תורת החבורות – תרגיל בית 6 – פתרון

שאלה 1

$$G = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \middle| a,b,c \in \mathbb{R}, \ a \neq 0,c \neq 0 \right\}$$
 תהי

: סגורה תחת כפל מטריצות G

$$. \, a_1 a_2 \neq 0, \ \, c_1 c_2 \neq 0 \ \, \text{if} \ \, \begin{pmatrix} a_1 & b_1 \\ 0 & c_1 \end{pmatrix} \begin{pmatrix} a_2 & b_2 \\ 0 & c_2 \end{pmatrix} = \begin{pmatrix} a_1 a_2 & a_1 b_2 + b_1 c_2 \\ 0 & c_1 c_2 \end{pmatrix} \in G$$

$$\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}^{-1} = \begin{pmatrix} a^{-1} & -b/ac \\ 0 & c^{-1} \end{pmatrix} \in G$$
 סגורה להפיכים, כי G

 $I\in G$ לפי שני הסעיפים הקודמים וכי G $L_2(\mathbb{R})$ גו תת-חבורה של

יכי ,
$$\mathrm{GL}_2ig(\mathbb{R}ig)$$
 אינה תת-חבורה של $\mathrm{H}=\left\{egin{pmatrix}a&b\\0&a\end{matrix}\middle|a,b\in\mathbb{R},\ a
eq0
ight\}$ ד

 $I \in H$ (1

$$\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}^{-1} = \begin{pmatrix} a^{-1} & -b/a^2 \\ 0 & a^{-1} \end{pmatrix} \in G$$
 (3)

<u>שא</u>לה 2

אט
$$(\mathbb{C}^*,\cdot)$$
 ישנם 3 בחבורה $\mathbf{x}^2=\mathbf{e}$ בחבורה ($\mathbb{R}^*,\cdot)$ ישנם 3 פתרונות,
$$(\mathbb{R}^*,\cdot)\neq(\mathbb{C}^*,\cdot)$$
 ישנם 3 פתרונות. וב- (\mathbb{R}^*,\cdot) -- רק אחד.

ב) – לא.
$$(\mathbb{Q},+)$$
 ציקלית, ו $(\mathbb{Z},+)$ כי למשל חבורה $(\mathbb{Z},+)$ ציקלית, ו $(\mathbb{Z},+)$ ב

. אט --
$$D_4$$
 כי המרכז של S_4 הינו טריביאלי, ושל $D_{24}
ot \not \equiv S_4$ (ג

<u>שאלה 3</u>

 $.\,\phi\!\left(z\right)\!=\!z^{k}$ טבעי ותהי $\phi\!:\!G\to\!G$ העתקה המוגדרת ע"י ותהי $k>\!1$ יהי

 $\phi \Leftarrow \phi(zw)=(zw)^k=z^kw^k=\phi(z)\phi(w)$ מתקיים $z,w\in G$ אז לכל $z=cisigg(rac{2\pi}{n}igg)\in G$ קיים על, כי לכל $z=cisigg(rac{2\pi}{n}igg)$

$$z'=cis\left(rac{2\pi}{kn}
ight)\in G$$
 המקור של צ עייי

לכל $\operatorname{cis}\!\left(rac{2\pi}{k}
ight)\!
eq 0$ אינו איזומורפיזם, כי אינו חחייע: $\operatorname{cis}\!\left(rac{2\pi}{k}
ight)\! =\! \operatorname{\phi}\!\left(1
ight)$ אד $\operatorname{cis}\!\left(rac{2\pi}{k}
ight)\! =\! \operatorname{\phi}\!\left(1
ight)$ לכל $\operatorname{k} > 1$

<u>שאלה 5</u>

 $\phi(a)=a^k$ יהי שיי המוגדרת ע"י $\phi:A o A$ ותהי ותהי והי

. הומומורפיזם $\phi \Leftarrow \phi \big(ab\big) = \big(ab\big)^k = a^k b^k = \phi \big(a\big) \phi \big(b\big)$ הומומורפיזם $a,b \in A$ אז לכל

כעת נגדיר העתקה $\psi(a)=a^{-1}$ ע"י $\psi:A o A$ כעת נגדיר העתקה

אם ורק אם לכל $\psi(ab) = \psi(a)\psi(b)$ $a,b \in A$ אם ורק אם לכל $\psi(ab) = \psi(ab)\psi(b)$

$$\left(\left(ab\right)^{-1}\right)^{-1}=\left(a^{-1}b^{-1}\right)^{-1}\quad a,b\in A\quad\text{ a. }b\in A$$
אם ורק אם לכל $ab=ba\quad a,b\in A$ אם ורק אם לכל $ab=ba\quad a,b\in A$

<u>שאלה 7</u>

- א) עורה תחת $H=\mathbb{N}$ אז $H=\mathbb{N}$ ותת-קבוצה אינסופית G=(Z,+) אז G=(Z,+) הפעולה, אך אינה תת-חבורה של G
- ב) נניח בשלילה כי קיימת G חבורה סופית מסדר n>2, בה ישנה תת-חבורה H מהסדר $G=H\cup \{y\}$ -1 , $H=\{x_i\}_{i=1}^{n-1}:n-1$

. $x_iy=y$ $1\leq i\leq n-1$ כלומר לכל , $x_iy\in G-H$ $1\leq i\leq n-1$ לכן לכל לכן לכל במו כן $e\in H$ \Leftarrow y=e \Leftarrow n-1>1 \Leftarrow n>2 כמו כן