

AUTOMATION, ORCHESTRATION, MONITORING

David López (i Josep Ll. Berral) V.1.1 Spring 2025

Remember?

General organizations:

- 1.- Governance
- 2.- Management
- 3.- Execution

Remember?

General organizations:

- 1.- Governance
- 2.- Management
- 3.- Execution

What are the goals? What do we need?

ALIGNED

Tracking and managing against Service Level Agreements (SLAs) or availability/ performance expectations

STRATEGIC

Achieving IT operational excellence and taking a strategic role in driving business innovation

EFFICIENT

Having a systematic approach to solving known issues and dealing with daily tasks

REACTIVE

Responding to

individual user challenges and requests

IT Management Maturity Model

PROACTIVE

Taking a proactive

approach to IT

management,

automating

repetitive tasks

and many remedial actions

Some key ideas

Automation

- Take common tasks and script them so that they can be done, for example, with a single command
- Examples: creating a new virtual machine; launching a web service; stopping a service; organizing emails in folders
- This is about automating tasks

Orchestration

- Works at a higher level
- Example: deploying an application with a Web server, a middleware server and a database server, analyzing workload of physical servers and move virtual machines
- This is about automating processes

Imperative apt install libreoffice

Declarative

```
package { 'libreoffice':
   ensure => 'latest',
}
```

A server

You buy it – Name it – Install an OS – Install software – Configure it – Actualize software – Change configuration – Install new software – Actualize OS – Change configuration- Update OS – Install more and more things – Upgrade hardware – Love it – Maintain it with great effort

What if you have 1000 servers?

A server pet

You buy it – Name it – Install an OS – Install software – Configure it – Actualize software – Change configuration – Install new software – Actualize OS – Change configuration- Update OS – Install more and more things – Upgrade hardware – Love it – Maintain it with great effort

1.- Buy homogenous servers with IPMI/Redfish

-The Intelligent Platform Management Interface (IPMI) is a set of computer interface specifications for an autonomous computer subsystem (BMC – Baseboard Management Controller) that provides management and monitoring capabilities independently of the host system's CPU, firmware (BIOS) and operating system. in 2014 evolved to Redfish.

- 1.- Buy homogenous servers with IPMI/Redfish
- 2.- Service must be independent from hardware
- 3.- Practical names for servers but also easy to remember

- 1.- Buy homogenous servers with IPMI/Redfish
- 2.- Service must be independent from hardware
- 3.- Practical names for servers but also easy to remember
- 4.- Joint management (group in herds)
- 5.- Use tools (herding dogs)

- 1.- Buy homogenous servers with IPMI/Redfish
- 2.- Service must be independent from hardware
- 3.- Practical names for servers but also easy to remember
- 4.- Joint management (group in herds)
- 5.- Use tools (herding dogs)
- 6.- Document / codify configuration (IaaC)

Infrastructure as a Code (IaaC) refers to the delivery and management of infrastructure through high-level descriptive code compared to manual

processes.

An example: the TSC department at UPC

Foreman

- Graphic interface that can work with other tools
- Group servers in hostgroups
- A new server is installed: foreman detects it
- You identify the hostgroup the new server belongs to
- Other tools organize the new server

Cobbler

OS installation

Puppet

- Software installation
- It is DECLARATIVE

Ansible

- For punctual tasks
- For instance, some shutdowns

Automation in developing

- 1.- Code repository (e.g. Git, CVS, Vault)
- 2.- Building automated tools (e.g. PVS-Studio, Crucible, sonarqube)
- 3.- Automatic integration (e.g. Jenkins, Tekton Pipelines)

DEVOPS and CI/CD (Continuous Integration, Continuous Deployment)

- Plan: something new, some new feature, fixing some problem...
- Code: following patterns
- Build: creating a new version (in a sandbox)
- Test: does it works? strong test system
- Release: new version (beta) for some users or working in parallel with old version
- Deploy: new version available for all clients
- Operate: working in normal basis
- Monitor: QoS, client response, ...

Developing

Automatic Releasing and Deployment

Greg Lavender, CTO Intel
The Phoenix Project (book)

Company	Deployment frequency
Amazon	23,000 per day
Google	5,500 per day
Netflix	500 per day
Facebook	1 per day
Twitter	3 per week
Typical enterprise	1 every 9 months

Automatic Releasing and Deployment

Containers

Traditional Hypervisor

- You need good, trustful and up-to-date information to take decisions
- Different tools

- You need good, trustful and up-to-date information to take decisions
- Different tools: Nagios

- You need good, trustful and up-to-date information to take decisions
- Different tools (Grafana + Vault)

- You need good, trustful and up-to-date information to take decisions
- Different tools (SIEM a lot of software)

- You need good, trustful and up-to-date information to take decisions
- Different tools: AlienVault/ OSSIM

KPI (Key Performance Indicators): in IT they are indicators of how are we achieving our goals

- Quality of Service (QoS) user's experience
- Operation
- Crisis Management
- Security

Some examples (monitoring to control KPIs)

- Free storage available
- Storage access
- Real IOPS / time to read/ write a data
- VM information (number, physical server ...)
- Physical servers workload / performance
- CPU/ Memory utilization
- Network load
- Communication time between servers
- Power usage (%)
- Humidity
- Temperature of servers/ racks

- Cooling consumption
- Storage servers real workload
- Change Requests per user, stage and type
- PUE
- Traffic patterns
- Data Center Optimization Initiative (DCOI) Compliance
- Cost per customer
- Deployment trends
- Anomaly detection
- Availability of host and services
- Net services (http, SMTP,... with safety probes)

AUTOMATIZATION, ORCHESTRATION, MONITORING

David López (i Josep Ll. Berral)

