Image Processing Prog Meeting 10/11

Bo Han, Chen

National Yang Ming Chiao Tung University, Taiwan bhchen312551074.cs12@nycu.edu.tw

October 11, 2023

Presentation Overview

- 1 Environment
- Original Canny Edge Detector

Method

Experiment Setting

Experiment Result

Analysis

3 Improved Canny Edge Detector

Method

Result

Analysis

- 4 Future Work
- **6** References
- **6** Q & A

Experiment Setting

- Environment
 - Python 3.10.12
 - OpenCV 4.8.0
 - NumPy 1.23.5
 - Platform: Google Colab

Method

- according to original paper [1] and textbook
- 1 smoothing input image f with Guassian filter G, get blurred image f_s
- **2** computing gradient magnitude M_s an direction α
- \odot apply nonmaxima suppresion (NMS) to $M_{\rm s}$ get the candidate edge point
- 4 using hysteresis thresholding for strong (g_{nh}) and weak (g_{nl}) edge point
- **5** edge tracking by *hysteresis*

Original Canny Edge Detector

Experiment Setting

- sample image
 - lenna
 - scene
- gradient magnitude computation
 - Sobel operator
- ratio of T_H and T_L
 - 3:1

Figure 1: edge detection comparison of lenna

Figure 2: edge detection comparison of scene

Original Canny Edge Detector

Analysis

- bad threshold determination
- bad preformance in low contrast area
- sensitive to noise

Figure 3: result of thresholding - lenna

- replace median filter with guassian filter [2]
- modify gradient computation
 - gravitational field gradient [3]

•
$$G_x = \begin{pmatrix} -\frac{\sqrt{2}}{4} & 0 & \frac{\sqrt{2}}{4} \\ -1 & 0 & 1 \\ -\frac{\sqrt{2}}{4} & 0 & \frac{\sqrt{2}}{4} \end{pmatrix}$$
, $G_y = \begin{pmatrix} \frac{\sqrt{2}}{4} & 1 & \frac{\sqrt{2}}{4} \\ 0 & 0 & 0 \\ -\frac{\sqrt{2}}{4} & -1 & -\frac{\sqrt{2}}{4} \end{pmatrix}$

- adaptive thresholding [3]
 - marking non-edge with gradient < E_{ave} · 20%
 - determine T_h according to E and μ of neighbor gradients
 - $T_h = E + k \cdot \mu$
 - $T_I = T_h \cdot 0.5$
 - k = 1.2 in the following experiment

Figure 4: edge detection comparison of lenna with improved algo

Figure 5: edge detection comparison of scene with improved algo

canny from OpenCV

Figure 7: edge detection comparison of scene with improved algo

Improved Canny Edge Detector Analysis

- better edge detection performance
- bad noise reduction
- issues of low contrast area still exist

Future Work

- Otsu's thresholding method for high / low gradient area [4]
 - find T_h according to Otsu's result
- Canny for color image

Figure 8: gradient histogram of lenna

- [1] John Canny. "A Computational Approach to Edge Detection". In: *IEEE Transactions on Pattern Analysis and Machine Intelligence* PAMI-8.6 (1986), pp. 679–698. DOI: 10.1109/TPAMI.1986.4767851.
- [2] Li Xuan and Zhang Hong. "An improved canny edge detection algorithm". In: 2017 8th IEEE international conference on software engineering and service science (ICSESS). IEEE. 2017, pp. 275–278.
- [3] Weibin Rong et al. "An improved CANNY edge detection algorithm". In: 2014 IEEE international conference on mechatronics and automation. IEEE. 2014, pp. 577–582.
- [4] Li Er-Sen et al. "An adaptive edge-detection method based on the canny operator". In: 2009 International Conference on Environmental Science and Information Application Technology. Vol. 1. IEEE. 2009, pp. 465–469.

Thanks for Listening

Q & A