Solution 13

5.3

20.
$$max(a_1, a_2) = a_1$$
 if $a_1 \ge a_2$ and a_2 if $a_1 < a_2$
 $min(a_1, a_2) = a_2$ if $a_1 \ge a_2$ and a_1 if $a_1 < a_2$
when $n \ge 2$,
 $max(a_1, a_2, \dots, a_{n+1}) = max(max(a_1, a_2, \dots, a_n), a_{n+1})$
 $min(a_1, a_2, \dots, a_{n+1}) = min(min(a_1, a_2, \dots, a_n), a_{n+1})$

- 34. a) ones(0) = 0, ones(1) = 1 ones(1s) = ones(s) + 1, ones(0s) = ones(s)
 - b) Base step:

$$ones(00) = ones(0) + ones(0)$$

 $ones(01) = ones(0) + ones(1)$
 $ones(10) = ones(1) + ones(0)$
 $ones(11) = ones(1) + ones(1)$
 $ones(st) = ones(s) + ones(t)$ is true for base step.

Recursive step:

$$omes(1s) = omes(s) + 1 = omes(1) + omes(s)$$

 $omes(0s) = omes(s) + 0 = omes(0) + omes(s)$
Hence, proved.

40. Suppose the set P is the set of all palindromes.

Base step:

 λ is empty string, $\lambda \in P$ x is a alpha, $x \in P$

Recursive step:

 $xsx \in P$, if x is a alpha and $s \in P$ Hence, proved.

- 50. a) A(1,0) = 0
 - b) A(0,1) = 2
 - c) A(1,1)=2
 - d) A(2,2) = A(1, A(2,1)) = A(1,2) = A(0, A(1,1)) = A(0,2) = 4

6.1

48. a)
$$6 \cdot 6 \cdot 8 \cdot 7 \cdot 6 \cdot 5 = 90720$$

b)
$$6 \cdot 5 \cdot 8 \cdot 7 \cdot 6 \cdot 5 = 50400$$

- c) From a) and b), exactly one of the bride is 90720 50400 = 40320So the answer is $40320 \cdot 2 = 80640$
- 52. a) 0000011111 1
 - b) 1111100000 1
 - c) 000001xxxx $(2^4 1) \cdot 2 = 30$
 - d) x000001xxx $2^4 \cdot 2 = 32$
 - e) xx000001xx $2^4 \cdot 2 = 32$
 - f) xxx000001x $2^4 \cdot 2 = 32$
 - g) xxxx000001 $2^4 \cdot 2 = 32$
 - h) xxxxx00000 $(2^5 1) \cdot 2 = 62$

The answer is 1 + 1 + 30 + 32 + 32 + 32 + 32 + 62 = 222

6.2

- 14. There are 25 results after moudle 5, that $(0,0), (0,1) \dots (4,3), (4,4)$. So the answer is 25 + 1 = 26.
- 28. Suppose the friends are (a,b),(b,c),(c,d),(d,e),(e,a) and the enemies are (a,c),(a,d),(b,d),(b,e),(c,e).

 In this case, there are no three mutual friends or three mutual enemies.
- 48. Suppose the statement is wrong, so the *i*th box contains at most $n_i 1$ objects. Because $n_1 + n_2 + \cdots + n_t t = (n_1 1) + (n_2 1) + \cdots + (n_t + 1)$, at this time, $n_1 + n_2 + \cdots + n_t t + 1 = (n_1 1) + (n_2 1) + \cdots + (n_t + 1) + 1$. There must be a *i*th box contained n_i objects. So the statement is true.

6.3

- 30. C(40, 17) = 88732378800
- 46. a) No ties. P(4,4) = 24
 - b) Two horses tie. $C(4,2) \cdot P(3,3) = 6 \cdot 6 = 36$
 - c) Three horses tie. $C(4,3) \cdot P(2,2) = 4 \cdot 2 = 8$
 - d) Four horses tie. C(4,4)=1
 - e) Two groups tie. C(4,2)=6

The answer is 24 + 36 + 8 + 1 + 6 = 75

14.
$$C(17+4-1,17) = C(20,3) = 1140$$

20.
$$x_1 + x_2 + x_3 \le 11 \equiv x_1 + x_2 + x_3 + x_4 = 11, x_4 \ge 0$$
 $C(11 + 4 - 1, 11) = C(14, 3) = 364$

36. a) Seven.
$$\frac{7!}{3! \cdot 3!} = 140$$

- b) Six and omit $R. \frac{6!}{3! \cdot 3!} = 20$
- c) Six and omit S or E. $2 \cdot \frac{6!}{3! \cdot 2!} = 120$
- d) Five and omit two S or E. $2 \cdot \frac{5!}{3!} = 40$
- e) Five and omit a S and a E. $\frac{5!}{2! \cdot 2!} = 30$

f) Five and omit a
$$R$$
 and a E or S . $2 \cdot \frac{5!}{3! \cdot 2!} = 20$ $140 + 20 + 120 + 40 + 30 + 20 = 370$

48.
$$-*-*-*-*-*-*-*-*$$
 Choice five $-$ to replace $|C(8,5)=C(8,3)=56$