CPSC 5021: Database Systems

Data Modeling

Lin Li

Data Model

Why do we need data model?

Designers, programmers, and users see data in different ways.

programmers

designers

Data Model Basic Building Blocks

Entity: Some unit of data that can be classified.

Attribute: a characteristic of an entity.

Relationship: describes an association among entities

Data Model Basic Building Blocks

- Relationship
- One-to-many (1:M) relationship (e.g. building vs. classroom)
- Many-to-many (M:N) relationship (e.g. student vs. course)
- One-to-one (1:1) relationship (e.g. *chair* prof. vs. department)
- Constraint: a restriction placed on the data.
- e.g. (1) A professor can teach at most 4 classes
 - (2) A student's age must be a valid positive integer

How to Do Data Modeling?

• Example: Tiny college is divided into several schools: business, arts and sciences, education, and applied sciences. Each school comprises several departments. For example, the school of business has an accounting department, a marketing department, etc.

1:M

Data Modeling Exercises

- Each department may offer courses.
- A department may offer several classes of the same course.
- Each department should have one or more professors assigned to it. One and only one of those professors chairs the department.
- Each professor may teach up to 4 classes.
- A student may enroll in up to 6 classes, and each class may have up to 35 students.

The Evolution of Data Models

TABLE 2.1 Evolution of Major Data Models				
GENERATION	TIME	DATA MODEL	EXAMPLES	COMMENTS
First	1960s–1970s	File system	VMS/VSAM	Used mainly on IBM mainframe systems Managed records, not relationships
Second	1970s	Hierarchical and network	IMS, ADABAS, IDS-II	Early database systems Navigational access
Third	Mid-1970s	Relational	DB2 Oracle MS SQL Server MySQL	Conceptual simplicity Entity relationship (ER) modeling and support for relational data modeling
Fourth	Mid-1980s	Object-oriented Object/ relational (O/R)	Versant Objectivity/DB DB2 UDB Oracle 11g	Object/relational supports object data types Star Schema support for data warehousing Web databases become common
Fifth	Mid-1990s	XML Hybrid DBMS	dbXML Tamino DB2 UDB Oracle 11g MS SQL Server	Unstructured data support O/R model supports XML documents Hybrid DBMS adds object front end to relational databases Support large databases (terabyte size)
Emerging Models: NoSQL	Late 2000s to present	Key-value store Column store	SimpleDB (Amazon) BigTable (Google) Cassandra (Apache)	Distributed, highly scalable High performance, fault tolerant Very large storage (petabytes) Suited for sparse data Proprietary API

The Relational Model

 Relational database management system (RDBMS): Users usually see it as a collection of tables.

Table

Animals

Name	Type	Birth_Date	Consumption	Avg amount of milk per day
Sara	Cow	01/02/2008	2000	2
Lisa	Cow	03/12/2008	1500	1.5
John	Cow	04/05/2009	1850	1.75
Jimmy	Pig	09/25/2010	800	
Mia	Dog	08/23/2010	300	

Null

Key

Key: One or more attributes that uniquely identify each row.

- Super Key: Any key that uniquely identifies each row.
- Candidate Key: A super key without unnecessary attributes.

```
Is "SSN" a candidate key?
- Yes
Is "SSN, name" a candidate key?
- No
```

Key

• Primary key: A candidate key selected by the DB designer to uniquely

identify a row.

Super key:

(1)SSN

(2)Driver's license # + Address + Name;

(3) Driver's license # + Address

• • • • • •

Candidate key:

(1)SSN

(2) Driver's license # + Address

Primary key:

e.g. SSN

Primary Key

Product

Name	Amount
Cow Milk	10
Chicken Egg	200
Chicken	50
Apple	300
Orange	600

Primary key: Name

(1) Must be unique
(2) Cannot have null values

The Relational Model

Foreign Key

• Foreign Key: An attribute whose values match primary key values in the related table or be null.

Product		Sales

Name
Cow Milk
Chicken Egg
Chicken
Apple
Orange

Date	Name	Amount
10/21/12	Apple	500
10/21/12	Banana	380
10/21/12	Cow milk	3
10/21/12	Orange	6

• Exercise: Identify the primary key and the foreign key

EMPLOYEE

EMP_CODE	EMP_LNAME	JOB_CODE
14	Rudell	2
15	McDade	1
16	Ruellardo	1
17	Smith	3
20	Smith	2

BENEFIT

EMP_CODE	PLAN_CODE
15	2
15	3
16	1
17	1
17	3
17	4
20	3

JOB

JOB_CODE	JOB_DESCRIPTION
1	Clerical
2	Technical
3	Managerial

PLAN

PLAN_CODE	PLAN_DESCRIPTION
1	Term life
2	Stock purchase
3	Long-term disability
4	Dental

Index

school of fruits

In which classroom there is at least one banana?

Find out the room where a pineapple is there.

Index

• An index is a data structure defined on columns in a database table to significantly speed up data retrieval operations.

Index

Relational Schema

- A textual representation of the database tables where each table is listed by its name followed by the list of its attributes in parentheses.
- Example: The relational schema for tables on slides 15 would be:
 - ✓ EMPLOYEE(EMP_CODE, EMP_LNAME, JOB_CODE)
 - ✓ BENEFIT(EMP CODE, PLAN CODE)
 - ✓ JOB(JOB CODE, JOB_DESCRIPTION)
 - ✓ PLAN(PLAN_CODE, PLAN_DESCRIPTION)

Relationships within the Relational Database

1:M relationship – the relational database norm!

Relationships within the Relational Database

Relationships within the Relational Database

M:N relationship → break it into 1:M relationships

