	2
, h	杨
Dre	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
MA	15
	16
	17
	18
	19
	20
í	21
\mathcal{N}	22
	23
	24
pd>	25
	26
	27
	28
	29
	30

\sim T		TX	ΛC
	. 4		/ -

1

We claim:

A method for processing software instructions comprising,

(a) decomposing a macroinstruction into a plurality of microinstructions,

- (b) issuing at least two of the plurality of microinstructions in parallel,
- (c) determining whether an exception occurs in any of the at least two of a plurality of microinstructions, and
- (d) if an exception occurs in any of the at least two of a plurality of microinstructions, canceling the at least two of a plurality of microinstructions.

The method of claim 1, further comprising executing the at least two of the plurality of microinstructions.

- 3. The method of claim 2, wherein the at least two of a plurality of microinstructions are executed on separate execution units, but appear as though they were executed on a single execution unit.
- 4. The method of claim 1, wherein the at least two of a plurality of microinstructions are executed on the same clock cycle.
- 5. The method of claim 1, wherein the at least two of a plurality of microinstructions are executed over multiple clock cycles.
- 6. The method of claim 1, wherein the method is implemented in a system emulating SSE instructions.
- 7. The method of claim 6, wherein the system allows a single instruction to operate on multiple single-precision ("SP") floating-point ("FP") values.
- The method of claim 1, further comprising updating a flag based upon a result of the execution of the at least two of a plurality of microinstructions.
 - 9. The method of claim 1, further comprising,
- (a) if an unmasked exception occurs, canceling the execution of the microinstructions and invoking a microcode handler,
- (b) if an unmasked exception does not occur, updating at least one exception flag by independently generating a logical OR of exceptions for a plurality of functional units.

31 32

_		
Sul) 1	10. A method for processing software instructions comprising,
6	2	(a) providing two microinstructions to emulate a high-half and a low-half
	3	SSE operation,
	4	(b) forcing the high-half and low-half operations to issue in parallel,
	5	(c) dispatching the high-half and low-half operations simultaneously to
	6	a first FP unit and to a second FP unit, respectively,
	7	(d) generating a signal from an emulator's hardware,
	8	(e) sending the signal to the first and second FP functional units,
	9	determining whether an exception is taken in either the first or the
10 s		second FP unit,
	11	(g) if an exception is taken in either the first or second FP unit, flushing
	12	a result in the other FP unit, and
:= := :=	13	(h) updating MXCSR flags based upon the results of the first and second
e E	14	FP units.
in (15/	11. The method of claim 10, wherein the flushing of a result in the other
	(16	FP unit does not depend upon the relative ages of the two microinstructions.
<u>C</u>	3 72	1X A computer system comprising,
ل، ت	18	a processor comprising,
	19	(a) a floating point unit;
TU.	20	(b) a ROM;
. <u></u>	21	(c) \ a plurality of floating point registers;
2	22	wherein the processor is configured to emulate an instruction set by:
	23	(a) decomposing a macroinstruction into a plurality of
	24	microinstructions;
	25	(b) issuing at least two of the plurality of microinstructions in
	26	parallel,
	27	(c) determining whether an exception occurs in any of the at least
	28	two of a plurality of microinstructions, and
	29	(d) if an exception occurs in any of the at least two of a plurality
	30	of microinstructions, canceling the at least two of a plurality of microinstructions.
	31	13. The method of claim 12, further comprising executing at least two of
	32	the plurality of microinstructions.

-11-

		12
		13
		14
٠D		15
(N (O	\bigcap	
		⁄16 [']
ıı ıı		17
Ü		
"LI		

2

3

4 5

6 7

8

9

10 11

- The method of claim 13, wherein the least two of a plurality of microinstructions are executed on separate execution units, but appear as though they were executed on a single execution unit.
- 15. The computer system of claim 14, wherein the processor is further configured to emulate an instruction set by updating a flag based upon a result of the execution of the at least two of the plurality of microinstructions.
- 16. The computer system of claim 15, wherein the processor is further configured to emulated an instruction set by
- (a) determining whether an exception occurs in the execution of any of the at least two of a plurality of microinstructions,
- (b) if an exception occurs, causing the exception to cancel all of the at least two of a plurality of microinstructions.
- The computer system of claim 12, wherein the instruction set is a SSE 17. instruction set.
- The computer system of claim 17, further comprising an FP register 18. having 82 bits, wherein the computer system uses two FP registers to emulate four 32-bit single-precision, floating point values in an SSE register.