

- 1. What does it mean for a predicate P on domain X to be decidable?
- 7 A predicate  $P A^* \rightarrow \{0,1\}$  is decidable if there exists a turing machine M such that  $P(x) = P_M$
- → If the function of Predicate, of, is Computable, then Such Predicate is Decidable.

1. Define the class NP.

A predicate L belongs to class NP, if there exists

a non deterministic TM that computes L in polynomial time

 $L(x) = \exists y ((|y| < |q|x|)) \land R(x,y))$ or  $R(x,y) = a \cdot predicate \in P \text{ having two variables}) \quad \text{white} \quad \{(1)\}$ 

L(x)=1> & there exists a computational path that gives yes in poly(n)

L(n)=0 > there is no such property

or

there is no path of any length

that gives 'yes'



1. Define the complexity class BPP.

A predicate L belongs to class BPP if there exists a Probabistic TM M and P, a polynomial function.

for an in put string z, it gives answer in P(121) steps (Polynomial such that

L(x) = 1 M gives yes with probability = (1-E)L(x) = 0 M gives No with Probability = (1-E)where = E is the admissable error = (1-E)= 0 < E < 1/2



1. State Fermat's Little Theorem.

If a, p are coprime then 
$$P$$
 prime for an integer  $a \in \mathbb{Z}$   $a \neq 0$ ;  $P \neq 0$   $a^{p-1} \equiv 1 \pmod{p}$ 



Name: Madhy poduri

1. Let  $\mathcal{B} = \{|0\rangle, |1\rangle, |2\rangle\}$  be an ordered basis for the vector space V. Let  $\varphi = |0\rangle \langle 0| - 2|1\rangle \langle 2|$  be a linear transformation. Find the matrix for  $\varphi$  relative to the basis  $\mathcal{B}$ ,  $(\varphi)_{\mathcal{B} \to \mathcal{B}}$ .

## Quantum Algorithms: Quiz 6



Name: MADHU PEDURT

1. Show that if  $U^{-1} = U^{\dagger}$  then U preserves the bracket. That is, if  $U |\alpha\rangle = |\gamma\rangle$  and  $U |\beta\rangle = |\delta\rangle$  then  $\langle \alpha | \beta \rangle = \langle \gamma | \delta \rangle$ .

$$|U| = \langle x | U \rangle$$



MADHU PEQUEL Name:

1. Let U be a unitary matrix. Using the definition of the operator norm, show that ||U|| = 1.

Definition of operator Opm

· ! | U| x> | = | | x | |



1. Draw the circuit for Grover's algorithm



Name: MADIN PEOURI

1. Let  $\mathbb{A}$  be a subspace of the vector space  $\mathbb{V}$  and let  $|\alpha\rangle \in V$ . Define  $\Pi_{\alpha}$  and  $\Pi_{\mathbb{A}}$ .



1. Draw the circuit that solves Simon's Problem. Be sure to indicate on which qubits measurement is performed.





1. Draw the eigenvalue approximation circuit for unitary U with eigenvector  $|\alpha\rangle$ .

