Multivariate Gaussian	Isotropic Kernel	fboundedin[0,C]	$Var\mathbb{E}[y * x*, \theta]]$	Markov Decision Processes
$\frac{1}{(2\pi)^{n/2}\sqrt{ \Sigma }} \exp(-\frac{1}{2}(y-\mu)^T \Sigma^{-1}(y-\mu))$	$k(x, x') = k(x - x' _2)$	$P(\mathbb{EP}[f(x)] - \frac{1}{N} \sum_{i \le N} f(x_i) > \varepsilon) \le$	$\simeq \frac{1}{m} \sum_{j \le m} \sigma^2(x*, \theta^{(j)}) +$	A set of States 1,n
$p(X_A X_B=x_B)=\mathbb{N}(\mu_{A B},\Sigma_{A B})$	Fast GP Methods	$2\exp(-2N\varepsilon^2/C)$	$\frac{1}{m} \sum_{j < m} (\mu(x*, \theta^{(j)})) - \overline{\mu}(x*)^2$	A set of actions 1,,m Transition Probabilities
the state of the s	Shift Invariant K: $k(x, y) = k(x - y)$	Stationary Distribution	Drop Out as VI	$P(X_{t+1} = x' X_t = x) = P(x' x, \pi(x))$
$\mu_{A B} = \mu_A + \Sigma_{AB} \Sigma_{BB}^{-1} (X_B - y_B)$	A SI Kernel is positive semi- definite only if p(w) is nonegative	$\lim_{N\to\infty} P(X_N=x)=\pi(x)$	$q(\theta \lambda) = \prod_{j} (q_{j}(\theta_{j} \lambda_{j}))$	$P(X_{t+1} x' X_t = x) = \sum_a \pi(a x)P(x' x,a)$
$\Sigma_{A B} = \Sigma_{AA} - \Sigma_{AB}\Sigma_{BB}^{-1}\Sigma_{BA}$	definite only if $p(w)$ is nonegative	Detailed Balance Equation	$q_i(\theta_i \lambda_i) = p\delta_0(\theta_i) + (1-p)\delta_{\lambda_i}(\theta_i)$	Reward Function
	$k(x - y) = \int_{\mathbb{R}^d} p(w)e^{jw^T(x - y)}dw =$	Q(x)P(x' x) = Q(x')P(x x')	Probabilistic Ensambles	$EV:J(\pi) = E[r(X_0, \pi(X_0)) +$
$P(f* X,y,x^*) = \mathbb{N}(mu^Tx^*,x^{*T}\Sigma x^*)$	$\mathbb{E}_{w,b}[z_{w,b}(x)z_{w,b}(y)] =$	Designing Markov Chain Proposal Distribution= $R(X' X)$	p(y* X,y,x*) =	$\gamma r(X_i, \pi(X_1)) + \gamma^2 r(X_2 + \pi(X_2)) +]$
$P(y X, y, x^*) = \mathbb{N}(mu^T x^*, x^{*T} \Sigma x^* + \sigma_n^2)$	$\frac{1}{m} \sum_{i \le n} z_{w^{i}, b^{i}}(x) z_{w^{i}, b^{i}}(y) = \phi(x)^{T} \phi(y)$	$X_t = x, x' \sim R(X' X = x)$	$\frac{1}{m}\sum_{j\leq m}p(y* x*,\theta^{(j)})$	$V^{\pi}(x) = J(\pi X_0 = x) =$
	Inducing points: $p(f*,f) \sim q(f*,f) =$		Active Learning	$\mathbb{E}_{x=1:\infty}[\sum_{t\leq\infty}\gamma^t r(X_t,\pi(X_t)) X_0=x]=$
$w_{MLE} = (X^T X)^{-1} X^T y$	$\int q(f* u)q(f u)p(u)du$	$\alpha = \min \frac{Q(x')R(x x')}{Q(x)R(x' x)} \to X_{t+1} = x'$	Mutual Information: Given random samp	$r(x, \pi(x)) + \gamma \sum_{x'} P(x' x, \pi(x)) V^{\pi}(x')$
$P(w X,y) = P(w \mu_w, \Sigma_w)$	$p(f,f) = N(K_{f,u}K_{u,u}^{-1}u, K_{f,f} - Q_{f,f})$			Solving for a policy V^{π} $V^{\pi} = V^{\pi} = 1 \cdot \pi$
$\Sigma_w = (\sigma_w^{-2} \mathbb{I} + \sigma_y^{-2} X^T X)^{-1}$	$p(f*,f) = N(K_{f*,u}K_{u,u}^{-1}u, K_{f*,f*} -$	hilfion is $Z^{-1}O(x)$	observing Y reduces the incertainity of X	V = (I = YI) I
$\mu = \sigma_{y}^{-2} \Sigma_{w} X^{T} y$	$Q_{f*,f*}$) where $Q_{A,B} = K_{A,u}K_{u,u}^{-1}K_{u,A}$	Gibbs Sampling $x_0 \leftarrow x_0$	$I(X;Y) = \sum_{y \in Y} \sum_{X \in X} P(x,y) \log(\frac{P(x,y)}{P(x)P(y)})$	$V^{\pi} = r^{\pi} + \gamma T^{\pi} V^{\pi}$.
$w_{MAP} = \sigma_{v}^{-2} \Sigma_{w} X^{T} y$	SoR Approx:	$fort = 1 \rightarrow \infty$	$I(X;Y) = H(Y) - H(\varepsilon) =$	
$\lambda = \sigma_y^2/\sigma_w^2, \sigma_y^2 = rac{1}{n}\sum_{i \leq n}(y_i -$	$p(f, f) = N(K_{f,u}K_{u,u}^{-1}u, 0)$	$i \sim (1n)/B$	$\frac{1}{2}\ln((2\pi e)^d \Sigma - \sigma^2\mathbb{I}) -$	$t \ge \frac{\ln \frac{\ V_0^{\pi} - V^{\pi}\ _{\infty}}{\varepsilon}}{\ln^{\frac{1}{2}}}$
2		$x_i \sim P(X_{i+1} x_{-i})$	$\frac{1}{2}\ln((2\pi e)^d \sigma^2\mathbb{I}) = \frac{1}{2}\ln(\sigma^{-2}\Sigma - \mathbb{I})$	Greedy Policy
$(w^T x_i)^2, \sigma_w^2 = \frac{\sigma_y^2}{\lambda}$	$p(f, f) = N(K_{f,u}K_{u,u}^{-1}u, diag(K_{f,f} -$	Variance of Gibbs	$F(S) = H(f) - H(f y_s) = I(f;y_s) = I(f;y_s)$	$\pi(x)_V = argmax_a r(x, a) +$
Bayesian Filtering	$Q_{f,f}$)	$x_0 \leftarrow x_0$ for $t = 1 \rightarrow \infty$	$\frac{1}{2} \ln \mathbb{I} + \sigma^{-2} \Sigma $	$\gamma \sum_{x'} P(x' x,a)V(x') + \gamma \sum_{x'} P(x' x,a)V(x')$
Conditioning	Approximate Inference	$x^{(t)} = x^{(t-1)}$	Optimizing MI	Theorem(Bellman): A policy acts greedly
$P(X_t y_{1:t}) = \frac{1}{Z}P(X_t y_{1:t+1})P(y_t X_t)$	Laplace Approximation	$fori = 1 \rightarrow \infty$	$x_{t+1} = argmax_x F(S_t U x) =$	w.r.tits induced value function
Prediction $P(X_{t+1} y_{1:t}) = \int P(X_{t+1} x_t)P(x_t t_{1:t})$	$q(\theta) = N(\theta; \hat{\theta}, \Lambda^{-1})$	$x_i \sim P(X_{i+1} x_{-i})$	$argmax_{x \in D}\sigma_{x St}^{2}$	$V^*(x) = \max_a [r(x, a) +$
$\mu_{t+1} = \frac{\sigma_y^2 \mu_t + (\sigma_t^2 + \sigma_x^2) y_{t+1}}{\sigma_t^2 + \sigma_x^2 + \sigma_t^2}$	$\hat{\theta} = argmax_{\theta} p(\theta y)$	Ergodic Thm (Special Case): suppose X_2, X_n is an ergodic Markov chain over a		$ \gamma \sum_{x'} P(x' x, a) V^*(x')] MDP $
$\mu_{t+1} = \frac{\sigma_y \mu_t + (\sigma_t + \sigma_x) j_{t+1}}{\sigma_t^2 + \sigma_x^2 + \sigma_y^2}$	GD= $w \leftarrow w(1-2\lambda \eta_t) + \eta_t yxP(Y =$	finite state space D with stationary distribu-	$\forall x \in D \forall A \subseteq B \subseteq D : F(A \mid x) -$	observation: $P(Y_t X_t)$
	-y w,x	tion π and let f be a function in D	$F(A) \ge F(B \cup x) - F(B)$	state update: $P(X_{t+1} X_t, A_t)$
$\sigma_{t+1}^2 = rac{(\sigma_t^2 + \sigma_x^2)\sigma_y^2}{\sigma_t^2 + \sigma_x^2 + \sigma_y^2}$	$\Lambda = -\nabla \nabla log(p(\hat{\theta} y)) =$	$\lim_{N\to\infty} \frac{1}{N} f(x_i) = \sum_{x\in D} \pi(x) f(x)$	Greedy Constant Factor	typically extremely intractable \rightarrow
Kalman Filters	$\sum_{i \leq n} x_i x_i^T \pi_i (1 - \pi_i), \pi = \sigma(\hat{w}^T x_i)$	Markov Processes continuous case $p(x) = \frac{1}{2} \exp(-\frac{f(x)}{2})$	$F(S_t) = (1 - \frac{1}{e}) \max_{S \subseteq D, S \le T} F(S)$	$PODPS=\mathbb{B} = \nabla(1,,N) =$
$X_{t+1} = FX_t + \varepsilon_t, Y_t = HX_t + \eta t$	Var. Inf.=KLDivergence	$p(x) = \frac{1}{Z} \exp(-f(x))$	Natural Generalization MI optimization	$b:1,,n \to [0,1], \sum_{x} b(x) = 1$
$TM: P(x_{t+1} x_t) = N(x_{t+1}; Fx_t, \Sigma_x)$	$q* \in argmax_{q \in Q}KL(q p) =$	$\alpha = \min_{R(x' x)} \frac{R(x' x)}{R(x x')} \exp(f(x) - f(x')) \to X_{t+1}$	= x' $x_{t+1} \in argmax_x \frac{\sigma_f^2}{\sigma^2}$	observation: $P(Y_{t+1} = Y b_t(x), A_t) =$
$\mathbf{SM}: P(y_t x_t) = N(y_t; Hx_t, \Sigma_y)$	$\int q(\theta) log \frac{q(\theta)}{p(\theta)} d\theta$	Metropolis Adjusted Langevin Algorithm	o_n	$\sum_{x,x'} b_t(x) P(x' x, a_t) P(y x')$
$\mu_{t+1} = F\mu_t = K_{t+1}(y_{t+1} - HF\mu_t)$	$p = N(\mu_0, \Sigma_0, q = N(\mu_1, \Sigma_1))$	$R(x' x) = \mathbb{N}(x'; x + \tau \nabla f(x); 2\tau I)$	Learning to Optimize $f \in Ff : D \to \mathbb{R}, y_t = f(x_t) + \varepsilon_t$	state update: $b_{t+1} = \frac{1}{Z} \sum_{x} b_t(x) P(X_{t+1} =$
$\Sigma_{t+1} = (I - K_{t+1}H)(F\Sigma_t F^T + \Sigma_x)$	$KL(p q) = \frac{1}{2}(tr(\Sigma_1^{-1}\Sigma_0) + (\mu_1 - \mu_1))$	Stochastic Gradient Langevin Dynamics $\theta_0 = \theta 0$	$CR: R_T = \sum_{i < T} (\max_x f(x) - f(x_t))$	$x' X_t = x, a_t)P(y_{t+1} x')$
$K_{t+1} = (F\Sigma_t F^T + \Sigma_x) H^T (H(F\Sigma_t F^T + \Sigma_x)^{-1})$	$\mu_0)^T \Sigma^{-1} (\mu_1 - \mu_0) - d + ln(\frac{ \Sigma_1 }{ \Sigma_0 }))$	Fort = 0, 1,	Sublinearity: $R_T/T \to 0$	reward: $r(b_t, a_t) = \sum_{x} b_t(x) r(x, a_t)$
$(\Sigma_x)H^T + (\Sigma_y)^{-1}$	=0		implies $max_t f(x_t) \rightarrow f(x*)$	Reinforcement Learning
Gaussian Processes Optimizing Kernel Params: Max Mar-	Entropy $H(a) = -\int a(A) log(a(A)) dA$	$\theta_{t+1} = \theta_t - \eta_t (\nabla \log p(\theta_t) +$	UpperConfidence Sampling	Model Based
ginal Likelihood: $log(p(y X, \theta)) =$	$\begin{array}{ccc} \Pi(q) = & \int q(\sigma) i \partial g(q(\sigma) u \sigma) \\ \text{Minimizing KL} \end{array}$	$\frac{n}{m} \sum_{j \leq m} \nabla \log p(y_{i,j} \theta_t, x_{i,j})) + \varepsilon_t$	$x_t = argmax_{x \in D} \mu_{t-1}(x) + \beta_t \sigma t - 1(x)$	$P(X_{t+1} X_t,A) \simeq \frac{Count(X_{t+1},X_t,A)}{Count(X_t,A)}$
$-\frac{1}{2}y^T K_y^{-1} y - \frac{1}{2}log K_y - \frac{n}{2}log(2\pi)$	$argmin_q KL(q p) =$	Bayesian Neural Networks	Regret of GP-UCB: assuming β_t correct	$r(x, a) \simeq \frac{1}{N} \sum_{t: V = x A = a} R_t$
Kernels	$argmax_q \mathbb{E}_{\theta \sim q(\theta)}[log p(y \theta)] -$	Heteroscedastic noise	$\frac{1}{T}\sum_{t\leq T}[f(x*)-f(x_t)]=O^*(\sqrt{\frac{\gamma T}{T}})$ whe-	$N_{x,a} = N_x - $
A valid kernel function must be:	KL(q p(.)) =	$I \cup I \cup$	$\operatorname{re} \gamma T = \max_{ S < T} I(f; y_S)$	$\varepsilon_t \sim \text{pick random action}$
-positive semi-definite	$avamax \mathbb{E}$ $[loan(x, \theta)] + H(a)$	6	Frequentist approach:	$1 - \hat{\varepsilon}_t \sim \text{pick best action}$
symmetric	Maximizing ELBO	$argmin_{\theta}\lambda \theta _{2}^{2} + \sum_{i \leq n} y_{i} - y_{i} _{2}^{2}$		Converges if ε_t satisfies Monroe's Conditions: $\sum_t \varepsilon_t = \infty, \sum_t \varepsilon_t \le \infty$
$ \operatorname{linear} k(x, x') = xx'^{T} $	$log(p(y)) \ge \mathbb{E}[logp(y \theta)] -$	$ \mu(x_i,\theta) ^2 + \frac{1}{2}\log\sigma(x_i;\theta)^2$	$\frac{1}{T}\sum_{t\leq T}[f(x*)-f(x_t)]=O^*(\sqrt{\frac{\beta_T\gamma T}{T}})$	The R_{max} Algorithm
Squared Exponential: $\frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right)$	KL(q p(.))	Gradient $\nabla_{\lambda} L(\lambda) = \nabla_{C,\mu} \frac{n}{m} \sum_{j \leq m} \log p(y_{i,j} C \varepsilon^{(j)} +$	Expected Improvement	$r(s, a) = R_{max}$ for unknown states
$k(x, x') = \exp(- x - x' _2^2/h^2)$ Exponential:	Gradient ELBO $\nabla_{C,\mu} \mathbb{E}_{\varepsilon \sim N(0,I)}[log p(y C\varepsilon + \mu)] -$	$\psi_{\lambda}L(\lambda) = V_{C,\mu} \frac{1}{m} \sum_{j \leq m} \log p(y_{i,j} CE^{(j)} + \mu, x_{i,j}) - \nabla_{C,\mu}KL(q_{C,\mu} p(.))$	$T_{t} = argmax_{x \in D} EI(x)$	$P(x^* x,a) = 1$ add a fairy tale state
Exponential: $k(x, x') = \exp(- x - x' _2/h^2)$		$\mu, x_{i,j}) = v_{C,\mu} KL(q_{C,\mu} p(\cdot))$ Prediction Mean and Variance	$EI=E[(t-y)_{+}] = \int_{-\infty}^{\infty} (t-y)_{+} p(y x) dy$	-For each visited action pair x, a updater(x,a) -Estimate Transition Probabilities P(x' x,a)
$K(x,x) = \exp(- x-x _2/n)$ Matern:	$ abla_{C,\mu} KL(q_{C,\mu} p(.)) $ Markov Chain Monte Carlo	$P(y* X,y,x*) \simeq \frac{1}{m} \sum_{j \leq m} \mathbb{N}(y*;$	$y_t = f(x_t) + \varepsilon_t$ Bayesian update for μ_v , σ_t Thompson	TC 1 10 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$21-v = \sqrt{\frac{9}{9}} x-y' _2$	Law of Large Numbers	$\mu(x*, \theta^{(j)}), \sigma^2(x*, \theta^{(j)}))$	Sampling Sampling	ENOUGH? Hoeffding's Bound
Stationary Kernel:	Eaw of Large Numbers $E_P[f(X)] = \lim_{N \to \infty} \frac{1}{N} \sum_{i < N} f(x_i)$	$\operatorname{Mean} = \frac{1}{m} \sum_{i < m} \mu(x^{*}, \theta^{(j)})$	$\tilde{f} \sim P(f x_{1:t}, y_{1:t})$	$P(\mu - \frac{1}{n}\sum_{i \leq n} Z_i \geq \varepsilon) \leq$
k(x, x') = k(x - x')	Hoeffding's Inequality:	m - J = · · · ·	$x_{t+1} = \underset{x \in D}{\operatorname{argmax}} \tilde{f}(x)$	$2\exp(-2n\varepsilon^2/C^2), n \in O(\frac{R_{max}^2}{\varepsilon^2}\log(\frac{1}{\delta}))$
((,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Troning omequanty.		m_{l+1} on $\delta m_{\lambda} \in DJ(\lambda)$	$= \sum_{k=1}^{\infty} \left(\sum_{i=1}^{\infty} \left(\sum_$

- Every T time steps w.h.p R_{max} either	Neural Fitted Q-Iteration/DQN	On Policy Actor Critic	Randomized Policies:	$J(\theta) = \mathbb{E}_{x_0 \sim \mu}[Q(x_0, \pi(x_0, \theta))]$
obtains near optimal reward, or visits at least	$L(\theta) = \sum_{(x,a,r,x') \in D} (r +$	$\nabla J(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}} [\sum_{t} \gamma^{t} Q(x_{t}, a_{t}; \theta_{Q})]$	$\nabla_{\theta_{\pi}} \mathbb{E}_{\alpha \sim \pi_{\theta_{\pi}}} Q(x, a; \theta_{Q}) =$	Unknown Dynamics
	$\gamma \max_{a'} Q(x', a'; \theta) - Q(x, a; \theta))^2$	$\nabla \log \pi(a_t x_t;\theta)$	$\mathbb{E}_{\varepsilon} \nabla_{\theta_{\pi}} Q(x, \psi(x; \theta_{\pi} \varepsilon); \theta_{Q}) =$	- Start with policy π
$1 - \delta$, R_{max} will reach an ε -optimal policy	Double DQN: solve maximization bias	$= \int_{x} p^{\theta}(x) \mathbb{E}_{a \sim \pi_{\theta}(x)}[Q(x, a, \theta_{Q})]$	$\mathbb{E}_{\varepsilon}[\nabla_{a}Q(x,a;\theta_{Q}) _{a=\psi(x;\theta_{\pi},\varepsilon)}\nabla_{\theta_{\pi}}\psi(x;\theta_{\pi},$	E lterate for several episodes a) Roll out policy to collect data
in a number of steps that is polynomial in	$L(\theta) = \sum_{(x,a,r,x') \in D} (r +$	$\nabla \log \pi(a_t x_t;\theta) dx$	Entropy Regularization:	b)Learn model for f, r and Q
$ X , A , T, \frac{1}{\varepsilon}$ and $\log \frac{1}{\delta}$	$\gamma \max_{a'} Q(x', a'; \theta^{old}) - Q(x, a; \theta))^2$	where $p^{\theta}(x) = \sum_{t} \gamma^{t} p_{\theta}(X_{t} = x)$	$J_{\lambda} = J(heta) + \lambda H(\pi_{ heta}) =$	d) Plan new policy based on estimated
T E T T D D T	Parametrized Policy Gradients		$\mathbb{E}_{(x,a)\sim\pi_{\theta}}[r(s,a)+\lambda H(\pi(. x))]$	models
1) Memory required: store all $P(x' x,a)$ and	Parametrized policy	$:= \mathbb{E}_{(x,a) \sim \pi_{\theta}(x)}[Q(x,a;\theta_Q) \\ \nabla \log \pi(a_t x_t;\theta)]$	By using reparametrization gradients \rightarrow	PETS Algorithm: -ensamble of NNs
r(x,a)	$\pi(x) = \pi(x; \theta)$	Actor Critic update:	SAC (Soft Actor Critic)	- Trajectory Sampling to evaluate perfor-
2) Computation Time. Solve value iteration	Find policy approximation through Monte		Policy Gradient Algorithms on v.s off	mance
orr one; normion	Carlo forward Sampling:	$\theta_Q \leftarrow \theta_Q - \eta_t(Q(x, a; \theta_Q) - r - q_t(Q(x, a; \theta_Q) - q_t(Q(x, a; \theta_Q) - r - q_t(Q(x, a; \theta_Q) - q_t(Q(x, a; a; \theta_Q) - q_t(Q(x, $	policy	-MPC used for planning Thompson Sampling
model Free	$J(\theta) = \frac{1}{m} \sum_{i \leq m} r(\tau_i)$	$\gamma Q(x', \pi(x, \theta_{\pi}); \theta_{O})) \nabla Q(x, a; \theta_{O})$	ON-POLICY	- Start with empty D=, Prior P(f)=P(fl)
		Variance reduction via Baselines:	Reinforce Actor Critic Methods (A2C,A3C)	iterate
$V(x) \leftarrow (1 - \alpha_t)V(x) + \alpha_t(r + \gamma V(x'))$ The learning rate has to satisfy Monroe	Dollar Cradianta	Advantage Function Estimate \rightarrow	TRPO,PPO	$\max_{\pi} J(\pi, f)$
		A2CAlgorithm	OFF-POLICY	- Roll-out Policy
Ofunction:	$J(\theta) = \mathbb{E}_{x_0:T,a_o:T \sim \pi\theta} \sum_{t \leq T} \gamma^t(x_t, a_t)$	$\theta_{\pi} \leftarrow \theta_{\pi} + \eta_t(Q(x, a; \theta_Q) -$	DDPG	- Update posterior Optimistic exploration:
$(x) = max_a Q(x, a), where$	$=\mathbb{E}_{ au\sim\pi_{ heta}}r(au)$	$V(x; \theta_V))\nabla \log(a_t x_t; \theta_\pi)$	TD3	- Start with empty D=, Prior P(f)=P(fl)
	$\nabla J(\theta) = \nabla \mathbb{E}_{\sim \pi_{\theta}}[r(\tau)] =$	TRPO $ \begin{array}{ll} \Omega & = \alpha \cos x \cdot \hat{I}(\Omega, \Omega) + VI(x \alpha) < \delta \end{array} $	SAC	iterate
0.1	$\mathbb{E}_{ au \sim \pi_{ heta}}[r(au) \nabla \log \pi_{ heta}(au)]$	$\theta_{k+1} = agmx_{\theta} \hat{J}(\theta_k, \theta) s.t. KL(p q) \le \delta$	Model-Based Deep RL	$max_{\pi}max_{f\in M(D)}J(\pi,f)$
Q-learning $Q(x, a) \leftarrow (1 - \alpha_t)Q(x, a) + \alpha_t(r + \alpha_t)Q(x, a) + \alpha_t(r + \alpha_t)Q(x, a)$	Exploiting MDP Structure:	$\hat{J}(\theta_k, \theta) = \mathbb{E}_{x, a \sim \pi_{\theta}} \left[\frac{\pi(a x; \theta)}{\pi(a x; \theta_k)} A^{\pi_{\theta_k}}(x, a) \right]$	Knowing a model can help reduce the	-Roll-outPolicy
$Q(x, a) \leftarrow (1 - \alpha_t)Q(x, a) + \alpha_t(t + \gamma \max_{a'} Q(x', a')),$ where	$\pi_{\boldsymbol{\theta}}(\tau) = p(x_0) \prod_{t \leq T} \pi(a_t x_t; \boldsymbol{\theta}) p(x_{t+1} x_t,$		sample complexity	- Update posterior
	$\mathbb{E}_{\tau \sim \pi_{\theta}}[r(\tau)\nabla_{\theta}\log \pi_{\theta}(\tau)] =$	Heuristic Variant of TRPO (uses a certain	Planning with known deterministic model	
	$\mathbb{E}_{\tau \sim \pi_{\theta}}[r(\tau) \sum_{t \leq T} \nabla_{\theta} \log \pi(a_t x_t; \theta)]$	clipped surrogate), effective and wildly used in practice	Plan Over a finite horizon:	
anditions.	Lower Variance by introducing baseline	Off-Policy Actor Critic	$\max_{a_{t:t+H-1}} \sum_{\tau=t:t+H-1} \gamma^{\tau-t} r_{\tau}(x_{\tau}, a_{\tau}),$	
Ontimistic O-learning:			$\mathbf{s.t.} x_{\tau+1} = f(x_{\tau}, a_{\tau})$	
$Q(x,a) = \frac{R_{max}}{1-\gamma} \prod_{t \le T_{init}} (1-\alpha_t)^{-1}$	$\mathbb{E}_{\tau \sim \pi_{\theta}}[(r(\tau) - b) \sum_{t \leq T} \nabla_{\theta} \log \pi(a_t x_t; \theta)]$		$x_{\tau} := x_{\tau}(a_{t:\tau-1}) :=$	
W/41 D. 1 1 114 1 S	$\mathbb{E}_{\tau \sim \pi_{\theta}}[r(\tau) \sum_{t \leq T} \nabla_{\theta} \log \pi(a_{t} x_{t};\theta)] =$	$\gamma Q(x, \pi(x; \theta_{\pi}); \theta_Q^{ota}) - Q(x, a, \theta_Q))^2$	$f(f((f(x_t, a_t), a_{t+1}),), a_{\tau-1})$	
llearning obtains an E-optimal policy after a	$\mathbb{E}_{\tau \sim \pi_{\theta}}[(r(\tau) - b(\tau_{0:t-1}))$	Allowingrichenough	$J_{H}(a_{t:\tau-1}) = \sum_{\tau=t:t+H-1} \gamma^{\tau-t} r_{\tau}(x_{\tau}(a_{t:\tau-1}))$	(a_{τ})
	$\sum_{t \leq T} \nabla_{\theta} \log \pi(a_t x_t; \theta)]$	$\theta_{\pi}^* \in argmax_{\theta} \mathbb{E}_{x \sin \mu}[Q(x, \pi(x; \theta); \theta_Q)]$	Optimization: Random Shooting Samples	
and $\log \frac{1}{2}$	$b(au_{0:t-1}) = \sum_{t' \leq t-1} \gamma^{t'} r_{t'} \rightarrow$	$\mu(x) > 0$ means explore all states"	Randomly generate m sets of samples $a_{t:\tau-1}^{(i)}$	
Painforcement Learning through		Minbiased gradient estimate by sampling	that optimizes	
Functional Approximation	$G_t = \sum_{t \le T} \gamma^{t'-t} r_{t'}$	from $x \sim \mu$ $\nabla_{\theta} Q(x, \pi(x; \theta); \theta_O) =$	(:)	
$V^{\pi}(r) = r(r, \pi(r)) +$	Reinforce		$i^* = \operatorname{argmax}_{i \in 1 \dots m} J_H(a_{t:\tau-1}^{(t)})$	
$D(x' x, \pi(x))V\pi(x')$	Input $\pi(a x;\theta)$	$\nabla_a Q(x,a) _{a=\pi(x;\theta)} \nabla_\theta \pi(x;\theta)$	Using Value Estimate: $\sum_{x \in \mathcal{X}^{-1}} f(x) \left(\frac{x}{x} \right)$	\ - \
$\Omega^{\pi}(x, x) = x(x, x)$	Initialize weights θ Generate an episode:	Gradient Init $\theta_{Q,\theta_{\pi}}$, replay buffer D=;	$J_H(a_{t:\tau-1}) = \sum_{\tau=t:t+H-1} \gamma^{\tau-t} r_{\tau}(x_{\tau}(a_{t:\tau-1}))$	$(a_{\tau}) +$
$\nabla D = D (I) = \nabla T (I)$	$(\mathbf{X}_0, A_0, R_0, \dots)$	$\theta_Q^{old} = \theta_Q, \theta_{\sigma}^{old} = \theta_{\pi}$		
* * * / \	$fort = 0T$ $\theta = \theta + m^2 C \nabla e \log \pi(A \mid Y : \theta)$		Supposing H=1 $I(a) = r(x - a) + 2V(x - a) = r(x - a)$	
$\gamma \sum_{x'} P(x' x,a) V^*(x')$	$\theta = \theta + \eta \gamma^t G_t \nabla_{\theta} \log \pi(A_t X_t; \theta)$ Further Variance Reduction:	repeat:observe $x \rightarrow action a(x, \theta_{\pi}) + \varepsilon$	$J(a_t) = r(x_t, a_t) + \gamma V(x_{t+1}(a_t)) = Q(x_t, a_t)$	
$O^*(x) = r(x, a) + \gamma \sum_{x'} P(x' x, a) V^*(x')$	$\nabla J(\theta) = \mathbb{E}_{\tau \sim \pi_0} \left[\sum_{t < T} \gamma^t G_t \nabla \log \pi(a_t x_t; \theta) \right]$	Execute a, observereward and next state $P(x, a, r, x') \in D^{n}$	$agmx_a J_{\pi}(a) = agmx_a Q(x_t, a) = \pi_G^V(x_t)$	
1D-Learning as Stochastic Gradient De-	$=\nabla J(\theta) = \mathbb{E}_{\tau \sim \pi_0} [\sum_{t < T} \gamma^t (G_t - G_t)]$	if update:	Planning for randomized policies	
scent/bootstapping	$b_t(x_t))\nabla\log\pi(a_t x_t;\theta)]$	$\theta_Q \leftarrow \theta_Q - \eta \nabla \frac{1}{ B } \sum_{(x,a,r,x') \in B} (Q(x,a,\theta_Q))$		
	1 1 1 5 6			
$VV(x'\cdot \theta_{-1,1})^2$	1 —	$r + \gamma Q(x', \pi(x; \theta_{\pi}^{old}, \theta_{Q}^{old}))$	$\gamma^H V(x_{t+H}) a_{t:t+H-1} $ Optimizing Expected Performance	
$\nabla l_2 = (V(x; \theta) - r - \gamma V(x'; \theta_{old})) := \delta$	Deep RL and Actor Critic Methods	$ heta_\pi = heta_\pi + \eta abla_{\overline{ B }} \sum_{(x,a,r,x') \in B}$	Optimizing expected refrontiance $x_{t+1} = f(x_t - a_t + \varepsilon_t)$	
$V \leftarrow V - \alpha_t \delta$	Advantage Function \mathcal{L}^{π}	$Q(x, \pi(x; \theta_{\pi}); \theta_{O})$	Obtain Unbiased Estimates of J_H	
	$A^{\pi}(x,a) = Q^{\pi}(x,a) - V^{\pi}(x) = 0$	$\theta_O^{old} \leftarrow (1 - \rho)\theta_O^{old} + \rho\theta_Q$	$\hat{J}(a_{t:t+H-1}) = \frac{1}{m} \sum_{i \le m} \sum_{\tau=t:t+H-1} \gamma^{\tau-t}$	
	$Q^{\pi}(x,a) - \mathbb{E}_{a' \sim \pi(x)} Q^{\pi}(x,a')$	$\theta_Q^{old} \leftarrow (1-\rho)\theta_Q^{old} + \rho\theta_{\pi}$	(1)	
	$\forall \pi \forall x : max_a A^{\pi}(x, a) \ge 0$	$\theta_{\pi}^{out} \leftarrow (1 - \rho)\theta_{\pi}^{out} + \rho\theta_{\pi}$ Twind Delayed DDPG \rightarrow (TD3)	$r_{\tau}(x_{\tau}(a_{t:\tau-1}, \boldsymbol{\varepsilon}_{t:\tau-1}^{(l)}), a_{\tau}) + \gamma^{H}V(x_{t+H})$	
	$\pi * is optimal \forall x, a, A^*(x, a) \le 0$	Extends DDPG by using two critics net-	Using Parametrized Policies:	
	$\pi_G(x) = \underset{\pi}{argmax_a} Q^{\pi}(x, a) =$	works, and evaluating the advantage with	$J(0) = \mathbb{E}_{x_0 \sim \mu} [\underline{L}_{\tau=0:H-1} / \tau_{\tau}]$	
	$argmax_a A^{\pi}(x,a) \rightarrow$	the smaller one. (addresses maximization	$\gamma^{H}Q(x_{H},\pi(x_{H},\theta)) \theta $	
$\theta \leftarrow \theta - \alpha_t \delta \nabla_{\theta} Q(x, a; \theta)$	for Greedy Policy	bias)	For H=0 it's identical to the DDPG objective	