

Graded Ouiz • 1h

Congratulations! You passed!

Grade received 87.50%

Latest Submission Grade 87.50% **To pass** 75% or higher

Go to next item

1/1 point

1. Given the vectors:

 \vec{v} = (1, 0, 7)

w= (0, −1, 2)

find the distance between them, $d(\vec{v}, \vec{w})$

- \bigcirc 5
- \bigcirc -2
- \bigcirc $\sqrt{(23)}$

⊘ Correct

Correct! $d(ec{v},ec{w}) = \sqrt{(0-1)^2 + (-1-0)^2 + (2-7)^2}$

2. You are given the points P: (1, 0, -3) and Q: (-1,0,-3). The magnitude of the vector from P to Q is:

1/1 point

- 2
- O 3
- O -2
 - **⊘** Correct

Correct! The magnitude of the vector is the distance between points P and Q, which you find by using the following: $\sqrt{((-1)-1)^2+0^2+((-3)-(-3))}=\sqrt{4}=2$

3. Select the correct statements pertaining to the dot product.

1/1 point

- ☐ The dot product of orthogonal vectors is always 1.
- The dot product of orthogonal vectors is always 0.
- ✓ Correct

Correct! Since both vectors are perpendicular to each other, the dot product is always 0.

- The dot product of two vectors is always a scalar.

⊘ Correct

Correct! The dot product gives us a real number, therfore a scalar.

4. Calculate the norm ||v|| of the vector \vec{v} = (1, -5, 2, 0,-3) and select the correct answer.

1/1 point

- (a) $||v|| = \sqrt{39}$
- $\bigcirc \ \|v\| = \sqrt{35}$
- $\bigcirc \ \|v\| = 5$
- $\bigcirc \ \|v\| = 39$

⊘ Correct

Correct! $\|v\| = \sqrt{((1^2) + (-5)^2 + 2^2 + 0^2 + (-3)^2)} = \sqrt{39}$

5. Which of the vectors has the greatest norm?

0 / 1 point

$$\begin{bmatrix}
1 \\
2 \\
-3
\end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 0 \\ -2 \\ 0 \end{bmatrix}$$

- 0
- $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

Not quite. Review the video on finding the norm of a vector (The dot product ∠.).

For a vector $ec{v}=(x,y,z)$, the norm $\|v\|=\sqrt{(x^2)+(y^2)+(z^2)}$

6. Calculate the dot product $ec{a} \cdot ec{b}$ and select the correct answer.

$$ec{a} = egin{bmatrix} -1 \ 5 \ 2 \end{bmatrix}, ec{b} = egin{bmatrix} -3 \ 6 \ -4 \end{bmatrix}$$

- $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
- O 30
- 25
- $\begin{bmatrix}
 -3 \\
 30 \\
 -8
 \end{bmatrix}$

⊘ Correct

Correct! By applying the formula you saw in the video The dot product ☐ as follows: $\vec{a}\cdot\vec{b}=ax\cdot bx+ay\cdot by+az\cdot bz$, you have:

$$\vec{a} \cdot \vec{b} = (-1) \cdot (-3) + 5 \cdot 6 + 2 \cdot (-4) = 3 + 30 - 8 = 25.$$

7. Which of the following is the result of performing the multiplication $M_1\cdot M_2$? Where M_1 and M_2 are given by:

$$M_1 = \begin{bmatrix} 2 & -1 \\ 3 & -3 \end{bmatrix}, M_2 = \begin{bmatrix} 5 & -2 \\ 0 & 1 \end{bmatrix}.$$

- $\bigcirc \begin{bmatrix} 10 \\ 15 \end{bmatrix}$

⊘ Correct

Correct! Remember from the video $\frac{\text{Matrix Multiplication}}{c_3}$ [$\frac{c}{c}$], to multiply matrices, you have: $\begin{bmatrix} c_1 & c_2 \\ c_3 & c_4 \end{bmatrix}$ where in the matrices given:

$$c_1 = 2 \cdot 5 + (-1) \cdot 0 = 10$$
,

$$c_2 = 2 \cdot (-2) + (-1) \cdot 1 = -5,$$

$$c_3 = 3 \cdot 5 + (-3) \cdot 0 = 15,$$

$$c_4 = 3 \cdot (-2) + (-3) \cdot 1 = -9.$$

When you replace these values back onto the matrix, you obtain: $\begin{bmatrix} 10 & -5 \\ 15 & -9 \end{bmatrix}$

8. Calculate the dot product $\vec{w}\cdot\vec{z}$ and select the correct answer.

$$\vec{w} = \begin{bmatrix} -9 \\ -1 \end{bmatrix}, \vec{z} = \begin{bmatrix} -3 \\ -5 \end{bmatrix}$$

1/1 point

1/1 point

1/1 point

- $\bigcirc \, \begin{bmatrix} -27 \\ -5 \end{bmatrix}$
- 32
- $\bigcirc \begin{bmatrix} 27 \\ 5 \end{bmatrix}$
- O 35

$$\bigcirc$$
 Correct
$$\text{Correctt } \vec{w} \cdot \vec{z} = \begin{bmatrix} -9 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} -3 \\ -5 \end{bmatrix} = (-9) \left(-3 \right) + \left(-1 \right) \left(-5 \right) = 32$$