Semestrální práce z předmětu UPA

Tomáš Dvořák A05051 Zadání semestrální práce - A05051 - Úvod do Počíta...

http://www.lfmt.cz/upa/view.php?n=A05051&&ran...

Úvod do Počítačových Architektur - cvičení

Zadání semestrální práce - A05051

- Navrhněte automat, který pracuje podle zobrazeného schématu.
 Zvolte kódování stavů a vstupů (černá ∲ipka představuje impuls I1, červená ∳ipka představuje impuls I2). Pokud nepřichází �ádný impuls, automat setrvává v aktuálním stavu
- Zamyslete se, zda pou@ijete synchronní nebo asynchronní klopné obvody, a vhodně zvolte jejich typ (JK nebo D).
- Vytvořte tabulku přechodů a výstupů se zakódovanými stavy, vstupy a výstupy.
- Sestavte Karnaughovy mapy budících a výstupních funkcí a proveďte minimalizaci. Tyto funkce zapi�te výrazem.
- Nakreslete schéma zapojení obvodu.
- Nezapomente na nulovy vstup. Nulovy vstup znamena, ze neprichazi do obvodu zadny vstupni signal (tj. na vsechny vodice vstupu prijde 0 - nebo 1, pokud si to tak zvolite). Vzhledem k tomu, ze mate jeste navic dalsi dva druhy vstupnich impulsu (I1, I2), nestaci vam jeden vodic pro vstup.

1 z 1 13.1.2009 22:19

Řešení:

Tabulka přechodů:

_				
	i1	i2	X	y0
A	В	D	A	X
В	F	С	В	y
C	Α	F	С	Z
D	Е	F	D	z
D E F	Α	С	Е	y
F	A	Е	F	X

Stav	Počet	Kód
A	4	000
В	2	100
С	3	011
D	2	101
Е	3	010
F	4	001

Vstup	kód	
i1	00	
i2	01	
X	10	

Zakódování stavů a výstupů:

	00	01	10	y0	y1
000	100	101	000	0	0
100	001	011	100	0	1
011	000	001	011	1	0
101	010	001	101	1	0
010	000	011	010	0	1
001	000	010	001	0	0

Výstup	kód (y0y1)
X	00
y	01
Z	10

Karnaughovy mapy pro přechody a výstupy:

Funkce pro stavy:

$$\begin{split} &D_0 = Q_0 * \overline{X}_0 + \overline{Q}_0 * \overline{Q}_1 * \overline{Q}_2 * \overline{X}_0 \\ &D_1 = Q_0 * \overline{Q}_1 * \overline{Q}_2 * X_1 + Q_0 * Q_2 * \overline{X}_0 * \overline{X}_1 + Q_1 * \overline{Q}_2 * \overline{X}_0 * X_1 + Q_1 * X_0 + \overline{Q}_0 * \overline{Q}_1 * Q_2 * X_1 \\ &D_2 = Q_0 * \overline{Q}_1 * \overline{Q}_2 * X_1 + Q_0 * X_1 + Q_0 * Q_2 * X_0 * Q_1 * X_1 * \overline{Q}_0 * Q_2 * X_0 + \overline{Q}_0 * \overline{Q}_1 * \overline{Q}_2 * X_1 \end{split}$$

Funkce pro výstupy:

$$Y_0 = \overline{Q_0} * Q_1 * Q_2 + Q_0 * \overline{Q_1} * Q_2$$

$$Y_1 = \overline{Q_0} * Q_1 * \overline{Q_2} + Q_0 * \overline{Q_1} * \overline{Q_2}$$

Schéma:

