Information Theory: Lecture Notes 8

zqy1018

2020. 4. 15

Contents

1	Differential Entropy	2
2	Some Important Examples	2
	2.1 Example: Uniform Distribution	2
	2.2 Example: Normal Distribution	2
	2.3 Example: Multi-variable Normal Distribution	3
3	Other Definitions	3
•		_

1 Differential Entropy

We first give some basic definitions.

Definition. Let F(x) be the c.d.f. (Cumulative Distribution Function) and f(x) be the p.d.f. (Probability Density Function) of X. If F(x) is continuous, then X is **continuous**. Let $S = \sup\{F(x) > 0\}$ be the support of X.

We now try to define entropy for continuous random variables.

Definition. Then the **differential entropy** h(X) of a continuous random variable X with density f(x) is defined as

$$h(X) = -\int_{S} f(x) \log f(x) dx$$

Note.

- (1) Like the discrete case, h(X) only depends on f(x). So sometimes we use h(f) instead of h(X).
 - (2) $\forall c, h(X+c) = h(X)$. So transition does not change the entropy.

Remark. As in every example involving an integral, or even a density, we should include the statement *if it exists*. But sometimes for convenience we will assume that it exists.

2 Some Important Examples

2.1 Example: Uniform Distribution

For $X \sim U[0, a](a > 0)$, $h(X) = \log a$. So we can see that differential entropy may be negative!

2.2 Example: Normal Distribution

For $X \sim N(\mu, \sigma^2)$, we have

$$h(f) = -\int f(x) \log \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right) dx + \int f(x) \frac{(x-\mu)^2}{2\sigma^2} dx$$
$$= \frac{1}{2} \log 2\pi\sigma^2 + \frac{DX}{2\sigma^2}$$
$$= \frac{1}{2} \log 2\pi e\sigma^2$$

Note. Here we assume that the log function takes e as base.

2.3 Example: Multi-variable Normal Distribution

For $X \sim N(\mu, K)$, where K is the covariance matrix, we have

$$f(\mathbf{x}) = \frac{1}{(2\pi)^{\frac{n}{2}} |K|^{\frac{1}{2}}} \exp\left[-\frac{1}{2}(\mathbf{x} - \mu)^T K^{-1}(\mathbf{x} - \mu)\right]$$

Thus

$$h(f) = -\int f(\mathbf{x}) \left[-\frac{1}{2} (\mathbf{x} - \mu)^T K^{-1} (\mathbf{x} - \mu) \right] d\mathbf{x} + \frac{1}{2} \log(2\pi)^n |K|$$
$$= \frac{1}{2} E$$

3 Other Definitions

Differential entropy is much similar as discrete entropy.

Acknowledgment

The contents are mainly based on the course materials of CS258, Shanghai Jiao Tong University and *Elements of Information Theory* by Thomas M. Cover.