Can Graph Neural Networks Learn Language with Extremely Weak Text Supervision?

paper

author (open for internship in USA)

Zihao Li¹, Lecheng Zheng¹, Bowen Jin¹, Donqi Fu², Baoyu Jing¹, Yikun Ban¹, Jingrui He¹, Jiawei Han¹

¹University of Illinois Urbana-Champaign

²Meta Al contact: zihaoli5@illinois.edu

Vision: CLIP in graph domain for foundational graph representation learning

Challenges:

- graph data is very scarce and the text supervision is extremely weak (v.s., million-scale image-text pairs in CLIP)
- Conceptual gap between different graph domains (v.s., language tokens and visual objects retain their concepts)
- Multiple task space: node-level, edge-level, graph-level

Observations:

- We don't need joint-pretraining. we already have <u>pre-trained</u> LLMs and many GNN pretraining methods
- When data is limited, <u>prompt learning</u> usually provides better option

Let's try co-adapting GNN and LLM with prompt learning!

Multi-modal Prompt Learning for Graph Neural Networks

Figure 2: Similar to CLIP backbone, Morpher adapts the graph representations to semantic space through multi-modal prompt learning, even if the GNN and LLM are not jointly trained and are kept frozen.

Improved graph prompts by cross-connection pruning

Figure 1: Cross-connections overwhelm inner-connections in current graph prompt design, which may be unstable during training (left); attention in NLP where $3 \times 2 = 6$ cross-connections and 3 + 1 = 4 inner-connections are balanced (middle); and our balanced graph prompt design (right). The cross-connections between input and prompt should have a consistent scale with the input connections.

Main Results: few-shot classification

Training	GNN pretraining	MUTAG		ENZYMES		PROTEINS		MSRC_21C	
schemes	1	Acc	F1	Acc	F1	Acc	F1	Acc	F1
	N/A + GCN	66.00	66.67	16.67	8.68	65.89	60.77	38.85	35.3
Supervised	N/A + GAT	66.00	65.69	16.45	4.65	64.75	64.08	41.14	39.8
	N/A + GT	66.66	66.26	15.62	4.22	62.81	57.12	38.28	41.62
	GraphCL+GCN	70.00	70.23	17.91	11.82	65.89	61.23	40.00	43.89
Pre-train	GraphCL+GAT	70.00	69.73	17.91	10.46	65.16	63.92	44.57	45.7
+	GraphCL+GT	68.00	67.81	17.70	8.99	63.28	56.41	41.71	43.7
Fine-tune	SimGRACE+GCN	66.67	67.27	17.29	8.78	66.82	64.70	40.57	43.8
Time-tune	SimGRACE+GAT	70.67	69.10	16.87	7.18	65.42	63.65	42.85	42.3
	SimGRACE+GT	69.33	69.77	16.24	6.08	65.98	62.31	39.42	40.7
	GraphCL+GCN	64.67	39.27	17.50	4.97	61.35	44.93	3.59	10.0
	GraphCL+GAT	64.67	39.27	17.50	4.97	59.21	37.19	14.37	3.11
AIO	GraphCL+GT	73.33	72.06	18.33	9.09	40.79	28.97	17.96	8.30
(Sun et al., 2023a)	SimGRACE+GCN	64.67	39.27	16.04	4.61	67.42	60.87	34.73	18.1
	SimGRACE+GAT	64.67	39.27	16.04	4.61	59.21	37.19	7.78	1.79
	SimGRACE+GT	36.00	27.26	17.50	8.15	50.56	49.34	32.34	15.1
	GraphCL+GCN	68.67	67.27	16.88	15.48	64.75	61.45	47.42	29.0
	GraphCL+GAT	68.67	62.84	16.45	13.23	65.89	60.07	47.42	26.2
GPF-plus	GraphCL+GT	69.33	67.87	18.12	15.56	59.66	37.37	41.71	21.3
(Fang et al., 2023)	SimGRACE+GCN	65.33	39.52	18.96	15.83	65.16	58.80	45.71	23.3
	SimGRACE+GAT	69.33	66.72	18.54	12.58	63.28	53.50	42.85	21.4
	SimGRACE+GT	70.00	67.31	17.91	14.69	64.83	52.97	34.13	20.1
	GraphCL+GCN	73.33	66.93	17.91	8.44	61.01	60.01	1.80	0.21
	GraphCL+GAT	64.67	62.63	17.08	14.18	50.56	50.55	1.80	0.22
Gprompt	GraphCL+GT	70.67	70.02	17.91	9.64	63.28	58.65	1.80	0.21
(Liu et al., 2023d)	SimGRACE+GCN	65.33	39.52	17.29	14.48	52.70	52.68	1.80	0.21
	SimGRACE+GAT	67.33	65.88	16.25	11.31	59.10	58.72	1.80	0.21
	SimGRACE+GT	73.33	67.84	16.87	13.54	64.75	62.37	1.80	0.22
	GraphCL+GCN	77.33	77.74	18.13	11.98	65.89	65.97	42.85	45.9
	GraphCL+GAT	74.67	75.51	18.33	11.26	65.76	66.05	46.85	51.3
Improved	GraphCL+GT	74.67	74.67	19.16	9.04	68.12	68.18	42.85	43.5
AIO (Ours)	SimGRACE+GCN	68.00	69.01	17.91	9.02	66.82	66.40	44.57	49.2
	SimGRACE+GAT	77.33	77.20	18.75	9.39	66.91	65.49	45.14	42.3
	SimGRACE+GT	71.33	72.06	18.95	11.25	68.59	68.84	40.57	42.8
	GraphCL+GCN	78.67	78.09	20.41	15.20	67.47	66.40	45.14	49.6
	GraphCL+GAT	79.33	79.15	23.12	18.01	70.89	70.30	50.85	54.4
Morpher	GraphCL+GT	76.00	76.51	19.58	13.28	73.53	72.48	45.71	48.4
(Ours)	SimGRACE+GCN	69.33	70.27	19.79	14.94	67.10	66.15	45.71	51.2
	SimGRACE+GAT	78.00	77.65	20.21	16.27	68.12	67.26	45.71	51.1
	SimGRACE+GT	74.00	74.84	19.16	14.29	71.76	71.75	44.00	48.1
IMP of ImprovedAIO		2.00↑	5.01 ↑	0.52 ↑	4.41 ↓	2.01 ↑	4.37 ↑	0.28 ↓	2.50
IMP of	Morpher	4.00↑	6.73 ↑	2.36 ↑	0.60 ↑	4.81↑	6.61 ↑	2.66↑	7.14
	*			•		0.50	*0		

Table 14: Few-shot graph classification performance (%). IMP (%): the average improvement (absolute value) compared to the **best result** among all the baseline methods.

Multi-task and domain-transfer performance

Dataset		Cora		CiteSeer			Target	Domain
Tasks	sks Methods		F1	Acc	F1		Target Task	
	Supervised	52.83	47.73	63.91	64.82		Source	Methods
Node Level	Fine-tune	56.37	55.04	64.87	66.42			Supervised
	AIO (Sun et al., 2023a)	14.69	7.10	18.93	6.92		ENZYMES	Fine-tune
	ImprovedAIO	<u>58.46</u>	<u>55.10</u>	66.44	66.53		(graph-level)	AIO
	Morpher	61.26 62.3		6 68.20 68.		6		ImprovedAI
Edge Ale	Supervised	51.78	50.62	52.14	50.81			Morpher
	Fine-tune	52.50	51.00	52.50	51.12		ar a	Supervised
	AIO (Sun et al., 2023a)	50.00	33.33	50.00	33.33		CiteSeer	Fine-tune
	ImprovedAIO	54.64	54.57	53.92	53.55		(node-level)	AIO ImprovedAI
	Morpher	55.71	55.05	55.35	55.05			Morpher

Table 2: Node-level, edge-level performance. Best results are bolded and second-best results are underlined.

_						
Targ	graph	-level	node-level			
Source	Methods	Acc	F1	Acc	F1	
	Supervised		56.67	47.57	36.07	
ENZYMES	Fine-tune	68.00	55.04	47.57	36.07	
(graph-level)	AIO	64.00	54.50	44.85	34.13	
	ImprovedAIO	70.67	64.07	50.28	50.51	
	Morpher	72.67	73.29	54.42	53.96	
	Supervised	66.00	56.67	47.57	36.07	
CiteSeer	Fine-tune	71.33	62.19	48.71	40.66	
(node-level)	AIO	65.33	57.20	45.71	34.39	
	ImprovedAIO	74.00	73.76	<u>52.57</u>	51.29	
	Mornher	76.67	77.04	58 29	57.54	

Table 13: Domain Transfer Performance. Best results are bolded and second-best results are underlined

Compatibility

Table 7: Few-shot graph classification performance (%) of Morpher with ELECTRA (Clark et al., 2020) as language

encoder. Other experiment settings are identical to the main experiment.

GNN pretraining	MUTAG		ENZYMES		PROTEINS		MSRC_21C	
GIVIN pretraining	Acc	F1	Acc	F1	Acc	F1	Acc	F1
GraphCL + GCN	78.00	78.17	20.41	15.79	67.38	65.66	43.42	47.19
GraphCL + GAT	76.67	75.75	20.41	11.37	66.26	65.66	44.57	49.01
GraphCL + GT	76.67	77.04	19.16	14.68	73.06	72.70	42.28	44.09
SimGRACE + GCN	70.00	70.99	19.79	12.41	68.96	67.77	45.71	48.44
SimGRACE + GAT	77.33	77.51	18.12	13.31	68.96	67.78	44.00	49.43
SimGRACE + GT	72.67	73.55	18.33	15.76	70.18	70.28	41.14	44.50

On AI4Science tasks (with more graph-language pairs)

Table 11: AUC-ROC (↑) on MolecureNet (bace, tox21, hiv). Morpher-K denotes K shots.

Dataset	KVPLM	MoMu	Galactica-1.3B	GIMLET-64M-50-shots	GAT-1M-supervised	Morpher-10	Morpher-20	Morpher-50
bace	0.5126	0.6656	0.5648	0.729	0.697	0.6231	0.6513	0.6858
tox21	0.4917	0.5757	0.4946	0.652	0.754	0.6769	0.7275	0.7459
hiv	0.6120	0.5026	0.3385	0.721	0.729	0.5742	0.7034	0.7283

The performance of Our Morpher paradigm is comparable to much larger models

GNN zero-shot prototype ("reasoning over graph representations")

Figure 7: Novel class generalization result for our ZERO-CiteSeer dataset

Figure 8: Novel class generalization result for our ZERO-PubMed dataset.