DSC 214 Topological Data Analysis Final Remarks

Instructor: Zhengchao Wan

What we've learned

- Persistent homology fundamental concept in TDA
 - Persistent homology for PCD homology inference
 - Noise handling and data sparsification
 - Machine learning with PH vectorization, kernel, NN, topological prior

- Other topics
 - Mapper and Reeb graph topological summary of large data
 - DMT a combinatorial Morse theory complementing TDA

Other research topics in TDA

Multiparameter persistence

Multiparameter persistence

Decomposition can be very complicated

Read more in Dey and Wang's book

Beyond homology

Homology is not strong enough to tell apart different homotopy types

- Some stronger topological invariants
 - Homotopy group [Mémoli, Zhou 2022]
 - Cohomology rings [Mémoli, Stefanou and Zhou 2022]

Persistent Laplacian - a spectral approach to TDA

- Graph Laplacian can recover the number of connected components in a graph
- Higher dimensional Laplacian can recover higher dimensional Betti number
- Persistent Laplacian can recover persistence Betti number

Check out [Mémoli, W., Wang 2022]

Final project

- Due June 15, 2023 (Thursday)
- Final report (4+ pages): describe the motivation of your project, what you have done, and your findings.
- Survey (10+ pages): identify the problem, describe the motivation, and methods used in the literature, compare these methods, identify drawbacks in these methods/possible future directions
- A 10-min video recorded via zoom (send me the link)

FIN