10 BRE 15

Assignment - 02

5 7 201

Section: 12

Name: Udoy Saha

ID: 21301095

ing years) (ASA)

The disgram show that mene is a how degree of the

Ans to the aues no: 1

(0)

Age	2 (Years)	9	7	11	12	8	7	S	11	lo	12	6	5
Pric	e (thousand \$1)	8.1	6	₹.8	4	5	10	7.6	8	8:7	6	8.6	10'5

The diagram shows that, there is a low degree of negative connelation between age of the can and the selling price of that.

Age (yeoris)	Price (thousand \$)	хy	χ²	y2
9	025 8.1	72.9	81	65.61
7	6	43	49	36
1) == 3.3	2. (6.) - 2.8 2 261	30.8	121	7.84
12	4	48	144	16
8	5 100 13	40	64	25
7	10	70	49	100
8	7.6	60,8	64	54.46
#- II *	8	88	121	. 64
10	8.7	\$ 87	100	75.69
12	6	72	1 44	36
6	8.6	51.6	36	73.96
5	10.2	52,2	25	110,52
Ex=106	≤y= 85·3	Exy=715.6	Zx2=998	Zy2668'11

Here,
$$\pi = \frac{2\pi}{n}$$
 and $y = \frac{2y}{n}$

where, n=number of observations = 12

$$\frac{7}{28} = \frac{106}{12}$$

$$= \frac{53}{6}$$

$$= \frac{85.3}{120}$$

Now, Peanson Connelation Coefficient,
$$\Pi = \frac{\sum xy - n \overline{x} y}{\sqrt{(\sum x^2 - n \overline{x}^2)(\sum y^2 - n \overline{y}^2)}}$$

$$\frac{715.6 - 12 \times \frac{53}{6} \times \frac{853}{120}}{\sqrt{\left(998 - 12 \times \left(\frac{53}{6}\right)^2\right) \left(668.11 - 12 \times \left(\frac{853}{120}\right)^2\right)}}$$

$$= \frac{45209}{60}$$

$$= \sqrt{\frac{185}{3} \times 61.76916667}$$

$$= -6.61381$$

So, the Coefficien of Determination,

for from

$$\pi^2 = (\pi)^2$$

$$= (-0.61381)^2$$

$$= 0.376768$$

$$= 37.676876$$

From 'ri', we can see that there is a moderate degree of negative connelation between x and y.

from 'n2', we can see that, 37.67687. data from y can be explained from x.

— b — × — o —

े किस् हैं हे (10) हैं। इ

Ans	to	the	ques	no'-2
	6. ¹⁰	(a)		

1					
Judge 1 (x)	Judge 2 (4)	Rx	Ry	d= x-9	d2
650	920	5	10	-5	25
760	720	111	4	7	49
740	690	100	15	8.5	72.25
700 .	850	A55	7	0.2	0.52
590	920	2	Lo	1-8	64
620	800	.4	6	-2	4
700	890	75	8	-0.5	* 0'25
690	920	6	0]	- 3-4	16
BOD 950	1000	11.2	12	O	6
600 500	690		1,2	-0.5	0.12
87500 610	700	3	3	8	0
多710	760	5 9	5	4	16
		· ·			Ed2= 247

: Speakman's right cornelation,
$$rc_s = 1 - \frac{6 \times d^2}{n(n^2-1)}$$

Here, n=number of observations = 12

$$\therefore rc_s = 1 - \frac{6 \times 247}{12(12^2 - 1)} = 0.1362$$

Sion (B) Filmological

Here, $\pi = 0.1364$ and, $\pi^2 = 0.01364$ = 1.8595,1.7.

2 Christ

715.C

J.C.C.

Here, the value of re shows that, there is a low degree of positive connelation between the scoring of the two judges.

And, re2 shows that, there 1.859570 scorings of the Judge 2 can be explained by the scorings of Judge 1.

0 - 2 - 0

A + 5

Ans to the ques no:-3

Numbers of rooms (x)	Energy Consumption (Housand KWh)	×y	x²	J2
(,c)	(4)	27		he, r
13	9	117	169	81
9	7	163 A 63	31	49
14	11	154	196	121
6	6	36	36	36
10	8	80	100	69
7	6	42	49	36
. (1	8	8-8	121	64
10	9	90	100	용1
5	4	20	25	16
7	7	49	49	49
Ex= 92	Ez= 75	Zxy= 739	Ex2= 926	Zy= 597

The regression equation will be in the form, $\ddot{\mathcal{G}} = \mathcal{B}_0 + \mathcal{B}_1 \times$

Here,
$$\beta_1 = \frac{n \cdot zxy - (zx \cdot zy)}{n \cdot zx^2 - (zx)^2}$$

where, n=10

Hene,
$$\pi = \frac{2x}{n} = \frac{92}{10} = 9.2$$

$$y = \frac{2y}{n} = \frac{75}{10} = 7.5$$

$$\beta_{0} = 7.5 - 0.615578 \times 9.2$$

$$= 1.836683$$

The regression equation becomes, $\hat{y}=1.836683+0.615578$

From the equation, $B_0 = 1.836683$, which is the ly-intercept means that, energy consumption (y) will be 1.836683 (kWh)

when number of rooms &(x) is O.

And, $\beta_1 = 0.615578$, which is the slope of the regression line denotes that, Energy consumption thousand (y) will increase by 0.615578 (kWh) with 1 unit increment of Number of mooms (x).

Here, number of Frooms, n=7

i. For a 7 room house, the predicted energy consumption is 6.145729 (thousand) KWh),

we can know about the goodness of fit for the model through the coefficient of determination, 12.

And,
$$SST = 1 \times y^2 - (\times y)^2$$

= $597 - \frac{75^2}{10}$

$$(AU) = 1 - \frac{4.336683417}{34.5}$$

:. 87.4299 % of the variation can be explained through the model.

So, this is nearly a good fit on almost perifect fit.

- O De Marie Brown

Ans to the gues no: - 4

Let, capacity of the bag (cubic inches) = x1

comfort rating = x2

predicted price = ŷ

So, the regression equation will be, $\hat{y} = \beta_0 + \beta_1 \times 1 + \beta_2 \cdot \times 2$

From the given data, plugging in the values for all parameters $\vec{y} = 356.12083 - 0.09874.\times1+122.86721.\times2$

not rodalism (b)

From the progression model,

Bo = 356.12083 means that, 9 will be 0, ie,

priedicted price will be 365.12083 when

x1 and x2 both will be 0.

found a

B₁= -0.09874 means, if the comfort rating is constant, when the capacity of the bag increases by 1 unit, the predicted price decreases by 0.09874 unit:

B. = 122.86721 meens, if capacity of the bag is constant, when the comfort reating increases by 1, the predicted price of the bag increases by 122.86721 unit

(C)

Here, capacity = 5500 cubic inches comfort rating = 4.5

i. Predicted price, = 365.953275 unit

Given that, R-squared = 12 = 0.8318 = 83.187.

There is a high percentage of vaniation which can be emplained by our model.

So, the pregnession model is a good fit.

Ans to the ques no: 5

(a)

Let, Age = x1

Anxiety scale = x2

i. The logistic equations general form, $E(y) = \frac{\beta_0 + \beta_1 \cdot x_1 + \beta_2 \cdot x_2}{1 + e^{\beta_0 + \beta_1 \cdot x_1 + \beta_2 \cdot x_2}}$

deterring Bo = -471.491 $B_1 = 6.394$ $B_2 = 1.347$

00121 1 1 347 × x2

$$E(y) = \frac{e}{1 + e^{-471.441 + 6.394 \times x1 + 1.347 \times x2}}$$

brown a grown [b] that states

From the regression equation,

Bo = -471.441 doesn't have so much significance in logistic regression.

 $B_1 = 6.394$, so, odds tratio for age variable is, e = 6.394 = 598.2447792

So, the odds of having a second heart a withing 1 year attack increases by 598.7447792 with (keeping Anxiety Level constant) every unit increase in Age, As it is so larger than 1, so, age has a very heavy impact on heart attack.

Now, $\beta_2 = 1.347$, so, odds natio for Amxiety scale is, $e^{\beta_2} = e^{1.347}$

Therefore, odds of having a second heard attack within 1 year increases by 3.845870595 with every unit increases in Anxiety scale, white Age is constant.

As it is larger than 1, so, Anxiety has a positive impact, ie, incremental impact in having heart attack.

6 _ / p - 0, - 1

part borner a point on elka of the

sale 1 - 10 and mar

exposed in the character son

Experience of and representations of another proposed.

PU ALCO PA DECE