Approximationsalgorithmen SoSe 2019

Benedikt Lüken-Winkels

April 16, 2019

Contents

1	1.V	orlesung	5	
	1.1	Orga	·	
	1.2		rung	
		1.2.1	Motivation	
		1.2.2	Beispiel: Knotenüberdeckung	
		1.2.3	Beispiel: MAXSAT (Folie 32)	
		1.2.4	Beispiel: Unabhängige Knotenmengen (Folie 34)	
		1.2.5	Beispiel: Unabhängige Kantenmengen (Folie 35)	
2	2. Vorlesung			
_	2.1		tion Gewichtsreduktionsfunktion	
	2.2	Allgen	neines (gewichtetes) Überdeckungsproblem	
	2.3	Reduk	tion Bar-Yehuda, Even Folie 13	
	2.4	Reduk	tion Clarkson Folie 22	
	2.5	Rando	miesierte Verfahren	
	2.6	Δ -Hitting-Set		
		2.6.1	Beispiel "Smart Home"	
		2.6.2	Datenreduktion	

1 1.Vorlesung

Foliensatz 1

1.1 Orga

- Sprechstunde Do, 13-14 Uhr
- Vorlesung Di, 12:15-13:45
- Übung Di, 8:15-9:45 Uhr (erster Termin 16.04.)
- **Prüfung** Mündl Prüfung

1.2 Einführung

1.2.1 Motivation

- \bullet wenn P \neq NP, kan man keinen guten oder schnellen Algorithmus schreiben
- Zeigt man, dass ein Problem NP-schwer ist, kann kein schneller Algorithmus geschrieben werden
- \Rightarrow Heuristische Verfahren (keine mathematische Garantie). Warum funktionieren die Heuristiken so gut? Herangehensweisen
 - Greedy Verfahren
 - Randomisierte Verfahren: finden der Lösung mit hoher Wahrscheinlichkeit
 - Parametrisierte Verfahren: exakte Lösungen und Versuch, den exponentiellen Teil gering zu halten
 - Näherungsverfahren: Heuristiken mit Leistungsgarantie

Klasse von Problemen die zur Betrachtung stehen.

Quatrupel $(I_{\rho}, S_{\rho}, m_{\rho}, opt_{\rho})$ zur Beschreibung eines Optimierungsproblems

- I_{ρ} : geeignete Instanz eines Problems, genauer: "geeignet binär-codierte formale Sprachen".
- S_{ρ} : Bildet auf Menge der möglichen Lösungen ab
- m_{ρ} : x Instanz und y eine Lösung. Abbildung auf Maßzahl
- \bullet opt_{ρ} : Möglichst kleines Ergebnis oder möglichst großes
- $S_{o}^{*}:I_{\rho}\rightarrow$ Menge der bestmöglichen Lösungen

- $\bullet \ m_{\rho}^*$ Wert oder Grenzwert einer bestmöglichen Lösung
- * bedeutet idR bestmöglich
- \Rightarrow **Ziel**: Leistungsgröße (Folie 15) ist 1, wenn Lösung optimal ist

1.2.2 Beispiel: Knotenüberdeckung

Möglichst wenige Knoten, um alle Kanten abzudecken

- Zuordnung zu den Optimierungsparametern Folie 17
- Verschiedene Beobachtungen zur Optimierung
 - Zwei Knoten im Dreieck gehören dazu
 - Bei Knoten mit Grad 1 wird immer der Nachbar genommen

_

- Auswählen eines Knotens bedeutet, dass diese Teile abgeschnitten werden
- $\bullet \; \Rightarrow$ Vereinfachung des Graphen, zB neue Grad 1 Knoten

Greedyverfahren, GreedyVC (Folie 23)

- Änderung der Grade bei Durchführung
- Problem: Implementierung der Kantenlöschung (Kopieren des Graphen bei jeder Iteration nötig?)
- Folie 24: Lösung insofern (inklusions-) minimal, als dass das Entfernen eines Knotens keine andere Lösung zulässt

Suchbaumverfahren, Entscheidungsproblem (Folie 25) Liefert exakte Lösungen

- Zusätzlicher Parameter k ("Budget")
- Zwei Abbruchskriterien:
 - Alle Kanten abgedeckt
 - Nicht alle Kanten abgedeckt, aber k = 0
- Suchbaum im worst-case ein vollständiger Binärbaum, **aber** höchsten 2^k Schritte im Baum, da die Tiefe durch k begrenzt ist

Näherungsverfahren (Folie 30) Suchbaumverfahren ohne Fallunterscheidung. (Faktor 2-Approximations-Verfahren)

- Bei jeder Kante muss einer der Knoten in die Überdeckung
- Lokaler Fehler höchsten Faktor 2
- Zufall bei der Auswahl der Kanten kann zum Vorteil sein

Näherung gibt Schranke für die minimale Lösung dadurch, dass Heuristik eine Faktor 2 Lösung zeigt. \Rightarrow (Folie 31) Lösung mit 22 Knoten zeigt eine optimale Lösung mit 11 Knoten

1.2.3 Beispiel: MAXSAT (Folie 32)

 $m\rho = \text{Anzahl der Klauseln, die die Formel erfüllen}$

Einfacher Ansatz

- Alles 0 und alles 1 setzen, dann das bessere Ergebnis zurückliefern
- \Rightarrow liefert 2-Approximation

1.2.4 Beispiel: Unabhängige Knotenmengen (Folie 34)

Sehr schwer approximierbar

1.2.5 Beispiel: Unabhängige Kantenmengen (Folie 35)

Lösung in Polinomialzeit, um eine untere Schranke für die Knotenüberdeckung zu finden

2 2. Vorlesung

2.Foliensatz

2.1 Definition Gewichtsreduktionsfunktion

Eine Reduktion verringert die Gewichtsfunktion: $\forall x \in X : 0 \le \delta(x) \le w(x)$ Eine Reduktion ist **r-effektiv**, wenn $\delta(X) \le r \cdot OPT(\delta)$

2.2 Allgemeines (gewichtetes) Überdeckungsproblem

- \bullet Grundmenge X
- Monotone Abbildung (Bewerung: 1 = Überdeckung oder 0) $f: 2^X \to \{0, 1\}$
- Gewichtsfunktion $w \to \mathbb{R}^+$ weist den Knoten ein Gewicht zu

- $\bullet \Rightarrow \ddot{\text{U}}$ berdeckung mit kleinstmöglichem Gewicht
- Gewichtsreduktionsfunktion δ
- $OPT(w) = w(C^*) C^*$ ist optimale Überdeckung

Einfachere Problemanalyse durch Zerlegung von Gewichtsfunktionen in Untergewichtsfunktionen

2.3 Reduktion Bar-Yehuda, Even Folie 13

2-Approximation, Reduktion für jede Kante $\delta_e(v)$ wird angewandt auf jeden anliegenden Knoten

- Wähle das Minimum der Knoten als Gewicht für die Kante
- Nehme eine Kante und ziehe das Gewicht der Kante von den Knoten ab ⇒ einer der Knoten hat Grad 0 und damit Teil einer Überdeckung
- Nächster Schritt $w \delta_e$, bedeutet, dass die Gewichtsfunktion verändert wird und eine neue Iteration beginnt

2.4 Reduktion Clarkson Folie 22

2-Approximation, Gewichtsreduktion über Knoten

•
$$\varepsilon(v) = \frac{w(v)}{d(v)}$$

- Anliegende Knoten von v erhalten Gewicht $\varepsilon(v)$
- $\bullet \Rightarrow w \delta_v$

2.5 Randomiesierte Verfahren

- **2-Approximation**, Gewichtsreduktion über Knoten
 - Zufallsalgorithmus gemäß r-effektiver Verteilung (nicht immer Faktor r, aber im Mittel erreicht)
 - Implementierung der Intuition, dass großgradige Knoten interessant sind
 - Bei ungewichteten Graphen:
 - -(w(v) = 1)
 - Wahrscheinlichkeit einen Knoten zu wählen, $\frac{d(v)}{2|V|}$ (2|V|, weil alle Kanten Doppelt abgezählt werden)
 - Knoten mit großem Grad werden häufig, aber nicht immer in die Überdeckung aufgenommen

2.6 \triangle -Hitting-Set

 $\Delta=$ maximaler Grad der Kanten (Wieviele Knoten hängen an einer Kante). $\Delta=2$ quasi Knotenüberdeckungsproblem

Sonderfälle

- \bullet leere Kante (keine Knoten) \Rightarrow keine Überdeckung möglich
- \bullet Kante mit nur einem Knoten \Rightarrow automatisch hinzufügen

2.6.1 Beispiel "Smart Home"

System

- Systembestandteile C
- Systembeschreibung SD (wie das System sein sollte)
- beobachtetes Systemverhalten OBS

Ist ein Widerspruch in der Annahme, dass das System fehlerfrei funktioniert

2.6.2 Datenreduktion

- \bullet Kante f ist echte Teilmenge von Kante e \Rightarrow entferne e
- Kante e ist gleich Knoten $v \Rightarrow$ Knoten ist in der Überdeckung
- Konten x hat ist nur in einer Kante mit Knoten $y \Rightarrow$ entferne x