

# Smart Contract Audit EuroFusion2024





# **Table of Content**

| Executive Summary |                                                    | 3                |   |
|-------------------|----------------------------------------------------|------------------|---|
| Genera            | l security assumptions                             |                  | 5 |
| Finding           | <b>JS</b>                                          |                  | 6 |
| LNC-1             | Inefficient Storage Type for tradingStart Variable | (i) Acknowledged | 7 |
| LNC-2             | Lack of NatSpec Comments for Main Functions        | (i) Acknowledged | 8 |
| Disclai           | mer                                                |                  | 9 |



# **Executive Summary**

## **Project Summary**

| Language | Codebase | Commits                                  |
|----------|----------|------------------------------------------|
| Solidity | Private  | 5d2715585060bd382ee541ebba6e77cf6472b692 |

### **Audit Scope**

| ID  | File        | SHA256                                                               |
|-----|-------------|----------------------------------------------------------------------|
| ALB | Albania.sol | d98055dc96c6c8ffbc6d5568546c4<br>f8cb406eae0561263b036fd3d9a3c3321f4 |
| AUS | Austria.sol | 318944d11f7d1e5adb500abf9577b<br>93e727341cf1939483071bc35e021473b53 |
| BLG | Belgium.sol | 53bc2e71dc500a927a93037b2f763<br>e93e869539d31454ecd785e1ced75c8c994 |
| CRT | Croatia.sol | f91a51fa8b5c3088f386fefb52e97<br>6321102cc0e9613442a7d7aa2e600f8cf16 |
| CZH | Czechia.sol | 285c80929551ee7d1a310e318efe2<br>17668fadb8992d8bc92b55b07fd669a526d |
| DNM | Denmark.sol | a53f80d2c57ef270a72236b5c3df1<br>25a15c1358b83d0dcd7edb1bba2e433f75d |
| ENG | England.sol | 81b13bdacd68bd0e6959c6084248c<br>0eaa3b5d3c9c75c69fc0c738cf863c9419e |
| FRC | France.sol  | ca170f6a635644e8d499926271916<br>4c73912e061564952fcab6c974e32b8ca1a |
|     |             |                                                                      |

| GRG | Georgia.sol     | 58ada84cae3c82f8a739c242d3abc<br>4ecc61fe172122509def761cca9dcee3e28 |
|-----|-----------------|----------------------------------------------------------------------|
| GRM | Germany.sol     | d7cf1665199ef04d3a4df6a0e0494<br>b33282ab4f5048603c5fd15d3a91b72cb3a |
| HNG | Hungary.sol     | befa02519ac2b9f7947a08b2ab645<br>e38cc39e654cc04acaff50e685b312fb09d |
| ITL | Italy.sol       | Of61ae4d7688efa2a521c927ce7ed<br>e031c16b82e130e186b726d25a36cab1ce6 |
| NRL | Netherlands.sol | 847ff1282c710b2503d346a9e3f77<br>2911fb792184d122e3fe8031124b4e0fdff |
| PLD | Poland.sol      | 1cdf146be730d43e96cde19c214e0<br>a18cb8596bdc09638873ea059dffb8a8360 |
| PRT | Portugal.sol    | b0ec5009e4f0b3aa11c6e22e29133<br>2116acf7110b0049ab79c50f97cdbe6bf89 |
| RMN | Romania.sol     | 5ec535c26ea46200a94dfd1485f4b<br>c3b2f36479218b8c2c607988023fd6f743e |
| SCT | Scotland.sol    | 081ad07781a3cd6640631cc65c478<br>52bddb4d374dd11bcaafea11ff0a6e76f0e |
| SRB | Serbia.sol      | 830b0f33710d0825bb451d34efdb9<br>31584e8103041bd7d3e80b09f9106bb6928 |
| SLV | Slovakia.sol    | 20bd0fe57a19b083b7c7d7628911d<br>b116b0d7f1e5ce9f46fe950996fd6caclee |
| SLN | Slovenia.sol    | ff98fae381cf2fb52c4765432ebe1<br>ce49b3e6bf3270f5be73ae2c003d4a4c79a |
| SPN | Spain.sol       | 9e3ee5abb1ed2fcc11b8e9910c9c3<br>dec33ac62ea6e813060c6ced533e179a759 |
| SWT | Switzerland.sol | 57aa3522fc25303cf1ff86100f10c<br>746a8d212d946f817d83f9a689593911172 |
| TRK | Turkey.sol      | 6aa5009b5969870b78e265bc1b554<br>b9b0e3c66b57a5b5c9e2957e5643fb32535 |
| UKR | Ukraine.sol     | 74138cac65d698e440240aa4e7a3f<br>65cab3242acf68bdcb9acbffec3a64b93d6 |
| LNC | Launchable.sol  | da3ff2b314f210cbd7b26776e594a<br>7d9844e6e5e6fe57732dc43fd1819cdab89 |
|     |                 |                                                                      |



# General security assumptions

In conducting our security audit of the EuroFusion2024 Tokens, we have made a number of important security assumptions. These assumptions are fundamental to our analysis and should be considered when evaluating the overall security and potential vulnerabilities of the system:

#### **Security of the Underlying Blockchain**

Our security analysis is predicated on the assumption that the underlying blockchain (for example, Ethereum) is secure and functions as intended. Potential vulnerabilities or flaws in the blockchain protocol are outside the scope of this audit.

#### **Trusted Environment**

We assume that users of the smart contract will interact with it in a secure and trusted environment. This encompasses the use of secure, up-to-date software and hardware, which is free from malware or any potential interference from malicious third parties.

#### **Private Key Security**

Users of the smart contract are assumed to safeguard their private keys effectively. This involves not sharing private keys, securely storing key backups, and using hardware wallets or other secure means for key management.

These security assumptions form the basis of our audit. Deviations from these assumptions could potentially lead to risks or vulnerabilities not covered in this analysis. Therefore, the effective management of these factors is critical to ensure the ongoing security of the EuroFusion2024 Tokens.



# **Findings**

#### **Audit Overview**



#### **Issues**

| Severity      | Q Found | Resolved | Partially Fixed | (i) Acknowledged |
|---------------|---------|----------|-----------------|------------------|
| Critical      | 0       | 0        | 0               | 0                |
| High          | 0       | 0        | 0               | 0                |
| Medium        | 0       | 0        | 0               | 0                |
| Low           | 0       | 0        | 0               | 0                |
| Informational | 0       | 0        | 0               | 2                |
| Total         | o       | o        | o               | 2                |



#### LNC-1

#### Inefficient Storage Type for tradingStart Variable

Informational (i) Acknowledged

#### Description

The variable tradingStart is currently declared as uint256 in the contract. Given that a uint64 is sufficient to store timestamp values (which will remain valid until the year 584,542,046), using uint256 is inefficient and results in unnecessary gas consumption.

#### Recommendation

Change the type of the tradingStart variable from uint256 to uint64. This optimization reduces gas costs and improves storage efficiency without impacting the functionality of the contract.



#### LNC-2

#### **Lack of NatSpec Comments for Main Functions**



#### Description

The contract lacks NatSpec comments for its main functions and variables. NatSpec (Ethereum Natural Language Specification Format) is crucial for documenting the purpose, behavior, and usage of functions and variables in smart contracts. The absence of these comments can lead to misunderstandings and misuse of the contract's functionalities.

#### Recommendation

Add comprehensive NatSpec comments to all main functions and variables in the contract. This documentation should include:

@notice for a brief description of the function or variable.

@param for each function parameter, describing its purpose.

@return for functions that return a value, explaining what is returned.

Any relevant @dev notes for developers.



## Disclaimer

The smart contracts given for audit have been analyzed by the best industry practices at the date of this report, with cybersecurity vulnerabilities and issues in smart contract source code, the details of which are disclosed in this report (Source Code); the Source Code compilation, deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security of the code. The report covers the code submitted to and reviewed, so it may not be relevant after any modifications. Do not consider this report as a final and sufficient assessment regarding the utility and safety of the code, bug-free status, or any other contract statements.

While we have done our best in conducting the analysis and producing this report, it is important to note that you should not rely on this report only — we recommend proceeding with several independent audits and a public bug bounty program to ensure the security of smart contracts. English is the original language of the report. The Consultant is not responsible for the correctness of the translated versions.

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming language, and other software related to the smart contract can have vulnerabilities that can lead to hacks. Thus, Consultant cannot guarantee the explicit security of the audited smart contracts.