MAGIC008: Lie Groups and Lie algebras

Problem Sheet 7: Lie algebras, ideals, solvable and nilpotent Lie algebras

1. Consider 3-dimensional Lie algebras defined by the following commutator relations:

- \mathfrak{g}_1 : $[e_1,e_2]=e_3$, $[e_2,e_3]=e_1$, $[e_3,e_1]=e_2$;
- \mathfrak{g}_2 : $[e_1, e_2] = 2e_2$, $[e_1, e_3] = -2e_3$, $[e_2, e_3] = e_1$;
- \mathfrak{g}_3 : $[e_1, e_2] = e_3$;
- \mathfrak{g}_4 : $[e_1, e_3] = e_3$, $[e_2, e_3] = -e_3$.

Which of these Lie algebras are solvable? nilpotent?

2. Consider the set e(n) consisting of the $(n+1)\times(n+1)$ matrices of the form

$$\begin{pmatrix} A & \bar{x} \\ 0 & 0 \end{pmatrix},$$

where $A \in so(n)$ is a skew-symmetric $n \times n$ matrix and $\bar{x} \in \mathbb{R}^n$ is a column-vector.

- Show that e(n) is a Lie algebra and compute its dimension.
- Consider

$$\mathfrak{h}_1 = \left\{ \begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix} \right\} \subset e(n) \quad \text{and} \quad \mathfrak{h}_2 = \left\{ \begin{pmatrix} 0 & \overline{x} \\ 0 & 0 \end{pmatrix} \right\} \subset e(n).$$

Is \mathfrak{h}_i a subalgebra (i=1,2)?

- Is \mathfrak{h}_i an ideal of e(n) (i=1,2)?
- Is e(n) solvable? nilpotent? (The answer depends on n!)
- 3. Consider the set \mathfrak{g} of $(n+k)\times(n+k)$ matrices of the form

$$\begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$$

where A is an $n \times n$ matrix, C is a $k \times k$ matrix and B is an $n \times k$ matrix (A, B and C are arbitrary). Check that \mathfrak{g} is a Lie algebra. Which of the following subspaces

$$\left\{\begin{pmatrix}A&0\\0&0\end{pmatrix}\right\}, \left\{\begin{pmatrix}0&B\\0&0\end{pmatrix}\right\}, \left\{\begin{pmatrix}0&0\\0&C\end{pmatrix}\right\}, \left\{\begin{pmatrix}A&B\\0&0\end{pmatrix}\right\}, \left\{\begin{pmatrix}A&0\\0&C\end{pmatrix}\right\}, \left\{\begin{pmatrix}0&B\\0&C\end{pmatrix}\right\}, \left\{(0&B\\0&C\end{pmatrix}\right\}, \left\{(0,B)\\0&C\end{pmatrix}\right\}, \left\{(0,B)\\0&C\end{matrix}\right\}, \left\{(0,B)\\0&C\end{matrix}$$

are subalgebras of \mathfrak{g} ? ideals of \mathfrak{g} ?