A Sparse Smoothing Newton Method for Solving Discrete Optimal Transport Problems

Di Hou

Department of Mathematics, National University of Singapore

Joint work with Ling Liang (UMD), Kim-Chuan Toh (NUS)

November 14, 2024

Outline

Problem: OT

Problem: OT

Method: SqSN

Extension: WB

Numerical Experiments

Summary

Discrete Optimal Transport (OT)

Problem: OT

Given probability distributions $a \in \Delta_m$, $b \in \Delta_n$ and cost matrix $C \in \mathbb{R}_+^{m \times n}$

$$\min_{X \in \mathbb{R}^{m \times n}} \langle C, X \rangle \quad \text{s.t.} \quad X e_n = a, \ X^T e_m = b, \ X \ge 0.$$
 (OT)

Applications:

- Measures distance between two probability distributions.
- ▶ Defines the Wasserstein distance.
- Generative modeling, classification and clustering, domain adaptation.

Algorithms

$$\min_{X \in \mathbb{R}^{m \times n}} \langle C, X \rangle \quad \text{s.t.} \quad X e_n = a, \ X^T e_m = b, \ X \ge 0.$$

LP formulation:

$$\min_{x \in \mathbb{R}^{mn}} \quad \langle c, x \rangle \quad \text{s.t.} \quad Ax = d, \ X \ge 0.$$

where

$$x := \operatorname{vec}(X) \in \mathbb{R}^{mn}, \ c := \operatorname{vec}(C) \in \mathbb{R}^{mn}, \ A := \begin{pmatrix} e_{T}^{T} \otimes I_{m} \\ I_{n} \otimes e_{T}^{T} \end{pmatrix}, \ d := \begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^{m+n}.$$

Algorithms:

Categories	Algorithms	Remarks
	simplex	not scalable
LP	IPMs	dense
	HPR/PDHG	many ites
	Sinkhorn	approx sol
entropic	Bregman PPA	low accuracy
	multiscale	instabilities

Can we exploit the solution sparsity in designing a Newton-type method?

IPMs for OT

Perturbed KKT:

$$Ax = d$$
, $A^Ty + z = c$, $x \circ z = \mu e_{mn}$, $x \ge 0$, $z \ge 0$.

Newton equation:

$$\begin{pmatrix} A & 0 & 0 \\ 0 & A^T & I_{mn} \\ \mathrm{Diag}(z) & 0 & \mathrm{Diag}(x) \end{pmatrix} \begin{pmatrix} \Delta x \\ \Delta y \\ \Delta z \end{pmatrix} = \begin{pmatrix} r_p := d - Ax \\ r_d := c - A^T y - z \\ r_c := \gamma \mu e_{mn} - x \circ z \end{pmatrix}.$$

Normal equation:

$$\begin{pmatrix} \operatorname{Diag}(Ve_n) & V \\ V^T & \operatorname{Diag}(V^Te_m) \end{pmatrix} \Delta y = A\Theta A^T \Delta y = r_p + A\Theta (r_d - \operatorname{Diag}(x)^{-1}r_c),$$

where

- $lackbox{ }\Theta:=\mathrm{Diag}(\theta)\in\mathbb{R}^{mn imes mn}$ diagonal with $\theta_i=x_i/z_i.$
- $V := \operatorname{Mat}(\theta) \in \mathbb{R}^{m \times n}$ dense.

Method: SqSN

Issues:

- \triangleright Direct solver: factorizing dense $A\Theta A^T$ expensive.
- Iterative solver: ill-conditioning.

SSN for OT

KKT:

$$0 = F(x, y, z) := \begin{pmatrix} Ax - d \\ -A^T y - z + c \\ x - \Pi_+(x - \sigma z) \end{pmatrix} , (x, y, z) \in \mathbb{R}^{mn} \times \mathbb{R}^{m+n} \times \mathbb{R}^{mn}.$$

Semismooth Newton equation:

$$\begin{pmatrix} A & 0 & 0 \\ 0 & -A^T & -I_{mn} \\ I_{mn} - V & 0 & \sigma V \end{pmatrix} \begin{pmatrix} \Delta x \\ \Delta y \\ \Delta z \end{pmatrix} = \begin{pmatrix} r_p := d - Ax \\ r_d := A^T y + z - c \\ r_c := \Pi_+(x - \sigma z) - x \end{pmatrix},$$

where $V = \text{Diag}(v) \in \mathbb{R}^{mn \times mn}, v \in \partial \Pi_{+}(x - \sigma z).$

Issues:

F nonsmooth, no valid merit function for line search.

Approximate KKT by smoothing function

KKT optimality conditions:

$$\begin{pmatrix} Ax - d \\ x - \Pi_{+}(x + \sigma(A^{T}y - c)) \end{pmatrix} = 0, \quad (x, y) \in \mathbb{R}^{mn} \times \mathbb{R}^{m+n}.$$

Issues of Newton method:

- Nonsmooth, no valid merit function for line-search or global convergence.
- Need to solve a large-scale linear system, which cannot be reduced.

Huber smoothing function:

$$h(\epsilon,t) := \left\{ \begin{array}{ll} t - \frac{|\epsilon|}{2}, & t \ge |\epsilon|, \\ \frac{t^2}{2|\epsilon|}, & 0 < t < |\epsilon|, \\ 0, & t \le 0, \end{array} \right. \quad \forall \; (\epsilon,t) \in \mathbb{R} \backslash \{0\} \times \mathbb{R},$$

and
$$h(0,t) = \Pi_+(t), \quad \forall t \in \mathbb{R}.$$

Properties of Huber smoothing function

(1) $\lim_{\epsilon \to 0} h(\epsilon,t) = \Pi_+(t)$. (2) C^1 for $\epsilon \neq 0$ and $t \in \mathbb{R}$. (3) Preserve sparsity structure.

Squared smoothing Newton method for LP

Smoothing approximation:

$$\mathcal{E}(\epsilon,x,y) := \begin{pmatrix} Ax + \kappa_p \epsilon y - d \\ (1 + \kappa_c \epsilon) x - \Phi(\epsilon, x + \sigma(A^T y - c)) \end{pmatrix}, \quad \forall (\epsilon,x,y) \in \mathbb{R}_{++} \times \mathbb{R}^{mn} \times \mathbb{R}^{m+n},$$

where Φ is the Huber approximation defined as

$$\Phi(\epsilon, x) := (h(\epsilon, x_1), \dots, h(\epsilon, x_{mn}))^T, \quad \forall x \in \mathbb{R}^{mn}, \ \epsilon \neq 0.$$

Squared smoothing Newton method (SqSN):

$$\widehat{\mathcal{E}}(\epsilon,x,y) := \begin{pmatrix} \epsilon \\ \mathcal{E}(\epsilon,x,y) \end{pmatrix} = 0 \quad , (\epsilon,x,y) \in \mathbb{R} \times \mathbb{R}^{mn} \times \mathbb{R}^{m+n},$$

applying Newton method with line search

$$\widehat{\mathcal{E}}(\epsilon^k, x^k, y^k) + \widehat{\mathcal{E}}'(\epsilon^k, x^k, y^k) \Delta^k = (\zeta_k \epsilon^0; 0; 0).$$

Details

$$\widehat{\mathcal{E}}(\epsilon^k, x^k, y^k) + \widehat{\mathcal{E}}'(\epsilon^k, x^k, y^k) \Delta^k = (\zeta_k \epsilon^0; 0; 0)$$

Auxiliary function: controls how the smoothing parameter ϵ is driven to zero

$$\zeta(\epsilon,x,y) := r \min \Big\{ 1, \Big\| \widehat{\mathcal{E}}(\epsilon,x,y) \Big\|^{1+\tau} \, \Big\}, \quad \forall (\epsilon,x,y) \in \mathbb{R} \times \mathbb{R}^{mn} \times \mathbb{R}^{m+n},$$

where $r \in (0,1)$ and $\tau \in (0,1]$ are two given constants.

Merit function: ensures line search is well-defined

$$\phi(\epsilon, x, y) := \left\| \widehat{\mathcal{E}}(\epsilon, x, y) \right\|^2, \quad (\epsilon, x, y) \in \mathbb{R} \times \mathbb{R}^{mn} \times \mathbb{R}^{m+n}.$$

Line search: find smallest nonnegative integer ℓ

$$\phi(\epsilon^k + \rho^\ell \Delta \epsilon^k, x^k + \rho^\ell \Delta x^k, y^k + \rho^\ell \Delta y^k) \leq \left[1 - 2\mu(1 - \delta)\rho^\ell\right]\phi(\epsilon^k, x^k, y^k)$$

Algorithm framework

Algorithm 1 A squared smoothing Newton (SqSN) method via the Huber function

```
Require: Initial point (x^0, y^0) \in \mathbb{R}^{mn} \times \mathbb{R}^{m+n}, \epsilon^0 > 0, r \in (0, 1) such that \delta := r\epsilon^0 < 1, \tau \in (0, 1],
      \rho \in (0,1), and \mu \in (0,1/2).
 1: for k > 0 do
            if \widehat{\mathcal{E}}(\epsilon^k, x^k, y^k) = 0 then
 2:
                  Output: (\epsilon^k, x^k, u^k):
 3:
            else
 4:
                  Compute \zeta_k = \zeta(\epsilon^k, x^k, y^k):
 5:
                  Find \Delta^k := (\Delta \epsilon^k; \Delta x^k; \Delta y^k) via solving the following linear system of equations
 6:
                                                 \widehat{\mathcal{E}}(\epsilon^k, x^k, y^k) + \widehat{\mathcal{E}}'(\epsilon^k, x^k, y^k) \Delta^k = (\zeta_k \epsilon^0; 0; 0); Newton equation
                                                                                                                                                                   (17)
 7:
                  Compute \ell_k as the smallest nonnegative integer \ell satisfying
                                                                                                                                      line search
                         \phi(\epsilon^k + \rho^\ell \Delta \epsilon^k, x^k + \rho^\ell \Delta x^k, y^k + \rho^\ell \Delta y^k) \le \lceil 1 - 2\mu(1 - \delta)\rho^\ell \rceil \phi(\epsilon^k, x^k, y^k);
                  Update (\epsilon^{k+1}, x^{k+1}, y^{k+1}) = (\epsilon^k + \rho^{\ell_k} \Delta \epsilon^k, x^k + \rho^{\ell_k} \Delta x^k, y^k + \rho^{\ell_k} \Delta y^k);
 8:
            end if
10: end for
```

Reduce Newton equation to smaller sparse normal equation

Newton Matrix:

$$\widehat{\mathcal{E}}'(\epsilon^k, x^k, y^k) = \begin{pmatrix} 1 & 0 & 0\\ \kappa_p y^k & A & \kappa_p \epsilon I_{m+n}\\ \kappa_c x^k - V_1^k & (1 + \kappa_c \epsilon^k) I_{mn} - V_2^k & -\sigma V_2^k A^T \end{pmatrix},$$

where $V_1^k:=\Phi_1'(\epsilon^k,x^k+\sigma(A^Ty^k-c))$ and $V_2^k:=\Phi_2'(\epsilon^k,x^k+\sigma(A^Ty^k-c))$.

Normal equation:

$$[\kappa_{p}\epsilon^{k}I_{m+n} + \sigma A((1+\kappa_{c}\epsilon^{k})I_{mn} - V_{2}^{k})^{-1}V_{2}^{k}A^{T}]\Delta y^{k} = r_{p}^{k} - A((1+\kappa_{c}\epsilon^{k})I_{mn} - V_{2}^{k})^{-1}r_{c}^{k}.$$

Normal Matrix:

$$A\left((1+\kappa_c\epsilon^k)I_{mn}-V_2^k\right)^{-1}V_2^kA^T=\boxed{\begin{pmatrix}\operatorname{Diag}(V^ke_n)&V^k\\(V^k)^T&\operatorname{Diag}((V^k)^Te_m)\end{pmatrix}}\in\mathbb{S}^{m+n},$$

where $V^k := \max(v^k) \in \mathbb{R}^{m \times n}$, $v^k := \operatorname{diag}\left[\left((1 + \kappa_c \epsilon^k)I_{mn} - V_2^k\right)^{-1}V_2^k\right] \in \mathbb{R}^{mn}$.

Properties:

- $ightharpoonup V^k$ highly sparse near opt.
- smaller-scale normal systems.

Convergence

Lemmas:

- $\{\epsilon^k\}$ positive.
- Newton matrix $\widehat{\mathcal{E}}'(\epsilon,x,y)$ is nonsingular when $\epsilon>0$.
- Line search finite step terminates.

Theorem (Asymptotic Convergence)

Algorithm 1 is well-defined and any accumulation point is optimal.

Assumptions:

- 1. Exist accumulation point $(\bar{\epsilon}, \bar{x}, \bar{y})$.
- 2. Every element of $\partial \widehat{\mathcal{E}}(\bar{\epsilon}, \bar{x}, \bar{y})$ is nonsingular

Theorem (Local Superlinear Convergence Rate)

Under Assumptions 1-2, Algorithm 1 locally converges superlinearly.

p-Wasserstein distance and barycenter

- $lackbox{ Discrete distribution: } \mathcal{P} = \{(a_i,\,q_i): i=1,\ldots,m\},\ a_i \ \mathsf{prob} \ \mathsf{and} \ q_i \ \mathsf{supp} \}$
- ▶ Distance matrix: $\mathcal{D}(\mathcal{P}^{(1)},\mathcal{P}^{(2)})_{ij} = \|q_i^{(1)} q_j^{(2)}\|_p^p$

p-Wasserstein distance:

$$\begin{array}{|l|l|} \hline (\mathcal{W}_p(\mathcal{P}^{(1)},\mathcal{P}^{(2)}))^p & := & \min_{X \in \mathbb{R}^{m_1 \times m_2}} & \langle X, \mathcal{D}(\mathcal{P}^{(1)},\mathcal{P}^{(2)}) \rangle \\ & \text{s.t.} & X^\top e_{m_1} = a^{(1)}, \ X e_{m_2} = a^{(2)}, \ X \geq 0. \end{array}$$

 $p ext{-Wasserstein barycenter (WB)}$: Given probabilities $\{\mathcal{P}^{(t)}\}_{t=1}^N$, weights $(\gamma_1,\ldots,\gamma_N)$ satisfying $\sum_{t=1}^N \gamma_t = 1$ and $\gamma_t > 0$. find $\mathcal{P} := \{(w_i, \mathbf{q}_i): i=1,\ldots,m\}$

$$\min \Big\{ \sum_{t=1}^{N} \gamma_t \left(\mathcal{W}_p \left(\mathcal{P}, \mathcal{P}^{(t)} \right) \right)^p \mid w \in \mathbb{R}_+^m, \ e_m^\top w = 1, \ q_1, \dots, q_m \in \mathbb{R}^d \Big\}.$$

Remarks:

- Problem nonconvex.
- Practice: pre-specified supports.

$p ext{-}\mathsf{WB}$ with fixed supp is LP

$$\min_{w, \{\Pi^{(t)}\}} \sum_{t=1}^{N} \langle D^{(t)}, \Pi^{(t)} \rangle$$
s.t.
$$\Pi^{(t)} e_{m_t} = w, (\Pi^{(t)})^\top e_m = a^{(t)}, \Pi^{(t)} \geq 0, \quad t = 1, \dots, N,$$

$$e_m^\top w = 1, \quad w \geq 0.$$

where $D^{(t)}$ denotes $\gamma_t \mathcal{D}(\mathcal{P}, \mathcal{P}^{(t)})$.

Algorithms:

- ▶ Entropic regularization: Sinkhorn [Cuturi and Doucet, 2014] ...
- ▶ Original: sGS-ADMM [Yang et al., 2021], HPR [Zhang et al., 2022]
- ► LP algorithms: IPM, Simplex

Figure: [Solomon et al., 2015]

LP KKT:

$$Ax = d$$
, $A^Ty + z = c$, $x \circ z = 0$, $x > 0$, $z > 0$.

Newton equation:

$$\widehat{\mathcal{E}}(\epsilon^k, x^k, y^k) + \widehat{\mathcal{E}}'(\epsilon^k, x^k, y^k) \Delta^k = (\zeta_k \epsilon^0; 0; 0).$$

Normal equation:

$$(\lambda I + A \Theta A^T) \Delta y = \left(\begin{array}{cc} E_1 & E_2 \\ E_2^T & E_3 \end{array} \right) \left(\begin{array}{c} \Delta y_1 \\ \Delta y_2 \end{array} \right) = \left(\begin{array}{c} R_1 \\ R_2 \end{array} \right).$$

Further reduced equation:

$$(E_3 - E_2^T E_1^{-1} E_2) \Delta y_2 = R_2 - E_2^T E_1^{-1} R_1.$$

Solve: SMW formula, PCG with ichol preconditioner, sparse Chol.

Algorithm Comparison

OT parameters:

- ▶ m: # support points of a given distribution.
- ightharpoonup n: # support points of a given distribution.

WB parameters:

- ightharpoonup m: # support points of the target barycenter distribution.
- $ightharpoonup n: \# ext{ support points of a set of given distributions.}$
- ▶ N: # given distributions.

Problems	Algorithms	Equation Size $/~(\cdot)^2$	Sparsity	Smooth
	IPM	m+n	X	✓
ОТ	SSN	2mn + m + n	✓	X
	SqSN	m+n	✓	✓
WB	IPM ¹	N(m+n)	X	✓
VVD	SqSN	Nm	✓	✓

 $^{{}^{1}}$ The equation size can be reduced to Nm, but computing the reduced matrix is expensive.

Settings

- ▶ Machine: Linux PC having Intel Xeon E5-2680 (v3) cores with 96 GB of RAM.
- Comapre: commercial and/or open-source LP solvers including
 - 1. Gurobi (version 9.5.1)
 - 2. HiGHS (version 1.3.0)
 - CPLEX (version 22.1.0.0)
- ▶ Tolerance: KKT relative residue 10⁻⁸.
- Cost matrix: l2 norm
- Maxtime: 3600s.

OT data: DOTmark collection

Resolution	#constraints	#variables
32×32	2048	1,048,576
64×64	8192	16,777,216
128×128	32768	268,435,456

Table: OT problem sizes with different image resolutions.

Figure: Example images

OT Results: 64×64 (medium)

Image	Solver	Time (s)	Iter	$\eta_{\scriptscriptstyle \mathcal{D}}$	η_d	η_c	η_g
GRFmoderate	HiGHS	$4.4e{+02}$	27	1.1e-02	9.0e-02	8.4e-10	1.7e-02
	Gurobi	$2.8\mathrm{e}{+02}$	15	2.5e-12	1.5e-16	1.6e-09	1.8e-09
	CPLEX-Bar	$5.9e{+02}$	25	5.2e-10	3.1e-15	3.4e-10	5.8e-09
	CPLEX-Net	$3.3e{+01}$	-	6.8e-19	4.6e-17	0.0e+00	2.6e-18
	SmoothNewton	$7.1\mathrm{e}{+01}$	54	1.3e-12	$0.0\mathrm{e}{+00}$	3.2e-09	4.9e-09
GRFsmooth	HiGHS	$4.6e{+02}$	28	1.8e-06	1.5e-12	7.5e-10	1.1e-06
	Gurobi	3.0e + 02	16	1.3e-11	1.6e-16	2.8e-09	2.9e-09
	CPLEX-Bar	6.2e + 02	27	4.4e-10	3.0e-15	4.6e-10	4.8e-09
	CPLEX-Net	3.8e + 01	-	7.5e-19	5.6e-17	0.0e+00	3.1e-18
	SmoothNewton	7.8e + 01	58	1.9e-12	$0.0\mathrm{e}{+00}$	3.0e-09	5.0e-09
LogitGRF	HiGHS	$5.2e{+02}$	30	1.8e-05	1.2e-12	6.4e-10	2.2e-05
	Gurobi	3.0e + 02	16	2.7e-12	1.5e-16	2.4e-09	2.6e-09
	CPLEX-Bar	6.8e + 02	30	3.6e-10	2.4e-15	4.1e-10	2.9e-09
	CPLEX-Net	3.5e+01	-	9.1e-19	5.0e-17	0.0e+00	2.9e-18
	SmoothNewton	7.7e+01	59	1.3e-12	$0.0\mathrm{e}{+00}$	3.3e-09	5.1e-09
Shapes	HiGHS	$9.2e{+01}$	21	6.4e-07	1.6e-09	3.1e-10	7.0e-08
	Gurobi	$6.2e{+01}$	13	1.7e-11	9.2e-15	4.2e-10	1.8e-09
	CPLEX-Bar	1.0e + 02	20	7.8e-10	9.6e-16	2.4e-10	4.5e-09
	CPLEX-Net	7.5e + 00	-	3.3e-18	3.8e-17	0.0e+00	8.2e-18
	SmoothNewton	$2.1\mathrm{e}{+01}$	52	6.3e-11	$0.0\mathrm{e}{+00}$	8.8e-09	3.6e-09
ClassicImages	HiGHS	5.1e+02	30	1.4e-06	1.0e-09	2.2e-10	2.5e-08
	Gurobi	3.0e + 02	15	2.6e-12	1.4e-16	3.2e-09	2.5e-09
	CPLEX-Bar	5.9e + 02	25	2.3e-10	2.0e-15	1.7e-10	2.4e-09
	CPLEX-Net	3.5e+01	_	7.6e-19	4.1e-17	0.0e+00	2.0e-18
	SmoothNewton	7.1e + 01	55	1.2e-12	0.0e+00	3.2e-09	5.0e-09

- ▶ SqSN is 4 times faster than CPLEX-Bar and Gurobi.
- ▶ SqSN is competitive with CPLEX-Net (SOTA for small problems).

OT Results: 128×128 (large)

Image	Time (s)	Iter	η_p	η_d	η_c	η_g
CauchyDensity	$2.21\mathrm{e}{+03}$	96	1.1e-12	0.0e+00	2.8e-09	3.4e-09
GRFmoderate	$2.17\mathrm{e}{+03}$	97	6.8e-13	$0.0\mathrm{e}{+00}$	4.0e-10	5.4e-09
GRFsmooth	$2.18\mathrm{e}{+03}$	93	8.7e-13	$0.0\mathrm{e}{+00}$	3.7e-09	5.2e-09
LogitGRF	$1.85\mathrm{e}{+03}$	86	8.0e-13	$0.0\mathrm{e}{+00}$	4.1e-10	5.6e-09
Shapes	4.92e + 02	48	3.1e-12	$0.0\mathrm{e}{+00}$	2.6e-09	4.1e-09
ClassicImages	$2.22e{+03}$	101	6.4e-13	$0.0\mathrm{e}{+00}$	4.3e-10	5.7e-09
GRFrough	$2.30\mathrm{e}{+03}$	97	7.6e-13	$0.0\mathrm{e}{+00}$	4.4e-10	5.8e-09
LogGRF	$2.28\mathrm{e}{+03}$	108	9.2e-13	$0.0\mathrm{e}{+00}$	4.1e-10	5.5e-09
MicroscopyImages	$5.74\mathrm{e}{+02}$	88	1.4e-12	$0.0\mathrm{e}{+00}$	1.2e-09	$5.4\mathrm{e}\text{-}09$
WhiteNoise	$2.21\mathrm{e}{+03}$	99	8.0e-13	0.0 e + 00	4.4e-10	5.3e-09

- ▶ Memory cost: all solvers except SqSN take more than 96 GB of RAM.
- ▶ SqSN is comparable with GPU-based PDHG [Lu and Yang, 2024].
- Less than 40 minutes to converge for 268 million nonnegative variable.

SqSN has less memory cost

Image	Resolution	HiGHS	Gurobi	CPLEX-Bar	CPLEX-Net	${\bf Smooth Newton}$	
CauchyDensity	64×64	22282	22604	19489	20224	3456	
GRFmoderate	64×64	22281	22503	19500	20227	3751	
GRFsmooth	64×64	22281	24152	19486	20225	3550	
LogitGRF	64×64	22331	21639	19492	20217	3850	
Shapes	64×64	7524	9236	9515	8924	2254	
ClassicImages	64×64	22282	21668	19470	20228	3744	
GRFrough	64×64	22281	24155	19499	20237	3541	
LogGRF	64×64	22330	24158	19491	20226	3803	
MicroscopyImages	64×64	2632	3049	2305	2471	919	
WhiteNoise	64×64	22282	24158	19489	20229	3572	

Maximum RSS (MB) for the first two images in each class

RSS: maximum resident set size, estimate of the peak memory usage.

WB Data: MNIST, Coil20 and Yale-Face

Database	N	Resolution	#constraints	#variables
MNIST	10	28×28	15680	6,147,344
Car	10	32×32	20480	10,486,784
Duck	10	32×32	20480	10,486,784
Pig	10	32×32	20480	10,486,784
Yale01	10	30×40	24000	14,401,200
Yale02	10	36×48	34560	29,861,568
Yale03	10	54×72	77760	151,169,328

WB Results: Real Data

Image	Solver	Time(s)	Iter	η_p	η_d	η_c	η_g
MNIST	Gurobi-Spx	4.9e+01	103070	2.8e-16	8.1e-17	7.3e-19	3.5e-18
	Gurobi-Bar	1.1e + 02	30	5.0e-11	5.1e-15	6.1e-11	1.2e-09
	SmoothNewton	1.3e + 01	91	1.3e-13	0.0e + 00	2.1e-10	8.2e-09
Car	Gurobi-Spx	1.2e + 02	38608	1.6e-16	3.0e-17	2.0e-19	1.7e-18
	Gurobi-Bar	2.2e+02	33	8.6e-12	8.4e-14	6.7e-13	6.1e-11
	SmoothNewton	2.6e + 01	111	6.2e-14	0.0e+00	1.6e-11	6.2e-10
Duck	Gurobi-Spx	3.2e + 02	536738	2.6e-16	8.2e-17	1.8e-11	5.1e-18
	Gurobi-Bar	2.6e + 02	43	3.0e-11	4.0e-15	1.6e-13	2.5e-12
	SmoothNewton	2.6e + 01	100	4.5e-13	0.0e + 00	2.7e-10	9.1e-09
Pig	Gurobi-Spx	5.5e+02	1306882	1.6e-16	8.0e-17	4.2e-18	1.7e-17
	Gurobi-Bar	2.4e+02	38	3.8e-11	5.2e-14	4.4e-12	7.4e-09
	SmoothNewton	2.3e + 01	96	1.2e-12	0.0e + 00	1.8e-10	8.9e-09
Yale01	Gurobi-Spx	3.7e + 03	6126017	1.9e-16	8.7e-17	3.1e-17	1.9e-17
	Gurobi-Bar	3.0e + 02	32	3.6e-11	1.1e-15	4.1e-10	8.3e-09
	SmoothNewton	3.1e + 01	97	7.0e-13	0.0e + 00	1.6e-10	6.6e-09
Yale02	Gurobi-Spx	2.0e + 04	18892197	2.6e-16	8.5e-17	1.9e-11	2.5e-17
	Gurobi-Bar	2.1e+03	45	1.4e-10	1.3e-13	2.2e-11	5.3e-09
	SmoothNewton	1.8e + 02	115	1.0e-12	0.0e + 00	1.7e-10	9.7e-09
Yale03	Gurobi-Spx	(exceed	24 hours)	-	-	-	-
	Gurobi-Bar	3.3e+04	26	1.9e-13	2.4e-12	4.1e-14	2.2e-09
	SmoothNewton	2.5e + 03	177	2.3e-13	0.0e + 00	1.2e-10	8.6e-09

▶ SqSN is 10 times faster than Gurobi for most problems.

Summary

SqSN for OT and WB problems

Features:

- High accuracy solution.
- ► Local superlinear convergence rate.
- Exploit the solution sparsity.
- Excellent practical performance.

Extension:

- GPU implementation.
- ▶ Solve general LP, SDP [Liang, Sun, Toh, 2024].

References I

Di Hou, Ling Liang, and Kim-Chuan Toh.

A sparse smoothing newton method for solving discrete optimal transport problems.

ACM Transactions on Mathematical Software, in print. arXiv:2311.06448, 2024.

Ling Liang, Defeng Sun, and Kim-Chuan Toh.

A squared smoothing newton method for semidefinite programming. Mathematics of Operations Research, in print. arXiv:2303.05825, 2024.

Marco Cuturi and Arnaud Doucet.

Fast computation of Wasserstein barycenters.

In International Conference on Machine Learning, pages 685–693. PMLR, 2014.

Lei Yang, Jia Li, Defeng Sun, and Kim-Chuan Toh.

A fast globally linearly convergent algorithm for the computation of Wasserstein barycenters.

J. of Machine Learning Research, 22(1):984-1020, 2021.

Guojun Zhang, Yancheng Yuan, and Defeng Sun.

An efficient HPR algorithm for the Wasserstein barycenter problem with $O(\mathrm{Dim}(P)/\varepsilon)$ computational complexity. arXiv preprint arXiv:2211.14881, 2022.

26/27

References II

Justin Solomon, Fernando De Goes, Gabriel Peyré, Marco Cuturi, Adrian Butscher, Andy Nguyen, Tao Du, and Leonidas Guibas.

Convolutional wasserstein distances: Efficient optimal transportation on geometric domains.

ACM Transactions on Graphics (ToG), 34(4):1-11, 2015.

Haihao Lu and Jinwen Yang.

Pdot: A practical primal-dual algorithm and a gpu-based solver for optimal transport.

arXiv preprint arXiv:2407.19689, 2024.