TIME SERIES ANALYSIS PRACTICAL – 3

Submitted By: Ridam Singhal(5040)

AIM: To fit straight line, parabolic curve and exponential to the given data.

Also estimate the amount for the given year and the curve of best fit.

PRACTICAL: The following data shows life insurance carried per family in the US from 1960 to 1970:

	Average Amount (in
Year	Dollars)
1960	10200
1961	10800
1962	11400
1963	12200
1964	13300
1965	14700
1966	15900
1967	17200
1968	18400
1969	19500
1970	20900

- a) Fit a straight line to the data.
- b) Fit a second degree parabola to the data.
- c) Fit an exponential curve to the data.
- d) Estimate insurance amount for 1971 with every method and compare.
- e) Which of the method computed in the above three parts appears to be the line of best fit? Explain your choice.

CALCULATIONS:

a) Fitting a straight line:

TABLE 3.1

Year(t)	Average Amount (in Dollars)	Х	X ²	ху	Trend Values	
	Y(t)	(t-1965)			Ye = a+bx	
1960	10200	-5	25	-51000	9413.641	
1961	10800	-4	16	-43200	10521.8228	
1962	11400	-3	9	-34200	11630.0046	
1963	12200	-2	4	-24400	12738.1864	

1964	13300	-1	1	-13300	13846.3682
1965	14700	0	0	0	14954.55
1966	15900	1	1	15900	16062.7318
1967	17200	2	4	34400	17170.9136
1968	18400	3	9	55200	18279.0954
1969	19500	4	16	78000	19387.2772
1970	20900	5	25	104500	20495.459
	∑Y(t)=164500	∑x =0	∑x²	∑xy	
			=110	=121900	

n=11, substituting these values in: $\sum Y(t) = na + b\sum x$ and $\sum xy = a\sum x + b\sum x^2$ We get a = 1108.182 and b = 14954.55

Straight Line: Y=a+bx

And estimated values of Y have been tabulated in Table 3.1

 $R^2 = 0.988151$

Estimated value of insurance amount for 1971:

As x=6, \$21603.64.

GRAPH 3.1

b) Fitting of a second degree parabola to the curve:

TABLE 3.3

Year(t)	Average Amount (in Dollars) (Yt)	х	X ²	X ³	x ⁴	ху	x²y	ax²+bx+c
1960	10200	-5	25	-125	625	-51000	255000	9978.32225
1961	10800	-4	16	-64	256	-43200	172800	10747.69304
1962	11400	-3	9	-27	81	-34200	102600	11592.35521
1963	12200	-2	4	-8	16	-24400	48800	12512.30876
1964	13300	-1	1	-1	1	-13300	13300	13507.55369
1965	14700	0	0	0	0	0	0	14578.09
1966	15900	1	1	1	1	15900	15900	15723.91769
1967	17200	2	4	8	16	34400	68800	16945.03676
1968	18400	3	9	27	81	55200	165600	18241.44721
1969	19500	4	16	64	256	78000	312000	19613.14904
1970	20900	5	25	125	625	104500	522500	21060.14225
	$\sum Y(t) = 164500$	∑x = 0	∑x²=110	∑ x³=0	∑ x ⁴ =1958	∑xy =121900	$\sum x^2 y$ = 1677300	

Substituting the above values in the equation:

$$\sum Y(t) = na + b\sum x + c\sum x^2$$

$$\sum xy = a\sum x + b\sum x^2 + c\sum x^3$$

$$\sum x^2 y = a \sum x^2 + b \sum x^3 + c \sum x^4$$

We get,
$$a = 37.64569$$
, $b = 1108.182$, and $c = 22803.13$

Substituting these values in parabolic curve, we have tabulated the estimated values of Y in Table 3.2.

Parabolic Curve: y=ax²+bx+c

 $R^2 = 0.997045$.

Estimated value of insurance amount for 1971:

as x=6, \$22582.42.

GRAPH 3.2

c) Fitting an exponential curve:

TABLE 3.3

Year(t)	Average Amount (in	х	logY(y)	X ²		
	Dollars) (Yt)				xy	ae^bx
1960	10200	-5	9.230143	25	-46.1507	9991.1528
1961	10800	-4	9.287301	16	-37.1492	10769.499
1962	11400	-3	9.341369	9	-28.0241	11608.481
1963	12200	-2	9.409191	4	-18.8184	12512.823
1964	13300	-1	9.495519	1	-9.49552	13487.617
1965	14700	0	9.595603	0	0	14538.35
1966	15900	1	9.674074	1	9.674074	15670.939
1967	17200	2	9.752665	4	19.50533	16891.761
1968	18400	3	9.820106	9	29.46032	18207.689
1969	19500	4	9.87817	16	39.51268	19626.133
1970	20900	5	9.947504	25	49.73752	21155.078
	$\sum Y(t) = 164500$	∑x =0	∑logY=105.4316	∑x²=110	∑xy =8.251994	

Substituting the above values in the equation:

$$\sum log Y = n A + b \sum x$$

$$\sum xy = A\sum x + b\sum x^2$$

We get , A = ln(a) = 9.584545455 , therefore a = 14538.35276 b = 0.075018091

Substituting these values in exponential curve, we have tabulated the estimated values of Y in Table 3.3.

Exponential Curve:y=ae^bx

 $R^2 = 0.996255$.

Estimated value of insurance amount for 1971: as x=6, \$ 22803.13.

GRAPH 3.3

RESULT:

- 1) Straight line has been fitted in GRAPH 3.1, and the estimated insurance amount for 1971 is \$21603.64.
- 2) Two degree parabolic curve has been plotted in GRAPH 3.2, and the estimated insurance amount for 1971 is \$22582.42.
- 3) Exponential curve has been plotted in GRAPH 3.3, and the estimated insurance amount for 1971 is \$22803.13.

CONCLUSION:

- 1) Two degree parabolic curve is the line of best fit, as the coefficient of determination is maximum ($R^2 = 0.996255$)
- 2) Best estimated value for the insurance amount for the year 1971 is \$22582.42.