Моделирование СМО при байесовском подходе

Сизов Александр Юрьевич, гр. 522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: д.ф.-м.н., проф. Ермаков С.М. Рецензент: к.ф.-м.н. Шпилёв П.В.

Санкт-Петербург 2011г.

Основные понятия

Структуру СМО принятно обозначать последовательностью символов - A|B|n|m, где:

- А распределение входящего потока требований.
- ullet B распределение времен обслуживания.
- n количество приборов в системе.
- *m* количество мест ожидания.

Одними из наиболее интересных и практически полезных характеристик СМО являются коэффициент загрузки ρ и π — вероятность того, что входящий в СМО вызов не будет потерян. В этой работе будут рассматриваться системы вида M|M|n|0, где M — соответствует показательному распределению.

Байесовские СМО

Одним из усложнений классических СМО может быть ситуация, когда априори не известны параметр входящего потока λ и параметр обслуживания μ , а известны только их распределения.

Если рассматривать целый класс таких СМО,

«рандомизированных» относительно некоторых параметров, то получим байесовскую СМО, для которой характеристики ρ и π становятся случайными величинами.

В случае СМО вида M|M|1|0 они вычисляются по формулам:

$$\rho = \frac{\lambda}{\mu} \qquad \qquad \pi = \frac{1}{1+\rho} = \frac{\mu}{\lambda + \mu},$$

В рамках изучения байесовских СМО, нахождение функции распределения, плотности и первых двух моментов с.в. ρ и π , представляет большой интерес.

Аналитический подход

Если принять предположение, что в рассматриваемой байесовской СМО наступил стационарный режим, то можно аналитически найти характеристики с.в. ρ и π .

- Кудрявцев А.А., Шоргин С.Я. Байесовский подход к анализу систем массового обслуживания и показательной надежности // Информатика и её применения, 2007. Т. 1. Вып. 2. С. 76—82.
- Кудрявцев А.А., Шоргин С.Я. Байесовские модели массового обслуживания и надежности: экспоненциально-эрланговский случай // Информатика и её применения, 2009. Т. 3. Вып. 1. С. 44—48.
- Кудрявцев А.А., Шоргин В.С., Шоргин С.Я. Байесовские модели массового обслуживания и надежности: общий эрланговский случай // Информатика и её применения, 2009. Т. 3. Вып. 4. С. 30—34.

Аналитические результаты

Таблица: Исследованные аналитически пары распределений

λ μ	Sing	Exp	Unif	Erlang
Sing	*	+	-	+
Sing Exp Unif	\oplus	+	-	+
Unif	-	-	+	-
Erlang	\oplus	+	-	\oplus

Символ «*» соответствует исходной постановке задачи, символ «-» — тем парам, которые еще не были рассмотрены авторами, символом «+» — распределениям, для которых по тем или иным причинам были найдены не все характеристики, или же некоторые из них обращаются в бесконечность. И наконец, символом « \oplus » отмечены распределения, для которых найдены плотности распределения $f_{\rho}(x)$ и $f_{\pi}(x)$ случайных величин ρ и π , а также, для каждой из них существуют (возможно при некоторых ограничениях) два первых момента.

Сравнение разных подходов

Таблица: Сравнение двух подходов

Аналитический метод	Метод моделирования		
Требует индивидуально-	Универсален		
го рассмотрения каждого			
случая			
Годится только для исследо-	Подходит также и для пере-		
вания стационарного режима	ходного режима		
Позволяет строить гладкие	Также есть возможность		
функции исследуемых харак-	строить гладкие функции,		
теристик, а также выделять	и предполагать наличие		
особенности	особенностей		
Вычисление конкретных	Моделирование системы мо-		
значений происходит почти	жет занять некоторое время		
мгновенно			

Цель

Цели работы:

- Написать программу, которая методом моделирования получает характеристики для СМО, рассмотренных при аналитическом подходе. Оценить точность получаемых прогнозов. Обосновать преимущества метода Монте-Карло.
- Добавить в программу возможность работы с переходным режимом, исследовать получаемые результаты.

Увеличение точности прогнозов

На графиках отображено увеличение точности приближения с увеличением количества рассматриваемых устройств N.

Рис.: Увеличение точности прогнозов

Построение гладких графиков

Использование метода зависимых испытаний позволяет получать гладкие графики методом моделирования. [Ермаков С.М. Метод Монте-Карло и смежные вопросы. 2-ое изд. Наука, 1975. С. 472.]

Рис.: Результаты метода зависимых испытаний

Построение плотностей

Типичный пример плотностей, получаемых двумя методами.

Рис.: Плотности распределений

Случай бесконечного математического ожидания

В рассматриваемом случае $E \rho = \infty.$

Дальнейшую проверку можно проводить проверяя статистическую гипотезу.

Рис.: Случай бесконечного математического ожидания

Переходный режим

Когда рассматриваем переходный режим, считаем, что система проработала только заданное время T. В этом случае $\mathsf{P}(\pi=1) \neq 0.$

Рис.: Плотности распределений в двух случаях

Характеристики переходного режима

99.5%-доверительные интервалы позволяют получить представление о точности получаемых значений.

Рис.: Зависимость получаемых характеристик от N

Отличие переходного и стационарного режимов

В случае, когда значение T «не очень велико» (когда существуют системы, в которых были выполнены все заявки) получаемые значения могут отличаться в несколько раз.

Рис.: Отличие моментов ho и π

Результаты работы

Результаты работы:

- Разработан алгоритм и программа, которая реализует решение поставленной задачи.
- Показаны преимущества метода моделирования.