



# DA326A, Software Engineering 2

Home, Smart Home ©

Introduction
Working with the Smart House



#### *Hardware* – Smart House

There are 3 houses (A,B,C)



There are 10 prototypes:





### **Functionalities**

- Brandvarnare
- Inbrottslarm
- Vattenläckage
- Temperatur inomhus
- Temperatur utomhus
- Spisen ON
- Fönster öppet
- Timer T1
- Timer T2
- Inomhusbelysning
- Utomhusbelysning
- Elavbrott

Automatic fire alarm

Housebreaking alarm

Water leakage

Temperature indoors

Temperature outdoors

Stove ON

Window open

Timer T1

Timer T2

Lighting indoors

Lighting outdoors

Power cut





## Functionalities – cont.

- Indikering inbrottslarm, sirén
  - Indicating housebreaking alarm, siren
- Indikering inbrottslarm, "saftblandare"
  - Indicating housebreaking alarm, "juice mixer"
- Elförbrukning
  - Electricity consumption
- Skymningautomatik
  - Twilight automatic system
- Fläkt på vinden (endast i hus A och B)
  - Fan (only in houses A and B)
- Värmeelement
  - Radiator





## Input signals

- Brandvarnare Automatic fire alarm;
  - This signal is simulated with a switch on the front panel.
- Inbrottslarm Housebreaking alarm
  - This input is realized by using a magnetic switch mounted at the house door.
- Vattenläckage Water leakage
  - This signal is simulated with a switch on the front panel.
- *Temperatur inomhus* Temperature indoors
  - This signal is realized using an analog temperature sensor mounted inside the house (on the first and the second floor)
- Temperatur utomhus Temperature outdoors
  - This signal is realized using a digital temperature sensor mounted outside the house







## Input signals – cont.

- Spisen ON Stove ON
  - This signal is simulated with a switch on the front panel
- Fönster öppet Window open
  - This signal is simulated with a switch on the front panel
- Elförbrukning Electricity consumption
  - This input is realized by measuring the supply voltage deliver to the house (an analog signal)
- Skymningautomatik Twilight automatic system
  - This input is realized by Light-to-Voltage sensor (outdoors)
- Elavbrott Power cut
  - This input is realized by controlling the presence of supply voltage









## Output signals

- Timer T1
  - This output signal is simulated with an LED lamp on the front panel
- Timer T2
  - This output signal is simulated with an LED lamp on the front panel
- Inomhusbelysning Lighting indoors
  - This function is realized with a lamp mounted inside the house
- Indikering inbrottslarm, sirén Indicating housebreaking alarm, siren
  - This function is realized by using a loudspeaker mounted on the house gable
- Indikering inbrottslarm, "saftblandare" Indicating housebreaking alarm, "juice mixer"
  - This function is realized with an LED lamp mounted on the roof





## Output signals – cont.

- Fläkt på vinden Fan
  - This function is realized with a fan mounted on the house's loft
- Värmeelement Radiator
  - Four power resistors are connected in series to realize the heating of the house. The
    resistors are mounted in pairs, two at each long side wall
- More information in PDF file on itsLearning



http://arduino.cc/

#### Hardware and Software - Arduino Diecimila

- Arduino is an open-source electronics prototyping platform based on flexible, easyto-use hardware and software.
- It's intended for artists, designers, hobbyists, and anyone interested in creating interactive objects or environments.
- Arduino can sense the environment by receiving input from a variety of sensors and can affect its surroundings by controlling lights, motors, and other actuators.
- The microcontroller on the board is programmed using the Arduino programming language (based on Wiring) and the Arduino development environment (based on Processing).
- Arduino projects can be stand-alone or they can communicate with software on running on a computer (e.g. Flash, Processing, MaxMSP).

http://www.youtube.com/watch?v=pMV2isNm8JU&feature=related



http://arduino.cc/

#### Arduino Diecimila - Overview

- Is a microcontroller board based on the ATmega168
- It has
  - 14 digital input/output pins (of which 6 can be used as PWM outputs),
  - 6 analog inputs,
  - a 16 MHz crystal oscillator,
  - a USB connection,
  - a power jack,
  - an ICSP header,
  - and a reset button.





#### Arduino Diecimila - Overview



- It contains everything needed to support the microcontroller; simply connect it to a computer with a USB cable or power it with a AC-to-DC adapter or battery to get started.
- "Diecimila" means 10,000 in Italian and was named thusly to mark the fact that over 10,000 Arduino boards have been made.



## Arduino Diecimila - Summary

- Microcontroller: ATmega168
- Operating Voltage: 5V
- Input Voltage (recommended): 7-12 V
- Input Voltage (limits): 6-20 V
- Digital I/O Pins: 14 (of which 6 provide PWM output)
- Analog Input Pins: 6
- DC Current per I/O Pin: 40 mA
- DC Current for 3.3V Pin: 50 mA
- Flash Memory: 16 KB (of which 2 KB used by bootloader)
- SRAM: 1 KB
- EEPROM: 512 bytes
- Clock Speed: 16 MHz





### Arduino Diecimila – cont.

- Each of the 14 digital pins can be used as an **input** or **output**, using *pinMode*(), *digitalWrite*(), and *digitalRead*() functions.
- http://arduino.cc/en/main/boards
- Programming
  - Arduino software <a href="http://arduino.cc/en/Main/Software">http://arduino.cc/en/Main/Software</a>
  - For details, see the <a href="http://arduino.cc/en/Reference/HomePage">http://arduino.cc/en/Reference/HomePage</a> and tutorials/ examples <a href="http://arduino.cc/en/Tutorial/HomePage">http://arduino.cc/en/Tutorial/HomePage</a>
  - One of the intreresting projects with Arduino: http://www.youtube.com/watch?v=2HIL3URZyAs





|    | Smart Hus                     | Arduino                   |     |                    | Arduino | Atmega chip | On   | Off     |      |
|----|-------------------------------|---------------------------|-----|--------------------|---------|-------------|------|---------|------|
| 1  | GND                           |                           |     | RX                 | 0       | PD0         |      |         |      |
| 2  | GND                           |                           |     | TX                 | 1       | PD1         |      |         |      |
| 3  | Brandvarnare                  | Input digital             | PD2 | Brandvarnare       | 2       | PD2         | 1    | 0       |      |
| 4  | Inbrottslarm                  | Input digital             | PD3 | Inbrottslarm       | 3       | PD3         | 0    | 1       |      |
| 5  | Vattenläckage                 | Input digital             | PD4 | Vattenläckage      | 4       | PD4         | 1    | 0       |      |
| 6  | Temperatur inomhus rum Vout   | Input analog LM350CZ      | PC1 | Spis ON            | 5       | PD5         | 1    | 0       |      |
| 7  | Temperatur inomhus vind Vout  | Input analog LM350CZ      | PC2 | Fönster Öppet      | 6       | PD6         | 1    | 0       |      |
| 8  | LDR                           | Input analog              | PC3 | Elavbrott          | 7       | PD7         | 1    | 0       |      |
| 9  | Temperatur Utomhus Vout       | Input digital             | PB1 |                    |         |             |      |         |      |
| 10 | Utomhusbelysning              |                           | Mux |                    | 8       | PB0         | outp | ut dig  | ital |
| 11 | Spis ON                       | Input digital             | PD5 | Temp UTomhus Vout  | 9       | PB1         | inpu | t digit | al   |
| 12 | Fönster Öppet                 | Input digital             | PD6 | Fläkt              | 10      | PB2         | PWN  | Λ       |      |
| 13 | Elförbrukning                 | Input analog              | PC0 |                    | 11      | PB3         | outp | ut dig  | ital |
| 14 |                               |                           |     |                    | 12      | PB4         |      |         |      |
| 15 |                               |                           |     |                    | 13      | PB5         | outp | ut dig  | ital |
| 16 | 5V                            | Arduino +5V               |     |                    |         |             |      |         |      |
| 17 | Elavbrott                     | Input digital             | PD7 | Elförbrukning      | A0      | PC0         | inpu | t anal  | og   |
| 18 | Timer 1                       |                           | Mux | Temp rum Vout      | A1      | PC1         | inpu | t anal  | og   |
| 19 | Timer 2                       |                           | Mux | Temp rum Vout vind | A2      | PC2         | inpu | t anal  | og   |
| 20 | Inomhusbelysning              |                           | Mux | LDR                | А3      | PC3         | inpu | t anal  | og   |
| 21 | Indikering inbrottslarm siren | output digital-analog     | PB4 |                    | Α4      | PC4         |      |         |      |
| 22 | Indikering inbrottslarm lampa |                           | Mux |                    | A5      | PC5         |      |         |      |
| 23 | Värmeelement vind             |                           | Mux |                    |         |             |      |         |      |
| 24 | Fläkt                         | output digital-analog PWM | PB2 |                    |         |             |      |         |      |
| 25 | Värmeelement                  |                           | Mux |                    |         |             |      |         |      |
| 26 | GND                           |                           |     |                    |         |             |      |         |      |
|    |                               |                           |     |                    |         |             |      |         |      |



| Mux |    |    |    |                                    |
|-----|----|----|----|------------------------------------|
| 12  | 13 | 11 | 8  | Arduino                            |
| B4  | B5 | В3 | В0 | Atmega chip                        |
| 0   | 0  | 0  | 0  | Off> Sound                         |
| 1   | 0  | 0  | 0  | On> Sound                          |
| 0   | 0  | 0  | 1  | On> Timer 2                        |
| 1   | 0  | 0  | 1  | Off> Timer 2                       |
| 0   | 0  | 1  | 0  | On> Indoor Lighting                |
| 1   | 0  | 1  | 0  | Off> Indoor Lighting               |
| 0   | 0  | 1  | 1  | On> Indication burglar alarm lamp  |
| 1   | 0  | 1  | 1  | Off> Indication burglar alarm lamp |
| 0   | 1  | 0  | 0  | On> Heating element wind           |
| 1   | 1  | 0  | 0  | Off> Heating element wind          |
| 0   | 1  | 0  | 1  | On> Heating element                |
| 1   | 1  | 0  | 1  | Off> Heating element               |
| 0   | 1  | 1  | 0  | On> Timer 1                        |
| 1   | 1  | 1  | 0  | Off> Timer 1                       |
| 0   | 1  | 1  | 1  | On> Outdoor Lighting               |
| 1   | 1  | 1  | 1  | Off> Outdoor Lighting              |







### **Smart house Laboration**

#### The aim of the Lab:

- 1) Establish a connection between your computer and a smart house/prototype
- 2) Learn how to programme in Arduino environment

#### **Pre-lab:**

- Download and install the Arduino Software: <a href="http://arduino.cc/en/Main/Software">http://arduino.cc/en/Main/Software</a> (on Windows platform)
- 2) Read description of the Language References: <a href="http://arduino.cc/en/Reference/HomePage">http://arduino.cc/en/Reference/HomePage</a>
- 3) Read the examples: <a href="http://arduino.cc/en/Tutorial/HomePage">http://arduino.cc/en/Tutorial/HomePage</a> (you can also find them in the Software)



Lamps: LED-W, LED-G, LED-Y, LED-R

power

Sound = \$P

Ph = Photo-interrupter



TX, RX XBee Wireless

L = LDR sensor

Reset button

Switches: SW 1-3 T = Temperature sensor

| GND | 13  | 12  | 11      | 10          | 9               | 8                   | 7                       | 6                           | 5                               | 4                                   | 3                                       | 2                                           | 1                                               | 0                                                   | Arduino PORT                                            |
|-----|-----|-----|---------|-------------|-----------------|---------------------|-------------------------|-----------------------------|---------------------------------|-------------------------------------|-----------------------------------------|---------------------------------------------|-------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------|
|     |     |     |         |             |                 |                     |                         |                             |                                 |                                     |                                         |                                             |                                                 |                                                     |                                                         |
|     | PB5 | PB4 | PB3     | PB2         | PB1             | PB0                 | PD7                     | PD6                         | PD5                             | PD4                                 | PD3                                     | PD2                                         | PD1                                             | PD0                                                 | Atmga168                                                |
|     |     |     |         |             |                 |                     |                         |                             |                                 |                                     |                                         |                                             |                                                 |                                                     |                                                         |
|     |     | SP  | LED-W   | LED-G       | LED-Y           | LED-R               |                         |                             | Ph                              | SW1                                 | SW2                                     | SW3                                         | TX                                              | RX                                                  | Prototyp                                                |
|     | GND |     | PB5 PB4 | PB5 PB4 PB3 | PB5 PB4 PB3 PB2 | PB5 PB4 PB3 PB2 PB1 | PB5 PB4 PB3 PB2 PB1 PB0 | PB5 PB4 PB3 PB2 PB1 PB0 PD7 | PB5 PB4 PB3 PB2 PB1 PB0 PD7 PD6 | PB5 PB4 PB3 PB2 PB1 PB0 PD7 PD6 PD5 | PB5 PB4 PB3 PB2 PB1 PB0 PD7 PD6 PD5 PD4 | PB5 PB4 PB3 PB2 PB1 PB0 PD7 PD6 PD5 PD4 PD3 | PB5 PB4 PB3 PB2 PB1 PB0 PD7 PD6 PD5 PD4 PD3 PD2 | PB5 PB4 PB3 PB2 PB1 PB0 PD7 PD6 PD5 PD4 PD3 PD2 PD1 | PB5 PB4 PB3 PB2 PB1 PB0 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 |

| 0                                        | 1            | Arduino |     |     |     |          |  |  |  |  |  |
|------------------------------------------|--------------|---------|-----|-----|-----|----------|--|--|--|--|--|
| PC0                                      | PC1          | PC2     | PC3 | PC4 | PC5 | Atmga168 |  |  |  |  |  |
| Т                                        | T L Prototyp |         |     |     |     |          |  |  |  |  |  |
| T = Temperature Sensor , L = LDR sensors |              |         |     |     |     |          |  |  |  |  |  |







### **Smart house Laboration**

#### Lab on prototype:

Connect the Arduino to the PC through USB port (after installation the Software)

- 1) Send a signal to each of LED lamp with different functionalities, i.e. the LED-W will blink, LED-G will shine, LED-Y will shine during 5 s, LED-R will blink 10 times
- 2) Activate LED-W and LED-R when switch1 is ON (both lamps will shine together)
- 3) Activate LED-G and LED-Y when switch2 is ON (both will blink)
- 4) Activate Sound when switch3 is ON
- 5) T Temperature sensor, show the temperature on the Serial Monitor
- 6) L LDR sensor = LED-W should shine when it is dark. Try to show the value on the Serial Monitor
- 7) Photo-interrupter: put a paper in between and activate a sensor, e.g. a sound or a lamp





### **Smart house Laboration**

#### Lab on prototype:

#### Optional:

You are at home and the alarm is not active. You should activate the alarm.

Use the Photointerrupter as a door.

"Open" a door = put a piece of paper in between.

When you open a door, you activate LED-G (blink) until the door is closed.

When the door is closed, LED-Y is shining.

When you again open a door, activate the alarm and LED-R (blink).



## **Smart House Project**

- Project team should realize a smart house where various functionality should be implemented.
- In essence, it falls within the monitoring and control functions that may be included in a modern villa, and communication with the outside world.





### Getting Started with Arduino on Windows

1. http://arduino.cc/en/Guide/Windows

- Select the Board and Serial Port (in the **Tools > Board** menu)
  - Arduino Decimila
  - Serial Port (COM\_X)