ECE275 Midterm 1 Fall 2022

Instructor: Vikas Dhiman (vikas.dhiman@maine.edu)

October 6, 2022

Student Name: Student Email:

1 Instructions

- Time allowed is 50 minutes.
- In order to minimize distraction to your fellow students, you may not leave during the last 10 minutes of the examination.
- The examination is closed-book. One 8×11 in two-sided cheatsheet is allowed.
- Non-programmable calculators are permitted.
- The maximum number of marks is 100, as indicated; the midterm examination amounts 10% toward the final grade.
- Please use a pen or heavy pencil to ensure legibility. Colored pens/pencils are recommended for K-map grouping.
- Please show your work; where appropriate, marks will be awarded for proper and well-reasoned explanations.

Problem 1. Number conversions:

- 1. Use repeated division to convert 77₁₀ to octal representation (5 marks).
- 2. What is the value of 7064_8 in base 10 (5 marks).
- 3. An 8-bit two's complement number is 10110011₂. Convert it to (signed) decimal (5 marks).
- 4. Represent -121_{10} in 8-bit two's complement binary notation (5 marks).

Problem 2. Use the following 5-variable K-map for F (A, B, C, D, E), and find a minimal SOP expression for F (20 marks)

•	,		/						
DE	C_{00}	01	11	10	DE	C_{00}	01	11	10
00	0	0	0	1	00	0	0	0	1
01	d	1	1	0	01	0	1	1	1
11	d	1	1	0	11	0	0	0	1
10	0	0	0	1	10	0	0	0	1
		•		•					

A=1

A = 0

Problem 3. Use Boolean algebra to find a simplified SOP expression for Y (10 marks)

Problem 4. Consider a circuit to subtract two two-bit unsigned numbers. Denote the two bits of first number as A_1A_0 (forming the number N_A) and the two bits of second number as B_1B_0 (forming the number N_B). The circuit will find the difference $N_A - N_B$. The result will be a 2-bit difference D_1D_0 . Assume that the circuit never sees an input combination in which N_A is less than N_B . In other words, we always have $N_A \geq N_B$.

- 1. Start with filling out the following truth table (3 example rows are provided) (10 marks).
- 2. Write D_1 using Maxterms notation (5 marks).
- 3. Use K-maps to find minimal Product of sum form for D_0 (20 marks).
- 4. Draw an ANSI network for D_0 using NOR gates only (10 marks).

$\overline{A_1}$	A_0	B_1	B_0	D_1	D_0
0	0	0	0		
0	0	0	1	d	d
0	0	1	0		
0	0	1	1		
0	1	0	0		
0	1	0	1	0	0
0	1	1	0		
0	1	1	1		
1	0	0	0		
1	0	0	1		
1	0	1	0		
1	0	1	1		
1	1	0	0		
1	1	0	1	1	0
1	1	1	0		
1	1	1	1		

This page is left blank for Prob 4.

Problem 5. Write the function $F(A, B, C, D) = \prod M(0, 4, 5)$ in Product of sums canonical form (5 marks).