Kalman Filter

Setup

Observable equation is described by

$$y_t = x_t + \eta_t \tag{1}$$

where y_t can be observed at time t and $\eta_t \sim N(0, \sigma_{\eta}^2)$ is a noise shock which prevent to correctly observe state x_t .

State transition equation is described by

$$x_t = x_{t-1} + \varepsilon_t \tag{2}$$

where $\varepsilon_t \sim N(0, \sigma_{\varepsilon}^2)$ is a structural shock which affects the transition from x_{t-1} to x_t .

Procedure

Goal is to optimize the forecast of x_{t+1} using available information at time t, i.e. y_t . Assume an initial value for $x_{1,0}$ and $Var(x_{1,0} - x_{0,0}) = P_{1,0}$. Procedure can be summarized as follows,

- 1. Forecast y_t using information at time t-1 and evaluate the error variance of this prediction.
- 2. Infer x_t using information at time t and evaluate the error variance of this inference.
- 3. Forecast x_{t+1} using information at time t and evaluate the error variance of this prediction.
- 4. Find the steady state variance $P_{t,t}$.

Given $x_{1,0}$ the three initial steps are

- 1. $y_{1,0} = x_{1,0}$ and the forecast error variance is $\Omega_{1,0}^y = \sigma_{\eta}^2$.
- 2. $x_{1,1} = y_1$ and the forecast error variance is $P_{1,1} = \sigma_n^2$.
- 3. $x_{2,1} = x_{1,1}$ and the forecast error variance is $P_{2,1} = \sigma_{\eta}^2 + \sigma_{\varepsilon}^2$.

As a generalization, the three steps are

- 1. $y_{t,t-1} = x_{t,t-1}$ and the forecast error variance is $\Omega_{t,t-1}^y = Var(x_{t,t-1}) + \sigma_\eta^2 = P_{t,t-1} + \sigma_\eta^2$.
- 2. We want to forecast $x_{t,t}$ using all the available information up to time t. As a simplification we try to forecast $x_t x_{t,t-1}$ using $y_t x_{t,t-1}$. Coefficient β^{PROJ} is derived as follows

$$\beta^{KG} = \frac{Cov(x_t - x_{t,t-1}, y_t - x_{t,t-1})}{Var(y_t - x_{t,t-1})}$$

$$= \frac{Cov(x_t - x_{t,t-1}, x_t + \eta_t - x_{t,t-1})}{Var(x_t + \eta_t - x_{t,t-1})}$$

$$= \frac{P_{t,t-1}}{(P_{t,t-1} + \sigma_{\eta}^2)}$$

$$= \frac{P_{t,t-1}}{P_{t,t-1} + \sigma_{\eta}^2}$$
(3)

This implies that

$$x_{t,t} - x_{t,t-1} = \beta^{KG}(y_t - x_{t,t-1}) \tag{4}$$

which is

$$x_{t,t} = x_{t,t-1} + \beta^{KG}(y_t - x_{t,t-1})$$

= $(1 - \beta^{KG})x_{t,t-1} + \beta^{KG}y_t$ (5)

and this is the reason why β^{KG} is called Kalman gain, i.e. it defines how much to weight new information at time t to infer $x_{t,t}$.

Now we need to figure out the forecast error variance of $x_t - x_{t,t}$, i.e. $P_{t,t} = Var(x_t - x_{t,t})$

$$\begin{split} P_{t,t} &= Var \bigg[x_{t,t} - x_{t,t-1} - \beta^{KG} (y_t - x_{t,t-1}) \bigg] \\ &= Var \bigg[x_{t,t} - x_{t,t-1} - \beta^{KG} (x_t + \eta_t - x_{t,t-1}) \bigg] \\ &= Var \bigg[x_{t,t} - x_{t,t-1} - \frac{P_{t,t-1}}{P_{t,t-1} + \sigma_{\eta}^2} (x_t + \eta_t - x_{t,t-1}) \bigg] \\ &= E \bigg\{ \bigg[x_{t,t} - x_{t,t-1} - \frac{P_{t,t-1}}{P_{t,t-1} + \sigma_{\eta}^2} (x_t + \eta_t - x_{t,t-1}) \bigg]^2 \bigg\} \\ &= E \bigg\{ \bigg[x_{t,t} - x_{t,t-1} \bigg]^2 \bigg\} - 2E \bigg\{ \bigg(x_{t,t} - x_{t,t-1} \bigg) \bigg(\frac{P_{t,t-1}}{P_{t,t-1} + \sigma_{\eta}^2} (x_t + \eta_t - x_{t,t-1}) \bigg) \bigg\} \\ &+ E \bigg\{ \bigg[\frac{P_{t,t-1}}{P_{t,t-1} + \sigma_{\eta}^2} (x_t + \eta_t - x_{t,t-1}) \bigg]^2 \bigg\} \\ &= P_{t,t-1} - 2P_{t,t-1} \frac{P_{t,t-1}}{P_{t,t-1} + \sigma_{\eta}^2} + P_{t,t-1} \frac{P_{t,t-1}}{P_{t,t-1} + \sigma_{\eta}^2} \\ &= P_{t,t-1} \bigg[1 - \frac{P_{t,t-1}}{P_{t,t-1} + \sigma_{\eta}^2} \bigg] \\ &= P_{t,t-1} \bigg[1 - \frac{P_{t,t-1}}{P_{t,t-1} + \sigma_{\eta}^2} \bigg] \\ &= P_{t,t-1} (1 - \beta^{KG}) \end{split}$$

3. $x_{t+1,t} = x_{t,t}$ and the forecast error variance is $P_{t+1,t} = P_{t,t} + \sigma_{\varepsilon}^2$ which is

$$P_{t+1,t} = P_{t,t} + \sigma_{\varepsilon}^{2}$$

$$= P_{t,t-1} \left[1 - \frac{P_{t,t-1}}{P_{t,t-1} + \sigma_{\eta}^{2}} \right] + \sigma_{\varepsilon}^{2}$$
(7)

4. Find the steady state value of P as follows

$$P = P \left[1 - \frac{P}{P + \sigma_{\eta}^{2}} \right] + \sigma_{\varepsilon}^{2}$$

$$= P - \frac{P^{2}}{P + \sigma_{\eta}^{2}} + \sigma_{\varepsilon}^{2}$$
(8)

which is

$$P^{2} + \sigma_{\eta}^{2} P = P^{2} + \sigma_{\eta}^{2} P - P^{2} + \sigma_{\varepsilon}^{2} P + \sigma_{\varepsilon}^{2} \sigma_{\eta}^{2}$$
(9)

which is

$$P^2 - \sigma_\eta^2 P - \sigma_\varepsilon^2 \sigma_\eta^2 = 0 \tag{10}$$

which is

$$P = \frac{1}{2} \left(\sigma_{\varepsilon}^2 + \sqrt{\sigma_{\varepsilon}^4 + 4\sigma_{\varepsilon}^2 \sigma_{\eta}^2} \right) \tag{11}$$