Basic Statistics

Mo D Jabeen

December 2, 2022

The example used will be the size of carrots in a farm, on the current batch.

1 General

1.1 What is population and sample?

Population: Entire data set, ie all the carrots. **Sample:** A portion of the dataset, ie 30 carrots.

1.2 What is a parameter or statistics?

Parameter: Attribute from population ie mean of carrots based on all carrots.

Statistic: Attribute from sample ie mean from 30 carrots.

Random selection of the sample allows for much better statistical inference as it removes any bias.

1.3 What is a regression test?

Determines if a prediction variables changes effect the outcome variable.

1.4 What are degrees of freedom?

The number of independent pieces of info used to calculate a statistic.

1.5 What is the mean, expectation and standard deviation?

The mean is the frequency of each value occurring, multiplied by the value all summed for each random variable.

$$\overline{x} = 1/n(\Sigma f x) \tag{1.1}$$

The expectation is the probability of each value multiplied by the value, summed for all values. This is the value the mean tends to as the sample size increases.

$$E(x) = \sum x P(X = x) \tag{1.2}$$

The variance is the average of the squared difference from the mean.

$$\sigma^2 = E(X^2) - (E(X))^2 \tag{1.3}$$

The standard deviation is the square root of the variance, showing essentially the average distance from the mean: σ .

An overall shift to all data points will effect expectation and not variance:

$$E(X \pm a) = E(X) \pm a \tag{1.4}$$

$$Var(X \pm a) = Var(X) \tag{1.5}$$

An overall multiplier to all data points effects both expectation and variance:

$$E(aX) = aE(X) \tag{1.6}$$

$$Var(aX) = a^{2}Var(X)$$
(1.7)

1.6 Geometric Mean

Mean based on the product of all values, finding the nth root.

$$\Pi x^{1/N} \tag{1.8}$$

N is the number of values.

1.6.1 What is it good for?

- For fraction based values ie percentages
- Dependant values
- Wildly varying values, less skewed by large data values

2 Continuos variables

2.1 What is the difference between continuos and discrete variables?

Discrete variables are a known list of possible numbers Continuos random variables are infinite.

2.2 What is relative frequency density and how does it translate to probability?

The relative frequency density; is a measurement of the relative frequency over a class width (interval between two values). Relative frequency is how many times something happens between two values compared to number of measurements, class width the measurement period.

$$\frac{Relative frequency}{classwidth} = Relative frequency density \tag{2.1}$$

The probability density function f(x); is the relative frequency density as n increases and the class width decreases.

Area under a plotted f(x) gives the probability for that range of continuos variables.

$$P(X < x) = \int_{-\infty}^{x} f(x)$$
 (2.2)

$$\frac{d}{dx}P(X < x) = f(x) \tag{2.3}$$

2.3 How do you calculate the Median?

The median value (m) is when the probability for values above and below are 0.5.

$$\int_{m}^{\inf} f(x) = 0.5 \tag{2.4}$$

2.4 How do you calculate a Percentile?

The Xth percentile is the value below which the probability is X/100: 90th percentile

$$P(X < x_{90th}) = 0.9 (2.5)$$

2.5 How do you calculate the Mean?

If assume the a small width of delta x, the mean will be $\sum x(f(x)\delta(x))$ (the brackets give the probability and multiplying by x gives the mean). As delta x tends to 0 this becomes:

$$\bar{x} = \int x f(x) \tag{2.6}$$

The population mean is then:

$$\mu = \int_{-\infty}^{\infty} x f(x) dx \tag{2.7}$$

The variance is:

$$Var(x) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$$
 (2.8)

2.6 Inferential Statistics

Draw conclusions and predictions based on the data.

2.6.1 What is a confidence interval?

Taking into account sampling error give a range of values for the parameter and certainty percentage.

i.e. Carrots mean is [8 12cm] at 95%.

3 Data Validation

- Constraints
- · Visual graphing
- Distribution measurements (check if mean, median and mode are similar)
- Good fit tests (Chi squared)

- Independence test (Chi squared)
- · Check for missing or errored data

4 Distribution

4.1 General

$$X \sim N(\mu, \sigma^2) \tag{4.1}$$

The random variable "X", belongs to " \sim " a normal distribution "N" with a specific mean and variance.

4.1.1 What is a probability mass function?

PMF: For discrete variables, it can give a calculation of the probability of an exact value.

Figure 4.1: Chi square

Dist	Description
Binomial	Two states, the number of times one states shows in n trials
Bernoulli	Random variable is either one of two states
Discrete Uniform	probability of each state is equal
Poisson	Prob an event will happen k times in a given period of time or spaces

Table 4.1: PMF Dist

4.1.2 What is a probability density function?

PDF(): For continous variables the probability of a single value is neglible and therefore assumed at zero, instead intervals probability is calculated. Instead for a given the probability density function is used, which measures the number of times a value is shown in a sample (its density).

Example: a carrot is 10cm, if the carrot shows as 10cm once in sample of 50, the PDF is 1/50. Can determine the probability by finding multiplying a interval by its PDF.

Dist	Description
Normal	Centered on the mean, bell shaped
Continuos Uniform	Equal intervals have equal probability
Log normal	Right skewed, normal when logged
Exponential	Higher prob for small values than large values.

Table 4.2: PDF Distributions

4.2 What is the bernoulli and binomial distribution?

Bernoulli distribution: The random variable can either be 0 or 1.

Binomial distribution: The random variable remains to have only two states, this shows the probability of measuring either state x number of times given n independent occurrences.

4.3 Poisson Distribution

4.4 What is the poisson distribution?

- The random discrete variable is a count of the number of events occurring at random in regions of time and space. Ie radioactive particle emission or saplings in a sample of ground
 - All events are independent
 - No two events at the same time
 - Over a short period of time or on a small region the probability is the same

$$p_x = P(X = x) = e^{-\lambda} * \lambda^{x/x!}$$
 (4.2)

Recurrence formula:

$$P(X = x) = \lambda/x * P(X = x - 1)$$
 (4.3)

 λ is the mean var and $\sqrt{\lambda}$ is the std

95% of values are between the mean \pm 2 std

Independent Poisson random variables can be added to give another Poisson random variable

4.5 What is a normal distribution?

Normal distribution: Data set centered evenly about a value, giving a bell curve.

- 4.5.1 How does std related to a normal dist?
- 4.5.2 What dist do multiple large mean samples show?

They will show a normal dist, even if the variable itself doesn't show a normal dist.

4.6 Standard Normal Distribution

Also known as z dist is a normal dist with mean = 0 and std = 1. Any normal dist can be converted into a z dist, using the below formula to work out the z value (which calculates how many std vals a value x from the mean is).

STD	Percentage of values included (%)
σ	68
2σ	95
3σ	99.7

Table 4.3: std relation

$$z = \frac{x - \mu}{\sigma} \tag{4.4}$$

Great reference to use as all numbers have been calculated. Can allow:

- Comparisons of sample mean to population mean
- Compare different N dists (different mean and var)

4.7 Chi Squared Distribution

Not a reflection of real world distributions, but instead used for testing. Shaped by k (degrees of freedom), made of squared z dist with different layers of multiple of std added.

$$\chi_k^2 = (Z_1)^2 + (Z_2)^2 \dots + (Z_{n\sigma})^2$$
(4.5)

Hypothesis tests follow the chi squared dist under the null hypothesis. A commonly used tests is the Pearson chi squared test. There is also a non centered chi squared dist for any skewed data.

Goodness of fit tests measures how well a model fits a set of observations, there is also the chi squared Independence test.

5 Estimation

5.1 How do you calculate the confidence interval?

To calculate the confidence interval of a population mean, use the variable Z below, where \bar{X} is variable corresponding to the sample mean:

$$Z = (\bar{X} - \mu)/(\sigma/\sqrt{n}) \tag{5.1}$$

For a normal distribution with mean 0 and std of 1 N(0,1) the confidence interval is:

$$(\bar{x} - 1.96(\sigma/\sqrt{n}), \bar{x} - 1.96(\sigma/\sqrt{n}))$$
 (5.2)

The above interval on an average of 95% of the time will include the mean.

5.2 What is a T Distribution?

If the the sample size is limited and below 30, then instead of a normal and T distribution is used.

A T dist has degrees of freedom (v) = n-1:

- A normal distribution has degrees of freedom $v = \infty$
- n being the sample size

If the variance is unknown and n is large, Z can be adjusted to use s^2 which is an unbiased estimate of the variance. This gives two random variables in the equation X and S:

$$T = (\bar{X} - \mu)/(S/\sqrt{n}) \tag{5.3}$$

c is the critical value depending on the distribution parameters and the confidence interval required:

$$(\bar{x} + c(s\sqrt{n}), \bar{x} - c(s\sqrt{n})) \tag{5.4}$$

5.3 How is s calculated?

$$s^{2} = 1/(n-1) * \sum (x - \bar{x})^{2}$$
 (5.5)

6 Hypothesis testing

6.1 What are the two hypothesis statements?

2 hypothesis are given the null (H_0) and the alternative (H_1) : - Null gives a specific parameter value - Alternative gives a range of values

Example of a parameter used is the population mean (μ)

6.2 How do you determine the confidence of a given null hypothesis?

A normal distribution of N(μ , σ^2) can be related to N(0,1) by using $z = (\bar{x} - \mu)/(\sigma/\sqrt{n})$.

A normal distribution if the variable is adjusted to be the sample mean \bar{X} using the mean from the null hypothesis will become $N(\mu_o, \sigma^2/n)$.

This can then be used in the form: $P(\bar{X} > x) = P(z > (x - \mu)/\sigma)$;

This is then used to calculate the confidence percentage, from the tails of the distribution of a N(0,1).

Two tailed tests gives a much more complete analysis of the data set.

6.3 What are some basic terms?

Test statistic: Function of data used to determine between H_o and H_1

The critical region: Values that lead to rejection of H_0 in favour of H_1 is the critical region.

Significance level: The probability H_0 is rejected for H_1

6.4 What are the error types?

Type 1 error: H_0 is rejected for H_1 however it was correct; This is mitigated by choosing a low significance level.

Type 2 error: H_o is accepted but incorrect.

6.5 What is the suggested test procedure?

- 1. State the two hypothesis (Null and alternative)
- 2. Choose the appropriate test statistic and distribution
- 3. Choose significance level
- 4. Collect data
- 5. Analyze

To avoid bias the sig level should be chosen before any data is collected If the dataset is approximately normal dist then use the standard N(0,1)

6.6 How does confidence level relate to significance level?

If μ_0 is outside the range of $\alpha\%$ confidence level, then the significance level is (100- $\alpha\%$)

6.7 Chi squared dist

Uses the standard v degrees of freedom.

Only used for non negative random variables (generally for freq measurements) to determine if two variables are dependant or independent. This includes if a variable is bias by comparing it to the expected non bias result.

Figure 6.1: Chi square

As shown it is a skewed dist, as v increases the skew decreases.

6.8 How do you test for bias?

The difference between the expected (non bias result) and the observed result will indicate bias. Both size and relative size matter:

$$(O-E)*(O-E)/E = (O-E)^2/E$$
(6.1)

O: Observed, E: Expected

6.9 What value is used to determine goodness of fit between two models?

$$X^{2} = \sum_{i=1}^{m} (O_{i} - E_{i})^{2} / E_{i}$$
(6.2)

Where m is the number of different outcomes for each model (columns).

Large value of X^2 suggest a lack of fit

6.10 How does X^2 relate to Chi squared?

Chi squared dist approximately shows the probability distribution of X^2 , if the freq values > 5:

$$X^2 = \chi_{m-1}^2 \tag{6.3}$$

6.11 What is a contingency table?

A table with more than two variables being measured against (two+ rows)

The degree of freedom is : v = (r - 1)(c - 1)

r: rows, c: columns

If X^2 is within the chi squared 95% interval it should be accepted as independent.

6.12 What should you do with a 2x2 table?

Can use the alternative:

$$X^{2} = \sum (|O - E| - 0.5)^{2} / E \tag{6.4}$$