Atstumo žemėlapių, skirtų trumpiausio kelio paieškai, atvaizdavimas panaudojant ketvirtainių medžių duomenų struktūras

Jonas Antanaitis Kompiuterinis modeliavimas, 2 grupė 2014

Turinys

- Įvadas
- Ketvirtainio medžio matrica
- Atstumo žemėlapiai
- Kaimynų suradimo algoritmas
- Kelio planavimas plokštumoje
- Išplėstiniai ketvirtainiai medžiai
- Svorio koeficientai
- Kelio planavimas erdvėje
- Išvados

Ketvirtainio medžio matrica

Ketvirtainio medžio matrica

L x 4 didžio matrica:

$$R = [P_1, P_2, P_3, ..., P_L]^T$$

Ryšis tarp k ir k-1 lygio mazgų:

$$P_i = (Q_{i1}, Q_{i2}, Q_{i3}, Q_{i4}),$$

• Lapuose saugoma informacija:

$$Q_{im} = \begin{cases} -c \\ 0 \end{cases}$$

Ketvirtainio medžio matrica

P_i/Q_{ij}	0	1	2	3
1	2	3	4	5
2	0	-1	0	-1
3	-1	-1	0	-1
4	0	-1	-1	-1
5	0	-1	-1	-1

Atstumo žemėlapis atvaizduotas, ketvirtainiu medžiu

P_i/Q_{ij}	0	1	2	3
1	2	3	4	5
2	0	-20	0	-16
3	-24	-28	0	-24
4	0	-12	-4	-8
5	0	-20	-12	-16

Atstumų žemėlapiai. Jų užpildymas

Kaimynų ieškojimo algoritmas

$$A = \begin{pmatrix} x_0 y_0 \\ x_1 y_1 \\ \cdot \\ x_n y_n \end{pmatrix} \qquad \begin{aligned} x_A &= \sum_{i=0}^n x_i \times 2^{N-i-1}, \\ y_A &= \sum_{i=0}^n y_i \times 2^{N-i-1}, \\ x_n y_n &= \sum_{i=0}^n x_i \times 2^{N-i-1}, \end{aligned}$$

$$x_A = \sum_{i=0}^{n} x_i \times 2^{N-i-1}$$

$$y_A = \sum_{i=0}^{n} y_i \times 2^{N-i-1},$$

$$d_A=2^{N-n-1}.$$

Kelio planavimas plokštumoje

 Sudarius atstumo žemėlapį naudojama greičiausio nusileidimo strategija.

Saugus kelio pasirinkimas

$$A = \begin{pmatrix} x_0 y_0 \\ x_1 y_1 \\ \cdot \\ x_n y_n \end{pmatrix}$$

$$x_A = \sum_{i=0}^{n} x_i \times 2^{N-i-1},$$

$$y_A = \sum_{i=0}^{n} y_i \times 2^{N-i-1},$$

$$d_A = 2^{N-n-1}.$$

$$y_A = \sum_{i=0}^{n} y_i \times 2^{N-i-1},$$

$$d_A = 2^{N-n-1}$$

Išplėstiniai ketvirtainiai medžiai

Išplėstiniai ketvirtainiai medžiai

- Išplėstiniuose medžiuose pasirinkti blokai atvaizduojami pasirinktų medžio giliu.
- Pagrindinis trūkumas medis užima daugiau atminties.
- Randamas optimalesnis kelias.

Išplėstiniai ketvirtainiai medžiai

Atstumų žemėlapiai su svorio koeficientais

Kelio planavimas erdvėje

	-			-				
F_i/S_{ij}	0	1	2	3	4	5	6	7
1	0	2	3	4	5	6	7	0
2	0	0	0	0	0	0	-80	0
3	0	0	0	0	-96	-80	0	0
4	0	0	0	-16	-64	-48	0	-32
5	0	0	0	0	-160	-144	0	0
6	0	0	-96	-112	-128	0	-112	-128
7	-112	-96	0	-112	0	-112	0	-128

Kelio planavimas erdvėje

Išvados

- Atstumų žemėlapius galima atvaizduoti pasinaudojant ketvirtainių ir aštuntainių medžių duomenų struktūras, naudojant žymiai mažiau atminties nei atvaizduojant rastinio failu.
- Šio metodo efektyvumas priklauso nuo kaimyninių blokų paieškos strategijos.

Literatūra

Low-cost implementation of distance maps for path planning using matrix quadtrees and octrees. *Jozef Voros*.