Trabajo autónomo 14

Ejercicio 1

Descripción del circuito:

Conexión en serie de una resistencia de 40 Ω y un inductor de 79,6 mH, con una fuente de alimentación de 10 V a 50 Hz.

a) Dibuja un esquema del circuito.

b) Completa la tabla.

	R	L	Total	
E	8,4 V ∠-32°	5,25 V ∠58°	(10 +j0) V 10 V ∠0°	V
I	(0,18-j0,11) A 0,21 A ∠-32°	(0,18-j0,11) A 0,21 A ∠-32°	(0,18-j0,11) A 0,21 A ∠-32°	A
Z	(40 +j0) Ω 40 Ω ∠0°	(0 +j25) Ω 25 Ω ∠90°	(40 +j25) Ω 47,17Ω ∠32°	Ω

$$X_L = 2 \cdot \pi \cdot f \cdot L = 2 \cdot \pi \cdot 50 \cdot 0,0796 H = 25 \Omega$$

c) Dibuja el diagrama fasorial de corriente y tensiones (escalas: 1 V = 1 cm y 0.05 A = 1 cm).

d) Dibuja el diagrama de impedancias (escala $10 \Omega = 1 \text{ cm}$).

e) Completa la tabla de potencias.

	R	$X_{\rm L}$	X _C	Z
P en W	1,76			
Q en VAR		1,1		
S en VA				2,1

f) Dibuja el triángulo de potencias (escala 1 W = 1 VAR = 1 VA = 5 cm).

Ejercicio 2

En un circuito en serie de una resistencia de 20 Ω y un condensador de 159 μF , con una fuente de alimentación de 230 V a 50 Hz.

a) Dibuja un esquema del circuito.

b) Completa la tabla.

	R	L	С	Total	
E	156 V 45°		156 V ∠-45°	(220 +j0) V 220 V ∠0°	V
I	7,8 A ∠45° (5,5 + j 5,5) A		7,8 A ∠45° (5,5 + j 5,5) A	7,8 A ∠45° (5,5 + j 5,5) A	A
Z	(20 +j0) Ω 20 Ω ∠0°		(0 -j20) Ω 20 Ω ∠-90°	(20 -j20) Ω 28,3 Ω ∠-45°	Ω

$$X_C = \frac{1}{2 \cdot \pi \cdot f \cdot C} = \frac{1}{2 \cdot \pi \cdot 50 \cdot 0,000159F} = 20 \Omega$$

c) Dibuja el diagrama fasorial de corriente y tensiones (escalas: 1 V = 20 cm y 1 A = 2 cm).

d) Dibuja el diagrama de impedancias (escala 4 Ω = 1 cm).

e) Completa la tabla de potencias.

	R	X_{L}	X _C	Z
P en W	1217			
Q en VAR			1217	
S en VA				1716

f) Dibuja el triángulo de potencias (escala 200 W = 200 VAR = 200 VA = 1 cm).

Ejercicio 3

a) Completa la tabla.

	R	L	С	Total	
E	(22,3 - j66,4) V 70 V ∠-71,45°	(197,8 +j66,4) V 208,6 V ∠18,55°	(220 + j0) V 220 V ∠0°	(220 +j0) V 220 V ∠0°	V
I	(2,2 - j6,6) A 7 A ∠-71,45°	(2,2 - j6,6) A 7 A ∠-71,45°	(0 + j3,45) A 3,45 A ∠90°	(2,2 - j3,15) A 3,84 A ∠-55°	A
Z	(10 +j0) Ω 10 Ω ∠0°	(0 +j29,8) Ω 29,8 Ω ∠90°		(33,2 + j 47,4) Ω 57,9 Ω ∠55°	Ω

$$X_C = \frac{1}{2 \cdot \pi \cdot f \cdot C} = \frac{1}{2 \cdot \pi \cdot 50 \cdot 0,00005F} = 63,7 \Omega$$

$$X_L = 2 \cdot \pi \cdot f \cdot L = 2 \cdot \pi \cdot 50 \cdot 0,095 H = 29,8 \Omega$$

$$I_C = \frac{E_C}{Z_C} = \frac{220 \, V \angle 0^{\circ}}{63,7 \, \Omega \angle -90^{\circ}} = 3,45 \, A \angle 90^{\circ}$$

$$Z_{RL} = R + j X_L = (10 + j 29.8) \Omega = 31.4 \Omega \angle 71.45^{\circ}$$

$$I_{RL} = \frac{E_T}{Z_{RL}} = \frac{220 \, V \angle 0^{\,\circ}}{31,4 \, \Omega \angle 71,45^{\,\circ}} = 7 \, A \angle -71,45^{\,\circ} = (2,2-j6,6) \, A$$

Sin la conexión en paralelo del condensador, la corriente total del circuito sería I =7 A ∠-71,45°.

Gracias a la conexión en paralelo del condensador, se han reducido el valor efectivo de la corriente y el desfase a $I = 3,84 \, A \, \angle -55^{\circ}$.

Esto se debe a que una parte de la energía reactiva oscila entre inductor y condensador.

b) Dibuja el diagrama fasorial de corrientes y tensiones (escalas: 1 V = 20 cm y 1 A = 1 cm).

c) Dibuja el diagrama de impedancias (escala 6 Ω = 1 cm).

d) Completa la tabla de potencias.

	R	$X_{\rm L}$	X_{C}	Z
P en W	490			
Q en VAR		1460,2	-759,8	
S en VA				845

$$P = \frac{(E_R)^2}{R} = \frac{(70 \, V)^2}{10 \, \Omega} = 490 \, W$$

$$Q_L = \frac{(E_L)^2}{X_L} = \frac{(208.6 \,\mathrm{V})^2}{29.8 \,\Omega} = 1460.2 \,\mathrm{VAR}$$

$$Q_C = \frac{(E_C)^2}{X_C} = \frac{(220 \, V)^2}{63.7 \, \Omega} = -759.8 \, VAR$$

$$Q = Q_L + Q_C = 700,4 \, VAR$$

$$S = E_T \cdot I = 220 \text{ V} \cdot 3,84 \text{ A} = 845 \text{ VA}$$

e) Dibuja el triángulo de potencias (escala 200 W = 200 VAR = 200 VA = 1 cm).

f) ¿Cuál sería la capacidad del condensador en paralelo, si se quiere eliminar el desfase entre tensión de alimentación y corriente I?

Para eliminar el desfase entre la tensión de alimentación y la corriente, las potencias reactivas de inductor y condensador deben ser iguales. En este caso, toda la pòtencia reactiva oscila entre el inductor y el condensador.

El conductor desde la fuente de alimentación hasta el condensador, sólo conduce la intensidad necesaria para generar la potencia activa de la resistencia.

$$Q_L = Q_C \rightarrow Q_C = 1460,2 VAR$$

$$Q_{C} = \frac{(E_{C})^{2}}{X_{C}} \rightarrow 1460,2 \text{ VAR} = \frac{(220 \text{ V})^{2}}{X_{C}} \rightarrow X_{C} = \frac{(220 \text{ V})^{2}}{1460,2 \text{ VAR}} = 33,15 \Omega$$

con
$$X_C = \frac{1}{2 \cdot \pi \cdot f \cdot C} \rightarrow C = \frac{1}{2 \cdot \pi \cdot f \cdot X_C} = \frac{1}{2 \cdot \pi \cdot 50 \, Hz \cdot 33,15 \, \Omega} = 96 \, \mu F$$