Calcul trigonométrique

I. Rappel

Activité

- 1) Définir un cercle trigonométrique.
- 2) Soit (C) un cercle trigonométrique et $(O, \overrightarrow{OI}, \overrightarrow{OJ})$ un repère orthonormé direct lié au (C) Soit M un point de (C) d'abscisse curviligne $\frac{17\pi}{3}$
 - a) Déterminer la valeur de α et k sachant que $-\pi < \alpha \le \pi$ et $k \in \mathbb{Z}$ pour que $\frac{17\pi}{3} = \alpha + 2k\pi$
 - b) Déduire l'abscisse curviligne principale du point M.
- 3) Déterminer les abscisses curvilignes principales puis les placer sur (C):

$$A\left(\frac{7\pi}{2}\right)$$
 ; $B\left(\frac{67\pi}{4}\right)$; $C\left(\frac{267\pi}{6}\right)$; D

4) Simplifier l'expression suivante : $A(x) = \cos\left(\frac{\pi}{2} - x\right) + \sin\left(\pi + x\right) - 2\sin\left(\frac{\pi}{2} + x\right) - 3\cos\left(\pi - x\right)$

II. Formules de transformation

■Activité ①

Soit (C) un cercle trigonométrique de centre O et (O, \vec{i}, \vec{j}) un repère orthonormé direct lié au (C)

- 1) Les assertions suivantes sont-elles vraies ? en justifiant la réponse
- $(\forall x \in \mathbb{R})(\forall y \in \mathbb{R})$; $\cos(x+y) = \cos(x) + \cos(y)$
- $(\forall x \in \mathbb{R})(\forall y \in \mathbb{R})$; $\sin(x+y) = \sin(x) + \sin(y)$
- 2) Soient A et B deux points de (C) d'abscisse curvilignes a et b respectivement
- a) Remarquons que $(\overrightarrow{OA}, \overrightarrow{OB}) = b a[2\pi]$. Montrer que $\overrightarrow{OA}.\overrightarrow{OB} = \cos(a-b)$
- b) Ecrire \overrightarrow{OA} et \overrightarrow{OB} dans la base (\vec{i}, \vec{j})
- c) En utilisant l'expression analytique du produit scalaire calculer $\overrightarrow{OA.OB}$.
- d) Déduire que $\cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b)$.
- e) Remarquons que a+b=a-(-b) déduire que $\cos(a+b)=\cos(a)\cos(b)-\sin(a)\sin(b)$
- f) Remarquons que $\cos\left(\frac{\pi}{2} x\right) = \sin(x)$.

Déduire que $\sin(a+b) = \sin(a)\cos(b) + \sin(b)\cos(a)$ et $\sin(a-b) = \sin(a)\cos(b) - \sin(b)\cos(a)$.

<u>Propriété</u>

Soient a et b des nombres réels on a

$$\otimes \cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b) \qquad ; \qquad \otimes \sin(a+b) = \sin(a)\cos(b) + \sin(b)\cos(a)$$

$$\otimes \cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b) \qquad ; \qquad \otimes \sin(a-b) = \sin(a)\cos(b) - \sin(b)\cos(a)$$

Application *O*

- 1) Calculer $\cos\left(\frac{7\pi}{12}\right)$ et $\sin\left(\frac{7\pi}{12}\right)$ sachant que $\frac{7\pi}{12} = \frac{\pi}{4} + \frac{\pi}{3}$.
- 2) Calculer $\cos\left(\frac{\pi}{12}\right)$ et $\sin\left(\frac{\pi}{12}\right)$ sachant que $\frac{\pi}{12} = \frac{\pi}{3} \frac{\pi}{4}$.
- 3) Soit $x \in \mathbb{R}$; simplifier les expressions suivantes

$$A(x) = \cos\left(\frac{\pi}{3} + x\right) + \cos\left(\frac{\pi}{3} - x\right)$$
 et $B(x) = \sin\left(\frac{\pi}{3} + x\right) - \sin\left(\frac{\pi}{3} - x\right)$.

Activité 🕏

Soient a et b des nombres réels tels que

$$a\neq\frac{\pi}{2}+k\pi/k\in\mathbb{Z}\ , b\neq\frac{\pi}{2}+k\pi/k\in\mathbb{Z}\ , \ a+b\neq\frac{\pi}{2}+k\pi/k\in\mathbb{Z}\ \text{et}\ \ a-b\neq\frac{\pi}{2}+k\pi/k\in\mathbb{Z}$$

Montrer que
$$\tan(a-b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a)\tan(b)}$$
 et $\tan(a-b) = \frac{\tan(a) + \tan(b)}{1 - \tan(a)\tan(b)}$

Propriété @

Soient a et b des nombres réels tels que $a \neq \frac{\pi}{2} + k\pi/k \in \mathbb{Z}$ et $b \neq \frac{\pi}{2} + k\pi/k \in \mathbb{Z}$, et

- Si $a-b \neq \frac{\pi}{2} + k\pi/k \in \mathbb{Z}$ on a $\tan(a-b) = \frac{\tan(a) \tan(b)}{1 + \tan(a)\tan(b)}$
- Si $a+b \neq \frac{\pi}{2} + k\pi / k \in \mathbb{Z}$ on a $\tan(a+b) = \frac{\tan(a) + \tan(b)}{1 \tan(a)\tan(b)}$

Application @

1) Soit x un nombre réel tel que $x \neq \frac{\pi}{4} + k\pi/k \in \mathbb{Z}$ et $x \neq \frac{-\pi}{4} + k\pi/k \in \mathbb{Z}$

Simplifier l'expression suivantes $A = \tan\left(\frac{\pi}{4} - x\right) \times \tan\left(\frac{\pi}{4} + x\right)$

2) Calculer $\tan\left(\frac{\pi}{12}\right)$ et $\tan\left(\frac{7\pi}{12}\right)$ sachant que $\frac{\pi}{12} = \frac{\pi}{3} - \frac{\pi}{4}$ et $\frac{7\pi}{12} = \frac{\pi}{4} + \frac{\pi}{3}$.

Propriété ③ :

Soit $a \in \mathbb{R}$ on a

- $\cos(2a) = \cos^2(a) \sin^2(a)$; $\cos(2a) = 2\cos^2(a) 1$ $\cos^2(2a) = 1 2\sin^2(a)$
- $\sin(2a) = 2\cos(a)\sin(a)$; $\cos^2(a) = \frac{1 + \cos(2a)}{2}$ $\sin^2(a) = \frac{1 \cos(2a)}{2}$
- si $a \neq \frac{\pi}{2} + k\pi/k \in \mathbb{Z}$ et $2a \neq \frac{\pi}{2} + k\pi/k \in \mathbb{Z}$ alors $\tan(2a) = \frac{2\tan(a)}{1 \tan^2(a)}$

Application 3

- 1) On remarque que $\frac{\pi}{4} = 2 \times \frac{\pi}{8}$. Calculer $\cos\left(\frac{\pi}{8}\right)$ et $\sin\left(\frac{\pi}{8}\right)$
- 2) Soit $x \in \mathbb{R}$.montrer que $1 + \cos(x) + 2\sin^2\left(\frac{x}{2}\right) = 2$
- 3) Soit $x \neq k\pi/k \in \mathbb{Z}$. Montrer que $\frac{1-\cos(x)}{\sin(x)} = \tan\left(\frac{x}{2}\right)$

III. Transformation d'un produit en une somme – Transformation d'une somme en un produit

1. Transformation d'un produit en une somme

Activité 3

Simplifier les expressions suivantes

b)
$$cos(a + b) - cos(a - b)$$

a)
$$cos(a + b) + cos(a - b)$$

d)
$$sin(a + b) - sin(a - b)$$

c)
$$sin(a+b) + sin(a-b)$$

Propriété @

Soient a et b deux nombres réels on a

•
$$\cos a \cos b = \frac{1}{2} [\cos(a+b) + \cos(a-b)]$$

•
$$\sin a \sin b = -\frac{1}{2} [\cos(a+b) - \cos(a-b)]$$

•
$$\sin a \cos b = \frac{1}{2} \left[\sin(a+b) + \sin(a-b) \right]$$

•
$$\cos a \sin b = \frac{1}{2} [\sin(a+b) - \sin(a-b)]$$

Application @

1) Calculer
$$\cos\left(\frac{\pi}{12}\right)\cos\left(\frac{5\pi}{12}\right)$$
 et $\cos\left(\frac{\pi}{12}\right)\sin\left(\frac{5\pi}{12}\right)$

2) Montrer que
$$\cos\left(x + \frac{\pi}{3}\right)\cos\left(x - \frac{\pi}{3}\right) = \cos^2(x) - \frac{3}{4}$$

3) Ecrire sous forme d'une somme les expressions suivantes

$$A(x) = \sin(x)\sin(3x)\sin(5x) \quad \text{et} \quad B(x) = \cos(x)\cos(3x)\cos(5x)$$

2. Transformations d'une somme en un produit

On pose
$$p = a + b$$
 et $q = a - b$ alors $a = \frac{p + q}{2}$ et $b = \frac{p - q}{2}$

Propriété **S**

Soient p et q deux nombres réels on a

•
$$\sin(p) + \sin(q) = 2\sin\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$$
 ; • $\sin(p) - \sin(q) = 2\cos\left(\frac{p+q}{2}\right)\sin\left(\frac{p-q}{2}\right)$

•
$$\cos(p) + \cos(q) = 2\cos\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$$

•
$$\cos(p) + \cos(q) = -2\sin\left(\frac{p+q}{2}\right)\sin\left(\frac{p-q}{2}\right)$$

Application **5**

- 1) a. Transformer en produit les expressions suivantes $A(x) = \sin(x) + \sin(7x)$ et $B(x) = \sin(3x) + \sin(5x)$
- b. Déduire que $A(x) + B(x) = 4\cos(x)\cos(2x)\sin(4x)$
- 2) Montrer que $\sin\left(\frac{\pi}{12}\right) + \sin\left(\frac{5\pi}{12}\right) = \frac{\sqrt{6}}{2}$

IV. Transformation de l'expression a cos(x) + b sin(x)

Introduction

Soient a et b deux nombres réels tels que $(a;b) \neq (0;0)$

On considère l'expression suivante $a\cos(x) + b\sin(x)$

On a
$$a\cos x + b\sin x = \sqrt{a^2 + b^2} \left(\frac{a}{\sqrt{a^2 + b^2}} \cos x + \frac{b}{\sqrt{a^2 + b^2}} \sin x \right)$$

Or on a
$$\left(\frac{a}{\sqrt{a^2 + b^2}}\right)^2 + \left(\frac{b}{\sqrt{a^2 + b^2}}\right)^2 = 1$$

Donc
$$\exists \alpha \in \mathbb{R} / \begin{cases} \cos \alpha = \frac{a}{\sqrt{a^2 + b^2}} \\ \sin \alpha = \frac{b}{\sqrt{a^2 + b^2}} \end{cases}$$

D'où $a\cos x + b\sin x = \sqrt{a^2 + b^2} (\cos \alpha \cos x + \sin \alpha \sin x).$

Par conséquent $a\cos x + b\sin x = \sqrt{a^2 + b^2}\cos(x - \alpha)$.

Propriété 6

Soient a et b deux nombres réels tels que $(a;b) \neq (0;0)$

Il existe un nombre réel α tel que $a\cos x + b\sin x = r\cos(x - \alpha)$.

Avec
$$r = \sqrt{a^2 + b^2}$$
, $\cos \alpha = \frac{a}{\sqrt{a^2 + b^2}}$ et $\sin \alpha = \frac{b}{\sqrt{a^2 + b^2}}$

<u>Remarque</u>

On peut écrire l'expression $a\cos(x) + b\sin(x)$ sous forme $a\cos x + b\sin x = r\sin(x + \beta)$

Avec
$$\sin \beta = \frac{a}{\sqrt{a^2 + b^2}}$$
 et $\cos \beta = \frac{b}{\sqrt{a^2 + b^2}}$

<u>Exemple</u>

Transformer l'expression suivante $\sqrt{3}\cos(x) + \sin(x)$

On a $a = \sqrt{3}$ et b = 1 donc $r = \sqrt{a^2 + b^2} = 2$

Donc
$$\sqrt{3}\cos(x) + \sin(x) = 2\left(\frac{\sqrt{3}}{2}\cos(x) + \frac{1}{2}\sin(x)\right) = 2\cos\left(x - \frac{\pi}{6}\right)$$

Et aussi
$$\sqrt{3}\cos(x) + \sin(x) = 2\left(\frac{\sqrt{3}}{2}\cos(x) + \frac{1}{2}\sin(x)\right) = 2\sin\left(x + \frac{\pi}{3}\right)$$

Application ©

Ecrire sous forme de $r\cos(x-\alpha)$ les expressions suivantes

$$A(x) = \cos(x) + \sin(x) \qquad ; \qquad C(x) = \sqrt{2}\cos(x) + \sqrt{2}\sin(x)$$

$$B(x) = \cos(x) - \sqrt{3}\sin(x) \qquad ; \qquad D(x) = \sqrt{3}\cos\left(2x - \frac{\pi}{3}\right) - \sin\left(2x - \frac{\pi}{3}\right)$$

V. Equations et inéquations trigonométriques

<u>Rappel</u>

$$\otimes \cos x = \cos \alpha \Leftrightarrow \begin{cases} x = \alpha + 2k\pi \\ x = -\alpha + 2k\pi \end{cases} / k \in \mathbb{Z}$$

$$\otimes \sin x = \sin \alpha \Leftrightarrow \begin{cases} x = \alpha + 2k\pi \\ x = \pi - \alpha + 2k\pi \end{cases} / k \in \mathbb{Z}$$

$$\otimes \tan x = \tan \alpha \Leftrightarrow x = \alpha + k\pi / k \in \mathbb{Z}$$

<u>Remarque</u>

Les inéquations trigonométriques se résoudre à l'aide du cercle trigonométrique

Application 🛭

1) Résoudre les équations suivantes dans l'intervalle I

$2\cos x - \sqrt{3} = 0$	$I=\left] -\pi ;\pi ight]$
$\sqrt{2}\sin x + 1 = 0$	$I = \left] -\pi; \pi \right]$
$tanx = \sqrt{3}$	$I = [0,2\pi]$
$\sqrt{3}\cos x - \sin x = \sqrt{2}$	$I = [-\pi, \pi]$

- 2) Résoudre dans *I* les inéquations suivantes :
 - * $2\cos x \sqrt{3} \ge 0$; $I =]-\pi; \pi]$
 - * $\sqrt{2}\sin x + 1 \le 0$; $I =]-\pi;\pi]$
 - * $\cos x > \frac{-\sqrt{2}}{2}$; $I = [0; 2\pi]$
 - * $(\sqrt{2}\sin x + 1)(2\cos x \sqrt{3}) \ge 0$ $I =]-\pi;\pi]$