Homework 18: Determinants, Eigenvectors, and Eigenvalues

Assignments should be **stapled** and written clearly and legibly. Problem 5 is optional.

- 1. §2.1, #22, 28, 30.
- 2. §2.3, #8.
- 3. §5.1, #3, 4, 5(a), 33. For Problem 5(a), you need only find the characteristic equation and eigenvalues. For Problem 33, you should not use any determinants in your proof.
- 4. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation given by reflecting across the plane $x_1 2x_2 + 2x_3 = 0$. The goal of this problem is to find the standard matrix for T.
 - (a) Find an orthogonal basis $B = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ for \mathbb{R}^3 such that $\mathbf{v}_1, \mathbf{v}_2$ span the plane. There are several ways to do this. Here is one:
 - 1. Find a vector \mathbf{v}_3 which is orthogonal to all vectors on the plane. (This is covered in MATH 223. No calculations are required.)
 - 2. Find two vectors $\mathbf{u}_1, \mathbf{u}_2$ which span the plane.
 - 3. Use the Gram-Schmidt process to replace $\mathbf{u}_1, \mathbf{u}_2$ by two orthogonal vectors $\mathbf{v}_1, \mathbf{v}_2$ which span the plane.
 - (b) Find $[T]_B$.
 - (c) Use the change of basis formula to find $[T]_{B'}$, where B' is the standard basis for \mathbb{R}^3 .
 - (d) Find the reflection of $\begin{bmatrix} 1\\1\\-1 \end{bmatrix}$ across the plane.
- 5. (Challenge) §5.1, #28, 32. For Problem 28, use the definition of trace given on page 36 of the textbook.

Answer to 4(c):
$$[T]_{B'} = \frac{1}{9} \begin{bmatrix} 7 & 4 & -4 \\ 4 & 1 & 8 \\ -4 & 8 & 1 \end{bmatrix}$$