Facultatea de Automatica si Calculatoare, Universitatea Politehnica din Bucuresti

Examen Partial MN

Student:		Grupa:	
Descriere curs:	MN, An I, Semestrul II	Rezultate Examen	
Titlu curs:	Metode Numerice	Subject	Punctaj
Profesor:	Conf.dr.ing. Florin POP	1	
		1	/3
Durata examenului:	90 minute	2	/ 4
			/4
Tip Examen:	Closed Book	2	/5

Materiale Aditionale: Nu! Fara telefoane mobile!!!

Numar pagini:

2	/4
3	/3
4	/3
\sum	/13

Subjecte (Seria CA)

3 puncte

1. Fie sistemul liniar Ax = b, cu $A \in R^{2\times 2}$, $b \in R^2$, $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$, $b = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. (a) Care metoda iterativa, Jacobi sau Gauss-Seidel, este mai rapid convergenta? Justificati; (b) Deduceti forma generala pentru calculul lui $x_i^{(k+1)}$, i=1:n, pentru metoda suprarelaxarii (cazul practic) apoi scriti formulele pentru $x_1^{(k+1)}$ si $x_2^{(k+1)}$ in cazul matricii de la punctul a); (c) Scrieti o functie Matlab care implementeaza aceasta metoda.

4 puncte

2. Fie $A \in R^{n \times n}$. a) Scrieti algoritmii de triangularizare folosind rotatii Givens daca matricea A este: 1. superior Hessemberg; 2. tridiagonala simetrica (memorata economic); b) O matrice de forma $P = \begin{bmatrix} c & -s \\ -s & c \end{bmatrix}$, $c^2 - s^2 = 1$ se numeste rotatie hiperbolica. Aratati ca P este o transformare J-ortogonala, adica $P^TJP = J$ si determinati cine este J. c) Fie $x \in R^2$ un vector dat. In ce conditii exista o rotatie hiperbolica astfel incat $Px = re_1$, respectiv $Px = re_2$?

3 puncte

3. Pentru matricea $A \in \mathbb{R}^{n \times n}$, fie spectrul $\lambda(A) = \{\lambda_1, \lambda_2, \dots, \lambda_n\}$ si vectorii proprii $x(A) = \{x_1, x_2, \dots, x_n\}$. a) Aratati ca A si A^T au aceleasi valori proprii si ca vectorii proprii x_i si y_i corespunzatori la doua valori proprii distincte ale lui A si A^T sunt ortogonali; b) Pentru $B = A - \lambda_i \frac{x_i y_i^T}{y_i^T x_i}$, calculati $\lambda(B)$ si x(B); c) Scrieti o functie Matlab pentru calculul valorii proprii dominante si vectorului propriu corespunzator.

3 puncte

4. BONUS. (a) Sa se arate ca metoda iterativa Jacobi converge pentru orice matrice 2 × 2 simetrica si pozitiv definita. (b) Aratati ca norma Frobenius este invarianta la o transformare ortogonala. (c) Calculati valorile si vectorii proprii pentru o matrice de rotatie si pentru un reflector elementar.