

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C07D 487/04, A61K 31/505	A1	(11) International Publication Number: WO 97/48706 (43) International Publication Date: 24 December 1997 (24.12.97)
(21) International Application Number: PCT/US97/09832		(81) Designated States: AL, AU, BA, BB, BG, BR, CA, CN, CZ, EE, GE, GH, HU, IL, IS, JP, KR, LC, LK, LR, LT, LV, MG, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK, TR, TT, UA, US, UZ, VN, YU, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).
(22) International Filing Date: 10 June 1997 (10.06.97)		
(30) Priority Data: 60/019,989 18 June 1996 (18.06.96) US		
(71) Applicant (<i>for all designated States except US</i>): WARNER-LAMBERT COMPANY [US/US]; 201 Tabor Road, Morris Plains, NJ 07950 (US).		Published <i>With international search report.</i>
(72) Inventors; and		
(75) Inventors/Applicants (<i>for US only</i>): BERRYMAN, Kent, Alan [US/US]; 3211 McComb, Ann Arbor, MI 48108 (US). DOHERTY, Annette, Marian [US/US]; 106 Tulip Tree Court, Ann Arbor, MI 48103 (US). EDMUNDSON, Jeremy, John [GB/US]; 3957 Beech Drive, Ypsilanti, MI 48197 (US). SIDDIQUI, M., Arshad [CA/CA]; 117-2700 Thimens Boulevard, St-Laurent, Quebec H4R 2C4 (CA).		
(74) Agents: RYAN, M., Andrea; Warner-Lambert Company, 201 Tabor Road, Morris Plains, NJ 07950 (US) et al.		

(54) Title: PYRROLO[1,2-A]PYRAZINE-1,4-DIONE SERINE PROTEASE INHIBITORS

(57) Abstract

This invention relates to pyrrolo[1,2-a]pyrazine-1,4-diones of general formula (I), wherein B is carbonyl or methylene, R², R⁴, R⁵, and R⁶ are hydrogen, alkyl, or substituted alkyl, A is a basic group, and Q is hydrogen or a keto heterocycle group. The compounds are inhibitors of serine proteases, typically thrombin, Factor Xa, and Factor VIIa, and are useful for treating and preventing thrombotic disorders.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece			TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Moogolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	NZ	New Zealand		
CM	Cameroon	KR	Republic of Korea	PL	Poland		
CN	China	KZ	Kazakhstan	PT	Portugal		
CU	Cuba	LC	Saint Lucia	RO	Romania		
CZ	Czech Republic	LI	Liechtenstein	RU	Russian Federation		
DE	Germany	LK	Sri Lanka	SD	Sudan		
DK	Denmark	LR	Liberia	SE	Sweden		
EE	Estonia			SG	Singapore		

-1-

PYRROLO[1,2-A]PYRAZINE-1,4-DIONE SERINE PROTEASE INHIBITORS

FIELD OF THE INVENTION

This invention relates to the compounds useful for the treatment of thrombotic disorders by the inhibition of serine proteases, typically thrombin, Factor Xa, and/or Factor VIIa. The compounds are characterized as 5 pyrrolo[1,2-a]pyrazine-1,4-dione derivatives.

BACKGROUND OF THE INVENTION

Inordinate thrombus formation on blood vessel walls precipitates acute cardiovascular disease states that are the chief cause of death in economically developed societies. Plasma proteins such as fibrinogen, proteases, and cellular receptors participating in hemostasis have emerged as important factors that play a role in acute and chronic coronary disease, as well as cerebral artery disease, by contributing to the formation of thrombus or blood clots that effectively diminish normal blood flow and supply. Vascular aberrations stemming from primary pathologic states such as hypertension, rupture of atherosclerotic plaques, or denuded endothelium activate biochemical cascades that serve to respond and repair the injury site. Thrombin is a key regulatory enzyme in the coagulation cascade; it serves a pluralistic role as both a positive and negative feedback regulator. However, in pathologic conditions the former is amplified through catalytic activation of cofactors required for thrombin generation as well as activation of Factor XIII necessary for fibrin cross-linking and stabilization. 10 15 20 25

In addition to its direct effect on hemostasis, thrombin exerts direct effects on diverse cell types that support and amplify pathogenesis of arterial thrombus disease. The enzyme is the strongest activator of platelets, causing them to aggregate and release substances that further propagate the thrombotic cycle. Platelets in a fibrin mesh comprise the principal framework of a white thrombus. Thrombin also exerts direct effects on endothelial cells, causing release of 25

-2-

vasoconstrictor substances and translocation of adhesion molecules that become sites for attachment of immune cells. In addition, the enzyme causes mitogenesis of smooth muscle cells and proliferation of fibroblasts. From this analysis, it is apparent that inhibition of thrombin activity constitutes a viable therapeutic approach towards the attenuation of proliferative events associated with thrombosis.

The principal endogenous neutralizing factor for thrombin activity in mammals is Antithrombin III (ATIII), a circulating plasma macroglobulin having low affinity for the enzyme. Heparin exerts clinical efficacy in venous thrombosis by enhancing ATIII/thrombin binding through catalysis. However, heparin also catalyzes inhibition of other proteases in the coagulation cascade, and its efficacy in platelet-dependent thrombosis is largely reduced or abrogated due to inaccessibility of thrombus-bound enzyme. Adverse side effects such as thrombocytopenia, osteoporosis, and triglyceridemia have been observed following prolonged treatment with heparin.

Hirudin, derived from the glandular secretions of the leech *hirudo medicinalis*, is one of the high molecular weight natural anticoagulant protein inhibitors of thrombin activity (Markwardt F., Cardiovascular Drug Reviews, 1992;10:211). It is a biopharmaceutical that has demonstrated efficacy in experimental and clinical thrombosis. A potential drawback to the use of Hirudin as a therapeutic agent is likely antigenicity and lack of an effective method of neutralization, especially in view of its extremely tight binding characteristics toward thrombin. The exceedingly high affinity for thrombin is unique and is attributed to a simultaneous interaction with the catalytic site as well as a distal "anion binding exosite" on the enzyme.

Thrombin activity can also be abrogated by Hirudin-like molecules such as hirulog (Maraganore J.M., et al., Biochemistry, 1990;29:7095) or hirutonin peptides (DiMaio J., et al., J. Med. Chem., 1992;35:3331).

Thrombin activity can also be inhibited by low molecular weight compounds that compete with fibrinogen for thrombin's catalytic site, thereby inhibiting proteolysis of that protein or other protein substrates such as the thrombin receptor. A common strategy for designing enzyme inhibitory

-3-

compounds relies on mimicking the specificity inherent in the primary and secondary structure of the enzyme's natural substrate. Thus, Blomback, et al., first designed a thrombin inhibitor that was modeled upon the partial sequence of the fibrinogen chain comprising its proteolytically susceptible region (Blomback, et al., J. Clin. Lab. Invest., 1969;24:59). Systematic replacement of amino acids has led to optimization of the tripeptidyl inhibitory sequence exemplified by the peptide (D)-Phe-Pro-Arg, which corresponds to interactions within the S₃-S₂-S₁ local binding sites on thrombin (Bajusz S., et al., Peptides: Chemistry Structure and Biology. In: Walter R., Meienhofer J., eds. Proceedings of the 10 Fourth American Peptide Symposium. Ann Arbor Science Publishers Inc., 1975:306).

Bajusz, et al., have also reported related compounds such as (D)Phe-Pro-Arg-(CO)H (GYKI-14166) and (D)MePhe-Pro-Arg-(CO)H (GYKI-14766) (Peptides-Synthesis, Structure and Function. In: Rich D.H. and Gross E., eds. 15 Proceedings of the Seventh American Peptide Symposium. Pierce Chemical Company, 1981:417). These tripeptidyl aldehydes are effective thrombin inhibitors both in vitro and in vivo. In the case of both GYKI-14166 and GYKI-14766, the aldehyde group is presumed to contribute strongly to inhibitory activity in view of its chemical reactivity toward thrombin's catalytic Ser₁₉₅ residue, 20 generating a hemiacetal intermediate.

Related work in the area of thrombin inhibitory activity has exploited the basic recognition binding motif engendered by the tripeptide (D)Phe-Pro-Arg while incorporating various functional or reactive groups in the locus corresponding to the putative scissile bond (ie, P₁-P_{1'}).

25 In United States Patent 4,318,904, Shaw reports chloromethyl-ketones (PPACK) that are reactive towards Ser₁₉₅ and His₅₇. These two residues comprise part of thrombin's catalytic triad (Bode W., et al., EMBO Journal, 1989;8:3467).

Other examples of thrombin inhibitors bearing the (D)Phe-Pro-Arg general 30 motif are those incorporating COOH-terminal boroarginine variants such as boronic acids or boronates (Kettner C., et al., J. Biol. Chem., 1993;268:4734).

-4-

Still other congeners of this motif are those bearing phosphonates (Wang C-L J., Tetrahedron Letters, 1992;33:7667) and a-Keto esters (Iwanowicz E.J., et al., Bioorganic and Medicinal Chemistry Letters, 1992;12:1607).

Neises B, et al., have described a trichloromethyl ketone thrombin inhibitor
5 (MDL-73756) and Attenburger J.M., et al., have revealed a related difluoro alkyl amide ketone (Tetrahedron Letters, 1991;32:7255).

Maraganore, et al. (European Patent 0,333,356; WO 91/02750; US 5,196,404), disclose a series of thrombin inhibitors that incorporate the D-Phe-Pro moiety and hypothesize that this preferred structure fits well within the groove
10 adjacent to the active site of thrombin. Variations on these inhibitors are essentially linear or cyclic peptides built upon the D-Phe-Pro moiety.

Another series of patents and patent applications have described attempts to develop effective inhibitors against thrombosis by using alpha-ketoamides and peptide aldehyde analogs (EP 0333356; WO 93/15756; WO 93/22344;
15 WO 94/08941; WO 94/17817).

Still others have focused their attention on peptides, peptide derivatives, peptidic alcohols, or cyclic peptides as antithrombotic agents (WO 93/22344; EP 0276014; EP 0341607; EP 0291982). Others have examined amidine sulfonic acid moieties to achieve this same end (US 4,781,866), while yet others have
20 examined para- or meta-substituted phenylalanine derivatives (WO 92/08709; WO 92/6549).

A series of Mitsubishi patents and patent applications have disclosed apparently effective argininamide compounds for use as antithrombotic agents. The chemical structures described in these documents represent variations of side
25 groups on the argininamide compound (US 4,173,630; US 4,097,591; CA 1,131,621; US 4,096,255; US 4,046,876; US 4,097,472; CA 2,114,153).

Canadian patent applications 2,076,311 and 2,055,850 disclose cyclic imino derivatives that exhibit inhibitory effects on cellular aggregation.

Many of the examples cited above are convergent by maintaining at least a linear acyclic tripeptidyl motif, consisting of an arginyl unit whose basic side chain is required for interaction with a carboxylate group located at the base of the S₁ specificity cleft in thrombin. Two adjacent hydrophobic groups provide
30

-5-

additional binding through favorable Van der Waals interactions within a contiguous hydrophobic cleft on the enzyme surface designated the S₃.S₂ site.

Previously, it has been demonstrated that some pyrrolo[1,2-a]pyrazine-1,4-diones are endothelin antagonists (see WO 9323404 and CA 2121724) and active as central nervous system agents (Farmaco, Ed. Sci., 1984;39(8):718-738).
5 Others have demonstrated that pyrrolopyrazinediones (DE 2354056) are useful as anxiolytics and sedatives and are herbicides (US 4929270).

None of the above articles disclose compounds of Formula I which are inhibitors of serine proteases.

10 One object of the present invention is to provide serine protease inhibitors that display inhibitory activity towards enzymes involved in the coagulation cascade and principally the target enzymes, thrombin, Factor Xa, and Factor VIIa.

A further object of the present invention is to provide serine protease inhibitors that display inhibitory activity towards the target enzyme thrombin and
15 are provided for in a pharmacologically acceptable state.

Still a further object of the present invention is to provide for the use of these thrombin inhibitors and formulations thereof as anticoagulant and thrombin inhibitory agents.

20 Yet a further object of the present invention is to provide for the use of these thrombin inhibitors and formulations thereof for therapeutic treatment of various thrombotic maladies.

A further object of the present invention is a process for the synthesis of these low molecular weight thrombin inhibitors. The enzyme inhibitors of the present invention are encompassed by the structure of general Formula I.

25

SUMMARY OF THE INVENTION

The present invention provides for novel compounds that display thrombin inhibitory activity as reflected in Formula I.

-6-

wherein:

- B** is either C=O or CH₂,
- R**¹ is selected from H, Cl, Br, I, F, NR²R³, OR₂, NO₂, CN, CF₃,
- 5 C(=O)R², S(O)_p, R², CONHR², CO₂R², aryl, heterocycle;
- R**² is selected from H, C₁₋₆ alkyl;
- R**³ is selected from H, C₁₋₆ alkyl;
- R**⁴ is selected from H, C₁₋₆ alkyl optionally substituted by a group selected from R¹ and where the alkyl chain may be interrupted by one or more heteroatoms selected from O, N, S and so that the heteroatoms are not adjacent;
- 10 **R**⁵ is selected from H, C₁₋₆ alkyl optionally substituted by a group selected from R¹;
- R**⁶ is selected from H, C₁₋₆ alkyl optionally substituted by a group selected from R¹;
- 15 **R**⁷ is selected from H, C₁₋₆ alkyl, -(CH₂)_n-aryl;

-7-

A is selected from $-(CH_2)_3(CH_2)_n-Y$,

Y is selected from

-8-

Q is selected from

-9-

X is selected from O, NR₄, S;

p is selected from 0 to 2;

n is selected from 0 to 4;

5 r is selected from 0 to 4;

and pharmaceutically acceptable salts and solvates thereof.

Specifically preferred compounds according to this invention have the formula:

10 wherein:

R¹ is selected from H, Cl, Br, I, F, NR²R³, OR², NO₂, CN, CF₃,

COR², S(O)_p, R², CONHR², CO₂R², aryl, heteroaryl;

R² is selected from H, C₁₋₆ alkyl;

-10-

R^3 is selected from H, C₁₋₆ alkyl;

R^4 is selected from H, C₁₋₆ alkyl optionally substituted by a group selected from R^1 ;

R^7 is C₁₋₆ alkyl, -(CH₂)_n-aryl;

5 A is selected from -(CH₂)₃(CH₂)_n-Y,

Y is selected from

-11-

Q is selected from

5

X is NR⁴, S, or O;

p is 1 or 2;

n is selected from 0 to 2, and

r is selected from 0 to 4.

-12-

Another preferred group of compounds have the formula:

wherein:

A is selected from $-(CH_2)_3-(CH_2)_n-Y$,

5

Y is selected from

-13-

R^7 is C₁₋₆ alkyl, -(CH₂)_n-aryl;

Q is selected from

X is NMe, S, or O, and

5 n is selected from 0 to 2.

The most preferred compounds provided by this invention are:

Structure	Name
	[6S-[6α(R*),8αα]-1,4-Dioxo-2-(3-phenyl-propyl)-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [4-guanidino-1-(thiazol-2-carbonyl)-butyl]-amide
	[6S-[6α(R*),8αα]-1,4-Dioxo-2-(3-phenyl-propyl)-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [1-(benzothiazol-2-carbonyl)-4-guanidino-butyl]-amide

Structure	Name
	[6S-[6α(R*),8aα]]-1,4-Dioxo-2-(3-phenyl-propyl)-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [4-guanidino-1-(1-methyl-1H-benzoimidazol-2-carbonyl)-butyl]-amide
	[6S-[6α(R*),8aα]]-2-[3-(3,4-dichlorophenyl)-propyl]-1,4-dioxo-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [4-guanidino-1-(thiazol-2-carbonyl)-butyl]-amide
	[6S-[6α(R*),8aα]]-2-[3-(3,4-dichlorophenyl)-propyl]-1,4-dioxo-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [1-(benzothiazol-2-carbonyl)-4-guanidino-butyl]-amide
	[6S-[6α(R*),8aα]]-2-[3-(3,4-dichlorophenyl)-propyl]-1,4-dioxo-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [4-guanidino-1-(1-methyl-1H-benzoimidazol-2-carbonyl)-butyl]-amide
	[6S-[6α(R*),8aα]]-2-(3-Naphthalen-1-yl-propyl)-1,4-dioxo-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [4-guanidino-1-(thiazol-2-carbonyl)-butyl]-amide

Structure	Name
	[6S-[6 α (R*),8a α]]-2-(3-Naphthalen-1-yl-propyl)-1,4-dioxo-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid
	[1-(benzothiazol-2-carbonyl)-4-guanidino-butyl]-amide
	[6S-[6 α (R*),8a α]]-2-(3-Naphthalen-1-yl-propyl)-1,4-dioxo-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid
	[4-guanidino-1-(1-methyl-1H-benzimidazol-2-carbonyl)-butyl]-amide
	[6S-[6 α [R*(R*)],8a α]]-1,4-Dioxo-2-(3-phenyl-propyl)-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [1-(1-carbamimidoyl-piperidin-3-ylmethyl)-2-oxo-2-thiazol-2-yl-ethyl]-amide
	[6S-[6 α [R*(R*)],8a α]]-1,4-Dioxo-2-(3-phenyl-propyl)-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [2-benzothiazol-2-yl-1-(1-carbamimidoyl-piperidin-3-ylmethyl)-2-oxo-ethyl]-amide

Structure	Name
	[6S-[6α[R*(R*)],8aα]-1,4-Dioxo-2-(3-phenyl-propyl)-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [1-(1-carbamimidoyl-piperidin-3-ylmethyl)-2-(1-methyl-1H-benzoimidazol-2-yl)-2-oxo-ethyl]-amide
	[6S-[6α[R*(R*)],8aα]-2-[3-(3,4-Dichloro-phenyl)-propyl]-1,4-dioxo-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [1-(1-carbamimidoyl-piperidin-3-ylmethyl)-2-oxo-2-thiazol-2-yl-ethyl]-amide
	[6S-[6α[R*(R*)],8aα]-2-[3-(3,4-Dichloro-phenyl)-propyl]-1,4-dioxo-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [2-benzothiazol-2-yl-1-(1-carbamimidoyl-piperidin-3-ylmethyl)-2-oxo-ethyl]-amide

Structure	Name
	[6S-[6α[R*(R*)],8aα]]- 2-[3-(3,4-Dichloro-phenyl)-propyl]- 1,4-dioxo-octahydro-pyrrolo[1,2-a]- pyrazine-6-carboxylic acid
	[1-(1-carbamimidoyl-piperidin- 3-ylmethyl)-2-(1-methyl-1H- benzimidazol-2-yl)-2-oxo-ethyl]- amide
	[6S-[6α[R*(R*)],8aα]]- 2-(3-Naphthalen-1-yl-propyl)- 1,4-dioxo-octahydro-pyrrolo[1,2-a]- pyrazine-6-carboxylic acid
	[1-(1-carbamimidoyl-piperidin- 3-ylmethyl)-2-oxo-2-thiazol-2-yl- ethyl]-amide
	[6S-[6α[R*(R*)],8aα]]- 2-(3-Naphthalen-1-yl-propyl)- 1,4-dioxo-octahydro-pyrrolo[1,2-a]- pyrazine-6-carboxylic acid
	[2-benzothiazol-2-yl- 1-(1-carbamimidoyl-piperidin- 3-ylmethyl)-2-oxo-ethyl]-amide
	[6S-[6α[R*(R*)],8aα]]- 2-(3-Naphthalen-1-yl-propyl)- 1,4-dioxo-octahydro-pyrrolo[1,2-a]- pyrazine-6-carboxylic acid
	[1-(1-carbamimidoyl-piperidin- 3-ylmethyl)-2-(1-methyl-1H- benzimidazol-2-yl)-2-oxo-ethyl]- amide

Structure	Name
	[6S-[6α(R*),8aα]-1,4-Dioxo-2-(3-phenyl-propyl)-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [1-(3-carbamimidoyl-benzyl)-2-oxo-2-thiazol-2-yl-ethyl]-amide
	[6S-[6α(R*),8aα]-1,4-Dioxo-2-(3-phenyl-propyl)-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [2-benzothiazol-2-yl-1-(3-carbamimidoyl-benzyl)-2-oxo-ethyl]-amide
	[6S-[6α(R*),8aα]-1,4-Dioxo-2-(3-phenyl-propyl)-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [1-(3-carbamimidoyl-benzyl)-2-(1-methyl-1H-benzoimidazol-2-yl)-2-oxo-ethyl]-amide
	[6S-[6α(R*),8aα]-2-[3-(3,4-Dichloro-phenyl)-propyl]-1,4-dioxo-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [1-(3-carbamimidoyl-benzyl)-2-oxo-2-thiazol-2-yl-ethyl]-amide
	[6S-[6α(R*),8aα]-2-[3-(3,4-Dichloro-phenyl)-propyl]-1,4-dioxo-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [2-benzothiazol-2-yl-1-(3-carbamimidoyl-benzyl)-2-oxo-ethyl]-amide

Structure	Name
	[6S-[6 α (R*),8 α]]-2-[3-(3,4-Dichloro-phenyl)-propyl]-1,4-dioxo-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [1-(3-carbamimidoyl-benzyl)-2-(1-methyl-1H-benzimidazol-2-yl)-2-oxo-ethyl]-amide
	[6S-[6 α (R*),8 α]]-2-(3-Naphthalen-1-yl-propyl)-1,4-dioxo-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [1-(3-carbamimidoyl-benzyl)-2-oxo-2-thiazol-2-yl-ethyl]-amide
	[6S-[6 α (R*),8 α]]-2-(3-Naphthalen-1-yl-propyl)-1,4-dioxo-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [2-benzothiazol-2-yl-1-(3-carbamimidoyl-benzyl)-2-oxo-ethyl]-amide
	[6S-[6 α (R*),8 α]]-2-(3-Naphthalen-1-yl-propyl)-1,4-dioxo-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [1-(3-carbamimidoyl-benzyl)-2-(1-methyl-1H-benzimidazol-2-yl)-2-oxo-ethyl]-amide
	6S-[6 α [R*(trans)],8 α]-1,4-Dioxo-2-(3-phenyl-propyl)-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [1-(4-amino-cyclohexyl)-2-oxo-2-thiazol-2-yl-ethyl]-amide

-20-

Structure	Name
	6S-[6α[R*(trans)],8aα]-1,4-Dioxo-2-(3-phenyl-propyl)-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [2-benzothiazol-2-yl-1-(4-amino-cyclohexyl)-2-oxo-ethyl]-amide
	6S-[6α[R*(trans)],8aα]-1,4-Dioxo-2-(3-phenyl-propyl)-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [1-(4-amino-cyclohexyl)-2-(1-methyl-1H-benzimidazol-2-yl)-2-oxo-ethyl]-amide
	[6S-[6α(R*),8aα]-1,4-Dioxo-2-(3-phenyl-propyl)-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [1-(1-carbamimidoyl-piperidin-4-yl)-2-oxo-2-thiazol-2-yl-ethyl]-amide
	[6S-[6α(R*),8aα]-1,4-Dioxo-2-(3-phenyl-propyl)-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [2-benzothiazol-2-yl-1-(1-carbamimidoyl-piperidin-4-yl)-2-oxo-ethyl]-amide
	[6S-[6α(R*),8aα]-1,4-Dioxo-2-(3-phenyl-propyl)-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [1-(1-carbamimidoyl-piperidin-4-yl)-2-(1-methyl-1H-benzimidazol-2-yl)-2-oxo-ethyl]-amide

Structure	Name
<p>Detailed description: This structure features a central pyrrolo[1,2-a]pyrazine ring system. At position 1, there is a piperidinyl group substituted with a phenylpropyl chain. At position 4, there is a hydroxyl group and an amino group linked by a methylene bridge. At position 6, there is a carboxamide group.</p>	Octahydro-N-[(1-[(hydroxyamino)iminomethyl]-4-piperidinyl)methyl]-1,4-dioxo-2-(3-phenylpropyl) pyrrolo[1,2-a]pyrazine-6-carboxamide
<p>Detailed description: This structure is similar to the first one but lacks the hydroxyl group at position 4 of the piperidinyl ring, instead having an amino group.</p>	1,4-Dioxo-2-(3-phenyl-propyl)-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid (1-carbamimidoyl-piperidin-4-ylmethyl)-amide
<p>Detailed description: This structure includes a cyclohexyl ring substituted with a 4-formylamino group and a 2-thiazol-2-yl-ethyl group.</p>	1,4-Dioxo-2-(3-phenyl-propyl)-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid (1-(4-formylamino-cyclohexyl)-2-oxo-2-thiazol-2-yl-ethyl)-amide
<p>Detailed description: This structure is the most complex, featuring a dichlorophenylpropyl group, a carbamic acid ethyl ester group, and a thiazol-2-yl-ethyl group.</p>	((4-[1-((2-[3,4-Dichloro-phenyl)-propyl]-1,4-dioxo-octahydro-pyrrolo[1,2-a]pyrazine-6-carbonyl)-amino)-2-oxo-2-thiazol-2-yl-ethyl]-piperidin-1-yl)-imino-methyl)-carbamic acid ethyl ester

Structure	Name
<p>The structure shows a complex polycyclic system. It features a central pyrazine ring fused to a piperidine ring. The piperidine ring has a phenylpropyl group at position 1, a carboxylic acid group at position 6, and a thiazol-2-yl-ethyl amide side chain at position 4. There is also an imino-propionylamino-methyl side chain attached to the piperidine ring.</p>	1,4-Dioxo-2-(3-phenyl-propyl)- octahydro-pyrrolo[1,2-a]pyrazine-6- carboxylic acid (1-[1-(imino- propionylamino-methyl)-piperidin-4- yl]-2-oxo-2-thiazol-2-yl-ethyl)-amide

The invention also provides pharmaceutical formulations comprising a compound of Formula I together with a pharmaceutically acceptable excipient, carrier, or diluent therefor.

- 5 A further embodiment of the invention is a method for treating or preventing a thrombotic disorder in a mammal comprising administering to said mammal an antithrombotic amount of a compound of Formula I. The invention compounds are inhibitors of serine protease enzymes, and the invention further provides a method for inhibiting several proteases comprising administering a
 10 serine protease inhibiting amount of a compound of Formula I.

DETAILED DESCRIPTION OF THE INVENTION

The term "alkyl" means a straight, branched or cyclic, saturated or unsaturated carbon chain having from 1 to 6 carbon atoms. Typical alkyl groups include methyl, isobutyl, cyclopropyl, 2-methyl-pentyl, and the like.

- 15 The term "aryl" represents an unsaturated carbocyclic ring(s) of 6 to 16 carbon atoms, which is optionally substituted with OH, O(alkyl), SH, S(alkyl), NH₂, NH(alkyl), N(di-alkyl), halogen, acids, esters, amides, alkyl ketones, aldehydes, nitrile, fluoroalkyl, nitro, sulfone, sulfoxide, or alkyl. Typical rings include phenyl, naphthyl, phenanthryl, and anthracenyl. Preferred aryl rings are

-23-

phenyl, substituted phenyl, and naphthyl. Preferred substituents on phenyl rings are halogens to afford, for example, 3,4-dichlorophenyl.

The term "heteroatom" as used herein represents oxygen, nitrogen, or sulfur (O, N, or S) as well as sulfoxyl or sulfonyl (SO or SO₂) unless otherwise indicated. It is understood that alkyl chains interrupted by one or more heteroatoms means that a carbon atom of the chain is replaced with a heteroatom having the appropriate valency. Preferably, an alkyl chain is interrupted by 1 to 4 heteroatoms and that two adjacent carbon atoms are not both replaced. Examples of such groups include methoxymethyl, 3-thiomethylpropyl, and 2-thiomethoxyethoxymethyl.

The term "heterocycle" means a saturated or unsaturated mono- or polycyclic (eg, bicyclic) ring incorporating one or more (eg, 1-4) heteroatoms selected from N, O, and S. It is understood that a heterocycle may optionally be substituted with OH, O(alkyl), SH, S(alkyl), NH₂, NH(alkyl), N(di-alkyl), halogen, acids, esters, amides, alkyl ketones, aldehydes, nitrile, fluoroalkyl, nitro, sulfone, sulfoxide, or C₁₋₆ alkyl. Examples of typical monocyclic heterocycles include, but are not limited to, pyridine, piperidine, pyrazine, piperazine, pyrimidine, imidazole, thiazole, oxazole, furan, pyran, and thiophene. Examples of typical bicyclic heterocycles include, but are not limited to, benzothiophenes, benzofurans, benzothiazoles, benzooxazoles, indole, quinoline, isoquinoline, purine, and carbazole.

All stereoisomers and tautomers are included within Formula I and are provided by this invention. Individual stereoisomers are also included, and are indicated by the wedge or hash representation. When specific isomers are drawn, they are the preferred isomers.

The invention compounds readily form pharmaceutically acceptable acid addition salts by reaction with common inorganic and organic acids. Typical acids routinely utilized include hydrochloric, hydrobromic, sulfuric, phosphoric, acetic, maleic, formic, and related acids. The compounds additionally form solvates, for example, hydrates, alcoholates, and the like.

-24-

Also provided by this invention is a method for preventing and treating a thrombotic disorder in a mammal comprising administering to such mammal an antithrombotic effective amount of a compound of Formula I. The compounds are useful as anticoagulants for the treatment and prophylaxis of thrombotic disorders such as venous and arterial thrombosis, pulmonary embolism, and ischemic events such as myocardial infarction or cerebral infarction. These compounds also have therapeutic utility for the prevention and treatment of coagulopathies associated with coronary bypass operations and restenosis following transluminal angioplasty. These compounds are useful for preventing or treating unstable angina, refractory angina, disseminated intravascular coagulation, and ocular build-up of fibrin. Since thrombin has also been demonstrated to activate a number of different cell types, these compounds are useful for the treatment or prophylaxis of septic shock and other inflammatory responses such as acute or chronic atherosclerosis. In a preferred method, the thrombotic disorder is selected from venous thrombosis, arterial thrombosis, pulmonary embolism, myocardial infarction, and cerebral infarction. The compounds also have utility in treating neoplasia/ metastasis and neurodegenerative diseases such as Alzheimer's and Parkinson's disease. A further embodiment of this invention is a pharmaceutical formulation comprising a compound of Formula I admixed with a diluent, excipient, or carrier therefor.

The compounds of Formula I can be prepared by any of various methods known to those skilled in the art of organic chemistry. The following scheme illustrates one particular method of preparation:

-25-

SCHEME 1

Step I

The alcohol is converted to the iodide via activation of the alcohol as a sulphonate ester, typically a mesylate, and then by treatment with, for example, sodium iodide in a solvent such as DMF or acetone. Alternatively, the alcohol can be converted directly to the iodide upon treatment with triphenyl phosphine and

-26-

iodine. This iodide then, upon treatment with an organometallic agent such as a vinyl cuprate, affords the unsaturated addition adduct (b).

Step ii

A mercury-catalyzed cyclization process via treatment of the intermediate (b) with a mercury salt such as mercury acetate, followed by treatment with oxygen gas in the presence of sodium borohydride, affords the intermediate alcohol (c).

Step iii

Oxidation of the alcohol (c) with typical oxidizing reagents such as pyridinium dichromate (PDC), Dess-Martin periodinane, or oxalyl chloride/DMSO readily affords the intermediate aldehyde, which is further oxidized to the corresponding acid with an oxidizing reagent such as sodium chlorite. Alternatively, the alcohol (c) can be converted directly to the acid with reagents such as PDC in DMF. This acid is reacted with an amine in the presence of an activating reagent, such as benzotriazol-1-yloxy-tris (dimethylamino) phosphonium hexafluorophosphate (BOP-reagent), to form the amide intermediate (d).

Step iv

Hydrogenation of the intermediate (d) in the presence of a transition metal catalyst, such as Pd/C, and a hydrogen atmosphere results in deprotection of the aryl protecting groups and then allows treatment of the resultant product with BOP-reagent and then TFA to afford the bicyclic intermediate (e).

Step v

Compound (e) is reacted with an appropriately protected keto-heterocycle-arginine derivative in the presence of an activating reagent such as BOP-reagent to form the amide (f). The guanine protecting group, typically an arylsulfonyl group, is removed by TFA, or HF treatment, to afford compounds of Formula I, as exemplified by compound (f).

-27-

Scheme 2 depicts an alternative method for preparing compounds of this invention. An aldehyde such as (1) is converted to the amino acid (4) via formation of the hydantoin with ammonium carbonate and potassium cyanide. The hydantoin is reduced, typically with hydrogen gas and a transition metal to form the saturated piperidine derivative 3. Aqueous base treatment at elevated temperatures affords the amino acid derivative 4. The amino group can be protected, with for example, by reaction with boc-anhydride, to form the derivative 5. The introduction of a heterocycle is accomplished by conversion of the acid to a N,O-dimethyl hydroxylamide and treatment with a lithiated heterocycle such as 2-thiazole lithium to form 7. Subsequent reduction with sodium borohydride, deprotection with trifluoroacetic acid and concomitant addition of trifluoroacetic anhydride forms the amide 9. The guanine derivative 10 is then prepared by treatment with bis-BOC-pyrazole and the trifluoroacetamide is then hydrolyzed with aqueous base. This amino alcohol is treated with the appropriate carboxylic acid in the presence of a coupling reagent, such as HATU, to afford the amide. Oxidation by reaction with an oxidizing agent such as Dess-Martin periodinane forms the keto thiazole which is deprotected with trifluoroacetic acid to afford the compounds of type 13. This compound may then be derivatized with ethylchloroformate to afford the compounds of type 14 wherein R₇ is ethyl.

-28-

SCHEME 2

-29-

SCHEME 2 (cont)

Scheme 3 depicts yet a further example of a procedure that may be used for preparing compounds of Formula I. In this scheme, the pyrrolopyrazine-1,4-dione

-30-

carboxylic acid 15 is treated with the Boc protected 4-aminomethylpiperidine derivative to form 16. Treatment with acid such as trifluoroacetic acid and then addition of cyanogen bromide and base afford the N-cyano adduct 17. Addition of hydroxylamine forms adduct 18, whereas sequential treatment with hydrogen sulfide, methyliodide and hydrazine affords the adduct 19.

5

-31-

SCHEME 3

BIOLOGY

Compounds of the present invention are further characterized by their ability to inhibit the catalytic activity of thrombin, which is demonstrated in the assay as follows. Compounds of the present invention may be prepared for assay by dissolving them in buffer to give solutions ranging in concentrations from 1 to 100 μ M. In an assay to determine the inhibitory dissociation constant, K_i , for a given compound, a chromogenic or fluorogenic substrate of thrombin is added to a solution containing a test compound and thrombin; the resulting catalytic activity of the enzyme is spectrophotometrically determined. This assay is well-known to those skilled in the art and is commonly used to determine antithrombotic activity.

The compounds of the present invention may be used as anticoagulants in vitro or ex vivo, as in the case of contact activation with foreign thrombogenic surfaces such as that found in tubing used in extracorporeal shunts. The compounds of the invention may also be used to coat the surface of such thrombogenic conduits. To this end, the compounds of the invention can be prepared as lyophilized powders, redissolved in isotonic saline or similar diluent, and added in an amount sufficient to maintain blood in an anticoagulated state.

The therapeutic agents of the present invention may be administered alone or in combination with pharmaceutically acceptable carriers. The proportion of each carrier is determined by the solubility and chemical nature of the compound, the route of administration, and standard pharmaceutical practice. For example, the compounds may be injected parenterally, this being intramuscularly, intravenously, or subcutaneously. For parenteral administration, the compound may be used in the form of sterile solutions containing other solutes, for example, sufficient saline or glucose to make the solution isotonic. The compounds may be administered orally in the form of tablets, capsules, or granules containing suitable excipients such as starch, lactose, white sugar, and the like. The compounds may also be administered sublingually in the form of troches or lozenges in which each active ingredient is mixed with sugar or corn syrups, flavoring agents and dyes, and then dehydrated sufficiently to make the mixture suitable for pressing into solid form. The compounds may be administered orally in the form of

solutions which may contain coloring and/or flavoring agents. Typical formulations will contain from about 5% to 95% by weight of an invention compound.

The amount of invention compound to be utilized to prevent and treat 5 thrombotic disorders is that amount which is effective to prevent or treat the condition without causing unacceptable side effects. Such effective amounts will be from about 0.01 mg/kg to about 500 mg/kg, preferably from about 1 mg/kg to about 100 mg/kg. Physicians will determine the precise dosage of the present therapeutic agents which will be most suitable. Dosages may vary with the mode 10 of administration and the particular compound chosen. In addition, the dosage may vary with the particular patient under treatment.

When the composition is administered orally, a larger quantity of the active agent will typically be required to produce the same effect as caused with a smaller quantity given parenterally.

15 To further assist in understanding the present invention, the following nonlimiting examples of the synthesis of specific thrombin inhibitory compounds of Formula I are provided. The following examples, of course, should not be construed as specifically limiting the present invention, variations presently known, or later developed which would be within the purview of one skilled in the art 20 are considered to fall within the scope of the present invention as described herein. The preferred compounds as of the present invention are synthesized using conventional preparative steps and recovery methods known to those skilled in the art of organic and bio-organic synthesis, while providing a new and unique combination for the overall synthesis of each compound. Preferred synthetic 25 routes for intermediates involved in the synthesis as well as the resulting antithrombotic compounds of the present invention follow.

-34-

EXAMPLE 1

To a solution of the protected Z-Asp-OtBu-DCHA (15 g) in 297 mL of dry tetrahydrofuran (THF), at -10°C, under N₂, was added N-methylmorpholine (0.654 mL) and isopropyl chloroformate (1.0 M/toluene:33 mL). The solution was stirred at -10°C for 60 minutes. In another flask, NaBH₄ (2.25 g) was suspended 5 in a dry 5:1 mixture of THF/MeOH (297 mL), at -78°C, under N₂. This suspension was stirred at -78°C for 30 minutes. The mixed anhydride solution was then added to the NaBH₄ suspension dropwise *via cannula*, and the final solution 10 was stirred at -78°C for 3 hours. Acetic acid (17 mL) was then added, and the solution was warmed to room temperature (30 minutes). The solvents were evaporated, the residue taken up in EtOAc, and washed with sat.aq. NaHCO₃ (2x) and brine. The organic layer was dried over MgSO₄, the solids were filtered, and the solvent evaporated to give 9.1 g of the alcohol (1) as a clear oil.

15 ¹H NMR (CDCl₃, 400 MHz): 7.40-7.31 (m, 5H, ArH), 5.63 (d, 1H, J = 7.3, NH), 5.13 (AB system, 2H, J = 12.2, CH₂Ph), 4.43 (m, 1H, H-2), 3.69 (m, 2H, H-4), 2.17 (m, 1H, H-3), 1.63 (m, 1H, H-3), 1.48 (s, 9H, t-Bu).

-35-

EXAMPLE 2

To a solution of the alcohol (1) (1.53 g, 4.95 mmol) in a 1:1 mixture of CH₃CN/Et₂O (50 mL), at -10°C, under N₂ were added successively imidazole 5 (607 mg, 1.8 eq) and Ph₃P (2.21 g, 1.7 eq). Iodine (2.14 g, 1.7 eq) was then added in small portions over a period of 15 minutes. After the addition was completed, a white precipitate formed, and the solution was brown. It was stirred at -10°C for 45 minutes. It was then poured in Et₂O, and the organic phase was washed with sat.aq. Na₂SO₃, sat.aq. CuSO₄, H₂O, and dried over MgSO₄. The solids were 10 filtered and the solvent evaporated to give a yellow oil that was purified by flash chromatography (silica gel, 5% to 20% EtOAc/Hex). The iodide (2) was obtained in 83% yield (1.71 g) as a clear oil.

¹H NMR (CDCl₃, 400 MHz): 7.41-7.31 (m, 5H, ArH), 5.35 (bd, 1H, J = 7.3, NH), 5.13 (s, 2H, CH₂Ph), 4.30 (m, 1H, H-2), 3.22-3.12 (m, 2H, H-4), 2.42 (m, 1H, H-3), 2.20 (m, 1H, H-3), 1.48 (s, 9H, t-Bu).

EXAMPLE 3

To a suspension of CuI (2.27 g, 5 eq) in dry THF (20 mL), at -78°C, under N₂ was added slowly a 1.0 M solution in THF of vinyl magnesium bromide (23.4 mL, 9.8 eq). The solution was then warmed up to -10°C for 30 minutes (it turned then black) and cooled back to -78°C. A solution of the iodide (2) (1.00 g, 2.39 mmol) in dry THF (3.5 mL) was then added slowly to the cuprate solution. The reaction mixture was stirred at -78°C for 2.5 hours. Sat.aq. NH₄Cl (50 mL) was added, and the mixture was brought back to room temperature with vigorous stirring. It was then poured in Et₂O and stirred for 5 minutes. The dark suspension was filtered through a centered funnel, and the phases were separated. The aqueous phase was extracted with Et₂O (2x), and the combined organic extracts were dried over MgSO₄. The solids were filtered, the solvents evaporated, and the crude oil purified by flash chromatography (silica gel, 5% AcOEt/Hex) to give 0.51 g (67%) of the pure alkene (3).

¹H NMR (CDCl_3 , 400 MHz): 7.37-7.31 (m, 5H, ArH), 5.80 (m, 1H, H-5), 5.33 (d, 1H, $J = 7.8$, NH), 5.12 (s, 2H, CH_2Ph), 5.05 (d, 1H, $J = 17.2$, H-6), 5.01 (d, 1H, $J = 10.4$, H-6), 4.30 (q, 1H, $J = 7.4$, H-2), 2.16-2.08 (m, 2H, H-4), 1.92 (m, 1H, H-3), 1.74 (m, 1H, H-3), 1.48 (s, 9H, t-Bu).

-37-

EXAMPLE 4

To a solution of the alkene (3)(50 mg, 0.157 mmol) in dry THF (3.1 mL), at r.t., under N₂, was added mercuric acetate (75 mg, 1.5 eq). The solution was stirred at room temperature for 18 hours after which it was cooled down to 0°C. Sat.aq. NaHCO₃ (2 mL) was then added, and the mixture was stirred at 0°C for 30 minutes. KBr (0.11 g, 6 eq) was added, and the mixture was stirred at room temperature for 2 hours. It was then poured in H₂O/Et₂O, and the phases were separated. The aqueous phase was extracted with Et₂O (2x), and the combined organic extracts were dried over MgSO₄. The solids were filtered and the solvents evaporated. Oxygen (O₂) was bubbled into a suspension of NaBH₄ (3.3 mg, 0.55 eq) in dry DMF (0.4 mL) for 1 hour, and to this was added dropwise (syringe pump, 3 mL/minute) a solution of the organomercurial bromide in DMF (3.1 mL) with continuous introduction of O₂. The bubbling was continued for 1 hour and Et₂O (5 mL) was added. The gray suspension was filtered through Celite, and the filtrate was evaporated. The residue was chromatographed (silica gel, 6:4 Hex/EtOAc) to give the pyrrolidinyl (4) (30 mg, 57%) as a clear oil.

¹H NMR (CDCl₃, 400 MHz): 7.37-7.28 (m, 5H, ArH), 5.22-5.09 (m, 2H, CH₂Ph), 4.30 (dd, 1H, J = 1.4, 8.3, H-2), 4.24 (m, 1H, H-5), 3.70-3.57 (m, 3H, CH₂.OH), 2.25 (m, 1H), 2.13 (m, 1H), 1.92 (m, 1H), 1.70 (m, 1H), 1.34 (s, 9H, t-Bu).

-38-

EXAMPLE 5

To a solution of the alcohol (4) (50 mg, 0.149 mmol) and Et₃N (62 mL, 3 eq) in dry CH₂Cl₂ (0.8 mL) is added slowly, under N₂, at 0°C, a solution of SO₃.Pyridine complex (71 mg, 3 eq) in dry DMSO. The solution was stirred at 5 0°C for 30 minutes and 10% citric acid (2 mL) is added. The pH is brought to 4, and the aqueous phase is extracted with Et₂O (3x). The combined organic extracts were dried over MgSO₄. The solids were filtered and the solvents evaporated to give a crude oil which was purified by flash chromatography (silica gel, 10 7:3 Hex/EtOAc). The pure aldehyde (5) was obtained as a clear oil (45 mg, 90%).
¹H NMR (CDCl₃, 400 MHz): δ 9.68 + 9.56 (ds, 1H, CHO), 7.36-7.29 (m, 5H, ArH), 5.23-5.11 (m, 2H, CH₂Ph), 4.57-4.39 (m, 2H, H-2, H-5), 2.30-1.97 (m, 4H, H-3, H-4), 1.47 + 1.36 (2s, 9H, t-Bu).

EXAMPLE 6

To a solution of the aldehyde (5) (0.130 g) in methanol (2 mL) and acetonitrile (2 mL) was added potassium dihydrogen phosphate (13 mg), sodium chlorite (88 mg), and then hydrogen peroxide (50 µL). The mixture was stirred for 4 hours and then acidified with 1N HCl and extracted with ethyl acetate (2 × 50 mL). The organic extract was washed with brine (10 mL) and then dried over MgSO₄. Evaporation in vacuo afforded the required product evident as rotational isomers (6) (0.130 g). HPLC 17.23 minutes (98%) MeCN/H₂O (0.1 TFA) 76% H₂O to 24% H₂O in MeCN gradient.

¹H NMR (CDCl₃, 300 MHz): 7.37-7.28 (m, 5H, ArH), 5.26-5.06 (m, 2H, CH₂Ph), 4.62-4.38 (m, 2H, H-2, H-5), 2.35-1.97 (m, 4H, H-3, H-4), 1.45 + 1.34 (2s, 9H, t-Bu).

EXAMPLE 7

To a solution of the acid (6) in DMF (2 mL) was added diisopropylethylamine (0.130 mL), BOP-reagent (0.250 g), and then glycine, N-(3-phenylpropyl)- phenylmethyl ester (0.130 g, 1.23 eq). The mixture was stirred for 24 hours, diluted with ethyl acetate (50 mL), and washed with 1N HCl (20 mL) and then brine (20 mL). After drying over MgSO₄, the product was isolated by chromatography, eluant 50 ethyl acetate 50 hexane, to afford (7) (0.211 g, 92%). MS 614.

EXAMPLE 8

To a solution of (7) (0.210 g) in methanol (10 mL) was added palladium on carbon 10% (50 mg) and then a hydrogen balloon was attached. After 5 1.5 hours, the mixture was filtered and the filtrate evaporated in vacuo. The product was dissolved in DMF (3 mL) and treated with BOP-reagent (0.225 g). After stirring for 16 hours, the mixture was diluted with ethyl acetate (50 mL), washed with 1N HCl and brine (50 mL), dried over MgSO₄, filtered, and evaporated in vacuo. Purification by eluting through silica gel with ethyl acetate 10 affords the required product (8) (0.119 g).

1H NMR (CDCl₃, 300 MHz): 7.47-7.17 (m, 5H, ArH), 4.45 (t, J = 7.9 Hz, 1H, H-2), 4.26 (t, J = 7.5 Hz, 1H, H-5), 4.15 (dd, J = 16.6, 1.5 Hz, 1H, NCH₂, C=O), 3.76 (d, J = 16.6 Hz, 1H, NCH₂, C=O), 3.55 (m, 1H, NCH₂), 3.40 (m, 1H, NCH₂), 2.64 (t, J = 7.8 Hz, 2H, PhCH₂) 2.38 (m, 2H, H-3), 2.15 (m, 2H, H-4), 15 1.95 (m, 2H, PhCH₂CH₂), 1.47 (s, 9H).

-42-

EXAMPLE 9

To a solution of (8) (0.120 g, 0.323 mmol) in methylene chloride (2 mL) was added trifluoroacetic acid (2 mL). The mixture was stirred at room temperature for 3 hours and then evaporated in vacuo to afford (9) (0.100 g).

¹H NMR (CDCl₃, 300 MHz): 7.31-7.16 (m, 5H, ArH), 4.57 (t, J = 7.8 Hz, 1H, H-2), 4.31 (t, J = 7.3 Hz, 1H, H-5), 4.19 (d, J = 17.3 Hz, 1H, NCH₂, C=O), 3.94 (d, J = 16.6 Hz, 1H, NCH₂, C=O), 3.50 (m, 2H, NCH₂), 2.66 (t, J = 7.3 Hz, 2H, PhCH₂), 2.46 (m, 2H, H-3), 2.10 (m, 2H, H-4), 1.95 (m, 2H, PhCH₂CH₂).

EXAMPLE 10

To a solution of (9) (0.100 g) in DMF (2 mL) was added (14) (S)-N-
 · [[4-amino-5-oxo-5-thiazol-2-yl-pentyl]amino]aminomethyl]-4-methoxy-
 5 2,3,6-trimethyl-benzenesulfonamide, HCl (0.204 g) and BOP-reagent (0.172 g),
 and DIEA (0.22 mL). Stirred at room temperature for 2.5 hours, diluted with ethyl
 acetate (50 mL), washed with 1N HCl (50 mL) and brine (50 mL), and then dried
 over MgSO₄. Chromatography, eluant 95% ethyl acetate 5% methanol, on silica
 gel afforded the required compound (10) (0.165 g).

EXAMPLE 11

[6S-[6 α (R*),8 α]-1,4-Dioxo-2-(3-phenyl-propyl)-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [4-guanidino-1-(thiazol-2-carbonyl)-butyl]-amide

5

To a mixture of (10) (0.165 g) and thioanisole (0.2 mL) was added TFA (2 mL) and the mixture stirred for 2 hours. The mixture was evaporated and purified by reverse phase HPLC, eluting with 80% acetonitrile, 20% water containing 0.1% TFA. The appropriate fractions were combined and lyophilized to afford the required compound (11) (0.095 g).

10

HPLC 9.46 minutes (95%) MeCN/H₂O (0.1 TFA) 76% H₂O to 24% H₂O gradient.
MS (ES) 540.

15

¹H NMR (DMSO, 300 MHz): 8.65 (d, J = 7.1 Hz, 1H), 8.26 (d, J = 3.0 Hz, 1H), 8.18 (d, J = 3.0 Hz, 1H), 7.49 (m, 1H), 7.28-7.02 (m, 5H), 5.36 (m, 1H), 4.45 (t, J = 7.3 Hz, 1H), 4.24 (m, 2H), 3.71 (m), 3.44 (m, 1H), 3.27 (m, 1H), 3.12 (m, 1H), 2.52 (t, J = 6.9 Hz, 2H), 2.15 (m, 2H), 1.95 (m, 2H, H-4), 1.80-1.5 (m, 4H).

-45-

EXAMPLE 12

1,1-Dimethylethyl (S)-[4-[imino[(4-methoxy-2,3,6-trimethylphenyl)sulfonyl]amino]methyl]amino]-
5 1-[(methoxymethylamino)carbonyl]butyl]carbamate

To BocNH-Arg(MTR)-CO₂H (6.61 g, 13.6 mmol) in dichloromethane (33 mL) at 0°C was added N-methyl morpholine (1.65 mL, 15.0 mmol) then isobutyl chloroformate (1.95 mL, 15.0 mmol). Stirred at 0°C for 30 minutes. Added N,O-dimethyl amine HCl (1.5 g, 15.4 mmol) and N-methyl morpholine (1.65 mL, 15.0 mmol). Stirred at 0°C for 45 minutes. Diluted with ethyl acetate (150 mL), washed with 1N HCl (2 × 80 mL), brine (80 mL), dried with sodium sulfate, filtered, removed solvent in vacuo, and purified with silica gel column eluted with 80% ethyl acetate in hexane to 100% ethyl acetate. Isolated 4.85 g (67.5%) of product (12) as a white foam.

15 ¹H NMR (CDCl₃, 300 MHz): 6.52 (1H, s), 6.19 (2H, bs), 5.50 (1H, d, J = 9.0 Hz), 4.63 (1H, bs), 3.82 (3H, s), 3.72 (3H, s), 3.30 (1H, bs), 3.18 (3H, s), 3.15 (3H, s), 2.69 (3H, s), 2.61 (3H, s), 2.12 (3H, s), 1.50-1.75 (4H, m), 1.41 (9H, s).

CI MS M + 1 = 530, M + C₂H₅ = 558.

-46-

EXAMPLE 13

1,1-Dimethylethyl (S)-[4-[imino[[4-methoxy-
2,3,6-trimethylphenyl]sulfonyl]amino]methyl]amino]-
5 1-[(2-thiazolyl)carbonyl]butyl]carbamate

To thiazole (1.95 mL, 27.5 mmol) and TMEDA (3.8 mL, 25.2 mmol, distilled from sodium) in THF (65 mL, freshly distilled from potassium) at -78°C was added nBuLi in hexane (13.7 mL, 24.7 mmol, 1.8 M) at a rate that raised the internal temperature to -50°C. Placed reaction flask in dry ice/acetonitrile bath to give an internal temperature of -41°C. Stirred for 25 minutes, cooled to -78°C.

Added (12) (3.18 g, 6.0 mmol) in THF (33 mL) and stirred for 45 minutes. Poured reaction over a saturated ammonium chloride solution (200 mL, aqueous) and shook vigorously. Extracted with ethyl acetate (2 × 200 mL). Combined organic phases and washed with brine (150 mL), dried with sodium sulfate, filtered, removed solvent in vacuo, purified with silica gel column eluted with 70% ethyl acetate in hexane to 100% ethyl acetate. Isolated 3.1 g (93%) of product (13) as a white foam.

¹H NMR (CDCl₃, 300 MHz): 8.06 (1H, d, J = 3.00 Hz), 7.73 (1H, d, J = 3.00 Hz), 6.52 (1H, s), 6.19 (2H, bs), 5.63 (1H, d, J = 8.65 Hz), 5.38-5.52 (1H, m), 3.83 (3H, s), 3.50 (3H, bs), 3.19-3.31 (1H, m), 2.68 (3H, s), 2.60 (3H, s), 2.12 (3H, s), 1.50-1.75 (4H, m), 1.42 (9H, s).

-47-

CI MS M + 1 = 554, M + C₂H₅ = 582.

EXAMPLE 14

(S)-N-[{[4-Amino-5-oxo-5-(2-thiazolyl)pentyl]amino}iminomethyl]-4-methoxy-2,3,6-trimethyl-benzenesulfonamide

To (13) (3.0 g, 5.4 mmol) in dioxane (9 mL) was added ethyl methyl sulfide (2.3 mL, 25.4 mmol) then 4M HCl in dioxane (20 mL). Stirred at room temperature for 40 minutes. A yellow, gummy precipitate formed. Decanted the supernatant. Added ethyl acetate (40 mL) and stirred the gummy precipitate to change it to a fine granular precipitate. Isolated precipitate by filtration and washed thoroughly with ethyl acetate (150 mL) to give 3.0 g of product (14).

¹H NMR (d_6 DMSO, 400 MHz): 8.61 (3H, bs), 8.42 (2H, d, J = 3.13), 8.26 (2H, d, J = 3.13), 7.03 (1H, bs), 6.67 (1H, s), 6.50 (1H, bs), 4.95-5.05 (1H, m), 3.57 (3H, s), 3.00-3.10 (2H, m), 2.56 (3H, s), 2.47 (3H, s), 1.99 (3H, s), 1.97-2.03 (1H, m), 1.82-1.90 (1H, m), 1.40-1.60 (2H, m).

ES MS M + 1 = 454. [α]_D = +13.45°, (C = 2.52, MeOH).

The invention compounds have demonstrated thrombin inhibitory activity in the standard assays commonly employed by those skilled in the art.

Determination of Thrombin K_i

The affinity of inhibitors for thrombin was measured according to the procedures described in (DiMaio, et al., *J. Biol. Chem.*, 1990;265:21698). Inhibition of amidolytic activity of human thrombin was measured 5 fluorometrically using Tos-Gly-Pro-Arg-AMC as a fluorogenic substrate in 50 mM Tris-HCl buffer (pH 7.52 at 37°C) containing 0.1 M NaCl and 0.1% poly(ethylene glycol) 8000 at room temperature. Buffer substrate and inhibitor were mixed, and the reaction was initiated by adding the enzyme solution. Initial 10 velocities were recorded at several inhibitor and substrate concentrations. Kinetic parameters were determined by fitting the data to a general equation describing 15 enzyme inhibition (Segel, *Enzyme Kinetics*, Wiley Interscience Publications, 1993).

The hydrolysis of the substrate by thrombin was monitored on a Varian-Cary 2000% spectrophotometer in the fluorescence mode ($\lambda_{\text{ex}} = 383 \text{ nm}$, $\lambda_{\text{em}} = 455 \text{ nm}$) or on a Hitachi F2000 fluorescence spectrophotometer (16 $\lambda_{\text{ex}} = 383 \text{ nm}$, $\lambda_{\text{em}} = 455 \text{ nm}$), and the fluorescent intensity was calibrated using 20 AMC. The reaction reached a steady-state within 3 minutes after mixing thrombin with the substrate and an inhibitor. The steady-state velocity was then measured for a few minutes. The compounds of this invention were also preincubated with 25 thrombin for 20 minutes at room temperature before adding the substrate. The steady-state was achieved within 3 minutes and measured for a few minutes. The kinetic data (the steady-state velocity at various concentrations of the substrate and the inhibitors) of the competitive inhibition was analyzed using the methods described by Segel (1975). A nonlinear regression program, RNLIN in the IMSL library (IMSL, 1987), LMDER in MINPACK library (More, et al., 1980) or Microsoft Excel was used to estimate the kinetic parameters (K_m Vmax and K_i). 30

Determination of Factor Xa IC₅₀

The ability of compounds to act as inhibitors of Factor Xa catalytic activity is assessed by determination of that concentration of test substance that inhibits by 30 50% (IC₅₀) the ability of Factor Xa to cleave the chromogenic substrate

-49-

S2765 (N-CBz-D-Arg-L-Gly-L-Arg-p-nitroanilide•2 HCl). Typically, Factor Xa in 10 mM HEPES, 100 mM NaCl, 0.05% BSA, and 0.1% PEG-8000 and the test substance in DMSO are incubated for 60 minutes at room temperature. To this mixture is added S2765 and the velocity of S2765 hydrolysis measured by observing the intensity of absorbance at 405 nM over 5 minutes.

5 Determination of Trypsin IC₅₀

The ability of compounds to act as inhibitors of trypsin catalytic activity is assessed by determination of that concentration of test substance that inhibits by 50% (IC₅₀) the ability of trypsin to cleave the chromogenic substrate S2222 (N-Bz-L-Ile-L-Glu-L-Gly-L-Arg-p-nitroanilide•HCl). Typically, trypsin in 10 mM HEPES, 100 mM NaCl, 0.05% BSA, and 0.1% PEG-8000, and the test substance in DMSO are incubated for 60 minutes at room temperature. To this mixture is added S2222 and the velocity of S2222 hydrolysis measured by observing the intensity of absorbance at 405 nM over 5 minutes.

10 Arterial Thrombosis Model

FeCl₃_Induced Carotid Arterial Injury Model

The FeCl₃_induced injury to the carotid artery in rats was induced according to the method described by Kurz K.D., Main R.W., Sandusky G.E., Thrombosis Research, 1990;60:269-280 and Schumacher W.A., et al., J. Pharmacology and Experimental Therapeutics, 1993;267:1237-1242.

15 Male, Sprague-Dawley rats (375-410 g) were anesthetized with urethane (1500 mg/kg ip). Animals were laid on a 37°C heating pad. The carotid artery was exposed through a midline cervical incision. Careful blunt dissection was used to isolate the vessel from the carotid sheath. Using forceps, the artery was lifted to provide sufficient clearance to insert two small pieces of polyethylene tubing (PE-205) underneath it. A temperature probe (Physitemp MT23/3) was placed between one of the pieces of tubing and the artery. Injury was induced by topical application on the carotid artery above the temperature probe of a small disc (3 mm dia.) of Whatman No. 1 filter paper previously dipped in a 35% solution of

-50-

FeCl₃. The incision area was covered with aluminum foil in order to protect the FeCl₃ from degradation by light. The vessel temperature was monitored for 60 minutes after application of FeCl₃ as an indication of blood flow. Vessel temperature changes were recorded on a thermistor (Cole-Palmer

5 Model 08533-41).

The time between the FeCl₃ application and the time at which the vessel temperature decreased abruptly (>2.4°C) was recorded as the time to occlusion of the vessel. The fold shift in mean occlusion time (MOT), therefore, refers to the time to occlusion in drug-treated animal divided by control time to occlusion.

10 Inhibitor compounds were given as an IV bolus (0.75 mg/kg) followed immediately by an IV infusion (50 µg/kg/min via femoral vein).

Compound of Example	Ki Thrombin/nM	IC ₅₀ Factor Xa/nM	IC ₅₀ Trypsin/nM	Fold Shift in MOT
	11	3	30	<1
				>3.3

The foregoing biological data establish the compounds of this invention are useful for preventing and treating thrombotic disorders, for example, venous thrombosis, arterial thrombosis, pulmonary embolism, myocardial infarction, and

15 cerebral infarction. The compounds are thus well-suited to formulation for convenient administration to mammals for the prevention and treatment of such disorders. The following examples further illustrate typical formulations provided by the invention.

-51-

Formulation 1

Ingredient	Amount
[6S-[6 α [(R*)],8a α]]-2-[3-(3,4-Dichloro-phenyl)-propyl]-1,4-dioxo-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [2-benzothiazol-2-yl-1-(1-carbamimidoyl-piperidin-3-ylmethyl)-2-oxo-ethyl]-amide	200 mg
Sodium Benzoate	5 mg
Isotonic Saline	1000 mL

The above ingredients are mixed and dissolved in the saline for IV administration to a human suffering from, for example, arterial thrombosis.

Formulation 2

Ingredient	Amount
[6S-[6 α (R*),8a α]]-1,4-Dioxo-2-(3-phenyl-propyl)-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [1-(3-carbamimidoyl-benzyl)-2-(1-methyl-1H-benzoimidazol-2-yl)-2-oxo-ethyl]-amide	100 mg
Cellulose, Microcrystalline	400 mg
Stearic Acid	5 mg
Silicon Dioxide	10 mg
Sugar, Confectionery	50 mg

5 The ingredients are blended to uniformity and pressed into a tablet that is well-suited for oral administration to a human for preventing, for example, cerebral infarction.

-52-

Formulation 3

Ingredient	Amount
6S-[6 α [(R*)(trans)],8a α]-1,4-Dioxo-2-(3-phenyl-propyl)-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [2-benzothiazol-2-yl]-1-(4-amino-cyclohexyl)-2-oxo-ethyl]-amide	200 mg
Starch, Dried	250 mg
Magnesium Stearate	10 mg

The ingredients are combined and milled to afford material suitable for filling hard gelatin capsules administered to humans suffering from, for example, venous thrombosis.

-53-

CLAIMS

What is claimed is:

1. A compound according to Formula 1:

I

5 wherein:

B is either C=O or CH₂,

R¹ is selected from H, Cl, Br, I, F, NR²R³, OR₂, NO₂, CN, CF₃, C(=O)R², S(O)_p, R², CONHR², CO₂R², aryl, heterocycle;

10 R² is selected from H, C₁₋₆ alkyl;

R³ is selected from H, C₁₋₆ alkyl;

R⁴ is selected from H, C₁₋₆ alkyl optionally substituted by a group selected from R¹ and where the alkyl chain may be interrupted by one or more heteroatoms selected from O, N, S and so that the heteroatoms are not adjacent;

15 R⁵ is selected from H, C₁₋₆ alkyl optionally substituted by a group selected from R¹;

R⁶ is selected from H, C₁₋₆ alkyl optionally substituted by a group selected from R¹;

20 R⁷ is selected from H, C₁₋₆ alkyl, -(CH₂)_n-aryl;

A is selected from -(CH₂)₃(CH₂)_n-Y,

-54-

Y is selected from

-55-

Q is selected from **H**,

-56-

5

X is selected from O, NR⁴, S;

p is selected from 0 to 2;

n is selected from 0 to 4;

r is selected from 0 to 4;

and pharmaceutically acceptable salts and solvates thereof.

2. A compound according to the formula:

wherein:

- 10 R¹ is selected from H, Cl, Br, I, F, NR²R³, OR², NO₂, CN, CF₃, COR², S(O)_p, R², CONHR², CO₂R², aryl, heteroaryl;
- R² is selected from H, C₁₋₆ alkyl;

-57-

R^3 is selected from H, C₁₋₆ alkyl;

R^4 is selected from H, C₁₋₆ alkyl optionally substituted by a group selected from R^1 ;

R^7 is C₁₋₆ alkyl, -(CH₂)_n-aryl;

5 A is selected from -(CH₂)₃(CH₂)_n-Y,

Y is selected from

-58-

Q is selected from

5

X is NR⁴, S, or O;

p is 1 or 2;

n is selected from 0 to 2, and

r is selected from 0 to 4;

10 and pharmaceutically acceptable salts and solvates thereof.

3. A compound according to Claim 2 wherein:

B is C=O;

-59-

R¹ is selected from H, Cl, Br, I, F, NR²R³, OR³, NO₂, CN, CF₃,

C(=O)R³, S(O)_p, R³, CONHR³, CO₂R³, aryl, pyridinyl,

imidazolyl, thiophenyl, furanyl, indolyl, pyrimidinyl, pyrrolyl;

R² is H;

5 R⁵ is H;

R⁶ is H;

R⁷ is C₁₋₆ alkyl, -(CH₂)_n-aryl;

A is selected from -(CH₂)₃(CH₂)_n-Y,

10

-60-

Y is selected from

Q is selected from

5

4. A compound according to Claim 3 wherein:

R⁴ -(CH₂)₂(CH₂)_n-aryl;

-61-

A is selected from $-(CH_2)_3-(CH_2)_n-Y$,

Q is selected from H,

5

X is NMe, S, or O; and

n is selected from 0 to 2.

-62-

5. A compound according to Claim 4 and selected from:

[6S-[6 α (R*),8a α]]-1,4-Dioxo-2-(3-phenyl-propyl)-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [4-guanidino-1-(thiazol-2-carbonyl)-butyl]-amide,

5 [6S-[6 α (R*),8a α]]-1,4-Dioxo-2-(3-phenyl-propyl)-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [1-(benzothiazol-2-carbonyl)-4-guanidino-butyl]-amide,

10 [6S-[6 α (R*),8a α]]-1,4-Dioxo-2-(3-phenyl-propyl)-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [4-guanidino-1-(1-methyl-1H-benzoimidazol-2-carbonyl)-butyl]-amide,

[6S-[6 α (R*),8a α]]-2-[3-(3,4-Dichloro-phenyl)-propyl]-1,4-dioxo-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [4-guanidino-1-(thiazol-2-carbonyl)-butyl]-amide,

15 [6S-[6 α (R*),8a α]]-2-[3-(3,4-Dichloro-phenyl)-propyl]-1,4-dioxo-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [1-(benzothiazol-2-carbonyl)-4-guanidino-butyl]-amide,

[6S-[6 α (R*),8a α]]-2-[3-(3,4-Dichloro-phenyl)-propyl]-1,4-dioxo-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [4-guanidino-1-(1-methyl-1H-benzoimidazol-2-carbonyl)-butyl]-amide,

20 [6S-[6 α (R*),8a α]]-2-(3-Naphthalen-1-yl-propyl)-1,4-dioxo-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [4-guanidino-1-(thiazol-2-carbonyl)-butyl]-amide,

25 [6S-[6 α (R*),8a α]]-2-(3-Naphthalen-1-yl-propyl)-1,4-dioxo-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [1-(benzothiazol-2-carbonyl)-4-guanidino-butyl]-amide,

[6S-[6 α (R*),8a α]]-2-(3-Naphthalen-1-yl-propyl)-1,4-dioxo-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [4-guanidino-1-(1-methyl-1H-benzoimidazol-2-carbonyl)-butyl]-amide,

30 [6S-[6 α [R*(R*)],8a α]]-1,4-Dioxo-2-(3-phenyl-propyl)-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [1-(1-carbamimidoyl-piperidin-3-ylmethyl)-2-oxo-2-thiazol-2-yl-ethyl]-amide,

-63-

- [6S-[6 α [R*(R*)],8a α]]-1,4-Dioxo-2-(3-phenyl-propyl)-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [2-benzothiazol-2-yl-1-(1-carbamimidoyl-piperidin-3-ylmethyl)-2-oxo-ethyl]-amide,
- 5 [6S-[6 α [R*(R*)],8a α]]-1,4-Dioxo-2-(3-phenyl-propyl)-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [1-(1-carbamimidoyl-piperidin-3-ylmethyl)-2-(1-methyl-1H-benzoimidazol-2-yl)-2-oxo-ethyl]-amide,
- 10 [6S-[6 α [R*(R*)],8a α]]-2-[3-(3,4-Dichloro-phenyl)-propyl]-1,4-dioxo-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [1-(1-carbamimidoyl-piperidin-3-ylmethyl)-2-oxo-2-thiazol-2-yl-ethyl]-amide,
- 15 [6S-[6 α [R*(R*)],8a α]]-2-[3-(3,4-Dichloro-phenyl)-propyl]-1,4-dioxo-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [2-benzothiazol-2-yl-1-(1-carbamimidoyl-piperidin-3-ylmethyl)-2-oxo-ethyl]-amide,
- 20 [6S-[6 α [R*(R*)],8a α]]-2-[3-(3,4-Dichloro-phenyl)-propyl]-1,4-dioxo-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [1-(1-carbamimidoyl-piperidin-3-ylmethyl)-2-(1-methyl-1H-benzoimidazol-2-yl)-2-oxo-ethyl]-amide,
- 25 [6S-[6 α [R*(R*)],8a α]]-2-(3-Naphthalen-1-yl-propyl)-1,4-dioxo-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [1-(1-carbamimidoyl-piperidin-3-ylmethyl)-2-oxo-2-thiazol-2-yl-ethyl]-amide,
- 30 [6S-[6 α (R*),8a α]]-1,4-Dioxo-2-(3-phenyl-propyl)-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [1-(3-carbamimidoyl-benzyl)-2-oxo-2-thiazol-2-yl-ethyl]-amide,

-64-

- [6S-[6 α (R*),8a α]]-1,4-Dioxo-2-(3-phenyl-propyl)-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [2-benzothiazol-2-yl-1-(3-carbamimidoyl-benzyl)-2-oxo-ethyl]-amide,
- [6S-[6 α (R*),8a α]]-1,4-Dioxo-2-(3-phenyl-propyl)-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [1-(3-carbamimidoyl-benzyl)-2-(1-methyl-1H-benzoimidazol-2-yl)-2-oxo-ethyl]-amide,
- [6S-[6 α (R*),8a α]]-2-[3-(3,4-Dichloro-phenyl)-propyl]-1,4-dioxo-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [1-(3-carbamimidoyl-benzyl)-2-oxo-2-thiazol-2-yl-ethyl]-amide,
- [6S-[6 α (R*),8a α]]2-[3-(3,4-Dichloro-phenyl)-propyl]-1,4-dioxo-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [2-benzothiazol-2-yl-1-(3-carbamimidoyl-benzyl)-2-oxo-ethyl]-amide,
- [6S-[6 α (R*),8a α]]-2-[3-(3,4-Dichloro-phenyl)-propyl]-1,4-dioxo-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [1-(3-carbamimidoyl-benzyl)-2-(1-methyl-1H-benzoimidazol-2-yl)-2-oxo-ethyl]-amide,
- [6S-[6 α (R*),8a α]]-2-(3-Naphthalen-1-yl-propyl)-1,4-dioxo-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [1-(3-carbamimidoyl-benzyl)-2-oxo-2-thiazol-2-yl-ethyl]-amide,
- [6S-[6 α (R*),8a α]]-2-(3-Naphthalen-1-yl-propyl)-1,4-dioxo-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [2-benzothiazol-2-yl-1-(3-carbamimidoyl-benzyl)-2-oxo-ethyl]-amide,
- [6S-[6 α (R*),8a α]]-2-(3-Naphthalen-1-yl-propyl)-1,4-dioxo-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [1-(3-carbamimidoyl-benzyl)-2-(1-methyl-1H-benzoimidazol-2-yl)-2-oxo-ethyl]-amide,
- [6S-[6 α [R*(trans)],8a α]]-1,4-Dioxo-2-(3-phenyl-propyl)-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [1-(4-amino-cyclohexyl)-2-oxo-2-thiazol-2-yl-ethyl]-amide,
- [6S-[6 α [R*(trans)],8a α]]-1,4-Dioxo-2-(3-phenyl-propyl)-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [2-benzothiazol-2-yl-1-(4-amino-cyclohexyl)-2-oxo-ethyl]-amide,

-65-

- [6S-[6 α [(trans)],8 α]]-1,4-Dioxo-2-(3-phenyl-propyl)-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [1-(4-amino-cyclohexyl)-2-(1-methyl-1H-benzoimidazol-2-yl)-2-oxo-ethyl]-amide,
- [6S-[6 α (R*),8 α]]-1,4-Dioxo-2-(3-phenyl-propyl)-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [1-(1-carbamimidoyl-piperidin-4-yl)-2-oxo-2-thiazol-2-yl-ethyl]-amide,
- [6S-[6 α (R*),8 α]]-1,4-Dioxo-2-(3-phenyl-propyl)-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid, and [2-benzothiazol-2-yl-1-(1-carbamimidoyl-piperidin-4-yl)-2-oxo-ethyl]-amide,
- [6S-[6 α (R*),8 α]]-1,4-Dioxo-2-(3-phenyl-propyl)-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid [1-(1-carbamimidoyl-piperidin-4-yl)-2-(1-methyl-1H-benzoimidazol-2-yl)-2-oxo-ethyl]-amide,
- Octahydro-N-[[1-[(hydroxyamino)iminomethyl]-4-piperidinyl]methyl]-1,4-dioxo-2-(3-phenylpropyl) pyrrolo[1,2-a]pyrazine-6-carboxamide,
- 1,4-Dioxo-2-(3-phenyl-propyl)-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid (1-carbamimidoyl-piperidin-4-ylmethyl)-amide,
- 1,4-Dioxo-2-(3-phenyl-propyl)-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid (1-(4-formylamino-cyclohexyl)-2-oxo-2-thiazol-2-yl-ethyl)-amide,
- ({4-[1-({2-[3-(3,4-Dichloro-phenyl)-propyl]-1,4-dioxo-octahydro-pyrrolo[1,2-a]pyrazine-6-carbonyl}-amino)-2-oxo-2-thiazol-2-yl-ethyl]-piperidin-1-yl}-imino-methyl)-carbamic acid ethyl ester, and
- 1,4-Dioxo-2-(3-phenyl-propyl)-octahydro-pyrrolo[1,2-a]pyrazine-6-carboxylic acid {1-[1-(imino-propionylamino-methyl)-piperidin-4-yl]-2-oxo-2-thiazol-2-yl-ethyl}-amide.
6. A method for the treatment or prophylaxis of thrombotic disorders in a mammal comprising administering to said mammal an effective amount of a compound according to Claim 1.

-66-

7. A method according to Claim 6, wherein said disorder is venous thrombosis.
8. A method according to Claim 6, wherein said disorder is arterial thrombosis.
- 5 9. A method according to Claim 6, wherein said disorder is pulmonary embolism.
10. A method according to Claim 6, wherein said disorder is myocardial infarction.
11. A method according to Claim 6, wherein said disorder is cerebral infarction.
- 10 12. A method according to Claim 6, wherein said disorder is restenosis.
13. A method according to Claim 6, wherein said disorder is cancer.
14. A pharmaceutical formulation comprising a compound of Claim 1 admixed with a carrier, diluent, or excipient.
- 15 15. A pharmaceutical formulation comprising a compound of Claim 2 together with a carrier, diluent, or excipient.
16. A pharmaceutical formulation comprising a compound of Claim 3 together with a carrier, diluent, or excipient.
17. A method for inhibiting serine proteases comprising administering to a 20 mammal an effective amount of serine protease inhibitor of Claim 1.
18. A method according to Claim 17, wherein said serine protease is thrombin.

-67-

19. A method according to Claim 17, wherein said serine protease is Factor Xa.
20. A method according to Claim 17, wherein said serine protease is Factor VIIa.

INTERNATIONAL SEARCH REPORT

Intern. Application No
PCT/US 97/09832

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C07D487/04 A61K31/505

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 C07D A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,X	WO 96 19483 A (IAF BIOCHEM INT ;DIMAO JOHN (CA); SIDDIQUI M ARSHAD (CA); GILLARD) 27 June 1996 see claim 1 ---	1-20
A	WO 93 23404 A (IMMUNOPHARMACEUTICS INC ;CHAN MING FAI (US); BALAJI VITUKUDI NARAY) 25 November 1993 cited in the application see claim 1 ---	1-5
A	US 4 929 270 A (CARDELLINA II JOHN H ET AL) 29 May 1990 cited in the application see claim 1 ---	1-5
		-/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

1

Date of the actual completion of the international search

Date of mailing of the international search report

17 September 1997

02. 10. 97

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl.
Fax (+ 31-70) 340-3016

Authorized officer

Gettins, M

INTERNATIONAL SEARCH REPORT

Internat'l Application No
PCT/US 97/09832

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	DE 23 54 056 A (LEPETIT SPA) 16 May 1974 cited in the application see claim 1 -----	1-5

1

INTERNATIONAL SEARCH REPORT

Information on patent family members

Intern al Application No
PCT/US 97/09832

Patent docu- cited in search	Publication date	Patent family member(s)		Publication date
WO 9619483 A	27-06-96	AU	4062795 A	27-06-96
		AU	4062895 A	04-07-96
		AU	4250596 A	10-07-96
		AU	4250896 A	10-07-96
		WO	9619491 A	27-06-96
		ZA	9510960 A	09-07-96
		ZA	9510961 A	09-07-96
-----	-----	-----	-----	-----
WO 9323404 A	25-11-93	AU	4376893 A	13-12-93
		US	5543521 A	06-08-96
-----	-----	-----	-----	-----
US 4929270 A	29-05-90	NONE		-----
-----	-----	-----	-----	-----
DE 2354056 A	16-05-74	AR	206504 A	30-07-76
		AT	336028 A,B	12-04-77
		AT	336622 B	10-05-77
		AU	475776 B	02-09-76
		AU	6141773 A	17-04-75
		BE	806827 A	15-02-74
		FR	2205323 A	31-05-74
		GB	1409185 A	08-10-75
		JP	49076896 A	24-07-74
		LU	68719 A	08-01-74
		NL	7314665 A	07-05-74
		US	3920660 A	18-11-75
		ZA	7307653 A	28-08-74
-----	-----	-----	-----	-----