Set, Tuple, Interval or variable	Elements	Description	Initial index or element	Representative indexes or elements	Final index or element
ME	$\{me_1, me_2, \ldots, me_n\}$	Set of mobile entities: representative mobile entity me_k	1	i, j, k	n
FE	$\{fe_1, fe_2, \dots, fe_m\}$	Set of fixed entities: representative fixed entity: $f e_g$	1	g, h	m
$re(fe_g)$	$\{a,b,\ldots,d\}$	Outbound exits of region in azimuth degrees defined for each fixed entity g , where $a=0,b=90,$, equivalent to north, east,, respectively	а	a, b,	d
$ri(fe_g)$	$\{a',b',\ldots,d'\}$	Inbound inlets of region in azimuth degrees defined for each fixed entity g , where $a'=0,b'=90,$, equivalent to north, east,, respectively	a'	a', b',	d'
INC_k	$\{inc_k^1, inc_k^2,, inc_k^r\}$	Local set of all (k,r) incidents provoked by mobile entity k , where k denotes entity identifier, and r denotes the number of incident	1	p, q	r
inc_k^p	$(k,p,(x_k,y_k,t_\alpha^{k,p}))$	Spatio-temporal coordinates of location and initial time α of incident (k,p) provoked by mobile entity k	α		
Δ_k^p	$[t_{lpha}^{k,p},t_{\omega}^{k,p}]$	Interval with final time ω of incident (k,p) , only known when finished	$t_{lpha}^{k,p}$		$t_{\omega}^{k,p}$
$mess_k(inc_k^p)$	$(k, p, (x_k, y_k, \lambda t_{\alpha}^{k,p}), Stt)$	Message containing spatio-temporal coordinates of incident (k,p) , provoked and segregated by mobile entity k ; where $Stt=0$ if initial segregation, $Stt=1$ if subsequent segregation, or $Stt=2$ if incident is external to mobile entity k			
$\lambda t^{g,k,p}_{eta}$		Periodical physical time(s) when $mess_k(inc_k^p)$ is acquired by fixed entity g and related pheromone's lifetime begins or is extended by reaffirmation	1	λ	$max(\lambda)$
$\lambda t_{\gamma}^{g,k,p}$	$=\lambda_{\beta}^{g,k,p}+\delta t$	Periodical physical time(s) when pheromone relative to incident (k,p) is going to expire after being started or restarted by fixed entity g at time $\lambda t_{\beta}^{k,p}$	1	λ	$\max(\lambda)$
$\phi_g^{k,p}\big(fe_g\big)$	$(g,inc_k^p,I(\phi_g^{k,p}))$	Pheromone data structure over indicated region of fixed entity			
$\Delta\phi_g^{k,p}\big(fe_g\big)$	$[1t^{k,p}_{eta},\lambda t^{k,p}_{\gamma}]$	Overall pheromone's lifetime relative to incident (k,p) on fixed entity g	$1t_{eta}^{k,p}$		$\lambda t_{\gamma}^{k,p}$
$timer_\phi(g,k,p)$	$(inc_k^p, \lambda t_\beta^{g,k,p}, \lambda t_\gamma^{g,k,p}, value)$	Physical countdown timer that extends lifetime of pheromone on fixed entity g and relative to incident (k,p)	100%		0%
$I(\phi_g^{k,p})$	$(\iota_a = 01, \iota_b = 01,)$	Intensity on subregions $a,b,$ computed with $timer_\phi(g,k,p)$, with current time value as factor, where each intensity value is a real number in $[0,1]$	0		1
$mess_g(\phi_g^{k,p})$	$(g, inc_k^p, (\iota_a, \iota_b,), timer(g, k, p))$	Pheromone on fixed entity g of incident (k,p) provoked by mobile entity k that contains intensities in respective subregions	ī		

Table 1: Used notation in system model definition

Internal events mobile processes mp _k	Description
$Crt(inc_k^p)$	Creation of incident
$MGen(mess_k(inc_k^p))$	Generate incident message to be segregated
$MSt(inc_k^p)$	Countdown timer start or restart for indicated incident
$Mdec(mess_h(\phi_g^{k,p}))$	Intensities decapsulate from consumed pheromone
$MEn(inc_k^p)$	End of countdown timer for indicated incident
$MTrm(inc_k^p)$	Termination of indicated incident

External events mobile processes mp_k	Description
$Seg(mess_k (inc_k^p))$	Segregate message of incident
$Con(\phi_g^{k,p})$	Consume pheromone
$Act(\phi_g^{k,p})$	Action after consuming pheromone

Table 2: Events for mobile entities

Internal events fixed processes fp_g	Description
$FDec(mess_k(inc_k^p))$	Decapsulate incident from message acquired
$FGen(\phi_g^{k,p})$	Generate pheromone
FSt(timer(g,k,p))	Countdown timer start or restart for indicated pheromone
$Upd(\phi_g^{k,p})$	Update intensity in pheromone with timer when query detected
FEn(timer(g,k,p))	Countdown timer end for indicated pheromone
$FTrm(\phi_g^{k,p})$	Termination of indicated pheromone

External events fixed processes fp_g	Description
$Acq(mess_k(inc_k^p))$	Acquisition of incident message
$Ntf(mess_g(\phi_g^{k,p}))$	Notify pheromone

Table 3: Events for fixed entities

Algorithm 1: incident creation and message incident segregation EMS by mobile entity me_i over fixed entity fe_h :

28.

end

Algorithm 2: incident message acquisition on fixed entity fe_h from me_i and creation and notification of pheromone on mobile entity me_k :

25.

end

Algorithm 3: pheromone message consumption on mobile entity me_k from fixed entity fe_h :

Interaction between me_j and fe_h'

- Internal event
- External event

 me_j : detects incident and segregates one incident message on fe_h '

 fe_h ': acquires incident message, creates pheromone of extra-regional incident

Constraints: $uniq(me_j, fe_h') = 1$

Algorithm 4: incident relay and segregation of incident message by mobile entity me_i on fixed entity fe_h ':

Input: $\phi(h, i, p) = (h, inc_i^p, timer(h, i, p), (\iota_a \approx 1, \iota \cong 0, ...))$, i.e., knowledge of incident of me_i known by me_j through fe_h ; previous value of q Output: $mess(j, q) = (j, q, (x_i, y_i, t_\alpha^{j,q}), Act)$ segregated on fe_h once and only once

