ERIC RODRIGUES PIRES MATEUS NAKAJO DE MENDONÇA

SISTEMA WEB PARA INSTALAÇÃO DE ERBS

ERIC RODRIGUES PIRES MATEUS NAKAJO DE MENDONÇA

SISTEMA WEB PARA INSTALAÇÃO DE ERBS

Trabalho apresentado à Escola Politécnica da Universidade de São Paulo para obtenção do Título de Engenheiro de Computação.

ERIC RODRIGUES PIRES MATEUS NAKAJO DE MENDONÇA

SISTEMA WEB PARA INSTALAÇÃO DE ERBS

Trabalho apresentado à Escola Politécnica da Universidade de São Paulo para obtenção do Título de Engenheiro de Computação.

Orientador:

Bruno de Carvalho Albertini

AGRADECIMENTOS

Thanks...

RESUMO

Este projeto de formatura tem como objetivo criar um sistema capaz de calcular posições para a instalação de Estações Radiobase (ERBs) de forma que a área coberta pela rede de ERBs seja máxima. A partir da região dada como entrada, o sistema obterá seus dados geográficos através de um software SIG e utilizará programação linear para a otimização da posição de instalação. Para interface com o usuário do sistema, criaremos uma aplicação Web responsiva que permita selecionar a região na qual se pretende instalar uma ERB e mostra as posições ideais para instalação.

Palavra, Palavra, Palavra, Palavra, Palavra, Palavra, Palavra.

ABSTRACT

Abstract...

 $\mathbf{Keywords} - \mathrm{Word}, \ \mathrm{Word}, \ \mathrm{Word}, \ \mathrm{Word}, \ \mathrm{Word}.$

LISTA DE FIGURAS

LISTA DE TABELAS

LISTA DE SÍMBOLOS

Lista de símbolos...

SUMÁRIO

1	Intr	rodução	11
	1.1	Objetivo	11
		1.1.1 Sistema de Informação Geográfica	12
		1.1.2 Interface Web	12
	1.2	Motivação	13
		1.2.1 Análise do setor	13
	1.3	Justificativa	13
	1.4	Organização do Trabalho	13
2	Asp	oectos Conceituais	14
3	Tec	nologias Utilizadas	15
	3.1	Bases de dados utilizadas	15
4	Met	todologia do Trabalho	16
5	Esp	ecificação de Requisitos do Sistema	17
6	Pro	jeto e Implementação	18
7	Tes	tes e Avaliação	19
8	Cor	nsiderações Finais	20
	8.1	Conclusões do Projeto de Formatura	20
	8.2	Contribuições	20
	8.3	Perspectivas de Continuidade	20
$\mathbf{R}_{\mathbf{c}}$	eferê	ncias	21

1 INTRODUÇÃO

Na revolução da informação em que vivemos hoje, em que cada vez mais pessoas estão conectadas à rede, o acesso à Internet tem se tornado cada vez mais essencial no dia-a-dia, até mesmo a populações consideradas isoladas. Empresas bem conhecidas, como Vivo e Claro, vêm se empenhando para garantir melhor acesso a mais pessoas, mas se deparam com problemas de engenharia nesta tarefa.

A extensão territorial e a densidade demográfica desigual do Brasil são dois dentre vários fatores que tornam problemas de telecomunicação mais complexos. A dimensão deste problema gera um grande potencial de mercado para empresas terceirizadas, voltadas à instalação de Estações Radiobase (ERBs) para compartilhamento ou aluguel de células telefônicas às grandes empresas de telecomunicação. Dessa forma, há demanda do mercado por ferramentas que simplifiquem e/ou automatizem a tarefa de estudo de localização de ERBs.

1.1 Objetivo

O objetivo deste projeto de formatura é criar um sistema que permita calcular posições para a instalação de antenas de telefonia de forma a maximizar o alcance delas. Com esse fim, levaremos em conta dados geográficos para realizarmos os cálculos.

Também é de grande importância que tal sistema tenha uma interface prática para os usuários. Portanto, uma interface web que apresente os dados requisitados é essencial para o projeto.

Outras possíveis ramificações do projeto para showcase ao público geral, que não é o público-alvo, é a localização de antenas a partir do próprio celular do usuário, e a estimativa de posição do dispositivo pelas antenas encontradas.

1.1.1 Sistema de Informação Geográfica

SIG (Sistema de Informação Geográfica) é um sistema computacional capaz de obter, gravar, gerir, analisar e visualizar dados geográficos. Seu uso permite tomar decisões, analisar estatísticas e resolver problemas de otimização a partir de dados geográficos. O SIG pode ser usado tanto em lojas de varejo para decidir onde abrir uma nova filial, como em rastrear padrões de migração, controle e o monitoramento do desmatamento, planejamento urbano, etc.

No nosso projeto, usaremos um software SIG para gravar e exibir a posição de ERBs (Estações Radiobase) atuais, o relevo e os consumidores atingidos pela rede de ERBs. Com essas informações, determinaremos as posições ótimas de ERBs de modo a maximizar a área de cobertura do sistema de telefonia. Para tanto, aplicaremos técnicas de programação linear, uma vez que estamos diante de um problema de otimização cuja função a ser otimizada é linear em relação às variáveis de entrada.

O SIG utilizado será integrado à plataforma web Django, pelo módulo GeoDjango, que utiliza como banco de dados o PostGIS (baseado em Postgres). Serão armazenados dados públicos de localização de ERBs, relevo e densidade populacional. Ele será também responsável pelos cálculos realizados para a localização de novas antenas.

1.1.2 Interface Web

Para interação com o usuário, criaremos um front-end de uma aplicação Web que permita selecionar a região na qual se pretende instalar alguma ERB. Esta interface se comunicará com o back-end do SIG, para obter e calcular os dados desejados.

O design deverá ser responsivo, podendo ser utilizado em plataformas mobile ou desktop, e simples, com opções simples para apenas verificar a posição ótima de instalação de antenas em determinada área escolhida pelo usuário. Para isso, a interface deverá exibir um mapa, como por exemplo o da plataforma OpenStreetMap, com as informações do SIG, que permita ao usuário selecionar uma área desejada. Os dados serão calculados no back-end e exibidos ao usuário na tela. Para isso, será necessário desenvolver um front-end possivelmente dinâmico.

No projeto, para facilidade de desenvolvimento, utilizaremos o framework Django, escrito em Python. A integração de single-page com o back-end deverá ser feita com o módulo de API REST do Django.

1.2 Motivação

1.2.1 Análise do setor

Verificamos o mercado de instalação e aluguel de torres telefônicas no Brasil para comparar as tecnologias utilizadas em softwares ou pesquisas de instalação de ERBs. Há várias técnicas empregadas, desde programação não-linear a algoritmos evolutivos, algoritmos de polinização a programação inteira mista. Será feita uma comparação das tecnologias para verificar a que mais se adequa.

Também pesquisamos serviços similares da concorrência. Um dos produtos encontrados, chamado Atoll, é um software de planejamento de células e posições de ERBs, similar ao que desejamos desenvolver, porém com funcionalidades extendidas como manutenção e melhoria de locais pré-estabelecidos, e parâmetros avançados de especificação das antenas, além de módulos para outras tecnologias de telecomunicação como Wi-Fi [1]. Porém, a ferramenta parece muito voltada à instalação urbana.

1.3 Justificativa

Sobre potenciais clientes, verificamos a existência de empresas no Brasil para localizar antenas, alugar terrenos para a instalação de antenas ou alugar antenas para empresas de telecomunicação. A maior parte destas empresas foca em um contexto urbano, enquanto que há interesse das empresas de telecomunicação e dos governos estaduais em expansão em áreas rurais.

MyTower é um portal de locação e venda de imóveis para operadoras de telecomunicação [2]. Ele permite que o usuário cadastre seu imóvel e o anuncie para as operadoras após aprovação. O portal então faz a intermediação entre o anunciante e a operadora.

A Skysites é uma empresa que oferece soluções na área da infraestrutura de telecomunicação [3]. Ela gere um portifólio de sítios para instalação de equipamentos de
telecomunicação (torres, smallcells, rooftops, etc), além de prover soluções customisadas
para empresas de telecomunicação e compartilhar torres entre diferentes empresas. Outros serviços são redes para cobertura *indoor* e pequenas ERBs para melhorar a cobertura
em ambiente urbano, as *small cells*.

1.4 Organização do Trabalho

2 ASPECTOS CONCEITUAIS

3 TECNOLOGIAS UTILIZADAS

3.1 Bases de dados utilizadas

Utilizamos o Mapa de ERBs Brasil presente no portal Telebrasil [4]. Essa base contém uma lista de ERBs do Brasil de novembro de 2017, com informação de operadora, endereço, e posição geográfica de cada ERB. Essas infomações são essenciais para o cálculo da posição ótima da ERB para maximizar a cobertura da célula.

Utilizamos também o OpenCelliD, da empresa Unwired Labs [5]. Essa base contém uma lista de ERBs do mundo inteiro, com o CGI de cada ERB. Os dados foram obtidos através da colaboração de usuários do aplicativo LocationAPI da Unwired Labs. O LocationAPI trata-se de um serviço de geolocalização que não depende de GPS. Dessa forma, com a base da OpenCelliD, podemos estimar a posição de um celular a partir das ERBs as quais ele está conectado.

4 METODOLOGIA DO TRABALHO

5 ESPECIFICAÇÃO DE REQUISITOS DO SISTEMA

6 PROJETO E IMPLEMENTAÇÃO

7 TESTES E AVALIAÇÃO

8 CONSIDERAÇÕES FINAIS

- 8.1 Conclusões do Projeto de Formatura
- 8.2 Contribuições
- 8.3 Perspectivas de Continuidade

REFERÊNCIAS

- [1] Forsk. Atoll LTE / LTE-A Planning Software Forsk Disponível em: http://www.forsk.com/ltelte-pro Acesso em: 01° de março de 2018.
- [2] MyTower. MyTower Aluguel e Venda de Terrenos e Topos para Operadoras de Telecom Disponível em: http://www.mytower.com.br/ Acesso em: 01° de março de 2018.
- [3] Skysites. Skysites Disponível em: http://skysites.com/ Acesso em: 01° de março de 2018.
- [4] Telebrasil. Mapa de ERBs Brasil (antenas). Disponível em: http://www.telebrasil.org.br/panorama-do-setor/mapa-de-erbs-antenas. Acesso em: 31 de janeiro de 2018.
- [5] Unwired Labs. OpenCelliD Largest Open Database of Cell Towers & Geolocation by Unwired Labs. Disponível em: https://opencellid.org/ Acesso em: 01° de março de 2018.