Automatentheorie Reguläre Grammatiken

Prof. Dr. Franz-Karl Schmatzer schmatzf@dhbw-loerrach.de

- C.Wagenknecht, M.Hielscher; Formale Sprachen, abstrakte Automaten und Compiler; 2.Aufl. Springer Vieweg 2014;
- A.V.Aho, M.S.Lam,R.Savi,J.D.Ullman, Compiler Prinzipien,Techniken und Werkzeuge. 2. Aufl., Pearson Studium, 2008.
- Güting, Erwin; Übersetzerbau –Techniken, Werkzeuge, Anwendungen, Springer Verlag 1999
- Sipser M.; Introduction to the Theory of Computation; 2.Aufl.; Thomson Course Technology 2006
- Hopecroft, T. et al; Introduction to Automata Theory, Language, and Computation; 3. Aufl. Pearson Verlag 2006

- Einführung in Grammatiken
- Rechts und linkslineare Grammatiken
- Einteilung der Grammatiken
- Typ-3 Grammatiken
- Aufbau von Typ-3 Grammatiken

Einführung

- Ein Satz einer gesprochen Sprache ist ein recht komplexes Gebilde, zeigt aber bei genauerem Hinsehen regelmäßige Strukturen auf, die die Bildung von Wörtern nach Regeln erlaubt.
- Im Deutschen z.B. findet man folgende Struktur (nur ein Ausschnitt):
 - Ein Satz <S> kann aus einer Nominalphase <NP> und einer Verbalphase <VP> zusammengesetzt sein.
 - In der Nominalphase herrscht das Nomen <N> vor. Ein Nomen kann ein Determinator <D> haben oder durch Konjunktionen <K> verbunden sein.
 - In der der Verbalphase <VP> herrscht das Verb <V> vor. Das Verb kann wieder mit einer Nominalphase oder mit einer Präpositionalphase <PP> verbunden sein.
 - Die Präpositionalphase <PP> setzt sich aus einer Präposition <P> und einer Nominalphase zusammen.

Einführung Regeln

Ein möglicher Ausschnitt aus der deutschen Grammatik

```
<S>
                    <NP><VP>
                    < N > | < D > < N > | < NP > < K > < NP >
<NP>
                    <V> <NP> | <VP<PP>
<VP>
<P/P>
                    <P> <NP>
<K>
                    und
<N>
                    Gott | Himmel | Erde | Anfang
<V>
                    schuf
<D>
                    die | den
<P>
                    am
```

- Man findet hier Variablen (<S>, <D>, usw,.) und Terminale (am, Gott,) mit denen Sätze tatsächlich gebildet werden.
- Ein möglicher Satz wird gebildet indem man bei dem Startsymbol <S> beginnend die einzelnen Regeln solange anwendet bis alle Variablen durch Terminale ersetzt werden.

Einführung Ableitung

- Eine Ableitung des Satzes:
- Gott schuf den Himmel und die Erde am Anfang

Aus @ Judit Macheiner, Das grammatische Varieté; Eichborn Verlag

Formale Definition

Grammatiken werden formal definieren als:

- Eine Grammatik G besteht aus 4 Komponenten (N, Σ , P,S) mit:
 - N eine endliche Menge von Variablen (Nichtterminale).
 - $ightharpoonup \Sigma$ ist ein Alphabet aus Terminalen mit N $\cap \Sigma = \emptyset$.
 - \rightarrow Statt Σ schreibt man oft T (Terminale), d.h. (N, T, P,S)
 - P ist eine Menge von Produktionen (Regeln).
 - Eine Produktion ist eine Element $P=(L,R) \in (N \cup \Sigma)^* \setminus (N \cup \Sigma)^* \times (N \cup \Sigma)^*$.
 - ▶ Mit $I \in L$ und $r \in R$ schreibt man statt (I, r) besser: $I \rightarrow_P r$ bzw. $I \rightarrow r$
 - S ∈ N ist eine Startvariable

Definition Ableitung, Sprache Äquivalenz

Die Ableitung eines Wortes:

Sei G = (N, Σ , P,S) eine Grammatik, und seine v,w \in (N \cup Σ)*, so gilt v \Rightarrow w (d.h v geht in w über), falls gilt:

 $\exists x,y \in (\mathbb{N} \cup \Sigma)^*$ und eine Produktion $\mathbb{P} \to \mathbb{Q}$ so dass $v=x\mathbb{P}y$ und $w=x\mathbb{Q}y$ ist.

Gibt es eine Folge von Produktionen, die eine Ableitung v nach w implizieren schreibt man v ⇒* w

Die Sprache L(G)

Die von einer Grammatik G erzeugte Sprache L(G) ist die Menge aller terminalen Wörter, die durch G vom Startsymbol aus erzeugt werden können.

$$L(G) = \{ w \in \Sigma^* | S \Rightarrow^*_G w \}$$

Äquivalenz $L(G_1) = L(G_2)$

Zwei Grammatiken G_1 , G_2 heißen äquivalent $\Leftrightarrow L(G_1) = L(G_2)$

Beispiel einer Grammatik Wortableitung

Grammatik G = (N,T,P,s) mit $N = \{S, A, B\}$ $T = \{a,b,c\}$ $P = \{S \rightarrow aS \mid cS \mid bA, A \rightarrow bA \mid cB, B \rightarrow Bc \mid c\}$ $s = \{S, A, B\}$

Wortableitung

- w= aabbbcc
- S=>aS=>aaS =>aabA =>aabbA =>aabbbA=>aabbbcB =>aabbbcc (fertig)
- w= ccbba
- S=>cS=>ccS =>ccbA =>ccbbA ? Wort nicht ableitbar

Einteilung I

- Die Grammatiken mit den allgemeinen Produktionen P sind sehr komplex und schwer zu durchschauen.
- Daher teilt man die Grammatiken weiter ein, indem man die Möglichkeiten für die Produktionen einschränkt. (Chomsky-Hierarchie)
- Eine Grammatik G= (N, Σ , P,S) mit P = (L,R) heißt
 - Régulär

$$\Leftrightarrow \forall L \rightarrow R \text{ gilt: } L \in N$$

und
$$R \in (\{\epsilon\} \cup \Sigma \cup \Sigma N)$$

oder
$$R \in (\{\epsilon\} \cup \Sigma \cup N \Sigma)$$

- Rechtslinear $\Leftrightarrow \forall L \to R \text{ gilt: } L \in N \text{ und } R \in (\{\xi\} \cup \Sigma \cup \Sigma N)$
- Linkslinear $\Leftrightarrow \forall L \rightarrow R \text{ gilt: } L \in N \text{ und } R \in (\{\mathcal{E}\} \cup \Sigma \cup N \Sigma)$

Einteilung II

- Eine Grammatik G= (N, Σ , P,S) mit P = (L,R) heißt
 - ▶ kontextfrei $\Leftrightarrow \forall L \rightarrow R \text{ gilt: } L \in N \text{ und } R \in (\Sigma \cup N)^*$
 - ► kontextsensitiv $\Leftrightarrow \forall L \to R \text{ gilt: } L \in (N \cup \Sigma)^* \text{ N } (N \cup \Sigma)^*$

und
$$R \in (\Sigma \cup N)^*$$

- Entweder \exists u, v, w ∈ $(N \cup \Sigma)^*$ und \exists A ∈ N, so dass L = uAv und R = uwv und $|w| \ge 1$ oder die Produktion hat die Form $S \to ε$
- S kommt nicht in R (das heißt auf der rechten Seite) vor.
- beschränkt

$$\Leftrightarrow \forall L \rightarrow R \text{ gilt}$$
:

- Entweder $|L| \le |R|$ oder die Produktion hat die Form $S \to ε$.
- S kommt nicht in R (das heißt auf der rechten Seite) vor.

Formale Einteilung

Sprachklass e	definiert	Name der Klasse
L ₃	{L(G) G ist regulär}	Regulär, Typ 3
L ₂	{L(G) G ist kontextfrei}	Kontextfrei, Typ 2
/ L ₁	{L(G) G ist kontextsensitiv}	Kontextsensitiv, Typ 1
	{L(G) G ist beschränkt}	
L_0	{L(G) G ist eine Grammatik}	Rekursiv aufzählbar, Typ 0
L	{L ⊆ T* T ist ein Alphabet}	Sprache

Chomsky-Hierarchie

Es gilt:
$$L_3 \subset L_2 \subset L_1 \subset L_0 \subset L$$

d.h. jeder der Sprachen L_i ist eine echte Obermenge zu der nächsten Sprache L_{i+1}

Beispiele

- \blacktriangleright L(A) = {aⁿ | n > 0} (Typ3 Grammatik)
 - Sie wird erzeugt von der Grammatik $G = \{\{S\}, \{a\}, \{S \rightarrow aS \mid a\}, S\}$
- \blacktriangleright L(A) = {aⁿbⁿ | n > 0} (Typ2 Grammatik)
 - Sie wird erzeugt von der Grammatik $G = \{\{S\}, \{a,b\}, \{S \rightarrow aSb \mid ab\}, S\}$
- \blacktriangleright L(A) = {aⁿbⁿcⁿ | n > 0} (Typ1 Grammatik)
 - Sie wird erzeugt von der Grammatik G = {{S, A, B, C}, {a, b, c}, P, S} mit P = ${S \rightarrow aSBC \mid aBC}$,

```
CB \rightarrow BC
```

$$aB \rightarrow ab$$
,

$$bB \rightarrow bb$$
,

$$bC \rightarrow bc$$

Aufgabe Grammatiktypen

Von welchem Typ sind folgende Grammatiken G=(N, {0,1}, P, S). Geben Sie dazu auch Worte der Sprache an und überprüfen anhand einer Ableitung, ob $w \in L(G)$ ist

- 1. $N=\{S,A\}$, $P=\{S\to 0A, A\to 0A \mid 1\}$ w=001
- 2. $N=\{S,B\}$, $P=\{S\rightarrow B1, B\rightarrow B0 \mid 0\}$ w=001
- 3. $N=\{S,A,B,C\}$, $P=\{S\rightarrow 0S \mid 1S \mid 0A, A\rightarrow 1B, B\rightarrow 0C, C\rightarrow \varepsilon\}$ w=11010
- 4. $N=\{S,A\}$, $P=\{S\to 0A, A\to 0A1 \mid 1\}$ w=000111
- 5. N={S,A,B}, P={S \rightarrow 0A0 | 1B1, A \rightarrow 1A0 | ϵ , B \rightarrow 0B1 | ϵ } w=011000
- 6. N={S,A,B}, P={S \rightarrow 0AB | 1BA,0A \rightarrow 01B0 | ϵ ,1B \rightarrow 00A1 | 1,0B \rightarrow 1} w=00101

Wort-Ableitung

- Leiten Sie das Wort w = a⁴ für vorherige Typ3 Grammatik ab.
- ▶ Leiten Sie das Wort $w = a^4 b^4$ für vorherige Typ2 Grammatik ab.
- ► Leiten Sie das Wort $w = a^4 b^4 c^4$ für vorherige Typ1 Grammatik ab.

Einführung

- Man unterscheidet
 - rechtslineare und
 - linkslineare Grammatiken
- Beispiel: G = ({S, A, B}, {0, 1}, P, S) mit

$$P = \{ S \rightarrow OS, S \rightarrow 1S, S \rightarrow OA, A \rightarrow OB, A \rightarrow 1B, B \rightarrow 0, B \rightarrow 1 \}$$

- → Wie werden nun Wörter gebildet?
 - ► Anwenden der Regeln $uA \Rightarrow uw$ genau dann, wenn $A \rightarrow w \in P$
 - Ableiten solange möglich, bis nur noch Terminalsymbole übrig sind.
 - Alle möglichen Ableitungen (reflexive Hülle) definiert die Sprache L(G) $L(G) = \{ w \in \Sigma^* \mid S \Rightarrow^* w \}$
- Zwei Grammatiken G_1 und G_2 heißen äquivalent wenn $L(G_1) = L(G_2)$

formale Definition

- Eine rechtslineare Grammatik $G = (N, \Sigma, P, S)$ wird definiert als
 - \blacksquare N eine Menge von Nicht-Terminalsymbolen, die zu Σ disjunkt ist.
 - $ightharpoonup \Sigma$ eine Menge von Terminalsymbolen
 - ▶ P eine Relation \subseteq N x (ΣN \cup Σ \cup {ε})
 - \triangleright S \in N, dem Startsymbol
 - Eine Element $p \in P$ mit P=(L,R) und p=(I,r) heißt Produktion oder Regel mit

 $I \in N$ und $r \in \{\Sigma N \cup \Sigma \cup \{\epsilon\}\}\)$ und der Notation: $I \to r$ (I geht über in r oder I wird durch r ersetzt)

D.h. auf bei einer Produktion I → r stehen alle Nicht-Terminale N nur rechts von den Terminalen Σ in r.

Beispiel rechtslineare Grammatik: Ableitung

$$\blacksquare$$
 G = ({S, A, B}, {0, 1}, P, S) mit

$$\rightarrow$$
 P = {S \rightarrow 0S, S \rightarrow 1S, S \rightarrow 0A, A \rightarrow 0B, A \rightarrow 1B, B \rightarrow 0, B \rightarrow 1}

- Ableiten eines Wortes w = 01001
 - 1. Starten mit S
 - 2. Schauen welche Regeln mit S beginnen, dann Anwenden einer dieser Regeln.
 - 3. Solange fortfahren, bis nur noch Terminalsymbolen übrig sind.

►
$$S \Rightarrow 0S$$
 (Regel $S \rightarrow 0S$)

►
$$S \Rightarrow 010A$$
 (Regel $S \rightarrow 0A$)

■
$$S \Rightarrow 01001$$
 (Regel B \rightarrow 1)

S ⇒* 01001 und damit 01001 ∈ L(G)

formale Definition

- Eine linkslineare Grammatik $G = (N, \Sigma, P, S)$ wird genauso wie eine rechtslineare Grammatik definiert außer
 - Peine Relation \subseteq N x (N $\Sigma \cup \Sigma \cup \{\epsilon\}$), d.h l \in N wie oben aber r wird zu r \in (N $\Sigma \cup \Sigma \cup \{\epsilon\}$)
 - D.h. auf bei einer Produktion I → r stehen alle Nicht-Terminale N nur links von den Terminalen Σ in r.

Beispiel linkslineare Grammatik: Ableitung

$$G = (\{S, A, B\}, \{0, 1\}, P, S) \text{ mit}$$

$$P = \{S \rightarrow SO, S \rightarrow S1, S \rightarrow AO, A \rightarrow BO, A \rightarrow B1, B \rightarrow O, B \rightarrow 1\}$$

Ableiten eines Wortes

- 1. Starten mit S
- Schauen welche Regeln mit S beginnen, dann Anwenden einer dieser Regeln.
- 3. Solange fortfahren, bis nur noch Terminalsymbolen übrig sind.

$$ightharpoonup$$
 S \Rightarrow SO

(Regel S
$$\rightarrow$$
 SO)

$$\blacksquare$$
 S \Rightarrow S10

(Regel S
$$\rightarrow$$
 S1)

(Regel S
$$\rightarrow$$
 A0)

$$ightharpoonup$$
 S \Rightarrow B

(Regel A
$$\rightarrow$$
 B0)

(Regel B
$$\rightarrow$$
 1)

\$ ⇒* 10010 und damit 10010 ∈ L(G)

rechts- und linkslineare Grammatik

- Eine rechtslineare Grammatik hat auf der linken Seite immer ein nicht Terminalsymbol und auf der rechten Seite ein Wort aus $\Sigma N \cup \Sigma \cup \{\epsilon\}$, d.h. $(A,B \in N, a \in \Sigma)$
 - \rightarrow A \rightarrow aB (1)
 - \rightarrow A \rightarrow a (2)
 - \rightarrow A \rightarrow ϵ (3)
- Eine linkslineare Grammatik hat auf der linken Seite immer ein nicht Terminalsymbol und auf der rechten Seite ein Wort aus $N\Sigma \cup \Sigma \cup \{\epsilon\}$, d.h. $(A,B \in N, \alpha \in \Sigma)$
 - \rightarrow A \rightarrow Ba (1)
 - \rightarrow A \rightarrow a (2)
 - \rightarrow A \rightarrow ϵ (3)

Vereinfachte Grammatik

- Statt der 3 Regeln (1) bis (3) lässt sich die Grammatik vereinfachen und nur mit Regeln (1) und (3) erstellen
- ightharpoonup Jede Regel (2) A \rightarrow a wird ersetzt durch:
 - \rightarrow A \rightarrow aT bzw. A \rightarrow Ta (1) T ein neues nicht Terminalsymbol
 - $T \rightarrow \epsilon$ (3)
- Beispiel: G = ({S, A, B}, {0, 1}, P, S) mit
 - \rightarrow P = { S \rightarrow OS, S \rightarrow 1S, S \rightarrow OA, A \rightarrow OB, A \rightarrow 1B, B \rightarrow O, B \rightarrow 1}
 - Ersetzen von P durch P_R
 - $P_R = \{S \rightarrow OS, S \rightarrow 1S, S \rightarrow OA, A \rightarrow OB, A \rightarrow 1B, B \rightarrow OT, B \rightarrow 1T, T \rightarrow \epsilon\}$

Erzeugen von Grammatiken Reguläre Ausdrücke

- Der Ausdruck L=a* ergibt die Produktion S->aS | ε
- Der Ausdruck L = (a+b)B ergibt die Produktion S->aB | bB

Aufgabe Typ3 Grammatiken reguläre Ausdrücke

- Erstellen Sie eine rechtslineare Grammatik zu folgenden regulären Ausdrücken
 - R = (a+b)*c
 - ightharpoonup R = (0+1)*11
 - R = 0*11*011*
 - R = (a+b)c*b*a
 - R = (0+1)(11)*0
 - R = (0+1)*01(0+1)(0+1)

Äquivalenz Typ-3-Grammatik und endliche Automaten

- Zu jeder Typ-3 Grammatik G über das Alphabet ∑ existiert ein endlicher Automat A über S mit L(G) = L(A)
- Beweis in 2 Schritten
 - Sei G = (N, Σ ,P,S) eine rechtslineare Grammatik dann existiert ein Automat A = (Q, Σ , δ , s₀, F) mit L(G) = L(A)
 - Sei A = (Q, Σ , δ , s_0 , F) ein endlicher Automat dann existiert ein Grammatik G = (N, Σ ,P,S) mit L(G) = L(A)

\ddot{A} quivalenz $G \Rightarrow A$

- Beweis durch Konstruktion:
 - Sei G = (N,Σ,P,S) eine rechtslineare Grammatik, die nur die Regeln (1) und (3) enthält.
 - \blacksquare A = (Q, Σ, δ, s₀, F) sei definiert als:
 - ightharpoonup Die Zustandsmenge S \in A besteht aus den nicht Terminalsymbolen N
 - \blacksquare Das Startsymbol S von G wird Startzustand S₀ von A
 - Die Endzustandsmenge F von A enthält alle nicht Terminalsymbolen, zu denen eine ε-Regel existiert.
 - Die Zustandsübergänge ergeben sich aus den Produktionsregeln
 - Regeln B → aC ergeben (B,a,C) \in δ,
 - ightharpoonup Regeln B ightharpoonup ε ergeben keine Zustandsübergänge
 - ► Formal $\delta = \{(B,a,C) \mid B \rightarrow aC \in P\}$

 \ddot{A} quivalenz $G \Rightarrow A$ Beispiel

Gegeben die Grammatik G = ({S, B, C, T), {0, 1}, P, S) mit

P =
$$\{S \rightarrow OS, S \rightarrow 1S, S \rightarrow OB, B \rightarrow OC, B \rightarrow 1C, C \rightarrow OT, C \rightarrow 1T, T \rightarrow \epsilon \}$$

Der Automat A = $(\{ S, B, C, T \}, \{ 0, 1 \}, \delta, S, T)$

δ	0	1
S	{S,B}	{S}
В	{C}	{C}
С	{T}	{T}
Т	Ø	Ø

\ddot{A} quivalenz $A \Rightarrow G$

- Beweis durch Konstruktion:
 - Sei A = (Q, Σ , δ , s_0 , F) ein endlicher Automat. Wir konstruieren einen Grammatik G = (N, Σ ,P,S)
 - N = Q (Die Nicht-Terminale sind gerade die Zustände)
 - \triangleright Σ der Grammatik und Σ des Automaten sind identisch.
 - ── Wir geben und die Produktionen P (Regeln) an:
 - Falls $\delta(s,a) = s'$ dann ist $s \to as'$ eine Regel,
 - ► Falls s ∈ F dann ist s \rightarrow ε eine Regel
 - Formal P = $\{s \rightarrow as' \mid \delta(s,a) = s'\} \{s \rightarrow \epsilon \mid s \in F\}$

Äquivalenz A ⇒ G Beispiel

Gegeben der Automat A = ($\{S, B, C, F\}$, $\{0, 1\}$, $\{0, 5, 5\}$)

Konstruktion nach vorherigem Satz

P =
$$\{S \rightarrow 0S, S \rightarrow 1S, S \rightarrow 0B, B \rightarrow 0C, B \rightarrow 1C, C \rightarrow 0F, C \rightarrow 1F, F \rightarrow \epsilon\}$$

Dig Grammatik $G = (\{S, B, C, F\}, \{0, 1\}, P, S)$

δ	0	1
S	{S,B}	{S}
В	{C}	{C}
С	{F}	{F}
F	Ø	Ø

Aufgabe Typ3-Grammatik Umwandeln in einen Automaten

Konstruieren Sie einen endlichen Automaten aus folgender regulären Grammatik G

1.
$$G=\{S,A\}, P=\{S\to 0A, A\to 0A \mid 1\}$$

2. G=
$$\{S,A,B\}$$
, P= $\{S\rightarrow 1S \mid OA, A\rightarrow 1A \mid OB, B\rightarrow 1B \mid OA \mid \epsilon\}$

3.
$$G=\{S,A,B\}, P=\{S\to 0A \mid 1B, A\to 0S \mid 0, B\to 1S \mid 1\}$$