실무에 적용 가능한 Big Data 분석 개론

빅데이터 이해와 동향

1. 빅데이터의 정의

기존의 일반적인 기술로는 다루기 힘든 대용량의 데이터

2011년 정의

맥킨지(McKinsey)

IDC(International Data Corporation : 세계적인 시장조사기관)

일반적인 데이터베이스 관리 시스템(DBMS; Data Base Management System)으로 저장, 관리, 분석할 수 있는 범위를 초과하는 대규모 데이터

1. 빅데이터의 정의

2011년 정의

맥킨지(McKinsey) . Data Corporation : 정보 통신 기술

IDC(International Data Corporation : 정보 통신 기술 시장조사 기관)

다양한 조율의 대규모 데이터로부터 가치를 추출하고 데이터의 초고속 수집, 발굴, 분석을 지원하도록 고안된 차세대 기술

2012년 정의

가트너(Gartner)

삼성경제연구소

함유근, 채승병

대용량, 빠른 속도, 다양성 높은 정보자산

1. 빅데이터의 정의

2012년 정의

가트너(Gartner) . 삼성경제연구소 .. 함유근, 채승병

- 기존의 관리 및 분석 체계로는 감당할 수 없을 정도의 거대한 데이터의 집합을 지칭함
- 대규모 데이터와 관계된 기술 및 도구를 포함함

가트너(Gartner) . 삼성경제연구소 .. 함유근, 채승병

- 보통 수십에서 수천 테라바이트(TB) 정도의 거대한 크기를 가짐
- 여러 가지 다양한 비정형 데이터를 포함하고 있음
- 생성 유통 소비가 몇 초에서 몇 시간 단위로 일어나 기존의 방식으로는 관리와 분석이 매우 어려운 데이터 집합

2. 빅데이터(Big Data)의 특성

빅데이터의 3V

규모(Volume)

1 처리해야 할 데이터의 크기를 말하는 속성

데이터 규모가 1012 바이트

- 2 <u>테라바이트(Terabyte, TB)</u>급 이상의 데이터군을 빅데이터로 통칭함
- ③ 정보통신 기술의 발달로 최근에는 더 큰 규모의 빅데이터를 접할 수 있음

디지털 데이터 단위

데이터 용량 구분(Memory unit)	크기(Size)
Kilobyte(KB)	103 바이트
Megabyte(MB)	106 바이트
Gigabyte(GB)	10 ⁹ 바이트
Terabyte(TB)	1012 바이트
Petabyte(PB)	1015 바이트
Exabyte(EB)	1018 바이트
Zettabyte(ZB)	1021 바이트
Yottabyte(YB)	10 ²⁴ 바이트

2. 빅데이터(Big Data)의 특성

다양성(Variety)

- 💶 처리해야 할 데이터의 유형이 다양함을 말하는 속성
- 2 빅데이터는 다양한 데이터 유형을 가짐

정형 데이터 (Structured data)

고정된 필드에 저장된 데이터

관계형 데이터베이스스프레드시트

비정형 데이터 (Unstructured data)

형태와 구조가 복잡한 데이터

에 소셜 데이터, 문서, 이미지, 오디오, 비디오, 동영상 반정형 데이터 (Semi-structured data)

값과 형식이 다소 일관성이 없는 데이터

예 HTML, XML, 웹문서, 웹로그, 센서 데이터

3 데이터의 양과 더불어 유형의 복잡성이 증대함

정보통신 기술의 발전과 더불어 <u>관측 데이터</u>가 의미 있는 분석의 대상으로 포함됨

소셜 데이터, 센서 데이터 등

속도(Velocity)

- 1 대용량의 데이터를 빠르게 처리하고 분석할 수 있는 속성
- 2 데이터의 빠른 처리 및 분석을 위해 다양한 방식을 적용함

데이터 유형, 크기, 발생 빈도주기, 분석주기 등

배치 처리(Batch Processing)

실시간 스트리밍(Streaming)

발생한 데이터를 일정 기간 동안 모아 두었다가 컴퓨터로 한꺼번에 처리하는 방식 데이터를 인터넷을 통해 실시간으로 전송, 구현할 수 있게 하는 기술

실무에 적용 가능한 Big Data 분석 개론

빅데이터 이해와 동향

1. 빅데이터 시대의 도래

<정지선, 빅 데이터의 새로운 가능성과 대응전략, 한국정보화진흥원, 2012>

<정지선, 빅 데이터의 새로운 가능성과 대응전략, 한국정보화진흥원, 2012>

2. 빅데이터의 가치

- 1 경제적 자산이 되고, 가치창출의 원천이 됨
 - 새로운 기회를 창출하고, 위험을 해결하여 사회 및 경제 발전의 엔진 역할을 수행할 수 있음
- 2 불확실한 미래에 대한 통찰력을 제공할 수 있음

현실의 대규모 데이터를 정확, 정교하게 분석 미래 전망 및 다양한 가능성, 시나리오, 시뮬레이션 제공

통찰력과 유연성 확보

③ 미래의 리스크에 대응력을 키울 수 있음

환경 데이터

현실에서 실시간마다 발생하는 데이터 소셜 데이터

개인의 경험, 인식, 선호 등에 대한 데이터

분석

이상 징후 감지

이슈의 빠른 분석을 통한 실시간 의사결정

새로운 패턴의 정보를 신속하게 찾음

국가 및 기업 경영의 비용 절감을 달성하고 투명성이 제고됨

2. 빅데이터의 가치

4 미래 사회의 스마트한 경쟁력을 제고할 수 있음

과거, 현재, 미래 등 시간 흐름상의 변화 및 추세 분석 개인의 상황을 인지하여 지능적이고 스마트한 신규 서비스 창출

개인화, 지능화에 기반한 차세대 비즈니스 모델 발굴

기업 및 국가에 대한 소비자 및 국민의 의견, 평판 및 경향 분석

비즈니스와 정책에 반영하여 기업 및 국가 경쟁력 향상

- 5 스마트한 창조력을 제고할 수 있음
 - ▶ 이종데이터들을 상호 결합하여 새로운 지식을 발견함

다른 분야에서 발생하여 서로 다른 데이터들

- ▶ 많은 요인간의 상관관계를 파악하여 결과에 대한 시행착오를 최소화함
- 방대한 데이터 분석을 통해 新융합 시장을 창출함

2. 빅데이터의 가치

빅데이터의 사회 · 경제적 가치

구분	기관명	주요내용
산업 경제성	Economist (2010)	• 데이터는 자본이나 노동력과 거의 동등한 레벨의 경제적 투입 자본, 비즈니스의 새로운 원자재 역할
	Garter (2011)	 데이터는 21세기 원유, 데이터가 미래 경쟁 우위를 좌우 기업은 다가올 '데이터 경제 시대'를 이해하고 정보 고립(Information Silo)을 경계해야 성공 가능
	Mckinsey (2011)	• 빅데이터는 혁신, 경쟁력, 생산성의 핵심 요소 • 의료, 공공행정 등 5대 분야에서 6천억 불 이상의 가치 창출
국가 경쟁력	美 대통령 과학기술자문위	• 미국 정부기관들이 데이터를 지식으로, 지식을 행동으로 변환하는 전략에 집중해야 함을 주장
	싱가포르	• 데이터를 지반으로 싱가포르를 위협하는 <mark>리스크에</mark> 대한 평가와 환경변화를 탐지

<김현곤, 빅데이터 시대 전망과 대응전략, 한국정보화진흥원, 2012>

실무에 적용 가능한 Big Data 분석 개론

빅데이터 이해와 동향

1. 주요국가의 빅데이터 활용

미국

모든 연방정부기관에 빅데이터 전략이 필요하다.

2012년 대통령의 과학기술정책실에서 6개의 주요 연방정부기관이 협력함

빅데이터 관련 R&D에 2억 달러를 투입하기로 결정함

국립과학재단(NSF)

- · 데이터 관리, 분석, 시각화, 지식 추출 등을 위한 핵심 연구/기술 개발 지원 및 인력양성
- · 빅데이터를 이용한 정보 및 지식 추출 방법론을 위한 포괄적이고 장기적인 전략 수립에 투자

국립보건원(NIH)

· 생물, 건강 및 질병에 대한 데이터 확보 및 공개를 통한 빅데이터 이용 확산

1. 주요국가의 빅데이터 활용

미국

국방부(DoD)

ㆍ데이터를 이용한 국방 분야 의사결정 체계 구축

방위고등연구계획국(DARPA)

- · 대용량 데이터를 분석하는 컴퓨팅 기술 및 SW 개발
- · 다양한 미션에 쉽게 적용 가능한 HCI tool 개발

에너지부(DoE)

· 고등 컴퓨팅(Advanced computing) 기술 활용을 통한 에너지 과학 발견

지질조사원(USGS)

ㆍ지구 시스템 과학을 위한 빅데이터 기술 개발

1. 주요국가의 빅데이터 활용

미국

美 의료부문의 빅데이터 활용

- 1 연간 \$3,300억의 직간접적 비용 절감 효과를 기대하고 있음
- 2 의료산업 분야의 개선방법 예시

R&D

• 빅데이터는 통계활용, 모델링을 가능하게 하여 \$250억 비용감소와 \$1,000억의 산업효과를 유발함

임상분야

• 의료기관 별 진료방법, 효능, 비용 데이터를 분석하여 보다 효과적인 진료방법을 파악함

가격 / 회계

- 투약효능을 기록한 데이터에 근거하여 가격을 결정함
- 환자는 고비용 저효능의 약물을 구매하여 리스크를 감소시킴

New BM

• 환자 데이터의 온라인 플랫폼화 - 의료협회 간 데이터 공유로 치료 효과 제고

공중보건

• 전국의 의료데이터를 연계하여 전염병 발생과 같은 긴박한 순간에 빠른 의사결정을 함

<McKinsey, Big Data: The Next Frontier for Innovation, Competition, and Productivity, 2011>

영국

과학부 장관 및 내각사무처 장관이 공동책임으로 공공 데이터 그룹과 협력하여 공공 데이터에 대한 공개 및 접근에 대해 개선해야 한다.

사회 및 경제적인 이익을 위해 빅데이터의 활용을 극대화하려고 노력함

1. 주요국가의 빅데이터 활용

영국

국영 보건복지 체제(NHS)

전국의 약국, 병원의 약 처방 데이터를 데이터베이스화 특정지역 및 특정질병의 가능성을 분석

국민건강을 위한 질병 예측

패치베이(Pachube)

전력 및 환경 등의 센서 빅데이터

개방 및 공유하는 플랫폼 제공

웹 프로그램과 스마트폰 앱 개발 등 다양한 사업에 활용

<김현곤, 빅데이터 시대 전망과 대응전략, 한국정보화진흥원, 2012>

1. 주요국가의 빅데이터 활용

한국

빅데이터를 활용하여 지식과 정보를 개방하고 상호 협력할 수 있는 스마트한 정부를 구현한다.

정부 및 공공기관, 민간 전문기업, 연구기관, 빅데이터 보유기관

- 1 빅데이터 국가전략 포럼을 통해 여러 기관 및 전문가간의 협력을 활성화 함
- ② 공공부문의 빅데이터 활용의 성공사례를 조기 발굴하려 노력함
- ③ 공공 및 민간 데이터의 연계 활용토록 유도하고 있음
- ◀ 범정부적인 빅데이터 전략로드맵을 수립하고 빅데이터 분석 전문인력 양성에 노력함

2. 빅데이터 활용 분야

2011년 맥킨지가 제시한 빅데이터 활용분야

활용분야	분석 대상 데이터	
의료 산업	• 제약사 연구 개발 데이터 • 환자 치료 · 임상 데이터 • 의료 산업의 비용 데이터	
공공 행정	• 정부의 행정 업무에서 발생하는 데이터	
소매업	• 고객의 거래 데이터 • 구매 경향	
제조업	 고객 취향 데이터 수요 예측 데이터 제조 과정 데이터 센서 활용 데이터 	
개인 위치 데이터	• 개인과 차량의 위치 데이터	

<McKinsey, Big Data : The Next Frontier for Innovation, Competition, and Productivity, 2011 재구성>

2. 빅데이터 활용 분야

공공분야

안전한 사회 구축을 위한 빅데이터 활용

<김현곤, 빅데이터 시대 전망과 대응전략, 한국정보화진흥원, 2012>

2. 빅데이터 활용 분야

의료분야

건강한 사회 구축을 위한 빅데이터 활용

<김현곤, 빅데이터 시대 전망과 대응전략, 한국정보화진흥원, 2012>

2. 빅데이터 활용 분야

소매 또는 유통 분야

호텔에서의 빅데이터 활용

<KBS신년기획, 무엇이 세계경제를 움직이는가? 제2편 신성장동력: 서비스를 설계하라, 2008>

불량을 개선할 수 있는 제조 조건 및 불량 예측 기법 등 지능화된 제조 운영 시스템 구축

2. 빅데이터 활용 분야

정보 서비스 분야

행복한 사회 구축을 위한 빅데이터 활용

<김현곤, 빅데이터 시대 전망과 대응전략, 한국정보화진흥원, 2012>