Exercise sheet 8

Probability and Statistics, MTH102

- 1. Let X denote a normal random variable with mean μ and variance σ^2 . Remember that $\Phi(x)$ is the cumulative function for the *standard* normal distribution. Prove that $F_X(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$
- 2. Let X denote a normal random variable with mean μ and variance σ^2 . Show that
 - (a) $P\{X > \mu + \sigma\} = 1 \Phi(1)$
 - (b) $P{\mu < X < \mu + \sigma} = \Phi(1) \Phi(0)$
 - (c) $P\{\mu \sigma < X < \mu\} = \Phi(0) \Phi(-1)$
 - (d) $P\{\mu 2\sigma < X < \mu \sigma\} = \Phi(2) \Phi(1)$
 - (e) $P\{X < \mu 2\sigma\} = \Phi(-2)$
 - (f) In general, derive a formula for $P\{\mu a\sigma \le X \le \mu + b\sigma\}$ in terms of Φ and observe that it does not depend on the parameters μ or σ .
- 3. If the average total marks of a particular class is 50%, and the standard deviation is 20%, then assuming that it is modelled by a normal distribution, estimate the percentage of students who will get an A grade if the cutoff for an A is 95%.
- 4. Show that if the cutoff for an A is set at the mean plus standard deviation for any course, then assuming that it is modelled by a normal distribution, the percentage of students earning an A will always be around $1 \Phi(1)$
- 5. Consider a random variable with probability density function $f_X(x) = \lambda e^{-\lambda x}$ when $x \ge 0$ and 0 when x is negative.
 - (a) Show that f_X is a valid density function
 - (b) Find E[X] and Var(X)
 - (c) Show that X satisfies he property that $P\{X > a + b | X > a\} = P\{X > b\}$. That is that assuming that we know that X is bigger than a, then the probability that X is bigger than a + b is the same as the probability that X is bigger than b.
- 6. Let X denote the uniform distribution on the interval (0, 1). Let Y denote the random variable satisfying $Y = X^3$. Find a probability density function for Y. (*Hint:* You will need to use the cumulative function and its interpetation as a probability)

- 7. It is known that for very large n the binomial distribution is approximated by the normal distribution with the same mean and variance (Unlike the Poisson, we do not need p to be relatively small, and also unlike Poisson this time it is continuous).
 - (a) Use this to find the probability of getting more than 90% heads if the probability of getting a head is 0.7 in n tosses where n is very large. Leave your answer in terms of Φ .
 - (b) In general, if X is binomial random variable with n very large, what do you think the following probability should approximately be in terms of Φ ?

 $P\left\{a < \frac{X - np}{\sqrt{np(1-p)}} < b\right\}$