

Dijkstra's algorithm Dijkstra's algorithm

- Let G=(V,E) be a directed graph with a weight function $w:E \to \mathbb{R}_{>0}$ defined on its edges.
 - For an edge $(u,v) \not\in E$ we define $w(u,v) = \infty$.
- \bullet For 2 vertices in the graph ${\cal G}$ we define the weighted distance from u to v by:

$$d(u,
u) = \min \left\{ \sum_{e \in P} w(e) \;\middle|\; P ext{ is a directed path from } u ext{ to }
u$$

Dijkstra's algorithm Dijkstra's algorithm

- Let G=(V,E) be a directed graph with a weight function $w:E \to \mathbb{R}_{>0}$ defined on its edges.
 - For an edge $(u,v) \not\in E$ we define $w(u,v) = \infty$.
- For 2 vertices in the graph G we define the weighted distance from u to v by:

$$d(u, v) = \min \left\{ \sum_{e \in P} w(e) \mid P \text{ is a directed path from } u \text{ to } v \right\}$$

Dijkstra's algorithm Dijkstra's algorithm

- Let G=(V,E) be a directed graph with a weight function $w:E \to \mathbb{R}_{>0}$ defined on its edges.
 - For an edge $(u,v) \not\in E$ we define $w(u,v) = \infty$.
- For 2 vertices in the graph G we define the weighted distance from u to v by:

$$d(u,v) = \min \left\{ \sum_{e \in P} w(e) \;\middle|\; P ext{ is a directed path from } u ext{ to } v
ight\}$$

Dijkstra's algorithm Dijkstra's algorithm

- Given G=(V,E), $w:E\to\mathbb{R}_{>0}$ and a vertex $u\in V$ we want to compute d(u,v) for all the vertices $v\in V$. (we denote n=|V|)
- Dijkstra's algorithm solves this problem.
 (It also finds such a path.)
- The idea is:

Define a sequence of sets $S_1 \subset S_2 \subset ... \subset S_n = V$ a sequence of functions $d_1, d_2, ..., d_n$ such that:

 $d_i(u, v) = d(u, v)$ for any vertex $v \in$

Dijkstra's algorithm Dijkstra's algorithm

- Given G=(V,E), $w:E\to\mathbb{R}_{>0}$ and a vertex $u\in V$ we want to compute d(u,v) for all the vertices $v\in V$. (we denote n=|V|)
- Dijkstra's algorithm solves this problem. (It also finds such a path.)
- The idea is:

Define a sequence of sets $S_1 \subset S_2 \subset ... \subset S_n = V$ ar sequence of functions $d_1, d_2, ..., d_n$ such that:

$$d_i:V\to\mathbb{R}$$

 $d_i(u, v) = d(u, v)$ for any vertex $v \in$

Dijkstra's algorithm Dijkstra's algorithm

- Given G=(V,E), $w:E\to\mathbb{R}_{>0}$ and a vertex $u\in V$ we want to compute d(u,v) for all the vertices $v\in V$. (we denote n=|V|)
 - Dijkstra's algorithm solves this problem.
 (It also finds such a path.)
- The idea is:

Define a sequence of sets $S_1\subset S_2\subset ...\subset S_n=V$ and a sequence of functions $d_1,d_2,...,d_n$ such that:

$$d_i:V o\mathbb{R}$$

and

 $d_i(u,v)=d(u,v)$ for any vertex $v\in S_i$

Dijkstra's algorithm Dijkstra's algorithm

- Such approach is sometimes called relaxation.
- \bullet The function $d(\nu)$ is an estimate for the distance we are trying to calculate.
- The function $d(\nu)$ is initialized to ∞ . (The parent function $\pi(\nu)$ is initialized to
- If an edge (u, ν) allows to get to ν on a shorter path, then it is used to update the value of $d(\nu)$ (and $\pi(\nu)$).

Dijkstra's algorithm Dijkstra's algorithm

- Such approach is sometimes called relaxation.
- \bullet The function $d(\nu)$ is an estimate for the distance we are trying to calculate.
- The function d(v) is initialized to ∞ .

 (The parent function $\pi(v)$ is initialized +
- If an edge (u, v) allows to get to v on a shorter path, then it is used to update the value of d(v) (and $\pi(v)$).

Dijkstra's algorithm Bijkstra's algorithm

- Such approach is sometimes called relaxation.
- \bullet The function $d(\nu)$ is an estimate for the distance we are trying to calculate.
 - The function d(v) is initialized to ∞ . (The parent function $\pi(v)$ is initialized to null.)
- If an edge (u, v) allows to get to v on a shorter path, then it is used to update the value of d(v) (and $\pi(v)$).

Dijkstra's algorithm

Dijkstra's algorithm

- Such approach is sometimes called relaxation.
- The function d(v) is an estimate for the distance we are trying to calculate.
 - The function d(v) is initialized to ∞ .
- (The parent function $\pi(\nu)$ is initialized to null.)
 If an edge (u,ν) allows to get to ν on a shorter path, then it is used to update the value of $d(\nu)$ (and $\pi(\nu)$).

Dijkstra's algorithm

Dijkstra's algorithm

• The algorithm: $\frac{1}{\text{Initialize:}} \text{ for } k=1 \text{ we set } S_1=\{v_1\} \text{ where } v_1=u$ and:

 $d_1(u,v)=w(u,v)$ (Note that this is ∞ if the edge does not exist)

 $\pi_1(\nu) = \left\{ \begin{array}{ll} u, & \nu \neq u; \\ \emptyset, & \nu = u. \end{array} \right.$

Step: Given $S_k=\{v_1,\dots,v_k\},\,d_k:V\to\mathbb{R},\, \text{and}\,\,\pi_k:V\to V\cup\emptyset,$ we find $v_{k+1}\in V-S_k$ such that:

 $d(v_{k+1}) = \min\{d_k(v) \mid v \in V - S_k\}$

and we define $S_{k+1} = S_k \cup \{
u_{k+1} \}$ and:

$$d_{k+1}(\nu) = \left\{ \begin{array}{l} d_k(\nu), \\ \min\{d_k(\nu), d_k(\nu_{k+1}) + w(\nu_{k+1}, \nu)\}, & \nu \not\in S_{k+1}. \end{array} \right.$$

$$\pi_{k+1}(\nu) = \left\{ \begin{array}{ll} \pi_k(\nu), & \nu \in S_{k+1}; \\ \pi_k(\nu), & \nu \not\in S_{k+1} \text{ and } d_k(\nu) \le d_k(\nu_{k+1}) + w(\nu_{k+1}, \nu). \\ \nu_{k+1}, & \nu \not\in S_{k+1} \text{ and } d_k(\nu) > d_k(\nu_{k+1}) + w(\nu_{k+1}, \nu). \end{array} \right.$$

>>>>

• For a vertex x let $P_k(x)$ denote the collection of all the directed paths from u to x such that all the vertices in the

Dijkstra's algorithm

Dijkstra's algorithm

• For any path P we denote $w(P) = \sum_{e \in P} w(e)$.

Dijkstra's algorithm Dijkstra's algorithm

- Theorem: For any $1 \le k \le n$ (where n = |V|) we have:
 For any $x \in S_k$: $d_k(x) = d(u, x)$ For any $x \in V$: $d_k(x) = \min\{w(P) \mid P \in P_k(x)\}$
- \bullet Proof: We will prove the theorem by induction on k. The base case of k=1 is clear.

>>>>

Dijkstra's algorithm Dijkstra's algorithm

- Theorem: For any $1 \le k \le n$ (where n = |V|) we have:
- For any $x \in S_k$: $d_k(x) = d(u, x)$ For any $x \in V$: $d_k(x) = \min\{w(P) \mid P \in P_k(x)\}$
- \bullet Proof: We will prove the theorem by induction on k. The base case of k=1 is clear.

>>>>

Dijkstra's algorithm Dijkstra's algorithm

- Theorem: For any 1 ≤ k ≤ n (where n = |V|) we have:
 Tor any x ∈ S_k: d_k(x) = d(u, x)
 For any x ∈ V: d_k(x) = min{w(P) | P ∈ P_k(x)}
- \bullet Proof: We will prove the theorem by induction on k. The base case of k=1 is clear.

Dijkstra's algorithm Dijkstra's algorithm

- Theorem: For any $1 \le k \le n$ (where n = |V|) we have:
 For any $x \in S_k$: $d_k(x) = d(u, x)$ For any $x \in V$: $d_k(x) = \min\{w(P) \mid P \in P_k(x)\}$
- \bullet $\underline{\text{Proof:}}$ We will prove the theorem by induction on $\emph{k}.$ The base case of $\emph{k}=1$ is clear.

Dijkstra's algorithm Dijkstra's algorithm

• Proof: We start by proving (1). Let $x \in S_{k+1}$ be a vertex. If $x \in S_k$ then it follows from the induction hypothesis that:

 $d_{k+1} = \underbrace{- \qquad d_k(x)}_{\text{definition of the algorithm}} d_k(x)$

If $x = v_{k+1}$ then:

 $d_{k+1}(\nu_{k+1})=d_k(\nu_{k+1})$

 $\stackrel{=}{\overbrace{\hspace{1em}}} \min\{w(P) \mid P \in P_k(x)\} \geq d(u, v_{k+1})$ induction hypothesis

On the other hand...

Dijkstra's algorithm

Dijkstra's algorithm

• Proof: Let P be a path from u to v_{k+1} such that $w(P) = d(u, v_{k+1})$ and let y be the first vertex of P such that $y \not\in S_k$ (y might be v_{k+1}).

Let P' be the path from u to y on P. We have:

$$\begin{aligned} d(u,v_{k+1}) &= w(P) &\underbrace{\geq} & w(P') \geq \min\{w(Q) \mid Q \in P_k(V)\} \\ &\text{positive weights} \end{aligned}$$

$$= d_k(y) &\underbrace{\geq} &d_k(v_{k+1}) = d_{k+1}(v_{k+1})$$
 since v_{k+1} is the vertex being added to S_k

It follows that $d(u, v_{k+1}) = d_k(v_{k+1})$.

(we got $d(u, \nu_{k+1}) \leq d_{k+1}(\nu_{k+1})$ and $d(u, \nu_{k+1}) \geq d_{k+1}(\nu_{k+1})$.)

Dijkstra's algorithm - correctness $\begin{array}{ll} \text{Dijkstra's} \\ \text{algorithm} \\ \text{d}_k(x) = \min\{w(P) \mid P \in P_k(x)\} \geq \min\{w(P) \mid P \in P_{k+1}(x)\} \\ \text{and:} \\ d_k(v_{k+1}) + w(v_{k+1}, x) = \min\{w(P) \mid P \in P_k(v_{k+1})\} + w(v_{k+1}, x) \geq \\ \\ \geq \\ \text{The previous expression gives the weights of paths in } P_{k+1}(x) \\ \text{Since } d_{k+1}(x) \text{ is either } d_k(x) \text{ or } d_k(v_{k+1}) + w(v_{k+1}, x) \text{ we see that:} \\ d_{k+1}(x) \geq \min\{w(P) \mid P \in P_{k+1}(x)\} \\ \text{We need to show that } d_{k+1}(x) \leq \min\{w(P) \mid P \in P_{k+1}(x)\}. \end{array}$

Dijkstra's algorithm Dijkstra's algorithm

• Corollary: For any $x \in V$ we have:

$$d_n(x)=d(u,x)$$

(where
$$n = |V|$$
) and the path:

$$\dots \to \pi_n(\pi_n(x)) \to \pi_n(x) \to x$$

is a minimal path from u to x.

Dijkstra's algorithm

Dijkstra's algorithm

- If we implement the algorithm using an array of numbered vertices with the properties $\nu.d$ and $\nu.\pi$ then we can update the values of the function d and of π in O(1) time.
 - \bullet Finding the vertex with minimal value of d would require going over the array and thus would take O(|V|) time.
 - This leads to running time of $O(|V|^2 + |E|) = O(|V|^2)$ (We need to find the minimal element |V| times. give the minimal elements the number of updates we will depends on the degree of the vertex this will add up |E|)

Dijkstra's algorithm

Dijkstra's algorithm

- If we implement the algorithm using an array of numbered vertices with the properties v.d and $v.\pi$ then we can update the values of the function d and of π in O(1) time.
- Finding the vertex with minimal value of d would require going over the array and thus would take O(|V|) time.
 - This leads to running time of $O(|V|^2 + |E|) = O(|V|^2)$. (We need to find the minimal element |V| times, given the minimal elements the number of updates we will do depends on the degree of the vertex this will add up to |E|).

Dijkstra's algorithm Dijkstra's algorithm

- If we implement the algorithm using an array of numbered vertices with the properties $\nu.d$ and $\nu.\pi$ then we can update the values of the function d and of π in O(1) time.
 - \bullet Finding the vertex with minimal value of d would require going over the array and thus would take O(|V|) time.
 - This leads to running time of $O(|V|^2 + |E|) = O(|V|^2)$. (We need to find the minimal element |V| times. given the minimal elements the number of updates we will do depends on the degree of the vertex this will add up to |E|.)

Dijkstra's algorithm Dijkstra's algorithm

- We can use a priority queue (heap) to hold the vertices (with respect to the value v.d).
- If we do that we can remove the minimal element in
- Updating the value of d will now take $O(\log_2 |V|)$ time.
- This leads to running time of $O((|V|+|E|)\log_2|V|) = O(|E|\log_2|V|).$
- \bullet This is better than the previous if $|E| = o\left(\frac{|V|^2}{\log_2 |V|}\right).$

Dijkstra's algorithm Dijkstra's algorithm

- We can use a priority queue (heap) to hold the vertices (with respect to the value v.d).
- If we do that we can remove the minimal element in $O(\log_2 |V|)$ time.
- \bullet Updating the value of d will now take $O(\log_2 |V|)$ time.
 - This leads to running time of
- $O((|V| + |E|) \log_2 |V|) = O(|E| \log_2 |V|)$
- This is better than the previous if $|E| = o\left(\frac{|V|^2}{\log_2 |V|}\right)$.

Dijkstra's algorithm Dijkstra's algorithm

- We can use a priority queue (heap) to hold the vertices (with respect to the value v.d).
- If we do that we can remove the minimal element in $O(\log_2|V|)$ time.
- \bullet Updating the value of d will now take $O(\log_2 |V|)$ time.
- This leads to running time of $O((|V|+|E|)\log_2|V|) = O(|E|\log_2|V|).$

ullet This is better than the previous if $|E| = o\left(rac{|V|^2}{\log_2 |V|}
ight)$

Dijkstra's algorithm Dijkstra's algorithm

- We can use a priority queue (heap) to hold the vertices (with respect to the value v.d).
- If we do that we can remove the minimal element in $O(\log_2|V|)$ time.
- \bullet Updating the value of d will now take $O(\log_2 |V|)$ time.
- This leads to running time of $O((|V|+|E|)\log_2|V|) = O(|E|\log_2|V|).$
- This is better than the previous if $|E| = o\left(\frac{|V|^2}{\log_2 |V|}
 ight)$

Dijkstra's algorithm Dijkstra's algorithm

- We can use a priority queue (heap) to hold the vertices (with respect to the value v.d).
- If we do that we can remove the minimal element in $O(\log_2|V|)$ time.
- \bullet Updating the value of d will now take $O(\log_2 |V|)$ time.
- This leads to running time of $O((|V|+|E|)\log_2|V|) = O(|E|\log_2|V|).$

 \bullet This is better than the previous if $|E| = o\left(\frac{|V|^2}{\log_2 |V|}\right).$