Algebra II: Tutorial 10

April 20, 2022

Problem 1 (Finite fields are normal). Let f(x) be a monic irreducible polynomial over \mathbb{F}_p , and let α be a root of f in some splitting field of f over \mathbb{F}_p . Show that $L = \mathbb{F}_p(\alpha)$ is a splitting field for f over \mathbb{F}_p .

Problem 2. Show that there are exactly two cubic irreducible polynomials in $\mathbb{F}_2[x]$, namely $f = x^3 + x + 1$ and $g = x^3 + x^2 + 1$. Write down the multiplication tables of the field extensions of \mathbb{F}_2 by adding a root of f and g, say \mathbb{F}_8 and \mathbb{F}'_8 . Show that they are isomorphic.

Problem 3 (Recognising prime subfields of finite fields). Let L be a field containing \mathbb{F}_p . For $\alpha \in L$, show that $\alpha \in \mathbb{F}_p$ if and only if $\alpha^p - \alpha = 0$.

Problem 4. Let $f(x) = x^9 - x + 1$ in \mathbb{F}_3 .

- 1. Show that f has no roots in \mathbb{F}_3 and in \mathbb{F}_9 .
- 2. Show that $\mathbb{F}_{27} \cong \frac{\mathbb{F}_3[x]}{(x^3-x-1)}$, and show that every root of x^3-x-1 is a root of f.
- 3. Determine all the roots of f over \mathbb{F}_{27} , and deduce a factorisation of f over \mathbb{F}_3 .