Задание 5 Отчёт Методы Монте-Карло Отчёт

Ши Хуэй shihuicollapsor@gmail.com

1. Постановка задачи

На отрезке [a, b] задана точка x, a < x < b; a, x, b - целые числа Задана вероятность p перехода точки вправо. В момент времени i точка совершает переход c шагом 1 направо или налево (c вероятностью p или 1 - p, соответственно).

Процесс останавливается, когда точка достигает точки а или точки b.

Рассмотрим N частиц, совершающих случайные блуждания, начиная с точки х.

Интересующие нас результаты модели случайных блужданий - частоты попадания в каждое из поглощающих состояний и среднее время блужданий частиц.

Подобный эксперимент относится к классу методов Монте-Карло

2. Формат командной строки

gcc -fopenmp -std=c99 random_walk.c -o ./random_walk ./random walk 0 100 0.5 50 1000 2

3. Спецификация системы

- Polus

4. Записи экспериментов и результаты

4.1 Тестирование 1

В рамках выполнения задания 1 была разработана параллельная программа, реализующая метод Монте-Карло для моделирования случайных блужданий. В процессе тестирования программы использовались различные значения N для трех наборов параметров, определяющих границы интервала и начальные позиции частиц.

4.2 Тестирование 2

В рамках выполнения задания 2 была проведена серия тестов, в которых фиксировалось значение N=10000, 100000 и изменялось количество потоков. Целью эксперимента было изучение производительности программы в зависимости от числа потоков, используемых для параллельной обработки.

В ходе тестирования были рассмотрены два набора параметров, определяющих границы интервала и начальные позиции частиц.

Results

a	b	p	X	N	P	T	S	P
0	100	0.5	50	1000	1	4.622649	1	1
0	100	0.5	50	1000	2	1.202770	3.843336	1.921668
0	100	0.5	50	1000	4	1.199406	5.064969	1.284705
0	100	0.5	50	1000	8	0.912671	5.904414	1.266242
0	100	0.5	50	1000	16	0.782914	0.055542	1.180883
0	100	0.5	50	10000	1	25.593469	1	1
0	100	0.5	50	10000	2	16.840724	1.519737	0.759868
0	100	0.5	50	10000	4	7.055638	3.627378	1.209126
0	100	0.5	50	10000	8	6.629985	3.860260	0.965065
0	100	0.5	50	10000	16	4.443255	5.760072	1.152014
0	100	0.5	50	100000	1	253.616588	1	1
0	100	0.5	50	100000	2	146.976092	1.725564	0.862782
0	100	0.5	50	100000	4	91.841714	2.761543	0.920484
0	100	0.5	50	100000	8	35.899243	7.064678	1.766169
0	100	0.5	50	100000	16	24.678535	10.276809	2.055362

4.3 Результат вывода программы

[edu-cmc-sqi22-29@polus-ib sem05]\$./random_walk

now N = 1000, P = 1

Probability of reaching b (Sequential): 0.000000

Average time of walk (Sequential): 224478.412000

Parallel execution time (T): 4.622649 seconds

now
$$N = 1000$$
, $P = 2$

Probability of reaching b (Sequential): 0.984000

Average time of walk (Sequential): 70129.764000

Parallel execution time (T): 1.202770 seconds

now
$$N = 1000$$
, $P = 4$

Probability of reaching b (Sequential): 0.346000

Average time of walk (Sequential): 149989.004000

Parallel execution time (T): 1.199406 seconds

$$now N = 1000, P = 8$$

Probability of reaching b (Sequential): 0.375000

Average time of walk (Sequential): 146195.738000

Parallel execution time (T): 0.912671 seconds

now
$$N = 1000$$
, $P = 16$

Probability of reaching b (Sequential): 0.484000

Average time of walk (Sequential): 245618.606000

Parallel execution time (T): 0.782914 seconds

Sum List Execution time: 4.622649 1.202770 1.199406 0.912671 0.782914

Speed (S):1.000000 3.843336 3.854116 5.064969 5.904414

Parallel efficiency (E): 1.000000 1.921668 1.284705 1.266242 1.180883

now
$$N = 10000$$
, $P = 1$

Probability of reaching b (Sequential): 0.225800

Average time of walk (Sequential): 124320.868200

Parallel execution time (T): 25.593469 seconds

now
$$N = 10000$$
, $P = 2$

Probability of reaching b (Sequential): 0.421500

Average time of walk (Sequential): 162130.130000

Parallel execution time (T): 16.840724 seconds

now
$$N = 10000$$
, $P = 4$

Probability of reaching b (Sequential): 0.576800

Average time of walk (Sequential): 114459.818200

Parallel execution time (T): 7.055638 seconds

now
$$N = 10000$$
, $P = 8$

Probability of reaching b (Sequential): 0.858700

Average time of walk (Sequential): 209767.402400

Parallel execution time (T): 6.629985 seconds

now N = 10000, P = 16

Probability of reaching b (Sequential): 0.660400

Average time of walk (Sequential): 241907.618000

Parallel execution time (T): 4.443255 seconds

Sum_List Execution time: 25.593469 16.840724 7.055638 6.629985 4.443255

Speed (S):1.000000 1.519737 3.627378 3.860260 5.760072

Parallel efficiency (E): 1.000000 0.759868 1.209126 0.965065 1.152014

now N = 100000, P = 1

Probability of reaching b (Sequential): 0.446530

Average time of walk (Sequential): 123121.762320

Parallel execution time (T): 253.616588 seconds

now N = 100000, P = 2

Probability of reaching b (Sequential): 0.486330

Average time of walk (Sequential): 142389.570480

Parallel execution time (T): 146.976092 seconds

now N = 100000, P = 4

Probability of reaching b (Sequential): 0.468990

Average time of walk (Sequential): 174749.047080

Parallel execution time (T): 91.841714 seconds

now N = 100000, P = 8

Probability of reaching b (Sequential): 0.490710

Average time of walk (Sequential): 130401.927260

Parallel execution time (T): 35.899243 seconds

now N = 100000, P = 16

Probability of reaching b (Sequential): 0.552210

Average time of walk (Sequential): 155439.804920

Parallel execution time (T): 24.678535 seconds

Sum List Execution time: 253.616588 146.976092 91.841714 35.899243 24.678535

Speed (S):1.000000 1.725564 2.761453 7.064678 10.276809

Parallel efficiency (E): 1.000000 0.862782 0.920484 1.766169 2.055362