BLM2041 Signals and Systems

The Instructors:

Prof. Dr. Nizamettin Aydın naydin@yildiz.edu.tr

Asist. Prof. Dr. Ferkan Yilmaz ferkan@vildiz.edu.tr

BLM2041 Signals and Systems

Sampling & Aliasing

LECTURE OBJECTIVES

- SAMPLING can cause ALIASING
 - Sampling Theorem
 - Sampling Rate > 2(Highest Frequency)
- Spectrum for digital signals, x[n]
 - Normalized Frequency

$$\hat{\omega} = \omega T_s = \frac{2\pi f}{f_s} + 2\pi \ell$$
ALIASING

SYSTEMS Process Signals

- · PROCESSING GOALS:
 - Change x(t) into y(t)
 - For example, more BASS
 - Improve x(t),
 - e.g., image deblurring
 - Extract information from x(t)

System IMPLEMENTATION

- ANALOG/ELECTRONIC:
 - Circuits: resistors, capacitors, op-amps

- DIGITAL/MICROPROCESSOR
 - Convert x(t) to numbers stored in memory

SAMPLING x(t)

- SAMPLING PROCESS
 - Convert x(t) to numbers x[n]
 - "n" is an integer;
 - x[n] is a sequence of values
 - Think of "n" as the storage address in memory
- UNIFORM SAMPLING at $t = nT_s$
 - IDEAL: $x[n] = x(nT_s)$

SAMPLING RATE, f_s

- SAMPLING RATE (f_s)
 - $-f_s = 1/T_s$
 - NUMBER of SAMPLES PER SECOND
 - $-T_s$ = 125 microsec $\rightarrow f_s$ = 8000 samples/se UNITS ARE HERTZ: 8000 Hz
- UNIFORM SAMPLING at $t = nT_s = n/f_s$
 - IDEAL: $x[n] = x(nT_s) = x(n/f_s)$

$$x(t) \longrightarrow C-to-D \qquad x[n] = x(nT_s)$$

SAMPLING THEOREM

- HOW OFTEN ?
 - DEPENDS on FREQUENCY of SINUSOID
 - ANSWERED by SHANNON/NYOUIST Theorem
 - ALSO DEPENDS on "RECONSTRUCTION"

Shannon Sampling Theorem A continuous-time signal x(t) with frequencies no higher than f_{max} can be reconstructed exactly from its samples $x(n) = x(nT_s)$, if the samples are taken at a rate $f_s = 1/T_s$ that is greater than $2f_m$

STORING DIGITAL SOUND

- x[n] is a SAMPLED SINUSOID
 - A list of numbers stored in memory
- · EXAMPLE: audio CD
- CD rate is 44,100 samples per second
 - 16-bit samples
 - Stereo uses 2 channels
- Number of bytes for 1 minute is
 - $-2 \times (16/8) \times 60 \times 44100 = 10.584$ Mbytes

DISCRETE-TIME SINUSOID

- Change x(t) into x[n]
- DERIVATION

$$x(t) = A\cos(\omega t + \varphi)$$

$$x[n] = x(nT_s) = A\cos(\omega nT_s + \varphi)$$

$$x[n] = A\cos((\omega T_s)n + \varphi)$$

$$x[n] = A\cos(\hat{\omega}n + \varphi)$$

$$\hat{\omega} = \omega T_s = \frac{\omega}{f_s}$$
 DEFINE DIGITAL FREQUENCY

DIGITAL FREQUENCY

- Digital frequency ω VARIES from 0 to 2π, as f varies from 0 to the sampling frequency
- UNITS are radians, not rad/sec
 - DIGITAL FREQUENCY is NORMALIZED

$$\hat{\omega} = \omega T_s = \frac{2\pi f}{f_s}$$

SPECTRUM (DIGITAL) ??? $x[n] = A\cos(2\pi(100)(n/100) + \varphi)$ $100-\text{Hz Cosine Wave: Sampled with } T_s = 10 \text{ msec } (100 \text{ Hz})$ 0.5 0.5 10 x[n] is zero frequency??? $\hat{\omega} = 2\pi \frac{f}{f_s}$ $\frac{1}{2}X^*$ $f_s = 100 \text{ Hz}$

The REST of the STORY

- Spectrum of x[n] has more than one line for each complex exponential
 - Called ALIASING
 - MANY SPECTRAL LINES
- SPECTRUM is PERIODIC with period = 2π
 - Because

$$A\cos(\hat{\omega}n + \varphi) = A\cos((\hat{\omega} + 2\pi)n + \varphi)$$

ALIASING DERIVATION

• Other Frequencies give the same $\widehat{\omega}$

$$x_1(t) = \cos(400\pi t)$$
 sampled at $f_s = 1000$ Hz $x_1[n] = \cos(400\pi \frac{n}{1000}) = \cos(0.4\pi n)$ $x_2(t) = \cos(2400\pi t)$ sampled at $f_s = 1000$ Hz $x_2[n] = \cos(2400\pi \frac{n}{1000}) = \cos(2.4\pi n)$ $x_2[n] = \cos(2.4\pi n) = \cos(0.4\pi n + 2\pi n) = \cos(0.4\pi n)$ $\Rightarrow x_2[n] = x_1[n]$ 2400 π - 400 π = 2 π (1000)

ALIASING DERIVATION-2

• Other Frequencies give the same $\hat{\omega}$

If
$$x(t) = A\cos(2\pi(f + \ell f_s)t + \varphi)$$
 $t \leftarrow \frac{n}{f_s}$
and we want $x[n] = A\cos(\hat{\omega}n + \varphi)$

then:
$$\hat{\omega} = \frac{2\pi (f + \ell f_s)}{f_s} = \frac{2\pi f}{f_s} + \frac{2\pi \ell f_s}{f_s}$$

$$\hat{\omega} = \omega T_s = \frac{2\pi f}{f_s} + \frac{2\pi \ell f_s}{f_s}$$

ALIASING CONCLUSIONS

- ADDING f_s or $2f_s$ or $-f_s$ to the FREQ of x(t) gives exactly the same x[n]
 - The samples, $x[n] = x(n/f_s)$ are EXACTLY THE SAME VALUES
- GIVEN x[n], WE CANNOT DISTINGUISH f_0 FROM $(f_0 + f_s)$ or $(f_0 + 2f_s)$

NORMALIZED FREQUENCY

DIGITAL FREQUENCY

Normalized Radian Frequency

$$\hat{\omega} = \omega T_s = \frac{2\pi f}{f_s} + 2\pi \ell$$

Normalized Cyclic Frequency

$$\hat{f} = \hat{\omega}/(2\pi) = fT_s = f/f_s$$

SPECTRUM for x[n]

- PLOT versus NORMALIZED FREOUENCY
- INCLUDE ALL SPECTRUM LINES
 - ALIASES
 - ADD MULTIPLES of 2π
 - SUBTRACT MULTIPLES of 2π
 - FOLDED ALIASES
 - ALIASES of NEGATIVE FREOS

