15.1 - Double Integrals over Rectangles

1. Extimate the volume of the solid that lies below the surface z = xy and above the rectangle contained in the xy-plane $R = [0, 6] \times [0, 4]$. Use $\Delta x = 3$ and $\Delta y = 2$ and each sample point (x_k, y_k) is the upper right corner of the kth rectangle.

R is drawn to the right with dashed lines representing the appropriate rectangles and the sample points are marked.

Solution: Let f(x,y) = xy. The sample points are

$$(2,2), (2,4), (4,2), (4,4), (6,2),$$
 and $(6,4).$

Therefore

$$\iint_{R} xy \ dA = f(2,2)\Delta A + f(2,4)\Delta A + f(4,2)\Delta A + f(4,4)\Delta A + f(6,2)\Delta A + f(6,4)\Delta A$$

$$= 4(4) + 8(4) + 8(4) + 16(4) + 12(4) + 24(4)$$

$$= 288.$$

2. Estimate $\int \int_R \sin(x+y) \ dA$ where $R = [0,\pi] \times [0,\pi]$ and $\Delta x = \Delta y = 2$ with sample points at the lower left corners of each rectangle.

Solution: Again, let $f(x,y) = \sin(x+y)$. The sample points are

$$(0,0),(\pi/2,0),(0,\pi/2),(\pi/2,\pi/2)$$

and
$$\Delta A = (\pi/2)(\pi/2) = \pi^2/4$$
.

Then

$$\iint_{R} f(x,y) \ dA = f(0,0)\Delta A + f(\pi/2,0)\Delta A + f(0,\pi/2)\Delta A + f(\pi/2,\pi/2)$$
$$= 0 + \pi^{2}/4 + \pi^{2}/4 + 0$$
$$= \pi^{2}/2.$$

- 3. Evaluate each double integral by identifying it as the volume of a solid and using a known formula
 - (a) $\iint_R 3 \, dA$ where $R = \{(x, y) \mid -2 \le x \le 2, 1 \le y \le 6\}$

Solution: This is a "box" with dimensions $4 \times 5 \times 3$ so it's volume is 60.

(b) $\int \int_{R} (4-2y) dA$, $R = [0,1] \times [0,1]$

Hint: First draw z = 4 - 2y in the yz-plane and then use that to visualize what the portion of the plane z = 4 - 2y looks like over the given region.

The solid is the shape below 1 unit thick, which means the volume is simply the area of the shaded box and triangle.

