EXCEL'DE BENZETİM ÖRNEKLERİ

BMÜ-422 BENZETİM VE MODELLEME

GİRİŞ

- Bu bölümde benzetim için excel örnekleri önerilmektedir.
- Örnekler excel ile yapılabileceği gibi el ile de yapılabilir.
- Benzetim örnekleri Monte carlo benzetimlerinin yanı sıra dinamik benzetimler de içerir.
- Bu bölümde anlatılan temel kavramlar belirsizliği göstermek için rastgele sayı kullanımını içerir.
- Kuyruk ve envanter modellerinde sistem performansını göstermek için tanımlayıcı istatistikler kullanılır.
- Giriş, çıkış, aktiviteler, durum ve cevaplar ile bir modelin davranışı incelenir.

RASTGELELIĞİN BENZETİMİ

- Bu bölümde ele alınan benzetim modelleri bir veya daha çok rastgele değişken içerir.
- Rastgele bir madeni para atılırken yazı veya tura gelmesi belli bir mekanizma ile yapılır.
- Bir kuyruk modelinde servis zamanı ve varışlar arası zaman eğer kesin bilinmiyor ve tahmin edilemiyorsa istatistiksel dağılım ile tanımlanabilir.
- Rastgele bir sayı üretilmesi 0 ile 1 aralığında üretimi ile yapılabilir.
- Rastgele sayıların üretimi iki önemli özelliğe sahip olmalıdır.
 - 1. Sayılar 0 ile 1 aralığında uniform bir dağılımda olmalıdır.
 - 2. Üretilen ardışık sayılar daha önce üretilen bütün sayılardan istatistiki olarak bağımsız olmalıdır.

RASTGELELIĞİN BENZETİMİ

Excel'de rastgele sayı üretimi için

fonksiyonu kullanılır.

• Eğer 0 veya 1 üretilmek isteniyorsa

Belli bir aralıkta ratgele sayı üretmek için

=RASTGELEARADA(alt;ust)

Metodu kullanılır.

- Excel de makrolar aracılığıyla visual basic komutları da kullanılır.
- VBA'da Rnd fonksiyonu rastgele sayı üretmek için kullanılır.

ÖRNEKLERDE RASTGELE ÜRETEÇLERİN KULLANIMI

- Rnd01() 0 ile 1 aralığında rastgele sayı üretir.
- DiscreteUniform(min, max) min ile max arasında rastgele sayı üretir.

ÖRNEK-1: MADENİ PARA BENZETİMİ

- Madeni paranın 10 kez atıldığını düşünelim. Adaletli bir para olduğu düşünülüyor. Yani yazı ve turanın gelem olasılığı eşittir.
- Her birinin oluşma olasılığı 0.5'tir.
- Bu örnek bir monte Carlo benzetimidir.
- Çünkü örnekte bir zaman veya olay yoktur.

ÖRNEK-1: MADENİ PARA BENZETİMİ

Example 2.1: Coin Tossing (with 4 Solutions) Generate New Trial Click the button, or hit the F9 key, to recalculate the spreadsheet and generate a new trial. Frequency of Heads and Tails You may change the Example by changing Cumulative Coin Probability Bins Frequency/ Probability any of the values with a green background. 0.50 0.50 Head Tail 0,50 1.00 Seed for Random Numbers 12345 Reset Seed & Run Reset Seed sets the RN seed. Number of Tosses = 10 then runs a new trial. Solution Solution =S SAYI ÜRET() NOTE: Solution #2B is the #1B Solution #2A #2B Solution #1A recommended solution. Solution Solution Solution Solution using RN using RN using using RAND() from Col C Toss Rnd01() from Col G Rnd01() RAND() Toss 0,7771105 0,9871114 Н 0,0337581 0.7680427 Н Frequency of Heads and 1 ÜRET() 0,6007299 Tails from Solution #2B 0.1899066 0,7767205 0,2193977 0,0225598 Н Occurrences 0,4234025 0.0089259 5 0,7620848 0,5503362 Т 0,7596168 0,3783753 0,0008356 0.9363946 Н Н Н Н Т 0.0925057 0.9037814 Bin This example uses two different RNG (random number generators); namely, RAND() and Rnd01().

=EĞER(C15<=\$C\$7;"H";"T")

=EĞERSAY(\$I\$15:\$I\$24;"H")

ÖRNEK-2: RASTGELE SERVİS ZAMANLARININ BENZETİMİ

- Bu örnekte rastgele servis zamanının benzetimi için bir model önerilmektedir.
- · Temel prensip belirlenen olasılıklara göre servis zamanlarını ayarlamaktır.
- Otomatikleştirilmiş bir telefon bilgi servisi her bir çağrıya 3, 6 veya 10 dakika harcamaktadır.
- Her bir servisin çağrı oranı %30, %45 ve %25'tir. Amacımız bu servis zamanlarını excel'de simule etmektir.
- Bu örnek aynı zamanda monte Carlo benzetimi olarak da bilinir. Çözüm şöyle olmalıdır.

ÖRNEK-2: RASTGELE SERVIS ZAMANLARININ BENZETIMI/

ÖRNEK-2: RASTGELE SERVİS ZAMANLARININ BENZETİMİ

=DiscreteEmp(\$D\$7:\$D\$9;\$B\$7:\$B\$9)

fonksiyonunda \$D\$7:\$D\$9 kümülatif olasılıkları içeren hücrelerin aralığını, \$B\$7:\$B\$9 ise servis zamanları için istenen değerleri içeren hücrelerin aralığıdır.

- Ayrık sadece listelenen değerlerin üretileceği anlamına gelir. İki worksheet aralığının her biri aynı uzunluk, aynı hücre sayısına sahip bir sütün vektörü olacaktır.
- Her adreste her satır ve sütunun önünde bulunan \$ işareti göreli adresten ziyade mutlak adresi gösterir.
- DicreteEmp() bir visual basic fonksiyonu olup worksheet'teki iki adresi destekler. Biri kümülatif olasılıklar diğeri ise arzu edilen değerlerdir.

- Bu bölümde amacımız rastgele varışlar arası zamanının(iki ardışık varış zamanı arasındaki zaman) nasıl üretileceğini ve müşterilerin varış zamanı ile sisteme girişleri hesaplamaktır.
- Benzetim saati her dinamik ayrık zaman benzetimi için anahtar bileşendir.
- Bütün excel örneklerinde saat zamanı benzetim tablosunun en üstünde uygun bir sütunda verilir.
- Bütün durumlarda saat zamanı varış, servis başlaması, kuyrukta beklemenin bitmesi gibi bir olayın oluşunu gösterir.

- Bir telefon bilgi servisine telefon çağrıları varışlar arası zamanı 1, 2, 3, 4 dakikaya sahip varışlar arası zaman ile rastgele zamanlarda oluşur. Her birinin olasılığı eşittir.
- Amaç varış zamanları ile varışlar arası zamanı nasıl üreteceğimizi belirlemektir.
- Bu örnek varış olayı gibi sadece bir olaya sahiptir. Dolayısıyla bu örnek aynı zamanda ilk dinamik olay tabanlı örneğimizdir.
- Dinamik basit şekilde zaman tabanlı anlamına gelir. Sistem durumu zaman üzerinde değişir. Olay tabanlı ise zaman üzerinde olay oluşlarının ilerlemesini takip eder.
- Ayrık bir uniform dağılım ile zamanlar üretilir.
- Uniformdan kasıt eşit olasılık değerlerine sahip olmaktır.
- Bu amaçla özel bir VBA fonksiyonu DiscreteUniform() fonksiyonu kullanılır.
- =DicreteUniform(\$G\$55,\$G\$6)
- Veya = DiscreteUniform(1,4) fonksiyonu kullanılır.

- DicreteUniform(low, high) fonksiyonu VBA'da tek bir satırlık kod ile yazılabilir.
 - DicreteUniform=low+Int((high-low)+1)*Rnd())
- Bu örnek için
 - DiscreteUniform=1+Int(4*Rnd())

Komutu kullanılır.

- DicreteUniform(low, high) fonksiyonu VBA'da tek bir satırlık kod ile yazılabilir.
 - DicreteUniform=low+Int((high-low)+1)*Rnd())
- Bu örnek için
 - DiscreteUniform=1+Int(4*Rnd())

Komutu kullanılır.

EXCELDE BENZETİMİN TEMEL ÇATISI

- İlk olarak model geliştiriciler model girişlerini, sistem durumlarını ve model çıkışlarını belirlemelidir.
- Girişler diğer sistem karakteristiklerinden bağımsız olarak tanımlanan dış değişkenlerdir.
- Yazı turada tura olasılığı, servis zamanı ve bir kuyruk sistemindeki varışlararası zaman dağılımı giriş örnekleridir.
- Bu giriş aktiviteleri rastgele aktivite zamanları ve diğer değişkenleri üretmek için kullanılır.
- Çıkışlar model cevabı olarak bilinen sistem performans ölçümlerini hesaplamak için kullanılır.
- Örneğin, bir kuyrukta bir müşterinin bekleme zamanı çıkış olabilir.
- İlgili cevaplar ise bir kuyruktaki ortalama bekleme zamanı veya bir envanter sisteminde birim zaman başına ortalama maliyet olabilir.

EXCELDE BENZETİMİN TEMEL ÇATISI

- Her benzetim tablosu eldeki problem için özel tasarlanır. Tablodaki her bir sütun aşağıdaki tiplerden biri olabilir
 - Model girişi ile ilgili bir aktivite zamanı
 - Model girişi ile tanımlanan rastgele bir değişken
 - Sistem durumu
 - Olay veya bir olayın oluş zamanı
 - Model çıkışı
 - Bazen model cevabi
- Genelde model cevapları sistem performans ölçüleri olarak da bilinirler ve benzetim tamamlandıktan sonra benzetim tablosunun dışında hesaplanırlar.
- Örneğin, bir bekleme hattı modelinde her bir bireyin kuyruktaki gecikmesi model çıkışı bütün müşterilerin ortalama bekleme zamanı ise model cevabıdır.
- Sistem durumuna; server durumu (boş veya meşgul) örnek verilebilir.

EXCELDE BENZETİMİN TEMEL ÇATISI

- Model geliştiriciler el ile veya benzetim aracıyla model geliştirirken aşağıdaki maddelere dikkat ederler:
 - Benzetime her girişin özelliğini belirle.
 - Problem ile ilgili aktiviteleri, olayları ve sistem durumlarını belirle
 - Hedeflere veya bu hedefleri karşılayan spesifik sorulara bağlı olarak model cevaplarını ve performans ölçümlerini belirle
 - Model cevaplarını elde etmek için çıkışları belirle
 - Benzetim tablosu oluştur.
 - Her i adımı için aktiviteleri, sistem durumlarını ve çıkışı belirle
 - Benzetim bittiğinde model cevaplarını ve performans ölçümlerini hesaplamak için çıkışları kullan.

Adım	Siste	Çıkışlar			
1	Xi1	Xi2	Xij	Xip	Yi
2					
3					
4					
n					

ÖRNEK-1: MADENİ PARA ATMA OYUNU

• Charlize arkadaşları Tom ve Harry için bir madeni parayı 100 kez atıyor. Eğer tura gelirse Harry 1\$ kazanır ve Tom 1\$ kaybeder. Yazı gelirse Tom kazanır ve Harry 1\$ kazanır.

- Kuyruk modellerini veya bekleme hat modellerini tanımlayacağız. Tek servis ve iki servisli kuyruk modellerini anlatacağız.
- Her ikisi de dinamik ve olay tabanlı modellerdir.

- Bir kuyruk sistemi çağırma popülasyonu, varışlar, servis mekanizması ve kuyruk disiplini ile tanımlanır.
- · Önceki şekilde tek kanallı bir kuyruk sistemi verilmiştir.
- Çağırma popülasyonunun üyeleri müşteriler, telefon çağrıları, tamir dükkanındaki işler olarak ifade edilir. Bunlara birim olarak başvuracağız.
- · Bu örnekte sabit varış oranı ve sınırsız potansiyelli çağrı popülasyonu olduğu varsayılacaktır.
- Sistem kapasitesi bir limite sahip değildir.
- İlk gelen ilk çıkar mantığı ile çalışır.

- Bir ayrılma olduğunda benzetim aşağıdaki akış diyagramı ile ilerletilir.
- · Ayrılış olayı sistem durumunu değiştirir. Eğer kuyrukta bekleyen yoksa sistem durumu boş olur.
- Bekleyen var ise sonraki birim servise alınır. Her iki durumda da sistemdeki birimlerin sayısı bir azalır.

- Aşağıdaki tabloda tek kanallı bir kuyruk sistemi modellenmiştir. İlk giren ilk çıkar mantığı ile çalışır.
- Her olayın oluştuğu zamanı tutar. Bu benzetim tablosu varışlar arası zamanların varsayılan serisinden varış zamanlarını hesaplar. 2 4 1 2 6
- B, C ve E sütunları clock zamanlarını gösterir. B varış zamanını, E ayrılış zamanını gösterir ve D'den kolayca hesaplanabilir.

A	В	C	D	E
Müşteri No	Varış zamanı	Servis başlama zamanı	Servis zamanı	Servis bitiş zamanı
1	0	0	2	2
2	2	2	1	3
3	6	6	3	9
4	7	9	2	11
5	9	11	1	12
6	15	15	4	19

- Yandaki tabloda müşteri numarasına göre düzenlenmiştir.
- Aşağıdaki şekilde ise sistemde bulunan müşteri sayıları verilmiştir.

Olay Tipi	Müşteri No	Clock time
Varış	1	0
Ayrılış	1	2
Varış	2	2
Ayrılış	2	3
Varış	3	6
Varış	4	7
Ayrılış	3	9
Varış	5	9
Ayrılış	4	11
Ayrılış	5	12
Varış	6	15
Ayrılış	6	19

- Basit bir bakkaliye bir kontrol sayıcısına sahiptir.
- Müşteriler 1 ile 8 dakika arasında değişen rastgele bir kontrol sayıcı ile varır.

•	Her	birin	in ol	asılığı	eşittir.
---	-----	-------	-------	---------	----------

•	Servis	zamanlar	11	ile	6	arasında	değişir.
---	--------	----------	----	-----	---	----------	----------

- Servis zamanlarının olasılıkları aşağıdaki tabloda verilmiştir.
- Amacımız 100 müşteri üzerinde varış ve servis zamanlarını simule ederek sistem performansını ölçmektir.

4 5 6	Service Times (Minutes)	Probability	Cumulative Probability		
7	1	0,10	0,10		
8	2	0,20	0,30		
9	3	0,30	0,60		
10	4	0,25	0,85		
11	5	0,10	0,95		
12	6	0,05	1,00		

	G	Н						
4	Interarrival	Interarrival Times						
5	(minute	(minutes)						
6	Minimum	1						
7	Maximum	8						

Table 2.11 Model Responses and Simulation Table (first 11 customers) for the Grocery Store Simulation

	A	В	С	D	E	F	G	Н	1	J
15		TOTALS	420		320		163		483	106
16		AVERAGES	4.24		3.20		1.63		4.83	1.07
17			Number of	Customers=	100					
18						Simulati	ion Table			
19		Step	Activity	Clock	Activity	Clock	Output	Clock	Output	Output
20			Interarrival		Service	Time	Waiting Time	Time	Time Customer	Idle Time
21			Time		Time	Service	in Queue	Service	Spends in System	of Server
22		Customer	(Minutes)	Arrival Time			(Minutes)	Ends	(Minutes)	(Minutes)
23		1	0	0	2	0	0	2	2	
24		2	5	5	2	5	0	7	2	3
25		3	5	10	4	10	0	14	4	3
26		4	4	14	4	14	0	18	4	0
27		5	2	16	3	18	2	21	5	0
28		6	8	24	2	24	0	26	2	3
9		7	7	31	3	31	0	34	3	5
0		8	8	39	5	39	0	44	5	5
1		9	5	44	1	44	0	45	1	0
2		10	2	46	6	46	0	52	6	1
3		11	1	47	4	52	5	56	9	0