JEE MAINS 28 Jun 2022 Shift-2

ee24btech11015 - Dhawal

16)	Let the plane $ax+by+cz = d$ pass through $\begin{pmatrix} 2\\3\\-5 \end{pmatrix}$ $y-5z = 10$ and $3x+5y-7z = 12$. If a, b, c, d are in			and is perpendicular to the planes $2x+$			
	y-5z = 10 and $3x+5y-7z = 12$. If a, b, c, d are integers $d > 0$ and $gcd(a , b , c , d)$ 1, then the value of $a + 7b + c + 20d$ is equal to :						
	a) 18	b) 20	c)	24	d) 22		
17)	The probability that	a randomly chosen c	na .	one function from	the set (a b a d) to		

17)	1	satisfies $f(a) + 2f(b)$		$\mathbf{u} \in \mathbf{set} \left(u, b, c, u \right) $
	a) $\frac{1}{24}$	b) $\frac{1}{40}$	c) $\frac{1}{30}$	d) $\frac{1}{20}$

b) 1

a) $\frac{1}{3}$

- a) 1 b) 2 c) 3 d) 6
- 19) **a** be a vector which is perpendicular to the vector $3\hat{i} + \frac{1}{2}\hat{j} + 2\hat{k}$. If $\mathbf{a} \times (2\hat{i} + \hat{k}) = 2\hat{i} 13\hat{j} 4\hat{k}$, then the projection of the vector on the vector $2\hat{i} + 2\hat{j} + \hat{k}$ is:
- 20) If $\cot(\alpha) = 1$ and $\sec(\beta) = -\frac{5}{3}$ where $\pi < \alpha < \frac{3\pi}{2}$ and $\frac{\pi}{2} < \beta < \pi$, then the value of

c) $\frac{5}{3}$

d) $\frac{7}{3}$

- $\tan (\alpha + \beta)$ and the quadrant in which $\alpha + \beta$ lies, respectively are:
- a) $\frac{-1}{7}$ and 4^{th} quadrant b) 7 and 1^{st} quadrant d) $\frac{1}{7}$ and 1^{st} quadrant

B. Numericals

- 1) Let the image of the point $\mathbf{P} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ in the line $L : \frac{x-6}{3} = \frac{y-1}{2} = \frac{z-2}{3}$ be \mathbf{Q} . Let $\mathbf{R} \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$ be a point that divides internally the line segment PQ in the ratio 1 : 3. Then the value of $22 (\alpha + \beta + \gamma)$ is equal to :
- 2) Suppose a class has 7 students. The average marks of these students in the mathematics examination is 62, and their variance is 20. A student fails in the examination if he/she gets less than 50 marks, then in worst case, the number of

students can fail is:

- 3) If one of the diameters of the circle $x^2 + y^2 2\sqrt{2}x 6\sqrt{2}y + 14 = 0$ is a chord of the circle $(x 2\sqrt{2})^2 + (y 2\sqrt{2})^2 = r^2$, then the value of r^2 is equal to:
- 4) If $\lim_{x\to 1} \frac{\sin(3x^2-4x+1)-x^2+1}{2x^3-7x^2+ax+b} = -2$, then the value of (a-b) is equal to:
- 5) Let for $n=1,2,\ldots,50,S_n$ be the sum of the infinite geometric progression whose first term is n^2 and whose common ratio is $\frac{1}{(n+1)^2}$. Then the value of $\frac{1}{26} + \sum_{n=1}^{50} \left(S_n + \frac{2}{n+1} n 1\right)$ is equal to:
- 6) If the system of linear equations $2x 3y = \gamma + 5$, $\alpha x + 5y = \beta + 1$, where $\alpha, \beta, \gamma \in R$ has infinitely many solutions, then the value of $|9\alpha + 3\beta + 5\gamma|$ is equal to:
- 7) Let $A = \begin{pmatrix} 1 + \iota & 1 \\ -\iota & 0 \end{pmatrix}$ where $\iota = \sqrt{-1}$. Then, the number of elements in the set $\{n \in \{1, 2, ..., 100\} : A_n = A\}$ is:
- 8) Sum of squares of modulus of all the complex numbers z satisfying $z = \iota z^2 + z^2 z$ is equal to:
- 9) Let $S = \{1, 2, 3, 4\}$. Then the number of elements in the set $\{f: S \times S \Longrightarrow S: f \text{ is onto and } f(a, b) = f(b, a) \ge a \forall (a, b) \in S \times S\}$ is:
- 10) The maximum number of compound propositions, out of $p \lor r \lor s$, $p \lor r \lor \sim s$, $p \lor \sim q \lor s$, $\sim p \lor \sim r \lor s$, $\sim p \lor \sim r \lor \sim s$, $\sim p \lor q \lor \sim s$, $q \lor r \lor \sim s$, $\sim p \lor \sim q \lor \sim s$ that can be made simultaneously true by an assignment of the truth values to p,q,r and s, is equal to: