Работа 5.4.2

Исследование энергетического спектра β - частиц и определение их максимальной энергии при помощи магнитного спектрометра

Богданов Александр Б05-003

9 ноября 2022 г.

Цель работы: исследовать энергетический спектр β - частиц при распаде ядер $^{137}\mathrm{Cs}$ и определить их максимальную энергию при помощи магнитного спектрометра.

В работе используются: магнитный спектрометр с «короткой линзой», высоковольтный и низковольтный выпрямители, форвакуумный насос и вакуумметр, ЭВМ.

Теоретические положения:

Бета-распад – это самопроизвольное превращение ядер, при котором их массовое число не изменяется, а заряд изменяется на единицу. В данной работе будет электронный распад:

$$_{Z}^{A}X \rightarrow_{Z+1}^{A}X + e^{-} + \widetilde{\nu}$$

Освобождающаяся в результате распада энергия делится между исходным ядром, электроном и нейтрино. При этом доля энергии, уносимая ядром крайне мала, так что вся энергия делится между нейтрино и электроном. Поэтому электроны могут иметь любую энергию от нулевой до некоторой максимальной энергии, высвобождаемой при распаде.

Вероятность $d\omega$ того, что электрон вылетит с импульсом d^3p , а нейтрино с импульсом d^3k равна произведению этих дифференциалов, но мы должны учесть также закон сохранения энергии:

$$E_e - E - ck = 0,$$

где E_e - максимальная энергия электрона.

Кинетическая энергия электрона связана с импульсом обычным образом:

$$E = c\sqrt{p^2 + m^2c^2} - mc^2$$

Таким образом, вероятность $d\omega$ принимает вид:

$$d\omega = D\delta(E_e - E - ck)p^2dpk^2dkd\Omega_e d\Omega_{\widetilde{\nu}},$$

где D - коэффициент пропорциональности, $d\Omega_e, d\Omega_{\widetilde{\nu}}$ - элементы телесных углов направлений вылета электрона и нейтрино.

Проинтегрируем по всем углам и по абсолютному значению импульса нейтрино. Тогда:

$$dN = \frac{16\pi^2 N_0}{c^2} Dp^2 (E_e - E)^2 dp$$

Получим распределение электронов по энергиям:

$$dE = \frac{c^{2}p}{E + mc^{2}}dp$$

$$\frac{dN}{dE} = N_{0}\frac{16\pi^{2}}{c^{4}}D\sqrt{E(E + 2mc^{2})}(E_{e} - E)^{2}(E + mc^{2})$$

В нерелятивистском случае выражение упрощается и принимает вид:

$$\frac{dN}{dE} \simeq \sqrt{E}(E_e - E)^2$$

Форма спектра β - частиц при разрешенных переходах:

Дочерние ядра, возникающие в результате β - распада, нередко оказываются возбуждёнными. Возбуждённые ядра отдают свою энергию либо излучая гамма-квант, либо передавая избыток энергии одному из электронов с внутренних оболочек атома. Такие электроны имеют строго определённую энергию и называются конверсионными. Ширина монохроматической линии, соответствующая конверсионным электронам, определяет разрешающую силу спектрометра.

Экспериментальная установка:

Радиоактивный источник ¹³⁷Cs помещен внутрь откачанной трубы. Электроны, сфокусированные магнитной линзой, попадают в счетчик. В газоразрядном счетчике они инициируют газовый разряд и тем самым приводят к появлению электрических импульсов на его электродах, которые затем регистрируются пересчетным прибором. В результате попадания электронов в сцинтиллятор на выходе фотоумножителя появляются электрические импульсы, которые заносятся в память персонального компьютера и выводятся на экран монитора.

Энергию β -частиц определяют с помощью β - спектрометров. В работе используется магнитный спектрометр с «короткой линзой». Электроны, испускаемые радиоактивным источником, попадают в магнитное поле катушки, ось которой параллельна оси ОZ. Траектории электронов в магнитном поле представляют собой схематически показанные на рисунке сложные спирали, сходящиеся за катушкой в фокусе, расположенном на оси ОZ.

Как показывает расчет, для заряженных частиц тонкая катушка эквивалентна линзе. Ее фокусное расстояние f зависит от импульса электронов p_e и от силы тока I, протекающего через катушку следующим образом:

$$\frac{1}{f} \propto \frac{I^2}{p_e^2}$$

При заданной силе тока на входное окно счетчика фокусируются электроны с определенным импульсом. При изменении тока в катушке на счетчик последовательно фокусируются электроны с разными импульсами. Так как геометрия прибора в течение всего опыта остается неизменной, импульс сфокусированных электронов пропорционален величине тока I:

$$p_e = kI$$
,

где k — константа прибора, которая определяется по какой-нибудь известной конверсионной линии.

Величина Δp_e — ширина интервала импульсов, регистрируемых при заданном значении тока, называется разрешающей способностью β - спектрометра. Рассмотрим теперь связь между числом частиц, регистрируемых установкой, и функций $W(p_e) = dN/dp_e$:

$$N(p_e) \simeq W(p_e) \Delta p_e$$

Найдем Δp_e :

$$\Delta p_e = \frac{1}{2} \frac{\Delta f}{f} p_e$$

Таким образом, ширина интервала Δp_e , регистрируемого спектрометром, пропорциональна величине импульса. Получим окончательно:

$$N(p_e) = CW(p_e)p_e,$$

где C — некоторая константа.

Ход работы:

- 1. Откачаем воздух из полости спектрометра, включим ПЭВ, включим формирователь импульсов и питание магнитной линзы.
- 2. Проведем измерение β спектра, изменяя ток в магнитной линзе от нуля до максимального значения через 0,2 А. При каждом значении тока будем измерять частоту попадания частиц в детектор за 80 секунд.

Ν	I, A	N, 1/c	N - N_φ, 1/c	ср, кэВ	Т, кэВ	sqrt(N - N_φ)/(cp)^(3/2) * 10^6
1	0,00	2,374	-0,101	0,0	0,0	0,0
2	0,20	2,612	0,137	64,0	4,0	722,0
3	0,40	2,637	0,162	128,0	15,8	277,7
4	0,60	2,662	0,187	192,0	34,9	162,4
5	0,80	3,399	0,924	255,9	60,5	234,7
6	1,00	4,836	2,361	319,9	91,9	268,5
7	1,20	6,660	4,185	383,9	128,1	272,0
8	1,40	8,534	6,059	447,9	168,5	259,7
9	1,60	9,771	7,296	511,9	212,3	233,2
10	1,80	10,446	7,971	575,9	258,9	204,3
11	2,00	9,422	6,947	639,8	307,8	162,8
12	2,20	8,747	6,272	703,8	358,8	134,1
13	2,40	7,397	4,922	767,8	411,3	104,3
14	2,60	5,186	2,711	831,8	465,2	68,6
15	2,80	4,161	1,686	895,8	520,3	48,4
16	3,00	5,136	2,661	959,8	576,3	54,9
17	3,10	6,235	3,76	991,7	604,6	62,1
18	3,20	6,548	4,073	1023,7	633,2	61,6
19	3,25	5,273	2,798	1039,7	647,5	49,9
20	3,30	4,011	1,536	1055,7	661,9	36,1
21	3,40	2,786	0,311	1087,7	690,8	15,6
22	3,60	1,987	-0,488	1151,7	749,0	0,0
23	3,80	3,074	0,599	1215,7	807,7	18,3
24	4,00	3,224	0,749	1279,7	866,9	18,9

Спектр частиц:

3. Измерим фон:

N	N_φ, 1/c	σN_φ, 1/c	
1	2,60	0,18	
2	2,55	0,18	
3	2,27	0,17	

$$N_{\Phi} = (2, 47 \pm 0, 10) \text{ c}^{-1}$$

4. Прокалибруем спектрометр, с учетом того, что T=634кэВ, $cp_{\kappa}=1013,5$ кэВ. Значение тока, при котором достигается конверсионный пик: $I_{\kappa}\approx 3,2$ А. Тогда:

$$ck=rac{cp_{ extsf{k}}}{I_{ extsf{k}}}pprox316,7$$
 кэ $\mathrm{B/A}$

5. Число электронов с импульсами, лежащими в интервале p до p+dp, может быть записано как:

$$N(p)dp \approx (cp)^3 (E_e - E)^2 dp$$

Или

$$\frac{\sqrt{N(p)}}{(cp)^{3/2}} \approx E_e - E$$

Построим график Ферми - Кюри:

Тогда получаем:

$$E_e = (594 \pm 22)$$
кэВ

Вывод:

В результате выполнения лабораторной работы был изучен энергетический спектр β - частиц при распаде ядер $^{137}\mathrm{Cs}.$

Мы экспериментально удостоверились в том, что спектр β - частиц имеет вид широкого купола, причем данная кривая плавно касается оси абсцисс в области максимальной энергии электронов E_e . Также в спектре отчетливо наблюдается конверсионный пик.

Было определено значение максимальной энергии E_e :

$$E_e = (594 \pm 22)$$
 кэВ

$$E_{e\,{
m {\scriptscriptstyle Tабл}}}=512\,{
m {\scriptscriptstyle K9}B}$$

Экспериментальное значение достаточно хорошо согласуется с табличным.