NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI-15 DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING B. Tech DEGREE VI SEMESTER, II CYCLE TEST, APRIL-2021 CSPE14—Data Warehousing and Data Mining

DATE: 22-04-2021 TIME: 03.30p.m. -04.30 p.m.MAX.MARKS:20 marks

Answer all Questions

 $5 \times 4 = 20 \text{ marks}$

1. The following table consists of training data from an employee database. The data have been generalized. For example, "31... 35" for *age* represents the age range of 31to 35. For a given row entry, *count* represents the number of data tuples having the values for *department*, *status*, *age*, and *salary* given in that row.

deþartment	status	age	salary	count
sales	senior	3135	46K50K	30
sales	junior	2630	26K30K	40
sales	junior	3135	31K35K	40
systems	junior	2125	46K50K	20
systems	senior	3135	66K70K	5
systems	junior	2630	46K50K	3
systems	senior	4145	66K70K	3
marketing	senior	3640	46K50K	10
marketing	junior	3135	41K45K	4
secretary	senior	4650	36K40K	4
secretary	junior	2630	26K30K	6

Let status be the class label attribute.

Given a data tuple having the values "systems," "26...30" and "46-50K" for the attributes department, age, and salary, respectively, what would a naive Bayesian classification of the status for the tuple be?

2. A database has five transactions. Let minimum support count more than 50%

TID Items bought

- 1 Milk, Tea, Cake
- 2 Eggs, Tea, Cold Drink
- 3 Milk, Eggs, Tea, Cold Drink
- 4 Eggs, Cold Drink
- 5 Juice

Find all frequent item sets using Apriori algorithm.

3. Consider a database, *D*, consisting of 7 transactions. Use this table to show the implementation of k-means algorithm together with Euclidean distance function. Use K=2 and suppose individual 1 and 4 are selected as the initial means.

Individual	Variable 1	Variable 2
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

- 4. Explain the different ensemble-based classification techniques using examples.
- 5. Write short notes on categorization of major Clustering Methods

-----BestWishes-----