

Espaço da webcam

Em todos os slides, evite escrever ou usar imagens que possam ocupar a área mostrada ao lado, pois ela representa o espaço reservado para a webcam.

WEBCAN

Estrutura das Trilhas

Nesse contexto, "Módulos" são "Subcompetências".

Estrutura dos Módulos

Desafio de Tema 1 Tema 2 Tema 3 **Apresentação Projeto** Etapa 1 Etapa 1 Etapa 1 <<alternativo>> Questionário Final (Videoaula) (Videoaula) (Videoaula) Etapa 2 Etapa 2 Etapa 2 (Videoaula) (Videoaula) (Videoaula) Cada módulo pode ter múltiplos questionários por tema OU um Etapa N Etapa N Etapa N questionário final. (Videoaula) (Videoaula) (Videoaula) <<alternativo>> <<alternativo>> <<alternativo>> Questionário Questionário Questionário

Cada **Etapa deve ter, idealmente, em torno de 15 minutos** (isso pode variar, principalmente em videoaulas práticas). Analogamente, recomendamos que cada **Tema tenha entre 2 e 4 horas**.

O mercado de blockchain e criptomoedas

Cassiano Peres

DIO Tech Education Analyst

Sobre Mim

- Analista e desenvolvedor de sistemas
- Empreendedor
- Apaixonado pela liberdade
- Fã de criptomoedas e da economia descentralizada
- cassiano-dio
- peres-cassiano

Objetivo Geral

Neste curso vamos abordar o desenvolvimento de Smart Contracts.

Pré-requisitos

- Conhecimento básico em JavaScript, C++ ou Python;
- Noções de redes de computadores;
- Conhecimento fundamental de criptografia e algoritmos.

Percurso

Etapa 1

Padrões de contratos inteligentes

Etapa 2

O Padrão ERC-20

Etapa 3

Tokens ERC-20

Percurso

Etapa 4

Criando o seu primeiro Token ERC-20

Etapa 5

O padrão ERC721

Etapa 6

Tokens ERC-721

Percurso

Etapa 7 O protocolo IPFS

Etapa 1

Padrões de contratos inteligentes

Introdução

Nesta etapa vamos explorar os padrões aceitos pelo mercado para o desenvolvimento de contratos inteligentes.

Smart contracts

Smart contracts (contratos inteligentes) são acordos essencialmente **automatizados** entre o criador do contrato e o destinatário, sendo registrados na blockchain, tornando-os imutáveis e irreversíveis.

Smart contracts

BLOCKCHAIN AND SMART CONTRACTS - FLOW DIAGRAM

Smart Contracts

Pode ser utilizada para desenvolver contratos como votações, crowdfunding, rastreabilidade de ativos, NFT's, entre outros

Smart contracts

Para ser considerado um smart contract, algumas regras devem ser seguidas:

Os padrões de tokens são definitos pela ERC — *Ethereum Request for Comment* que definie a convenção para os smart contracts, com regras para interação com os contratos.

Standard Name	Created Date	Use Cases
ERC-20	2015-11-19	Fungible token standard that provides basic functionality to transfer tokens, as well as allow tokens to be approved.
ERC-721	2018-01-24	Non-Fungible Token standard.
ERC-777	2017-11-20	Standard that defines all the functions required to send tokens on behalf of another address, contract or regular account.
ERC-1155	2018-06-17	A standard for contracts that manage multiple token types.

- Padronização da programação;
- Simplificação do desenvolvimento;
- Suporte para múltiplas linguagens;

- Tokens menos complexos;
- Segurança;
- Menores riscos de incompatibilidade.

Conclusão

Vimos nesta etapa uma introdução sobre os padrões de contratos para o Solidity.

Etapa 2

O padrão ERC-20

Introdução

Nesta etapa vamos abordar o padrão ERC-20 para tokens baseados em Ethereum.

Introdução

- **ERC** (Ethereum Request for Comments) é um protocolo oficial para fazer sugestões para melhorar a rede Ethereum
- 20 é o número de identificação único da proposta

O padrão ERC-20

O padrão ERC-20 define um conjunto de regras que devem ser atendidas para que um token seja aceito e capaz de interagir com outros tokens na rede.

O padrão ERC-20

Um token ERC-20 deve ser obrigatoriamente:

- Fungível;
- Transferível;
- Base monetária fixada.

O padrão ERC-20

O padrão ERC-20 possui *Getters,* Funções e Eventos que definem o comportamento do token.

Getters

function totalSupply() external view returns (uint256)

//Retorna a quantidade de tokens existentes.

function balanceOf(address account) external view returns (uint256);

//Retorna a quantidade de tokens pertencentes a um endereço

Getters

function allowance(address owner, address spender) external view returns (uint256);

// O padrão ERC-20 permite que um endereço autorize outro endereço a recuperar tokens dele.

Funções

function transfer(address recipient, uint256 amount) external returns (bool);

// Transferência de tokens entre endereços

function approve(address spender, uint256 amount) external returns (bool);

//Emite o evento de aprovação de uma transferência, retornando se foi ou não aprovada.

Funções

function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);

//Move uma quantidade de tokens entre endereços e deduz do saldo do emissor.

Retorna um evento Transfer

Eventos

para ser enviado por um spender.

event Transfer(address indexed from, address indexed to, uint256 value);

//Evento emitido quando a quantidade de tokens é enviada de um endereço para outro

event Approval(address indexed owner, address indexed spender, uint256 value);

//Evento emitido quando uma quantidade de tokens é aprovada pelo dono do contrato

Campos do token ERC-20

Um token ERC-20 possui alguns campos opcionais:

- Token Symbol: símbolo do token (ETH);
- Decimals: casas decimais para fracionamento do token;
- Token Name: nome do token.

Documentação

A documentação sobre padrões na rede ethereum pode ser encontrada no site https://ethereum.org

Etapa 3

Tokens ERC-20

Introdução

Os tokens ERC-20 são contratos inteligentes (smart contracts) executados na blockchain da rede Ethereum.

Introdução

Esses contratos seguem um conjunto de regras a ele especificadas, com o intuito de executar uma determinada tarefa.

4

Tokens ERC-20

Diferentemente do Ether (ETH), criptomoeda nativa da Ethereum, esses tokens existem apenas dentro de um contrato inteligente, que define as regras para seu funcionamento

Token ERC-20

Para enviar e receber tokens ERC-20 na rede Ethereum, mesmo que um usuário não esteja enviando Ether, ele precisa possuir uma quantia de ETH para realizar a transação.

Token ERC-20

Isso porque é preciso pagar uma taxa de transação necessária para incluir sua transferência em um bloco da rede.

Essa taxa na Ethereum é chamada de "gas".

Tokens ERC-20

Embora a criptomoeda Ether possa ser minerada, os tokens do baseados em Ethereum **não podem**.

Tokens ERC-20

Ao criar um contrato, é determinado o fornecimento total de unidades do token (total supply) e o período de distribuição.

Quando um novo token é criado, ele é *cunhado*, do inglês *minted*.

Tokens ERC-20 no mercado

- Theter (USDT)
- Chainlink (LINK)
- ApeCoin (APE)
- Chiliz (CHZ)
- Axie Infinity Shards (AXS)

Conclusão

Nesta etapa conhecemos um pouco mais a respeito dos tokens ERC-20, além de exemplos de aplicação no mercado.

Etapa 4

Criando um token ERC-20

Introdução

Nesta etapa vamos desenvolver nosso projeto de um token no padrão ERC-20.

O projeto

Vamos implementar as funções e definir os campos de informações que caracterizam um token ERC-20.

O projeto

Recursos utilizados:

- Remix IDE
- Ganache
- Solidity

Código

O código deste projeto estará disponível no GitHub.

Etapa 5

O padrão ERC-721

Introdução

Nesta etapa vamos abordar o padrão de token ERC-721, utilizado para o desenvolvimento de NFT's, *Non-fungible tokens*.

É um padrão utilizado para representar a posse de NFT's, representando a **unicidade** de um token.

Um token não fungível é a representação de um ativo físico **único**, **insubstituível**, como um quadro de Da Vinci, Picasso ou um violino Stradivarius.

Um token fungível **pode ser substituído** em termo de valores, como por exemplo o Bitcoin, onde podemos substituir 1 btc por dez depósitos de 0.1 btc, ou dinheiro convencional onde cinco notas de R\$ 10 valem o mesmo que uma nota de R\$ 50.

Um token fungível **pode ser substituído** em termo de valores, como por exemplo o Bitcoin, onde podemos substituir 1 btc por dez depósitos de 0.1 btc, ou dinheiro convencional onde cinco notas de R\$ 10 valem o mesmo que uma nota de R\$ 50.

ERC-721

Um token baseado no ERC-721 tem o seu valor baseado na sua raridade, sendo muito utilizado para representar itens colecionáveis.

ERC-721

Da mesma forma que um token ERC-20, os tokens ERC-721 deve seguir um padrão de métodos e atributos que o definem.

ERC-20 x ERC-721

- Tokens ERC-721 são tokens NFT (token não fungível, ou seja, único e insubstituível);
- Tokens ERC-20 são **divisíveis** enquando os ERC-721 não o são.

OpenZeppelin

O OpenZeppelin é um framework que disponibiliza um conjunto de bibliotecas com padrões de contratos para o desenvolvimento seguro de smart contracts.

OpenZeppelin

A documentação do OpenZeppelin pode ser acessado pelo link https://www.openzeppelin.com/

Conclusão

Nesta etapa conhecemos os conceitos de NFT, características e funcionalidades.

Etapa 6

Tokens ERC-721

Introdução

Nesta etapa vamos falar de exemplos de tokens ERC-721 e as regras que devem seguir.

- Cada token ERC-721 possui um campo de nome para identificar o token para aplicações ou contratos externos;
- Cada token possui funções específicas para definer qual o dono e como transferir a propriedade do token;
- O padrão ERC-721 possui uma função de *tokenOwnerByIndex* para rastrear um token por um ID único.

Um token ERC-721 compartilha alguns métodos com o padrão ERC-20, como definição de nome, base monetária, e saldos.

Além destas, possui funções relacionadas à transferência e propriedade dos tokens.

Um token ERC-721 compartilha alguns métodos com o padrão ERC-20, como definição de nome, base monetária, e saldos.

Além destas, possui funções relacionadas à transferência e propriedade dos tokens.

Benefícios

- Fácil movimentação entre contas e troca de NFT's por outras criptomoedas;
- Definição do suprimento total de um grupo de NFT's disponíveis;
- Rastreabilidade da propriedade do token.

Exemplos

- Axie
- Avastar
- VNFT
- Swap
- Sorare

OpenSea

O OpenSea é o maior marketplace de NFT's do mundo atualmente.

Link para o OpenSea: https://opensea.io/

OpenSea

Etapa 7

O protocolo IPFS

Introdução

Nesta aula vamos falar sobre o protocol IPFS, responsável pelo armazenamento de arquivos.

Introdução

IPFS significa *Interplanetary File System*, um protocolo baseado em blockchain para transferência e armazenamento de arquivos.

Tem como objetivo tornar a transferência de arquivos na internet mais eficiente e barata, descentralizada e redundadnte e preservação dos arquivos.

Entrega de conteúdo mais rápida e eficiente, para baixar pedaços de arquivos de nós geograficamente próximos, minimizando a latência.

Quando um arquivo é adicionado à rede é dividido em blocos com um ID único.

Prática

Vamos configurar o IPFS e enviar arquivos para a rede.

Link para o IPFS: https://ipfs.io/

Dúvidas?

- > Fórum/Artigos
- > Comunidade Online (Discord)

