

Seminar 12

- 1. (i) Which of the following received words contain detectable errors when using the (3,2)-parity check code: 110, 010, 001, 111, 101, 000?
- (ii) Decode the following words using the (3,1)-repeating code to correct errors: 111, 011, 101, 010, 000, 001. Which of them contain detectable errors?
- **2.** Are $1+X^3+X^4+X^6+X^7$ and $X+X^2+X^3+X^6$ code words in the polynomial (8,4)-code generated by $p=1+X^2+X^3+X^4\in\mathbb{Z}_2[X]$?
 - **3.** Write down all the words in the (6,3)-code generated by $p = 1 + X^2 + X^3 \in \mathbb{Z}_2[X]$.
 - **4.** A code is defined by the generator matrix $G = \left(\frac{P}{I_3}\right) \in M_{5,3}(\mathbb{Z}_2)$, where:

$$P = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

Write down the parity check matrix and all the code words.

5. Determine the minimum Hamming distance between the code words of the code with generator matrix $G = \left(\frac{P}{I_4}\right) \in M_{9,4}(\mathbb{Z}_2)$, where:

$$P = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}.$$

Discuss the error-detecting and error-correcting capabilities of this code, and write down the parity check matrix.

6. Encode the following messages using the generator matrix of the (9,4)-code of Exercise **5.**: 1101, 0111, 0000, 1000.

Determine the generator matrix and the parity check matrix for:

- **7.** The (4,1)-code generated by $p = 1 + X + X^2 + X^3 \in \mathbb{Z}_2[X]$.
- **8.** The (7,3)-code generated by $p = 1 + X^2 + X^3 + X^4 \in \mathbb{Z}_2[X]$.

Write down the parity check matrix and all the code words.

5. Determine the minimum Hamming distance between the code words of the code with generator matrix $G = \left(\frac{P}{I_4}\right) \in M_{9,4}(\mathbb{Z}_2)$, where:

$$P = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}.$$

Discuss the error-detecting and error-correcting capabilities of this code, and write down the parity check matrix.

6. Encode the following messages using the generator matrix of the (9,4)-code of Exercise **5.**: 1101, 0111, 0000, 1000.

$$G = \begin{cases} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0$$

G[(0000)] = G. (
$$\frac{1}{2}$$
) = $\left(\frac{1}{2}\right)$ =

Step 3: Multiply for by
$$x^{u-k}$$

Fu = $\int au \cdot x^{u-k}$

Fu = $(1+x^2) \cdot x^2 = x^4 + x^2$

Step 3: Sivide Fur by p (Endidan division)

 $x^4 + x^2 \quad x^2 + 4$
 $-x^2 - x^2 \quad x^2$
 $x^2 + 4$
 $-x^2 - x^2 \quad x^2$

Step 4: Compute $gu = Fu + Ru$
 $gu = x^4 + x^2 + 0$
 $= x^4 + x^2$

Step 5: Convert the poly to a vector

 $gu = x^4 + x^2 + x^2 + 0$
 $= x^4 + x^2 + x^2 + x^2 + x^3 + x^4 \in \mathbb{Z}_2[X]$.

Find G and G and G and G and discuss the capability

 $gu = x^2 - x^2 + x^2 + x^3 + x^4 = x^4 + x^4 + x^4 + x^4 = x^4 + x^4 +$

• M=100

fu = 1

 $Fae = \chi^{4}$

x4 1 x4+ x3+x2+ (

2 11 = X3+ X2+1

-x¹-x²-x²-1 /

