Week 2: Regression with Multiple Input Variables

Multiple Linear Regression

→ Multiple Features

Size in feet ²	Number of bedrooms	Number of floors	Age of home in years	Price (\$) in \$1000's
X1	X ₂	Х3	X4	
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

- ◆ You can have a data set with multiple features
 - Notation
 - o $x_i = j^{th}$ feature
 - o n = total number of features
 - o $\overrightarrow{x^{(l)}}$ = features of ith training example
 - In this case it would be a list of 4 numbers across a row $(x_1 \text{ to } x_4)$
 - \rightarrow $x^{(2)}$ is the row of i=2

	4104	J	1	43
i=2	1416	3	2	40
	4504		_	2.0

- o $x_i^{(i)}$ = value of feature j in the ith training example
- ◆ →With multiple features you will have a new model
 - In the example above, it would be $f_{w,b}(x) = w_1x_1 + w_2x_2 + w_3x_3 + w_4x_4 + b$
 - O An example of this may be:

- Interpretation Example: For each additional bedroom, the house price increases by 4K
- For *n* features $f_{w,b}(x) = w_1 x_1 + w_2 x_2 + w_n x_n + b$
 - o If you have multiple features, it is called multiple linear regression
 - o To simplify:

 - b is a single number
 - w and b are the parameters

 - - This is a dot product of two vectors

- O Means taking corresponding pairs of numbers $\rightarrow w_1x_1 + w_2x_2$, etc and adding them
- o Same expression as above

- → Vectorization
 - ◆ Parameters and features (Part 1)
 - Example

o b is a number

o
$$\vec{x} = [x_1, x_2, x_3]$$

- In linear algebra the index starts from 1 (means to start from 1)
- In python, the code would look like using NumPy

$$w = np.array ([1, 2.5, -3.3])$$

 $b = 4$
 $x = np.array ([10, 20, 30])$

- In python though, counting starts from 0, therefore to access the first number in the w array (1), you would use w[0], etc.
- Without vectorization

$$o f_{w,b}(x) = w_1x_1 + w_2x_2 + w_3x_3 + b$$

◆ Code would be:

- O This is great in terms of coding but can get very tedious in the case where there is someehting line n = 100,000
- Could use a summation operator to create for loop

• Code would be:

$$f = 0$$

for j in range (0,n)
 $f = f + w[j] *x[j]$

f = f + b (Please note this is outsite the for loop)

- Code is still not super efficient
- With Vectorization

$$\circ \quad f_{\overrightarrow{w},b}(\overrightarrow{x}) = \overrightarrow{w} \cdot \overrightarrow{x} + b$$

◆ Code would be:

$$f = np.dot(w,x) + b$$

- This is an efficient code and will run a lot faster than the without vectorization code
- ◆ What happens to the computer during vectorization vs without vectorization

- Without Vectorization for loop
 - for j in range(0, 16):

$$f = f + w[j] * x[j]$$

- O At each time point in the code the algorithm operates as so:
 - ◆ At *t*₀

•
$$f + w[0] * x[0]$$

- ♦ At t₁
 - f + w[1] * x[1]
- ◆ Etc. until the 15th step
- With Vectorization

np.dot(w, x)

- O The computer gets all values of the vector w and x and in a single step multiplies them in parallel (t_0)
 - \bullet \rightarrow The computer then adds them all together (t_1)

- ◆ Gradient Descent
 - Parameters

o
$$\vec{w} = (w_1, w_2, w_3, \dots w_{16})$$

о В

Derivative terms

$$o \frac{d}{dx}(\vec{w}) = \vec{d} = d_1, d_2, d_3, \dots d_{16})$$

→ stored terms of w and d

- → Compute
 - o $w_i = w_i 0.1$ (learning rate) d_i for j = 1...16
 - Vectorization vs without vectorization

With vectorization there is parallel processing and the values of the new w will be implemented back automatically

→ Gradient Descent for Multiple Linear Regression

	Previous Notation	Vector Notation
Parameters	w_1, \ldots, w_n	\overrightarrow{w}
Model	$f_{\vec{w},b}(\vec{x}) = w_1 x_1 + \dots + w_n x_n + b$	$f_{\vec{w},b}(\vec{x}) = \vec{w} \cdot \vec{x} + b$
Cost Function	$J(w_1,\ldots,w_n,b)$	$J(\overrightarrow{w},b)$
Gradient Descent	repeat{ $w_{j} = w_{j} - a \frac{\partial}{\partial w_{j}} J(w_{1}, \dots, w_{n}, b)$ $b = b - a \frac{\partial}{\partial b} J(w_{1}, \dots, w_{n}, b)$ }	repeat{ $ w_j = w_j - a \frac{\partial}{\partial w_j} J(\overrightarrow{w}, b) $ $ b = b - a \frac{\partial}{\partial b} J(\overrightarrow{w}, b) $ }

- Gradient Descent with multiple features
 - One feature

repeat{

$$w = w - a \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)}) x^{(i)}$$

$$b = b - a \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})$$
simplifying undata w. b.

simaltaneous update w, b

n features ($n \ge 2$) repeat{

$$\begin{split} w_n &= w_n - a \frac{1}{m} \sum_{i=1}^m (f_{\overrightarrow{w},b}(\vec{x}^{(i)}) - y^{(i)}) x_n^{(i)} & \# \frac{\partial}{\partial w_1} J(\overrightarrow{w},b); \\ b &= b - a \frac{1}{m} \sum_{i=1}^m (f_{\overrightarrow{w},b}(\vec{x}^{(i)}) - y^{(i)}) \end{split}$$

simultaneously update w_i (for j = 1, ..., n) and b)

- An alternative to gradient descent
 - A normal equation
 - Works for only linear regression
 - o Solves for w, b without iterations
 - o Disadvatages
 - Doesn't generalize to toher learning algorithms
 - ◆ Slow when number of features is large (>10,000)

Practice Quiz: Multiple Linear Regression

1. In the training set below, what is $x_4^{(3)}$? Please type in the number below (this is an integer such as 123, no decimal points).

1 point

Size in feet ²	Number of bedrooms	Number of floors	Age of home in years	Price (\$) in \$1000's
X ₁	X ₂	Хз	Хų	
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

30

2.

1 point

Which of the following are potential benefits of vectorization? Please choose the best option.

- O It makes your code run faster
- O It can make your code shorter
- O It allows your code to run more easily on parallel compute hardware
- All of the above
- 3. True/False? To make gradient descent converge about twice as fast, a technique that almost always works is to double the learning rate alpha.

1 point

O True

Gradient Descent in Practice

- → Feature Scaling
 - Feature size (how big the number is) and the size of the associated parameter value
 - Ex: Size of house prediction using $price = w_1x_1 + w_2x_2 + b$
 - O x_1 = size in ft²

- Range is typically from 300 2000
 - Large range of values
- o $x_2 = \#$ of bedrooms
 - ◆ range from 0 5
 - Small range of values
- O House: $x_1 = 2000$, $x_2 = 5$, price = 500k
 - Size w_1 and w_2 ?
 - One example where $w_1 = 50$, $w_2 = 0.1$, b = 50:

- Very far from the actual price of 500k – not good parameter choices
- Another example where $w_1 = 0.1$, $w_2 = 50$, b = 50
 - In this case, the values of w₁ and w₂ are switched

o
$$price = 0.1 * 2000 * 50 + 5 + 50$$

 $\rightarrow 200k + 250k + 50k = $500,000$

 More reasonable and matches our price

size of parameter w

- O Hopefully a learning algorithm can decipher to attach a low x_2 value to a high w_2 parameter value and vice versa \rightarrow will lead to the more accurate measurement
- Gradient Descent
 - O Takes a small change in w_1 to make a big change in the cost function, vice versa for w_2

size of feature x

- Gradient descent might take time bounding back around till it finds its global minimum since the contour plot is skinny
 - → could scale the feature which could make it better

 To do this scale the features in such a way that they are taking comparable ranges to one another

 As you can see the contour plot looks much better and easier for a gradient descent algorithm

- ◆ Feature Scaling
 - One way dividing by the maximum
 - 0 If $300 \le x_1 \le 2000 \rightarrow x_{1,scaled} = \frac{x_1}{2000} \rightarrow \text{will then range from}$ $0.15 \le x_{1,scaled} \le 1$
 - Similarly for x_2 , $0 \le x_2 \le 5 \Rightarrow x_{2,scaled} = \frac{x_2}{5} \Rightarrow 0 \le x_{2,scalled} \le 1$
 - Another way Mean normalization
 - o Rescale the values so they are all close to 0

- o Calculation
 - Find mean of x_1 on the training set = μ_1 (for this example set to 600)

•
$$x_1 = \frac{x_1 - \mu_1}{2000 - 300} \rightarrow -0.18 \le x_1 \le 0.82$$

Find mean of x_2 on the training set = μ_2 (for this example set to 2.3)

•
$$x_2 = \frac{x_2 - \mu_2}{5 - 0} \rightarrow -0.46 \le x_2 \le 0.54$$

- Another way Z-score normalization
 - O To do this you need to calculate the standard deviation of each feature

O Calculation (for this example set σ_1 to 450 and μ_1 to 200; and σ_2 to 1.4 and μ_2 to 2.3)

•
$$\rightarrow$$
 -0.68 $\leq x_1 \leq 3.1$

$$\bullet \quad \rightarrow -1.6 \le x_2 \le 1.6$$

o → Plot of data

- General guidelines
 - O Aim for $-1 \le x_j \le 1$ for feature x_j

Or a scaled value

aim for about
$$-1 \le x_j \le 1$$
 for each feature x_j

$$-3 \le x_j \le 3$$

$$-0.3 \le x_j \le 0.3$$
acceptable ranges
$$0 \le x_1 \le 3$$

$$-2 \le x_2 \le 0.5$$

$$-100 \le x_3 \le 100$$

$$-100 \le x_3 \le 100$$

$$-0.001 \le x_4 \le 0.001$$

$$-0.001 \le x_4 \le 0.001$$

$$-0.001 \le x_5 \le 105$$

$$-0.001 = x_5 \le 105$$

- Usually there is no hard to carrying out feature rescaling
- → Checking Gradient Descent for Convergence
 - Equations:
 - $w_j = w_j a \frac{\partial}{\partial w_j} J(\vec{w}, b)$
 - $b = b a \frac{\partial}{\partial b} J(\overrightarrow{w}, b)$
 - How to make sure gradient descent is working correctly
 - Objective: $min for J(\vec{w}, b)$
 - Could plot cost function $(J(\vec{w},b))$ vs iterations of gradient descent w,b

- Also known as a learning curve
 - Shows how cost function changes after every iteration
 - If working correctly, $J(\vec{w}, b)$ should decrease after every iteration
 - If increases after any interaction could mean that α is chosen incorrectly (usually too large) or there is a bug in the code
- # of iterations needed varies greatly depending on the application

- Could also do an automatic convergence test
 - o Ex: $\varepsilon = 10^{-3} \ or \ 0.001$
 - ♦ If $J(\vec{w}, b)$ decreases by ≤ ε in one iteration, declare convergence
 - Likely to be on the flattened part of the curve and the values of \vec{w} , and b are close to the global minimum
 - O Choosing the threshold ϵ is somewhat difficult
- → Choosing the Learning Rate
 - ◆ Identifying problem with gradient descent
 - If increases after any interaction could mean that a is chosen incorrectly (usually too large) or there is a bug in the code

o If the learning rate is too big, the update step may overshoot the global minimum value when you get to values close to the global minimum

• To fix this, use a smaller learning rate

Use smaller α $J(\overrightarrow{w},b)$ parameter w_1

- With a small enough smaller learning rate, $J(\vec{w}, b)$ should decrease with every iteration
- Could try a couple of different learning rate values to see how they affect the cost function

Values of α to try:

... 0.001 0.01 0.1 1...

- → Feature Engineering
 - ◆ Example: Predicting the size of a house

- Features
 - o x_1 is the frontage of the lot
 - o x_2 is the depth of the house

Model

$$f_{\vec{\mathbf{w}},b}(\vec{\mathbf{x}}) = w_1 x_1 + w_2 x_2 + b$$

frontage depth

- Could be a good way to predict the cost of a house but you can also use area if you want
 - lacktriangledown area = frontage \cdot depth
 - Might be more indicative of the price than just the front and depth as separate features
 - $\circ \rightarrow x_3 = x_1 x_2$ where x_3 = area
 - Creating this new feature is the process of feature engineering
 - Transforming or combining original features to define new features
 - ♦ → New model

$$f_{\vec{w},b}(\vec{x}) = w_1 x_1 + w_2 x_2 + w_3 x_3 + b$$

- New model now uses all 3 features, and therefore the w value of each can be assigned a different weight depending on what the algorithm deems as being the most important for predicting the price of the house
- → Polynomial Regression
 - Type of feature engineering
 - ◆ Ex: Housing data set

• Might be easier to fit a different to the data set than a linear regression

- O Could you use this quadratic equation to predict? $f_{\overrightarrow{w},b}(x) = w_1 x + w_2 x^2 + b$
 - While this could be good, it doesn't work cause quadratic functions eventually go down

O How about a cubic function? $f_{\vec{w},b}(x) = w_1 x + w_2 x^2 + w_3 x^3 + b$

- ◆ Somewhat better than the quadratic model
- O How about a \sqrt{x} model? $f_{\overrightarrow{w},b}(x) = w_1 x + w_2 \sqrt{x} + b$

• When using polynomial regression feature scaling becomes more important than ever

Practice Quiz: Gradient Descent in Practice

1.

Which of the following is a valid step used during feature scaling?

- Add the mean (average) from each value and and then divide by the (max min).
- O Subtract the mean (average) from each value and then divide by the (max min).
- **2.** Suppose a friend ran gradient descent three separate times with three choices of the learning rate α and plotted the learning curves for each (cost J for each iteration).

1 point

1 point

For which case, A or B, was the learning rate lpha likely too large?

- ocase A only
- O Both Cases A and B
- O Neither Case A nor B
- o case B only

3.	Of the circumstances below, for which one is feature scaling particularly helpful?	1 point
	Feature scaling is helpful when one feature is much larger (or smaller) than another feature.	
	Feature scaling is helpful when all the features in the original data (before scaling is applied) range from 0 to 1.	
4.		1 point
	You are helping a grocery store predict its revenue, and have data on its items sold per week, and price per item. What could be a useful engineered feature?	
	For each product, calculate the number of items sold times price per item.	
	O For each product, calculate the number of items sold divided by the price per item.	
5.	$\label{eq:continuous} True/False? With polynomial regression, the predicted values f_w,b(x) does not necessarily have to be a straight line (or linear) function of the input feature x.$	1 point
	True	
	○ False	