Advanced Python for Neuroscientists

Lecture 3: Regression, Classification (Decoding)

Git Command

Git(hub)

- Git software for tracking changes in any set of files, usually used for coordinating work among programmers collaboratively developing source code during software development. conda install numpy git
- GitHub, Inc. a provider of Internet hosting for software development and version control using Git

- Versions with new changes <u>commits</u>
- Upload push; download pull

User interface

Github desktop

User interface

- Github desktop
- Sublime merge

User interface Command lines

• First download: git clone

User interface

Command lines

- First download: git clone + repo location
- Update new changes to local: git pull
- Update local changes to GitHub:
 - Add local changes to a new commit: git add -A / file name
 - Specify what changes are made: git commit -m "name the changes"
 - Upload changes: git push

User interface

Command lines

- Cancel local changes: git checkout filename
- Hard reset:
 - git fetch --all
 - git branch backup-master
 - git reset --hard origin/master
- Put them all in a bash script (example)

Object-oriented Programming

Object-oriented programming

- An object with packs of values + codes
 - Dictionary (struct) + functions
- Easier for organizing and naming functions

- dog_name = dog()
- dog_name.bark(Y)

Regression

Linear Regression

- Predicting a real-valued output y
- given a vector of real valued inputs x_1, \ldots, x_n
- Assuming their relationship is linear: $y = w_1 x_1 + \dots + w_n x_n + w_0$

Simple Linear Regression	Multiple Linear Regression (2 Independent Variables (x1, x2))
y X	\mathbf{y} \mathbf{x}_1 \mathbf{x}_2

How to find w

- Find the line the best fits the data
- Predict y with x
- Minimize difference between y and y predicted

PCA vs linear regression

- Distance to the principal axis vs. distance between y, \hat{y}
- Treat 2 variables as the same vs. input & output

estimation

NLL
$$(w, \sigma^2) = -\sum_{n=1}^{N} \log \left[\left(\frac{1}{2\pi\sigma^2} \right)^{\frac{1}{2}} \exp \left(-\frac{1}{2\sigma^2} \left(y_n - w^{\mathsf{T}} x_n \right)^2 \right) \right]$$

$$(X^T X)^{-1} X^T Y$$

How good is w

- $\sum (y \hat{y})^2$ least square estimation
- $-\frac{\sum (y-\hat{y})^2}{y^2}$
 - Coefficient of determination
 - Correlation coefficient (1d)
 - R^2
 - 1 root mean squared error

Linear Regression Expansion

Add regularization

 Overfitting - the production of an analysis that corresponds too closely or exactly to a particular set of data, and may therefore fail to fit to additional data or predict future observations reliably

Linear Regression Expansion

Add regularization

Overfitting

The main idea behind Ridge Regression is to find a New Line that doesn't fit the

Training Data as well...

...in other words, we introduce a small amount of Bias into how the New Line is fit to the data...

Weight

In other words, by starting with a slightly worse fit, Ridge Regression can provide better long term predictions.

Linear Regression Expansion Add regularization

- Overfitting
- Regularization make results "simpler"
 - Penalty term assumption: coefficients are not all large

• Ridge (L2) regression:
$$\lambda \sum_{i} w_i^2 + \sum_{i} (y - \hat{y})^2$$

Lasso (L1) regression: RSE +
$$\lambda \sum_{i} |w_{i}|$$

Linear Regression Expansion

Add regularization

Overfitting

Linear Regression Expansion

Add nonlinear terms

•
$$y = w_1 x_1 + \dots + w_n x_n + w_0$$

- What if true relationship is slightly more complicated: $y = x_1 + 3x_2^2$
- Simply calculate $x_3 = x_2^2$, run linear regression on x_1, x_2, x_3

• You need to have an idea what the nonlinear term is (e.g. $\sin x$, x_1x_2)

Logistic Regression

Predicting a binary y

Logistic Regression

- Predicting a binary y
- Add a transformation to compress y logistic function

$$y = \frac{1}{1 + e^{w_1 x_1 + w_2 x_2 \dots w_0}}$$

Logistic Regression

- Predicting a binary y
- Add a transformation to compress y logistic function

$$y = \frac{1}{1 + e^{w_1 x_1 + w_2 x_2 \dots w_0}}$$

Commonly used in binary outcome tasks (selecting left / right)