age distribution of cases

Maggie Walters
June 22, 2017

Document Synopsis

This document aims to visually and quantitatively describe the different age distribution of cases in the counties represented in spm.data.long.csv. Densities of cases for age groups will be calculated and then compared between counties.

The difference between counties will be used in order to explore possible predictive relationships between population size or urbanness of a county and it's density of cases in different age classes.

Age distribution scatter plots by county

Scatter plots will be created in order to visually identify the age groups which frequently have a low density of cases. Depending on results, this may be limited to counties with number of cases above a certain threshold.

SAO PAULO

ARTUR NOGUEIRA

MOGI GUACU

WEEK **ENGENHEIRO COELHO**

BAURU

MORRO AGUDO

DIADEMA

SAO BERNARDO DO CAMPO

CAJAMAR

PRESIDENTE PRUDENTE

FERRAZ DE VASCONCELOS

CUBATAO

WEEK

ITAQUAQUECETUBA

SANTOS

ARARAQUARA

JANDIRA

ARARAS

FRANCO DA ROCHA

MOGI DAS CRUZES

SAO JOSE DO RIO PRETO

CATANDUVA

SANTA CRUZ DAS PALMEIRAS

RIO GRANDE DA SERRA

RIBEIRAO PIRES

SANTANA DE PARNAIBA

FRANCISCO MORATO

ATIBAIA

MAIRIPORA

LIMEIRA

RIO CLARO

WEEK

ARUJA

CAMPO LIMPO PAULISTA

ITATIBA

COSMOPOLIS

HORTOLANDIA

WEEK

INDAIATUBA

SAO SEBASTIAO

SERTAOZINHO

SUMARE

TAUBATE

UBATUBA

VARZEA PAULISTA

Preliminary Analysis

Confidence intervals for age group densities

Created two_matrix, three_matrix, four_matrix, and five_matrix which contain the density of cases in age groups of the corresponding span for each county. Density was just calculated as the number of cases in that specific class divided by the number of cases in that county total.

```
#find appropriate age windows, look at age groups with ranges ranging from 2 to 5 years
density_age <- function(max.age, size){</pre>
  amount <- round(max.age / size)</pre>
  amount.vec <- rep(NA, amount)
  amount.vec <- as.data.frame(amount.vec)</pre>
  amount.vec[1,] <- length(which(subset_county$AGE <= size))</pre>
  for(i in 2:amount){
    before <- as.integer(sum(amount.vec[1: i - 1,]))</pre>
    amount.vec[i,] <- length(which(subset_county$AGE <= (size * i))) - before
  density.vec <- amount.vec / length(subset_county$AGE)</pre>
  return(density.vec)
#matrix for age group of 2's
two matrix <- matrix(rep(NA, round(84/2) * length(county vec)), ncol = length(county vec))
two_matrix <- as.data.frame(two_matrix)</pre>
colnames(two_matrix) <- county_vec</pre>
row.names(two_matrix) <- c("<2", "2-4", "4-6", "6-8", "8-10",
                             "10-12", "12-14", "14-16", "16-18", "18-20",
                                     "22-24", "24-26", "26-28", "28-30",
                            "30-32", "32-34", "34-36", "36-38", "38-40",
                            "40-42", "42-44", "44-46", "46-48", "48-50",
                            "50-52", "52-54", "54-56", "56-58", "58-60",
                            "60-62", "62-64", "64-66", "66-68", "68-70",
                            "70-72", "72-74", "74-76", "76-78", "78-80",
                            "80-82", "82-84")
for(j in 1:length(county vec)){
  subset county <- subset(data, data$COUNTY == county vec[j])</pre>
  max.age <- max(subset_county$AGE)</pre>
  density <- unlist(density_age(max.age, 2))</pre>
  length d <- length(density)</pre>
  density <- c(density, rep(NA, (42 - length_d)))
  two_matrix[,j] <- density</pre>
#matrix for age groups of 3's
three_matrix <- matrix(rep(NA, round(84/3) * length(county_vec)), ncol = length(county_vec))
three_matrix <- as.data.frame(three_matrix)</pre>
colnames(three_matrix) <- county_vec</pre>
rownames(three_matrix) <- c("<3", "3-6", "6-9",
                               "9-12", "12-15", "15-18",
                               "18-21", "21-24", "24-27",
                               "27-30", "30-33", "33-36",
                               "36-39", "39-42", "42-45",
                               "45-48", "48-51", "51-54",
```

```
"54-57", "57-60", "60-63",
                                "63-66", "66-69", "69-72",
                                "72-75", "75-78", "78-81",
                                "81-84")
for(j in 1:length(county_vec)){
  subset_county <- subset(data, data$COUNTY == county_vec[j])</pre>
  max.age <- max(subset_county$AGE)</pre>
  density <- unlist(density age(max.age, 3))</pre>
  length_d <- length(density)</pre>
  density <- c(density, rep(NA, (28 - length_d)))</pre>
  three_matrix[,j] <- density</pre>
}
#matrix for age groups of 4's
four_matrix <- matrix(rep(NA, 21 * length(county_vec)), ncol = length(county_vec))</pre>
four_matrix <- as.data.frame(four_matrix)</pre>
colnames(four_matrix) <- county_vec</pre>
row.names(four_matrix) <- c("<4", "4-8", "8-12", "12-16",
                              "16-20", "20-24", "24-28", "28-32",
                              "32-36", "36-40", "40-44", "44-48",
                              "48-52", "52-56", "56-60", "60-64",
                              "64-68", "68-72", "72-76", "76-80",
                              "80-84")
for(j in 1:length(county_vec)){
  subset_county <- subset(data, data$COUNTY == county_vec[j])</pre>
  max.age <- max(subset_county$AGE)</pre>
  density <- unlist(density_age(max.age, 4))</pre>
  length_d <- length(density)</pre>
  density <- c(density, rep(NA, (21 - length_d)))</pre>
  four_matrix[,j] <- density</pre>
}
#matrix for age groups of 5's
five_matrix <- matrix(rep(NA, round(84/5) * length(county_vec)), ncol = length(county_vec))
five matrix <- as.data.frame(five matrix)</pre>
colnames(five_matrix) <- county_vec</pre>
row.names(five_matrix) <- c("<5", "5-10", "10-15", "15-20",
                             "20-25", "25-30", "30-35", "35-40",
                             "40-45", "45-50", "50-55", "55-60",
                             "60-65", "65-70", "70-75", "75-80",
                             "80-85")
for(j in 1:length(county_vec)){
  subset_county <- subset(data, data$COUNTY == county_vec[j])</pre>
  max.age <- max(subset_county$AGE)</pre>
  density <- unlist(density_age(max.age, 5))</pre>
  length_d <- length(density)</pre>
  density <- c(density, rep(NA, (17 - length_d)))</pre>
  five_matrix[,j] <- density</pre>
}
```

Preliminary Analysis

It appears that the size of the window does have a significant (colloquially) effect on the density in that close age classes have pretty different densities. Going to compare densities on a line graph.

Comparison of windows

```
#x axis for twos
x_{two} \leftarrow rep(NA, 42)
x_two[1] <- 1
for(i in 2:42){
  x_add \leftarrow seq(1:41)
  x_two[i] \leftarrow i + x_add[i - 1]
#x axis for threes
x_{three} \leftarrow rep(NA, 28)
x_{three}[1] \leftarrow 2
for(i in 2:28){
  x_add \leftarrow seq(1:28)
  x_{three[i]} \leftarrow 2 * i + x_{add[i]} -1
#x axis for fours
x_{four} \leftarrow rep(NA, 21)
x_four[1] <- 2.5
for(i in 2:21){
  x_add <- seq(1:21)
  x_{four}[i] \leftarrow 3 * i + x_{add}[i] + 0.5 -1
}
#x axis for fives
x_{five} \leftarrow rep(NA, 17)
x_five[1] \leftarrow 3
for(i in 2:17){
  x_add \leftarrow seq(1:17)
  x_{five}[i] \leftarrow 4 * i + x_{add}[i] -2
for(i in 1:length(county_vec)){
  subset_county <- subset(data, data$COUNTY == county_vec[i])</pre>
  if(length(subset_county$AGE) > 20){
    {plot(x_two, two_matrix[,i], type = "l", ylim = c(0, 0.3), main = county_vec[i])}
     lines(x_three, three_matrix[,i], col = "red")
      lines(x_four, four_matrix[,i], col = "blue")
      lines(x_five, five_matrix[,i], col = "green")}
}
```

SAO PAULO

x_two

BOTUCATU

ENGENHEIRO COELHO

SAO CAETANO DO SUL

GUARULHOS

SANTO ANDRE

MARILIA

FERRAZ DE VASCONCELOS

SAO JOAO DA BOA VISTA

GUARATINGUETA

CAMPINAS

x_two

MOGI MIRIM

PINDAMONHANGABA

CARAPICUIBA

x_two

EMBU-GUACU

SAO JOSE DOS CAMPOS

x_two

0.00

EMBU DAS ARTES

PONTAL

ITAPECERICA DA SERRA

x_two

BARUERI

CAIEIRAS

x_two

RIBEIRAO PRETO

JUNDIAI

PIRACICABA

BRAGANCA PAULISTA

x_two

TABOAO DA SERRA

AMERICANA

SANTA BARBARA D'OESTE

PAULINIA

SAO VICENTE

SOROCABA

SUZANO

x_two

TERRA ROXA

VARGEM GRANDE PAULISTA

VOTORANTIM


```
#two
mean_two <- rep(NA, 42)</pre>
sd_two <- rep(NA, 42)</pre>
for(i in 1:42){
  mean_two[i] <- rowMeans(two_matrix[i,], na.rm = TRUE)</pre>
  sd_two[i] <- apply(two_matrix, 1, sd, na.rm = TRUE)[i]</pre>
}
#three
mean_three <- rep(NA, 28)
sd_three <- rep(NA, 28)
for(i in 1:28){
  mean_three[i] <- rowMeans(three_matrix[i,], na.rm = TRUE)</pre>
  sd_three[i] <- apply(three_matrix, 1, sd, na.rm = TRUE)[i]</pre>
}
#four
mean_four <- rep(NA, 21)</pre>
sd_four <- rep(NA, 21)</pre>
for(i in 1:21){
  mean_four[i] <- rowMeans(four_matrix[i,], na.rm = TRUE)</pre>
  sd_four[i] <- apply(four_matrix, 1, sd, na.rm = TRUE)[i]</pre>
}
#five
mean_five <- rep(NA, 17)</pre>
sd_five <- rep(NA, 17)</pre>
for(i in 1:17){
  mean_five[i] <- rowMeans(five_matrix[i,], na.rm = TRUE)</pre>
```

```
sd_five[i] <- apply(five_matrix, 1, sd, na.rm = TRUE)[i]</pre>
}
\#RMSP = 1
urban <- subset(data, data$RMSP == "1")</pre>
urban_counties <- as.character(unique(urban$COUNTY))</pre>
which.urban <- rep(NA, length(urban counties))
for(i in 1:length(urban counties)){
which.urban[i] <- which(county_vec[] == urban_counties[i])</pre>
}
two_urban_mat <- two_matrix[which.urban]</pre>
three_urban_mat <- three_matrix[which.urban]</pre>
four_urban_mat <- three_matrix[which.urban]</pre>
five_urban_mat <- five_matrix[which.urban]</pre>
\#RMSP = 0
rural <- subset(data, data$RMSP == "0")</pre>
rural_counties <- as.character(unique(rural$COUNTY))</pre>
which.rural <- rep(NA, length(rural_counties))</pre>
for(i in 1:length(rural_counties)){
  which.rural[i] <- which(county_vec[] == rural_counties[i])</pre>
two_rural_mat <- two_matrix[which.rural]</pre>
two_rural <- matrix(rep(NA, 3 * 42 * length(rural_counties)), ncol = 3)</pre>
colnames(two_rural) <- c("COUNTY", "CLASS", "DENSITY")</pre>
two_rural <- as.data.frame(two_rural)</pre>
#fill counties
two_rural[,1] <- rep(rural_counties, 42)</pre>
#fill age class
two_rural[seq(1:length(rural_counties)),2] <- x_two[1]</pre>
for(i in 1:length(x_two)){
  x <- length(rural_counties) * i + seq(1:length(rural_counties))</pre>
  two_rural[x,2] <- x_two[i+1]</pre>
}
#fill density
for(i in 1:length(rural_counties)){
  two_rural[i,3] <- two_rural_mat[1,i]</pre>
for(i in 1:length(rural_counties)){
  for(j in 2:length(x_two)){
    two_rural[(i + 348 * (j - 1) ),3] <- two_rural_mat[j,i]</pre>
  }
  }
two rural$CLASS <- as.factor(two rural$CLASS)</pre>
two_rural$COUNTY <- as.factor(two_rural$COUNTY)</pre>
three_rural_mat <- three_matrix[which.rural]</pre>
four_rural_mat <- three_matrix[which.rural]</pre>
```

five_rural_mat <- five_matrix[which.rural]</pre>

Preliminary analysis

Created a method (via for loops) to make a matrix which is compatible with ANOVAs.

Up next:

- Look for correlation or association between density and class on both a rural and urban level.
 - This may be best to do with the five_rural_mat and five_urban_mat because they have fewer factor levels. Starting with urban may also be more promising because it will have fewer factors for county.
- Look into whether the moving windows/data smoothing can be used for the windows of age groups. Try to understand how this works.
- Plot row means with row sd error bars for the different windows.