100
31,1	416	0
32	416	-912
33	416	-1660
34	415	-2180
35	414	-2480

Tableau 3:

Mode 3 \approx 1175 Hz

Position (cm)	Fréquence CH1 (Hz)	Amplitude CH2 (mV)
0	1174	72
1	1168	292
2	1168	352
3	1174	464
4	1174	432
5	1163	488
6	1163	384
7	1160	416
8	1155	544
9	1155	525
10	1152	488
11	1147	920
12	1155	960
13	1160	800
14	1166	800
15	1170	520
16	1168	360
17	1168	40
17,8	1168	0
18	1168	-280
19	1163	-500
20	1160	-520
21	1160	-700
22	1155	-760
23	1155	-840
24	1150	-760
25	1149	-760
26	1155	-840
27	1155	-1250
28	1160	-1000
29	1160	-800
31	1166	-600
33	1168	-200
34,2	1168	0
35	1160	116