Doping effects on the singlet-triplet gap and bonding of the silicon trimer

Nguyen Minh Tam,^{a,b} Tran Dieu Hang,^b Hung Tan Pham,^a My Phuong Pham-Ho,^a Minh Tho Nguyen^b

(Abstract) We revisit the singlet-triplet energy gap (ΔE_{ST}) of silicon trimer and evaluate the gaps of its derivatives doped by a cation (H⁺, Li⁺, Na⁺, K⁺) and an atom (Be, Mg, Ca) using the composite G4 method, coupled-cluster theory CCSD(T)/CBS and CASPT2 (for Si₃) computations. Both 1A_1 and 3A_2 states of Si₃ are determined to be degenerate. An intersystem crossing between both states appears to be possible at a point having an apex bond angle of around $\alpha = 68 \pm 2^\circ$ which is 16 ± 4 kJ/mol above the ground state. The proton and alkali metal cations tend to favour the low spin state, but do not modify significantly the ΔE_{ST} , whereas a doping of earth-alkali atoms stabilize the singlet and substantially enlarge the ΔE_{ST} of the doped clusters. The proton affinity of silicon trimer is determined as PA(Si₃) = 827 \pm 4 kJ/mol. The metal cation affinities and metal atom affinities are also predicted. Electron localization function (ELF) and ring current analysis shows that the singlet trimeric ring Si₃ is non-aromatic, the Li⁺ cation renders it anti-aromatic whereas attachment of a Be atom makes the resulting tetramer a σ -aromatic cycle.

^{a)} Institute for Computational Science and Technology (ICST), Quang Trung Software City, Ho Chi Minh City, Vietnam

b) Department of Chemistry, University of Leuven, B-3001 Leuven, Belgium