Comparing $\mathbf{E}[g(X)]$ to $g(\mathbf{E}[X])$: Jensen's inequality

Let g be convex

Then,
$$g(\mathbf{E}[X]) \leq \mathbf{E}[g(X)]$$
.

- If $0 \le p \le 1$, then $g(px + (1-p)y) \le pg(x) + (1-p)g(y)$
 - If twice differentiable: $g''(x) \ge 0$
 - for any c, x: $g(x) \ge g(c) + g'(c)(x c)$

$$g(x) \ge g(E[x]) + g'(E[x])(X - E[x])$$

 $E[g(x)] \ge g(E[x]) + O$

Comparing $\mathbf{E}[g(X)]$ to $g(\mathbf{E}[X])$: Jensen's inequality

Let g be convex

Then,
$$g(\mathbf{E}[X]) \leq \mathbf{E}[g(X)]$$
.

$$g(x) = x^{2} \qquad E[x^{2}] = Var(x) + (E[x])^{2} \ge (E[x])^{2}$$

$$= F[g(x)]$$

$$= F[g(x)]$$

$$g(\infty) = \infty^4$$
 $(E[x])^4 \leq E[x^4]$

$$g(x) = -\log x - \log(E[x]) \leq E[-\log x]$$

 $\log(E[x]) \approx E[\log x]$