

上海市现代应用数学重点实验室研究报告 Research Report Series of SKLCAM (2020 年第三期)

基于公开数据的 TDD-NCP 模型预测结果和分析备忘录

上海市现代应用数学重点实验室 Shanghai Key Laboratory of Contemporary Applied Mathematics

基于公开数据的 TDD-NCP 模型 预测结果和分析备忘录

江渝 1, 刘可伋 1, 陈瑜 1, 严阅 1, 许伯熹 1, 陈文斌 2, 陆帅 2, 徐翔 3, 程晋 2*

1上海财经大学数学学院,上海市,200433.

2 复旦数学科学学院, 上海市现代应用数学重点实验室, 上海市, 200433.

3 浙江大学数学科学学院, 浙江省杭州市, 310027.

使用 TDD-NCP 模型 (新冠肺炎传播的时滞动力学模型, A Time Delay Dynamic model for NCP, [1, 2, 3]) 进行疫情预测时. 分别基于 1 月 23 日至 1 月 28 日和 1 月 23 日至 2 月 11 日两个时间段公开数据得到的 2 月 12 日预测结果如表1所示. 特别是基于 1 月 23 日至 1 月 28 日公开数据所作的疫情发展曲线更符合 2 月 12 日及以后的实际 (见图1). 基于该时间段数据得到的传染率 β 和隔离率 ℓ 可见表2, 对今后一段时间的预测数值也可以见表3.

图 1: TDD-NCP 预测的疫情发展曲线.

撰写时间: 2020年2月15日.

^{*}通讯作者: Email: jcheng@fudan.edu.cn.

使用官方数据时间段	预测 2 月 12 日	公开数据
1月23日至2月11日	53062	59805
1月23日至1月28日	59039	59805

表 1: 预测数值.

模型参数	反演数值		
传染率 β	0.2984		
隔离率 ℓ	0.3381		

表 2: 基于 1 月 23 日至 1 月 28 日公开数据反演得到的模型参数.

日期	2/12	2/13	2/14	2/15	2/16	2/17	2/18
官方数据	59804	63851	66492	N/A	N/A	N/A	N/A
预测数值	59039	63023	66863	69942	72859	75472	77797

表 3: 基于 1 月 23 日至 1 月 28 日公开数据对今后的预测数值.

参考文献

- [1] Y. Chen, J. Cheng, Y. Jiang and K. Liu, A Time Delay Dynamical Model for Outbreak of 2019-nCoV and the Parameter Identification, to appear in Journal of Inverse and Ill-posed Problems, arXiv:2002.00418, 2020.
- [2] 严阅, 陈瑜, 刘可伋等, 基于一类时滞动力学系统对新型冠状病毒肺炎疫情的建模和 预测 [J], 中国科学: 数学, **50**(3), 2020. https://doi.org/10.1360/SSM-2020-0026.
- [3] Y. Chen, J. Cheng, Y. Jiang and K. Liu, A Time Delay Dynamic System with External Source for the Local Outbreak of 2019-nCoV[EB/OL], arXiv:2002.02590, 2020.