Econ 6190 Problem Set 2

Fall 2024

- 1. [Hansen 4.9] Suppose that X_i are i.n.i.d. (independent but not necessarily identically distributed) with $\mathbb{E}[X_i] = \mu_i$ and $\text{var}[X_i] = \sigma_i^2$.
 - (a) Find $\mathbb{E}[\bar{X}]$;
 - (b) Find $var[\bar{X}]$.
- 2. [Mid term, 2022] Let $X \sim N(\mu, \sigma^2)$ for some unknown μ and **known** σ^2 . Furthermore, suppose I believe that μ can only take two values, $\frac{1}{2}$ or $-\frac{1}{2}$, and I believe $P\{\mu = \frac{1}{2}\} = \frac{1}{2}$, and $P\{\mu = -\frac{1}{2}\} = \frac{1}{2}$. Now, I draw a single observation X_1 from the distribution of X, and it turns out $X_1 < 0$. Given that I observe $X_1 < 0$, what is my updated probability that $\mu = \frac{1}{2}$? That is, find $P\{\mu = \frac{1}{2}|X_1 < 0\}$. The following notations can be useful: $\Phi(t)$ is the cdf of a standard normal, and $\phi(t)$ is the pdf of a standard normal.
- 3. [Hansen, 5.2, 5.3] For the standard normal density $\phi(x)$, show that $\phi'(x) = -x\phi(x)$. Then, use integration by parts to show that $\mathbb{E}[Z^2] = 1$ for $Z \sim N(0, 1)$.
- 4. [Mid term, 2023] If X is normal with mean μ and variance σ^2 , it has the following pdf

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}\right), \text{ for } x \in \mathbb{R}.$$

Let X and Y be jointly normal with the joint pdf

$$f(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}} \exp\left(-\frac{1}{2(1-\rho^2)} \left(\frac{x^2}{\sigma_X^2} - 2\frac{\rho xy}{\sigma_X\sigma_Y} + \frac{y^2}{\sigma_Y^2}\right)\right), \text{ for } x, y \in \mathbb{R}$$
 (1)

where $\sigma_X > 0, \sigma_Y > 0$ and $-1 \le \rho \le 1$ are some constants.

- (a) Without using the properties of jointly normal distributions, show that the marginal distribution of Y is normal with mean 0 and variance σ_Y^2 .
- (b) If you cannot work (a) out, assume it is true and move on. Derive the conditional distribution of X given Y = y. (Hint: it should be normal with mean $\frac{\sigma_X}{\sigma_Y}\rho y$ and variance $(1 \rho^2)\sigma_X^2$).

- (c) Let $Z = \frac{X}{\sigma_X} \frac{\rho}{\sigma_Y} Y$. Show Y and Z are independent. Clearly state your reasoning. (Hint: For this question, you can use the properties of jointly normal distributions.)
- 5. [Hansen 5.18, 5.19] Show that:
 - (a) If $e \sim N(0, I_n \sigma^2)$ and $\mathbf{H}' \mathbf{H} = I_n$, then $u = \mathbf{H}' e \sim N(0, I_n \sigma^2)$.
 - (b) If $e \sim N(0, \Sigma)$ and $\Sigma = \mathbf{A}\mathbf{A}'$, then $u = \mathbf{A}^{-1}e \sim N(0, I_n)$.
- 6. [Hansen 6.13] Let $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X})^2$. Find the covariance of $\hat{\sigma}^2$ and \bar{X} . Under what condition is this zero? [Hint: This exercise shows that the zero correlation between the numerator and the denominator of the t ratio does not always hold when the random sample is not from a normal distribution].