# IP Subnetting and Routing Simulation – Project Report

#### 1. Introduction

This project demonstrates the design and implementation of an IP addressing scheme using subnetting in a simulated multi-router network environment using Cisco Packet Tracer. The objective is to divide a given /24 IPv4 network into multiple subnets, assign IPs to various devices (routers, switches, and PCs), and configure router interfaces accordingly to ensure proper communication between subnets.

#### 2. Tools Used

- **Cisco Packet Tracer** (for network simulation)
- **Binary Subnetting** (for IP planning)
- Router CLI Configuration (for assigning and activating interfaces)
- Manual IP Configuration (for PCs and switches)

## 3. Network Topology Overview

The simulated network consists of:

- **2 Routers** (Router0 and Router1)
- 4 LAN segments (each with a switch and a PC)
- A WAN link between the two routers
- Subnetting applied to divide 192.168.100.0/24 into 5 subnets



## 4. Key Tasks Performed

### 4.1. Subnetting Design

- The given block 192.168.100.0/24 was divided into **5 subnets**:
  - 4 LAN subnets for local segments
  - o 1 WAN subnet for the router-to-router link
- Choose a subnet mask of /27 (i.e., 255.255.255.224) to allow 30 usable hosts per LAN.

| Subnet # | Subnet Address     | <b>Usable Range</b>    | Broadcast       |
|----------|--------------------|------------------------|-----------------|
| 0        | 192.168.100.0/27   | 192.168.100.1 – .30    | 192.168.100.31  |
| 1        | 192.168.100.32/27  | 192.168.100.33 – .62   | 192.168.100.63  |
| 2        | 192.168.100.64/27  | 192.168.100.65 – .94   | 192.168.100.95  |
| 3        | 192.168.100.96/27  | 192.168.100.97 – .126  | 192.168.100.127 |
| 4 (WAN)  | 192.168.100.128/30 | 192.168.100.129 – .130 | 192.168.100.131 |

#### 4.2. Router and Device Configuration

• Assigned IP addresses to **Router0** and **Router1** interfaces based on subnet planning.

- Used no shutdown to activate interfaces.
- Assigned first usable IPs to routers, second to switches, and last to PCs





#### 4.3. Addressing Summary

| Device   | Interface                        | IP Address      | Subnet |
|----------|----------------------------------|-----------------|--------|
| Router0  | G0/0                             | 192.168.100.1   | 0      |
| Router0  | G0/1 (WAN)                       | 192.168.100.129 | 4      |
| Router1  | G0/0                             | 192.168.100.33  | 1      |
| Router1  | G0/1 (WAN)                       | 192.168.100.130 | 4      |
| Switches | VLAN1 IPs                        | (e.g., .2, .34) | LANs   |
| PCs      | Last usable IPs (e.g., .30, .62) | LANs            |        |

## 5. Explanation: How Subnetting Helps Organize a Network

Subnetting allows network administrators to divide a larger network into logical segments, isolating traffic and improving manageability. In this simulation, subnetting ensured:

- Efficient IP allocation
- Easier troubleshooting
- Organized device grouping
- Clear routing table entries on each router

A router determines if a destination IP belongs to a particular subnet by applying a bitwise AND operation between the destination IP and the subnet mask, then comparing the result with the subnet's network address. If there's a match, it forwards the packet via the appropriate interface.

## 6. Learning Outcomes

- Learned to subnet a /24 IPv4 network into smaller subnets.
- Gained experience with IP planning and binary calculations.
- Practiced configuring router interfaces in CLI.
- Developed logical understanding of interface assignments and address roles in network design.

## 7. Conclusion

This simulation successfully demonstrated the use of subnetting for structured network design and the configuration of router interfaces to ensure subnet communication. The result was a fully structured and subnetted network capable of clean IP allocation, ready for routing and scalability.

## 8. Attachments

- IP-Subnetting-Simulation.pkt
- topology.png
- r1-config.png
- r2-config.png