(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-111421

(43)公開日 平成9年(1997)4月28日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ			技術	析表示箇所
C 2 2 C	38/00	303		C 2 2 C	38/00	303	S	
	33/02				33/02]	M	
H 0 1 F	1/147			H01F	1/14		A.	
	1/153			,			С	
				審査請求	え 未請求	請求項の数3	OL (全 5 頁)
(21)出願番号 特		特願平7-272265		(71)出顧人 000134257				
		·			株式会	社トーキン		
(22)出顧日 平成7年(平成7年(1995)10	(1995)10月20日		宮城県	仙台市太白区郡山	山6丁目7	番1号
,				(72)発明者	有 石川 i	羊		
					宮城県	山台市太白区郡(山六丁目 7	番1号
					株式会	社トーキン内		
				(72)発明者	大槻 (党夫		
					宮城県	仙台市太白区郡(山六丁目 7	'番1号
					株式会	吐トーキン内		
		•		(72)発明者	新 荒井 · 5	ğ		
					宮城県	山台市泉区山の	争2丁目2	8番9号
				(74)代理人	、 弁理士	後藤 洋介	(外3名)	
							最終	資に続く

(54) 【発明の名称】 高電気抵抗磁性材料及びその製造方法

(57)【要約】

【課題】 高い飽和磁束密度を持ち、かつ磁気損失の小さな、つまり電気抵抗の大きな磁性材料と、この磁性材料を用いた線輪部品と、その製造方法とを提供すること。

【解決手段】 高透磁率アモルファス合金をその結晶化 温度以上で酸素ガス、窒素ガス及びアンモニアガスのうちの少なくとも一種を含有する雰囲気中で熱処理することによって高電気抵抗磁性材料を製造する。この高電気抵抗磁性材料は、高透磁率合金よりなる結晶粒と、前記結晶粒の周囲に形成された、酸化物又は窒化物のうちの少なくとも一種とを備えており、結晶粒径が500オングストローム以下の極微細結晶粒の集合体から成る。

20

【請求項1】 高透磁率合金よりなる結晶粒と, 前記結 晶粒の周囲に形成された,酸化物又は窒化物のうちの少 なくとも一種とを備え、結晶粒径が500オングストロ ーム以下の極微細結晶粒の集合体から成ることを特徴と する高電気抵抗磁性材料。

1

【請求項2】 請求項1記載の高電気抵抗磁性材料を製 造する方法において、高透磁率アモルファス合金をその 結晶化温度以上で酸素ガス、窒素ガス及びアンモニアガ スのうちの少なくとも一種を含有する雰囲気中で熱処理 10 することを特徴とする高電気抵抗磁性材料の製造方法。

【請求項3】 請求項1記載の高電気抵抗材料を巻コア 状態で備えていることを特徴とする線輪部品。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、インダクタンス素 子、電源トランス等の線輪部品、特に、平滑チョークコ イルに用いられる髙磁性率合金磁芯等に利用される髙周 波用の高電気抵抗磁性材料とその製造方法に関する。

[0002]

【従来の技術】現在、チョークコイルは小型化が著しく 進んでいる。この小型の際に、チョークコイルのコア材 料要求されるのは,高周波領域における磁気損失が小さ いということであった。したがって,従来においては髙 周波域での磁気損失の小さい材料、つまり電気抵抗の大 きな材料であるフェライトが使用されてきた。

- [0003]

【発明が解決しようとする課題】しかしながら、フェラ イトでは飽和磁束密度が低くせいぜい3~5KGでしか なく, すぐ飽和してしまい, 飽和させないようにするに 30 は先のチョークコイルのトレンドに逆交して大型化の方 向に進まなければならず、小型化するのが困難であっ た。

【0004】そこで、本発明の技術的課題は、高い飽和 磁束密度を持ち、かつ磁気損失の小さな、つまり電気抵 抗の大きな磁性材料とその製造方法とを提供することに ある。

【0005】また、本発明の特別の技術的課題は、前記 磁性材料を用いた線輪部品を提供することにある。

[0006]

【課題を解決するための手段】本発明によれば、高透磁 率合金よりなる結晶粒と、前記結晶粒の周囲に形成され た酸化物又は窒化物のうちの少なくとも一種とを備え、 結晶粒径が500オングストローム以下の極微細結晶粒 の集合体からなることを特徴とする高電気抵抗磁性材料 が得られる。

【0007】また、本発明によれば、アモルファス合金 をその結晶化温度以上で酸素ガス、窒素ガスのどちらか 一方を含有する雰囲気中で熱処理することを特徴とする 髙電気磁性材料の製造方法が得られる。

【0008】また、本発明によれば、前記高電気抵抗磁 性材料を巻コア状態で備えていることを特徴とする線輪 部品が得られる。

2

[0009]

【発明の実施の形態】以下、本発明の実施の一形態につ いて説明する。

【0010】予め冷却ロール上方に保持された溶湯ノズ ル中で, Fe bal M_{15~30}B10~20(但し, Mは, S i, Zr, Co, Ni, Moのうちの少なくとも1種) の合金組成に配合されたインゴットを、大気、Ar, N 2, O2及びNH3雰囲気中で髙周波溶解した後,予め 定められた回転数で回転している冷却ロール上にガス加 圧によって溶湯を噴出した。これにより、リボン試料を 作製した。ここで得られた試料のマトリックスが非晶質 化していることの確認はX線回折により行い、結晶性の 鋭い回折ピークのないことにより、非晶質化が確認され た。その後、得られたリボン試料を電気炉にて500~ 650℃×0.5~50Hrで大気中雰囲気で熱処理 し、予め定められた冷却速度で室温まで冷却した。かく して得られた製品を樹脂埋め込みによって固定し、その 断面を、研磨し、最後にバフ研磨し、弗硝酸にてエッチ ングしたのち、EDXにて、結晶粒内及び結晶粒の回り を線分析等を行った結果、結晶粒内部は上部磁性体合金 組成が得られた。そしてその結晶粒の周囲については結 晶粒内部の組成及び酸素を同時に検出し,EDX分析に よりFe-Si-O系の酸化物を検出し、さらに結晶粒 径を測定したところ,約270オングストロームであっ て、最大でも500オングストロームを越えるようなも のは確認されなかった。尚、本発明の実施の一形態に係 るリボン試料は, 巻コア状態でチョークコイルに使用さ れる。

[0011]

【実施例】以下、本発明の実施例について説明する。

【0012】(実施例1)まず、予め冷却ロール上方に 保持された石英製ノズル中で, Fe bal Si₁₀B₁₅の 合金組成に配合されたインゴットをアルゴン雰囲気中で 高周波溶解した後、4000rpmで回転している冷却 ロール上にアルゴンガス加圧によって溶湯を噴出した。 これにより幅5mm, 板厚0. 02mm, 長さ100m のリボン試料を作製した。ここで得られた試料のマトリ ックスが非晶質化していることの確認はX線回折により 行い,結晶性の鋭い回折ピークのないことにより,非晶 質化が確認された。その後,得られたリボン試料を電気 炉にて580℃×0.5Hェで大気中雰囲気で熱処理 し、100℃/min以下の冷却速度で室温まで冷却し た。かくして得られた製品を樹脂埋め込みによって固定 し、その断面を#320から#1500まで研磨し、最 後にバフ研磨し,弗硝酸にてエッチングしたのち,ED Xにて、結晶粒内及び結晶粒の回りを線分析等を行った 50 結果、結晶粒内部は上記磁性体合金組成が得られた。

3

【0013】そしてその結晶粒の回りについては結晶粒内部の組成及び酸素を同時に検出し、EDX分析により Fe-Si-O系の酸化物を検出し、さらに結晶粒径を 測定したところ、約270 オングストロームであって、最大でも500 オングストロームを越えるようなものは 確認されなかった。

【0014】(実施例2)まず,予め冷却ロール上方に 保持された石英製ノズル中で,Fe bal Si₁₀B₁₅, Fe bal Zr₅Si₁₀B₁₅,Fe bal Co₂₀Si₁₀ B₁₅,Fe balNi₁₀Si₁₀B₁₅及びFe bal Mo₁₀ Si₁₀B₁₅の合金組成に配合されたインゴットをアルゴン雰囲気中で高周波溶解した後,4000rpmで回転 している冷却ロール上にアルゴンガス加圧によって溶湯*

*を噴出した。これにより幅5 mm,板厚0.02 mm, 長さ100 mのリボン試料を作製した。ここで得られた 試料のマトリックスが非晶質化していることの確認はX線回折により行い,結晶性の鋭い回折ピークのないこと により,非晶質化が確認された。その後,得られたリボ ン試料を電気炉にて580 $\mathbb{C} \times$ 0.5 H r で大気中,A r + 20 \mathbb{W} 0.4 A r 7 まの公元、A r + 20 \mathbb{W} 1、及び比較例としてA r 雰囲気の4種類の雰囲気で熱処理し,100 \mathbb{C} /m i n 以下の冷却速度で室温まで冷却した。かくして得られ た製品の電気抵抗について下記表1に併記した。なお電 気抵抗は常温で4端子法にて測定した。

【0015】

試料 番号	ガス加圧によって俗傷* 合 全 組 成(at%)	【表 1 】 雰囲気**¹	電気抵抗 (μΩcm)	10 e 印加で の磁束密度 (T)
試料1	Fe balSi ₁₀ B ₁₅	大気中	200	1.5
试料2	Fe balSi 10 B 15	Ar + 20% O 2	175	1.6
試料3	Fe bal Si ₁₀ B ₁₅	Ar + 20% N 2	187	1.6
試料4	Fe balSi ₁₀ B ₁₅	Аrф	123	1.6
試料5	FebalZr ₅ Si ₁₀ B ₁₅	火気中	250	1.45
试料6	Febal Zr ₅ Si ₁₀ B ₁₅	Ar+20%O,	215	1.5
試料7	FebalZr ₅ Si ₁₀ B ₁₅	Ar + 20% N 2	193	1.55
試料8	Fe balZr ₅ Si ₁₀ B ₁₅	Агф	126	1.55
试料9	Fe balCo ₂₀ Si ₁₀ B ₁₅	大気中	197	1.7
試料10	FebalCo ₂₀ Si ₁₀ B ₁₅	Ar + 20% O 2	173	1.65
試料11	Fe bal Co 20 S i 10 B 15	Ar + 20% N 2	184	1.80
试料12	Fe balCo ₂₀ Si ₁₀ B ₁₅	Агф	125	1.65
試料13	Fe balN i 5 S i 10 B 15	大気中	201	1.50
試料14		Ar + 20% O 2	175	1.60
試料15	Fe balN i 5 Si 10 B 15	Ar + 20% N 2	164	1.85
試料16	FebalNi ₅ Si ₁₀ B ₁₅	Агф	124	1.60
試料17	FebalMo ₁₀ Si ₁₀ B ₁₅	中尺大	199	1.4
試料18	Fe balMo ₁₀ S i ₁₀ B ₁₅	Ar + 20% O 2	180	1.5
試料19	Fe balM o_{10}^{10} S i $_{10}^{10}$ B $_{15}^{13}$	Ar + 20% N 2	184	1.45
试料20		АгФ	123	1.5

【0016】上記表1にいて、例えば、試料2と試料4の比較において、不活性ガス雰囲気においてよりも酸素を含んだ雰囲気での結晶化熱処理品の方がかなりの電気抵抗の上昇が認められる。このことは実施例のように結晶粒の周囲に高電気抵抗物質が存在していることを示

し、いずれも比較例であるAr 雰囲気中での熱処理と比べ、それ以外の酸素や窒素が存在する雰囲気でのものが明らかにその電気抵抗値が高く、かつAr+20%O2 やAr+20%N2よりも大気中のものの方が電気抵抗の上昇度が大きい。

【0017】よって、大気中雰囲気での結晶化熱処理の 条件で行うことが高電気抵抗を引き出すこととなり、好 ましいと思われる。尚、熱処理での試料の磁束密度の差 は、ほとんど見られなかった。

【0018】(実施例3)まず、予め冷却ロール上方に保持された石英製ノズル中で、Fe bal Si₁₀B₁₅、Fe bal Co₂₀Si₁₀B₁₅、Fe bal Co₂₀Si₁₀B₁₅、Fe bal Co₂₀Si₁₀B₁₅、Fe bal Mo₁₀Si₁₀B₁₅及びFe bal Mo₁₀Si₁₀B₁₅の合金組成に配合されたインゴットをアルゴン雰囲気中で高周波溶解した後、4000rpmで回転 10している冷却ロール上にアルゴンガス加圧によって溶湯を噴出した。これにより幅5mm、板厚0.02mm、長さ100mのリボン試料を作製した。ここで得られた*

* 試料のマトリックスが非晶質化していることの確認はX 線回折により行い,結晶性の鋭い回折ピークのないことにより,非晶質化が確認された。その後,得られたリボン試料を電気炉にて580 $\mathbb{C} \times 0$. 5 \mathbb{H}_{r} で \mathbb{N}_{2} , \mathbb{N}_{2} + 20 \mathbb{N} \mathbb{N}_{3} , \mathbb{N}_{2} + 50 \mathbb{N} \mathbb{N}_{3} , \mathbb{N}_{2} + 80 \mathbb{N} \mathbb{N}_{3} とび比較例として \mathbb{N}_{3} を可以下の冷却速度で室温まで冷却した。かくして得られた製品の電気抵抗について下記表 2 に併記する。なお電気抵抗は常温で 4 端子法にて測定した。

6

【0019】 【表2】

試料 番号	合 金 組 成 (at%)	** 於 图农	磁気抵抗. (μΩcm)	10e印加 での磁束 密度(T)
試料1 試料2 試料3	F e bal S i 10 B 15 F e bal S i 10 B 15 F e bal S i 10 B 15	N ₂ N ₂ + 20% N H ₃ N ₂ + 50% N H ₃	180 185 193	1.5 1.6 1.85
試料4	Fe baiSi ₁₀ B ₁₅	Ar	123	1.6
試料5 試料6 試料7	Fe bal Z r 5 S i 10 B 15 Fe bal Z r 5 S i 10 B 15 Fe bal Z r 5 S i 10 B 15	N ₂ N ₂ + 20% N H ₃ N ₂ + 50% N H ₃	178 181 190	1.45 1.5 1.55
試料8	FebalZr ₅ Si ₁₀ B ₁₅	Ar	126	1.55
試料11	Fe bal Co 20 S i 10 B 15 Fe bal Co 20 S i 10 B 15 Fe bal Co 20 S i 10 B 15 Fe bal Co 20 S i 10 B 15	N ₂ N ₂ + 20% N H ₃ N ₂ + 50% N H ₃	165 171 172	1.7 1.80 1.70
試料14 試料15	Fe balN i 5 S i 10 B 15 Fe balN i 5 S i 10 B 15 Fe balN i 5 S i 10 B 15 Fe balN i 5 S i 10 B 15	N ₂ N ₂ + 20% N H ₃ N ₂ + 50% N H ₃ A r	164 172 172	1.50 1.50 1.55
試料17 試料18 試料19	Fe balMo 10 S i 10 B 15	N ₂ + 50% NH ₃	163 170 173	1.40 1.50 1.55

【0020】上記表2において、試料2と試料4とを比較すると、窒素ガス雰囲気中よりもその窒素ガスにアンモニアを含んだ雰囲気での結晶化熱処理品の方がかなりの電気抵抗の上昇が認められる。このことは実施例のように窒素単独よりもアンモニアを適当に含んだ方が結晶 50

粒の回りに高電気抵抗物質が存在していることを指す。 【0021】よって、窒素+アンモニア混合ガス中雰囲 気での結晶化熱処理の条件で行うことが高電気抵抗を最 も引き出す条件となり、非常に好ましいと思われる。

【0022】尚、熱処理での磁束密度の差はほとんどみ

られなかった。

【0023】(実施例4)まず、予め冷却ロール上方に保持された石英製ノズル中で、Fe bal Si₁₀B₁₅、Fe bal Co₂₀Si₁₀B₁₅、Fe bal Co₂₀Si₁₀B₁₅、Fe bal Ni₁₀Si₁₀B₁₅及びFe bal Mo₁₀Si₁₀B₁₅の合金組成に配合されたインゴットをアルゴン雰囲気中で高周波溶解した後、4000rpmで回転している冷却ロール上にアルゴンガス加圧によって溶湯を噴出した。これにより幅5mm、板厚0.02mm、長さ100mのリボン試料を作製した。ここで得られた10試料のマトリックスが非晶質化していることの確認はX*

* 線回折により行い,結晶性の鋭い回折ピークのないことにより,非晶質化が確認された。その後,得られたリボン試料を電気炉にて580℃で大気中の雰囲気で熱処理した。熱処理時間を0.1Hr, 0.2Hr, 0.5Hr, 1Hr, 0.4条件で実験を行った。

【0024】その後100℃/min以下の冷却速度で 室温まで冷却した。かくして得られた製品の電気抵抗に ついて下記表3に示した。なお電気抵抗は常温で4端子 法にて測定した。

[0025]

【表3】

Ar +20%O ₂ 雰囲気	合 金 組 成 (at%)	無処理時間 (Hr)	超気抵抗 (μΩcm)
試料1	Fe balSi 10 B 15	0.5	175
試料 2	Fe balSi 10 B 15	1.0	188
試料3	Fe balSi 10 B 15	5.0	321
試料4	Fe baiSi 10 B 15	50. 0	405
試料5	Fe balzr Si 10 B 15	0.5	250
试料 6	Fe bal Zr 5 Si 10 B 15	1.0	282
試料7	Fe balzr ₅ Si ₁₀ B ₁₅	5.0	407
試料8	Fe balzr 5 Si 10 B 15	50. 0	511

【0026】上記表3において、例えば、試料2と試料4とを比較すると、熱処理時間が長くなるにつれて、かなりの電気抵抗の上昇(倍以上)が認められる。このことは実施例1のように結晶粒の回りに高電気抵抗物質がその内部に数多く浸透させることができたことを意味しており、結果として全体としての電気抵抗が上昇してい30るものと考えられる。尚、熱処理した試料としないものとの磁束密度の差は、ほとんど見られなかった。※

% [0027]

【発明の効果】以上, 説明したように, 本発明によれば, 結晶粒の回りに高抵抗物質の導入することによって電気抵抗が著しく飛躍的に改善された高電気抵抗磁性材料とその製造方法とを提供することができる。

【0028】さらに、本発明によれば、前記したような 利点を備えた高電気抵抗磁性材料を用いた線輪部品を提 供することができる。

フロントページの続き

(72)発明者 石山 和志

宮城県仙台市青葉区柏木1丁目5-8-801