

Research School of Engineering College of Engineering and Computer Science

ENGN2228 Signal Processing

HOMEWORK 8 - SOLUTIONS

Homework 8-1

For each of the following pulse responses shown in the figures:

- (i) give an expression for the pulse response h[n],
- (ii) the frequency response

$$H(e^{j\omega}) = \sum_{n=-\infty}^{\infty} h[n]e^{-jn\omega},$$

- (iii) say whether $H(e^{j\omega})$ as a function of ω is even or odd
- (iv) discuss the phase of $H(e^{j\omega})$ and by looking at the slope say what the (group) delay is
- (v) and sketch/plot the magnitude $|H(e^{j\omega})|$

Real and even.

Solution:

- (i) $h[n] = h[-1]\delta[n+1] + h[0]\delta[n] + h[1]\delta[n-1] = \delta[n+1] + \delta[n] + \delta[n-1]$
- (ii) $H(e^{j\omega}) = h[-1]e^{j\omega} + h[0] + h[1]e^{-j\omega} = e^{j\omega} + 1 + e^{-j\omega} = 1 + 2\cos\omega$
- (iii) $H(e^{j\omega})$ is even
- (iv) phase is flat and equals 0, the delay being the slope is 0
- (v) $|H(e^{j\omega})| = |1 + 2\cos\omega|$ and is plotted below:

Real and causal.

Solution:

(i)
$$h[n] = \delta[n] + \delta[n-1] + \delta[n-2]$$

(ii)
$$H(e^{j\omega})=1+e^{-j\omega}+e^{-j2\omega}=e^{-j\omega}(1+2\cos\omega)$$

- (iii) $H(e^{j\omega})$ is complex-valued but $|H(e^{j\omega})|$ is even
- (iv) phase is linear and equals $-\omega$, the delay being the negative slope is 1
 - (v) $|H(e^{j\omega})| = |1 + 2\cos\omega|$ as previously plotted

Real with larger delay.

Solution:

(i)
$$h[n] = \delta[n-2] + \delta[n-3] + \delta[n-4]$$

(ii)
$$H(e^{j\omega}) = e^{-3j\omega}(1+2\cos\omega)$$

- (iii) $H(e^{j\omega})$ is complex-valued but $|H(e^{j\omega})|$ is even
- (iv) phase is linear and equals -3ω , the delay being the negative slope is 3
- (v) $|H(e^{j\omega})| = |1 + 2\cos\omega|$ as previously plotted

Real and odd.

Solution:

(i)
$$h[n] = h[-1]\delta[n+1] + h[1]\delta[n-1] = -\delta[n+1] + \delta[n-1]$$

(ii)
$$H(e^{j\omega}) = h[-1]e^{j\omega} + h[1]e^{-j\omega} = -e^{j\omega} + e^{-j\omega} = -2j\left(\frac{e^{j\omega} - e^{-j\omega}}{2j}\right) = 2e^{j3\pi/2}\sin\omega$$

- (iii) $H(e^{j\omega})$ is odd since $\sin \omega$ is odd, and $|H(e^{j\omega})|$ is even
- (iv) phase is constant at $3\pi/2$ and the delay (slope with respect to ω) is zero
- (v) $|H(e^{j\omega})| = |2\sin\omega|$ and is plotted below:

Imaginary and even.

Solution:

(i) $h[n] = h[-1]\delta[n+1] + h[0]\delta[n] + h[1]\delta[n-1] = j\delta[n+1] + j\delta[n] + j\delta[n-1]$

Page 2

- (ii) $H(e^{j\omega}) = h[-1]e^{j\omega} + h[0] + h[1]e^{-j\omega} = j(e^{j\omega} + 1 + e^{-j\omega}) = e^{j\pi/2}(1 + 2\cos\omega)$
- (iii) $H(e^{j\omega})$ is even
- (iv) phase is flat and equals $\pi/2$, the delay being the slope is 0
- (v) $|H(e^{j\omega})| = |1 + 2\cos\omega|$ as previously plotted

Imaginary and odd.

Solution:

(i)
$$h[n] = h[-1]\delta[n+1] + h[1]\delta[n-1] = -j\delta[n+1] + j\delta[n-1]$$

- (ii) $H(e^{j\omega}) = h[-1]e^{j\omega} + h[1]e^{-j\omega} = -je^{j\omega} + je^{-j\omega} = 2\left(\frac{e^{j\omega} e^{-j\omega}}{2j}\right) = 2\sin\omega$ is purely real-valued. Notice that $h[-1] = \overline{h[1]}$.
- (iii) $H(e^{j\omega})$ is odd since $\sin \omega$ is odd, and $|H(e^{j\omega})|$ is even
- (iv) phase is constant at 0 and the delay is zero
- (v) $|H(e^{j\omega})| = |2\sin\omega|$ as previously plotted

Real, even and spaced out.

Solution:

(i)
$$h[n] = h[-2]\delta[n+2] + h[0]\delta[n] + h[2]\delta[n-2] = \delta[n+2] + \delta[n] + \delta[n-2]$$

(ii)
$$H(e^{j\omega}) = h[-2]e^{j\omega} + h[0] + h[2]e^{-j\omega} = e^{j2\omega} + 1 + e^{-j2\omega} = 1 + 2\cos 2\omega$$

- (iii) $H(e^{j\omega})$ is even and purely real-valued
- (iv) phase is flat and equals 0, the delay being the slope is 0
- (v) $|H(e^{j\omega})| = |1 + 2\cos 2\omega|$ and is plotted below:

Real, even and spaced out.

Solution:

- (i) $h[n] = h[-3]\delta[n+3] + h[0]\delta[n] + h[3]\delta[n-3] = \delta[n+3] + \delta[n] + \delta[n-3]$
- (ii) $H(e^{j\omega}) = h[-3]e^{j\omega} + h[0] + h[3]e^{-j\omega} = e^{j3\omega} + 1 + e^{-j3\omega} = 1 + 2\cos 3\omega$
- (iii) $H(e^{j\omega})$ is even and purely real-valued

- (iv) phase is flat and equals 0, the delay being the slope is 0
- (v) $|H(e^{j\omega})| = |1 + 2\cos 3\omega|$ and is plotted below:

Real, even and spaced out.

Solution:

- (i) $h[n] = h[-4]\delta[n+4] + h[0]\delta[n] + h[4]\delta[n-4] = \delta[n+4] + \delta[n] + \delta[n-4]$
- (ii) $H(e^{j\omega}) = h[-4]e^{j\omega} + h[0] + h[4]e^{-j\omega} = e^{j4\omega} + 1 + e^{-j4\omega} = 1 + 2\cos 4\omega$
- (iii) $H(e^{j\omega})$ is even and purely real-valued
- (iv) phase is flat and equals 0, the delay being the slope is 0
- (v) $|H(e^{j\omega})| = |1 + 2\cos 4\omega|$ and is plotted below:

Mixed real and imaginary.

Solution:

- (i) $h[n] = h[-1]\delta[n+1] + h[1]\delta[n-1] = (j/2)\delta[n+1] + \delta[n-1]$
- (ii) $H(e^{j\omega}) = (j/2)e^{j\omega} + e^{-j\omega}$ then use Euler
- (iii) $H(e^{j\omega})$ is neither even nor odd and mixed real- and complex-valued
- (iv) phase is all over the shop
- (v) $|H(e^{j\omega})| = ((\cos \omega + (1/2)\sin \omega)^2 + ((1/2)\cos \omega \sin \omega)^2)^{1/2}$ and is plotted below:

