Convex Formulations for Fair Principal Component Analysis

Matt Olfat & Anil Aswani 11/13/2018

https://arxiv.org/pdf/1802.03765.pdf

Black Box vs. Socio-technical Systems

- Technological change driven by social needs
 - Steering
 - Pedals
 - Gears
- Machine learning also at a crossroads
 - Robustness
 - Interpretability
 - **Fairness**

Potential for Codifying Bias

- Societal biases make their way into data
 - Women undertreated for pain (NYT, 2013)
 - Racial underrepresentation in clinical drug trials (ProPublica, 2018)
- "Fairness through ignorance" insufficient
 - Misleading correlations in data misinterpreted as signal
 - Systematized bias further corrupts data...
- Anecdotal examples
 - Biased algorithms to predict recidivism (Propublica, 2016)
 - Gender bias in LinkedIn job ads (The Seattle Times, 2016)
 - Facebook censorship of hate speech (Propublica, 2017)
 - Removing fake news with certifiable nonpartisanship

Prior Approaches

Relabeling

- Pedreschi et al (2008)
- Kamiran & Calders (2009)
- Luong et al (2011)
- Hardt et al (2016)

Regularization

- Calders & Verwer (2010)
- Kamishima et al (2011)
- Zliobaite et al (2015)
- Zafar et al (2017)

Feature Modification

- Calders et al (2011)
- Dwork et al (2011,2012)
- Zemel et al (2014)
- Calmon et al (2017)

• Chierichetti et al (2017) approximate NP-hard preprocessing step, but specific to clustering

Relevance of Fairness to PCA

- Difficulty: no ordered output to map to good/bad outcomes
 - i.e. lending, censorship, recidivism, etc.
 - So what does fairness mean
- Dimensionality reduction as preprocessing step
 - Commonly used to avoid curse of dimensionality
 - Flexible to choice of algorithm, unsupervised algorithms not easy to modify
 - Recent applications in natural language processing
- Also interesting for gaining insights
 - PCA common technique for data visualization

Fairness?

Fairness Notion

• Say that a mapping Π is $\Delta(h)$ -fair for some classifier $h: \mathbb{R}^d \times \mathbb{R} \to \{-1, +1\}$ if the following holds $\forall t \in \mathbb{R}$:

$$\left| \mathbb{P}\left[h(\Pi(x_i), t) = +1 \middle| z = +1 \right] - \mathbb{P}\left[h(\Pi(x_i), t) = +1 \middle| z = -1 \right] \right| \le \Delta(h)$$

True-positive rate

False-positive rate

• May approximate above with empirical estimate:

$$\Big| \frac{1}{\#P} \sum_{i \in P} \mathbf{1} \big(h(\Pi(x), t) = +1 \big) - \frac{1}{\#N} \sum_{i \in N} \mathbf{1} \big(h(\Pi(x), t) = +1 \big) \Big|$$

- Say Π is *empirically* $\Delta(h)$ -fair
- For class of classifiers \mathcal{F} , say Π is $\Delta(\mathcal{F})$ -fair if $\Delta(h)$ -fair $\forall h \in \mathcal{F}$

Non-asymptotic convergence:

Let $\mathcal F$ be the set of linear classifiers, and let Π be an emp. $\Delta_{\mathrm{emp}}(\mathcal F)$ -fair mapping. Then Π is $\Delta(\mathcal F)$ -fair with probability $\geq 1 - \exp(-\frac{n\delta^2}{2})$, where:

$$\Delta(\mathcal{F}) = \Delta_{\text{emp}}(\mathcal{F}) + 8\sqrt{\frac{(d+1)}{n}} + \delta$$

- Robust to adversarial user
- But infinite-dimensional
- Nonconvex even for fixed t

Fairness!

SDP Formulation

- Want to solve the following:
 - Usually solved via power iterations and deflation

$$\max_{v_i \in \mathbb{R}^p} \sum_{i=1}^d v_i^\mathsf{T} X^\mathsf{T} X v_i = \max_{S \in \mathbb{R}^{p \times d}} S^\mathsf{T} X^\mathsf{T} X S = \max_{S \in \mathbb{R}^{p \times d}} \langle X^\mathsf{T} X, S S^\mathsf{T} \rangle$$

- Can tractably write as SDP
 - Extending d'Aspremont, El Ghaoui, Jordan & Lanckriet (2005)
 - Will return optimal solution if eigenvalues of X^TX separable

Benefits:

- Non-iterative, allows for constraining eigenvectors
- Avoids deflation, can use nongreedy approach
- Easily modeled using existing solvers

Drawbacks:

- Still have to get eigenvectors of D
- Less stable for eigenvectors with smaller eigenvalues

Convex relaxation

Recall, need to bound the following

$$\max_{t \in \mathbb{R}} \left| \frac{1}{\#P} \sum_{i \in P} \mathbf{1} \left(h(\Pi(x), t) = +1 \right) - \frac{1}{\#N} \sum_{i \in N} \mathbf{1} \left(h(\Pi(x), t) = +1 \right) \right|$$

- Difficult to control
- Proceed with assumption that h is a margin classifier
- Upper-bounding sign functions simplifies problem
 - Assume $-M \le u \le M$
 - $\mathbf{1}\{\text{sign}(u) = +1\} \le 1 + \frac{u}{M}$ $\mathbf{1}\{\text{sign}(u) = -1\} \le -\frac{u}{M}$

Initial Convex Relaxation

- Convex upper bounding procedure gives approximation
 - For some fixed linear classifier $h_{\beta}(x,t) = \text{sign}(\beta^T x + t)$

$$-\delta \le \beta^{\mathsf{T}} \left(\frac{1}{\#P} \sum_{i \in P} \Pi(x_i) - \frac{1}{\#N} \sum_{i \in N} \Pi(x_i) \right) \le \delta$$

$$\implies -\delta \le \beta^{\mathsf{T}} S^{\mathsf{T}} \left(\frac{1}{\#P} \sum_{i \in P} x_i - \frac{1}{\#N} \sum_{i \in N} x_i \right) \le \delta$$

• To bound for all h_{eta} , take the maximum

• Let
$$f = \frac{1}{\#P} e^T X_+ - \frac{1}{\#N} e^T X_-$$

$$\max_{\beta} \frac{\left| \beta^{\mathsf{T}} S^{\mathsf{T}} f \right|}{\|\beta\|_{2}} = \|S^{\mathsf{T}} f\|_{2} \implies f^{\mathsf{T}} S S^{\mathsf{T}} f \le \delta^{2}$$

Benefits:

- Convenient interpretation as mean-matching constraint over all basis vectors of range of $\boldsymbol{\Pi}$
- Easily included in SDP framework
- Also guaranteed to have rank d optimal solution

$$\max \langle X^{\mathsf{T}}X, D \rangle$$
s.t.
$$\operatorname{trace}(D) = d$$

$$\langle ff^{T}, D \rangle \leq \delta^{2}$$

$$I - D \succeq 0$$

$$D \succeq 0$$

Covariance Bound

- Can likely improve fairness by covariance matching
 - Pinsker's inequality → exact fairness for Gaussian data
 - Want $Var[\beta^T \Pi(x_i)|z_i = +1] \approx Var[\beta^T \Pi(x_i)|z_i = -1]$

$$Var \left[\beta^{\mathsf{T}} \Pi(x) \middle| z = +1 \right]$$

$$= \beta^{\mathsf{T}} \left(\mathbb{E} \left[\Pi(x) \Pi(x)^{\mathsf{T}} \middle| z = +1 \right] \right) \beta$$

$$= \beta^{\mathsf{T}} S^{\mathsf{T}} \Sigma_{+} S \beta$$

- Can generalize by bounding the following:
 - Choose $\varepsilon > \|\Sigma_+ \Sigma_-\|_2$

$$\max_{\|\beta\|_2 = 1} \beta^{\mathsf{T}} S S^{\mathsf{T}} (\Sigma_+ - \Sigma_-) S S^{\mathsf{T}} \beta$$

$$= \max \left\{ \|S S^{\mathsf{T}} (\Sigma_+ - \Sigma_- + \varepsilon I) S S^{\mathsf{T}} \|_2, \|S S^{\mathsf{T}} (\Sigma_- - \Sigma_+ + \varepsilon I) S S^{\mathsf{T}} \|_2 \right\} - \varepsilon$$

- Using Schur complement, can also represent as SDP constraint
- Let $M_i M_i^T = i(\Sigma_+ \Sigma_-) + \varepsilon I$

$$\max \langle X^T X, D \rangle - \mu t$$
s.t.
$$\operatorname{Tr}(D) = d$$

$$\langle f f^T, D \rangle \leq \delta^2$$

$$\begin{bmatrix} t I & D M_{+1} \\ M_{+1}^\mathsf{T} D & I \end{bmatrix} \succeq 0$$

$$\begin{bmatrix} t I & D M_{-1} \\ M_{-1}^\mathsf{T} D & I \end{bmatrix} \succeq 0$$

$$I - D \succeq 0$$

$$D \succeq 0$$

Extension to Kernel PCA

- Given transformation $\phi: \mathbb{R}^p \to \mathbb{R}^m$ and associated kernel $K: \mathbb{R}^p \times \mathbb{R}^p \to \mathbb{R}$ such that $K(x, x') = \phi(x)^T \phi(x)$, want principal components in transformed space
 - Recovered as $v = \sum_{i=1}^{n} a_i \phi(x_i)$ such that $n\lambda a = K(X,X)a$

- Fit easily into our framework:
 - $X^TX \to K(X,X)$
 - $f \to f_K = \frac{1}{\#P} K(X, X_+) e^{-\frac{1}{\#N}} K(X, X_-) e^{-\frac{1}{MN}} K(X, X_$
 - $\Sigma_{+} \Sigma_{-} \to \frac{1}{\#P} K(X, X_{+}) K(X_{+}, X)$ $\frac{1}{\#N} K(X, X_{-}) K(X_{-}, X)$

Dimensionality Reduction on Real Datasets

Table 4. Δ -fairness levels for both linear and Gaussian kernel SVM.

	Unconstrained			LINEAR CONSTRAINT			BOTH CONSTRAINTS		
Data Set	%VAR	LIN.	GAUS.	%VAR	LIN.	GAUS.	%VAR	LIN.	GAUS.
ADULT INCOME	11.39	0.53	0.54	9.20	0.18	0.35	3.59	0.07	0.16
BIODEG	30.88	0.54	0.60	23.69	0.27	0.53	3.73	0.18	0.46
E. Coli	61.30	0.92	0.91	50.62	0.63	0.91	23.61	0.26	0.41
ENERGY	84.24	0.13	0.24	51.74	0.10	0.29	25.63	0.12	0.21
GERMAN CREDIT	11.19	0.19	0.34	10.85	0.18	0.29	6.25	0.16	0.46
IMAGE	59.21	1.00	0.99	17.77	0.34	0.70	0.01	0.21	0.49
LETTER	43.50	0.14	0.27	33.53	0.10	0.28	3.28	0.08	0.22
MAGIC	58.09	0.39	0.41	49.22	0.13	0.31	4.77	0.09	0.18
PARKINSON'S	67.35	0.12	0.36	64.31	0.20	0.43	0.01	0.06	0.14
PIMA	48.66	0.35	0.39	44.33	0.20	0.44	28.75	0.16	0.36
RECIDIVISM	56.22	0.24	0.25	43.48	0.07	0.15	16.6	0.11	0.25
SKILLCRAFT	41.20	0.12	0.20	29.89	0.08	0.19	9.64	0.08	0.19
STATLOG	87.82	0.98	0.99	67.72	0.16	0.45	0.14	0.11	0.23
STEEL	45.21	0.21	0.37	27.40	0.14	0.44	0.01	0.14	0.28
TAIWAN CREDIT	45.45	0.09	0.14	28.70	0.06	0.16	3.03	0.06	0.15
WINE QUALITY	50.22	0.97	0.97	37.31	0.20	0.50	6.70	0.06	0.16

Classification Task on Real Datasets

Table 5: Comparison of accuracy and fairness on classification task using linear SVM. Results shown for linear SVM after dimensionality-reduction via PCA, FPCA with just the mean constraint and FPCA with both constraints, and are compared to the FSVM method of Olfat and Aswani (2017) (run with $\delta = 0, \mu = 0.1$ on non-dimensionality-reduced data) and the non-parametric method of Calmon et al.. Best fairness results are bolded.

	FSVM (NO PCA)		Unconstrained		FPCA - MEAN		FPCA - B OTH		CALMON ET AL.	
DATA SET	AUC	Δ	AUC	Δ	AUC	Δ	AUC	Δ	AUC	Δ
ADULT INCOME	0.86	0.13	0.66	0.17	0.69	0.07	0.57	0.08	0.51	0.23
BIODEG	0.85	0.12	0.82	0.20	0.81	0.13	0.79	0.11	0.60	0.14
Ecoli	0.74	0.17	0.84	0.50	0.69	0.23	0.72	0.29	0.63	0.30
ENERGY	0.55	0.09	0.51	0.09	0.56	0.08	0.55	0.07	0.54	0.13
GERMAN CREDIT	0.76	0.11	0.62	0.11	0.57	0.10	0.58	0.14	0.63	0.11
IMAGE SEG	0.99	0.19	0.99	0.16	0.99	0.19	0.98	0.15	0.79	0.20
LETTER REC	0.72	0.07	0.58	0.60	0.50	0.09	0.49	0.10	0.65	0.19
MAGIC	0.83	0.13	0.74	0.14	0.82	0.13	0.72	0.12	0.65	0.13
PIMA DIABETES	0.80	0.14	0.75	0.21	0.73	0.11	0.76	0.15	0.54	0.15
RECIDIVISM	0.54	0.08	0.69	0.24	0.54	0.06	0.52	0.07	0.55	0.08
SKILLCRAFT	0.82	0.06	0.85	0.10	0.82	0.05	0.80	0.05	0.62	0.07
STATLOG	0.99	0.31	1.00	0.33	0.99	0.33	0.85	0.18	0.67	0.16
STEEL	0.73	0.15	0.53	0.37	0.62	0.19	0.61	0.12	0.55	0.15
TAIWANESE CREDIT	0.73	0.07	0.60	0.11	0.60	0.09	0.64	0.07	0.75	0.07
WINE QUALITY	0.78	0.10	0.69	0.75	0.69	0.19	0.67	0.05	0.66	0.09

Sensitivity to Hyperparameters δ , μ

- Seek tradeoff between fairness, explanatory power
 - Data shown for Wine Quality dataset
 - 5-fold cross-validation
 - Each line shows $\delta \in \{0,0.1,0.3,0.5\}$
 - Red line only mean constraint, blue lines both
- Most gain at small values of δ , μ
 - But specific to the dataset
 - Closer to Gaussian data → less cost to fairness

Feature Engineering Application in Health Care

- Insurance rates often set based on activity
 - But only have access to broad outlines of activity
 - Legal restrictions on effective discrimination
 - Need specific features to target
- Use NHANES data on physical activity
 - Minute-by-minute intensity levels for 6000 women for a week
 - Projected onto 5 principal components, then clustered
 - Fairness implemented with regards to age (>=40 vs. <40)
 - 36.05% of all respondents 40 or older
- Less discrimination in activity between 8:00 a.m. 5:00 p.m.

	Unc.	Convex	Вотн
Cluster 1	43.18%	33.32%	35.61%
Cluster 2	36.11%	38.64%	32.94%
Cluster 3	8.71%	33.54%	37.28%

Thank you

https://arxiv.org/pdf/1802.03765.pdf

Clustering Task on Real Datasets

Table 4: Average squared distance from cluster center, as well as standard deviation of the proportion of each cluster that is of a certain protected class, for PCA, FPCA and the method of Calmon et al.. Best fairness results for each dataset are bolded.

	Unconstrained		FPCA - MEAN		FPCA - Вотн		CALMON ET AL.	
Data Set	SCORE	STD. DEV	SCORE	STD. DEV	SCORE	STD. DEV	SCORE	STD. DEV
ADULT INCOME	0.19	12.43	0.23	7.57	0.29	2.28	0.05	11.32
BIODEG	0.27	6.87	0.27	6.16	0.27	5.34	0.16	5.49
ECOLI	0.08	19.66	0.05	12.2	0.09	10.69	0.18	11.78
ENERGY	0.08	3.99	0.13	3.75	0.13	3.57	0.10	5.02
GERMAN CREDIT	0.25	6.4	0.25	4.82	0.28	3.88	0.03	4.16
IMAGE SEG	0.10	8.46	0.09	4.82	0.11	5.95	0.12	10.85
LETTER REC	0.27	16.33	0.25	3.38	0.23	3.28	0.37	8.65
MAGIC	0.20	9.26	0.31	5.15	0.35	5.42	0.18	8.77
PIMA DIABETES	0.24	9.09	0.27	6.36	0.26	5.96	0.28	5.72
RECIDIVISM	0.26	7.6	0.17	3.7	0.19	3.8	0.05	4.69
SKILLCRAFT	0.21	4.57	0.21	2.27	0.24	2.88	0.38	3.21
STATLOG	0.09	21.99	0.23	16.06	0.31	10.18	0.13	11.12
STEEL	0.16	18.49	0.19	9.85	0.24	4.22	0.22	17.97
TAIWANESE CREDIT	0.17	3.85	0.24	2.99	0.29	2.67	0.03	3.64
WINE QUALITY	0.22	22.41	0.29	11.77	0.35	2.11	0.34	11.70