Optimization using NLOPT

Yoon Kyung Eunnie Lee

Created: November 15, 2014 Last updated: May 1, 2015

1 Definition of the BEM problem

BEM Matrix M

The first meeting reviewed the definition and size of the matrices (and vectors) that constitute the BEM problem. The surface current in response to an input field is obtained from:

$$\underline{\mathbf{M}}\ \underline{\mathbf{C}} = \underline{\mathbf{F}},\tag{1a}$$

$$\underline{\mathbf{C}} = \underline{\mathbf{M}}^{-1}\underline{\mathbf{F}}.\tag{1b}$$

where the surface current $\underline{\mathbf{C}}$ and input field $\underline{\mathbf{F}}$ are vectors of length 2N, where N is the number of edges in the mesh. $\underline{\underline{\mathbf{M}}} = \underline{\underline{\mathbf{M}}}^T$. is the symmetric BEM matrix. (computed using SCUFF) Note: Avoid using matrix inversion whenever possible. For example, avoid $\underline{\mathbf{M}}^{-1}$.

Power/Force/Torque matrix Q

For power, force, and torque, BEM computes them via the PFT matrix $\underline{\mathbf{Q}}$, which obeys

$$\underline{\mathbf{Q}} = \underline{\mathbf{Q}}^{\dagger},$$

where $\underline{\underline{\mathbf{Q}}}^{\dagger} = (\underline{\underline{\mathbf{Q}}})^T$ denotes complex conjugate. $\underline{\underline{\mathbf{M}}}$ and $\underline{\underline{\mathbf{Q}}}_{OPFT}$ are independent of the incident field.

2 FOM

Definition

The second meeting reviewed how to obtain the scalar value $Figure\ of\ Merit\ (FOM)$ and its gradient. The FOM is obtained from ${\bf Q}$ as:

$$FOM = \underline{\mathbf{C}}^{\dagger}\underline{\mathbf{Q}}\ \underline{\mathbf{C}},\tag{2}$$

where the $\underline{\mathbf{C}}$ is obtained from eq. 1a.

Differential of FOM

The differential (δ , also called 'grad') of FOM can be obtained from applying the gradient to eq. 1a:

$$\delta(\mathbf{\underline{M}}\ \mathbf{\underline{C}} = \delta\mathbf{\underline{F}})\tag{3a}$$

$$\mathbf{M}\ \delta\mathbf{C} = \delta\mathbf{F} \tag{3b}$$

Using $\delta(\underline{\mathbf{C}}^{\dagger}) = (\delta\underline{\mathbf{C}})^{\dagger}$,

$$\begin{split} \delta(FOM) &= \delta(\underline{\mathbf{C}}^{\dagger}\underline{\underline{\mathbf{Q}}} \ \underline{\mathbf{C}}) \\ &= \delta\underline{\mathbf{C}}^{\dagger}\underline{\underline{\mathbf{Q}}} \ \underline{\mathbf{C}} + \underline{\mathbf{C}}^{\dagger}\underline{\underline{\mathbf{Q}}} \ \delta(\underline{\mathbf{C}}) \\ &= \delta\underline{\mathbf{F}}^{\dagger}(\underline{\underline{\mathbf{M}}}^{-1})^{\dagger}\underline{\mathbf{Q}} \ \underline{\mathbf{C}} + \underline{\mathbf{C}}^{\dagger}\underline{\mathbf{Q}} \ \underline{\underline{\mathbf{M}}}^{-1}\delta\underline{\mathbf{F}} \end{split}$$

$$\therefore \ \delta(FOM) = \delta \underline{\mathbf{F}}^{\dagger} [(\underline{\underline{\mathbf{M}}}^{-1})^{\dagger} \underline{\underline{\mathbf{Q}}} \ \underline{\underline{\mathbf{C}}}] + [\underline{\underline{\mathbf{C}}}^{\dagger} \underline{\underline{\underline{\mathbf{Q}}}} \ \underline{\underline{\underline{\mathbf{M}}}}^{-1}] \delta \underline{\underline{\mathbf{F}}}.$$
(3c)

3 Adjoint Current

From eq. 3c, The terms inside the brackets can be grouped together and computed in terms of the adjoint current $\underline{\mathbf{C}}_A$ to avoid matrix inversion. Let us write:

$$\underline{\mathbf{C}}_{A}^{T} = [\underline{\mathbf{C}}^{\dagger}\underline{\mathbf{Q}}\ \underline{\underline{\mathbf{M}}}^{-1}] \tag{4a}$$

$$\underline{\mathbf{C}}_A = [\underline{\mathbf{C}}^{\dagger} \mathbf{Q} \ \underline{\mathbf{M}}^{-1}]^T = \underline{\mathbf{M}}^{-1} \overline{\mathbf{Q}} \ \overline{\underline{\mathbf{C}}}$$
 (4b)

$$\overline{\underline{\mathbf{C}}_{A}} = (\underline{\underline{\mathbf{M}}}^{-1})\underline{\underline{\mathbf{Q}}}\underline{\mathbf{C}} = (\underline{\underline{\mathbf{M}}}^{-1})^{\dagger}\underline{\underline{\mathbf{Q}}}\underline{\mathbf{C}}$$
 (4c)

$$\therefore \quad \boxed{\underline{\underline{\mathbf{M}}} \; \underline{\mathbf{C}}_A = \underline{\underline{\mathbf{Q}}} \; \overline{\underline{\mathbf{C}}}}$$
 (4d)

Notice the similarity between eq. 4d and $\underline{\underline{\mathbf{M}}} \ \underline{\mathbf{C}} = \underline{\underline{\mathbf{F}}}$. Both can be solved with LU factorization. eq. 3c now becomes:

$$\delta(FOM) = \delta \underline{\mathbf{F}}^{\dagger} \left[\ \underline{\overline{\mathbf{C}}_{A}} \ \right] + \left[\ \underline{\mathbf{C}}_{A}^{T} \ \right] \delta \underline{\mathbf{F}}$$
 (5a)

$$\therefore \quad \delta(FOM) = 2 \cdot Re \left[\ \underline{\mathbf{C}}_{A}^{T} \ \delta \underline{\mathbf{F}} \ \right]. \tag{5b}$$

Using the complex vectors $\underline{\mathbf{F}}$ and $\underline{\mathbf{F}}^{\dagger}$ separately, we get two differential equations for FOM.

$$\left(\frac{\delta(FOM)}{\delta(\mathbf{F})} = \underline{\mathbf{C}}_{A}^{T}\right) \tag{6a}$$

$$\left(\frac{\delta(FOM)}{\delta(\underline{\mathbf{E}}^{\dagger})} = \overline{\underline{\mathbf{C}}_A}\right) \tag{6b}$$

4 Input Field Decomposition

Construction of F

The total incident field vector $\underline{\mathbf{F}}$ is computed inside BEM in the following way:

$$F_i = \langle \boldsymbol{\phi}^{inc}, \boldsymbol{\beta}_i \rangle.$$
 (7a)

In integral form, this is equivalent to:

$$F_i = \int_{S_i} \phi^{inc} \cdot \boldsymbol{\beta}_i \, dA, \quad (i = 1..2N)$$
 (7b)

$$\boxed{\underline{\mathbf{F}} = \int_{S} \boldsymbol{\phi}^{inc} \cdot \boldsymbol{\beta} \, \mathrm{d}A,}$$
 (7c)

where ϕ^{inc} is the total incident field in (x, y, z), and β_i is the unit normal for surface current in (x, y, z), per edge i = 1..2N. Keep in mind that β_i and ϕ^{inc} are vectors in 3D, while $\underline{\mathbf{F}}$ is a 2N-dimensional vector, and $\boldsymbol{\beta}$ is a $(2N\times3)$ matrix.

Decomposition of ϕ^{inc}

The incident field ϕ^{inc} can be expanded into any orthonormal basis \mathbf{Y}^{lm} .

$$\phi^{inc} = \sum c_{lm} \mathbf{Y}^{lm} \tag{8}$$

Both ϕ and Y are spatial vectors in 3D.

Decomposition of F

The 2N-dimensional incident field vector $\underline{\mathbf{F}}$ is a superposition of the $\underline{\mathbf{F}}^{lm}$ vectors.

$$\underline{\mathbf{F}} = \sum c_{lm} \ \underline{\mathbf{F}}^{lm}, \tag{9}$$

Each $\underline{\mathbf{F}}^{lm}$ is separately computed using the same integration method of eq. 7b:

$$F_i^{lm} = \left\langle \mathbf{Y}^{lm}, \boldsymbol{\beta}_i \right\rangle.$$
 (10a)

In integral form, this is equivalent to:

$$\left| F_i^{lm} = \int \mathbf{Y}^{lm} \cdot \boldsymbol{\beta}_i \, dA, \quad (i = 1..2N) \right| \quad (10b)$$

$$\boxed{\underline{\mathbf{F}}^{lm} = \int \mathbf{Y}^{lm} \cdot \underline{\boldsymbol{\beta}} \, dA.}$$
 (10c)

Decomposition of FOM

 $\delta(FOM)$ can now be computed with respect to the change in each orthonormal mode \mathbf{Y}^{lm} .

$$\delta(FOM) = 2 \cdot Re \left[\underline{\mathbf{C}}_{A}^{T} \, \delta \underline{\mathbf{F}} \right]$$

$$= 2 \cdot Re \left[\underline{\mathbf{C}}_{A}^{T} \sum \delta \left(c_{lm} \underline{\mathbf{F}}^{lm} \right) \right]$$

$$= 2 \cdot Re \left[\delta c_{lm} \left(\sum \underline{\mathbf{C}}_{A}^{T} \underline{\mathbf{F}}^{lm} \right) \right]$$

$$= 2 \cdot Re \left[\delta c_{lm} \left(\sum \underline{\mathbf{C}}_{A}^{T} \int \mathbf{Y}^{lm} \cdot \underline{\boldsymbol{\beta}} \, dA \right) \right]$$

Therefore,

$$\frac{\delta(FOM)}{\delta c_{lm}} = 2 \cdot Re \left[\mathbf{\underline{C}}_{A}^{T} \mathbf{\underline{F}}^{lm} \right], \qquad (11a)$$

$$\frac{\delta(FOM)}{\delta c_{lm}} = 2 \cdot Re \left[\underline{\mathbf{C}}_{A}^{T} \int \mathbf{Y}^{lm} \cdot \underline{\boldsymbol{\beta}} \, dA \right]. \tag{11b}$$

Recall that the surface current vector $\underline{\mathbf{C}}$ and the adjoint current vector $\underline{\mathbf{C}}_A$ depend on the incident field. For the computation of FOM, we use $\underline{\mathbf{C}}$ and $\underline{\mathbf{C}}_A$ computed using the total incident field vector $\underline{\mathbf{F}}$.

5 Input to NLOPT

Steven suggested on 2015.03.16 that the following function be constructed:

```
function objective (int n, double *c)
     compute RHS
     sol=A\rhs
     return FOM
```

where *c is an array of coefficients c_{lp} . (Steven said, why don't you start with 25 coeff.s, 5 by 5? You would need real and imaginary parts. There is no meaning in trying to make sense of different force/torque from modes. go straight to optimizing.)

5.1 Implementation details