Track 2 | Session 5

利用 SageMaker 深度學習容器化 在廣告推播之應用

Young Yang
ML Specialist SA
Amazon Web Services

Hsuan Chiu Senior Data Engineer Data Science VPON

Machine learning workflow

Common machine learning setups

- 1. Code & frameworks
- Compute (CPUs, GPUs)
- 3. Storage

Deep learning is computationally expensive, but can be scaled-out

How do we go from

this,

to this

Scaling-out deep learning training

Parallel experiments

Distributed training

But there are challenges to scaling

Code and dependencies

Cluster management

Infrastructure management

Machine learning stack is complex

- "My code requires building several dependencies from source"
- "My code isn't taking advantage of the GPU/GPUs"
 - "Is cuDNN, NCCL installed? Is it the right version?"
- "My code is running slow on CPUs"
 - "Oh wait, is it taking advantage of AVX instruction set"
- "I updated my drivers and training is now slower/errors out"
- "My cluster runs a different version of framework/Linux distro"

Makes portability, collaboration, and scaling training really, really hard!

My code

Development system

Multiple points of failure

Containers for machine learning

Packages:

- Training code
- Dependencies
- Configurations

ML environments that are:

- Lightweight
- Portable
- Scalable
- Consistent

Container runtime

NVIDIA drivers

Host OS

Infrastructure

TensorFlow

Keras scikitlearn

horovod

pandas

numpy

openmpi

scipy

Python

others

CPU: mkl

GPU: cuDNN
cuBLAS
NCCL
CUDA toolkit

TensorFlow container image

Your training I scripts I

Container registry

TensorFlow

Keras scikitlearn horovod

numpy

openmpi

pandas

Python

scipy

CPU:

GPU:

others

mkl

cuDNN

cuBLAS

NCCL

CUDA toolkit

TensorFlow container

image

Your training scripts

Container runtime

NVIDIA drivers Host OS

Development system

Container runtime

NVIDIA drivers Host OS

Training cluster

AWS Deep Learning Containers

Prepackaged machine learning container images fully configured and validated

Optimized for performance with latest NVIDIA driver, CUDA libraries, and Intel libraries

https://docs.aws.amazon.com/dlami/latest/devguide/deep-learning-containers-images.html

Challenges with scaling deep learning

Code and dependencies

Cluster management

Infrastructure management

ML infrastructure and cluster management

ML services

Fully managed service that covers the entire machine learning workflow

Large-scale

Optimization

One-click

- Easy, couple of LOC to scale
- Fully managed, no infrastructure effort
- Designed for machine learning
- Optimizing cost: on-demand / Spot

Management

Deployment, scheduling, scaling, and management of containerized applications

Amazon Elastic Container Service

Amazon Elastic Kubernetes Service

- Getting started hard, scaling easy
- Rely on IT/Ops for setup management
- DIY setup for ML use-cases
- Optimizing cost: DIY

Compute

Where the containers run

Amazon EC2

- Getting started easy, scaling hard
- Rely on IT/Ops for setup management
- DIY setup for ML use-cases
- **Optimizing cost: DIY**

Hyperparameter search experiment using Amazon SageMaker

Docker build

Approach:

- 1. Build a Docker image with your training scripts
- 2. Specify instance type (CPU, GPU)
- 3. Specify number of instances and hyperparameters to tune
- 4. Launch the tuning job

AWS如何加速機器學習專案產品化

Hsuan Chiu Senior Data Engineer Data Science VPON

Agenda

About Vpon

The Critical Question In Digital Marketing

ML Case Study – Gender Prediction

Conclusion

Milestone

2008	2010	201:	1 20	14 20	15 2	0 16	20	017 2	Q 18 2	019
Foun Taipe	ded in Establishmen Shanghai offic			Establishment of Hong Kong and Tokyo offices				Establishment of Singapore office	Establishment of Osaka office	Japan Office Expansion
	Launched 1 st I mobile ad net in Asia			Raised US\$10M in Series B Funding		Mob-ex Awards 2016 Won Bronze in Best In-app Advertising		Mob-ex Awards 2017 Won Bronze in Best Mobile Advertising Platform	Won one Gold and two Bronze for Mob-Ex Awards 2018	Won Gold for Best Location-based at Mob-Ex Awards 2019
			Received \$7M in		Won 3 rd for Forbes China's Top 100 Privately Held Small	Won Bronze for Campaign Greater China Specialist Agency of the Year		Won Bronze for Campaign Greater China Specialist Agency of the Year for two	Top 10 Big Data Solutions Providers in the APAC Region	Won Big Data Solution award at the Capital Magazine's BOB Awards 2019
		Series A Funding		Businesses			consecutive years		Won Silver award for digital transformation in eASIA Awards 2019	
				•	Won Agency & • Advertiser Of The Year in 4 categories	Won Agency & Advertiser Of The Year in 3 categories: 2 Gold & 1 Sliver	- d	Won Agency & Advertiser Of The Year in 4 categories: 3 Golds & 1 Silver	Won Gold for Best In- App Advertising Won Bronze for Best	Won Gold winner in the Best Data- driven Marketing Campaign category at Brain Magazine Awards 2019
				•	Kong Spark Awards	Festival of Media Global MARKies Awards ECI Awards Top Mobile Awards (TMA)	-	Campaign Digital Media Award MARKies Awards 2017 Golden Mouse Tiger Roar	In-App Advertising Won Bronze for Best Mobile Advertising Platform	Mediazone's annual Most Valuable Services Awards in Hong Kong 2019 • "Most Reliable Big Data Analytics and Application Leader" • "Best Cross-Border Marketing Services"
	Forbes (ECI awards	F reg	estival of Media	虎啸 契 ■■■ MOB-EX AVARDS 2019	Salate Golden Mouse	R K W A	Cumpolon I E S CLICK AWARDS CLICK AWARDS CEUTIPOLON CEUTIPOLON AGENCY OF THE YEAR 2017 BEROE	OCCITAL MEDIA MEDIA Legrence Legrence Control	 "Excellence in Corporate Governance Customer Services" Won Silver for Best Idea – Mobile at Markies Award 2019

DATA DRIVES TRANSACTIONS

Vpon Big Data Group

The Leading Big Data Company in Asia

21 Billion daily biddable inventory

1500 renowned brands with collaborative experiences

12 years
of services across APAC

Tokyo Osaka Shanghai Taipei Hong Kong

Bangkok

Singapore

900 Million unique devices per month

offices in Hong Kong, Shanghai, Singapore, Taipei, Bangkok, Tokyo and Osaka

Trata DMP - Largest Travel Audience Data Pool in Asia

Vpon Available Tag Categories

Based on multiple combinations of the tags, you can identify some of the hidden segment groups who may be your potential audiences with high chance.

The Critical Question In Digital Marketing

The Critical Questions In Digital Marketing

Vpon Al Technology

More than 10 machine learning models with real case applications.

ML Case Study - Gender Prediction

Research Workflow

Problem Definition

- Binary Classification.
 - Given a set of available mobile related features during a specific period, we want to predict
 whether the device owner behaves more like a man or woman.

Features

Device geo info, app usage patterns, device info, active time range, etc.

Goals

- Accurately identify gender for new incoming devices.
- Improve prediction accuracy for previous mis-labeled devices.

Dataset Understanding

- Ground-truth Data Analysis
 - Gender Label Distribution, Feature Importance, etc.
- Data visualization
 - Matplotlib, Tableau.

Research Workflow

Dataset Preparation

- Data Collection
 - Collect and retrieve feature data.
- Data Integration
 - Enrich raw data with other useful info, e.g. google store metadata, poi.
- Data Cleaning
 - Remove null or abnormal values.

Research Workflow

Model Training

- Feature Engineering
 - One-hot encoding, Feature combination, etc.
- Model Training and Parameter Tuning
 - Logistic Regression, XGboost, Deep Learning Framework, etc.
 - Feature Normalization.

Research Workflow

Evaluation

- Model Evaluation
 - PR, ROC, F1, etc.
- Prediction Result Evaluation
 - 3rd party verification: Google, FB.

Research Workflow

Research Tools and Environments.

- Research with local machine.
 - Pull data from S3 and repeat research work on local machine.
- Research with cloud env.
 - EC2.
 - EMR.
 - SageMaker.

Hidden Technical Debt in Machine Learning Systems

Sculley et al., Hidden Technical Debt in Machine Learning Systems. NIPS 2015.

Code + Model + Data

Breck et al., The ML Test Score: A Rubric for ML Production Readiness and Technical Debt Reduction. IEEE Big Data 2017.

How to scale to production?

- Composability
- Scalability
- Portability

Scalability

Composability

- Pipeline Platform Requirements.
 - Reliable.
 - Visualization tool.
 - Pipeline scripting languages.

Composability

Scalability

- Prediction Service.
 - Prediction service is easily to be scaled out.
 - Prediction service can process batch or on-line requests interchangeably.

Portability

- Multi-platform Model Deployment.
 - Model deployment should not be limited to a specific platform.
 - Model deployment should be easily to be integrated with other services, e.g. current existed microservices.
 - Model packaging is flexible so that adding self-made functions is achievable.

Candidate Solutions

- Open Source ML Pipeline Platform.
 - Kubeflow, mlflow, airflow, TFX, etc.
- Prediction Service Framework.
 - Sagemaker, self-made restful api service, etc.

Candidate Solutions

AWS ML Experts

- Organized 3 one-day offsite workshop together with AWS ML experts.
- Hands-on packaging ML model into container and deploying to SageMaker.
- Practice with cloud9 and SageMaker Notebook.
- Consult with ML marketplace opportunity.

Tradeoff and Decision

	ML Pipeline Platform	Reason
Compatibility	Jenkins.	Lowest learning curve.
Portability	Jenkins.	Lowest platform transferring cost.
Scalability	Jenkins.	Jenkins can be deployed to k8s.

Tradeoff and Decision

	Prediction Service	Reason
Compatibility	Deploy customized SageMaker container on VM.	 Easily to be integrated with Jenkins. Easily to be deployed back to SageMaker.
Portability	Deploy customized SageMaker container on VM.	Easily migrate to other platforms.
Scalability	Replicate VM and add LB.	Easily scale out by LB.

Architecture

MLapp

Definition

 A containerized application for managing the prediction phase in machine learning product lifecycle.

Functions

- Official prediction requests API portal.
 - http://[IP]:[port]/api/providers/prediction/create
 - http://[IP]:[port]/api/providers/prediction/invoke
 - http://[IP]:[port]/api/providers/prediction/check
- Monitoring
 - Tracking prediction status.
 - Recording and comparing prediction results.

Conclusion

Conclusion

Current Status

- Project time allocation
 - 40% on research.
 - 30% on model and prediction results validation.
 - 30% on mlops and developments.
- Accuracy
 - Precision can achieve more than 80%.
- Total gender prediction pipeline execution time
 - Less than 30 minutes with monthly data.

Conclusion

Lessons Learned

- Ensure prediction quality at the top.
- Always understand current data distribution.
- Establish monitors to control data quality from the root.
- Keep production engineering work simple and reliable.

Thank you!

Young Yang
ML Specialist SA
Amazon Web Services

Hsuan Chiu Senior Data Engineer Data Science VPON

