DSC640 Week7-8

Assignment 4.2

Name: Madhuri Basava

Date: 07/23/2024

```
In [1]: # Import the necessary libraries
   import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns

# Ignore warningsB
   import warnings
   warnings.filterwarnings('ignore')

# Set the style of matplotlib
%matplotlib inline
```

```
In [2]: # Load the players dataset into the data frame
    ppg_df = pd.read_csv('ppg2008.csv')
    ppg_df.head(10)
```

Out[2]:		Name	G	MIN	PTS	FGM	FGA	FGP	FTM	FTA	FTP	•••	3PA	3PP	ORB	DRB	TRB
	0	Dwyane Wade	79	38.6	30.2	10.8	22.0	0.491	7.5	9.8	0.765		3.5	0.317	1.1	3.9	5.0
	1	LeBron James	81	37.7	28.4	9.7	19.9	0.489	7.3	9.4	0.780		4.7	0.344	1.3	6.3	7.6
	2	Kobe Bryant	82	36.2	26.8	9.8	20.9	0.467	5.9	6.9	0.856		4.1	0.351	1.1	4.1	5.2
	3	Dirk Nowitzki	81	37.7	25.9	9.6	20.0	0.479	6.0	6.7	0.890		2.1	0.359	1.1	7.3	8.4
	4	Danny Granger	67	36.2	25.8	8.5	19.1	0.447	6.0	6.9	0.878		6.7	0.404	0.7	4.4	5.1
	5	Kevin Durant	74	39.0	25.3	8.9	18.8	0.476	6.1	7.1	0.863		3.1	0.422	1.0	5.5	6.5
	6	Kevin Martin	51	38.2	24.6	6.7	15.9	0.420	9.0	10.3	0.867		5.4	0.415	0.6	3.0	3.6
	7	Al Jefferson	50	36.6	23.1	9.7	19.5	0.497	3.7	5.0	0.738		0.1	0.000	3.4	7.5	11.0
	8	Chris Paul	78	38.5	22.8	8.1	16.1	0.503	5.8	6.7	0.868		2.3	0.364	0.9	4.7	5.5
	9	Carmelo Anthony	66	34.5	22.8	8.1	18.3	0.443	5.6	7.1	0.793		2.6	0.371	1.6	5.2	6.8

10 rows × 21 columns

In [3]: ppg_df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50 entries, 0 to 49
Data columns (total 21 columns):
 # Column Non-Null Count Dtype
--- ----- ------
 0 Name
              50 non-null
                                  object
 1 G 50 non-null int64
2 MIN 50 non-null float64
3 PTS 50 non-null float64
 4 FGM 50 non-null float64
5 FGA 50 non-null float64
 6 FGP 50 non-null float64
7 FTM 50 non-null float64
 8 FTA
             50 non-null
                                float64
             50 non-null
 9 FTP
                                float64
 10 3PM
             50 non-null float64
            50 non-null float64
50 non-null float64
 11 3PA
 12 3PP
 13 ORB 50 non-null
                                float64
 14 DRB 50 non-null float64

      15
      TRB
      50 non-null
      float64

      16
      AST
      50 non-null
      float64

      17
      STL
      50 non-null
      float64

             50 non-null
 18 BLK
                                float64
               50 non-null
 19 TO
                                 float64
 20 PF
               50 non-null float64
dtypes: float64(19), int64(1), object(1)
memory usage: 8.3+ KB
```

```
In [4]: # Create Heat Map

# Trim whitespace from column names
ppg_df.columns = ppg_df.columns.str.strip()

# set `NAME` column as index in the dataframe
ppg_df.set_index('Name', inplace=True)

# Create the heatmap
plt.figure(figsize=(10, 6))
sns.heatmap(ppg_df, annot=True, fmt=".2f", cmap="GnBu")

# Rotate y-axis Labels for better readability
plt.yticks(rotation=0)

# Set title
plt.title('Players Heatmap')

# Show plot
plt.show()
```


In []:

In [5]: #Load the costco geocoded dataset into a Pandas data frame.
geocoded_df=pd.read_csv("costcos-geocoded.csv")
geocoded_df

Out[5]:		Address	City	State	Zip Code	Latitude	Longitude
	0	1205 N. Memorial Parkway	Huntsville	Alabama	35801-5930	34.743095	-86.600955
	1	3650 Galleria Circle	Hoover	Alabama	35244-2346	33.377649	-86.812420
	2	8251 Eastchase Parkway	Montgomery	Alabama	36117	32.363889	-86.150884
	3	5225 Commercial Boulevard	Juneau	Alaska	99801-7210	58.359200	-134.483000
	4	330 West Dimond Blvd	Anchorage	Alaska	99515-1950	61.143266	-149.884217
	•••						
	412	19610 SE 1st St	Vancouver	Washington	98607	45.621299	-122.459135
	413	10990 Harbor Hill Dr	Gig Harbor	Washington	98335	47.357748	-122.603888
	414	27520 Covington Way SE	Covington	Washington	98042	47.354838	-122.121185
	415	2150 Deming Way	Middleton	Wisconsin	53562-5507	43.100195	-89.522751
	416	950 Port Washington Rd	Grafton	Wisconsin	53024-9201	43.324691	-87.921615

417 rows × 6 columns

In [6]: geocoded_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 417 entries, 0 to 416
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	Address	417 non-null	object
1	City	417 non-null	object
2	State	417 non-null	object
3	Zip Code	417 non-null	object
4	Latitude	417 non-null	float64
5	Longitude	417 non-null	float64

dtypes: float64(2), object(4)

memory usage: 19.7+ KB

In [7]: !pip install geopandas
!pip install geodatasets

```
Requirement already satisfied: geopandas in c:\users\madhu\anaconda3\lib\site-pack
        ages (1.0.1)
        Requirement already satisfied: numpy>=1.22 in c:\users\madhu\appdata\roaming\pytho
        n\python39\site-packages (from geopandas) (1.26.1)
        Requirement already satisfied: pyogrio>=0.7.2 in c:\users\madhu\anaconda3\lib\site
        -packages (from geopandas) (0.9.0)
        Requirement already satisfied: packaging in c:\users\madhu\appdata\roaming\python
        \python39\site-packages (from geopandas) (23.2)
        Requirement already satisfied: pandas>=1.4.0 in c:\users\madhu\anaconda3\lib\site-
        packages (from geopandas) (2.1.1)
        Requirement already satisfied: pyproj>=3.3.0 in c:\users\madhu\anaconda3\lib\site-
        packages (from geopandas) (3.6.1)
        Requirement already satisfied: shapely>=2.0.0 in c:\users\madhu\anaconda3\lib\site
        -packages (from geopandas) (2.0.5)
        Requirement already satisfied: python-dateutil>=2.8.2 in c:\users\madhu\anaconda3
        \lib\site-packages (from pandas>=1.4.0->geopandas) (2.8.2)
        Requirement already satisfied: pytz>=2020.1 in c:\users\madhu\anaconda3\lib\site-p
        ackages (from pandas>=1.4.0->geopandas) (2023.3.post1)
        Requirement already satisfied: tzdata>=2022.1 in c:\users\madhu\anaconda3\lib\site
        -packages (from pandas>=1.4.0->geopandas) (2023.3)
        Requirement already satisfied: certifi in c:\users\madhu\appdata\roaming\python\py
        thon39\site-packages (from pyogrio>=0.7.2->geopandas) (2023.7.22)
        Requirement already satisfied: six>=1.5 in c:\users\madhu\appdata\roaming\python\p
        ython39\site-packages (from python-dateutil>=2.8.2->pandas>=1.4.0->geopandas) (1.1
        Requirement already satisfied: geodatasets in c:\users\madhu\anaconda3\lib\site-pa
        ckages (2024.7.0)
        Requirement already satisfied: pooch in c:\users\madhu\anaconda3\lib\site-packages
        (from geodatasets) (1.8.2)
        Requirement already satisfied: platformdirs>=2.5.0 in c:\users\madhu\anaconda3\lib
        \site-packages (from pooch->geodatasets) (3.10.0)
        Requirement already satisfied: packaging>=20.0 in c:\users\madhu\appdata\roaming\p
        ython\python39\site-packages (from pooch->geodatasets) (23.2)
        Requirement already satisfied: requests>=2.19.0 in c:\users\madhu\appdata\roaming
        \python\python39\site-packages (from pooch->geodatasets) (2.31.0)
        Requirement already satisfied: charset-normalizer<4,>=2 in c:\users\madhu\appdata
        \roaming\python\python39\site-packages (from requests>=2.19.0->pooch->geodatasets)
        (3.3.2)
        Requirement already satisfied: idna<4,>=2.5 in c:\users\madhu\appdata\roaming\pyth
        on\python39\site-packages (from requests>=2.19.0->pooch->geodatasets) (3.4)
        Requirement already satisfied: urllib3<3,>=1.21.1 in c:\users\madhu\appdata\roamin
        g\python\python39\site-packages (from requests>=2.19.0->pooch->geodatasets) (2.0.
        Requirement already satisfied: certifi>=2017.4.17 in c:\users\madhu\appdata\roamin
        g\python\python39\site-packages (from requests>=2.19.0->pooch->geodatasets) (2023.
        7.22)
In [8]: from shapely.geometry import Point
        import geopandas as gpd
        from geopandas import GeoDataFrame
        import geodatasets
        geometry = [Point(xy) for xy in zip(geocoded_df['Longitude'], geocoded_df['Latitude']
        gdf = GeoDataFrame(geocoded_df, geometry=geometry)
```

This is a simple map with geopandas

```
world = gpd.read_file(geodatasets.data.naturalearth.land['url'])
gdf.plot(ax=world.plot(figsize=(10, 6)), marker='o', color='orange', markersize=15)
```



```
In [10]: # Create Lollipop chart

# Load the players dataset into the data frame
ppg_df = pd.read_csv('ppg2008.csv')

# Trim whitespace from column names
ppg_df.columns = ppg_df.columns.str.strip()

plt.figure(figsize=(10, 6))
plt.stem(ppg_df['Name'], ppg_df['PTS'], linefmt='b-', markerfmt='go', basefmt='k-')
plt.xticks(rotation=45, ha='right')
plt.xlabel('Player')
plt.ylabel('Points per Game')
plt.title('Points per Game by Player (Lollipop Chart)')
plt.tight_layout()

# Show plot
plt.show()
```

