Data Sheet

RTC6670P

802.11a 19 dBm/802.11ac 14dBm Power Amplifier Module

Compliant

RichWave

MAY 2018 - Ver. 1.3

Description

The RTC6670P power amplifier module (PAM) is designed to operate in 5GHz ISM band, compatible with 802.11a and 802.11ac wireless LAN system with large output power and high small signal gain. The device consists of three-stage power amplifier (PA) with a power detector for close loop power control operation and a low-pass filter (LPF) for harmonic suppression. A CMOS compatible digital enable/disable function is also included that allows power savings during off mode. All the input and output ports are internally matched to 50Ω , no external RF matching component is required. The PAM has a typical gain of 29 dB from 5.1 to 5.8 GHz, and delivers 19dBm linear output power under 3% EVM OFDM 54Mbps modulation. The RTC6670P is packaged in a tiny industry-standard 16-lead surface mount package QFN 3mm x 3mm x 1mm (max) with lead-free RoHS compliant.

Functional Block Diagram

Features

- 3.3 V Power Supply
- 19 dBm @ 3% EVM, 802.11a, 64QAM
- 14 dBm @ 1.8% EVM, 802.11ac, 256QAM
- Small signal gain: 29 dB
- On-chip input matching
- Digital Enable/Disable control
- Packaged in 16L QFN-3mm x 3mm x 1mm (max)
- RoHS Compliant, Pb-free, Halogen Free
- Moisture Sensitivity Level : MSL 3

Applications

- IEEE 802.11a Wireless LAN System
- 5 GHz ISM Band Applications
- High Power WLAN applications

Pin Assignments

Top View Through Package

Pin No.	Pin Name	Description
1	VCC1	Supply Voltage
2	EN	Digital PA ON
4	RFIN	RF input pin
12	RFOUT	RF out pin
14	DET	PA detector output
16	VCC2	Supply Voltage
3, 5–11, 13, 15	NC	Not connected inside the package
Exposed I	Paddle	It must be connected to a ground through PCB via for best performance

Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit
Supply Voltage	VCC	4.5	V
PA Enable Voltage	EN	3.6	V
Input RF Level	RF _{IN}	+12	dBm
Operating Ambient Temperature	T _A	-30 to +85	°C
Storage Temperature	T _{STG}	-40 to +150	°C

NOTE: Stresses above those conditions listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only. Functional operation of the device above those conditions indicated in the Absolute Maximum Ratings is not implied. The functional operation of the device at the conditions in between Recommended Operating Ranges and Absolute Maximum Ratings for extended periods may affect device reliability.

Recommended Operating Ranges

Parameter	Symbol	Min	Тур	Max	Unit
Operating Frequency	f	5.1		5.8	GHz
Supply Voltage	VCC1, VCC2, VCC3	3.0	3.3	3.6	V
PA Enable Voltage	EN	1.8		3.3	V

NOTE: Recommended Operating Ranges indicate conditions for which the device is intended to be functional, but does not guarantee specific performance limits.

Electrical Specification

 $T_A = +25$ °C, VCC1 = VCC2 = 3.3 V, EN = 2.9 V, unless otherwise noted

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Operating Frequency	f		5.1		5.8	GHz
	Pout _	64QAM/54Mbps, EVM = 3%		19		dBm
Output Power		802.11ac, 256QAM, EVM = 1.8%		14		dBm
		802.11a mask compliant power, OFDM 6Mbps		21	* C	dBm
Small Signal Gain		Pin = -30dBm		29	75	dB
Gain Flatness	ΔG	Gain Variation over band		1		dB
1 dB Output Compression Point	P1dB	1dB Gain compression	1	25		dBm
Input return loss	S11			9		dB
Output return loss	S22			22		dB
2nd/3rd Harmonics	2fo/3fo	CW signal, Pout = 20 dBm		-42		dBm/ MHz
	Ica	Quiescent (no RF)		181		mA
	Icc	Pout = 19 dBm, 802.11a, 64QAM		250		mA
Supply Current	I _{CC}	Pout = 14 dBm, 802.11ac, 256QAM		200		mA
	loff	EN = 0 V (no RF)		3		μA
PA Enable Current	I _{EN}	Quiescent (no RF)		1		μA
Stability	S	Pout = 18 dBm, 54 Mbps, 64 QAM, VSWR = 6:1, all phases			ally related dBc/100 k	
Ruggedness	Ru	Pin=12 dBm (CW), VSWR=6:1, all phases	No	perman	ent damag	е

Typical Performance Characteristics

 $T_A = +25$ °C, VCC1 = VCC2 = 3.3 V, EN = 2.9 V

S-Parameters

EVM and ICC vs. Pout with 802.11a, OFDM/54Mbps (@100% duty cycle)

Power Detector with 802.11a, OFDM/54Mbps

EVM and ICC vs. Pout with 802.11ac, 256QAM (@100% duty cycle)

Power Detector with 802.11ac, 256QAM

Application Circuits

NOTE: Information in the above application is for reference only, and does not guarantee the mass production design of the device.

Evaluation Board Bill of Material

Component	Value	Description	Supplier	Part Number
IC		RTC6670P	RichWave	
C1, C2	100 pF	De-coupling capacitor	Walsin	0402N101J500LT
C4	10 pF	De-coupling capacitor	Walsin	0402N100J500LT
C3	1 μF	De-coupling capacitor	Walsin	0402X105K6R3CT
R1	10K Ω		Walsin	WR04X1002FTL

Recommended Footprint Patterns

PCB Board Metal & Via Pattern

Top View

PCB Stencil Pattern Top View 64% Solder Coverage on Pad

3.400 3.000 0.150 0.500 0.350 0.150 0.150

PCB Solder Mask Pattern Top View

NOTE:

- 1. All dimensions are measured in millimeters.
- 2. Drawing is not to scale.

Package Dimensions

16L QFN 3 X 3 X 1 - C					
SYMBOL	MIN	MAX			
А	0.800	1.000			
A1	0.000	0.050			
b	0.180	0.320			
D	2.900	3.100			
D1	1.550	1.850			
е	0.500) BSC			
E	2.900	3.100			
E1	1.550	1.850			
L	0.300	0.500			

NOTE:

- 1. All dimensions are measured in millimeters.
- 2. Drawing is not to scale.
- 3. The shape of the Pin 1 Indicator can be either Option A or Option B, but it must be located within the zone indicated.

Customer Service

RichWave Technology Corp.

3F, No.1, Alley 20, Lane 407. Sec.2, Tiding Bvd., Neihu Dist., Taipei City 114, Taiwan, R.O.C. TEL +886-2-87511358 FAX +886-2-66006887 www.richwave.com.tw

Disclaimers

RichWave reserves the right to make changes without further notice to specifications and product descriptions in this document to improve reliability, function or design. RichWave does not assume any liability arising out of the application or use of information or product described in this document. Neither does RichWave convey any license under its intellectual property rights nor licenses to any of circuits described in this document to any third party. The information in this document is believed to be accurate and reliable and is provided on an "as is" basis, without any express or implied warranty. Any information given in this document does not constitute any warranty of merchantability or fitness for a particular use. The operation of this product is subject to the user's implementation and design practices. It is the user's responsibility to ensure that equipment using this product is compliant to all relevant standards. RichWave's products are not designed or intended for use in life support equipment, devices or systems, or other critical applications, and are not authorized or warranted for such use.

Copyright © RichWave Technology Corp. All rights reserved.

