# Exam\_Racinskis\_pr20015

Pēteris Račinskis pr20015

6/9/2021

#### 1. uzdevums

Piezīme: eksāmenā laika nav daudz, tāpēc visa tā pati copy & paste diagnostika normalitātei, dispersijas vienmērīgumam un autokorelācijai nav atkārtota pēc katra regresijas modela.

Bibliotēku un datu ielāde:

```
df <- read.delim("poverty.txt")
summary(df)
attach(df)
library(psych)
library(robustbase)
library(histogram)
library(nortest)
library(boot)
library(e1071)</pre>
```

Palīgfunkciju definīcija:

```
general_lreg <- function(vec1,vec2,degree=1,plot=F,print=F,names=c("","")) {
  fit<-lm(vec2~poly(vec1,degree,raw=T))
  if(plot){
    plot(vec1,vec2,xlab=names[1],ylab=names[2])
    x <- seq(min(vec1),max(vec1),length.out = length(vec1))
    f <- predict(fit, newdata = data.frame(vec1 = x))
        lines(x,f,col="red",lwd=2)
  }
  if(print){
    print(paste("R-squared:",summary(fit)$r.squared))
  }
  fit
}
cb_skewness <- function(x, i){
    skewness(x[i])
}</pre>
```

Dati: viena kolonna ar štatu nosaukumiem, 5 skaitlisku datu kolonnas.

#### 1.1 Aprakstošās statistikas:

```
describe(PovPct)

## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 50 12.94 4.13 12.15 12.54 3.78 5.3 25.3 20 0.89 0.58 0.58
```





describe(Brth15to17)

## vars n mean sd median trimmed mad min max range skew kurtosis se ## X1 1 50 21.83 7.45 19.8 21.42 5.93 8.1 38.2 30.1 0.52 -0.56 1.05 boxplot(Brth15to17)



describe(Brth18to19)

## vars n mean sd median trimmed mad min max range skew kurtosis se ## X1 1 50 71.43 18.69 69.25 71.17 19.27 39 104.3 65.3 0.13 -1.07 2.64 boxplot(Brth18to19)



describe(ViolCrime)

## vars n mean sd median trimmed mad min max range skew kurtosis se ## X1 1 50 6.71 3.62 6.25 6.55 4.08 0.9 17 16.1 0.42 -0.48 0.51 boxplot(ViolCrime)



describe(TeenBrth)

## vars n mean sd median trimmed mad min max range skew kurtosis se ## X1 1 50 41.71 11.82 39.5 41.35 10.9 20 64.7 44.7 0.26 -0.92 1.67 boxplot(TeenBrth)



### 1.2 Robusti novērtētāji pret vidējo vērtību:

mean(PovPct)

## [1] 12.94

huberM(PovPct)\$mu

## [1] 12.63372

median(PovPct)

## [1] 12.15

mean(Brth15to17)

## [1] 21.832

huberM(Brth15to17)\$mu

## [1] 21.32322

median(Brth15to17)

## [1] 19.8

mean(Brth18to19)

## [1] 71.43

huberM(Brth18to19)\$mu

## [1] 71.33912

median(Brth18to19)

## [1] 69.25

mean(ViolCrime)

## [1] 6.712

huberM(ViolCrime)\$mu

## [1] 6.623571

### median(ViolCrime)

## [1] 6.25

mean(TeenBrth)

## [1] 41.706

huberM(TeenBrth)\$mu

## [1] 41.36206

median(TeenBrth)

## [1] 39.5

Secinājums: Hubera M-statistika visur tuvu seko vidējai vērtībai, bet mediāna vietām ir diezgan nobīdīta. Tas skaidrojams ar izlēcēju klātbūtni vai sadalījumu asimetriskumu.

#### 1.3 Histogrammas.

Binu platums iegūts ar krosvalidācijas metodi un netiek mainīts, pat ja rezultējošā histogramma ir pilnīgi bezjēdzīga:

```
hh<-histogram(PovPct,type="regular",penalty="cv")
lines(density(PovPct,bw="ucv"),col="red",lwd=2)</pre>
```

# **Histogram of PovPct**



hh<-histogram(Brth15to17,type="regular",penalty="cv")
lines(density(Brth15to17,bw="ucv"),col="red",lwd=2)</pre>

# Histogram of Brth15to17



hh<-histogram(Brth18to19,type="regular",penalty="cv")
lines(density(Brth18to19,bw="ucv"),col="red",lwd=2)</pre>

# Histogram of Brth18to19



hh<-histogram(ViolCrime, type="regular", penalty="cv")
lines(density(ViolCrime, bw="ucv"), col="red", lwd=2)</pre>

# **Histogram of ViolCrime**



hh<-histogram(TeenBrth,type="regular",penalty="cv")
lines(density(TeenBrth,bw="ucv"),col="red",lwd=2)</pre>

# Histogram of TeenBrth



#### 1.4 Vai skaitlisko datu kolonnas ir normāli sadalītas?

```
(lillie.test(PovPct)$p > 0.05)
## [1] FALSE
(lillie.test(Brth15to17)$p > 0.05)
## [1] FALSE
(lillie.test(Brth18to19)$p > 0.05)
## [1] TRUE
(lillie.test(ViolCrime)$p > 0.05)
## [1] TRUE
(lillie.test(TeenBrth)$p > 0.05)
## [1] TRUE
1.5 Asimetrijas koeficienta novērtējums ar butstrapa metodi
N<-10000
bobj_skew <- boot(PovPct, statistic=cb_skewness, R=N)</pre>
boot.ci(bobj_skew)
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 10000 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = bobj_skew)
## Intervals :
                                  Basic
## Level
              Normal
## 95%
       (0.3307, 1.5563) (0.3341, 1.5761)
##
## Level
            Percentile
                                   BCa
        (0.1992, 1.4412) (0.3069, 1.5569)
## Calculations and Intervals on Original Scale
bobj_skew <- boot(Brth15to17, statistic=cb_skewness, R=N)</pre>
boot.ci(bobj_skew)
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 10000 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = bobj_skew)
##
## Intervals :
             Normal
## Level
                                  Basic
        (0.0752, 0.9601) (0.0556, 0.9460)
## 95%
##
## Level
             Percentile
                                   BCa
## 95%
         (0.0883, 0.9787) (0.0917, 0.9798)
## Calculations and Intervals on Original Scale
```

```
bobj_skew <- boot(Brth18to19, statistic=cb_skewness, R=N)</pre>
boot.ci(bobj_skew)
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 10000 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = bobj_skew)
## Intervals :
## Level
            Normal
                                  Basic
## 95%
       (-0.2383, 0.4855) (-0.2445, 0.4837)
##
## Level
             Percentile
                                   BCa
                               (-0.2356, 0.4909)
## 95%
        (-0.2301, 0.4980)
## Calculations and Intervals on Original Scale
bobj_skew <- boot(ViolCrime, statistic=cb_skewness, R=N)</pre>
boot.ci(bobj_skew)
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 10000 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = bobj_skew)
## Intervals :
## Level
              Normal
                                  Basic
## 95%
       (-0.1060, 1.0381) (-0.1050, 1.0120)
## Level
            Percentile
                                   BCa
         (-0.1789, 0.9382)
                               (-0.0856, 1.0695)
## Calculations and Intervals on Original Scale
bobj_skew <- boot(TeenBrth, statistic=cb_skewness, R=N)</pre>
boot.ci(bobj_skew)
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 10000 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = bobj_skew)
##
## Intervals :
## Level
             Normal
                                  Basic
## 95%
       (-0.1315, 0.6432) (-0.1419, 0.6335)
##
## Level
            Percentile
                                   BCa
                              (-0.1221, 0.6507)
         (-0.1200, 0.6555)
## 95%
## Calculations and Intervals on Original Scale
1.6 Korelācijas koeficienti:
df1 <- df[c("PovPct", "Brth15to17", "Brth18to19", "ViolCrime", "TeenBrth")]</pre>
cor(df1)[1,]
```

```
PovPct Brth15to17 Brth18to19 ViolCrime
##
                                                  TeenBrth
## 1.0000000 0.6988130 0.6269856 0.5156478 0.6731801
cor(df1, method="spearman")[1,]
##
       PovPct Brth15to17 Brth18to19 ViolCrime
                                                  TeenBrth
## 1.0000000 0.5676092 0.5691432 0.4435261 0.5787894
# is cor significant?
x<-cor.test(PovPct,Brth15to17)</pre>
(x$p.value < 0.05)
## [1] TRUE
x$conf.int[1:2]
## [1] 0.5220014 0.8180411
x<-cor.test(PovPct,Brth18to19)
(x$p.value < 0.05)
## [1] TRUE
x$conf.int[1:2]
## [1] 0.4223457 0.7708113
x<-cor.test(PovPct, ViolCrime)
(x$p.value < 0.05)
## [1] TRUE
x$conf.int[1:2]
## [1] 0.2770673 0.6943376
x<-cor.test(PovPct,TeenBrth)</pre>
(x$p.value < 0.05)
## [1] TRUE
x$conf.int[1:2]
## [1] 0.4858746 0.8013688
1.7 Lineārās regresijas:
fit<-general_lreg(Brth15to17,PovPct,plot=T,names=c("brth 15-17","pov%"))</pre>
```



## summary(fit)

```
##
## Call:
## lm(formula = vec2 ~ poly(vec1, degree, raw = T))
##
## Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
## -5.8312 -2.0912 -0.2901 2.5741 6.1775
##
## Coefficients:
##
                               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                 4.4871
                                            1.3181
                                                     3.404 0.00135 **
                                 0.3872
                                            0.0572
                                                     6.768 1.67e-08 ***
## poly(vec1, degree, raw = T)
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.982 on 48 degrees of freedom
## Multiple R-squared: 0.4883, Adjusted R-squared: 0.4777
## F-statistic: 45.81 on 1 and 48 DF, p-value: 1.666e-08
fit<-general_lreg(Brth18to19,PovPct,plot=T,names=c("brth 18-19","pov%"))</pre>
```



#### summary(fit)

```
##
## Call:
## lm(formula = vec2 ~ poly(vec1, degree, raw = T))
##
## Residuals:
##
       Min
                1Q Median
                                3Q
                                      Max
## -6.1542 -2.3119 -0.4056 2.0195
                                   8.4746
##
## Coefficients:
##
                               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                               3.05279
                                          1.83169
                                                    1.667
## poly(vec1, degree, raw = T) 0.13842
                                          0.02482
                                                    5.576 1.11e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.248 on 48 degrees of freedom
## Multiple R-squared: 0.3931, Adjusted R-squared: 0.3805
## F-statistic: 31.09 on 1 and 48 DF, p-value: 1.106e-06
```

### 1.8 Daudzfaktoru lineārās regresijas:

```
fit_multi<-lm(PovPct~Brth15to17+Brth18to19, data=df1)
summary(fit_multi)
##</pre>
```

```
## Call:
## lm(formula = PovPct ~ Brth15to17 + Brth18to19, data = df1)
##
## Residuals:
## Min    1Q Median    3Q Max
## -6.1177 -2.2548 -0.3315    2.5948    5.2562
```

```
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.43963
                          1.95904
                                    3.287 0.00192 **
## Brth15to17
               0.63235
                          0.19178
                                    3.297 0.00186 **
## Brth18to19 -0.10227
                          0.07642 -1.338 0.18724
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.958 on 47 degrees of freedom
## Multiple R-squared: 0.5071, Adjusted R-squared: 0.4861
## F-statistic: 24.18 on 2 and 47 DF, p-value: 6.017e-08
fit_multi<-lm(PovPct~., data=df1)</pre>
summary(fit_multi)
##
## Call:
## lm(formula = PovPct ~ ., data = df1)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -5.1641 -2.0823 0.1841 1.6865 5.7184
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 6.5262
                           1.8294
                                    3.567 0.00087 ***
## Brth15to17
              -0.6910
                           0.4807 - 1.437 0.15750
               -0.9706
                                   -3.281 0.00200 **
## Brth18to19
                           0.2959
## ViolCrime
                0.1197
                           0.1697
                                    0.705 0.48427
## TeenBrth
                2.1587
                           0.7143
                                    3.022 0.00413 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.756 on 45 degrees of freedom
## Multiple R-squared: 0.5904, Adjusted R-squared: 0.554
## F-statistic: 16.22 on 4 and 45 DF, p-value: 2.704e-08
1.9 Robustās regresijas dzimstības rādītājiem atsevišķi:
fit<-lmrob(PovPct~Brth15to17,data=df1)</pre>
summary(fit)
##
## Call:
## lmrob(formula = PovPct ~ Brth15to17, data = df1)
## \--> method = "MM"
## Residuals:
##
      Min
               1Q Median
                               3Q
## -5.7486 -2.0652 -0.2934 2.6069 6.3594
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
                4.6285
                           1.4615
                                   3.167 0.00268 **
## (Intercept)
## Brth15to17
                0.3786
                           0.0736
                                   5.144 4.92e-06 ***
```

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Robust residual standard error: 3.231
## Multiple R-squared: 0.4477, Adjusted R-squared: 0.4362
## Convergence in 12 IRWLS iterations
## Robustness weights:
##
   4 weights are ~= 1. The remaining 46 ones are summarized as
                              Mean 3rd Qu.
##
      Min. 1st Qu. Median
                                              Max.
   0.6781 0.8888 0.9506 0.9223 0.9770 0.9952
## Algorithmic parameters:
          tuning.chi
                                              tuning.psi
                                                                refine.tol
                                    bb
##
           1.548e+00
                             5.000e-01
                                                                 1.000e-07
                                               4.685e+00
##
             rel.tol
                             scale.tol
                                               solve.tol
                                                               eps.outlier
##
           1.000e-07
                             1.000e-10
                                               1.000e-07
                                                                 2.000e-03
##
               eps.x warn.limit.reject warn.limit.meanrw
##
                             5.000e-01
           6.949e-11
                                               5.000e-01
##
       nResample
                          max.it
                                       best.r.s
                                                      k.fast.s
                                                                        k.max
              500
                                                                          200
##
                              50
##
      maxit.scale
                       trace.lev
                                            mts
                                                    compute.rd fast.s.large.n
##
              200
                               0
                                           1000
                                                                         2000
##
                                   subsampling
                                                                 cov
                     psi
##
              "bisquare"
                                 "nonsingular"
                                                       ".vcov.avar1"
## compute.outlier.stats
                    "SM"
## seed : int(0)
plot(fit)
```

- ## recomputing robust Mahalanobis distances
- ## saving the robust distances 'MD' as part of 'fit'





Robust Distances
Imrob(formula = PovPct ~ Brth15to17, data = df1)
Normal Q-Q vs. Residuals



Theoretical Quantiles
Imrob(formula = PovPct ~ Brth15to17, data = df1)



Fitted Values
Imrob(formula = PovPct ~ Brth15to17, data = df1)
Residuals vs. Fitted Values



Fitted Values
Imrob(formula = PovPct ~ Brth15to17, data = df1)

## Sqrt of abs(Residuals) vs. Fitted Values



Fitted Values
Imrob(formula = PovPct ~ Brth15to17, data = df1)

```
fit<-lmrob(PovPct~Brth18to19,data=df1)
summary(fit)</pre>
```

```
##
## Call:
## lmrob(formula = PovPct ~ Brth18to19, data = df1)
   \--> method = "MM"
## Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
   -5.9918 -2.1765 -0.2555
                            2.0955
                                    8.8863
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
               3.60240
## (Intercept)
                           1.82845
                                     1.970
                                             0.0546 .
## Brth18to19
                0.12876
                           0.02851
                                     4.515 4.11e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Robust residual standard error: 3.217
## Multiple R-squared: 0.3548, Adjusted R-squared: 0.3413
  Convergence in 13 IRWLS iterations
##
## Robustness weights:
##
   4 weights are ~= 1. The remaining 46 ones are summarized as
     Min. 1st Qu. Median
                              Mean 3rd Qu.
##
   0.4257 0.8843 0.9546
                            0.9093 0.9811
                                           0.9988
  Algorithmic parameters:
##
##
          tuning.chi
                                    bb
                                                                 refine.tol
                                              tuning.psi
##
           1.548e+00
                             5.000e-01
                                               4.685e+00
                                                                  1.000e-07
##
             rel.tol
                             scale.tol
                                               solve.tol
                                                                eps.outlier
```

```
##
           1.000e-07
                               1.000e-10
                                                  1.000e-07
                                                                     2.000e-03
##
                eps.x warn.limit.reject warn.limit.meanrw
                                                  5.000e-01
           1.897e-10
                               5.000e-01
##
##
        nResample
                           max.it
                                         best.r.s
                                                         k.fast.s
                                                                             k.max
               500
                                                                               200
##
                                50
##
      maxit.scale
                        trace.lev
                                                       compute.rd fast.s.large.n
                                               mts
                                                                              2000
##
               200
                                              1000
##
                                     subsampling
                      psi
                                                                     cov
                                   "nonsingular"
##
               "bisquare"
                                                           ".vcov.avar1"
##
   compute.outlier.stats
##
## seed : int(0)
plot(fit)
```

## recomputing robust Mahalanobis distances
## saving the robust distances 'MD' as part of 'fit'

## Standardized residuals vs. Robust Distances



Robust Distances Imrob(formula = PovPct ~ Brth18to19, data = df1)





Fitted Values
Imrob(formula = PovPct ~ Brth18to19, data = df1)



**Secinājums:** robustās regresijas šajā gadījumā sniedz sliktākus determinācijas koeficientus un atrod 2-3 izlēcējus katrā gadījumā.

### 2. uzdevums

Dati un bibliotēkas:

```
library(rstatix)
df <- read.csv("gapC.csv")
attach(df)</pre>
```

### 2.1 Kastu grafiki pa kontinentiem:

boxplot(breastcancer~continent)



### 2.2 ANOVA pa kontinentiem - noraida vidējo vērtību vienādību:

### 2.3 Post-Hoc tests - atrod grupas, kuru vidējās vērtības varētu būt vienādas:

```
f<-TukeyHSD(fit)
op <- par(mar= c(4,5,3,3) + 0.1, cex.axis=0.5)
plot(f,las=1)</pre>
```

# 95% family-wise confidence level



Differences in mean levels of continent

```
##
     Tukey multiple comparisons of means
##
       95% family-wise confidence level
##
## Fit: aov(formula = breastcancer ~ continent)
##
##
  $continent
##
                      diff
                                   lwr
                                              upr
## AS-AF
                 0.4953571
                            -8.986848
                                       9.9775626 0.9999987
                25.4248377
## EE-AF
                            14.352007 36.4976680 0.0000000
## LATAM-AF
                12.6875000
                             2.501977 22.8730225 0.0050172
## NORAM-AF
                47.7172619
                            21.638434 73.7960896 0.0000035
## OC-AF
                21.7839286
                             5.151040 38.4168172 0.0025337
## WE-AF
                50.7886905
                            39.528172 62.0492093 0.0000000
## EE-AS
                24.9294805
                            12.956321 36.9026399 0.0000001
## LATAM-AS
                12.1921429
                             1.034462 23.3498237 0.0223712
## NORAM-AS
                47.2219048
                            20.748253 73.6955563 0.0000067
## OC-AS
                21.2885714
                             4.043225 38.5339174 0.0056343
## WE-AS
                50.2933333
                            38.146389 62.4402777 0.0000000
## LATAM-EE
               -12.7373377 -25.274849 -0.1998261 0.0437993
## NORAM-EE
                22.2924242
                            -4.791696 49.3765447 0.1822328
## OC-EE
                -3.6409091 -21.809489 14.5276712 0.9967979
## WE-EE
                           11.938369 38.7893364 0.0000015
                25.3638528
## NORAM-LATAM
               35.0297619
                             8.296134 61.7633901 0.0025162
## OC-LATAM
                 9.0964286 -8.545414 26.7382711 0.7208506
```

par(op)
f

#### 2.4 Neparametriskie ekvivalenti:

```
library(rstatix)
kruskal.test(breastcancer~continent)
##
##
  Kruskal-Wallis rank sum test
##
## data: breastcancer by continent
## Kruskal-Wallis chi-squared = 91.536, df = 6, p-value < 2.2e-16
dunn_test(df, breastcancer~continent)
## # A tibble: 21 x 9
##
      .y.
                group1 group2
                                 n1
                                       n2 statistic
                                                           p
                                                               p.adj p.adj.signif
##
   * <chr>
                <chr> <chr> <int> <int>
                                              <dbl>
                                                       <dbl>
                                                               <dbl> <chr>
                       AS
                                 56
                                              0.262 7.93e- 1 1.00e+ 0 ns
## 1 breastcan~ AF
                                       35
## 2 breastcan~ AF
                       EΕ
                                 56
                                       22
                                              5.91 3.32e- 9 6.31e- 8 ****
                                       28
                                              3.52 4.36e- 4 6.98e- 3 **
## 3 breastcan~ AF
                       LATAM
                                 56
## 4 breastcan~ AF
                       NORAM
                                 56
                                       3
                                             2.88 3.99e- 3 5.58e- 2 ns
## 5 breastcan~ AF
                       OC
                                 56
                                       8
                                             2.71 6.81e- 3 8.17e- 2 ns
## 6 breastcan~ AF
                       WE
                                 56
                                       21
                                              7.58 3.54e-14 7.44e-13 ****
                                             5.26 1.42e- 7 2.56e- 6 ****
## 7 breastcan~ AS
                       EΕ
                                 35
                                       22
## 8 breastcan~ AS
                                 35
                                       28
                                             2.99 2.81e- 3 4.21e- 2 *
                       LATAM
## 9 breastcan~ AS
                       NORAM
                                 35
                                       3
                                             2.74 6.10e- 3 7.93e- 2 ns
## 10 breastcan~ AS
                                              2.47 1.37e- 2 1.50e- 1 ns
                       0C
                                 35
                                        8
## # ... with 11 more rows
```

#### 2.5 Wilkoksona zīmju-rangu tests - alternatīva metode:

##

```
pairwise.wilcox.test(breastcancer,continent,p.adjust.method="BH")
```

```
## Pairwise comparisons using Wilcoxon rank sum test
##
## data: breastcancer and continent
##
        ΑF
##
               AS
                      EE
                             LATAM
                                    NORAM
                                          OC
## AS
        0.7619
       7.5e-09 6.4e-08 -
## EE
## LATAM 5.0e-05 0.0012 0.0010
## NORAM 0.0219 0.0371 0.4429 0.1522
## OC
       ## WE
       7.5e-09 2.0e-08 3.4e-05 3.3e-06 0.8053 0.0371
## P value adjustment method: BH
```

## 3. uzdevums

Datu ielāde, bibliotēkas:

```
library(astsa)
library(smooth)
library(np)
df <- as.data.frame(econ5)</pre>
attach(df)
```

## 3.1Gludināšana ar slīdošo vidējo, prognozes:

```
md<-sma(unemp, h=10, order=5)
plot(forecast(md))
10
```



```
md<-sma(unemp,h=10,order=10)</pre>
plot(forecast(md))
```



 $K\bar{a}$  redzams, lietojot mazākus logus, modelis tuvāk seko datiem intervālā, taču zaudē spēju paredzēt sakarības

ilgākos laika periodos.

### 3.2 Gludināšana ar neparametriskajām regresijām

Nadaraya-Watson (local constant) vs local linear:

```
xax<-seq(1:length(unemp))
bwnw <- npregbw(unemp~xax,regtype="lc",bwmethod="cv.aic")
bwll <- npregbw(unemp~xax,regtype="ll",bwmethod="cv.aic")
nnw <- npreg(bwnw,residuals=T)
nll <- npreg(bwll,residuals=T)
plot(xax,unemp,col="grey")
lines(nnw$mean,col="red",lwd=2)</pre>
```



```
plot(xax,unemp,col="grey")
lines(nll$mean,col="blue",lwd=2)
```



Regresijas modeļi definīcijas intervālā izskatās gandrīz identiski, ar nelielām atšķirībām abos galos. Šo atšķirību nozīme kļūst acīmredzama, veicot ekstrapolāciju:

```
flen<-10
forecast <- seq(length(unemp)+1,length(unemp)+flen)
predll<-predict(nll, newdata=data.frame(xax=forecast))
prednw<-predict(nnw, newdata=data.frame(xax=forecast))
plot(c(unemp,prednw),col="white")
points(unemp,col="grey")
lines(c(unemp,prednw),col="red",lwd=4)
lines(c(unemp,predll),col="blue",lwd=2)</pre>
```



 $K\bar{a}$  redzams, lokāli lineārais modelis lielāku svaru liek uz lejupejošās tendences saglabāšanu netālu no datu kopas beigām, savukārt NW modelis nenovirzās tālu no datu vidējās vērtības.