| Rappels du dernier cours | Transformée de Fourier | Synthèse et Effets | 0000

Introduction à Matlab

Floriane Dardard et Alain Louis-Joseph iloriane.dardard@telecom-paristech.fr

07/02/14

A ロッス(音) (Télécom) Intro à Matlab (07/02/14 1 1/16

Synthèse et Effets Transformée de Fourier 0000 000 Rappels du dernier cours Plan

🗓 Rappels du dernier cours

2 Transformée de Fourier n TFD n TFCT

Synthèse et Effets n Filtrage n La fonction filter

F. Dardard (Télécom)

Synthèse et Effets Transformée de Fourier 0000 000 Rappels du dernier cours Summary

🗓 Rappels du dernier cours

2 Transformée de Fourier TFD
TFCT

Synthèse et Effets
Filtrage
La fonction filter

Dans un ordinateur

- Signaux discrets (échantillonés)
- \blacksquare Transformée de Fourier périodique $(F_e \equiv 1/T_e)$
- \blacksquare Repliement du spectre (Théorème de Shannon : $F_e \geq 2*F_{max})$

A utiliser abondamment

- \blacksquare Temps échantillonés : $t_{enS} = \frac{indice_{Matlab}}{F_e}$
 - fft sur Nfft points
- \blacksquare Fréquence réduite : $F_{enHz} = \frac{indiceMatlab}{Nfft} F_e$

 Synthèse et Effets Transformée de Fourier 0000 000 Rappels du dernier cours Plan

1 Rappels du dernier cours

2 Transformée de Fourier TFD
TFCT

Synthèse et Effets n Filtrage n La fonction filter

Synthèse et Effets Transformée de Fourier Rappels du dernier cours

Transformée de Fourier Discrète

Transformée de Fourier Discrète calculée sur N points : Transformée de Fourier à Temps Discrets : Pour x à valeurs discrètes :

$$X(f) = \sum_{n \in \mathbb{Z}} x(n) e^{-2i\pi f n}$$

pour $f \in [0, 1]$

ou Pour x à valeurs échantillonées :

$$X(f) = \sum_{n \in \mathbb{Z}} x(nT_e) e^{-2i\pi f nT_e}$$

 $\mathrm{pour}\; f \in [0, F_e]$

$$X(k) = \sum_{n \in [0, N-1]} x(nT_e)e^{-2i\pi\frac{k}{N}n}$$

 $\text{pour } k \in [0, N-1], \, \text{qui correspondent aux}$ fréquences $\left(\frac{k}{N}F_e\right)_k$

- Approximation de la TFTD
- Exacte lorsque x est de période N
- \blacksquare Sinon projection orthonormale sur E_N : espace des suites de période N

D'après le cours de Roland Badeau à Télécom
F. Dardard (Télécom)
F. Dardard (Télécom)

4 - Dardard (Télécom) Intro à Matlab 6 16 9 16 9 16 9 16

Synthèse et Effets Transformée de Fourier 0000 •00 Rappels du dernier cours

Transformée de Fourier à Court Terme

$$X(m,k) = \sum_{n \in \mathbb{Z}} x(n) w(n-m) e^{-2i\pi} \frac{k}{N^{\frac{1}{2}T}n}$$

où k est la fréquence et m est l'instant temporel.

Intro à Matlab

F. Dardard (Télécom)

| Rappels du dernier cours | Transformée de Fourier | Synthèse et Effets | 0000 | 000

Transformée de Fourier à Court Terme

$$X(m,k) = \sum_{n \in \mathbb{Z}} x(n)w(n-m)e^{-2i\pi \frac{k}{N^2 f t}n}$$

où k est la fréquence et m est l'instant temporel.

Intro à Matlab

F. Dardard (Télécom)

○ ○ ○ ○	i dilisiolilise de l'odilei	
00	0000	0
	•00	00

Le spectrogramme est le module au carré de la transformée de Fourier à court terme.

 Synthèse et Effets Transformée de Fourier 0000 000 Rappels du dernier cours Plan

1 Rappels du dernier cours

2 Transformée de Fourier n TFD n TFCT

Synthèse et Effets
Filtrage
La fonction filter

• • • • • • • • • • • • • • • • • • • •			
		0000	•
		000	00
	D		

- réponse impulsionnelle et réponse en fréquence
 FILTRAGE = CONVOLUTION
 Fonctions de transfert

Ici, on ne va s'occuper que des filtres causaux et de préférence stables (contre-exemple : l'effet Larsen)

