Algorithmics

Lecture 5

Dr. Oana Andrei
School of Computing Science
University of Glasgow
oana.andrei@glasgow.ac.uk

Section 3 - Graphs and graph algorithms

Graph basics - recap

- definitions: directed, undirected, connected, bipartite, ...

Graph representations

adjacency matrix/lists and implementation

Graph search and traversal algorithms

depth/breadth first search

Topological ordering

Weighted graphs

- shortest path (Dijkstra's algorithm)
- minimum spanning tree (Prim-Jarnik and Dijkstra's refinement)

Section 3 - Graphs and graph algorithms

Graph basics - recap

definitions: directed, undirected, connected, bipartite, ...

Graph representations

adjacency matrix/lists and implementation

Graph search and traversal algorithms

depth/breadth first search

Topological ordering

Weighted graphs

- shortest path (Dijkstra's algorithm)
- minimum spanning tree (Prim-Jarnik and Dijkstra's refinement)

(undirected) graph G = (V, E)

- V is finite set of vertices (the vertex set)
- E is set of edges, each edge is a subset of V of size 2 (the edge set)

(undirected) graph G = (V, E)

- V is finite set of vertices (the vertex set)
- E is set of edges, each edge is a subset of V of size 2 (the edge set)

Pictorially:

a vertex is represented by a point

```
O O O X Y Z
```

(undirected) graph G = (V, E)

- V is finite set of vertices (the vertex set)
- E is set of edges, each edge is a subset of V of size 2 (the edge set)

Pictorially:

- a vertex is represented by a point
- an edge by a line joining the relevant pair of points

(undirected) graph G = (V, E)

- V is finite set of vertices (the vertex set)
- E is set of edges, each edge is a subset of V of size 2 (the edge set)

Pictorially:

- a vertex is represented by a point
- an edge by a line joining the relevant pair of points

(undirected) graph G = (V, E)

- V is finite set of vertices (the vertex set)
- E is set of edges, each edge is a subset of V of size 2 (the edge set)

Pictorially:

- a vertex is represented by a point
- an edge by a line joining the relevant pair of points
- a graph can be drawn in different ways
- e.g. two representations of the same graph

In this graph:

- vertices a & z are adjacent that is {a,z} is an element of the edge set E

- vertices a & z are adjacent that is {a,z} is an element of the edge set E
- vertices a & b are non-adjacent that is {a,b} is not an element of E

- vertices a & z are adjacent that is {a,z} is an element of the edge set E
- vertices a & b are non-adjacent that is {a,b} is not an element of E
- vertex a is incident to edge {a,x}

- vertices a & z are adjacent that is {a,z} is an element of the edge set E
- vertices a & b are non-adjacent that is {a,b} is not an element of E
- vertex a is incident to edge {a,x}
- $-a \rightarrow x \rightarrow b \rightarrow y \rightarrow c$ is a path of length 4 (number of edges)

- vertices a & z are adjacent that is {a,z} is an element of the edge set E
- vertices a & b are non-adjacent that is {a,b} is not an element of E
- vertex a is incident to edge {a,x}
- $-a \rightarrow x \rightarrow b \rightarrow y \rightarrow c$ is a path of length 4 (number of edges)
- $-a \rightarrow x \rightarrow b \rightarrow y \rightarrow a$ is a cycle of length 4

- vertices a & z are adjacent that is {a,z} is an element of the edge set E
- vertices a & b are non-adjacent that is {a,b} is not an element of E
- vertex a is incident to edge {a,x}
- $-a \rightarrow x \rightarrow b \rightarrow y \rightarrow c$ is a path of length 4 (number of edges)
- $-a \rightarrow x \rightarrow b \rightarrow y \rightarrow a$ is a cycle of length 4
- all vertices have degree 3
 - · i.e. all vertices are incident to three edges

Graph basics - Definitions

A graph is: connected, if every pair of vertices is joined by a path

A non-connected graph has two or more connected components

A graph is a tree if it is connected and acyclic (no cycles)

a tree with n vertices has n-1 edges

- at least n-1 edges to be connected
- at most n-1 edges to be acyclic

A graph is a forest if it is acyclic and components are trees

Graph basics - Definitions

A graph is complete (a clique) if every pair vertices is joined by an edge

 K_6 , the clique on 6 vertices

A graph is bipartite if the vertices are in two disjoint sets U & W and every edge joins a vertex in U to a vertex in W

the complete bipartite graph $K_{3,3}$

it is complete since all edges between vertices in U and W are present

Graph basics - Definitions

A graph is complete (a clique) if every pair vertices is joined by an edge

 K_6 , the clique on 6 vertices

A graph is bipartite if the vertices are in two disjoint sets U & W and every edge joins a vertex in U to a vertex in W

bipartite graphs do not need to be complete

A directed graph (digraph) D = (V, E)

- V is the finite set of vertices and E is the finite set of edges
- here each edge is an ordered pair (x,y) of vertices

Pictorially: edges are drawn as directed lines/arrows

A directed graph (digraph) D = (V, E)

- V is the finite set of vertices and E is the finite set of edges
- here each edge is an ordered pair (x,y) of vertices

Pictorially: edges are drawn as directed lines/arrows

u is adjacent to v and v is adjacent from u

A directed graph (digraph) D = (V, E)

- V is the finite set of vertices and E is the finite set of edges
- here each edge is an ordered pair (x,y) of vertices

Pictorially: edges are drawn as directed lines/arrows

- u is adjacent to v and v is adjacent from u
- y has in-degree 2

A directed graph (digraph) D = (V, E)

- V is the finite set of vertices and E is the finite set of edges
- here each edge is an ordered pair (x,y) of vertices

Pictorially: edges are drawn as directed lines/arrows

- u is adjacent to v and v is adjacent from u
- y has in-degree 2 and out-degree 1

A directed graph (digraph) D = (V, E)

- V is the finite set of vertices and E is the finite set of edges
- here each edge is an ordered pair (x,y) of vertices

Pictorially: edges are drawn as directed lines/arrows

- u is adjacent to v and v is adjacent from u
- y has in-degree 2 and out-degree 1

In a digraph, paths and cycles must follow edge directions

• e.g. $u \rightarrow w \rightarrow x$ is a path

A directed graph (digraph) D = (V, E)

- V is the finite set of vertices and E is the finite set of edges
- here each edge is an ordered pair (x,y) of vertices

Pictorially: edges are drawn as directed lines/arrows

- u is adjacent to v and v is adjacent from u
- y has in-degree 2 and out-degree 1

In a digraph, paths and cycles must follow edge directions

• e.g. $u \rightarrow w \rightarrow x$ is a path and $w \rightarrow y \rightarrow w$ is a cycle

Section 3 - Graphs and graph algorithms

Graph basics

- definitions: directed, undirected, connected, bipartite, ...

Graph representations

adjacency matrix/lists and implementation

Graph search and traversal algorithms

breadth/depth first search

Weighted graphs

- shortest path (Dijkstra's algorithm)
- minimum spanning tree (Prim-Jarnik and Dijkstra's refinement)

Topological ordering

Graph representations - Undirected graphs

Undirected graph: Adjacency matrix

- one row and column for each vertex
- row i, column j contains a 1 if ith and jth vertices adjacent, 0 otherwise

Undirected graph: Adjacency lists

- one list for each vertex
- list i contains an entry for j if the vertices i and j are adjacent

Graph representations - Undirected graphs

Undirected graph G

Adjacency matrix for G

```
u: 0 1 0 1 0 0
v: 1 0 1 1 1 0
w: 0 1 0 1 1 0
x: 1 1 1 0 1 0
y: 0 1 1 1 0 1
z: 0 0 0 0 1 0
```

Adjacency lists for G

```
u: v→x

v: u→w→x→y

w: v→x→y

x: u→v→w→y

y: v→w→x→z

z: y
```

 $2 \times |E|$ entries in all

Graph representations - Undirected graphs

Undirected graph G

Adjacency matrix for G

u: 0 1 0 1 0 0 v: 1 0 1 1 1 0 w: 0 1 0 1 1 0 x: 1 1 1 0 1 0 y: 0 1 1 1 0 1 z: 0 0 0 0 1 0

Adjacency lists for G

```
u: ∨→x
∨: u→w→x→y
w: ∨→x→y
x: u→v→w→y
y: ∨→w→x→z
z: y
```

 $2 \times |E|$ entries in all

Graph representations - Directed graphs

Directed graph: Adjacency matrix

- one row and column for each vertex
- row i, column j contains a 1 if there is an edge from i to j
 and 0 otherwise

Directed graph: Adjacency lists

- one list for each vertex
- the list for vertex i contains vertex j if there is an edge from i to j

Graph representations - Directed graphs

Adjacency matrix for D

```
u: 0 1 1 0 0 0
v: 0 0 0 0 0 0 0
w: 0 0 0 1 1 0
x: 0 0 0 0 0 0
y: 0 0 1 0 0 0
z: 0 0 0 0 1 0
```

Adjacency lists for D

```
u: ∨→w
∨:
w: x→y
x:
y: w
z: y
```

|E| entries in all

Graph representations - Directed graphs

Adjacency matrix for D

```
u: 0 1 1 0 0 0
v: 0 0 0 0 0 0
w: 0 0 0 1 1 0
x: 0 0 0 0 0 0
y: 0 0 1 0 0 0
z: 0 0 0 0 1 0
```

Adjacency lists for D

|E| entries in all

Recall adjacency list for an undirected graph

- one list for each vertex
- list i contains an element for j if the vertices i and j are adjacent

adjacency lists for G

```
V: W→X→Y
W: V→X→Y
X: V→W→Y
y: V→W→X→Z
Z: Y
```

Implementation: define classes for

- the entries of adjacency lists
- the vertices (includes a linked list representing its adjacency list)
- graphs (includes the size of the graph and an array of vertices)
 - array allows for efficient access using "index" of a vertex

```
/** class to represent an entry in the adjacency list of a vertex
in a graph */
public class AdjListNode {
  private int vertexIndex; // the vertex index of the entry
  // possibly other fields, for example representing properties
  // of the edge such as weight, capacity, ...
  /** creates a new entry for vertex indexed i */
  public AdjListNode(int i){
    vertexIndex = i;
  public int getVertexIndex(){ // gets the vertex index of the entry
    return vertexIndex;
  public void setVertexIndex(int i){ // sets vertex index to i
    vertexIndex = i;
```

```
import java.util.LinkedList; // we require the linked list class
/** class to represent a vertex in a graph */
public class Vertex {
  private int index; // the index of this vertex
  private LinkedList<AdjListNode> adjList; // the adjacency list of vertex
  // possibly other fields, e.g. representing data stored at the node
  /** create a new instance of vertex with index i */
  public Vertex(int i) {
    index = i; // set index
    adjList = new LinkedList<AdjListNode>();// create empty adjacency list
  /** return the index of the vertex */
  public int getIndex(){
    return index;
```

```
// class Vertex continued
  /** set the index of the vertex */
  public void setIndex(int i){
   index = i:
  /** return the adjacency list of the vertex */
  public LinkedList<AdjListNode> getAdjList() {
   return adjList;
  /** add vertex with index j to the adjacency list */
  public void addToAdjList(int j){
    adjList.addLast(new AdjListNode(j));
  /** return the degree of the vertex */
  public int vertexDegree(){
    return adjList.size();
```

```
import java.util.LinkedList; // again require the linked list class
// (to add graph algorithms we will need to access adjacency lists)
/** class to represent a graph */
public class Graph {
  private Vertex[] vertices; // array of vertices for easy access
  private int numVertices = 0; // number of vertices
  // possibly other fields representing properties of the graph
  /** Create a Graph with n vertices indexed 0,...,n-1 */
  public Graph(int n) {
    numVertices = n;
    vertices = new Vertex[n];
    for (int i = 0; i < n; i++) vertices[i] = new Vertex(i);</pre>
  /** returns number of vertices in the graph */
  public int size(){
    return numVertices;
```

Section 3 - Graphs and graph algorithms

Graph basics

- definitions: directed, undirected, connected, bipartite, ...

Graph representations

adjacency matrix/lists and implementation

Graph search and traversal algorithms

depth/breadth first search

Topological ordering

Weighted graphs

- shortest path (Dijkstra's algorithm)
- minimum spanning tree (Prim-Jarnik and Dijkstra's refinement)

Graph search and traversal algorithms

Graph search and traversal algorithms

a systematic way to explore a graph (when starting from some vertex)

Example: web crawler collects data from hypertext documents by traversing a directed graph D where

- vertices are hypertext documents
- (u,v) is an edge if document u contains a hyperlink to document v

A search/traversal visits all vertices by travelling along edges

- traversal is efficient if it explores graph in O(|V|+|E|) time

From starting vertex

- follow a path of unvisited vertices until path can be extended no further
- then backtrack along the path until an unvisited vertex can be reached

- follow a path of unvisited vertices until path can be extended no further
- then backtrack along the path until an unvisited vertex can be reached

- follow a path of unvisited vertices until path can be extended no further
- then backtrack along the path until an unvisited vertex can be reached
- continue until we cannot find any unvisited vertices

- follow a path of unvisited vertices until path can be extended no further
- then backtrack along the path until an unvisited vertex can be reached
- continue until we cannot find any unvisited vertices

- follow a path of unvisited vertices until path can be extended no further
- then backtrack along the path until an unvisited vertex can be reached
- continue until we cannot find any unvisited vertices

- follow a path of unvisited vertices until path can be extended no further
- then backtrack along the path until an unvisited vertex can be reached
- continue until we cannot find any unvisited vertices

- follow a path of unvisited vertices until path can be extended no further
- then backtrack along the path until an unvisited vertex can be reached
- continue until we cannot find any unvisited vertices

- follow a path of unvisited vertices until path can be extended no further
- then backtrack along the path until an unvisited vertex can be reached
- continue until we cannot find any unvisited vertices

From starting vertex

- follow a path of unvisited vertices until path can be extended no further
- then backtrack along the path until an unvisited vertex can be reached
- continue until we cannot find any unvisited vertices

Repeat for other components (if any)

The edges traversed form a spanning tree (or forest)

- a depth-first spanning tree (forest)
- spanning tree of a graph is a tree composed of all the vertices and some
 (or perhaps all) of the edges of the graph

Undirected graph G

current vertex

Undirected graph G

denotes vertex has been visited

current vertex

Undirected graph G

Undirected graph G

Undirected graph G

Undirected graph G

Undirected graph G

denotes vertex has been visited

Undirected graph G

denotes vertex has been visited

means all adjacent vertices of i have been considered

backtrack

Undirected graph G

denotes vertex has been visited

Undirected graph G

denotes vertex has been visited

Undirected graph G

denotes vertex has been visited

Undirected graph G

denotes vertex has been visited

Undirected graph G

denotes vertex has been visited

Undirected graph G

denotes vertex has been visited

Undirected graph G

denotes vertex has been visited

Undirected graph G

Undirected graph G

Undirected graph G

Undirected graph G

denotes vertex has been visited

Undirected graph G

denotes vertex has been visited

Undirected graph G

Undirected graph G

denotes vertex has been visited

Undirected graph G

denotes vertex has been visited

Undirected graph G

denotes vertex has been visited

means all adjacent vertices of i have been considered

Undirected graph G

denotes vertex has been visited

Undirected graph G

denotes vertex has been visited

Undirected graph G

denotes vertex has been visited

Undirected graph G

denotes vertex has been visited

Undirected graph G

denotes vertex has been visited

Undirected graph G

denotes vertex has been visited

Undirected graph G

denotes vertex has been visited

means all adjacent vertices of i have been considered

Undirected graph G

denotes vertex has been visited

means all adjacent vertices of i have been considered

Undirected graph G

denotes vertex has been visited

means all adjacent vertices of i have been considered

Undirected graph G

denotes vertex has been visited

means all adjacent vertices of i have been considered

Undirected graph G

denotes vertex has been visited

means all adjacent vertices of i have been considered

Undirected graph G

denotes vertex has been visited

Undirected graph G

denotes vertex has been visited

Undirected graph G

denotes vertex has been visited

Undirected graph G

denotes vertex has been visited

Undirected graph G

Undirected graph G

denotes vertex has been visited

Undirected graph G

denotes vertex has been visited

Undirected graph G

denotes vertex has been visited

Undirected graph G

Depth first spanning tree of G

Is it unique?

Undirected graph G

A depth first spanning tree of G

What if from 1 we went to 7 first?

Recall adjacency list implementation

Class: adjacency node

- represents an element of an adjacency list
- includes the index of the corresponding vertex

Class: vertex

- represents a single vertex of the graph
- includes linked list of adjacency nodes representing the adjacent vertices

Class: graph

an array of vertices

Implementation - DFS - Add to vertex class

```
private boolean visited; // has vertex been visited in a traversal?
private int pred; // index of the predecessor vertex in a traversal
public boolean getVisited(){ // was this vertex visited?
  return visited:
public void setVisited(boolean b) { // on 1<sup>st</sup> encounter, set as true
 visited = b:
public int getPred(){ // for when we're backtracking
  return pred;
public void setPred(int i){ // when we find new vertex during search
 pred = i:
```

Implementation - DFS - Add to graph class

```
/** visit vertex v, with predecessor index p, during a dfs */
private void visit(Vertex v, int p){
  v.setVisited(true); // update as now visited
  v.setPred(p); // set predecessor (indicates edge used to find vertex)
  LinkedList<AdjListNode> L = v.getAdjList(); // get adjacency list
  for (AdjListNode node : L) { // go through all adjacent vertices
    int i = node.getIndex(); // find index of current vertex in list
    if (!vertices[i].getVisited()) // if vertex has not been visited
      visit(vertices[i], v.getIndex()); // continue dfs search from it
      // setting the predecessor vertex index to the index of v
/** carry out a depth first search/traversal of the graph */
public void dfs(){
 for (Vertex v : vertices) v.setVisited(false); // initialise
  for (Vertex v : vertices) if (!v.getVisited()) visit(v,-1);
 // if vertex is not yet visited, then start dfs on vertex w/ predecessor
 // -1 is used to indicate v was not found through an edge of the graph
```

Analysis - Depth first search

Each vertex is visited, and each element in the adjacency lists is processed, so overall O(n+m)

where n is the number of vertices and m the number of edges

Can be adapted to the adjacency matrix representation

but now O(n²) since look at every entry of the adjacency matrix

Some applications

- to determine if a given graph is connected
- to identify the connected components of a graph
- to determine if a given graph contains a cycle (see tutorial 5)
- to determine if a given graph is bipartite (see tutorial 5)

_

Recall - Depth first search/traversal (DFS)

From starting vertex

follow a path of unvisited vertices until path can be extended no further

Search fans out as widely as possible at each vertex

from the current vertex, visit all the adjacent vertices
 this is referred to as processing the current vertex

- from the current vertex, visit all the adjacent vertices
 this is referred to as processing the current vertex
- vertices are processed in the order in which they are visited
 therefore visited vertices are added/removed from a queue (FIFO)

- from the current vertex, visit all the adjacent vertices
 this is referred to as processing the current vertex
- vertices are processed in the order in which they are visited
 therefore visited vertices are added/removed from a queue (FIFO)

- from the current vertex, visit all the adjacent vertices
 this is referred to as processing the current vertex
- vertices are processed in the order in which they are visited therefore visited vertices are added/removed from a queue

- from the current vertex, visit all the adjacent vertices
 this is referred to as processing the current vertex
- vertices are processed in the order in which they are visited therefore visited vertices are added/removed from a queue

- from the current vertex, visit all the adjacent vertices
 this is referred to as processing the current vertex
- vertices are processed in the order in which they are visited therefore visited vertices are added/removed from a queue

- from the current vertex, visit all the adjacent vertices
 this is referred to as processing the current vertex
- vertices are processed in the order in which they are visited therefore visited vertices are added/removed from a queue

- from the current vertex, visit all the adjacent vertices
 this is referred to as processing the current vertex
- vertices are processed in the order in which they are visited therefore visited vertices are added/removed from a queue

- from the current vertex, visit all the adjacent vertices
 this is referred to as processing the current vertex
- vertices are processed in the order in which they are visited therefore visited vertices are added/removed from a queue

- from the current vertex, visit all the adjacent vertices
 this is referred to as processing the current vertex
- vertices are processed in the order in which they are visited
- continue until all vertices in current component have been processed

- from the current vertex, visit all the adjacent vertices
 this is referred to as processing the current vertex
- vertices are processed in the order in which they are visited
- continue until all vertices in current component have been processed

Search fans out as widely as possible at each vertex

- from the current vertex, visit all the adjacent vertices
 this is referred to as processing the current vertex
- vertices are processed in the order in which they are visited
- continue until all vertices in current component have been processed
- then repeat for other components (if there are any)

Again the edges traversed form a spanning tree (or forest)

- a breadth-first spanning tree (forest)
- spanning tree of a graph is tree composed of all the vertices and some
 (or perhaps all) of the edges of the graph

Undirected graph G

- denotes vertex has been visited
- (v) means vertex has been processed

queue =
$$\langle a \rangle$$

Undirected graph G

- denotes vertex has been visited
- (v) means vertex has been processed

current vertex

queue =
$$\langle \rangle$$

Undirected graph G

- denotes vertex has been visited
- (v) means vertex has been processed

current vertex

queue =
$$\langle b, c, e \rangle$$

Undirected graph G

- denotes vertex has been visited
- means vertex has been processed

queue = $\langle c, e \rangle$

Undirected graph G

- ed
- denotes vertex has been visited
- (v) means vertex has been processed

queue = $\langle c, e \rangle$

Undirected graph G

- denotes vertex has been visited
- (v) means vertex has been processed

Undirected graph G

denotes vertex has been visited

(v) means vertex has been processed

current vertex

queue = $\langle e, d, f \rangle$

Undirected graph G

(v) means vertex has been processed

queue = $\langle d, f \rangle$

Undirected graph G

- denotes vertex has been visited
- (v) means vertex has been processed

queue = $\langle d, f, g \rangle$

Undirected graph G

denotes vertex has been visited

(v) means vertex has been processed

Undirected graph G

(v) means vertex has been processed

Undirected graph G

- denotes vertex has been visited
- (v) means vertex has been processed

Undirected graph G

- denotes vertex has been visited
- (v) means vertex has been processed

Undirected graph G

- denotes vertex has been visited
- (v) means vertex has been processed

queue = $\langle \rangle$

Undirected graph G

(v) means vertex has been processed

queue = $\langle h \rangle$

Undirected graph G

- denotes vertex has been visited
- (v) means vertex has been processed

Undirected graph G

denotes vertex has been visited

(v) means vertex has been processed

Undirected graph G

A breadth first spanning tree of G

Recall adjacency list implementation

Class: adjacency node

- represents an element of an adjacency list
- includes a vertex index (the vertex the element corresponds to)

Class: vertex

- represents a single vertex of the graph
- includes linked list of adjacency nodes representing the adjacent vertices

Class: graph

an array of vertices

Implementation - Breadth first search

```
for (Vertex v : vertices) v.setVisited(false); // initialise
LinkedList<Vertex> queue = new LinkedList<Vertex>(); // set up queue
for (Vertex v : vertices) { // go through vertices in the graph
  if (!v.getVisited()) { // vertex not visited (start search)
   v.setVisited(true); // now visited
   v.setPredecessor(-1); // v initial/starting vertex
    queue.add(v); // ready to be processed (add to queue)
   while (!queue.isEmpty()) { // something to process
     Vertex u = queue.remove(); // get next vertex from queue
      LinkedList<AdjListNode> list = u.getAdjList(); // get adj list for u
      for (AdjListNode node : list) { // go through adj list of u
        Vertex w = vertices[node.getVertexIndex()]; // next vertex in list
        if (!w.getVisited()) { // not previous found
         w.setVisited(true); // now visited
         w.setPredecessor(u.getIndex()); // set predecessor of w to be u
         queue.add(w); // add to queue
```

Breadth first search – complexity

Each vertex is visited and queued exactly once

Each adjacency list is traversed once (when it's processed)

So overall O(n+m)

n is the number of vertices and m number of edges

We can adapt to adjacency matrix representation

- complexity O(n²) as for DFS
- have to access every element of the matrix

Breadth first search - application

Computing the distance between two vertices in a graph

- let v and w be to vertices in the graph
- the distance is the number of edges in the shortest path from \vee to \vee

Algorithm

- assign distance to v to be 0
- carry out a breadth-first search from v
- when visiting a new vertex for first time, assign its distance to be
 - 1 + the distance to its predecessor in the BF spanning tree
- stop when w is reached

- assign distance to v to be 0
- carry out a breadth-first search from v
- when visiting a new vertex for first time assign its distance to be 1+ the distance to its predecessor in the BF spanning tree

Distance between v and w

- assign distance to v to be 0
- carry out a breadth-first search from v
- when visiting a new vertex for first time
 assign its distance to be 1+ the distance
 to its predecessor in the BF spanning tree

number beside each vertex indicates the distance from v

- assign distance to v to be 0
- carry out a breadth-first search from v
- when visiting a new vertex for first time assign its distance to be 1+ the distance to its predecessor in the BF spanning tree

- assign distance to v to be 0
- carry out a breadth-first search from v
- when visiting a new vertex for first time assign its distance to be 1+ the distance to its predecessor in the BF spanning tree

- assign distance to v to be 0
- carry out a breadth-first search from v
- when visiting a new vertex for first time assign its distance to be 1+ the distance to its predecessor in the BF spanning tree

- assign distance to v to be 0
- carry out a breadth-first search from v
- when visiting a new vertex for first time assign its distance to be 1+ the distance to its predecessor in the BF spanning tree

- assign distance to v to be 0
- carry out a breadth-first search from v
- when visiting a new vertex for first time assign its distance to be 1+ the distance to its predecessor in the BF spanning tree

Next lecture

Graph basics - recap

- definitions: directed, undirected, connected, bipartite, ...

Graph representations

adjacency matrix/lists and implementation

Graph search and traversal algorithms

depth/breadth first search

Topological ordering

Weighted graphs

- shortest path (Dijkstra's algorithm)
- minimum spanning tree (Prim-Jarnik and Dijkstra's refinement)