CURS 10

Logică Matematică și Computațională

FMI · Denisa Diaconescu · An universitar 2018/2019

LEGĂTURA DINTRE SINTAXĂ ȘI SEMANTICĂ

RECAP.

Teorema de corectitudine 9.4

Orice Γ -teoremă este consecință semantică a lui Γ , adică,

$$\Gamma \vdash \varphi \Rightarrow \Gamma \vDash \varphi$$

pentru orice $\varphi \in Form$ și $\Gamma \subseteq Form$.

Teorema de completitudine 9.6

Pentru orice formulă φ ,

$$\vdash \varphi$$
 ddacă $\models \varphi$.

2

Definiția 10.1

Fie Γ o mulţime de formule.

- · Γ este consistentă dacă există o formulă φ astfel încât $\Gamma \not\vdash \varphi$.
- · Γ este inconsistentă dacă nu este consistentă, adică, $\Gamma \vdash \varphi$ pentru orice formulă φ .

Observație.

Fie Γ , Δ multimi de formule a.î. $\Gamma \subseteq \Delta$.

- · Dacă Δ este consistentă, atunci și Γ este consistentă.
- · Dacă Γ este inconsistentă, atunci și Δ este inconsistentă.

Propoziția 10.2

- (i) ∅ este consistentă.
- (ii) Mulţimea teoremelor este consistentă.

Demonstrație.

- (i) Dacă ⊢ ⊥, atunci, conform Teoremei de corectitudine, ar rezulta că ⊨ ⊥, o contradicție. Aşadar ⊬ ⊥, deci Ø este consistentă.
- (ii) Aplicând Propoziția 8.7.(iv) pentru $\Gamma = \emptyset$, obținem că Thm = Thm(Thm), adică, pentru orice φ ,

$$\vdash \varphi$$
 ddacă *Thm* $\vdash \varphi$.

Din (i) rezultă că Thm este consistentă.

4

Propoziţia 10.3

Pentru o mulţime de formule Γ sunt echivalente:

- (i) Γ este inconsistentă.
- (ii) Pentru orice formulă ψ , $\Gamma \vdash \psi$ şi $\Gamma \vdash \neg \psi$.
- (iii) Există o formulă ψ a.î. $\Gamma \vdash \psi$ şi $\Gamma \vdash \neg \psi$.
- (iv) $\Gamma \vdash \bot$.

Demonstrație. $(i) \Rightarrow (ii) \Rightarrow (iii)$ și $(i) \Rightarrow (iv)$ sunt evidente.

(iii) \Rightarrow (i) Fie φ o formulă. Conform Propoziția 9.2,

$$\vdash \neg \psi \rightarrow (\psi \rightarrow \varphi).$$

Aplicând (iii) și de două ori modus ponens, rezultă că $\Gamma \vdash \varphi$.

(iv) \Rightarrow (iii). Presupunem că $\Gamma \vdash \bot$. Avem că $\bot = \neg \top$. Deoarece \top este tautologie, aplicăm Teorema de completitudine pentru a conclude că $\vdash \top$, deci și $\Gamma \vdash \top$.

Propoziția 10.4

Fie Γ o mulţime de formule şi φ o formulă.

- (i) $\Gamma \vdash \varphi \iff \Gamma \cup \{\neg \varphi\}$ este inconsistentă.
- (ii) $\Gamma \vdash \neg \varphi \iff \Gamma \cup \{\varphi\}$ este inconsistentă.

Demonstrație.

(i) Avem

(ii) Similar.

Ш

Propoziția 10.5

Fie $\Gamma = \{\varphi_1, \dots, \varphi_n\}$ o mulţime finită de formule.

- (i) Pentru orice formulă ψ , $\Gamma \vdash \psi$ ddacă $\vdash \varphi_1 \land \ldots \land \varphi_n \rightarrow \psi$ ddacă $\{\varphi_1 \land \ldots \land \varphi_n\} \vdash \psi$.
- (ii) Γ este consistentă ddacă $\{\varphi_1 \wedge \ldots \wedge \varphi_n\}$ este consistentă.

Demonstraţie. Exerciţiu.

Propoziția 10.6

Fie Γ o mulţime de formule. Γ este inconsistentă ddacă Γ are o submulţime finită inconsistentă.

Demonstrație. "⇐" este evidentă.

" \Rightarrow " Presupunem că Γ este inconsistentă. Atunci, conform Propoziției 10.3.(iv), $\Gamma \vdash \bot$. Aplicând Propoziția 8.12, obținem o submulțime finită $\Sigma = \{\varphi_1, \ldots, \varphi_n\}$ a lui Γ a.î. $\Sigma \vdash \bot$. Prin urmare, Σ este inconsistentă. \square

Un rezultat echivalent:

Propoziţia 10.7

Fie Γ o mulţime de formule. Γ este consistentă ddacă orice submulţime finită a lui Γ este consistentă.

CONSECINȚĂ A TEOREMEI DE COMPLETITUDINE

Teorema 10.8

Pentru orice formulă φ ,

 $\{\varphi\}$ este consistentă $\iff \{\varphi\}$ este satisfiabilă.

Demonstrație. Avem

$$\{\varphi\} \text{ este inconsistent} \iff \vdash \neg \varphi \\ \text{conform Propoziției 10.4.(ii)} \\ \iff \vdash \neg \varphi \\ \text{conform Teoremei de completitudine} \\ \iff \{\varphi\} \text{ este nesatisfiabilă} \\ \text{conform Propoziției 7.11.(ii)}.$$

Aşadar, $\{\varphi\}$ este consistentă $\iff \{\varphi\}$ este satisfiabilă.

TEOREMA DE COMPLETITUDINE TARE

Teorema 10.9 (Teorema de completitudine tare - versiunea 1) Pentru orice mulțime de formule Γ ,

 Γ este consistentă $\iff \Gamma$ este satisfiabilă.

Demonstrație. " \Leftarrow " Presupunem că Γ este satisfiabilă, deci are un model $e:V \to \{0,1\}$. Presupunem că Γ nu este consistentă. Atunci $\Gamma \vdash \bot$ şi, aplicând Teorema de corectitudine, rezultă că $\Gamma \vDash \bot$. Ca urmare, $e \vDash \bot$, ceea ce este o contradicție.

" \Rightarrow " Presupunem că Γ este consistentă. Demonstrăm că Γ este finit satisfiabilă și aplicăm apoi Teorema de compacitate pentru a conclude că Γ este satisfiabilă.

Fie $\Sigma = \{\varphi_1, \dots, \varphi_n\}$ o submulţime finită a lui Γ. Atunci Σ este consistentă, conform Propoziţiei 10.7. Din Propoziţia 10.5.(ii), rezultă că $\{\varphi_1 \wedge \dots \wedge \varphi_n\}$ este consistentă. Aplicând acum Teorema 10.8, obţinem că $\{\varphi_1 \wedge \dots \wedge \varphi_n\}$ este satisfiabilă. Deoarece, conform Propoziţiei 7.12.(i), $\Sigma \sim \{\varphi_1 \wedge \dots \wedge \varphi_n\}$, avem că Σ este satisfiabilă.

TEOREMA DE COMPLETITUDINE TARE

Teorema 10.10 (Teorema de completitudine tare - versiunea 2) Pentru orice multime de formule Γ și orice formulă φ ,

$$\Gamma \vdash \varphi \iff \Gamma \vDash \varphi.$$

Demonstrație.

$$\begin{array}{lll} \Gamma \vdash \varphi &\iff& \Gamma \cup \{ \neg \varphi \} \text{ este inconsistent \check{a}} \\ & & \text{conform Propoziției 10.4.(i)} \\ &\iff& \Gamma \cup \{ \neg \varphi \} \text{ este nesatisfiabil \check{a}} \\ & & \text{conform Teoremei de completitudine tare - versiunea 1} \\ &\iff& \Gamma \vDash \varphi \\ & & \text{conform Propoziției 7.11.(i).} \end{array}$$

Observație

Am demonstrat Teorema de completitudine tare - versiunea 2 folosind Teorema de completitudine tare - versiunea 1. Se poate arăta că cele două versiuni sunt echivalente (exercițiu).

Pe data viitoare!

Conținutul tehnic al acestui curs se regăsește în cursul de *Logică Matematică și Computațională* al prof. Laurențiu Leuștean din anul universitar 2017/2018.