Linear Algebra MATH 325: Assignment 7

(Due in class, March 22)

Problem 1: Find all real numbers a, b such that the map

$$\left(\left(\begin{array}{c} x_1 \\ x_2 \end{array} \right), \left(\begin{array}{c} y_1 \\ y_2 \end{array} \right) \right) \longmapsto \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right)^T \cdot \left(\begin{array}{c} a & 1 \\ 1 & b \end{array} \right) \cdot \left(\begin{array}{c} y_1 \\ y_2 \end{array} \right)$$

is an inner product on \mathbb{R}^2 ? Here T is the transpose.

Problem 2: Which of the following two maps are inner products on \mathbb{R}^3 ?

(a) $\left\langle \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \right\rangle := x_1y_1 + 2x_2y_2 + 3x_3y_3.$

(b)
$$\langle \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \rangle :=$$

 $x_1y_1 + 2x_1y_2 + x_1y_3 + 2x_2y_1 + x_2y_2 + x_3y_1 - x_3y_3$.

Problem 3: Give an orthonormal basis of the orthogonal complement of $v = \begin{pmatrix} 2 \\ 0 \\ 5 \end{pmatrix}$ in the inner product space \mathbb{R}^3 with the usual Euclidean inner product.

Problem 4: Let $\langle -, - \rangle$ be the usual Euclidean scalar product on \mathbb{R}^n and $||v|| := \sqrt{\langle v, v \rangle}$ the associated norm. Let $v, w \in \mathbb{R}^n \setminus \{0\}$. Show that ||v|| = ||w|| if and only if v + w is orthogonal to v - w.