# Группы 33501/1,3,4. Расчетное задание №3. Сравнение систем массового обслуживания.

Задача 81.

Сравнить средние времена пребывания и средние времена ожидания для разных систем в зависимости от интенсивности потока заявок.

Построить соответствующие графики.

Какая система лучше (при каких интенсивностях первая система лучше, при каких – вторая)?



б)



| Вариант | k | m |
|---------|---|---|
| 2       | 3 | 8 |
| 8       | 4 | 8 |
| 13      | 2 | 0 |
| 18      | 3 | 0 |
| 23      |   | 0 |
| 29      | 2 | 1 |
| 35      | 3 | 1 |
| 38      | 4 | 1 |
| 42      | 2 | 2 |
|         | 3 | 2 |

# Задача 82.

Сравнить средние времена пребывания и средние времена ожидания для разных систем в зависимости от интенсивности потока заявок.

Построить соответствующие графики.

Какая система лучше (при каких интенсивностях первая система лучше, при каких – вторая)?

a)





| Вариант | k | m |
|---------|---|---|
| 3       | 3 | 8 |
| 9       | 4 | 8 |
| 14      | 2 | 0 |
| 19      | 3 | 0 |
| 26      | 4 | 0 |
| 27      | 2 | 1 |
| 37      | 3 | 1 |
| 39      | 4 | 1 |
| 11      | 2 | 2 |
|         | 3 | 2 |

### Задача 20.

Рассматривается система автоматического контроля. Если очередная деталь, двигающаяся по конвейеру, застает все контролирующие приборы занятыми, то она проходит на отгрузку без контроля. Цена аппарата – S рублей, эксплуатационные расходы на содержание работающего аппарата s1 рублей в сутки, а простаивающего – s2 рублей в сутки.

Потери по рекламации от возможного получения потребителем бракованной детали – z рублей. Время контроля одной детали распределено по экспоненциальному закону с параметром  $\boldsymbol{m}$  мин $^{-1}$ . Поток деталей является простейшим с параметром  $\boldsymbol{l}$  мин $^{-1}$ . Срок службы аппарата равен 100 суткам. Вероятность появления бракованной детали на входе равна q.

Сравнить системы с разным количеством контролирующих приборов: K и K+1 в зависимости от штрафа по рекламации z.

Построить графики.

Какая система лучше (при каких значениях штрафа первая система лучше, при каких – вторая)?

| Вариант | 1   | m   | S     | s1  | s2  | q    | K |
|---------|-----|-----|-------|-----|-----|------|---|
| 4       | 0.8 | 0.2 | 10000 | 200 | 100 | 0.01 | 5 |
| 10      | 0.8 | 0.2 | 10000 | 200 | 100 | 0.01 | 6 |
| 15      | 0.8 | 0.3 | 10000 | 200 | 100 | 0.01 | 3 |
| 20      | 0.8 | 0.3 | 10000 | 200 | 100 | 0.01 | 4 |
| 31      | 0.7 | 0.4 | 10000 | 200 | 100 | 0.01 | 2 |
| 40      | 0.7 | 0.4 | 10000 | 200 | 100 | 0.01 | 3 |

# Задача 83.

Сравнить средние времена пребывания и средние времена ожидания для разных систем в зависимости от интенсивности потока заявок.

Построить соответствующие графики.

Какая система лучше (при каких интенсивностях первая система лучше, при каких – вторая)?

a)  $\begin{array}{c} \mu \\ \hline \lambda \\ \hline \\ \lambda \\ \hline \\ \mu \\ \hline \\ k \\ \end{array}$ 

б)



| Вариант | k |
|---------|---|
| 5       | 1 |
| 16      | 2 |
| 25      | 3 |
| 32      | 4 |

Задача 84.

Сравнить средние времена пребывания и средние времена ожидания для разных систем в зависимости от интенсивности потока заявок.

Построить соответствующие графики.

Какая система лучше (при каких интенсивностях первая система лучше, при каких – вторая)?





| Вариант | k | m |
|---------|---|---|
| 6       | 1 | 9 |
| 12      | 2 | 6 |
| 17      | 3 | 3 |
| 24      | 1 | 6 |
| 33      | 2 | 3 |
| 41      | 1 | 3 |