Sistemas de Telecomunicações

2ª Aula

Rede Pública Digital

Conteúdo

- Rede Pública Digital
 - Meios de transmissão
 - Rede de Transporte
 - Hierarquias Plesiócronas
 - PDH (Plesiochronous Digital Hierarchy)
 - Multiplexagem Digital Síncrona
 - Multiplexagem Digital Assíncrona
 - Hierarquia Síncrona
 - SDH (Synchronous Digital Hierarchy)

- As linhas de transmissão nas redes fixas de telecomunicações e de redes de área local, são essencialmente constituídas por pares de cobre (apesar das suas limitações em distância e em largura de banda)
- A utilização de cabos coaxiais, de feixes hertzianos ou de satélites estacionários, permite aumentar a capacidade de transmissão para muito longas distâncias
- Mercê da elevada largura de banda e baixa atenuação, as fibras ópticas são vulgarmente utilizadas como meio de transmissão
 - não só em percursos longos e taxas de transmissão elevadas (por exemplo, em cabos transoceânicos e terrestres),
 - mas também em redes locais de alto débito

- A definição de protocolos de acesso a meios partilhados,
 - garantindo privacidade na transmissão via rádio,
- permitem a exploração de serviços móveis,
 - em redes celulares,
 - em redes de satélites de órbitas baixas,
 - em redes locais sem fios
- A rede pública digital, onde se interliga a rede de utilizador, obedece a especificações, definidas em normas internacionais, e integram várias tecnologias de suporte, que apresentam uma topologia típica que engloba dois subsistemas:
 - a rede de transporte
 - a rede de acesso, que poderá apresentar particular complexidade na interligação de sistemas móveis

- Os sistemas de transmissão digitais, baseados em agregados multiplexados de tramas,
 - podem ser combinados entre si de uma forma hierárquica flexível,
- ou
 - interligados a sistemas electrónicos de comutação espacial e temporal
- Dois sistemas em funcionamento:
 - Hierarquias Plesiócronas
 - PDH (*Plesiochronous Digital Hierarchy*)
 - Hierarquia Síncrona
 - SDH (Synchronous Digital Hierarchy)

Hierarquias Plesiócronas

José Manuel Cabral

Departamento de Electrónica Industrial

Escola de Engenharia

Universidade do Minho

- Não existiu consenso a nível mundial na definição dos sistemas hierárquicos plesiócronos (PDH), pelo que coexistem dois sistemas:
 - Na Europa e em muitos outros países foi adoptado o sistema designado por PDH-1,
 - Nos Estados Unidos e no Japão adoptou-se um sistema diferente, designado por PDH-2
- Os canais afluentes (tributários) das hierarquias plesiócronas não são sincronizados por um relógio comum,
 - são, por isso, tolerados pequenos desvios nos débitos dos tributários em relação ao débito nominal, que são controlados pela própria técnica de multiplexagem.

Hierarquias Plesiócronas

Características dos vários níveis das hierarquias plesiócronas

Nível	Sistemas de Transmissão Plesiócronos											
da		PDH-1	PDH-2									
Hierarquia	Débito	Capacidade	Débito	Capacidade								
	(kbit/s)	$(N^{\underline{o}}\ de\ Canais)$	(kbit/s)	$(N^{\underline{o}} \ de \ Canais)$								
	64	В	64	В								
10	2 048	H12 = 30B	1544	H11 = 24B								
20	8 448	$4 \times H12$	6312	$4 \times H11$								
30	34 368	$H21 = 4 \times 4 \times H12$	32064	$5 \times 98B$								
			44736	$H22 = 7 \times H11$								
40	139 264	$H4 = 4 \times H21$	97728	$3 \times 5 \times 98B$								

Hierarquias Plesiócronas

- As tramas dos sistemas PDH-1 têm um cabeçalho para sincronização e, além dos intervalos dedicados aos canais de informação, existem intervalos dedicados a canais de sinalização, para transmissão de informação referente ao controlo da alocação de recursos dos canais de informação
- A sinalização é transmitida entre utilizadores e entidades de controlo:
 - canais distintos associados a cada canal de informação
 - estruturada em mensagens suportadas num canal comum a todos os canais
- Em qualquer dos casos, no 1º nível da hierarquia do sistema PDH existe um intervalo de 64 kbit/s através do qual é feita a sinalização de canal comum ou associado.

Hierarquias Plesiócronas Alinhamento de trama

- Na recepção, o sistema de desmultiplexagem, depois de recuperar o relógio do fluxo binário de informação terá de proceder ao alinhamento da trama, identificando o respectivo início, para extrair a informação transportada em cada canal
- Para tal, o respetivo circuito electrónico, terá de identificar a palavra de alinhamento que ciclicamente está presente na informação recebida, e com ela acertar os contadores que irão identificar os intervalos de tempo associados a cada canal
- Para não se confundir a palavra de alinhamento com outra igual, que aleatoriamente poderá ser enviada na informação transportada em qualquer dos canais, esse circuito terá de executar um algoritmo de alinhamento

Hierarquias Plesiócronas Justificação

- As hierarquias plesiócronas não são sincronizadas por um relógio comum, por isso são tolerados pequenos desvios nos débitos dos tributários em relação ao débito nominal
- Nos níveis superiores duma hierarquia a fase do ciclo de repetição das tramas dos tributários será deslizante se os respectivos débitos não forem coincidentes
- A técnica utilizada no controlo das variações dos débitos dos canais afluentes (justificação) consiste em acrescentar/retirar bits da trama, conforme o necessário para adaptar os débitos binários

Multiplexagem Digital Síncrona

José Manuel Cabral

Departamento de Electrónica Industrial

Escola de Engenharia

Universidade do Minho

Princípios básicos

- Multiplexagem por Divisão no Tempo TDM (*Time Division Multiplexing*)
 - definem-se tramas de duração fixa T constituídas por c intervalos de tempo,
 - cada canal ocupa ciclicamente na trama um intervalo de n bits,
 - a identificação dos canais é feita pela posição na trama,
 - Consequência:
 - o débito de cada canal é constante
 - os relógios dos canais têm de estar sincronizados entre si
 - Débito binário de cada canal: r = n/T [bit/s]
 - Débito binário total do multiplexer: r = c n / T [bit/s]

Esquema simplificado de um multiplexador síncrono

Tipos de Entrelaçamento

- Entrelaçamento de palavras
 - cada intervalo de tempo acomoda uma palavra do código do sinal de entrada
- Entrelaçamento de bits
 - Cada intervalo de tempo suporta um único bit do correspondente sinal de entrada

Palayras de 4 bits

Alinhamento de trama

- Consiste num determinado padrão de bits repetido sucessivamente nas tramas
- Permite ao desmultiplexador identificar os limites da trama e recuperar os canais
- Tipos de palavras de alinhamento:
 - Concentrada:
 - bits consecutivos, inseridos num canal adicional em cada trama
 - Distribuída:
 - bits dispersos, inseridos ao longo de cada trama ou ao longo de cada bloco de várias tramas consecutivas

Alinhamento de trama

- Estratégia de alinhamento
 - garante imunidade a erros esporádicos na palavra de alinhamento

impede o alinhamento por eventuais imitações da

palavra de alinhamento

a: alinhado

a -> b: detecção de erro na trama n

b -> c: idem, na trama n+1

c -> d: idem, na trama n+2

d -> e: idem, na trama n+3 \rightarrow desalinhado, pesquisa bit a bit

e -> f: detecção da palavra de alinhamento

f -> g: idem, na trama seguinte

g -> a: idem, na trama seguinte → alinhado

Diagrama de estados do alinhamento de trama (exemplo)

Alinhamento de trama

- Detecção da palavra de alinhamento
 - pode utilizar-se um simples circuito com registadores de deslocamento

palavra de alinhamento detectada → 0011011

Multitrama

- Problema das tramas longas
 - alguns sinais a transmitir são de baixo débito
 - sinais de sinalização de assinantes analógicos
 - sinais de supervisão
- > as tramas teriam de ser relativamente longas (com muitos bits)
 - os tempos de alinhamento inicial e de realinhamento seriam demasiado longos
 - a palavra de alinhamento teria de ser longa para reduzir a probabilidade de imitação
 - aumentaria a probabilidade de ser frequentemente corrompida por erros ocasionais, conduzindo a um aumento suplementar dos tempos de alinhamento => qualidade de transmissão degradar-se-ia significativamente

Multitrama

Conceito de multitrama

- a trama longa passa a ser uma multitrama constituída por (sub)tramas elementares
- cada uma das novas tramas dispõe agora de uma palavra de alinhamento própria
- bits adicionais formam uma palavra de alinhamento de multitrama
- estratégia de alinhamento: primeiro de trama e depois de multitrama

Supervisão

- Objectivos
 - monitoração do desempenho dos equipamentos de transmissão
 - detecção e diagnóstico de falhas
- Informação de supervisão
 - sistemas básicos suportam apenas alarmes
 - possível a indicação remota de alarmes
- Exemplos de alarmes
 - perda de sinal de saída
 - perda de sinal de entrada
 - perda de alinhamento de trama
 - taxa de erros elevada (>10⁻³ ou >10⁻⁴, estimada na palavra de alinhamento)

Alarme remoto de perda de alinhamento de trama

Tramas

- 32 intervalos de tempo (ITO-IT31) de 8 bits
- comprimento total de 256 bits
- frequência de 8 kHz (período 125 μs)

Multitramas

- 16 tramas
- comprimento total de 4 096 bits
- frequência de 500 Hz (período 2 ms)

- Atribuição dos intervalos de tempo
 - ITO reservado para alinhamento de trama, operação e manutenção (O&M) e CRC
 - IT16 reservado para sinalização de canal associado / sinalização de canal comum (64 kbit/s)
 - 30 restantes intervalos de tempo dedicados a dados (64 kbit/s) / canais de voz (8 bits; 8 kHz; lei A)
- Sinalização de canal associado (CAS, Channel Associated Signalling)
 - 8 bits por multitrama para alinhamento de multitrama e alarme remoto
 - 4 bits por multitrama para sinalização de cada canal
 - débito de sinalização por canal: 2 kbit/s (4 bits x 500 Hz)

0011011 - palavra de alinhamento de trama

bit 2 - alterna entre tramas consecutivas para reduzir possibilidade de alinhamentos falsos

- X reservado para ligações internacional / usado para transmitir CRC (8 kbit/s), alinhamento de multitrama e alarme de erro de CRC
- A funções O&M (4 kbit/s); exemplo: indicação de alarme remoto perda de sinal, perda de alinhamento de trama, erros frequentes
- N bits reservados para uso nacional; fixos a "1" em ligações internacionais

- Multitrama de sinalização de canal associado
 - utilizada actualmente apenas na rede de acesso de assinantes analógicos
 - multiplexador remoto de assinante converte CAS do lacete em CAS sobre 4 bits

- Multitrama de verificação redundante cíclica (CRC, Cyclic Redundancy Check)
 - utilizada em praticamente todos os sistemas actuais
 - permite detectar erros de transmissão na trama e impede falsos alinhamentos

Sub multi- trama	Т	Atribuição dos bits B1 a B8 do IT0						Sub	Т	At	tribuição dos bits B1 a B8 do IT0								
	Trama	В1	B2	В3	B4	В5	B6	В7	B8	multi- trama	Trama	В1	B2	В3	B4	В5	В6	В7	В8
I	T0	C_1	0	0	1	1	0	1	1	II	T8	C_1	0	0	1	1	0	1	1
	T1	0	1	Α	N	N	N	N	N		T9	1	1	Α	N	N	N	N	N
	T2	C_2	0	0	1	1	0	1	1		T10	C_2	0	0	1	1	0	1	1
	T3	0	1	Α	N	N	N	N	N		T11	1	1	Α	N	N	N	N	N
	T4	C_3	0	0	1	1	0	1	1		T12	C_3	0	0	1	1	0	1	1
	T5	1	1	Α	N	N	N	N	N		T13	$\mathbf{E}_{\mathbf{I}}$	1	Α	N	N	N	N	N
	T6	C_4	0	0	1	1	0	1	1		T14	C_4	0	0	1	1	0	1	1
	T7	0	1	A	N	N	N	N	N		T15	E_{II}	1	A	N	N	N	N	N

palavra de alinhamento de multitrama "001011" - distribuída no bit B1 de ITO, nas 6 primeiras tramas ímpares C_n - CRC de 4 bits calculado sobre a sub-multitrama (8 tramas) anteriormente enviada E_1 / E_1 - indicação de alarme remoto de erro de CRC detectado nas sub-multitramas anteriormente recebidas

Alinhamento de trama e de multitrama de sinalização

Diagrama de estados do alinhamento de trama

Diagrama de estados do alinhamento de multitrama

3 multitramas seguidas com alinhamento de multitrama errado

16 tramas seguidas com alinhamento de multitrama consistente

a: alinhado

a→b: detecção de erro na PA b→c: idem, na trama seguinte c→d: idem, na trama seguinte d→e: detecção da PA

e→f: detecção de alternância do bit 2 f→a: detecção da PA → alinhado desalinhado, pesquisa bit a bit

- Alinhamento de trama e de multitrama baseados no CRC
 - método preferido por ser mais fiável

Sistema DS1 de 24 canais (1 544 kbit/s) Adoptado nos EUA, Canadá e Japão

Tramas

- 1 intervalo de tempo de 1 bit (bit F)
- 24 intervalos de tempo (IT1-IT24) de 8 bits
- comprimento total de 193 bits
- frequência de 8 kHz (período 125 μs

Multitramas

- 24 tramas
- comprimento total de 4 632 bits
- frequência de 333 Hz (período 3 ms)

Sistema DS1 de 24 canais (1 544 kbit/s) Adoptado nos EUA, Canadá e Japão

- Atribuição dos intervalos de tempo
 - bit F usado para alinhamento de trama e multitrama, operação e manutenção (O&M) e CRC
 - $-\,$ 24 intervalos de tempo dedicados a dados (64 kbit/s) / canais de voz (8 bits; 8 kHz; lei $\mu)$
 - (IT24 atribuído eventualmente a sinalização de canal comum)
- Sinalização de canal associado (CAS, Channel Associated Signalling)
 - bits menos significativos dos 24 canais nas tramas 6, 12, 18 e 24 são "roubados" para CAS
 - débito por canal de voz de 4 bits x 333 Hz =1 333 kbit/s
 - bits "roubados" aumentam o ruído de quantização (cerca de 1,8 dB) e reduzem para 56 kbit/s a capacidade disponível para transmissão transparente de informação

Sistema DS1 de 24 canais (1 544 kbit/s) Adoptado nos EUA, Canadá e Japão

Formato de trama do sistema DS1 de multiplexagem de 24 canais

Multiplexagem Digital Assíncrona

José Manuel Cabral

Departamento de Electrónica Industrial

Escola de Engenharia

Universidade do Minho

Princípios básicos

- Problema dos escorregamentos (*slips*):
 - sinais de entrada têm relógios não sincronizados entre si
 - sinal de saída tem um relógio próprio
 - a multiplexagem síncrona conduziria a escorregamentos
 - Inserção de bits falsos ou perda de bits

Princípios básicos

- Soluções de sincronização de relógio para compensarem as flutuações dos relógios dos sinais
 - preenchimento de bits nulos nos canais
 - pré-sincronização por canal de entrada
 - preenchimento de bits nulos entre tramas
 - sincronização conjunta

Modelo de multiplexagem assíncrona com pré-sincronização por canal de entrada

Modelo de multiplexagem assíncrona com sincronização conjunta

Sincronização de relógio por preenchimento de bits nulos nos canais

- Princípio de operação → justificação
 - excesso de bits a transmitir → redução de bits nulos no canal → justificação negativa
 - défice de bits a transmitir → aumento de bits nulos no canal → justificação Positiva

n bits n bits n bits n bits justificação nula n bits n bits n+1 bits justificação negativa n bits justificação positiva n bits *n* bits *n*-1 bits n bits ---- trama ----palavra de alinhamento trama + trama nominal n bits indicação preenchimento (n bits de informação) bit nulo de justificação

Sincronização de relógio por preenchimento de bits nulos nos canais

- Indicação de preenchimento
 - bits de controlo de justificação → Técnica usada em PDH

Tipo de justificação	Bits de controlo de justificação		Ocupação dos bits de justificação	
	J1	J2	X	Y
Nula	0	0	Nulo	Info
Negativa	1	0	Info	Info
Positiva	0	1	Nulo	Nulo

Trama hipotética com justificação controlada por bits específicos na trama

Sincronização de relógio por preenchimento de bits nulos nos canais

- Indicação de preenchimento
 - definem-se unidades de dados flutuantes nas tramas
 - apontadores indicam início das unidades de dados

→ Técnica → usada em SDH

Trama hipotética com justificação controlada por apontadores

Sincronização de relógio por preenchimento de bits nulos entre tramas

- Princípio de operação
 - excesso de bits a transmitir → redução de bits nulos entre tramas
 - défice de bits a transmitir → aumento de bits nulos entre tramas
- bandeiras removidas ou inseridas entre tramas → flag stuffing
- células nulas removidas ou inseridas entre células de informação → cell stuffing

Sequência de tramas (células) com número variável tramas (células) nulas intercaladas

Sincronização de relógio por sobreamostragem

- Princípio de operação
 - amostragem do sinal de entrada pelo relógio do multiplexador, a uma taxa elevada
 - transmissão da sequência de bits resultante
 - baixa eficiência mas extremamente simples de realizar

Erro máximo de temporização

$$E_s = \frac{f_s}{f_A} \times 100 \text{ (\%)}$$
 f_s - débito do sinal f_A - frequência de amostragem

Aplicação

transmissão de sinalização decádica ($f_S = 10 \text{ Hz}$) através de um canal de sinalização do multiplex de 2048 kbit/s ($f_A = 500 \text{ Hz}$).

- Formato básico da trama de 2 112 kbit/s
 - trama sub-dividida em sub-tramas para distribuir bits de controlo adicionados

cálculo dos débitos máximo e mínimo dos tributários

$$r_{t \text{ max}} = 2112 \times (192 + 1)/198 = 2058,7 \text{ kbit/s}$$

 $r_{t \text{ min}} = 2112 \times (192 - 1)/198 = 2037,3 \text{ kbit/s}$

satisfatório face à tolerância 2048 kbit/s ±50 ppm

- Modo de operação do multiplexador
 - Informação é escrita numa memória tipo FIFO a um débito de 2048 kbit/s
 - FIFO é lida a 2112 kbit/s, com interrupções para inserir bits de controlo

- Modo de operação do multiplexador
 - se não houvesse justificação, o nível da FIFO não seria controlado
 - quando o nível da FIFO ultrapassa a região de operação, introduz-se justificação

Modelo simplificado do desmultiplexador

- Modo de operação do desmultiplexador
 - informação é escrita numa FIFO a 2112 kbit/s com supressão de bits de controlo
 - PLL recupera um relógio contínuo idêntico ao original a 2048 kbit/s
 - bits da memória FIFO são extraídos utilizando este relógio

- Jitter de multiplexagem
 - relógio de escrita na memória FIFO possui ciclos suprimidos correspondentes aos bits de controlo
 - variações de fase resultantes designam-se de jitter de multiplexagem
 - amplitude do jitter de multiplexagem é de 1, 2 ou 3 intervalos de bit
 - PLL tem como função eliminar, ou pelo menos atenuar, este jitter

- jitter de muito baixa frequência não é removido
- formato de trama escolhido deverá evitar a ocorrência deste tipo de jitter

- Optimização do formato da trama de 2112 kbit/s
 - erro nos bits de controlo de justificação acarretaria perda de sincronismo
 - transmitem-se em triplicado e distribuídos na trama para aumentar fiabilidade
 - alteração da relação n = bits de informação / bits de controlo permite um único tipo de justificação

- Formato normalizado da trama de 2112 kbit/s
 - formato adoptado nas normas é irregular
 - eliminam-se bits não utilizados
 - reduz jitter de multiplexagem

$$n = 34\frac{1}{3}$$

cálculo dos débitos máximo e mínimo dos tributários

$$r_{t \text{ max}} = 2112 \times (206 + 0)/212 = 2052,2 \text{ kbit/s}$$

$$r_{t \text{ min}} = 2112 \times (206 - 1)/212 = 2042,3 \text{ kbit/s}$$

satisfatório face à tolerância 2048 kbit/s ±50 ppm

Hierarquia de multiplexagem plesiócrona (PDH)

- Sistema hierárquico
 - cada sinal de um nível é obtido a partir de n tributários do nível anterior
 - os tributários são assíncronos, mas com o mesmo débito nominal (plesiócronos)
 - a multiplexagem é assíncrona com justificação positiva / nula

Hierarquia de multiplexagem plesiócrona (PDH)

Multiplexagem de 2 para 8 Mbit/s

Hierarquia de multiplexagem plesiócrona (PDH)

Vantagens:

- número de sistemas normalizados reduzidos a um pequeno conjunto
- níveis adaptados aos sistemas de transmissão de alto débito então existentes (pares simétricos, cabos coaxiais, feixes hertzianos, fibras ópticas)
- crescimento através da adição de novos equipamentos mantendo os anteriores

Limitações:

- taxas de transmissão limitadas a cerca de 500 Mbit/s
- capacidade rudimentar de operação e manutenção
- reconfiguração simples mas manual (alteração física de ligações nos repartidores)
- acesso a um tributário obriga à desmultiplexagem de todos os níveis superiores

Bibliografia

- Mário Jorge Leitão, "Sistemas de Multiplexagem Digital", FEUP, Universidade do Porto.
- ITU-T Recommendation G.732: "Characteristics of primary PCM multiplex equipment operating at 2048 kbit/s."
- P. V. Sreekanth, Digital Transmission Hierarchies and Networks: PDH, SDH and OTH, Orient Blackswan; 1 edition, December 16, 2010.
 - ISBN-13: 978-8173716997