Dynamiikka

Liite lukuun 8.

Yhden vapausasteen värähtely - harjoitustehtäviä

8.1 Kuvan jousi-massa systeemissä on m = 10 kg ja k = 2.5 kN/m. Siirtymä x mitataan staattisesta tasapainoasemasta lähtien. Alkuhetkellä t = 0 s massa on staattisessa tasapainoasemassaan ja sillä on nopeus 0.5 m/s alaspäin. Laske jousen pituuden muutos staattisessa tasapainoasemassa, ominaiskulmataajuus, ominaistaajuus ja ominaisvärähdysaika. Muodosta siirtymän x(t) lauseke ja selvitä sen avulla siirtymän, nopeuden ja kiihtyvyyden maksimiarvot. Vast. 0.0392 m 15.81 rad/s 2.516 Hz 0.397 s 0.03162 m 0.4999 m/s 7.9057 m/s^2

8.2 Kuvan mukaisessa massan ja kolmen jousen muodostamassa systeemissä on m=0,1 kg ja kaikkien jousien jousivakio k=90 N/m. Alkuhetkellä t=0 s on $x_0=4$ mm ja $\dot{x}_0=0,3$ m/s. Laske systeemin ominaiskulmataajuus, ominaistaajuus ja ominaisvärähdysaika. Määritä massan asema ja nopeus hetkellä t=2 s. Vast. 51,96 rad/s 8,27 Hz 0,121 s -5,31 mm -238,85 mm/s

8.3 Kuvan mukaisessa systeemissä on $m_0 = 6$ kg ja k = 600 N/m. Mitoita lisämassa m siten, että systeemin ominaisvärähdysajaksi tulee 0,75 s olettaen kitka niin suureksi, että lisämassa ei luista alkuperäisen massan päällä. Massoja poikkeutetaan staattisesta tasapainoasemastaan 50 mm ja päästetään sitten ilman alkunopeutta liikkeelle. Laske kuinka suuri lepokitkakertoimen μ_s on vähintään oltava, jotta lisämassa ei luistaisi liikkeen aikana. Vast. 2,549 kg 0,358

8.4 Kuvan jousi-massa-vaimennin systeemissä on m = 50 kg, k = 200 N/m. Massa päästetään hetkellä t = 0 s ilman alkunopeutta liikkeelle asemasta $x_0 = 0,15 \text{ m}$. Määritä massan asema hetkellä t = 0,5 s, kun a) c = 200 Ns/m ja b) c = 100 Ns/m. Vast. 0,110 m 0,060 m

8.5 Tykillä ammutaan vaakasuuntaan nähden 20° suuntaan ammus, jonka absoluuttisen nopeuden suuruus laukaisun jälkeen on 250 m/s. Ammuksen massa on $m_k = 4.5 \text{ kg}$ ja tykin ja lavetin vhteenlaskettu massa m = 750 kg. Rekyylimekanismin jousivakio on k = 27 kN/m ja vaimennusvakio c = 1200 Ns/m. Laske ammuksen rekyylivaikutuksesta johtuva tykin ja lavetin suurin vaakasiirtymä.

Vast. 0.107 m

8.6 Johda kuvan mukaisen yhden vapausasteen systeemin liikeyhtälö, kun koordinaattina käytetään massan m₁ pystysiirtymää x(t). Laske systeemin ominaiskulmataajuus, ominaistaajuus, ominaisvärähdysaika, vaimennusvakio, vaimennettu ominaiskulmataajuus, vaimennettu ominaisvärähdysaika ja logaritminen dekrementti, kun sen parametreilla on arvot a = 0.2 m, b = 0.4 m, $m_1 = 3 \text{ kg}$, $m_2 = 4 \text{ kg}$ k = 1,6 kN/m ja c = 500 Ns/m. Varsi AB oletetaan massattomaksi ja värähtelyamplitudit pieniksi.

20 rad/s 0,314 s3,18 Hz 0,781 12,484 rad/s 0,503 s 7,864

8.7 Kuvan jousi-massa systeemissä m = 5,1 kgk = 4000 N/m. Siirtymä x mitataan staattisesta tasapainoasemasta lähtien. Laske jousen pituuden muutos staattisessa tasapainoasemassa ja systeemin ominaiskulmataajuus. Massaan m vaikuttaa harmoninen pakkovoima $F(t) = F_0 \sin \Omega t$, jonka amplitudi $F_0 = 60 \text{ N}$ ja kulmataajuus $\Omega = 37,7 \text{ rad/s}$. Määritä syntyvän pakkovärähtelyn amplitudi ja muodosta pakkovärähtelyn $x_p(t)$ lauseke. Laske vielä värähtelyn siirtyvyys. Vast. 0,0125 m 28,01 rad/s 0,0185 m 1,231

8.8 Kompressorin käytön aikana esiintyy vaakasuuntainen harmoninen pakkovoi-Pakkovoiman amplitudin selvittämiseksi kompressori on kiinnitetty vaakasuunnassa joustavasti tuetulle alustalle kuvan mukaisesti, jolloin vaakasuuntaisen liikkeen oletetaan tapahtuvan kitkattomasti. Kompressorin massa $m_0=80~kg$, alustan massa M=50~kg ja kiinnityksen vaakasuuntainen jousivakio k=3500~N/m. Kun kompressoria käytetään pyörimisnopeudella N=1150~r/min, havaitaan vaakasuuntaisen värähtelyn amplitudiksi 0,5 mm. Laske tätä vastaava pakkovoiman amplitudi. Vast. 940,9 N

8.9 Tarkastellaan kuvan mukaista yhden vapausasteen systeemiä, jossa väkipyörät oletetaan massattomiksi ja kitkattomiksi, vaijerit venymättömiksi ja massan B vaakaliike kitkattomaksi. Selvitä, mitkä ovat jousen pituuden muutos y_{st} ja massan A pystysuuntainen siirtymä x_{st} systeemin staattisessa tasapainoasemassa. Massaan A vaikuttaa harmoninen

pakkovoima $F(t) = F_0 \sin \Omega t$. Johda systeemin liikeyhtälö, kun koordinaattina käytetään massan A pystysiirtymää x(t), joka mitataan sen staattisesta tasapainoasemasta lähtien. Määritä massojen A ja B pakkovärähtelyiden amplitudit ja muodosta niiden pakkovärähtelyiden lausekkeet. Laske vielä jousesta kiinnitysalustaan kohdistuva maksimivoima ja massaan A kiinnittyvässä vaijerissa vaikuttava suurin rasitus. Systeemin parametreilla on arvot m=8 kg k=75 kN/m, $F_0=120$ N ja $\Omega=93$ rad/s. Vast. 1,41 mm 0,71 mm 210 N 101 N

8.10 Kuvan jousi-massa-vaimennin systeemissä on m=30~kg, k=1080~N/m ja c=36~Ns/m. Massaan vaikuttaa harmoninen pakkovoima, jonka $F_0=32,4~N$ ja $\Omega=12~rad/s$. Laske syntyvän pakkovärähtelyn amplitudi ja vaihekulma ja kirjoita pakkovärähtelyn lauseke. Laske vielä jousesta ja vaimentimesta kiinnitysalustaan siirtyvän voiman maksimiarvo. Vast. 9,91 mm 3,01 rad 11,5 N

8.11 Moottori on kiinnitetty kuvan mukaisesti kiinteään koteloon kahdella jousella ja vaimentimella. Kummankin jousen jousivakio on $k = 2,1 \, kN/m$ ja vaimentimen vaimennusvakio $c = 58 \, Ns/m$. Moottoria käytettäessä syntyy vaakasuuntainen harmoninen pakkovoima, jonka aiheuttaman pakkoväräh-

telyn amplitudin halutaan olevan korkeintaan kaksinkertainen verrattuna pakkovoiman amplitudin aiheuttamaan staattiseen siirtymään. Selvitä, millä pyörimisnopeusalueella moottoria voidaan käyttää.

Vast. $N \le 99.9 \text{ r/min}$ $N \ge 165.97 \text{ r/min}$

8.12 Kuvan mukaisessa yhden vapausasteen systeemissä jousen k_2 kiinnitysalusta B liikkuu funktion $u(t) = b \sin \Omega t$ mukaisesti. Johda systeemin liikeyhtälö, kun koordinaattina käytetään massan m vaakasiirtymää x(t). Ratkaise alustan liikkeestä aiheutuvan pakkovärähtelyn amplitudi ja vaihekulma ja kirjoita pakko-

värähtelyn lauseke. Ratkaise jousen k_1 ja vaimentimen c kiinnitysalustaan siirtyvän voiman maksimiarvo. Laske vielä jousessa k_2 vaikuttavan voiman maksimiarvo. Systeemin parametreilla on arvot m=5 kg, $k_1=800$ N/m, $k_2=1200$ N/m, c=80 Ns/m, b=0.01 m ja $\Omega=60$ rad/s. Vast. 0,718 mm 2,85 rad 3,74 N 12,81 N

8.13 Kuvan systeemissä on m = 6 kg, b = 0,3 m, L = 0,8 m ja k = 18 kN/m. Kulmakappale AOB oletetaan massattomaksi ja nivel O kitkattomaksi. Staattisessa tasapainoasemassa jousi k ja kulmakappaleen osa AO ovat vaaka-asennossa ja kulmakappaleen osa OB pystyasennossa. Laske jousen pituuden muutos staattisessa tasapainoasemassa. Johda systeemin ominaisvärähtelyn liikeyhtälö,

kun koordinaatiksi valitaan kulmakappaleen rotaatiokulma θ , joka mitataan staattisesta tasapainoasemasta lähtien. Laske systeemin ominaiskulmataajuus, ominaistaajuus ja ominaisvärähdysaika. Vast. 20,54 rad/s 3,27 Hz 0,306 s

8.14 Kuvan palkki OAB on tasapaksu ja homogeeninen. Nivel O oletetaan kitkattomaksi. Palkin massa on $m=20\ kg$, $k=25\ kN/m$, $c=200\ Ns/m$, $L=1,2\ m$ ja $a=0,8\ m$. Palkki on staattisessa tasapainoasemassaan vaakaasennossa. Laske jousen pituuden muutos staattisessa tasapainoasemassa. Johda systeemin ominaisvärähtelyn liikeyhtälö, kun

koordinaatiksi valitaan palkin rotaatiokulma θ, joka mitataan staattisesta tasapai-

noasemasta lähtien. Laske systeemin vaimennussuhde, ominaiskulmataajuus, ominaistaajuus, ominaisvärähdysaika ja vastaavat vaimennetut suureet. Vast. 3,92 mm 0,109 61,24 rad/s 9,75 Hz 0,1026 s 60,87 rad/s 9,69 Hz 0,1032 s

8.15 Johda kuvassa esitetyn homogeenisen ympyräsylinterin ominaisvärähtelyn liikeyhtälö, kun koordinaatiksi valitaan sylinterin keskipisteen vaaka-asema x ja sylinterin oletetaan vierivän liukumatta. Sylinterin massa $m=0.5 \, kg$, säde $r=0.5 \, m$, $k=75 \, N/m$ ja $c=10 \, Ns/m$. Laske ominaiskulmataajuus, vaimennussuhde ja vai-

mennettu ominaiskulmataajuus. Esitä sylinterin vaimennetun ominaisvärähtelyn x(t) lauseke, kun alkuehdot ovat $x_0 = -0.02$ m ja $\dot{x}_0 = 0.05$ m/s.

Vast. 10 rad/s 0,667 7,45 rad/s C = 0,0229 m $\psi = 4,203 \text{ rad}$

8.16 Johda kuvan mukaisen systeemin pystysuuntaisen ominaisvärähtelyn liikeyhtälö energiaperiaatteella. Väkipyörät oletetaan massattomiksi ja kitkattomiksi. Massa m liikkuu kitkattomasti pystysuuntaisessa johteessa. Siirtymä x mitataan staattisesta tasapainoasemasta lähtien. Laske systeemin ominaiskulmataajuus ja ominaisvärähdysaika, kun m=25 kg ja k=1200 N/m.

Vast. 19,6 rad/s 0,321 s

8.17 Kuvan systeemissä on m = 6 kg, b = 0.3 m, L = 0.8 m ja k = 18 kN/m. Kulmakappale AOB oletetaan massattomaksi ja nivel O kitkattomaksi. Staattisessa tasapainoasemassa jousi k ja kulmakappaleen osa AO ovat vaaka-asennossa ja kulmakappaleen osa OB pystyasennossa. Johda systeemin ominaisvärähtelyn liikeyhtälö energiaperiaatteella, kun koordinaatiksi valitaan kulmakappaleen rotaatiokulma θ , joka mita-

taan staattisesta tasapainoasemasta lähtien. Laske systeemin ominaiskulmataajuus, ominaistaajuus ja ominaisvärähdysaika. Vast. 20,54 rad/s 3,27 Hz 0,306 s

Dynamiikka

8.18 Oheisen kuvan mukaisessa systeemissä on tasapaksu ja homogeeninen palkki kiinnitetty homogeeniseen ympyrälevyyn, joka voi pyöriä kitkattomasti nivelen O ympäri. Palkki on staattisessa tasapainoasemassa vaaka-asennossa. Johda systeemin ominaisvärähtelyn liikeyhtälö energiaperiaatteella, kun koordinaatiksi valitaan palkin ja levyn yhteinen rotaatiokulma θ , joka mitataan staattisesta tasapainoasemasta lähtien.

Laske ominaiskulmataajuus ja ominaistaajuus, kun systeemin parametreilla on arvot L=1,6~m, r=L/5, $m_1=8~kg$, $m_2=5~kg$ ja k=6~kN/m. Vast. 45,87 rad/s 7,30 Hz