SHEN ZHENG

88 Daxue Rd, Wenzhou, Zhejiang, China

J (+86)137-8012-7158 🗷 zhengsh@kean.edu 🛗 Linkedin 🏗 Personal Website 🕥 Github 🕠 Leetcode 💪 Google Scholar

EDUCATION

Wenzhou-Kean University

B.A. in Mathematical Sciences, Minor in Economics, Magna Cum Laude

Sep 2017 - Jun 2021 Wenzhou, China

- Major GPA: 3.944/4.000 (Rank: 1/29) | Cumulative GPA: 3.800/4.000 (Rank: 2/29)
- · Relevant Coursework: Applied Machine Learning, Computer Organization & Programming, Big Data Computing, Statistical Data Mining, Foundation of Data Analysis, Data Visualization, Numerical Analysis, Differential Equations, Probability & Statistics, Econometrics.
- Honors: Dean's List (Top 1%); Zhejiang Provincial Government Scholarship (Top 3%); Outstanding Graduate (Top 10%).

PUBLICATIONS

- 1. Changjie Lu, Shen Zheng, and Gaurav Gupta (2022), "Unsupervised Domain Adaptation for Cardiac Segmentation: Towards Structure Mutual Information Maximization". Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE.
- 2. Shen Zheng and Gaurav Gupta (2022), "Semantic-Guided Zero-Shot Learning for Low-Light Image/Video Enhancement". Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). IEEE.
- 3. Shen Zheng, Changjie Lu, Yuxiong Wu, and Gaurav Gupta (2022), "SAPNet: Segmentation-Aware Progressive Network for Perceptual Contrastive Deraining". Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). IEEE.
- 4. Shen Zheng, Yuxiong Wu, Shiyu Jiang, Changjie Lu, and Gaurav Gupta (2021), "Deblur-YOLO: Real-Time Object Detection with Efficient Blind Motion Deblurring", International Joint Conference on Neural Networks (IJCNN). IEEE.
- 5. Shen Zheng, Liwei Wang, and Gaurav Gupta (2020), "Efficient Ensemble Sparse Convolutional Neural Networks with Dynamic Batch Size", International Conference on Computer Vision and Image Processing (CVIP). Springer.

RESEARCH EXPERIENCE

Unsupervised Domain Adaptation for Cardiac Segmentation: Towards Structure Mutual Information Maximization

Feb 2022 - Apr 2022

Team Member | Advisor: Dr. Gaurav Gupta, Wenzhou-Kean University

Wenzhou, China

- Introduced UDA-VAE++, an unsupervised domain adaptation framework with a compact loss function lower bound for cardiac segmentation.
- Developed a Structure Mutual Information Estimation block to maximize the mutual information between the reconstruction and segmentation tasks.
- Designed a sequential reparameterization scheme that enables information flow and variance correction from low-resolution to high-resolution.
- Achieved the best Dice/ASSD score on cardiac segmentation datasets, including MM-WHS (68.5%/4.64mm) and MS-CMRSeg (78.4%/2.64mm).

Implicit Neural Representation for Isosurface Rendering

Jul 2021 - Sep 2021

Team Member | Advisor: Dr. Chaoli Wang, University of Notre Dame

Online

- · Constructed a fully convolutional neural network with Siren activation function to render isosurfaces with image resolution, viewpoints and isovalue.
- · Utilized Greene's bisection method and Jacobian matrix's eigenvalue for critical point detection and classification in 3D isosurface simulation.
- Obtained a top score in PSNR/SSIM/MSE (27.87/0.963/0.002) and a training loss of 0.0001 with 162 training images (others use >1,000 images).

Semantic-Guided Zero-Shot Learning for Low-Light Image/Video Enhancement

Apr 2021 - Jun 2021

Team Leader | Advisor: Dr. Gaurav Gupta, Wenzhou-Kean University

Wenzhou, China

- · Proposed a semantic-guided, zero-shot, low-light image enhancement network that consolidates high-level semantics into low-level enhancement.
- Constructed a recurrent image enhancement network that only demands an enhancement factor map with five non-reference loss functions.
- Attained the best average UNIQUE/BRISQUE (0.805/27.01) and mIOU/mPA (65.87%/74.50%) for six datasets with the best inf. time (<0.001s)

SAPNet: Segmentation-Aware Progressive Network for Perceptual Contrastive Deraining

Feb 2021 - Aug 2021

Team Leader | Advisor: Dr. Gaurav Gupta, Wenzhou-Kean University

Wenzhou, China

- Built a real-time deraining network that integrates supervised rain removal, unsupervised semantic segmentation, and perceptual contrastive loss.
- · Designed a progressive dilated unit with channel residual attention and Learned Perceptual Image Similarity to characterize multi-scale rains.
- Obtained the best average PSNR/SSIM (33.19/0.945) at Rain12, Rain100L, and Rain100H and the best mAP/mPA/mIOU (81.0%/76.6%/60.1%).

Deblur-YOLO: Real-Time Object Detection with Efficient Blind Motion Deblurring

Oct 2020 - Jan 2021

Team Leader | Advisor: Dr. Gaurav Gupta, Wenzhou-Kean University

Wenzhou, China

- Invented Deblur-YOLO, a Generative Adversarial Network (GAN) with a dilated feature pyramid generator, a pair of multi-scale discriminators, and a YOLO discriminator performing real-time object detection with fast blind motion blur removal.
- Achieved a state-of-the-art inference time of 0.0772s, and a mAP of 47.5%, PSNR of 23.94, and SSIM of 0.817 at the blurred COCO 2014 dataset.

Efficient Ensemble Sparse Convolutional Neural Networks with Dynamic Batch Size

Mar 2020 - Jun 2020

Team Leader | Advisor: Dr. Gaurav Gupta, Wenzhou-Kean University

Wenzhou, China

- Integrated weighted average stacking, network pruning, Winograd-ReLU convolution for AlexNet, VGG-16, and ResNet-32.
- Developed an Electromagnetism-inspired dynamic batch size algorithm for accumulating the learning rate, momentum coefficient, and batch size.
- Accelerated CNNs on FASHION-MNIST, CIFAR-10, and CIFAR-100 to 1.55x, 2.86x, and 4.15x with 2.66%, 1.37%, and 4.48% acc. improvement.

PROFESSIONAL EXPERIENCE

Momenta (An Autonomous Driving Company)

Sep 2021 – Present

Computer Vision Engineer | Mentors: Mr. Yongjun Yu & Dr. Wangjiang Zhu

Suzhou, China

- · Responsible for long-tailed data augmentation, training data auto-labeling and cleaning, and model evaluation for traffic light detection algorithms.
- Implemented CycleGAN to conduct unsupervised data augmentation, converting traffic light bulbs from left arrow to round & leftUturn arrow.
- Constructed a traffic light auto-label model using quantized VoVNet-57, filtering 14,618 incorrect annotations from 1,160,513 labeled frames.
- Increased the classification accuracy for leftUturn traffic light from 78.41% to 87.27%, and the mean average precision from 93.01% to 94.80%.