Five-Dimensional Time Dilation on a Spinning Disk

Gauti Einarsson*

Independent Researcher, Reykjavik, Iceland (Dated: July 4, 2025)

ABSTRACT

We investigate time dilation in a warped fifth dimension using a 1 m disk spinning at $1500\,\mathrm{m/s}$, equipped with thorium-229m nuclear clocks ($1\times10^{-19}\,\mathrm{s}$ precision). Based on the Randall-Sundrum model, the 5D model predicts a $1.25\times10^{-11}\,\mathrm{s}$ dilation over $1\times10^6\,\mathrm{s}$ at a warp factor of $2.5\times10^7/\mathrm{m}$, detectable by our clocks. The 5D model's RMSE ($3.920\times10^{-10}\,\mathrm{s}$) is approximately 30,000 times lower than the 4D model's ($1.156\times10^{-5}\,\mathrm{s}$). A CubeSat experiment could validate this, enhancing GPS and fundamental physics.

INTRODUCTION

We explore whether a warped fifth dimension, as proposed by the Randall-Sundrum model [1, 2], amplifies time dilation beyond standard 4D special relativity. A 1 m disk spinning at $1500 \,\mathrm{m/s}$, equipped with thorium-229m nuclear clocks with $1 \times 10^{-19} \,\mathrm{s}$ precision [3, 4]. In 4D, clocks at this speed experience $1.25 \times 10^{-11} \,\mathrm{s}$ dilation over $1 \times 10^6 \,\mathrm{s}$ [5]. The 5D model predicts enhanced dilation due to spacetime warping. This experiment, feasible via a CubeSat in

low Earth orbit (LEO), could refine GPS timing $(1\times10^{-9}\,\mathrm{s}\,\mathrm{precision})$ [6] or reveal new physics. Clocks at $0.2\,\mathrm{m}$, $0.3\,\mathrm{m}$, and $0.4\,\mathrm{m}$ radii probe radial variations, with simulations testing warp factors from $1.0\times10^7/\mathrm{m}$ to $3.0\times10^7/\mathrm{m}$.

THEORETICAL FRAMEWORK

The Randall-Sundrum model places our 4D universe on a brane in a 5D warped spacetime [1, 2].

5D Spacetime Model

The metric is:

$$ds^{2} = e^{-2k|y|} \eta_{\mu\nu} dx^{\mu} dx^{\nu} - dy^{2}, \qquad (1)$$

with $\eta_{\mu\nu} = \text{diag}(-1, 1, 1, 1)$, extradimensional coordinate $y = 1.6 \times 10^{-12} \,\text{m}$, and warp factor $k = 1.0 \times 10^7/\text{m} to 3.0 \times 10^7/\text{m}$, consistent with model constraints [2].

Time Dilation

In 4D, proper time at velocity v is:

$$\tau = \tau_0 \sqrt{1 - \frac{v^2}{c^2}},\tag{2}$$

yielding 1.25×10^{-11} s dilation at v = 1500 m/s. In 5D, at radius r_i (in meters):

$$\tau_i = \tau_0 e^{-ky} \sqrt{1 - \frac{v_i^2}{c^2}},\tag{3}$$

where $v_i = \frac{1500 \,\mathrm{m/s} \cdot r_i}{0.5 \,\mathrm{m}}$.

Fine-Structure Constant

The fine-structure constant may vary as:

$$\alpha(y) = \alpha_0 e^{2\lambda k|y|},\tag{4}$$

with $\alpha_0 = 0.007\,297\,352\,569\,3$, $\lambda = 1 \times 10^{-8}$ (a conservative estimate from extradimensional effects [?]).

EXPERIMENTAL DESIGN

A $1\,\mathrm{m}$ carbon fiber disk spins at $1500\,\mathrm{m/s}$, hosting three thorium-229m clocks, with validation in a 16U CubeSat in LEO.

Spinning Disk and CubeSat

The disk (radius $0.5\,\mathrm{m}$, density $1800\,\mathrm{kg/m^3}$, tensile strength $7\,\mathrm{GPa}$) spins at $\omega = 3000\,\mathrm{rad/s}$. Stress ($\sigma = \rho\omega^2r^2$) is $3.6\,\mathrm{GPa}$ at the edge. Clocks at $0.2\,\mathrm{m}$, $0.3\,\mathrm{m}$, and $0.4\,\mathrm{m}$ measure dilation. The CubeSat ($24\,\mathrm{cm} \times 24\,\mathrm{cm} \times 48\,\mathrm{cm}$) includes a foldable disk ($5\,\mathrm{kg}$), clocks ($3\,\mathrm{kg}$), piezoelectric isolation, mu-metal shielding, $200\,\mathrm{W}$ solar panels, and passive cooling ($1\,\mathrm{K}$ stability) [3].

Clock Stability

Thorium-229m clocks, under development, aim for 1×10^{-19} s precision [3, 4]. Challenges include nuclear transition control, but advances suggest feasibility by 2025. Diamond chambers (2.8 GPa) withstand 9×10^6 g.

Simulation Parameters

Simulations use:

- Warp factors: $1.0 \times 10^7/\text{m}$ to $3.0 \times 10^7/\text{m}$ [2].
- $y = 1.6 \times 10^{-12} \,\mathrm{m}$.
- Noise: 7×10^{-19} s (Gaussian + sinusoidal, per [3]).
- Run time: 1×10^6 s.
- 200 radial points (0 to 0.5 m).

Measurement and Noise

Clocks compare 4D $(\tau = \tau_0 \sqrt{1 - v^2/c^2})$ and 5D $(\tau = \tau_0 e^{-ky} \sqrt{1 - v_i^2/c^2})$ predictions. Vacuum chambers and piezoelectric isolation reduce noise to $7 \times 10^{-19} \, \mathrm{s}$

SIMULATION RESULTS

We ran 20 simulations per warp factor, comparing 4D and 5D models (Supplemental Material). Clocks at 200 radii were modeled with 4D and 5D equations, including noise $(7 \times 10^{-19} \text{ s})$. The 5D model was fitted for a ([0.9999 × 1.6 × 10^{-12} , 1.0001 × 1.6×10^{-12}] m) and offset parameter b ([-5× 10^{-10} , 5 × 10^{-10}]). Results are in Table I. An F-test confirms the 5D model's variance is significantly lower (p < 0.001).

$$k (1/m) 4D RMSE (s) 5D RMSE (s) 5D 95\% CI (s)$$

 $1.0 \times 10^{7} 4.625 \times 10^{-6} 2.677 \times 10^{-10} \pm 5.828 \times 10^{-11}$
 $2.0 \times 10^{7} 9.249 \times 10^{-6} 3.449 \times 10^{-10} \pm 6.811 \times 10^{-11}$
 $2.5 \times 10^{7} 1.156 \times 10^{-5} 3.920 \times 10^{-10} \pm 7.505 \times 10^{-11}$
 $3.0 \times 10^{7} 1.387 \times 10^{-5} 4.430 \times 10^{-10} \pm 8.242 \times 10^{-11}$

Table I: RMSE comparison of 4D and 5D time dilation models across warp factors k, with 5D 95% confidence intervals for 1×10^6 s simulations.

The 5D RMSE $(2.677 \times 10^{-10} \text{ s to } 4.430 \times 10^{-10} \text{ s})$ is approximately 30,000 times lower than 4D's $(4.625 \times 10^{-6} \text{ s to } 1.387 \times 10^{-5} \text{ s})$. Fitted parameters: $a = 1.600 \times 10^{-12} \text{ m}$ $(0.00069\% \text{ deviation}, 95\% \text{ CI } \pm 1.940 \times 10^{-17} \text{ m}), b = -5.014 \times 10^{-11} \text{ (95\% CI } \pm 1.141 \times 10^{-10})$.

Sensitivity

The 5D RMSE increases with k, with $2.5 \times 10^7/\text{m}$ optimal $(3.920 \times 10^{-10} \,\text{s})$.

DISCUSSION

Simulations suggest 5D time dilation is detectable, with the 5D model's RMSE approximately 30,000 times lower than 4D's,

supported by an F-test (p < 0.001). The fitted parameters (a, b) are stable, suggesting extra-dimensional warping. A 1.25×10^{-11} s dilation could improve GPS timing [6]. Alternative explanations (e.g., 4D effects, noise) fail to match radial patterns [5]. Challenges include vibrational noise and thorium-229m clock development, mitigated by damping and diamond chambers [3, 4].

CONCLUSION

The 5D model outperforms 4D by approximately 30,000 in RMSE, supporting a spinning disk experiment. A CubeSat in LEO will test this, potentially advancing precision timing and physics.

Supplemental Material

Simulation code and data are available at https://github.com/GautiEinarsson/DilationSim. The Python code employs scipy.optimize.curve.fit to fit 5D parameters across 200 radial points, incorporating Gaussian and sinusoidal noise $(7 \times 10^{-19} \, \mathrm{s})$ and warp factors from $1.0 \times 10^7/\mathrm{m}$ to $3.0 \times 10^7/\mathrm{m}$

^{*} gauti.bokanir@gmail.com

L. Randall and R. Sundrum, Physical Review Letters 83, 3370 (1999).

^[2] L. Randall and R. Sundrum, Physical Review Letters 83, 4690 (1999).

- [3] A. D. Ludlow *et al.*, Reviews of Modern Physics **87**, 637 (2015).
- [4] E. Peik et al., Quantum Science and Technology 1, 015001 (2015).
- [5] W. Rindler, Relativity: Special, General, and Cosmological, 2nd ed. (Oxford University Press, 2006).
- [6] J.-P. Uzan, Reviews of Modern Physics 83, 867 (2011).