THERMODYNAMICS

TL;DRs

An OS Creation of Shazin

Relations Among Temperature Scales:

$$\frac{C}{5} = \frac{F - 32}{9} = \frac{K - 273}{5}$$

First Law of Thermodynamics:

"When work is completely converted to heat or heat is completely converted to work then work and heat becomes proportional to each others"

Mathematical Implementation : If a system consumes **dQ** heat, so the internal energy of the system changes by **du** and work done by heat is **dW** then,

$$dQ = du + dW$$

Conditions:

- dQ is positive(+ve) if the system consumes heat , dQ is negative(-ve) if system loses heat
- 2. **du** positive if the internal energy of the system is increased and **du** negative if the internal energy decreases.
- 3. **dW** is positive if the work is done by the system, **dW** is negative if the work is done to the system.

Application of first Law in Isothermal(সমোঞ্চ) Process:

"A system where Temperature remains constant but heat and volume changes"

In isothermal process as the temperature remains constant so the internal energy is also constant it means $\mathbf{du} = \mathbf{0}$.

$$dQ = dW$$

$$W = Q = nRTln(\frac{V_2}{V_1})$$

W = Work done by heat

Q = Heat

n = number of moles in gas

R = Universal gas constant

T = temperature

V₁ = Initial Volume

V₂ = Final Volume

Relation between Pressure and Volume in Adiabatic Process:

 $P_1V_1^{\gamma} = P_2V_2^{\gamma}$

Relation between Volume and Temperature in Adiabatic Process:

$$T_1 V_1^{\gamma-1} = T_2 V_2^{\gamma-1}$$

Relation between Pressure and Temperature in Adiabatic Process (in case of an

ideal gas):

$$T_1 P_1^{\frac{1-y}{y}} = T 21 P_2^{\frac{1-y}{y}}$$

Application of first Law in Adiabatic(রুদ্ধতাপীয়) Process:

"A system where Heat remains constant but Pressure and Volume Changes"

**Facts:

- 1. In adiabatic process the work is done by the system's heat or energy. So if the volume of the system increases the internal energy or the Temperature decreases
- 2. In the same condition the Temperature increase if the system's volume is reduced

Mathematical Implementation:

$$W = \frac{R}{\gamma - 1} [T_1 - T_2]$$

Work in Isobaric(সমচাপ) System:

Mathematical Implementation: dW = PdV

Molar Specific Heat(আপেক্ষিক তাপ):

"Molar specific heat is actually the Heat required to increase the Temperature of 1 Mole of a gas by 1 unit"

Mathematical Implementation: $C = \frac{\Delta Q}{n\Delta T}$ $\Delta Q = \text{Heat}$ n = Number of moles in gas $\Delta T = \text{Temperature}$

$$C = \frac{\Delta Q}{n\Delta T}$$

 C_p and C_v :

C_p: C_p is essentially the Molar specific Heat in a Constant Pressure

$$C_p = \frac{\Delta Q}{n \Delta T}$$

 C_v : C_v is essentially the Molar specific Heat in a Constant Volume $C_v = \frac{\Delta Q}{\Delta R}$

$$C_{v} = \frac{\Delta Q}{n \Delta T}$$

Remember: $C_p > C_v$

Relation between C_p and C_v: $C_p - C_v = R$ where R = gas constant.

$$C_p - C_v = R$$

What The Fuck is γ

y (gamma) in Thermodynamics is actually the ratio of C_p and C_v .

$$\gamma = \frac{C_p}{C_v}$$

$$\frac{C_p}{C_v} - 1 = \frac{R}{C_v}$$

$$C_v = \frac{R}{\gamma - 1}$$

Value of $\boldsymbol{\gamma}$ in Different Gases

Scenario	Example	Value
Mono-atomic Gas	He, Ne, Ar	1.67
Di-atomic Gas	H_3 , O_2 , N_2 , Cl_3	1.40
Tri-atomic Gas	CO ₂ , C ₂ O ₆ , NH ₃	1.33