セルフホスト可能な Cコンパイラを 2000行弱で書く

@nsfisis

TechRAMEN 2025 Conference

いまむら **nsfisis**

@デジタルサーカス株式会社

世界三大 一度は自作したい

ソフトウェア

C言語コンパイラ

P4Dcc セルフホスト可能な

Cコンパイラ

セルフホストとは

自分のソースコードを自分でコンパイルできる

main.c \rightarrow gcc \rightarrow P4Dcc

main.c \rightarrow gcc \rightarrow P4Dcc main.c \rightarrow P4Dcc \rightarrow P4Dcc'

main.c
$$\rightarrow$$
 gcc \rightarrow P4Dcc
main.c \rightarrow P4Dcc \rightarrow P4Dcc'
main.c \rightarrow P4Dcc' \rightarrow P4Dcc''

目標

セルフホスト可能な Cコンパイラを

GW の 4 日間で作る!

コンパイラって 難しそう 複雑そう

コンパイラは 非常に単純な ソフトウェア

コンパイラとは 文字列から 別の文字列への "変換"器

gcc

Cのソースコード ↓ 実行可能ファイル等

javac

Javaのソースコード ↓ クラスファイル等

tsc

TypeScript のソースコード ↓
JavaScript のソースコード

コンパイラとは 文字列から 別の文字列への "変換"器

Web サーバ

Web サーバ 通信 並行処理 外部システム連携 リソース制限

リソース制約が緩い

コンパイラ

ローカルで完結

入出力は文字列

コンパイラは 非常に単純な ソフトウェア

コンパイラを書くには 文字列操作と 入出力があれば十分

P4Dcc 2000行弱 20時間弱

コンパイラは 白作できる 自作しやすい ソフトウェア

P4Dcc

P4Dcc のスコープ

Cのソース →アセンブリのソース →オブジェクトファイル →実行可能ファイル

Cのソース

→アセンブリのソース

→オブジェクトファイル

→実行可能ファイル

参考資料 『低レイヤを知りたい人のための

Cコンパイラ作成入門』 (compilerbook)

ここまでで半分

P4Dcc の設計

目標

セルフホスト可能な Cコンパイラを

GW の 4 日間で作る!

Cの全機能を 実装するわけには いかない

自身のソースコードさえコンパイルできればいい

どの機能は必要か?どの機能は不要か?

実装していない機能

switch → if / else

while → for

++/+= $\rightarrow a = a + 1$

グローバル変数 →コンテキストは引数で渡す

typedef

→常に struct を書く

#include

```
#include <stdio.h>
int main() {
    printf("Hello, World!");
    return 0;
```

```
/* #include <stdio.h> */
int main() {
    printf("Hello, World!");
    return 0;
```

int printf(const char* f, ...);

```
int main() {
    printf("Hello, World!");
    return 0;
}
```

#include を 実装しないメリット

stdio.h のような 「本物の」Cソースコードを

読まなくていい

```
int printf();
...
#define NULL 0
```

void* calloc();

int atoi();

void exit();

うまく機能を制限して

- - 3日目の朝にセルフホスト達成

main.c
$$\rightarrow$$
 gcc \rightarrow P4Dcc
main.c \rightarrow P4Dcc \rightarrow P4Dcc'
main.c \rightarrow P4Dcc' \rightarrow P4Dcc''

main.c
$$\rightarrow$$
 gcc \rightarrow P4Dcc
main.c \rightarrow P4Dcc \rightarrow P4Dcc'

main.c \rightarrow P4Dcc $^{\prime\prime}$

具体的な内部構成

ソースコードを 参照してください

なぜ今 Cコンパイラを作るのか

Cコンパイラは

Cコンパイラは

"ひとつなぎの大秘宝"

世界は まかれている

PHP、Apache、 PostgreSQL, Linux, Neovim, etc

OS、言語、エディタ この世のすべて

Rust のコンパイラは Rust 製

Rust ← Rust

$Rust \leftarrow Rust \leftarrow Rust \leftarrow \dots$

Rust ← Rust ← Rust ← ... ← OCaml

← OCaml ← OCaml

Rust \leftarrow Rust \leftarrow Rust \leftarrow ...

← OCaml ← OCaml ← ... ← Caml Light

Rust \leftarrow Rust \leftarrow Rust \leftarrow ...

この世のすべてを

Cコンパイラからスタートして

順番にコンパイルしていけば

ひとつながりにコンパイルできる

Cコンパイラは

"ひとつなぎの大秘宝"

おれの財宝か? 欲しけりゃくれてやる。 探せ! この世のすべてを そこに置いてきた!

おれの財宝

高品質なCコンパイラ

コンパイラの名前 ccが末尾につく

ゴールド・ロジャーのコンパイラは?

gcc

ゴール・D・ロジャー

D = Develop

C コンパイラがあれば かなりの数のソフトウェアを

コンパイルできる

いつも使っているツールや ソフトウェアを 自作コンパイラで

コンパイルする

このコンパイラ 2000行あれば書ける

自作Cコンパイラに 挑戦してみては?