M1F Foundations of Analysis, Problem Sheet 8.

- 1. Let a and b be coprime positive integers (recall that coprime here means gcd(a, b) = 1). I open a fast food restaurant which sells chicken nuggets in two sizes you can either buy a box with a nuggets in, or a box with b nuggets in. Prove that there is some integer N with the property that for all integers $m \ge N$, it is possible to buy exactly m nuggets.
- 2^* . True or false?
- (i) If a and b are positive integers, and there exist integers λ and μ such that $\lambda a + \mu b = 1$, then $\gcd(a,b) = 1$.
- (ii) If a and b are positive integers, and there exist integers λ and μ such that $\lambda a + \mu b = 7$, then gcd(a, b) = 7.
- **3.** (i) Say a and b are coprime positive integers, and N is any integer which is a multiple of a and of b. Prove that N is a multiple of ab. Hint: we know that $\lambda a + \mu b = 1$ for some $\lambda, \mu \in \mathbf{Z}$; now write $N = N \times (\lambda a + \mu b)$.
- (ii) By applying (i) twice, deduce that if p, q and r are three distinct primes, then two integers x and y are congruent modulo pqr if and only if they are congruent mod p, mod q and mod r.
- (iii) (tough) Consider the set of positive integers $\{2^7 2, 3^7 3, 4^7 4, \dots, 1000^7 1000\}$. What is the greatest common divisor of all the elements of this set? Feel free to use a calculator to get the hang of this; feel free to use Fermat's Little Theorem and the previous part to nail it.
- (iv) (tougher) $561 = 3 \times 11 \times 17$. Prove that if $n \in \mathbf{Z}$ then $n^{561} \equiv n \mod 561$. Hence the converse to Fermat's Little Theorem is false.
- 4. For each of the following binary relations on a set S, figure out whether or not the relation is reflexive. Then figure out whether or not it is symmetric. Finally figure out whether or not the relation is transitive.
 - (i) $S = \mathbf{R}$, $a \sim b$ if and only if $a \leq b$.
 - (ii) $S = \mathbf{Z}$, $a \sim b$ if and only if a b is the square of an integer.
 - (iii) $S = \mathbf{R}$, $a \sim b$ if and only if $a = b^2$.
 - (iv) $S = \mathbf{Z}$, $a \sim b$ if and only if a + b = 0.
 - (v) $S = \mathbf{R}$, $a \sim b$ if and only if a b is an integer.
 - (vi) $S = \{1, 2, 3, 4\}, a \sim b$ if and only if a = 1 and b = 3.
- (vii) S is the empty set (and \sim is the only possible binary relation on that set, the empty binary relation).
- **5.** Let $S = \mathbf{R}$ be the real numbers, and let G be a subset of \mathbf{R} . Define a binary relation \sim on S by $a \sim b$ if and only if $b a \in G$.
 - (i) Say $0 \in G$. Prove that \sim is reflexive.
 - (ii) Say G has the property that $g \in G$ implies $-g \in G$. Check that \sim symmetric.
 - (iii) Say G has the property that if $g \in G$ and $h \in G$ then $g+h \in G$. Check that \sim is transitive.
- (iv) If you can be bothered, also check that the converse to all these statements are true as well (i.e. check that if \sim is reflexive then $0 \in G$, if \sim is symmetric then $g \in G$ implies $-g \in G$ etc).

Remark: Subsets G of \mathbf{R} with these three properties in parts (i)–(iii) are called *subgroups* of R, or, more precisely, additive subgroups (the group law being addition). So this question really proves that the binary relation defined in the question is an equivalence relation if and only if G is a subgroup of \mathbf{R} . You'll learn about groups and subgroups next term in M1P2.