exos-types: Limites

Exercice 1

Soit la fonction f définie sur $\mathbb{R} - \{2\}$ par :

$$f(x) = 4x + 3 + \frac{9}{x - 2}$$

1. Calculer les limites de f en 2^+ , en 2^- , en $+\infty$ et $-\infty$.

2. Démontrer que la fonction dérivée f' vaut : $f'(x) = \frac{(2x-7)(2x-1)}{(x-2)^2}$

3. Résoudre f'(x) = 0 puis déterminer le signe de la dérivée f'.

4. Dresser le tableau de variation..

Exercice 2

f est une fonction définie sur $\mathbb{R} \setminus \{1\}$ par :

 $f(x) = \frac{2x - \sin(x)}{x - 1}$

On donne ci-contre la représentation de la courbe de la fonction f.

- 1. Conjecturer les limites de la fonction f en $-\infty$ et $+\infty$ et les limites à gauche et à droite de 1.
- 2. (a) Démontrer les limites en $-\infty$ et $+\infty$ grâce à un encadrement.
 - (b) Déterminer les limites à gauche et à droite de 1.
 - (c) Interpréter graphiquement les limites obtenues.

Exercice 3

Vrai ou Faux

Soit la fonction f définie et dérivable sur $\mathbb{R} \setminus \{1\}$ dont le tableau de variation est donné ci-dessous :

Dire si les propositions suivantes sont vraie ou fausse en se justifiant.

- 1. Proposition 1: l'équation f(x) = 2 admet exactement deux solutions.
- 2. **Proposition 2**: $\forall a \in \mathbb{R}$, l'équation f(x) = a admet au moins deux solutions.
- 3. Proposition 3 : La courbe \mathcal{C}_f admet deux asymptotes horizontales.
- 4. **Proposition 4**: L'équation f'(x) = 0 admet au moins une solution.
- 5. **Proposition 5**: f(-50) = 0.