数据分析作业

学生姓名:		郑传权
学	号:	2015409020134
学	院:	理学院
班	级:	信计 151

2017年10月

第一章

选题: 1.3

1978年至1999年我国居民消费数据表见表1:

城镇居民 年份 全国居民 农村居民

表 1 全国居民消费数据(单位:元)

(1) 计算均值、方差、标准差、变异系数、偏度、峰度;

- (2) 计算中位数、上、下四分位数、四分位极差、三均值;
- (3) 作出直方图;

- (4) 作出茎叶图;
- (5) 找出异常值。

解:问题的求解用到了 Matlab2016a,源程序见附录,通过运行程序,得出结果如下:

(1) 计算均值、方差、标准差、变异系数、偏度、峰度,结果见表 2。

表 2 均值、方差、标准差、变异系数、偏度、峰度求解结果

居民	全国居民	农村居民	城镇居民
计算项			
均值	1119.86	747.86	2336.41
方差	979746.12	381506.85	4329948.42
标准差	989.82	617.66	2080.85
变异系数	0.88	0.83	0.89
偏度	0.96	0.94	0.90
峰度	2.38	2.38	2.29

(2) 计算中位数、上、下四分位数、四分位极差、三均值,结果见表 3。 表 3 中位数、上、下四分位数、四分位极差、三均值求解结果

居民	全国居民	农村居民	城镇居民
计算项			
中位数	727.50	530.50	1499.50
上四分位数	1746.00	1118.00	3891.00
下四分位数	311.00	246.00	603.00
四分位极差	1435.00	872.00	3288.00
三均值	878.00	606.25	1873.25

(3) 作出直方图,如图1所示。

图 1 频数分布直方图

(4) 茎叶图见表 4。

表 4 茎叶图

全国居民	农村居民	城镇居民
180 4	130 8	400 5
230 6	150 8	430 4
260 2	170 8	490 6
270 0	190 9	560 2
280 4	220 1	570 6
310 1	240 6	600 3
350 4	280 3	660 2
430 7	340 7	800 2
480 5	370 6	920 0
550 0	410 7	1080 9
690 3	500 8	1430 1
760 2	550 3	1560 8
800 3	570 1	1680 6
890 6	620 1	1920 5
1070 0	710 8	2350 6
1330 1	850 5	3020 7
1740 6	1110 8	3890 1
2330 6	1430 4	4870 4
2640 1	1760 8	5430 0
2830 4	1870 6	5790 6
2970 2	1890 5	6210 7
3180 0	1970 3	6650 1

(5) 异常值。异常值检测范围:

$$X = \{x | x < Q1 - 1.5d_4, \ \vec{x} > Q3 + 1.5d_4\}$$

,其中 Q1 为下四分位数,Q3 为上四分位数, d_4 为四分位极差。即:见表 5。

	全国居民	农村居民	城镇居民
下界	-1841.50	-1062.00	-4329.00
上届	3898.50	2426.00	8823.00

从表5可知,表一中居民消费数据无异常值。

附录

```
Matlab 源程序:
clear;
clc;
data=xlsread('G:\作业\数据分析作业.xlsx','全国居民消费数据','B2:D23');
quanguo=data(:,1);
nongcun=data(:,2);
chengzhen=data(:,3);
%居民平均消费
d_=mean(data);
%居民消费方差
d var=var(data,1);
%居民消费标准差
d_std=std(data,1);
%变异系数
d_b=d_std./abs(d_);
%偏度系数
d_p=skewness(data);
%峰度系数
d_f=kurtosis(data);
%中位数
d z=median(data);
%四分位极差
d_4=iqr(data);
%上下四分位数
Q3=prctile(data,75);
Q1=prctile(data,25);
X1=Q1-1.5.*d_4;
X2=Q3+1.5.*d_4;
%三均值
M_=1/4.*Q1+1/2.*d_z+1/4.*Q3;
%4 分位标准差
d 4std=d 4./1.349;
%频数分布直方图
hist(data,10);
xlabel('X')
ylabel('Y')
grid on
legend('全国居民','农村居民','城镇居民')
%茎叶图
```

%全国居民

```
leaf = mod(quanguo',10);
stem = quanguo'-leaf;
stem_u = unique(stem);
m = numel(stem u);
fid = fopen('stemleaf quanguo.txt','w');
for i = 1:m
    [h,k] = find(stem == stem_u(i));
    n = numel(h);
    fprintf(fid,num2str(stem u(i)));
    fprintf(fid,'|');
    for j=1:n
         fprintf(fid,num2str(leaf(k(j))));
         if j \sim = n
              fprintf(fid,',');
         end
    end
    fprintf(fid,'\n');
end
fclose(fid);
%农村居民
leaf = mod(nongcun',10);
stem = nongcun'-leaf;
stem_u = unique(stem);
m = numel(stem u);
fid = fopen('stemleaf nongcun.txt','w');
for i = 1:m
    [h,k] = find(stem == stem_u(i));
    n = numel(h);
    fprintf(fid,num2str(stem u(i)));
    fprintf(fid,'|');
    for j=1:n
         fprintf(fid,num2str(leaf(k(j))));
         if j \sim = n
              fprintf(fid,',');
         end
    end
    fprintf(fid,'\n');
end
fclose(fid);
%城镇居民
leaf = mod(chengzhen',10);
stem = chengzhen'-leaf;
```

```
stem_u = unique(stem);
m = numel(stem_u);
fid = fopen('stemleaf_chengzhen.txt','w');
for i = 1:m
    [h,k] = find(stem == stem_u(i));
    n = numel(h);
    fprintf(fid,num2str(stem_u(i)));
    fprintf(fid,'|');
    for j=1:n
         fprintf(fid,num2str(leaf(k(j))));
         if j \sim = n
             fprintf(fid,',');
         end
    end
    fprintf(fid,'\n');
end
fclose(fid);
%异常值检测范围: X<Q1-1.5d_4, 或 X>Q3+1.5d_4
```