Week1_예습과제_팽소원

1장 머신러닝과 딥러닝

1.1 인공지능, 머신러닝과 딥러닝

인공지능: 인간의 지능을 모방하여 사람이 하는 일을 기계가 할 수 있도록 하는 기술

인공지능 > 머신 러닝 > 딥러닝

머신 러닝과 딥러닝 모두 학습 모델을 제공하여 데이터를 분류할 수 있는 기술이다

머신러닝: 주어진 데이터를 인간이 먼저 처리

데이터의 특징을 스스로 추출하지 X → 이 과정을 사람이 처리

딥러닝: 대량의 데이터를 신경망에 적용하면 컴퓨터가 스스로 분석한 후 답을 찾음

❤ 표 1-1 머신 러닝과 딥러닝

구분	머신 러닝	집러닝 정보를 전달하는 신경망을 사용하여 데이터 특징 및 관계를 해석한다.	
동작 원리	입력 데이터에 알고리즘을 적용하여 예측을 수 행한다.		
재사용	입력 데이터를 분석하기 위해 다양한 알고리즘을 사용하며, 동일한 유형의 데이터 분석을 위한 재사용은 불가능하다.	구현된 알고리즘은 동일한 유형의 데이터를 분석하는 데 재사용된다.	
데이터	일반적으로 수천 개의 데이터가 필요하다.	수백만 개 이상의 데이터가 필요하다.	
훈련 시간	단시간	장시간	
결과	일반적으로 점수 또는 분류 등 숫자 값	출력은 점수, 텍스트, 소리 등 어떤 것이든 가능	

1.2 머신 러닝 이란

1.2.1 머신 러닝 학습 과정

머신 러닝은 크게 학습단계와 예측 단계로 구분

✔ 그림 1-3 머신 러닝 학습 과정

* 레이블은 지도 학습에서 정답을 의미

머신 러닝의 주요 구성 요소

데이터

머신 러닝이 학습 모델을 만드는 데 사용

데이터의 80%: 훈련용, 20%: 테스트용

• 모델

머신 러닝의 학습 단계에서 얻은 최정 결과물 = 가설 모델의 학습절차

- 1. 모델 선책
- 2. 모델 학습 및 평가
- 3. 평가를 바탕으로 모델 업데이트

1.2.2 머신 러닝 학습 알고리즘

• 지도 학습

정답이 무엇인지 컴퓨터에게 알려 주고 학습시키는 방법

• 비지도 학습

정답을 알려 주지 않고 특징을 클러스터링하여 예측하는 방법

• 강화학습

자신의 행동에 대한 보상을 받으며 학습을 진행 ex) 쿠키런 게임

▼ 표 1-2 지도 학습, 비지도 학습, 강화 학습

구분	유형	알고리즘
지도 학습 (supervised learning)	분류(classification)	K-최근접 이웃(K-Nearest Neighbor, KNN) 서포트 벡터 머신(Support Vector Machine, SVM) 결정 트리(decision tree) 로지스틱 회귀(logistic regression)
	회귀(regression)	선형 회귀(linear regression)
비지도 학습 (unsupervised learning)	군집(clustering)	• K-평균 군집화(K-means clustering) • 밀도 기반 군집 분석(DBSCAN)
	차원 축소 (dimensionality reduction)	주성분 분석 (Principal Component Analysis, PCA)
강화 학습 (reinforcement learning)	-	마르코프 결정 과정 (Markov Decision Process, MDP)

1.3 딥러닝이란

딥러닝은 인간의 신경망 원리를 모방한 심층 신경망 이론을 기반으로 고안된 머신 러닝 방법 의 일종

머신 러닝과의 차이점은 인간의 뇌를 기초하여 설계했다는 것

1.3.1 딥러닝 학습 과정

• 데이터 준비

초보자가 데이터를 쉽게 구할 방법

- 1. 파이토치나 케라스에서 제공하는 데이터셋 사용
- 2. 캐글에서 공개된 데이터 사용
- 모델 정의

신경망 생성

은닉층 수 ↑ ⇒ 성능 👍

but 과적합 발생 확률 ↑

• 모델 컴파일

활성화 함수, 손실 함수, 옵티마이저 선택

• 모델 훈련

한 번에 처리할 데이터양 지정

• 모델 예측

검증 데이터셋을 생성한 모델에 적용하여 실제 예측을 진행

딥러닝은 심층 신경망을 사용한다는 점에서 머신 러닝과 차이가 있음

1.3.2 딥러닝 학습 알고리즘

지도학습

• 합성곱 신경망

이미지 분류, 이미지 인식, 이미지 분할에 사용

• 순환 신경망(RNN)

시간에 따른 데이터가 있을 때 사용

역전파 과정에서 기울기 소멸 문제가 발생하여 세 개의 게이트를 추가 (LSTM)

-망각 게이트, 입력 게이트, 출력 게이트

비지도 학습

- 워드 임베딩: 단어를 벡터로 표현
- 군집: 아무런 정보가 없는 상태에서 데이터를 분류하는 방법

전이학습

사전에 학습이 완료된 모델을 가지고 우리가 원하는 학습에 미세 조정 기법을 이용하여 학습 사전 학습 모델 - 풀고자 하는 문제와 비슷하면서 많은 데이터로 이미 학습이 되어 있는 모델

강화학습

머신러닝과 동일

❤ 표 1-3 지도 학습, 비지도 학습, 강화 학습

구분	유형	알고리즘
지도 학습(supervised learning)	이미지 분류	CNN AlexNet ResNet
	시계열 데이터 분석	•RNN •LSTM
비지도 학습 (unsupervised learning)	군집 (clustering)	・가우시안 혼합 모델(Gaussian Mixture Model, GMM) ・자기 조직화 지도(Self-Organizing Map, SOM)
	차원 축소	• 오토인코더(AutoEncoder) • 주성분 분석(PCA)
전이 학습(transfer learning)	전이 학습	・버트(BERT) ・MobileNetV2
강화 학습(reinforcement learning)	-	마르코프 결정 과정(MDP)

2장 실습 환경 설정과 파이토치 기초

2.1 파이토치 개요

파이토치는 파이썬 기반의 과학 연산 패키지로 다음 두 집단을 대상으로 함

- 1. 넘파이를 대체하면서 GPU를 이용한 연산이 필요한 경우
- 2. 최대한의 유연성과 속도를 제공하는 딥러닝 연구 플랫폼이 필요한 경우

2.1.1 파이토치 특징 및 장점

특징: GPU에서 텐서 조작 및 동적 신경망 구축이 가능한 프레임워크

GPU: 연산 속도를 빠르게 하는 역할

텐서: 파이토치의 데이터 형태

동적 신경망: 훈련을 반복할 때마다 네트워크 변경이 가능한 신경망

파이토치의 장점

- 1. 단순함 = 효율적인 계산
- 2. 성능 = 낮은 CPU 활용
- 3. 직관적인 인터페이스

2.1.2 파이토치의 아키텍처

❤ 그림 2-4 파이토치의 아키텍처

파이토치 API

: 사용자가 이해하기 쉬운 API를 제공하여 텐서에 대한 처리와 신경망을 구축하고 훈련할 수 있도록 도움

실제 계산 수행 X

C++로 작성된 파이토치 엔진으로 작업을 전달하는 역할

파이토치 엔진

Autograd C++: 가중치, 바이어스를 업데이트 하는 과정에서 필요한 미분을 자동으로 계산

Aten C++: C++ 텐서 라이브러리 제공

JIT C++: C++ 계산을 최적화하기 위한 JIT 컴파일러

연산 처리

가장 아래 계층에 속하는 C 또는 CUDA 패키지는 상위 API에서 할당된 거의 모든 계산을 수행