31-band EQ values-31-band_EQ_values_for_selected_FR_targets_and_over-ear_headphones

	00	0.5	04.5	10	50		ı-bar			100	000	\F0 (045	400	500	000		41/	1 051/	4 01/		0.514	2 4 5 1/2	417	-1/	0.017	OIZ	401/	40 FIZ	401/	001/	
÷HP model / dB→	20	25	31.5	40	50	63	80	100	125	160	200 2	250	315	400	500	630	800	1K 1	1.25K	1.6K	2K	2.5K	3.15K	4K	5K	6.3K	8K	10K	12.5K	16K	20K	
FR target curves)																																
Diffuse field (H&M)	0	0	0	0	0	0	0	0	0	0.5	8.0	1	1.2	1.5	2	3	3.5	4	5	8	11	15.5	15.5	13	10.5	10	9.5	7	4	0	-3.6	<u>;</u>
oiffuse field (B&K)	0	0.3	0.5	0.2	0.3	0.2	0.5	0.3	0.2	0.3	0	0.4	1	1.3	2.5	2.5	4	5	4.7	5.7	10	15	17.3	15	11.6	10.7	2.3	4.2	9.2	0	-4.5	,
1dB/oct room gain	5	4.7	4.5	4.1	3.8	3.5	3.2	2.8	2.6	2.1	1.9	1.5	1.1	0.8	0.5	0.2	-0.8	-0.5	-0.3	-1.2	-1.5	-1.7	-2.1	-2.4	-2.7	-3	-3.4	-3.8	-4.2	-4.7	-5	,
0.9dB/oct room gain	4.5	4.3	4	3.6	3.3	3	2.7	2.5	2.2	1.7	1.5	1.3	1	0.7	0.3	0	-0.3	-0.7	-1	-1.3	-1.6	-1.8	-2	-2.5	-2.8	-3	-3.3	-3.7	-4	-4.3	-4.5	,
&K room gain	2.5	2.7	2.9	3	3	3	3	2.9	2.8	2.7	2.5	2.2	2	1.8	1.6	1.5	1.1	0.9	0.6	0.3	0	-0.3	-0.5	-1.1	-1.2	-1.6	-2	-2.2	-2.6	-3.1	-3.6	,
F+RG (H&M/B&K)	-0.3	-0.1	0.1	0.2	0.2	0.2	0.2	0.1	0	0.4	0.5	0.4	0.4	0.5	0.8	1.7	1.8	2.1	2.8	5.5	8.2	12.4	12.2	9.1	6.5	5.6	4.7	2	-1.4	-5.9	-10)
DF+RG (B&K/B&K)	0.0	0.5				0.7	1			0.5							2.6		2.8		7.5		14.3		7.9	6.6	-2.2	_	4.1		-10.6	
														0.0																		
PF+ 1dB/oct (H&M)	2.7	2.4				1.2				0.3		0.2	0	U	0.2	0.9	0.4	1.2	2.4	4.5		11.5	11.1		5.5	4.7	3.8	0.9	-2.5		-10.9	
tymotic target Cr	-1.3	-1.3	-1.3	-1.3	-1.3	-1.3	-1.3	-1.3	-1.3	-1.3	-1.1	-1 -	8.0	-0.4	-0.2	0.5	1.3	2.1	2.7	3.5	7.9	11.5	11	8.1	6.6	3.4	2.5	0	-2.5	-4.5	-7	
larman 2013	3.8	3.8	4	4	3.8	3.6	2.7	2.5	1.5	8.0	0.3	0	1	1.4	1.8	2.1	2.6	2.7	3.4	6	7.7	11.3	12	10.4	8	6.6	3.5	0.2	-4	-8	-7	
larman '13 -2 bass	1.8	1.8	2	2	1.8	1.6	1.7	1.5	0.5	0.3	0	0	1	1.4	1.8	2.1	2.6	2.7	3.4	6	7.7	11.3	12	10.4	8	6.6	3.5	0.2	-4	-8	-7	
larman '13 w/o bass	0	0	0	0	0	0	0	0	0	0	0	0	1	1.4	1.8	2.1	2.6	2.7	3.4	6	7.7	11.3	12	10.4	8	6.6	3.5	0.2	-4	-8	-7	,
larman 2018	5.5	6.2	6.1	5.8	5.6	5	4.4	3.4	2	1	0.1	0	0.5	1	1.3	1.7	1.9	2	3	5.2	7.4	9.6	10.6	10.3	9.5	7	4.6	1.6	-3	-6	-18	š
larman '18 (Or's -2 bass)	3.8	3.8	3.7	3.7	3.5	3.2	2.6	1.7	0.9	0.3	0	0	0.4	0.8	1	1.4	1.7	1.8	2.5	4.4	7	9.3	10.4	10.2	8.2	6.6	4.2	1.1	-2.5	-6.7	-18.6	3
larman '18 w/o bass	0	0				0	0		0	0	0		0.4	0.8	1				2.5	4.4	7	9.3		10.2	8.2	6.6	4.2	1.1	-2.5		-18.6	
10 W/0 5400							0						0.1	0.0	•		1,	1.0	2.0		•	0.0	10.7	10.2	0.2	0.0	7.2		2.0	0.7	10.0	
Headphones)																																_
KG K361 Or	1.6	2.2	2.5	2.8	1.8	-0.3	-0.4	0	0.2	0.5	-1.9 -	3.3 -	3.9	-3.6	-2.8	-2.1	-0.8	0	1.8	3.7	5.4	6.1	6.6	-0.4	0.2	1.5	-1.1	-3.7	-7.4	-11.1	-13.8	;
KG K371 Or	5.7	5.9	5.3	4.9	3.2	0.9	1	0.9	0.6	-0.3	-0.8 -	1.8 -	1.8	-1.8	-1.5	-1.1	-0.6	0	0.7	2.3	4.2	7.3	7.3	2	4.2	4.3	3	-3.3	-6.2	-15	-16.5	,
KG K550 IF	2.4	3	3.2	3	2.3	1.4	-0.4	0.9	1.7	-0.8	-0.3 -	0.6 -	0.8	-1.2	-1	-2	-1.8	0	2.1	2.7	2.9	5.6	7.6	4	1.8	3.7	2.7	2.1	-4.9	-12.5	-5.3	;
KG K601 Or	-9	-7.5	5 -6	-5			-2.5		-1	-1		-1	-1	-1	-1			0	2	6	10	13.5	11.5	10.5	5	6	7	-9	-7	-3	-10)
KG K701 Rt	-6	-4				-2	-2		-1	-1		-1	-1	-1	-1	-	-1.5	0	1.5	4	9	13	11.5	7.5	6.5	9.5	10	-1	1	-10	-7	
KG K712 Or	-0	·	-						•				•		-													-	1 0			
		2				4.2	4.3			3.9		_	4.6	4.5	4.1		1.8	0	-2.1	2.1	7.3	8.2	6.6		10.3	8.7	6.8	-5.2	1.8		-11.1	
KG Q701 Rt	-5	-4						-0.5	0	0	0	0	0		-0.5		-0.5	0	1	4	9	12	9.5	7	6.5	10	9	-3	3	-11	-7	
udeze LCD-1 Or	-5.3	-4.6	-4	-3.7	-3.6	-3.1	-2.1	-2.2	-2.3	-2.3	-2.1 -	1.9 -	1.6	-1.2	-1.2	-1.4	-1.2	0	-0.9	-2.2	-0.6	5.1	8.7	5.9	0.1	-3.2	-1.9	-5.7	-5.6	-3.5	-12.9	1
udeze LCD-2 Class Rt	-5	-4.8	-3.8	-2.9	-2.8	-2.9	-3	-3	-2.9	-2.8	-2.8 -	2.7 -	2.4	-2.2	-2.5	-0.8	1.2	0	0.8	0.2	2.2	4.5	1.7	-5	-2.2	1.5	0.1	-13	-4.4	-7.9	-10.1	
udeze LCD-2 Or	-3.3	-2.8	-1.8	-1.8	-2.1	-1.9	-1.8	-1.7	-1.7	-1.7	-1.6 -	1.7 -	2.1	-1.8	-1	-0.4	0	0	-0.3	1.5	1.5	2.6	4	-0.6	-1.8	2.8	-1.8	-2.2	-4.9	-11.1	-5.1	
udeze LCD-X IF	-4.7	-3.9	-0.3	0.1	0	-0.3	-0.3	-0.1	-0.3	-0.5	-0.2 -	0.4	0	-0.3	0.1	-0.5	0	0	-0.7	1.3	3.5	5.3	6.2	4.7	4.5	0.9	-3.1	0.5	-3.1	-4	-4	
udeze LCD-X Cr2	-5.2	-4.6	-4.3	-3.7				-2.5						-1.3	-0.8	0.7	0.6	0	-2.6	-3.2	-2	-1.7		-4.3	2.7	1.2	-3.4	-10.3	-3.5	-4.4	-6.8	3
udio-T M40x Rt	-0.3	1.2									1.1 -							0	2.2	3.8	5.3	7.2	8.3	6.1	3.4	0.9	7.7	4.6	-1.1	1.3	-9.1	
udio-T M40x Or	-14.5				-2.1					2.4				-1.3				0	2.1	3.8	5.6	8.3	9.6	9.4	6.7	6.5	8.8	2.3	-2.6	-5.8	-8	
udio-T M50x Or	-7.8	-4.9	-2	0								-3 -				-0.2		0	1.2	2.7	6.3	10.6	11.2		7.1	3.6	8.6	-0.3	3.2	3.7	-9.2	
udio-T M50x Cr	3.8	5.1	5.4	6.4	5.7	4.4	3.3	2.1	2.5	1.8	-0.7 -	2.7 -	3.4	-1.5	-0.5	0.1	8.0	0	0	1.5	6.6	10.5	9.8	7.8	3.1	3.8	3.6	-0.5	-3.2	-1.2	-11.2	2
udio-T M50x Cr2	1	1.7	2.3	2.9	2.7	1.3	2.3	2.8	3.2	2.6	0.9 -	1.4 -	1.4	-1.4	-1.4	-0.4	0.2	0	0.3	1.4	4	6.3	7.4	7.5	5.1	3.5	1.3	-1.9	-2.9	-8.8	-7.9	,
udio-T MSR7b Cr2	-1.5	1	2.2	3.3	3.9	3.7	3.9	4.6	3.8	2.2	-1.1 -	4.2 -	3.9	-2.3	-1.4	-0.5	-0.1	0	0.7	2.7	5.4	6.9	4.7	6.2	6.4	4.8	2.5	-1.3	-5.2	-17.1	-10.3	3
udioQ Nighthawk IF	8.4	8.3	8.2	8	7.8	7.4	7.4	8.4	8.1	7.9	8.3	8.1	7.6	6.6	5.7	3.4	1.8	0	1.6	5.2	5.8	5.6	8.4	5	2.1	3.9	4.6	5	-1.9	-6	-0.6	j
urora Borealis Rslv	-7.4	-6.7	· -5		-2.7		-2.3				-3.2 -					-2.7	-1 4	0	0.3	0	0.9	3	3.3	3.6	3.3	0.8	-2.7	-13.7	-12.7	-11	-14.7	7
urora Borealis Or	-9	-7										-4 -						0	0.1	_	1	2	3.5	3.6	3	0.0	-2	-13	-13	-11		
		_					_	-2.6				-4 -				-2.9				0	1											-
eats Solo HD IF	8.4	8				0.5	9	/	5.5		1.9	1		-3.7			-0.8	0	0.3	0	0.2	1.5	5.1	4.8	0.5	-10.5	-11.5	_	_	-19.5		
eats Solo3 Wireless Rt	10	10	10	9.5	9.5	9.5	9	9	8.5	8	7	5	2	1	0.5	-0.5	-1	0	2	4.5	7	10	14	9	7	6	7	2	-3	-8	-13	<u>'</u>
ey DT 770/80 Or	-9.2	-7.3	-5.9	-5.1	-5.3	-5.3	-7	4.8	7.3	4.6	3.2	2.2	1.4	8.0	0.2	-0.2	-0.2	0	1.5	3.7	7.3	8.3	6	2.3	2.5	4	5.9	-2.3	1.7	-9.9	-20.6	,
ey DT 770/250 Or	5.8	6.5	7	7.2	7	6.2	3.8	-2.7	2.4	-0.2	-6.4 -	6.1	-4	-2.9	-2.3	-2.3	-1.4	0	-0.8	1.2	3.9	6.6	3.4	6.1	6.1	9.2	5	-0.9	4.3	-1.7	-10.8	}
ey DT 880/250 IF	-5.3	-4.1	-2.6	-2	-1.2	-0.5	-0.7	0.3	0.4	0.6	8.0	8.0	0.6	0.4	0.5	0	0.2	0	0	1.1	3.2	5.6	9.6	6.8	2.8	4.7	4.1	3.9	-4.8	-13.8	-3.4	r
eyer DT 880 Or	-5.8	-5.1	-4.5	-3.8	-3.4	-3.2	-3.5	-2.5	-2	-1.7	-1.5 -	1.4 -	1.3	-1.2	-1.5	-0.9	-0.9	0	0.3	2.2	5.3	8.5	10.1	9.3	7.1	10.5	3.5	-7.1	-2.5	-6.5	-9	,
ey DT 990/250 Or	-2.8	-1.4	. 0	1.3	2.3	2.9	3.1	2.5	2.6	2	1.3	0.2 -	0.9	-1.9	-1.7	-2.1	-1.9	0	1.6	2.8	5.2	8.8	10.7	10.5	10.1	10.8	11.5	4.2	7.1	2.4	-3.1	
ey DT 1770 L pads Rt	5.7							7.6			1.3 -							0			-0.1	2.1	2.7	0.5	1.1		5.6	0.1		-18.6	-26.4	1
· · · · · · · · · · · · · · · · · · ·																						_										
ey DT 1990 A pads Or	-2.2					0.3					1.2							0	1.3		5.1	8	7.8	4.1	6.9	5.9	12.7	1	1.7		-13.5	
ey DT 1990 B pads Cr2	1.2					2.8				2.9	2.6					-0.1		U	0.6	2.7	5.3	7.6	8.7	8.4	6.4	7.4	9.4	0.2	0.4		-4.2	
BLON B20 Cr2	-1.1	-0.8		-0.3			-0.3				-0.6 -						-0.6	0	8.0	1.3	1.7	6.2	8.7	7.9	2		8.0	-4.3		-16.8		
Sose QC35 II active	5.7	5.6	6	6.6	6.5	6.4	6	5.1	4.5	3.9	3.3	3	2.5	1.6	1.7	1.6	1	0	0.3	3.1	6.6	10.2	11.4	12.3	10.4	12	5.1	-4	0.4	-16.4	-13.2	-
Sose QC35 II passive	-3.8	-2.1	-1.8	-0.6	-2.2	-1.6	1.7	4.1	5.9	3.7	-0.3 -	3.6 -	5.9	-6.1	-4.9	-2.8	-0.4	0	-1.7	-4.6	-3.1	1.7	3.3	6.3	4.5	4.4	-7.7	-9.1	-5.7	-19.3	-13.7	,
reative Aur Live 2 IF	4.7	5.4	5.8	6	6	5.7	4.8	4.9	4.4	3.8	3.6	2.9	1.7	-0.7	-0.3	0.2	0.8	0	-1.2	-2.8	-2.4	0.3	1.9	2.7	-1.4	-3	-2.3	2.1	-12.1	-8.5	-9.2	:
CA Aeon 1 Cl Or	0.9	1	1.2	1.3	1.3	0.3	0.6	0	-1.3	-2.8	-1.5	-1 -	0.7	-0.7	0.4	0.9	1.2	0	1.4	2.3	2.4	4.3	6.7	6.3	1.7	2.3	3.7	-2.5	-2.8	-14	-9	,
CA Aeon 2 Cl Or	5.1	5.4			5.2		4.4			1.9				2.2	1.5		0.6	0	1.4	0.7	1.7	3.3	4.2	3.1	5.6	7.1	4.4	-8.6	-0.4	-0.1	-2.9	,
CA Aeon 2 Op Cr2	4.9	5.2			4.9					5.5				2.3	2.6			0	-0.4	1.6	4.6	7.4	6	2.5	7.2		4.6		-1.2	1.5	-2.7	
·	4.8																	_														
rop-THX Panda Cr2	1	1.2			1.4						2.4		0.6	0		1.7		0		-0.8		2.2	5.1	5.2	3	_		-11.1		-16.5		
ocal Clear Or	-4	-3.3			-1.9			-1.5			-2.3 -							0	2.1	2.8	3.2	5.1	7.4	2.5	1.9	0.9	-4.4		-2		-13.4	
ocal Clear Rslv	-5.1	-3	-0.9	1.2	2.2	3.3	4.1	4.9	5.1	5.1	4.8	4.4	3.8	3.2	2.5	1.5	0.6	0	-1	-1.7	-0.2	1.7	5	7.1	9.7	10.8	1.1	-1.4	3.5	-6.9	-4.6	•
ocal Elear Or	-2.5	-1.5	-1.1	-0.6	-0.4	-0.3	-0.1	-0.2	-0.3	-0.6	-0.8 -	1.1 -	1.3	-1.4	-1.3	-1	-0.4	0	0.9	2.5	1.9	4.1	4.5	-0.4	-1.6	0.5	-6.9	-8.9	-9.7	-13.3	-13.5	,
ocal Elear Rt	-7.5	-6.2	-4.8	-3.3	-2.2	-1.2	-0.6	-0.5	-0.4	-0.6	-1.1 -	1.6 -	1.8	-2	-1.8	-1.5	-0.8	0	1.3	3.1	4.8	7.2	7.9	-2.4	-4	0.2	2.7	-6.4	-4.2	-6.9	-3	
ocal Elegia Or	-0.1	0	0 -0.1	-0.7	-0.8	-0.9	1.2	1.5	-2.8	-3.6	-3.3 -	2.1 -	1.2	-1.1	-0.8	-0.9	-0.5	0	0.5	3.1	2.7	5.5	4	-6.8	-3.1	0.1	0.1	-8.9	-2.9	-10.6	-8.5	,
ocal-Drop Elex Or	-3	-2.1	-2.1					-0.8			-1.7 -							0	1.9	2.5	1.8	3.8	6.8		4.6	1.7	-5.9	-6.5	-7.3		-5.1	+
ocal Radiance Rslv	5.2	4.6			1.9		4			5.1				0.9				3.9	4.1	6.4	7.2	6.7	5	6.3	5.5	-3.6	-5.1	-8	-1.5	8.4	-9.6	+
							•													0.4												
ocal Utopia Or	-5.5	-4.9									-2.7 -					-2.4		0	1.6	1	0.2	5.8	6.2	5.9	4.1		-2.6		-7.9		-5.7	
ocal Utopia Rslv	-3.4	-2.2	-1.5	-0.9	-0.7	-0.4	-0.4	-0.2	-0.4	-0.7	-1.1 -	1.4 -	1.7	-2.1	-2	-1.9	-1.1	0	1.6	0.4	8.0	4.8	5.7	5.1	-0.2	-1.7	-2.1	-13.2	-8.7	-6.2	-14	•
ostex Purpleheart Or	-2.1	0.3	2	2.8	2.9	2.3	2	1.6	1.2	0.7	0.1 -	0.4 -	0.7	-0.1	-2.1	-3.3	-2.4	0	1.2	3.3	5.6	8.1	0	0.1	6.5	4.5	3	-1.8	-1	-11.1	-9.9)
rado SR60e Or	-12	-9.7	-7	-4.2	-2.2	-0.6	0.1	0	-0.6	-1.2	-1.6 -	2.1 -	2.6	-1.1	-1.4	-1.2	-0.6	0	0.9	5.1	15.4	12.8	10.2	10.8	8.9	6.5	5.5	-2	-4.8	-2	-14.9	,
rado SR225e Rt	-9.7	-7.7									-1.7							0		3.9		13.7	11.4				9		3.8		-22.9	
ifiman-Drop HE4XX Or	-11.4										-1.9																7.1		-10.1		-11.1	
·																		0				7.6	10.8									
	-2.4										0.1 -							0	-0.5			6.4	11.4				4.2			-10.7		
·	1			-2	-2	-1.4	-1.3	-1.5	-1.8	-1.9	-1.7 -	1.5 -	12	-0.9	-1.3	-0.8	0.2	0	-0.7	-0.9	0.3	4.8	11.4	8.9	7.1	-0.2	0.1	-6.3	1.7	-10.7	-9.2	:
<u> </u>	-3.3	-2.6	-2.1																• • • • • • • • • • • • • • • • • • • •									0.0				+
HiFiman-Drop HE4XX IF Hifiman Sundara IF Hifiman Sundara Or	-3.3 -3.3						-1.4		-1.6	-1.8	-1.8 -							0				5.6	10.4				2.5		0.3		-17.2	?

Hifiman Sundara Rt	-4.4	-3.1	-1.8	-1.1	-0.6	-0.3	-0.4	-0.5	-0.6	-0 8	-0.8	-0.7	-0.5	-0.2	-0.9	0.3	1.1	0	0.5	1.1	2.2	6.1	10.1	8.5	8.4	3.9	6.7	-1.8	0	-4.7	-9.8	
Hifiman Ananda Rt	-3.5			-1.4				-1								-0.5		0	-1.4	-1.7		8	9.6	6.2	3.3	3.8	6.4	-7.9	-1.2	-4.4	-2.1	
Hifiman Arya Or	-0.8	-0.8	-0.8							-0.2		-1.2		-0.9				0	0.1	-1.3	1.3	7.3	8.8	4.3	10	7.7	5.5	-3.1		-11.5		
Koss Porta Pro Rt	-6.9		-2.2		2		4.3	4.6	4.5		2.9	1.8	1.2		-0.1		-0.3	0	1.4	4.2	7.2	9.3	8.7		5.3	-1.5	0.6	0	-8.9	-15.3		
Koss KSC75 Rt		-12.9				-1.8		1.3			0.5						-0.5	0	1.1	3.9		12.1	12			1.8	5.7	1.5	-3.8	-7.1	-9.5	
Meze 99 Classics Or	9.7						10.5		9.4	9.6	9.3			-0.7			2.1	0	2	5.7	Ω. 1	8.3	7.3			1.0	8.2	-6	6.8	-4.3		
Meze Empyrean Or	2.8		3		١١.٥	3	3.1	3.2	3.2	3.3	3.3	2.4	2.0		1.7	1.2	1.4	0	-0.8	-1.3	-0.1	3.8	7.3	8.4	6.2	3.4	0.5	-5.7	-4.7		-10.5	
Monoprice M1060 Or	-1.8				-0.4				-0.1	0.5		-0.1			-0.7		1.1	0	1.8	4.1	7.3	9.2	10.2	8.1	4.3	2	-5.7	-1.4	-4.9	-1.5	-1.5	
Neumann NDH 20 Or	8.4	8.9	9.3		8.8	7.8	5.9	4.6	4.7			2.4		1.1		1.4	1.1	0	-1.4	-1.5	0	3.1		11.1	8.2	5	7.5	-3.9	-6.2	-8.4	-7.4	
Oppo PM-3 Rt	3						2.2	2.6		2.3		0.1					1 1	0					11.3			4.3	11.4	4.5	-4.5	-12.5		
Oppo PM-3 Or	1.1	0.8	1.8			0.6	2.2	2.9	2.7	2.2	1.4	-1.4			-0.2 -1.9		-0.4	0	2.7	4.9 4.9	7.5	11.5	10.4	7.3 8.2	4.2 5.7	9.2				-12.5		
• •			0.2															0										-11.8				
Philips SHP9500 Or	-9.9			-4.1			-1.1											0	0.8	1.5	2.2	4.7	8.3		10.8	12.4	-0.9	-0.2	1.6	-4.9		
Philips Fid. X2HR Or	-5		-1 5.0	0.0	2.3	2.8	2.7	1.9		0.0			-0.6			-0.3	0.5	0	-1	3.8	2.5	5.4	5.9	0.1		5.8	-0.3	-3.5		-11.7		
Sendy Aiva Cr	-6.7									-3.4				-2		-1.7	0	0	-0.5		-2.5	3.5	5.5			-1.2	-6.1	-3.8	-4.5	-5.5	-12	
Senn-Drop PC38X HdFi	-5 -7	0.0							-0.7								-1.3	0	1.3	2.5	3.1	5.5	7.4	7	7.3	1.6	-0.7	-3	-3	-7.5	-10	
Senn-Drop HD 58X Or	-7			-2.7				0							-0.9		-0.6	0	1.2	1.5	1.9	3.3	6.6	6.1	7.4	1.1	-1.2	-7.2		-11.4	-9.1	
Senn HD 560S Rslv	-8.3						-1.8						-1.4		-2.3			-2.4	-1.6	0.3	3	5.2	8.7	6	5.1	2.4	0.1	-3	-7.5 5.1	-7.6 5.0	-13	
Senn HD 579 Cr2	-5.9	-4.2					0.6	1.8	2.1	2.1	1.8	1.4	1	0.5	0.1		-0.1	0	0.8	2.7	5.4	7.6	11.1	8.4	7.5	4.8	2.5	-0.6	-5.1		-10.6	
Senn HD 599 Or	-7.5		-3.9				0.5	1.5	1.9	2		1.2	0.9	0.6		_		0	0.4	1.2	4.6	8.3	10.8	8.2	4.7	2.2	2.9	0		-14.5	-9.6	
Senn HD 599 Rt	-3.7							2.7	3		2.3	1.7			0.2	0	-0.2	0	0	-0.7	2.9	6.7	10.4	7.7	5.4	2.9	2.3	-3.4		-11.6	-7.7	
Senn HD 600 IF	-10							1.5	1.6	1.5				0		-0.3	0.2	0	1.6	2.5	3.9	7	11.4	8.4	4.5	-1.6	-1.5	-0.5		-10.5	-6	
Senn HD 600 Or	-6.7	-4.7	-3.3			-1.1	-0.3	0.2								-1.1		0	1.4	2.7	5.2	7.8	10.6	6.4	6.3	4.8	2.7	-4.1	0	-5	-13	
Senn HD 600 Cr2	-11.5						-2.1			-1.5								0	1.4	2.9	4.3	7.2	9		5	-2.4	3.3	-7	-6.2	-9.7		
Senn HD 650 Or	-6.7						-0.2			1	8.0		0.4	0.2		0.1	0.5	0	1.3	2.1	3.8	6.7	9.1	5.7	5.3	2.7	0.9	-7.6	-7.2	-4.8		
Senn HD 650 Cr2	-10		-6.4				-2.7										-1	0	1.3	2.7	4.3	7.1	9.3	6.9	5.1	8.0	-0.5	-6.3	-9.5		-12.2	
Senn-Drop HD 6XX IF	-9.3			-4.4			-1.3			0.9	0.9		0.2			-0.2	0	0	1.7	2.7	3.7	6.3	10.1	7.5	2.7	-2.6	-5	-3.2		-10.9	-8	
Senn HD 800 Or	-3.6			-1.2			-0.4	0.2		0.5							0.3	0	-0.4	-0.3	1.8	4.9	6.9	8.5		10.2	5.8	-1.5	-0.2	-7.2	-9.1	
Senn HD 800S Or	-4.1			-2	-1.8		-1.1										0	0	-0.5	0.1	2.9	6.1	6.7	7.8	8	8	4.2	-3	1.4		-11.6	
Senn HE1 Orpheus 2 Or	1.1				2.8		1					-1.8					-1	0	0	-0.8	3.4	5.6	6.7		2.9	4.7	2	2.7	-4.5	-6.7		
Sony MDR-7506 Or	-0.2						3.8	3.4		2.6		0				0.6	0	0	0.7	3.2		11.1		10.8			5.7	2.4		-13.3		
Sony WH-1000XM4 Cr2	8.6		9.1				7.5			5.8						2	8.0	0	1.1	2.7	1.4	5.2	7.4	9	9.8	3.7	6.9	-2.1		-11.5		
Superlux HD 681 Or		-10.5					-3.8										-1.2	0	0.6	1.5	5.3	8.2	7.7			4.4	5.6	-1.9	-4.1			
ZMF Aeolus Cr	-3.3						-0.7											0	-2		1.4	4.6	3.5	-8	-3	-3	-1.9	-2		-16.7		
ZMF Aeolus p-suede Cr2	-8.1						-5.4	-5.1					-5.2	-4.9	-4.3	-3.8	-1.4	0	-1.2	-4.5	-2.4	2.2	2.7	-1	3.1	-0.8	-2.8	-7.3		-15.1	-22.6	
ZMF Atticus Eikn-sue Cr2	-1.7	-1.1	-0.6	-0.3	-0.5	0.9	2	3	3.5	3.4	2.5	1.2	-0.3	-1	-0.5	0.1	0.9	0	-1.2	-1.1	1.1	3.6	3.6	1.2	5.5	1.6	-0.3	-5.5	-3.6	-14.3	-16	
ZMF Auteur Teak Cr	-5.2	-3.9	-2.8	-2	-1.6	-1.8	-2	-2.7	-2.6	-3.2	-2.9	-3.4	-3.3	-3.1	-2.8	-2.7	-1.5	0	-0.2	-0.9	1.6	7.1	7.8	1.9	3.3	-3.2	2.7	1.8	-5.3	-1.2	-5.2	
ZMF Auteur p-lamb Cr2	-3.9	-2.9	-1.9	-1.2	-1	-0.8	-0.9	-0.9	-1	-1.3	-2	-1.6	-1.6	-1.5	-1	-0.6	-0.2	0	0.9	2.2	3.2	6.6	7.8	6.1	8.6	1.1	3.6	-4.3	-11.5	-6.1	-13.6	
ZMF Eikon lambskin Cr2	0.3	0.6	0.1	0.7	-0.9	1.3	2.3	2.8	2.1	1.1	0.4	0	-0.2	-0.2	-0.9	-0.1	0.4	0	-0.4	-4.6	-3	2.7	2.4	6.8	7.8	-1.3	-4.6	-2.6	-8.1	-8.6	-14.1	
ZMF Vérité p-lamb Cr2	-5.8	-4.5	-3.6	-2.9	-2.5	-2.2	-1.5	-1.4	-1.4	-1.5	-1.4	-1.2	-0.9	-0.4	-0.3	-0.8	0	0	-0.9	1.1	3.8	6	-3	2.5	6.9	4.9	-7.1	-3.3	-6.5	-15	-5.4	
ZMF Vérité Cl a-lamb Cr2	-0.9	0	0.5	0.9	0.4	1.1	2.2	2.9	2.5	0.5	-1	-0.9	-0.4	-0.1	-0.2	-0.6	0	0	-0.9	-0.9	1.2	5.3	-2.6	4	7.2	2.2	-1.2	-8.2	-10.4	-11.8	-13	
Source abbreviations:																																
H&M = Hammershøi & Møl	ler, B&	K = Br	üel & l	Kjær, (Or = O	ratory	/1990,	IF = I	nnerF	idelity	, Rt =	Rting	s, Cr :	= Crin	acle's	1st m	eas. ri	g, Cr2	2 = Crina	acle's 2	2nd m	eas. ri	g,									
Rslv = Resolve Reviews, H	dFi = H	lead-F	i																													