1. Create a DataFrame birds from this dictionary data which has the index labels.

Out[89]:

	birds	age	visits	priority
а	Cranes	3.5	2	yes
b	Cranes	4.0	4	yes
С	plovers	1.5	3	no
d	spoonbills	NaN	4	yes
е	spoonbills	6.0	3	no
f	Cranes	3.0	4	no
g	plovers	5.5	2	no
h	Cranes	NaN	2	yes
i	spoonbills	8.0	3	no
j	spoonbills	4.0	2	no

**2. Display a summary of the basic information about birds DataFrame and its data.

```
In [90]: birds.describe()
```

Out[90]:

	age	visits
count	8.000000	10.000000
mean	4.437500	2.900000
std	2.007797	0.875595
min	1.500000	2.000000
25%	3.375000	2.000000
50%	4.000000	3.000000
75%	5.625000	3.750000
max	8.000000	4.000000

**3. Print the first 2 rows of the birds dataframe

**4. Print all the rows with only 'birds' and 'age' columns from the dataframe

yes

```
In [92]: #print(birds[birds.columns[[0, 1]]])
birds[['birds','age']]
```

Out[92]:

	birds	age
а	Cranes	3.5
b	Cranes	4.0
С	plovers	1.5
d	spoonbills	NaN
е	spoonbills	6.0
f	Cranes	3.0
g	plovers	5.5
h	Cranes	NaN
i	spoonbills	8.0
j	spoonbills	4.0

b Cranes 4.0

**5. select [2, 3, 7] rows and in columns ['birds', 'age', 'visits']

```
In [93]: birds[['birds','age','visits']].iloc[[1,2,6]]
#birds[['birds','age','visits']].filter(items=['b','c','g'], axis=0)
```

Out[93]:

	birds	age	visits
b	Cranes	4.0	4
С	plovers	1.5	3
g	plovers	5.5	2

**6. select the rows where the number of visits is less than 4

```
In [94]: birds.where(birds['visits']<4).dropna()</pre>
Out [94]:
                    birds age visits priority
             а
                  Cranes
                           3.5
                                  2.0
                                          yes
                  plovers
                           1.5
                                 3.0
             С
                                          no
             e spoonbills
                           6.0
                                 3.0
                                          no
                           5.5
                                 2.0
                  plovers
                                          no
             i spoonbills
                           8.0
                                  3.0
                                          no
```

**7. select the rows with columns ['birds', 'visits'] where the age is missing i.e NaN

no

2.0

j spoonbills

4.0

**8. Select the rows where the birds is a Cranes and the age is less than 4

no

**9. Select the rows the age is between 2 and 4(inclusive)

3.0

f Cranes

```
In [98]: birds[(birds.age>2) & (birds.age<=4)]</pre>
Out[98]:
                   birds age visits priority
                 Cranes
                          3.5
                                  2
            а
                                        yes
            b
                 Cranes
                          4.0
                                        yes
                 Cranes
                          3.0
                                  4
                                         no
             j spoonbills
                          4.0
                                  2
                                         no
```

**10. Find the total number of visits of the bird Cranes

```
In [99]: a=birds.where(birds['birds']=='Cranes').dropna()
    print("Total number of visits of Crane :",a['visits'].sum())
Total number of visits of Crane : 10.0
```

**11. Calculate the mean age for each different birds in dataframe.

**12. Append a new row 'k' to dataframe with your choice of values for each column. Then delete that row to return the original DataFrame.

Out[103]:

	birds	age	visits	priority
а	Cranes	3.5	2	yes
b	Cranes	4	4	yes
С	plovers	1.5	3	no
d	spoonbills	NaN	4	yes
е	spoonbills	6	3	no
f	Cranes	3	4	no
g	plovers	5.5	2	no
h	Cranes	NaN	2	yes
i	spoonbills	8	3	no
j	spoonbills	4	2	no

**13. Find the number of each type of birds in dataframe (Counts)

```
In [104]: g=birds.groupby('birds')
   g['birds'].count()

Out[104]: birds
   Cranes          4
   plovers          2
   spoonbills          4
   Name: birds, dtype: int64
```

**14. Sort dataframe (birds) first by the values in the 'age' in decending order, then by the value in the 'visits' column in ascending order.

```
In [105]: birds=birds.sort_values('age',ascending=False)
    birds
    birds=birds.sort_values('visits',ascending=True)
    birds
```

Out[105]:

	birds	age	visits	priority
g	plovers	5.5	2	no
j	spoonbills	4	2	no
а	Cranes	3.5	2	yes
h	Cranes	NaN	2	yes
i	spoonbills	8	3	no
е	spoonbills	6	3	no
С	plovers	1.5	3	no
b	Cranes	4	4	yes
f	Cranes	3	4	no
d	spoonbills	NaN	4	yes

**15. Replace the priority column values with'yes' should be 1 and 'no' should be 0

Out[106]:

	birds	age	visits	priority
а	Cranes	3.5	2	1
b	Cranes	4	4	1
С	plovers	1.5	3	0
d	spoonbills	NaN	4	1
е	spoonbills	6	3	0
f	Cranes	3	4	0
g	plovers	5.5	2	0
h	Cranes	NaN	2	1
i	spoonbills	8	3	0
j	spoonbills	4	2	0

**16. In the 'birds' column, change the 'Cranes' entries to 'trumpeters'.

```
In [107]: birds['birds']=birds['birds'].replace('Cranes','trumpeters')
Out[107]:
                    birds age visits priority
             a trumpeters
                                  2
                            4
                                  4
             b
               trumpeters
                  plovers
                           1.5
                                  3
                                          0
                spoonbills NaN
                                  4
                                  3
                spoonbills
                            6
                                          0
             f trumpeters
                            3
                                  4
                                          0
                                          0
                  plovers
                           5.5
                                  2
             h trumpeters NaN
                spoonbills
                                  3
                                          0
                            8
                                  2
                spoonbills
                            4
                                          0
 In [ ]:
  In [ ]:
  In [ ]:
```