Contents	9 Miscellaneous 23 9.1 Cactus 21 9.2 Dancing Links 22
1.1 vimrc 1.2 Default code 1.3 Fast Integer Input	9.3 Offline Dynamic MST
2.1 Flow	2 2 2 1 Basic 3 1.1 vimrc 3 4 set nu rnu cin ts=4 sw=4 autoread hls sy on
3.1 <ext pbds=""></ext>	<pre> map<leader>b :w<bar>!g++ -std=c++17 '%' -DKEV -fsanitize= undefined -o /tmp/.run<cr> map<leader>r :w<bar>!cat 01.in && echo "" && /tmp/.run < 01. in<cr></cr></bar></leader></cr></bar></leader></pre>
4.1 2-Edge-Connected Components 4.2 3-Edge-Connected Components 4.3 Heavy-Light Decomposition 4.4 Centroid Decomposition 4.5 Strongly Connected Components 4.6 2-SAT 4.7 count 3-cycles and 4-cycles	imported in the control of the contr
4.11 Dominator Tree	<pre>7 using namespace std; 7 using i64 = long long; 8 using ll = long long; 8 #define SZ(v) (ll)((v).size()) #define pb emplace_back 9 #define AI(i) begin(i), end(i)</pre>
5.2 Z Function	<pre>0 template<class t=""> bool chmax(T &a, T b) { return a < b && (a = 0 b, true); } 0 #ifdef KEV</class></pre>
6 Math 1: 6.1 Extended GCD 1 6.2 Chinese Remainder Theorem 1 6.3 NTT and polynomials 1 6.4 NTT Prime List 1: 6.5 Newton's Method 1: 6.6 Fast Walsh-Hadamard Transform 1: 6.7 Simplex Algorithm 1: 6.8 Subset Convolution 1: 6.8.1 Construction 1: 6.9 Schreier-Sims Algorithm 1: 6.10 Berlekamp-Massey Algorithm 1: 6.11 Fast Linear Recurrence 1: 6.12 Prime check and factorize 1: 6.13 Meissel-Lehmer Algorithm 1: 6.14 Discrete Logarithm 1: 6.15 Quadratic Residue 1: 6.16 Characteristic Polynomial 1:	<pre>void kout() { cerr << endl; } template<class <<<="" a,="" cerr="" classus="" kout(t="" t,="" td="" ub)="" void="" {=""></class></pre>
6.17 Linear Sieve Related 14 6.18 Partition Function 16 6.19 De Bruijn Sequence 16 6.20 Floor Sum 16 6.21 More Floor Sum 16 6.22 Theorem 16 6.22.1 Kirchhoff's Theorem 16 6.22.2 Tutte's Matrix 17 6.22.3 Cayley's Formula 17 6.22.4 Erdős–Gallai Theorem 17	<pre>6 char buf[1 << 16], *p1 = buf, *p2 = buf; 6 char get() { 6 if (p1 == p2) { 7</pre>
7 Dynamic Programming 1 7.1 Dynamic Convex Hull 1' 7.2 1D/1D Convex Optimization 1' 7.3 Conditon 1' 7.3.1 Totally Monotone (Concave/Convex) 1' 7.3.2 Monge Condition (Concave/Convex) 1' 7.3.3 Optimal Split Point 1'	<pre>char reduction() { char c = get(); while (isspace(c))</pre>
8 Geometry 1' 8.1 Basic 1' 8.2 Convex Hull and related 1; 8.3 Half Plane Intersection 1; 8.4 Triangle Centers 1; 8.5 Circle 1; 8.6 Closest Pair 1; 8.7 Area of Union of Circles 1; 8.8 3D Convex Hull 2; 8.9 Delaunay Triangulation 2;	<pre>7 int x = 0; 7 char c = get(); 8 while (!isdigit(c)) 8</pre>

1.4 Pragma optimization

2 Flows, Matching

2.1 Flow

```
template <typename F>
struct Flow {
     static constexpr F INF = numeric_limits<F>::max() / 2;
     struct Edge {
         int to;
         F cap;
         Edge(int to, F cap) : to(to), cap(cap) {}
    int n:
    vector<Edge> e;
    vector<vector<int>> adj;
    vector<int> cur, h;
    Flow(int n) : n(n), adj(n) {}
    bool bfs(int s, int t) {
         h.assign(n, -1);
         queue<int> q;
         h[s] = 0;
         q.push(s);
         while (!q.empty()) {
             int u = q.front();
             q.pop();
             for (int i : adj[u]) {
                 auto [v, c] = e[i];
                 if (c > 0 \& h[v] == -1) {
                     h[v] = h[u] + 1;
                      if (v == t) { return true; }
                      q.push(v);
                 }
             }
         }
         return false;
    F dfs(int u, int t, F f) {
         if (u == t) { return f; }
         Fr = f;
         for (int &i = cur[u]; i < int(adj[u].size()); i++) {</pre>
             int j = adj[u][i];
             auto [v, c] = e[j];
if (c > 0 && h[v] == h[u] + 1) {
                 F a = dfs(v, t, min(r, c));
                 e[j].cap -= a;
                 e[j ^ 1].cap += a;
                    -= a;
                 if (r == 0) { return f; }
             }
         }
         return f - r;
     // can be bidirectional
    void addEdge(int u, int v, F cf = INF, F cb = 0) {
         adj[u].push_back(e.size()), e.emplace_back(v, cf);
         adj[v].push_back(e.size()), e.emplace_back(u, cb);
    F maxFlow(int s, int t) {
         F ans = 0;
         while (bfs(s, t)) {
             cur.assign(n, 0);
ans += dfs(s, t, INF);
         }
return ans;
     // do max flow first
    vector<int> minCut() {
         vector<int> res(n);
         for (int i = 0; i < n; i++) { res[i] = h[i] != -1; }
         return res:
|};
        MCMF
2.2
```

```
|template <class Flow, class Cost>
|struct MinCostMaxFlow {
|public:
```

```
static constexpr Flow flowINF = numeric_limits<Flow>::max()
static constexpr Cost costINF = numeric_limits<Cost>::max()
MinCostMaxFlow() {}
MinCostMaxFlow(int n) : n(n), g(n) {}
int addEdge(int u, int v, Flow cap, Cost cost) {
    int m = int(pos.size());
    pos.push_back({u, int(g[u].size())});
    g[u].push_back({v, int(g[v].size()), cap, cost});
g[v].push_back({u, int(g[u].size()) - 1, 0, -cost});
    return m;
struct edge {
    int u, v;
    Flow cap, flow;
    Cost cost;
edge getEdge(int i) {
    int m = int(pos.size());
    auto _e = g[pos[i].first][pos[i].second];
    auto _re = g[_e.v][_e.rev];
    return {pos[i].first, _e.v, _e.cap + _re.cap, _re.cap,
         _e.cost};
vector<edge> edges() {
    int m = int(pos.size());
    vector<edge> result(m);
    for (int i = 0; i < m; i++) { result[i] = getEdge(i); }</pre>
    return result;
pair<Flow, Cost> maxFlow(int s, int t, Flow flow_limit =
     flowINF) { return slope(s, t, flow_limit).back(); }
vector<pair<Flow, Cost>> slope(int s, int t, Flow
flow_limit = flowINF) {
    vector<Cost> dual(n, 0), dis(n);
    vector<int> pv(n), pe(n), vis(n);
    auto dualRef = [&]() {
         fill(dis.begin(), dis.end(), costINF);
         fill(pv.begin(), pv.end(), -1);
         fill(pe.begin(), pe.end(), -1);
         fill(vis.begin(), vis.end(), false);
        struct Q {
             Cost key;
             bool operator<(Q o) const { return key > o.key;
        priority_queue<Q> h;
        dis[s] = 0;
        h.push({0, s});
        while (!h.empty()) {
             int u = h.top().u;
             h.pop()
             if (vis[u]) { continue; }
             vis[u] = true;
             if (u == t) { break; }
             for (int i = 0; i < int(g[u].size()); i++) {</pre>
                 auto e = g[u][i];
                 if (vis[e.v] || e.cap == 0) continue;
                 Cost cost = e.cost - dual[e.v] + dual[u];
                 if (dis[e.v] - dis[u] > cost) {
                      dis[e.v] = dis[u] + cost;
                      pv[e.v] = u;
                      pe[e.v] = i;
                      h.push({dis[e.v], e.v});
                 }
            }
         if (!vis[t]) { return false; }
        for (int v = 0; v < n; v++) {
    if (!vis[v]) continue;</pre>
             dual[v] -= dis[t] - dis[v];
        return true;
    Flow flow = 0;
Cost cost = 0, prevCost = -1;
    vector<pair<Flow, Cost>> result;
    result.push_back({flow, cost});
    while (flow < flow_limit) {</pre>
        if (!dualRef()) break;
         Flow c = flow_limit - flow;
         for (int v = t; v != s; v = pv[v]) {
             c = min(c, g[pv[v]][pe[v]].cap);
         for (int v = t; v != s; v = pv[v]) {
```

res = min(res, search());

for (int i = 0; i < sz; i++) {
 adj[x][i] += adj[y][i];</pre>

```
auto& e = g[pv[v]][pe[v]];
                                                                                   adj[i][x] = adj[x][i];
                e.cap -= c;
                g[v][e.rev].cap += c;
                                                                               for (int i = 0; i < sz; i++) {
    adj[y][i] = adj[sz - 1][i];
            Cost d = -dual[s];
                                                                                   adj[i][y] = adj[i][sz - 1];
            flow += c;
cost += c * d;
                                                                               sz--;
            if (prevCost == d) { result.pop_back(); }
            result.push_back({flow, cost});
                                                                           return res;
            prevCost = cost;
                                                                       }
                                                                  };
        return result;
    }
                                                                         Bipartite Matching
private:
    int n;
                                                                   struct BipartiteMatching {
    struct _edge {
                                                                       int n, m;
        int v, rev;
                                                                       vector<vector<int>> adi;
        Flow cap;
                                                                       vector<int> l, r, dis, cur;
        Cost cost;
                                                                       BipartiteMatching(int n, int m): n(n), m(m), adj(n), l(n,
                                                                            -1), r(m, -1), dis(n), cur(n) {}
    vector<pair<int, int>> pos;
vector<vector<_edge>> g;
                                                                       // come on, you know how to write this
                                                                       void addEdge(int u, int v) { adj[u].push_back(v); }
l };
                                                                       void bfs() {}
                                                                       bool dfs(int u) {}
2.3 GomoryHu Tree
                                                                       int maxMatching() {}
                                                                       auto minVertexCover() {
auto gomory(int n, vector<array<int, 3>> e) {
                                                                           vector<int> L, R;
    Flow<int, int> mf(n);
                                                                           for (int u = 0; u < n; u++) {
    for (auto [u, v, c] : e) { mf.addEdge(u, v, c, c); }
                                                                               if (dis[u] == -1) {
    vector<array<int, 3>> res;
                                                                                   L.push_back(u);
    vector<int> p(n);
                                                                               } else if (l[u] != -1) {
    for (int i = 1; i < n; i++) {
                                                                                   R.push_back(l[u]);
        int f = mf.maxFlow(i, p[i]);
                                                                           return pair(L, R);
        auto cut = mf.minCut();
        res.push_back({f, i, p[i]});
                                                                          GeneralMatching
    return res:
                                                                   struct GeneralMatching {
|}
                                                                       int n;
                                                                       vector<vector<int>> adj;
       Global Minimum Cut
                                                                       vector<int> match;
                                                                       GeneralMatching(int n) : n(n), adj(n), match(n, -1) {}
// 0(V ^ 3)
                                                                       void addEdge(int u, int v) {
template <typename F>
                                                                           adj[u].push_back(v);
struct GlobalMinCut {
                                                                           adj[v].push_back(u);
    static constexpr int INF = numeric_limits<F>::max() / 2;
                                                                       int maxMatching() {
    vector<int> vis, wei;
                                                                           vector<int> vis(n), link(n), f(n), dep(n);
    vector<vector<int>> adj;
                                                                           auto find = [&](int u) {
    GlobalMinCut(int n): n(n), vis(n), wei(n), adj(n, vector<
                                                                               while (f[u] != u) \{ u = f[u] = f[f[u]]; \}
         int>(n)) {}
                                                                               return u;
    void addEdge(int u, int v, int w){
        adj[u][v] += w;
                                                                           auto lca = [&](int u, int v) {
        adj[v][u] += w;
                                                                               u = find(u);
                                                                               v = find(v);
    int solve() {
                                                                               while (u != v) {
        int sz = n;
                                                                                   if (dep[u] < dep[v]) { swap(u, v); }</pre>
        int res = INF, x = -1, y = -1;
                                                                                   u = find(link[match[u]]);
        auto search = [&]() {
            fill(vis.begin(), vis.begin() + sz, 0);
                                                                               return u;
            fill(wei.begin(), wei.begin() + sz, 0);
            x = y = -1;
                                                                           queue<int> q;
            int mx, cur;
                                                                           auto blossom = [&](int u, int v, int p) {
            for (int i = 0; i < sz; i++) {
                                                                               while (find(u) != p) {
                mx = -1, cur = 0;
                                                                                   link[u] = v;
                 for (int j = 0; j < sz; j++) {
                                                                                   v = match[u];
                    if (wei[j] > mx) {
                                                                                   if (vis[v] == 0) {
                        mx = wei[j], cur = j;
                                                                                       vis[v] = 1;
                                                                                       q.push(v);
                vis[cur] = 1, wei[cur] = -1;
                                                                                   f[u] = f[v] = p;
                x = y;
y = cur;
                                                                                   u = link[v];
                 for (int j = 0; j < sz; j++) {
                    if (!vis[j]) {
                                                                           auto augment = [&](int u) {
                        wei[j] += adj[cur][j];
                                                                               while (!q.empty()) { q.pop(); }
                                                                               iota(f.begin(), f.end(), 0);
                }
                                                                               fill(vis.begin(), vis.end(), -1);
q.push(u), vis[u] = 1, dep[u] = 0;
            return mx;
                                                                               while (!q.empty()){
        while (sz > 1) {
                                                                                   int u = q.front();
```

q.pop();

for (auto v : adj[u]) {

if (vis[v] == -1) {

```
vis[v] = 0:
                           link[v] = u;
                           dep[v] = dep[u] + 1;
                           if (match[v] == -1) {
                               for (int x = v, y = u, tmp; y !=
                                     -1; x = tmp, y = x == -1? -1
                                     : link[x]) {
                                    tmp = match[y], match[x] = y,
                                        match[y] = x;
                               return true;
                           q.push(match[v]), vis[match[v]] = 1,
    dep[match[v]] = dep[u] + 2;
                      } else if (vis[v] == 1 && find(v) != find(u
                           )) {
                           int p = lca(u, v);
                           blossom(u, v, p), blossom(v, u, p);
                      }
                  }
             }
             return false;
         };
         int res = 0:
         for (int u = 0; u < n; ++u) { if (match[u] == -1) { res
               += augment(u); } }
         return res;
|};
```

// need perfect matching or not : w intialize with -INF / 0

Kuhn Munkres 2.7

template <typename Cost>

```
struct KM {
    static constexpr Cost INF = numeric_limits<Cost>::max() /
        2;
    int n;
    vector<Cost> hl, hr, slk;
    vector<int> l, r, pre, vl, vr;
    queue<int> q;
    vector<vector<Cost>> w;
    KM(int n) : n(n), hl(n), hr(n), slk(n), l(n, -1), r(n, -1),
          pre(n), vl(n), vr(n),
        w(n, vector<Cost>(n, -INF)) {}
    bool check(int x) {
        vl[x] = true;
if (l[x] != -1) {
            q.push(l[x]);
            return vr[l[x]] = true;
        while (x != -1) \{ swap(x, r[l[x] = pre[x]]); \}
        return false;
    void bfs(int s) {
        fill(slk.begin(), slk.end(), INF);
        fill(vl.begin(), vl.end(), false);
        fill(vr.begin(), vr.end(), false);
        q = \{\};
        q.push(s);
        vr[s] = true;
while (true) {
            Cost d:
            while (!q.empty()) {
                 int y = q.front();
                 q.pop();
                 for (int x = 0; x < n; ++x) {
    if (!vl[x] && slk[x] >= (d = hl[x] + hr[y]
                           - w[x][y])) {
                          pre[x] = y;
                          if (d != 0) {
                              slk[x] = d;
                          } else if (!check(x)) {
                              return;
                          }
                     }
                 }
            d = INF;
            for (int x = 0; x < n; ++x) { if (!vl[x] && d > slk
                  [x]) { d = slk[x]; }}
             for (int x = 0; x < n; ++x) {
                 if (vl[x]) {
                     hl[x] += d;
                 } else {
                     slk[x] -= d;
                 }
```

```
if (vr[x]) { hr[x] -= d; }
              for (int x = 0; x < n; ++x) { if (!vl[x] && !slk[x]
                    && !check(x)) { return; }}
     }
     void addEdge(int u, int v, Cost x) { w[u][v] = max(w[u][v],
           x); }
     Cost solve() {
         for (int i = 0; i < n; ++i) { hl[i] = *max_element(w[i</pre>
          ].begin(), w[i].end()); }
for (int i = 0; i < n; ++i) { bfs(i); }
          Cost res = 0;
          for (int i = 0; i < n; ++i) { res += w[i][l[i]]; }
          return res:
|};
```

2.8 Flow Models

- Maximum/Minimum flow with lower bound / Circulation problem
 - 1. Construct super source S and sink T.

 - For each edge (x, y, l, u), connect x → y with capacity u l.
 For each vertex v, denote by in(v) the difference between the sum of incoming lower bounds and the sum of outgoing lower bounds.
 If in(v) > 0, connect S → v with capacity in(v), otherwise, connect v → T with capacity -in(v).
 - To maximize, connect $t \to s$ with capacity ∞ (skip this in circulation problem), and let f be the maximum flow from
 - Otherwise, the maximum flow from S to T. If $f \neq \sum_{v \in V, in(v) > 0} in(v)$, there's no solution. Otherwise, the maximum flow from S to T is the answer. To minimize, let f be the maximum flow from S to T. Connect $t \to s$ with capacity ∞ and let the flow from S to Tbe f'. If $f + f' \neq \sum_{v \in V, in(v) > 0} in(v)$, there's no solution. Otherwise, f' is the answer.
 - 5. The solution of each edge e is $l_e + f_e$, where f_e corresponds to the flow of edge e on the graph.
- Maximum density induced subgraph
 - 1. Binary search on answer, suppose we're checking answer T
 - 2. Construct a max flow model, let K be the sum of all weights
 - 3. Connect source $s \to v, v \in G$ with capacity K
 - 4. For each edge (u, v, w) in G, connect $u \to v$ and $v \to u$ with capacity w
 - 5. For $v \in G$, connect it with sink $v \to t$ with capacity K + 2T - $(\sum_{e \in E(v)} w(e)) - 2w(v)$ 6. T is a valid answer if the maximum flow f < K|V|
- 0/1 quadratic programming

$$\sum_{x} c_{x} x + \sum_{y} c_{y} \bar{y} + \sum_{xy} c_{xy} x \bar{y} + \sum_{xyx'y'} c_{xyx'y'} (x\bar{y} + x'\bar{y'})$$

can be minimized by the mincut of the following graph:

- 1. Create edge (x, t) with capacity c_x and create edge (s, y) with capacity c_y .
- 2. Create edge (x,y) with capacity c_{xy} . 3. Create edge (x,y) and edge (x',y') with capacity $c_{xyx'y'}$.

Data Structure 3

<ext/pbds> 3.1

```
#include <bits/extc++.h>
#include <ext/rope>
using namespace __gnu_pbds;
using namespace __gnu_cxx;
#include <ext/pb_ds/assoc_container.hpp>
typedef tree<int, null_type, std::less<int>, rb_tree_tag,
     tree_order_statistics_node_update> tree_set;
typedef cc_hash_table<int, int> umap;
typedef priority_queue<int> heap;
int main() {
  // rb tree
  tree_set s
  s.insert(71); s.insert(22);
  assert(*s.find_by_order(0) == 22); assert(*s.find_by_order(1)
       == 71);
  assert(s.order_of_key(22) == 0); assert(s.order_of_key(71) ==
       1);
  s.erase(22);
  assert(*s.find_by_order(0) == 71); assert(s.order_of_key(71)
      == 0);
  // mergable heap
  heap a, b; a.join(b);
  // persistant
  rope<char> r[2];
```

```
r[1] = r[0];
  std::string st = "abc";
r[1].insert(0, st.c_str());
  r[1].erase(1, 1);
  std::cout << r[1].substr(0, 2) << std::endl;</pre>
3.2 Li Chao Tree
// edu13F MLE with non-deleted pointers
// [) interval because of negative numbers
constexpr i64 INF64 = 4e18;
struct Line {
    i64 a = -INF64, b = -INF64;
    i64 operator()(i64 x) const {
         if (a == -INF64 \&\& b == -INF64) {
             return -INF64;
         } else {
             return a * x + b;
    }
};
constexpr int INF32 = 1e9;
struct LiChao {
    static constexpr int N = 5e6;
    array<Line, N> st;
    array<int, N> lc, rc;
    int n = 0;
     void clear() { n = 0; node(); }
    int node() {
         st[n] = {};
lc[n] = rc[n] = -1;
         return n++;
    void add(int id, int l, int r, Line line) {
         int m = (1 + r) / 2;
         bool lcp = st[id](l) < line(l);</pre>
         bool mcp = st[id](m) < line(m);</pre>
         if (mcp) { swap(st[id], line); }
         if (r - l == 1) { return; }
         if (lcp != mcp) {
             if (lc[id] == -1) {
                 lc[id] = node();
             add(lc[id], l, m, line);
         } else {
             if (rc[id] == -1) {
                 rc[id] = node();
             add(rc[id], m, r, line);
    void add(Line line, int l = -INF32 - 1, int r = INF32 + 1)
         add(0, 1, r, line);
    i64 query(int id, int l, int r, i64 x) {
         i64 res = st[id](x);
         if (r - l == 1) { return res; }
int m = (l + r) / 2;
         if (x < m && lc[id] != -1) {</pre>
         res = max(res, query(lc[id], l, m, x));
} else if (x >= m && rc[id] != -1) {
             res = max(res, query(rc[id], m, r, x));
         return res;
    i64 query(i64 x, int l = -INF32 - 1, int r = INF32 + 1) {
         return query(0, 1, r, x);
};
3.3 Link-Cut Tree
struct Splay {
    array<Splay*, 2> ch = {nullptr, nullptr};
    Splay* fa = nullptr;
     int sz = 1;
    bool rev = false;
    Splay() {}
     void applyRev(bool x) {
         if (x) {
             swap(ch[0], ch[1]);
rev ^= 1;
         }
    }
```

```
void push() {
   for (auto k : ch) {
        if (k) {
             k->applyRev(rev);
    rev = false;
void pull() {
    sz = 1;
    for (auto k : ch) {
        if (k) {
        }
int relation() { return this == fa->ch[1]; }
bool isRoot() { return !fa || fa->ch[0] != this && fa->ch
[1] != this; }
void rotate() {
    Splay *p = fa;
    bool x = !relation();
    p \rightarrow ch[!x] = ch[x];
    if (ch[x]) \{ ch[x] -> fa = p; \}
    fa = p \rightarrow fa;
    if (!p->isRoot()) { p->fa->ch[p->relation()] = this; }
    ch[x] = p;
    p->fa = this;
    p->pull();
void splay() {
    vector<Splay*> s;
    for (Splay *p = this; !p->isRoot(); p = p->fa) { s.
         push_back(p->fa); }
    while (!s.empty()) {
        s.back()->push();
        s.pop_back();
    push();
    while (!isRoot()) {
        if (!fa->isRoot()) {
             if (relation() == fa->relation()) {
                 fa->rotate();
             } else {
                 rotate();
             }
        }
        rotate();
    pull();
void access() {
    for (Splay *p = this, *q = nullptr; p; q = p, p = p \rightarrow fa
        p->splay();
        p->ch[1] = q;
        p->pull();
    splay();
void makeRoot() {
    access();
    applyRev(true);
Splay* findRoot() {
    access();
    Splay *p = this;
    while (p->ch[0]) \{ p = p->ch[0]; \}
    p->splay();
    return p;
friend void split(Splay *x, Splay *y) {
    x->makeRoot();
    y->access();
// link if not connected
friend void link(Splay *x, Splay *y) {
    x->makeRoot();
    if (y->findRoot() != x) {
        x->fa=y;
// delete edge if doesn't exist
friend void cut(Splay *x, Splay *y) {
    split(x, y);
    if (x->fa == y \&\& !x->ch[1]) {
        x->fa = y->ch[0] = nullptr;
```

```
x->pull();
}
bool connected(Splay *x, Splay *y) {
    return x->findRoot() == y->findRoot();
}
};
```

4 Graph

4.1 2-Edge-Connected Components

```
struct EBCC {
     int n, cnt = 0, T = 0;
     vector<vector<int>> adj, comps;
     vector<int> stk, dfn, low, id;
     EBCC(int n) : n(n), adj(n), dfn(n, -1), low(n), id(n, -1)
           {}
     \begin{tabular}{lll} \begin{tabular}{lll} void & addEdge(int u, int v) & adj[u].push\_back(v), & adj[v]. \end{tabular}
           push_back(u); }
     void build() { for (int i = 0; i < n; i++) { if (dfn[i] ==</pre>
     -1) { dfs(i, -1); }}}
void dfs(int u, int p) {
          dfn[u] = low[u] = T++;
          stk.push_back(u);
          for (auto v : adj[u]) {
               if (v == p) { continue; }
if (dfn[v] == -1) {
                    dfs(v, u);
                    low[u] = min(low[u], low[v]);
               } else if (id[v] == -1) {
                    low[u] = min(low[u], dfn[v]);
          if (dfn[u] == low[u]) {
               int x;
               comps.emplace_back();
               do {
                   x = stk.back();
                    comps.back().push_back(x);
                    id[x] = cnt;
                   stk.pop_back();
               } while (x != u);
               cnt++;
          }
     }
|};
```

4.2 3-Edge-Connected Components

// DSU

```
struct ETCC {
    int n, cnt = 0;
    vector<vector<int>> adj, comps;
    vector<int> in, out, low, up, nx, id;
    ETCC(int n): n(n), adj(n), in(n, -1), out(in), low(n), up( n), nx(in), id(in) {}
    void addEdge(int u, int v) {
        adj[u].push_back(v);
        adj[v].push_back(u);
    void build() {
        int T = 0;
        DSU d(n);
        auto merge = [&](int u, int v) {
             d.join(u, v);
             up[u] += up[v];
        auto dfs = [&](auto dfs, int u, int p) -> void {
             in[u] = low[u] = T++;
             for (auto v : adj[u]) {
                 if (v == u) { continue; }
                 if (v == p) {
 p = -1;
                      continue;
                 if (in[v] == -1) {
                     dfs(dfs, v, u);
if (nx[v] == -1 && up[v] <= 1) {
                          up[u] += up[v];
                          low[u] = min(low[u], low[v]);
                          continue;
                      if (up[v] == 0) \{ v = nx[v]; \}
```

```
if (low[u] > low[v]) \{ low[u] = low[v],
                 swap(nx[u], v); }
            while (v != -1) \{ merge(u, v); v = nx[v]; \}
        } else if (in[v] < in[u]) {</pre>
            low[u] = min(low[u], in[v]);
            up[u]++;
        } else {
            for (int &x = nx[u]; x != -1 && in[x] <= in
                 [v] \&\& in[v] < out[x]; x = nx[x]) {
                merge(u, x);
            up[u]--;
        }
   out[u] = T;
for (int i = 0; i < n; i++) { if (in[i] == -1) { dfs(
    dfs, i, -1); }}
for (int i = 0; i < n; i++) { if (d.find(i) == i) { id[
    i] = cnt++; }}
comps.resize(cnt);
for (int i = 0; i < n; i++) { comps[id[d.find(i)]].
    push_back(i); }
```

4.3 Heavy-Light Decomposition

};

```
int n, cur = 0;
vector<int> sz, top, dep, par, tin, tout, seq;
vector<vector<int>> adj;
HLD(int n) : n(n), sz(n, 1), top(n), dep(n), par(n), tin(n)
       tout(n), seq(n), adj(n) {}
void addEdge(int u, int v) { adj[u].push_back(v), adj[v].
    push_back(u); }
void build(int root = 0) {
  top[root] = root, dep[root] = 0, par[root] = -1;
    dfs1(root), dfs2(root);
void dfs1(int u) {
    if (auto it = find(adj[u].begin(), adj[u].end(), par[u
         ]); it != adj[u].end()) {
         adj[u].erase(it);
    for (auto &v : adj[u]) {
        par[v] = u;
         dep[v] = dep[u] + 1;
         dfs1(v);
        sz[u] += sz[v];
         if (sz[v] > sz[adj[u][0]]) { swap(v, adj[u][0]); }
void dfs2(int u) {
    tin[u] = cur++;
    seq[tin[u]] = u;
    for (auto v : adj[u]) {
         top[v] = v == adj[u][0] ? top[u] : v;
        dfs2(v);
    tout[u] = cur - 1;
int lca(int u, int v) {
    while (top[u] != top[v]) {
        if (dep[top[u]] > dep[top[v]]) {
             u = par[top[u]];
        } else {
             v = par[top[v]];
    return dep[u] < dep[v] ? u : v;</pre>
int dist(int u, int v) { return dep[u] + dep[v] - 2 * dep[
     lca(u, v)]; }
int jump(int u, int k) {
   if (dep[u] < k) { return -1; }</pre>
    int d = dep[u] - k;
    while (dep[top[u]] > d) { u = par[top[u]]; }
    return seq[tin[u] - dep[u] + d];
// u is v's ancestor
bool isAncestor(int u, int v) { return tin[u] <= tin[v] &&</pre>
     tin[v] <= tout[u]; }</pre>
  root's parent is itself
int rootedParent(int r, int u) {
    if (r == u) { return u; }
```

4.4 Centroid Decomposition

```
vector<int> sz(n), vis(n);
auto dfs1 = [&](auto dfs1, int u, int p) -> void {
    sz[u] = 1;
    for (auto v : g[u]) {
    if (v != p && !vis[v]) {
             dfs1(dfs1, v, u);
             sz[u] += sz[v];
    }
auto dfs2 = [&](auto dfs2, int u, int p, int tot) -> int {
    for (auto v : g[u]) {
         if (v != p && !vis[v] && 2 * sz[v] > tot) {
             return dfs2(dfs2, v, u, tot);
     return u;
auto dfs = [&](auto dfs, int cen) -> void {
    dfs1(dfs1, cen, -1);
    cen = dfs2(dfs2, cen, -1, sz[cen]);
    vis[cen] = 1;
    dfs1(dfs1, cen, -1);
    for (auto v : g[cen]) {
         if (!vis[v]) {
             dfs(dfs, v);
    }
dfs(dfs, 0);
```

4.5 Strongly Connected Components

```
struct SCC {
    int n, cnt = 0, cur = 0;
    vector<int> id, dfn, low, stk;
    vector<int>> adj, comps;
    void addEdge(int u, int v) { adj[u].push_back(v); }
SCC(int n) : n(n), id(n, -1), dfn(n, -1), low(n, -1), adj(n
    void build() {
        auto dfs = [&](auto dfs, int u) -> void {
             dfn[u] = low[u] = cur++;
             stk.push_back(u);
             for (auto v : adj[u]) {
                 if (dfn[v] == -1) {
                      dfs(dfs, v);
                      low[u] = min(low[u], low[v]);
                 } else if (id[v] == -1) {
                     low[u] = min(low[u], dfn[v]);
             if (dfn[u] == low[u]) {
                 int v;
                 comps.emplace_back();
                 do {
                      v = stk.back();
                      comps.back().push_back(v);
                      id[v] = cnt;
                      stk.pop_back();
                 } while (u != v);
                 cnt++;
             }
        };
        for (int i = 0; i < n; i++) { if (dfn[i] == -1) { dfs(
              dfs, i); }}
```

4.6 2-SAT

```
struct TwoSat {
     int n, N;
     vector<vector<int>> adj;
     vector<int> ans;
     TwoSat(int n): n(n), N(n), adj(2 * n) {}
     void addClause(int u, bool x) { adj[2 * u + !x].push_back(2
     * u + x); }
// u == x || v == y
     void addClause(int u, bool x, int v, bool y) {
         adj[2 * u + !x].push_back(2 * v + y);
         adj[2 * v + !y].push_back(2 * u + x);
     void addImply(int u, bool x, int v, bool y) { addClause(u,
          !x, v, y); }
     void addVar() {
         adj.emplace_back(), adj.emplace_back();
     // at most one in var is true
     // adds prefix or as supplementary variables
     void atMostOne(const vector<pair<int, bool>> &vars) {
         int sz = vars.size();
         for (int i = 0; i < sz; i++) {
             addVar();
             auto [u, x] = vars[i];
             addImply(u, x, N - 1, true);
             if (i > 0) {
                 addImply(N - 2, true, N - 1, true);
                 addClause(u, !x, N - 2, false);
         }
     // does not return supplementary variables from atMostOne()
     bool satisfiable() {
         // run tarjan scc on 2 * N
         for (int i = 0; i < 2 * N; i++) { if (dfn[i] == -1) {
              dfs(dfs, i); }}
         for (int i = 0; i < N; i++) { if (id[2 * i] == id[2 * i]
               + 1]) { return false; }}
         ans.resize(n);
         for (int i = 0; i < n; i++) { ans[i] = id[2 * i] > <math>id[2]
               * i + 1]; }
         return true;
|};
```

4.7 count 3-cycles and 4-cycles

```
vector<int> vis(n);
// c3
for (int x = 0; x < n; x++) {
    for (auto y : dag[x]) {
        vis[y] = 1;
    for (auto y : dag[x]) {
        for (auto z : dag[y]) {
            ans += vis[z];
    for (auto y : dag[x]) {
        vis[y] = 0;
for (int x = 0; x < n; x++) {
    for (auto y : dag[x]) {
        for (auto z : adj[y]) {
            if (z != x) {
                ans += vis[z]++;
    for (auto y : dag[x]) {
        for (auto z : adj[y]) {
            if (z != x) {
                vis[z]--;
```

```
}
      }
| }
```

Minimum Mean Cycle

create a new vertex S, connect S to all vertices with arbitrary weight (0). | }; Let $f_i(u)$ be the shortest path from S to u with exactly i edges.

$$ans = \min_{f_{n+1}(i)! = \infty} \max_{j=1}^{n} \frac{f_{n+1}(i) - f_{j}(i)}{n+1-j}$$

Directed Minimum Spanning Tree

```
// DSU with rollback
template <typename Cost>
struct DMST {
    int n;
    vector<int> s, t, lc, rc, h;
vector<Cost> c, tag;
    DMST(int n) : n(n), h(n, -1) \{ \}
    void addEdge(int u, int v, Cost w) {
        int id = s.size();
         s.push_back(u), t.push_back(v), c.push_back(w);
         lc.push_back(-1), rc.push_back(-1);
         tag.emplace_back();
        h[v] = merge(h[v], id);
    pair<Cost, vector<int>>> build(int root = 0) {
        DSU d(n);
         Cost res{}:
         vector<int> vis(n, -1), path(n), q(n), in(n, -1);
        vis[root] = root;
        vector<pair<int, vector<int>>> cycles;
for (auto r = 0; r < n; ++r) {
    auto u = r, b = 0, w = -1;</pre>
             while (!~vis[u]) {
                 if (!~h[u]) { return {-1, {}}; }
                 push(h[u]);
                 int e = h[u];
                 res += c[e], tag[h[u]] -= c[e];
                 h[u] = pop(h[u]);
                 q[b] = e, path[b++] = u, vis[u] = r;
                 u = d.find(s[e]);
                 if (vis[u] == r) {
                      int cycle = -1, e = b;
                      do {
                          w = path[--b];
                          cycle = merge(cycle, h[w]);
                      } while (d.join(u, w));
                      u = d.find(u);
                      h[u] = cycle, vis[u] = -1;
                      cycles.emplace_back(u, vector<int>(q.begin
                           () + b, q.begin() + e));
             for (auto i = 0; i < b; ++i) { in[d.find(t[q[i]])]
                  = q[i]; }
        reverse(cycles.begin(), cycles.end());
         for (const auto &[u, comp] : cycles) {
             int count = int(comp.size()) - 1;
             d.back(count);
            int ine = in[u];
for (auto e : comp) { in[d.find(t[e])] = e; }
             in[d.find(t[ine])] = ine;
        par.reserve(n);
         for (auto i : in) { par.push_back(i != -1 ? s[i] : -1);
         return {res, par};
    void push(int u) {
        c[u] += tag[u];
         if (int l = lc[u]; l != -1) { tag[l] += tag[u]; }
         if (int r = rc[u]; r != -1) { tag[r] += tag[u]; }
        tag[u] = 0;
    int merge(int u, int v) {
         if (u == -1 || v == -1) { return u != -1 ? u : v; }
        push(v);
         if (c[u] > c[v]) { swap(u, v); }
         rc[u] = merge(v, rc[u]);
```

```
swap(lc[u], rc[u]);
int pop(int u) {
   push(u);
    return merge(lc[u], rc[u]);
```

Maximum Clique 4.10

```
pair<int, vector<int>> maxClique(const vector<bitset<N>> adj) {
    int n = adj.size();
    int mx = 0;
    vector<int> ans, cur;
    auto rec = [&](auto rec, bitset<N> s) -> void {
        int sz = s.count();
        if (int(cur.size()) > mx) { mx = cur.size(), ans = cur;
        if (int(cur.size()) + sz <= mx) { return; }</pre>
        int e1 = -1, e2 = -1;
        vector<int> d(n);
        for (int i = 0; i < n; i++) {
            if (s[i]) {
                 d[i] = (adj[i] & s).count();
                 if (e1 == -1 || d[i] > d[e1]) { e1 = i; }
                 if (e2 == -1 \mid | d[i] < d[e2]) { e2 = i; }
        if (d[e1] >= sz - 2) {
            cur.push_back(e1);
            auto s1 = adj[e1] & s;
rec(rec, s1);
            cur.pop_back();
            return;
        cur.push_back(e2);
        auto s2 = adj[e2] & s;
        rec(rec, s2);
        cur.pop_back();
        s.reset(e2);
        rec(rec, s);
    bitset<N> all;
    for (int i = 0; i < n; i++) {
        all.set(i);
    rec(rec, all);
    return pair(mx, ans);
```

4.11 Dominator Tree

```
|// res : parent of each vertex in dominator tree, -1 is root,
      -2 if not in tree
 struct DominatorTree {
     int n, cur = 0;
     vector<int> dfn, rev, fa, sdom, dom, val, rp, res;
     vector<vector<int>> adj, rdom, r;
     DominatorTree(int n): n(n), dfn(n, -1), res(n, -2), adj(n)
          , rdom(n), r(n) {
         rev = fa = sdom = dom = val = rp = dfn;
     void addEdge(int u, int v) {
         adj[u].push_back(v);
     void dfs(int u) {
         dfn[u] = cur;
         rev[cur] = u;
         fa[cur] = sdom[cur] = val[cur] = cur;
         cur++;
         for (int v : adj[u]) {
   if (dfn[v] == -1) {
                 dfs(v);
                 rp[dfn[v]] = dfn[u];
             r[dfn[v]].push_back(dfn[u]);
     int find(int u, int c) {
         if (fa[u] == u) { return c != 0 ? -1 : u; }
         int p = find(fa[u], 1);
         if (p == -1) { return c != 0 ? fa[u] : val[u]; }
         if (sdom[val[u]] > sdom[val[fa[u]]]) { val[u] = val[fa[
              u]]; }
         fa[u] = p;
```

```
National Taiwan University 1RZck
          return c != 0 ? p : val[u];
     void build(int s = 0) {
          for (int i = cur - 1; i >= 0; i--) {
              for (int u : r[i]) { sdom[i] = min(sdom[i], sdom[
                   find(u, 0)]); }
              if (i > 0) { rdom[sdom[i]].push_back(i); }
              for (int u : rdom[i]) {
                   int p = find(u, 0);
                  if (sdom[p] == i) {
   dom[u] = i;
                  } else {
                       dom[u] = p;
              if (i > 0) { fa[i] = rp[i]; }
         }
         res[s] = -1;
          for (int i = 1; i < cur; i++) { if (sdom[i] != dom[i])</pre>
          { dom[i] = dom[dom[i]]; }}
for (int i = 1; i < cur; i++) { res[rev[i]] = rev[dom[i]]
|};
          Vizing's Theorem
 4.12
// bipartite
 e[i] = pair(u, v + a), deg[u]++, deg[v + a]++;
 int col = *max_element(deg.begin(), deg.end());
 vector<int> ans(m, -1);
vector has(a + b, vector<pair<int, int>>(col, {-1, -1}));
for (int i = 0; i < m; i++) {</pre>
```

```
auto [u, v] = e[i];
    vector<int> c;
    for (auto x : \{u, v\}) {
        c.push_back(0);
         while (has[x][c.back()].first != -1) { c.back()++; }
    if (c[0] != c[1]) {
         auto dfs = [&](auto dfs, int u, int x) -> void {
             auto [v, i] = has[u][c[x]];
if (v != -1) {
                  if (has[v][c[x ^ 1]].first != -1) {
                      dfs(dfs, v, x ^ 1);
                  } else {
                      has[v][c[x]] = \{-1, -1\};
                  has[u][c[x \land 1]] = \{v, i\}, has[v][c[x \land 1]] = \{v, i\}
                       u, i};
                  ans[i] = c[x \wedge 1];
             }
         dfs(dfs, v, 0);
    has[u][c[0]] = {v, i};
has[v][c[0]] = {u, i};
    ans[i] = c[0];
// general
auto vizing(int n, const vector<pair<int, int>> &e) {
    vector<int> deg(n);
for (auto [u, v] : e) {
         deg[u]++, deg[v]++;
    int col = *max_element(deg.begin(), deg.end()) + 1;
    vector<int> free(n);
    vector ans(n, vector<int>(n, -1));
    vector at(n, vector<int>(col, -1));
    auto update = [&](int u) {
         free[u] = 0;
         while (at[u][free[u]] != -1) {
             free[u]++;
        }
    auto color = [&](int u, int v, int c1) {
         int c2 = ans[u][v];
         ans[u][v] = ans[v][u] = c1;
        at[u][c1] = v, at[v][c1] = u;
if (c2 != -1) {
             at[u][c2] = at[v][c2] = -1;
             free[u] = free[v] = c2;
         } else {
             update(u), update(v);
```

}

```
return c2:
auto flip = [&](int u, int c1, int c2) {
    int v = at[u][c1];
    swap(at[u][c1], at[u][c2]);
    if (v != -1) {
         ans[u][v] = ans[v][u] = c2;
    if (at[u][c1] == -1) {
         free[u] = c1;
    if (at[u][c2] == -1) {
         free[u] = c2;
    return v;
};
for (int i = 0; i < int(e.size()); i++) {</pre>
    auto [u, v1] = e[i];
int v2 = v1, c1 = free[u], c2 = c1, d;
    vector<pair<int, int>> fan;
    vector<int> vis(col);
    while (ans[u][v1] == -1) {
         fan.emplace_back(v2, d = free[v2]);
if (at[v2][c2] == -1) {
              for (int j = int(fan.size()) - 1; j >= 0; j--)
                  c2 = color(u, fan[j].first, c2);
         } else if (at[u][d] == -1) {
             for (int j = int(fan.size()) - 1; j >= 0; j--)
                  color(u, fan[j].first, fan[j].second);
         } else if (vis[d] == 1) {
             break;
         } else {
             vis[d] = 1, v2 = at[u][d];
    if (ans[u][v1] == -1) {
         while (v2 != -1) {
 v2= flip(v2, c2, d);
             swap(c2, d);
         if (at[u][c1] != -1) {
             int j = int(fan.size()) - 2;
while (j >= 0 && fan[j].second != c2) {
                  j--;
              while (j >= 0) {
                  color(u, fan[j].first, fan[j].second);
         } else {
             i--;
         }
    }
return pair(col, ans);
```

5 String

| }

5.1 Prefix Function

```
template <typename T>
vector<int> prefixFunction(const T &s) {
   int n = int(s.size());
   vector<int> p(n);
   for (int i = 1; i < n; i++) {
      int j = p[i - 1];
      while (j > 0 && s[i] != s[j]) { j = p[j - 1]; }
      if (s[i] == s[j]) { j++; }
      p[i] = j;
   }
   return p;
}
```

5.2 Z Function

```
template <typename T>
vector<int> zFunction(const T &s) {
  int n = int(s.size());
  if (n == 0) return {};
  vector<int> z(n);
```

```
for (int i = 1, j = 0; i < n; i++) {
   int &k = z[i];
   k = j + z[j] <= i ? 0 : min(j + z[j] - i, z[i - j]);
   while (i + k < n && s[k] == s[i + k]) { k++; }
   if (j + z[j] < i + z[i]) { j = i; }
}
z[0] = n;
return z;
}</pre>
```

```
Suffix Array
 5.3
 // need to discretize
 struct SuffixArray {
     int n:
 vector<int> sa, as, ha;
template <typename T>
     vector<int> sais(const T &s) {
          int n = s.size(), m = *max_element(s.begin(), s.end())
               + 1;
          vector < int > pos(m + 1), f(n);
          for (auto ch : s) { pos[ch + 1]++; }
          for (int i = 0; i < m; i++) { pos[i + 1] += pos[i]; } for (int i = n - 2; i >= 0; i--) { f[i] = s[i] != s[i + n]
                 1] ? s[i] < s[i + 1] : f[i + 1]; }
          vector<int> x(m), sa(n);
          auto induce = [&](const vector<int> &ls) {
               fill(sa.begin(), sa.end(), -1);
auto L = [&](int i) { if (i >= 0 && !f[i]) { sa[x[s
               [i]]++] = i; }};
auto S = [&](int i) { if (i >= 0 && f[i]) { sa[--x[
                    s[i]]] = i; }};
               for (int i = 0; i < m; i++) { x[i] = pos[i + 1]; } for (int i = int(ls.size()) - 1; i >= 0; i--) { S(
                    ls[i]); }
               for (int i = 0; i < m; i++) { x[i] = pos[i]; }
               L(n - 1);
               for (int i = 0; i < n; i++) { L(sa[i] - 1); } for (int i = 0; i < m; i++) { x[i] = pos[i + 1]; }
               for (int i = n - 1; i >= 0; i--) { S(sa[i] - 1); }
          auto ok = [&](int i) { return i == n || !f[i - 1] && f[
               i]; };
          auto same = [&](int i, int j) {
               do { if (s[i++] != s[j++]) { return false; }} while
                     (!ok(i) && !ok(j));
               return ok(i) && ok(j);
          };
          vector<int> val(n), lms;
          for (int i = 1; i < n; i++) { if (ok(i)) { lms.
               push_back(i); }}
          induce(lms):
          if (!lms.empty()) {
               int p = -1, w = 0;
               for (auto v : sa) {
                    if (v != 0 && ok(v)) {
                        if (p != -1 && same(p, v)) { w--; }
                        val[p = v] = w++;
                    }
               auto b = lms;
               for (auto &v : b) { v = val[v]; }
               b = sais(b);
               for (auto &v : b) { v = lms[v]; }
               induce(b);
          return sa;
 template <typename T>
     SuffixArray(const T &s) : n(s.size()), sa(sais(s)), as(n),
           ha(n - 1) {
          for (int i = 0; i < n; i++) { as[sa[i]] = i; }
for (int i = 0, j = 0; i < n; ++i) {</pre>
               if (as[i] == 0) {
                    j = 0;
               } else {
                    for (j -= j > 0; i + j < n \& sa[as[i] - 1] + j
                           < n \& s[i + j] == s[sa[as[i] - 1] + j];
                    ha[as[i] - 1] = j;
          }
     }
|};
```

5.4 Manacher's Algorithm

```
// returns radius of t, length of s : rad(t) - 1, radius of s :
    rad(t) / 2
vector<int> manacher(string s) {
    string t = "#";
    for (auto c : s) { t += c, t += '#'; }
    int n = t.size();
    vector<int> r(n);
    for (int i = 0, j = 0; i < n; i++) {
        if (2 * j - i >= 0 && j + r[j] > i) { r[i] = min(r[2 * j - i], j + r[j] - i); }
        while (i - r[i] >= 0 && i + r[i] < n && t[i - r[i]] == t[i + r[i]]) { r[i]++; }
        if (i + r[i] > j + r[j]) { j = i; }
    }
    return r;
}
```

5.5 Aho-Corasick Automaton

```
constexpr int K = 26;
struct Node {
     array<int, K> nxt;
     int fail = -1;
     // other vars
     Node() { nxt.fill(-1); }
vector<Node> aho(1);
 for (int i = 0; i < n; i++) {
     string s;
     cin >> s:
     int u = 0;
     for (auto ch : s) {
    int c = ch - 'a';
         if (aho[u].nxt[c] == -1) {
    aho[u].nxt[c] = aho.size();
              aho.emplace_back();
         u = aho[u].nxt[c];
     }
 vector<int> q;
for (auto &i : aho[0].nxt) {
     if (i == -1) {
     } else {
         q.push_back(i);
         aho[i].fail = 0;
 for (int i = 0; i < int(q.size()); i++) {</pre>
     int u = q[i];
     if (u > 0) {
         // maintain
     for (int c = 0; c < K; c++) {
          if (int v = aho[u].nxt[c]; v != -1) {
              aho[v].fail = aho[aho[u].fail].nxt[c];
              q.push_back(v);
         } else {
              aho[u].nxt[c] = aho[aho[u].fail].nxt[c];
     }
}
```

5.6 Suffix Automaton

```
constexpr int K = 26;
struct Node{
    int len = 0, link = -1, cnt = 0;
    array<int, K> nxt;
    Node() { nxt.fill(-1); }
vector<Node> sam(1);
auto extend = [&](int c) {
    static int last = 0;
    int p = last, cur = sam.size();
    sam.emplace_back();
    sam[cur].len = sam[p].len + 1;
    sam[cur].cnt = 1;
    while (p != -1 && sam[p].nxt[c] == -1) {
        sam[p].nxt[c] = cur;
        p = sam[p].link;
    if (p == -1) {
        sam[cur].link = 0;
    } else {
```

```
int q = sam[p].nxt[c];
        if (sam[p].len + 1 == sam[q].len) {
            sam[cur].link = q;
        } else {
            int clone = sam.size();
            sam.emplace_back();
            sam[clone].len = sam[p].len + 1;
            sam[clone].link = sam[q].link;
            sam[clone].nxt = sam[q].nxt;
            while (p != -1 && sam[p].nxt[c] == q) {
                sam[p].nxt[c] = clone;
                p = sam[p].link;
            sam[q].link = sam[cur].link = clone;
       }
    last = cur;
};
for (auto ch : s) {
    extend(ch - 'a');
int N = sam.size();
vector<vector<int>> g(N);
for (int i = 1; i < N; i++) {
    g[sam[i].link].push_back(i);
```

5.7 Lexicographically Smallest Rotation

```
template <typename T>
T minRotation(T s) {
   int n = s.size();
    int i = 0, j = 1;
    s.insert(s.end(), s.begin(), s.end());
    while (i < n \&\& j < n) {
        int k = 0;
        while (k < n \&\& s[i + k] == s[j + k]) {
            k++;
        if (s[i + k] \le s[j + k]) {
            j += k + 1;
        } else {
            i += k + 1;
        if (i == j) {
            j++;
   int ans = i < n ? i : j;</pre>
    return T(s.begin() + ans, s.begin() + ans + n);
```

Math

6.1 Extended GCD

```
array<i64, 3> extgcd(i64 a, i64 b) {
   if (b == 0) { return {a, 1, 0}; }
    auto [g, x, y] = extgcd(b, a % b);
    return \{g, y, x - a / b * y\};
```

Chinese Remainder Theorem

```
// returns (rem, mod), n = 0 return (0, 1), no solution return
     (0, 0)
pair<i64, i64> crt(vector<i64> r, vector<i64> m) {
    int n = r.size();
    for (int i = 0; i < n; i++) {
         r[i] %= m[i];
         if (r[i] < 0) { r[i] += m[i]; }</pre>
    i64 \ r0 = 0, \ m0 = 1;
    for (int i = 0; i < n; i++) {
         i64 r1 = r[i], m1 = m[i];
         if (m0 < m1) { swap(r0, r1), swap(m0, m1); }</pre>
         if (m0 % m1 == 0) {
             if (r0 % m1 != r1) { return {0, 0}; }
             continue;
         auto [g, a, b] = extgcd(m0, m1);
         i64 u1 = m1 / g;
if ((r1 - r0) % g != 0) { return {0, 0}; }
         i64 x = (r1 - r0) / g % u1 * a % u1;
r0 += x * m0;
```

```
m0 *= u1;
         if (r0 < 0) \{ r0 += m0; \}
     return {r0, m0};
}
```

```
6.3 NTT and polynomials
template <int P>
struct Modint {
    int v:
    constexpr Modint() : v(0) {}
    constexpr Modint(i64 v) : v((v \% P + P) \% P) {}
    constexpr friend Modint operator+(Modint a, Modint b) {
         return Modint((a.v + b.v) % P); }
    constexpr friend Modint operator-(Modint a, Modint b) {
         return Modint((a.v + P - b.v) % P); }
    constexpr friend Modint operator*(Modint a, Modint b) {
         return Modint(1LL * a.v * b.v % P); }
    constexpr Modint qpow(i64 p) {
        Modint res = 1, x = v;
        while (p > 0) {
            if (p & 1) { res = res * x; }
x = x * x;
            p >>= 1;
        return res;
    constexpr Modint inv() { return qpow(P - 2); }
};
template<int P>
constexpr Modint<P> findPrimitiveRoot() {
    Modint<P> i = 2;
    int k = __builtin_ctz(P - 1);
    while (true) {
        if (i.qpow((P - 1) / 2).v != 1) { break; }
    return i.qpow(P - 1 >> k);
template <int P>
constexpr Modint<P> primitiveRoot = findPrimitiveRoot<P>();
vector<int> rev;
template <int P>
vector<Modint<P>> roots{0, 1};
template <int P>
void dft(vector<Modint<P>> &a) {
    int n = a.size();
    if (n == 1) { return; }
    if (int(rev.size()) != n) {
        int k = __builtin_ctz(n) - 1;
        rev.resize(n);
        for (int i = 0; i < n; i++) { rev[i] = rev[i >> 1] >> 1
              | (i \& 1) << k; \}
    for (int i = 0; i < n; i++) { if (rev[i] < i) { swap(a[i], a)
         a[rev[i]]); }}
    if (roots<P>.size() < n) {</pre>
        int k = __builtin_ctz(roots<P>.size());
roots<P>.resize(n);
        while ((1 << k) < n) {
             auto e = Modint<P>(primitiveRoot<P>).qpow(P - 1 >>
                 k + 1);
             for (int i = 1 << k - 1; i < 1 << k; i++) {
    roots<P>[2 * i] = roots<P>[i];
                 roots<P>[2 * i + 1] = roots<P>[i] * e;
            }
k++;
        }
    // fft : just do roots[i] = exp(2 * PI / n * i * complex<
         double>(0, 1))
    for (int k = 1; k < n; k *= 2) {
         for (int i = 0; i < n; i += 2 * k) {
             for (int j = 0; j < k; j++) {
                Modint<P> u = a[i + j];
Modint<P> v = a[i + j + k] * roots<P>[k + j];
                 // fft : v = a[i + j + k] * roots[n / (2 * k) *
                 a[i + j] = u + v;
                 a[i + j + k] = u - v;
            }
        }
    }
```

template <int P>

void idft(vector<Modint<P>> &a) {

```
int n = a.size():
    reverse(a.begin() + 1, a.end());
    dft(a);
    Modint<P> x = (1 - P) / n;
    for (int i = 0; i < n; i++) { a[i] = a[i] * x; }
template <int P>
struct Poly : vector<Modint<P>>> {
    using Mint = Modint<P>;
    Poly() {}
    explicit Poly(int n) : vector<Mint>(n) {}
    explicit Poly(const vector<Mint> &a) : vector<Mint>(a) {}
    explicit Poly(const initializer_list<Mint> &a) : vector
         Mint>(a) {}
template<class F>
    explicit Poly(int n, F f) : vector<Mint>(n) { for (int i =
         0; i < n; i++) { (*this)[i] = f(i); }}
template<class InputIt>
    explicit constexpr Poly(InputIt first, InputIt last) :
         vector<Mint>(first, last) {}
    Poly mulxk(int k) {
        auto b = *this;
        b.insert(b.begin(), k, 0);
        return b;
    Poly modxk(int k) {
        k = min(k, int(this->size()));
        return Poly(this->begin(), this->begin() + k);
    Poly divxk(int k) {
        if (this->size() <= k) { return Poly(); }</pre>
        return Poly(this->begin() + k, this->end());
    friend Poly operator+(const Poly &a, const Poly &b) {
        Poly res(max(a.size(), b.size()));
        for (int i = 0; i < int(a.size()); i++) { res[i] = res[</pre>
             i] + a[i]; }
        for (int i = 0; i < int(b.size()); i++) { res[i] = res[</pre>
             i] + b[i]; }
        return res;
    friend Poly operatorkj-(const Poly &a, const Poly &b) {
        Poly res(max(a.size(), b.size()));
        for (int i = 0; i < int(a.size()); i++) { res[i] = res[
             i] + a[i]; }
        for (int i = 0; i < int(b.size()); i++) { res[i] = res[</pre>
             i] - b[i]; }
        return res;
    friend Poly operator*(Poly a, Poly b) {
        if (a.empty() || b.empty()) { return Poly(); }
        int sz = 1, tot = a.size() + b.size() - 1;
        while (sz < tot) { sz *= 2; }
        a.resize(sz);
        b.resize(sz);
        dft(a);
        dft(b);
        for (int i = 0; i < sz; i++) { a[i] = a[i] * b[i]; }
        idft(a);
        a.resize(tot);
        return a:
    friend Poly operator*(Poly a, Mint b) {
        for (int i = 0; i < int(a.size()); i++) { a[i] = a[i] *</pre>
              b; }
        return a;
    Poly derivative() {
        if (this->empty()) { return Poly(); }
        Poly res(this->size() - 1);
        for (int i = 0; i < this->size() - 1; ++i) { res[i] = (
    i + 1) * (*this)[i + 1]; }
        return res;
    Poly integral() {
        Poly res(this->size() + 1);
        for (int i = 0; i < this->size(); ++i) { res[i + 1] =
    (*this)[i] * Mint(i + 1).inv(); }
                                                                       };
    Poly inv(int m) {
        // a[0] != 0
        Poly x({(*this)[0].inv()});
        int k = 1;
        while (k < m) {
    k *= 2;</pre>
            x = (x * (Poly({2}) - modxk(k) * x)).modxk(k);
```

```
return x.modxk(m);
    Poly log(int m) {
         return (derivative() * inv(m)).integral().modxk(m);
    Poly exp(int m) {
        Poly x(\{1\});
        int k = 1;
        while (k < m) {
    k *= 2;
             x = (x * (Poly(\{1\}) - x.log(k) + modxk(k))).modxk(k)
         return x.modxk(m);
    Poly pow(i64 k, int m) {
    if (k == 0) { return Poly(m, [&](int i) { return i ==
             0; }); }
         int i = 0;
         while (i < this->size() && (*this)[i].v == 0) { i++; }
         if (i == this->size() || __int128(i) * k >= m) { return
              Poly(m); }
        Mint v = (*this)[i];
        auto f = divxk(i) * v.inv();
return (f.log(m - i * k) * k).exp(m - i * k).mulxk(i *
              k) * v.qpow(k);
    Poly sqrt(int m) {
         // a[0] == 1, otherwise quadratic residue?
        Poly x(\{1\});
         int k = 1;
        while (k < m) {
    k *= 2;
             x = (x + (modxk(k) * x.inv(k)).modxk(k)) * ((P + 1)
                   / 2):
        return x.modxk(m);
    Poly mulT(Poly b) const {
         if (b.empty()) { return Poly(); }
        int n = b.size();
         reverse(b.begin(), b.end());
        return (*this * b).divxk(n - 1);
    vector<Mint> evaluate(vector<Mint> x) {
         if (this->empty()) { return vector<Mint>(x.size()); }
         int n = max(x.size(), this->size());
        vector<Poly> q(4 * n);
        vector<Mint> ans(x.size());
        x.resize(n);
         auto build = [&](auto build, int id, int l, int r) ->
             if (r - l == 1) {
                 q[id] = Poly(\{1, -x[l].v\});
             } else {
                 int m = (l + r) / 2;
                 build(build, 2 * id, 1, m);
build(build, 2 * id + 1, m, r);
q[id] = q[2 * id] * q[2 * id + 1];
             }
        build(build, 1, 0, n);
auto work = [&](auto work, int id, int l, int r, const
             Poly &num) -> void {
             if (r - l == 1) {
                 if (l < int(ans.size())) { ans[l] = num[0]; }</pre>
             } else {
                 work(work, 2 * id + 1, m, r, num.mulT(q[2 * id
                      ]).modxk(r - m));
        work(work, 1, 0, n, mulT(q[1].inv(n)));
         return ans;
template <int P>
Poly<P> interpolate(vector<Modint<P>> x, vector<Modint<P>> y) {
    // f(xi) = yi
    int n = x.size();
    vector<Poly<P>>> p(4 * n), q(4 * n);
    auto dfs1 = [&](auto dfs1, int id, int l, int r) -> void {
        if (l == r) {
```

```
p[id] = Poly < P > ({-x[l].v, 1});
               return;
          }
          int m = 1 + r >> 1;
          dfs1(dfs1, id << 1, l, m);
dfs1(dfs1, id << 1 | 1, m + 1, r);
          p[id] = p[id << 1] * p[id << 1 | 1];
     dfs1(dfs1, 1, 0, n - 1);
     Poly<P> f = Poly<P>(p[1].derivative().evaluate(x));
     auto dfs2 = [\&](auto dfs2, int id, int l, int r) -> void {
          if (l == r) {
               q[id] = Poly<P>({y[l] * f[l].inv()});
          int m = 1 + r >> 1;
          dfs2(dfs2, id << 1, 1, m);
dfs2(dfs2, id << 1 | 1, m + 1, r);
q[id] = q[id << 1] * p[id << 1 | 1] + q[id << 1 | 1] *</pre>
                p[id << 1];
      dfs2(dfs2, 1, 0, n - 1);
     return q[1];
1 }
```

6.4 NTT Prime List

Prime	Root	Prime	Root
7681	17	167772161	3
12289	11	104857601	3
40961	3	985661441	3
65537	3	998244353	3
786433	10	1107296257	10
5767169	3	2013265921	31
7340033	3	2810183681	11
23068673	3	2885681153	3
469762049	3	605028353	3

6.5 Newton's Method

$$Q_{k+1} = Q_k - \frac{F(Q_k)}{F'(Q_k)} \pmod{x^{2^{k+1}}}$$

6.6 Fast Walsh-Hadamard Transform

```
1. XOR Convolution
```

- $\begin{array}{ll} \bullet & f(A) = (f(A_0) + f(A_1), f(A_0) f(A_1)) \\ \bullet & f^{-1}(A) = (f^{-1}(\frac{A_0 + A_1}{2}), f^{-1}(\frac{A_0 A_1}{2})) \end{array}$
- 2. OR Convolution
 - $f(A) = (f(A_0), f(A_0) + f(A_1))$ • $f^{-1}(A) = (f^{-1}(A_0), f^{-1}(A_1) - f^{-1}(A_0))$
- 3. AND Convolution
 - $f(A) = (f(A_0) + f(A_1), f(A_1))$ • $f^{-1}(A) = (f^{-1}(A_0) - f^{-1}(A_1), f^{-1}(A_1))$

6.7 Simplex Algorithm

Description: maximize $\mathbf{c}^T\mathbf{x}$ subject to $A\mathbf{x} \leq \mathbf{b}$ and $\mathbf{x} \geq 0$. Returns $-\infty$ if infeasible and ∞ if unbounded.

```
const double eps = 1e-9;
const double inf = 1e+9;
int n, m;
vector<double>> d;
vector<int> p, q;
void pivot(int r, int s) {
  double inv = 1.0 / d[r][s];
}
  for (int i = 0; i < m + 2; ++i) {
     for (int j = 0; j < n + 2; ++j) {
       if (i != r && j != s) d[i][j] -= d[r][j] * d[i][s] * inv;
    }
  for (int i = 0; i < m + 2; ++i) if (i != r) d[i][s] *= -inv;
  for (int j = 0; j < n + 2; ++j) if (j != s) d[r][j] *= +inv;
  d[r][s] = inv;
  swap(p[r], q[s]);
bool phase(int z) {
  int x = m + z:
  while (true) {
    int s = -1;

for (int i = 0; i <= n; ++i) {

   if (!z && q[i] == -1) continue;

   if (!z && q[i] == -1) continue;
       if (s == -1 \mid | d[x][i] < d[x][s]) s = i;
     if (d[x][s] > -eps) return true;
     int r = -1;
```

```
for (int i = 0; i < m; ++i) {</pre>
       if (d[i][s] < eps) continue;
if (r == -1 || d[i][n + 1] / d[i][s] < d[r][n + 1] / d[r</pre>
            ][s]) r = i;
     if (r == -1) return false;
     pivot(r, s);
  }
 vector<double> solve(const vector<vector<double>> &a, const
      vector<double> &b, const vector<double> &c) {
   m = b.size(), n = c.size();
   d = vector<vector<double>>(m + 2, vector<double>(n + 2));
   for (int i = 0; i < m; ++i) {
     for (int j = 0; j < n; ++j) d[i][j] = a[i][j];
   p.resize(m), q.resize(n + 1);
   for (int i = 0; i < m; ++i) p[i] = n + i, d[i][n] = -1, d[i][
        n + 1] = b[i];
   for (int i = 0; i < n; ++i) q[i] = i, d[m][i] = -c[i];
   q[n] = -1, d[m + 1][n] = 1;
   int r = 0:
   for (int i = 1; i < m; ++i) if (d[i][n + 1] < d[r][n + 1]) r
   if (d[r][n + 1] < -eps) {
     pivot(r, n);
     if (!phase(1) || d[m + 1][n + 1] < -eps) return vector<</pre>
          double>(n, -inf);
     for (int i = 0; i < m; ++i) if (p[i] == -1) {
       int s = min_element(d[i].begin(), d[i].end() - 1) - d[i].
            begin();
       pivot(i, s);
     }
   if (!phase(0)) return vector<double>(n, inf);
   vector<double> x(n);
   for (int i = 0; i < m; ++i) if (p[i] < n) \times [p[i]] = d[i][n +
        1];
   return x;
}
```

6.8 Subset Convolution

```
Description: h(s) = \sum_{s' \subset s} f(s')g(s \setminus s')
```

```
vector<int> SubsetConv(int n, const vector<int> &f, const
      vector<int> &g) {
   const int m = 1 \ll n;
   vector<vector<int>> a(n + 1, vector<int>(m)), b(n + 1, vector
        <int>(m));
   for (int i = 0; i < m; ++i) {
     a[__builtin_popcount(i)][i] = f[i];
     b[__builtin_popcount(i)][i] = g[i];
   for (int i = 0; i <= n; ++i) {
     for (int j = 0; j < n; ++j) {
  for (int s = 0; s < m; ++s) {</pre>
         if (s >> j & 1) {
           a[i][s] += a[i][s \wedge (1 << j)];
           b[i][s] += b[i][s \wedge (1 << j)];
         }
       }
  }
   vector<vector<int>> c(n + 1, vector<int>(m));
   for (int s = 0; s < m; ++s) {
     for (int i = 0; i \le n; ++i) {
       for (int j = 0; j \le i; ++j) c[i][s] += a[j][s] * b[i - j]
            ][s];
     }
   for (int i = 0; i <= n; ++i) {
     for (int j = 0; j < n; ++j) {
       for (int s = 0; s < m; ++s) {
         if (s >> j & 1) c[i][s] -= c[i][s ^ (1 << j)];</pre>
       }
    }
   vector<int> res(m);
   for (int i = 0; i < m; ++i) res[i] = c[__builtin_popcount(i)</pre>
        ][i];
   return res;
}
```

6.8.1 Construction

Standard form: maximize $\mathbf{c}^T\mathbf{x}$ subject to $A\mathbf{x} \leq \mathbf{b}$ and $\mathbf{x} \geq 0$. Dual LP: minimize $\mathbf{b}^T\mathbf{y}$ subject to $A^T\mathbf{y} \geq \mathbf{c}$ and $\mathbf{y} \geq 0$.

```
ar{\mathbf{x}} and ar{\mathbf{y}} are optimal if and only if for all i \in [1,n], either \bar{x}_i = 0 or \sum_{j=1}^m A_{ji} \bar{y}_j = c_i holds and for all i \in [1,m] either \bar{y}_i = 0 or \sum_{j=1}^n A_{ij} \bar{x}_j = b_j holds.

1. In case of minimization, let c_i' = -c_i
2. \sum_{1 \leq i \leq n} A_{ji} x_i \geq b_j \rightarrow \sum_{1 \leq i \leq n} -A_{ji} x_i \leq -b_j
3. \sum_{1 \leq i \leq n} A_{ji} x_i = b_j

• \sum_{1 \leq i \leq n} A_{ji} x_i \leq b_j
• \sum_{1 \leq i \leq n} A_{ji} x_i \leq b_j
4. If x_i has no lower bound, replace x_i with x_i - x_i'
```

6.9 Schreier-Sims Algorithm

```
namespace schreier {
vector<vector<int>>> bkts, binv;
vector<vector<int>> lk;
vector<int> operator*(const vector<int> &a, const vector<int> &
    b) {
  vector<int> res(a.size());
  for (int i = 0; i < (int)a.size(); ++i) res[i] = b[a[i]];</pre>
  return res;
vector<int> inv(const vector<int> &a) {
  vector<int> res(a.size());
  for (int i = 0; i < (int)a.size(); ++i) res[a[i]] = i;
  return res;
int filter(const vector<int> &g, bool add = true) {
  n = (int)bkts.size();
  vector < int > p = g;
  for (int i = 0; i < n; ++i) {
  assert(p[i] >= 0 && p[i] < (int)lk[i].size());</pre>
    int res = lk[i][p[i]];
    if (res == -1) {
      if (add) {
        bkts[i].push_back(p);
        binv[i].push_back(inv(p));
        lk[i][p[i]] = (int)bkts[i].size() - 1;
      return i;
    }
    p = p * binv[i][res];
  return -1;
bool inside(const vector<int> &g) { return filter(g, false) ==
void solve(const vector<vector<int>> &gen, int _n) {
  bkts.clear(), bkts.resize(n);
  binv.clear(), binv.resize(n);
 lk.clear(), lk.resize(n);
vector<int> iden(n);
  iota(iden.begin(), iden.end(), 0);
  for (int i = 0; i < n; ++i) {
    lk[i].resize(n, -1);
    bkts[i].push_back(iden);
    binv[i].push_back(iden);
    lk[i][i] = 0;
  for (int i = 0; i < (int)gen.size(); ++i) filter(gen[i]);</pre>
  queue<pair<pair<int, int>, pair<int, int>>> upd;
 for (int i = 0; i < n; ++i) {
  for (int j = i; j < n; ++j) {</pre>
      for (int k = 0; k < (int)bkts[i].size(); ++k) {</pre>
         for (int l = 0; l < (int)bkts[j].size(); ++l)</pre>
          upd.emplace(make_pair(i, k), make_pair(j, l));
      }
    }
  while (!upd.empty()) {
    auto a = upd.front().first;
    auto b = upd.front().second;
    upd.pop();
    int res = filter(bkts[a.first][a.second] * bkts[b.first][b.
         second]);
    if (res == -1) continue;
    pair<int, int> pr = make_pair(res, (int)bkts[res].size() -
    for (int i = 0; i < n; ++i) {
      for (int j = 0; j < (int)bkts[i].size(); ++j) {</pre>
        if (i <= res) upd.emplace(make_pair(i, j), pr);</pre>
         if (res <= i) upd.emplace(pr, make_pair(i, j));</pre>
```

6.10 Berlekamp-Massey Algorithm

```
template <int P>
vector<int> BerlekampMassey(vector<int> x) {
  vector<int> cur, ls;
   int lf = 0, ld = 0;
   for (int i = 0; i < (int)x.size(); ++i) {</pre>
     int t = 0;
     for (int j = 0; j < (int)cur.size(); ++j)
  (t += 1LL * cur[j] * x[i - j - 1] % P) %= P;</pre>
     if (t == x[i]) continue;
     if (cur.empty()) {
        cur.resize(i + 1);
        lf = i, ld = (t + P - x[i]) % P;
       continue;
     int k = 1LL * fpow(ld, P - 2, P) * (t + P - x[i]) % P;
     vector<int> c(i - lf - 1);
     c.push_back(k);
     for (int j = 0; j < (int)ls.size(); ++j)
  c.push_back(1LL * k * (P - ls[j]) % P);</pre>
     if (c.size() < cur.size()) c.resize(cur.size());</pre>
     for (int j = 0; j < (int)cur.size(); ++j)
     c[j] = (c[j] + cur[j]) % P;
if (i - lf + (int)ls.size() >= (int)cur.size()) {
       ls = cur, lf = i;
ld = (t + P - x[i]) % P;
     cur = c;
   return cur;
```

6.11 Fast Linear Recurrence

```
template <int P>
 int LinearRec(const vector<int> &s, const vector<int> &coeff,
      int k) {
      int n = s.size();
      auto Combine = [&](const auto &a, const auto &b) {
          vector < int > res(n * 2 + 1);
          for (int i = 0; i \le n; ++i) {
               for (int j = 0; j <= n; ++j)
(res[i + j] += 1LL * a[i] * b[j] % P) %= P;
          for (int i = 2 * n; i > n; --i) {
               for (int j = 0; j < n; ++j)
(res[i - 1 - j] += 1LL * res[i] * coeff[j] % P)
          res.resize(n + 1);
          return res;
     vector<int> p(n + 1), e(n + 1);
     p[0] = e[1] = 1;
     for (; k > 0; k >>= 1) {
    if (k & 1) p = Combine(p, e);
          e = Combine(e, e);
      int res = 0;
      for (int i = 0; i < n; ++i) (res += 1LL * p[i + 1] * s[i] %
            P) %= P;
      return res:
}
```

6.12 Prime check and factorize

```
| i64 mul(i64 a, i64 b, i64 mod) {}
| i64 qpow(i64 x, i64 p, i64 mod) {}
| bool isPrime(i64 n) {
| if (n == 1) { return false; }
| int r = __builtin_ctzll(n - 1);
| i64 d = n - 1 >> r;
| auto checkComposite = [&](i64 p) {
| i64 x = qpow(p, d, n);
| if (x == 1 || x == n - 1) { return false; }
| for (int i = 1; i < r; i++) {
| x = mul(x, x, n);</pre>
```

```
if (x == n - 1) \{ return false; \}
        return true:
    for (auto p: {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37})
         {
        if (n == p) {
            return true;
        } else if (checkComposite(p)) {
            return false;
        }
    return true;
vector<i64> pollardRho(i64 n) {
   vector<i64> res;
   auto work = [&](auto_work, i64 n) {
        if (n <= 10000) {
            for (int i = 2; i * i <= n; i++) {</pre>
                while (n % i == 0) {
                   res.push_back(i);
                    n /= i;
                }
            if (n > 1) { res.push_back(n); }
            return;
        } else if (isPrime(n)) {
            res.push_back(n);
            return;
        i64 \times 0 = 2;
        auto f = [\&](i64 x) \{ return (mul(x, x, n) + 1) % n; \};
        while (true) {
            i64 x_1 = x0, y = x0, d = 1, power = 1, lam = 0, v = 1
            while (d == 1) {
                y = f(y);
                ++lam;
                v = mul(v, abs(x - y), n);
                if (lam % 127 == 0) {
                    d = gcd(v, n);
                if (power == lam) {
                    x = y;
power *= 2;
                    lam = 0;
                    d = gcd(v, n);
                }
            if (d != n) {
                work(work, d);
                work(work, n / d);
                return;
            ++x0;
        }
   work(work, n);
   sort(res.begin(), res.end());
   return res:
6.13 Meissel-Lehmer Algorithm
```

```
int64_t PrimeCount(int64_t n) {
  if (n <= 1) return 0;</pre>
  const int v = sart(n):
  vector<int> smalls(v + 1);
  for (int i = 2; i \leftarrow v; ++i) smalls[i] = (i + 1) / 2;
  int s = (v + 1) / 2;
  vector<int> roughs(s);
  for (int i = 0; i < s; ++i) roughs[i] = 2 * i + 1;
  vector<int64_t> larges(s);
  for (int i = 0; i < s; ++i) larges[i] = (n / (2 * i + 1) + 1)
        / 2;
  vector<bool> skip(v + 1);
  int pc = 0;
 for (int p = 3; p <= v; ++p) {
  if (smalls[p] > smalls[p - 1]) {
   int q = p * p;
      pc++;
       if (1LL * q * q > n) break;
      skip[p] = true;
      for (int i = q; i <= v; i += 2 * p) skip[i] = true;</pre>
      int ns = 0;
      for (int k = 0; k < s; ++k) {
```

```
int i = roughs[k]:
        if (skip[i]) continue;
int64_t d = 1LL * i * p;
larges[ns] = larges[k] - (d <= v ? larges[smalls[d] -</pre>
              pc] : smalls[n / d]) + pc;
        roughs[ns++] = i;
     s = ns;
     for (int j = v / p; j >= p; --j) {
        int c = smalls[j] - pc;
        for (int i = j * p, e = min(i + p, v + 1); i < e; ++i)
              smalls[i] -= c;
     }
  }
}
for (int k = 1; k < s; ++k) {
  const int64_t m = n / roughs[k];
int64_t s = larges[k] - (pc + k - 1);
for (int l = 1; l < k; ++l) {</pre>
     int p = roughs[l];
if (1LL * p * p > m) break;
     s = smalls[m / p] - (pc + l - 1);
   larges[0] -= s;
}
return larges[0];
```

6.14 Discrete Logarithm

```
| / /  return min x >= 0 s.t. a ^ x = b mod m, 0 ^ 0 = 1, -1 if no
       solution
 // (I think) if you want x > 0 (m != 1), remove if (b == k)
       return add;
 int discreteLog(int a, int b, int m) {
      if (m == 1) {
           return 0;
      a %= m, b %= m;
      int k = 1, add = 0, g;
      while ((g = gcd(a, m)) > 1) {
   if (b == k) {
      return add;
}
           } else if (b % g) {
               return -1;
           b /= g, m /= g, ++add;
k = 1LL * k * a / g % m;
      if (b == k) {
           return add;
      int n = sqrt(m) + 1;
     int an = 1;

for (int i = 0; i < n; ++i) {

    an = 1LL * an * a % m;
      unordered_map<int, int> vals;
      for (int q = 0, cur = b; q < n; ++q) {
           vals[cur] = q;
cur = 1LL * a * cur % m;
      for (int p = 1, cur = k; p <= n; ++p) {
    cur = 1LL * cur * an % m;
           if (vals.count(cur)) {
                int ans = n * p - vals[cur] + add;
                return ans:
           }
      return -1;
```

6.15Quadratic Residue

```
int jacobi(int a, int m) {
     int s = 1;
     while (m > 1) {
         a %= m;
         if (a == 0) { return 0; }
                  _builtin_ctz(a);
         if (r \% 2 == 1 \&\& (m + 2 \& 4) != 0) { s = -s; }
         if ((a \& m \& 2) != 0) \{ s = -s; \}
         swap(a, m);
     return s;
}
```

```
int quadraticResidue(int a, int p) {
      if (p == 2) { return a % 2; }
int j = jacobi(a, p);
      if (j == 0 \mid \mid j == -1) \{ return j; \}
      int b, d;
     while (true) {
          b = rng() % p;
d = (1LL * b * b + p - a) % p;
           if (jacobi(d, p) == -1) \{ break; \}
     int f0 = b, f1 = 1, g0 = 1, g1 = 0, tmp;
for (int e = p + 1 >> 1; e > 0; e >>= 1) {
          if (e % 2 == 1) {
               tmp = (1LL * g0 * f0 + 1LL * d * g1 % p * f1 % p) %
               g1 = (1LL * g0 * f1 + 1LL * g1 * f0) % p;
               g0 = tmp;
          tmp = (1LL * f0 * f0 + 1LL * d * f1 % p * f1 % p) % p;
          f1 = 2LL * f0 * f1 % p;
          f0 = tmp;
      return g0;
i}
```

6.16 Characteristic Polynomial

```
vector<vector<int>> Hessenberg(const vector<vector<int>> &A) {
   int N = A.size();
   vector<vector<int>> H = A;
   for (int i = 0; i < N - 2; ++i) {
     if (!H[i + 1][i]) {
        for (int j = i + 2; j < N; ++j) {
          if (H[j][i]) {
            for (int k = i; k < N; ++k) swap(H[i + 1][k], H[j][k
                  1);
            for (int k = 0; k < N; ++k) swap(H[k][i + 1], H[k][j
            ]);
break;
          }
       }
     if (!H[i + 1][i]) continue;
     int val = fpow(H[i + 1][i], kP - 2);
     for (int j = i + 2; j < N; ++j) {
  int coef = 1LL * val * H[j][i] % kP;</pre>
        for (int k = i; k < N; ++k) H[j][k] = (H[j][k] + 1LL * H[i + 1][k] * (kP - coef)) % kP;
        for (int k = 0; k < N; ++k) H[k][i + 1] = (H[k][i + 1] +
1LL * H[k][j] * coef) % kP;</pre>
     }
   return H;
 }
 vector<int> CharacteristicPoly(const vector<vector<int>> &A) {
   int N = A.size():
   auto H = Hessenberg(A);
   for (int i = 0; i < N; ++i) {
     for (int j = 0; j < N; ++j) H[i][j] = kP - H[i][j];
   vector<vector<int>>> P(N + 1, vector<int>(N + 1));
   P[0][0] = 1;
   for (int i = 1; i <= N; ++i) {
     P[i][0] = 0;
     for (int j = 1; j \le i; ++j) P[i][j] = P[i - 1][j - 1];
     int val = 1;
     for (int j = i - 1; j >= 0; --j) {
  int coef = 1LL * val * H[j][i - 1] % kP;
        for (int k = 0; k <= j; ++k) P[i][k] = (P[i][k] + 1LL * P
        [j][k] * coef) % kP;</pre>
        if (j) val = 1LL * val * (kP - H[j][j - 1]) % kP;
     }
   if (N & 1) {
     for (int i = 0; i <= N; ++i) P[N][i] = kP - P[N][i];</pre>
   return P[N];
i}
```

6.17 Linear Sieve Related

```
| vector<int> minp(N + 1), primes, mobius(N + 1);
| mobius[1] = 1;
| for (int i = 2; i <= N; i++) {
        if (!minp[i]) {
            primes.push_back(i);
            minp[i] = i;</pre>
```

```
mobius[i] = -1;
}
for (int p : primes) {
    if (p > N / i) {
        break;
    }
    minp[p * i] = p;
    mobius[p * i] = -mobius[i];
    if (i % p == 0) {
        mobius[p * i] = 0;
        break;
    }
}
```

6.18 Partition Function

6.19 De Bruijn Sequence

6.20 Floor Sum

```
// \sum {i = 0} {n} floor((a * i + b) / c)
i64 floorSum(i64 a, i64 b, i64 c, i64 n) {
    if (n < 0) { return 0; }
    if (n == 0) { return b / c; }
    if (a == 0) { return b / c * (n + 1); }
    i64 res = 0;
    if (a >= c) { res += a / c * n * (n + 1) / 2, a %= c; }
    if (b >= c) { res += b / c * (n + 1), b %= c; }
    i64 m = (a * n + b) / c;
    return res + n * m - (m == 0 ? 0 : floorSum(c, c - b - 1, a
        , m - 1));
}
```

6.21 More Floor Sum

• $m = \lfloor \frac{an+b}{2} \rfloor$

```
\begin{split} g(a,b,c,n) &= \sum_{i=0}^n i \lfloor \frac{ai+b}{c} \rfloor \\ &= \begin{cases} \lfloor \frac{a}{c} \rfloor \cdot \frac{n(n+1)(2n+1)}{6} + \lfloor \frac{b}{c} \rfloor \cdot \frac{n(n+1)}{2} \\ +g(a \bmod c, b \bmod c, c, n), & a \geq c \vee b \geq c \\ 0, & n < 0 \vee a = 0 \\ \frac{1}{2} \cdot (n(n+1)m - f(c, c-b-1, a, m-1) \\ -h(c, c-b-1, a, m-1)), & \text{otherwise} \end{cases} \end{split}
```

$$\begin{split} h(a,b,c,n) &= \sum_{i=0}^n \lfloor \frac{ai+b}{c} \rfloor^2 \\ &= \begin{cases} \lfloor \frac{a}{c} \rfloor^2 \cdot \frac{n(n+1)(2n+1)}{6} + \lfloor \frac{b}{c} \rfloor^2 \cdot (n+1) \\ + \lfloor \frac{a}{c} \rfloor \cdot \lfloor \frac{b}{c} \rfloor \cdot n(n+1) \\ + h(a \bmod c, b \bmod c, c, n) \\ + 2 \lfloor \frac{a}{c} \rfloor \cdot g(a \bmod c, b \bmod c, c, n) \\ + 2 \lfloor \frac{b}{c} \rfloor \cdot f(a \bmod c, b \bmod c, c, n), & a \geq c \lor b \geq c \\ 0, & n < 0 \lor a = 0 \\ nm(m+1) - 2g(c, c-b-1, a, m-1) \\ - 2f(c, c-b-1, a, m-1) - f(a, b, c, n), & \text{otherwise} \end{cases} \end{split}$$

6.22 Theorem

6.22.1 Kirchhoff's Theorem

Denote L be a $n \times n$ matrix as the Laplacian matrix of graph G, where $L_{ii} = d(i)$, $L_{ij} = -c$ where c is the number of edge (i,j) in G.

- The number of undirected spanning in G is $|\det(\tilde{L}_{11})|$.
- The number of directed spanning tree rooted at r in G is $|\det(\tilde{L}_{rr})|$.

6.22.2 Tutte's Matrix

Let D be a $n \times n$ matrix, where $d_{ij} = x_{ij}$ (x_{ij} is chosen uniformly at random) if i < j and $(i,j) \in E$, otherwise $d_{ij} = -d_{ji}$. $\frac{rank(D)}{2}$ is the maximum matching on G.

6.22.3 Cayley's Formula

- Given a degree sequence d_1, d_2, \ldots, d_n for each labeled vertices, there are $\frac{(n-2)!}{(d_1-1)!(d_2-1)!\cdots(d_n-1)!}$ spanning trees.
- Let $T_{n,k}^1$ be the number of labeled forests on n vertices with k components, such that vertex $1,2,\ldots,k$ belong to different components. Then $T_{n,k}=kn^{n-k-1}$.

6.22.4 Erdős–Gallai Theorem

A sequence of non-negative integers $d_1 \geq d_2 \geq \ldots \geq d_n$ can be represented as the degree sequence of a finite simple graph on n vertices if and only if $d_1+d_2+\ldots+d_n$ is even and

$$\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{n} \min(d_i, k)$$

holds for all $1 \leq k \leq n$.

7 Dynamic Programming

7.1 Dynamic Convex Hull

```
struct Line {
   // kx + b
   mutable i64 k, b, p;
   bool operator<(const Line& o) const { return k < o.k; }</pre>
   bool operator<(i64 x) const { return p < x; }</pre>
 struct DynamicConvexHullMax : multiset<Line, less<>> {
   // (for doubles, use INF = 1/.0, div(a,b) = a/b)
   static constexpr i64 INF = numeric_limits<i64>::max();
   i64 div(i64 a, i64 b) {
          // floor
     return a / b - ((a ^ b) < 0 && a % b);
   bool isect(iterator x, iterator y) {
     if (y == end()) return x -> p = INF, 0;
     if (x->k == y->k) x->p = x->b > y->b? INF : -INF;
     else x->p = div(y->b - x->b, x->k - y->k);
     return x->p >= y->p;
   void add(i64 k, i64 b) {
     auto z = insert(\{k, b, 0\}), y = z++, x = y;
     while (isect(y, z)) z = erase(z);
if (x != begin() && isect(--x, y)) isect(x, y = erase(y));
while ((y = x) != begin() && (--x)->p >= y->p)
        isect(x, erase(y));
   i64 query(i64 x) {
          if (empty()) {
    return -INF;
     auto l = *lower_bound(x);
     return 1.k * x + 1.b;
  }
|};
```

7.2 1D/1D Convex Optimization

```
struct segment {
  int i, l, r;
  segment(int a, int b, int c): i(a), l(b), r(c) {}
inline long long f(int l, int r) { return dp[l] + w(l + 1, r);
void solve() {
  dp[0] = 011;
  deque<segment> deq; deq.push_back(segment(0, 1, n));
  for (int i = 1; i <= n; ++i) {
    dp[i] = f(deq.front().i, i);
    while (deq.size() && deq.front().r < i + 1) deq.pop_front()</pre>
    deq.front().l = i + 1;
    segment seg = segment(i, i + 1, n);
    while (deq.size() && f(i, deq.back().l) < f(deq.back().i,</pre>
         deq.back().1)) deq.pop_back();
    if (deq.size()) {
      int d = 1048576, c = deq.back().1;
      while (d \gg 1) if (c + d \ll deq.back().r) {
        if (f(i, c + d) > f(deq.back().i, c + d)) c += d;
      deq.back().r = c; seq.l = c + 1;
    if (seg.l <= n) deq.push_back(seg);</pre>
```

7.3 Condition

7.3.1 Totally Monotone (Concave/Convex)

```
\begin{array}{l} \forall i < i', j < j', \ B[i][j] \leq B[i'][j] \implies B[i][j'] \leq B[i'][j'] \\ \forall i < i', j < j', \ B[i][j] \geq B[i'][j] \implies B[i][j'] \geq B[i'][j'] \end{array}
```

7.3.2 Monge Condition (Concave/Convex)

```
\begin{array}{l} \forall i < i', j < j', \, B[i][j] + B[i'][j'] \geq B[i][j'] + B[i'][j] \\ \forall i < i', j < j', \, B[i][j] + B[i'][j'] \leq B[i][j'] + B[i'][j] \end{array}
```

7.3.3 Optimal Split Point

```
If B[i][j] + B[i+1][j+1] \geq B[i][j+1] + B[i+1][j] then H_{i,j-1} \leq H_{i,j} \leq H_{i+1,j}
```

8 Geometry

8.1 Basic

```
using Real = double; // modify these if needed
constexpr Real eps = 1e-9;
int sign(T x) { return (x > 0) - (x < 0); }
int sign(Real x) { return (x > eps) - (x < -eps); }</pre>
int cmp(T a, T b) { return sign(a - b); }
struct P {
     T x = 0, y = 0;
     P(T x = 0, T y = 0) : x(x), y(y) {} -, +*/, ==!=<, - (unary)
};
struct L {
    P<T> a, b;
    L(P < T > a = {}), P < T > b = {}) : a(a), b(b) {}
T dot(P < T > a, P < T > b) { return a.x * b.x + a.y * b.y; }
T square(P<T> a) { return dot(a, a); }
Real length(P<T> a) { return sqrtl(square(a)); }
Real dist(P<T> a, P<T> b) { return length(a - b); } T cross(P<T> a, P<T> b) { return a.x * b.y - a.y * b.x; }
T cross(P<T> p, P<T> a, P<T> b) { return cross(a - p, b - p); }
P<Real> normal(P<T> a) {
     Real len = length(a);
     return P<Real>(a.x / len, a.y / len);
bool up(P<T> a) { return sign(a.y) > 0 | | sign(a.y) == 0 &&
      sign(a.x) > 0; }
// 3 colinear? please remember to remove (0, 0)
bool polar(P<T> a, P<T> b) {
    bool ua = up(a), ub = up(b);
return ua != ub ? ua : sign(cross(a, b)) == 1;
// 1/0/1 if on a->b's left/ /right
```

```
int side(P<T> p, P<T> a, P<T> b) { return sign(cross(p, a, b));
int side(P<T> p, L<T> l) { return side(p, l.a, l.b); }
P<T> rotate90(P<T> p) { return {-p.y, p.x}; }
P<Real> rotate(P<Real> p, Real ang) { return {p.x * cos(ang) - p.y * sin(ang), p.x * sin(ang) + p.y * cos(ang)}; }
Real angle(P<T> p) { return atan2(p.y, p.x); }
P<T> direction(LT) { roturn | b | lexity | lexi
P<T> direction(L<T> l) { return l.b - l.a; }
bool parallel(L<T> l1, L<T> l2) { return sign(cross(direction(
                                                                                                                                  13
         l1), direction(l2))) == 0; }
bool sameDirection(L<T> 11, L<T> 12) { return parallel(11, 12)
         && sign(dot(direction(l1), direction(l2))) == 1; }
P<Real> projection(P<Real> p, L<Real> l) {
        auto d = direction(l);
        return l.a + d * (dot(p - l.a, d) / square(d));
P<Real> reflection(P<Real> p, L<Real> l) { return projection(p,
           1) * 2 - p; }
Real pointToLineDist(P<Real> p, L<Real> l) { return dist(p,
         projection(p, l)); }
     better use integers if you don't need exact coordinate
// l <= r is not explicitly required</pre>
P<Real> lineIntersection(L<T> l1, L<T> l2) { return l1.a -
         direction(l1) * (Real(cross(direction(l2), l1.a - l2.a)) /
           cross(direction(l2), direction(l1))); }
bool between(T m, T l, T r) { return cmp(l, m) == 0 || cmp(m, r ) == 0 || l < m != r < m; }
bool pointOnSeg(P<T> p, L<T> l) { return side(p, l) == 0 &&
         between(p.x, l.a.x, l.b.x) && between(p.y, l.a.y, l.b.y);
bool pointStrictlyOnSeg(P<T> p, L<T> l) { return side(p, l) ==
         0 && sign(dot(p - l.a, direction(l))) * sign(dot(p - l.b,
         direction(l))) < 0; }</pre>
bool overlap(T l1, T r1, T l2, T r2) {
   if (l1 > r1) { swap(l1, r1); }

        if (l2 > r2) { swap(l2, r2); }
return cmp(r1, l2) != -1 && cmp(r2, l1) != -1;
bool segIntersect(L<T> l1, L<T> l2) {
       auto [p1, p2] = l1;
auto [q1, q2] = l2;
        return overlap(p1.x, p2.x, q1.x, q2.x) && overlap(p1.y, p2.
                 y, q1.y, q2.y) &&
                       side(p1, l2) * side(p2, l2) <= 0 && side(q1, l1) * side(q2, l1) <= 0;
// parallel intersecting is false
bool segStrictlyIntersect(L<T> 11, L<T> 12) {
        auto [p1, p2] = l1;
auto [q1, q2] = l2;
        return side(p1, l2) * side(p2, l2) < 0 && side(q1, l1) * side(q2, l1) < 0;
// parallel or intersect at source doesn't count
bool rayIntersect(L<T> l1, L<T> l2) {
        int x = sign(cross(11.b - 11.a, 12.b - 12.a));
        return x == 0 ? false : side(l1.a, l2) == x && side(l2.a,
                 11) == -x;
Real pointToSegDist(P<T> p, L<T> l) {
        P<Real> q = projection(p, 1);
        if (pointOnSeg(q, 1)) {
                return dist(p, q);
        } else {
                return min(dist(p, l.a), dist(p, l.b));
Real segDist(L<T> 11, L<T> 12) {
    if (segIntersect(l1, l2)) { return 0; }
return min({pointToSegDist(l1.a, l2), pointToSegDist(l1.b, l2)
                        pointToSegDist(l2.a, l1), pointToSegDist(l2.b, l1)
                                 });
// 2 times area
T area(vector<P<T>> a) {
        T res = 0;
        int n = a.size();
        for (int i = 0; i < n; i++) { res += cross(a[i], a[(i + 1)
                 % n]); }
        return res;
bool pointInPoly(P<T> p, vector<P<T>> a) {
        int n = a.size(), res = 0;
for (int i = 0; i < n; i++) {</pre>
                P < T > u = a[i], v = a[(i + 1) % n];
```

```
if (pointOnSeg(p, {u, v})) { return 1; }
  if (cmp(u.y, v.y) <= 0) { swap(u, v); }
  if (cmp(p.y, u.y) > 0 || cmp(p.y, v.y) <= 0) { continue
    ; }
  res ^= cross(p, u, v) > 0;
}
return res;
}
```

8.2 Convex Hull and related

```
vector<P<T>> convexHull(vector<P<T>> a) {
     int n = a.size();
     if (n <= 1) { return a; }</pre>
     sort(a.begin(), a.end());
     vector < P < T >> b(2 * n);
     int j = 0;
     for (int i = 0; i < n; b[j++] = a[i++]) {
   while (j >= 2 && side(b[j - 2], b[j - 1], a[i]) <= 0) {
     for (int i = n - 2, k = j; i >= 0; b[j++] = a[i--]) {
         while (j > k \& side(b[j - 2], b[j - 1], a[i]) \le 0) {
     b.resize(j - 1);
// warning : if all point on same line will return {1, 2, 3, 2}
vector<P<T>> convexHullNonStrict(vector<P<T>> a) {
     sort(a.begin(), a.end());
     a.erase(unique(a.begin(), a.end());
     int n = a.size();
     if (n == 1) { return a; }
     vector<P<T>> b(2 * n);
     int j = 0;
     for (int i = 0; i < n; b[j++] = a[i++]) {
         while (j \ge 2 \&\& side(b[j - 2], b[j - 1], a[i]) < 0) {
     for (int i = n - 2, k = j; i >= 0; b[j++] = a[i--]) {
         while (j > k \& side(b[j - 2], b[j - 1], a[i]) < 0) { j}
     b.resize(j - 1);
     return b;
}
```

8.3 Half Plane Intersection

```
vector<P<Real>> halfPlaneIntersection(vector<L<Real>> a) {
    sort(a.begin(), a.end(), [&](auto l1, auto l2) {
        if (sameDirection(l1, l2)) {
            return side(11.a, 12) > 0;
        } else {
            return polar(direction(l1), direction(l2));
    deque<L<Real>> dq;
    auto check = [\&](L<Real> l, L<Real> l1, L<Real> l2) {
    return side(lineIntersection(l1, l2), l) > 0; };
for (int i = 0; i < int(a.size()); i++) {
        if (i > 0 \&\& sameDirection(a[i], a[i - 1])) { continue;}
        while (int(dq.size()) > 1 \&\& !check(a[i], dq.end()[-2],
              dq.back())) { dq.pop_back(); }
        dq.push_back(a[i]);
    while (int(dq.size()) > 2 \& !check(dq[0], dq.end()[-2], dq
    .back())) { dq.pop_back(); } while (int(dq.size()) > 2 && !check(dq.back(), dq[1], dq
    [0])) { dq.pop_front(); }
vector<P<Real>> res;
    dq.push_back(dq[0]);
    for (int i = 0; i + 1 < int(dq.size()); i++) { res.
         push_back(lineIntersection(dq[i], dq[i + 1])); }
    return res:
```

8.4 Triangle Centers

```
// radius: (a + b + c) * r / 2 = A or pointToLineDist
P<Real> inCenter(P<Real> a, P<Real> b, P<Real> c) {
   Real la = length(b - c), lb = length(c - a), lc = length(a - b);
```

auto [o1, r1] = c1;

```
auto [o2, r2] = c2;
vector<L<Real>> res;
    return (a * la + b * lb + c * lc) / (la + lb + lc);
                                                                                P < Real > p = (o1 * r2 + o2 * r1) / (r1 + r2);
// used in min enclosing circle
P<Real> circumCenter(P<Real> a, P<Real> b, P<Real> c) {
                                                                                auto ps = pointCircleTangent(p, c1), qs =
    P<Real> ba = b - a, ca = c - a;
                                                                                     pointCircleTangent(p, c2);
    Real db = square(ba), dc = square(ca), d = 2 * cross(ba, ca)
                                                                                for (int i = 0; i < int(min(ps.size(), qs.size())); i++) {</pre>
                                                                                     res.emplace_back(ps[i], qs[i]); }
    return a - P<Real>(ba.y * dc - ca.y * db, ca.x * db - ba.x
                                                                                return res:
          * dc) / d;
                                                                           // OAB and circle directed area
P<Real> orthoCenter(P<Real> a, P<Real> b, P<Real> c) {
                                                                           Real triangleCircleIntersectionArea(P<Real> p1, P<Real> p2,
    L<Real> u(c, P<Real>(c.x - a.y + b.y, c.y + a.x - b.x));
L<Real> v(b, P<Real>(b.x - a.y + c.y, b.y + a.x - c.x));
                                                                                 Real r) {
                                                                                auto angle = [&](P<Real> p1, P<Real> p2) { return atan2l(
                                                                                     cross(p1, p2), dot(p1, p2)); };
    return lineIntersection(u, v);
                                                                                vector<P<Real>> v = circleLineIntersection(Circle(P<Real>()
                                                                                , r), L<Real>(p1, p2));
if (v.empty()) { return r * r * angle(p1, p2) / 2; }
8.5 Circle
                                                                                bool b1 = cmp(square(p1), r * r) == 1, b2 = cmp(square(p2),
                                                                                      r * r) == 1;
const Real PI = acos(-1);
                                                                                if (b1 && b2) {
struct Circle {
                                                                                    if (sign(dot(p1 - v[0], p2 - v[0])) \le 0 \& sign(dot(p1 - v[0]))
    P<Real> o;
                                                                                         -v[0], p2 - v[0]) \le 0 {
return r * r * (angle(p1, v[0]) + angle(v[1], p2))
    Real r
    Circle(P<Real> o = \{\}, Real r = \emptyset) : o(o), r(r) \{\}
                                                                                              / 2 + cross(v[0], v[1]) / 2;
// actually counts number of tangent lines
                                                                                    } else {
int typeOfCircles(Circle c1, Circle c2) {
                                                                                         return r * r * angle(p1, p2) / 2;
    auto [o1, r1] = c1;
auto [o2, r2] = c2;
                                                                               } else if (b1) {
    return (r * r * angle(p1, v[0]) + cross(v[0], p2)) / 2;
    Real d = dist(o1, o2);
    if (cmp(d, r1 + r2) == 1) { return 4; }
                                                                                } else if (b2) {
    if (cmp(d, r1 + r2) == 0) { return 3; }
                                                                                    return (cross(p1, v[1]) + r * r * angle(v[1], p2)) / 2;
    if (cmp(d, abs(r1 - r2)) == 1) { return 2; }
if (cmp(d, abs(r1 - r2)) == 0) { return 1; }
                                                                                } else {
                                                                                    return cross(p1, p2) / 2;
    return 0;
// aligned l.a -> l.b;
                                                                           Real polyCircleIntersectionArea(const vector<P<Real>> &a,
vector<P<Real>> circleLineIntersection(Circle c, L<Real> l) {
                                                                                 Circle c) {
    P<Real> p = projection(c.o, l);
                                                                                int n = a.size();
    Real h = c.r * c.r - square(p - c.o);
if (sign(h) < 0) { return {}; }
                                                                                Real ans = 0;
                                                                                for (int i = 0; i < n; i++) {
    P<Real> q = normal(direction(l)) * sqrtl(c.r * c.r - square
                                                                                    ans += triangleCircleIntersectionArea(a[i], a[(i + 1) %
         (p - c.o));
                                                                                           n], c.r);
    return \{p - q, p + q\};
                                                                                return ans;
// circles shouldn't be identical
// duplicated if only one intersection, aligned c1
                                                                           Real circleIntersectionArea(Circle a, Circle b) {
     counterclockwise
                                                                                int t = typeOfCircles(a, b);
vector<P<Real>> circleIntersection(Circle c1, Circle c2) {
                                                                                if (t >= 3) {
                                                                                    return 0;
    int type = typeOfCircles(c1, c2);
                                                                                } else if (t <= 1) {</pre>
    if (type == 0 || type == 4) { return {}; }
                                                                                    Real r = min(a.r,
return r * r * PI;
    auto [o1, r1] = c1;
                                                                                                        b.r);
    auto [o2, r2] = c2;
    Real d = clamp(dist(o1, o2), abs(r1 - r2), r1 + r2);
Real y = (r1 * r1 + d * d - r2 * r2) / (2 * d), x = sqrtl(
r1 * r1 - y * y);
                                                                                Real res = 0, d = dist(a.o, b.o);
                                                                                for (int i = 0; i < 2; ++i) {
                                                                                    Real alpha = acos((b.r * b.r + d * d - a.r * a.r) / (2)
    P < Real > dir = normal(o2 - o1), q1 = o1 + dir * y, q2 =
                                                                                    * b.r * d));
Real s = alpha * b.r * b.r;
         rotate90(dir) * x;
    return \{q1 - q2, q1 + q2\};
                                                                                    Real t = b.r * b.r * sin(alpha) * cos(alpha);
                                                                                    res += s - t;
// counterclockwise, on circle -> no tangent
                                                                                    swap(a, b);
vector<P<Real>> pointCircleTangent(P<Real> p, Circle c) {
    Real x = square(p - c.o), d = x - c.r * c.r;

if (sign(d) <= 0) { return {}; }

P<Real> q1 = c.o + (p - c.o) * (c.r * c.r / x), q2 =

rotate90(p - c.o) * (c.r * sqrt(d) / x);
                                                                                return res;
                                                                          }
                                                                           8.6 Closest Pair
  return \{q1 - q2, q1 + q2\};
                                                                          | double closest_pair(int l, int r) {
// one-point tangent lines are not returned
                                                                             \ensuremath{//} p should be sorted increasingly according to the x-
vector<L<Real>> externalTangent(Circle c1, Circle c2) {
                                                                                   coordinates.
    auto [o1, r1] = c1;
                                                                              if (l == r) return 1e9;
    auto [o2, r2] = c2;
                                                                             if (r - l == 1) return dist(p[l], p[r]);
    vector̄<L<Real̄>> res;
                                                                             int m = (l + r) >> 1;
    if (cmp(r1, r2) == 0) {
                                                                             double d = min(closest_pair(l, m), closest_pair(m + 1, r));
         P dr = rotate90(normal(o2 - o1)) * r1;
                                                                             vector<int> vec;
         res.emplace_back(o1 + dr, o2 + dr);
                                                                             for (int i = m; i >= l && fabs(p[m].x - p[i].x) < d; --i) vec
         res.emplace_back(o1 - dr, o2 - dr);
    } else {
                                                                                    .push_back(i);
                                                                              for (int i = m + 1; i <= r && fabs(p[m].x - p[i].x) < d; ++i)
         P p = (o2 * r1 - o1 * r2) / (r1 - r2);
         auto ps = pointCircleTangent(p, c1), qs =
                                                                                    vec.push_back(i);
                                                                              sort(vec.begin(), vec.end(), [&](int a, int b) { return p[a].
              pointCircleTangent(p, c2);
                                                                              y < p[b].y; });
for (int i = 0; i < vec.size(); ++i) {
         for (int i = 0; i < int(min(ps.size(), qs.size())); i</pre>
              ++) { res.emplace_back(ps[i], qs[i]); }
                                                                                for (int j = i + 1; j < vec.size() && fabs(p[vec[j]].y - p[
    vec[i]].y) < d; ++j) {</pre>
                                                                                  d = min(d, dist(p[vec[i]], p[vec[j]]));
vector<L<Real>> internalTangent(Circle c1, Circle c2) {
                                                                                }
```

return d:

```
Area of Union of Circles
8.7
vector<pair<double, double>> CoverSegment(C &a, C &b) {
  double d = (a.c - b.c).abs();
   vector<pair<double, double>> res;
   if (same(a.r + b.r, d));
  else if (d \leftarrow abs(a.r - b.r) + eps) {
     if (a.r < b.r) res.emplace_back(0, 2 * pi);</pre>
  } else if (d < abs(a.r + b.r) - eps) {
     double o = acos((sq(a.r) + sq(d) - sq(b.r)) / (2 * a.r * d)
          ), z = (b.c - a.c).angle();
    if (z < 0) z += 2 * pi;
double l = z - o, r = z + o;
    if (1 < 0) 1 += 2 * pi;
if (r > 2 * pi) r -= 2 * pi;
    if (l > r) res.emplace_back(l, 2 * pi), res.emplace_back(0,
    else res.emplace_back(l, r);
  return res:
double CircleUnionArea(vector<C> c) { // circle should be
     identical
   int n = c.size();
   double a = 0, w;
   for (int i = 0; w = 0, i < n; ++i) {
     vector<pair<double, double>> s = {{2 * pi, 9}}, z;
     for (int j = 0; j < n; ++j) if (i != j) {
       z = CoverSegment(c[i], c[j]);
       for (auto &e : z) s.push_back(e);
    sort(s.begin(), s.end());
    auto F = [&] (double t) { return c[i].r * (c[i].r * t + c[i
          ].c.x * sin(t) - c[i].c.y * cos(t)); };
     for (auto &e : s) {
       if (e.first > w) a += F(e.first) - F(w);
       w = max(w, e.second);
    }
   return a * 0.5;
| }
        3D Convex Hull
8.8
double absvol(const P a,const P b,const P c,const P d) {
  return abs(((b-a)^{(c-a)})^*(d-a))/6;
struct convex3D {
  static const int maxn=1010;
  struct T{
     int a,b,c;
    bool res;
    T(){}
    T(int a, int b, int c, bool res=1):a(a),b(b),c(c),res(res){}
  };
  int n,m;
  P p[maxn];
  T f[maxn*8];
  int id[maxn][maxn];
  bool on(T &t,P &q){
    return ((p[t.c]-p[t.b])^(p[t.a]-p[t.b]))*(q-p[t.a])>eps;
  void meow(int q,int a,int b){
     int g=id[a][b];
     if(f[g].res){
       if(on(f[g],p[q]))dfs(q,g);
         id[q][b]=id[a][q]=id[b][a]=m;
         f[m++]=T(b,a,q,1);
    }
  }
  void dfs(int p,int i){
    f[i].res=0;
    meow(p,f[i].b,f[i].a);
    meow(p,f[i].c,f[i].b);
    meow(p,f[i].a,f[i].c);
   void operator()(){
     if(n<4)return;
     if([&](){
         for(int i=1;i<n;++i)if(abs(p[0]-p[i])>eps)return swap(p
              [1],p[i]),0;
         return 1;
```

```
}() || [&](){
         for(int i=2;i< n;++i)if(abs((p[0]-p[i])^(p[1]-p[i]))>eps
               )return swap(p[2],p[i]),0;
          return 1;
         }() || [&](){
         for(int i=3; i< n; ++i)if(abs(((p[1]-p[0])^(p[2]-p[0]))*(p
              [i]-p[0]))>eps)return swap(p[3],p[i]),0;
          return 1;
         }())return;
     for(int i=0;i<4;++i){</pre>
       T t((i+1)%4,(i+2)%4,(i+3)%4,1);
       if(on(t,p[i]))swap(t.b,t.c);
       id[t.a][t.b]=id[t.c]=id[t.c][t.a]=m;
       f[m++]=t;
     for(int i=4;i< n;++i)for(int j=0;j< m;++j)if(f[j].res && on(f
          [j],p[i])){
       dfs(i,j);
       break;
     int mm=m; m=0;
     for(int i=0;i<mm;++i)if(f[i].res)f[m++]=f[i];</pre>
   bool same(int i,int j){
     return !(absvol(p[f[i].a],p[f[i].b],p[f[i].c],p[f[j].a])>
          eps || absvol(p[f[i].a],p[f[i].b],p[f[i].c],p[f[j].b])
          >eps || absvol(p[f[i].a],p[f[i].b],p[f[i].c],p[f[j].c
          1)>eps);
   int faces(){
     int r=0;
     for(int i=0;i<m;++i){</pre>
       int iden=1
       for(int j=0;j<i;++j)if(same(i,j))iden=0;</pre>
       r+=iden;
     return r;
   }
|} tb;
       Delaunay Triangulation
8.9
const P<i64> pINF = P<i64>(1e18, 1e18);
using i128 =
               __int128_t;
struct Quad {
   P<i64> origin;
   Quad *rot = nullptr, *onext = nullptr;
bool used = false;
   Quad* rev() const { return rot->rot; }
Quad* lnext() const { return rot->rev()->onext->rot; }
   Quad* oprev() const { return rot->onext->rot; }
   P<i64> dest() const { return rev()->origin; }
Quad* makeEdge(P<i64> from, P<i64> to) {
   Quad *e1 = new Quad, *e2 = new Quad, *e3 = new Quad, *e4 =
       new Quad;
   e1->origin = from;
   e2->origin = to;
   e3->origin = e4->origin = pINF;
   e1->rot = e3;
   e2->rot = e4;
   e3 - rot = e2
   e4->rot = e1;
   e1->onext = e1;
   e2->onext = e2:
   e3->onext = e4
   e4->onext = e3;
   return e1;
void splice(Quad *a, Quad *b) {
   swap(a->onext->rot->onext, b->onext->rot->onext);
   swap(a->onext, b->onext);
}
void delEdge(Quad *e) 
   splice(e, e->oprev());
   splice(e->rev(), e->rev()->oprev());
   delete e->rev()->rot;
   delete e->rev();
   delete e->rot;
   delete e;
Quad *connect(Quad *a, Quad *b) {
   Quad *e = makeEdge(a->dest(), b->origin);
   splice(e, a->lnext());
   splice(e->rev(), b);
   return e:
bool onLeft(P<i64> p, Quad *e) { return side(p, e->origin, e->
```

dest()) > 0; }

```
bool onRight(P<i64> p, Quad *e) { return side(p, e->origin, e->
dest()) < 0; }
template <class T>
T det3(T a1, T a2, T a3, T b1, T b2, T b3, T c1, T c2, T c3) {
  return a1 * (b2 * c3 - c2 * b3) - a2 * (b1 * c3 - c1 * b3) +
       a3 * (b1 * c2 - c1 * b2);
bool inCircle(P<i64> a, P<i64> b, P<i64> c, P<i64> d) {
  auto f = [\&](P < i64 > a, P < i64 > b, P < i64 > c) {
    return det3<i128>(a.x, a.y, square(a), b.x, b.y, square(b),
          c.x, c.y, square(c));
 i128 det = f(a, c, d) + f(a, b, c) - f(b, c, d) - f(a, b, d); return det > 0;
pair<Quad*, Quad*> build(int 1, int r, vector<P<i64>> &p) {
  if (r - 1 == 2) {
    Quad *res = makeEdge(p[l], p[l + 1]);
    return pair(res, res->rev());
 } else if (r - l == 3) {
    Quad *a = makeEdge(p[l], p[l + 1]), *b = makeEdge(p[l + 1],
          p[1 + 2]);
    splice(a->rev(), b);
    int sg = sign(cross(p[l], p[l + 1], p[l + 2]));
    if (sg == 0) { return pair(a, b->rev()); }
Quad *c = connect(b, a);
    if (sg == 1) {
      return pair(a, b->rev());
    } else {
      return pair(c->rev(), c);
    }
  int m = l + r >> 1;
  auto [ldo, ldi] = build(l, m, p);
  auto [rdi, rdo] = build(m, r, p);
  while (true) {
    if (onLeft(rdi->origin, ldi)) {
      ldi = ldi->lnext();
      continue:
    if (onRight(ldi->origin, rdi)) {
      rdi = rdi->rev()->onext;
      continue;
    break;
  Quad *basel = connect(rdi->rev(), ldi);
  auto valid = [&](Quad *e) { return onRight(e->dest(), basel);
     (ldi->origin == ldo->origin) { ldo = basel->rev(); }
  if (rdi->origin == rdo->origin) { rdo = basel; }
 while (true) {
  Quad *lcand = basel->rev()->onext;
    if (valid(lcand)) {
      while (inCircle(basel->dest(), basel->origin, lcand->dest
        (), lcand->onext->dest())) {
Quad *t = lcand->onext;
        delEdge(lcand);
        lcand = t;
    Quad *rcand = basel->oprev();
    if (valid(rcand)) {
      while (inCircle(basel->dest(), basel->origin, rcand->dest
        (), rcand->oprev()->dest())) {
Quad *t = rcand->oprev();
         delEdge(rcand);
        rcand = t;
    if (!valid(lcand) && !valid(rcand)) { break; }
    if (!valid(lcand) || valid(rcand) && inCircle(lcand->dest()
           lcand->origin, rcand->origin, rcand->dest())) {
      basel = connect(rcand, basel->rev());
    } else {
      basel = connect(basel->rev(), lcand->rev());
    }
 }
  return pair(ldo, rdo);
vector<array<P<i64>, 3>> delaunay(vector<P<i64>> p) {
  sort(p.begin(), p.end());
  auto res = build(0, p.size(), p);
  Quad *e = res.first;
  vector<Quad*> edges = {e};
  while (sign(cross(e->onext->dest(), e->dest(), e->origin)) ==
         -1) { e = e->onext; }
```

```
auto add = [&]() {
     Quad *cur = e;
     do {
       cur->used = true;
       p.push_back(cur->origin);
       edges.push_back(cur->rev());
       cur = cur->lnext();
     } while (cur != e);
  };
  add();
  p.clear();
   int i = 0;
  while (i < int(edges.size())) { if (!(e = edges[i++])->used)
       { add(); }}
   vector<array<P<i64>, 3>> ans(p.size() / 3);
   for (int i = 0; i < int(p.size()); i++) { ans[i / 3][i % 3] =
        p[i]; }
   return ans;
13
```

9 Miscellaneous

9.1 Cactus

```
// a component contains no articulation point, so P2 is a
      component
 // resulting bct is rooted
 struct BlockCutTree {
     int n, square = 0, cur = 0;
     vector<int> low, dfn, stk;
     vector<vector<int>> adj, bct;
     BlockCutTree(int n) : n(n), low(n), dfn(n, -1), adj(n), bct
          (n) {}
     void build() { dfs(0); }
     void addEdge(int u, int v) { adj[u].push_back(v), adj[v].
          push_back(u); }
     void dfs(int u)
         low[u] = dfn[u] = cur++;
         stk.push_back(u);
         for (auto v : adj[u]) {
             if (dfn[v] == -1) {
                 dfs(v);
                 low[u] = min(low[u], low[v]);
                 if (low[v] == dfn[u]) {
                     bct.emplace_back();
                     int x;
                     do {
                         x = stk.back();
                         stk.pop_back();
                         bct.back().push_back(x);
                     } while (x != v);
                     bct[u].push_back(n + square);
                     square++;
             } else {
                 low[u] = min(low[u], dfn[v]);
         }
    }
};
```

9.2 Dancing Links

```
namespace dlx {
int lt[maxn], rg[maxn], up[maxn], dn[maxn], cl[maxn], rw[maxn],
      bt[maxn], s[maxn], head, sz, ans;
void init(int c) {
  for (int i = 0; i < c; ++i) {</pre>
    up[i] = dn[i] = bt[i] = i;
    lt[i] = i == 0 ? c : i - 1;
    rg[i] = i == c - 1 ? c : i + 1;
    s[i] = 0;
  rg[c] = 0, lt[c] = c - 1;
  up[c] = dn[c] = -1;
  head = c, sz = c + 1;
void insert(int r, const vector<int> &col) {
  if (col.empty()) return;
  int f = sz;
  for (int i = 0; i < (int)col.size(); ++i) {</pre>
    int c = col[i], v = sz++;
    dn[bt[c]] = v;
    up[v] = bt[c], bt[c] = v;
    rg[v] = (i + 1 == (int)col.size() ? f : v + 1);
```

```
rw[v] = r, cl[v] = c;
    ++s[c];
    if (i > 0) lt[v] = v - 1;
  lt[f] = sz - 1;
}
void remove(int c) {
  lt[rg[c]] = lt[c], rg[lt[c]] = rg[c];
  for (int i = dn[c]; i != c; i = dn[i]) {
  for (int j = rg[i]; j != i; j = rg[j])
      up[dn[j]] = up[j], dn[up[j]] = dn[j], --s[cl[j]];
  }
}
void restore(int c) {
  for (int i = up[c]; i != c; i = up[i]) {
    for (int j = lt[i]; j != i; j = lt[j])
      ++s[cl[j]], up[dn[j]] = j, dn[up[j]] = j;
  lt[rg[c]] = c, rg[lt[c]] = c;
}
// Call dlx::make after inserting all rows.
void make(int c) {
  for (int i = 0; i < c; ++i)
    dn[bt[i]] = i, up[i] = bt[i];
void dfs(int dep) {
  if (dep >= ans) return;
  if (rg[head] == head) return ans = dep, void();
  if (dn[rg[head]] == rg[head]) return;
  int c = rg[head];
  int w = c;
  for (int x = c; x != head; x = rg[x]) if (s[x] < s[w]) w = x;
  remove(w);
  for (int i = dn[w]; i != w; i = dn[i]) {
    for (int j = rg[i]; j != i; j = rg[j]) remove(cl[j]);
    dfs(dep + 1);
    for (int j = lt[i]; j != i; j = lt[j]) restore(cl[j]);
  restore(w);
int solve() {
  ans = 1e9, dfs(0);
  return ans;
| }}
```

9.3 Offline Dynamic MST

cost[qr[l].first] = qr[l].second;

```
int cnt[maxn], cost[maxn], st[maxn], ed[maxn];
pair<int, int> qr[maxn];
// qr[i].first = id of edge to be changed, qr[i].second =
     weight after operation
// cnt[i] = number of operation on edge i
// call solve(0, q - 1, v, 0), where v contains edges i such
     that cnt[i] == 0
void contract(int l, int r, vector<int> v, vector<int> &x,
     vector<int> &y) {
  sort(v.begin(), v.end(), [&](int i, int j) {
   if (cost[i] == cost[j]) return i < j;</pre>
       return cost[i] < cost[j];</pre>
      });
  djs.save();
  for (int i = 1; i <= r; ++i) djs.merge(st[qr[i].first], ed[qr</pre>
       [i].first]);
  for (int i = 0; i < (int)v.size(); ++i) {</pre>
    if (djs.find(st[v[i]]) != djs.find(ed[v[i]])) {
      x.push_back(v[i]);
      djs.merge(st[v[i]], ed[v[i]]);
    }
  dis.undo();
  dis.save();
  for (int i = 0; i < (int)x.size(); ++i) djs.merge(st[x[i]],
       ed[x[i]]);
  for (int i = 0; i < (int)v.size(); ++i) {</pre>
    if (djs.find(st[v[i]]) != djs.find(ed[v[i]])) {
      y.push_back(v[i]);
      djs.merge(st[v[i]], ed[v[i]]);
    }
  djs.undo();
}
void solve(int l, int r, vector<int> v, long long c) {
  if (l == r) {
```

```
if (st[qr[l].first] == ed[qr[l].first]) {
    printf("%lld\n", c);
    return:
  int minv = qr[l].second;
  for (int i = 0; i < (int)v.size(); ++i) minv = min(minv,</pre>
       cost[v[i]]);
  printf("\sqrt[n]{l}ldn", c + minv);
  return;
int m = (l + r) >> 1;
vector<int> lv = v, rv = v;
vector<int> x, y;
for (int i = m + 1; i \ll r; ++i) {
  cnt[qr[i].first]--:
  if (cnt[qr[i].first] == 0) lv.push_back(qr[i].first);
contract(l, m, lv, x, y);
long long lc = c, rc = c;
djs.save();
for (int i = 0; i < (int)x.size(); ++i) {</pre>
  lc += cost[x[i]];
  djs.merge(st[x[i]], ed[x[i]]);
solve(l, m, y, lc);
djs.undo();
x.clear(), y.clear();
for (int i = m + 1; i <= r; ++i) cnt[qr[i].first]++;</pre>
for (int i = l; i <= m; ++i) {
  cnt[qr[i].first]--;
  if (cnt[qr[i].first] == 0) rv.push_back(qr[i].first);
}
contract(m + 1, r, rv, x, y);
djs.save();
for (int i = 0; i < (int)x.size(); ++i) {</pre>
  rc += cost[x[i]];
  djs.merge(st[x[i]], ed[x[i]]);
solve(m + 1, r, y, rc);
djs.undo();
for (int i = 1; i <= m; ++i) cnt[qr[i].first]++;</pre>
```

9.4 Manhattan Distance MST

```
void solve(int n) {
  init();
  vector<int> v(n), ds;
  for (int i = 0; i < n; ++i) {
    v[i] = i;
    ds.push_back(x[i] - y[i]);
  sort(ds.begin(), ds.end());
  ds.resize(unique(ds.begin(), ds.end()) - ds.begin());
  sort(v.begin(), v.end(), [&](int i, int j) { return x[i] == x
   [j] ? y[i] > y[j] : x[i] > x[j]; });
  int j = 0;
  for (int i = 0; i < n; ++i) {
    int p = lower_bound(ds.begin(), ds.end(), x[v[i]] - y[v[i
         ]]) - ds.begin() + 1;
    pair<int, int> q = query(p);
    // query return prefix minimum
    if (~q.second) add_edge(v[i], q.second);
    add(p, make_pair(x[v[i]] + y[v[i]], v[i]));
 }
}
void make_graph() {
  solve(n);
  for (int i = 0; i < n; ++i) swap(x[i], y[i]);
  solve(n);
  for (int i = 0; i < n; ++i) x[i] = -x[i];
  solve(n);
  for (int i = 0; i < n; ++i) swap(x[i], y[i]);
  solve(n);
```

9.5 Matroid Intersection

```
    x → y if S - {x} ∪ {y} ∈ I<sub>1</sub> with cost({y}).
    source → y if S ∪ {y} ∈ I<sub>1</sub> with cost({y}).
```

- $y \to x$ if $S \{x\} \cup \{y\} \in I_2$ with $-cost(\{y\})$.
- $y \to sink \text{ if } S \cup \{y\} \in I_2 \text{ with } -cost(\{y\}).$

Augmenting path is shortest path from source to sink.

9.6 Divide into O(log) Segments

```
auto get = [&](i64 l, i64 r) {
    vector<pair<i64, i64>> res;
    if (1 == 0) {
         i64 high = 1;
         while (i128(high) * 2 <= r) {</pre>
             high *= 2;
         res.emplace_back(0, high - 1);
         l = high;
    while (l <= r) {
         i64 \text{ nxt} = 1 + lowbit(1) - 1;
         if (nxt > r) {
             for (int b = \_builtin\_ctzll(l) - 1; b >= 0; --b){
                  if (l + (1ll << b) - 1 <= r){
                      res.emplace_back(l, l + (1ll \ll b) - 1);
                      l += 1ll << b;
             break;
         else {
             res.emplace_back(l, nxt);
             l = nxt + 1;
         }
    return res;
};
vector<pair<i64, i64>> all;
for (auto [l1, r1] : sega) {
     for (auto [12, r2] : segb) {
         i64 length_1 = __lg(r1 - l1 + 1), length_2 = __lg(r2 - l1 + 1)
              12 + 1);
         i64 length = max(length_1, length_2);
         i64 common_prefix = ((l1 ^ l2) >> length) << length;
         i64 L = common_prefix, R = common_prefix + (111 <<
              length) - 1
         all.emplace_back(L, R);
}
```

9.7 unorganized

```
const int N = 1021:
struct CircleCover {
  int C;
  Cir c[N];
  bool g[N][N], overlap[N][N];
  // Area[i] : area covered by at least i circles
  double Area[ N ];
  void init(int _C){ C = _C;}
  struct Teve {
    pdd p; double ang; int add;
    Teve() {}
    Teve(pdd _a, double _b, int _c):p(_a), ang(_b), add(_c){}
bool operator<(const Teve &a)const</pre>
     {return ang < a.ang;}
  }eve[N * 2];
  // strict: x = 0, otherwise x = -1
bool disjuct(Cir &a, Cir &b, int x)
  {return sign(abs(a.0 - b.0) - a.R - b.R) > x;}
bool contain(Cir &a, Cir &b, int x)
  {return sign(a.R - b.R - abs(a.0 - b.0)) > x;}
  bool contain(int i, int j) {
    /* c[j] is non-strictly in c[i]. */
    return (sign(c[i].R - c[j].R) \rightarrow 0 || (sign(c[i].R - c[j].R)
            == 0 \& i < j)) \& contain(c[i], c[j], -1);
  void solve(){
    fill_n(Area, C + 2, 0);
     for(int i = 0; i < C; ++i)</pre>
       for(int j = 0; j < C; ++j)
  overlap[i][j] = contain(i, j);</pre>
    for(int i = 0; i < C; ++i)
for(int j = 0; j < C; ++j)
         g[i][j] = !(overlap[i][j] || overlap[j][i] ||
              disjuct(c[i], c[j], -1));
     for(int i = 0; i < C; ++i){
       int E = 0, cnt = 1;
for(int j = 0; j < C; ++j)
          if(j != i && overlap[j][i])
            ++cnt;
```

```
CCinter(c[i], c[j], aa, bb);
           double A = atan2(aa.Y - c[i].0.Y, aa.X - c[i].0.X);
double B = atan2(bb.Y - c[i].0.Y, bb.X - c[i].0.X);
            eve[E++] = Teve(bb, B, 1), eve[E++] = Teve(aa, A, -1)
            if(B > A) ++cnt;
       if(E == 0) Area[cnt] += pi * c[i].R * c[i].R;
       else{
         sort(eve, eve + E);
         eve[E] = eve[0];
         for(int j = 0; j < E; ++j){
            cnt += eve[j].add;
            Area[cnt] += cross(eve[j].p, eve[j + 1].p) * .5;
            double theta = eve[j + 1].ang - eve[j].ang;
            if (theta < 0) theta += 2. * pi;
            Area[cnt] += (theta - sin(theta)) * c[i].R * c[i].R *
      }
    }
  }
};
double ConvexHullDist(vector<pdd> A, vector<pdd> B) {
    for (auto &p : B) p = {-p.X, -p.Y};
auto C = Minkowski(A, B); // assert SZ(C) > 0
     if (PointInConvex(C, pdd(0, 0))) return 0;
     double ans = PointSegDist(C.back(), C[0], pdd(0, 0));
for (int i = 0; i + 1 < SZ(C); ++i) {</pre>
         ans = min(ans, PointSegDist(C[i], C[i + 1], pdd(0, 0)))
     return ans;
}
void rotatingSweepLine(vector<pii> &ps) {
  int n = SZ(ps), m = 0;
  vector<int> id(n), pos(n);
vector<pii> line(n * (n - 1));
  for (int i = 0; i < n; ++i)
     for (int j = 0; j < n; ++j)
       if (i != j) line[m++] = pii(i, j);
  sort(ALL(line), [&](pii a, pii b) {
     return cmp(ps[a.Y] - ps[a.X], ps[b.Y] - ps[b.X]);
  }); // cmp(): polar angle compare
  iota(ALL(id), 0);
  sort(ALL(id), [&](int a, int b) {
  if (ps[a].Y != ps[b].Y) return ps[a].Y < ps[b].Y;</pre>
     return ps[a] < ps[b];</pre>
  }); // initial order, since (1, 0) is the smallest
  for (int i = 0; i < n; ++i) pos[id[i]] = i;
for (int i = 0; i < m; ++i) {</pre>
     auto l = line[i];
     // do something
     tie(pos[1.X], pos[1.Y], id[pos[1.X]], id[pos[1.Y]]) =
          make_tuple(pos[1.Y], pos[1.X], 1.Y, 1.X);
  }
}
bool PointInConvex(const vector<pll> &C, pll p, bool strict =
     true) {
  int a = 1, b = SZ(C) - 1, r = !strict;
  if (SZ(C) == 0) return false;
if (SZ(C) < 3) return r && btw(C[0], C.back(), p);</pre>
  if (ori(C[0], C[a], C[b]) > 0) swap(a, b);
  if (ori(C[0], C[a], p) >= r || ori(C[0], C[b], p) <= -r)
     return false:
  while (abs(a - b) > 1) {
     int c = (a + b) / 2;
     (ori(C[0], C[c], p) > 0 ? b : a) = c;
  return ori(C[a], C[b], p) < r;</pre>
}
llf rat(P a, P b) { return sgn(RE(b)) ? llf(RE(a))/RE(b) : llf(
     IM(a))/IM(b); }
llf polyUnion(vector<vector<P>>& poly) {
  llf ret = 0; // area of poly[i] must be non-negative
  rep(i,0,sz(poly)) rep(v,0,sz(poly[i])) {
    P A = poly[i][v], B = poly[i][(v + 1) % sz(poly[i])];
vector<pair<llf, int>> segs{{0, 0}, {1, 0}};
rep(j,0,sz(poly)) if (i != j) {
```

rep(u,0,sz(poly[j])) {

```
P C = poly[j][u], D = poly[j][(u + 1) % sz(poly[j])];
         if (int sc = ori(A, B, C), sd = ori(A, B, D); sc != sd)
           llf sa = cross(D-C, A-C), sb = cross(D-C, B-C);
           if (min(sc, sd) < 0)
             segs.emplace_back(sa / (sa - sb), sgn(sc - sd));
        } else if (!sc && !sd && j<i && sgn(dot(B-A,D-C))>0){
  segs.emplace_back(rat(C - A, B - A), 1);
           segs.emplace_back(rat(D - A, B - A), -1);
      }
                                                                              }
    }
    sort(segs.begin(), segs.end());
    for (auto &s : segs) s.first = clamp<llf>(s.first, 0, 1);
    llf sum = 0;
    int cnt = segs[0].second;
    rep(j,1,sz(segs)) {
       if (!cnt) sum += segs[j].first - segs[j - 1].first;
                                                                         };
      cnt += segs[j].second;
    ret += cross(A,B) * sum;
  return ret / 2:
}
#include <bits/stdc++.h>
using namespace std;
template <typename F, typename C> class MCMF {
  static constexpr F INF_F = numeric_limits<F>::max();
  static constexpr C INF_C = numeric_limits<C>::max();
  vector<tuple<int, int, F, C>> es;
  vector<vector<int>> g;
  vector<F> f;
  vector<C> d;
                                                                         }
  vector<int> pre, inq;
  void spfa(int s) {
    fill(inq.begin(), inq.end(), 0);
    fill(d.begin(), d.end(), INF_C);
    fill(pre.begin(), pre.end(), -1);
    queue<int> q;
    d[s] = 0;
    q.push(s);
    while (!q.empty()) {
      int u = q.front();
inq[u] = false;
      q.pop();
       for (int j : g[u]) {
         int to = get<1>(es[j]);
         C w = get<3>(es[j]);
         if (f[j] == 0 \mid | d[to] \ll d[u] + w)
           continue;
         d[to] = d[u] + w;
         pre[to] = j:
         if (!inq[to]) {
           inq[to] = true;
           q.push(to);
        }
      }
    }
  }
public:
  MCMF(int n) : g(n), pre(n), inq(n) {}
  void add_edge(int s, int t, F c, C w) {
  g[s].push_back(es.size());
    es.emplace_back(s, t, c, w);
    g[t].push_back(es.size());
    es.emplace_back(t, s, 0, -w);
  pair<F, C> solve(int s, int t, C mx = INF_C / INF_F) {
    add_edge(t, s, INF_F, -mx);
    f.resize(es.size()), d.resize(es.size());
    for (F I = INF_F ^ (INF_F / 2); I; I >>= 1) {
      for (auto &fi : f)
         fi *= 2;
       for (size_t i = 0; i < f.size(); i += 2) {
         auto [u, v, c, w] = es[i];
if ((c & I) == 0)
           continue;
         if (f[i]) {
           f[i] += 1;
           continue;
         spfa(v);
         if (d[u] == INF_C \mid \mid d[u] + w >= 0) {
```

```
f[i] += 1;
          continue;
        f[i + 1] += 1;
        while (u != v) {
          int x = pre[u];
           f[x] -= 1;
          f[x ^ 1] += 1;
          u = get<0>(es[x]);
        }
      }
    C w = 0;
    for (size_t i = 1; i + 2 < f.size(); i += 2)</pre>
      w -= f[i] * get<3>(es[i]);
    return {f.back(), w};
int main() {
  cin.tie(nullptr)->sync_with_stdio(false);
  int n, m, s, t;
  cin >> n >> m >> s >> t;
  s -= 1, t -= 1;
  MCMF<int64_t, int64_t> mcmf(n);
  for (int i = 0; i < m; ++i) {
    int u, v, f, c;
    cin >> u >> v >> f >> c;
u -= 1, v -= 1;
    mcmf.add_edge(u, v, f, c);
 auto [f, c] = mcmf.solve(s, t, 1e12);
cout << f << ' ' << c << '\n';</pre>
  return 0;
struct WeightGraph {
  static const int inf = INT_MAX;
  static const int maxn = 514;
  struct edge {
    int u, v, w;
    edae(){}
    edge(int u, int v, int w): u(u), v(v), w(w) {}
  int n, n_x;
  edge g[maxn * 2][maxn * 2];
  int lab[maxn * 2];
  int match[maxn * 2], slack[maxn * 2], st[maxn * 2], pa[maxn *
  int flo_from[maxn * 2][maxn + 1], S[maxn * 2], vis[maxn * 2];
  vector<int> flo[maxn * 2];
  queue<int> q;
  int e_delta(const edge &e) { return lab[e.u] + lab[e.v] - g[e
    .u][e.v].w * 2; }
  void update_slack(int u, int x) { if (!slack[x] || e_delta(g[
       u][x]) < e_delta(g[slack[x]][x])) slack[x] = u; }
  void set_slack(int x) {
    slack[x] = 0;
    for (int u = 1; u \le n; ++u)
      if (g[u][x].w > 0 \&\& st[u] != x \&\& S[st[u]] == 0)
        update_slack(u, x);
  void q_push(int x) {
    if (x \le n) q.push(x);
    else for (size_t i = 0; i < flo[x].size(); i++) q_push(flo[</pre>
         x][i]);
  void set_st(int x, int b) {
    if (x > n) for (size_t i = 0; i < flo[x].size(); ++i)
         set_st(flo[x][i], b);
  int get_pr(int b, int xr) {
    int pr = find(flo[b].begin(), flo[b].end(), xr) - flo[b].
         begin();
    if (pr % 2 == 1) {
      reverse(flo[b].begin() + 1, flo[b].end());
      return (int)flo[b].size() - pr;
    return pr;
  void set_match(int u, int v) {
    match[u] = g[u][v].v;
    if (u <= n) return;</pre>
    edge e = g[u][v];
    int xr = flo_from[u][e.u], pr = get_pr(u, xr);
```

```
bool matching() {
  for (int i = 0; i < pr; ++i) set_match(flo[u][i], flo[u][i</pre>
                                                                             memset(S + 1, -1, sizeof(int) * n_x);
memset(slack + 1, 0, sizeof(int) * n_x);
       ^ 17):
  set_match(xr, v);
  rotate(flo[u].begin(), flo[u].begin() + pr, flo[u].end());
                                                                             q = queue<int>();
                                                                             for (int x = 1; x <= n_x; ++x)
                                                                               if (st[x] == x \&\& !match[x]) pa[x] = 0, S[x] = 0, q_push(
void augment(int u, int v) {
  for (; ; ) {
  int xnv = st[match[u]];
                                                                             if (q.empty()) return false;
    set_match(u, v);
                                                                             for (; ; ) {
    if (!xnv) return;
                                                                               while (q.size()) {
    set_match(xnv, st[pa[xnv]]);
u = st[pa[xnv]], v = xnv;
                                                                                 int u = q.front(); q.pop();
                                                                                 if (S[st[u]] == 1) continue;
                                                                                 for (int v = 1; v <= n; ++v)
  if (g[u][v].w > 0 && st[u] != st[v]) {
  }
int get_lca(int u, int v) {
                                                                                      if (e_delta(g[u][v]) == 0) {
  static int t = 0;
                                                                                        if (on_found_edge(g[u][v])) return true;
  for (++t; u || v; swap(u, v)) {
                                                                                     } else update_slack(u, st[v]);
    if (u == 0) continue;
                                                                                   }
    if (vis[u] == t) return u;
    vis[u] = t;
                                                                               int d = inf;
                                                                               for (int b = n + 1; b <= n_x; ++b)
if (st[b] == b && S[b] == 1) d = min(d, lab[b] / 2);
    u = st[match[u]];
    if (u) u = st[pa[u]];
                                                                               for (int x = 1; x <= n_x; ++x)
  return 0:
                                                                                 if (st[x] == x \&\& slack[x]) {
                                                                                   if (S[x] == -1) d = min(d, e_delta(g[slack[x]][x]));
                                                                                   else if (S[x] == 0) d = min(d, e_delta(g[slack[x]][x]));

]) / 2);
void add_blossom(int u, int lca, int v) {
  int b = n + 1;
  while (b <= n_x \& st[b]) ++b;
  if (b > n_x) + +n_x;
lab[b] = 0, S[b] = 0;
                                                                               for (int u = 1; u \le n; ++u) {
                                                                                 if (S[st[u]] == 0) {
   if (lab[u] <= d) return 0;</pre>
  match[b] = match[lca];
  flo[b].clear();
                                                                                   lab[u] -= d;
  flo[b].push_back(lca);
                                                                                 } else if (S[st[u]] == 1) lab[u] += d;
  for (int x = u, y; x != lca; x = st[pa[y]])
    flo[b].push_back(x), flo[b].push_back(y = st[match[x]]),
                                                                               for (int b = n + 1; b \le n_x; ++b)
                                                                                 if (st[b] == b) {
         q_push(y);
                                                                                   if (S[st[b]] == 0) lab[b] += d * 2;
  reverse(flo[b].begin() + 1, flo[b].end())
  for (int x = v, y; x != lca; x = st[pa[y]])
                                                                                   else if (S[st[b]] == 1) lab[b] -= d * 2;
    flo[b].push_back(x), flo[b].push_back(y = st[match[x]]),
          q_push(y);
                                                                               q = queue<int>();
  set_st(b, b);
                                                                               for (int x = 1; x <= n_x; ++x)
  if (st[x] == x && slack[x] && st[slack[x]] != x &&</pre>
  for (int x = 1; x <= n_x; ++x) g[b][x].w = g[x][b].w = 0;
  for (int x = 1; x <= n; ++x) flo_from[b][x] = 0; for (size_t i = 0; i < flo[b].size(); ++i) {
                                                                                       e_delta(g[slack[x]][x]) == 0)
                                                                                   if (on_found_edge(g[slack[x]][x])) return true;
                                                                               for (int b = n + 1; b <= n_x; ++b)
if (st[b] == b && S[b] == 1 && lab[b] == 0)
    int xs = flo[b][i];
    for (int x = 1; x <= n_x; ++x)
       if (g[b][x].w == 0 \mid | e_delta(g[xs][x]) < e_delta(g[b][
                                                                                       expand_blossom(b);
            (([x
         g[b][x] = g[xs][x], g[x][b] = g[x][xs];
                                                                             return false;
    for (int x = 1; x <= n; ++x)
       if (flo_from[xs][x]) flo_from[b][x] = xs;
                                                                          pair<long long, int> solve() {
                                                                             memset(match + 1, 0, sizeof(int) * n);
  set slack(b):
                                                                             n x = n:
                                                                             int n_matches = 0;
void expand_blossom(int b) {
                                                                             long long tot_weight = 0;
  for (size_t i = 0; i < flo[b].size(); ++i)
  set_st(flo[b][i], flo[b][i]);</pre>
                                                                             for (int u = 0; u \le n; ++u) st[u] = u, flo[u].clear();
                                                                             int w max = 0:
                                                                             for (int u = 1; u \le n; ++u)
  int xr = flo_from[b][g[b][pa[b]].u], pr = get_pr(b, xr);
  for (int i = 0; i < pr; i += 2)
                                                                               for (int v = 1; v \le n; ++v) {
    int xs = flo[b][i], xns = flo[b][i + 1];
                                                                                 flo_from[u][v] = (u == v ? u : 0);
    pa[xs] = g[xns][xs].u;
                                                                                 w_max = max(w_max, g[u][v].w);
    S[xs] = 1, S[xns] = 0;
    slack[xs] = 0, set_slack(xns);
                                                                             for (int u = 1; u \le n; ++u) lab[u] = w_max;
    q_push(xns);
                                                                             while (matching()) ++n_matches;
                                                                             for (int u = 1; u <= n; ++u)
                                                                               if (match[u] && match[u] < u)</pre>
  S[xr] = 1, pa[xr] = pa[b];
  for (size_t i = pr + 1; i < flo[b].size(); ++i) {
                                                                                 tot_weight += g[u][match[u]].w;
    int xs = flo[b][i];
                                                                             return make_pair(tot_weight, n_matches);
    S[xs] = -1, set_slack(xs);
                                                                          void add_edge(int ui, int vi, int wi) { g[ui][vi].w = g[vi][
  st[b] = 0;
                                                                                ui].w = wi; }
                                                                          void init(int _n) {
                                                                            n = _n;
for (int u = 1; u <= n; ++u)
bool on_found_edge(const edge &e) {
  int u = st[e.u], v = st[e.v];
                                                                               for (int v = 1; v \le n; ++v)
  if (S[v] == -1) {
    pa[v] = e.u, S[v] = 1;
                                                                                 g[u][v] = edge(u, v, 0);
    int nu = st[match[v]];
                                                                          }
                                                                       1};
    slack[v] = slack[nu] = 0;
  S[nu] = 0, q_push(nu);
} else if (S[v] == 0) {
    int lca = get_lca(u, v);
    if (!lca) return augment(u,v), augment(v,u), true;
    else add_blossom(u, lca, v);
  return false;
```