43. Последовательность $\{f_n(x)\}$ называется равноственно непрерывной на отрезке [a;b], если

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x', x'' \in [a; b] \ |x' - x''| < \delta \ \forall n \in \mathbb{N}: |f_n(x') - f_n(x'')| < \varepsilon.$$

Доказать, что если последовательность $\{f_n(x)\}$ непрерывных функций равномерно сходится на отрезке [a;b], то она равномерно ограничена (см. задачу 35) и равностепенно непрерывна на отрезке [a;b].

44. Доказать, что если последовательность $\{f_n(x)\}$ равномерно ограничена и равностепенно непрерывна (см. задачу 43) на отрезке [a;b], то из нее можно выделить подпоследовательность, равномерно сходящуюся на этом отрезке (*теорема Арцела*).

ОТВЕТЫ

- **2.** 3/4. **3.** $\pi/2$. **4.** π . **7.** Дa.
- **8.** 1) $E = [e^{-1}; e], f$ непрерывна на E;
- E = R, f непрерывна на E;
- 3) E = (-1, 1), f непрерывна на E; 4) E = R, f непрерывна на E.
- **9.** 1) E = R, f дифференцируема на E;
- 2) $E = [0, +\infty)$, f дифференцируема на E;
- 3) E = R, f дифференцируема на E;
- 4) E = R, f дифференцируема на E, за исключением x = 0.
- **24.** Het. **25.** Да. **26.** Да. **27.** $\alpha < 2$.
- **28.** Может. Пример:

$$f_n(x) = rac{1}{n} \, g(x),$$
 где $g(x) = egin{cases} 0, \; ext{если} \; x \; \; ext{иррационально}, \ 1, \; ext{если} \; x \; \; ext{рационально}, \end{cases}$

29. Да.

40. 1)
$$\frac{\pi^2}{6}$$
; 2) $-\frac{1}{2} \ln 2$; 3) -1; 4) 1.

§ 20. Степенные ряды

СПРАВОЧНЫЕ СВЕДЕНИЯ

1. Радиус сходимости и круг сходимости степенного ряда. Функциональные ряды вида

$$\sum_{n=0}^{\infty} c_n (\zeta - a)^n, \tag{1}$$

где c_n (n=0,1,2,...) и a — заданные комплексные числа, ζ — комплексное переменное, называются степенными рядами. Числа c_n называются коэффициентами степенного ряда (1).

Полагая в (1) $\zeta - a = z$, получим ряд

$$\sum_{n=0}^{\infty} c_n z^n, \tag{2}$$

исследование сходимости которого эквивалентно исследованию сходимости ряда (1).

Теорема 1 (Абеля). Если степенной ряд (2) сходится при $z=z_0\neq 0$, то он сходится и притом абсолютно при любом z таком, что $|z|<|z_0|$, а если этот ряд расходится при $z=z_1\neq 0$, то он расходится при всяком z, для которого $|z|>|z_1|$.

Теорема 2. Для всякого степенного ряда (2) существует R ($R \geqslant 0$ — число или $+\infty$) такое, что ряд (2) абсолютно сходится в круге $K = \{z \colon |z| < R\}$, если $R \neq 0$, $+\infty$.

Этот круг называется *кругом сходимости* степенного ряда, а R — радиусом сходимости этого ряда.

Если R=0, то ряд (2) сходится в одной точке z=0, а если $R=+\infty$, то этот ряд сходится во всей комплексной плоскости. В точках границы круга K ряд (2) может как сходиться, так и расходиться. В любом меньшем круге $K_1=\{z:|z|\leqslant \rho < R\}$ ряд (2) сходится абсолютно и равномерно.

Для степенного ряда

$$\sum_{n=0}^{\infty} c_n (z-a)^n,\tag{3}$$

круг сходимости K имеет вид $K = \{z : |z - a| < R\}.$

Теорема 3 (Абеля). Если R — радиус сходимости степенного ряда (2), причем $0 < R < +\infty$, и если этот ряд сходится при z=R, то он сходится равномерно на отрезке [0;R], а его сумма непрерывна на этом отрезке.

Для радиуса сходимости R степенного ряда (3) справедлива формула $Komu-A\partial amapa$:

$$\frac{1}{R} = \overline{\lim}_{n \to \infty} \sqrt[n]{|c_n|}.$$
 (4)

Если существует (конечный или бесконечный) $\lim_{n\to\infty}\left|\frac{c_n}{c_{n+1}}\right|$, то

$$R = \lim_{n \to \infty} \left| \frac{c_n}{c_{n+1}} \right|,\tag{5}$$

а если существует (конечный или бесконечный) $\lim_{n \to \infty} \sqrt[n]{|c_n|}$, то

$$\frac{1}{R} = \lim_{n \to \infty} \sqrt[n]{|c_n|}.$$
 (6)

Для степенного ряда

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n, \tag{7}$$

где a_n $(n=0,1,2,...),\ x_0$ — заданные действительные числа, x — действительное переменное, существует R $(R\geqslant 0$ — число или $+\infty)$ такое, что при $R\neq 0,\ +\infty$ ряд (7) абсолютно сходятся, если $|x-x_0|< R,$ и расходится, если $|x-x_0|> R.$ Интервал $(x_0-R;x_0+R)$ называют интервалом сходимости, а R — радиусом сходимости ряда (7).

Исследовать степенной ряд (7) на сходимость — значит найти его интервал сходимости и выяснить, сходится или расходится этот ряд в концах его интервала сходимости. Область сходимости степенного ряда (7) состоит из его интервала сходимости и, быть может, некоторых граничных точек этого интервала.

2. Регулярные функции. Функция комплексного переменного f(z) называется регулярной (однозначной аналитической, голоморфной) в точке a, если она определена в некоторой окрестности точки a и представима в круге $|z-a|<\rho$, где $\rho>0$, сходящимся к f(z) степенным рядом:

 $f(z) = \sum_{n=0}^{\infty} a_n (z - a)^n.$ (8)

Отметим, что любой многочлен

$$P(z) = \sum_{k=0}^{m} a_k z^k$$

— функция, регулярная в каждой точке комплексной плоскости. Рациональная функция $f(z) = \frac{P_n(z)}{Q_m(z)}\,,$

где P_n и Q_m — многочлены степени n и m соответственно, регулярна в каждой точке a, где $Q_m(a) \neq 0$.

В теории функций комплексного переменного доказывается (см., например, [14]), что на границе круга сходимости степенного ряда (8) лежит хотя бы одна "особая" точка его суммы f(z). Отсюда следует, что радиус степенного ряда (8) равен расстоянию от точки a до ближайшей к a особой точки функции f(z).

В частности, если

$$f(z) = \frac{P_n(z)}{Q_m(z)},$$

где многочлены P_n и Q_m не имеют общих корней, то для этой функции радиус сходимости R степенного ряда (8) равен расстоянию от точки a до ближайшего к этой точке корня многочлена $Q_m(z)$, т. е.

$$R = \min_{1 \le k \le m} |z_k - a|,\tag{9}$$

где z_k (z=1,2,...,m) — корни многочлена $Q_m(z)$.

3. Дифференцирование и интегрирование степенного ряда. Вычисление суммы ряда. Если степенной ряд

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n,$$
 (10)

где a_n , x_0 — заданные действительные числа, x — действительное переменное, имеет радиус сходимости R > 0, то:

- 1) в интервале сходимости $(x_0 R; x_0 + R)$ функция f имеет производные любого порядка, получаемые почленным дифференцированием ряда (10);
- 2) внутри интервала сходимости этот ряд можно почленно интегрировать, т. е.

$$\int_{x_0}^x f(t) dt = \sum_{n=0}^\infty a_n \frac{(x-x_0)^{n+1}}{n+1}, \quad x \in (x_0 - R; x_0 + R);$$

3) степенные ряды, получаемые из ряда (10) при почленном дифференцировании и интегрировании, имеют тот же радиус сходимости, что и ряд (10).

ПРИМЕРЫ С РЕШЕНИЯМИ

 Π ример 1. Найти радиус сходимости R степенного ряда:

1)
$$\sum_{n=1}^{\infty} \frac{z^n}{n^2}$$
; 2) $\sum_{n=0}^{\infty} \frac{z^n}{n!}$; 3) $\sum_{n=1}^{\infty} \frac{(1+i)^n}{n2^n} z^n$; 4) $\sum_{n=0}^{\infty} 5^n z^{3n}$.

▲ 1) Так как существует

$$\lim_{n \to \infty} \left| \frac{c_n}{c_{n+1}} \right| = \lim_{n \to \infty} \frac{(n+1)^2}{n^2} = 1,$$

то по формуле (5) находим R=1.

2) В этом случае

$$\lim_{n \to \infty} \left| \frac{c_n}{c_{n+1}} \right| = \lim_{n \to \infty} \frac{(n+1)!}{n!} = +\infty,$$

и поэтому $R = +\infty$ (формула (5)).

3) Так как $|1+i| = \sqrt{2}$ и существует

$$\lim_{n \to \infty} \sqrt[n]{|c_n|} = \lim_{n \to \infty} \sqrt[n]{\frac{(\sqrt{2})^n}{n2^n}} = \frac{1}{\sqrt{2}} \lim_{n \to \infty} \frac{1}{\sqrt[n]{n}} = \frac{1}{\sqrt{2}},$$

то по формуле (6) получаем $R = \sqrt{2}$.

4) Обозначим $5z^3 = t$; тогда

$$\sum_{n=0}^{\infty} 5^n z^{3n} = \sum_{n=0}^{\infty} (5z^3)^n = \sum_{n=0}^{\infty} t^n.$$