Modelo de simulación de un reactor químico

Juan Pablo Requez juanrequez@gmail.com jprequez@ucla.edu.ve jrequez@unexpo.edu.ve

Se suministra el modelo de un reactor no isotérmico y su aproximación lineal alrededor del punto de equilibrio para el cual se suministran los datos.

Se tiene un reactor donde el flujo Fj de la chaqueta es constante y se utiliza para refrigerar al fluido dentro del tanque. Las condiciones de entrada se denotan con el subíndice 0, obsérvese que la chaqueta refrigerante trabaja a volumen constante Vj, mientras que el tanque tiene un volumen variable. La reacción es de primer orden respecto al reactivo A, e irreversible, para formar al producto B.

El modelo no lineal que describe al sistema está dado por

$$\frac{d}{dt}V = F_0 - F$$

$$\frac{d}{dt}C_A = \frac{C_{AO} \cdot F_0}{V} - \frac{C_A \cdot F_0}{V} - k_o \cdot e^{\frac{-E}{R \cdot T}} \cdot C_A$$

$$\frac{d}{dt}T = \frac{F_0 \cdot T_0}{V} - \frac{F_0 \cdot T}{V} - \frac{\lambda \cdot \left(k_o \cdot e^{\frac{-E}{R \cdot T}}\right) \cdot C_A}{\rho \cdot C_p} - \frac{U \cdot A}{\rho \cdot C_p \cdot V} \left(T - T_j\right)$$

$$\frac{d}{dt}T_j = \frac{F_j \cdot \left(T_{j0} - T_j\right)}{V_j} + \frac{U \cdot A}{\rho_j \cdot V_j \cdot C_j} \cdot \left(T - T_j\right)$$

Los valores de estado estacionario, los valores de los parámetros y entradas están dados en la siguiente tabla:

Variable	Símbolo	tipo	valor	unidades
Volumen del tanque	V	estado	Estado	ft^3
			estacionario:	
			48	
Concentración de A	C_A	estado	Estado	lbmol
			estacionario:	$\overline{ft^3}$
			0.2	-

Temperatura dentro del reactor	Т	estado	Estado	R
			estacionario:	
			532.699	
Temperatura dentro de la chaqueta	T_i	estado	Estado	R
·	,		estacionario:	
			532.53	
Concentración de A en la entrada	C_{A0}	entrada	0.208u(t)	lbmol
				$\overline{ft^3}$
Temperatura de entrada del flujo de A	T_0	entrada	530 u(t)	R
Temperatura de entrada del flujo de la	T_{j0}	entrada	530 u(t)	R
chaqueta	,			
Flujo de entrada de A	F_0	entrada	40 u(t)	ft^3/s
Flujo de salida del reactor	F	entrada	40 u(t)	ft^3/s
Volumen de la chaqueta	V_{j}	parámetro	3.85	ft^3
Flujo del refrigerante	F_{j}	parámetro	40.5	ft^3/s
Constante cinética	k_o	parámetro	7.08×10^{10}	1/s
Energía de activación	E	parámetro	30000	BTU/lbmol
Área de transferencia de calor	Α	parámetro	250	ft^2
Constante de gas universal	R	parámetro	1.99	BTU/(lbmol
				R)
Calor de reacción exotérmico	λ	parámetro	-30000	BTU/lbmol
Densidad	ho	parámetro	50	lbm/ft ³
Capacidad calorífica	C_p	parámetro	0.75	BTU/(lbm R)
Capacidad calorífica del fluido	C_j	parámetro	1	BTU/(lbm R)
refrigerante				
Densidad del fluido refrigerante	$ ho_j$	parámetro	62.3	lbm/ft ³
Coeficiente global de transferencia de	U	parámetro	150	BTU
calor				/(s ft R)

Mientras que el *modelo lineal* que describe al sistema (calculado alrededor del punto de estado estacionario descrito por la tabla anterior) está dado por

$$\begin{pmatrix}
\frac{d}{dt}U_{i} \\
\frac{d}{dt}D_{A} \\
\frac{d}{dt}\Gamma \\
\frac{d}{dt}\Gamma
\end{pmatrix} = A \cdot \begin{pmatrix}
U_{i} \\
D_{A} \\
\Gamma \\
\Gamma_{j}
\end{pmatrix} + B \cdot \begin{pmatrix}
Q_{0} \\
Q \\
D_{A0} \\
\Gamma_{0} \\
\Gamma_{j0}
\end{pmatrix}$$

Las matrices de linealización A_e y B_e (el subíndice "e" se colocó para que no sean confundidas con otros parámetros de la tabla anterior)

$$A_{e} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ -1.458 \times 10^{-4} & -0.87 & -3.853 \times 10^{-4} & 0 \\ 0.12 & 29.013 & -21.358 & 20.833 \\ 0 & 0 & 156.344 & -166.864 \end{pmatrix}$$

$$B_{e} = \begin{pmatrix} 1 & -1 & 0 & 0 & 0 \\ 1.75 \times 10^{-4} & 0 & 0.833 & 0 & 0 \\ -0.056 & 0 & 0 & 0.833 & 0 \\ 0 & 0 & 0 & 0 & 10.519 \end{pmatrix}$$

Las variables dependientes (estados) son

$$U_i = V - Veq$$
 $D_A = C_A - C_{Aeq}$
 $\Gamma = T - T_{eq}$
 $\Gamma_j = T_j - T_{jeq}$

las variables independientes (entradas) son

$$Q := F - F_{eq}$$

$$Q_0 := F_0 - F_{0eq}$$

$$D_{A0} := C_{A0} - C_{A0eq}$$

$$\Gamma_0 := T_0 - T_{0eq}$$

$$\Gamma_{j0} := T_{j0} - T_{j0eq}$$