Computabilidad y Complejidad

Boletín de Ejercicios 2-- Enunciados (Funciones Recursivas Primitivas)

01. Para cada $k \ge 0$, sea la función $cte_k(n) = k$ para cada $n \ge 0$. Demuestre que estas funciones son recursivas primitivas.

02. Sea Proyo la familia de las funciones de proyección con selector 0, esto es,

$$Proy_0 = \{p_{0,k} / k \ge 1\}.$$

Demuestre que cada función de $Proy_0$ puede definirse como recursiva primitiva sin utilizar ninguna función de $Proy_0$.

03. Sea $g(i, n_1, ..., n_m)$ una función recursiva primitiva. Demuestre que la función

$$f(j,k,n_1,...,n_m) = \sum_{j \leq i \leq k} g(i,n_1,...,n_m)$$

también lo es. (Nótese que cuando k < j, se tiene que f $(j, k, n_1, ..., n_m) = 0$.)

04. Sea q (i, n₁, ..., n_m) una función recursiva primitiva. Demuestre que la función

$$f(j,k,n_1,...,n_m) = \prod_{j \leq i \leq k} g(i,n_1,...,n_m)$$

también lo es. (Nótese que cuando k < j, se tiene que f $(j, k, n_1, ..., n_m) = 1$.)

05. Sea máx (n, m) la función que obtiene el máximo entre n y m. Sea

$$q: N \longrightarrow N$$

una función recursiva primitiva. Se define la función

máx.q:
$$N \longrightarrow N$$
,

de modo que máx.g(n) = máx $\{g(i) / i \in \{0,...,n\}\}$.

Sabiendo que la función máx es recursiva primitiva (véase el boletín de ejercicios de autoevaluación) demuestre que también lo es la función máx.g.

1

06. Diremos que las funciones recursivas primitivas $g_i(n_1,...,n_m)$, i=1,...,k, son compatibles si y sólo si

$$\sum_{1 \leq i \leq k} g_i(n_1, ..., n_m) = 1, \forall n_1, ..., n_m$$

Sean para i=1, ..., k, las funciones recursivas primitivas h_i $(n_1$, ..., $n_m)$ y las funciones recursivas primitivas compatibles g_i $(n_1$, ..., $n_m)$. Demuestre que la función

$$\begin{array}{lll} f\left(n_{1},...,n_{m}\right) & = & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

es recursiva primitiva.