1.Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset.

a) Data type of columns in a table:

select * from `scaler-sql-374010.Target_project.INFORMATION_SCHEMA.COLUMNS`

JOB II	NFORMATION RESULTS	JSON EXECUTION DET	TAILS EXECUTION GRAPH	PREVIEW		
Row	table_catalog	table_schema	table_name	column_name	ordinal_position	is_nullable
1	scaler-sql-374010	Target_project	order_items	order_id	1	YES
2	scaler-sql-374010	Target_project	order_items	order_item_id	2	YES
3	scaler-sql-374010	Target_project	order_items	product_id	3	YES
4	scaler-sql-374010	Target_project	order_items	seller_id	4	YES
5	scaler-sql-374010	Target_project	order_items	shipping_limit_date	5	YES
6	scaler-sql-374010	Target_project	order_items	price	6	YES
7	scaler-sql-374010	Target_project	order_items	freight_value	7	YES
8	scaler-sql-374010	Target_project	sellers	seller_id	1	YES
9	scaler-sql-374010	Target_project	sellers	seller_zip_code_prefix	2	YES
10	scaler-sql-374010	Target_project	sellers	seller_city	3	YES
11	scaler-sql-374010	Target_project	sellers	seller_state	4	YES
12	scaler-sql-374010	Target_project	geolocation	geolocation_zip_code_prefix	1	YES
13	scaler-sql-374010	Target_project	geolocation	geolocation_lat	2	YES
14	scaler-sql-374010	Target_project	geolocation	geolocation_lng	3	YES

- a) Time period for which the data is given.
 - > From 2016-09-04 to 2018-10-17

b) Cities and States of customers ordered during the given period

2. In-depth Exploration:

a) Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

SELECT

Concat(substring(cast(order_purchase_timestamp as string),1,4),substring(cast(order_purchase_timestamp as string),6,2)) as year_m onth,

count(order_id) as order_count

FROM

`scaler-sql-374010.Target_project.orders` group by year_month order by year_month

Quer	y results			
JOB IN	IFORMATION	RESULTS	JSON	EXE
Row	year_month	//	order_count	
5	201702		1780	
6	201703		2682	
7	201704		2404	
8	201705		3700	
9	201706		3245	
10	201707		4026	
11	201708		4331	
12	201709		4285	
13	201710		4631	
14	201711		7544	
15	201712		5673	
16	201801		7269	

b) What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

SELECT

```
when EXTRACT(hour FROM order_purchase_timestamp AT TIME ZONE "UTC-3") >4 and EXTRACT(hour FROM order_purchase_timestamp AT TIME ZONE "UTC-3") <8 then "Dawn" when EXTRACT(hour FROM order_purchase_timestamp AT TIME ZONE "UTC-3") >= 8 and EXTRACT(hour FROM order_purchase_timestamp AT TIME ZONE "UTC-3") <12 then "Morning" when EXTRACT(hour FROM order_purchase_timestamp AT TIME ZONE "UTC-3") >=12 and EXTRACT(hour FROM order_purchase_timestamp AT TIME ZONE "UTC-3") <20 then "Afternoon" else "night" end as grp, count(order_id) as order_count FROM `scaler-sql-374010.Target_project.orders` group by grp
```

JOB IN	IFORMATION	RESULTS	JSON	EXECUT
Row	grp	ſı.	order_count	
1	Morning		25660	
2	night		10596	
3	Afternoon		49256	
4	Dawn		13929	

3. Evolution of E-commerce orders in the Brazil region:

a) Get month on month orders by states.

```
SELECT
Concat(substring(cast(o.order_purchase_timestamp as string),1,4),substring(cast(o.order_purchase_timestamp as string),6,2)) as year_month, c.customer_state, count(order_id) as order_count
```

```
`scaler-sql-374010.Target_project.orders` o join
`scaler-sql-374010.Target_project.customers` c on o.customer_id=c.customer_id
group by year_month,
c.customer_state
```

order by year_month

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DET	TAILS EXE	CUT
Row	year_month		customer_state	//	order_count	
1	201609		RR		1	
2	201609		RS		1	
3	201609		SP		2	
4	201610		SP		113	
5	201610		RS		24	
6 1/3	201610		RJ		56	
7	201610		MT		3	
8	201610		GO		9	
9	201610		MG		40	

b) Distribution of customers across the states in Brazil

```
g.geolocation_state,
count(distinct c.customer_id) as customer_cnt,
round((count(distinct c.customer_id)/sum(count(distinct c.customer_id)) over())*100,2) as cust_perc_by_state
FROM
`scaler-sql-374010.Target_project.customers` c
full join
`scaler-sql-374010.Target_project.geolocation` g on c.customer_zip_code_prefix=g.geolocation_zip_code_prefix
group by
g.geolocation_state
order by customer_cnt desc
```

NFORMATION R	ESULTS	JSON	EXECUTION DETAILS
geolocation_state	//	customer_cnt	cust_perc_by_sta
SP		41731	41.93
RJ		12839	12.9
MG		11624	11.68
RS		5473	5.5
PR		5034	5.06
SC		3651	3.67
BA		3371	3.39
ES		2027	2.04
GO		2011	2.02
DF		1974	1.98
PE		1648	1.66
CE		1332	1.34
PA		972	0.98

- 4. Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.
 - a) Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only) You can use "payment_value" column in payments table.

```
select temp.o_year,temp.pay_value,
lag(temp.pay_value)over (order by o_year ) as prev_val,

(temp.pay_value-lag(temp.pay_value)over (order by o_year )) as inc,
round(((temp.pay_value-
lag(temp.pay_value)over (order by o_year ))/ lag(temp.pay_value)over (order by o_year ))*100,2) as percent_inc
from (
```

```
SELECT
EXTRACT(year FROM order_purchase_timestamp AT TIME ZONE "UTC-3") as o_year, sum(p.payment_value) as pay_value, FROM
`scaler-sql-374010.Target_project.orders` o join
`scaler-sql-374010.Target_project.payments` p on o.order_id=p.order_id group by o_year
) as temp

order by o_year
```

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DET	TAILS EXE	CUTION GRA
Row	o_year	pay_value	prev_val	inc	percent_inc	
1	2016	59362.3400	null	null	null	
2	2017	7249931.08	59362.3400	7190568.74	12113.01	
3	2018	8699578.68	7249931.08	1449647.60	20.0	

b) Mean & Sum of price and freight value by customer state

select

```
c.customer_state,
round(sum(oi.price),2) as total_price,
round(avg(oi.price),2) as avg_price
from `scaler-sql-374010.Target_project.order_items` oi
join
  `scaler-sql-374010.Target_project.orders`o on oi.order_id=o.order_id
join
  `scaler-sql-374010.Target_project.customers` c on o.customer_id=c.customer_id
group by
c.customer_state
order by total_price desc
```

Row	customer_state	total_price	avg_price
1	SP	5202955.05	109.65
2	RJ	1824092.67	125.12
3	MG	1585308.03	120.75
4	RS	750304.02	120.34
5	PR 🖟	683083.76	119.0
6	SC	520553.34	124.65
7	BA	511349.99	134.6
8	DF	302603.94	125.77
9	G0	294591.95	126.27
10	ES	275037.31	121.91
11	PF	262788 03	145.51

select

```
c.customer_state,
round(sum(freight_value),2) as sum_val,
round(avg(freight_value),2) as avg_val
from `scaler-sql-374010.Target_project.order_items` oi
join
  `scaler-sql-374010.Target_project.orders`o on oi.order_id=o.order_id
join
  `scaler-sql-374010.Target_project.customers` c on o.customer_id=c.customer_id
group by
c.customer_state
```

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETAILS		
Row	customer_state	//	sum_val	avg_val		
1	SP		718723.07	15.15		
2	RJ		305589.31	20.96		
3	PR		117851.68	20.53		
4	SC		89660.26	21.47		
5	DF		50625.5	21.04		
6	MG		270853.46	20.63		
7	PA		38699.3	35.83		
8	BA		100156.68	26.36		
9	GO		53114.98	22.77		

5. Analysis on sales, freight and delivery time

a) Calculate days between purchasing, delivering and estimated delivery.

SELECT

sum(DATE_DIFF(o.order_delivered_customer_date, o.order_purchase_timestamp, day)) as days_deliver_purchase, sum(DATE_DIFF(o.order_delivered_customer_date, o.order_estimated_delivery_date, day)) as days_deliver_estimed, sum(DATE_DIFF(o.order_estimated_delivery_date,o.order_purchase_timestamp, day)) as days_estimed_purchase

from

`scaler-sql-374010.Target_project.orders` o

:	days_deliver_purchase	days_deliver_estimed	days_estimed_purchase	
	1166789	-1057185	232/313	

SELECT

c.customer_state,

sum(DATE_DIFF(o.order_delivered_customer_date, o.order_purchase_timestamp, day)) as days_deliver_purchase, sum(DATE_DIFF(o.order_delivered_customer_date, o.order_estimated_delivery_date, day)) as days_deliver_estimed, sum(DATE_DIFF(o.order_estimated_delivery_date,o.order_purchase_timestamp, day)) as days_estimed_purchase

from

`scaler-sql-374010.Target_project.orders` o join

`scaler-sql-374010.Target_project.customers` c on o.customer_id=c.customer_id group by

c.customer_state

order by

c.customer_state

JOB IN	FORMATION RESU	JLTS	JSON	EXECUTION DET	AILS EXEC	UTIC
Row	customer_state	d	ays_deliver_pur	days_deliver_est	days_estimed_p	
1	AC		1651	-1581	3302	
2	AL		9544	-3155	13309	
3	AM		3768	-2698	6624	
4	AP		1791	-1255	3108	
5	BA		61429	-32348	98144	
6	CE		26626	-12736	41332	
7	DF		26019	-23127	51493	
8	ES		30587	-19189	51381	
9	GO		29650	-22050	54025	

- b) Find time_to_delivery & diff_estimated_delivery. Formula for the same given below:
 - time_to_delivery = order_purchase_timestamp-order_delivered_customer_date
 - diff_estimated_delivery = order_estimated_delivery_date-order_delivered_customer_date

SELECT

round(avg(DATE_DIFF(o.order_delivered_customer_date, o.order_purchase_timestamp, day)),2) as avg_time_to_delivery,
round(avg(DATE_DIFF(o.order_delivered_customer_date, o.order_estimated_delivery_date, day)),2) as avg_diff_estimated_delivery
from

`scaler-sql-374010.Target_project.orders` o

c) Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery

SELECT

JOB IN	IFORMATION	RESULTS	JSON EXECU	TION DETAILS	EXECUTION GRAPH PREVI
Row	customer_state	//	avg_freight_value	avg_time_to_delivery	avg_diff_estimat
1	RR		42.98	27.83	-17.43
2	PB		42.72	20.12	-12.15
3	RO		41.07	19.28	-19.08
4	AC		40.07	20.33	-20.01
5	PI		39.15	18.93	-10.68
6	MA		38.26	21.2	-9.11
7	TO		37.25	17.0	-11.46
8	SE		36.65	20.98	-9.17
9	AL		35.84	23.99	-7.98
10	PA		35.83	23.3	-13.37

- d) Sort the data to get the following:
- e) Top 5 states with highest/lowest average freight value sort in desc/asc limit 5
- f) Top 5 states with highest/lowest average time to delivery
- g) Top 5 states where delivery is really fast/ not so fast compared to estimated date

Top 5 states with highest freight value
SELECT
c.customer_state,
round(avg(oi.freight_value),2) as avg_freight_value
from
`scaler-sql-374010.Target_project.orders` o
join
`scaler-sql-374010.Target_project.customers`c on o.customer_id=c.customer_id
join
`scaler-sql-374010.Target_project.order_items` oi on o.order_id=oi.order_id
group by
c.customer_state
order by
avg_freight_value desc

1 RR 42.98 2 PB 42.72 3 RO 41.07 4 AC 40.07 5 PI 39.15	Row	customer_state //	avg_freight_value
3 RO 41.07 4 AC 40.07	1	RR	42.98
4 AC 40.07	2	PB	42.72
	3	RO	41.07
5 PI 39.15	4	AC	40.07
	5	PI	39.15

Top 5 states with lowest freight value

```
SELECT
c.customer_state,
round(avg(oi.freight_value),2) as avg_freight_value
from
   `scaler-sql-374010.Target_project.orders` o
   join
   `scaler-sql-374010.Target_project.customers`c on o.customer_id=c.customer_id
join
   `scaler-sql-374010.Target_project.order_items` oi on o.order_id=oi.order_id
group by
c.customer_state
order by
avg_freight_value
limit 5
```

	_		
Row	customer_state	//	avg_freight_valu
1	SP		15.15
2	PR	B	20.53
3	MG		20.63
4	RJ		20.96
5	DF		21.04

Top 5 states with highest average time to delivery

SELECT

c.customer_state,
round(avg(DATE_DIFF(o.order_delivered_customer_date, o.order_purchase_timest
amp, day)),2) as avg_time_to_delivery
from
 `scaler-sql-374010.Target_project.orders` o
 join
 `scaler-sql-374010.Target_project.customers`c on o.customer_id=c.customer_id
join
 `scaler-sql-374010.Target_project.order_items` oi on o.order_id=oi.order_id
group by
 c.customer_state
 order by
 avg_time_to_delivery desc
limit 5

JOR II	IFUKMATIUN	KESULIS	J20N	EXECUTION DETAIL:
Row	customer_state	//	avg_time_to_d	elivery
1	RR			27.83
2	AP			27.75
3	AM			25.96
4	AL			23.99
5	PA			23.3

Top 5 states with lowest average time to delivery

```
SELECT
c.customer_state,
round(avg(DATE_DIFF(o.order_delivered_customer_date, o.order_purchase_tim
estamp, day)),2) as avg_time_to_delivery
from
 `scaler-sql-374010.Target_project.orders` o
 join
 scaler-sql-
374010.Target_project.customers`c on o.customer_id=c.customer_id
ioin
`scaler-sql-374010.Target_project.order_items` oi on o.order_id=oi.order_id
group by
c.customer_state
order by
avg_time_to_delivery
limit 5
```

JOB IN	NFORMATION	RESULTS	JSON	EXEC
Row	customer_state	ſı.	avg_time_to_deli	
1	SP		8.26	
2	PR		11.48	
3	MG		11.52	
4	DF		12.5	
5	SC		14.52	

Top 5 states where delivery is really fast compared to estimated date

SELECT

group by
c.customer_state
order by
avg_diff_estimated_delivery desc
limit 5

Top 5 states where delivery is not so fast compared to estimated date

```
SELECT
c.customer_state,
round(avg(DATE_DIFF(o.order_delivered_customer_date, o.order_estimated_del
ivery_date, day)),2) as avg_diff_estimated_delivery
from
 `scaler-sql-374010.Target_project.orders` o
join
 `scaler-sgl-
374010.Target_project.customers`c on o.customer_id=c.customer_id
join
 `scaler-sql-374010.Target_project.order_items` oi on o.order_id=oi.order_id
group by
c.customer_state
order by
avg_diff_estimated_delivery
limit 5
```

IN	FORMATION	RESULTS	JSON	Ε
/	customer_state	ſı.	avg_diff_estimat	
	AC _		-20.01	
	RO 1/3		-19.08	
	AM		-18.98	
	AP		-17.44	
	RR		-17.43	

6. Payment type analysis:

a) Month over Month count of orders for different payment types

```
select
payment_type,
count(order_id) as order_cnt

from
   `scaler-sql-374010.Target_project.payments`
group by
payment_type
order by order_cnt desc
```

payment_type	order_cnt
credit_card	76795
UPI	19784
voucher	5775
debit_card	1529
not_defined	3

SELECT year_month,credit_card,UPI,voucher,debit_card
FROM

(select

NFORMATION	RESULTS	JSON	EXECUTION DET	TAILS EXE	CUTION GRAPH P
year_month	//	credit_card	UPI	voucher	debit_card
201701		583	197	61	9
201702		1356	398	119	13
201703		2016	590	200	31
201704		1846	496	202	27
201705		2853	772	289	30
201706		2463	707	239	27
201707		3086	845	364	22
201708		3284	938	294	34
201709		3283	903	287	43
201710		3524	993	291	52
201711		5897	1509	387	70
201712		4377	1160	294	64
201801		5520	1518	416	109
201802		5253	1325	305	69

a) Count of orders based on the no. of payment installments

```
select
payment_installments,
count(order_id) as order_cnt,
round((count( order_id)/sum(count(order_id))over())*100,3) as percent
from
   `scaler-sql-374010.Target_project.payments`

group by
payment_installments
order by payment_installments
```

JOR INFORMATION		RESULTS	JSUN	E)
Row	payment_install;	order_cnt	percent 🔓 🦼	
1	0	2	0.002	
2	1	52546	50.58	
3	2	12413	11.949	
4	3	10461	10.07	
5	4	7098	6.832	
6	5	5239	5.043	
7	6	3920	3.773	
8	7	1626	1.565	
9	8	4268	4.108	

7. Insights

- There are 27 states and 8011 cities in the geo location table and I noticed the orders from 5812 cities only and there are no
 orders from 2199 cities.
- There is an increase in orders month over month and there are highest sales happened in 201711. Since data is there is no significant data to conclude the seasonality behavior in data.
- It's clearly showing most of the orders in afternoon and Morning.
- Around 42 % of customers from SP state and 15 states have less than 1% of customers. There is an opportunity to increase
 the customer base in the states by introducing discounts or some other marketing strategies.
- There is 20% increase in the payments from 2017 to 2018
- SP state has minimum avg price and PB state has maximum avg price.
- RR state orders have maximum avg freight value and SP state has low avg freight value

8. Recommendations

- Most of the orders are placed in the afternoon and morning, so we should make sure that we have IT infra system to manage the transactions load.
- Around 42 %of customers come from one SP state only and 15 states have less than 1% of customers. There is an opportunity to increase the customer base in the states by introducing discounts or some other marketing strategies.
- Need to explore the options to decrease the delivery time for the top 10 states with highest average time to delivery.