Дубровских Никита 221-361

Вариант 7

Задание 17.

Дан взвешенный граф. Найти остов минимального веса (экстремальное дерево).

Решение:

Найдем ребро минимального веса:

На каждом следующем шаге будем брать ребро минимального веса, инцидентное вершинам, уже включенным в остов и при этом не образующего цикла.

Задание 18.

Для графа G, заданного матрицей весов, построить минимальный по весу остов и найти его вес:

	x_1	x_2	x_3	x_4	x_5	x_6	x_7
\mathbf{x}_1	0	8	9	∞	∞	∞	6
X_2	8	0	7	6	9	∞	∞
Х3	9	7	0	6	10	5	∞
X_4	∞	6	6	0	8	7	∞
X5	∞	9	10	8	0	4	5
x ₆	∞	∞	5	7	4	0	6
X7	6	∞	∞	∞	5	6	0

Воспользуемся алгоритмом Краскала. Найдем ребро минимального веса: x_5x_6 - имеет вес 4. На каждом следующем шаге будем брать ребро минимального веса, инцидентное вершинам, уже включенным в остов и при этом не образующего цикла.

Покажем последовательно, как добавлялись ребра на матрице графа (Включенные ячейки закрасим черным, добавляемые – серым). Поскольку граф не ориентирован, то его матрица симметрична и мы возьмем только ту часть матрицы, что находится над главной диагональю.

	x_1	x_2	x_3	x_4	x_5	x_6	x_7
\mathbf{x}_1	0	8	9	∞	∞	∞	6
\mathbf{x}_2	8	0	7	6	9	∞	∞
Х3	9	7	0	6	10	5	∞
X_4	∞	6	6	0	8	7	∞
X5	∞	9	10	8	0	4	5
x ₆	∞	∞	5	7	4	0	6
X7	6	∞	∞	∞	5	6	0

	x_1	x_2	x_3	x_4	x_5	x_6	x_7
\mathbf{x}_1	0	8	9	∞	∞	∞	6
X_2	8	0	7	6	9	∞	∞
X3	9	7	0	6	10	5	∞
X4	∞	6	6	0	8	7	∞
X5	∞	9	10	8	0	4	5
x ₆	∞	∞	5	7	4	0	6
X7	6	∞	∞	∞	5	6	0

	x_1	x_2	x_3	x_4	x_5	x_6	x_7
\mathbf{x}_1	0	8	9	∞	∞	∞	6
X_2	8	0	7	6	9	∞	∞
X3	9	7	0	6	10	5	∞
X_4	∞	6	6	0	8	7	∞
x_5	∞	9	10	8	0	4	5
x ₆	∞	∞	5	7	4	0	6
X7	6	∞	∞	∞	5	6	0

	x_1	x_2	x_3	x_4	x_5	x_6	x_7
\mathbf{x}_1	0	8	9	∞	∞	∞	6
X2	8	0	7	6	9	∞	∞
X3	9	7	0	6	10	5	∞
X4	∞	6	6	0	8	7	∞
X5	∞	9	10	8	0	4	5
x ₆	∞	∞	5	7	4	0	6
X7	6	∞	∞	∞	5	6	0

	x_1	x_2	x_3	x_4	x_5	x_6	x_7
\mathbf{x}_1	0	8	9	∞	∞	∞	6
x_2	8	0	7	6	9	∞	∞
X3	9	7	0	6	10	5	∞
X4	∞	6	6	0	8	7	∞
x_5	∞	9	10	8	0	4	5
x ₆	∞	∞	5	7	4	0	6
X7	6	∞	∞	∞	5	6	0

Bec: 6+6+5+6+4+5=32