Low-rank approximation and its applications

Ivan Markovsky

University of Southampton

Exact line fitting

the points
$$w_i = (x_i, y_i), i = 1, ..., N$$
 lie on a line $(*)$

there is $(a, b, c) \neq 0$, such that $ax_i + by_i + c = 0$, for $i = 1, ..., N$

there is $(a, b, c) \neq 0$, such that $\begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} x_1 & \cdots & x_N \\ y_1 & \cdots & y_N \\ 1 & \cdots & 1 \end{bmatrix} = 0$

$$rank \begin{pmatrix} \begin{bmatrix} x_1 & \cdots & x_N \\ y_1 & \cdots & y_N \\ 1 & \cdots & 1 \end{bmatrix} \end{pmatrix} \leq 2 \qquad (**)$$

- restatement of problem (*) as an equivalent problem (**)
- however, (**) is a standard problem
- the solution generalizes to
 - 1. multivariable data (points in \mathbb{R}^q) fitting by an affine set
 - 2. time-series fitting by linear time-invariant dynamical models
 - 3. data fitting by nonlinear models

Exact conic section fitting

the points $w_i = (x_i, y_i)$, i = 1, ..., N lie on a conic section

there are $A = A^{\top}$, b, c, at least one of them nonzero, such that $w_i^{\top}Aw_i + b^{\top}w_i + c = 0$, for i = 1, ..., N

there is $(a_{11}, a_{12}, a_{22}, b_1, b_2, c) \neq 0$, such that

$$\begin{bmatrix} a_{11} & 2a_{12} & b_1 & a_{22} & b_2 & c \end{bmatrix} \begin{bmatrix} x_1^2 & \cdots & x_N^2 \\ x_1y_1 & \cdots & x_Ny_N \\ x_1 & \cdots & x_N \\ y_1^2 & \cdots & y_N^2 \\ y_1 & \cdots & y_N \\ 1 & \cdots & 1 \end{bmatrix} = 0$$

the points $w_i = (x_i, y_i)$, i = 1, ..., N lie on a conic section

$$\operatorname{rank} \begin{pmatrix} \begin{bmatrix} x_1^2 & \cdots & x_N^2 \\ x_1 y_1 & \cdots & x_N y_N \\ x_1 & \cdots & x_N \\ y_1^2 & \cdots & y_N^2 \\ y_1 & \cdots & y_N \\ 1 & \cdots & 1 \end{bmatrix} \end{pmatrix} \leq 5$$

• $N < 4 \rightarrow$ nonunique fit

• N = 4 (different points) \rightsquigarrow unique fit

N > 4 → generically no conic section fits the data exactly

Exact fitting by linear homogeneous recurrence relations with constant coefficients

the sequence $w = (w_1, ..., w_T)$ is generated by linear recurrence relations with lag $\leq \ell$

 \uparrow

there is $a = (a_0, a_1, \dots, a_\ell) \neq 0$, such that

$$a_0 w_i + a_1 w_{i+1} + \ldots + a_{\ell} w_{i+\ell} = 0$$
, for $i = 1, \ldots, T - \ell$

 \updownarrow

there is $a = (a_0, a_1, \dots, a_\ell) \neq 0$, such that

$$egin{aligned} oldsymbol{a}^{ op} \left[egin{array}{cccc} w_1 & w_2 & \cdots & w_{T-\ell} \ w_2 & w_3 & \cdots & w_{T-\ell+1} \ dots & dots & dots \ w_{\ell+1} & w_{\ell+2} & \cdots & w_T \end{array}
ight] = oldsymbol{a}^{ op} \mathscr{H}_{\ell}(w) = 0 \end{aligned}$$

the sequence $w = (w_1, \dots, w_T)$ is a linear recursion with lag $\leq \ell$

$$\mathsf{rank} \begin{pmatrix} \begin{bmatrix} w_1 & w_2 & \cdots & w_{T-\ell} \\ w_2 & w_3 & \cdots & w_{T-\ell+1} \\ \vdots & \vdots & & \vdots \\ w_{\ell+1} & w_{\ell+2} & \cdots & w_T \end{bmatrix} \end{pmatrix} \leq \ell$$

- $T \le 2\ell \iff$ there is exact fit (independent of w)
- T > 2ℓ → generically there is no exact fit

Existence of greatest common divisor

the polynomials p and q have a GCD of degree $\geq \ell$

1

. . .

1

 $rank(Sylvester matrix of p and q) \le m + n - \ell$

Data, model, and model class

	line fitting	conic section fitting	$\begin{array}{c} \text{linear} \\ \text{recurrence} \\ \text{with lag} \leq \ell \end{array}$	GCD
data	points (in \mathbb{R}^2)	points (in \mathbb{R}^2)	sequence	pair of polynomials
model	line (in \mathbb{R}^2)	conic section	autonomous LTI system	polynomials with nontrivial GCD
model class	{ lines (in \mathbb{R}^2) }	{ conic sections }	class of LTI systems	?

Continue the sequences

```
( 1, 2, 3, 5, 8, 13, ?)
( -5, 5, 0, 5, 5, 10, ?)
( 1, 0, -1, -1, 0, 1, ?)
```

An algorithm for continuation of a sequence

Input:
$$w = (w_1, ..., w_T)$$

- 1: $\ell := 1$
- 2: while rank $(\mathcal{H}_{\ell}(w)) = \ell + 1$ do
- 3: $\ell := \ell + 1$
- 4: end while
- 5: compute nonzero vector a in the left null space of $\mathcal{H}_{\ell}(w)$

Output:
$$w_{T+1} = -\frac{1}{a_{\ell}}(a_0 w_{T-\ell+1} + a_1 w_{T-\ell+2} + \cdots + a_{\ell-1} w_T)$$

Abstract setting for data modeling

- data space \mathscr{U} examples: \mathbb{R}^q , $(\mathbb{R}^q)^T$, $\mathbb{R}[z] \times \mathbb{R}[z]$, $\{\text{true, false}\}$
- data 𝒯 = {𝒯₁,...,𝒯ℕ} ⊂ 𝒯
 𝒯ᵢ ∈ 𝒯 observation, relalization, or outcome
- model B ⊂ W
 an exclusion rule, declares what outcomes are possible
- model class $\mathcal{M} \subset 2^{\mathcal{U}}$

Exact vs approximate models

- •
 ß is an exact model for
 ② if
 ② ⊂
 ß

 otherwise
 ℬ is an approximate model for
 ②
- $\mathscr{B} = \mathscr{U}$ is a (trivial) exact model for any $\mathscr{D} \subset \mathscr{U}$
 - → we want nontrivial model
 - → notion of model complexity
- any model is approximate model for any data set
 - → we need to quantify the approximation accuracy
 - → notion of model accuracy (w.r.t. the data)

Model complexity

- the "smaller" a model is the more powerful/useful it is
- the "bigger" a model is the more complex it is
- we prefer simple models over complex ones
- exact modeling problem:
 find the least complex model that fits the data exactly

Linear model complexity

- a linear model ℬ is a subspace of ℋ (ℋ is a vector space)
- the complexity of \$\mathscr{B}\$ is defined as its dimension
- in the linear case

$$\mathscr{D} \subset \mathscr{B} \qquad \Longrightarrow \qquad \operatorname{span}(\mathscr{D}) \subset \mathscr{B}$$

and the rank of the data matrix is $\leq \dim(\mathscr{B})$

• $\operatorname{span}(\mathcal{D})$ — the smallest linear model, consistent with \mathcal{D}

Model accuracy

- let $\mathscr U$ be a normed vector space with norm $\|\cdot\|$
- the distance between the data \mathcal{D} and a model \mathcal{B} is

$$\mathsf{dist}(\mathscr{D},\mathscr{B}) := \min_{\widehat{\mathscr{D}} \subset \mathscr{B}} \|\mathscr{D} - \widehat{\mathscr{D}}\|$$

approximate modeling problem:

minimize over $\mathscr{B} \in \mathscr{M}$ dist $(\mathscr{D}, \mathscr{B})$

Example: $\mathcal{U} = \mathbb{R}^2$, Euclidean norm, $\mathcal{M} = \{ \text{ lines } \}$

Example: $\mathcal{U} = \mathbb{R}^2$, Euclidean norm, $\mathcal{M} = \{ \text{ ellipses} \}$

Approximate modeling \iff Low-rank approximation

- in general, nonconvex optimization problem
- different matrix structures occur in the applications

Approximate line fitting in \mathbb{R}^2

$$\begin{array}{ccc} \text{minimize} & \text{over } \mathscr{B} \in \{ \text{lines} \} & \text{dist}(\mathscr{D}, \mathscr{B}) \\ & & & & \\ \\ \text{minimize} & \text{over } \widehat{x}_i, \, \widehat{y}_i, \, i = 1, \ldots, N & \sum_{i=1}^N \left\| \begin{bmatrix} x_i \\ y_i \end{bmatrix} - \begin{bmatrix} \widehat{x}_i \\ \widehat{y}_i \end{bmatrix} \right\|_2^2 \\ \text{subject to} & \text{rank} \left(\begin{bmatrix} \widehat{x}_1 & \cdots & \widehat{x}_N \\ \widehat{y}_1 & \cdots & \widehat{y}_N \\ 1 & \cdots & 1 \end{bmatrix} \right) \leq 2 \end{array}$$

can be solved using the singular value decomposition

Approximate conic section fitting in \mathbb{R}^2

$$\begin{array}{ccc} \text{minimize} & \text{over } \mathscr{B} \in \{ \text{conic sections} \} & \text{dist}(\mathscr{D},\mathscr{B}) \\ & & & & & \\ \\ \text{minimize} & \text{over } \widehat{x}_i, \, \widehat{y}_i, \, i = 1, \dots, N & \sum_{i=1}^N \left\| \begin{bmatrix} x_i \\ y_i \end{bmatrix} - \begin{bmatrix} \widehat{x}_i \\ \widehat{y}_i \end{bmatrix} \right\|_2^2 \\ & & \\ \\ \text{subject to} & \text{rank} \begin{pmatrix} \begin{bmatrix} \widehat{x}_1^2 & \cdots & \widehat{x}_N^2 \\ \widehat{x}_1 \, \widehat{y}_1 & \cdots & \widehat{x}_N \, \widehat{y}_N \\ \widehat{x}_1 & \cdots & \widehat{x}_N \\ \widehat{y}_1^2 & \cdots & \widehat{y}_N^2 \\ \widehat{y}_1 & \cdots & \widehat{y}_N \\ 1 & \cdots & 1 \end{pmatrix} \leq 5 \end{array}$$

requires iterative optimization methods and initial approx.

Conclusions

 common pattern in data modeling data is exact for a model of bounded complexity

matrix constructed from the data is rank deficient

- ullet exact modeling pprox rank computation
- approximate modeling problem
 modify the data as little as possible in order to
 make it exact for a model in the given model class
- the problem is equivalent to low-rank approximation

Conclusions

- seemingly unrelated problems (line, ellipse, dynamic model fitting, GCD computation) are reduced to one problem
- theory, algorithms, and related software for the generic problem have impact on many applied problems
- postdoc position available from January 2011

Questions?