Introduction

Systèmes Hybrides

Suivi de l'activité de Pilotage 000000

Suivi de Situation AU311 - Opération et Supervision

Charles Lesire-Cabaniols (ONERA / DCSD) charles.lesire@onera.fr

3A-SEM - 2010-2011

SEM AU311 - Suivi de Situation

Suivi de Situation AU311 - Opération et Supervision

Charles Lesire-Cabaniols (ONERA / DCSD) charles.lesire@onera.fr

3A-SEM - 2010-2011

Introduction

Systèmes à événements discrets

Systèmes Hybrides

Suivi de l'activité de Pilotage

SEM AU311 - Suiv	SEM AU311 - Suivi de Situation			SEM AU311 - Suivi de Situation					
Introduction •000000	Introduction Systèmes à événements discrets Systèmes Hybrides Suivi de l'activité de Pilotage ◆0000000 000000000000000000000000000000000000				ge Introduction Systèmes à événements discrets Systèmes Hybrides Suivi de l'activité de Pi				
Autonomie				Suivi de l'état					

Autonomie

Fonctions nécessaires

- Avant la mission :

 - Planification (véhicule)Procédures (opérateur)
- ► En opération :
 - Supervision
 - ► (Re)Planification
 - Gestion des communications
 - Interfaces opérateur
 - ► Suivi de l'état

Suivi de l'état

C'est quoi ?

- ► Suivi de l'état du véhicule
- ► Suivi de l'état de l'environnement
- ► Détection de pannes
- ▶ Diagnostic
- ► Évaluation de la situation
- ► Conscience de la situation
- Prédiction

SEM AU311 - Suiv	SEM AU311 - Suivi de Situation				SEM AU311 - Suivi de Situation				
Introduction	Systèmes à événements discrets	Systèmes Hybrides 00000000	Suivi de l'activité de Pilotage 000000	Introduction	Systèmes à événements discrets	Systèmes Hybrides 00000000	Suivi de l'activité de Pilotage 000000		
Suivi de l'état				Suivi de l'état					

Conscience de situation

Situation awareness involves being aware of what is happening around you to understand how information, events, and your own actions will impact goals and objectives, both now and in the near future.

Suivi de l'état

Pouquoi faire ?

- ▶ Pour :
 - Décider Réagir, Alerter
 - Replanifier, Reconfigurer
- ► Sur la base :
 - des tâches, activités, procédures
 - de l'état de santé du véhicule
 - des ressources disponibles (dont communication)
 - ► de l'état de l'environnement
 - ▶ des actions de l'opérateur

Suisi de l'étest	000000000000000000000000000000000000000	00000000	000000	Cultil de elteration	800000000000000000000000000000000000000	000000000	000000
00000000	000000000000000000000000000000000000000	000000000	000000	00000000	0000000000000000000000000	000000000	000000
Introduction	Systèmes à événements discrets	Systèmes Hybrides	Suivi de l'activité de Pilotage	Introduction	Systèmes à événements discrets	Systèmes Hybrides	Suivi de l'activité de Pilotage

Conscience de situation

Place du Suivi de Situation chez l'opérateur (Endsley, 1995)

Suivi de situation

- ► Situation Awareness : conscience de la situation (par l'opérateur)
- ▶ Situation Assessment : élaboration, évaluation de la situation (algorithmique)
- ▶ 3 niveaux :
 - 1. Perception: acquisition des informations pertinentes, reconnaissance de situations élémentaires ;
 - 2. Compréhension : synthèse des situations perçues, interprétation
 - par rapport aux modèles (environnement, tâches, procédures) ; 3. Projection : prédiction de l'impact des actions en fonction de la situation et des modèles.

SEM AU311 - Suivi d	SEM AU311 - Suivi de Situation				SEM AU311 - Suivi de Situation				
Introduction	Systèmes à événements discrets	Systèmes Hybrides 000000000	Suivi de l'activité de Pilotage 000000	Introduction ○○○○○○●	Systèmes à événements discrets 000000000000000000000000000000000000	Systèmes Hybrides 00000000	Suivi de l'activité de Pilotage 000000		
Suivi de situation				Systèmes continus					

Niveaux de situation (Waltz, 2000)

Approche systèmes continus

- ▶ Filtrage bayésien : estimation des variables d'un système soumis à des perturbations Filtre de Kalman et ses extensions
- ► Filtrage particulaire : estimation de l'état par sélection des particules les plus cohérentes avec les observations

SEM AU311 - Suivi de Situation			SEM AU311 - Suivi de Situation				
Introduction 0000000	Systèmes à événements discrets	Systèmes Hybrides 00000000	Suivi de l'activité de Pilotage 000000	Introduction 0000000	Systèmes à événements discrets	Systèmes Hybrides 00000000	Suivi de l'activité de Pilotage 000000
Introduction				Chroniques			

Approche systèmes à événements discrets

- ► Représentation symbolique de l'état du système Ex. : "le piéton se dirige vers le véhicule" "PA en mode climb"
- ▶ États, transitions, contraintes, incertitudes
- ▶ Mise en correspondance des observations avec le modèle

Chroniques

Définitions

- ▶ Modélisation d'une activité, d'une tâche, d'un comportement... sous forme de contraintes temporelles entre événements ;
- ▶ Algorithme de reconnaissance d'une activité à partir des événements perçus.
- http://crs.elibel.tm.fr/

Chroniques

Définitions

Chronique (Dousson et al., 1993)

Un modèle de chronique C est un couple (S, T) avec

- ► S un ensemble d'événements
- T l'ensemble des contraintes entre les instants de ces événements.

Chroniques

Exemple (Vu Duong, 2001)

SEM AU311 - Suivi de Situation				SEM AU311 - Suivi de Situation				
Introduction 00000000	Systèmes à événements discrets	Systèmes Hybrides 000000000	Suivi de l'activité de Pilotage 000000	Introduction 0000000	Systèmes à événements discrets	Systèmes Hybrides 000000000	Suivi de l'activité de Pilotage 000000	
Chroniano				Chroniause				

Reconnaissance de Chroniques

Reconnaissance de Chroniques

- ► Propagation de contraintes,
- ► Factorisation de l'arbre,
- ▶ Notion de "sous-chronique".
- ▶ Méthodes d'apprentissage de chroniques...
- Application à la détection de fautes dans les réseaux de télécommunications.

SEM AU311 - Suivi de Situation			SEM AU311 - Suivi de Situation				
Introduction 0000000	Systèmes à événements discrets	Systèmes Hybrides 00000000	Suivi de l'activité de Pilotage 000000	Introduction 0000000	Systèmes à événements discrets	Systèmes Hybrides 00000000	Suivi de l'activité de Pilotage 000000
Chroniques				Chroniques			

Diagnostic d'arythmies cardiaques (Quiniou et al., 2008)

Contraction cardiaque et ECG

Principe de reconnaissance de pathologies

Diagnostic d'arythmies cardiaques (Quiniou et al., 2008)

SEM AU311 - Suivi de Situation

SEM AU311 - Suivi de Situation

Introduction 00000000	Systèmes à événements discrets	Systèmes Hybrides 000000000	Suivi de l'activité de Pilotage 000000	Introduction 00000000	Systèmes à événements discrets	Systèmes Hybrides 000000000	Suivi de l'activité de Pilotage 000000
Chroniques				Automates			

Reconnaissance d'activités sur vidéos (Rota et Thonnat, 2000)

Reconnaissance d'une scène de prise d'hotage dans une banque

Automates

- ► Approche "systémique",
- ► Modélisation du comportement,
- ▶ Utilisation des événements pour "jouer" l'automate.

SEM AU311 - Suivi de Situation				SEM AU311 - Suivi de Situation				
Introduction 00000000	Systèmes à événements discrets	Systèmes Hybrides 00000000	Suivi de l'activité de Pilotage 000000	Introduction 00000000	Systèmes à événements discrets ○○○○○○○○○◆○○○○○○○○○○○	Systèmes Hybrides 000000000	Suivi de l'activité de Pilotage 000000	
Automates				Automates				

Automates

Définition

Automate

Un automate est un 4-uplet $A = (\Sigma, Q, Q_0, T)$:

- ightharpoonup est un alphabet fini,
- ▶ Q est l'ensemble des places (états, lieus, localités),
- ▶ Q₀ est l'ensemble des places initiales,
- ▶ $T \subset Q \times Sigma \times Q$ est la fonction de transition.

 $e=< q, a, q^\prime >$ est une transition de la place q vers la place q^\prime étiquetée par la lettre a.

Automates

Exemple

$$\Sigma \leftarrow babaab$$

SEM AU311 - Suiv	SEM AU311 - Suivi de Situation				SEM AU311 - Suivi de Situation				
Introduction 00000000	Systèmes à événements discrets	Systèmes Hybrides 00000000	Suivi de l'activité de Pilotage 000000	Introduction 0000000	Systèmes à événements discrets	Systèmes Hybrides 00000000	Suivi de l'activité de Pilotage 000000		
Automates				Automates					

Automates

Non-déterminisme

Non-déterminisme

- ► Événements non-observables (ex. : pannes),
- ► Effets non-déterministes,
- ▶ Différentes modélisation (ensembliste, probabiliste, floue. . .)

Automates

Non-déterminisme

Σ ← babaab

Introduction 00000000	Systèmes à événements discrets	Systèmes Hybrides 000000000	Suivi de l'activité de Pilotage 000000	Introduction 00000000	Systèmes à événements discrets	Systèmes Hybrides 000000000	Suivi de l'activité de Pilotage 000000
Automates				Automates			

Automates

Exemple : Détection de pannes

On reçoit les événements a puis b : quels états possibles ? panne possible ?

Automates

Exemple: Rover martien (Williams et al., 2004)

SEM AU311 - Suiv	SEM AU311 - Suivi de Situation				SEM AU311 - Suivi de Situation				
Introduction 00000000	Systèmes à événements discrets	Systèmes Hybrides 000000000	Suivi de l'activité de Pilotage 000000	Introduction 00000000	Systèmes à événements discrets ○○○○○○○○○○○○○○○○○○○○○○○○○	Systèmes Hybrides 000000000	Suivi de l'activité de Pilotage 000000		
Automates				Automates					

Automates

Exemple: Rover martien (Williams et al., 2004)

Automates

- ▶ Modèle riche (extension temporelles, probabilistes...),
- ► Estimation de l'état discret,
- ► Détection de modes défaillants.

SEM AU311 - Suivi de Situation			SEM AU311 - Suivi de Situation				
Introduction 00000000	Systèmes à événements discrets	Systèmes Hybrides 00000000	Suivi de l'activité de Pilotage 000000	Introduction 0000000	Systèmes à événements discrets	Systèmes Hybrides 00000000	Suivi de l'activité de Pilotage 000000
Réseaux de Petri				Réseaux de Petri			

Kalmansymbo (Tessier, 2003)

- ▶ Basé sur les réseaux de Petri,
- ► Principe d'estimation récursif (prédiction/recalage),
- Basé sur les similitudes entre propriétés.

Kalmansymbo (Tessier, 2003)

Modèles de Départ-Véhicule (gauche) et Déplacement-Piéton (droite)

Réseaux de Petri Réseaux de Petri

Kalmansymbo (Tessier, 2003)

- Image acquise et traitée.
- Un piéton se déplace vers un véhicule.
- Le piéton est proche du
- Le piéton disparaît de
- Le véhicule se déplace.

Kalmansymbo

- ▶ Modélisation des comportements du système,
- Prédiction,
- Gestion de l'incertitude,
- ▶ Étape de prétraitement conséquente.

SEM AU311 - Suivi d	- Suivi de Situation			SEM AU311 - Suivi de Situation				
Introduction 00000000	Systèmes à événements discrets	Systèmes Hybrides 000000000	Suivi de l'activité de Pilotage 000000	Introduction 00000000	Systèmes à événements discrets	Systèmes Hybrides 000000000	Suivi de l'activité de Pilotage 000000	
Réseaux Bavésiens				Réseaux Bavésiens				

Réseaux Bayésiens

- ▶ Permet de modéliser des connaissances incomplètes ;
- ▶ 2 aspects :
 - ► Un graphe orienté acyclique :
 - un noeud représente une variable aléatoire discrète ;
 - un arc représente l'influence directe entre variables ;
 - ▶ Une distribution de probabilité pour chaque nœud :
 - Conditionnée par les variables "parentes".

Réseaux Bayésiens

- ► Formalisme de base :
 - Statique (pas d'évolution temporelle)
- ► Extensions :
 - Réseaux Bayésiens dynamiques

SEM AU311 - Suivi	i de Situation			SEM AU311 - Suivi de Situation				
Introduction 00000000	Systèmes à événements discrets	Systèmes Hybrides 000000000	Suivi de l'activité de Pilotage 000000	Introduction 0000000	Systèmes à événements discrets	Systèmes Hybrides 000000000	Suivi de l'activité de Pilotage 000000	
Réseaux Bayésiens				Réseaux Bayésiens				

Réseaux Bayésiens

Utilisation

- lacktriangle Inférence : obtenir la probabilité d'un ensemble de variables Rétant donné la valeur des variables ${\it C}\,$;
 - $P(a) + P(\overline{a}) = 1$

 - ► $P(a \land b) = P(a) \times P(b|a)$ ► $P(a|b) = \frac{P(b|a) \times P(a)}{P(b)}$ (règle de Bayes)
- ▶ Apprentissage : estimer la structure (graphe) et les paramètres (probabilités) du modèle à partir de données statistiques D.

Réseaux Bayésiens

Exemple

- ▶ Je souhaite acheter une voiture modèle X ;
- ▶ AutoPlus indique que 30% ont des problèmes de transmission ;
- ▶ Je peux faire essayer une voiture par un ami mécano :
 - ▶ Il reconnait 90% des voitures défectueuses ;
 - ▶ Il reconnait 80% des voitures non défectueuses.
- Questions :
 - ▶ Probabilité d'acheter une voiture non défectueuse sachant que le diagnostic la reconnait comme non défectueuse ?
 - ▶ Probabilité d'acheter une voiture non défectueuse (sans diagnostic) ?
 - Probabilité d'acheter une voiture non défectueuse sachant que le diagnostic la reconnait comme défectueuse ?

Introduction	Systèmes à événements discrets	Systèmes Hybrides	Suivi de l'activité de Pilotage	Introduction	Systèmes à événements discrets	Systèmes Hybrides	Suivi de l'activité de Pilotage
00000000	000000000000000000000000000		000000	00000000	00000000000000000000000000	o●o○○○○○	000000
Automates Hybrides				Automates Hybrides			

Automates hybrides (Alur et al., 1993)

$Off \\ \dot{x} = -0.1 x \\ x \ge 18$ x < 19 $0n \\ \dot{x} = 5 - 0.1 x \\ x \le 22$

Automate hybride d'un thermostat

Automates hybrides

- ► Mesure numérique → vecteur d'état du système,
- ► Technique de filtrage numérique,
- ▶ Situation : état de l'automate
- ⇒ Estimation de mode.
 - ► Automates hybrides probabilistes + filtres de Kalman (Hofbaur et Williams, 2002),
 - Automates hybrides + filtrage particulaire (Koutsoukos et al., 2003).

SEM AU311 - Suivi de	de Situation			SEM AU311 - Suivi de Situation				
Introduction 00000000	Systèmes à événements discrets	Systèmes Hybrides	Suivi de l'activité de Pilotage 000000	Introduction 0000000	Systèmes à événements discrets	Systèmes Hybrides ○○●00000	Suivi de l'activité de Pilotage 000000	
Automates Hybrides				Réseaux de Petri hy	brides			

Automates hybrides

Filtrage particulaire

Réseaux de Petri particulaires (Lesire et Tessier, 2005)

- $lackbox{ RdP}
 ightarrow { ext{dynamique discrète}}$
- ▶ Marquage → état discret
- ightharpoonup Jeton numérique ightarrow état hybride
- ightharpoonup Eq. Dif. ightarrow dynamique hybride
- ightharpoonup Particules ightarrow incertitude hybride
- $\begin{tabular}{ll} \hline & Macro-marquage \rightarrow incertitude & \dot{z}=0 \\ & symbolique \\ \hline \end{tabular}$

SEM AU311 - Suivi de Situation			SEM AU311 - Suivi de Situation				
Introduction 00000000	Systèmes à événements discrets	Systèmes Hybrides	Suivi de l'activité de Pilotage 000000	Introduction 0000000	Systèmes à événements discrets	Systèmes Hybrides	Suivi de l'activité de Pilotage 000000
Réceaux de Petri hybrides			Réseaux de Petri hybrides				

Réseaux de Petri particulaires

Réseaux de Petri particulaires

- ► Modèle riche
- ► Pas d'interaction continu/discret lors du recalage
- ⇒ détection d'incohérences

Réseaux de Petri particulaires

- Places numériques, associées à des équations d'évolution (modes continus);
- Places symboliques, associées à des configurations (modes discrets);
- ▶ Transitions représentant les changements de mode, selon :
 - l'évolution continue (gardes sur les paramètres du vecteur d'état) :
 - ▶ l'évolution discrète (actions / événements externes) ;
- Marquage hybride
 - jetons noirs dans les places symboliques (modes discrets possibles du systèmes)
 - particules dans les places numériques (distribution sur le vecteur d'état)

Réseaux de Petri particulaires

SEM AU311 - Suiv	SEM AU311 - Suivi de Situation			SEM AU311 - Suivi de Situation			
Introduction 00000000	Systèmes à événements discrets 000000000000000000000000000000000000	Systèmes Hybrides ○○○○○○○	Suivi de l'activité de Pilotage 000000	Introduction 00000000	Systèmes à événements discrets 000000000000000000000000000000000000	Systèmes Hybrides 000000000	Suivi de l'activité de Pilotage •00000
Réseaux de Petri h	vhrides			Ghost			

Réseaux de Petri particulaires

- ▶ $\frac{\text{nombre de particulares dans }p}{\text{nombre de particles}} = \frac{|\mathcal{M}(p)|}{N} = \text{probabilité d'être dans le mode numérique associté à }p$
- ▶ On agrège donc cette information, pour avoir :
 - ▶ une proba pour chaque place numérique
 - ▶ un classement pour chaque place symbolique
- ightharpoonup On regarde le couple (p,q) le plus vraissemblable $:\longrightarrow$ est-il accessible depuis le marquage initial ?

Suivi de l'activité de pilotage (Dehais et al., 2005)

- ▶ Le système avion—pilote est hybride :
 - ► Dynamique continue de l'avion,
 - Actions discrètes du pilote.
- ► Modélisation sous forme de réseau de Petri particulaire
- ▶ Intégration de mécanisme de détection de conflits

SEM AU311 - Suivi de Situation			SEM AU311 - Suivi de Situation				
Introduction 0000000	Systèmes à événements discrets	Systèmes Hybrides 00000000	Suivi de l'activité de Pilotage o●oooo	Introduction 0000000	Systèmes à événements discrets	Systèmes Hybrides 00000000	Suivi de l'activité de Pilotage oo●ooo
Ghost			<u> </u>	Ghost			

Suivi de l'activité de pilotage

- ► Modélisation de la trajectoire avion
- ► De sa configuration (volets, train...)
- Du comportement du PA (modes, transitions)
- Des actions pilotes (en lien avec PA / conf.)
- ► Détection d'incohérences
- ► Identification de modes défaillants

Suivi de l'activité de pilotage

Introduction	Systèmes à événements discrets	Systèmes Hybrides	Suivi de l'activité de Pilotage	Introduction	Systèmes à événements discrets	Systèmes Hybrides	Suivi de l'activité de Pilotage
00000000	000000000000000000000000000	000000000	000€00	00000000	000000000000000000000000000000000000	000000000	0000•0

Suivi de l'activité de pilotage

Suivi de l'activité de pilotage

SEM AU311 - Suivi de Situation

Estimation et détection d'incohérences \rightarrow incohérence détectée à partir de t=60

71 de Situation		
Systèmes à événements discrets	Systèmes Hybrides 000000000	Suivi de l'activité de Pilotage 00000●
		Systèmes à événements discrets Systèmes Hybrides

Suivi de l'activité de pilotage

Conclusion

- ▶ Formalisme pour le suivi du comportement avion-pilote
- $\blacktriangleright \ \, \text{D\'etection d'incoh\'erences} \to \text{conflits}$
- ► Prédiction de conflits
- ▶ Utilisation de données physio pour l'état du pilote
- Assistance au pilotage (présentation des infos estimation)
- ► Automatisation (partielle) de certaines procédures

SEM AU311 - Suivi de Situation