1

MA-2015

EE24Btech11022 - Eshan Sharma

1)	Let X_1, \ldots, X_n be a random sample from $N(\mu, 1)$ distribution, where $\mu \in \{$	$0, \frac{1}{2}$. For testing	the null
	hypothesis $H_0: \mu = 0$ against the alternative hypothesis $H_1: \mu = \frac{1}{2}$, consid	er the	e critical regi	on

$$R = \left\{ (x_1, x_2, \dots, x_n) : \frac{1}{n} \sum_{i=1}^n x_i > c \right\}$$

where c is some real constant. If the critical region R has size 0.025 and power 0.7054, then the value of the sample size n is equal to _____.

							chi-squared					of
freedon	n <i>m</i> (≥	3) a	nd $n(\geq 3)$,	resp	ectively. If	$E\left(\frac{X}{Y}\right) =$	3 and $m + n$	= 14, th	en $E\left(\frac{Y}{X}\right)$ i	is equ	al to	

a) $\frac{2}{7}$

b) $\frac{3}{7}$

c) $\frac{4}{7}$

d) $\frac{5}{7}$

3) Let
$$X_1, X_2, \ldots$$
 be a sequence of independent and identically distributed random variables with $P(X_1 = 1) = \frac{1}{4}$ and $P(X_1 = 2) = \frac{3}{4}$. If $X_n = \frac{1}{n} \sum_{i=1}^n X_i$, for $n = 1, 2, \ldots$, then $\lim_{n \to \infty} P(X_n \le 1.8)$ is equal to

4) Let
$$u(x, y) = 2f(y)\cos(x - 2y)$$
, $(x, y) \in \mathbb{R}^2$, be a solution of the initial value problem

$$2u_{xx} + u_y = u$$
$$u(x, 0) = \cos(x).$$

Then f(1) is equal to

a) $\frac{1}{2}$

b) $\frac{e}{2}$

c) *e*

d) $\frac{3e}{2}$

5) Let
$$u(x, t), x \in \mathbb{R}, t \ge 0$$
, be the solution of the initial value problem

$$u_{tt} = u_{xx},$$

$$u(x,0) = x,$$

$$u_t(x,0)=1.$$

Then u(2,2) is equal to _____.

6) Let
$$W = \text{Span } \{\frac{1}{\sqrt{2}}(0,0,1,1), \frac{1}{\sqrt{2}}(1,-1,0,0)\}$$
 be a subspace of the Euclidean space $\mathbb{R}^{\not\succeq}$. Then the square of the distance from the point $(1,1,1,1)$ to the subspace W is equal to _____.

7) Let
$$T: \mathbb{R}^4 \to \mathbb{R}^4$$
 be a linear map such that the null space of T is

$$\{(x, y, z, w) \in \mathbb{R}^4 : x + y + z + w = 0\}$$

and rank of $(T-4I_4)$ is 3. If the minimal polynomial of T is $x(x-4)^{\alpha}$, then α is equal to _____.

8) Let M be an invertible Hermitian matrix and let
$$x, y \in \mathbb{R}$$
 be such that $x^2 < 4y$. Then

- a) both $M^2 + xM + yI$ and $M^2 xM + yI$ are singular
- b) $M^2 + xM + yI$ is singular but $M^2 xM + yI$ is non-singular
- c) $M^2 + xM + yI$ is non-singular but $M^2 xM + yI$ is singular

- d) both $M^2 + xM + yI$ and $M^2 xM + yI$ are non-singular
- 9) Let $G = \{e, x, x^2, x^3, y, xy, x^2y, x^3y\}$ with o(x) = 4, o(y) = 2 and $xy = yx^3$. Then the number of elements in the center of the group G is equal to
 - a) 1 b) 2 c) 4 d) 8
- 10) The number of ring homomorphisms from $\mathbb{Z}_2 \times \mathbb{Z}_2$ to \mathbb{Z}_4 is equal to _____.
- 11) Let $p(x) = 9x^5 + 10x^3 + 5x + 15$ and $q(x) = x^3 x^2 x 2$ be two polynomials in $\mathbb{Q}[x]$. Then, over \mathbb{Q} ,
 - a) p(x) and q(x) are both irreducible
 - b) p(x) is reducible but q(x) are both irreducible
 - c) p(x) is irreducible but q(x) are both reducible
 - d) p(x) and q(x) are both reducible
- 12) Consider the linear programming problem

Maximise
$$3x + 9y$$
, subject to
$$2y - x \le 2$$
$$3y - x \ge 0$$
$$2x + 3y \le 10$$
$$x, y \ge 0.$$

Then the maximum value of objective function is equal to _____.

- 13) Let $S = \{(x, \sin \frac{1}{x}) : 0 < x \le 1\}$ and $T = S \cup \{(0,0)\}$. Under the usual metric on \mathbb{R}^2 ,
 - a) S is closed but T is **NOT** closed.
 - b) T is closed but S is **NOT** closed.
 - c) both S and T are closed.
 - d) neither S nor T is closed.