FACTORIZATION MACHINE: MODEL, OPTIMIZATION AND APPLICATIONS

Yang LIU

Email: yliu@cse.cuhk.edu.hk

Supervisors: Prof. Andrew Yao

Prof. Shengyu Zhang

OUTLINE

- Factorization machine (FM)
 - A generic predictor
 - Auto feature interaction
- Learning algorithm
 - Stochastic gradient descent (SGD)
 - •
- Applications
 - Recommendation systems
 - Regression and classification
 - •

DouBan movie

PREDICTION TASK

\bigcap	Feature vector x											Target y									
x ⁽¹⁾	1	0	0		1	0	0	0		0.3	0.3	0.3	0		13	0	0	0	0		5 y ⁽¹⁾
X ⁽²⁾	1	0	0		0	1	0	0		0.3	0.3	0.3	0		14	1	0	0	0		3 y ⁽²⁾
x ⁽³⁾	1	0	0		0	0	1	0		0.3	0.3	0.3	0		16	0	1	0	0		1 y ⁽²⁾
X ⁽⁴⁾	0	1	0		0	0	1	0		0	0	0.5	0.5		5	0	0	0	0		4 y ⁽³⁾
X ⁽⁵⁾	0	1	0		0	0	0	1		0	0	0.5	0.5		8	0	0	1	0		7
X ⁽⁶⁾	0	0	1		1	0	0	0		0.5	0	0.5	0		9	0	0	0	0		
X ⁽⁷⁾	0	0	1		0	0	1	0		0.5	0	0.5	0		12	1	0	0	0		
	Α	B Us	C ser		П	NH I	SW Movie	ST		TI Otl	NH ner M	SW lovie	ST s rate	ed	Time	۳			ST e rate	 ed	

o e.g. Alice rates Titanic 5 at time 13

PREDICTION TASK

- Format: $y(x): \mathbb{R}^n \to T$
 - $T = \mathbb{R}$ for regression,
 - $T = \{+1, -1\}$ for classification
- Training set: $Tr = \{(x^1, y^1), (x^2, y^2) \dots \}$
- Testing set: $Te = \{x_1, x_2, ...\},\$
- Objective: to predict $\{y(x_1), y(x_2), ...\}$

Linear Model – Feature Engineering

• Linear SVM

$$\hat{y}(x) = w_0 + w^T x$$

Logistic Regression

FACTORIZATION MODEL

Linear:
$$\hat{y}(x) := w_0 + \sum_{i=1}^n w_i x_i$$

FM:
$$\hat{y}(x) := w_0 + \sum_{i=1}^n w_i x_i + \sum_{i=1}^n \sum_{j=i+1}^n \langle v_i, v_j \rangle x_i x_j$$

Interaction between variables

- o Model parameters $\Theta = \{w_0, w_1, \dots w_n, v_1, \dots, v_n\}$
 - $v_i \in \mathbb{R}^k$, i = 1, ..., n, where
- k is the inner dimension

$$w_{i,j} = \langle v_i, v_j \rangle$$

$$w_{i,j} = \langle v_i, v_j \rangle$$

$$w_{i,j} = \langle v_i, v_j \rangle$$

$$w_{i,j} = \langle v_i, v_j \rangle$$

$$w_{i,j} = \langle v_i, v_j \rangle$$

$$\hat{y}(x) \coloneqq w_0 + \sum_{i=1}^n w_i x_i + \sum_{i=1}^n \sum_{j=i+1}^n \langle v_i, v_j \rangle x_i x_j$$

$$w_{i,j} = \langle v_i, v_j \rangle$$

$$\hat{y}(x) := w_0 + \sum_{i=1}^n w_i x_i + \sum_{i=1}^n \sum_{j=i+1}^n \langle v_i, v_j \rangle x_i x_j$$

$$w_{i,j} = \langle v_i, v_j \rangle$$

$$\hat{y}(x) \coloneqq w_0 + \sum_{i=1}^n w_i x_i + \sum_{i=1}^n \sum_{j=i+1}^n \langle v_i, v_j \rangle x_i x_j$$

$$w_{i,j} = \langle v_i, v_j \rangle$$

Factorization

$$\hat{y}(x) \coloneqq w_0 + \sum_{i=1}^n w_i x_i + \sum_{i=1}^n \sum_{j=i+1}^n \langle v_i, v_j \rangle x_i x_j$$

$$\sum_{i=1}^{n} \sum_{j=i+1}^{n} \langle v_i, v_j \rangle x_i x_j$$

$$w_{i,j} = \langle v_i, v_j \rangle$$

Machine

Factorization

$$\hat{y}(x) \coloneqq w_0 + \sum_{i=1}^n w_i x_i + \sum_{i=1}^n \sum_{j=i+1}^n \langle v_i, v_j \rangle x_i x_j^*$$

FM: PROPERTIES

$$\hat{y}(x) := w_0 + \sum_{i=1}^n w_i x_i + \sum_{i=1}^n \sum_{j=i+1}^n \langle v_i, v_j \rangle x_i x_j$$
$$= w_0 + w^T x + \frac{1}{2} x^T (VV^T - diag(VV^T)) x$$

• Expressiveness:

• $\forall W \in \mathbb{R}^{n \times n} \geqslant 0, \exists V \in \mathbb{R}^{n \times k} \text{ s.t. } W = VV^T$

• Feature dependency:

• $w_{i,j} = \langle v_i, v_j \rangle$ and $w_{j,k} = \langle v_j, v_k \rangle$ are dependent

• Linear computation complexity:

• *O*(*kn*)

OPTIMIZATION TARGET

- o Min ERROR
- Min ERROR + Regularization

$$OPT = \underset{\Theta}{\operatorname{argmin}} \left(\sum_{(x,y) \in Tr} l(\hat{y}(x|\Theta), y) + \sum_{\theta \in \Theta} \lambda_{\theta} \theta^{2} \right)$$

- Loss function
 - $l(y_1, y_2) = (y_1 y_2)^2$
 - $l(y_1, y_2) = \ln(1 + \exp(-y_1 y_2))$

STOCHASTIC GRADIENT DESCENT (SGD)

• For item (x, y), update θ by:

$$\bullet \theta \leftarrow \theta - \eta \left(\frac{\partial}{\partial \theta} l(\hat{y}(x), y) + 2\lambda_{\theta} \theta \right)$$

- θ_0 : initial value of θ
- η : learning rate
- λ_{θ} : regularization

• Pros

- Easy to implement
- Fast convergence on big training data

Cons

- Parameter tuning
- Sequential method

APPLICATIONS

- EMI Music Hackathon 2012
 - Song recommendation **T** doubar lost fm
- Given:
 - Historical ratings
 - User demographics
- # features: 51K
- # items in training: 188K

	A	В	С	D	E	
1	Artist	Track	User	Rating	Time	
2	40	179	47994	9	17	
3	9	23	8575	58	7	
4	46	168	45475	13	16	
5	11	153	39508	42	15	
6	14	32	11565		19	
7	31	79	27130		11	
8	21	48	19623	?	21	
9	2	174	47505		17	
10	12	34	15290		8	
11	28	73	24151	70	22	
12	0	151	40578	32	15	

RESULTS FOR EMI MUSIC

- FM: Root Mean Square Error (RMSE) 13.27626
 - Target value [0,100]
 - The best (SVD++) is 13.24598
- Details
 - Regression
 - Converges in 100 iterations
 - Time for each iteration: < 1 s
 - Win 7, Intel Core 2 Duo CPU 2.53GHz, 6G RAM

OTHER APPLICATIONS

- Ads CTR prediction (KDD Cup 2012)
 - Features
 - User_info, Ad_info, Query_info, Position, etc.
 - # features: 7.2M
 - # items in training: 160M
 - Classification
 - Performance:
 - AUC: 0.80178, the best (SVM) is 0.80893

OTHER APPLICATIONS

HiCloud App Recommendation

- Features
 - App_info, Smartphone model, installed apps, etc.
- # features: 9.5M
- # items in training: 16M
- Classification
- Performance:
 - o Top 5: 8%, Top 10: 18%, Top 20: 32%; AUC: 0.78

SUMMARY

- FM: a general predictor
- Works under sparsity
- Linear computation complexity
- Estimates interactions automatically
- Works with any real valued feature vector

THANKS!