

Operations Research

Technische

Vorlesung 2 Einführung in Operations Research II

Start der Übungen in dieser Woche

- Übungsblätter werden in StudIP hochgeladen
 - Wöchentlich passend zur Vorlesung
- 8 Termine für die kleinen Übungen
 - Wöchentlich
 - Präsenz und Online-Übungen
 - Betreuung durch unsere Hiwis
 - Unterstützung beim Rechnen der Aufgaben
 - Keine Anmeldung erforderlich
- Alle Informationen in StudIP

Die drei Schritte im Operations Research

Problemdefinition:

- Was ist das Ziel?
- Worüber können wir entscheiden?
- Was müssen wir berücksichtigen?

- Zielfunktion
- Entscheidungsvariablen
- Nebenbedingungen

Lösung des Modelles:

- Exakt (wenn möglich)
- Gezieltes "Raten": Heuristiken

$$\min \quad \sum_{i=1}^{m} \sum_{i=1}^{n} c_{ij} x_{ij}$$

u.d.N.
$$\sum_{j=1}^{n} x_{ij} = a_i \ (i = 1, ..., m)$$
$$\sum_{i=1}^{m} x_{ij} = b_j \ (j = 1, ..., n)$$
$$x_{ij} \ge 0 \ (i = 1, ..., m; j = 1, ..., n)$$

Überblick

- 1. Typische Problemszenarien im Operations Research
- 2. Standardproblem der Linearen Optimierung

Überblick

- 1. Typische Problemszenarien im Operations Research
- 2. Standardproblem der Linearen Optimierung

Transportproblem: Beschreibung

- Ein Produkt wird an verschiedenen Orten in jeweils unterschiedlichen Mengen gelagert
- Eine Anzahl bekannter Verbraucher hat einen jeweils unterschiedlichen Bedarf an dem Produkt
- Die jeweilig angebotenen Mengen sowie die jeweiligen Bedarfe der Kunden sind bekannt
- Die Summe der Bedarfe ist gleich der Summe der angebotenen Mengen
- Der Bedarf jedes Kunden kann und muss befriedigt werden
- Die Transportkosten sind proportional zur transportierten Menge
- Die Summe der gesamten Transportkosten ist zu minimieren
- Negative Transportmengen (Rücktransporte) sind ausgeschlossen

Transportproblem: Visualisierung

i: Lager

 a_i : gelagerte Menge

j: Kunde

 b_i : Bedarf in Mengeneinheiten

 c_{ij} : Transportkosten / ME

von i nach j

Transportproblem: Daten

Eine Traktorenfabrik hat m = 3 Niederlassungen i = 1, 2, 3.

Von diesen 3 Niederlassungen beziehen n=2 Großhändler j=1,2 ihre Traktoren. Transportkosten sind in EUR je Stück angegeben.

Fabrik	1	2	3	Bedarf der
Händler	(Hamburg)	(Köln)	(München)	Händler
1 (Essen)	250	80	400	22
2 (Frankfurt)	300	100	200	28
Lagerbestand	12	18	20	50

Gesucht: Transportplan mit möglichst geringen Transportkosten

Transportproblem: Visualisierung

Transportproblem: Visualisierung der Lösung

Transportproblem: Modellierung

Transportmenge von i nach j: x_{ij}

Nichtnegativitätsbedingungen: $x_{ij} \ge 0 \ (i = 1,2,3; j = 1,2)$

Nebenbedingungen:

Zielfunktion:

$$z = 250x_{11} + 80x_{21} + 400x_{31} + 300x_{12} + 100x_{22} + 200x_{32}$$
 minimal

Transportproblem: Allgemeines Modell

Formulierung als LP-Problem:

$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

$$\sum_{j=1}^{n} x_{ij} = a_i \ (i = 1, ..., m)$$

$$\sum_{i=1}^{m} x_{ij} = b_j \ (j = 1, ..., n)$$

$$x_{ij} \ge 0 \ (i = 1, ..., m; j = 1, ..., n)$$

Energieflussproblem: Beschreibung

- In einer Windkraftanlage wird Strom produziert
- Der Strom soll über ein Leitungsnetz zur nächsten Stadt geleitet werden, wo er verbraucht wird
- Die maximalen und minimalen Kapazitäten der Netzleitungen sind jeweils bekannt
- Der Stromfluss durch das Netzwerk ist zu maximieren.
- Der Stromfluss sei lediglich durch die Netzkapazität restringiert

Energieflussproblem: Visualisierung

s, a, b, t: Knoten im Netzwerk

 u_{ij} : max. Kapazität der Leitung von i nach j

 l_{ij} : min. Kapazität der Leitung von i nach j

Energieflussproblem: Daten

Ein Stromnetzwerk besteht aus einem Kraftwerk s, einem Verbraucher t und 2 Umspannwerken a, b.

$(l_{ij};u_{ij})$	S	а	b	t
S	(0,0)	(1,4)	(1,5)	(0,0)
а	(0,0)	(0,0)	(0,0)	(2,5)
b	(0,0)	(2,5)	(0,0)	(2,7)
t	(0,0)	(0,0)	(0,0)	(0,0)

Gesucht: Kantenflüsse mit maximalem Gesamtfluss

Energieflussproblem: Modellierung

Fluss auf Kante (i, j): x_{ij} Gesamtfluss (von s nach t): z

Kapazitätsbedingungen: $l_{ij} \le x_{ij} \le u_{ij}$ (i, j aus $\{s, a, b, t\}$)

Knotenbedingung (für Knoten a und b):

$$x_{sa} + x_{ba} - x_{at} = 0$$

$$x_{sb} - x_{ba} - x_{bt} = 0$$

Flusserhaltungsbedingungen:

$$x_{sa} + x_{sb} = z$$

$$x_{at} + x_{bt} = z$$

Zielfunktion: maximiere z

Energieflussproblem: Allgemeines Modell

Formulierung als LP-Problem:

Max z

u.d.N.
$$\sum_{j=1}^{m} x_{ij} - \sum_{i=1}^{m} x_{ij} = \begin{cases} z, & i = s \\ -z, & i = t \\ 0, & sonst \end{cases}$$

$$l_{ij} \le x_{ij} \le u_{ij}$$
 $(i = 1, ..., m; j = 1, ..., m)$

Auswahlproblem: Beschreibung

- Eine Anzahl von Bewerbern bewirbt sich bei einem Unternehmen
- Das Unternehmen hat eine bestimmte Anzahl freier Stellen.
- Die freien Stellen sind mit jeweils unterschiedlichen Anforderungen verbunden
- Für jeden Bewerber liegt jeweils eine Schätzung der Einarbeitungskosten für jede freie Stelle vor
- Jede Stelle ist zu besetzen.
- Die Summe der Einarbeitungskosten bei der Stellenbesetzung ist zu minimieren

Auswahlproblem: Visualisierung

 C_{ij} : Einarbeitungskosten von Bewerber i auf Stelle j

Auswahlproblem: Modellierung

Zuordnungsvariablen:

$$x_{ij} = \begin{cases} 1, falls \ Bewerber \ i \ auf \ Stelle \ j \ eingestellt \ wird \\ 0, & sonst \end{cases}$$

Bewerberrestriktionen (Beispiel Bewerber 1):

$$x_{11} + x_{12} + x_{13} \leq 1$$

Stellenrestriktion (Beispiel Stelle 1):

$$x_{11} + x_{21} + x_{31} + x_{41} + x_{51} = 1$$

Auswahlproblem: Allgemeines Modell

Formulierung als LP-Problem:

Min

$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

u.d.N.
$$\sum_{i=1}^{n} x_{ij} \le 1$$
 $(i = 1, ..., m)$

$$\sum_{i=1}^{m} x_{ij} = 1 (j = 1, ..., n)$$

$$x_{ij} \in \{0,1\}$$
 $(i = 1, ..., m; j = 1, ..., n)$

Beobachtungen

- Jedes Modell hat eine Zielfunktion
- Die ZF wird minimiert oder maximiert
- Modelliert werden ZF relevante Eigenschaften
- Variablen bilden den Lösungsraum ab
- Variablen sind kontinuierlich oder ganzzahlig
- Nebenbedingungen/Restriktionen beschränken den Lösungsraum
- Nebenbedingungen/Restriktionen sind immer (Un-)Gleichungen

Aufgaben:

- 1. Formulieren eines generischen Modells
- 2. Entwicklung eines generischen Lösungsverfahrens

min
$$\sum_{i=1}^{n} \sum_{i=1}^{n} c_{ij} x_{ij}$$
u.d.N.
$$\sum_{i=1}^{n} x_{ij} = a_i \ (i = 1, ..., n)$$

$$\sum_{j=1}^{\infty} x_{ij} = a_i \ (i = 1, ..., n)$$

$$\sum_{i=1}^{\infty} x_{ij} = b_j \ (j = 1, ..., n)$$

$$x_{i,i} > 0 \ (i = 1, ..., m; i)$$

$$x_{ij} \ge 0 \ (i = 1, ..., m; j = 1, ..., n)$$

Überblick

- 1. Typische Problemszenarien im Operations Research
- 2. Standardproblem der Linearen Optimierung

Standardproblem der linearen Programmierung

Alternative Sprechweise: Standard formulierung der linearen Programmierung

$$z=c_1x_1+\cdots+c_nx_n$$
 u.d.N.
$$a_{11}x_1+\cdots+a_{1n}x_n\leq b_1\\ \vdots &\vdots &\vdots\\ a_{m1}x_1+\cdots+a_{mn}x_n\leq b_m\\ x_1,\ldots,x_n\geq 0$$

Max
$$z = c^T x$$

u.d.N. $Ax \le b$
 $x \ge 0$

mit
$$c = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}, x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}, b = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$$

Standardproblem der linearen Programmierung

- Zielfunktion (ZF):= $c^T x$
- Zulässiger Bereich (M):= $\{x \in \mathbb{R}^n | Ax \le b; x \ge 0\}$
- Zulässige Lösung: $= x \in M$
- Optimale Lösung: $= x^* \in M$, mit $z(x^*) = \max_{x \in M} z(x)$
- M ist als Schnittmenge konvexer Mengen konvex
- $M^* \in M$ (Menge der optimalen Lösungen) ist konvex und enthält im Falle $M^* \neq \emptyset$ mindestens einen Eckpunkt (Extrempunkt)
- Bei der Suche nach der optimalen Lösung kann man sich auf die Menge der Eckpunkte konzentrieren

Beispiel: Produktionsprogrammplanung

- Eine Unternehmung stellt die Produkte P₁ und P₂ her, die mit einem Gewinn (Deckungsbeitrag) von 3 € bzw. 4 € pro ME verkauft werden können.
- Zur Fertigung der beiden Produkte sind erforderlich
- (a) eine Maschine, die (in dem Planungszeitraum) maximal 1200 Std. eingesetzt werden kann
- (b) ein Rohstoff, von dem (in dem Planungszeitraum) höchstens 3000 ME zur Verfügung stehen
- (c) Arbeitskräfte, die (in dem Planungszeitraum) höchstens 125 Std. eingesetzt werden können
- Für die Herstellung einer ME des Produktes P₁ (bzw. P₂) werden benötigt:

Maschine 3 Std. (bzw. 2 Std.)

Rohstoff 5 ME (bzw. 10 ME)

Arbeitskräfte - (bzw. 0,5 Std.)

Gesucht: Produktionsprogramm mit maximalem (Gesamt-)Gewinn

Produktionsprogrammplanung: Modellierung

Entscheidungsvariablen:

 x_1 Produktionsmenge des Produktes P_1

 x_2 Produktionsmenge des Produktes P_2

Nichtnegativitätsbedingungen:

$$x_1 \geq 0, x_2 \geq 0$$

Nebenbedingungen:

 $3x_1 + 2x_2 \le 1200$ (Maschinenkapazitätsbeschränkung)

 $5x_1 + 10x_2 \le 3000$ (Rohstoffmengenbeschränkung)

 $0.5x_2 \le 125$ (Arbeitszeitbeschränkung)

Zielfunktion:

$$z = 3x_1 + 4x_2$$
 maximal

Max

$$z = 3x_1 + 4x_2$$

u.d.N.

$$3x_1 + 2x_2 \le 1200$$

$$5x_1 + 10x_2 \le 3000$$

$$0.5x_2 \le 125$$

$$x_1, x_2 \ge 0$$

Optimale Lösung:

$$x_1 = 300, x_2 = 150, z = 1500$$

 Idee: Umformulierung des Problems in (Geraden-)Gleichungen durch Einführung von Schlupfvariablen

 $\Rightarrow n (= 2)$ Strukturvariablen und m (= 3) Schlupfvariablen

- Beispiel: Schlupfvariable für Nebenbedingung 3: $0,5x_2 \le 125$
- Nebenbedingung ist eine Ungleichung
- Unser Verfahren benötigt eine Gleichung
- Künstliches Hinzufügen einer Variable x₅
- $0.5x_2 + x_5 = 125$
- Schlupfvariable x_5 repräsentiert den "Rest" von der Nebenbedingungs-Ressource

- Idee: Berechnung und Bewertung aller Geradenschnittpunkte
- Umformulierung des Problems in (Geraden-)Gleichungen durch Einführung von Schlupfvariablen n = n = 2 Strukturvariablen und n = 3 Schlupfvariablen

Zulässige Lösung (Geradenschnittpunkt):

$$x_1 = 0, x_2 = 0$$

 $x_3 = 1200, x_4 = 3000, x_5 = 125$
 $z = 0$

Strukturvariablen Schlupfvariablen

Einfacher Lösungsansatz: n der Variablen x_1, x_2, \dots, x_{n+m} Null setzen und das verbleibende Gleichungssystem lösen

$$x_1 = 0, x_2 = 0$$
: $x_3 = 1200, x_4 = 3000, x_5 = 125$ (A)

$$x_1 = 0, x_3 = 0$$
: $x_2 = 600, x_4 = -3000, x_5 = -175$ (B)

$$x_1 = 0, x_4 = 0$$
: $x_2 = 300, x_3 = 600, x_5 = -25$ (C)

$$x_1 = 0, x_5 = 0$$
: $x_2 = 250, x_3 = 700, x_4 = 500$ (D)

$$x_2 = 0, x_3 = 0$$
: $x_1 = 400, x_4 = 1000, x_5 = 125$ (E)

$$x_2 = 0, x_4 = 0$$
: $x_1 = 600, x_3 = -600, x_5 = 125$ (F)

 $x_2 = 0, x_5 = 0$: Gleichungssystem nicht lösbar (a^1, a^3, a^4 linear abhängig)

$$x_3 = 0, x_4 = 0$$
: $x_1 = 300, x_2 = 150, x_5 = 50$ (G)

$$x_3 = 0, x_5 = 0$$
: $x_1 = 233,33, x_2 = 250, x_4 = -666,66$ (H)

$$x_4 = 0, x_5 = 0$$
: $x_1 = 100, x_2 = 250, x_3 = 400$ (I)

Nachteil: Sehr hoher Rechenaufwand

Hier $\binom{n+m}{m} = \binom{5}{3} = 10$ Gleichungssysteme zu lösen.

Grafische Repräsentation:

Gefundene Schnittpunkte müssen auf Zulässigkeit geprüft werden (Einsetzen in Nebenbedingungen).

Ausblick

Problem: Produktionsplanung

Modell: Standardproblem der Linearen Optimierung

Verfahren: Simplex-Algorithmus

max
$$z = 3x_1 + 4x_2 + 0x_3 + 0x_4 + 0x_5$$

u.d.N. $3x_1 + 2x_2 + x_3 = 1200$
 $5x_1 + 10x_2 + x_4 = 3000$
 $0.5x_2 + x_5 = 125$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0$

Zusammenfassung

- Die drei Schritte im Operations Research
 - Problem, Modell, Lösung
- Typische Problemszenarien
 - Z.B. Transportproblem, Energieflussproblem, Auswahlproblem
- Standardform der linearen Programmierung
- Intuitive Lösungsverfahren
 - Systematisches Durchsuchen und Grafisches Lösen

