Sticky Expectations and Consumption Dynamics

Christopher D. Carroll Edmund Crawley Jiri Slacalek Kiichi Tokuoka Matthew N. White

CEBRA Annual Meeting, New York, July 2019

Macro

• Aggregate consumption exhibits 'excess smoothness'

Micro

• Idiosyncratic consumption does not

Modeling response: 'habits'

Macro

• Aggregate consumption exhibits 'excess smoothness'

Micro

Idiosyncratic consumption does not

Modeling response: 'habits'

Aggregate consumption exhibits 'excess smoothness'

Micro

Macro

Idiosyncratic consumption does not → Habits strongly rejected

Modeling response: 'habits'

↑

Macro

• Aggregate consumption exhibits 'excess smoothness'

Micro

Idiosyncratic consumption does not → Habits strongly rejected

This paper

- Builds a model that reconciles these empirical facts
 - Sticky Expectations replace habits
 - Tractable
 - Quantitatively plausible (both micro and macro)

Excess Smoothness: Macro vs Micro

Estimate χ in

$$\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \epsilon$$

597 estimates of χ in Havranek, Rusnak, and Sokolova (2017)

 $\chi^{\mathsf{Macro}} pprox 0.6$

 $\chi^{\rm Micro}\approx 0.1$

Claim: It's Not Habits, It's (Macro) Inattention!

Our Income Process

- Idiosyncratic Component: Perfectly Observed
- Aggregate Component: Stochastically Observed
 - Updating à la Calvo (1983)

Advantages

- Resolves macro/micro habits dissonance
- Simple to apply in heterogenous agent settings
 - e.g. Auclert, Rognlie, and Straub (2019)

Why Macro Inattention Is Plausible

Idiosyncratic Variability Is $\sim 100 imes$ Bigger

- If Same Specification Estimated on Micro vs Macro Data
- Pervasive Lesson of All Micro Data

Utility Cost of Inattention Small

- Micro: Critical (and Easy) To Notice You're Unemployed
- Macro: Not Critical To Instantly Notice If U ↑

Quadratic Utility 'Toy Model'

Hall (1978) Random Walk

• Total Wealth (Human + Nonhuman):

$$\mathbf{o}_{t+1} = (\mathbf{o}_t - \mathbf{c}_t) \mathsf{R} + \zeta_{t+1}$$

Euler Equation:

$$\mathbf{u}'(\mathbf{c}_t) = \mathsf{R}\beta \mathbb{E}_t[\mathbf{u}'(\mathbf{c}_{t+1})]$$

• \Rightarrow Random Walk (for R $\beta = 1$):

$$\Delta \mathbf{c}_{t+1} = \epsilon_{t+1}$$

• Expected Wealth:

$$\mathbf{o}_t = \mathbb{E}_t[\mathbf{o}_{t+1}] = \mathbb{E}_t[\mathbf{o}_{t+2}] = \dots$$

Sticky Expectations—Individual c

• Consumer who happens to update at t and t + n

$$\mathbf{c}_t = (\mathsf{r}/\mathsf{R})\mathbf{o}_t$$
 $\mathbf{c}_{t+1} = (\mathsf{r}/\mathsf{R})\widetilde{\mathbf{o}}_{t+1} = (\mathsf{r}/\mathsf{R})\mathbf{o}_t = \mathbf{c}_t$
 $\vdots \qquad \vdots$
 $\mathbf{c}_{t+n-1} = \mathbf{c}_t$

- Implies that $\Delta^n \mathbf{o}_{t+n} \equiv \mathbf{o}_{t+n} \mathbf{o}_t$ is white noise
- So **individual c** is RW across updating periods:

$$\mathbf{c}_{t+n} - \mathbf{c}_t = (\mathsf{r/R}) \underbrace{(\mathbf{o}_{t+n} - \mathbf{o}_t)}_{\Delta^n \mathbf{o}_{t+n}}$$

Sticky Expectations—Aggregate C

- ullet Aggregate: ${f C}_t = \int_0^1 {f c}_{t,i} \, {
 m d}i$
- Calvo (1983)-Type Updating of Expectations:
 - Probability $\Pi = 0.25$ (per quarter)
- Economy composed of many sticky- $\mathbb E$ consumers:

$$\mathbf{C}_{t+1} = (1 - \Pi) \underbrace{\mathbf{C}_{t+1}^{\cancel{f}}}_{=\mathbf{C}_t} + \Pi \mathbf{C}_{t+1}^{\pi}$$

$$\Delta \mathbf{C}_{t+1} \approx \underbrace{(1 - \Pi)}_{\equiv \chi = 0.75} \Delta \mathbf{C}_t + \epsilon_{t+1}$$

ullet Substantial persistence ($\chi=0.75$) in aggregate C growth

One More Ingredient . . .

Idiosyncratic shocks: Frictionless observation

• I notice if I am fired, promoted, somebody steals my wallet

Aggregate shocks: Sticky observation

May not instantly notice changes in aggregate productivity

So...

Idiosyncratic Δc : dominated by frictionless dynamics

But law of large numbers \Rightarrow idiosyncratic part vanishes

Aggregate ΔC : highly serially correlated

Full Model

Partial Equilibrium/Small Open Economy

- CRRA Utility
- Idiosyncratic Shocks Calibrated From Micro Data
- Aggregate Shocks Calibrated From Macro Data
- Markov Process (Discrete RW) for Agg. Income Growth
 - Handles changing growth 'eras'
- Liquidity Constraint
- Mildly Impatient Consumers
- Blanchard (1985) Mortality and Insurance

Solving the Model

All results are generated using the open-source Econ-ARK toolkit:

• http://econ-ark.org

Income Process

Individual's labor productivity is

$$\boldsymbol{\ell}_{t,i} = \underbrace{\boldsymbol{\theta}_{t,i}}_{\boldsymbol{\theta}_{t,i}\boldsymbol{\Theta}_{t}} \underbrace{\boldsymbol{p}_{t,i}}_{\boldsymbol{p}_{t,i}\boldsymbol{P}_{t}}$$

• Idiosyncratic and aggregate p evolve according to

$$p_{t+1,i} = p_{t,i} \psi_{t+1,i}$$

 $P_{t+1} = \Phi_{t+1} P_t \Psi_{t+1}$

- Φ is Markov 'underlying' aggregate pty growth
 - Discrete (bounded) random walk
 - Calibrated to match postwar US pty growth variation
 - Generates predictability in income growth (for IV regressions)

Sticky Expectations about Aggregate Income

Calvo Updating of Perceptions of Aggregate Shocks

- True Permanent income: $P_{t+1} = \Phi_{t+1} P_t \Psi_{t+1}$
- Tilde (\widetilde{P}) denotes perceived variables
- Perception for consumer who has not updated for *n* periods:

$$\widetilde{P}_{t,i} = \mathbb{E}_{t-n}[P_t | \Omega_{t-n}] = \Phi_{t-n}^n P_{t-n}$$

because Φ is random walk

Key Assumption:

- People act as if their perceptions about aggregate state $\{\widetilde{P}_{t,i}, \widetilde{\Phi}_{t,i}\}$ are the true aggregate state $\{P_t, \Phi_t\}$
 - ⇒ Model solution is *exactly* the same as the frictionless model

Key Parameter Values

	Preference Parameters					
ρ	2	Coefficient of Relative Risk Aversion				
β	0.970	Discount Factor (SOE Model)				
П	0.25	Probability of Updating Expectations (if Sticky)				
K/K^{γ}	12.0	SS Capital to Output Ratio				
		Shock Parameters				
$\sigma_{ heta}^2$	0.120	Variance Idiosyncratic Tran Shocks (=4× Annual)				
σ_{ψ}^2	0.003	Variance Idiosyncratic Perm Shocks $(=\frac{1}{4} \times Annual)$				
$\sigma_{ heta}^2 \ \sigma_{\psi}^2 \ \sigma_{ heta}^2 \ \sigma_{\Psi}^2$	0.00001	Variance Aggregate Transitory Shocks				
$\sigma_{f \Psi}^{f 2}$	0.00004	Variance Aggregate Permanent Shocks				
so.	0.050	Probability of Unemployment Spell				
D	0.005	Probability of Mortality				

Full Calibration

Regressions on Simulated and Actual Data

Dynan (2000)/Sommer (2007) Specification:

$$\Delta \log \mathbf{C}_{t+1} \approx \varsigma + \chi \mathbb{E}[\Delta \log \mathbf{C}_t] + \eta \mathbb{E}[\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$$

• χ : Extent of habits

```
Data: Micro: \chi^{\text{Micro}} = 0.1 (EER 2017 paper)
Macro: \chi^{\text{Macro}} = 0.6
```

• η : Fraction of Y going to 'rule-of-thumb' C = Y types

```
Data: Micro: 0 < \eta^{\text{Micro}} < 1 (Depends ...)
Macro: \eta^{\text{Macro}} \approx 0.5 (Campbell and Mankiw (1989))
```

• α : Precautionary saving (micro) or IES (Macro)

```
Data: Micro: \alpha^{\text{Micro}} < 0 (Zeldes (1989))

Macro: \alpha^{\text{Macro}} < 0 (but small)

[In GE r depends roughly linearly on A]
```

Micro Regressions: Frictionless

$$\Delta \log \mathbf{c}_{t+1,i} = \varsigma + \chi \Delta \log \mathbf{c}_{t,i} + \eta \mathbb{E}_{t,i} [\Delta \log \mathbf{y}_{t+1,i}] + \alpha \bar{\mathbf{a}}_{t,i} + \epsilon_{t+1,i}$$

Model of Expectations	χ	η	α	$ar{R}^2$
Frictionless				
	0.019			0.000
	(-)			
		0.011		0.004
		(-)		
			-0.190	0.010
			(-)	
	0.061	0.016	-0.183	0.017
	(-)	(-)	(-)	

Micro Regressions: Sticky

$$\Delta \log \mathbf{c}_{t+1,i} = \varsigma + \chi \Delta \log \mathbf{c}_{t,i} + \eta \mathbb{E}_{t,i} [\Delta \log \mathbf{y}_{t+1,i}] + \alpha \bar{a}_{t,i} + \epsilon_{t+1,i}$$

Model of Expectations	χ	η	α	$ar{R}^2$
Sticky				
•	0.012			0.000
	(-)			
		0.011		0.004
		(-)		
			-0.191	0.010
			(-)	
	0.051	0.015	-0.185	0.016
	(-)	(-)	(-)	

Empirical Results for U.S.

	$\Delta \log C_{t+1} = \varsigma + \chi \Delta \log C_t + \eta \mathbb{E}_t [\Delta \log Y_{t+1}] + \alpha A_t + \epsilon_{t+1}$						
Expectations : Dep Var Independent Variables			OLS or IV	$2^{ m nd}$ Stage $ar{R}^2$	Hansen J <i>p</i> -val		
Nondurabl	es and Service	es					
$\Delta \log \mathbf{C}_t^*$	$\Delta \log \mathbf{Y}_{t+1}$	A_t					
0.468			OLS	0.216			
(0.076)							
0.830			IV	0.278	0.439		
(0.098)							
	0.587		IV	0.203	0.319		
	(0.110)						
		-0.17e-4	IV	-0.005	0.181		
		(5.71e-4)					
0.618	0.305	-4.96e-4	IV	0.304	0.825		
(0.159)	` ,	(2.94e-4)					
Memo: Fo	r instruments	$\mathbf{Z}_t, \Delta \log \mathbf{C}_t =$	= $\mathbf{Z}_t \zeta$, I	$R^2 = 0.358$			

Notes: Data source is NIPA, 1960Q1–2016Q. Robust standard errors are in parentheses. Instruments $\mathbf{Z}_t = \{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-3}, A_{t-2}, A_{t-3}, \Delta_8 \log \mathbf{C}_{t-2}, \Delta_8 \log \mathbf{Y}_{t-2}, \log 2 \text{ and 3 of differenced Fed funds rate, lags 2 and 3 of the Michigan Index of Consumer Sentiment Expectations}.$

Small Open Economy: Sticky

	$\Delta \log C_{t+1} = \varsigma + \chi \Delta \log C_t + \eta \mathbb{E}_t [\Delta \log Y_{t+1}] + \alpha A_t + \epsilon_{t+1}$						
•	Expectations : Dep Var OLS Independent Variables or IV				Hansen J <i>p</i> -val		
Sticky : Δ	$\log \mathbf{C}_{+}^{*}$ (with	measureme	nt error	$\mathbf{C}_t^* = \mathbf{C}_t imes \xi_t$	• •		
	$\Delta \log \mathbf{Y}_{t+1}$	A_t		, ,,,			
0.508			OLS	0.263			
(0.058)							
0.802			IV	0.260	0.554		
(0.104)							
	0.859		IV	0.198	0.233		
	(0.182)						
		-8.26e-4	IV	0.066	0.002		
0.000	0.400	(3.99e–4)		0.054	0.746		
0.660	0.192	0.60e-4	IV	0.261	0.546		
	(0.187) (0.277) (5.03e–4) Memo: For instruments \mathbf{Z}_t , $\Delta \log \mathbf{C}_t^* = \mathbf{Z}_t \zeta$, $\bar{R}^2 = 0.260$; $\operatorname{var}(\log(\xi_t)) = 5.99e–6$						
Memo: Fo	r instruments .	\mathbf{Z}_t , $\Delta \log \mathbf{C}_t^*$	$= \mathbf{Z}_t \zeta,$	$R^2 = 0.260;$	$Var(log(\xi_t)) = 5.99e-6$		

Notes: Reported statistics are the average values for 100 samples of 200 simulated quarters each. Instruments

$$\mathbf{Z}_t = \{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-3}, A_{t-2}, A_{t-3}, \Delta_8 \log \mathbf{C}_{t-2}, \Delta_8 \log \mathbf{Y}_{t-2}\}.$$

Small Open Economy: Frictionless

	$\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$					
•	ectations : Dep ependent Varia		OLS or IV	$2^{ m nd}$ Stage $ar{R}^2$	Hansen J <i>p</i> -val	
	s: $\Delta \log \mathbf{C}_{t+1}^*$ $\Delta \log \mathbf{Y}_{t+1}$	(with measur	rement e	error $\mathbf{C}_t^* = \mathbf{C}_t$	$\times \xi_t$);	
0.295	₀ ₁ +1		OLS	0.087		
0.660 (0.309)			IV	0.040	0.600	
(0.303)	0.457 (0.209)		IV	0.035	0.421	
	(0.203)	-6.92e-4 (5.87e-4)	IV	0.026	0.365	
0.420 (0.428)	0.258	0.45e-4 (9.51e-4)	IV	0.041	0.529	
			$= \mathbf{Z}_t \zeta,$	$\bar{R}^2 = 0.039;$	$\operatorname{var}(\log(\xi_t)) = 5.99\mathrm{e}{-6}$	

Notes: Reported statistics are the average values for 100 samples of 200 simulated quarters each. Instruments

$$\mathbf{Z}_t = \{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-3}, A_{t-2}, A_{t-3}, \Delta_8 \log \mathbf{C}_{t-2}, \Delta_8 \log \mathbf{Y}_{t-2}\}.$$

Utility Costs of Stickiness

 Simulate expected lifetime utility when market resources nonstochastically equal to W_t at birth under frictionless

$$\overline{\mathbf{v}}_0 \equiv \mathbb{E}[\mathbf{v}(\mathsf{W}_t, \cdot)]$$

and sticky expectations: $\overline{\widetilde{v}}_0 \equiv \mathbb{E}[\widetilde{v}(\mathsf{W}_t,\cdot)]$

- ullet Expectations taken over state variables other than $m_{t,i}$
- Newborn's willingness to pay (as fraction of permanent income) to avoid having sticky expectations:

$$\omega = 1 - \left(\frac{\overline{\widetilde{v}}_0}{\overline{v}_0}\right)^{\frac{1}{1-\rho}}$$

• $\omega \approx 0.05\%$ of permanent income

Excess Sensitivity to Fiscal Stimulus

Replicate Parker, Souleles, Johnson, and McClelland (2013) results:

- Little response when stimulus announced
- MPC 0.12-0.3 on arrival of check

We model stimulus as *macro* news - only some households notice the announcement

Calibrate to *distribution* of liquid wealth to achieve high MPCs Announcement occurs one quarter before check arrives

Excess Sensitivity to Fiscal Stimulus

Conclusion

Model with 'Sticky Expectations' of aggregate variables can match both micro and macro consumption dynamics

$$\Delta \log \mathbf{C}_{t+1} \approx \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$$

	χ	η	α
Micro			
Data	≈ 0	$0<\eta<1$	< 0
Theory: Habits	≈ 0.75	$0<\eta<1$	< 0
Theory: Sticky Expectations	≈ 0	$0 < \eta < 1$	< 0
Macro			
Data	≈ 0.75	pprox 0	< 0
Theory: Habits	≈ 0.75	pprox 0	< 0
Theory: Sticky Expectations	≈ 0.75	≈ 0	< 0

References I

- AUCLERT, ADRIEN, MATTHEW ROGNLIE, AND LUDWIG STRAUB (2019): "Investment, Heterogeneity, and Inattention," mimeo, Stanford University.
- BLANCHARD, OLIVIER J. (1985): "Debt, Deficits, and Finite Horizons," Journal of Political Economy, 93(2), 223-247.
- CALVO, GUILLERMO A. (1983): "Staggered Contracts in a Utility-Maximizing Framework," Journal of Monetary Economics, 12(3), 383–98.
- CAMPBELL, JOHN Y., AND N. GREGORY MANKIW (1989): "Consumption, Income, and Interest Rates: Reinterpreting the Time-Series Evidence," in NBER Macroeconomics Annual, 1989, ed. by Olivier J. Blanchard, and Stanley Fischer, pp. 185–216. MIT Press, Cambridge, MA, http://www.nber.org/papers/w2924.pdf.
- DYNAN, KAREN E. (2000): "Habit Formation in Consumer Preferences: Evidence from Panel Data," American Economic Review, 90(3), http://www.jstor.org/stable/117335.
- HALL, ROBERT E. (1978): "Stochastic Implications of the Life-Cycle/Permanent Income Hypothesis: Theory and Evidence," Journal of Political Economy, 96, 971–87, Available at http://www.stanford.edu/~rehall/Stochastic-JPE-Dec-1978.pdf.
- HAVRANEK, TOMAS, MAREK RUSNAK, AND ANNA SOKOLOVA (2017): "Habit Formation in Consumption: A Meta-Analysis," European Economic Review, 95(C), 142-167.
- LUCAS, ROBERT E. (1973): "Some International Evidence on Output-Inflation Tradeoffs," American Economic Review, 63, 326–334.
- MUTH, JOHN F. (1960): "Optimal Properties of Exponentially Weighted Forecasts," Journal of the American Statistical Association, 55(290), 299–306.
- Parker, Jonathan A, Nicholas S Souleles, David S Johnson, and Robert McClelland (2013): "Consumer spending and the economic stimulus payments of 2008," *The American Economic Review*, 103(6), 2530–2553.
- PISCHKE, JÖRN-STEFFEN (1995): "Individual Income, Incomplete Information, and Aggregate Consumption," *Econometrica*, 63(4), 805–40.
- SOMMER, MARTIN (2007): "Habit Formation and Aggregate Consumption Dynamics," Advances in Macroeconomics, 7(1), Article 21.
- Zeldes, Stephen P. (1989): "Consumption and Liquidity Constraints: An Empirical Investigation," *Journal of Political Economy*, 97, 305–46, Available at http://www.jstor.org/stable/1831315.

Calibration I

		Macroeconomic Parameters			
γ	0.36	Capital's Share of Income			
δ	$1 - 0.94^{1/4}$	Depreciation Rate			
σ_{Θ}^2	0.00001	Variance Aggregate Transitory Shocks			
$\sigma^2_\Theta \ \sigma^2_\Psi$	0.00004	Variance Aggregate Permanent Shocks			
	Steady State of Perfect Foresight DSGE Model				
	$(\sigma_{\Psi}=\sigma_{\Theta}=\sigma_{\psi}=\sigma_{ heta}=\wp=D=0, \Phi_t=1)$				
K/K^{γ}	12.0	SS Capital to Output Ratio			
K	48.55	SS Capital to Labor Productivity Ratio (= $12^{1/(1-\gamma)}$)			
W	2.59	SS Wage Rate $(=(1-\gamma)K^{\gamma})$			
r	0.03	SS Interest Rate $(= \gamma K^{\gamma-1})$			
${\mathscr R}$	1.015	SS Between-Period Return Factor (= $1-\delta+r$)			

Calibration II

	Preference Parameters					
ho	2.	Coefficient of Relative Risk Aversion				
β	0.970	Discount Factor (SOE Model)				
П	0.25	Probability of Updating Expectations (if Sticky)				
		Idiosyncratic Shock Parameters				
σ_{θ}^2	0.120	Variance Idiosyncratic Tran Shocks (=4× Annual)				
$\sigma_{ heta}^2 \ \sigma_{\psi}^2$	0.003	Variance Idiosyncratic Perm Shocks $(=\frac{1}{4} \times Annual)$				
Ø	0.050	Probability of Unemployment Spell				
Ď	0.005	Probability of Mortality				

Markov Process for Aggregate Productivity Growth Φ

$$\ell_{t,i} = \theta_{t,i} \Theta p_{t,i} P_t, \quad p_{t+1,i} = p_{t,i} \psi_{t+1,i}, \quad P_{t+1} = \Phi_{t+1} P_t \Psi_{t+1}$$

- \bullet Φ_t follows bounded (discrete) RW
- 11 states; average persistence 2 quarters
- Flexible way to match actual pty growth data

Equilibrium

	SOE Mod	del	HA-DSGE	Model	
	Frictionless	Sticky	Frictionless	Sticky	
Means					
Α	7.49	7.43	56.85	56.72	
С	2.71	2.71	3.44	3.44	
Standard Deviations					
Aggregate Time Se	eries ('Macro')				
$\log A$	0.332	0.321	0.276	0.272	
$\Delta \log \mathbf{C}$	0.010	0.007	0.010	0.005	
$\Delta \log \mathbf{Y}$	0.010	0.010	0.007	0.007	
Individual Cross Se	ctional ('Micro')				
log a	0.926	0.927	1.015	1.014	
log c	0.790	0.791	0.598	0.599	
log p	0.796	0.796	0.796	0.796	
$\log \mathbf{y} \mathbf{y} > 0$	0.863	0.863	0.863	0.863	
$\Delta \log c$	0.098	0.098	0.054	0.055	
Cost of Stickiness	4.82e-4	4.82e-4		4.51e-4	

Is Muth-Lucas-Pischke Kalman Filter Equivalent?

No.

Muth (1960)-Lucas (1973)-Pischke (1995) Kalman filter

- All you can see is Y
 - Lucas: Can't distinguish agg. from idio.
 - Muth–Pischke: Can't distinguish tran from perm
- Here: Can see own circumstances perfectly
- Only the (tiny) aggregate part is hard to see
- Signal extraction for aggregate \mathbf{Y}_t gives too little persistence in $\Delta \mathbf{C}_t$: $\chi \approx 0.17$

Muth-Pischke Perception Dynamics

- Optimal signal extraction problem (Kalman filter):
 Observe Y (aggregate income), estimate P, Θ
- Optimal estimate of P:

$$\hat{P}_{t+1} = \Pi \mathbf{Y}_{t+1} + (1 - \Pi)\hat{P}_t,$$

where for signal-to-noise ratio $\varphi = \sigma_{\Psi}/\sigma_{\Theta}$:

$$\Pi = \varphi \sqrt{1 + \varphi^2/4} - \varphi^2/2, \tag{1}$$

- ullet But if we calibrate φ using observed macro data
 - ullet $\Rightarrow \Delta \log \mathbf{C}_{t+1} pprox \mathbf{0.17} \ \Delta \log \mathbf{C}_t$
 - Too little persistence!