CAPSTONE PROJECT

ON

Customer churn

SUBMITTED BY: EDIL MONICA S

(BATCH ~ PGPDSBA ONLINE JAN_A 2021)

26th December 2021

CONTENTS

Sl no	Index	Description	Page numbers
1	Introduction of the	Problem Statement	4
	Business Problem	Need of the study	4 to 5
		Understanding business and	05 to 6
		Our Approach	
		Data Report	06 to 08
2	EDA and Business	Univariate Analysis and	08 to 17
	Implication	Insights from univariate	
		Analysis	
		Bivariate Analysis and	18 to 20
		Multi variate Analysis	
3	Data Cleaning and	Value counts for categorical	20
	Pre-processing	variables	
		Finding median value to	21
		replace with special	
		characters	
		Replaced the special	22
		characters	
		Dropped the unwanted	23 to 24
		column	
		Missing values	25
		Description of the data	27
		Check Outliers	28

4	Model building	Variance inflation factor	29 to 33
		and Feature Importance	
		Decision Tree	35 to 37
		Random Forest	37 to 39
		Artificial Neural Network	39 to 41
		Logistic Regression	41 to 43
		KNN	43 to 46
		Ensemble Techniques –	47 to 48
		Bagging	
		Ada Boosting	48 to 49
		Gradient Boosting	50 to 51
		51 to 52	
		Comparison of the	52
		performance metrics from	
		the models	
		ROC Curve for all the	53
		models on the Train and	
		Test Data	
5	Model validation	Which Model? Why	54
		Chosen?	
		Recall, precision, F1 score	54
		and Accuracy	
6	Final interpretation	Overall View and	55 to 56
	and	Suggestion	
	Recommendations		

1. Introduction of the Business Problem

Problem Statement

- ❖ The DTH company is facing an issue of customer churn and since there is lot of competition in the current market.
- ❖ The company is concerned where churn of one accounts is leading to loss of many customers.
- ❖ Hence, the company wants to develop a model through which they can do predict churn of the one accounts and provide segmented offers to the potential churners.
- ❖ Acquiring a new customer can cost five times more than retaining an existing customer.
- ❖ Increasing customer retention by 5% can increase profits from 25-95%.
- ❖ The success rate of selling to a customer you already have is 60-70%, while the success rate of selling to a new customer is 5-20%.
- ❖ If they find that we are giving a lot of free (or subsidized) stuff thereby making a loss to the company; they are not going to approve our recommendation.
- So, we should be very clear and unique while providing campaign recommendation.

Need of the study

❖ Customer churn is an important measure for growth of the business. Churn rate will help in finding out why the customers are switching and fix the issue before it becomes the worse.

- ❖ To find the reason why the customers are getting churned and we to find recommendation to bring back or retain the customers.
- Non satisfactory customer service, bad product quality, delay in product delivery & services, better subscription rates & offers from the competitors etc. are some reasons behind customer churn.
- ❖ It results in negative impacts on profitability, future business, brand image, market share etc. It is critical issue for a company to ensure that its growth rate is higher than its churn rate otherwise, it will experience declining revenues and profits with the eventual scenario of closing down the business.
- ❖ The purpose of this project is to develop and design an effective and efficient model for customer churn prediction in the company.

Understanding business

- ❖ We have a data of DTH company it carries 19 variables to predict the customer churn rate.
- ❖ Main objective is to find the customer churn rate and provide recommendation to the company.
- Company wants to decrease the churn rate and build a good relationship with the customers to retain.
- Need to analyze the drawbacks, get feedback from the customers and rectify it.
- Provide some benefits to retain the customers and increase company revenue.
- ❖ Need to predict why customers are churned accordingly take action on it.

Our Approach

This is a supervised data and classification type problem.

Data Report

Read the Data

Information

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 11260 entries, 0 to 11259
Data columns (total 19 columns):
                                 Non-Null Count Dtype
--- -----
                                 -----
                                11260 non-null int64
 0
   AccountID
 1 Churn
                                11260 non-null int64
                            11158 non-null object
11148 non-null float64
11158 non-null float64
 2
   Tenure
 3 City_Tier
 4 CC_Contacted_LY
 5 Payment
                                11151 non-null object
 6 Gender
                                11152 non-null object
7 Service_Score 11162 non-null float64
8 Account_user_count 11148 non-null object
9 account_segment 11163 non-null object
10 CC_Agent_Score 11144 non-null float64
 11 Marital_Status
                                11048 non-null object
                               11158 non-null object
 12 rev_per_month
 13 Complain_ly 10903 non-null float64
14 rev_growth_yoy 11260 non-null object
 15 coupon_used_for_payment 11260 non-null object
 16 Day_Since_CC_connect 10903 non-null object
 17 cashback
                                10789 non-null object
 18 Login_device
                                 11039 non-null object
dtypes: float64(5), int64(2), object(12)
memory usage: 1.6+ MB
```

Datatypes

object 12 float64 5 int64 2 dtype: int64

Count of Target

9 9364 1 1896

Name: Churn, dtype: int64

Check duplicate

Number of duplicate rows = 0 (11260, 19)

Period, frequency and methodology of Data Collection:

Yearly and monthly aggregation of Information of the DTH Company has been provided against 11260 Account ID's across 18 different features. It seems the data is Primary Data and manually tabulated from their own database.

Visual inspection of data (rows, columns, descriptive details):

The data consists of churn details of 11260 accounts of DTH Company. Information is provided across 19 columns. Among those, "Churn" is our target / dependent variable and the remaining 18 features are predictors / independent variables. We are to build a model, to predict which customer will churn on the basis of the given information. We shall make an end-to-end study on this dataset and prepare the best fitted model/s.

2. EDA and Business Implication

Univariate analysis for continuous variable

Churn

Tenure

City tier

CC contacted Ly

Service store

Account user count

CC Agent score

Revenue per month

Complain Ly

Revenue growth yoy

Coupon used for payment

Day since CC connect

Cashback

Count plot for Numerical variables below

Univariate analysis for categorical variable

Payment

Details of Payment	
Debit Card	4696
Credit Card	3511
E wallet	1217
Cash on Delivery	1014
UPI	822
Name: Payment, dtyp	e: int64

Gender

Details of Gender

Male 6812 Female 4448

Name: Gender, dtype: int64

Account segment

Details of	account_segment	[
Regular +	4221	
Super	4062	
HNI	1639	
Super +	818	
Regular	520	

Name: account_segment, dtype: int64

Marital Status

Details o	f Marital_Statu	S
Married Single Divorced	6072 3520 1668	

Name: Marital_Status, dtype: int64

Login device

Details of	Login_de	evice	
Mobile	7703		
Computer	3018		
NAN	539		
Names Legin	4	44	3-4-64

Name: Login_device, dtype: int64

Target variable distribution

Donut Chart showing Churn distribution

Insights from Univariate Analysis

- ❖ There are outliers in the data Churn, Tenure, CC_contacted_Ly, Service_score, Account_user_count, Rev_per_month, Coupon_used_for_payment, Day_since_cc_connect, Cashback.
- ❖ Most of the account_user_count are tagged with 4 customers.
- ❖ 1 'coupon_used_for_payment' per year is used maximum number of times by the accounts.
- ❖ 'City Tier' 1 is the location with most accounts.
- * 'Service Score' awarded by most of the accounts 3
- ❖ 'CC_Agent-Score' awarded by most of the accounts 3.
- ❖ Maximum Cashback awarded to customers in 12 months is Rs.1997.
- ❖ Customers who logged in via mobile (7482) are more who have churned.
- ❖ Payment of 65 % of the churned account made by Debit & Credit Card.
- ❖ Highest customers are male (6704) who are churned compared to female.
- ❖ Married customers around (5860) are churned customers when compared to unmarried.
- ❖ 4124 customers prefer to regular plus account segment.
- ❖ 1896 out of 11260 account holders (16.84 %) churned last year.
- ❖ Data provided is very much imbalanced.

Bivariate analysis

-0.00

-0.25

--0.50

--0.75

--1.00

Multivariate analysis

❖ From Pairplot and Heatmap, it is observed that there is no relationship among the predictors. No multicollinearity is present. All the predictors are independently affecting customer churn.

- ❖ The highest correlation is between day since cc connect and coupon used for payment 0.35, 2nd correlation is between account user count and service score 0.31, lowest correlation is between Tenure and churn -0.23.
- ❖ 'Churn' does not correlate with other predictors. Slight positive correlation with 'complain_112m' of 0.25 indicates that churned customers have made more number of complains. In other side, slight negative correlation with 'Tenure' of -0.23 establishes the fact that long term customers are loyal.

3. Data Cleaning and Pre-processing

Value counts for categorical variables

***** Replace the gender variables

```
Male 6704
Female 4448
Name: Gender, dtype: int64
```

The gender variables had F, M, Female, Male and I have replaced F and M to Male and Female.

A Payments

```
Debit Card 4587
Credit Card 3511
E wallet 1217
Cash on Delivery 1014
UPI 822
Name: Payment, dtype: int64
```

***** Replace the account segment variables

```
Regular + 4124
Super 4062
HNI 1639
Super + 818
Regular 520
Name: account_segment, dtype: int64
```

The account segment variables had repeated variables and merged the Super plus to super+ and Regular plus to Regular +

❖ Marital Status

```
Married 5860
Single 3520
Divorced 1668
```

Name: Marital_Status, dtype: int64

***** Login device

Mobile 7482 Computer 3018 NAN 539

Name: Login device, dtype: int64

Finding median value to replace with special characters

- Tenure
 - 9.0
- ❖ Account user count
 - 4.0
- * Rev per month
 - 5.0
- * Rev growth yoy
 - 15.0
- Cashback
 - 165.25
- ❖ Day Since CC connect

Replaced the special characters

Arrays

Tenure

```
array([ 4., 0., 2., 13., 11., 9., 37., 19., 20., 14., 8., 26., 18., 5., 30., 7., 1., 23., 3., 29., 6., 28., 24., 25., 16., 10., 15., 22., 27., 12., 21., 17., 31.])
```

City Tier

```
array([3., 1., 2.])
```

CC Contacted LY

```
array([ 6., 8., 30., 15., 12., 22., 11., 9., 31., 18., 13., 20., 29., 28., 26., 14., 10., 25., 27., 17., 23., 33., 19., 35., 24., 16., 32., 21., 34., 5., 4., 41., 7., 36., 38., 37., 39., 40.])
```

❖ Service Score

```
array([3., 2., 1., 0.5, 4., 4.5])
```

❖ Account user count

```
array([3., 4., 5., 2., 1.5, 5.5])
```

CC Agent Score

```
array([2., 3., 5., 4., 1.])
```

* Rev per month

```
array([ 9., 7., 6., 8., 3., 2., 4., 10., 1., 5., 13., 11., 12.])
```

❖ Complain Ly

```
array([1., 0.])
```

❖ Day Since CC connect

```
array([ 5. , 0. , 3. , 7. , 2. , 1. , 8. , 6. , 4. , 14.5, 11. , 10. , 9. , 13. , 12. , 14. ])
```

Cashback

```
array([159., 120., 165., 134., 129., 139., 122., 126., 273., 153., 133., 196., 157., 160., 149., 161., 203., 116., 206., 142., 172., 123., 189., 143., 208., 127., 194., 125., 124., 186., 130., 150., 111., 204., 131., 144., 195., 237., 267., 135., 152., 162., 168., 138., 166., 176., 121., 148., 193., 184., 199., 224., 235., 188., 221., 73., 179., 187., 132., 260., 137., 236., 164., 200., 209., 169., 268., 155., 140., 234., 218., 219., 156., 163., 145., 154., 147., 158., 114., 180., 136., 112., 220., 270., 175., 146., 174., 215., 171., 182., 259., 225., 167., 128., 266., 141., 243., 183., 265., 117., 241., 202., 190., 198., 232., 261., 118., 205., 254., 177., 110., 211., 248., 217., 178., 151., 216., 271., 263., 207., 238., 242., 197., 231., 239., 227., 233., 173., 119., 170., 185., 240., 247., 192., 113., 264., 115., 212., 201., 252., 229., 181., 257., 210., 269., 228., 214., 244., 253., 262., 191., 249., 213., 245., 256., 223., 230., 222., 256., 258., 246., 272., 226., 81., 251.])
```

- *Replaced all the special characters with the median values and above are arrays. Now there is no special characters.
- ❖ All 'null' values of categorical variables are imputed by respective column mode.
- ❖ All 'null' values of numerical variables are imputed by respective column median.

Dropped the unwanted column (Account ID)

	Churn	Tenure	City_Tier	CC_Contacted_LY	Payment	Gender	Service_Score	Account_user_count	account_segment	CC_Agent_Score	Marital_Status
0	1	4	3.0	6.0	Debit Card	Female	3.0	3	Super	2.0	Single
1	1	0	1.0	8.0	UPI	Male	3.0	4	Regular +	3.0	Single
2	1	0	1.0	30.0	Debit Card	Male	2.0	4	Regular +	3.0	Single
3	1	0	3.0	15.0	Debit Card	Male	2.0	4	Super	5.0	Single
4	1	0	1.0	12.0	Credit Card	Male	2.0	3	Regular +	5.0	Single

Number of rows and columns

(11260, 18)

Info

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 11260 entries, 0 to 11259
Data columns (total 18 columns):
                                         Non-Null Count Dtype
      Column
      Churn
                                         11260 non-null
       Tenure
                                         11158 non-null
                                                               object
      City_Tier
CC_Contacted_LY
                                                               float64
                                         11148 non-null
                                         11158 non-null
                                                               float64
                                        11152 non-null
11162 non-null
                                                               object
float64
      Gender
      Service_Score
    Account_user_count
account_segment
CC_Agent_Score
                                         11148 non-null
                                                               object
                                        11163 non-null
 9 CC_Agent_Score
10 Marital_Status
11 rev_per_month
12 Complain_ly
                                         11144 non-null
                                         11048 non-null
                                                               object
                                         11158 non-null
                                                               object
                                         10903 non-null
                                                               float64
 13 rev_growth_yoy
                                         11260 non-null
 14 coupon_used_for_payment 11260 non-null object
15 Day_Since_CC_connect 18983 non-null object
16 cashback 10789 non-null object
  17 Login_device
                                         11039 non-null object
dtypes: float64(5), int64(1), object(12)
memory usage: 1.5+ MB
```

❖ There are 11260 rows and 18 columns after dropping the variables and replacing the special characters.

Count of target variables after dropping Account ID

```
0 9364
1 1896
Name: Churn, dtype: int64
```

Count of target variables remains same even after dropping a variables.

Percentage of Target variable

```
(0 83.161634
1 16.838366
Name: Churn, dtype: float64,
2)
```

❖ Only 17% 'Yes' and 83% 'No' so the data is unbalanced. We need to balance in further process of data.

Missing values

Churn	0
Tenure	102
City_Tier	112
CC_Contacted_LY	102
Payment	109
Gender	108
Service_Score	98
Account_user_count	112
account_segment	97
CC_Agent_Score	116
Marital_Status	212
rev_per_month	102
Complain_ly	357
rev_growth_yoy	0
coupon_used_for_payment	0
Day_Since_CC_connect	357
cashback	471
Login_device	221
dtype: int64	

❖ There are missing values in the data.

Percentage of missing values

Churn	0.00
Tenure	0.91
City_Tier	0.99
CC_Contacted_LY	0.91
Payment	0.97
Gender	0.96
Service_Score	0.87
Account_user_count	0.99
account_segment	0.86
CC_Agent_Score	1.03
Marital_Status	1.88
rev_per_month	0.91
Complain_ly	3.17
rev_growth_yoy	0.00
coupon_used_for_payment	0.00
Day_Since_CC_connect	3.17
cashback	4.18
Login_device	1.96
dtype: float64	

❖ Since the missing values are not more than 4 percentage we do not need to drop the missing values.

Imputing with median for numerical data

Churn	0
Tenure	0
City_Tier	0
CC_Contacted_LY	0
Payment	0
Gender	0
Service_Score	0
Account_user_count	0
account_segment	0
CC_Agent_Score	0
Marital_Status	0
rev_per_month	0
Complain_ly	0
rev_growth_yoy	0
coupon_used_for_payment	0
Day_Since_CC_connect	0
cashback	0
Login_device	0
dtype: int64	

❖ Imputed the null values with median and now there is no null values.

Datatypes after converting datatypes

Churn	int64
Tenure	int32
City_Tier	float64
CC_Contacted_LY	float64
Payment	object
Gender	object
Service_Score	float64
Account_user_count	int32
account_segment	object
CC_Agent_Score	float64
Marital_Status	object
rev_per_month	int32
Complain_ly	float64
rev_growth_yoy	int32
coupon_used_for_payment	int32
Day_Since_CC_connect	int32
cashback	int32
Login_device	object
dtype: object	

int32 7
float64 5
object 5
int64 1
dtype: int64

Description of the data

	count	unique	top	freq	mean	std	min	25%	50%	75%	max
Churn	11260	NaN	NaN	NaN	0.168384	0.374223	0	0	0	0	1
Tenure	11260	NaN	NaN	NaN	10.9859	12.7575	0	2	9	16	99
City_Tier	11260	NaN	NaN	NaN	1.64742	0.912763	1	1	1	3	3
CC_Contacted_LY	11260	NaN	NaN	NaN	17.8502	8.81485	4	11	16	23	132
Payment	11260	5	Debit Card	4696	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Gender	11260	2	Male	6812	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Service_Score	11260	NaN	NaN	NaN	2.90337	0.722476	0	2	3	3	5
Account_user_count	11260	NaN	NaN	NaN	3.70497	1.00438	1	3	4	4	6
account_segment	11260	5	Regular +	4221	NaN	NaN	NaN	NaN	NaN	NaN	NaN
CC_Agent_Score	11260	NaN	NaN	NaN	3.06581	1.37266	1	2	3	4	5
Marital_Status	11260	3	Married	6072	NaN	NaN	NaN	NaN	NaN	NaN	NaN
rev_per_month	11260	NaN	NaN	NaN	6.26687	11.489	1	3	5	7	140
Complain_ly	11260	NaN	NaN	NaN	0.276288	0.447181	0	0	0	1	1
rev_growth_yoy	11260	NaN	NaN	NaN	16.1931	3.75727	4	13	15	19	28
coupon_used_for_payment	11260	NaN	NaN	NaN	1.79041	1.96933	0	1	1	2	16
Day_Since_CC_connect	11260	NaN	NaN	NaN	4.58126	3.64964	0	2	3	7	47
cashback	11260	NaN	NaN	NaN	194.459	175.023	0	147	165	197	1997
Login_device	11260	3	Mobile	7703	NaN	NaN	NaN	NaN	NaN	NaN	NaN

Count of Top Frequency variables as per the descriptive data.

	Count	Unique	Тор	Frequency	
Payment	11260	5	Debit Card	4696	
Gender	11260	2	Male	6812	
Account Segment	11260	5	Regular Plus	4221	
Marital Status	11260	3	Married	6072	
Login device	11260	3	Mobile	7703	

Check Outliers

Outliers in numbers

coupon_used_for_payment	1380
cashback	965
Account_user_count	761
rev_per_month	185
Tenure	139
Day_Since_CC_connect	130
CC_Contacted_LY	42
Service_Score	13
account_segment	0
Payment	0
rev_growth_yoy	0
Login_device	0
Gender	0
Complain_ly	0
City_Tier	0
CC_Agent_Score	0
Marital_Status	0
dtype: int64	

Outliers in percentage

coupon_used_for_payment	12.255773
cashback	8.570160
Account_user_count	6.758437
rev_per_month	1.642984
Tenure	1.234458
Day_Since_CC_connect	1.154529
CC_Contacted_LY	0.373002
Service_Score	0.115453
account_segment	0.000000
Payment	0.000000
rev_growth_yoy	0.000000
Login_device	0.000000
Gender	0.000000
Complain_ly	0.000000
City_Tier	0.000000
CC_Agent_Score	0.000000
Marital_Status	0.000000
dtype: float64	

❖ The maximum outliers present as 12.26 % in 'coupon_used_for_payment', followed by 8.76 % in 'cashback' and 6.76 in 'Account_user_count' which are genuine in nature for HNI customers. Moreover, all the

- features except 'coupon_used_for_payment' are with less than 10 % outliers.
- ❖ Hence, we will keep those entries without any further manipulation and use it as final dataset for model building. Again, classification models are not sensitive to outliers.

4. Model building

Descriptive Model for identifying important predictors:

We should build the model on the basis of important predictors only. To find those, we shall first check presence of multicollinearity in the dataset by calling Variance Inflation Factor (VIF).

variables	VIF
rev_per_month	1.300422
Complain_ly	1.379147
Tenure	1.776579
coupon_used_for_payment	2.168521
cashback	2.266142
Gender	2.472687
Day_Since_CC_connect	2.962721
Login_device	3.171795
Marital_Status	3.919705
Payment	4.222503
City_Tier	4.432108
account_segment	4.519479
CC_Contacted_LY	4.988601
CC_Agent_Score	5.496712
Account_user_count	15.050329
rev_growth_yoy	15.651443
Service_Score	17.854014
	rev_per_month Complain_ly Tenure coupon_used_for_payment cashback Gender Day_Since_CC_connect Login_device Marital_Status Payment City_Tier account_segment CC_Contacted_LY CC_Agent_Score Account_user_count rev_growth_yoy

Here we are finding VIF high in many variables so we are going to drop variables whose correlation is above 10.

With the remaining predictors, we have applied logit function to check the insignificant features. On first iteration, the summary is:

Optimization terminated successfully. Current function value: 0.341611 Iterations 7 Logit Regression Results Dep. Variable: Churn No. Observations: 11260 Model: Df Residuals: 11246 Logit Method: MLE Df Model: 13 Date: Wed, 26 Jan 2022 Pseudo R-squ.: 0.2464 12:02:29 Time: Log-Likelihood: -3846.5 converged: True LL-Null: -5104.3 nonrobust Covariance Type: LLR p-value: 0.000 z P>|z| [0.025 0.975] std err -2.3621 0.163 -14.465 0.000 -2.682 -2.042 Intercept Tenure -0.1307 0.005 -25.810 0.000 -0.141 -0.121 CC_Contacted_LY 0.0256 0.003 7.924 0.000 0.019 0.032 Payment -0.0015 0.028 -0.054 0.957 -0.057 Gender 0.2626 0.061 4.341 0.000 0.144 0.381 account_segment -0.28560.029 -9.977 0.000 -0.342 -0.230 CC_Agent_Score 0.2642 0.022 12.284 0.000 0.222 0.306 Marital_Status 0.5725 0.045 12.655 0.000 0.484 0.661 0.0075 0.002 3.381 0.001 0.003 0.012 rev_per_month Complain_ly 1.4836 0.060 24.809 0.000 1.366 1.601 coupon_used_for_payment 0.1381 0.017 8.338 0.000 0.106 0.171 Day_Since_CC_connect -0.1219 0.010 -11.628 0.000 -0.142 -0.101 cashback 2.583e-05 0.000 0.157 0.875 -0.000 0.000 Login_device -0.2743 0.056 -4.912 0.000 -0.384 -0.165

P value is more than 0.05 for

i.e. 'Payment' 0.957 and 'cashback_112m' 0.875 & hence removed.

On second iteration on removal of above mentioned two variables, the summary is:

Optimization terminated successfully.

Current function value: 0.341613

Iterations 7

Logit Regression Results

Dep. Variable:		Churn	No. Obs	servations	s: 112	260	
Model:		Logit	Df Residuals:		s: 112	248	
Method:		MLE	Df Model:		l:	11	
Date:	Wed, 26 J	lan 2022	Pseu	do R-squ	.: 0.24	464	
Time:		12:02:29	Log-l	ikelihood	l: -384	6.6	
converged:		True		LL-Nul	l: -510	4.3	
Covariance Type:	n	onrobust	LLR p-value: 0.			000	
		coef	std err	Z	P> z	[0.025	0.975]
	Intercept	-2.3606	0.155	-15.269	0.000	-2.664	-2.058
	Tenure	-0.1307	0.005	-25.862	0.000	-0.141	-0.121
CC_Cont	acted_LY	0.0256	0.003	7.925	0.000	0.019	0.032
	Gender	0.2633	0.060	4.365	0.000	0.145	0.382
account_	segment	-0.2858	0.029	-9.993	0.000	-0.342	-0.230
CC_Age	nt_Score	0.2642	0.022	12.284	0.000	0.222	0.306
Marita	al_Status	0.5725	0.045	12.658	0.000	0.484	0.661
rev_pe	er_month	0.0075	0.002	3.381	0.001	0.003	0.012
Con	nplain_ly	1.4836	0.060	24.841	0.000	1.367	1.601
coupon_used_for_	payment	0.1382	0.017	8.351	0.000	0.106	0.171
Day_Since_CC	_connect	-0.1218	0.010	-11.629	0.000	-0.142	-0.101
Logi	n_device	-0.2743	0.056	-4.911	0.000	-0.384	-0.165

These are the significant predictors, on which we shall build our models.

Feature Importance

*Removed unnecessary features for model building to arrive the final dataset.

Model building and interpretation

However, the accuracy measure is not sufficient for imbalanced data. Basically, for predicting positive (As 1) class, recall is the most efficient measure. But for business perspective, it is also important for the company to predict the customers who will not churn (negative class as 0) for strategic decisions. So, precision also has its own impact. Hence, we shall consider F1 score (which balances both recall and precision) as our optimum measure. We will also examine AUC measure.

First, we have defined two objects X and y as independent and dependent variables respectively. In X, we have taken all independent variables (predictors) other than the target variable 'Churn'. The object y consists of only the values of the column

'Churn', our target variable. So, X is a matrix of order 11260 X 12 and y is a column matrix / vector matrix of order 11260.

Then we split the data frame into testing & training data by calling 'train_test_split' function from sklearn.model_selection module. We have chosen the ratio of training & testing dataset as 70:30 with 'stratify' function to keep proportion of target feature at a same level for both train and test dataset. It returns four subsets containing training independent, testing independent, training dependent & testing dependent variables respectively. We have got the following data frames under allotted object name & sizes:

Name Size Description

X_train (7882, 12) Training data frame of independent variables X_test (3378, 12) Testing data frame of independent variables train_labels (7882,) Training data frame of dependent variables test_labels (3378,) Testing data frame of dependent variables The following classification models will be built and validated on these training and testing data frames. On the basis of their performances, we compare and choose the best model.

- 1. Decision Tree
- 2. Random Forest
- 3. Artificial Neural Network
- 4. Logistic Regression
- 5. KNN
- 6. Ensemble Bagging

- 7. Ensemble Ada Boosting
- 8. Ensemble Gradient Boosting

Data's in X matrix

	Tenure	City_Tier	CC_Contacted_LY	Gender	account_segment	CC_Agent_Score	Marital_Status	rev_per_month	Complain_ly	coupon_used_for_payment
0	4	3.0	6.0	0	3	2.0	2	9	1.0	1
1	0	1.0	8.0	1	2	3.0	2	7	1.0	0
2	0	1.0	30.0	1	2	3.0	2	6	1.0	0
3	0	3.0	15.0	1	3	5.0	2	8	0.0	0
4	0	1.0	12.0	1	2	5.0	2	3	0.0	1
4										

1. Decision Tree

DT Model Performance Evaluation on Training data

Accuracy for Training data

0.9180411063181934

AUC

AUC: 0.957

[<matplotlib.lines.Line2D at 0x187d4a4f490>]

Classification report

	precision	recall	f1-score	support	
0	0.94	0.97	0.95	6556	
1	0.80	0.68	0.74	1326	
accuracy			0.92	7882	
macro avg	0.87	0.82	0.84	7882	
weighted avg	0.91	0.92	0.92	7882	

Confusion Matrix

```
array([[6338, 218],
[ 428, 898]], dtype=int64)
```

DT Model Performance Evaluation on Test data

Accuracy for Test data

0.9076376554174067

AUC

AUC: 0.926

[<matplotlib.lines.Line2D at 0x187d4a9a730>]

	precision	recall	f1-score	support
0	0.93	0.96	0.95	2808
1	0.78	0.64	0.70	570
accuracy			0.91	3378
macro avg	0.85	0.80	0.82	3378
weighted avg	0.90	0.91	0.90	3378

Confusion Matrix

2. Random Forest Classifier

Grid search

Best parameter

```
{'max_depth': 60,
  'max_features': 10,
  'min_samples_leaf': 10,
  'min_samples_split': 50,
  'n_estimators': 1000}
```

Best grid

RF Model Performance Evaluation on Training data

Accuracy for Training data

0.9200710479573713

Classification report

	precision	recall	f1-score	support
0	0.93	0.97	0.95	6556
1	0.83	0.66	0.74	1326
accuracy			0.92	7882
macro avg	0.88	0.82	0.84	7882
weighted avg	0.92	0.92	0.92	7882

AUC

Area under Curve is 0.9574704230497756

Confusion Matrix

RF Model Performance Evaluation on Test data

Accuracy for Test data

0.9126702190645353

Classification report

	precision	recall	f1-score	support
0	0.93	0.97	0.95	2808
1	0.81	0.62	0.71	570
accuracy			0.91	3378
macro avg	0.87	0.80	0.83	3378
weighted avg	0.91	0.91	0.91	3378

AUC

Area under Curve is 0.9261642800019994

Confusion Matrix

3. Artificial Neural Network

Best grid

MLPClassifier(hidden_layer_sizes=1000, max_iter=500, random_state=1, tol=0.001)

NN Model Performance Evaluation on Training data

Accuracy for Training data

0.9743719868053794

Classification report

	precision	recall	f1-score	support
0	0.97	1.00	0.98	6556
1	0.98	0.87	0.92	1326
accuracy			0.97	7882
macro avg	0.98	0.93	0.95	7882
weighted avg	0.97	0.97	0.97	7882

AUC

Area under Curve is 0.9949019676862156

Confusion matrix

NN Model Performance Evaluation on Test data

Accuracy for Test data

0.9458259325044405

	precision	recall	f1-score	support
0	0.95	0.99	0.97	2808
1	0.92	0.74	0.82	570
accuracy			0.95	3378
macro avg	0.94	0.86	0.90	3378
weighted avg	0.94	0.95	0.94	3378

AUC

Area under Curve is 0.9261642800019994

Confusion Matrix

4. Logistic Regression

Y test predict probability

	0	1
0	0.361945	0.638055
1	0.417063	0.582937
2	0.929845	0.070155
3	0.711698	0.288302
4	0.958776	0.041224

LR model Performance Evaluation on Train data

Accuracy for Training data

0.8742704897234205

Classification report

	precision	recall	f1-score	support
0	0.94	0.85	0.89	6556
1	0.49	0.72	0.59	1326
accuracy			0.83	7882
macro avg	0.72	0.79	0.74	7882
weighted avg	0.86	0.83	0.84	7882

AUC

AUC: 0.853

[<matplotlib.lines.Line2D at 0x187c4f13fd0>]

Confusion Matrix

LR model Performance Evaluation on Test data

Accuracy for Test data

0.8747779751332149

	precision	recall	f1-score	support
0	0.93	0.85	0.89	2808
1	0.48	0.70	0.57	570
accuracy			0.82	3378
macro avg	0.71	0.77	0.73	3378
weighted avg	0.86	0.82	0.83	3378

AUC

AUC: 0.851

[<matplotlib.lines.Line2D at 0x187c8030910>]

Confusion Matrix

5. KNN Model

KNN model score

0.9341537680791677

Performance Matrix on train data

Accuracy for Training data

0.9645

	precision	recall	f1-score	support
0	0.95	0.98	0.96	6556
1	0.86	0.72	0.79	1326
accuracy			0.93	7882
macro avg	0.90	0.85	0.87	7882
weighted avg	0.93	0.93	0.93	7882

Confusion Matrix

[[6403 153] [366 960]]

Performance Matrix on test data set

Accuracy for Test data

0.9361

Classification report

	precision	recall	f1-score	support
0	0.92	0.96	0.94	2808
1	0.73	0.59	0.65	570
accuracy			0.89	3378
macro avg	0.82	0.77	0.79	3378
weighted avg	0.89	0.89	0.89	3378

Confusion Matrix

[[2683 125] [234 336]]

Let us find optimum value of k

Ac scores

```
[0.04055654233274131,
0.048253404381290665,
0.06394316163410307,
0.07578448786264058,
0.0867377146240379,
0.09384251036116042,
0.1015393724097099,
0.10864416814683242,
0.10923623445825936,
0.11367673179396087]
```

Misclassification Error

In K=3 it is giving the best accuracy now let's check on train and test data.

Accuracy for Training data

0.9787

Classification report

	precision	recall	f1-score	support
0	0.99	0.99	0.99	6556
1	0.95	0.93	0.94	1326
accuracy			0.98	7882
macro avg	0.97	0.96	0.96	7882
weighted avg	0.98	0.98	0.98	7882

Confusion Matrix

```
[[6486 70]
[ 98 1228]]
```

Accuracy for Test data

0.9517

Classification report

	precision	recall	f1-score	support
0	0.97	0.97	0.97	2808
1	0.87	0.84	0.86	570
accuracy			0.95	3378
macro avg	0.92	0.91	0.91	3378
weighted avg	0.95	0.95	0.95	3378

Confusion Matrix

AUC

6. Bagging

Performance of matrix on train data

Accuracy for Training data

0.9999

Classification report

	precision	recall	f1-score	support
0	1.00	1.00	1.00	6556
1	1.00	1.00	1.00	1326
accuracy			1.00	7882
macro avg	1.00	1.00	1.00	7882
weighted avg	1.00	1.00	1.00	7882

Confusion Matrix

[[6556 0] [1 1325]]

Performance of matrix on test data

Accuracy for Test data

0.9609

Classification report

	precision	recall	f1-score	support
0	0.96	0.99	0.98	2808
1	0.94	0.82	0.88	570
accuracy			0.96	3378
macro avg	0.95	0.91	0.93	3378
weighted avg	0.96	0.96	0.96	3378

Confusion Matrix

AUC

AUC for the bgcl Train Data: 1.000 AUC for the bgcl Test Data: 0.986

7. Ada Boosting

Performance of matrix on train data

Accuracy for Training data

0.8961

Classification report

	precision	recall	f1-score	support
0	0.92	0.96	0.94	6556
1	0.74	0.59	0.66	1326
accuracy			0.90	7882
macro avg	0.83	0.77	0.80	7882
weighted avg	0.89	0.90	0.89	7882

Confusion Matrix

[[6285 271] [548 778]]

Performance of matrix on test data

Accuracy for Test data

0.8931

Classification report

	precision	recall	f1-score	support
0	0.96	0.99	0.98	2808
1	0.94	0.82	0.88	570
accuracy			0.96	3378
macro avg	0.95	0.91	0.93	3378
weighted avg	0.96	0.96	0.96	3378

Confusion Matrix

[[2778 30] [102 468]]

AUC

AUC for the abcl Train Data: 0.917 AUC for the abcl Test Data: 0.902

8. Gradient Boosting

Performance of matrix on train data

Accuracy for Training data

0.9779

Classification report

	precision	recall	f1-score	support		
0	0.97	1.00	0.99	6556		
1	1.00	0.87	0.93	1326		
accuracy			0.98	7882		
macro avg	0.99	0.94	0.96	7882		
weighted avg	0.98	0.98	0.98	7882		

Confusion Matrix

[[6553 3] [171 1155]]

Performance of matrix on test data

Accuracy for Test data

0.9364

Classification report

	precision	recall	f1-score	support
0	0.94	0.98	0.96	2808
1	0.90	0.70	0.79	570
accuracy			0.94	3378
macro avg	0.92	0.84	0.88	3378
weighted avg	0.93	0.94	0.93	3378

Confusion Matrix

[[2762 46] [169 401]]

AUC

Smote data

Performance of matrix on train data

Y train predict kNN

0.9524100061012812

Classification report

	precision	recall	f1-score	support
0	1.00	0.91	0.95	6556
1	0.92	1.00	0.95	6556
accuracy			0.95	13112
macro avg	0.96	0.95	0.95	13112
weighted avg	0.96	0.95	0.95	13112

Confusion Matrix

[[5952 604] [20 6536]]

Performance Matrix on test data set

Accuracy for Test data

0.8596802841918295

Classification report

	precision	recall	f1-score	support
0	0.97	0.86	0.91	2808
1	0.55	0.86	0.67	570
accuracy			0.86	3378
macro avg	0.76	0.86	0.79	3378
weighted avg	0.90	0.86	0.87	3378

Confusion Matrix

[[2414 394] [80 490]]

Comparison of the performance metrics from the models

	CART Train	CART Test	Random Forest Train	Random Forest Test	Logistic Regression Train	Logistic Regression Test	Neural Network Train	Neural Network Test	KNN Train	KNN Test	BGCL Train	BGCL Test	GBCL Train	GBCL Test	ABCL Train	ABCL Test
Accuracy	0.92	0.91	0.92	0.91	0.87	0.87	0.97	0.95	0.98	0.95	1.0	0.96	1.00	0.94	0.90	0.89
AUC	0.96	0.93	0.96	0.93	0.85	0.85	0.99	0.93	1.00	0.96	1.0	0.99	1.00	0.97	0.92	0.90
Recall	0.68	0.64	0.66	0.62	0.72	0.70	0.87	0.74	0.93	0.84	1.0	0.94	1.00	0.90	0.74	0.94
Precision	0.80	0.78	0.83	0.81	0.49	0.48	0.98	0.92	0.95	0.87	1.0	0.82	0.87	0.70	0.59	0.82
F1 Score	0.74	0.70	0.74	0.71	0.59	0.57	0.92	0.82	0.94	0.86	1.0	0.88	0.93	0.79	0.66	0.88

ROC Curve for all the models on the Training data

ROC Curve for all the models on the Test data

<matplotlib.legend.Legend at 0x187c5127d60>

Model Chosen

I would prefer to Artificial Neural network model. Why?

- ❖ I prefer the model which is highest score in Recall, precision, F1 score and Accuracy. Compared to all the models I would suggest the best model is "Artificial neural network".
- ❖ Since the data is imbalanced used Smote technique to increase the minority class and executed on the same.
- ❖ Hence 'Bagging and Gradient Boosting' is overfitting and cannot rely totally on 100% prediction so, I would prefer to go to ANN.
- ❖ Since the data is imbalanced I would suggest the first priority to go head as per high in Recall, second Precision, third F1 score and last Accuracy.

5. Model validation

- ❖ Artificial neural network is also giving the best result in reference to Accuracy in train data is 97%, Recall 87%, Precision 98% and F1 Score 92%. In Test data Accuracy is 95%, Recall is 74%, Precision is 92% and F1 score is 82%.
- ❖ From the graph we can predict that "Artificial neural network" predicts the data best as it is the curve which is above all the curve in training and test data when compared to all the models. The more it shifts to the left side i.e. true positive rate the better the model is.

6. Final interpretation

- ❖ This data is taken for 12 months (1 year).
- ❖ 1896 account holder have churned out of 11260 last year.
- ❖ The given dataset is imbalanced. We will use suitable method to balance the data preferably by oversampling using SMOTE (Synthetic Minority Over-Sampling Technique).
- ❖ No multicollinearity is present. All the predictors are independently affecting customer churn.
- Churn of accounts has increased due to complaints lodged.
- ❖ High negative impact of 'Tenure' on 'Churn' establishes the fact that long term customers are loyal.
- ❖ Customers care services have been contacting the each account holders.
- ❖ The dataset has outliers and missing values in which imputed missing values with median and not treated outliers.
- ❖ Maximum Cashback awarded to customers in 12 months is Rs.1997.
- Customers who logged in via mobile (7482) are more who have churned.
- ❖ Payment of 65 % of the churned account made by Debit & Credit Card.
- ❖ 4124 customers prefer to regular plus account segment.

Recommendations

Excellent product and efficient customer service are the steering factors behind any stable business. Both of them are not in pole positions in the given problem.so, the churn rate of the company is higher than the industry level.

- ❖ Service charge has to be reduced.
- ❖ Deep attention account holders who are using Regular plus & Super plan, logging in with mobile and making payments by debit & credit cards.
- Some extra benefits may be offered for 'Regular plus' and 'Super' plan.
- ❖ Ask for feedback often.
- ❖ Need to provide different better packages and more benefits to the loyal customers who are there for a long period.
- * Taking advantage of opportunities to reach out to clients you have not talked to in years.
- ❖ Focus on Customer Support.
- ❖ Minimize Seller Mistakes.

THE END