Introduction to Cryptography: Homework #6

Due on June 30, 2019 at 11:59pm

 $Professor\ Manuel$

ShiHan Chan

Problem 1

- 1. (a) Since Alice knows that $\gamma \equiv \alpha^r \mod p$, if Bob replies $t \equiv r \mod p 1$ or $t \equiv x + r \mod p 1$, then Alice would get $\alpha^{p-1} \equiv 1 \mod p$, $\alpha^t \equiv \alpha^r \equiv \gamma \mod p$ or $\alpha^t \equiv \alpha^{x+r} \equiv \beta \gamma \mod p$.
- After Alice calculate $\alpha^t \mod p$ and compare it with $\beta \gamma$ or γ , she can prove Bob identity if Bob can calculate $x = \log_{\alpha} \beta$
- 2.
- (a)128 times
- (b) 192 times
- 3. The protocol is called digital signature protocol.

Problem 2

Let g be the generator and $x = log_g h$. First, we factorize $n = \sum_{i=1}^{i=r} p_i^{e_i}$. Second, we can calculate the order of the group, order= $\sum_{i=1}^{i=r} (p_i - 1) p_i^{e_i - 1}$. Thirdly, for all $i \in Z \cup [1, r]$, $g_i = g^{\frac{n}{p_i^{e_i}}}$, $h_i = h^{\frac{n}{p_i^{e_i}}}$. Initilize $x = x_i, g = g_i, h = h_i$, and $g = p^e$, and initialize $x_0 = 0$, and let $\gamma = g^{p^{e-1}}$, then for all $k \in [0, e-1]$,

Initilize $x = x_i, g = g_i, h = h_i$, and $g = p^e$, and initialize $x_0 = 0$, and let $\gamma = g^{p^{e-1}}$, then for all $k \in [0, e-1]$, $h_k = (g^{-x_k}h)^{p^{e-1-k}}$, notice that the order of element divides p, so $h_k \in \gamma$. Lastly, calculate d_k such that $\gamma^{d_k} = h_k$ and let $x_{k+1} = x_k + d_k p^k$, and get $x = x_e$

After getting all x_i , we can use chinese remainder theorem to solve $x \equiv x_i \mod p_i^{e_i}$ such that $i \in [1, r]$, and get $x = log_a h$

For example, we calculate $3^x \equiv 3344 \mod 24389$. $24389 = 29^3$, and we can get the order $n = 28 * 29^2 = 2^2 * 7 * 29^2$

Since 3 is a generator of G, we can get:

```
g_1 \equiv 10133 \mod 24389

h_1 \equiv 24388 \mod 24389

g_2 \equiv 7302 \mod 24389

h_2 \equiv 4850 \mod 24389

g_3 \equiv 11369 \mod 24389

h_3 \equiv 23114 \mod 24389
```

For p=2,e=2, g=10133, h=24388, we can get $x_a=2 \mod 4$ For p=7,e=1, g=7302, h=4850, we can get $x_b=2 \mod 7$ For p=29,e=2, g=11369, h=23114, we can get $x_c=260 \mod 841$ And we can use Chinese Remainder theorem to get: $x\equiv 2 \mod 28$ $x\equiv 260 \mod 841$

 $x \equiv 841 * 1 * 2 + 28 * 811 * 260 \equiv 18762 \mod 23548$

Problem 3

1.

Prove by contradiction: Suppose polynomial $X^3 + 2X^2 + 1$ is reducible over $F_3[x]$ $X^3 + 2X^2 + 1 = (X^2 + AX + B)(X + C) = X^3 + (A + C)X^2 + (AC + B)X + BC$.

There are only two pairs of (B,C): (1,1) and (2,2) which make BC=1.

If B=C=1, then A=-1, then it's wrong.

If B=C=2, then A=2, then it's wrong.

So polynomial is irreducible over $F_3[x]$

Since $X^3 + 2X^2 + 1$ is an irreducible polynomial of degree three in $F_3[x]$, and F_3^3 is the set such that all the polynomial of degree smaller than 3 in $F_3[x]$, so $F_3^3[x]$ is finite set with 27 elements.

2.

We define a map $x \leftrightarrow f(x)$, and x symbolizes 26 English letters a,b,c,d.... And the relationship is $a \leftrightarrow 1$, $b \leftrightarrow 2,.....z \leftrightarrow 26$.

Let $P(X) = X^3 + 2X^2 + 1$, we can calculate:

 $X^1 \equiv X \mod P(X)$

 $X^2 \equiv X^2 \mod P(X)$

 $X^3 \equiv X^2 + 2 \mod P(X)$

.....(omit)

 $X^{26} \equiv 1 \mod P(X)$

X can generate every elements in $F_3^3[X]$, so X is a generator of $F_3^3[X]$.

So we can define the map as: $x \to g(x)(g(x) = X^{f(x)} \mod P(X))$

3. The order of the subgroup generated by X is 26 (see previous part).

4.

Let X be the generator and 11 is the secret key.

 $X^1 1 \equiv X + 2 \mod P(X)$

The public key is X+2.

5.

We first map "goodmorning" into F_3^3 and we can get: $X^2+1,2X^2,2X^2,X2+2X2,2,2X^2,X+1,2X,2X^2+2X+2,2X,X^2+1$. And we can encrypt plaintext m through the equation $c\equiv\beta^{18}m\equiv(X+2)^{18}m\mod P(X)$, then we map the result back to letter we can get ciphertext c: "saapyadzuzs". Then we use $m\equiv tr^{-x}\equiv t(X+1)^{-11}\mod P(X)$ to get $X^2+1,2X^2,2X^2,X2+2X2,2,2X^2,X+1,2X,2X^2+2X+2,2X,X^2+1$, and map the result back to plaintext.

Problem 4

1.

(i)pre-image resistant

Yes, it is pre-image resistant. If we know $y = h(x) \equiv x^2 \mod pq$, We can compute $x^2 \equiv y \mod p$ and $x^2 \equiv y \mod q$ and apply Chinese remainder theorem to get $x^2 \equiv y \mod pq$, and we can get x. But factorization of n is hard since p,q are two big prime integers. So it's pre-image resistant.

(ii)second pre-image resistant

No, it's not second pre-image resistant., if we know x, we can find x'=-x such that $h(x) = h(x') = x^2 \mod p$. (iii) collision resistant

No, it's not collision resistant, we can find any x,x' such that x'=-x, and $h(x)=h(x')=x^2 \mod p$ 2.

(i)efficiently computed

Yes, it can be efficiently computed. Any message n can be separated into blocks of 160 bits and pass through xor.

(ii)pre-image resistant

No, it's not pre-image resistant. If we have y, then we can find x=y such that h(x)=x=y.

(iii)second pre-image resistant

No, it's not second pre-image resistant. If we have x, we can find x'=x+160 bits 0 such that h(x)=h(x') (anything xor with 0 is itself).

(iv)collision resistant

No, it's not collision resistant, we can find any x,x' such that x'=x+160 bits 0, and h(x)=h(x') (anything xor with 0 is itself).

Problem 5

next time homework

Problem 6

programming homework