

중앙대학교 소프트웨어학부 캡스톤디자인 2025

캡스톤디자인 멘토링 보고서 (3차)

팀 기본 정보

분반	조원 명단	멘토	멘토링 일시		
2 분반	현윤성, 안재현, 황재현	박소연	2025년 05월 08일		
프로젝트 주제명	TAKE A LOOK (웹캠 제스쳐 인식 및 자세 개선 어플리케이션)				

교수님 피드백 결과 및 반영 계획

교수님 피드백 결과

○ 타겟층

- 1. 연령대
- 유치원 (미취학 아동) 연령대는 어림.
 - → 랩탑 사용 중인 초중고 학생
- 2. 환경
- 하드웨어 지원으로 인한 '모바일 vs 랩탑' 환경 선정 고민
 - → 타겟층이 확고한 랩탑 환경

이 기능

- 저조도 환경의 필요성 (타겟 연령대의 큰 이슈 몰컴)
- 부모의 얼굴을 띄우는 피드백 (강제성 및 효과 극대화)

교수님 피드백 반영 계획

1. 타겟 환경 및 그에따른 연령층 수정

- 타겟층이 확고한 랩탑 환경으로 확정
- 타겟 환경 (랩탑)에 맞는 연령대 수정
 - → 노트북을 사용하는 초중고 학생

2. 기능 우선순위 설정

- 저조도 환경 판별 및 피드백

중앙대학교 소프트웨어학부 캡스톤디자인 2025

멘토링 결과 및 반영 계획

멘토링 결과

○ 기능 구현

1. 눈 깜빡임

- 제한사항 현실적으로 매우 높은 난이도 (실제 현업 종사자의 경험)
 - 1. 눈이 작은 사람
 - 2. 안경 쓴 사람
 - 3. 저조도 환경
 - 4. 잠깐 시야 돌리기

O 랜드마크 인식 모델 사용

- onnx 모델 (opensource model: openpose)
 - 해당 onnx 모델은 전신의 관절 포인트를 인식하는 구조
 - 정확도가 낮아 상반신만 인식하도록 학습하는 방안
 - → (답변) 2주만에 만들어서 데모 시연은 어려울 것
- mediapipe (Google)
 - Python으로 모든 MVP의 작동 여부 확인 완료
 - Swift에서 사용하기 위한 C++ 마이그레이션 과정에서 오류 발생
 - → (답변) tflite to onnx 변환이 가능하므로 일정 수준의 정확도 보장 가능

멘토링 반영 계획

○ 정확도

- 눈 깜빡임 인식 정확도 향상
 - 판단 알고리즘 개선, 추정값에 대한 신뢰도 도입
- O 기능 구현 계획
 - 하단 '진행상황' 파트에서 서술 예정

Google Meet 온라인 회의 중

진행상황

진행상황

○ 사용자 피드백

■ ChatGPT 활용, 사용자에게 제공할 기본 피드백 캐릭터 생성

) 계획 확장

■ 현재 이슈

모델	Run on Python	C++ Migration	Speed	Accuracy	Run on Swift
onnx (tflite)	Yes	Yes	Fast	Bad	No
mediapipe	Yes	No	Fast	Good	No

■ 계획 설정 및 확정

1. Plan A

- Swift ⇔ Python 내장 소켓 통신 (구현 완료)

2. Plan B

- Mediapipe C++에서 sdk화 ⇒ Swift

3. Plan C

- Swift pythonkit 에서 직접 파이썬 모델 실행 (라이브러리 import 매우 불안정)

O Swift – Python 내장 소켓 통신

- Python에서 mediapipe 구동
 - → 빠른 처리 속도, 안정성, 정확성
- Swift에서 피드백 처리
 - → 네이티브 UI, 전체화면 및 투명도 피드백 가능
- Rough FlowChart

○ 개발 완료해야할 기능

- 안재현 (Swift)
 - 소켓 통신 최적화
 - 프론트엔드 피드백 화면 구성
- 황재현 (Python)
 - 자세 판단 알고리즘 개발
- 현윤성 (Python)
 - 눈 깜빡임 추정 및 신뢰도 알고리즘
 - 자세 유지 시간 측정 -> 데이터화