Questions 1 and 3 ask you for short proofs that were left as exercises in the first two lectures.

Please **hand in** solutions to **Questions 6** and **8** by 2 pm on Wed 5 February, for discussion in class on 6 February. You are welcome to email a pdf (typeset or scanned) if you prefer.

If you spot any typos or problems, please email silvia.barbina@open.ac.uk.

Question 1 Let M and N be L-structures, and let $\beta: M \to N$ be an embedding. Let $|\bar{x}|$ denote the length of the tuple \bar{x} , and recall that if $\bar{a} \in M^{|\bar{x}|}$ then $\beta(\bar{a}) := (\beta(a_1), \dots, \beta(a_{|\bar{x}|}))$.

(i) A formula is said to be *quantifier-free* if it does not use the symbol \exists (or the abbreviation \forall). Prove that if $\varphi(\bar{x})$ is a quantifier-free formula and $\bar{a} \in M^{|\bar{x}|}$, then

$$M \models \varphi(\bar{a}) \Leftrightarrow N \models \varphi(\beta(\bar{a})).$$

(You may want to give a recursive definition of the set of quantifier-free formulas first.)

(ii) An *existential formula* is a formula that has the form $\exists \bar{y} \psi(\bar{x}, \bar{y})$, where $\psi(\bar{x}, \bar{y})$ is quantifier-free. Suppose that M and N are L-structures and let $\beta: M \to N$ be an embedding. Prove that if $\varphi(\bar{x})$ is an existential formula and $\bar{a} \in M^{|\bar{x}|}$, then

$$M \models \varphi(\bar{a}) \Rightarrow N \models \varphi(\beta(\bar{a})).$$

(iii) Suppose that β is surjective, so $\beta: M \simeq N$. Show that if $\varphi(\bar{x})$ is an L-formula and $\bar{a} \in M^{|\bar{x}|}$, then

$$M \models \varphi(\bar{a}) \Leftrightarrow N \models \varphi(\beta(\bar{a})).$$

Question 2 Let L be the language that only contains a binary function symbol +. Regard \mathbb{Z} as an L-structure by interpreting + as the usual addition of integers. Prove that there is no existential formula $\varphi(x)$ such that

$$\mathbb{Z} \models \forall x \left(\varphi(x) \leftrightarrow \forall y \left(y + y \neq x \right) \right).$$

(The formula $\forall y (y + y \neq x)$ says that x is odd.)

Question 3 Let N be an L-structure and let A be a subset of N. Prove that the following are equivalent.

- (i) A is the domain of a substructure of N;
- (ii) for every constant c of L, $c^N \in A$; and for every function symbol f of L and $\bar{a} \in A^{n_f}$, we have $f^N(\bar{a}) \in A$.

If (i) and (ii) hold, then the structure on *A* is uniquely determined.

Question 4 Let $L = \{+, -, 0\}$ be the language of additive groups (so in particular - is a unary function). Let \mathbb{Z}^n denote the direct product $\underbrace{\mathbb{Z} \times \cdots \times \mathbb{Z}}_{n \text{ times}}$, regarded as an L-structure.

Show that if $m \neq n$ then $\mathbb{Z}^m \not\equiv \mathbb{Z}^n$.

Question 5 Let M and N be L-structures and let $A \subseteq M \cap N$. Show that $M \equiv_A N \Leftrightarrow M \equiv_B N$ for all finite $B \subseteq A$.

Question 6 Let $M_1 = [0,1)$, $M_2 = [0,1) \cup (2,3)$, $M_3 = [0,1) \cup [2,3)$ and $M_4 = [0,3]$ be the usual intervals in \mathbb{Q} , regarded as L_{lo} -structures. For all $i, j \in \{1,2,3,4\}$ with i < j determine whether $M_i \leq M_j$. When $M_i \leq M_j$, give a proof without using Proposition 4.12.

Question 7 Let $\langle M_i : i \in \lambda \rangle$ be an *elementary chain*, that is, a sequence of *L*-structures indexed by an ordinal λ and such that, for all $i < j < \lambda$, $M_i \leq M_j$.

Let *N* be the union of the chain as defined in Definition 3.10.

Prove that, for every $i < \lambda$, we have $M_i \leq N$.

Question 8 Assume *L* is countable and let $M \leq N$ have arbitrary (large) cardinality. Let $A \subseteq N$ be countable. Prove there is a countable model *K* such that $A \subseteq K \leq N$ and $K \cap M \leq N$ (in particular, $K \cap M$ is a model).

Question 9 If λ is an infinite cardinal and T is a theory with models of size λ , we say that T is λ -categorical if any two models of T of cardinality λ are isomorphic. Prove that T_{dlo} , the theory of dense linear orders without endpoints, is not λ -categorical for any uncountable λ .