Table 1. COMs and COM precursors transitions covered in our L1517B observations and their derived line parameters.

		Dust peak					Methanol peak			
Species	Line	Frequency	Area ^a	Linewidth	LSR velocity b	S/N ^c	Area ^a	Linewidth	LSR velocity b	S/N ^c
•		(MHz)	$(mK km s^{-1})$	$(\mathrm{km}\;\mathrm{s}^{-1})$	$({\rm km}\ {\rm s}^{-1})$		$(mK km s^{-1})$	$(\mathrm{km}\ \mathrm{s}^{-1})$	$({\rm km}\ {\rm s}^{-1})$	
CH ₃ OH	$2_{0,2} \to 1_{0,1} \text{ A}$	96741.371	206.1 ± 1.9	0.278 ± 0.004	5.785 ± 0.002	109	241.1 ± 2.0	0.277 ± 0.005	5.788 ± 0.002	121
	$2_{1,2} \to 1_{1,1} A$	95914.310	< 6			•••	< 6			
	$2_{1,1} \to 1_{1,0} A$	97582.798	< 2.4			•••	< 2.4			•••
	$2_{1,2} \to 1_{1,1} E$	96739.358	150.4 ± 1.9	0.262 ± 0.008	5.786 ± 0.003	80	181.6 ± 2.0	0.262 ± 0.003	5.785 ± 0.003	92
	$2_{0,2} \to 1_{0,1} E$	96744.545	9.7 ± 1.9	0.244 ± 0.012	5.84 ± 0.04	5.1	11.2 ± 2.0	0.23 ± 0.08	5.78 ± 0.03	5.6
	$2_{1,1} \to 1_{1,0} E$	96755.501	< 6			•••	< 6			•••
CH ₃ O	$1_{0,0,6,1} \to 0_{0,1,6,0}$	82455.980	< 5		•••		< 4	•••	***	
	$1_{0,0,2,2} \to 0_{0,1,2,1}$	82458.252	5.4 ± 1.2	0.41 ± 0.08	5.81 ± 0.03	4.5	4.2 ± 0.9	0.39 ± 0.08	5.82 ± 0.03	4.7
	$1_{0,1,2,2} \to 0_{0,0,2,1}$	82471.825	5.4 ± 1.2	0.41 ± 0.08	5.81 ± 0.03	4.5	4.2 ± 0.9	0.39 ± 0.08	5.82 ± 0.03	4.7
	$1_{0,1,6,1} \to 0_{0,0,6,0}$	82524.180	< 5		•••		< 4		•••	
CCCO	$10 \rightarrow 9$	96214.813	< 7	•••	•••		< 7	•••	•••	
t-HCOOH	$1_{1,1} \to 0_{0,0}$	87926.863	< 1.9	•••	•••		< 2.2	•••	•••	
H ₂ CCO	$4_{1.3} o 3_{1.2}$	81586.299	11.1 ± 1.3	0.53 ± 0.10	5.89 ± 0.04	8.5	12.6 ± 1.2	0.70 ± 0.25	5.95 ± 0.11	10
	$5_{1,5} o 4_{1,4}$	100094.510	9.9 ± 0.9	0.53 ± 0.10	5.89 ± 0.04	11	12.6 ± 1.2	0.70 ± 0.25	5.95 ± 0.11	10
	$4_{0,4} \rightarrow 3_{0,3}$	80832.189	21 ± 4	0.53 ± 0.10	5.89 ± 0.04	5.2	17 ± 4	0.70 ± 0.25	5.95 ± 0.11	4.2
CH ₃ OCHO	$7_{2,6,0} \rightarrow 6_{2,5,0}$	84454.754	< 2.0	•••	•••		< 2.5	•••	•••	
CH ₃ OCH ₃	$3_{1,3,1} \rightarrow 2_{0,2,1}$	82650.180	< 3	•••	•••	•••	< 2.4	•••	•••	•••
	$4_{1,4,0} \rightarrow 3_{0,3,0}$	99326.000	< 2.0				< 2.2			
CH ₃ CHO	$5_{1,4,0} \rightarrow 4_{1,3,0}$	98900.944	< 3		•••		4.0 ± 0.8	0.21 ± 0.05	5.765 ± 0.018	5.0
	$5_{0,5,0} \rightarrow 4_{0,4,0}$	95963.459	< 7				< 7			
	$4_{1,3,0} \rightarrow 3_{1,2,0}$	79150.166	< 3		•••		3.9 ± 0.7	0.21 ± 0.05	5.765 ± 0.018	5.6
	$4_{1,3,2} \rightarrow 3_{1,2,2}$	79099.313	< 3				3.9 ± 0.7	0.21 ± 0.05	5.765 ± 0.018	5.6
c-C ₃ H ₂ O	$6_{1,6} o 5_{1,5}$	79483.519	< 3	•••		•••	< 3	•••	•••	
НСССНО	$9_{0,9} o 8_{0,8}$	83775.816	< 2.0	•••		•••	< 2.5	•••	•••	
CH ₃ CN	$6_0 \rightarrow 5_0$	110383.500	6.4 ± 1.9	0.13 ± 0.13	5.902 ± 0.023	3.4	< 6		•••	
	$6_1 \rightarrow 5_1$	110381.372	11.8 ± 1.9	0.24 ± 0.08	5.81 ± 0.03	6.2	< 6		***	
	$6_2 ightarrow 5_2$	110374.989	< 10	•••			< 6	•••	•••	
CH ₃ NC	$5_0 o 4_0$	100526.541	4.2 ± 0.9	0.6 ± 0.3	< 6	4.7	< 2.2			
CH ₂ CHCN	$9_{0,9,0,8} \rightarrow 8_{0,8,0,7}$	84945.988	< 2.0				< 2.5			
	$9_{1,9,0,9} \rightarrow 8_{1,8,0,8}$	83207.496	< 3		•••		< 2.4		•••	
	$10_{0,10,0,9} \rightarrow 9_{0,9,0,8}$	94276.625	< 3		•••		< 2.4		•••	
HCCCN	$9 \rightarrow 8$	81881.461	693.6 ± 1.0	0.395 ± 0.001	5.824 ± 0.001	694	346.7 ± 0.9	0.383 ± 0.002	5.816 ± 0.001	385
	$11 \rightarrow 10$	100076.392	286.5 ± 0.7	0.318 ± 0.001	5.842 ± 0.001	409	96.3 ± 0.8	0.290 ± 0.003	5.837 ± 0.001	120
HCCNC	$8_8 ightarrow 7_8$	79484.131	16.1 ± 1.1	0.31 ± 0.15	5.83 ± 0.07	15	6.9 ± 0.9	0.29 ± 0.16	5.86 ± 0.06	7.7
	$10_{10} \rightarrow 9_{10}$	99354.250	6.8 ± 0.7	0.31 ± 0.15	5.83 ± 0.07	9.7	< 3			

Notes. Line profiles were fitted using MADCUBA, except for methanol (CH₃OH), cyanoacetilene (HCCCN) and acetonitrile (CH₃CN), where we used CLASS (see Section X for details). (a) Uncertainties in the line area are calculated as $\Delta T (\Delta v \, \delta v)^{1/2}$, with ΔT the RMS noise level, Δv the line width, and δv the velocity resolution of the spectrum. Similarly, upper limits are calculated as $\Delta T (\Delta v \, \delta v)^{1/2}$. (b) LSR stands for *local sidereal rest*. (c) This refers to the signal to noise ratio in integrated intensity area. If a certain value has no uncertainty, this means that it had to be fixed so that MADCUBA could fit the LTE model.

Table 2. Excitation/kinetic temperatures (T), column densities ($N_{\rm obs}$), and abundances ($\chi_{\rm obs}$) of COMs and COM precursors toward the dust and methanol peaks in L1517B.

		Dust peak		Methanol peak				
Molecule	T(K)	$N_{ m obs}({ m cm}^{-2})$	$\chi_{ m obs}$	T(K)	$N_{ m obs}({ m cm}^{-2})$	$\chi_{ m obs}$		
CH ₃ OH A	10.0	$4.71^{+0.03}_{-0.04} \cdot 10^{12}$	$1.34^{+0.23}_{-0.17} \cdot 10^{-10}$	10.0	$(5.48 \pm 0.04) \cdot 10^{12}$	$5.7^{+0.6}_{-0.5} \cdot 10^{-10}$		
CH ₃ OH E	10.0	$4.6_{-0.7}^{+3.3} \cdot 10^{12} 9.3_{-0.7}^{+3.3} \cdot 10^{12}$	$1.4^{+0.9}_{-0.3} \cdot 10^{-10}$	10.0	$(5.6 \pm 0.3) \cdot 10^{12}$	$5.9^{+0.7}_{-0.6} \cdot 10^{-10}$		
CH_3OH	10.0	$9.3^{+3.3}_{-0.7} \cdot 10^{12}$	$2.84^{+0.91}_{-0.52} \cdot 10^{-10}$	10.0	$(1.11 \pm 0.03) \cdot 10^{13}$	$1.160^{+0.135}_{-0.113} \cdot 10^{-9}$		
CH_3O	10 ± 4	$(2.8 \pm 0.9) \cdot 10^{11}$	$1.4_{-0.3}^{+0.9} \cdot 10^{-10}$ $2.84_{-0.52}^{+0.91} \cdot 10^{-10}$ $7.95_{-2.48}^{+2.89} \cdot 10^{-12}$	7 ± 4	$(1.8 \pm 0.6) \cdot 10^{11}$	$\begin{array}{c} 7.088 \\ 5.7^{+0.6}_{-0.5} \cdot 10^{-10} \\ 5.9^{+0.7}_{-0.6} \cdot 10^{-10} \\ 1.160^{+0.135}_{-0.113} \cdot 10^{-9} \\ 1.92^{+0.68}_{-0.63} \cdot 10^{-11} \\ \end{array}$		
CH ₃ OCHO	7.7	$< 9 \cdot 10^{11}$	$< 4.3 \cdot 10^{-11}$	9.7	$< 1.0 \cdot 10^{12}$	$< 1.45 \cdot 10^{-10}$		
CH ₃ OCH ₃	7.7	$< 1.0 \cdot 10^{12}$	$< 4.7 \cdot 10^{-11}$	9.7	$< 5 \cdot 10^{11}$	$< 6.5 \cdot 10^{-11}$		
CH ₃ CHO	7.7	$< 2.5 \cdot 10^{11}$	$< 1.13 \cdot 10^{-11}$	9.7	$(2.1 \pm 0.4) \cdot 10^{11}$	$2.16^{+0.48}_{-0.43} \cdot 10^{-11}$		
t-HCOOH	7.7	$< 3 \cdot 10^{12}$	$< 1.49 \cdot 10^{-10}$	9.7	$< 1.9 \cdot 10^{12}$	$< 2.8 \cdot 10^{-10}$		
$c-C_3H_2O$	7.7	$< 1.5 \cdot 10^{10}$	$< 7.6 \cdot 10^{-13}$	9.7	$< 5 \cdot 10^{10}$	$< 7.3 \cdot 10^{-12}$		
H ₂ CCO	7.7 ± 1.0	$(8.4 \pm 1.3) \cdot 10^{11}$	$2.41^{+0.54}_{-0.46} \cdot 10^{-11}$	10 ± 3	$(7.2 \pm 1.9) \cdot 10^{11}$	$7.57^{+2.27}_{-2.07} \cdot 10^{-11}$		
CCCO	7.7	$< 2.4 \cdot 10^{11}$	$< 1.11 \cdot 10^{-11}$	9.7	$< 1.2 \cdot 10^{12}$	$< 1.71 \cdot 10^{-10}$		
HCCCHO	7.7	$< 1.6 \cdot 10^{11}$	$< 7.6 \cdot 10^{-12}$	9.7	$< 1.9 \cdot 10^{11}$	$< 2.8 \cdot 10^{-11}$		
HCCNC	6.7	$(2.4 \pm 1.0) \cdot 10^{11}$	$6.9^{+3.3}_{-3.0} \cdot 10^{-12}$	5.3	$(1.9 \pm 0.8) \cdot 10^{11}$	$1.92^{+0.89}_{-0.82} \cdot 10^{-11}$		
CH ₂ CHCN	6.7	$< 4 \cdot 10^{10}$	$< 1.84 \cdot 10^{-12}$	5.3	$< 3 \cdot 10^{10}$	$< 4.7 \cdot 10^{-12}$		
CH_3NC	6.7	$(1.9 \pm 0.9) \cdot 10^{10}$	$5.27^{+2.83}_{-2.47} \cdot 10^{-13}$	5.3	$< 2.3 \cdot 10^{10}$	$< 3.4 \cdot 10^{-12}$		
CH ₃ CN	10.0	$(2.1 \pm 0.3) \cdot 10^{11}$	$6.06^{+1.32}_{-1.09} \cdot 10^{-12}$	10.0	$<1.4\cdot10^{11}$	$< 2.10 \cdot 10^{-11}$		
HCCCN	10.0	$(5.16 \pm 0.04) \cdot 10^{12}$	$1.471^{+0.250}_{-0.180} \cdot 10^{-10}$	10.0	$(3.72 \pm 0.09) \cdot 10^{12}$	$3.88^{+0.44}_{-0.37} \cdot 10^{-10}$		

Notes. Temperatures (T) refer to excitation temperatures ($T_{\rm ex}$) for all the species except for methanol (CH₃OH), cyanoacetilene (HCCCN) and acetonitrile (CH₃CN), where they refer to kinetic temperatures ($T_{\rm kin}$). We used MADCUBA to derive the molecular parameters from the observations except for methanol, cyanoacetilene and acetonitrile, where we used RADEX. Molecular abundances were calculated using an H₂ column density of (3.5 ± 0.5) × 10^{22} cm⁻² for the dust continuum peak and of (9.6 ± 1.0) × 10^{21} cm⁻² for the position of the methanol peak. For the non-detections and also for some detections, we had to fix the excitation temperature ($T_{\rm ex}$) so that MADCUBA could fit the column density ($N_{\rm obs}$).