

REPORTE PRACTICA. AFD y AFND

PRÁCTICA. AFD y AFND

ALUMNO: GÓMEZ ALAMILLA BRYAN TONINHO

Dr. Eduardo Cornejo Velazquez

Ejercicio 1. Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto $\Sigma = \{0, 1\}$, que acepte el conjunto de palabras que inician en "0".

AFD =
$$(\Sigma, Q, f, q_0, F) \Sigma = \{0, 1\}$$

 $Q = \{s_0, s_1, s_2\}$

 q_0 es el estado inicial.

 $F = \{s_1\}$

Funciones de transición:

 $f(s_0, 0) = s_1 f$ $(s_0, 1) = s_2 f$ $(s_1, 0) = s_1 f$ $(s_1, 1) = s_1 f$ $(s_2, 0) = s_2 f$ $(s_2, 1) = s_2$

Tabla 1: Tabla de transiciones.

Estado	0	1
q_0	q_1	q_2
q_1	q_1	q_1
q_2	q_2	q_2

Palabras aceptadas:

0101

01010

00000

010101

01111

Palabras rechazadas:

101010

1111

10101

10000

Ejercicio 2. Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto $\Sigma = \{0, 1\}$, que acepte el conjunto de palabras que terminan en "1".

```
AFD = (\Sigma, Q, f, q_0, F) \Sigma = \{0, 1\}

Q = \{s_0, s_1, s_2\}
```

 q_0 es el estado inicial.

 $F = \{s_1\}$

Funciones de transición:

 $f(s_0, 0) = s_2 f$ $(s_0, 1) = s_1 f$ $(s_1, 1) = s_{s1} f$ $(s_1, 0) = s_2 f$ $(s_2, 1) = s_1 f$

 $(s_2, 0) = s_2$

Tabla 2: Tabla de transiciones.

Estado	0	1
q_0	q_2	q_1
q_1	q_2	q_1
q_2	q_2	q_1

Palabras aceptadas:

00001

11111

010101

010101

0011101

Palabras rechazadas:

0101010

0000000

1111100

101010

Ejercicio 3. Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto $\Sigma = \{0, 1\}$, que acepte el conjunto de palabras que contiene la subcadena "01".

$$AFD = (\Sigma, Q, f, q_0, F) \Sigma = \{0, 1\}$$

 $Q = \{s_0, s_1, s_2, s_3\}$

 q_0 es el estado inicial.

$$F = \{s_3\}$$

Funciones de transición:

$$f(s_0, 0) = s_1 f$$

$$(s_0, 1) = s_2 f$$

$$(s_1, 1) = s_3 f$$

$$(s_1, 0) = s_1 f$$

$$(s_2, 1) = s_2 f$$

$$(s_2, 0) = s_1 f$$

$$(s_3, 0) = s_3 f$$

$$(s_3, 1) = s_3$$

Tabla 3: Tabla de transiciones.

Estado	0	1
q_0	q_1	q_2
q_1	q_1	q_3
q_2	q_1	q_2
q ₃	q_3	q ₃

Palabras aceptadas:

0000001

111101

010101

Palabras rechazadas:

Ejercicio 4. Obtenga un Automata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto $\Sigma = \{0, 1\}$, que acepte el conjunto de palabras que no contienen la subcadena "01".

```
AFD = (\Sigma, Q, f, q_0, F) \Sigma = \{0, 1\}

Q = \{s_0, s_1, s_2\}

q_0 es el estado inicial.

F = \{s_1, s_2\}

Funciones de transición:

f(s_0, 0) = s_1 f

(s_0, 1) = s_2 f

(s_1, 0) = s_1 f

(s_2, 1) = s_2 f

(s_2, 0) = s_1
```

Table 4: Tabla de transiciones.

Estado	0	1
q_0	q_1	q_2
q_1	q_1	Х
q_2	q_1	q_2

Palabras aceptadas:

111111

000000

1111000

1111110

0000

Palabras rechazadas:

010101

11111101

01111111

0000001

Ejercicio 5. Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto $\Sigma = \{a, b, c\}$, que acepte el conjunto de palabras que inician con la subcadena "ac" o terminan con la subcadena "ab'.

```
AFD = (\Sigma, Q, f, q_0, F)
\Sigma = \{a, b, c\}
Q = \{s_0, s_1, s_2, s_3, s_4, s_5\}
s_0 es el estado inicial.
F = \{s_3, s_4\}
Funciones de transición:
f(s_0, a) = s_2 f(s_0, b)
= s_5 f(s_0, c) = s_5 f
(s_1, a) = s_2 f(s_1, b)
= s_4 f(s_1, c) = s_3 f
(s_2, a) = s_2 f(s_2, b)
= s_2 f(s_2, c) = s_2 f
(s_3, a) = s_4 f(s_3, b)
= s_5 f(s_3, c) = s_5 f
(s_4, a) = s_4 f(s_4, b)
= s_3 f(s_4, c) = s_5 f
(s_5, a) = s_4 f(s_5, b)
= s_5 f(s_5, c) = s_5
Palabras aceptadas:
acb
aaab
acbb
```

Tabla 5: Tabla de transiciones.

Estado	а	b	С
<i>s</i> ₀	<i>s</i> ₁	s ₅	s ₅
<i>s</i> ₁	S ₄	S ₃	s ₂
s ₂	s ₂	s ₂	s ₂
s ₃	<i>S</i> ₄	s ₅	s ₅
<i>S</i> ₄	S ₄	s ₃	s ₅
S ₅	S ₄	S ₅	S ₅

aab acbb Palabras rechazadas: aaaaaa bbbb abaaaa abbbb cccca

Ejercicio 6. Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto $\Sigma = \{a, b, c\}$, que acepte el conjunto de palabras que inician con la subcadena "ac" o no terminen con la subcadena "ab'.

```
AFD = (\Sigma, Q, f, q_0, F)
\Sigma = \{a, b, c\}
Q = \{s_0, s_1, s_2, s_3, s_4, s_5\}
s_0 es el estado inicial.
F = \{s_0, s_1, s_2, s_3, s_4\}
Funciones de transici'on:
f(s_0, a) = s_1 f
(s_0, b) = s_3 f
(s_0, c) = s_3 f
(s_1, a) = s_6 f
(s_1, b) = s_6 f
(s_1, c) = s_3 f
(s_2, a) = s_3 f
(s_2, b) = s_5 f
(s_2, c) = s_2 f
(s_3, a) = s_3 f
(s_3, b) = s_4 f
(s_3, c) = s_2 f
(s_4, a) = s_3 f
(s_4, b) = s_5 f
(s_4, c) = s_2 f
(s_5, a) = s_3 f
(s_5, b) = s_5 f
(s_5, c) = s_2 f
(s_6, a) = s_6 f
(s_6, b) = s_6 f
(s_6, c) = s_6
```

Tabla 6: Tabla de transiciones.

Estado	а	b	С
<i>s</i> ₀	S ₁	S ₆	S ₆
<i>S</i> ₁	S ₆	S ₆	s ₂
s ₂	S 3	S ₅	S ₄
S ₃	S 3	S ₄	s ₂
S ₄	S ₃	S ₅	s ₂
S ₅	S ₃	S ₅	s ₂
<i>S</i> ₆	S ₆	S ₆	S ₆

Palabras aceptadas:

ac

acb

acca

acaaa

acbcbc

Palabras rechazadas:

ab

acbababab acab acabab cacab

Ejercicio 7. Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto $\Sigma = \{a, b, c\}$, que acepte el conjunto de palabras que inician con la subcadena "ac" o no terminan con la subcadena "ab".

```
AFD = (\Sigma, Q, f, q_0, F)
\Sigma = \{a, b, c\}
Q = \{s_0, s_1, s_2, s_3, s_4\}
q_0 es el estado inicial.
F = \{s_2, s_3, s_4\}
Funciones de transición:
f(s_0, a) = s_1 f
(s_0, b) = s_4 f
(s_0, c) = s_4 f
(s_1, c) = s_2 f
(s_1, a) = s_4 f
(s_1, b) = s_4 f
(s_2, a) = s_2 f
(s_2, b) = s_2 f
(s_2, c) = s_2 f
(s_3, a) = s_3 f
(s_3, c) = s_3 f
(s_3, b) = s_4 f
(s_4, a) = s_3 f
(s_4, b) = s_4 f
(s_4, c) = s_4
```

Tabla 7: Tabla de transiciones.

Estado	а	b	С
q_0	q_1	q_4	q_4
q_1	q_4	q_4	q_2
q_2	q_2	q_2	q_2
q ₃	q ₃	q_4	q ₃
q_4	q_3	q_4	q_4

Palabras aceptadas: ac, aca, cab, bca, cca Palabras rechazadas: ab, bab, acab, aab, acb

Ejercicio 8. Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto $\Sigma = \{a, b, c\}$, que acepte el conjunto de palabras que no inician con la subcadena "ac" y no terminan con la subcadena "ab".

AFD =
$$(\Sigma, Q, f, q_0, F)$$

 $\Sigma = \{a, b, c\}$
 $Q = \{s_0, s_1, s_2, s_3\}$
 q_0 es el estado inicial.
 $F = \{s_0, s_1, s_3\}$
Funciones de transición:
 $f(s_0, a) = s_1 f$
 $(s_0, b) = s_3 f$
 $(s_0, c) = s_3 f$
 $(s_1, a) = s_1 f$
 $(s_1, b) = s_1 f$
 $(s_1, b) = s_1 f$
 $(s_1, c) = s_2 f$
 $(s_2, a) = s_2 f$
 $(s_2, b) = s_2 f$
 $(s_2, c) = s_2 f$
 $(s_3, a) = s_3 f$
 $(s_3, b) = s_3 f$
 $(s_3, c) = s_3 f$

Table 8: Tabla de transiciones.

c or labia ac transicionesi			
Estado	а	b	С
q_0	q_1	q_3	q_3
q_1	q_1	q_1	q_2
q_2	q_2	q_2	q_2
q_3	q_3	q_3	q_3

Palabras aceptadas: b, c, baa, caa, cca

Palabras rechazadas: ac, acab, aab, cab, acb

Ejercicio 9. Obtenga un Autómata Finito No Determinista (AFND) dado el lenguaje definido en el alfabeto $\Sigma = \{0, 1\}$, que acepte el conjunto de palabras que no contienen la subcadena "01".

```
AFND = (\Sigma, Q, f, q_0, F) \Sigma = \{0, 1\}

Q = \{s_0, s_1, s_2\}

q_0 es el estado inicial.

F = \{s_0, s_1\}

Funciones de transición:

f(s_0, 0) = s_0 f

(s_0, 1) = s_1 f

(s_1, 1) = s_1 f

(s_1, 0) = s_2 f

(s_2, 0) = s_2 f

(s_2, 1) = s_2
```

Tabla 9: Tabla de transiciones.

Estado	0	1
q_0	q_0	q_1
q_1	q_2	q_1
q_2	q_2	q_2

Palabras aceptadas: 0, 00, 111, 000, 111111 Palabras rechazadas: 01, 001, 101, 1101, 10001

