Harp - DAAL SVD

Internship at IU

Anurag Sharma

Department of Mathematics and Statistics IIT Kanpur

May 30, 2017

- Introduction
 - Singular Value Decomposition
 - Details

- Algorithm Details
 - Algorithm (Manually)
 - Algorithm Batch Mode
 - Algorithm Distributed Mode

- Introduction
 - Singular Value Decomposition
 - Details

- Algorithm Details
 - Algorithm (Manually)
 - Algorithm Batch Mode
 - Algorithm Distributed Mode

Singular Value Decomposition

Definition

Factorizing a matrix in more mathematically intuitive and useful format

Mathematically:

$$\mathcal{A} = \mathcal{U}^T \Sigma \mathcal{V}$$

where \mathcal{A} be any matrix; \mathcal{U} , \mathcal{V} are orthogonal matrices and Σ is a diagonal matrix with positive real entries.

- Introduction
 - Singular Value Decomposition
 - Details

- Algorithm Details
 - Algorithm (Manually)
 - Algorithm Batch Mode
 - Algorithm Distributed Mode

Details

The SVD arises from finding an orthogonal basis for the row space that gets transformed into an orthogonal basis for the column space:

$$Av_i = \sigma_i u_i$$

 v_i is a vector in row space and u_i is a vector in column space. To find the orthogonal basis of row space we use Gram Schmidt Process. The vectors in the nullspaces of A and A^T are taken care of by zeros on the diagonal of Σ

- Introduction
 - Singular Value Decomposition
 - Details
- 2 Algorithm Details
 - Algorithm (Manually)
 - Algorithm Batch Mode
 - Algorithm Distributed Mode

Pen and Paper

Method

- Calculate AA^T and A^TA
- Find eigenvectors of AA^T and A^TA
- Find eigenvalues of AA^T and A^TA

$$A^{T}A = \begin{bmatrix} 4 & -3 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 4 & 4 \\ -3 & 3 \end{bmatrix}$$
$$= \begin{bmatrix} 25 & 7 \\ 7 & 25 \end{bmatrix}.$$

Pen and paper

Two orthogonal eigenvectors of A^TA are $\begin{bmatrix} 1\\1 \end{bmatrix}$ and $\begin{bmatrix} 1\\-1 \end{bmatrix}$. To get an orthonormal basis, let $\mathbf{v}_1 = \begin{bmatrix} 1/\sqrt{2}\\1/\sqrt{2} \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 1/\sqrt{2}\\-1/\sqrt{2} \end{bmatrix}$. These have eigenvalues $\sigma_1^2 = 32$ and $\sigma_2^2 = 18$. We now have:

$$\begin{bmatrix} A & & U & \Sigma & V^T \\ \begin{bmatrix} 4 & 4 \\ -3 & 3 \end{bmatrix} & = \begin{bmatrix} U & \begin{bmatrix} \sqrt{2} & 0 \\ 0 & 3\sqrt{2} \end{bmatrix} & \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}.$$

Pen and paper

Similarly we calculate AA^T and find eigenvectors and normalize them.

$$AA^{T} = \begin{bmatrix} 4 & 4 \\ -3 & 3 \end{bmatrix} \begin{bmatrix} 4 & -3 \\ 4 & 3 \end{bmatrix}$$
$$= \begin{bmatrix} 32 & 0 \\ 0 & 18 \end{bmatrix}.$$

Finally we get:

$$\begin{bmatrix} A & & U & \Sigma & V^T \\ \begin{bmatrix} 4 & 4 \\ -3 & 3 \end{bmatrix} & = & \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} & \begin{bmatrix} 4\sqrt{2} & 0 \\ 0 & 3\sqrt{2} \end{bmatrix} & \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}.$$

- Introduction
 - Singular Value Decomposition
 - Details

- Algorithm Details
 - Algorithm (Manually)
 - Algorithm Batch Mode
 - Algorithm Distributed Mode

Batch Mode

In batch mode we use modified QR decomposition to factorize and find eigenvectors.

For details: https://web.stanford.edu/class/cme335/lecture6.pdf

- Introduction
 - Singular Value Decomposition
 - Details

- Algorithm Details
 - Algorithm (Manually)
 - Algorithm Batch Mode
 - Algorithm Distributed Mode

Distributed Mode

Step 1 - on Local Nodes

Distributed Mode

Step 2 - on Master Node

Distributed Mode

