# Create Tables from the Fisheries Economics of the US (FEUS) Report

Emily Markowitz (Emily.Markowitz AT NOAA.gov / EmilyMarkowitz-NOAA)

2020-12-30

- Productivity Output Analysis
  - 1. Set your Directories where you will save everything.
  - 2. Load example data
  - 3. Set up folders and knowns
  - 4. Run Analysis
  - 5. Create FEUS Tables
    - 5.1: Table 5. Regional Törnqvist Price Index, 1996-2018 (baseyr = 1)
    - 5.2: Table 6. Regional Real Landing Törnqvist Values, 1996-2018 (2015 \$ Million)
    - 5.3: Table 7. National Nominal Landing Values (\$ Million), Törnqvist Price Index, (2015 = 1), and Real Landing Törnqvist Values (2015 \$ Million), 1996-2018
  - · 6. Figures

# **Productivity Output Analysis**

Purpose: Construct the FEUS Commerical Fisheries state and national tables and output them to csv files

```
PKG <- c(# devtools::install github("emilymarkowitz-NOAA/FishEconProdOutput", force = TRUE)
         "FishEconProdOutput",
         #Seperating species by taxonomic group
         "taxize", # install.packages("remotes"); remotes::install github("ropensci/taxize")
         # Data Managment
         "tidyverse",
         "filesstrings",
         "data.table",
         "plyr",
         "rlist",
         # #RMarkdown
         "rmarkdown",
         "ggpubr",
         "kableExtra",
         #Excel File Management
         "xlsx",
         "readxl"
)
for (p in PKG) {
  if(!require(p,character.only = TRUE)) {
    install.packages(p)
    require(p, character.only = TRUE)}
}
```

# 1. Set your Directories where you will save everything.

```
#######DIRECTORIES##########

dir.in<-getwd()
#Local Directories
dir.output<-paste0(dir.in, "/output/")
dir.create(dir.output)
dir.data<-paste0(dir.in, "/data/")
dir.out<-paste0(dir.output, Sys.Date(), "/")
dir.create(dir.out)
dir.parent<-dirname(dir.in)

dir_outputtables<-paste0(dir.out, "outputtables/")
dir.create(dir_outputtables)

date00<-paste0(Sys.Date())</pre>
```

# 2. Load example data

```
###IMPORT DATA####
counter<-0
landings_data<-FishEconProdOutput::land
kable(head(landings_data))</pre>
```

| YearPo | undsDo | ollarscategory | / TsnState         | Region         | abbvreg |
|--------|--------|----------------|--------------------|----------------|---------|
| 5 2001 | 613    | 750Shellfish   | 83677Oregon        | Pacific        | Pac     |
| 6 2003 | 172    | 119Shellfish   | 83677Oregon        | Pacific        | Pac     |
| 7 2006 | 131    | 131Shellfish   | 83677North Carolin | aSouth Atlanti | cSA     |
| 142005 | 15     | 30Shellfish    | 83677Maryland      | Mid-Atlantic   | MA      |
| 152004 | 3      | 2Shellfish     | 83677New Jersey    | Mid-Atlantic   | MA      |
| 162006 | 37     | 28Shellfish    | 83677New Jersey    | Mid-Atlantic   | MA      |

# 3. Set up folders and knowns

```
# Define what regions we are interested in
reg order = c("National", "North Pacific", "Pacific", "Western Pacific (Hawai`i)",
               "New England",
              "Mid-Atlantic", "South Atlantic", "Gulf of Mexico")
reg order abbrv = c("US", "NP", "Pac", "WP", "NE", "MA", "SA", "GOM")
# Create Lists (in FEUS this makes more sense)
ProdOutputPI Raw<-list()</pre>
ProdOutputPI Print<-list()</pre>
ProdOutputQ Raw<-list()</pre>
ProdOutputO Print<-list()</pre>
ProdOutputUS Raw<-list()</pre>
ProdOutputUS Print<-list()</pre>
# Define Category
category0 = "category"
# Define Years
maxyr<-max(landings data$Year)</pre>
yr <- minyr <- minyr.data<-as.numeric(paste0(floor((maxyr-24)/10),</pre>
                               ifelse(substr(maxyr, start = nchar((maxyr-24)),
                                              stop = nchar((maxyr-24)))>=5, 6, 1))) #of data going into the a
 nalysis
minyr.ProdOut<-maxyr-19 # That will be shown in the analysis
baseyr<-as.numeric(paste0(floor(maxyr/10),
                           ifelse(substr(maxyr, start = nchar(maxyr),
                                          stop = nchar(maxyr))>=5, 5, 0))) #Will change every 5 years, e.g.,
   maxyr 2019 = byr 2015; maxyr 2020 = byr 2020; maxyr 2021 = byr 2020
# Folder name for output
folder<-"T567 ProdOutput"</pre>
titleadd = paste0(minyr.ProdOut, "To", maxyr, " FSFEUS")
counter<-0
# Define Directories
dir_analyses = paste0(dir_outputtables, folder)
dir.create(dir_analyses)
```

### 4. Run Analysis

```
OutputAnalysis(landings_data = landings_data,
               category0 = category0,
               baseyr = baseyr,
               titleadd = titleadd,
               dir analyses = dir analyses,
               skipplots = T,
               reg_order = reg_order,
               reg_order_abbrv = reg_order_abbrv)
#> [1] "National"
#> [1] "North Pacific"
#> [1] "Pacific"
#> [1] "Western Pacific (Hawai`i)"
#> [1] "New England"
#> [1] "Mid-Atlantic"
#> [1] "South Atlantic"
#> [1] "Gulf of Mexico"
#> [1] "Create spreadsheets"
#> [1] "Create plots"
```

#### 5. Create FEUS Tables

#### 5.1: Table 5. Regional Törnqvist Price Index, 1996-2018 (baseyr = 1)

```
bb<-list.files(path = paste0(aa, "/outputtables/"), full.names = TRUE, pattern = "000_All")</pre>
bb < -bb[grep(pattern = gsub(pattern = "\\.", replacement = "", x = category0), x = bb)]
######*****Table 5: Regional Price Index#############
webtool.T<-"commProdOutputPI"</pre>
a<-data.frame(Year = minyr.ProdOut:maxyr)</pre>
for (i in 1:length(reg_order)){
  temp<-read.xlsx(bb[grep(pattern = "_AllData", x = bb)], reg_order[i])</pre>
  temp<-temp[temp$Year %in% c(minyr.ProdOut:maxyr) &</pre>
                temp$cat %in% "Total", ]
  a0<-data.frame(temp[,names(temp) %in% "PI CB"])</pre>
  names(a0)<-reg_order[i]</pre>
  a<-cbind.data.frame(a, a0)</pre>
a$Footnotes<-NA
temp.code<-a
a[,reg order] < -round(x = a[,reg order], digits = 2)
temp Print <- a
ProdOutputPI Raw<-temp.code
ProdOutputPI Print<-temp Print
save(ProdOutputPI Raw,
     file = paste0(dir_outputtables, #folder,
                    '/ProdOutputPI Raw.rdata'))
save(ProdOutputPI Print,
     file = paste0(dir_outputtables, #folder,
                    '/ProdOutputPI Print.rdata'))
ProdOutputPI Print$Footnotes<-NULL
kable(ProdOutputPI Print)
```

| YearNationalNorth PacificPacificWestern Pacific (Hawai`i)New EnglandMid-AtlanticSouth AtlanticGulf of Mexico |      |      |      |      |      |      |      |      |  |
|--------------------------------------------------------------------------------------------------------------|------|------|------|------|------|------|------|------|--|
| 1999                                                                                                         | 0.61 | 0.60 | 0.47 | 0.78 | 0.61 | 0.52 | 0.59 | 0.80 |  |
| 2000                                                                                                         | 0.64 | 0.64 | 0.49 | 0.85 | 0.61 | 0.54 | 0.66 | 0.93 |  |
| 2001                                                                                                         | 0.59 | 0.58 | 0.45 | 0.84 | 0.56 | 0.49 | 0.64 | 0.84 |  |
| 2002                                                                                                         | 0.55 | 0.53 | 0.43 | 0.75 | 0.56 | 0.50 | 0.58 | 0.70 |  |
| 2003                                                                                                         | 0.58 | 0.59 | 0.46 | 0.81 | 0.59 | 0.51 | 0.57 | 0.65 |  |
| 2004                                                                                                         | 0.63 | 0.70 | 0.50 | 0.82 | 0.62 | 0.52 | 0.59 | 0.66 |  |
| 2005                                                                                                         | 0.71 | 0.74 | 0.53 | 0.88 | 0.75 | 0.67 | 0.63 | 0.73 |  |
| 2006                                                                                                         | 0.78 | 0.83 | 0.56 | 0.90 | 0.92 | 0.66 | 0.64 | 0.65 |  |
| 2007                                                                                                         | 0.80 | 0.91 | 0.65 | 0.89 | 0.77 | 0.65 | 0.73 | 0.77 |  |
| 2008                                                                                                         | 0.92 | 1.14 | 0.72 | 0.95 | 0.73 | 0.69 | 0.73 | 0.86 |  |
| 2009                                                                                                         | 0.77 | 0.89 | 0.66 | 0.93 | 0.65 | 0.68 | 0.71 | 0.68 |  |
| 2010                                                                                                         | 0.91 | 1.10 | 0.72 | 1.01 | 0.74 | 0.73 | 0.74 | 0.87 |  |
| 2011                                                                                                         | 1.04 | 1.28 | 0.89 | 1.08 | 0.82 | 0.78 | 0.79 | 0.96 |  |
| 2012                                                                                                         | 1.05 | 1.27 | 0.93 | 1.23 | 0.82 | 0.83 | 0.86 | 0.89 |  |
| 2013                                                                                                         | 1.09 | 1.25 | 0.89 | 1.12 | 0.87 | 0.93 | 0.99 | 1.17 |  |
| 2014                                                                                                         | 1.07 | 1.13 | 0.96 | 1.02 | 0.95 | 0.99 | 1.02 | 1.29 |  |

| YearNat | tionalNorth | Pacific P | acificWestern | Pacific (Hawai`i)New | England Mid | -AtlanticSout | h AtlanticGulf o | of Mexico |
|---------|-------------|-----------|---------------|----------------------|-------------|---------------|------------------|-----------|
| 2015    | 1.00        | 1.00      | 1.00          | 1.00                 | 1.00        | 1.00          | 1.00             | 1.00      |
| 2016    | 1.06        | 1.11      | 1.02          | 1.11                 | 0.99        | 0.98          | 0.96             | 1.07      |
| 2017    | 1.03        | 1.07      | 1.06          | 1.05                 | 0.93        | 0.96          | 1.02             | 1.00      |
| 2018    | 1.14        | 1.30      | 1.05          | 1.13                 | 0.92        | 0.95          | 1.06             | 1.07      |

# 5.2: Table 6. Regional Real Landing Törnqvist Values, 1996-2018 (2015 \$ Million)

```
######*****Table 6############
a<-data.frame(Year = minyr.ProdOut:maxyr)</pre>
for (i in 1:length(reg order)){
  temp<-read.xlsx(bb[grep(pattern = "_AllData", x = bb)], reg_order[i])</pre>
  temp<-temp[temp$Year %in% c(minyr.ProdOut:maxyr) &</pre>
                temp$cat %in% "Total", ]
  a0<-data.frame(temp[,names(temp) %in% "Q_CB"])</pre>
  names(a0)<-reg order[i]</pre>
  a<-cbind.data.frame(a, a0)</pre>
}
a$Footnotes<-NA
temp.code<-a
a[,reg order] < -round(x = a[,reg order]/1e6, digits = 2)
for (i in 1:length(reg order)){
  a[,i]<-prettyNum(x = a[,i], big.mark = ",")</pre>
temp_Print <- a
ProdOutputQ Raw<-temp.code
ProdOutputQ Print<-temp Print</pre>
save(ProdOutputQ Raw,
     file = paste0(dir_outputtables, #folder,
                    '/ProdOutputQ Raw.rdata'))
save(ProdOutputQ Print,
     file = paste0(dir_outputtables, #folder,
                    '/ProdOutputQ_Print.rdata'))
ProdOutputQ_Print$Footnotes<-NULL
kable(ProdOutputQ_Print)
```

#### Year NationalNorth PacificPacific Western Pacific (Hawai`i)New EnglandMid-AtlanticSouth AtlanticGulf of Mexico

| 1,9997,925.763,237.45 | 995.01 163.73  | 1,372.7  | 874.29 | 330.26 | 975.53  |
|-----------------------|----------------|----------|--------|--------|---------|
| 2,0007,652.092,782.8  | 1,031.59160.49 | 1,451.42 | 823.74 | 311.89 | 1042.56 |
| 2,0017,436.782,773.35 | 1,000.3 128.59 | 1,494.97 | 894.42 | 266.45 | 916.56  |
| 2,0027,582.752,803.48 | 1,022.21138.47 | 1,576.58 | 846.15 | 296.7  | 900.79  |
| 2,0037,860.5 3,037.26 | 1,157.31128.95 | 1,489.53 | 867.18 | 273.39 | 943.28  |
| 2,0048,008.363,211.12 | 963.51 140.02  | 1,631.46 | 952.32 | 275.55 | 851.74  |
| 2,0057,609.023,247.18 | 854.37 160.41  | 1,548.18 | 832.37 | 217.24 | 730.11  |

| Year NationalNorth Pacific | Pacific | Western Pacific (Hawai) | i)New Engla | ndMid-Atlant | icSouth AtlanticGulf o | of Mexico |
|----------------------------|---------|-------------------------|-------------|--------------|------------------------|-----------|
| 2,0067,539.533,098.07      | 888.89  | 147.48                  | 1,581.67    | 722.94       | 221.57                 | 907.76    |
| 2,0077,173.293,095.49      | 757.34  | 170.47                  | 1,377.65    | 765.25       | 209.9                  | 800.26    |
| 2,0086,712.852,849.74      | 698.05  | 177.98                  | 1,334.42    | 741.02       | 215.43                 | 700.56    |
| 2,0096,885.842,702.71      | 821.72  | 152.68                  | 1,437.56    | 771.17       | 207.59                 | 859.91    |
| 2,0106,879.212,771.42      | 863.92  | 166.43                  | 1,515.16    | 825.15       | 209.8                  | 616.16    |
| 2,0117,310.122,912.82      | 899.47  | 168.79                  | 1,569.24    | 855.61       | 192.34                 | 781.50    |
| 2,0127,153.092,831.29      | 829.95  | 182.03                  | 1,718.81    | 765.22       | 178.49                 | 801.28    |
| 2,0137,067.732,998.89      | 1,013.3 | 192.13                  | 1,523.36    | 586.21       | 155.58                 | 728.14    |
| 2,0146,930.192,944.72      | 872.83  | 198.09                  | 1,446.35    | 583.52       | 175.17                 | 737.21    |
| 2,0156,968.713,206.74      | 629.88  | 206.74                  | 1,400.7     | 597.16       | 189.02                 | 738.47    |
| 2,0166,935.662,898.55      | 741.12  | 211.8                   | 1,483.34    | 646.39       | 187.4                  | 837.22    |
| 2,0177,188.513,146.48      | 743.87  | 221.27                  | 1,533.05    | 613.03       | 180.98                 | 808.79    |
| 2,0186,667.612,686.15      | 722.23  | 210.33                  | 1,631.74    | 588.01       | 146.43                 | 805.92    |

5.3: Table 7. National Nominal Landing Values (\$ Million), Törnqvist Price Index, (2015 = 1), and Real Landing Törnqvist Values (2015 \$ Million), 1996-2018

```
######*****Table 7############
a<-data.frame(Year = minyr.ProdOut:maxyr)</pre>
temp<-read.xlsx(bb[grep(pattern = "_AllData", x = bb)],</pre>
                 reg_order[1])
temp<-temp[temp$Year %in% c(minyr.ProdOut:maxyr), ]</pre>
a<-data.frame(temp[,names(temp) %in% c("Year", "cat", "PI_CB", "Q_CB", "v")])</pre>
a<-dplyr::rename(a,</pre>
                  PI = paste0("PI CB"),
                  Q = paste0("Q_CB"),
                  V = "v"
# temp.code
a.pi<-spread(a[!(names(a) %in% c("V", "Q"))], cat, PI)</pre>
names(a.pi)[-1]<-paste0(names(a.pi)[-1], "_PI")</pre>
a.q<-spread(a[!(names(a) %in% c("PI", "V"))], cat, Q)</pre>
names(a.q)[-1]<-paste0(names(a.q)[-1], "_Q")</pre>
a.v<-spread(a[!(names(a) %in% c("PI", "Q"))], cat, V)
names(a.v)[-1]<-paste0(names(a.v)[-1], "_V")</pre>
b<-left_join(a.pi, a.q, by = c("Year"))</pre>
b<-left_join(b, a.v, by = c("Year"))
b < -b[, match(x = c("Year",
                   names(b)[grep(pattern = "_V", x = names(b), ignore.case = T)],
                   names(b)[grep(pattern = "_PI", x = names(b), ignore.case = T)],
                   names(b)[grep(pattern = "_Q", x = names(b), ignore.case = T)]),
             names(b))]
b<-b[,match(x = c("Year",</pre>
                   names(b)[grep(pattern = "fin", x = names(b), ignore.case = T)],
                   names(b)[grep(pattern = "Shell", x = names(b), ignore.case = T)],
                   names(b)[grep(pattern = "Total", x = names(b))]),
             names(b))]
temp.code<-b
temp.code$Footnotes<-NA
# temp_Print
b<-a
b$PI<-round(x = b$PI, digits = 2)
b$Q<-prettyNum(x = round(x = b$Q/1e6), digits = 2, big.mark = ",")
b$V<-prettyNum(x = round(x = b$V/1e6), digits = 2, big.mark = ",")
b.pi<-spread(b[!(names(b) %in% c("V", "Q"))], cat, PI)</pre>
names(b.pi)[-1]<-paste0(names(b.pi)[-1], "_PI")</pre>
b.q<-spread(b[!(names(b) %in% c("PI", "V"))], cat, Q)</pre>
names(b.q)[-1]<-paste0(names(b.q)[-1], "_Q")</pre>
b.v<-spread(b[!(names(b) %in% c("PI", "Q"))], cat, V)</pre>
names(b.v)[-1]<-paste0(names(b.v)[-1], "_V")</pre>
b<-left_join(b.pi, b.q, by = c("Year"))</pre>
```

```
b<-left join(b, b.v, by = c("Year"))</pre>
b<-b[,match(x = c("Year",</pre>
                  names(b)[grep(pattern = "_V", x = names(b), ignore.case = T)],
                  names(b)[grep(pattern = "_PI", x = names(b), ignore.case = T)],
                  names(b)[grep(pattern = " Q", x = names(b), ignore.case = T)]),
            names(b))]
b<-b[,match(x = c("Year",</pre>
                   names(b)[grep(pattern = "fin", x = names(b), ignore.case = T)],
                   names(b)[grep(pattern = "Shell", x = names(b), ignore.case = T)],
                  names(b)[grep(pattern = "Total", x = names(b))]),
            names(b))]
temp_Print<-b
temp_Print$Footnotes<-NA</pre>
ProdOutputUS Raw<-temp.code
ProdOutputUS Print<-temp Print</pre>
save(ProdOutputUS Raw,
     file = paste0(dir_outputtables, '/ProdOutputUS_Raw.rdata'))
save(ProdOutputUS Print,
     file = paste0(dir outputtables, '/ProdOutputUS Print.rdata'))
ProdOutputUS Print$Footnotes<-NULL
kable(ProdOutputUS_Print)
```

| YearFinfish_VFinfi | ish_PIFinfish_ | QShellfish_VS | hellfish_PIShellfish_ | _QTotal_V1 | Total_PITotal_Q |
|--------------------|----------------|---------------|-----------------------|------------|-----------------|
| 19991,478          | 0.612,429      | 3,334         | 0.615,486             | 4,812      | 0.617,926       |
| 20001,502          | 0.642,349      | 3,420         | 0.655,293             | 4,922      | 0.647,652       |
| 20011,378          | 0.592,346      | 3,020         | 0.595,081             | 4,398      | 0.597,437       |
| 20021,247          | 0.542,324      | 2,894         | 0.555,247             | 4,141      | 0.557,583       |
| 20031,399          | 0.582,421      | 3,128         | 0.585,427             | 4,527      | 0.587,861       |
| 20041,631          | 0.662,466      | 3,436         | 0.625,531             | 5,067      | 0.638,008       |
| 20051,739          | 0.732,381      | 3,675         | 0.705,214             | 5,414      | 0.717,609       |
| 20061,958          | 0.892,209      | 3,898         | 0.735,336             | 5,855      | 0.787,540       |
| 20071,917          | 0.872,194      | 3,854         | 0.784,969             | 5,771      | 0.807,173       |
| 20082,109          | 1.052,013      | 4,063         | 0.874,696             | 6,172      | 0.926,713       |
| 20091,699          | 0.861,982      | 3,574         | 0.734,917             | 5,273      | 0.776,886       |
| 20102,058          | 1.032,007      | 4,199         | 0.864,880             | 6,257      | 0.916,879       |
| 20112,497          | 1.172,135      | 5,079         | 0.985,183             | 7,576      | 1.047,310       |
| 20122,456          | 1.202,040      | 5,052         | 0.985,131             | 7,508      | 1.057,153       |
| 20132,524          | 1.212,078      | 5,212         | 1.044,995             | 7,735      | 1.097,068       |
| 20142,283          | 1.102,080      | 5,153         | 1.064,852             | 7,436      | 1.076,930       |
| 20152,177          | 1.002,177      | 4,792         | 1.004,792             | 6,969      | 1.006,969       |
| 20162,262          | 1.102,062      | 5,119         | 1.054,876             | 7,382      | 1.066,936       |
| 20172,334          | 1.052,220      | 5,047         | 1.024,968             | 7,381      | 1.037,189       |
| 20182,390          | 1.231,944      | 5,181         | 1.094,732             | 7,570      | 1.146,668       |

# 6. Figures

Here are a few figures that come out of this analysis!



gridfigures.list\$`000 All byr2015 categoryQ CB Q`

