CS4248 AY 2022/23 Semester 1 Tutorial 6 Solutions

1.

o time	ı fruit	2 flies 3
$S \rightarrow time 0.1$	$NP \rightarrow N N (k=1)$	$S \rightarrow V NP (k=1)$
$VP \rightarrow time 0.3$	0.4 * 0.2 * 1.0 = 0.08	0.6 * 0.08 * 0.4 = 0.0192
$N \rightarrow time 0.4$		$VP \rightarrow V NP (k=1)$
$V \rightarrow time 0.6$		0.6 * 0.08 * 0.5 = 0.024
		$S \rightarrow NP \ VP \ (k=2)$
		0.08 * 0.2 * 0.4 = 0.0064
		(lower probability, not kept)
[0,1]	[0,2]	[0,3]
	$N \rightarrow \text{fruit } 0.2$	$NP \rightarrow N N (k=2)$
		0.2 * 0.4 * 1.0 = 0.08
	[1,2]	[1,3]
		$S \rightarrow flies 0.1$
		$VP \rightarrow flies 0.2$
		$N \rightarrow flies 0.4$
		$V \rightarrow flies 0.4$
		[2,3]

2. Labeled recall
$$=\frac{12}{13}$$

Labeled precision $=\frac{12}{12}=1$

A constituent (non-terminal symbol) in the parse tree of the parser is correct if there is a constituent in the human's parse tree that spans the same words with the same non-terminal symbol. Note that the internal parse tree structure rooted at a non-terminal symbol does not matter.

3. Parse tree:

Semantic representation of NP (that expands into DT NN):

 $\{\lambda P. \lambda Q. \exists x P(x) \land Q(x)\}\{\lambda s. Store(s)\}$

 $\lambda Q. \exists x \lambda s. Store(s)(x) \land Q(x)$

 λQ . $\exists x$ Store $(x) \land Q(x)$

Semantic representation of VP:

 $\{\lambda w. \lambda z. w(\lambda x. \exists e \text{ Opened}(e) \land \text{ Opener}(e, z) \land \text{ OpenedObj}(e, x))\}\{\lambda Q. \exists x \text{Store}(x) \land Q(x)\}\}$ $\lambda z. \{\lambda Q. \exists x \text{Store}(x) \land Q(x)\}(\lambda x. \exists e \text{ Opened}(e) \land \text{ Opener}(e, z) \land \text{ OpenedObj}(e, x))$ $\lambda z. \{\exists x \text{Store}(x) \land (\lambda x. \exists e \text{ Opened}(e) \land \text{ Opener}(e, z) \land \text{ OpenedObj}(e, x))(x)\}$ $\lambda z. \exists x \text{Store}(x) \land (\exists e \text{ Opened}(e) \land \text{ Opener}(e, z) \land \text{ OpenedObj}(e, x))$

Semantic representation of S:

 $\{\lambda r. r(\text{Ray})\}\{\lambda z. \exists x \text{Store}(x) \land (\exists e \text{ Opened}(e) \land \text{ Opener}(e, z) \land \text{ OpenedObj}(e, x))\}$ $\{\lambda z. \exists x \text{Store}(x) \land (\exists e \text{ Opened}(e) \land \text{ Opener}(e, z) \land \text{ OpenedObj}(e, x))\}(\text{Ray})$ $\exists x \text{Store}(x) \land (\exists e \text{ Opened}(e) \land \text{ Opener}(e, \text{Ray}) \land \text{ OpenedObj}(e, x))$

4.

- a. Both Alice and Barbara like Christopher.
- (i) [N] $L(A,C) \vee L(B,C)$
- (ii) [N] $L(A \land B, C)$
- (iii) $[Y] L(A,C) \wedge L(B,C)$

b. There is a man who likes both Alice and Barbara.

- (i) $[Y] \exists x[M(x) \land L(x,A) \land L(x,B)]$
- (ii) $[N] \exists x [M(x) \Rightarrow [L(x,A) \land L(x,B)]]$
- (iii) $[N] [\exists x M(x)] \Rightarrow [L(x,A) \land L(x,B)]$

- c. All men who like Alice also like Barbara.
- (i) $[Y] \forall x[[M(x) \land L(x,A)] \Rightarrow L(x,B)]$
- (ii) $[Y] \forall x[M(x) \Rightarrow [L(x,A) \Rightarrow L(x,B)]]$
- (iii) [N] $\forall x[M(x) \land L(x,A) \land L(x,B)]$