Accelerating Protocol Synthesis and Detecting Unrealizability with Interpretation Reduction

Derek Egolf and Stavros Tripakis

Northeastern University, Boston

We synthesize TLA+ protocols

- TLA⁺ (Temporal Logic of Actions) [Lamport]
 - Properties: linear, with theories
 - Model checker: TLC; Proof system: TLAPS
- Symbolic representation (not explicit state)
- Used in both academia and industry [Commun. ACM'15]
- Allows "parameterized" protocols (e.g. set of nodes)
- Prior work [FMCAD'24] only other paper on TLA⁺ synthesis

Sketching [Solar-Lezama]

Example property: not shown

Example sketch

Receive(src, dst) :=

Example completion

$$Send(src, dst) := \\ \land has_lock[src] \\ \land message' = message \cup \{(src, dst)\} \\ \land has_lock' = has_lock[src \leftarrow false] \\ Receive(src, dst) := \\ \land (src, dst) \in message \\ \land message' = message \setminus \{(src, dst)\} \\ \land has_lock' = has_lock[dst \leftarrow true] \\ \end{cases}$$

Sketching, SyGuS [Solar-Lezama], [Alur et. al.]

Example property: not shown

Example sketch

Receive(src, dst) :=

$$\land$$
 ????₄
 \land message' = ???₅
 \land has_lock' = ???₆

Example grammar: not shown

Example completion

$$Send(src, dst) := \\ \land has_lock[src] \\ \land message' = message \cup \{(src, dst)\} \\ \land has_lock' = has_lock[src \leftarrow false] \\ Receive(src, dst) := \\ \land (src, dst) \in message \\ \land message' = message \setminus \{(src, dst)\} \\ \land has_lock' = has_lock[dst \leftarrow true] \\ \end{aligned}$$

• Improve state of art in TLA⁺ synthesis (100x)

- Improve state of art in TLA⁺ synthesis (100x)
- Halt when no solution: *unrealizability*

- Improve state of art in TLA⁺ synthesis (100x)
- Halt when no solution: *unrealizability*
- New search space reduction technique: Interpretation Reduction

- Improve state of art in TLA⁺ synthesis (100x)
- Halt when no solution: *unrealizability*
- New search space reduction technique: Interpretation Reduction
- Improved counterexample generalization for pruning

Problem Statement

Synthesis

Tool

 $ext{Safe} := orall x, y \in ext{Node} : (ext{has_lock}[x] \land ext{has_lock}[y]) \Rightarrow (x = y)$

```
	ext{Safe} := orall x, y \in 	ext{Node} : (	ext{has\_lock}[x] \land 	ext{has\_lock}[y]) \Rightarrow (x = y)
```

 $Live := \dots$

```
	ext{Safe} := orall x, y \in 	ext{Node} : (	ext{has\_lock}[x] \land 	ext{has\_lock}[y]) \Rightarrow (x = y) 	ext{Live} := \dots
```

```
	ext{Safe} := orall x, y \in 	ext{Node} : (	ext{has\_lock}[x] \land 	ext{has\_lock}[y]) \Rightarrow (x = y) 	ext{Live} := \dots
```

 $\mathrm{Safe} := \forall x,y \in \mathrm{Node} : (\mathrm{has_lock}[x] \wedge \mathrm{has_lock}[y]) \Rightarrow (x=y)$

 $Live := \dots$

$$Send(src, dst) :=$$

$$\wedge ????_1$$

$$\land$$
 message' = ???₂

$$\land$$
 has_lock' = ???3

$$Receive(src, dst) := \dots$$

$$???_2
ightarrow S_2$$

$$S_2
ightarrow T \mid S_2 \setminus S_2 \mid S_2 \cup S_2 \mid$$

$$T o ext{message} \mid \{(N,N)\}$$

$$N
ightarrow \mathrm{src} \mid \mathrm{dst}$$

 $\mathrm{Safe} := \forall x,y \in \mathrm{Node} : (\mathrm{has_lock}[x] \wedge \mathrm{has_lock}[y]) \Rightarrow (x=y)$

 $Live := \dots$

$$Send(src, dst) :=$$

$$\wedge ????_1$$

$$\land$$
 message' = ???₂

$$\land$$
 has_lock' = ????₃

$$Receive(src, dst) := \dots$$

$$???_2
ightarrow S_2$$

$$S_2
ightarrow T \mid S_2 \setminus S_2 \mid S_2 \cup S_2$$

$$T o ext{message} \mid \{(N,N)\}$$

$$N
ightarrow \mathrm{src} \mid \mathrm{dst}$$

$$???_1 \rightarrow \dots$$

$$???_3 \rightarrow \dots$$

Solution

Counterexample-Guided Inductive Synthesis [Solar-Lezama]

Learner

Counterexample-Guided Inductive Synthesis [Solar-Lezama]

Learner

Verifier (TLC)

Improving the Learner

- Naive Learner: ignore cex, enumerate all protocols
 - many protocols; model checking expensive
- Idea 1; discard protocols before model checking
 - o Pruning constraints: generalize counterexamples
- Idea 2; avoids enumerating protocols in the first place
 - Equivalence reduction: do not use equiv. subexpressions
- Idea 2++; Interpretation reduction: use weak eq. relation

Generalizing Counterexamples

Generalizing Counterexamples w/ Pruning Constraints

Generalizing Counterexamples w/ Pruning Constraints cex: $[x \mapsto a] \xrightarrow{A_1} [x \mapsto b]$ (safety violation to, e.g., always $x \neq b$)

Generalizing Counterexamples w/ Pruning Constraints cex: $[x \mapsto a] \xrightarrow{A_1} [x \mapsto b]$ (safety violation to, e.g., always $x \neq b$)

Sketch: $(A_1 := ???_1 \land x' = ???_2)$

Generalizing Counterexamples w/ Pruning Constraints cex: $[x \mapsto a] \xrightarrow{A_1} [x \mapsto b]$ (safety violation to, e.g., always $x \neq b$)

Sketch: $(A_1 := ???_1 \land x' = ???_2)$

Bad Completion: $(A_1 := \text{true} \land x' = b)$

cex: $[x \mapsto a] \xrightarrow{A_1} [x \mapsto b]$ (safety violation to, e.g., always $x \neq b$)

Sketch: $(A_1 := ???_1 \land x' = ???_2)$

Bad Completion: $(A_1 := \text{true} \land x' = b)$

Bad Completion: $(A_1 := x = a \land x' = b)$

cex: $[x \mapsto a] \xrightarrow{A_1} [x \mapsto b]$ (safety violation to, e.g., always $x \neq b$)

Sketch: $(A_1 := ???_1 \land x' = ???_2)$

Bad Completion: $(A_1 := \text{true} \land x' = b)$

Bad Completion: $(A_1 := x = a \land x' = b)$

Good Completion: $(A_1 := x = a \land x' = a)$

cex: $[x \mapsto a] \xrightarrow{A_1} [x \mapsto b]$ (safety violation to, e.g., always $x \neq b$)

Sketch: $(A_1 := ???_1 \land x' = ???_2)$

Bad Completion: $(A_1 := \text{true} \land x' = b)$

Bad Completion: $(A_1 := x = a \land x' = b)$

Good Completion: $(A_1 := \mathbf{x} = \mathbf{a} \land \mathbf{x}' = \mathbf{a})$

Good Completion: $(A_1 := x \neq a \land x' = b)$

cex: $[x \mapsto a] \xrightarrow{A_1} [x \mapsto b]$ (safety violation to, e.g., always $x \neq b$)

Sketch: $(A_1 := ???_1 \land x' = ???_2)$

Bad Completion: $(A_1 := \text{true} \land x' = b)$

Bad Completion: $(A_1 := x = a \land x' = b)$

Good Completion: $(A_1 := \mathbf{x} = \mathbf{a} \land \mathbf{x}' = \mathbf{a})$

Good Completion: $(A_1 := x \neq a \land x' = b)$

Idea: treat cex as a path. Disable an action or point it somewhere else.

cex: $[x \mapsto a] \xrightarrow{A_1} [x \mapsto b]$ (safety violation to, e.g., always $x \neq b$)

Sketch: $(A_1 := ???_1 \land x' = ???_2)$

Bad Completion: $(A_1 := \text{true} \land x' = b)$

Bad Completion: $(A_1 := x = a \land x' = b)$

Good Completion: $(A_1 := \mathbf{x} = \mathbf{a} \land \mathbf{x}' = \mathbf{a})$

Good Completion: $(A_1 := x \neq a \land x' = b)$

Idea: treat cex as a path. Disable an action or point it somewhere else.

 $\pi_{\mathrm{cex}} :=$

cex: $[x \mapsto a] \xrightarrow{A_1} [x \mapsto b]$ (safety violation to, e.g., always $x \neq b$)

Sketch:
$$(A_1 := ???_1 \land x' = ???_2)$$

Bad Completion: $(A_1 := \text{true} \land x' = b)$

Bad Completion: $(A_1 := x = a \land x' = b)$

Good Completion: $(A_1 := \mathbf{x} = \mathbf{a} \land \mathbf{x}' = \mathbf{a})$

Good Completion: $(A_1 := x \neq a \land x' = b)$

Idea: treat cex as a path. Disable an action or point it somewhere else.

$$\pi_{\text{cex}} := ????_1([x \mapsto a]) \neq \text{true}$$

cex: $[x \mapsto a] \xrightarrow{A_1} [x \mapsto b]$ (safety violation to, e.g., always $x \neq b$)

Sketch: $(A_1 := ???_1 \land x' = ???_2)$

Bad Completion: $(A_1 := \text{true} \land x' = b)$

Bad Completion: $(A_1 := x = a \land x' = b)$

Good Completion: $(A_1 := \mathbf{x} = \mathbf{a} \land \mathbf{x}' = \mathbf{a})$

Good Completion: $(A_1 := x \neq a \land x' = b)$

Idea: treat cex as a path. Disable an action or point it somewhere else.

$$\pi_{\text{cex}} := ????_1([x \mapsto a]) \neq \text{true} \lor ????_2([x \mapsto a]) \neq b$$

Generalizing Counterexamples (Cont.)

- In general: many completions violate π_{cex}
- (Ideally) **Theorem**: cex belongs to P iff $P \nvDash \pi_{\text{cex}}$
- (Reality) π_{cex} underprunes when cex is stuttering violation
- π_{cex} exact for safety, deadlock, and liveness cex
- Prior work [FMCAD'24] only exact for safety
- Checking $P \models \pi_{\text{cex}}$ cheaper than model checking.

Interpretation Reduction

$$egin{aligned} ????_1 &
ightarrow Y \ Y &
ightarrow u \mid X+Y \ X &
ightarrow 0 \mid v \mid X+X \end{aligned}$$

Example grammar

$$???_1 \rightarrow Y$$

$$Y
ightarrow u \mid X + Y$$

$$X \rightarrow 0 \mid v \mid X + X$$

u:Y

$$???_1 \rightarrow Y$$

$$Y
ightarrow u \mid X + Y$$

$$X \rightarrow 0 \mid v \mid X + X$$

$$???_1 \rightarrow Y$$

$$Y
ightarrow u \mid X + Y$$

$$X \rightarrow 0 \mid v \mid X + X$$

$$v+u:Y$$

$$???_1 \rightarrow Y$$

$$Y
ightarrow u \mid X + Y$$

$$X
ightarrow 0 \mid v \mid X + X$$

$$v+u:Y$$

$$???_1 \rightarrow Y$$

$$Y
ightarrow u \mid X + Y$$

$$X
ightarrow 0 \mid v \mid X + X$$

$$v+u:Y$$

$$0 + u : Y$$

Example grammar

$$???_1 \rightarrow Y$$

$$Y
ightarrow u \mid X + Y$$

$$X
ightarrow 0 \mid v \mid X + X$$

u:Y

v:X

v+u:Y

0:X

0+u:Y

Example grammar

$$???_1 o Y$$

$$Y
ightarrow u \mid X + Y$$

$$X \rightarrow 0 \mid v \mid X + X$$

Discard 0 + u.

Do not enumerate, e.g.,

$$0 + (0 + u)$$
.

$$v+u:Y$$

$$0+u:Y$$

Example grammar

$$???_1 \rightarrow Y$$

$$Y
ightarrow u \mid X + Y$$

$$X
ightarrow 0 \mid v \mid X + X$$

Discard 0 + u.

Do not enumerate, e.g.,

$$0 + (0 + u)$$
.

u:Y

v:X

v+u:Y

0:X

0+u:Y

[FMCAD'24] uses standard equivalence reduction

E.g.,
$$x + y \equiv y + x$$

E.g., $x+y\equiv y+x$ $e_1\equiv e_2$ means: for all $\alpha,e_1(\alpha)=e_2(\alpha)$

E.g.,
$$x+y\equiv y+x$$
 $e_1\equiv e_2$ means: for all $\alpha,e_1(\alpha)=e_2(\alpha)$

Interpretation Equivalence

E.g.,
$$x+y\equiv y+x$$
 $e_1\equiv e_2$ means: for all $\alpha,e_1(\alpha)=e_2(\alpha)$

Interpretation Equivalence

E.g.,
$$x + y \equiv_{\mathcal{A}} x + x$$
 for $\mathcal{A} = \{[x \mapsto 0, y \mapsto 0], [x \mapsto 42, y \mapsto 42]\}$

E.g.,
$$x+y\equiv y+x$$
 $e_1\equiv e_2$ means: for all $\alpha,e_1(\alpha)=e_2(\alpha)$

Interpretation Equivalence

E.g.,
$$x+y\equiv_{\mathcal{A}} x+x$$
 for $\mathcal{A}=\{[x\mapsto 0,y\mapsto 0],[x\mapsto 42,y\mapsto 42]\}$ $e_1\equiv_{\mathcal{A}} e_2$ means: for all $\alpha\in\mathcal{A},e_1(\alpha)=e_2(\alpha)$

• Q: Which interpretations are in A?

- Q: Which interpretations are in A?
- A: All interpretations (states) appearing in pruning constraints.

- Q: Which interpretations are in A?
- A: All interpretations (states) appearing in pruning constraints.

For instance:

$$egin{aligned} \Pi &= \{~???_1([x\mapsto 0,y\mapsto 1])
eq 1~\} \ \mathcal{A} &= \{~[x\mapsto 0,y\mapsto 1]~\} \end{aligned}$$

- Q: Which interpretations are in A?
- A: All interpretations (states) appearing in pruning constraints.

For instance:

$$egin{aligned} \Pi &= \{~???_1([x\mapsto 0,y\mapsto 1])
eq 1~\} \ \mathcal{A} &= \{~[x\mapsto 0,y\mapsto 1]~\} \end{aligned}$$

Note: $y \nvDash \Pi$, since y evaluates to 1.

- Q: Which interpretations are in A?
- A: All interpretations (states) appearing in pruning constraints.

For instance:

$$egin{aligned} \Pi &= \{~???_1([x\mapsto 0,y\mapsto 1])
eq 1~\} \ \mathcal{A} &= \{~[x\mapsto 0,y\mapsto 1]~\} \end{aligned}$$

Note: $y \nvDash \Pi$, since y evaluates to 1.

Also note: $x + y \nvDash \Pi$, since 0 + 1 = 1.

- Q: Which interpretations are in A?
- A: All interpretations (states) appearing in pruning constraints.

For instance:

$$egin{aligned} \Pi &= \{~???_1([x\mapsto 0,y\mapsto 1])
eq 1~\} \ \mathcal{A} &= \{~[x\mapsto 0,y\mapsto 1]~\} \end{aligned}$$

Note: $y \nvDash \Pi$, since y evaluates to 1.

Also note: $x + y \nvDash \Pi$, since 0 + 1 = 1.

Finally, note $y \equiv_{\mathcal{A}} x + y$.

Interpretation Reduction

- Let $\mathcal{A} = \{ [x \mapsto 0, y \mapsto 1] \}$ have all relevant interpretations
- Suppose we've enumerated the subexpressions x and y
- Should we enumerate subexpression x + y?
- No, $y \equiv_{\mathcal{A}} x + y$
- Theorem. one representative per eq. class mod \mathcal{A} is sufficient to maintain completeness of the synthesis algorithm
- Lemma. $e_1 \equiv_{\mathcal{A}} e_2 \Longrightarrow (e_1 \vDash \Pi \Leftrightarrow e_2 \vDash \Pi)$

Summary: Improving the Learner

- Idea 1; discard protocols before model checking
 - Pruning constraints: generalize counterexamples
- Idea 2; avoids enumerating protocols in the first place
 - o Equivalence reduction: do not use equiv. subexpressions
- Idea 2++; Interpretation reduction: use weak eq. relation
- More details in paper!

Unrealizability

- Detected when pool of enumerated expression reaches fixed point
- Requires sufficiently weak equivalence relation
- weaker = faster fixed point

Experimental Evaluation

Setup

- Our tool: Polysemist
- Compare with state of art tool: Scythe (FMCAD 2024)
- Benchmarks based on those of Scythe
- 7 case studies, including: reconfig-raft, 2PC, SKV, locks
- Realizable (n=171) and Unrealizable (n=123) experiments
- Easiest: all pre- or post-conditions in 1 action
- Hardest: all pre- and post-conditions in 2 actions

Unrealizable Experiments

- n = 123
- **Scythe** : TO=107 / HALT=16
- Polysemist : TO=43 / HALT=80
 - Usually halted in <60 seconds
 - Did not TO unless Scythe did

Conclusion

• CEGIS for TLA⁺ protocols

- CEGIS for TLA⁺ protocols
- Counterexample generalization avoids redundant model checking

- CEGIS for TLA⁺ protocols
- Counterexample generalization avoids redundant model checking
- Interpretation reduction avoids redundant enumeration

- CEGIS for TLA⁺ protocols
- Counterexample generalization avoids redundant model checking
- Interpretation reduction avoids redundant enumeration
- 100x improvements over state of art

- CEGIS for TLA⁺ protocols
- Counterexample generalization avoids redundant model checking
- Interpretation reduction avoids redundant enumeration
- 100x improvements over state of art
- Recognize 5x more unrealizable instances than state of art

Thank you!

egolf.d@northeastern.edu

Paper, Tool, Slides, Poster