1. A compound of the formula (I)

$$R_1$$
 R_2
 $N(R_5)(R_6)$
 R_7
 R_8

wherein

R₁ is H;

R₂ is H, C₁-C₄alkyl which is unsubstituted or substituted by one or more substituents selected from halogen, -OH, -SH, -OCH₃, -SCH₃, -CN, -SCN and nitro;

 R_3 is H, -CF₃, -C₂F₅, -CH₂-Z or R_2 and R_3 together form with the nitrogen form a C₃-C₆heteroaliphatic ring;

Z is H, -OH, F, CI, -CH₃; -CF₃, -CH₂CI, -CH₂F or -CH₂OH;

 R_4 is C_1 - C_{16} straight chain alkyl, C_3 - C_{10} branched chain alkyl, -(CH_2)₀₋₆- C_3 - C_7 -cycloalkyl, -(CH_2)₁₋₆- Z_1 , -(CH_2)₀₋₆-phenyl, and -(CH_2)₀₋₆-het, wherein the alkyl, cycloalkyl and phenyl substituents are unsubstituted or substituted;

 $Z_1 \text{ is } -N(R_9)-C(O)-C_1-C_{10}\text{alkyl}, -N(R_9)-C(O)-(CH_2)_{1-6}-C_3-C_7-\text{cycloalkyl}, -N(R_9)-C(O)-(CH_2)_{0-6}-\text{phenyl}, -N(R_9)-C(O)-(CH_2)_{1-6}-\text{het}, -C(O)-N(R_{10})(R_{11}), -C(O)-O-C_1-C_{10}\text{alkyl}, -C(O)-O-(CH_2)_{1-6}-C_3-C_7-\text{cycloalkyl}, -C(O)-O-(CH_2)_{0-6}-\text{phenyl}, -C(O)-O-(CH_2)_{1-6}-\text{het}, -O-C(O)-(CH_2)_{1-6}-\text{het}, -O-C(O)-(CH_2)_{1-6}-\text{phenyl}, -O-C(O)-(CH_2)_{0-6}-\text{phenyl}, -O-C(O)-(CH_2)_{1-6}-\text{het}, \text{ wherein the alkyl}, \text{ cycloalkyl and phenyl substituents are unsubstituted or substituted:}$

het is a 5-7 membered heterocyclic ring containing 1, 2 or 3 heteroatoms selected from N, O and S, or an 8-12 membered fused ring system including at least one 5-7 membered heterocyclic ring containing 1, 2 or 3 heteroatoms selected from N, O, and S, which heterocyclic ring or fused ring system is unsubstituted or substituted on a carbon atom by halogen, hydroxy, C₁-C₄alkyl, C₁-C₄ alkoxy, nitro, -O-C(O)-C₁-C₄alkyl or -C(O)-

O-C₁-C₄-alkyl or on a nitrogen by C₁-C₄ alkyl, -O-C(O)-C₁-C₄alkyl or -C(O)-O-C₁-C₄-alkyl;

R₉ is H, -CH₃, -CF₃, -CH₂OH or CH₂Cl;

 R_{10} and R_{11} are each independently H, C_1 - C_4 alkyl, C_3 - C_7 -cycloalkyl, -(CH₂)₁₋₆- C_3 - C_7 -cycloalkyl, -(CH₂)₀₋₆-phenyl, wherein the alkyl, cycloalkyl and phenyl substituents are unsubstituted or substituted, or R_{10} and R_{11} together with the nitrogen are het; X is CH or N;

R₅ is H, C₁-C₁₀-alkyl, C₃-C₇-cycloalkyl, -(CH₂)₁₋₆-C₃-C₇-cycloalkyl, -C₁-C₁₀-alkyl-aryl, -(CH₂)₀₋₆-C₃-C₇-cycloalkyl-(CH₂)₀₋₆-phenyl, -(CH₂)₀₋₄CH-((CH₂)₁₋₄-phenyl)₂, -(CH₂)₀₋₆-CH(phenyl)₂, -C(O)-C₁-C₁₀alkyl, -C(O)-(CH₂)₁₋₆-C₃-C₇-cycloalkyl, -C(O)-(CH₂)₀₋₆-phenyl, -(CH₂)₁₋₆-het, or R₅ is a residue of an amino acid, wherein the alkyl, cycloalkyl, phenyl and aryl substituents are unsubstituted or substituted;

R₆ is H, methyl, ethyl, -CF₃, -CH₂OH or -CH₂Cl; or

R₅ and R₆ together with the nitrogen are het;

 R_7 and R_8 are cis relative to the acyl substituent at the one position of the ring and are each independently H, $-C_1-C_{10}$ alkyl, -OH, $-O-C_1-C_{10}$ -alkyl, $-(CH_2)_{0-6}-C_3-C_7$ -cycloalkyl, $-O-(CH_2)_{0-6}$ -aryl, phenyl, $-(CH_2)_{1-6}$ -het, $-O-(CH_2)_{1-6}$ -het, $-N(R_{12})(R_{13})$, $-S-R_{12}$, $-S(O)-R_{12}$, $-S(O)-R_{12}$, $-S(O)-R_{12}$, and aryl substituents are unsubstituted or substituted;

 R_{12} and R_{13} are independently H, C_1 - C_{10} alkyl, -(CH_2)₀₋₆- C_3 - C_7 -cycloalkyl, -(CH_2)₀₋₆-(CH)₀₋₁(aryl)₁₋₂, -C(O)- C_1 - C_{10} alkyl, -C(O)-(CH_2)₁₋₆- C_3 - C_7 -cycloalkyl, -C(O)- C_1 - C_1 0-alkyl, -C(O)-(CH_2)₀₋₆-aryl, -C(O)-(CH_2)₀₋₆-aryl, -C(O)-(CH_2)₁₋₆-het, wherein the alkyl, cycloalkyl and aryl substituents are unsubstituted or substituted; or a substituent that facilitates transport of the molecule across a cell membrane, or R_{12} and R_{13} together with the nitrogen are het;

aryl is phenyl or naphthyl which is unsubstituted or substituted;

n is 0, 1 or 2;

and wherein

substituted alkyl substitutents are substituted by one or more substituents selected from a double bond, halogen, OH, -O-C₁-C₆alkyl, -S-C₁-C₆alkyl and -CF₃; substituted cycloalkyl substitutents are substituted by one or more substituents selected from a double bond, C₁-C₆alkyl, halogen, OH, -O-C₁-C₆alkyl, -S-C₁-C₆alkyl and -CF₃; and