CS 228 : Logic in Computer Science

S. Krishna

- Recall : We work on FO over words
- Fix an alphabet Σ , and a signature $\tau = (S, <, Q_a, Q_b, \dots, Q_z)$ (assume $\Sigma = \{a, \dots, z\}$)

- Recall : We work on FO over words
- Fix an alphabet Σ , and a signature $\tau = (S, <, Q_a, Q_b, \dots, Q_z)$ (assume $\Sigma = \{a, \dots, z\}$)
- ► Given an FO sentence φ over words over an alphabet Σ, $L(\varphi) = \{ w \in \Sigma^* \mid w \models \varphi \}.$
- ▶ For example, for $\varphi = \forall x \exists y (x \leqslant y \land Q_a(y))$, $aba \models \varphi$. Hence, $aba \in L(\varphi)$.

- Recall : We work on FO over words
- Fix an alphabet Σ , and a signature $\tau = (S, <, Q_a, Q_b, \dots, Q_z)$ (assume $\Sigma = \{a, \dots, z\}$)
- Given an FO sentence φ over words over an alphabet Σ, L(φ) = {w ∈ Σ* | w |= φ}.
- ▶ For example, for $\varphi = \forall x \exists y (x \leqslant y \land Q_a(y))$, $aba \models \varphi$. Hence, $aba \in L(\varphi)$.
- ► Satisfiability Problem : Given an FO sentence φ , is φ satisfiable? That is, is $L(\varphi) \neq \emptyset$?

- Recall : We work on FO over words
- Fix an alphabet Σ , and a signature $\tau = (S, <, Q_a, Q_b, \dots, Q_z)$ (assume $\Sigma = \{a, \dots, z\}$)
- Given an FO sentence φ over words over an alphabet Σ,
 L(φ) = {w ∈ Σ* | w ⊨ φ}.
- ▶ For example, for $\varphi = \forall x \exists y (x \leqslant y \land Q_a(y))$, $aba \models \varphi$. Hence, $aba \in L(\varphi)$.
- ► Satisfiability Problem : Given an FO sentence φ , is φ satisfiable? That is, is $L(\varphi) \neq \emptyset$?
- ▶ Validity Problem : Given an FO sentence φ , is φ valid? That is, does every word satisfy φ ? That is, is $L(\varphi) = \Sigma^*$?

In Search of an Algorithm?

A First Machine A

- Colored circles called states
- Arrows between circles called transitions
- ▶ Blue state called an initial state
- Doubly circled state called a final state

A First Machine A

- ▶ A path from one state to another gives a word over $\Sigma = \{a, b, c\}$
- The machine accepts words along paths from an initial state to a final state
- ► The set of words accepted by the machine is called the language accepted by the machine

A First Machine A

- ▶ What is the language L accepted by this machine, L(A)?
- Write an FO formula φ such that $L(\varphi) = L(A)$

A Second and a Third Machine B, C

- ▶ What are *L*(*B*), *L*(*C*)?
- ▶ Give an FO formula φ such that $L(\varphi) = L(B) \cup L(C)$

Finite State Machines

A deterministic finite state automaton (DFA) $A = (Q, \Sigma, \delta, q_0, F)$

- Q is a finite set of states.
- Σ is a finite alphabet
- ▶ $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- ▶ $q_0 \in Q$ is the initial state
- ▶ $F \subseteq Q$ is the set of final states
- ▶ L(A)=all words leading from q_0 to some $f \in F$

Languages, Machines and Logic

A language $L \subseteq \Sigma^*$ is called regular iff there exists some DFA A such that L = L(A).

A language $L \subseteq \Sigma^*$ is called FO-definable iff there exists an FO formula φ such that $L = L(\varphi)$.

Is it Regular? Is it FO-definable?

- $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:
 - ▶ Begins with a, ends with b, and has a pair of consecutive a's
 - Contains a b and ends with aa
 - Contains abb
 - ▶ There are two occurrences of b between which only a's occur
 - Right before the last position is an a
 - Even length words