Лабораторная работа 2.3.1 Определение $\frac{C_P}{C_V}$ методом изобарического расширения

Кагарманов Радмир Б01-106 18 марта 2022 г. **Цель работы:** определение $\frac{C_P}{C_V}$ для воздуха.

В работе используется: стеклянный сосуд; U-образный жидкостный манометр; резиновая груша; газгольдер с воздухом; секундомер.

Экспериментальная установка

Экспериментальная установка состоит из стеклянного сосуда A, снабжённого краном K₁ и U-образного жидкостного манометра, измеряющего избыточное давление газа в сосуде. Схема установки показана на рис. 1.

Рис. 1. Установка для определения C_p/C_v методом адиабатического расширения газа

Рис. 1: Экспериментальная установка

С помощью резиновой груши, соединённой с трубкой краном K_1 , в сосуде создаётся заданное избыточное P_1 воздуха. При этом газ оказывается перегретым.

Через некоторое время газ остынет до комнатной температуры T_0 . Давление воздуха понизится до $P_0+\Delta P_1$, где:

$$\Delta P_1 = \rho g \Delta h_1 \tag{1}$$

Откроем кран К. За время Δt порядка 0,5с произойдёт адиабатическое расширение газа и его темература окажется ниже комнатной. Далее газ будет изобарически нагреваться. Зададим время τ , в течение которого кран К остаётся открытым, таким чтобы можно было пренебречь временем Δt . После закрытия крана К газ станет изохорически нагреваться до комнатной температуры, и давление газа возрастёт до $P_0 + \Delta P_2$, где:

$$\Delta P_2 = \rho g \Delta h_2 \tag{2}$$

Будем считать воздух в газгольдере идеальным газом. Рассмотрим изобарическое расширение воздуха. Запишем уравнение теплового баланса для изменяющейся со временем массы $m=\frac{P_0V_0}{RT}\mu$:

$$c_p m dT = -\alpha (T - T_0) dt \tag{3}$$

$$c_p rac{P_0 V_0}{RT} \mu = -lpha (T-T_0) dt$$
 или $rac{dT}{T(T-T_0)} = -rac{lpha dt}{c_p rac{P_0 V_0}{R} \mu} \mu$

Заметим, что
$$\frac{1}{T(T-T_0)}=-\frac{1}{T_0}(\frac{1}{T}-\frac{1}{T-T_0})$$
, тогда $\frac{1}{T_0}(\frac{1}{T}-\frac{1}{T-T_0})=\frac{\alpha dt}{c_p m_0 T_0}$

Выполним интегрирование:

$$\int_{T_1}^{T_2} (\frac{1}{T} - \frac{1}{T - T_0}) dT = \frac{\alpha}{c_p m_0} \int_{0}^{\tau} dt$$

Получим:

$$\ln(\frac{T_2}{T_1}) - \ln(\frac{T_2-T_0}{T_1-T_0}) = \frac{\alpha}{c_p m_0} au$$
 или $\ln(\frac{T_2\Delta T_1}{T_1\Delta T_2}) = \frac{\alpha}{c_p m_0} au$

Откуда:

$$\frac{\Delta T_1}{T_1} = \frac{\Delta T_2}{T_2} \exp(\frac{\alpha}{c_p m_0} \tau) \tag{4}$$

Из соотношения для адиабатического расширения получим:

$$\frac{\Delta T_1}{T_1} = \frac{(\gamma - 1)}{\gamma} \frac{\Delta P_1}{P_0} \tag{5}$$

Из соотношения для изохорического нагрева:

$$\frac{\Delta T_2}{T_2} = \frac{\Delta P_2}{P_0} \tag{6}$$

Из (4), (5) и (6) получаем:

$$\ln(\frac{\Delta h_1}{\Delta h_2}) = \ln(\frac{\gamma}{\gamma - 1}) + \ln(\frac{\alpha}{c_p m_0})\tau \tag{7}$$

Обработка результатов

1. В таблице 1 представлены результаты измерений.

τ , c	Δh_1 , cm	Δh_2 , cm	$\ln \frac{\Delta h_1}{\Delta h_2}$
5	21,6	4,3	1,614
10	20,4	3,1	1,884
15	17,6	2,3	2,035
20	18,7	1,8	2,341
25	20,7	1,6	2,560
30	21,6	1,3	2,810
35	19,5	1	2,970

Таблица 1: Измерения разницы уровней манометра

- **2.** Построим график зависимости $\ln(\frac{\Delta h_1}{\Delta h_2})$ от τ и найдём $\ln(\frac{\gamma}{\gamma-1})$ с помощью МНК.
 - 3. На рисунке 2 изображён этот график.

Рис. 2: График зависимости $\ln(\frac{\Delta h_1}{\Delta h_2})$ от τ

$$\ln(\frac{\Delta h_1}{\Delta h_2}) = (0,0460 \pm 0,0014)\tau + (1,396 \pm 0,031)$$

4. Найдём γ :

$$\gamma = 4,039 \cdot \gamma - 4,039$$

$$\gamma = 4,039 \cdot \gamma - 4,039$$

$$\gamma = 1,329$$

5. Найдём погрешность γ : $\gamma=\frac{e^a}{e^a-1}$ $\varepsilon_{\gamma}=|\frac{e^a}{(e^a-1)^2}\cdot\Delta a|\approx 1,4\%$

И добавим к этому инструментальную погрешность Для $\Delta h1$ инструментальная относительная погрешность порядка - 0,5%; для h2 - 5%; для гаммы, погрешность которой я нашёл из МНК, получается 1,4%; для времени инструментальная погрешность составляет - 1%. При сложении инструментальной и МНК погрешности как независимых получаем: 7,9%.

$$\gamma = 1,33 \pm 0,11$$

Вывод

В ходе этой работы мы экспериментально получили отношение $\frac{c_p}{c_v}$ для воздуха $\gamma=1,33\pm0,11,$ что совпадает с табличным значением $\gamma=1,44$ в пределах погрешности.