Escola Superior de Agricultura "Luiz de Queiroz" Universidade de São Paulo

Regressão Polinomial e Análise da Variância

Piracicaba Setembro 2015

Vimos que...

Exemplos: Variedades de milho,

Tratamentos { qualitativos. Exemplos: Variedades de milho clones de eucalípto, raça, etc. quantitativos. Exemplos: Nível de adubação, época de semeadura, quantida época de semeadura, quantidade de água, teor de nutriente no solo, etc.

Ragazzi (1979) utilizou um experimento inteiramente casualizado com quatro repetições para estudar o efeito de 7 doses de gesso: 0, 50, 100, 150, 200, 250 e 300 kg/ha sobre diversas características do feijoeiro. Para a característica peso de 1000 sementes, obteve os resultados apresentados na Tabela 1.

Tabela: Peso de 1000 sementes de feijão, em g, em função da dose de gesso, em kg/ha

Dose	Peso d	le 1000 s	sementes	, em g
0	134,8	139,7	147,6	132,3
50	161,7	157,7	150,3	144,7
100	160,7	172,7	163,4	161,3
150	169,8	168,2	160,7	161,0
200	165,7	160,0	158,2	151,0
250	171,8	157,3	150,4	160,4
300	154,5	160,4	148,8	154,0
				40145

Figura: Peso de 1000 sementes de feijão, em g, em função da dose de gesso, em kg/ha

Tabela: Quadro da análise da variância

Fonte de Variação	gl	SQ	QM	F	Pr>Fc
Doses	6	1941,83	323,64	7,67	0,00018763
Resíduo	21	886,34	42,21		
Total	27	2828,17			

 $H_0: \mu_{D0} = \mu_{D1} = \mu_{D2} = \ldots = \mu_{D6}$

 H_1 : pelo menos duas médias diferem entre si.

Tabela: Quadro da análise da variância

Fonte de Variação	gl	SQ	QM	F	Pr>Fc
Doses	6	1941,83	323,64	7,67	0,00018763
Resíduo	21	886,34	42,21		
Total	27	2828,17			

H₁: pelo menos duas médias diferem entre si.

Há efeito de Dose

Relação funcional

Fatores quantitativos \Rightarrow Relação funcional entre a variável resposta (y) e os níveis desses fatores (x).

Modelo

$$y = f(x) + \epsilon$$
,

em que f(x) é uma função desconhecida.

Objetivos:

- Obter uma função que represente f(x) aproximadamente;
- Obter o nível de x que leva à máxima/mínima resposta;
- ...

Relação funcional

Função Polinomial de grau p

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \ldots + \beta_p x^p + \epsilon$$

Características:

- Fácil ajuste;
- Interpretação limitada ao intervalo de estudo;

Falta de Ajuste

Mais de uma observação da variável resposta por nível do fator

Verificação da Falta de Ajuste

Falta de Ajuste = Desvios de Regressão

Polinômio

Se I é o número de níveis do fator quantitativo

Ajuste de um polinômio de no máximo grau (I-1)

No exemplo

l=7 doses de gesso, 0, 50, 100, 150, 200, 250 e 300. Logo podemos ajustar um polinômio de grau no máximo 6.

Não há efeito de dose!

$$\beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 x^4 + \beta_5 x^5 + \beta_6 x^6$$

modelo ajustado

termos que podemos adicionar no modelo

$$\underbrace{\beta_0 + \beta_1 x}_{} + \underbrace{\beta_2 x^2 + \beta_3 x^3 + \beta_4 x^4 + \beta_5 x^5 + \beta_6 x^6}_{\text{Desvios de Regressão}}$$

Causas de Variação	gl
Doses	6
Regressão Linear	1
Desvios de Regressão	5
Resíduo	21
Total	27

Hipóteses:

• Regressão Linear

 $H_0: \beta_1 = 0 | \beta_0$ está no modelo $H_1: \beta_1 \neq 0 | \beta_0$ está no modelo

$$\underbrace{\beta_0 + \beta_1 x}_{} + \underbrace{\beta_2 x^2 + \beta_3 x^3 + \beta_4 x^4 + \beta_5 x^5 + \beta_6 x^6}_{\text{Desvios de Regressão}}$$

Causas de Variação	gl
Doses	6
Regressão Linear	1
Desvios de Regressão	5
Resíduo	21
Total	27

Hipóteses:

Desvios de Regressão

 $H_0: \beta_2, \beta_3, \beta_4, \beta_5, \beta_6 = 0 | \beta_0, \beta_1$ estão no modelo

 $H_1: \beta_k \neq 0 | \beta_0, \beta_1$ estão no modelo, para algum $k = 2, \dots, 6$

$$\underbrace{\beta_0 + \beta_1 x + \beta_2 x^2}_{} + \underbrace{\beta_3 x^3 + \beta_4 x^4 + \beta_5 x^5 + \beta_6 x^6}_{}$$

modelo ajustado

termos que podemos adicionar no modelo

$$\underbrace{\beta_0 + \beta_1 x + \beta_2 x^2}_{\text{modelo quadrático}} + \underbrace{\beta_3 x^3 + \beta_4 x^4 + \beta_5 x^5 + \beta_6 x^6}_{\text{desvios de regressão}}$$

Causas de Variação	gl
Doses	6
Regressão Linear	1
Regressão Quadrática	1
Desvios de Regressão	4
Resíduo	21
Total	27

Hipóteses:

Regressão Quadrática

 $H_0: \beta_2 = 0 | \beta_0, \beta_1$ estão no modelo $H_1: \beta_2 \neq 0 | \beta_0, \beta_1$ estão no modelo

$$\underbrace{\beta_0 + \beta_1 x + \beta_2 x^2}_{\text{modelo quadrático}} + \underbrace{\beta_3 x^3 + \beta_4 x^4 + \beta_5 x^5 + \beta_6 x^6}_{\text{desvios de regressão}}$$

gl
6
1
1
4
21
27

Hipóteses:

• Desvios de Regressão

 $H_0: eta_3, eta_4, eta_5, eta_6 = 0 | eta_0, eta_1, eta_2$ estão no modelo

 $H_1: eta_k
eq 0 | eta_0, eta_1, eta_2$ estão no modelo, para algum $k=3,\ldots,6$

Procedimento...

- Se Desvios de Regressão for não significativo ⇒ verificar a significância da Regressão Quadrática;
- Se Desvios de Regressão for significativo ⇒ continuar "procurando" o modelo.

$$\beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 x^4 + \beta_5 x^5 + \beta_6 x^6$$

ajustado termos que podemos adicionar no modelo

$$\underbrace{\beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3}_{\text{modelo cúbico}} + \underbrace{\beta_4 x^4 + \beta_5 x^5 + \beta_6 x^6}_{\text{desvios de regressão}}$$

Causas de Variação	gl
Doses	6
Regressão Linear	1
Regressão Quadrática	1
Regressão Cúbica	1
Desvios de Regressão	3
Resíduo	21
Total	27

Hipóteses:

Regressão Cúbica

 $H_0: \beta_3 = 0 | \beta_0, \beta_1, \beta_2$ estão no modelo $H_1: \beta_3 \neq 0 | \beta_0, \beta_1, \beta_2$ estão no modelo

$$\underbrace{\beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3}_{\text{modelo cúbico}} + \underbrace{\beta_4 x^4 + \beta_5 x^5 + \beta_6 x^6}_{\text{desvios de regressão}}$$

Causas de Variação	gl
Doses	6
Regressão Linear	1
Regressão Quadrática	1
Regressão Cúbica	1
Desvios de Regressão	3
Resíduo	21
Total	27

Hipóteses:

Desvios de Regressão

 $H_0: \beta_4, \beta_5, \beta_6 = 0 | \beta_0, \beta_1, \beta_2, \beta_3$ estão no modelo

 $H_1: \beta_k \neq 0 | \beta_0, \beta_1, \beta_2, \beta_3$ estão no modelo, para algum k=4,5,6

$$\underbrace{\beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 x^4}_{\text{ajustado}} + \underbrace{\beta_5 x^5 + \beta_6 x^6}_{\text{podemos adicionar}}$$

$$\underbrace{\beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 x^4 + \beta_5 x^5}_{\text{ajustado}} + \underbrace{\beta_6 x^6}_{\text{podemos adicionar}}$$

$$\underbrace{\beta_{0} + \beta_{1}x + \beta_{2}x^{2} + \beta_{3}x^{3} + \beta_{4}x^{4} + \beta_{5}x^{5} + \beta_{6}x^{6}}_{\text{ajustado}}$$

Mais de uma observação da variável resposta por nível do fator

Verificação da Falta de Ajuste

$$\beta_0 + \beta_1 x + \beta_2 x^2 + \ldots + \beta_p x^p + \beta_{p+1} x^{p+1} + \beta_{p+2} x^{p+2} + \ldots + \beta_{l-1} x^{l-1}$$

modelo ajustado

termos que podemos adicionar no modelo

Hipóteses:

$$\left\{ \begin{array}{l} H_0: \text{N\~ao} \text{ h\'a falta de ajuste no modelo} \\ H_1: \text{H\'a falta de ajuste no modelo} \\ \\ \left\{ \begin{array}{l} H_0: \beta_1 = 0 | \beta_0 \text{ est\'a no modelo} \\ H_1: \beta_1 \neq 0 | \beta_0 \text{ est\'a no modelo} \end{array} \right. \end{array} \right.$$

Fontes de Variação	gl
Tratamentos	I-1
Regressão linear $(\beta_1 \beta_0)$	1
Falta de Ajuste $(\beta_2,\ldots,\beta_{I-1} \beta_0,\beta_1)$	I-2
Resíduo	I(J-1)
Total	IJ-1

Hipóteses:

$$\begin{cases} H_0: \text{Não há falta de ajuste no modelo} \\ H_1: \text{Há falta de ajuste no modelo} \end{cases}$$

$$\begin{cases} H_0: \beta_2 = 0 | \beta_0, \beta_1 \text{ estão no modelo} \\ H_1: \beta_2 \neq 0 | \beta_0, \beta_1 \text{ estão no modelo} \end{cases}$$

Fontes de Variação	gl
Tratamentos	l-1
Regressão linear $(eta_1 eta_0)$	1
Regressão quadrática $(eta_2 eta_0,eta_1)$	1
Falta de Ajuste $(\beta_3, \ldots, \beta_{l-1} \beta_0, \beta_1, \beta_2)$	I-3
Resíduo	I(J-1)
Total	IJ-1

Hipóteses:

$$\begin{cases} H_0: \text{N\tilde{a}o h\acute{a} falta de ajuste no modelo} \\ H_1: \text{H\acute{a} falta de ajuste no modelo} \end{cases}$$

$$\begin{cases} H_0: \beta_3 = 0 | \beta_0, \beta_1, \beta_2 \text{ est\tilde{a}o no modelo} \\ H_1: \beta_3 \neq 0 | \beta_0, \beta_1, \beta_2 \text{ est\tilde{a}o no modelo} \end{cases}$$

Fontes de Variação	gl
Tratamentos	I-1
Regressão linear $(eta_1 eta_0)$	1
Regressão quadrática $(eta_2 eta_0,eta_1)$	1
Regressão cúbica $(\beta_3 \beta_0,\beta_1,\beta_2)$	1
Falta de Ajuste $(\beta_4, \ldots, \beta_{I-1} \beta_0, \beta_1, \beta_2, \beta_3)$	I-4
Resíduo	I(J-1)
Total	IJ-1

Observação

Aumentamos progressivamente o grau do polinômio ajustado (p) até que a **falta de ajuste** do modelo seja **não significativa** e que a conclusão do teste da hipótese:

$$\left\{ \begin{array}{l} H_0: \beta_p = 0 | \beta_0, \beta_1, \dots, \beta_{p-1} \text{ estão no modelo} \\ H_1: \beta_p \neq 0 | \beta_0, \beta_1, \dots, \beta_{p-1} \text{ estão no modelo} \end{array} \right.$$

seja pela rejeição de H_0 .

Ajuste Polinomial

Polinômios ortogonais

 \Downarrow

Contrastes ortogonais

 $\textbf{Coeficientes} \Rightarrow \textbf{Somas de Quadrados}$

Coeficientes

	I=7 níveis						
	1°	2°	3°	4°	5°		
	grau	grau	grau	grau	grau		
	-3	+5	-1	+3	-1		
	-2	0	+1	-7	+4		
	-1	-3	+1	+1	-5		
	0	-4	0	+6	0		
	+1	-3	-1	+1	+5		
	+2	0	-1	-7	-4		
	+3	+5	+1	+3	+1		
K	28	84	6	154	84		
М	1	1	1/6	7/12	7/20		

Tabela do Coeficientes

Dose	Total	Média		
0	554,4	138,600		
50	614,4	153,600		
100	658,1	164,525		
150	659,7	164,925		
200	634,9	158,725		
250	639,9	159,975		
300	617,7	154,425		
4379,1				

No nosso exemplo temos:

• Regressão Linear

Fontes de Variação	gl	SQ	QM	F	p.valor
Doses	6	1941,83	323,64	7,67	0,00018763
Regressão linear	1	423,15	423,15	10,03	0,00465
Desvios de Regressão	5	1518,68	303,74	7,20	0,00046
Resíduo	21	886,34	42.21		
Total	27	2828,17			

No nosso exemplo temos:

• Regressão Quadrática

Fontes de Variação	gl	SQ	QM	F	p.valor
Doses	6	1941,83	323,64	7,67	0,00018763
Regressão linear	1	423,15	423,15	10,03	0,00465
Regressão quadrática	1	1285,84	1285,84	30,47	2×10^{-5}
Desvios de Regressão	4	232,83	58,21	1,38	0,27505
Resíduo	21	886,34	42.21		
Total	27	2828,17			

Estimação dos Parâmetros

Obter β_0 , β_1 , ..., β_p , tais que

$$SQ = \sum_{i} [y_{i} - (\beta_{0} + \beta_{1}x_{i} + \beta_{2}x_{i}^{2} + \dots + \beta_{p}x_{i}^{p})]^{2}$$

seja mínima.

Ou seja,

$$\begin{cases} \frac{\partial SQ}{\partial \beta_0} = 0 \\ \frac{\partial SQ}{\partial \beta_1} = 0 \\ \dots \\ \frac{\partial SQ}{\partial \beta_p} = 0 \end{cases} \Rightarrow \hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p$$

Solução de Mínimos Quadrados

Modelo ajustado

$$\hat{y} = 140,7839286 + 0,2736250x - 0,0007825x^2$$

Coeficiente de Determinação

Definição

$$R^2 = \frac{\text{SQ Modelo}}{\text{SQ Tratamentos}} = 1 - \frac{\text{SQ Falta de Ajuste}}{\text{SQTratamentos}}$$

$$0 \le R^2 \le 1$$

- Proporção da variabilidade devida a tratamentos que é explicada pelo modelo de regressão;
- Quão maior o grau do polinômio, maior será o coeficiente de determinação.