EAXVA04 使用手册

目录

EAXVA04	使用手册1
– ,	产品介绍2
_,	系统框图3
	2.1 系统框图
	2.2 端口介绍3
三、	快速开始4
	3.1 提前准备
	3.2 基础知识5
	3.3 使用设备5
四、	软件介绍5
	3.1 系统信息5
	3.2 默认安装库5
	3.3 查看系统版本信息6
四、	Xavier 端功能使用 7
	4.1 RS232 以及 RS485 的使用7
	4.2 CAN 使用9
	4.3 普通网口使用11
	4.4 车载以太网使用
	4.5 摄像头使用14
	4.6 固态硬盘的使用
	4.7 PPS 功能
	4.8 风扇调速
 五、	注意事项

一、产品介绍

产品描述

优控 EAXVA04 控制器是一款基于 NVIDIA JETSON XAVIER 处理器、面向智能边缘计算应用场景的解决方案系统。

EAXVA04 控制器 XAVIER 端具有千兆网□、CAN 总线、RS232、RS485、M. 2 NVME 硬盘、车载以太网接□等丰富的外设接□,支持常见的激光雷达、网络相机、FPDLINK 接□相机、毫米波雷达、超声波雷达等传感器的接入;支持 1T 容量内置固态硬盘,用于存储数据;EAXVA04控制器面向复杂恶劣的工业场景设计:防护等级 IP67;满载运行可工作在-25~70℃的环境温度中。

二、系统框图

2.1 系统框图

2.2 端口介绍

接口类型	数量	功能	内部芯片
M. 2 KEY M	1	扩展存储	SOC
摄像头接口	8	FPDlink III	SOC
千兆普通以太网	2	100BASE-T/1000BASE-T 标准	交换机
千兆车载以太网	3	100Base-T1/1000Base-T1	交换机
USB	1	1路USB TypeA	SOC

HDMI	1		SOC
RS232	4	其中 1 路用于 Debug	SOC
RS485	1		SOC
CAN	2		SOC
PPS_IN	1		SOC
PPS_OUT	4		SOC
CANFD	6	2 路具备特定帧唤醒	MCU
LIN	4	不需要唤醒功能	MCU
数字输入	10	默认配置,5路高有效(其中2路硬 线唤醒), 3路低有效,2路 IPWM	MCU
模拟输入	6	默认配置,2路5V电压型 2路36V电压型,2路电阻型	MCU
数字低边输出	8	8路@ 250 mA,	MCU
数字高边输出	4	4路@1 A,	MCU
5V 传感器电源	2	最大电流 200mA	MCU

三、 快速开始

3.1 提前准备

使用本设备之前,请准备以下几项

- 稳定的供电电源, 12V DC/ 10A min
- USB 转 RS-232
- 笔记本电脑

3.2 基础知识

如果你是 Linux 初学者,也许先学习一些有关 Linux 命令行工具的快速使用教程会对你很有帮助,这里有两篇很好的教程:中文教程,英文教程。

3.3 使用设备

1. 连接

将设备的正负极连接直流电源,通过 USB 转 RS-232, 将设备的 RS232-3 连接到电脑, 确保电脑能够正常使用串口设备。

2. 配置

配置串口:波特率 115200,8 个数据位,无奇偶校验,1 个停止位。 使用 Putty 或者 Minicom,打开串口

3. 启动

打开设备的 KeyOn 开关,启动设备电源,设备首先启动 Bootloader,然后运行 Linux 系统,通过串口终端能够看到系统正常启动,之后可以登录,默认用户名: nvidia,密码: nvidia。

四、软件介绍

3.1 系统信息

登录信息

用户名	密码	权限
nvidia	nvidia	管理员
root	nvidia	超级管理员,不可从界面登录

3.2 默认安装库

软件名称	版本	信息
Jetpack	jetpack 4.2.1	jetpack 4.4

CUDA	10. 0. 326	10.2
cuDNN	7. 5. 0. 56	8.0
TensorRT	5. 1. 6. 1	7. 1
OpenCV	3. 3. 1	4. 1. 1
TensorFlow	1.14	
VisionWorks	1.6	
Container	0.9.0	
Multimedia_API	32. 2	32. 4
deepstream	1.14	5.0
VPI		0. 3. 7

3.3 查看系统版本信息

打开终端输入命令 cat /etc/EAXVA04.m(cat /etc/EAXVA04_VERSION.m) 查看 Xavier 镜像的版号

```
nvidia@EAXVA04:~$ cat /etc/EAXVA04_VERSION.m
function [EAXVA04_IMG, JetPack, L4T] = EAXVA04_VERSION()

EAXVA04_IMG='2010';
JetPack='4.2.1';
L4T='32.2';
CUDA='10.0';
'cuDNN='7.5';
TensorRT='5.1';
OpenCV='3.3.1';
VisionWorks='1.6';
Container='0.9.0';
Multimedia_API='32.2';
DeepStream='4.0';
TensorFlow='1.14';
end
nvidia@EAXVA04:~$
```

nvidia 计算库版本: jetson_release

```
nvidia@EAXVA04:~$ jetson_release
- NVIDIA Jetson AGX Xavier [16GB]
 * Jetpack 4.2.1 [L4T 32.2.0]
 * NV Power Mode: MAXN - Type: 0
 * jetson_stats.service: active
- Libraries:
 * CUDA: 10.0.326
 * cuDNN: 7.5.0.56
 * TensorRT: 5.1.6.1
 * Visionworks: 1.6.0.500n
 * OpenCV: 3.3.1 compiled CUDA: NO
 * VPI: NOT_INSTALLED
 * Vulkan: 1.1.70
nvidia@EAXVA04:~$
```

nvidia@EAXVA04:~\$ cat /proc/version
Linux version 4.9.140-tegra (root@li) (gcc version 7.3.1 20180425 [li
naro-7.3-2018.05 revision d29120a424ecfbc167ef90065c0eeb7f91977701] (
Linaro GCC 7.3-2018.05)) #58 SMP PREEMPT Thu Apr 15 10:48:57 CST 202
1
nvidia@EAXVA04:~\$

四、Xavier 端功能使用

4.1RS232 以及 RS485 的使用

RS232_1_TXD	121P-52	RS-232 串口 1	Xavier <i>ttyTHS0</i>
RS232_1_RXD	121P-71	10-202 中口 1	Navier <i>nyrmsu</i>
RS232_2_TXD	121P-69	RS-232 串口 2	Vanion that UC1
RS232_2_RXD	121P-50	12-72-52 中口 5	Xavier <i>ttyTHS1</i>
RS232_3_TXD	121P-51	RS-232 串口 3	Xavier ttyTCUO 默认用于 Debug
RS232_3_RXD	121P-70	K3-232 中口 3	Navier ttylcoo 数以州 1 Debug
RS232_4_TXD	121P-68	RS-232 串口 4	Vaui on th/TLICA
RS232_4_RXD	121P-49	15-252 中口 4	Xavier <i>ttyTHS</i> 6
RS485_A	121P-34	RS485	Vaui on theTLICA
RS485_B	121P-33	СОРСЛ	Xavier <i>ttyTHS4</i>

工具: usb 转串口线、RS485 转串口线

测试步骤:

1、RS232 和 PC 用 usb 转串口线相连,可以先连接线束上的 232-1 接口,在 pc 端打开串口调试助手软件,比如 XCOM。

2、测试程序是 a04 设备的/opt/eco-ev/demo/uart_test/uart_test. sh 脚本文件。

```
nvidia@EAXVA04:/opt/eco-ev/demo/uart_test$ ls
rs232 rs232_test.c rs485 rs485.c uart_test.sh
```

3、在终端运行./uart_test.sh程序,如下图所示:

```
nvidia@EAXVA04:/opt/eco-ev/demo/uart_test$ ./uart_test.sh
uart port test Baud Rate=9600

1 : RS232-1
2 : RS232-2
3 : RS485
4 : RS232-4
5 : set Baud Rate
q : exit
choice [1,2,3,4,5,q]-->
```

以 RS232-1 串口为例:

1) 执行./uart_test.sh程序后,输入1,回车,如下图所示:

- 2) 出现 set done!,说明设置完成。
- 3) 在打开的 XCOM 软件中输入任意字符, 查看是否能立即返回字符+1 后的字符。比如输入 1, 应该返回字符 2. 如下图所示:

4) 然后在 XCOM 中输入"#"字符,结束这次测试,如下图所示:

A04 终端下出现"press enter key to continue",说明本次测试完成,按任意键进入下一次测试。可以重新选择其他串口进行测试。

5) 选择 1、2、4 选项对应的三路 RS232 测试,选择 3 项进行 485 测试(线束 33 口与 34 口分别连接 485 转换器 T/R-与 T/R+,485 转换器和 PC 的 usb 口相连),然后在此前已打开的 XCOM 串口调试工具界面输入任意字符查看是否能立即返回字符值+1 后的字符。

注:波特率默认 9600, 更改其他波特率需要./uart_test.sh 程序选择 5 选项进行设置。

6) 修改波特率,执行"./uart_test.sh"程序,输入5选项进行波特率设置,设置完成后,重复执行前4步,进行串口测试。

```
nvidia@EAXVA04:/opt/eco-ev/demo/uart_test$ ./uart_test.sh

uart port test Baud Rate=9600

1 : RS232-1
2 : RS232-2
3 : RS485
4 : RS232-4
5 : set Baud Rate
q : exit
choice [1,2,3,4,5,q]-->
5
115200
press enter key to continue
```

7) 串口测试完成后,按"q"键退出程序。

4.2 CAN 使用

CAN_XO_L 121P-66 对应 Xavier 中的 CAN)
CAN_X1_H 121P-48 终端电阻可选配	
CAN_X1_L 121P-67 包含 120 Ω 终端电阻 对应 Xavier 中的 CAN	l

测试 can 接口有两种方式: 1、通过 PCAN 工具将 PC 和 A04 设备相连。2、A04 设备两个 can 相连互相测试。

1、通过 PCAN 工具将 PC 和 A04 设备相连,在 Windows 下使用 PCAN-View 软件,然后在 A04 设备下打开终端,执行发送命令"cangen -v can0",在 PCAN-View 软件可接受到数据,如下图所示:

在 A04 设备终端执行"candump can0"用来接收数据, Windows 下发送数据, 如下图显示:

- 2、通过接线端子将 A04 的两个 can 接口短接, 互相测试。
 - 1) 打开两个终端,分别输入"cangen -v can0"和"candump can1",can0 随机发送数据,can1 接收数据。如下图所示:

```
        Nvidia@EAXVA04:-
        nvidia@EAXVA04:-
```

2) 然后分别输入"cangen -v can1"和"candump can0",can1 随机发送数据,can0 接收数

- 据。即可完成 can0 和 can1 的收发测试。
- 1、串口终端中输入指令 "cangen -v can0",PC ubuntu 运行./can-read.sh,查看 PC 是否能够接收到 CAN_XO 通道发送的随机 CAN 数据帧
- 2、PC ubuntu 运行./can-write.sh,串口终端中输入指令"candump can0",查看 CAN_X0 通道是否能够接收到 PC 发送的随机 CAN 数据帧

4.3 普通网口使用

NPort3_BI_DD+	EEG2-1		
NPort3_BI_DD-	EEG2-2		
NPort3_BI_DC+	EEG2-3		
NPort3_BI_DC-	EEG2-4	普通以太网 3	100BASE-TX/1000BASE-T
NPort3_BI_DB+	EEG2-5	青地以太M 3	100BASE=1A/1000BASE=1
NPort3_BI_DB-	EEG2-6		
NPort3_BI_DA+	EEG2-7		
NPort3_BI_DA-	EEG2-8		

注意:

- 1) 测试网络前需要使用"ifconfig eth0"命令提前查看下 Xavier 的网络 ip 地址。
- 2) pc 端 ip 地址需要和 Xavier 设备在同一网段下

Xavier端 IP地址修改

1、通过系统设置配置以太网的 IP 地址,如下图所示:

Xavier 的 IP 地址修改成功后,打开终端使用"ping 192.168.100.100"命令,检测以太网是否正常使用,如下图所示:

```
Pink 192.168.109.109 (192.168.109.109)

Pink 192.168.100.109 (192.168.109.109) 56(84) bytes of data.

64 bytes from 192.168.109.109: icnp_seq=1 titl=64 tine=1.08 ms

64 bytes from 192.168.109.109: icnp_seq=2 titl=64 tine=0.189 ms

64 bytes from 192.168.109.109: icnp_seq=3 titl=64 tine=0.318 ms

64 bytes from 192.168.109.109: icnp_seq=4 titl=64 tine=0.280 ms

64 bytes from 192.168.109.109: icnp_seq=5 titl=64 tine=0.288 ms

64 bytes from 192.168.100.109: icnp_seq=6 titl=64 tine=0.286 ms

64 bytes from 192.168.100.109: icnp_seq=6 titl=64 tine=0.280 ms

64 bytes from 192.168.100.109: icnp_seq=7 titl=64 tine=0.280 ms

64 bytes from 192.168.100.109: icnp_seq=7 titl=64 tine=0.633 ms

64 bytes from 192.168.100.109: icnp_seq=9 titl=64 tine=0.291 ms

64 bytes from 192.168.100.109: icnp_seq=9 titl=64 tine=0.291 ms

64 bytes from 192.168.100.109: icnp_seq=9 titl=64 tine=0.233 ms
```

- 2、在没有接显示器的情况下,可以通过调试串口来修改和确认 Xavier 的 IP 地址。
- 1) 通过 usb 转串口线连接 pc 和 Xavier 设备上的 232-3 接口,在 pc 上使用串口调试助手打 开 232-3 接口。
- 2) 在串口终端输入"export LANG=C"命令,防止字符乱码,然后输入 sudo nmtui, 进入菜单选择 Edit a connection 选项,选择 Wired connection 2 回车进入,将 IPv4 改成手动模式,配置 ip 地址为 192.168.100.21/24 ,然后将光标移动到最下面的"OK"选项,回车一直选择"OK"选择,直到退出配置。至此网络配通。

注意:可以按照自己的需求修改 IP 地址。

3) 连接 EEG3 接口和 PC,使用"ping 192.168.100.100"命令,即可测试以太网功能。

```
nvidia@EAXVA04:~$ ping 192.168.100.100
PING 192.168.100.100 (192.168.100.100) 56(84) bytes of data.
64 bytes from 192.168.100.100: icmp_seq=1 ttl=64 time=0.255 ms
64 bytes from 192.168.100.100: icmp_seq=2 ttl=64 time=0.283 ms
64 bytes from 192.168.100.100: icmp_seq=3 ttl=64 time=0.800 ms
64 bytes from 192.168.100.100: icmp_seq=4 ttl=64 time=0.270 ms
64 bytes from 192.168.100.100: icmp_seq=5 ttl=64 time=0.271 ms
64 bytes from 192.168.100.100: icmp_seq=5 ttl=64 time=0.271 ms
64 bytes from 192.168.100.100: icmp_seq=7 ttl=64 time=0.273 ms
64 bytes from 192.168.100.100: icmp_seq=8 ttl=64 time=0.273 ms
64 bytes from 192.168.100.100: icmp_seq=8 ttl=64 time=0.259 ms
```

4.4 车载以太网使用

ENet0_N	EEG1-3	******	10000 #1/1000 #1
ENet0_P	EEG1-4	车载以太网接口 0	1000Base-T1/100Base-T1
ENet1_N	EEG1-5	左#以上网络口 1	1000Paga_T1 /100Paga_T1
ENet1_P	EEG1-6	车载以太网接口 1	1000Base-T1/100Base-T1
ENet2_N	EEG1-1	车载以太网接口 2	1000Base-T1/100Base-T1
ENet2_P	EEG1-2	丰载以太州按口 2	1000base-11/100base-11

通过车载以太网转换器连接 EEG1 接口的 1、2 针和 PC, 上位机是否能够 PING 通 Xavier 的 IP 192.168.1.123。

4.5 摄像头使用

Camera-1	FAKRA-1	FPD-Link III 串行摄像头接口 1	Z Type
Camera-2	FAKRA-2	FPD-Link III 串行摄像头接口 2	Z Type
Camera-3	FAKRA-3	FPD-Link III 串行摄像头接口 3	Z Type
Camera-4	FAKRA-4	FPD-Link III 串行摄像头接口 4	Z Type
Camera-5	FAKRA-5	FPD-Link III 串行摄像头接口 5	Z Type
Camera-6	FAKRA-6	FPD-Link III 串行摄像头接口 6	Z Type
Camera-7	FAKRA-7	FPD-Link III 串行摄像头接口 7	Z Type
Camera-8	FAKRA-8	FPD-Link III 串行摄像头接口 8	Z Type

Xavier 共有 8 路摄像头,分别对应设备上的 FAKRAO-7 接口。摄像头分为带 ISP 功能和不带 ISP 功能的两种摄像头。

注意:下文中提到的 rtp-server.sh 和 rtp-client.sh 程序,对于带 ISP 和不带 ISP 功能的摄像头来说是不一样的脚本测试程序,具体可以询问相关技术人员。

带 ISP 功能摄像头使用:

接显示器的情况:

1) 打开终端,进入到"/opt/eco-ev/demo/camera"目录,目录下 test_disp.sh 文件是摄像头测试脚本文件。如下图所示:

```
nvidia@EAXVA04:/opt/eco-ev/demo/camera

nvidia@EAXVA04:~$ cd /opt/eco-ev/demo/camera/
nvidia@EAXVA04:/opt/eco-ev/demo/camera$ ls

8_disp.sh capture rtp-client.sh rtp-server.sh
nvidia@EAXVA04:/opt/eco-ev/demo/camera$
```

2) 连接好摄像头,例如摄像头接到第一个接口上,在终端执行"./test_disp.sh 0"命令,即可打开摄像头。如下图所示:

不接显示器的情况下:

1) 连接普通网口和上位机 ubuntu 系统,确保上位机是否能够 PING 通 Xavier

2) 可以通过调试串口或者 ssh 方式登录 xavier 设备,在这使用 ssh 方式登录 xavier 设备。 使用 "ssh nvidia@192.168.1.123" 命令登录 xavier 设备,进入到测试脚本所在目录"/opt/eco-ev/demo/camera/"如下所示:

```
nvidia@EAXVA04:/opt/eco-ev/demo/camera$ ls
8_disp.sh rtp-client.sh rtp-server.sh test_disp.sh
nvidia@EAXVA04:/opt/eco-ev/demo/camera$
```

3) 在终端运行"./rtp-server.sh 192.168.1.102 5000 0"命令打开第一个摄像头接口。如下图所示:

注: 192.168.1.102 为上位机 ip,需要与自己 pc 的 ip 一致; 0 是 FAKRAO 接口摄像头,用于设置要检测的 FAKRAO-7 接口的摄像头号; 5000 为端口号,server、client 两端保持一致。

```
Invidia@EAXVA04:/opt/eco-ev/demo/camera$ ./rtp-server.sh 192.168.1.102 5000 0
Setting pipeline to PAUSED ...
Pipeline is live and does not need PREROLL ...
Setting pipeline to PLAYING ...
New clock: GstSystemClock
Framerate set to : 30 at NvxVideoEncoderSetParameterNvMMLiteOpen : Block : Block
Type = 4
===== NVMEDIA: NVENC =====
NvMMLiteBlockCreate : Block : BlockType = 4
H264: Profile = 66, Level = 40
```

4) 上位机 ubuntu 运行"./rtp-client.sh 5000",可以看到动态、清晰的图像,如下图所示:

不带 ISP 功能摄像头使用:

接显示器情况:

连接摄像头到第一个接口,打开终端,执行命令"argus_camera --device=0"(其中 0~7,分别表示 8 个摄像头接口),摄像头即可显示图像,如下图所示:

不接显示器的情况:

- 5) 连接普通网口和上位机 ubuntu 系统,确保上位机是否能够 PING 通 Xavier
- 6) 可以通过调试串口或者 ssh 方式登录 xavier 设备,在这使用 ssh 方式登录 xavier 设备。使用 "ssh nvidia@192.168.1.123" 命令登录 xavier 设备,进入到测试脚本所在目录"/opt/eco-ev/demo/camera/"如下所示:

```
nvidia@EAXVA04:/opt/eco-ev/demo/camera$ ls
8_disp.sh rtp-client.sh rtp-server.sh test_disp.sh
|nvidia@EAXVA04:/opt/eco-ev/demo/camera$
```

7) 在终端运行"./rtp-server.sh 192.168.1.102 5000 0"命令打开第一个摄像头接口。如下图所示:

注: 192.168.1.102 为上位机 ip,需要与自己 pc 的 ip 一致; 0 是 FAKRAO 接口摄像头,用于设置要检测的 FAKRAO-7 接口的摄像头号; 5000 为端口号,server、client 两端保持一致。

```
Invidia@EAXVA04:/opt/eco-ev/demo/camera$ ./rtp-server.sh 192.168.1.102 5000 0
Setting pipeline to PAUSED ...
Pipeline is live and does not need PREROLL ...
Setting pipeline to PLAYING ...
New clock: GstSystemClock
Framerate set to : 30 at NvxVideoEncoderSetParameterNvMMLiteOpen : Block : Block
Type = 4
:===== NVMEDIA: NVENC =====
NVMMLiteBlockCreate : Block : BlockType = 4
H264: Profile = 66, Level = 40
```

8) 上位机 ubuntu 运行"./rtp-client.sh 5000",可以看到动态、清晰的图像,如下图所示:

4.6 固态硬盘的使用

1) 查看硬盘是否识别成功:在终端中输入 lsblk 查看块设备找到固态硬盘名 nvme0n1

```
nvidia@EAXVA04:~$ lsblk | grep nvme
nvme0n1 259:6 0 465.8G 0 disk
nvidia@EAXVA04:~$
```

2) 第一次使用硬盘需要给硬盘创建分区,并进行格式化:

sudo fdisk/dev/nvme0n1

输入 n 新建分区,选择 primery 分区,过程中一至按回车,结束后输入 w 保存。

3) 格式化分区

sudo mkfs.ext4/dev/nvme0n1p1

```
nvidia@EAXVA04:-$ sudo mkfs.ext4 /dev/nvme0n1p1
mke2fs 1.44.1 (24-Mar-2018)
Discarding device blocks: done
Creating filesystem with 122096390 4k blocks and 30531584 inodes
Filesystem UUID: 77b87e2b-fd67-4912-ab9e-55a2ec65b0e8
Superblock backups stored on blocks:
32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632, 2654208,
4096000, 7962624, 11239424, 20480000, 23887872, 71663616, 78675968,
102400000

Allocating group tables: done
Writing inode tables: done
Creating journal (262144 blocks): done
Writing superblocks and filesystem accounting information: done
```

4) 挂载硬盘

sudo mount /dev/nvme0n1p1 /mnt

5) 读写测试

cd/mnt

sudo vi test.txt

创建 test.txt 文件并写入随意信息,保存信息并退出后再次打开文件查看信息是否能保存

4.7 PPS 功能

PPS_IN	121P-23	秒脉冲同步输入信号	Xavier,支持3.3V-16V,硬件配置
PPS_OUT1	121P-81	秒脉冲同步输出信号	Xavier,12V 输出
PPS_OUT2	121P-80	秒脉冲同步输出信号	Xavier, 12V 输出
PPS_OUT3	121P-79	秒脉冲同步输出信号	Xavier, 3.3V 或者 5V 输出
PPS_OUT4	121P-78	秒脉冲同步输出信号	Xavier, 3.3V 或者 5V 输出

Xavier 有 4 路 PPS_OUT 和一路 PPS_IN 功能。

1) 将线束 78、79 分别连接线束 23 口,终端界面运行"sudo ppstest /dev/pps0",结果如下 所示:

```
nvidia@EAXVA04:~$ sudo ppstest /dev/pps0
trying PPS source "/dev/pps0"
ok, found 1 source(s), now start fetching data...
time_pps_fetch() error -1 (Connection timed out)
time_pps_fetch() error -1 (Connection timed out)
time_pps_fetch() error -1 (Connection timed out)
source 0 - assert 1517156308.240051571, sequence: 1813 - clear 0.0000000000, seq
uence: 0
source 0 - assert 1517156308.290046605, sequence: 1814 - clear 0.0000000000, seq
uence: 0
source 0 - assert 1517156308.340037255, sequence: 1815 - clear 0.0000000000, seq
uence: 0
source 0 - assert 1517156308.390045217, sequence: 1816 - clear 0.0000000000, seq
uence: 0
source 0 - assert 1517156308.440046556, sequence: 1817 - clear 0.0000000000, seq
uence: 0
```

2) 使用示波器连接线束 80 或者 81; 80 或者 81 口示波器显示频率为 20hz, 80 或者 81 为 12v 电压(上下电压偏置 5V),如下图所示:

4.8 风扇调速

1) 打开终端输入"itop"命令,如下所示:

2) 点击最下面一行的选项 5, 进入风扇控制界面, 如下所示:

从键盘输入"m"和"p",即可控制风扇转速。测试完成后按"q"退出。

五、注意事项

5. 1 如果用户要根据自己需求更改 MCU 程序,需在 MATLAB 模型里添加以下端口,并打开。 这些端口分别用来控制摄像头和风扇供电。

5.2 如果用户要更新系统 apt upgrade, 请与优控确认是否可以更新。

5.3 如果用户使用 JetPack4.6 系统,打开摄像头时需遵循 7-0 的顺序,依次打开摄像头。