Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина)

Лабораторная работа № 6

Изучение и исследование алгоритмов хэширования

Студентка: Усачева Дарья, группа 1384

Руководитель: Племянников А.К., доцент каф. ИБ

Санкт-Петербург, 2024

Цель работы и задачи

Цель: Повысить свою компетенцию в области алгоритмов хэширования и в криптографии в целом.

Задачи:

- 1. Оценить лавинный эффект хэш-функции MD5, SHA-1, SHA-256, SHA-512.
- 2. Изучить алгоритм работы функции перестановок Keccak. Оценить лавинный эффект хэшфункции SHA-3.
- 3. Изучить алгоритм работы функции диверсификации ключа.
- 4. Изучить алгоритм вычисления код аутентификации сообщения НМАС.
- 5. Провести атаку дополнительной коллизии на хэш-функцию MD-5.

Оценка лавинного эффекта хэшфункций MD5, SHA-1, SHA-256, SHA-512

Шаблонная схема оценки лавинного эффекта хэш-функции CrypTool 2

Исследование лавинного эффекта

Название	Номер измерения	Изменение символа	Добавление символа	Удаление символа
	1	57%	53,1%	50%
MD5	2	43%	49,2%	49,2%
5	3	55,5%	50,8%	41,4%
	Среднее	51,8%	51%	46,9%
	1	50%	61,3%	51,2%
SHA-1	2	48,1%	51,9%	47,5%
	3	56,3%	56,9%	54,4%
	Среднее	51,5%	56,7%	51%
	1	53,9%	48%	54,3%
SHA-256	2	43%	48,8%	49,6%
	3	47,7%	51,2%	51,2%
	Среднее	48,2%	49,3%	51,7%
	1	51,2%	50,8%	49,4%
SHA-512	2	47,1%	48,4%	51,6%
	3	51,4%	48,6%	50%
	Среднее	49,9%	49,3%	50,3%

Изучение алгоритма работы функции перестановок Кессак. Оценка лавинного эффекта хэш-функций SHA-3

Преобразования первого раунда

Первым преобразованием в функции перестановок f идет преобразование тета.

В ходе преобразования пересчитывается значения столбца, который имеет темно-зеленый цвет:

- вычисляется XOR элементов столбцов (сумма по модулю 2) светло-зеленого и бирюзового цвета
- XOR полученных значений из столбцов
- полученное значение XOR с элементами столбца темнозеленого цвета.

Следующим является преобразование ро.

В ходе преобразования каждый проход (по z) сдвигается циклически вправо на значение, указанное в таблице в соответствии с координатами x, y прохода.

Верхний зеленый блок - проход до поворота.

Нижний зеленый блок - проход после поворота.

Преобразования первого раунда

Следующим является преобразование пи.

Для улучшения визуализации координаты полос смещены. В ходе этого преобразования происходит перезаписывание (перемешивание) проходов матрицы состояний.

Левый куб — начальное промежуточное состояние, правый — новое. Следовательно проходы одного цвета станут на места, указанные этим же же цветом на правом кубе.

Перемещенные проходы выделены серым.

Проход с координатами x = 1, y = 1 не перемещается.

Следующим является преобразование хи, в ходе которого содержимое каждой строки перезаписывается в соответствии с формулой:

A[x,y] = a[x,y] XOR ((NOT a[(x+1)mod 5, y]) AND a[(x+2) mod 5, y])

Преобразования первого раунда

Следующим и заключительным является преобразование йота, в ходе которого содержимое первого прохода (x=1,y=1) XOR-ится с раундовой константой RC[i], где i — номер раунда.

Верхний зеленый блок - проход до XOR. Нижний зеленый блок - проход после XOR.

Исследование лавинного эффекта

Название	Номер измерения	Изменение Добавление символа символа		Удаление символа
	1	49,4	48,4	53,1
SHA-3	2	48,8	52,1	49
	3	52,1	48,2	48
	Среднее	50,1	49,6	50,0

Изучение алгоритма работы функции диверсификации ключа

Получение симметричного ключа из персонального пароля

Пароль: USACHEVADARIAVLADIMIROVNA23102002

Ключ: DA 42 8B 87 58 99 BB 7B 33 1F E4 86 CF 53 CE 1D F7 E2 3A 9E

Схема алгоритма функции диверсификации ключа

Изучение алгоритма вычисления кода аутентификации сообщения НМАС

Схема алгоритма вычисления кода аутентификации НМАС

```
НМАС_K(text) = H\{(K \oplus \text{opad}) || H[(K \oplus \text{ipad}) || \text{text}]\}, \oplus — операция хог; || — конкатенация; K — секретный ключ; ipad — блок вида (0х36 0х36 0х36 ... 0х36 ), где байт 0х36 повторяется b раз; H — хеш-функция; ораd — блок вида (0х5с 0х5с 0х5с ... 0х5с), где байт 0х5с повторяется b раз.
```


Вычисление кода аутентификации сообщения НМАС

Проведение атаки дополнительной коллизии на хэш-функцию MD-5

Представление результатов атаки

Оценка временной сложности атак

Кол-во бит совпадающих частей	Время выполнения атаки	Кол-во бит совпадающих частей	Время выполнения атаки
8	0 сек	56	52 мин
16	0 сек	64	13 часов
24	0,06 сек	72	9,5 дней
32	1,06 сек	80	150 дней
40	17,07 сек	88	6,6 лет
48	3 мин	96	112 лет

Заключение

- 1. Изучено влияние лавинного эффекта на хэш-функции MD-5, SHA-1, SHA-256, SHA-512 с использованием шаблонных схем в CrypTool 2. На основе результатов эксперимента, собранных в таблице сделан вывод, что в среднее значение величины лавинного эффекта у всех хэш-функций 50%
- 2. Изучен алгоритм работы функции перестановок Кессак с использованием шаблонной схемы в CrypTool 2. Выполнено пять преобразований первого раунда: Тета (θ), Ро (ρ), Пи (π), Хи (χ), Йота (ι). Изучено влияние лавинного эффекта на хэш-функцию SHA-3 с использованием шаблонной схемы в CrypTool 2 На основе результатов эксперимента, собранных в таблице сделан вывод, что данная хэш-функция обладает величина лавинного эффекта также в районе 50%.
- 3. Изучен алгоритм диверсификации ключа, в результате которого получен симметричный ключ на основе заданного пароля.
- 4. Изучен алгоритм вычисления кода аутентификации сообщения HMAC с использованием одноимённой шаблонной схемы из CrypTool 2, где в качестве ключа использован симметричный ключ, полученный на предыдущем этапе.
- 5. Изучена и проведена атака дополнительной коллизии на хэш-функцию MD-5 в CrypTool 1, в результате которой определены значения времени для различного количества совпадающих бит дайджеста. Для хэш-функции с n-битным значением сложность атаки дополнительной коллизии поиска двух разных значений с одинаковыми хэш-кодами примерно равна O(2^n)