homework06

Xueran Zou

4/23/23

A. Improve the analysis code below.

```
df <- data.frame(a=1:10, b=seq(200,400,length=10),c=11:20,d=NA)
df$a <- (df$a - min(df$a)) / (max(df$a) - min(df$a))
df$b <- (df$b - min(df$a)) / (max(df$b) - min(df$b))
df$c <- (df$c - min(df$c)) / (max(df$c) - min(df$c))
df$d <- (df$d - min(df$d)) / (max(df$a) - min(df$d))</pre>
Write the function.

function_1 = function(x){
   (x - min(x)) / (max(x) - min(x))
}
Apply the function:
function_1(df$a)

[1] 0.0000000 0.1111111 0.2222222 0.3333333 0.4444444 0.5555556 0.6666667
[8] 0.7777778 0.8888889 1.0000000
```

B. Improve the below example code for the analysis of protein drug interactions.

```
library(bio3d)
s1 <- read.pdb("4AKE") # kinase with drug</pre>
```

```
Note: Accessing on-line PDB file

s2 <- read.pdb("1AKE") # kinase no drug

Note: Accessing on-line PDB file
PDB has ALT records, taking A only, rm.alt=TRUE

s3 <- read.pdb("1E4Y") # kinase with drug

Note: Accessing on-line PDB file

s1.chainA <- trim.pdb(s1, chain="A", elety="CA")
s2.chainA <- trim.pdb(s2, chain="A", elety="CA")
s3.chainA <- trim.pdb(s1, chain="A", elety="CA")
s3.chainA <- trim.pdb(s1, chain="A", elety="CA")
s1.b <- s1.chainA$atom$b
s2.b <- s2.chainA$atom$b
```

plotb3(s1.b, sse=s1.chainA, typ="l", ylab="Bfactor")

s3.b <- s3.chainA\$atom\$b

plotb3(s3.b, sse=s3.chainA, typ="1", ylab="Bfactor")

Write the function.

```
function_2 <- function(x){
    #input: PDB
    s <- read.pdb(x)
    s.chainA <- trim.pdb(s, chain="A", elety="CA")
    s.b <- s.chainA$atom$b
    plotb3(s.b, sse=s.chainA, typ="l", ylab="Bfactor")
    #output: a standard scatter plot with optional secondary structure in the marginal region
}</pre>
```

Apply function:

```
function_2("4AKE")
```

Note: Accessing on-line PDB file

Warning in get.pdb(file, path = tempdir(), verbose = FALSE):
C:\Users\Lenovo\AppData\Local\Temp\RtmpYnJmt3/4AKE.pdb exists. Skipping
download

Q1. What type of object is returned from the read.pdb() function?

class(s1)

[1] "pdb" "sse"

The type of object returned from the read.pdb() function is large pdb.

Q2. What does the trim.pdb() function do?

The function is used to produce a new smaller PDB object, containing a subset of atoms, from a given larger PDB object.

Q3. What input parameter would turn off the marginal black and grey rectangles in the plots and what do they represent in this case?

```
s1 <- read.pdb("4AKE")</pre>
```

Note: Accessing on-line PDB file

Warning in get.pdb(file, path = tempdir(), verbose = FALSE):
C:\Users\Lenovo\AppData\Local\Temp\RtmpYnJmt3/4AKE.pdb exists. Skipping
download

```
s1.chainA <- trim.pdb(s1, chain="A", elety="CA")
function_2("4AKE")</pre>
```

Note: Accessing on-line PDB file

Warning in get.pdb(file, path = tempdir(), verbose = FALSE):
C:\Users\Lenovo\AppData\Local\Temp\RtmpYnJmt3/4AKE.pdb exists. Skipping
download

plotb3(s1.b, sse=s1.chainA, typ="l", ylab="Bfactor", top=FALSE, bot=FALSE)

The input parameter "top=FALSE" and "bot=FALSE" would turn off the marginal black and grep rectangles in the plot.

In this case, the black ones represent alpha helices, and the grey ones represent beta strands.

Q4. What would be a better plot to compare across the different proteins?

```
hc <- hclust(dist(rbind(s1.b, s2.b, s3.b)))
plot(hc)</pre>
```

Cluster Dendrogram

The difference distance matrix can be a better plot to compare across the different proteins.

Q5. Which proteins are more similar to each other in their B-factor trends. How could you quantify this?

```
hc <- hclust(dist(rbind(s1.b, s2.b, s3.b)))
plot(hc)</pre>
```

Cluster Dendrogram

Q6. How would you generalize the original code above to work with any set of input protein structures?

```
function_2 <- function(x){
   s <- read.pdb(x)
   s.chainA <- trim.pdb(s, chain="A", elety="CA")
   s.b <- s.chainA$atom$b
   plotb3(s.b, sse=s.chainA, typ="l", ylab="Bfactor")
}</pre>
```