Notebook 14: Vector-Valued Functions and Motion in Space

Vector-Valued Functions

The VectorCalculus package provides many tools for working with vectors and vector-valued functions.

> with(VectorCalculus): > $r(t) := \langle a(t), b(t), c(t) \rangle$ $r := t \rightarrow VectorCalculus: -\langle , \rangle (a(t), b(t), c(t))$

The output is radically different than other function definitions. This is just Maple's way of showing that is using *VectorCalculus* commands ot define the function.

>
$$r(t)$$

$$(a(t))e_x + (b(t))e_y + (c(t))e_z$$

Maple uses e_{x} , e_{y} , and e_{z} for the standard basis vectors \mathbf{i} , \mathbf{j} , and \mathbf{k} (or $\langle 1, 0, 0 \rangle$, $\langle 0, 1, 0 \rangle$, and $\langle 0, 0, 1 \rangle$).

Differentiation is unchanged.

>
$$r'(t)$$
;
 $diff(r(t), t)$

$$\left(\frac{d}{dt} a(t)\right) e_x + \left(\frac{d}{dt} b(t)\right) e_y + \left(\frac{d}{dt} c(t)\right) e_z$$

$$\left(\frac{d}{dt} a(t)\right) e_x + \left(\frac{d}{dt} b(t)\right) e_y + \left(\frac{d}{dt} c(t)\right) e_z$$

The spacecurve command in the plots package will graph a space curve.

> with (plots): > $r(t) := \langle \sin(t) - t \cdot \cos(t), \cos(t) + t \cdot \sin(t), t \rangle$: > $spacecurve(r(t), t = 0 ...6 \pi, color = red, axes = boxed, labels = ["x", "y", "z"], orientation = [-50, 70]);$ Curve := %:

- The tangent vector at $t_0 = \frac{3\pi}{2}$ is calculated below and then used to parameterize the line determined by the tangent vector at $r(t_0)$. The variable t_0 is used as the name of the number $\frac{3\pi}{2}$ because t must remain a free variable for plotting purposes.
- > $t_0 := \frac{3\pi}{2}$: $VelocityVector = r'(t_0);$ $T(t) := r(t_0) + r'(t_0) \cdot t : T(t)$

$$VelocityVector = -\frac{3}{2} \pi e_x + e_z$$

$$\left(-1 - \frac{3}{2} t\pi\right) e_x - \frac{3}{2} \pi e_y + \left(\frac{3}{2} \pi + t\right) e_z$$

 \rightarrow display([Curve, spacecurve(T(t), t=-1...1, color = blue, thickness = 2)])

T, N, B, Curvature, and Torsion

The *Normalize* command in the *VectorCalculus* package normalizes a given vector to unit length. The *Norm* command (also from the *VectorCalculus* package) will calculate the norm (or length) of a vector. The command to calculate the Euclidean length of a vector v is Norm(v, 2). This may also be written as $||v||_2$ in 2D Input; the

Norm template ||x|| can be entered by typing Norm then pressing **[esc]/[enter]**, or the double vertical bars can be input either manually (as two vertical lines, |) or from the Common Symbols palette. Regardless of how the template is formed, the subscript 2 must be added manually. To put the cursor in the subscript position, press the underscore key _ (**[shift]-[minus]**).

>
$$v := Normalize(\langle 1, 1, 1 \rangle); \|v\|_{2}$$

$$v := \frac{1}{3} \sqrt{3} e_{x} + \frac{1}{3} \sqrt{3} e_{y} + \frac{1}{3} \sqrt{3} e_{z}$$

The cross product operator \times can be found in the Common Symbols palette, or can be entered manually by typing times then pressing [esc]/[enter].

$$(1,2,3) \times (3,2,1)$$

$$-4e_x + 8e_y - 4e_z$$

The dot product of two vectors is obtained by placing a dot between the two vectors.

Consider the trajectory r(t) below and $t_0 = \ln(2)$.

>
$$r(t) := \langle e^t \cos(t), e^t \sin(t), e^t \rangle : r(t) = r(t);$$
 $t_0 := \ln(2)$

$$r(t) = (e^t \cos(t)) e_x + (e^t \sin(t)) e_y + (e^t) e_z$$

$$t_0 := \ln(2)$$

Velocity, acceleration, and speed are calculated readily.

>
$$v(t) := r'(t) : a(t) := v'(t) : speed(t) := ||v(t)|| :$$

> $v(t) = v(t); a(t) = a(t); speed(t) = speed(t)$
 $v(t) = (e^t \cos(t) - e^t \sin(t)) e_x + (e^t \sin(t) + e^t \cos(t)) e_y + (e^t) e_z$
 $a(t) = -2 e^t \sin(t) e_x + 2 e^t \cos(t) e_y + (e^t) e_z$
 $speed(t) = \sqrt{3} \sqrt{e^{2t}}$

Evaluated at t_0 , these quantities are

>
$$velocity = v(t_0)$$
; $evalf[4](\%)$;
 $acceleration = a(t_0)$; $evalf[4](\%)$;
 $speed = speed(t_0)$; $evalf[4](\%)$

$$\begin{aligned} \textit{velocity} &= \left(2\cos\left(\ln(2)\right) - 2\sin(\ln(2)\right)\right)e_x + \left(2\sin\left(\ln(2)\right) + 2\cos\left(\ln(2)\right)\right)e_y + 2e_z \\ &\quad \textit{velocity} &= \left(0.261\right)e_x + \left(2.817\right)e_y + \left(2.\right)e_z \\ &\quad \textit{acceleration} &= -4\sin\left(\ln(2)\right)e_x + 4\cos\left(\ln(2)\right)e_y + 2e_z \\ &\quad \textit{acceleration} &= \left(-2.556\right)e_x + \left(3.077\right)e_y + \left(2.\right)e_z \\ &\quad \textit{speed} &= 2\sqrt{3} \\ &\quad \textit{speed} &= 3.464 \end{aligned}$$

To define the unit tangent function, first normalize the velocity vector.

> Normalize(r'(t))
$$-\frac{1}{3} \frac{\sqrt{3} e^{t} \left(\sin(t) - \cos(t)\right)}{\sqrt{e^{2} t}} e_{x} + \frac{1}{3} \frac{\sqrt{3} e^{t} \left(\cos(t) + \sin(t)\right)}{\sqrt{e^{2} t}} e_{y} + \frac{1}{3} \frac{\sqrt{3} e^{t}}{\sqrt{e^{2} t}} e_{z}$$

This expression simplifies nicely if t is a real number. Maple must be told either to assume that t is real or to ignore complications of complex functions when simplifying. In Maple 13, the option symbolic in the simplify command takes care of this issue.

> simplify(%, symbolic)
$$-\frac{1}{3}\sqrt{3} \left(\sin(t) - \cos(t)\right) e_x + \frac{1}{3}\sqrt{3} \left(\cos(t) + \sin(t)\right) e_y + \frac{1}{3}\sqrt{3} e_z$$

Now that the normalized velocity vector has been simplified, make it into the unit tangent function.

>
$$T := unapply(\%, t) : T(t) = T(t)$$

$$T(t) = -\frac{1}{3} \sqrt{3} \left(\sin(t) - \cos(t) \right) e_x + \frac{1}{3} \sqrt{3} \left(\cos(t) + \sin(t) \right) e_y + \frac{1}{3} \sqrt{3} e_z$$

Next, define the unit normal and binormal functions

>
$$N := unapply(Normalize(T(t)), t) : N(t) = N(t)$$

$$N(t) = -\frac{1}{2}\sqrt{2}\left(\cos(t) + \sin(t)\right)e_x - \frac{1}{2}\sqrt{2}\left(\sin(t) - \cos(t)\right)e_y$$

>
$$B := unapply(simplify(T(t) \times N(t)), t) : B(t) = B(t)$$

$$B(t) = \frac{1}{6} \sqrt{3} \sqrt{2} \left(\sin(t) - \cos(t) \right) e_x - \frac{1}{6} \sqrt{3} \sqrt{2} \left(\cos(t) + \sin(t) \right) e_y + \frac{1}{3} \sqrt{3} \sqrt{2} e_z$$

Evaluated at t_0 , these quantities are

> UnitTangent =
$$T(t_0)$$
; evalf[4](%);
UnitNormal = $N(t_0)$; evalf[4](%);
UnitBinormal = $B(t_0)$; evalf[4](%)
UnitTangent = $-\frac{1}{3}\sqrt{3}\left(\sin(\ln(2)) - \cos(\ln(2))\right)e_x + \frac{1}{3}\sqrt{3}\left(\cos(\ln(2)) + \sin(\ln(2))\right)e_y + \frac{1}{3}\sqrt{3}e_z$
UnitTangent = $(0.07529)e_x + (0.8129)e_y + (0.5773)e_z$

$$\begin{aligned} \textit{UnitNormal} &= -\frac{1}{2} \sqrt{2} \, \left(\cos \left(\ln(2) \, \right) + \sin \left(\ln(2) \, \right) \right) e_x - \frac{1}{2} \sqrt{2} \, \left(\sin \left(\ln(2) \, \right) - \cos \left(\ln(2) \, \right) \right) e_y \\ & \textit{UnitNormal} = \left(-0.9955 \right) e_x + \left(0.09220 \right) e_y + \left(0. \right) e_z \\ & \textit{UnitBinormal} = \frac{1}{6} \sqrt{3} \sqrt{2} \, \left(\sin \left(\ln(2) \, \right) - \cos \left(\ln(2) \, \right) \right) e_x - \frac{1}{6} \sqrt{3} \sqrt{2} \, \left(\cos \left(\ln(2) \, \right) + \sin \left(\ln(2) \, \right) \right) e_y \\ & + \frac{1}{3} \sqrt{3} \sqrt{2} \, e_z \\ & \textit{UnitBinormal} = \left(-0.05323 \right) e_x + \left(-0.5748 \right) e_y + \left(0.8163 \right) e_z \end{aligned}$$

Note: The *TNBFrame* command in the *VectorCalculus* package can also be used to calculate the unit tangent, unit normal, and unit binormal vectors to a curve; however, the output from this command is in a slightly different format.

 $\rightarrow TNBFrame(r(t))$

$$\begin{bmatrix} -\frac{1}{3} & \frac{\sqrt{3} \circ \left(\sin(t) - \cos(t)\right)}{\sqrt{e^{2} t}} \\ \frac{1}{3} & \frac{\sqrt{3} \circ \left(\cos(t) + \sin(t)\right)}{\sqrt{e^{2} t}} \\ \frac{1}{3} & \frac{\sqrt{3} \circ \left(\cos(t) + \sin(t)\right)}{\sqrt{e^{2} t}} \\ \frac{1}{3} & \frac{\sqrt{3} \circ \left(\cos(t) + \sin(t)\right)}{\sqrt{e^{2} t}} \\ 0 \end{bmatrix}, \begin{bmatrix} \frac{1}{6} & \sqrt{3} & \sqrt{2} \left(\sin(t) - \cos(t)\right) \\ -\frac{1}{2} & \frac{\sqrt{2} \circ \left(\sin(t) - \cos(t)\right)}{\sqrt{e^{2} t}} \\ 0 \end{bmatrix}, \begin{bmatrix} \frac{1}{6} & \sqrt{3} & \sqrt{2} \left(\sin(t) - \cos(t)\right) \\ -\frac{1}{6} & \sqrt{3} & \sqrt{2} \left(\cos(t) + \sin(t)\right) \\ \frac{1}{3} & \sqrt{3} & \sqrt{2} & \sqrt{2} & \cos(t) + \sin(t) \end{bmatrix}$$

 $\rightarrow T = simplify(TNBFrame(r(t), output = ['T']), symbolic)$

$$T = \begin{bmatrix} -\frac{1}{3}\sqrt{3} \left(\sin(t) - \cos(t)\right) \\ \frac{1}{3}\sqrt{3} \left(\cos(t) + \sin(t)\right) \\ \frac{1}{3}\sqrt{3} \end{bmatrix}$$

 $\rightarrow N = simplify(TNBFrame(r(t), output = ['N']), symbolic)$

$$N = \begin{bmatrix} -\frac{1}{2}\sqrt{2}\left(\cos(t) + \sin(t)\right) \\ \frac{1}{2}\sqrt{2}\left(-\sin(t) + \cos(t)\right) \\ 0 \end{bmatrix}$$

 \rightarrow B = simplify(TNBFrame(r(t), output = ['B']), symbolic)

$$B = \begin{bmatrix} -\frac{1}{6}\sqrt{3}\sqrt{2}(-\sin(t) + \cos(t)) \\ -\frac{1}{6}\sqrt{3}\sqrt{2}(\cos(t) + \sin(t)) \\ \frac{1}{3}\sqrt{3}\sqrt{2} \end{bmatrix}$$

The curvature and torsion functions can be defined either using the respective formulas, or the *Curvature* and *Torsion* commands in the *VectorCalculus* package.

$$\rightarrow$$
 Curvature $(r(t))$: simplify $(\%, symbolic)$

$$\frac{1}{3}\sqrt{2} e^{-t}$$

$$ightarrow \kappa := unapply \left(\ simplify \left(\ \frac{\left\| T'(t) \right\|_2}{\left\| r'(t) \right\|_2}, symbolic \right), t \right)$$

$$\kappa := t \rightarrow \frac{1}{3} \sqrt{2} e^{-t}$$

 \rightarrow Torsion(r(t)): simplify(%, symbolic)

$$\frac{1}{3} e^{-t}$$

>
$$\tau := unapply \left(simplify \left(-\frac{(B'(t) N(t))}{\|v(t)\|}, symbolic \right), t \right);$$

$$\tau := t \rightarrow \frac{1}{3} e^{-t}$$

The curvature and torsion at t_0 .

> $curvature = \kappa(t_0)$; evalf[4](%); $torsion = \tau(t_0)$; evalf[4](%)

$$curvature = \frac{1}{6}\sqrt{2}$$

$$curvature = 0.2357$$

$$torsion = \frac{1}{6}$$

$$torsion = 0.1667$$

The tangential and normal components of acceleration are easily calculated at this point, as well.

>
$$aT(t) := simplify(\ a(t).T(t)\) \ {}^taT(t) = aT(t);$$

 $aN(t) := simplify(\ a(t).N(t)\) \ {}^taN(t) = aN(t)$
 $aT(t) = e^t \sqrt{3}$
 $aN(t) = e^t \sqrt{2}$

The Osculating Circle

Consider the 2-dimensional trajectory curve

>
$$r(t) := \langle e^{-t}\cos(t), e^{-t}\sin(t) \rangle : r(t) = r(t)$$

$$r(t) = \left(e^{-t}\cos(t)\right) e_{x} + \left(e^{-t}\sin(t)\right) e_{y}$$

The unit normal and curvature functions are needed to parameterize the osculating circle.

>
$$T := unapply(Normalize(r'(t)),t) :$$

 $simplify(Normalize(T'(t)),symbolic) :$
 $N := unapply(\%,t) : N(t) = N(t)$

$$N(t) = \frac{1}{2} \sqrt{2} \left(\sin(t) - \cos(t) \right) e_x - \frac{1}{2} \sqrt{2} \left(\cos(t) + \sin(t) \right) e_y$$

$$\succ \kappa := unapply(simplify(Curvature(r(t)), symbolic), t)$$

$$\kappa := t \rightarrow \frac{1}{2} e^t \sqrt{2}$$

The following is a parameterization of the osculating circle to r(t) at $r\left(\frac{\pi}{4}\right)$. Notice that since the trajectory curve and the osculating circle are 2-dimensional vectors, they can be entered as sets of parametric equations and plotted using the *plot* command.

>
$$t_0 := \frac{\pi}{4} : oc := unapply \left(r(t_0) + \frac{N(t_0)}{\kappa(t_0)} + \frac{\langle \cos(t), \sin(t) \rangle}{\kappa(t_0)}, t \right) : Point := convert(r(t_0), list);$$

$$Point := \left[\frac{1}{2} e^{-\frac{1}{4}\pi} \sqrt{2}, \frac{1}{2} e^{-\frac{1}{4}\pi} \sqrt{2} \right]$$

> $plot([oc(t)[1], oc(t)[2], t=0..2\pi], [r(t)[1], r(t)[2], t=0..6\pi], [Point]], style = [line$2, point], color = [blue, red, black])$

