TECHMIMO

Autor: Rafael Pereira da Silva

Seguem alguns recados para ajudá-los e para contribuir com o curso:

- Fiquem à vontade para me contatar pelo Linkdin, costumo responder por lá também:
 https://www.linkedin.com/in/rafael-pereira-da-silva-23890799/ (https://www.linkedin.com/in/rafael-pereira-da-silva-23890799/)
- Fiquem a vontade para compartilharem o certificado do curso no Linkedin. Eu costumo curtir e comentar para dar mais credibilidade
- Vocês podem usar esses notebooks para resolver os exercícios e desafios
- Não se esqueçam de avaliar o curso e dar feedback, eu costumo criar conteúdos baseado nas demandas de vocês
- Se tiverem gostando do curso, recomendem aos amigos, pois isso também ajuda a impulsionar e a crescer a comunidade
- Bons estudos e grande abraços!

Seção 11 - Scipy - Python para Ciências

https://docs.scipy.org/doc/scipy/reference/ (https://docs.scipy.org/doc/scipy/reference/)

11.1 - Álgebra linear (linalg)

11.1.1 - Funções para álgebra linear

from scipy import linalg

Propriedades de arrays

Funções	Descrição
linalg.inv(arg)	Retonna a inversa de uma matriz
linalg.det(arg)	Acha a determinante de uma matriz
linalg.norm(arg)	Acha a norma de um vetor
linalg.solve(arg)	Resolve um sistema linear
linalg.eig(arg)	Retorna autovalor e autovetor

In [1]:

import numpy as np
from scipy import linalg

```
In [5]:
```

```
A = np.arange(9).reshape(3,3)
A[0,0] = 10
A
```

Out[5]:

In [7]:

```
linalg.inv(A)
```

Out[7]:

In [9]:

```
a_vec = np.array([0,3,4])
linalg.norm(a_vec)
```

Out[9]:

5.0

In []:

11.1.2 Exercício 1

Dadas as matrizes A,B, C e D, calcule, para cada uma, o determinante, a matriz transposta e a matriz inversa.

$$A = \begin{bmatrix} 1 & 2 \\ 4 & 5 \end{bmatrix}$$

$$B = \begin{bmatrix} \cos(\pi/4) & -\sin(\pi/4) \\ \sin(\pi/4) & \cos(\pi/4) \end{bmatrix}$$

$$C = \begin{bmatrix} 2 & -2 \\ -2 & 5 \end{bmatrix}$$

$$D = \begin{bmatrix} 2 & 2 \\ 4 & 4 \end{bmatrix}$$

Notas:

- A tem determinante diferente de zero
- B é uma matriz orgonal, sua inversa é igual a sua transposta, e seu det deve ser + ou -1
- C é uma matriz simétrica, ela é igual a sua transposta
- D possui determinante igual a zero, portanto não é inversível

In []:

In []:

11.1.3 Exercício 2

Dadas as matrizes, resolva o sistema de equação [A]. $\{X\} = \{B\}$

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 2 & 1 & 3 \end{bmatrix}$$

$$X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$B = \begin{bmatrix} 6 \\ 9 \\ 11 \end{bmatrix}$$

In []:

11.1.4 Exercício 3

Ache os autovalores e autovetores para as matrizes abaixo.

$$A = \begin{bmatrix} -1 & 6 \\ & & \\ 0 & 5 \end{bmatrix}$$

$$B = \begin{bmatrix} -1/3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1/2 \end{bmatrix}$$

O autovalor e autovetor se associam à matriz da seguinte forma:

$$[A]{X} = \lambda{X}$$

-	 1
ın	
TII I	