Chi-Kare Testi

- Genetikte deneysel ve beklenen verilerin uyumlu olup olmadığının belirlenmesi önemlidir.
- Örneğim bir melezlemede 290 mor çiçekli ve 110 beyaz çiçekli döl olursa. Bu oran 3/4: 1/4 e yakındır., Fakat çok yakın olup olmadığı nasıl değerlendirilir? 250:150?

 1900, Karl Pearsonve R.A. Fisher "chi-kare" testini geliştirdiler.

 "null hypothesis" hipotezle başlarsak.Null hipotezi 3/4 dominant ve 1/4 resesiften oluşur.

Formül

$$X^{2} = \sum \frac{(g\ddot{o}zlenen - beklenen)^{2}}{beklenen}$$

Örnek

$$X^2 = (290 - 300)^2 / 300 + (110 - 100)^2 / 100$$

= $(-10)^2 / 300 + (10)^2 / 100$
= $100 / 300 + 100 / 100$
= $0.333 + 1.000$
= 1.333 .

Chi-Kare Dağılımı

Kritik sorular

- Doğru ve yanlış sonucu birbirinden nasıl ayıracağiz?
- Sonuç yanlış kanısına varamayız sadece uyumlu veya uyumsuz kanısına varabiliriz.
- Yüksek chi-kare değeri için :doğru bir teoriden beklenmeyen bir sonuç çıkabilir, veya yanlış bir teori olabilir. Bunları birbirinden %100 ayırd edemeyiz.
- Örneklersek 290: 110 döl oranı 3/4: 1/4 oranına (bir heterozigottan beklendiği şekilde) uyuyor mu? Yoksa bir hata mı? 1/2: 1/2 oranı bir geri çaprazlamada mı? Emin olunamaz fakat uygunluğu tartışılabilir.

Serbestlik derecesi

- Rastgele oluşan varyantların sayısını bildiren serbestlik derecesi önemlidir.
- Bu derece grupların sayısının 1 eksiğine eşittir.
- Eğer mor ve beyaz çiçek gibi iki grup varsa. Serbestlik derecesi= 2 -1 = 1.

Kritik değerler Chi-Kare

- Kritik değerler için tabloya bakılır ve serbestlik derecesi ne uyumlu sütunda p = 0.05 kullanılmalıdır.
- Hesapladığınız değer bu değerden büyük ise, boş hipotezi red edebilirsiniz.
- Hesapladığınız değer bu değerden küçük ise, hesaplarınız doğrudur.

Chi-Kare tablosu

Table 5-2 Critical Values of the χ^2 Distribution

df	0.995	0.975	0.9	0.5	0.1	0.05	0,025	0.01	0.005	df
1	.000	.000	0.016	0.455	2.706	3,841	5.024	6,635	7.879	1
2	0.010	0.051	0.211	1.386	4.605	5.991	7.378	9.210	10.597	2
3	0.072	0.216	0.584	2.366	6.251	7.815	9.348	11.345	12.838	3
4	0.207	0.484	1.064	3.357	7.779	9,488	11.143	13.277	14.860	4
5	0.412	0.831	1.610	4.351	9.236	11.070	12.832	15.086	16.750	5
6	0.676	1.237	2.204	5.348	10.645	12.592	14.449	16.812	18.548	6
7	0.989	1.690	2.833	6.346	12.017	14.067	16.013	18.475	20.278	7
8	1.344	2.180	3.490	7.344	13.362	15.507	17.535	20.090	21.955	8
9	1.735	2.700	4.168	8.343	14.684	16.919	19.023	21.666	23.589	9
10	2.156	3.247	4.865	9.342	15.987	18,307	20.483	23.209	25.188	10
11	2.603	3,816	5.578	10.341	17.275	19.675	21.920	24.725	26.757	11
12	3.074	4.404	6.304	11.340	18.549	21.026	23.337	26.217	28.300	12
13	3.565	5.009	7.042	12.340	19.812	22,362	24.736	27.688	29.819	13
14	4.075	5.629	7.790	13.339	21.064	23,685	26.119	29.141	31.319	14
15	4.601	6.262	8.547	14.339	22.307	24.996	27.488	30.578	32.801	15

Tablonun kullanımı

- Örneğinizde 290 mor 110 beyaz çiçek olsun, a chi-kare 1.333, 1 serbestlik drecesi olur.
- Tabloda , 1 serdestlik derecesi ilk sütundur. p = 0.05 6.sıradadır. Kritik chi-kare değeri, 3.841.
- Bizim hesapladığımız değer, 1.333, kritik değerden, 3.841 küçüktür. Bu uyumlu bir hipotezdir.

Mendel örnekleri

Fenotip	Gözlenen	Beklenen	Beklenen	
		oran	sayı	
Yuvarlak sarı	315	9/16	312.75	
Yuvarlak yeşil	101	3/16	104.25	
Buruşuk sarı	108	3/16	104.25	
Buruşuk yeşil	32	1/16	34.75	
total	556	1	556	

Beklenen sayıları hesaplama

- Gözlenenler verildi Punnet kareleri kullanarak beklenenleri görebiliriz.
- Beklenen hesabı için önce total'i bulmalıyız. 315
 + 101 + 108 + 32 = 556.
- Oranlara göre beklenenleri buluruz:
 - --beklenen düzgün sarı = 9/16 * 556 = 312.75
 - --beklenen düzgün yeşil = 3/16 * 556 = 104.25
 - --beklenen buruşuk sarı = 3/16 * 556 = 104.25
 - --beklenen buruşuk yeşil= 1/16 * 556 = 34.75

Chi-Kare değeri

- Formülü kullanın.
- $X^2 = (315 312.75)2 / 312.75$
 - + (101 104.25)2 / 104.25
 - + (108 104.25)2 / 104.25
 - + (32 34.75)2 / 34.75
 - = 0.016 + 0.101 + 0.135 + 0.218
 - = 0.470.

$$X^{2} = \sum \frac{(g\ddot{o}zlenen - beklenen)^{2}}{beklenen}$$

Serbestlik derecesi ve kritik değer

- Serbestlik derecesi (SD), 4 1 = 3
- 3 SD ve p = 0.05, kritik chi-kare değeri 7.815.
- Gözlenen chi-kare (0.470) kritik değerden küçüktür. Bu hipotez kabul edilir. 9/16: 3/16: 3/16: 1/16 oranı.

Chi-Kare tablosu

Table 5-2 Critical Values of the χ^2 Distribution

${}$										
df P	0.995	0.975	0.9	0.5	0.1	0.05	0.025	0.01	0.005	df
1	.000	.000	0.016	0.455	2.706	3.841	5.024	6.635	7.879	1
2	0.010	0.051	0.211	1.386	4.605	5.991	7.378	9.210	10.597	2
3	0.072	0.216	0.584	2,366	6.251	7.815	9.348	11.345	12.838	3
4	0.207	0.484	1.064	3.357	7.779	9,488	11.143	13.277	14.860	4
5	0.412	0.831	1.610	4.351	9.236	11.070	12.832	15.086	16.750	5
6	0.676	1.237	2.204	5.348	10.645	12.592	14.449	16.812	18.548	6
7	0.989	1.690	2.833	6,346	12.017	14.067	16.013	18.475	20.278	7
8	1.344	2.180	3.490	7.344	13.362	15.507	17.535	20.090	21.955	8
9	1.735	2.700	4.168	8,343	14.684	16.919	19.023	21.666	23.589	9
10	2.156	3.247	4.865	9.342	15.987	18.307	20.483	23.209	25.188	10
11	2.603	3.816	5.578	10.341	17.275	19.675	21.920	24.725	26.757	11
12	3.074	4.404	6.304	11.340	18.549	21.026	23.337	26.217	28.300	12
13	3,565	5.009	7.042	12,340	19.812	22,362	24.736	27.688	29.819	13
14	4.075	5.629	7.790	13,339	21.064	23,685	26.119	29.141	31.319	14
15	4.601	6.262	8.547	14.339	22.307	24.996	27.488	30.578	32.801	15