

Parallel Programming Concepts 2021 HPC Workshop: Parallel Programming

Alexander B. Pacheco

July 13 - 15, 2021

Research Computing

Outline

- Introduction
- 2 Parallel programming models
- Parallel programming hurdles
- 4 Heterogeneous computing

Outline

Introduction

Parallel programming models

3 Parallel programming hurdles

(4) Heterogeneous computing

What is Serial Computing?

- Traditionally, software has been written for serial computation:
 - A problem is broken into a discrete series of instructions
 - Instructions are executed sequentially one after another
 - Executed on a single processor
 - Only one instruction may execute at any moment in time

What is Parallel Computing?

- In the simplest sense, parallel computing is the simultaneous use of multiple compute resources to solve a computational problem:
 - A problem is broken into discrete parts that can be solved concurrently
 - Each part is further broken down to a series of instructions
 - Instructions from each part execute simultaneously on different processors
 - An overall control/coordination mechanism is employed
 - The computational problem should be able to:
 - Be broken apart into discrete pieces of work that can be solved simultaneously;
 - Execute multiple program instructions at any moment in time;
 - Be solved in less time with multiple compute resources than with a single compute resource.
 - The compute resources are typically:
 - A single computer with multiple processors/cores
 - An arbitrary number of such computers connected by a network

- Parallel computing might be the only way to achieve certain goals
 - Problem size (memory, disk etc.)
 - Time needed to solve problems
- Parallel computing allows us to take advantage of ever-growing parallelism at all levels
 - Multi-core, many-core, cluster, grid, cloud, · · ·

What are Parallel Computers?

- Virtually all stand-alone computers today are parallel from a hardware perspective:
 - Multiple functional units (L1 cache, L2 cache, branch, prefetch, decode, floating-point, graphics processing (GPU), integer, etc.)
 - Multiple execution units/cores
 - Multiple hardware threads
 - Networks connect multiple stand-alone computers (nodes) to make larger parallel computer clusters.

• The Real World is Massively Parallel:

- In the natural world, many complex, interrelated events are happening at the same time, yet within a temporal sequence.
- Compared to serial computing, parallel computing is much better suited for modeling, simulating and understanding complex, real world phenomena.

SAVE TIME AND/OR MONEY:

- In theory, throwing more resources at a task will shorten its time to completion, with potential cost savings.
- Parallel computers can be built from cheap, commodity components.

SOLVE LARGER / MORE COMPLEX PROBLEMS:

- Many problems are so large and/or complex that it is impractical or impossible to solve them on a single computer, especially given limited computer memory.
- Example: "Grand Challenge Problems"
 (en.wikipedia.org/wiki/Grand_Challenge) requiring PetaFLOPS and PetaBytes of computing resources.
- Example: Web search engines/databases processing millions of transactions every second

• PROVIDE CONCURRENCY:

- A single compute resource can only do one thing at a time. Multiple compute resources can do many things simultaneously.
- Example: Collaborative Networks provide a global venue where people from around the world can meet and conduct work "virtually".

• TAKE ADVANTAGE OF NON-LOCAL RESOURCES:

- Using compute resources on a wide area network, or even the Internet when local compute resources are scarce or insufficient.
- Example: SETI@home (setiathome.berkeley.edu) over 1.5 million users in nearly every country in the world. Source: www.boincsynergy.com/stats/ (June, 2015).
- Example: Folding@home (folding.stanford.edu) uses over 160,000 computers globally (June, 2015)

• MAKE BETTER USE OF UNDERLYING PARALLEL HARDWARE:

- Modern computers, even laptops, are parallel in architecture with multiple processors/cores.
- Parallel software is specifically intended for parallel hardware with multiple cores, threads, etc.
- In most cases, serial programs run on modern computers "waste" potential computing power.

- The Future:
- During the past 20+ years, the trends indicated by ever faster networks, distributed systems, and multi-processor computer architectures (even at the desktop level) clearly show that parallelism is the future of computing.
- In this same time period, there has been a greater than 500,000x increase in supercomputer performance, with no end currently in sight.
- The race is already on for Exascale Computing!

Exaflop = 10^{18} calculations per second

- Consider an example of moving a pile of boxes from location A to location B
- Lets say, it takes x mins per box. Total time required to move the boxes is 25x.
- How do you speed up moving 25 boxes from Location A to Location B?

- You enlist more people to move the boxes.
- If 5 people move the boxes simultaneously, it should theoretically take 5x mins to move 25 boxes.

- You enlist more people to move the boxes.
- If 5 people move the boxes simultaneously, it should theoretically take 5x mins to move 25 boxes.

Location A

Location B

Number of People	e Time (mins)
2	13x
3	9x
4	7x
5	5x
6	5x
7-8	4x
9-12	3x
13-24	2x
≥25	1x

Evaluating Parallel Programs

- Speedup
 - \bullet Let $N_{\rm Proc}$ be the number of parallel processes
 - Speedup(N_{Proc}) = $\frac{\text{Time used by best serial program}}{\text{Time used by parallel program}}$
 - ullet Speedup is usually between 0 and $N_{
 m Proc}$
- Efficiency
 - Efficiency(N_{Proc}) = $\frac{\text{Speedup}(N_{\text{Proc}})}{N_{\text{Proc}}}$
 - Efficiency is usually between 0 and 1

Speedup as a function of N_{Proc}

- Ideally
 - The speedup will be linear
- Even better
 - (in very rare cases) we can have superlinear speedup
- But in reality
 - Efficiency decreases with increasing number of processes

- Let f be the fraction of the serial program that cannot be parallelized
- Assume that the rest of the serial program can be perfectly parallelized (linear speedup)

$$\text{Time}_{\text{parallel}} = \text{Time}_{\text{serial}} \cdot \left(f + \frac{1 - f}{N_{\text{proc}}} \right)$$

Or

Speedup =
$$\frac{1}{f + \frac{1-f}{N_{\text{Drops}}}} \le \frac{1}{f}$$

Maximal Possible Speedup

Amdahl's Law

- What Amdahl's law says
 - It puts an upper bound on speedup (for a given f), no matter how many processes are thrown at it
- Beyond Amdahl's law
 - Parallelization adds overhead (communication)
 - f could be a variable too
 - ullet It may drop when problem size and $N_{
 m proc}$ increase
 - Parallel algorithm is different from the serial one

Writing a parallel program step by step

- Start from serial programs as a baseline
 - Something to check correctness and efficiency against
- 2 Analyze and profile the serial program
 - Identify the "hotspot"
 - Identify the parts that can be parallelized
- Parallelize code incrementally
- Check correctness of the parallel code
- Iterate step 3 and 4

A REAL example of parallel computing

• Dense matrix multiplication $M_{md} \times N_{dn} = P_{mn}$

$$P_{m,n} = \sum_{k=1}^{a} M_{m,k} \times N_{k,n}$$

$$P_{2,2} = M_{2,1} * N_{1,2} + M_{2,2} * N_{2,2} + M_{2,3} * N_{3,2} + M_{2,4} * N_{4,2}$$

Parallelizing matrix multiplication

- Divide work among processors
- In our 4x4 example
 - Assuming 4 processors
 - Each responsible for a 2x2 tile (submatrix)
 - Can we do 4x1 or 1x4?

Pseudo Code

Serial

```
for i = 1, 4
for j = 1, 4
for k = 1, 4
   P(i,j) += M(i,k)*N(k,j);
```

Parallel

22 / 54

```
for i = istart, iend
for j = jstart, jend
for k = 1, 4
   P(i,j) += M(i,k) + N(k,j);
```

Outline

- 1 Introduction
- 2 Parallel programming models
- Parallel programming hurdles

Theterogeneous computing

Single Program Multiple Data (SPMD)

- All program instances execute same program
- Data parallel Each instance works on different part of the data
- The majority of parallel programs are of this type
- Can also have
 - SPSD: serial program
 - MPSD: rare
 - MPMD

Memory system models

- Different ways of sharing data among processors
 - Distributed Memory
 - Shared Memory
 - Other memory models
 - Hybrid model
 - PGAS (Partitioned Global Address Space)

Distributed Memory Model

- Each process has its own address space
 - Data is local to each process
- Data sharing is achieved via explicit message passing
- Example
 - MPI

Shared Memory Model

- All threads can access the global memory space.
- Data sharing achieved via writing to/reading from the same memory location
- Example
 - OpenMP
 - Pthreads

Shared vs Distributed

Shared

Pros

- Global address space is user friendly
- Data sharing is fast

Cons

- Lack of scalability
- Data conflict issues

Distributed

Pros

- Memory scalable with number of processors
- Easier and cheaper to build

Cons

- Difficult load balancing
 - Data sharing is slow

- Clusters of SMP (symmetric multi-processing) nodes dominate nowadays
- Hybrid model matches the physical structure of SMP clusters
 - OpenMP within nodes
 - MPI between nodes

Potential benefits of hybrid model

- Message-passing within nodes (loopback) is eliminated
- Number of MPI processes is reduced, which means
 - Message size increases
 - Message number decreases
- Memory usage could be reduced
 - Eliminate replicated data
- Those are good, but in reality, (most) pure MPI programs run as fast (sometimes faster than) as hybrid ones · · ·

Reasons why NOT to use hybrid model

- Some (most?) MPI libraries already use internally different protocols
 - Shared memory data exchange within SMP nodes
 - Network communication between SMP nodes
- Overhead associated with thread management
 - Thread fork/join
 - Additional synchronization with hybrid programs

Outline

1 Introduction

2 Parallel programming models

Parallel programming hurdles

(4) Heterogeneous computing

Parallel Programming Hurdles

- Hidden serializations
- Overhead caused by parallelization
- Load balancing
- Synchronization issues

Hidden Serialization

- Back to our box moving example
- What if there is a very long corridor that allows only one work to pass at a time between Location A and B?

Hidden Serialization

- It is the part in serial programs that is hard or impossible to parallelize
 - \bullet Intrinsic serialization (the f in Amdahl's law)
- Examples of hidden serialization:
 - System resources contention, e.g. I/O hotspot
 - Internal serialization, e.g. library functions that cannot be executed in parallel for correctness

Communication overhead

- Sharing data across network is slow
 - Mainly a problem for distributed memory systems
- There are two parts of it
 - Latency: startup cost for each transfer
 - Bandwidth: extra cost for each byte
- Reduce communication overhead
 - Avoid unnecessary message passing
 - Reduce number of messages by combining them

Memory Heirarchy

- Avoid unnecessary data transfer
- Load data in blocks (spatial locality)
- Reuse loaded data (temporal locality)
- All these apply to serial programs as well

Load balancing

- Back to our box moving example, again
- Anyone see a problem?

Load balancing

- Work load not evenly distributed
 - Some are working while others are idle
 - The slowest worker dominates in extreme cases
- Solutions
 - Explore various decomposition techniques
 - Dynamic load balancing
- Hard for distributed memory
- Adds overhead

Synchronization issues - deadlock

- Often caused by "blocking" communication operations
 - "Blocking" means "I will not proceed until the current operation is over"
- Solution
 - Use "non-blocking" operations
 - Caution: trade-off between data safety and performance

Outline

1 Introduction

Parallel programming models

- Parallel programming hurdles
- 4 Heterogeneous computing

Heterogeneous computing

- A heterogeneous system solves tasks using different types of processing units
 - CPUs
 - GPUs
 - DSPs
 - Co-processors
 - o · · ·
- As opposed to homogeneous systems, e.g. SMP nodes with CPUs only

The Free Lunch 1s Over

http://www.gotw.ca/publications/concurrency-ddj.htm

Power and Clock Speed

Power efficiency is the key

- We have been able to make computer run faster by adding more transistors
 - Moore's law
- Unfortunately, not any more
 - Power consumption/heat generation limits packing density
 - Power \sim speed²
- Solution
 - Reduce each core's speed and use more cores increased parallelism

Source: John Urbanic, PSC

Graphic Processing Units (GPUs)

- Massively parallel many-core architecture
 - Thousands of cores capable of running millions of threads
 - Data parallelism
- GPUs are traditionally dedicated for graphic rendering, but become more versatile thanks to
 - Hardware: faster data transfer and more on-board memory
 - Software: libraries that provide more general purposed functions
- GPU vs CPU
 - GPUs are very effectively for certain type of tasks, but we still need the general purpose CPUs

CPU vs GPU

NVIDIA Tesla T4

• GPU Architecture: NVIDIA Turing

Tensor Cores: 320CUDA Cores: 2560

• Performance:

• Single Precision: 8.1 TFLOPS

Mixed Precision (FP16/FP32):65 TFLOPS

INT8: 130 TOPSINT4: 260 TOPS

• Memory (GDDR5): 16GB

• Memory (Bandwidth): 320GBs

GPU Programming

- a hierarchy of thread groups, shared memories, and barrier synchronization exposed to programmer as a minimal set of language extensions
- provide fine-grained data parallelism and thread parallelism, nested within coarse-grained data parallelism and task parallelism
- guide programmer to partition the problem into coarse sub-problems
- solved independently in parallel by blocks of threads, and each sub-problem into finer pieces that can be solved cooperatively in parallel by all threads within the block

- A GPU is built around an array of Streaming Multiprocessors (SMs).
- A multithreaded program is partitioned into blocks of threads that execute independently from each other.
- a GPU with more multiprocessors will automatically execute the program in less time than a GPU with fewer multiprocessors.

Memory Heirarchy

GPU Program

GPU programming strategies

- GPUs need to copy data from main memory to its onboard memory and copy them back
 - Data transfer over PCIe is the bottleneck, so one needs to
- Avoid data transfer and reuse data
- Overlap data transfer and computation
- Massively parallel, so it is a crime to do anything antiparallel
 - Need to launch enough threads in parallel to keep the device busy
 - Threads need to access contiguous data
 - Thread divergence needs to be eliminated
- Fine Grained Parallelism: relatively small amounts of computational work are done between communication events

Recommended Further Reading

- "Designing and Building Parallel Programs", Ian Foster from the early days of parallel computing, but still illuminating.
- "Introduction to Parallel Computing", Ananth Grama, Anshul Gupta, George Karypis, Vipin Kumar.
- University of Oregon Intel Parallel Computing Curriculum
- UC Berkeley CS267, Applications of Parallel Computing, Prof. Jim Demmel, UCB Spring 2021
- "Programming on Parallel Machines", Norm Matloff, UC Davis.
- Cornell Virtual Workshop: Parallel Programming Concepts and High-Performance Computing
- Introduction to High Performance Scientific Computing", Victor Eijkhout, TACC
- COMP 705: Advanced Parallel Computing (Fall, 2017), SDSU, Prof. Mary Thomas
- Slides based on material from https://hpc.llnl.gov/training/tutorials