Table 1. Effects of the suppression of the expression of PSD-95/SAP90 in the spinal cord on the N-methyl-D-aspartate-induced thermal hyperalgesia

					Assessed to the second		The state of the s	
	Control	NMDA	MK-801 + NMDA	K-801 + NMDA DNQX + NMDA	AS $(25 \mu g) + NMDA$	AS $(50 \mu g) + NMDA$	SE (50 µg) + NMDA	MS (50 µg) + NMDA
ΔTF latency (%)	-1.23 ± 1.48	$-25.84 \pm 1.91*$	$0.9 \pm 3.0***$	$-22.6 \pm 3.13*$	$-11.65 \pm 2.46 ** .* ***$	$-4.72 \pm 2.49***$	-21.48 ± 1.55 *	-20.96 ± 1.68 *
						Andrew Transport of the Control of t		

Percentage change of TF latency was calculated as described in the Experimental Procedures. AS: antisense; SE: sence; MS: missense. Data are presented as mean ± S.E.M. of six to 12 animals in each group.

**P < 0.05 significantly different from control.

***P < 0.05 significantly different from NMDA alone.

***P < 0.05 significantly different from NMDA alone.

Table 2. Effects of Antisense (AS), Sense (SE), and Missense (SE) Oligodeoxyribonucleotides and Saline on Isoflurane MAC, Blood Pressure (BP), and Heart Rate

	Saline (n = 14)	12.5 μ g AS ($n = 6$)	. 25 µg AS (n = 6)	$50 \mu g AS$ (n = 6)	50 μg SE (n = 6)	50 μg MS (n = 6)
MAC .	1,16 ± 0.08	1.15 ± 0.18	0.98 ± 0,14*	0.72 ± 0.05	1,15 ± 0.21	1,13 ± 0,15
Systolic Diastolic	119,86 ± 10.58 106.36 ± 7.78	127.58 ± 11.72 112.58 ± 7.14	122.75 ± 10.81 105.83 ± 7.89	129.58 ± 11.73 112.50 ± 11.20	126.67 ± 10.40 105.58 ± 13.07	121.33 ± 15.84 105.75 ± 11.40
Heart rate (beats/min)	513.00 ± 40.78	534.80 ± 29.13	541.20 ± 16.70	514.20 ± 62.20	529.60 ± 22.61	524.70 ± 44.90

* P < 0.01 versus saline-treated (control) group. MAC ** minimum alveolar concentration.

Table 3. Mean (SD) Changes in Locomotor Test

Agents	Placing	Grasping	Righting
Saline	5 (0)	5 (0)	5 (0)
12.5 μg AS	5 (0)	5 (0)	5 (0)
25 μg AS	5 (0)	5 (0)	5 (0)
50 μg AS	4.83 (0.41)	4.67 (0.52)	4.83 (0.41)
50 μg SE	5 (0)	5 (0)	5 (0)
50 μg MS	5 (0)	5 (0)	5 (0)
Saline + 1.25 μg NMDA	5 (0)	5 (0)	5 (0)
50 μg AS + 1.25 μg NMDA	4.83 (0.41)	4.83 (0.41)	4.83 (0.41)

N = 6, five trials.

AS = antisense; SE = sense, MS = missense; NMDA = N-methyl-p-aspartate.