

Spatial Transcriptomic Data

2022-01-09

- 01) Introduction of STD
- 02 ClusterMap
- 03 Summary and weekly plan

3 main steps for RNA-seq:

- 1. prepare a sequencing library
- 2. sequence
- 3. data analysis

https://www.bilibili.com/video/BV12441167CF?from = search&seid = 12980852241798912825&spm_id_from = 333.337.0.0

Preparing an RNA-seq library

index; sequencing; ' +'; quality score

Preprocession

Filter out garbage reads

Garbage reads are:

- 1. Reads with low quality base calls
- 2. Reads that are clearly artifacts of chemistry

Align the high quality reads to a genome

https://www.bilibili.com/video/BV12441167CF?from = search&seid = 12980852241798912825&spm_id_from = 333.337.0.0

Count the number of reads per gene

Gene	Sample1	Sample2	Sample3
A1BG	30	5	13
A1BG-AS1	24	10	18
A1CF	0	0	0
A2M	5	9	7
A2M-AS1	3563	5771	4123
A2ML1	13	8	7

STD: Data structure

https://doi.org/10.1038/s41467-021-26044-x

Gene type & Coordinate

How to get 2D(3D) coodinate:

- 1. spatial barcoding
- 2. in situ hybridization
- 3. in situ sequenceing

Method	Туре	Resolution	Genes	Reference
Visium	Spatial barcoding	55μm	Whole transcriptome	(16)
Slide-seq	Spatial barcoding	10μm	Whole transcriptome	(17, 18)
HDST	Spatial barcoding	2µт	Whole transcriptome	(19)
DBiT-Seq	Spatial barcoding	10μm	Whole transcriptome	(20)
Seq-scope	Spatial barcoding	0.6µm	Whole transcriptome	(21)
Stereo-seq	Spatial barcoding	500nm	Whole transcriptome	(22)
seqFISH	in situ hybridization	single- molecule	>10,000	(23, 24)
merFISH	in situ hybridization	single- molecule	100 – 1,000	(25, 26)
STARmap	in situ sequencing	single-cell	160 - 1020	(27)
FISSEQ	in situ sequencing	subcellular	~ 8000	(28)

http://arxiv.org/abs /2110.07787

STD: Data analysis

data filter

- 1. genes and cells may be filtered based on threshold specific to the dataset.
- 2. gene expression per cell may be normalized to have the same total library size so that expression levels are comparable across cells.

analysis and visualization in expression domain

A first step in the spatial transcriptomic analysis is to identify the cell type (for datasets of single-cell resolution) or cell mixture (for datasets of multicellular resolution) of each spatial unit or spot. Cell type identification usually starts with dimensionality reduction technique to reduce time and space complexity for downstream analysis. The reduced representations are used to cluster cells based on the assumption that cell of the same type falls into the same cluster.

Clustering

Agglomerative clustering: a class of methods that iteratively aggregate data points into clusters.

Identification of cell types

http://arxiv.org/abs/2110.07787

STD: Data analysis

Data analysis:

- 1. Clustering and cell type identification
- 2. Spatial gene and spatial domain identification
- 3. Cell signaling and gene-gene interation

Density peak clustering (DPC)

When applied to Molecular Dynamics trajectories, the results are coherent with a much more complex kinetic model, even when employing different similarity measures like RMSD or Dihedral distance.

k-NN by ρ

$$\rho_i = \sum \chi \left(d_{ij} - d_c \right)$$

$$\chi(x) = \begin{cases} 1 & \text{if } x < 0 \\ 0 & \text{if } otherwise \end{cases}$$

$$\delta_i = \min_{j: \rho_j > \rho_i} (d_{ij})$$

https://people.sissa.it/~laio/Res earch/Res clustering.php

Integration of the physical and NGC coordinate

$$P(i) = \langle x_i, y_i, (z_i) \rangle \tag{6}$$

$$NGC(i) = \langle Num_{Gene\ 1}, Num_{Gene\ 2}, \dots, Num_{Gene\ t}, \dots, Num_{Gene\ T} \rangle$$
 (7)

$$d_{ij} = \frac{Distance\{P(i), P(j)\}}{SpearmanCorr\{NGC(i), NGC(j)\}}$$

$$\rho_i = \sum_{i} I(d_{ij} - d_{\max})^* e^{-(d_{ij}/R)^2}$$
(4)

$$\delta_i = \min(d_{ij}), \ j: \rho_i > \rho_i \tag{5}$$

https://github.com/wanglabbroad/ClusterMap