Homework 2a

 ${\bf 1}$ Let ${\bf e},{\bf f}$ be orthonormal basis in Euclidean space ${\bf E}^2.$ Consider a vector

$$\mathbf{n}_{\varphi} = \mathbf{e}\cos\varphi + \mathbf{f}\sin\varphi.$$

Let A be a linear orthogonal operator acting on the space \mathbf{E}^2 such that $A(\mathbf{e}) = \mathbf{n}$. We know that det $A = \pm 1$ since A is orthogonal operator.

In the case if $\det A = 1$, find the image $A(\mathbf{f})$ of vector \mathbf{f} and an image $A(\mathbf{x})$ of arbitrary vector $\mathbf{x} = a\mathbf{e} + b\mathbf{f}$, write down the matrix of operator A in the basis \mathbf{e}, \mathbf{f} and explain geometrical meaning of the operator A.

[†] How the answer will change if det A = -1?

2 Let \mathbf{e} , \mathbf{f} be an orthonormal basis in Euclidean space \mathbf{E}^2 . Consider a vector $\mathbf{N} = \mathbf{e} + \mathbf{f}$ in \mathbf{E}^2 .

Let A be an orthogonal operator acting on the space \mathbf{E}^2 such that $A\mathbf{N} = \mathbf{N}$. (N is eigenvector of A with eigenvalue 1.) Suppose that A is not identity operator.

- a) Find an action of operator A on the vector $\mathbf{R} = \mathbf{e} \mathbf{f}$ in \mathbf{E}^2 .
- b) Write down the matrix of operator A in the basis \mathbf{e}, \mathbf{f} .
- c) Explain geometrical meaning of the operator A.