

Sunitha V R

Department of Science & Humanities

Unit III: Application of Quantum Mechanics to Electrical transport in Solids

- >Suggested Reading
 - 1. Concepts of Modern Physics, Arthur Beiser, Chapter 10
 - 2. Solid state Physics, S.O Pillai, Chapter 6
 - 3. Learning material prepared by the department-Unit III
- > Reference Videos
 - 1. https://nptel.ac.in/courses/115/104/115104109/
 - 2. https://physlab.org/class-demo/meissner-effect/

Unit III: Application of Quantum Mechanics to Electrical transport in Solids

Class #33

Superconductivity:

- > Superconductivity as a phenomenon
- Meissner effect & Critical Field
- > Type I and type II superconductors
- > BCS Theory of Superconductors

Superconductivity as a phenomenon

Superconductivity was discovered by H. Kammerlingh Onnes in 1911.

Meissner effect

Superconducting materials excludes the magnetic lines of force from its interior – like a perfect diamagnetic material

Critical field

Presence of strong external fields – drives superconducting material to normal conducting state.

Magnetic field at which the material loses is superconducting state - Critical Field (H_c).

The critical field strength is temperature dependent

and is given by
$$H_c = H_o \left[1 - \left(\frac{T}{T_c} \right)^2 \right]$$

Type I and type II superconductors

Classification of Superconductors:

Type I superconductors (Soft superconductors):

Examples for Type I superconductors - Aluminum, Lead and Indium etc.

Type I and type II superconductors

Type II superconductors:

Superconductivity: Some Key Observations

- > Current in the superconductor persists for a long time.
- Not observed in Mono valent metals.
- > Exhibited by metals for which the valence electrons number are between 2 & 8.
- > Observed in metals having a higher resistivity at normal temperatures.
- > Destroyed by applying high magnetic fields or excessive currents.
- Ferro and anti ferromagnetic materials are not superconductors.

BCS-Theory of Superconductors

Theory of superconductivity in metals was unveiled by J. Bardeen, L.N. Cooper and J.R. Schrieffer in the year 1957

Class 33. Quiz ...

The concepts which are correct are....

- 1. The temperature at which the conductivity of the metal increases sharply is known as the transition temperature T_c .
- 2. Superconductivity cannot be destroyed by a high magnetic field or excessive currents.
- 3. Materials in the superconducting state, expels the magnetic lines of force.
- 4. Type I superconductors exhibits mixed state Meissner effect.
- 5. The electrons in the Cooper pair have either equal spins or opposite momentum.

THANK YOU

Sunitha VR, Ph.D.

Assistant Professor,
Department of Science and Humanities

sunithavr@pes.edu

+91 80 21722683 Extn 716