

# Applied Machine Learning

PROJECT PRESENTATION

TEAM: Longshot

MAY 2025

# Content

**A** Team

**B** Problem Statement

C Data and Design

Experiments

Results

Diagnostics

Conclusions and Recommendations



# Team and Roles



3



Nikita



Dhruv



Vasu

gauranga.mds2023@cmi.ac.in

nikitakumari@study.iitm.ac.in

22f3001413@ds.study.iitm.ac.in

21f3002975@ds.study.iitm.ac.in





| Member   | Responsibilities                                    |
|----------|-----------------------------------------------------|
| Nikita   | Background research, Data pre-processing and Design |
| Dhruv    | Code base and ANN Modelling                         |
| Gauranga | ML Modelling and Experiments                        |
| Vasu     | Interpretation and Reporting                        |

# Backdrop



### Situation

There is a strong belief that Deep Learning based models can solve any problem way better than traditional ML models.

### Question

Are the modern AI modeling architectures the silver bullet?
Are there any considerations to keep in mind?

### Answer

Systematic comparison of Classical Models and Modern Deep Learning based Architectures.

# Problem of choice

- I. Good Reads is a very popular source of book reviews for users. Book reviews impact reader perceptions and can directly impact sales.
- II. Currently likes and comments on reviews are being used to determine the popularity of a review which in turn determines the placement of the review. Higher the popularity, higher is placement.
- III. However, this is our best guess and a black box. To verify this, we have reconstructed the popularity metric and tested whether a model can be trained to determine which reviews will be popular vs. not so popular.
- IV. While doing so, we are evaluating whether simpler, faster classical methods can match modern deep learning models at this classification task.

# Study design

| - |   |
|---|---|
|   |   |
|   | 1 |
|   | 1 |
| _ |   |
| 6 |   |





|        | Choices                                                                                                                                                                                                                                        | Metrics                                                                   | Experiments                                                                                                                    |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Data   | <ul> <li>15 Mn reviews data set (2 Mn books, 465 k users)</li> <li>Construct book review popularity measure based on likes and comments</li> <li>Meta data of reviews (length of the review, % verbs etc.)</li> <li>English reviews</li> </ul> | Class imbalance : ~15% reviews are popular                                | <ul> <li>Down sampling</li> <li>Tfidf, CBoW, Skip-Gram and<br/>BERT embeddings.</li> <li>Normalization of meta data</li> </ul> |
| Models | Model = f ( Review + Review's<br>Meta data ) -> Classification                                                                                                                                                                                 | <ul> <li>Precision Recall</li> <li>FN is costlier =&gt; Recall</li> </ul> | <ul><li>Logistic</li><li>XGBoost</li><li>ANN</li><li>Transformer</li></ul>                                                     |
| Action | <ul> <li>If prob(popular) &gt; default<br/>threshold push the review up the<br/>order on the website</li> </ul>                                                                                                                                | Update threshold to improve recall                                        | Pick highest recall subject to acceptable precision score                                                                      |

# Data and feature engineering



# Key Experiments\*

**Custom ANN** 



Tfidf

CountVectorizer

# Hyper-Parameters

### LR

Regularization strength (C = 10, 1, 0.01, 0.001)

### **XGBoost**

Estimators: 100,1000

Depth: 4,6 Lr: 0.1, 0.3

## **BERT/ DistilBERT**

No of tokens: 64, 128

Epochs: 1,3

# Down sampling for both ANN, Transformer Full training DistilBERT Fine-tuning BERT BERT BERT

### **Evaluation Metrics**

**Recall**: how many popular reviews have been

identified correctly?

**Precision:** how many identified as popular are correct?

WE PRIORITIZE RECALL TO ENSURE POPULAR REVIEWS ARE NOT MISSED, WHILE MAINTAINING AN ACCEPTABLE LEVEL OF PRECISION



# Results

| Model     | Down<br>Sampling | Embeddings | Accuracy | Precision | Recall/<br>Sensitivity | f1   | Specificity | AUC<br>(ROC) | REMARKS                  |
|-----------|------------------|------------|----------|-----------|------------------------|------|-------------|--------------|--------------------------|
| LR        | Yes              | Tfidf      | 0.74     | 0.32      | 0.66                   | 0.43 | 0.75        | 0.70         |                          |
| LR        | Yes #            | CBoW       | 0.77     | 0.34      | 0.62                   | 0.44 | 0.79        | 0.71         | Acceptable               |
| LR        | No               | CBoW       | 0.86     | 0.60      | 0.18                   | 0.28 | 0.98        | 0.58         | Very poor recall         |
| LR        | Yes              | Word2Vec   | 0.74     | 0.30      | 0.64                   | 0.41 | 0.74        | 0.69         |                          |
| LR        | Yes              | BERT       | 0.71     | 0.29      | 0.66                   | 0.41 | 0.72        | 0.69         |                          |
| XGBoost   | Yes              | Tfidf      | 0.72     | 0.31      | 0.73                   | 0.44 | 0.72        | 0.72         |                          |
| XGBoost   | Yes              | CBoW       | 0.72     | 0.31      | 0.73                   | 0.44 | 0.72        | 0.72         | XGBoost does better!     |
| XGBoost   | No               | CBoW       | 0.68     | 0.68      | 0.22                   | 0.34 | 0.98        | 0.60         |                          |
| XGBoost   | Yes              | Word2Vec   | 0.71     | 0.30      | 0.72                   | 0.42 | 0.71        | 0.72         |                          |
| ANN       | Yes              | Tfidf      | 0.72     | 0.31      | 0.70                   | 0.43 | 0.73        | 0.71         |                          |
| ANN       | Yes              | CBoW       | 0.71     | 0.30      | 0.74                   | 0.43 | 0.70        | 0.72         | No upside vs. ML models  |
| BERT      | Yes              | BERT       | 0.74     | 0.30      | 0.58                   | 0.39 | 0.77        | 0.73         | Not the best as expected |
| BERT- Ft* | Yes              | BERT       | 0.64     | 0.22      | 0.57                   | 0.32 | 0.65        | 0.65         |                          |

<sup>\*</sup> Ft – Fine tune, # 15% of the full sample are positive reviews, train sample down sized to reflect 50-50% split

# Why is RECALL not improving with DL models?



- I. Are we measuring the right thing?
- II. Is embeddings an issue?
- III. Is dataset imbalance making learning hard?

## Popularity

- Popularity (dependent/outcome)
   metric was created via feature
   engineering and not
   independently or directly
   measured from users
- Correlation between popularity and features is low (0.3) to begin with

### Embeddings

Diagnostics on TP and FN reviews revealed the following:

- 1. When emotional subtlety is missing, the model is failing to learn low key appreciation and classifying it as unpopular
- Deeply thoughtful and philosophical reviews with no overt positivity are being deemed unpopular
- 3. Positivity and sentiment are being confused. Could be a popular review but highly critical and negative in sentiment

### **Imbalanced**

- Yes, imbalance is an issue evidenced by poor model performance on full sample
- Down sampling is showing
   better modeling outcomes (70%
   vs. ~ 20% recall scores)

# Average across experiments

# A closer look at TP and FN reviews

# Not Popular

# CTUAL -

### Popular

### TRUE NEGATIVE

I was devastated when the book ended because I could have read it forever, as it took me to a literary high, making me feel like I can't read another book right away for fear of ruining its aura, where everything felt like a metaphor down to the smallest thought. Jhumpa Lahiri...

# FALSE POSITIVE

 Ooooooo mmmmmmm gggggggl finished the book, and it was amazing; I loved every minute of the series.

### **FALSE NEGATIVE**

I think the story grabbed me with its pure human aspect, maybe on a level I could relate to, as Wynne created a living, breathing character in Henry, a shy, bit-of-a-loner guy who you get to glimpse as a man, like many of us, going through the motions of life. Henry works as a security guard at a museum where a painting of a woman first arrives and captures his imagination; he grows obsessed with this sad, beautiful figure...

### TRUE POSITIVE

 I found this set of comics better than the first, and as a huge fan, the new Riverdale arc redeemed itself; while I still love the original, this one is slowly improving.

# **PREDICTED**

# Conclusions and recommendations



- Define popularity clearly, what is it supposed to capture?
- Re-evaluate how to measure popularity metric
- Ideally an independent measure of popularity is required and not feature engineered
  - E.g.: review and recommendation
- And if required, capture from users (maintain a stratified sample)



- Domain Adaptive Pre-Training: Train BERT further using unsupervised masked language modelling (MLM) on reviews corpus
- Test for Sentiment ≠ Popularity
- Stop-words and tokenization should not remove evocative differentiators



- Deal with data set imbalance; down sampling has shown promise in mitigating this risk
- Deep Learning models do not provide an automatic advantage, this is a cognitive bias
- Do not overlook traditional ML models (particularly Boosting algorithms), more interpretable and computationally friendly
- Follow Occam's Razor : adding meta data and additional features may not automatically improve model performance

# For suggestion and questions



21f3002975@ds.study.iitm.ac.in, gauranga.mds2023@cmi.ac.in

TEAM: Longshot

MAY 2025