Properties of Relations Discrete Mathematics Andrei Bulatoy

Discrete Matl	hematics – Equiva	lences		
	reflexive	symmetric	transitive	anti-symmetric
Brotherhood x is a brother of y				
Neighborhood x is a neighbor of y				
x≤y				
x,y are intergers and x divides y				

Orders and Equivalences

Discrete Mathematics - Orders and Equivalences

15.0

Properties of binary relations

Reflexivity

A binary relation $R \subseteq A \times A$ is said to be reflexive if $(a,a) \in R$ for all $a \in A$.

Symmetricity

A binary relation $R \subseteq A \times A$ is said to be symmetric if, for any $a,b \in A$, if $(a,b) \in R$ then $(b,a) \in R$.

Transitivity

A binary relation $R \subseteq A \times A$ is said to be transitive if, for any $a,b,c \in A$, if $(a,b) \in R$ and $(b,c) \in R$ then $(a,c) \in R$.

Anti-symmetricity

A binary relation $R \subseteq A \times A$ is said to be anti-symmetric if, for any $a,b \in A$, if $(a,b) \in R$ and $(b,a) \in R$ then a = b.

Discrete Mathematics - Orders and Equivalences

Discrete Mathematics Andrei Bulatov

Equivalence relations

- A binary relation R on a set A is said to be an equivalence relations if it is reflexive, symmetric, and transitive.
- Let R ⊆ People × People. Pair (a,b) ∈ R if and only if a and b are of the same age.
- Let S ⊆ Animals × Animals. Pair (a,b) ∈ S if and only if a and b belong to the same species.
- Equivalence classes.

Take $a \in A$. The set $C(a) = \{ b \mid (a,b) \in R \}$ is called the equivalence class of a.

• For example, C(my father) is the set of all 72 year old people.

Discrete Mathematics - Orders and Equivalences

Equivalence Classes

- Lemma.
 - (1) For any $a \in A$, the class $C(a) \neq \emptyset$
 - (2) If $C(a) \neq C(b)$ then $C(a) \cap C(b) = \emptyset$
 - (3) $A = \bigcup_{a \in A} C(a)$
- Droof
 - (1) R is reflexive, therefore, $(a,a) \in R$. Hence $a \in C(a) \neq \emptyset$
 - (2) Suppose $c \in C(a) \cap C(b)$.

Thus we prove by contrapositive.

We need to show that C(a) = C(b)

For that we prove that any $x \in C(a)$ belongs to C(b) as well, and vice versa, every $y \in C(b)$ belongs to C(a)

Discrete Mathematics - Equivalences

14-12

Equivalence Classes (cntd)

- First we show that $(a,b) \in R$ Since $c \in C(a) \cap C(b)$, we have (a,c), $(b,c) \in R$. By symmetricity, (a,c), $(c,b) \in R$. Then, by transitivity, $(a,b) \in R$. Take $x \in C(b)$. We have $(b,x) \in R$. By transitivity, $(a,x) \in R$. Hence, $x \in C(a)$. Thus $C(b) \subseteq C(a)$. $C(a) \subseteq C(b)$ is similar.
- (3) is obvious, because $a \in C(a)$.

Q.E.D.

Discrete Mathematics - Orders and Equivalences

15-14

Partitions and Equivalence Relations

- Lemma shows that the equivalence classes constitute a partition of the set. Actually, a stronger statement is true
- Theorem. Let A be a set.
 - (1) If R is an equivalence relation on A, then its equivalence classes form a partition of A.
- (2) If M_1,\ldots,M_n is a partition of the set A, then the relation R defined as follows: $(a,b)\in R$ if and only if $a,b\in M_i$ for some M_i , is an equivalence relation on A.
- Proof
 - (1) Follows from Lemma
 - (2) Homework

Discrete Mathematics – Orders and Equivalences

Congruences

Let k be an integer. Integers a,b are congruent modulo k, denoted a ≡ b (mod k), if their reminders when they are divided by k are equal, or, equivalently, if k divides a – b.

 \dots -3, 0, 3, 6, \dots are congruent modulo 3, and so are \dots , -4, -1, 2, 5, \dots and \dots , -5, -2, 1, 4, \dots

- The relation \equiv (mod k), `to be congruent modulo k' is
 - reflexive, because k divides a a = 0
 - symmetric, because if k divides a-b then it also divides b-a
 - transitive, because if k divides a b and b c, then it also divides a c = (a b) + (b c)
- ■ (mod k), is an equivalence relation with equivalence classes
 { a | there is b with a = bk + c}
- Arithmetic on these classes is called modular arithmetic

Discrete Mathematics - Orders and Equivalences

15.1

Orders

- A relation R on a set A is called a (partial) order if it is reflexive, transitive and anti-symmetric.
- Examples:
 - $a \le b$ on the set of real numbers
 - $(a,b) \in Div$ if and only if a divides b
- Diagram of a partial order.

Due to anti-symmetricity, all the elements of A are ranked with respect to the order R, that is b is ranked higher than a if $(a,b) \in R$.

Due to transitivity, we do not need to know all pairs (a,b) from the relation, but only those, in which $\ b$ is just higher than $\ a$.

Diagram of a Partial Order

Rules of drawing a diagram:
if a is higher than b, put it higher
connect every element only with elements that are just higher, so avoid triangles.

Relation of divisibility on {1,2,...,12}

Minimal and Maximal maximal elements 15-18Minimal and Maximal maximal elements 15-18Minimal and Maximal maximal elements 10-18Elements a,b are said to be comparable if $(a,b) \in R$ or $(b,a) \in R$ Otherwise they are called incomparable

Element a is minimal if for any b if $(b,a) \in R$ then a = bElement a is maximal if for any b if $(a,b) \in R$ then a = bElement a is called the least element if for any b, $(a,b) \in R$ Element a is called the greatest element if for any b, $(a,b) \in R$

Total Order

A partial order is said to be total if every two elements are comparable

Sets N, Z, Q, R are totally ordered with respect to ≤

The diagram of a total order is a chain

2
3
1
2
0
-1
-1
-2
N
0
Z

Discrete Mathematics - Orders and Equivalences

Homework

- Are the following relations reflexive? symmetric? transitive? antisymmetric?
 - Motherhood: `x is the mother of y'
 - Intersect: 'straight lines x and y intersect'
- Show that the relation \subseteq on the power set of a set is an order. Draw the diagram of this relation on the power set $P(\{a,b,c\})$.
- Which of the properties: reflexivity, symmetricity, transitivity, and anti-symmetricity, should be true for a relation expressing the idea of similarity (not necessarily identity)?