

Rrjetet Kompjuterike

Hyrje në Rrjetet Kompjuterike

Ligjërues: Dr. Besnik Qehaja

Objektivat

- Historiku i zhvillimit të rrjeteve kompjuterike
- Rrjeta ARPANET dhe Interneti
- Kompjuteri si komponentë e rëndësishme e rrjetës
- Njësitë fizike të Kompjuterit Personal
- Komponentët softuerike të kompjuterit personal
- Komponentët e rrjetave kompjuterike
- Standardet e kabllove për rrjetat kompjuterike
- Sistemet Numerike për rrjetat kompjuterike dhe Algjebra e Bulit

Historiku i zhvillimit të rrjeteve kompjuterike

Zhvillimi i rrjeteve kompjuterike		
1957	Është themeluar agjensioni ARPA	
1960-ta	Kompjuterët Mainfraim	
1962	Fillojnë punimet në rrjetat me komutim të paketave	
1969	ARPANET është krijuar duke ndërlidhur UCLA, UCSB, U-Utah dhe Stanford	
1972	Krijohet programi i parë për dërgimin e email-ve	
1973	Fillojnë punimet në protokollet që më vonë njihen si TCP/IP. ARPANET shpërndahet globalisht me universitet në Britani të madhe dhe Norvegji	
1980-ta	Përdorim i gjerë i kompjuterëve personal PC	
1981	Termi Internet i është caktuar një grupi të ndërlidhur të rrjetave	
1982	Për herë të parë është përdorur termi "Internet"	
1982	ISO ka paraqitur modelin referues OSI dhe protokollet e rrjetave	

Rrjeta ARPANET

MAP 4 September 1971

Interneti

 Interneti është sistem global i rrjetave të ndërlidhura kompjuterike të cilat bëjnë shkëmbimin e të dhënave duke përdorur grupet e standardizuara të protokolleve për shkëmbimin elektronik te të dhënave dhe informatave.

Rrjetet kompjuterike

- Një rrjetë kompjuterike është një koleksion i hostave të lidhur nga pajisjet e rrjetave siç janë
 - kompjuterët,
 - printerët,
 - skanerët,
 - telefonat e mençur
 - serverët
- Resurset e ndara përmes rrjetave përfshijnë lloje të ndryshme të shërbimeve, deponimeve dhe aplikacioneve

Rrjetet kompjuterike

- Pajisjet e rrjeteve lidhen në mes vete duke përdorur disa lloje të lidhjeve/kabllove
 - Kabllot me baker
 - Kabllot me fibra optike
 - Lidhjet pa tela
- Disa nga benefitet e rrjeteve përfshijnë:
 - Më pak pajisje periferike
 - Më shumë mundësi komunikimi
 - Evitimi i fajllave të shumëfishta dhe korruptimit
 - Kosto më të ulët të lisencave
 - Administrim të centralizuar
 - Ruajtje të resurseve

Njësia sistemore e kompjuterit

- Komponentet e brendshme:
 - Pllaka kryesore (amë)
 - Procesori (Central Processing Unit)
 - Memoriet ROM dhe RAM
 - Kartela e rrjetit
 - Disku i ngurtë (hard disku)

Pllaka amë

- Pllaka amë është tabela kryesore me elementet e qarqeve digjitale
- Përmban magjistralet (shtigjet elektrike) të cilat mundësojnë qarkullimin e të dhënave ndërmjet komponentëve të ndryshme
- Akomodon procesorët, memoriet, vendet për zgjerim, ftohësit, çipin për BIOS, slotet, konektorët e brendshëm dhe të jashtëm, porta të ndryshme si dhe telat për ndërlidhjen e furnizimit me rrymë të komponentëve të ndryshme brenda pllakës

Procesori

- Procesori (Central Processing Unit) njihet si truri i kompjuterit.
- Procesori ekzekuton programet, i proceson të dhënat të cilat janë sekuenca të ruajtura të instruksioneve
- Arkitekturat më të njohura janë:
 - Reduced Instruction Set Computer (RISC)
 - Complex Instruction Set Computer (CISC)

Memoriet ROM dhe RAM

- ROM (Read-Only Memory) përmban instruksionet elementare për nisjen dhe ngarkimin e sistemit operativ
- RAM (Random-Access Memory) përmban të dhënat dhe programet të cilat janë në procesim
 - RAM është memorie e përkohshme çka do të thotë se ato fshihen kur të fiket kompjuteri
 - Më shumë RAM nënkupton më shumë kapacite për mbajtjen dhe procesimin e programeve si dhe rritje të performancës së sistemit

Njesia e diskut të ngurtë dhe disketës

- Disqet e ngurta dhe disketat janë njësi që përdoren për të lexuar apo shkruar të dhënat në mjedise magnetike e që mund të jenë të fiksuara apo të lëvizshme
- Disku i ngurtë (HDD) është njësi magnetike deponuese kapaciteti i të cilit matet me gigabajt (GB)
 - Përbëhet prej elektromotorit që është i dizajnuar të rrotulloj pllakat magnetike si dhe të lëviz kokat për lexim/shkrim
- Solid State Drive (SSD) nuk përmban pjesë të lëvizshme kështu që ofron shpejtësi dhe qëndrueshmëri me të madhe me më pak energji

Ligjërues: Luan Gashi

Kartelat e rrjetës

- Ndryshe quhet edhe LAN adapter.
 Vendoset në pllakën amë dhe përmban portën e cila i mundëson kompjuterit kyçje në rrjet.
- Vepron në shtresën e dytë të modelit
 OSI dhe identifikohet me MAC adresë
- Kur bëjmë përzgjedhjen e NIC-it bazohemi në tre faktorë:
 - Lloji i rrjetës Ethernet, Token-Ring,
 FDDI
 - Lloji i mediumit UTP, STP, coaxial, fiber, wireless.
 - Lloji i magjistrales PCI ose ISA

Komponentët fizike të rrjeteve

Pajisjet e rrjeteve

- Kompjuterët
- Suiçat
- Ruterët
- Ruterë pa tela

Mediumet e rrjeteve

- Habi
- Kabllimet me çiftoret e bakrit
- Kabllimet me fibra optike
- Radio valët
- Panelet ndërlidhëse
- Konektor

Pajisjet e rrjeteve

Habi

- Bën shtrirjen e sinjalit duke e pranuar dhe ri-dërguar sinjalin në të gjitha portat
- Kjo teknologji lejon shumë konflikte në segmentet e rrjeteve dhe shpesh nuk janë zgjidhja e duhur
- Njihen edhe si koncentrator sepse shërbejnë si pikë gendrore e lidhjeve për një rrjetë LAN

Ekzistojnë tri lloje të habeve:

- Habi pasiv i cili nuk përdor rrymën elektrike, por vetëm e bën ndarjen e sinjalit për shumë shfrytëzuesit duke mos e trajtuar sinjalin që kalon nëpër të.
- Habi aktiv përdor rrymën elektrike për të rigjeneruar dhe forcuar sinjalin i cili kalon nëpër portet e tij.
- Habi inteligjent gjithashtu përdor rrymën elektrike dhe posedon portin dhe konzolën nëpërmjet të cilit mund të programohet për të menaxhuar trafikun në rrjetë.

15

Pajisjet e rrjeteve

Brigji dhe Suiçat

- Një paket bashkë me MAC adresën e saj quhet kornizë (ang. Frame)
- LAN-et mund të ndahen në segmente që kufizohen nga brigjat
- Një brigj ka inteligjencë që të dalloj nëse një kornizë duhet dërguar në një segment tjetër të rrjetës apo duhet të hidhet
- Disadvantazhet janë vonesat në transmetim pasi ekzaminon MAC adresën e çdo kornize që e pranon

Pajisjet e rrjeteve

Suiçi

- Një suiç (shumë porta të brixhit) ka disa porta dhe i referohet një tabele të MAC adresave për të përcaktuar se në cilën portë duhet dërguar kornizat
- MAC adresat i mëson nga çdo pajisje që kyçet në port të suiçit.
- Bënë analizimin e MAC adresave të kornizave dhe pastaj vendos se në cilin port do ta përcjell kornizën

Pajisjet e rrjeteve (vazhdim)

Ruterët

- Pajisje që lidhin në tërësi rrjetat në mes vete. Përdorin IP adresa për të përcjellë paketat për në rrjetat tjera kompjuterike
- Një ruter mund të jetë një kompjuter më një softuer të posaçëm ose mund të jetë një pajisje e prodhuar nga prodhuesit e pajisjeve të rrjeteve kompjuterike
- Ruterët përmbajnë tabelat e IP adresave bashkë me rrugët optimale për tek rrjetat tjera

Wireless Access Point

- Sigurojnë qasje në rrjetat kompjuterike të pajisjeve pa tela siç janë laptopët, PDA, tabletët, telefonat e mençur (smartphone)
- Përdorin radio valët për radio komunikimet me kompjuterë, PDA dhe pikat tjera të qasjeve pa tela
- Kanë mbulueshmëri të kufizuar

Kabllot me çiftore të bakrit

- Një palë e telave të dredhur formojnë një medium i cili transmeton të dhëna
- Telat e dredhur sigurojnë mbrojtje nga zhurmat elektrike (crosstalk) për shkak të efektit të anulimit
- Palët e telave janë të mbështjella nga izolues plastik me ngjyra të ndryshme
- Një mbështjellës i jashtëm PVC mbron tërësinë e çiftoreve të dredhura
- Janë dy lloje të kabllove të përdredhura
 - 1. Unshielded Twisted-Pair (UTP)
 - (Cat 3, Cat 5, 5e and Cat 6)
 - 2. Shielded Twisted-Pair (STP)

Kabllo UTP "Straight"

Kabllo UTP e kryqëzuar

Kabllo UTP "Rollover"

Kabllo koaksial i bakrit

- Një fije bakri e rrethuar nga një mbështjellës i dendur
- Llojet e koaksit
 - Thicknet (10Base5) kabull koaksial që përdoret në rrjeta dhe operon në 10 Mbps deri në 500m
 - Thinnet (10Base2) kabull koaksial që përdoret në rrjeta dhe operon në 10 Mbps deri në 185m

Kabllo me fibra optike

- Një fije xhami ose plastike që transmeton informata duke përdorur sinjalet e dritës e që mbështillet nga një mburojë e veçantë
- Nuk ndikohet nga interferencat elektromagnetike apo radio frekuencave
- Sinjalet janë të pastra, mund të shkojnë larg dhe kanë gjerësi brezi më të madhe se sa kabllot e bakrit
- Kushtojnë më shtrenjtë se kabllot e bakrit dhe janë më të vështira për t'u punuar

Kabllo me fibra optike

Dy lloje të fibrave Optike:

- Multi-mode
 - Diametër 62,5 mikronë
 - Shumë shtigje të dritës brenda kabllos
 - Burimi i dritës LED dioda distanca 2000 m.

Single-mode

- Diametër 8 10 mikronë
- Një shteg të dritës
- Burimi i dritës Laser
 me rreze infra të kuqe
- Distanca e segmentit 3000 m

Kabllo me fibra optike

Single Mode

Rrjetet Kompjuterike

Matematika e rrjetave kompjuterike

Sistemet Numerike

- Sistemet numerike paraqesin grumbuj të rregulluar simbolesh (shifrash), mbi të cilët definohen katër operacione elementare matematikore:
 - mbledhja (+)
 - zbritja (-)
 - shumëzimi (∙)
 - pjesëtimi (/).
- Numri i shifrave të cilat përdoren për të paraqitur vlerën/vargun e një sistemi numerik, paraqet bazën e atij sistemi numerik.

Tabela e Sistemve numerike

Binar	Oktal	Decimal	Heksadecimal
0000	0	0	0
0001	1	1	1
0010	2	2	2
0011	3	3	3
0100	4	4	4
0101	5	5	5
0110	6	6	6
0111	7	7	7
1000	10	8	8
1001	11	9	9
1010	12	10	A
1011	13	11	В
1100	14	12	С
1101	15	13	D
1110	16	14	E
1111	17	15	F

Sistemi i Numrave Decimal

 Baza e sistemit decimal të numrave është B=10, sepse numrat në këtë sistem numerik shkruhen duke shfrytëzuar 10 shifra të ndryshme:

 Çdo numër X.Y në sistemin numerik me bazë B mund të shkruhet si numër decimal N, përmes kompleksionit me (m+n) elemente, kështu:

$$N = \sum_{i=1}^{m} x_i * B^{m-i}$$

Shembull

- Paraqitja e numrave decimal përmes komplementeve përkatëse:
 - Të paraqitet numri decimal: **255**

$$N = \sum_{i=1}^{3} x_i * 10^{3-i} = 2 * 10^2 + 5 * 10^1 + 5 * 10^0$$

Sistemi Binar i Numrave

- Sistemi numerik tek i cili numrat shkruhen duke përdorur vetëm shifrat **0** dhe **1** quhet sistem binar i numrave.
- Baza e numrave binar është 2, pra: B = 2.
- Është sistem numerik i cili përdoret nga kompjuterët për të gjitha llogaritjet e tyre
- Vargu 11010111011 paraqet system numerik me bazë 2 dhe shkruhet (11010111011)₂

Shndërrimi i numrave decimal në binar

Metoda e shndërrimit

- Ekuivalenti binar i një numri decimal fitohet duke pjesëtuar numrin decimal suksesivisht me 2, sa është baza B e këtij sistemi numerik.
- Gjatë çdo pjesëtimi, mbetja përshkruhet në një kolonë, kurse pjesëtimi vazhdon derisa numri që pjesëtohet nuk bëhet zero.

Shndërrimi i numrave decimal në binar

Shembull:

Të shndërrohet numri decimal në ekuivalentin e tij binar

```
95:2 = 47 mbetja 1

47:2 = 23 mbetja 1

23:2 = 11 mbetja 1

11:2 = 5 mbetja 1

5:2 = 2 mbetja 1

2:2 = 1 mbetja 0

1:2 = 0 mbetja 1
```

$$(95)_{10} = (1011111)_2$$

Shndërrimi i numrave binar në decimal

 Për gjetjen e ekuivalentëve decimalë të numrave binarë mund të përdoret formula

$$N = \sum_{i=1}^{m} x_i * B^{m-i}$$

• Për bazë të sitemit numerik do të merret **B=2**

Shndërrimi i numrave binar në decimal

Shembull

Të bëhet shndërrimi i numrit binar në ekuivalentin e tij decimal

•
$$X = (1010111)_2 = (?)_{10}$$

$$\begin{split} \mathbf{N} &= \sum_{i=1}^{7} \mathbf{x_i} * 2^{7-i} \\ &= \mathbf{1} * 2^6 + \mathbf{0} * 2^5 + \mathbf{1} * 2^4 + \mathbf{0} * 2^3 + \mathbf{1} * 2^2 + \mathbf{1} * 2^1 + \mathbf{1} * 2^0 \\ &= \mathbf{87} \end{split}$$

Sistemi Heksadecimal i numrave

 Në sistemin heksadecimal, numrat shkruhen duke përdorur 16 shifra të ndryshme:

0123456789ABCDEF

 Meqë në sistemin numerik heksadecimal shfrytëzohen 16 shifra të ndryshme, baza e këtij sistemi numerik është B=16.

Shndërrimi numrave decimal në heksadecimal

- Procedura e shndërrimit të numrave decimal në heksadecimal e njëjtë me sistemet e mëparshme.
- Pjesëtojmë me bazën 16
- E shkruajmë mbetjen

Shndërrimi numrave decimal në heksadecimal

Shembull

• Të shndërrohet numri decimal në ekuivalentin e tij heksadecimal $(462)_{10} = (?)_{16}$

```
462:16 = 28 mbetja E
28:16 = 1 mbetja C
1:16 = 0 mbetja 1
```

$$(462)_{10} = (1CE)_{16}$$

Shndërrimi numrave heksadecimal në decimal

 Sikurse te sistemi binar dhe oktal edhe te sistemi heksadecimal i numrave shndërrimi mund të bëhet duke përdorur formulën

$$\mathbf{N} = \sum_{i=1}^{m} \mathbf{x_i} * \mathbf{B}^{m-i}$$

Për bazë të sitemit numerik do të merret B=16

Shndërrimi numrave heksadecimal në decimal

Shembull

 Të shndërrohet numri heksadecimal në ekuivalentin e tij decimal

$$(2BA7)_{16} = (?)_{10}$$

$$N = \sum_{i=1}^{4} x_i * 16^{4-i} = 2 * 16^3 + B * 16^2 + A * 16^1 + 7 * 16^0$$

$$= 11175$$

Algjebra e Bulit

- Algjebra e Bulit është sistem matematikor për manipulim me ndryshore që mund të kenë njërën nga dy vlerat e tyre të mundshme.
 - Në logjikën formale këto vlera janë "e saktë" dhe "jo e saktë", ndërsa ndryshoret quhen gjykime.
 - Në sisteme digjitale, vlerat janë "on" dhe "off", 1
 dhe 0, ose "lartë" dhe "ulët".
- Shprehjet Buleane (logjike) fitohen duke kryer veprime me ndryshoret e Bulit.
 - Veprimet e zakonshme janë: NOT, AND dhe OR apo JO, DHE dhe OSE.

Algjebra e Bulit

- Operatorët e Bulit (logjikë) përshkruhen me anë të tabelave të saktësisë
- Tabelat e saktësisë për DHE (AND) dhe OSE (OR) janë dhënë djathtas
- DHE quhet edhe prodhimi logjik, ndërsa OSE shuma logjike.

Operacioni **DHE**

X	Y	XY
0	0	0
0	1	0
1	0	0
1	1	1

Operacioni OSE

X	Y	X+Y
0	0	0
0	1	1
1	0	1
1	1	1

Algjebra e Bulit

- Tabela e saktësisë për JO (NOT) është dhënë djathtas.
- Operatori JO shënohet me "mbivijëzim".

Operacioni JO

X	X
0	1
1	0

Përmbledhje

- Historiku i zhvillimit të rrjetave kompjuterike, ARPANET dhe Interneti.
- Komponentët e rrjetave kompjuterike aktive dhe passive
- Matematika e rrjetave kompjuterike dhe sistemet numerike
- Algjebra e Built në rrjetat kompjuterike

Referenca

• Dispensë e BTI-së, Selman Haxhijaha & Luan Gashi

Rrjeta Kompjuterike Selman Haxhijaha (ne Moodle gjindet libri.

Chapter 1, Computer Networking: A top-down approach, James F. Kurose, Keith W. Ross (6th edition)

Punar materjali ne bashkpunim me Msc.Luan Gashi

Pyetje?