

GRADO EN INGENIERÍA INFORMÁTICA ESPECIALIDAD: COMPUTACIÓN

APRENDIZAJE AUTOMÁTICO

4º Curso

5 de Febrero de 2016

Nombre:			
DNI:			

- 1. (0.5 punto) Clasifica, y describe brevemente, los tipos de aprendizaje en base a la información respecto al comportamiento deseado, y la representación del conocimiento obtenido.
- 2. (0.5 punto) Define las fases de un problema de aprendizaje automático.
- 3. (0.5 punto) En qué tipo de problemas es adecuado el uso de la máquina de vector soporte. Explicación del uso de la función Kernel
- 4. (0.5 punto) Diferencias entre descenso por gradiente y Regla Delta

Ejemplo	Acción	Autor	Tema	Longitud	Sitio
e1	saltar	conocido	nuevo	largo	casa
e2	leer	desconocido	nuevo	corto	trabajo
e3	saltar	desconocido	viejo	largo	trabajo
e4	saltar	conocido	viejo	largo	casa
e5	leer	conocido	nuevo	corto	casa
e6	saltar	conocido	viejo	largo	trabajo

- 5. Eliminación de candidatos.
 - *a*) (1 punto) Describe el algoritmo de eliminación de candidatos y el procedimiento de generalización y especialización de hipótesis.
 - *b*) (2 punto) Ejecuta el algoritmo de Eliminación de Candidatos para la clase: **Accion**
- 6. Algoritmo AQ

- *a*) (1 punto) Escribe el pseudocódigo del algoritmo AQ, explicando su objetivo, funcionamiento y definiendo sus elementos (LEF, selector, complejo y recubrimiento).
- b) (1 punto) Calcular, mediante dicho algoritmo, la primera regla que se puede extraer del conjunto de datos de los animales, considerando como criterio de selección el número de ejemplos cubiertos y luego la longitud de la regla.

7. Redes neuronales:

- a) (1 punto) Considera un perceptrón con función de activación *LINEAL* y pesos $\vec{w}=(0.1,0.2,0.3)$ y un conjunto de entrenamiento $D=\{E1,E2\}$ con E1=<(0.5,0.5),0.3> y E2=<(0.4,0.7),0.2>.
 - Calcula el error cuadrático del perceptrón con pesos \vec{w} sobre el conjunto de entrenamiento D.
 - Calcula en valor del gradiente de la función anterior $\vec{\nabla}E(\vec{w})$ para el vector de pesos \vec{w} .
- b) (2 punto) Teniendo la red neuronal siguiente, de función de activación CUADRÁTICA($\sigma(x) = x^2$), tasa de aprendizaje $\mu = 0.2$ y los pesos como se indican en el dibujo.
 - Realizar el cálculo hacia delante de la señal, usando como ejemplo $T1 = \{0.6, 0.1, 0, 1\}$
 - Realizar el backpropagation y calcular el cambio de los pesos.

