

Europäisches
Patentamt

European
Patent Office

Office européen
des brevets

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application described on the following page, as originally filed.

Les documents fixés à cette attestation sont conformes à la version initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr. Patent application No. Demande de brevet n°

04090040.9

Der Präsident des Europäischen Patentamts;
Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets
p.o.

R C van Dijk

Anmeldung Nr:
Application no.: 04090040.9
Demande no:

Anmeldetag:
Date of filing: 10.02.04
Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

Epigenomics AG
Kastanienallee 24
10435 Berlin
ALLEMAGNE

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention:
(Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung.
If no title is shown please refer to the description.
Si aucun titre n'est indiqué se referer à la description.)

Methods and nucleic acids for the analysis of CpG dinucleotide methylation status
associated with the development of prostate cancer

In Anspruch genommene Priorität(en) / Priority(ies) claimed /Priorité(s)
revendiquée(s)
Staat/Tag/Aktenzeichen/State/Date/File no./Pays/Date/Numéro de dépôt:

EP/01.12.03/EP 03090414

Internationale Patentklassifikation/International Patent Classification/
Classification internationale des brevets:

C12Q1/68

Am Anmeldetag benannte Vertragstaaten/Contracting states designated at date of
filing/Etats contractants désignées lors du dépôt:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL
PT RO SE SI SK TR LI

10-02-2004

METHODS AND NUCLEIC ACIDS FOR THE ANALYSIS OF CpG DINUCLEOTIDE METHYLATION STATUS ASSOCIATED WITH THE DEVELOPMENT OF PROSTATE CANCER.

FIELD OF THE INVENTION

The present invention relates to human DNA sequences that exhibit altered methylation patterns (hypermethylation or hypomethylation) in cancer patients. Particular embodiments of the invention provide highly accurate methods for detection and differentiation of prostate carcinomas.

BACKGROUND

Correlation of aberrant DNA methylation with cancer. Aberrant DNA methylation within CpG 'islands' is characterized by hyper- or hypomethylation of CpG dinucleotide sequences leading to abrogation or overexpression of a broad spectrum of genes, and is among the earliest and most common alterations found in, and correlated with human malignancies. Additionally, abnormal methylation has been shown to occur in CpG-rich regulatory elements in intronic and coding parts of genes for certain tumors. In colon cancer, aberrant DNA methylation constitutes one of the most prominent alterations and inactivates many tumor suppressor genes including, *inter alia*, p14ARF, p16INK4a, THBS1, MINT2, and MINT31 and DNA mismatch repair genes such as hMLH1.

Aside from the specific hypermethylation of tumor suppressor genes, an overall hypomethylation of DNA can be observed in tumor cells. This decrease in global methylation can be detected early, far before the development of frank tumor formation. A correlation between hypomethylation and increased gene expression has been determined for many oncogenes.

Prostate cancer. The prostate is a male sex accessory gland, comprising about 30 to 50 branched glands. It is surrounded by a fibroelastic capsule that separates the gland into discrete lobes. The central zone of the organ is composed of pseudo stratified epithelium, the peripheral zone comprises the bulk of the organ and the two tissue types are separated by a transitional zone.

Benign prostate hypertrophy is present in about 50% of men aged 50 or above, and in 95% of men aged 75 or above. Prostate

cancer is a significant health care problem in Western countries with an incidence of 180 per 100,000 in the United States in 1999 (*Cancer J. Clin.*, 49:8, 1999).

Diagnosis and prognosis of prostate cancer; deficiencies of prior art approaches. Different screening strategies have been employed with at least some degree of success to improve early detection of prostate cancer, including determination of levels of prostate specific antigen ("PSA") and digital rectal examination. If a prostate carcinoma is suspected in a patient, diagnosis of cancer is confirmed or excluded by the histological and cytological analysis of biopsy samples for features associated with malignant transformation. The zone of origin of a prostatic cell proliferative disorder is currently determined by the 'PSA density.' PSA density is determined by dividing the weight of the prostate (as estimated by transrectal ultrasound) by the prostate specific antigen levels of the patient. Levels of over 15% percent are considered as indicative of prostate cancer and grounds for a biopsy. The biopsy, in turn, is used for histological and cytological analysis to determine the zone of origin.

However, using routine histological examination, it is often difficult to distinguish benign hyperplasia of the prostate from early stages of prostate carcinoma, even if an adequate biopsy is obtained (McNeal J. E. et al., *Hum. Pathol.* 2001, 32:441-6). Furthermore, small or otherwise insufficient biopsy samples often impede the analysis.

Molecular markers would offer the advantage that they could be used to efficiently analyze even very small tissue samples, and samples whose tissue architecture has not been maintained. Within the last decade, numerous genes have been studied with respect to differential expression among benign hyperplasia of the prostate and different grades of prostate cancer.

However, no single marker has as yet been shown to be sufficient for the diagnosis of prostate tumors in a clinical setting..

Alternatively, high-dimensional mRNA based approaches may, in particular instances, provide a means to distinguish between different tumor types and benign and malignant lesions. However, application of such approaches as a routine diagnostic

tool in a clinical environment is impeded and substantially limited by the extreme instability of mRNA, the rapidly occurring expression changes following certain triggers (e.g., sample collection), and, most importantly, by the large amount of mRNA needed for analysis which often cannot be obtained from a routine biopsy (see, e.g., Lipshutz, R. J. et al., *Nature Genetics* 21:20-24, 1999; Bowtell, D. D. L. *Nature Genetics Suppl.* 21:25-32, 1999).

The *GSTP1* gene. The core promoter region of the Gluthione S-Transferase P gene (*GSTP1*; accession no. NM_000852) has been shown to be hypermethylated in prostate tumor tissue. The glutathione S-transferase pi enzyme is involved in the detoxification of electrophilic carcinogens, and impaired or decreased levels of enzymatic activity (*GSTPi* impairment) have been associated with the development of neoplasms, particularly in the prostate. Mechanisms of *GSTPi* impairment include mutation (the *GSTP*B* allele has been associated with a higher risk of cancer) and methylation.

Prior art *GSTP1* studies. Lee et al., in United States Patent No 5,552,277, disclosed that the expression of the gluthione-S-transferase (GST) Pi gene was downregulated in a significant proportion of prostate carcinomas. Moreover, by means of restriction enzyme analysis they were able to show that the promoter region of the of the *GSTPi* gene was upmethylated (hypermethylated) in prostate carcinomas as opposed to normal prostate and leukocyte tissue. However, due to the limited and imprecise nature of the analysis technique used (HpaIII digestion, followed by Southern blotting) the exact number and position of the methylated CG dinucleotides were not characterized.

Douglas et al. (WO9955905) used a method comprising bisulfite treatment, followed by methylation specific PCR to show that prostate carcinoma-specific *GSTPi* hypermethylation was localized to the core promoter regions, and localized a number of CpG positions that had not been characterised by Lee et al.

Herman and Baylin (United States Patent No. 6,017,704) describe the use of methylation specific primers for methylation analysis, and describe a particular primer pair

suitable for the analysis of the corresponding methylated GSTPi promoter sequence.

However, with respect to the use of GSTPi markers, the prior art is limited with respect to the number of GSTPi promoter CpG sequences that have been characterized for differential methylation status. Moreover, there are no disclosures, suggestions or teachings in the prior art of how such markers could be used to distinguish among benign hyperplasia of the prostate and different grades of prostate cancer.

Aberrant genetic methylation has also been observed in several other genes including AR, p16 (CDKN2a/INK4a), CD44, CDH1.

Genome wide hypomethylation for example of the LINE-1 repetitive element has also been associated with tumor progression (Santourlidis S ,Florl A ,Ackermann R ,Wirtz HC ,Schulz WA 'High frequency of alterations in DNA methylation in adenocarcinoma of the prostate.' Prostate 1999 May 15;39(3):166-74) .

However, use of these genes as alternative or supplemental diagnostic, or otherwise clinically useful markers in a commercial setting has not been enabled. The application of differentially methylated genes to clinically utilizable platforms requires much further investigation into the sensitivity and specificity of the genes. For example, in the case of the gene CD44, a known metastasis suppressor, downregulation was associated with hypermethylation. However the use of this gene as a commercially available marker was not enabled as it was also methylated in normal tissues. See Vis AN Oomen M Schroder FH van der Kwast TH 'Feasibility of assessment of promoter methylation of the CD44 gene in serum of prostate cancer patients.' Mol Urol. 2001 Winter;5(4):199-203.

Development of medical tests. Two key evaluative measures of any medical screening or diagnostic test are its sensitivity and specificity, which measure how well the test performs to accurately detect all affected individuals without exception, and without falsely including individuals who do not have the target disease (predictive value). Historically, many diagnostic tests have been criticized due to poor sensitivity and specificity.

A true positive (TP) result is where the test is positive and the condition is present. A false positive (FP) result is where the test is positive but the condition is not present. A true negative (TN) result is where the test is negative and the condition is not present. A false negative (FN) result is where the test is negative but the condition is not present.

$$\text{Sensitivity} = \text{TP}/(\text{TP}+\text{FN})$$

$$\text{Specificity} = \text{TN}/(\text{FP}+\text{TN})$$

$$\text{Predictive value} = \text{TP}/(\text{TP}+\text{FP})$$

Sensitivity is a measure of a test's ability to correctly detect the target disease in an individual being tested. A test having poor sensitivity produces a high rate of false negatives, i.e., individuals who have the disease but are falsely identified as being free of that particular disease. The potential danger of a false negative is that the diseased individual will remain undiagnosed and untreated for some period of time, during which the disease may progress to a later stage wherein treatments, if any, may be less effective. An example of a test that has low sensitivity is a protein-based blood test for HIV. This type of test exhibits poor sensitivity because it fails to detect the presence of the virus until the disease is well established and the virus has invaded the bloodstream in substantial numbers. In contrast, an example of a test that has high sensitivity is viral-load detection using the polymerase chain reaction (PCR). High sensitivity is achieved because this type of test can detect very small quantities of the virus. High sensitivity is particularly important when the consequences of missing a diagnosis are high.

Specificity, on the other hand, is a measure of a test's ability to identify accurately patients who are free of the disease state. A test having poor specificity produces a high rate of false positives, i.e., individuals who are falsely identified as having the disease. A drawback of false positives is that they force patients to undergo unnecessary medical procedures treatments with their attendant risks, emotional and

financial stresses, and which could have adverse effects on the patient's health. A feature of diseases which makes it difficult to develop diagnostic tests with high specificity is that disease mechanisms, particularly in cancer, often involve a plurality of genes and proteins. Additionally, certain proteins may be elevated for reasons unrelated to a disease state. An example of a test that has high specificity is a gene-based test that can detect a p53 mutation. Specificity is important when the cost or risk associated with further diagnostic procedures or further medical intervention are very high.

The PSA blood test has a sensitivity of 73%, specificity of 60% and predictive value of 31.5%. PSA sensitivity and specificity can be improved but involve tradeoffs. PSA sensitivity can be improved by adjusting the "normal" PSA level to a lower value for younger men or by following serum PSA values in an individual patient over time (PSA velocity). Both methods will increase the number of cancers detected, but they also increase the number of men undergoing biopsy. Conversely, specificity can be improved by using higher "normal" PSA levels for older men, by using the free-to-total PSA ratio, or by adjusting the normal value according to the size of the prostate. These three methods decrease the number of unnecessary biopsies, but they increase the risk that some cancers will be missed.

It can therefore be seen that there exists a need for a means of prostate cancer diagnosis with improved sensitivity, specificity and/or predictive value.

Sensitivity and specificity of quantitative methylation-specific polymerase chain reaction (QMSP) assay alone (without histological analysis) in prostate cancer analysis of needle biopsies has ranged from 30% sensitivity and 100% specificity to 89% sensitivity and 64% specificity (Harden et. al. J Natl Cancer Inst 2003; 95: 1634-1637). However the predictive value of said technique as a clinical screening tool was not analysed. Furthermore, genetic testing of serum and bodily fluids such as urine and saliva would reduce the need for biopsies to detect cancer and would thus be the most effective screening or monitoring tool. However the development of such tests requires an extremely high degree of sensitivity

and specificity. Analysis of GSTPi gene hypermethylation (Cairns P, Esteller M, Herman JG, Schoenberg M, Jeronimo C, Sanchez-Cespedes M, et al. Molecular detection of prostate cancer in urine by GSTP1 hypermethylation. Clin Cancer Res 2001;7:2727-30.) in urine sediment of prostate cancer patients showed that only 6 out of 22 individuals with elevated methylation levels in biopsied tumors showed corresponding hypermethylation in urine samples.

Multifactorial approach. Cancer diagnostics has traditionally relied upon the detection of single molecular markers (e.g. gene mutations, elevated PSA levels). Unfortunately, cancer is a disease state in which single markers have typically failed to detect or differentiate many forms of the disease. Thus, assays that recognize only a single marker have been shown to be of limited predictive value. A fundamental aspect of this invention is that methylation based cancer diagnostics and the screening, diagnosis, and therapeutic monitoring of such diseases will provide significant improvements over the state-of-the-art that uses single marker analyses by the use of a selection of multiple markers. The multiplexed analytical approach is particularly well suited for cancer diagnostics since cancer is not a simple disease, this multi-factorial "panel" approach is consistent with the heterogeneous nature of cancer, both cytologically and clinically.

Key to the successful implementation of a panel approach to methylation based diagnostic tests is the design and development of optimized panels of markers that can characterize and distinguish disease states. This patent application describes an efficient and unique panel of genes the methylation analysis of one or a combination of the members of the panel enabling the detection of cell proliferative disorders of the prostate with a particularly high sensitivity, specificity and/or predictive value.

Pronounced need in the art. Therefore, in view of the incidence of prostate hyperplasia (50% of men aged 50 or above, and 95% of men aged 75 or above) and prostate cancer (180 per 100,000), there is a substantial need in the art for the development of molecular markers that could be used to

effectively distinguish among benign hyperplasia of the prostate and different grades of prostate cancer. Additionally, there is a pronounced need in the art for the development of molecular markers that could be used to provide sensitive, accurate and non-invasive methods (as opposed to, e.g., biopsy and transrectal ultrasound) for the diagnosis, prognosis and treatment of prostate cell proliferative disorders.

SUMMARY OF THE INVENTION

The disclosed invention provides a means for detection of or differentiation between prostate cell proliferative disorders by analysis of a gene panel, with a sensitivity and specificity suitable for use in a body fluid or serum assay. The present invention provides novel methods for detecting or distinguishing between prostate cell proliferative disorders with a sensitivity of greater than 30% and a specificity of greater than 65%. Said method is most preferably utilised for detecting or detecting and distinguishing between prostate cell proliferative disorders. The invention provides a method for the analysis of biological samples for features associated with the development of prostate cell proliferative disorders, the method characterised in that at least one nucleic acid, or a fragment thereof, from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 20 is/are contacted with a reagent or series of reagents capable of distinguishing between methylated and non methylated CpG dinucleotides within the genomic sequence, or sequences of interest.

The present invention provides a method for ascertaining genetic and/or epigenetic parameters of genomic DNA. The method has utility for the improved diagnosis, treatment and monitoring of prostate cell proliferative disorders, more specifically by enabling the improved identification of and differentiation between subclasses of said disorder and the genetic predisposition to said disorders. The invention presents improvements over the state of the art in that it enables a more specific and sensitive classification of prostate cell proliferative disorders than that achieved by

currently used tests thereby allowing for improved and informed treatment of patients.

Preferably, the source of the test sample is selected from the group consisting of cells or cell lines, histological slides, biopsies, paraffin-embedded tissue, bodily fluids, ejaculate, urine, blood, and combinations thereof. Preferably, the source is biopsies, bodily fluids, ejaculate, urine, or blood.

Specifically, the present invention provides a method for detecting prostate cell proliferative disorders with a sensitivity of greater than 30% and a specificity of greater than 65%, comprising: obtaining a biological sample comprising genomic nucleic acid(s); contacting the nucleic acid(s), or a fragment thereof, with one reagent or a plurality of reagents sufficient for distinguishing between methylated and non methylated CpG dinucleotide sequences within a target sequence of the subject nucleic acid, wherein the target sequence comprises, or hybridizes under stringent conditions to, a sequence comprising at least 16 contiguous nucleotides of SEQ ID NO: 1 to 20, said contiguous nucleotides comprising at least one CpG dinucleotide sequence; and determining, based at least in part on said distinguishing, the methylation state of at least one target CpG dinucleotide sequence, or an average, or a value reflecting an average methylation state of a plurality of target CpG dinucleotide sequences. Preferably, distinguishing between methylated and non methylated CpG dinucleotide sequences within the target sequence comprises methylation state-dependent conversion or non-conversion of at least one such CpG dinucleotide sequence to the corresponding converted or non-converted dinucleotide sequence within a sequence selected from the group consisting of SEQ ID NO: 5 to SEQ ID NO: 20, and contiguous regions thereof corresponding to the target sequence.

Additional embodiments provide a method for the detection of prostate cell proliferative disorders with a sensitivity of greater than 30% and a specificity of greater than 65%, comprising: obtaining a biological sample having subject genomic DNA; extracting the genomic DNA; treating the genomic DNA, or a fragment thereof, with one or more reagents to convert 5-position unmethylated cytosine bases to uracil or to another base that is detectably dissimilar to cytosine in terms

of hybridization properties; contacting the treated genomic DNA, or the treated fragment thereof, with an amplification enzyme and at least two primers comprising, in each case a contiguous sequence at least 9 nucleotides in length that is complementary to, or hybridizes under moderately stringent or stringent conditions to a sequence selected from the group consisting SEQ ID NO: 5 to SEQ ID NO: 20, and complements thereof, wherein the treated DNA or the fragment thereof is either amplified to produce an amplificate, or is not amplified; and determining, based on a presence or absence of, or on a property of said amplificate, the methylation state of at least one CpG dinucleotide sequence selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 4 , or an average, or a value reflecting an average methylation state of a plurality of CpG dinucleotide sequences thereof. Preferably, at least one such hybridizing nucleic acid molecule or peptide nucleic acid molecule is bound to a solid phase. Preferably, determining comprises use of at least two methods selected from the group consisting of: hybridizing at least one nucleic acid molecule comprising a contiguous sequence at least 9 nucleotides in length that is complementary to, or hybridizes under moderately stringent or stringent conditions to a sequence selected from the group consisting of SEQ ID NO: 5 to SEQ ID NO: 20, and complements thereof; hybridizing at least one nucleic acid molecule, bound to a solid phase, comprising a contiguous sequence at least 9 nucleotides in length that is complementary to, or hybridizes under moderately stringent or stringent conditions to a sequence selected from the group consisting of SEQ ID NO: 5 to SEQ ID NO: 20, and complements thereof; hybridizing at least one nucleic acid molecule comprising a contiguous sequence at least 9 nucleotides in length that is complementary to, or hybridizes under moderately stringent or stringent conditions to a sequence selected from the group consisting of SEQ ID NO: 5 to SEQ ID NO: 20, and complements thereof, and extending at least one such hybridized nucleic acid molecule by at least one nucleotide base; and sequencing of the amplificate.

14 14 Additional embodiments provide novel genomic and chemically modified nucleic acid sequences, as well as oligonucleotides and/or PNA-oligomers for analysis of cytosine

methylation patterns within sequences from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 4 .

BRIEF DESCRIPTION OF THE DRAWINGS

DETAILED DESCRIPTION OF THE INVENTION

Definitions:

The term "Observed/Expected Ratio" ("O/E Ratio") refers to the frequency of CpG dinucleotides within a particular DNA sequence, and corresponds to the [number of CpG sites / (number of C bases x number of G bases)] x band length for each fragment.

The term "CpG island" refers to a contiguous region of genomic DNA that satisfies the criteria of (1) having a frequency of CpG dinucleotides corresponding to an "Observed/Expected Ratio" >0.6, and (2) having a "GC Content" >0.5. CpG islands are typically, but not always, between about 0.2 to about 1 kb in length.

The term "methylation state" or "methylation status" refers to the presence or absence of 5-methylcytosine ("5-mCyt") at one or a plurality of CpG dinucleotides within a DNA sequence. Methylation states at one or more particular palindromic CpG methylation sites (each having two CpG CpG dinucleotide sequences) within a DNA sequence include "unmethylated," "fully-methylated" and "hemi-methylated."

The term "hemi-methylation" or "hemimethylation" refers to the methylation state of a palindromic CpG methylation site, where only a single cytosine in one of the two CpG dinucleotide sequences of the palindromic CpG methylation site is methylated (e.g., 5'-CC^MGG-3' (top strand): 3'-GCC-5' (bottom strand)).

The term "hypermethylation" refers to the average methylation state corresponding to an increased presence of 5-mCyt at one or a plurality of CpG dinucleotides within a DNA sequence of a test DNA sample, relative to the amount of 5-mCyt found at corresponding CpG dinucleotides within a normal control DNA sample.

The term "hypomethylation" refers to the average methylation state corresponding to a decreased presence of 5-mCyt at one or a plurality of CpG dinucleotides within a DNA sequence of a

test DNA sample, relative to the amount of 5-mCyt found at corresponding CpG dinucleotides within a normal control DNA sample.

The term "microarray" refers broadly to both "DNA microarrays," and 'DNA chip(s),' as recognized in the art, encompasses all art-recognized solid supports, and encompasses all methods for affixing nucleic acid molecules thereto or synthesis of nucleic acids thereon.

"Genetic parameters" are mutations and polymorphisms of genes and sequences further required for their regulation. To be designated as mutations are, in particular, insertions, deletions, point mutations, inversions and polymorphisms and, particularly preferred, SNPs (single nucleotide polymorphisms). "Epigenetic parameters" are, in particular, cytosine methylations. Further epigenetic parameters include, for example, the acetylation of histones which, however, cannot be directly analyzed using the described method but which, in turn, correlate with the DNA methylation.

The term "bisulfite reagent" refers to a reagent comprising bisulfite, disulfite, hydrogen sulfite or combinations thereof, useful as disclosed herein to distinguish between methylated and unmethylated CpG dinucleotide sequences.

The term "Methylation assay" refers to any assay for determining the methylation state of one or more CpG dinucleotide sequences within a sequence of DNA.

The term "MS-AP-PCR" (Methylation-Sensitive Arbitrarily-Primed Polymerase Chain Reaction) refers to the art-recognized technology that allows for a global scan of the genome using CG-rich primers to focus on the regions most likely to contain CpG dinucleotides, and described by Gonzalgo et al., *Cancer Research* 57:594-599, 1997.

The term "MethyLight™" refers to the art-recognized fluorescence-based real-time PCR technique described by Eads et al., *Cancer Res.* 59:2302-2306, 1999.

The term "HeavyMethyl™" assay, in the embodiment thereof implemented herein, refers to a HeavyMethyl™ refer to the use of methylation specific blocking probes covering CpG positions between the amplification primers.

The term "Ms-SNuPE" (Methylation-sensitive Single Nucleotide Primer Extension) refers to the art-recognized assay described by Gonzalgo & Jones, *Nucleic Acids Res.* 25:2529-2531, 1997.

The term "MSP" (Methylation-specific PCR) refers to the art-recognized methylation assay described by Herman et al. *Proc. Natl. Acad. Sci. USA* 93:9821-9826, 1996, and by US Patent No. 5,786,146.

The term "COBRA" (Combined Bisulfite Restriction Analysis) refers to the art-recognized methylation assay described by Xiong & Laird, *Nucleic Acids Res.* 25:2532-2534, 1997.

The term "MCA" (Methylated CpG Island Amplification) refers to the methylation assay described by Toyota et al., *Cancer Res.* 59:2307-12, 1999, and in WO 00/26401A1.

The term "hybridization" is to be understood as a bond of an oligonucleotide to a complementary sequence along the lines of the Watson-Crick base pairings in the sample DNA, forming a duplex structure.

"Stringent hybridization conditions," as defined herein, involve hybridizing at 68°C in 5x SSC/5x Denhardt's solution/1.0% SDS, and washing in 0.2x SSC/0.1% SDS at room temperature, or involve the art-recognized equivalent thereof (e.g., conditions in which a hybridization is carried out at 60°C in 2.5 x SSC buffer, followed by several washing steps at 37°C in a low buffer concentration, and remains stable). Moderately stringent conditions, as defined herein, involve including washing in 3x SSC at 42°C, or the art-recognized equivalent thereof. The parameters of salt concentration and temperature can be varied to achieve the optimal level of identity between the probe and the target nucleic acid. Guidance regarding such conditions is available in the art, for example, by Sambrook et al., 1989, *Molecular Cloning, A Laboratory Manual*, Cold Spring Harbor Press, N.Y.; and Ausubel et al. (eds.), 1995, *Current Protocols in Molecular Biology*, (John Wiley & Sons, N.Y.) at Unit 2.10.

The terms 'sensitivity' and 'specificity' refer to values calculated with reference to a sample set of male patients with an average age of 65 and a mixed ethnic range including caucasian and african american.

Overview:

The present invention provides for molecular genetic markers that have novel utility for the analysis of methylation patterns associated with the development of prostate cell proliferative disorders with a sensitivity of greater than 30% and a specificity of greater than 65%. Said markers may be used for detecting or distinguishing between prostate cell proliferative disorders, thereby providing improved means for the classification and treatment of said disorders. The markers according to the present invention are analysed in the form of a 'panel' wherein the methylation of one or more genetic sequences of the genes

Bisulfite modification of DNA is an art-recognized tool used to assess CpG methylation status. 5-methylcytosine is the most frequent covalent base modification in the DNA of eukaryotic cells. It plays a role, for example, in the regulation of the transcription, in genetic imprinting, and in tumorigenesis. Therefore, the identification of 5-methylcytosine as a component of genetic information is of considerable interest. However, 5-methylcytosine positions cannot be identified by sequencing, because 5-methylcytosine has the same base pairing behavior as cytosine. Moreover, the epigenetic information carried by 5-methylcytosine is completely lost during, e.g., PCR amplification.

The most frequently used method for analyzing DNA for the presence of 5-methylcytosine is based upon the specific reaction of bisulfite with cytosine whereby, upon subsequent alkaline hydrolysis, cytosine is converted to uracil which corresponds to thymine in its base pairing behavior. Significantly, however, 5-methylcytosine remains unmodified under these conditions. Consequently, the original DNA is converted in such a manner that methylcytosine, which originally could not be distinguished from cytosine by its hybridization behavior, can now be detected as the only remaining cytosine using standard, art-recognized molecular biological techniques, for example, by amplification and hybridization, or by sequencing. All of these techniques are based on differential base pairing properties, which can now be fully exploited.

The prior art, in terms of sensitivity, is defined by a method comprising enclosing the DNA to be analyzed in an agarose matrix, thereby preventing the diffusion and renaturation of the DNA (bisulfite only reacts with single-stranded DNA), and replacing all precipitation and purification steps with fast dialysis (Olek A, et al., A modified and improved method for bisulfite based cytosine methylation analysis, *Nucleic Acids Res.* 24:5064-6, 1996). It is thus possible to analyze individual cells for methylation status, illustrating the utility and sensitivity of the method. An overview of art-recognized methods for detecting 5-methylcytosine is provided by Rein, T., et al., *Nucleic Acids Res.*, 26:2255, 1998.

The bisulfite technique, barring few exceptions (e.g., Zeschnigk M, et al., *Eur J Hum Genet.* 5:94-98, 1997), is currently only used in research. In all instances, short, specific fragments of a known gene are amplified subsequent to a bisulfite treatment, and either completely sequenced (Olek & Walter, *Nat Genet.* 1997 17:275-6, 1997), subjected to one or more primer extension reactions (Gonzalgo & Jones, *Nucleic Acids Res.*, 25:2529-31, 1997; WO 95/00669; U.S. Patent No. 6,251,594) to analyze individual cytosine positions, or treated by enzymatic digestion (Xiong & Laird, *Nucleic Acids Res.*, 25:2532-4, 1997). Detection by hybridization has also been described in the art (Olek et al., WO 99/28498). Additionally, use of the bisulfite technique for methylation detection with respect to individual genes has been described (Grigg & Clark, *Bioessays*, 16:431-6, 1994; Zeschnigk M, et al., *Hum Mol Genet.*, 6:387-95, 1997; Feil R, et al., *Nucleic Acids Res.*, 22:695-, 1994; Martin V, et al., *Gene*, 157:261-4, 1995; WO 9746705 and WO 9515373).

The present invention provides for the use of the bisulfite technique, in combination with one or more methylation assays, for determination of the methylation status of CpG dinucleotide sequences within sequences from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 4 . According to the present invention, determination of the methylation status of CpG dinucleotide sequences within sequences from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 4 has diagnostic and prognostic utility.

Methylation Assay Procedures. Various methylation assay procedures are known in the art, and can be used in conjunction with the present invention. These assays allow for determination of the methylation state of one or a plurality of CpG dinucleotides (e.g., CpG islands) within a DNA sequence. Such assays involve, among other techniques, DNA sequencing of bisulfite-treated DNA, PCR (for sequence-specific amplification), Southern blot analysis, and use of methylation-sensitive restriction enzymes.

For example, genomic sequencing has been simplified for analysis of DNA methylation patterns and 5-methylcytosine distribution by using bisulfite treatment (Frommer et al., *Proc. Natl. Acad. Sci. USA* 89:1827-1831, 1992). Additionally, restriction enzyme digestion of PCR products amplified from bisulfite-converted DNA is used, e.g., the method described by Sadri & Hornsby (*Nucl. Acids Res.* 24:5058-5059, 1996), or COBRA (Combined Bisulfite Restriction Analysis) (Xiong & Laird, *Nucleic Acids Res.* 25:2532-2534, 1997).

COBRA. COBRA analysis is a quantitative methylation assay useful for determining DNA methylation levels at specific gene loci in small amounts of genomic DNA (Xiong & Laird, *Nucleic Acids Res.* 25:2532-2534, 1997). Briefly, restriction enzyme digestion is used to reveal methylation-dependent sequence differences in PCR products of sodium bisulfite-treated DNA. Methylation-dependent sequence differences are first introduced into the genomic DNA by standard bisulfite treatment according to the procedure described by Frommer et al. (*Proc. Natl. Acad. Sci. USA* 89:1827-1831, 1992). PCR amplification of the bisulfite converted DNA is then performed using primers specific for the interested CpG islands, followed by restriction endonuclease digestion, gel electrophoresis, and detection using specific, labeled hybridization probes. Methylation levels in the original DNA sample are represented by the relative amounts of digested and undigested PCR product in a linearly quantitative fashion across a wide spectrum of DNA methylation levels. In addition, this technique can be reliably applied to DNA obtained from microdissected paraffin-embedded tissue samples. Typical reagents (e.g., as might be found in a typical COBRA-based kit) for COBRA analysis may include, but are not limited to: PCR primers for specific gene

(or methylation-altered DNA sequence or CpG island); restriction enzyme and appropriate buffer; gene-hybridization oligo; control hybridization oligo; kinase labeling kit for oligo probe; and radioactive nucleotides. Additionally, bisulfite conversion reagents may include: DNA denaturation buffer; sulfonation buffer; DNA recovery reagents or kits (e.g., precipitation, ultrafiltration, affinity column); desulfonation buffer; and DNA recovery components.

Preferably, assays such as "MethyLight•" (a fluorescence-based real-time PCR technique) (Eads et al., *Cancer Res.* 59:2302-2306, 1999), Ms-SNuPE (Methylation-sensitive Single Nucleotide Primer Extension) reactions (Gonzalgo & Jones, *Nucleic Acids Res.* 25:2529-2531, 1997), methylation-specific PCR ("MSP"; Herman et al., *Proc. Natl. Acad. Sci. USA* 93:9821-9826, 1996; US Patent No. 5,786,146), and methylated CpG island amplification ("MCA"; Toyota et al., *Cancer Res.* 59:2307-12, 1999) are used alone or in combination with other of these methods.

MethyLight•. The MethyLight• assay is a high-throughput quantitative methylation assay that utilizes fluorescence-based real-time PCR (TaqMan•) technology that requires no further manipulations after the PCR step (Eads et al., *Cancer Res.* 59:2302-2306, 1999). Briefly, the MethyLight• process begins with a mixed sample of genomic DNA that is converted, in a sodium bisulfite reaction, to a mixed pool of methylation-dependent sequence differences according to standard procedures (the bisulfite process converts unmethylated cytosine residues to uracil). Fluorescence-based PCR is then performed either in an "unbiased" (with primers that do not overlap known CpG methylation sites) PCR reaction, or in a "biased" (with PCR primers that overlap known CpG dinucleotides) reaction. Sequence discrimination can occur either at the level of the amplification process or at the level of the fluorescence detection process, or both.

The MethyLight• assay may be used as a quantitative test for methylation patterns in the genomic DNA sample, wherein sequence discrimination occurs at the level of probe hybridization. In this quantitative version, the PCR reaction provides for unbiased amplification in the presence of a fluorescent probe that overlaps a particular putative

methylation site. An unbiased control for the amount of input DNA is provided by a reaction in which neither the primers, nor the probe overlie any CpG dinucleotides. Alternatively, a qualitative test for genomic methylation is achieved by probing of the biased PCR pool with either control oligonucleotides that do not "cover" known methylation sites (a fluorescence-based version of the "MSP" technique), or with oligonucleotides covering potential methylation sites.

The MethyLight® process can be used with a "TaqMan®" probe in the amplification process. For example, double-stranded genomic DNA is treated with sodium bisulfite and subjected to one of two sets of PCR reactions using TaqMan® probes; e.g., with either biased primers and TaqMan® probe, or unbiased primers and TaqMan® probe. The TaqMan® probe is dual-labeled with fluorescent "reporter" and "quencher" molecules, and is designed to be specific for a relatively high GC content region so that it melts out at about 10°C higher temperature in the PCR cycle than the forward or reverse primers. This allows the TaqMan® probe to remain fully hybridized during the PCR annealing/extension step. As the Taq polymerase enzymatically synthesizes a new strand during PCR, it will eventually reach the annealed TaqMan® probe. The Taq polymerase 5' to 3' endonuclease activity will then displace the TaqMan® probe by digesting it to release the fluorescent reporter molecule for quantitative detection of its now unquenched signal using a real-time fluorescent detection system.

Typical reagents (e.g., as might be found in a typical MethyLight®-based kit) for MethyLight® analysis may include, but are not limited to: PCR primers for specific gene (or methylation-altered DNA sequence or CpG island); TaqMan® probes; optimized PCR buffers and deoxynucleotides; and Taq polymerase.

Ms-SNuPE. The Ms-SNuPE technique is a quantitative method for assessing methylation differences at specific CpG sites based on bisulfite treatment of DNA, followed by single-nucleotide primer extension (Gonzalgo & Jones, *Nucleic Acids Res.* 25:2529-2531, 1997). Briefly, genomic DNA is reacted with sodium bisulfite to convert unmethylated cytosine to uracil while leaving 5-methylcytosine unchanged. Amplification of the desired target sequence is then performed using PCR primers

specific for bisulfite-converted DNA, and the resulting product is isolated and used as a template for methylation analysis at the CpG site(s) of interest. Small amounts of DNA can be analyzed (e.g., microdissected pathology sections), and it avoids utilization of restriction enzymes for determining the methylation status at CpG sites.

Typical reagents (e.g., as might be found in a typical Ms-SNuPE-based kit) for Ms-SNuPE analysis may include, but are not limited to: PCR primers for specific gene (or methylation-altered DNA sequence or CpG island); optimized PCR buffers and deoxynucleotides; gel extraction kit; positive control primers; Ms-SNuPE primers for specific gene; reaction buffer (for the Ms-SNuPE reaction); and radioactive nucleotides. Additionally, bisulfite conversion reagents may include: DNA denaturation buffer; sulfonation buffer; DNA recovery regents or kit (e.g., precipitation, ultrafiltration, affinity column); desulfonation buffer; and DNA recovery components.

MSP. MSP (methylation-specific PCR) allows for assessing the methylation status of virtually any group of CpG sites within a CpG island, independent of the use of methylation-sensitive restriction enzymes (Herman et al. *Proc. Natl. Acad. Sci. USA* 93:9821-9826, 1996; US Patent No. 5,786,146). Briefly, DNA is modified by sodium bisulfite converting all unmethylated, but not methylated cytosines to uracil, and subsequently amplified with primers specific for methylated versus unmethylated DNA. MSP requires only small quantities of DNA, is sensitive to 0.1% methylated alleles of a given CpG island locus, and can be performed on DNA extracted from paraffin-embedded samples. Typical reagents (e.g., as might be found in a typical MSP-based kit) for MSP analysis may include, but are not limited to: methylated and unmethylated PCR primers for specific gene (or methylation-altered DNA sequence or CpG island), optimized PCR buffers and deoxynucleotides, and specific probes.

MCA. The MCA technique is a method that can be used to screen for altered methylation patterns in genomic DNA, and to isolate specific sequences associated with these changes (Toyota et al., *Cancer Res.* 59:2307-12, 1999). Briefly, restriction enzymes with different sensitivities to cytosine methylation in their recognition sites are used to digest

genomic DNAs from primary tumors, cell lines, and normal tissues prior to arbitrarily primed PCR amplification. Fragments that show differential methylation are cloned and sequenced after resolving the PCR products on high-resolution polyacrylamide gels. The cloned fragments are then used as probes for Southern analysis to confirm differential methylation of these regions. Typical reagents (e.g., as might be found in a typical MCA-based kit) for MCA analysis may include, but are not limited to: PCR primers for arbitrary priming Genomic DNA; PCR buffers and nucleotides, restriction enzymes and appropriate buffers; gene-hybridization oligos or probes; control hybridization oligos or probes.

HeavyMethyl. The HeavyMethyl techniques is a means for selectively amplifying methylated as opposed to non-methylated DNA (or vice versa). Blocker oligonucleotides specific to either methylated or unmethylated versions of a bisulfite treated target sequence are hybridised to the treated nucleic acids. The sample is then enzymatically amplified, wherein the hybridisation of the blocker oligonucleotides hinders amplification of the nucleic acid strand to which it is bound. Typical reagents (e.g., as might be found in a typical HeavyMethyl-based kit) for HeavyMethyl analysis may include, but are not limited to: methylated or unmethylated blocker oligonucleotides for specific gene (or methylation-altered DNA sequence or CpG island), optimized PCR buffers and deoxynucleotides, and specific probes and primers.

GENOMIC SEQUENCES ACCORDING TO SEQ ID NO: 1 to SEQ ID NO: 4 , AND TREATED VARIANTS THEREOF ACCORDING TO SEQ ID NO: 5 to SEQ ID NO: 20, WERE DETERMINED TO HAVE UTILITY FOR DETECTING OR DISTINGUISHING BETWEEN OR AMONG PROSTATE CELL PROLIFERATIVE DISORDERS. .

The present invention is based upon the analysis of methylation levels within one or more genes taken from the group consisting GSTP1, HISTONE H4, PROSTAGLANDIN E2 RECEPTOR and ORPHAN NUCLEAR RECEPTOR NR5A2 and their regulatory regions and sequences thereof according to Table 5.

Particular embodiments of the present invention provide a novel application of the analysis of methylation levels and/or patterns within said genes and/or sequences that enables a precise detection, characterisation and/or treatment of prostate cell proliferative disorders. Early detection of prostate cell proliferative disorders is directly linked with disease prognosis, and the disclosed method thereby enables the physician and patient to make better and more informed treatment decisions. The methods disclosed according to the invention enable the detection and characterisation of prostate cell proliferative disorders with improved sensitivity and/or specificity of with a sensitivity of greater than 30% and a specificity of greater than 65%.

FURTHER IMPROVEMENTS

The present invention provides novel uses for genomic sequences selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 4 . Additional embodiments provide modified variants of SEQ ID NO: 1 to SEQ ID NO: 4 , as well as oligonucleotides and/or PNA-oligomers for analysis of cytosine methylation patterns within SEQ ID NO: 1 to SEQ ID NO: 4 .

An objective of the invention comprises analysis of the methylation state of one or more CpG dinucleotides within at least one of the genomic sequences selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 4 and sequences complementary thereto.

The disclosed invention provides treated nucleic acids, derived from genomic SEQ ID NO: 1 to SEQ ID NO 4 , wherein the treatment is suitable to convert at least one unmethylated cytosine base of the genomic DNA sequence to uracil or another base that is detectably dissimilar to cytosine in terms of hybridization. The genomic sequences in question may comprise one, or more, consecutive or random methylated CpG positions. Said treatment preferably comprises use of a reagent selected from the group consisting of bisulfite, hydrogen sulfite, disulfite, and combinations thereof . In a preferred embodiment of the invention, the objective comprises analysis of a modified nucleic acid comprising a sequence of at least 16 contiguous nucleotide bases in length of a sequence selected from the group consisting of SEQ ID NO: 5 to SEQ ID NO: 20, wherein said sequence comprises at least one CpG, TpA or CpA

dinucleotide and sequences complementary thereto. The sequences of SEQ ID NO: 5 to SEQ ID NO: 20 provide modified versions of the nucleic acid according to SEQ ID NO: 1 to SEQ ID NO: 4 , wherein the modification of each genomic sequence results in the synthesis of a nucleic acid having a sequence that is unique and distinct from said genomic sequence as follows. For each sense strand genomic DNA, e.g., SEQ ID NO:1, four converted versions are disclosed. A first version wherein "C".."T," but "CpG" remains "CpG" (i.e., corresponds to case where, for the genomic sequence, all "C" residues of CpG dinucleotide sequences are methylated and are thus not converted); a second version discloses the complement of the disclosed genomic DNA sequence (i.e. antisense strand), wherein "C".."T," but "CpG" remains "CpG" (i.e., corresponds to case where, for all "C" residues of CpG dinucleotide sequences are methylated and are thus not converted). The 'upmethylated' converted sequences of SEQ ID NO: 1 to SEQ ID NO: 4 correspond to SEQ ID NO: 5 to SEQ ID NO: 12. A third chemically converted version of each genomic sequences is provided, wherein "C".."T" for all "C" residues, including those of "CpG" dinucleotide sequences (i.e., corresponds to case where, for the genomic sequences, all "C" residues of CpG dinucleotide sequences are unmethylated); a final chemically converted version of each sequence, discloses the complement of the disclosed genomic DNA sequence (i.e. antisense strand), wherein "C".."T" for all "C" residues, including those of "CpG" dinucleotide sequences .(i.e., corresponds to case where, for the complement (antisense strand) of each genomic sequence, all "C" residues of CpG dinucleotide sequences are unmethylated). The 'downmethylated' converted sequences of SEQ ID NO: 1 to SEQ ID NO: 4 correspond to SEQ ID NO: 13 to SEQ ID NO: 20.

120

In an alternative preferred embodiment, such analysis comprises the use of an oligonucleotide or oligomer for detecting the cytosine methylation state within genomic or pretreated (chemically modified) DNA, according to SEQ ID NO: 1 to SEQ ID NO: 20. Said oligonucleotide or oligomer comprising a nucleic acid sequence having a length of at least nine (9) nucleotides which hybridizes, under moderately stringent or stringent conditions (as defined herein above), to a pretreated

nucleic acid sequence according to SEQ ID NO: 5 to SEQ ID NO: 20 and/or sequences complementary thereto, or to a genomic sequence according to SEQ ID NO: 1 to SEQ ID NO: 4 and/or sequences complementary thereto.

Thus, the present invention includes nucleic acid molecules (e.g., oligonucleotides and peptide nucleic acid (PNA) molecules (PNA-oligomers)) that hybridize under moderately stringent and/or stringent hybridization conditions to all or a portion of the sequences SEQ ID NO: 1 to SEQ ID NO: 20, or to the complements thereof. The hybridizing portion of the hybridizing nucleic acids is typically at least 9, 15, 20, 25, 30 or 35 nucleotides in length. However, longer molecules have inventive utility, and are thus within the scope of the present invention.

Preferably, the hybridizing portion of the inventive hybridizing nucleic acids is at least 95%, or at least 98%, or 100% identical to the sequence, or to a portion thereof of SEQ ID NO: 1 to SEQ ID NO: 20, or to the complements thereof.

Hybridizing nucleic acids of the type described herein can be used, for example, as a primer (e.g., a PCR primer), or a diagnostic and/or prognostic probe or primer. Preferably, hybridization of the oligonucleotide probe to a nucleic acid sample is performed under stringent conditions and the probe is 100% identical to the target sequence. Nucleic acid duplex or hybrid stability is expressed as the melting temperature or T_m , which is the temperature at which a probe dissociates from a target DNA. This melting temperature is used to define the required stringency conditions.

For target sequences that are related and substantially identical to the corresponding sequence of SEQ ID NO: 1 to SEQ ID NO: 4 (such as allelic variants and SNPs), rather than identical, it is useful to first establish the lowest temperature at which only homologous hybridization occurs with a particular concentration of salt (e.g., SSC or SSPE). Then, assuming that 1% mismatching results in a 1°C decrease in the T_m , the temperature of the final wash in the hybridization reaction is reduced accordingly (for example, if sequences having > 95% identity with the probe are sought, the final wash

temperature is decreased by 5°C). In practice, the change in Tm can be between 0.5°C and 1.5°C per 1% mismatch.

Examples of inventive oligonucleotides of length X (in nucleotides), as indicated by polynucleotide positions with reference to, e.g., SEQ ID NO:1, include those corresponding to sets (sense and antisense sets) of consecutively overlapping oligonucleotides of length X, where the oligonucleotides within each consecutively overlapping set (corresponding to a given X value) are defined as the finite set of Z oligonucleotides from nucleotide positions:

n to (n + (X-1));

where n=1, 2, 3,...(Y-(X-1));

where Y equals the length (nucleotides or base pairs) of SEQ ID NO:1 (VALUE TO REFLECT LENGTH OF SEQ ID NO:1);

where X equals the common length (in nucleotides) of each oligonucleotide in the set (e.g., X=20 for a set of consecutively overlapping 20-mers); and

where the number (Z) of consecutively overlapping oligomers of length X for a given SEQ ID NO of length Y is equal to Y-(X-1). For example Z= VALUE TO REFLECT LENGTH OF SEQ ID NO:1 -19= VALUE TO REFLECT LENGTH OF SEQ ID NO:1 for either sense or antisense sets of SEQ ID NO:1, where X=20.

Preferably, the set is limited to those oligomers that comprise at least one CpG, TpG or CpA dinucleotide.

Examples of inventive 20-mer oligonucleotides include the following set of VALUE TO REFLECT LENGTH OF SEQ ID NO:1 oligomers (and the antisense set complementary thereto), indicated by polynucleotide positions with reference to SEQ ID NO:1 1-20, 2-21, 3-22, 4-23, 5-24,

Preferably, the set is limited to those oligomers that comprise at least one CpG, TpG or CpA dinucleotide.

The present invention encompasses, for each of SEQ ID NO: 1 to SEQ ID NO: 20 (sense and antisense), multiple consecutively overlapping sets of oligonucleotides or modified oligonucleotides of length X, where, e.g., X= 9, 10, 17, 20, 22, 23, 25, 27, 30 or 35 nucleotides.

The oligonucleotides or oligomers according to the present invention constitute effective tools useful to ascertain

genetic and epigenetic parameters of the genomic sequence corresponding to SEQ ID NO: 1 to SEQ ID NO: 4 . Preferred sets of such oligonucleotides or modified oligonucleotides of length x are those consecutively overlapping sets of oligomers corresponding to SEQ ID NO: 1 to SEQ ID NO: 20 (and to the complements thereof). Preferably, said oligomers comprise at least one CpG, TpG or CpA dinucleotide.

Particularly preferred oligonucleotides or oligomers according to the present invention are those in which the cytosine of the CpG dinucleotide (or of the corresponding converted TpG or CpA dinculeotide) sequences is within the middle third of the oligonucleotide; that is, where the oligonucleotide is, for example, 13 bases in length, the CpG, TpG or CpA dinucleotide is positioned within the fifth to ninth nucleotide from the 5'-end.

The oligonucleotides of the invention can also be modified by chemically linking the oligonucleotide to one or more moieties or conjugates to enhance the activity, stability or detection of the oligonucleotide. Such moieties or conjugates include chromophores, fluorophors, lipids such as cholesterol, cholic acid, thioether, aliphatic chains, phospholipids, polyamines, polyethylene glycol (PEG), palmityl moieties, and others as disclosed in, for example, United States Patent Numbers 5,514,758, 5,565,552, 5,567,810, 5,574,142, 5,585,481, 5,587,371, 5,597,696 and 5,958,773. The probes may also exist in the form of a PNA (peptide nucleic acid) which has particularly preferred pairing properties. Thus, the oligonucleotide may include other appended groups such as peptides, and may include hybridization-triggered cleavage agents (Krol et al., *BioTechniques* 6:958-976, 1988) or intercalating agents (Zon, *Pharm. Res.* 5:539-549, 1988). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a chromophore, fluorophor, peptide, hybridization-triggered cross-linking agent, transport agent, hybridization-triggered cleavage agent, etc.

The oligonucleotide may also comprise at least one art-recognized modified sugar and/or base moiety, or may comprise a modified backbone or non-natural internucleoside linkage.

The oligonucleotides or oligomers according to particular embodiments of the present invention are typically used in

'sets,' which contain at least one oligomer for analysis of each of the CpG dinucleotides of genomic sequence SEQ ID NO: 1 to SEQ ID NO: 4 and sequences complementary thereto, or to the corresponding CpG, TpG or CpA dinucleotide within a sequence of the pretreated nucleic acids according to SEQ ID NO: 5 to SEQ ID NO: 20 and sequences complementary thereto. However, it is anticipated that for economic or other factors it may be preferable to analyze a limited selection of the CpG dinucleotides within said sequences, and the content of the set of oligonucleotides is altered accordingly.

Therefore, in particular embodiments, the present invention provides a set of at least two (2) (oligonucleotides and/or PNA-oligomers) useful for detecting the cytosine methylation state in pretreated genomic DNA (SEQ ID NO: 5 to SEQ ID NO: 20), or in genomic DNA (SEQ ID NO: 1 to SEQ ID NO: 4 and sequences complementary thereto). These probes enable diagnosis, classification and/or therapy of genetic and epigenetic parameters of prostate cell proliferative disorders. The set of oligomers may also be used for detecting single nucleotide polymorphisms (SNPs) in pretreated genomic DNA (SEQ ID NO: 5 to SEQ ID NO: 20), or in genomic DNA (SEQ ID NO: 1 to SEQ ID NO: 4 and sequences complementary thereto).

In preferred embodiments, at least one, and more preferably all members of a set of oligonucleotides is bound to a solid phase.

In further embodiments, the present invention provides a set of at least two (2) oligonucleotides that are used as 'primer' oligonucleotides for amplifying DNA sequences of one of SEQ ID NO: 1 to SEQ ID NO: 20 and sequences complementary thereto, or segments thereof.

It is anticipated that the oligonucleotides may constitute all or part of an "array" or "DNA chip" (i.e., an arrangement of different oligonucleotides and/or PNA-oligomers bound to a solid phase). Such an array of different oligonucleotide-and/or PNA-oligomer sequences can be characterized, for example, in that it is arranged on the solid phase in the form of a rectangular or hexagonal lattice. The solid-phase surface may be composed of silicon, glass, polystyrene, aluminum, steel, iron, copper, nickel, silver, or gold. Nitrocellulose as well as plastics such as nylon, which can exist in the form

of pellets or also as resin matrices, may also be used. An overview of the Prior Art in oligomer array manufacturing can be gathered from a special edition of *Nature Genetics* (*Nature Genetics Supplement*, Volume 21, January 1999, and from the literature cited therein). Fluorescently labeled probes are often used for the scanning of immobilized DNA arrays. The simple attachment of Cy3 and Cy5 dyes to the 5'-OH of the specific probe are particularly suitable for fluorescence labels. The detection of the fluorescence of the hybridized probes may be carried out, for example, via a confocal microscope. Cy3 and Cy5 dyes, besides many others, are commercially available.

It is particularly preferred that the oligomers according to the invention are utilised for at least one of: detection of; detection and differentiation between or among subclasses of; diagnosis of; prognosis of; treatment of; monitoring of; and treatment and monitoring of prostate cell proliferative disorders. This is enabled by use of said sets for the detection or detection and differentiation of prostate cell proliferative disorders.

The present invention further provides a method for ascertaining genetic and/or epigenetic parameters of the genes GSTP1, HISTONE H4, PROSTAGLANDIN E2 RECEPTOR and ORPHAN NUCLEAR RECEPTOR NR5A2 and their regulatory regions including genomic sequences according to SEQ ID NO: 1 to SEQ ID NO: 4 within a subject by analyzing cytosine methylation and single nucleotide polymorphisms. Said method comprising contacting a nucleic acid comprising one or more of the genes GSTP1, HISTONE H4, PROSTAGLANDIN E2 RECEPTOR and ORPHAN NUCLEAR RECEPTOR NR5A2 and their regulatory regions including genomic sequences according to SEQ ID NO: 1 to SEQ ID NO: 4 in a biological sample obtained from said subject with at least one reagent or a series of reagents, wherein said reagent or series of reagents, distinguishes between methylated and non-methylated CpG dinucleotides within the target nucleic acid. Preferably, said method comprises the following steps: In the first step, a sample of the tissue to be analysed is obtained. The source may be any suitable source, such as cell lines, histological slides, biopsies, tissue embedded in paraffin,

bodily fluids, ejaculate, urine, blood and all possible combinations thereof. The DNA is then isolated from the sample. Extraction may be by means that are standard to one skilled in the art, including the use of commercially available kits, detergent lysates, sonification and vortexing with glass beads. Once the nucleic acids have been extracted, the genomic double stranded DNA is used in the analysis.

In the second step of the method, the genomic DNA sample is treated in such a manner that cytosine bases which are unmethylated at the 5'-position are converted to uracil, thymine, or another base which is dissimilar to cytosine in terms of hybridization behavior. This will be understood as 'pretreatment' herein.

The above described treatment of genomic DNA is preferably carried out with bisulfite (hydrogen sulfite, disulfite) and subsequent alkaline hydrolysis which results in a conversion of non-methylated cytosine nucleobases to uracil or to another base which is dissimilar to cytosine in terms of base pairing behavior.

In the third step of the method, fragments of the pretreated DNA are amplified, using sets of primer oligonucleotides according to the present invention, and an amplification enzyme. The amplification of several DNA segments can be carried out simultaneously in one and the same reaction vessel. Typically, the amplification is carried out using a polymerase chain reaction (PCR). The set of primer oligonucleotides includes at least two oligonucleotides whose sequences are each reverse complementary, identical, or hybridize under stringent or highly stringent conditions to an at least 16-base-pair long segment of the base sequences of one or more of SEQ ID NO: 5 to SEQ ID NO: 20 and sequences complementary thereto.

In an alternate embodiment of the method, the methylation status of preselected CpG positions within the nucleic acid sequences comprising one or more of SEQ ID NO: 1 to SEQ ID NO: 4 may be detected by use of methylation-specific primer oligonucleotides. This technique (MSP) has been described in United States Patent No. 6,265,171 to Herman. The use of methylation status specific primers for the amplification of bisulfite treated DNA allows the differentiation between

methylated and unmethylated nucleic acids. MSP primers pairs contain at least one primer which hybridizes to a bisulfite treated CpG dinucleotide. Therefore, the sequence of said primers comprises at least one CpG dinucleotide. MSP primers specific for non-methylated DNA contain a "T" at the 3' position of the C position in the CpG. Preferably, therefore, the base sequence of said primers is required to comprise a sequence having a length of at least 9 nucleotides which hybridizes to a pretreated nucleic acid sequence according to one of SEQ ID NO: 5 to SEQ ID NO: 20 and sequences complementary thereto, wherein the base sequence of said oligomers comprises at least one CpG dinucleotide.

A further preferred embodiment of the method comprises the use of blocker oligonucleotides. The use of such blocker oligonucleotides has been described by Yu et al., *BioTechniques* 23:714-720, 1997. Blocking probe oligonucleotides are hybridized to the bisulfite treated nucleic acid concurrently with the PCR primers. PCR amplification of the nucleic acid is terminated at the 5' position of the blocking probe, such that amplification of a nucleic acid is suppressed where the complementary sequence to the blocking probe is present. The probes may be designed to hybridize to the bisulfite treated nucleic acid in a methylation status specific manner. For example, for detection of methylated nucleic acids within a population of unmethylated nucleic acids, suppression of the amplification of nucleic acids which are unmethylated at the position in question would be carried out by the use of blocking probes comprising a 'CpA' or 'TpA' at the position in question, as opposed to a 'CpG' if the suppression of amplification of methylated nucleic acids is desired.

For PCR methods using blocker oligonucleotides, efficient disruption of polymerase-mediated amplification requires that blocker oligonucleotides not be elongated by the polymerase. Preferably, this is achieved through the use of blockers that are 3'-deoxyoligonucleotides, or oligonucleotides derivitized at the 3' position with other than a "free" hydroxyl group. For example, 3'-O-acetyl oligonucleotides are representative of a preferred class of blocker molecule.

Additionally, polymerase-mediated decomposition of the blocker oligonucleotides should be precluded. Preferably, such

preclusion comprises either use of a polymerase lacking 5'-3' exonuclease activity, or use of modified blocker oligonucleotides having, for example, thioate bridges at the 5'-terminii thereof that render the blocker molecule nuclease-resistant. Particular applications may not require such 5' modifications of the blocker. For example, if the blocker- and primer-binding sites overlap, thereby precluding binding of the primer (e.g., with excess blocker), degradation of the blocker oligonucleotide will be substantially precluded. This is because the polymerase will not extend the primer toward, and through (in the 5'-3' direction) the blocker—a process that normally results in degradation of the hybridized blocker oligonucleotide.

A particularly preferred blocker/PCR embodiment, for purposes of the present invention and as implemented herein, comprises the use of peptide nucleic acid (PNA) oligomers as blocking oligonucleotides. Such PNA blocker oligomers are ideally suited, because they are neither decomposed nor extended by the polymerase.

Preferably, therefore, the base sequence of said blocking oligonucleotides is required to comprise a sequence having a length of at least 9 nucleotides which hybridizes to a pretreated nucleic acid sequence according to one of SEQ ID NO: 5 to SEQ ID NO: 20 and sequences complementary thereto, wherein the base sequence of said oligonucleotides comprises at least one CpG, TpG or CpA dinucleotide.

The fragments obtained by means of the amplification can carry a directly or indirectly detectable label. Preferred are labels in the form of fluorescence labels, radionuclides, or detachable molecule fragments having a typical mass which can be detected in a mass spectrometer. Where said labels are mass labels, it is preferred that the labeled amplificates have a single positive or negative net charge, allowing for better detectability in the mass spectrometer. The detection may be carried out and visualized by means of, e.g., matrix assisted laser desorption/ionization mass spectrometry (MALDI) or using electron spray mass spectrometry (ESI).

Matrix Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-TOF) is a very efficient development for

the analysis of biomolecules (Karas & Hillenkamp, *Anal Chem.*, 60:2299-301, 1988). An analyte is embedded in a light-absorbing matrix. The matrix is evaporated by a short laser pulse thus transporting the analyte molecule into the vapour phase in an unfragmented manner. The analyte is ionized by collisions with matrix molecules. An applied voltage accelerates the ions into a field-free flight tube. Due to their different masses, the ions are accelerated at different rates. Smaller ions reach the detector sooner than bigger ones. MALDI-TOF spectrometry is well suited to the analysis of peptides and proteins. The analysis of nucleic acids is somewhat more difficult (Gut & Beck, *Current Innovations and Future Trends*, 1:147-57, 1995). The sensitivity with respect to nucleic acid analysis is approximately 100-times less than for peptides, and decreases disproportionately with increasing fragment size. Moreover, for nucleic acids having a multiply negatively charged backbone, the ionization process via the matrix is considerably less efficient. In MALDI-TOF spectrometry, the selection of the matrix plays an eminently important role. For desorption of peptides, several very efficient matrixes have been found which produce a very fine crystallisation. There are now several responsive matrixes for DNA, however, the difference in sensitivity between peptides and nucleic acids has not been reduced. This difference in sensitivity can be reduced, however, by chemically modifying the DNA in such a manner that it becomes more similar to a peptide. For example, phosphorothioate nucleic acids, in which the usual phosphates of the backbone are substituted with thiophosphates, can be converted into a charge-neutral DNA using simple alkylation chemistry (Gut & Beck, *Nucleic Acids Res.* 23: 1367-73, 1995). The coupling of a charge tag to this modified DNA results in an increase in MALDI-TOF sensitivity to the same level as that found for peptides. A further advantage of charge tagging is the increased stability of the analysis against impurities, which makes the detection of unmodified substrates considerably more difficult.

In the fourth step of the method, the amplificates obtained during the third step of the method are analysed in order to ascertain the methylation status of the CpG dinucleotides prior to the treatment.

In embodiments where the amplificates were obtained by means of MSP amplification, the presence or absence of an amplificate is in itself indicative of the methylation state of the CpG positions covered by the primer, according to the base sequences of said primer.

Amplificates obtained by means of both standard and methylation specific PCR may be further analyzed by means of hybridization-based methods such as, but not limited to, array technology and probe based technologies as well as by means of techniques such as sequencing and template directed extension.

In one embodiment of the method, the amplificates synthesised in step three are subsequently hybridized to an array or a set of oligonucleotides and/or PNA probes. In this context, the hybridization takes place in the following manner: the set of probes used during the hybridization is preferably composed of at least 2 oligonucleotides or PNA-oligomers; in the process, the amplificates serve as probes which hybridize to oligonucleotides previously bonded to a solid phase; the non-hybridized fragments are subsequently removed; said oligonucleotides contain at least one base sequence having a length of at least 9 nucleotides which is reverse complementary or identical to a segment of the base sequences specified in the present Sequence Listing; and the segment comprises at least one CpG , TpG or CpA dinucleotide.

In a preferred embodiment, said dinucleotide is present in the central third of the oligomer. For example, wherein the oligomer comprises one CpG dinucleotide, said dinucleotide is preferably the fifth to ninth nucleotide from the 5'-end of a 13-mer. One oligonucleotide exists for the analysis of each CpG dinucleotide within the sequence according to SEQ ID NO: 1 to SEQ ID NO: 4 , and the equivalent positions within SEQ ID NO: 5 to SEQ ID NO: 20. Said oligonucleotides may also be present in the form of peptide nucleic acids. The non-hybridized amplificates are then removed. The hybridized amplificates are then detected. In this context, it is preferred that labels attached to the amplificates are identifiable at each position of the solid phase at which an oligonucleotide sequence is located.

In yet a further embodiment of the method, the genomic methylation status of the CpG positions may be ascertained by

means of oligonucleotide probes that are hybridised to the bisulfite treated DNA concurrently with the PCR amplification primers (wherein said primers may either be methylation specific or standard).

A particularly preferred embodiment of this method is the use of fluorescence-based Real Time Quantitative PCR (Heid et al., *Genome Res.* 6:986-994, 1996; also see United States Patent No. 6,331,393) employing a dual-labeled fluorescent oligonucleotide probe (TaqMan™ PCR, using an ABI Prism 7700 Sequence Detection System, Perkin Elmer Applied Biosystems, Foster City, California). The TaqMan™ PCR reaction employs the use of a nonextendible interrogating oligonucleotide, called a TaqMan™ probe, which, in preferred embodiments, is designed to hybridize to a GpC-rich sequence located between the forward and reverse amplification primers. The TaqMan™ probe further comprises a fluorescent "reporter moiety" and a "quencher moiety" covalently bound to linker moieties (e.g., phosphoramidites) attached to the nucleotides of the TaqMan™ oligonucleotide. For analysis of methylation within nucleic acids subsequent to bisulfite treatment, it is required that the probe be methylation specific, as described in United States Patent No. 6,331,393, (hereby incorporated by reference in its entirety) also known as the MethylLight™ assay. Variations on the TaqMan™ detection methodology that are also suitable for use with the described invention include the use of dual-probe technology (Lightcycler™) or fluorescent amplification primers (Sunrise™ technology). Both these techniques may be adapted in a manner suitable for use with bisulfite treated DNA, and moreover for methylation analysis within CpG dinucleotides.

A further suitable method for the use of probe oligonucleotides for the assessment of methylation by analysis of bisulfite treated nucleic acids In a further preferred embodiment of the method, the fifth step of the method comprises the use of template-directed oligonucleotide extension, such as MS-SNuPE as described by Gonzalgo & Jones, *Nucleic Acids Res.* 25:2529-2531, 1997.

In yet a further embodiment of the method, the fifth step of the method comprises sequencing and subsequent sequence analysis of the amplicate generated in the third step of the

method (Sanger F., et al., Proc Natl Acad Sci USA 74:5463-5467, 1977).

Best mode

In the most preferred embodiment of the method the nucleic acids according to SEQ ID NO: 1 to SEQ ID NO 4 are isolated and treated according to the first three steps of the method outlined above, namely:

- a. obtaining, from a subject, a biological sample having subject genomic DNA;
- b. extracting or otherwise isolating the genomic DNA;
- c. treating the genomic DNA of b), or a fragment thereof, with one or more reagents to convert cytosine bases that are unmethylated in the 5-position thereof to uracil or to another base that is detectably dissimilar to cytosine in terms of hybridization properties;

and wherein the subsequent amplification of d) is carried out in a methylation specific manner, namely by use of methylation specific primers or blocking oligonucleotides, and further wherein the detection of the amplicates is carried out by means of a real-time detection probes, as described above.

Wherein the subsequent amplification of d) is carried out by means of methylation specific primers, as described above, said methylation specific primers comprise a sequence having a length of at least 9 nucleotides which hybridizes to a pretreated nucleic acid sequence according to one of SEQ ID NO: 5 to SEQ ID NO: 20 and sequences complementary thereto, wherein the base sequence of said oligomers comprises at least one CpG dinucleotide. Step e) of the method, namely the detection of the specific amplicates indicative of the methylation status of one or more CpG positions according to SEQ ID NO: 1 to SEQ ID NO 4 is carried out by means of real-time detection methods as described above.

In an alternative most preferred embodiment of the method the subsequent amplification of d) is carried out in the presence of blocking oligonucleotides, as described above. Said blocking oligonucleotides comprising a sequence having a length of at least 9 nucleotides which hybridizes to a pretreated nucleic acid sequence according to one of SEQ ID NO: 5 to SEQ ID NO: 20

and sequences complementary thereto, wherein the base sequence of said oligomers comprises at least one CpG, TpG or CpA dinucleotide. Step e) of the method, namely the detection of the specific amplificates indicative of the methylation status of one or more CpG positions according to SEQ ID NO: 1 to SEQ ID NO 4 is carried out by means of real-time detection methods as described above.

14 14 14

Diagnostic and/or Prognostic Assays for prostate cell proliferative disorders

The present invention enables diagnosis of events which are disadvantageous to patients or individuals in which important genetic and/or epigenetic parameters within one or more of the genes GSTP1, HISTONE H4, PROSTAGLANDIN E2 RECEPTOR and ORPHAN NUCLEAR RECEPTOR NR5A2 and their regulatory regions including genomic sequences according to SEQ ID NO: 1 to SEQ ID NO: 4 may be used as markers. Said parameters obtained by means of the present invention may be compared to another set of genetic and/or epigenetic parameters, the differences serving as the basis for a diagnosis and/or prognosis of events which are disadvantageous to patients or individuals.

Specifically, the present invention provides for diagnostic and/or prognostic cancer assays based on measurement of differential methylation of one or more CpG dinucleotide sequences of the genes GSTP1, HISTONE H4, PROSTAGLANDIN E2 RECEPTOR and ORPHAN NUCLEAR RECEPTOR NR5A2 and their regulatory regions including genomic sequences according to SEQ ID NO: 1 to SEQ ID NO: 4 , or of subregions thereof that comprise such a CpG dinucleotide sequence. Typically, such assays involve obtaining a tissue sample from a test tissue, performing an assay to measure the methylation status of at least one of one or more CpG dinucleotide sequences of the genes GSTP1, HISTONE H4, PROSTAGLANDIN E2 RECEPTOR and ORPHAN NUCLEAR RECEPTOR NR5A2 and their regulatory regions including genomic sequences according to SEQ ID NO: 1 to SEQ ID NO: 4 derived from the tissue sample, relative to a control sample, or a known standard and making a diagnosis or prognosis based thereon.

In particular preferred embodiments, inventive oligomers are used to assess the CpG dinucleotide methylation status, such as those based on SEQ ID NO: 1 to SEQ ID NO: 20, or arrays thereof, as well as in kits based thereon and useful for the diagnosis and/or prognosis of prostate cell proliferative disorders.

Kits

Moreover, an additional aspect of the present invention is a kit comprising, for example: a bisulfite-containing reagent; a set of primer oligonucleotides containing at least two oligonucleotides whose sequences in each case correspond, are complementary, or hybridize under stringent or highly stringent conditions to a 16-base long segment of one or more of the genes GSTP1, HISTONE H4, PROSTAGLANDIN E2 RECEPTOR and ORPHAN NUCLEAR RECEPTOR NR5A2 and their regulatory regions including genomic and/or treated sequences according to SEQ ID NO: 1 to SEQ ID NO: 20; oligonucleotides and/or PNA-oligomers; as well as instructions for carrying out and evaluating the described method. In a further preferred embodiment, said kit may further comprise standard reagents for performing a CpG position-specific methylation analysis, wherein said analysis comprises one or more of the following techniques: MS-SNuPE, MSP, MethylLight™, HeavyMethyl™, COBRA, and nucleic acid sequencing. However, a kit along the lines of the present invention can also contain only part of the aforementioned components.

While the present invention has been described with specificity in accordance with certain of its preferred embodiments, the following example serves only to illustrate the invention and is not intended to limit the invention within the principles and scope of the broadest interpretations and equivalent configurations thereof.

EXAMPLES

The objective of the following study was to analyze the methylation status of prostate cancer markers in different body fluid samples in order to identify the preferred choice of body

fluid (urine or serum) for testing and the preferred marker, markers or combinations of markers. The study was run on matched serum and urine sediment samples from 80 patients with an average age of 65 and representative of a number of racial types (caucasian, african american etc.). In each case, genomic DNA was analyzed using the HeavyMethyl or MSP technique after bisulfite conversion.

Urine Sediment was prepared for analysis and bisulphite treated according to the following:

- 200 ul sediment samples were purified using the Magnapure DNA Isolation Kit 1 with a 100 ul elution volume.
- 5 ul HD6 PCR was carried out on the Magnapure Eluate , in order to determine DNA concentration
- 100 ul of the DNA solution was treated using a proprietary bisulfite treatment technique
- 10 ul C3 bisulfite specific quantitative PCR
- 5 ul Merck sulfite test

Serum was prepared for analysis and bisulphite treated according to the following:

- 1 mL serum samples were purified using the Magnapure DNA Large Volume Total nucleic acid with a 100 ul elution volume.
- 5 ul HD6 PCR on Magnapure Eluate - To determine DNA concentration
- 100 ul of the DNA solution was treated using a proprietary bisulfite treatment technique
- 10 ul C3 bisulfite specific quantitative PCR
- 5 ul Merck sulfite test

Single PCR runs were performed on 10 ul of bisulfite treated DNA per sample for each of the markers as described below.

Heavy Methyl Assay of the GSTP1 gene

In the following analysis the methylation status of the gene GSTP1 was analysed by means of methylation specific amplification using the primers according to Table 1 (below).

The sequence of interest is amplified by means of methylation specific primers and a blocker oligonucleotide in order to minimise the unspecific amplification of non methylated DNA. The amplicate is then detected by means of methylation specific Lightcycler probes.

Table 1: Oligonucleotides for MSP - Lightcycler analysis of GSTP1.

SEQ ID NO:	Sequence	Type
21	gggattattttataagggtt	primer
22	ctctaaacccatcccc	primer
23	cccatccccaaaaacacaaaaccac	blocker
24	CGtCGtCGtAGTtTTCGtt-fluo	probe
25	red640-tAGTGAGTACGGCGGGtt-pho	probe

Reaction conditions:

PCR program

denat at 95°C

95°C 10min

50 cycles:

ramp

denat at 95°C 10 sec (1°C/s)

annealing 56°C 30 sec (1°C/s) detection

extension 72°C 10 sec (1°C/s)

MSP analysis of the gene HISTONE H4.

In the following analysis the methylation status of the gene HISTONE H4 was analysed by means of methylation specific

amplification using the primers according to Table 2 (below).

The sequence of interest is amplified by means of methylation specific primers, the amplificate is then detected by means of methylation specific Taqman probes.

Table 2: Oligonucleotides for MSP - Taqman analysis of HISTONE H4.

SEQ ID NO :	Sequence	Type
26	accgaaaatacgcttcacg	primer
27	gcgttatcgtaaagtattgcgc	primer
28	/56-FAM/cgcgacgaacaaacgccg/3HQ_1/	probe

Reaction Conditions:

PCR program

denat at 95°C

95°C 10min

50 cycles:

ramp

denat at 95°C 10 sec (20°C/s)

annealing 60°C 45 sec (20°C/s) detection

MSP analysis of the gene PROSTAGLANDIN E2 RECEPTOR.

In the following analysis the methylation status of the gene PROSTAGLANDIN E2 RECEPTOR was analysed by means of methylation specific amplification using the primers according to Table 3 (below).

The sequence of interest is amplified by means of methylation specific primers, the amplificate is then detected by means of methylation specific Taqman probes.

Table 3: Oligonucleotides for MSP - Taqman analysis of PROSTAGLANDIN E2 RECEPTOR

SEQ ID NO :	Sequence	Type
29	cgcgctactccgcataca	primer
30	gaggtaatcgaggcggtcg	primer
31	/56-FAM/cgccaaattcatacgccgcacc/3HQ_1/	probe

PCR programdenat at 95°C

95°C 10min

50 cycles: ramp

denat at 95°C 10 sec (20°C/s)

annealing 60°C 45 sec (20°C/s) detection

MSP analysis of the gene ORPHAN NUCLEAR RECEPTOR NR5A2.

In the following analysis the methylation status of the gene ORPHAN NUCLEAR RECEPTOR NR5A2 was analysed by means of methylation specific amplification using the primers according to Table 3 (below).

The sequence of interest is amplified by means of methylation specific primers, the amplicate is then detected by means of methylation specific Taqman probes.

Table 4: Oligonucleotides for MSP - Taqman analysis of ORPHAN NUCLEAR RECEPTOR NR5A2.

SEQ ID NO :	Sequence	Type
32	tttgtggttcgaaaagagac	primer
33	tccccgaactcttcgatcg	primer
34	aactacgcgcaaaccgcga	probe

PCR program**denat at 95°C**

95°C 10min

50 cycles: ramp

denat at 95°C 10 sec (20°C/s)

annealing 60°C 45 sec (20°C/s) detection

Marker Analysis

Results were analyzed qualitatively by scoring amplification as +/- and quantitatively by determining the percentage of methylated DNA as a fraction of total DNA calculated using the C3 bisulfite specific PCR. To measure total methylated DNA, a 100% methylated standard (chemicon SSS1 treated DNA) standard curve was included in each assay.

Results

For each marker a Receiver Operating Characteristic curve (ROC curve) of the assay was determined. A ROC is a plot of the true positive rate against the false positive rate for the different possible cutpoints of a diagnostic test. It shows the tradeoff between sensitivity and specificity depending on the selected cutpoint (any increase in sensitivity will be accompanied by a decrease in specificity). The area under an ROC curve (AUC) is a measure for the accuracy of a diagnostic test (the larger the area the better, optimum is 1, a random test would have a ROC curve lying on the diagonal with an area of 0.5; for reference: J.P. Egan. Signal Detection Theory and ROC Analysis, Academic Press, New York, 1975).

AUC results:**Serum:****Marker: HevMethyl GSTP1**

AUC: 0.51

Marker: MSP HISTONE H4

AUC: 0.59

Marker: MSP PROSTAGLANDIN E2 RECEPTOR

AUC: 0.52

Marker: MSP ORPHAN NUCLEAR RECEPTOR NR5A2

AUC: 0.50

Urine:

Marker: HeavyMethyl GSTP1

AUC: 0.58

Marker: MSP HISTONE H4

AUC: 0.5

Marker: MSP PROSTAGLANDIN E2 RECEPTOR

AUC: 0.49

Marker: MSP ORPHAN NUCLEAR RECEPTOR NR5A2

AUC: 0.56

In order to provide an accurate detection of prostate cancer it is preferred that a combined analysis of multiple markers is carried out (i.e. a gene panel). For analysis of urine based samples the most preferred combination of markers is GSTP1 , PROSTAGLANDIN E2 RECEPTOR & ORPHAN NUCLEAR RECEPTOR NR5A2 with a sensitivity of 0.37 and a specificity of 0.72.

For analysis of serum based samples the most preferred combination of markers is GSTP1 , HISTONE H4 & ORPHAN NUCLEAR RECEPTOR NR5A2 with a sensitivity of 0.35 and a specificity of 0.75.

Table 5: Genes & Sequences according to the invention

Gene Name	Genbank Ref. Seq.	Genomic sequence SEQ ID NO:	Treated sequences (methylated) SEQ ID NO:	Treated sequences (unmethylated) SEQ ID NO:
GSTP1	NM_000852	1	5 & 6	13 & 14
HISTONE H4	NM_003495	2	7 & 8	15 & 16
PROSTAGLANDIN E2 RECEPTOR	NM_000958	3	9 & 10	17 & 18
ORPHAN NUCLEAR RECEPTOR NR5A2	NM_003822	4	11 & 12	19 & 20

10-02-2004

We claim:

1. A method for detecting, or for detecting and distinguishing between or among prostate cell proliferative disorders in a subject with a sensitivity of greater than 30% and a specificity of greater than 65%, said method comprising analysing the methylation pattern of a target nucleic acid comprising one or a combination of sequences taken from the group consisting of SEQ ID Nos: 1-4 by contacting at least one of said target nucleic acids in a biological sample obtained from said subject with at least one reagent, or series of reagents that distinguishes between methylated and non-methylated CpG dinucleotides.
2. The method of claim 1, wherein prostate carcinoma is distinguished from at least one condition selected from the group consisting of prostate adenoma, normal prostate tissue, non-prostate tissues and non-prostate cell proliferative disorders.
3. A method according to claim 1, comprising:
 - obtaining, from a subject, a biological sample having subject genomic DNA;
 - contacting the genomic DNA, or a fragment thereof, with one reagent or a plurality of reagents for distinguishing between methylated and non methylated CpG dinucleotide sequences within at least one target sequence of the genomic DNA, or fragment thereof, wherein the target sequence comprises, or hybridizes under stringent conditions to, at least 16 contiguous nucleotides of a sequence taken from the group consisting of SEQ ID NO: 1 to SEQ ID NO 4 , said contiguous nucleotides comprising at least one CpG dinucleotide sequence; and
 - determining, based at least in part on said distinguishing, the methylation state of at least one target CpG dinucleotide sequence, or an average, or a value reflecting an average methylation state of a plurality of target CpG dinucleotide sequences, whereby detecting, or detecting and distinguishing between or

among prostate cell proliferative disorders with a sensitivity of greater than 30% and a specificity of greater than 65% is, at least in part, afforded.

4. The method of claim 3, wherein distinguishing between methylated and non methylated CpG dinucleotide sequences within the target sequence comprises converting unmethylated cytosine bases within the target sequence to uracil or to another base that is detectably dissimilar to cytosine in terms of hybridization properties.
5. The method of claim 3, wherein distinguishing between methylated and non methylated CpG dinucleotide sequences within the target sequence(s) comprises methylation state-dependent conversion or non-conversion of at least one CpG dinucleotide sequence to the corresponding converted or non-converted dinucleotide sequence within a sequence selected from the group consisting of SEQ ID NO: 5 to SEQ ID NO 20, and contiguous regions thereof corresponding to the target sequence.
6. The method of claim 3, wherein the biological sample is selected from the group consisting of cell lines, histological slides, biopsies, paraffin-embedded tissue, bodily fluids, ejaculate, urine, blood, and combinations thereof.
7. The method of claim 3, wherein distinguishing between methylated and non methylated CpG dinucleotide sequences within the target sequence comprises use of at least one nucleic acid molecule or peptide nucleic acid (PNA) molecule comprising, in each case a contiguous sequence at least 9 nucleotides in length that is complementary to, or hybridizes under moderately stringent or stringent conditions to a sequence selected from the group consisting of SEQ ID NO: 5 to SEQ ID NO 20, and complements thereof.
8. The method of claim 7, wherein the contiguous sequence comprises at least one CpG, TpG or CpA dinucleotide sequence.

9. The method of claim 7, comprising use of at least two such nucleic acid molecules, or peptide nucleic acid (PNA) molecules.

10. The method of claim 7, comprising use of at least two such nucleic acid molecules, or peptide nucleic acid (PNA) molecules as primer oligonucleotides for the amplification of a sequences selected from the group consisting of SEQ ID NO: 5 to SEQ ID NO 20, sequences complementary thereto, and regions thereof that comprise, or hybridize under stringent conditions to the primers.

11. The method of claim 9, comprising use of at least four such nucleic acid molecules, or peptide nucleic acid (PNA) molecules.

12. A method for detecting, or detecting and distinguishing between or among prostate cell proliferative disorders in a subject, comprising:

- a. obtaining, from a subject, a biological sample having subject genomic DNA;
- b. extracting or otherwise isolating the genomic DNA;
- c. treating the genomic DNA of b), or a fragment thereof, with one or more reagents to convert cytosine bases that are unmethylated in the 5-position thereof to uracil or to another base that is detectably dissimilar to cytosine in terms of hybridization properties;
- d. contacting the treated genomic DNA, or the treated fragment thereof, with an amplification enzyme and at least two primers comprising, in each case a contiguous sequence of at least 9 nucleotides that is complementary to, or hybridizes under moderately stringent or stringent conditions to a sequence selected from the group consisting of SEQ ID NO: 5 to SEQ ID NO 20, and complements thereof, wherein the treated genomic DNA or the fragment thereof is either amplified to produce at least one amplicon, or is not amplified; and

e) determining, based on a presence or absence of, or on a property of said amplificate, the methylation state of at least one CpG dinucleotide of a sequence selected from the group consisting SEQ ID NO: 1 to SEQ ID NO 4 , or an average, or a value reflecting an average methylation state of a plurality of CpG dinucleotides of a sequence selected from the groups consisting of SEQ ID NO: 1 to SEQ ID NO 4 , whereby at least one of detecting, or detecting and distinguishing between prostate cell proliferative disorders with a sensitivity of greater than 30% and a specificity of greater than 65% is at least in part, afforded.

13. The method of claim 12, wherein treating the genomic DNA, or the fragment thereof in c), comprises use of a reagent selected from the group consisting of bisulfite, hydrogen sulfite, disulfite, and combinations thereof.

14. The method of claim 12, wherein contacting or amplifying in d) comprises use of at least one method selected from the group consisting of: use of a heat-resistant DNA polymerase as the amplification enzyme; use of a polymerase lacking 5'-3' exonuclease activity; use of a polymerase chain reaction (PCR); generation of a amplificate nucleic acid molecule carrying a detectable labels; and combinations thereof.

15. The method of claim 14, wherein the detectable amplificate label is selected from the label group consisting of: fluorescent labels; radionuclides or radiolabels; amplificate mass labels detectable in a mass spectrometer; detachable amplificate fragment mass labels detectable in a mass spectrometer; amplificate, and detachable amplificate fragment mass labels having a single-positive or single-negative net charge detectable in a mass spectrometer; and combinations thereof.

16. The method of claim 12, wherein the biological sample obtained from the subject is selected from the group consisting of cell lines, histological slides, biopsies, paraffin-embedded tissue, bodily fluids, ejaculate, urine, blood, and combinations thereof.

17. The method of claim 12, wherein prostate carcinoma is distinguished from at least one condition selected from the group consisting of prostate adenoma, inflammatory prostate tissue, prostate adenomas with grade 2 dysplasia less than 1 cm, prostate adenomas with grade 3 dysplasia equal to or greater than 1 cm in size, normal prostate tissues, non-prostate normal tissue, body fluids, and non-prostate cancer tissue.

18. The method of claim 12, further comprising in step d) the use of at least one nucleic acid molecule or peptide nucleic acid molecule comprising in each case a contiguous sequence at least 9 nucleotides in length that is complementary to, or hybridizes under moderately stringent or stringent conditions to a sequence selected from the group consisting of SEQ ID NO: 5 to SEQ ID NO 20, and complements thereof, wherein said nucleic acid molecule or peptide nucleic acid molecule suppresses amplification of the nucleic acid to which it is hybridized.

19. The method of claim 18, wherein said nucleic acid molecule or peptide nucleic acid molecule is in each case modified at the 5'-end thereof to preclude degradation by an enzyme having 5'-3' exonuclease activity.

20. The method of claim 18, wherein said nucleic acid molecule or peptide nucleic acid molecule is in each case lacking a 3' hydroxyl group.

21. The method of claim 18, wherein the amplification enzyme is a polymerase lacking 5'-3' exonuclease activity.

22. The method of claim 12, wherein determining in e) comprises hybridization of at least one nucleic acid molecule or peptide nucleic acid molecule in each case comprising a contiguous sequence at least 9 nucleotides in length that is complementary to, or hybridizes under moderately stringent or stringent conditions to a sequence selected from the group consisting of SEQ ID NO: 5 to SEQ ID NO: 20, and complements thereof.

23. The method of claim 22, wherein at least one such hybridizing nucleic acid molecule or peptide nucleic acid molecule is bound to a solid phase.

24. The method of claim 22, wherein a plurality of such hybridizing nucleic acid molecules or peptide nucleic acid molecules are bound to a solid phase in the form of a nucleic acid or peptide nucleic acid array selected from the array group consisting of linear or substantially so, hexagonal or substantially so, rectangular or substantially so, and combinations thereof.

25. The method of claim 22, further comprising extending at least one such hybridized nucleic acid molecule by at least one nucleotide base.

26. The method of claim 12, wherein determining in e), comprises sequencing of the amplificate.

27. The method of claim 12, wherein contacting or amplifying in d), comprises use of methylation-specific primers.

28. The method of claim 12 comprising in d) using primer oligonucleotides comprising one or more CpG; TpG or CpA dinucleotides; and further comprising in e) the use of at least one method selected from the group consisting of: hybridizing in at least one nucleic acid molecule or peptide nucleic acid molecule comprising a contiguous sequence at least 9 nucleotides in length that

is complementary to, or hybridizes under moderately stringent or stringent conditions to a sequence selected from the group consisting of SEQ ID NO: 5 to SEQ ID NO 20, and complements thereof; hybridizing at least one nucleic acid molecule that is bound to a solid phase and comprises a contiguous sequence at least 9 nucleotides in length that is complementary to, or hybridizes under moderately stringent or stringent conditions to a sequence selected from the group consisting of SEQ ID NO: 5 to SEQ ID NO 20, and complements thereof; hybridizing at least one nucleic acid molecule comprising a contiguous sequence at least 9 nucleotides in length that is complementary to, or hybridizes under moderately stringent or stringent conditions to a sequence selected from the group consisting of SEQ ID NO: 5 to SEQ ID NO 20, and complements thereof, and extending at least one such hybridized nucleic acid molecule by at least one nucleotide base; and sequencing-in e) of the amplicate.

29. The method of claim 12 comprising in d) use of at least one nucleic acid molecule or peptide nucleic acid molecule comprising in each case a contiguous sequence at least 9 nucleotides in length that is complementary to, or hybridizes under moderately stringent or stringent conditions to a sequence selected from the group consisting of SEQ ID NO: 5 to SEQ ID NO 20, and complements thereof, wherein said nucleic acid molecule or peptide nucleic acid molecule suppresses amplification of the nucleic acid to which it is hybridized; and further comprising in e) the use of at least one method selected from the group consisting of: hybridizing in at least one nucleic acid molecule or peptide nucleic acid molecule comprising a contiguous sequence at least 9 nucleotides in length that is complementary to, or hybridizes under moderately stringent or stringent conditions to a sequence selected from the group consisting of SEQ ID NO: 5 to SEQ ID NO 20, and complements thereof; hybridizing at least one nucleic acid molecule that is bound to a solid phase and comprises a contiguous sequence at least 9 nucleotides in length that is complementary to, or hybridizes under

moderately stringent or stringent conditions to a sequence selected from the group consisting of SEQ ID NO: 5 to SEQ ID NO 20, and complements thereof; hybridizing at least one nucleic acid molecule comprising a contiguous sequence at least 9 nucleotides in length that is complementary to, or hybridizes under moderately stringent or stringent conditions to a sequence selected from the group consisting of SEQ ID NO: 5 to SEQ ID NO 20, and complements thereof, and extending at least one such hybridized nucleic acid molecule by at least one nucleotide base; and sequencing in e) of the amplificate.

30. The method of claim 12, comprising in d) amplification by primer oligonucleotides comprising one or more CpG; TpG or CpA dinucleotides and further comprising in e) hybridizing at least one detectably labeled nucleic acid molecule comprising a contiguous sequence at least 9 nucleotides in length that is complementary to, or hybridizes under moderately stringent or stringent conditions to a sequence selected from the group consisting of SEQ ID NO: 5 to SEQ ID NO 20.

31. The method of claim 12, comprising in d) the use of at least one nucleic acid molecule or peptide nucleic acid molecule comprising in each case a contiguous sequence at least 9 nucleotides in length that is complementary to, or hybridizes under moderately stringent or stringent conditions to a sequence selected from the group consisting of SEQ ID NO: 5 to SEQ ID NO 20, and complements thereof, wherein said nucleic acid molecule or peptide nucleic acid molecule suppresses amplification of the nucleic acid to which it is hybridized, and further comprising in e) hybridizing at least one detectably labeled nucleic acid molecule comprising a contiguous sequence at least 9 nucleotides in length that is complementary to, or hybridizes under moderately stringent or stringent conditions to a sequence selected from the group consisting of SEQ ID NO: 5 to SEQ ID NO 20.

32. 14 14 14 A treated nucleic acid derived from genomic SEQ ID NO: 1 to SEQ ID NO 4 , wherein the treatment is suitable to convert at least one unmethylated cytosine base of the genomic DNA sequence to uracil or another base that is detectably dissimilar to cytosine in terms of hybridization.

33. A nucleic acid, comprising at least 16 contiguous nucleotides of a treated genomic DNA sequence selected from the group consisting of SEQ ID NO: 5 to SEQ ID NO 20, and sequences complementary thereto, wherein the treatment is suitable to convert at least one unmethylated cytosine base of the genomic DNA sequence to uracil or another base that is detectably dissimilar to cytosine in terms of hybridization.

34. The nucleic acid of claims 32 and 33 wherein the contiguous base sequence comprises at least one CpG, TpG or CpA dinucleotide sequence.

35. The nucleic acid of claims 32 and 33 wherein the treatment comprises use of a reagent selected from the group consisting of bisulfite, hydrogen sulfite, disulfite, and combinations thereof .

36. An oligomer, comprising a sequence of at least 9 contiguous nucleotides that is complementary to, or hybridizes under moderately stringent or stringent conditions to a treated genomic DNA sequence selected from the group consisting of SEQ ID NO: 5 to SEQ ID NO 20.

37. The oligomer of Claim 36, comprising at least one CpG , CpA or TpG dinucleotide sequence.

38. An oligomer of claim 37, having a sequence selected from the group consisting of SEQ ID NO: &[IDOLIGOFIRST] to SEQ ID NO &[IDOLIGOLAST].

39. A set of oligomers, comprising at least two oligonucleotides according, in each case, to any one of Claims 37 or 38.

40. Use of a set of oligomers according, in each case, to any one of Claims 36 through 39, as probes for determining at least one of a cytosine methylation state, or a single nucleotide polymorphism (SNP) of a sequence selected from the group consisting of SEQ ID NO: 1 to 4 and sequences complementary thereto.

41.

42. A kit useful for detecting, or for detecting distinguishing between or among prostate cell proliferative disorders of a subject, comprising:

-at least one of a bisulfite reagent, or a methylation-sensitive restriction enzyme; and

-at least one nucleic acid molecule or peptide nucleic acid molecule comprising, in each case a contiguous sequence at least 9 nucleotides that is complementary to, or hybridizes under moderately stringent or stringent conditions to a sequence selected from the group consisting of SEQ ID 5 to SEQ ID NO 20, and complements thereof

43. The kit of claim 42, further comprising standard reagents for performing a methylation assay selected from the group consisting of MS-SNuPE, MSP, MethyLight, HeavyMethyl, COBRA, nucleic acid sequencing, and combinations thereof.

44. The method of any one of claims 1, 12 or 3 comprising use of the kit according to claim 53.

45. Use of a nucleic acid according to claims 32 through 35, an oligomer according to any one of claims 36 through 38, a set of oligonucleotides according to claim 39 and a kit according to claims 43 and 44 for the detection of,

detection and differentiation between or among subclasses
of prostate cell proliferative disorders.

10-02-2004

Abstract

The invention provides methods, nucleic acids and kits for detecting, or for detecting and distinguishing between or among prostate cell proliferative disorders. The invention discloses genomic sequences the methylation patterns of which have utility for the improved detection of and differentiation between said class of disorders, thereby enabling the improved diagnosis and treatment of patients.

10-02-2004

<110> Epigenomics AG

<120> METHODS AND NUCLEIC ACIDS FOR THE ANALYSIS OF CpG DINUCLEOTIDE METHYLATION STATUS ASSOCIATED WITH THE DEVELOPMENT OF PROSTATE CANCER.

<160> 34

<210> 1

<211> 2501

<212> DNA

<213> Homo Sapiens

<400> 1

ttgttgtaca	aatatttca	tcacccaggt	attatgccga	gtacccaata	gttctctttt	60
ctgctcctct	ccttcctccc	atcctgcacc	ctggagtcaa	ccacagtgtc	tgtgtttcc	120
ttgtttgtgt	tataagtct	catcatttag	ctcccactta	caagtggaaa	catccagttat	180
ttggattttct	gttcctgcatt	tagttgtct	aggataatag	cctctagtc	catccatgtt	240
ccccacaaaag	acatgatcta	gttcttttta	atggctgcat	taaatgaagt	tttaaagata	300
caacataaaac	accaacctct	tccccaccac	aaaaatccct	tgtgttaattt	gattacactt	360
aaattaacac	gtttgtttc	atggaaagact	ccttgaccaa	acttgacagt	tgtgttggaaa	420
ggagaagctg	tctgtcatgt	ctaaagccaa	caagagatca	atatctagaa	taaatggaga	480
tctgcaaaatc	aacagaaaatg	aggcagccaa	gccaaagaaa	atagcctaag	gcacagccac	540
taaaaaggAAC	gtgatcatgt	ccttgcagg	gacatgggtg	gagctggaaag	ccgttagcct	600
cagcaaactc	acacaggaac	agaaaaccag	cgagaccgca	tggctcaact	tataagtggg	660
agctgaacaa	tgagaacaca	tggtcacatg	gccccgatca	acacacactg	gtgcctgttg	720
agcgggggtgc	tggggaggga	gagtaccagg	aagaatagct	aagggataact	gggcttaata	780
cctgggtgat	gggatgtatct	gtacagccaa	ccatcatggc	gcacacaccc	atgtacaaaa	840
cctgcacatc	ctctacatgt	accccagaac	ttcaaataaa	agttggacgg	ccaggcgtgg	900
tggctcacgc	ctgtatccc	agcaatttgg	gaagccgagg	cgtgcagatc	acctaaggtc	960
aggagttcga	gaccagcccg	gccaacatgg	tggaaaccccg	tctctactaa	aaataaaaaaa	1020
atcagccaga	tgtggcacgc	acctataatt	ccacctactc	gggaggctga	agcagaattg	1080
cttgaaccccg	agaggcggag	gttgcagtga	gcccggaga	tgcgcact	gcactccagc	1140
ctggggccaca	gcgtgagact	acgtcataaa	ataaaaataaa	ataacacaaa	ataaaaataaa	1200
ataaaaataaa	ataaaaataaa	ataaaaataaa	ataaaaataaa	ataaaaaaat	aaaataaaaat	1260
aaaataaaaat	aaagcaattt	ccttcctct	aagcggcctc	cacccctctc	ccctgccttg	1320
tgaaggcggtt	gtgcaagctc	cgggatcgc	gccccgtttag	ggaattttcc	cccccgatgt	1380
cccgccgcgc	cagttcgtc	cgcacacttc	gctgcgttcc	tcttcctgt	gtctgtttac	1440
tcccttagggc	ccgctgggg	cctggggaaag	aggggaaaggc	ttttccggcc	agctgcgcgg	1500
cgactccggg	gactccaggg	cgccccctcg	cgccgcacgc	ccggggtgca	gccccggccg	1560
gggctggggc	cgccgggaggt	cgccgggacc	ctccagaaga	gccccggcg	ccgtgactca	1620
gcactggggc	ggagcggggc	gggaccaccc	ttataaggct	cgaggccgc	gaggccctcg	1680
ctggagtttgc	gccggccgcag	tcttcgcac	cagttagtac	gcgcggcccg	cgccccgggg	1740
gatggggctc	agagctccca	gcatggggcc	aaccgcagc	atcaggcccc	ggccccggc	1800
agggctccctc	gcccacctcg	agacccggga	cgggggccta	ggggacccag	gacgtccccca	1860
gtgccgttag	cggtttcag	ggggcccgga	gcccctcggg	gagggtatggg	accccgggggg	1920
cgggggagggg	gggcagactg	cgctcaccgc	gccttggcat	cctcccccgg	gctccagcaa	1980
acttttctt	gttcgtcgca	gtgccgcct	acaccgtgtt	ctattttcca	gttcgtggta	2040
ggagcatgtg	tctggcaggg	aaggggaggca	ggggctgggg	ctgcagccca	cagccccctcg	2100
ccccacccgg	gagatccgaa	cccccttatac	cctccgtcg	gtggctttt	ccccggggct	2160
ccttcctgtt	ccccctct	ccccccatgc	ctgtcccccg	ccccagttt	gtgtgaaatc	2220
tccggaggaa	cctttttccc	tgttccctcc	ctgcactctt	gaccctccc	cggttgcgt	2280
cgaggcgagg	tcggcccggt	ccccacatct	cgtacttctc	cctcccccga	ggccgtcg	2340
cgccccctcg	catgtcgctg	gcagatcagg	gccagagctg	gaaggaggag	gtgtgtaccg	2400
tggagacgtg	gcaggaggcc	tcactcaaag	ccttcgtcg	aagtgaccat	gccccggcaa	2460
ggggagggggg	tgtgggcct	tagggggctg	tgactaggat	c		2501

<210> 2

<211> 2501

<212> DNA

<213> Homo Sapiens

<400> 2

tttgc当地atg	gagacatctt	cattattcct	atagtatcat	atgttttaa	agtttgtact	60
cacactttgg	gtgataatg	aaggacaaga	tccttcctta	tccttgcgt	gatgactaca	120
gatgactgg	atgggcttgc	tatgatttt	atctttccct	gtgttctcac	taccgtttta	180
ttaatctcag	ttcttttca	cagggtagca	cagaatttaa	ctagcagaaa	gagatccagc	240
catgtagacc	agagatttg	ctaagtgcacg	gcatgtaaag	atcaggaaagg	aaagtttttt	300
gtttaaataac	caacaggttc	cttcctttaaa	gcaatttatta	ttttcaaat	ctaaccacaca	360

aggtgatagt	atccttaaac	caattaaatc	agaatctcg	gttggataac	ctcaaataatg	420
acttattagc	acttcccatt	aatcaactggt	ccttcaggcc	ttaagttt	cttactagga	480
atctcaactt	taataccatc	ttatcaactt	cagttgtaaa	taagagaaca	ctcaaaggct	540
gaggaattt	cagcggtaaa	gctctgccca	cgttaagttaa	caaaggat	gttagtctt	600
gttgtgatca	ctttgttgc	ctgataagct	acgtatttct	actcaagat	tcaattctc	660
acctttctca	agaattggc	caaaccgt	aaactaaact	tatttacgt	ccactgatta	720
aagggttgt	cataataagt	tcttgcata	ttcagcgtt	ggattcacag	cgcagaaac	780
ctataactgc	ttgactttcc	tccccactac	actgcgaaaa	ttgcccet	aatgttaacta	840
acccttaaac	ctcaacagta	tcgtggccag	gcgtgggtgc	tcactactgt	aataccaaca	900
ttaggcatag	gcgagggat	tgaggccagg	atatcgaaac	tagcctgg	aacacacgga	960
gacccggct	ttggaaaaat	aattagcctt	gcgtgggtgt	gggcgcgagg	ttccggctaa	1020
tcgggaggt	acagtgagcc	atgatgacac	tgcactacag	tctgcgcac	ggccatgtc	1080
agtaagctt	ggagcacctg	aaacaagtt	tgttgggtat	tttatttact	ggagagcgt	1140
tagtactga	tgcctactt	cagcgactag	agacgcac	tccgatagca	gcacaaactc	1200
agcaggcg	aacaatggt	aaagagaaac	tgggcaaaca	agcatcacgg	ctcctcagct	1260
gagaaagtgg	gggcctaaa	aaggccctt	tgttgcata	aggggacgt	caaccaccga	1320
aaccgttag	ggtgcggccc	tggcgttga	gcgcgttagac	cacatccatg	gcgggtaccg	1380
tcttgcgtt	ggcgtgctct	gtataggtca	cggcgtcccg	gatcacf	tccaggaaca	1440
ccttcagcac	cccgcgagtc	tcctcgtaga	tgaggccgga	gatgcgc	acggccgcgc	1500
ggcgagcaag	gcgcggatg	gccggcttgg	tgatgcctg	gatattgtcg	cgcagtactt	1560
tacgggtggc	cttagcgcg	ccttgcctaa	gaccctccc	gccttgcg	cggccagaca	1620
tgacgagcaa	gaggagtctc	acccaaacgt	ttgtgaggac	tctggcctg	ggcagcgcct	1680
ttatacgcaca	gttgcggac	cgaactgaga	acctgaaaga	agtgcgggg	aagtcccgcc	1740
ccgggtgggg	agggaaaatc	taaaggccaa	aaccgaaata	ggggggaaa	aaaagcgagc	1800
ttttgtttc	cgtttctga	attttgtaa	gtgcata	ttttgttacc	acgttatgag	1860
gctttaaaaa	attgttttgc	aacgcagaag	atatacatca	atactgtgg	aaatacaaga	1920
aaggacaaga	aattaagaaa	ctacaatgtt	atcccatc	acaggct	taatcatgt	1980
tttgcagag	cagtgcaca	tattttccaa	agaaaatgt	tacagtgtt	tatatggagt	2040
tttgcacact	ccttatatttgc	attataattt	aaccat	tattaaagag	ataaaagtga	2100
tgttttgggt	tctatgttgc	ttaggaatta	tcaatagtt	taatcagtc	cccagcaatt	2160
tttaatcgg	ctgtat	aaaataatgt	tttccacatt	caacataaa	gtacttttc	2220
tctatacttgc	ggaccaat	tgaaatttat	gatttttata	caccaaatt	taaattttat	2280
tacattaata	tttaaaatttgc	tattagaggt	ctcatgatt	ggtactacgg	gtctccgc	2340
tatccctt	ccaaatttcc	taatctgtt	caccaagtt	tctggacaac	tttagagacc	2400
ttttgtgaag	tttgaataaaa	atctctcga	gattttgata	attgcattag	ctttaggact	2460
taatttggaaat	agaattaaaa	tccttaaac	aagctttat	a		2501

<210> 3
<211> 2251
<212> DNA
<213> Homo Sapiens

<400> 3

ggaccccgag	ccgccccca	gtagccagga	gcggcctc	cggcagccgc	aaactccagt	60
agccgccccgt	gctggccctg	gctggggccg	agggcagcc	gagctggg	ccaaggctcc	120
gcgcacccctg	cgcgcac	ctcacac	aacgcgttcc	tccgcagac	gagaccggc	180
ggcactgcaaa	agctgggact	cgttttgc	ggaaaaaaaa	tagcgat	aaatccagc	240
accattcttc	actgacccat	cccgcgtc	ctcttgc	ccaagttt	gaaagctggc	300
aactctgacc	tcgggtgttca	aaaatcgaca	gccactgaga	ccggcttgc	gaagccgaag	360
atttggcagt	ttccagactg	agcaggacaa	ggtggaaagca	ggtggaggc	gggtccagga	420
catctgagg	ctgaccctgg	gggtctcg	ggctccacc	gctgtcc	ctacaggt	480
gatggcg	ggctgacgtt	ggggtcaac	ggtagagaac	gcaggatgc	ggccctcgcc	540
gaagagagac	aagaaggaa	gagcgcgtc	tccaaattgc	ttttgtat	tgtttcagt	600
gagcatttgc	ttgattcaga	atctatcg	aatagacta	gctact	ttttccctg	660
gatgggtt	attcatcttgc	gcaatgg	gatgtggatt	gtggggag	agaggaatgg	720
aaaaatcgt	ttataaataat	taatgtc	aagagtgt	tgttggc	aggacgtatc	780
acgcctggaga	ttttgtggc	cgcagtttgc	aatggctac	aatccagaa	gtaggatcg	840
gttgcctccc	ttgttcttac	agtgtatcg	ttctcg	cggtctaa	accttacaag	900
tggtaatttgc	cgctcac	agctttgt	ctcttctacc	atccccagac	ccagccttc	960
actccaaggc	tgcgcac	cagccactat	catgtcc	ccgggggtca	attcgcc	1020
ctcccttgc	cccgcac	tgaacagcc	agtgaccatc	ccggcgt	tgttcat	1080
cggggtgg	ggcaac	tggccatcg	gggtctgt	aagtgcgc	aggagcagaa	1140
ggagacgacc	ttctacac	tggatgt	gctggct	accgac	tggcactt	1200
gttgggtg	ccgggtgac	tcgccc	catgaagg	caatggcc	ggggccagcc	1260
gctgtgc	gag	tacagcac	tcatttgc	ctgtcc	ggcc	1320
ctgcgc	cat	agtgtcg	gctac	gcctattt	acagccacta	1380
cgtggaca	cgat	ggcc	cttgc	tatgc	tcac	1440
ttgcgc	cttgc	ccaaat	ctcg	cgttac	ccac	1500
tttcatcg	tgacc	acgtgac	gcac	tactct	tac	1560
tttgc	tcatttgc	tcgccc	cctctg	gtgtt	cgccgc	1620

gctccgcgt	caccggcagt	tcatgcggcg	cacccgcgt	ggcacccgagc	agcaccacgc	1680
ggccgcggcc	gcctcggtt	cctccgggg	ccaccccgt	gcctccccag	ccttcgcgcg	1740
cctcagcgt	tttcggcgc	gcccggatct	ccggccgtc	gccccggccg	agatccagat	1800
gttcatctt	ctcattgcca	cetccctgtt	ggtgcate	tgtccatcc	cgctcggtt	1860
gagtggccgg	ggctggggcc	ctactcgcc	ttttctcgc	atccacccctt	cgcgtccatt	1920
ccccgcgtcc	tgctttccct	ctgagtcctt	ggcagtgaac	gtgtgcctt	tagtcgggg	1980
ctgggattcc	cacactgttt	ctcagagcag	gccccaaacctt	ctttaagtc	ccaaccctaa	2040
cgagatttag	cagggtctt	gccccatacat	cccccaagttt	atgttcccg	aaggctgggt	2100
ttctttctcc	accgagacag	cccttacccc	ttgctgcctt	acactggccg	agtcttccaa	2160
aaaaaacccc	cgccccctct	gttagacgtt	gaggggagcc	tgctgttagt	tgacttagcc	2220
cattcctccg	tactgtgaac	tgtgaactgc	a			2251

<210> 4
<211> 2586
<212> DNA
<213> Homo Sapiens

<400> 4

cccgccgggg	cgcgggagta	gccccgctgg	gcccgtcgag	ccgcgggagt	caagccccct	60
ccccagggtc	aggcataaaa	gtttatggct	cttgaacaat	gccccggaga	ggtttttcca	120
agcaacgtt	aattggccgc	ttctaattaa	ggaaagagag	gcttcagct	ctatggcaac	180
ccaaggcagg	cagttcagg	ctaaagggtac	tttagaataaa	taagatcatt	ctaagaaaatg	240
aatgtctca	ctggacaccc	gaacagggtt	tctgtcattt	gaattgggtt	gtactgtact	300
tcaaccagta	ctcttgtgt	gagggaggcg	accaggctta	ggaaagtcaa	ctacagaaaag	360
aggtgacctc	cggaaaggatt	gtcttagcgc	tattagaata	catgtgacca	caccaaaaagc	420
ccaggcggac	acccgcagcc	agctcggtt	tggacaattt	aacattgctg	gcagaactga	480
agggaaacaag	ttaccccaac	cccatcccc	gtacgcgtt	tgctgagtga	gttgggggtt	540
ggaggacagc	ggttcgttta	ttgccccctt	ttaaaatctt	agatctgaaa	atatggaggt	600
cccattcgtt	ttcccagctc	ttgattgcca	acaaaaaaaaac	aaatcccgct	ggctacattt	660
tctccttatt	ccaaaatagc	aaccctatgg	cttgtattaa	gccccttcaga	agtttatctc	720
atttgcetctg	ggccaggggag	ggaacaatgc	tagaaaaagt	caccgggtct	cttccatctt	780
cgcccccttcc	agggtgcagg	atgtgcgggc	cggcgggcct	gtgatcccg	aacgcttctt	840
gccatccccct	tgcgcgaact	tgaaaggact	gggagggttt	gagagcagag	ttcagggtctg	900
gtgcactctg	cgggtctgag	tggcggcgc	gccccggcgc	tcaggccggg	ggacctgttag	960
tgccttacc	geggagggga	aaatacgtt	ctggaggggcg	tgcgcgttc	gggttgttat	1020
ccgttacc	atcgttcatc	ctgggttctc	cccaaggctt	tagtagggc	tgtgagagtc	1080
cccttagagct	gaagccccgg	aggtgtact	gtgggtctgg	ctgctatgg	aacccgggtt	1140
gtccaaagaaa	gcctttcttc	cgggcacctt	gaattccagt	ttagtgtgg	gcatacgggga	1200
agtggcgtt	ggggcttggg	ttgggggacc	tcagccggca	gctccggaga	ggcccttaccc	1260
ttggggtctc	tgggtgaggt	cggcacgtt	cttggcttca	aaaggaaagt	ttctgcttct	1320
tgttctggcg	cgagaagcca	aagacttatt	ttgagagcgg	agagagaaat	tttattggta	1380
acgttttctt	tggaaagttt	gagaggggtt	ttctggacac	actacctagt	gcccccaaac	1440
cagagaagta	gtttttcttt	gggtgccttgg	ctcagaagtc	gccactcact	cagcccatgg	1500
ttcgaatata	gcatggaaag	cggcggggca	aggcttcgtt	ggagactaga	ggctgcctt	1560
tcgggaggag	ccccctgggg	atggggaccc	catttcctt	cttgctctgg	ttcccacctt	1620
ggacgcctcc	gttaggagccc	agaaagacga	tccactacat	gttcccggtt	cagagcagcg	1680
cgcccaactt	tgagggact	ttgtgcgtt	ctctgaggcc	ctagcttcc	aaggcaccgc	1740
cgtccgttct	tctttccata	gaccgaaact	ggggaaagat	gtgggcgtt	cttgcggccg	1800
atgagttctc	ctccccaaac	gcctacttgc	gtgtcaccag	agcatctgg	aaactctgaa	1860
aggtggcccg	gcctcacaca	gcagcgctt	cctactcagg	ctctgtcttt	gggttttttc	1920
aagagagtct	ctacctcatg	cctcggttt	tcttcgtatgt	cgggtcccc	aggtaggcac	1980
ggagtccctt	tgaaagcgt	tgcctatctt	tgcccccttt	gtgtaaagt	agatttact	2040
ttgttgggg	aaggggaggt	agaaaagatc	acagttggga	aagtgcgtt	ttcgccttgc	2100
tcctaaaaca	tgcctcaaga	ctgtcatcgc	gattgtttagg	agagctatca	acgtctagg	2160
gctataaaagg	aatttctgaa	ccctcgcccc	ttcccaaacc	cccaggttcc	taaaacccta	2220
gtgggggtct	cttggggctt	ggattcaggc	tggcaccgtt	gggaggacat	cgccctagcat	2280
ccctttatta	atatttcacg	aaggcaggtt	cctgccttct	ctggagcctt	tttctcggaa	2340
atgttcccaa	actctggcta	actcactttt	ctgtgagcca	tccttagggct	ctgtggcccg	2400
ggaagagacg	cgtcaactcc	gcgggtctgc	gcccgttctt	tagccgaaa	gtgctgcaag	2460
tgacccccc	gacggccctt	tccgaccgaa	gagctcggtt	accaaagaga	aaaaaaataa	2520
ctttatcttc	aaaagaacaa	gtcatcactg	cggcgatact	gtggcgagg	actttggcg	2580
	tgggtt					2586

<210> 5
<211> 2501
<212> DNA
<213> Artificial Sequence

<220>
<223> chemically treated genomic DNA (Homo sapiens)

<400> 5

tgttgtata	aatatttta	ttattttagt	attatgtcga	gtatthaata	gtttttttt	60
ttgtttttt	ttttttttt	attttgatt	ttggagttaa	ttatagtgtt	tgttgtttt	120
ttgtttgtgt	tataagttt	tattatttag	tttttattta	taagtgagaa	tatttagtat	180
ttggattttt	gtttttgtat	tagtttgcata	aggataatag	tttttagttt	tattatgtt	240
ttataaaag	atatgattta	gttttttttta	atgggtgtat	taaatgaagt	ttaaagata	300
taatataaat	attaattttt	tttttattat	aaaattttt	tgttgaattt	gattatattt	360
aaattaacga	gttttgcattt	atgaaagatt	ttttgataa	atttgcata	tgatgaaata	420
ggagaagttg	tttgcata	ttaaagttaa	taagagatta	atatttagaa	taatggaga	480
tttgcataatt	aatagaaagt	aggttagataa	gttaaagaaa	atagtttaag	gtatagttt	540
taaaaggaac	gtgattatgt	tttttgcagg	gatatgggtg	gagttggaag	tcgttagttt	600
tagtaaattt	atataggaat	agaaaaattag	cgagatcgta	ttgttttatt	tataagtggg	660
agttgaataa	tgagaatata	ttgttatatg	gcggcgatta	atatatattt	gtgtttgtt	720
agcgggggt	ttggggaggga	gagtattagg	aagaatagtt	aagggtatatt	gggttaata	780
tttgggtgat	gggatgattt	gtatagtaaa	ttattatggc	gtatataattt	atgtataaaa	840
tttgcataattt	ttttatattgt	attttagata	tttaataaaa	agttggacgg	ttaggcgtgg	900
ttgtttacgt	ttgtatattt	agatattttgg	gaagtcgagg	cgtgttagatt	attnaaggtt	960
aggagttcga	gattatgtcg	gttaatatgg	tgaatatttcg	tttttattaa	aaatataaaa	1020
attagttaga	tgtgtacgt	atttataattt	ttatttatttc	gggaggttga	agtgtatatt	1080
tttgaattcg	agagggcgag	gttgcgtgt	gtcgtcgaga	tcgcgttatt	gtattttatgt	1140
ttgggttata	gcgtgagatt	acgttataaa	ataaaataaaa	ataatataaa	ataaaataaaa	1200
ataaaataaa	ataaaataaa	ataaaataaa	ataaaataaa	ataaaaaaaat	ataaaataaaaat	1260
aaaataaaa	aaagtaattt	ttttttttt	aagccgtttt	tattttttt	ttttgtttt	1320
tgaagcgggt	gtgttaagttt	cgggatcgta	gcgggtttag	gaaatttttt	ttcgcgtatgt	1380
ttcggcgcgt	tagttcggt	cgtatattt	gttgcgttt	ttttttgtt	gtttgtttat	1440
tttttaggtt	tcgttgggg	tttggaaag	aggaaaaggt	tttttcgtt	agttgcgcgg	1500
cgatttcggg	gattttaggg	cgttttttt	cggtcgacgt	tcgggggttga	gcgtcgctcg	1560
gggttgggg	cgccgggagt	tcgcgggatt	ttttagaaaga	gcgggtcgcc	tcgtgattta	1620
gtattggggc	ggagcggggc	gggattattt	ttataagggtt	cgagggtcgc	gagggtttcg	1680
ttggagttt	gtcgtcgtag	tttcgttat	tagtgcgtac	gcgcggttcg	cgttttcggg	1740
gatgggttt	agagttttt	gtatgggtt	aattcgtagt	attaggttgc	ggttttcggt	1800
agggttttc	gtttatttcg	agattcggg	cggggttttta	ggggatttag	gacgtttta	1860
gtgtcgtag	cggtttttag	ggggttcgg	gcgttccgg	gagggtatgg	atttcgggg	1920
cgggggagggg	gggttagattt	cggttatcgc	gttttggat	ttttttcgg	gttttagtaa	1980
atttttttt	gttcgttgc	gtgtcggtt	atatcggtt	ttatttttt	tttcgaggtt	2040
ggagtatgt	tttggtaggg	aaggggaggta	gggggtgggg	ttgttagttt	tagttttcg	2100
tttatttcga	gagatcgaa	ttttttattt	tttcgtcg	gtgggttttta	tttcgggttt	2160
ttttttgtt	tttcgtttt	ttcgttatgt	tttttttcg	ttttagtgtt	gtgtgaaattt	2220
ttcggaggaa	tttggggat	ttttttttt	ttgtattttt	gattttttt	cgggttgcgt	2280
cgaggcgggg	tcgttgcgt	ttttatattt	cgtatttttt	tttttcgtt	gttcgttgcgt	2340
cggtttgcg	tatgttgcgt	gtagattagg	gttagatgtt	gaaggaggag	gtgtgtatcg	2400
tggagacgtt	gtaggagggt	ttattnaaag	tttttcgtt	aagtgtattt	gttcgggtaa	2460
ggggagggggg	tgtgggtt	taggggtt	tgattaggat			2501

<210> 6

<211> 2501

<212> DNA

<213> Artificial Sequence

<220>

<223> chemically treated genomic DNA (Homo sapiens)

<400> 6

gattttagtt	atagttttt	aagggttagt	atttttttt	tttgcggg	tatggttatt	60
tacgttaggag	gttttagt	agttttttt	ttacgttttt	acgttatta	ttttttttt	120
ttagttttgg	ttttgattt	tttagtagat	gcgttagggtc	gcgttagcggt	ttgcggggag	180
ggagaagttac	gagatgtgg	gatcggtcg	atttcgttt	gtagtaattt	ggggaggggt	240
taggtgtt	ggggggaaat	agggaaatag	ttttttcga	agattttata	taatattttgg	300
gcggggagta	ggtatggcgg	gagaggcggg	gaataggaag	gaggttccggg	gtaaaagttt	360
tacgacggag	ggataagggg	tttcggattt	tttcgggtgg	gcgagggtt	gtgggttgc	420
gttttagttt	ttgtttttt	ttttgttag	atatagttt	ttatttcgaa	ttgggaaaata	480
gattacgggt	tagggcgta	ttgttagcga	taaagaaaag	ttgttggag	ttcggggag	540
gtatgtttaagg	cgcgttgac	gtagttt	ttttttttt	tttttcgggg	tttttttttt	600
tttcggggcg	tttccgggtt	tttgcata	gttaacggta	ttggggacgt	ttttgggttt	660
ttaggttttc	ttttccgggtt	tcgagggtgg	cgagggttt	ttcggggagt	tcgggtttga	720
tgttgcgggt	ttttttttat	tttggagttt	tgatgtttt	tttccggggac	gcgggtcg	780
cgtattttt	ggtggcgaag	attgcggcgg	cgaattttt	gcgaagggtt	cgcgggtttc	840
gagttttata	agggtgggtt	cgtttcggtt	cgttttagt	ttgatgttac	gcgtcggtcg	900

ttttttggaa	gggtttcgcg	gattttcgtc	ggtttttagtt	tcggcggtcg	ttgttatttcg	960
ggcgtcggtc	gtagaggggc	gttttgagt	tttcggagtc	gtcgcgttagt	tggtcgggg	1020
agtttttttt	tttttttag	gttttagcg	gggttttaggg	agtaaataga	tagtaggaag	1080
aggatcgtag	cgaagtgtgc	gtagcgaatt	ggcgcgtcg	gataatcgcc	ggggaaattt	1140
ttaagatcg	ttgcgatttc	ggagttgt	tattcgttt	atagggttagg	ggagaggggt	1200
ggaggtcg	tagagggaaag	gaaattgtt	tattttattt	tattttattt	tattttttta	1260
ttttatTTT	ttttatTTT	ttttatTTT	ttttatTTT	ttttatTTT	ttttgttta	1320
ttttatTTT	ttttatgacg	tagtttacg	tttgtggttt	ggttggagtg	tagtggcg	1380
atttcggcgg	tttattgtaa	ttttcgTTT	tcgggtttaa	gtatTTTGT	tttagtTTTT	1440
cgagtaggtg	gaattatagg	tgcgtgttat	atttgggtga	tttttgtatt	tttagtagag	1500
acggggTTT	attatgtgg	tcgggttgg	ttcgaaattt	tgatTTTGG	tgatTTGTC	1560
gtttcggTTT	tttaaagtgt	tgggattata	ggcgtgagtt	attacgtttg	gtcgTTTaa	1620
ttttatTTT	agttttgggg	tatatgtaga	ggatgtgtag	ttttgtata	tagtgtgtg	1680
cgttatgt	gtttgttga	tagattattt	tatttttag	gtatTTAGT	tagtatttt	1740
tagttatTTT	ttttgttatt	ttttttttt	agtatttgc	ttaataggt	tttagtgtgt	1800
ttgatcgTC	ttatgtgatt	atgtttttt	attgtttat	ttttatttt	aagttagatt	1860
atgcggTTT	gttggTTTT	tgTTTTGT	tgagtttgg	gaggtaacg	gttttttagtt	1920
ttatTTATG	ttttgtaaag	gatatgatta	cgttttttt	agtgggtgt	tttaggtta	1980
ttttttttgg	ttttgttgg	tatTTTTG	tgatttggtag	atTTTTATT	atTTTAGATA	2040
ttgatTTTT	gttggTTTT	gatatgatag	atagTTTTT	ttttttattt	aattgttaag	2100
tttggTTAAG	gagttttttt	tgaaataaaa	ttcgTTTAA	taagtgtat	taaattttat	2160
aagggattt	tgtgggggg	aagaggTTT	tgtttatgtt	gtatTTTAA	aattttattt	2220
aatgttagtt	ttaaaaagaa	tttagattt	ttttttgtgg	gaatTTGGT	ggagtttagag	2280
gttatttt	tttagaaattt	aatgttagaa	tagaaattta	aatattggat	gtttttattt	2340
gttaagtggg	gttaatgtat	gagaattttt	aatataaaa	aggaaataat	agatattgt	2400
gttgatttt	gggtgttagga	tgggagggaa	gagaggatg	aaaaagagaa	ttattggta	2460
ttcggtataa	tatttgggt	atgaaatatt	ttgtataata	a		2501

<210> 7

<211> 2501

<212> DNA

<213> Artificial Sequence

<220>

<223> chemically treated genomic DNA (Homo sapiens)

<400> 7

tttgtaaaatg	gagatatttt	tattttttt	atagtattat	atgtttttaa	agtttgtatt	60
tatattttgg	gtgataaaatg	aaggataaga	ttttttttt	tttttgttag	gatgattata	120
gtatgattgg	atgggTTTGT	tatgattttt	atTTTTTTT	gtgtttttat	tatcgTTTaa	180
ttaatTTT	ttttttttt	tagggtagta	tagaaTTTaa	tttagtagaaa	gagatTTAGT	240
atgttagatt	agagatttt	ttaagtgc	gtatgtaga	attaggaagg	aaagtTTTTT	300
gtttaaatAT	taataggTTT	ttttttttaa	gtatTTTAA	ttttttttaaat	ttaattttata	360
agggtat	atTTTTAAAT	taattttaaatt	agaatttCGG	gttggataat	tttaaatATG	420
atTTTTAGT	atTTTTTTT	aattttttt	tttttttttt	tttaagttta	tttatttagga	480
atTTTTTTT	taatatttt	tttattttt	tttttttttt	taagagaata	tttaaaggTTT	540
gaggaatttt	tagcggtaaa	gtttgttta	cgttaagtaa	taaaggataa	gttagTTTTT	600
gttgtgatta	ttttgttga	ttgataagtt	acgtattttt	atTTAAGGAT	ttaaatttttt	660
atTTTTTTT	agaatttgggt	taaaatcgat	aaattttaaatt	tatTTACGTT	ttattgatta	720
aaggTTGTG	tataataagt	ttttgttagt	tttagtagtt	ggatTTTATAG	cgttagaaaat	780
ttataatttt	ttgatttttt	ttttttattt	atttgcggaaa	ttgtttttta	aatgttaattt	840
atTTTTAAAT	ttaatTTAGT	tcgtgggtag	gcgtgggtgt	tttattttgt	aatattttata	900
tttaggtatag	gcggggggat	tgaggTTAG	atatcgaaat	tagTTGGGA	aatatACGGA	960
gattcggtt	ttggggaaat	aattttttt	gcgtgggtgt	gggcgcgagg	tttgcgttta	1020
tcggggagg	atagtggat	atgtatgtat	tgttatttt	tttgcgcgac	gtttagtttt	1080
agtaatTTT	ggagttttt	aaataaggTT	tgttgggtat	tttatttttt	ggagagcgat	1140
tagtatttt	ttttttttt	tagcgattag	agacgtatgt	ttcgatagta	gtataatttt	1200
agtagggcg	aataaatgtt	aaagagaaat	tggtaaaata	agtattacgg	tttttttagtt	1260
gagaaagtgg	gggtttaaa	agggttttt	tgtttagata	aaggagcgtt	taattatcgaa	1320
aatcgtagag	gggtcggtt	tggcgTTTA	gcgcgttagat	tatTTTATG	gcggTgtatcg	1380
ttttcggtt	ggcggtttt	gtatTTTTA	cgcgTTTcg	gattacgttt	tttaggaata	1440
tttttagtat	ttcgcgtat	ttttcgtaga	tgaggTcgga	gatcgTTTT	acgtcgTCG	1500
ggcgagtaag	gcgtcggtat	gtcggtttgg	tgatTTTTG	gatattgtcg	cgttagtattt	1560
tacggTggcg	tttagcgat	tttttggtaa	gatTTTTTC	ttttttgtcg	cggTTtagata	1620
tgacgagtaa	gaggagTTT	atTTAACGTT	ttgtgaggat	tttggTTGA	ggtagcgTTT	1680
ttataacgata	gttggcggt	cgaattgaga	atttggaaaga	agtcggcggg	aagtTTcgTT	1740
tcggTgggg	agggaaatt	taaaggTTA	aatcgaaata	ggggggaaaaaa	aaaagcgagt	1800
tttttggTTT	cgtgttttga	atTTTGTAAC	gtgtatTTGA	ttttgttatt	acgtttatgag	1860
tttttaaaaaa	attttttttt	aacgtagaag	atatatTTA	atattgtggg	aaatataaga	1920
aaggataaga	aattaagaaa	ttataatgtt	atTTTATTAT	ataggTTAGT	taattatgtta	1980

ttttagtag	tagtttata	tatTTTTA	agaaaatgt	tatagtgg	tataggagt	2040
ttttaattt	tttatattt	attataattt	aattaattt	tattaaagag	ataaaagtga	2100
tgttttgg	ttatgtttt	ttaggaattt	ttaatagtta	taattagtt	tttagtaatt	2160
tttaatcg	ttgtatTTT	aaaataatgt	tttttatattt	taatataaat	gtatTTTT	2220
ttatattt	ggattaatat	tgaattttat	gatttttattt	tattaaattt	taaattttat	2280
tatattaata	tttaaaattt	tattagaggt	tttatgattt	ggtattacgg	gtttcgtat	2340
tatTTTTT	ttaaattttt	taatttgg	tattaagg	tttgataat	tttagagatt	2400
ttttagaag	tttgaataaa	atTTTTcga	gattttgata	attgtattag	ttttaggatt	2460
taatttgg	aatggaaaa	ttttttaaaat	aagttttatt	a		2501

<210> 8
<211> 2501
<212> DNA
<213> Artificial Sequence

<220>
<223> chemically treated genomic DNA (Homo sapiens)

<400> 8

tataagagtt	tgttttaagg	atTTTAATT	tatTTTAAATT	aagtTTTAAAT	gttaatgtaa	60
ttttaaaat	ttcgaagaga	ttttatTTTAA	atTTTAAATT	aggTTTAAAT	agttgtttAG	120
aaatttttgt	gaaatagatt	aggAAATTG	gaaaggAAAT	aatgcggaga	ttcgtat	180
taaatttatg	gatttttaat	ataatTTTAA	atTTTAAATT	aataaaattt	aaatttttgt	240
gtaaaaaat	tataaattt	atatttgggt	ttaatgtat	agaaaaagta	tattatgtt	300
gaatgtggaa	aatattttt	ttaaaatata	gtcgattaaa	aaattgttgg	ggaattgatt	360
ataattattt	ataattttt	agaaatata	atTTTAAAT	attatTTTAA	tttttttaat	420
agaaatttgt	taaattataa	ttaatata	gagttataa	aattttat	ataatattgt	480
atatattttt	ttggaaaaat	atgtgtattt	gtttgtaaa	atataatgatt	aatttagttt	540
tgtatggga	taatattgt	gtttttat	ttttgtttt	ttttgtatt	ttttatagta	600
ttgatgtata	ttttttcg	ttaaaatgt	ttttttaaag	tttataacg	tggtaataaa	660
atattatgt	cgttataaaa	tttagaatac	ggaataaaga	agttcg	ttttttttt	720
ttatTCGGT	ttggTTTTT	agatTTTTT	tttttatcg	ggcgggatt	ttcgtcgat	780
tttttttagg	tttttagttc	ggttcgtt	ttgtcgata	aaggcgtgt	tttaggttag	840
agttttata	aagcggtggg	tgagattttt	tttggtcgtt	atgtttggc	gcggtaaaagg	900
cgggaagggt	tttggtaaaag	gcggcgtt	gcgttatcgt	aaagtattgc	gcgataat	960
tttagggatt	attaatcg	ttattcggcg	ttttgttgcgt	cgcggcgcgc	tgaagcgtat	1020
tttcggTTT	atTTACGAGG	agattcgcgg	gggttgaag	gtgttttgg	agaacgtgat	1080
tcgggacgtc	gtgatttata	tagactgt	taagcgtaa	acggttatcg	ttatggatgt	1140
gttttacgcg	ttaacgcgt	agggtcgat	tttttacgtt	ttcgggtgtt	gagcgttttt	1200
tttattaaat	aaaagttt	ttttaggg	tttattttt	taggtgagga	gtcgtatgt	1260
ttttaggtt	atgtttttt	tattttgt	tcgcgtt	tgagtttgc	ttttatcgg	1320
agtatgcgt	tttagtgcgt	gtaagttagt	attatgtatt	aatcg	tagaaataa	1380
aatatttaat	ataattttgtt	tttagtgcgt	tagatTTTAT	tgatatgggt	cgtcgcgtat	1440
attgtatgt	agtgttatta	ttgtttattt	tagttttcg	attatcgaa	atttcgcgtt	1500
tattattacg	taaggtaat	tatTTTTA	aagatcgggt	tttcgtgtt	tttttaggtt	1560
agtttcgata	ttttggTTT	atTTTTTCG	ttatgttta	atgttgcgt	tatagttagt	1620
agttattacg	tttggttacg	atattgtt	ggttttaggg	ttagttat	ttaaggggta	1680
atTTTCGT	tgtatgtggg	aggaaaggtt	agtatgtata	ggtttttgc	gttgtgaatt	1740
taatttgcgt	atatagttaa	aatttattat	gtaataattt	ttaatttagt	gatcgtaaat	1800
agttttagt	tatcgTTT	ggTTTAAATT	tttgagaaagg	tgagaat	aattttttag	1860
tagaaatacg	tagtttata	gtataataaa	gtgatttata	taaagat	tttattttt	1920
gttatttaac	gtgggttag	ttttatcg	gagaattttt	tagtttgc	gtgtttttt	1980
atttataatt	gaagggtata	agatggat	aaaagtgg	tttttagt	gttaattttaa	2040
aggtttgaag	gatttagt	taatggaaag	tttataaa	ttatatttgc	ggttattttaa	2100
ttcgagatt	tgatTTAATT	ggtttaagga	tattattt	ttgtgggtt	gatttggaaa	2160
ataataattt	ttttaaggaa	ggaattttgtt	ggttatttt	taaaaaattt	ttttttttgt	2220
tttttataat	tcgttattt	gataaaattt	ttgtttat	ggttggattt	ttttttgtt	2280
gttaaaattt	gtgttattt	gtggaaaaga	attgagattt	ataaaacgtt	agtggaaata	2340
tagggaaaga	taaaaaattt	agtaagttt	tttagttat	ttgttagtt	ttttataagg	2400
atagggaaagg	atTTTGT	ttatttttta	ttttaaagtgt	gagtataat	tttaaaaata	2460
tatgatatta	tagaataat	gaagatgtt	ttattttgtt	a		2501

<210> 9
<211> 2251
<212> DNA
<213> Artificial Sequence

<220>
<223> chemically treated genomic DNA (Homo sapiens)

<400> 9

ggatccgag	tcgttttag	gtagtttagga	gcggtttag	cggtagtcgt	aaatttttagt	60
agtcgttcgt	gttggtcgt	gttggggccgg	aggtagtta	gagttggga	ttaaggttc	120
gcgttatttg	cgcgtatagt	tttatatttg	aacgttgtt	ttcgttagac	gagatcgccg	180
ggtattgtaa	agggggatt	cgttttgaa	ggaaaaaaaaa	tagcagtaa	gaaattttagt	240
attatttttt	attgatttat	ttcggtgtat	ttttgtttt	ttaagttttt	gaaagtttgt	300
aattttgatt	tcgggttta	aaaatcgata	gttattgaga	tcgggtttga	gaagtcgaag	360
atttggtagt	tttagatttg	agtaggataa	ggtaaaagta	ggttggaggc	gggttttagga	420
tatggaggg	ttgattttgg	gggttcgtga	ggttgttatac	gttgtgtcg	ttataggtga	480
gatggcgttg	gggtgacgtt	ggggtaaacf	gttagagaac	gtagggatgc	ggttttcgtc	540
gaagagagtt	aagaagggaa	gagcgcgtt	tttaaattgt	ttttgttaatt	tttttttagt	600
gagtattta	ttgatttaga	attatcgag	aatagtatta	gcgagttatt	ttttttttaa	660
gatgggtttt	attattttg	gtaatggagt	gagttggatt	gtggggagga	agagaaatgg	720
aaaaattagt	ttataaataat	taatgttagt	aagagtgtgt	tgttggtagg	acgtatcgcg	780
agtttggaga	tttgggtgg	cgttagttgg	aagtggttat	aatttagaaa	gtaggatcga	840
gttgggtttt	ttgttatttt	agtgtatcgt	tttccgggcg	cgggttttaat	atttataaag	900
tggtaatttt	cgtttacggt	agttttgttt	tttttttttt	attttagat	ttagttttgt	960
attttaaggt	tgcgtatcgt	tagttattat	atgtttattt	ttcgggggtta	attcgttcgt	1020
tttttgagt	ttcgatcggt	tgaatagttt	agtgattatt	tcggcgggtga	tgttattttt	1080
cgggggtgg	ggttaatttgg	tggttatcgt	gggttgggt	aagtccgcgt	aggagtagaa	1140
ggagacgatt	tttatacgt	tggtagtgg	gttgggttgg	atcgattttgt	tgggtatttt	1200
gttggtgagt	tcggtgattta	tcgttacgt	tatgaagggt	taatggttcg	gggggttagtc	1260
gttgtgcgag	tatagtattt	ttatttgtt	tttttttagt	ttgttgcgtt	ttagtattat	1320
ttgcgttatg	agtgtcgagc	gttatttgg	tattaattat	gtttattttt	atagttatta	1380
cgtggataag	cgttggccgg	gttttacgtt	ttttgttagt	tatgcgttta	acgtgtttt	1440
ttgcgcgttg	ttaatatatgg	gtttcggtag	ttcgcgggtt	tagtattttag	atatttggtg	1500
tttatcgat	tgatttattta	acgtgacggc	gtacgtcggt	tatttttata	tgtacgcggg	1560
tttttagttt	ttttttatttt	tcgttatcgt	ttttgtaaac	gtgtttgtgt	gccccgcgtt	1620
gtttcgtatg	tatcggttagt	ttatgcgtcg	tatttcgttt	ggtacgtcgt	agtattacgc	1680
ggtcgcggtc	gtttcgggtt	tttttccggg	ttatttcggtt	gttttttttag	tttgcgcgcg	1740
tttttagcgat	tttcggcgct	gtcggagttt	tcgtcgatc	gccccgcgtc	agatttagat	1800
ggttatttta	tttattgtta	ttttttttgg	gggtttttt	tgtttttattt	cgttcgtgtt	1860
gagtgatcgg	gggtgggggt	ttattcgggt	ttttttttcg	atttattttt	cgcgttttt	1920
tttcgttttt	tgtttttttt	ttgagggttt	ggtagtgaac	gtgtcgtttt	taggtcgggg	1980
ttgggatttt	tatattgttt	tttagagtag	gtttaatttt	ttttaagtt	ttaattttaa	2040
cgagatttag	taggtgtttt	gtttttatat	tttttagttt	atgttttcgg	aagtttgggt	2100
tttttttttt	atcgagatag	tttttatttt	ttgttggttt	atattggtcg	agttttttaa	2160
aaaaattttt	cgtttttttt	gttagacgt	gaggggagtt	tggtgtatg	tgatttagtt	2220
tattttttcg	tattgtgaat	tgtgaattgt	a			2251

<210> 10

<211> 2251

<212> DNA

<213> Artificial Sequence

<220>

<223> chemically treated genomic DNA (*Homo sapiens*)

<400> 10

tgtatgttat	agtttatagt	acggaggaat	gggtaagt	atattatagt	aggtttttt	60
ttacgtttaa	tagagggggc	gggggggttt	tttgaagat	tcggttagt	ttaggtagta	120
aggggttaagg	gtgtttcg	tggagaaaga	aatttaggtt	ttcggaaata	taaattgggg	180
gatgttagggg	taaagtattt	gttaaatttc	gttaggggtt	ggattttaaa	gagggttggg	240
tttgttttga	gaaatagtgt	ggaaattta	gtttcgatt	aaaggcgata	cgttattgt	300
taaggattta	gaggggaaagt	agggagccgg	gaatggacgc	gggaggtgga	tgcagaaaa	360
aggtcagata	gggttttagt	ttcggttatt	tatttcgacgc	ggatggaggt	agatgagtt	420
tattagggg	gttggatatga	gtaaatgtat	tttttgatt	tcggcggtcg	cgatcgccg	480
gaagtttcgg	cggcgtcgaa	agtcttggag	gcccggtaag	gttggggagg	tagcggggg	540
gtttcgggag	gtaatcggagg	cggtcgcgtt	cgcgtggtgt	tgttcgggt	ttagcgaggt	600
gcggcgatg	aattggcggt	gtatgcggag	tagcgcgtcg	tatataagta	cgtttagag	660
gacgggtggcg	agaatgagga	aggagttgaa	gttcgcgtat	atgttaggagt	aggccgcgtg	720
cgtcggtacg	tttgggtttt	agtcatgaa	gtatttaggtt	tttgggtatt	gtatcgccga	780
gttatcgaga	tttatgttgg	gtagcgcgt	aaagagtacg	ttggacgtat	agattgtaaa	840
gagcgtgagg	ttcgtaatc	gtttgtttac	gtatgttgt	tagaaatagg	tatgggttat	900
ggtttaggtag	cgttcgatat	ttatgcgt	gatgtgtt	aggtcggata	ggttgaagaa	960
gagtagaaatg	aagggtgtt	attcgatag	cggttggtt	tcgggttatt	ggttttttat	1020
gtacgtggcg	atggttatcg	ggtttattaa	taaagtgtt	aataggtcgg	tgatagttag	1080
tttatatat	agcgtgtaga	aggtcgttt	tttttgttt	ttgcgcgatt	tgtatagtt	1140
tacgatggtt	attaggtt	ttattatttc	gaagatgaat	attatcgctcg	ggatggttat	1200

tgggttgttt	agtccggtcgg	gtttaaggaa	ggcgacgaa	ttgatttcgg	gagtggat	1260
gatagtgggtt	ggcggtgcgt	agttttggag	tgtaaaggtt	ggtttgggga	tgttagaaga	1320
gagataaagt	tgtcgtagc	gaaaattatt	atttgtaaagg	tgttagatc	gcgttcgaga	1380
aacgatata	tgataagata	aggggagtaa	tccgat	ttttggat	tgtat	1440
tattaattgc	ggttattaaa	attttttagt	tccgat	ttttgttaat	agtat	1500
tgttgatatt	aatatttata	aattgattt	tttattttt	ttttttttta	taattttaatt	1560
tat	tttatttattt	ttaagatgaa	taagatttat	ttaaggaa	aagttagttc	1620
tttcgataga	ttttgaattt	ataaaatgtt	tattaaaat	aagttaaaa	agtaatttgg	1680
agagcgcgtt	ttttttttt	tggtttttt	cggcagggt	cgtat	cgtttttat	1740
tcgttgattt	taacgttagt	ttaacgttt	tttatttta	gcgttagt	cggttgtt	1800
tttacgagg	tttagggta	gttttagat	gtttggatt	cgtttttat	ttgtttttat	1860
tttgggtt	tttagttgga	aattgtttaa	tttcggttt	tttaaagtcg	gttttagtgg	1920
ttgtcgattt	ttggatatcg	aggtaggt	tgttagttt	aaaaatttgc	gaaataaga	1980
ggtgtacgg	gatgggttag	tgaagaatgg	tgtttggattt	tttattcg	atttttttt	2040
ttttaaagac	gagttttagt	ttttagtgc	tcgtcggtt	cgttgcggg	aggatagcgt	2100
tttaggtgtga	gttgcgtc	gttaggtggcg	cggagtttttgc	gttttagtttgc	ttgtttgttt	2160
ttcggttttag	ttacgggttag	tacgggcgtt	tattggagtt	tgcgttgc	gttgaggtcg	2220
tttttggta	tttggggcg	gttcgggggtt	t			2251

<210> 11
<211> 2586
<212> DNA

<213> Artificial Sequence

<220>
<223> chemically treated genomic DNA (Homo sapiens)

<400> 11

tccgcgcggg	cgcgggagta	tttcgttgg	gcgttcgtag	tcgcgggagt	taagttttt	60
ttttaggtgt	aggtaaaaaa	gtttatggtt	tttgaataat	gcggggtaga	gtttttttta	120
agtaacgttt	aattggctgt	tttaattaa	ggaaagagag	gttttttagt	ttatggtaat	180
ttaagtaggg	tagttttagg	ttaaaggat	ttttagaataa	taagattatt	ttaagaaatg	240
gaatgttta	ttggatattc	gaataggttt	tttggattt	gaattgggt	gtattgtatt	300
ttaatttagt	ttttgtgt	gagggaggcg	atttagttt	ggaaagttaa	ttatagaaag	360
aggtgattt	cgaaaggatt	gttttagcgt	tattagaata	tatgtattt	tataaaagt	420
ttaggcggat	attcgtat	agttcggatt	tggataattt	aatattgtt	gtagaattga	480
agggaaataag	ttat	ttttagttt	gtacgcgt	tgttgagtg	gttgggggtg	540
ggaggatagc	gttgcgttta	ttgtttttt	tttaaaaatttgc	agatttggaa	atatggaggt	600
tttattcg	tttttagttt	ttgattgtt	ttttttttttt	aaatttcgtt	gtttatattt	660
ttttttttt	ttaaaatagt	aattttatgg	ttttagttaa	gtttttttaga	agtttatttt	720
atttttttgc	gtttagggag	ggaataatgt	tagggaaatgt	tatcggtt	ttttttttttt	780
cgtttttttt	agggtgtagg	atgtcgggt	cggcgggtt	gtgatttcgg	aacgtttttt	840
gttatttttt	tgcgcgaaat	tgaaaggatt	gggaggttt	gagagtagag	tttaggggtt	900
gtgttatttt	cgggtgttgc	tggcggcgc	gttcggcgt	ttaggtcgg	ggatttgcgt	960
tcgttttattc	qcgaggggga	aaatacgtat	ttggagggcg	tgcgtcgtc	gggttgcgtat	1020
tcgttattttt	atcggtt	ttgggtttt	ttaagtttt	taggtagggt	tgtgagagtt	1080
tttttaggtt	gaagtttgcg	agggtgttt	gtgggttttgc	ttgtttaggg	aattcggtt	1140
gtttaaagaa	gtttttttt	cgggtatttgc	gaattttatgt	ttagtggtt	gtatcgggga	1200
agtggcgttgc	gggggttgggg	ttgggggtt	ttagtcggta	gtttcgagaa	gggttttattt	1260
ttgggggtcgt	ttgggtgaggt	cggtacgtt	tttgggttta	aaaggaatgt	tttggttttt	1320
ttttttggcg	cgagaagttt	aagattttat	ttgagagcg	agagagaaat	tttattggta	1380
acgtttttttt	tggaaagttc	gaggggggtt	ttttggat	atttttagt	ttttttaaat	1440
tagagaagta	gtttttttt	ggtgttttttgc	ttagaaatgt	gttattttat	tagtttatgg	1500
ttcgaaat	gtatggaaag	cgtcggttgc	aggtttcgtc	ggagattttaga	gttttgcgtt	1560
tcggggaggag	ttttttgggg	atggggat	tat	tttgggtt	tttttttttgc	1620
ggacgtttc	gttaggtttt	agaaagacgt	tttattat	gttttcggga	taggttagcgt	1680
cgttttaattt	tgaggaaatt	ttgtcgtt	ttttaggtt	ttagttttt	aaggtatcg	1740
cgttcgtttt	ttttttttt	gatcgaaatt	ggggaaaggt	gtgggcgtt	ttttgtttcg	1800
atgagttcgt	ttttttaaatc	gtttatttgc	gtttaggtt	agtattttgg	aaattttgaa	1860
aggtgttttt	gttttatata	gtagcgttt	ttttaggtt	ttttgtttt	gggttttttt	1920
aagagagttt	tttattttat	tttcggttt	ttttagtgc	cgggttttgc	aggttaggtac	1980
ggagtttttt	tgaagatgt	tttttttttgc	tttttttttgc	gtgtaaatgt	agatgtttt	2040
ttgttggggg	aaagggaggt	agaaaagatt	atagttggaa	agatgcgtt	ttcggtttgt	2100
ttttaaaata	tgttttaaga	ttgttatcgc	gatgtttag	agagtttata	acgttttaggg	2160
gttataaaagg	aattttgtaa	tttccgtt	tttttaatttgc	tttaggtttt	taaaattttta	2220
gtgggggtt	tttgggggttgc	ggattttatgt	tgtatcg	gggaggattt	cgttttagt	2280
ttttttat	atattttacg	aaatgttgc	tttttttttgc	ttggagttt	ttttttcgaa	2340
atgtttttaa	atttttgtt	atttatttttgc	ttgttaggtt	tttttaggtt	ttgtgggttgc	2400
gaaagagacg	cgttaatttgc	gcgggttgc	gcgtat	tagtcgtaa	gttttgcgt	2460
tgat	gacggttttt	ttcgatcgaa	gagttcggga	attaaagaga	aaaaaaataaa	2520

ttttatTTTaaaagaataa gttattattg cggcgatatt gtggcggagg atttggcga
tgggtt 2580
2586

<210> 12
<211> 2586
<212> DNA
<213> Artificial Sequence

<220>
<223> chemically treated genomic DNA (Homo sapiens)

<400> 12

atTTTATCGT taaAGTTTT CGTTATAGTA TCGTCGTAGT GATGATTGT TTTTTGAAA	60
atAAAGTTAT TTTTTTTT TTGGTTTC GAGTTTTCG GTCGGAAGG GTCGTTAGGG	120
GGGTTATTG TAGTATTTG CGGTTAAGGA TTGCGCGTAG ATTCGCGAGG TTGACCGCTT	180
TTTTTCGGG TTATAGAGTT TTAGGATGGT TTATAGGGGA GTGAGTTAGT TAGAGTTGG	240
GAATATTCTG AGAAAAGAGG TTATAGAGAA GGTAGGAGTT TGTTTCTGT AAATATTAAT	300
AAAGGGATGT TAGGCAGGTT TTATTCAGCG GTGTTAGTT GAATTTAGT TTAAAGAGAT	360
TTTATTAGG GTTTAGGAA TTGGGGGTT TGGAAGGGT CGAGGGTTA GAAATTTTT	420
TATAGTTTAA AGACGTTGAT AGTTTTTA ATAATCGCA TGATAGTTT GAGGTATGTT	480
TTAGGAATAA GGCGAAAAGC GTATTTTT AATTGTGATT TTATTTTTTTTTTTTTTT	540
TAATAAAGTA AATTAAATT TTATTTAAAGG GGGGTATAGA TAGGTAATTG TTATTTAGGG	600
GATTTCGTG TTATTCGGG GATTGATAT CGAAGAAAAGA TCAGGATATG AGGTAGAGAT	660
TTTTTGAAA AAATTAAAG ATAGAGGTTG AGTAGGGAGA CGTTGTTGT TGAGGTTGG	720
GTATTTTA GAGTTTTA GATGTTGGT TGTAGTCGAA GTAGGCCTT GGGGAGGCGA	780
ATTTATCGGG GtaaAGAACG GTTTATATT TTATTTAGTT TCAGGTTAGG GAAAGAAAGAA	840
CggacGGCGGG TGTGGAA AGTTAGGGTT TTAGAGAGGC GTATAAAGTT TTATTAAGT	900
TGGGCGCGTT GTTTGTTT GGGATTATGT AGTGGATCGT TTATTTGGGT TTACGGAG	960
GCGTTTCTGGG TGGGAATTAG AGTAAGTAGG AGAATGGGGT TTATTTTTTTTTTTTTTT	1020
TTTCGATAGG TAGTTTTA GTTTTCGACG AAGTTTGTG TCAGCCTTT TTATGTTGAT	1080
TTCGAATTAT GGGTTGAGTG AGTGGCGATT TTGAGTTA GGTATTAAAG AAAAATTATT	1140
TTTTGGTTT GGGGGTATTA GGTAGTGTGT TTAGAAGATT TTATTCGAAT TTATTAAGA	1200
AAACGTTATT AATAATATT TTATTCGT TTAAATAAGA AGTTTTGGT TTATCCTTTT	1260
AGAATAAGAA GTAGAAATT TTATTTGGA GTTAAGAACG GTGTCCGTT TATTTAGCGA	1320
TTTTAAGGGT AGTTTTTTT CGGAGTTGTC GGTTGAGGTT TTAAATTAAAGGTTTTAGC	1380
GTATTTTTT CGATTTTA TATTAATTG GAATTAGGTT GTTCCGAAAG AAAGGTTTTT	1440
TTGGATTAAAT CGGGTTTTA TAGTAGTTAG ATTATAGGT TAGTTTCGG GGTGGTTAGTT	1500
TTAGGGGATT TTATAGTT TATTAGGAGG TTGGGGAGA GTATTTTTTTTTTTTTTTTT	1560
TAACCGGATTA TAATTCTAC GGCCTACGT TTATGTTAC GTATTTTTTTTTTTTTTT	1620
GGGCGATTAT AGGTTTCTG GTTGTAGCT CGGGCGCGT CGTTTATTAA GTATCGTAGA	1680
GTGTATTAGT TTGAATTTT GTTTTAATA TTATTTAGTT TTATTAAGTT CGCGTAAGGG	1740
GATGGTAGGA AGCCTTCGG GATTATAGGT TCGTCGGTC GTATTTTTTG TATTTGGAA	1800
GGGGCGAGGA TGGAAAGAGTA TCGGTGATT TTATTTAGT GTTTTTTTTTTTTTTTTT	1860
GTAAATGAGA TAAATTTTG AAGGGTTAA TATAAGTTAT AGGTTGTTA TTGGGAATG	1920
AGGAGAAAAT GTAGTAGCG GGATTGTTT TTGTTGTTGT AATTAAGAGT TGGAAAACG	1980
AATGGGATT TTATTTTTT AGATTTAGA TTAAAGG GGGTAATAAA CGAACATCGTT	2040
TTTTTTATT TTAAATTAT TTAGTATTAC GCGTATAGGG GATGGGGTTT GGGTAATTG	2100
TTTTTTTAG TTGTTAGT AATGTTGAAT GTTTAAATT CGAGTTGGTT GCGGGTGTTC	2160
TTTGGGTTT TTGGGTGTT TATATGTT TAAATAGCGT TAAGATAATT TTTCGGAGG	2220
TTATTTTTT TTGTAGTTA TTGTTAGA TTGGGTGTT TTATTTATA TAAGAGTATT	2280
GTTGAGATA TAGTATATAA TAATTTAAAT GATAGAGAAT TTGTTGGGT GTTGTAGGAG	2340
ATATTTTATT TTGAGAATG ATTTTTATT TTAAAGGT TTATTTAGTTT AAGTTGTTT	2400
TTTGGGTTG TTATAGAGTT GGAAGTTTT TTGTTTTAA TTAGAAGCAGG TTAATTAGAC	2460
TTGTTGGTGA AAAATTTTG TTCTGTATTG TTAAAGAGTT ATAAATTTT ATGTTGTAT	2520
TTGGGGAGGG GTTTGATT TCAGCGGTG CAGCGTTAG CGGGGTTATT TTGCGTTGCG	2580
CGCGGG 2586	

<210> 13
<211> 2501
<212> DNA
<213> Artificial Sequence

<220>
<223> chemically treated genomic DNA (Homo sapiens)

<400> 13

TGTTGTATA GAATTTTA TTATTTAGT ATTATGTTA GTATTTAATA GTTTTTTTT	60
TTGTTTTTT TTGTTTTTT ATTGTGATT TTGAGTTA TTATGTTGTT TGTTGTTTT	120
TGTTGTGT TATAAGTTT TATTATTAG TTATTTATAA TAAGTGGAGAA TATTAGTAT	180

ttggatttt	gttttgtat	tagttgtta	aggataatag	tttttagttt	tatttatgtt	240
tttataaaag	atatgattt	gttttttta	atgggtgtat	taaatgaagt	tttaaagata	300
taatataaaat	attaatttt	tttttattat	aaaaattttt	tgttgaattt	gattatattt	360
aaattaatga	gttttgtttt	atgaaagatt	ttttggataa	atttgatagt	tgatggaata	420
ggagaagttg	tttgcgtatgt	ttaaagttaa	taagagatta	atatttagaa	taaatggaga	480
tttgcgtaaatt	aatagaaaagt	aggtgtaaa	gttaaagaaa	atgttttaag	gtatagttat	540
taaaaggaaat	gtgattatgt	ttttgttagg	gatatgggt	gagttggaaag	ttgttagttt	600
tagtaaattt	atataggaaat	agaaaattag	tgagattgt	tggtttattt	tataagtggg	660
agttgaataa	tgagaatata	tggttataatg	gtggtgatta	atataatattg	gtgtttgttg	720
agtgggggtgt	tggggaggga	gagtattagg	aagaatagtt	aagggatatt	ggggttaata	780
tttgggtgtat	gggatgattt	gtatagtaaa	ttattatgg	gtatataattt	atgtaaataaa	840
tttgcgtatatt	ttttatgt	attttagaaat	tttaaataaaa	agttggatgg	ttaggtgtgg	900
tggtttatgt	ttgtatttt	agtattttgg	gaaggtgagg	tgtgttagatt	atthaaggtt	960
aggagtttga	gattagttt	gttaatatgg	tgaattttgg	tttttattaa	aaatataaaa	1020
attagttaga	tgtgtatgt	atttataatt	ttatttattt	gggaggttga	agttagaattt	1080
tttgcgtatgt	agaggtggag	gttgcgtatgt	gttgcgtatgt	ttgtgttattt	gtatgttagt	1140
tttgggttata	gtgtgagatt	atgttataaa	ataaaataaa	ataatataaa	ataaaataaa	1200
ataaaataaa	ataaaataaa	ataaaataaa	ataaaataaa	ataaaaaaaat	aaaataaaaat	1260
aaaataaaaat	aaagtaattt	ttttttttt	aagtggttt	tatttttttt	tttgggtttt	1320
tgaagtggtt	gtgtatgtt	tggattgt	gtggttttag	ggaattttt	tttggtatgt	1380
tttgggtgtt	tagttgtt	gttataattt	gttgcgtt	ttttttgtt	gttgcgtt	1440
tttggtaggt	ttgtggggg	tttggggaaag	agggaaaggt	tttttgcgtt	atgtgtgtgg	1500
tgatgtttgg	gatttttaggg	tgttttttgg	tgggtatgt	ttgggtgtt	gtgggtgtt	1560
gggttgggg	tgtgtggagt	ttgtgggatt	ttttagaaaga	gtgggtgtt	ttgtgatttt	1620
gtatgtgggt	ggagtggggt	gggattattt	ttataagggtt	tggagggtgt	gagggttttg	1680
ttggagttt	gttgcgtatgt	tttttgcgtat	tagtgatgt	gtgtgcgtt	tgtttttggg	1740
gtatgttttt	agatgtttt	gtatgtgggtt	aatttgatgt	attaggttt	gtttttgggt	1800
agggtttttt	gtttatttt	agatttggga	tgggggtttt	ggggatttag	gtatgttttta	1860
gtgtgtgtat	ttgtttttt	gggggttttgg	gtgttttggg	gagggtatgg	attttggggg	1920
tggggagggg	gggttagattt	ttttttttgt	gttttgcgtat	tttttttgcgtt	tttttagttaa	1980
attttttttt	ttttgttgcgt	gtgtgtttt	atattgtgtt	ttattttttt	gtttgagggtt	2040
ggagtatgt	tttgcgtatgt	tttttttttt	tttttttttt	ttgttagttt	tagttttttt	2100
tttatttttgcgt	gagatttgcgt	ttttttttttt	tttttttttt	gttgcgtatgt	tttttttttt	2160
ttttttttgt	ttttgtttttt	tttttttttt	tttttttttt	tttttagtgcgt	gtgtgaaattt	2220
tttggaggaa	tttgcgtatgt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	2280
tgaggtggag	tttgcgtatgt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	2340
ttttttttgt	tatgtgttgcgt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	2400
tggagatgt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	2460
tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	2501

<210> 14

<211> 2501

<212> DNA

<213> Artificial Sequence

<220>

<223> chemically treated genomic DNA (Homo sapiens)

<400> 14

gatttttagtt	atagtttttt	aagggttagt	attttttttt	tttgcgtatgt	tatgtttttt	60
tatgttaggg	tttttcgtatgt	agtttttttgcgt	ttatgtttttt	atgggttattt	ttttttttttt	120
ttatgtttttt	ttttgtattt	ttagtagtatgt	gtgttaggtt	gtgttaggtt	tttgcgtatgt	180
ggagaagttatgt	gagatgtggg	gattgggttgcgt	atttttttttgcgt	gttagtaattt	ggggagggggtt	240
taggatgtatgt	ggggagggttgcgt	aggaaatagtttgcgt	gttttttttgcgt	agattttata	taatatttggg	300
gtggggagggttgcgt	gttgcgtatgt	gagaggttgcgt	gaataggtttgcgt	gagggttttttgcgt	gtaaaagtttgcgt	360
tatgtatgttgcgt	ggataagggttgcgt	gttttttttgcgt	tttttttttgcgt	gtgagggttgcgt	gtgggttgcgt	420
tttttagtttgcgt	tttttttttgcgt	tttttttttgcgt	tttttttttgcgt	ttattttgcgt	ttggggaaata	480
gattatgtttgcgt	tttttttttgcgt	tttgcgtatgt	taaaagaaaatgt	tttgcgtatgt	tttgcgtatgt	540
gatgtttaagg	tgtgttgcgt	gtatgttttttgcgt	tttttttttgcgt	tttttttttgcgt	tttgcgtatgt	600
ttttgagggttgcgt	tttttttttgcgt	tttgcgtatgt	tttgcgtatgt	tttgcgtatgt	tttgcgtatgt	660
ttaggttttttgcgt	tttttttttgcgt	tttgcgtatgt	tttgcgtatgt	tttgcgtatgt	tttgcgtatgt	720
tgtgttgcgt	tttttttttgcgt	tttgcgtatgt	tttgcgtatgt	tttgcgtatgt	tttgcgtatgt	780
tgttatttttgcgt	tttttttttgcgt	tttgcgtatgt	tttgcgtatgt	tttgcgtatgt	tttgcgtatgt	840
gagttttata	agggtgggttgcgt	tttttttttgcgt	tttgcgtatgt	tttgcgtatgt	tttgcgtatgt	900
tttttttttgcgt	gggttttttgcgt	tttttttttgcgt	tttgcgtatgt	tttgcgtatgt	tttgcgtatgt	960
gggttttttgcgt	gttaggggttgcgt	gttttttttgcgt	tttgcgtatgt	tttgcgtatgt	tttgcgtatgt	1020
agtttttttgcgt	tttttttttgcgt	tttgcgtatgt	tttgcgtatgt	tttgcgtatgt	tttgcgtatgt	1080
aggattgtatgt	tgaagttgtatgt	tttgcgtatgt	tttgcgtatgt	tttgcgtatgt	tttgcgtatgt	1140
tttaagatttgcgt	tttgcgtatgt	tttgcgtatgt	tttgcgtatgt	tttgcgtatgt	tttgcgtatgt	1200
ggaggttgcgt	tagaggaaatgt	tttgcgtatgt	tttgcgtatgt	tttgcgtatgt	tttgcgtatgt	1260

ttttatttttta	ttttattttta	ttttatttta	ttttatttta	ttttatttta	ttttatttta	ttttgtgttta	1320
ttttatttttta	ttttatgtatg	tagttttatg	ttgtgggttta	ggttggagtg	tagtgggttg	1380	
attttgggtgg	tttattgtaa	tttttgggttt	ttgggtttaa	gtaattttgt	tttagttttt	1440	
ttagtaggttg	gaattatagg	tgtgtgttat	atttgggtga	tttttgtatt	tttagtagag	1500	
atgggggtttt	attatgttgg	ttgggttgg	tttgaatttt	tgattttagg	tgattttgtat	1560	
gttttgggttt	tttaaagtgt	tgggattata	gggtgtgagtt	attatgtttg	gttggtaat	1620	
ttttattttga	agttttgggg	tatatgtaga	ggatgtgtag	gtttgttata	taggtgtgtg	1680	
tgttatgtatg	gtttgttgtat	tagattattt	tatttatttag	gtattaagtt	tagtattttt	1740	
tagttattttt	tttgggtatt	tttttttttt	agatattttgt	ttaataggtat	tttagtgtgtg	1800	
ttgattgttg	ttatgtgtatt	atgtgttttt	atgttttagt	tttattttat	aagtgagatt	1860	
atgtgggtttt	gttgggttttt	ttttttgtg	tgagtttgg	gaggtaatg	gttttttagtt	1920	
tttattttatgt	tttgttaaag	gatatgatta	tttttttttt	agtgggttg	ttttaggtta	1980	
tttttttttgg	tttgggtgtt	tatttttgt	tgatttttagt	attttatttt	atttttagata	2040	
ttgattttttt	gttgggtttta	gatatgatag	atagtttttt	tttattttat	aattgttaag	2100	
tttgggttaag	gagttttttta	tgaaaataaaa	tttggtaatt	taagtgtaat	taaatttttagt	2160	
aagggattttt	tgtgggtgggg	aagaggttgg	tgtttatgtt	gtattttaa	aattttattt	2220	
aatgttagttt	ttaaaaaagaa	ttagattatg	ttttttgtgg	gaatatggat	ggagtttagag	2280	
gttattttttt	ttagtaaattt	aatgttaggaa	tagaaaattta	aatatggat	gtttttattt	2340	
gtaagtggga	gttaaatgtat	gagaattttat	aatataaaata	aggaaaataat	agatattgtg	2400	
gttggattttt	gggtgttagga	tgggaggaag	gagaggagta	gaaaagagaa	ttattgggtta	2460	
tttggtataa	tatttgggtg	atggaaatatt	ttgtataataa	a		2501	

<210> 15
<211> 2501

<212> DNA
<213> Artificial Sequence

<220>
<223> chemically treated genomic DNA (*Homo sapiens*)

<400> 15

tttgttaat	gagatatttt	tattttttt	atagtattat	atgtttttaa	agtttgatt	60
tatattttgg	gtgataaaatg	aaggataaga	ttttttttta	tttttgtgag	gatgattata	120
gtatgattgg	atggggttgt	tatgattttt	attttttttt	gtgttttat	tattgtttta	180
ttaattttag	ttttttttta	taggtagta	tagaattttaa	ttagtagaaa	gagatttagt	240
tatgttagatt	agagatttgt	ttaagtgtat	gtatgttaaga	attaggaagg	aaagttttt	300
gtttaaatat	taatagggtt	ttttttaaa	gtaattatta	ttttttaaat	ttaattata	360
aggtgatagt	attttaaat	taattaaatt	agaattttgg	gttggataat	tttaaatatg	420
atttatttagt	atttttattt	aattattgtt	tttttaggtt	ttaagttta	tttatttagga	480
attttatttt	taatattatt	ttattaattt	tagttgtaaa	taagagaata	tttaaagggtt	540
gaggaatttt	taggtgtaaa	gttttgttta	tgtaaagttaa	taaaggataa	gttagtttt	600
gttgtgatta	ttttgttgt	ttgataagtt	atgttatttt	atthaaggat	ttaaattttt	660
attttttttt	agaatttgggt	taaaattgtat	aaattaaattt	tattatgtt	ttattgatta	720
aagggttgg	tataataagt	ttttgtttagt	tttagtagtt	ggattttag	tgttagaaat	780
ttataattgt	ttgatttttt	tttttattat	attgtaaaaaa	ttgtttttta	aatgtaaata	840
attttaaaat	ttaatagta	ttgtggttag	gtgtgggtgt	ttattattgt	aatattaata	900
ttaggatata	gtgagggggat	tgaggttagg	atattgaaat	tagttggga	aatatatgga	960
gatttggttt	ttggaaaaaaat	aatttagttt	gtgtgggtgt	gggtgtgagg	ttttggttaa	1020
ttggggaggtt	atagtgagtt	atgatgatat	tgtattatag	tttgtgtgat	ggtttatgtt	1080
agtaagttt	ggagtatttg	aaataagtgt	tggtgggtat	tttattttat	ggagagtgtat	1140
tagtgattga	tgtttattta	tagtgattag	agatgtatgt	tttgatagta	gtataaattt	1200
agtaggtgt	aataaatggt	aaagagaaat	tggttaaata	agtattatgg	tttttagtt	1260
gagaaagtgg	gggttttaaa	aagggttttt	tggtgataga	aagggtgtt	taattattga	1320
aattgttagag	ggtgtgggtt	tggtgtttga	gtgtgttagat	tatattttat	gtggtgattt	1380
ttttgtgttt	ggtgtgtttt	gtataaggta	tggtgttttt	gattatgttt	tttaggaata	1440
tttttagtat	tttgcgtatt	ttttgtaga	tgaggttgg	gatgtttttt	atgttgggt	1500
ggtgagtaag	gtgttggatg	gttgggttgg	tgatgtttt	gatattgtt	tgttagatt	1560
tatgggtgt	tttagtgtt	ttttttttta	gattttttt	ttttttgtt	tggttagata	1620
tgatgagtaa	gagggtttt	atttaatgtt	ttgtgaggat	tttgggttga	ggtagtgtt	1680
ttatatgata	gttgggtggat	tgaattgaga	atttgaaaaga	agttgggtgg	aagttttgtt	1740
ttgggtgggg	aggggaaaatt	taaagggtta	aattgaaaata	ggggggaaaaaa	aaaagtgtagt	1800
ttttgtttt	tgtgttttga	attttgtat	gtgtatagta	ttttgttatt	atgtttagag	1860
gttttaaaaa	attgtttttt	aatgtagaag	atataatata	atattgtggg	aatatataaga	1920
aaggataaga	aattaagaaa	ttataatgtt	attttattat	ataggttagt	taattatgt	1980
tttgcgtat	tagttgtata	tattttttta	agaaaatgt	tatagtgtt	tatatggagt	2040
tttgcgtatt	ttttatattt	attataattt	attaatttt	tattaaagag	ataaaaagtga	2100
ttttttgtgt	tttatgtttt	tttaggaattt	ttaatagta	taatttagttt	tttagtaatt	2160
tttttaattgg	ttgtattttt	aaaataatgt	tttttatatt	taatataaaat	gtattttttt	2220
tttatatttg	ggattaatat	tgaattttat	gatttttata	tattaaaatt	taaatttttat	2280
tatattaata	tttaaaaattt	tattagaggt	tttatgtatt	ggtattatgg	ttttttgtat	2340

tat	ttttttttt	ttaaattttt	taatttgttt	tattaagggtt	tttgataat	tttagagatt	2400	
ttt	gtgaag	tttgaataaa	attttttga	gat	tttgata	attgtattag	ttttaggatt	2460
taatt	ggaaat	agaattaaaa	ttttaaaat	aagt	tttttat	a		2501

<210> 16
<211> 2501
<212> DNA
<213> Artificial Sequence

<220>
<223> chemically treated genomic DNA (*Homo sapiens*)

<400> 16

tataagagtt	tgttttaagg	attttaattt	tatTTTaaatt	aagtTTTaaa	gttaatgtta	60
ttattaaaat	tttgaagaga	ttttattttaa	atTTTataaa	agTTTTtaa	agttgttttag	120
aaattttgg	gaaatagatt	aggaaatttg	gaaaggaaat	aatgtggaga	ttttagtat	180
taaattatga	gatttttaat	ataattttaa	atattaatgt	aataaaattt	aaattttgg	240
gtaataaaaat	tataaatttt	aatattggtt	ttaagtatag	agaaaaaagta	tatTTatgtt	300
gaatgtggaa	aatatttattt	ttaaaatata	gttattttaa	aaatttgg	ggaatttgatt	360
ataattattg	ataattttta	agaaatatag	atattaaaat	attattttta	tttttttaat	420
agaaaattgg	taaattataa	ttaatataag	gaggttataa	aattttatat	ataatattgt	480
atataatttt	ttggaaaaat	atgtgttaatt	gttttgaat	atataatgatt	aatttagttg	540
tgtgtggga	taatattgt	gttttttaat	tttttggttt	tttttggatt	ttttatagta	600
ttgatgtata	tttttgggt	ttaaaagtaa	ttttttaaag	ttttataatg	tggttaataaa	660
atattatgt	tgttataaaa	tttagaaat	ggaaataaga	agtttggttt	tttttttttt	720
ttatTTTgg	ttgggttttt	agattttttt	ttttttattt	gggtgggatt	ttttgttgc	780
tttttttagg	tttttagttt	ggtttggtaa	ttgttgcata	aagggtgtt	tttaggttag	840
agttttata	aagtgtggg	tgagattttt	tttgggttgc	atgtttgggt	gtggtaaagg	900
tgggaagggt	tttggtaaag	gtgggttca	gtgttattgt	aaagtattgt	gtgataat	960
tttaggggt	attaagttgg	tttattttgg	ttttgtttgt	tgtgggtgt	tgaagtgtat	1020
ttttgggtt	attttatgagg	agattttgtgg	gggttgcag	gtgttttgg	agaatgtgt	1080
ttgggatgtt	gtgatttata	taggtatgt	taagtgtaa	atggttattt	ttatggatgt	1140
ggtttatgt	ttaagtgtt	agggttgc	tttttatgtt	tttgggtgtt	gagtgtttt	1200
ttttatataat	aaaagggttt	tttttagggtt	tttatttttt	tagttgagga	gttgtgatgt	1260
ttgtttgtt	agttttttt	tatttttgc	ttgtgtttgt	ttaggttgc	ttgttattgg	1320
agtatgtgtt	tttagttgtt	gtaagtaggt	attagttat	aattttttt	tagtaaataa	1380
aatatttaat	ataattttgtt	ttaggtgtt	taggtttat	tgatatgggt	tgttgcgtag	1440
attgttagt	agtgttattt	tggttatttgc	tagtttttgc	attagtttgc	attttgtgtt	1500
tattattatg	taaggtaat	tattttta	aaagattgggt	tttgggtgt	tttttaggtt	1560
agttttgata	tttgggtttt	aatttttttgc	tttagtttgc	atgtttggat	tatagtagt	1620
agttattatg	tttgggttgc	atattgttgc	ggtttttaggg	ttagttat	ttaaggggt	1680
atttttggtag	tgttagtgggg	aggaaagtta	agtagttata	ggttttgggt	gttgtgaatt	1740
taattgttgc	atatagttaag	aattttattat	gtatataattt	ttaatttagt	gattgttaat	1800
aagtttagt	tattgggttt	ggtttaattt	ttgagaaagg	tgagaatttgc	aatttttgag	1860
tagaaatatg	tagtttattt	gtataaaaa	gtgattataa	taaagatttt	tttatttttt	1920
gttattttat	gtgggttagag	ttttattttgc	gagaattttt	tagttttgc	gtttttttt	1980
atttataatt	gaagttgata	agatgttatt	aaaagtgcga	tttttagt	gtaaattttaa	2040
aggtttgaag	gatttagtgc	taatggaaag	ttttaataag	ttatatttgc	gtttattttaa	2100
tttgagattt	tgatTTattt	ggTTtaagga	tattatttt	ttgtgggtt	gatttgaaaa	2160
ataataattt	ttttaaggaa	ggaatttgc	gttattttaa	taaaaaattt	ttttttttgc	2220
tttttatatg	ttgttatttgc	gataaatttt	ttgtttat	gtttggattt	ttttttgtt	2280
gttaaatttt	gtgttatttt	gtgaaaaaga	attgagat	ataaaaatgt	agtgagaata	2340
tagggaaaga	taaaaattat	agtaagtttgc	tttagttat	ttgttagtt	ttttataagg	2400
atagggaaagg	attttgtttt	ttattttat	tttaaagtgt	gagtataat	tttaaaaataa	2460
tatgatattt	taggaataat	gaagatgtt	ttattttgtt	a		2501

<210> 17
<211> 2251
<212> DNA
<213> Artificial Sequence

<220>
<223> chemically treated genomic DNA (*Homo sapiens*)

<400> 17

ggattttag	ttgttttag	gtagtttagga	gtggtttag	tggtagttgt	aaatttttagt	60
agttgttgt	gttgttggt	gttgggggtgg	agggtatgtt	gagttgggga	ttaaggttt	120
gtgttatttg	tgtgtatagt	tttatatttg	aatgttgtt	tttttagat	gagattggtg	180
qqtattqtaa	agttgggatt	tgttttgaa	ggaaaaaaaa	tagttagtaa	gaaatttttagt	240

attttttttt	attgatttat	tttgggttat	tttttgtttt	ttaagttttt	aaaagggtt	300
aattttgatt	ttgggtgttta	aaaattgata	gttattgaga	ttgggtttga	aaaggttgaag	360
atttggtagt	tttagattg	agtaggataa	ggtggaaagta	ggttggaggt	gggttttagga	420
tatttgaggg	ttgattttgg	ggggttgtga	ggttgttatt	gttgtgttg	ttataggtga	480
gatgggtttg	ggttcatgtt	ggggtaatag	gttagagaaat	gtagggatgt	gtttttgtt	540
gaagagagtt	aagaagggaa	gagtgtgtt	tttaaattgt	ttttgttaatt	tgtttttagt	600
gagttttta	ttgatttaga	atttattgag	aatagtatta	gtgaggattt	tttttttga	660
gatgggtttt	atttattttg	gtaatggagt	gagttggatt	gtggggagga	agaggaatgg	720
aaaaattagt	ttataaataat	taatgttagt	aaaggtgtgt	tgttggtagg	atgtattgtg	780
agtttgaga	tttgggtggt	tgttagttgt	aagtggttat	aatttagaaa	gtaggattga	840
gttggttttt	ttgttttatt	agtgtattgt	tttttgggtg	tgggttaat	attttataag	900
tggtaatttt	ttgttatggt	agttttgttt	tttttttatt	attttttagat	ttagttttgt	960
attttaaggt	tgtgtattgt	tagttattat	tatgtttatt	tttgggtta	atttgtttgt	1020
ttttttgagt	tttgattggt	tgaatagttt	agtgattatt	ttgggtgtga	tgttttatttt	1080
tgggggtgtg	ggttaatttgg	tggttattgt	gggtgtgtgt	aagtgtgt	aggagtagaa	1140
ggagatgatt	tttataatgt	tggtatgtgg	gttgggttgtt	atgatttgt	tgggttatttt	1200
gttgggtgagt	ttgggtgatta	ttggtatgt	tatgaagggt	taatgtttt	gggggttagtt	1260
gttgtgtgag	tatagtattt	ttattttggt	tttttttagt	ttgttgggtt	ttagtatttt	1320
ttgtgttatg	agtgttgagt	gttattttgg	tattaattat	tttttatttt	atagtttata	1380
tgtggataag	tgtttgggtgg	gtttttatgtt	ttttgttagt	tatgtttta	atgtttttt	1440
ttgtgtgtt	tttaatatgg	gtttttggtag	tttgggttgg	tagtatttag	atattttgt	1500
ttttattgt	tgatttattta	atgtgatgtt	gtatgttgtt	tattttata	tgtatgtgg	1560
tttttagttt	tttttttattt	ttgttattgt	tttttgaat	gtgttgggt	gtgggtgttt	1620
gtttttgtatg	tattgttagt	ttatgtgttg	tattttggtt	ggtatttgagt	agtattatgt	1680
ggttgggttt	gttttgggtt	ttttttgggg	ttattttgg	gttttttag	ttttgttgg	1740
tttagtgat	ttttgggtt	gttggagttt	ttgttgtatt	gtgggtgtt	agatttagat	1800
ggttattttt	tttattgtta	ttttttgggt	gggttttatt	tgttttattt	tgtttgtgg	1860
gagtgattgg	ggttgggggtt	ttatttgggt	ttttttttgt	atttttttt	tgtgtttatt	1920
ttttgttttt	tttttttttt	ttgagttttt	ggtgtgtaa	gtgttggttt	taggttgggg	1980
ttgggatttt	tatattgttt	tttagagtag	gttaattttt	tttgaagtt	ttaattttaa	2040
ttagatttag	taggtgtttt	gtttttatat	tttttagttt	atgtttttgg	aagtttgggt	2100
tttttttttt	attgagatag	tttttatttt	ttgttggttt	atattgttg	agttttttaa	2160
aaaaattttt	tgtttttttt	gttagatgt	gaggggagtt	tgttgttagt	tgatttagtt	2220
tatttttttt	tattgtgaat	tgtgaattgt	a			2251

<210> 18
<211> 2251
<212> DNA
<213> Artificial Sequence

<220>
<223> chemically treated genomic DNA (*Homo sapiens*)

<400> 18

tgttagttat	agtttatagt	atggaggaat	gggtaaggt	atattatagt	aggtttttt	60
ttatgttaa	tagagggggt	ggggggttt	tttggaaagat	ttggtagtg	ttaggtaga	120
aggggtaagg	gttgggggg	tggagaaaga	aatttaggtt	tttggaaata	taaattgggg	180
gatgttagggg	taaagtattt	gttaaatttt	gttagggtt	ggattttaaa	gagggttggg	240
tttggggta	gaaatagtgt	gggaatttt	gttttgatt	aaagggtata	tgtttattgt	300
taaggattt	gagggaaagt	agggagtggg	aatggatgt	gggaggtgga	tgtgagaaaa	360
aggttgagta	gggttttagt	tttgggtatt	tattatgagt	gggatggagt	agatgagtat	420
tattaggggag	gtggtaatga	gtaaagatgt	tatttgatt	ttgggtttt	tgtatgtggg	480
gaagttttgg	tgggttgaa	agttgttgag	gtgtggtaag	gttggggagg	tagtggggtg	540
gttttgggag	gttaattgagg	tgggttggt	tgtgtgtgt	tgtttgtgt	ttagtgaggt	600
gtggtgtatg	aattgggtgt	gtatgtggag	tagtgtgtt	tatataagta	tgttgtagag	660
gatgggtgt	agaatgagga	aggagttgaa	gtttgtgtat	atgttaggagt	aggtgtgtg	720
tgttgtatg	tttgggtttt	agttgtatga	gtattaggtt	tttgggtatt	tgttgtgt	780
gttatttggaa	tttattgtgg	gtagtgtgt	aaagagatgt	ttggatgtat	agattgtaaa	840
gagtgtgagg	tttggtaatt	gtttgtttat	gtagtggtt	tagaaatagg	tatgggttat	900
ggttaggtag	tgtttgtat	ttatgggtgt	gtatgtgtt	aggttggata	gttgaagaa	960
gagttagaaat	aagggtgtgt	atttgtatag	ttgttggttt	ttgggttatt	gtttttttat	1020
gtatgtgggt	atggttattt	ggtttattaa	taaagtgttt	aataggttgg	tgtatgttag	1080
tttatatatatt	agtgtgtaga	agggtgtttt	tttttggttt	ttgtgtgtt	tgtatagtat	1140
tatgtatgtt	atagggtgt	ttattatattt	gaagatgaat	attattgttg	ggatggttat	1200
tgggtgtttt	agttgggtgg	ggtttaagga	ggtggatgaa	ttgatttgg	gagtggatat	1260
gatagtgggt	ggtgggtgtgt	agtttggag	tgtaaagggtt	ggtttgggga	tggtagaaaga	1320
gagataaaagt	tgttgtgagt	ggaaattatt	atttgtaaagg	tgttagattt	gtgtttgaga	1380
aatgatataat	tgataagata	aggggagtaa	tttgattttt	ttttttggat	tgttagttatt	1440
tattaattgt	gttatttaaa	attttaggt	ttgtgatatg	ttttgttaat	agtatatttt	1500
tgttgatatt	aatatttata	aattgattttt	tttatttttt	ttttttttta	taatttaatt	1560

tat	tttatttattt	ttaagatgaa	taagatttat	ttaaggaa	aagttagttt	ttagtgttat	1620
ttt	gtataga	tttgaatta	ataaaatgtt	tatggaaaat	aagtataaa	agtaatttgg	1680
ag	agtgtgtt	ttttttttt	tggtttttt	tggtgagggt	tgtat	ttttttat	1740
tt	gttgcatt	taatgttagt	ttaatgttat	tttatttgc	gtggtagtag	ttgtggtagt	1800
tt	atgtgat	tttagggta	gttttttagat	gttttggatt	tgttttaat	ttgttttat	1860
tt	ttgtttgt	ttagttgga	aattgttaaa	ttttggttt	tttaaagg	gttttagtgg	1920
tt	ttgtgcatt	ttggatattt	aggttagagt	tgttagttt	aaaaattt	gaaaataaga	1980
gt	gtgtgtgg	gatgggttag	tgaagaatgg	tgttgcattt	tttatttgc	atttttttt	2040
tt	tttaaagat	gagtttagt	ttgttagtgc	ttgtggttt	ttttgtggg	aggatagtgt	2100
tt	taggtgtga	ggttgtgtgt	gtaggtgggt	tggattttgc	tttttttagtt	ttgtgtgttt	2160
tt	tttgcatt	ttatgggttag	tatgggtgtt	tattggagtt	tgtggttgtt	gttgagggttgc	2220
tt	tttgcatt	tttgggggttgc	ttttgggttttgc	t			2251

<210> 19
<211> 2586

<212> DNA
<213> Artificial Sequence

<220>

<223> chemically treated genomic DNA (Homo sapiens)

<400> 19

tttgcgtggg	tgtggagta	gtttgttgg	gtgtttgttag	ttgtgggagt	taagttttt		60
ttttaggtgt	aggtataaaa	gtttatgttt	tttgcatt	gtggggtaga	ggttttttt		120
ag	taatgttt	aattgggtgt	tttaattaa	gaaagagag	gttttttagt	ttatggtaat	180
tt	ttaatgtgg	tagttttag	ttaaaggat	tttgcatt	taagattatt	ttaagaaatg	240
tt	aatgttttta	ttggatattt	gaataggtt	tttgcatt	gaattgggt	gtattgtatt	300
tt	ttaattatgt	ttttgtgt	gagggaggt	atttagttt	ggaaagttaa	ttatagaaag	360
ag	gtgtattt	tgaaaggatt	gttttagtgc	tattagaata	tatgtgatta	tataaaagt	420
tt	taggtggat	atttgttagt	agtttggatt	tggataattt	aatattgtt	gtagaattga	480
ag	ggaaataa	ttatattttaat	tttgcatt	gtatgtgt	tgttgcatt	gttgggggtg	540
gg	gaggatagt	gtttgttta	ttgttttttgc	ttaaatttgc	agatttgc	atatggaggt	600
tt	tttgcatt	tttttagtgc	tttgcatt	tttttttttttgc	aaattttgtt	gttgcattttt	660
tt	ttttttttt	ttaaaatagt	aattttatgg	tttgcatt	tttttttaga	agttttttt	720
tt	tttttttttgc	gtttagggag	gaaataatgt	tagggaaaatgt	tattgggtt	ttttttttttt	780
tt	tttttttttgc	agggtgttag	atgtgtgggt	ttgtgggttt	tgatgttttgc	aatttttttt	840
tt	tttttttttgc	tgtgtgattt	tgaaaggatt	gggagggttgc	gagatgttgc	tttaggggttgc	900
gt	tttttttttgc	ttgtgttgc	ttgggtgttgc	tttttttttgc	tttaggttgc	ggattttgttgc	960
tt	tttttttttgc	gtggggggga	aatatgttag	ttggagggttgc	tgtgtgttgc	gggttgttgc	1020
tt	tttttttttgc	tttgcatt	tttgcatt	tttgcatt	taggttaggt	tgtgagatgt	1080
tt	tttttttttgc	tttaggttttgc	gaagtttgc	tttgcatt	ttgttgcatt	aatttgcatt	1140
tt	tttttttttgc	tttttttttgc	tttgcatt	tttgcatt	tttaggttgc	gtatttttttgc	1200
gt	tttttttttgc	gttgcatt	tttttttttgc	tttgcatt	tttttttttgc	tttttttttgc	1260
tt	tttttttttgc	tttttttttgc	tttgcatt	tttgcatt	tttgcatt	tttttttttgc	1320
tt	tttttttttgc	tttttttttgc	tttgcatt	tttgcatt	tttgcatt	tttttttttgc	1380
tt	tttttttttgc	tttttttttgc	tttgcatt	tttgcatt	tttgcatt	tttttttttgc	1440
tt	tttttttttgc	tttttttttgc	tttgcatt	tttgcatt	tttgcatt	tttttttttgc	1500
tt	tttttttttgc	tttttttttgc	tttgcatt	tttgcatt	tttgcatt	tttttttttgc	1560
tt	tttttttttgc	tttttttttgc	tttgcatt	tttgcatt	tttgcatt	tttttttttgc	1620
tt	tttttttttgc	tttttttttgc	tttgcatt	tttgcatt	tttgcatt	tttttttttgc	1680
tt	tttttttttgc	tttttttttgc	tttgcatt	tttgcatt	tttgcatt	tttttttttgc	1740
tt	tttttttttgc	tttttttttgc	tttgcatt	tttgcatt	tttgcatt	tttttttttgc	1800
tt	tttttttttgc	tttttttttgc	tttgcatt	tttgcatt	tttgcatt	tttttttttgc	1860
tt	tttttttttgc	tttttttttgc	tttgcatt	tttgcatt	tttgcatt	tttttttttgc	1920
tt	tttttttttgc	tttttttttgc	tttgcatt	tttgcatt	tttgcatt	tttttttttgc	1980
tt	tttttttttgc	tttttttttgc	tttgcatt	tttgcatt	tttgcatt	tttttttttgc	2040
tt	tttttttttgc	tttttttttgc	tttgcatt	tttgcatt	tttgcatt	tttttttttgc	2100
tt	tttttttttgc	tttttttttgc	tttgcatt	tttgcatt	tttgcatt	tttttttttgc	2160
tt	tttttttttgc	tttttttttgc	tttgcatt	tttgcatt	tttgcatt	tttttttttgc	2220
tt	tttttttttgc	tttttttttgc	tttgcatt	tttgcatt	tttgcatt	tttttttttgc	2280
tt	tttttttttgc	tttttttttgc	tttgcatt	tttgcatt	tttgcatt	tttttttttgc	2340
tt	tttttttttgc	tttttttttgc	tttgcatt	tttgcatt	tttgcatt	tttttttttgc	2400
tt	tttttttttgc	tttttttttgc	tttgcatt	tttgcatt	tttgcatt	tttttttttgc	2460
tt	tttttttttgc	tttttttttgc	tttgcatt	tttgcatt	tttgcatt	tttttttttgc	2520
tt	tttttttttgc	tttttttttgc	tttgcatt	tttgcatt	tttgcatt	tttttttttgc	2580
tt	tttttttttgc	tttttttttgc	tttgcatt	tttgcatt	tttgcatt	tttttttttgc	2586

<210> 20
<211> 2586
<212> DNA

<213> Artificial Sequence

<220>

<223> chemically treated genomic DNA (Homo sapiens)

<400> 20

attttattgt taaagtttt ttttatagta ttgttgttagt gatgattgt tttttgaaa	60
ataaaggat tttttttt tttggtttt gagttttt gttggaaagg gtttgttaggg	120
gggttattt tagtatttt tggttaagga ttgttgttag atttgtggag ttgtatgttt	180
ttttttggg ttataaggtt ttaggatgtt ttataaggaa gtgagttgt tagagttgg	240
gaatatttt agaaaagagg ttttagagaa ggtaggagtt tgttttgtg aaatattaat	300
aaagggtgt taggttaggt ttttttagt gtttttagt gaattttgt tttaaagagat	360
tttttattttt gtttttaggaa tttgggggtt tggttaggt tgagggttta gaaatttttt	420
tatagttttt agatgttgat agtttttttta ataattgtga tgatagttt gagttatgtt	480
tttaggaataa ggtaaaaagt gtatTTTTT aattgtgatt ttttttattt tttttttttt	540
taataaaagta aatttttaatt ttatattaa ggggtataga taggttaattt ttttttaggg	600
gattttgtgt ttatTTTTGGG gattttgat tgaagaaaga ttgaggatgt aggttagagat	660
ttttttgaaa aaattttaaag atagagggtt agtagggaga tggtttttt tgagggtttgg	720
gtatTTTTTA gagttttttt gatgtttttt tgtagttgaa tgtagttttt gggaggtga	780
atTTTTGGG gtaaaaagggt gtttatTTTTT ttttttagt ttgggttagg gaaagaagaa	840
tggatgggtt ggTTTTGGAA agtttaggtt ttagagaggt gtataaaagggt tttttttttt	900
tgggtgtttt gttttttttt gggattatgt agtggattt tttttttttt tttttttttt	960
gtgttttagg tggtttttttt tagttttttt aattttttttt tttttttttt taggggtttt	1020
ttttgtatgg taggtttttt tttttttttt aattttttttt ttgggttttt ttatgttgat	1080
tttgaattttt gggttttagt agtggttt tttttttttt ggtattaaag aaaaattttt	1140
ttttttttttt ggggttattt ggttagttgt ttagaaagatt tttttttttt tttttttttt	1200
aaatgttattt aataatattt tttttttttt tttttttttt tttttttttt tttttttttt	1260
agaataagaa gtagaaaattt tttttttttt gttttaaaattt tttttttttt tttttttttt	1320
tttttaagggtt aggtttttttt tggagttt gttttaggtt tttttttttt tttttttttt	1380
gttattttttt ttagttttttt tttttttttt tttttttttt tttttttttt tttttttttt	1440
ttggattttt tgggtttttt tagttttttt tttttttttt tttttttttt tttttttttt	1500
ttaggggattt tttatagttt tttttttttt tttttttttt tttttttttt tttttttttt	1560
taatggattt taattttttt tttttttttt tttttttttt tttttttttt tttttttttt	1620
gggtgattttt aggtttttttt tttttttttt tttttttttt tttttttttt tttttttttt	1680
gtgttattttt ttgtttttttt tttttttttt tttttttttt tttttttttt tttttttttt	1740
gtatgtttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt	1800
gggggtgaggg tggaaagatg tttttttttt tttttttttt tttttttttt tttttttttt	1860
gtaaatgaga taaattttttt aagggtttttt tttttttttt tttttttttt tttttttttt	1920
aggggaaaat gtagttttttt ggtttttttt tttttttttt tttttttttt tttttttttt	1980
aatgggattt ttatTTTTT agatTTTTA tttttttttt tttttttttt tttttttttt	2040
ttttttttttt tttaattttt tttttttttt tttttttttt tttttttttt tttttttttt	2100
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt	2160
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt	2220
ttatTTTTTTT ttgttagttt tttttttttt tttttttttt tttttttttt tttttttttt	2280
gtttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt	2340
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt	2400
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt	2460
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt	2520
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt	2580
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt	2586

<210> 21

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> chemically treated genomic DNA (Homo sapiens)

<400> 21

gggatttttt ttataagggtt

20

<210> 22

<211> 17

<212> DNA

<213> Artificial Sequence

<220>

<223> chemically treated genomic DNA (Homo sapiens)

<400> 22	
ctctaaaccc catcccc	17
<210> 23	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> chemically treated genomic DNA (Homo sapiens)	
<400> 23	
cccatccccca aaaacacaaaa ccac	24
<210> 24	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> chemically treated genomic DNA (Homo sapiens)	
<400> 24	
cgtcgtcgta gtttgcgtt	19
<210> 25	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> chemically treated genomic DNA (Homo sapiens)	
<400> 25	
tagtgagtac gcgcgggtt	18
<210> 26	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> chemically treated genomic DNA (Homo sapiens)	
<400> 26	
accggaaaata cgcttcacg	19
<210> 27	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> chemically treated genomic DNA (Homo sapiens)	
<400> 27	
gcgttatcgt aaagtattgc gc	22
<210> 28	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	

<223> chemically treated genomic DNA (Homo sapiens)
<400> 28
cgcgacgaac aaaacgccc 19
<210> 29
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 29
cgcgctactc cgcataca 18
<210> 30
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 30
gaggttaatcg aggcggtcg 19
<210> 31
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 31
cgcccaattca tacgccccac c 21
<210> 32
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 32
tttgtggttcg ggaagagac 19
<210> 33
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> chemically treated genomic DNA (Homo sapiens)
<400> 33
tccccgaactc ttcgatcg 18
<210> 34
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> chemically treated genomic DNA (Homo sapiens)

<400> 34

aactacgcgc aaacccgcga

20

