Expectation Maximization

Richard Yi Da Xu

School of Computing & Communication, UTS

November 20, 2014

Motivation - Mixture Densitiy models

When you have data that looks like:

Can you fit them using a single-mode Gaussian distribution, i.e.,:

$$p(X) = \mathcal{N}(X|\mu, \Sigma)$$

= $(2\pi)^{-k/2} |\Sigma|^{-\frac{1}{2}} \exp^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$

Clearly NOT! This is typically modelling using Mixture Densities, in the case of Gaussian Mixture Model (k-mixture) (GMM):

$$p(X) = \sum_{l=1}^{k} \alpha_{l} \mathcal{N}(X|\mu_{l}, \Sigma_{l})$$
 $\sum_{l=1}^{k} \alpha_{l} = 1$

Gaussian Mixture model result

Figure: amm fitting result

Let
$$\Theta = \{\alpha_1, \dots \alpha_k, \mu_1, \dots \mu_k, \Sigma_1, \dots \Sigma_k\}$$

$$\begin{split} \Theta_{\mathsf{MLE}} &= \underset{\Theta}{\mathsf{arg\,max}} \ \mathcal{L}(\Theta|X) \\ &= \underset{\Theta}{\mathsf{arg\,max}} \left(\sum_{j=1}^{n} \log \sum_{l=1}^{k} \alpha_{l} \mathcal{N}(X|\mu_{l}, \Sigma_{l}) \right) \end{split}$$

- Unlike single mode Gaussian, we can't just take derivatives and let it equal zero easily.
- We need to use Expectation-Maximization to help us solving this

Convex function

Linear interpolation of x

$$f((1-t)x_1+tx_2) \leq (1-t)f(x_1)+tf(x_2)$$
 $t \in (0...1)$

Jensens inequality

Using notation Φ instead of f:

$$\Phi((1-t)x_1+tx_2) \le (1-t)\Phi(x_1)+t\Phi(x_2) \qquad t \in (0...1)$$

Can be generalised further, let $\sum_{i=1}^{n} p_i = 1$:

$$\Phi(p_1x_1 + p_2x_2 + \dots p_nx_n) \le p_1\Phi(x_1) + p_2\Phi(x_2) \dots p_n\Phi(x_n) \qquad \sum_{i=1}^n p_i = 1$$

$$\implies \Phi\left(\sum_{i=1}^n p_ix_i\right) \le \sum_{i=1}^n p_i\Phi(x_i)$$

$$\implies \Phi\left(\sum_{i=1}^n p_if(x_i)\right) \le \sum_{i=1}^n p_i\Phi(f(x_i)) \qquad \text{by replacing } x_i \text{ with } f(x_i)$$

Can also generalised to the continous case, by letting $\int_{x \in \mathbb{S}} p(x) = 1$:

$$\Phi\left(\int_{x\in\mathbb{S}}f(x)\rho(x)\right)\leq\int_{x\in\mathbb{S}}\Phi(f(x_i))\rho(x)\implies\Phi\mathbb{E}[f(x)]\leq\mathbb{E}[\Phi(f(x_i))]$$

Jensens inequality: $-\log(x)$

 $\Phi(x) = -\log(x)$ is a convex function:

Figure: plot of $\Phi(x) = -\log(x)$

when $\Phi(.)$ is convex

$$\Phi \mathbb{E}[f(x)] \leq \mathbb{E}[\Phi(f(x_i))]$$

$$\implies -\log \mathbb{E}[f(x)] \leq \mathbb{E}[-\log(f(x_i))]$$

when $\Phi(.)$ is concave

$$\begin{split} \Phi \mathbb{E}[f(x)] &\geq \mathbb{E}[\Phi(f(x_i))] \\ \Longrightarrow &-\log \mathbb{E}[f(x)] \geq \mathbb{E}[-\log(f(x_i))] \end{split}$$

The Expectation-Maximization Algorithm

Instead of perform:

$$\theta^{\mathsf{MLE}} = \mathop{\arg\max}_{\theta}(\mathcal{L}(\theta)) = \mathop{\arg\max}_{\theta} \left(\log[p(X|\theta)] \right)$$

- ▶ **The trick** is to assume some "latent" variable *Z* to the model.
- such that we generate a series of $\Theta = \{\theta^{(1)}, \theta^{(2)}, \dots \theta^{(t)}\}$

For each iteration of the E-M algorithm, we perform:

$$\Theta^{(g+1)} = \underset{\theta}{\arg\max} \left(\int_{Z} \log \left(p(X, Z|\theta) \right) p(Z|X, \Theta^{(g)}) \right) dz$$

However, we must ensure convergence:

$$\log[p(X|\Theta^{(g+1)})] = \mathcal{L}(\Theta^{(g+1)}) \ge \mathcal{L}(\Theta^{(g)}) \qquad \forall i$$

First proof of convergence: using M-M

$$\mathcal{L}(\theta|X) = \ln\left(p(X|\theta)\right)$$

$$= \ln\left(\frac{p(X,Z|\theta)}{p(Z|X,\theta)}\right) = \ln\left(\frac{\frac{p(X,Z|\theta)}{Q(Z)}}{\frac{p(Z|X,\theta)}{Q(Z)}}\right)$$

$$= \ln\left(\frac{p(X,Z|\theta)}{Q(Z)} \times \frac{Q(Z)}{p(Z|X,\theta)}\right)$$

$$= \ln\left(\frac{p(X,Z|\theta)}{Q(Z)}\right) + \ln\left(\frac{Q(Z)}{p(Z|X,\theta)}\right)$$

$$\implies \ln\left(p(X|\theta)\right) = \int_{Z} \ln\left(\frac{p(X,Z|\theta)}{Q(Z)}\right) Q(Z) + \int_{Z} \ln\left(\frac{Q(Z)}{p(Z|X,\theta)}\right) Q(Z)$$

$$= \int_{Z} \ln\left(\frac{p(X,Z|\theta)}{Q(Z)}\right) Q(Z) + \underbrace{\operatorname{KL}(Q(Z)||p(Z|X,\theta))}_{\geq 0}$$

$$= F(\theta,Q) + \int_{Z} \ln\left(\frac{Q(Z)}{p(Z|X,\theta)}\right) Q(Z)$$

Proof of convergence: using M-M (2)

Another way of knowing:

$$\mathcal{L}(\theta|X) = \ln\left(p(X|\theta)\right) \ge \int_{Z} \ln\left(\frac{p(X,Z|\theta)}{Q(Z)}\right) Q(Z)$$

is to use Jensen's inequality:

$$\mathcal{L}(\theta|X) = \ln p(X|\theta) = \ln \int_{Z} p(X, Z|\theta)$$

$$= \underbrace{\ln \left(\int_{Z} \frac{p(X, Z|\theta)}{Q(Z)} Q(Z) \right)}_{\ln \mathbb{E}_{Q(Z)}[f(Z)]}$$

$$\geq \underbrace{\int_{Z} \ln \left(\frac{p(X, Z|\theta)}{Q(Z)} \right) Q(Z)}_{\mathbb{E}_{Q(Z)} \ln[f(Z)]}$$

Proof of convergence: using M-M (3)

E-M becomes a M-M algorithm

$$\mathcal{L}(\Theta|X) = \int_{Z} \ln \left(\frac{p(X, Z|\Theta)}{Q(Z)} \right) Q(Z) + \int_{Z} \ln \left(\frac{Q(Z)}{p(Z|X, \Theta)} \right) Q(Z)$$
$$= F(\Theta, Q) + \text{KL}(Q(Z)||p(Z|X, \Theta))$$

STEP 1 Fix $\Theta = \Theta^{(g)}$, maximize Q(Z)

- L(Θ|X) is fixed, i.e., indepedant of Q(Z). Therefore, L(Θ|X) is the upper bound of F(Θ, Q).
- ▶ To make $\mathcal{L}(\Theta|X) = F(\Theta, Q)$, i.e, KL(.) = 0, we choose $Q(Z) = p(Z|X, \Theta^{(g)})$. Therefore:

$$\mathcal{L}(\Theta|X) = \int_{Z} \ln \left(\frac{p(X, Z|\Theta)}{p(Z|X, \Theta^{(g)})} \right) p(Z|X, \Theta^{(g)})$$

STEP 2 Fix Q(Z), maximize Θ

$$\Theta^{(g+1)} = \operatorname*{arg\,max}_{\Theta} \left(\int_{z} \log \left(p(X,Z|\Theta) \right) p(Z|X,\Theta^{(g)}) \right) \mathrm{d}z$$

Proof of convergence: "Tagare" approach (1)

$$\begin{split} \mathcal{L}(\theta|X) &= \ln[p(X|\theta)] = \ln[p(Z,X,\theta)] - \ln[p(Z|X,\theta)] \\ &\Longrightarrow \int_{z \in \mathbb{S}} \ln[p(X|\theta)] p(z|X,\Theta^{(g)}) \mathrm{d}z \\ &= \int_{z \in \mathbb{S}} \ln[p(Z,X,\theta)] p(z|X,\Theta^{(g)}) \mathrm{d}z - \int_{z \in \mathbb{S}} \ln[p(Z|X,\theta)] p(z|X,\Theta^{(g)}) \mathrm{d}z \\ &\Longrightarrow \ln[p(X|\theta)] = \underbrace{\int_{z \in \mathbb{S}} \ln[p(Z,X,\theta)] p(z|X,\Theta^{(g)}) \mathrm{d}z}_{O(\theta,\theta^i)} - \underbrace{\int_{z \in \mathbb{S}} \ln[p(Z|X,\theta)] p(z|X,\Theta^{(g)}) \mathrm{d}z}_{H(\theta,\Theta^{(g)})} \end{split}$$

In E-M, we only maximise, i.e., $\Theta^{(g+1)}=\arg\max_{\theta}Q(\theta,\Theta^{(g)}).$ Why? a trick If we can prove:

$$\arg\max_{\theta} \left[\int_{z \in \mathbb{S}} \ln[p(Z|X,\theta)]p(z|X,\Theta^{(g)}) \mathrm{d}z \right] = \Theta^{(g)} \implies H(\Theta^{(g+1)},\Theta^{(g)}) \leq H(\Theta^{(g)},\Theta^{(g)})$$

Then

$$\mathcal{L}(\Theta^{(g+1)} = \underbrace{\mathcal{Q}(\Theta^{(g+1)}, \Theta^{(g)})}_{\geq \mathcal{Q}(\Theta^{(g)}, \Theta^{(g)})} - \underbrace{\mathcal{H}(\Theta^{(g+1)}, \Theta^{(g)})}_{\leq \mathcal{H}(\Theta^{(g)}, \Theta^{(g)})} \geq \mathcal{Q}(\Theta^{(g)}, \Theta^{(g)}) - \mathcal{H}(\Theta^{(g)}, \Theta^{(g)}) = \mathcal{L}(\Theta^{(g)}, \Theta^{(g)})$$

The "Tagare" approach (2)

To prove
$$\arg \max_{\theta} [H(\theta, \Theta^{(g)})] = \arg \max_{\theta} \left[\int_{z \in \mathbb{S}} \ln[p(Z|X, \theta)] p(z|X, \Theta^{(g)}) \mathrm{d}z \right] = \Theta^{(g)}$$

$$\Longrightarrow \text{To prove} \qquad H(\Theta^{(g)}, \Theta^{(g)}) - H(\theta, \Theta^{(g)}) \geq 0 \quad \forall \theta$$

$$H(\Theta^{(g)}, \Theta^{(g)}) - H(\theta, \Theta^{(g)}) = \int_{z \in \mathbb{S}} \ln[p(Z|X, \Theta^{(g)})] p(z|X, \Theta^{(g)}) \mathrm{d}z - \int_{z \in \mathbb{S}} \ln[p(Z|X, \theta)] p(z|X, \theta) \mathrm{d}z + \int_{z \in \mathbb{S}} \ln\left[\frac{p(Z|X, \Theta^{(g)})}{p(Z|X, \theta)}\right] p(z|X, \Theta^{(g)}) \mathrm{d}z = \int_{z \in \mathbb{S}} -\ln\left[\frac{p(Z|X, \theta)}{p(Z|X, \Theta^{(g)})}\right] p(z|X, \Theta^{(g)}) \mathrm{d}z + \int_{z \in \mathbb{S}} -\ln\left[\frac{p(Z|X, \theta)}{p(Z|X, \Theta^{(g)})}\right] p(z|X, \Theta^{(g)}) \mathrm{d}z$$

$$\geq -\ln\left[\int_{z \in \mathbb{S}} \frac{p(Z|X, \theta)}{p(Z|X, \Theta^{(g)})} p(z|X, \Theta^{(g)}) \mathrm{d}z \right] = 0$$

Since $\Phi(.) = -\ln$ is a convex unction:

The E-M Examples

- Gaussian Mixture Model
- Probabilistic Latent Semantic Analysis (PLSA)

E-M Example: Gaussian Mixture Model

Gaussian Mixture Model (k-mixture) (GMM):

$$p(X|\Theta) = \sum_{l=1}^{k} \alpha_{l} \mathcal{N}(X|\mu_{l}, \Sigma_{l}) \qquad \sum_{l=1}^{k} \alpha_{l} = 1$$
and $\theta = \{\alpha_{1}, \dots \alpha_{k}, \mu_{1}, \dots \mu_{k}, \Sigma_{1}, \dots \Sigma_{k}\}$

For data $X = \{x_1, \dots x_n\}$ we introduce "latent" variable $Z = \{z_1, \dots z_n\}$, each z_i indicates which mixture component x_i belong to. Looking at the E-M algorithm:

$$\Theta^{(g+1)} = \underset{\Theta}{\arg\max} \left[Q(\Theta, \Theta^{(g)}) \right] = \underset{\Theta}{\arg\max} \left(\int_{Z} \log \left(p(X, Z | \Theta) \right) p(Z | X, \Theta^{(g)}) \mathrm{d}z \right)$$

We need to define both $p(X, Z|\Theta)$ and $p(Z|X, \Theta)$

Gaussian Mixture Model in action

$$p(X|\Theta) = \sum_{l=1}^{k} \alpha_{l} \mathcal{N}(X|\mu_{l}, \Sigma_{l}) = \prod_{l=1}^{n} \sum_{l=1}^{k} \alpha_{l} \mathcal{N}(X|\mu_{l}, \Sigma_{l})$$

How to define $p(X, Z|\Theta)$

$$p(X,Z|\Theta) = \prod_{i=1}^{n} p(x_i,z_i|\Theta) = \prod_{i=1}^{n} \underbrace{p(x_i|z_i,\Theta)}_{\mathcal{N}(\mu_{z_i},\Sigma_{z_i})} \underbrace{p(z_i|\Theta)}_{\alpha_{z_i}} = \prod_{i=1}^{n} \alpha_{z_i} \mathcal{N}(\mu_{z_i},\Sigma_{z_i})$$

Notice that $p(X, Z|\Theta)$ is actually simple than $p(X|\Theta)$.

How to define $p(Z|X,\Theta)$

$$p(Z|X,\Theta) = \prod_{i=1}^{n} p(z_i|x_i,\Theta) = \prod_{i=1}^{n} \frac{\alpha_{z_i} \mathcal{N}(\mu_{z_i}, \Sigma_{z_i})}{\sum_{l=1}^{k} \alpha_l \mathcal{N}(\mu_l, \Sigma_l)}$$

The E-Step: (1)

$$Q(\Theta, \Theta^{(g)}) = \int_{Z} \ln (p(X, Z|\Theta)) p(Z|X, \Theta^{(g)}) dz$$

$$= \int_{Z_1} \dots \int_{Z_n} \left(\sum_{i=1}^n \ln p(z_i, x_i|\Theta) \prod_{i=1}^n p(z_i|x_i, \Theta^{(g)}) \right) dz_1, \dots dz_n$$

Some derivation to help

- ▶ Let P(Y) be the joint pdf: $P(y_1,...y_n)$
- ▶ also let F(Y) be a linear function, where each term involves only one variable y_i , i.e., $F(Y) = f_1(x_1) + ... f_n(x_n) = \sum_{i=1}^n f_i(y_i)$

Theorem:

$$\int_{y_1} \dots \int_{y_n} \left(\sum_{i=1}^n f_i(y_i) \right) P(Y) dY = \sum_i^N \left(\int_{y_i} f_i(y_i) P_i(y_i) dy_i \right)$$

$$\int_{Y} (F(Y))P(Y)dY = \int_{y_1} \int_{y_2} \dots \int_{y_N} \left(\sum_{i=1}^{N} (f_i(y_i)) \right) P(Y)dy_1, \dots dy_n$$

Expand it out, this equation has N sum terms. The first term is:

$$= \int\limits_{y_1} \int\limits_{y_2} ... \int\limits_{y_N} f_1(y_1) P(y_1,...,y_N) \prod_{i=1}^N (\mathrm{d} y_i) = \int\limits_{y_1} f_1(y_1) \left(\int\limits_{y_2} ... \int\limits_{y_N} P(y_1,...,y_N) \prod_{i=2}^N (\mathrm{d} y_i) \right) \mathrm{d} y_1$$

What's inside the big bracket becomes the marginal probability density of $P(y_1)$, therefore, the first term becomes:

$$= \int_{y_1} f_1(y_1) p(y_1) dy_1$$

Apply this to each of the N terms, therefore:

$$\int_{Y} (F(Y))P(Y)dY = \int_{y_1} f_1(y_1)P_1(y_1)dy_1 + \cdots + \int_{y_n} f_n(y_n)P_n(y_n)dy_n$$

The E-Step: (2)

Knowing,

$$\int_{y_1} \dots \int_{y_n} \left(\sum_{i=1}^n f_i(y_i) \right) P(Y) dY = \sum_i^N \left(\int_{y_i} f_i(y_i) P_i(y_i) dy_i \right)$$

$$\begin{split} Q(\Theta,\Theta^{(g)}) &= \int_{z_1} \dots \int_{z_n} \left(\sum_{i=1}^n \ln p(z_i,x_i|\Theta) \prod_{i=1}^n p(z_i|x_i,\Theta^{(g)}) \right) \mathrm{d}z_1, \dots \mathrm{d}z_n \\ &= \sum_{i=1}^n \left(\int_{z_i} \ln p(z_i,x_i|\Theta) p(z_i|x_i,\Theta^{(g)}) \mathrm{d}z_i \right) \qquad z_i \in \{1,\dots,k\} \\ &= \sum_{z_i=1}^k \sum_{i=1}^n \ln p(z_i,x_i|\Theta) p(z_i|x_i,\Theta^{(g)}) \qquad \text{swap the summation terms} \\ &= \sum_{i=1}^k \sum_{i=1}^n \ln [\alpha_i \mathcal{N}(x_i|\mu_I,\Sigma_I)] p(I|x_i,\Theta^{(g)}) \qquad \text{substitute Gaussan and replace } z_i \to I \end{split}$$

The M-Step objective function

$$\begin{aligned} Q(\Theta, \Theta^{(g)}) &= \sum_{l=1}^{k} \sum_{i=1}^{n} \ln[\alpha_{l} \mathcal{N}(x_{i} | \mu_{l}, \Sigma_{l})] p(l | x_{i}, \Theta^{(g)}) \\ &= \sum_{l=1}^{k} \sum_{i=1}^{n} \ln(\alpha_{l}) p(l | x_{i}, \Theta^{(g)}) + \sum_{l=1}^{k} \sum_{i=1}^{n} \ln[\mathcal{N}(x_{i} | \mu_{l}, \Sigma_{l})] p(l | x_{i}, \Theta^{(g)}) \end{aligned}$$

The first term contains only α and the second term contains only μ, Σ . So we can maximize both terms independently.

The M-Step: maximizing α

Maximizing α means that:

$$\frac{\partial \sum_{l=1}^k \sum_{i=1}^n \ln(\alpha_l) p(l|x_i, \Theta^{(g)})}{\partial \alpha_1, \dots, \partial \alpha_k} = [0 \dots 0] \quad \text{ subject to } \sum_{l=1}^k \alpha_l = 1$$

This is to be solved using Lagrange Multiplier

$$\mathbb{LM}(\alpha_1, \dots \alpha_k, \lambda) = \sum_{l=1}^k \ln(\alpha_l) \underbrace{\left(\sum_{i=1}^n p(I|x_i, \Theta^{(g)})\right)}_{\text{contains no } \alpha} - \lambda \left(\sum_{l=1}^k - 1\right)$$

$$\Rightarrow \frac{\partial \mathbb{LM}}{\partial \alpha_l} = \frac{1}{\alpha_l} \left(\sum_{i=1}^n p(I|x_i, \Theta^{(g)})\right) - \lambda = 0$$

$$\Rightarrow \alpha_l = \frac{1}{N} \sum_{i=1}^n p(I|x_i, \Theta^{(g)})$$

The M-Step: maximizing μ, Σ

Maximizing μ , Σ means that:

$$\frac{\partial \sum_{l=1}^{k} \sum_{i=1}^{n} \ln(\alpha_{l}) p(l|x_{i}, \Theta^{(g)})}{\partial \mu_{1}, \dots, \partial \mu_{k}, \partial \Sigma_{1}, \dots, \partial \Sigma_{k}} = [0 \dots 0]$$

- You will need some linear algebra identities to solve this. It's quite involved. For details, please refer:
- J. Bilmes. "A Gentle Tutorial on the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models"

Some formulas to remember

Fact 1:

$$\sum_{i} x_{i}^{T} A x_{i} = \operatorname{tr}\left(A \sum_{i} x_{i} x_{i}^{T}\right)$$

Fact 2:

$$\frac{\partial \ln |X|}{\partial X} = 2X^{-1} - \operatorname{diag}(X^{-1})$$

When matrix X is symmetric:

$$\frac{\partial \operatorname{tr}(XB)}{\partial X} = B + B^T - \operatorname{diag}(B)$$

However, in general:

$$\frac{\partial \operatorname{tr}(XB)}{\partial X} = B^T$$

Maximization μ_I

second part of
$$Q(\Theta, \Theta^{(g)}) = S(\mu_l, \Sigma_l^{-1}) = \sum_{l=1}^k \sum_{i=1}^n \ln[\mathcal{N}(x_i|\mu_l, \Sigma_l)] p(l|x_i, \Theta^{(g)})$$

$$S(\mu_{I}, \Sigma_{I}^{-1}) = \sum_{i=1}^{n} \underbrace{-\frac{1}{2} \ln(|\Sigma_{I}|)}_{\text{Constant}} - \frac{1}{2} (x_{i} - \mu_{I})^{T} \Sigma^{-1} (x - \mu_{I}) p(I|x_{i}, \Theta^{(g)})$$

$$\implies S(\mu_{I}, \Sigma_{I}^{-1}) = -\text{Tr}\left(\frac{\Sigma_{I}^{-1}}{2} \sum_{i=1}^{n} (x_{i} - \mu_{I})(x - \mu_{I})^{T} p(I|x_{i}, \Theta^{(g)})\right) + \text{Constant}$$

$$\implies \frac{\partial S(\mu_{I}, \Sigma_{I}^{-1})}{\partial \mu_{I}} = \frac{2\Sigma^{-1} - \text{diag}(\Sigma^{-1})}{2} \sum_{i=1}^{n} 2(x_{i} - \mu_{I}) p(I|x_{i}, \Theta^{(g)}) = 0$$

$$\implies \sum_{i=1}^{n} x_{i} p(I|x_{i}, \Theta^{(g)}) = \mu_{I} \sum_{i=1}^{n} p(I|x_{i}, \Theta^{(g)})$$

$$\implies \mu_{I} = \frac{\sum_{i=1}^{n} p(I|x_{i}, \Theta^{(g)})}{\sum_{I} \sum_{I} p(I|x_{I}, \Theta^{(g)})}$$

Maximization Σ_I

$$S(\mu_{l}, \Sigma_{l}^{-1}) = \sum_{i=1}^{n} \left(-\frac{1}{2} \ln(|\Sigma_{l}|) - \frac{1}{2} (x_{i} - \mu_{l})^{T} \Sigma^{-1} (x - \mu_{l}) \right) p(l|x_{i}, \Theta^{(g)})$$

Change Σ to Σ^{-1} , this is so that after taking derivative of $\ln(X)$, the result is in terms of X^{-1}

$$= \left(\sum_{i=1}^{n} \ln(|\Sigma_{i}^{-1}|) p(I|x_{i}, \Theta^{(g)}) - \frac{1}{2} \operatorname{tr} \left(\sum_{i=1}^{n} (x_{i} - \mu_{I}) (x - \mu_{I})^{T} p(I|x_{i}, \Theta^{(g)}) \right) \right)$$

$$\Rightarrow \frac{\partial \mathcal{S}(\mu_{I}, \Sigma_{I}^{-1})}{\partial \Sigma_{I}^{-1}} = \frac{2 \sum_{i=1}^{n} \Sigma_{I} p(I|x_{i}, \Theta^{(g)}) - \sum_{i=1}^{n} \operatorname{diag}(\Sigma) p(I|x_{i}, \Theta^{(g)})}{2} - \frac{2M_{I} - \operatorname{diag}(M_{I})}{2} = 0$$

$$\Rightarrow 2(\sum_{i=1}^{n} \Sigma p(I|x_{i}, \Theta^{(g)}) - M_{I}) - \sum_{i=1}^{n} \operatorname{diag}(\Sigma p(I|x_{i}, \Theta^{(g)}) - M_{I}) = 0$$

$$\Rightarrow \sum_{i=1}^{n} \Sigma p(I|x_{i}, \Theta^{(g)}) - M_{I} = 0$$

$$\Rightarrow \sum_{i=1}^{n} \sum_{i=1}^{n} M_{I} \sum_{i=1}^{n} p(I|x_{i}, \Theta^{(g)}) = \frac{\sum_{i=1}^{n} (x_{i} - \mu_{I}) (x - \mu_{I})^{T} p(I|x_{i}, \Theta^{(g)})}{\sum_{i=1}^{n} p(I|x_{i}, \Theta^{(g)})}$$

Summary of Gaussian Mixture Model

Maximizing μ, Σ means that to update $\Theta^{(g)} \to \Theta^{(g+1)}$:

$$\alpha_{I}^{(g+1)} = \frac{1}{N} \sum_{i=1}^{N} p(I|x_{i}, \Theta^{(g)})$$

$$\mu_{l}^{(g+1)} = \frac{\sum_{i=1}^{N} x_{i} p(l|x_{i}, \Theta^{(g)})}{\sum_{i=1}^{N} p(l|x_{i}, \Theta^{(g)})}$$

$$\Sigma_{l}^{(g+1)} = \frac{\sum_{i=1}^{N} [x_{i} - \mu_{l}^{(i+1)}][x_{i} - \mu_{l}^{(i+1)}]^{T} \rho(l|x_{i}, \Theta^{(g)})}{\sum_{i=1}^{N} \rho(l|x_{i}, \Theta^{(g)})}$$

To program it to MATLAB, note that we need to compute the responsibility probability $p(I|x_i,\Theta^{(g)}) = \frac{\mathcal{N}(x_i|\mu_I,\Sigma_I)}{\sum_{s=1}^k \mathcal{N}(x_i|\mu_s,\Sigma_s)}$

To show the diagram again

This shows $\Theta^{(1)}$:

This shows $\Theta^{(Converge)}$:

Other clustering methods: K-means

This shows the data and the initial "means":

- ► Imagine we know that there are *K* types of data, and we have *N* data.
- How do we cluster these N data into K types automatically?
- Like GMM, this is unsupervised, clustering algorithm

K-means Algorithm

- ► STEP 1: Place K points into the space represented by the objects that are being clustered. These points represent initial group centroids.
- ▶ STEP 2: Assign each object to the group that has the closest centroid.
- STEP 3: When all objects have been assigned, recalculate the positions of the K centroids. Repeat Steps 2 and 3 until the centroids no longer move.

K-means

The data and the initial *K* "means":

The final *K* "means":

See the MATLAB Demos