Indian Institute of Technology, Kanpur

Important Concepts

Author: Shubham Agrawal

February 19, 2018

Abstract

There are various concepts in probability theory and linear algebra that we keep on forgetting and they keep haunting us throughout our lifetime. I attempt to list and explain a few of them, which I myself need very much.

1 Vector Spaces

Vector Spaces are defined with respect to (set of vectors V, scalar multiplication over F and vector addition +). A set of simple mathemetical objects form a vector space when their operations + and of following axioms:

$$+: V \times V \rightarrow V$$

 $: F \times V \rightarrow V$

Table 1: Vector Space Properties

+	
Associativity $u + (v + w) = (u + v) + w$	Compatibility $a(bv) = (ab)v$
Commutativity	Identity element fo scalar multiplication
	I.v = v
Identity Element $\exists 0 \in V \ v + 0 = v \forall v \in V$	a(u+v) = au + av
Inverse Element for every $v \in V, \exists v^{-1} s.tv + v^{-1} = 0$	(a+b)v = av + bv

2 Subspaces

Let W be a subset of vector space V (over field K). Then W is called subspace if:

- $0 \in W$
- $\forall u, v \in W \implies u + v \in W$
- $\forall c \in K \text{ and } w \in W \implies c.w \in W$

3 Linear Transformation

: Mapping between two vector spaces V and W (usually over same field F) such that operation is preserved. That is, applying the mapping before or after the operation should not matter.

$$f(u+v) = f(u) + f(v)$$
$$f(cu) = cf(u)$$

4 Eigen vectors and Eigen Values

Eigen Vector and Eigen values are defined with respect to Linear transformation and corresponding vector spaces. A vector is called an eigen vector wrt a particular linear transformation if it is only scaled by a fixed value (called eigen value) on applying the linear transformation.

$$T(\mathbf{v}) = \lambda \mathbf{v}$$

There is a correspondence between n by n square matrices and linear transformations from an n-dimensional vector space to itself. For this reason, it is equivalent to define eigenvalues and eigenvectors using either the language of matrices or the language of linear transformations.

For a matrix, eigenvalues and eigenvectors can be used to decompose the matrix, for example by diagonalizing it.

5 Matrix Similarity

In linear algebra, two n-by-n matrices A and B are called similar if

$$B = P^{-1}AP$$

for some invertible n-by-n matrix P.

6 Diagonalizable Matrix

A matrix is called diagonalizable, if it's similar to a diagonal matrix. These matrices are of interest because of their ease of handling.

- 7 Eigen Value decomposition
- 8 Singular value decomposition

9 Gram Schmidt Orthogonalization

10 Positive Definite Matrix

A symmetric (Hermitian) $n \times n$ real (complex) matrix M is said to be Positive Definite if $z^T M z > 0$ for every non-zero vector z. In case of positive semidefinite, $z^T M z \geq 0$.

10.1 Properties of Positive definite matrix

Let M be an $n \times n$ symmetric matrix.

- It has positive eigen values. Vice-versa, if a matrix has all it's eigenvalues real and positive, the matrix is positive definite.
- \bullet For any real invertible matrix A, A^TA is always positive definite
- Positive definite matrix has **positive determinant**. This means, that PD matrix is always **nonsingular**

11 Covariance Matrix

Let $\mathbf{X} = \{X_1, X_2 \cdots X_n\}$ be a random vector. Then,

$$Cov(\mathbf{X}) = [\Sigma]_{n \times n}$$
 (1)

where $\Sigma_{ij} = cov(X_i, X_j) = E((X_i - \mu_i)(X_j - \mu_j))$ Also, Let $\mathbf{Y} = \{Y_1, Y_2 \cdots Y_m\}$ be another random vector. Then,

$$Cov(\mathbf{X}, \mathbf{Y}) = E((\mathbf{X} - \mu_{\mathbf{X}})^{T}(\mathbf{Y} - \mu_{\mathbf{Y}})) = [\Sigma]_{n \times m}$$
 (2)

11.1 Covariance

Covariance means how two things (random variables X_1 and X_2) vary with respect to each other. If on increase of X_1 , X_2 increases and on decrease of X_1 , X_2 decreases, we say covariance is positive. If on increase of X_1 , X_2 decreases and vice versa, we say that covariance is negative. Covariance is 0 if no such relation exists. Understanding the magnitude of covariance is difficult.

Mathematically, let X_1 and X_2 are two real valued random variables. Then $Cov(X_1, X_2) = E[X_1 - \mu_1) \times (X_2 - \mu_2)]$

11.2 Properties of Covariance Matrices

- Positive semidefinite
- Symmetric
- If (m = n)

12 Random Variable

Random variable is a function that maps outcomes of an event to mathematically convenient form (real numbers). For example: Let our event be "A coin is tossed 30 times" and let random variable be Number of heads occured while tossing 30 times

12.1 Random Vector

Random vector are used when you want to view multiple events simultaneously. For example: You want to observe tossing of coin (X_1) and rolling of dice (X_2) simultaneously. Then, you define random vector $\mathbf{X} = \{X_1, X_2\}$. Here $X_1 : -1, 1$ and $X_2 : 1, 2, 3, 4, 5, 6$. In more machine learning pov, you have random vector as your feature set where each feature is a random variable.

13 PCA