This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(11) Publication number:

0 184 257

A1

12)

EUROPEAN PATENT APPLICATION

(21) Application number: 85201937.1

(22) Date of filing: 22.11.85

(51) Int. Cl.4: C 07 D 413/12

C 07 D 417/12, C 07 D 413/14

C 07 D 417/14, C 07 D 498/04

C 07 D 513/04, A 61 K 31/445

A 61 K 31/42, A 61 K 31/425

30 Priority: 03.12.84 US 677412

(43) Date of publication of application: 11.06.86 Bulletin 86/24

Designated Contracting States:
 AT BE CH DE FR GB IT LI LU NL SE

71 Applicant: JANSSEN PHARMACEUTICA N.V.

Turnhoutsebaan 30 B-2340 Beerse(BE)

(72) Inventor: Stokbroekx, Raymond Antoine

Rode Kruisstraat 13 B-2340 Beerse(BE)

(72) Inventor: Luyckx, Marcel Gerebernus Maria

Eksterstraat 24 B-2440 Geel(BE)

(72) Inventor: Janssens, Frans Eduard

Tinstraat 79

B-2830 Bonheiden(BE)

(54) Benzoxazol- and benzothiazolamine derivatives.

(5) Novel benzoxazol- and benzothiazolamine derivatives of the formula

the pharmaceutically acceptable acid addition salts and possible stereochemically isomeric forms thereof, which compounds are antianoxic and anti-hypoxic agents; pharmaceutical compositions containing such compounds as an active ingredient and methods of preparing said compounds and pharmaceutical compositions.

wherein

184

L represents C_{1-12} alkyl, substituted C_{1-8} alkyl, aryl C_{2-6} alkenyl, C_{3-6} cycloalkyl, substituted C_{3-6} cycloalkyl, a radical of formula

$$O-R^5$$
 | R $^7-CH_2-C-CH_2-$ (a), and a radical of formula | R 8

$$\bigcup_{\substack{0 \\ 0 \\ 0 \\ 6}}^{B} \bigcap_{\substack{1 \\ 0 - CH_2^- \\ 0 \\ 6}}^{0 - R^5} (b);$$

0544£

5

10

BENZOXAZOL- AND BENZOTHIAZOLAMINE DERIVATIVES

15 Background of the invention:

In U.S. Patent No. 4,219,559 there are described a number of N-heterocyclyl-4-piperidinamines, wherein said heterocyclyl is imidazole being condensed with benzene or pyridine, which compounds are useful as antihistaminic agents.

The compounds of the present invention containing an analogous heterocyclyl radical differ therefrom by the fact that said heterocyclyl is oxazole or thiazole being condensed with benzene or pyridine and by their unexpected anti-anoxic properties.

Description of the preferred embodiments:

This invention is concerned with novel benzothiazol- and benzoxazolamine derivatives which structurally may be represented by the formula

$$\begin{array}{c|c}
R^3 \\
\downarrow & \downarrow & \downarrow \\
R^4 & R & R^1 & N \\
\hline
R^4 & R & R^1 & N \\
\hline
R^2 & R^4 & R^3
\end{array}$$
(1)

30

25

20

the pharmaceutically acceptable acid addition salts and the possible stereochemically isomeric forms thereof, wherein:

-1= λ^2 - λ^3 = λ^4 - is a bivalent radical having the formula

-CH=CH-CH=CH- (a);

-N=CH-CH=CH- (b);

-CH=N-CH=CH- (c);

-CH=CH-N=CH- (d); or

-CH=CH-CH=N- (e):

wherein one or two hydrogen atoms in the radical $-\lambda^1 = \lambda^2 - \lambda^3 = \lambda^4$ may, each independently from each other, be replaced by halo, C_{1-6} alkyl, hydroxy, C_{1-6} alkyloxy, or trifluoromethyl;

Z is O or S:

5

10

25

30

n is 0 or the integer 1;

R is a member selected from the group consisting of hydrogen, C_{1-6} alkyl, hydroxy and C_{1-6} alkyloxy;

 R^1 or R^2 is hydrogen, C_{1-6} alkyl, or aryl C_{1-6} alkyl; the dotted line between the nitrogen atom bearing R^1 , the interjacent carbon atom and the nitrogen atom bearing R^2 indicating that a double bond exists between the nitrogen bearing R^1 and said interjacent carbon atom, in which case R^1 is absent, or a double bond exists between the interjacent carbon and the nitrogen bearing R^2 , in which case R^2 is absent; and wherein said interjacent carbon atom is the carbon atom positioned between the nitrogen bearing R^1 and the nitrogen bearing R^2 ;

R³ or R⁴ are both hydrogens or R³ and R⁴ combined may form a bivalent radical of formula -CH₂-CH₂-;

L is a member selected from the group consisting of C_{1-12} alkyl, substituted C_{1-6} alkyl, aryl C_{2-6} alkenyl, C_{3-6} cycloalkyl, substituted C_{3-6} cycloalkyl, a radical of formula

$$R^7$$
-CH₂-C-CH₂- (a), and a radical of formula

 R^5 being hydrogen or C_{1-12} alkylcarbonyl;

R⁶ being hydrogen or C₁₋₆ alkyl;

R⁷ being aryl, a radical R⁸-O or a radical R⁸-S;

B being a bivalent radical of formula -CH2- or -O-; and

said R^8 being hydrogen; aryl; 2.3-dihydro-lH-indenyl; benzodioxolyl; (2.3-dihydro-1.4-benzodioxin-2-yl)methyl; (2H-l-benzopyran-2-yl)methyl; or phenyl substituted with C_{2-6} alkenyloxy, C_{1-6} alkylphenylcarbonyl; and

wherein said substituted C_{3-6} cycloalkyl is C_{3-6} cycloalkyl being substituted with up to two substituents each independently selected from the group consisting of aryl, aryloxy and cyano;

said substituted C_{1-6} alkyl is C_{1-6} alkyl being substituted with a member selected from the group consisting of C_{3-6} cycloalkyl, pyridinyl, pyridinyloxy, aryl, benzimidazolyl, indolyl, isoxazolyl being optionally substituted with phenyl, 3-oxo-1,2,4-triazolo[4,5-a]pyridin-2(3 \underline{H})-yl, a radical of formula Ary-, a radical of formula R^9 O- and a radical of formula

20

25

30

35

5

10

15

said Ar being aryl;

Y being O, S, NH, -CONH-, -CHCN, -CHOR 10 or -SO₂;

 R^9 being hydrogen, aryl C_{1-6} alkyl, C_{3-6} cycloalkyl, phenyl substituted with phenyl, or phenyl substituted with C_{1-6} alkyloxycarbonyl;

 R^{10} being hydrogen or C_{1-6} alkyl; and

wherein aryl is phenyl optionally substituted with up to three substituents each independently selected from the group consisting of c_{1-6} alkyloxy, halo, trifluoromethyl, cyano, c_{1-6} alkyloxy, nitro, amino and aminocarbonyl.

As used herein the term halo is generic to fluoro, chloro, bromo and iodo; " C_{1-6} alkyl" is meant to include straight and branched saturated hydrocarbon radicals, having from 1 to 6 carbon atoms, such as, for example, methyl, ethyl, 1-methylethyl, 1,1-dimethylethyl, propyl, butyl, pentyl, hexyl and the like; C_{1-12} alkyl is meant to include straight and branched saturated hydrocarbon radicals, having from 1 to 12 carbon

atoms; " C_{2-6} alkenyl" refers to alkenyl radicals having from 2 to 6 carbon atoms, such as, for example, 2-propenyl, 2-butenyl, 3-butenyl, 2-pentenyl and the like; and " C_{3-6} cycloalkyl" embraces cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.

Preferred compounds within the invention are those wherein L is aryl C_{2-6} alkenyl, C_{1-6} alkyl being substituted with aryloxy, a radical of formula (a) or a radical of formula (b).

5

15

20

30

35

Particularly preferred compounds within the invention are those wherein L is as described hereinabove for the preferred compounds and $-\lambda^1=\lambda^2-\lambda^3=\lambda^4$ — is -CH=CH=CH=CH=. n is the integer 1, R^2 is absent and a double bond exists between the nitrogen bearing R^2 and the interjacent carbon atom, and R^3 and R^4 are both hydrogen atoms.

More particularly preferred compounds within the invention are those wherein $-\lambda^1 = \lambda^2 - \lambda^3 = \lambda^4 -$, n, R^2 and R^3 are as defined hereinabove for the particularly preferred compounds and wherein a double bond exists between the nitrogen bearing R^2 and the interjacent carbon atom, and wherein L is C_{1-6} alkyl substituted with aryloxy, a radical of formula (a) wherein R^5 and R^6 are both hydrogen and R^7 is a radical R^8 -O-, wherein R^8 is aryl, or L is a radical of formula (b), wherein B is O, R^5 and R^6 are both hydrogen radicals.

Especially preferred compounds within the invention are those particularly preferred compounds wherein R^1 is C_{1-6} alkyl and aryl is halophenyl.

The most preferred compounds are selected from the group consisting of 4-[(2-benzothiazoly1)methylamino]-a-[(4-fluorophenoxy)methyl]-1-piperidineethanol and the pharmaceutically acceptable acid addition salts thereof.

In order to simplify the structural representations of the compounds of formula (I) and of certain precursors and intermediates

thereof the
$$-N$$
 R^3 $(CH_2)_n$ N R^3 R^3 R^3 R^3 R^4 R^3 R^3 R^4 R^3 R^4 R^3 R^4 R^3 R^4 R^3 R^4 $R^$

represented by the symbol D.

The compounds of formula (I) can generally be prepared by N-alkylating an intermediate of formula (III) with a reagent of formula (III).

In (II) W represents an appropriate reactive leaving group such as, for example, halo, e.g., chloro, bromo or iodo, or a sulfonyloxy group, e.g. 10 methylsulfonyloxy or 4-(methylphenyl)sulfonyloxy. The alkylation reaction is conveniently conducted in an inert organic solvent such as, for example, an aromatic hydrocarbon, e.g., benzene, methylbenzene, dimethylbenzene, and the like; a c_{1-6} alkanol, e.g., 15 methanol, ethanol, 1-butanol and the like; a ketone, e.g., 2-propanone, 4-methyl-2-pentanone and the like; an ether, e.g., 1,4-dioxane, 1.1'-oxybisethane, tetrahydrofuran and the like; N.N-dimethylformamide (DMP); N.M-dimethylacetamide (DMA); dimethyl sulfoxide (DMSO); nitrobenzene; 1-methyl-2-pyrrolidinone; and the like. The addition of an 20 appropriate base such as, for example, an alkali metal carbonate or hydrogen carbonate, sodium hydride or an organic base such as, for example, $N \cdot N$ -diethylethanamine or $N \cdot (1-methylethyl)-2$ -propanamine may be utilized to pick up the acid which is liberated during the course of the reaction. In some circumstances the addition of an iodide salt, 25 preferably an alkali metal iodide, is appropriate. Somewhat elevated temperatures may enhance the rate of the reaction.

The compounds of formula (I) can also be prepared by the reductive N-alkylation reaction of (III) with an appropriate carbonyl-compound of formula L'=C=O (IV), said L'=C=O being a compound of formula L-H wherein a -CH₂- radical is oxidated to a carbonyl radical.

30

Said reductive N-alkylation reaction may conveniently be carried out by catalytically hydrogenating a stirred and heated mixture of the reactants in a suitable reaction-inert organic solvent according to art-known catalytic hydrogenating procedures. The reaction mixture may be stirred and/or heated in order to enhance the reaction rate. Suitable solvents are, for example, water; c_{1-6} alkanols, e.g. methanol, ethanol, 2-propanol and the like; cyclic ethers, e.g. 1,4-dioxane and the like; halogenated hydrocarbons, e.g. trichloromethane and the like; N,N-dimethylformamide; dimethyl sulfoxide and the like; or a mixture of 2 or more of such solvents. The term "art-known catalytic hydrogenating procedures" means that the reaction is carried out under hydrogen atmosphere and in the presence of an appropriate catalyst such as, for example, palladium-on-charcoal, platinum-on-charcoal and the like. In order to prevent the undesired further hydrogenation of certain functional groups in the reactants and the reaction products it may be advantageous to add an appropriate catalyst-poison to the reaction mixture, e.g., thiophene and the like.

The compounds of formula (I) can also be prepared by oxidatively cyclizing an urea or thiourea derivative of formula (V) in the presence of an appropriate oxidant.

25

30

35

20

5

10

Appropriate oxidants are, for example, halogens, e.g. chlorine and bromine, thionyl chloride, sulfuryl chloride, thionyl bromide, sulfuryl bromide and the like agents. The said cyclization reaction is most conveniently conducted in a reaction-inert solvent such as, for example, an halogenated hydrocarbon, e.g. tetrachloromethane, trichloromethane and the like. Elevated temperatures may be appropriate to enhance the reaction rate.

The compounds of formula (I) wherein L is a radical of formula (a) or (b) wherein R⁵ is hydrogen can also be prepared by reacting an

appropriate oxirane derivative of formula (VI), respectively of formula (VIII) with (III). The thus obtained compounds of formula (I-a-1) respectively of formula (I-a-3) may further be converted into the corresponding compounds of formula (I-a-2), respectively (I-a-4) by an appropriate acylation reaction.

The reagent $R^{5-a}v^1$ represents an alkanoic acid or a reactive derivative thereof such as, for example, an ester, an acid halide or anhydride and the like.

The reaction of (VI) or (VIII) with (III) may conveniently be conducted in an appropriate solvent such as, for example, an aromatic hydrocarbon, e.g. benzene, methylbenzene and the like, a C_{1-6} alkanol, e.g. methanol and ethanol. Elevated temperatures may be appropriate to enhance the reaction rate.

35

30

25

The compounds of formula (I), wherein R^2 is absent and a double bond exists between the nitrogen bearing R^2 and the previously defined interjacent carbon atom, said compounds being represented by the formula (I-b) can also be prepared by reacting an appropriate reagent of formula (IX) with a benzothiazole or benzoxazole of formula (X).

In (IX) and (X) ϱ^1 and ϱ^2 are selected so that during the alkylation reaction a radical of formula $-NR^1$ — is formed. For example, where ϱ^1 is an appropriate leaving group, ϱ^2 is a radical of formula $-NHR^1$, or where ϱ^1 is a radical of formula $-NHR^1$, ϱ^2 is an appropriate leaving group.

The compounds of formula (I-b) wherein Z is O and R¹ is hydrogen, said compounds being represented by the formula (I-b-1), can also be prepared by cyclodesulfurizing an intermediate of formula (XIV), which may conveniently be formed in situ by condensing an isothiocyanate (XII) with an aromatic aminoalcohol of formula (XIII).

30

$$R^3$$
 $CCH_2)_n$
 R^3
 R^3

Said cyclodesulfurization reaction may be carried out by the reaction of (XIV) with an appropriate alkyl halide, preferably iodomethane in an appropriate reaction-inert organic solvent, e.g., a C₁₋₆ alkanol such as methanol, ethanol, 2-propanol and the like. Otherwise, the cyclodesulfurization reaction may be carried out by the reaction of (XIV) with an appropriate metal oxide or salt in an appropriate solvent according to art-known procedures. For example, the compounds of formula (I) can easily be prepared by the reaction of (XIV) with an appropriate Hg(II) or Pb(II) oxide or salt, such as, for example HgO, HgCl₂, Hg(OAc)₂, PbO or Pb(OAc)₂. In certain instances it may be appropriate to supplement the reaction mixture with a small amount of sulfur. Even so methanedimines, especially N.M'-methanetetraylbis-[cyclohexanamine] may be used as cyclodesulfurizing agents.

The compounds of formula (I-b) wherein R¹ is hydrogen, said compounds being represented by the formula (I-b-2), may be prepared by cyclizing an intermediate (XVII), which in situ may be formed by reacting an isocyanate or isothiocyanate (XV) with an aromatic amine (XVI).

30

$$R^3$$
 $L-N$
 $N=C=Z$
 H_2N
 A^1
 A^2
 A^3

30

 R^3
 CH_2
 $N=C=Z$
 N

In (XVI) and (XVII) Ψ^2 represents an appropriate leaving group such as, for example, halo, e.g. chloro and bromo; C_{1-6} alkyloxy and C_{1-6} alkylthio.

The compounds of formula (I) wherein L is a C_{1-12} alkyl radical or a substituted C_{1-6} alkyl radical, wherein said C_{1-12} alkyl or C_{1-6} alkyl contains at least two carbon atoms, said compounds being represented by the formula (I-c), may also be prepared by reacting an alkene of formula (XVIII) with an intermediate of formula (III) by stirring and, if desired, heating the reactants together, preferably in a suitable solvent such as, for example, an alcohol, e.g. methanol, ethanol, butanol and the like.

$$R^{11}$$
- C_{2-6} alkenediyl-H (XVIII) + (III) \longrightarrow R^{11} - C_r H_{2r}-D (I-c)

10

20

25

30

In (XVIII) R¹¹ represents C₁₋₆ alkyl, C₃₋₆ cycloalkyl, pyridinyl, pyridinyloxy, aryl, benzimidazolyl, indolyl, isoxazolyl being substituted with phenyl, 3-oxo-1,2,4-triazolo[4,5-a]pyridin-2(3<u>H</u>)-yl, a radical of formula Ary, a radical of formula R⁹O and a radical of formula (g); and in (I-c) r is an integer of from 2 to 6 included.

Additionally, the compounds of formula (I), wherein L is a radical of formula Ar-CO-NH-CH₂-CH₂-, said compounds being represented by the formula (I-d), can also be prepared by reacting an aziridine of formula (XIX) with (III), preferably in the presence of a suitable solvent such as, for example, an aromatic hydrocarbon, e.g. benzene, methylbenzene and the like.

The compounds of formula (I) can also be converted into each other following art-known procedures. The compounds of formula (I) wherein R¹ is hydrogen may be converted into compounds of formula (I) wherein R¹ is other than hydrogen by reacting the former compounds with an appropriate N-alkylating reagent.

35 The compounds of formula (I) wherein L is a C_{1-6} alkyl radical

substituted with hydroxy may further be Q-alkylated with an appropriate reagent following art-known Q-alkylating procedures.

In all of the foregoing and in the following preparations, the reaction products may be isolated from the reaction mixture and, if necessary, further purified according to methodologies generally known in the art.

5

25

30

35

The compounds of formula (I) have basic properties and, consequently, they may be converted to their therapeutically active non-toxic acid addition salt forms by treatment with appropriate acids, 10 such as, for example, inorganic acids, such as hydrohalic acid, e.g. hydrochloric, hydrobromic and the like, and sulfuric acid, nitric acid, phosphoric acid and the like; or organic acids, such as, for example, acetic, propanoic, hydroxyacetic, 2-hydroxy-propanoic, 2-oxopropanoic, ethanedioic, propanedioic, butanedioic, (Z)-2-butenedioic, 15 (E)-2-butenedioic, 2-hydroxybutanedioic, 2,3-dihydroxybutanedioic, 2-hydroxy-1,2,3-propanetricarboxylic, methanesulfonic, ethanesulfonic, benzenesulfonic, 4-methylbenzenesulfonic, cyclohexanesulfamic, benzoic, 2-hydroxybenzoic, 3-phenyl-2-propenoic, a-hydroxybenzeneacetic. 4-amino-2-hydroxybenzoic and the like acids. Conversely the salt form can be converted by treatment with alkali into the free base form. 20

A number of intermediates and starting materials in the foregoing preparations are known compounds which may be prepared according to art-known methodologies of preparing said or similar compounds. A number of such preparation methods will be described hereinafter in more detail.

The intermediates of formula (II) wherein L is C_{1-6} alkyl being substituted with pyridinyloxy, aryloxy, arylthio, arylamino or a radical R^{9-a} O-, said R^{9-a} having the previously defined meaning of R^{9} , provided that R^{9-a} is other than hydrogen, can be prepared by alkylating an appropriate alcohol, thioalcohol or amine with a reagent W-C₁₋₆ alkyl-W, or alternatively with a reagent W-Alk-OH, and subsequently converting the thus formed alcohol with a reagent capable of converting an alcohol function into a reactive leaving group, e.g. thionyl chloride, methylsulfonyl chloride and the like.

The intermediates of formula (III) can generally be prepared by

oxidatively cyclizing an urea or thiourea derivative of formula (xx), wherein P is an appropriate leaving group such as, for example, C_{1-6} alkyloxycarbonyl, phenylmethoxycarbonyl, phenylmethyl and the like, following the same procedures described hereinabove for the preparation of (I) starting from (V) and, subsequently eliminating the protective group P in the thus obtained intermediate (XXI)

$$\begin{array}{c|c}
R^{3} & & & \\
P-N & & & \\
R^{4} & R & & \\
R^{1} & & & \\
\end{array}$$

$$\begin{array}{c|c}
& & & \\
& & \\
& & \\
& & \\
\end{array}$$

$$\begin{array}{c}
& & \\
& & \\
& & \\
& & \\
\end{array}$$

$$\begin{array}{c}
& \\
& \\
& \\
& \\
\end{array}$$

$$\begin{array}{c}
& \\
& \\
& \\
& \\
\end{array}$$

$$\begin{array}{c}
& \\
& \\
& \\
& \\
\end{array}$$

$$\begin{array}{c}
& \\
\\
\end{array}$$

$$\begin{array}{c}
& \\
\\
\end{array}$$

$$\begin{array}{c}
& \\
\end{array}$$

$$\begin{array}{c$$

The elimination of the protective group P in (XXI) may generally be carried out following art-known procedures such as, for example, by hydrolysis in alkaline or acidic aqueous medium.

The intermediates of formula (III) wherein R² is absent and a double bond exists between the nitrogen bearing said R² and the previously defined interjacent carbon atom, and wherein Z is O, said intermediates being represented by the formula (III-a) may alternatively be prepared by cyclodesulfurizing a thiourea of formula (XXIII), which may in situ be formed by condensing an isothiocyanate of formula (XXII) with an aromatic alcohol (XIII) following the procedures described hereinabove for the preparation of (I-b-1) starting from (XII) and (XIII), and subsequently eliminating the protective group P in the thus obtained intermediate (XXIV) as described hereinabove.

The intermediates of formula (III) wherein R² is absent and a double bond exists between the nitrogen bearing said R² and the previously defined interjacent carbon atom, said intermediates being represented by the formula (III-b) can also be prepared by cyclizing an intermediate (XXVI) which in situ may be formed by reacting an isocyanate or isothiocyanate (XXV) with (XVI), and subsequently eliminating the protective group P as described hereinabove.

(xxvi) (xxvii)

$$\begin{array}{c}
 & \stackrel{R^3}{\longrightarrow} & \stackrel{(CH_2)_n}{\longrightarrow} & \stackrel{NH}{\longrightarrow} & \stackrel{Z}{\longrightarrow} & \stackrel{\lambda^1}{\longrightarrow} & \stackrel{\lambda^2}{\longrightarrow} & \stackrel{\lambda^3}{\longrightarrow} & \stackrel{(III-b)}{\longrightarrow} & \stackrel{(III-b)}{\longrightarrow}$$

The previously described intermediates can also be converted into each other following art-known functional grouptransformation procedures.

For example, the intermediates of formula (V) wherein R¹ is hydrogen and the intermediates of formula (V) wherein R² is hydrogen, said intermediates being represented by the formula (V-a), respectively (V-b) can be prepared by reacting an isocyanate or isothiocyanate (XXVIII) with an aromatic amine (XXIX), respectively by reacting an amine (XXX) with an aromatic isocyanate or isothiocyanate (XXXI).

$$\begin{array}{c|c}
R^3 \\
L-N
\end{array}$$

$$\begin{array}{c|c}
(CH_2)_{n} & Z \\
NH-C-N
\end{array}$$

$$\begin{array}{c|c}
A^1 & A^2 \\
N & A^3
\end{array}$$
(V-a)

The intermediates of formula (VI) and of formula (VII) may be prepared by epoxidizing an alkene reagent of formula (XXXIII) respectively of formula (XXXIII) with an appropriate epoxidizing reagent, e.g. with an aromatic peroxoacid, in a suitable solvent.

35

The intermediates of formula (XIX) may be prepared following the procedures described hereinabove for the preparation of (V-a) and (V-b).

During one of the reactions the intermediates wherein $\mathbb{R}^{\frac{1}{n}}$ is hydrogen may be converted into the corresponding intermediates wherein $\mathbb{R}^{\frac{1}{n}}$ is other than hydrogen following art-known N-alkylating procedures.

From formula (I) it is evident that the compounds of this invention may have several asymmetric carbon atoms in their structure. Each of these chiral centers may be present in a R- and a S-configuration, this R- and S-notation being in correspondence with the rules described by

R.S. Cahn, C. Ingold and V. Prelog in Angew. Chem., Int. Ed. Engl., $\underline{5}$, 385, 511 (1966).

Pure stereochemically isomeric forms of the compounds of formula (I) may be obtained by the application of art-known procedures.

Diastereoisomers may be separated by physical separation methods such as selective crystallization and chromatographic techniques, e.g., counter current distribution, and enantiomers may be separated from each other by the selective crystallization of their diastereomeric salts with optically active acids.

10

35

Pure stereochemically isomeric forms may also be derived from the corresponding pure stereochemically isomeric forms of the appropriate starting materials, provided that the reaction occurs stereospecifically.

It is evident that the cis and trans diastereomeric racemates may be further resolved into their optical isomers, cis(+), cis(-), trans(+) and trans(-) by the application of methodologies known to those skilled in the art.

Stereochemically isomeric forms of the compounds of formula (I) are naturally intended to be embraced within the scope of the invention.

The compounds of formula (I), their pharmaceutically acceptable acid-addition salts and stereochemically isomeric forms possess useful pharmacological properties. For example, they show useful anti-hypoxic and anti-anoxic properties, which activity is clearly evidenced by the experimental data obtained in e.g. the "KCN Test in Rats".

In view of their anti-anoxic or anti-hypoxic activity, the compounds of formula (I), their acid addition salts and/or their possible stereoisomers are very useful in the treatment of warm-blooded animals suffering from anoxia or hypoxia, for example, in such situations where the oxygen supply is reduced or blocked, such as shock, cardiac arrest, severe blood losses and the like situations.

In view of their anti-anoxic and anti-hypoxic activity the subject compounds may be formulated into various pharmaceutical forms for administration purposes. To prepare the pharmaceutical compositions of this invention, an effective amount of the particular compound, in base or acid-addition salt form, as the active ingredient is combined in

intimate admixture with a pharmaceutically acceptable carrier, which carrier may take a wide variety of forms depending on the form of preparation desired for administration. These pharmaceutical compositions are desirably in unitary dosage form suitable, preferably, for administration orally, rectally or by parenteral injection. For example, in preparing the compositions in oral dosage form, any of the usual pharmaceutical media may be employed, such as, for example, water, glycols. oils, alcohols and the like in the case of oral liquid preparations such as suspensions, syrups, elixirs and solutions: or solid carriers such as starches, sugars, kaolin, lubricants, binders, disintegrating agents and the like in the case of powders, pills, capsules and tablets. Because of their ease in administration, tablets and capsules represent the most advantageous oral dosage unit form, in which case solid pharmaceutical carriers are obviously employed. For parenteral compositions, the carrier will usually comprise sterile water, at least in large part, though other ingredients, for example, to aid solubility, may be included. Injectable solutions, for example, may be prepared in which the carrier comprises saline solution, glucose solution or a mixture of saline and glucose solution. Injectable suspensions may also be prepared in which case appropriate liquid carriers, suspending agents and the like may be employed.

Acid addition salts of (I) due to their increased water solubility over the corresponding base form, are obviously more suitable in the preparation of aqueous compositions.

25

30

5

10

15

20

It is especially advantageous to formulate the aforementioned pharmaceutical compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used in the specification and claims herein refers to physically discrete units suitable as unitary dosages, each unit containing a predetermined quantity of active ingredient calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. Examples of such dosage unit forms are tablets (including scored or coated tablets), capsules, pills, powder packets, wafers,

.

injectable solutions or suspensions, teaspoonfuls, tablespoonfuls and the like, and segregated multiples thereof.

The present invention is also related with a method of treating hypoxia or anoxia in warm-blooded animals suffering from said hypoxia or anoxia by administering an effective anti-anoxic or hypoxic amount of a compound of formula (I) or a pharmaceutically acceptable acid addition salt thereof.

Although the amounts to be administered to subjects may vary within rather large limits, daily doses varying of from 0.1 mg/kg body weight to 40 mg/kg body weight are preferred.

The following examples are intended to illustrate and not to limit
the scope of the present invention. Unless otherwise stated all parts
therein are by weight.

.

20

25

30

EXPERIMENTAL PART

A. Preparation of Intermediates

Example 1

A mixture of 100 parts of ethyl 4-oxo-1-piperidinecarboxylate, 42

parts of 2-propanamine, 2 parts of a solution of thiophene in
methanol 4% and 400 parts of methanol was hydrogenated at normal
pressure and at room temperature with 5 parts of palladium-oncharcoal catalyst 10%. After the calculated amount of hydrogen was
taken up, the catalyst was filtered off and the filtrate was

evaporated, yielding 118 parts (94%) of ethyl 4-[(1-methylethyl)amino]-1-piperidinecarboxylate (1).

In a similar manner there were also prepared:

- ethyl 3-(methylamino)-8-azabicyclo[3,2,1]octane-8-carboxylate (2); ethyl 3-(methylamino)-1-piperidinecarboxylate (3);
- 15 cis-ethyl 3-(phenylmethoxy)-4-[(phenylmethyl)amino]-l-piperidinecarboxylate (4);
 ethyl 4-(butylamino)-l-piperidinecarboxylate (5);

cis-ethyl 3-methoxy-4-(methylamino)-l-piperidinecarboxylate monohydrochloride; mp. 169.1°C (6);

20 <u>cis</u>-ethyl 4-(methylamino)-3-(phenylmethoxy)-1-piperidinecarboxylate monohydrochloride; mp. 181.5°C (7); ethyl <u>(cis+trans)</u>-3-methyl-4-(methylamino)-1-piperidinecarboxylate (8); and

ethyl 3-(methylamino)-1-pyrrolidinecarboxylate (9).

25 Example 2

A mixture of 150 parts of <u>cis</u>-ethyl 4-(methylamino)-3-(phenyl-methoxy)-1-piperidinecarboxylate and 560 parts of methanol was hydrogenated at normal pressure and at 50°C with 10 parts of palladium-on-charcoal catalyst 10%. After the calculated amount of hydrogen was taken up, the catalyst was filtered off and the filtrate was evaporated, yielding 101 parts (95%) of ethyl <u>cis</u>-3-hydroxy-4-(methylamino)-1-piperidinecarboxylate (10).

In a similar manner there was also prepared:

<u>cis</u>-ethyl 4-amino-3-hydroxy-1-piperidinecarboxylate; bp. 175-185°C at

35 0.4 mm pressure (11).

Example 3

A mixture of 8.6 parts of sodium hydroxide and 120 parts of water was stirred at a temperature below 10°C and there were added successively 17 parts of carbon disulfide and 35 parts of ethyl 3-amino-1-pyrrolidinecarboxylate. Stirring was continued for 3 hours. Then there were added dropwise 23.5 parts of ethyl carbono-chloridate. Upon completion, stirring was continued for 2 hours at 60°C. The reaction mixture was extracted with methylbenzene. The extract was dried, filtered and evaporated, yielding 55 parts (100%) of ethyl 3-isothiocyanato-1-pyrrolidinecarboxylate (12).

In a similar manner there was also prepared: ethyl 4-isothiocyanato-l-piperidinecarboxylate (13).

Example 4

A mixture of 107 parts of ethyl 4-isothiocyanato-1-piperidine
15 carboxylate, 53.5 parts of N-methylbenzenamine, 1 part of N.N
dimethyl-4-pyridinamine and 450 parts of methylbenzene was stirred

and refluxed overnight. After cooling, the reaction mixture was

evaporated. The residue was crystallized from 2.2'-oxybispropane.

The product was filtered off and dried, yielding 68 parts (42%) of

20 ethyl 4-[[(methylphenylamino)thioxomethyl]amino]-1-piperidine
carboxylate; mp. 95.2°C (14).

In a similar manner there were also prepared: ethyl 4-[(phenylamino)thioxomethylamino]-1-piperidinecarboxylate (15); and

ethyl 4-[[(2-hydroxyphenyl)aminothioxomethyl]amino]-1-piperidine-carboxylate; mp. 130°C (16).

Example 5

To a stirred solution of 91 parts of ethyl 4-(methylamino)l-piperidinecarboxylate in 420 parts of 2,2'-oxybispropane were

30 added dropwise 75 parts of 1-fluoro-3-isothiocyanatobenzene. Upon
completion, stirring was continued for 1 hour. The precipitated
product was filtered off and dried, yielding 150 parts(90%) of ethyl
4-[[(3-fluorophenyl)aminothioxomethyl]methylamino]-1-piperidinecarboxylate; mp. 175.2°C (17).

In a similar manner there were also prepared:

,						
	No.	R ¹	R'	R	isomerism	mp.(°C)
	18	н	н	ОН	cis	191.1
	19	CH ₃	H	н	-	166.0
10	20	C2H5	н	н	-	oil
	21	n.C4H9	H	H	-	-
	22	CH ³	4-CH ₃	н	-	_
	23	C6H5CH2	н	н	_	_
		CH ₃	4-F	н	-	178.6
15	25	CH3	н	OCH ³	cis	166.0
ļ	26	CH ³	3-OH	н	-	_
	27	CH ³	н	CH ₃	cis+trans	-
	28		н	H	_	_
20	29	CH ³	3-CH ₃ O	H	-	_
20	30	CH ³	3-c1	H	-	_
	31	CH ³	4-OH	н	-	200.0
	32	CH ³	4-C1	н	-	193.1
	33	CH ³	4-CH ₃ O	H	-	-
.5	34	CH ³	H	он	cis	-

In a similar manner there were also prepared:

ethyl 3-[methyl[(phenylamino)thioxomethyl]amino]-8-azabicyclo[3.2.1]octane-8-carboxylate; mp. 143.9°C (35);

ethyl 3-[methyl[(phenylamino)thioxomethyl]amino]-1-piperidinecarboxylate (36); and

ethyl 3-[methyl[(phenylamino)thioxomethyl]amino]-1-pyrrolidinecarboxylate; mp. 145.4°C (37).

35

Example 6

A mixture of 55 parts of ethyl 3-isothiocyanato-l-pyrrolidinecarboxylate, 23.6 parts of 2-aminophenol and 320 parts of acetonitrile was stirred and refluxed for 4 hours. Then there were added
93 parts of mercury(II) oxide and 0.5 parts of sulfur while stirring
vigorously. The reaction mixture was stirred and refluxed overnight.
After cooling, the mixture was filtered over diatomaceous earth and
the filtrate was evaporated. The residue was purified by column
chromatography over silica gel using a mixture of trichloromethane
10 and methanol (99:1 by volume) as eluent. The pure fractions were
collected and the eluent was evaporated, yielding 38 parts (64%) of
ethyl 3-[(2-benzoxazolyl)amino]-1-pyrrolidinecarboxylate as a
residue (38).

In a similar manner there were also prepared:

ethyl 4-(2-benzoxazolylamino)-1-piperidinecarboxylate monohydrobromide (39).

ethyl 4-[(oxazolo[4.5-b]pyridin-2-yl)amino]-l-piperidinecarboxylate monohydrobromide; mp. 203.0°C (40).

In a similar manner there is also prepared:

20 ethyl 4-[(oxazolo[4,5-d]pyridin-2-yl)amino]-l-piperidinecarboxylate (41).

Example 7

To a stirred mixture of 196 parts of ethyl 4-[ethyl[(phenyl-amino)thioxomethyl]amino]-1-piperidinecarboxylate and 1600 parts of tetrachloromethane were added dropwise 89 parts of bromine at room temperature. Upon completion, stirring was continued first for 30 minutes at room temperature and further for 4 hours at reflux. The reaction mixture was cooled and the tetrachloromethane was decanted, yielding 194 parts (100%) of ethyl 4-[(2-benzothiazolyl)ethyl-30 amino]-1-piperidinecarboxylate as an oily residue (42).

-23-

In a similar manner there were also prepared:

5

	No.	R ¹	R'	R	R"	isomerism	salt/base	mp.(°C)
	43	н	н	н	н	-	HBr	-
	44	CH3	H	H	H	-	HBr	-
10	45	n.C4H9	H	н	H	-	HBr	oil
	46	CH ³	CH3	н	н	-	base	-
	47	CH_CH2	н	н	H	-	base	-
	48	CH ₃	н	OCH ₃	H	cis	base	-
	49	CH ₃	н	н	P	-	base	oil
15	50	CH ₃	н	н	OH	-	HBr	-
	51	CH ₃	н	CH ₃	н	cis+trans	HBr	-
	52	1.C3H7	н	н	H	-	HBr	-
20	53	CH3	н	н	OCH ₃	-	base	-
	54	CH ³	н	н	Cl	-	HBr	-
	55	CH ₃	ОН	н	H		HBr	-
	56	CH ₃	Cl	H	н	-	HBr	-
	57	CH ₃	н	OH	н	cis	base	-
	58	н	н	OH	н	cis	base	-

25

In a similar manner there were also prepared:

ethyl 3-[(2-benzothiazolyl)methylamino]-8-azabicyclo[3.2.1]octane-8-carboxylate (59);

ethyl 3-[(2-benzothiazolyl)methylamino]-l-piperidinecarboxylate (60);

ethyl 3-[(2-benzothiazolyl)methylamino]-1-pyrrolidinecarboxylate monohydrobromide (61); and

ethyl 4-[(3-methyl-2(3H)-benzothiazolyliden)amino-1-piperidine-carboxylate (62).

Example 8

To a stirred mixture of 103.1 parts of ethyl 4-[[(3-chlorophenyl)amino]thioxomethyl]methylamino]-1-piperidinecarboxylate and
960 parts of tetrachloromethane were added dropwise 45.4 parts of
5 bromine at about 20°C. Upon completion, stirring was continued first
for 45 minutes at room temperature and further for 35 hours at
reflux. The reaction mixture was cooled and the tetrachloromethane
was decanted, yielding 126 parts (100%) of ethyl 4-[(7-chloro-2benzothiazolyl)methylamino]-1-piperidinecarboxylate monohydrobromide
10 as a residue (63):

Example 9

To a stirred mixture of 124 parts of ethyl 4-[[(4-methoxy-phenyl)amino]thioxomethyl]methylamino]-1-piperidinecarboxylate and 1500 parts of tetrachloromethane were added dropwise slowly 112.6

15 parts of bromine at room temperature. Upon completion, stirring was continued first for 30 minutes at room temperature and then for 3 hours at reflux temperature. After cooling, tetrachloromethane was decanted, yielding 110 parts (73%) of ethyl 4-[(5-bromo-6-methoxy-2-benzothiazolyl)methylamino]-1-piperidinecarboxylate as a residue 20 (64).

Example 10

A mixture of 51 parts of ethyl 4-isothiocyanato-1-piperidine-carboxylate, 30 parts of 2-chloro-3-pyridinamine and 240 parts of ethanol was stirred and refluxed for 24 hours. The reaction mixture was cooled to room temperature. Upon the addition of 70 parts of 2.2'-oxybispropane, the product was allowed to crystallize. It was filtered off and dried, yielding 40 parts (50%) of ethyl 4-(thiazo-lo[5,4-b]pyridin-2-ylamino)-1-piperidinecarboxylate monohydro-chloride (65).

30 Example 11

A mixture of 8.5 parts of ethyl 4-amino-1-piperidinecarboxylate and 2.6 parts of 2-(methylsulfonyl)thiazolo[4,5-c]pyridine was molten together for 1 hour at 120°C. After cooling, the mixture was taken up in trichloromethane. The whole was washed with water and sodium hydroxide, dried, filtered and evaporated. The residue was

. .

purified by column chromatography over silica gel using a mixture of trichloromethane and methanol (99:1 by volume) as eluent. The pure fractions were collected and the eluent was evaporated. The residue was stirred in warm 2.2'-oxybispropane. The product was filtered off and dried, yielding 2.8 parts (76%) of ethyl 4-[(thiazolo[4.5-c]-pyridin-2-yl)amino]-1-piperidinecarboxylate; mp. 213°C (66).

Example 12

A mixture of 20 parts of ethyl 4-[(2-benzothiazolyl)methyl-amino]-l-piperidinecarboxylate monohydrobromide and 300 parts of hydrobromic acid solution 48% in water was stirred and refluxed for 2 hours. The reaction mixture was evaporated and the residue was rystallized from methanol, yielding 17 parts (85%) of N-methyl-N-(4-piperidinyl)-2-benzothiazolamine dihydrobromide; mp. + 260°C (67).

A solution of 427 parts of N-methyl-N-(4-piperidinyl)-2-benzothiazolamine dihydrobromide monohydrate in 1500 parts of water was
treated with a sodium hydroxide solution 50%. The product was
extracted twice with trichloromethane. The combined organic layers
were washed with water, dried, filtered and evaporated. The residue
was crystallized from 490 parts of 2,2'-oxybispropane. The product
was filtered off and dried, yielding 248 parts (100%) of N-methylN-(4-piperidinyl)-2-benzothiazolamine; mp. 86.9°C (68).

In a similar manner there were also prepared:

25

$$\operatorname{HN} = \left(\frac{1}{1} \right)^{2} \left(\frac{1}{1} \right)^{2}$$

Rl Z isomerism salt/base mp.(°C) No. R 2HBr 260 CH=CH-CH=CH S H H 268-300 70 cis 2HBr.H_O OH н CH=CH-CH=CH S H H N=CH-CH=CH 3HBr 286.9 CH2 144 N=CH-CH=CH base 2HBr 263 H CH-CH-CH-CH 0 2HBr.1/2H,0 261.2 CH=CH-CH=CH O 130.3 CHa CH=CH-CH=CH O base

								7
	76	н	^С 2 ^Н 5	CH=CH-CH=CH	S	-	*	191.7
	77		n.C4H9	CH=CH-CH=CH	S	-	**	160.0
5	78	н	CH ₃	CH=C-CH=CH CH ₃	S	-	base	74.3
	79	н	C6H5CH2		S	-	*	206.4
	80	och ³	CH ₃	CH=CH-CH=CH	S	cis	(COOH) ₂	206.4
	81	н	CH ₃	CH=CH-CF=CH	8	-	2HC1.H ₂ O	266.4
	82	н	CH ₃	CH=CF-CH=CH	S	-	base	-
10	83	H	CH ³	CH=CH-C=CH OH	S	-	2HBr .	-
	84	H	1.C ₃ H ₇	CH=CH-CH=CH	S	-	*	181
	85	н	CH ₃	сн=сн-с=сн осн _а	S	-	base	-
15	86	H	CH ₃	CH=CH-C=CH C1	S	-	*	158
	87	н	CH ³	C=CH-CH=CH C1	S	-	base	-
20	88	н	CH ³	CH=C-CH=CH I OH	S	-	2HBr	-
	89	н	CH ₃	CH=C-CH=CH C1	S	-	2HC1.H ₂ O	237.8
	90	н	CH ₃	CH=C-CBr=CH	S	-	base	137.0
25	91	ОН	CH ₃	CH=CH-CH=CH	S	cis	base	-

^{* : (}Z)-2-butenedioate (1:1)

In a similar manner there were also prepared:

30 N-(1-methylthiazolo[5,4-b]pyridin-2(1H)-ylidene)-4-piperidinamine (92):

N-(2-benzothiazolyl)-N-methyl-8-azabicyclo[3.2.1]octan-3-amine (R)-2-butenedioate(1:1); mp. 236.1°C (93);

 \underline{N} -methyl- \underline{N} -(3-piperidinyl)-2-benzothiazolamine (94);

^{** : (}Z)-2-butenedioate (2:3)

. . .

M-methyl-N-(3-pyrrolidinyl)-2-benzothiazolamine ethanedioate(1:1);
mp. 157.0°C (95);
N-(3-methyl-2(3H)-benzothiazolylidene)-4-piperidinamine; mp. 198.5°C (96);

5 N-methyl-N-(3-pyrrolidinyl)-2-benzoxazolamine (97);
N-(4-piperidinyl)thiazolo[4.5-c]pyridin-2-amine (98); and
N-(4-piperidinyl)oxazolo[4.5-b]pyridin-2-amine (99).
In a similar manner there is also prepared:
N-(4-piperidinyl)oxazolo[4.5-d]pyridin-2-amine (100).

10 Example 13

A mixture of 100 parts of ethyl (cis+trans)-4-[(2-benzothiazolyl)methylamino]-3-methyl-1-piperidinecarboxylate monohydrobromide and 600 parts of a hydrobromic acid solution 48% in water was stirred and refluxed for 3 hours. After cooling, the reaction mixture was 15 evaporated. The residue was crystallized from 2-propanol: two fractions were obtained. The first fraction was taken up in water. The solution was treated with sodium hydroxide. The product was extracted with trichloromethane. The organic layer was washed with water, dried, filtered and evaporated, yielding 30 parts (48%) of 20 (cis+trans)-N-methyl-N-(3-methyl-4-piperidinyl)-2-benzothiazolamine (101) as an oily residue. The second fraction was taken up in water. The solution was treated with sodium hydroxide. The product was extracted with trichloromethane. The organic layer was washed with water, dried, filtered and evaporated. The residue was converted 25 into the hydrobromide salt in methanol. The salt was filtered off and dried, yielding 16.6 parts (16%) of cis-N-methyl-N-(3-methyl-4-piperidinyl)-2-benzothiazolamine dihydrobromide; mp. 266.7°C (102). Example 14

To a stirred mixture of 38 parts of ethyl 3-[(2-benzoxazolyl)-30 amino]-l-pyrrolidinecarboxylate, 150 parts of dimethyl sulfoxide and 135 parts of benzene were added portionwise 7.25 parts of a sodium hydride dispersion 50% at a temperature below 10°C. After stirring for a while, 21.6 parts of iodomethane were added dropwise at the same temperature. Upon completion, stirring was continued overnight 35 at 50°C. 1000 Parts of water were added and the product was

extracted with methylbenzene. The extract was washed with water, dried, filtered and evaporated. The residue was converted into the hydrochloride salt in 2-propanol. The salt was filtered off and dried, yielding 40 parts (80%) of ethyl 3-[(2-benzoxazolyl)methyl-amino]-l-pyrrolidinecarboxylate dihydrochloride (103).

In a similar manner there were also prepared:

ethyl 4-[(2-benzoxazolyl)methylamino]-1-piperidinecarboxylate

monohydrobromide; mp. 152.6°C (104);

ethyl 4-(1-methylthiazolo[5,4-b]pyridin-2(1H)-ylidenamino)-1
piperidinecarboxylate (105); and

ethyl 4-[methyl(thiazolo[5,4-b)pyridin-2-yl)amino]-1-piperidine
carboxylate (106).

Example 15

To a stirred mixture of 32.1 parts of 3-fluorophenol, 122 parts

of 1,6-dibromohexane and 200 parts of water was dropwise added a
solution of 20 parts of sodium hydroxide in 100 parts of water at
reflux temperature. Upon completion, stirring was continued for 24
hours at reflux. After cooling, the product was extracted three
times with trichloromethane. The combined extracts were dried,

filtered and evaporated. The residue was distilled, yielding 40
parts (50%) of 1-[(6-bromohexyl)oxy]-3-fluorobenzene; bp. 45-90°C at
0.05 mm pressure (107).

25			 			
	No.	λr	¥	n	¥	physical data
	108 4-	-С ₆ Н ₅ -С ₆ Н ₄	0	3	Cl	mp. 61.5-63°C
		CH ₃ CO, 4F-C ₆ H ₃	0	3	Cl	bp. 130-147°C (0.2 mm Hg)
30	110 4-	-сн ₃ осо-с ₆ н ₄	0	4	Cl	bp. 157°C (0.4 mm Hg)
	111 28	• • •	0	5	Br	bp. 110-112°C (0.6 mm Hg)
		C2H5-C6H4	0	5	Br	bp. 128-134°C (0.2 mm Hg)
		сн ₃ о-с ₆ н ₄	0	5	Br	bp. 150-154°C(0.4 mm Hg)
	1	naphthalenyl	0	5	Br	bp. 165-170°C (0.6 mm Hg)
35	115 3-	-C1-C ₆ H ₄	0	5	Br	bp. 135-137°C (0.7 mma Hg)

```
116 3-сн<sub>3</sub>∞-с<sub>6</sub>н<sub>4</sub>
                                                 3
                                                            bp. 120°C (0.5 mm Hg)
117 3,4,5(Cl)<sub>3</sub>-С<sub>6</sub>н<sub>2</sub>
                                                 3
                                                      Br
                                                 3
                                                      Cl
                                                            mp. 108°C
                                                            bp. 78-80°C (0.2 mm Hg)
                                                 3
                                                      Br
120 2,6-(Br)<sub>2</sub>,4CH<sub>3</sub>-C<sub>6</sub>H<sub>2</sub>
                                                            bp. 118-123 (0.3 mm Hg)
                                                 3
121 1-Br-2-naphthalenyl
                                           0
                                                 3
                                                      Br
122 3-F-C6H4
                                                      Br bp. 120°C (0.1-0.30 mm Hg)
                                                 5
                                           0
123 3-F-C<sub>6</sub>H
                                           0
                                                      Br
124 4-CH2CO-C6H4
                                                       Br bp. 165-170°C (0.02 mm Hg)
                                                 5
```

And following the same procedures and using the appropriate starting materials there were also prepared:

[(6-bromo-2-naphthalenyloxy)methyl]oxirane (125);

15 (4-methylphenyl)[4-(oxiranylmethoxy)phenyl]methanone (126):

[(2,6-dimethylphenoxy)methyl]oxirane; bp. 85-90°C at 0.2 mm pressure (127); and

[(2-bromo-4-fluorophenoxy)methyl]oxirane; bp. 105°C at 66.5 Pa (128). Example 16

To a stirred and cooled (temp. ∠ 0°C) solution of 63 parts of 2-phenylcyclopropanemethanol in 378 parts of 1.1'-oxybisethane were added dropwise 63 parts of phosphor tribromide. The mixture was allowed to reach room temperature while stirring and the whole was further stirred for 30 minutes at room temperature. The reaction 25 mixture was poured onto 90 parts of ice water and the layers were separated. The organic layer was washed successively twice with water and once with a sodium hydrogen carbonate solution, dried, filtered and evaporated. The residue was distilled, yielding 67 parts (74.5%) of (1-bromo-3-butenyl)benzene; bp. 85-94°C at 0.4 mm pressure (129).

Example 17

A ballon was charged with 32 parts of 1-[(3-chloropropy1)thio]-4-fluorobenzene, 50 parts of hydrogen peroxide and 112.5 parts
of glacial acetic acid: exothermic reaction, the temperature rose to
35 about 60°C. The whole was stirred and refluxed for one hour and

further cooled while stirring for 3 hours. The cooled reaction mixture was then decomposed with 500 parts of water. The aqueous layer was separated and extracted once with 1,1'-oxybisethane. The combined organic layers were washed with water, dried over sodium sulfate and evaporated. The residue was recrystallized from 2,2'-oxybispropane, yielding, after cooling to -20°C, 18 parts of 1-[(3-chloropropyl)sulfonyl]-4-fluorobenzene (130).

Example 18

aluminum hydride in 1000 parts of tetrahydrofuran was added dropwise a solution of 359 parts of 2-(2,5-dimethylphenoxy)propanoic acid in 1000 parts of tetrahydrofuran. Upon completion, stirring was continued at reflux temperature for 1.50 hours. The reaction mixture was cooled and decomposed by the successive additions of 55 parts of water, 45 parts of a 15% sodium hydroxide solution and 190 parts of water and the whole was stirred for 30 minutes. The inorganic material was filtered off after acidification with hydrochloric acid solution. The filtrate was dried, filtered and evaporated. The residue was distilled, yielding 73 parts of 2-(2,5-dimethylphenoxy)-1-propanol; bp. 150°C at 11 mm pressure (131).

Example 19

To a stirred and cooled mixture of 33.25 parts of 2-(phenylmethoxy)-1-propanol in 20 parts of pyridine was added dropwise a solution of 25.2 parts of methanesulfonyl chloride in 8 parts of pyridine at a temperature between 0° and 5°C. Upon completion, stirring was continued for 2 hours at room temperature. The reaction mixture was poured onto a mixture of crushed ice and ice water and the product was extracted three times with trichloromethane. The combined extracts were dried, filtered and evaporated. The oily residue was distilled, yielding 41 parts of 2-(phenylmethoxy)-1-propanol, methanesulfonate ester; bp. 151-152°C at 0.03 mm pressure (132).

In a similar manner there were also prepared:
2-(3-methylphenoxy)-1-propanol, methanesulfonate ester; bp. 120°C at
35 0.0002 mm Hg pressure (133);

....

2-(2,6-dimethylphenoxy)-1-propanol, methanesulfonate ester; bp. 110°C at 0.0002 mm. pressure (134); 2-(3,5-dimethylphenoxy)-1-propanol, methanesulfonate ester; bp. 115°C at 0.0004 mm. pressure (135);

2-(2,6-dichlorophenoxy)-1-propanol, methanesulfonate ester; bp. 120°C at 0.002 mm. pressure (136); 3,4-dihydro-2H-1-benzopyran-2-methanol 4-methylbenzenesulfonate ester; mp. 59.4°C (137).

Example 20

A mixture of 6.72 parts of 4-fluorophenol, 8.4 parts of potassium carbonate and 200 parts of 4-methyl-2-pentanone was distilled azeotropically to dry. 17.1 Parts of 4-(phenylmethoxy)cyclohexyl methanesulfonate were added and the whole was stirred and refluxed over week-end using a water separator. After cooling, water was added and the layers were separated. The organic layer was washed with a sodium hydroxide solution and with water, dried, filtered and evaporated, yielding 17.7 parts (98.3%) of 1-fluoro-4-[[4-(phenylmethoxy)cyclohexyl]oxy]benzene as a residue (138).

A mixture of 17.1 parts of 1-fluoro-4-[[4-(phenylmethoxy)cyclo20 hexyl]oxy]benzene and 160 parts of methanol was hydrogenated at
normal pressure and at room temperature with 2 parts of palladiumon-charcoal catalyst 10%. After the calculated amount of hydrogen
was taken up, the catalyst was filtered off over Hyflo and the
filtrate was evaporated, yielding 8.9 parts (74.3%) of 4-(4-fluoro25 phenoxy)cyclohexanol as a residue (139).

To a stirred and cooled mixture of 8.9 parts of 4-(4-fluorophenoxy)cyclohexanol and 160 parts of 2-propanone were added dropwise 13 parts of a solution of 26.7 parts of chromium trioxide in 42.3 parts of concentrate sulfuric acid diluted with water till a volume of 100 parts at a temperature below 5°C. Upon completion, stirring was continued for 3 hours at room temperature. After the addition of a few parts of methanol, the reaction mixture was poured onto water. The product was extracted with dichloromethane. The extract was dried, filtered and evaporated, yielding 8.4 parts (96.1%) of 4-(4-fluorophenoxy)cyclohexanone as a residue (140).

Example 21

To a stirred and cooled (ice water bath) mixture of 72 parts of 2-ethenyl-3,4-dihydro-2H-1-benzopyran, 45 parts of sodium hydrogen carbonate and 2860 parts of dichloromethane were added quickly 102.4 5 parts of 3-chlorobenzenecarboperoxoic acid at about 10°C. The mixture was allowed to reach room temperature and stirring was continued for 4 days. The reaction mixture was filtered and the filtrate was washed successively with water, a saturate sodium sulfite solution, a 5% sodium hydroxide solution and again with 10 water. The organic phase was dried, filtered and evaporated. The oily residue was purified by column chromatography over silica gel using a mixture of trichloromethane and petroleumether (50:50 by volume) as eluent. The first fraction (unreacted starting material) was collected and 15 the eluent was evaporated. The residue was taken up in 1300 parts of dichloromethane and 30 parts of 3-chlorobenzenecarboperoxoic acid were added at about 10°C. After stirring for 8 hours at room temperature another 30 parts of 3-chlorobenzenecarboperoxoic acid were added and stirring was continued for 12 hours. The mixture was 20 filtered and the filtrate was washed successively with water, a saturate sodium sulfite solution, a 5% sodium hydroxide solution and again with water. The organic phase was dried, filtered and evaporated. The oily residue was purified by column chromatography over silica gel using a mixture of trichloromethane and petroleum-25 ether (50:50 by volume) as eluent. The pure fractions were collected and the eluent was evaporated, yielding 14 parts of crude product. The second fraction (A+B) was collected and the eluent was evaporated, yielding 28.0 parts of crude product. The combined crude fractions (resp. 14 and 28.0 parts) were

The combined crude fractions (resp. 14 and 28.0 parts) were

separated by HPLC over silica gel using methylbenzene as eluent. The
first fraction (A-isomer) was collected, yielding 12.5 parts of
(A)-3,4-dihydro-2-oxiranyl-2H-1-benzopyran as a residue (141).

The second fraction (B-isomer) was collected and the eluent was
evaporated, yielding 14 parts of (B)-3,4-dihydro-2-oxiranyl-2H-1
benzopyran as a residue (142).

Example 22

From a stirred mixture of 82 parts of a sodium methoxide solution 30% and 315 parts of N.N-dimethylformamide was distilled off 160 parts of the solvent (the temperature rose to 130°C). After cooling to room temperature, there were added first 98 parts of trimethylsulfoxonium iodide and then 300 parts of dimethyl sulfoxide. The whole was stirred first for 30 minutes at room temperature and then for 1 hour at 50°C. The mixture was cooled to room temperature and 59 parts of 1-(4-fluorophenoxy)-2-propanone were added dropwise, during a period of 30 minutes. Upon completion, stirring was continued for 1 hour at room temperature and 2 hours at 50°C. After stirring overnight at room temperature, the reaction mixture was poured onto ice water. The product was extracted with 2,2'-oxybis-propane. The organic layer was dried, filtered and evaporated.

In a similar manner there was also prepared:
(A)-3,4-dihydro-2-oxiranyl-2H-1-benzopyran (144).
Example 23

oxirane as a residue (143).

To a stirred solution of 2.7 parts of sodium in 50 parts of 2-methoxyethanol were added 13.2 parts of 4-fluorophenol. The whole was stirred for 15 minutes. A solution of 24.8 parts of (-)-(R)-2,2-dimethyl-1,3-dioxolane-4-methanol methanesulfonate (ester) in 70 parts of 2-methoxyethanol was added dropwise quickly. Stirring was continued for 1.5 hours at reflux temperature. After cooling, the mixture was poured into ice water. The product was extracted with methylbenžene. The extract was dried, filtered and evaporated, yielding 26 parts (97.3%) of (S)-4-[(4-fluorophenoxy)methyl]-2,2-dimethyl-1,3-dioxolane as a residue (145).

A mixture of 26 parts of (S)-4-[(4-fluorophenoxy)methyl]-2,2-dimethyl-1,3-dioxolane, 35 parts of a hydrochloric acid solution 2N and 80 parts of 2-propanone was stirred for 2 hours at reflux temperature. The mixture was stirred overnight at room temperature, diluted with 240 parts of ethanol and evaporated. The residue was dissolved in trichloromethane. The organic layer was washed twice

with water, dried, filtered and evaporated. The residue was crystallized from tetrachloromethane. The product was filtered off and dried, yielding 11 parts (50.4%) of (-)-(R)-3-(4-fluorophenoxy)-1,2-propanediol; $[a]_n = -10.08^{\circ}(c = 0.5^{\circ})$ in methanol) (146).

To a stirred mixture of 11 parts of (-)-(R)-3-(4-fluorophenoxy)-1,2-propanediol, 23.3 parts of pyridine and 240 parts of trichloromethane were added 12.3 parts of 4-methylbenzenesulfonyl chloride. The whole was stirred overnight at room temperature. It was washed successively with acid water, a sodium carbonate solution 10 and water, dried, filtered and evaporated. The residue was purified by column chromatography over silica gel using a mixture of trichloromethane and methanol (98:2 by volume) as eluent. The pure fractions were collected and the eluent was evaporated, yielding 13.5 parts (67.2%) of (+)-(S)-3-(4-fluorophenoxy)-1,2-propanediol, 15 \underline{o}^{1} -4-methylbenzenesulfonate; $[a]_{D} = +11.11^{\circ}$ (c = 0.5% in trichloromethane) (147).

To a stirred mixture of 13.4 parts of (+)-(S)-3-(4-fluorophenoxy)-1,2-propanediol, 0^{1} -4-methylbenzenesulfonate and 45 parts of tetrahydrofuran were added 4.9 parts of kalium 1,1-dimethyl 20 ethoxide. The whole was stirred for 30 minutes at room temperature. It was filtered over Hyflo, washed with tetrahydrofuran and the filtrate was evaporated. The residue was distilled, yielding 3.8 parts (57.3%) of (-)-(R)-[(4-fluorophenoxy)methyl]oxirane; bp. 54°C at 66.5 Pa; $[a]_{n} = -4.08$ (c = 0.5% in trichloromethane) (148). In a similar manner there was also prepared: (+)-(S)-[(4-fluorophenoxy)methyl]oxirane; bp. 52-53°C at 66.5 Pa; $[\alpha]_D = +5.27$ (c = 0.5% in methanol) $[\alpha]_D = +9.10$ (c = 0.5%

30

in dichloromethane) (149).

B) Preparation of Final compounds

Example 24

A mixture of 4.4 parts of 1-chloro-3-(4-chlorobutoxy)benzene, 3.7 parts of N-methyl-N-(4-piperidinyl)-2-benzothiazolamine, 2.1 parts of sodium carbonate and 90 parts of N.N-dimethylformamide was stirred for 24 hours at 60°C. The reaction mixture was cooled and poured onto water. The product was extracted with methylbenzene. The extract was washed with water, dried, filtered and evaporated. The residue was purified by column chromatography over silica gel using a mixture of trichloromthane and methanol (97:3 by volume) as eluent. The pure fractions were collected and the eluent was evaporated. The residue was converted into the (Z)-2-butenedioate salt in 2-propanone. The salt was filtered off and dried, yielding 4 parts (49%) of N-[1-[4-(3-chlorophenoxy)butyl]-4-piperidinyl]-N-methyl-2-benzothiazolamine (Z)-2-butenedioate (1:1); mp. 138.6°C (1).

No.	Ar	S	R	R ¹	Z	A	base salt	mp in °C
;								
2	^C 6 ^H 5	3	H	H	0	CH	base	123.2
3	C H 5	3	H	CH ₃	0	CH	base	95.1
4	C H 5	2	H	CH ₃	0	CH	1 1/2HNO ₃	126
5	C6H5	2	H	н	0		base	132
6	4-C1-C6H4	3	H	CH ₃	S	CH	base	111.9
7	C6H5	3	H	CH ³	S	СН	base	97.6
8	4-C1-C_H_	3	H	CH ³	0	СН	base	87.5
9	3-F-C6H4	3	H	CH3	S	CH	base	92.6
10	C6H2	4	Н	CH ₃	s	СН	*	154.4
11	4-F-C ₆ H ₄	4	H	CH ³	s	СН	base	71.0

									,
	12	4-C1-C6H4	4	н	сн ₃	S	СН	*	142.7
	13	C6 ^H 5	2	H	CH ₃	S	CH	*	174.5
	14	4-CH ₃ -C ₆ H ₄	3	H	CH ₃	S	CH	base	90.0
5	15	4-C1-C6H4	4	H	CH ₃	0	CH	base	96.4
	16	4-F-C6H4	4	H	CH ₃	0	CH	base	88.4
	17	4-C1-C6H4	2	H	CH ³	S	CH	base	89.2
	18	2-F-C6H4	3	H	CH ₃	S	CH	base	129.3
	19	4-CH ₃ O-C ₆ H ₄	3	H	CH ₃	0	CH	base	79.3
10	20	4-CH ₃ -C ₆ H ₄	3	H	CH ₃	0	CH	*	200.2
	21	4-1.C3H7-C6H4	3	H	CH ₃	S	CH	*	180.4
	22	2,4-(C1) ₂ -C ₆ H ₃	3	H	CH ₃	S	CH	*	179.3
	23	4-Br-C6H4	3	H	CH ³	S	CH	*	167.2
	24	4-CH ₃ O-C ₆ H ₄	3	H	CH ³	S	CH	base	146.5
15	25	1-naphthalenyl	3	H	CH3	S	CH	*	154.9
	26	4-CH ₃ 0-C ₆ H ₄	3	H	CH3	S	CH	base	156.0
	27	4-CH ₃ -C ₆ H ₄	2	H	CH3	S	CH	•	172.3
	28	4-CH ₃ -C ₆ H ₄	4	H	CH ³	S	CH	*	155.5
	29	4-C1,2-CH3-C6H4	3	Н	CH3	S	CH	base	106.8
20	30	2-C1-C_H_	3	H	CH ³	S	CH	base	111.4
	31	4-CH ₃ O-C ₆ H ₄	4	H	CH ₃	S	CH	base	89.4
	32	4-F-C H	5	H	CH ₃	S	CH	*	143.5
	33	4-C H -C H	3	H	CH ₃	S	CH	base	126.6
	34	2,6-Cl ₂ -C ₆ H ₃	3	H	CH ³	S	CH	base	116.9
25	35	3,4,5-C1 ₃ -C _H	3	H	CH ³	S	CH	*	181.3
	36	C ₆ H ₅	6	H	CH ³	S	CH	**	127.6
	37	2-NH ₂ CO, 4-P-C ₆ H ₃	3	H	CH ₃	S	CH	base	146.4
	38	C ₆ H ₅	4	H	CH ³	0	CH	base	71.8
,	1	2,6-(CH ₃) ₂ C ₆ H ₃	3	H	CH ₃	S	CH	*	175.6
30	40	3-CH ₃ -C ₆ H ₄	3	H	CH ₃	S	CH	base	86.3
	41	2-CH ₃ -C ₆ H ₄	3	H	CH ₃	S	CH	base	93.2
	42	2-CH ₃ -C ₆ H ₄ 4-Br-C ₆ H ₄ 4-CH ₃ O-C ₆ H ₄ 2.4.5-Br -C H	4	H	CH ₃	S	СН	**	120.5
	43	4-CH_O-C_H_	5	H	CH ₃	S	CH	*	150.7
	44	2,4,5-Br ₃ -C ₆ H ₂	3	H	CH3	S	СН	•	164.2
35	45	4-CH ₃ -C ₆ H ₄	4	н	CH ³	0	СН	base	85.4
	Ł	J 0 4			J 				

									
	46	2,4-Cl ₂ -C ₆ H ₄	3	н	сн	0	СН	base	100.9
	47	4-CH ₃ O-C ₆ H ₄	4	н	CH ³	0	СН	base	69.5
	48	3-CH ₃ -C ₆ H ₄	3	H	CH ³	0	СН	base	83.3
5	49	l-naphthalenyl	5	H	CH ³	S	СН	*	176.5
	50	2-CH ₃ O-C ₆ H ₄	5	H	CH ³	s	СН	base	77.4
	51	3-CH ₃ CO-C ₆ H ₄	3	H	CH3	ş	СН	**	128.8
	52	4-CH ₃ CO-C ₆ H ₄	4	H	CH3	s	СН	*	144.3
	53	2-Br, 4-CH ₃ -C ₆ H ₃	3	H	CH ³	3	СН	base	116.3
10	54	l-Br-2-naphthalenyl	3	H	CH ₃	S	CH	*	196.1
	55	C ₆ H ₅	4	H	н	S	CH	base	115.3
	56	4-CH ₃ -C ₆ H ₄	3	H	H	S	CH	base	118.5
	57	3-F-C ₆ H ₄	3	H	H	8	CH	base	92.5
	58	3-C1-C6H4	4	H	CH ₃	0	CH	base	98.2
15	59	2-CH ₃ -C ₆ H ₄	3	H	CH3	0	CH	base	90.1
	60	4-C1-C6H4	4	H	n.C ₄ H ₉	S	CH	***	158.5
	61	4-CH ₃ O-C ₆ H ₄	4	H	n.C ₄ H ₉	S	CH	***	136.4
	62	4-Br-C6H4	4	H	CH ³	0	CH	base	101.2
	63	4-CH ₃ -C ₆ H ₄	3	H	n.C ₄ H ₉	S	CH	***	141.2
20	64	CH 5	4	H	n.C ₄ H ₉	S	CH.	***	147.6
	65	4-F-C H 6 4	4	H	n.C ₄ H ₉	S	CH	***	144.0
	66	3-F-C H 4	3	H	n.C ₄ H ₉	S	CH	***	143.0
	67	2-CH ₃ -C _H ₄	5	H	CH ₃	S	CH	*	157.3
	68	4-t.C ₄ H ₉	3	H	CH ₃	S	CH	*	197.0
25	69	4-C1-C6H4	3	H	CH3	S	CH	base	111.8
	70	4-CH ₃ CO-C ₆ H ₄	5	H	CH ³	S	CH	н ₂ 0	91.6
	71	3-CH ₃ O-C _H	3	H	CH ₃	S	CH	**	133.0
	72	3-F-C ₆ H ₄	3	CH ₃	CH ³	S		base	
		3-F-C ₆ H ₄						cis ison	
30	73	3-CH ₃ -C ₆ H ₄	3	CH ₃	CH3	3	CH	base	79.5
					•			cis isom	
	74	4-CH ₃ O-C ₆ H ₄	4	CH ³	CH ³	8	CH	base	73.4
		3-CH ₃ -C ₆ H ₄ 4-CH ₃ O-C ₆ H ₄ C ₆ H ₅						cis isom	er
	75	C ₆ H ₅	4	CH3	CH ³	8	CH	base	95.7
35				_	-			cis isom	er
	L								l

4-F-C ₆ H ₄	4	H	н	S	. N	base	146.5
3-F-C6H4	3	H	н	S	N	base	155.8
C ₆ H ₅	4	H	н	S	N	base	137.6
4-CH ₃ O-C ₆ H ₄	4	H	H	S	N	base	104.2
3-C1-C6H4	4	H	н	S	N	base	110.7
3-CH ₃ -C ₆ H ₄	3	H	Н	S	N	base	163.9
~	4	H	CH3	S	N	. 🛊	164.3
3-F-C6H4	3	H	CH ₃	S	M	*	144.9
3-C1-C6H4	4	H	CH ₃	S	N	•	148.3
	3-F-C ₆ H ₄ C ₆ H ₅ 4-CH ₃ O-C ₆ H ₄ 3-C1-C ₆ H ₄ 3-CH ₃ -C ₆ H ₄ C ₆ H ₅ 3-F-C ₆ H ₄	3-F-C ₆ H ₄ 3-F-C ₆ H ₄ 3-CH ₃ O-C ₆ H ₄ 3-CH ₃ -C ₆ H ₄ 3-CH ₃ -C ₆ H ₄ 3-CH ₃ -C ₆ H ₄ 3-F-C ₆ H ₄ 3-F-C ₆ H ₄ 3	3-F-C ₆ H ₄ 3 H C ₆ H ₅ 4-CH ₃ O-C ₆ H ₄ 3-C1-C ₆ H ₄ 3-CH ₃ -C ₆ H ₄ 3-CH ₃ -C ₆ H ₄ 3-H C ₆ H ₅ 3-F-C ₆ H ₄ 3 H	3-F-C ₆ H ₄ 3 H H C ₆ H ₅ 4-CH ₃ O-C ₆ H ₄ 3-C1-C ₆ H ₄ 3-CH ₃ -C ₆ H ₄ 3-CH ₃ -C ₆ H ₄ 3 H H C ₆ H ₅ 3-F-C ₆ H ₄ 3 H CH ₃ 3-F-C ₆ H ₄ 3 H CH ₃	3-F-C ₆ H ₄ 3 H H S C ₆ H ₅ 4 H H S 4-CH ₃ O-C ₆ H ₄ 4 H H S 3-C1-C ₆ H ₄ 3-C1-C ₆ H ₄ 3-CH ₃ -C ₆ H ₄ 3 H H S C ₆ H ₅ 3-F-C ₆ H ₄ 3 H CH ₃ S	3-F-C ₆ H ₄ 3 H H S N C ₆ H ₅ 4 H H S N 4-CH ₃ O-C ₆ H ₄ 3-C1-C ₆ H ₄ 4 H H S N 3-C1-C ₆ H ₄ 3 H H S N C ₆ H ₅ 3 H H S N C ₆ H ₅ 3 H CH ₃ S N 3-F-C ₆ H ₄ 3 H CH ₃ S N	3-F-C ₆ H ₄ 3 H H S N base C ₆ H ₅ 4 H H S N base 4-CH ₃ O-C ₆ H ₄ 3-C1-C ₆ H ₄ 4 H H S N base 3-C1-C ₆ H ₄ 3 H H S N base 3-CH ₃ -C ₆ H ₄ 3 H H S N base C ₆ H ₅ 3-F-C ₆ H ₄ 3 H CH ₃ S N *

: (Z)-2-butenedicate (1:1)

* : (Z)-2-butenedioate (1:2)

*** : (B)-2-butenedioate (1:1)

15 In a similar manner there were also prepared:

20	No.	Ar	S	a ¹ =a ² -a ³ =a ⁴	base/	mp in °C
	85	3-F-C ₆ H ₄	3	CH=CH-C=CH	base	151.8
25	86	3-CH ₃ -C ₆ H ₄	3	CH=CH-C=CH OH	base .	135.5
	87	3-F-C ₆ H ₄	3	CH=C-CH=CH OH	2(COOH) ₂	176.3
30	88	3-CH ₃ -C ₆ H ₄	3	CH=C-CH=CH OH	***	212.2
	89	3-CH ₃ -C ₆ H ₄	3	CH=CC1-CH=CH	base	89.8
	90	C6H5	4	CH=CC1-CH=CH	base	84.7
	91	4-CH ₃ O-C ₆ H ₄	4	CH=CC1-CH=CH	base	94.5
	92	3-F-C ₆ H ₄	3	CH-CC1-CH-CH	base	123.2

**** : (E)-2-butenedioate (2:1)

In a similar manner there were also prepared:

$$\mathsf{L}\text{-}\mathsf{N} \underbrace{\qquad \qquad \qquad }_{\mathsf{R}^1} \overset{\mathsf{Z}}{\underset{\mathsf{N}}{\longrightarrow}} \overset{\mathsf{A}}{\underset{\mathsf{N}}{\longrightarrow}}$$

5						
,	No. L	R ¹	Z	λ	base	mp in
					salt	°c
	93 n.butyl	н	S	N	base	170.5
10	94 (To) _{CH2} -	н	s	n	base	157.9
	95 n.butyl	H	0	СН	base	139.2
	96 n.hexyl	H	S	N	base	152
	97 n.butyl	CH ₃	S	N	HC1	273.6
15						(dec.)
	98 C ₆ H ₅ (CH ₂) ₂	H	0	CH	base	130.5
	99 CH2-	H	0	CH	base	144.6
	100 n.hexyl	CH	0	CH	base	54.8
20	101 4-CH ₃ 0-C ₆ H ₄ -	CH ³	0	CH	base	113.1
	(CH ₂) ₂ - 102 C ₆ H ₅ CH=CH-CH ₂	CH3	0	СН	2HBr	247.2
	103 n.butyl	CH ₃	0	CH	2HBr	230.9
25	104 CH ₂ -	CH3	0	СН	2HBr	192.8
	105 4-CH ₃ 0-C ₆ H ₄ -	H .	•	CH	base	147.6
	(CH ₂) ₂ -	•		 .	w.n.a.	
	106 n.hexyl	H	. 0		3	141.5
	107 C ₆ H ₅ CH=CH-CH ₂ -	H	0	CH	base	123.4
30	108 C _H -(CH ₂) ₅ -	CH ³	8	CH		152.5
	109 n.undecyl	CH ³	8	CH	•	163.5
	110 C ₆ H ₅ CH ₂ O- -(CH ₂) ₃ -	CH ₃	S	CH	*	135.2
	111 c ₆ H ₅ CH(OCH ₃)-	CH3	S	CH	•	150.3
26	I					

```
112 HO-(CH<sub>2</sub>)<sub>3</sub>- CH<sub>3</sub> S CH base 89.2

113 (4-F-C_6H_4)_2CHO CH<sub>3</sub> S CH (COOH)<sub>2</sub> 171.1

-(CH_2)_2-
114 4-F-C_6H_4-SO<sub>2</sub> CH<sub>3</sub> S CH base 130.4

-(CH_2)_3-
```

* : (Z)-2-butenedioate (1:1)

And following the same procedures and using the appropriate

starting materials there were also prepared:

l-butyl-N-(l-methylthiazolo[5,4-b]pyridin-2(lH)-ylidene)-4
piperidinamine dihydrochloride.monohydrate; mp. 253.1°C (115);

N-(l-methylthiazolo[5,4-b]pyridin-2(lH)-ylidene)-1-(2-phenylethyl)-

4-piperidinamine dihydrochloride.monohydrate; mp. 251.7°C (116);

N-methyl-N-[1-(1-phenyl-3-butenyl)-4-piperidinyl]-2-benzothiazolamine (Z)-2-butenedioate (1:2) monohydrate; mp. 101.7°C (117);
N-[1-[4-(4-fluorophenoxy)butyl]-3-pyrrolidinyl]-N-methyl-2-benzothia-zolamine dihydrochloride.monohydrate; mp. 152.5°C (118);

 $\underline{\mathtt{H}}$ -[1-[4-(3-chlorophenoxy)butyl]-3-pyrrolidinyl]- $\underline{\mathtt{H}}$ -methyl-2-benzothia-

20 zolamine ethanedioate(1:1); mp. 162.7°C (119);
 N-methyl-N-[1-[3-(3-methylphenoxy)propyl]-3-pyrrolidinyl]-2-benzothiazolamine ethanedioate(1:1); mp. 108.4°C (120);

N-[1-[3-(3-fluorophenoxy)propy1]-3-pyrrolidiny1]-N-methy1-2-benzothia-zolamine ethanedioate(1:1); mp. 137.0°C (121); and

25 N-methyl-N-[1-(4-phenoxybutyl)-3-pyrrolidinyl]-2-benzothiazol-amine ethanedioate(1:1); mp. 150.2°C (122).

Example 25

A mixture of 5.04 parts of 1-(3-bromopropoxy)-4-methylbenzene, 7.54 parts of N-ethyl-N-(4-piperidinyl)-2-benzothiazolamine 30 (Z)-2-butenedicate (1:1), 5.3 parts of sodium carbonate, 0.1 parts of potassium iodide and 180 parts of N.N-dimethylformamide was stirred and heated overnight at 60°C. The reaction mixture was poured onto water and the product was extracted with metylbenzene. The extract was washed three times with water, dried, filtered and

evaporated. The residue was crystallized from 2-propanol, yielding 6 parts (75%) of \underline{N} -ethyl- \underline{N} -[1-[3-(4-methylphenoxy)propyl]-4-piperidinyl]-2-benzothiazolamine; mp. 101.0°C (123).

Following the same procedures and, if desired, after converting the reaction product into the desired acid addition salt, there were also prepared:

10

L' No. base/salt 2 H base 118.1 base 140.1 (cis-isomer) 126 2,3-dihydro-1,4-benzo- 1 base 123.6 dioxin-2-yl 127 H 232.6 H HC1 20 128 H H base 116.8 129 2.3-dihydro-1.4-benzo- 1 base 154.7 dioxin-2-yl-158.0 87.5 173.4 133 С Н -СН=СН-101.3 134 l<u>H</u>-benzimidazol-1-yl-168.7 135 4-P-C6H4-CH(CN)-190.1 136 HOCH₂-CH(OH)-S 2HC1.H_O 218.4 204.7 190.4 1/2 H₂0 165.0 165.3 .41 5-phenyl-3-isoxazolyl 2 H 183.0

	142 HO-	2	н	CH ₃	S	•	175.0
	143 4-F-C6H4CH-	1	H	CH ₃	S	*	180.5
5	C ₂ H ₅ 144 4-F-C ₆ H ₄ CH(OH)-	3	н	CH ₃	3	**	145.5
	144 4-F-C ₆ H ₄ CH(OH)- 145 C ₆ H ₅ -CH=CH	1	Н	^C 2 ^H 5	S	(COOH) ₂	199.6

In a similar manner there were also prepared:

	No.	Ar	5	R ¹	Z	base/salt	mp. in
15	146 4-F-C ₆ H	·	. 3	CH ₃	S	base	97.7
	147 4-F-C6H		3	CH3	0	base	113.1
	148 2-napht	· ·	3	CH ³	8	base	113.7
	1		3	CH3	S	•	169.7
	149 2.6-Br ₂		5	CH ³	S	* .	163.1
20	150 4-C ₂ H ₅ -		3	CH ³	S	base	138.9
	151 4-NO ₂ -C		5	CH ₃	s	•	193.9
	152 2-napht		3	CH ₃	S	*	149.4
	153 3-CF ₃ -C	- -	4	CH ₃	S	*	125.8
	154 3-CH ₃ O-		5	CH ³	S		165.8
25	155 2-P-C ₆ 1		3	_	S		176.6
	156 4-C ₂ H ₅		5	CH ³	S	_	157.3
	157 3-CH ₃ O	-C ₆ H ₄		CH ₃	S	_	171.7
	158 2.5-C1		3	CH3	9		144.7
	159 2-CH ₃ C	0-4-F-C ₆ H ₃	3	CH ³			186.7
20	160 3-F-C	H ₄	5	CH ₃	9	_	95.4
30	161 4-CH ₃ O	-C ₆ H ₄	4	H	5		125.8
	162 4-F-C	H ₄	4	H	5		
	163 4-C1-C	-	4	H	\$		149.8
	164 4-C1-C		4	C2H5		*	136.5

```
165 4-CH<sub>3</sub>O-C<sub>6</sub>H<sub>4</sub> 4 C<sub>2</sub>H<sub>5</sub> S * 125.1

166 4-F-C<sub>6</sub>H<sub>4</sub> 4 C<sub>2</sub>H<sub>5</sub> S (COOH)<sub>2</sub> 163.9

167 3-F-C<sub>6</sub>H<sub>4</sub> 6 CH<sub>3</sub> S *** 155.9
```

* : (Z)-2-butenedioate (1:1)

5

** : (Z)-2-butenedioate (1:2)

***: (E)-2-butenedioate (1:1)

In a similar manner there were also prepared:

- N-[1-[3-(4-fluorophenoxy)-2-methylpropyl]-4-piperidinyl]-N-methyl-2-benzothiazolamine (Z)-2-butenedioate (1:1); mp. 143.6°C (168); 5-methoxy-N-[1-[4-(4-methoxyphenoxy)butyl]-4-piperidinyl]-N-methyl-2-benzothiazolamine ethanedioate(1:1); mp. 98.2°C (169); N-(3-methyl-2(3H)-benzothiazolylidene)-1-[3-(3-methylphenoxy)propyl]-
- 4-piperidinamine (Z)-2-butenedioate(1:2); mp. 176.0°C (170);
 N-(3-methyl-2(3H)-benzothiazolylidene)-1-(4-phenoxybutyl)-4-piperidinamine (Z)-2-butenedioate(1:2); mp. 187.6°C (171);
 1-[4-(3-chlorophenoxy)butyl]-N-(3-methyl-2(3H)-benzothiazolylidene)-4-piperidinamine (Z)-2-butenedioate(1:2); mp. 164.6°C (172);
- 1-[4-(4-fluorophenoxy)buty1]-N-(3-methyl-2(3H)-benzothiazolylidene)-4piperidinamine (Z)-2-butenedioate(1:2); mp. 172.6°C (173);
 l-[4-(4-methoxyphenoxy)buty1]-N-(3-methyl-2(3H)-benzothiazolylidene)4-piperidinamine (Z)-2-butenedioate(1:2); mp. 166.6°C (174);
 N-(3-methyl-2(3H)-benzothiazolylidene)-1-(3-phenyl-2-propenyl)-4-pi-
- peridinamine (Z)-2-butenedioate (1:2); mp. 179.4°C (175);

 5-bromo-N-[1-[4-(4-fluorophenoxy)buty1]-4-piperidiny1]-6-methoxy-Nmethyl-2-benzothiazolamine; mp. 124.6°C (176);

 N-[1-[3-(3-fluorophenoxy)propy1]-4-piperidiny1]-5-methoxy-N-methyl-2benzothiazolamine (Z)-2-butenedioate(1:1); mp. 126.3°C (177).

30 Example 26

A mixture of 2.3 parts of [2-(4-methoxyphenyl)ethyl] methanesulfonate, 4 parts of N-(4-piperidinyl)-2-benzothiazolamine dihydrobromide, 5.3 parts of sodium carbonate, 0.1 parts of potassium iodide and 90 parts of N.N-dimethylformamide was stirred overnight at 70°C. The reaction mixture was poured onto water and the product was extracted

. . . .

with methylbenzene. The extract was washed with water, dried, filtered and evaporated. The residue was crystallized from a mixture of 2-propanol and 2,2'-oxybispropane. The product was filtered off and dried, yielding 1.5 parts (41%) of N-[1-[2-(4-methoxyphenyl)-ethyl]-4-piperidinyl]-2-benzothiazolamine; mp. 142.5°C (178).

In a similar manner there were also prepared:

N-[1-[2-(4-methoxyphenyl)ethyl]-4-piperidinyl]-N-methyl-2-benzothiazolamine; mp. 97.6°C (179); and
N-[1-[2-(4-methoxyphenyl)ethyl]-4-piperidinyl]thiazolo[5.4-b]pyridin2-amine; mp. 158.9°C (180).

Example 27

A mixture of 4.3 parts of 1-(4-chlorobutoxy)-4-methoxybenzene,

6.6 parts of N-(phenylmethyl)-N-(4-piperidinyl)-2-benzothiazolamine
(Z)-2-butenedioate(1:1). 5.3 parts of sodium carbonate, 0.1 parts of
potassium iodide and 90 parts of N.N-dimethylacetamide was stirred
overnight at 90°C. The reaction mixture was poured onto water. The
product was extracted with methylbenzene. The extract was washed
with water, dried, filtered and evaporated. The residue was converted into the (E)-2-butenedioate salt in ethanol. The salt was

20 filtered off and dried, yielding 5.6 parts (60%) of N-[1-[4-(4methoxyphenoxy)butyl]-4-piperidinyl]-N-(phenylmethyl)-2-benzothiazolamine (E)-2-butenedioate(1:1); mp. 178.2°C (181).

In a similar manner there were also prepared:

30	No. L'	S	Z	base/salt	mp. in
	182 H	12	s	*	161.4
	183 3-oxo-1,2,4-triazolo-	3	S	*	185.0
35	[4.5-a]pyridin-2-yl 184 4-F-C ₆ H ₄ -CH(CN)-	3	0	1 1/2(COOH) ₂	139.5

		· · · · · · ·					7
:	185	(C6H5)2CH-O-	2	0	*	175.3	ı
]	186	НО	2	0	*	172.6	
:	187	C ₆ H ₅ -NH-	3	S	2 1/2(COOH) ₂	177.1	١
; :	188	2,3-dihydro-1,4-benzo-	2	0	*	182.1	1
		dioxin-2-yl					
	189	с ₆ н ₅ -ин-	2	0	•	152.6	
	190	2,3-dihydro-1,4-benzo-	2	s	*	168.6	
		dioxin-2-yl					
.o (J
	189 190	C ₆ H ₅ -NH- 2,3-dihydro-1,4-benzo-	_	_	*		

*: (Z)-2-butenedioate (1:1)

In a similar manner there were also prepared:

No.	Ar	S	R ¹	Z	base/ salt	mp. in °C
191 3-0	:1-c.H	5	СНЗ	s	*	177.7
1	TH ₃ -C ₆ H ₄ -	5	CH ³	S	*	165.1
193 2-E		3	CH ³	0	*	208.0
	5-C1CH	3	CH ³	. S	*	178.1
195 3-E		3	CH3	0	*	180.6
196 3-E	7-CH-	4	CH ³	S	*	143.8
197 3-E	7-С н - 6 4	4	CH ₃	0	*	158.8
198 C		4	CHCH 652	· S	*	129.9
199 4-0	H ₃ -C ₆ H ₄ -	3	CHCH2	S	**	198.4
200 4-0		4	C H CH 2	S	*	149.5
201 3-E		3	C ₆ H ₅ CH ₂	S	*	145.1
202 4-E		4	C ₆ H ₅ CH ₂	S	*	153.6
203 4-1	Ю ₂ -С ₆ Н ₄ -	4	CH ₃	S	*	169.7

35 *: (Z)-2-butenedioate (1:1)

**: (E)-2-butenedioate (1:1)

In a similar manner there was also prepared: 1-[3-(3-fluorophenoxy)propyl]-N-(3-methyl-2(3H)-benzothiazolylidene)-4-piperidinamine (2)-2-butenedioate(1:2); mp. 173.4°C (204). Example 28

5

20

A mixture of 5.5 parts of <u>cis-N-(3-methoxy-4-piperidinyl)-N-</u> methyl-2-benzothiazolamine ethanedioate(1:1), 10.6 parts of sodium carbonate, 0.1 parts of potassium iodide and 200 parts of 4-methyl-2-pentanone was stirred and refluxed for 30 minutes. After cooling to 60°C, 4.4 parts of 1-chloro-4-(4-chlorobutoxy)benzene were added. 10 The whole was stirred and refluxed overnight. After cooling, water was added and the layers were separated. The organic layer was dried, filtered and evaporated. The residue was purified by column chromatography over silica gel using a mixture of trichloromethane and methanol (98:2 by volume) as eluent. The pure fractions were 15 collected and the eluent was evaporated. The residue was converted into the ethanedioate salt in 2-propanol. The salt was filtered off and dried, yielding 6 parts (73%) of $\underline{\text{cis}}$ -N-[1-[4-(4-chlorophenoxy)butyl]-3-methoxy-4-piperidinyl]-N-methyl-2-benzothiazolamine ethanedioate(1:1); mp. 210.4°C (205).

In a similar manner there were also prepared:

25	No.	L'	S	R	Z	A ¹ =A ² -A ³ =A ⁴	base salt	mp in °C
	206	3-oxo-1,2,4-triazolo- [4,3-a]pyridin-2-yl	3	сн3	S	N=CH-CH=CH	2HC1 1/2H ₂ O	235.5
20	207	cyclohexyloxy	3	CH ₂	S	CH=CH-CH=CH	-	160.2
30	1	4-F-C ₆ H _A -CH=CH-	2	CH ₂	S	CH=CH-CH=CH	*	145.0
	1	3,4-dihydro-2 <u>H</u> -1- benzopyran-2-yl	1	CH ³	0	CH=CH-CH=CH	(COOH) ₂	212.1
35	210	3,4-dihydro-2 <u>H</u> -1- benzopyran-2-yl	1	CH ₃	S	CH=CH-CH=CH	base	129.8
J	211	C ₆ H ₅ -CH=CH-	1	H	S	CH=CH-CH=CH	**	177.8

Γ-							
21:	2 C ₆ H ₅ -CH=CH-	1	n.C ₃ H ₇	S	СН=СН-СН=СН	***	165.
21:	3 2-pyridinyl-	2	CH ₃	S	CH=CH-CH=CH	**	139.
21	4 с ₆ н ₅ -сн=сн-	1	CH3		СН = С−СН=СН СН ₃		177.
21!	5 3-phenyl-5-isoxazolyl	2	CH3	S	CH=CH-CH=CH	*	178.
210	5 4-F-C ₆ H ₄ -	4	CH ₃	S	CH=CH-CH=CH	(COOH)	150.
21.	7 H		CH3	S	CH=CH-CH=CH	*	165.
	3 C ₆ H ₅ -CH=CH	1	CH ₃	S	CH=CF-CH=CH	*	174.
219	9 C ₆ H ₅ -CH=CH	1	CH ³	S	CH=CH-CF=CH	*	201.
220) C ₆ H ₅ -CH=CH	1	C H CH	S	CH=CH-CH=CH	*	212.
22	C6H5-CH=CH	1	(CH ₃) CH	S	CH=CH-CH=CH	*	170.
222	2 C ₆ H ₅ -CH=CH	1	CH ₃	S	CH=CCl-CH=CH	base	130.
	3 C ₆ H ₅ -CH=CH	1	CH3	S	CH=CH-CCl=CH	*	189.
224	1 c ₆ H ₅ -cH=CH	1	CHa	S	CCl=CH-CH=CH	*	213.

*: (Z)-2-butenedioate (1:1) **: (Z)-2-butenedioate (1:2)

*** : (E)-2-butenedicate (1:1)

•	No.	Ar	s	R	R ¹	Z	$A^{1}=A^{2}-A^{3}=A^{4}$	cis	base	mp in
25							/t:	rans	salt	°C
	225	2-CH ₃ OCO-C ₆ H ₄	3	н	CH ³	S	CH=CH-CH=CH	-	*	177.0
•	1	4-F-C6H4	6	H	CH ₃	s	СН=СН-СН=СН	-	*	140.0
	227	C ₆ H ₅	5	H	CH ₃	S	CH=CH-CH=CH	-	*	179.9
	228	2-n.C3H7C6H4	3	H	CH	S	СН=СН-СН=СН	-	*	164.8
		3-F-C6H4	3	OCH	CH ₃	S	CH=CH-CH=CH	cis	***	210.5
	l .	3-CH ₃ -C ₆ H ₄	3	н	CH ₃	S	CH=CF-CH=CH	-	base	90.6
		3-F-C ₆ H ₄	3	H	CH ₃	S	CH=C-CH=CH CH_	-	*	140.7
35	232	3-CH ₃ -C ₆ H ₄	3	H	CH ₃	S	CH=C-CH=CH	-	*	165.6

	j								
	233 C ₆ H ₅	4	н	CH ₃	s	CH=C-CH=CH	-	•	141.4
	234 4-CH ₃ O-C ₆ H ₄	4	н	CH ³	s	CH=CF-CH=CH	-	base	90.7
5	235 3-F-C ₆ H ₄	3	н	CH ₃		CH=CF-CH=CH			171.1
	236 C ₆ H ₅	4	H	CH ₃		CH=CF-CH=CH			142.7
	237 4-CH ₃ O-C ₆ H ₄	4	н	CH ₃		сн=с-сн=сн			123.8
	3 0 4			3		CH ₃			
	238 3-F-C ₆ H ₄	3	H	1.C3H7	S	CH=CH-CH=CH	-	*	160.1
10	239 4-F-C6H4			1.C3H7		CH=CH-CH=CH			161.1
	240 4-C1-C6H4		H	1.C3H7		CH=CH-CH=CH			149.7
	241 4-CH ₃ -C ₆ H ₄			1.C3H7	S	CH=CH-CH=CH	-	base	99.2
	242 3-F-C6H4			CH3	8	CH=CH-CCl=CH	-	*	153.8
	243 4-CH ₃ O-C ₆ H ₄	4		1.C3H7	.3	CH=CH-CH=CH	-	•	158.7
15	244 C6H5	4		1.C3H7	s	CH=CH-CH=CH	-	*	136.2
	245 3-F-C6H4	3	H	CH3	8	CCl=CH-CH=CH	-	*	181.2
	246 3-CH3-C6H4	3	н	CH3	S	CH=CH-C=CH	-	**	161.2
				•		осн _з			
	247 C6H5	4	OCH ₃	CH ³	S	СН=СН-СН=СН	cis	****	198.3
20	248 3-CH ₃ -C _H	3	OCH ₃	CH 3	S	CH=CH-CH=CH	cis	****	187.2
	249 4-CH ₃ 0-C ₆ H ₄		_	CH ₃	S	CH=CH-CH=CH	cis	****	214.6
	250 3-CH ₃ -C ₆ H ₄		H	CH ₃	S	CH=CH-CC1=CH	-	*	151.0
	251 3-CH3-C6H4	3	H	CH ₃	S	CC1=CH-CH=CH	-	*	178.4
	252 4-CH ₃ O-C ₆ H ₄	4	н	CH ₃	s	CH=CH-CF=CH	-	*	157.2
25	253 4-CH ₃ O-C ₆ H ₄	4	H	CH ³	S	CC1=CH-CH=CH	-	*	171.1
	254 3-CH ₃ -C ₆ H ₄	3	н	CH ₃	S	CH=CH-CF=CH	-	*	163.8
	255 C H 5	4	н	CH ₃	S	CH=CH-CF=CH	-	*	185.1
	256 3-F-C6H4	3	H	CH ₃	S	CH=CH-CF=CH	-	*	167.9
	257 C H 5	4	H	CH ₃	S	CH=CH-CC1=CH	-	*	200.4
30	258 4-CH ₃ O-C ₆ H ₄	4	H	CH3	S	CH=CH-CC1=CH	-	*	143.1
	259 C6H5	4	H	CH3	S	CCl=CH-CH=CH	-	*	176.8
	260 4-C1-C6H4	4	H	н	0	CH=CH-CH=CH	-	2HC1	251.2
	261 4-F-C ₆ H ₄	4	H	н	0	СН=СН-СН=СН	-	2HCl	239.8
	262 4-CH ₃ -C ₆ H ₄	3	H	н	0	СН=СН-СН=СН	-	2HC1	246.6
35	J								

```
4 H H
                                         O CH=CH-CH=CH -
                                                                2HC1
                                                                        237.3
                                 н
                                    Н
                                             CH=CH-CH=CH -
                                                                2HCl.
                                                                        219.2
                                                                H<sub>2</sub>O
                                         O CH=CH-CH=CH -
                                                                2HC1
                                                                        217.3
                                 H
                                    H
                                             CH=CH-CH=CH -
                                                                2HCl.
                                                                        231.7
                                                                1/2H<sub>2</sub>O
                                    Н
                                                                2HC1.
                                             CH=CH-CH=CH -
                                                                        224.8
                                                                H_O
10 268 C6H5
                                 он н
                                         S CH=CH-CH=CH cis base
                                                                        158.2
    269 3-сн<sub>3</sub>-с<sub>6</sub>н<sub>4</sub>
                                 OH H
                                         S CH=CH-CH=CH cis base
                                                                        146.9
                                 ОН Н
                                            CH=CH-CH=CH cis base
                                                                        179.7
    271 3-F-C6H4
                              3 OH H
                                         S CH=CH-CH=CH cis base
                                                                        165.8
```

15 * : (Z)-2-butenedicate(1:1)

** : (E)-2-butenedioate(1:1)

*** : ethanedioate (1:1) hemihydrate

**** : ethanedioate (1:1)

In a similar manner there were also prepared:

N-methyl-N-[1-[2-(phenylmethoxy)propyl]-4-piperidinyl]-2-benzothiazolamine (Z)-2-butenedioate (1:1); mp. 150.5°C (272);
N-methyl-N-[1-(2-methyl-3-phenoxypropyl)-4-piperidinyl]-2-benzothiazolamine (Z)-2-butenedioate (1:1); mp. 177.0°C (273);
N-methyl-N-[1-[2-(3-methylphenoxy)propyl]-4-piperidinyl]-2-benzothiazolamine (Z)-2-butenedioate (1:1); mp. 168.6°C (274);
N-[1-[2-(2.6-dimethylphenoxy)propyl]-4-piperidinyl]-N-methyl-2-benzothiazolamine (Z)-2-butenedioate (1:1); mp. 130.4°C (275);
N-[1-[2-(2.6-dichlorophenoxy)propyl]-4-piperidinyl]-N-methyl-2-benzothiazolamine; mp. 108.0°C (276);

30 N-[1-[2-(3,5-dimethylphenoxy)propyl]-4-piperidinyl]-N-methyl-2-benzo-thiazolamine (Z)-2-butenedioate (1:1); mp. 172°C (277); N-(2-benzothiazolyl)-8-[3-(3-fluorophenoxy)propyl]-N-methyl-8-azabi-cyclo[3.2.1]octan-3-amine (E)-2-butenedioate(1:1); mp. 171.3°C (278); (E)-N-methyl-N-[8-(3-phenyl-2-propenyl)-8-azabicyclo[3.2.1]oct-3-yl]-

35 2-benzothiazolamine ethanedioate(1:1); mp. 216.0°C (279);

N-(2-benzothiazoly1)-N-methy1-8-(4-phenoxybuty1)-8-azabicyclo[3,2,1]57 octan-3-amine (E)-2-butenedioate(1:1); mp. 158.0°C (280); $\underline{\text{cis}}$ - $\underline{\text{N}}$ -methyl- $\underline{\text{N}}$ -[3-methyl-1-(3-phenyl-2-propenyl)-4-piperidinyl]-2benzothiazolamine (2)-2-butenedioate(1:1); mp. 173.7°C (281);

- $\underline{\text{cis-N-}[3-\text{methoxy-l-}(3-\text{phenyl-2-propenyl})-4-\text{piperidinyl}]}-\underline{\text{N}}-\text{methyl-2-propenyl})$ benzothiazolamine ethanedioate(1:1); mp. 230.2°C (282); N-(2-benzothiazolyl)-N-methyl-8-[3-(3-methylphenoxy)propyl]-8-azabicyclo[3.2.1]octan-3-amine ethanedioate(1:1); mp. 183.3°C (283); \underline{N} -methyl- \underline{N} -[1-(4-phenoxybutyl)-3-piperidinyl]-2-benzothiazolamine
- 10 ethanedioate(1:1); mp. 152.5°C (284); N-[1-[3-(3-fluorophenoxy)propyl]-3-piperidinyl]-N-methyl-2-benzothiazolamine ethanedioate(1:1); mp. 164.5°C (285); \underline{N} -methyl- \underline{N} -[l-(3-phenyl-2-propenyl)-3-piperidinyl]-2-benzothiazolamine ethanedioate(1:1); mp. 202.8°C (286);
- 15 \underline{N} -methyl- \underline{N} -[1-[3-(3-methylphenoxy)propyl]-3-piperidinyl]-2-benzothiazolamine ethanedioate(1:1); mp. 151.3°C (287); \underline{N} -[1-[4-(4-methoxyphenoxy)butyl]-3-piperidinyl]- \underline{N} -methyl-2-benzothiazolamine ethanedioate(1:1); mp. 152.3°C (288); N-[1-[4-(4-fluorophenoxy)butyl]-3-piperidinyl]-N-methyl-2-benzothia-
- 20 zolamine ethanedioate(1:1); mp. 163.2°C (289); \underline{N} -[1-[3-(4-fluorophenoxy)-1-methylpropyl]-4-piperidinyl]- \underline{N} -methyl-2benzothiazolamine; mp. 115.0°C (290); \underline{N} -[1-[4-(3-chlorophenoxy)buty1]-3-piperidiny1]- \underline{N} -methy1-2-benzothiazolamine (B)-2-butenedioate(1:1); mp. 138.6°C (291);
- 25 \underline{N} -methyl- \underline{N} -[1-(3-phenyl-2-propenyl)-3-pyrrolidinyl]-2-benzothiazolamine 4-methylbenzenesulfonate(1:2); mp. 198.8°C (292); and cis-4-(2-benzothiazolylamino)-1-(3-phenyl-2-propenyl)-3-piperidinol; mp. 198.3°C (293).

Example 29

A mixture of 3 parts of 1-bromo-3-methylbutane, 3.7 parts of 30 N-methyl-N-(4-piperidinyl)-1-benzothiazolamine, 4.2 parts of potassium carbonate and 80 parts of 2-propanone was stirred and refluxed overnight. The reaction mixture was poured onto water and the product was extracted with methylbenzene. The extract was dried,

35 filtered and evaporated. The residue was converted into the (2)-2-

butenedioate salt in 2-propanol. The salt was filtered off and dried, yielding 5 parts (77%) of \underline{N} -methyl- \underline{N} -[1-(3-methylbutyl)-4-piperidinyl]-2-benzothiazolamine (Z)-2-butenedioate (1:1); mp. 197.2°C (294).

5 Example 30

A mixture of 3 parts of (3-chloro-1-propenyl)benzene, 2.6 parts of 2-[methyl(4-piperidinyl)amino]-5-benzothiazolol, 3.5 parts of N.N-diethylethanamine and 90 parts of N.N-dimethylformamide was stirred and heated for 24 hours at 60°C. The reaction mixture was cooled, poured onto water and the product was extracted with methylbenzene. The extract was washed with water, dried, filtered and evaporated. The residue was purified by column chromatography over silica gel using a mixture of trichloromethane and methanol (97:3 by volume) as eluent. The pure fractions were collected and the eluent was evaporated. The residue was converted into the (E)-2-butenedioate salt in ethanol. The salt was filtered off and dried, yielding 1 part (20%) of 2-[methyl[1-(3-phenyl-2-propenyl)-4-piperidinyl]amino]-5-benzothiazolol (E)-2-butenedioate(1:1); mp. 228.4°C (295).

20 Example 31

To a stirred mixture of 1.1 parts of a sodium hydride dispersion 50% and 45 parts of N.N-dimethylformamide were added 3.1 parts of 4-[(2-benzothiazolyl)methylamino]-1-piperidinepropanol and the whole was stirred and heated for 2 hours at about 60°C. After cooling to about 15°C, 1.65 parts of 4-chloropyridine hydrochloride were added and stirring was continued overnight at 60°C. The reaction mixture was cooled and the solvent was evaporated. The residue was taken up in water and extracted with methylbenzene. The extract was dried, filtered and evaporated. The residue was purified by filtration over silica gel using a mixture of trichloromethane and methanol (98:2 by volume) as eluent. The pure fractions were collected and the eluent was evaporated. The residue was crystallized from 2,2'-oxybis-propane, yielding, after drying, 1.5 parts (38%) of N-methyl-N-[1-[3-(4-pyridinyloxy)propyl]-4-piperidinyl]-2-benzothiazolamine monohydrate; mp. 96.3°C (296).

Example 32

A mixture of 4.75 parts of cyclopentanone, 4.1 parts of

N-(1-methylethyl)-N-(4-piperidinyl)-2-benzothiazolamine and 200

parts of methanol was hydrogenated at normal pressure and at room

temperature with 2 parts of palladium-on-charcoal catalyst 10%.

After the calculated amount of hydrogen was taken up, the catalyst was filtered off over Hyflo and the filtrate was evaporated. The residue was purified by column chromatography over silica gel using a mixture of trichloromethane and methanol (98.5:1.5 by volume) as

10 eluent. The pure fractions were collected and the eluent was evaporated. The residue was converted into the (Z)-2-butenedioate salt in 2-propanol. The salt was filtered off and dried, yielding 3.9 parts (56.6%) of N-(1-cyclopentyl-4-piperidinyl)-N-(1-methyl-ethyl)-2-benzothiazolamine (Z)-2-butenedioate(1:1); mp. 178.5°C

15 (297).

In a similar manner there were also prepared:

$$\begin{array}{c|c} & & & \\ & & &$$

	No.	L	R ¹	2	$A^1 = A^2 - A^3 = A^4$	base salt	mp in
25	298	CH ₃	н	S	CH=CH-CH=CH	2HCl. 1/2H ₂ O	283.1
	299	CH ₂	н	s	N=CH-CH=CH	base	170.6
	1	CH ₂	CH ₃	S	N=CH-CH=CH	2HC1	266.5
	1	cyclohexyl	H	0	CH=CH-CH=CH	base	137.4
30	i	CH ₂	н	0	CH=CH-CH=CH	base	132.1
30	ł	с ₂ н ₅	CH ³	0	CH=CH-CH=CH	2HBr.H ₂ O	240.9
		CH ₃	CH ³	0	СН=СН-СН=СН	2HNO ₃	142.9
	ŧ	.i.c _a ห _ว	CH ³	S	CH=CH-CH=CH	2HC1.H ₂ O	265.9
	1	cyclohexyl	CH ₃	S	CH=CH-CH=CH	2HC1	278.8
35	<u></u>						

	307 cyclopentyl	CH ₃	s	СН=СН-СН=СН	2HC1	268.8
	308 cyclopentyl	CH ₃	0	CH=CH-CH=CH	2HC1.	276.2-
					2H ₂ O	280.8(dec)
5	309 cyclohexyl	CH ₃	0	CH=CH-CH=CH	2HC1.H ₂ O	300
	310 cyclopropylmethyl	CH ³	S	CH=CH-CH=CH	2HC1	236.4
	311 cyclopentyl	H	S	СН=СН-СН=СН	base	172.7
	312 cyclopentyl	с ₂ н ₅	S	СК=СН-СН=СН	*	145.1
	313 cyclopentyl	n.C4H9	s	СН=СН-СН=СН	**	181.6
10	314 cyclopentyl	C6H5CH2	s	CH=CH-CH=CH	*	202.1
	315 cyclopropylmethyl		0	CH=CH-CH=CH	*	184.9

- * : (Z)-2-butenedioate (1:1)
- ** : (E)-2-butenedioate (1:1)
- In a similar manner there were also prepared:

 cis-4-[4-[(2-benzothiazoly1)methylamino]-l-piperidiny1]-l-(4-fluoro-phenyl)cyclohexanecarbonitrile; mp. 184.7°C (316);
 (cis+trans)-N-[l-[4-(4-fluorophenoxy)cyclohexyl]-4-piperidinyl]-N-methyl-2-benzothiazolamine; mp. 198.4°C (317);
- 20 <u>cis</u>-4-[4-[(2-benzoxazolyl)methylamino]-1-piperidinyl]-1-(4-fluoro-phenyl)cyclohexanecarbonitrile; mp. 199.6°C (318); and <u>N</u>-[1-(1<u>H</u>-indol-3-ylmethyl)-4-piperidinyl]-<u>N</u>-methyl-2-benzothiazol-amine; mp. 178.3°C (319).

 Example 33
- A mixture of 2.5 parts of [(4-fluorophenoxy)methyl]oxirane. 3.7 parts of N-methyl-N-(4-piperidinyl)-2-benzothiazolamine. 45 parts of methylbenzene and 40 parts of methanol was stirred and refluxed for 24 hours. The reaction mixture was evaporated. The residue was converted into the hydrochloride salt in 2-propanol. The salt was
- 30 filtered off and dried, yielding 6 parts (85%) of 4-[(2-benzothia-zolyl)methylamino]-α-[(4-fluorophenoxy)methyl]-l-piperidineethanol monohydrochloride; mp. 168.4-178.8°C (320).

Following the same procedure and using equivalent amounts of the appropriate starting materials, there were also prepared:

$$Ar-o-CH_2-CH-CH_2-N \longrightarrow N \longrightarrow R$$

₩.	Ar	R ¹			2		mp. in
						salt	°C
321	C _e H _e		н		0	base	119.8
			CH		0	HBr	231.6
			•		0	HC1	233.5
			_		0	HC1	237.5
i			•		0	2HC1	203.3
			•		0	HC1	144.6
327	4-CH_CONH-C_H_				0	2HCl	236.0
1	• • •		CH3		8	2HCl	169.6-182.2
	• • • •				S	(COOH) ₂	198.1-199.9
330	2-propenyloxyphenyl		_		S		120.3-129.5
331	4-Cl-C ₆ H _A		_				206.0-225.6
	• •				0	(COOH) ₂	232.1-233.1
333	2-acetylphenyl				0	_	i
334	2-acetylphenyl				S,	(COOH) 2	222.8-223.1
335	2-C_H_O-C_H_				S		112.9-118.6
	23 04		3			_	
336	2-C1-C_H_		CH		s	_	180.9-182.8
	0 4		3				
337	2-C1-C_H		CH		0	(COOH)	172.6-182.1
	0.4		3				
338	C_H_		CH		s		166.0-169.6
				•	0		173.9-175.6
			CH		S	*	150.5
					S	base	129.0
			-		0	*	187.7
			CH ₃		s	*	167.8
	321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342	321 C ₆ H ₅ 322 C ₆ H ₅ 323 4-F-C ₆ H ₄ 324 4-C1-C ₆ H ₄ 325 2-C ₂ H ₅ O-C ₆ H ₄ 326 2-propenyloxyphenyl 327 4-CH ₃ CONH-C ₆ H ₄ 328 4-CH ₃ CONH-C ₆ H ₄	321 C ₆ H ₅ 322 C ₆ H ₅ 323 4-F-C ₆ H ₄ 324 4-C1-C ₆ H ₄ 325 2-C ₂ H ₅ O-C ₆ H ₄ 326 2-propenyloxyphenyl 327 4-CH ₃ CONH-C ₆ H ₄ 328 4-CH ₃ CONH-C ₆ H ₄ 329 1-naphthalenyl 330 2-propenyloxyphenyl 331 4-C1-C ₆ H ₄ 332 1-naphthalenyl 333 2-acetylphenyl 334 2-acetylphenyl 335 2-C ₂ H ₅ O-C ₅ H ₄ 336 2-C1-C ₆ H ₄ 337 2-C1-C ₆ H ₄ 338 C ₆ H ₅ 339 2-CN-C ₆ H ₄ 340 2-CN-C ₆ H ₄ 341 3-C1-C ₆ H ₄ 342 2,4-C1 ₂ -C ₆ H ₃	321 C ₆ H ₅ 322 C ₆ H ₅ 323 4-F-C ₆ H ₄ 324 4-C1-C ₆ H ₄ 325 2-C ₂ H ₅ O-C ₆ H ₄ 326 2-propenyloxyphenyl 327 4-CH ₃ CONH-C ₆ H ₄ 328 4-CH ₃ CONH-C ₆ H ₄ 329 1-naphthalenyl 330 2-propenyloxyphenyl 331 4-C1-C ₆ H ₄ 332 1-naphthalenyl 332 2-acetylphenyl 334 2-acetylphenyl 335 2-C ₂ H ₅ O-C ₆ H ₄ 337 2-C1-C ₆ H ₄ 337 2-C1-C ₆ H ₄ 338 C ₆ H ₅ 339 2-CN-C ₆ H ₄ 341 3-C1-C ₆ H ₄ 341 3-C1-C ₆ H ₄ 342 2,4-C1 ₂ -C ₆ H ₃ CH	321 C ₆ H ₅ 322 C ₆ H ₅ 323 4-F-C ₆ H ₄ 324 4-C1-C ₆ H ₄ 325 2-C ₂ H ₅ O-C ₆ H ₄ 326 2-propenyloxyphenyl 327 4-CH ₃ CONH-C ₆ H ₄ 328 4-CH ₃ CONH-C ₆ H ₄ 329 1-naphthalenyl 330 2-propenyloxyphenyl CH ₃ 331 4-C1-C ₆ H ₄ 332 1-naphthalenyl CH ₃ 333 2-acetylphenyl CH ₃ 334 2-acetylphenyl CH ₃ 335 2-C ₂ H ₅ O-C ₆ H ₄ CH ₃ 337 2-C1-C ₆ H ₄ CH ₃ 338 C ₆ H ₅ 339 2-CN-C ₆ H ₄ CH ₃ 340 2-CN-C ₆ H ₄ CH ₃ 341 3-C1-C ₆ H ₄ CH ₃ 342 2,4-C1 ₂ -C ₆ H ₃ CH	321 C ₆ H ₅	321 C ₆ H ₅ 322 C ₆ H ₅ 322 C ₆ H ₅ 323 4-F-C ₆ H ₄ 324 4-C1-C ₆ H ₄ 325 2-C ₂ H ₅ O-C ₆ H ₄ 326 2-propenyloxyphenyl 326 2-propenyloxyphenyl 327 4-CH ₃ CONH-C ₆ H ₄ 328 4-CH ₃ CONH-C ₆ H ₄ 329 1-naphthalenyl 330 2-propenyloxyphenyl 331 4-C1-C ₆ H ₄ 332 1-naphthalenyl 333 2-acetylphenyl 334 2-acetylphenyl 335 2-C ₂ H ₅ O-C ₆ H ₄ 336 2-C1-C ₆ H ₄ 337 2-C1-C ₆ H ₄ 338 C ₄ H ₅ 339 2-CN-C ₆ H ₄ 339 2-CN-C ₆ H ₄ 330 COOH) ₂ 331 COOH) ₂ 331 COOH) ₂ 331 COOH) ₂ 332 COOH) ₂ 333 COOH) ₂ 334 COOH) ₂ 335 COOH) ₂ 336 COOH) ₃ 337 COOH 337 COOH 338 C ₄ H ₅ 339 COOH 339 COOH 339 COOH 330 COOH 331 COOH 331 COOH 331 COOH 332 COOH 333 COOH 333 COOH 333 COOH 334 COOH 335 COOH 337 COOH 337 COOH 338 C ₆ H ₅ 339 COOH 339 COOH 339 COOH 339 COOH 330 COOH 331 COOH 331 COOH 331 COOH 331 COOH 332 COOH 333 COOH 333 COOH 333 COOH 334 COOH 335 COOH 337 COOH 337 COOH 337 COOH 338 COOH 337 COOH 338 COOH 338 COOH 339 COOH 33

					
	344 3-CF ₃ -C ₆ H ₄	сн3	s	2HC1	220.9
	345 2.3-dihydro-l <u>H</u> -inden-5-yl	CH ³	s	base	95.9
	346 2-Br-C ₆ H ₄	CH ³	S	*	167.0
5	347 6-Br-2-napthalenyl	CH ³	s	*	192.9 .
	348 4-C1,3,5-(CH ₃) ₂ C ₆ H ₂	CH ³	s	base	131.7
	349 4-(4-methylbenzoyl)phenyl	CH ³	s	base	174.2
	350 2,4,6-(Cl ₂) ₃ -C ₆ H ₂	CH ₃	S	base	126.4
	351 2,6-(CH ₃) ₂ -C ₆ H ₂	CH3	S	base	146.8
10	352 3-сн ₃ 0-с ₆ н ₄	CH3	s	**	118.5
	353 2-n.C ₃ H ₇ -co-C ₆ H ₄	CH ₃	S	(COOH) ₂	159.0
	354 3-C1-C6H4	CH ³	0	*	123.7
	355 4-C1-C6H4	н	S	base	164.8
	356 4-F-C ₆ H ₄	н	S	base	162.8
15	357 4-C1-C ₆ H ₄	с ₂ н ₅	s	base	103.1
	358 4-P-C ₆ H ₄	C2H_5	S	***	205.7
•	359 4-C1,2-CH ₃ -C ₆ H ₃	CH ₃	S	base	115.5
	360 2-F-C6H4	CH3	s	base	100.4
	361 2-CH ₃ CO, 4-F-C ₆ H ₃	CH ₃	S	base	108.7
20	362 4-F-CH	CH ₃	S	***	169.5
	363 4-CH ₃ CO-C ₆ H ₄	CH ³	Š	base	98.9
	364 4-P-C H	1.C ₃ H ₇	S	*	161.8
	365 4-F-C6H4	CH3	S	base	101.7
	366 4-C1-C ₆ H ₄	1.C3H7	S	*	169.8
25	367 4-CN-C6H4	CH ₃	S	base	122.1
	368 C ₆ H ₅	CH ³	S	*	135.6
•	369 4-F-C6H4	CH ³	S	2HC1	209.4
	370 4-NO ₂ -C ₆ H ₄	CH ₃	s	base	140.1
	371 4-F-C ₆ H ₄	H	0	2HC1	227.9
30	372 3-C1-C6H4	H	0	2HC1	213.2
	373 3,4,5-(CH ₃ 0) ₃ C ₆ H ₂	CH ₃	S	*	176.9
	374 4-CH ₃ O-C ₆ H ₄	CH ₃	S	base	129.6
	375 3,5-(CH ₃ O) ₂ -C ₆ H ₃	CH ₃	8	*	145.2
	376 1,3-benzodioxol-5-yl	CH ₃	S	***	181.7
35					

* : (Z)-2-butenedioate (1:1); ** : (Z)-2-butenedioate (1:2)

*** : (B)-2-butenedioate (2:1)

In a similar manner there were also prepared:

10	No.	Ar	R .	R ¹	д1 = д2 - д3 = д4	cis/ trans		mp in
	377	^С 6 ^Н 5	CH ₃ O	CH3	CH=CH-CH=CH	cis	*	163.6
		4-F-C ₆ H ₄	н	CH ₃	CH=CF-CH=CH	-	base	101.5
	•	C ₆ H ₅	Н	CH ₃	CH=CF-CH=CH	-	base	130.6
		4-F-C6H4	CH ³ O	CH ³	CH=CH-CH=CH	cis	*	178.9
15		4-F-C6H4	CH ³	CH ₃		cis	*	150.0
	382	C ₆ H ₅	CH3	CH ₃	CH=CH-CH=CH	cis	*	165.1
	•	4-F-C ₆ H ₄	н	CH ₃	CH=CH-CF=CH	-	base	118.1
	t	4-F-C ₆ H ₄	Н	CH ₃	СС1= СН -СН=СН	· -	*	154.0
		4-F-C ₆ H ₄	H	CH ₃	CH=CH-CCl=CH	-	*	144.6
20		4-F-C6H4	н	н	N=CH-CH=CH	-	base	168.2
		C H 5	н	CH ₃	CH=CC1-CH=CH	-	base	177.4
		4-F-C ₆ H ₄	H	CH ₃	CH=CCl-CH=CH	••••	base	172.7
		4-F-CH4	H	CH ₃	CH=CH-C=CH OCH ₃	<u>-</u> ·	**	176.1
25	390	C ₆ H ₅	н	CH ₃	CC1=CH-CH=CH	· -	*	174.8
	1	C _H 5	н	CH ³	CH=CH-CCl=CH	· -	*	171.1
		4-F-C ₆ H ₄	н	CH ³	N=CH-CH=CH	-	base	103.6
		3-C1-C ₆ H ₄	н	CH ₃	N=CH-CH=CH	-	base	119.9

30 * : (Z)-2-butenedioate (1:1)

** : (E)-2-butenedioate (1:1)

In a similar manner there were also prepared:

4-[(2-benzothiazolyl)methylamino]-a-(4-methoxyphenyl)-l-piperidineethanol; mp. 168.1°C (394);

35 4-[(2-benzothiazolyl)methylamino]-α-(4-fluorophenyl)-l-piperidine-

```
ethanol; mp. 178.5°C (395);
     3-[(2-benzothiazolyl)methylamino]-\alpha-(phenoxymethyl)-8-azabi-
     cyclo[3.2.1]octane-8-ethanol ethanedioate(1:1); mp. 188.6°C (396);
     3-[(2-benzothiazolyl)methylamino]-\alpha-[(4-fluorophenoxy)methyl]-l-
     piperidineethanol ethanedioate (1:1); mp. 182.7°C (397);
     3-[(2-benzothiazolyl)methylamino]-\alpha-[(3-chlorophenoxy)methyl]-1-
     piperidineethanol ethanedioate (1:1); mp. 172.9°C (398);
     3-[(2-benzothiazolyl)methylamino]-\alpha-(phenoxymethyl)-1-piperidine-
     ethanol ethanedioate (1:1); mp. 180.2°C (399);
 10 3-[(2-benzothiazolyl)methylamino]-a-[(3-chlorophenoxy)methyl]-l-
     pyrrolidineethanol ethanedioate(1:1); mp. 158.5°C (400);
     a-[(3-chlorophenoxy)methyl]-4-(thiazolo[5,4-b]pyridin-2-yl-
     amino)-1-piperidineethanol; mp. 127.4°C (401);
     (\lambda)-4-(2-benzoxazolylamino)-\alpha-(2,3-dihydro-1,4-benzodioxin-2-yl)-l-
15 piperidineethanol dihydrochloride; mp. 229.8°C (402);
     (B)-4-(2-benzoxazolylamino)-\alpha-(2.3-dihydro-1.4-benzodioxin-2-yl)-l-
    piperidineethanol dihydrochloride.hemihydrate; mp. 245.3°C (403);
    4-[(2-benzoxazolyl)methylamino]-a-(4-methoxyphenyl)-1-piperidine-
    ethanol dihydrochloride; mp. 231.1°C (404);
20 3-[(2-benzothiazolyl)methylamino]-a-[(4-fluorophenoxy)methyl]-1-
    pyrrolidineethanol 4-methylbenzenesulfonate(1:2); mp. 199.8°C (405);
    \alpha-[(4-fluorophenoxy)methyl]-4-[(1-methylthiazolo[5,4-b]pyridin-
    2-yliden)amino]-1-piperidineethanol; mp. 150.2°C (406);
    4-[(3-methyl-2(3H)-benzothiazolyliden)amino]-\alpha-(phenoxymethyl)-
25 l-piperidineethanol (Z)-2-butenedioate(1:2); mp. 152.8°C (407);
    4-[(2-benzothiazolyl)methylamino]-\alpha-[[(2,4-dichlorophenyl)methoxy]-
    methyl]-1-piperidineethanol ethanedioate(1:1); mp. 158.1°C (408);
    a-[(4-fluorophenoxy)methyl]-4-[(oxazolo[4,5-b]pyridin-2-yl)amino]-
    1-piperidineethanol (E)-2-butenedioate(1:1); mp. 195.4°C (409);
30 (+)-(R)-4-[(2-benzothiazolyl)methylamino]-a-[(4-fluorophenoxy)-
    methyl]-1-piperidineethanol dihydrochloride mp. 179.2°C, [\alpha] =
    + 12.49°(c = 0.5% in methanol) (410); and
    (-)-(S)-4-[(2-benzothiazolyl)methylamino]-\alpha-[(4-fluorophenoxy)methyl]
    ]-1-piperidineethanol dihydrochloride; mp. 175.7°C, [a] = - 11.37°
35 (c = 0.5% in methanol) (411).
```

In a similar manner there is also prepared: $\alpha-[(4-\text{fluoropheny1})\text{methyl}]-4-[(0xazolo[4,5-d]pyridin-2-yl)amino]-l-piperidineethanol (412).$

Example 34

- 5 A mixture of 2.7 parts of 2.3-dihydro-2-oxiranyl-1.4-benzodioxin, 3.5 parts of N-methyl-N-(4-piperidinyl)-2-benzoxazol-amine, 45 parts of methylbenzene and 40 parts of methanol was stirred and refluxed overnight. The reaction mixture was evaporated and the residue was separated by column chromatography over
- 10 LiChroprep. RP 18 using a mixture of water, ammonium acetate and methanol (30:0.5:70 by volume) as eluent. The first fraction (A-isomer) was collected and the eluent was evaporated. The residue was taken up in water and the solution was treated with sodium hydroxide. The product was extracted with trichloromethane. The
- extract was washed with water, dried, filtered and evaporated. The residue was crystallized from 2-propanol, yielding 0.3 parts (5%) of (A)-4-[(2-benzoxazolyl)methylamino]-a-(2,3-dihydro-1,4-benzo-dioxin-2-yl)-l-piperidineethanol; mp. 160.4°C (413).
- The second fraction (B-isomer) was collected and the eluent was

 evaporated. The residue was taken up in water and the solution was

 treated with sodium hydroxide. The product was extracted with

 trichloromethane. The extract was washed with water, dried, filtered

 and evaporated. The residue was crystallized from a mixture of 2,2'
 oxybispropane and methanol, yielding 1.3 parts (21%) of (B)-4-[(2-
- 25 benzoxazolyl)methylamino]-a-(2,3-dihydro-1,4-benzodioxin-2-yl)-l-piperidineethanol; mp. 120.9°C (414).

In a similar manner there were also prepared: (A)-4-[(2-benzothiazoly1)methylamino]- α -(2,3-dihydro-1,4-benzo-dioxin-2-y1)-1-piperidineethanol; mp. 142.0°C (415).

30 (B)-4-[(2-benzothiazolyl)methylamino]-a-(2,3-dihydro-1,4-benzo-dioxin-2-yl)-1-piperidineethanol; mp. 134.2°C (416).

Example 35

A mixture of 3.6 parts of [(3-chlorophenoxy)methyl]oxirane, 3.3 parts of N-methyl-N-(3-pyrrolidinyl)-2-benzoxazolamine and 90 parts of methylbenzene was stirred and refluxed overnight. The reaction

mixture was evaporated. The residue was purified by column chromatography over silica gel using a mixture of trichloromethane and methanol (99:1 by volume) as eluent. The pure fractions were collected and the eluent was evaporated. The residue was converted into the 4-methylbenzenesulfonate salt in 2-propanol. The salt was filtered off and dried, yielding 5 parts (58%) of 3-[(2-benzoxazolyl)methylamino]-a-[(3-chlorophenoxy)methyl]-l-pyrrolidineethanol 4-methylbenzenesulfonate(1:1); mp. 96.8°C (417). In a similar manner there were also prepared: 10 4-[(2-benzothiazoly1)methylamino]-a-[(3-fluorophenoxy)methyll-piperidineethanol dihydrochloride; mp. 205.2°C (418); 4-[(2-benzothiazolyl)(phenylmethyl)amino]-a-[(4-fluorophenoxy)methyl]-l-piperidineethanol (E)-2-butenedioate(2:1);mp. 163.5°C (419); 15 4-[methyl(6-methyl-2-benzothiazolyl)amino]-α-(phenoxymethyl)-1-piperidineethanol; mp. 140.6°C (420); α -[(4-fluorophenoxy)methyl]-4-[methyl(6-methyl-2-benzothiazolyl)amino]-1-piperidineethanol; mp. 105.5°C (421); $\alpha-[(3-fluorophenoxy)methyl]-4-[methyl(6-methyl-2-benzothiazolyl)-$ 20 amino]-1-piperidineethanol; mp. 109.6°C (422); 4-[(2-benzothiazolyl)(phenylmethyl)amino]-a-[(4-chlorophenoxy)methyl]-l-piperidineethanol (E)-2-butenedioate(2:1); mp. 172.0°C (423); $4-[(2-benzothiazolyl)methylamino]-\alpha-[(4-fluorophenoxy)methyl]-\alpha$ methyl-l-piperidineethanol 4-methylbenzenesulfonate(1:2); mp. 25 207.3°C (424); cis-4-[(2-benzothiazolyl)methylamino]-3-hydroxy-a-(phenoxymethyl)-1-piperidineethanol; mp. 152.2°C (425); cis-4-[(2-benzothiazoly1)amino]-a-[(4-fluorophenoxy)methy1]-3-hydroxy-l-piperidineethanol (Z)-2-butenedioate(1:2); mp. 156.7°C (426); 30 and

4-[(2-benzothiazoly1)methylamino]-a-[((2,3-dihydro-1,4-benzodioxin-2-y1)-methoxy]methyl]-1-piperidineethanol (E)-2-butenedioate(1:1); mp. 146.5°C (427).

Example 36

A mixture of 2.77 parts of [(3-chlorophenoxy)methyl]oxirane, 4.92

parts of N-(3-methyl-2(3H)-benzothiazolylidene)-4-piperidinamine monohydrobromide, 2.12 parts of sodium carbonate, 60 parts of methanol and 68 parts of methylbenzene was stirred and refluxed overnight. The reaction mixture was cooled and the solvent was evaporated. The residue was purified by filtration over silica gel using a mixture of trichloromethane and methanol (99:1 by volume), as eluent. The pure fractions were collected and the eluent was evaporated. The residue was converted into the (Z)-2-butenedioate salt in 2-propanol and methanol. The salt was filtered off and dried, yielding 5.5 parts (55%) of α-[(3-chlorophenoxy)methyl]-4-[(3-methyl-2(3H)-benzothiazolyliden)amino]-1-piperidineethanol (Z)-2-butenedioate(1:2); mp. 157.6°C (428).

In a similar manner there were also prepared:

α-[(4-fluorophenoxy)methyl]-4-[(3-methyl-2(3H)-benzothiazolyl
iden)amino]-1-piperidineethanol (Z)-2-butenedioate (1:2); mp.

140.2°C (429); and

3-[(2-benzothiazolyl)methylamino]-α-(phenoxymethyl)-1-pyrrolidine
ethanol 4-methylbenzenesulfonate(1:2); mp. 196.3°C (430).

Example 37

20 A mixture of 2.5 parts of [(4-fluorophenoxy)methyl]oxirane, 4.3 parts of N-butyl-N-(4-piperidinyl)-2-benzothiazolamine, 45 parts of benzene and 40 parts of methanol was stirred and refluxed overnight. The reaction mixture was evaporated. The residue was purified by column chromatography over silica gel using a mixture of trichloromethane and methanol (97:3 by volume) as eluent. The pure fractions were collected and the eluent was evaporated. The residue was converted into the (E)-2-butenedioate salt in ethanol. The salt was filtered off and dried, yielding 5.6 parts (72%) of 4-[(2-benzothiazolyl)butylamino]-a-[(4-fluorophenoxy)methyl]-1-piperidine—30 ethanol (E)-2-butenedioate(2:1); mp. 196.8°C (431).

In a similar manner there were also prepared:

4-[(2-benzothiazoly1)butylamino]-a-[(4-chlorophenoxy)methy1]1-piperidineethanol (E)-2-butenedioate(2:1); mp. 192.2°C (432).

Example 38

A mixture of 1.8 parts of (B)-3,4-dihydro-2-oxiranyl-2H-1-benzo-pyran, 2.3 parts of N-methyl-N-(4-piperidinyl)-2-benzoxazolamine and 40 parts of ethanol was stirred and refluxed overnight. The reaction mixture was evaporated. The oily residue was purified by column chromatography over silica gel using a mixture of trichloromethane and methanol (90:10 by volume) as eluent. The pure fractions were collected and the eluent was evaporated. The oily residue was converted into the ethanedioate salt in 2-propanol. The salt was filtered off (slowly), washed with 2-propanol and 2,2'-oxybispropane and dried, yielding 3.82 parts (77.6%) of (B)-4-[(2-benzoxazolyl)-methylamino]-α-(3,4-dihydro-2H-1-benzopyran-2-yl)-1-piperidine-ethanol ethanedioate (1:1); mp. 192.5°C (433).

Following the same procedure and using equivalent amounts of the

appropriate starting materials, there were also prepared:

(A)-4-[(2-benzothiazoly1)methylamino]-a-(3,4-dihydro-2H-1-benzopyran-2-y1)-1-piperidineethanol ethanedioate(1:1); mp. 195.0°C (434);

(B)-4-[(2-benzothiazoly1)methylamino]-a-(3,4-dihydro-2H-1-benzopyran-2-y1)-1-piperidineethanol; mp. 133.4°C (435);

- 20 (λ)-4-[(2-benzoxazoly1)methylamino]-α-(3,4-dihydro-2<u>H</u>-1-benzopyran-2-y1)-1-piperidineethanol ethanedioate (1:1); mp. 206.0°C (436); λ⁺-4-[(2-benzothiazoly1)methylamino]-α-(3,4-dihydro-2<u>H</u>-1-benzo-pyran-2-y1)-1-piperidineethanol ethanedioate(2:5); mp. 159.0°C (437); (λ⁻)-4-[(2-benzothiazoly1)methylamino]-α-(3,4-dihydro-2<u>H</u>-1-benzo-pyran-2-y1)-1-piperidineethanol; mp. 186.3°C; [α]^D= -4.61°
 - (c = 1% in methanol) (438); and $A^{+}-4-[(2-benzothiazolyl)methylamino]-\alpha-(3,4-dihydro-2H-1-benzo-pyran-2-yl)-1-piperidineethanol; mp. 138.5°C; <math>[\alpha]^{25}=47.60^{\circ}$ (c = 1% in methanol) (439).

30 Example 39

A mixture of 3.7 parts of [(phenylthio)methyl]oxirane, 5.0 parts of N-methyl-N-(4-piperidinyl)-2-benzothiazolamine and 120 parts of 2-propanol was stirred overnight at reflux temperature. The reaction mixture was evaporated. The residue was converted into the (Z)-2-35 butenedicate salt in 2-propanol and 2,2'-oxybispropane (5:1 by

7

volume). The salt was filtered off and dried, yielding 8.3 parts (78.3%) of 4-[(2-benzothiazoly1)methylamino]- α -[(phenylthio)-methy1]-1-piperidineethanol (2)-2-butenedioate(1:1); mp. 160.2°C (440).

- 5 In a similar manner there were also prepared: 4-[(2-benzothiazolyl)methylamino]-a-[(2-bromo-4-fluorophenoxy)methyl]-1-piperidineethanol; mp. 124.6°C (441): 4-[(2-benzothiazolyl)methylamino]-a-[[(4-fluorophenyl)thio]methyl]-1-piperidineethanol (Z)-2-butenedioate(1:1); mp. 140.6°C (442); 10 4-[(2-benzothiazoly1)methylamino]-a-[[(4-chloropheny1)thio]methy1]-1-piperidineethanol (Z)-2-butenedioate(1:1); mp. 174.1°C (443); 4-[(2-benzoxazolyl)methylamino]-a-[[(4-fluorophenyl)thio]methyl]-1piperidineethanol (Z)-2-butenedioate(1:1);mp. 141.7°C (444); 4-[(2-benzoxazolyl)methylamino]-a-[[(4-chlorophenyl)thio]methyl]-15 1-piperidineethanol (Z)-2-butenedioate(1:1); mp. 168.8°C (445); 4-[(2-benzoxazolyl)methylamino]-a-[(phenylthio)methyl]-l-piperidineethanol (E)-2-butenedioate(2:1); mp. 180.2°C (446); and a-[(4-fluorophenoxy)methyl]-4-[(thiazolo[4,5-c]pyridin-2-yl)amino]-1-piperidineethanol ethanedioate(1:2); mp. 195.9°C (447).
- 20 Example 40

A mixture of 1.65 parts of 1-(4-fluorobenzoyl)aziridine (solution in benzene 1.2M), 2.1 parts of N-(4-piperidinyl)-2-benzoxazolamine and 90 parts of methylbenzene was stirred and refluxed overnight.

The reaction mixture was evaporated and the residue was crystallized from 2-propanol. The product was filtered off and recrystallized from 2-propanone, yielding 1.3 parts (34%) of N-[2-[4-[(2-benzoxazolyl)-amino]-1-piperidinyl]ethyl]-4-fluorobenzamide; mp. 173.3°C (448).

In a similar manner there were also prepared:

N-[2-[4-[2-(benzoxazolyl)methylamino]-l-piperidinyl]ethyl]-4-fluorobenzamide; mp. 162.9°C(449).

Example 41

A mixture of 3.2 parts of 4-(1-ethenyl)pyridine, 2.1 parts of N-(4-piperidinyl)-2-benzoxazolamine and 80 parts of 1-butanol was stirred and refluxed for 48 hours. The reaction mixture was

35 evaporated. The residue was purified by column chromatography over

silica gel using a mixture of trichloromethane and methanol (97:3 by volume) saturated with ammonia, as eluent. The pure fractions were collected and the eluent was evaporated. The residue was crystallized from 2.2'-oxybispropane, yielding 2 parts (62%) of N-[1-[2-(4-1)]]

pyridinyl)ethyl]-4-piperidinyl]-2-benzoxazolamine; mp. 146.9°C (450).

In a similar manner there were also prepared:

N-[1-[2-(2-pyridinyl)ethyl]-4-piperidinyl]-2-benzoxazolamine; mp.

130°C (451); and

 \underline{N} -methyl- \underline{N} -[1-[2-(2-pyridinyl)ethyl]-4-piperidinyl]-2-benzoxazolamine; mp. 102.3°C (452).

Example 42

A mixture of 4.2 parts of 4-[(2-benzothiazolyl)methylamino]-a[(4-fluorophenoxy)methyl]-1-piperidineethanol, 4.1 parts of acetic
acid anhydride, 0.1 parts of 4-methylbenzenesulfonic acid and 135

parts of methylbenzene was stirred and refluxed overnight. After
cooling to room temperature, the reaction mixture was washed with a
sodium hydroxide solution 5% and with water, dried, filtered and
evaporated. The residue was crystallized from 2,2'-oxybispropane.
The product was filtered off and dried, yielding 3.5 parts (77%) of
4-[(2-benzothiazolyl)methylamino]-a-[(4-fluorophenoxy)methyl]l-piperidineethanol acetate(ester); mp. 100.0°C (453).

Example 43

benzothiazolyl)methylamino]-a-[(4-fluorophenoxy)methyl]-l-piperidineethanol in 90 parts of N.N-dimethylformamide were added dropwise
2.3 parts of decanoyl chloride. Upon completion, stirring was
continued for 24 hours at 60°C. After cooling to room temperature,
the reaction mixture was poured onto water and the whole was treated
with sodium hydroxide. The aqueous phase was decanted and the
residual product was washed three times with water and dissolved in
trichloromethane. The organic layer was dried, filtered and
evaporated. The residue was purified by column chromatography over
silica gel using a mixture of trichloromethane and methanol (97:3 by
volume) as eluent. The pure fractions were collected and the eluent
35 was evaporated. The residue was converted into the (2)-2-butene-

dioate salt in a mixture of 2-propanone and 2.2'-oxybispropane. The salt was filtered off and dried, yielding 1.1 parts (16%) of [2-[4-[(2-benzothiazoly1)methylamino]-l-piperidiny1]-l-[(4-fluorophenoxy)-methyl]ethyl]decanoate (Z)-2-butenedioate(1:1); mp. 134.2°C (454).

5 Example 44

- 3.4 Parts of (<u>cis+trans</u>)-N-[1-[4-(4-fluorophenoxy)cyclo-hexyl]-4-piperidinyl]-N-methyl-2-benzothiazolamine were separated by column chromatography (HPLC) over silica gel using a mixture of trichloromethane and methanol (98:2 by volume) as eluent.
- -The first fraction (A-isomer) was collected and the eluent was evaporated. The residue was crystallized from 2-propanol, yielding 0.34 parts of (A)-N-[1-[4-(4-fluorophenoxy)cyclohexyl]-4-piperidinyl]-N-methyl-2-benzothiazolamine; mp. 155.5°C (455).
- -The second fraction (B-isomer) was collected and the eluent was

 15 evaporated. The residue was crystallized from 2-propanol, yielding

 0.34 parts of (B)-N-[1-[4-(4-fluorophenoxy)cyclohexyl]-4-piperi
 dinyl]-N-methyl-2-benzothiazolamine; mp. 116.5°C (456).

 Example 45
- To a stirred solution of 5 parts of 4-[(2-benzothiazoly1)methyl
 20 amino]-a-[(4-fluorophenoxy)methyl]-l-piperidineethanol in 80 parts
 of ethanol were added 1.8 parts of (+)-[R-(R*,R*)]-2,3-dihydroxybutanedioic acid while boiling. The product was allowed to
 crystallize. It was filtered off and dried, yielding 5.5 parts (94%)
 of (+)-4-[(2-benzothiazoly1)methylamino]-a-[(4-fluorophenoxy)
 25 methyl]-l-piperidineethanol [R-(R*,R*)]-2,3-dihydroxybutanedioate
 (2:1); mp. 189.1°C (45%).

In a similar manner there were also prepared:

4-[(2-benzothiazoly1)methylamino]-a-[(4-fluorophenoxy)methyl]-1piperidineethanol 2-hydroxy-1.2.3-propanetricarboxylate(1:1);

30 mp. 146.7°C; (458) and

4-[(2-benzothiazoly1)methylamino]-a-[(4-fluorophenoxy)methyl]-1piperidineethanol (Z)-2-butenedioate (1:1); mp. 127.6°C (459).

C. Pharmacological Examples

The useful anti-anoxic properties of the compounds of formula (I) can be demonstrated in the following test procedures.

5 Example 46:

10

KCN Test in Rats.

Histotoxic anoxia is produced by a rapid intravenous injection of potassium cyanide (KCN) in rats.

KCN in control rats induces abdominal contractions and clonic seizures and is lethal within 2 minutes. The protection from KCN induced lethality appears to be a simple way of evaluating quantitatively the anti-anoxic properties of the test compounds. Male Wistar rats weighing \pm 200 g were treated subcutaneously with a test compound. One hour after treatment there was injected intravenously a KCN solution at a dose of 5 mg/kg body weight. Survival after 2 minutes was evaluated and RD₅₀-values were determinated.

The ED_{50} -values of the compounds of formula (I) are listed in table I. Said ED_{50} -values are those values in mg/kg body weight capable of protecting 50% of the tested animals against KCN-induced lethality.

The compounds listed in table 1 are not given for the purpose of limiting the invention thereto but only to exemplify the useful pharmacological activities of all the compounds within the scope of formula (I).

Compound number	ED ₅₀ -values in mg/kg body weight
1	5
9	2.5
10	5
11	1.25
15	0.63

30

35

25

	18	5
	24	5
	31	5
_	32	5
5	42	2.5
	48	1.25
	50	2.5
	75	10
10	103	5
10	107	2.5
	108	5
	118	5
	120	2.5
15	121	2.5
13	123	- 5
	133	5
	146	5
	148	5
20	151	5
	184	5
	191	2.5
	195	1.25
	309	5
25	320	1.8
	322	· 5
	323	1.25
	324	2.5
	357	0.63
30	405	10
	410	5
	411	5
	413	5
		، شده در خرج شننده ن نیم همهم جهد ۵ شابه شنده شروع شد موجوع م _ه .

415	10
438	10
440	10
442	2.5
443	10
446	10
452	. 5

10

20

25

35

5

D) Composition Examples.

The following formulations exemplify typical pharmaceutical compositions in dosage unit form suitable for systemic administration to 15 animal and human subjects in accordance with the instant invention.

"Active ingredient" (A.I.) as used throughout these examples relates to a compound of formula (I) or pharmaceutically acceptable acid addition salt thereof.

Example 47 : ORAL DROPS

500 Grams of the A.I. was dissolved in 0.5 liters of 2-hydroxypropanoic acid and 1.5 liters of the polyethylene glycol at 60-80°C. After cooling to 30-40°C there were added 35 liters of polyethylene glycol and the mixture was stirred well. Then there was added a solution of 1750 grams of sodium saccharin in 2.5 liters of purified water and while stirring there were added 2.5 liters of cocoa flavor and polyethylene glycol q.s. to a volume of 50 liters, providing an oral 30 drop solution comprising 10 milligrams of the A.I. per milliliter. The resulting solution was filled into suitable containers.

Example 48 : ORAL SOLUTION

9 Grams of methyl 4-hydroxybenzoate and 1 gram of propyl 4-hydroxybenzoate were dissolved in 4 liters of boiling purified water. In 3 liters of this solution were dissolved first 10 grams of

2,3-dihydroxybutanedioic acid and thereafter 20 grams of the A.I. The latter solution was combined with the remaining part of the former solution and 12 liters 1.2,3-propanetriol and 3 liters of sorbitol 70% solution were added thereto. 40 Grams of sodium saccharin were dissolved in 0.5 liters of water and 2 milliliters of raspberry and 2 milliliters of gooseberry essence were added. The latter solution was combined with the former, water was added q.s. to a volume of 20 liters providing an oral solution comprising 20 milligrams of the active ingredient per teaspoonful (5 milliliters). The resulting solution was filled in suitable containers.

Example 49 : CAPSULES

5

10

15

20

30

35

20 Grams of the A.I., 6 grams sodium lauryl sulfate, 56 grams starch, 56 grams lactose, 0.8 grams colloidal silicon dioxide, and 1.2 grams magnesium stearate were vigorously stirred together. The resulting mixture was subsequently filled into 1000 suitable hardened gelating capsules, comprising each 20 milligrams of the active ingredient.

Example 50 : FILM-COATED TABLETS

Preparation of tablet core

A mixture of 100 grams of the A.I., 570 grams lactose and 200 grams starch was mixed well and thereafter humidified with a solution of 5 grams sodium dodecyl sulfate and 10 grams polyvinylpyrrolidone (Kollidon-K 90°) in about 200 milliliters of water. The wet powder mixture was sieved, dried and sieved again. Then there was added 100 grams microcrystalline cellulose (Avicel®) and 15 grams hydrogenated vegetable oil (Sterotex ®). The whole was mixed well and compressed into tablets, giving 10.000 tablets, each containing 10 milligrams of the active ingredient.

Coating

To a solution of 10 grams methyl cellulose (Methocel 60 HG®) in 75 milliliters of denaturated ethanol there was added a solution of 5 grams of ethyl cellulose (Ethocel 22 cps ®) in 150 milliliters of dichloromethane. Then there were added 75 milliliters of dichloromethane and 2.5 milliliters 1,2,3-propanetriol. 10 Grams of polyethylene glycol was molten and dissolved in 75 milliliters of dichloromethane. The latter solution was added to the former and then there were added 2.5

grams of magnesium octadecanoate. 5 grams of polyvinylpyrrolidone and 30 milliliters of concentrated colour suspension (Opaspray K-1-2109 $^{\bullet}$) and the whole was homogenated.

The tablet cores were coated with the thus obtained mixture in a coating apparatus.

Example 51 : INJECTABLE SOLUTION

1.8 Grams methyl 4-hydroxybenzoate and 0.2 grams propyl 4-hydroxybenzoate were dissolved in about 0.5 liters of boiling water for injection. After cooling to about 50°C there were added while stirring 4 grams lactic acid, 0.05 grams propylene glycol and 4 grams of the A.I.. The solution was cooled to room temperature and supplemented with water for injection q.s. ad 1 liter volume, giving a solution of 4 milligrams A.I. per milliliters. The solution was sterilized by filtration (U.S.P. XVII p. 811) and filled in sterile containers.

15 Example 52 : SUPPOSITORIES

3 Grams A.I. was dissolved in a solution of 3 grams 2.3-dihydroxy-butanedioic acid in 25 milliliters polyethylene glycol 400. 12 Grams surfactant (SPAN®) and triglycerides (Witepsol 555 ®) q.s. ad 300 grams were molten together. The latter mixture was mixed well with the former solution. The thus obtained mixture was poured into moulds at a temperature of 37-38°C to form 100 suppositories each containing 30 milligrams of the active ingredient.

25

20

5

10

CLAIMS

1

1. A chemical compound having the formula

$$\begin{array}{c}
R^{3} \\
\downarrow \\
L-N
\end{array}$$

$$\begin{array}{c}
R^{4} \\
R
\end{array}$$

$$\begin{array}{c}
R^{1} \\
R^{1}
\end{array}$$

$$\begin{array}{c}
R^{1} \\
R^{2}
\end{array}$$

$$\begin{array}{c}
R^{1} \\
R^{2}
\end{array}$$

$$\begin{array}{c}
R^{1} \\
R^{2}
\end{array}$$

$$\begin{array}{c}
R^{3} \\
R^{3}
\end{array}$$

$$\begin{array}{c}
R^{1} \\
R^{2}
\end{array}$$

$$\begin{array}{c}
R^{3} \\
R^{3}
\end{array}$$

$$\begin{array}{c}
R^{1} \\
R^{2}
\end{array}$$

$$\begin{array}{c}
R^{3} \\
R^{3}
\end{array}$$

```
a pharmaceutically acceptable acid addition salt or a possible
2
        stereochemically isomeric form thereof, wherein:
3
              -1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 
           · -CH=CH-CH=CH-
                                                     (a):
               -N=CH-CH=CH-
                                                     (b):
                                                     (c):
               -CH=N-CH=CH-
                                                     (d); or
               -CH=CH-N=CH-
                                                     (e);
               -CH=CH-CH=N-
10 wherein one or two hydrogen atoms in the radical -\lambda^{1}=\lambda^{2}-\lambda^{3}=\lambda^{4}
        may, each independently from each other, be replaced by halo, C1-6
12 alkyl, hydroxy, c<sub>1-6</sub> alkyloxy or trifluoromethyl;
                z is o or S:
13
               n is 0 or the integer 1:
               R is a member selected from the group consisting of hydrogen.
        c_{1-6} alkyl, hydroxy and c_{1-6} alkyloxy or trifluoromethyl;
               R^{1} or R^{2} is hydrogen, C_{1-6} alkyl, or aryl C_{1-6} alkyl;
 17
         the dotted line between the nitrogen atom bearing R1, the
 18
         interjacent carbon atom and the nitrogen atom bearing R2
         indicating that a double bond exists between the nitrogen bearing
 21 R and said interjacent carbon atom, in which case R is absent.
 22 or a double bond exists between the interjacent carbon and the
         nitrogen bearing R<sup>2</sup>. in which case R<sup>2</sup> is absent; and wherein
        said interjacent carbon atom is the carbon atom positioned between
          the nitrogen bearing R<sup>1</sup> and the nitrogen bearing R<sup>2</sup>;
                 R<sup>3</sup> or R<sup>4</sup> are both hydrogens or R<sup>3</sup> and R<sup>4</sup> combined may
```

```
form a bivalent radical of formula -CH2-CH2-;
         L is a member selected from the group consisting of C_{1-12} alkyl,
 28
     substituted c_{1-6} alkyl, aryl c_{2-6} alkenyl, c_{3-6} cycloalkyl,
 30 substituted C_{3-6} cycloalkyl, a radical of formula
                  R^7-CH<sub>2</sub>-C-CH<sub>2</sub>- (a), and a radical of formula
 31
 32
        R^5 being hydrogen or C_{1-12} alkylcarbonyl;
 33
        R^6 being hydrogen or C_{1-6} alkyl;
 34
        R<sup>7</sup> being aryl, a radical R<sup>8</sup>-O or a radical R<sup>8</sup>-S;
 35
        B being a bivalent radical of formula -CH<sub>2</sub>- or -O-; and
 36
        said R<sup>8</sup> being hydrogen; aryl; 2,3-dihydro-l<u>H</u>-indenyl;
37
   benzodioxolyl; (2,3-dihydro-1,4-benzodioxin-2-yl)methyl;
38
     (2H-1-benzopyran-2-yl)methyl; or phenyl substituted with C2-6
    alkenyloxy, C_{1-6} alkylcarbonylamino or C_{1-6} alkylphenylcarbonyl; and
        wherein said substituted C_{3-6} cycloalkyl is C_{3-6} cycloalkyl
41
    being substituted with up to two substituents each independently
42
    selected from the group consisting of aryl, aryloxy and cyano;
43
        said substituted c_{1-6} alkyl is c_{1-6} alkyl being substituted
44
    with a member selected from the group consisting of C3-6 cycloalkyl.
    pyridinyl, pyridinyloxy, aryl, benzimidazolyl, indolyl, isoxazolyl
47 being optionally substituted with phenyl, 3-oxo-1,2,4-triazolo[4,5-a]-
    pyridin-2(3H)-yl, a radical of formula Ary-, a radical of formula
    R 0- and a radical of formula
50
51
       said Ar being aryl;
       Y being O, S, NH, -CONH-, -CHCN, -CHOR 10 or -SO2;
52
       R<sup>9</sup> being hydrogen, aryl C<sub>1-6</sub> alkyl, C<sub>3-6</sub> cycloalkyl, phenyl
```

substituted with phenyl, or phenyl substituted with C_{1-6} alkyloxy-

carbonyl; R¹⁰ being hydrogen or C₁₋₆ alkyl; and 56 wherein aryl is phenyl optionally substituted with up to three substituents each independently selected from the group consisting : 9 of C_{1-6} alkyl, C_{1-6} alkyloxy, halo, trifluoromethyl, cyano, C1-6 alkylcarbonyl, nitro, amino and aminocarbonyl. 60 2. A chemical compound according to claim 1, wherein L is 1 aryl C_{2-6} alkenyl, C_{1-6} alkyl being substituted with aryloxy, a radical of formula (a) or a radical of formula (b). 3 3. A chemical compound according to claim 2, wherein i $_{-A}^{1}$ $_{-A}^{2}$ $_{-A}^{3}$ $_{-A}^{4}$ is -CH=CH-CH=CH-, n is the integer 1, R^{2} is absent and a double bond exists between the nitrogen bearing R2 and the 3 interjacent carbon atom, and R^3 and R^4 are both hydrogen atoms. 4. A chemical compound according to claim 3 wherein in the 1 radical of formula (a), R^5 and R^6 are both hydrogen and R^7 is 2 a radical R⁸-O-, wherein R⁸ is aryl; or wherein in the radical 3 of formula (b), B is O and R and R are both hydrogen radicals. 5. A chemical compound according to claim 4 wherein R is 1 C₁₋₆ alkyl and aryl is halophenyl. 2 6. A chemical compound according to claim 1, wherein the compound 1 is $4-[(2-benzothiazoly1)methylamino]-\alpha-[(4-fluorophenoxy)methyl]-1-$ 2 piperidineethanol. 3 7. A pharmaceutical composition comprising a suitable pharma-1 ceutical carrier and as an active ingredient a therapeutically 2 effective amount of a compound as claimed in any one of claims 1 to 6. 3 8. An anti-anoxic or anti-hypoxic composition comprising a suitable 1 pharmaceutical carrier and as an active ingredient an effective 2 anti-anoxic or anti-hypoxic amount of a compound as claimed in any 3 one of claims 1 to 6. 9. A method of preparing a pharmaceutical composition, 1 characterized in that a therapeutically effective amount of a 2 compound as claimed in any one of claims 1 to 6 is intimately mixed 3 with suitable pharmaceutical carriers. 10. A compound as claimed in any one of claims 1 to 6 for use as a 1

medicine.

- 1 11. A compound as claimed in any one of claims 1 to 6 for use as an
- 2 anti-anoxic or anti-hypoxic medicine.
- 1 12. A process for preparing a chemical compound as claimed in
- 2 in claim 1, characterized by
- 3 a) N-alkylating a piperidine of formula

H-D (III).

4 with a reagent of formula

L-W (II).

- 5 wherein W represents a reactive leaving group, in a reaction-
- 6 inert solvent:
- 7 b) reductively N-alkylating a piperidine of formula (III) with a
- 8 carbonyl-compound of formula

L'=C=O (IV),

- 9 whereby L'=C=O is a compound of formula L-H wherein a -CH₂-
- 10 radical is oxidated to a carbonyl radical, in a reaction-inert
- 11 solvent;
- 12 c) cyclizing an urea or thiourea derivative of formula

- in a reaction-inert solvent in the presence of an oxidant;
- 14 d) reacting a piperidine of formula (III) with an oxirane of formula

$$R^7$$
-CH₂ $\frac{1}{R^6}$ (VI)

in a reaction-inert solvent, thus preparing a compound of formula

$$^{7}_{\text{CH}_{2}}^{\text{OH}}_{\stackrel{|}{\underset{R}{\downarrow}}_{6}}^{\text{OH}}$$
 (1-a-1).

and, if desired, acylating (I-a-1) with a reagent

$$R^{5-a}-w^1$$
 (VII).

- said R^{5-a}-W¹ representing an alkanoic acid or a reactive
- derivative thereof, thus preparing a compound of formula

$$R^7$$
-CH₂-CH-CH₂-D (I-a-2);

19 e) reacting a piperidine of formula (III) with an oxirane of formula

$$\mathbb{C}_{0}$$
 \mathbb{C}_{6} (VIII)

in a reaction-inert solvent, thus preparing a compound of formula

- and, if desired, acylating (I-a-3) with a reagent (VII), thus
- 22 preparing a compound of formula

23 f) reacting a benzothiazole or benzoxazole of formula

$$Q^{2} \downarrow Z \downarrow \lambda \downarrow \lambda^{2} \downarrow \lambda^{3} \qquad (x)$$

24 with a reagent of formula

$$\begin{array}{c}
R^3 \\
\downarrow \\
L-N \\
\downarrow \\
R^4 \\
R
\end{array}$$
(CH₂)_n
Q¹
(IX)

- 25 in a reaction-inert solvent, wherein Q is a reactive leaving
- group and Q^2 is a radical of formula -NHR¹, or alternatively,
- Q^{1} is a radical of formula -NHR and Q^{2} is a reactive
- 28 leaving group, thus preparing a compound of formula

29 g) cyclodesulfurizing a thiourea derivative of formula

30 which in situ may be prepared by condensing an isothiocyanate

31 with an aromatic aminoalcohol of formula

32 thus preparing a compound of formula

33 h) cyclizing an urea or thiourea derivative of formula

- 34 which in situ may be formed by reacting an isocyanate or
- 35 isothiocyanate of formula

$$\begin{array}{c|c}
R^3 & (CH_2)_n \\
 & N=C=Z
\end{array}$$

36 with an aromatic amine of formula

- wherein w² represents a leaving group, thus preparing a compound of formula
 - $\begin{array}{c}
 R^3 \\
 \downarrow \\
 L-N \\
 \downarrow \\
 R^4 R
 \end{array}$ $\begin{array}{c}
 (CH_2)_{n} \\
 NH \\
 \downarrow \\
 N
 \end{array}$ $\begin{array}{c}
 X \\
 \downarrow \\
 X
 \end{array}$ $\begin{array}{c}
 X \\
 \downarrow \\
 X
 \end{array}$

39 i) reacting a piperidine of formula (III) with an alkene derivative

40 of formula

$$R^{11}-C_{2-6}$$
 alkenediyl-H (XVIII)

in a reaction-inert solvent, thus preparing a compound of formula $R^{11}-C_{r}H_{2r}-D \ (I-c)$

- 43 pyridinyl, pyridinyloxy, aryl, benzimidazolyl, indolyl,
- isoxazolyl being substituted with phenyl, 3-oxo-1,2,4-triazolo-
- 45 [4.5-a]pyridin-2(3H)-yl, a radical of formula Ary, a radical of
- formula R o and a radical of formula (g); and r is an integer
- of from 2 to 6 included.
- 48 j) reacting a piperidine of formula (III) with an aziridine of
- 49 formula

in a reaction-inert solvent thus preparing a compound of formula

O

Ar-C-NH-CH -CH -D (I-d):

51 wherein D represents a radical of formula

- 52 and, if desired, converting the compounds into each other following
- 53 art-known functional groups-transformation reactions; and if further
- 54 desired, converting the compounds of formula (I) into a therapeutically
- 55 active non-toxic acid-addition salt form by treatment with an
- 56 appropriate acid or, conversely, converting the acid-addition salt
- 57 into the free base form with alkali; and/or preparing stereochemically
- 58 isomeric forms thereof.

EUROPEAN SEARCH REPORT

		NSIDERED TO BE RELEVANT	Γ	EP 85201937.1
Category	Citation of documen of i	t with indication, where appropriate, elevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. CI.4)
A	DE - A1 - 2 5	45 645 (BAYER)	1	C 07 D 413/12
	* Formula :	I *	:	C 07 D 417/12
				C 07 D 413/14
A	CHEMICAL ABST	RACTS, vol. 97, no. 1982, Columbus,	1	C 07 D 417/14
	Ohio, USA	rsoz, Cordinbus,		C 07 D 498/04
	MARCHALIN, MI	ROSLAV; POVAZANEC,		C 07 D 513/04
1	"A study of th	RTVON, AUGUSTIN ne reaction of		A 61 K 31/449 A 61 K 31/42
ļ	2-pyridyl isot azoimide."	chiocyanate with		A 61 K 31/42
		umn 2, abstract		11 01 n 01/ 42.
	<pre>& Collect. Cze 1982, 47(3),</pre>	ech. Chem. Commun. 877-83		
A	CHEMICAL ABSTF 25, June 25, 1 Ohio, USA	ACTS, vol. 78, no. 973, Columbus,	1	TECHNICAL FIELDS SEARCHED (Int. CI.4)
1	HISANO, TAKUZO	; YABUTA, YUKO		C 07 D 413/00
	"Synthesis of pounds. VIII.	organosulfur com- Cyclization products		C 07 D 417/00
	from the modif Kindler reacti	ied Willgerodt-		C 07 D 498/00
	page 408, colu no. 159 505a	mn 1, abstract		C 07 D 513/00
	& Chem. Pharm. 511-17	Bull. 1973, 21(3),		
	The present search report ha	s been drawn up for all claims		
 _	Place of search	Date of completion of the search	1	Examiner
	VIENNA	17-01-1986		HAMMER

EPO Form 1503 03 62

X: particularly relevant if taken alone
Y: particularly relevant if combined with another document of the same category
A: technological background
O: non-written disclosure
P: intermediate document

T: theory or principle underlying the invention
 E: earlier patent document, but published on, or after the filling date
 D: document cited in the application
 L: document cited for other reasons

& : member of the same patent family, corresponding document

EUROPEAN SEARCH REPORT

0184257

Application number

gory	Citation of document with in of relevant	ndication, where appropriate, passages	Relevant to claim			
•	CHEMICAL ABSTRAC' 21, May 21, 1979 USA	TS, vol. 90, no., Columbus, Ohio,	1			
	SIMOV, D.; DAVID "Valence vibrati- azomethine group zoxazole derivat page 518, column no. 167 524u	ons of the of 2-aminoben- ives." 2, abstract				
	& Khim. Geterots (2), 188-90	ikl. Soedin. 1979,				
A	21, May 23, 1983 USA	TS, vol. 98, no. 3, Columbus, Ohio,	1			
	thiazoles and 2- dinylidenamino)t page 651, column no. 179 281r	CJERO, T. Colylamino)benzo- (2-imidazoli- benzothiazoles." 1, abstract		TECHNICAL FIELDS SEARCHED (Int. Cl.4)		
	& Synthesis 1982	2, (12), 1066-7				
		•				
	The present search report has b	een drawn up for all claims	-			
	Place of search	Examiner				
VIENNA		Date of completion of the search 17-01-1986		HAMMER		
Y :	CATEGORY OF CITED DOCL particularly relevant if taken alone particularly relevant if combined w document of the same category	E : earlier p after the rith another D : docume L : docume	atent docu filing date nt cited in nt cited for	the application rother reasons		
Ā:	technological background non-written disclosure	1 · member	of the salt	ne patent family, correspondin		

EPO Form 1503 03 62

EUROPEAN SEARCH REPORT

DOCUMENTS CONSIDERED TO BE RELEVANT					EP 85201937.1
Category	Citation of document with indication, where appropriate, of relevant passages			Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Ci.4)
A	CHEMICAL ABSTRA 13, March 28, 1 Ohio, USA	CTS, vol. 98, no. 983, Columbus,		1	
	AHUJA, PADMA; S NIGAM, M.B.; SA KAR, K.; ANAND, "Lactam acetals Synthesis and b ties of some he and diamidines. page 584, colum no. 107 106q	RDANA, VINOD; NITYA . Part VII. iological activi- terocyclic amidines			
,	& Indian J. Che 21B(9), 849-5				
A	CHEMICAL ABSTRA 7, August 15, 1 Ohio, USA	CTS, vol. 99, no. 983, Columbus,		1	
	SINGH S.P.; PRA TOMER, R.K.; PR SAWHNEY, S.N. "Synthesis and some substitute zolylamino)pyri page 553, columno. 53 691b	AKASH, O.M.; mass spectra of d 2-(2'-benza- midines." n 2, abstract			TECHNICAL FIELDS SEARCHED (Int CI 4)
	& Indian J. Che 22B(1), 37-42				
A	DE - A - 1 804 450 (EGYESÜLT GYORGYSZER)			1,7,9, 10,12,	•
	* Claims 1,2	,7,10 *			
	The present search report has b	een drawn up for all claims	1		
Place of search Date of completion of the search					Examiner
VIENNA 17-01-1986					HAMMER
Y : par doc A : tec	CATEGORY OF CITED DOCL ticularly relevant if taken alone ticularly relevant if combined w cument of the same category hnological background n-written disclosure	E : earlier par	ent c ling cite	document, date d in the ap	lying the invention but published on, or plication reasons

EUROPEAN SEARCH REPORT

0184257

Application number

	DOCUMENTS CONSI			want	EP 85201937.1	
ategory	Citation of document with of relevan	ndication, where appropriate, at passages		laim	APPLICATION (Int. CI 4)	
A	<u>US - A - 2 623 878</u> (ISLER)		110	,9,		
	* Example 1; 36,37,52-54	column 1, lines				
	-					
			ļ			
			Ì			
		-				
					TECHNICAL FIELDS SEARCHED (Int. Cl.4)	
		-				
	·					
	The present search report has I					
-	Place of search	Date of completion of the search		Examiner HAMMER		
	VIENNA	17-01-1986				
X : [Y : [CATEGORY OF CITED DOC particularly relevant if taken alone particularly relevant if combined v	a a sa a	ecry or princ artier patent d iter the filing (ocument cited ocument cited	late Linthe:	erlying the invention it, but published on, or application er reasons	
A : 1	document of the same category technological background non-written disclosure intermediate document	_	ember of the		atent family, corresponding	

٠.