

HEX BUFFER/CONVERTER (INVERTING)

- PROPAGATION DELAY TIME: t_{PD} = 40ns (TYP.) at V_{DD} = 10V C_L = 50pF
- HIGH TO LOW LEVEL LOGIC CONVERSION
- HIGH "SINK" AND "SOURCE" CURRENT CAPABILITY
- QUIESCENT CURRENT SPECIFIED UP TO 20V
- 5V, 10V AND 15V PARAMETRIC RATINGS
- INPUT LEAKAGE CURRENT I_I = 100nA (MAX) AT V_{DD} = 18V T_A = 25°C
- 100% TESTED FOR QUIESCENT CURRENT

The HCF4049UB is a monolithic integrated circuit fabricated in Metal Oxide Semiconductor technology available in DIP and SOP packages. It is an inverting Hex Buffer/Converter and feature logic level conversions using only one supply voltage (V_{DD}).

The input high level signal (V_{IH}) can exceed the V_{DD} supply voltage when these devices are used

ORDER CODES

PACKAGE	TUBE	T&R
DIP	HCF4049UBEY	
SOP	HCF4049UBM1	HCF4049UM013TR

for logic level conversions. This device is intended for use as CMOS to DTL/TTL converters and can drive directly two DTL/TTL loads (V_{DD} = 5V, $V_{OL} \le 0.4V$ and $I_{OL} \le 3.2$ mA.

PIN CONNECTION

March 2004 1/9

INPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN N°	SYMBOL	NAME AND FUNCTION
3, 5, 7, 9, 11, 14	A, B, C, D, E, F	Data Inputs
2, 4, 6, 10, 12, 15	G, H, I, J, K, L	Data Outputs
13, 16	NC	Not Connected
8	V_{SS}	Negative Supply Voltage
1	V_{DD}	Positive Supply Voltage

TRUTH TABLE

INPUTS	OUTPUTS
A, B, C, D,E, F	G, H, I, J, K, L
L	Н
Н	L

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	-0.5 to +22	V
V _I	DC Input Voltage	-0.5 to +18	V
I _I	DC Input Current	± 10	mA
P _D	Power Dissipation per Package	200	mW
	Power Dissipation per Output Transistor	100	mW
T _{op}	Operating Temperature	-55 to +125	°C
T _{stg}	Storage Temperature	-65 to +150	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

All voltage values are referred to V_{SS} pin voltage.

331

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	3 to 20	V
V _I	Input Voltage	-0.5 to 15V	V
T _{op}	Operating Temperature	-55 to 125	°C

DC SPECIFICATIONS

			Test Con	dition		Value							
Symbol	Parameter	VI	v _o	ΙΙοΙ	V _{DD}	T _A = 25°C			-40 to 85°C		-55 to 125°C		Unit
		(V)	(V)	(μ A)	(V)	Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
ΙL	Quiescent Current	0/5			5		0.02	1		30		30	
		0/10			10		0.02	2		60		60	μΑ
		0/15			15		0.02	4		120		120	μΛ
		0/20			20		0.04	20		600		600	
V_{OH}	High Level Output	0/5		<1	5	4.95			4.95		4.95		
	Voltage	0/10		<1	10	9.95			9.95		9.95		V
		0/15		<1	15	14.95			14.95		14.95		
V_{OL}	Low Level Output	5/0		<1	5		0.05			0.05		0.05	
	Voltage	10/0		<1	10		0.05			0.05		0.05	V
		15/0		<1	15		0.05			0.05		0.05	
V_{IH}	High Level Input		0.5/4.5	<1	5	4			4		4		
	Voltage		1/9	<1	10	8			8		8		V
			1.5/13.5	<1	15	12			12		12		
V_{IL}	Low Level Input		4.5/0.5	<1	5			1		1		1	
	Voltage		9/1	<1	10			2		2		2	V
			13.5/1.5	<1	15			3		3		3	
I_{OH}	Output Drive	0/5	2.5	<1	5	-1.25	-6.4		-0.42		-0.42		
	Current	0/5	4.6	<1	5	-0.51	-1.6		-0.38		-0.38		mA
		0/10	9.5	<1	10	-1.25	-3.6		-1		-1		1117 (
		0/15	13.5	<1	15	-3.75	-12		-3		-3		
I_{OL}	Output Sink	0/5	0.4	<1	5	3.2	6.4		2.6		2.6		
Current	0/10	0.5	<1	10	8	16		6.6		6.6		mΑ	
		0/15	1.5	<1	15	24	48		19		19		
I _I	Input Leakage Current	0/18	Any In	put	18		±10 ⁻⁵	±0.1		±1		±1	μΑ
CI	Input Capacitance		Any In	put			5	7.5					pF

The Noise Margin for both "1" and "0" level is: 1V min. with V_{DD} =5V, 2V min. with V_{DD} =10V, 2.5V min. with V_{DD} =15V

$\textbf{DYNAMIC ELECTRICAL CHARACTERISTICS} \; (T_{amb} = 25 ^{\circ}C, \; C_{L} = 50 \text{pF}, \; R_{L} = 200 \text{K}\Omega, \; t_{r} = t_{f} = 20 \; \text{ns})$

Symbol	_		Test Condition				Value (*)		
	Parameter	V _{DD} (V)	V _I (V)		Min.	Тур.	Max.		
t _{TLH}	Output Transition Time	5	5			80	160		
		10	10			40	80	ns	
		15	15			30	60		
t _{THL}	Output Transition Time	5	5			30	60		
		10	10			20	40	ns	
		15	15			15	30		
t _{PLH}	Propagation Delay Time	5	5			60	120		
		10	10			32	65		
		5	10			45	90	ns	
		15	15			25	50		
		5	15			45	90		
t _{PHL}	Propagation Delay Time	5	5			32	65		
	10	10			20	40			
		5	10			15	30	ns	
		15	15			15	30		
		5	15			10	20		

^(*) Typical temperature coefficient for all V_{DD} value is 0.3%/°C.

TEST CIRCUIT

 C_L = 50pF or equivalent (includes jig and probe capacitance) R_L = 200K Ω R_T = Z_{OUT} of pulse generator (typically 50 Ω)

47/ 4/9

WAVEFORM: PROPAGATION DELAY TIMES (f=1MHz; 50% duty cycle)

Plastic DIP-16 (0.25) MECHANICAL DATA

DIM		mm.		inch		
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
В	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
E		8.5			0.335	
е		2.54			0.100	
e3		17.78			0.700	
F			7.1			0.280
I			5.1			0.201
L		3.3			0.130	
Z			1.27			0.050

SO-16 MECHANICAL DATA

DIM		mm.		inch				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
Α			1.75			0.068		
a1	0.1		0.2	0.004		0.008		
a2			1.65			0.064		
b	0.35		0.46	0.013		0.018		
b1	0.19		0.25	0.007		0.010		
С		0.5			0.019			
c1			45°	(typ.)				
D	9.8		10	0.385		0.393		
Е	5.8		6.2	0.228		0.244		
е		1.27			0.050			
e3		8.89			0.350			
F	3.8		4.0	0.149		0.157		
G	4.6		5.3	0.181		0.208		
L	0.5		1.27	0.019		0.050		
M			0.62			0.024		
S	8		° (r	nax.)		•		

DIM		mm.		inch			
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
Α			330			12.992	
С	12.8		13.2	0.504		0.519	
D	20.2			0.795			
N	60			2.362			
Т			22.4			0.882	
Ao	6.45		6.65	0.254		0.262	
Во	10.3		10.5	0.406		0.414	
Ko	2.1		2.3	0.082		0.090	
Po	3.9		4.1	0.153		0.161	
Р	7.9		8.1	0.311		0.319	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

