Weighted posets and the enriched monomial basis of QSym [slides] Darij Grinberg and Ekaterina Vassilieva

2022-01-17

Hsiao defines in [4] the monomial peak functions η_{α} : a class of quasisymmetric functions indexed by **odd compositions** of n. They provide a monomial-like basis

K_{α} through

 $K_{\alpha} = \sum_{\substack{\beta \in \text{Odd}(n);\\ \text{Peak}(\beta) \subseteq \text{Peak}(\alpha)}} \eta_{\beta}.$ In the present work:

• We relate it to other bases of QSym, compute its **antipode** and **coproduct**. • We introduce weighted posets and their enriched P-partitions (generalizing both the weighted posets of [1] and the enriched P-partitions of [5]),

- whose generating functions give a universal framework for many types of quasisymmetric functions. $3, \epsilon(3) = 2$ $1, \epsilon(1) = 1 \longrightarrow 4, \epsilon(4) = 12$ $5, \epsilon(5) = 2$
- We use our framework to compute the **product** of two enriched monomials:
- $\eta_{\alpha}\eta_{\beta} = \sum_{\substack{\gamma \in \alpha \sqcup \beta; \\ I \subseteq \left(S_{\beta}(\gamma) \setminus (S_{\beta}(\gamma) 1)\right) \setminus \{1\}}} (-1)^{|I|} \eta_{\gamma \downarrow \downarrow I}.$

as and permutations statistics
$$\mathbb{N} = \{0, 1, \ldots\}, [n] = \{1, 2, \ldots, n\}, S_n \text{ the syntest of } compositions } \alpha = (\alpha_1, \alpha_2, \ldots, \alpha_p) \text{ of } n$$
 so of n containing only odd integers. Let $\ell(\alpha)$

1.2. Quasisymmetric functions

• For any $n \in \mathbb{N}$ and $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_p) \in \text{Comp}(n)$, define the monomial quasisymmetric function M_{α} and the fundamental quasisymmetric function L_{α} by

 $M_{\alpha} = \sum_{i_1 < \dots < i_p} x_{i_1}^{\alpha_1} x_{i_2}^{\alpha_2} \cdots x_{i_p}^{\alpha_p}, \qquad L_{\alpha} = \sum_{\substack{i_1 \le \dots \le i_n; \\ j \in \mathrm{Des}(\alpha) \Rightarrow i_j < i_{j+1}}} x_{i_1} x_{i_2} \cdots x_{i_n}.$

 $Des(\alpha)$ ($Peak(\alpha)$) the descent set (peak set) assiociated with (odd) composition α .

- $M_{(2,1)} = \sum_{i \le j} x_i^2 x_j = x_1^2 x_2 + x_1^2 x_3 + x_2^2 x_3 + x_1^2 x_4 + x_2^2 x_4 + x_3^2 x_4 + \dots,$
- The sets $\{M_{\alpha}\}_{n\in\mathbb{N},\ \alpha\in\operatorname{Comp}(n)}$ and $\{L_{\alpha}\}_{n\in\mathbb{N},\ \alpha\in\operatorname{Comp}(n)}$ are two bases of the **k**-module QSym. They are related through

 $(\alpha_1, \alpha_2, \dots, \alpha_p) \in \text{Odd}(n)$, let

satisfies the two following conditions:

(ii) If $i <_P j$ and i > j, then f(i) < f(j).

(i) If $i <_P j$, then $f(i) \le f(j)$.

• A labelled poset $P = ([n], <_P)$ is an arbitrary partial order $<_P$ on the set [n]. • Let $P = ([n], <_P)$ be a labelled poset. A P-partition is a map $f : [n] \longrightarrow \mathbb{P}$ that

- Given $\pi \in S_n$, let $P_{\pi} = ([n], <_{\pi})$ denote the labelled poset where the order relation $<_{\pi}$ is such that $\pi_i <_{\pi} \pi_j$ if and only if i < j (see Figure 1).
 - $\Gamma_{\mathcal{Z}}([n],<_{\pi})\Gamma_{\mathcal{Z}}([m],<_{\sigma}) = \sum_{\gamma \in \pi \sqcup \sigma} \Gamma_{\mathcal{Z}}([n+m],<_{\gamma}).$ (5)(6)

$\Gamma_{\mathcal{Z}}([n],<_P) = \sum_{f \in \mathcal{L}_{\mathcal{Z}}([n],<_P)} \quad \prod_{1 \leq i \leq n} x_{|f(i)|}.$

 $L_{\pi}L_{\sigma} = \sum_{\gamma \in \pi \sqcup \sigma} L_{\gamma}, \qquad K_{\pi}K_{\sigma} = \sum_{\gamma \in \pi \sqcup \sigma} K_{\gamma}.$

Definition 2: Labelled weighted posets A labelled weighted poset is a triple $P = ([n], <_P, \epsilon)$ where $([n], <_P)$ is a labelled poset and $\epsilon: [n] \longrightarrow \mathbb{P}$ is a map (called the **weight function**). In a labelled weighted poset each node is marked with two numbers: its label $i \in [n]$ and its weight $\epsilon(i)$.

For any set $\mathcal{Z} \subseteq \mathbb{P}^{\pm}$, we define the generating function $\Gamma_{\mathcal{Z}}([n], <_P, \epsilon)$ of the labelled

 $\Gamma_{\mathcal{Z}}([n], <_P, \epsilon) = \sum_{f \in \mathcal{L}_{\mathcal{Z}}([n], <_P)} \prod_{1 \le i \le n} x_{|f(i)|}^{\epsilon(i)}.$

Let $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n)$ be a composition. Let $\pi = \pi_1 \dots \pi_n$ be a permutation in S_n . Let $P_{\pi,\alpha} = ([n], <_{\pi}, \alpha)$ denote the labelled weighted poset composed of the labelled poset $([n], <_{\pi})$ and the weight function sending the vertex labelled π_i to

 $\pi_1, \alpha_1 \longrightarrow \pi_2, \alpha_2 \longrightarrow \dots \longrightarrow \pi_n, \alpha_n$

We define the universal quasisymmetric function $U_{\pi,\alpha}^{\mathcal{Z}}$ as the generating func-

 $U_{\pi,\alpha}^{\mathcal{Z}} = \Gamma_{\mathcal{Z}}([n], <_{\pi}, \alpha).$

Let $n \in \mathbb{N}$. Let id_n and id_n denote the two permutations in S_n given by $id_n =$ 1 2 3...n and $id_n = n$ n-1 n-2...1 (in one-line notation). Denote further (1^n)

 $U_{\pi,(1^n)}^{\mathbb{P}} = L_{\pi}, \qquad U_{\pi,(1^n)}^{\mathbb{P}^{\pm}} = K_{\pi}, \qquad U_{id_n,\alpha}^{\mathbb{P}} = M_{\alpha}, \qquad U_{id_n,\alpha}^{\mathbb{P}^{\pm}} = \eta_{\alpha}.$

Proposition 4: Specialisation of universal quasisymmetric functions

the composition of n with n entries equal to 1. Let $\pi \in S_n$. Then,

(8)

(9)

(10)

(11)

(12)

weighted poset $([n], <_P, \epsilon)$ by

tion

3.3. Product rule

3.2. Universal quasisymmetric functions

Definition 3: Universal quasisymmetric functions

Theorem 3: Product of universal quasisymmetric functions Let \mathcal{Z} be a subset of \mathbb{P}^{\pm} . Let π and σ be two permutations in S_n and S_m , and let $\alpha = (\alpha_1, \dots, \alpha_n)$ and $\beta = (\beta_1, \dots, \beta_m)$ be two compositions with n and m entries. The product of two universal quasisymmetric functions is given by $U_{\pi,\alpha}^{\mathcal{Z}}U_{\sigma,\beta}^{\mathcal{Z}} = \sum_{(\tau,\gamma)\in(\pi,\alpha)\sqcup(\sigma,\beta)} U_{\tau,\gamma}^{\mathcal{Z}}.$ *Proof.* The proof is iterative and uses the following decomposition of posets.

Figure 2: Decomposition of a double chain weighted poset into two posets with one in-

Let α and β be two compositions with n and m entries. Equations (10) and (11) imply:

 $\eta_{\alpha}\eta_{\beta} = U_{id_{n},\alpha}^{\mathbb{P}^{\pm}} U_{id_{m},\beta}^{\mathbb{P}^{\pm}} = \sum_{(\tau,\gamma) \in (id_{n},\alpha) \sqcup (id_{m},\beta)} U_{\tau,\gamma}^{\mathbb{P}^{\pm}}.$

Let $\alpha = (\alpha_1, \ldots, \alpha_n)$ be a composition with n entries. Let $\alpha^{\downarrow\downarrow i}$ denote the following

 $\alpha^{\downarrow\downarrow i} = (\alpha_1, \dots, \alpha_{i-2}, \alpha_{i-1} + \alpha_i + \alpha_{i+1}, \alpha_{i+2}, \dots, \alpha_n)$

Furthermore, for any peak-lacunar subset $I \subseteq [n-1]$, we set $\alpha^{\downarrow \downarrow I} = \alpha$ if $I = \emptyset$ and

 $\alpha^{\downarrow \downarrow I} = \left(\left(\cdots \left(\alpha^{\downarrow i_k} \right) \cdots \right)^{\downarrow i_2} \right)^{\downarrow i_1},$

 $U_{\pi,\alpha}^{\mathbb{P}^{\pm}} = \sum_{I \subset \operatorname{Peak}(\pi)} (-1)^{|I|} \eta_{\alpha \downarrow \downarrow I}.$

By the inclusion-exclusion principle, this can be rewritten as

Theorem 5: Product rule for enriched monomials

 $S_{\beta}(\gamma) - 1 = \{i - 1 | i \in S_{\beta}(\gamma)\}.$ Then,

 $\eta_{(1,1)}\eta_{(2,3)} = \eta_{(1,1,2,3)} + \eta_{(1,2,1,3)} - \eta_{(4,3)} + \eta_{(2,1,1,3)} + \eta_{(1,2,3,1)}$ $-\eta_{(1,6)} + \eta_{(2,1,3,1)} - \eta_{(2,5)} + \eta_{(2,3,1,1)} - \eta_{(6,1)},$

D. Grinberg and V. Reiner. Hopf Algebras in Combinatorics. arXiv:1409.8356v7. 2020. URL: http://www.cip.ifi.lmu.de/~grinberg/algebra/HopfComb-sols.

whole) QSym. We name this new basis the enriched monomial basis of QSym.

1. Notation and basic definitions 1.1. Compositions and permutations statistics

• Comp(n) is the set of *compositions* $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_p)$ of n. Odd(n) is the set of odd compositions of n containing only odd integers. Let $\ell(\alpha) := p$, $|\alpha| := \sum_{i=1}^{n} \alpha_i = n$. • The descent set $Des(\pi)$ of $\pi \in S_n$ is $Des(\pi) = \{1 \le i \le n - 1 | \pi(i) > \pi(i+1) \}$. • The *peak set* Peak(π) of π is Peak(π) = $\{2 \le i \le n-1 | \pi(i-1) < \pi(i) > \pi(i+1) \}$. • Compositions of n are in bijection with descent sets of permutations in S_n while odd compositions of n, are in one-to-one correspondence with peak sets. Denote

 $L_{(2,1)} = \sum_{i \le j < k} x_i x_j x_k = x_1^2 x_2 + x_1^2 x_3 + x_1 x_2 x_3 + x_2^2 x_3 + x_1^2 x_4 + x_1 x_2 x_4 + x_2^2 x_4 + \dots$

1.3. Peak and monomial peak functions

• In [5], Stembridge introduces
$$peak$$
 quasisymmetric functions. Given $n \in \mathbb{N}$ and $\alpha \in \mathrm{Odd}(n)$,
$$K_{\alpha} = \sum_{\substack{i_1 \leq \cdots \leq i_n; \\ j \in \mathrm{Peak}(\alpha) \Rightarrow i_{j-1} < i_{j+1}}} 2^{|\{i_1, i_2, \ldots, i_n\}|} x_{i_1} x_{i_2} \cdots x_{i_n}.$$

• Hsiao defines in [4] the monomial peak functions. For any odd composition $\alpha =$

 $\eta_{\alpha} = (-1)^{(n-\ell(\alpha))/2} \sum_{i_1 < \dots < i_{-}} 2^{|\{i_1, i_2, \dots, i_p\}|} x_{i_1}^{\alpha_1} x_{i_2}^{\alpha_2} \cdots x_{i_p}^{\alpha_p}.$

 $L_{\alpha} = \sum_{\substack{\beta \in \text{Comp}(n);\\ \text{Dec}(x) \subseteq D}} M_{\beta}.$

(1)

(2)

(3)

(4)

$$K_{\alpha} = \sum_{\substack{\beta \in \mathrm{Odd}(n);\\ \mathrm{Peak}(\beta) \subseteq \mathrm{Peak}(\alpha)}} \eta_{\beta}.$$
1.4. Posets and P -partitions

• An identity similar to Equation (1) relates peak and monomial peak functions:

 $\pi_1 \longrightarrow \pi_2 \longrightarrow \dots \longrightarrow \pi_n$

Figure 1: The labelled poset associated to permutation π .

• Set $L_{\pi} = \Gamma_{\mathbb{P}}([n], <_{\pi})$ and $K_{\pi} = \Gamma_{\mathbb{P}^{\pm}}([n], <_{\pi})$. The function L_{π} is equal to the fundamental quasisymmetric function L_{α} indexed by the unique composition α such that $Des(\alpha) = Des(\pi)$. Similarly, K_{π} is equal to the peak function K_{α} indexed

by the unique odd composition
$$\alpha$$
 such that $\operatorname{Peak}(\alpha) = \operatorname{Peak}(\pi)$.
Given two permutations $\pi \in S_n$ and $\sigma \in S_m$

$$M(1,3,1)$$
 $M(1,3,1)$ $M(1,3,1)$ $M(1,3,1)$ $M(1,3,1)$ $M(1,3,1)$ $M(1,3,1)$ $M(1,3,1)$ $M(1,3,1)$ sitive integer n , we have $\eta_{(n)} = 2M_{(n)}$ (since the composition $(n = \emptyset)$). Likewise, the empty composition $\emptyset = (1)$ satisfies $\eta_{\alpha} = M_{\alpha}$

3. The product rule for the enriched monomial basis

3.1. Weighted posets

Definition 2: Labelled weighted posets

A labelled weighted poset is a triple
$$P = ([n], <_P, \epsilon)$$
 where $([n], <_P)$ is a label poset and $\epsilon : [n] \longrightarrow \mathbb{P}$ is a map (called the weight function). In a label weighted poset each node is marked with two numbers: its label $i \in [n]$ and weight $\epsilon(i)$.

 $\pi_1, \alpha_1 \longrightarrow \pi_2, \alpha_2 \longrightarrow \dots \longrightarrow \pi_n, \alpha_n$ $\sigma_1, \beta_1 \longrightarrow n + \sigma_2, \beta_2 \longrightarrow \dots \longrightarrow n + \sigma_m, \beta_m$ $n + \sigma_1, \beta_1 \longrightarrow n + \sigma_1, \beta_1$

comparable pair less.

3.4. Product of enriched monomials

Definition 4: Composition reduction

composition with n-2 entries:

where i_1, i_2, \ldots, i_k are the elements of $I \neq \emptyset$ in increasing order. As an example, let $\alpha = (2, 1, 4, 3, 2)$. We have $\alpha^{\downarrow \downarrow 3} = (2, 8, 2)$ and $\alpha^{\downarrow \downarrow \{2,4\}} = (12)$. Theorem 4: Universal quasisymmetric functions to enriched monomials Let α be a composition with n entries and π a permutation in S_n . We have (13)

Proof (sketch). From the definition of $U_{\pi,\alpha}^{\mathbb{P}^{\pm}}$, one can obtain without too much trouble

 $U_{\pi,\alpha}^{\mathbb{P}^{\pm}} = \sum_{\substack{i_1 \leq i_2 \leq \cdots \leq i_n; \\ j \in \operatorname{Peak}(\pi) \Rightarrow \neg (i_{j-1} = i_j = i_{j+1})}} 2^{|\{i_1, i_2, \dots, i_n\}|} x_{i_1}^{\alpha_1} x_{i_2}^{\alpha_2} \dots x_{i_n}^{\alpha_n}.$

 $U_{\pi,\alpha}^{\mathbb{P}^{\pm}} = \sum_{I \subseteq \text{Peak}(\pi)} (-1)^{|I|} \sum_{\substack{i_1 \le i_2 \le \dots \le i_n; \\ j \in I \Rightarrow i_{j-1} = i_j = i_{j+1}}} 2^{|\{i_1, i_2, \dots, i_n\}|} x_{i_1}^{\alpha_1} x_{i_2}^{\alpha_2} \dots x_{i_n}^{\alpha_n}.$

Let $\alpha = (\alpha_1, \ldots, \alpha_n)$ and $\beta = (\beta_1, \ldots, \beta_m)$ be two compositions. Given a composition γ obtained by shuffling α and β (we shall denote this by $\gamma \in \alpha \sqcup \beta$), let $S_{\beta}(\gamma)$ be the set of the positions of the entries of β in γ . Denote further

> $\eta_{\alpha}\eta_{\beta} = \sum_{\substack{\gamma \in \alpha \sqcup \beta; \ I \subseteq \left(S_{\beta}(\gamma) \setminus (S_{\beta}(\gamma) - 1)\right) \setminus \{1\}}} (-1)^{|I|} \eta_{\gamma \downarrow \downarrow I}.$ (14)

these slides: https://github.com/darijgr/fpsac21eta/raw/main/fps21eta-talk. paper: https://www.mat.univie.ac.at/~slc/wpapers/FPSAC2021/58Grinberg.pdf Summary of our work to Stembridge's algebra of peaks [5] and are related to Stembridge peak functions • We show that monomial peak functions may be extended to a basis of (the

ramework to compute the **product** of
$$\eta_{\alpha}\eta_{\beta} = \sum_{\substack{\gamma \in \alpha \sqcup \beta; \\ I \subseteq \left(S_{\beta}(\gamma) \setminus (S_{\beta}(\gamma) - 1)\right) \setminus \{1\}}} (-1)$$

• $\mathbb{P} = \{1, 2, ...\}, \mathbb{N} = \{0, 1, ...\}, [n] = \{1, 2, ..., n\}, S_n \text{ the symmetric group on } [n]$

• As an example, for n = 3, we have

$$\alpha \in \mathrm{Odd}(n),$$

$$K_{\alpha} = \sum_{\substack{i_1 \leq j \in \mathrm{Peak}(\alpha)}}^{i_1}$$

$$1 < -2 < 2 < -3 < \dots$$
 Let $P = ([n], <_P)$ be a labelled poset. An *enriched* P -partition is a map $f : [n] \longrightarrow \mathbb{P}^{\pm}$ that satisfies the following two conditions:
(i) If $i <_P j$ and $i < j$, then $f(i) < f(j)$ or $f(i) = f(j) \in \mathbb{P}$.
(ii) If $i <_P j$ and $i > j$, then $f(i) < f(j)$ or $f(i) = f(j) \in -\mathbb{P}$.

• Let $\mathbb{P}^{\pm} = \{-, +\} \times \mathbb{P}$. We equip the set \mathbb{P}^{\pm} with a total order given by -1 <

• Given two permutations
$$\pi \in S_n$$
 and $\sigma \in S_m$
$$\Gamma_{\mathcal{Z}}([n],<_{\pi})\Gamma_{\mathcal{Z}}([m],<_{\sigma}) = \sum \Gamma_{\mathcal{Z}}([n+m].$$

fies
$$\operatorname{Des}(n) = \varnothing$$
). Likewise, the empty composition $\varnothing = ()$ satisfies $\eta_{\varnothing} = M_{\varnothing}$ sition 1: Power series expansion

and $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_p) \in \operatorname{Comp}(n)$. Then,

Theorem 2: Coproduct of enriched monomials

Consider the coproduct
$$\Delta: \operatorname{QSym} \to \operatorname{QSym} \otimes \operatorname{QSym}$$
 of the Hopf algebra QSym (see [3, §5.1]). Let $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_p)$ be a composition. Then,

$$\Delta(\eta_\alpha) = \sum_{k=0}^p \eta_{(\alpha_1, \alpha_2, \dots, \alpha_k)} \otimes \eta_{(\alpha_{k+1}, \alpha_{k+2}, \dots, \alpha_p)}.$$

3. The product rule for the enriched monomial basis

 $S(\eta_{\alpha}) = (-1)^{\ell(\alpha)} \eta_{\text{rev}\,\alpha}.$

Let $n \in \mathbb{N}$ and $\alpha \in \text{Comp}(n)$. Then, the antipode S of QSym satisfies

The sum ranges not over compositions γ but over ways to shuffle α with β . Thus, the same γ can appear in several addends of the sum. As an example, one has

References of Combinatorics 24.2 (2017), P22. pdf. pp. 763–788.

1

 $\eta_{(1,2)}\eta_{(2)} = \eta_{(2,1,2)} + 2\eta_{(1,2,2)} - \eta_{(5)}.$ *Proof* (sketched). Recall (12), and rewrite the right-hand side using (13). Let (τ, γ) be a coshuffle in $(id_n, \alpha) \sqcup (id_m, \beta)$. The index i belongs to Peak (τ) if and only if τ_i is a letter of $n + id_m$ and τ_{i+1} is a letter of id_n and we have i > 1. That is, if and only if i is the index of an entry of β in γ and i+1 is the index of an entry of α . Thus, $\operatorname{Peak}(\tau) = (S_{\beta}(\gamma) \setminus (S_{\beta}(\gamma) - 1)) \setminus \{1\}.$ Therefore, we obtain (14). D. Grinberg. "Double posets and the antipode of QSym". In: The Electronic Journal D. Grinberg. "Shuffle-compatible permutation statistics II: the exterior peak set". In: Electronic Journal of Combinatorics 25.4 (2018), P4.17. S. K. Hsiao. "Structure of the peak Hopf algebra of quasisymmetric functions". 2007. J. Stembridge. "Enriched P-partitions." In: Trans. Amer. Math. Soc. 349.2 (1997),

2. The enriched monomial basis of QSym 2.1. The enriched monomial functions Definition 1: Enriched monomials For any $n \in \mathbb{N}$ and any composition $\alpha \in \text{Comp}(n)$, we define a quasisymmetric function $\eta_{\alpha} \in QSym$ by $\eta_{\alpha} = \sum_{\substack{\beta \in \text{Comp}(n);\\ \beta \in \text{Comp}(n)}} 2^{\ell(\beta)} M_{\beta}.$ (7)Examples • (a) Setting n=5 and $\alpha=(1,3,1)$ in this definition, we obtain $\eta_{(1,3,1)} = \sum_{\substack{\beta \in \text{Comp}(5);\\ \text{Des}(\beta) \subseteq \text{Des}(1,3,1)}} 2^{\ell(\beta)} M_{\beta} = \sum_{\substack{\beta \in \text{Comp}(5);\\ \text{Des}(\beta) \subseteq \{1,4\}}} 2^{\ell(\beta)} M_{\beta} \qquad (\text{Des}(1,3,1) = \{1,4\})$ $=2^{\ell(5)}M_{(5)}+2^{\ell(1,4)}M_{(1,4)}+2^{\ell(4,1)}M_{(4,1)}+2^{\ell(1,3,1)}M_{(1,3,1)}$ $= 2M_{(5)} + 4M_{(1,4)} + 4M_{(4,1)} + 8M_{(1,3,1)}.$ • (b) For any positive integer n, we have $\eta_{(n)} = 2M_{(n)}$ (since the composition (n)satisfies $Des(n) = \emptyset$). Likewise, the empty composition $\emptyset = ()$ satisfies $\eta_{\emptyset} = M_{\emptyset}$. Proposition 1: Power series expansion Let $n \in \mathbb{N}$ and $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_p) \in \text{Comp}(n)$. Then, $\eta_{\alpha} = \sum_{\substack{i_1 \leq i_2 \leq \cdots \leq i_n; \\ i_j = i_{j+1} \text{ for each } j \in [n-1] \backslash \mathrm{Des}(\alpha)}} 2^{|\{i_1, i_2, \dots, i_n\}|} x_{i_1} x_{i_2} \cdots x_{i_n},$ $\eta_{\alpha} = \sum_{i_1 < i_2 \le \dots \le i_p} 2^{|\{i_1, i_2, \dots, i_p\}|} x_{i_1}^{\alpha_1} x_{i_2}^{\alpha_2} \cdots x_{i_p}^{\alpha_p}.$ Proposition 2: Relation to fundamental basis Let n be a positive integer. Let $\alpha \in \text{Comp}(n)$. Then, $\eta_{\alpha} = 2 \sum_{\gamma \in \text{Comp}(n)} (-1)^{|\text{Des}(\gamma) \setminus \text{Des}(\alpha)|} L_{\gamma}.$ 2.2. The η_{α} as a basis, antipode and coproduct Theorem 1: Enriched monomials are a basis of QSym Assume that 2 is invertible in **k**. Then, the family $(\eta_{\alpha})_{n\in\mathbb{N}, \alpha\in\operatorname{Comp}(n)}$ is a basis of the **k**-module QSym. Furthermore, for $n \in \mathbb{N}$ and $\beta \in \text{Comp}(n)$, $2^{\ell(\beta)} M_{\beta} = \sum_{\substack{\alpha \in \text{Comp}(n);\\ \alpha \in \text{Comp}(n) \\ \alpha}} (-1)^{\ell(\beta) - \ell(\alpha)} \eta_{\alpha}.$ Proposition 3: Antipode of enriched monomials