Chapter 1 Functions and Limits 1.8 Continuity

Continuity

Example. What are the main difference(s) between the two following curves? Illustration: https://www.desmos.com/calculator/hflxgbsemz

- (1) red: break point
- (2) red: undefined at *.
- (3) red: lim f(x) \$\blue: lim g(x) \B
- (4) red & blue.

Example. Now, what are the differences between the two following functions?

(a)
$$f(x) = \begin{cases} 2-x & \text{if } -2 \leq x < 1 \\ 0 & \text{if } 1 \leq x \leq 2 \end{cases}$$
 (b) $g(x) = \begin{cases} \frac{4}{9}(1-x)^2 & \text{if } -2 \leq x < 1 \\ 0 & \text{if } 1 \leq x \leq 2 \end{cases}$ \tag{here curve .

rud anditions to do calculations.

Definition A function f is **continuous at a number a** if

$$\lim_{x \to a} f(x) = f(a)$$

Three things to verify to show a function is continuous:

The function is defined at x = a.

The limit of the function exists at x = a.

 \rightarrow c) The limit of the function at x = a equals the value of the function at x = a.

Discontinuity: >c=a is a discontinuity if a), or b) or c) is not Satis

EXAMPLE 1 Figure 2 shows the graph of a function f. At which numbers is f discontinuous? Why?

$$x=1$$
, because

$$x=1$$
, because $f(1) \not \exists$
 $x=3$, because $\lim_{x\to 3} f(x) \not \exists$

$$z=5$$
, because $\lim_{x\to 5} f(x) \neq f(5)$

Example. Check if the functions in the first example are continuous at x = 1 using the formulas.

(P)

b)
$$\lim_{x\to 1} g(x)$$
?; $\lim_{x\to 1^{-}} g(x) = \lim_{x\to 1^{-}} \frac{4}{9}(1-x)^{2} = 0$

$$\lim_{x\to 1^+} g(x) = \lim_{x\to 1^+} 0 = 0$$

$$\Rightarrow \lim_{x \to 1} g(x) = 0$$

c)
$$\lim_{x\to 1} g(x) \stackrel{?}{=} g(1)$$

Where are each of the following functions discontinuous?

(a)
$$f(x) = \frac{x^2 - x - 2}{x - 2}$$
 (b) $f(x) = \begin{cases} \frac{1}{x^2} & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases}$ (c) $f(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x \leq 0 \end{cases}$

(a) (a)
$$Dom(f) = (-e, z) U(z, e) \Rightarrow discontinuous$$

at $x = z$

You can verify that
$$\lim_{x\to a} \frac{x^2-x-z}{x-z} = \frac{\alpha^2-a-z}{a-z} \quad (a+z)$$

(b) (a)
$$Dom(f) = (-\infty, \infty)$$
 (b) $Lim f(x) = \lim_{x \to 0} \frac{1}{x^2} = +\infty$ (b) $Lim f(x) = \lim_{x \to 0} \frac{1}{x^2} = +\infty$ (b) $Lim f(x) = \lim_{x \to 0} \frac{1}{x^2} = +\infty$ (c) $Lim f(x) = \lim_{x \to 0} \frac{1}{x^2} = +\infty$ (d) $Lim f(x) = \lim_{x \to 0} \frac{1}{x^2} = +\infty$ (e) $Lim f(x) = \lim_{x \to 0} \frac{1}{x^2} = +\infty$ (e) $Lim f(x) = \lim_{x \to 0} \frac{1}{x^2} = +\infty$ (find a constant $Lim f(x) = \lim_{x \to 0} \frac{1}{x^2} = +\infty$ (find a constant $Lim f(x) = \lim_{x \to 0} \frac{1}{x^2} = +\infty$ (find a constant $Lim f(x) = \lim_{x \to 0} \frac{1}{x^2} = +\infty$ (find a constant $Lim f(x) = \lim_{x \to 0} \frac{1}{x^2} = +\infty$ (find a constant $Lim f(x) = \lim_{x \to 0} \frac{1}{x^2} = +\infty$ (find a constant $Lim f(x) = \lim_{x \to 0} \frac{1}{x^2} = +\infty$ (find a constant $Lim f(x) = \lim_{x \to 0} \frac{1}{x^2} = +\infty$ (find a constant $Lim f(x) = \lim_{x \to 0} \frac{1}{x^2} = +\infty$ (find a constant $Lim f(x) = \lim_{x \to 0} \frac{1}{x^2} = +\infty$ (find a constant $Lim f(x) = \lim_{x \to 0} \frac{1}{x^2} = +\infty$ (find a constant $Lim f(x) = \lim_{x \to 0} \frac{1}{x^2} = +\infty$ (find a constant $Lim f(x) = \lim_{x \to 0} \frac{1}{x^2} = +\infty$ (find a constant $Lim f(x) = \lim_{x \to 0} \frac{1}{x^2} = +\infty$ (find a constant $Lim f(x) = \lim_{x \to 0} \frac{1}{x^2} = +\infty$ (find a constant $Lim f(x) = \lim_{x \to 0} \frac{1}{x^2} = +\infty$ (find a constant $Lim f(x) = \lim_{x \to 0} \frac{1}{x^2} = +\infty$ (find a constant $Lim f(x) = \lim_{x \to 0} \frac{1}{x^2} = +\infty$ (find a constant $Lim f(x) = +$

Remark: if is continuous at all other real numbers (a +0).

$$(a) \quad \neq (o) = o$$

(b)
$$\lim_{z\to 0} f(x) \not\equiv 0$$
 $\lim_{z\to 0^+} f(x) = 0$ $\lim_{z\to 0^+} f(x) = 1$

so,
$$f$$
 is discontinuous at $a=0$

3 kinds of discontinuity.

(c) Jump discontinuity. lim floi) & lim floi)

Properties of Continuous Functions.

4 Theorem If f and g are continuous at a and if c is a constant, then the following functions are also continuous at a:

1.
$$f + g$$

2.
$$f - a$$

5.
$$\frac{f}{g}$$
 if $g(a) \neq 0$

Consequences:

Theorem The following types of functions are continuous at every number in their domains:

- polynomials
- rational functions
- root functions
- trigonometric functions

Substitution Rule Revisited.

$$\lim_{x\to a}f(x)=f(a)$$

type of I: rational function => continuous on its

Domain: 5-3z=0 44 $\frac{5}{3}=z$ -D Domainis $\left(-\infty, \frac{5}{3}\right) \cup \left(\frac{5}{3}, \infty\right)$.

$$a=-2-0$$
 f is cont. a) -2 => $\lim_{x\to -2} \frac{x^3+7x^2-1}{5-3x} = \frac{(-2)^3+7(-2)^2-1}{5-3x}$

$$\frac{x^3 + 7x^2 - 1}{5 - 3x} = \frac{(-2)^3 + 1}{5 - 3x}$$

EXAMPLE 7 Evaluate
$$\lim_{x \to \pi} \frac{\sin x}{2 + \cos x}$$
. $\lim_{x \to a} f(x) = f(a)$

2+cosz -0 continuous -15 sinx is continuous on its

Domain: 2+ cosx = 0 d-0 cosx = -2 impossible because

No restriction—a Domain is (-00,00).

 $f \left(\cot l \cdot \cot l \right) = \frac{1}{2 + \cot l} = \frac{0}{2 - 1} = \frac{0}{2 - 1}$

lim Din(sin(s)+ II+ zx2+ taux)

Composition of Continuous Functions.

8 Theorem If f is continuous at b and $\lim_{x \to a} g(x) = b$, then $\lim_{x \to a} f(g(x)) = f(b)$. In other words,

$$\lim_{x \to a} f(g(x)) = f\Big(\lim_{x \to a} g(x)\Big)$$

9 Theorem If g is continuous at a and f is continuous at g(a), then the composite function $f \circ g$ given by $(f \circ g)(x) = f(g(x))$ is continuous at a.

Example. Find the value of

$$\lim_{x \to 1/2} \sin(\pi - \pi x^2) \qquad \lim_{x \to \infty} h(x) = h(a)$$

Example. Find the value of
$$\lim_{x\to 1/2} \sin(\pi - \pi x^2) = h(a)$$

$$\lim_{x\to 1/2} \sin(\pi - \pi x^2) \qquad \text{or } f(x) = \Pr(x) \rightarrow \text{continuous on } (-\infty, \infty) \rightarrow \text{or } f(\pi - \pi x^2) \text{ is }$$

$$g(x) = \pi - \pi x^2 \rightarrow \text{continuous on } f(-\infty, \infty) \rightarrow \text{continuous on } \text{its}$$

$$\text{demain.}$$

Domain of Din(T-TIXZ): (-00,00).

$$=) \lim_{\lambda \to 1/2} \sin(\pi - \pi x^{2}) = \sin(\pi - \pi (1/2)^{2})$$

$$= Din \left(\pi - \frac{\pi}{4} \right)$$

$$= pin \left(\frac{3\pi}{4} \right)$$

$$= \sqrt{\frac{2}{2}}$$

Example, Suppose we have a function

$$f(x) = x^2 - 1.$$

Does the graph of the function f cross the horizontal line y = 3?

Partial Answer:

Full

Answer: x2-1 is polymonial - o continuous an (-00,00)

y ♠

f(b)

N

0

f(a)

Find two points:

so, I must cross the lim y=3

 \Rightarrow thus well some r $p_1 \cdot | r^2 - 1 = 3 |$

(IVP)

10 The Intermediate Value Theorem Suppose that f is continuous on the closed interval [a, b] and let N be any number between f(a) and f(b), where $f(a) \neq f(b)$. Then there exists a number c in (a, b) such that f(c) = N.

(b) multiple c's

 C_2

y = f(x)

(a) one c

EXAMPLE 9 Show that there is a root of the equation

$$\underbrace{4x^3 - 6x^2 + 3x - 2}_{\text{(x)}} = 0$$

$$N = 0$$

$$f(x) = 4x^3 - 6x^2 + 3x - 2$$

$$a = 1$$

$$b = 2$$

$$f(1) = -1$$
 $f(2) = 12$

So, thue is a c such that
$$f(c) = 0$$

$$\Rightarrow 4c^3 - 6c^2 + 3c - 2 = 0$$