

DMA: Relationer Operationer

Søren Eilers Institut for Matematiske Fag

Oversigt

Fællesmængder og foreningsmængder

Husk: Relationer er mængder.

Lad R, S være relationer fra A til B, dvs.

$$R \subseteq A \times B$$
 og $S \subseteq A \times B$.

Definer to nye relationer fra A til B:

$$R \cup S$$
 og $R \cap S$

Bemærk: For $a \in A$ og $b \in B$

$$a(R \cup S)b \Leftrightarrow aRb$$
 eller aSb
 $a(R \cap S)b \Leftrightarrow aRb$ og aSb

Komplement og invers

Lad R være en relation fra A til B.

Den komplementære relation er relationen

$$\overline{R} = \{(a,b) \in A \times B \mid (a,b) \notin R\}$$
 fra A til B.

Eksempel: Den komplementære til \geqslant er <.

Den inverse relation er relationen

$$R^{-1} = \{(b, a) \in B \times A \mid (a, b) \in R\}$$
 fra B til A.

Eksempel: Den inverse til = er =.

Egenskaber (fra sætn. 4.7.1–4.7.5)

Sætning

Lad R og S være relationer på A.

- a) $(R \cap S)^{-1} = R^{-1} \cap S^{-1}$
- b) Hvis R og S er refleksive, så er $R \cap S$ refleksiv.
- c) R er symmetrisk, hvis og kun hvis $R = R^{-1}$.
- d) Hvis R og S er symmetriske, så er $R \cap S$ symmetrisk.
- e) $(R \cap S)^2 \subseteq (R^2 \cap S^2)$
- f) Hvis R og S er transitive, så er $R \cap S$ transitiv.
- g) Hvis R og S er ækvivalensrelationer, så er $R \cap S$ en ækvivalensrelation.

Bevis.

Tavle!

Oversigt

Refleksiv afslutning

Lad R være en relation på A: Hvilke par fra $A \times A$ skal tilføjes for at få refleksivitet?

Definition: Den refleksive afslutning af R er den mindste refleksive relation $S \subseteq A \times A$, som opfylder, at $R \subseteq S$.

Sætning

Den refleksive afslutning af R er $R \cup \{(a, a) \in A \times A\}$.

Bevis.

Lad S være en refleksiv relation med $R \subseteq S$. Da er $\{(a,a) \in A \times A\} \subseteq S$, fordi S er refleksiv. Dermed er $R \cup \{(a,a) \in A \times A\}$ den mindste refleksive relation, som indeholder R.

Symmetrisk afslutning

Lad R være en relation på A:

Hvilke par fra $A \times A$ skal tilføjes for at få symmetri?

Definition: Den symmetriske afslutning af R er den mindste symmetriske relation $S \subseteq A \times A$, som opfylder, at $R \subseteq S$.

Sætning

Den symmetriske afslutning af R er $R \cup R^{-1}$.

Dvs. for hvert kant i grafen tilføjes en modsatrettet kant.

Bevis.

Bemærk, hvis $(a,b) \in R$ og $(b,a) \notin R$, så er $(b,a) \in R^{-1}$. Derfor må en symmetrisk relation, som indeholder R, også indeholde R^{-1} .

Transitiv afslutning

Lad R være en relation på A:

Hvilke par fra $A \times A$ skal tilføjes for at få transitivitet?

Definition: Den transitive afslutning af R er den mindste transitive relation $S \subseteq A \times A$, som opfylder, at $R \subseteq S$.

Sætning

Den transitive afslutning af R er R^{∞} .

Oversigt

Komposition (sammensætning)

Definition: Lad R være en relation fra A til B, og lad S være en relation fra B til C, og Kompositionen $S \circ R$ er relationen fra A til C def. ved

 $a(S \circ R)c \Leftrightarrow \text{der findes } b \in B, \text{ så } aRb \text{ og } bRc.$

Eksempel:
$$A = \{1,2,3\}, B = \{a,b\}, C = \{x,y,z\}$$

 $R = \{(1,a),(1,b),(2,b),(3,a)\}$ og
 $S = \{(a,x),(a,y),(b,y),(b,z)\}$ giver

$$S \circ R = \{(1,x),(1,y),(1,z),(2,y),(2,z),(3,x),(3,y)\}$$

Komposition og matricer

Lad A, B og C være endelige mængder. Lad R være en relation fra A til B, og lad S være en relation fra B til C

Sætning

Matricen for $S \circ R$ *er* $\mathbf{M}_{S \circ R} = \mathbf{M}_R \odot \mathbf{M}_S$

Hvis R er en relation på A, så er $\mathbf{M}_{R^2} = \mathbf{M}_R \odot \mathbf{M}_R$. Sætningen er en generalisering i forhold til i mandags.

Bevis.

Samme fremgansmåde som for R^2 .

Bemærk: Dimensionerne passer!

Associativitet

Lad R være en relation fra A til B, lad S være en relation fra B til C, og lad T være en relation fra C til D.

Sætning

$$T \circ (S \circ R) = (T \circ S) \circ R$$

Definition

En relation R er en funktion når

$$aRb_1 \wedge aRb_1 \Longrightarrow b_1 = b_2$$

Altså er $R(a) = \emptyset$ hvis $a \notin Dom(R)$ og $R(a) = \{b\}$ hvis $a \in Dom(R)$. Vi skriver R(a) = b hvor vi egentlig burde skrive $R(a) = \{b\}$.

Antag at R er en funktion fra A til B og S en funktion fra B til C. Så er $S \circ R$ præcis hvad vi plejer at forstå ved den sammensatte funktion af R og S.

Sætning

Lad R være en funktion. Så gælder

- R er injektiv $\iff R^{-1}$ er en funktion.
- $Dom(R) = Ran(R^{-1}) \ og \ Dom(R^{-1}) = Ran(R)$.

Sætning

Lad R være en injektiv funktion. Så gælder

- $(R^{-1} \circ R)(x) = x$ for alle $x \in Dom(R)$.
- $(R \circ R^{-1})(y) = y$ for alle $y \in \text{Ran}(R)$.

