Université de Monastir Institut Supérieur d'Informatique et de Mathématiques de Monastir Année Universitaire: 2024/2025

Matière : Algèbre, S1 Niveaux : L1 INFO

Feuille d'exercices 1

Exercice 1: Dans les exemples suivants, vérifier si l'expression P représente un polynôme, dans un tel cas, donner son degré, son coefficient dominant et son terme constant.

1.
$$P = X^3 - (X - 1)^{\frac{3}{2}}$$
.

2.
$$P = (5X^2 + 3)(X + 1)^3 - 3X^5 - X - 3$$
.

3.
$$P = \sum_{k=3}^{6} (k - X)^{k-3}$$
.

4.
$$P = X^5 - cos(X - \frac{\pi}{4})$$
.

5.
$$P = \sum_{j=0}^{n} (3X)^{j-1}$$
.

6.
$$P = \prod_{j=-2}^{2} (\frac{j}{3} - X)$$
.

Exercice 2:

1. Effectuer la division euclidienne de

(a)
$$P = X^3 + X^2 + 1$$
 par $Q = X^2 + X + 1$.

(b)
$$P = X^3 + X^2 - X - 3$$
 par $Q = X - 2$.

(c)
$$P = X^5 - X^4 + 2X^3 + X^2 + 4$$
 par $Q = X^2 - 1$.

(d)
$$P = X^2 - 3iX - 5(1+i)$$
 par $Q = X - 1 + i$.

- 2. Soit P un polynôme dont le reste de la division euclidienne par X-1 est -4 et par X-2 est 3. Quel est le reste de la division euclidienne de P par (X-1)(X-2)?
- 3. Déterminer le reste de la division euclidienne de $A = (X-2)^{2n} + (X-1)^n + 1$ par $B = (X-1)^2(X-2), n \in \mathbb{N}$.

Exercice 3:

- 1. Soit le polynôme $P(x) = X^4 5X^3 + 13X^2 19 + 10$. Calculer P(1) puis P(2). En déduire la factorisation du polynôme dans $\mathbb{R}[X]$ puis dans $\mathbb{C}[X]$.
- 2. Montrer que le polynôme $P(x) = X^4 + 2X^2 8X + 5$ admet une racine double. En déduire la décomposition en produit de polynômes irreductibles dans $\mathbb{R}[X]$.
- 3. Déterminer l'ordre de multiplicité de la racine 1 du polynôme P de $\mathbb{R}\left[X\right]$.

$$P(x) = X^5 - 5X^4 + 14X^3 - 22X^2 + 17X - 5.$$

Exercice 4: Effectuer les divisions suivant les puissances croissantes de :

1. P = 1 par Q = -X + 1, à l'ordre 6.

2.
$$P = X + 1$$
 par $Q = X^2 + 1$, à l'ordre 5.

14 h 12 m

3.
$$P = 4 \text{ par } Q = (X - 2)^2$$
, à l'ordre 4.

4.
$$P = -2X^2 + 3X + 2$$
 par $Q = -2X^3 + X^2 + 1$, à l'ordre 3.

5.
$$P = X^4 + X^3 - 2X + 1$$
 par $Q = X^2 + X + 1$, à l'ordre 2.

Exercice 5: Soit le polynôme à coefficients complexes :

$$P = X^3 + 3X - 12i.$$

On note x_1, x_2, x_3 ses racines.

- 1. Que vaut $x_1 + x_2 + x_3$?
- 2. Montrer que $x_1^2 + x_2^2 + x_3^2 = -6$.
- 3. Effectuer la division euclidienne de X^7 par P.
- 4. En déduire la valeur de $x_1^7 + x_2^7 + x_3^7$.

Exercice 6:

Déterminer le degré et coeff dominant des polynomies suivants

2)
$$P_2 = \chi^3 - \chi(\chi - 2 + i)^2$$

3) $P_3 = (\chi + 1)^n - (\chi - 1)^n = 10$

1)
$$P_{5} = (x+1) - (4x+ax)^{2} a \in \mathbb{R}$$

on considére lu soutre de polynômmes défine pou P = 1

YNEIN Pn+2 = -2XPN+1 -2 (N+1) Pn

1) 19 pourtout nEW. deg (In) et an= (-2)

2) Déterminer le coefficient constant de Pr