Testing, Bounded Model Checking

Stefan Ratschan

Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Example:

After cascade composition:

G ok, where
$$\mathcal{I}(\mathsf{ok}) = \{(u, v) \mid v = \mathsf{wait} \lor v = 1 \lor v = 2\}$$
?

For simple automata directly visible from state graph

But: In practice we have hundreds/thousands of interacting components

The set of all states may not even fit in memory!

Stefan Ratschan (FIT ČVUT)

General Problem

We have:

- System models based on automata and their interaction
- Formal specification of system behavior based on temporal logic

How to check that a certain model fulfills a specification? (i.e., model checking)

Examples: **G** ok, **F** goal, ...

Rest of semester:

- Model checking (3 lectures)
- Modeling time, probabilities, physical behavior etc.

Example:

Given: Transition system:

Question: $\models \mathbf{F}p$, where $\mathcal{I}(p) = \{d\}$?

What does this mean?

We have to check, whether for all paths π of the transition system, $\pi \models \mathbf{F}p$

If $\not\models \mathbf{F}p$, information for debugging? counter-example (path π s.t. $\pi \not\models \mathbf{F}p$)

Model Checking Problem

- \blacktriangleright Given: a transition system and an LTL formula ϕ
- Output:
 - o.k., if $\models \phi$ (i.e., for all paths π , $\pi \models \phi$)
 - **a** counter-example (a path π s.t. $\pi \not\models \phi$), otherwise.

Let us try to automatize this ...

Model: Transition System

- Set of states 5
- ▶ Set $S_0 \subseteq S$ of initial states
- ▶ Transition Relation $R \subseteq S \times S$

- $ightharpoonup s_0 \in S_0$,
- ▶ for all $i \in \{0,1,\dots\}$, $(s_i,s_{i+1}) \in R$.

Specification: Temporal Logic

For a path π and LTL formulas p, q,

- $\pi \models p \text{ where } p \text{ is a state property}$ iff $\pi(0) \models p$
- $\blacktriangleright \pi \models \mathbf{X}p \text{ iff } \pi^1 \models p$
- $\blacktriangleright \pi \models \mathbf{F}p$ iff there is k s.t. $\pi^k \models p$
- $\blacktriangleright \pi \models \mathbf{G}p \text{ iff for all } k, \pi^k \models p$
- $\blacktriangleright \pi \models p \mathbf{U} q$ iff there is i s.t. $\pi^i \models q$ and for all j < i, $\pi^j \models p$
- $ightharpoonup \pi \models p\mathbf{R}q$ iff for all j, if [for all i < j, $\pi^i \not\models p$] then $\pi^j \models q$
- $\blacktriangleright \pi \models \neg p \text{ iff not } \pi \models p$
- $\blacktriangleright \ \pi \models p \land q \ \text{iff} \ \pi \models p \ \text{and} \ \pi \models q$
- $\blacktriangleright \pi \models p \lor q \text{ iff } \pi \models p \text{ or } \pi \models q$

 $\models p$ iff for all paths π of the transition system, $\pi \models p$

Example:

Question: $\models \mathbf{F}p$, where $\mathcal{I}(p) = \{d\}$?

We need to check, whether for all paths π , $\pi \models \mathbf{F}p$. Let us try: $(a, b, c, d, a, b, c, d, a, \dots)$? $(a, b, b, c, d, a, b, c, d, a, \dots)$? $(a, b, b, b, c, d, a, b, c, d, a, \dots)$? $(a, b, b, b, b, c, d, a, b, c, d, a, \dots)$? $(a, b, b, b, b, b, c, d, a, b, c, d, a, \dots)$?

Problem: Even in finite state case, transition systems can have infinitely many paths of infinite length!

Traditional Solution

How to check correctness of usual programs?

Instead of checking correctness for all inputs, check correctness for some inputs (test cases)

Testing correctness of transition systems (first attempt):

- \blacktriangleright Given: a transition system and an LTL formula ϕ
- Output:
 - ightharpoonup o.k., if for all test cases π , $\pi \models \phi$
 - ▶ a path π s.t. $\pi \not\models \phi$, otherwise.
- o.k. means that system is correct?
- o.k. does not imply correctness any more!

Testing Transition Systems (First Attempt)

We have check:

for all test cases π , $\pi \models \phi$

Testing finitely many paths of infinite length

Remaining problem: How to check $\pi \models \phi$ for one path π ?

Example: $(a, b, c, d, a, b, c, d, \dots)$

A *finite path* of length n of a transition system (S, S_0, R) is a finite sequence of states $s_0 s_1 s_2 \dots s_{n-1}$ s.t.

- $ightharpoonup s_0 \in S_0$,
- ▶ for all $i \in \{0, 1, ..., n-2\}$, $(s_i, s_{i+1}) \in R$.

Example: (a, b, c, d, a, b, c, d)

Case: Formula Gok, Where ok Is a State Property

$$\pi \models \mathbf{G}$$
 ok iff for all $k \ge 0$, $\pi(k) \models ok$

Path has infinite length! so just test against finite prefix:

for a finite path t of length n

$$t \models \mathbf{G} \text{ ok } :\Leftrightarrow$$
 for all $k \in \{0, \dots, n-1\}, t(k) \models \text{ ok}$

Question:
$$\models \mathbf{G}p$$
, where $\mathcal{I}(p) = \{a, b\}$?

$$(a,b,b) \models \mathbf{G}p, (a,b,c) \not\models \mathbf{G}p$$

Case: Formula Gok, Where ok Is a State Property

for a finite path t of length n

$$t \models \mathbf{G} \text{ ok } :\Leftrightarrow$$
 for all $k \in \{0, \dots, n-1\}, t(k) \models \text{ ok}$

For
$$\mathcal{I}(p) = \{a, b\}: (a, b, b) \models \mathbf{G}p, (a, b, c) \not\models \mathbf{G}p$$

Necessary condition for correctness:

for all finite paths t of the given transition system

$$\models$$
 G ok implies $t \models$ **G** ok $t \not\models$ **G** ok implies $\not\models$ **G** ok

Resulting counter-example: any continuation of t

Stefan Ratschan (FIT ČVUT)

Case: Formula **F** goal, Where goal Is a State Property $\pi \models \mathbf{F}$ goal iff there is $k \ge 0$, $\pi(k) \models \text{goal}$

Again we cannot check all k! Does it suffice to test finitely many?

Example:

 \models **F** goal, for $\mathcal{I}(goal) = \{d\}$? \checkmark But (a, b, c) does **not** reach goal!

 \models **F** goal? \nleq Finite path (a, b, b, b, c, d) reaches goal, detects loop!

Finite path (a, b, b) already detects the loop.

Case: Formula F goal: Loop Detection

for a finite path t of length n

$$t \models \mathbf{F} \text{ goal } :\Leftrightarrow$$
 not there is $I \in \{0, \dots, n-2\}$ s.t. $t(n-1) = t(I)$????

$$(a,b,c,d,e,e)$$

$$b$$

$$c$$

$$d$$

$$e$$

$$\models$$
 F goal where $\mathcal{I}(\text{goal}) = \{d\}$? \checkmark (a, b, c, d, e, e) contains a loop!

for a finite path t of length n

$$t \models \mathbf{F} \text{ goal} :\Leftrightarrow$$

there is $l \in \{0, \dots, n-2\}$ s.t. $t(n-1) = t(l)$ implies
there is $k \in \{0, \dots, n-1\}$, $t(k) \models \text{goal}$

Case: Formula F goal: Loop Detection

for a finite path t of length n

$$t \models \mathbf{F} \text{ goal} :\Leftrightarrow$$

there is $l \in \{0, \dots, n-2\}$ s.t. $t(n-1) = t(l)$ implies
there is $k \in \{0, \dots, n-1\}$, $t(k) \models \text{goal}$

Necessary condition for correctness:

for every finite path t of the given transition system

 \models **F** goal implies $t \models$ **F** goal

 $t \not\models \mathbf{F}$ goal implies $\not\models \mathbf{F}$ goal

Finite path: (a, b, b), corresponding counter-example (a, b, b, b, ...)

Path leading into and staying in loop

Preliminary Summary

for a finite path t of length n

$$t \models \mathbf{G} \text{ ok } :\Leftrightarrow$$
 for all $k \in \{0, \dots, n-1\}, t(k) \models \text{ ok}$ $t \models \mathbf{F} \text{ goal } :\Leftrightarrow$ there is $l \in \{0, \dots, n-2\}$ s.t. $t(n-1) = t(l)$ implies there is $k \in \{0, \dots, n-1\}, t(k) \models \text{ goal}$

Generalize to full LTL?

Testing of Paths: Bounded Semantics of LTL

For a finite path t of length n and LTL formulas p, q,

- $ightharpoonup t \models p$ if t has length 0, and otherwise,
- ▶ $t \models p$ where p is a state property iff $t(0) \models p$.
- ▶ $t \models \neg p$ where p is a state property iff $t(0) \not\models p$.
- $ightharpoonup t \models \mathbf{X}p \text{ iff } t^1 \models p$
- $ightharpoonup t \models \mathbf{F}p \text{ iff}$

there is
$$l \in \{0, \dots, n-2\}$$
 s.t. $t(l) = t(n-1)$ implies

there is
$$k \in \{0, \ldots, n-1\}$$
 s.t. $t^k \models p$

- ▶ $t \models \mathbf{G}p$ iff for all $k \in \{0, ..., n-1\}$, $t^k \models p$
- $ightharpoonup t \models p \land q \text{ iff } t \models p \text{ and } t \models q$
- $ightharpoonup t \models p \lor q \text{ iff } t \models p \text{ or } t \models q$

So: negation only allowed before state property, if not, push down (e.g., from $\neg F X p$ to $G X \neg p$)

Necessary Condition for Correctness

```
For every LTL formula p,
for every finite path t of the given transition system
\models p implies t \models p
t \not\models p implies \not\models p
```

Example: $t \models \mathbf{GF}p$

```
(a,b,c,d,e,c,d) \models \mathbf{GF}p, where \mathcal{I}(p) = \{b\}
for all k \in \{0,\ldots,6\}, (a,b,c,d,e,c,d)^k \models \mathbf{F}p
(a,b,c,d,e,c,d) \models \mathbf{F}p
(b,c,d,e,c,d) \models \mathbf{F}p
(c,d,e,c,d) \models \mathbf{F}p
there is l \in \{0,\ldots,n-2\} s.t. t(l) = t(n-1) implies there is k \in \{0,\ldots,n-1\} s.t. t^k \models p
```

Example: $t \models \mathbf{FG}p$

$$(a,b,c,d,e) \models \mathbf{FG}p$$
, where $\mathcal{I}(p) = \{e\}$
there is $l \in \{0,\ldots,3\}$ s.t. $t(l) = t(4)$ then
there is $k \in \{0,\ldots,4\}$ s.t. $(a,b,c,d,e)^k \models \mathbf{G}p$
 $(a,b,e,d,e) \models \mathbf{FG}p$, where $\mathcal{I}(p) = \{e\}$
Reason: $(a,b,e,d,e)^4 = (e)$ and $(e) \models \mathbf{G}p$
But: $(a,b,e,d,e,d,e,d,e,d,e,\ldots) \not\models \mathbf{FG}p$!
 $(a,b,e,d,e,d) \not\models \mathbf{FG}p$!

Literature: stronger, but more complicated tests [Latvala et al., 2004, Biere et al., 2009]

Testing Transition Systems (Definitive Version)

Instead of checking correctness for all paths, check correctness for some finite paths (test cases).

$$Test(\phi, T) :\Leftrightarrow \text{ for all finite paths } t \in T, t \models \phi$$

Task:

- ► Given:
 - a transition system,
 - \blacktriangleright an LTL formula ϕ ,
 - ▶ and a set of finite paths *T*
- Output:
 - \triangleright o.k., if $Test(\phi, T)$
 - \blacktriangleright a path π s.t. $\pi \not\models \phi$, otherwise.

Simulation: generation of finite paths.

Again we have:

$$\models \phi \text{ implies } \textit{Test}(\phi, T)$$

$$\neg Test(\phi, T)$$
 implies $\not\models \phi$

Which Cases to Test?

Transition systems can have infinitely many paths of infinite length.

Systematic methods for choosing finite paths for testing: black-box testing, white-box testing, coverage criteria, etc.

Field on its own, see MI-TSP (testing and reliability), ...

Problems of testing:

- Can easily miss bugs
- Not reliable enough for many safety critical systems

Costs of Intel FDIV Bug (1994): 1/2 billion dollars

Airbus: Testing almost more expensive than development itself

Because of this industry has more and more interest in methods for proving correctness (model checking).

Bounded Model Checking

Original problem:

$$\Leftrightarrow$$

 $\models \phi \Leftrightarrow \text{ for all paths } \pi$,

$$\pi \models \phi$$

infinitely many paths of infinite length

Simpler problem:

$$Test(\phi, T) \Leftrightarrow$$

 $Test(\phi, T) \Leftrightarrow for all finite paths t \in T$,

$$t \models \phi$$

Observation: only finitely many paths of finite length

$$BMC(\phi, \mathbf{n}) : \Leftrightarrow$$

 $BMC(\phi, \mathbf{n}) : \Leftrightarrow$ for all finite paths t of length \mathbf{n} , $t \models \phi$

 $Test(\phi, \{t \mid \text{is a finite path of length } n\})$

BMC(**G** ok): Example:

```
Instead of \models \mathbf{G} ok:
  for all paths \pi,
     for all k \geq 0, \pi(k) \models ok
we have: BMC(\mathbf{G} \text{ ok}, n)
  for all finite paths t of length n,
                                                                          Ε
     for all k \in \{0, \ldots, n-1\}, t(k) \models ok
Example: \mathcal{I}(ok) = \{A, B, C, D, E\}
                                                     В
```

 $BMC(\mathbf{G} \text{ ok}, n)$: holds for $n \leq 4$, does not hold for n > 4.

We already know:

- ightharpoonup |= **G** ok implies BMC(**G** ok, n), i.e.,
- ▶ ¬BMC(**G** ok, n) implies $\not\models$ **G** ok

But: BMC(\mathbf{G} ok, n) does not imply $\models \mathbf{G}$ ok.

BMC(\mathbf{G} ok, n) only ensures correctness within n steps, i.e., non-existence of a counter-example of length n

Special Case

```
BMC(\mathbf{G} \text{ ok}, 0)?:
  for all finite paths t of length 0,
    for all k \in \{0, \ldots, -1\}, t(k) \models ok
  for all finite paths t of length 0,
    for all k \in \emptyset, t(k) \models ok
  for all finite paths t of length 0.
    for all k \cdot k \in \emptyset \Rightarrow t(k) \models ok
  for all finite paths t of length 0,
    for all k : \bot \Rightarrow t(k) \models ok
  for all finite paths t of length 0,
    for all k : \neg \bot \lor t(k) \models ok
```

. . .

BMC(F goal)

```
Instead of \models F goal iff for all paths \pi there is k \ge 0 s.t. \pi(k) \models goal BMC(F goal, n): for all finite paths t of length n if there is l \in \{0, \ldots, n-2\} s.t. t(n-1) = t(l) then there is k \in \{0, \ldots, n-1\} s.t. t(k) \models goal.
```

Example BMC(**F** goal, 4), where $\mathcal{I}(goal) = \{D, E\}$? BMC(**F** goal, 4): for all finite paths t of length 4 if there is $l \in \{0, ..., 2\}$ s.t. t(3) = t(l)then there is $k \in \{0, ..., 3\}$ s.t. $t(k) \models \text{goal}$. for all $t \in \{(A, B, C, D), (A, B, C, E), (A, B, C, B)\}$ if there is $l \in \{0, ..., 2\}$ s.t. t(3) = t(l)then there is $k \in \{0, ..., 3\}$ s.t. $t(k) \in \{D, E\}$.

Will BMC(F goal, 5), BMC(F goal, 6), ... find the same cycle?

BMC(F goal, 0), BMC(F goal, 1): similar to the case BMC(G ok, 0)

Bounded Model Checking for F goal

```
BMC(F goal, n): for all finite paths t of length n if there is l \in \{0, ..., n-2\} s.t. t(n-1) = t(l) then there is k \in \{0, ..., n-1\} s.t. t(k) \models goal.
```

Again: $\models \mathbf{F}$ goal implies BMC(\mathbf{F} goal, n), but not the other way round.

$BMC(\phi, n)$ and System Correctness

In general: For every n, n' with $n \ge n'$,

- $\blacktriangleright \models \phi \text{ implies BMC}(\phi, n) \text{ implies BMC}(\phi, n') \text{ i.e.,}$
- ▶ ¬BMC(ϕ , n') implies ¬BMC(ϕ , n) implies $\not\models \phi$.

In other words:

If BMC finds a bug, then it will also find a bug for higher n and the system really is incorrect.

But: BMC(ϕ , n) does not imply $\models \phi$.

Never?

In finite case, transition relation forms a graph.

For big n, the paths of length n reach all reachable states!

General Observation

- ightharpoonup Every finite path that is longer than |S| contains a cycle.
- ▶ If there exists a counter-example for **G** ok that contains a cycle, then there also exists a counter-example that is shorter.
- ► Hence:
 If there exists a counter-example for **G** ok that is longer than |S|, then there also exists a counter-example that is shorter.
- ▶ Hence: \models **G** ok iff BMC(**G** ok, |S|),

Theorem ([Biere et al., 2003])

for all finite transition system, for all LTL formulas ϕ there is a bound n s.t. for all n' > n, $BMC(\phi, n')$ iff $\models \phi$

Independent of used method.

But: Bound may be huge!

Temporal Logic for Planning: Example

Example: Smart European power grid

Here: Non-determinism corresponds to decisions we can take.

Example: Should we switch on coal-fired power station? Yes/no

G ok, $\mathcal{I}(ok) = \{A, B, C, E, F\}$, current state: C

Find: plan, that is, a path π s.t. $\pi \models \mathbf{G}$ ok

Temporal Logic for Planning

Given:

- ► Transition system $(S, \{s_0\}, R)$, where s_0 is the current state of the system, and
- \triangleright LTL formula ϕ ,

```
Find: path \pi, s.t. \pi \models \phi (plan what to do from current state s_0)
```

Idea: Such a path is a counter-example to $\models \neg \phi$

Find plan by applying a method for checking $\models \neg \phi$

Example: G ok

Method: find counter-example to $\neg \mathbf{G}$ ok

 $\neg \mathbf{G}$ ok is equivalent to $\mathbf{F} \neg ok$

Counter-examples: (C, A, B, C, ...), (C, E, F, C, ...)

Result: path, that will cycle outside of $\{s \mid s \models \neg ok\}$, in $\mathcal{I}(ok)$

Example: Fgoal

Plan: counter-example to $\neg F$ goal

 $\neg F$ goal is equivalent to $G \neg goal$

Result: counter-example to $\mathbf{G} \neg \text{goal}$, that is, path, that will reach $\mathcal{I}(\text{goal})$

Planning vs. Model Checking

Previous lecture:

Check $\models p \mathbf{R} q$ by searching for a counter-example

```
path \pi s.t. \pi \not\models p \mathbf{R} q
path \pi s.t. \pi \models \neg [p \mathbf{R} q]
path \pi s.t. \pi \models \neg p \mathbf{U} \neg q
```

Opposite direction!

Possibilities:

- ► Model checking problem:
 - Check $\models \phi$: yes, or counter-example $(\pi \not\models \phi)$
- Planning problem:

Find
$$\pi$$
 s.t. $\pi \models \phi$ or "does not exist" (i.e., $\models \neg \phi$)

One is reducible to the other

BMC is weaker!

Example: G ok

 $BMC(\mathbf{F} \neg ok, 2)$, no counter-example, no plan

paths of length 3: (C, A, B), (C, E, F) $BMC(\mathbf{F} \neg ok, 3)$, no counter-example, no plan

paths of length 4: (C, A, B, C), (C, E, F, C), (C, E, F, D) $BMC(\mathbf{F} \neg ok, 4)$, counter-example, plan (C, A, B, C)

Efficient Checking of BMC(ϕ , n)

Example: 10 states, n = 10, $10^{10} = 10000000000$ paths to check!

Next lecture: Methods that are able to handle this.

Farewell demo (BMC needs 1 second to find a bug in the Needham-Schroeder protocol that took humans 17 years to find)

Literature

- Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yunshan Zhu. Bounded model checking. *Advances in Computers*, 58: 117 148, 2003. ISSN 0065-2458. doi: DOI:10.1016/S0065-2458(03)58003-2.
- Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors. *Handbook of Satisfiability*, volume 185 of *Frontiers in Artificial Intelligence and Applications*. IOS Press, February 2009. ISBN 978-1-58603-929-5.
- Timo Latvala, Armin Biere, Keijo Heljanko, and Tommi Junttila. Simple bounded Itl model checking. In *FMCAD*, volume 4, pages 186–200. Springer, 2004.