第9讲 非线性电阻电路的小信号分析方法

- 1 存在小扰动的非线性电阻电路分析
- 2 小信号法
- 3 电路元件的小信号模型
- 4 MOSFET小信号放大器电路分析

本讲练习题需要用到**计算器** 还要用点纸笔

Principles of Electric Circuits Lecture 9 Tsinghua University 2023

本讲(L9+A2) 重难点

- 元件的小信号模型
- · MOSFET小信号放大器电路分析

Principles of Electric Circuits Lecture 9 Tsinghua University 2023

0 前情回顾

Principles of Electric Circuits Lecture 9 Tsinghua University 2023

1 存在小扰动的非线性电阻电路分析

电路出现了小扰动电压源Δus(t)

$$\frac{U_{\rm S} + \Delta u_{\rm S}(t) - u}{R} = I_{\rm S} \left(e^{u/U_{\rm TH}} - 1 \right)$$

1 存在小扰动的非线性电阻电路分析

电路出现了小扰动电压源Δus(t)

Principles of Electric Circuits Lecture 9 Tsinghua University 2023

单选题 1分

已知 U_{TH} =0.025V, I_{S} =10⁻¹²A, U_{0} =0.7V,则二极管的偏置电流为 I_{0} =____A

$$I_0 = I_S \left(e^{U_0/U_{TH}} - 1 \right)$$

单选题 1分

已知 $U_{\rm TH}$ =0.025V, $I_{\rm S}$ =10⁻¹²A, U_0 =0.7V,则在二极管直流偏置 附近的小信号关系为 $\Delta i(t)$ =____* $\Delta u(t)$

红包

$$\Delta i(t) = \frac{\mathrm{d}i}{\mathrm{d}u}\Big|_{U_0} \Delta u(t)$$

现在关注更为一般的非线性电阻电路(电源/线性/非线性电阻各1个)

 $U_{\rm s}$ 为直流电源

 $R_{\rm S}$ 为线性电阻

非线性电阻i = g(u)

$$\left\{\begin{array}{c} U_{S}=R_{S}I_{0}+U_{0} \\ I_{0}=g(U_{0}) \end{array}\right\} \qquad \left\{\begin{array}{c} U_{0} \\ I_{0} \end{array}\right.$$

解析法、分段线性法、图形法

所有支路量均可求解出来

非线性电阻工作点电压电流之间是非线性关系!

Principles of Electric Circuits Lecture 9 Tsinghua University 2023

假设激励在 $U_{\rm S}$ 基础上,有小扰动电压源 $\Delta u_{\rm S}(t)$,求解支路量

该方程并不好求解

在扰动比较小(且g函数性质比较好)的时候, 存在简单且误差可接受的分析方法

Principles of Electric Circuits Lecture 9 Tsinghua University 2023

- 11/45页 -

$$U_{S} + \Delta u_{S}(t) = R_{S} [I_{0} + \Delta i(t)] + U_{0} + \Delta u(t)$$

扰动前电路

观察上式和左图, 关于扰动项 $\Delta u(t)$ 和 $\Delta i(t)$ 的方程是?

关于扰动项 $\Delta u(t)$ 和 $\Delta i(t)$ 的方程 能构成怎样的电路? (投稿)

Principles of Electric Circuits Lecture 9 Tsinghua University 2023

工作点电路:

原拓扑, 无扰动, 非线性

小信号电路:

原拓扑, 无直流, 线性

Principles of Electric Circuits Lecture 9 Tsinghua University 2023

刚才讨论的是电源/线性/非线性电阻/小扰动各1个

- 多个非线性电阻怎么办?
- 多个直流电源怎么办?
 - 电源的作用效果能叠加吗?
- 多个扰动怎么办?
 - 电源和扰动效果的合成不是叠加
 - 多个扰动的作用效果能叠加吗?
- 为什么老强调小扰动/小信号?

此处可以有弹幕

 $\begin{array}{ccc}
 & & & \downarrow & \downarrow & \downarrow & \downarrow \\
 & & & \downarrow & \downarrow & \downarrow & \downarrow \\
 & & & & \downarrow & \downarrow & \downarrow & \downarrow \\
 & & & & \downarrow & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow & \downarrow \\
 & & & & & & \downarrow & \downarrow & \downarrow \\
 & & & & & & \downarrow & \downarrow & \downarrow \\
 & & & & & & \downarrow & \downarrow & \downarrow & \downarrow \\
 & & & & & & \downarrow & \downarrow & \downarrow & \downarrow \\
 & & & & & & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & & & & & & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & & & & & & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & & & & & & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & & & & & & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & & & & & & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & & & & & & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & & & & & & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & & & & & & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & & & & & & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & & & & & & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & & & & & & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & & & & & & \downarrow & \downarrow & \downarrow & \downarrow \\
 & & & & & & \downarrow & \downarrow & \downarrow & \downarrow \\
 & & & & & & \downarrow & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow & \downarrow \\
 & & & & & \downarrow & \downarrow & \downarrow & \downarrow \\
 & & & & \downarrow & \downarrow & \downarrow & \downarrow \\
 & & & & \downarrow & \downarrow & \downarrow & \downarrow \\
 & & & & \downarrow & \downarrow & \downarrow & \downarrow \\
 & & & & \downarrow & \downarrow & \downarrow & \downarrow \\
 & & & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & & & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & & & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & & & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\$

Principles of Electric Circuits Lecture 9 Tsinghua University 2023

支路量表示方法小结

Principles of Electric Circuits Lecture 9 Tsinghua University 2023

3 电路元件的小信号模型

非线性电阻

线性电阻

Principles of Electric Circuits Lecture 9 Tsinghua University 2023

雨课堂 Rain Classroom

单选题 1分

某非线性电阻的
$$u$$
- i 关系为 $u=i^3-5i$
其工作点 I_0 =1A时,动态电阻 R_d =___ Ω

$$\bigcirc$$
 -2

独立电压源

此处可以有弹幕/投稿

建立工作点 u-i特性求导 对 Δu - Δi 特性的理解

Principles of Electric Circuits Lecture 9 Tsinghua University 2023

独立电压源

独立电流源

Principles of Electric Circuits Lecture 9 Tsinghua University 2023

市课堂 Rain Classroom

23

- 23/45页 -

Principles of Electric Circuits Lecture 9 Tsinghua University 2023

市课堂 Rain Classroom

例 已知 $u(t)=7+U_{\rm m}\sin\omega t$ V, $\omega=100{\rm rad/s}$, $U_{\rm m}<<7{\rm V}$, $R_1=2\Omega$ 。

$$r_2: u_2=i_2+2 i_2^3$$

$$r_3: u_3=2i_3+i_3^3$$

第1步:直流电压单独作用,求解静态工作电压,电流。

Principles of Electric Circuits Lecture 9 Tsinghua University 2023

第2步: 求两个非线性电阻的小信号模型

$$R_{3d} = \frac{du_3}{di_3}\Big|_{I_3=1A} = 2 + 3i_3^2\Big|_{I_3=1A} = 5\Omega$$

$$r_2: u_2=i_2+2 i_2^3$$

$$r_3: u_3=2i_3+i_3^3$$

$$I_2 = I_3 = 1A$$
 $I_1 = 2A$

Principles of Electric Circuits Lecture 9 Tsinghua University 2023

- 26/45页 -

单选题 1分

计算 R_2 的动态电阻:

$$R_{2d} = \underline{\Omega}$$

- 5

$$R_1 = 2\Omega$$

 R_2 : $u_2 = i_2 + 2 i_2^3$

$$R_3: u_3=2i_3+i_3^3$$

$$I_1=2A$$

$$I_2=1A$$

$$U_2 = 3V$$

$$U_3 = 3V$$

$$I_3 = 1A$$

$$U_3 = 3V$$

第2步: 求两个非线性电阻的小信号模型

$$R_{2d} = \frac{\mathrm{d}u_2}{\mathrm{d}i_2}\Big|_{I_2=1\mathrm{A}} = 1 + 6i_2^2\Big|_{I_2=1\mathrm{A}} = 7\Omega$$

$$R_{3d} = \frac{\mathrm{d}u_3}{\mathrm{d}i_3}\Big|_{I_3=1\mathrm{A}} = 2 + 3i_3^2\Big|_{I_3=1\mathrm{A}} = 5\Omega$$

画出小信号工作等效电路, 求 Δu , Δi 。

$$r_2: u_2=i_2+2 i_2^3$$

$$r_3: u_3=2i_3+i_3^3$$

$$I_2 = I_3 = 1A$$
 $I_1 = 2A$

Principles of Electric Circuits Lecture 9 Tsinghua University 2023

$$\Delta i_1 = U_{\rm m} \sin \omega t / (2 + 5//7) = 0.2033 \ U_{\rm m} \sin \omega t$$

$$\Delta i_2 = \Delta i_1 \times 5/12 = 0.0847 \ U_{\rm m} \sin \omega t$$

$$\Delta i_3 = \Delta i_1 \times 7/12 = 0.1186 U_{\rm m} \sin \omega t$$

$$\Delta u_2 = 7 \times \Delta i_2 = 0.593 \ U_{\rm m} \sin \omega t$$

Principles of Electric Circuits Lecture 9 Tsinghua University 2023

直流偏置:

$$I_2 = I_3 = 1$$
A $I_1 = 2$ A $U_2 = U_3 = 3$ V 小信号响应: $\Delta i_1 = 0.2033 \ U_{
m m} {
m sin} \omega t$ $\Delta i_2 = 0.0847 \ U_{
m m} {
m sin} \omega t$ $\Delta i_3 = 0.1186 \ U_{
m m} {
m sin} \omega t$ $\Delta u_2 = 0.593 \ U_{
m m} {
m sin} \omega t$

第3步: 合成

$$i_1$$
=2+ 0.2033 $U_{\rm m} \sin \omega t$ A
 i_2 =1+ 0.0847 $U_{\rm m} \sin \omega t$ A
 i_3 =1+ 0.1186 $U_{\rm m} \sin \omega t$ A
 u_2 =3+ 0.5932 $U_{\rm m} \sin \omega t$ V

Principles of Electric Circuits Lecture 9 Tsinghua University 2023

第2次应用介绍课:非线性电阻电路的应用

----(MOSFET构成模拟放大器)

小扰动

小扰动→(小)待放大信号

全信号 直流偏置 (小)待放大信号

$$u_{\text{IN}} = u_{\text{GS}} = U_{\text{GS}} + \Delta u_{\text{GS}}$$
$$u_{\text{OUT}} = u_{\text{DS}} = U_{\text{DS}} + \Delta u_{\text{DS}}$$

全信号 直流偏置 (小)放大后信号

Principles of Electric Circuits Application 2 Tsinghua University 2023

(1) 求直流工作点 (解析法)

设MOSFET工作在饱和区

$$U_{\rm S}{=}10{\rm V}$$
, $U_{\rm GS}{=}2.5{\rm V}$, $K{=}0.5{\rm mA/V^2}$, $U_{\rm T}{=}1{\rm V}$, $R_{\rm L}{=}10{\rm k}\Omega$

$$\boldsymbol{U}_{\mathrm{OUT}} = \boldsymbol{U}_{\mathrm{DS}} = \boldsymbol{U}_{\mathrm{S}} - \boldsymbol{I}_{\mathrm{DS}} \boldsymbol{R}_{\mathrm{L}}$$

$$U_{\text{OUT}} = U_{\text{S}} - \frac{K(U_{\text{GS}} - U_{\text{T}})^2}{2} R_{\text{L}}$$

$$U_{\text{OUT}} = U_{\text{DS}} = 10 - \frac{0.5 \times (2.5 - 1)^2}{2} \times 10 = 4.375 \text{V}$$

恒流区工作条件:
$$0 < (U_{GS} - U_T) < U_{DS}$$

还需验证MOSFET不工作在电阻区(略)

Principles of Electric Circuits Application 2 Tsinghua University 2023

(2) 画小信号电路,求小信号解

Principles of Electric Circuits Application 2 Tsinghua University 2023

Principles of Electric Circuits Application 2 Tsinghua

单选题 1分

已知MOSFET工作于电流源区,K= 0.5mA/V², $U_{\rm T}=1$ V, 当 $U_{\rm GS}=1.3$ V时, 其对应的线性受控源关系为 $\Delta i_{\rm DS}$ (A)=___* $\Delta u_{\rm GS}$ (V)(注意单位) $i_{\rm DS}=\frac{K(u_{\rm GS}-U_{\rm T})^2}{2}$ 0.15 (A/V)

3 0.045 (A/V)

- $\Delta i_{\rm DS} = K \left(U_{\rm GS} U_{\rm T} \right) \Delta u_{\rm GS}$
- **0.00015 (A/V)**
- 0.000845 (A/V)

$$u_{\text{OUT}} = U_{\text{OUT}} + \Delta u_{\text{OUT}}$$

$$U_{ ext{OUT}} = U_{ ext{S}} - rac{K \left(U_{ ext{GS}} - U_{ ext{T}}
ight)^2}{2} R_{ ext{L}}$$

$$\Delta u_{\text{OUT}} = -K \left(U_{\text{GS}} - U_{\text{T}} \right) R_{\text{L}} \Delta u_{\text{IN}}$$

 $U_{\rm S} = 10 {\rm V}, \ U_{\rm GS} = 2.5 {\rm V}, \ K = 0.5 {\rm mA/V^2}, \ U_{\rm T} = 1 {\rm V}, \ R_{\rm L} = 10 {\rm k}\Omega$

$$u_{\rm OUT} = 4.375 - 7.5 \Delta u_{\rm IN}$$

见仿真

再论no free lunch

Principles of Electric Circuits Application 2 Tsinghua

直流电源去哪啦?

Principles of Electric Circuits Application 2 Tsinghua University 2023

回顾一下MOSFET

Principles of Electric Circuits Application 2 Tsinghua University 2023

雨课堂 Rain Classroom

让我们来看一看2020年旗舰手机的显示屏

型号	显示屏
iPhone 11	Liquid 视网膜高清显示屏 6.1 英寸 LCD 屏
iPhone 11 Pro Max	超视网膜 XDR 显示屏 5.8 英寸或 6.5 英寸 OLED 屏
Galaxy S20+	^{动态 AMOLED 2X} 动感十足的观看体验 一手掌握 AMOLED 是一种OLED
华为Mate 30 Pro	88° 超曲面OLED环幕屏*1 环幕视界, 侧屏触控自在掌握
小米 10 Pro	定制三星 AMOLED 高端双曲面 90Hz刷新率+180Hz采样率 刷新屏幕体验

Principles of Electric Circuits Application 2 Tsinghua University 2023

- 43/45页 -

- 45/45页 -