Educational Investment in Spatial Equilibrium: Evidence from Indonesia

Allan Hsiao University of Chicago

June 7, 2022

How does migration shape large-scale educational investment?

- Governments invest \$3 trillion in education annually (World Bank 2022)
 - In Indonesia, 61,807 new primary schools (Sekolah Dasar INPRES program, 1973-1978)
- Educational investment targets students locally
 - But graduates migrate and seek employment nationally

This paper

- Aggregate and distributional effects of the INPRES program
 - Difference-in-difference with long-run outcomes (Duflo 2001)
 - Spatial heterogeneity in returns to education + implications for program design
- Spatial equilibrium model of complementary education + migration decisions
 - Returns to education: rural incentives depend on urban wages (if mobile)
 - Regional convergence: rural schools increase urban output (if mobile)
- **Results:** aggregate output \uparrow (8%), regional inequality \uparrow (12%)
 - Mobility magnifies both effects

Literature

- Education and migration at scale in general equilibrium
 - Education: Khanna 2021, Dinerstein et al. 2022 (no migration)
 - Migration: Dahl 2002, Bryan et al. 2014, Bryan & Morten 2019 (no education)
 - Both: Eckert & Kleineberg 2021, Agostinelli et al. 2022 (no school construction)
- INPRES program evaluation with aggregate effects and counterfactuals
 - Duflo 2001/2004, Martinez-Bravo 2017, Ashraf et al. 2020, Bazzi et al. 2021
- Place-based policy with portable human capital benefits
 - Glaeser & Gottlieb 2008, Kline & Moretti 2014, Busso et al. 2013, Austin et al. 2018

Data and Stylized Facts

The INPRES program built 62,000 new primary school (1973-1978)

Data

- Treatment at district level
 - INPRES school construction (1973-1978)
 - Pre-program primary schools, child populations, enrollment rates
- Long-run outcomes at individual level
 - SUSENAS household surveys (2011-2014)
 - Districts of residence and birth, years of schooling, monthly wages

Difference-in-difference variation in school construction (Duflo 2001)

$$Y_{ijk} = \delta_j + \delta_k + \beta S_j T_k + C_j T_k \phi + \varepsilon_{ijk}$$

$$Y_{ijk} = \delta_j + \delta_k + X_j S_j T_k \beta + C_j T_k \phi + \varepsilon_{ijk}$$

- Young vs. old students in age cohorts k
 - Young exposed to new schools, but old not
- Many vs. few new schools in origin districts j
 - ullet More schools o bigger difference between young and old cohorts

Long-term education and wage effects

	Treatment		
Outcomes	Estimate	SE	Obs
Years of schooling	0.103**	(0.0424)	233,517
 For wage earners 	0.121**	(0.0495)	89,404
Log monthly wages	0.0195**	(0.00916)	89,404

Long-term education and wage effects

	Placebo		
Outcomes	Estimate	SE	Obs
Years of schooling	-0.0176	(0.0318)	196,308
 For wage earners 	0.0120	(0.0566)	55,091
Log monthly wages	-0.00765	(0.00890)	55,091

Heterogeneous returns to education by CIC (Athey & Imbens 2006)

Migration levels are high and increasing in labor market access

- Average migration rate is 26%, and distance is 576 km
 - 16% cross-province vs. 31% cross-state in the US (ACS 2013-2014)
 - Many of those exposed to new schools migrate elsewhere
- Labor market access captures proximity to high urban wages

$$\mathsf{MA}_d = \sum_{d'} \mathsf{w}_{d'} \mathsf{popden}_{d'} \quad \mathsf{for} \quad \mathsf{w}_{d'} \propto (1 + \mathsf{dist}_{dd'})^{-2}$$

Migration levels are high and increasing in labor market access

INPRES effects are driven by labor market access

But INPRES does not change migration patterns

Outcomes	Estimate	SE	Obs
Migrant	0.0244	(0.0194)	244,793
Distance if migrant (km)	-5.097	(7.706)	62,717
Migrant to urban	0.0284	(0.0307)	242,646
Migrant to rural	0.0259	(0.0236)	244,793

- Consistent with model: INPRES affects costs of education, not migration
- In counterfactuals, INPRES effects under different migration costs

Spatial equilibrium model

- Government constructs schools
 - Build human capital that is portable
- 2 Individuals invest in education
 - ullet In a district, more schools o better access o lower costs of education
- Individuals migrate for work
 - Mobility gives rural students access to high urban wages
 - But also drains rural regions as students leave after graduation

School construction $a = \{a_{\ell}\}$, districts ℓ

CES aggregate output

$$Y(a) = \left\{ \sum_{\ell} \left[A_{\ell} H_{\ell}(a_{\ell}) \right]^{\frac{\sigma-1}{\sigma}} \right\}^{\frac{\nu}{\sigma-1}}$$

• Inequality (people vs. places)

$$D(a) = Y^{U}(a) - Y^{R}(a)$$
 for $Y_{\ell}^{U}(a) = \lim_{\sigma \to \infty} U_{\ell} Y_{\ell}(a)$

• Costs C(a) from data

Frictions: education and migration costs

$$U(e,\epsilon) = \alpha_{\ell} \varepsilon_{jk\ell}^{\alpha} \left[\underbrace{(1 - \tau_{j\ell}^{m}) w_{\ell} h_{jk} \varepsilon_{jk\ell}^{h} e^{\eta} \epsilon}_{\text{net labor income}} - \underbrace{(1 + \tau_{jk}^{e}) c \varepsilon_{jk\ell}^{c} e}_{\text{cost of education}} \right]$$

- Individual i, origin j, age cohort k, destinations ℓ
 - ullet Each destination has education choice e^* and utility $U(e^*,\epsilon)$
 - Given amenities α_ℓ , migration costs $au_{i\ell}^m$, base wages w_ℓ , Fréchet draw ϵ
 - And human capital h_{jk} , education costs au_{jk}^e across destinations
- Compare destinations, then pick best to get choice probabilities

$$\pi_{jk\ell} = rac{ ilde{w}_{jk\ell}^{ heta}}{\sum_{\hat{\ell}} ilde{w}_{jk\hat{\ell}}^{ heta}} \quad ext{for} \quad ilde{w}_{jk\ell} \equiv lpha_{\ell}^{1-\eta} (1 - au_{j\ell}^{m}) w_{\ell} ilde{arepsilon}_{jk\ell}$$

Choice probabilities, education, and wages

LHS variables observed in data

$$\begin{split} \pi_{jk\ell} &= \tilde{w}^{\theta}_{jk\ell} / \sum_{\hat{\ell}} \tilde{w}^{\theta}_{jk\hat{\ell}} \\ \overline{\text{educ}}_{jk\ell} &= \mathbb{E}\left[e^* \mid \text{individuals choose } \ell\right] \\ \overline{\text{wage}}_{jk\ell} &= \mathbb{E}[w_{\ell}h_{jk}\varepsilon^h_{jk\ell}e^{\eta}\varepsilon \mid \text{individuals choose } \ell, \, e = e^*] \end{split}$$

Education and wages are increasing in labor market access

$$\overline{\mathsf{educ}}_{jk\ell}$$
, $\overline{\mathsf{wage}}_{jk\ell} \propto \left(\sum_{\hat{\ell}} \tilde{w}_{jk\hat{\ell}}^{\theta}\right)^{\frac{1}{\theta(1-\eta)}} \equiv \mathsf{MA}_{jk\ell}$

Equilibrium

ullet Base wages w_ℓ and prices p_ℓ

$$w_\ell = p_\ell A_\ell$$
 , $p_\ell = \left(rac{Y}{Y_\ell}
ight)^{rac{1}{\sigma}}$

• Agglomeration κ and congestion μ

$$A_\ell = ar{A}_\ell H_\ell^\kappa$$
 , $lpha_\ell = ar{lpha}_\ell igg(\sum_{j,k} N_{jk} \pi_{jk\ell} igg)^{-\mu}$

Human capital function (INPRES as IV)

$$\mathsf{wage}_i \propto \mathsf{hcap}_i = (\mathsf{educ}_i)^{\eta}$$

$$\downarrow \downarrow$$

$$\mathsf{log}\,\mathsf{wage}_{ijk} = \delta_j + \delta_k + \eta\,\mathsf{log}\,\mathsf{educ}_{ijk} + C_j T_k \boldsymbol{\phi} + \varepsilon_{ijk}$$

$$\mathsf{log}\,\mathsf{educ}_{ijk} = \delta_j + \delta_k + \beta S_j T_k + C_j T_k \boldsymbol{\phi} + \varepsilon_{ijk}$$

Education and migration costs (INPRES as DD)

$$1 + \tau_{jk}^{e} = (1 + S_{j}T_{k})^{-\beta}\delta_{j}\delta_{k}(1 + C_{j}T_{k})^{\phi}$$

$$1 - \tau_{j\ell}^{m} = (1 + d_{j\ell}^{P})^{-\phi_{1}}(1 + d_{j\ell}^{D})^{-\phi_{2}}$$

$$\downarrow \downarrow$$

$$\begin{split} \log \overline{\mathsf{educ}}_{jk\ell} - \log \overline{\mathsf{wage}}_{jk\ell} &= \beta \log (1 + \underline{\mathcal{S}}_j T_k) - \log \delta_j - \log \delta_k - \pmb{\phi} \log (1 + C_j T_k) \\ &- \varphi_1 \log (1 + d_{j\ell}^P) - \varphi_2 \log (1 + d_{j\ell}^D) + \log \frac{\eta}{c} - \log \varepsilon_{jk\ell}^c \end{split}$$

Other parameters (INPRES as moments)

$$\sum_{i=1}^{n} [y_i - \exp(x_i \hat{\beta})] x_i = 0$$

- Poisson pseudo-maximum likelihood (Santos Silva & Tenreyro 2006)
 - Common in spatial models to accommodate zeros in choice probabilities

$$\begin{split} & \log \overline{\mathsf{educ}}_{jk\ell} - \log \overline{\mathsf{wage}}_{jk\ell} \\ \Delta_{\ell} \log \overline{\mathsf{educ}}_{jk\ell}, \quad \Delta_{\ell} \log \overline{\mathsf{wage}}_{jk\ell}, \quad \Delta_{\ell} \log \pi_{jk\ell} \\ & \mathsf{INPRES} \ \mathsf{treatment} \ \mathsf{effects} \end{split}$$

Calibrated parameters (Bryan & Morten 2019)

- Agglomeration $\kappa = 0.05$
- Congestion $\mu = 0.075$
- Elasticity of substitution $\sigma=8$

Estimated human capital function

	Treatment		Placebo			
	OLS	IV	First stage	OLS	IV	First stage
Log years of schooling	0.393*** (0.00721)	0.688** (0.311)		0.394*** (0.00678)	-1.357 (3.523)	
$INPRES \times young$,	,	0.0284*** (0.00899)	,	,	0.00564 (0.0110)
Observations F-statistic	89,404	89,404	89,404 9.97	55,091	55,091	55,091 0.26

Estimated education and migration costs

	Treatment		Plac	Placebo	
	Estimate	SE	Estimate	SE	
β	0.110**	(0.0467)	0.0514	(0.0457)	
φ_1	0.0415***	(0.00353)	0.0388***	(0.00423)	
φ_2	0.0184	(0.0500)	-0.0299	(0.0658)	

Quantifying aggregate and distributional effects

- Evaluate relative to zero-construction counterfactual
- **Decompose** effects of mobility by mechanism
 - And separate each from the general equilibrium effects
 - Diff-in-diff avoids model but only captures net effects
- Study program design
 - By simulating alternative allocations of school construction

Computing aggregate output

- ullet New schools o new prices, productivities, migration (algorithm in paper)
 - Adjustments to observed quantities, like in exact-hat algebra (Dekle et al. 2008)

$$Y_{\ell}(a) = rac{1}{p_{\ell}} \sum_{j,k} N_{jk} \pi_{jk\ell}(a) \overline{\mathsf{wage}}_{jk\ell}(a)$$

- Special case: zero agglomeration + perfect substitution $(\kappa=0,\,\sigma\to\infty)$
 - Parameter β is enough! No need to estimate others.

$$Y'_{\ell} = \sum_{j,k} N_{jk} \pi_{jk\ell} \overline{\text{wage}}_{jk\ell} \left(\frac{1 + S'_j T_k}{1 + S_j T_k} \right)^{\frac{\rho \eta}{1 - \eta}}$$

The program increased aggregate output by 8%

	Aggregate output
Zero construction	1.00
+ Direct effect of construction	1.02
+ Migration	1.03
+ Migration-induced schooling	1.07
+ New equilibrium wages	1.08

- Small gains without migration (direct effect) or without education (sorting)
 - Complementarity between education and migration
 - Gains from sorting are already large (Bryan et al. 2014)

With especially large benefits for rural students

	Inequality (people)
Zero construction	1.00
+ Direct effect of construction	0.99
+ Migration	0.98
+ Migration-induced schooling	0.96
+ New equilibrium wages	0.95

- Expanded opportunity for rural students with high marginal returns
 - \bullet Decreased inequality between rural and urban students by 5%

But also increased inequality across places by 12%

	Inequality (places)
Zero construction	1.00
+ Direct effect of construction	0.99
+ Migration	1.02
+ Migration-induced schooling	1.11
+ New equilibrium wages	1.12

- The program explicitly aimed to encourage regional convergence
 - But mobility places convergence in tension with output gains
 - Rural regions still enjoy net gains, but urban regions gain more

Equity-efficiency tradeoff under mobility

	Aggregate	Inequality	Inequality
	output	(people)	(places)
Actual INPRES allocation	1.08	0.95	1.12
Prioritizing rural regions + Halving migration costs	1.09	0.93	1.14
	1.13	0.90	1.18
Prioritizing urban regions + Halving migration costs	1.04	0.97	1.06
	1.08	0.93	1.12

- Rural construction generates large returns but widens rural-urban gap (still Pareto)
- Alternative: schools + roads, although rural out-migration will rise (not Pareto)

Summary

- Evaluating large-scale educational investment in spatial equilibrium
 - 62,000 primary schools built in 1970s Indonesia
- Aggregate output \uparrow (8%), regional inequality \uparrow (12%)
 - Big gains for rural students who leave rural regions behind