

Sorting Algorithms

1

Contents

- Selection Sort
- Heap Sort
- Merge Sort
- Quick Sort
- Radix Sort

fit@hcmus | DSA | 2024

Sorting

- Sort key: data item which determines order
- Internal: data fits in memory
- External: data must reside on secondary storage
- In-place (algorithm): sorts the data without using any additional memory.
- Stable (algorithm): preserves the relative order of data elements.

fit@hcmus | DSA | 2024

9

Classification of Sorting Algorithms

- Memory usage: in-place sort / not in-place sort
 - **In-place** (algorithm): sorts the data without using any additional memory.
- By stability: maintain the relative order of the records with equal keys
- Comparison: utilize comparison or not?
- Adaptability: whether the pre-sorted-ness of the input affects the running time or not
- Data Location: Internal or external
 - Internal: data fits in memory
 - External: data must reside on secondary storage

Sorting

- We will analyze only internal sorting algorithms.
- Sorting also has indirect uses. An initial sort of the data can significantly enhance the performance of an algorithm.
- Majority of programming projects use a sort somewhere, and in many cases, the sorting cost determines the running time.
- A comparison-based sorting algorithm makes ordering decisions only based on comparisons.

fit@hcmus | DSA | 2024

11

Selection Sort - Idea

- Sort naturally the same as in real-life:
 - The list is divided into two sub-lists, *sorted* and *unsorted*, which are divided by an imaginary wall.
 - Find the smallest element from the unsorted sub-list and move to the correct position (swap it with the element at the beginning of the unsorted data.)
 - After each selection and swapping, increase the number of sorted elements and decrease the number of unsorted ones.
 - Loop those steps until the unsorted list has only 1 element.

Selection Sort

Input: (unsorted) a[] (n elements)

Output: (sorted) a[] (n elements)

- O Step 1. Initialize i = 0.
- O Step 2. Loop:
 - 2.1. Find the **smallest value** a[min] in the list with index from i to n-1 (a[i], ..., a[n-1]).
 - 2.2. Swap a[min] and a[i]
- O Step 3. Compare *i* with *n*:
 - If i < n then increase i by 1, back to step 2.
 - Otherwise, Stop.

fit@hcmus | DSA | 2024

----16

16

- Which operation should be used for analysis?
- \circ How many operations are there with size of the problem n?
- o Best case? Worst case?

fit@hcmus | DSA | 2024

20

Analysis

- In general, we compare keys and move items (or exchange items) in a sorting algorithm (which uses key comparisons).
- To analyze a sorting algorithm we should count the number of key comparisons and the number of moves.
 - Ignoring other operations does not affect our result.
- The outer for loop executes n-1 times. We invoke swap function once at each iteration.

Total Swaps: n-1

Total Moves: 3*(n-1) (Each swap has three moves)

O The inner for loop executes the size of the unsorted part minus 1 (from 1 to n-1), and in each iteration we make one key comparison.

number of key comparisons = 1+2+...+n-1 = n*(n-1)/2

fit@hcmus | DSA | 2024

22

Analysis

- The best case, the worst case, and the average case of the selection sort algorithm are same.
- Order of the algorithm: O(n²).

- If sorting a very large array, selection sort algorithm probably too inefficient to use.
- What is the advantage of this algorithm?

fit@hcmus | DSA | 2024

Analysis

- The behavior of the selection sort algorithm does not depend on the initial organization of data.
- Although the selection sort algorithm requires O(n²) key comparisons, it only requires O(n) moves.
- A selection sort could be a good choice if data moves are costly but key comparisons are not costly (short keys, long records).

fit@hcmus | DSA | 2024

-0-025

Heap Structure

- Definition (array-based representation):
 - Heap is a collection of n elements (a₀, a₁, ... a_{n-1}) in which every element (at position i) in the first half is greater than or equal to the elements at position 2i+1 and 2i+2.

(if $2i+2 \ge n$, just $a_i \ge a_{2i+1}$ satisfied).

- i.e., for every i ($0 \le i \le n/2-1$)
 - $a_i \ge a_{2i+1}$
 - $a_i \ge a_{2i+2}$
- Heap in above definition is called max-heap. (We also have min-heap structure).

Heap Structure

- o Examples:
 - A max-heap: 9, 5, 6, 4, 5, 2, 3, 3
 - A min-heap: 8, 15, 10, 20, 17, 12, 18, 21, 20
- Give some more examples of:
 - A max-heap with 8 elements.
 - A max-heap with 11 elements.
 - A min-heap with 7 elements.

fit@hcmus | DSA | 2024

28

Heap Structure

- Property:
 - The first element of the max-heap is always the largest.

Heap Structure - Heap Construction

- Input: An array a[], n elements
- Output: A heap a[], n elements

```
Step 1. Start from the middle of the array (first
half). Initialize index = n/2 - 1
Step 2. while (index >= 0)
  heapRebuild at position index //heapRebuild(index, a, n)
  index = index - 1
```

fit@hcmus | DSA | 2024

30

Heap Structure - heapRebuild (pos, A, n)

- o **Step 1.** Initialize k = pos, v = A[k], isHeap = false
- o **Step 2.** while not is Heap and 2*k+1 < n do j = 2*k + 1 //first elementif j < n - 1 //has enough 2 elements if A[j] < A[j + 1] then j = j + 1 //position of the larger between A[2*k+1] and A[2*k+2]if A[k] >= A[j] then is Heap = true else

swap between A[k] and A[j]

Heap Construction - An Example

Construct a heap from the following list:

2, 9, 7, 6, 5, 8

fit@hcmus | DSA | 2024

32

Heap Sort

- An interesting sorting algorithm discovered by J.W.J. Williams (in 1964).
- Idea is same as Selection Sort.
- It has two stages:
 - Stage 1: (heap construction). Construct a heap for a given array.
 - Stage 2: (maximum deletion). Apply the maximum key deletion n-1 times to the remaining heap
 - Exchange the first and the last element of the heap.
 - Decrease the heap size by 1.
 - Rebuild the heap at the first position.

Heap Sort

```
HeapSort(a[], n)
{
    heapConstruct(a, n);
    r = n - 1;
    while (r > 0)
    {
        swap(a[0], a[r]);
        heapRebuild(0, a, r); //heapConstruct(a, r);
        r = r - 1;
    }
}
```

fit@hcmus | DSA | 2024

34

Heap Sort - Analysis

- Best case, Worst case, Average case are the same.
- o The order of this algorithm: O(nlog₂n)

Divide-and-Conquer

- This technique can be divided into the following three parts:
 - **Divide**: This involves dividing the problem into smaller sub-problems.
 - Conquer: Solve sub-problems by calling recursively until solved.
 - Combine: Combine the sub-problems to get the final solution of the whole problem

fit@hcmus | DSA | 2024

Merge Sort

 Merge Sort algorithm is one of two important divide-and-conquer sorting algorithms.

fit@hcmus | DSA | 2024

Merge Sort - Idea

- It is a recursive algorithm.
 - · Divides the list into halves,
 - · Sort each halve separately, and
 - Then merge the sorted halves into one sorted array.
- O Note:
 - A list with 0 or 1 element is a sorted list.

fit@hcmus | DSA | 2024

_____39

39

Merge Sort - Idea

- o Merge procedure:
 - Goal: Merge two ordered lists into an order list.
 - Input: two ordered lists A[] (n elements), B[] (m elements)
 - Output: a new ordered list C[] (n + m elements) (containing all elements of A and B).
 - Example:
 - A = {1, 5, 7, 9}, B = {2, 9, 10, 12, 17, 26}; C = {1, 2, 5, 7, 9, 9, 10, 12, 17, 26}
 - Propose the efficient algorithm.

fit@hcmus | DSA | 2024

9 11 24

fit@hcmus

40

7 9 11 16 24

16

- Merge procedure:
 - Input:
 - $A = \{2, 3, 7, 16\},$
 - $B = \{4, 9, 11, 24\};$
 - Output:
 - $C = \{2, 3, 4, 7, 9, 11, 16, 24\}$

Merge Sort

- O Input: A[], left, right (list A from index left to right).
- Output: (Ordered) A[] (from left, to right)

```
MergeSort(A[], left, right)
{
    if (left < right) {
        mid = (left + right)/2;
        MergeSort(A, left, mid);
        MergeSort(A, mid+1, right);
        Merge(A, left, mid, right);
    }
}</pre>
```

fit@hcmus | DSA | 2024

42

fit@hcmus **Merge Sort - An Example** 4 theArray: Divide the array in half 4 8 3 Sort the halves Merge the halves: a. 1 < 2, so move 1 from left half to tempArray b. 4 > 2, so move 2 from right half to tempArray c. 4 > 3, so move 3 from right half to tempArray d. Right half is finished, so move rest of left half to tempArray Temporary array 2 3 4 8 tempArray: Copy temporary array back into original array theArray: 2 3 fit@hcmus | DSA | 2024

- Merge Sort is extremely efficient algorithm with respect to time.
 - Both worst case and average case are O (n * log₂n)
- Merge Sort requires an extra array whose size equals to the size of the original array.
- o If we use a linked list, we do not need an extra array
 - But we need space for the links
 - And, it will be difficult to divide the list into half (O(n))

fit@hcmus | DSA | 2024

46

Quick Sort - Idea

- Like Merge Sort, Quick Sort is also based on the divide-and-conquer paradigm.
- o It works as follows:
 - First, it **partitions** an array into two parts,
 - Then, it sorts the parts independently,
 - Finally, it **combines** the sorted subsequences by a simple concatenation.

fit@hcmus | DSA | 2024

----48

48

Quick Sort - Idea

- The algorithm consists of the following three steps:
 - Divide: Partition the list.
 - To partition the list, we first choose some element from the list for which we hope about half the elements will come before and half after. Call this element the *pivot*.
 - Then we partition the elements so that all those with values less than the pivot come in one sub-list and all those with greater values come in another.
 - Recursion: Recursively sort the sub-lists separately.s₁

Conquer: Put the sorted sub-lists together.

fit@hcmus | DSA | 2024

fit@hcmus | DSA | 2024

Partitioning places the pivot in its correct place position within the array.

QuickSort (A, first, pivotIndex-1) //Sort S1
QuickSort (A, pivotIndex + 1, last) //Sort S2

- Arranging the array elements around the pivot p generates two smaller sorting problems.
 - sort the **left section** of the array and sort the **right section** of the array.
 - when these two smaller sorting problems are solved recursively, our bigger sorting problem is solved.

Quick Sort - Partition

- Selecting the pivot
 - Select a pivot element among the elements of the given array
 - We put this pivot into the first location of the array before partitioning.
- Which array item should be selected as pivot?
 - We hope that we will get a good partitioning.

fit@hcmus | DSA | 2024

52

Quick Sort - Partition

- Selecting the pivot
 - Select a pivot element among the elements of the given array
 - We put this pivot into the first location of the array before partitioning.
- Which array item should be selected as pivot?
 - If the items in the array arranged randomly, we choose a pivot randomly.
 - We can choose the first or last element as a pivot (it may not give a good partitioning).
 - We can use different techniques to select the pivot.

Quick Sort - Partition

- Partitioning uses two more variables:
 - lastS1: the last index of S1 (the elements in A less than p).
 - firstUnknown: the first index of Unknown.
- Partitioning takes place when firstUnknown <= last.

fit@hcmus | DSA | 2024

54

Quick Sort - Partition

Partition(A[], first, last, pivot) -> pivotIndex

Step 1. while (firstUnknown <= last) //not finish</pre>

1.1 If the element at position firstUnknown is **less than** pivot then move that element to S1

Otherwise, move that element to S2

1.2 firstUnknown = firstUnknown + 1 //next element

Step 2. Move *pivot* to the correct position (between S1 and S2): Swap two elements at lastS1 and first.

Step 3. pivotIndex = lastS1

fit@hcmus | DSA | 2024

56

56

Partition this list: 27, 38, 12, 39, 27, 16

Pivot	Unknown				
27	38	12	39	27	16
Pivot	S2	Unknown			
27	38	12	39	27	16
	^				
Pivot	S1	S2	Unknown		
27	12	38	39	27	16

fit@hcmus | DSA | 2024

58

Quick Sort - Partition

Partition this list: 27, 38, 12, 39, 27, 16

27	12	38	39	27	16
Pivot	S1		S2		U.K
27	12	38	39	27	16
Λ Λ					
Pivot	S	1		S2	
27	12	16	39	27	38
1					
	S1	Pivot		S2	
16	12	27	39	27	38

Unknown

fit@hcmus | DSA | 2024

fit@hcmus | DSA | 2024

- Worst case: O(n2)
- Quick Sort is O(nlog₂n) in the best case and average case.

Notes:

- Quick Sort is slow when the array is sorted and we choose the first element as the pivot.
- Although the worst case behavior is not so good, its average case behavior is much better than its worst case.
- Quick Sort is one of best sorting algorithms using key comparisons.

fit@hcmus | DSA | 2024

Radix Sort

Radix Sort

- Radix Sort algorithm different than other sorting algorithms that we talked.
 - It DOES NOT use key comparisons to sort an array.

fit@hcmus | DSA | 2024

66

Radix Sort - Idea

- · Treats each data item as a character string.
- Repeat (for all character positions from the rightmost to the leftmost)
 - Groups data items according to their rightmost character
 - Put these groups into order with respect to this rightmost character.
 - Combine all the groups.
 - Move to the next left position.
- At the end, the sort operation will be completed.

fit@hcmus | DSA | 2024

67

Radix Sort

```
RadixSort(A[], n, d) // sort n d-digit integers in the array A
  for (j = d down to 1) {
    Initialize 10 groups to empty
    Initialize a counter for each group to 0
    for (i = 0 through n-1) {
        k = jth digit of A[i]
        Place A[i] at the end of group k
        Increase kth counter by 1
    }
    Replace the items in A with all the items in group 0, followed by all the items in group 1, and so on.
}
```

fit@hcmus | DSA | 2024

68

69

Radix Sort - An Example

• Sort the following list ascendingly using Radix Sort:

27, 78, 52, 39, 17, 46

- Base: 10, Number of digits: 2
- First Pass. The rightmost digit

Combine after first pass: 52, 46, 27, 17, 78, 39

fit@hcmus | DSA | 2024

70

Radix Sort - An Example

• Second Pass. The second rightmost digit of: 52, 46, 27, 17, 78, 39

Resulting list: 17, 27, 39, 46, 52, 78

- Radix Sort is O(n)
- · What are the strength and weakness of this algorithm?

fit@hcmus | DSA | 2024

• 72

72

Analysis

- Although the radix sort is O(n), it is NOT appropriate as a general-purpose sorting algorithm.
 - Memory needed?
- The Radix Sort is more appropriate for a linked list than an array.

fit@hcmus | DSA | 2024

Comparison of Sorting Algorithms

	Worst case	Average case
Selection sort	n^2	n^2
Bubble sort	n^2	n^2
Insertion sort	n^2	n^2
Mergesort	n * log n	n * log n
Quicksort	n^2	n * log n
Radix sort	n	n
Treesort	n^2	n * log n
Heapsort	n * log n	n * log n

fit@hcmus | DSA | 2024

74

Summary

- Selection Sort is O(n²) algorithm. Good in some particular case but it is slow for large problems.
- Heap Sort converts an array into a heap to locate the array's largest items, enabling to sort more efficient.
- Quick Sort and Merge Sort are efficient recursive sorting algorithms.
- Quick Sort is O(n²) in worst case but rarely occurs.
- Merge Sort requires additional storage.
- Radix Sort is O(n) but not always applicable as not a generalpurpose sorting algorithm.

fit@hcmus | DSA | 2024

