Stats 506: RECS 2015 and MouseTrap Analysis

Diana Liang

10/11/2019

Introduction to 2015 RECS

The 2015 Residential Energy Consumption Survey breaks down and quantifies how the residents of this nation consumed energy in 2015. By analyzing this data, we can find patterns to understand the current trends of energy consumption and provide insight into large scale energy crises.

PART A: National Average Winter Temperatures at Night

Average Winter Night Temp

Average Temp	Lower 95%	Upper 95%
68.10518	67.92285	68.28751

We would have assumed that residents would set their temperatures higher during the winter season, but the table above shows that residents set their temperatures slightly around 68 degrees Fahrenheit. The 95% confidence interval doesn't significantly deviate from this temperature, suggesting that both northern and southern residents, despite the temperature differences between the areas during the winter, have similar temperatures at night.

PART B: Proportions for Fuel Type

Fuel Type Prop per Division and Urban Type (Lower 95%, Mean, Upper 95%)

Division	Urban Type	Electricity	Fuel Oil/Kerosene	Natural	Other	Propane	Wood
East North Central	Rural	(19.41, 30.84, 42.27)	(0.00, 0.00, 0.00)	(31.21, 44.51, 57.81)	(0.00, 0.00, 0.00)	(6.49, 20.58, 34.67)	(1.74, 4.07, 6.4)
East North Central	Urban Area	(13.51, 17.79, 22.08)	(-0.44, 0.43, 1.3)	(75.88, 80.56, 85.24)	(0.00, 0.00, 0.00)	(-0.24, 0.48, 1.2)	(-0.06, 0.73, 1.52)
East North Central	Urban Cluster	(7.17, 14.78, 22.39)	(0.00, 0.00, 0.00)	(72.39, 81.85, 91.31)	(0.00, 0.00, 0.00)	(-1.24, 1.42, 4.09)	(-0.3, 1.95, 4.2)
East South Central	Rural	(43.66, 56.1, 68.54)	(-1.36, 1.12, 3.6)	(3.48, 16.58, 29.68)	(0.00, 0.00, 0.00)	(14.27, 19.24, 24.21)	(2.55, 6.95, 11.35)

East South Central	Urban Area	(49.71, 64.14, 78.57)	(0.00, 0.00, 0.00)	(21.42, 35.86, 50.29)	(0.00, 0.00, 0.00)	(0.00, 0.00, 0.00)	(0.00, 0.00, 0.00)
East South Central	Urban Cluster	(52.33, 68.26, 84.19)	(-1.55, 0.7, 2.96)	(5.43, 24.72, 44.02)	(0.00, 0.00, 0.00)	(1.2, 6.31, 11.42)	(0.00, 0.00, 0.00)
Middle Atlantic	Rural	(1.7, 13.1, 24.5)	(17.77, 27.16, 36.55)	(1.64, 17.37, 33.1)	(1.51, 5.36, 9.21)	(4.64, 12.69, 20.74)	(18.59, 24.33, 30.07)
Middle Atlantic	Urban Area	(11.71, 16.02, 20.33)	(10.66, 15.93, 21.2)	(57.66, 65.76, 73.86)	(-0.15, 0.54, 1.23)	(-0.15, 1.2, 2.55)	(-0.08, 0.55, 1.18)
Middle Atlantic	Urban Cluster	(-1.97, 7.47, 16.92)	(0.84, 10.25, 19.65)	(44.16, 68.21, 92.27)	(0.00, 0.00, 0.00)	(-0.77, 5.54, 11.86)	(-6.16, 8.52, 23.2)
Mountain North	Rural	(-1.05, 14.34, 29.73)	(0.00, 0.00, 0.00)	(47.51, 61.07, 74.63)	(-1.05, 0.7, 2.44)	(5.56, 13.43, 21.31)	(5.51, 10.46, 15.41)
Mountain North	Urban Area	(5.89, 15.31, 24.73)	(0.00, 0.00, 0.00)	(73.29, 83.38, 93.47)	(0.00, 0.00, 0.00)	(-0.54, 0.67, 1.88)	(-0.73, 0.64, 2.01)
Mountain North	Urban Cluster	(2.23, 16.08, 29.93)	(0.00, 0.00, 0.00)	(70.07, 83.92, 97.77)	(0.00, 0.00, 0.00)	(0.00, 0.00, 0.00)	(0.00, 0.00, 0.00)
Mountain South	Rural	(-1.12, 12.18, 25.48)	(0.00, 0.00, 0.00)	(-13.51, 16.16, 45.83)	(0.00, 0.00, 0.00)	(29.74, 33.96, 38.19)	(12.95, 37.7, 62.46)
Mountain South	Urban Area	(25.66, 45.35, 65.04)	(0.00, 0.00, 0.00)	(34.2, 53.8, 73.4)	(0.00, 0.00, 0.00)	(-1.74, 0.85, 3.44)	(0.00, 0.00, 0.00)
Mountain South	Urban Cluster	(0.00, 0.00, 0.00)	(0.00, 0.00, 0.00)	(100, 100, 100)	(0.00, 0.00, 0.00)	(0.00, 0.00, 0.00)	(0.00, 0.00, 0.00)
New England	Rural	(-0.16, 0.93, 2.02)	(49.29, 57.21, 65.14)	(-0.41, 0.43, 1.26)	(0.00, 0.00, 0.00)	(15.2, 20.77, 26.34)	(9.33, 20.67, 32.01)
New England	Urban Area	(5.94, 11.91, 17.88)	(15.46, 26.32, 37.18)	(41.42, 56.45, 71.48)	(0.00, 0.00, 0.00)	(-0.78, 3.01, 6.8)	(-0.38, 2.31, 5)
New England	Urban Cluster	(3.89, 8.95, 14.01)	(23.62, 46.66, 69.7)	(11.9, 36.99, 62.09)	(0.00, 0.00, 0.00)	(0.43, 3.08, 5.73)	(-1.7, 4.32, 10.35)
Pacific	Rural	(36.76, 49.54, 62.32)	(1.58, 5.1, 8.62)	(1.58, 4.85, 8.12)	(0.00, 0.00, 0.00)	(2.53, 18.44, 34.36)	(9.49, 22.07, 34.65)
Pacific	Urban Area	(25.4, 32.33, 39.26)	(-0.28, 0.24, 0.76)	(58.63, 65.85, 73.06)	(0.00, 0.00, 0.00)	(-0.12, 0.11, 0.34)	(0.6, 1.48, 2.36)
Pacific	Urban	(43.7, 63.05,	(0.00, 0.00,	(17.52,	(0.00,	(0.00, 0.00,	(-1.55,

	Cluster	82.39)	0.00)	32.31, 47.1)	0.00, 0.00)	0.00)	4.65, 10.84)
South Atlantic	Rural	(62.69, 70.99, 79.29)	(0.93, 5.01, 9.09)	(2.47, 8.7, 14.94)	(0.00, 0.00, 0.00)	(4.38, 8.93, 13.48)	(1.38, 6.36, 11.35)
South Atlantic	Urban Area	(49.85, 56.74, 63.63)	(1.58, 3.55, 5.52)	(28.84, 36.65, 44.46)	(0.00, 0.00, 0.00)	(0.3, 2.1, 3.9)	(0.28, 0.96, 1.64)
South Atlantic	Urban Cluster	(35.62, 61.12, 86.63)	(-1.55, 0.91, 3.37)	(7.01, 34.95, 62.89)	(0.00, 0.00, 0.00)	(-0.32, 3.02, 6.36)	(0.00, 0.00)
West North Central	Rural	(18.29, 27.88, 37.47)	(-0.15, 1.61, 3.37)	(11.51, 24.2, 36.89)	(0.00, 0.00, 0.00)	(19.34, 29.8, 40.26)	(11.28, 16.52, 21.75)
West North Central	Urban Area	(12.78, 21.2, 29.62)	(0.00, 0.00, 0.00)	(68.91, 77.29, 85.67)	(0.00, 0.00, 0.00)	(0.13, 1.51, 2.89)	(0.00, 0.00, 0.00)
West North Central	Urban Cluster	(4.62, 14.9, 25.18)	(-1.46, 0.76, 2.98)	(66.8, 80.01, 93.22)	(-1.67, 1.63, 4.94)	(-0.48, 2.7, 5.87)	(0.00, 0.00, 0.00)
West South Central	Rural	(40.29, 51.72, 63.15)	(0.00, 0.00, 0.00)	(16.94, 26.72, 36.51)	(0.00, 0.00, 0.00)	(7.89, 15.1, 22.3)	(2.04, 6.46, 10.88)
West South Central	Urban Area	(47.86, 55.9, 63.93)	(0.00, 0.00, 0.00)	(35.97, 43.88, 51.79)	(0.00, 0.00, 0.00)	(0.00, 0.00, 0.00)	(-0.19, 0.22, 0.63)
West South Central	Urban Cluster	(43.36, 56.24, 69.12)	(0.00, 0.00, 0.00)	(30.88, 43.76, 56.64)	(0.00, 0.00, 0.00)	(0.00, 0.00, 0.00)	(0.00, 0.00, 0.00)

Most residents use electricity as their fuel source with natural gas as the second most common. The other sources are quite rare and only really feature in rural urban types and Mountain divisions. Even with those specific areas, the named fuel sources effectively cover all the types of fuel that are used.

PART C: Average Temperatures at Night, Day when home, Day when gone by Division and Urban Type

Throughout all the different divisions and urban types, the average temperatures during the day when residents are gone are the lowest and during the day when residents are home are the highest, with temperatures during the night inbetween the two values. Mountain North, Mountain South, and New England have the widest 95% confidence intervals and likely have the greatest variance in average temperatures. We should be careful to put too much weight into these interpretations, though, since the region of average temperatures is contained within 10 degrees and does not seem as dramatic when viewed on a greater range of temperatures.

PART D: Median Difference between Day and Night Temperatures

Median Difference Between Day and Night Temperatures (Fahrenheit)

Equip Behavior	Lower 95%	Median Diff	Upper 95%
As needed	1.5917517	2	2.408248
Automatically adjust	3.0000000	3	3.000000
Manually adjust	2.0000000	2	2.000000
No control	-3.3911650	0	3.391165
Other	-0.7080128	2	4.708013
Set and leave	0.0000000	0	0.000000

Residents tend to set the day temperature higher than the night temperature, only by a few degrees if at all. The equipment behaviors with minimal adjustment have no variance in the median difference while the ones with more adjustment had greater variance. Behaviors "No Control" and "Other" were the only ones that had 95% confidence intervals that include negative differences, meaning that these are behaviors most likely to have night temperatures greater than day temperatures.

Introduction to MouseTrap

Previously, we looked at how the change in position over time could quantify hesitation. Using this quantification, we can model this hesitation variable along with other variables in order to make meaningful conclusions about the data.

Modeling Metrics on Condition

As a demonstration, we are modeling the 4 separate metrics; which will be calculated from the x positions, y positions, and times provided by MouseTrap data; based on the fixed effect 'Condition' with random effects 'Subject' and 'Exemplar'. Since each metric will be in different units, we are modeling the log(metrics), so that we can compare values between them. Below is a table and plot of the condition beta estimates along with their standard errors.

Beta Estimates for Metrics

Metrics	Beta Estimate	Std Error
Total Distance	-0.1613490	0.0388355
Area Under Curve	-0.4964514	0.1199342
Max Deviation	-0.5100794	0.1180273
Average Deviation	-0.6511473	0.1356371

Since the model was taken of the log(metrics), we can directly compare the beta estimates to understand how greatly 'Condition' affects the 4 metrics. The least negative beta estimate will have the greatest effect on the metric, so 'Condition' has the greatest affect on 'Total Distance'.