Formulae & Summary

By Syed M. Taha Jaffri

Forces & Motion I

Newtonian Mechanics The velocity of an object can change (the object can accelerate) when the object is acted on by one or more **forces** (pushes or pulls) from other objects. *Newtonian mechanics* relates accelerations and forces.

Force Forces are vector quantities. Their magnitudes are defined in terms of the acceleration they would give the standard kilogram. A force that accelerates that standard body by exactly 1 m/s² is defined to have a magnitude of 1 N. The direction of a force is the direction of the acceleration it causes. Forces are combined according to the rules of vector algebra. The **net force** on a body is the vector sum of all the forces acting on the body.

Newton's First Law If there is no net force on a body, the body remains at rest if it is initially at rest or moves in a straight line at constant speed if it is in motion.

Inertial Reference Frames Reference frames in which Newtonian mechanics holds are called *inertial reference frames* or *inertial frames*. Reference frames in which Newtonian mechanics does not hold are called *noninertial reference frames* or *noninertial frames*.

Mass The mass of a body is the characteristic of that body that relates the body's acceleration to the net force causing the acceleration. Masses are scalar quantities.

Newton's Second Law The net force \vec{F}_{net} on a body with mass m is related to the body's acceleration \vec{a} by

$$\vec{F}_{\text{net}} = m\vec{a},\tag{5-1}$$

which may be written in the component versions

$$F_{\text{net},x} = ma_x$$
 $F_{\text{net},y} = ma_y$ and $F_{\text{net},z} = ma_z$. (5-2)

The second law indicates that in SI units

$$1 \text{ N} = 1 \text{ kg} \cdot \text{m/s}^2.$$
 (5-3)

A free-body diagram is a stripped-down diagram in which only one body is considered. That body is represented by either a sketch or a dot. The external forces on the body are drawn, and a coordinate system is superimposed, oriented so as to simplify the solution.

Some Particular Forces A gravitational force \vec{F}_g on a body is a pull by another body. In most situations in this book, the other body is Earth or some other astronomical body. For Earth, the force is directed down toward the ground, which is assumed to be an inertial frame. With that assumption, the magnitude of \vec{F}_g is

$$F_g = mg, (5-8)$$

where m is the body's mass and g is the magnitude of the free-fall acceleration

The weight W of a body is the magnitude of the upward force needed to balance the gravitational force on the body. A body's weight is related to the body's mass by

$$W = mg. (5-12)$$

A **normal force** \vec{F}_N is the force on a body from a surface against which the body presses. The normal force is always perpendicular to the surface.

A frictional force \vec{f} is the force on a body when the body slides or attempts to slide along a surface. The force is always parallel to the surface and directed so as to oppose the sliding. On a frictionless surface, the frictional force is negligible.

When a cord is under **tension**, each end of the cord pulls on a body. The pull is directed along the cord, away from the point of attachment to the body. For a *massless* cord (a cord with negligible mass), the pulls at both ends of the cord have the same magnitude *T*, even if the cord runs around a *massless*, *frictionless pulley* (a pulley with negligible mass and negligible friction on its axle to opnose its rotation)

Newton's Third Law If a force \vec{F}_{BC} acts on body B due to body C, then there is a force \vec{F}_{CB} on body C due to body B:

$$\vec{F}_{BC} = -\vec{F}_{CB}$$
.

Forces & Motion II

Revlew & Summary

Friction When a force \vec{F} tends to slide a body along a surface, a **frictional force** from the surface acts on the body. The frictional force is parallel to the surface and directed so as to oppose the sliding. It is due to bonding between the atoms on the body and the atoms on the surface, an effect called cold-welding.

If the body does not slide, the frictional force is a static frictional force \vec{f}_s . If there is sliding, the frictional force is a kinetic frictional force \vec{f}_k .

- If a body does not move, the static frictional force \$\vec{f}_s\$ and the component of \$\vec{F}\$ parallel to the surface are equal in magnitude, and \$\vec{f}_s\$ is directed opposite that component. If the component increases, \$f_s\$ also increases.
- 2. The magnitude of \vec{f}_s has a maximum value $f_{s,max}$ given by

$$f_{s,\text{max}} = \mu_s F_N, \qquad (6-1)$$

where μ_s is the coefficient of static friction and F_N is the magnitude of the normal force. If the component of \vec{F} parallel to the surface exceeds $f_{s,max}$, the static friction is overwhelmed and the body slides on the surface.

 If the body begins to slide on the surface, the magnitude of the frictional force rapidly decreases to a constant value f_k given by

$$f_k = \mu_k F_N, \tag{6-2}$$

where μ_k is the coefficient of kinetic friction.

Drag Force When there is relative motion between air (or some other fluid) and a body, the body experiences a **drag force** \vec{D} that opposes the relative motion and points in the direction in which the fluid flows relative to the body. The magnitude of \vec{D} is

related to the relative speed v by an experimentally determined drag coefficient C according to

$$D = \frac{1}{2}C\rho A v^2, \tag{6-14}$$

where ρ is the fluid density (mass per unit volume) and A is the **effective cross-sectional area** of the body (the area of a cross section taken perpendicular to the relative velocity \vec{v}).

Terminal Speed When a blunt object has fallen far enough through air, the magnitudes of the drag force \vec{D} and the gravitational force \vec{F}_g on the body become equal. The body then falls at a constant **terminal speed** v_t given by

$$v_t = \sqrt{\frac{2F_g}{C\rho A}}$$
(6-16)

Uniform Circular Motion If a particle moves in a circle or a circular arc of radius R at constant speed v, the particle is said to be in **uniform circular motion**. It then has a **centripetal acceleration** \vec{a} with magnitude given by

$$a = \frac{v^2}{R}. ag{6-17}$$

This acceleration is due to a net centripetal force on the particle, with magnitude given by

$$F = \frac{mv^2}{R},$$
 (6-18)

where m is the particle's mass. The vector quantities \vec{a} and \vec{F} are directed toward the center of curvature of the particle's path. A particle can move in circular motion only if a net centripetal force acts on it.

Key Ideas

• If a particle moves in a circle or a circular arc of radius R at constant speed v, the particle is said to be in uniform circular motion. It then has a centripetal acceleration \vec{a} with magnitude given by

$$a = \frac{v^2}{D}$$

• This acceleration is due to a net centripetal force on the particle, with magnitude given by

$$F = \frac{mv^2}{R}$$

where m is the particle's mass. The vector quantities \vec{a} and \vec{F} are directed toward the center of curvature of the particle's path.

$$F_{\rm app}=(m_A+m_B)a,$$

Pulley System:

Case 1: When both the bodies hang

vertically
$$(m_1 > m_2)$$
.
 $a = \left(\frac{m_1 - m_2}{m_1 + m_2}\right)$ g

$$T = \left(\frac{2 \ m_1 m_2}{m_1 + \ m_2}\right) g$$

> Case 2: When one body hangs vertically (m_1) and other lies on a horizontal smooth surface (m_2).

$$a = \left(\frac{m_1}{m_1 + m_2}\right)g$$

$$T = \left(\frac{m_1 m_2}{m_1 + m_2}\right)g$$

Inclined Plane:

when body moves downward:

$$a = g sin\theta - \frac{f}{m}$$
when $f = 0$ (friction is negligible)

 $a = gsin\theta$

> when body moves upward:

 $a = -gsin\theta$ when f = 0 (friction is negligible)

when body moves upward with an external force(engine):

$$F_{net} = F_{ext} - (mgsin\theta + f)$$

 $ma = F_{ext} - (mgsin\theta + f)$

Oscillations

Review & Summary

Frequency The *frequency f* of periodic, or oscillatory, motion is the number of oscillations per second. In the SI system, it is measured in hertz:

1 hertz = 1 Hz = 1 oscillation per second =
$$1 \text{ s}^{-1}$$
. (15-1)

Period The period T is the time required for one complete oscillation, or **cycle.** It is related to the frequency by

$$T = \frac{1}{f}.$$
 (15-2)

Simple Harmonic Motion In *simple harmonic motion* (SHM), the displacement x(t) of a particle from its equilibrium position is described by the equation

$$x = x_m \cos(\omega t + \phi)$$
 (displacement), (15-3)

in which x_m is the **amplitude** of the displacement, $\omega t + \phi$ is the **phase** of the motion, and ϕ is the **phase constant**. The **angular frequency** ω is related to the period and frequency of the motion by

$$\omega = \frac{2\pi}{T} = 2\pi f$$
 (angular frequency). (15-5)

Differentiating Eq. 15-3 leads to equations for the particle's SHM velocity and acceleration as functions of time:

$$v = -\omega x_m \sin(\omega t + \phi)$$
 (velocity) (15-6)

and

$$a = -\omega^2 x_m \cos(\omega t + \phi)$$
 (acceleration). (15-7)

In Eq. 15-6, the positive quantity ωx_m is the velocity amplitude v_m of the motion. In Eq. 15-7, the positive quantity $\omega^2 x_m$ is the acceleration amplitude a_m of the motion.

The Linear Oscillator A particle with mass m that moves under the influence of a Hooke's law restoring force given by F = -kx exhibits simple harmonic motion with

$$\omega = \sqrt{\frac{k}{m}}$$
 (angular frequency) (15-12)

and

$$T = 2\pi \sqrt{\frac{m}{k}}$$
 (period). (15-13)

Such a system is called a linear simple harmonic oscillator.

Energy A particle in simple harmonic motion has, at any time, kinetic energy $K = \frac{1}{2}mv^2$ and potential energy $U = \frac{1}{2}kx^2$. If no friction is present, the mechanical energy E = K + U remains constant even though K and U change.

Pendulums Examples of devices that undergo simple harmonic motion are the **torsion pendulum** of Fig. 15-9, the **simple pendulum** of Fig. 15-11, and the **physical pendulum** of Fig. 15-12. Their periods of oscillation for small oscillations are, respectively,

$$T = 2\pi \sqrt{I/\kappa}$$
 (torsion pendulum), (15-23)

$$T = 2\pi \sqrt{L/g}$$
 (simple pendulum), (15-28)

$$T = 2\pi \sqrt{I/mgh}$$
 (physical pendulum). (15-29)

Simple Harmonic Motion and Uniform Circular Motion Simple harmonic motion is the projection of uniform circular

Simple harmonic motion is the projection of uniform circular motion onto the diameter of the circle in which the circular motion occurs. Figure 15-15 shows that all parameters of circular motion (position, velocity, and acceleration) project to the corresponding values for simple harmonic motion.

Damped Harmonic Motion The mechanical energy E in a real oscillating system decreases during the oscillations because external forces, such as a drag force, inhibit the oscillations and transfer mechanical energy to thermal energy. The real oscillator and its motion are then said to be **damped**. If the **damping force** is given by $\vec{F}_d = -b \vec{v}$, where \vec{v} is the velocity of the oscillator and b is a **damping constant**, then the displacement of the oscillator is given by

$$x(t) = x_m e^{-bt/2m} \cos(\omega' t + \phi),$$
 (15-42)

where ω' , the angular frequency of the damped oscillator, is given by

$$\omega' = \sqrt{\frac{k}{m} - \frac{b^2}{4m^2}}.$$
 (15-43)

If the damping constant is small $(b \ll \sqrt{km})$, then $\omega' \approx \omega$, where ω is the angular frequency of the undamped oscillator. For small b, the mechanical energy E of the oscillator is given by

$$E(t) \approx \frac{1}{2}kx_m^2 e^{-bt/m}$$
. (15-44)

Forced Oscillations and Resonance If an external driving force with angular frequency ω_d acts on an oscillating system with natural angular frequency ω , the system oscillates with angular frequency ω_d . The velocity amplitude v_m of the system is greatest when

$$\omega_{d} = \omega_{r}$$
 (15-46)

a condition called **resonance**. The amplitude x_m of the system is (approximately) greatest under the same condition.

Waves I

Review & Summary

Transverse and Longitudinal Waves Mechanical waves can exist only in material media and are governed by Newton's laws. Transverse mechanical waves, like those on a stretched string, are waves in which the particles of the medium oscillate perpendicular to the wave's direction of travel. Waves in which the particles of the medium oscillate parallel to the wave's direction of travel are longitudinal waves.

Sinusoidal Waves A sinusoidal wave moving in the positive direction of an x axis has the mathematical form

$$y(x, t) = y_m \sin(kx - \omega t), \qquad (16-2)$$

where y_m is the **amplitude** of the wave, k is the **angular wave number**, ω is the **angular frequency**, and $kx - \omega t$ is the **phase**. The **wavelength** λ is related to k by

$$k = \frac{2\pi}{\lambda}.$$
 (16-5)

The **period** T and **frequency** f of the wave are related to ω by

$$\frac{\omega}{2\pi} = f = \frac{1}{T}.$$
(16-9)

Finally, the wave speed v is related to these other parameters by

$$v = \frac{\omega}{k} = \frac{\lambda}{T} = \lambda f. \tag{16-13}$$

Equation of a Traveling Wave Any function of the form

$$y(x,t) = h(kx \pm \omega t) \tag{16-17}$$

can represent a **traveling wave** with a wave speed given by Eq. 16-13 and a wave shape given by the mathematical form of h. The plus sign denotes a wave traveling in the negative direction of the x axis, and the minus sign a wave traveling in the positive direction.

Wave Speed on Stretched String The speed of a wave on a stretched string is set by properties of the string. The speed on a string with tension τ and linear density μ is

$$v = \sqrt{\frac{\tau}{\mu}}.$$
 (16-26)

Power The average power of, or average rate at which energy is transmitted by, a sinusoidal wave on a stretched string is given by

$$P_{\text{avg}} = \frac{1}{2}\mu v \omega^2 y_m^2. \qquad (16-33)$$

Superposition of Waves When two or more waves traverse the same medium, the displacement of any particle of the medium is the sum of the displacements that the individual waves would give it.

Interference of Waves Two sinusoidal waves on the same string exhibit interference, adding or canceling according to the principle of superposition. If the two are traveling in the same direction and have the same amplitude y_m and frequency (hence the same wavelength) but differ in phase by a **phase constant** ϕ , the result is a single wave with this same frequency:

$$y'(x, t) = [2y_m \cos \frac{1}{2}\phi] \sin(kx - \omega t + \frac{1}{2}\phi).$$
 (16-51)

If $\phi = 0$, the waves are exactly in phase and their interference is fully constructive; if $\phi = \pi \operatorname{rad}$, they are exactly out of phase and their interference is fully destructive.

Phasors A wave y(x, t) can be represented with a **phasor**. This is a vector that has a magnitude equal to the amplitude y_m of the wave and that rotates about an origin with an angular speed equal to the angular frequency ω of the wave. The projection of the rotating phasor on a vertical axis gives the displacement y of a point along the wave's travel.

Standing Waves The interference of two identical sinusoidal waves moving in opposite directions produces standing waves. For a string with fixed ends, the standing wave is given by

$$y'(x, t) = [2y_m \sin kx] \cos \omega t.$$
 (16-60)

Standing waves are characterized by fixed locations of zero displacement called **nodes** and fixed locations of maximum displacement called **antinodes**.

Resonance Standing waves on a string can be set up by reflection of traveling waves from the ends of the string. If an end is fixed, it must be the position of a node. This limits the frequencies at which standing waves will occur on a given string. Each possible frequency is a **resonant frequency**, and the corresponding standing wave pattern is an **oscillation mode**. For a stretched string of length L with fixed ends, the resonant frequencies are

$$f = \frac{v}{\lambda} = n \frac{v}{2L}$$
, for $n = 1, 2, 3, ...$ (16-66)

The oscillation mode corresponding to n = 1 is called the *fundamental mode* or the *first harmonic*; the mode corresponding to n = 2 is the *second harmonic*; and so on.