Relazione

Standardizzazione AgNO₃ per analisi cloruri

- Beltrami Daniele

Materiali:

Vetreria	Becker	Matraccio	Buretta	Pipetta
Sostanze	$AgNO_3$	NaCl	K2CrO4	H₂O distillata

Calcoli sol.NaCl:

Dati

[NaCl] = 0,1 N = 0,1 M V_{NaCl} = 500 mL = 0,5 L

 $Mm_{NaCl} = 58,45 \text{ g/mol}$

Risoluzione

$$\begin{split} &mol_{\text{Cl-}} = [NaCl] * V_{\text{NaCl}} = 0,1 \ M*0,5 \ L = 0,05 \ mol \\ &m_{\text{Cl-}} = mol_{\text{NaCl}} * Mm_{\text{NaCl}} = 0,05 \ M*58,45 \ mL = \textbf{2,92 g} \end{split}$$

Procedimento:

- 1) Preparare una soluzione di NaCl 0.1 N (0.1 M) utilizzando i calcoli sopra riportati.
- 2) Riempire la buretta con la soluzione di AgNO3 da standardizzare.
- 3) Inserire 15 mL di H2O distillata in un becker.
- 4) Aggiungere una pipettata di indicatore (K₂CrO₄).
- 5) Titolare fino al viraggio (cambiamento di colore).
- 6) Appuntarsi il volume di AgNO₃ utilizzato.
- 7) Inserire 15 mL della soluzione di NaCl in un becker.
- 8) Aggiungere una pipettata di indicatore (K₂CrO₄).
- 9) Titolare fino al viraggio (cambiamento di colore).
- 10) Appuntarsi il volume di AgNO₃ utilizzato.
- 11) Calcolare la concentrazione di AgNO₃ con i calcoli sotto riportati.

12) FINE

Calcoli [AgNO₃]:

Dati

$$\begin{split} & \text{[NaCl]} = 0,1 \text{ N} = 0,1 \text{ M} \\ & V_{\text{NaCl}} = 15 \text{ mL} \\ & V_{\text{AgNO3}} = 15,5 \text{ mL} \\ & V_{\text{AgNO3 bianco}} = 0,1 \text{ mL} \end{split}$$

Risoluzione

[AgNO₃]: [AgNO₃]* V_{agNO3} = [NaCl]* $(V_{NaCl} - V_{AgNO3 \, bianco}) \rightarrow$ \rightarrow [AgNO₃] = (0,1*15)/(15,5-0,1) = **0,099 M**

Analisi cloruri H₂O – Milano (via Crescenzago 110)

- Beltrami Daniele

Tipo di esperienza: Titolazione Volumetrica

Obiettivo: Misurare la concentrazione di cloruri presenti nell'acqua di Via Crescenzago 110 e confrontarlo con il valore misurato da Comune di Milano.

Cenni teorici: L'analisi volumetrica è una tecnica analitica che consiste nel far reagire una soluzione a titolo noto di un reagente (titolante) con un volume noto di una soluzione a titolo non noto contenente l'analita (titolando). Così facendo si è in grado di calcolare la concentrazione della soluzione incognita.

Materiali:

Vetreria	Becker	Matraccio	Buretta (25 mL)	Pipetta
Sostanze	AgNO ₃	H ₂ O di rubinetto	K ₂ CrO ₄	

Procedimento:

- 1) Standardizzare una soluzione di AgNO₃ (vedi scheda 6.1).
- 2) Riempire la buretta con la soluzione di AgNO₃.
- 3) Prelevare con un matraccio 100 mL di H₂O di rubinetto.
- 4) Inserirli in un becker.
- 5) Agiungere una pipettata di K₂CrO_{4.}
- 6) Titolare il campione di H₂O potabile.
- 7) Sottrarre il volume di titolante (AgNO₃) utilizzato per il bianco al volume utilizzato per il campione.
- 8) Calcolarsi la concentrazione dei cloruri con i calcoli sotto riportati.
- 9) FINE

Calcoli:

Dati

[AgNO₃] = 0,099 M V_{agNO3} = 1,3 mL V_{H2O} = 100 mLRisoluzione

[Cl⁻]: $M_{AgNO3}*V_{agNO3} = [Cl^-]*V_{H20} \rightarrow [Cl^-] = (1,3*0,099)/100 = 0,00128 \text{ M}$ ppm[Cl⁻] = M[Cl⁻]*Mm Cl⁻*1000 = **45,38 ppm**

Osservazioni e conclusione:

Secondo i dati misurati dal Comune di Milano riguardanti l'acqua di rubinetto di via Crescenzago 110 la concentrazione di cloruri dovrebbe essere di 30 ppm. Dalla nostra misurazione è emerso che la concentrazione di cloruri è di 51,68 ppm, poco sopra il valore misurato da MilanoBlu ma sempre inferiore al limite di legge (250 ppm).

Il discostamento dalla misurazione effettuata dal Comune di Milano è normale e potrebbe essere dovuto ad errori umani o strumentali.