武汉大学计算机学院 2020 - 2021 学年第二学期 2018 级《编译原理》(期末考试参考答案 A)

一、(1)

start
$$\longrightarrow 0$$
 $\stackrel{b}{\longrightarrow} 1$ $\stackrel{a}{\longrightarrow} 4$ $\stackrel{a}{\longrightarrow} 5$ $\stackrel{\varepsilon}{\longrightarrow} 3$ $\stackrel{\varepsilon}{\longrightarrow} 0$ $\stackrel{b}{\longrightarrow} 1$ $\stackrel{b}{\longrightarrow} 1$ $\stackrel{a}{\longrightarrow} 4$ $\stackrel{a}{\longrightarrow} 5$

(2)

$$A = \{0,3\}, B = \{2,4\}, C = \{0,1,3\}, D = \{0,3,5\}.$$

状态转换图为:

(3) 最小 DFA 如下所示:

由 a 和 b 组成且 aa 以偶数的形式连续出现的字符串.

- (4) $r = (b \mid aa)^*$.
- 二、 (1) 语句 "(id,(id,id))"的一个最左推导如下:

(2) 消除左递归和左公因子后的文法如下:

$$\begin{array}{ccc} S & \rightarrow & PS' \\ S' & \rightarrow & SS' \mid \varepsilon \\ P & \rightarrow & (E, E) \\ E & \rightarrow & S \mid \text{id} \end{array}$$

(3)

非终结符	First	Follow
S	((,), ,, \$
S'	$(, \varepsilon$	(,), ,, \$
P	((,), ,,\$
\overline{E}	(, id), ,

(4) LL(1) 分析表如下所示

	id	()	,	\$
S		$S \rightarrow PS'$			
S'		$S \to SS' \mid \varepsilon$	$S \to \varepsilon$	$S \to \varepsilon$	$S \to \varepsilon$
P		$P \rightarrow (E, E)$			
\boldsymbol{E}	$E \rightarrow id$	$E \rightarrow S$			

(5) 语句"(id,id)"的分析过程如下所示:

剩余串	分析栈	分析动作
(id, id)\$	<i>S</i> \$	$S \rightarrow PS'$
(id, id)\$	<i>PS</i> '\$	$P \rightarrow (E, E)$
(id, id)\$	(E,E)S'\$	match-advance
id, id)\$	E, E)S'\$	$E \rightarrow id$
id, id)\$	id, E)S'\$	match-advance
, id)\$,E)S'\$	match-advance
id)\$	E)S'\$	$E \rightarrow id$
id)\$	id) <i>S</i> '\$	match-advance
)\$) <i>S</i> '\$	match-advance
\$	S'\$	$S' \to \varepsilon$
\$	\$	分析成功

三、 (1) 语句 "(id, id)(id, id)(id, id)"的两棵不同的语法树为: 语法树 1:

语法树 2:

2

(2) 无二义文法:

$$S \rightarrow SP \mid P$$

 $P \rightarrow (E, E)$
 $E \rightarrow S \mid id$

四、 (1) 状态 I_5 的 LR(0) 项目集为

$$\overline{\{E \to S \bullet, S \to S \bullet S\}}$$

$$= \{E \to S \bullet, S \to S \bullet S,$$

$$S \to \bullet SS, S \to \bullet P, P \to \bullet (E, E)\}$$

- (2) "(E, E," 不是活前缀,因为识别活前缀的 DFA 在吃进 (E, E 后到达状态 I_9 , 而 I_9 没有 "," 引出边.
- (3) $Follow(S) = Follow(P) = \{(,), ,, \$\}, Follow(E) = Follow(P) = \{), , \}.$ 状态 I 面对 '('有移进/归约冲突. 分析表如下所示:

	action			goto				
状态	id	(— ,	\$	S	P	E
0		s1	1			3	2	
1	s6	s1	40			5	2	4
2	(r2	r2	r2	r2			
3		s1			acc	7	2	
4				s8		1		
5	1	s1	r4	r4		7	2	
6			r5	r5				
7		r1	r1	r1	r1	7	2	
8	s6	s1				5	2	9
9			s10	7				
10		r3	r3	r3	r3			

(4) "(id, id, id)" 的分析过程如下所示:

剩余串	分析栈	分析动作
(id, id, id)\$	0	shift
id, id, id)	0(1	shift
, id, id)	0(1id6	reduce $E \rightarrow id$
, id, id)	0(1E4	shift
id, id)	0(1E4, 8	shift
, id)	0(1E4, 8id6)	reduce $E \rightarrow id$
, id)	0(1E4, 8E9)	error

故该串不是文法 G(S) 的语句.

```
产生式 S \to S_1 S_2
                     语义规则
                     S.graph = S_1.graph + S_2.graph
                     S.node = S_1.node
\overline{S} \to P
                     S.graph = P.graph
                     S.node = P.node
    \rightarrow (E_1, E_2)
                     if E_1.is_id then
                     tmp_1 = ""
                     else
                        tmp_1 = "subgraph \{" + E_1.graph + "\}"
                     if E_2.is_id then
                        tmp_2 = ""
                     else
                        \mathsf{tmp}_2 = \texttt{"subgraph } \{\texttt{"} + E_2.\mathsf{graph} + \texttt{"} \}\texttt{"}
                     P.\text{graph} = \text{tmp}_1 + \text{tmp}_2 + E_1.\text{node} + "->" + E_2.\text{node}
                      P.node = E_1.node
E \rightarrow S
                      E.graph = S.graph
                      E.\mathsf{node} = S.\mathsf{node}
                      E.is\_id = false
E \rightarrow id
                     E.graph = id.lexeme
                      E.\mathsf{node} = \mathsf{id}.\mathsf{lexeme}
                     E.is_id = true
```

```
(2)
    subgraph {
        a -> b
      }
      subgraph {
        c -> d
        e -> f
      }
      a -> c
      g -> h
    }
    subgraph {
        i -> m
    }
    a -> i
```

六、

```
L1: ifnot (a < b) goto L2 | ifnot (x = 2) goto L1 if (c < d) goto L3 | L0: t1 := x + 2 ifnot (e < f) goto L3 | x := t1
```

L2: t0 := x + 1 | goto L1 x := t0 | L3: if (x = 0) goto L0

七、 由于 C 语言采用的是传值的函数调用方式,alloc(s) 分配的存储空间未保存在 s 上,而是实参对应的临时变量上.