Computer Science 350 Assignment One

Steven Kerr 6022796

02/04/2019

- 1. is no output alphabet (d) From class, a DFA is a five-tuple $M=(Q,\Sigma,\delta,s,F)$ Where:
 - 1. Q is the finite set of machine states
 - 2. Σ is the finite input alphabet
 - 3. δ is a transition function from $Qx\Sigma$ to Q
 - 4. $s \in Q$ is the start state
 - 5. $F \subseteq Q$ is the accepting state

There is no mention of an "Output alphabet" in the five-tuple DFA \dots

2. The answer is 7. With the Kleene star on the alphabet (0,1) and with the string length being at most 2, we have:

$$L = \{\epsilon, 0, 1, 00, 01, 10, 11\}$$
$$|L| = 7$$

. . .

- 3. (A) $input \in \Sigma^*$ Because of "input" being lowercase "i"
- 4. The set $(A^* \cap B) \cup (B^* \cap A)$ is equal to \emptyset for $A^* \cap B = \emptyset$ $= \{\epsilon, Hello, World, HelloWorld, HelloHello, \dots\} \cap \{Input, Output\} = \emptyset$ for $B^* \cap A$ $= \{\epsilon, Input, Output, InputOutput, InputInput, \dots\} \cap \{Hello, World\} = \emptyset$ $\emptyset \cup \emptyset = \emptyset$ Therefore the set is the empty set

. . .

5.

DFA N

6.

- a) $L = \{w \in \{0,1\} \mid w \text{ contains the substring } 001 \}$
- b) We notice that L contains infinitely many strings, for example $\{(001)^n|n>1\}\in L$. we also notice that there are infinitely many strings not in L, for example $\{(01)^n|n>1\}\notin L$. These are both infinitely large sets, however, one is in L and the other is not.
- c) DFA M

First we take $u \in L$, $u = \sigma_1 \dots \sigma_n$, σ_{n+1} , σ_{n+2} , ... σ_k where σ_n , σ_{n+1} , $\sigma_{n+2} = 001$. We take the sequence $r_0 \dots r_n$, r_{n+1} , r_{n+2} , ..., r_k where $r_i = q_0$ for $0 \ge i \ge n$, and $r_{n+2} = q_3$. Now we will show that this sequence of states is indeed an accepting trace of u on DFA M. Observe that $r_0 = q_0 \in S$ and $r_{n+2} = q_3 \in F$. Further, note that $r_n = q_1 \in \delta(r_{n-1}, \sigma_n) = \delta(q_0, 0)$, $r_{n+1} = q_2 \in \delta(r_n, \sigma_{n+1}) = \delta(q_1, 0)$, $r_{n+2} = q_3 \in \delta(r_{n+1}, \sigma_{n+2}) = \delta(q_2, 1)$. Notice this is the only trace to get to the accepting state, hence, u is accepting by the DFA M.

Now we take $u \in L(M)$, $u = \sigma_1 \dots \sigma_n$, $\sigma_{n+1}, \sigma_{n+2}, \dots \sigma_k$ where $\sigma_n, \sigma_{n+1}, \sigma_{n+2} = 001$. Note that there is some trace $r_0 \dots r_n, r_{n+1}, r_{n+2}, \dots, r_k$ where $r_0 = q_0, r_n = q_1, r_{n+1} = q_2$ and $r_{n+2} = q_3$. Note that: $r_{n+2} = q_3 \in \delta(q_i, x)$ iff $q_i = q_2$ and $x = 1 = \sigma_{n+2}$ and either $r_{n+1} = q_2 \in \delta(q_i, x)$ iff $q_i = q_2$ and $x = 0 = \sigma_{n+1}$ $r_n = q_2 \in \delta(q_i, x)$ iff $q_i = q_2$ and $x = 0 = \sigma_n$ Or $r_{n+1} = q_2 \in \delta(q_i, x)$ iff $q_i = q_2$ and $x = 0 = \sigma_{n+1}$ $r_n = q_1 \in \delta(q_i, x)$ iff $q_i = q_1$ and $x = 0 = \sigma_n$

So, $run() = q_{0r_1} \dots q_{0r_{n-1}} q_1 q_2 q_3 \dots q_3^k$ so it must be the case that $u = (0,1)^j 001(0,1)^k \in L$

d) $L = (1+0)^* \cdot (001) \cdot (0+1)^*$

- e) So, in this case P = 001 and $A(P) = \{u \mid u \text{ contains the pattern } 001\}$ and even further, $A(P) = \{u001v \mid u, v \in \{1, 0\}^*\}.$
- f) NFA N

g) The number of states of the DFA and NFA are both the same however, the NFA has two less transition functions than the DFA. Mainly $\delta(q_2,0)=q_2$ and $\delta(q_0,0)=q_1$. This means that the NFA is simpler than the DFA.