APPUNTI DI ALGEBRA

Manuel Deodato

INDICE

1	Gli interi		3
	1.1	Proprietà di base	3
	1.2	Massimo comune divisore	4
	1.3	Fattorizzazione unica	6
	1.4	Relazioni di equivalenza e congruenza	7
2	Teoria dei gruppi		8
	2.1	Introduzione	8
	2.2	Mappe tra gruppi	10
	2.3	Omomorfismi, isomorfismi e automorfismi	12
	2.4	Classi laterali e sottogruppi normali	15

$1\,$ GLI INTERI

1.1 Proprietà di base

Una proprietà dei numeri interi, che si prenderà come assiomatica, è quella del buon ordinamento:

Ogni insieme non-vuoto di interi maggiori o uguali a 0, ha un elemento minimo.

Da questa deriva la seguente.

Teorema 1.1 (Principio di induzione (prima forma))

Sia A(n) un'affermazione valida per ogni intero $n \ge 1$. Se

- (1). A(1) è vera,
- (2). $\forall n \geq 1$, se A(n) è vera $\implies A(n+1)$ è vera,

allora, $\forall n \geq 1, A(n)$ è vera.

Dimostrazione. Sia S l'insieme di interi per cui A(n) è falsa. Si mostra che S è l'insieme vuoto. Si assume per assurdo che $S \neq \emptyset \Rightarrow \exists n_0 \in S$, con n_0 minimo (esistente per il buon ordinamento), e, per assunzione, deve essere $n_0 \neq 1 \Rightarrow n_0 > 1$. Questo vuol dire che $n_0 - 1$ non è in S e, quindi, $A(n_0 - 1)$ è vera.

Per la proprietà (2), però, deve essere vera anche $A(n_0)$ perché $n_0 = (n_0 - 1) + 1$, il che è assurdo e, pertanto, $S = \emptyset$.

Osservazione 1.1. Nella dimostrazione sopra, si sarebbe potuto sostituire 1 con 0 e far partire il principio di induzione da n = 0 piuttosto che da n = 1 e non sarebbe cambiato nulla.

Il principio di induzione può essere espresso in una forma alternativa, come segue.

Teorema 1.2 (Principio di induzione (seconda forma))

Sia A(n) affermazione vera $\forall n \geq 0$ e sia possibile mostrare che:

- (1'). A(0) è vera;
- (2'). $\forall n > 0$, se A(k) è vera $\forall 0 \le k < n$, allora A(n) è vera.

Allora A(n) è vera $\forall n \geq 0$.

Dimostrazione. Sia ancora S l'insieme degli interi che non soddisfano A(n). Ancora per assurdo, si prende $S \neq \emptyset$, quindi deve esistere, per il buon ordinamento, un $n_0 \in S$ minimo

Per punto (1'), deve valere $n_0 \neq 0$ e, visto che n_0 è minimo, $\forall k$ intero tale che $0 \leq k < n_0$, A(k) deve essere vera. Per il punto (2'), però, deve essere vera anche $A(n_0)$, arrivando nuovamente all'assurdo.

Un altro importante risultato del buon ordinamento è l'algoritmo di Euclide.

Teorema 1.3 (Algoritmo di Euclide)

Siano m, n interi, con m > 0; allora esistono interi q, r, con $0 \le r < m$, tali che

$$n = qm + r \tag{1.1.1}$$

Inoltre, gli interi q, r sono univocamente determinati da tali condizioni.

Dimostrazione. Visto che l'insieme degli interi q tali per cui $qm \leq n$ è limitato superiormente per definizione, si può usare il buon ordinamento per affermare che esiste un

elemento più grande^a tale che

$$qm \le n < (q+1)m = qm + m$$

ossia $0 \le n-qm < m$. Sia r=n-qm, per cui vale $0 \le r < m$. Questo dimostra l'esistenza di r,q come descritti.

Per l'unicità, si assume che valga contemporaneamente

$$\begin{cases} n = q_1 m + r_1 & , \ 0 \le r_1 < m \\ n = q_2 m + r_2 & , \ 0 \le r_2 < m \end{cases}$$

con $r_1 \neq r_2$. Sia, per esempio, $r_2 > r_1$; allora, sottraendo le due, si ha $(q_1 - q_2)m = r_2 - r_1$. Però, si ha $r_2 - r_1 > 0$ e $r_2 - r_1 < m$, il che non è possibile perché $q_1 - q_2$ è un intero per cui $(q_1 - q_2)m > 0$, quindi si avrebbe $r_2 - r_1 = (q_1 - q_2)m \geq m$ e, quindi $r_2 - r_1 \geq m$. Pertanto, deve essere $r_1 = r_2$, che fra l'altro implica $q_1m = q_2m$, per cui $q_1 = q_2$.

Da questo teorema, si definisce r come il resto della divisione di n per m.

1.2 Massimo comune divisore

Siano n, d due interi diversi da 0. Si dice che d divide n se esiste q intero tale che n = dq; in questo caso, si scrive d|n. Se m, n sono interi non-nulli, per divisore comune di m e n si intende un intero $d \neq 0$ tale che d|m e d|n. Allora si ha la seguente definizione.

Definizione 1.1 (Massimo comune divisore)

Per massimo comune divisore di m, n interi non nulli, si intende un intero d > 0, divisore comune di m e n, e tale che $\forall e$ intero positivo che divide m e n, si ha anche e|d.

Chiaramente, il massimo comune divisore è univocamente determinato e si mostrerà che esiste sempre. Per farlo, si dà prima la seguente definizione.

Definizione 1.2 (Ideale)

Sia $J \subseteq \mathbb{Z}$ un sottoinsieme degli interi. Si dice che J è un *ideale* se:

- $0 \in J$:
- $m, n \in J \implies m + n \in J$
- se $m \in J$ e n è un intero qualsiasi, allora $mn \in J$.

Osservazione 1.2. Di seguito, per ideale si intenderà sempre un sottoinsieme degli interi.

Siano m_1, \ldots, m_r interi. Sia J l'insieme di tutti gli interi che si scrivono come

$$x_1m_1 + \ldots + x_rm_r$$

con x_1, \ldots, x_r interi. Allora è automaticamente verificato che J è un ideale. Infatti

• se y_1, \ldots, y_r sono interi, allora

$$\sum_{i=1}^{r} x_i m_i + \sum_{j=1}^{r} y_j m_j = (x_1 + y_1) m_1 + \ldots + (x_r + y_r) m_r$$

che, quindi, appartiene a J;

 \bullet se n è un intero, si ha

$$n\sum_{i=1}^{r} x_i m_i = nx_1 m_1 + \ldots + nx_r m_r$$

^aBasta applicare il buon ordinamento all'elemento pi \tilde{A} ź piccolo dell'insieme n-qm.

che, quindi, appartiene a J;

• si può scrivere 0 come $0m_1 + \ldots + 0m_r$, quindi anche $0 \in J$.

In questo caso, si dice che J è **generato** dagli interi m_1, \ldots, m_r e che questi sono i suoi **generatori**. L'insieme $\{0\}$ è esso stesso un ideale, chiamato **ideale nullo**. Inoltre, \mathbb{Z} è detto **ideale unità**. Ora si può dimostrare il seguente.

Teorema 1.4

Sia J un ideale di \mathbb{Z} . Allora esiste un intero d che è un generatore di J. Inoltre, se $J \neq \{0\}$, allora d è il più piccolo intero positivo in J.

Dimostrazione. Sia J l'ideale nullo; allora 0 è un suo generatore. Sia, ora, $J \neq \{0\}$; se $n \in J$, allora -n = (-1)n è anche in J, quindi J contiene degli interi positivi. Si vuole dimostrare che d, definito come il più piccolo intero positivo, è un generatore. Per farlo, sia $n \in J$, con n = dq + r, $0 \le r < d$; allora $r = n - dq \in J$ e, visto che vale r < d, segue che $r = 0^a$, quindi n = dq e, allora, d è un generatore.

Teorema 1.5

Siano m_1, m_2 due interi positivi e sia d un generatore positivo per l'ideale generato da m_1, m_2 . Allora d è il massimo comune divisore di m_1, m_2 .

Dimostrazione. Per definizione, $m_1, m_2 \in J^a$, quindi esiste un intero q_1 tale che $m_1 = q_1 d$, per cui $d|m_1$. Analogamente $d|m_2$. Sia, poi, e un intero non-nullo che divide sia m_1 che m_2 come $m_1 = h_1 e$ e $m_2 = h_2 e$, con interi h_1, h_2 . Visto che d è nell'ideale generato da m_1, m_2 , esistono degli interi s_1, s_2 tali che $d = s_1 m_1 + s_2 m_2$, quindi

$$d = s_1 h_1 e + s_2 h_2 e = (s_1 h_1 + s_2 h_2) e$$

Quindi e divide d e il teorema è dimostrato.

Osservazione 1.3. La stessa esatta dimostrazione funziona per più di due interi, quindi se si considerassero m_1, \ldots, m_r degli interi, con d generatore positivo dell'ideale da loro generato, d sarebbe anche il massimo comune divisore.

Questi due teoremi permettono di concludere i seguenti fatti.

- Ogni ideale *J* contiene un numero intero che lo genera interamente e questo coincide col più piccolo intero positivo in esso contenuto, quindi è l'unico generatore *singolo* dell'ideale.
- Ogni insieme di numeri interi ha un massimo comune divisore perché tale insieme genera un ideale, il quale, però, contiene un generatore (più piccolo numero intero in esso contenuto) che è un massimo comune divisore per l'insieme di interi iniziale.

Definizione 1.3 (Interi relativamente primi)

Siano m_1, \ldots, m_r degli interi il cui massimo comune divisore è 1. Allora m_1, \ldots, m_r si dicono relativamente primi e, per questi, esistono interi x_1, \ldots, x_r tali che

$$x_1m_1 + \ldots + x_rm_r = 1$$

perché 1 appartiene all'ideale generato dagli m_i .

È immediato verificare per definizione di ideale che $1 \in J \iff J \equiv \mathbb{Z}$. Dalla definizione 1.3 segue direttamente che ogni insieme di interi relativamente primi genera \mathbb{Z} .

Osservazione 1.4. Si potrebbe pensare che se p è un numero primo, allora l'insieme $\{p\}$ generi \mathbb{Z} , cioè p generi \mathbb{Z} . Questo è ovviamente falso sia perché, evidentemente, J_p non

 $[^]a$ Altrimenti d non sarebbe il più piccolo intero positivo.

 $[^]a$ Questo è ovvio perché $m_1=1m_1+0m_2$ e $m_2=0m_1+1m_2.$

contiene 1, sia perché p non è relativamente primo con se stesso, avendo come altro divisore se stesso oltre che 1.

1.3 Fattorizzazione unica

Definizione 1.4 (Numero primo)

Si dice che p è un numero primo se è un intero e $p \ge 2$ tale che, data una fattorizzazione p = mn, con interi positivi m, n, allora m = 1 o n = 1.

Osservazione 1.5. Il fatto che p = mn con m = 1, o n = 1 implica p numero primo significa che p è diviso unicamente o da 1 o, da se stesso.

Ora si mostra che ogni numero intero ammette un'unica scomposizione in numeri primi. Per dimostrare l'unicità di tale scomposizione, si introduce il seguente lemma.

Lemma 1.1

Sia p un numero primo e siano m,n interi non-nulli e tali che p divide mn. Allora o p|m o p|n.

Dimostrazione. Senza perdita di generalità, si assume che p non divida m. Allora, il massimo comune divisore di p e m deve essere 1, pertanto esistono interi a, b tali per cui 1 = ap + bm. Ora, moltiplicando ambo i membri per n, si ha n = nap + bmn, ma mn = pc per qualche intero c (essendo in assunzione mn divisibile per p), quindi

$$n = nap + bpc = (na + bc)p$$

il che implica che p divide n.

Per evidenziare l'utilità del lemma nel seguente teorema, si nota che se p divide un prodotto di numeri primi $q_1 \dots q_s$, si hanno due possibilità: o p divide q_1 , o divide $q_2 \dots q_s$; se divide q_1 , allora $p \equiv q_1$, altrimenti si trova $p \equiv q_i$ procedendo induttivamente. Il caso interessante è quando si ha un uguaglianza tra prodotti di numeri primi

$$p_1 \dots p_r = q_1 \dots q_s$$

dove ogni p_i divide il prodotto¹. Rinumerandoli, si può assumere senza perdita di generalità che $p_1 = q_1$ e, induttivamente, che $p_i = q_i$ e r = s, essendo due scomposizioni in un numeri primi.

Teorema 1.6

Ogni intero positivo $n \geq 2$ ammette una fattorizzazione come prodotto di numeri primi (non necessariamente distinti) $n = p_1 \dots p_r$ e tale fattorizzazione è unica.

Dimostrazione. Si assume per assurdo che esista almeno un intero ≥ 2 che non possa essere espresso come prodotto di numeri primi. Sia m il più piccolo di questi.

Per costruzione, m non può essere primo, quindi m=de, con d,e>1. Visto che d ed e sono minori di m e visto che m è scelto per essere il più piccolo fra gli interi non fattorizzabili come numeri primi, allora sia d che e ammettono scomposizione in prodotto di numeri primi:

$$d = p_1 \dots p_r \\ e = p'_1 \dots p'_s \implies m = p_1 \dots p_r p'_1 \dots p'_s$$

da cui l'assurdo.

Per mostrare l'unicità, si usa il lemma 1.1. Come conseguenza, diretta del lemma, se esistessero due scomposizioni in primi $p_1 \dots p_r$ e $p'_1 \dots p'_s$, varrebbe $p_1 \dots p_r = p'_1 \dots p'_s \Rightarrow p_i = p'_i$ e r = s, da cui l'unicità

¹Per vederlo, è sufficiente prendere $c=p_1\dots p_{i-1}p_{i+1}\dots p_r$, quindi si ha $cp_i=q_1\dots q_s$, che è la definizione di $p_i|q_1\dots q_s$.

1.4 Relazioni di equivalenza e congruenza

Definizione 1.5 (Relazione di equivalenza)

Sia S un insieme. Una relazione di equivalenza su S è una relazione indicata con $x\sim y,\ x,y\in S,$ tale che:

```
ER 1. \forall x \in S, \ x \sim x;
```

ER 2. se $x \sim y$ e $y \sim z$, allora $x \sim z$;

ER 3. se $x \sim y$, allora $y \sim x$.

Se su S è definita una relazione di equivalenza \sim , le classi di equivalenza sono insiemi $C_x := \{y \in S : y \sim x\}$ partizionano S in insiemi disgiunti. Inoltre, dati due elementi $r, s \in S$, si ha $C_r \equiv C_s$, oppure C_r , C_s non hanno elementi in comune. Si sceglie un elemento che identifica la classe di equivalenza, ad esempio x per C_x , e tale elemento si chiama rappresentante della classe di equivalenza. Un esempio di relazione di equivalenza è la congruenza.

Definizione 1.6 (Congruenza)

Sia n un intero positivo e siano x, y due interi. Si dice che x è congruente y modulo n se $\exists m : x - y = mn$. In tal caso, si scriverà $x \equiv y \pmod{n}$.

La congruenza di x, y come x - y = mn implica automaticamente che x - y appartiene all'ideale generato da n; inoltre, se $n \neq 0$, allora x - y è divisibile per n.

Oltre alle proprietà delle relazioni di equivalenza, la congruenza ne soddisfa anche altre due:

- se $x \equiv y \pmod{n}$ e z è un intero, allora $xz \equiv yz \pmod{n}$;
- se $x \equiv y \pmod{n}$ e $x' \equiv y' \pmod{n}$, allora $xx' \equiv yy' \pmod{n}^1$ e $x + x' \equiv y + y' \pmod{n}$.

Dalla definizione di congruenza, si definiscono gli interi **pari** come quelli che sono congruenti a $0 \pmod{2}$ (quindi n=2m) e quelli **dispari** come gli interi che non sono pari, quindi della forma 2m+1, per qualche intero m.

¹Per dimostrare questa, basta notare che xx' - yy' = xx' + x'y - x'y - yy' = x'(x - y) + y(x' - y').

$2\,$ Teoria dei gruppi

2.1 Introduzione

Definizione 2.1 (Gruppo)

Un gruppo G è un insieme su cui è definita una legge di composizione $*: G \to G$ che soddisfa le seguenti condizioni per gli elementi di G:

GR 1. (x * y) * z = z * (y * z) (associatività);

GR 2. $\exists e \in G : x * e = e * x = x$ (elemento neutro);

GR 3. $\forall x \in G, \exists y \in G \text{ tale che } x * y = y * x = e \text{ (elemento inverso)}.$

Quando * è la moltiplicazione, G si dice **gruppo moltiplicativo**; quando * è l'addizione, G si dice **gruppo additivo**.

Definizione 2.2 (Gruppo commutativo)

Un insieme G è detto gruppo commutativo se è un gruppo e se soddisfa ulteriormente

$$x * y = y * x, \ \forall x, y \in G$$

L'elemento neutro di ciascun gruppo è unico.

Dimostrazione. Sia e' un altro elemento neutro; si nota che: e = ee' = e'.

L'elemento inverso di ciascun elemento di un gruppo G è unico.

Dimostrazione. Siano y, y' gli elementi inversi di x; allora: $e = xy \implies y'e = y'xy \Rightarrow y' = y$. \square

Questo elemento inverso si indica con x^{-1} ; per gruppo additivo, si indicherà con -x.

Esempio 2.1. I numeri reali \mathbb{R} e i numeri complessi \mathbb{C} sono entrambi gruppi additivi. I numeri reali diversi da 0, \mathbb{R}^* , e i numeri complessi diversi da 0, \mathbb{C}^* , sono gruppi moltiplicativi.

Esempio 2.2. L'insieme dei numeri complessi di modulo 1, $\mathscr{I} := \{z \in \mathbb{C} : |z| = 1\}$, è un gruppo moltiplicativo.

Definizione 2.3 (Prodotto diretto)

Siano G_1, \ldots, G_n dei gruppi; si definisce prodotto diretto l'insieme

$$G_P = \prod_{i=1}^n G_i = G_1 \times G_2 \times \ldots \times G_n$$

e contiene tutte le *n*-uple $(x_1, \ldots, x_n), x_i \in G_i$.

Prendendo un prodotto diretto di gruppi ed equipaggiandolo con il prodotto componente per componente, dove l'elemento unità è (e_1, \ldots, e_n) , con e_i unità di G_i , si ottiene un gruppo moltiplicativo.

Definizione 2.4 (Gruppo finito)

Un gruppo G si dice *finito* se ha un numero limitato di elementi; si chiama **ordine** il numero di elementi di tale gruppo.

Definizione 2.5 (Sottogruppo)

Sia G un gruppo e $H \subset G$ un sottoinsieme di G. Si dice che H è un sottogruppo di G se:

• $e \in H$;

- $\forall x, y \in H, \ x * y \in H;$
- $\forall x \in H, \ x^{-1} \in H.$

Definizione 2.6 (Generazione di un sottogruppo)

Sia $S = \{x_1, \ldots, x_n\} \subset G$ un sottoinsieme di un gruppo G; l'insieme $H := \{x \in G : x = x_1 * \ldots * x_n\} \cup \{x^{-1} \in G : x \in S\} \cup \{e \in G\}$ è un sottogruppo di G ed è detto generato da S, dove gli elementi di S sono detti i generatori di H. In questo caso, si scriverà che $H = \langle S \rangle \equiv \langle x_1, \ldots, x_n \rangle$.

Esempio 2.3. Si nota che $\{1\}$ è un generatore per il gruppo additivo degli interi, visto che ogni $z \in \mathbb{Z} \setminus \{0\}$ si può scrivere come $1+1+\ldots+1$, o $-1-1-\ldots-1$, mentre l'elemento neutro ne fa parte per definizione.

Ora si definisce una notazione per indicare una ripetizione dell'operazione di composizione con lo stesso elemento. In generale, si scriverà:

$$x^n \equiv \underbrace{x * x * \dots * x}_{n \text{ volte}} \tag{2.1.1}$$

Se n=0, si definisce $x^n=e$; invece, se n=-m, si ha la seguente definizione:

$$x^{-m} = (x^{-1})^m$$

Allora si possono verificare le seguenti:

- $\bullet \ x^{n+m} = x^n x^m;$
- $\bullet \ x^{-m}x^n = x^{n-m};$
- $\bullet (x^n)^m = x^{nm}.$

Queste sono direttamente valide per la moltiplicazione, mentre per l'addizione si ha un qualcosa di analogo. Per cominciare $x^n \equiv nx$ nel caso dell'addizione, per definizione. Conseguentemente, le regole soddisfatte sono le seguenti:

$$(m+n)x = mx + nx$$
; $(mn)x = m(nx)$

Sia, G un gruppo e sia $a \in G$. Si definisce il sottogruppo H di G come quell'insieme avente tutti elementi del tipo a^n , $\forall n \in \mathbb{Z}$. In questo senso, H è generato da a. Per mostrare che è un gruppo, si nota che : $e \in H$ perché $e = a^0$; dati, poi, $a^n, a^m \in H$, anche $a^{n+m} \equiv a^n a^m \in H$ perché $n+m \in \mathbb{Z}$. Infine, l'inverso di ciascun elemento a^n appartiene ad H perché $(a^n)^{-1} \equiv a^{-n}$, che appartiene ad H perché $-n \in \mathbb{Z}$.

Definizione 2.7 (Gruppo ciclico)

Sia G un gruppo; si dice che G è ciclico se esiste $a \in G$: $\forall g \in G, g = a^n$, per qualche intero n

Riprendendo l'esempio 2.3, \mathbb{Z} è un gruppo additivo ciclico, con generatore 1. Visto che un sottogruppo di Z è quello che si è chiamato ideale, si ha la seguente.

Proposizione 2.1

Sia H un sottogruppo di \mathbb{Z} . Se H non è il sottogruppo banale, sia d il più piccolo intero in esso contenuto; allora H contiene tutti elementi della forma nd, con $n \in \mathbb{Z}$, pertanto H è ciclico

Sia G un gruppo ciclico e sia $a \in G$ il suo generatore; si hanno due casi possibili.

Caso 1: non esiste n ∈ Z>0: aⁿ = e.
Allora per ogni intero n ≠ 0, aⁿ ≠ e e, allora, G si dice infinitamente ciclico, o che a ha ordine infinito perché ogni elemento aⁿ ∈ G è distinto dall'altro.

Dimostrazione. Si assume $a^r = a^s$ per qualche coppia di interi r, s; allora $a^{s-r} = e \Rightarrow s - r = 0 \Rightarrow r = s$.

• Caso 2: $\exists m \in \mathbb{Z}^{>0} : a^m = e$.

In questo caso, a ha **ordine finito**. Evidentemente, il gruppo è finito perché i suoi elementi si ripetono periodicamente.

Sia J l'insieme degli $n \in \mathbb{Z}$ tali che $a^n = e$; allora J è un sottogruppo di \mathbb{Z} .

Dimostrazione. Si ha $0 \in J$ perché $a^0 = e$ per definizione. Se $m, n \in J$, allora $a^{m+n} = a^m a^n = e \Rightarrow m+n \in J$. Infine, visto che $a^{-m} = (a^m)^{-1} = e$, anche $-m \in J$.

Per il teorema 1.4, il più piccolo intero positivo contenuto in J genera J stesso; allora, per definizione, d è il più piccolo intero tale che $a^d = e$ e, per questo, viene chiamato **periodo** di a. In quanto tale, se $a^n = e$ per qualche intero n, allora n = ds, per qualche intero s.

Teorema 2.1

Sia G un gruppo e sia $a \in G$ un elemento di periodo d; allora a genera il sottogruppo ciclico di ordine d, i cui elementi sono e, a, \ldots, a^{d-1} .

Dimostrazione. Per mostrare l'esistenza di tale sottogruppo, si nota che per $a \in G$, di periodo d, e per generico $n \in \mathbb{Z}$, l'algoritmo euclideo afferma che n = qd + r, con $q, r \in \mathbb{Z}$ e $0 \le r < d$, per cui vale $a^n = a^r$.

Ora si mostra che gli elementi sono distinti. Se fosse $a^r = a^s$, con $0 \le r, s \le d-1$ e, per assunzione, $r \le s$, allora $a^{s-r} = e$; però $0 \le s-r < d$, quindi bisogna avere s-r = 0, da cui r = s.

2.2 Mappe tra gruppi

Dati S, S' due insiemi, una mappa fra questi è indicata con $f: S \to S'$; per $x \in S$, si indica con $f(x) \in S'$ l'immagine di x attraverso la mappa f. Per definire l'immagine di x attraverso f, si usa anche la notazione $x \mapsto f(x)$.

Data $f: S \to S'$ e $T \subset S$, si può definire una mappa che è la restrizione di f a T, assegnando $x \mapsto f(x), \ \forall x \in T \subset S$; questa si indica con $f|_T: T \to S'$.

Una mappa $f: S \to S'$ si dice **iniettiva** se $\forall x,y \in S, \ x \neq y \Rightarrow f(x) \neq f(y)$. Una mappa si dice **suriettiva** se $\forall y \in S', \exists x \in S: f(x) = y$. Infine, f è **biettiva** se è sia iniettiva che suriettiva. Il fatto che f sia biettiva permette di individuare univocamente il suo inverso, la cui esistenza è assicurata dalla suriettività, mentre l'unicità dall'iniettività.

Definizione 2.8 (Mappa inclusione)

Sia S un insieme e $T \subset S$; la mappa identità di T, id $_T$, vista come mappa id $_T : T \to S$ è chiamata inclusione e si indica con il simbolo $T \hookrightarrow S$.

Definizione 2.9 (Composizione)

Date due mappe $f: S \to T$, $g: T \to U$, si definisce la mappa composta come:

$$g \circ f : S \to U, \ (g \circ f)(x) = g(f(x))$$

Va notato che la composizione non è commutativa¹, invece è, per definizione, associativa².

Proposizione 2.2

Siano S,T,U insiemi e siano $f:S\to T,\ g:T\to U$ due mappe; allora:

• f, g iniettive $\Rightarrow g \circ f$ iniettiva;

se $f(x) = x^2$ e g(x) = x + 1, si ha $g \circ f = x^2 + 1$, mentre $f \circ g = (x + 1)^2$.

²Infatti, se f, g, h sono tre mappe tali per cui h(g(f(x))) è ben definita, allora si ha $h \circ (g \circ f) = h \circ (g(f(x))) = h(g(f(x)))$, ma anche $(h \circ g) \circ f = (h \circ g)(f(x)) = h(g(f(x)))$.

• f, g surjettive $\Rightarrow g \circ f$ surjettiva.

Definizione 2.10 (Mappa inversa)

Data $f: S \to S'$ una mappa; la sua inversa è la mappa $f^{-1}: S' \to S$ tale che

$$(f \circ f^{-1})(x') = \mathrm{id}_{S'}; \ (f^{-1} \circ f)(x) = \mathrm{id}_{S}$$

Indicare l'inversa di f con f^{-1} presuppone che l'inversa sia unica, e infatti è così.

Dimostrazione. Sia $f: S \to S'$ e siano g_1, g_2 due mappe inverse per f; ma allora:

$$\mathrm{id}_{S'}(x') = (f \circ g_1)(x') \implies (g_2 \circ \mathrm{id}_{S'})(x') \equiv g_2 = g_2 \circ (f \circ g_1) = (g_2 \circ f) \circ g_1 \equiv g_1$$

Proposizione 2.3

Sia $f: S \to S'$; allora f è biettiva se e solo se f ha un'inversa.

Dimostrazione. Si divide la dimostrazione nelle due implicazioni.

- (\Rightarrow) Si assume che f sia biettiva e si mostra che ha un'inversa. La mappa f è tale che $\forall x' \in X', \exists ! x \in X : f(x) = x';$ la mappa $x' \mapsto x$ è, allora, ben definita e questa coincide con l'inversa.
- (\Leftarrow) Si assume che f abbia un'inversa e si mostra che è biettiva. Per l'iniettività, si nota che se $x_1 \neq x_2$, allora deve essere anche $x_1' = f(x_1) \neq f(x_2) = x_2'$, altrimenti, se si avesse $f(x_1) = f(x_2) = x_1'$, $f^{-1}(x_1')$ non sarebbe una mappa ben definita perché ad un singolo elemento, ne fa corrispondere due.

Per la suriettività, il discorso è analogo: $f^{-1}: S' \to S$ non sarebbe ben definita se si avesse $x'_0 \in S': \not\exists x \in X, \ f(x) = x'_0$, allora non varrebbe $(f \circ f^{-1})(x'_0) = \mathrm{id}_{S'}$.

Nonostante la precedente proposizione, la notazione f^{-1} si usa anche quando $f: X \to Y$ non ha propriamente un'inversa. In questo caso, f^{-1} è definita come una mappa tra l'insieme dei sottoinsiemi di Y e l'insieme dei sottoinsiemi di X. Così facendo, si rende possibile avere sempre una f^{-1} perché il suo risultato può essere l'insieme vuoto (nel caso in cui f non sia suriettiva), oppure un insieme composto da più elementi nel caso in cui f non sia iniettiva.

Definizione 2.11 (Permutazione)

Sia S un generico insieme; è chiamata permutazione di S una mappa biettiva $f: S \to S$ e si indica con Perm(S) l'insieme delle permutazioni di S.

Proposizione 2.4

L'insieme Perm(S) è un gruppo, la cui legge di composizione è data dalla composizione di mappe.

Dimostrazione. Si è già mostrato che la composizione di mappe è associativa e, chiaramente, esiste la permutazione identità che è id_S.

Inoltre, se f, g sono permutazioni, allora $g \circ f$, $f \circ g : S \to S$ e sono biettive, quindi sono permutazioni. Questo mostra che Perm(S) è chiuso sotto la composizione di mappe. Infine, ogni permutazione f ha un'inversa f^{-1} perché f è biettiva per definizione.

Generalmente, per la composizione di permutazioni, si scrive direttamente $\sigma \tau$, invece di $\sigma \circ \tau$.

Definizione 2.12 (Sistemi di coordinate)

Siano gli Y_1, \ldots, Y_n degli insiemi; si definisce sistema di coordinate una mappa

$$f: X \to \prod_{i=1}^{n} Y_i = Y_1 \times \dots \times Y_n, \ f(x) = (f_1(x), \dots, f_n(x))$$

dove $f_i: X \to Y_i, i = 1, \dots, n$.

2.3 Omomorfismi, isomorfismi e automorfismi

Definizione 2.13 (Omomorfismo)

Dati G,G' due gruppi, un omomorfismo $f:G\to G'$ è una mappa che conserva le operazioni di gruppo, cioè

$$\forall x, y \in G, \ f(x *_G y) = f(x) *_{G'} f(y)$$

 $con *_{G}, *_{G'}$ leggi di composizione, rispettivamente, di G e G'.

Si ometteranno i pedici alle leggi di composizioni, ma la distinzione è sottintesa. Per brevità, invece di specificare che in $f: G \to G'$, $G \in G'$ sono gruppi, si dirà che $f: G \to G'$ è un omomorfismo di gruppi.

Esempio 2.4. Sia G un gruppo commutativo; allora la mappa $x \mapsto x^{-1} : G \to G$ è un omomorfismo. Si nota che la richiesta che G sia commutativo è fondamentale perché si abbia tale omomorfismo; infatti, $(x * y)^{-1} = x^{-1} * y^{-1}$ solamente se G è commutativo, altrimenti $x * y * (x * y)^{-1} = e \neq x * y * x^{-1} * y^{-1}$.

Esempio 2.5. La mappa $x\mapsto e^x:(\mathbb{R},+)\to(\mathbb{R}^{>0},\cdot)$ è un omomorfismo, infatti:

$$x + y \mapsto e^{x+y} = e^x \cdot e^y$$

Questo è un esempio in cui le leggi di composizione di gruppo sono diverse perché i due gruppi sono fondamentalmente diversi.

Proposizione 2.5

Siano G, H due gruppi, con $H = \prod_{i=1}^{n} H_i$. La mappa $f: G \to H$ è un omomorfismo se e soltanto se $\forall i, f_i$ è un omomorfismo.

Proposizione 2.6

Sia $f: G \to G'$ un omomorfismo di gruppi. Allora f conserva l'unità, nel senso che f(e) = e', e conserva l'inversa, nel senso $f(x^{-1}) = f(x)^{-1}$.

Dimostrazione. Per la prima, si nota che f(e) = f(ee) = f(e) * f(e). Moltiplicando (nel senso della legge $*_{G'}$) ambo i membri per $f(e)^{-1}$, si ottiene e' = f(e). Per la seconda, sia $x \in G$ tale che $\exists f^{-1}(x)$; allora $e' = f(x * x^{-1}) = f(x) * f(x^{-1})$. Moltiplicando ambo i membri a sinistra per $f(x)^{-1}$, si ottiene $f(x)^{-1} = f(x^{-1})$. \Box

Si nota che nella proposizione di sopra, si è usata la notazione $f(x)^{-1}$ per indicare l'elemento inverso nel gruppo, ossia quell'elemento tale che $f(x) *_{G'} f(x)^{-1} = e'$, ben diverso da $f^{-1}(x)$ funzione inversa, tale che $f \circ f^{-1} = \text{id}$.

Proposizione 2.7

Siano $f: G \to G', g: G' \to G''$ due omomorfismi di gruppi; allora la loro composizione $g \circ f: G \to G''$ è un omomorfismo di gruppi.

Dimostrazione. Per calcolo diretto, si ha: $(g \circ f)(x * y) = g(f(x * y)) = g(f(x) * f(y)) = g(f(x)) * g(f(y))$.

Proposizione 2.8

Dato $f: G \to G'$ un omomorfismo di gruppi, l'immagine di f è un sottogruppo di G'.

Dimostrazione. Dati due elementi f(x) = x', $f(y) = y' \in \text{Im}(f) \subset G'$, si ha:

$$x' * y' = f(x) * f(y) = f(x * y) \in \text{Im}(f)$$

Quindi $\operatorname{Im}(f)$ è chiuso rispetto alla legge di composizione definita in G'. Anche l'inverso appartiene a $\operatorname{Im}(f)$ perché $x^{-1} \in G \Rightarrow f(x)^{-1} = f(x^{-1}) \in \operatorname{Im}(f)$. Infine, anche l'identità vi appartiene sempre perché $e \in G \Rightarrow e' = f(e) \in \operatorname{Im}(f)$.

Definizione 2.14 (Kernel di un omomorfismo)

Sia $f: G \to G'$ un omomorfismo di gruppi; il suo kernel (o nucleo) è l'insieme

$$Ker(f) := \{x \in G : f(x) = e' \in G'\}$$

Proposizione 2.9

Il kernel di un omomorfismo di gruppi $f:G\to G'$ è un sottogruppo di G.

Dimostrazione. Se $x, y \in \text{Ker}(f)$, allora $x * y \in \text{Ker}(f)$ perché f(x * y) = f(x) * f(y) = e' * e' = e'. L'identità appartiene a Ker(f) perché f(e) = e' e, per finire, se $x \in \text{Ker}(f)$, anche x^{-1} vi appartiene perché $e' = f(e) = f(x * x^{-1}) = f(x) * f(x^{-1}) = e' * f(x^{-1}) \Rightarrow e' = f(x^{-1})$.

Si considera, ora, un gruppo G e si prende un suo elemento $a \in G$; si nota che la mappa $n \mapsto a^n$ è un omomorfismo di $\mathbb Z$ in G. Questo è facile da dimostrare, ma più interessante è il fatto che il kernel di questo omomorfismo può essere composto o dal solo $0 \in \mathbb Z$, o è un sottogruppo generato dal periodo di a.

Proposizione 2.10

Sia $f: G \to G'$ un omomorfismo di gruppi; se $Ker(f) = \{e\}$, allora f è iniettivo.

Dimostrazione. Si assume, quindi, che $\operatorname{Ker}(f) = \{e\}$ e si mostra che f è iniettiva. Dati $x,y \in G, \ x \neq y$, se per assurdo, si avesse f(x) = f(y), allora $e' = f(x) * f(y)^{-1} = f(x * y^{-1}) \Rightarrow x * y^{-1} \in \operatorname{Ker}(f)$, con $x * y^{-1} \neq x * x^{-1} = e$ perché, per assunzione, $x \neq y$. Ne segue che f è iniettiva.

Un omomorfismo iniettivo fra due gruppi $G \to G'$ è chiamato **embedding** (o **iniezione**) e, come l'inclusione, si indica con $G \hookrightarrow G'$.

Proposizione 2.11

Sia $f: G \to G'$ un omomorfismo e sia $H' \subset G'$; prendendo $H = f^{-1}(H')$ come l'insieme delle $x \in G: f(x) \in H'$, allora H è un sottogruppo di G.

Si nota che nella proposizione sopra, per $H' = \{e'\}$, si ha $f^{-1}(H') \equiv \text{Ker}(f)$.

Definizione 2.15 (Isomorfismo di gruppi)

Dato $f: G \to G'$ un omomorfismo di gruppi, si dice che è un isomorfismo di gruppi se esiste un altro omomorfismo di gruppi $g: G' \to G$ e tale che $f \circ g = \mathrm{id}_{G'}$ e $g \circ f = \mathrm{id}_{G}$. In tal caso, si dirà che $G \approx G'$.

Questo significa che se uno dei due ha delle proprietà esprimibili esclusivamente in termini delle operazioni di gruppo, allora anche ogni altro gruppo isomorfo a questo conserva le stesse proprietà. Alcune di queste sono:

- la ciclicità;
- l'ordine;
- l'essere abeliano.

Proposizione 2.12

Un omomorfismo di gruppi $f: G \to G'$ che è anche biettivo è un isomorfismo.

Dimostrazione. L'esistenza di $f^{-1}:G'\to G$ è assicurata dal fatto che f è biettiva. Si deve mostrare che f^{-1} è un omomorfismo.

Siano dati $x,y \in G': f(x)=x', f(y)=y' \Rightarrow f(x*y)=x'*y',$ visto che f è un omomorfismo; allora si nota che:

$$f^{-1}(x'*y') = x*y = f^{-1}(x)*f^{-1}(y)$$

П

Dalla precedente proposizione, si ottiene il seguente teorema che permette di capire se un omomorfismo è un isomorfismo.

Teorema 2.2

Sia $f: G \to G'$ un omomorfismo di gruppi. Allora:

(a). se $Ker(f) = \{e\} \implies f$ è un isomorfismo da $G \to f(G) \equiv Im(f)$;

(b). $f: G \to G'$ è suriettiva e $Ker(f) = \{e\}$, allora f è un isomorfismo da $G \to G'$.

Dimostrazione. Si è già dimostrato che se il nucleo di f è banale, allora f è iniettiva; chiaramente f è sempre suriettiva dall'insieme di partenza nella sua immagine, quindi la tesi è verificata dalla proposizione 2.12.

Sempre per la stessa, segue direttamente il punto (b).

Definizione 2.16 (Automorfismo)

Un automorfismo di gruppi è un isomorfismo $f: G \to G'$ con $G' \equiv G$.

Si indica con $\operatorname{Aut}(G)$ l'insieme di tutti gli automorfismi definiti su G. Inoltre, se equipaggiato con la legge di composizione fra funzioni, $\operatorname{Aut}(G)$ è un sottogruppo del gruppo delle permutazioni di G.

Dimostrazione. DA DIMOSTRARE.

Definizione 2.17 (Traslazione)

Dato un gruppo G, la mappa che, per qualche $a \in G$, associa $x \mapsto a * x$, definita da $T_a: G \to G$, è chiamata traslazione. Questa, in particolare, è chiamata traslazione sinistra. La mappa inversa di una traslazione è $T_{a^{-1}}$, in quanto $x = a^{-1}ax$.

Si consideri la mappa che, per $a \in G$, associa $a \mapsto T_a : G \to \operatorname{Perm}(G)$; questa è un omomorfismo perché dati $a,b \in G$, si ha $T_{ab}(x) = abx = (T_a \circ T_b)(x)$, cioè $T_{ab} = T_a \circ T_b$. Evidentemente, questo isomorfismo è anche iniettivo perché per $a \neq b$, si ha $T_a \neq T_b$, pertanto $a \mapsto T_a$ risulta un isomorfismo su G, la cui immagine non è necessariamente coincidente con $\operatorname{Perm}(G)$.

Definizione 2.18 (Coniugazioni)

Sia G un gruppo e sia $a \in G$; si definisce coniugazione la mappa $\mathfrak{c}_a : G \to G$ tale che $x \mapsto axa^{-1}$.

È evidente che \mathfrak{c}_a è un automorfismo di G, in particolare, si definisce **automorfismo interno**. La mappa $a \mapsto \mathfrak{c}_a$ è un omomorfismo di $G \to \operatorname{Aut}(G)$, la cui legge di composizione è la composizione di funzioni.

Definizione 2.19 (Somma diretta)

Siano B_1, \ldots, B_r dei sottogruppi di un gruppo abeliano additivo A; si dice che A è somma diretta di questi se

$$A = \bigoplus_{i=1}^{r} B_i = B_1 \oplus B_2 \oplus \ldots \oplus B_r$$

cioè se $\forall x \in A, \ x = \sum_{i=1}^r b_i, \ b_i \in B_i$ è scritto univocamente come somma di elementi dei B_i .

In generale, se A è un gruppo additivo abeliano, con B, C suoi sottogruppi, allora B+C forma un sottogruppo di A, i cui elementi sono tutti della forma b+c, $b \in B$, $c \in C$.

Teorema 2.3

Sia A un gruppo abeliano; questo è somma diretta di suoi sottogruppi B, C se e soltanto se A = B + C e $B \cap C = \{0\}$. Questo è vero se e soltanto se la mappa $(b, c) \mapsto b + c : B \times C \to A$ è un isomorfismo.

Per finire, si considera l'insieme degli omomorfismi tra due gruppi abeliani additivi A, B, indicato con $\operatorname{Hom}(A, B)$. È possibile rendere questo un gruppo, definendo $f + g : A \to B$, per $f, g \in \operatorname{Hom}(A, B)$, come

$$(f+g)(x) = f(x) + g(x), \ \forall x \in A$$

Dimostrazione. Si mostra che questo, così definito, è un gruppo. Intanto si osserva l'associatività:

$$((f+g)+h)(x) = (f+g)(x) + h(x) = f(x) + g(x) + h(x)$$
$$(f+(g+h))(x) = f(x) + (g+h)(x) = f(x) + g(x) + h(x)$$

da cui f + (g + h) = (f + g) + h. Si ha anche l'elemento unità rispetto a +, indicato con 0, che ad ogni elemento di A, assegna l'elemento nullo di B, che risulta un omomorfismo.

Per finire, si definisce l'elemento -f con la proprietà che f + (-f) = 0 e si mostra che f + g e -f sono omomorfismi:

$$(f+g)(x+y) = f(x+y) + g(x+y) = f(x) + f(y) + g(x) + g(y) = (f+g)(x) + (f+g)(y)$$

е

$$(-f)(x+y) = -(f(x+y)) = -(f(x) + f(y)) = -f(x) - f(y)$$

Quindi Hom(A, B) è un gruppo.

2.4 Classi laterali e sottogruppi normali