Acceleration and Stability of the Stochastic Proximal Point Algorithm

Junhyung Lyle Kim (Rice CS), Panos Toulis (UChicago Booth), Anastasios Kyrillidis (Rice CS)

[Empirical risk minimization and SGD]

$$\min_{x \in \mathbb{R}^p} f(x) = \frac{1}{n} \sum_{i=1}^n f_i(x)$$

- SGD and SGD with momentum (SGDM) became the de facto algorithms. BUT:
- SGD can take long to converge with smell step size/ diverge easily if step size is misspecified

GD:
$$O(1/t)$$
 VS. SGD: $O(1/\sqrt{t})$
SGD: $\mathbb{E}||x_t - x^*||_2^2 \le 2 \exp(4L^2\eta_1^2 \log(t)) ||x_0 - x^*||_2^2 \cdots$

SGDM can be more unstable than SGD due to the gradient noise accumulation

E.g., Liu and Belkin (2019), Assran and Rabbat (2020).

[Why Proximal Point Algorithm?]

$$x_{t+1} = \arg\min_{x \in \mathbb{R}^p} \left\{ f(x) + \frac{1}{2\eta} ||x - x_t||_2^2 \right\}$$

- PPA changes the conditioning of the problem by adding a quadratic term to the objective function
- Equivalent to implicit gradient descent (IGD) by the firstorder optimality condition
- Stochastic setting:

SPPA:
$$\mathbb{E}||x_t - x^*||_2^2 \le \exp(-\log(1 + 2\eta_1\mu)\log(t))||x_0 - x^*||_2^2 \cdots$$

Intuition about SPPAM

$$x_{t+1} = x_t - \eta \left(\nabla f(x_{t+1}) + \varepsilon_{t+1} \right) + \beta (x_t - x_{t-1})$$

• Disregarding the stochastic error for simplicity, above can be written as the solution to:

$$\arg\min_{x \in \mathbb{R}^p} \left\{ f(x) + \frac{1}{2\eta} \|x - x_t\|_2^2 - \frac{\beta}{\eta} \langle x_t - x_{t-1}, x \rangle \right\}$$

- On top of minimizing f(x) and staying close to x_t , the algorithm also tries to move along the direction from x_{t-1} to x_t
- This intuition exactly aligns with that of Polyak's momentum applied to e.g., SGD

Our Contribution

- We show that SPPAM enjoys linear convergence with a better contraction factor than SPPA, and characterize the conditions on η and β that result in acceleration.
- We also characterize the condition that leads to the exponential discount of initial conditions for SPPAM, which is significantly easier to satisfy compared to SGDM.
- Empirically SPPAM enjoys the both advantages: it converges for the range of η that SPPA converges but with faster rate, which improves or matches that of SGDM, when the latter converges.

The Quadratic Model Case

• Conditions on η and β for different algorithms to solve:

$$f(x) = \frac{1}{2}x^{\mathsf{T}}Ax - b^{\mathsf{T}}x$$

Proposition 1 (GD (Goh 2017)). To minimize (10) with gradient descent, the step size η needs to satisfy $0 < \eta < \frac{2}{\lambda_i}$, $\forall i$, where λ_i is the i-th eigenvalue of A.

Proposition 2 (PPA/IGD). To minimize (10) with PPA, the step size η needs to satisfy $\left|\frac{1}{1+\eta\lambda_i}\right| < 1$.

Proposition 3 (GDM (Goh 2017)). To minimize (10) with gradient descent with momentum, the step size η needs to satisfy $0 < \eta \lambda_i < 2 + 2\beta$, for $\forall i$ and $0 \le \beta \le 1$.

[Acceleration]

Main assumptions:

Assumption 1. $f(\cdot)$ is a μ -strongly convex function, satisfying:

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \mu ||x - y||_2^2$$

for some fixed $\mu > 0$ and for all x and y.

Assumption 2. There exists fixed $\sigma^2 > 0$ such that:

$$\mathbb{E}\left[\varepsilon_{t} \mid \mathcal{F}_{t-1}\right] = 0 \quad and \quad \mathbb{E}\left[\left\|\varepsilon_{t} \mid \mathcal{F}_{t-1}\right\|^{2}\right] \leq \sigma^{2} \quad \forall t.$$

Iteration invariant bound of SPPAM:

Theorem 1. For μ -strongly convex $f(\cdot)$, SPPAM in (5) satisfies the following iteration invariant bound:

$$\mathbb{E}\left[\|x_{t+1} - x^{\star}\|_{2}^{2}\right] \leq \frac{4}{(1+\eta\mu)^{2}} \mathbb{E}\left[\|x_{t} - x^{\star}\|_{2}^{2}\right]$$

$$+ \frac{4\beta^{2}}{(1+\eta\mu)^{2} (4-(1+\beta)^{2})} \mathbb{E}\left[\|x_{t-1} - x^{\star}\|_{2}^{2}\right] + \eta^{2} \sigma^{2}.$$
(11)

 Above can be written in 2 x 2 system where the contraction matrix A determines convergence rate

$$\begin{bmatrix} \mathbb{E} \left[\|x_{t+1} - x^{\star}\|_{2}^{2} \right] \\ \mathbb{E} \left[\|x_{t} - x^{\star}\|_{2}^{2} \right] \end{bmatrix} \le A \begin{bmatrix} \mathbb{E} \left[\|x_{t} - x^{\star}\|_{2}^{2} \right] \\ \mathbb{E} \left[\|x_{t-1} - x^{\star}\|_{2}^{2} \right] \end{bmatrix} + \begin{bmatrix} \eta^{2} \sigma^{2} \\ 0 \end{bmatrix}$$

• Condition on η and β that lead to faster discount factor than SPPA:

Corollary 1. For μ -strongly convex $f(\cdot)$, SPPAM in (5) converges faster than stochastic PPA in (4) if:

$$\frac{4\beta^2}{4 - (1+\beta)^2} < \frac{\eta^2 \mu^2 - 6\eta \mu - 3}{(1+\eta \mu)^2}$$

Proposition 4 (PPAM). Let $\delta_i = \left(\frac{\beta+1}{1+\eta\lambda_i}\right)^2 - \frac{4\beta}{1+\eta\lambda_i}$. To minimize (10) with PPAM, the step size η and momentum β need to satisfy:

- $\eta > \frac{\beta 1}{\lambda_i}$, if $\delta_i \leq 0$;
- $\frac{\beta+1}{1+\eta\lambda_i} + \sqrt{\delta_i} < 2$, if $\delta_i > 0$ and $\frac{\beta+1}{1+\eta\lambda_i} \ge 0$;
- $\frac{\beta+1}{1+n\lambda_i} \sqrt{\delta_i} > -2$, otherwise.

[Stability]

• Convergence (to a neighborhood):

Theorem 3. For μ -strongly convex $f(\cdot)$, assume SP-PAM in (5) is initialized with $x_0 = x_{-1}$. Then, after T iterations, we have:

$$\mathbb{E}\left[\|x_{T} - x^{\star}\|_{2}^{2}\right] \leq \frac{2\sigma_{1}^{T}}{\sigma_{1} - \sigma_{2}} \left(\left(\|x_{0} - x^{\star}\|_{2}^{2} + \frac{\eta^{2}\sigma^{2}}{1 - \theta}\right) \cdot (1 + \theta)\right) + \frac{\eta^{2}\sigma^{2}}{1 - \theta}$$

where $\theta = \frac{4}{(1+\eta\mu)^2} + \frac{4\beta^2}{(1+\eta\mu)^2(4-(1+\beta)^2)}$. Here, $\sigma_{1,2}$ are the eigenvalues of A, and

$$\frac{2\sigma_1^T}{\sigma_1 - \sigma_2} = \tau^{-1} \cdot \left(\frac{2}{(1 + \eta\mu)^2} + \tau\right)^T$$

$$with \ \tau = \sqrt{\frac{4}{(1 + \eta\mu)^4} + \frac{4\beta^2}{(1 + \eta\mu)^2(4 - (1 + \beta)^2)}}.$$
(17)

• Condition on η and β that lead to exponential discount of initial conditions:

Theorem 4. Let the following condition hold:

$$\tau = \sqrt{\frac{4}{(1+\eta\mu)^4} + \frac{4\beta^2}{(1+\eta\mu)^2(4-(1+\beta)^2)}} < \frac{1}{2}.$$
 (18)

Then, for μ -strongly convex $f(\cdot)$, the initial conditions of SPPAM exponentially discount: i.e., in (16),

$$\frac{2\sigma_1^T}{\sigma_1 - \sigma_2} = \tau^{-1} \cdot \left(\frac{2}{(1 + \eta \mu)^2} + \tau \right)^T = C^T,$$

where $C \in (0,1)$.

Unfair Comparison

• Assran and Rabbit (2020): for Nesterov's accelerated SGD to converge for strongly convex quadratic $f(\cdot)$:

$$\begin{cases} \eta\lambda \geq 1, & \text{Converges if } -\psi_{\beta,\eta,\lambda} + \sqrt{\Delta_{\lambda}} < 2, \\ \frac{(1-\beta)^2}{(1+\beta)^2} \leq \eta\lambda < 1, & \text{Always converges,} \\ \eta\lambda < \frac{(1-\beta)^2}{(1+\beta)^2}, & \text{Converges if } \psi_{\beta,\eta,\lambda} + \sqrt{\Delta_{\lambda}} < 2. \end{cases}$$

$$\beta = 0.9$$

VS.

Nesterov's accelerated SGD (strongly convex *quadratic*): $0.0028 \approx \frac{1}{361} \leq \eta \lambda \leq \frac{24}{19} \approx 1.26 \text{ for } \lambda \in \{\mu, L\}$

SPPAM (strongly convex, Theorem 4): $\eta\mu > 4.81$ with $\beta = 0.9$

Experiments]

- Generalized Linear Model (GLM):
 - Labels: $b_i \in \mathbb{R}$
 - Features: $a_i \in \mathbb{R}^p$
 - True model parameter: $x^* \in \mathbb{R}^p$

$$b_i \mid a_i \sim \exp\left(\frac{\gamma b_i - c_1(\gamma)}{\omega}c_2(b_i, \omega)\right)$$

- Linear predictor $\gamma = \langle a_i, x^* \rangle$ with mean functions $h(\cdot)$:
- Normal: $h(\gamma) = \gamma$
- Logistic: $h(\gamma) = e^{\gamma}(1 + e^{\gamma})^{-1}$
- Poisson: $h(\gamma) = e^{\gamma}$

[Step Size Stability and Convergence Rate]

- SGD and SGDM only converge for specific η and β
- SPPA and SPPAM converge for much wider ranges
- SPPAM converges faster than SPPA
- Convergence rate of SPPAM matches that of SGDM when the latter converges