Dérivation

Rappels. Toute droite du plan d non verticale admet une équation de la forme "y = mx + p" où m et p sont des constantes réelles. Dans ce cas l'expression " y = mx + p " est l'équation réduite de la droite d**Exemple.** y = 3x + 6 et y = -17x - 30 sont des équations de droites.

Définitions. La pente (ou coefficient directeur) d'une droite non verticale, est <u>le nombre</u> m qui indique de combien d'unités la droite monte (ou descend si m < 0) lorsqu'on avance d'une unité vers la droite. p s'appelle **l'ordonnée à l'origine** de d. La pente d'une droite d'équation " y = mx + p " est m.

Exemple. La droite y = 5x + 3 a pour pente 5 et pour ordonnée à l'origine 3.

Exemple. La droite y = -2x a pour pente -2 et pour ordonnée à l'origine 0.

Exemple. La droite y = x - 1 a pour pente 1 et pour ordonnée à l'origine -1.

C'est un nombre qui mesure la « vitesse de variation » de la fonction au point

La notion de dérivée généralise la notion de pente à une fonction.

Contrairement aux droites : Elle dépend du point choisi. Elle n'existe pas toujours.

Exemple. Sur le graphe de f ci-contre, la dérivée de la fonction f en x = 1 est 3 car la droite T_1 tangente à C_f au point de C_f d'abscisse 1, a pour pente m=3.

On écrit f'(1) = 3. La fonction « monte à une vitesse de 3 carreaux/unité » en 1.

Exemple. La dérivée de f en x = 0 est -2 car la tangente T_0 a pour pente -2.

On écrit f'(0) = -2. La fonction « descend à une vitesse de 2 carreaux/unité » en 0.

 $y_B - y_A$

Définitions informelles. On se place en un point d'abscisse a de la courbe d'une fonction f. Si en faisant un zoom infini sur le point, la courbe se déforme et devient une droite (non verticale), alors :

- Cette droite est appelée tangente à la courbe représentative de f en a.
- La dérivée de la fonction f en a, notée f'(a) est la pente de la tangente à f en a.
- On dit que la fonction f est **dérivable en** a, (elle admet une dérivée en a).

Contre exemples. Il y a des fonctions qui parfois ne sont pas dérivables en certains points.

La valeur absolue $x \mapsto |x|$ n'est pas dérivable en 0, car si on zoome sur l'origine, la fonction forme un pic infiniment pointu, et non une droite. Il n'y a pas de tangente en 0.

La racine carrée $x \mapsto \sqrt{x}$ n'est pas dérivable en 0, car si on zoome sur l'origine, la tangente est verticale donc la dérivée en 0 n'est pas un nombre fini.

Définition. f est dérivable sur un intervalle I si elle est dérivable <u>en tout</u> nombre réel x de I.

Dans ce cas, on appelle **fonction dérivée de la fonction** f, la fonction $f': {\scriptstyle I \to \mathbb{R} \atop x \mapsto f'(x)}$

Remarque. La courbe d'une fonction dérivable sur tout un intervalle, a généralement un aspect lisse. Les pics et changements abrupts de direction correspondent à des points de non-dérivabilité.

Définitions. Soit I un intervalle. Soit $f:I\to\mathbb{R}$. Soit a et b des réels de l'intervalle I. On note A et B les points de la courbe \mathcal{C}_f d'abscisses respectives $x_A=a$ et $x_B=b$. On note b=b-a.

f est dérivable en a si $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$ existe et est un nombre réel.

Dans ce cas on note $f'(a) = \lim_{h \to 0} \frac{f(a+h)-f(a)}{h}$. f'(a) est la **dérivée de** f en a.

 $\frac{f(a+h)-f(a)}{h} = \frac{f(b)-f(a)}{b-a}$ est appelé taux d'accroissement de f entre a et b.

Remarques. Dans la définition précédente, $\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}$ peut aussi être

écrit sous la forme $\lim_{b \to a} \frac{f(b) - f(a)}{b - a}$

f(a) 2

En résumé, la définition montre que, pour obtenir la tangente en A et la dérivée en A qui est sa pente, on commence par tracer la droite (AB) avec B un point variable de la courbe de f, puis on rapproche le point B du point A, jusqu'au cas limite.

Définition (Tangente). Si f est dérivable en a, la tangente à \mathcal{C}_f en a est la droite passant par A = (a; f(a)) et de coefficient directeur f'(a). **Propriété.** L'équation de cette tangente est "y = f'(a)(x - a) + f(a)"

f(a+h) - f(a)

Dérivées usuelles. A chaque ligne, f est définie et vaut l'expression de la colonne à gauche sur <u>tout</u> D_f . On déduit que f est dérivable sur $D_{f'}$, et f'(x) vaut l'expression dans la dernière colonne sur tout $D_{f'}$.

Opérations sur les dérivées. A chaque ligne : I est un intervalle de \mathbb{R} .

On suppose que u et v sont dérivables sur I. On déduit que f est définie et dérivable sur I.

Texpression dans la dernière colonne sur fout $D_{f'}$.					On deduit que j'est dennie et denvable sui 1.		
f(x)	Conditions	D_f	$D_{f'}$	f'(x)	f	Conditions	f'
С	$c \in \mathbb{R}$	\mathbb{R}	\mathbb{R}	0	u + v	$u, v: I \to \mathbb{R}$	(u+v)'=u'+v'
x		\mathbb{R}	\mathbb{R}	1	u-v	$u, v: I \to \mathbb{R}$	(u-v)'=u'-v'
ax	$a \in \mathbb{R}$	\mathbb{R}	\mathbb{R}	а	$a \times u$	$a \in \mathbb{R}, \ u: I \to \mathbb{R}$	$(a \times u)' = a \times u'$
ax + b	$a,b \in \mathbb{R}$	\mathbb{R}	\mathbb{R}	а	$u \times v$	$u, v: I \to \mathbb{R}$	(uv)' = u'v + v'u
x^2		\mathbb{R}	\mathbb{R}	2 <i>x</i>	1	$v:I\to\mathbb{R}^*$	(1)' - v'
x^3		\mathbb{R}	\mathbb{R}	$3x^2$	\overline{v}	<u>v ne s'annule pas</u>	$\left(\frac{-}{v}\right) = \frac{-}{v^2}$
x^n	$n \in \mathbb{N}, n > 0$	\mathbb{R}	\mathbb{R}	nx^{n-1}		sur I.	
x^n	$n \in \mathbb{Z}, n < 0$	\mathbb{R}^*	\mathbb{R}^*	nx^{n-1}	$\frac{u}{\underline{}}$	$u:I\to\mathbb{R}$	$\left(\frac{u}{u}\right)' - \frac{u'v - v'u}{u}$
1		\mathbb{R}^*	\mathbb{R}^*	1	v	$v:I\to\mathbb{R}^*$	$\left(\frac{-}{v}\right) = \frac{-}{v^2}$
$\frac{1}{x}$				$-{x^2}$		<u>v ne s'annule pas</u>	
\sqrt{x}		\mathbb{R}_{+}	\mathbb{R}_+^*	1		sur I.	
		'	'	$\frac{1}{2\sqrt{x}}$	e^u	$u:I\to\mathbb{R}$	$(e^u)' = u'e^u$
e^x		\mathbb{R}	\mathbb{R}	e^x	$x \mapsto v($	$(ax + b)$ $v: \mathbb{R} \to \mathbb{R}$	$x \mapsto a \times v'(ax+b)$