Image Processing Project 2B

In this project we analyzed the invariant moments, mean, and standard deviations of objects the computer thought were hay bales based on the segmentation code provided. Firstly, we used the code provided in detectionHayBalesSimple.m (Appendix A) and modified it so that we could calculate the invariant moments, mean, and standard deviation in inv_moments.m (Appendix B). Then once the image statistics were calculated, the user was asked to determine whether the section was a haybale or not, and the modified detectionHayBalesSimple.m was able to put the data in the appropriate dataset. The 2 datasets were then returned to the user in main.m (Appendix C), and then the crossplot and Mahalanobis Distance plot were generated based on that data. The statistics generated are in a table located in Appendix D.

Fig. 1 – Crossplot of the two data sets. Where Features 1-6 correspond to Phi1-4, mean, and standard deviation respectively for IMG_0034.png

Fig. 2 Mahalanobis Distance Plot, where Distribution 1 is the Hay Bale sample and Distribution 2 Not a Hay Bale for IMG_0034.png

The cross plot ended up being fairly useless as one can barely see any real clustering of either data sets. To solve this, we used the Mahalanobis distance plot to try and better segregate the 2 data sets. As shown in Figure 2, the data is much more clustered together and a clear dividing line can be made to segregate the two data sets.

This process was then repeated for IMG_0038.png. The crossplot and the Mahalanobis distance plot are shown below, and the code/table is located in Appendices E-G. The detectHayBalesSimple.m was replaced with a modified version, detect2.m (Appendix E). The only real changes were changing the filter parameters and then using a different size for the area filter. Then main2.m (Appendix F) was used to process and plot the data, though there were no real significant changes besides the image file name and which detection function it called. It's worth noting the crossplot is especially unhelpful since we have 37 non-haybales and only 5 haybales, cluttering any haybale points that would be visible.

Fig. 3 – Crossplot of data for IMG_0038.png where Features 1-6 are Phi1-4, Mean, and Standard Deviation respectively.

Fig. 2 - Mahalanobis Distance Plot, where Distribution 1 is the Hay Bale sample and Distribution 2 Not a Hay Bale for IMG $_0038.png$

Appendix A

```
function [hay stats, not hay stats] = detectionHayBalesSimple(file)
lose all
IMG 0034 = imread(file);
take the fft
IMG = fft2(IMG 0034);
 IMG = edge(IMG 0034,
 FILTER IMAGE
filtering of FT across rows.
FLT IMG = BW Filtering( IMG, 2, 1/50);
filtering of FT across columns.
FLT_IMG = BW_Filtering( FLT_IMG, 1, 1/50 );
FLT_IMG = HP_Filtering( FLT_IMG, 2, 1/250 );
flt img = real( ifft2( FLT IMG ) );
figure(1);
imagesc( flt img ), colormap('gray');
 %SET THRESHOLDS
%0.7 * max + 0.3 * min
thresholdMax = max(max(flt imq));
chresholdMin = min(min(flt img))
_img = zeros(size(flt img));
img(flt img>(thresholdMax*0.7+thresholdMin*0.3)) =
imagesc( t img ), colormap('gray');
 create connnect or Labeled image.
L img, Labels] = SizeOfRegions( t img, 500, 1500
figure(3);
imagesc( L img ), colormap('gray');
 prepare to work through connected sets.
[N,M] = size(IMG 0034);
 img = zeros(N, M);
= 5; % counts figures
nayCnt = 1;
notHayCnt = 1;
 loop through each labelled set.
for k = 1:Labels
                                    % find list of pixels labeled k
   % if size of region is appropriate.
   if length(Row) > 500 && length(Row
       % compute center of blob.
       Center = round( sum( [Row Col] )/length(Row)
       % extract image around blob.
       r = \max(1, Center(1) - 70) : \min(N, Center(1) + 70);
       c = max(1, Center(2) - 70) : min(M, Center(2) + 70)
```

```
Local = IMG 0034(r, c);
        % display local image.
        figure (m)
        subplot( 221 ), imagesc( Local ), colormap('gray');
        % create threshold from top and bottom band of pixels.
        I = 1:5*141;
        Mu O = mean(double([Local(I) Local(end-I+1)]
        Std O = std(double([Local(I) Local(end-I+1)]
        % Create threshold.
        Thres = Mu O + 2.5*Std O;
        figure (100); % figure to display process.
        Local = GrowAroundBlobs( Mask, edge(Local, 'canny', [], 2), ...
                                 Local, Thres );
        im stats = inv moments(Local);
        confirm = input("Is this a haybale? (1/0)");
        if confirm == 1
            hay_stats(hayCnt) = im_stats;
            hayCnt = hayCnt + 1;
        else
            not hay stats(notHayCnt) = im stats;
            notHayCnt = notHayCnt + 1;
        end
        figure(m); % move back to current figure.
        m = m + 1; % move to next figure
        % Display segmented image.
        subplot( 222 ), imagesc( Local ), colormap('gray');
        %pause(2)
        close 100 % remove demo figure
        % save off segmented image.
    else
      t img([Row Col]) = 0
    end
end
subplot(211),imagesc( D img ), colormap('gray');
0 \text{ img}(D \text{ img} > 0) = 1;
subplot(212),imagesc( D img ), colormap('gray');
  %DD img = Fill2Edge_Matlab( e2_IMG, D_img );
 %DD img = imfill( D img, find( );
  figure;
  imagesc( DD img ), colormap('gray');
return
```

Appendix B:

```
inv moments(image)
 m,n] = size(image);
if m ~= n
    if m > n
        padImage = padarray(image, [2/2, (m-n+2)/2]
    else
        padImage = padarray(image, [(n-m+2)/2, 2/2]);
    end
else
end
image = padImage;
[m, n] = size(padImage);
   = []; Dy = [];
Dy = uint8(repmat((1:n)',1,m));
 00 = sum(sum(image));
n10 = sum(sum(Dx.*image));
m01 = sum(sum(Dy.*image));
n20 = sum(sum((Dx.^2).*image));
m02 = sum(sum((Dy.^2).*image));
m22 = sum(sum((Dy.^2).*(Dx.^2).*image));
m03 = sum(sum((Dy.^3).*image));
m11 = sum(sum(Dx.*Dy.*image));
121 = sum(sum((Dx.^2).*(Dy).*image));
 bar = m01 / m00;
mu30 = m30 - 3*x bar*m20 + 2*m10*(x bar^2);
mu03 = m03 - 3*y bar*m02 + 2*(y bar^2)*m01;
nu20 = sum(sum((Dx-x bar).^2.*image))/(m00^2);
nu02 = sum(sum((Dy-y_bar).^2.*image))/(m00^2);

nu11 = sum(sum((Dy-y_bar).*(Dx-x_bar).*image))/(m00^2);

nu12 = mu12/(m00^((1+2)/2 + 1));
nu21 = mu21/(m00^{((1+2)/2 + 1))};
nu30 = mu30/(m00^{\circ}((3+0)/2 + 1));
Phi2 = (nu20 - nu02)^2 + 4*nu11^2;
Phi3 = (nu30 - 3*nu12)^2 + (3*nu21-nu03)^2;
Phi4 = (nu30 + nu12)^2 + (nu21 + nu03)^2;
```

image_stats = struct;

```
image_stats.Phi1 = Phi1;
image_stats.Phi2 = Phi2;
image_stats.Phi3 = Phi3;
image_stats.Phi4 = Phi4;
%% Not Inv moments
image_stats.mean = mean(mean(image(find(image))));
image_stats.std = std(double(image(find(image))));
```

Appendix C:

```
stats] = detectionHayBalesSimple('IMG 0034.png');
% Part 2
naymat = [];
not haymat = [];
for i=1:1:length(hay stats)
    imstat = hay_stats(i);
    haymat(i,:) = [imstat.Phi1, imstat.Phi2, imstat.Phi3, imstat.Phi4,
imstat.mean, imstat.std;];
end
for i=1:1:length(not hay stats)
   imstat = not hay stats(i);
   not haymat(i,:) = [imstat.Phi1,
imstat.mean, imstat.std;];
end
Crossplot(haymat, not haymat);
hay cov = cov(haymat);
not hay cov = cov(not haymat);
hay mean = mean(haymat);
not hay mean = mean(not haymat);
% Mahalanobis Part
dO 0 = MahalanobisDist(haymat',hay_cov,hay_mean');
d0_1 = MahalanobisDist(haymat',not_hay_cov,not_hay_mean');
d1 1 = MahalanobisDist(not haymat',not hay cov,not hay mean');
figure(2)
grid on
title( 'Mahalanobis Distance To Two Distributions');
set(findall(2,'type','text'),'fontSize',14);
legend( 'Points from Hay Bales', 'Points from Not Hay
klabel( 'Distance from Distribution 1' );
ylabel( 'Distance from Distribution 2'
axis('equal')
ylim([0 10]);
```

Appendix D:

Hay Bales:

Phi1	Phi2	Phi3	Phi4	Mean	Std. Dev.
6.8071549055	4.6337357908	4.8897146377	4.8897146377	230.1852899	10.07457873
8697e-06	6567e-11	8958e-18	8958e-18	57567	11848
6.5722975890	4.3195095598	5.8563174529	5.8563174529	227.2202262	11.30117021
3253e-06	8029e-11	7849e-18	7844e-18	14238	15839
7.1572656752	5.1226451946	9.0024703408	9.0024703408	225.2827635	12.54763533
5681e-06	2093e-11	7161e-18	7157e-18	32764	27220
5.6356184861	3.1760195721	7.7666294598	7.7666294598	218.2415789	16.37424536
9419e-06	9337e-11	5196e-18	5196e-18	47368	10653
6.3104646611	3.9821964239	2.1058737187	2.1058737187	208.7288409	17.89663186
6929e-06	8665e-11	9264e-17	9264e-17	70350	30964
5.9907785128	3.5889427190	6.6616848209	6.6616848209	222.5386852	20.03058164
5991e-06	1440e-11	5960e-18	5960e-18	82141	56851
5.2990093175	2.8079499747	4.5797020236	4.5797020236	222.6194644	22.62260982
4632e-06	4427e-11	0055e-18	0055e-18	69619	15505
7.2629380140	5.2750268595	7.7164501060	7.7164501060	193.8314606	20.94703617
4461e-06	8542e-11	3021e-17	3022e-17	74157	39146

Not Hay Bales:

Phi1	Phi2	Phi3	Phi4	Mean	Std. Dev.
8.8359950310	7.8074808188	6.5509340051	6.5509340051	234.6803435	11.44647921
1088e-06	0489e-11	7333e-18	7333e-18	11450	47995
5.7573433237	3.2675120500	6.6742275124	6.7432693079	220.9616453	39.84606331
2828e-06	8032e-11	6153e-18	8550e-18	58533	49147
4.1636569704	1.7336039367	2.8627460937	2.8627460937	219.4264937	35.42493159
3419e-06	4452e-11	2200e-18	2200e-18	10692	26238
3.3435493782	1.1179322444	4.9909850479	4.9909850479	154.8647798	25.16097375
3673e-05	7072e-09	3670e-14	3670e-14	74214	12074
1.9741251278	3.8971700202	6.9547364162	6.9547364162	163.4498448	19.79839688
1933e-05	8768e-10	1525e-15	1524e-15	81075	27542
8.1207016457	6.5945795219	6.0692739081	6.0692739081	158.4960000	15.99905820
4254e-05	1656e-09	9953e-13	9953e-13	00000	52137

Appendix E:

```
stats, not hay stats] = detectionHayBalesSimple(file)
 lose all
IMG 0034 = imread(file);
take the fft
IMG = fft2(IMG 0034);
 IMG = edge(IMG 0034,
 FILTER IMAGE
filtering of FT across rows.
FLT IMG = BW Filtering( IMG, 2, 1/69);
filtering of FT across columns.
FLT_IMG = BW_Filtering( FLT_IMG, 1, 1/55 );
FLT_IMG = HP_Filtering( FLT_IMG, 2, 1/690 );
FLT_IMG = HP_Filtering( FLT_IMG, 1, 1/550 );
flt img = real( ifft2( FLT IMG ) );
figure(1);
imagesc( flt img ), colormap('gray');
 %SET THRESHOLDS
%0.7 * max + 0.3 * min
thresholdMax = max(max(flt img)),
chresholdMin = min(min(flt img))
_img = zeros(size(flt img));
img(flt img>(thresholdMax*0.7+thresholdMin*0.3)) =
imagesc( t img ), colormap('gray');
 create connnect or Labeled image.
L img, Labels] = SizeOfRegions( t img, 1500, 2500
figure(3);
imagesc( L img ), colormap('gray');
 prepare to work through connected sets.
N,M] = size(IMG 0034);
 img = zeros(N, M);
 = 5; % counts figures
nayCnt = 1;
notHayCnt = 1;
 loop through each labelled set.
for k = 1:Labels
                                     % find list of pixels labeled k
    % if size of region is appropriate.
   if length(Row) > 1500 && length(Row
        % compute center of blob.
       Center = round( sum( [Row Col] )/length(Row)
       % extract image around blob.
       r = \max(1, Center(1) - 70) : \min(N, Center(1) + 70);
       c = max(1, Center(2) - 70) : min(M, Center(2) + 70)
```

```
Local = IMG 0034(r, c);
        % display local image.
        figure (m)
        subplot( 221 ), imagesc( Local ), colormap('gray');
        % create threshold from top and bottom band of pixels.
        I = 1:5*141;
        Mu O = mean(double([Local(I) Local(end-I+1)]
        Std O = std(double([Local(I) Local(end-I+1)]
        % Create threshold.
        Thres = Mu O + 2.5*Std O;
        figure (100); % figure to display process.
        Local = GrowAroundBlobs( Mask, edge(Local, 'canny', [], 2), ...
                                 Local, Thres );
        im stats = inv moments(Local);
        confirm = input("Is this a haybale? (1/0)");
        if confirm == 1
            hay_stats(hayCnt) = im_stats;
            hayCnt = hayCnt + 1;
        else
            not hay stats(notHayCnt) = im stats;
            notHayCnt = notHayCnt + 1;
        end
        figure(m); % move back to current figure.
        m = m + 1; % move to next figure
        % Display segmented image.
        subplot( 222 ), imagesc( Local ), colormap('gray');
        %pause(2)
        close 100 % remove demo figure
        % save off segmented image.
    else
      t img([Row Col]) = 0
    end
end
subplot(211),imagesc( D img ), colormap('gray');
0 \text{ img}(D \text{ img} > 0) = 1;
subplot(212),imagesc( D img ), colormap('gray');
  %DD img = Fill2Edge_Matlab( e2_IMG, D_img );
 %DD img = imfill( D img, find( );
  figure;
  imagesc( DD img ), colormap('gray');
return
```

Appendix F:

```
[hay stats, not hay stats] = detect2('IMG 0038.png');
haymat = [];
not haymat = [];
for i=1:1:length(hay stats)
    imstat = hay_stats(i);
imstat.mean, imstat.std;];
for i=1:1:length(not hay stats)
    imstat = not hay stats(i);
    not haymat(i,:) = [imstat.Phi1, imstat.Phi2, imstat.Phi3, imstat.Phi4,
imstat.mean, imstat.std;];
end
Crossplot(haymat, not_haymat);
hay cov = cov(haymat);
not hay cov = cov(not haymat);
nay mean = mean(haymat);
not hay mean = mean(not haymat);
 % Mahalanobis Part
d0 0 = MahalanobisDist(haymat',hay_cov,hay_mean');
d0 1 = MahalanobisDist(haymat',not hay cov,not_hay_mean');
d1 1 = MahalanobisDist(not haymat', not hay cov, not hay mean');
figure(2)
set(2, 'units', 'normalized','outerposition',
olot( d0_0, d0_1, 'b*', d1_0, d1_1, 'rd' );
nold on
%plot( [0 10], [0 10], 'g' );
 grid on
title( 'Mahalanobis Distance To Two Distributions');
set(findall(2,'type','text'),'fontSize',14);
legend( 'Points from Hay Bales', 'Points from Not
xlabel( 'Distance from Distribution 1' );
ylabel( 'Distance from Distribution 2' );
axis('equal')
ylim([0 10]);
klim([0 10]);
```

Appendix G:

Hay Bales

Phi1	Phi2	Phi3	Phi4	Mean	Std. Dev.
4.2911472512	1.8413944732	3.8315410351	3.8315410351	216.7395256	14.86165738
6337e-06	0252e-11	3258e-18	3258e-18	91700	38209
4.4506747200	1.9808505463	7.0059632184	7.0059632184	236.1381995	7.004962468
4874e-06	6809e-11	3783e-19	3783e-19	13382	91768
4.0264579460	1.6212363591	4.1164911284	4.1164911284	237.8994638	3.407398098
9404e-06	6639e-11	3612e-19	3616e-19	06971	91007
3.0377968425	9.2282096568	4.4495092045	4.4495092045	229.9502362	10.36990910
8996e-06	4954e-12	9264e-19	9264e-19	20472	80648
3.6149042326	1.3067532611	3.6417949614	3.6417949614	236.3774257	4.486699540
2779e-06	0703e-11	5301e-19	5304e-19	42574	68184

Not Hay Bales:

Phi1	Phi2	Phi3	Phi4	Mean	Std. Dev.
8.6180261401	7.3782893820	1.1256736499	1.1399733368	195.8369210	42.808588105
9764e-06	1223e-11	4339e-16	4380e-16	69798	4173
9.2298168439	8.5189518973	6.1694864483	6.1694864483	209.7460191	19.504499023
9019e-06	6050e-11	1575e-17	1573e-17	08280	2470
1.2078410342	1.4588799641	1.5497058192	1.5497058192	164.0471637	29.867698384
8735e-05	0835e-10	5730e-15	5730e-15	98598	8859
1.2962031438	1.6801425901	2.3326568778	2.3326568778	204.8081023	1.9556061279
5703e-05	4484e-10	6965e-16	6965e-16	45416	8897
6.3030965649	3.9729026307	1.3202623376	1.3202623376	215.5801263	10.869182216
6154e-06	2299e-11	7484e-17	7484e-17	64159	3854
6.2444465229	3.8993112377	2.5359457323	2.5359457323	233.8881446	3.3364025352
2416e-06	6597e-11	4486e-18	4487e-18	75151	4337
5.7930104470	3.3558970039	3.4840233252	3.4840233252	228.7130124	26.104705306
2939e-06	3917e-11	8486e-18	8485e-18	77718	4387
6.0985854485	3.7192744473	1.1817309583	1.1817309583	239.2464065	0.9775891629
4504e-06	2053e-11	6678e-18	6678e-18	70842	78613
9.6856206212	9.3811246818	5.7430195253	5.7430195253	171.1301446	17.192736138
3156e-06	4260e-11	2782e-16	2782e-16	05117	8178
5.3360879587	2.8298068892	6.5200564345	6.5732211976	218.2297297	16.468989600
0039e-06	4601e-11	7501e-18	3375e-18	29730	2976
3.2792764612	1.0696216106	1.8526776701	1.8672059440	174.7442182	14.101304231
0105e-06	4251e-11	8974e-17	8310e-17	24946	0568
9.8030570880	9.6099928272	5.2067013165	5.2067013165	238.8399122	2.1610835984
9090e-06	3692e-11	6623e-18	6627e-18	80702	3158

7 7005040416	F 07C1242070	1 0272202427	1.0000011011		SSING - Project 28
7.7005849416	5.8761242079	1.9373202437	1.9660515011	218.2157856	14.355973757
5243e-06	2751e-11	3107e-17	9540e-17	62563	1627
8.3558200098	6.9819728036	1.0760316940	1.0760316940 2058e-16	195.4349186	41.956538412 4311
1648e-06 8.7172582331	4495e-11	2057e-16	2.3536229727	48310	
8989e-06	7.4350348689	2.3256419752		183.2156177 15618	36.558338070 4778
	4763e-11	0525e-16	0458e-16		
7.1580443468 7281e-06	5.1237598871 7977e-11	1.1445968979 8025e-16	1.1445968979 8025e-16	185.5251207 72947	36.196967966 3423
		1.8447729941			14.512432463
4.2181338326 3721e-06	1.7792653030 0387e-11	0956e-17	1.8447729941 0956e-17	190.1195814 64873	1339
5.1698786949	2.6727645720	1.0194712372	1.0194712372	167.8366647	17.573126865
6484e-06	6513e-11	5564e-16	5564e-16	62993	8922
1.3116468593	1.7204174835	4.2732547410	4.2732547410	194.9569892	38.029189884
2557e-05	7864e-10	4747e-16	4747e-16	47312	8031
5.8586285481	3.4323528465	9.8996824208	9.8996824208	239.6279683	0.6591193957
3462e-06	0180e-11	1781e-19	1782e-19	37731	65833
1.2063616773	1.4477185423	4.1143870822	4.1414486187	225.7073760	3.1123407037
5659e-05	8975e-10	1061e-17	8540e-17	58041	5175
1.6392262686	2.6870627596	9.7847375930	9.7847375930	143.4464285	23.797341763
0233e-05	7592e-10	4650e-15	4650e-15	71429	1657
1.7490080123	3.0590290274	2.9998474502	2.9998474502	173.6504653	8.8753652880
9094e-05	0769e-10	6002e-15	6002e-15	56774	5827
1.3464870529	1.8130273837	4.7817199744	4.7817199744	146.2841807	12.042088829
5497e-05	7536e-10	4663e-15	4664e-15	90960	2002
1.6341838258	2.6705567766	6.8998914515	6.8998914515	151.0950987	18.606223025
4982e-05	6915e-10	7584e-15	7585e-15	56401	0377
1.6660724736	2.7757974874	2.9655785008	2.9655785008	170.8245948	34.433747169
4966e-05	5309e-10	1447e-15	1447e-15	52240	5191
1.5473918666	2.3880657775	1.9191620979	1.9310006137	174.9682835	30.870727141
2008e-05	3547e-10	6751e-15	2075e-15	82090	5825
1.9344825829	3.7422228636	9.9358694595	9.9358694595	154.2527075	37.876698662
2064e-05	2331e-10	7125e-15	7126e-15	81227	9705
2.2511082467	5.0674883384	2.9052436633	2.9052436633	140.3582608	23.809776983
2805e-05	8705e-10	1154e-14	1154e-14	69565	4477
1.9497977550	3.7129424748	4.6642588488	4.6960197920	120.3891094	30.512897766
0625e-05	4560e-10	9040e-14	4996e-14	72490	9652
2.3587210417	5.5635649527	4.0941389200	4.0941389200	135.7681159	24.670022424
4248e-05	5873e-10	0302e-14	0302e-14	42029	5993
6.6812740740	4.4639423251	6.1376501360	6.1376501360	145.1714522	18.771144043
0640e-06	9901e-11	6076e-16	6076e-16	36334	5877
3.8437258542	1.4795798051	1.0170284583	1.0170284583	228.7426992	13.384151346
1678e-06	5476e-11	8331e-18	8330e-18	89661	9724
2.0953988930	4.3906965211	1.4402941896	1.4402941896	151.3160865	15.234692385
9015e-05	6341e-10	8417e-14	8417e-14	47507	8157
6.3665421491	4.0532858936	1.1321264658	1.1321264658	178.7185007	19.427252349
5228e-06	9325e-11	0347e-16	0347e-16	97448	4811

Ben Stonebraker October 20, 2019

Image Processing – Project 2B

3.6237656662	1.3131677603	1.5765541528	1.5765541528	221.7146349	23.006484796
3037e-06	7501e-11	0832e-18	0833e-18	98254	5771
1.1338553130	1.2856278709	7.3416928193	7.3416928193	175.8830811	17.946815282
4516e-05	2074e-10	3506e-16	3507e-16	55433	9413