

Image Analysis and Object Recognition

Exercise Sessions
Summer Semester 2025

(Course materials for internal use only!)

Computer Vision in Engineering – Prof. Dr. Rodehorst M.Sc. Mariya Kaisheva mariya.kaisheva@uni-weimar.de

Assignment 1

Assignment 1: Overview

Topics:

- Image enhancement
- Thresholding (binarization)
- Morphological operators

Goal:

Extracting image pixels representing foreground objects

Assignment 1: Overview

Topics:

- Image enhancement
- Thresholding (binarization)
- Morphological operators

Goal:

 Extracting image pixels representing foreground objects

Keep in mind:

- This is only a simple method for foreground-background separation.
- Do not expect perfect results!
- Select images with relatively simple content!

Assignment 1: Overview

Input:

- A starting input image can be found on Moodle
- In this satellite image, the water regions should be treated as foreground
- For any additional test images:
 - select a low-contrast photograph
 - avoid too complex content
 - decide in advance what should be foreground

Tasks:

- **1**: Enhance image with bad contrast
- 2: Find and apply a threshold on image values
 - → separate background=0 and foreground=1
- 3: Refine the binary mask using morphological operators
- 4: Write a main function, which conducts tasks 1 to 3. Evaluate the results and test your program with new input data.

Assignment 1: Task 1

Image Enhancement:

Note: Your input image may consist of multiple channels (r,g,b). Therefore, compute **mean** value for each pixel and **use the resulting grayscale image**.

- a. Visualize the initial image and the corresponding histogram
- b. Shortly describe the characteristics of the histogram
- c. Enhance the image using contrast stretching
- d. Shortly describe the differences to the initial histogram
- e. Visualize the resulting enhanced image

 $2^8 = 256$ possible grayscale values

Gray value histogram

Assignment 1: Task 2

Thresholding:

- a. Convert the enhanced image to a binary mask, where 0 = background and 1 = regions of interest
- b. Visualize the resulting binary mask
- c. Make some tests with different threshold values, and describe the difficulties you have in finding an appropriate threshold

Assignment 1: Task 3

Morphological filtering:

a. Successively apply opening and closing on the input image

- **b. Visualize** the resulting binary mask
 - → function imshow available in the matplotlib module

Assignment 1: Summary

Bauhaus-Universität Weimar

Quick Question on...

Morphological Operators

What is the binary image produced after applying the following operations on the given input image of size 12×12 pixels?

Each operation should be performed with the structuring element (SE) indicated next to it.

A. Erosion with SE

B. Opening with SE

C. Dilation with SE

binary input image

