NOIP 模拟题

	K 小数查询	不是回文串	线性代数与逻辑
题目英文名	kth	sub	fxxk
测试点数目	5	10	10
测试点分值	20	10	10
时间限制	11 秒	1 秒	1 秒
内存限制	512MB	512MB	512MB

1 K 小数查询 (kth.cpp/c/pas)

1.1 题目描述

小明正在研究数据结构,一天他突发奇想,出了这样一道题: 有一个含有 n 个数的数组和 Q 个操作,操作分为以下两种:

- 1 L R x ::= 将第 L 到第 R 个数全部加上 x。
- 2 L R k := 询问第 L 到第 R 个数中第 k 小的是哪个,输出这个数。现在请你写一个程序做出这道题。

1.2 输入格式

第一行一个正整数 n,表示数组长度。

第二行有 n 个用空格隔开的整数,表示数组初始内容。

第三行一个整数 Q,表示询问个数。

接下来每行4个整数代表一个询问,含义见题目描述。

1.3 输出格式

对于每个询问输出一行,包含一个满足要求的整数。

1.4 样例

	_ kth.in
4	
2 1 1 3	
3	
2 2 4 2	
1 1 3 3	
2 1 4 3	
	_ kth.out
1	
4	

1.5 数据描述

- 第一个操作询问的区间包含数 (1,1,3), 第 2 小是 1。
- 第二个操作后数组变为 {5,4,4,3}。
- 第三个操作询问的区间包含数 (3,4,4,5), 第 3 小是 4。

1.6 数据规模

- 对于 20% 的数据, $N, Q \le 1000$
- 另外 20% 的数据,没有修改
- $1 \le N, Q \le 80000$
- $1 \le L \le R \le N$

- $|x| \le 5000000$,数组中的数的绝对值在任何时候都不超过 5000000
- $1 \le k \le R L + 1$

2 不是回文串 (sub.cpp/c/pas)

2.1 题目描述

小明正在做 APIO2014 回文串,这题是这样的:

考虑一个只包含小写拉丁字母的字符串 S。我们定义 S 的一个子串 T 的"出现值"为 T 在 S 中的出现次数乘以 T 的长度。请你求出 S 的所有回文子串中的最大出现值。

小明当然会做这道题了,所以这个问题不需要你来解决。他想出了一个更难的问题来考考你:"出现值"定义不变,请你求出 S 的所有出现次数不为 1 的子串的最大出现值。

2.2 输入格式

一个仅包含小写字母的字符串 S。

2.3 输出格式

一个整数,为 S 的所有出现至少 2 次的子串的最大出现值。

2.4 样例

abab	_ sub.in
4	sub.out

2.5 数据描述

子串(长度)	出现次数
a(1)	2
b(1)	2
ab(2)	2 (最大出现值 = $2 \times 2 = 4$)
ba(2)	1
aba(3)	1
bab(3)	1
abab(4)	1

2.6 数据规模

- 对于 10% 的数据, $|S| \le 1000$
- $|S| \le 10^6$

3 线性代数与逻辑 (fxxk.cpp/c/pas)

3.1 题目描述

小明正在研究一门将线性代数和布尔逻辑结合的新学科。今天他正在研究一个有趣的问题:

对矩阵 A,B 定义运算 $C=A\to B$,矩阵 C 满足 $C_{ij}=A_{ij}\to B_{ij}$,其中 $p\to q$ 为逻辑蕴含运算,如果你不知道这是什么,可以简单认为

$$p \to q = q \vee \neg p$$

, 对应的 C/C++ 代码为 q || !p 。

考虑这两个等式 $A \to X = \neg O$, $X \to A = O$, 其中 O 为全 0 矩阵, $\neg O$ 为全 1 矩阵。小明很快就发现了这个方程有解当且仅当 A = O,因为这个结论太显然了,他想研究这个方程的近似解,即找到一个 X,满足 $A \to X = \neg O$,且 $X \to A$ 有尽可能多的元素为 0。

因为解空间非常大,小明只考虑一种特殊形式的解,满足 $X_{ij} = y_i \oplus y_j$,y 是一个仅包含 0 和 1 的向量¹。因为这样生成的矩阵 X 一定是对称的(即 $X_{ij} = X_{ji}$),小明限制矩阵 A 也是对称的。

3.2 输入格式

第一行一个正整数 T,表示数据组数。

每组数据第一行一个整数 N,接下来 N 行每行 N 个整数表示矩阵 A,保证 A 是对称的且所有元素都是 0 或 1。

3.3 输出格式

对于每组数据输出一行。 如果有解,输出 $X \rightarrow A$ 中 0 的最多个数。 无解输出 -1。

3.4 样例

	fxxk.in
3	
4	
0 0 0 1	
0 0 0 1	
0 0 0 0	
1 1 0 0	
4	
1 0 0 1	
0 1 0 1	
0 0 0 0	
1 1 0 0	
2	
0 0	
0 0	

¹ 表示异或

1	fxxk.out
-1	
2	

3.5 样例解释

样例一最优解对应的一个合法的向量 y 为 (0,0,1,1) 样例三最优解对应的一个合法的向量 y 为 (0,1)

3.6 数据规模

- 对于 10% 的数据, $N \le 20$
- $T \le 100, N \le 1000, \sum N^2 \le 2 * 10^6$