

Collecting Samples

- 1. Simple Random
- 2. Systematic
- 3. Stratified
- 4. Cluster
- Cluster Sampling is a data collection technique.
- Machine learning clustering is a pattern recognition technique.

What is DBSCAN?

- A density-based clustering algorithm.
- Clusters data points that are closely packed together
- Marks outliers as noise.
- automatically finds clusters based on density.

DBSCAN works by categorizing data points into three types:

Core Points

 \mathbb{Z} A core point has at least MinPts neighbors within a specified radius ϵ (epsilon).

✓ It forms the center of a cluster and helps expand it.

- Border Points
 - A border point is close to a core point but does not have enough neighbors to be a core itself.
 - ✓ It belongs to a cluster but does not expand it.

- Noise (Outlier) Points
 - \blacksquare A noise point is isolated with too few neighbors within ϵ .
 - It does not belong to any cluster.

- 1. Pick a random unvisited point and check how many neighbors are within ϵ .
- 2. If MinPts are found, mark it as a core point and start forming a cluster.
- 3. Expand the cluster by adding all reachable border points.
- 4. If a point doesn't meet the density threshold, it's labeled noise.
- 5. Repeat until all points are visited and categorized.

Key Parameters in DBSCAN

- 1) **eps**: This defines the radius of the neighborhood around a data point.
- 2) **MinPts**: This is the minimum number of points required within the **eps** radius to form a dense region.

How to set your parameters?

Choosing Epsilon (eps)

If the distance between two points is less than or equal to **eps**, they are considered neighbors. Choosing the right **eps** is crucial:

If **eps** is too small, most points will be classified as noise.

Choosing Epsilon (eps)

If eps is too large, clusters may merge, and the algorithm may

fail to distinguish between them.

Choosing Epsilon (eps)

Keep it balanced:)

Choosing MinPts in DBSCAN

MinPts (Minimum Points) determines how many neighboring points are needed to form a core point and start a cluster.

How to Set MinPts?

A general rule of thumb:

- MinPts ≥ D + 1, where D is the number of dimensions in the dataset.
- In most cases, a minimum value of MinPts = 3 is recommended.

Choosing MinPts in DBSCAN

Why is MinPts Important?

- Too low MinPts: Can form small, meaningless clusters and misclassify noise.
- Too high MinPts: Can miss smaller clusters and label important points as noise.

DBSCAN is the best choice when dealing with **complex datasets** that traditional clustering methods struggle with.

Use DBSCAN When:

Clusters are irregularly shaped: Unlike K-Means, which assumes circular clusters, DBSCAN detects arbitrary shapes.

Use DBSCAN When:

- Clusters have different densities: Unlike Hierarchical Clustering, DBSCAN can adapt to varying densities without merging everything into one big cluster.
- You don't know the number of clusters: K-Means requires predefining K, but DBSCAN discovers clusters naturally.

Use DBSCAN When:

Clusters have different densities: Unlike Hierarchical Clustering, DBSCAN can adapt to varying densities without merging everything into one big cluster.

X Avoid DBSCAN When:

- \bigcirc Clusters have similar densities and well-separated \rightarrow K-Means is better.
- O Dataset is too large: DBSCAN has higher computational complexity than K-Means.
- **You have high-dimensional data:** DBSCAN struggles because distances become meaningless.
 - Solution? Use PCA to reduce dimensions before applying DBSCAN.

Code for DBSCAN

https://colab.research.google.com/
drive/1wrEFL9mVXu_IRdD3zrD58LqBKzAb7HB7?

usp=sharing

Clustering Like a Pro: A Beginner's Guide to DBSCAN

Data clustering is a fundamental task in machine learning and data analysis. One powerful technique that has gained prominence is...

Me Medium / Dec 26, 2023

DBSCAN Clustering in ML | Density based clustering

DBSCAN is a density-based clustering algorithm that effectively identifies arbitrary-shaped clusters and handles noise, distinguishing it from K-Means and hierarchical clustering, which assume compact, spherical...

∞ GeeksforGeeks / Jan 29

Thank you very much!

Blue Al Team

Youssef Moustafa

Nagham Wael