Cosmmus? Suporte a jogos maciçamente multijogador em cenários com recursos limitados

Carlos Eduardo Benevides Bezerra¹

¹Instituto de Informática – Universidade Federal do Rio Grande do Sul (UFRGS) Caixa Postal 15.064 – 91.501-970 – Porto Alegre – RS – Brasil

Abstract. Traditionally, a central server is utilized to provide support to massively multiplayer games, where the number of participants is of the order of tens of thousands. In this work, it is proposed the utilization of geographically distributed lower-cost nodes, employing techniques to minimize the necessary bandwidth to theses server nodes. One of these techniques is a refinement of interest management algorithm [cit], which obtained significant results in simulations. Other techniques still in preliminary phase of specification are: server nodes overlay network topology construction using knowledge of the real network topology, load balancing and hotspots dectection.

Resumo. Tradicionalmente, utiliza-se um servidor central para prover suporte a jogos maciçamente multijogador, onde o número de participantes é da ordem de dezenas de milhares. Neste trabalho, propõe-se utilizar nodos geograficamente distribuídos de menor custo, empregando-se técnicas para minimizar o consumo de largura de banda necessário para estes nodos servidores. Uma das técnicas é um refinamento do gerenciamento de interesse [cit], que obteve resultados significativos nas simulações realizadas. Outras técnicas ainda em fase preliminar de especificação são: construção da topologia de rede overlay de nodos servidores utilizando conhecimento da topologia real da rede, balanceamento de carga e detecção de aglomerados de jogadores (hotspots).

1. Introdução

Atualmente, jogos eletrônicos têm se tornado bastante populares, especialmente os jogos maciçamente multijogador, onde há um número de participantes simultâneos da ordem de dezenas de milhares [Cecin et al. 2004]. Como exemplos, podemos citar World of Warcraft [Blizzard 2004], Lineage II [NCsoft 2003] e Guild Wars [ArenaNet 2005].

Usualmente, o suporte de rede para este tipo de aplicação consiste em um servidor central com recursos - capacidade de processamento e largura de banda para comunicação com os jogadores - super-dimensionados, ao qual se conectam as máquinas clientes. Cada jogador interage através de um destes clientes, que envia suas ações para o servidor, que as processa, verificando que alterações no jogo elas causam, e difunde o resultado para todos os clientes envolvidos. Em virtude do número de participantes simultâneos que este tipo de jogo costuma ter, percebe-se que tais tarefas demandam por uma quantidade de recursos significativa, no que tange a poder de processamento e, principalmente, largura de banda disponível para que sejam enviadas e recebidas as atualizações de estado.

Nos últimos anos, têm-se pesquisado alternativas à abordagem com servidor centralizado. Uma delas é a distribuição, entre os próprios participantes, tanto da

simulação do jogo quanto da responsabilidade de atualizarem-se entre si quando realizam ações. A comunicação entre eles ocorre par-a-par, formando uma rede descentralizada [Schiele et al. 2007]. Esta abordagem seria o ideal, não fossem alguns prolemas que lhe são inerentes. Por exemplo, como os jogadores participam do processamento da simulação, é necessário que eles entrem em acordo no que diz respeito ao estado da partida, sob pena de haver inconsistências caso isto não seja feito.

Outra questão se refere ao número de envios que cada participante tem que executar. No modelo cliente-servidor, basta que cada um envie suas ações para o servidor, que se encarrega de simular e difundir o novo estado para os outros jogadores. No caso do modelo par-a-par, cada par envolvido torna-se responsável por enviar atualizações de estado para os outros participantes. O problema disto reside no fato de que não se pode garantir que todos os jogadores possuam conexões de rede com largura de banda suficiente para isso. Por fim, sem um servidor central, que poderia atuar como árbitro, o jogo torna-se dependente da simulação que os próprios jogadores executam, que pode ser desvirtuada de forma a chegar a um resultado inválido, que beneficie indevidamente determinado jogador ou mesmo que invalide a sessão de jogo.

Além do modelo par-a-par, existe também a alternativa de utilizar um servidor distribuído, em que diversos nodos conectados entre si dividem a tarefa de simular o jogo, como também de enviar as atualizações de estado aos jogadores [Assiotis and Tzanov 2006]. Tal abordagem possibilita o uso de computadores de menor custo para comporem o sistema distribuído servidor, barateando a infra-estrutura de suporte. Questões como consistência e vulnerabilidade a trapaça podem ser abstraídas, restringindo o conjunto de nodos servidores a computadores comprovadamente confiáveis, o que é plausível, levando em conta que o número de nodos servidores deverá ser algumas ordens de grandeza menor do que o número de jogadores. Além disso, não é necessário exigir que cada jogador envie atualizações de estado para os outros jogadores. Com menores exigências de largura de banda e processaento aos jogadores, o jogo tornase acessível para um maior público.

O presente trabalho propõe uma abordagem de servidores distribuídos, utilizando técnicas para reduzir o consumo de largura de banda causado pelo tráfego do jogo entre os servidores e os clientes, diminuindo a quantidade de recursos necessários, através de um refinamento da técnica de gerenciamento de interesse dos jogadores. [reverrepensar]Uma das propostas consiste em um refinamento da técnica de gerenciamento de interesse[citação], que obteve resultados significativos nas simulações realizadas. Além disso, propõe-se uma técnica que visa prover qualidade de serviço, adaptando a freqüência de atualizações enviadas pelo servidor à disponibilidade de recursos. [sure?]Outra consiste em um heurística para detecção de aglomerados de jogadores - ou hotspots - de forma a otimizar o balanceamento de carga entre os servidores.[/sure?]

O artigo está dividido da seguinte maneira: na seção 2 são citados alguns trabalhos relacionados onde buscou-se distribuir o servidor do jogo; na seção 3, são apresentadas as definições de alguns conceitos utilizados ao longo do texto; na seção 4, é descrito o modelo de distribuição proposto; na seção 5 é apresentada a otimização proposta para reduzir o tráfego sem comprometer a qualidade do jogo; nas seções 6 e 7 é descrita a simulação realizada para validar a técnica proposta e os resultados obtidos, respectivamente e, na seção 8, são apresentadas as conclusões a que se chegou neste trabalho.

2. Trabalhos relacionados

Como já foi dito, alguns trabalhos já foram feitos nos últimos anos visando distribuir o suporte a jogos maciçamente multijogador. Uma das abordagens é o modelo parapar, que tem algumas dificuldades, no que se refere a consistência do estado do jogo nos diferentes pares participantes, vulnerabilidade a trapaça e uso eficiente de largura de banda. Alguns autores propõem abordagens cujo objetivo é minimizar estes problemas. Um destes trabalhos [Schiele et al. 2007] propõe a divisão do ambiente virtual simulado no jogo em regiões, e dentro de cada região é escolhido um par que será eleito coordenador daquela região. Sua função será a de gerenciar o interesse dos jogadores, verificando para quais pares cada atualização realmente precisa ser enviada. Dessa forma, reduz-se o uso de largura de banda de envio dos pares. No entanto, o uso de largura de banda de envio de cada participante ainda tende a ser significativamente superior àquele necessário quando utilizado o modelo cliente-servidor, pois neste é necessário que cada jogador envie suas ações para apenas um destino. No modelo par-a-par, cada jogador deve atualizar, normalmente, mais de um outro jogador. Além disso, é necessário que o par escolhido para gerenciar o interesse naquela região seja confiável.

Outro trabalho voltado para o modelo par-a-par [Iimura et al. 2004] tem uma abordagem semelhante à de [Schiele et al. 2007], mas sugere que, para cada região do ambiente virtual, seja criada uma "federação de servidores", formada por pares escolhidos dentre os participantes. A simulação torna-se mais confiável, já que diferentes nodos irão executar gerenciar aquele lugar no mundo do jogo. Porém, o risco dos nodos escolhidos para gerenciarem aquela região cometerem trapaça de conluio [cite] não é eliminado. Além disso, é necessário haver acordo entre os nodos servidores de cada região para que a simulação possa continuar.

- 3. Definições
- 4. Modelo de distribuição
- 5. Área de interesse gradual
- 6. Simulação
- 7. Resultados
- 8. Conclusões

9. General Information

All full papers and posters (short papers) submitted to some SBC conference, including any supporting documents, should be written in English or in Portuguese. The format paper should be A4 with single column, 3.5 cm for upper margin, 2.5 cm for bottom margin and 3.0 cm for lateral margins, without headers or footers. The main font must be Times, 12 point nominal size, with 6 points of space before each paragraph. Page numbers must be suppressed.

Full papers must respect the page limits defined by the conference. Conferences that publish just abstracts ask for **one**-page texts.

10. First Page

The first page must display the paper title, the name and address of the authors, the abstract in English and "resumo" in Portuguese ("resumos" are required only for papers written in Portuguese). The title must be centered over the whole page, in 16 point boldface font and with 12 points of space before itself. Author names must be centered in 12 point font, bold, all of them disposed in the same line, separated by commas and with 12 points of space after the title. Addresses must be centered in 12 point font, also with 12 points of space after the authors' names. E-mail addresses should be written using font Courier New, 10 point nominal size, with 6 points of space before and 6 points of space after.

The abstract and "resumo" (if is the case) must be in 12 point Times font, indented 0.8cm on both sides. The word **Abstract** and **Resumo**, should be written in boldface and must precede the text.

11. CD-ROMs and Printed Proceedings

In some conferences, the papers are published on CD-ROM while only the abstract is published in the printed Proceedings. In this case, authors are invited to prepare two final versions of the paper. One, complete, to be published on the CD and the other, containing only the first page, with abstract and "resumo" (for papers in Portuguese).

12. Sections and Paragraphs

Section titles must be in boldface, 13pt, flush left. There should be an extra 12 pt of space before each title. Section numbering is optional. The first paragraph of each section should not be indented, while the first lines of subsequent paragraphs should be indented by 1.27 cm.

12.1. Subsections

The subsection titles must be in boldface, 12pt, flush left.

13. Figures and Captions

Figure and table captions should be centered if less than one line (Figure 1), otherwise justified and indented by 0.8cm on both margins, as shown in Figure 2. The caption font must be Helvetica, 10 point, boldface, with 6 points of space before and after each caption.

In tables, try to avoid the use of colored or shaded backgrounds, and avoid thick, doubled, or unnecessary framing lines. When reporting empirical data, do not use more decimal digits than warranted by their precision and reproducibility. Table caption must be placed before the table (see Table 1) and the font used must also be Helvetica, 10 point, boldface, with 6 points of space before and after each caption.

14. Images

All images and illustrations should be in black-and-white, or gray tones, excepting for the papers that will be electronically available (on CD-ROMs, internet, etc.). The image resolution on paper should be about 600 dpi for black-and-white images, and 150-300 dpi for grayscale images. Do not include images with excessive resolution, as they may take hours to print, without any visible difference in the result.

Figure 1. A typical figure

Figure 2. This figure is an example of a figure caption taking more than one line and justified considering margins mentioned in Section 13.

15. References

Bibliographic references must be unambiguous and uniform. We recommend giving the author names references in brackets, e.g. [Knuth 1984], [Boulic and Renault 1991], and [Smith and Jones 1999].

The references must be listed using 12 point font size, with 6 points of space before each reference. The first line of each reference should not be indented, while the subsequent should be indented by 0.5 cm.

References

ArenaNet (2005). Guild wars. http://www.guildwars.com/.

Assiotis, M. and Tzanov, V. (2006). A distributed architecture for MMORPG. *Proceedings of 5th ACM SIGCOMM workshop on Network and system support for games*.

Blizzard (2004). World of warcraft. http://www.worldofwarcraft.com/.

Table 1. Variables to be considered on the evaluation of interaction techniques

	Chessboard top view	Chessboard perspective view
Selection with side movements	6.02 ± 5.22	7.01 <u>+</u> 6.84
Selection with in- depth movements	6.29 <u>+</u> 4.99	12.22 <u>+</u> 11.33
Manipulation with side movements	4.66 <u>+</u> 4.94	3.47 <u>+</u> 2.20
Manipulation with in- depth movements	5.71 <u>+</u> 4.55	5.37 <u>+</u> 3.28

- Boulic, R. and Renault, O. (1991). 3d hierarchies for animation. In Magnenat-Thalmann, N. and Thalmann, D., editors, *New Trends in Animation and Visualization*. John Wiley & Sons ltd.
- Cecin, F., Real, R., de Oliveira Jannone, R., Geyer, C., Martins, M., and Barbosa, J. (2004). FreeMMG: A Scalable and Cheat-Resistant Distribution Model for Internet Games. *IEEE Int. Sym. on Distributed Simulation and Real-Time Applications*, pages 83–90.
- Iimura, T., Hazeyama, H., and Kadobayashi, Y. (2004). Zoned federation of game servers: a peer-to-peer approach to scalable multi-player online games. *Proceedings of ACM SIGCOMM 2004 workshops on NetGames' 04: Network and system support for games*, pages 116–120.
- Knuth, D. E. (1984). The T_EX Book. Addison-Wesley, 15th edition.
- NCsoft (2003). Lineage ii. http://www.lineage2.com/.
- Schiele, G., Suselbeck, R., Wacker, A., Hahner, J., Becker, C., and Weis, T. (2007). Requirements of Peer-to-Peer-based Massively Multiplayer Online Gaming. *Proceedings of the Seventh IEEE International Symposium on Cluster Computing and the Grid*, pages 773–782.
- Smith, A. and Jones, B. (1999). On the complexity of computing. In Smith-Jones, A. B., editor, *Advances in Computer Science*, pages 555–566. Publishing Press.