University of New Mexico Department of Electrical and Computer Engineering

			
ECI	E 321 – Electronics I (Fall 2009)		Exam 3
Nan	me: ANTHONY MANCUSO	Date:	Nov. 18, 2009
Note: Only calculator, pencils, and pens are allowed.			
1.	(10 points) Fill in the blank:		
	(a) In standard CMOS process, the source and drain Active layer masks.		(FOL)
	(b) The process of manufacturing transistors is called process of manufacturing interconnects is called	1 tront Back	rend of Line and the end of Line (BOL)
		_ 11	V -1-1-1
		_	1/1/ 14/1+14/2 1/2
	(d) The effective width of two series NMOS with W₁= (e) Electromigration is Metal atoms swe	ot ou	t of position by electron
2.	(20 points) You are asked to layout the power and grelogic block in a real chip. Assume that the logic block the metal thickness is 0.4 um. If the maximum curren determine the minimum width (in micron) of the intercopower the logic block.	draws t densit	80mA of current and y J _{max} = 2x10 ⁶ A/cm ² ,

= .001 cn = .00001 m = 10 y m

- 3. (30 points) A three-input CMOS NAND gate is designed as shown below. Assume that V_{DD} =1.2 V, K'_n =90 uA/V², V_{tn} =0.4 V, K'_p =50 uA/V², and V_{tp} =-0.5 V in the 100nm technology node.
 - (a) Determine the width of NMOS and PMOS transistors in this NAND gate, such that the worst case delay becomes equivalent to a referenced inverter with W_n =1um and W_p =2um.
 - (b) For the device sizes found in part (a), determine the switching threshold voltage, V_M, when all inputs are tied together.
 - (c) Find the maximum I_{DD} current for this NAND gate.

Q)
$$(\frac{V}{L})_{n} = \frac{l_{n}m}{l_{00n}m} = l_{0}$$
 $(\frac{U}{L})_{p} = \frac{2m_{m}}{l_{00n}m} = 20$

Equivalent ckt: $\frac{1}{l_{10}}$

Worst case: Lowest current drive stoepth

Worst case Pull-up: 1 path

 $\frac{U}{l_{10}} = \frac{1}{20}$ for each A, B, and C

worst case Pull-Down: $\frac{1}{l_{10}} = \frac{1}{l_{10}} = \frac{1}{l_{$

4. (40 points) We would like to design the following circuit such that the worst case propagation delays (t_{pHL} and t_{pLH}) are limited to 2.14 ns. Use Elmore delay equation to determine the W/L for PMOS and NMOS used in the 3-input NAND gate. Assume that V_{DD}=1.2 V, K'_n=90 uA/V², V_{tn}=0.4 V, K'_p=50 uA/V², and V_{tp}=-0.5 V in the 100nm technology node. Also assume that the transistors stay in saturation region for the length of the transition.

$$t_{PHL} = t_{PLH} = 2.14 \text{ ns} = \frac{c_L v_{Dab}}{T_{avg}} = .69 \text{ T} = .69 \text{ Re}_{L} \text{ , } \text{ Let } t_L = /00 \text{ F} \text{ Let } t_{avg} = T_{sar}$$

$$R_{out} = \frac{c_{PLH}}{c_{offl}} = \frac{2.14 \text{ ns}}{c_{ofgl}(loveff)}$$

$$R_{out} = \frac{34.78 \text{ k. l}}{34.78 \text{ k. l}} = \frac{2.14 \text{ ns}}{c_{ofgl}(loveff)}$$

$$T_{Di} = \frac{24.78 \text{ k. lok}}{k_{en}} \times \frac{100 \text{ loff}}{k_{en}} + \frac{100 \text{ loff}}{k_{en}} = \frac{100 \text{ loff}}{k_{en}} + \frac{100 \text{ loff}}{k_{en}} + \frac{100 \text{ loff}}{k_{en}} + \frac{100 \text{ loff}}{k_{en}} = \frac{100 \text{ loff}}{k_{en}} + \frac{100 \text{ loff}}{k_$$