

MACHINE LEARNING

 Introduction to Machine Intelligence

Ayush C | Prateek N | Suransh C

BRIEF ABOUT ME

- ACADEMIC BACKGROUND:
 - Computer Engineering, DTU
- EXPERIENCE:
 - Technical Advisor on Vision and Deep Learning, Cyclops USA. (www.cyclops.io)
 - Mentor, OFF, Google Summer of Code
 - Media and Data Science Research Group, Adobe Systems

INTRODUCTIONS

MACHINE INTELLIGENCE

Machine Learning

what society thinks I

what my friends think I do

what my parents think I do

$$\begin{split} & \mathcal{L}_{\sigma} = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^{L} a_i y_i (\mathbf{x}_i \cdot \mathbf{w} + b) + \sum_{i=1}^{L} a_i \\ & a_i \ge 0, \forall i \\ & \mathbf{w} = \sum_{i=1}^{L} a_i y_i x_i \sum_{i=1}^{L} a_i y_i = 0 \\ & \nabla \hat{g}(\theta_t) = \frac{1}{n} \sum_{i=1}^{n} \nabla \ell(x_i, y_i; \theta_t) + \nabla r(\theta_t), \\ & \theta_{t+1} = \theta_t - \eta_t \nabla \ell(x_{i(t)}, y_{i(t)}; \theta_t) - \eta_t \cdot \nabla r(\theta_t). \end{split}$$

 $\mathbb{E}_{i(t)}[\ell(x_{i(t)}, y_{i(t)}; \theta_t)] = \frac{1}{n} \sum_i \ell(x_i, y_i; \theta_t),$

what other programmers think I do

what I think I do

>>> from sklearn import svm

what I really do

WHAT IT IS

IT'S MATH, NOT MAGIC

LENDING A STRUCTURE

Thanks: Booz Allen Hamilton

THE DATA SCIENCE LIFECYCLE

- 1. Collect Data Acquire
- 2. Understand the structure of the data Prepare
 - + Statistical Reasoning
 - + Patience.
- 3. Build Predictive Models around the Data **Analyse**
 - + Iterative Process
 - + Setup Try Do
 - + Good Bit: Error Minimization Framework = f(Experience)
- 4. Put them into practice Act
 - + Let the business people take over

RECAP: System of Linear Equations

HOW DO YOU SIMULATE THE SAME ON A COMPUTER PROGRAMMATICALLY?

BUILDING ALGORITHMS IS NOT THAT HARD Why don't you try for yourself?

CASE 1

Make a Prediction: Fit a Line

FOOD FOR THOUGHT

- 1. Add another variable :- Repute of the Locality
- 2. Add another variable :- Lease/ Freehold
- 3. And another :p :- Year of Construction

Talk of: -

- 1. Problem Dimensionality
- 2. Nature of Curve to fit

CASE 2
Optimize Location of 3 pizza parlours

For the algorithm: Initialise to Random Locations

EVENTUALLY

Buzz Words

- Supervised Learning, Unsupervised Learning, Reinforcement Learning
- Classification/ Regression
- Features
- Training Data
- Validation Data
- Testing DataFor later!!
- Overfitting, Underfitting
- Weights

WHICH OF THE ABOVE DISCUSSED PROBLEMS IS

- 1. SUPERVISED
- 2. UNSUPERVISED

Justify!!

FORMAL DEFINITION

 Machine learning is a subfield of artificial intelligence (AI) concerned with algorithms that allow computers to learn. What this means, in most cases, is that an algorithm is given a set of data and infers information about the properties of the data—and that information allows it to make predictions about other data that it might see in the future

DRIVING FACTORS!

- Lots of Data
- Ability to process it

Machine Learning Models are essentially Statistical Machines.

SOME STATISTICS

- Every minute up to 300 hours of video are uploaded to YouTube.
- Average of 31.25 million messages and view
 2.77 million videos every minute on
 Facebook.
- More data has been created in the past two years than in the entire previous history of the human race.
- At the moment less than 0.5% of all data is ever analyzed and used, just imagine the potential here.

THE INDUSTRY IS USING IT...

- Google Page Ranking.
- Netflix Suggestions.
- Tesla Self Driving Cars
- Amazon product recommendations.
- Tinder matches
- Facebook video tagging.

THE POTENTIAL: FEW INTERESTING APPLICATIONS

Demystifying Prisma: Neural Art

A Neural Algorithm of Artistic Style

The Mathematical Mozart

Image Captioning: Neural Story

Deep Visual-Semantic Alignments for Generating Image Descriptions

Generated story about image Model: Romantic Novels

"He was a shirtless man in the back of his mind, and I let out a curse as he leaned over to kiss me on the shoulder.

He wanted to strangle me, considering the beatiful boy I'd become wearing his boxers."

Generated story about image

Model: Romantic Novels

"My man was within a woman, and she gave him a questioning look. I don't know what else to say to her . For the first time in years , I had never been as beautiful as the rest of my man .

In fact, he had his hands on her hips, holding her close to his chest and looking down at her as if she were the most stunning woman I d ever seen. The man released a woman's blood, and that was the reason for all of them.

She hoped to make an appearance, convincing him and the woman who was still her first."

Conversational Engine

Pacman Champ: The Gamer

How easy do you think Lip Reading is ?

Lip-Reading AI

Human Accuracy: 20% to 60%

LipNet Accuracy: 93.4%

Colorizing the World: Autoencoders

Playing with Words and Image

DEVELOPER CHECKLIST

- Programming Language
 - Python (Recommended)
 - \circ R
- IDE
 - Jupyter Notebooks
 - IPython
- Mathematical Libraries
 - Numpy
 - Scipy
- Data PreProcessing
 - Pandas
 - OpenCV

DEVELOPER CHECKLIST

- Machine Learning
 - Scikit-Learn
- Deep Learning
 - Keras
 - Tensorflow
 - Caffe
- And..

Passion and Perseverance!

GENERAL RECOMMENDATIONS

- 1. Read a lot of Research Literature.
- 2. Get a good grasp on the mathematics.

INTRODUCTION TO PYTHON

Setting Up Jupyter Notebooks

Variable and Data Types

String, Lists and Dictionaries

Packages and Imports

Conditionals Loops and Functions

Object Oriented Paradigm

Doubts and Queries!!

MACHINE

Thank You!

Ayush C | Prateek N | Suransh C