

Sistemas Gráficos e Interacção

Epoca Especial		2022-09-08
N.º	Nome	
Duração da provi	a. 15 minutos	

Duração da prova: 45 minutos

Cotação de cada pergunta: assinalada com parêntesis rectos

Perguntas de escolha múltipla: cada resposta incorrecta desconta 1/3 do valor da pergunta

Parte Teórica 10%

- a. [3.3] Num sistema gráfico dotado de um frame buffer RGBA de 1024 x 1024 x 32 bits
 - (i.) É possível a reprodução de imagens com 2²⁴ ≈ 16 milhões de cores
 - ii. Cada píxel é descrito por 11 bits para a componente vermelha, 11 bits para a verde e 10 bits para a azul, num total de 32 bits
 - iii. É possível a reprodução de imagens com 1024 níveis de transparência
 - iv. Nenhuma das anteriores
- b. [3.3] Uma projecção perspectiva constitui um exemplo de
 - i. Uma transformação linear afim
 - ii. Uma transformação identidade
 - iii. Uma transformação rígida
 - (iv.) Nenhuma das anteriores
- c. **[3.3]** Qual das seguintes transformações usaria para transformar o objecto representado à esquerda na Figura 1 no objecto da direita?
 - i. Rotação
 - (ii.) Escalamento
 - iii. Shearing
 - iv. Nenhuma das anteriores

Figura 1

d. [3.3] Considere o objecto delimitado pela superfície descrita pela seguinte equação:

$$(x-1)^2 + (y-2)^2 + (z-3)^2 - 1 = 0$$

- O ponto de coordenadas (1.0, 2.0, 3.0) encontra-se
 - (i. No interior do objecto
 - ii. Na fronteira do objecto
 - iii. No exterior do objecto
 - iv. Nenhuma das anteriores
- e. **[3.3]** Quais os valores dos factores de atenuação que permitem simular uma situação em que a intensidade da luz reflectida por um objecto se reduz para metade quando a distância entre a fonte de luz e o objecto iluminado aumenta para o dobro?
 - i. Constante = 1.0; linear = 0.0; quadrático = 0.0
 - (ii.) Constante = 0.0; linear = 1.0; quadrático = 0.0
 - iii. Constante = 0.0; linear = 0.0; quadrático = 1.0
 - iv. Nenhuma das anteriores
- f. [3.3] A técnica de mipmapping de mapeamento de texturas
 - i. Não é suportada pela maioria das API gráficas
 - ii. É aplicável aos contextos de magnificação
 - iii. É incompatível com as parametrizações esféricas
 - (iv.) Nenhuma das anteriores

Sistemas Gráficos e Interacção

Época Especial		2022-09-08
N.º	_Nome	

Parte Teórico-Prática 20%

a. **[4.0]** Pretende-se mapear a textura representada na Figura 2 num rectângulo, de modo que este fique com o aspecto ilustrado na Figura 3. Indique as coordenadas de textura correspondentes a cada um dos vértices do polígono.

b. [2.0] No objecto 3D da Figura 4, qual a normal no ponto assinalado pela semiesfera preta?

Figura 4

Normal não unitária: 2.0, 0.0, 1.0

Normal unitária: $2.0 / \sqrt{(5.0)}, 0.0, 1.0 / \sqrt{(5.0)}$

- c. [1.4] A diferença entre um Mesh e um Object3D é que o Mesh tem
 - (i.) Materiais e Geometria
 - ii. Possibilidade de ter subobjectos
 - iii. Posição no espaço 3D
 - iv. Suporte de Sombras
- d. [1.4] Numa PerspectiveCamera, o factor de zoom pode ser ajustado com
 - (i.) Ângulo
 - ii. Largura
 - iii. Aspect Ratio
 - iv. zFar

- e. [1.4] Uma vantagem de usar índices para definir uma geometria é ter-se menos
 - i. Vértices
 - ii. Arestas
 - iii. Materiais
 - iv. Faces
- f. [1.4] Ao usar sombras é muito simples definir
 - i. Que objectos específicos originam sombras
 - ii. Que objectos específicos recebem sombras
 - iii. Que luzes vão ter sombras
 - (iv.) Todas as anteriores
- g. [1.4] Ao usar uma SpotLight, o cálculo das sombras é efectuado usando
 - i. Uma câmara Orthographic
 - (ii.) Uma câmara Perspective
 - iii. Seis câmaras Orthographic
 - iv. Seis câmaras Perspective
- h. [1.4] Para rodar o objecto obj em torno do eixo dos Z, no ângulo ang, pode-se usar
 - i. obj.rotate("Z", ang);
 - ii. threeJS.rotate(obj, 0.0, 0.0, ang);
 - (iii.) obj.rotateZ(ang);
 - iv. axisZ.rotate(obj, ang);
- i. [1.4] Para obter uma renderização mais perfeita de texturas deve-se usar
 - (i.) LinearFilter
 - ii. NearestFilter
 - iii. LambertFilter
 - iv. RadiosityFilter
- j. [1.4] Ao usar *picking* com *RayCaster* obtém-se como resultado:
 - i. O objecto mais próximo
 - (ii.) Um array de objectos em que o mais próximo é o primeiro elemento do array
 - iii. Um array de objectos em que o mais próximo é o último elemento do array
 - iv. Um array de objectos não ordenados, mas com informação de profundidade
- k. [1.4] A propriedade fog dos materiais permite indicar
 - i. O tipo de nevoeiro a aplicar ao objecto (Linear, Exponential)
 - ii. A ordem pela qual o efeito de nevoeiro é aplicado
 - (iii.) Se o objecto vai ser afectado pelo nevoeiro
 - iv. A cor do nevoeiro a aplicar no objecto
- I. [1.4] Para implementar reflexões melhoradas em tempo real podemos usar
 - (i.) CubeCamera
 - ii. ReflectEngine
 - iii. Ammo.js
 - iv. DynamicReflection