Fundamentals of Data Science

Semester B 20-21

Tutorial 5

1.a. The original Gini index is $1 - (\frac{4}{9})^2 - (\frac{5}{9})^2 = 0.494$

After splitting on a_1 , the Gini index becomes

$$\frac{4}{9}\left[1 - \left(\frac{3}{4}\right)^2 - \left(\frac{1}{4}\right)^2\right] + \frac{5}{9}\left[1 - \left(\frac{1}{5}\right)^2 - \left(\frac{4}{5}\right)^2\right] = 0.344$$

As a result, the change in Gini index is

$$\Delta G_{a_1} = 0.494 - 0.344 = 0.15$$

After splitting on a_2 , the Gini index becomes

$$\frac{5}{9}\left[1 - \left(\frac{2}{5}\right)^2 - \left(\frac{3}{5}\right)^2\right] + \frac{4}{9}\left[1 - \left(\frac{2}{4}\right)^2 - \left(\frac{2}{4}\right)^2\right] = 0.489$$

As a result

$$\Delta G_{a_2} = 0.494 - 0.489 = 0.005$$

b. The original classification error rate is $1 - \max(\frac{4}{9}, \frac{5}{9}) = \frac{4}{9}$

After splitting on a_1 , the classification error rate becomes

$$\frac{4}{9}[1 - \max(\frac{3}{4}, \frac{1}{4})] + \frac{5}{9}[1 - \max(\frac{1}{5}, \frac{4}{5})] = \frac{2}{9}$$

As a result, the change in classification error rate is

$$\Delta E_{a_1} = \frac{4}{9} - \frac{2}{9} = \frac{2}{9}$$

After splitting on a_2 , the classification error rate becomes

$$\frac{5}{9}[1 - \max(\frac{2}{5}, \frac{3}{5})] + \frac{4}{9}[1 - \max(\frac{2}{4}, \frac{2}{4})] = \frac{4}{9}$$

As a result,

$$\Delta E_{a_2} = \frac{4}{9} - \frac{4}{9} = 0$$

c. We consider the different possible split points for a_3 as follows:

<i>a</i> ₃	Class label	Split point	Entropy	Info gain
1	+	2.0	0.848	0.143
3	-	3.5	0.989	0.002
4	+	4.5	0.918	0.073
5	-			
5	-	5.5	0.984	0.007
6	+	6.5	0.973	0.018
7	+			
7	-	7.5	0.889	0.102
8	-			

The best split for a_3 occurs when the split point is 2.0.