DS 19/03/2021

Consignes:

- Pour cette épreuve de 2 heures aucun document n'est autorisé et la calculatrice collège est tolérée.
- Les 4 exercices sont indépendants et peuvent être faits dans l'ordre de votre choix.
- Expliquez vos raisonnements avec un maximum de clarté et avec le vocabulaire adapté.
- Une copie soignée est gage d'une bonne note!

Bon courage!

Exercice 1. (4 Points)

Soit
$$f(x) = \frac{-4x^2 + 4x + 8}{x^2 - 3x + 2}$$
.

- 1. Calculer la limite de f en $+\infty$, $-\infty$ et 2.
- 2. Déterminer au voisinage de $+\infty$ le développement limité à l'ordre 3 de f(x).

Exercice 2. (4 Points)

On considère le polynôme $P=-X^8+2X^4-1$ et la fraction rationnelle $F=\frac{1}{P}$.

- 1. Factoriser P dans $\mathbb{R}[X]$ et dans $\mathbb{C}[X]$.
- 2. Écrire les décompositions en éléments simples **théoriques** dans $\mathbb{R}[X]$ et dans $\mathbb{C}[X]$ de F.
- 3. (BONUS) Calculer les coefficients des décompositions en éléments simples dans $\mathbb{R}[X]$ et dans $\mathbb{C}[X]$ de F.

Exercice 3. (6 Points)

Soient les matrices

$$A = \begin{bmatrix} -2 & 1 \\ 0 & -2 \end{bmatrix}$$
 $C = AB = \begin{bmatrix} 12 & 5 & -6 \\ 1 & 11 & 10 \end{bmatrix}$.

- 1. Donner les tailles des matrices A et C et les coefficients $c_{2,3}$ et $c_{1,2}$ de la matrice C.
- 2. Calculer, si c'est possible, les produits : AC et CA.
- 3. Quelle est la nature de la matrice A? (Symétrique, anti-symétrique, triangulaire, diagonale, etc)
- 4. Déterminer B.
- 5. Calculer A + 2I
- 6. Donner la formule du binôme de Newton et calculer A^n .

Exercice 4. (6 Points)

 $Puissances\ de\ 3$

- 1. (a) Pour $1 \le n \le 6$, calculer les restes de la division euclidienne de 3^n par 7.
 - (b) Est-ce que $3^{n+6} 3^n$ est divisible par 7 ? Justifier votre réponse.
 - (c) Calculer le reste de la division euclidienne de 3^{1000} par 7.
 - (d) De manière générale, comment peut-on calculer le reste de la division euclidienne de 3^n par 7, pour n entier quelconque ?
 - (e) En déduire que pour tout entier naturel n, 3^n est premier avec 7.
- 2. Soit $A_n = \sum_{i=0}^{n-1} 3^i$, où n est un entier naturel supérieur ou égal à 2.
 - (a) Énoncer le théorème de Gauss.
 - (b) (BONUS) Montrer que A_n est divisible par 7 si et seulement si $3^n 1$ est divisible par 7.
 - (c) (BONUS) En déduire les valeurs de n telles que A_n soit divisible par 7.