A - Five Integers

Time Limit: 2 sec / Memory Limit: 1024 MB

Score: 100 points

Problem Statement

Print how many distinct integers there are in given five integers A, B, C, D, and E.

Constraints

- $0 \le A, B, C, D, E \le 100$
- All values in input are integers.

Input

Input is given from Standard Input in the following format:

A B C D E

Output

Print the answer.

Sample Input 1

31 9 24 31 24

3

In the given five integers 31, 9, 24, 31, and 24, there are three distinct integers 9, 24, and 31. Thus, 3 should be printed.

Sample Input 2

00000

Sample Output 2

1

B-Prefix?

Time Limit: 2 sec / Memory Limit: 1024 MB

Score: 200 points

Problem Statement

You are given two strings S and T consisting of lowercase English letters. Determine if S is a prefix of T.

▶ What is a prefix?

Constraints

• S and T are strings of lengths between 1 and 100 (inclusive) consisting of lowercase English letters.

Input

Input is given from Standard Input in the following format:

S

T

Output

Print Yes if S is a prefix of T; print No otherwise. Note that the judge is case-sensitive.

Sample Input 1

atco

atcoder

Sample Output 1

Yes

atco is a prefix of atcoder. Thus, Yes should be printed.

Sample Input 2

code atcoder

Sample Output 2

No

code is not a prefix of atcoder. Thus, No should be printed.

Sample Input 3

abc abc

Sample Output 3

Yes

Note that a string is also a prefix of itself.

Sample Input 4

aaaa aa

No

C - Chinese Restaurant

Time Limit: 2 sec / Memory Limit: 1024 MB

Score: 300 points

Problem Statement

Person 0, Person $1, \ldots$, and Person (N-1) are sitting around a turntable in their counterclockwise order, evenly spaced. Dish p_i is in front of Person i on the table.

You may perform the following operation 0 or more times:

• Rotate the turntable by one N-th of a counterclockwise turn. As a result, the dish that was in front of Person i right before the rotation is now in front of Person $(i+1) \bmod N$.

When you are finished, Person i is happy if Dish i is in front of Person $(i-1) \bmod N$, Person i, or Person $(i+1) \bmod N$.

Find the maximum possible number of happy people.

ightharpoonup What is $a \mod m$?

Constraints

- $3 \leq N \leq 2 imes 10^5$
- $0 \le p_i \le N 1$
- $p_i
 eq p_j$ if i
 eq j.
- All values in input are integers.

Input

Input is given from Standard Input in the following format:

$$N \ p_0 \ \dots \ p_{N-1}$$

Output

Print the answer.

Sample Input 1

4 1 2 0 3

4

The figure below shows the table after one operation.

Here, there are four happy people:

- Person 0 is happy because Dish 0 is in front of Person $3 (= (0 1) \mod 4)$;
- Person 1 is happy because Dish 1 is in front of Person $1 \ (= 1)$;
- ullet Person 2 is happy because Dish 2 is in front of Person $2 \ (= 2)$;
- Person 3 is happy because Dish 3 is in front of Person $0 \ (= (3+1) \ \mathrm{mod} \ 4)$.

There cannot be five or more happy people, so the answer is 4.

Sample Input 2

3 0 1 2

Sample Output 2

3

Sample Input 3

10 3 9 6 1 7 2 8 0 5 4

Sample Output 3

5

D - Unique Username

Time Limit: $2 \sec / Memory Limit: 1024 MB$

 $\mathsf{Score} : 400 \, \mathsf{points}$

Problem Statement

Takahashi is having trouble with deciding a username for a service. Write a code to help him.

Find a string X that satisfies all of the following conditions:

- X is obtained by the following procedure:
 - \circ Let S_1', S_2', \ldots, S_N' be a permutation of S_1, S_2, \ldots, S_N . Let X be the concatenation of S_1' , (1 or more copies of _), S_2' , (1 or more copies of _), . . ., (1 or more copies of _), and S_N' , in this order.
- ullet The length of X is between 3 and 16, inclusive.
- X does not coincide with any of M strings T_1, T_2, \ldots, T_M .

If there is no X that satisfies all of the conditions, print -1 instead.

Constraints

- 1 < N < 8
- $0 \le M \le 10^5$
- ullet N and M are integers.
- $1 \le |S_i| \le 16$
- $N-1+\sum |S_i| \le 16$
- $S_i \neq S_j$ if $i \neq j$.
- S_i is a string consisting of lowercase English letters.
- $3 \le |T_i| \le 16$
- $T_i \neq T_j$ if $i \neq j$.
- T_i is a string consisting of lowercase English letters and $_$.

Input

Input is given from Standard Input in the following format:

Output

Print a string X that satisfies all of the conditions. If there is no X that satisfies all of the conditions, print -1 instead.

If there are multiple solutions, print any of them.

Sample Input 1

1 1 chokudai chokudai

-1

The only string that satisfies the first and second conditions is $X = \mathsf{chokudai}$, but it coincides with T_1 .

Thus, there is no X that satisfies all of the conditions, so -1 should be printed.

Sample Input 2

2 2

choku

dai

chokudai

choku_dai

Sample Output 2

dai_choku

Strings like choku__dai (which has two _'s between choku and dai) also satisfy all of the conditions.

Sample Input 3

2 2

chokudai

atcoder

chokudai_atcoder

atcoder_chokudai

-1

chokudai $_$ atcoder and atcoder $_$ chokudai (which have two $_$'s between chokudai and atcoder) have a length of 17, which violates the second condition.

Sample Input 4

```
4 4
ab
cd
ef
gh
hoge
fuga
_____
__ab_cd_ef_gh_
```

Sample Output 4

```
ab__ef___cd_gh
```

The given T_i may contain a string that cannot be obtained by the procedure described in the first condition.

E - Chinese Restaurant (Three-Star Version)

Time Limit: 2 sec / Memory Limit: 1024 MB

Score: 500 points

Problem Statement

Person 0, Person $1, \ldots$, and Person (N-1) are sitting around a turntable in counterclockwise order, evenly spaced. Dish p_i is in front of Person i on the table.

You may perform the following operation 0 or more times:

• Rotate the turntable by one N-th of a counterclockwise turn. The dish that was in front of Person i right before the rotation is now in front of Person $(i+1) \bmod N$.

When you are finished, Person i gains frustration of k, where k is the minimum integer such that Dish i is in front of either Person $(i-k) \mod N$ or Person $(i+k) \mod N$.

Find the minimum possible sum of frustration of the N people.

 \blacktriangleright What is $a \mod m$?

Constraints

- $3 \le N \le 2 \times 10^5$
- $0 < p_i < N-1$
- $p_i
 eq p_j$ if i
 eq j.
- All values in input are integers.

Input

Input is given from Standard Input in the following format:

$$N \ p_0 \ \dots \ p_{N-1}$$

Output

Print the answer.

Sample Input 1

4

1 2 0 3

2

The figure below shows the table after one operation.

Here, the sum of their frustration is 2 because:

- Person 0 gains a frustration of 1 since Dish 0 is in front of Person 3 $(=(0-1) \mod 4)$;
- Person 1 gains a frustration of 0 since Dish 1 is in front of Person 1 (= $(1 + 0) \mod 4$);
- Person 2 gains a frustration of 0 since Dish 2 is in front of Person 2 $(=(2+0) \mod 4)$;
- Person 3 gains a frustration of 1 since Dish 3 is in front of Person $0 \ (= (3+1) \ \mathrm{mod} \ 4)$.

We cannot make the sum of their frustration less than 2, so the answer is 2.

Sample Input 2

3 0 1 2

Sample Output 2

0

Sample Input 3

10 3 9 6 1 7 2 8 0 5 4

Sample Output 3

20

F - Best Concatenation

Time Limit: $2 \sec / Memory Limit: 1024 MB$

 $\mathsf{Score} : 500 \, \mathsf{points}$

Problem Statement

You are given N strings S_1, S_2, \ldots, S_N consisting of digits from 1 through 9 and the character x.

We will choose a permutation $P=(P_1,P_2,\ldots,P_N)$ of $(1,2,\ldots,N)$ to construct a string $T=S_{P_1}+S_{P_2}+\cdots+S_{P_N}$, where + denotes a concatenation of strings.

Then, we will calculate the "score" of the string $T=T_1T_2\dots T_{|T|}$ (where |T| denotes the length of T). The score is calculated by the following 9 steps, starting from the initial score 0:

- Add 1 point to the score as many times as the number of integer pairs (i,j) such that $1 \le i < j \le |T|, T_i = x$, and $T_j = 1$.
- Add 2 points to the score as many times as the number of integer pairs (i,j) such that $1 \le i < j \le |T|, T_i = x$, and $T_j = z$.
- Add 3 points to the score as many times as the number of integer pairs (i,j) such that $1 \le i < j \le |T|, T_i = x$, and $T_j = 3$.
- • •
- Add 9 points to the score as many times as the number of integer pairs (i,j) such that $1 \le i < j \le |T|$, $T_i = x$, and $T_j = 9$.

Find the maximum possible score of T when P can be chosen arbitrarily.

Constraints

- $2 \le N \le 2 \times 10^5$
- N is an integer.
- S_i is a string of length at least 1 consisting of digits from 1 through 9 and the character x.
- The sum of lengths of S_1, S_2, \ldots, S_N is at most 2×10^5 .

Input

Input is given from Standard Input in the following format:

```
egin{array}{c} N \ S_1 \ S_2 \ dots \ S_N \end{array}
```

Output

Print the answer.

Sample Input 1

```
3
1X3
59
XXX
```

71

When P=(3,1,2), we have $T=S_3+S_1+S_2=$ xxx1x359. Then, the score of T is calculated as follows:

- there are 3 integer pairs (i,j) such that $1 \leq i < j \leq |T|$, $T_i =$ x, and $T_j =$ 1;
- there are 4 integer pairs (i,j) such that $1 \leq i < j \leq |T|$, $T_i =$ X, and $T_j =$ 3;
- there are 4 integer pairs (i,j) such that $1 \leq i < j \leq |T|, T_i = x$, and $T_i = 5$;
- there are 4 integer pairs (i,j) such that $1 \leq i < j \leq |T|, T_i = \mathsf{x}$, and $T_i = \mathsf{9}$.

Therefore, the score of T is $1 \times 3 + 3 \times 4 + 5 \times 4 + 9 \times 4 = 71$, which is the maximum possible value.

Sample Input 2

10 X63X395XX X2XX3X22X 13 3716XXX6 45X X6XX 9238 281X92 1XX4X4XX6 54X9X711X1

Sample Output 2

3010

G - Random Student ID

Time Limit: 3 sec / Memory Limit: 1024 MB

Score: 600 points

Problem Statement

Takahashi Elementary School has N new students. For $i=1,2,\ldots,N$, the name of the i-th new student is S_i (which is a string consisting of lowercase English letters). The names of the N new students are distinct.

The N students will be assigned a student ID $1,2,3,\ldots,N$ in ascending lexicographical order of their names. However, instead of the ordinary order of lowercase English letters where a is the minimum and z is the maximum, we use the following order:

- First, Principal Takahashi chooses a string P from the 26! permutations of the string abcdefghijklmnopgrstuvwxyz of length 26, uniformly at random.
- The lowercase English characters that occur earlier in P are considered smaller.

For each of the N students, find the expected value, modulo 998244353, of the student ID assigned (see Notes).

► What is the lexicographical order?

Notes

We can prove that the sought expected value is always a rational number. Moreover, under the Constraints of this problem, when the value is represented as $\frac{P}{Q}$ by two coprime integers P and Q, we can prove that there is a unique integer R such that $R \times Q \equiv P \pmod{998244353}$ and $0 \le R < 998244353$. Find such R.

Constraints

- $2 \leq N$
- ullet N is an integer.
- S_i is a string of length at least 1 consisting of lowercase English letters.
- The sum of lengths of the given strings is at most $5 imes 10^5$.
- $i \neq j \Rightarrow S_i \neq S_j$

Input

Input is given from Standard Input in the following format:

 $egin{array}{c} N \ S_1 \ S_2 \ dots \ S_N \end{array}$

Output

Print N lines. For each $i=1,2,\ldots,N$, the i-th line should contain the expected value, modulo 998244353, of the student ID assigned to Student i.

Sample Input 1

```
3
a
aa
ab
```

Sample Output 1

```
1
499122179
499122179
```

The expected value of the student ID assigned to Student 1 is 1; the expected values of the student ID assigned to Student 2 and 3 are $\frac{5}{2}$.

Note that the answer should be printed modulo 998244353. For example, the sought expected value for Student 2 and 3 is $\frac{5}{2}$, and we have $2\times 499122179\equiv 5\pmod{998244353}$, so 499122179 should be printed.

Sample Input 2

```
3
a
aa
aaa
```

1 2 3

Ex - Taboo

Time Limit: 4 sec / Memory Limit: 1024 MB

Score: 600 points

Problem Statement

You are given a string S. Takahashi may perform the following operation 0 or more times:

• Choose an integer i such that $1 \leq i \leq |S|$ and change the i-th character of S to *.

Takahashi's objective is to make S not contain any of N strings T_1, T_2, \ldots, T_N as a substring. Find the minimum number of operations required to achieve the objective.

Constraints

- $1 \le |S| \le 5 \times 10^5$
- $1 \leq N$
- ullet N is an integer.
- $1 \leq |T_i|$
- $\sum |T_i| \leq 5 imes 10^5$
- $T_i
 eq T_j$ if i
 eq j.
- S and T_i are strings consisting of lowercase English letters.

Input

Input is given from Standard Input in the following format:

```
egin{array}{c} S \ N \ T_1 \ T_2 \ dots \ T_N \end{array}
```

Output

Print the answer.

Sample Input 1

```
abcdefghijklmn
3
abcd
ijk
ghi
```

2

If he performs the operation twice by choosing 1 and 9 for i, S becomes *bcdefgh*jklmn; now it does not contain abcd, ijk, or ghi as a substring.

Sample Input 2

atcoderbeginnercontest

1

abc

Sample Output 2

0

No operation is needed.

Sample Input 3

aaaaaaaa

2

aa

xyz

4