Problema 11. (a) Siguin J un ideal de A i $\pi: A \to A/J$ el morfisme de pas al quocient. Proveu que $I^e = (I+J)/J$.

(b) Considerem el morfisme d'inclusió $i:A\to A[X]$. Proveu que $I^e=I[X]$ i que

$$\frac{A[X]}{I[X]} \cong \frac{A}{I}[X].$$

Solució. (a) Per definció $I^e = \langle \pi(I) \rangle = \{ \sum_{i=1}^n b_i x_i, \text{ on } b_i \in A/J \text{ i } x_i \in \pi(I) \}.$

Per definició de $\pi(I)$ i de A/J, cada $x_i = a_i + J$, on $a_i \in I$ i $b_i = c_i + J$, on $c_i \in A$.

Llavors $b_i x_i = (a_i + J)(c_i + J) = a_i c_i + a_i J + c_i J + J$.

Observem que $a_i c_i \in IA \subseteq I$ per ser I un ideal, i que $a_i J \in J$ i $c_i J \in J$, per tant; $a_i J + c_i J \subseteq J$ i $b_i x_i \in (I+J)/J$.

Amb això hem vist que $I^e \subseteq (I+J)/J$. Recíprocament, una classe (i+j)+J coincideix amb (i+J)/J ja que j+J=J i aquesta pertany a $\pi(I)$.

(b) Anem a veure que $I^e = I[X]$:

Per definició $I^e = \langle i(I) \rangle = \{ \sum_{i=1}^n f_i(x) a_i, \text{ on } f_i(x) \in A[X] \text{ i } a_i \in I \}$ i, per tant, $I^e \subseteq I[X]$.

Ara observem que $I[X] = \{j_n x^n + ... + j_1 x + j_0, j_i \in I \text{ per a } 0 \le i \le n\}$ i això és equivalent a la definició de I^e

Per tant, es compleix la igualtat $I^e = I[X]$.

Ara anem a veure que $\frac{A[X]}{I[X]} \cong \frac{A}{I}[X]$:

El morfisme d'anells projecció $A \to A/I$ s'estén a un morfisme d'anells $\pi: A[X] \to A/I[X]$ per la regla $\sum_{i=0}^n a_i x^i \mapsto \sum_{i=0}^n \bar{a_i} x^i$, $a_i \in A$, $\bar{a_i} \in A/I$ la projecció de a_i en A/I.

Ara hem de veure que és un homomorfisme d'anells:

- (1) És un homomorfisme de grups, ja que $\pi(\sum_{i=0}^{n} (a_i + b_i)x^i) = \sum_{i=0}^{n} (\overline{a_i} + \overline{b_i})x^i = \sum_{i=0}^{n} (\overline{a_i} + \overline{b_i})x^i = \sum_{i=0}^{n} (\overline{a_i})x^i + \sum_{i=0}^{n} (\overline{b_i})x^i = \pi(\sum_{i=0}^{n} (a_i)x^i) + \pi(\sum_{i=0}^{n} (b_i)x^i).$
- (2) També es compleix $\pi(\sum_{i=0}^{n} (a_i b_i) x^i) = \sum_{i=0}^{n} (\overline{a_i} \overline{b_i}) x^i = \sum_{i=0}^{n} (\overline{a_i} \overline{b_i}) x^i = \sum_{i=0}^{n} (\overline{a_i}) x^i \sum_{i=0}^{n} (\overline{b_i}) x^i = \pi(\sum_{i=0}^{n} (a_i) x^i) \pi(\sum_{i=0}^{n} (b_i) x^i).$
- (3) Ara hem de veure que $\pi(1_{A[X]}) = 1_{\underbrace{A}_{I}[X]}$.

Primer observem que $1_{A[X]} \notin I$ ja que sino I seria el total.

Per tant, $\pi(1_{A[X]}) = \overline{1}$. Ara volem veure que $\overline{1}$ és el neutre de $\frac{A}{I}[X]$:

$$\overline{1}\overline{a} = \overline{1}\overline{a} = \overline{a}, \, \forall \overline{a} \in \frac{A}{I}[X].$$

A més, π és exshaustiu ja que tots els polinomis de coeficients en A/I són de la forma $\sum_{i=0}^{n} \overline{a_i} x^i$, amb $a_i \in A$ i $\overline{a_i} \in A/I$ la projecció de a_i en A/I.

També observem que el $\sum_{i=0}^{n} a_i x^i \in \operatorname{Ker}(\pi) \Leftrightarrow \pi(\sum_{i=0}^{n} a_i x^i) = 0 \Leftrightarrow \overline{a_i} = 0 \; \forall i \Leftrightarrow a_i \in I \; \forall i \Leftrightarrow \sum_{i=0}^{n} a_i x^i \in I[X].$

Per tant, $Ker(\pi) = I[X]$.

Aleshores, aplicant el teorema d'isomorfia en anells tenim que

$$\frac{A[X]}{I[X]} \cong \pi(A[X]) = \frac{A}{I}[X]$$