Cálculo 1 - Limites

Wandeson Ricardo

9 de abril de 2022

Sumário

0.1	Definição Intuitiva de Limite	2
0.2	Leis dos Limites	5
0.3	Limites Laterais	5
0.4	Continuidade	7
0.5	Limites no Infinito	7

0.1 Definição Intuitiva de Limite

Um objeto percorre uma distância ao longo do tempo t. Em um instante t qualquer desejamos saber a velocidade do objeto. Sabemos que a velocidade média escalar deste objeto é dada por $V_m = \frac{\Delta s}{\Delta t}$ onde Δs é a variação do espaço e Δt a variação do tempo ao longo daquela distância percorrida.

Observamos que no instante de tempo $t_{inicial}$ e t_{final} o objeto objeto percorreu uma distância Δs onde s_{incial} e s_{final} fornecem sua posição. Podemos escrever da seguinte forma,

$$V_m := \frac{s_{final} - s_{inicial}}{t_{final} - t_{inicial}} \tag{1}$$

Em (1) observamos que a velocidade escalar média é a razão entre a variação do espaço percorrido Δs em um determinado intervalo de tempo Δt . Mas contudo e se desejássemos saber a velocidade num instante t ao invés do intervalo Δt .

Imaginemos o seguinte, temos um instante qualquer t_0 e tomamos um incremento nesse tempo o qual chamaremos de ε .

Seja f(t) = y uma função de \mathbb{R} em \mathbb{R} que define a posição de um carro no instante t. A posição após t segundos é medida em metros. Podemos ver de (1) que a inclinação da reta secante r que contém os pontos P e Q nos fornece a velocidade média no intervalo de tempo $[t_0, t_1]$. Logo,

$$v_m = \frac{f(t_1) - f(t_0)}{t_1 - t_0} \tag{2}$$

que é exatamente a inclinação m_{PQ} da reta secante r.

Tomemos agora um P' qualquer sobre a curva cujas coordenadas são $(t_0 + \varepsilon, f(t_0 + \varepsilon))$ onde ε significa um pequeno incremento em t_0 .

A inclinação da reta secante s por PP' é dada por,

$$m_{PP'} = \frac{f(t_0 + \varepsilon) - f(t_0)}{(t_0 + \varepsilon) - t_0}$$

ou

$$m_{PP'} = \frac{f(t_0 + \varepsilon) - f(t_0)}{\varepsilon} \tag{3}$$

Tomando-se ε cada vez menor, teremos um um $t_0 + \varepsilon$ cada vez mais próximo de t_0 . Esse valor tomado cada vez menor é o que chamaremos de limite para o qual ε ficará bem próximo de 0 mas $\varepsilon \neq 0$. Em símbolos teríamos,

$$\varepsilon \longrightarrow 0 \quad talque \quad t_0 + \varepsilon \longrightarrow t_0$$

Assim definimos o limite de forma intuitiva como,

$$\lim_{\varepsilon \to 0} \frac{f(t_0 + \varepsilon) - f(t_0)}{\varepsilon} = L \tag{4}$$

que nos fornecerá a velocidade no instante exato t_0 . No gráfico acima de f(t) estaríamos tomando o ponto P' cada vez mais próximo de P.

Temos também que,

$$m = \lim_{\varepsilon \to 0} \frac{f(t_0 + \varepsilon) - f(t_0)}{\varepsilon} = L$$

é nada mais que a equação da reta tangente da função f no ponto $P=(t_0,f(t_0)).$

E a velocidade no instante t_0 , ou seja, a velocidade instantânea seria dada por

$$v(t) := \lim_{\varepsilon \to 0} \frac{f(t_0 + \varepsilon) - f(t_0)}{\varepsilon} \tag{5}$$

Exemplo 1: Seja $f(x) = x^2 - 4$ calcular o limite quando x se apróxima de 1.

Solução: Verifiquemos a tabela com valores de x cada vez mais próximos de 1.

Tabela 1: $x > 1$			
\boldsymbol{x}	f(x)		
2	0		
1.5	-1.75		
1.4	-2.04		
1.3	-2.31		
1.2	-2.56		
1.1	-2.79		
1.05	-2.8975		
1.025	-2.949375		
1.0125	-2.97484375		
1.00625	-2.9874609375		
1.001	-2.99799		
1.0001	-2.9997999		

Tabela	
x	f(x)
0	-4
0.5	-3.75
0.6	-3.64
0.7	-3.510
0.8	-3.36
0.9	-3.19
0.95	-3.0975
0.96	-3.0784
0.97	-3.0591
0.98	-3.0396
0.99	-3.0199
0.995	-3.0099

Das tabelas (1) e (2) notamos que a medida que o valores de x se aproximam de 1 os valores para f(x) ficam cada vez mais próximos de -3 podemos daí supor que o limite seria -3.

Vejamos abaixo.

$$\lim_{x \to 1} x^2 - 4$$

A medida que $x\to 1$ temos $x^2\to 1$ logo $(x^2-4)\to -3$. Portanto $\lim_{x\to 1}(x^2-4)=-3$.

Definimos o limite de f(x) como,

$$\lim_{x \to a} f(x) = L$$

onde a medida que \mathbf{x} se aproxima de \mathbf{a} , com $x \neq a$, temos que $\mathbf{f}(\mathbf{x})$ se aproxima de \mathbf{L} que é o limite de f(x) quando $x \to a$.

0.2 Leis dos Limites

Propriedades e leis de limites

Leis dos Limites. Seja c uma constante e funções f(x) e g(x), onde existem

$$\lim_{x \to a} f(x) \ e \ \lim_{x \to a} g(x)$$

então valem,

1.
$$\lim_{x\to a} [f(x) + g(x)] = \lim_{x\to a} f(x) + \lim_{x\to a} g(x)$$

2.
$$\lim_{x\to a} [f(x) - g(x)] = \lim_{x\to a} f(x) - \lim_{x\to a} g(x)$$

3.
$$\lim_{x\to a} [cg(x)] = c \lim_{x\to a} f(x)$$

4.
$$\lim_{x\to a} [f(x)g(x)] = \lim_{x\to a} f(x) \lim_{x\to a} g(x)$$

5.
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} se \lim_{x \to a} g(x) \neq 0.$$

6.
$$\lim_{x\to a} [f(x)]^n = [\lim_{x\to a}]^n$$
 onde $n \notin um$ inteiro positivo.

7.
$$\lim_{x\to a} c = c$$

8.
$$\lim_{x\to a} x = a$$

9.
$$\lim_{x\to a} x^n = a^n$$
 onde $n \notin um$ inteiro positivo

- 10. $\lim_{x\to a} \sqrt[n]{f(x)} = \sqrt[n]{a}$ onde $n \notin um$ inteiro positivo. (Se n for par supomos a>0.)
- 11. $\lim_{x\to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x\to a} f(x)}$ onde n é um inteiro positivo. (Se n for par supomos que $\lim_{x\to a} > 0$.)

0.3 Limites Laterais

Uma condição fundamental para existência do limite é que o limite esquerdo e o limite direito ambos sejam iguais. Ou seja,

$$\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = L$$

Quando escrevemos $\lim_{x\to a^+} f(x)$ estamos a querer dizer que os valores x se aproximam de a pela direita, ou seja, x se torna cada vez mais próximo de

a contudo x>a. Já quando estamos a falar de $\lim_{x\to a^-}f(x)$ estamos a querer dizer que estamos tomando valores de x próximos de a pela esquerda contudo $\mathbf{x}<\mathbf{a}$.

Exemplo: Tomemos como exemplo a função f(x) = |x|. Calcular o $\lim_{x\to 0} f(x)$.

Solução: Sabemos que,

$$f(x) = \begin{cases} x & \text{if } x \ge 0\\ -x & \text{if } x < 0 \end{cases}$$

Tomemos o limite de f(x) para valores de x maiores que zero. Como estamos interessados em $x \ge 0$, temos que

$$\lim_{x \to 0} |x| = \lim_{x \to 0^+} x = 0$$

para $x \to 0^-$, ou seja, x tendendo a 0 pela esquerda, onde x < 0, temos

$$\lim_{x \to 0} |x| = \lim_{x \to 0^{-}} -x = 0$$

logo o limite existe, como $\lim_{x\to 0^+} x = \lim_{x\to 0^-} (-x) = 0$.

Tomemos agora o exemplo, $f(x) = \frac{|x|}{x}$. Vejamos o limite direito de f(x), sabemos que $x \to 0$, têm-se $x \ge 0$,

$$\lim_{x \to 0^+} \frac{|x|}{x} = \lim_{x \to 0^+} \frac{x}{x} = \lim_{x \to 0^+} 1 = 1$$

porém para $x \to 0^-$, onde x < 0, observamos que,

$$\lim_{x \to 0} \frac{|x|}{x} = \lim_{x \to 0^{-}} \frac{(-x)}{x} = \lim_{x \to 0^{-}} (-1) = -1$$

logo,

$$\lim_{x \to 0^+} \frac{|x|}{x} \neq \lim_{x \to 0^-} \frac{|x|}{x}$$

portanto o limite $\lim_{x\to 0} \frac{|x|}{x}$ não existe.

Existência do Limite. Seja f(x) = y uma função de \mathbb{R} em \mathbb{R} . O limite,

$$\lim_{x \to a} f(x)$$

existe se, e somente se,

$$\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x)$$

ou seja, os limites esquerdo e direitos forem iguis.

0.4 Continuidade

0.5 Limites no Infinito