



### Agenda

- Análise descritiva e exploratória
- Tipos de dados
- Ferramentas: Power BI, Excel, Python
- Cuidados e análises para "entender" a base de dados



# Exploratória

- Explorar o conjunto de dados compreensão do próprio analista
- Apresentar a análise exploratória/descritiva para audiência
- Encontrar padrões e explicações interessantes – explanatória

# Descritiva

- O que está acontecendo/aconteceu?
- Análise do passado
- Informações instantâneas
- Uso de estatísticas "básicas"
- Gráficos, tabelas, infográficos etc
- Exemplos?



# Tipos de dados/variáveis

#### Quantitativas

- Contínuas números reais
- Discretas números inteiros

### Qualitativas

- Nominais ou Categóricas caracterizam o dado
- Ordinais caracterizam e categorizam com uma ordem



#### Base Student Data

Student Performance Data Set

Contém dados sobre disciplina de matemática numa escola secundária

- school ID
- gender
- age
- Address (rural/urban)
- Mother education (Medu)
- Study time
- Father education (Fedu)
- Tempo dedicado aos estudos
- Paid
- Internet
- Absences
- Grades (G1, G2 e G3)

### Power BI desktop

- Gratuito
- Plataforma líder segundo o Gartner
- Para baixar: <u>Fazer o download do Power BI</u>
   <u>Microsoft Power Platform</u> (link também no Moodle)
- Baixar o executável e seguir os passos
- Assim que instalar, vai abrir uma página de cadastro na Microsoft – não é obrigatório, basta fechar e estará pronto para usar



Fonte da imagem: https://exceleratorbi.com.au/extract-numericaldata-points-from-an-image/

# Python

- Google Colab
  - Serviço do Google que hospeda o Jupyter Notebook
  - Basta ter uma conta no Google
  - colab.google
- Jupyter Notebook



### Instalando Jupyter Notebook a partir da distribuição Anaconda

- Acessar site <a href="https://www.anaconda.com/">https://www.anaconda.com/</a> e a opção Free Download
- Fazer o login de acordo com sua preferência
- Escolher o pacote. Sugerido: Distribution

Baixar o arquivo, executar, seguir as orientações de instalação e as seguintes opções de

instalação:



- No prompt de comando, chamar "jupyter notebook". Isso vai instalar os pacotes e abrir o navegador, com todas as pastas do seu computador OU Abrir no Anaconda Navigator e clicar na opção Jupyter Notebook Launch
- Pronto, é navegar nos arquivos e, para criar um novo notebook, clicar em New > Python

### Python Bibliotecas

NumPy: para estruturas de dados básicos

Pandas: oferece estruturas de dados de alto

Seaborn: visualização de dados (gráficos) Python baseada no matplotlib

Matplotlib: biblioteca de plotagem 2D do Python que produz números de qualidade de publicação em vários formatos de cópia impressa e ambientes interativos entre plataformas

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

### Python - estruturas

 Série: array unidimensional, semelhante a uma lista em Python, no entanto criado sobre o numpy. Além da velocidade de processamento, a principal característica que o difere de uma lista comum é que seus índices podem ser mutáveis.

### Python - estruturas

 Dataframe é uma estrutura de dados tabular bidimensional e mutável em tamanho, potencialmente heterogênea, com eixos rotulados (linhas e colunas).

|   | ta = pd.read_c<br>ta.head() | sv("nba.csv")  |        |          |      |        |        | Λ Ψ               | ⊕ <b>目 ☆</b> |
|---|-----------------------------|----------------|--------|----------|------|--------|--------|-------------------|--------------|
|   | Name                        | Team           | Number | Position | Age  | Height | Weight | College           | Salary       |
| 0 | Avery Bradley               | Boston Celtics | 0.0    | PG       | 25.0 | 6-2    | 180.0  | Texas             | 7730337.0    |
| 1 | Jae Crowder                 | Boston Celtics | 99.0   | SF       | 25.0 | 6-6    | 235.0  | Marquette         | 6796117.0    |
| 2 | John Holland                | Boston Celtics | 30.0   | SG       | 27.0 | 6-5    | 205.0  | Boston University | NaN          |
| 3 | R.J. Hunter                 | Boston Celtics | 28.0   | SG       | 22.0 | 6-5    | 185.0  | Georgia State     | 1148640.0    |
| 4 | Jonas Jerebko               | Boston Celtics | 8.0    | PF       | 29.0 | 6-10   | 231.0  | NaN               | 5000000.0    |

# Mão na massa!

Cada aluno (ou dupla) vai escolher uma base de dados (sugestão: Kaggle), com tipos de dados heterogêneos (numérico, ordinal, categórico).

Usando a ferramenta de sua escolha, Power BI ou Python, realizar a análise descritiva, com as principais estatísticas (contagem, distinct, min, max, média, desvio-padrão, mediana etc).

Deve ser entregue um documento em PDF contendo:

- Breve descrição sobre a base escolhida
- Identificação do tipo de cada variável (contínua, discreta, ordinal, categórica)
- Ajuste do tipo da variável se necessário
- Uma interpretação sobre as estatísticas descritivas
- Identificação de dados com problemas, faltantes e alternativas de solução (basta citar as alternativas, não precisa implementar)
- Entrega até as 19h30 da próxima semana aproveitem o restante da aula para exercitar!

### Principais referências

- Tutoriais do Power BI
- Documentação Python
- Conhecimento e experiência em estatística (faculdade + trabalho)
- Material de aula prof. Renato Carlson
- Material de aula prof. Felipe de Morais
- LOPES, G.R. et al. Introdução à Análise Exploratória de Dados com Python. Conference Paper, 2019.