CENG499

Assignment 3

Berke Sina Ahlatcı2468502

 $\mathbf{2}$

Contents

1 Part 1

2	Part	2	3					
	2.1	Dataset 1	3					
	2.2	Dataset 2	5					
3	Part	; 3	6					
List of Tables								
	1	Dataset 2 cross-validation procedure results for hyperparameter						
		values	5					
	2	Best hyperparameter results for each method	7					
$\mathbf{L}_{\mathbf{i}}$	ist o	of Figures						
	1	Console output of the created tree	2					
	2	Decision boundary of linear & 1	3					
	3	Decision boundary of linear & 5	4					
	4	Decision boundary of sigmoid & 1	4					

1 Part 1

Here is a console output of the tree created by ID3 algorithm for better visualization.

Figure 1: Console output of the created tree.

2 Part 2

2.1 Dataset 1

I've tried linear and sigmoid as kernel functions, and 1 and 5 as C values.

The following items contain hyperparameter configurations and their corresponding decision boundary plots.

1. Kernel = Linear & C = 1

Figure 2: Decision boundary of linear & 1.

2. Kernel = Linear & C = 5

Figure 3: Decision boundary of linear & 5.

3. Kernel = Sigmoid & C = 1

Figure 4: Decision boundary of sigmoid & 1.

4. Kernel = Sigmoid & C = 5

Figure 5: Decision boundary of sigmoid & 5.

2.2 Dataset 2

I've tried linear and sigmoid as kernel functions, and 1 and 5 as $\rm C$ values. Used the accuracy while determining the best hyperparameter.

Kernel & C Accuracy in %	Confidence Interval in %
Linear & 1 95.2	0.573
Linear & 5 95.6	0.286
Sigmoid & 1 81.333	0.978
Sigmoid & 5 77.867	1.005

 ${\bf Table~1:~Dataset~2~cross-validation~procedure~results~for~hyperparameter~values.}$

3 Part 3

I've used the f1 score while choosing the best hyperparameter configuration for each method.

Tried the following configurations for the methods :

- K-nearest neighbors
 - number of neighbors: 1, 5
 - weights : uniform, distance
- Support vector machine
 - kernel : linear, sigmoid
 - -C:1,5
- Decision Tree
 - criterions : gini, entropy
 - maximum depth: 1, 5
- Random Forest
 - number of estimators : 10, 50
 - criterions : gini, entropy
 - maximum depth: 1, 5

Following table contains F1 scores and confidence intervals of best hyperparameters

Method	Best Parameters	F1 Score	Confidence Interval
KNN	number of neighbors : 5 weights : distance	81.478	0.515
SVM	$\begin{array}{ c c c } C:1\\ \text{kernel}: \text{sigmoid} \end{array}$	82.561	0.440
DT	criterion : gini max depth : 1	82.224	0.239
RF	criterion: gini max depth: 5 number of estimators: 50	83.190	0.237

Table 2: Best hyperparameter results for each method.

We can crown random forest method with gini criterion, 5 maximum depth and 50 estimators as the best method among other methods and configurations I've tried for credit application dataset.