Package 'CommonSplines'

May 9, 2018

Title Regression Spline and Smoothing Spline				
Version 1.0.0				
Authors Xingchen LIU <e0225109@u.nus.edu>, Yuchen SHI <yuchenshinus@gmail.com>, Xiaozhou Yang <yang_xiaozhou@icloud.com></yang_xiaozhou@icloud.com></yuchenshinus@gmail.com></e0225109@u.nus.edu>				
Description This is an R package that covers commonly seem regression spline and smoothing spline. For regression spline, commonly seen basis functions are provided such as truncated power basis, natural spline basis and B-spline basis. For smoothing spline, penalties on second order derivative are provided, i.e., cubic smoothing spline.				
Depends R (>= $3.3.2$)				
Date 2018-05-11				
License Apache License 2.0				
Encoding UTF-8				
LazyData true				
RoxygenNote 6.0.1				
Suggests knitr, rmarkdown				
VignetteBuilder knitr				
R topics documented:				
basis_function 2 bsplineBasis 2 CubicPowerBasisSpline 3 eval_basis_functions 4 natural_cubic_splines 4 natural_cubic_splines.predict 5 natural_cubic_splines.train 6				
Index 7				

2 bsplineBasis

basis_function	Evalute x based on truncated power basis functions for natural cubic splines
_	1 3

Description

Evalute x based on truncated power basis functions for natural cubic splines

Usage

```
basis_function(x, i, knots, nknots)
```

Arguments

X	A single predictor variable value
i	Location index for x vector.
knots	Knot location vector.
nknots	Number of knots useded in training.

Value

Basis function evaluation at x

Description

This function provides nonparametric regressions using B-splines. The B-splines are defined following the recursive formulas due to de Boor. Only univariate input can be used.

Usage

```
bsplineBasis(x, y, x_test, order = 4, innerknots)
```

Arguments

Χ	The input vector of training dataset.
у	The output vector of training dataset.
x_test	The input values at which evaluations are required.
order	The order of B-spline functions. The default is order=4 for cubic B-splines.
innerknots	The internal knots that define the spline. innerknots should not contain knots on the boundary.

Value

A list with the following components:

beta The coefficients of nonparametric regression.

basis The B-spline basis matrix of dimension c(length(x), df). df = length(innerknots)

+ order.

f The evaluated output at x_test.

Examples

```
x<-seq(0, 1, 0.001)
y <- x^3 * 3 - x^2 * 2 + x + exp(1)+rnorm(length(x),0,0.1)
plot(x,y)

innerknots <- c(0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9)
order<-4
x_test<-seq(0, 1, 0.01)

b_fit<-bspline(x,y,x_test,order,innerknots)

plot(x_test,b_fit$f)
lines(x_test,x_test^3 * 3 - x_test^2 * 2 + x_test + exp(1),col="red")

plot(x,rep(0,length(x)),type="1",ylim=c(0,1))
for (i in 1: (j+order)){
lines(x,b_fit$basis[,i])
}</pre>
```

CubicPowerBasisSpline Regression using cubic spline

Description

This function provides regressions using cubic splines. The cubic splines are defined following Only univariate input can be used.

Usage

```
CubicPowerBasisSpline(x, y, x_test, innerknots)
```

Arguments

x The input vector of training dataset.
y The output vector of training dataset.

x_test The input values at which evaluations are required.

innerknots The internal knots that define the spline.

Value

A list with the following components:

beta The coefficients of nonparametric regression.

basis The cubic spline basis matrix of dimension c(length(x), NumKnots+4)

f The evaluated output at x_test.

4 natural_cubic_splines

Examples

```
n <- 100
t <- seq(0,2*pi,length.out = 100)
a <- 3
b <- 2
c.unif <- runif(n)
amp <- 2
set.seed(1)
y1 <- a*sin(b*t)+c.unif*amp # uniform error
innerknots <- 2*pi*c(1/4,2/4,3/4)
solution <- CubicPowerBasisSpline(t,y2,t,innerknots)
y.hat <- solution$f
plot(t, y1, t="1")
lines(t, y.hat, col=4)</pre>
```

Description

Evaluate basis functions as each x and return the evaluated basis matrix N

Usage

```
eval_basis_functions(x, knots, nknots)
```

Arguments

x Predictor variable vector

knots Knots location in terms of quantiles of x_train, optional, default will be evenly

spaced quantiles based on number of knots

nknots Number of knots useded in training.

Value

Basis matrix evaluated at each x value

```
natural_cubic_splines Regression using natural cubic splines
```

Description

This function provides regressions using natural cubic splines with truncated power basis functions. Only univariate input can be used.

Usage

```
natural_cubic_splines(x_train, y_train, x_test, df = NULL, knots = NULL)
```

Arguments

x_train	The input vector of training dataset.
y_train	The output vector of training dataset.
x_test	The input values at which evaluations are required.
df	The degree of freedom specified by user, number of knots will be equal to df.
knots	Knots location in terms of quantiles of x_train, optional, default will be evenly

spaced quantiles based on number of knots

Value

y_pred A vector of dimension length(x)The prediction vector evaluated at x_test values

Examples

```
x_train <-seq(0, 1, 0.001)
y_train <- x^3 * 3 - x^2 * 2 + x + exp(1)+rnorm(length(x),0,0.1)
plot(x,y)
df <- 10
x_test <- seq(0, 1, 0.01)
y_pred <- natural_cubic_splines(x, y, x_test, df)
plot(x_test,y_pred)
lines(x_test,x_test^3 * 3 - x_test^2 * 2 + x_test + exp(1),col="red")</pre>
```

natural_cubic_splines.predict

Prediction based on trained regression model

Description

Prediction based on trained regression model

Usage

```
natural_cubic_splines.predict(x_test, betas, knots, nknots)
```

Arguments

x_test	The input values at which evaluations are required.
betas	Least squure fit parameters obtained from training.
knots	Knots location in terms of quantiles of x_train, optional, default will be evenly spaced quantiles based on number of knots
nknots	Number of knots used in training.

Value

y_pred A vector of dimension length(x)The prediction vector evaluated at x_test values

```
natural_cubic_splines.train
```

Generate an evaluated basis matrix for natural cubic splines

Description

Generate an evaluated basis matrix for natural cubic splines

Usage

```
natural_cubic_splines.train(x_train, y_train, df = NULL, knots = NULL,
intercept = FALSE)
```

Arguments

x_trainy_trainThe input vector of training dataset.y_trainThe output vector of training dataset.

df The degree of freedom specified by user, number of knots will be equal to df.

knots Knots location in terms of quantiles of x_train, optional, default will be evenly

spaced quantiles based on number of knots

intercept Default false, do not change.

Value

A list of following components:

knots N betas

Examples

```
x_train <-seq(0, 1, 0.001)
y_train <- x^3 * 3 - x^2 * 2 + x + exp(1) + rnorm(length(x), 0, 0.1)
plot(x,y)
df <- 10
x_test <- seq(0, 1, 0.01)
train_result <- natural_cubic_splines.train(x, y, df)
print(train_result$\text{$betas}$)
print(train_result$\text{$N[1:5,1:5]})</pre>
```

Index

```
basis_function, 2
bsplineBasis, 2

CubicPowerBasisSpline, 3

eval_basis_functions, 4

natural_cubic_splines, 4
natural_cubic_splines.predict, 5
natural_cubic_splines.train, 6
```