TR-19/2000 Thermoplastics Piping for the Transport of Chemicals

THERMOPLASTIC PIPING FOR THE TRANSPORT OF CHEMICALS

Foreword

This report was developed and published with the technical help and financial support of the members of the PPI (Plastics Pipe Institute, Inc.). The members have shown their interest in quality products by assisting independent standards-making and user organizations in the development of standards, and also by developing reports on an industry-wide basis to help engineers, code officials, specifying groups, and users.

The purpose of this technical report is to provide information on the transport of various chemicals using thermoplastic piping materials.

This report has been prepared by PPI as a service of the industry. The information in this report is offered in good faith and believed to be accurate at the time of its preparation, but is offered without any warranty, expressed or implied, including WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Consult the manufacturer for more detailed information about the particular weathering package used for its piping products. Any reference to or testing of a particular proprietary product should not be construed as an endorsement by PPI, which do not endorse the proprietary products or processes of any manufacturer. The information in this report is offered for consideration by industry members in fulfilling their own compliance responsibilities. PPI assumes no responsibility for compliance with applicable laws and regulations.

PPI intends to revise this report from time to time, in response to comments and suggestions from users of the report. Please send suggestions of improvements to the address below. Information on other publications can be obtained by contacting PPI directly or visiting the web site.

The Plastics Pipe Institute Toll Free: (888) 314-6774 http://www.plasticpipe.org

January 2000

CHEMICAL RESISTANCE IN GENERAL

Thermoplastic materials generally are resistant to attack from many chemicals which makes them suitable for use in many process applications. The suitability for use in a particular process piping application is a function of:

I. Material

- A. The specific plastic material: ABS, CPVC, PP, PVC, PE, PB, PVDF, PEX¹, PA11. PK
- B. The specific plastic material and its physical properties as identified by its cell classification according to the appropriate ASTM material specification.

II. Product and Joint System

- A. Piping product dimensions, construction, and composition (layers, fillers, etc.).
- B. Joining system. Heat fusion and solvent cementing do not introduce different materials into the system. Mechanical joints can introduce gaskets such as elastomers, or other thermoplastic or non-thermoplastic materials used as mechanical fitting components.
- C. Other components and appurtenances in the piping system.
- III. Use Conditions Internal and External
- A. Chemical or mixtures of chemicals, and their concentrations.
- B. Operating temperature maximum, minimum, and cyclical variations.
- C. Operating pressure or applied stress maximum, minimum and cyclical variations.
- D. Life-cycle information such as material cost, installation cost, desired service life, maintenance, repair and replacement costs, etc.

While the effect of each individual chemical is specific, some chemicals can be grouped into categories based on similar reactions. For example, water solutions of neutral inorganic salts generally have the same effect on thermoplastic piping materials as water alone, thus, sodium chloride, potassium alum, calcium chloride, copper sulfate, potassium sulfate and zinc chloride solutions have the same effect as water. However, at elevated temperatures and/or high concentrations, some oxidizing salt solutions may attack some specific plastic materials.

Further, with organic chemicals in a specific series such as alcohols, ketones, or acids, etc., as the molecular weight of the organic chemical series increases, the chemical resistance of a particular plastic material to members of the specific organic chemical series frequently also increases. Thus, while one type of

¹ Once cross-linked, PEX is no longer considered a thermoplastic material; however, it is included in this report as convenience for the reader.

polyvinyl chloride at 73 °F is not suitable for use with ethyl acetate, it is suitable for the higher molecular weight butyl acetate.

Generally, the resistance of a particular plastic to a specific chemical decreases with an increase in concentration. For example, at 73 °F polyethylene pipe can be used to carry 70% sulfuric acid but is not satisfactory for 95% sulfuric acid. In some cases, combinations of chemicals may have a synergistic effect on a thermoplastic material where individual chemicals do not. Lastly, the resistance of a particular plastic to a specific chemical generally decreases with temperature increase, with stress increase, and decreases with cyclical variations of temperature or applied stress.

TYPES OF CHEMICAL ATTACK ON PLASTICS

In general, chemicals that affect plastics do so in one of two ways. One effect is chemical solubility or permeation. The other is direct chemical attack.

In the case of solubility or permeation, physical properties may be affected, but the polymer molecule structure itself is not chemically changed, degraded or destroyed. In solubility or permeation, gas, vapor, or liquid molecules pass through the polymer, typically without damaging the plastic material itself. If the solvating chemical can be removed completely, the plastic is generally restored to its original condition. However, it is not always possible to remove a solvating chemical from the plastic, and in such cases, effects relating to chemical solvation may be permanent.

Sometimes the polymer itself may not be soluble, but it may contain a compounding ingredient that may be soluble in the chemical, and may be extracted from the polymer compound. This is rare because such extractable ingredients are either not used in pipe compounds, or they are chemically bonded to the molecular polymer matrix, and in such small amounts that they cannot be leached out to any significant extent.

Permeation may do little if any harm to the material, but it may have application-related effects. The permeating chemical may transfer into a fluid on the other side of the pipe. In general, thermoplastic pipes should not be used where a permeating chemical could compromise the purity of a fluid such as potable water inside the pipe, and in gas or vapor transmission service, there may be a very slight loss of contents through the pipe wall. Lastly, a permeating chemical may be entrained in the material and be released when heat fusion or solvent cement joining is performed. Heat fusion or solvent cement joining may be unreliable if performed on permeated pipes.

Direct chemical attack occurs when exposure to a chemical causes a chemical alteration of the polymer molecules by chain scission, crosslinking, oxidation, or substitution reactions. Direct chemical attack may cause profound, irreversible changes that cannot be restored by removal of the chemical. Examples of this

type of attack are 50% chromic acid at 140 °F on PVC, aqua regia on PVC at 73 °F, 95% sulfuric acid at 73 °F on PE and wet chlorine gas on PVC and PE. Direct chemical attack frequently causes a severe reduction of mechanical physical properties such as tensile strength, ductility, and impact resistance, and susceptibility to cracking from applied stress (stress cracking).

However, direct chemical attack is not always detrimental. For example, PEX materials are deliberately crosslinked using chemical or irradiation methods. While crosslinking enhances certain mechanical properties of PEX materials, it may preclude the use of heat fusion to join PEX piping.

The chemical resistance of the various plastic types varies greatly from one plastic material to another (i.e., PVC, ABS, PE, etc.), and also among different cell classifications of the same plastic type (e.g. PVC 1120 to PVC 2110, PE 1404 to PE 3408, etc.). There may also be slight variations among commercial products having the same cell classification.

The chemical resistance of plastic piping is basically a function of the chemical resistance of the thermoplastic material, and processing of the plastic in such a way that its full chemical resistance is developed. In general, the less compounding ingredients used the better the chemical resistance. Most plastic pipe compounds covered by current ASTM specifications and product standards use a minimum of compounding ingredients, except for the Type II PVC's and CAB plastics. The Type II PVC's contain impact modifiers which are less susceptible to chemical attack than monomeric plasticizers such as those used in PVC cable insulation, film and sheeting compounds, and in CAB plastics. Thermoplastic pipes with significant filler percentages may be susceptible to chemical attack where an unfilled material may be affected to a lesser degree or not at all.

Some newer piping products utilize a multi-layered (composite) construction, that is, the pipe wall is constructed of layers of different materials. Both thermoplastic and non-thermoplastic materials are used for the layers. Examples are PE/AL/PE, and PEX/AL/PEX pipes where there is a mid-wall aluminum layer. An all thermoplastic composite pipe has PVC, ABS, and PVC layers. Layered composite material pipes may have chemical resistance that differs from the chemical resistance of the individual materials.

Chemicals that attack plastics do so at a certain rate, some slowly and some more quickly. But usually, any chemical attack is increased when temperature or stress are increased, or when temperature or stress are varied. The particular rate must be taken into consideration in the life-cycle evaluation for a particular application. It has been observed in some chemical plants that while a particular application may have a relatively short service life, the overall life-cycle cost may be economically feasible and justifiable. Each combination of material cost, installation cost and service life must be evaluated and judged on its own merits.

CHEMICAL RESISTANCE DATA FOR THERMOPLASTIC PIPING IN NON-PRESSURE (GRAVITY-FLOW) APPLICATIONS and DATA TABLE

When thermoplastic pipes come into contact with chemical agents, it is important to know how the pipe may be affected. For gravity flow or non-pressure applications, where the pipe Is not subject to continuous internal pressure or thermal stress, chemical immersion test data may provide suitable information. The pipe manufacturer may have additional information on similar testing, or information on previous installations under similar field conditions.

- I. A thermoplastic pipe that is subjected to several chemicals may or may not be affected by the chemical combination. Chemicals that individually do not have an effect may affect the pipe if combined with certain other chemicals. The listings that follow do not address chemical combinations.
- II. Layered composite piping may have chemical resistance that differs from that of the individual materials in the layers. The listings that follow are not applicable to layered composite piping products.
- III. The listings that follow are not applicable to composite piping products such as reinforced epoxy resin (fiberglass) pipes, or to thermoplastic pipes containing significant percentages of filler materials.
- IV. The following chemical resistance information has been obtained from numerous sources. It is based primarily on plastic material test specimens that have been immersed in the chemical, and to a lesser degree, on field-experience. In most cases, detailed information on the test conditions (such as exposure time), and on test results (such as change in weight, change in volume, and change in strength) were not available. Therefore, this information is best used only for comparison of different thermoplastic materials.
- V. Where no concentrations are given, the relatively pure material is indicated, except in the case of solids where saturated aqueous solutions are indicated.

NOTE: Even though indicated as acceptable with certain temperature limitations, the use of PVC piping with liquid hydrocarbons such as gasoline and jet fuels, should be limited to short-term exposure such as secondary containment systems. This piping is not recommended for long-term exposure to liquid hydrocarbons.

Resistance Codes

The following code is used in the data table:

<u>Code</u>	<u>Meaning</u>	<u>Typical Result</u>
140	Plastic type is generally resistant to temperature (°F) indicated by code.	Swelling < 3% or weight loss < 0.5% and elongation at break not significantly changed.
R to 73	Plastic type is generally resistant to temperature (°F) indicated by code and may have limited resistance at higher temperatures.	Swelling < 3% or weight loss < 0.5% and elongation at break not significantly changed.
C to 73	Plastic type has limited resistance to temperature (°F) indicated by code and may be suitable for some conditions.	Swelling 3-8% or weight loss 0.5-5% and/or elongation at break decreased by < 50%.
N	Plastic type is not resistant.	Swelling > 8% or weight loss > 5% and/or elongation at break decreased by > 50%.
_	Data not available.	

Plastic Materials Identification

ABS	acrilonitrile-butadiene-styrene
CPVC	chlorinated polyvinyl chloride
PP	polypropylene
PVC	polyvinyl chloride
PE	polyethylene
PB	polybutylene
PVDF	poly vinylidene fluoride
PEX	crosslinked polyethylene
PA11	polyamide 11
PK	polyketone

CHEMICALS THAT DO NOT NORMALLY AFFECT THE PROPERTIES OF AN UNSTRESSED THERMOPLASTIC MAY CAUSE COMPLETELY DIFFERENT BEHAVIOR (SUCH AS STRESS CRACKING) WHEN UNDER THERMAL OR MECHANICAL STRESS (SUCH AS CONSTANT INTERNAL PRESSURE OR FREQUENT THERMAL OR MECHANICAL STRESS CYCLES). UNSTRESSED IMMERSION TEST CHEMICAL RESISTANCE INFORMATION IS APPLICABLE ONLY WHEN THE THERMOPLASTIC PIPE WILL NOT BE SUBJECT TO MECHANICAL OR THERMAL STRESS THAT IS CONSTANT OR CYCLES FREQUENTLY.

WHEN THE PIPE WILL BE SUBJECT TO A CONTINUOUS APPLIED MECHANICAL OR THERMAL STRESS OR TO COMBINATIONS OF CHEMICALS, TESTING THAT DUPLICATES THE EXPECTED FIELD CONDITIONS AS CLOSELY AS POSSIBLE SHOULD BE PERFORMED ON REPRESENTATIVE SAMPLES OF THE PIPE PRODUCT TO PROPERLY EVALUATE PLASTIC PIPE FOR USE IN THIS APPLICATION.

Plastics at Maximum	Operating Temperature ((F)
---------------------	-------------------------	-----

Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Acetaldehyde			N	140	N	C to	C to		C to	C to	R to
CH₃ CHO						73	73		140	176	73
	Aq. Of 40%		N		C to	R to		N	R to		
					73	73			73		
Acetamide	5%	120		140		140			140		
CH₃ CONH2											
Acetic Acid	vapor	120	180	180	140	140	140		140		
CH₃ COOH	rapo.	0	.00	.00					0		
	5%										R to
											176
	10%							R to	140	R to	
	050/	N 1	400	400	4.40	4.40	4.40	248	4.40	176	
	25%	N	180	180	140	140	140		140		
	40%							R to	R to		
								140	176		
	50%							R to	R to	C to	
								140	176	68	
	60%	N	N	180	73	73	73	R to	73		
	000/							104			
	80%							R to 104			
	85%	N	N	120	73	73	73		73		
	glacial	N	N	120	73	73	73	R to	R to		
								104	68		
Acetic Anhydride		N	N	73	N	73	140	N	73	C to	
(CH ₃ CO) ₂ O		IN	IN	13	IN	13	140	I N	13	68	
(0) 00/2										55	
Acetone	5%	N	N	73	N	C to	140	R to	C to	C to	

Plastics at Maximum	Operating Temperature ((F)
---------------------	-------------------------	-----

	Plastics at Maximum Operating Temperature (F)										
Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
CH₃ COCH₃						73		212	73	140	
	10%							R to 122			
	100%										R to 73 C to 122
Acetophenone C ₆ H ₅ COCH ₃		N		120		73		R to	73 68		
Acetyl Chloride CH ₃ COCl		N	N		N			N			
Acetylene HC=CH	gas 100%	73	N	73	N	73	C to 73		73	140	
Acetylnitrile			N		N						
Acrylic Acid H ₂ C:CHCOOH	97%		N		N	140			140		
Acrylonitrile H ₂ C:CHCN			N		N	140			140		
Adipic Acid COOH(CH ₂) ₄ CC	sat'd DOH		180	140	140	140	73	R to 176	140		
Allyl Alcohol $CH_2 = CHCH_2 \ OH$	96% H		C to 73	140	R to 73	140	140		N		
`H₂ Cl			N		N 73	C to		140	C to		
2 '	Liquid							R to 68			
Aluminum Ammonium	sat'd		180	140	140	140			140		

Plastics at Maximum Operating Temperature (F)											
Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF	PEX	PA 11	PK
Sulfate (Alum) AINH ₄ (SO ₄) ₂ 12H ₂	.O										
Aluminum Chloride Aqueous AlCl ₂	sat'd	160	180	180	140	140	140	R to 212	140		
Aluminum Fluoride Anhydrous AIF ₃	sat'd	160	180	180	73	140	140	R to 212	140		
Aluminum Hydroxid	e sat'd	160	180	180	140	140	140	R to 212	140		N
Aluminum Nitrate Al(NO ₃) ₃ O9H ₂ O	sat'd		180	180	140	140	140	R to 212	140		
Aluminum Oxychlor	ide		180	180	140		140				
Aluminum Potassiun Sulfate (Alum) AIK(SO ₄) ₂ o12H ₂ O		160	180	140	140	140		R to 212	140		
Aluminum Sulfate (Alum)	sat'd	160	180	140	140	140	C to 73	R to 212	140	194	
Al ₂ (SO ₄) ₃	20%										R to 73
Amonia Gas NH ₃	100%	N	N	140	140	140	140		140	140	
Amonia Liquid NH₃	100%	160	N	140	N	140	73		140	140	
Amonia Acetate NH4(C ₂ H ₃ O ₂)	sat'd	120	180	73	140	140		R to 212	140		

Plastics	at Maximum Operating	Temperature (F)
	<u> </u>		=

		P	lastics at	Maximu	m Operat	ing Tem	perature	<u>(F)</u>				
Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF	PEX	PA 11	PK	
Amonium Bifluoride NH ₄ HF ₂	sat'd		180	180	140		140		140			
Amonium Bisulfide (NH ₄)HS					140							
Amonium Carbonate (NH ₄)HCO ₃ o (NH ₄) C			180	212	140	140	140	R to 248	140			
Amonium Chloride NH ₄ Cl	sat'd	120	180	212	140	140	140	R to 212	140			
Amonium Dichromati (NH ₄) ₂ Cr ₂ O ₇	te		73		73							
Amonium Fluoride	10%	120	180	212	140	140		R to 212	140			
	25%	120	180	212	C to 140	140	73		140			
Amonium Hydroxide	10%	120	N	212	140	140	140		140		N	
	30%					R to 140			R to 140			
	Conc.								194			
Amonium sphate	Sat'd		 212	R to 140	R to 140	R to 140	R to 248	R to	R to 140			
Amonium Nitrate NH ₄ NO ₃	sat'd	120	180	212	140	140	140	R to 212	140			
Amonium Persulpha (NH ₄) ₂ S ₂ O ₈	ate			180	140	140	140	140	R to 212	140		

Plastics at Maximum C	Operating Temperature ((F)
-----------------------	-------------------------	-----

Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Amonium Phosph	nate all	120	180	212	140	140	140	R to	140		
(Monobasic)								248			
NH ₄ H ₂ PO ₄											
Amonium Sulfate	s Sat'd.	120	180	212	140	140	140	R to	140		
(NH ₄) ₂ SO ₄								212			
	20%										R to 73
Amonium Sulfide	dilute	120	180	212	140	140	140		140		
(NH ₄) ₂ S	Sat'd.					140					
Amonium Thiocya	anate 50-60%	120	180	212	140	140	140	R to	73		
NH ₄ SCN								212			
Amyl Acetate			N	N	N	N	73		R to	73	C to
CH ₃ COOC ₅ H ₁₁								122		194	
Amyl Alcohol			N		N	140	140	R to	R to		
C₅ H₁₁ OH								212	140		
	100%						C to 140				
n-Amyl Chloride		N	N	N	N	C to			C to		
CH ₃ (CH ₂) ₃ CH ₂ C	CL					73			73		
Anisole											C to 73
Aniline		N	N		N	73	C to	R to	C to		N
I_2							140	68		140	
Aniline Chlorohyo	drate		N		N	C to 73	N		C to 73		

Plastics at Maximum C	Operating Temperature ((F)
-----------------------	-------------------------	-----

' <u>-</u>					•						
Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
		TIDO	CI VC	11	1,0	1 L	T D	1 101	1 121	11111	111
Aniline Hydrochloric	de sat'd		N		N	140	N		140		
C ₆ H ₅ NH ₂ oHCl											
Anthraquinone			180		140	C to	C to		C to		
C ₆ H ₅ (CO) ₂ C ₆ H ₅						73	73		73		
Anthraquinone			180	73	140	140	C to		C to		
Sulfonic Acid							73		73		
C ₁₄ H ₇ O ₂ oSO ₃ Ho ₃	3 H ₂ O										
Antifreeze											R to 73 C to 176
Antimony Trichlorid	e sat'd		180	140	140	140	140	R to	140		
SbCl ₃								140			
Aqua Regia		N	R to	N	C to	N	N	C to	N		
(Nitrohydrochloric A	Acid)			73		73			194		
Arsenic Acid	80%		180	140	140	140	140	R to	140		
H ₃ AsO ₄ o1/2H ₂ O								248			
Aryl Sulfonic Acid			180		140	73			73		
C ₆ H ₅ SO ₃ H			.00			. •			. •		
Asphalt			N	73	N	73	140		73		
Barium Carbonate	sat'd	120	180	140	140	140	140	R to	140		
BaCO ₃								248			
Barium Chloride	sat'd	120	180	140	140	140	140	R to	140	194	
BaCl ₂ o2H ₂ O	Satu	120	100	140	140	140	140	212	140	194	
2401/2 021 1/20								<u> </u>			
Barium Hydroxide	sat'd	73	180	140	140	140	140		R to		
Ba(OH) ₂									212		
· ·	10%										R to 73

	Plastics	at Maximum	Operating	Temperature ((F)
--	-----------------	------------	-----------	---------------	-----

					•		-				
Chemicals											
and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
	30%					R to 140			R to 140		
Barium Nitrate Ba(NO ₃) ₂	sat'd	73	180	140	73	140			140		
Barium Sulfate BaSO ₄	sat'd	73	180	140	140	140	140	R to 212	140		
Barium Sulfide BaS	sat'd	73	180	140	140	140	140		R to 248		
Beer		120	180	180	140	R to 140	140	R to 248	R to 140	68	R to 73
Beet Sugar Liquo	ors		180	180	140	73	140		73		
Benzaldehyde C ₆ H ₅ CHO	10%	N	R to 73	73	R to 73	73	C to		73	R to	
	99%										C to 73
Benzene C ₆ H ₆		N	N	N	N	C to 120	N	C to 122	R to 68		
Benzene Sulfonio	10%		180	180	140	R to 73			R to 73		
C ₆ H ₅ SO ₃ H	10%+		N		N						
Benzoic Acid C ₆ H ₅ COOH	all	160	180	73	140	140	140		R to 248		
Benzoyl Chloride	Sat. Sol.							C to 68			
Benzyl Alcohol C ₆ H ₅ CH ₂ OH			N	120	N	140		R to 122	140	R to 68	

	Plastics	at Maximum	Operating	Temperature ((F)
--	-----------------	------------	-----------	---------------	-----

Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF	PEX	PA 11	PK
Benzyl Chloride									R to 140		
Bismuth Carbonate (BiO) ₂ CO	Sat'd.		180	180	140	140	140		140		
Black Liquor	sat'd		180	140	140	120	140		120		
Bleach	5% Active Cl ₂ 12% Active	 73	180 185	120 120	140 140	C to 140 73	 140		C to 140 73		R to 73
	Cl ₂										
Borax Na ₃ B ₄ O ₇ o10H ₂ O	sat'd	160	180	212	140	140	140		140		
Boric Acid H ₃ BO ₃	Sat'd	160	180	212	140	140	140	R to 212	140		
Brake Fluid				140		140			140		
Brine	sat'd		180	140	140	140	140		140		
Bromic Acid HbrO ₃	Sat'd		180	N	140	N	140	R to 212	N		
	10%					140					
Bromine Br ₂	Liquid	73	N	N	N	N	N	R to 248	N	N	
	vapor 25%		180	N	140	N			N		
Bromine Water	cold		180	N	140	N	C to	R to	N		

Plastics at Maximum O	perating Temperature ((F)
-----------------------	------------------------	-----

Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF	PEX	PA 11	PK
	sat'd						73	176			
Bromobenzene C ₆ H ₅ Br					N						
Bromotoluene C ₆ H ₅ CH ₂ B ₂				С	N						
Butadiene	50%		180	N	140	73			73		
H ₂ C: CHHC: CH	₂ Gas							R to 212			
Butane	50%		180	140	140	140	N		140		
C ₄ H ₁₀	Gas							R to 68			
n-Butanol	Liquid							R to 140			R to 73
Butyl Acetate	100%	N	N	C to	N	C to	C to	C to	C to	R to	
CH₃ COOCH (CH	H ₃) (C ₂ H ₅)			73		73	73	104	73	194	
Butyl Alcohol CH ₃ (CH ₂) ₂ CH ₂	 OH		C to 73	180	140	140	140		140	C to 104	
Butyl Cellosolve HOCH ₂ CH ₂ OC ₄	 1 H ₉		N		73						
n-Butyl Chloride C ₄ H ₉ Cl		N	N								
Butyl Glycol	Liquid							R to 212			
Butylene © CH ₃ CH:CHCH ₃	Liquid			N	140	120			120		

Plastics at Maximum	Operating Temperature	(F)
---------------------	-----------------------	-----

		Pla	astics at N	Maximum	Operati:	ng Temp	erature (<u>F)</u>			
Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Butyl Phenol				N	C to	73	73		R to		
C ₄ H ₉ C ₆ H ₉ OH					73				176		
Butyl Phthalate			N	180				R to 140			
Butyl Stearate					73						
Butynediol					73						
HOCH ₂ C:CCH ₂ OH											
Butyric Acid		N	N	180	73	73	73		73		
CH ₃ CH ₂ CH ₂ COOH	1 20%							R to			
								212			
	Liquid							R to	73		
								176			
Cadmium Cyanide Cd(CN) ₂			180		140						
Calcium Bisulfide Ca(HS) ₂ o6H ₂ O			73		N	140			140		
Calcium Bisulfite			180	180	140	N	140		N		
Ca(HSO ₃) ₂	Sat'd							R to			
								248			
Calcium Carbonate	Sat'd		180	180	140	140	140	R to 248	140		
00003								210			
Calcium Chlorate			180	180	140	140	140	R to	140		
Ca(CIO ₃) ₂ o2H ₂ O								248			
Calcium Chloride CaCl ₂	5%										R to 176
	Sat'd	120	180	180	140	140	140	R to	R to	R to	
								248	176	194	

	Plastics	at Maximum	Operating	Temperature ((F)
--	-----------------	------------	-----------	---------------	-----

-							•				
Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Calcium Hydroxide Ca(OH) ₂		160	180	180	140	140	140		140		
Ca(OH)2	2%										R to 73
	30%					R to 140			R to 140		
Calcium Hypochlori	te 30%	160	180	140	140	140	140		140		
Ca(OCI) ₂	Sat'd							C to 212			
Calcium Nitrate			180	180	140	140	140		140		
Ca(NO ₃) ₂	50%					140		R to 212	140		
	Sat'd							R to 176			
Calciuim Oxide CaO			180		140	140			140		
Calcium Sulfate CaSO ₄		100	180	180	140	140	140	R to 212	140		
Calcium Hydrogen Sulphide	>10%							R to 248			
Camphor C ₁₀ H ₁₆ O		N		73	73	73			73		
Cane Sugar Liquors C ₁₂ H ₂₂ O ₁₁	S		180	180	140	140	150		140		
Carbitol			N		73						
Carbon Dioxide	Dry	160	180	140	140	140		R to	140		

Plastics at Max	imum Operating	Temperature (F)
		<u>.</u>	

		P	lastics at	Maximu	m Operat	ing Tem	perature	<u>(F)</u>			
Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
CO ₂	100%							212			
Carbon Dioxide CO ₂	Wet	160	180	140	140	140	140		140		
Carbon Disulfide CS ₂	-	N	N	N	N	C to 140			R to 68	R to 104	
Carbon Monoxide	Gas		180	180	140	140	140	R to 140	140		
Carbon Tetrachlor	ride	N	N	N	73	C to 73	N	C to 212	C to 68	N	R to 73
Carbonic Acid H ₂ CO ₃	Sat'd	185	180	140	140	140			140		
Castor Oil			C to 180	140	140	73	140		73		
Caustic Potash KOH	50%	160	180	180	140	140	73		140		
Caustic Soda NaOH (Sodium Hydroxid	40% le)	160	180	180	140	140	73		140		
Cellosolve CICH ₂ COOH			N	73	73	C to 120	140		C to 120		
Cellosolve Acetate CH ₃ COOCH ₂ CH			N	73	73						
Chloral Hydrate CCL ₃ CH (OH) ₂	All		180	C to 73	140	120	140		120		

Plastics at Maximum	Operating Temperature	(F)
---------------------	-----------------------	-----

Plastics at Maximum Operating Temperature (F)											
Chemicals and											
Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Chloramine	Dilute		N	73	73	73			73		
NH₂ CI											
Chloric Acid	10%		180	73	140	73			73		
HCLO ₃ o7H ₂ O	20%		185	73	140	73			73		
Chlorine Gas	0-20	N	C to	N	C to	C to		R to	C to		
(Moisture Content)	PPM		73		73	73		212	73		
	20-50	N	N	Ν	N	C to			C to		
	PPM					73			73		
	50+	Ν	N	Ν	N	C to		N	C to		
	PPM					73			73		
Chlorine	Liquid	N	N	N	N	N			N		N
Chlorinated Water	10		180	180	140	140	140		140		
	PPM										
Chlorinated Water	Sat'd		180	180	140	C to	140	R to	C to		
						120		212	120		
Chloroacetic Acid	50%	N	180	C to	140	120	N		120		
CH ₂ CICOOH					73						
	>10%							R to			
								140			
Chloroacetyl Chlor	ide				73						
CICH ₂ COCI											
Chlorobenzene	Dry	N	N	73	N	C to	N		C to		
C ₆ H ₅ Cl						75			75		
	Liquid							R to	R to	C to	
								140	68	176	
Chlorobenzyl Chlo	ride		N		N	C to			C to		
CIC ₆ H ₄ CH ₂ CI						120			120		

Plastics at 1	Maximum	Operating	Temperature ((F))

					-		,					
Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK	
Chloroethanol	Liquid							N 122	R to			
Chloroform CHCl ₃	Dry	N	N	N	N	C to 75	C to		C to			
	Liquid							R to 212	N		C to 73	
Chloromethane	Gas							R to 212				
Chloropicrin CCL ₃ NO ₂					N	73			73			
Chlorosulfonic Acid	d		73	N	73	C to	N		C to 120			
	50%							R to 68				
	100%					N			N			
Chromic Acid H ₂ CrO ₄	Sat'd							R to 212				
	10%	73	180	140	140	73	140	R to 212	73	N		
	20%							R to 212				
	25%							R to 212				
	30%	N	180	73	140	73	140	R to 212	73			
	40%	N	180	73	140	73	73	R to 212	73			
	50%	N	C to 140	73	N	73	N	R to 212	73			

Plastics at Maximum Operating Temperature (F)	
<u> </u>	

Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Tornida	Concentation	ADS	CI VC	11	110	T.L.	TB	TVDI	ILX	IAII	T IX
Chromium	>10%							R to			
Potassium Sulfate								212			
CrK(SO ₄) ₂ o12H ₂ C		-		73		73			73		
	Sat'd						R to 212				
Citric Acid	Sat'd	160	180	140	140	140	140	R to	140	C to	
C ₆ H ₈ O ₇								248		140	
Coconut Oil			C to	73	140	73	140	R to	73		
			180					248			
Cod Liver Oil	Work Sol.							R to			
								248			
Coffee			180	140	140	140			140		
Coke Oven Gas				73	140	140			140		
Copper Acetate	Sat'd		73	73	73						
Cu(C ₂ H ₃ O ₂) ₂ oH ₂											
Copper Carbonate CuCO ₃	Sat'd		180		140	140			140		
Guo Os											
Copper Chloride	Sat'd	73	180	140	140	140	140		140		
CuCl ₂											
Copper Cyanide	Sat'd		180		140	140	140	R to	140		
Cu(CN) ₂								212			
Copper Fluoride	2%		180	73	140	140	140		140		
CuF ₂ o2H ₂ O			-	-	-	-	-		-		
O NEW Y	000/		460	4.40	4.40	4.40	4.40				
Copper Nitrate	30%		180	140	140	140	140				

Plastics at Maximum	Operating Temperature ((F)
---------------------	-------------------------	-----

Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF	PEX	PA 11	PK
Cu(NO ₃) ₂ o3H ₂ O	50%							R to 212			
Copper Sulfate CuSO ₄ o5H ₂ O	Sat'd	120	180	120	140	140	140	R to 212	140	R to 194	
Corn Oil			C to 180	73	140	120			120		
Corn Syrup			185	140	140	140			140		
Cottonseed Oil		120	C to 180	140	140	R to 140	140		R to 140		
Creosote			N	73	N	140			140		
Cresol CH ₃ C ₆ H ₄ OH	90%	 N	N N	73 R to 73	N N	140 73	 N	 R to 68	140 73		
Cresol				R to				R to			
Cresol CH ₃ C ₆ H ₄ OH	90%	N	N	R to 73	N	73 C to	N	R to 68	73 C to		
Cresol CH ₃ C ₆ H ₄ OH Cresylic Acid Croton Aldehyde	90%	N 	N 180	R to 73	N 140	73 C to	N	R to 68	73 C to		
Cresol CH ₃ C ₆ H ₄ OH Cresylic Acid Croton Aldehyde	90%	N	N 180 N	R to 73 C to 73	N 140 N	73 C to	N N	R to 68	73 C to 73		
Cresol CH ₃ C ₆ H ₄ OH Cresylic Acid Croton Aldehyde CH ₃ CH:CHCHO	90% 50% Liquid	N	N 180 N C to	R to 73	N 140 N	73 C to 73 C to	N N C to	R to 68 R to 104 R to	73 C to 73 C to	 R to	

Plastics at Maximum Operating Temperature (F)	
* * * * * * * * * * * * * * * * * * *	

Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF	PEX	PA 11	РК
Cupric Sulfate CuSO ₄ o5H ₂ O	Sat'd	100	180	73	140	140					
Cuprous Chloride	Sat'd	70	180		140	140			140		
Cyclohexane C ₆ H ₁₂		73	N	N	N	N		R to 248	N	C to 140	
Cyclohexanol C ₆ H ₁₁ OH		C to 120	N	140	N	73	C to 73	R to 104	73		
Cyclohexanone C ₆ H ₁₀ O	 Liquid	N	N	73	N	120	N	N	C to 176	C to 140	
Detergents (Heavy Duty)			C to 180	180	140	R to 140			R to 140		R to 73
Dextrin (Starch Gum)	Sat'd		180	140	140	140	140		140		
Dextrose	Sat'd		180	140	140	140	140		140		
Diacetone Alcohol			N	120	N					C to 140	
Dibutoxyethyl Ptha				N		N					
n-Dibutyl Ether C ₄ H ₉ OC ₄ H ₉						73			73		
Dibutyl Phthalate C ₆ H ₄ (COOC ₄ H ₉) ₂	N	N	73	N	73			73		

Plastics at Maximum	Operating	Temperature	(F)	
		-		

Chemicals and											
Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Dibutyl Sebacate				73	73	73			73		
C ₄ H ₉ OCO (CH ₂)	8OCOC4 H9										
Dichloroacetic Ac	id 50%							R to 176			
Dichlorobenzene		N	N	C to	N	C to			C to		R to 73
C ₆ H ₄ Cl ₂				73		120			120		
	Liquid							R to 140			
Dichloroethylene			N	C to	N	C to			C to		
C ₂ H ₂ Cl ₂				73		120			120		
	Liquid							R to 248			
Diesel Fuels			C to	140	140	73	C to	R to	73		
			180				73	212			
Diethanolamine	Solid							N			
	20%								R to 194		
Diethylamine C ₄ H ₁₀ NH		N	N		N	C to 120	N	N	C to 120		
Diethyl Ether C ₄ H ₁₀ O		N	N	73	73	C to			C to	140	
Diglycolic Acid	Sat'd		180	140	140	140	140		140		
O(CH ₂ COOH) ₂	10%							R to 140			
Dimethylamine (CH ₃) ₂ NH				73	140	73	N	N	73		

Plastics at Maximum	Operating Temperature ((F)
---------------------	-------------------------	-----

Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF	PEX	PA 11	PK
Dimethyl Formamid HCOH(CH ₃) ₂	e Liquid	N	N 	180	N 	120			120 N		C to 73
Dimethylhydrazine (CH ₃) ₂ NNH ₂					N						
Dimethyl Phthalate			N		 73	C to			C to 73		
Dioctyl Phthalate C ₆ H ₄ (COOC ₈ H ₁₇)	 2	N	N	C to 73	N	73	C to 73		73	140	
Dioxane O:(CH ₂) ₄ :O	 Liquid		N 	C to 140	N 	140		 C to	140		
Diphenyl Oxide (C ₆ H ₅) ₂ O	Sat'd					73		68 	73		
Disodium Phosphat	e		180	140	140	140	140		140		
Dishwashing Liquid (Cascade)											R to 73
Dow Therm A					N						
Ethanol	40%							R to 68			
	95%							R to	R to 140		
	Liquid							R to 122	R to 140		R to 176
Ether		N	N	C to	N	73	N		73		

Plastics at 1	Maximum	Operating	Temperature ((F))

Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
ROR				73							
Ethyl Acetate CH ₃ COOC ₂ H ₅		N	N	C to 140	N	73	C to 73		73	140	R to 73 C to 176
	Liquid							C to 68			
Ethyl Acetoacetate CH ₃ COCH ₂ COOC	 5 ₂ H ₅	N	N		N						
Ethyl Acrylate CH ₂ :CHOOC ₂ H ₅			N		N						
Ethyl Alcohol (Ethanol) C ₂ H ₅ OH			C to 140	140	140	140	140		140	C to 104	R to 176
Ethyl Benzene C ₆ H ₅ C ₂ H ₅				C to 73	N	C to 73					
Ethyl Chloride C ₂ H ₅ Cl	Dry		N	C to 73	N	C to 73			C to		
	Gas							R to 212			
Ethyl Chloroacetate CCH ₂ CICO ₂ C ₂ H ₅	}				N						
Ethyl Ether (C ₂ H ₅) ₂ O	Liquid		N	N	N	N	N	R to 122	R to 68		
Ethylene Bromide BrCH ₂ CH ₂ Br	Dry		N		N		N				
Ethylene Chloride	Dry	N	N	C to	N	C to			C to		

Plastics at Maximum	Operating	Temperature ((F)
		•	

Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
CICH ₂ CH ₂ CL				73		140			140		
Ethylene Chlorohy	drin Liquid		N 	73 	N 		N 	 C to			
								68			
Ethylene Diamine NH ₂ CH ₂ CH ₂ NH ₂		N		73	N	140			140		
Ethylene Dichloride C ₂ H ₄ Cl ₂	e Dry	N	N	C to 140	N	C to 73	140		C to 73		
Ethylene Glycol CH ₂ OHCH ₂ OH	Liquid	73	C to 180	212	140	140	140	R to 212	R to 212		C to 176
Ethylene Oxide CH ₂ CH ₂ O			N	C to 73	N	73			73	C to 140	
2-Ethylhexanol CH ₃ (CH ₂) ₃ CHC ₂	 H₅ CH₂ OH					73			73		
Fatty Acids R-COOH		160	73	120	140	120	150		120	194	
Ferric Chloride (Aqueous) FeCl ₃	Sat'd	120	180	140	140	140	150	R to 212	140		
Ferric Hydroxide Fe(OH) ₃	Sat'd	160	180	140	140	140			140		
Ferric Nitrate Fe(NO ₃) ₃ 9H ₂ O	Sat'd	160	180	140	140	140	140	R to 212	140		
Ferric Sulfate	 Sat'd	160	180	140	140	140	140	 P to	140		
Fe ₂ (SO ₄) ₃	Sat'd							R to			

Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF 212	PEX	PA 11	PK
Ferrous Chloride FeCl ₂	Sat'd	160	180	140	140	140	140	R to 212	140		
Ferrous Hydroxide Fe(OH) ₂	Sat'd	160	180	140	140	140			140		
Ferrous Nitrate		160	180	140	140	140			140		
Ferrous Hydroxide	Sat'd	160	180	140	140	140			140		
Ferrous Nitrate Fe(NO ₃) ₂		160	180	140	140	140			140		
Ferrous Sulfate		160	180	140	140	140	140		140		
	20%										R to 73
	Sat'd							R to 212			
Ferrous Chloride FeCl ₂	Sat'd	160	180	140	140	140	140	R to 212	140		
Fish Oil			180	180	140	140	140		140		
Fluoboric Acid		73	73	140	140	140			140		
HBF ₄	Solid							R to 104			
Fluorine Gas (Dry)	100%		73	N	73	C to 73	C to 73		C to 73	N	

Plastics at Maximum (Operating Temperature (F)
	<u> </u>	= '

Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Fluorine Gas (Wet	·)	N	73	N	73	N	N		N	N	
F ₂											
Fluosilicic Acid H ₂ SiF ₆	25%							R to 212			
	30%		R to 140	140	140	140		R to 212			
	40%							R to 140			
	50%		73	73	140	140	140	R to 212			
	Sat'd							R to 212			
Formaldehyde HCHO	Dilute	160	73	140	140	140	140	R to 176		C to	
	35%	160	C to 73	140	140	140	140		140		
	37%	160	C to 73	140	140	140	140	R to 212	140		
	50%		C to 73		140	140	140		140		
Formic Acid HCOOH		N	C to 73	140	73	140	150		140		
	10%							R to 212	R to 140	N	N
	40%							R to 212	R to 140		
	50%							R to 176	R to 140		
	85%							R to 212			
	100%					140			140		
Freon 11 CCI ₃ F	100%	N	73	N	140	73			73		

Plastics at Maximum Operating Temperature (F)	
<u> </u>	

Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF	PEX	PA 11	PK
Freon 12	100%		73	73	140	73			73	68	
CCI ₂ F ₂	Work. Sol.							R to	R to		
								212	68		
Freon 21	100%			N	N	C to			C to		
CHCl₂F						120			120		
Freon 22	100%		73	73	N	C to			C to	68	
CHCIF ₂						120			120		
Freon 113	100%			N	140	73			73		
$C_2Cl_2F_3$											
Freon 114	100%			N	140	73			73		
C ₂ Cl ₂ F ₄											
Fructose	Sat'd	73	180	180	140	140	140		140		
C ₆ H ₁₂ O ₆											
Fruit Juice	Work. Sol.							R to		104	
								212			
Furfural	100%	N	N	N	N	C to			C to	C to	
C ₄ H ₃ OCHO						140			140	140	
Gallic Acid			73		140	73			73		
C ₆ H ₂ (OH) ₃ CO ₂ H ₀	bH₂ O										
Gasoline, Leaded*		N	N	N	140	73	N		73		
Gasoline, Unleaded	*	N	N	N	140	73	N		73		R to 176
Gasoline (Fuel)								R to 212		R to 160	
Gasohol*		N	N	N	140	73	N		73		

Plastics at Maximum Operating Temperature (F)

Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
1 011110110		125	GI (C		1,0			1,21	12.1	*****	
Gasoline, Sour*		N	N	N	140	C to 73	N		C to 73		
Gelatin			180	180	140	140	140		140		
Glucose		120	180	212	140	140	140		140		
C ₆ H ₁₂ O ₆ oH ₂ O	10%							R to 248			
Glue				140	140	140			140		
Glycerine		140	180	212	140	140	140		140		
C ₃ H ₅ (OH) ₃	Liquid							R to 248			
Glycol OHCH ₂ CH ₂ OH			C to 180	212	140	140			140	C to 140	
Glycolic Acid	Sat'd		180	73	140	140			140		
OHCH₂ COOH	10%							R to 212			
	30%							R to 140			
	65%							R to 212			
Glyoxal CHCCHO						140			140		
Grape Sugar			180		140						
Grapefruit Juice	Work. Sol.							R to 122			
Grease										194	
Green Liquor		160	180		140		140				

Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Heptane (Type 1)		73	180	N	140	73	N		73		
C ₇ H ₁₆	Liquid							R to 212	C to 176		
n-Hexane		С	73	73	73						
C ₆ H ₁₄	Liquid							R to 176			R to 73
Hexanol, Tertiary Type I CH ₃ (CH ₂) ₄ CH ₂ C	 DH		180		140	140	140		140		
Hydraulic Oil (Petroleum)					73	73			73		
Hydrazine H ₂ NNH ₂			N	73	N						
Hydrobromic Acid	20%	73	73	140	140	140	140	R to 212	140		
	50%	N		120		140		R to 140	140		
	66%							R to 212			
Hydrochloric Acid	1%										R to 176
	10%	C to 120	180	140	140	140	140	R to 212	R to 212	C to 104	N
	20%							R to 212	R to 212		
	30%	C to 73	180	140	140	140	140	R to 212	R to 140		
	Conc.								R to 140		

Plastics at Maximum Operating Temperature (F)

Hydrocyanic Acid 160 180 73 140 140 140 140 <
HCN Sat'd R to
Hydrofluoric Acid HF 30% N 73 140 73 140 140 R to 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140
Hydrofluoric Acid HF Annual Market M
Hydrofluoric Acid Dilute 73 73 180 73 140 140 R to 140 140 HF 30% N 73 140 73 140 140 140
Hydrofluoric Acid HF Dilute 73 73 180 73 140 140 R to 212 140 HF 30% N 73 140 73 140 140 140 40% R to 50% N N 73 73 73 120 140 R to 120 60% 140 R to 140
HF 30% N 73 140 73 140 140 140 140 40% 1212 50% N N N 73 73 73 120 140 R to 120 50% N N N 73 73 73 120 140 R to 120 212 60% 140 R to 140
HF 30% N 73 140 73 140 140 140 140 40% 1212 50% N N N 73 73 73 120 140 R to 120 50% N N N 73 73 73 120 140 R to 120 212 60% 140 R to 140
30% N 73 140 73 140 140 140 R to
40% R to 212 50% N N 73 73 120 140 R to 120 212 60% 140 R to 140
50% N N 73 73 120 140 R to 120 212 60% 140 R to 140
50% N N 73 73 120 140 R to 120 212 60% 140 R to 140
60% 140 R to 140
140
70% R to
212
100% N N C to N 120 120
73
Gas R to
104
Hydrofluosilic Acid 50% N 140 140 140 140 140
Hydrogen Gas 73 140 140 140 R to 140 194
Hydrogen Gas 73 140 140 140 140 R to 140 194 248
240
Hydrogen Cyanide 73 140
HCN
Hydrogen Fluoride C 73 N
Anhydrous

Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF	PEX	PA 11	PK
Hydrogen Peroxide	e 3%										R to 73
	10%							R to 212			
	30%							R to 212		C to 104	
	50%		180	73	140	140	N	R to	140		
	90%		180	C to 73	140	73	N		73		
Hydrogen Phosphi (Type I) PH3	de		73		140	140	140		140		
Hydrogen Sulfide H ₂ S	Dry		180	150	140	140	140	R to 248	140		
	Wet		180		140	140			140		
Hydrogen Sulfite H₂SO ₃	10%					140		R to 248	140		
Hydroquinone C ₆ H ₄ (OH) ₂	Sat'd		180		140	140	140			140	
Hydroxylamine Sulfate (NH ₂ OH)oH ₂ SO ₄			180		140	140			140		
Hypochlorous Acid	10%	73	180	73	140	140	140		140		
HOCI	70%							R to 212			
Inks				140		140			140		

Plastics at Maximum	Operating Temperature ((F)
---------------------	-------------------------	-----

Plastics at Maximum Operating Temperature (F)												
Chemicals and												
	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK	
lodine	10%	N	73	73	N	C to	N	R to	C to			
l ₂						120		176	120			
Isobutyl Alcohol		C to	C to	73		140			140			
(CH ₃) ₂ CHCH ₂ OH		73	73									
Isooctane				C to		73			73			
(CH ₃) ₃ CCH ₂ CH(C	H ₃)2			73								
	Liquid							R to 212				
Isopropyl Acetate		N	N			73			73			
CH ₃ COOCH(CH ₃) ₂	2											
Isopropyl Alcohol			C to	212	140	140	140	C to	140		R to 73	
(CH ₃) ₂ CHOH			180					212				
Isopropyl Ether			N	C to	N	73			73			
(CH ₃) ₂ CHOCH(CH	3)2				73							
JP-4 Fuel*			C to	C to	140	73			73			
			73	73								
JP-5 Fuel*			C to	C to	140	73			73			
			73	73								
Kerosene*		73	73	C to	140	C to	C to		C to			
				140		140	73		140			
Ketchup					73							
Ketones		N	N	C to	N	73			73			
-				73					-			
	Work Sol								R to			
								302				
Kraft Liquors		73	180		140	120	140		120			

Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF	PEX	PA 11	PK
Lactic Acid CH ₃ CHOHCOOH	10% I							R to 140			
	20%										R to 73
	25%	73	180	212	140	140	140		140		
	80%	N	C to 180	140	73	140			140		
	Liquid							R to 212		R to 194	
Lard Oil			C to 180		140	C to 120	73		C to 120		
Latex				140		140			140		
Lauric Acid CH ₃ (CH ₂) ₁₀ COC	 DH		180	140	140	120			120		
Lauryl Chloride (Type I) C ₁₂ H ₂₅ Cl			73		140	120	73	R to 248	120		
Lead Acetate Pb(C ₂ H ₃ O ₂) o3H	Sat'd H₂ O		180	180	140	140	140	R to 212	140		
Lead Chloride PBCl ₂			180	140	140	120			120		
Lead Nitrate PB(NO ₃) ₂	Sat'd		180	140	140	120			120		
Lead Sulfate PbSO ₄			180	140	140	120			120		

Plastics at Maximum Operating Temperature ((\mathbf{F}))
---	----------------	---

	Plastics at Maximum Operating Temperature (F)										
Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Lead Tetraethyl								R to 212			
Lemon Oil			N	C to							
Lemon Juice						C to 140			C to 140		
Ligroin				140							
Lime Slurry						140			140		
Lime Sulfur			73	73	73	120	140		120		
Linoleic Acid CH ₃ (CH ₂) ₄ HC: CHCH ₂ CH: CH(CH ₂) ₇ COOH			180	180	140		73				
Linoleic Oil (Type I)					140		73				
Linseed Oil		73	C to 180	140	140	R to 73	73	R to 248	R to 73	194	
Liqueurs				140	140	120	140		120		
Lithium Bromide LiBr				140	140	140			140		
Lithium Chloride LiCl				140	140	120			120		
Lithium Hydroxide	·			140		120			120		

Plastics at Maximum	Operating Temperature ((F)
---------------------	-------------------------	-----

		P	lastics at	Maximu	m Operat	ing Tem	perature	<u>(F)</u>			
Chemicals and											
Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Lubricating Oil			180	C to	140	73	140	R to	73		
(ASTM #1)				140				248			
Lubricating Oil			180	C to	140	73	140		73		
(ASTM #2)				140							
Lubricating Oil			180	C to	140	73	140		73		
(ASTM #3)				140							
Magnesium Carbo	nate	120	180	212	140	140	140	R to	140		
MgCO ₂								212			
Magnesium Chlori	de Sat'd	120	180	140	140	140	140	R to	140		
MgCl2	50%							140 R to		194	
	30 70							212		134	
Magnesium Citrate	e		180		140	140			140		
MgHC ₆ H ₅ O ₇ o5H ₂			100		110	1 10			110		
Magnesium Hydroxide	Sat'd	160	180	180	140	140	140	R to 212	140		
Mg(OH) ₂								212			
								_			
Magnesium Nitrate	e	160	180	212	140	140	140	R to 248	140		
9(. 103)2 0=2 0											
Magnesium Oxide		160									
MgO											
Magnesium Sulfate	e	160	180	212	140	140	140	R to	140		
MgSO ₄ o7H ₂ O								212			
Maleic Acid	Sat'd	160	180	140	140	140	140	R to	140		
HOOCCH:CHCOC								140			
	50%							R to			

Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK	
								212				
	10%							R to				
								140				
Malic Acid			180	140	140	140	140		140			
COOHCH2 CH(OH)COOH												
Manganese Sulfa	ate		180	180	140	140			140			
MnSO ₄ o4H ₂ O												
Margarine	Work. Sol.							R to				
								248				
Mercuric Chloride	e		180	180	140	140	140		140			
HgCl ₂	Sat'd							R to				
								212				
Mercuric Cyanide	e Sat'd		180	140	140	140	140	R to	140			
Hg(CN) ₂								212				
Mercuric Sulfate	Sat'd		180	140	140	140			140			
HgSO₄												
Mercurous Nitrate	e Sat'd		180	140	140	140	140		140			
HgNO ₃ o2H ₂ O												
	10%							R to				
								212				
Mercury	Liquid		180	140	140	140	140	R to	140	194		
Hg								248				
Methane		N	73	73	140	140			140	140		
CH₄												
Methanol			N	180	140	R to	140		R to			
(Methyl Alcohol)						140			140			

Plastics at Maximum	Operating	Temperature ((F)	
		-		

Chemicals and Formula	Consentation	ADC	CDVC	DD	DVC	DE	DD	DVDE	DEV	DA 11	DIZ	
Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK	
CH₃ OH	5%							R to 140				
	Liquid							C to	R to		R to 176	
								176	140			
Methoxyethyl Ole	ate				73							
CH ₃ OCH ₂ CH ₂ OOCC ₁₇ H ₃₃												
Methyl Acetate		N	N	140	N	C to			C to			
CH ₃ CO ₂ CH ₃			14	140		0 10	120		0.10	120		
0.13 002 0.13							.20			.20		
Methyl Acrylate	Tech					140			140			
CH ₂ :CHOOCH ₃	Pure											
Methyl Amine			N	N	N							
CH ₂ NH ₃												
Methyl Bromide			N	N	N	C to			C to	R to		
CH ₃ Br			14	11	14	73			73	68		
0.13 2.						. 0			. 0	00		
Methyl Butyl Keto	ne Liquid							C to				
								122				
Methyl Cellosolve	·		Ν	73	Ν	C to			C to			
HOCH ₂ CH ₂ OCH	l ₃					120			120			
Mail 1011 il	5			.		0.4			0.1	D. (
Methyl Chloride	Dry	N	N	N	N	C to	N		C to	R to		
CH₃ CI						120			120	68		
Methyl Chloroforn	n	N	N	C to	N	C to			C to			
CH₃ Ccl				73		120			120			
-												
Methyl Ethyl Keto	ne 100%	N	Ν	73	N	N	73	C to	R to	C to	R to 73	
(MEK)								68	140	140	C to 176	
CH ₃ COC ₂ H ₅												

	Plastics	at Maximum	Operating	Temperature ((F)
--	-----------------	------------	-----------	---------------	-----

Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Methyl Isobutyl Carbinol			N		N						
(CH ₃) ₂ CHCH ₂ C	H(CH₃)OH										
Methyl Isobutyl Ketone		N	N	73	N	73			73		
(CH ₃) ₂ CHCH ₂ C	OCH₃										
Methyl Isopropyl Ketone CH ₃ COCH(CH ₃)	 2		N		N	73			73		
Methyl Methacryla			N		73	140		R to 68	140		
Methyl Sulfate (CH ₃) ₂ SO ₄			73	C to 73	73	140				68	
Methylene Bromio	de		N	N	N	C to 120			C to 120		
Methylene Chlorid CH ₂ Cl ₂	de 100%		N	N	N	N	73	C to 104	N		C to 176
Methylene Chloro bromide CH ₂ CIBr	ı -		N		N						
Methylene lodide CH ₂ I ₂			N	N	N	C to 120			C to 120		
Methysulfuric Acid	d		180	140	140						

Plastics at Maximum C	Operating Temperature ((F)
-----------------------	-------------------------	-----

Chemicals and		ADG	CDVC	DD.	DVC	DE	DD	DV/DE	DEW	D. 11	DV
Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Milk		160	180	212	140	140	140	R to 212	140	194	
Mineral Oil		73	180	C to 140	140	R to 73	C to 73	R to 212	C to 176		
Molasses			180	140	140	140	140		140		
Monochloroacetic Acid CH ₇ CICOOH	50%			140	140	140			140		
Monochlorobenzen C ₆ H ₅ CI	e Tech Pure		N	73	N	C to 120			C to 120		
Monoethanolamine HOCH ₂ CH ₂ NH ₂					N						
Motor Oil			180	C to 140	140	R to 140			R to 140		
Morpholine C ₄ H ₈ ONH				140		140			140		
Mustard, Aqueous	Work. Sol.							R to 248			
N-methyl Pyrrolido	ne 100%										C to 73
Naphtha			73	73	140	73	73	R to 122	C to 176	R to 140	
Naphthalene C ₁₀ H ₈			N	73	N	73	73		73	R to 194	
Natural Gas		73		73	140	140	73		140		

Plastics at Maximum	Operating	Temperature ((F)	
		-		

Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Nickel Acetate				73		140			140		
Ni(OOCH ₃) ₂ o4H	l ₂ O										
Nickel Chloride	Sat'd	160	180	180	140	140	140	R to	140		
NiCl ₂								212			
Nickel Nitrate	Sat'd	160	180	180	140	140	140	R to	140		
Ni(NO ₃) ₂ 06H ₂ O								248			
Nickel Sulfate	Sat'd	160	180	180	140	140	140	R to	140		
NiSO ₄								212			
Nicotine			180		140	140	140		140		
C ₁₀ H ₁₄ N ₂			100		140	140	140		140		
0101114112											
Nicotinic Acid			180		140	140	140	R to	140		
Csh ₄ NCOOH								212			
Nitric Acid	5%							R to	C to	N	
HNO ₃	10%	C to	180	180	140	73	C to	176 R to	140 C to		
	1070	73	100	100	1 10	70	73	212	140		
	20%							R to	C to		
								212	140		
	25%							R to	C to		
	000/		D .	4.40	4.40	70		212	140		
	30%	N	R to 130	140	140	73	N	R to 212	C to 140		
	35%								C to		
									140		
	40%	N	R to	73	140	73	N	C to	140		
			120					248			
	50%	N	110	N	100	C to	N		140		
						73					

Plastics at Maximum C	Operating Temperature ((F)
-----------------------	-------------------------	-----

		P	lastics at	Maximur	n Operat	ting Tem	perature	<u>(F)</u>			
Chemicals											
and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
	65%							C to			
								248			
	70%	N	100	N	73	C to	N		C to		
						73			73		
	85%							N			
	95%						Ν				
	100%	N	N	N	N	N	N		N		
Nitrobenzene	100%	N	N	C to	N	N		R to	N		
C ₆ H ₅ NO ₂				140				122			
Nitroglycerine					N	73			73		
CH ₂ NO ₃ CHNO ₃ C	CH₂ NO₃										
Nitroglycol					N						
Nitrous Acid	10%		180	C to	140	73			73		
HNO ₂				73							
Nitrous Oxide			73	73	73	73			73		
N₂ O			-	-	-	-					
n-Octane			C to								
CH ₈ H ₁₈			73								
Oleic Acid		160	180	73	140	C to	150	R to	C to	R to	
CH ₃ (CH ₂) ₇ CH:						140		248	140	140	
CH(CH ₂) ₇ COOH											
Oleum		N	N	N	Ν	N	Ν	N	N		
x H ₂ SO ₄ oySO ₃											
O									_		
Olive Oil		160	C to	73	140	140		R to	R to		
			180					248	68		

Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Oxalic Acid	50%	160	180	140	140	140	140		140		
HOOCCOOHo2H₂C) 10%							R to 140		R to 140	
	Sat'd							R to 122			
Oxygen Gas O ₂		160	180	N	140	140		R to 212	140	R to 140	
Ozone			180	C to	140	C to			C to	C to	
O ₃	Sat'd			73		120		R to	120	68	
								68			
Palm Oil				73		140			140		
Palmitic Acid CH ₃ (CH ₂) ₁₄ COOH	10% I	73	73	180	140	120	150		120		
	70%		73	180	73	120			120		
Paraffin		73	180	140	140	C to		R to	C to		
C ₃₆ H ₇₄						140		212	140		
Peanut Oil			C to 180	140				R to 248			
n-Pentane		N	C to	N	C to	C to			C to		
CH ₃ (CH ₂) ₃ CH ₃			180		140	120			120		
Peracetic Acid CH ₃ COOOH	40%	N		73	73						

Plastics at 1	Maximum	Operating	Temperature ((F))

Chemicals and											
Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Perchloric Acid	10%							R to			
(Type I)								212			
HclO ₄	20%							R to			
								212			
Perchloric Acid	15%		180	140	73	140	C to		140		
(Type I)							73				
HclO₄											
Perchloric Acid	70%	73	180	C to	73	73	N	R to	73		
(Type I)				73				212			
HclO ₄											
Perchloroethylene	e	N	C to	C to	C to	C to		C to	C to	C to	
Cl ₂ C:CCl ₂			180	73	140	120		212	120	68	
Perphosphate			73	140	73						
Petroleum Ether								R to			
								212			
Phonol		N	73	73	73	140	73		140	N	
Phenol $C_6 H_5 OH$	 5%	IN	13	73	13	140	73		R to		
O ₆ 115 O11	376								248		
	50%							R to			
	30 %							176			
	Solid							C to			
	Solid							122			
	90%					R to			R to		
	3070		-	-	-	140	-		140		
						170			170		
Phenylhydrazine			N	N	N	C to		R to	C to		
C ₆ H ₅ NHNH ₂						0.0	120		104	120	
-0							0			5	

Plastics at Maximum	Operating Temperature ((F)
---------------------	-------------------------	-----

Chemicals and											
Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Phenylhydrazine	10%							R to			
Hlydrochloride								140			
Dhaanhina	Coo							Dto			
Phosphine	Gas							R to 104			
								104			
Phosphoric Acid	10%		180	212	140	140	140		140		
H ₃ PO ₄											
	50%	73	180	212	140	140	73	R to	140	C to	
								212		104	
	75%							R to			
	85%		180	212	140	73		212 C to	73		
	05 /6		100	212	140	73		284	73		
	98%							R to			
								212			
Phosphoric Anhyo	dride		73	73	73						
$P_2 O_5$											
Phosphorous (Re	ed)				73	140			140		
Phosphorous (Ye	·llow)				73	140			140		
Phosphorous								R to			
Oxychloride	·							68			
Phosphorous Per	ntoxide		73	73	73	140			140		
$P_2 O_5$											
5 1				70		400	0.1	0.4	400		
Phosphorous			N	73	N	120	C to	C to	120		
Trichloride Pcl ₃							73	122			
i Oig											
Photographic Sol	utions		180	140	140	140	140		140		
Phtalic Acid				140	C to	140			140		

Plastics at Maximum Op	perating Temperature	(F)

Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
C ₆ H ₄ (COOH) ₂					140						
4 (1111)	Susp.							R to 212			
Picric Acid C ₆ H ₂ (NO ₂) ₃ OH	10%	N	N	73	N	73	73	R to 212	73	C to	
	50%							R to 212			
	Sat'd.							R to 212			
Pine Oil			N	140		R to 73			R to 73		
Plating Solutions (Brass)			180	140	140	140	C to 73		140		
Plating Solutions (Cadmium)			180	140	140	140	C to 73		140		
Plating Solutions (Chrome)			180	140	140	140	C to 73		140		
Plating Solutions (Copper)			180	140	140	140	C to 73		140		
Plating Solutions (Gold)			180	140	140	140	C to 73		140		
Plating Solutions (Lead)			180	140	140	140	C to 73		140		
Plating Solutions (Nickel)			180	140	140	140	C to 73		140		

Plastics at Maximum C	Operating Temperature ((F)
-----------------------	-------------------------	-----

	Plastics at Maximum Operating Temperature (F)													
Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK			
Plating Solutions (Rhodium)			180	140	140	140	C to 73		140					
Plating Solutions (Silver)			180	140	140	140	C to 73		140					
Plating Solutions (Tin)			180	140	140	140	C to 73		140					
Plating Solutions (Zinc)			180	140	140	140	C to 73		140					
Potash (Aq) KOH	Sat'd		180		140	140			140					
Potassium Alum ALK (SO ₄) ₂ o12H ₂	 · O		180		140	140			140					
Potassium Alumini Sulphate	um		180	180	140		C to 73							
Potassium Amyl Xanthate					73									
Potassium Bicar- bonate KHCO ₃	Sat'd		180	140	140	140	140	R to 212	140					
Potassium Bi- chromate	Sat'd		180	140	140		C to 73	R to 212						
K ₂ Cr ₂ O ₇	40%							R to 212						
Potassium Bisulfat KHSO ₄	re		180	212	140	140		R to 212	140					

Plastics at Maximum C	Operating Temperature ((F)
-----------------------	-------------------------	-----

Plastics at Maximum Operating Temperature (F)												
Chemicals and		ADG	CDVC	DD	DVC	DE	DD	NVDE	DEW	D. 11	DV	
Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK	
Potassium Borate K ₂ B ₄ O ₇ o5H ₂ O			180	140	140	140	140	R to 212	140			
Potassium Bromate KbrO ₃	e		180	212	140	140	140	R to 212	140			
	10%								R to 212			
Potassium Bromide Kbr)		180	212	140	140	140	R to 248	140			
Potassium Carbona K ₂ CO ₃	ate	73	180	180	140	140	140	N	140			
Potassium Chlorate KCIO ₃ (Aqueous)	e	160	180	212	140	140	140	N	140			
Potassium Chloride Kcl)	160	180	212	140	140	140	R to 212	140			
Potassium Chroma K ₂ CrO ₄	ite		180	212	140	140	140		140			
Potassium Cyanide KCN	·		180	180	140	140	140	R to 212	140			
Potassium Dichromate K ₂ Cr ₂ O ₇	Sat'd		180	180	140	140	140		140			
Potassium Ethyl Xanthate KS ₂ COC ₂ H ₅					73							
Potassium			180	180	140	140	140	R to	140			

Plastics at 1	Maximum	Operating	Temperature ((F))

Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF	PEX	PA 11	PK
Ferricyanide K ₃ Fe(CN) ₆								248			
Potassium Ferroycanide K ₄ Fe(CN) ₆ o3H ₂ O			180	180	140	140		R to 248	140		
Potassium Fluoride KF			180	180	140	140	140	R to 212	140		
Potassium Hydroxid KOH	e 4%							C to 104			
	10%							R to 176			
	20%							R to 176			
				0.40	4.40	D .	4.40		Б.		
	25%	160	180	212	140	R to 140	140		R to 140		
	25% 45%	160 	180 		140 						R to 73
						140			140		
Potassium hydrogen Sulphite	45% 50%					140		 R to	140	 C to	R to 73
	45% 50%					140		 R to 176 R to	140	 C to 104	R to 73
Sulphite Potassium	45% 50% 10% Sat'd					140		 R to 176 R to 140 R to	140	 C to 104	R to 73
Sulphite	45% 50% 10% Sat'd					140		 R to 176 R to 140 R to 212	140	 C to 104	R to 73
Sulphite Potassium Hyprochlorite	45% 50% 10% Sat'd					140		R to 176 R to 140 R to 212	140	 C to 104 	R to 73

Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
KNO₃	50%							R to 212		104	
Potassium Orthophosphate	Sat'd							R to 212			
Potassium Perbor	ate		180	140	140	140	140		140		
Potassium Perchlo	orate		180	140	140	140	140		140		
Potassium Permanganate	10%		180	73	140	140	140	R to	140 176		
KmnO₄	20%							R to 212			
	25%		180	73	73	140			140		
	30%							R to 212			
	Sat'd							R to 212			
Potassium Persulf	fate		180	140	140	140	140	R to 176	140		
Potassium Sulfate	·	160	180	180	140	140	140	R to 212	140	194	
Potassium Sulfide	·		180	140		140	140	68	140		
Potassium Sulfite K ₂ SO ₃ o2H ₂ O			180	140		140			140		
Propane C ₃ H ₈			73	73	140	140	73	R to 248	140	140	

	Plastics	at Maximum	Operating	Temperature ((F)
--	-----------------	------------	-----------	---------------	-----

Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF	PEX	PA 11	PK
Propargyl Alochol HC:CCH₂ OH			C to	140 180	140	140	140		140		
Propionic Acid CH ₃ CH ₂ CO ₂ H		N	N	140		140		R to 140	140		
Propyl Alcohol (Type I) CH ₃ CH ₂ CH ₂ OH		73	C to 73	140	140	R to 140	140	R to 122	R to 140		
Propylene Carbona	ate 100%										R to 73
Propylene Dichlorio	de 100		N	N	N	N			N		
Propylene Oxide CH ₃ CHCH ₂ O			N	73	N	140			140		
Pyridine N(CH) ₄ CH			N	C to 140	N	73		R to 68	73	C to 68	
Pyrogallic Acid C ₆ H ₃ (OH) ₃					73						
Quinone C ₆ H ₄ O ₂				140		140			140		
Rayon Coagulating	3		180		140	140	140		140		
Salicylaldehyde C ₆ H ₄ OHCHO				73	N	120			120		
Salicylic Acid C ₆ H ₄ (OH)(COOH					140	140	140	 212	R to	140	

	Plastics	at Maximum	Operating	Temperature ((F)
--	-----------------	------------	-----------	---------------	-----

					•							
Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF	PEX	PA 11	PK	
Selenic Acid Aq. H ₂ SeO ₄			180		140	140	140		140			
Silicic Acid SiO ₂ onH ₂ O			180	140	140	140	140	R to 212	140			
Silicone Oil Silver Acetate	 Sat'd		180	212	73 	73 		 R to 212	73 			
Silver Chloride AgCl		160	180	140	140							
Silver Cyanide AgCN			180	180	140	140	140	R to 212	140			
Silver Nitrate AgNO ₃		160	180	180	140	R to 140	C to 73		R to 140			
	50%							R to 212				
Silver Sulfate Ag ₂ SO ₄			160	180	140	140	140 73	C to		140		
Soaps		73	180	140	140	R to 140	140		R to 140			
Sodium Acetate NaC ₂ H ₃ O ₂	Sat'd		180	212	140	140	140	R to 212	140			
Sodium Alum AlNa(SO ₄) ₂ o12H ₂	 O		180		140							
Sodium Aluminate Na ₂ Al ₂ O ₃	Sat'd				140							

Plastics at Maximum Operating Temperature (F)	
<u> </u>	

Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF	PEX	PA 11	PK
Sodium Benzoate			180	140	140	140	140		140		
C ₆ H ₅ COONa	35%							R to 68			
	50%							R to 212			
Sodium Bicarbona NaHCO ₃	ate	73	180	212	140	140	140	R to 212	140		
Sodium Bichroma	te Sat'd		180		140						
Na ₂ Cr ₂ O ₇ o2H ₂ C	O 50%							R to 212			
Sodium Bisulfate		73	180	140	140	140	140		140		
NaHSO₄	50%							R to 212			
Sodium Bisulfite NaHSO ₃			180	140	140	140			140		
Sodium Borate (Borax) Na ₂ B ₄ O ₇ o10H ₂ (Sat'd	160	180	180	140	140	140		140		
Sodium Bromide	Sat'd	120	180	140	140	140	140		140		
NaBr	50%							R to 248			
Sodium Carbonate	e	73	180	212	140	140	140	N	140	R to 140	
Sodium Chlorate NaClO ₃	Sat'd		180	140	73	140	140	N	140		

Plastics at Maximum	Operating	Temperature ((F)
		*	

Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Sodium Chloride		120	180	212	140	140	140		140		
NaCl	Sat'd							R to		194	
	10%							R to 212			R to 176
Sodium Chlorite NaClO ₂	25%		180	73	N	140			140		
Sodium Chromate Na ₂ CrO ₄ o10H ₂ O		120	180	140		140		R to 176	140		
Sodium Cyanide NaCN			180	180	140	140	140	R to 212	140		
Sodium Dichromate Na ₂ Cr ₂ O ₇ o2H ₂ O	20%		180	180	140	140	140		140		
Sodium Ferricyanide Na ₃ Fe(CN) ₆ o2H ₂ O			180	140	140	140	140		140		
Sodium Ferrocyanid Na ₃ Fe(CN) ₆ o10H ₂ (180	140	140	140	140		140		
Sodium Fluoride NaF		120	180	180	140	140	140	R to 212	140		
Sodium Hydrogen Sulphite	50%							R to 212			
Sodium Hydroxide NaOH	1%								R to 140		
	5%							C to			
	15%	120	180	212	140	140	140	68	R to 140		

Plastics at Maximum	Operating	Temperature	(F)
		-	

Chemicals and											
Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
	30%	120	180	212	140	R to 140	140	N	R to 140		
	40%								R to		
	50%	120	180	212	140	140	140		140 140	C to	
	60%								R to	104	
	70%	120	180	212	140	140	140		140 140		
Sodium Hypoch	llorite	120	180	73	73	140	140		140		N
NaOClo5H₂ O	2% CI							R to 212			
	12.5% CI							R to 68			
Sodium Iodide Nal			180		140						
Sodium Metaph (NaPO ₃)n	osphate		180	120	140						
Sodium Nitrate NaNO ₃	Sat'd	160	180	180	140	140	140	R to 212	140		
Sodium Nitrite NaNO ₂		160	180	73	140	140	140	R to 212	140		
Sodium Palmitra CH ₃ (CH ₂) ₁₄ CC			180	140	140						
Sodium Perbora NaBO ₂ o3H ₂ O	ate	120	180	73	140	73			73		

Plastics at Maximum C	Operating Temperature ((F)
-----------------------	-------------------------	-----

Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Sodium Perchlorate	e		180	212	140	140			140		
NaClO ₄											
Sodium Peroxide	10%		180		140	140			140		
Na ₂ O ₂											
Sodium Phosphate	Acid	120	180	212	140	140	140	R to	140		
NaH ₂ PO ₄								140			
	Alkaline		120	180	212	140	140		140		
	Neutral		120	180	212	140	140		R to		
									212		
Sodium Silicate			180	140	140	140	140		140		
2Na ₂ OoSiO ₂	10%							R to			
								140			
	50%							R to			
								212			
Sodium Sulfate	Sat'd	160	180	212	140	140	140	R to			
Na ₂ SO ₄								212			
	0.1%							R to			
								140			
Sodium Sulfide	Sat'd	160	180	212	140	140	140		140	C to	
Na ₂ S										104	
Sodium Sulfite	Sat'd	160	180	212	140	140	140	R to	140		
Na ₂ SO ₃								212			
Sodium Thiosulpha	ate		180	180	140	140	140		140		
Na ₂ S ₂ O ₃ 05H ₂ O	50%							R to			
								248			
Sour Crude Oil				140	140						

Plastics at Maximum	Operating Temperature	(F)
---------------------	-----------------------	-----

Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Soybean Oil				73		140			140		
Stannic Chloride SnCl ₄	Sat'd		180	140	140	140	140		140		
Stannous Chloride	e 15%	120	180	140	140	140	140		140		
SNCl ₂	Sat'd					140			140		
Starch			180	140	140	140			140		
Starch Solution	Sat'd					140			140		
Stearic Acid CH ₃ (CH ₂) ₁₆ COOH	 I		180	73	140	120	150		120	C to 194	
	100%					R to 120			R to 120		
Stoddard's Solver	nt		N		N	73	140		73		
Styrene (C ₆ H ₅ CHCH ₂)n				73		C to 73			C to 73	R to 104	
Succinic Acid CO ₂ H(CH ₂) ₂ CO ₂ H	 I		180	140	140	140			140		
Sugar C ₆ H ₁₂ O ₆	Aq.		180		140	140			140		
Sulfamic Acid HSO ₃ NH ₂	20%		N	180	N						
Sulfate Liquors (Oil)	6%		180	140	140						
Sulfite Liquors	6%	73	180		140	140					
Sulfur			180	212	140	140	140			104	

Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
S											
Sulfur Chloride S ₂ Cl				C to 73							
Sulfur Dioxide	Gas	N	73	140	140	140			140		
SO ₂	Dry										
Sulfur Dioxide	Gas Wet	N	N	140	73	120	73	N	120		
Sulfur Trioxide	Gas				140	N		N	N	C to	
SO ₃	Dry									68	
Sulfur Trioxide SO ₃	Gas		N		73	N		N			
Sulfuric Acid H ₂ SO ₄	5%										R to 73
									_		
	30%	120	180	180	140	140	140	R to 248	R to 140		N
	30% 50%	120 73	180	180	140 140	140 120	C to	248 R to	140 R to		N
								248	140		
	50%	73	180	140	140	120	C to 73	248 R to 212	140 R to		
	50%	73 C to 73 C to	180	140	140	120 120 R to	C to 73 C to C to	248 R to 212 R to	140 R to		
	50% 60% 70%	73 C to 73 C to 73	180 180 180	140 73 73	140 140 140	120 120 R to 120	C to 73 C to 73 C to 73	248 R to 212 R to 248	140 R to 140		
	50% 60%	73 C to 73 C to 73 C to	180 180	140 73	140 140	120 120 R to 120 R to	C to 73 C to C to	248 R to 212 R to 248 C to	140 R to 140		
	50% 60% 70% 80%	73 C to 73 C to 73 C to 73	180 180 180	140737373	140 140 140 140	120 120 R to 120 R to 120	C to 73 C to 73 C to 73 N	248 R to 212 R to 248 C to 248	140 R to 140 		
	50% 60% 70%	73 C to 73 C to 73 C to 73 C to	180 180 180	140 73 73	140 140 140	120 120 R to 120 R to	C to 73 C to 73 C to 73	248 R to 212 R to 248 C to 248 R to	140 R to 140 		
	50% 60% 70% 80%	73 C to	180 180 180 180	14073737373	140 140 140 140 73	120 120 R to 120 R to 120 120	C to 73 C to 73 C to 73 N	248 R to 212 R to 248 C to 248 R to 212	140 R to 140 		
	50% 60% 70% 80%	73 C to 73 C to 73 C to 73 C to	180 180 180	140 73 73 73 C to	140 140 140 140	120 120 R to 120 R to 120 120 C to	C to 73 C to 73 C to 73 N	248 R to 212 R to 248 C to 248 R to	140 R to 140		
	50% 60% 70% 80%	73 C to 73 C to 73 C to 73 C to 73 N	180 180 180 180	14073737373	140 140 140 140 73	120 120 R to 120 R to 120 120	C to 73 C to 73 C to 73 N	248 R to 212 R to 248 C to 248 R to 212	140 R to 140		
	50% 60% 70% 80% 90%	73 C to	180 180 180 180 150	140 73 73 73 C to 73	140 140 140 140 73 73	120 120 R to 120 R to 120 120 C to 73	C to 73 C to 73 N N	248 R to 212 R to 248 C to 248 R to 212	140 R to 140		

Plastics at Maximum C	Operating Temperature ((F)
-----------------------	-------------------------	-----

		P	lastics at	Maximu	m Operat	ing Tem	perature	<u>(F)</u>			
Chemicals and											
	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
				73		73				194	
Sulfurous Acid H ₂ SO ₃			180	140	140	140	140	R to 212	140		
Tall Oil			C to 180	180	140	120			120		
Tannic Acid C ₇₆ H ₅₂ O46	10%	N	180	73	140	140	140	R to 212	140		
	Sat'd							R to 212			
Tanning Liquors		160	180	73	140	120	140		120		
Tar			N		N						
Tartaric Acid HOOC(CHOH)₂CO	 OH	160	180	140	140	140	140	R to	140 248		
	Sat'd							R to 248	R to 176	R to 194	
Terpineol C ₁₀ H ₁₇ OH					C to 140						
Tetrachloroethane CHCl ₂ CHCl ₂				C to 73	C to 140	C to 120			C to 120		
Tetrachloroethylene	·	N	N	C to 73							
Tetraethyl Lead Pb(C ₂ H ₅) ₄			73	73	73					68	
Tetrahydrofuran C ₄ H ₈ O		N	N	C to	N	C to 73	C to 73	C to 68	N		

Plastics at Maximum Operating Temperature (F)	
<u> </u>	

Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF	PEX	PA 11	PK
Tetralin			N	N	N	N			N		
$C_{10}H_{12}$											
Tetra Sodium			180		140						
Pyrophosphate N94Pzo ₇ o10H ₂ O											
Thionyl Chloride SOCl ₂			N	N	N	N	140	N	N		
Thread Cutting Oil	ls		73	73	73						
Tin (II) Chloride								R to 212			
Tin (IV) Chloride								R to 212			
Titanium Tetrachlo	oride			140	C to 73	120			120		
Toluene (Toluol)		N	N	C to	N	C to	N		C to	R to	R to 73
Ch ₃ C ₆ H ₅				73		120			120	140	
Tomato Juice			180	212	140	140			140		
Transformer Oil			180	73	140	C to			C to 120		
Transformer Oil			180		140	R to			R to		
DTE/30				0.45	70	120			120		
Tributyl Citrate				C to 73	73	C to 120			C to 120		
Tributyl Phosphate	e		N	C to	N	73			73	R to	
(C ₄ H ₉)PO ₄				140						194	

Plastic	s at Maximum (Operating	Temperature	(F)	1
			-		-

	Plastics at Maximum Operating Temperature (F)										
Chemicals and											
Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Trichloroacetic Aci	d 50%			140	140	140		R to	140		
Ccl₃COOH								104			
	10%					140			140		
Trichlorobenzene								R to			
								140			
Trichloroethane											R to 122
Trichloroethylene		N	N	N	N	C to	N	R to	C to	C to	R to176
CHCI:CCI ₂						120		176	68	68	
Triethanolamine		C to	73	140	73	73	73	C to	73		
(HOCH ₂ CH ₂) ₃ N		73						104			
Triethylamine				N	140	73			73		
$(C_2H_5)_3N$											
Trimethylpropane				140	73	C to			C to		
(CH ₂ OH) ₃ C ₃ H ₅						120			120		
Trisodium Phospha	ate	73	180	140	140	140	140		140		
NaPO₄o12H₂O											
Turpentine		N	N	N	140	C to	C to		C to	R to	
						120	73		120	140	
Urea			180	180	140	140	140		140		
CO(NH ₂) ₂	10%							R to			
								212			
	Sat'd							R to		C to	
								176		140	
Urine		160	180	180	140	140	140		140		
Vaseline			N	140	N	120			120		
(Petroleum Jelly)											

Plastics at Maximum Ope	erating Temperature ((F)
*		_

Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Vegetable Oil			C to	140	140	R to		R to	R to		
			180			140		248	140		
Vinegar		73	150	140	140	140	140		140	194	
Vinyl Acetate			N	73	N	140		C to	140		
CH ₃ COOCH:CH ₂								68			
Water, Acid Mine		160	180	140	140	140	180		140		194
H₂O											
Water, Deionized		160	180	140	140	140	180		140	194	176
H₂O											
Water, Distilled		160	180	212	140	140	180	R to	140	194	
H₂O								248			
Water, Potable		160	180	212	140	140	180	R to	140	194	
H₂O								248			
Water, Salt		160	180	212	140	140	180		140	194	
H ₂ O											
Water, Sea		160	180	212	140	140	180	R to	140	194	R to 176
H ₂ O								248			
Water, Soft		160	180	212	140	140	180		140	194	
H ₂ O											
Water, Waste		73	180	212	140	140	180		140	194	
H ₂ O											
Whiskey			180	140	140	140	140	R to	140		
								212			

Plastics at Maximum Operating Te	emperature (F)
•	

Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK	
White Liquor		73	180		140							
Willie Elquoi		70	100		140							
Wine		73	180	140	140	140	140	R to 248	140			
Wines and Spirits								R to 212				
Xylene (Xylol) C ₆ H ₄ (CH ₃) ₂		N	N	N	N	N	N	C to 140	N	C to 194		
Zinc Acetate Zn(C ₂ H ₃ O ₂) ₂ o2H ₂ O			180									
Zinc Carbonate ZnCO ₃			180	140		140		R to 212	140			
Zinc Chloride ZnCl ₂		120	180	180	140	140			140			
	50%									C to 73		
	Sat'd							R to 212				
Zinc Nitrate		160	180	180	140	140	140		140			
Zn(NO ₃) ₂ o6H ₂ O	Sat'd							R to 212				
Zinc Oxide								R to 212				
Zinc Stearate								R to 122				
Zinc Sulfate		160	180	212	140	140	140		140			
ZnSO ₄ o7H ₂ O	5	Sat'd							R to			

_	Plastics at Maximum Operating Temperature (F)											
Chemicals and Formula	Concentration	ABS	CPVC	PP	PVC	PE	РВ	PVDF	PEX	PA 11	PK	
								212				