Lexical analysis

```
if (x == y)
  z = 1;
else
  z = 2;
```

will look like this to the lexical analyzer:

```
\forall tif (x == y) \in z = 1; \in x = 2; \in x
```

The lexical analyzer has to put dividers between different units. e.g., a divider between \t and if and <whitespace> and (and so on ...

Token Class (or Class)

- In English: Noun, Verb, Adjective, ...
- In programming language: Identifier, Keyword, (,), ...

Token classes correspond to sets of strings

- Identifier: a string of letters or digits, starting with a letter.
- Integer: a non-empty string of digits
- Keyword: 'if', 'then', 'else', ';', etc.
- Whitespace: a non-empty sequence of blanks, newlines, and tabs

Lexical analyzer classifies strings according to role (token class). Communicates tokens to parser.

```
lexer :: string --> [ token ]
token = <class, string>
```

Example input:

foo = 42

Example output:

In our original example

$$\forall x == y) \ z = 1; \ z = 2; \ z = 2;$$

the relevant token classes are:

- Operator
- Whitespace
- Keywords
- Identifiers
- Numbers
- '('
- ')'
- ':'
- _ '_'

Work through the example to show the resulting list of tokens

A lexical analyzer needs to

- 1. recognize substrings corresponding to tokens (called *lexemes*)
- 2. recognize token class of each lexeme to generate <token-class, lexeme>

Lexical analysis examples: Fortran

In Fortran, whitespace is insignificant:

VAR1

is exactly the same as

VA R1

Fortran idea: removing all the whitespace should not change the meaning of the program.

Loop example

D0 5 I = 1,25

Here D0 is a keyword representing a loop (similar to F0R in C), I = 1,25 represents that the iteration variable I ranges from 1..25. The number 5 represents that the loop extends from the D0 statement till the statement with label 5, including all statements that are in between.

Another example:

D0 5 I = 1.25

The only difference in this code from the previous code is the replacement of , with .. This simply means that the variable D05I = 1.25, i.e., a variable has been assigned an integer (there is no loop). The problem is that just by looking at the first three characters, I cannot tell whether D0 is a keyword or a prefix of a variable name. Hence we need a *lookahead*. In this example, a large lookahead is required. Ideally, the language design should ensure that the lookahead is small.

- 1. Goal: partition the string. Implemented by reading left-to-right, recognizing one token at a time
- 2. *Lookahead* may be required to decide where one token ends and the next token begins. We would like to minimize lookahead.

Lookahead is always required

For example, when we read the first character of the keyword else, we need to lookahead to decide whether it is an identifier or a keyword. Similarly, we need lookahead to disambiguate between == and =.

PL/1: keywords are not reserved.

```
IF ELSE THEN THEN = ELSE; ELSE ELSE = THEN
```

This makes lexical analysis a bit more difficult -- need to decide what is a variable name and what is a keyword, and so need to look at what's going on in the rest of the expression.

In fact, there are examples where PL/1 may require unbounded lookahead!

Some of these problems exist in languages today: e.g., C++

C++ template syntax

Foo<Bar>

C++ stream syntax

cin >> var

For a long time, you had to put a blank between two ">" signs in the template syntax. Most C++ compilers have fixed this now.

Regular Languages

Typically, language designers would like to keep lexical analysis as simple as possible. Perhaps the most simple class of languages is *Regular Languages*. Hence, lexical analysis of most programming languages can be implemented by implementing a classifier for regular languages. Regular languages are the weakest formal languages widely used, and have many applications.

Regular Expressions

```
'c' = {"c"}
\epsilon = {""}
```

Note that \epsilon (a language that has a single element, namely the empty string) is not the same as \phi (empty language).

Union: $A + B = \{ a \mid a \text{ in } A \} \cup \{ b \mid b \text{ in } B \}$

Concatenation: $AB = \{ ab \mid a \text{ in } A \text{ and } b \text{ in } B \}$

Iteration (Kleene closure): $A^* = A0 + A1 + A2 + ...$ A\infinity

A0 =\epsilon

Ai = A concatenated with itself i times

Definition: The regular expressions over \Sigma are the smallest set of expressions that includes the following:

This is called the grammar of the regular expressions. We will learn more about grammars when we talk about parsing (not relevant at this stage).

```
Sigma = \{0, 1\}
1* = all strings of 1s (1 + 0)1 = {11, 01}
0* + 1* = all strings of 0s UNION all strings of 1s (0 + 1)* = all strings of 0s and 1s (or all strings over the entire alphabet) = Sigma* (special name for this language)
```

Many ways of writing any regular language

Regular expressions specify regular languages

Five constructs: Two base cases (\epsilon, single-character strings). Three compound expressions (union, concatenation, iteration)