Comparing Text with Supervised Machine Learning

Christopher Caldarella, Data Scientist 2021-05-04

Can Machine Learning tell where text is from?

- I pulled data from the popular(?) "social news aggregation" website (per Wikipedia) "Reddit.com"
- Data is exclusively comments pulled from 2 similar "subreddits"
- I want to know if a trained Model can predict which "subreddit" each comment came from
- Subreddits include: "AMA", and "AskReddit"
 - These are 2 popular subreddits within the community where people post answers to questions asked.
 - Subreddit names were removed as part of EDA/Cleaning

(Pulling Data,) EDA and Cleaning

- Webscraping: created a Scraper using Python's "requests" library.
 - Pulled about 12,000 comments total; 10,000 for TTS
- Analysis and Cleaning
 - I added a column 'post_length', a character count
 - I dropped a lot of columns; close to 30 (out of 37)
 - There just was not a lot of data in those columns
 - A lot of it was '[]' or NaNs, or easily identifiable features
 - From the 10,000 entries, over 9,700 were usable, which is fine
 - Removed '[deleted]', and some lengthy 'outlier' comments

(Pulling Data,) EDA and Cleaning

- Webscraping: created a Scraper using Python's "requests" library.
 - Pulled about 12,000 comments total; 10,000 for TTS
- Analysis and Cleaning
 - I added a column 'post_length', a character count
 - I dropped a lot of columns; close to 30 (out of 37)
 - There just was not a lot of data in those columns
 - A lot of it was '[]' or NaNs, or easily identifiable features
 - From the 10,000 entries, over 9,700 were usable, which is fine
 - Removed '[deleted]', and some lengthy 'outlier' comments

(Pulling Data,) EDA and Cleaning (cont.)

(Pulling Data,) EDA and Cleaning (cont.)

- (16 here)
- After changing empty brackets to NaNs
- (Almost half)

(Pulling Data,) EDA and Cleaning (cont.)

- Added "Post Length feature
- Dropped Rows
- Comments with letters greater than...
 - 6000: 4
 - 4000: 11
 - 2000: 32
 - 1000: 149
- (More from "AMA")

Null Model

Base model was pretty simple: 50/50

General Observations

What are we looking for?

• A model that performs as well or better than a Naïve Bayes model.

All models used a Vectorizer of some sort:

- Count Vectorizer
- TF-IDF Vectorizer (Term-Frequency-Inverse Document Frequency)

Most Models I tested seemed to do better with TFIDF

• (One of few that performed better with Count Vectorization was Ada Boost)

Most models preferred no Stop-Words

Scoring

- Looked mostly at F1 Score since it is balanced
- Kept Accuracy and Recall in mind as well
- Also looked at TP, FN, FP, and TN and Confusion Matrices

Techniques

- Pipeline and GridSearchCV, TF-IDF
 - Most results: Max_features: 5000, stop words: None
- Later created Functions/Classes to handle and organize my data.
 - Stored scores in DataFrames
 - Ccreated Markup Headers as Labels
- Comparisons were mainly made with tables and some confusion Matrices

Models (F1 Scores)

```
• Logistic Regression - 0.7047 *
```

- Naïve Bayes 0.6398 *
- K Neighbors 0.6800 ‡
- Random Forrest 0.6642
- Decision Tree 0.6359
- Bagging 0.6146
- Ada Boosting 0.6679 ‡
- Gradient Boosting 0.6720

‡ CountVectorizer

* From new data

Models without 'body', and Voting

- What are Models without 'body'
 - Removed 'body' feature and used the other features.
 - Most other features I was left with were numerical or Boolean
 - I was not able to figure out how to combine them
- ElasticNet (Ridge) and Linear Regression Models
 - With the features that had numerical data manipulated results by rounding
 - Used OHE, KNNImputer, and Standard Scaler which helped a little
- Random Forest and Logistic Regression had high Recall scores (95%) but were severely biased towards 'AskReddit'
- Tried Voting (w/ body) with Boosting and Logistic Regression
 - I thought the Boosting overfitting would help, but just brought the scores down

Voting (cont.)

Maximized values by setting Logistic Regression to 0.6 minimum

Ada, Gradient, Logistic Regression

Random Forest, Logistic Regression

Lemmatized Bayes

- Like most other Models, Bayes with Lemmatization was Biased
- F1 Score: 0.6083
 - (Compared to 0.6398 w/o Lemma)
- It looks like the Bias skews towards 'AMA' (0)

Logistic Regression vs Naïve Bayes

Logistic Regression

Naïve Bayes

Logistic Regression vs Naïve Bayes

- Why not both?
- It can work! ...
 - But, F1 Score of 0.6696
- Logistic Regression on its own still might be better

Conclusion: What is better?

It Depends

- When trying to figure out what category something falls in, we need to find what has the least detriment if any at all.
- In this case, we want balance: And Logistic Regression delivers

Questions?