计算机组成原理与系统结构

第五章 存储体系

http://www.icourses.cu/coursestatic/course_2859.html

1.MIPS 的内存映射

- ■程序中访问的地址,范围在系统提供给用户 使用的地址空间中,称之为虚拟地址。
- ■物理地址是硬件结构中存储器的实际地址。
- ■虚拟地址空间大于物理地址空间
- ■内存管理单元 MMU 完成虚拟地址到物理地址的转换工作。

MIPS 的 4k 处理器核支持的三种运行模

1. 用户模式 (user mode)

■用户模式用于应用程序。用户模式下只能访问 kuseg 段,使用有限的 CPO 功能。如果在用户模式下访问 0x80000000-0xFFFFFFF 地址,则产生一个异常。

2. 内核模式 (kernel mode)

■内核模式用于处理异常和具有优先权的操作系统函数,包括协处理器 CP0 管理和 I/O 设备接入

3. 调试模式 (debug mode)

■用于软件调试

MIPS的4k处理器核支持的三种运行模

0xFFFFFFF			kseg3	0xF4000000
		kseg3	dseg	
0xE0000000			kseg3	0xF1FFFFFF
0xDFFFFFFF				
		kseg2	kseg2	
0xC0000000				
0xBFFFFFF				
		kseg 1	kseg 1	
0xA0000000		KSCG 1	K50g I	
0x40000000 0x9FFFFFFF				
		lraag0	1raag0	
		kseg0	kseg0	
0x80000000 0x7FFFFFF				
UX/FFFFFF				
	User Space	kuseg		
		Ruseg	kuseg	
	用户空间			
0x00000000				

用户模式 内核模式 调试模式

■MIPS存储器按字节编址,大端模式(高地址放低字节),数据要求字边界对齐,只能通过load/store 指令来访问存储器数据。

kuseg:

0xFFFFFFF	
kseg2	Kernel Space mapped Cached 映射的,缓存的
0xC0000000	
0xBFFFFFF	
kseg1	Kernel Space Unmapped Uncached
0xA0000000	非映射的,非缓存的
0x9FFFFFFF kseg0	Kernel Space Unmapped Cached 非映射的,缓存的
0x7FFFFFFF	
kuseg	User Space 用户空间
0x00000000	

kseg0:

0

- ②在没有 MMU 的系统中,该段空间用于存放大多数程序和数据。
- ③在有 MMU 的系统中,该段空间存放操作系统内核,如内核代码段,或者内核中的堆栈。

0xFFFFFFF	
kseg2	Kernel Space mapped Cached
	映射的,缓存的
0xC0000000	
0xBFFFFFF	
kseg1	Kernel Space Unmapped Uncached
0xA0000000	非映射的,非缓存的
0x9FFFFFFF kseg0	Kernel Space Unmapped Cached
0x80000000	非映射的,缓存的
0x7FFFFFFF	
kuseg	User Space 用户空间
0x00000000	

kseg1:

- ① (0xA0000000-0xBFFFFFFF) 51 2MB,仅限于内核模式可访问。
- ②kseg0 和 kseg1 这两段空间逻辑地址到物理地址的映射关系都不通过MMU,而是由硬件直接确定,且两段空间对应的物理空间重叠。区别是 kseg0 使用高速缓存,kseg1 不使用高速缓存,因此软件访问 kseg1 时速度比较慢,但是,对于硬件 I/O 寄存器来说,不存在 Cache 一致性问题。
- ③刚上电时,MMU和Cache均未初始化,因为kseg1不使用高速缓存,所以kseg1是唯一在系统启动时能正常工作的内存映射空间。MIPS的程序上电启动地址即入口向量 0xBFC00000 位于kseg1内,入口向量的物理地址是 0x1FC00000 。

0xFFFFFFF	
kseg2	Kernel Space mapped Cached
	映射的,缓存的
0xC0000000	
0xBFFFFFF kseg1	Kernel Space Unmapped Uncached 非映射的,非缓存的
0xA0000000	11-15人分り口り, 11-5人1十口り
0x9FFFFFFF kseg0	Kernel Space Unmapped Cached
0x80000000	非映射的,缓存的
0x7FFFFFFF	
kuseg	User Space
	用户空间
0x00000000	

2、MIPS的内存映射

kseg2:

- ②逻辑地址通过 MMU 映射到物理地址。
- ③有时候会看到在 MIPS 系统中 kseg2 被分成两等分,分别称为 kseg2 和 kseg3,两等分中的低半部分 kseg2 对于监管者模式可谓证据

0 PEPEPPP	
0xFFFFFFF	
kseg2	Kernel Space mapped Cached
	映射的,缓存的
0xC0000000	
0xBFFFFFF	
kseg1	Kernel Space Unmapped Uncached
0xA0000000	非映射的,非缓存的
0x9FFFFFFF kseg0	Kernel Space Unmapped Cached
0x80000000	」 非映射的,缓存的
0x7FFFFFFF	
lmaa a	
kuseg	User Space
	用户空间
0x00000000	