CS 113 DISCRETE STRUCTURES

Chapter 3: Algorithms

HOMEWORK

- All homework is from the Exercises
 - No problems are from the Review Exercises
- Section 3.2 (p. 127): 19, 21
- Section 3.3 (p. 131): 1-5 (all), 13, 22-24 (all)
- Section 3.4 (p. 137): 8, 9, 12, 27, 28
- Section 3.5 (p. 149): 1-12 (all), 17, 19
- Section 3.7 (p. 160): 1-9 (all)

MODULAR ARITHMETIC

- We will look at numbers "% 5"
 - I will call this "mod 5 math"
 - The 5 here is not important
 - You could have chosen any number
- One way to understand mod 5 math is to do arithmetic "on a clock"
- Our clock will have the numbers 0, 1, 2, 3, and 4
 - · We stop at the number one less than 5, which is 4
- First we try to understand these numbers by counting

MODULAR ARITHMETIC-COUNTING

- Now we will live "on the clock"
- You are counting the Cheerios as they roll out of the box into a bowl
 - Cheerios are a type of breakfast cereal, and you decide to have Cheerios for breakfast
- Remember, you are living on the clock
- You look at your empty bowl and say, "0"
- One Cheerio rolls out of the box and you say, "1"
- You continue, "2", "3", "4"

MODULAR ARITHMETIC-MORE COUNTING

- One more Cheerio rolls out of the box
- What do you do?
- You say the next number on the clock
- This means that, instead of 5, you say "0"
- Your new way of counting is this
 - In the table below, the top row is our usual idea of numbers
 - The bottom row is our new idea of numbers

Usual	0	1	2	3	4	5	6	7	8	9	10
New	0	1	2	3	4	0	1	2	3	4	0

MODULAR ARITHMETIC-JUST NUMBERS

- Let's check this
 - I say "1." You say, "Of course. You mean 1."
 - · I say "2." You say, "Come on. It's 2."
 - You are starting to get bored.
 - I say "8." You say, "Aha! Though you would catch me. It's 3."
 - You are moving around the clock
 - This is the same as doing mod 5 math

MODULAR ARITHMETIC-MODULAR IDEAS

- Moving around the clock is the same as taking the remainder "%5"
 - The number of times you move around the clock is the quotient
 - The number you end on is the remainder
 - For example, to find 17
 - You circle the clock 3 full times. (Start at 1)
 - You end on 2

MODULAR ARITHMETIC-NOTATION

- Remember, the only numbers we work with are 0, 1, 2, 3, 4
 - All numbers in our normal world must be seen as one of these
- We only write the numbers 0-4 on the right side of an equal sign
 - We don't even use an equal sign!
 - We use the congruence symbol from geometry
 - We even call it "congruent"!
- Some examples are on the next slide

MODULAR ARITHMETIC-MORE NOTATION

- Here are some examples
 - 2 (mod 5) \equiv 2 (mod 5)
 - 7 (mod 5) \equiv 2 (mod 5)
 - 24 (mod 5) \equiv 4 (mod 5)
- And again, what these mean is this
 - Take the example of 24 (mod 5) \equiv 4 (mod 5)
 - It means that if you start at 1 and count to 24, you will end on 4
 - It also mean, of course, that 24 % 5 = 5

MODULAR ARITHMETIC-NEGATIVE NUMBERS

- How about -3?
 - You start at 0 and go backward 3 numbers.
 - You end at 2.
- So, we write -3 (mod 5) \equiv 2 (mod 5)
- A few slides back I mentioned "mod 5 math"
- Let's see if we can add, subtract, and multiply these numbers
 - We could divide, but that could be painful

MODULAR ARITHMETIC- ADDITION

- \cdot 2 + 1 = 3 (Usual number ideas)
- Also, $(2 + 1) \pmod{5} \equiv 3 \pmod{5}$
- Why is this?
 - Start at 2 on the clock
 - Move1 more number ground
 - You arrive at 3

MODULAR ARITHMETIC-MORE ADDITION

- How about (6+7) mod 5?
 - Start at 6
 - To find this, start at 1
 - Count to 6
 - You are back at 1 again
 - Then move 7 more numbers around the clock
 - You arrive at 3
- So then
 - $(6+7) \pmod{5} \equiv 3 \pmod{5}$

MODULAR ARITHMETIC-SHORCUT MATH

- You might notice that 6 (mod 5) is the same as 1 (mod 5)
 - To find this, start at 1
 - Count to 6
 - You are back at 1 again
- Similarly, 7 (mod 5) is the same as 2 (mod 5)
- So then
 - $(6+7) \pmod{5} \equiv (1+2) \pmod{5} = 3 \pmod{5}$

MODULAR ARITHMETIC-EXPONENTS

- You can use these shortcuts along with the normal algebraic ideas
- Example 1: What is (23)(47) (mod 9)?
 - This is 23 (mod 9) * 47 (mod 9), which is 5 (mod 9) * 2 (mod 9)
 - And, $5 \pmod{9} * 2 \pmod{9} = 10 \pmod{9} \equiv 1 \pmod{9}$
 - In summary, then, 23 (mod 9) * 47 (mod 9) \equiv 1 (mod 9)

MODULAR ARITHMETIC-ONCE AGAIN

- Using these shortcuts yet one more time
- Example 2: 48 (mod 5)?
- $4^2 \pmod{5} \equiv 4*4 \pmod{5} \equiv 16 \pmod{5} \equiv 1 \pmod{5}$
- So, $4^8 \pmod{5} \equiv (4^2)^4 \pmod{5} \equiv 1^4 \pmod{5}$, which is 1 (mod 5)
- In summary, $4^8 \pmod{5} \equiv 1 \pmod{5}$

MODULAR ARITHMETIC-A BRIEF WORD ABOUT DIVISION

- Division can be painful, even impossible
- For example
 - $1/3 \pmod{5} \equiv 2 \pmod{5}$
 - This is because (multiplying both sides by 3)
 - 1 (mod 5) \equiv (3*2) (mod 5)
- In the same way, $\frac{3}{4}$ (mod 5) \equiv 2 (mod 5)
 - This is because multiplying both sides by 4 gives
 - 3 (mod 5) \equiv 8 (mod 5), which is true
- However, there is no such thing as 1/3 (mod 9) or 1/6 (mod 9)
 - You can verify this by trying 0, 1, 2, 3, 4, 5, 6, 7, 8

MODULAR ARITHMETIC-A BRIEF WORD ABOUT DIVISION

- Division can be painful, even impossible
- For example
 - $1/3 \pmod{5} \equiv 2 \pmod{5}$
 - This is because (multiplying both sides by 3)
 - 1 (mod 5) \equiv (3*2) (mod 5)
- In the same way, $\frac{3}{4}$ (mod 5) \equiv 2 (mod 5)
 - This is because multiplying both sides by 4 gives
 - 3 (mod 5) \equiv 8 (mod 5), which is true

MODULAR ARITHMETIC-MORE ABOUT DIVISION

- However, there is no such thing as 1/3 (mod 9) or 1/6 (mod 9)
 - You can verify this by trying 0, 1, 2, 3, 4, 5, 6, 7, 8
- Therefore, we are skipping division
- Also, people don't usually write fractions in modular arithmetic
- Everything is whole numbers

MODULAR ARITHMETIC-SOLVING EQUATIONS

- Suppose we try to solve 3x = 4 (mod 11)
- We can try 1, 2, 3, etc., for x and see which works
 - We call this "trial and error"
- Here is the start of the process
- x=1: 3x = 3, which is not = 7 (mod 11)
- x=2: 3x = 6, which is not = 7 (mod 11)
- x=3: 3x = 9, which is not = 7 (mod 11)
- x=4: $3x = 12 = 1 \pmod{11}$, which is not = 7 (mod 11)
- x=5: $3x = 15 = 4 \pmod{11}$, which is not = 7 (mod 11)

MODULAR ARITHMETIC-SOLVING EQUATIONS

- Here is another way to solve an equation
- Suppose we try to solve $3x = 7 \pmod{11}$
- This means 3x = 11 + 7, 3x = 2*11 + 7, 3x = 3*11 + 7, etc.
- We can write that as 3x = 11k + 7 for some integer k
- Solving for x gives x = (11k + 7)/3
- You can try values of k until you find a value of 11k + 7 that is divisible by 3
- This is a little easier than just trial and error

QUESTIONS

Any questions?