PATENT ABSTRACTS OF JAPAN

(11) Publication number: 11251965 A

(43) Date of publication of application: 17.09.99

(51) Int. CI

H04B 1/707 H03H 17/02

(21) Application number: 10054019

(22) Date of filing: 05.03.98

(71) Applicant:

FUJITSU LTD

(72) Inventor:

CHIN HON

(54) MATCHED FILTER AND RADIO RECEIVER FOR **CDMA COMMUNICATION SYSTEM**

(57) Abstract:

PROBLEM TO BE SOLVED: To select an optimum architecture, to effectively lower the switching rate of the entire circuit and to substantially reduce power consumption by utilizing the feature of matched filter calculation, data dependency and data symmetry and performing design by the low power design method of a digital circuit related to a matched filter.

SOLUTION: This matched filter is provided with a data input control part 2 for specifying a place for holding received spread data every moment, data holding parts 4 for holding received data, a spread data path part 3 composed of the plural data holding parts 4 which is controlled by the data input control part 2 and an arithmetic part 5 for EXORing, adding and outputting the received spread data in the output of the spread data path part 3 and a spread replica code generated by itself.

COPYRIGHT: (C) 1999, JPO

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平11-251965

(43)公開日 平成11年(1999)9月17日

(51) Int.Cl.^e

識別記号

FΙ

H 0 4 B 1/707

H03H 17/02 601 H 0 4 J 13/00 H03H 17/02

601Z

審査請求 未請求 請求項の数10 OL (全 22 頁)

(21)出願番号

特願平10-54019

(71) 出顧人 000005223

富士通株式会社

(22)出顧日

平成10年(1998) 3月5日

神奈川県川崎市中原区上小田中4丁目1番

(72)発明者 陳 奔

神奈川県川崎市中原区上小田中4丁目1番

1号 富士通株式会社内

(74)代理人 弁理士 真田 有

(54) 【発明の名称】 マッチドフィルタ及びCDMA通信方式の無線受信装置

(57)【要約】

【課題】 マッチドフィルタに関し、マッチドフィルタ 計算の特徴、データ依存性、データ対称性を利用して、 ディジタル回路の低電力設計手法で設計することで、最 適なアーキテクチャーを選択し、回路全体のスイッチン グ率を効果的に下げ、消費電力を大幅に低減させるよう にする。

【解決手段】 マッチドフィルタにおいて、受信した拡 散データを保持する場所を時々刻々と指定するデータ入 力制御部2と、受信データを保持するデータ保持部4 と、複数のデータ保持部4よりなって、データ入力制御 部2からの制御を受ける拡散データパス部3と、拡散デ ータパス部3の出力における受信拡散データと、自分で 発生させた拡散レプリカ符号とを、EXOR演算して加 算出力する演算部5とをそなえて構成する。

【特許請求の範囲】

【請求項1】 拡散データを入力されるべく、複数のデータ保持部を並列的に配置した構成の拡散データパス部と、

該拡散データの入力に応じて、上記の拡散データパス部 における各データ保持部へのデータ保持制御を順次行な っていく拡散データ入力制御部と、

上記の拡散データパス部の各データ保持部からの出力 と、拡散符号との乗算を行なうとともに、それぞれの乗 算結果を加算して出力する演算部とをそなえて構成され 10 たことを特徴とする、マッチドフィルタ。

【請求項2】 拡散データを入力されるべく、複数のデータ保持部を並列的に配置した構成の拡散データパス部と、

該拡散データの入力に応じて、上記の拡散データパス部における各データ保持部へのデータ保持制御を順次行なっていく拡散データ入力制御部とをそなえるとともに、上記の拡散データパス部の各データ保持部からの出力を共通信号として、該各データ保持部からの出力と、拡散符号との乗算を行なうとともに、それぞれの乗算結果を加算して出力する複数の演算部をそなえて構成されたことを特徴とする、マッチドフィルタ。

【請求項3】 該拡散データ入力制御部が、複数の有限 状態保持部を環状に配置したラウンドロビン環をそな え、該ラウンドロビン環における複数の有限状態保持部 のうちの1つの有限状態保持部のみが他の有限状態保持 部と状態が異なるように、該複数の有限状態保持部の状態を順次変更していくことにより、上記の拡散データパ ス部における各データ保持部へのデータ保持が順次更新 されていくように構成されたことを特徴とする、請求項 1又は請求項2に記載のマッチドフィルタ。

【請求項4】 該拡散データ入力制御部がカウンタをそなえ、該カウンタによる計数結果に基づいて、上記の拡散データパス部における各データ保持部へのデータ保持が順次更新されていくように構成されたことを特徴とする、請求項1又は請求項2に記載のマッチドフィルタ。 【請求項5】 該拡散データパス部の該拡散データの入力側に、該拡散データ1入制御部からの制御信号に応じ

【請求項5】 該拡散データパス部の該拡散データの入力側に、該拡散データ入力制御部からの制御信号に応じて、該拡散データパス部へ該拡散データを入力させるかどうかの制御を行なうゲート部が設けられたことを特徴とする、請求項1又は請求項2に記載のマッチドフィルタ。

【請求項6】 該拡散データパス部におけるデータ保持部のクロック入力側に、該拡散データ入力制御部からの制御信号を遅延させて該遅延出力を該データ保持部へのクロック入力信号とする遅延部が設けられたことを特徴とする、請求項1,2,5のいずれかに記載のマッチドフィルタ。

【請求項7】 該拡散データパス部におけるデータ保持 部のクロック入力側に、システムクロックを反転すると 50 ともに、このシステムクロック反転信号と該拡散データ 入力制御部からの制御信号との論理積演算を施して該論 理積演算出力を該データ保持部へのクロック入力信号と する論理回路部が設けられたことを特徴とする、請求項 1、2、5のいずれかに記載のマッチトフィルタ。

2

【請求項8】 該拡散データパス部と該演算部との間に、上記の各データ保持部からの出力を選択的に該演算部へ出力しうるセレクタ部が設けられるとともに、該セレクタ部の選択制御を行なうセレクタ制御部が設けられたことを特徴とする、請求項1又は請求項2に記載のマッチドフィルタ。

【請求項9】 受信アンテナを通じて受信された C D M A 通信方式の受信信号について拡散復調を施す拡散復調 部をそなえた C D M A 通信方式の無線受信装置において、

該拡散復調部が、

20

拡散データを入力されるべく複数のデータ保持部を並列的に配置した構成の拡散データパス部と、該拡散データの入力に応じて上記の拡散データパス部における各データ保持部へのデータ保持制御を順次行なっていく拡散データ入力制御部と、上記の拡散データパス部の各データ保持部からの出力と、拡散符号との乗算を行なうとともにそれぞれの乗算結果を加算して出力する演算部とを有するマッチドフィルタをそなえて構成されていることを特徴とする、CDMA通信方式の無線受信装置。

【請求項10】 受信アンテナを通じて受信されたCDMA通信方式でQPSK変調を施された受信信号について拡散復調を施す拡散復調部をそなえたCDMA通信方式の無線受信装置において、

30 該拡散復調部が、拡散データを入力されるべく複数のデータ保持部を並列的に配置した構成の拡

散データパス部と、該拡散データの入力に応じて上記の 拡散データパス部における各データ保持部へのデータ保 持制御を順次行なっていく拡散データ入力制御部と、上 記の拡散データパス部の各データ保持部からの出力と I チャネル用拡散符号との乗算を行なうとともにそれぞれ の乗算結果を加算して出力する第1演算部と、上記の拡 散データパス部の各データ保持部からの出力と Qチャネ ル用拡散符号との乗算を行なうとともにそれぞれの乗算 結果を加算して出力する第2演算部とを有するマッチド フィルタをそなえて構成されていることを特徴とする、 CDMA通信方式の無線受信装置。

【発明の詳細な説明】

【0001】(目次)

発明の属する技術分野

従来の技術(図20~図24)

発明が解決しようとする課題

課題を解決するための手段(図1,図2)

発明の実施の形態

・第1実施形態の説明(図3~図8,図13,図14)

- ・第1実施形態の変形例の説明 (図9)
- ・第2実施形態の説明(図10~図12)
- ・その他 (図15~図19)

· 発明の効果

[0002]

【発明の属する技術分野】本発明は、広帯域DS-CDMA方式を用いて好適な、マッチドフィルタ及びCDMA通信方式の無線受信装置に関する。

[0003]

【従来の技術】近年、第3世代移動無線通信方式の無線インタフェースの検討が活発に行なわれているが、第3世代システムの無線アクセス方式として、符号分割多重接続(以下、CDMA: Code Division Multiple Access)方式が有望と考えられており、日本では、郵政省電波産業会(ARIB)において、直接スペクトラム拡散変調(以下、DS-SS: Direct Sequence Spread Spectrum)を用いたDS-CDMA方式をベースに検討が進められている。

【0004】拡散帯域幅が1.25MHzの狭帯域DS-CDMA(NarrowbandDS-CDMA)方式は、IS-95として、既に米国のディジタルセルラの標準に採用されている。これに対して、拡散帯域幅を5MHz以上にした広帯域DS-CDMA(Wideband DS-CDMA)方式は、セルラCDMAが持つ高い周波数利用効率に加えて、伝送レートに対する柔軟性と高速データ伝送特性において優れた特長を持っている。

【0005】DS-CDMA方式を使用した信号伝送方法は、送信側は、送信しようとするディジタル信号を、異なる拡散符号(PN符号:Pseudo Noise符号)を掛け合わせることによって帯域拡散させた後、送信し、一方、受信側では、全ての受信信号の中から、希望の受信信号を取り出すために、相関受信が行なわれる。すなわち、送信と同一のパターンを持った拡散レプリカ符号との相互相関をとることにより相関ピークを検出して、同期捕捉及び保持を行ない、復調する。

【0006】相互相関を実現するデバイスは、スライディング相関器に代表される能動相関素子と、マッチドフィルタ、SAW (Surface Acoustic Wave)コンボルバー、CCD (Coupled Charge Device)などの受動相関素子とに大別される。ここで、能動相関素子とは、受信符号をいったん記憶した後、拡散レブリカ符号をチップ時間(chip duration)毎に1ビットづつずらして逐次的に、EXOR演算を取って、加算出力するものであって、ハードウェア規模は小さくてよいが、同期捕捉に

は、非常に時間がかかる。

【0007】これに対し、受動相関素子とは、チップレート(chip rate)で入力されてくる受信符号と、拡散レブリカ符号とを、チップ時間毎に時々刻々とEXOR演算を取って、加算出力するものであって、ハードウェア規模は大きくなるが、同期捕捉はきわめて高速である。このため、同期捕捉が高速であるマッチドフィルタが使用されることが多い。

【0008】マッチドフィルタは、比較的長いPNコードにも対応可能であり、初期捕捉がきわめて速いうえ、逆拡散まで一度に完了でき、フルディジタルなので、LSI技術による小型化がし易いなどメリットがあるが、広帯域信号に対応する高速なチップレートの信号に対しては、消費電力がかなり増加するという課題がある。特に携帯端末などへ応用する場合、マッチドフィルタの低消費電力問題を解決しなければならない。

【0009】一般的な、DS-CDMA方式を用いた無線端末の送信部のブロック図を、図20に示す。この図20に示すDS-CDMA方式を用いた無線端末の送信部30は、ベースバンド信号に対して一次変調を施し、帯域拡散処理を施し、アップコンバートした後に、増幅して、アンテナから無線伝搬路に送出するものであって、一次変調部31、拡散変調部32、周波数変換部33、RF増幅部34、アンテナ35をそなえて構成されている。

【0010】一次変調部31は、ベースバンド信号をディジタル変調するものである。また、拡散変調部32は、一次変調された信号に帯域拡散処理を施すものである。例えば、一次変調方式に、QPSK (Quadrature PhaseShift Keying)変調方式を用いる場合は、図21に示すように、データシンボルDi, Dqは、拡散コードCi, Cqと乗算器36a,36b,36c,36dにおいて、複素乗算された後、加算器37a,37bにおいて加算されて、送信コードSi,Sq が得られる。

【0011】すなわち、数式で表すと、帯域信号Q $_1$ (t), Q_2 (t)の複素包絡線をそれぞれ $_x$ (t), y(t)とし、また、互いに異なった搬送周波数 f_1 , f_2 を持つとすると、 Q_1 (t), Q_2 (t)40 は次のようになる。

 Q_1 (t) = Re (x (t) · exp (j · 2 π f 1 t))

Q₂ (t) = Re (y (t) · exp (j · $2\pi f$ 2 t))

ここで、Re[] は、実数部を表わし、x(t), y(t) は、次式で表される複素数である。 [0012]

 $x(t) = D_i(t) + j \cdot D_q(t)$

 $y(t) = C_i(t) + j \cdot C_q(t)$

 Q_1 (t) LQ_2 (t) の乗積をとると、次の式(1) のようになる。

$$Q_1$$
 (t) $\cdot Q_2$ (t)
=Re (x (t) \cdot y (t) \cdot exp (j \cdot 2 π (f₁ + f₂) t) /2)
+Re (x* (t) \cdot y (t) \cdot exp (j \cdot 2 π (f₂ - f₁) t) /2)
 $\cdot \cdot \cdot \cdot$ (1)

ここで、 x^* (t) は、x (t) の複素共役である。 【0013】式(1)の第1項が帯域を拡散した信号を 表すので、送信コード $S_{f i}$, $S_{f q}$ は、次式のようにな

$$\begin{array}{l} {\rm S}_{\,i} \, = \, {\rm R}\,{\rm e}\,\, \left(\,\, \left(\,{\rm D}_{\,i} \, + \, {\rm j} \cdot {\rm D}_{\,q}\,\,\right) \, \cdot \, \, \left(\,{\rm C}_{\,i} \, + \, {\rm j} \cdot \,\,\right. \\ {\rm C}_{\,q}\,\, \left)\,\, \right) \\ {\rm S}_{\,q} \, = \, {\rm I}\,{\rm m}\,\, \left(\,\, \left(\,{\rm D}_{\,i} \, + \, {\rm j} \cdot {\rm D}_{\,q}\,\,\right) \, \cdot \, \, \left(\,{\rm C}_{\,i} \, + \, {\rm j} \cdot \,\,\right. \\ {\rm C}_{\,q}\,\, \right)\,\, \right) \end{array}$$

ここで、Ім〔〕は、虚数部を表す。

【0014】周波数変換部33は、拡散変調部32の出 力の送信コードをアップコンバートするものである。R F増幅部34は、帯域拡散された無線信号を、電力増幅 するものであり、具体的にはハイパワーアンプ(HP A) から構成される。アンテナ35は、RF増幅部34 の出力における無線信号を無線伝搬路に送出するもので

【0015】次に、受信系について説明する。図22 に、一般的な、DS-CDMA方式を用いた無線端末の 受信部のブロック図を示す。この図22に示すDS-C DMA方式を用いた無線端末の受信部40は、無線信号 を受信し、その受信信号を増幅し、ダウンコンバートし た後、逆拡散を施し、一次復調を行なって、情報データ を取り出すものであって、アンテナ41、RF増幅部4 2、周波数変換部43、拡散復調部44、一次復調部4 5をそなえて構成されている。

【0016】アンテナ41は、無線信号を受信するもの 30 である。RF増幅部42は、帯域拡散されて大変弱い無 線信号を、低雑音で増幅するものであり、具体的にはロ ーノイズアンプ (LNA) から構成される。周波数変換 部43は、RF増幅部42の出力における無線信号をダ ウンコンバートするものである。

【0017】拡散復調部44は、周波数変換部43でダ*

*ウンコンバートされた信号と、受信機内部で発生させた 拡散レプリカ符号 (PN符号) との帯域相互相関をとっ て、狭帯域信号を取り出すものであって、図23に示す ように、ハイブリッド器44a、ミキサ44b、局部発 振器44c、90°移相器44d、ミキサ44e、A/ 10 D (アナログ/ディジタル) 変換器 4 4 f 、拡散レプリ カ符号発生器44g、A/D変換器44h、マッチドフ ィルタ20-1~20-4、加算器44i, 44jをそ なえて構成されている。

【0018】また、一次復調部45は、拡散復調部44 の出力における、逆拡散されたディジタル信号をディジ タル復調するものである。ここで、拡散復調部44の帯 域相互相関演算を数式で表すと、以下に示すような過程 をとる。すなわち、受信された帯域信号を Q_1 (t)、 復調部の局部発振器の帯域信号をQ2 (t)とし、それ 20 ぞれの複素包絡線をx(t), y(t)、また、搬送周

波数 f_1 , f_2 を持つとすると、 Q_1 (t)、Q2 (t)は次式のように表される。

[0019]
$$Q_1$$
 (t) = Re(x(t) · exp(j · $2\pi f_1$ t))

$$Q_2$$
 (t) = Re (y (t) · exp (j · 2 π f 2 t))

また、x(t), y(t) は、次式で表されるような複 素数である。

$$x(t) = D_i(t) + j \cdot D_q(t)$$

$$y(t) = C_i(t) + j \cdot C_0(t)$$

ここで、 D_i , D_q は、それぞれ受信したデータ符号の 同相成分、直交成分を表し、 C_i , C_q は、それぞれ自 局で発生させた拡散レプリカ符号の同相成分、直交成分 を表す。

【0020】Q₁ (t), Q₂ (t)の帯域相互相関Q 12(t)は、次式で表される。

$$Q_{12}(t) = Re(r_{12}(t) \cdot exp(j \cdot 2\pi(f_2 - f_1) t)$$

ここで、複素包絡線 r_{12} (t)は、次式で表される、

$$r_{12}(t) = x(t) \cdot y^*(t) / 2 \cdot \cdot \cdot (2)$$

また、y* (t) は、y (t) の複素共役を表す。 40※であるので、r₁₂(t)は直接低域信号r_{12L} (t)と 【0021】同期検波によると、搬送周波数 $f_1=f_2$ ※ なって、定数項を無視すると、式 (2) は、

$$r_{12L} (t) = x_{L} (t) \cdot y_{L} * (t)$$

$$= (D_{i} + j \cdot D_{q}) \cdot (C_{i} - j \cdot C_{q})$$

$$= D_{i} \cdot C_{i} + D_{q} \cdot C_{q}$$

$$+ j \cdot (C_{i} \cdot D_{q}) - j \cdot (D_{i} \cdot C_{q}) \cdot \cdot \cdot (3)$$

で表される。従って、その出力における同相成分 S_i 、直交成分 S_q は、

$$S_{i} = D_{i} \cdot C_{i} + D_{q} \cdot C_{q} \qquad \cdots (4-1)$$

$$S_{q} = C_{i} \cdot D_{q} - D_{i} \cdot C_{q} \qquad \cdots (4-2)$$

で表される。

ャネルとQチャネルとに、分波するものである。ミキサ 【0022】ハイブリッド器44aは、受信信号をIチ 50 44bは、ハイブリッド器44aの出力におけるIチャ ネル信号に対して、局部発振器 4 4 c から出力されるアナログ正弦波を掛け合わせて、無線信号からベースバンド信号を取り出すものである。また同様に、ミキサ 4 4 e は、ハイブリッド器 4 4 a の出力における Q チャネル信号に対して、90°移相器 4 4 d を通して位相を 90°ずらしたアナログ余弦波を掛け合わせて、無線信号からベースバンド信号を取り出すものである。

【0023】A/D変換器44fは、ミキサ44bの出力信号をアナログ・ディジタル変換するものであり、同様に、A/D変換器44hは、ミキサ44eの出力信号をアナログ・ディジタル変換するものである。拡散レブリカ符号発生器44gは、逆拡散のため、送信側と同じ系列のPN符号である拡散レブリカ符号 C_i , C_q を発生するものであり、具体的には、数カ所のタップから帰還線を設けた巡回シフトレジスタで構成されている。

【0024】ここで、受信側の同相成分、直交成分をそれぞれ同相成分用、直交成分用の拡散符号によって逆拡散するだけでは、両拡散符号間の相互相関によって、逆拡散後の信号のS/N(Signal/Noise)比が劣化するため、同相、直交それぞれの成分は、それぞ*20

 $M(nT) = \sum_{k=1}^{\infty} R(k) \cdot P(nT) \cdot Z^{-k} \cdot \cdot \cdot (5)$

で表される。ここで、Tはチップ時間、Cはタップ数、R(k)は拡散レプリカ符号、nは整数、P(nT)は入力拡散データを表す。

【0027】このマッチドフィルタを用いることにより、初期捕捉が極めて速くなり、逆拡散までを一度に完了することができるが、その一方で、長いシフトレジスタ及び加算器による回路規模、消費電力の増大などが課題となっている。加算器 44 i は、マッチドフィルタ 20-1 の出力信号と、マッチドフィルタ 20-4 の出力信号とを加算して、1 チャネルデータ $_1$ を取り出すものであり、同様に、加算器 $_2$ 4 j は、マッチドフィルタ $_2$ 0 $_2$ の出力信号とを加算し、 $_3$ の出力信号とを加算し、 $_4$ でッチドフィルタ $_5$ の $_4$ の $_4$ の $_5$ の $_5$

【0028】図24に、従来のマッチドフィルタのブロック図を示す。この図24に示すマッチドフィルタ28は、受信したチップレートの速さを持つ拡散データと、自局で発生させた拡散レプリカ符号との、EXOR演算を行ない、その結果を加算して出力するもので、拡散データパス部22、乗算部23、レブリカ符号用レジスタ24、加算部25をそなえて構成されている。また、具体的な数値例として、拡散データパスピット数は8、タップ数は256、オーバーサンプリング数は4であるとする。

*れ2回づつ、逆拡散は計4回行なわれる。すなわち、マッチドフィルタ20-1は、A/D変換器44fの出力信号 D_i と拡散レプリカ符号発生器44gの出力信号 C_i との帯域相互相関演算、具体的には、上記式(3)の第1項に対応した演算を行なうものである。

【0025】同様に、マッチドフィルタ20-2は、A /D変換器 44f の出力信号 D_i と拡散レプリカ符号発生器 44g の出力信号 C_q との帯域相互相関演算、具体的には、上記式 (3) の第 4 項に対応した演算を行なうものである。同様に、マッチドフィルタ 20-3 は、A /D変換器 44h の出力信号 D_q と拡散レプリカ符号発生器 44g の出力信号 C_i との帯域相互相関演算、具体的には、上記式 (3) の第 3 項に対応した演算を行なうものである。

【0026】同様に、マッチドフィルタ20-4は、A /D変換器 44 hの出力信号 D_q と拡散レプリカ符号発生器 44 gの出力信号 C_q との帯域相互相関演算、具体的には、上記式(3)の第2項に対応した演算を行なうものである。そして、各マッチドフィルタ内で行なわれる演算は、

※【0029】ここで、拡散データバスピット数は、一次 変調の変調多値数分のピット数のデータ幅を表し、図例 では1シンボルを8ピットで受信したことになる。ま た、タップ数は、拡散符号長を表す。さらに、オーバー サンプリング数は、1チップ時間内で何回サンプリング を行なうかを表す。

【0030】拡散データパス部22は、サンプリングクロック毎に、受信した拡散データを取り込んで、そのデータ符号を1段づつシフトさせるシフトレジスタ群であって、シフトレジスタ22-a,22-b,22-c,22-d,22-e,22-f,22-g,22-hの8本がパラレルに配置されて構成される。そして、各シフトレジスタは、多段直列に連結したフリップフロップ(以下、フリップフロップをFFと称することがある)から構成されている。

【0031】すなわち、シフトレジスタ22-aは、M 段直列に連結されたFF $22-1a\sim$ FF22-Maを そなえて構成され、シフトレジスタ22-bは、M段直 列に連結されたFF $22-1b\sim$ FF22-Mbをそな えて構成され、同様にして、シフトレジスタ22-hは、M段直列に連結されたFF $22-1h\sim$ FF22-Mhをそなえて構成されている。

【0032】ここで、Mは、タップ数Tと、オーバーサンプリング数Oによって次式のように表される。

. . . (6)

また、これから、必要な全フリップフロップの数Nは、次式で表される。

 $N = D \times M \qquad \cdots \qquad (7)$

ここで、Dは、拡散データパスビット数であり、一次変 タップ数であり、Oは、オーバーサンプリング数を表調の変調多値数分のビット数のデータ幅を表し、Tは、 50 す。

【0033】なお、以下の説明のため、複数フリップフ ロップ(以下、この複数フリップフロップをFFsと称 することがある)を定義しておく。すなわち、FFs2 2-1は、FF22-1aからFF22-1hを横断的 に8個並列に配置して構成され、FFs22-2は、F F22-2aからFF22-2hを横断的に8個並列に 配置して構成され、同様にして、FFs22-Mは、F F22-MaからFF22-Mhの8個を串刺しするよ うに、横断的に8個並列に配置して構成されている。ま た、それぞれの複数フリップフロップは、8ビットの受 10 ップ出力の和を取って、8ビットで出力するものであ 信符号の2の補数を格納し、次段での演算を簡単化する ようにしている。

【0034】レプリカ符号用レジスタ24は、拡散レプ* U= チップ時間 × タップ数

である。

【0036】すなわち、式(5)の演算を完成するため には、入力拡散データをそれぞれ、U(秒)間だけ保持 すれば良く、シフトの必要は全くない。また、式 (5) の演算は、前後の演算結果に依存しないため、演算器の 順番或いは位置からくる制限がなく、どこで演算を行な ってもよい。さらに、全ての入力拡散データに対して、 演算の内容は、全く同じであるため、'対称的'な演算 であることがわかる。

【0037】本発明は、このような拡散信号を逆拡散す る方式に必要なキーデバイスである、マッチドフィルタ の低電力化に関するものである。

[0038]

【発明が解決しようとする課題】よって、マッチドフィ ルタは、次のような特徴がある。

①入力拡散データの1周期U(秒)間保存。

②演算器空間の独立性。すなわち、演算器の順番或いは 位置からくる制限がなく、どこで演算を行なってもよ

【0039】③演算の対称性

さらに、動作的な面から、次のような特徴が挙げられ

④チップレート或いはそれ以上の周波数 (オーバサンプ リングが2以上の場合)で動作する。

⑤拡散データパス部は、シフトレジスタ構成が主流であ るため、すべてのフリップフロップが、サンプリングク ロック毎に動作している。

【0040】⑥QPSK変調の場合、Iチャネル (c h)と、Qチャネル(ch)を分離するため、基本的に 4つのマッチドフィルタが必要である。

④,⑤,⑥の理由により、拡散データパス部22のスイ ッチング率 (Switching Rate) は、非常 に高くなり、消費電力が大きいという課題がある。ここ で、スイッチング率とは、回路中で、動作している素子 の割合を表す。

【0041】本発明は、このような課題に鑑み創案され 50

*リカ符号発生器で発生させた拡散レプリカ符号を格納し ておくレジスタである。乗算部23は、拡散データパス 部22の出力と、レブリカ符号用レジスタ24の出力と を乗算するものであり、その段数は、拡散データパス部 22の出力の各タップと対応するように、式(6)で表 される。具体的には、EXORゲートによって実現され る。また、拡散符号(1, -1)はそれぞれ、(0, -1)1)で表現される。

10

【0035】加算部25は、乗算部23からの工個の夕 る。式(5)から、入力される拡散データP(nT)の ライフタイムは、ちょうど拡散符号の1周期に相当する ひ(秒)である。ここでひは、

\cdots (8)

たもので、マッチドフィルタの消費電力を低減させるた めに、マッチドフィルタ計算の特徴、データ依存性、デ ータ対称性を利用した、ディジタル回路の低電力設計手 法を用いることで、最適なアーキテクチャーを選択し、 回路全体のスイッチング率を効果的に下げ、前述の問題 を解決するマッチドフィルタ及びCDMA通信方式の無 線受信装置を提供することを目的とする。

[0042]

【課題を解決するための手段】図1は本発明の原理ブロ ック図で、この図に示すように、本発明にかかるマッチ ドフィルタ1は、拡散データ入力制御部2、拡散データ パス部3、演算部5をそなえて構成されている。ここ で、拡散データパス部3は、拡散データを入力されるペ く、複数のデータ保持部4を並列的に配置して構成され ているもので、データ入力制御部2は、受信した拡散デ 30 ータの入力に応じて、上記の拡散データパス部3におけ る各データ保持部 4へのデータ保持制御を順次行なって いくものである。また、演算部5は、拡散データパス部 3の各データ保持部4からの出力と、拡散符号との乗算 を行なうとともに、それぞれの乗算結果を加算して出力 するものである(請求項1)。

【0043】また、図2は、本発明の別の原理ブロック 図で、この図に示すように、本発明にかかるマッチドフ ィルタ6は、拡散データ入力制御部2、拡散データパス 部3、複数演算部19をそなえて構成されている。ここ で、拡散データパス部3は、拡散データを入力されるべ く、複数のデータ保持部4を並列的に配置して構成され ているもので、拡散データ入力制御部2は、該拡散デー 夕の入力に応じて、上記の拡散データパス部3における 各データ保持部4へのデータ保持制御を順次行なってい くものである。また、複数演算部19は、上記の拡散デ ータパス部3の各データ保持部4からの出力を共通信号 として、該各データ保持部4からの出力と、拡散符号と の乗算を行なうとともに、それぞれの乗算結果を加算し て出力する複数の演算部5をそなえて構成されている (請求項2)。

【0044】また、図1又は図2に記載のマッチドフィ ルタにおいては、該拡散データ入力制御部2が、複数の 有限状態保持部を環状に配置したラウンドロビン環をそ なえ、該ラウンドロビン環における複数の有限状態保持 部のうちの1つの有限状態保持部のみが他の有限状態保 持部と状態が異なるように、該複数の有限状態保持部の 状態を順次変更していくことにより、上記の拡散データ パス部3における各データ保持部4へのデータ保持が順 次更新されていくように構成することができる(請求項 3)。

【0045】さらに、図1又は図2に記載のマッチドフ ィルタにおいては、該拡散データ入力制御部2がカウン 夕をそなえ、該カウンタによる計数結果に基づいて、上 記の拡散データパス部3における各データ保持部4への データ保持が順次更新されていくように構成することも できる(請求項4)。そして、図1又は図2に記載のマ ッチドフィルタにおいては、該拡散データパス部3の該 拡散データの入力側に、該拡散データ入力制御部2から の制御信号に応じて、該拡散データパス部3へ該拡散デ ータを入力させるかどうかの制御を行なうゲート部を設 けて構成することもできる(請求項5)。

【0046】ここで、図1又は図2又は請求項5に記載 のマッチドフィルタにおいては、該拡散データパス部3 におけるデータ保持部4のクロック入力側に、該拡散デ ータ入力制御部2からの制御信号を遅延させて該遅延出 力を該データ保持部4へのクロック入力信号とする遅延 部を設けて構成してもよく(請求項6)、該拡散データ パス部3におけるデータ保持部4のクロック入力側に、 システムクロックを反転するとともに、このシステムク ロック反転信号と該拡散データ入力制御部 2 からの制御 信号との論理積演算を施して該論理積演算出力を該デー タ保持部4へのクロック入力信号とする論理回路部を設 けて構成してもよい (請求項7)。

【0047】さらに、図1又は図2に記載のマッチドフ ィルタにおいては、該拡散データパス部3と該演算部6 との間に、上記の各データ保持部4からの出力を選択的 に該演算部5へ出力しうるセレクタ部が設けられるとと もに、該セレクタ部の選択制御を行なうセレクタ制御部 を設けて構成することができる(請求項8)。ところ で、本発明のCDMA通信方式の無線受信装置は、受信 アンテナを通じて受信されたCDMA通信方式の受信信 号について拡散復調を施す拡散復調部をそなえたCDM A通信方式の無線受信装置において、該拡散復調部が、 拡散データを入力されるべく複数のデータ保持部を並列 的に配置した構成の拡散データパス部と、該拡散データ の入力に応じて上記の拡散データパス部における各デー タ保持部へのデータ保持制御を順次行なっていく拡散デ ータ入力制御部と、上記の拡散データパス部の各データ 保持部からの出力と、拡散符号との乗算を行なうととも

するマッチドフィルタをそなえて構成されていることを 特徴としている(請求項9)。

12

【0048】また、本発明のCDMA通信方式の無線受 信装置は、受信アンテナを通じて受信されたCDMA通 信方式でQPSK変調を施された受信信号について拡散 復調を施す拡散復調部をそなえたCDMA通信方式の無 線受信装置において、該拡散復調部が、拡散データを入 力されるべく複数のデータ保持部を並列的に配置した構 成の拡散データパス部と、該拡散データの入力に応じて 10 上記の拡散データパス部における各データ保持部へのデ ータ保持制御を順次行なっていく拡散データ入力制御部 と、上記の拡散データパス部の各データ保持部からの出 力とIチャネル用拡散符号との乗算を行なうとともに、 それぞれの乗算結果を加算して出力する第1演算部と、 上記の拡散データパス部の各データ保持部からの出力と Qチャネル用拡散符号との乗算を行なうとともにそれぞ れの乗算結果を加算して出力する第2演算部とを有する マッチドフィルタをそなえて構成されていることを特徴 としている(請求項10)。

20 . [0049]

30

【発明の実施の形態】以下、図面を参照して、本発明の 実施形態を説明する。

(A) 本発明の第1実施形態

本発明の第1実施形態にかかるディジタルマッチドフィ ルタも、前述した広帯域DS一CDMA方式を用いた無 線端末の受信部の拡散復調部に設けられるものである。 【0050】即ち、図3に示すように、第1実施形態に かかるディジタルマッチドフィルタが適用された拡散復 調部44についても、ハイブリッド器44a、ミキサ4 4 b、局部発振器 4 4 c、 9 0° 移相器 4 4 d、ミキサ 44e、A/D変換器44f、拡散レプリカ符号発生器 44g、A/D変換器44h、ディジタルマッチドフィ ルタ (低電力マッチドフィルタ) 20-1~20-4、 加算器44i、44jをそなえて構成されている。

【0051】これにより、拡散復調部44では、周波数 変換部43でダウンコンバートされた無線信号を、ハイ ブリッド器44aにおいて、IチャネルとQチャネルと に分波し、ミキサ44bにおいて、Iチャネルを、局部 発振器 4 4 c から出力されるアナログ正弦波と掛け合わ せ、また、ミキサ44eにおいて、Qチャネルを、局部 発振器44cの出力波形が90°移相器44dにて移相 されたアナログ余弦波と掛け合わす。そして、A/D変 換器44f, 44hにおいて、ミキサ44b, ミキサ4 4 eからの出力信号をアナログ・ディジタル変換し、デ ィジタルマッチドフィルタ20-1~20-4におい て、拡散レブリカ符号発生器44gの出力における拡散 レプリカ符号Ci, Caと、A/D変換器44f, 44 hからの出力信号である D_i , $D_{f Q}$ とにより、帯域相互 相関演算を行なう。さらに、加算器44i,44jにお にそれぞれの乗算結果を加算して出力する演算部とを有 50 いて、ディジタルマッチドフィルタ20-1~20-4

における両出力信号を加減算して、IチャネルデータSi及びQチャネルデータSgとして出力する。

【0052】ところで、本第1実施形態にかかる、ディジタルマッチドフィルタ20-1,20-2,20-3,20-4は、受信した拡散入力データを、チップ時間毎に、指定された複数フリップフロップのうちの1個に、順番的に書き込み、これと同時に、拡散レブリカ符号(PN符号)を、チップ時間毎にシフトさせて、逆拡散の演算を行なって出力するもので、図4に示すように、拡散データ入力制御回路(部)10、拡散データパスレジスタ回路(拡散データパス部)7、オーバサンプリング回路(セレクタ制御部)8、演算回路(部)9をそなえて構成されている。

【0053】ここで、拡散データ入力制御回路10は、受信した拡散入力データを、拡散データビット数づつ順次、拡散データパスレジスタ回路7内の1つのデータ保持部としてのFFs13に書き込みを行なうべく、その書き込み位置を制御するものである。また、拡散データパスレジスタ回路7は、拡散データ入力制御回路10によって指定された1つのFFs13に、チップ時間幅を持つ拡散データビット数の受信拡散データを保存するものである。ここで、1つのFFs13は、1ワードデータを表し、拡散データパス数分のFF13aが、並列的に配置されており、例えば、拡散データパス数が8の場合においては、拡散入力データは8ビットづつ、順次異なるFFs13に保存される。

【0054】図5に、拡散データ入力制御回路10の構 成を示す。図5に示す拡散データ入力制御回路10は、 ラウンドロビン環と呼ばれる、数珠状に連結された複数 のフリップフロップ10aから構成されたシフトレジス 夕であって、全部のFF10aの出力端子が、次段のF F10aの入力端子に連結されて、全体として数珠状に 閉じた接続形態をなしている。そして、FF10aの個 数は、(タップ数×オーバサンプリング数) 個である。 【0055】また、このFF10aは、ある有限な状態 を保持するもので、具体的にはDFF(Delay F lip Flop:遅延フリップフロップ) などが用い られる。これにより、FF10aが、有限状態保持部と して機能することになる。すなわち、ラウンドロビン環 内で、「1'という状態のフリップフロップを常に1つ のみにし、残りのフリップフロップはすべて'0'とい う状態にしておくことで、1つのフリップフロップだけ が、他のフリップフロップと状態が異なるようにし、こ の'1'状態のフリップフロップがサンプリングクロッ ク毎に順次シフトしていく。

【0056】なお、有限状態保持部としては、1ビットのフリップフロップに限定されるものではなく、その他のものを用いてもよい。そして、各FF10aの出力は、次段の拡散データパスレジスタ回路7の各FFs13に、過不足なくつながっており、この値が'1'とな 50

14 唯一つのFFs13がアクティブに:

ることによって、唯一つのFFs13がアクティブにされて、その内容が更新される。

【0057】ここで、拡散データパスレジスタ回路7の各FFs13が更新される周期は、(タップ数×チップ時間)の期間であり、拡散符号の全長が現れるのに要する時間に相当する。また、このような構成により、(タップ数×オーバサンプリング数)段数のラウンドロビン環で'1'となったフリップフロップにつながっているFFs13のみが、入力側から自分宛ての1ワード分の拡散入力データをラッチするので、ラウンドロビン環は、各FFs13に対してデータ更新できる順番を知らせる働きをしている。

【0058】図13に、FFs13の回路構成を示す。この図13に示すFFs13は、8個のFF13aと、8個のANDゲート13bとをそなえて構成されている。なお、図13の8個は、受信した1ワードデータのビット数を表しており、一次変調の変調多値数分のビット数分に対応している。そして、受信した1ワードデータの2の補数が入っており、これらが、次段のオーバサンブリング回路8に出力される。また、このようなFFs13の個数は、ラウンドロビン環を構成するFF10aの数と等しく、(タップ数×オーバサンプリング数)個である。

【0059】また、FF13aは、ANDゲート13bの出力に応じて、受信した拡散データのうちの1ビットを、1周期の間だけ保持するものである。また、ANDゲート13bは、入力制御回路であって、拡散データ入力制御回路10からの制御信号に応じて、受信した拡散データを取り込んで保持するか、若しくは取り込まないか、の決定をするゲートである。

【0060】図14(a)に、FF13aの入力制御回路の構成を示す。ここで、ANDゲート13bは、拡散入力データビットと、拡散データ入力制御回路10から出力されるFF入力制御信号との論理積を取って、その出力がFF13aのD端子に入力されるものである。図14(b)に、FF13aのタイミングチャートを示す。すなわち、FF入力制御信号RB-CNTがオンになると、各FF13aのイネーブル端子がアクティブになり、クロックCLKの立ち上がりエッジで、拡散入力データビットは、各FF13aに取り込まれる。逆に、オフのときは、各FF13aに取り込まれない。

【0061】また、このようにして、拡散データパス回路7の各FFs13の入力は、拡散入力データとは常には接続されず、データ入力時以外は停止状態になるため、各FFs13のデータ入力端子のスイッチング率を抑えられ、無駄な電力を消費しない。すなわち、ある時刻に、動作しているFFs13は、拡散データパスのビット数幅の1ワード分だけとなり、拡散データパス回路

7の各FFs13の入力端子のスイッチング率は、大幅 に下げられ、消費電力を効果的に低減することができ る。

【0062】なお、ここで、書き込み制御の動きは、拡散データパスレジスタ回路7が、あたかも環状に配置されているように見える。この"環状"という語について説明する。図6に示すように、各FFs13の出力のQ端子と、次段のFFs13の入力のD端子は、回路的には、連結しているわけではないが、拡散データ入力制御回路10が、中心に位置し、その回りを拡散データパス回路7の各FFs13が、概念的には、放射円状に配置されていて、更新タイミングの順番が割り振られていると捕らえることができる。

【0063】さらに、拡散データパスレジスタ回路7は、受信した拡散入力データを保持する複数個のFFs13から構成されており、このFFs13を単位に拡散データ入力が更新される。次に、オーバサンブリング制御について説明する。オーバサンブリング数が1なら制御方法を検討する必要はないが、1より大きい場合は、1チップ時間内に行なわれるオーバサンブリングの度に、FFs13のシフト制御が必要となる。すなわち、例えば、4倍サンプリングのとき、1チップ時間内に4回乗算が繰り返されるので、各サンプリングクロック毎に拡散データパス回路7のFFs13の出力をずらしていかなくてはならない。

【0064】図7に、一般的な4倍オーバサンプリング制御回路の1例を示す。この図7に示す4倍オーバサンプリング制御回路50は、FFs13が(タップ数×4)段直列に連結したシフトレジスタ群から構成される。この、4倍オーバサンプリング制御回路50は、受信した8ピット幅の拡散データ入力をサンプリングクロック毎にシフトさせるレジスタであって、4段毎のFFs13のデータが出力され、その出力が、演算回路51に入力される。

【0065】演算回路51は、4倍オーバサンプリング制御回路50からの受信符号と、外部の拡散レプリカ符号発生器44gからの拡散レプリカ符号とを逆拡散演算するもので、乗算回路51a、加算回路51bをそなえて構成されている。乗算回路51aは、4倍オーバサンプリング制御回路50から出力される4クロック毎の8ビットデータと、拡散レプリカ符号発生器44gからの8ビット拡散レプリカ符号とをEXOR演算して、加算回路51bに出力するものである。

【0066】また、加算回路51bは、乗算回路51aからの出力をすべて足し合わせるものである。このように、拡散レプリカ符号発生器44gのデータはシフトせずに、4倍オーバサンプリング制御回路50のデータがシフトして演算が行なわれる。また、4倍オーバサンプリング制御回路50のデータは、1周期の間更新されない。

16

【0067】これに対して本発明では、データが1周期の間更新されない点は同じであるが、受信した拡散入力データはシフトせずに、拡散レブリカ符号がシフトするようになっている。このため、拡散入力データを選択する手段が必要となる。図8に、本発明にかかる4倍オーバサンプリング制御回路8は、拡散データパスレジスタ回路7内の複数のFFs13の中から1つの出力を選択して、演算回路9へ出力するもので、複数のセレクタ(SLT)8a、'O'ー状態のFSM('O'ーState Finite State Machine:有限状態マシーン)8bをそなえて構成されている

【0068】セレクタ8aは、拡散データパスレジスタ回路7における4個のFFs13から1個のFFs13 を選択するセレクタである。また、'O'ー状態FSM8bは、1チップ時間内で、何番目のオーバサンプリングが行なわれているかを表すものであって、4倍であれば、具体的には、例えば2ビットのカウンタによって、'00'が状態0、'01'が状態1、'10'が状態2、'11'が状態3などと表すことができる。なお、状態の表示方法は、これに限定されるものではなく、他の表示方法を用いてもよい。

【0069】すなわち、拡散データパスレジスタ回路7内の各FFs13の出力は、4個づつまとめられて、セレクタ8aに入力される。その際、4一状態FSM8bが、各セレクタ8aを制御することによって、4個のFFs13から1個のFFs13が選択され、そのFFs13が格納しているデータだけが、演算回路9に出力さ30れる。

【0070】このように、受信した拡散入力データをシフトさせずに、拡散レブリカ符号をシフトさせるという構成なので、オーバサンブリング制御回路8を設けることによって、セレクタによって選択されたFFs13だけが動作し、その他のFFs13は、停止状態になるので低消費電力化がなされる。演算回路9は、オーバサンブリング制御回路8内のセレクタ8aの出力と、自局で発生させた拡散レブリカ符号とを、EXOR演算して、そのすべての結果を足し合わせて出力するものであって、乗算回路9a、拡散レブリカ符号レジスタ26、加

【0071】すなわち、乗算回路9aは、オーバサンプリング制御回路8内のセレクタ8aの出力と、自局で発生させた拡散レプリカ符号とを、EXOR演算するものである。1サンプリングクロック毎の、立ち上がりクロック、又は、立ち下がりクロックで、演算が行なわれる。また、サンプリングクロック間隔は、次式で表され

る。また、サンプサンラクロック間内は、人式で

【0072】サンプリングクロック間隔

算回路9 bをそなえて構成されている。

 \cdots (9)

また、拡散レプリカ符号レジスタ26は、拡散レプリカ 符号発生器 4 4 gで発生させた拡散レプリカ符号を読み 込んで、1チップ時間毎に、1ビットづつシフトしてい く巡回シフトレジスタである。

【0073】加算回路9bは、乗算回路9aのすべての 結果を足し合わせて出力するものである。このようにし て、本実施例では、相互相関の計算の特徴、データの依 存性、対称性などを利用して、広帯域DS-CDMA方 式の受信機の復調部に使われるディジタルマッチドフィ ルタの各要素において、回路全体のスイッチング率を下 げるよう低電力設計を行ない、スイッチング率が効果的 に改善されるので、消費電力を低減させることができ、 例えば、移動機のような消費電力を厳しく要求する設計 に対して非常に有効である。さらに、フルディジタルの ため、他の回路と一緒に簡単に大規模集積化が可能とな って、装置の小型化を促進することができ、端末の低コ スト化に寄与できる。

【0074】(A1)本発明の第1実施形態の変形例 なお、上記の第1実施形態で用いられていた、オーバサ ンプリング制御回路を、構成要素からはずしてもディジ タルマッチドフィルタを構成できる。すなわち、オーバ サンプリング数が1の場合は、式(9)より、サンプリ ング間隔は、チップ時間となるので、オーバサンプリン グ制御回路が必要ない。

【0075】図9は、本発明の第1実施形態の変形例に かかる、ディジタルマッチドフィルタのブロック図であ り、同図に示すディジタルマッチドフィルタ11は、受 信した拡散入力データを、チップ時間毎に、拡散データ 入力制御回路10によって指定されたFFs13のうち の1個に、順番的に書き込み、これと同時に、拡散レプ リカ符号を、サンプリング時間毎にシフトさせて、逆拡 散の演算を行なって出力するもので、拡散データ入力制 御回路10、拡散データパスレジスタ回路7、演算回路 9をそなえて構成されている。

【0076】ここで、上記の第1実施形態と同じ符号を 有する部材は、同様なものを表すので、更なる説明は省 略する。オーバサンプリング数が1の場合、上述のラウ ンドロビン環のフリップフロッップの数は、タップ数と 等しくなり、オーバサンプリング制御用のセレクタが必*40

> $S_i + j \cdot S_a$ $= D_{i} \cdot (C_{i} - j \cdot C_{q}) + D_{q} \cdot (C_{q} + j \cdot C_{i}) \cdot \cdot (10)$ うようになっている。

が得られ、従来、 $D_i \cdot C_i$ の計算と、 $D_i \cdot j \cdot C_a$ の計算とを別々のディジタルマッチドフィルタで行なっ ていたものを、式(10)第1項のように、Ichデー $eta D_i$ と、($C_i - j \cdot C_q$)との計算で行なうように なっている。また同様に、 D_{q} ・ C_{q} の計算と、 D_{q} ・ j・C_i の計算とを別々のディジタルマッチドフィルタ で行なっていたものを、式(10)第2項のように、Q *要ないので、著しく消費電力が改善される。

18

【0077】このようにして、本発明の第1実施形態の 変形例によれば、オーバサンプリング制御回路を省略し ても、ディジタルマッチドフィルタを構成できるので、 上記の第1実施形態よりも一層、消費電力を低減するこ とができる。

(B) 本発明の第2実施形態

上記の第1実施形態及び第1実施形態の変形例において 10 は、ディジタルマッチドフィルタを構成するユニット を、消費電力を抑えた回路にすることにより低消費電力 化を図っていた。

【0078】ところで、受信機の拡散復調部で使用され るディジタルマッチドフィルタの個数を減らすことによ っても消費電力を抑えることができる。図10に、本発 明の第2実施形態にかかる広帯域DS-CDMA方式を 用いた無線端末の拡散復調部のブロック図を示す。この 図10に示す、拡散復調部46は、受信した無線信号を 周波数変換部43でダウンコンバートさせたのち、この 信号と、受信機内部で発生させた拡散レプリカ符号との 帯域相互相関をとって、狭帯域信号を取り出すものであ って、ハイブリッド器44a、ミキサ44b、局部発振 器44c、90°移相器44d、ミキサ44e、A/D 変換器44f、拡散レプリカ符号発生器44g、A/D 変換器44h、ディジタルマッチドフィルタ(低電力マ ッチドフィルタ) 21-1, 21-2、加算器44i, 44 jをそなえて構成されている。

【0079】ここで、上記の第1実施形態と同じ符号を 有する部材は、同様なものを表すので、更なる説明は省 略する。上記の第1実施形態でのディジタルマッチドフ ィルタは4個であるのに対して、本変形例では、ディジ タルマッチドフィルタは、2個だけとなっている。で は、なぜ、ディジタルマッチドフィルタが、2個だけで よいのか、の理由を説明する。

【0080】上述したように、一次変調にQPSKを用 いているので、受信したIchデータの D_i と、QchデータのDq との2種類のデータは、共通信号として、 分岐して計算に用いられている。

すなわち、上述の式 (3) を変形すると、

【0081】これにより、従来は、Ichのパスに属す る2つのディジタルマッチドフィルタが必要とした計算 を、1つのディジタルマッチドフィルタで行なう一方、 Qchのパスに属する2つのディジタルマッチドフィル タが必要とした計算を、1つのディジタルマッチドフィ ルタで行なうことで、復調部全体では、第1,第2の2 chデータ D_q と、($C_q+j\cdot C_i$)との計算で行な 50 個のディジタルマッチドフィルタで済むようになる。

【0082】そして、受信したIchとQchのデータを共用するために、共用の拡散データパス回路を用意して演算を行なう。図11に、本発明の第2実施形態にかかるディジタルマッチドフィルタのブロック図を示す。この図11に示す、データパス共用型ディジタルマッチドフィルタ21-1,21-2は、拡散データ入力制御回路10、共用型拡散データパスレジスタ回路77、オーバサンブリング回路8、演算回路9、及びオーバサンブリング回路8、演算回路99をそなえて構成されている。

【0083】また、図12に、本発明の第2実施形態にかかる共用拡散データパス回路77と、オーバサンプリング回路8及びオーバサンプリング回路88との接続形態を示す。この図12に示す共用拡散データパス回路77は、受信した拡散入力データを保持し、2か所の演算回路に対して、データを提供するものであって、複数のFFs13を並列的に配置してそなえている。

【0084】オーバサンブリング回路88は、オーバサンプリング回路8と同様であって、拡散データパスレジスタ回路77内の複数のFFs13の中から1つの出力 20を選択して、演算回路99へ出力するもので、複数のセレクタ(SLT)88a、'O'ー状態のFSM88bをそなえて構成されている。演算回路99は、演算回路9と同様であって、オーバサンブリング制御回路88内の出力と、拡散レブリカ符号レジスタ27の出力における拡散レブリカ符号とを、乗算回路99aにおいてEXOR演算して、そのすべての結果を加算回路9bにおいて足し合わせて出力するものである。

【0085】このような構成により、共用拡散データバス回路77の出力は、共通信号として、オーバサンプリング回路8及びオーバサンプリング回路88に、共用されている。また、オーバサンプリング回路8の出力は、 Iチャネル用拡散符号と乗算され、その結果が演算回路9から加算出力される。同様に、オーバサンプリング回路88の出力は、 Qチャネル用拡散符号と乗算され、その結果が演算回路99から加算出力される。

【0086】また、従来のものと比較して、オーバサンプリング数が4の場合、拡散データパスレジスタ回路77内のFFs13が、あたかも環状に構成され、さらに、この出力が共用されるため、オーバサンプリング回路8,88が導入されているのにもかかわらず、消費電力は55%の改善が得られた。このようにして、本実施形態では、相互相関の計算の特徴、データの依存性、対称性などを利用して、広帯域DS-CDMA方式の受信機の復調部に使われるディジタルマッチドフィルタの各要素において、回路全体のスイッチング率を下げるように低電力設計を行ない、拡散データパス回路を共用することで、従来4個必要だったディジタルマッチドフィルタを2個に減らすことができ、スイッチング率が大幅に改善されるので、過費電力をほぼせんに減いされること

ができる。これはまた、例えば、移動機のような消費電力を厳しく要求する設計に対して非常に有効である。さらに、フルディジタルのため、他の回路と一緒に簡単に大規模集積化が可能となって、移動機の小型化を促進することができ、端末の低コスト化に寄与できる。

【0087】(C) その他

上記の、各実施形態では、拡散データパス回路7の各FFs13のスイッチング率を改善する方法として、各FF13aのイネーブル端子を使用する方法を用いている10 が、本実施形態はこれに限定されるものではなく、各複数フリップフロップをオン・オフ制御する方法として、各複数フリップフロップのクロック端子を使用するように構成してもよい。

【0088】各フリップフロップのクロック端子を使用した入力制御回路を持つ、クロック遅延型FFs制御回路の構成を図15に示す。この図15に示すFFs14は、拡散データ入力制御回路10からの制御信号に応じて、受信した拡散データを取り込んで保持するか、若しくは取り込まないか、の決定がされるものであって、8個のFF14a、8個のANDゲート14b、8個のバッファ14cをそなえて構成されている。ここで、図15の8個は、受信した1ワードデータのビット数を表しており、一次変調の変調多値数分のビット数分に対応している。そして、受信した1ワードデータの2の補数が入っており、これらが、次段のオーバサンプリング回路8に出力される。

【0089】また、FF14aは、ANDゲート14bの出力に応じて、受信した拡散データのうちの1ビットを、1周期の間だけ保持するものである。具体的には、30 DFF (遅延フリップフロップ)などが用いられる。また、ANDゲート14bは、入力制御回路であって、拡散データ入力制御回路10からの制御信号に応じて、受信した拡散データを取り込んで保持するか、若しくは取り込まないか、の決定をするゲートである。すなわち、拡散入力データビットと、拡散データ入力制御回路10から出力されるFF入力制御信号RB-CNTとの論理積を取って、その出力がFF14aのD端子に入力されるものである。

【0090】また、バッファ14cは、FF入力制御信号RB-CNTを遅延させて、FF14aに出力するものである。図16(a)に、クロック遅延型FF14aの入力制御回路の構成を示すとともに、図16(b)に、FF14aのタイミングチャートを示す。すなわち、FF入力制御信号RB-CNTは、バッファ14cによって時間遅延がされたCNT-INとして、FF14aのクロック端子CKに入力される。

に低電力設計を行ない、拡散データパス回路を共用する 【0091】ここで、FF入力制御信号RB-CNTの ことで、従来4個必要だったディジタルマッチドフィル 出力がオンになると、拡散データビットPNDのパスが タを2個に減らすことができ、スイッチング率が大幅に 開き、クロックCNT-INの立ち上がりエッジで、各 改善されるので、消費電力をほぼ半分に減少させること 50 FF14aに取り込まれて、FF14aの出力のQ端子 がセットされる。逆に、FF入力制御信号RB-CNTの出力がオフのときは、各FF14aはスリープになるので、拡散データビットは、各FF14aに取り込まれず、電力を消費しない。

【0092】また、これから、各FFs14のクロック端子のスイッチング率は、従来構成の1/(9ップ数×オーバサンプリング数)となる。なぜならば、動作するFFs14の個数は、従来構成では、上述した式(7)から、(拡散データパスピット数×タップ数×オーバサンプリング数)個であるが、本構成では、入力制御信号によってオンにされたFFs14のみ動作するため、FFs14内の、(拡散データパスピット数)個のFF14aのみが、スイッチングされているからである。

【0093】このような構成により、各FF14aのクロック端子として、高速なサンプリングクロックの代わりに、各FF14aの入力制御信号RB-CNTを使うことによって、各FF14aの動作を停止状態にさせるため、低消費電力が実現される。さらに、クロック制御方法は、本発明の趣旨を逸脱しない範囲で、種々変形して実施することができ、その部分を別の回路にしてもよい。

【0094】すなわち、クロック制御方法を変形させる例として図17に、反転クロック型FFs制御回路の構成を示す。この図17に示すFFs15は、拡散データ入力制御回路10からの制御信号に応じて、受信した拡散データを取り込んで保持するか、若しくは取り込まないか、の決定がされるものであって、8個のFF15 a、8個のANDゲート15b、8個のANDゲート15c、インバータ15dをそなえて構成されている。なお、図17の8個は、受信した1ワードデータの2の補数が入っており、次段のオーバサンプリング回路8に出力される。

【0095】図18(a)に、FF15aの入力制御方法を示す。FF15aは、ANDゲート15bからの出力に応じて、受信した拡散データを1周期の間だけ保持するものである。また、ANDゲート15bは、拡散データビットと、拡散データ入力制御回路10から出力されるFF入力制御信号RB-CNTとの論理積を取って、その出力がFF15aのD端子に入力されるものである。

【0096】また、ANDゲート15cは、インバータ 15dの出力における反転CLKと、FF入力制御信号 RB-CNTとの論理積を取って、その出力がFF15 aのCK端子に入力されるものである。バッファ15d は、システムクロックCLKを反転させて、ANDゲー ト15cに出力するものである。

【0097】図18(b)に、FF15aのタイミング チャートを示す。すなわち、FF入力制御信号RB-C NTの出力がオンになると、拡散データビットPNDの パスが開き、拡散入力データは、クロックCKの立ち上 50 がりエッジで、各FF15aに取り込まれる。ここで、FF入力端子CKには、FF入力制御信号RB-CNTがオンのときだけ、反転CLKが入力される。

22

【0098】逆に、FF入力制御信号RB-CNTの出力がオフのときは、各FF15aはスリープになるので、拡散データビットは、各FF15aに取り込まれず、電力を消費しない。このような構成により、各フリップフロップのクロック端子に、直接高速なサンプリングクロックを入力せずに、入力制御信号RB-CNTとの論理積をとることによって、各フリップフロップの動作を停止状態にさせるため、低消費電力が実現される。【0099】さて、上記の各実施形態では、拡散データパス回路7の各複数フリップフロップのスイッチング率を改善する方法として、ラウンドロビン環を用いた拡散データ入力制御方式を用いているが、本発明はこれに限定されるものではなく、本発明の趣旨を逸脱しない範囲

【0100】すなわち、上述した各実施形態では、拡散データ入力制御方式として、ラウンドロビン環を用いた制御方式が用いられており、このラウンドロビン環が持つフリップフロップの個数は、(タップ数×オーバサンプリング数)個の多数となる。従って制御方式として、フリップフロップ数が少ないことを特徴とする2進数カウンタ方式を用いるようにしてもよい。

で、種々変形して実施することができ、拡散データ入力

制御方式を別の回路にしてもよい。

【0101】すなわち、図19に、2進数カウンタ方式を用いた拡散データ入力制御回路と拡散データパス回路7との接続構成を示す。この図19に示す2進数カウンタ方式拡散データ入力制御回路16は、受信した拡散データを、チップ時間毎に順番的に、指定された拡散データパス回路7内のFFs13のうちの1個に、書き込むものであって、Kビットカウンタ17、デコーダ18をそなえて構成されている。

【0102】 Kビットカウンタ17は、拡散データを書き込むべきF F s 1 3 0 番号を示す2 進数カウンタである。ここで、必要となるKの値は、F F s 1 3 0 全段数以上にとるようにすればよく、タップ数をT、オーバサンプリング数をOとすれば、次式が得られる。

 $2^{K} \geq T \times O$

30

40 例えば、タップ数が256、オーバサンプリング数が4 の場合、

 $K \ge log_2 (256 \times 4)$ より、K=10となる。

【0103】また、デコーダ18は、Kビットカウンタ17の値をデコードして、拡散データを書き込むべき番号のFFs13だけをアクティブにしてデータを更新するものである。この方法によれば、それぞれの拡散データパス回路7内のFFs13の位置が、Kビットカウンタ値と対応している。また、このカウンタ値は、カウンタの状態を表しているので、ある瞬間に1つの値しか持

たないため、条件に応じて、カウンタ値をインクリメント又はデクリメントさせれば、特定のFFs13を指し示すことから、ラウンドロビン環の効果を果たせることができる。

【0104】このようにして、本例によれば、回路を小さくすることができ、また、消費電力を少なくすることができる。このようにして、本変形例では、相互相関の計算の特徴、データの依存性、対称性などを利用して、広帯域DS-CDMA方式を用いた無線端末の復調部に使われるディジタルマッチドフィルタの各要素において、低電力設計を行ない、また、スイッチング率が効果的に改善されるので、消費電力を低減させることができ、例えば、移動機のような消費電力を厳しく要求する設計に対して非常に有効である。さらに、フルディジタルのため、他の回路と一緒に簡単に大規模集積化が可能となって、移動機の小型化を促進することができ、端末の低コスト化に寄与できる。

【0105】そして、本発明は上述した実施形態に限定されるものではなく、フリップフロップの論理を反転させたものでも、また、ある有限な状態を複数のビットで表示してもよく、本発明の趣旨を逸脱しない範囲で、種々変形して実施することができるのは、言うまでもない。

[0106]

【発明の効果】以上詳述したように、請求項1記載の本 発明のマッチドフィルタによれば、拡散データを入力さ れるべく、複数のデータ保持部を並列的に配置した構成 の拡散データパス部と、その拡散データの入力に応じ て、上記の拡散データパス部における各データ保持部へ のデータ保持制御を順次行なっていく拡散データ入力制 御部と、上記の拡散データパス部の各データ保持部から の出力と、拡散符号との乗算を行なうとともに、それぞ れの乗算結果を加算して出力する演算部とをそなえて構 成されているので、相互相関の計算の特徴、データの依 存性、対称性などを利用して、マッチドフィルタ内の各 要素において、低電力設計を行ない、回路全体のスイッ チング率が効果的に改善されて、消費電力を非常に小さ くすることができる利点がある。また、例えば、広帯域 DS-СDMA方式を用いた無線端末で移動機のような 消費電力を厳しく要求する設計に対して非常に有効であ るという利点がある。さらに、フルディジタルのため、 他の回路と一緒に簡単に大規模集積化が可能となって、 移動機の小型化を促進することができ、端末の低コスト 化に寄与できるという利点がある。

【0107】また、請求項2記載の本発明のマッチドフィルタによれば、拡散データを入力されるべく、複数のデータ保持部を並列的に配置した構成の拡散データパス部と、その拡散データの入力に応じて、上記の拡散データパス部における各データ保持部へのデータ保持制御を順次行なっていく拡散データ入力制御部とをそなえると 50

ともに、上記の拡散データパス部の各データ保持部から の出力を共通信号として、該各データ保持部からの出力 と、拡散符号との乗算を行なうとともに、それぞれの乗 算結果を加算して出力する複数の演算部をそなえて構成 されているので、例えばQPSKを一次変調に用いた場 合、従来の4個のマッチドフィルタを用いた復調回路と 比較して、消費電力をほぼ半減にできるという利点があ る。また、相互相関の計算の特徴、データの依存性、対 称性などを利用して、マッチドフィルタ内の各要素にお 10 いて、低電力設計を行ない、回路全体のスイッチング率 が効果的に改善されて、消費電力を非常に小さくするこ とができる利点がある。また、例えば、広帯域DS-C DMAを用いた無線端末で移動機のような消費電力を厳 しく要求する設計に対して非常に有効であるという利点 がある。その上、フルディジタルのため、他の回路と一 緒に簡単に大規模集積化が可能となって、移動機の小型 化を促進することができ、端末の低コスト化に寄与でき るという利点もある。

【0108】また、該拡散データ入力制御部は、複数の 有限状態保持部を環状に配置したラウンドロビン環をそ なえ、該ラウンドロビン環における複数の有限状態保持 部のうちの1つの有限状態保持部のみが他の有限状態保 持部と状態が異なるように、該複数の有限状態保持部の 状態を順次変更していくことにより、上記の拡散データ パス部における各データ保持部へのデータ保持が順次更 新されていくように構成することができ、このようにす れば、例えば、データ保持部を複数のフリップフロップ で実現した場合において、ある時刻に、動作しているフ リップフロップは、拡散データパスのビット数個分だけ となり、その他のフリップフロップの入力は、拡散デー タ入力とは、接続されていないので、各フリップフロッ プのデータ入力端子のスイッチング率は、大幅に下げら れ、消費電力を効果的に低減することができるという利 点がある(請求項3)。

【0109】さらに、該拡散データ入力制御部は、カウ ンタをそなえ、該カウンタによる計数結果に基づいて、 上記の拡散データパス部における各データ保持部へのデ ータ保持が順次更新されていくように構成することもで き、このようにすれば、ラウンドロビン方式と比べて、 回路規模をかなり小さくすることができ、また、消費電 力を少なくすることができる利点がある(請求項4)。 【0110】そして、該拡散データパス部の該拡散デー 夕の入力側に、該拡散データ入力制御部からの制御信号 に応じて、該拡散データパス部3へ該拡散データを入力 させるかどうかの制御を行なうゲート部を設けて構成す ることもでき、このようにすれば、例えば、データ保持 部を複数のフリップフロップで実現した場合において、 各フリップフロップは、データ入力時以外は停止状態に なるため、低消費電力が実現できる利点がある(請求項 5)。

機のような消費電力を厳しく要求する設計に対して非常 に有効であるという利点があり、また、フルディジタル のため、他の回路と一緒に簡単に大規模集積化が可能と

26

なって、移動機の小型化を促進することができ、さら に、端末の低コスト化に寄与できるという利点がある (請求項9)。 【0115】また、本発明のCDMA通信方式の無線受 信装置によれば、受信アンテナを通じて受信されたCD MA通信方式でQPSK変調を施された受信信号につい 10 て拡散復調を施す拡散復調部をそなえたCDMA通信方 式の無線受信装置において、該拡散復調部が、拡散デー タを入力されるべく複数のデータ保持部を並列的に配置 した構成の拡散データパス部と、該拡散データの入力に 応じて上記の拡散データパス部における各データ保持部 へのデータ保持制御を順次行なっていく拡散データ入力 制御部と、上記の拡散データパス部の各データ保持部か らの出力とIチャネル用拡散符号との乗算を行なうとと もに、それぞれの乗算結果を加算して出力する第1演算 部と、上記の拡散データパス部の各データ保持部からの 出力とQチャネル用拡散符号との乗算を行なうとともに それぞれの乗算結果を加算して出力する第2演算部とを

ことができる利点がある。また、例えば、移動機のよう な消費電力を厳しく要求する設計に対して非常に有効で あるという利点があり、また、フルディジタルのため、 他の回路と一緒に簡単に大規模集積化が可能となって、 移動機の小型化を促進することができ、さらに、端末の 低コスト化に寄与できるという利点がある (請求項1 0)。

有するマッチドフィルタをそなえて構成されているの

で、マッチドフィルタの個数を半分にすることができ、

相互相関の計算の特徴、データの依存性、対称性などを

利用して、低電力設計ができ、回路全体のスイッチング

率が効果的に改善されて、消費電力を非常に小さくする

【図面の簡単な説明】

【図1】本発明の原理ブロック図である。

【図2】本発明の原理ブロック図である。

【図3】一般的な、広帯域DS-CDMA方式を用いた 無線端末の受信部の拡散復調部を示すブロック図であ

40 【図4】本発明の第1実施形態にかかるディジタルマッ チドフィルタのブロック図である。

【図5】本発明の第1実施形態にかかる拡散データ入力 制御回路と拡散データパスレジスタ回路の接続構成を示 す図である。

【図6】本発明の第1実施形態にかかる拡散データパス レジスタ回路が、概念的に環状に配置されていることを 説明するための図である。

【図7】一般的な4倍オーバサンプリング制御回路を示 す図である。

【0111】ここで、該拡散データパス部におけるデー タ保持部のクロック入力側に、該拡散データ入力制御部 からの制御信号を遅延させて該遅延出力を該データ保持 部へのクロック入力信号とする遅延部を設けて構成して もよく、このようにすれば、例えば、データ保持部を複 数のフリップフロップで実現した場合において、各フリ ップフロップのクロック端子として、高速なサンプリン グクロックの代わりに、拡散データ入力制御部からの制 御信号を使うことによって、各フリップフロップ状態を オン・オフ制御できるため、低消費電力が実現できる利 点がある(請求項6)。

【0112】さらに、該拡散データパス部におけるデー 夕保持部のクロック入力側に、システムクロックを反転 するとともに、このシステムクロック反転信号と該拡散 データ入力制御部からの制御信号との論理積減算を施し て該論理積演算出力を該データ保持部へのクロック入力 信号とする論理回路部を設けて構成してもよく、このよ うにすれば、例えば、データ保持部を複数のフリップフ ロップで実現した場合において、各フリップフロップの クロック端子に、直接高速なサンプリングクロックを入・20 力せずに、拡散データ入力制御部からの制御信号との論 理積をとることによって、各フリップフロップ状態をオ ン・オフ制御できるため、低消費電力が実現される(請 求項7)。

【0113】そして、該拡散データパス部と該演算部と の間に、上記の各データ保持部からの出力を選択的に該 演算部へ出力しうるセレクタ部が設けられるとともに、 該セレクタ部の選択制御を行なうセレクタ制御部を設け て構成することができ、このようにすれば、例えば、デ ータ保持部を複数のフリップフロップで実現した場合に おいて、セレクタによって選択されたフリップフロップ だけが動作し、その他のフリップフロップは、停止状態 になるので低消費電力化がなされるという利点がある (請求項8)。

【0114】本発明のCDMA通信方式の無線受信装置 によれば、受信アンテナを通じて受信されたCDMA通 信方式の受信信号について拡散復調を施す拡散復調部を そなえたCDMA通信方式の無線受信装置において、該 拡散復調部が、拡散データを入力されるべく複数のデー 夕保持部を並列的に配置した構成の拡散データパス部 と、該拡散データの入力に応じて上記の拡散データパス 部における各データ保持部へのデータ保持制御を順次行 なっていく拡散データ入力制御部と、上記の拡散データ パス部の各データ保持部からの出力と、拡散符号との乗 算を行なうとともにそれぞれの乗算結果を加算して出力 する演算部とを有するマッチドフィルタをそなえて構成 されているので、相互相関の計算の特徴、データの依存 性などを利用して、低電力設計ができ、回路全体のスイ ッチング率が効果的に改善されて、消費電力を非常に小 さくすることができる利点がある。また、例えば、移動 50

【図8】本発明に適用される4倍オーバサンプリング制

御回路の構成を示す図である。

【図9】本発明の第1実施形態の変形例にかかるディジ タルマッチドフィルタのブロック図である。

【図10】本発明の第2実施形態にかかる広帯域DS-CDMA方式を用いた無線端末の拡散復調部のブロック 図である。

【図11】本発明の第2実施形態にかかるディジタルマ ッチドフィルタのブロック図である。

【図12】本発明の第2実施形態にかかる共用拡散デー タパス部と、オーバサンプリング回路及びオーバサンプ 10 フィルタ) リング回路との接続形態を示す図である。

【図13】本発明に適用されるFFs(複数フリップフ ロップ)の回路構成を示す図である。

【図14】(a)は本発明に適用されるFF(フリップ フロップ) の入力制御回路の構成を示す図であり、

(b) はそのFFのタイムチャートを示す図である。

【図15】本発明に適用されるクロック遅延型FFs制 御回路の構成を示す図である。

【図16】(a)は本発明に適用される、クロック遅延 型FFの入力制御回路の構成を示す図であり、(b)は 20 21-2 ディジタルマッチドフィルタ(低電力マッ そのFFのタイムチャートを示す図である。

【図17】本発明に適用される反転クロック型FFs制 御回路の構成を示す図である。

【図18】(a)は本発明に適用される、反転クロック 型FFの入力制御回路の構成を示す図であり、 (b) は そのFFのタイムチャートを示す図である。

【図19】本発明に適用される2進数カウンタ方式拡散 データ入力制御回路を示す図である。

【図20】一般的な、DS-CDMA方式を用いた無線 端末の送信部を示すブロック図である。

【図21】一般的な、DS-CDMA方式において一次 変調にQPSKを用いた場合の送信データを示すブロッ ク図である。

【図22】一般的な、DS-CDMA方式を用いた無線 端末の受信部を示すブロック図である。

【図23】一般的な、広帯域DS-CDMA方式を用い た無線端末の受信部の拡散復調部を示すプロック図であ

【図24】従来の、マッチドフィルタのブロック図であ る。

【符号の説明】

1,6 マッチドフィルタ

データ入力制御部

拡散データパス部

4 データ保持部

5 演算部

7, 77 拡散データパスレジスタ回路(拡散データ パス部)

8,88 オーバサンプリング制御回路 (セレクタ制 御部)

8a, 88a セレクタ

8b. 88b 'O'-State FSM

28

9, 51, 99 演算回路(部)

9a, 51a, 99a 乗算回路

9b, 51b, 99b 加算回路

拡散データ入力制御回路(部)

10a, 13a, 14a, 15a FF (フリップフ ロップ)

1 1 ディジタルマッチドフィルタ (低電力マッチド

13, 14, 15 FFs (複数フリップフロップ)

13b, 14b, 15b, 15c ANDゲート

14c バッファ

1 5 d インバータ

16 2進数カウンタ方式拡散データ入力制御回路

1 7 Kビットカウンタ

デコーダ 18

19 複数演算部

20-1, 20-2, 20-3, 20-4, 21-1,

チドフィルタ)

22 拡散データパス回路

22-a, 22-b, 22-c, 22-d, 22-e,

 $22-i (i=1, 2, \cdots, M)$ シフトレジス

 $22-ia (i=1, 2, \cdots M)$ FF

 $22-ib (i=1, 2, \cdots M)$ FF

 $22 - ic (i = 1, 2, \cdot \cdot \cdot M)$ FF

30 22-id ($i=1, 2, \cdots M$) FF

 $22-ie (i=1, 2, \cdots M)$ FF

 $22-if(i=1, 2, \cdots M)$ FF $22 - ig (i = 1, 2, \cdots M)$ FF

22-ih ($i=1, 2, \cdots M$) FF

23 乗算部

24 レプリカ符号用レジスタ

2 5 加算部

26, 27 拡散レプリカ符号レジスタ

28 ディジタルマッチドフィルタ

3 0 DS-CDMA方式を用いた無線端末の送信部 40

3 1 一次変調部

3 2 拡散変調部

3 3 周波数変換部

34 RF增幅部

3.5 アンテナ

36a, 36b, 36c, 36d

加算器 37a, 37b

40 DS-СDMA方式を用いた無線端末の受信部

4 1 アンテナ

50 4 2 RF增幅部 拡散復調部

ハイブリッド器

局部発振器

90°移相器

周波数変換部

44b, 44e ミキサ

43

44a

44c

4 4 d

44,46

44f, 44h A/D (アナログ/ディジタル) 変

換器

44g 拡散レプリカ符号発生器

44i,44j 加算器

45 一次復調部

50 4倍オーバサンプリング制御回路

30

【図1】

[図2]

【図10】

【図6】

【図14】

(b)

【図4】

【図9】

【図11】

【図22】

(図12)

21-1,21-2

(文 1 2)

(

拡放レプリカ符号

【図23】

| (図13) | (Z1) | (Z1

【図15】

D D

【図17】

【図24】

