적대적 신경망 실행하기

현희섭

생성자, 판별자 연결

생성자, 판별자 연결

ginput = Input(shape=(100,))

dis_output = discriminator(generator(ginput))

gan = Model(ginput, dis_output)

• gan.compile(loss='binary_crossentropy', optimizer='adam')

실행 함수 만들기

def gan_train(epoch, batch_size, saving_interval):

(X_train, _), (_, _) = mnist.load_data()

X_train = X_train.reshape(X_train.shape[0], 28, 28, 1).astype('float32')

X_train = (X_train - 127.5) / 127.5

참, 거짓 레이블 만들기

true = np.ones((batch_size, I))

fake = np.zeros((batch_size, I))

실제 데이터를 판별자에 입력

• idx = np.random.randint(0, X_train.shape[0], batch_size)

imgs = X_train[idx]

d_loss_real = discriminator.train_on_batch(imgs, true)

가상 이미지를 판별자에 입력

noise = np.random.normal(0, I, (batch_size, 100))

• gen_imgs = generator.predict(noise)

d_loss_fake = discriminator.train_on_batch(gen_imgs, fake)

판별자와 생성자의 오차 계산

d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)

g_loss = gan.train_on_batch(noise, true)

print('epoch:%d' % i, 'd_loss:%.4f' % d_loss, 'g_loss:%.4f' % g_loss)

보나스

```
if i % saving_interval == 0:
    #r, c = 5, 5
    noise = np.random.normal(0, 1, (25, 100))
    gen_imgs = generator.predict(noise)

# Rescale images 0 - I
    gen_imgs = 0.5 * gen_imgs + 0.5

fig, axs = plt.subplots(5, 5)
    count = 0
    for j in range(5):
        for k in range(5):
            axs[j, k].imshow(gen_imgs[count, :, :, 0], cmap='gray')
            axs[j, k].axis('off')
            count += I
    fig.savefig("gan_images/gan_mnist_%d.png" % i)
```

보나스

C	□ gan_mnist_0.png	하루전	116 kE
С	☐ gan_mnist_1000 png	하루전	81 6 ki
C	gan_mnist_1200.png	하루 전	74.5 kE
C	gan_mnist_1400.png	하루 전	75.2 kE
E	☐ gar_mnist_1600 png	하루 전	72.8 kE
С	gan_mnist_1800 png	하루 전	67.5 kE
C	☐ gan_mnist_200 png	하루전	62.8 kf
C	Gan_mnist_2000 png	하루 전	68.7 ks
C	☐ gan_mnist_2200 png	하루 전	69.5 kg
C	gan_mnist_2400 pog	하루 전	71.9 KE
C	☐ gan_mnist_2600.png	하루 전	68 kE
C	☐ gan_mnist_2800 png	하루 전	69 kB
С	☐ gan_mnist_3000 png	하루 전	69.1 kE
C	☐ gan_mnist_3200 png	하루 천	66.7 kE
E	gan_mnist_3400.png	하루 천	69 kE
E	gan_mnist_3600.png	하루 전	68.1 kf
	gan_mnist_3800.png	하루 전	68.1 kE
E	gen_mnlet_400.png	하루 전	48.3 kE
С	gan_mnist_4000 prig	하루 전	67 kE
C	☐ gan_mnist_600.png	하루 전	63 kE
С	☐ gan_mnist_800 png	하루 전	58.5 kB

결과

결과

결과

B Q & 3 Y 9 6 3 1 6 8 5 U 3 A

6 8 7 9

생성된 이미지 평가 방법?

PIXEL DISTANCE

FEATURE DISTANCE

INCEPTION SCORE

$$IS = D \times S$$

HYPE(HUMAN EYE PERCEPTUAL EVALUATION)

HYPE and Human Evaluation

- Crowdsourced evaluation from Amazon Mechanical Turk
- HYPE_{time} measures time-limited perceptual thresholds
- HYPE
 measures error rate on a percentage of images
- Ultimately, evaluation depends on the type of downstream task

Available from: https://arxiv.org/abs/1904.01121

FRECHET INCEPTION DISTANCE(FID)

- 1.이미지를 전처리합니다 . 기본 처리를 사용하여 두이미지가 호환되는지 확인하세요. 여기에는 640x480 픽셀과 같은 특정 치수 크기로 크기를 조정한 다음 픽셀 값을 정규화하는 것이 포함될 수 있습니다.
- 2.특징 표현을 추출합니다. Inception-v3 모델을 통해 실제이미지와 생성된이미지를 전달합니다. 이는 원시 픽셀을 숫자 벡터로 변환하여 선, 가장자리 및 고차원 모양과 같은이미지의 측면을 나타냅니다.
- 3.통계를 계산합니다 . 각 이미지의 특징에 대한 평균 및 공분산 행렬을 결정하기 위해 통계 분석이 수행됩니다.
- **4.프레셰 거리(Fréchet distance)를 계산합니다**. 각이미지의 계산된 평균과 공분산 행렬 간의 차이를 비교합니다.
- 5.FID를 얻습니다. 실제 이미지와 생성된 이미지 사이의 Fréchet 거리를 비교합니다. 소자가 날을수로 이미지가 더

GAN 기술 관련 한국특허 핵심기업 TOP 30

순위	현재 권리자	국적	공개 특허수	등록 특허수		
1	삼성전자	KR	24	0		
2	연세대학교 산학협력단	KR	17	11		
3	스트라드비젼	KR	12	11		
4	고려대학교 산학협력단	KR	11	5		
5	한국전자통신연구원	KR	11	1		
6	케이엘에이 코포레이션	US	8	3		
7	서울대학교산학협력단	KR	8	4		
8	한국과학기술원	KR	8	4		
9	케이티	KR	8	0		
10	엘지전자	KR	6	0		
11	국민대학교산학협력단	KR	5	5		
12	아주대학교산학협력단	KR	5	3		
13	한양대학교 산학협력단	KR	5	4		
14	애자일소다	KR	4	4		

15	보에 테크놀로지 그룹 컴퍼니 리미티드	CN	4	1
16	세종대학교산학협력단	KR	4	2
17	데이버	KR	4	4
18	재단법인대구경북과학기술원	KR	4	2
19	한국전자기술연구원	KR	4	2
20	국방과학연구소	KR	4	4
21	베이징 바이두 넷컴 사이언스 앤 테크놀로지 코., 엘티디.	CN	3	1
22	인천대학교 산학협력단	KR	3	3
23	더 리전트 오브 더 유니버시티 오브 캘리포니아	US	3	0
24	가천대학교 산학협력단	KR	3	1
25	광운대학교 산학협력단	KR	3	2
26	영남대학교 산학협력단	KR	3	1
27	삼성에스디에스	KR	3	0
28	중앙대학교 산학협력단	KR	3	3
29	인하대학교 산학협력단	KR	3	2
30	한국생산기술연구원	KR	3	2

출처

- https://velog.io/@tobigs1617/GAN%ED%8F%89%EA%B0%80%EC%99%80-%ED%8E%B8%ED%96%A5
- https://wikidocs.net/149481