Probability Theory

content

1	Basical Probabilistic Model						
	1.1	Space	of Elementary Events	3			
	1.2	Classo	cal Probabilistic Models	3			
		1.2.1	Random Sampling	3			
		1.2.2	Arrangment	4			
		1.2.3	Binomial Distribution	4			
		1.2.4	Multinomial Distribution	5			
		1.2.5	Hypergeoetric Distribution	5			
		1.2.6	Stirling's Approximation	5			
	1.3	Condi	itional Probability	5			
		1.3.1	Conditional Probbility	5			
		1.3.2	Total Probability Theorem	5			
		1.3.3	Bayes Rule	6			
		1.3.4	Independence	6			
2	Random Variable 7						
	2.1	Cumu	llative Distribution Function	7			
		2.1.1	Discrete Random Variable	7			
	2.2	Comn	non Distribution	7			
		2.2.1	Poission Distribution	7			
	2.3	Proba	ability Density Function	8			
		2.3.1	Uniform Distribution	8			
		2.3.2	Exponential Distribution	8			
		2.3.3	Normal Distribution	8			

CONTENT 2

	2.4	Joint Distribution Function					
		2.4.1	Discrete Jiont Distribution Function 9				
		2.4.2	Joint Probability Density 9				
		2.4.3	Geometric Probability				
		2.4.4	Two-Dimensional Normal Distribution 10				
		2.4.5	Independence				
		2.4.6	Conditional Distribution				
		2.4.7	Random Variable Function				
3	Nur	Numercial Characters					
	3.1	Expec	tion				
		3.1.1	Discrete Distribution				
		3.1.2	Continuous Distribution				
		3.1.3	Property				
		3.1.4	Random Variable Function				
	3.2	Varian	nce				
		3.2.1	Discrete Distribution				
		3.2.2	Continuous Distribution				
		3.2.3	Property				
	3.3	Expec	tion and Variance of Common Distribution Function 12				
		3.3.1	Binomial Distribution				
		3.3.2	Poisson Distribution				
		3.3.3	Geometric Distribution				
		3.3.4	Exponential Distribution				
		3.3.5	Normal Distribution				
	3.4	Covari	iance				
	3.5	Correlation Coefficient					
	3.6	Law o	f large numbers and Central limit Theorem				
		3.6.1	Law of large numbers				
		3.6.2	Chebyshev Law of Large num-herd				
		3.6.3	Wiener-Khinchin Law of Large Numbers				
		3.6.4	Bernoulli Law of Large Num-hers				
	3.7	al Limit Theorom					
		3.7.1	De Moivre-Laplace				

1 Basical Probabilistic Model

1.1 Space of Elementary Events

if a test has limited consequences , these consequences ω_1,\cdots,ω_N are called **Elementary Events** , and

$$\Omega = \{\omega_1, \cdots, \omega_N\}$$

is called (Limited) Space of Elementary Events

if $A \subseteq \Omega$, A is an **Event** if $A \subseteq \Omega$ and $B \subseteq \Omega$, then

1.2 Classcal Probabilistic Models

suppose $\omega_1, \dots, \omega_N \subseteq \Omega$ and $N < \infty$, then

$$P(\omega_i) = \frac{1}{N}$$

 $\forall A \in \mathscr{A}$

$$P(A) = \frac{N(A)}{N}$$

1.2.1 Random Sampling

Order Sampling with Replacement choose N balls from M boxes is a way of order sampling with replacement

mark the consequence event as A , and $A = (a_1, \dots, a_N)$

$$\Omega = \{\omega : \omega = (a_1, \cdots, a_n), a_i = 1, \cdots, M\}$$

and

$$N(\Omega) = M^n$$

Disorder Sampling with Replacement if N < M

$$\Omega = \{\omega : \omega = [a_1, \cdots, a_n], a_i = 1, \cdots, M\}$$

and

$$N(\Omega) = C_{M+N-1}^N$$

Order Sampling without Replacement

$$\Omega = \{\omega : \omega = (a_1, \cdots, a_N), a_k \neq a_l, k \neq l, a_i = 1, \cdots, M\}$$

and

$$N(\Omega) = A_M^N$$

Disorder Sampling without Replacement

$$\Omega = \{\omega : \omega = [\omega_1, \cdots, \omega_N], a_k \neq a_l, k \neq l, a_i = 1, \cdots, N\}$$

and

$$N(\Omega) = C_M^N$$

1.2.2 Arrangment

1.2.3 Binomial Distribution

toss a coin n times in a row , and for (a_1,\cdots,a_N) , when it is obverse side $a_i=1$ and it is reverse side $a_i=0$

$$\Omega = \{\omega : \omega = (a_1, \cdots, \omega_n), a_i = 0 \text{ or } 1\}$$

and

$$\forall a_i, P(a_i = 1) = p$$

then

$$P(\omega) = p^{\sum a_i} (1 - p)^{n - \sum a_i}$$

$$P(A) = \sum_{\omega \in A} P(\omega) \quad A \in \mathscr{A}$$

1.2.4 Multinomial Distribution

1.2.5 Hypergeoetric Distribution

e.g there are M balls in a box , their number are $1,\cdots,M$, and M_i balls have color c_i , $\sum M_i=M$, choose n balls ,the number of balls that color is c_i is n_i ,then

$$P(B_{n_1,\dots,n_r}) = \frac{C_{M_1}^{n_1} \cdots C_{M_r}^{n_r}}{C_M^n}$$

1.2.6 Stirling's Approximation

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n e^{\frac{\theta_n}{12n}} \quad , 0 < \theta_n < 1$$

1.3 Conditional Probability

1.3.1 Conditional Probbility

the probability of B under the condition of A is ${\bf Conditional\ Probability}$, marked as

$$P(B \mid A)$$

and

$$P(B \mid A) = \frac{P(AB)}{P(A)}$$

1.3.2 Total Probability Theorem

suppose
$$A_1 + \cdots + A_n = \Omega$$
, $B \in \Omega$

$$P(B) = \sum_{i=1}^{n} P(B \mid A_i) P(A_i)$$

1.3.3 Bayes Rule

if
$$A,B\in\Omega$$
 , $P(A),P(B)>0$

$$P(A_i) = \frac{P(A_i)P(B \mid A_i)}{\sum_{j=1}^{n} P(A_j)P(B \mid A_j)}$$

1.3.4 Independence

if A and B are independent

$$P(AB) = P(A)P(B)$$

2 Random Variable

2.1 Cumulative Distribution Function

$$\forall x, F(x) = P\{X \le x\} = P\{\omega \mid X(\omega) \le x\}$$

Therom:

$$\forall x_1, x_2, if \quad x_1 \le x_2, \quad F(x_1) \le F(x_2)$$
$$0 \le F(x) \le 1, \lim_{x \to -\infty} F(x) = 0, \lim_{x \to +\infty} F(x) = 1$$
$$F(x+0) = F(x)$$

2.1.1 Discrete Random Variable

if randdom variable X is limited and the value are x_1,\cdots,x_n,\cdots , $P\{X=x_i\}=p_i$, then

$$p_i \ge 0$$
$$\sum_{i=1}^{\infty} p_i = 1$$

then X is a discrete random variable

2.2 Common Distribution

2.2.1 Poission Distribution

$$P\{X=k\} = \frac{\lambda^k}{k!}e^{-\lambda}, k = 0, 1, \dots; \quad \lambda > 0$$

Poission Therom:

2.3 Probability Density Function

$$F(X) = \int_{-\infty}^{x} f(u)du$$

f(x) is probability density function

2.3.1 Uniform Distribution

$$f(x) = \begin{cases} \frac{1}{b-a}, & a < x < b \\ 0, & other \end{cases}$$

 $X \sim U(a,b)$

$$F(x) = \begin{cases} 0, & x < a \\ \frac{x - a}{b - a}, & a \le x < b \\ 1, & b \le x \end{cases}$$

2.3.2 Exponential Distribution

$$f(x) = \begin{cases} \lambda e^{-\lambda x} , & x > 0 \\ 0 , & x \le 0 \end{cases}$$

2.3.3 Normal Distribution

$$X \sim N(\mu, \sigma^2)$$

$$\phi(x; \mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \ x \in R$$

$$\forall a, b \ , \ X \sim N(a, b) \Rightarrow P(x_1 < x < x_2) = \Phi(\frac{x_2 - a}{\sqrt{b}}) - \Phi(\frac{x_1 - a}{\sqrt{b}})$$

$$\Phi(-x) = 1 - \Phi(x)$$

2.4 Joint Distribution Function

if (X,Y) is in Ω , their distribution function are

$$F_X(x) = P\{X \le x\}, F_Y(y) = P\{Y \le y\}$$

joint distribution function is

$$F(x,y) = P\{X \le x, Y \le y\}$$

Therom:

$$\begin{split} P\{X \leq x\} &= P\{X \leq x, Y < +\infty\} \\ P\{Y \leq y\} &= P\{X < +\infty, Y \leq y\} \\ F_X(x) &= \lim_{y \to +\infty} F(x,y) \\ F_Y(y) &= \lim_{x \to +\infty} F(x,y) \\ P\{x_1 < X \leq x_2, y_1 < Y \leq y_2\} &= F(x_2, y_2) - F(x_2, y_1) - F(x_1, y_2) + F(x_1, y_1) \end{split}$$

2.4.1 Discrete Jiont Distribution Function

$$F(x,y) = \sum_{x_i \le x} \sum_{y_j \le j} p_{ij}$$

2.4.2 Joint Probability Density

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) du dv$$

$$G \subset \mathbb{R}^{2} , P\{(X,Y) \in G\} = \iint_{G} f(x,y) d\sigma$$

$$f_{X}(x) = \int_{-\infty}^{+\infty} f(x,y) dy , x \in \mathbb{R}$$

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x,y) dx , y \in \mathbb{R}$$

$$F_{X}(x) = F(x,+\infty) = \int_{-\infty}^{x} \left[\int_{-\infty}^{+\infty} f(u,v) dv \right] dv$$

2.4.3 Geometric Probability

$$f(x,y) = \begin{cases} \frac{1}{S(G)} , & (x,y) \in G \\ 0 , & (x,y) \notin G \end{cases}$$

2.4.4 Two-Dimensional Normal Distribution

$$\phi(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)}\left[\frac{(x-\mu_1)^2}{\sigma_1^2} - 2\rho\frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2}\right]}, \ x \in \mathbb{R}, \ y \in \mathbb{R}$$

2.4.5 Independence

$$F(x,y) = F_X(x)F_Y(y)$$
$$f(x,y) = f_X(x)f_Y(y)$$

2.4.6 Conditional Distribution

$$P{Y = y_j, X = x_i} = \frac{p_{ij}}{p_i}$$

 $f_{X|Y}(x \mid y) = \frac{f(x, y)}{f_X(x)}$

2.4.7 Random Variable Function

if
$$y = y(x)$$

$$f_Y(y) = \begin{cases} f_X[x(y)] \mid x(y)' \mid , \ \alpha < y\beta \\ 0 \ , \ other \end{cases}$$

$$Z_1 = max\{X, Y\}, Z_2 = min\{X, Y\}$$

$$F_{Z_1} = P\{max\{X, Y \le z\} = P\{X \le z, Y \le z\} = P\{X \le z\}P\{Y \le z\} = F_X(z)F_Y(z)\}$$

$$F_{Z_2} = P\{\min\{X,Y\} \leq z\} = 1 - P\{\min\{X,Y\} > z\} = 1 - P\{X > z,Y > z\} = 1 - P\{X > z \P\{Y > z\} = 1 - P\{X > z\} = 1 -$$

3 Numercial Characters

- 3.1 Expection
- 3.1.1 Discrete Distribution

$$P\{X = x_i\} = p_i , E(X) = \sum_{\infty}^{i=1} x_i p_i$$

3.1.2 Continuous Distribution

$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx$$

3.1.3 Property

$$E(C) = C$$

$$E(CX) = CE(X)$$

$$E(X + Y) = E(X) + E(Y)$$

$$E(XY) = E(X)E(Y)$$

- 3.1.4 Random Variable Function
- 3.2 Variance

$$D(X) = E[X - E(X)]^2$$

3.2.1 Discrete Distribution

$$D(X) = \sum_{i=1}^{\infty} [x_i - E(X)]^2 P\{X = x_i\}$$

3.2.2 Continuous Distribution

$$D(X) = \int_{-\infty}^{+\infty} [x - E(X)]^2 f_X(s) dx$$

3.2.3 Property

$$\begin{split} &D(C)=0\\ &D(CX)=C^2D(X)\\ &D(X\pm Y)=D(X)+D(Y)+\pm 2E\{[X-E(X)][Y-E(Y)]\} \end{split}$$

3.3 Expection and Variance of Common Distribution Function

3.3.1 Binomial Distribution

$$X \sim B(n, p) \Rightarrow E(X) = np$$
, $D(X) = np(1-p)$

3.3.2 Poisson Distribution

$$X \sim P(\lambda) \Rightarrow E(X) = \lambda, D(X) = \lambda$$

3.3.3 Geometric Distribution

$$X \sim U(a,b) \Rightarrow E(X) = \frac{a+b}{2} , \ D(X) = \frac{(b-a)^2}{12}$$

3.3.4 Exponential Distribution

$$E(X) = \frac{1}{\lambda}$$
, $D(X) = \frac{1}{\lambda^2}$

3.3.5 Normal Distribution

$$X \sim N(\mu, \sigma^2) \Rightarrow E(x) = \mu , D(x) = \sigma^2$$

3.4 Covariance

$$cov(X,Y) = E\{[X - E(X)][Y - E(Y)]\}$$

is the covariance of X and Y

especially

$$D(X) = cov(X, X)$$

therefore

$$D(X \pm Y) = D(X) + D(Y) \pm 2cov(X, Y)$$

Therom:

$$cov(X,Y) = cov(Y,X)$$

$$cov(aX,bY) = abcov(Y,X)$$

$$cov(X_1 + X_2,Y) = cov(X_1,Y) + cov(X_2,Y)$$

$$cov(X,Y) = E(XY) - E(X)E(Y)$$

3.5 Correlation Coefficient

for
$$(X,Y)$$
, $D(X) > 0$, $D(Y) > 0$

$$\rho_{XY} = \frac{cov(X,Y)}{\sqrt{D(X)D(Y)}}$$

$$\rho_{XY} = E\left[\frac{X - E(X)}{\sqrt{D(X)}} \frac{Y - E(Y)}{\sqrt{D(Y)}}\right] = E(X^*Y^*) = cov(X^*,Y^*)$$

Therom:

$$\mid \rho_{XY} \mid \leq 1$$

$$\mid \rho \mid = 1 \iff \exists b, a \neq 0, P\{Y = aX + b\} = 1$$

3.6 Law of large numbers and Central limit Theorem

3.6.1 Law of large numbers

Chebyshev's Theorem

for random variable X , E(X) and D(X) exist , $\forall \epsilon > 0$

$$P\{\mid X - E(X) \mid \geq \epsilon\} \leq \frac{D(X)}{\epsilon^2}$$

or

$$P\{\mid X - E(X)\mid <\epsilon\} \ge 1 - \frac{D(X)}{\epsilon^2}$$

Law of Large Numbers for sequence of random variables X_1, \dots, X_n, \dots , $E(X_i)$ exists, $i = 0, 1 \dots, \forall \epsilon < 0$

$$\lim_{x \to \infty} P\{ | \frac{1}{n} \sum_{i=1}^{n} X_i - \frac{1}{n} \sum_{i=1}^{n} E(X_i) | < \epsilon \} = 1$$

3.6.2 Chebyshev Law of Large num-herd

if sequence of random variable X_1, \cdots, X_n, \cdots are independent, $E(X_i)$ and $D(X_i)$ are exsit, and $D(X_i) < C$, $i = 0, 1, \cdots, \forall \epsilon > 0$

$$\lim_{n \to n} \{ | \frac{1}{n} \sum_{i=1}^{n} X_i - \frac{1}{n} \sum_{i=1}^{n} E(X_i) | < \epsilon \} = 1$$

3.6.3 Wiener-Khinchin Law of Large Numbers

for sequence X_1,\cdots,X_n,\cdots are independent , and $E(X_i)=\mu$, $i=0,1\cdots,\,\forall \epsilon>0$

$$\lim_{n \to \infty} P\{ | \frac{1}{n} \sum_{i=1}^{n} X_i - \mu | \} < \epsilon \} = 1$$

3.6.4 Bernoulli Law of Large Num-hers

$$\lim_{n \to n} P\{\mid \frac{m}{n} - p \mid < \epsilon\} = 1$$

3.7 Central Limit Theorom

if sequence $X_1, \dots X_n, \dots$ are independent

$$\lim_{n \to \infty} P\{\frac{\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} E(X_i)}{\sqrt{\sum_{i=1}^{x} D(X_i)}}\} = \Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt , -\infty < x < +\infty$$
if $E(X_i) = \mu$, $D(X_i) = \sigma^2 > 0$, $i = 0, 1, \cdots$

$$\lim_{n \to \infty} P\{\frac{\sum_{i=1}^{x} X_i - n\mu}{\sqrt{n}\sigma} \le x\} = \Phi(x)$$

3.7.1 De Moivre-Laplace

if
$$Y_n \sim B(n, p)$$
, $n = 0, 1, \dots, \forall x$

$$\lim_{n \to \infty} P\{\frac{Y_n - np}{\sqrt{np(1-p)}} \le x\} = \Phi(x)$$