We can prove the direct implication by contradiction. Let $A \times B = B \times A$ and $A \neq B$.

Without loss of generality, we assume $A \not\subset B$

and so there exists $a \in A$ such that $a \notin B$. Let $b \in B$, then $(a,b) \in A \times B = B \times A$

Contradiction.

and so $a \in B$.

The converse is trivial.