MATC34 Exam Study

Anmol Bhullar

December 13, 2017

Part 1 Preliminaries to Complex Analysis 1.1 Basic Properties

Definition 0.1. A **complex number** takes the form z = x + iy where x and y are real, and i the imaginary number that satisfies $i^2 = -1$. x and y are said to be the **real part** and the **imaginary part** of z, respectively, and we write

$$x = \operatorname{Re}(z)$$
 and $y = \operatorname{Im}(z)$

A complex number with zero real part is said to be **purely imaginary**. The set of all numbers of the form z = x + iy is denoted by \mathbb{C} .

The natural rules for adding and multiplying complex numbers are:

$$z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2)$$

and

$$z_1 z_2 = (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + y_1 x_2)$$

 $\mathbb C$ is a field with these operations so 0 is the additive identity, 1 is the multiplicative identity, and $\mathbb C$ has the properties of commutativity, associativity and distributivity.

Addition of complex numbers can be seen as the addition of two vectors in \mathbb{R}^2 . Multiplication, however consists of a rotation composed with a dilation, where multiplication by i specifically, corresponds to a rotation by an angle of $\pi/2$.

Definition 0.2. The notion of length, or absolute value of a complex number is identical to the notion of Euclidean length in \mathbb{R}^2 . Define the **absolute value** of a complex number z = x + iy by

$$|z| = (x^2 + y^2)^{\frac{1}{2}}$$

so that |z| is precisely the distance from the origin to the point (x, y). Note this is a norm, so the triangle inequality holds as well for all points in \mathbb{C} .

Definition 0.3. The complex conjugate of z = x + iy is defined by

$$\overline{z} = x - iy,$$

and it is obtained by a reflection across the real axis in the plane. One can show that a complex number is real if and only if $z = \overline{z}$, and it is purely imaginary if and only if $z = -\overline{z}$.

Lemma 1 (Results of conjugation). One has,

$$\operatorname{Re}(z) = \frac{z + \overline{z}}{2}$$
 and $\operatorname{Im}(z) = \frac{z - \overline{z}}{2i}$

Furthermore,

$$|z|^2 = z\overline{z}$$
 and as a consequence $\frac{1}{z} = \frac{\overline{z}}{|z|^2}$

whenever $z \neq 0$.

Definition 0.4. Any non-zero complex number z can be written in **polar form**

$$z = re^{i\theta}$$

where r > 0; also $\theta \in \mathbb{R}$ is called the **argument** of z (defined uniquely up a multiple of 2π) and is often denoted by $\arg z$, and

$$e^{i\theta} = \cos\theta + i\sin\theta.$$

Since $|e^{i\theta}| = 1$ we observe that r = |z|, and θ is simply the angle (with positive counterclockwise orientation) between the positive real axis and half-line starting at the origin and passing through z.

Figure 2. The polar form of a complex number

Finally, note that if $z = re^{i\theta}$ and $w = se^{i\varphi}$, then

$$zw = rse^{i(\theta + \varphi)}$$
.

so multiplication by a complex number corresponds to a homothety in \mathbb{R}^2 (that is, a rotation composed with a dilation).

2.1 Functions on the complex plane

Definition 0.5. Let f be a function defined on a set Ω of complex numbers. We say that f is **continuous** at the point $z_0 \in \Omega$ if for every $\epsilon > 0$ there exists $\delta > 0$ such that whenever $z \in \Omega$ and $|z - z_0| < \Omega$ then $|f(z) - f(z_0)| < \epsilon$. Equivalently, if for every sequencec $\{z_1, z_2, \ldots\} \subseteq \Omega$ such that $\lim z_n = z_0$, then $\lim f(z_n) = f(z_0)$. The function f is said to be continuous on Ω if it is continuous at every point of Ω .

Definition 0.6. We say that f attains a maximum at the point $z_0 \in \Omega$ if

$$|f(z)| \le |f(z_0)|$$
 for all $z \in \Omega$

with the inequality reversed for the definition of a minimum.

2.2 Holomorphic functions

Definition 0.7. Let Ω be an open set in \mathbb{C} and f a complex-valued function on Ω . The function f is **holomorphic at the point** $z_0 \in \Omega$ if the quotient

$$\frac{f(z_0 + h) - f(z_0)}{h} \tag{1}$$

converges to a limit when $h \to 0$. Here $h \in \mathbb{C}$ and $h \neq 0$ with $z_0 + h \in \Omega$, so that the quotient is well defined. The limit of the quotient, when it exists, is denoted by $f'(z_0)$, and is called the **derivative of** f **at** z_0 :

$$f'(z_0) = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}$$

The function f is said to be **holomorphic on** Ω if f is holomorphic at every point of Ω . If f is holomorphic in all of \mathbb{C} we say that f is **entire**.

Example. The function $f(z) = \overline{z}$ is not holomorphic. Indeed, we have

$$\frac{f(z_0+h)-f(z_0)}{h} = \frac{\overline{h}}{h}$$

which has no limit as $h \to 0$, as one can see by first taking h real and then h purely imaginary.

Example. In terms of real variables, the function $f(z) = \overline{z}$ corresponds to the map $F:(x,y) \mapsto (x,-y)$ which is differentiable in the real sense. Its derivative at a point is the linear map given by its Jacobian, the 2×2 matrix of partial derivatives of the coordinate functions. In fact, F is linear and is therefore equal to its derivative. This implies F is actually indefinitely differentiable. In particular, the existence of the real derivative need not guarantee that f is holomorphic.

Cauchy-Riemann Equations

Associate to each complex-valued function f = u + iv the mapping F(x, y) = (u(x, y), v(x, y)) from \mathbb{R}^2 to \mathbb{R}^2 .

Recall that a function F(x,y) = (u(x,y),v(x,y)) is said to be differentiable at a point $P_0 = (x_0,y_0)$ if there exists a linear transformation $J: \mathbb{R}^2 \to \mathbb{R}^2$ such that

$$\frac{\left|F(P_0+H)-F(P_0)-J(H)\right|}{|H|}\to 0 \quad \text{as } H\to 0, H\in\mathbb{R}^2$$
 (2)

Equivalently, we can write

$$F(P_0 + H) - F(P_0) = J(H) + |H| \Psi(H),$$

with $|\Psi(H)| \to 0$ as $|H| \to 0$. The linear transformation J is unique and is called the derivative of F at P_0 . If F is differentiable of u and v exist, and the linear transformation J is described in the standard basis of \mathbb{R}^2 by the Jacobian matrix of F

$$J = J_F(x, y) = \begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{pmatrix}$$

Consider the limit in (2) when h is first real, say $h = h_1 + ih_2$ with $h_2 = 0$. Then, if we write z = x + iy, $z_0 = x_0 + iy_0$, and f(z) = f(x, y), we find that

$$f'(z_0) = \lim_{h_1 \to 0} \frac{f(x_0 + h_1, y_0) - f(x_0, y_0)}{h_1}$$
$$= \frac{\partial f}{\partial x}(z_0),$$

where $\partial/\partial x$ denotes the usual partial derivative in the x variable. Now taking h purely imaginary, say $h = ih_2$, a similar argument yields

$$f'(z_0) = \lim_{h_2 \to 0} \frac{f(x_0, y_0 + h_2) - f(x_0, y_0)}{ih_2}$$
$$= \frac{1}{i} \frac{\partial f}{\partial y}(z_0),$$

where $\partial/\partial y$ is partial differentiation in the y variable. Therefore, if f is holomorphic we have shown that

 $\frac{\partial f}{\partial x} = \frac{1}{i} \frac{\partial f}{\partial y}.$

Writing f = u + iv, we find that separating real and imaginary parts and using 1/i = -i, that the partials of u and v exist, and they satisfy the following non-trivial relations

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$.

These are the Cauchy-Riemann equations. We can also say:

$$\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} + \frac{1}{i} \frac{\partial}{\partial y} \right) \quad \text{and} \quad \frac{\partial}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} - \frac{1}{i} \frac{\partial}{\partial y} \right).$$

Proposition 1. If f is holomorphic at z_0 , then

$$\frac{\partial f}{\partial \overline{z}}(z_0) = 0$$
 and $f'(z_0) = \frac{\partial f}{\partial z}(z_0) = 2\frac{\partial u}{\partial z}(z_0).$

Also, if we write F(x,y)=f(z), then F is differentiable in the sense of real variables, and

$$\det J_F(x_0, y_0) = |f'(z_0)|^2$$

Theorem 2. Suppose f = u + iv is a complex-valued function defined on an open set Ω . If u and v are continuously differentiable and satisfy the Cauchy-Riemann equations on Ω , then f is holomorphic on Ω and $f'(z) = \partial f/\partial z$.

2.3 Power Series

Example. A prime example of a power series is the complex **exponential** function, which is defined for $z \in \mathbb{C}$ by

$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}.$$

Definition 0.8. In general, a **power series** is an expansion of the form

$$\sum_{n=0}^{\infty} a_n z^n,\tag{3}$$

where $a_n \in \mathbb{C}$.

Definition 0.9. Given a power series $\sum_{n=0}^{\infty} a_n z^n$, there exists $0 \le R \le \infty$ such that:

- 1. If |z| < R the series absolutely converges.
- 2. If |z| < R the series diverges.

Moreover, if we use the convention that $1/0 = \infty$ and $1/\infty = 0$, then R is given by Hadamard's formula

$$1/R = \lim \sup |a_n|^{1/n}$$

The number R is called the **radius of convergence** of the power series, and the region |z| < R the **disc of convergence**.

Example. In particular, we have $R = \infty$ in the case of the exponential function. In contrast, the geometric series

$$\sum_{n=0}^{\infty} z^n$$

converges absolutely only in the disc|z| < 1 (since its sum is equal to the function $^{1}/_{(1-z)}$ which is holomorphic in the open set $\mathbb{C}-1$) so R=1 for the geometric series.

Remark. On the boundary of the disk of the convergence, |z| = R, the situation is more delicate as one can have either convergence or divergence. For example, the power series $\sum nz^n$ does not converge on any point of the unit circle but the power series $\sum z^n/n^2$ converges at every point of the unit circle.

Example. The power series of the **standard trigonometric functions** are defined by

$$\cos z = \sum_{n=0}^{\infty} (-1)^n \frac{z^n}{(2n)!}, \quad and \quad \sin z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!},$$

and they agree with the usual cosine and sine of a real argument whenever $z \in \mathbb{R}$. Furthermore, we have the **Euler formulas** for sine and cosine functions,

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}$$
 and $\sin z = \frac{e^{iz} - e^{-iz}}{2i}$

Theorem 3. The power series $f(z) = \sum_{n=0}^{\infty} a_n z^n$ defines a holomorphic function in its disc of convergence. The derivative of f is also a power series obtained by differentiating term by term the series of f, that is,

$$f'(z) = \sum_{n=0}^{\infty} n a_n z^{n-1}$$

Moreover, f' has the same radius of convergence as f'.

Corollary 3.1. A power series is infinitely complex differentiable in its disc of convergence, and the higher derivatives are also power series obtained by termwise differentiation.

Definition 0.10. A function f is defined on an open set Ω is said to be **analytic** (or have a **power series expansion**) at a point $z_0 \in \Omega$ if there exists a power series $\sum a_n(z-z_0)^n$ centered at z_0 , with a positive radius of convergence, such that

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$
 for all z in a neighborhood of z_0 .

If f has a power series expansion at every point in Ω , we say that f is **analytic** on Ω .

All holomorphic functions are analytic and vice versa.

3 Integration along curves

Definition 0.11. A parameterized curve is a function z(t) which maps a closed interval $[a,b] \subseteq \mathbb{R}$ to the complex plane. We say that the parameterized curve is **smooth** if z'(t) exists and is continuous on [a,b] and $z'(t) \neq 0$ for $t \notin [a,b]$. At the points t=a and t=b, the quantities z'(a) and z'(b) are interpreted as one-sided limits

$$z'(a) = \lim_{h \to 0, h > 0} \frac{z(a+h) - z(a)}{h}$$
 and $z'(b) = \lim_{h \to 0, h < 0} \frac{z(b+h) - z(b)}{h}$

Similarly, we say that the parameterized curve is **piecewise smooth** if z is continuous on [a, b] and if there exist points

$$a = a_0 < a_1 < \ldots < a_n = b$$

where z(t) is smooth in the intervals $[a_k, a_{k+1}]$. Two parameterizations,

$$z:[a,b]\to\mathbb{C}$$
 and $\tilde{z}:[c,d]\to\mathbb{C}$,

are **equivalent** if there exists a continuously differentiable bijection $s \mapsto t(s)$ from [c,d] to [a,b] so that t'(s) > 0 and

$$\tilde{z}(s) = z(t(s)).$$

A smooth or piecewise-smooth curve is **closed** if z(a) = z(b) for any of its parameterizations. Finally, a smooth or piecewise-smooth curve is **simple** if it is not self-intersecting, that is, $z(t) \neq z(s)$ unless s = t. If a curve is closed to begin with, then we say that it is simple whenever $z(t) \neq z(s)$ unless s = t, or s = a and t = b.

Example. Consider the circle $C_r(z_0)$ centered at z_0 and of radius r, which by definition is the set

$$C_r(z_0) = \{ z \in \mathbb{C} : |z - z_0| = r \}.$$

The positive orientation (counterclockwise) is the one that is given by the standard parameterization

$$z(t) = z_0 + re^{it}, \quad whenever t \in [0, 2\pi],$$

while the negative orientation (clockwise) is given by

$$z(t) = z_0 + re^{-it}, \quad whenever t \in [0, 2\pi].$$

In general, we shall consider a circle with the positive orientation.

Definition 0.12. Given a smooth curve γ in \mathbb{C} parameterized by $z : [a, b] \to \mathbb{C}$, and f a continuous function on γ , we define the **integral of** f **along** γ by

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(z(t))z'(t)dt.$$

In order for this to be meaninful, we have to show this integral is *independent* of the parameterization we choose. Say that \tilde{z} is an equivalent parameterization as above. Then the change of variables of formula and the chain rule imply that

$$\int_a^b f(z(t))z'(t)dt = \int_c^d f(z(t(s)))z'(t(s))t'(s)ds = \int_c^d f(\tilde{z}(s))\tilde{z}'(s)ds.$$

This proves that the integral of f over γ is well defined.

Definition 0.13. By definition, the **length** of the smooth curve γ is

$$lenght(\gamma) = \int_{a}^{b} |z'(t)| dt.$$

Proposition 2. Integration of continuous functions over curves satisfies the following properties:

1. It is linear, that is, if $\alpha, \beta \in \mathbb{C}$, then

$$\int_{\gamma} (\alpha f(z) + \beta g(z)) dz = \alpha \int_{\gamma} f(z) dz + \beta \int_{\gamma} g(z) dz.$$

2. If γ^- is γ with the reverse orientation, then

$$\int_{\gamma} f(z)dz = -\int_{\gamma^{-}} f(z)dz.$$

3. One has the inequality

$$\left| \int_{\gamma} f(z) dz \right| \leq \sup_{z \in \gamma} |f(z)| \cdot \operatorname{lenght}(\gamma).$$

Theorem 4. If a continuous function f has a primitive F in Ω , and γ is a curve in Ω that begins at ω_1 and ends at ω_2 , then

$$\int_{\gamma} f(z)dz = F(w_2) - F(w_1)$$

Corollary 4.1. If γ is a closed curve in an open set Ω , and f is continuous and has a primitive in Ω , then

$$\int_{\gamma} f(z)dz = 0.$$

Corollary 4.2. If f is holomorphic in a region Ω and f'=0, then f is constant.

Part 2 Cauchy's Theorem and Its Applications 1 Goursat's theorem

Theorem 5. If Ω is an open set in \mathbb{C} , and $T \subseteq \Omega$ a triangle whose interior is also contained in Ω , then

$$\int_T f(z)dz = 0$$

whenever f is holomorphic in Ω .

Corollary 5.1. If f is holomorphic in an open set Ω that contains a rectangle R and its interior, then

$$\int_{R} f(z)dz = 0.$$

2 Local existence of primitives and Cauchy's theorem in a disc

Theorem 6. A holomorphic function in an open disc has a primitive in that disc.

Theorem 7 (Cauchy's theorem for a disc). If f is holomorphic in a disc, then

$$\int_{\gamma} f(z)dz = 0$$

for any closed curve γ in that disc.

Corollary 7.1. Suppose f is holomorphic in an open set containing the circle C and its interior. Then

$$\int_C f(z)dz = 0$$

3 Evaluation of some integrals

Example. We show that if $\xi \in \mathbb{R}$, then

$$e^{-\pi\xi^2} = \int_{-\infty}^{\infty} e^{-\pi x^2} e^{-2\pi i x \xi} dx \tag{4}$$

If $\xi = 0$, the formula is precisely the known integral

$$1 = \int_{-\infty}^{\infty} e^{-\pi x^2} dx.$$

Now suppose that $\xi > 0$, and consider the function $f(z) = e^{-\pi z^2}$, which is entire, and in particular holomorphic in the interior of the toy contour

Figure 8. The contour γ_R in Example 1

The contour γ_R consists of a rectangle with vertices $R, R + i\xi, -R + i\xi, -R$ and the positive counterclockwise orientation. By Cauchy's theorem,

$$\int_{\gamma_R} f(z)dz = 0 \tag{5}$$

The integral over the real segment is simply

$$\int_{-R}^{R} e^{-\pi x^2} dx,$$

which converges to 1 as $R \to \infty$. The integral on the vertical side on the right is

$$I(R) = \int_0^{\xi} f(R+iy)idy = \int_0^{\xi} e^{-\pi(R^2 + 2iRy - y^2)}idy.$$

This integral goes to 0 as $R \to \infty$ since ξ is fixed and we may estimate it by

$$|I(R)| \le Ce^{-\pi R^2}.$$

The integral over the vertical segment on the left also goes to 0 as $R \to \infty$ for the same reasons. Finally, the integral over the horizontal segment on top is

$$\int_{-R}^{R} e^{-\pi(x+i\xi)^2} dx = -e^{\pi\xi^2} \int_{-R}^{R} e^{-\pi x^2} e^{-2\pi i x \xi} dx.$$

Therefore, we find in the limit as $R \to \infty$ that (5) gives

$$0 = 1 - e^{\pi \xi^2} \int_{-\infty}^{\infty} e^{-\pi x^2} e^{-2\pi i x \xi} dx,$$

and our desired formula is established. In the case $\xi < 0$, we then consider the symmetric rectangle, in the lower half plane.

4 Cauchy's integral formulas

Theorem 8. Suppose f is holomorphic in an open set that contains the closure of a disc D. If C denotes the boundary circle of this disc with the positive orientation, then

$$f(z) = \frac{1}{2\pi i} \int_C \frac{f(\zeta)}{\zeta - z} d\zeta$$
 for any point $z \in D$.

Remark. Our earlier discussion of toy contours provides simple extensions of the Cauchy integral formula; for instance, if f is holomorphic in an open set that contains a (positively oriented) rectangle R and its interior, then

$$f(z) = \frac{1}{2\pi i} \int_{R} \frac{f(\zeta)}{\zeta - z} d\zeta,$$

whenever z belongs to the interior of R. To establish this result, it suffices to repeat the proof of Theorem 4.1 replacing the "circular" keyhole with a "rectangular" keyhole.

Corollary 8.1. If f is holomorphic in an open set Ω , then f has infinitely many complex derivations in Ω . Moreover, if $C \subseteq \Omega$ is a circle whose interior is also contained in Ω , then

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_C \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta$$

for all z in the interior of C.

Definition 0.14. The formulas in the above theorem and corollary are said to be the **Cauchy integral formulas**.

Corollary 8.2 (Cauchy's inequalities). If f is holomorphic in an open set that contains the closure of a disc D centered at z_0 and of radius R, then

$$\left| f^{(n)}(z_0) \right| \le \frac{n! \|f\|_C}{R^n},$$

where $||f||_C = \sup_{z \in C} |f(z)|$ denotes the supremum of |f| on the boundary circle C.

Theorem 9. Suppose f is holomorphic in an open set Ω . If D is a disc centered at z_0 and whose closure is contained in Ω . If D is a disc centered at z_0 and whose closure is contained in Ω , then f has a power series expansion at z_0

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

for all $z \in D$, and the coefficients are given by

$$a_n = \frac{f^{(n)}(z_0)}{n!}$$
 for all $n \ge 0$

Corollary 9.1 (Liouville's theorem). If f is entire and bounded, then f is constant.

Corollary 9.2. Every non-constant polynomial $P(z) = a_n z^n + \ldots + a_0$ with complex coefficients has a root in \mathbb{C} .

Corollary 9.3. Every polynomial $P(z) = a_n z^n + \ldots + a_0$ of degree $n \ge 1$ has precisely n roots in \mathbb{C} . If these roots are denoted by $\omega_1, \ldots, \omega_n$, then P can be factored as

$$P(z) = a_n(z - \omega_1)(z - \omega_2) \cdots (z - \omega_n).$$

Theorem 10. Suppose f is a holomorphic function in a region Ω that vanishes on a sequence of distinct points with a limit point in Ω . Then f is identically θ .

In other words, if the zeros of a holomorphic function f in the connected set Ω accumulate $in \Omega$, then f = 0.

Corollary 10.1. Suppose f and g are holomorphic in a region Ω and f(z) = g(z) for all z in some non-empty open subset of Ω (or more generally for z in some sequence of distinct points with limit point in Ω). Then f(z) = g(z) throughout Ω .

Suppose we are given a pair of functions f and F analytic in regions Ω and Ω' , respectively, with $\Omega \subseteq \Omega'$. If the two functions agree on the smaller set Ω , we say that F is an **analytic continuation** of f into the region Ω' . The corollary then guarantees that there can only be one such analytic continuation, since F is uniquely determined by f.

5 Further applications

5.1 Morera's Theorem

Theorem 11. Suppose f is a continuous function in the open disc D such that for any triangle T contained in D

$$\int_T f(z)dz = 0,$$

then f is holomorphic.

5.4 Schwarz reflection principle

Let Ω be an open subset of $\mathbb C$ that is symmetric with respect to the real line, that is

$$z \in \Omega$$
 if and only if $\overline{z} \in \Omega$

Let Ω^+ denote the part of Ω that lies in the upper half plane and ω^- that part that lies in the lower half-plane.

Also, let $I = \Omega \cap \mathbb{R}$ so that I denotes the interior of the part of the boundary of Ω^+ and Ω^- that lies on the real axis. Then we have

$$\Omega^+ \cup I \cup \Omega^- = \Omega$$

and the only interesting case of the next theorem occurs, of cours, when I is non-empty.

Theorem 12 (Symmetry principle). If f^+ and f^- are holomorphic functions in Ω^+ and Ω^- respectively, that extend continuously to I and

$$f^+(x) = f^-(x)$$
 for all $x \in I$

then the function f defined on Ω by

$$\begin{cases} f^+(z) & if z \in \Omega^+, \\ f^+(z) = f^-(z) & if z \in I, \\ f^-(z) & if z \in \Omega^- \end{cases}$$

is holomorphic on all of Ω .

Theorem 13 (Schwarz reflection principle). Suppose that f is a holomorphic function in Ω^+ that extends continuously to I and such that f is real-valued on I. Then there exists a function F holomorphic in all of Ω such that F = f on Ω^+ .

Part 3 Meromorphic Functions and the Logarithm 1 Zeros and poles

Definition 0.15. A **point singularity** of a function f is a cmoplex number z_0 such that f is defined in a neighborhood of z_0 but not at the point z_0 itself. We shall also call such points **isolated singularities**.

Definition 0.16. A complex number z_0 is a **zero** of the holomorphic function f if $f(z_0) = 0$. In particular, analytic continuation shows that zeros of a nontrivial holomorphic function are isolated. In other word, if f is holomorphic in Ω and $f(z_0) = 0$ for some $z_0 \in \Omega$, then there exists an open neighborhood U of z_0 such that $f(z) \neq 0$ for all $z \in U - \{z_0\}$, unless f is identically zero.

Theorem 14. Suppose that f is holomorphic in a connected open set Ω , has a zero at a point $z_0 \in \Omega$, and does not vanish identically in Ω . Then there exists a neighborhood $U \subseteq \Omega$ of z_0 , a non-vanishing holomorphic function g on U, and a unique positive integer n such that

$$f(z) = (z - z_0)^n g(z)$$
 for all $z \in U$.

Definition 0.17. In the case of the above theorem, we say that f has a **zero** of order n (or multiplicity n) at z_0 . If a zero is of order 1, we say that it is **simple**. We observe that, quantitatively, the order describes the rate at which a function vanishes.

Definition 0.18. A **deleted neighborhood** of z_0 to be an open disc centered at z_0 , minus the point z_0 , that is, the set

$$\{z_0 : 0 < |z - z_0| < r\}$$

for some r > 0. Then, we say that a function f defined in a deleted neighborhood of z_0 has a **pole** at z_0 , if the function 1/f, defined to be zero at z_0 is holomorphic in a full neighborhood of z_0 .

Theorem 15. If f has a pole at $z_0 \in \Omega$, then in a neighborhood of that point there exist a non-vanishing holomorphic function h and a unique positive integer n such that

$$f(z) = (z - z_0)^{-n}h(z)$$

Definition 0.19. The integer n is called the **order** (or **multiplicity**) of the pole, and describes the rate at which the function grows near z_0 . If the pole is of order 1, we say that it is **simple**.

Theorem 16. If f has a pole of order n at z_0 , then

$$f(z) = \frac{a_{-n}}{(z - z_0)^n} + \frac{a_{-n+1}}{(z - z_0)^{n-1}} + \dots + \frac{a_{-1}}{(z - z_0)} + G(z)$$
 (6)

where G is a holomorphic function in a neighborhood of z_0 .

Definition 0.20. The sum

$$\frac{a_{-n}}{(z-z_0)^n} + \frac{a_{-n+1}}{(z-z_0)^{n-1}} + \ldots + \frac{a_{-1}}{(z-z_0)}$$

is called the **principal part** of f at the pole z_0 , and the coefficient a_{-1} is called the **residue** of f at that pole. We write $\operatorname{res}_{z_0} f = a_{-1}$.

In the case when f has a simple pole at z_0 , it is clear that

$$\operatorname{res}_{z_0} f = \lim_{z \to z_0} (z - z_0) f(z).$$

If the pole is of higher order,

Theorem 17. If f has a pole of order n at z_0 , then

$$res_{z_0} f = \lim_{z \to z_0} \frac{1}{(n-1)!} \left(\frac{d}{dz}\right)^{n-1} (z-z_0)^n f(z).$$

The theorem is an immediate consequence of formula (6), which implies

$$(z-z_0)^n f(z) = a_{-n} + a_{-n+1}(z-z_0) + \ldots + a_{-1}(z-z_0)^{n-1} + G(z)(z-z_0)^n.$$

2 The residue formula

Theorem 18. Suppose that f is holomorphic in an open set containing a circle C and its interior, except for a pole at z_0 inside C. Then

$$\int_C f(z)dz = 2\pi i res_{z_0} f.$$

Corollary 18.1. Suppose that f is holomorphic in an open set containing a circle C and its interior, except for poles at the points z_1, \ldots, z_N inside C. Then

$$\int_C f(z)dz = 2\pi i \sum_{k=1}^N \operatorname{res}_{z_k} f.$$

Corollary 18.2. Suppose that f is holomorphic in an open set containing a toy contour γ and its interior, except for poles at the points z_1, \ldots, z_N inside γ . Then

$$\int_{\gamma} f(z)dz = 2\pi i \sum_{k=1}^{N} \operatorname{res}_{z_{k}} f.$$

Definition 0.21. The identity $\int_{\gamma} f(z)dz = 2\pi i \sum_{k=1}^{N} \operatorname{res}_{z_k} f$ is referred to as the **residue formula**.

2.1 Examples

3 Singularities and meromorphic functions

Definition 0.22. Let f be a function holomorphic in an open set Ω except possibly at one point z_0 in Ω . If we can define f at z_0 in such a way that f becomes holomorphic in all of Ω , we say that z_0 is a **removable** singularity for f.

Theorem 19. Suppose that f is holomorphic in an open set Ω except possibly at a point z_0 in Ω . If f is bounded on $\Omega - \{z_0\}$, then z_0 is a removable singularity.

Corollary 19.1. Suppose that f has an isolated singularity at the point z_0 . Then z_0 is a pole of f if and only if $|f(z)| \to \infty$ as $z \to z_0$.

Isolated singularities can belong to one of three categories:

- Removable singularities (f bounded near z_0)
- Pole singularities $(|f(z)| \to \infty \text{ as } z \to z_0)$
- Essential singularities

Definition 0.23. By default, any singularity that is not removable or a pole is defined to be an **essential singularity**.

Theorem 20 (Casorati-Weierstrass). Suppose f is holomorphic in the punctured disc $D_r(z_0) - \{z_0\}$ and has an essential singularity at z_0 . Then, the image of $D_r(z_0) - \{z_0\}$ under f is dense in the complex plane.

Definition 0.24. A function f on an open set Ω is **meromorphic** if there exists a sequence of points $\{z_0, z_1, \ldots\}$ that has no limit points in Ω , and such that

- 1. the function f is holomorphic in $\Omega \{z_0, z_1, \ldots\}$, and
- 2. f has poles at the points $\{z_0, z_1, z_2, \ldots\}$.

Definition 0.25. If f is holomorphic for all large values of z, we consider F(z) = f(1/z), which is now holomorphic in a deleted neighborhood of the origin. We say that f has a **pole at infinity** if F has a **pole** at the origin. Similarly, we can speak of f having an **essential singularity at infinity**, or a **removable singularity** (hence holomorphic) at **infinity** in terms of the corresponding behaviour of F at 0. A meromorphic function in the complex plane that is either holomorphic at infinity or has a pole at infinity is said to be **meromorphic in the extended complex plane**.

Theorem 21. The meromorphic functions in the extended complex plane are the rational functions

4 The argument principle and applications

Theorem 22 (Argument principle). Suppose f is meromorphic in an open set containing a circle C and its interior. If f has no poles and never vanishes on C, then

$$\frac{1}{2\pi i} \int_C \frac{f'(z)}{f(z)} dz = (number of zeros of f inside C) minus$$
(number of poles of f inside C),

where the zeros and poles are counted with their multiplicities.

Corollary 22.1. The above theorem holds for any toy contours.

Theorem 23 (Rouché's theorem). Suppose that f and g are holomorphic in an open set containing a circle C and its interior. If

$$|f(z)| > |g(z)|$$
 for all $z \in \mathbb{C}$

then f and f + g have the same number of zeros inside the circle C.

Definition 0.26. A mapping is said to be **open** if it maps open sets to open sets.

Theorem 24 (Open mapping theorem). If f is holomorphic and non-constant in a region Ω , then f is open.

Definition 0.27. We shall refer to the **maximum** of a holomorphic function f in an open set Ω as the maximum of its absolute value |f| in Ω .

Theorem 25 (Maximum modulas principle). If f is a non-constant holomorphic function in a region Ω , then f cannot attain a maximum in Ω .

5 Homotopies and simply connected domains

Definition 0.28. Let γ_0 and γ_1 be two curves in an open set Ω with common end-points. So if $\gamma_0(t)$ and $\gamma_1(t)$ are two parameterizations defined on [a, b], we have

$$\gamma_0(a) = \gamma_1(a) = \alpha$$
 and $\gamma_0(b) = \gamma_1(b) = \beta$

These two curves are said to be **homotopic in** Ω if for each $0 \le s \le 1$ there exists a curve $\gamma_s \subseteq \Omega$, parameterized by $\gamma_s(t)$ defined on [a,b], such that for every s

$$\gamma_s(a) = \alpha$$
 and $\gamma_s(b) = \beta$,

and for all $t \in [a, b]$

$$\gamma_s(t)|_{s=0} = \gamma_0(t)$$
 and $\gamma_s(t)|_{s=1} = \gamma_1(t)$

Moreover, $\gamma_s(t)$ should be jointly continuous in $s \in [0, 1]$ and $t \in [a, b]$.

More informally, two curves are homotopic if one curve can be deformed into the other by a continuous transformation without ever leaving Ω .

Theorem 26. If f is holomorphic in Ω , then

$$\int_{\gamma_0} f(z)dz = \int_{\gamma_1} f(z)dz$$

whenever the two curves γ_0 and γ_1 are homotopic in Ω .

Theorem 27. Any holomorphic function in a simply connected domain has a primitive.

Corollary 27.1. If f is holomorphic in the simply connected region Ω , then

$$\int_{\gamma} f(z)dz = 0$$

for any closed curve $\gamma \in \Omega$.

6 The complex logarithm

If $z = re^{i\theta}$, and we want the logarithm to be the inverse to the exponential, then it is natural to get

$$\log z = \log r + i\theta$$

Here and below, we use the convention that $\log r$ denotes the standard (i.e. real) logarithm of the positive number r. The trouble with the above definition that θ is uniquely determined up to an integer multiple of 2π . One choice of this range is called a **branch** or **sheet** of the logarithm. An example of branch would be the choice $-\pi \leq \arg z \leq \pi$.

Theorem 28. Suppose that Ω is simply connected with $1 \in \Omega$, and $0 \notin \Omega$. Then in Ω there is a branch of the logarithm $F(z) = \log_{\Omega}(z)$ so that

- 1. F is holomorphic in Ω ,
- 2. $e^{F(z)} = z$ for all $z \in \Omega$.
- 3. $F(r) = \log(r)$ whenever r is a real number and near 1.

In other words, each branch $\log_{\Omega}(z)$ is an extension of the standard logarithm defined for positive numbers.

Definition 0.29. In the slit plane, $\Omega = \mathbb{C} - \{(-\infty, 0]\}$ we have the **principal** branch of the logarithm

$$\log z = \log r + i\theta$$

where $z = re^{i\theta}$ with $|\theta| < \pi$. (Here we drop the subscript Ω , and write simply $\log z$.)

In general

$$\log(z_1 z_2) \neq \log(z_1) + \log(z_2).$$

For the principal branch of the logarithm the following Taylor expansion holds:

$$\log(1+z) = z - \frac{z^2}{2} + \frac{z^3}{3} - \dots = -\sum_{n=1}^{\infty} (-1)^n \frac{z^n}{n} \quad \text{for } |z| < 1.$$
 (7)