MCR3U Formula Sheet

 $PV = \frac{A}{(1+i)^n}$

$$y = mx + b$$
 $y = ax^{2} + bx + c$ $y = a(x - h)^{2} + k$
 $g(x) = af[k(x - d)] + c$ $f(x) = a(x - r)(x - s)$ $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$
 $x^{2} + y^{2} = r^{2}$ $\sin \theta = \frac{y}{r}$ $\cos \theta = \frac{x}{r}$
 $\tan \theta = \frac{y}{x}$ $a^{2} = b^{2} + c^{2} - 2bc \cos A$ $\frac{a}{sinA} = \frac{b}{sinB} = \frac{c}{sinC}$
 $t_{n} = t_{n-1} + d$ $t_{n} = a + (n - 1)d$ $t_{n} = t_{n-1}r$
 $t_{n} = a r^{n-1}$ $S_{n} = \frac{n}{2}(2a + (n - 1)d)$ $S_{n} = \frac{a(r^{n} - 1)}{r - 1}$
 $A = P(1 + rt)$ $I = Prt$ $A = P(1 + i)^{n}$

 $FV = R\left(\frac{(1+i)^n - 1}{i}\right)$

Based on Definitions	Derived From Relationships	
Reciprocal Identities	Quotient Identities	Pythagorean Identities
$\csc\theta = \frac{1}{\sin\theta}$, where $\sin\theta \neq 0$	$\tan \theta = \frac{\sin \theta}{\cos \theta}$, where $\cos \theta \neq 0$	$\sin^2\theta + \cos^2\theta = 1$
$\sec\theta = \frac{1}{\cos\theta}$, where $\cos\theta \neq 0$	$\cot \theta = \frac{\cos \theta}{\sin \theta}$, where $\sin \theta \neq 0$	$1 + \tan^2\theta = \sec^2\theta$
$\cot \theta = \frac{1}{\tan \theta}$, where $\tan \theta \neq 0$		$1 + \cot^2\theta = \csc^2\theta$

 $PV = R\left(\frac{1 - (1+i)^{-n}}{i}\right)$