Università degli studi di Modena e Reggio Emilia Dipartimento di Scienze Fisiche, Informatiche e Matematiche Corso di laurea in Informatica A.A. 2016-2017

Improving the BFQ I/O Scheduler

From porting to Android to analysis and boosting of performance

Candidato: Luca Miccio

Relatore: Dott. Paolo Valente

Correlatore: Dott. Mauro Andreolini

I/O Scheduler

- Sceglie l'ordine di servizio delle richieste di I/O
- Obiettivi
 - Alto I/O throughput, bassa latenza, alta reattività, fairness
- Algoritmi attuali in Linux
 - BFQ, Noop, CFQ, Deadline

Budget Fair Queueing

- Scheduler gerarchico
 - Scelta processo da servire
 - Scelta della quantità di servizio in base al budget

- Pro
 - Bassa latenza
 - Alto throughput

Problemi

- Funzionali
 - O BFQ non presente in Android
- Prestazionali
 - Basso throughput su dispositivi flash storage
 - O Bassa **latenza** non sempre rispettata
 - O Throughput max. sostenibile più basso degli altri algoritmi

Approccio risolutivo

- Integrazione BFQ in Android
- Analisi prestazioni e profiling
- Risoluzione problemi incontrati
 - Correzione meccanismo idling
 - Disattivazione write-back throttling
 - Overhead

Demo

"Se un'immagine vale più di e^{6,90778} parole, un video è un vero e proprio tesoro"

Aumento throughput

- Analisi overhead BFQ
 - Obiettivo: aumento throughput max.
 - O Strumenti: Perf, eBPF, Flame Graph
- Benchmark: IOSpeed
 - Implementato da zero (C, BASH)
 - O Generatore carico sequenziale e random
 - O Distribuzione carico su N thread

Flame Graph kernel

Overhead: find next bit

```
_find_next_bit
                     _f.. find_next_bit
              cpumask_next
      percpu_counter_sum
 blkg_rwstat_read
blkg_rwstat_total
bfqg_stats_update_avg_queue_size
```

 Costo: circa il 50% del tempo della funzione chiamante

Aumento throughput - ARM

Aumento throughput - Desktop

"Honestly, this code is too ugly to live..."

"...but the rest of the pull looks ok, so I'll take it anyway"

Conclusioni

- Integrazione con Android
- Aumento throughput fino al 125% su flash storage
- Aumento throughput massimo sostenibile dallo scheduler fino al 90%

. Grazie dell'attenzione

Backup slide

Linux in Android

Android OS market share

Linux in HPC

Linux systems in Top 500 HPC

Write-back throttling

- Write-back throttling vs. euristiche BFQ
- Soluzione necessaria: disattivazione writeback throttling
- Nessuna perdita delle garanzie di BFQ
- 1 patch in mainline dalla versione 4.14 del kernel Linux

Boost throughput - risultati

 2 patch in mainline dalla versione 4.13 del kernel Linux

Risultati - INTEL

Risultati - AMD

Risultati - Hikey Board

