

School of Informatics

WRITTEN EXAMINATION

Course: advanced programming				
Sub-course				
Course code: IT712A			Credits for written examination: 5,5 hp	
Date: 2015-10-27			Examination time: 1415-1730 (3 h	1)
Examination responsible				
Teachers concerned: Vicenc Torra				
Aid at the exam/appendices				
Other				
Instructions		Take a new sheet of pape	r for each teacher.	
		Take a new sheet of pape	r when starting a new question.	
	\boxtimes	Write only on one side of	the paper.	
	\boxtimes	Write your name and per	rsonal ID No. on all pages you hand i	n.
	\boxtimes	Use page numbering.		
	\boxtimes	Don't use a red pen.		
	\boxtimes	Mark answered question	s with a cross on the cover sheet.	
Grade points				

Examination results should be made public within 18 working days $Good\ luck!$

Total number of pages

Exam. Advanced Programming (Course code: IT712A) The exam consists on 5 exercises.

Exercise 1. (20 points) Define a recursive version of the function from (n,m) with n and m integers. The function returns the list of integers from n to m. Assume $n \leq m$.

Exercise 2. (20 points) Define the method from(vFrom, vTo,gen) which generates a list of elements where the first one is vFrom and the last one is vTo. These two elements are of an arbitrary type. Then, gen is a function that given an element of this arbitrary type generates a new one.

For example,

should return

$$List[Int] = List(2, 4, 6, 8, 10)$$

To solve this exercise use recursion or high-order functions.

Exercise 3. (25 points) A time series can be represented as a sequence of data x_1, x_2, x_3, \ldots for given times t_1, t_2, t_3, \ldots Implement using higher-order functions the moving weighted average of order 3 defined by

$$x_i' = \frac{1}{4}x_{i-1} + \frac{1}{2}x_i + \frac{1}{4}x_{i+1}.$$

Note. You will need to define the first element of the sequence (when expressions for x'_i cannot be applied in an appropriate way).

Exercise 4. (25 points) Consider a polynomial of the following form

$$a_0x^0 + a_1x^1 + a_2x^2 + \cdots + a_nx^n$$

represented by means of a list of coefficients.

Implement a function that given such a polynomial returns its evaluation for a given value of x. Assume all elements are integers.

The function should be able to evaluate the following expression. polynomialAt List(2,3,6,3) 2

Exercise 5. (10 points) Discuss briefly (maximumm 5-10 lines) tail-recursion and explain if any of the functions you have defined is tail-recursive.