

Présentation du Robot

Sommaire

- > Introduction
- Caractéristiques principales du robot
- Schéma fonctionnel de l'électronique du robot
- ➤ Entrées/sorties de la carte PIC16F46K22
- Détecteurs IR (détection d'obstacles)
- Capteurs à ultrason (mesure distance)
- Boussole électronique
- Commande moteurs CC
- Commande des servomoteurs

Introduction

C'est une plateforme pédagogique ...

- → Appréhender différents domaines liés à l'embarqué:
 - Systèmes à μC (systèmes dédiés)
 - ✓ Electronique, programmation, outils de développement...
 - OS embarqué
 - ✓ Langage de haut niveau (abstraction de la couche matérielle)
 - Temps réel (notions avec les interruptions ...)

Les constituants du robot

> Partie électronique

- Alimentation (batterie LIPO 11.1V ou Alim. de Laboratoire)
- 4 détecteurs infrarouges de proximité (d < 1m)
- 3 télémètres à ultrason (mesure de distances (<4m))
- 1 boussole électronique
- 1 Module GPS
- 1 caméra (motorisée)
- 1 carte d'alimentation (5V)
- 1 carte de puissances pour les 4 motoréducteurs CC
- 1 carte de commande pour servomoteurs (jusqu'à 8 servos)
- 1 carte RASPBERRY PI (embarquant Linux)
- 1 carte CPU PIC18F46K22
- 1 carte RF 433MHz

Les constituants du robot

> Partie Mécanique

- Châssis en aluminium (150 mm X 200mm).
- 4 roues en caoutchouc (Diam.: 65mm, Epaisseur:26 mm).
- Pince en aluminium (dotée de 2 servomoteurs).
- 4 motoréducteurs CC (5 à 12V).

Schéma fonctionnel de l'électronique du Robot

Entrées/sorties de la carte PIC18F46K22

Détection Infra rouge

- 4 émetteurs IR (38KHz): 2 à l'avant et 2 à l'arrière

- 4 photorécepteurs IR (38KHz): 2 à l'avant et 2 à l'arrière

IR AVD \rightarrow RB1 IR AVG \rightarrow RB2 IR ARD \rightarrow RA0 IR ARG \rightarrow RA1

Echo Pulse Output

to User Timeing Circuit

Capteurs US

Input TTL lever

signal with a range

in proportion

Modules HC - SR04:

- (2cm < Distance mesurée < 4m)
- Alim.: 5V / 15mA

Principe de fonctionnement:

S1 (<i>RD3</i>)	SO (<i>RD2</i>)	Sélection capteur
0	0	US ECHO gauche
0	1	US ECHO Centre
1	0	US ECHO Droit
1	1	Inutilisé

 $d = t_h^* \text{ velocity } (340 \text{m/s}) / 2$

Boussole électronique

Modules HMC6352:

- Alim.: 2.7V à 5.2V / 1mA
- Interface I2C
- Précision: 2,5° (RMS)
- Résolution: 0.5°
- Répétabilité: 1°

- → Plusieurs modes de fonctionnement dont le « heading mode ».
 - ✓ Le cap retourné est en 10^{ième} de degré (0<= Cap <= 3599) (Codé sur 2octets)

Commande moteurs CC

CARTE Moteurs (TB6612FNG Dual Motor Driver Carrier (X2))

Commande des moteurs

- 2 voies A et B par module TB6612
- Les voies A et B sont pilotés par les mêmes signaux:
 - √ {PWM_G,IN1_G,IN2_G} → 2 moteurs gauche
 - √ {PWM_D,IN1_D,IN2_D} → 2 moteurs droit

PWM_D, PWM_G
IN1_D, IN1_G, IN2_D, IN2_G
STBY D, STBY G

- → sorties PWM (contrôle la vitesse)
- → sorties TOR (contrôle le sens de rotation des moteurs)
- → sorties TOR (mise en standby des moteurs)

Commande moteurs CC

Tableau des commandes du TB6612FNG:

Input			0utput			
IN1	IN2	PWM	STBY	OUT1	OUT2	Mode
Н	Н	H/L	Н	L	L	Short brake
L	Н	Н	Н	L	Н	CCW
		L	Н	L	L	Short brake
Н	L	Н	Н	Н	L	CW
		L	Н	L	L	Short brake
L	L	Н	Н	OFF (High impedance)		Stop
H/L	H/L	H/L	L	OFF (High impedance)		Standby

Commande des servomoteurs

Les servomoteurs (ou servo) (en modélisme)

Généralités

Un servomoteur est constitué:

- D'un petit moteur CC
- D'un réducteur (augmente le couple)
- D'un potentiomètre (mesure de l'angle)
- D'une électronique d'asservissement en position
- D'un axe de sortie sur lequel on fixe la charge...
- D'un câble (3 fils): alimentation (5V,masse) + 1 entrée de consigne en position
- D'un boitier plastique

Commande des servomoteurs

Les servomoteurs (ou servo) (en modélisme)

Principe de fonctionnement

Les servos peuvent tourner dans les 2 sens et ont une course limitée (90°,180° dans la plupart des cas).

La consigne de position est un signal à modulation de largeur d'impulsion (PWM). La largeur d'impulsion est proportionnelle à l'angle souhaité.

A noter : Les servos utilisés sur le Robot ont une course sur 180°.

Commande des servomoteurs

- 8 channels: Servo driven independently
- Extendable to 16 Channels: Two controller linked together to drive 16 servos
- Optional Position Reporting: User may request position of an individual servo.
- Servo Activation for each channel: User may deactivate or activate any channel of servo.
- Independent Starting Position Command for each channel: User may set the initial position of any channel at the next start-up.
- Optional Servo Ramping: Choose one of 100 ramp rate for each servo.
- **Resolution:** 8000 steps = 0.25us.
- UART: 9600 baud rate
- **Servo pulse range:** 0.5ms to 2.5ms.