Math 653 Henry Woodburn

Homework 3

13. Let $a \in G$, we will show $a(H \cap K) = (aH) \cap (aK)$. Let $x \in a(H \cap K)$. Then x = ar for some $r \in H \cap K$, thus $x \in aH \cap aK$.

If $x \in (aH) \cap (aK)$, we have x = ah = ak for $h \in H$, $k \in K$, and thus h = k and $x \in a(H \cap K)$.

Now suppose H and K have finite index. Let $\varphi: G/H \cap K \to G/H \times G/K$ be the map $a(H \cap K) \mapsto (aH, aK)$. We will show φ is an injection, proving the theorem. First note that φ is well defined, since $a(H \cap K) = b(H \cap K)$ if and only if $(aH) \cap (aK) = (bH) \cap (bK)$, in which case $aH \cap bH \neq \emptyset$ and aH = bH. similarly aK = bK.

Then if $\varphi(a(H \cap K)) = \varphi(b(H \cap K))$, we must have (aH, aK) = (bH, bK). This gives aH = bH, aK = bK, meaning $(aH) \cap (aK) = (bH) \cap (bK)$ and finally $a(H \cap K) = b(H \cap K)$. This proves φ is injective. Then we have an injection into a set of finite cardinality, so $G/H \cap K$ must have finite cardinality.