

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Ingeniería en Computación

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA

Estructuras de datos

Segundo	025021	85
SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS

OBJETIVO(S) GENERAL(ES)DE LA ASIGNATURA

Proporcionar el conocimiento para identificar y utilizar las estructuras de datos adecuadas en la solución de problemas específicos de ingeniería.

TEMAS Y SUBTEMAS

- 1. Pilas.
 - 1.1.Definición y operaciones.
 - 1.2.Implementación estática.
 - 1.3.Implementación dinámica.
 - 1.4.Casos de estudio.

2.Colas.

- 2.1.Definición y operaciones.
- 2.2.Implementación estática.
- 2.3.Implementación dinámica.
- 2.4.Colas de prioridad.
- 2.5.Casos de estudio.

3.Recursividad.

- 3.1.Directa e indirecta.
- 3.2.Comparación entre funciones iterativas y recursivas.
- 3.3. Funciones recursivas con arreglos.
- 3.4. Ejemplo de transformación de un algoritmo recursivo a iterativo.
- 3.5. Ejemplo de transformación de un algoritmo iterativo a recursivo.

4.Listas.

- 4.1. Definiciones y operaciones.
- 4.2.Implementación dinámica.
- 4.3.Listas circulares.
- 4.4.Listas doblemente ligadas.
- 4.5.Listas de listas.
- 4,6,Casos de estudio.

5.Ordenamiento y búsqueda.

- 5.1.Ordenamiento burbuja.
- 5.2.Ordenamiento quicksort.5.3.Ordenamiento mergesort.
- 5.4.Búsqueda secuencial.
- 5.5.Búsqueda binaria.
- 5.6.Búsqueda hash.
- 5,7,Casos de estudio.

6.Árboles.

- 6.1. Definición y operaciones.
- 6.2.Implementación de arboles binarios.
- 6.3.Recorrido de arboles binarios.
- 6.4.Implementación de árboles AVL.
- 6.5.Árboles n-arios: La estructura TRIE.

ACTIVIDADES DE APRENDIZAJE

Impartición de conceptos por el profesor, ejercicios resueltos en clase por el profesor, ejercicios resueltos en clase por los estudiantes con la ayuda del profesor, ejercicios de tarea y un proyecto final de semestre. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como pizarrón, computadora, software de desarrollo entre otros.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACION Y ACREDITACIÓN

Para aprobar el curso se realizarán tres evaluaciones parciales (50 %) y una evaluación final (50%). Para cada evaluación se realizará un examen y se evaluarán tareas y proyectos. El examen tendrá un valor mínimo de 50% y las tareas y proyectos un valor máximo de 50%.

BIBLIOGRAFÍA (TIPO, TITULO, AUTOR, EDITORIAL Y AÑO)

Básica:

- 1. Estructuras de datos (3a Edición). Cairó, O., Guardati, S. México, DF. McGraw Hill. 2010
- Estructuras de datos con C y C++ (2a edición). Langsam, Y., Augenstein, M. J., Tenenbaum, A. M., & Martínez Sarmiento, M. A. México [etc.] Prentice Hall Hispanoamericana. 1997.
- Fundamentos de programación: Algoritmos, estructuras de datos y objetos. Joyanes, A. L. España: McGraw-Hill Interamericana, 2003.

Consulta:

- Estructura de datos. Lipschutz, S., Ortega, O. A. M., & Hemández, Y. L. México: MacGraw-Hill/Interamericana de México. 1992.
- 2. Introduction to algorithms (6th ed.). Cormen, T. H., & Cormen, T. H. Cambridge, Mass: MIT Press. 2009.

PERFIL PROFESIONAL DEL DOCENTE

Licenciado en Computación, Maestría o Doctorado en Ciencias de la Computación.

M.C. ENRIQUE ALEJANDRO LÓPEZ LÓPEZ
JEFE DE CARRERA

DR. AGUSTIN SANTIAGO ALVARADO VICE-RECTOR ACADÉMICO

VICE-RECTORIA ACADÉMICA

JEFATURA DE CARRERA Ingenieria en computación