plan.md 2025-10-20

Machine Learning Powered Level-Matching Development Plan

Best Model Choice

LightGBM Ranker (pairwise ranking) + hard physics masks + Hungarian assignment.

Why: Tree boosting handles nonlinear feature interactions, missing values, mixed discrete and continuous features, and trains fast on small labels. Ranking fits the natural task: for each level in one scheme, rank candidate matches in the other scheme, then enforce one-to-one globally.

End-to-End Pipeline

1. Per-Scheme Affine Calibration

Fit robust $\mathbf{E}' = \mathbf{a}\mathbf{E} + \mathbf{b}$ per dataset against a reference using RANSAC on coarse nearest neighbors. Use residuals in features. Keep \mathbf{a} and \mathbf{b} as per-scheme metadata.

2. Candidate Generation

For each level A_i, collect B_j with $|E'_A - E_B| \le w$ and $z \le z_{max}$ using $\sigma_{ij} = sqrt(\sigma_A^2 + \sigma_B^2)$. Typical w = 10 to 20 keV, $z_{max} = 4$.

3. Physics Masks

Remove candidates that are hard-forbidden by $\bf L$ or $\bf J\pi$ rules or by reaction selectivity. Keep a soft prior feature for $\bf L$ or $\bf J\pi$ compatibility even when not forbidden.

- 4. Features per Pair (A_i, B_j)
 - Core: z, |ΔΕ|, sign(ΔΕ)
 - Quantum numbers: trinary L match, trinary J π match, parity match, ΔJ
 - Population priors: experiment channel flags, known selectivity, beam-target metadata
 - **Spectroscopy patterns:** γ-out Jaccard on binned energies, top-k line overlap, intensity similarity, branching vector cosine
 - **Structure context:** neighbor spacing similarity before and after, local level density around E, difference in cumulative counts
 - Calibration context: a and b residuals, per-dataset energy scale uncertainty

Missing values are fine. LightGBM handles them.

5. Learning Objective

Train **LightGBM Ranker** with pairwise objective. Group by query = A index. Positives are true matches, negatives are other candidates for the same A. If labels are few, start by heuristics for pseudo-labels, then iterate.

plan.md 2025-10-20

6. Scoring and Assignment

Predict scores $\mathbf{s}_{-}\mathbf{i}\mathbf{j}$. Convert to costs $\mathbf{C}_{-}\mathbf{i}\mathbf{j} = -\log(\mathbf{s}_{-}\mathbf{i}\mathbf{j} + \mathbf{\epsilon})$. Keep only candidates that pass hard masks and $\mathbf{z} \leq \mathbf{z}_{-}\mathbf{max}$. Solve one-to-one with **Hungarian**. If you need monotonicity in energy, use a dynamic-programming matcher with i increasing implies \mathbf{j} increasing.

7. Unmatched Handling

Leave **A_i** or **B_j** unmatched if the best score < threshold or cost > cutoff. Report top-k alternates per **A_i** for curator review.

How to Use with Your Datasets

- 1. Use your first dataset as reference. Fit affine **a**, **b** for each of the other 9 datasets.
- 2. Generate candidates between the reference and each dataset using your **E** and σ **E**, and your **J** π and **L** annotations.
- 3. Start training with a few manually confirmed matches across energy regions. Add hard negatives where $\bf L$ or $\bf J\pi$ is disallowed.
- 4. Run prediction to get a ranked match list with top-1 assignment plus top-3 alternates for review.

Why Not Deep Nets

Tabular, small-to-medium labels, physics rules, and need for interpretability favor gradient-boosted trees and ranking objectives. They are accurate with minimal tuning and give SHAP-style feature attributions for sanity checks.