Loss simulation: Rg, Rth고려

Case 온도를 100℃로 유지하고, Gate 저항의 변화에 따른 switching loss 변화와 transient thermal impedance를 고려한 모델로 junction 온도의 변화를 관찰하기 위한 PLECS 모의 실험.

- Gate 저항 변화에 따른 Eon, Eoff 변화
- Transient thermal impedance 모델 삽입

I. Gate 저항 변화에 따른 Eon, Eoff 변화

PLECS 모의 실험에서 IGBT Module의 Loss를 고려하기 위해서 I-V 특성 곡선과 switching loss의 데이터를 이용할 수 있다. 단, PLECS에 입력할 때에는 전류 값을 기준으로 데이터를 입력하기 때문에 I-V 특성 곡선은 유의하여 데이터를 입력해야 한다.

Schaltverluste IGBT-Wechselr. (typisch) switching losses IGBT-inverter (typical) $E_{on} = f(lc), E_{off} = f(lc)$ $V_{GE} = \pm 15 \text{ V}, R_{Gon} = 1.3 \ \Omega, R_{Goff} = 1.5 \ \Omega, V_{CE} = 600 \text{ V}$

Infineon FF900R12IE4의 Datasheet 중

Datasheet에서는 Gate 저항을 최소값을 기준으로 하여 위의 그래프를 제시한다. gate 저항의 값이 바뀌면 switching loss가 바뀐다. Gate 저항 변화로 인한 E_{on}/E_{off} 의 변화는 모든 동작점에서 주어지지 않고 다음과 같이 특정 전류, 특정 전압의 동작점 [600V, 900A]에서만 주어진다.

Schaltverluste IGBT-Wechselr. (typisch) switching losses IGBT-Inverter (typical) $E_{on} = f(R_G), E_{off} = f(R_G)$ $V_{GE} = \pm 15 \text{ V}, I_C = 900 \text{ A}, V_{CE} = 600 \text{ V}$

Infineon FF900R12IE4의 Datasheet 중

Loss simulation: R_g , R_{th} 고려

제시된 동작점에서 Gate 저항 변화에 따른 E_{on}/E_{off} 의 변화를 보상하였다. 다음은 $R_{g,on}$ 를 세 배, $R_{g,off}$ 를 두 배로 설정한 경우 E_{on}/E_{off} 의 변화 비율을 정리한 것이다.

Module		Loss	Temperature [°C]	Gate Resistance [Ohm]	Energy [mJ]	Ratio	
FF900R12IE4	IGBT	Eon	125	1.3	69.565	3.0753	
			123	3.9	213.9327		
			150	1.3	79.468	2.8070	
				3.9	223.0671		
		$\mathrm{E}_{\mathrm{off}}$	125	1.5	120.08	1.0251	
				3	123.0989	1.0231	
			150	1.5	129.72	1 0255	
			130	3	133.0323	1.0255	
	Diode	E _{rec}	125	1.3	80.591	0.6825	
				3.9	55.0064	0.0823	
			150	1.3	90.745	0.6838	
				3.9	62.0536	0.0838	
FZ900R12KE4	IGBT	Eon	125	1.5	49.888	2.8036	
				4.5	139.87	2.8030	
			150	1.5	55.670	2.7124	
				4.5	151.00	2.7124	
		E _{off}	125	0.9	115.60	1.0418	
				1.8	120.43		
			150	0.9	125.27	1.0386	
				1.8	130.11		
	Diode	E_{rec}	125	1.5	76.075	0.7597	
				4.5	57.796		
			150	1.5	87.150	0.7840	
				4.5	68.330		

Loss simulation: Rg, Rth고려

실제 PLECS에서는 다음과 같이 입력하여 사용할 수 있다. (사용법은 PLECS Manual 참고)

Loss simulation: R_g , R_{th} 고려

위와 같은 모델을 사용하면 다음과 같은 파형들을 얻을 수 있고, 주어진 식으로 손실을 계산할 수 있다.

1. 도통 손실 [W]

2. 스위칭 손실 [W]

스위칭 손실을 Pulse 형태로 나타나므로 유의해서 계산해야 한다.

Loss simulation: R_g , R_{th} 고려

II. Transient thermal impedance 모델 삽입

PLECS에서 thermal resistance 모델을 넣어 반도체 손실에 대한 junction 온도 변화도 고려할 수 있다. PLECS에서는 thermal equivalent circuit을 두 가지 제시하며 다음과 같다.

Cauer network

Foster network

이 중 Infineon Datasheet에는 다음과 같이 Foster network와 관련된 parameter가 나오므로 Foster network를 사용한다.

Transienter Wärmewiderstand IGBT-Wechselr. transient thermal impedance IGBT-inverter Z_{thJC} = f (t)

Infineon FF900R12IE4의 Datasheet 중

IGBT와 Diode 각각에 대해서 서로 다른 thermal equivalent circuit parameter를 적용한다.

Loss simulation: R_g , R_{th} 고려

실제 PLECS에서는 다음과 같이 입력하여 사용할 수 있다.

관측한 Junction 온도는 다음과 같으며, 소자의 온도 허용 범위 내에서 동작함을 알 수 있다.

Loss simulation: R_g , R_{th} 고려

Junction 온도 결과 정리

부하 [%]	100	50	30	20	10	5
$S_{1,IGBT}$ [°C]	128.9	112.8	107.5	104.8	102.2	101.4
S _{1,Diode} [°C]	100	100	100	100	100.1	100.2
S _{3,IGBT} [°C]	104	101.6	100.9	100.7	100.5	100.6
S _{3,Diode} [°C]	109.6	104.2	102.4	101.5	100.7	100.4

손실 결과 정리

부하 [%]	100	50	30	20	10	5
THD [%]	0.8	0.8	0.78	0.78	0.8	0.8
Conduction Loss [W]	491.329	189.663	99.964	62.763	32.959	23.209
Switching Loss [W]	321.304	167.612	108.607	72.212	38.754	32.979
Semiconductor Loss [W]	4875.798	2143.65	1251.426	809.85	430.278	337.128

THD => 정격 용량 대비량

