

Pre-Algebra Workbook

Radicals

RADICALS

■ 1. Radicals are the opposite of ______.

 \blacksquare 2. $\sqrt[4]{x}$ can also be written as ______.

■ 3. Find the value of $\sqrt{36}$.

 \blacksquare 4. $x^{\frac{1}{3}}$ can also be written as ______.

■ 5. Find the value of $\sqrt{300}$.

■ 6. Find the value of $\sqrt{5,000}$.

ADDING AND SUBTRACTING RADICALS

- 1. Find the value of $2\sqrt{3} + 5\sqrt{3}$.
- **2.** Find the value of $\sqrt{32} \sqrt{2}$.
- 3. Find the value of $\sqrt{3} + \sqrt{12}$.
- 4. Find the value of $\sqrt{16} + \sqrt{25}$.
- 5. Find the value of $4\sqrt{3} + 2\sqrt{2} 2\sqrt{3} \sqrt{2}$.
- 6. Find the value of $3\sqrt{4} 2\sqrt{9}$.

MULTIPLYING RADICALS

- 1. Find the value of $\sqrt{20} \cdot \sqrt{4}$.
- **2.** Find the value of $\sqrt{13} \cdot \sqrt{7}$.
- 3. Find the value of $8\sqrt{3} \cdot \sqrt{12}$.
- 4. Find the value of $15\sqrt{2} \cdot \sqrt{16}$.
- 5. Find the value of $2\sqrt{3} \cdot 5\sqrt{5}$.
- 6. Find the value of $\sqrt[3]{12} \cdot \sqrt[3]{4}$.

DIVIDING RADICALS

■ 1. Simplify the expression.

$$\sqrt{\frac{36}{6}}$$

■ 2. Simplify the expression.

$$\sqrt{\frac{45}{5}}$$

■ 3. Simplify the expression.

$$\frac{\sqrt{20x^5y^7}}{\sqrt{5x^3y}}$$

■ 4. Simplify the expression.

$$\frac{\sqrt[3]{-32}}{\sqrt[3]{2}}$$

■ 5. Simplify the expression.

$$\frac{\sqrt{5}}{\sqrt{15}}$$

■ 6. Simplify the expression.

$$\frac{\sqrt{8}}{5\sqrt{2}}$$

RADICAL EXPRESSIONS

- 1. Find the value of $\sqrt{80} \sqrt{20}$.
- **2.** Find the value of $5\sqrt{24} \cdot \sqrt{15}$.
- 3. The square root of a number multiplied by the square root of the same number is equal to ______.
- 4. Find the value of $\sqrt{2} + \sqrt{32} \sqrt{50}$.
- 5. To be able to add or subtract radicals, the roots must be ______ when they are simplified.
- 6. Roberta is trying to simplify the following radical expression,

$$\sqrt{4} + \sqrt{20} - 2\sqrt{5} + \sqrt{25}$$

and her work is shown below.

Step 1:
$$2 + \sqrt{20} - 2\sqrt{5} + 5$$

Step 2:
$$2 + \sqrt{4 \cdot 5} - 2\sqrt{5} + 5$$

Step 3:
$$2 + 4\sqrt{5} - 2\sqrt{5} + 5$$

Step 4:
$$7 + 2\sqrt{5}$$

In which step did she make a mistake? What should she have done differently, and what is the correct answer?

