Orientation

창원대학교 신소재공학부 정영웅

yjeong@changwon.ac.kr https://youngung.github.io https://github.com/youngung

공돌이와 정량화

- □정성적, 정량적
- □정량화(quantification)란?
- □왜 공돌이는 정량화를 좋아하나?
- □얼마나 정확한 정량화를 해야하나?
- □그렇다면, 왜 수학이 공학에서 중요한 역할을 할까?
 - >물리적 현상을 수학적 모형으로 표현
 - ▶복잡한 형상, 조건을 수학적 모형으로 통해서 재현
 - >수학 모형을 사용해 물리현상, 물리량의 정량적인 값을 예측
- □왜 예측이 필요하나?
 - 누돈
 - 녿돈
 - 논

What you expect from this lecture

- Physical entities we are dealing with
 - > Momentum
 - Viscosity (Newtonian fluid)
 - > Energy
 - Heat conduction (Fourier's law)
 - > Mass
 - Molecular diffusion (Fick's law)
- Physical phenomena we are interested in:
 - > Flow of fluids; flow of heat, and flow of mass.
- Physical properties we are interested in:
 - ➤ Viscosity
 - ➤ Thermal conductivity
 - > Diffusion coefficient
- Disciplines
 - > Fluid statics (and dynamics)
 - Heat transport
 - ➤ Mass diffusion
- □Why?
 - The above three topics are described in the same (or similar) mathematical methodology.

Conservation principle

- □Input + Generation = Output + Depletion + Accumulation
- □If at steady state (시간에 따른 변화가 없는 <u>정상상태</u>),
 - >Accumulation = zero

Mathematical frameworks

- Mathematical prerequisites
 - **→** Scalars
 - Vectors (and possibly tensors)
 - Coordinate systems (Rectangular, cylindrical, spherical)
 - ➤ Gradient of a scalar field
 - Dot products of two vectors
 - ➤ Directional derivatives

Scalar Gradient; Vector Gradient

Temperature gradient: $\left(\frac{\partial T}{\partial x}, \frac{\partial T}{\partial y}\right)$

Temperature gradient itself is a field variable 온도 구배 자체가 공간(여기서는 x,y space)에 따라 다른 값을 가질 수 있다.

수학적 모델링

Step No. in that layer

1 1
2 1+4
3 1+4+8
4 1+4+8+12
5 1+4+8+12+16 ...

1*10+(4*1)*(10-1)+4*2*(10-2)+4*3*(10-3) +4*4*(10-4)

References

- □재료공학의 이동현상 개론 (D. Gaskell)
- ☐ Transport Phenomena (Bird, Stewart, Lightfoot)
- □Advanced transport phenomena (P. A. Ramachandran)

