REVIEW ITEMS FOR MIDTERM EXAM

PART 1. FILL THE BLANKS WITH CORRECT EXPRESSIONS OR WORDS.

- 1. If $\overrightarrow{A} = \langle 2, -1, -2 \rangle$, then $||\overrightarrow{A}|| = 3$
- 2. The unit vector in the same direction as $\vec{A} = \langle 2, -1, -2 \rangle$ is $\vec{u}_{\vec{A}} = \langle \frac{2}{3}, \frac{-1}{3}, \frac{-2}{3} \rangle$
- 3. If $\vec{C} = \langle 3, -4, 1 \rangle$ and $\vec{D} = \langle -8, 6, 3 \rangle$, then $3\vec{C} + 2\vec{D} = \langle -7, 0, 9 \rangle$
- 4. The direction angles of $\langle 0,0,-3 \rangle$ are $\alpha = \frac{\pi}{2}, \beta = \frac{\pi}{2}$ and $\gamma = \pi$
- 5. If $\vec{A} = \left\langle \frac{-\sqrt{3}}{2}, \frac{1}{2} \right\rangle$ and $\vec{B} = \left\langle 0, 2 \right\rangle$, then $\vec{A} \cdot \vec{B} = 1$
- 6. In problem no.5, the radian measure of the angle between \vec{A} and \vec{B} is $\frac{\pi}{3} = Arc \cos\left(\frac{1}{2}\right)$
- 7. In problem no.5, the scalar projection of \vec{A} onto \vec{B} is $\frac{1}{2}$
- 8. In problem no.5, the vector projection of \vec{A} onto \vec{B} is $\langle 0, \frac{1}{2} \rangle$
- 9. If the direction angle of a vector \vec{G} is $\frac{5\pi}{4}$ and its magnitude is 4, then $\vec{G} = \langle -2\sqrt{2}, -2\sqrt{2} \rangle$
- 10. Consider the points C(4,-5) and D(-3,2). If \overrightarrow{DC} is a representation of \overrightarrow{E} , then $\overrightarrow{E}=\langle 7,-7\rangle$
- 11. An equation of a plane that is parallel to the xz-plane and which passes through the point (1,2,3) is y=2
- 12. The distance between A(1,2,3) and B(-2,3,-4) is $\sqrt{\textbf{59}}$.

- 13. The midpoint of the segment whose endpoints are A(1,2,3) and B(-2,3,-4) is $\left(\frac{-1}{2},\frac{5}{2},\frac{-1}{2}\right)$
- 14. The standard equation of the sphere with A(1,2,3) and B(-2,3,-4) as endpoints of a diameter is $\left(x+\frac{1}{2}\right)^2+\left(y-\frac{5}{2}\right)^2+\left(z+\frac{1}{2}\right)^2=\frac{59}{4}$
- 15. The point (1,2,3) lies <u>outside</u> the sphere given by $x^2 + y^2 + (z-1)^2 = 5$.
- 16. The graph of $x^2 + 4x + y^2 6y + z^2 2z 10 = 0$ is a **sphere**.
- 17. A standard equation of the plane passing through (1,2,3) and having $\langle -2,3,-4 \rangle$ as a normal vector is given by -2(x-1)+3(y-2)-4(z-3)=0
- 18. The distance between the parallel planes given by 2x 2y + z + 5 = 0 and 4x 4y + 2z + 6 = 0 is $\frac{2}{3}$
- 19. The distance from the point (1,2,3) to the plane given by 2x 2y + z + 5 = 0 is 2
- 20. The parametric equations of the line passing through (1,2,3) and is parallel to $\langle 4,5,6 \rangle$ are given by x=1+4t, y=2+5t, z=3+6t
- 21. If $\vec{A} = \langle 1, 2, 3 \rangle$ and $\vec{B}(-2, 3, -4)$, then $\vec{A} \times \vec{B} = -17i 2j + 7k$
- 22. In \mathbb{R}^3 , the graph of $x^2 4y = 1$ is called a <u>parabolic</u> cylinder.
- 23. The trace of $\frac{x^2}{2} \frac{y^2}{9} z^2 = 1$ on the xz-plane is called a <u>hyperbola</u>
- 24. The limit of the sequence 1,-1,1,-1,1,-1,... does not exist
- 25. The limit of the sequence $\left\{\frac{\sin n}{n}\right\}$ as $n \to \infty$ is $\underline{0}$
- 26. $\lim_{n\to\infty} \frac{2n+1}{1-3n^2}$ is equal to $\underline{0}$

27. The *k*-th partial sum of the geometric series
$$\sum_{k=1}^{\infty} ar^{k-1}$$
 is
$$\frac{a(1-r^k)}{1-r}$$

28. The series
$$\sum_{n=1}^{\infty} 3 \left(\frac{1}{2}\right)^n$$
 is absolutely convergent.

29. The sum
$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + ... + \frac{1}{n} + ...$$
 is equal to $+\infty$.

30. The sequence
$$\left\{\frac{(-1)^n}{n}\right\}$$
 is **convergent**

31. If
$$f'(x) < 0$$
 for all $x \ge 1$, then $\{f(n)\}$ is decreasing

32. The sum of the infinite series
$$\sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^{n+1}$$
 is $\frac{1}{6}$

33. The sum of the infinite series
$$\sum_{n=1}^{\infty} \frac{2}{n(n+1)}$$
 is $\underline{2}$

34. The *p*-series
$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$
 converges if $p > 1$

35. The series
$$\sum_{n=1}^{\infty} \left(\frac{1}{n} + \frac{1}{2^n} \right)$$
 is **divergent**

36. If
$$\sum_{n=1}^{\infty} \frac{k}{n}$$
 converges, then $k = \underline{0}$.

37. The series
$$\sum_{n=1}^{\infty} \frac{n^2}{2^{n^2}}$$
 is absolutely convergent. Using the *ratio* test, the value

of
$$\lim_{n\to\infty} \left| \frac{u_{n+1}}{u_n} \right|$$
 is $\underline{0}$

38. In its interval of convergence, the sum of the power series
$$\sum_{n=0}^{\infty} (x-1)^n$$
 is expressed by $\frac{1}{2-x}$

39. The interval of convergence of the power series
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$$
 is $\frac{(-1,1]}{n}$

40. The Maclaurin series expansion of the function $f(x) = \sin x$ is

$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$$

PART 2. PROBLEM SOLVING. WRITE YOUR SOLUTIONS NEATLY, COMPLETELY AND LOGICALLY.

1. Determine the general equation of the plane through the point P(0,2,-1) and parallel to the plane 2x-y+3z+8=0.

Solution:

Consider point $P_0 = (0,2,-1)$ and a normal vector $N = \langle 2,-1,3 \rangle$ which is a vector orthogonal to the plane 2x - y + 3z + 8 = 0Thus, the needed equation of the plane is given by 2x - y + 3z + 5 = 0.

2. Find an equation of a plane containing the point (3,1,-1) and parallel to the lines $\frac{x-2}{1} = \frac{y-2}{3} = \frac{z-3}{1}$ and $\frac{x-2}{1} = \frac{y-3}{4} = \frac{z-4}{2}$.

Solution:

We need to find a vector perpendicular both to the lines, which is also a normal vector to the plane. The needed vector is given by $N = \langle 1,3,1 \rangle \times \langle 1,4,2 \rangle = \langle 2,-1,1 \rangle$.

An equation of the plane is given by 2(x-3)-(y-1)+(z+1)=0.

In general, we have 2x - y + z - 4 = 0.

3. Identify and sketch the graph of the following surfaces in \mathbb{R}^3 :

a.
$$4x^2 - 9z^2 = 36$$

b.
$$\frac{x^2}{4} + \frac{y^2}{16} - \frac{z^2}{2} = 1$$

c.
$$4y^2 + z^2 = 4x$$

Solution:

- a. Hyperbolic cylinder
- b. Elliptic hyperboloid of one sheet
- c. Elliptic paraboloid
- 4. Given the series $\sum_{n=0}^{\infty} u_n = \frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + ...$
 - a. Find u_n .

Solution:
$$u_n = \frac{1}{(2n+1)(2n+3)} = \frac{1}{2(2n+1)} - \frac{1}{2(2n+3)}$$

(Use method of partial fractions)

b. Let $S_n = u_1 + u_2 + ... + u_n$. Find a formula for S_n .

Solution:
$$S_n = \left(\frac{1}{2} - \frac{1}{6}\right) + \left(\frac{1}{6} - \frac{1}{10}\right) + \dots + \left(\frac{1}{2(2n+1)} - \frac{1}{2(2n+3)}\right)$$

$$S_n = \frac{1}{2} - \frac{1}{2(2n+3)} = \frac{1}{2}\left(1 - \frac{1}{2n+3}\right)$$

c. Find $\lim_{n \to \infty} S_n$, if it exists.

Solution:
$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} \frac{1}{2} \left(1 - \frac{1}{2n+3}\right) = \frac{1}{2}$$

d. Is the series
$$\sum_{n=0}^{\infty} u_n$$
 convergent? Why?

Solution: Since $\lim_{n\to\infty} S_n$ exists, then the series $\sum_{n=0}^{\infty} u_n$ is convergent.

5. Use Ratio Test to determine whether the series $\sum_{n=1}^{+\infty} \frac{3^n}{n^2}$ is convergent or divergent.

Solution: Let
$$u_n = \frac{3^n}{n^2}$$
. Consider $\left| \frac{u_{n+1}}{u_n} \right| = \left| \frac{3^{n+1}}{(n+1)^2} \cdot \frac{n^2}{3^n} \right| = \frac{3n^2}{(n+1)^2}$
Using ratio test, $L = \lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n \to \infty} \frac{3n^2}{(n+1)^2} = 3$. Since $L > 1$, then the series is divergent.

6. Consider the power series $\sum_{n=0}^{\infty} \frac{(-1)^n (x-3)^n}{2^{2n+1}}$. Find its radius of convergence and determine its interval of convergence.

Solution: Applying the ratio test, let $\left| \frac{u_{n+1}}{u_n} \right| = \left| \frac{(x-3)^{n+1}}{2^{2n+3}} \cdot \frac{2^{2n+1}}{(x-3)^n} \right| = \frac{|x-3|}{4}$

$$L = \lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| = \frac{|x-3|}{4} < 1 \Rightarrow |x-3| < 4 \Leftrightarrow -1 < x < 7$$

At x = 7: $\sum_{n=0}^{\infty} \frac{(-1)^n}{2}$ which is a divergent series since $\lim_{n \to \infty} \frac{(-1)^n}{2}$ is not

equal to zero (nth term test for divergence)

At x = -1: $\sum_{n=0}^{\infty} \frac{1}{2}$ which is a divergent series since $\lim_{n \to \infty} \frac{1}{2}$ is not equal to

zero (*nth term test for divergence*). Thus, IOC is (-1,7)

End of items