Optimization for Data Science Lecture 08 and 09: Optimal Gradient Methods

Kimon Fountoulakis

School of Computer Science University of Waterloo

03/10/2019

Outline

Accelerated gradient method for convex functions.

Descent methods

• So far we have talked about algorithms that generate a sequence $\{x_k\}_{k\in\mathbb{N}_0}$ such that

$$f(x_{k+1}) < f(x_k)$$

This type of sequences gave us the following rates

Convex
$$\delta$$
-strongly-convex

Smooth
$$f(x)$$
 $\mathcal{O}\left(\frac{L}{\epsilon}\right)$ $\mathcal{O}\left(\frac{L}{\delta}\log\frac{1}{\epsilon}\right)$

Optimal gradient methods

- For convex and strongly-convex functions the previous rates are not optimal!!
- It can be shown that optimal algorithms that only use gradients to produce a sequence $\{x_k\}_{k\in\mathbb{N}_0}$ have the following rate:

Smooth
$$f(x)$$
 $\mathcal{O}\left(\sqrt{\frac{L}{\epsilon}}\right)$ $\mathcal{O}\left(\sqrt{\frac{L}{\delta}}\log\frac{1}{\epsilon}\right)$

Nesterov's (optimal) accelerated method

Let
$$\gamma_k$$
 be such that $\prod_{i=0}^k (1-\gamma_i) \geq \gamma_k^2 \quad \forall k \geq 0$ and $\gamma_k \in [0,1]$.

• One option for γ_k such that this is true is:

•
$$\gamma_0=\gamma_1=\gamma_2=\gamma_3=0$$
 and $\gamma_i:=\frac{2}{i}$ for $i\geq 4$.

Let
$$\lambda_k := \prod_{i=0}^k (1 - \gamma_i)$$
.

Nesterov's (optimal) accelerated method

- Pick and arbitrary $x_0 \in \mathbb{R}^n$.
- Set $z_0 := x_0$, $\gamma_0 = 0$
- Until the termination criterion is not satisfied do:

•
$$y_{k-1} := (1 - \gamma_k)x_{k-1} + \gamma_k z_{k-1}$$

$$z_k := z_{k-1} - \frac{\gamma_k}{\lambda_k} \nabla f(y_{k-1})$$

•
$$x_k := y_{k-1} - \frac{1}{L} \nabla f(y_{k-1})$$

Optimal gradient methods

- This result was initially an existential result, i.e., it was proved that there must exist gradient based methods that have optimal rates of convergence.
- However, an actual algorithm with optimal rate was first discovered by Y. Nesterov in 1983.

Optimal gradient methods

• Nesterov showed that to obtain algorithms with optimal rate we have to relax the "descent" constraint that the output sequence $\{x_k\}_{k\in\mathbb{N}_0}$ must satisfy

$$f(x_{k+1}) < f(x_k)$$

 In other words, we will have to think of methods that do not decrease monotonically the objective function.

 Today we will discuss a new type of sequences that allows us to obtain algorithms with optimal rate.

- **Definition:** a sequence $\{\phi_k, \lambda_k, x_k\}_{k \in \mathbb{N}_0}$, where $\phi_k : \mathbb{R}^n \to \mathbb{R}$, $\lambda_k \in [0,1]$ and $x_k \in \mathbb{R}^n$ is said to be an **estimate sequence** if it satisfies the following:
 - "upper bound": $\forall k \in \mathbb{N}_0$ and $\forall x \in \mathbb{R}^n$ we have $\phi_k(x) \leq (1 \lambda_k)f(x) + \lambda_k \phi_0(x)$
 - "lower bound": $\forall x \in \mathbb{R}^n$ we have $f(x_k) \le \phi_k(x)$

• Function ϕ_k serves as an approximation to f, which becomes tighter as $k \to \infty$.

• Example: since both inequalities hold for any x. Let's set $x := x^*$ (the minimizer of f). Then using the "lower bound" inequality in the definition of an estimate sequence we get:

$$f(x_k) - f^* \le \phi_k(x^*) - f^*$$

• Therefore, if $\phi_k(x^*) - f^* \to 0$ as $k \to \infty$, then we must also have that $f(x_k) - f^* \to 0$.

Can we prove that an estimate sequence exists?

• **Theorem:** for every convex function f with Lipschitz continuous gradient, then for an arbitrary $x_0 \in \mathbb{R}^n$ there exists an estimate sequence $\{\phi_k, \lambda_k, x_k\}_{k \in \mathbb{N}_0}$ with $\phi_0(x) := f(x_0) + \frac{L}{2} \|x - x_0\|_2^2$ and $\lambda_k \leq \frac{c}{k^2}$ for some constant c > 0.

- Why is an estimate sequence useful?
- For such a sequence we have the following:

$$f(x_k) - f^* \le \mathcal{O}\left(\frac{1}{k^2}\right)$$

 This is 1/k times faster than what we get with gradient descent!!

This also means that after

$$t = \mathcal{O}\left(\sqrt{\frac{L}{\epsilon}}\right)$$

• iterations we guarantee that $f(x_k) - f^* \le \epsilon$. This is much faster than

$$t = \mathcal{O}\left(\frac{L}{\epsilon}\right)$$

which is what we get for gradient descent for convex functions.

 Proving the convergence rate theorem for the estimate sequence is non-trivial!!

But we will do this anyway because it's cool!!

