Intro. to Computer Architecture

Daniel Page

Department of Computer Science, University Of Bristol, Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB. UK. (csdsp@bristol.ac.uk)

January 9, 2018

Keep in mind there are *two* PDFs available (of which this is the latter):

- 1. a PDF of examinable material used as lecture slides, and
- 2. a PDF of non-examinable, extra material:
 - the associated notes page may be pre-populated with extra, written explaination of material covered in lecture(s), plus
 - anything with a "grey'ed out" header/footer represents extra material which is useful and/or interesting but out of scope (and hence not covered).

Notes:]
Notes:	

Notes:

COMS12200 lecture: week #1

http://xkcd.com/435/

© Daniel Page (csdsp@bristol.ac.ul

git # 3b6f641 @ 2018-01-09

University of BRISTOL

COMS12200 lecture: week #1

- ▶ Modern computing devices *aren't* ad hoc constructions; a rich theory underpins their design and operation.
- ► Focusing on computer architecture specifically, **Boolean algebra** is central to more or less *everything*:
- 1. in 1840s Boole unified concepts in logic and set theory, predating what we now know as **abstract algebra**, which then
- enabled Shannon to design and analyse electrical circuits via logic gates in seminal 1937s work.

Notes:	
Notes:	

► A **proposition** is basically a statement

the temperature is $20^{\circ}C$

this statement is false the temperature is too hot

whose meaning

© Daniel Page (csdsp@bristol.ac.uk)
Intro. to Computer Architecture

git # 3b6f641 @ 2018-01-09

Propositional Logic (1)

► A **proposition** is basically a statement

the temperature is $20^{\circ}C$

this statement is false the temperature is too hot

whose meaning

1. can be **evaluated** to give a **truth value**, i.e., **false** or **true**,

Notes:	
Notes:	

▶ A **proposition** is basically a statement

the temperature is $20^{\circ}C$

this statement is false the temperature is too hot

whose meaning

- 1. can be **evaluated** to give a **truth value**, i.e., **false** or **true**,
- 2. must be unambiguous,

© Daniel Page (csdsp@bristol.ac.) Intro. to Computer Architecture

Propositional Logic (1)

► A **proposition** is basically a statement

the temperature is 20°C the temperature is $x^{\circ}C$ this statement is false the temperature is too hot

whose meaning

- 1. can be **evaluated** to give a **truth value**, i.e., **false** or **true**,
- 2. must be unambiguous,
- 3. can include free variables, and

Notes:		
Notes:		

▶ A **proposition** is basically a statement

f = the temperature is $20^{\circ}C$ g(x) = the temperature is $x^{\circ}C$ this statement is false the temperature is too hot

whose meaning

- 1. can be **evaluated** to give a **truth value**, i.e., **false** or **true**,
- 2. must be unambiguous,
- 3. can include free variables, and
- 4. can be represented using a short-hand variable or function, whereby free variables must be bound to concrete arguments before evaluation.

© Daniel Page (csdsp@bristol.ac.uk) Intro. to Computer Architecture

git # 3b6f641 @ 2018-01-09

Propositional Logic (2)

► Single statements can be combined using various **connectives**, e.g.,

the temperature is not $20^{\circ}C$

adding parentheses where needed to add clarity, so that

1. "not x" is denoted $\neg x$,

Notes:	

Notes:		

▶ Single statements can be combined using various **connectives**, e.g.,

¬(the temperature is $20^{\circ}C$)

adding parentheses where needed to add clarity, so that

1. "not x" is denoted $\neg x$,

git # 3b6f641 @ 2018-01-09

University of BRISTOL

Propositional Logic (2)

► Single statements can be combined using various **connectives**, e.g.,

the temperature is 20°C and it is sunny

- 1. "not x" is denoted $\neg x$,
- 2. "x and y" is denoted $x \wedge y$,

Notes:			

▶ Single statements can be combined using various **connectives**, e.g.,

(the temperature is $20^{\circ}C$) \wedge (it is sunny)

adding parentheses where needed to add clarity, so that

- 1. "not x" is denoted $\neg x$,
- 2. "x and y" is denoted $x \wedge y$,

git # 3b6f641 @ 2018-01-09

Propositional Logic (2)

► Single statements can be combined using various **connectives**, e.g.,

the temperature is 20°C or it is sunny

- 1. "not x" is denoted $\neg x$,
- 2. "x and y" is denoted $x \wedge y$,
- 3. "x or y" is denoted $x \lor y$, and usually called inclusive-or,

Notes:		

Notes:		

► Single statements can be combined using various **connectives**, e.g.,

(the temperature is $20^{\circ}C$) \vee (it is sunny)

adding parentheses where needed to add clarity, so that

- 1. "not x" is denoted $\neg x$,
- 2. "x and y" is denoted $x \wedge y$,
- 3. "x or y" is denoted $x \lor y$, and usually called inclusive-or,

git # 3b6f641 @ 2018-01-09

Propositional Logic (2)

► Single statements can be combined using various **connectives**, e.g.,

either the temperature is $20^{\circ}C$ or it is sunny, but not both

- 1. "not x" is denoted $\neg x$,
- 2. "x and y" is denoted $x \wedge y$,
- 3. "x or y" is denoted $x \lor y$, and usually called inclusive-or,
- 4. "x or y but not x and y" is denoted $x \oplus y$, and usually called exclusive-or,

Notes:	
Notes:	

► Single statements can be combined using various **connectives**, e.g.,

(the temperature is $20^{\circ}C$) \oplus (it is sunny)

adding parentheses where needed to add clarity, so that

- 1. "not x" is denoted $\neg x$,
- 2. "x and y" is denoted $x \wedge y$,
- 3. "x or y" is denoted $x \lor y$, and usually called inclusive-or,
- 4. "x or y but not x and y" is denoted $x \oplus y$, and usually called exclusive-or,

git # 3b6f641 @ 2018-01-09

Notes:

Notes:

Propositional Logic (2)

► Single statements can be combined using various **connectives**, e.g.,

the temperature being 20°C implies that it is sunny

adding parentheses where needed to add clarity, so that

- 1. "not x" is denoted $\neg x$,
- 2. "x and y" is denoted $x \wedge y$,
- 3. "x or y" is denoted $x \lor y$, and usually called inclusive-or,
- 4. "x or y but not x and y" is denoted $x \oplus y$, and usually called exclusive-or,
- 5. "x implies y" is denoted $x \Rightarrow y$, and sometimes written "if x then y", and

Daniel Page (csdsp@bristol.ac.u Intro. to Computer Architecture

▶ Single statements can be combined using various **connectives**, e.g.,

(the temperature is $20^{\circ}C$) \Rightarrow (it is sunny)

adding parentheses where needed to add clarity, so that

- 1. "not x" is denoted $\neg x$,
- 2. "x and y" is denoted $x \wedge y$,
- 3. "x or y" is denoted $x \vee y$, and usually called inclusive-or,
- 4. "x or y but not x and y" is denoted $x \oplus y$, and usually called exclusive-or,
- 5. "x implies y" is denoted $x \Rightarrow y$, and sometimes written "if x then y", and

git # 3b6f641 @ 2018-01-09

Propositional Logic (2)

► Single statements can be combined using various **connectives**, e.g.,

the temperature is 20°C is equivalent to it being sunny

- 1. "not x" is denoted $\neg x$,
- 2. "x and y" is denoted $x \wedge y$,
- 3. "x or y" is denoted $x \vee y$, and usually called inclusive-or,
- 4. "x or y but not x and y" is denoted $x \oplus y$, and usually called exclusive-or,
- 5. "x implies y" is denoted $x \Rightarrow y$, and sometimes written "if x then y", and
- 6. "x is equivalent to y" is denoted $x \equiv y$, and sometimes written "x if and only if y" or "x iff. y".

Notes:	

▶ Single statements can be combined using various **connectives**, e.g.,

(the temperature is $20^{\circ}C$) \equiv (it is sunny)

adding parentheses where needed to add clarity, so that

- 1. "not x" is denoted $\neg x$,
- 2. "x and y" is denoted $x \wedge y$,
- 3. "x or y" is denoted $x \lor y$, and usually called inclusive-or,
- 4. "x or y but not x and y" is denoted $x \oplus y$, and usually called exclusive-or,
- 5. "x implies y" is denoted $x \Rightarrow y$, and sometimes written "if x then y", and
- 6. "x is equivalent to y" is denoted $x \equiv y$, and sometimes written "x if and only if y" or "x iff. y".

© Daniel Page (csdsp@bristol.ac.ul	
Intro. to Computer Architecture	

git # 3b6f641 @ 2018-01-09

Propositional Logic (2)

- ▶ You *might* see more formal terms or different notation for the *same* connectives:
 - ▶ ¬ is often termed logical **compliment** (or **negation**),
 - ► ∧ is often termed logical **conjunction**,
 - ▶ ∨ is often termed logical (inclusive) **disjunction**,
 - ► ⊕ is often termed logical (exclusive) **disjunction**,
 - ightharpoonup \Rightarrow is often termed logical **implication**, and
 - ► ≡ is often termed logical **equivalence**.

Notes:			
N.	_		
Notes:			

▶ You can think of the same thing diagrammatically, i.e.,

 $r = \text{(the temperature is } 20^{\circ}C) \land \text{(it is sunny)}$

=

but either way, the question is how do we **evaluate** the (compound) proposition (or **expression**) to produce a truth value?

© Daniel Page (csdsp@bristol.ac.uk)

Intro. to Computer Architecture

oit # 3b6f641 @ 2018-01-09

Propositional Logic (4)

► Since each statement can evaluate to **true** or **false** only, we can enumerate the possible outcomes in a **truth table**, e.g., if

x =the temperature is $20^{\circ}C$

y = it is sunny

 $r = \text{(the temperature is } 20^{\circ}C) \land \text{(it is sunny)}$

then

inp	uts	output			
x	y	r			
false	false	false			
false	true	false			
true	false	false			
true	true	true			

▶ With *n* inputs, the truth table will have 2ⁿ rows: each row details the output(s) associated with a given assignment to the inputs.

Notes:			

© Daniel Page (csdsp6bristol.ac.uk)
Intro. to Computer Architecture

Notes:

Notes:

Propositional Logic (6)

Example

Imagine that now

the temperature is $20^{\circ}C$

= it is sunny

= the temperature is $z^{\circ}C$

= \neg (((the temperature is 20°C) \land (it is sunny)) \lor (the temperature is z°C))

which we translate into the diagrammatic form

An example evaluation might be as follows:

	outs	in	output		
х	y	t_0	t_1	t_2	r
false false	false	false	false false	false	true
raise	true	false	raise	false	true

true

true

true

true

false

true

false

true

true

true

University of

false

false

University of BRISTOL	

Boolean Algebra (1)

- ► If you look closely, some commonalities between propositional logic and *other* concepts in Mathematics start to emerge:
- 1. In **elementary algebra**, for some number x we have that

$$x + 0 = x$$

and

$$x \cdot 1 = x$$
.

2. In **propositional logic**, for some truth value *x* we have that

$$x \vee \mathbf{false} = x$$

and

$$x \wedge \mathbf{true} = x$$
.

3. In **set theory**, for some set *x* we have that

$$x \cup \emptyset = x$$

and

$$x \cap \mathcal{U} = x$$
.

Notes:

Notes:

Boolean Algebra (2)

Thou must

- 1. work with the set $\mathbb{B} = \{0, 1\}$ of **binary** digits, using 0 and 1 instead of false and true,
- 2. shorten every statement into either a variable or function,
- 3. use the unary **operator** \neg (or NOT) and the binary **operators** \land , \lor and \oplus (or AND, OR and XOR) to form expressions,
- 4. manipulate said expressions according to some axioms (or rules)

then call the result Boolean algebra.

University of BRISTOL	

	://	en.wiki	pedia.o	rg/wiki,	/File:Ge	orge_Boo.	te.jp
--	-----	---------	---------	----------	----------	-----------	-------

Boolean Algebra (3)

- ▶ Put more concretely, we now have
- 1. a set of operators specified by

Definition								
	х	y	$\neg x$	$x \wedge y$	<i>x</i> ∨ <i>y</i>	<i>x</i> ⊕ <i>y</i>	$x \Rightarrow y$	$x \equiv y$
	0	0	1	0	0	0	1	1
	0	1	1	0	1	1	1	0
	1	0	0	0	1	1	0	0
	1	1	0	1	1	0	1	1

Boolean Algebra (3)

▶ Put more concretely, we now have

2. a set of axoims that allow manipulation of expressions comprised of said operators, i.e.,

Definition					
Name	Axiom	(s)	Name	A	xiom(s)
commutativity association distribution	$\begin{array}{ccc} x \wedge y & \equiv \\ (x \wedge y) \wedge z & \equiv \\ x \wedge (y \vee z) & \equiv \end{array}$	$y \wedge x$ $x \wedge (y \wedge z)$ $(x \wedge y) \vee (x \wedge z)$	commutativity association distribution	$x \lor y$ $(x \lor y) \lor z$ $x \lor (y \land z)$	

plus some others, such as precedence to deal with any ambiguity in the absence of parentheses.

• The precedence levels for our suite of Boolean operators is

meaning, for example, that we resolve an \land before and \lor (and sometimes say \land "binds more tightly" to operands than \lor).

· The precedence levels for our suite of Boolean operators is

meaning, for example, that we resolve an \land before and \lor (and sometimes say \land "binds more tightly" to operands than \lor).

Boolean Algebra (3)

▶ Put more concretely, we now have

2. a set of axoims that allow manipulation of expressions comprised of said operators, i.e.,

Definition					
Name	Axion	n(s)	Name	Axion	m(s)
identity null idempotency inverse	$\begin{array}{ccc} x \wedge 1 & \equiv \\ x \wedge 0 & \equiv \\ x \wedge x & \equiv \\ x \wedge \neg x & \equiv \end{array}$	x 0 x 0	identity null idempotency inverse	$ \begin{array}{ccc} x \lor 0 & \equiv \\ x \lor 1 & \equiv \\ x \lor x & \equiv \\ x \lor \neg x & \equiv \end{array} $	1 x

plus some others, such as **precedence** to deal with any ambiguity in the absence of parentheses.

(c) Daniel Page (csdspabristol.ac.uk)

Intro. to Computer Architecture

git # 3b6f641 @ 2018-01-09

Boolean Algebra (3)

▶ Put more concretely, we now have

2. a set of axoims that allow manipulation of expressions comprised of said operators, i.e.,

Definition			
Name	Axiom(s)	Name	Axiom(s)
absorption de Morgan	$ \begin{array}{rcl} x \wedge (x \vee y) & \equiv & x \\ \neg (x \wedge y) & \equiv & \neg x \vee \neg y \end{array} $	absorption de Morgan	$\begin{array}{ccc} x \lor (x \land y) & \equiv & x \\ \neg (x \lor y) & \equiv & \neg x \land \neg y \end{array}$

plus some others, such as **precedence** to deal with any ambiguity in the absence of parentheses.

© Daniel Page (csdsp@bristol.ac.uk)
Intro. to Computer Architecture

Makası

· The precedence levels for our suite of Boolean operators is

1. ¬

meaning, for example, that we resolve an \land before and \lor (and sometimes say \land "binds more tightly" to operands than \lor).

Notes:

· The precedence levels for our suite of Boolean operators is

1. ¬

meaning, for example, that we resolve an \land before and \lor (and sometimes say \land "binds more tightly" to operands than \lor).

Boolean Algebra (3)

▶ Put more concretely, we now have

2. a set of axoims that allow manipulation of expressions comprised of said operators, i.e.,

Definition			
	Name	Axiom(s)	
	equivalence implication involution	$x \equiv y \equiv (x \Rightarrow y) \land (y \Rightarrow x)$ $x \Rightarrow y \equiv \neg x \lor y$ $\neg \neg x \equiv x$	
	ı		

plus some others, such as precedence to deal with any ambiguity in the absence of parentheses.

Boolean Algebra (4)

Definition

The fact there are AND and OR forms of most axioms hints at a more general underlying principle. Consider a Boolean expression e: the **principle of duality** states that the **dual expression** e^{D} is formed by

- 1. leaving each variable as is,
- 2. swapping each ∧ with ∨ and vice versa, and
- 3. swapping each 0 with 1 and vice versa.

Of course e and e^D are different expressions, and clearly not equivalent; if we start with some $e \equiv f$ however, then we do still get $e^D \equiv f^D$.

Example

As an example, consider axioms for

1. distribution, e.g., if

$$e = x \land (y \lor z) \equiv (x \land y) \lor (x \land z)$$

then

$$e^D = x \lor (y \land z) \equiv (x \lor y) \land (x \lor z)$$

and

$$e = x \wedge 1 \equiv x$$

then

$$e^D = x \vee 0 \equiv x$$
.

N	0	ha	c	

Notes:

· The precedence levels for our suite of Boolean operators is

meaning, for example, that we resolve an \land before and \lor (and sometimes say \land "binds more tightly" to operands than \lor).

1000	

Boolean Algebra (5)

Definition

The de Morgan axiom can be turned into a more general principle. Consider a Boolean expression e: the **principle of complements** states that the **complement expression** $\neg e$ is formed by

- 1. swapping each variable x with the complement $\neg x$,
- 2. swapping each ∧ with ∨ and vice versa, and
- 3. swapping each 0 with 1 and vice versa.

Example

As an example, consider that if

$$e=x\wedge y\wedge z,$$

then by the above we should find

$$f = \neg e = (\neg x) \lor (\neg y) \lor (\neg z).$$

Proof:

х	у	z	$\neg x$	¬у	$\neg z$	е	f
0	0	0	1	1	1	0	1
0	0	1	1	1	0	0	1
0	1	0	1	0	1	0	1
0	1	1	1	0	0	0	1
1	0	0	0	1	1	0	1
1	0	1	0	1	0	0	1
1	1	0	0	0	1	0	1
1	1	1	0	0	0	1	0

© Daniel Page (csdsp@bristol.ac.

git # 3b6f641 @ 2018-01-09

Boolean Algebra (6)

Definition

Consider a Boolean expression:

1. When the expression is written as a sum (i.e., OR) of terms which each comprise the product (i.e., AND) of variables, e.g.,

$$(a \wedge b \wedge c) \vee (d \wedge e \wedge f),$$

minterm

it is said to be in **disjunctive normal form** or **Sum of Products (SoP)** form; the terms are called the **minterms**. Note that each variable can exist as-is *or* complemented using NOT, meaning

$$(\neg a \wedge b \wedge c) \vee (d \wedge \neg e \wedge f),$$

minterm

is also a valid SoP expression.

2. When the expression is written as a product (i.e., AND) of terms which each comprise the sum (i.e., OR) of variables, e.g.,

$$(a \lor b \lor c) \land (d \lor e \lor f),$$

maxterm

it is said to be in **conjunctive normal form** or **Product of Sums (PoS)** form; the terms are called the **maxterms**. As above each variable can exist as-is *or* complemented using NOT.

Daniel Page (csdsp@bristol.ac.uk)
Intro. to Computer Architecture

otes:		

Conclusions

► Take away points:

- 1. In essence, Boolean algebra is a (somewhat) cosmetic extension of what you already know.
- 2. Keep in mind that
 - any Boolean function f which can be expressed by a truth table can be computed using an associated Boolean expression, so
 - if we can construct *physical* implementations of NOT, AND and OR we can build something to actually compute *f* ,

i.e., Boolean algebra is an important formal basis for reasoning about computation (and thus computers) work in practice.

© Daniel Page (csdsp@bristol.ac.uk Intro. to Computer Architecture

git # 3b6f641 @ 2018-01-09

Additional Reading

- ▶ Wikipedia: Boolean algebra. url: http://en.wikipedia.org/wiki/Boolean_algebra.
- D. Page. "Chapter 1: Mathematical preliminaries". In: A Practical Introduction to Computer Architecture. 1st ed. Springer-Verlag, 2009
- W. Stallings. "Chapter 11: Digital logic". In: Computer Organisation and Architecture. 9th ed. Prentice-Hall, 2013.
- A.S. Tanenbaum and T. Austin. "Section 3.1: Gates and Boolean algebra". In: Structured Computer Organisation. 6th ed. Prentice-Hall, 2012.

Notes:		
Notes:		

References

- [1] Wikipedia: Boolean algebra. url: http://en.wikipedia.org/wiki/Boolean_algebra (see p. 75).
- [2] D. Page. "Chapter 1: Mathematical preliminaries". In: A Practical Introduction to Computer Architecture. 1st ed. Springer-Verlag, 2009 (see p. 75).
- [3] W. Stallings. "Chapter 11: Digital logic". In: Computer Organisation and Architecture. 9th ed. Prentice-Hall, 2013 (see p. 75).
- [4] A.S. Tanenbaum and T. Austin. "Section 3.1: Gates and Boolean algebra". In: Structured Computer Organisation. 6th ed. Prentice-Hall, 2012 (see p. 75).

© Daniel Page (

git # 3b6f641 @ 2018-01-09

Notes:	