

Institut National des Langues et Civilisations Orientales

Département Textes, Informatique, Multilinguisme

Titre du mémoire

MASTER

TRAITEMENT AUTOMATIQUE DES LANGUES

Parcours:

Ingénierie Multilingue

par

Martin DIGARD

Directeur de mémoire :

Damien NOUVEL

Encadrant:

Florent JACQUEMARD

Année universitaire 2020/2021

TABLE DES MATIÈRES

Li	iste des figures	5
Li	iste des tableaux	5
In	troduction	7
Ι	Contexte général	9
1	État de l'art1.1 Introduction	11
2	Transcription automatique 2.1 Introduction	13 14 15
3	Méthodes3.1 Introduction3.2 Représentations, systèmes et réécriture3.3 Conclusion	18
II	Expérimentations	2 9
	4.1 Introduction 4.2 Contenu 4.3 Conclusion	34 45
5	5.1 Introduction	47 47 47 47
6		

Conclusion générale	5 1
Bibliographie	5 3

TABLE DES MATIÈRES

LISTE DES FIGURES

6 LISTE DES TABLEAUX

En règle générale, l'introduction et la conclusion sont les deux sections de contenu à ne pas être numérotées. Idéalement, chaque chapitre commence par une introduction rapide et se termine par une conclusion rapide pour aider le lecteur à mémoriser et comprendre ce qui a été fait.

INTRODUCTION

Introduction : présentation générale du contexte et de la problématique traitée, plan suivi dans le mémoire.

Présentation générale

Le contexte

Ce mémoire de recherche, effectué en parallèle d'un stage à l'Inria dans le cadre du master de traitement automatique des langues de l'Inalco, contient une proposition d'amélioration d'une chaîne de traitement d'ADT de bout en bout.

Même si ce sujet ne traite pas directement de langues naturelles, son objet est l'écriture automatique de partitions de musique à partir de données audios. Il nécessite donc la manipulation d'un langage musical codifié avec une grammaire (solfège, durées, nuances, volumes) et soulève de nombreuses problématiques proches de la reconnaissance de la parole.

Notes discussion Damien:

Musique \Rightarrow langue ou langage?;

Partition musicale \Rightarrow Manière d'écrire la musique...

La chaîne de traitement peut-être séparée en deux grandes parties :

- Le traitement du signal à partir d'enregistrements audios de performances de batteurs et l'écriture des données sur des fichiers MIDI.
- La transformation des fichiers MIDI en partition de batterie (chaque fichier MIDI étant une partition)

Le sujet du stage se concentre sur la deuxième partie de cette chaîne et le sujet du mémoire est une proposition d'amélioration sur cette partie de la chaîne.

Sujet du stage

Le but du stage est d'améliorer quarse, un outil de transcription et d'écriture automatique de la batterie (entre autre).

L'étude de modèles de langage (LM) incorporant certaines informations musicales de haut niveau nécessaires à la génération de partitions de qualité. On devrait en particulier considérer des hiérarchies d'événements de batterie induisant des placements temporels cohérents et se prêtant à des notations rythmiques faciles à lire pour un batteur entraîné; voir [1] pour des modèles structurés en arbre basés sur la théorie formelle du langage, que nous développons dans le contexte d'outils AMT plus généraux.

8 LISTE DES TABLEAUX

Ce mémoire

Le mémoire propose de rechercher de rythmes génériques (*motifs*) en amont dans la chaîne de traitement. Les *motifs* sont prédéfinis avec des combinaisons possibles (*gammes*) qui leur sont associées. Ces *motifs* et leur *gammes* respectives sont appelés systèmes.

L'usage des *systèmes* a pour objectif de fixer des choix le plus tôt possible dans la chaîne de traitement afin de simplifier le reste des calculs en éliminant une partie d'entre eux. Ces choix concernent notamment la métrique, la séparation des voix ainsi que les règles de réécriture.

Problématique traitée

L'écriture musicale offre de nombreuse possibilités d'écriture pour un rythme donné, certains de ces choix sont plus pertinents que d'autres en fonction du contexte. Reconnaître la métrique d'une partition, la façon de regrouper les notes par les ligatures (séparation des voix), ou simplement le choix pour les différentes continuations possibles (notes pointées, liaisons, silences, etc.) représentent autant de possibilités que de difficultés.

Plan du mémoire

Introduction générale

Partie I : Contexte général

- État de l'art
- La transcription automatique
- Les méthodes

Partie II : Expérimentations

- Corpus
- Résultats
- Discussion

Conclusion générale

Première partie Contexte général

ÉTAT DE L'ART

Sommaire

1.1	Introduction	11
1.2	Contenu	11
1.3	Conclusion	12

L'état de l'art (chapitre 1) : les articles qui traitent du même sujet que vous, présentés en un tout cohérent (extraire de chaque article lu les points essentiels et présenter dans ce chapitre le résultat de ces lectures en regroupant les articles par point essentiel)

1.1 Introduction

Dans ce chapitre, nous présentons les différentes avançées qui ont déjà eues lieues dans le domaine de la transcription.

1.2 Contenu

L'objectif de la transcription automatique de la musique (AMT) [2] est de convertir la performance d'un musicien en notation musicale - un peu comme la conversion de la parole en texte dans le traitement du langage naturel. Elle est considérée comme l'un des problèmes de recherche les plus anciens et les plus difficiles dans le domaine de la recherche d'information musicale (MIR).

Le cas de la transcription de la batterie (DT) est très particulier puisqu'il s'agit d'instruments sans hauteur, d'événements avec (presque) aucune durée et de notations spécifiques. Il a été la source de nombreuses études MIR, voir [3] pour un aperçu. La plupart de ces travaux se concentrent sur des méthodes de calcul pour la détection d'événements sonores de batterie à partir de signaux acoustiques, et sur l'extraction de caractéristiques de bas niveau telles que la classe d'instrument et le moment de l'apparition du son (peak picking). Cependant, très peu d'entre eux ont abordé la tâche de générer une notation musicale (rythmique) lisible à partir des caractéristiques ci-dessus, une étape cruciale dans un contexte musical et loin d'être triviale.

Automatic music transcription : Challenges and future directions [2] (introduction[2])

Les applications de l'AMT ont aussi de la valeur dans les domaine oraux qui manquent de partition (jazz, pop, (et donc batterie, note perso) (abstract [2])

Les différents travaux existant se préoccupent plus de la transcription à partir de l'audio en passant par le traitement du signal.

Les humains sont encore meilleurs que les machines et la précisions à l'air d'avoir atteint sa limite.

Analyse des limites des méthodes courantes et identification des directions prometteuses.

Les modèles généraux utilisés ne traitent pas correctement la riche diversités des signaux musicaux.

2 moyens pour surmonter cela:

- Adapter les algorithmes pour des cas d'utilisations spécifiques.
- Utiliser les approches semi-automatiques.

La richesse des partitions musicales et des données audio correspondantes, désormais disponibles, constitue une source potentielle de données d'apprentissage, grâce à l'alignement forcé des données audio sur les partitions, mais l'utilisation à grande échelle de ces données n'a pas encore été tentée.

D'autres approches prometteuses incluent l'intégration d'informations provenant de plusieurs algorithmes et de différents aspects musicaux.

Voir: A Review of Automatic Drum Transcription[3]

1.3 Conclusion

Nous avons décidé de compléter le travail qui concerne la batterie en commençant par l'endroit le moins pratiqué, à savoir la transcription en partition pour à l'avenir réaliser la chaîne de bout en bout : de l'audio jusqu'à l'écriture de partition.

TRANSCRIPTION AUTOMATIQUE

Sommaire		
2.1	Introduction	13
2.2	Description générale	13
	2.2.1 Définition	13
	2.2.2 Architecture générale	14
2.3	Les types de données	14
	2.3.1 Les données audio	14
	2.3.2 Les données MIDI	15
2.4	Transcription MIDI vers partition	15
	2.4.1 Exemples de comparaisons de transcriptions pour la batterie	15
2.5	Conclusion	16

2.1 Introduction

Dans ce chapitre, nous expliquerons le processus général de la transcription automatique.

Nous ne parlerons que de la deuxième partie de la chaîne de traitement allant des données midi vers l'audio.

2.2 Description générale

2.2.1 Définition

Le terme « transcription musicale automatique » a été utilisé pour la première fois par les chercheurs en audio James A. Moorer, Martin Piszczalski et Bernard Galler en 1977. Grâce à leurs connaissances en ingénierie audio numérique, ces chercheurs pensaient qu'un ordinateur pouvait être programmé pour analyser un enregistrement numérique de musique de manière à détecter les hauteurs des lignes mélodiques et des motifs d'accords, ainsi que les accents rythmiques des instruments à percussion.

La tâche de transcription automatique de la musique comprend deux activités distinctes : l'analyse d'un morceau de musique et l'impression d'une partition à partir de cette analyse.

Source: https://en.wikipedia.org/wiki/Transcription_(music)

2.2.2 Architecture générale

La figure suivante, qui est une proposition de Benetos et Al. [2], représente l'architecture générale d'un système de transcription musicale.

Les sous-systèmes et algorithmes optionnels sont présentés à l'aide de lignes pointillées. Les doubles flèches mettent en évidence les connexions entre les systèmes qui incluent la fusion d'informations et une communication plus interactive entre les systèmes.

Au cœur du système se trouvent les algorithmes de détection des multi-pitchs et de suivi des notes. Quatre sous-tâches de transcription liées à la détection des hauteurs multiples et au suivi des notes apparaissent comme des algorithmes facultatifs du système (cases en pointillé) qui peuvent être intégrés dans un système de transcription. Il s'agit de l'identification de l'instrument, de l'estimation de la tonalité et de l'accord, de la détection de l'apparition et du décalage, et de l'estimation du tempo et du rythme. La séparation des sources, un problème indépendant mais lié, pourrait être traitée par un système séparé qui pourrait informer et interagir avec le système de transcription en général, et plus spécifiquement avec le sous-système d'identification des instruments. En option, des informations peuvent également être fournies de manière externe au système de transcription. Elles peuvent être données sous forme d'informations préalables (c'est-à-dire le genre, l'instrumentation, etc.), via l'interaction de l'utilisateur ou en fournissant des informations à partir d'une partition préexistante partiellement correcte ou incomplète. Enfin, les données de formation peuvent être utilisées pour apprendre des modèles acoustiques et musicologiques qui, par la suite, informent le système de transcription et interagissent avec lui. avec le système de transcription.

2.3 Les types de données

2.3.1 Les données audio

Des fichiers wav dans le cas du groovedataset.

2.3.2 Les données MIDI

observer la structure midi

transcrire manuellement pour comparer l'input et l'output idéal d'un point de vu théorique.

```
https://www.midi.org/
https://en.wikipedia.org/wiki/MIDI
```

En entrée : midi (séquence d'événements datés (piano roll) accompagné d'une grammaire pondérée)

- \Rightarrow parsing
- \Rightarrow global parsing tree
- ⇒ RI (Représentation Intermédiaire) arbres locaux par intruments
- \Rightarrow Sortie (xml, mei, lilypond,...)

Minimiser la distance entre le midi et la représentation en arbre.

2.4 Transcription MIDI vers partition

2.4.1 Exemples de comparaisons de transcriptions pour la batterie

 $drummer_01/session3 - 10_rock-folk_90_beat_4-4$

Fichier midi vers partition avec musescore \Rightarrow Transcription manuelle

- Erreur d'indication de mesure;
- Mauvaise transcription d'une noire.

La noire du 4ème temps se retrouve sur le premier temps de la mesure suivante et elle se transforme en un triolet de double croches dont seules les deux premières seraient jouées.

 $drummer_01/session3 - 10_rock-folk_90_beat_4-4$

Fichier midi vers partition avec musescore ⇒ Transcription manuelle

— Erreur de quantification : les doubles croches ont été interprétées en quintolet ;

drummer_01/session3 — 2_jazz-swing_185_beat_4-4

Fichier midi vers partition avec musescore ⇒ Transcription manuelle

- L'indication de mesure est correcte mais tout a été décalé d'un temps car la première noire sur la caisse claire est jouée sur le 4ème temps et non sur le premier temps de la deuxième mesure comme l'indique la transcription de musescore.
- Les toms basses des 1er et 2ème temps de la mesure musescore auraient dû être sur les temps et non décalés d'une double croche vers la droite.

drummer_01/session1 — 1_funk_80_beat_4-4

Fichier midi vers partition avec musescore ⇒ Transcription manuelle

— On dirait que lorsque certaines notes sont proches, elles se resserrent et suppriment celles qui aurait dû être sur le temps.

Exemple avec des flas

Fichier midi vers partition avec musescore:

Transcription manuelle:

2.5 Conclusion

Dans le cas, de l'ADT, l'architecture reste la même mais de nombreuse seront à affiner, notamment pour les questions de continuation ainsi que celle des ghost-notes et des accents.

MÉTHODES

Sommaire

3.1	Introduction
3.2	Représentations, systèmes et réécriture
	3.2.1 Chaîne de traitement
	3.2.2 La notation de la batterie
	3.2.3 La notation midi de la batterie
	3.2.4 Les systèmes
3.3	Conclusion

Méthodes (chapitre 3) : les méthodes appliquées, avec le détail des expériences réalisées (différentes configurations) ;

Corpus (chapitre 4) : le corpus utilisé (caractéristiques, pré-traitements appliqués)

3.1 Introduction

Dans ce chapitre, nous expliquerons en détails les méthodes employées pour améliorer le processus décrit dans le chapitre précédent.

3.2 Représentations, systèmes et réécriture

3.2.1 Chaîne de traitement

Pour cela, nous utiliserons la logique des systèmes (selon la définition agostinienne). ⇒ Motif répétitif de plusieurs instruments coordonnées accompagnés d'un texte varié joué par un autre instrument de la batterie.

Nous partirons de propositions génériques de systèmes (environs trois systèmes dans différents style de batterie) que nous tenterons de détecter dans le jeu de données groove.

Nous travaillerons aussi sur la détection de répétitions sur plusieurs mesures afin de pouvoir corriger des erreurs sur une des mesures qui aurait dû être identique au autres mais qui présente des différences.

- Reconnaître un motif (système) dans une partition (un fichier midi)
 Sur une mesure de l'input ⇒ Motif (système) reconnu : true ou false
- Si true:
 - Séparer les voix
 - Simplifier l'écriture de chaque voix

```
Chaîne de traitement :
if match(system_parse_tree(system + pitch), input_midi_parse_tree)
then voice_split;
for voice in voice_split :
```

Les sytèmes en batterie

simplication voice

SYSTÈME ==> MOTIF (2-3 instruments sur 1-2 voix, joué en boucle) + TEXTE (1 instrument sur 1 voix, irrégulier)

ex : système afro-cubain, trois voix. Proposition pour la détection de la direction des hampes et pour les ligatures (regroupement des notes et séparation des voix.)

— Les systèmes :

⇒ Un système est la combinaison d'un ou plusieurs éléments qui jouent un rythme en boucle (système) et d'un autre élément qui joue un *texte* rythmique variable mais respectant les règles propre au système (texte).

Définition d'un système :

En cas de système, les ligatures forment deux voies :

- Le texte;
- Le système.

Mettre des exemples de différents systèmes.

— Les moulins :

Lorsqu'il y a plus d'une voie, ils sont prioritaires pour les ligatures. *Mettre des exemples*.

Gestion des silences et des têtes de notes

Rythme tree (RT)

- Le symbole "-" est une continuation (liaison) mais pour une partition de batterie, ça serait un silence par défaut sauf peut-être pour les ouvertures de charley et éventuellement les cymbales ou un tom basse qui résonne.
- \Rightarrow Question de la (notation noir + silence) vs blanche.
- \Rightarrow On privilégierait (noir + silence) puisque les symboles « x » des cymbales ne peuvent pas porter d'indication de durée dans la tête de notes.

Les 3 parties d'une note :

- durée
- hampe
- tête de note (peut aussi indiquer la durée mais en batterie on évitera les blanches, etc.)

source:https://fr.wikipedia.org/wiki/Note_de_musique

Définition des têtes de notes et des hauteurs

Proposition de définition d'un standard de départ

Pour la transcriptions, nous proposons de choisir la base Agostini. La caisse claire centrale sur la portée est aussi centrale sur la batterie est elle est un élément qui conditionne la position des jambes (écart entre les pédales, etc.) ainsi que l'organisation des éléments en hauteur (toms, cymbales, etc.). On pensera en terme de symétrie la répartition des éléments par rapport au point central que constitue la caisse claire. Cette symétrie s'opère en trois dimensions :

- Les hauteurs en terme de fréquences;
- La hauteur physique des éléments :
 - Du bas vers le haut : pédales, toms et caisse, cymbales
- L'ergonomie, qui hiérarchise l'importance des éléments sur la portée (caisse claire au centre, hh-pied et ride sont aux deux extrémités).

3.2.2 La notation de la batterie

La hauteur des notes et les têtes de notes

partition 1

Les nuances

partition 2

Bien expliquer les accents, remplacer p et f par g et a ⇒ nuance VS articulation

La séparation des voix

partition 3

3.2.3 La notation midi de la batterie

Représentation symbolique (MIDI)

.

Les pitchs et la vélocité

Pas de charley pied ouvert... Nous ne prendrons en compte la vélocité que pour la cc, les toms et les cymbales jouées aux mains. Les nuances de grosse caisse et charley aux pieds sont le plus souvent insignifiantes, elles ne sont marquées sur le figure qu'à titre indicatif.

Si la vélocité est en dessous de 40, il s'agit de ghost-notes : la tête de note devra être entouré de parenthèses et le suffixe p (piano) devra être ajouté au codes de l'instrument. (Voir ccp ci-dessus.)

Si la vélocité est au dessus de 90, il s'agit de notes accentuées : le symbole « > » et le suffixe f (f orte) devra être ajouté au codes de l'instrument. (Voir ccf ci-dessus.)

Codes	Instruments	Pitchs
cf	charley-main-fermé	22, 42
co	charley-main-ouvert	26
pf	charley-pied-fermé	44
rd	ride	51
rb	ride-cloche (bell)	53
rc	ride-crash	59
cr	crash	55
cc	caisse-claire	38, 40
cs	cross-stick	37
ta	tom-alto	48,50
tm	tom-medium	45, 47
tb	tom-basse	43,58
gc	grosse-caisse	36

TABLE 3.1 – Pitchs et instruments

Codes	Instruments	Pitchs	Vélocité
cop	charley-main-ouvert	46	?

TABLE 3.2 – Vélocité et nuances

Lorsque la vélocité va de 40 à 89, on considèrera le volume comme normal et aucun symbole supplémentaire ne sera ajouté à la note.

L'instrument qui sera difficile à placer sera la caisse claire car elle ne sera pas toujours affiliée aux mêmes instruments.

Les dilemmes

Le charley de pitch 46 est considéré comme le charley ouvert joué à la main sur le haut de la cymbale mais souvent, ça correspond au geste « tranche-olive » de la baguette lorsque le batteur accentue avec la tranche et joue moins fort avec l'olive sur le plat de la cymbale. Je vais dans un premier temps considérer le pitch comme **charley-main-ouvert-piano** (ghost-note)

Représentations en arbres

Voici une représentation de la partition 3 en arbre de rythme avec les codes de chaque instrument :

Ci-dessous, le même arbre dont les codes des instruments sont remplacés par leurs données midi respectives :

Cet arbre représente un rythme unique dont les possiblités de notation sur une partition sont théoriquement multiples.(Voir *partition 3*).

3.2.4 Les systèmes

Définition

Système = motif + texte motif = rythmes coordonnés joués avec 2 ou 3 membres en boucle texte = rythme irrégulier joué avec un seul membre sur le motif.

Quatre systèmes standards:

- binaire
- ternaire (shuffle, afro, rock)
- jazz
- afro-cubain

Utilité

- Séparation des voix
- Définir une métrique
- Conditionner des règles spécifiques de réécriture

Créer un ensemble de systèmes :

- 4/4 binaire FAIT
- jazz vs ternaire(12/8) EN COURS...
- afro-cubain
- Tout transcrire avec lilypond et en arbres d'analyse syntaxique.
- Créer les arbres de voix séparées.
- Écrire les règles de réécriture.
- Créer les arbres de voix séparées simplifiés (rewriting).

Pour la **séparation des voix** et la **définition des métriques**, nous nous intéresserons principalement à la partie *motif* des systèmes qui seront présentés. La partie *texte* nous intéressera plus pour les **combinaisons de réécritures**.

Pour la séparation des voix

Motif 4-4 binaire

Ici, le système est construit sur un modèle rock en 4/4 : after-beat sur les 2 et 4 avec un choix de répartition des cymbales type fast-jazz. Le système est constitué par défaut du motif ride/ch-pf/cc et d'un texte joué à la grosse-caisse. La troisième séparation proposée est privilégiée car elle répartit selon 2 voix, une voix pour les mains (ride + cc) et une voix pour les pieds (ch-pf + gc). Ce choix paraît plus équilibré car deux instruments sont utilisés par voix et plus logique pour le lecteur puisque les mains sont en haut et les pieds en bas.

Motif 4-4 jazz

Dans la plupart des méthodes, le charley n'est pas écrit car considéré comme évident en jazz traditionnel. Ce qui facilite grandement l'écriture : la ride et les crash sur la voix du haut et le reste sur la voix du bas. Ici, le partie prit et de tout écrire. Dans l'exemple ci-dessus, les mesures 1 et 2 combinées avec le *motif* de la première ligne, sont des cas typiques de la batterie jazz. Tout mettre sur la voix haute serait surchargé. De plus, la grosse caisse entre très souvent dans le flot des combinaisons de toms et de caisse claire et son écriture séparée serait inutilement compliquée et peu intuitive pour le lecteur. Le choix de séparation sera donc de laisser les cymbales en haut et toms, caisse-claire, grosse-caisse et pédale de charley en bas.

Système 4-4 afro-cubain

Pour la reconnaissance de la métrique

12/8 vs 4/4 ternaire

Motif 12/8

Pour les règles de réécriture

Les textes qui accompagnent les motifs étayent toutes les combinaisons d'un systèmes.

Construction des systèmes pour les expérimentations

La réécriture des évènements MIDI pour la batterie

Basé sur [4] et sur [5]

Pour la plupart des instruments mélodiques, la liaison et le point sont les deux seules possibilités en cas d'équivalence rythmique pour des notes dont la durée de l'une à l'autre est ininterrompue. Mais puisque les durées des notes n'ont pas d'importance en batterie, l'usage des silences pour combler la distance rythmique entre deux notes devient possible.

Les cymbales-crash et les ouvertures de charley constituent le seul cas qui exclut cette option. Le charley car ses ouvertures/fermetures sont presque toujours quantifiées et les cymbales-crash car elles peuvent être arrêtées à la main de manière quantifié aussi mais ce cas est très rare, nous allons donc nous concentrer sur les ouvertures de charley et considérer les crashs comme des événements sans durée.

Les fermetures du charley sont notées soit par un silence (correspondant à une fermeture de la pédale), soit par un écrasement de l'ouverture par un autre coup de charley fermé, au pied ou à la main.

Exemples:

Exemples à écrire en arbre :

- SI (pas pf) ET (note sur un temps suivie de note en l'air) :
 - \Rightarrow (Temps1: Note pertinente) + (Temps2: Silence pertinent + Note pertinente.)
- Si (po ou co) déborde sur le temps suivant :
 - \Rightarrow Liaison car marchera dans tous les cas même la où le point ne marchera pas (voir A2).
- Une blanche sera écrite noir + soupir.

3.3. CONCLUSION 27

Les régles de réécriture

3.3 Conclusion

Conclusion de ce chapitre.

Deuxième partie **Expérimentations**

CORPUS

Sommaire	
4.1	Introduction
4.2	Contenu
	4.2.1 Expérience 1 - 4/4 binaire
	4.2.2 Expérience 2
	4.2.3 squant: parsing du fichier midi
4.3	Conclusion

4.1 Introduction

Dans ce chapitre... ${f groove\ MIDI\ dataset}$

https://magenta.tensorflow.org/datasets/groove

Des batteurs pro ont été engagés pour jouer sur un roland td-11

The Groove MIDI Dataset (GMD), has several attributes that distinguish it from existing ones:

- The dataset contains about 13.6 hours, 1,150 MIDI files, and over 22,000 measures of drumming
- Each performance was played along with a metronome set at a specific tempo by the drummer.
- The data includes performances by a total of 10 drummers, with more than 80% of duration coming from hired professionals. The professionals were able to improvise in a wide range of styles, resulting in a diverse dataset.
- The drummers were instructed to play a mix of long sequences (several minutes of continuous playing) and short beats and fills.
- Each performance is annotated with a genre (provided by the drummer), tempo, and anonymized drummer ID.
- Most of the performances are in 4/4 time, with a few examples from other time signatures.
- Four drummers were asked to record the same set of 10 beats in their own style. These are included in the test set split, labeled eval-session/groovel-10.
- In addition to the MIDI recordings that are the primary source of data for the experiments in this work, we captured the synthesized audio outputs of the drum set and aligned them to within 2ms of the corresponding MIDI files.

4.1. Introduction 33

Les métadatas:

The metadata file ($\verb"info.csv"$) has the following fields for every MIDI/WAV pair:

Field	Description				
drummer	An anonymous string ID for the drummer of the performance.				
session	A string ID for the recording session (unique per drummer).				
id	A unique string ID for the performance.				
style	A string style for the performance formatted as " <primary>/<secondary>". The primary style comes from the Genre List below.</secondary></primary>				
bpm	An integer tempo in beats per minute for the performance.				
beat_type	Either "beat" or "fill"				
time_signature	The time signature for the performance formatted as " <numerator>-<denominator>".</denominator></numerator>				
midi_filename	Relative path to the MIDI file.				
audio_filename	Relative path to the WAV file (if present).				
duration	The float duration in seconds (of the MIDI).				
split	The predefined split the performance is a part of. One of "train", "validation", or "test".				

Genre List: afrobeat, afrocuban, blues, country, dance, funk, gospel, highlife, hiphop, jazz, latin, middleeastern, neworleans, pop, punk, reggae, rock, soul

A train/validation/test split configuration is provided for easier comparison of model accuracy on various tasks.

Split	Beats	Fills	Measures (approx.)	Hits	Duration (minutes)
Train	378	519	17752	357618	648.5
Validation	48	76	2269	44044	82.2
Test	77	52	2193	43832	84.3
Total	503	647	22214	445494	815.0

4.2 Contenu

4.2.1 Expérience 1 - 4/4 binaire

Partition de référence pour l'ouput

Systèmes recherchés

Textes:

4.2. CONTENU 35

Motifs:

Systèmes résultants :

Représentation des systèmes en arbres de rythmes

37 4.2. Contenu

Séparation des voix

Motif 1 + Texte 1a

Voix haute

Motif 1 + Texte 1b

Voix haute

Voix basse

Motif 1 + Texte 2a

$Voix\ haute$

Voix basse

4.2. CONTENU 39

Motif 1 + Texte 2b

Voix haute

Voix basse

Motif 1 + Texte 2c

Voix haute

Voix basse

4.2. Contenu 41

Règles de réécriture pour le 4/4 binaire

$$\begin{array}{cccc} 1/4 & \Rightarrow & 1/4 \\ \hline \\ t & x & t & & r & x \end{array}$$

$$\begin{array}{ccc}
1/4 & \Rightarrow & 1/4 \\
\hline
x & x & t & x & x
\end{array}$$

4.2.2 Expérience 2

Partition de référence pour l'ouput

 $En\ cours...$

4.2. CONTENU 43

4.2.3 squant: parsing du fichier midi

squant lit le midi
grammaire wta qui détermine le poid
La distance est automatiquement déterminée par squant
distance à l'input
complexité de la notation
On veut minimiser le coût et la distance ⇒ Trouver un compromis.
./build/squant2 -h
Essayer le lire un fichier midi avec squant2 lire mesure par mesure Regarder les
wta(grammaire)

Quelques tests de lecture midi

```
Les 4 messages suivants sont présents dans tous les tests qui suivent :
[ info] schema file: test/schema/schema-01.wta (??? weight model option)
[warning] no declaration MAX\_GRACE in grammar file test/schema/schema-01.wta
[warning] no declaration TIMESIG in grammar file test/schema/schema-01.wta
[warning] MIDIfile has not joined tracks

./build/squant2 -v 4 -a test/schema/schema-01.wta -m 004_jazz-funk_116_beat_4-
[error] at least one of the options -bars or -barsec mandatory

./build/squant2 -verbosity 4 -schema test/schema/schema-01.wta -midi 004\_jazz
squant2: /home/martin/qparselib/src/schemata/SymbLabel.cpp:44: static label_t
Abandon (core dumped)
```

Tester squant2 avec le fichiers midi du corpus du gitlab

La commande suivante :

```
build/squant2 -v 5 -a ./test/schema/schema-03-R.wta -m ~/corpus-master_qparsel

Donne:
```

```
(1) 3(\bullet, \overline{2} : 2(\bullet, ), )
(2) 3(\bullet, \overline{2} : 2(\bullet, \bullet), )
(3) 3(\bullet, \overline{2} : 2(\bullet, \circ), )
```

Pour comprendre les grammaires :

Regarder les fichiers wta commentés.

https://qparse.gitlabpages.inria.fr/docs/scientific/

A_Parse-based_Framework_for_Coupled_RhythmQuantization_and_Score_Structuring.pdf Réfléchir au coût de notation (grace notes, etc.)

cluster.md

Contributions

Contribution sur la branch « distance » dans :

- qparselib/notes/cluster.md
- qparselib/src/segment/import/ : DrumCode hpp et cpp

4.3. CONCLUSION 45

4.3 Conclusion

Conclusion de ce chapitre.

RÉSULTATS

Sommaire

5.1	Introduction	47
5.2	Contenu	47
5.3	Conclusion	47

Résultats (chapitre 5) : les résultats obtenus sur chacune des expériences ;

5.1 Introduction

Dans ce chapitre...

5.2 Contenu

Une section dans ce chapitre...

5.3 Conclusion

Conclusion de ce chapitre.

DISCUSSION

Sommaire

6.1	Introduction	49
6.2	Contenu	49
6.3	Conclusion	49

Discussion (chapitre 6) : la discussion des résultats obtenus (quelle expérience a produit les meilleurs résultats, de manière globale, dans le détail des catégories) avec, si possible, une analyse des erreurs pour comprendre les possibilités d'amélioration ;

6.1 Introduction

Dans ce chapitre...

6.2 Contenu

Une section dans ce chapitre...

6.3 Conclusion

Conclusion de ce chapitre.

CONCLUSION GÉNÉRALE

Conclusion : la conclusion globale du mémoire.

Dans ce mémoire, nous avons traité de la problématique...

L'intégration de ces LM avec l'état de l'art des modèles acoustiques (AM) et des méthodes pour les tâches de traitement du signal ci-dessus. Cela nécessite la prise en compte du contexte musical et des informations musicales de haut niveau des LM en plus des caractéristiques acoustiques de bas niveau ci-dessus.

En outre, certaines expériences seront menées sur la base d'ensembles de données publiques, afin d'évaluer l'approche intégrée. Elles devraient couvrir certains cas de motifs rythmiques complexes se chevauchant.

Au-delà de l'intégration de modèles, il sera également intéressant d'étudier comment l'utilisation de LM peut améliorer les résultats de l'AM, voir [2], et ouvrir la voie à la génération entièrement automatisée de partitions de batterie et au problème général de l'AMT de bout en bout. [3]

BIBLIOGRAPHIE

- [1] Francesco Foscarin, Florent Jacquemard, Philippe Rigaux, and Masahiko Sakai. A Parse-based Framework for Coupled Rhythm Quantization and Score Structuring. In MCM 2019 Mathematics and Computation in Music, volume Lecture Notes in Computer Science of Proceedings of the Seventh International Conference on Mathematics and Computation in Music (MCM 2019), Madrid, Spain, June 2019. Springer. Cité page 7.
- [2] Emmanouil Benetos, Simon Dixon, Dimitrios Giannoulis, Holger Kirchhoff, and Anssi Klapuri. Automatic music transcription: Challenges and future directions. *Journal of Intelligent Information Systems*, 41, 12 2013. Cité pages 11 et 14.
- [3] Chih-Wei Wu, Christian Dittmar, Carl Southall, Richard Vogl, Gerhard Widmer, Jason Hockman, Meinard Müller, and Alexander Lerch. A review of automatic drum transcription. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, 26(9):1457–1483, 2018. Cité pages 11, 12 et 51.
- [4] Florent Jacquemard, Pierre Donat-Bouillud, and Jean Bresson. A Term Rewriting Based Structural Theory of Rhythm Notation. Research report, ANR-13-JS02-0004-01 EFFICACe, March 2015. Cité page 26.
- [5] Florent Jacquemard, Adrien Ycart, and Masahiko Sakai. Generating equivalent rhythmic notations based on rhythm tree languages. In *Third International Conference on Technologies for Music Notation and Representation (TENOR)*, Coroña, Spain, May 2017. Helena Lopez Palma and Mike Solomon. Cité page 26.