2022 NYCU OS HW2 report

Question

Answer

Q1. (5pts)

Briefly describe your design for the add, multiple function of matrix, the thread management.

Also, describe the number of threads in the Multi-thread program.

將複雜度最高的矩陣乘法 O(n^3) 以最外層的迴圈分成 n 份,main 先開 n-1 個thread 處理前 n-1 份,main 再處理最後一份及矩陣加法、輸出加法答案,再thread join ,最後輸出乘法答案。在自己電腦跑時,基本上 thread 越多越快,然而在工作站則是 4 個 thread 最好。 Iscpu可以得知工作站 CPU 最多支援 4 個thread,再多硬體不支援,實際上也不是平行運算,還要增加切換所耗費時間。

Q2. (15pts)

Try at least 3 kinds of number of threads, and compare the difference in time.(Take screenshots of the time of each case)
Also, explain the results.

上圖分別為 2、10、20 個 thread 在本機的結果,基本上越多 thread 效率越好,但變好的幅度降低,下方附有更詳盡的結果,當 thread 數量碰上硬體限制也就不降反升,且 thread 到一定數量能增加的速率便不划算。

Q3. (10pts)

Show the best speedup between multithread and single-thread. (Take screenshots of the time of single-thread and multithread)

Also, explain why multi-thread is faster.

Speedup: 0.511/0.110 = 4.645 在硬體支援的情況下 multi thread 可以同時運作,即可以平行進行運算,自然可以比 Sigle thread 更快算出結果。

Script 執行 Single thread 與 2~20 個的 Multi thread 結果:

本機	工作站
Single thread:	Single thread:
real 0m0.506s	real 0m0.979s
user 0m0.478s	user 0m0.712s
sys 0m0.000s	sys 0m0.004s
Multi thread:	Multi thread:
Thread number: 2	Thread number: 2
real 0m0.257s	real 0m0.632s
user 0m0.439s	user 0m0.582s
sys 0m0.000s	sys 0m0.008s
Thread number: 3	Thread number: 3
real 0m0.202s	real 0m0.285s
user 0m0.483s	user 0m0.649s
sys 0m0.000s	sys 0m0.008s
Thread number: 4	Thread number: 4
real 0m0.158s	real 0m0.213s
user 0m0.462s	user 0m0.615s
sys 0m0.000s	sys 0m0.006s
Thread number: 5	Thread number: 5
real 0m0.149s	real 0m0.400s
user 0m0.489s	user 0m0.603s
sys 0m0.000s	sys 0m0.006s
Thread number: 6	Thread number: 6
real 0m0.165s	real 0m0.362s
user 0m0.634s	user 0m0.597s
sys 0m0.000s	sys 0m0.005s
Thread number: 7	Thread number: 7
real 0m0.138s	real 0m0.187s
user 0m0.576s	user 0m0.571s
sys 0m0.000s	sys 0m0.014s
Thread number: 8	Thread number: 8
real 0m0 125-	real 0m0 222-
real 0m0.135s	real 0m0.328s
user 0m0.600s	user 0m0.579s
sys 0m0.018s 	sys 0m0.006s
Thread number: 9	Thread number: 9
real 0m0.121s	real 0m0.267s
user 0m0.622s	user 0m0.574s
sys 0m0.000s	sys 0m0.009s
Thread number: 10	Thread number: 10
roal 0m0 110c	roal 0m0 20%
real 0m0.110s	real 0m0.308s
user 0m0.662s	user 0m0.580s
sys 0m0.000s 	sys 0m0.007s
Thread number: 11	Thread number: 11
real 0m0.116s	real 0m0.362s
user 0m0.730s	user 0m0.578s
sys 0m0.000s	sys 0m0.005s

Th	Thursday when 42
Thread number: 12	Thread number: 12
real 0m0.112s	real 0m0.205s
user 0m0.781s	user 0m0.586s
sys 0m0.000s	sys 0m0.007s
, 	,
Thread number: 13	Thread number: 13
real 0m0.116s	real 0m0.185s
user 0m0.733s	user 0m0.580s
sys 0m0.010s	sys 0m0.006s
Thread number: 14	Thread number: 14
real 0m0.126s	real 0m0.190s
user 0m0.792s	user 0m0.577s
sys 0m0.000s	sys 0m0.007s
Thread number: 15	Thread number: 15
real 0m0.123s	real 0m0.334s
user 0m0.718s	user 0m0.576s
sys 0m0.009s	sys 0m0.005s
Thread number: 16	Thread number: 16
real 0m0.124s	real 0m0.191s
user 0m0.770s	user 0m0.568s
sys 0m0.000s	sys 0m0.010s
Thread number: 17	Thread number: 17
real 0m0.124s	real 0m0.207s
user 0m0.753s	user 0m0.594s
sys 0m0.009s	sys 0m0.005s
Thread number: 18	Thread number: 18
real 0m0.121s	real 0m0.315s
user 0m0.752s	user 0m0.572s
sys Om0.000s	sys 0m0.011s
Thread number: 19	Thread number: 19
real 0m0.123s	real 0m0.218s
user 0m0.812s sys 0m0.009s	user 0m0.589s sys 0m0.004s
Thread number: 20	Thread number: 20
real 0m0.117s	real 0m0.345s
user 0m0.821s	user 0m0.594s
sys 0m0.000s	sys 0m0.007s