DATA VISUALIZATION

import seaborn as sns
sns.get_dataset_names()
dataset=sns.load_dataset('car_crashes')
dataset

C→

9/13/23, 8:02 PM						21BCE9353_ASSIGNMENT_2.ipynb - Colaboratory		
	19	15.1	5./38	4.530	13.13/	12.004	00.100	90.07
:	20	12.5	4.250	4.000	8.875	12.375	1048.78	192.70
:	21	8.2	1.886	2.870	7.134	6.560	1011.14	135.63
:	22	14.1	3.384	3.948	13.395	10.857	1110.61	152.26
:	23	9.6	2.208	2.784	8.448	8.448	777.18	133.35
:	24	17.6	2.640	5.456	1.760	17.600	896.07	155.77
:	25	16.1	6.923	5.474	14.812	13.524	790.32	144.45
:	26	21.4	8.346	9.416	17.976	18.190	816.21	85.15
:	27	14.9	1.937	5.215	13.857	13.410	732.28	114.82
1.BARPLOT								
	29	11 6	4 060	3 480	10 092	9 628	746 54	120 21

import matplotlib.pyplot as plt
plt.figure(figsize=(50,15))

sns.barplot(x=dataset['abbrev'],y=dataset['total'],data=dataset)

Inference: In the above graph there are no outliers, From this we can say that there are no cities with extremely less car crashes as wells as extremely high car crashes

4. Scatter Plot

10.0

7.5

5.0

sns.scatterplot(x='no_previous',y='total',data=dataset)

<Axes: xlabel='no_previous', ylabel='total'>

Inference: From the above graph we can say that in every city, car crashes are higher for the first time i.e, in cities with higher car crashes, the crashes with no previuos experience or first time crashes are also high¶

5.Histogram

sns.histplot(data=dataset,x='total')

Inference: From the above graph we can say that in most of the cities the total car crashes are in range of (10-12)

6. HeatMap

correlation_matrix = dataset.corr(numeric_only=True)
sns.heatmap(correlation_matrix,annot=True)

Inference: From the above graph, we can see the positive co-relation between total crashes and speeding,alcohol and not_distracted. so total crashes depends on speeding,alcohol and no_distraction

Inference: From the above graphs we can say that all three features alcohol, speeding, not_distracted are proportional to each other

8.Kernel Density Estimation Plot

sns.kdeplot(data=dataset['ins_premium'], shade=True)
plt.show()

```
<ipython-input-12-70ff29c9e8d0>:1: FutureWarning:
```

`shade` is now deprecated in favor of `fill`; setting `fill=True`. This will become an error in seaborn v0.14.0; please update your code.

sns.kdeplot(data=dataset['ins_premium'], shade=True)

Inference: In most of the cities the insurance premium is around 800 and 1000 $\,$

9.Regression Plot

ins premium

sns.regplot(data=dataset, x='alcohol', y='total')

Inference: From the above graph we can say that there is a linear relationship between alcohol and the total carcrashes

10. Violin Plot

```
plt.figure(figsize=(40,15))
sns.violinplot (x=dataset['ins_premium'], y=dataset['total'],data=dataset)
```