Vorlesung Analysis II

July 18, 2025

Teil 3: Gewöhnliche Differentialgleichungen

an 23: Differentialgleichungssysteme

Stichworte: DGLsysteme (Linear 1. ordnung, Konstante Koeff.), Jordan-Normalform

Literatur: frühere Vorlesung in Lineare Algebra II, Kapitel 1 14.

- 23.1. Einleitung: Wir lösen DGLsysteme 1. Ordnung (Linear mit Konstanten Koeffizienten) durch Anwenden des Satzes von der Jordan-Normalform aus der Linearen Algebra II.
- 23.2. Motivation: Manche DGLn, etwa Lineare höhere Ordnung, lassen sich in DGLsysteme umformen und in Matrixform bzw. mit Funktionen bestehend aus mehreren Komponenten Kurzgefasst notieren und Lösen.
- **23.3.** <u>Vereinbarung:</u> $y: \mathbb{R} \to \mathbb{C}^n$, $y(x) = \begin{pmatrix} y_1(x) \\ y_2(x) \\ \vdots \\ y_n(x) \end{pmatrix}$ sei eine Funktion auf \mathbb{R} (der Zeit x) die Komponentenfunktionen $y_1, ..., y_n$ seien stetig diff'bar.

dazu sei $y': \mathbb{R} \to \mathbb{C}^n, \ x \mapsto y'(x) := \begin{pmatrix} y_1(x) \\ y_2(x) \\ \vdots \\ y_n(x) \end{pmatrix}$ die Ableitung. Sie ist stetig auf \mathbb{R} .

Weiter sei $A:=(a_{ij})\in\mathbb{C}^{n\times n}$ eine fest gewählte n x n- Matrix.

23.4. Bezeichnung: (i) Wir nennen eine Abb. $D: y \rightarrow D(y):=y'-Ay$, d.h. $(D(y))(x) := y'(x) - A \cdot y(x)$,

einen Linearen Differential-Operator erster Ordnung mit Konstanten Koeffizienten.

(ii) Für eine stetige Funktion $b: \mathbb{R} \to \mathbb{C}^n, \mapsto b(x) := \begin{pmatrix} b_1(x) \\ \vdots \\ b_n(x) \end{pmatrix}$

heißt D(y)=b, d.h. y'=Ay+b ein <u>Lineares Differentialgleichungssystem</u> erster Ordnung \rightarrow d.h. maximal erste Ableitung kommen vor

mit Konstanten Koeffiziente n).

die Einträge von A sind Konstant, d.h. keine Veränderlichen Funktionen in x

Ist $b(x) \equiv 0$ (konstant-0-Fkt.) so reden wir von einem <u>homogenen System</u>, sonst von einem <u>inhomogenen</u> System.

23.5. Bem.: Haben $D \in Hom(\varphi^1(\mathbb{R}, \mathbb{C}^n), \varphi^0(\mathbb{R}, \mathbb{C}^n))$ als Homomorphismus zwischen Funktionenräumen $(\text{sind ja } \mathbb{R} - VRe)$ was die Benennung "linearer Differentialoperator" rechtfertigt. In der Funktionalanalysis heißen Abb.en zwischen Funktionsräumen Operatoren.

Die Struktur der Lösungsmenge erhält man aus der Linearen Algebra I:

23.6. Lemma: Ist y_p (irgend)eine (partikuläre/spezielle) Lösung des inhomogenen Systems Dy=b, d.h. von y'-Ay=b, so ist $\underline{\mathbb{L}(D;b)} := \{y_p + y_H; y_H \in ker D\}$ die Gesamtheit aller Lösungen.

Dabei besteht ker(D) aus allen Lösungen der homogenen Gleichung $Dy_H = 0$,

d.h. von $y'_H - Ay_H = 0$.

Bew.: Vgl. Vorl. zur LA I, bzw. $y \in \mathbb{L}(D;b) \Leftrightarrow y - y_p \in ker(D) = D^{-1}(\{0\})$.

Die homogene Gleichunge hat folgende Eigenschaft.

23.7. <u>Lemma:</u> Ist y Lösung von D=0, d.h. ist $\underline{y'}=A\underline{y}$ (d.h. ist homogene Lsg.),

und ist $x_0 \in \mathbb{R}$ eine Nullstelle von y, d.h. $y(x_0) = 0$,

so ist y(x)=0 für alle $x \in \mathbb{R}$, d.h. $y(x)\equiv 0$ Konstant =0.

Bew.: Für jedes $t \in \mathbb{R}$ ist y'(t) = Ay(t), so dass $y'_i(t) = \sum_{i=1}^n \alpha_{ii} y_i(t)$

Durch Integration folgt

 $y_i(x) = y_i(x_0) + \int_{x_0}^x y_i'(t)dt = 0 + \int_{x_0}^x \alpha_{ij}y_j(t)dt.$ mit $\eta(x) := \max\{\max\{|y_i(t); \text{für t mit } |t - x_0| \le |x - x_0|\}; i = 1, ..., n\}$ und $\underline{\mathbf{a}} := \max\{|\alpha_{ij}|; \text{alle } i, j\}$ ist

 $0 \le \eta(x) \le \int_{x_0}^x n \cdot a \cdot a \cdot \eta(t) dt \le \eta(x) \cdot n \cdot a \cdot |x - x_0|.$

Ist x so nahe bei x_0 , dass $na|x-x_0|<1$, folgt daraus notwendig $\eta(x=0)$, also auch $\eta(t)=0$ für $|t-x_0|<|x-x_0|$.

Dieser Schluss ist

iterierbar

erst:y(x)=0 für alle x nahe x_0 , dann alle x(induktiv) erreichbar...

- **23.8. Folgerung:** (i) Für jedes $y_0 \in \mathbb{C}^n$, hat das Anfangswertaufgabe Dy=b, $\mathbf{v}(0) \stackrel{!}{=} y_0$, höchstens eine
- (ii) Die Abbildung $\varphi: kerD \to \mathbb{C}^n, y \mapsto y(0),$ ist <u>injektiv</u>, und damit ist dim ker $D \leq n$.
- 23.9. Bem.: Tatsächlich gibt es bei (i) stets eine Lösung, dann also eindeutig. Denn: Mit 23.10. sehen wir, dass φ bijektiv ist und dann dim ker D=n ist.

Bew.: (i): Sind y_1, y_2 Lösungen von Dy=b, jeweils mit $y_1(0) = y_0 = y_2(0)$,

 $y(0) = y_1(0) - y_2(0) = y_0 - y_0 = 0,$

so dass $y_1(x) = y_2(x)$ für alle $x \in \mathbb{R}$ folgt nach Lemma 23.7.

(ii): Stimmen zwei Lösungen von Dy=0 an der Stelle $x_0 = 0$ überein, so sind sie nach (i) identisch. Dies sagt gerade, dass φ injektiv ist.

Nun zeigen wir folgende Existenz-und Eindeutigkeitssatz:

23.10. Satz: Die Abbildung $\varphi: kerD \to \mathbb{C}^n, y \mapsto y(0)$, ist auch surjektiv und damit bijektiv, d.h. zu jeden $y_0 \in \mathbb{C}^n$, gibt es genau eine Lösung der homogenen Anfangswertaufgabe $Dy = y' - Ay = 0, \ y(0) = y_0$.

Mit Folgerung 23.8. ist dies äquivalent dazu, dass Dy=0 genau n Linear unabhängige Lösungen besitzt. Wir führen den Beweis schrittweise durch.

2

23.11. Reduktion: Es genügt, die Aussage im Fall zu beweisen, wenn A in JNF←Jordan-Normalform vorliegt!

Bew.: Ist y'=Ay und G eine (konstante) invertierbare Matrix ($\in \mathbb{C}^{n \times n}$), so ist für die Funktion $z := G^{-1}y$, also $z(t) = G^{-1} \cdot y(t)$, die Ableitung dann $z' = G^{-1}y'$, und damit $\underline{z}' = G^{-1}y' = G^{-1}AGG^{-1}y = \underline{G^{-1}AGZ}$, folglich z Lösung von $z' = (G^{-1}AG)z$, wobei man den AW $z(0) = G^{-1}y(0)$ hat. Es genügt also, die Beh. für das transformierte System zu beweisen, und dabei kann man durch Wahl von G die Matrix $G^{-1}AG$ in JNF erreichen laut Satz der Linearen Algebra II zur Jordan-Normalform.

23.12. Spezialfall: Die Matrix A habe JNF mit genau einem Jordan-Kasten

eine Basis von ker D, d-h- der Lösung von z'=Az.

<u>Bew.:</u> Zu betrachten ist $z'(x) = Az(x) = (\lambda I_n + E_n)z(t)$.

Mit einem noch zu bestimmenden Vektor $\underline{c(x)} = \begin{pmatrix} c_1(x) \\ \vdots \\ c_n(x) \end{pmatrix}$ setzen wir an: $\underline{z(x)} := e^{\lambda x} \cdot c(x)$.

Dies ergibt für alle x die zu erfüllende Gleichung $\underline{z'(x)} = e^{\lambda x} \underbrace{(\lambda c(x) + c'(x))}_{\text{laut Produktregel}} \stackrel{!}{=} (\lambda I_n + E_n) e^{\lambda x} c(x) = e^{\lambda x} \underbrace{(\lambda c(x) + II_n c(x))}_{\text{laut Produktregel}}$

 $e^{\lambda x}(\lambda c(x) + U_n c(x)) \Leftrightarrow c'(x) = E_n c(x).$

In Komponenten aufgeschrieben lautet die letzte Gleichung: $\underline{c'_i(x)}$ $\begin{cases} c_{i+1}(x); & 1 < n, \\ 0; & i = n \end{cases}$

und die Spalten der oben notierten Matrix C sind offenbar Lösungen dieser Gleichung. Da C invertierbar ist, sind sie Linear unabhängig und it Folgerung 23.8 also eine Basis.

23.13. Allgemeiner Fall: Sei A in (beliebiger) JNF gegeben, also als A=

mit Jordan-Kästen $J_1, ..., J_k$. Zu jedem Jordan-Kasten J_i bilde man entsprechend den Spezialfall 23.12 die <u>zugehörige Matrix</u> $C_i(x)$ und ordne all diese Matrix an zur neuen Matrix

 $\underline{C(x)} = .$

Dann sind die Spalten von C linear unabhängig und Lösungen von z'=Az, womit auch Satz $\underline{23.10.}$ gezeigt ist.

23.14. Bem.: Die DGL $u^{(n)} + a_{n-1}u^{(n-1)} + ... + a_1u' + a_0u = f$ aus an21 kann mir der Substitution $y_1 = 0, y_2 = u' = y'_1, y_3 = u'' = y'_2, ..., y_n = u^{n-1} = y'_{n-1}$ auf das System 1. Ordnung