Deep Learning HW1

106061703 藍國瑞

1. Regression:

Learning rate= 0.000001 Number of epochs=2000 Mini_batch size=16

- **b.** (1) number of hidden layer:1, number of neurons:12
 - (2) learning curve:

Training curve

8000 - 6000 - 2000 - 250 500 750 1000 1250 1500 1750 2000

(3) training RMS: 5.621167441481714

Epoch #

- (4) test RMS: 5.660584834030206
- (5) regression with training labels:

(6) regression with test labels:

C. 首先我先假設這個神經網路實際上是和 7 個 feature 最有關係,接著再用排列組合在總共 8 個 feature 中,去挑選當中的 7 個,這樣的可能性就會有 C⁸ 7種,並且把每種可能性的 feature 當作神經網路的輸入去訓練,最後可以算出 TEST RMS 和 TRAIN RMS,並且會發現有些 TEST RMS 會比較小,這樣就可以反推回去知道是那些 feature 對這個網路的影響比較重要。

Ex: 以下是我假設有七種 feature 對該網路最有關係的可能性,當然也可以假設有四種、六種、五種對該網路最有關係,這邊只是以七種當作舉例,因為組合數有點多,所以我的 epoch 變成 500:

Feature combinations	TRAIN_RMS	TEST_RMS
(0, 1, 2, 3, 4, 5, 6),	9.99204643456245,	[10.426207263247182,
(0, 1, 2, 3, 4, 5, 7),	9.96057753988234,	10.463071008588653,
(0, 1, 2, 3, 4, 6, 7),	9.998802705535875,	10.339597730170135,
(0, 1, 2, 3, 5, 6, 7),	10.165236398743737,	9.852481632060469,
(0, 1, 2, 4, 5, 6, 7),	9.255983047953801,	9.4179086771627,
(0, 1, 3, 4, 5, 6, 7),	10.201982596978027,	9.720631238935269,
(0, 2, 3, 4, 5, 6, 7),	5.1224113138048155,	5.274300109735227,
(1, 2, 3, 4, 5, 6, 7)	10.099897608389446]	10.061407179240687]

由表格當中,我們可以看到當選取不同 FEATURE 去訓練時,會有不同的 TRAIN RMS 和 TEST RMS,並且可以發現當選取的 FEATURE 是 (0,2,3,4,5,6,7) 時,他的 TEST RMS 和 TRAIN RMS 明顯小於其他的 FEATURE 組合,因此可以推知(0,2,3,4,5,6,7)的組合對於該網路的影響比較重要。

2. Classification:

Learning rate= 0.0001 Number of epochs=1000 Mini_batch size=16

b. (1) number of hidden layer:1, number of neurons:10

(2) learning curve:

(3) training error rate: 0.08571428571428572

(4) test error rate: 0.352112676056338

C. latent feature:

2D feature 10 epoch:

可以明顯看到 class1 和 class2 分成兩區塊。

3D feature **10** epoch:

可以明顯看到 class1 和 class2 也分成兩區塊。