TP5 - Chiffrements asymétriques

ING3 CS – Cryptographie

Exercice 1. Exponentiation rapide

Soient $\alpha = 119$, e = 231 et n = 419.

1	Combien de bits faut-il environ pour écrire la valeur de α^e ?
	Pour écrire la valeur de $\alpha^e \mod n$?
	Est-ce raisonnable de calculer α^e puis d'effectuer l'opération modulo n sur le résultat? \Box

(2) En utilisant un minimum d'opérations, calculer les puissances de α modulo n suivantes :

$$\alpha^1 \equiv \mod n$$
 $\alpha^2 \equiv \mod n$
 $\alpha^4 \equiv \mod n$
 $\alpha^8 \equiv \mod n$
 $\alpha^{16} \equiv \mod n$
 $\alpha^{32} \equiv \mod n$
 $\alpha^{61} \equiv \mod n$
 $\alpha^{128} \equiv \mod n$

- Proposer un algorithme pour calculer $\alpha^e \mod n$ efficacement et sans dépassement de mémoire. Estimer sa complexité.

Exercice 2. Chiffrement RSA

Proposer une paire de clé RSA, avec p = 41 et q = 73. Chiffrer le message $\mathbf{m} = 21$. Déchiffrer le message $\mathbf{c} = 42$.

Exercice 3. Signature RSA

On rappelle la signature RSA:

- ► Génération des clés :
 - choisir p et q premiers (~ 512 bits pour RSA-1024)
 - -n = pq
 - $-- \varphi(n) = (p-1)(q-1)$
 - choisir *e* premier avec $\varphi(n)$
 - calculer *d* tel que $ed \equiv 1 \pmod{\varphi(n)}$
 - \mathbf{k}_{pub} est constituée par le coupe (e, n).
 - \mathbf{k}_{priv} est le nombre d (ou le couple (d, n)).
- ► Signature $(\mathbf{k}_{priv}, m) = \sigma = m^d \mod n$
- ► Vérification $(\mathbf{k}_{pub}, m, \sigma) = \begin{cases} \text{OUI} & \text{si } m \equiv \sigma^e \mod n \\ \text{NON sinon} \end{cases}$
- (6) Trivial forgery

Soit $\sigma \in \mathbb{Z}_n^*$. Trouver un message m tel que σ soit une signature valide de m.

7 | Maléabilité

Soient (m_1, σ_1) et (m_2, σ_2) deux couples message/signature valides distincts. Trouver un troisième couple message/signature valide.

- 8 Vérifier vos réponses sur un exemple : p = 1747 et q = 2131.
- 9 Comment peut-on se prémunir des attaques évoquées dans les questions précédentes? □