and since $D^2 f(a)(u) = D_u(Df)(a)$, we get

$$D^2 f(a)(u)(v) = D_u(D_v f)(a).$$

Thus, when $D^2 f(a)$ exists, $D_u(D_v f)(a)$ exists, and

$$D^{2}f(a)(u)(v) = D_{u}(D_{v}f)(a),$$

for all $u, v \in \overrightarrow{E}$.

Definition 39.13. We denote $D_u(D_v f)(a)$ by $D_{u,v}^2 f(a)$ (or $D_u D_v f(a)$).

Recall from Proposition 37.60, that the map from $\mathcal{L}_2(\overrightarrow{E}, \overrightarrow{E}; \overrightarrow{F})$ to $\mathcal{L}(\overrightarrow{E}; \mathcal{L}(\overrightarrow{E}; \overrightarrow{F}))$ defined such that $g \mapsto \varphi$ iff for every $g \in \mathcal{L}_2(\overrightarrow{E}, \overrightarrow{E}; \overrightarrow{F})$,

$$\varphi(u)(v) = g(u, v),$$

is an isomorphism of vector spaces. Thus, we will consider $D^2 f(a) \in \mathcal{L}(\overrightarrow{E}; \mathcal{L}(\overrightarrow{E}; \overrightarrow{F}))$ as a continuous bilinear map in $\mathcal{L}_2(\overrightarrow{E}, \overrightarrow{E}; \overrightarrow{F})$, and we will write $D^2 f(a)(u, v)$, instead of $D^2 f(a)(u)(v)$.

Then, the above discussion can be summarized by saying that when $\mathrm{D}^2 f(a)$ is defined, we have

$$D^2 f(a)(u, v) = D_u D_v f(a).$$

Definition 39.14. When E has finite dimension and $(a_0, (e_1, \ldots, e_n))$ is a frame for E, we denote $D_{e_j}D_{e_i}f(a)$ by $\frac{\partial^2 f}{\partial x_i\partial x_j}(a)$, when $i \neq j$, and we denote $D_{e_i}D_{e_i}f(a)$ by $\frac{\partial^2 f}{\partial x_i^2}(a)$.

The following important lemma attributed to Schwarz can be shown, using Proposition 39.12. Given a bilinear map $f \colon \overrightarrow{E} \times \overrightarrow{E} \to \overrightarrow{F}$, recall that f is symmetric, if

$$f(u,v) = f(v,u),$$

for all $u, v \in \overrightarrow{E}$.

Proposition 39.20. (Schwarz's lemma) Given two normed affine spaces E and F, given any open subset A of E, given any $f: A \to F$, for every $a \in A$, if $D^2f(a)$ exists, then $D^2f(a) \in \mathcal{L}_2(\overrightarrow{E}, \overrightarrow{E}; \overrightarrow{F})$ is a continuous symmetric bilinear map. As a corollary, if E is of finite dimension n, and $(a_0, (e_1, \ldots, e_n))$ is a frame for E, we have

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(a) = \frac{\partial^2 f}{\partial x_j \partial x_i}(a).$$

Remark: There is a variation of the above result which does not assume the existence of $D^2 f(a)$, but instead assumes that $D_u D_v f$ and $D_v D_u f$ exist on an open subset containing a and are continuous at a, and concludes that $D_u D_v f(a) = D_v D_u f(a)$. This is just a different result which does not imply Proposition 39.20, and is not a consequence of Proposition 39.20.