

TALLER DE BIOCOMPUTACIÓN

ARN y grafos

M.C. Hugo Armando Guillén Ramírez Grupo de Biocomputación, Ciencias de la Computación, CICESE.

M hugoagr@gmail.com / hguillen@cicese.edu.mx

* https://hugoguillen.github.io

🕳 <u>/r/procrastinando</u>

INTRODUCCIÓN

Imagen: ARN no codificante

CLASIFICACIÓN

Etiquetar ejemplos desconocidos a partir de ejemplos conocidos (ya etiquetados).

Miniature Pinscher

Miniature Schnauzer

Norfolk Terrier

Poodle (Toy / Miniature)

?

Schipperkee

IN CS, IT CAN BE HARD TO EXPLAIN THE DIFFERENCE BETWEEN THE EASY AND THE VIRTUALLY IMPOSSIBLE.

Características

PLEGAMIENTO, ESTRUCTURA SECUNDARIA Y ALINEAMIENTOS

- A) 3 secuencias que se pliegan en un hairpin alineadas.
- B) Alineamientos a nivel de secuencia vs estructural.

RFAM's consensus secondary structure of glmS and TPP.

Estructura secundaria para secuencias de tamaño mínimo, medio, máximo, y estructura consenso RFAM de TPP

PLEGAMIENTO DE ARN

PLEGAMIENTO

Bonding graph para UAGCGUGAUCAC.

Matching perfecto que representa una posible estructura secundaria.

¿Cuántos matching perfectos hay para un bonding graph dado?

Notación dotbracket

a Recursive definition of the best score for a sub-sequence *i,j* looks at four possibilities:

$$S(i,j) = \max \begin{cases} S(i+1,j-1) + 1 & [\text{if } i,j \text{ base pair}] \\ S(i+1,j) \\ S(i,j-1) \\ \max_{i < k < j} S(i,k) + S(k+1,j) \end{cases}$$

Algoritmo de Nussinov y Jakobson (1980) **b** Dynamic programming algorithm for all sub-sequences *i,j*, from smallest to largest:

EJEMPLO: MIRNA

Xenoturbella bocki miR-92a stem-loop

- La búsqueda de herramientas no invasivas de diagnóstico y manejo de cancer es extremadamente importante.
- Los micro ARNs (miRNAs) muestran potencial como biomarcadores y pueden encontrarse circulando en suero. Algunos son específicos en pacientes de tumores.
- miR-92 está presente en individuos sanos en el suero pero en niveles variables y presenta cambios en respuesta a ciertos cánceres.

>xbo-mir-92a MI0017684 CGGUGGUUGCCAUGUUCUGUUAGAUAGUGUAAUAUUGCACUCGUCCCGGCCUGACAAACACACG

```
- g a u - c ---
5' cg gug uuugucgggcc gg cg gugc auguu cuguu
|| || || || || || || || || || || || a
3' gc cac aaacaguccgg cc gc cacg uauaa gauag
a a c u u u ugu
```


ACG

Visualización de xbo-mir-92a MI0017684 en VARNA usando el algoritmo NAView.

Marcado de la secuencia madura, region 50-72.

Representación de la estructura del miRNA en miRBase.

¡GRACIAS POR SU ATENCIÓN!