Partição de um conjunto Coeficientes Binomiais

Partições

Seja A um conjunto. Uma partição de (ou sobre) A é um conjunto de conjuntos não vazios, disjuntos dois a dois cuja união é A.

Explicando:

- Uma partição é um conjunto de conjuntos; cada membro de uma partição é um subconjunto de A. os membros da partição são chamados partes.
- As partes de uma partição são não vazias. O conjunto vazio nunca é parte de uma partição
- As partes de uma partição são disjuntas duas a duas. Duas partes de uma partição nuca podem ter um elemento em comum.
- A união das partes é o conjunto original.

Em termos matemáticos:, a coleção de subconjuntos A_i , $i \in I$ (em que I é um conjunto de índices) forma uma partição de S se e somente se:

- 1. $A_i \neq \emptyset para i \in I$
- 2. $A_i \cap A_j = \emptyset$ quando $i \neq j$
- 3. $\bigcup_{i \in I} A_i = S$

As partes de uma partição são chamadas blocos.

Exemplo

Seja A =
$$\{1, 2, 3, 4, 5, 6\}$$
 e seja $\mathcal{P} = \{\{1, 2\}, \{3\}, \{4, 5, 6\}\}$

Esta é uma partição de A em três partes. Essas partes são {1, 2}, {3} e {4, 5, 6}. Esses três conjuntos são (1) não vazios, (2) disjuntos dois a dois e (3) sua união é A.

Contagem de classes/partes

De quantas maneiras diferentes podem ser dispostas as letras da palavra HELLO? Perceba o LL repetido!

Vamos antes analisar outra palavra:

Exemplo

De quantas maneiras diferentes podem ser dispostas as letras da palavra WORD.

4! = 24.

De quantas maneiras diferentes podem ser dispostas as letras da palavra HELLO. A resposta seria 5! = 120. Mas devido ao L duplicado as palavras LLHEO e LLHEO são contadas diferentes mas são iguais.

Por isso a respostas correta é 5! / 2! = 60

Exemplo

Quantas maneiras diferentes podemos dispor as letras da palavra AARDVARK?

Perceba que há dois R e três A

Respostas: 8! / 3!2! = 40320/12 = 3360

Coeficientes binomiais

A notação $\binom{n}{k}$ se lê "n k a k". outra forma dessa notação, ainda em uso em algumas calculadoras, é ${}_{n}C_{k}$. ocasionalmente, escreve-se C(n,k). como forma alternativa de expressar $\binom{n}{k}$ é como o número de "combinações" de n objetos tomados k de cada vez. A palavra combinatória (um termo que se refere a problemas de contagem em matemática discreta), provém de "combinações". O autor não aprecia o uso da palavra "combinações" e crêe ser mais claro dizer que $\binom{n}{k}$ representa o número de subconjuntos de k elementos de um conjunto de n elementos.

Coeficiente binomial

Sejam $n, k \in \mathbb{N}$. O símbolo $\binom{n}{k}$ denota o número de subconjuntos de k elementos de um conjunto de n elementos.

Calcule $\binom{5}{0}$:

Interpretando, devemos contar o número de subconjuntos de zero elementos de um conjunto de 5 elementos. O único conjunto possível é \emptyset , de modo que a resposta é $\binom{5}{0}$ = 1

Exemplo

Calcule $\binom{5}{1}$:

O problema pede o número de subconjuntos de um elemento de um conjunto de 5 elementos. Consideramos, por exemplo, o conjunto de cinco elementos $\{1, 2, 3, 4, 5\}$, os subconjuntos de um elemento são $\{1\}$, $\{2\}$, $\{3\}$, $\{4\}$ e $\{5\}$, assim $\binom{5}{1} = 5$.

O número de subconjuntos de um elemento de um conjunto de n elementos é exatamente n.

Calcule $\binom{5}{2}$:

O problema pede o número de subconjuntos de dois elementos de um conjunto de 5 elementos. São eles:

 $\{1, 2\}$

 $\{1, 3\}$

 $\{1, 4\}$

 $\{1, 5\}$

 $\{2, 3\}$

 $\{2, 4\}$

 $\{2, 5\}$

 $\{3, 4\}$

 ${3, 5}$

 $\{4, 5\}$

Calcule $\binom{5}{3}$:

Listando os subconjuntos de três elementos de {1, 2, 3, 4, 5}:

{1, 2, 3}

{1, 2, 4}

{1, 2, 5}

{1, 3, 4}

 $\{1, 3, 5\}$

{1, 4, 5}

{2, 3, 4}

 $\{2, 3, 5\}$

{2, 4, 5}

{3, 4, 5}

Temos nesse caso $\binom{5}{3} = \binom{5}{2} = 10$

Essa coincidência pode ser vista pelo complemento:

A	Ā	A	\overline{A}
{1, 2}	{3, 4, 5}	{2, 4}	{1, 3, 5}
{1, 3}	{2, 4, 5}	{2, 5}	{1, 3, 4}
{1, 4}	{2, 3, 5}	{3, 4}	{1, 2, 5}
{1, 5}	{2, 3, 4}	{3, 5}	{1, 2, 4}
{2, 3}	{1, 4, 5}	{4, 5}	{1, 2, 3}

Proposição

De forma geral:

$$\binom{n}{2} = \binom{n}{n-2}$$

ou de modo geral

$$\binom{n}{k} = \binom{n}{n-k}$$

Calculamos $\binom{5}{0}$, $\binom{5}{1}$, $\binom{5}{2}$, $\binom{5}{3}$, continuando os próximos:

$$\binom{5}{4} = \binom{5}{5-4} = \binom{5}{1}$$

Portanto: $\binom{5}{4} = 5$

E para:

$$\binom{5}{5} = \binom{5}{5-5} = \binom{5}{0}$$

Portanto: $\binom{5}{5} = 1$

Valores de k > n implica em respostas 0:

Portanto:
$$\binom{5}{6} = 0$$
, $\binom{5}{7} = 0$, ...

Cálculo de $\binom{n}{\nu}$

Desenvolvendo os valores de $\binom{5}{k}$ com n de 1 a 5 obtivemos os seguintes resultados:

Desenvolvendo (x + y)5, obtemos:

$$(x+y)^5 = 1x^5 + 5x^4y + 10x^3y^2 + 10x^2y^3 + 5xy^4 + 1y^5$$

O triângulo de pascal

O triângulo de pascal é formado pelas seguintes regras:

- 1. A linha zero do triângulo de Pascal contém apenas o número 1.
- 2. Cada linha sucessiva contém mais um número do que o anterior
- O primeiro e o último números em cada linha são 1.
- Um número intermediário em qualquer linha é formado pela adição dos dois números exatamente à sua direita e sua à esquerda na linha anterior.

Desenvolvendo o triângulo de pascal:

Uma fórmula para $\binom{n}{k}$

Ainda, podemos calcular o valor de $\binom{n}{k}$ através da equação:

$$\frac{n!}{k! (n-k)}$$

ou através da calculadora, com a função :

$$_nC_k$$