Amendments to the Claims:

The following claims will replace all prior versions of the claims in this application (in the unlikely event that no claims follow herein, the previously pending claims will remain):

1. (Previously Presented) A compound represented by the following formula 1:

$$Z = \begin{bmatrix} A''_n \\ B''_m \end{bmatrix} X'$$

$$R''$$

$$\begin{bmatrix} 1 \end{bmatrix}$$

wherein Z is

n, m, q and r independently represent integers from zero to 4 provided that $n + m \le 4$ and $q + r \le 4$; p and s independently represent integers from zero to 5 provided that $p + s \le 5$; a and b represent double bonds which may be present or absent; when present, the double bonds may be in the E or Z configuration and, when absent, the resulting stereocenters may have the R- or S- configuration;

R and R' each independently represent a hydrogen atom; linear or branched C_1 - C_{20} alkyl; linear or branched C_2 - C_{20} alkenyl; - CO_2Z' ; - CO_2R''' ; - NH_2 ; - NH_2 '''; -

R" independently represents a hydrogen atom; linear or branched C_1 - C_{20} alkyl; linear or branched C_2 - C_{20} alkenyl; - CO_2Z' ; - CO_2R''' ; - NH_2 ; - NH_2 ; - NH_2 ''; - NH_2 ''; - OH_3 ; - OH_3 ''; halogen atom; optionally substituted linear or branched C_1 - C_{20} alkyl; optionally substituted linear or branched C_2 - C_{20} alkenyl;

R"' independently represents a linear or branched C_1 - C_{20} alkyl; or linear or branched C_2 - C_{20} alkenyl;

R''' independently represents a hydrogen atom; optionally substituted C_1 - C_{20} alkyl; or optionally substituted C_1 - C_{20} alkoxy;

Z' represents a hydrogen atom or a pharmaceutically acceptable counter-ion;

A, A' and A" each independently represent a hydrogen atom; C₁-C₂₀ acylamino; C₁-C₂₀ acyloxy; C₁-C₂₀ alkanoyl; C₁-C₂₀ alkoxycarbonyl; C₁-C₂₀ alkoxy; C₁-C₂₀ alkylamino; C₁-C₂₀ alkylcarboxylamino; carboxyl; cyano; halo; or hydroxy;

B, B' and B" each independently represent; C2-C20 alkenoyl; aroyl; or aralkanoyl;

or A and B jointly, A' and B' jointly, or A" and B" jointly, independently represent a methylenedioxy or ethylenedioxy group; and

X and X' independently represent >NH, >NR'", -O-, or -S-.

2.-3. (Cancelled)

4. (Previously Presented) A compound represented by the following formula 1:

$$Z = \begin{bmatrix} A''_n \\ B''_m \end{bmatrix} X$$

$$R''$$

wherein Z is

n, m, q and r independently represent integers from zero to 4 provided that $n + m \le 4$ and $q + r \le 4$; p and s independently represent integers from zero to 5 provided that $p + s \le 5$; a and b represent double bonds which may be present or absent; when present, the double bonds may be in the E or Z configuration and, when absent, the resulting stereocenters may have the R- or S- configuration;

R and R' each independently represent a hydrogen atom; linear or branched C_1 - C_{20} alkyl; linear or branched C_2 - C_{20} alkenyl; - CO_2Z' ; - CO_2R''' ; - NH_2 ; - NH_2 ''; - NH_2 '''; - NH_2 ''''; - NH_2 '''''; - NH_2 ''''; - NH_2 '''''; - NH_2 ''''; - NH_2 '''';

R" independently represents a hydrogen atom; linear or branched C₁-C₂₀ alkyl; linear or branched C₂-C₂₀ alkenyl; -CO₂Z'; -CO₂R'"; -NH₂; -NHR'"; -NR₂"; -OH; -OR'";

Application No. <u>10/808,519</u> Amendment dated October 27, 2006 Page 5

halogen atom; optionally substituted linear or branched C_1 - C_{20} alkyl; optionally substituted linear or branched C_2 - C_{20} alkenyl;

R" independently represents a linear or branched C_{l} - C_{20} alkyl; or linear or branched C_{2} - C_{20} alkenyl

Z' represents a hydrogen atom or a pharmaceutically acceptable counter-ion;

A, A' and A" each independently represent a hydrogen atom; C₁-C₂₀ acylamino; C₁-C₂₀ acyloxy; C₁-C₂₀ alkanoyl; C₁-C₂₀ alkoxycarbonyl; C₁-C₂₀ alkoxy; C₁-C₂₀ alkylamino; C₁-C₂₀ alkylcarboxylamino; carboxyl; cyano; halo; or hydroxy;

B, B' and B" each independently represent; C₂-C₂₀ alkenoyl; aroyl; or aralkanoyl;

or A and B jointly, A' and B' jointly, or A" and B" jointly, independently represent a methylenedioxy or ethylenedioxy group; and

X and X' independently represent >NH, >NR", -O-, or -S-.

- 5.-6. (Cancelled)
- 7. (Original) The compound of claim 1 that is 3-(3,5-dimethoxyphenyl)-2-{4-[4-(2,4-dioxothiazolidin-5-ylmethyl)-phenoxy]-phenyl}-acrylic acid.
- 8. (Withdrawn) The compound of claim 1 that is 3-(3,5-dimethoxy-phenyl)-2-{4-[4-(2,4-dioxo-thiazolidin-5-ylmethyl)-phenoxy]-phenyl}-acrylamide.
- 9. (Withdrawn) The compound of claim 1 that is 3-(3,5-dimethoxy-phenyl)-2-{4-[4-(2,4-dioxo-thiazolidin-5ylmethyl)-phenoxy]-phenyl}-N,N-dimethyl-acrylamide.
- 10. (Previously Presented) A pharmaceutical composition comprising:
 - a) a compound represented by the following formula 1:

Application No. <u>10/808,519</u>

Amendment dated October 27, 2006

Page 6

$$Z = \begin{bmatrix} A''_n \\ A''_n$$

wherein Z is

n, m, q and r independently represent integers from zero to 4 provided that $n + m \le 4$ and $q + r \le 4$; p and s independently represent integers from zero to 5 provided that $p + s \le 5$; a and b represent double bonds which may be present or absent; when present, the double bonds may be in the E or Z configuration and, when absent, the resulting stereocenters may have the R- or S- configuration;

R and R' each independently represent a hydrogen atom; linear or branched C_1 - C_{20} alkyl; linear or branched C_2 - C_{20} alkenyl; - CO_2Z' ; - CO_2R''' ; - NH_2 ; - NH_2 '''; - NH_2 ''''; -

R" independently represents a hydrogen atom; linear or branched C₁-C₂₀ alkyl; linear or branched C₂-C₂₀ alkenyl; -CO₂Z'; -CO₂R""; -NH₂; -NHR""; -NR₂"; -OH; -OR""; halogen atom; optionally substituted linear

or branched C_1 - C_{20} alkyl; optionally substituted linear or branched C_2 - C_{20} alkenyl;

R''' independently represents a linear or branched C_1 - C_{20} alkyl; or linear or branched C_2 - C_{20} alkenyl;

R''' independently represents a hydrogen atom; optionally substituted C_1 - C_{20} alkyl; or optionally substituted C_1 - C_{20} alkoxy;

Z' represents a hydrogen atom or a pharmaceutically acceptable counter-ion;

A, A' and A" each independently represent a hydrogen atom; C_1 - C_{20} acylamino; C_1 - C_{20} acyloxy; C_1 - C_{20} alkanoyl; C_1 - C_{20} alkoxy; C_1 - C_{20} alkylamino; C_1 - C_{20} alkylamino; carboxyl; cyano; halo; or hydroxy;

B, B' and B" each independently represent; C₂-C₂₀ alkenoyl; aroyl; or aralkanoyl;

or A and B jointly, A' and B' jointly, or A" and B" jointly, independently represent a methylenedioxy or ethylenedioxy group; and

X and X' independently represent >NH, >NR", -O-, or -S-; and

b) a physiologically acceptable carrier .

11.-12. (Cancelled)

- 13. (Previously Presented) A pharmaceutical composition comprising:
 - a) a compound represented by the following formula 1:

Application No. <u>10/808,519</u>
Amendment dated October 27, 2006
Page 8

$$Z = \begin{bmatrix} A''_n & X & A''_n & X & X \\ B''_m & A''_n & A'$$

wherein Z is

n, m, q and r independently represent integers from zero to 4 provided that $n + m \le 4$ and $q + r \le 4$; p and s independently represent integers from zero to 5 provided that $p + s \le 5$; a and b represent double bonds which may be present or absent; when present, the double bonds may be in the E or Z configuration and, when absent, the resulting stereocenters may have the R- or S- configuration;

R and R' each independently represent a hydrogen atom; linear or branched C_1 - C_{20} alkyl; linear or branched C_2 - C_{20} alkenyl; - CO_2Z' ; - CO_2R''' ; - NH_2 ; - NH_2 "; -N

R" independently represents a hydrogen atom; linear or branched C₁-C₂₀ alkyl; linear or branched C₂-C₂₀ alkenyl; -CO₂Z'; -CO₂R'"; -NH₂; -NHR'"; -NR₂"; -OH; -OR"; halogen atom; optionally substituted linear

Application No. 10/808,519
Amendment dated October 27, 2006
Page 9

or branched C_1 - C_{20} alkyl; optionally substituted linear or branched C_2 - C_{20} alkenyl;

R" independently represents a linear or branched C_I-C₂₀ alkyl; or linear or branched C₂-C₂₀ alkenyl;

Z' represents a hydrogen atom or a pharmaceutically acceptable counter-ion;

A, A' and A" each independently represent a hydrogen atom; C_1 - C_{20} acylamino; C_1 - C_{20} acyloxy; C_1 - C_{20} alkanoyl; C_1 - C_{20} alkoxycarbonyl; C_1 - C_{20} alkoxy; C_1 - C_{20} alkylamino; C_1 - C_{20} alkylamino; carboxyl; cyano; halo; or hydroxy;

B, B' and B" each independently represent; C2-C20 alkenoyl; aroyl;

or A and B jointly, A' and B' jointly, or A" and B" jointly, independently represent a methylenedioxy or ethylenedioxy group; and

X and X' independently represent >NH, >NR", -O-, or -S-; and

b) a physiologically acceptable carrier.

14.-15. (Cancelled)

- 16. (Original) The pharmaceutical composition of claim 10, wherein said compound represented by formula I is 3-(3,5-dimethoxyphenyl)-2-{4-[4-(2,4-dioxothiazolidin-5-ylmethyl)-phenoxy]-phenyl}-acrylic acid.
- 17. (Withdrawn) The pharmaceutical composition of claim 10, wherein said compound represented by formula I is 3-(3,5-dimethoxy-phenyl)-2-{4-[4-(2,4-dioxo-thiazolidin-5-ylmethyl)-phenoxy]-phenyl}-acrylamide.

Application No. 10/808,519
Amendment dated October 27, 2006
Page 10

- 18. (Withdrawn) The pharmaceutical composition of claim 10, wherein said compound represented by formula I is 3-(3,5-dimethoxy-phenyl)-2-{4-[4-(2,4-dioxo-thiazolidin-5ylmethyl)-phenoxy]-phenyl}-N,N-dimethyl-acrylamide.
- 19. (Previously Presented) A compound represented by the following formula 1:

$$Z = \begin{bmatrix} A''_n & X' \\ B''_m & A''_n \\ R'' & A''_n \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

wherein Z is

n, m, q and r independently represent integers from zero to 4 provided that $n + m \le 4$ and $q + r \le 4$; p and s independently represent integers from zero to 5 provided that $p + s \le 5$; a and b represent double bonds which may be present or absent; when present, the double bonds may be in the E or Z configuration and, when absent, the resulting stereocenters may have the R- or S- configuration;

R and R' each independently represent a hydrogen atom; linear or branched C_1 - C_{20} alkyl; linear or branched C_2 - C_{20} alkenyl; - CO_2Z' ; - CO_2R''' ; - NH_2 ; - NH_2 '''; - NH_2 ''''; - NH_2 '''''; - NH_2 ''''; - NH_2 '''''; - NH_2 ''''; - NH_2 '''''; - NH_2 '''''; - NH_2 '''''; - NH_2

R" independently represents a hydrogen atom; linear or branched C_1 - C_{20} alkyl; linear or branched C_2 - C_{20} alkenyl; - CO_2Z' ; - CO_2R''' ; - NH_2 ; - NH_2 ; - NH_2 "; -NH

R" independently represents a linear or branched C_1 - C_{20} alkyl; or linear or branched C_2 - C_{20} alkenyl;

R"" independently represents a hydrogen atom; methyl; or methoxy;

Z' represents a hydrogen atom or a pharmaceutically acceptable counter-ion;

A, A' and A" each independently represent a hydrogen atom; C_1 - C_{20} acylamino; C_1 - C_{20} acyloxy; C_1 - C_{20} alkanoyl; C_1 - C_{20} alkoxycarbonyl; C_1 - C_{20} alkoxy; C_1 - C_{20} alkylamino; C_1 - C_{20} alkylamino; carboxyl; cyano; halo; or hydroxy;

B, B' and B" each independently represent; C2-C20 alkenoyl; aroyl; or aralkanoyl;

or A and B jointly, A' and B' jointly, or A" and B" jointly, independently represent a methylenedioxy or ethylenedioxy group; and

X and X' independently represent >NH, >NR'", -O-, or -S-.

20.-21. (Cancelled)

- 22. (Previously Presented) A pharmaceutical composition comprising:
 - a) a compound represented by the following formula 1:

Application No. 10/808,519
Amendment dated October 27, 2006
Page 12

wherein Z is

n, m, q and r independently represent integers from zero to 4 provided that $n + m \le 4$ and $q + r \le 4$; p and s independently represent integers from zero to 5 provided that $p + s \le 5$; a and b represent double bonds which may be present or absent; when present, the double bonds may be in the E or Z configuration and, when absent, the resulting stereocenters may have the R- or S- configuration;

R and R' each independently represent a hydrogen atom; linear or branched C_1 - C_{20} alkyl; linear or branched C_2 - C_{20} alkenyl; - CO_2Z' ; - CO_2R''' ; - NH_2 ; - NH_2 '''; - NH_2 ''''; - $NH_$

R" independently represents a hydrogen atom; linear or branched C_1 - C_{20} alkyl; linear or branched C_2 - C_{20} alkenyl; - CO_2Z' ; - CO_2R''' ; - NH_2 ; -NHR'''; - NR_2''' ; -OH; -OR'''; halogen atom; optionally substituted linear or branched C_1 - C_{20} alkyl; optionally substituted linear or branched C_2 - C_{20} alkenyl;

R"' independently represents a linear or branched C_1 - C_{20} alkyl; or linear or branched C_2 - C_{20} alkenyl;

R"" independently represents a hydrogen atom; methyl; or methoxy;

Z' represents a hydrogen atom or a pharmaceutically acceptable counter-ion;

A, A' and A" each independently represent a hydrogen atom; C_1 - C_{20} acylamino; C_1 - C_{20} acyloxy; C_1 - C_{20} alkanoyl; C_1 - C_{20} alkoxycarbonyl; C_1 - C_{20} alkoxy; C_1 - C_{20} alkylamino; C_1 - C_{20} alkylamino; carboxyl; cyano; halo; or hydroxy;

B, B' and B" each independently represent; C_2 - C_{20} alkenoyl; aroyl; or aralkanoyl;

or A and B jointly, A' and B' jointly, or A" and B" jointly, independently represent a methylenedioxy or ethylenedioxy group; and

X and X' independently represent >NH, >NR", -O-, or -S-; and

b) a physiologically acceptable carrier.

23.-24. (Cancelled)