

## Universidade de Coimbra

Faculty of Science and Technology Department of Informatics Engineering

## Laboratório de Programação Avançada First Written Test – April 19 2017

Student ID: \_\_\_\_\_

Name: \_\_\_\_\_\_

| 4 grade points in total, 1 hour and 30 m | ninutes, closed books.                                                                                                                                                                                                                                                             |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| the number of elements in list $A$ an    | plexity of the following recursive algorithm with respect to adjustify your answer with the Master Theorem. Assume first index of $A$ is 1, and each arithmetic operation takes a                                                                                                  |
| <b>Function</b> $product(A, n)$          | Master Theorem (general version):                                                                                                                                                                                                                                                  |
| if $n = 1$ then                          | Let $a \ge 1$ , $b > 1$ , $d \ge 0$ .                                                                                                                                                                                                                                              |
| return                                   |                                                                                                                                                                                                                                                                                    |
| for $i = 1$ to $n/2$ do                  | $T(n) = \begin{cases} aT(n/b) + n^c & \text{if } n > 1 \end{cases} \Rightarrow$                                                                                                                                                                                                    |
| $A[i] = A[i] \times A[i + (n+1)/2]$      | $\int d \qquad \text{if } n = 1$                                                                                                                                                                                                                                                   |
| product(A,(n+1)/2)                       | $T(n) = \begin{cases} aT(n/b) + n^c & \text{if } n > 1 \\ d & \text{if } n = 1 \end{cases} \Rightarrow$ $T(n) = \begin{cases} \Theta(n^c) & \text{if } \log_b a < c \\ \Theta(n^c \log n) & \text{if } \log_b a = c \\ \Theta(n^{\log_b a}) & \text{if } \log_b a > c \end{cases}$ |
|                                          | $T(n) = \begin{cases} \Theta(n^c \log n) & \text{if } \log_b a = c \end{cases}$                                                                                                                                                                                                    |
|                                          | $\Theta(n^{\log_b a})$ if $\log_b a > c$                                                                                                                                                                                                                                           |
|                                          |                                                                                                                                                                                                                                                                                    |
|                                          |                                                                                                                                                                                                                                                                                    |
|                                          |                                                                                                                                                                                                                                                                                    |
|                                          |                                                                                                                                                                                                                                                                                    |
|                                          |                                                                                                                                                                                                                                                                                    |
|                                          |                                                                                                                                                                                                                                                                                    |
|                                          |                                                                                                                                                                                                                                                                                    |
|                                          |                                                                                                                                                                                                                                                                                    |
|                                          |                                                                                                                                                                                                                                                                                    |
|                                          |                                                                                                                                                                                                                                                                                    |
|                                          |                                                                                                                                                                                                                                                                                    |
|                                          |                                                                                                                                                                                                                                                                                    |
|                                          |                                                                                                                                                                                                                                                                                    |
|                                          |                                                                                                                                                                                                                                                                                    |

2. Consider the following recursive algorithm to compute the arithmetic mean of n > 0 elements in a list L. Assume that the first index of list L is 1 and its elements are nonnegative reals.

```
\begin{aligned} & \textbf{Function} \ mean(L,n) \\ & \textbf{if} \ n=1 \ \textbf{then} \\ & \textbf{return} \ \ L[n] \\ & \textbf{else} \\ & \textbf{return} \ \ L[n]/n + mean(L,n-1) \times (n-1)/n \end{aligned}
```

Show by induction that the algorithm is correct, using the mathematical definition of arithmetic mean. Explicitly state the base case, the inductive hypothesis and the inductive step. (1 g.p.)

| 3. | 3. Consider the following problem: Given a sequence   | e of $n > 0$ integers, compute a contiguous |
|----|-------------------------------------------------------|---------------------------------------------|
|    | subsequence that has the largest sum. For instance, f | for the sequence                            |

$$(-2,1,-3,4,-1,2,1,-5,4)$$

a contiguous subsequence with the largest sum is (4, -1, 2, 1) with a value of 6. The following dynamic programming algorithm solves the problem for a sequence A of n elements by reporting only the largest sum.

```
\begin{aligned} & \textbf{Function} \ msum(A) \\ & DP[1] = A[1] \\ & \textbf{for} \ i = 2 \ \textbf{to} \ n \ \textbf{do} \\ & DP[i] = \max(A[i], DP[i-1] + A[i]) \\ & \textbf{return} \ \max(DP[1], \dots, DP[n]) \end{aligned}
```

| (a) | Show that the | problem has o | otimal | substructure as ex | plored b | y the algorithm abov | e. (1 | g.1 | p.` |
|-----|---------------|---------------|--------|--------------------|----------|----------------------|-------|-----|-----|
| ( ) |               |               |        |                    |          | ,                    |       | 0.1 |     |



| array <i>DF</i> | algorithm to<br>returned by t | he algorithm | above. (1 g.p | p.) |  |
|-----------------|-------------------------------|--------------|---------------|-----|--|
|                 |                               |              |               |     |  |
|                 |                               |              |               |     |  |
|                 |                               |              |               |     |  |
|                 |                               |              |               |     |  |
|                 |                               |              |               |     |  |
|                 |                               |              |               |     |  |
|                 |                               |              |               |     |  |
|                 |                               |              |               |     |  |
|                 |                               |              |               |     |  |
|                 |                               |              |               |     |  |
|                 |                               |              |               |     |  |
|                 |                               |              |               |     |  |
|                 |                               |              |               |     |  |
|                 |                               |              |               |     |  |
|                 |                               |              |               |     |  |
|                 |                               |              |               |     |  |
|                 |                               |              |               |     |  |
|                 |                               |              |               |     |  |
|                 |                               |              |               |     |  |
|                 |                               |              |               |     |  |
|                 |                               |              |               |     |  |
|                 |                               |              |               |     |  |
|                 |                               |              |               |     |  |