Optimal time interval reproduction in a neural circuit model

Graduate School of Systemic Neurosciences LMU Munich

Single-cell level

Katharina M Bracher^{1,2} and Kay Thurley^{1,3}

k.bracher@campus.lmu.de

- 1 Faculty of Biology, Ludwig-Maximilians-Universität München, Germany
- 2 Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München Munich, Germany
- 3 Bernstein Center for Computational Neuroscience Munich, Germany

Introduction

Sensory information is combined with expectations (based on prior knowledge) to drive behaviors. The interaction of current sensory input and expectations is likely subject to error minimization.

Psychophysical characteristics of magnitude estimation

Magnitude estimation shows characteristic effecs: Regression effect

- Scalar variability
- Range effect

- Sequential effect

Time reproduction is one of the behavioral methods

to investigate error minimization and related optimal behavioral strategies.

Timing by temporal scaling

Recordings in the medial frontal cortex (MFC) show:

- Firing rate profiles are temporally scaled to match the produced intervals
- Population activity evolves along an invariant neural trajectory at different speeds
- Controling timing of future movements by adjusting an internal speed command

• Speed command is updated after stimulus presentation based on the error between prediction (derived from a simulated motor plan) and the actual stimulus duration.

Circuit model

- Coordinates movement times using ramping activity towards a threshold.
- Update of speed comand based on error signal to minimize timing errors.

Model Description

Basic circuit

• Two mutually inhibitory units u, v receive shared tonic input I.

- ullet Inputs to $u,\,v$ are governed by a sigmoidal activation function heta .
- The readout unit y receives excitatory and inhibitory inputs from u and v.
- This results in ramp-like activity in y.

• The input to the circuit controls at which speed the readout unit increases its activity. ullet Increasing the input I to u and v corresponds to moving their nullclines in the phase plane.

• Higher inputs I correspond to smaller gradients in y.

Inverse relation of slope and input:

• Lower inputs I correspond to larger gradients in y.

Flexibel speed control can be

consisting of three units u, v, y

Stochastic synaptic inputs are

modeled as independent white

phase plane

that represent population activity.

noise η with standard deviation σ .

Input I

 $\frac{dv}{dt} = 0$

- du/dt = 0

achieved by a simple model

Connecting the slope of y and a fixed threshold y_{th} :

- For higher I, the threshold is reached after a longer time
- interval • For lower I, the threshold is reached after a shorter time interval

The activity in y is scaled such that the threshold is reached at different times.

I determines the time interval after which y reaches the fixed threshold y_{th} .

 $au rac{dI}{dt} = sK(y-y_{
m th})$

Update and reset mechanism

In interval reproduction experiments, a stimulus interval is presented and has to be reproduced.

Reaching a threshold y_{th} can be understood as movement initiation time.

Update mechanism that flexibly adjusts I:

• Adjusting I based on an error signal controlls the reporduced time interval.

• The error is weighted by an undate parameter
$$K$$

• The error is weighted by an update parameter K.

Reset mechanism:

ullet After stimulus presentation u and vreceive a transient input I_r to reset the dynamics for the time reproduction.

$$aurac{du}{dt} = -u + heta(W_{uI}I - W_{uv}v + \eta_u - I_r)$$

$$aurac{dv}{dt} = -v + heta(W_{vI}I - W_{vu}v + \eta_v + I_r)$$

Parameter Tuning

Behavioral plausible slopes

 $MSE = BIAS^2 + VAR$

Simulation

Conclusion

References

Egger, Seth W., Nhat M. Le, and Mehrdad Jazayeri (2020). "A neural circuit model for human sensorimotor timing". Nature Communications 11.1, pp. 1-14. issn: 20411723. doi: 10.1038/s41467-020-16999-8.

Egger, Seth W., Evan D. Remington, Chia Jung Chang, and Mehrdad Jazayeri (2019). "Internal models of sensorimotor integration regulate cortical dynamics". Nature Neuroscience 22.11, pp. 1871–1882. issn: 15461726. doi: 10.1038/s41593-019-0500-6.

Meirhaeghe, Nicolas, Hansem Sohn, and Mehrdad Jazayeri (2021). "A precise and adaptive neural mechanism for predictive temporal processing in the frontal cortex". Neuron 109.18, 2995–3011.e5. issn: 10974199. doi: 10.1016/j.neuron.2021.08.025.

Petzschner, Frederike H., Stefan Glasauer, and Klaas E. Stephan (2015). "A Bayesian perspective on magnitude estimation". Trends in Cognitive Sci- ences 19.5, pp. 285-293. issn: 1879307X. doi: 10.1016/j.tics.2015.03. 002.

Wang, Jing, Devika Narain, Eghbal A. Hosseini, and Mehrdad Jazayeri (2018). "Flexible timing by temporal scaling of cortical responses". Nature Neuroscience 21.1, pp. 102-112. issn: 15461726. doi: 10 . 1038 / s41593 - 017 - 0028-6.