Отчет по лабораторной работе №5

Вероятностные алгоритмы проверки чисел на простоту

Бармина Ольга Константиновна 2024 September 7th

Содержание

1	Цель работы	4
2	Задание	5
3	Теоретическое введение	6
4	Выполнение лабораторной работы	7
5	Выводы	11

List of Figures

4.1	Программная реализация алгоритма теста Ферма	7
4.2	Алгоритм вычисления символа Якоби	8
4.3	Программная реализация алгоритма Соловэй-Штрассена	9
4.4	Программная реализация алгоритма Миллера-Рабина	10

1 Цель работы

Цель данной работы: научиться реализовывать алгоритмы проверки чисел на простоту.

2 Задание

1. Реализовать алгоритмы проверки чисел на простоту.

3 Теоретическое введение

Пусть а - целое число. Числа $\ddagger 1$, $\ddagger a$ называются тривиальными делителями числа а. Целое число р $\in \mathbb{Z}/\{0\}$ называется простым, если оно не является делителем единицы и не имеет других делителей, кроме тривиальных. В противном случае число р $\in \mathbb{Z}/\{-1,0,1\}$ называется составным.

4 Выполнение лабораторной работы

1. Прописываем функцию для алгоритма теста Ферма (рис. fig. 4.1).

```
a = 29
b = 49

def ferm(a, n):
    r = (a**(n-1))%n
    if r == 1:
        return 'probably, prime'
    else:
        return 'not prime'

ferm(8,a)

'probably, prime'

ferm(8,b)

'not prime'
```

Figure 4.1: Программная реализация алгоритма теста Ферма.

2. Прописывается функция для алгоритма вычисления символа Якоби. (рис.

fig. 4.2).

```
from sympy import primefactors
def jacobi(a, n):
    g = 1
    while True:
        if a == 0:
            return 0
        elif a == 1:
            return g
        else:
            k = primefactors(a)[0]
            if len(primefactors(a)) == 1:
                 a1 = a
            else:
                 a1 = primefactors(a)[1]
            if k%2 == 1:
                 if (n-1)\%8 == 0 or (n+1)\%8 == 0:
                 if (n-3)\%8 == 0 or (n+3)\%8 == 0:
                     s = -1
            else:
                 s = 1
            if a1 == 1:
                 return g*s
            if (n-3)\%4 == 0 or (a1-3)\%4 == 0:
                 s = -s
            a = n%a1
            n = a1
            g = g*s
jacobi(8, a)
-1
jacobi(8, b)
1
```

Figure 4.2: Алгоритм вычисления символа Якоби

3. Программная реализация алгоритма Соловэй-Штрассена. (рис. fig. 4.3).

```
def sol_st(a, n):
    r = (a**((n-1)/2))%n
    if r != 1 and r != n-1:
        return 'not prime'
    s = jacobi(a, n)
    if (r-s)%n != 0:
        return 'not prime'
    else:
        return 'probably prime'

sol_st(8, a)
'probably prime'
```

```
sol_st(8, b)
'not prime'
```

Figure 4.3: Программная реализация алгоритма Соловэй-Штрассена

4. Программная реализация алгоритма Миллера-Рабина. (рис. fig. 4.4).

```
def mil rab(a, n):
    s = primefactors(n-1)[0]
    if len(primefactors(n-1)) == 1:
        r = n-1
    else:
        r = primefactors(n-1)[1]
    y = (a**r)%n
    if y != 1 and y != n-1:
        j = 1
        while j \le s-1 and y != n-1:
            y = (y^{**2})%n
            if y == 1:
                return 'not prime'
            j += 1
        if y != n-1:
            return 'not prime'
    return 'probably prime'
mil_rab(8, a)
'probably prime'
mil_rab(8, b)
'not prime'
```

Figure 4.4: Программная реализация алгоритма Миллера-Рабина.

5 Выводы

В ходе работы были реализованы алгоритмы проверки чисел на простоту.