ЯЗЫК ПРОГРАММИРОВАНИЯ РҮТНОN

Язык программирования

Язык программирования устанавливает набор правил, определяющих внешний вид программы и действия, которые выполнит исполнитель под её управлением

Гвидо ван Россум приступил к созданию языка **Python** в декабре 1989 года в центре математики и информатики в Нидерландах.

Ван Россум является основным автором Python и продолжал выполнять центральную роль в принятии решений относительно развития языка вплоть до 12 июля 2018 года


```
print('Виват, Лицей!')
```

По традиции, начавшейся в 1978 г. с примера из книги Брайана Кернигана и Дениса Ритчи «Язык программирования Си», первая программа на любом языке программирования должна просто выводить на экран приветствие миру

Команда print () предназначена для вывода данных.

Она является функцией, аргументы которой – выводимые значения

Текст, который нужно вывести на экран, заключают в кавычки. Кавычки могут быть одинарными или двойными

```
print('Виват, Лицей!') print("Виват, Лицей!")
```


Если 'Значение', то текст не анализируется

Если Значение без кавычек, то производится анализ данных

Текст выводится на экран в том виде, в котором он записан. Его можно записать как на русском, так и на любом другом языке	Если в скобках написать арифметическое выражение, то сначала вычисляется его значение, а затем выводится результат
print('2 + 2 * 2 = ')	print(2 + 2 * 2)
2 + 2 * 2 =	6

Пример кода	Пояснение	Вывод
print('Привет') print('мир')	После того, как команда вывода была выполнена, курсор переводится на следующую строку	D:\progi\python\ Привет мир
print('Привет', 'мир')	В одной команде можно выводить несколько значений, которые отделяются друг от друга запятыми	D:\progi\python\ Привет мир
<pre>print('Привет') print() print('мир')</pre>	Если функция используется без аргументов, то будет выведена пустая строка	D:\progi\python\ Привет

Аргументы команды print()

Название	Описание
sep	задает текст, который будет служить разделителем при выводе различных значений в одной команде print() По умолчанию – пробел
end	задает текст, который будет выведен на экран после вывода всех значений одной команды print() По умолчанию – перевод строки

перевод строки задается как '\n'. Если использовать sep = '\n', то каждое выводимое значение одной команды print() будет расположено в новой строке

Пример

```
D:\progi\python\lesson1\venv\Scripts\python.exe D:/progi/python/]
Привет! Я компьютер!!!!
 умею выполнять программы!
Сегодня ты написал свою первую программу и я ее выполнил.
Сейчас на экране - ее результат.
Ypa! Ypa! Ypa!
     print ypa, ypa, ypa: , sep
```


Что выведет программа

Понятие типа данных

Информацию, представленную в виде, пригодном для обработки на компьютере, называют **данными**

Переменная в программировании – это именованная ячейка памяти, хранящая значение переменной

Тип данных определяет способ хранения данных в памяти компьютера, диапазон возможных значений данных и операции, которые с этим типом данных можно выполнять

Имена переменных

Могут включать

- латинские буквы (А-Z, a-z)
- знак подчеркивания _
- цифры 0-9

НЕ могут включать

- русские буквы
- пробелы
- скобки, знаки +, =, !, ? и др.

Имя не может начинаться с цифры!

Числовые типы данных

Язык Python поддерживает работу с целыми и вещественными числами

$$a = 2$$
 $b_1 = 7.5$
 $radius = 12.0$

Тип переменной язык Python определяет по ее значению

Переменная а будет определена как целая, а переменные b_1 и radius - как вещественные

a,
$$b_1$$
, radius = 2, 7.5, 12.0

Задавать значения можно и таким образом

Оператор присваивания

Оператор присваивания предназначен для того, чтобы

- задавать значения переменным
- вычислять значения арифметического выражения, результат вычисления которого будет записан как значение переменной

$$x = 9$$

 $x1 = 3.5$
 $a_1 = 20 * (x + x1) - 32$
 $y = 3$
 $chastnoe = x / y$
 $y = 7 + 2 * y ** 3$

Примеры

Математические операции	Запись в Python
+ (сложение)	+
- (вычитание)	-
- (умножение)	*
: (деление)	/
возведение в степень	**

ЗНАКИ МАТЕМАТИЧЕСКИХ ДЕЙСТВИЙ

(целые и вещественные числа)

Математические операции	Запись в Python
целочисленное деление	//
нахождение остатка	%

ЗНАКИ МАТЕМАТИЧЕСКИХ ДЕЙСТВИЙ

(только целые числа)

Результат операций // и %

а	b	a // b
17	3	5
-17	3	-6
17	-3	-6
-17	-3	5

При выполнении операции // знак результата определяется также как в математике:

- положительный, если исходные числа одного знака
- отрицательный, если разного

Значение результата округляется до ближайшего целого в меньшую сторон

Результат операций // и %

а	b	a // b	a%b
17	3	5	2
-17	3	-6	1
17	-3	-6	-1
-17	-3	5	-2

Результат операции % может быть отрицательным, хотя в математике под остатком понимают неотрицательное число.

Если остаток не равен нулю, то знак числа, которое является результатом операции %, определяется знаком делителя

$$a \% b = a - (a // b) * b$$

Порядок выполнения операций

- вычисление выражений в скобках
- умножение, деление, //, % слева направо
- сложение и вычитание слева направо

$$z = \frac{5ac + 3(c - d)}{ab}(b - c)$$

$$z = (5 * a * c + 3 * (c - d)) * (b - c) / (a * b);$$

Операции над строками

То, что заключается в кавычки, называется строками.

```
stroka = "Виват, Лицей!" рrint(stroka) Виват, Лицей!
```

Строки можно складывать.

```
stroka = "Виват, "
print(stroka + "Лицей!")

Виват, Лицей!
```

И можно умножать на число.

```
stroka = "Виват, Лицей! "Виват, Лицей! Виват, Лицей! Виват, Лицей! Виват, Лицей! Виват, Лицей!
```

F-строки

Иногда бывает удобно вставить значение переменной в строку. Перед строкой ставится буква \pm , а переменная пишется в фигурных скобках $\{\}$.

```
name = "пользователь" x = 17 stroka = f"Виват, {name} {x}!" Виват, пользователь 17! <math>stroka
```

Можно выводить вещественные числа с заданным числом знаков после запятой.

```
y = 10 / 3
print(f"10 / 3 = {y}")
print(f"10 / 3 = {y:.4f}")
```

```
10 / 3 = 3.3333333333333333
10 / 3 = 3.3333
```

Преобразование типов

Для преобразования строк в числа и наоборот используются следующие функции:

- int() преобразует строку (или вещественное число) в целое число.
- float() преобразует строку (или целое число) в вещественное число;
- **str()** преобразует значения (в общем случае не только числовые) в строки.

```
a = "1"
b = "2"
print(a + b)
a = int(a)
b = int(b)
print(a + b)
```

12

3

Ввод данных

Komanda input() предназначена для ввода данных. Для того, чтобы значение переменной вводилось с клавиатуры нужно присвоить ей значение функции input()

```
a = input()
```

Переменная а после ввода значения будет содержать текст (тот который мы набрали с помощью клавиатуры)

```
y = input()
print('y =', y)
```

```
D:\progi\python\
Привет
у = Привет
```

Ввод данных

```
a = input()
```

Даже, если мы набирали цифры, то получим набор символов, с которыми нельзя выполнять арифметические действия

```
y = input()
print('y =', y + 5)
```

```
D:\progi\python\lesson1\venv\Scripts\python.exe D:/progi/python/
25

Traceback (most recent call last):
   File "D:\progi\python\lesson1\main.py", line 2, in <module>
        print('y =', y + 5)

TypeError: can only concatenate str (not "int") to str
```

Ввод данных

При вводе нужно указать в какой числовой тип данных мы хотим преобразовать вводимый текст

```
y = int (input())
print('y =', y + 5)
```

```
D:\progi\python\1
25
y = 30
```

В качестве параметра функции input () можно задать текст, который будет служить подсказкой при вводе данных

```
x = int(input('Введите целое число '))
y = float(input('Введите дробное число '))
print('x =', x)
print('y =', y)
```

```
D:\progi\python\lesson1\venv
Введите целое число 51
Введите дробное число 5.75
х = 51
у = 5.75
```

УСЛОВИЯ ЗАДАЧ

Текст после символов # считается комментарием

Условия обязательно вставляются в текст программы как комментарий

```
🐔 main.py 🗶 🏻 👸 main1.py 🗵
     🗦# Даны x, y, z. Напишем программу для вычисления значения выражения
     1# a = (2x+y-z)/(3+x^2)
     x = float(input('x = '))
     y = float(input('y = '))
     z = float(input('z = '))
     a = (2 * x + y - z) / (3 + x * x)
     print('a =', a)
```

Задание 1а

Даны вещественные x, y, z. Написать программу для вычисления значения выражения $a = \frac{2x+3y-z}{3+x^2}$

```
# Даны x, y, z. Напишем программу для вычисления
# значения выражения a = (2x+3y-z)/(3+x^2)
x = float(input('x = '))
y = float(input('y = '))
z = float(input('z = '))
a = (2 * x + 3 * y - z) / (3 + x * x)
                                           D:\progi\python\lesson1\
print('a = ', a)
                                           \mathbf{x} = 2
                                            y = 3
                                           z = 1
                                            a = 1.7142857142857142
```

Математические функции

Для подключения библиотеки используют команду import math

Запись на Python	Описание
math.fabs(x)	Находит модуль числа х
math.sqrt(x)	Находит корень квадратный из числа х. Результат — число вещественного типа
math.ceil(x)	Находит ближайшее целое число, которое не меньше, чем значение х.
math.floor(x)	Находит ближайшее целое число, которое не больше, чем х.
math.pi	pi = 3,1415926
math.sin(x)	Вычисляет синус числа х. Число х задается в радианах
math.cos(x)	Вычисляет косинус числа х. Число х задается в радианах
math.tan(x)	Вычисляет тангенс числа х. Число х задается в радианах

Задание 16

Заданы значения переменных х и у. Вычислить значение

выражения
$$b = \frac{\sqrt{x}+4}{|y|-2}\sin x$$

```
# Даны х, у. Напишем программу для вычисления значения выражения
import math
x = float(input('x = '))
y = float(input('y = '))
b = (math.sqrt(x) + 4) / (math.fabs(y) - 2) * math.sin(x)
                                              D:\progi\python\lesson1\
print('b = ', b)
                                              x = 13
                                              y = 7.7
                                              b = 0.5606319197973305
```

Задание 2

Пусть таймер показывает время только в секундах. Напишем программу, которая переведет время в минуты и секунды

```
#Пусть таймер показывает время только в секундах.
#Напишем программу, которая переведет время в минуты и секунды
c = int(input('c = '))
#минуты
m = c // 60
#секунды
s = c % 60
print(m, s, sep=':')
```

D:\progi\python\lesson1\

c = 137

2:17

Задание 2

С начала месяца прошло *m* часов. Определить какое сейчас число и сколько часов прошло с начала суток.

В каждом месяце 30 дней

Дни, месяцы и года исчисляются с 1

Не должно получится ситуации: 0 число 5 часов 15 минут

Не должно получится ситуации: 2 число 49 часов 75 минут

Задание З

Дано целое число а. Написать программу, которая получит а³ и а¹⁰ за четыре операции умножения (другие операции использовать нельзя)

```
# Дано число а. Написать программу,
# которая получит а3 и а10 за четыре операции умножения
# (другие операции использовать нельзя)
a = int(input('a = '))
a2 = a * a
a3 = a2 * a
a5 = a3 * a2
a10 = a5 * a5
print(a3, a10, sep='; ')
```

Для сокращения количества умножений введем дополнительные переменные, которые будут хранить промежуточные значения

> D:\progi\python\ a = 5

> > 125; 9765625

Задан квадрат с длиной стороны а. Найти его площадь и периметр

```
# Задан квадрат с длиной стороны а.
# Найти его площадь и периметр
a = float(input('a = '))
S = a ** 2
P = 4 * a
print('площадь -', S)
print('периметр -', P)
```

```
D:\progi\python\l
a = 2
площадь - 4.0
периметр - 8.0
```