Embedded Systems Laboratory

Lap2: - มีความรู้ความเข้าใจในรายละเอียดของ Peripheral ของ ESP32

- สามารถออกแบบการ Control GPIO ทั้ง Input/Output ของ MCU ได้

- การต่อวงจรอิเล็กทรอนิกส์ และสมองกลฝังตัว

- การโปรแกรมเพื่อควบคุมการทำงานทั้ง Input/Output ของ MCU ได้

อุปกรณ์ Lab2

1. ชุดอุปกรณ์ Embedded System 1 ชุด

2. Laptop หรือ Notebook 1 เครื่อง (Window/Mac/Linux ในการสอนจะใช้ Window เป็น OS)

2.1 ข้อมูลเบื้องต้น Input/Output ของ ESP32

ให้นิสิตหาร่วมกันหาข้อมูลเพื่อนำมาตอบคำถามข้างล่างดังนี้

ให้ระบุรายละเอียดของแต่ละขาของ ESP32 ที่สามารถนำไปใช้งานอะไรได้บ้าง เช่น (input/output/ADC/UART1/....)

จงตอบคำถามทั่วไปสำหรับ PIN ของ ESP32

คำถาม	คำตอบ
ESP32 มีจำนวนขา GPIO ทั้งหมดเท่าไหร่	32
ESP32 มีขา PIN ที่สามารถนำไปใช้งานได้ทั้งหมดกี่	32
ขา (รวมทุก Peripheral)	GPIO 6-11 เพราะเชื่อมกับ integrated spi flash
(ขาที่ใช้งานไม่ได้คือ? อธิบายเหตุผล)	
เฉพาะ INPUT มีกี่ขา GPIO ที่สามารถใช้งานได้	25 ขา GPIO 0, 2-5, 12-19, 21-23, 25-27, 32-36, 39
(พร้อมระบุ GPIO)	
ขา PIN GPIO ไหนบ้างที่ใช้ INPUT ได้อย่างเดียว	GPIO 3, 34-36, 39
(พร้อมระบุ GPIO)	
เฉพาะ OUTPUT มีกี่ขา PIN ที่สามารถใช้งานได้	21 ଏମ GPIO 0-2, 4-5, 12-19, 21-23, 25-27, 32-33
(พร้อมระบุ GPIO)	21 01 01 10 0 2, 7 3, 12 17, 21-23, 23-27, 32-33
เพราะเหตุใดบางขาถึงไม่สามารถใช้งานเป็น	ไม่มีการทำงานภายในแบบ pull-up หรือ pull-down
OUTPUT ได้	The second of the part and the second of the

Hint: http://www.weigu.lu/microcontroller/tips_tricks/esp32_tips_tricks/index.html

ข้อมูลของขา PIN เพิ่มเติม

PIN	รายละเอียดขา PIN	สามารถนำมาใช้งาน INPUT/ OUTPUT ได้?	
		มีข้อจำกัด? เพราะเหตุใด	
GPIO0	input pull up / output	ใช้สำหรับโหมด bootloader หรือ flashing	
GPIO1	output	เปลี่ยนสถานะเป็น high หรือ pwm signal	
GPIO3	input high at boot	เปลี่ยนสถานะเป็น high หรือ pwm signal	
GPIO6	ไม่ควรใช้	เชื่อมกับ integrated SPI flash	
GPIO7	ไม่ควรใช้	เชื่อมกับ integrated SPI flash	
GPIO8	ไม่ควรใช้	เชื่อมกับ integrated SPI flash	
GPIO9	ไม่ควรใช้	เชื่อมกับ integrated SPI flash	
GPIO10	ไม่ควรใช้	เชื่อมกับ integrated SPI flash	
GPIO11	ไม่ควรใช้	เชื่อมกับ integrated SPI flash	
GPIO12	boot fail if pull high	ใช้สำหรับโหมด bootloader หรือ flashing	
GPIO34	input only	ไม่มีการทำงานภายในแบบ pull-up หรือ pull-down	
GPIO35	input only	ไม่มีการทำงานภายในแบบ pull-up หรือ pull-down	
GPIO36	input only	ไม่มีการทำงานภายในแบบ pull-up หรือ pull-down	
GPIO39	input only	ไม่มีการทำงานภายในแบบ pull-up หรือ pull-down	

Hint: https://randomnerdtutorials.com/esp32-pinout-reference-gpios/

2.2 ทดลองเขียนควบคุม 7 Segment

จงเขียนโปรแกรมควบคุมดังนี้ (60xxxxxx_0202.ino)

จะมี Switch อยู่ 1 ปุ่ม และต่อกับ 7Segment Common Cathode

- 1. เมื่อไม่ได้กดปุ่มใดๆ ตัว 7Segment จะกระพริบเลข (0 ติด 0.5วิ/ดับ 0.5วิ)
- 2. เมื่อกดปุ่ม SW1 ตัว 7Segment จะกระพริบเลข 1/2/3/4/5/6/7/8/9/A/B/C/D/E/F

จงตอบคำถามในตาราง

ตัวเลข/อักษร ที่แสดง	PIN GPIO ใหนที่ต้องเป็น+ #GF + LOW	
0	27,5,18,19,21,31	
1	5,18	
2	27,5,19,21,22	
3	27,5,18,19,22	
4	5,18,23,22	
5	27,18,19,23,22	
6	27,18,19,21,23,22	
7	27,5,18	
8	27,5,18,19,21,23,22	
9	27,5,18,19,23,22	
А	27,5,18,19,21,22	
F	27,21,23,22	

เขียนโปรแกรมลงในกล่องคำตอบด้านล่าง

//Global	void six(void)	void D(void)	
bool stateloop = true;	{ digitalWrite(27, LOW);	{ digitalWrite(5, LOW);	
int state7Seg = 1;	digitalWrite(18, LOW);	digitalWrite(18, LOW);	
•	digitalWrite(19, LOW);	digitalWrite(19, LOW);	
void off(void)	digitalWrite(21, LOW);	digitalWrite(21, LOW);	
{ digitalWrite(27, HIGH);	digitalWrite(23, LOW);	digitalWrite(22, LOW);	
digitalWrite(5, HIGH);	digitalWrite(22, LOW);	Serial.println("d");	
digitalWrite(18, HIGH);	Serial.println("6");	}	
digitalWrite(19, HIGH);	}		
digitalWrite(21, HIGH);		void E(void)	
digitalWrite(23, HIGH);	void seven(void)	{ digitalWrite(27, LOW);	
digitalWrite(22, HIGH);	{ digitalWrite(27, LOW);	digitalWrite(5, LOW);	
Serial.println("off");	digitalWrite(5, LOW);	digitalWrite(19, LOW);	
}	digitalWrite(18, LOW);	digitalWrite(21, LOW);	
,	Serial.println("7");	digitalWrite(23, LOW);	
void zero(void)	}	digitalWrite(22, LOW);	
{ digitalWrite(27, LOW);		Serial.println("e");	
digitalWrite(5, LOW);	void eight(void)	}	
digitalWrite(18, LOW);	{ digitalWrite(27, LOW);	•	void loop()
digitalWrite(19, LOW);	digitalWrite(5, LOW);	void f(void)	{ if(digitalRead(16) == HIGH
digitalWrite(21, LOW);	digitalWrite(18, LOW);	{ digitalWrite(27, LOW);	{ if(stateloop == true)
digitalWrite(21, LOW); digitalWrite(23, LOW);	digitalWrite(19, LOW);	digitalWrite(21, LOW);	{ zero(); // 7Seg Display 0
Serial.println("0");	digitalWrite(21, LOW);	digitalWrite(23, LOW);	}else
	digitalWrite(23, LOW);	digitalWrite(22, LOW);	{ off(); // 7Seg off Display
}	digitalWrite(22, LOW);	Serial.println("f");	}
	Serial.println("8");)	state7Seg = 1;
void one(void)	}	1	}
{ digitalWrite(5, LOW);	J	: 1(:)	else
digitalWrite(18, LOW);	void nine(void)	void state(int num)	{ if(stateloop == true)
Serial.println("1");	{ digitalWrite(27, LOW);	{ if(num==1){one();}	{ state(state7Seg);
}	digitalWrite(27, LOW);	else if(num==2){two();}	state7Seg+=1;
	•	else if(num==3){three();}	}else
void two(void)	digitalWrite(18, LOW);	else if(num==4){four();}	{ off(); // 7Seg off Display
{ digitalWrite(27, LOW);	digitalWrite(19, LOW);	else if(num==5){five();}	{ OII(), // /3cg OII Display
digitalWrite(5, LOW);	digitalWrite(23, LOW);	else if(num==6){six();}	1
digitalWrite(19, LOW);	digitalWrite(22, LOW);	else if(num==7){seven();}	stateloop = !stateloop;
digitalWrite(21, LOW);	Serial.println("9");	else if(num==8){eight();}	delay(500);
digitalWrite(22, LOW);	}	else if(num==9){nine();}	delay(500);
Serial.println("2");	.1.7	else if(num==10) $\{A();\}$	1
}	void A(void)	else if(num==11){B();}	
	{ digitalWrite(27, LOW);	else if(num==12) $\{C();\}$	
void three(void)	digitalWrite(5, LOW);	else if(num==13) $\{D();\}$	
{ digitalWrite(27, LOW);	digitalWrite(18, LOW);	else if(num==14){E();}	
digitalWrite(5, LOW);	digitalWrite(19, LOW);	else{f();}	
digitalWrite(18, LOW);	digitalWrite(21, LOW);	}	
digitalWrite(19, LOW);	digitalWrite(22, LOW);		
digitalWrite(22, LOW);	Serial.println("a");	void setup() {	
Serial.println("3");	}	Serial.begin(115200);	
}		Serial.println("Start Firmware");	
	void B(void)	// SW GPIO16	
void four(void)	{ digitalWrite(18, LOW);	<pre>pinMode(16, INPUT_PULLUP);</pre>	
{ digitalWrite(5, LOW);	<pre>digitalWrite(19, LOW);</pre>	// Seven Segment	
digitalWrite(18, LOW);	digitalWrite(21, LOW);	pinMode(27, OUTPUT); // SegA	
digitalWrite(23, LOW);	digitalWrite(23, LOW);	pinMode(5, OUTPUT); // SegB	
digitalWrite(22, LOW);	digitalWrite(22, LOW);	pinMode(18, OUTPUT); // SegC	
Serial.println("4");	Serial.println("b");	pinMode(19, OUTPUT); // SegD	
}	}	pinMode(21, OUTPUT); // SegE	
,		pinMode(23, OUTPUT); // SegF	
void five(void)	void C(void)	pinMode(22, OUTPUT); // SegG	
{ digitalWrite(27, LOW);	{ digitalWrite(27, LOW);	off(); // OFF LED ALl Segment	
digitalWrite(18, LOW);	digitalWrite(19, LOW);	}	
4181141 VY 111C(10, LO VY);	digitalWrite(21, LOW);	•	
digitalWrite(10 IOW).	•		
digitalWrite(19, LOW);	digitalWrite(23, LOW);		
digitalWrite(23, LOW);	•		
•	<pre>digitalWrite(23, LOW); Serial.println("c"); }</pre>		

^{*}https://wokwi.com/projects/337596048885154388

2.3 ทดลองเขียนควบคุม 7 Segment 2Bit input

จงเขียนโปรแกรมควบคุมดังนี้ (60XXXXXX 0203.ino)

จะมี Switch อยู่ 2 ปุ่ม และต่อกับ 7Segment Common Cathode และแสดงการกระพริบดังตารางด้านล่าง โดยที่ไม่กดปุ่มจะเป็น Logic 0 ทั้ง Switch SW1 และ SW2

รายละเอียดตามตาราง

Switch SW1	Switch SW2	7 Segment
0	0	Show 0
0	1	Show 1
1	0	Show 2
1	1	Show 3

การกระพริบของ 7 Segment รายละเอียดดังนี้

<start Loop>

7Seg กระพริบ 1sec โชว์ค่าตาม Input 3 ครั้ง

ไฟดับ 2วินาที

7Seg กระพริบถี่ 0.5sec โชว์ค่าตาม Input 6 ครั้ง ไฟดับ 2วินาที

<end Loop>

*** เมื่อเปลี่ยน input ค่าตัวเลขจะเปลี่ยนทันทีในรอบกระพริบ

เขียนโปรแกรมลงในกล่องคำตอบด้านล่าง

```
bool stateloop = true,loo=true;
                                                                void loop2(int num)
int state7Seg = 1;
                                                                while(r--)
void off(void)
                                                                 { state(num);
{ digitalWrite(27, HIGH);
                                                                  delay(500);
digitalWrite(5, HIGH);
                                                                  off();
digitalWrite(18, HIGH);
                                                                  delay(500);
digitalWrite(19, HIGH);
 digitalWrite(21, HIGH);
                                                                 loo=!loo;
 digitalWrite(23, HIGH);
 digitalWrite(22, HIGH);
 Serial.println("off");
                                                                void setup() {
                                                                 Serial.begin(115200);
                                                                 Serial.println("Start Firmware");
void zero(void)
                                                                 // SW GPIO16
{ digitalWrite(27, LOW);
                                                                 pinMode(16, INPUT_PULLUP);
digitalWrite(5, LOW);
                                                                 pinMode(4, INPUT_PULLUP);
 digitalWrite(18, LOW);
                                                                 // Seven Segment
 digitalWrite(19, LOW);
                                                                 pinMode(27, OUTPUT); // SegA
digitalWrite(21, LOW);
                                                                 pinMode(5, OUTPUT); // SegB
 digitalWrite(23, LOW);
                                                                 pinMode(18, OUTPUT); // SegC
 Serial.println("0");
                                                                 pinMode(19, OUTPUT); // SegD
                                                                 pinMode(21, OUTPUT); // SegE
                                                                 pinMode(23, OUTPUT); // SegF
void one(void)
                                                                 pinMode(22, OUTPUT); // SegG
{ digitalWrite(5, LOW);
                                                                 off(); // OFF LED ALl Segment
digitalWrite(18, LOW);
 Serial.println("1");\\
                                                                void loop()
                                                                { if(digitalRead(16)==0 && digitalRead(4)==0)
void two(void)
                                                                 \{ if(loo)\{loop1(0);\} 
{ digitalWrite(27, LOW);
                                                                  else{loop2(0);}
 digitalWrite(5, LOW);
                                                                 }else if(digitalRead(16)==0 && digitalRead(4)==1)
digitalWrite(19, LOW);
                                                                 { if(loo){loop1(1);}
 digital Write (21, LOW);\\
                                                                  else{loop2(1);}
 digitalWrite(22, LOW);
                                                                 }else if(digitalRead(16)==1 && digitalRead(4)==0)
 Serial.println("2");
                                                                 \{ if(loo)\{loop1(2);\} 
                                                                  else\{loop2(2);\}
                                                                 }else
void three(void)
                                                                 \{ if(loo)\{loop1(3);\}
{ digitalWrite(27, LOW);
                                                                  else{loop2(3);}
 digitalWrite(5, LOW);
digitalWrite(18, LOW);
                                                                 delay(2000);
 digitalWrite(19, LOW);
 digitalWrite(22, LOW);
Serial.println("3");
void state(int num)
\{ \ if(num==0)\{zero();\}
 else if(num==1){one();}
 else if(num==2){two();}
 else if(num==3){three();}
void loop1(int num)
\{ \text{ int } r=3;
 while(r--)
 { state(num);
  delay(1000);
  off();
  delay(1000);
 loo=!loo:
```

^{*}https://wokwi.com/projects/337596448943112787

2.4 ทดลองเขียนควบคุม 7 Segment 2Bit input ด้วย Key-Pad

ปรับปรุงจาก Lab 2.3 โดยที่ Input รับมาจาก Numpad บนบอร์ด แล้วนำค่ามาแสดงที่ 7Segment ได้ตามที่กดจาก Numpad

ตัวเลขและตัวอักษรที่แสดงที่ 7Segment

0 1 2 3 4 5 6 7 8 9 A B C D

โดยกดแล้วให้แสดงตามที่กดปุ่ม

Hint: https://diyi0t.com/keypad-arduino-esp8266-esp32/

เขียนโปรแกรมลงในกล่องคำตอบด้านล่าง **และถ่ายวีดีโอผลลัพท์ของโจทย์นี้ Upload ไฟล์ตามหมู่เรียน**

int stateNum = 0;	void three(void){	void nine(void)	void setup() {
	// LED 3	{ digitalWrite(A, LOW);	Serial.begin(115200);
#define A 16 // free memory	digitalWrite(A, LOW);	digitalWrite(B, LOW);	Serial.println("Start Firmware");
#define B 5	digitalWrite(B, LOW);	digitalWrite(C, LOW);	pinMode(A, OUTPUT); // SegA
#define C 18	digitalWrite(C, LOW);	digitalWrite(D, LOW);	pinMode(B, OUTPUT); // SegB
#define D 19	digitalWrite(D, LOW);	digitalWrite(E, HIGH);	pinMode(C, OUTPUT); // SegC
#define E 21	digitalWrite(E, HIGH);	digitalWrite(F, LOW);	pinMode(D, OUTPUT); // SegD
#define F 23	digitalWrite(F, HIGH);	digitalWrite(G, LOW);	pinMode(E, OUTPUT); // SegE
#define G 22	digitalWrite(G, LOW);	//Serial.println("9");	pinMode(F, OUTPUT); // SegF
	//Serial.println("3");	}	pinMode(G, OUTPUT); // SegG
#define R1 13 // output	}		off(); // OFF LED ALl Segment
#define R2 12 // output		void a(void)	pinMode(R1, OUTPUT);
#define R3 14 // output	void four(void){	{ digitalWrite(A, LOW);	pinMode(R2, OUTPUT);
#define R4 27 // output	// LED 4	digitalWrite(B, LOW);	pinMode(R3, OUTPUT);
#define C1 26 //input	digitalWrite(A, HIGH);	digitalWrite(C, LOW);	pinMode(R4, OUTPUT);
#define C2 25 //input	digitalWrite(B, LOW);	digitalWrite(D, HIGH);	pinMode(C1, INPUT_PULLUP);
#define C3 33 //input	digitalWrite(C, LOW);	digitalWrite(E, LOW);	pinMode(C2, INPUT_PULLUP);
#define C4 32 //input	digitalWrite(D, HIGH);	digitalWrite(F, LOW);	pinMode(C3, INPUT_PULLUP);
	digitalWrite(E, HIGH);	digitalWrite(G, LOW);	pinMode(C4, INPUT_PULLUP);
void off(void){	digitalWrite(F, LOW);	//Serial.println("a");	}
// OFF LED ALl Segment	digitalWrite(G, LOW);	}	
digitalWrite(A, HIGH);	//Serial.println("3");		void loop() {
digitalWrite(B, HIGH);	}	void b(void)	digitalWrite(R1, LOW);
digitalWrite(C, HIGH);	void five(void)	{ digitalWrite(A, HIGH);	digitalWrite(R2, HIGH);
digitalWrite(D, HIGH);	{ digitalWrite(A, LOW);	digitalWrite(B, HIGH);	digitalWrite(R3, HIGH);
digitalWrite(E, HIGH);	digitalWrite(B, HIGH);	digitalWrite(C, LOW);	digitalWrite(R4, HIGH);
digitalWrite(F, HIGH);	digitalWrite(C, LOW);	digitalWrite(D, LOW);	$if(digitalRead(C1) == LOW)\{one();\}$
digitalWrite(G, HIGH);	digitalWrite(D, LOW);	digitalWrite(E, LOW);	else if (digitalRead(C2) == LOW){two();}
//Serial.println("off");	digitalWrite(E, HIGH);	digitalWrite(F, LOW);	else if (digitalRead(C3) == LOW){three();}
}	digitalWrite(F, LOW);	digitalWrite(G, LOW);	else if $(digitalRead(C4) == LOW)\{a();\}$
	digitalWrite(G, LOW);	//Serial.println("b");	else{
void zero(void){	// Serial.println("5");	}	digitalWrite(R1, HIGH);
// LED 0	}		digitalWrite(R2, LOW);
digitalWrite(A, LOW);		void c(void)	digitalWrite(R3, HIGH);
digitalWrite(B, LOW);	void six(void)	{ digitalWrite(A, LOW);	digitalWrite(R4, HIGH);
digitalWrite(C, LOW);	{ digitalWrite(A, LOW);	digitalWrite(B, HIGH);	$if(digitalRead(C1) == LOW)\{four();\}$
digitalWrite(D, LOW);	digitalWrite(B, HIGH);	digitalWrite(C, HIGH);	else if $(digitalRead(C2) == LOW)\{five();\}$
digitalWrite(E, LOW);	digitalWrite(C, LOW);	digitalWrite(D, LOW);	else if $(digitalRead(C3) == LOW)\{six();\}$
digitalWrite(F, LOW);	digitalWrite(D, LOW);	digitalWrite(E, LOW);	else if $(digitalRead(C4) == LOW)\{b();\}$
digitalWrite(G, HIGH);	digitalWrite(E, LOW);	digitalWrite(F, LOW);	else{
//Serial.println("0");	digitalWrite(F, LOW);	digitalWrite(G, HIGH);	digitalWrite(R1, HIGH);
}	digitalWrite(G, LOW);	//Serial.println("c");	digitalWrite(R2, HIGH);
	//Serial.println("6");	}	digitalWrite(R3, LOW);
void one(void){	}		digitalWrite(R4, HIGH);
// LED 1		void d(void)	$if(digitalRead(C1) == LOW)\{seven();\}$
digitalWrite(A, HIGH);	void seven(void)	{ digitalWrite(A, HIGH);	else if (digitalRead(C2) == LOW){eight();}
digitalWrite(B, LOW);	{ digitalWrite(A, LOW);	digitalWrite(B, LOW);	else if (digitalRead(C3) == LOW){nine();}
digitalWrite(C, LOW);	digitalWrite(B, LOW);	digitalWrite(C, LOW);	else if $(digitalRead(C4) == LOW)\{c();\}$
digitalWrite(D, HIGH);	digitalWrite(C, LOW);	digitalWrite(D, LOW);	else{
digitalWrite(E, HIGH);	digitalWrite(D, HIGH);	digitalWrite(E, LOW);	digitalWrite(R1, HIGH);
digitalWrite(F, HIGH);	digitalWrite(E, HIGH);	digitalWrite(F, HIGH);	digitalWrite(R2, HIGH);
digitalWrite(G, HIGH);	digitalWrite(F, HIGH);	digitalWrite(G, LOW);	digitalWrite(R3, HIGH);
//Serial.println("1");	digitalWrite(G, HIGH);	//Serial.println("d");	digitalWrite(R4, LOW);
}	//Serial.println("7");	}	$if(digitalRead(C1) == LOW)\{off();\}$
	}		else if (digitalRead(C2) == LOW){zero();}
void two(void){			else if (digitalRead(C3) == LOW){off();}
// LED 2	void eight(void)		else if (digitalRead(C4) == LOW) $\{d();\}$
digitalWrite(A, LOW);	{ digitalWrite(A, LOW);		else{off();}
digitalWrite(B, LOW);	digitalWrite(B, LOW);		}
digitalWrite(C, HIGH);	digitalWrite(C, LOW);		}
digitalWrite(D, LOW);	digitalWrite(D, LOW);		}
digitalWrite(E, LOW);	digitalWrite(E, LOW);		delay(500);
digitalWrite(F, HIGH);	digitalWrite(F, LOW);		}
digitalWrite(G, LOW);	digitalWrite(G, LOW);		
110 . 1 . 1 (11 11)	//Comin1 maintln("o").		
//Serial.println("2");	//Serial.println("8");		

^{*}https://wokwi.com/projects/338265128157839956