

بهینهسازی خطی

تمرین سری سوم

تعریف: $x_1,...,x_n$ مستقل آفینی $\lambda_1,...,\lambda_n\Leftrightarrow \lambda_1,...,\lambda_n$ (لااقل یکی ناصفر) وجود نداشته باشند به طوری که $x_1,...,x_n$ و $\sum_{i=1}^n \lambda_i x_i = 0$

داریم: $a,b\in\mathbb{R}$ تابعی محدب و $f:\mathbb{R} o \mathbb{R}$ ، در این صورت نشان دهید برای هر $a,b\in\mathbb{R}$ داریم:

$$f(a) + f(b) \le f(a+b)$$

(به این خاصیت در ریاضی superadditivity می گویند.)

ت فرض کنید $C\subset R^n$ یک مجموعهی محدب باشد و A ماتریس در $R^{m imes n}$. نشان دهید $C\subset R^n$ نیز مجموعهای محدب است.

۳ جمع مینکوفسکی دو مجموعه به شکل زیر تعریف میشود.

$$A + B := \{x + y | x \in A, y \in B\}$$

فرض کنید A, B محدب باشند. نشان دهید:

ابت. A+B نیز محدب است.

۲. هر راس A+B را می توان بصورت جمع رئوس A و B نوشت.

۴ نشان دهید هر زیرمجموعه ی \mathbb{R}^n شامل حداقل n+2 نقطه را میتوان به ۲ بخش افراز کرد به طوری که پوش محدب آنها اشتراک داشته باشد.

(راهنمایی: از استقلال آفینی استفاده کنید)

تعداد وجوه k-بعدی چندوجهی صلیبی n-بعدی را محاسبه کنید. تعریف این چندوجهی به صورت زیر است: Δ

$$x \in \mathbb{R}^n : |x_1| + \ldots + |x_n| \le 1$$

۶ هر پولی هدرون کراندارد یک پولی توپ است و بالعکس:

الف) $x_1,...,x_m \in \mathbb{R}^n$ را در نظر بگیرید. نشان دهید پولی $x_1,...,x_m \in \mathbb{R}^n$ یک پولیهدرون کراندار است. $P = convex.hull(x_1,...,x_m)$ وجود دارند بطوری که: $P = \{x \in \mathbb{R}^n | Ax \leq b\}$ می باشد.)

ب)پولی هدرون $\{x \in \mathbb{R}^n | Ax \leq b\}$ را در نظر بگیرید. همچنین فرض کنید Q کراندار باشد. نشان دهید Q پولی توپ است. $Q = (x \in \mathbb{R}^n | Ax \leq b\}$ نظر بگیرید. $X_m \in \mathbb{R}^n$ ریعنی $X_1, ..., X_m \in \mathbb{R}^n$ ریعنی نظر بگیرید.

۷ نگاشت f را آفین می گویند اگر به فرم Ax+b که A ماتریس و b یک بردار باشد. فرض کنید Q و پولی هدرون در تعدیل و باشند. می گوییم A و Ax+b و باشند. می گوییم A و باشند که باشند که Ax+b و باشند که Ax+b و باشند که باشند که Ax+b و باشند که Ax+b و باشند که باشند که Ax+b و باشند که باشند که Ax+b و باشند که Ax+b و باشند که باشند که Ax+b و باشند که Ax+b و باشند که باشند که Ax+b و باشند که باشد که ب

الف. ثابت کنید اگر Q و Q یکریخت باشند، بین گوشههای آنها تناظر یک به یک برقرار است. به عبارتی x یک گوشه در P است اگر و تنها اگر f(x) یک گوشه در Q باشد.

ب. فرض کنید $\{x\cdot n \mid A$ ماتریسی با ابعاد $x\cdot n$ است. $P=\{x\in\mathbb{R}^n|Ax\geq b,x\geq 0\}$ کیه $Q=\{(x,z)\in\mathbb{R}^{n+k}|Ax-z=b,x\geq 0,z\geq 0\}$ مهرچنین $Q=\{(x,z)\in\mathbb{R}^{n+k}|Ax-z=b,x\geq 0,z\geq 0\}$ ثابت کنید Q و کریخت هستند.

(Caratheodory قضیهی) Λ فرض کنید \mathbb{R}^m باشند.

الف) داريم:

$$C = \{\sum_{i=1}^{n} \lambda_i A_i | \lambda_1, ..., \lambda_n \ge 0\}$$

نشان دهید هر عضو C می تواند به صورت λ_i λ_i نمایش داده شود به طوری که $\lambda_i \geq 0$ ، و حداکثر m تا از ضرایب λ_i ناصفر باشند.

راهنمایی: پولیهدرون زیر را در نظر بگیرید:

$$\Lambda = \{(\lambda_1,...,\lambda_n) \in \mathbb{R}^n | \sum_{i=1}^n \lambda_i A_i = y, \lambda_1,...,\lambda_n \geq 0 \}.$$

ب) فرض کنید P پوش محدب بردارهای A_i باشد. نشان دهید هر عضو P می تواند به صورت $\sum_{i=1}^n \lambda_i A_i$ نمایش داده شود به طوری که $\sum_{i=1}^n \lambda_i A_i$ و برای هر i ، i که حداکثر i i تا از ضرایب i ناصفر باشند.

 $A\subseteq B$ اگر $A\in B$ دو مجموعه ی محدب در صفحه باشند که $A\subseteq B$ ، آیا لزوما محیط $A\subseteq A$ ،