Theoretical Part

1. Short Answer Questions

Q1: Explain the primary differences between TensorFlow and PyTorch. When would you choose one over the other?

Primary Differences:

TensorFlow	PyTorch
Static Computation Graph (Define-and-run)	Dynamic Computation Graph (Define-by-run)
More verbose syntax, steeper learning curve	Pythonic syntax, easier to learn and debug
Better production deployment with TensorFlow Serving	Originally research-focused, now improved production support
Strong visualization with TensorBoard	Good visualization but less integrated
Keras API integration for high-level abstraction	torch.nn for neural network operations

When to choose TensorFlow:

- · Production deployment and scalability requirements
- · Mobile and embedded systems development
- When using TensorFlow Extended (TFX) for ML pipelines
- Enterprise environments with existing TensorFlow infrastructure

When to choose PyTorch:

- Research and rapid prototyping
- When dynamic computation graphs are needed
- · Academic and research environments
- When easier debugging and Pythonic code is preferred

Q2: Describe two use cases for Jupyter Notebooks in Al development.

1. Exploratory Data Analysis and Model Prototyping

- Interactive data visualization and statistical analysis
- Rapid experimentation with different algorithms and parameters
- Step-by-step data preprocessing and feature engineering
- Immediate feedback on model performance with inline plots

2. Educational Demonstrations and Documentation

- Creating interactive tutorials with code, visualizations, and explanations
- Sharing reproducible research with combined code, results, and narrative
- Collaborative development with mixed code and markdown documentation
- Model interpretation and result presentation to stakeholders

Q3: How does spaCy enhance NLP tasks compared to basic Python string operations?

spaCy Advantages:

Basic String Operations	spaCy NLP
Pattern matching with regex	Linguistic understanding with trained models
Simple keyword searching	Named Entity Recognition (people, organizations, locations)
Manual text splitting	Dependency parsing for grammatical structure
No semantic understanding	Word vectors for semantic similarity
Limited to exact matches	Lemmaization and morphological analysis

Key spaCy Enhancements:

- Pre-trained models for multiple languages
- Efficient processing with compiled Cython code
- Linguistic features like part-of-speech tagging, dependency parsing
- Entity recognition for extracting structured information
- Custom pipeline components for domain-specific tasks

• Integration with machine learning workflows

3. Comparative Analysis: Scikit-learn vs TensorFlow

Aspect	Scikit-learn	TensorFlow
Target Applications	Classical Machine Learning: Classification, regression, clustering, dimensionality reduction	Deep Learning: Neural networks, computer vision, NLP, reinforcement learning
Algorithm Types	Traditional ML algorithms (SVM, Random Forest, K-means)	Neural networks, custom architectures, transfer learning
Data Scale	Medium-sized datasets that fit in memory	Large-scale datasets with batch processing
Hardware Usage	CPU-focused, limited GPU support	GPU/TPU acceleration for training and inference
Model Types	Shallow models, ensemble methods	Deep neural networks, custom architectures

Ease of Use for Beginners:

Scikit-learn Advantages:

- Consistent API design (fit(), predict(), transform())
- Minimal code required for standard algorithms
- Extensive documentation with practical examples
- No deep learning knowledge required
- Easy hyperparameter tuning with GridSearchCV

TensorFlow Challenges:

- Steeper learning curve with computational graphs
- More verbose code for simple models
- · Requires understanding of neural network concepts
- Complex debugging with graph execution

TensorFlow Advantages with Keras:

- High-level Keras API simplifies model building
- Pre-built layers and models available
- Good for learning deep learning fundamentals

Community Support:

Scikit-learn Community:

- Mature ecosystem with stable, well-tested algorithms
- Strong academic backing and extensive research papers
- Comprehensive documentation with tutorials and examples
- Active maintenance with regular updates and bug fixes
- Large user base across industry and academia

TensorFlow Community:

- Massive ecosystem with TensorFlow Hub, TensorBoard, TFX
- Google backing with strong corporate support
- Extensive online courses and certifications
- Research community adoption for cutting-edge models
- Production focus with enterprise deployment tools