# **SMAI Assignment 2**

# Lakshay Baijal 2024202006

#### Link of Dataset and Code -

https://drive.google.com/drive/folders/17HtNyPWpFITx2GMrOU5g944Ge3dqSD3P

#### General Overview -

Training & Validation Logs (Epoch-by-Epoch)

- A line-by-line printout of training loss and accuracy alongside validation loss and accuracy for each epoch.
- Monitoring convergence: You can see your loss steadily decreasing and accuracy rising, which tells you the model is learning.

## W&B Run Summary & Run History

- A snapshot of Weights & Biases dashboard for every run.
- Run summary: final values of train/val loss and accuracy.
- Run history plots: mini-bar charts or line charts of how each metric changed over epochs.
- Centralized logging: Confirms that all your key metrics were logged correctly.

## Confusion Matrix (Raw & Z-score Normalized)

- Raw counts of true vs. predicted labels.
- Z-score normalized version where each cell standardized across the matrix to highlight which entries deviate most from the mean.
- Error analysis: Shows exactly where the model misclassifies
- Statistical insight: Z-scores reveal which types of mistakes are unusually common or rare relative to overall performance.

#### **Gradient Distributions**

- Histograms of gradient values for various parameters across training steps, as logged in W&B's gradients panel.
- Training health check: Verifies gradients aren't vanishing (all near zero) or exploding (extremely large).

## Parameter Distributions

- Histograms of weight and bias values for selected layers, logged in W&B's parameters panel.
- Weight dynamics: Confirms that your weights are updating and staying within a reasonable range.

- Line plots of train loss, train accuracy, validation loss, and validation accuracy versus epoch.
- Performance over time: Clearly visualizes how quickly the model learns and where it plateaus.
- Generalization gap: The gap between train and validation curves indicates how well the model is likely to perform on unseen data.

# Part 1 - Face Recognition (Binary Classification)

## VGG Model -

## Epoch by Epoch Training and Validation Logs

```
[VGG FACE - Lakshay]Epoch 1/10
[VGG FACE - Lakshay]Epoch 2/10
                                                     Train Loss: 0.5044, Acc: 0.7872
                                                                                                                      Loss: 0.3769, Acc: 0.8009
                                                     Train Loss: 0.2824, Acc:
                                                                                             0.8849
[VGG FACE - Lakshay]Epoch 3/10
[VGG FACE - Lakshay]Epoch 4/10
[VGG FACE - Lakshay]Epoch 5/10
                                                     Train Loss: 0.1920, Acc: 0.9477
                                                                                                                      Loss: 0.1847, Acc: 0.9352
                                                     Train Loss: 0.1382, Acc: 0.9640
                                                                                                                      Loss: 0.1406, Acc: 0.9583
                                                     Train Loss: 0.1164, Acc: 0.9733
                                                                                                                      Loss: 0.1210, Acc: 0.9630
                                                                                                            Val
[VGG FACE - Lakshay]Epoch 6/10
[VGG FACE - Lakshay]Epoch 7/10
                                                                                                                     Loss: 0.1012, Acc: 0.9583
Loss: 0.0923, Acc: 0.9676
                                                     Train Loss: 0.0894, Acc: 0.9872
                                                                                                            Val
                                                     Train Loss: 0.0743, Acc: 0.9872
                                                                                                            Val
[VGG FACE - Lakshay]Epoch 8/10 | Train Loss: 0.0618, Acc: 0.9895 |
[VGG FACE - Lakshay]Epoch 9/10 | Train Loss: 0.0570, Acc: 0.9895 |
[VGG FACE - Lakshay]Epoch 10/10 | Train Loss: 0.0440, Acc: 0.9953
                                                                                                                      Loss: 0.0830, Acc: 0.9722
Loss: 0.0675, Acc: 0.9815
Loss: 0.0721, Acc: 0.9769
                                                                                                            Val
                                                                                                           | Val
```

#### WandB Run Summary



## Confusion Matrix Raw and Z-score Normalized



## **Gradient Distribution**



## Parameter Distribution





## Resnet18 not pretrained model -

Epoch by Epoch Training and Validation Logs and WandB Run Summary



## Confusion Matrix Raw and Z-score Normalized



## **Gradient Distribution**



## Parameter Distribution





#### Resnet18 Pretrained

Epoch by Epoch Training and Validation Logs and WandB Run Summary



#### Confusion Matrix Raw and Z-score Normalized



## **Gradient Distribution**



## Parameter Distribution





# **Summary for Part 1 Face Recognition –**

#### 1. VGG16 (finetuned)

- Convergence: Reached 99.5 % train acc and 97.7 % val acc by epoch 10.
- **Strengths**: Fastest to converge thanks to freezing most layers; very few false positives.
- **Weaknesses**: Slightly more false negatives on heavily occluded or extreme low-light images.

#### 2. ResNet18 (from scratch)

- **Convergence**: Slower start, but ended with 99.2 % train acc and 98.4 % val acc.
- **Strengths**: Learned robust feature representations even without pretraining, handling varied backgrounds.
- **Weaknesses**: Required more epochs and careful learning-rate tuning to avoid unstable early gradients.

# 3. ResNet18 (pretrained)

- **Convergence**: Combined the best of both worlds—fast initial learning and top performance (99.7 % train, 98.9 % val).
- **Strengths**: Best generalization on the challenging test set, especially under occlusion.
- **Weaknesses**: Slightly higher GPU memory usage due to fine-tuning all layers

# Part 2: Emotion Recognition (Multiclass Classification)

## VGG Model -

Epoch by Epoch Training and Validation Logs with classification report and WandB Run



# Confusion Matrix Raw and Normalised





## Parameter Distribution



## **Gradient Distribution**





## Resnet18 not pretrained model -

Epoch by Epoch Training and Validation Logs with classification report and WandB Run Summary



# Confusion Matrix Raw and Normalised





# **Gradient Distribution**



## Parameter Distribution





# Resnet18 pretrained

Epoch by Epoch Training and Validation Logs with classification report and WandB Run Summary



# Confusion Matrix Raw and Normalised



## **Gradient Distribution**



## Parameter Distribution





# **Summary 2 - Emotion Recognition (Multiclass Classification)**

## 1. VGG16 (finetuned)

- Val accuracy around 92 % by epoch 10.
- Per-class: "happy" was easiest F1  $\approx$  0.95, "sad" and "angry" showed more confusion.

## 2. ResNet18 (from scratch)

- Val accuracy around 90%; learned more slowly but closed the gap by epoch 15.
- Per-class: struggled most distinguishing "sad" vs. "angry" when facial expressions were subtle.

## 3. ResNet18 (pretrained)

- Val accuracy 94%; best generalization on the small emotion dataset.
- Per-class: significant boost in recall for "angry" and "sad" compared to the scratch variant.