PA/MA Bridges falling down

By Richard Enikeieff

Project Goals:

Attempt to determine what factors lead up to the depreciation of bridges

Examine the more robust PA dataset to narrow down features

Compare two different states to see if we get a similar score and if not hypothesize why and examine the features from the other dataset.

What we'll be covering:

Background of project

EDA

Model Selection

Conclusions

Why Bridges?

PA and MA are among the 10 worst states for their bridge upkeep, and I personally lived next to a decaying bridge for a number of years while I lived in Pittsburgh.

The 10 worst average sufficiency ratings in the US

The rating, which ranges from 0 to 100, measures a bridge's condition, functionality, and importance.

State	Average sufficiency rating
Rhode Island	71.34
Hawaii	73.56
Kentucky	75.13
Arkansas	75.62
Pennsylvania	75.86
Iowa	76.16
Alaska	76.38
Massachusetts	76.44

Maine

North Carolina

EDA:

Factor Determination, and choices:

PA Factors:

'X','Y','CTY_CODE','ADTTOTAL','BRIDGE_ID','COVERED_BRIDGE','CUSTODIAN','DECK_AREA','DECK WIDTH', 'DEPT_MAIN_MATERIAL_TYPE', 'DEPT_MAIN_PHYSICAL_TYPE', 'DESIGNMAIN', 'HISTSIGN', 'LENGTH', 'MATERIALMAIN', 'NBI_RATING', 'STATE_LOCAL', 'STRRATING', 'YEARBUILT', 'YEARRECON', 'FLOOD_INSP', 'KIND_HWY'

MA Factors: 'Latitude', 'Longitude', 'Structure_Material', 'Structure_Type', 'Town', 'Bridge_Owner', 'Bridge_Identification_Number_B', 'Year_Built', 'Year_Reconstructed', 'Structure_Length', 'Structurelly_Deficient', 'Structure_Category'

Bridge Ownership

Types Structure Type 3000 2500 2000 Number of Records 1500 1000 500 0 Arch - Thru Mixed types Tee Beam Movable - Bascule Other Arch - Deck Box Beam or Girders - Mul.. Box Beam or Girders - Sing.. Channel Beam Frame (except frame culve.. Movable - Lift Movable - Swing Segmental Box Girder Stayed Girder Suspension Truss - Deck Truss - Thru Culvert (includes frame cu.. Girder and Floorbeam Sys.. Stringer/Multi-beam or Gi..

PA Feature Importance

Latitude

Longitude

City Code

Average Daily Traffic

Covered Bridge

MA Feature Importance

Geography

Material

Type

PA 2 Feature Importance

Location

Material

Design

Length

Model Selection:

Random Forests Best Scores:

.90 PA1 Score, AUC_ROC: .96

.90 MA Score, AUC_ROC: .8

.85 PA2 Score, AUC_ROC: .9

Conclusion:

Depending on the model we are 80-90% confident that these features can lead to the process of depreciation.

Future Goals: attempt to determine why similar features were more important depending on the state, look further into the discrepancy between scores. While all bridges will become decrepit eventually, analyzing contributing features could possibly prolong their lifespans, and reduce the need for repairs.