7S3X0 Introduction Building Physics and Material Science

Exercises Acoustics

- 1) A sound source produces an effective sound pressure p_{eff} of 0.1 Pa at some distance from it.
 - a) Compute the sound pressure level Lp.
 - b) Compute the sound pressure level when the source would produce an effective pressure twice as high $(2p_{eff})$, and ten times as high $(10p_{eff})$.
 - c) Compute the sound pressure level L_p when a second sound source is turned on producing a p_{eff} of 0.2 Pa.
- 2) What are the units of sound pressure p and sound power W? And what are the units of the sound pressure level L_p and the sound power level L_w ?
- 3) What is the relation between the sound intensity I and the sound power W?
- 4) The 15-minute equivalent sound pressure level measured in a noisy environment is given in the Table below.

63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz
85.1 dB	81.4 dB	77.6 dB	73.2 dB	74.4 dB	78.8 dB	75.2 dB	71.2 dB

- a) What is the meaning of the equivalent sound pressure level?
- b) Compute the overall equivalent sound pressure level.
- c) Compute the overall A-weighted equivalent sound pressure level.
- 5) Due to industrial activity, the sound level at the facade of a nearby residential building has the following 10-minute period pattern: 1 minute 90 dB, 5 minutes 60 dB and 4 minutes 70 dB, compute equivalent sound pressure level.
- 6) The sound pressure level in a room is 80 dB. The sound field can be considered as diffuse. Assume a speed of sound of 340 m/s and an air density of 1.2 kg/m³.
 - a) What is the effective pressure p in this room?
 - b) What is the sound intensity I in the room?
 - c) One wall construction of the room has a total surface area of $S_{tot} = 10 \text{ m}^2$, of which a door area of $S_{door} = 2 \text{ m}^2$ with a sound transmission coefficient of $\tau = 1*10^{-2}$, and a brickwork area of 8 m² with a sound transmission coefficient of $\tau = 1*10^{-5}$. What is the incident power on the construction (use an incident intensity $I = 5*10^{-5}$ W/m² if b could not be solved).
 - d) What is total transmitted power through this wall?
 - e) What is the sound transmission index R of this wall?
- 7) Laboratory measurements are conducted to measure R of a building element. The results for a certain octave band are: $L_{source} = 80 \text{ dB}$, $L_{receiver} = 40 \text{ dB}$, $S = 2 \text{ m}^2$ and A = 10

- m^2 . What is the sound transmission index R of this element. Is R larger or smaller than L_{source} - $L_{receiver}$ and why?
- 8) What is the difference in the meaning of R measured in laboratory conditions and D_{nt} measured in situ?
- 9) For $f < f_c$, the R for random wave incidence can be computed according to the mass law.
 - a) Compute f_c of a 0.1 m thick 2300 kg/m³ concrete wall with a longitudinal sound velocity of c_L = 3300 m/s.
 - b) Compute R of the concrete wall with for f = 63 Hz and for f = 125 Hz.
 - c) Compute R of the concrete wall for f = 500 Hz. assume an internal damping η = 0.02. What equation do you use and why?
- 10) In Figure 3.9 of the reader, explain the dips in *R* around 100 Hz and the 4 dips at the higher frequencies.
- 11) Draw possible flanking transmission paths in the cross section below (two rooms with source in left room). Consider only paths that cross one junction from one building element to another.

