The University of California, Los Angeles

ROBOTICS DESIGN CAPSTONE EE 183DB

Off-center spinning mass controller for Quadcopters

Author:
Lin Li
Angel Jimenez
Wilson Chang
Amirali Omidfar

Professor:
Ankur Metha

April 26, 2018

Abstract

Your abstract.

1 Symbols

Here is a list of all symbols used in this paper:

$$\begin{aligned} \boldsymbol{p} &= \begin{bmatrix} x \\ y \\ z \end{bmatrix} & \text{linear position vectors} \\ \boldsymbol{q} &= \begin{bmatrix} q_r \\ q_i \\ q_j \\ q_k \end{bmatrix} & \text{angular orientation vectors in quaternion} \\ \boldsymbol{F_T} & \text{thrust force} \\ \boldsymbol{F_G} & \text{gravitational force} \\ \boldsymbol{F_S} & \text{reaction force acted on the surface} \\ \boldsymbol{\tau_S} & \text{reaction torque acted on the surface} \\ \boldsymbol{\tau_M} & \text{torque introduced by the off-center mass} \\ \boldsymbol{m_b} & \text{mass of the body} \\ \boldsymbol{m_c} & \text{mass of the controller} \\ \boldsymbol{S_x, C_x, T_x} & \sin(x), \cos(x), \tan(x) \text{ respectively} \end{aligned}$$

2 Mathematical Derivation

2.1 Assumptions

• Assume unit quaternions: ||q|| = 1

2.2 Quadcopter Body Dynamics

Forces and Torques:

$$^{B}oldsymbol{F_{TB}} = egin{bmatrix} 0 \ 0 \ F_{TB} \end{bmatrix}$$
 $^{O}oldsymbol{F_{GB}} = egin{bmatrix} 0 \ 0 \ -m_{b}g \end{bmatrix}$
 $^{B}oldsymbol{F_{SB}} = egin{bmatrix} F_{SBx} \ F_{SBy} \ F_{SBz} \end{bmatrix}$
 $^{B}oldsymbol{ au_{SB}} = egin{bmatrix} au_{SBy} \ au_{SBz} \end{bmatrix}$

The Quaternion-derived Rotation matrix is defined as follow,

$${}_{B}^{O}R = R(\mathbf{q_B}) = \begin{bmatrix} q_r^2 + q_i^2 - q_j^2 - q_k^2 & 2q_iq_j - 2q_rq_k & 2q_iq_k + 2q_rq_j \\ 2q_iq_j + 2q_rq_k & q_r^2 - q_i^2 + q_j^2 - q_k^2 & 2q_jq_k - 2q_rq_i \\ 2q_iq_k - 2q_rq_j & 2q_jq_k + 2q_rq_i & q_r^2 - q_i^2 - q_j^2 + q_k^2 \end{bmatrix}$$

Net Force

$$^{O}\mathbf{F_{B,net}} = ^{O}\mathbf{F_{GB}} + ^{O}\mathbf{F_{TB}} + ^{O}\mathbf{F_{SB}} = m_{B}^{O}\mathbf{a_{B}}$$
 $^{O}\mathbf{F_{GB}} + ^{O}_{B}R^{B}\mathbf{F_{TB}} + ^{O}_{B}R^{B}\mathbf{F_{SB}} = m_{B}\mathbf{a_{B}} = m_{B}^{O}\ddot{\mathbf{p}_{B}}$

Net Torque

$$^{O} au_{B,net} = I_{B}^{O}lpha_{B}$$
 $_{B}^{O}R^{B} au_{SB} = 2I_{B}(\ddot{q}_{B}q_{B} - (\dot{q}_{B}q_{B})^{2})$

By appling Physics law, we arrive at two equations below,

$${}^{O}\boldsymbol{F_{GB}} + R(\boldsymbol{q_B}) {}^{B}\boldsymbol{F_{TB}} + R(\boldsymbol{q_B}) {}^{B}\boldsymbol{F_{SB}} = m_B {}^{O}\boldsymbol{a_B}$$
 (1)

$$R(\boldsymbol{q_B})^B \boldsymbol{\tau_{SB}} = 2^O I_B({}^{\boldsymbol{O}}\boldsymbol{\alpha_B})$$
 (2)

with
$${}^{O}\boldsymbol{F_{TB}} = R(\boldsymbol{q_B}) {}^{B}\boldsymbol{F_{TB}}, \quad {}^{O}\boldsymbol{F_{SB}} = R(\boldsymbol{q_B}) {}^{B}\boldsymbol{F_{SB}}, \quad {}^{O}\boldsymbol{\tau_{SB}} = R(\boldsymbol{q_B}) {}^{B}\boldsymbol{\tau_{TB}},$$
 ${}^{O}I_B = R(\boldsymbol{q_B}) {}^{B}I_BR^{-1}(\boldsymbol{q_B}),$

2.3 Controller Dynamics

Similarly as above we aim to find the state evolution equation for the controller from equations we got from Physics law, namely

$$\dot{\boldsymbol{s}}_{\boldsymbol{C}} = f_{\boldsymbol{C}}(\boldsymbol{s}_{\boldsymbol{C}}, \boldsymbol{F}_{\boldsymbol{C}, net}, \boldsymbol{\tau}_{\boldsymbol{C}, net}) \tag{3}$$

Forces and Torques:

$${}^{C}\boldsymbol{F_{SC}} = \begin{bmatrix} F_{SCx} \\ F_{SCy} \\ F_{SCz} \end{bmatrix}$$

$${}^{O}\boldsymbol{F_{GC}} = \begin{bmatrix} 0 \\ 0 \\ -m_c g \end{bmatrix}$$

$${}^{B}\boldsymbol{\tau_{SC}} = \begin{bmatrix} \tau_{SCx} \\ \tau_{SCy} \\ \tau_{SCz} \end{bmatrix}$$

$${}_{O}\boldsymbol{\tau_{M}} = {}^{O}\boldsymbol{r_{M}} \times {}^{O}\boldsymbol{F_{GC}} = {}^{O}_{B}R^{B}\boldsymbol{r_{M}} \times {}^{O}\boldsymbol{F_{GC}}$$

$$= R(q_{C}) \begin{bmatrix} L_{Mx} \\ 0 \\ L_{Mz} \end{bmatrix} \times \begin{bmatrix} 0 \\ 0 \\ -m_{c}g \end{bmatrix}$$

Net Force and Net Torque:

$$m_c \ddot{\boldsymbol{p}}_C = {}^O F_{GC} + {}^O_C R^B \boldsymbol{F_{SC}}$$

 $I_c \boldsymbol{\alpha}_C = {}^O_C R^O \tau_{SC} + {}^O \boldsymbol{\tau}_M$

Let $v_C = \dot{p}_C$ and $\omega_C = \dot{q}_C$ and substitute new variables,

$$egin{aligned} oldsymbol{p_C} &= oldsymbol{v_C} \ \dot{oldsymbol{v}}_C &= rac{1}{m_C} \left[R(oldsymbol{q_C})^B oldsymbol{F_{SC}} + {}^O oldsymbol{F_{GC}}
ight] \ \dot{oldsymbol{q}}_C &= oldsymbol{\omega_C} \ \dot{oldsymbol{\omega}}_C &= \left[rac{R(oldsymbol{q_C})^B oldsymbol{ au_{SC}} + {}^O oldsymbol{ au_M}(oldsymbol{q_C})}{2I_C} + (oldsymbol{\omega_C} oldsymbol{q_C}^*)^2
ight] oldsymbol{q_C} \end{aligned}$$

Then, by letting our state variable $s_C = \begin{bmatrix} p_C \\ v_C \\ q_C \\ \omega_C \end{bmatrix}$, we arrive at the desired state evolution equation.

2.4 Constraints and Manipulation

The two bodies are contrainted (attached together), there are some relationship between the states and the forces between the body and the controller,

$$\mathbf{s}_{C} = f_{BC}(\mathbf{s}_{B}) \tag{4}$$

$$\mathbf{F}_{\mathbf{C}} = g_{BC,F}(\mathbf{F}_{\mathbf{B}}) \tag{5}$$

$$\tau_C = g_{BC,\tau}(\tau_B) \tag{6}$$

Combining the above equations with (3) and (4), we would like to do some algebraic manipulation to get rid of the unwanted parameters in our state evolution equations, such that

$$\boldsymbol{\dot{s}_{sys}} = f_{sys}(\boldsymbol{s_{sys}}, \boldsymbol{u})$$

with u being our input, whatever we defined our input to be, either being the yaw torque in the body frame τ_{SBz} or some other representations.