

Servidores e seus sistemas operacionais

Prof. Orlando Saraiva Júnior orlando.saraiva@unesp.br

Objetivo da aula

Apresentação do plano de ensino, metodologia de avaliação e metas.

Revisão de redes de computadores.

Ementa

Ementa

Identificação dos componentes para montar um servidor, compatibilidade, detalhes sobre as especificações de cada componente, identificação e correção de problemas. Instalação e configuração de softwares (aplicativos gerais, gerenciadores de bancos de dados e sistemas operacionais). Compreender os conceitos, mecanismos e funcionamento dos Sistemas operacionais modernos. Criação de partições, formatação de discos, instalação de drivers. Virtualização de servidores para a implementação de serviços de gerenciamento de usuários, serviços de comunicação e de armazenamento de dados através da utilização de uma intranet composta por aplicativos da internet. Configuração de aplicações e serviços Web. Migração de Web sites e aplicações. Configuração de sites seguros (Controle de acesso e Autenticação)

Objetivos

Objetivos Gerais:

Apresentar os recursos tecnológicos empregados em servidores de redes de computadores.

Objetivos Específicos:

Instalar sistema Operacional e aplicativos, instalar drivers, executar softwares de teste. Conhecer as tecnologias de diagnóstico partindo dos conceitos básicos como análise e identificação do problema (diagnóstico) e definição do plano de ação. Conhecer e compreender o funcionamento dos principais serviços de dados através da implementação e utilização de sistemas Operacionais de gerenciamento de redes e dados em plataformas de software livre e proprietário. Configurar, gerenciar e manter os principais serviços e protocolos de servidores Web. Conhecer tecnologias de Web Proxy. Instalar, configurar e implementar os aspectos de segurança dos serviços Web. Praticar em laboratório de arquitetura e redes de computadores: instalação e configuração de sistemas operacionais, utilitários e hardware.

Avaliação

Nota Final = Pesquisa (10%) + Projeto (40%) + Prova (50%)

Na Pesquisa (entrega no dia 15/06), o aluno deve fazer uma pesquisa individual sobre os tipos de sistemas operacionais.

No Projeto (entrega no dia 05/12), individualmente o aluno deve instalar um sistema operacional Unix-like, instalar um servidor web com PHP e um servidor SGDB (PostgreSQL ou MySQL ou Oracle).

Na prova escrita (28/11), o aluno deve fazer uma prova escrita. Aos que perderem, prova sub será no dia 12/12

Revisão

Protocolo

Conjunto de regras sobre o modo como se dará a comunicação entre as partes envolvidas.

Um protocolo define o formato e a ordem das mensagens trocadas entre duas ou mais entidades comunicantes, bem como as ações realizadas na transmissão e/ou recebimento de uma mensagem ou outro evento.

Para facilitar a interconexão de sistemas a ISO (*International Standards Organization*) criou o modelo OSI (*Open System Interconnection*), para que os fabricantes criassem seus dispositivos a partir desse modelo.

A divisão por camadas de protocolos simplifica o projeto do software de rede.

Modelo OSI

Aplicação

Apresentação

Sessão

Transporte

Rede

Link de dados (enlace)

Física

Para reduzir a complexidade do projeto lógico em redes, a maioria delas é organizada como uma pilha de camadas ou níveis, colocada uma sobre as outras.

O número de camadas, o nome, o conteúdo e função de cada camada é o que difere uma rede de outra.

Em cada camada há protocolos específicos, que precisam estar presentes no sistemas finais cliente e servidor.

Modelo OSI

Aplicação
Apresentação
Sessão
Transporte
Rede
Link de Dados (Enlace)
Física

Modelo TCP/IP

Aplicação Transporte Internet Interface com a Rede

O modelo de referência TCP/IP.

A. S. Tanenbaum, Computer Networks, 4th ed., Prentice Hall PTR, 2003.

Questões relacionadas

Todas as camadas precisam de um mecanismo para identificar os transmissores e os receptores.

Como em geral uma rede possui muitos computadores, e alguns deles possui vários processos, é necessário um meio para que um processo de uma máquina especifique com quem ela deseja se comunicar.

Surge a necessidade de se criar uma forma de endereçamento para definir um destino específico.

Questões relacionadas

Outra preocupação se deve à transferência de dados. Em alguns sistemas, os dados são transferidos em apenas um sentido; em outros, os dados trafegam em ambos os sentidos.

O protocolo também deve definir a quantos canais lógicos corresponde a conexão e quais as suas prioridades.

O controle de erro é uma questão importante, pois os circuitos de comunicação física não são perfeitos. Muitos códigos de detecção e correção de erros são conhecidos, mas as partes de conexão devem chegar a um consenso quanto ao que está sendo usado.

Além disso, o receptor deve ter algum meio para informar ao transmissor quais mensagem foram recebidas corretamente e quais não foram.

Serviços Primitivas de Serviço

Um serviço é especificado formalmente por um conjunto de primitivas (operações) disponíveis para que um processo do usuário acesse o serviço.

Essas primitivas informam ao serviço que ele deve executar alguma ação ou relatar uma ação executada por uma entidade par. Se a pilha de protocolos estiver localizada no sistema operacional, essas primitivas são chamadas ao sistema.

O conjunto de primitivas disponíveis depende da natureza do serviço que está sendo fornecido. As primitivas para um serviço orientado a conexões são diferentes das que são oferecidas em um serviço sem conexões.

Serviços

Primitivas de serviço de uma conexão simples

Primitiva	Significado
LISTEN	Espera bloqueada por uma conexão de entrada
CONNECT	Estabelece uma conexão com um par que está à espera
RECEIVE	Espera bloqueada por uma mensagem de entrada
SEND	Envia uma mensagem ao par
DISCONNECT	Encerra uma conexão

Serviços

Primitivas de serviço de uma conexão simples

O servidor executa LISTEN para indicar que está preparado para aceitar conexões de entrada. Um caminho comum para implementar LISTEN é torná-la uma chamada de sistema bloqueada.

O processo cliente executa CONNECT para estabelecer uma conexão com o servidor. A chamada de CONNECT precisa especificar a quem se conectar.

A próxima etapa é a execução de RECEIVE pelo servidor, afim de se preparar para aceitar a primeira conexão.

Depois, o cliente executa o SEND para transmitir a solicitação.

Ao terminar, a execução do DISCONNECT é solicitada, encerrando a conexão.

Aplicação
Apresentação
Sessão
Transporte
Rede
Link de Dados (Enlace)
Física

Pega os quadros enviados pela camada enlace e os transforma em sinais compatíveis com o meio onde os dados deverão ser transmitidos (elétrico, óptico, etc...)

A camada Física:

- Não sabe o significado dos dados que está transmitindo
- Não inclui o meio onde os dados circulam (cabo de rede), apenas precisa saber qual o meio e tipo de conector para fazer a conversão correta.

Aplicação
Apresentação
Sessão
Transporte
Rede
Link de Dados (Enlace)
Física

Problemas relacionados:

Largura de banda: É a quantidade em bits/s que a rede suporta, uma propriedade física do meio de transmissão.

Vazão é a taxa (em bits/s) em que os bits são transmitidos entre um emissor e um receptor.

Latência é o atraso de tempo entre o momento que um evento iniciou e o momento que os efeitos iniciam.

Pesquisar: Ferramenta iperf

O objetivo da camada física é transmitir um fluxo bruto de bits de uma máquina para outra. Vários meios físicos podem ser usados para realizar a transmissão. Cada um tem seu próprio nicho em termos de largura de banda, retardo, custo e facilidade de instalação e manutenção.

Aplicação
Apresentação
Sessão
Transporte
Rede
Link de Dados (Enlace)
Física

Funções:

Encapsulamento (ou enquadramento): identificação dos quadros dentro de sequências de bits enviadas e recebidas da camada física.

Controle e detecção de erros

controle de Fluxo

Endereçamento

Controle de acesso ao meio (MAC)

Gerenciamento de enlace

Esta camada é quebrada em duas sub-camadas (IEEE 802) : a de Controle de Enlace Lógico - LLC (Logical Link Control), que efetua a verificação de erro e a de Controle de Acesso ao Meio - MAC (Medium Access Control), que trata de pegar e entregar dados ao meio.

O protocolo LLC (IEEE 802.2) pode ser usado sobre todos os protocolos IEEE do subnível MAC, como por exemplo, o IEEE 802.3 (Ethernet), IEEE 802.4 (Token Bus) e IEEE 802.5 (Token Ring). Ele oculta as diferenças entre os protocolos do subnível MAC. Usa-se o LLC quando é necessário controle de fluxo ou comunicação confiável.

Camada 2

IEEE 802.2 (LLC)				
IEEE 802.3 Ethernet	IEEE 802.4 Token Bus	IEEE 802.5 Token Ring	IEEE 802.11 WI-FI	
	F	-ísica		

Aplicação
Apresentação
Sessão
Transporte
Rede
Link de Dados (Enlace)
Física

Funções:

Transportar pacotes da estação de origem até a estação de destino, onde quer que a origem e o destino estejam.

Lida com a transmissão fim a fim. Possivelmente atravessando múltiplas LANs e através de múltiplos roteadores.

Contraste com a camada de enlace de dados, onde ocorre a comutação dentro da mesma LAN ou LANs vizinhas.

Controlar o congestionamento

Camada 3 - IP

0	4	8	16	19	24	31
Version	HLEN	Service Type	Total Length			
	Identif	ication	Flags Fragment Offset			
Time to Live (TTL)		Protocol	Header Checksum			
Source IP Address						
Destination IP Address						
IP Options (if any)			Padding			
•						

Data

Aplicação
Apresentação
Sessão
Transporte
Rede
Link de Dados (Enlace)
Física

Funções:

Transferência de dados entre duas máquinas, independente da aplicação em uso.

Socket!

Principais protocolos: TCP e UDP

Dúvidas

Prof. Orlando Saraiva Júnior orlando.saraiva@unesp.br

Fechamento

O que são RFCs?

Navegar no wikipedia e pesquisar:

- Camadas OSI
- Camadas TCP/IP
- Camada de Transporte

Quais as funções das camadas 5, 6 e 7 do modelo OSI?