МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Организация ЭВМ и систем»

Тема: Представление и обработка целых чисел. Организация ветвящихся процессов.

Студент гр. 9383	 Орлов Д.С.
Преподаватель	 Ефремов М.А.

Санкт-Петербург

2020

Цель работы.

Изучить представление целых чисел, научиться их обрабатывать. Познакомиться с организацией ветвящихся процессов на Ассемблере.

Задание

Разработать на языке Ассемблера программу, которая по заданным целочисленным значениям параметров a, b, i, k вычисляет:

- а) значения функций i1 = f1(a,b,i) и i2 = f2(a,b,i);
- b) значения результирующей функции res = f3(i1,i2,k), где вид функций f1 и f2 определяется из табл. 2, а функции f3 из табл.3 по цифрам шифра индивидуального задания (n1,n2,n3), приведенным в табл.4. из методички.

Значения a, b, i, k являются исходными данными, которые должны выбираться студентом самостоятельно и задаваться в процессе исполнения программы в режиме отладки. При этом следует рассмотреть всевозможные комбинации параметров a, b и k, позволяющие проверить различные маршруты выполнения программы, а также различные знаки параметров a и b.

Вариант 14:

$$/7 - 4*i$$
 , при a>b $f1 = <$ \ $8 - 6*i$, при a<=b $/ -(6*i - 4)$, при a>b $f2 = <$ \ $3*(i+2)$, при a<=b $/ \max(i1,10-i2)$, при k<0 $f3 = <$ \ $|i1 - i2|$, при k>=0

Ход работы.

В ходе работы была написана программа на языке Ассемблер, которая по заданным целочисленным параметрам вычисляет значения некоторых функций. Процесс выполнения программы ветвящийся и использует следующие команды Ассемблера:

- стр сравнение аргументов и установка флага ZF в соответствующее результату сравнения значение. 0, если аргументы равны и 1, если аргументы не равны.
- jle условный переход по заданной метке при условии, что в предыдущем сравнении с использованием стр первый аргумент меньше или равен второму.
- shl побитовый сдвиг влево. Для целых чисел применение сдвига на 1 эквивалентно умножению значения на 2.
- add арифметическое действие сложения целых чисел
- neg арифметическое действие взятия противоположного целого числа
- sub арифметическое действие вычитания целых чисел
- jmp безусловный переход по заданной метке. Передача управления.

Исходные данные заносятся в программу до выполнения, а результат работы отслеживается через отладчик.

Тестирование.

Входные данные (a, b, i, k)	Результат вычислений (i1, i2, res)
1 1 1 1	0002=2 0009=9 0007 = 7
1 -1 4 -2	FFF7 = -9 FFEC = -20 001E = 30
-2 1 2 1	FFFC = -4 000C = 16 0010 = 16
-2 1 1 0	0002 = 2 0009 = 9 0007 = 7

Выводы.

Изучено представление целых чисел и разработана программа, выполняющая некоторые арифметические действия над целыми числами. Программа содержит ветвящиеся процессы.

ПРИЛОЖЕНИЕ А ИСХОДНЫЙ КОД ПРОГРАММЫ

Текст файла lab3.asm

```
/7 - 4*i, npu a > b
                      (f1)
; f1 = <
   (f2)
    /-(6*i-4), npu a>b
                         (f11)
f2 = <
    (f22)
    / max(i1,10-i2), npu k<0 (f3)
; f3 = <
; \langle i1 - i2 \rangle, npu k > = 0
                         (absi)
AStack SEGMENT STACK
  DW 32 DUP(?)
AStack ENDS
DATA SEGMENT
  A DW -2
  B DW 1
  I DW 1
  K DW 0
  11 DW ?
  12 DW ?
  RES DW?
DATA ENDS
CODE SEGMENT
  ASSUME CS:CODE, DS:DATA, SS:AStack
Main PROC FAR
  mov ax, DATA
  mov ds, ax
f1 :
  mov ax, A
  cmp ax, B ; cpaвнивает A u B
      jle f11
  mov ax, 1 ; ax = 1
      sub\ ax,\ I ; ax = 1 - i
      cmp ax, 0
                  ;если ах<0
      jle f1n
      shl ax, 1
                 ; ax = 2 - 2i
      shl ax, 1
                  ; ax = 4 - 4i
      add ax, 3
                 ; ax = 7 - 4i
      mov II,ax
      jmp f2
```

```
f1n :
                      ;производит умножение, если ax < 0
       neg ax
       shl ax, 1
                      ax = 2*(1 - i)
       shl ax, 1
                      ax = 2*(2 - 2i)
       neg ax
       add ax, 3
                      ; ax = 7 - 4i
       mov II,ax
       jmp f2
          ; A > B, так как мы переходим от fl
  add ax, I ; ax = 7 - 4i + i = 7 - 3i
                     ; ax = 7 - 3i - 5 = 2 - 3i
       sub ax, 5
       cmp ax, 0
                      ;если ах<0
       jle f2n
       shl ax, 1
                      ax = 2*(2 - 3i) = 4 - 6i = -(6i - 4)
       jmp f3
f2n:
                      ;производит умножение, если ax < 0
       neg ax
                      ax = 2*(2 - 3i) = 4 - 6i = -(6i - 4)
       shl ax, 1
       neg ax
       jmp f3
f11 :
       mov ax, 1
                      ; ax = 1
       sub ax, I
                      ; ax = 1 - i
       cmp ax, 0
                      ;если ах<0
       jle f11n
  shl ax, 1
              ax = 2*(1 - i) = 2 - 2i
       shl ax, 1
                      ax = 2*(2 - 2i) = 4 - 4i
       add ax, I
                      ;ax = 4 - 3i
       shl ax, 1
                      ax = 8 - 6i
       mov II, ax
  jmp f22
f11n:
                      ;производит умножение, если ax < 0
       neg ax
       shl ax, 1
                      ax = 2*(1 - i) = 2 - 2i
       shl ax, 1
                      ax = 2*(2 - 2i) = 4 - 4i
       sub ax.I
                      ax = 8 - 6i
       shl ax, 1
       neg ax
       mov I1, ax
  jmp f22
f22:
  cmp bx, ax
       jle f22n
       neg\ ax ; ax = -(8 - 6i) = 6i - 8
                      ax = (6i - 8)/2 = 3i - 4
       shr ax, 1
       add ax, 10; ax = 3i - 4 + 10 = 3i + 6 = 3*(i + 2)
  jmp f3
f22n:
```

```
shr ax, 1
                      ax = (6i - 8)/2 = 3i - 4
       neg ax
       add \ ax, \ 10 \ ; \ ax = 3i - 4 + 10 = 3i + 6 = 3*(i + 2)
  jmp f3
f3 :
  cmp\ bx,\ K\ ; max(i1,\ 10\ -\ i2)
  jle absi
                     ; ax = -i2
        neg ax
       add \ ax, \ 10 \ ; \ ax = 10 - i2
        cmp\ I1,\ ax\ ;\ i1 <= 10 - i2 -> ax --- max
       jle fin
       mov ax, I1
       jmp fin
absi:
                      ;ax = -i2
  neg ax
                      ;ax = i1 - i2
        add ax, I1
        cmp bx, ax
                      ; i1 - i2 < 0 -> ax = -ax
       jle fin
       neg ax
                       ;ax = -ax
       jmp fin
fin:
  mov RES, ax
  mov ah, 4ch
  int 21h
Main ENDP
CODE ENDS
END Main
      Текст файла lab3.lst
      Microsoft (R) Macro Assembler Version 5.10
                                                          12/17/20 02:52:2
                                                     1-1
                                            Page
                                                                                        /7-
      4*i, npu \ a>b
                       (f1)
                                                                                   fI = <
                                                                                        \ 8 -
      6*i, npu a \le b
                                                                  (f2)
                                                                                        /-(6*i
      - 4) , npu a>b
                                                                  (f11)
                                                                                   ; f2 = <
      3*(i+2), npu a \le b
                                                                  (f22)
      max(i1,10-i2), npu k<0 (f3)
                                                                                   ; f3 = <
```

(absi)

i2|, npu k >= 0

; $\langle i1 -$

0000	AStack		
SEGMENT STACK	DW 22		
0000 0020[DUD(3)	DW 32		
DUP(?)	????		
	J		
0040	AStack		
ENDS			
0000	DATA		
SEGMENT			
0000 FFFE	A DW -2		
0002 0001	B DW 1		
0004 0001	I DW 1		
0006 0000	K DW 0		
0008 0000	II DW ?		
000A 0000	12 DW ?		
000C 0000	RES DW?		
000E	DATA		
ENDS			
0000	CODE		
SEGMENT			
ASSUME CS:CODE, DS:DATA, SS:AStack			
0000	Main		
PROC FAR			
0000 B8 R	mov ax, DATA		
0003 8E D8	mov ds, ax		
0005	fI :		
0005 A1 0000 R	mov ax, A		
0008 3B 06 0002 R	$cmp \ ax, B ;$		
сравнивает А и В			
000C 7E 44	jlefll		
000E B8 0001	mov ax, 1 ; ax		
=1			
0011 2B 06 0004 R	sub ax, I ; ax		
= 1 - i	0		
0015 3D 0000	стр ах, 0 ;если ах<0		
0018 7E 0D	jle fIn		
0018 7E 0D 001A D1 E0	shl ax, 1		
	ax = 2 - 2i		
001C D1 E0	shl ax, I		
· · · · · · · · · · · · · · · · · · ·	ax = 4 - 4i		
001E 05 0003	add ax, 3		
	; ax = 7 - 4i		
0021 A3 0008 R	mov I1,ax		
	,		

0027 *f1n* : ;производит э \square множение. если ax < 012/17/20 02:52:2 Microsoft (R) Macro Assembler Version 5.10 *Page* 1-2 0027 F7 D8 neg ax 0029 D1 E0 shl ax, 1 ; ax = 2*(1 - i)002B D1 E0 shl ax, 1 ax = 2*(2 - 2i)002D F7 D8 neg ax 002F 05 0003 add ax, 3 ax = 7 - 4i0032 A3 0008 R mov II,ax 0035 EB 01 90 jmp f2 0038 *f*2 : ; A > B, так как мы $n\dot{M}$ *иреходим* om fl 0038 03 06 0004 R add ax, I ; ax = 7 -4i + i = 7 - 3i003C 2D 0005 sub ax, 5 : ax = 7 - 3i - 5 = 2 -3i 003F 3D 0000 cmp ax, 0 ;*если ах*<0 0042 7E 05 jle f2n 0044 D1 E0 shl ax, 1 ax = 2*(2 - 3i) = 4 - 3i6i = -(6i -0046 EB 52 90 jmp f3 0049 f2n: ;производит э f множение, если ax<00049 F7 D8 neg ax 004B D1 E0 shl ax, 1 ax = 2*(2 - 3i) = 4 - 3i6i = -(6i -4) 004D F7 D8 neg ax 004F EB 49 90 jmp f3

jmp f2

0024 EB 12 90

0052	<i>f11</i> :
0052 B8 0001	mov ax, 1
0055 2B 06 0004 R = 1 - i	$; ax = 1$ $sub \ ax, I \qquad ; ax$
0059 3D 0000	стр ax, 0 ;если ax<0
005C 7E 10 005E D1 E0 = 2*(1 - i) = 2 - 2i 0060 D1 E0	jle f11n shl ax, 1 ;ax shl ax, 1
	ax = 2*(2 - 2i) = 4 - 4i
$0062 \ 03 \ 06 \ 0004 \ R$ $= 4 - 3i$	add ax, I ;ax
0066 D1 E0	shl ax, 1 $ax = 8 - 6i$
0068 A3 0008 R 006B EB 15 90	mov II, ax jmp f22
006E	f11n : ;производит э
00 (T V T D 0	f множение, если $ax<0$
006E F7 D8 0070 D1 E0	$neg \ ax$ $shl \ ax, \ 1$ $;ax = 2*(1 - i) = 2 - 2$ i
0072 D1 E0	$shl\ ax,\ 1$;ax = 2*(2-2i) = 4-4i
0074 2B 06 0004 R 0078 D1 E0	$sub \ ax, I$ $shl \ ax, \ I$ $;ax = 8 - 6i$
007A F7 D8 007C A3 0008 R Microsoft (R) Macro Assembler Version 5.10 Page 1-3	neg ax mov II, ax 12/17/20 02:52:2
007F EB 01 90	jmp f22
0082 0082 3B D8 0084 7E 0A	f22 : cmp bx, ax ile f22n
0086 F7 D8	jle f22n neg ax
ax = -(8 - 6i) = 6i - 8 0088 D1 E8	shr ax, 1

	ax = (6i - 8)/2 = 3i	
$008A \ 05 \ 000A$; $ax = 3i - 4 + 10 = 3i + 6$	- 4 add ax, 10	
2)	= 3*(i +	
008D EB 0B 90	jmp f3	
0090 0090 D1 E8	$f22n:$ $shr\ ax,\ 1$ $f(3) = 3i$ -4	
0092 F7 D8 0094 05 000A ; $ax = 3i - 4 + 10 = 3i + 6$	neg ax add ax, 10	
2)	= 3*(i +	
0097 EB 01 90	jmp f3	
009A	f3:	
009A 3B 1E 0006 R - i2)	$cmp\ bx,\ K\ ;max(i1,\ 10)$	
009E 7E 11	jle absi	
00A0 F7 D8	$neg \ ax$ $; ax = -i2$	
00A2 05 000A	add ax, 10	
; ax = 10 - i2 00A5 39 06 0008 R	cmp II, ax ; i1	
<= 10 - i2 -> ax m	cmp 11, ax , 11	
00A9 7E 15	ax jle fin	
00A9 7E 13 00AB AI 0008 R	mov ax, I1	
00AE EB 10 90	jmp fin	
00B1	absi :	
00B1 F7 D8	neg ax	
00B3 03 06 0008 R	$;ax = -i2$ $add \ ax, \ I1 \qquad ;ax$	
= i1 - i2 00B7 3B D8	cmp bx, ax	
	; $i1 - i2 < 0 -> ax = -$	
00B9 7E 05	ax jle fin	
00BB F7 D8	neg ax	
00BD EB 01 90	;ax = -ax $jmp fin$	
00 00 LD 01 70	յությու	
00C0 00C0 A3 000C P	fin:	
00C0 A3 000C R 00C3 B4 4C	mov RES, ax mov ah, 4ch	
00C5 CD 21	int 21h	

00C7 ENDP 00C7 ENDS Microsoft (R) Macro Assembler Version 5.10 Symbols-1	12/17/20 02.	:52:2	Main CODE END Main
Segments and Groups:	.	4.11	
N a m e	Length	Align	Combine
Class			
ASTACK	0040	PARA	STACK
<i>CODE</i>	00C7	PARA	NONE
DATA			NONE
Symbols:			
Name	Туре	Value	Attr
<i>A</i>	L WORD	0000	DATA
ABSI	L NEAR	00B1	CODE
B	L WORD	0002	DATA
<i>F1</i>	L NEAR	0005	CODE
<i>F11</i>	L $NEAR$		CODE
<i>F11N</i>	L $NEAR$	006E	CODE
<i>F1N</i>	L $NEAR$	0027	CODE
<i>F</i> 2	L $NEAR$	0038	CODE
F22	L $NEAR$	0082	CODE
$F22N \dots \dots$	L $NEAR$	0090	CODE
$F2N \dots F2N \dots$	L $NEAR$	0049	CODE
<i>F3</i>	L $NEAR$		
FIN	L NEAR	00C0	CODE
I	L WORD	0004	DATA
<i>II</i>	L WORD	0008	DATA
<i>I</i> 2	L WORD	000A	DATA
<i>K</i>	L WORD	0006	DATA
<i>MAIN</i>	F PROC	0000	CODE
	Length =		
<i>RES</i>	L WORD	000C	DATA
@ <i>CPU</i>	TEXT 01	01h	
@FILENAME	TEXT lb.		
@VERSION	TEXT 10.		
C TEMBION	ILAI JI	J	

139 Source Lines 139 Total Lines 27 Symbols

48032 + 459228 Bytes symbol space free

0 Warning Errors 0 Severe Errors