

Faculté des Sciences Département de Mathématiques

Résumé: Suites numériques

Année: 2020-2021

Module: Analyse 1.

1. **D**ÉFINITION

Définition 1.1. Une **suite réelle** est une application de \mathbb{N} (ou d'une partie $\widetilde{\mathbb{N}}$ de \mathbb{N}) dans \mathbb{R} . Au lieu de la noter

$$u: \mathbb{N}(ou \ \widetilde{\mathbb{N}} \subset \mathbb{N}) \to \mathbb{R}$$

$$n \mapsto u(n)$$

on la note $u = (u_n)_{n \in \widetilde{\mathbb{N}}}$ où $u_n = u(n)$. Pour $k \in \widetilde{\mathbb{N}}$, le terme u_k est appelé **terme de rang** k de la suite numérique $(u_n)_n$. On dit encore que $(u_n)_n$ est la suite de **terme général** u_n .

Examples 1.

- (1) La suite de terme général $u_n = \frac{1}{n}$ est une suite réelle définie sur $\widetilde{\mathbb{N}} = \mathbb{N}^*$.
- (2) La suite $((-1)^n)_{n\in\mathbb{N}}$ est une suite réelle définie sur \mathbb{N} dont les termes de rang pair valent 1 et ceux de rang impair -1.
- (3) La suite de terme général $u_n = \sqrt{2n-5}$ est une suite réelle définie sur l'ensemble: $\widetilde{\mathbb{N}} = \{n \in \mathbb{N} \mid n \geq 3\}$.

2. **GÉNÉRALITÉS**

2.1. Suites monotones.

Définition 2.1.

- (1) On dit que la suite réelle $(u_n)_n$ est **croissante** si : $\forall n \in \mathbb{N}$ $u_{n+1} \ge u_n$.
- (2) On dit que la suite réelle $(u_n)_n$ est **strictement croissante** $si: \forall n \in \widetilde{\mathbb{N}} \ u_{n+1} > u_n$.
- (3) On dit que la suite réelle $(u_n)_n$ est **décroissante** $si: \forall n \in \widetilde{\mathbb{N}} \ u_{n+1} \leq u_n$.
- (4) On dit que la suite réelle $(u_n)_n$ est **strictement décroissante** $si: \forall n \in \mathbb{N}$ $u_{n+1} < u_n$.
- (5) On dit qu'une suite réelle est monotone si elle est croissante ou décroissante.
- (6) On dit qu'une suite réelle est **strictement monotone** si elle est strictement croissante ou strictement décroissante.

Remarques 1.

- (1) Une suite peut n'être ni croissante, ni décroissante. C'est le cas de la suite de terme général $(-1)^n$.
- (2) Il résulte de manière directe de la définition que si la suite $(u_n)_n$ est croissante (resp. décroissante) alors la suite de terme général u_n est une suite décroissante (resp. croissante).
- (3) Pour montrer qu'une suite réelle $(u_n)_n$ est croissante, on peut montrer que pour tout $n \in \mathbb{N}$ on a $u_{n+1} u_n \ge 0$. Pour montrer qu'une suite réelle $(u_n)_n$ est décroissante, on peut montrer que pour tout $n \in \mathbb{N}$ on a $u_{n+1} u_n \le 0$.
- (4) Si tous les termes de la suite $(u_n)_n$ sont strictement positifs, alors pour montrer que la suite est croissante on peut montrer que pour tout $n \in \widetilde{\mathbb{N}}$ on a $\frac{u_{n+1}}{u_n} \geq 1$. Pour montrer qu'elle est décroissante, on peut montrer que pour tout $n \in \widetilde{\mathbb{N}}$ on a $\frac{u_{n+1}}{u_n} \leq 1$.
- (5) Si tous les termes de la suite $(u_n)_n$ sont strictement négatifs, alors pour montrer que la suite est croissante on peut montrer que pour tout $n \in \widetilde{\mathbb{N}}$ on a $\frac{u_{n+1}}{u_n} \leq 1$. Pour montrer qu'elle est décroissante, on peut montrer que pour tout $n \in \widetilde{\mathbb{N}}$ on a $\frac{u_{n+1}}{u_n} \geq 1$.

(1) La suite $(u_n)_n$ de terme général $u_n = \sum_{k=1}^n \frac{1}{k^p}$ où $p \in \mathbb{N}^*$ est strictement croissante puisque pour tout $n \in \mathbb{N}^*$, on a

$$u_{n+1} - u_n = \sum_{k=1}^{n+1} \frac{1}{k^p} - \sum_{k=1}^n \frac{1}{k^p}$$
$$= \left(\sum_{k=1}^n \frac{1}{k^p} + \frac{1}{(n+1)^p}\right) - \sum_{k=1}^n \frac{1}{k^p}$$
$$= \frac{1}{(n+1)^p} > 0.$$

(2) Montrons que la suite $(u_n)_n$ de terme général $u_n = \exp\left(2n + \frac{1}{n}\right)$ est strictement croissante. Il s'agit d'une suite à termes strictement positifs. Pour tout $n \in \mathbb{N}^*$, on a

$$\frac{u_{n+1}}{u_n} = \frac{e^{\left(2(n+1) + \frac{1}{n+1}\right)}}{e^{\left(2n + \frac{1}{n}\right)}} = e^{2 - \frac{1}{n(n+1)}}$$

Comme $0 < \frac{1}{n(n+1)} < 1$ pour tout $n \in \mathbb{N}^*$, on a $1 < 2 - \frac{1}{n(n+1)} < 2$. La fonction exponentielle étant croissante, on obtient

$$\frac{u_{n+1}}{u_n} > e^1 > 1.$$

2.2. Suites bornées.

Définition 2.2.

- (1) Une suite réelle $(u_n)_n$ est dite **majorée** s'il existe un réel M tel que pour tout $n \in \mathbb{N}$ on ait $u_n \leq M$. Ce réel A est appelé un **majorant** de la suite $(u_n)_n$.
- (2) Une suite réelle $(u_n)_n$ est dite **minorée** s'il existe un réel m tel que pour tout $n \in \mathbb{N}$ on ait $u_n \geq m$. Ce réel B est appelé un **minorant** de la suite $(u_n)_n$.
- (3) Une suite réelle $(u_n)_n$ est dite **bornée** s'il existe un réel positif M tel que pour tout $n \in \widetilde{\mathbb{N}}$ on ait $|u_n| \leq M$.

Examples 3.

(1) La suite $(u_n)_n$ de terme général $u_n = \frac{1}{n+2}$, $n \in \mathbb{N}$ est majorée par $\frac{1}{2}$. En effet:

$$\begin{aligned} \forall \, n \in \mathbb{N}, \, n \geq 0 \Rightarrow n+2 \geq 2 \\ \Rightarrow \frac{1}{n+2} \leq \frac{1}{2}. \end{aligned}$$

Donc, $\exists M = \frac{1}{2}, \ \forall n \in \mathbb{N}, \ u_n \leq \frac{1}{2}$

- (2) La suite $(u_n)_n$ de terme général $u_n = n^2$ est minorée car $\forall n \in \mathbb{N}, n^2 \ge 0$ mais $(u_n)_n$ n'est pas majorée car $\forall A \in \mathbb{R}^+, \exists n \in \mathbb{N}, tel que n^2 \ge A$.
- (3) La suite $(u_n)_n$ de terme général $u_n = \sum_{k=0}^n \frac{1}{3^k}$, $n \in \mathbb{N}$ est bornée. En effet:

$$\forall n \in \mathbb{N}, \quad u_n = \sum_{k=0}^n \frac{1}{3^k}$$

$$= \underbrace{1 + \frac{1}{3} + \frac{1}{3^2} + \dots + \frac{1}{3^n}}_{la \text{ somme d'une suite géométrique}}$$

$$= \underbrace{\frac{3}{2} \left(1 - \left(\frac{1}{3}\right)^{n+1} \right)}_{<1} < \underbrace{\frac{3}{2}}_{} ((u_n)_n \text{ est majorée})..$$

D'autre part

$$\forall n \in \mathbb{N}, \ u_n > 0 \ ((u_n)_n \ est \ minor\'ee).$$

Donc

$$\forall n \in \mathbb{N}$$
, on a: $0 < u_n < \frac{3}{2}$. $((u_n)_n \text{ est born\'ee})$.

2.3. Suites stationnaires.

Définition 2.3. On appelle **suite stationnaire** une suite dont les termes sont constants à partir d'un certain rang. Soit encore :

$$\exists a \in \mathbb{R}, \ \exists n_0 \in \widetilde{\mathbb{N}}, \ \forall n \geq n_0 \quad u_n = a.$$

Example 2.1. La suite de terme général $u_n = \mathbb{E}\left(\frac{5}{n}\right)$ est une suite définie sur \mathbb{N}^* . On $a \ \forall n \ge 6$ $u_n = 0$ d'où $(u_n)_n : (5,2,1,1,1,0,0,\ldots)$

est une suite stationnaire.

2.4. Suites périodiques .

Définition 2.4. Une suite réelle est **périodique** s'il existe un entier $k \ge 1$ tel que, pour tout entier n, on ait $u_{n+k} = u_n$. Soit encore

$$\exists k \in \mathbb{N}^*, \ \forall n \in \widetilde{\mathbb{N}} \quad u_{n+k} = u_n$$

Example 2.2. La suite de terme général $u_n = \cos\left(\frac{n\pi}{3}\right)$ est périodique puisque $\forall n \in \mathbb{N}$ $u_{n+6} = u_n$. On a

$$(u_n)_{n\geq 0}: \left(1, \frac{1}{2}, -\frac{1}{2}, -1, -\frac{1}{2}, \frac{1}{2}, 1, \frac{1}{2}, -\frac{1}{2}, -1, -\frac{1}{2}, \frac{1}{2}, 1\cdots\right)$$

3. Suites Convergentes

Définition 3.1. On dit que la suite numérique $(u_n)_n$ converge vers le réel l (ou qu'elle tend vers $l \in \mathbb{R}$) si

$$\forall \varepsilon > 0, \ \exists n_0 \in \widetilde{\mathbb{N}}, \ \forall n \in \mathbb{N}, \ (n \geq n_0 \Rightarrow |u_n - l| < \varepsilon)$$

Le réel l est appelé **limite de la suite**.

Example 3.1. Soit la suite $(u_n)_n$ définie sur \mathbb{N}^* par $u_n = \frac{1}{n}$. Montrons que $(u_n)_n$ converge vers 0. Ou bien $\lim_{n \to +\infty} u_n = 0$.

Il nous faut démontrer $\forall \varepsilon > 0$, $\exists n_0 \in \mathbb{N}^*$, $\forall n \in \mathbb{N}$, $\left(n \ge n_0 \Rightarrow \left| \frac{1}{n} - 0 \right| < \varepsilon \right)$.

Soit $\varepsilon > 0$, cherchons n_0 tel que $n \ge n_0 \Rightarrow \left| \frac{1}{n} - 0 \right| < \varepsilon \Rightarrow n > \frac{1}{\varepsilon}$.

Il suffit donc de prendre $n_0 = E\left(\frac{1}{\varepsilon}\right) + 1$ ou tout autre nombre entier supérieur à celui-ci. Pour $\varepsilon = 10^{-2}$, on trouve: $n_0 = 101$.

3.1. **Propriétés des suites convergentes** . Les suites de nombres réels vérifient les propriétés données dans le théorème suivant :

Théorème 3.1.

- (1) Si la suite numérique $(u_n)_n$ converge, la limite de la suite est unique. On la note $\lim_{n\to+\infty}u_n=l$.
- (2) Soient $(u_n)_n$ une suite bornée et $(v_n)_n$ une suite convergente de limite nulle, alors $(u_nv_n)_n$ est convergente de limite nulle.

Example 3.2. Considérons la suite $(u_n)_n$ de terme général $u_n = \frac{\sin(n)}{n^2}$. Compte tenu du fait que la fonction sinus est bornée et la suite $\left(\frac{1}{n^2}\right)_n$ tendait vers 0, le théorème précédent permet de conclure que la suite $(u_n)_n$ converge vers 0.

(3) On a l'équivalence fort utile

$$\lim_{n \to +\infty} u_n = 0 \Leftrightarrow \lim_{n \to +\infty} |u_n| = 0$$

Examples 4. Considérons la suite $(u_n)_n$ de terme général $u_n = \frac{(-1)^n}{n}$. Compte tenu du fait que $\lim_{n \to +\infty} \left| \frac{(-1)^n}{n} \right| = 0$, le théorème précédent permet de conclure que la suite $(u_n)_n$ converge vers 0.

(4) Si la suite réelle $(u_n)_n$ converge vers le réel l alors la suite réelle de terme général $|u_n|$ converge vers le réel positif |l|.

Remarque 3.1. En général, on ne peut rien conclure sur la nature de la suite de terme général u_n à partir de la nature de la suite de terme général $|u_n|$ Considérons la suite de terme général $|u_n|$ converge vers 1 mais la suite $(u_n)_n$ diverge.

(5) Toute suite réelles convergente est bornée.

Remarque 3.2. La réciproque est fausse. Contre-exemple $u_n = (-1)^n$.

(6) Soient $(u_n)_n$, $(v_n)_n$ et $(w_n)_n$ trois suites telles que, à partir d'un certain rang, on ait $u_n \le v_n \le w_n$. Alors, si $(u_n)_n$ et $(w_n)_n$ sont convergentes de même limite l, la suite $(v_n)_n$ est convergente de limite l. On dit dans ce cas que la convergence et la limite de la suite $(v_n)_n$ sont obtenues par encadrement.

Example 3.3. Considérons la suite $(u_n)_n$ de terme général $u_n = \frac{E(n\alpha)}{n}$. Montrons que $\lim_{n \to +\infty} u_n = \alpha$. En effet, par définition de la fonction partie entière on a $n\alpha - 1 \le E(n\alpha) \le n\alpha$ alors:

$$\underbrace{\alpha - \frac{1}{n}}_{v_n} \le \frac{E(n\alpha)}{n} \le \underbrace{\alpha}_{w_n}$$

Comme les suites $\lim_{n\to+\infty}v_n=\lim_{n\to+\infty}\left(\alpha-\frac{1}{n}\right)=\alpha$ et $\lim_{n\to+\infty}w_n=\alpha$ sont convergentes de même limite α , alors la suite $(u_n)_n$ converge vers α par le théorème d'encadrement.

4. SUITES DIVERGENTES

Parmi les suites divergentes on distinguera celles dont la limite est infinie.

Définition 4.1. Soit $(u_n)_n$ une suite réelle. On dit que cette suite tend vers $+\infty$ (resp. $-\infty$) si l'on a:

$$\lim_{n \to +\infty} u_n = +\infty \Leftrightarrow \forall A > 0, \ \exists n_0 \in \mathbb{N}, \ \forall n \ge n_0, \ u_n > A$$

$$\lim_{n \to +\infty} u_n = -\infty \Leftrightarrow \forall A > 0, \ \exists n_0 \in \mathbb{N}, \ \forall n \ge n_0, \ u_n < -A$$

Example 4.1. Montrons que:

$$\lim_{n \to +\infty} n^2 = +\infty.$$

Soit A > 0, on a:

$$u_n > A \Leftrightarrow n^2 > A \Leftrightarrow n > \sqrt{A}$$

il suffit de prendre $n_0 = E(\sqrt{A}) + 1$, alors $\forall n \ge n_0 = E(\sqrt{A}) + 1$: $u_n = n^2 > A$.

Théorème 4.1 (de comparaison). Soient $(u_n)_n$ et $(v_n)_n$ deux suites réelles telles que, à partir d'un certain rang, on ait $u_n \le v_n$.

- (1) Si la suite $(u_n)_n$ tend vers $+\infty$ alors la suite $(v_n)_n$ tend vers $+\infty$.
- (2) Si la suite $(v_n)_n$ tend vers $-\infty$ alors la suite $(u_n)_n$ tend vers $-\infty$.

Example 4.2. Considérons la suite $(u_n)_n$ de terme général $u_n = n + \cos(n)$. Montrons que $\lim_{n \to +\infty} u_n = +\infty$. En effet, on $a: n-1 \le u_n \le n+1$, alors pour $n \ge 1$, on obtient

$$v_n = n - 1 \le u_n$$

Comme la suite $(v_n)_n$ tend vers $+\infty$ alors la suite $(u_n)_n$ tend vers $+\infty$.

5. SUITES ADJACENTES

Définition 5.1 (Suites adjacentes). Deux suites réelles $(u_n)_n$ et $(v_n)_n$ sont dites **adjacentes** si les deux conditions suivantes sont satisfaites :

- (1) l'une des deux suites est croissante et l'autre est décroissante;
- (2) $\lim_{n \to +\infty} (u_n v_n) = 0.$

Example 5.1. La suite $(u_n)_{n\geq 1}$ de terme général $u_n = \sum_{k=1}^n \frac{1}{k^2}$ est croissante puisque pour tout $n\geq 1$,

$$u_{n+1} - u_n = \sum_{k=1}^{n+1} \frac{1}{k^2} - \sum_{k=1}^{n} \frac{1}{k^2} = \frac{1}{(n+1)^2} > 0$$

La suite $(v_n)_n$ de terme général $v_n = u_n + \frac{1}{n}$ est décroissante puisque pour tout $n \ge 1$

$$v_{n+1} - v_n = \left(u_{n+1} + \frac{1}{n+1}\right) - \left(u_n + \frac{1}{n}\right)$$
$$= \frac{1}{(n+1)^2} + \frac{1}{n+1} - \frac{1}{n}$$
$$= -\frac{1}{n(n+1)^2} < 0.$$

Par ailleurs $\lim_{n \to +\infty} (u_n - v_n) = \lim_{n \to +\infty} \frac{1}{n} = 0$. Les suites $(u_n)_n$ et $(v_n)_n$ sont donc adjacentes.

Théorème 5.1. Si deux suites réelles $(u_n)_n$ et $(v_n)_n$ sont adjacentes alors elles **convergent** et ont **même limite**.

6. **SUITES EXTRAITES (SOUS SUITES)**

Définition 6.1 (Suite extraite). La suite numérique $(v_n)_n$ est une **suite extraite** ou une **sous-suite** de la suite $(u_n)_n$ s'il existe une application h de $\widetilde{\mathbb{N}}$ dans \mathbb{N} strictement croissante, telle que

$$\forall n \in \widetilde{\mathbb{N}} \quad \nu_n = u_{h(n)}.$$

Examples 5.

- (1) L'application $h: n \in \mathbb{N} \mapsto 2n$ est strictement croissante à valeurs dans \mathbb{N} . La suite de terme général $v_n = u_{2n}$ est appelée suite des termes pairs extraite de la suite $(u_n)_n$.
- (2) L'application $h: n \in \mathbb{N} \mapsto 2n+1$ est strictement croissante à valeurs dans \mathbb{N} . La suite de terme général $w_n = u_{2n+1}$ est appelée suite des termes impairs extraite de la suite $(u_n)_n$.
- (3) La suite de terme général $v_n = u_{|n^2-3n|}$ n'est pas une suite extraite de la suite $(u_n)_n$ car l'application $h: n \in \mathbb{N} \mapsto |n^2-3n|$ n'est pas strictement croissante.
- (4) L'application $h: n \in \mathbb{N} \mapsto n^3$ est strictement croissante à valeurs dans \mathbb{N} . La suite de terme général $v_n = u_{n^3}$ est une suite extraite de la suite $(u_n)_n$.
- (5) La suite de terme général $v_n = u_{\cos(\frac{n\pi}{3})}$ n'est pas une suite extraite de la suite $(u_n)_n$ puisque $h: n \in \mathbb{N}$ $\mapsto \cos(\frac{n\pi}{3})$ n'est pas à valeurs dans \mathbb{N} .

Théorème 6.1. Si la suite réelles $(u_n)_n$ converge vers l alors toute sous-suite de la suite $(u_n)_n$ converge également vers l.

Example 6.1. La suite de terme général $w_n = \frac{1}{n^3}$ converge vers 0 car il s'agit d'une suite extraite de la suite de terme général $u_n = \frac{1}{n}$ dont on a montré la convergence vers 0.

Remarque 6.1. En prenant la contraposée de l'assertion énoncée dans la proposition précédente on obtient une condition suffisante pour qu'une suite n'admette pas de limite dans \mathbb{R} : il suffit que deux suites extraites aient deux limites distinctes

Example 6.2. La suite de terme général $u_n = (-1)^n + \frac{1}{n}$ diverge car la suite des termes pairs converge vers 1 et la suite des termes impairs converge vers -1.

Théorème 6.2 (Théorème de recollement). *Une condition nécessaire et suffisante pour que la suite numérique* $(u_n)_n$ converge est que la sous-suite des termes d'indice pair et la sous-suite des termes d'indice impair admettent la même limite. Dans ce cas, cette limite commune est la limite de la suite $(u_n)_n$.

Example 6.3. La suite de terme général $u_n = 1 + \frac{(-1)^n}{n+1}$ converge car la suite des termes pairs converge vers 1 et la suite des termes impairs converge vers 1.

7. THÉORÈMES DE CONVERGENCES MONOTONES

Théorème 7.1. Soit $(u_n)_n$ une suite réelle.

- (1) Si $(u_n)_n$ est **croissante**, alors $(u_n)_n$ est convergente si et seulement si elle est **majorée**
- (2) Si $(u_n)_n$ est **décroissante**, alors $(u_n)_n$ est convergente si et seulement si elle est **minorée**.
- (3) $Si(u_n)_n$ est **croissante** et non majorée alors $\lim_{n\to+\infty} u_n = +\infty$.
- (4) $Si(u_n)_n$ est **décroissante** et non minorée alors $\lim_{n \to +\infty} u_n = -\infty$.

Example 7.1. Considérons la suite $(u_n)_n$ définie sur \mathbb{N}^* par $u_n = \sum_{k=0}^n \frac{1}{k+n} = \frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{2n}$.

$$u_{n+1} - u_n = \left(\frac{1}{n+1} + \frac{1}{n+1} + \dots + \frac{1}{2n+2}\right) - \left(\frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{2n}\right)$$
$$= \frac{1}{2n+1} + \frac{1}{2n+2} - \frac{1}{n} = -\frac{(3n+1)}{n(2n+1)(2n+2)} < 0$$

Donc la suite $(u_n)_n$ est strictement décroissante. Cette suite étant minoré par $0 \ (\forall n > 0, u_n > 0)$, on en déduit qu'elle est convergente.

Théorème 7.2. Soit $(u_n)_n$ une suite réelle.

- (1) Toute suite croissante et majorée sa limite est sa borne sup.
- (2) Toute suite décroissante minorée sa limite est sa borne inf.

Example 7.2. *Voir Exercice1*.

8. SUITES DE CAUCHY

Définition 8.1. Soit $(u_n)_n$ une suite de nombres réels. On dit que $(u_n)_n$ est une suite de Cauchy si l'on a :

$$\forall \varepsilon > 0, \exists n_0 \in \widetilde{\mathbb{N}}, \forall p, q \in \mathbb{N}, (p \ge n_0 \text{ et } q \ge n_0) \Rightarrow |u_p - u_q| < \varepsilon$$

Ou, de façon équivalente :

$$\forall \varepsilon > 0, \exists n_0 \in \widetilde{\mathbb{N}}, \forall n \in \mathbb{N}, \ \forall m \in \mathbb{N} \quad (n \ge n_0 \Rightarrow |u_{n+m} - u_n| < \varepsilon$$

i.e. (u_n) est une suite de Cauchy si pour tout $\varepsilon > 0$ les distances entre termes $|u_{n+m} - u_n|$ sont inférieures à ε à partir d'un certain rang.

Example 8.1. Montrons que la suite $(u_n)_n$ de terme général $u_n = \frac{1}{n^2}$ est une suite de Cauchy. Pour $p, q \in \mathbb{N}$ avec $p \ge q$, on a

$$|u_p - u_q| = \left| \frac{1}{p^2} - \frac{1}{q^2} \right| = \left| \frac{p^2 - q^2}{p^2 q^2} \right| = \frac{(p+q)(p-q)}{p^2 q^2}$$

comme $0 \le p - q \le p$ et $0 \le p + q \le 2p$ on a $|u_p - u_q| \le \frac{2}{q^2}$. Soit ε un réel strictement positif et $n_0 = 1$

 $E\left(\sqrt{\frac{2}{\varepsilon}}\right) + 1. Quels \ que \ soient \ les \ entiers \ p \ et \ q \ v\'erifiant \ p \ge q \ge n_0 \ on \ a, \ \frac{2}{q^2} < \varepsilon \ et \ par \ cons\'equent \ \left|u_p - u_q\right| < \varepsilon.$

D'après la définition, la suite de terme général $u_n = \frac{1}{n^2}$ est une suite de Cauchy.

Théorème 8.1.

- (1) Toute suite de Cauchy est bornée.
- (2) Toute suite réelle convergente est une suite de Cauchy.
- (3) Toute suite de Cauchy est convergente. On dit aussi que \mathbb{R} est complet

9. Suites récurrentes réelles

Soit I un sous-ensemble de \mathbb{R} et f une application de I dans I, on peut définir une suite $(u_n)_n$ par:

- (1) la donnée de son terme initial u_0 où $u_0 \in I$;
- (2) la donnée d'une relation de récurrence : $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$;

On dit alors que la suite $(u_n)_n$ est définie par récurrence. Nous préoccupations majeures sont:

- (1) Une telle suite est-elle convergente ou divergente?
- (2) Si elle converge, peut on trouver sa limite?

La première chose à faire est de vérifier que cette suite est bien définie. La condition $f(I) \subset I$ assure que cette suite est bien définie.

Example 9.1. Soit la suite définie par $u_0 = 1$ et $u_{n+1} = \sqrt{1 + u_n^2}$ pour tout $n \in \mathbb{N}$. La fonction f correspondante est $x \mapsto \sqrt{1 + x^2}$, son domaine de définition est \mathbb{R} et la suite est donc bien définie. De plus tous les termes u_n sont strictement positifs, dans ce cas $f : \mathbb{R}_+ \to \mathbb{R}_+$; $u_0 = 1 \in \mathbb{R}_+$ et $f(\mathbb{R}_+) \subset \mathbb{R}_+$.

Example 9.2. Soit la suite définie par $u_0 > 0$ et $\forall n \in \mathbb{N}$, $u_{n+1} = 2 + \frac{1}{u_n^2}$. La suite $(u_n)_n$ est bien définie et à valeurs ≥ 2 à partir du rang 1. On ne restreint pas donc la généralité en supposant $u_0 \geq 2$ et on peut alors écrire la relation de récurrence sous la forme $u_{n+1} = f(u_n)$ où

$$f: [2, +\infty[\to [2, +\infty[$$

$$x \mapsto f(x) = 2 + \frac{1}{x^2}]$$

Théorème 9.1. Si une suite $(u_n)_n$ définie par la relation de récurrence $u_{n+1} = f(u_n)$ converge vers l situé dans l et si f est **continue** au point l, alors nécessairement l vérifie l'égalité

$$l = f(l)$$

Exercice 1. On considère la suite $(u_n)_n$ définie par:

$$\begin{cases} u_0 > 0, \\ u_{n+1} = \frac{u_n}{(u_n)^2 + 1}, & n \in \mathbb{N}. \end{cases}$$

- (1) *Montrer que*: $\forall n \in \mathbb{N}, u_n > 0$.
- (2) Montrer que $(u_n)_n$ est strictement décroissante.
- (3) Déduire qu'elle est convergente et calculer sa limite.
- (4) Déterminer sup, in f, max et min s'ils existent de l'ensemble

$$E = \{u_n, n \in \mathbb{N}\}.$$

Solution 9.1. On a

- (1) $\forall n \in \mathbb{N}, u_n > 0$ par récurrence
 - Pour n = 0, $u_0 > 0$ par hypothèse.
 - On suppose $u_n > 0$ et on montre $u_{n+1} > 0$ pour tout n > 0. On a:

$$\begin{cases} u_n > 0 \\ (u_n)^2 + 1 > 0 \end{cases} \Rightarrow \frac{u_n}{(u_n)^2 + 1} > 0$$
$$\Rightarrow u_{n+1} > 0.$$

D'où: $\forall n \in \mathbb{N}, u_n > 0.$

(2)
$$u_{n+1} - u_n = \frac{u_n}{(u_n)^2 + 1} - u_n = \frac{-u_n^3}{(u_n)^2 + 1}$$
.

On a, $u_n > 0$, alors $\frac{-u_n^3}{(u_n)^2 + 1} < 0$. D'où: $(u_n)_n$ est strictement décroissante

(3) La suite $(u_n)_n$ est strictement décroissante et minorée par 0 alors $(u_n)_n$ converge vers l. D'autre part, on a $u_{n+1} = f(u_n)$, $f: x \mapsto \frac{x}{x^2+1}$ et continue, alors l vérifie la relation:

$$f(l) = l \Rightarrow \frac{l}{l^2 + 1} = l \Rightarrow l^3 + l - l = 0 \Rightarrow l = 0.$$

- (4) La suite (u_n) est strictement décroissante et convergente $(u_n < \cdots < u_1 < u_0)$ donc:
 - $infE = \lim_{n \to +\infty} u_n = 0$, $comme \ u_n > 0$, $alors \ 0 \notin E$, $donc \ minE \ n'existe \ pas$.
 - $maxE = u_0$, $alors supE = u_0$.