Linear Algebra

Linear Algebra

An Introduction to Mathematical Discourse

The book was designed specifically for students who had not previously been exposed to mathematics as mathematicians view it. That is, as a subject whose goal is to *rigorously* prove theorems starting from clear consistent definitions. This book attempts to build students up from a background where mathematics is simply a tool that provides useful calculations to the point where the students have a grasp of the clear and precise nature of mathematics. A more detailed discussion of the prerequisites and goal of this book is given in the introduction.

Table of Contents

- Cover
- Notation
- Introduction

Linear Systems

- I. Solving Linear Systems
 - 1. Gauss' Method
 - 2. Describing the Solution Set
 - 3. General = Particular + Homogeneous
 - 4. Comparing Set Descriptions
 - 5. Automation
- II. Linear Geometry of *n*-Space
 - 1. Vectors in Space
 - 2. Length and Angle Measures
- III. Reduced Echelon Form
 - 1. Gauss-Jordan Reduction
 - 2. Row Equivalence
- IV. Topic: Computer Algebra Systems
- V. Topic: Input-Output Analysis
- VI. Input-Output Analysis M File
- VII. Topic: Accuracy of Computations
- VIII. Topic: Analyzing Networks
- IX. Topic: Speed of Gauss' Method

Vector Spaces

- I. Definition of Vector Space
 - 1. Definition and Examples
 - 2. Subspaces and Spanning sets
- II. Linear Independence
 - 1. Definition and Examples
- III. Basis and Dimension
 - 1. Basis

This book is part of a series on **Algebra:**

Basic Algebra

Algebra

Intermediate Algebra

Vectors

Linear Algebra

Abstract Algebra

Intro to Rings and Algebras

Associative

Composition

Algebra

- 2. Dimension
- 3. Vector Spaces and Linear Systems
- 4. Combining Subspaces
- IV. <u>Topic: Fields</u>V. Topic: Crystals
- VI. Topic: Voting Paradoxes
 VII. Topic: Dimensional Analysis

Maps Between Spaces

- I. Isomorphisms
 - 1. Definition and Examples
 - 2. Dimension Characterizes Isomorphism
- II. Homomorphisms
 - 1. Definition of Homomorphism
 - 2. Rangespace and Nullspace
- III. Computing Linear Maps
 - 1. Representing Linear Maps with Matrices
 - 2. Any Matrix Represents a Linear Map
- IV. Matrix Operations
 - 1. Sums and Scalar Products
 - 2. Matrix Multiplication
 - 3. Mechanics of Matrix Multiplication
 - 4. Inverses
- V. Change of Basis
 - 1. Changing Representations of Vectors
 - 2. Changing Map Representations
- VI. Projection
 - 1. Orthogonal Projection Onto a Line
 - 2. Gram-Schmidt Orthogonalization
 - 3. Projection Onto a Subspace
- VII. Topic: Line of Best Fit
- VIII. Topic: Geometry of Linear Maps
- IX. Topic: Markov Chains
- X. Topic: Orthonormal Matrices

Determinants

- I. Definition
 - 1. Exploration
 - 2. Properties of Determinants
 - 3. The Permutation Expansion
 - 4. Determinants Exist
- II. Geometry of Determinants
 - 1. Determinants as Size Functions
- III. Other Formulas for Determinants
 - 1. Laplace's Expansion
- IV. Topic: Cramer's Rule
- V. Topic: Speed of Calculating Determinants

Similarity

- I. Complex Vector Spaces
 - 1. Factoring and Complex Numbers: A Review
 - 2. Complex Representations
- II. Similarity
 - 1. Definition and Examples
 - 2. Diagonalizability
 - 3. Eigenvalues and Eigenvectors
- III. Nilpotence
 - 1. Self-Composition
 - 2. Strings
- IV. Jordan Form
 - 1. Polynomials of Maps and Matrices
 - 2. Jordan Canonical Form
- V. Topic: Geometry of Eigenvalues
 VI. Topic: The Method of Powers
 VII. Topic: Stable Populations
- VIII. Topic: Linear Recurrences

Unitary Transformations

- I. Inner product spaces
- II. Unitary and Hermitian matrices
- III. Singular Value Decomposition
- IV. Spectral Theorem

Appendix

- Propositions
- Quantifiers
- Techniques of Proof
- Sets, Functions, Relations

Resources and Licensing

- Licensing And History
- Resources
- Bibliography (see individual pages for references)
- Index

Retrieved from 'https://en.wikibooks.org/w/index.php?title=Linear Algebra&oldid=3480759

This page was last edited on 25 October 2018, at 21:41.

Text is available under the <u>Creative Commons Attribution-ShareAlike License</u>, additional terms may apply By using this site, you agree to the Terms of Use and Privacy Policy.