ASSIGNMENT 2 DESIGN DOCUMENT

Chris Moon

January 2023

1 Goal

Write a simple math library containing functions to calculate PI, e, and square root. Additionally, write a test harness allowing a user to input command line options in order to run each library function. Include statistics for each function run, as well as comparisons to C's math.h library values.

2 Pseudocode

TEST HARNESS

- -This is a main function using GETOPT: Allows the user to run and display the various math functions from the terminal
- -Include mathlib.h (the header for the assignment math library), math.h (C's standard math library) and unistd.h (for getopt)
 - -Specify the command line options: "saebmrvnh"
 - -using a switch statement, write cases for each option
- -every option besides -h will toggle a variable to 1, corresponding to each function
 - -EX: if -e is input, etoggle = 1
 - -h instead displays a help message and returns 1 to terminate the program
 - -after the switch statement, check each the value of each toggle variable
- -if a variable is set to 1 (meaning the option has been input into the terminal), run the corresponding math function and compare the returned value to C's math function's return

SQRT FUNCTION

- -This function calculates the sqrt of a value (to a certain accuracy) and keeps track of the iterations the function takes to reach said accuracy
 - -accuracy is determined by EPSILON, which is a small value given to us
 - -uses a for loop
- -exit condition is when the absolute value of the previous guess for the sqrt the current guess is ; than epsilon
 - -value = (value + number/value) /2
 - -increments iteration value by 1 to keep track of iterations

E FUNCTION

- -This function calculates value of e to a certain accuracy given by EPSILON, and also keeps track of iterations to reach said accuracy
 - -uses a for loop
- -exit condition is when the absolute value of the previous guess for ${\bf e}$ the current guess is ${\it i}$, than epsilon
 - -value = (value + 1/f)
 - -f set to f* loop index
 - -f starts at 1
 - -increments iteration value by 1 to keep track of iterations

PI FUNCTION (EULER)

- -calculates PI to a certain accuracy
- -for loop
- -val = val + 1/loop index * loop index

PI FUNCTION (VIETE)

- -calculates PI to a certain accuracy
- -for loop
- -exit condition is when the difference between terms is ¿ EPSILON
- -create a value to represent the numerator of a fraction
- -if its the first time running the loop, set the numerator value to sqrt(2)
- -else, set the value to sqrt(2 + previous numerator value)
- -multiply the final answer by numerator/2
- -return the final answer once the loop terminates

PI FUNCTION (BBP)

- -for loop
- -exit condition is when the current term ; EPSILON
- -create a value to represent 1/16 to the power of the current loop iteration
- -if its the first time running the loop, set the power to 1, since 1/16 to the power of 0 is one
 - -else, power = power * 1/16
- -calculate the term of the bbp series, when $\mathbf{k}=$ the loop iteration, using the power value from before
 - -add this term to the final answer
 - -when the loop terminates, return the final answer

PI FUNCTION (MADHAVA)

- -very similar to bbp, except using 1/-3 instead of 1/16, and a different equation for terms
 - -for loop
 - -exit condition is when the current term ; EPSILON
 - -create a value to represent 1/-3 to the power of the current loop iteration
- -if its the first time running the loop, set the power to 1, since 1/-3 to the power of 0 is one
 - -else, power = power * 1/-3
- -calculate the term of the madhava series, when $\mathbf{k}=$ the loop iteration, using the power value from before
 - -add this term to the final answer
 - -when the loop terminates, return the final answer

$\underline{\text{MAKEFILE}}$

- -Compiles and formats all .c files
- -compiles the test harness, and links it to the math library functions, allowing them to be used by the harness