

BILBOKO INGENIARITZA ESKOLA

ESCUELA DE INGENIERÍA DE BILBAO

ÁLGEBRA ALJEBRA

Kudeaketaren eta Informazio Sistemen Informatikaren Ingeniaritzako Gradua

OHIKO DEIALDIA

2018/2019 Ikasturtea

2019ko maiatzak 23

Izen Abizenak:

Taldea:

1. ARIKETA

(2.5 puntu)

Izan bedi $(P_3(x), <, >)$ espazio euklidearra ohiko biderkadura eskalarrarekin, eta izan bitez honako bi azpimultzoak:

$$S = \left\{ p(x) = a x^3 + b x^2 + c x + d \in P_3(x) / \int_{-3}^3 p(x) dx = 0 \quad \land \quad \forall a, b, c, d \in \mathbb{R} \right\}$$
$$T = \mathcal{L}\left\{ p_1(x) = x^3 - 3x^2, p_2(x) = 1 \right\} \subset P_3(x)$$

- (1.) Konprobatu *S* azpiespazio bektoriala dela.
- (2.) Zehaztu S azpiespazio bektorialaren oinarri bat eta dimentsioa.
- (3.) Zehaztu $S \cap T$ azpiespazio bektorialaren oinarri bat eta dimentsioa.
- (4.) Lortu S + T azpiespazio bektorialaren oinarri bat eta dimentsioa.
- (5.) S eta T betegarriak al dira? Arrazoitu erantzuna.

2. ARIKETA

(2.5 puntu)

Izan bedi $A \in M_{3\times 3}(\mathbb{R})$ ondoko matrizea:

$$A = \begin{pmatrix} 0 & 0 & 4a \\ 1 & 0 & -6a - 2 \\ 0 & 1 & 2a + 3 \end{pmatrix}$$

- (1.) Lortu bere polinomio karakteristikoa adjuntuak erabiliz $\forall a \in \mathbb{R}$ balioetarako eta lortutako emaitzaz baliatuz kalkulatu balioa propioak.
- (2.) Zehaztu $a \in \mathbb{R}$ parametroaren zein baliotarako A matrizea diagonalizagarria den.
- (3.) Posible al da bektore propioz osatutako \mathbb{R}^3 -ko oinarri bat lortzea? Eta bektore propio ortonormalez eraturikoa? Arrazoitu erantzunak. Erantzuna baiezkoa denean, diagonalizatu A matrizea oinarri hori erabiliz.

3. ARIKETA

(2.5 puntu)

Hurrengo ekuazio linealetako sistemarako:

$$3x - 2y + z = 2$$

$$2x - y + z = 1$$

$$x + y - az = 1$$

$$2x + by + z = 1$$

(1.) Sailkatu ekuazio linealetako sistema $\forall a,b \in \mathbb{R}$ balioetarako eta ebatzi sistema bateragarria denean.

BILBOKO INGENIARITZA ESKOLA

ESCUELA DE INGENIERÍA DE BILBAO

ÁLGEBRA ALJEBRA

Kudeaketaren eta Informazio Sistemen Informatikaren Ingeniaritzako Gradua

4. ARIKETA

(2.5 puntu)

Erantzun itzazu hurrengo galderak erantzuna arrazoituz:

- (1.) Izan bitez U azpiespazioko \bar{x} bektorea eta \bar{x} ' bektorea \bar{x} -ren hurbilketa onena U^{\perp} azpiespazioan. \bar{x} ' lortzerakoan zer nolako berezitasunaz ohartzen gara?
- (2.) S^{\perp} kalkulatzeko prozeduran, S -ren oinarria ortogonala izan behar da?
- (3.) izan bedi $B = \{\overline{u_1}, \overline{u_2}, \overline{u_3}\}$ oinarri ez ortogonala soilik $\overline{u_2}$ eta $\overline{u_3}$ ortogonalak ez direlako, beste bektoreak binaka ortogonalak baitira. Zehaztu Gram-Schmidt ortogonalizazio metodoa nola inplementatuko zenukeen. Zer nolako berezitasuna/k ikus daiteke/daitezke proiekzioetan?
- (4.) $A \in M_{3x3}(\mathbb{R})$ matrize simetriko bat diagonalizatzen ari zarela, zer egin beharko zenuke $\lambda_1 = 1, \lambda_2 = 2$ eta $\lambda_3 = 3$ balio propioei elkartutako bektore propioez eraturiko oinarri ortonormal bat lortzeko?
- (5.) $A \in M_{3x3}(\mathbb{R})$ matrize singular baten balio propioak $\lambda_1 = 2$, $\lambda_2 = 4$ eta $\lambda_3 = 6$ izan daitezke?