

Content

- Intro to Machine Learning
- Supervised Learning
 - Linear Regression
 - Logistic Regression
 - Decision Tree
 - Naive Bayes
 - o SVM
 - o kNN

Activity Time

- Go to
 - https://b.socrative.com/login/student/?feature=embed
- Room Name: NUSFINTECH
- Enter your name

Facts about Machine Learning

Activity Time

- Let's have some fun! We will randomly choose a name. If you are chosen, please share your screen and try our a photo of yourself on this website. (at your own discretion)
- https://www.how-old.net/

2. Linear Regression

Linear Regression (In-Class A) Objective:

Predict the housing prices (Target Variable) using

the Input Variables (Housing Floor Area)

2. Linear Regression

Strategy: Use OLS (Ordinary Least Squares) to fit a line to minimise the squared errors

Advantages	Disadvantages
Simple to implement Easy to interpret	Sensitive to outliers
Overfitting can be reduced by regularization	Prone to under-fitting

3. Logistic Regression

- Prediction function splits out a percentage
- A sigmoid function makes the prediction function output a percentage
- Sigmoid function produces

$$P(t) = \frac{1}{1 + e^{-t}}$$

Advantages	Disadvantages
Predicted parameters give inference about the importance of each feature	Requires moderate or no multicollinearity between independent variables
Very efficient when the dataset has features that are linearly separable	Cannot solve non linear problems

Objective:

Given a dataset with features and labels, divide them into "pure" subsets based on each feature-label pair.

3 with diabetes, 2 without

	Age	Insulin	Glucose	Outcome
0	88	141	183	1
1	67	100	175	1
2	21	71	0	0
3	58	86	71	0
4	39	160	175	1

New row: Outcome?			
	Age	Insulin	Glucose
5	40	102	165

Not pure. Continue splitting by features!

Pure subsets. Stop splitting!

Follow the path

Advantages	Disadvantages
Less effort for data preparation	Unstable
Intuitive	Calculations can get very complex

5. Naive Bayes

C = Happy/Sad/Angry

X = "Oh yeah! I just won the lottery."

Advantages	Disadvantages
Better performance when independent assumption holds true	Almost impossible to have independent predictors in real life
Less training period	Zero Frequency

6. SVM

Recall from 1-layer nets: Which Separating

Hyperplane?

- In general, lots of possible solutions for a,b,c (an infinite number!)
- Support Vector Machine (SVM) finds an optimal solution

6. SVM

- SVMs maximize the margin (Winston terminology: the 'street') around the separating hyperplane.
- The decision function is fully specified by a (usually very small) subset of training samples, the support vectors.
- This becomes a Quadratic programming problem that is easy to solve by standard methods

6. SVM

- Lots of possible solutions for a,b,c.
- Some methods find a separating hyperplane, but not the optimal one (e.g., neural net)
- But: Which points should influence optimality? All points?
- Linear regression
- Neural nets Or only "difficult points" close to decision boundary
- Support vector machines

Advantages	Disadvantages
Works well then there is a clear margin of separation between classes	Not suitable for large data sets
Works well in high dimensional spaces	Does not perform well then there is more noise

7. KNN

- KNN= K-nearest neighbour (based on Euclidean distance for example)

To classify a document d:

- -Define k-neighborhood as the k nearest neighbors of d
- -Pick the majority class label in the k-neighborhood

7. KNN

- Using only the closest example (1NN) subject to errors due to:
- A single atypical example.
- Noise (i.e., an error) in the category label of a single training example.
- More robust: find the k examples and return the majority category of these k
- k is typically odd to avoid ties; 3 and 5 are most common

Advantages	Disadvantages
No training period	Does not work well with large datasets
Easy to implement	Does not work well with high dimensions

THANKS!

And much thanks to these ppl:D

- https://www.saedsayad.com/naive_bayesian.htm
- NUS CS3244
- Hackwagon