Analiza III

1

Definicja 1. Niech $\mathcal{O} \subset \mathbb{R}^n$. Zbiór \mathcal{O} nazywamy ściągalnym (gwiaździstym), jeżeli istnieje $p \in \mathcal{O}$ i odwzorowanie h(p, x, t) takie, że

$$\begin{array}{ll} \forall & h(p,x,0) = p \\ \forall x \in \mathcal{O} & h(p,x,1) = x, \quad \forall \\ & t \in [0,1] \\ \end{array} \\ h(p,x,t) \in \mathcal{O}, \quad h(p,x,t) \text{ - } \textit{ciagla}.$$

Twierdzenie 1. (Lemat Poincare)

Niech

$$\begin{pmatrix} \mathcal{O} - zbi\acute{o}r \, \acute{s}ciagalny \\ \dim \mathcal{O} = n \\ \omega \in \Lambda^{p-1}(\mathcal{O}) \\ d\omega = 0 \end{pmatrix} \implies \begin{pmatrix} \exists, d\eta = \omega \\ \eta \in \Lambda^{p-1}(\mathcal{O}) \end{pmatrix}.$$

Dowód. Załóżmy, że zbiór \mathcal{O} jest zbiorem gwiaździstym, czyli

$$\begin{array}{ll} \exists & \forall \\ p \in \mathcal{O} & x \in \mathcal{O} \end{array} \left(\begin{array}{c} \text{zbi\'or punkt\'ow postaci} \\ pq_1 + xq_2 : q_1 + q_2 = 1, q_1, q_2 > 0 \end{array} \right) \left(\text{jest zawarty w } \mathcal{O} \right).$$

Obserwacja: gdyby istniał operator

$$T: \Lambda^p(\mathcal{O}) \to \Lambda^{p-1}(\mathcal{O}), \quad p = 1, 2, \dots, n-1,$$

taki, że

$$Td + dT = id$$
,

to twierdzenie byłoby prawdziwe. (bo dla $\omega \in \Lambda^p(\mathcal{O})$ mielibyśmy $Td(\omega) + d(T\omega) = \omega$).

Więc, gdy

$$d\omega = 0$$
.

to

$$d(T\omega) = \omega$$
,

czyli przyjmując

$$\eta = T\omega$$
,

otrzymujemy

$$d(\eta_i) = \omega.$$

Łatwo sprawdzić, że operator

$$T_1(\omega) = \int_0^1 \left(t^{p-1} x \, \lrcorner \, \omega(tx) \right),$$

 $x=x^1\frac{\partial}{\partial x^1}+x^2\frac{\partial}{\partial x^2}+\ldots+x^n\frac{\partial}{\partial x^n}$ spełnia warunek Td+dT=id.

Przykład 1. $\omega \in \Lambda^1(M)$, dim M=3, $\omega=xdx+ydy+zdz$. Wówczas, gdy $(\overline{x}=x\frac{\partial}{\partial x}+y\frac{\partial}{\partial y}+z\frac{\partial}{\partial z})$ jest

$$T(\omega) = \int_0^1 t^{1-1} \left\langle \underbrace{(xt)dx + (yt)dy + (zt)dz}_{\omega(tx)}, \quad \overline{x} \right\rangle dt =$$

$$= \int_0^1 t^0 \left(tx^2 + ty^2 + tz^2 \right) dt = \frac{1}{2} \left(x^2 + y^2 + z^2 \right) = \eta.$$

Zauważamy, że $d\eta=\omega$ i działa (dla takiego radialnego pola wektorowego znaleźliśmy potencjał).

Przykład 2. $\omega = xdx \wedge dy + ydy \wedge dz + zdx \wedge dz$, $\omega \in \Lambda^2(M)$, dim M = 3. Co to jest $T\omega$?

$$T\omega = \int_0^1 t^{2-1} x \, dx \cdot dy + yt \, dy \cdot dz + zt \, dx \cdot dz \, dt =$$

$$= \int_0^1 t^1 \left(xtx \, dy - xty \, dx + yty \, dz - ytz \, dy + ztx \, dz - ztz \, dx \right) \, dt =$$

$$= \frac{1}{3} \left(x^2 \, dy - xy \, dx + y^2 \, dz - yz \, dy + zx \, dz - z^2 \, dx \right) = \eta.$$

Niech

$$T\omega = \int_0^1 t^{p-1} x \, \mathrm{d}\omega(tx) dx,$$

gdzie $x = x^1 \frac{\partial}{\partial x^1} + \ldots + x^n \frac{\partial}{\partial x^n}$. Chcemy pokazać, że

$$dT\omega + Td\omega = \omega,$$

gdzie

$$\omega(x) = \sum_{i_1, \dots, i_p} \omega_{i_1, \dots, i_p}(x^1, \dots, x^n) dx^{i_1} \wedge \dots \wedge dx^{i_p}.$$

Analiza III

$$\omega = \overset{\omega_{12}}{x} d^{i_1 = 1} \wedge d^{i_2} \overset{=}{y}^2 + \overset{\omega_{23}}{y} d^{i_1} \overset{=}{y}^2 \wedge d^{i_2} \overset{=}{z}^3 + \overset{\omega_{13}}{z} d^{i_1 = 1} \wedge d^{i_2 = 3}.$$
$$d\omega = \sum_{i_1, \dots, i_p} \sum_{j=1}^n \frac{\partial \omega(x^1, \dots, x^n)}{\partial x^j} dx^j \wedge dx^{i_1} \wedge \dots \wedge dx^{i_p}.$$

Liczymy

$$Td_{p+1 \text{ forma}} = \int_{0}^{1} t^{p+1-1} \left(x^{1} \frac{\partial}{\partial x^{1}} + \dots + x^{n} \frac{\partial}{\partial x^{n}} \right) \rfloor \frac{\partial \omega(tx^{1}, \dots, tx^{n})}{\partial x^{j}} dx^{j} \wedge dx^{i_{1}} \wedge \dots \wedge dx^{i_{p}} =$$

$$= \sum_{j=1}^{n} \int_{0}^{1} t^{p} dt \frac{\partial \omega(tx^{1}, \dots, tx^{n})}{\partial x^{j}} x^{j} dx^{i_{1}} \wedge \dots \wedge dx^{i_{p}} +$$

$$+ \sum_{j=1}^{n} \sum_{\alpha=1}^{p} \int_{0}^{1} t^{p} dt \frac{\partial \omega(tx^{1}, \dots, tx^{n})}{\partial x^{j}} x^{i_{\alpha}} dx^{i_{1}} \wedge \dots \wedge dx^{i_{p}} (-1)^{\alpha}.$$

$$T\omega = \int_0^1 t^{p-1} \left(x^1 \frac{\partial}{\partial x^1} + \ldots + x^n \frac{\partial}{\partial x^n} \right) \sqcup \omega_{i_1, \ldots, i_p}(tx^1, \ldots, tx^n) dx^{i_1} \wedge \ldots \wedge dx^{i_p} =$$

$$= \sum_{k=1}^n \int_0^1 dt \quad t^{p-1} \omega_{i_1, \ldots, i_p}(tx^1, \ldots, tx^n) x^k dx^{i_1} \wedge \ldots \wedge dx^{i_p} (-1)^{k+1}.$$

$$\stackrel{p}{\longrightarrow} \int_0^1 dt \quad t^{p-1} \omega_{i_1, \ldots, i_p}(tx^1, \ldots, tx^n) x^k dx^{i_1} \wedge \ldots \wedge dx^{i_p} (-1)^{k+1}.$$

$$dT\omega = \sum_{k=1}^{p} \int_{0}^{1} dt t^{p-1} \omega_{i_{1},\dots,i_{p}}(tx^{1},\dots,tx^{n}) dx^{i_{1}} \wedge \dots \wedge dx^{i_{p}} +$$

$$+ \sum_{k=1}^{p} \int_{0}^{1} dt t^{p-1} \sum_{\alpha=1}^{n} \frac{\partial \omega_{i_{1},\dots,i_{p}}(tx^{1},\dots,tx^{n})}{\partial x^{\alpha}} \cdot t \cdot x^{i_{k}} dx^{\alpha} \wedge dx^{i_{1}} \wedge \dots \wedge dx^{i_{p}}.$$

Zatem dodajemy do siebie $Td\omega + dT\omega$ i wychodzi

$$Td\omega + dT\omega = \sum_{j=1}^{n} \int_{0}^{1} dt \cdot t^{p} \frac{\partial \omega_{i_{1}, \dots, i_{p}}(tx^{1}, \dots, tx^{n})}{\partial x^{j}} x^{j} dx^{i_{1}} \wedge \dots \wedge dx^{i_{p}} +$$

$$+ \int_{0}^{1} dt p \cdot t^{p-1} \omega_{i_{1}, \dots, i_{p}}(tx^{1}, \dots, tx^{n}) dx^{i_{1}} \wedge \dots \wedge dx^{i_{p}} + \underbrace{(.) + (.)}_{\text{równa się zero}} =$$

$$= \int_{0}^{1} dt \left(\frac{d}{dt} \left(t^{p} \omega(tx^{1}, \dots, tx^{n}) dx^{i_{1}} \wedge \dots \wedge dx^{i_{p}} \right) \right) =$$

$$= t^{p} \left(\omega(tx^{1}, \dots, tx^{n}) dx^{1} \wedge \dots \wedge dx^{p} \right) \Big|_{t=0}^{t=1} = \omega.$$