Correction

d'après E.M. Lyon 2001

Partie I

1.a $f: \mathbb{R}^2 \to \mathbb{R}^2$ est bien définie.

Soit
$$\lambda, \mu \in \mathbb{R}$$
 et $\vec{u} = (x, y), \vec{v} = (z, t) \in \mathbb{R}^2$.

$$f(\lambda \vec{u} + \mu \vec{v}) = (-(\lambda y + \mu t), \lambda x + \mu z) = \lambda \cdot f(\vec{x}) + \mu \cdot f(\vec{y})$$

Donc $f \in \mathcal{L}(\mathbb{R}^2)$.

- 1.b $\vec{a} = (1,0), f(\vec{a}) = (0,1), f^2(\vec{a}) = (-1,0), f^3(\vec{a}) = (0,-1)$. On a:
 - (i) $f^4(\vec{a}) = (1,0) = \vec{a}$,
 - (ii) $(\vec{a}, f(\vec{a}), f^2(\vec{a}), f^3(\vec{a}))$ génératrice (contient la base canonique),
 - (iii) $(\vec{a}, f(\vec{a}), f^2(\vec{a}), f^3(\vec{a}))$ formée d'éléments distincts.

Donc f est cyclique d'ordre 4.

2.a Supposons $\lambda . \sin + \mu . \cos = 0$.

On a alors $\forall x \in \mathbb{R}$, $\lambda \sin x + \mu \cos x = 0$.

Pour x = 0, on obtient $\mu = 0$, pour $x = \pi/2$, on obtient $\lambda = 0$.

La famille (sin,cos) est donc libre et par suite forme une base de $E = \text{Vect}(\sin,\cos)$. Il en découle $\dim E = 2$.

2.b Soit $f = \lambda . \sin + \mu . \cos \in E$.

$$\tau_p(f)(x) = \lambda . \sin(x + \frac{2\pi}{p}) + \mu . \cos(x + \frac{2\pi}{p}) = \alpha \sin x + \beta \cos x$$

avec
$$\alpha = (\lambda . \cos \frac{2\pi}{p} - \mu \sin \frac{2\pi}{p}), \beta = (\lambda . \sin \frac{2\pi}{p} + \mu . \cos \frac{2\pi}{p})$$

donc $\tau_n(f) = \alpha . \sin + \beta . \cos \in E$.

2.c On vient d'observer $\tau_n . E \to E$.

Soit $\lambda, \mu \in \mathbb{R}$ et $f, g \in E$. Pour tout $x \in \mathbb{R}$

$$\tau_{p}(\lambda.f + \mu.g)(x) = (\lambda.f + \mu.g)(x + \frac{2\pi}{p}) = \lambda.f(x + \frac{2\pi}{p}) + \mu.g(x + \frac{2\pi}{p}) = \lambda.\tau_{p}(f)(x) + \mu.\tau_{p}(g)(x)$$

Ainsi $\tau_p(\lambda.f + \mu.g) = \lambda.\tau_p(f) + \mu.\tau_p(g)$.

Finalement $\tau_n \in L(E)$.

2.d $\tau_p(f): x \mapsto \sin(x + \frac{2\pi}{n}), \ \tau_p^2(f): x \mapsto \sin(x + \frac{4\pi}{n}), \dots$

Par récurrence $\tau_p^k(f): x \mapsto \sin(x + \frac{2k\pi}{p}) = \cos\frac{2k\pi}{p}\sin x + \sin\frac{2k\pi}{p}\cos x$.

Si
$$\tau_p^k(f) = \tau_p^\ell(f)$$
 alors $\forall x \in \mathbb{R}, \cos \frac{2k\pi}{p} \sin x + \sin \frac{2k\pi}{p} \cos x = \cos \frac{2\ell\pi}{p} \sin x + \sin \frac{2\ell\pi}{p} \cos x$.

Or (sin,cos) est libre, donc $\begin{cases} \cos\frac{2k\pi}{p} = \cos\frac{2\ell\pi}{p} \\ \sin\frac{2k\pi}{p} = \sin\frac{2\ell\pi}{p} \end{cases} \text{ puis } k = \ell \quad \left[p \right].$

- 2.e On a:
 - (i) $\tau_{n}^{p}(f) = f$.

(ii)
$$\sin = f$$
 et $\cos = \lambda . f + \mu . \tau_p(f)$ avec $\lambda = -\frac{\cos(2\pi/p)}{\sin(2\pi/p)}$ et $\mu = \frac{1}{\sin(2\pi/p)}$ ($\sin(2\pi/p) \neq 0$ car $p > 2$).

Par suite $(f, \tau_n(f))$ est génératrice et ainsi $(f, \tau_n(f), ..., \tau_n^{p-1}(f))$ aussi.

(iii) $(f, \tau_p(f), ..., \tau_p^{p-1}(f))$ est formée d'éléments distincts grâce à 2.d.

Ainsi $\tau_{\scriptscriptstyle p}$ est cyclique d'ordre $\,p\,.$

Partie II

- 1. Une famille génératrice a plus d'éléments que la dimension de l'espace généré. C'est ainsi que $p \ge n$.
- 2.a $f^{p}(f^{k}(\vec{a})) = f^{p+k}(\vec{a}) = f^{k}(f^{p}(\vec{a})) = f^{k}(\vec{a})$.
- 2.b Soit $\vec{x} \in E$. Puisque $(\vec{a}, f(\vec{a}), ..., f^{p-1}(\vec{a}))$ est génératrice, on peut écrire :

$$\vec{x} = \lambda_0 \cdot \vec{a} + \lambda_1 f(\vec{a}) + ... + \lambda_{n-1} f^{p-1}(\vec{a})$$
. On a alors:

$$f^{p}(\vec{x}) = \lambda_{0}.f^{p}(\vec{a}) + \lambda_{1}f^{p+1}(\vec{a}) + ... + \lambda_{p-1}f^{2p-1}(\vec{a}) = \lambda_{0}.\vec{a} + \lambda_{1}f(\vec{a}) + ... + \lambda_{p-1}f^{p-1}(\vec{a}) = \vec{x}$$

Ainsi $f^p = \text{Id}$. On a $f \circ f^{p-1} = f^{p-1} \circ f = \text{Id}$ donc f est bijective et $f^{-1} = f^{p-1}$.

2.c $F = \ker(f - \operatorname{Id})$ et $G = \ker(\operatorname{Id} + f + ... + f^{p-1})$ sont des noyaux d'endomorphismes donc des sous-espaces vectoriels.

Soit $\vec{x} \in F \cap G$.

On a
$$f(\vec{x}) - \vec{x} = \vec{o}$$
 et $\vec{x} + f(\vec{x}) + ... + f^{p-1}(\vec{x}) = \vec{o}$

donc
$$p.\vec{x} = \vec{o}$$
 puis $\vec{x} = \vec{o}$.

Ainsi
$$F \cap G \subset \{\vec{o}\}$$
 puis $F \cap G = \{\vec{o}\}$.

Soit $\vec{x} \in E$.

Posons
$$\vec{u}=rac{\vec{x}+f(\vec{x})+\ldots+f^{p-1}(\vec{x})}{p}$$
 et $\vec{v}=\vec{x}-\vec{u}$.

$$\vec{x} = \vec{u} + \vec{v}$$
.

$$f(\vec{u}) = \vec{u}$$
 (car $f^n(\vec{x}) = \vec{x}$) donc $\vec{u} \in \ker(f - \operatorname{Id})$.

$$(\mathrm{Id} + f + ... + f^{n-1})(\vec{v}) = (\mathrm{Id} + f + ... + f^{p-1})(\vec{x} - \vec{u})$$
 donne

$$(\mathrm{Id} + f + \ldots + f^{n-1})(\vec{v}) = (\mathrm{Id} + f + \ldots + f^{p-1})(\vec{x}) - (\mathrm{Id} + f + \ldots + f^{p-1})(\vec{u}) = p.\vec{u} - p.\vec{u} = \vec{o}$$

donc
$$\vec{v} \in \ker(\mathrm{Id} + f + ... + f^{n-1})$$
.

Ainsi $E \subset F + G$ puis E = F + G.

Finalement F et G supplémentaires dans E.

3.a La famille $(\vec{a}, f(\vec{a}), ..., f^{m-1}(\vec{a}))$ est libre.

La famille $(\vec{a}, f(\vec{a}), ..., f^m(\vec{a}))$ est liée donc on peut écrire :

$$\lambda_0 \vec{a} + \lambda_1 f(\vec{a}) + ... + \lambda_m f^m(\vec{a}) = \vec{o} \text{ avec } (\lambda_0, ..., \lambda_m) \neq (0, ..., 0).$$

Si $\lambda_m = 0$ alors on obtient une relation linéaire sur $(\vec{a}, f(\vec{a}), ..., f^{m-1}(\vec{a}))$ ce qui est impossible puisque cette famille est libre.

Nécessairement $\lambda_m \neq 0$ et on peut alors écrire $f^m(\vec{a}) = \mu_0 . \vec{a} + ... + \mu_{m-1} f^{m-1}(\vec{a})$ avec $\mu_i = -\frac{\lambda_i}{\lambda_m}$.

3.b Par récurrence sur $k \ge m$.

k = m: ci dessus.

Supposons la propriété établir au rang $k \ge m$.

Par HR, on peut écrire $f^k(\vec{a}) = \alpha_0 . \vec{a} + ... + \alpha_{m-1} f^{m-1}(\vec{a})$.

En appliquant
$$f: f^{k+1}(\vec{a}) = \alpha_0 f(\vec{a}) + ... + \alpha_{m-1} f^m(\vec{a})$$

Or
$$f^m(\vec{a}) = \mu_0 \cdot \vec{a} + ... + \mu_{m-1} f^{m-1}(\vec{a})$$
 donc

$$f^{k+1}(\vec{a}) = \alpha_{m-1}\mu_0.\vec{a} + (\alpha_0 + \alpha_{m-1}\mu_1)f(\vec{a}) + \ldots + (\alpha_{m-2} + \alpha_{m-1}\mu_{m-1})f^{m-1}(\vec{a})$$

Récurrence établie

3.c De part 3.b, on peut affirmer $E = \text{Vect}(\vec{a}, f(\vec{a}), ..., f^{p-1}(\vec{a})) = \text{Vect}(\vec{a}, f(\vec{a}), ..., f^{m-1}(\vec{a}))$.

 $(\vec{a}, f(\vec{a}), ..., f^{m-1}(\vec{a}))$ est donc génératrice, et puisque libre, c'est une base de E. Il en découle m = n et $(\vec{a}, f(\vec{a}), ..., f^{n-1}(\vec{a}))$ base de E.

4.a
$$h\circ f=\alpha_0f+\ldots+\alpha_{n-1}f^n=f\circ h\;.$$

- 4.b On a clairement $g(\vec{a}) = h(\vec{a})$. Puisque f et g commutent, f^k et g commutent. Il en est de même pour f^k et h. Ainsi $g(f^k(\vec{a})) = (g \circ f^k)(\vec{a}) = (f^k \circ g)(\vec{a}) = f^k(g(\vec{a}))$ donne $g(f^k(\vec{a})) = f^k(h(\vec{a})) = (f^k \circ h)(\vec{a}) = (h \circ f^k)(\vec{a}) = h(f^k(\vec{a}))$
- 4.c Les endomorphismes g et h prennent mêmes valeurs sur une base, ils sont donc égaux.
- 4.d De part l'étude menée, tout endomorphisme commutant avec f peut s'écrire sous la forme $\alpha_0.\mathrm{Id}+\alpha_1.f+...+\alpha_{n-1}.f^{n-1}$. La réciproque s'observe comme en 4.a.