

BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR

Előadás és gyakorlat jegyzet

Dinamika (BMEGEMMBXM3)

Készítette:

Kun László Ákos

1. Előadás

Bevezetés, anyagi pont kinematikája

Elméleti összefoglaló:

A testek mozgásának leírásával foglalkozik Testek mozgásának okaival foglalkozik Mivel a bennünket körülvevő világ rendkívül összetett, közelítésekkel kell élnünk és a jelenség szempontjából fontosabb körülményeket kell kiemelnünk/figyelembe vennünk. Ezt hívjuk modellalkotásnak.

Első modell: Anyagi pont méretei lényegtelenek a vizsgált probléma szempontjából, tömegét viszont figyelembe vesszük a későbbiekben.

Megjegyzés: Ugyanazt a testet különböző feladatokban más-más mechanikai modellekkel vehetjük figyelembe.

Példa

Az úton közlekedő járműveket anyagi pontként modellezük, hogy a járműforgalomra vagyunk kiváncsiak, de hogyha a jármű manővereit is figyelembe akarjuk venni, akkor fontossá válik az autó alakja, tömegelosztása stb., így merev testként modellezük.

Alapvető fogalmak:

Bármely anyagi test helyzete és mozgás más testekhez képest értelmezhető, tehát ki kell választanunk ezt a testet/testeket. Ezt vonatkoztatási rendszernek hívjuk. Ezt mindig meg kell adnunk, mert a mozgás különböző lehet más vonatkoztatási rendszerből nézve.

- Gépkocsi gördülő kerekének egy pontja a karosszériához képest körpályán mozog az úthoz képest ciklois görbén.
- Mozgó járműben az utastér pontjait állónak látjuk és úgy tűnik, mintha a környezet mozogna

A mozgások leírásához koordináta-rendszert kell felvennünk, ezt úgy célszerű felvenni, hogy a lehető legegyszerűbb legyen ebben a feladat megoldása.

Mozgástörvény: Az a függvény, mely egyértelműen megadja, hogy a vizsgált test pontjainak helye hogyan változik az időben. Anyagi pont esetében a mozgástörvény a helyvektor időbeli változását megadó vektorértékű $\underline{r}(t)$ függvény.

$$\underline{r}(t) = \begin{bmatrix} x(t) \\ y(t) \\ z(t) \end{bmatrix},$$

ahol x(t), y(t), z(t) skalárfüggvények.

ha ezeket együtt ábrázoljuk az idő koordinátáját elhagyva, akkor az anyagi pont pályáját kapjuk:

Definíció

Pálya: Az anyagi pont helyvektorának grafikonja térben (időfüggés nélkül)

Anyagi pont pillanyatni sebessége: az $\underline{r}(t)$ helyvektor idő szerinti deriváltja

$$\underline{v}(t) = \frac{d\underline{r}(t)}{dt} = \underline{r}(t)$$

<u>Fontos</u> csak akkor nulla egy vektor időszerinti deriváltja, ha sem a mozgása sem az iránya nem változik!

Anyagi pont pillanatnyi gyorsulása: az $\underline{r}(t)$ sebességvektor idő szerinti deriváltja

$$\underline{a}(t) = \frac{d^2r(t)}{dt^2} = \underline{\dot{v}}(t) = \underline{\ddot{r}}(t)$$

Csak az egyenes vonalú, egyenletes mozgás esetén nulla a gyorsulás!

A sebesség vektor párhuzamos a pálya érintőjével! A gyorsulásvektor is megadható két természetes komponens segítségével, melyek közül az egyik a sebesség nagyságának változásával kapcsolatos és érintőirányú, a másik a sebesség irányának változását jellemzi és az előzőre merőleges.

Vagyis a

- tangenciális gyorsulás: $\underline{a}_t = a_t \cdot \underline{e}_t$, ahol $\underline{e}_t \mid\mid \underline{v}$ és \underline{e}_t egy bázisvektor
- normális gyorsulás: $\underline{a}_n=a_n\cdot\underline{e}_n$, ahol $\underline{e}_t\bot\underline{e}_n$ és $\underline{a}_n=\underline{a}-\underline{a}_t$

$$\underline{e}_n = \frac{\underline{a}_n}{a_n} \equiv \frac{\underline{a}_n}{|\underline{a}_n|}$$

Ezzel:

$$\underline{a} = a_t \cdot \underline{e}_t + a_n \cdot \underline{e}_n$$

Megkülönböztetünk még egy irányt, a binormális irányt, mely az előző kettőre merőleges

$$\underline{e}_b = \underline{e}_t \times \underline{e}_n$$

Tangenciális gyorsulás: $a_t = |\underline{\dot{v}}|$

Normális gyorsulás: $a_n = \frac{v^2}{\rho}$, ahol a ρ a görbületi sugár

A pálya, akkor lehet igazi térbeli görbe, ha a mozgás során folyamatosan változó irányú \underline{e}_t és \underline{e}_n vektorok által kifeszített sík (simulósík) helyzete változik. (A simulósík pálya menti elfordulását a tartozó $\underline{\ddot{r}}(t)$ (jerk) jellemzi)

Definíció

Jerk: Kinetikai egyenleteknél nem használatos, de például tömegközlekedésnél a testtartásunk megváltoztatásával könnyen alkalmazkodunk a gyorsuláshoz, de ennek megváltozásához viszont nem.

Pályához illeszkedő koordináták:

- A sebesség előjeles nagysága a pályasebesség
- A pályasebesség további deriválásával a gyorsulás érintő irányú kompenensének az előjeles nagyságát kapjuk, ez a pályagyorsulás.
- Értelmezzük még keringési szögsebességet és szöggyorsulást, de fontos megjegyezni, hogy anyagi pontnak nincs szögsebesség vagy szöggyorsulása! (A szögsebesség az elfordulás ütemét jelenti!)

Definíció

Az adott pályán mozgó anyagi pont pozícióját egyértelműen megadhatjuk egy választott kezdőpontból mért s ívhosszparaméterrel, azaz a pálya mentén mért koordinátával. Az ívhossz paraméter időbeli változása s(t) a befutási törvény.

Pályasebesség: $v = \dot{s}(t)$

Pályagyorsulás: $a = \ddot{s}(t)$

Ezeket együttesen <u>foronómiai görbéknek</u>

hívjuk!

Kényszerek:

Definíció

Szabadsági fok (DoF): Azon független skalár függvények száma, melyek egyértelműen megadják a rendszer mozgástörvényét!

Definíció

Kényszernek előírt geometriai vagy kinematikai feltételek melyek korlátozásokat jelentenek a mozgásokra nézve.

Osztályozásuk:

• holonóm (geometriai)

• szkleronóm (időtől független)

• anholonóm (kinematikai)

• reanóm (időtől függő)

1. Gyakorlat

Pont mozgása egyenes és körpályán, foronómiai görbék

1. Feladat

Adatok:

 $R = 0, 3 \ m$

 $\underline{v}_s =$ állandó

 $v_s = 5 \ ms^{-1}$

Feladatok:

- \bullet Határozza meg a Ppont sebességét a φ paraméter függvényében!
- \bullet Határozza meg a P pont gyorsulását hasonlóképpen!
- Számítsa ki a $\varphi_1=75^\circ\text{-hoz}$ tartozó \underline{a}_1 és \underline{v}_1 a gyorsulást, illetve sebességét!
- \bullet Számítsa ki és ábrázolja az \underline{a}_1 gyorsulás normális és tangenciális komponens
- A $\varphi_1 = 75^\circ$ szöghelyzetben számítsa ki a páya ϱ_1 görbületi sugarát!

1. Feladat

3. Előadás

Merev test kinematikája

Elméleti összefoglaló:

A merevtest síkmozgás kinematikája:

Az eddig bevezett összefüggések merevtestek tetszőleges térbeli mozgására vonatkoztak. Fontos speciális eset az, amikor a merevtest síkmozgást végez, ekkor ugyanis egyszerűbb alakra hozható mind a sebességredukciós mind a gyorsulásredukciós képlet.

A test pontjai egymással párhuzamos síkokban mozognak és minden pont sebesség és gyorsulásvektora is párhuzamos ezekkel a síkokkal. Ekkor a szögsebességvektornak merőlegesnek kell lennie a mozgás síkjára.

Míg az általános esetben a sebesség- és gyorsulásállapot együttes megadásához 12 skalár komponenst kell megadni, síkmozgás esetén mindössze hat nem zérus komponens marad.

$$\underline{v}_{A} = \begin{bmatrix} V_{Ax} \\ V_{Ay} \\ 0 \end{bmatrix} \qquad \underline{a}_{A} = \begin{bmatrix} a_{Ax} \\ a_{Ay} \\ 0 \end{bmatrix} \qquad \underline{\omega}_{A} = \begin{bmatrix} 0 \\ 0 \\ \omega_{z} \end{bmatrix} \qquad \underline{\varepsilon}_{A} = \begin{bmatrix} 0 \\ 0 \\ \varepsilon_{z} \end{bmatrix}$$

Megjegyzés: ε előjelet a tangenciálus gyorsulás előjeléhez megfelelően kell értelmezni. Akkor pozitív, ha a szögsebesség abszolút értéke nő. Ha $\underline{\varepsilon} = \underline{0} \Rightarrow \underline{\omega} =$ állandó

Definíció

Álló tengely körüli forgás esetén az α gyorsulászög a gyorsulásvektortól a normális gyorsulásvektor irányáig felmért előjeles szög:

$$\tan(\alpha) = \frac{\varepsilon_z}{\omega^2}$$

Síkmozgást végző merevtest sebességállapota:

A síkmozgást végző testek csak haladó vagy forgó mozgást végezhetnek, csavarmozgást nem. Általános síkbeli forgó mozgást végző merev test esetén akkor egyszerűsödnek le a sebességállapotra vonatkozó egyenletek, ha a pillanyatni forgástengely xy síkba eső P pontját választjuk referenciapontnak. A nulla sebességű pontot sebességpólusnak nevezzük.

Síkmozgást végző merev test nulla sebességű P pontját póluspontnak vagy sebességpólusnak nevezzük. A P sebességpólusnak ismeretében egy tetszőleges B pont sebessége felírható:

$$\underline{v}_B = \underline{v}_p + \omega \times \underline{r}_{PB} = \omega \times \underline{r}_{PB}$$

kihasználva a síkmozgás sajátosságait

$$v_B = \omega \mid \underline{r}_{PB} \mid \text{ \'es } \underline{v}_b \perp \underline{r}_{PB}$$

A sebesség nagysága arányos a sebességpólustól mert távolsággal, iránya pedig merőleges a sebességpólusból húzott helyvektora. A síkmozgást végző test a sebességállapota szempontjából úgy viselkedik, mintha a P sebességpólus körül forogna.

A sebességpólus meghatározása:

- sebességredukciós képletből
- szerkesztéssel
- $\underline{r}_{AP} = \frac{\underline{\omega} \times \underline{v}_A}{\omega^2}$ (A pontból, centrális egyenes...)

Következik, hogy $\underline{v}_A \perp \underline{r}_{AP}$. Ez lehetőséget ad a sebességpólus helyének gyors geometriai meghatározására: két ponz sebességvektorára merőlegeseket állítva a kapott egyenesek kimetszik a sebességpólus helyét.

Az ismertetett eljárás síkbeli haladó mozgásra is általánosítható. Egy haladó mozgást végző test sebességpólusa a sebességvektorra merőleges irányban egy végtelen távoli pontban képzelhető el.

Síkmozgást végző merevtest gyorsulásállapota:

Tétel

Síkmozgás esetén a gyosulásredukciós képlet egyszerűsödik

$$\underline{a}_B = \underline{a}_A + \varepsilon \times \underline{r}_{AB} - \omega^2 \underline{r}_{AB}$$

Az általános síkmozgást végző merevtest vissazvezethető álló tengely körüli forgásra, ha a testnek van egy kiválasztott nulla gyorsulású pontja. Ez a pont általában nem esik egybe a sebességpólussal, mivel a P sebességpólus helye független a gyorsulásállapottól, annak gyorsulásra általában nem nulla.

A gyorsulás helye

$$\underline{r}_{AB} = \frac{\omega^2 \underline{a}_A + \varepsilon \times \underline{a}_A}{\varepsilon^2 + \omega^4}$$

képlettel adható meg.

Ha egyszerre $\varepsilon=0, \omega=0$ és $\underline{a}_A=0$, akkor nem értelmezhető a képlet, mert a test minden pontja nulla gyorsulású. Ha $\varepsilon=0, \omega=0$ és $\underline{a}_A\neq 0$, akkor haladó mozgást végez a test, ezért gyorsuláspólusa a végtelenbe kerül.

A gyorsulás nagysága:

$$a_A = |\underline{r}_{GA}| \sqrt{\varepsilon^2 + \omega^4}$$

azaz arányos a gyorsuláspólustól mért távolsággal, ugyanúgy, mint álló tengely körüli forgásnál. Tehát a síkmozgást végző merev testnek az a pontja mozog legnagyobb gyorsulással, amelyik legmesszebb van a gyorsuláspólustól.

Definíció

Általános síkmozgás esetén a gyorsulásredukciós képletben szereplő $(\omega^2 \underline{r}_{GA})$ vektor az A pontból a G gyorsuláspólus felé mutat és definíció szerint α gyorsulászöget zár az A pont gyorsulásvektorával. A gyorsulászög független az A pont választásától. Előjelet a szöggyorsulás iránya határozza meg:

$$\tan(\alpha) = \frac{\varepsilon_z}{\omega_z}$$

Megjegyzés: ε irányában α szöggel elforgatott egyeneseket mérünk fel, ezek kimetszik a gyorsuláspólust. Sebességpólus, gyorsuláspólus és a pálya görbületi közzéppontja:

Úgy tekinthetjük mintha a sebességek szempontjából a P sebességpólus körül, a gyorsulások szempontjából pedig a G gyorsuláspólus körül forogna a test. Ugyanakkor a merevtest pontjainak pályái különbözőek és a pályák egyes pontjaihoz is más és más görbületi középpont tartozik, a merevtestnek egy adott időpillanatban csak egyetlen P sebességpólusa és egyetlen G gyorsuláspólusa van. A görbületi közppont helye csak a kiválasztott pont pályától függ. Ezzel szembena sebességpólus helyét csak a sebességállapot, a gyorsuláspólus heéyét pedig csak a gyorsulásállapot határozza meg. Ezért ezek a pontok általában nem esnek egybe csak álló tengely körüli forgás esetén.

A gördülés kinematikája:

Síkmozgás során általában változik a sebességpólus helye a mozgés során. Például ha kerék átmegy egy víztócsán, a testen és a talajon a nedves pontok jelölik ki azokat a görbéket, melyek pontjai valamikor póluspontok voltak.

A merevtest pontjainak sem a sebessége, sem a szögsebessége nem változhat ugrásszerűen, ezért a pillanatnyi forgástengely és a sebességpólus helye folytonosan változik. Mivel a gördülő test és a telej pontjai az érintkezés után eltávolodnak egymástól, két görbét is definiálhatunk, melynek pontjai póluspontok voltak, illetve lesznek: egy gördülő kerék esetében a kerék által a talajon hagyott nyom jelölik ki az álló pólusgörbét, a kerék azon pontjai pedig, melyek póluspontok voltak, a mozgó pólusgörbén helyezkednek el.

Definíció

Az álló pólusgörbe a P sebességpólus, mint geometriai pont pályája a vonatkoztatási rendszerben.

Definíció

Az álló pólusgörbe a P sebességpólus, mint geometriai pont pályája a merevtesthez képest.

Gördülés soran a nulla sebességű sebességpólus változtatja helyét a síkban, ezt a folyamatot pólusvándorlásnak nevezzük.

Definíció

A pólusvándorlás sebessége a P sebességpólus, mint geometriai pont sebessége, ahogy halad az álló pólusgörbén, jele: \underline{U}

Az \underline{u} pálusvándorlási sebességnek gyakran ismert az iránya, hiszen ha egy test egy másikon gördül, akkor a közös érintővel párhuzamosnak kell lennie.

Megjegyzés:

Minden, nem nulla szögsebességű síkmozgást végző merevtest mozgása értelmezhető a mozgó pólusgörbének az álló pólusgörbén történő gördülésként, ahol az aktuális érintkezési pont a P póluspont.

Tétel

A pólusvándorlés \underline{u} sebessége $\underline{u}=\frac{\underline{\omega}\times\underline{a}_p}{\omega^2}$, ahol \underline{a}_p a sebességpólus gyorsulásra. Valamint

$$\underline{u} \perp \underline{\omega}$$
 és $\underline{u} \perp \underline{a}_p$

3. Gyakorlat

Gördülő korong, bolygómű

1. Feladat, egyenes kényszerpályán gördülő korong				
Adatok:				
$v_s = 1 \ ms^{-1}$	$a_s = 2 \ ms^{-2}$	r=0,5~m		
Feladatok:				
\bullet Síkban gyorsulva gördülő korongról melyik pontban válnak le a legkönnyebben a sárcseppek azaz $a_{max}=a_q; \underline{r}_{sq}=?$				
Részfeladatok:				
$-\underline{\omega}=?$, sebességpólus	helye $\underline{r}_{sp} = ?$			
$ \underline{\varepsilon}$ =?, gyorsuláspólus helye \underline{r}_{ss} =?				
– sebességpólus gyorsulása, $\underline{a}_p = ?$				
$-$ gyorsuláspólus sebessége, $\underline{v}_G=?$				

2. Feladat, hajtómű sebesség é	es gyorsulásállapot		
Adatok:			
$\omega_1 = 10 \ rads^{-1}$	$\varepsilon = 5 \ rads^{-2}$	$r=0,1\ m$	
Feladatok: I. Sebességállapot			
• Számítsa ki a (3) kerék s	zögsebességét és súlypontjána	ak sebességét $\underline{\omega}_3 = ?, \underline{v}_{s3} = ?$	
• Mekkora szögsebességgel kering a (3)-as test súlypontja ($\underline{\omega}_2 = ?$)			
• Rajzolja meg a sebessége	eloszlást az \overline{AB} szakaszon!		
II. Gyorsulásállapot			
• Számítsa ki a (3) kerék s	úlypontjának gyorsulását (\underline{a}_{s3}	₃ =?)	
\bullet Határozza meg az A és B	B pontok gyorsulásait: $(\underline{a}_A,\underline{a}_B)$	$(\underline{a}_{B3},\underline{a}_{B3})=?$	
• Határozza meg a (3) keré	ék gyorsuláspólusának helyét!		
• Rajzolja meg a gyorsulás	ábrát!		