Name:	ID:
-------	-----

1. (14 points) Two astronomers are making measurements M₁ and M₂ of the number of stars N in a small region of sky using telescopes. The measurements are noisy, so there is a probability of e that the measurements are off by ±1. Besides this, the telescope might be out of focus with probability f (F_i = true means the i-th astronomers telescope is out of focus, i = 1,2). If it is out of focus, then the measurement will undercount N by at least 3 (or if N < 3, then M_i will just be 0). Consider the following.

a. (2 points) Which is the best network? Explain. (Hint: Accuracy and efficiency)

Best network: Reason:			

b. (9 points) Assuming using network (ii), and $N \in \{1,2,3\}$ and $M_1 \in \{0,1,2,3,4\}$, write out the conditional distribution for $P(M_1|N)$ in terms of e and f. (Fill the blanks and equation)

$P(M_1 N)$	$= P(M_1 N, F_1)P($) + P($)P(\neg F_1 N)$
= P($)P(F_{1}) + P(M_{1} N)$	$\neg F_1)P($)

$P(M_1 N)$	N = 1	N = 2	N = 3
$M_1 = 0$			
$M_1 = 1$			
$M_{1} = 2$			
$M_{1} = 3$			
$M_1 = 4$			

C.	(3 points) Suppose $M_1 = 1$ and $M_2 = 3$, and assume no prior constraint on N. What are
	the possible numbers that N can be? Why? (Hint: fix M1 = 1, M2 = 3, try each possibility
	of F1, F2 and get all possible values of N.)

2. (6 points) Consider this figure for the next problem.

a. (3 points) Which of the following (if any) are asserted by the network structure (ignoring the conditional probability tables)? (Hint: Write "Yes" or "No" following each equation)

$$P(B, I, M) = P(B)P(I)P(M);$$

 $P(J, G) = P(J|G, I);$
 $P(M|G, B, I) = P(M|G, B, I, J);$

b. (3 points) Calculate the value of $P(b, i, m, \neg g, j)$. (Fill the blanks and compute the result)

$$P(b, i, m, \neg g, j) = P()P(m)P(i|b, m)P()P(j|\neg g) =$$