中国科学技术大学数学科学学院 2018~2019 学年第 2 学期期中考试试卷

■A 卷 □B 卷

课程名称	线性代数 (B1) 2019 年 5 月 12 日			课程编号	001519 闭卷		
考试时间 _							
姓名		214	号		学院		
题号	-	=	Ξ	四	五	六	总分
得分							

一、【25 分】填空题.

(1) 方阵的方幂
$$\begin{pmatrix} a_1b_1 & a_1b_2 \\ a_2b_1 & a_2b_2 \end{pmatrix}^{2019} =$$

(2) 已知矩阵
$$m{A} = \begin{pmatrix} 2 & 0 & 1 & 9 \\ -2 & 1 & -1 & 1 \\ 3 & -2 & 2 & -1 \\ 0 & 0 & 3 & 4 \end{pmatrix}$$
, A_{ij} 表示 $|m{A}|$ 中 (i,j) 元的代数余子式, 则 $A_{11} - A_{12} =$

(3) 若方阵
$$A = \begin{pmatrix} 1 & -2 & 0 \\ 1 & 1 & -2 \\ 1 & 0 & 1 \end{pmatrix}$$
, 则 $A^{-1} =$

- (4) 设 A 为 4 阶复矩阵, rank(A) = 3, A^* 为 A 的伴随矩阵, 则齐次线性方程组 $A^*x = 0$ 的解空间的维数是_______.
- (5) 若向量组的秩 $rank(a_1, a_2, a_3, a_4) = 4$, 则 $rank(a_1 + a_2, a_2 + a_3, a_3 + a_4, a_4 + a_4) = ______.$

- 二、【20 分】判断下面的说法是否正确。对于正确的, 简要说明理由. 对于错误的, 举出反例加以说明.
 - (1) 设 \boldsymbol{A} 和 \boldsymbol{B} 均为行满秩的 $m \times n$ 的非零矩阵, 且 m < n, 则 $\det(\boldsymbol{A}\boldsymbol{B}^{\mathrm{T}}) \neq 0$.

(2) 设非零矩阵 A, B 满足 AB = O (零矩阵), 则 A 的行向量线性相关.

(3) 设 $A \in \mathbb{R}^{5\times 3}$, 若线性方程组 Ax = 0 有非零解, 则对任意非零的列向量 $b \in \mathbb{R}^5$, 方程组 Ax = b 存在无穷多解.

(4) 对于任意 n 阶实方阵 A, B, 不存在非零的实数 μ 使得 $AB - BA = \mu I_n$. (这 儿的 I_n 为 n 阶单位矩阵)

三、【15 分】考虑方程组

$$\begin{cases} \lambda x_1 + x_2 + x_3 = \lambda - 3, \\ x_1 + \lambda x_2 + x_3 = -2, \\ x_1 + x_2 + \lambda x_3 = -2 \end{cases}$$

问 λ 为何值时, 该方程组有唯一解? 无解? 有无穷多解? 在有解的情况下, 给出通解.

四、【15分】计算行列式

$$\begin{vmatrix} x_1 - 1 & x_2 & x_3 & \cdots & x_n \\ x_1 & x_2 - 2 & x_3 & \cdots & x_n \\ x_1 & x_2 & x_3 - 3 & \cdots & x_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_1 & x_2 & x_3 & \cdots & x_n - n \end{vmatrix}.$$

- 五、【15 分】设 $F_3[x]$ 为数域 F 上次数不超过 3 的多项式的全体, 在多项式的加法与数乘下构成了线性空间.
 - (1) 证明 $S = \{1, 1+x, (1+x)^2, (1+x)^3\}$ 构成了该线性空间的一组基.
 - (2) 求基 S 到自然基 $\{1, x, x^2, x^3\}$ 的过渡矩阵 T.
 - (3) 求多项式 $1 + x + x^2 + x^3$ 在基 S 下的坐标.

六、【10分】设 A 是 n 阶方阵, I_n 为 n 阶单位矩阵.

- (1) 若 $A^2 = A$, 证明: $\operatorname{rank}(A) + \operatorname{rank}(I_n A) = n$.
- (2) 反之,若 $\operatorname{rank}(A) + \operatorname{rank}(I_n A) = n$,证明: $A^2 = A$.