Recognized by the Federal Communications Commission

Anechoic chamber registration no.: 90462 (FCC) Anechoic chamber registration no.: IC 3463A-1

TCB ID: DE 0001

Accredited by the German Accreditation Council DAR–Registration Number

Independent ETSI compliance test house

Accredited Bluetooth® Test Facility (BQTF)

Test report no.: 2-4556-01-02/07

LANCOM XAP-40-2 Hirschmann BAT54-Rail FCC ID: U4Y-SE1I2

IC: 7049A-SE1I2

The Bluetooth word mark and logos are owned by the Bluetooth SIG, Inc. and any use of such marks by Cetecom ICT is under license

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 2 of 88

Table of contents

1. A	DMINISTRATIVE DATA	3
1.1.	ADMINISTRATIVE DATA OF THE TEST FACILITY	3
1.	.1.1 Identification of the testing laboratory	3
1.	.1.2 Organizational items	3
1.	.1.3 Applicant's details	4
1.2	ADMINISTRATIVE DATA OF MANUFACTURER / MEMBER	4
1.3	DESCRIPTION OF THE EQUIPMENT UNDER TEST (EUT)	5
	.3.1 EUT: Type, S/N etc	
	.3.2 If RF component testing only, description of additional used HW/SW	
1.3.3		
1.	.3.4 EUT operating modes	
1.	3.5 Extreme conditions testing values	7
2 T	TEST STANDARD & SUMMARY LIST OF ALL PERFORMED TEST CASES	8
3 R	F MEASUREMENT TESTING	
3.1	DESCRIPTION OF TEST SET-UP	9
3.	.1.1 Radiated measurements	9
3.	.1.2 Conducted measurements	
3.	.1.3 AC-conducted measurements	
3.2	REFERENCED DOCUMENTS	
3.3	ADDITIONAL COMMENTS	
3.4	Antenna gain	
3.5	PEAK POWER SPECTRAL DENSITY (DSSS) §15.247(E)	
3.6	PEAK POWER SPECTRAL DENSITY (OFDM) §15.247(E)	
3.7	SPECTRUM BANDWIDTH OF A DSSS SYSTEM \$15.247(A2)	
3.8	SPECTRUM BANDWIDTH OF A OFDM SYSTEM \$15.247(A2)	
3.9	MAXIMUM OUTPUT POWER (CONDUCTED) (DSSS) §15.247 (B) (3)	
3.10	\	
3.11	, , , , ,	
3.12		
3.13	` , ,	
3.14		
3.15	, , ,	
3.16	` '	
3.17	, ,	
3.18	· ·	
3.19		
3.20	CONDUCTED EMISSIONS < 30 MHz §15.107/207	66
1 D	HOTOCDADUS	71

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 3 of 88

1. Administrative data

1.1. Administrative data of the test facility

1.1.1 Identification of the testing laboratory

Company name: Cetecom ICT Services GmbH Address: Untertürkheimerstr. 6-10

D-66117 Saarbruecken

Germany

Laboratory accreditation: DAR-Registration No. DAT-P-176/94-D1

Bluetooth Qualification Test Facility (BQTF)

Responsible for testing laboratory: Harro Ames, Michael Berg

Phone: +49 681 598 0 Fax: +49 681 598 9075 email: info@ict.cetecom.de

Responsible for testing laboratory (Harro Ames, Michael Berg)

1.1.2 Organizational items

Reference No.:

Order No.:

Responsible for test report and

Harro Ames, Michael Berg

project leader:

Receipt of EUT:

2007-03-22

Date(s) of test:

2007-03-25 to 2007-04-19

Date of report:

2007-04-27

Number of report pages:

88

Number of diagram pages (annex):

Version of template: 1.6

Responsible for test report

(Harro Ames, Michael Berg)

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 4 of 88

Note:

The test results of this test report relate exclusively to the item tested as specified in this report. The CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM ICT Services GmbH.

During the test no hardware and software changes are allowed to be performed at the EUT.

1.1.3 Applicant's details

Applicant's name:	LANCOM Systems GmbH
Address:	Adenauerstr. 20/B2
	D-52146 Würselen Germany
Contact person:	Mr. Andre Krautschick
	Tel: +49 (0)2405 49936-443 Fax: +49(0)2405 49936-99
	email: Andre.Krautschick@lancom.de

1.2 Administrative data of manufacturer / member

Manufacturer's name:	- applicant -	
Address:		

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 5 of 88

1.3 Description of the Equipment under test (EUT)

1.3.1 EUT: Type, S/N etc.

Product name	Product ID	Description	S/N serial number	HW hardware status	SW software status
XAP-40-2 BAT54-Rail		Dual WLAN AP	-	-	-
Frequency Band [MHz]	Antenna		Power Supply	Temperature Range	
ISM 2.400 - 2.483,5	DSSS / OFDM	11	2*2 external antennas	External AC power supply	-20°C - +55°C

1.3.2 If RF component testing only, description of additional used HW/SW

	Product name	Product ID	Description	S/N serial number	HW hardware status	SW software status
1						
2						

1.3.3 Additional EUT information

The sample is a dual access point for dualband use. (2.4 and 5 GHz).

Inside the AP there are two identical RF parts, both are able to work on 2.4 and 5 GHz.

In this report we test the AP with one board active and the dedicated rod antennas at 2.4 GHz.

Other antennas and frequency ranges are tested in separate reports.

There are two different type of housing on the market, one is called XAP-40-2, the second is called Hirschmann BAT54-Rail.

The only difference is in the front panel, RF-part and software are identical.

There are no differences in RF behaviour.

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 6 of 88

1.3.4 Additional EUT information For IC Canada (appendix 2)

Company Number:	7049A
Model Name:	LANCOM XAP-40-2
	Hirschmann BAT54-Rail
Manufacturer (complete Adress):	LANCOM Systems GmbH
	Adenauerstr. 20/B2
	D-52146 Würselen
	Germany
Tested to Radio Standards Specification (RSS) No.:	RSS-210 Issue 6
Open Area Test Site Industry Canada Number:	IC 3463A-1
Frequency Range (or fixed frequency) [MHz]:	2412 – 2462 MHz
RF: Power [W] (max):	Rad. EIRP: 568 mW
	Conducted: 400 mW
Antenna Type:	rod antenna
Occupied Bandwidth (99% BW) [MHz]:	17.98 / 18.22
Type of Modulation:	DSSS and OFDM
Emission Designator (TRC-43):	18M0G1D / 18M3G7D
Transmitter Spurious (worst case) [μV/m in 3m]:	No peaks found
Receiver Spurious (worst case) [µV/m in 3m]:	No peaks found

ATTESTATION: I attest that the testing was performed or supervised by me; that the test measurements were made in accordance with the above-mentioned departmental standard(s), and that the radio equipment identified in this application has been subject to all the applicable test conditions specified in the departmental standards and all of the requirements of the standards have been met.

Signature:

Date: 2007-04-27

Testengineer: Harro Ames

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 7 of 88

1.3.5 EUT operating modes

EUT operating mode no.*)	Description of operating modes	Additional information
Op. 0	Normal mode	Normal temperature and power source conditions
Op. 1		low temperature, low power source conditions
Op. 3		low temperature, high power source conditions
Op. 4		high temperature, low power source conditions
Op. 5		high temperature, high power source conditions

^{*)} EUT operating mode no. is used to simplify the test report.

1.3.5 Extreme conditions testing values

Description	Shortcut	Unit	Value
Nominal Temperature / humidity	T_{nom}	°C / %	22°C / 33%
Low Temperature	T_{low}	°C	-20°C
High Temperature	T_{high}	°C	55°C
Nominal Power Source	V _{nom}	V	115V AC
Low Power Source	V_{low}	V	100V AC
High Power Source	V_{high}	V	130V AC

Type of powersource: External AC power supply with 12V DC output, delivered by the customer

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 8 of 88

2 Test standard & summary list of all performed test cases

TC identifier	Description	verdict	date	Remark
RF-Testing	FCC Part 15 §15.247 - CANADA RSS-210	pass	2007-03-28	

Test Specification Clause	Test Case	Pass	Fail	Not applicable	Not performed
None	Antenna Gain	Yes			
§15.247 (e)	Peak power spectral density	Yes			
§15.247(a2)	Spectrum Bandwidth of a DSSS /OFDMSystem 6dB/20dB/26dB BW	Yes			
§ 15.247 (b) (3)	Maximum output power (conducted)	Yes			
§ 15.247 (b) (3)	Max. peak output power (radiated)	Yes			
§15.247 (d)	Band-edge compliance of conducted emissions	Yes			
§15.205	Band-edge compliance of radiated emissions	Yes			
§15.247 (d)	Spurious Emission - conducted (Transmitter)	Yes			
§ 15.209	Spurious Emission -radiated (Transmitter)	Yes			
§ 15.247 (d)	Spurious Emissions-radiated (Receiver)	Yes			
§ 15.109	Spurious Emissions-radiated <30 MHz	Yes			
§ 15.107/207	Conducted Emissions <30 MHz	Yes			

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 9 of 88

3 RF measurement testing

3.1 Description of test set-up

3.1.1 Radiated measurements

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 25 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform with specifications ANSI C63.2-1996 clause 15 and ANSI C63.4-2003 clause 4.1.5. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analysers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63-4-2003 clause 4.2.

Antennas are conform with ANSI C63.2-1996 item 15.

150 kHz - 30 MHz: Quasi Peak measurement, 9kHz Bandwidth, passive loop antenna. 30 MHz - 200 MHz: Quasi Peak measurement, 120KHz Bandwidth, biconical antenna 200MHz - 1GHz: Quasi Peak measurement, 120KHz Bandwidth, log periodic antenna >1GHz: Average, RBW 1MHz, VBW 10 MHz, waveguide horn with lownoise preamp

3.1.2 Conducted measurements

The EUT's RF signal is coupled out by the antenna connector which is supplied by the manufacturer. The signal is connected to the spectrum analyzer. The specific losses for signal pathsis first checked within a calibration. The measurement readings on the spectrum analyzer is corrected by the specific test set-up loss. The attenuator, power divider, signaling unit and the spectrum analyzer are impedance matched on 50 Ohm.

3.1.3 AC-conducted measurements

We used the dedicated power supply delivered by the customer.

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 10 of 88

3.2 Referenced Documents

none

3.3 Additional comments

none

3.4 Antenna gain

The antenna gain is calculated by subtracting the conducted from the radiated power.

For the dedicated rod antenna, we calculated ~ 1.5 dBi at 2437 MHz. (see page 29)

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 11 of 88

3.5 Peak Power Spectral density (DSSS)

§15.247(e)

Plot 2:

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 12 of 88

Plot 3:

Results: Plot 1: Power density : = - 5.5 dBm / 3 KHz

Plot 2: Power density : = - 5.5 dBm/3 KHz Plot 3: Power density : = - 5.8 dBm/3 KHz

Limits:

Under normal test conditions only

For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 KHz band during any time interval of continuous transmission

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 13 of 88

3.6 Peak Power Spectral density (OFDM)

§15.247(e)

Plot 1:

Plot 2:

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 14 of 88

Plot 3:

Results: Plot 1: Power density : = -8.7 dBm / 3 KHz

Plot 2: Power density : = -8.7 dBm/3 KHz Plot 3: Power density : = -9.2 dBm/3 KHz

Limits:

Under normal test conditions only	For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 KHz band during any time interval of continuous transmission
-----------------------------------	---

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 15 of 88

3.7 Spectrum Bandwidth of a DSSS System

§15.247(a2)

Plot 1: 6 dB-Bandwidth (2412 MHz)

Plot 2: 6 dB-Bandwidth (2437 MHz)

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 16 of 88

Plot 3: 6 dB-Bandwidth (2462 MHz)

Plot 4: 20 dB-Bandwidth (2412 MHz)

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 17 of 88

Plot 5: 20 dB-Bandwidth (2437 MHz)

Plot 6: 20 dB-Bandwidth (2462 MHz)

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 18 of 88

Plot 7: 26 dB-Bandwidth (2412 MHz)

Plot 8: 26 dB-Bandwidth (2437 MHz)

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 19 of 88

Plot 9: 26 dB-Bandwidth (2462 MHz)

Results:

Test conditions	BANDWIDTH [MHz]				
Frequency [MHz]	2412 2437 2462				
6 dB - Bandwidth	12.16	12.02	12.31		
20 dB - Bandwidth	17.93	17.98	17.84		
26 dB - Bandwidth	19.18	19.18	19.23		
Measurement uncertainty	±1kHz				

RBW: 100 kHz / VBW 100 kHz

Limits:

Under normal test conditions only	> 500 KHz
-----------------------------------	-----------

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 20 of 88

3.8 Spectrum Bandwidth of a OFDM System

§15.247(a2)

Plot 1: 6 dB-Bandwidth (2412 MHz)

Plot 2: 6 dB-Bandwidth (2437 MHz)

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 21 of 88

Plot 3: 6 dB-Bandwidth (2462 MHz)

Plot 4: 20 dB-Bandwidth (2412 MHz)

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 22 of 88

Plot 5: 20 dB-Bandwidth (2437 MHz)

Plot 6: 20 dB-Bandwidth (2462 MHz)

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 23 of 88

Plot 7: 26 dB-Bandwidth (2412 MHz)

Plot 8: 26 dB-Bandwidth (2437 MHz)

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 24 of 88

Plot 9: 26 dB-Bandwidth (2462 MHz)

Results:

Test conditions	6 dB BANDWIDTH [MHz]		Hz]
Frequency [MHz]	2412	2437	2462
6 dB - Bandwidth	16.59	16.59	16.63
20 dB - Bandwidth	18.22	18.22	18.22
26 dB - Bandwidth	21.44	22.07	22.12
Measurement uncertainty	±1kHz		

RBW: 100 kHz / VBW 100 kHz

Limits:

Under normal test conditions only	> 500 KHz
-----------------------------------	-----------

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 25 of 88

3.9 Maximum output power (conducted) (DSSS)

§15.247 (b) (3)

Plot 1:

Plot 2:

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 26 of 88

Plot 3:

Results:

Test conditions		Max. p	eak output power [dBn	n]	
Frequency	[MHz]	2412		2437	2462
T _{nom}	V _{nom}	PK	20.63	20.35	20.13
Measurement uncertainty				±3dB	

Under normal test conditions only, for frequency range 2400-2483.5 MHz	Max. 1.0 Watt / 30 dBm
--	------------------------

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 27 of 88

3.10 Maximum output power (conducted) (OFDM)

§15.247 (b) (3)

Plot 1:

Plot 2:

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 28 of 88

Plot 3:

Results:

Test conditions			Max. p	eak output power [dBn	n]
Frequency	[MHz]	2412		2437	2462
T _{nom}	V _{nom}	PK	26.01	25.91	25.84
Measurement uncertainty			1	±3dB	

Limits:

Under normal test conditions only, for frequency range 2400-2483.5 MHz	Max. 1.0 Watt / 30 dBm
--	------------------------

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 29 of 88

MPE calculation

These equations are generally accurate in the far field of an antenna but will over predict power density in the near field, where they could be used for making a "worst case" prediction.

$S = PG/4\pi R^2$

where S = power density (in appropriate units, e.g. mW/cm²)

P = power input to the antenna (in appropriate units e.g. mW)

G = power gain of the antenna in the direction of interest relative to the isotropic radiator

R = distance to the center of radiation of the antenna (appropriate units e.g. cm)

Or

$S = EIRP/4\pi R^2$

where EIRP = equivalent isotropically radiated power

Calculation:

(Calculated for max. EIRP)

EIRP: 27.68 dBm = 586 mW

calculated at distance of 20 cm:

power density = $586 / 4\pi 20^2 = 0.117 \text{ mW/cm}^2$

Limit:

1mW/ cm² is the reference level for general public exposure according to the OET Bulletin 65, Edition 97-01 Table 1.

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 30 of 88

3.11 Max. peak output power (radiated)

§15.247 (b) (3)

Results:

Test conditions		Max. peak output power EIRP [dBm]		
Frequenc	ey [MHz]	2412	2437	2462
T _{nom} DSSS	V _{nom}	20.63 cond 22.88 rad	20.35 cond 22.48 rad	20.13 cond 22.40 rad
T _{nom} OFDM	V _{nom}	26.01 cond 27.54 rad	25.91 cond 27.49 rad	25.84 cond 27.68 rad
Measuremen	t uncertainty		±3dB	1

RBW / VBW:20~MHz

Limits:

Under normal test conditions only, for frequency range 2400-2483.5 MHz	Max. 1.0 Watt / 30 dBm
--	------------------------

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 31 of 88

3.12 Band-edge compliance of conducted emissions

§15.247 (d)

Plot 1, lowest channel

We used OFDM modulation as this is the worst case regarding used BW.

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 32 of 88

Plot 2, highest channel

We used OFDM modulation as this is the worst case regarding used BW.

Limits:

Under	norma	al test
cond	itions (only

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 5.205(c)).

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 33 of 88

3.13 Band-edge compliance of radiated emissions (DSSS)

§15.205

Plot 1: Low channel 2412 MHz,

Plot 2: Max field strength in 3m distance (single frequency) peak

Result:

resure.	Tesut.					
Frequency		Cable loss	Antenna factor	Results		
2462 MHz		22.8 dB	-6.8	123.6 dBµV/m at 3m		

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 34 of 88

Plot 3: Max field strength in 3m distance (single frequency) average

Result:

Frequency	Meter reading	Cable loss	Antenna factor	Results
2462 MHz	S	22.8 dB	-6.8	85.1 dBµV/m at 3m

Plot 4: Marker-Delta Method RBW/VBW = 1% of span

Result:

Marker-Delta-Value: 45.2 dB

This measurement was made to show that the behavior of the system is conform to FCC 15.205 (restricted bands)

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 35 of 88

Here the complete restricted band 2483,5 to 2500 MHz

Results & Limits:

Radiated field strength

The field strength was measured with an EMI measuring receiver and 1 MHz RBW / VBW for peak and with 1MHz RBW / 10Hz VBW for average at a distance of 3m.

high channel	setup	measured value (3m)	correction factor (3m)	calculated value (3m)
Max. peak value	1 MHz RBW 1 MHz VBW	107.6 dBμV/m	+16 dB	123.6 dBµV/m
Max. average value	1 MHz RBW 10 Hz VBW	69.1 dBμV/m	+16 dB	85.1 dBμV/m
Delta value	Peak 300 kHz RBW/VBW	45.2 dBμV/m		
Value at band edge	limit 54 dBµV/m			39.9 dBμV/m
Statement:				Complies

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 36 of 88

3.14 Band-edge compliance of radiated emissions (OFDM)

§15.205

Plot 1: Low channel 2412 MHz

Plot 2: Max field strength in 3m distance (single frequency) peak

Result:

Frequency	Cable loss	Antenna factor	Results
2462 MHz	22.8 dB	-6.8	121.6 dBµV/m at 3m

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 37 of 88

Plot 3: Max field strength in 3m distance (single frequency) average, measured with antenna 2

Result:

Frequency 1	Meter reading	Cable loss	Antenna factor	Results
2462 MHz		22.8 dB	-6.8	82.6 dBµV/m at 3m

Plot 4: Marker-Delta Method RBW/VBW = 1% of span, measured with antenna 2

Result:

Marker-Delta-Value: 42.6 dB

This measurement was made to show that the behavior of the system is conform to FCC 15.205 (restricted bands)

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 38 of 88

Here the complete restricted band 2483.5 to 2500 MHz

Results & Limits:

Radiated field strength

The field strength was measured with an EMI measuring receiver and 1 MHz RBW / VBW for peak and $\,$ with 1MHz RBW / 10Hz VBW for average at a distance of 3m.

high channel	setup	measured value (3m)	correction factor (3m)	calculated value (3m)
Max. peak value	1 MHz RBW 1 MHz VBW	105.6 dBμV/m	+16 dB	121.6 dBμV/m
Max. average value	1 MHz RBW 10 Hz VBW	66.6 dBµV/m	+16 dB	82.6 dBμV/m
Delta value	Peak 300 kHz RBW/VBW	42.6 dB		
Value at band edge	limit 54 dBµV/m			40.0 dBμV/m
Statement:				Complies

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 39 of 88

3.15 Spurious Emissions - conducted (Transmitter)

§15.247 (d)

Result & Limits

Emission I	Limitations				
f [MHz]	Modulation (DSSS/OFDM)	amplitude of emission [dBm]	limit max. allowed emmision power	actual attenuation below frequency of operation [dB]	results
2412	DSSS	19.57	30 dBm	-	Operating frequency
80	DSSS	-30.3		> 20 dB	pass
1602	DSSS	-53.0	-20 dBc	> 20 dB	pass
4824	DSSS	-49.6		> 20 dB	pass
2437	DSSS	19.26	30 dBm		Operating frequency
120	DSSS	-30.8		> 20 dB	pass
1602	DSSS	-56.6	-20 dBc	> 20 dB	pass
4824	DSSS	-48.3		> 20 dB	pass
2462	DSSS	19.57	30 dBm		Operating frequency
120	DSSS	-30.7		> 20 dB	pass
1642	DSSS	-57.4	-20 dBc	> 20 dB	pass
4924	DSSS	-53.0		> 20 dB	pass
Measurem	ent uncertainty	± 3dB			

RBW: 100 kHz VBW: 100 kHz

Under normal test conditions only	In any 100 kHz bandwidth outside the frequency band at least 20dB below the highest level of the desired power. In addition, radiated emissions which fall in the restricted
	bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Note: For emissions that fall into restricted bands you find the radiated emissions later in the report.

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 40 of 88

2412 MHz DSSS

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 41 of 88

2437 MHz DSSS

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 42 of 88

2462 MHz DSSS

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 43 of 88

2412 MHz OFDM

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 44 of 88

2437 MHz OFDM

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 45 of 88

2462 MHz OFDM

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 46 of 88

3.16 Spurious Emissions - radiated (Transmitter) DSSS §15.209

Plot 1: 0.03 - 4 GHz vertical / horizontal (lowest channel)

.

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 47 of 88

Plot 2: 4- 12 GHz (lowest channel)

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 48 of 88

Plot 3: 12 – 25 GHz horizontal / vertical (valid for all three channels)

There were no peaks found.

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 49 of 88

Plot 4: 0.03 - 4 GHz vertical / horizontal (middle channel)

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 50 of 88

Plot 5: 4- 12 GHz (middle channel)

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 51 of 88

Plot 6: 0.03 - 4 GHz vertical / horizontal (highest channel)

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 52 of 88

Plot 7: 4- 12 GHz (highest channel)

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 53 of 88

3.17 Spurious Emissions - radiated (Transmitter) OFDM

§15.209

Plot 1: 0.03 - 4 GHz vertical / horizontal (lowest channel)

.

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 54 of 88

Plot 2: 4- 12 GHz (lowest channel)

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 55 of 88

Plot 3: 12 – 25 GHz horizontal / vertical (valid for all three channels)

There were no peaks found.

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 56 of 88

Plot 4: 0.03 - 4 GHz vertical / horizontal (middle channel)

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 57 of 88

Plot 5: 4- 12 GHz (middle channel)

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 58 of 88

Plot 6: 0.03 - 4 GHz vertical / horizontal (highest channel)

.

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 59 of 88

Plot 7: 4- 12 GHz (highest channel)

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 60 of 88

Results: (black line on the plots)

STATE OF THE STATE								
SPURIOUS	SPURIOUS EMISSIONS LEVEL §15.209							
2412 MHz			2437 MHz			2462 MHz		
F [MHz]	Detector	Level	F [MHz]	Detector	Level	F [MHz]	Detector	Level
, ,	2000001	[dBµV/m]			[dBµV/m]	, ,		[dBµV/m]
No peaks fo	ound < 20 dB		line	I	[62]4 (711]			[uzu +,inj
Tro pound re	120 02							
Measuremen	nt uncertainty		±3 dB	•	•	•	•	

f < 1 GHz: RBW/VBW: 100 kHz $f \ge 1 \text{GHz}$: RBW/VBW: 1 MHz

Limits: § 15.247 (d)

In any 100 kHz bandwidth outside the frequency band at least 20dB below the highest level of the desired power. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Limits: § 15.209

Frequency [MHz]	Field strength [µV/m]	Measurement distance (m)
30 - 88	100 (40 dBμV/m)	3
88 - 216	150 (43.5 dBμV/m)	3
216 - 960	200 (46 dBμV/m)	3
above 960	500 (54 dBμV/m)	3

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 61 of 88

3.18 Spurious Emissions - radiated Receiver

§15.109 / 209

DSSS and OFDM mode, no difference in result

Plot 1: 0.03 - 4 GHz vertical / horizontal (receiver)

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 62 of 88

Plot 2: 4- 12 GHz (receiver)

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 63 of 88

Plot 3: 12-25 GHz (receiver)

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 64 of 88

Results:

Spurious E	Emissisons leve	1 [μV/m]						
CH 1 / 2 /								
f[MHz]	Detector	Level [µV/m]	f[MHz]	Detector	Level [µV/m]	f[MHz]	Detector	Level [µV/m]
No peaks found < 20 dB below limit line								
Measurement uncertainty ±3 dB								

f < 1 GHz : RBW/VBW: 100 kHz

see above plots

 $f \ge 1 GHz : RBW/VBW: 1 MHz$

Measurement distance see table

Limits: § 15.109 / 209

Frequency (MHz)	Field strength (µV/m)	Measurement distance (m)
30 - 88	100 (40 dBμV/m)	3
88 - 216	150 (43.5 dBμV/m)	3
216 - 960	200 (46 dBμV/m)	3
above 960	500 (54 dBμV/m)	3

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 65 of 88

3.19 Spurious Emissions - radiated <30 MHz Transmit mode, valid for all three channels

§15.209

Valid for OFDM and DSSS mode, no difference

Measured at 3 m distance.

Values recalculated with 40 dB/decade according to FCC rules.

Limits:

Frequency (MHz)	Field strength (µV/m)	Measurement distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 – 30.0	30 / 29.5 dBμV/m	30
30 - 88	100 / 40 dBμV/m	3
88 - 216	150 / 43.5 dBμV/m	3
216 - 960	200 / 46 dBμV/m	3
above 960	54 dBμV/m	3

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 66 of 88

3.20 Conducted Emissions <30 MHz

§15.107/207

(measured with the 110V AC power supplied by the customer)

Transmit mode

Valid for OFDM and DSSS mode and all three channels

Plot 1: CISPR 22

We measured in TX and RX mode, L1 and N floating and grounded, max value was hold.

Limits:

Under normal test conditions only	0.15 to 0.5 MHz, 66-56 dbμV QP, 56-46 dBμV AV		
	0.5 to 5.0 MHz, 56 dBμV QP, 46 dBμV AV		
	5.0 to 30 MHz, 60 dBμV QP, 50 dBμV AV		

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 67 of 88

3.21 Used Testequipment

Anechoic chamber C:

Device	Manufacturer	Type	S/N Number	Inv. No. Cetecom
Spektrum Analyser	HP	8566B	2747A05306	300001000
Spektrum Analyser Display	HP	85662A	2816A16541	300002297
Quasi-Peak-Adapter	HP	85650A	2811A01131	300000999
Power Dupply	HP	6032A	2818A03450	300001040
Power Attenuator	Byrd	8325	1530	300001595
Bikonical Antenna	EMCO	3104	3758	300001602
Log. Period. Antenna	EMCO	3146	2130	300001603
Double Ridged Antenna	EMCO	HP 3115P	3088	300001032
Active Loop Antenna	EMCO	6502	2210	300001015
Antenna VDE/FCC		HP11965B		300002298
SRM-Drive	HP	9144A	2823e46556	300001044
Software	HP	EMI		300000983
Busisolator	Kontron			300001056
Absorberhalle	MWB		87400/02	300000996
Salzsäule	Kontron			300001055
Antenna	R&S	HMO20	832211/003	300002243
Indukt.Tast Antenna	R&S	HFH 2 Z4	881468/026	300001464
System-Rack	HP I.V.	85900	*	300000222
Spectrum Analyzer	HP	8566B	2747A05275	300000219
Quasi-Peak-Adapter	HP	85650A	2811A01135	300000216
RF-Preselector	HP	85685A	2837A00779	300000218
Rahmen Antenne	R&S	HFH2-Z2	891847-35	300001169
Leitungsteiler	HP	11850C		300000997
Breitband-Hornantenne EMI	HP	35155P		300002300
PC	HP	Vectra VL		300001688
VHF Meßantenne	Schwarzbeck	VHA 9103		300001778
Spectrum Analyzer Display	HP	85662A	2816A16497	300001690
VHF Meßantenna	Schwarzbeck	VHA 9103		300001780
Biconical Antenna	EMCO	3104 C	9909-4868	300002590

SRD Laboratory:

	300001207	Туре	S/N Number	Inv. No. Cetecom
Device				
Spectrum Analyzer	300001208	494AP	B010241	300000863
Spectrum Analyzer	HP	71210A (70000)	2731A02347	300000321
Spectrum Analyzer Display	HP	70206A	2840A01553	300002017
Reference Frequency	HP	70310A	2736A00707	300002018
Local Oscillator	HP	70900A	2842A02221	300002019
ZF-Modul 10Hz-300 kHz	HP	70902A	2840A02145	300002020
ZF-Modul 100 kHz-3 MHz	HP	70903A	2835A01069	300002021
HF-Teil für 71210A 100Hz- 22GHz	HP	70908A		300002022
Spectrum Analyzer 2	HP	85660B	3138A07614	
Spectrum Analyzer Display 2	HP	85662A	3144A20627	

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 68 of 88

Signal Generator DC-600 KHz	HP	8904A	2822A01213	300001157
Signal Generator DC-600 KHz	HP	8904A	2822A01214	300001158
Powersupply	HP	6038A	3122A11097	300001204
Netznachbildung	R&S	ESH3-Z5	828576/020	300001210
Amplituden Controller	R&S	SMDU-Z2	871829/051	300002309
Trenntrafo	Erfi	913501	0,700,700	300001205
Trenntrafo	Grundig	RT5A	9242	300001627
Relais Matrix	HP	3488A	2719A15013	300001156
Multimeter	Siemens	Multizet		300001102
Peak Power Calibrator	HP	8900B		300001084
Schallgeber	Schomandl	SG 1	10159	300001209
Schallgeber	Schomandl	SG 2	10176	300002473
Filter	FSY Microwave	202	10170	300001206
Attenuatorer	Pro Nova			300002476
Klimaschrank	Heraeus Voetsch	VUK04/500		300001012
Spectrum Analyzer 3	HP	8566A	1925A00257	300001012
Spectrum Analyzer Display 3	HP	85662	1925A00860	300001090
Oszilloscope	Tektronix	2432	110261	300001165
Radiocom. Analyzer	R&S	CMTA 54	894043/010	300001105
Powersupply	HP	6038A	2848A07027	300001173
Signal Generator 0.01-1280 MHz	HP	8662A	2224A01012	300001174
Signal Generator (Funktions)	R&S	AFGU	862490/032	300001110
Trenntrafo	Erfi	MPL	91350	300001201
Relais Matrix	R&S	PSU	893285/020	300001133
Power Meter	HP	436A	2101A12378	300001175
Powersensor	HP	8484A	2237A10156	300001130
Powersensor	HP	8482A	2237A16136	300001140
Relais Matrix	R&S	PSU	282628/004	300001139
Powersupply	Zentro	150	2007	300001211
Oszilloscope	Tektronix	7633	2007	300001103
Klimaschrank	Heraeus Voetsch	VUK04/500	32926	300001111
Quasi-Peak Adapter	HP	85650A	2811A01204	300002308
Radiocom. Analyzer	R&S	CMTA 84	894199/012	300002300
Oszilloscope	HP	54510A	3022A02062	300001170
Funkmeßplatz	Schomandl	FD1000	34982	300001202
Signal Generator	R&S	SMPC	882416/019	300001113
Frequency counter	HP	5340A	2116A08138	300001104
Power Meter	HP	436A	2031U01461	300001101
Powersensor	HP	8482A	2031001101	300001106
Powersensor	HP	8484A		300001107
Powersensor	HP	8485A		300001107
Powersupply	HP	6038A	2752A04866	300001161
Reflectionsmeter	R&S	NAP	879191	300001101
Signal Generator NF	R&S	SPN	880139/068	300001132
Trenntrafo	Erfi	MPL	91350	300001142
Attenuator	JFW	30 db	1350h/104	300001131
Attenuator	JFW	10 db	1350h/104 1350h/103	300001703
Attenuator	JFW	20 db	1350h/106	300001704
Attenuator	JFW	20 db	1350h/105	300001703
Filter	Spinner	153755	155011/105	300001700
THE	Phimei	133133		500001791

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 69 of 88

Powersensor	HP	8484A	2237A10494	300001666
Powersupply	HP	6038A	3122A11097	300001000
Netznachbildung	R&S	ESH3-Z5	828576/020	300001204
Amplituden Controller	R&S	SMDU-Z2	871829/051	300001210
Trenntrafo	Erfi	913501	8/1829/031	300002309
			0242	
Trenntrafo	Grundig	RT5A	9242	300001627
Relais Matrix	HP	3488A	2719A15013	300001156
Multimeter	Siemens	Multizet		300001102
Peak Power Calibrator	HP	8900B	10150	300001084
Schallgeber	Schomandl	SG 1	10159	300001209
Schallgeber	Schomandl	SG 2	10176	300002473
Filter	FSY Microwave			300001206
Attenuatorer	Pro Nova			300002476
Klimaschrank	Heraeus Voetsch	VUK04/500		300001012
Spectrum Analyzer 3	HP	8566A	1925A00257	300001098
Spectrum Analyzer Display 3	HP	85662	1925A00860	300002306
Oszilloscope	Tektronix	2432	110261	300001165
Radiocom. Analyzer	R&S	CMTA 54	894043/010	300001175
Powersupply	HP	6038A	2848A07027	300001174
Signal Generator 0.01-1280 MHz	HP	8662A	2224A01012	300001110
Signal Generator (Funktions)	R&S	AFGU	862490/032	300001201
Trenntrafo	Erfi	MPL	91350	300001155
Relais Matrix	R&S	PSU	893285/020	300001173
Power Meter	HP	436A	2101A12378	300001136
Powersensor	HP	8484A	2237A10156	300001140
Powersensor	HP	8482A	2237A06016	300001139
Relais Matrix	R&S	PSU	282628/004	300001214
Powersupply	Zentro		2007	300001109
Oszilloscope	Tektronix	7633		300001111
Klimaschrank	Heraeus Voetsch	VUK04/500	32926	300001500
Quasi-Peak Adapter	HP	85650A	2811A01204	300002308
Radiocom. Analyzer	R&S	CMTA 84	894199/012	300001176
Oszilloscope	HP	54510A	3022A02062	300001202
Funkmeßplatz	Schomandl	FD1000	34982	300001115
Signal Generator	R&S	SMPC	882416/019	300001162
Frequency counter	HP	5340A	2116A08138	300001104
Power Meter	HP	436A	2031U01461	300001105
Powersensor	HP	8482A	2031001101	300001106
Powersensor	HP	8484A		300001107
Powersensor	HP	8485A		300001107
Powersupply	HP	6038A	2752A04866	300001108
Reflectionsmeter	R&S	NAP	879191	300001101
Signal Generator NF	R&S	SPN	880139/068	300001132
Trenntrafo	Erfi	MPL	91350	300001142
Attenuator	JFW	30 db	1350h/104	300001131
	JFW	10 db	1350h/103	300001703
Attenuator				
Attenuator	JFW	20 db	1350h/106	300001705
Attenuator	JFW	20 db	1350h/105	300001766
Filter	Spinner	153755	2227 1 10 10 1	300001791
Powersensor	HP	8484A	2237A10494	300001666

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 70 of 88

Downsonson	HP	0.105 A	2238A00849	300001668
Powersensor		8485A		
Bandfilter	Telonic	TTF7255EE	20293-11	300001300
Bandfilter	Telonic	TTF12555EE	20292-6	300001302
Bandfilter	Telonic	TTF25055EE	20291-8	300001304
Bandfilter	Telonic	TTF50055EE	20290-7	300001305
Bandfilter	Telonic	TTF100055EE	20289-7	300001307
Bandfilter	Telonic	TTA300055EESN	20370-2	300001312
Bandstop	Telonic	TTR3753EE1	30013-1	300001314
Bandstop	Telonic	TTR723EE	20417-2	300001316
Bandstop	Telonic	TTR95-3EE	20372-4	300001318
Bandstop	Telonic	TTR1903EE	30036-4	300001320
Bandstop	Telonic	TTR3753EE	20369-5	300001321
Bandstop	Telonic	TTR750-3EE1	90177-1	300002387
Highpass	Pro Nova	HDP120-6GG	ohne	300001348
Highpass	Pro Nova	HMC500-6AA	HJ67-01?	300001350
Highpass	Narda	NHP 9000	0004	300001362
Highpass	Narda	HDP16-6GH	JV70-01	300001364
Highpass	RSD	HDP50-6GH,		300001371
		HDP200-6GG		
Highpass	RSD	2099-02-01		300000370
Signal Generator 0.1-2060 MHz	HP	8657A	2838U00736	300001009
Radio Code Analyzer	Schlumberger	SL4922		300001038
Signal Analyzer	B&K	2033		300001047
Frequency counter	HP	5386A	2704A01243	300000998
Laufzeitelement	WR-Elektronik			300001036
Powersupply Stromversorgung	Systron	M5P 40/15A	828233	300001291
Powersupply	Heiden	1108-32	1701	300001392
Powersupply	Heiden	1108-32	1802	300001383
Powersupply	Heiden	1108-32	003202	300001187
Powersupply	Zentro	LA 2x30/5GB1	2011	300001276
Powersupply	Zentro	LA 2x30/5GB2	2012	300001275
Powersupply	Zentro	LA 30/5GA	2041,2042	300001287
Trenntrafo	Grundig	RT5A	8781	300001277
Trenntrafo	Grundig	RT5A	9242	300001263
Multimeter	Goerz Elektro	Unigor 6e P	911 355	300001625
Multimeter	Goerz Elektro	Unigor 6e P	911 391	300001281
Climatic Box	Heraeus Voetsch	VUK04/500	32679	300000299
Powersensor + Att.	HP	8482B	2703A02586	300001492
Attenuator 30 dB	HP	8498A	1801A02445	300001475
Signal Generator NF	HP		2822A01203	300001004
Attenuator	Spinner	BN 534171 D	51881	300001516
Attenuator coaxial	Bird	8325	2429	300001513
Impulsbegrenzer	R&S	ESH 3 Z2		300001460
4Port Box	R&S	4Port Box	860457/005	300001472
Signal Generator 0.1-4200 MHz	HP	8665A	2833A0011	300002299
Spektrumanalyzer	R&S	FSU50	200012	300003443
Swissphone Freifeld-Messbox	Swissphone Schweiz			300002302
Trenntrafo regelbar	Grundig	RT5H	9242	300001628
Signal Generator	HP	8111A	2215G00867	300001117
٠	1	L	1	

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 71 of 88

4 Photographs

Test site:

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 72 of 88

Test site:

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 73 of 88

AC-conducted:

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 74 of 88

Test sample: XAP-40-2, front site

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 75 of 88

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 76 of 88

Test sample: BAT54-Rail, front site

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 77 of 88

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 78 of 88

Back site

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 79 of 88

Test report No.: 2-4556-01-02/07 Page 80 of 88 Date: 2007-04-20

Test report No.: 2-4556-01-02/07 Page 81 of 88 Date: 2007-04-20

Test report No.: 2-4556-01-02/07 Page 82 of 88 Date: 2007-04-20

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 83 of 88

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 84 of 88

Test report No.: 2-4556-01-02/07 Page 85 of 88 Date: 2007-04-20

Test report No.: 2-4556-01-02/07 Page 86 of 88 Date: 2007-04-20

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 87 of 88

Test report No.: 2-4556-01-02/07 Date: 2007-04-20 Page 88 of 88

