Modèles Linéaires (LM)

Définition

Les modèles linéaires (LM) englobent :

- les modèles de régression linéaire
 - \hookrightarrow les covariables sont des régresseurs : des variables quantitatives
 - Ex : On explique la teneur en ozone par la température, la nébulosité
- les modèles d'analyse de la variance (ANOVA)
 - \hookrightarrow les covariables sont des facteurs : des variables qualitatives
 - Ex : On explique la teneur en ozone par la direction du vent ou la saison
- \Longrightarrow Tout dépend donc de la matrice X des covariables ...
- ... mais Y n'a pas changé : on cherche à expliquer une mesure numérique!
- → On peut aussi mélanger les 2 natures de covariables : les modèles d'analyse de covariance (ANCOVA)

Modèle Linéaire || Modèle Linéaire Général || Modèle Linéaire Généralisé

- Régresseur : valeur numérique ⇒ une infinité de valeurs possibles, souvent toutes différentes dans l'échantillon
 - \hookrightarrow une valeur de Y différente pour chaque valeur de X
- Facteur : niveau ⇒ un nombre fini, faible, de niveaux possibles

Écriture du modèle

Modèle de régression

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

 \hookrightarrow on cherche la part de variabilité de Y induite par les changements de valeurs du régresseur x

→ 1 paramètre par régresseur

 \hookrightarrow signification des paramètres :

 β_0 : intercept - niveau moyen de y quand x vaut 0

 β_1 : pente - impact d'un accroissement de 1 de x sur la variable réponse

 \hookrightarrow forme de X:...

Modèle d'ANOVA

Puisque plusieurs observations de Y pour chaque niveau de x, on note $y_{j,k}$: la réponse de l'individu k dans le niveau j.

$$Y_{j,k} = \beta_0 + \beta_j + \varepsilon_{j,k}$$

 \hookrightarrow on cherche la part de variabilité de Y induite par les différents niveaux du facteur x

→ 1 paramètre par niveau du facteur

 \hookrightarrow signification des paramètres :

 β_0 : intercept - valeur moyenne des valeurs y observées

 β_i : impact du niveau j de x sur la variable réponse

 \hookrightarrow forme de X:...

Les contraintes dans les modèles d'ANOVA

$$\hat{\beta} = (X'X)^{-1}X'Y$$

- \hookrightarrow pour que X'X soit inversible, il faut que X soit de plein rang (colonne) :
- \hookrightarrow la dimension de l'espace vectoriel engendré par les colonnes de X est égal à p (le nombre de colonnes de X)

Pas d'intercept

$$\beta_0 = 0$$

- $\hookrightarrow \forall j \in \{1,..,J\}$ β_j : niveau moyen de la réponse dans le niveau j
- \hookrightarrow forme de X : ...

Choix d'une référence : un niveau du facteur sert de référence

$$\beta_1 = 0$$

- → le niveau 1 sert de référence
- $\hookrightarrow \beta_0$ niveau moyen de la réponse dans le niveau 1
- $\hookrightarrow \forall j \in \{2,..,J\}$ β_j : écart de la réponse du niveau j au niveau 1
- \hookrightarrow forme de X : ...
- \hookrightarrow Dans R : contr.treatment

Somme des paramètres

$$\sum_{j=1}^{J} \beta_j = 0$$

- $\hookrightarrow \beta_0$ moyenne des paramètres
- $\hookrightarrow \forall j \in \{1,..,J-1\}$ $\beta_0 + \beta_j$: niveau moyen de la réponse du niveau j
- $\hookrightarrow \beta_0 \sum_{j=1}^{J-1} \beta_j$: niveau moyen de la réponse du niveau J
- \hookrightarrow Dans R : contr.sum

ANOVA à 2 facteurs

- Considérons 2 facteurs F₁ (à J₁ modalités) et F₂ (à J₂ modalités).

 ⇒ plusieurs observations de Y à chaque croisement d'une modalité de F₁ et d'une modalité de F₂
- y_{ijk} : observation de l'individu numéro k au croisement du niveau i de F_1 et le niveau j de F_2

Modèle :

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \varepsilon_{ijk}$$

 \hookrightarrow on cherche la part de variabilité de Y induite par chacun des niveaux du facteur F_1 d'une part, et chacun des niveaux du facteur F_2 d'autre part

- $\hookrightarrow 1+J_1+J_2$ paramètres
- \hookrightarrow signification des paramètres :
- β_0 : intercept valeur moyenne des valeurs y observées
- α_i : impact du niveau i de F_1 sur la variable réponse
- β_i : impact du niveau j de F_2 sur la variable réponse
- \hookrightarrow forme de X : ...

Contraintes

- \hookrightarrow Choix d'une **référence** : niveau 1 de F_1 ($\alpha_1=0$) et niveau 1 de F_2 ($\beta_1=0$)
- $\hookrightarrow \forall i \in \{2,..,J_1\}$ α_i : écart de la réponse du niveau i au niveau 1 de F_1 $\hookrightarrow \forall j \in \{2,..,J_2\}$ β_i : écart de la réponse du niveau j au niveau 1 de F_2

Additivité des effets principaux

- $\hookrightarrow \alpha_i$: effet du niveau i de F_1 quelque soit le niveau j de F_2
- $\hookrightarrow \beta_j$: effet du niveau j de F_2 quelque soit le niveau i de F_1

Interaction

- \hookrightarrow On ajoute un effet du niveau i en interaction avec le niveau j: γ_{ij}
- \hookrightarrow Le niveau i de F_1 a un effet différent selon le niveau j de F_2 et réciproquement
- \hookrightarrow Ex : l'orientation du vent n'a pas le même effet avec ou sans pluie

Modèle

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \varepsilon_{ijk}$$

- \hookrightarrow Forme de X:...
- \hookrightarrow Dans R : l'interaction est désignée par $F_1: F_2$
- \Rightarrow Le modèle avec interaction : $Y \sim F_1 + F_2 + F_1 : F_2$ ou $Y \sim F_1 * F_2$

Contraintes

$$\forall i \in \{1, ..., J_2\} \quad \gamma_{i1} = 0$$

 $\forall j \in \{1, ..., J_2\} \quad \gamma_{1j} = 0$

Modèle d'ANCOVA

La partie explicative du modèle mélange : régresseurs et facteurs.

- X : le régresseur
- F: le facteur
 - Modèle sans interaction : $Y \sim X + F$

$$Y_{jk} = \mu + \beta_j + \delta x_{jk} + \varepsilon_{jk}$$

- \hookrightarrow forme de X : ...
- Modèle avec interaction : Y ~ X * F

$$Y_{jk} = \mu + \beta_j + (\delta + \delta_j)x_{jk} + \varepsilon_{jk}$$

- \hookrightarrow forme de X : ...