學號: R08922167 系級: 資工碩一姓名: 曾民君

- 1. (20%) Policy Gradient 方法
 - a. 請閱讀及跑過範例程式,並試著改進 reward 計算的方式。
 - b. 請說明你如何改進 reward 的算法,而不同的算法又如何影響訓練結果?

Ans:

a. 原始的 code 表現結果

b. 這邊使用 Q Actor-Critic 方式進行訓練,其中 actor 與 critic model 皆如同助教 baseline 的 actor model, 兩著 optimizers 也如同原本baseline 的 SGD,訓練時演算法部份如下:

Initialize here

for batch in n_batches: for i in count():

- 1. Get action from actor and value
- 2. Update env and get reward
- 3. Record infors: log_porbs, values, rewards, masks
- 4. Update state
- 5. Break when finished
- # Compute loss for critic and actor
- # Update models

其中 critic 的 loss 為 TD_loss 的平方,只是每一場遊戲更新一次。而 actor 的 loss 為 TD_loss * log_probs,然後NUM_BATCH 設為3000。

已結果來看,在 Total rewards 可以比較好一點,另外 Final rewards 則可以 穩定在 0 附近徘徊,偶爾會跌到 - 170 附近。

參考: https://github.com/yc930401/Actor-Critic-pytorch

2. (30%) 試著修改與比較至少三項超參數(神經網路大小、一個 batch 中的回合數等),並說明你觀察到什麼。

Ans: baseline model (比較對象),結果同 1-a 的圖,為助教原本的程式,而分別改動以下幾個參數後的結果:

a. model 原本 3 層的 linear layers 的 input size: 8, 16, 16, 改成 8, 128, 256,已結果看來增大 model 是會有比較好的表現,但是 Final Rewards 依然是負的,可能原因是每一次遊玩都更新可能會往不好的地方更新。

b. batch 中的回合數 從原本 5 改成 20,由於改動 model 依然表現不足,所以 第二個變數想要比較 batch 中的回合數,若提升之後會不會使得每次更新都會 比較有效率,而已結果來看,的確能夠改善 只改 model 無法解決的問題

c. Optimizer 由 SGD 改成 ADAM,想看說同樣在 400 次更新情況下,這兩個 optimizer 收斂程度的差別

另外有嘗試將 model 中的 tanh 改成 relu,但train 到一個程度後,表現會突然爛掉,然後就爬不起來。

3. (20%) Actor-Critic 方法

- a. 請同學們從 REINFORCE with baseline、Q Actor-Critic、A2C 等眾多方 法中擇一實作。
- b. 請說明你的實做與前者 (Policy Gradient) 的差異。

Ans: 選擇實做 Q Actor-Critic,實做的更新策略是以 Temporal-Difference 為更新方式,是以每一次遊戲後再一起稱新 actor 與 critic,但這部份有個缺點是不太能保證每次更新為有效更新,從訓練過程中的數據圖來看來回震盪幅度非常大,且所需運算量會是只有 Actor 的兩倍多。其餘訓練中的細節與 1-b 那邊的敘述相同。

4. (30%) 具體比較(數據、作圖)以上幾種方法有何差異,也請說明其各自的優缺點為何。

Ans: 數據與作圖部份,由於前面幾題都已經有附上訓練過程數據圖,所以這邊 就直接已文字表格形式列舉出以上方法的比較 ~

Model	Total reward	Final reward	優點	缺點
Actor	最佳只能到 - 40左右	幾乎都是在 -100	Train 最快	整體表現最差
Q Actor-Critic	最佳只能在 90~100 之間	會維持在 0 附近	Total reward 表現最好	Train 最久, 表現振幅較大
Actor改	最佳能到 30 左右	比 baseline model 有更多 分數高於 -100	表現比 baseline 好許 多	表現不足保證 遊戲 reward 能高於 0
Actor改 搭配 20 場平均	最佳能到 90 左右	分數表現Actor 改還要好	每次更新最有 效率,表現振 幅較小	Train 最久

另外有嘗試將 Q Actor-Critic 搭配20 場平均更新一次,但尚未釐清 train 失敗的原因