CS 33

Memory Hierarchy I

Random-Access Memory (RAM)

Key features

- RAM is traditionally packaged as a chip
- basic storage unit is normally a cell (one bit per cell)
- multiple RAM chips form a memory

Static RAM (SRAM)

- each cell stores a bit with a four- or six-transistor circuit
- retains value indefinitely, as long as it is kept powered
- relatively insensitive to electrical noise (EMI), radiation, etc.
- faster and more expensive than DRAM

Dynamic RAM (DRAM)

- each cell stores bit with a capacitor; transistor is used for access
- value must be refreshed every 10-100 ms
- more sensitive to disturbances (EMI, radiation,...) than SRAM
- slower and cheaper than SRAM

SRAM vs DRAM Summary

	Trans. per bit	Access time	Needs refresh?	Needs EDC?	Cost	Applications
SRAM	4 or 6	1X	No	Maybe	100x	Cache memories
DRAM	1	10X	Yes	Yes	1X	Main memories, frame buffers

- EDC = error detection and correction
 - to cope with noise, etc.

Conventional DRAM Organization

- · dxw DRAM:
 - dw total bits organized as d supercells of size w bits

Reading DRAM Supercell (2,1)

Step 1(a): row access strobe (RAS) selects row 2

Step 1(b): row 2 copied from DRAM array to row buffer

Reading DRAM Supercell (2,1)

Step 2(a): column access strobe (CAS) selects column 1

Step 2(b): supercell (2,1) copied from buffer to data lines, and eventually back to the CPU

Memory Modules

Enhanced DRAMs

- Basic DRAM cell has not changed since its invention in 1966
 - commercialized by Intel in 1970
- DRAM cores with better interface logic and faster I/O:
 - synchronous DRAM (SDRAM)
 - » uses a conventional clock signal instead of asynchronous control
 - » allows reuse of the row addresses (e.g., RAS, CAS, CAS, CAS)
 - double data-rate synchronous DRAM (DDR SDRAM)
 - » DDR1
 - twice as fast
 - » DDR2
 - four times as fast
 - » DDR3
 - eight times as fast

Enhanced DRAMs

Quiz 1

A program is loading randomly selected bytes from memory. These bytes will be delivered to the processor on a DDR3 system n times faster than on an SDR system, where n is:

- a) 1
- b) 2
- c) 4
- d) 8

Nonvolatile Memories

- DRAM and SRAM are volatile memories
 - lose information if powered off
- Nonvolatile memories retain value even if powered off
 - read-only memory (ROM): programmed during production
 - programmable ROM (PROM): can be programmed once
 - eraseable PROM (EPROM): can be bulk erased (UV, X-Ray)
 - electrically eraseable PROM (EEPROM): electronic erase capability
 - flash memory: EEPROMs with partial (sector) erase capability
 - » wears out after about 100,000 erasings
- Uses for nonvolatile memories
 - firmware programs stored in a ROM (BIOS, controllers for disks, network cards, graphics accelerators, security subsystems,...)
 - solid state disks (replace rotating disks in thumb drives, smart phones, mp3 players, tablets, laptops,...)
 - disk caches

Traditional Bus Structure Connecting CPU and Memory

- A bus is a collection of parallel wires that carry address, data, and control signals
- Buses are typically shared by multiple devices

Memory Read Transaction (1)

CPU places address A on the memory bus

Memory Read Transaction (2)

 Main memory reads A from the memory bus, retrieves word x, and places it on the bus

Memory Read Transaction (3)

 CPU reads word x from the bus and copies it into register %eax

Memory Write Transaction (1)

 CPU places address A on bus. Main memory reads it and waits for the corresponding data word to arrive

Memory Write Transaction (2)

CPU places data word y on the bus

Memory Write Transaction (3)

 Main memory reads data word y from the bus and stores it at address A

What's Inside A Disk Drive?

Image courtesy of Seagate Technology

Disk Geometry

- Disks consist of platters, each with two surfaces
- Each surface consists of concentric rings called tracks
- Each track consists of sectors separated by gaps

Disk Geometry (Multiple-Platter View)

Aligned tracks form a cylinder

Disk Capacity

- Capacity: maximum number of bits that can be stored
 - capacity expressed in units of gigabytes (GB), where 1 GB = 2^{30} Bytes ≈ 10^9 Bytes
- Capacity is determined by these technology factors:
 - recording density (bits/in): number of bits that can be squeezed into a 1 inch segment of a track
 - track density (tracks/in): number of tracks that can be squeezed into a 1 inch radial segment
 - areal density (bits/in²): product of recording and track density
- Modern disks partition tracks into disjoint subsets called recording zones
 - each track in a zone has the same number of sectors, determined by the circumference of innermost track
 - each zone has a different number of sectors/track

Computing Disk Capacity

```
Capacity = (# bytes/sector) x (avg. # sectors/track) x (# tracks/surface) x (# surfaces/platter) x (# platters/disk)
```

Example:

- 512 bytes/sector
- 600 sectors/track (on average)
- 40,000 tracks/surface
- 2 surfaces/platter
- 5 platters/disk

```
Capacity = 512 x 600 x 40000 x 2 x 5
= 122,280,000,000
= 113.88 GB
```

Disk Operation (Single-Platter View)

Disk Operation (Multi-Platter View)

Disk Structure: Top View of Single Platter

Surface organized into tracks

Tracks divided into sectors

Disk Access

Head in position above a track

Disk Access

Rotation is counter-clockwise

About to read blue sector

After BLUE read

After reading blue sector

Red request scheduled next

Disk Access - Seek

Seek to red's track

Disk Access – Rotational Latency

Wait for red sector to rotate around

Complete read of red

Disk Access – Service Time Components

Disk Access Time

- Average time to access some target sector approximated by :
 - Taccess = Tavg seek + Tavg rotation + Tavg transfer
- Seek time (Tavg seek)
 - time to position heads over cylinder containing target sector
 - typical Tavg seek is 3–9 ms
- Rotational latency (Tavg rotation)
 - time waiting for first bit of target sector to pass under r/w head
 - typical rotation speed R = 7200 RPM
 - Tavg rotation = $1/2 \times 1/R \times 60 \sec/1 \min$
- Transfer time (Tavg transfer)
 - time to read the bits in the target sector
 - Tavg transfer = 1/R x 1/(avg # sectors/track) x 60 secs/1 min

Disk Access Time Example

Given:

- rotational rate = 7,200 RPM
- average seek time = 9 ms
- avg # sectors/track = 600

Derived:

- Tavg rotation = $1/2 \times (60 \text{ secs}/7200 \text{ RPM}) \times 1000 \text{ ms/sec} = 4 \text{ ms}$
- Tavg transfer = 60/7200 RPM x 1/600 sects/track x 1000 ms/sec = 0.014 ms
- Taccess = 9 ms + 4 ms + 0.014 ms

Important points:

- access time dominated by seek time and rotational latency
- first bit in a sector is the most expensive, the rest are free
- SRAM access time is about 4 ns/doubleword, DRAM about 60 ns
 - » disk is about 40,000 times slower than SRAM
 - » 2,500 times slower than DRAM

Quiz 2

Assuming a 5-inch diameter disk spinning at 10,000 RPM, what is the approximate speed at which the outermost track is moving?

- a) faster than a speeding bullet (i.e., supersonic)
- b) roughly the speed of a pretty fast car (250 kph/155 mph)
- c) roughly the speed of a pretty slow car (50 mph)
- d) roughly the speed of a world-class marathoner (13.1 mph)