BASE DE DATOS II – LSI- 2019

AGRUPAMIENTO

CLUSTERING

AGRUPAMIENTO O CLUSTERING

- El clustering es uno de los métodos de aprendizaje no supervisado más importantes y busca caracterizar conceptos desconocidos a partir de los ejemplos disponibles.
- Generalmente, en un problema real se desconoce la clase y es allí donde el agrupamiento puede ayudar a identificar las características comunes entre instancias.
- Al no disponer de la clase utiliza una medida de similitud (distancia) para determinar el parecido entre instancias.

AGRUPAMIENTO O CLUSTERING

- Permite encontrar grupos de instancias con características similares.
- Aplicaciones
 - Identificar grupos y describirlos
 - Detectar clientes con características similares para ofrecer servicios adecuados.
 - Identificar alumnos con rendimientos académicos similares con el objetivo de reducir la deserción escolar.
 - Detección de casos anómalos
 - o Detección de fraudes.

AGRUPAMIENTO O CLUSTERING

• El resultado de aplicar una técnica de *clustering* es una serie de agrupamientos o *clusters* formados al particionar las instancias.

AGRUPAMIENTO - OBJETIVO

MÉTRICAS DEL AGRUPAMIENTO OBTENIDO

- Un buen método de agrupamiento producirá grupos de alta calidad en los cuales
 - El parecido entre los elementos que componen un mismo grupo es alto (intra-cluster).
 - El parecido entre los elementos de grupos distintos es bajo (inter-cluster).

AGRUPAMIENTO - OBJETIVO

- Minimizar la distancia entre los elementos de un mismo cluster (intra-cluster)
- Maximizar la distancia entre clusters (inter-cluster)

TIPOS DE ALGORITMOS DE AGRUPAMIENTO

• Algoritmo Partitivo

- Particionan los datos creando un número K de clusters.
- Una instancia pertenece a un único grupo.

Algoritmo Jerárquico

- Generan una estructura jerárquica de clusters que permiten ver las particiones de las instancias con distinta granularidad.
- Una instancia pertenece a un único grupo.

• Algoritmo probabilista

• Los clusters se generan con un método probabilístico

Mujeres vs. Hombres

Simpsons vs. Empleados de la escuela de Springfield

- A la hora de calcular la distancia entre dos objetos
 - No tienen porque utilizarse todos los atributos disponibles del conjunto de datos.
 - Hay que tener cuidado con las magnitudes de cada variable.
- Usualmente se expresan en términos de distancia:

Nos indica que el objeto i es mas parecido al objeto k que a j.

- Se utilizan para estimar la similitud entre instancias al momento de decidir si deben ser incluidas en el mismo grupo o en grupos diferentes.
- o La más utilizada suele ser la Distancia Euclídea

distancia
$$(X,Y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

MEDIDAS DE CONECTIVIDAD (LINKAGE MEASURES)

• Enlace sencillo (single-linkage)

• La similitud entre dos clusters se calcula como la similitud de los **dos puntos más cercanos** pertenecientes a los diferentes clusters.

MEDIDAS DE CONECTIVIDAD (LINKAGE MEASURES)

• Enlace completo (complete-linkage)

• La similitud entre dos clusters se calcula como la similitud de los **dos puntos más lejanos** pertenecientes a los diferentes clusters.

MEDIDAS DE CONECTIVIDAD (LINKAGE MEASURES)

• Enlace promedio (average-linkage)

• La distancia entre dos grupos se calcula promediando las distancias entre todos los pares que se puedan formar tomando una instancia de cada cluster.

PROCESO DE AGRUPAMIENTO

- Seleccionar las características relevantes
- Definir una representación adecuada.
- Definir la medida de similitud a utilidad (medida de distancia). Depende del problema.
- Aplicar un algoritmo de agrupamiento
- Validar los grupos obtenidos y de ser necesario volver a repetir el proceso.

PROCESO DE AGRUPAMIENTO

ALGORITMOS DE CLUSTERING PARTITIVOS

o Obtiene una única partición de los datos

K-MEDIAS

- El algoritmo K-Medias fue propuesto por MacQueen, en 1967.
- Requiere conocer a priori el número K de grupos a formar.
- El algoritmo está basado en la minimización de la distancia interna (la suma de las distancias de los patrones asignados a un agrupamiento al centroide de dicho agrupamiento).
- De hecho, este algoritmo minimiza la suma de las distancias al cuadrado de cada patrón al centroide de su agrupamiento.

K-MEDIAS

- Características
 - El algoritmo es sencillo y eficiente.
 - Procesa los patrones secuencialmente (por lo que requiere un almacenamiento mínimo).
 - Está sesgado por el orden de presentación de los patrones (los primeros patrones determinan la configuración inicial de los agrupamientos)
 - Su comportamiento depende enormemente del parámetro K.

ALGORITMO K-MEDIAS

- Elegir aleatoriamente K vectores de entrada como centros iniciales.
- Repetir
 - Calcular los centros de los K clusters.
 - Redistribuir los patrones entre los clusters utilizando la mínima distancia euclídea al cuadrado como clasificador.

hasta que no cambien los centros de los clusters

K-Medias desde WEKA

K-Medias desde WEKA

Class colour

K-Medias desde weka

• Centroides obtenidos como resultado del agrupamiento con k=3

Final cluster centroids:							
		Cluster#					
Attribute	Full Data	0	1	2			
	(300.0)	(98.0)	(102.0)	(100.0)			
X1	6.3403	7.5672	6.4782	4.9972			
X2	6.2868	5.9504	7.9324	4.938			

ALGORITMO DE CLUSTERING JERÁRQUICOS

Todos los algoritmos jerárquicos producen como resultado un **dendrograma**¹

A partir del dendrograma se pueden obtener distintas particiones (estructuras de clusters) de los datos

Dendrograma es un tipo de representación gráfica o diagrama de datos en forma de árbol que organiza los datos en subcategorías que se van dividiendo en otros hasta llegar al nivel de detalle deseado (asemejándose a las ramas de un árbol que se van dividiendo en otras sucesivamente).

ALGORITMO DE CLUSTERING

Aglomerativo

Divisible

ALGORITMO JERÁRQUICO AGLOMERATIVO

- Paso 1: A cada instancia se le asigna un cluster, de modo que inicialmente si hay N instancias se tienen N clusters de 1 elemento cada uno.
- Paso 2: Calcular la distancia entre clusters y unir en uno solo a los dos más cercanos.
- Paso 3: Calcular la distancia del nuevo cluster a los restantes.
- **Paso 4**: Repetir los pasos 2 y 3 hasta que todas las instancias pertenezcan al mismo cluster

EJEMPLO

• Aplique un algoritmo jerárquico aglomerativo para agrupar las instancias A, B, C y D cuya matriz de distancias se indica a continuación

	A	В	C	D
A	0	14	10	6
В	14	0	8	4
C	10	8	0	5
D	6	4	5	0

EJEMPLO

	A	C	B-D
A	0	10	6
C	10	0	5
B-D	6	5	0

