

National Aeronautics and Space Administration

TDT Data Acquisition System Upgrade Efforts

NASA, Aeroelasticity Branch

Presented by: Tom Ivanco

April 1, 2015

Rationale behind a Future TDT DAS

◆ New Data system goals (*summary from requirements document v 7.3*)

- Retain all abilities of existing OA-DAS
- ✓ Increase scan rate to at least 200 KHz*
- ✓ Increase channel count to 512 channels
- ✓ Increase system reliability
- ✓ Increase user friendliness
- ✓ Decrease or at least maintain the required level of operational support
- ✓ Be compatible with hardware upgrades as much as possible without requiring substantial modification of the core code
- ✓ Improve WOZ capability (*enable EU or Volt WOZ, enable eqn WOZ, archive WOZ data*)
- ✓ Improve in-situ calibration capability (*user friendly, higher order curve fit, automatic spec file generation*)

= Already capable

= Capability planned

◆ Hardware:

- Precision Filters Inc. Signal Conditioners / Amplifiers
- National Instruments A-to-D Converters

DAS Implementation Plan

- ◆ Test SLATE option was planned for TDT as a replacement solution
- ◆ Timeline too prohibitive for scheduled TDT buffet tests (Embraer and SLS)
 - There was a total cost savings to buy future DAS components and transition the Concept Development Tunnel (CDT) DAS software (LabVIEW) for use in TDT
 - Could be done quickly, compatible with multiple NI systems
 - Limited capability for use with OA-DAS
 - Conceived, developed and managed by:

- ◆ Since development began, AB-DAS has been run in T642, T643, and T645 as a supplemental DAS
- ◆ Cost analysis done, less expensive to incrementally add capability to AB-DAS in lieu of original Test SLATE option, then transition to facility after development

AB-DAS Development Phases

◆ Phase I

- Phase Ia – First Embraer Test (August – October 2013) TDT T642 and T643
 - 100 channels
 - Buffet bandwidth scan rates (12 KHz)
 - Able to do most of the basic features of TDT DAS, has new WOZ capabilities
 - Includes tunnel parameters
 - Informal checkout and documentation
- Phase Ib – SLS test (March – May 2014) TDT T645
 - 512 total channels, 480 buffet bandwidth (16 KHz), 32 aeroacoustic bandwidth (200 KHz)
 - Included RAID drives to handle large data
 - Informal checkout and documentation
- Phase Ic – Second Embraer Test (May 2015) TDT TXXX
 - Includes above capabilities plus ESP, circular archive, LAIRD interface
 - Independent tunnel parameter calculation
 - Includes formal ORR and documentation
 - Can run this genre of tests without OA-DAS (i.e. no balance, no digital channels)

◆ Phase II – Replace OA-DAS (Fall 2015?)

- Meets all goals of AB-DAS development efforts
- Replaces all capabilities of OA-DAS and more

◆ Phase III – Increase capability (TBD)

- Slight improvement of some capability to meet user goals
- Minimal cost beyond phase II efforts

Cost Comparison Summary

	AB-DAS (512 Channels)	Test SLATE (512 Channels)
Hardware, Phase Ic	\$1,746K	\$1,746K
Cabling, Phase Ic	\$363K	\$363K
Software, Phase Ic	\$281K (<i>includes NI support</i>)	\$600K
Sub Total	\$2,390K	\$3,409K
Hardware, Phase II	\$285K	\$550K
Software phase II (<i>includes class C doc.</i>)	\$450K	\$4,700K (<i>includes drivers</i>)
TOTAL (Acquisition)	\$3,124K	\$8,659K
<i>Yearly Maintenance, Licenses, Calibration, Hardware-Reserve</i>	~\$20K	~\$27K

Already
Purchased

Future
Cost

AB-DAS Current Status

◆ Finishing Acceptance Test of two versions:

- Legacy (single processor)
 - Can support all 512 Channels (max demonstrated rates in excess of 30KHz)
 - Max scan rate with reduced channel count: 400 KHz
- RFM (distributed processing, uses reflective memory)
 - Can support all 512 Channels at 16KHz
 - Max scan rate with reduced channel count: 50KHz

◆ Soon to be an official TDT stand-alone DAS

◆ Planning Phase II development (replace OA-DAS functionality)

Questions?

AB-DAS

BACKUP Slides

BACK UP

Why AB-DAS vs. Other Systems?

- ◆ Tailored to TDT needs; developed by the end-user, for the end-user

- ◆ The researcher is involved in all levels of the **Cognitive Hierarchy** and can quickly realize data requirements
- ◆ AB-DAS utilizes COTS components and interfaces with COTS software developed by the hardware manufacturers
 - Optimizes programming and capability; less development time/cost and more functionality
 - Reduces maintenance costs, multiple users are familiar with COTS software packages
 - Infinitely **tailor-able and adaptable**, can easily adjust to unforeseen future requirements, can easily adapt to **hardware upgrades**

See pages 4, 5