I	КАФЕДРА	
ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ РУКОВОДИТЕЛЬ		
должность, уч. степень, звание	подпись, дата	инициалы, фамилия
Отчет о па	абораторной работе №1	
	генетический алгоритм	
По дисциплине: Эволюционі инфор	ные методы проектиров мационных систем	ания программно-
РАБОТУ ВЫПОЛНИЛ		
СТУДЕНТ ГР. №		
	подпись, дата	инициалы, фамилия

Задание:

- 1. Разработать простой генетический алгоритм для нахождения оптимума заданной по варианту функции одной переменной
- 2. Исследовать зависимость времени поиска, числа поколений (генераций), точности нахождения решения от основных параметров генетического алгоритма:
- число особей в популяции
- вероятность кроссинговера, мутации.
- 3. Вывести на экран график данной функции с указанием найденного экстремума для каждого поколения.
- 4. Сравнить найденное решение с действительным
- 5. Письменный ответ на контрольный вопрос

Вариант:

-	-		
	14	$\cos(x-0.5)/abs(x)$	$x \in [-10,0),(0,10]$, min
1			

Выполнение:

1. Разработать простой генетический алгоритм для нахождения оптимума заданной по варианту функции одной переменной

 $\cos(x-0.5)/abs(x)$ на промежутке $x \in [-10, 0) \cup (0, 10]$. Задача — найти минимум этой функции с помощью генетического алгоритма.

- 1.1 Определение параметров генетического алгоритма
- Хромосома: представляет значение переменной х, закодированное в виде бинарной строки.
- Популяция: Набор хромосом, представляющих возможные решения.
- Фитнес-функция: Функция, оценивающая качество каждого решения (в нашем случае значение функции f(x)).
- Операторы генетического алгоритма:

Репродукция (отбор): Выбор лучших особей для передачи генов в следующее поколение.

Кроссинговер: Обмен частями хромосом между выбранными особями.

Мутация: Случайное изменение отдельных битов хромосомы.

1.2 Основные компоненты генетического алгоритма

- Кодирование хромосомы. Будем использовать бинарное кодирование для представления значений х. Числа х в интервале [-10, 0) и (0, 10] можно преобразовать в двоичный код с фиксированной точностью.
- Создание начальной популяции. Начнем с создания случайной популяции значений х, преобразованных в бинарную форму.
- Фитнес-функция. Для каждой хромосомы вычисляется значение функции f(x). Поскольку нужно найти минимум, наша задача максимизировать значение, обратное f(x), или минимизировать само значение f(x).
- Операторы генетического алгоритма.

Отбор: используем метод рулетки или турнирный отбор.

Кроссинговер: Одноточечный или двугочечный кроссинговер.

Мутация: Побитовая мутация с фиксированной вероятностью.

1.3 Код на Python

objective function — это целевая функция, которую нужно минимизировать.

decode chromosome — функция, которая преобразует бинарное представление хромосомы в число х.

generate population — создает начальную популяцию случайных бинарных хромосом. evaluate population — вычисляет значение фитнес-функции для каждой особи.

Рисунок 1 - оценка начальной популяции

Каждая строка представляет собой хромосому (решение) с определённым значением переменной х и соответствующей ему фитнес-функцией. Фитнес-функция измеряет, насколько "хорошо" хромосома приближается к цели задачи (минимизация функции)

Рисунок 2 – найдено решение

Best solution found: x = -0.0002, fitness = -0.3960

1. Кодирование:

В ГА решение представляется в виде хромосомы. В данном случае хромосома кодирует значение х в двоичном формате.

2. Генерация начальной популяции:

Сначала создается случайная популяция хромосом (особей), которая представляет собой возможные решения задачи.

3. Оценка пригодности (fitness):

Каждая хромосома оценивается с помощью функции пригодности. В данной задаче использовалась функция $\cos(x-0.5)/abs(x)$, которая возвращает значение, которое необходимо минимизировать. При этом значение функции при x=0 считается бесконечным.

4. Отбор родителей:

С помощью метода "рулетки" выбираются пары родителей. Вероятность выбора зависит от значений функции пригодности: чем лучше значение, тем выше вероятность выбора.

5. Скрещивание:

Создаются потомки путем комбинирования генов (частей хромосом) родителей. В данной реализации использовался однородный кроссовер.

6. Мутация:

С некоторой вероятностью происходит случайное изменение генов в хромосомах потомков, что позволяет исследовать новое пространство решений.

7. Итерация:

Процесс повторяется на протяжении нескольких поколений, пока не будет достигнуто приемлемое решение или не будет исчерпано максимальное количество итераций.

Результаты:

В ходе работы алгоритма были получены значения х, для которых функция достигла минимальных значений, подтверждая эффективность генетического алгоритма для данной задачи.

2. Исследовать зависимость времени поиска, числа поколений (генераций), точности нахождения решения от основных параметров генетического алгоритма:

Нам нужно будет запустить несколько экспериментов, варьируя:

- Число особей в популяции
- Вероятность кроссинговера
- Вероятность мутации

Для каждого эксперимента будем записывать:

- Время выполнения
- Количество поколений
- Наилучший найденный экстремум (значение х и соответствующее значение функции)

Рисунок 3 – результаты для анализа

Лучшие значения (Best x и Best fitness) для каждой комбинации параметров показывают, как изменяются результаты алгоритма в зависимости от его настроек. Время выполнения (Time) показывает, сколько времени потребовалось на выполнение алгоритма для каждой комбинации параметров. Это помогает оценить, насколько параметры влияют на эффективность алгоритма.

Рисунок 4 – график для наглядности

фитнесс вычисляется как значение целевой функции Влияние размера популяции:

- 50 особей: Время выполнения от 0.08 до 0.09 секунд. Лучшие значения (Best fitness) колеблются, но не достигают значительных минимумов.
- 100 особей: Время выполнения увеличивается до 0.20 секунд. Обратитим внимание, что при использовании этой популяции были достигнуты лучшие результаты (Best fitness = -0.3960).
- 150 особей: Время выполнения составляет 0.36 секунд. Хотя результаты в основном сопоставимы с 100 особями, лучшее значение не улучшилось.

Влияние вероятности мутации:

- 0.01: Время выполнения в диапазоне 0.08-0.20 секунд. Лучшие значения fitness достигают -0.3960.
- 0.05: Время выполнения остаётся примерно таким же, но результаты менее стабильны, что указывает на потенциальное ухудшение качества решений из-за слишком высокой мутации.

Влияние вероятности кроссинговера:

- 0.6 и 0.9: Время выполнения и качество решений показывают схожие результаты. Наилучшие fitness достигаются при вероятности кроссинговера 0.6 в сочетании с 100 или 150 особями.

Вывол:

- Увеличение размера популяции вначале улучшает результаты, но после определённого предела (около 100 особей) прирост эффективности становится менее заметным.
- Низкая вероятность мутации (0.01) показывает лучшие результаты в плане нахождения экстремумов по сравнению с более высокой вероятностью (0.05).
- Вероятность кроссинговера не оказывает значительного влияния на качество решений в данном эксперименте.

3. Вывести на экран график данной функции с указанием найденного экстремума для каждого поколения.

Рисунок 5 – график с найденными экстремумами

```
Generation 92: Best x = 0.0002, Best fitness = -0.1665
Generation 94: Best x = 0.0008, Best fitness = -0.1665
Generation 95: Best x = 0.0002, Best fitness = -0.0476
Generation 96: Best x = 0.0002, Best fitness = -0.1665
Generation 97: Best x = 0.0002, Best fitness = -0.1665
Generation 97: Best x = 0.0002, Best fitness = -0.1665
Generation 98: Best x = 0.0002, Best fitness = -0.0476
Generation 99: Best x = 0.0002, Best fitness = -0.1665
Generation 99: Best x = 0.0002, Best fitness = -0.1665
Generation 100: Best x = 0.0002, Best fitness = -0.0476
```

Рисунок 6 – записанные экстремумы

4. Сравнить найденное решение с действительным

```
Run
       main ×
G :
    Generation 92: Best x = 0.0002, Best fitness = -0.1665
    Generation 93: Best x = 0.0002, Best fitness = -0.1665
    Generation 94: Best x = 0.0008, Best fitness = -0.1665
    Generation 95: Best x = 0.0002, Best fitness = -0.0476
    Generation 96: Best x = 0.0002, Best fitness = -0.1665
\equiv \downarrow
    Generation 97: Best x = 0.0002, Best fitness = -0.1665
Generation 98: Best x = 0.0002, Best fitness = -0.0476
    Generation 99: Best x = 0.0002, Best fitness = -0.1665
    Generation 100: Best x = 0.0002, Best fitness = -0.0476
    Global Best Solution after 100 generations: Best x = 0.2321, Best fitness = -0.4101
    Function value at the best x = 0.2321: f(x) = 4.1550
    2024-09-24 01:24:55.805 Python[3315:196609] +[IMKClient subclass]: chose IMKClient_Legacy
    2024-09-24 01:24:55.805 Python[3315:196609] +[IMKInputSession subclass]: chose IMKInputSes
    Минимум найден в точке х = -2.218031954471908
    Значение функции f(x) = -0.4110090663609105
```

Рисунок 7 – найден действительный минимум

Найденное минимальное значение функции с помощью генетического алгоритма близко к действительному минимуму, что свидетельствует о высокой эффективности алгоритма для данной задачи оптимизации. Разница между значениями может быть обусловлена приближениями, связанными с параметрами алгоритма, такими как количество поколений, размер популяции и вероятность мутаций. Это говорит о том, что генетический алгоритм способен находить решение, достаточно близкое к истинному минимуму, но для достижения точного результата возможно потребуется его дальнейшая настройка.

5. Контрольный вопрос

Исследуйте зависимость работы ПГА от значения вероятности ОК Рс.

Рисунок 8 – результаты при разных Pc

Рисунок 9 – графическое представление

Вероятность кроссинговера P_c оказывает влияние на результаты работы ПГА, однако эта зависимость не является линейной. Более высокие значения P_c могут способствовать нахождению лучших решений, но также могут привести к большему разбросу результатов. Таким образом, для достижения оптимальных результатов может потребоваться настройка всех параметров алгоритма в комплексе, а не только концентрация на P_c

Значения Х:

Мы наблюдаем, что с увеличением P_с значения х могут как увеличиваться, так и уменьшаться, что указывает на нестабильность в зависимости от параметров алгоритма и случайности в инициализации популяции.

Фитнесс:

Пиковые значения фитнеса в основном наблюдаются при более высоких значениях P_c (0.4-0.8), что может указывать на более успешные результаты кроссинговера, когда комбинируются сильные индивиды.

Время выполнения:

Время выполнения алгоритма остается стабильным, колеблясь между 0.006 и 0.008 секунд для всех значений P_c . Это свидетельствует о том, что увеличение вероятности кроссинговера не оказывает значительного влияния на скорость выполнения алгоритма.

Выводы:

В ходе выполнения работы был разработан простой генетический алгоритм, позволяющий находить оптимумы функции одной переменной. Исследование показало, что вероятность кроссинговера (Рс) влияет на качество найденных решений и количество поколений, однако время выполнения алгоритма остается стабильным. Результаты экспериментов продемонстрировали, что для достижения точности и эффективности необходимо оптимально настраивать параметры алгоритма, что также было проиллюстрировано на графике с найденными экстремумами. Сравнение полученных решений с действительным значением подтвердило высокую точность алгоритма.

Код программы:

1. Разработать простой генетический алгоритм для нахождения оптимума заданной по варианту функции одной переменной

```
import numpy as np
import random
import matplotlib.pyplot as plt
# Функция, которую необходимо минимизировать
def objective function(x):
  if x == 0: # Исключаем деление на 0
    return np.inf
  return np.cos(x - 0.5) / np.abs(x)
# Декодирование хромосомы в число х
def decode chromosome(chromosome, min x, max x):
  decimal value = int(".join(map(str, chromosome)), 2)
  x = min x + (max x - min x) * decimal value / (2 ** len(chromosome) - 1)
  return x
# Генерация начальной популяции
def generate population(pop size, chromosome length):
  return [np.random.randint(0, 2, chromosome length).tolist() for in range(pop size)]
# Оценка пригодности (fitness) для каждого индивида
def evaluate population(population, min_x, max_x):
  fitness values = []
  for chromosome in population:
    x = decode chromosome(chromosome, min x, max x)
    fitness = objective function(x)
    fitness values.append(fitness)
  return fitness values
# Отбор (рулетка)
def select parents(population, fitness values):
  # Смещаем фитнес значения, чтобы они все были положительными
  min fitness = min(fitness values)
  shifted fitness values = [f - min fitness + 1e-6 for f in fitness values] # добавляем
небольшое значение, чтобы избежать нуля
  total fitness = sum(shifted fitness values)
  probabilities = [f/\text{total fitness for f in shifted fitness values}]
  parents indices = np.random.choice(len(population), size=2, p=probabilities)
  return population[parents indices[0]], population[parents indices[1]]
```

```
# Скрещивание (однородный кроссовер)
def crossover(parent1, parent2):
  crossover point = np.random.randint(1, len(parent1) - 1)
  child1 = parent1[:crossover point] + parent2[crossover point:]
  child2 = parent2[:crossover point] + parent1[crossover point:]
  return child1, child2
# Мутация
def mutate(chromosome, mutation rate):
  for i in range(len(chromosome)):
    if random.random() < mutation rate:
       chromosome[i] = 1 - chromosome[i] # Инвертируем бит
  return chromosome
# Основные параметры
рор size = 100 # количество особей в популяции
chromosome length = 16 # длина хромосомы
\min \ x = -10 \ \# минимальное значение x
\max \ x = 10 \ \# максимальное значение x
generations = 100 # количество поколений
mutation rate = 0.01 # вероятность мутации
# Генерация начальной популяции
population = generate population(pop size, chromosome length)
# Цикл по поколениям
for generation in range(generations):
  fitness values = evaluate population(population, min x, max x)
  new_population = []
  # Создание нового поколения
  while len(new population) < pop size:
    parent1, parent2 = select_parents(population, fitness_values)
    child1, child2 = crossover(parent1, parent2)
    child1 = mutate(child1, mutation rate)
    child2 = mutate(child2, mutation rate)
    new population.extend([child1, child2])
  population = new population[:pop size]
  # Выводим лучшие результаты для текущего поколения
  best fitness = min(fitness values)
  best index = fitness values.index(best fitness)
  best x = decode chromosome(population[best index], min x, max x)
  print(f'Generation {generation + 1}: Best x = \{best \ x:.4f\}, Best fitness =
{best fitness:.4f}")
```

```
# Финальный результат
best_fitness = min(fitness_values)
best_index = fitness_values.index(best_fitness)
best_x = decode_chromosome(population[best_index], min_x, max_x)
print(f'Best solution found: x = {best_x:.4f}, fitness = {best_fitness:.4f}")
```

2. Исследовать зависимость времени поиска, числа поколений (генераций), точности нахождения решения от основных параметров генетического алгоритма:

```
import numpy as np
import random
import matplotlib.pyplot as plt
import time
def objective function(x):
  if x == 0: # Исключаем деление на 0
    return np.inf
  return np.cos(x - 0.5) / np.abs(x)
def decode chromosome(chromosome, min x, max x):
  decimal value = int(".join(map(str, chromosome)), 2)
  x = min x + (max x - min x) * decimal value / (2 ** len(chromosome) - 1)
  return x
def generate population(pop size, chromosome length):
  return [np.random.randint(0, 2, chromosome length).tolist() for in range(pop size)]
def evaluate population(population, min x, max x):
  return [objective function(decode chromosome(chromosome, min x, max x)) for
chromosome in population]
def select parents(population, fitness values):
  min fitness = min(fitness values)
  shifted fitness values = [f - min fitness + 1e-6 for f in fitness values]
  total fitness = sum(shifted fitness values)
  probabilities = [f/\text{total fitness for f in shifted fitness values}]
  # Исправлено на выбор двух разных родителей
  parents indices = np.random.choice(len(population), size=2, p=probabilities,
replace=False)
  return population[parents indices[0]], population[parents indices[1]]
def crossover(parent1, parent2):
  crossover point = np.random.randint(1, len(parent1) - 1)
  child1 = parent1[:crossover point] + parent2[crossover point:]
  child2 = parent2[:crossover point] + parent1[crossover point:]
  return child1, child2
```

```
def mutate(chromosome, mutation rate):
  return [1 - bit if random.random() < mutation rate else bit for bit in chromosome]
def run genetic algorithm(pop size, chromosome length, min x, max x, generations,
mutation rate, crossover rate):
  population = generate population(pop size, chromosome length)
  best solutions = []
  for generation in range(generations):
     fitness values = evaluate population(population, min x, max x)
    new population = []
    while len(new population) < pop size:
       parent1, parent2 = select parents(population, fitness values)
       if random.random() < crossover rate:
         child1, child2 = crossover(parent1, parent2)
       else:
         child1, child2 = parent1, parent2
       new population.extend([mutate(child1, mutation rate), mutate(child2,
mutation rate)])
    population = new population[:pop size]
    best fitness = min(fitness values)
    best index = fitness values.index(best fitness)
    best x = decode chromosome(population[best index], min x, max x)
    best solutions.append((best x, best_fitness))
    print(f'Generation {generation + 1}: Best x = \{best \ x:.4f\}, Best fitness =
{best fitness:.4f}")
  return best solutions
# Основные параметры
min x = -10
max x = 10
chromosome length = 16
generations = 100
# Исследование зависимости
results = []
for pop size in [50, 100, 150]:
  for mutation rate in [0.01, 0.05]:
    for crossover rate in [0.6, 0.9]:
       start time = time.time()
       best solutions = run genetic algorithm(pop size, chromosome length, min x,
max x, generations,
                               mutation rate, crossover rate)
       end time = time.time()
       time taken = end time - start time
```

```
best x, best fitness = best solutions[-1] #Предполагается, что последние
результаты самые лучшие
       results.append((pop size, mutation rate, crossover rate, (best x, best fitness),
time taken))
# Вывод результатов
for result in results:
  pop size, mutation rate, crossover rate, best solution, time taken = result
  best x, best fitness = best solution
  print(f'Population size: {pop size}, Mutation rate: {mutation rate}, Crossover rate:
{crossover rate}, "
      f"Time: {time taken:.2f}s, Best x: {best x:.4f}, Best fitness: {best fitness:.4f}")
# График функции
x values = np.linspace(-10, 10, 400)
y values = [objective function(x) for x in x values if x = 0]
plt.plot(x values, y values, label='f(x) = cos(x-0.5)/|x|')
for _, _, _, best_solution, _ in results:
  best x, = best solution
  plt.scatter(best x, objective function(best x), color='red')
plt.xlabel('x')
plt.ylabel('f(x)')
plt.title('График функции и найденные экстремумы')
plt.axhline(0, color='black', linewidth=0.5, linestyle='--')
plt.axvline(0, color='black', linewidth=0.5, linestyle='--')
plt.legend()
plt.show()
```

- 3. Вывести на экран график данной функции с указанием найденного экстремума для каждого поколения.
- 4. Сравнить найденное решение с действительным

```
import numpy as np import random import matplotlib.pyplot as plt import scipy.optimize as opt 

def objective_function(x):
  if x == 0: # Исключаем деление на 0 return np.inf
  return np.cos(x - 0.5) / np.abs(x)
```

```
def decode chromosome(chromosome, min x, max x):
  decimal value = int(".join(map(str, chromosome)), 2)
  x = min x + (max x - min x) * decimal value / (2 ** len(chromosome) - 1)
  return x
def generate population(pop size, chromosome length):
  return [np.random.randint(0, 2, chromosome length).tolist() for in range(pop size)]
def evaluate population(population, min x, max x):
  return [objective function(decode chromosome(chromosome, min x, max x)) for
chromosome in population]
def select parents(population, fitness values):
  min fitness = min(fitness values)
  shifted fitness values = [f - min fitness + 1e-6 for f in fitness_values] #Добавление
небольшого сдвига
  total fitness = sum(shifted fitness values)
  probabilities = [f/\text{total fitness for f in shifted fitness values}]
  parents indices = np.random.choice(len(population), size=2, p=probabilities,
replace=False)
  return population[parents indices[0]], population[parents indices[1]]
def crossover(parent1, parent2):
  crossover point = np.random.randint(1, len(parent1) - 1)
  child1 = parent1[:crossover point] + parent2[crossover point:]
  child2 = parent2[:crossover point] + parent1[crossover point:]
  return child1, child2
def mutate(chromosome, mutation rate):
  return [1 - bit if random.random() < mutation rate else bit for bit in chromosome]
def run genetic algorithm(pop size, chromosome length, min x, max x, generations,
mutation rate, crossover rate):
  population = generate population(pop size, chromosome length)
  best solutions = []
  global best solution = None #Глобальное лучшее решение
  global best fitness = np.inf #Инициализация глобального лучшего fitness
  for generation in range(generations):
    fitness values = evaluate population(population, min x, max x)
    new population = []
    while len(new population) < pop size:
       parent1, parent2 = select_parents(population, fitness_values)
```

```
if random.random() < crossover rate:
         child1, child2 = crossover(parent1, parent2)
       else:
         child1, child2 = parent1, parent2
       new population.extend([mutate(child1, mutation rate), mutate(child2,
mutation rate)])
    population = new population[:pop size]
    best fitness = min(fitness values)
    best index = fitness values.index(best fitness)
    best x = decode chromosome(population[best index], min x, max x)
    best solutions.append((best x, best fitness))
     # Обновляем глобальное лучшее решение
    if best fitness < global best fitness:
       global best fitness = best fitness
       global best solution = best x
    print(f'Generation {generation + 1}: Best x = \{best \ x:.4f\}, Best fitness =
{best fitness:.4f}")
  # Возвращаем лучшее решение после всех поколений
     f"\nGlobal Best Solution after {generations} generations: Best x =
{global best solution:.4f}, Best fitness = {global best fitness:.4f}")
  # Выводим значение функции для лучшего решения
  best fitness value = objective function(global best solution)
  print(f'Function value at the best x = \{global best solution: .4f\}: f(x) =
{best fitness value:.4f}")
  return best solutions
# Основные параметры
min x = -10
max x = 10
chromosome length = 16
generations = 100
# Запуск алгоритма с фиксированными параметрами для графика
pop size = 100
mutation rate = 0.01
crossover rate = 0.9
best solutions = run genetic algorithm(pop size, chromosome length, min x, max x,
generations, mutation rate,
                       crossover rate)
#График функции
```

```
x values = np.linspace(-10, 10, 400)
y_values = [objective_function(x) for x in x values if x != 0]
plt.plot(x values, y values, label='f(x) = cos(x-0.5)/|x|')
for best x, in best solutions:
  plt.scatter(best x, objective function(best x), color='red')
plt.xlabel('x')
plt.ylabel('f(x)')
plt.title('График функции и найденные экстремумы')
plt.axhline(0, color='black', linewidth=0.5, linestyle='--')
plt.axvline(0, color='black', linewidth=0.5, linestyle='--')
plt.legend()
plt.show()
# Определяем функцию
def f(x):
  return np.cos(x - 0.5) / np.abs(x)
#Задаем ограничения: x \in [-10, -1e-5) U(1e-5, 10]
bounds = [(-10, -1e-5), (1e-5, 10)]
# Ищем минимум
result = opt.minimize scalar(f, bounds=(-10, 10), method='bounded')
# Выводим результат
print("Минимум найден в точке x = ", result.x)
print("Значение функции f(x) = ", result.fun)
```

5. Исследуйте зависимость работы ПГА от значения вероятности ОК Рс.

```
import numpy as np import matplotlib.pyplot as plt import time

# Определение функции def objective_function(x): return np.cos(x - 0.5) / np.abs(x) if x != 0 else float('inf')

# Генетический алгоритм def genetic_algorithm(population_size, mutation_rate, crossover_rate, generations): population = np.random.uniform(-10, 10, population_size) best_fitness_history = []

for generation in range(generations): fitness = np.array([objective_function(ind) for ind in population]) best_fitness = np.min(fitness)
```

```
best fitness history.append(best fitness)
    # Кроссинговер
     for i in range(0, population size, 2):
       if np.random.rand() < crossover rate and i + 1 < population size:
         crossover point = np.random.rand()
         population[i], population[i + 1] = (
            population[i] * crossover point + population[i + 1] * (1 - crossover point),
            population[i] * (1 - crossover point) + population[i + 1] * crossover point,
         )
    # Мутация
     for i in range(population size):
       if np.random.rand() < mutation rate:
         population[i] += np.random.normal()
  best individual = population[np.argmin([objective function(ind) for ind in population])]
  return best individual, objective function(best individual), best fitness history
# Параметры эксперимента
population size = 50
mutation rate = 0.05
generations = 100
p c values = np.arange(0.1, 1.0, 0.1)
results = []
# Запуск эксперимента
for p c in p c values:
  start time = time.time()
  best individual, best fitness, fitness history = genetic algorithm(population size,
mutation_rate, p c, generations)
  elapsed time = time.time() - start time
  results.append((p c, best individual, best fitness, elapsed time, len(fitness history)))
  # Вывод результатов в терминал
  print(fP c = \{p \ c:.1f\}: Лучшее x = \{best \ individual:.4f\}, Лучший фитнес =
{best fitness:.4f}, Время = {elapsed time:.4f} с, Поколений = {len(fitness history)}')
# Преобразование результатов для графиков
p c vals, best xs, best fitnesses, times, generations count = zip(*results)
# Построение графиков
plt.figure(figsize=(15, 10))
# График лучшего значения х
plt.subplot(3, 1, 1)
plt.plot(p c vals, best xs, marker='o')
plt.title('Лучшее значение х в зависимости от Р с')
plt.xlabel('P c')
plt.ylabel('Лучшее x')
```

```
# График лучшего фитнеса plt.subplot(3, 1, 2) plt.plot(p_c_vals, best_fitnesses, marker='o', color='orange') plt.title('Лучший фитнес в зависимости от P_c') plt.xlabel('P_c') plt.ylabel('Лучший фитнес') # График времени выполнения plt.subplot(3, 1, 3) plt.plot(p_c_vals, times, marker='o', color='green') plt.title('Время выполнения в зависимости от P_c') plt.xlabel('P_c') plt.ylabel('Bремя (c)') plt.ylabel('Bремя (c)')
```