Types and λ -calculus

Problem Sheet 4

- * 1. Justify each of the following conversions $M \approx N$ by finding a common reduct P, i.e. such that $M \triangleright^* P$ and $N \triangleright^* P$.
 - (a) $(\lambda x. x)y \approx (\lambda xy. x) y z$
 - (b) $(\lambda x. M)N \approx M[N/x]$
 - (c) fix (const 1) $\approx M$ (const pred 2)
 - (d) z (const id div) div $\approx z$ id (const div id)
- * 2. Define $\underline{Y} = \lambda f.(\lambda x. f(x x))(\lambda x. f(x x)).$

Show that Y is also a fixed point combinator, i.e for all terms *M*:

$$\underline{Y}M \approx M(\underline{Y}M)$$

** 3. Prove Lemma 7.1 of the notes, i.e. show all of the following:

Reflexivity For all $M: M \approx M$.

Symmetry For all $M, N: M \approx N$ implies $N \approx M$.

Transitivity For all M, N and P: $M \approx P$ and $P \approx N$ implies $M \approx N$.

Compatibility For all M, N and C[]: if $M \approx N$ then $C[M] \approx C[N]$.

There is no need for any induction. For compatibility, you will need to use a result from the previous problem sheet.

* 4. Recall the definition of add:

$$fix (\lambda f x y. ifz x y (S (f (pred x) y)))$$

Give a complete reduction sequence from add 2 3 to 5.

* 5. Prove that add satisfies the following equations:

$$\underline{\text{add}} \ \underline{0} \ \underline{m} \approx \underline{m}$$
 and $\underline{\text{add}} \ (n+1) \ \underline{m} \approx S \ (\underline{\text{add}} \ \underline{n} \ \underline{m})$

Hint: it will save time to first observe that (why?):

add
$$\approx \lambda xy$$
.ifz $x y$ (S (add (pred x) y))

In practice, you nearly always want to replace an occurrence of <u>add</u> with the right-hand-side of this equation, rather than by its actual definition (and the same can be said for any recursive function defined using "the recipe").

** 6. Use fix to define the recursive triangular number function: using the "recipe", give a combinator Tri that satisfies:

$$\underline{\mathsf{Tri}}\,\underline{0} \approx \underline{0} \quad \text{and} \quad \underline{\mathsf{Tri}}\,(n+1) \approx \underline{\mathsf{add}}\,(n+1)\,(\underline{\mathsf{Tri}}\,\underline{n})$$

Convince yourself that $\underline{\text{Tri }} \ \underline{2} \ \approx \ \underline{3}$ (this is obvious if you believe that your implementation of $\underline{\text{Tri }}$ really satisfies the given equations).

** 7. Define multiplication, i.e. construct a term <u>mult</u> that satisfies the following specification:

$$\underline{\text{mult } 0 \ m} \approx \underline{0}$$
 and $\underline{\text{mult } n+1} \ \underline{m} \approx \underline{\text{add } m} \ (\underline{\text{mult } n \ m})$

** 8. Prove that if $M \approx N$ and N is a normal form, then $M \triangleright^* N$.

Therefore, we now know that e.g. $\underline{\mathsf{Tri}} \, \lceil 2 \rceil \, \triangleright^* \, \lceil 3 \rceil$, so these definitions actually *compute* an output given an input.

*** 9. Prove that there is no PCF term <u>isNat</u> that satisfies, for all terms M:

isNat
$$M \approx \begin{cases} \underline{1} & \text{if } M \text{ is a numeral, i.e. } \underline{n} \text{ for some } n \\ \underline{0} & \text{otherwise} \end{cases}$$