1. Prove that \mathbb{R} is uncountable. If you like to use the Baire Category Theorem, you have to prove it.

Solution

It suffices to show that the interval (0,1] is uncountable. Consider the following isomorphism between (0,1] and a subset of $S_{0,1}$, the set of sequences composed only of 0's and 1's. Let $x \in (0,1]$ and express

$$x = \sum_{n=1}^{\infty} \frac{d_n}{2^n},$$

where each $d_n \in \{0,1\}$ and $d_n = 1$ infinitely often. Note this is always possible, as it is an expression of the following process. Subdivide (0,1] into 2^m half-open equal-lengthed subintervals of length 2^{-m} ; thus each subinterval has the form $(x_i, x_{i+1}]$ with each

$$x_i = \sum_{n=1}^{m} \frac{d_n^i}{2^n} = \frac{i}{2^m},$$

 $i=0,\ldots,2^m$. Now note the left endpoint of the subinterval within which x falls; this is the m^{th} partial sum of the above infinite sum, which is always bounded above by x and within 2^{-m} of x. Further, in choosing the left endpoint of the half-open interval, we guarantee that $d_n=1$ infinitely often (if we could represent x such that $d_n=0$ after some point, then x would be an endpoint of some fine subinterval and x could never be a partial sum of the above infinite sum, since we always choose the left endpoint, which is not included in the half-open interval).

This thus provides an injective mapping ϕ from (0,1] into $S_{0,1}$ by mapping x to $(d_1,d_2,...)$. A diagonalization argument shows that $S_{0,1}$ is itself uncountable, so we have only to show that $S_{0,1} \setminus \phi((0,1])$ is countable to establish that (0,1] is uncountable. Note that $S_{0,1} \setminus \phi((0,1])$ consists of those sequences of 0's and 1's which are constantly 0 after some point, for all other sequences may be mapped to an $x \in (0,1]$ by the infinite summation. Therefore, let $T_n \subset S_{0,1}$ be the set of sequences which are constantly 0 from the n^{th} term on. Then each T_n is finite (indeed, it has cardinality 2^{n-1}). Thus

$$S_{0,1} \backslash \phi((0,1]) = \bigcup_{n=1}^{\infty} T_n,$$

which is certainly at most countable. This establishes the claim.

2. Let $f: \mathbb{R} \to \mathbb{R}$ be an infinitely often differentiable function. Assume that for each element $x \in [0,1]$ there is a positive integer m such that the m^{th} derivative of f at x is not zero.

Prove that there exists an integer M such that the following stronger statement holds:

For each element $x \in [0,1]$, there is a positive integer m with $m \leq M$ such that the m^{th} derivative of f at x is not zero.

Solution

As given, for each $x \in [0,1]$, there exists an m_x such that the m_x^{th} derivative of f at x is nonzero; by the continuity of $f^{(m_x)}$, there exists a δ_x such that $f^{(m_x)}$ is nonzero in the neighborhood $B(x;\delta_x)$ of x. The family of open sets $\{B(x;\delta_x)\}_{x\in[0,1]}$ is an open cover of [0,1], which is compact, hence there exists a finite subcover $\{B(x_i;\delta_{x_i})\}_{i=1}^n$. Set $M=\max_i m_{x_i}$. Then each $x\in[0,1]$ lies in some $B(x_i;\delta_{x_i})$, hence the $m_{x_i}^{th}$ derivative of f at x is nonzero, and $m_{x_i}\leq M$ by construction.

3. Prove that the sequence a_1, a_2, \ldots with

$$a_n = \left(1 + \frac{1}{n}\right)^n$$

converges as $n \to \infty$.

Solution

$$\begin{array}{rcl} a_n & = & \left(1+\frac{1}{n}\right)^n \\ & = & \sum_{i=0}^n \binom{n}{i} \frac{1}{n^i} \\ & = & \sum_{i=0}^n \frac{n!}{(n-i)!i!} \frac{1}{n^i} \\ & = & \sum_{i=0}^n \frac{n(n-1)(n-2)\cdots(n-i+1)}{(n)(n)(n)\cdots(n)} \frac{1}{i!} \end{array} ,$$

$$< & \sum_{i=0}^n \frac{1}{i!} \\ < & \sum_{i=0}^\infty \frac{1}{i!} \\ & = & e \end{array}$$

hence the a_n 's are a sequence of positive real numbers bounded above by e.

4. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function. State the definition of the Riemann integral

$$\int_0^1 f(x)dx$$

and prove that it exists.

Solution

Let $P = \{0 = x_0 \le x_1 \le \cdots \le x_n = 1\}$ be a partition of [0,1] and define $\Delta x_i = x_i - x_{i-1}$, $m_i = \inf_{[x_{i-1},x_i]} f$, and $M_i = \sup_{[x_{i-1},x_i]} f$, $i = 1,\ldots,n$. Then we denote

$$U(P, f) = \sum_{i=1}^{n} M_i \Delta x_i,$$

$$L(P, f) = \sum_{i=1}^{n} m_i \Delta x_i,$$

and set

$$\overline{\int}_{0}^{1} f dx = \inf_{P \subset [0,1]} U(P, f),$$
$$\int_{-0}^{1} f dx = \sup_{P \subset [0,1]} L(P, f).$$

If the upper Riemann integral and lower Riemann integral are equal, then f is Riemann integrable and

$$\int_0^1 f dx$$

is their common value.

Now if f is continuous on [0,1], then f is uniformly continuous. Thus, given an $\epsilon > 0$, there exists a $\delta > 0$ such that $|f(x) - f(y)| < \epsilon$ whenever $x, y \in [0,1]$ with $|x - y| < \delta$. Let P be a partition of [0,1] such that $\Delta x_i < \delta/2$. Then $M_i - m_i < \epsilon$ and

$$U(P,f) - L(P,f) = \sum_{i=1}^{n} (M_i - m_i) \Delta x_i < \epsilon \sum_{i=1}^{n} \Delta x_i = \epsilon,$$

and since ϵ was aribtrary, we conclude that f is Riemann integrable on [0,1].

5. Assume $f: \mathbb{R}^2 \to \mathbb{R}$ is a function such that all partial derivatives of order 3 exist and are continuous. Write down (explicitly in terms of partial derivatives of f) a quadratic polynomial P(x, y) in x and y such that

$$|f(x,y) - P(x,y)| \le C(x^2 + y^2)^{3/2}$$

for all (x, y) in some small neighborhood of (0, 0), where C is a number that may depend on f but not on x and y. Then prove the above estimate.

Solution

Let U be some open ball of (0,0), and let M be a bound for each of the order 3 partial derivatives of f on U (which exists by the continuity of these partials). Let

$$P(x,y) = f(0,0) + (D_1 f)x + (D_2 f)y + (D_{11} f)\frac{x^2}{2} + (D_{12} f)xy + (D_{22} f)\frac{y^2}{2},$$

where each partial derivative is evaluated at (0,0). Then

$$g(x,y) = f(x,y) - P(x,y)$$

has vanishing partial derivatives of order up to 2 at (0,0). Fix $(x,y) \in U$ and define $h:[0,1] \to \mathbb{R}$ by

$$h(t) = g(tx, ty).$$

Then

$$h(0) = h'(0) = h''(0) = 0$$

and

$$h^{(3)}(t) = (D_{111}g)x^3 + 3(D_{112}g)x^2y + 3(D_{122}g)xy^2 + (D_{222}g)y^3,$$

where each partial derivative is evaluated at $(tx, ty) \in U$. Thus

$$|h^{(3)}(t)| \le M (\max\{x,y\})^3 \le M (x^2 + y^2)^{3/2}.$$

By Taylor's Theorem,

$$h(1) = h(0) + h'(0) + h''(0)/2 + h^{(3)}(t)/6$$

for some $0 \le t \le 1$, hence

$$|f(x,y) - P(x,y)| = |g(x,y)| = |h(1)| \le M/6 (x^2 + y^2)^{3/2}$$

for all $(x, y) \in U$.

6. Let $U = \{(x,y) : x^2 + y^2 < 1\}$ be the standard unit ball in \mathbb{R}^2 and let ∂U denotes its boundary. Suppose $F : \mathbb{R}^2 \to \mathbb{R}^2$ is continuously differentiable and that the Jacobian determinant of F is everywhere non-zero. Suppose also that $F(x,y) \in U$ for some $(x,y) \in U$ and $F(x,y) \notin U \cup \partial U$ for all $(x,y) \in \partial U$. Prove that $U \subset F(U)$.

Solution

(W02.7)

7. Prove that the space of continuous functions on the closed interval [0,1] with the metric

$$dist(f,g) = \sup_{x \in [0,1]} |f(x) - g(x)| = ||f - g||_{\infty}$$

is complete. You do not need to show that this is a metric space.

Solution

Let $\{f_n\}_{n=1}^{\infty}$ be a Cauchy sequence of continuous functions on [0,1] with the metric dist. For each $x \in [0,1]$, it follows that $\{f_n(x)\}_{n=1}^{\infty}$ is a Cauchy sequence in \mathbb{R} , hence define $f:[0,1] \to \mathbb{R}$ by

$$f(x) = \lim_{n \to \infty} f_n(x).$$

We show now that f is uniformly continuous on [0,1], hence continuous. To this end, let $\epsilon > 0$ be given; then there exists an N such that $||f_n - f_m||_{\infty} < \epsilon$ for all $n, m \ge N$, that is, $|f_n(x) - f_m(x)| < \epsilon$ for all $x \in [0,1]$ and $n, m \ge N$. Letting $m \to \infty$, we see that $|f_n(x) - f(x)| \le \epsilon$ for all $x \in [0,1]$ and $n \ge N$. f_N is continuous on [0,1], hence uniformly continuous, so there exists a δ such that $|f_N(x) - f_N(y)| < \epsilon$ whenever $|x - y| < \delta$. It follows that

$$|f(x) - f(y)| \le |f(x) - f_N(x)| + |f_N(x) - f_N(y)| + |f_N(y) - f(y)| < 3\epsilon,$$

proving that f is uniformly continuous.

- 8. Prove the following three statements. You certainly may choose an order of these statements and then use the earlier statements to prove the later statements.
 - (a) If $T:V\to W$ is a linear transformation between two finite dimensional real vector spaces V,W, then

$$\dim(\operatorname{im}(T)) = \dim(V) - \dim(\ker(T)).$$

- (b) If $T: V \to V$ is a linear transformation on a finite dimensional real inner product space and T^* denotes its adjoint, then $\operatorname{im}(T^*)$ is the orthogonal complement of $\ker(T)$ in V.
- (c) Let A be an n by n real matrix; then the maximal number of linearly independent rows (row rank) in the matrix equals the maximal number of linearly independent columns (column rank).

Solution

(a) Let U be any subspace of V, and let $\{u_1, \ldots, u_k\}$ be a basis for U. Extend this to a basis of V with $\{u_{k+1}, \ldots, u_n\}$. Then $\{\{u_{k+1}\}, \ldots, \{u_n\}\}$ is evidently a basis for V/U, hence

$$\dim(U) + \dim(V/U) = k + (n - k) = n = \dim(V).$$

Let $U = \ker(T)$, and define T acting on V/U by setting

$$T\{x\} = Tx$$
.

Then T provides an isomorphism between V/U and im(T), hence

$$\dim(V) = \dim(U) + \dim(V/U) = \dim(\ker(T)) + \dim(\operatorname{im}(T)).$$

(b) We show first that $\operatorname{im}(T^*)^{\perp} = \ker(T)$:

$$v \in \operatorname{im}(T^*)^{\perp} \iff (v, x) = 0 \ \forall x \in \operatorname{im}(T^*)$$

$$\Leftrightarrow (v, T^*y) = 0 \ \forall y \in V^*$$

$$\Leftrightarrow (Tv, y) = 0 \ \forall y \in V^*$$

$$\Leftrightarrow Tv = 0 \iff v \in \ker(T)$$

We next show that, for a subspace W of V*, $W^{\perp\perp}=W$. Indeed,

$$x \in W \iff (v, x) = 0 \ \forall v \in W^{\perp} \iff x \in W^{\perp \perp},$$

hence

$$\operatorname{im}(T^*) = \operatorname{im}(T^*)^{\perp \perp} = \ker(T)^{\perp}.$$

(c) We have that

$$n = \dim(\operatorname{im}(A^t)) + \dim(\ker(A^t)) = \operatorname{rowrank}(A^t) + \operatorname{nullity}(A^t).$$

But

$$rowrank(A^t) = colrank(A)$$

and

$$\operatorname{nullity}(A^t) = n - \dim(\ker(A^t)^{\perp}) = n - \dim(\operatorname{im}(A)) = n - \operatorname{rowrank}(A),$$

from which it follows that colrank(A) = rowrank(A).

- 9. Consider a 3 by 3 real symmetric matrix with determinant 6. Assume (1,2,3) and (0,3,-2) are eigenvectors with eigenvalues 1 and 2. Give answers to (a) and (b) below and justify the answers.
 - (a) Give an eigenvector of the form (1, x, y) for some real x, y which is linearly independent of the two vectors above.
 - (b) What is the eigenvalue of this eigenvector.

Solution

Since the product of all (real and complex) eigenvalues of a matrix A is equal to the determinant A, it follows that if $A \in M_{3\times 3}(\mathbb{R})$ with eigenvalues 1 and 2 and $\det(A) = 6$, then the third eigenvalue is $\lambda = 3$. If, additionally, A is symmetric, then the eigenspace associated with the eigenvalue 3 is orthogonal to the other 2 eigenspaces; it follows that (1, x, y) is an eigenvector with eigenvalue 3 if and only if

$$0 = (1, x, y) \cdot (1, 2, 3) = 1 + 2x + 3y,$$

$$0 = (1, x, y) \cdot (0, 3, -2) = 3x - 2y,$$

from which we solve x = -2/13, y = -3/13.

10. (a) Let $t \in \mathbb{R}$ such that t is not an integer multiple of π . For the matrix

$$A = \begin{pmatrix} \cos(t) & \sin(t) \\ -\sin(t) & \cos(t) \end{pmatrix}$$

prove that there does not exist a real valued matrix B such that BAB^{-1} is a diagonal matrix.

(b) Do the same for the matrix

$$A = \left(\begin{array}{cc} 1 & \lambda \\ 0 & 1 \end{array}\right)$$

where $\lambda \in \mathbb{R} \setminus \{0\}$.

Solution

(a) Suppose $BAB^{-1} = D$ is diagonal for some real-valued matrix B, and let its diagonal entries be λ_1 and λ_2 . Then each λ_i is an eigenvalue of D, hence an eigenvalue of A since

$$\begin{array}{rcl} 0 & = & \det(\lambda_i I - D) \\ & = & \det(\lambda_i B B^{-1} - B A B^{-1}) \\ & = & \det(B(\lambda_i I - A) B^{-1}) \\ & = & \det(\lambda_i I - A) \end{array}.$$

But any λ satisfying

$$\det(\lambda I - A) = 0$$

is not real, since

$$0 = \det(\lambda I - A) = (\lambda - \cos(t))^2 + \sin(t)^2$$

implies that

$$\lambda = \cos(t) \pm i \sin(t),$$

and $\sin(t) \neq 0$ as t is not a multiple of π . But $D = BAB^{-1}$ must be real-valued since it is a product of real-valued matrices, a contradiction. This proves there can exist no such B.

(b) Suppose $BAB^{-1} = D$ is diagonal for some real-valued matrix B. Again, the diagonal entries of D correspond to eigenvalues of A, so we compute

$$0 = \det(\mu I - A) = (\mu - 1)^2,$$

thus $\mu=1$ is the only eigenvalue of A, so we conclude that D=I, and $A=B^{-1}DB=B^{-1}B=I$, which is contradiction to the given A for $\lambda\neq 0$. This proves there can exist no such B.