Consistency test about mu0 and mu1 - 7/15 ver

```
。# of obsit 5000, 20000, 80000, 320000개일때, Ê[Y|E=1], Ê[Y|E=0] Ol No.Ni true value Oil
```

2) true Mo, Mi 계산하는 공식 Double check:

```
E[Y^{e}|E=1] = E[log_{1.2}U + log_{1.5}B + log_{2.}C + log_{2.}E | E=1]
= log_{1.2} \times E[U|E=1] + log_{1.5} \times E[B|E=1] + log_{1.2} \times E[C|E=1]
```

- ① true Mo, M 계산할 때 "log 1.2 x E[U|E=1]" term 포함한 경우
 - · ^ ^ 수정량 3가지 2려

[Resul+]

```
1 Ver 04: #of obs = 5000
                                 bias of mu_0 estimator ver1 variance of mu_0 estimator ver1 bias of mu_1 estimator ver1 variance of mu_1 estimator ver1
                                                 -0.09656163
                                                                                7.370285e-04
                                                                                                            -0.09656163
                                                                                                                                           7.370285e-04
                 \#of obs = 20000
                                                 -0.09265362
                                                                                4.185374e-04
                                                                                                             -0.09265362
                                                                                                                                            4.185374e-04
                 \#of obs = 80000
                                                 -0.09606809
                                                                                4.723340e-05
                                                                                                             -0.09606809
                                                                                                                                            4.723340e-05
                 #of obs = 320000
                                                  -0.09574396
                                                                                1.374988e-05:
                                                                                                             -0.09574396
                                                                                                                                           1.374988e-05
```

#of obs	blas of mu_0 es 5 = 5000 5 = 20000 5 = 80000 6 = 320000	0.1345376 0.1392778 0.1351296 0.1363608	4.574931e-04 \\ 1.763451e-04 \\ 3.497748e-05 \\ 8.974540e-06 \	<pre>cimator ver2 variance of mu_1 e 0.1346682 0.1384980 0.1363691 0.1371334</pre>	0.0016821134 0.0006605543 0.0001063829 0.0000308092
---------	---	--	--	--	--

#of obs = 5000 #of obs = 20000 #of obs = 80000 #of obs = 320000	bias of mu_0 estimator ver3 variance 0.1345376 0.1392778 0.1351296 0.1363608	e of mu_O estimator ver3 bias of 4.574931e-04 \ 1.763451e-04 \ 3.497748e-05 8.974540e-06	mu_1 estimator ver3 variance of 0.1346682 0.1384980 0.1363691 0.1371334	f mu_1 estimator ver3 0.0016821134 0.0006605543 0.0001063829 0.0000308092
,				

⇒ 모든 추정량에 대해 Bias가 줄어든 경향은 보이지 않는다.

```
2 +rue Mo, M1 게산할 때 "log 1.2 x E[U|E=1]" +erm 포함하지 않은 경우
```

· , û, û, 추정량 3가지 2려

```
 \begin{array}{c} \text{Ver } 04 \\ \hat{\mu}_{0} = \log 1.5 \times P(B|E=1) + \log 2 \cdot E[C|E=1] \\ \hat{\mu}_{1} = \hat{\mu}_{0} + \log 2 \\ \end{array} \\ \begin{array}{c} \hat{\mu}_{0} = \frac{1}{2} \hat{\mu}_{0} + \frac{1}{2} \hat{\mu
```

[Result]

```
bias of mu_0 estimator ver1 variance of mu_0 estimator ver1 bias of mu_1 estimator ver1
                                                                                      7.370285e-04
\bigcirc Ver 04 • #of obs = 5000 #of obs = 20000
                                                    -0.005363696
                                                                                                                    -0.005363696
                                                   -0.001455690
                                                                                                                    -0.001455690
                                                                                      4.723340e-05
                 \#of obs = 80000
                                                    -0.004870154
                                                                                                                    -0.004870154
                 \#of obs = 320000
                                                    -0.004546028
                                                                                      1.374988e-05
                                                                                                                    -0.004546028
                                   variance of mu_1 estimator ver1
                 \#of obs = 5000
                                                        7.370285e-04
                 \#of obs = 20000
                                                        4.185374e-04
                 \#of obs = 80000
                                                        4.723340e-05
                 \#of obs = 320000
                                                        1.374988e-05
```

2 Ver 05 : #of obs = 5000 #of obs = 20000 #of obs = 80000 #of obs = 320000	oias of mu_O estimator ver2 0.2257355 0.2304757 0.2263275 0.2275588	4. 1. 3.	imator ver2 bias of mu. 574931e-04 763451e-04 497748e-05 974540e-06	1 estimator ver2 variance o 0.2258662 0.2296960 0.2275670 0.2283313	f mu_1 estimator ver2 0.0016821134 0.0006605543 0.0001063829 0.0000308092
2 \/a. aq.	bias of mu_O estimator ver3	variance of mu 0 est	imator ver3¦bias of mu	1 estimator ver3 variance	of mu 1 estimator ver3
(3) Ver 08: #of obs = 5000 #of obs = 20000 #of obs = 80000 #of obs = 320000	0.2257355 0.2304757 0.2263275 0.2275588	4 1 3	.574931e-04 .763451e-04	0.2258662 0.2296960 0.2275670 0.2283313	0.0016821134 0.0006605543 0.0001063829 0.0000308092
⇒ 모든 추정량에 대해 BTas	가 줄어단 경향을	보이자는 않는다.			