Stoke's and Gauss's Theorem

Quasar Chunawala

October 11, 2023

Exercise Problems.

1. Let $X: \mathbf{R}^2 \to \mathbf{R}^3$ be the parametrized surface given by

$$X(s,t) = (s^2 - t^2, s + t, s^2 + 3t)$$

(a) Determine a normal vector to this surface at the point

$$(3,1,1) = \mathbf{X}(2,-1)$$

Solution.

We have:

$$T_s = (2s, 1, 2s)$$

 $T_t = (-2t, 1, 3)$

So, the standard normal vector at the point $\mathbf{X}(2,-1)$ is:

$$\mathbf{N} = \mathbf{T}_{s} \times \mathbf{T}_{t}$$

$$= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2s & 1 & 2s \\ -2t & 1 & 3 \end{vmatrix}$$

$$= \mathbf{i}(3 - 2s) - \mathbf{j}(6s + 4st) + \mathbf{k}(2s + 2t)$$

$$= \mathbf{i}(3 - 4) - \mathbf{j}(12 + 4(2)(-1)) + \mathbf{k}(4 - 2)$$

$$= -\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}$$

(b) Find an equation for the plane tangent to this surface at the point (3, 1, 1).

Solution.

The tangent plane to this surface at the point (3, 1, 1) is given by:

$$\mathbf{N} \cdot (\mathbf{x} - (3, 1, 1)) = 0$$
$$(-1, -4, 2) \cdot ((x, y, z) - (3, 1, 1)) = 0$$
$$-(x - 3) - 4(y - 1) + 2(z - 1) = 0$$

2. Find an equation for the plane tangent to the torus

$$\mathbf{X}(s,t) = ((5+2\cos t)\cos s, (5+2\cos t)\sin s, 2\sin t)$$

at the point $((5-\sqrt{3})/\sqrt{2}, (5-\sqrt{3})/\sqrt{2}, 1)$.

Solution.

We have:

$$\mathbf{T}_s = (-(5+2\cos t)\sin s, (5+2\cos t)\cos s, 0)$$
$$\mathbf{T}_t = (-2\sin t\cos s, -2\sin t\sin s, 2\cos t)$$

The standard normal vector is:

$$\mathbf{N} = \mathbf{T}_s \times \mathbf{T}_t$$

$$= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -(5+2\cos t)\sin s & (5+2\cos t)\cos s & 0 \\ -2\sin t\cos s & -2\sin t\sin s & 2\cos t \end{vmatrix}$$

$$= \mathbf{i}(2(5+2\cos t)\cos s\cos t) + \mathbf{j}(2(5+2\cos t)\sin s\cos t)$$

$$+ \mathbf{k}(2\sin s\sin t(5+2\cos t) + 2(5+2\cos t)\sin t\cos^2 s)$$

$$= 2(5+2\cos t)(\cos s\cos t\mathbf{i} + \sin s\cos t\mathbf{j} + (\sin^2 s + \cos^2 s)\sin t\mathbf{k})$$

$$= 2(5+2\cos t)(\cos s\cos t\mathbf{i} + \sin s\cos t\mathbf{j} + \sin t\mathbf{k})$$

The point $((5-\sqrt{3})/\sqrt{2}, (5-\sqrt{3})/\sqrt{2}, 1) = ((5+2\cos t)\cos s, (5+2\cos t)\sin s, 2\sin t)$ yields $\sin t = 1/2$, so $t_0 = \pi/6$ or $t_0 = 5\pi/6$. Since $2\cos t < 0$, $t_0 = 5\pi/6$. Then, we can see that :

$$\frac{5-\sqrt{3}}{\sqrt{2}} = \left(5 - 2 \cdot \frac{\sqrt{3}}{2}\right) \sin s$$

So, $s_0 = \pi/4$.

Consequently, the equation of the tangent plane at $\mathbf{X}(\pi/4, 5\pi/6)$ is:

$$\mathbf{N} \cdot (\mathbf{x} - \mathbf{X}(s_0, t_0)) = 0$$

$$2(5 - \sqrt{3})(-\frac{\sqrt{3}}{2\sqrt{2}}\mathbf{i} - \frac{\sqrt{3}}{2\sqrt{2}}\mathbf{j} + \frac{1}{2}\mathbf{k})((x, y, z) - (\frac{5 - \sqrt{3}}{\sqrt{2}}, \frac{5 - \sqrt{3}}{\sqrt{2}}, 1)) = 0$$

$$-\frac{\sqrt{3}}{\sqrt{2}}(x - (5 - \sqrt{3})/\sqrt{2}) - \frac{\sqrt{3}}{\sqrt{2}}(y - (5 - \sqrt{3})/\sqrt{2}) + (z - 1) = 0$$

$$-\sqrt{3}(x - (5 - \sqrt{3})/\sqrt{2}) - \sqrt{3}(y - (5 - \sqrt{3})/\sqrt{2}) + \sqrt{2}(z - 1) = 0$$

$$-\sqrt{3}x - \sqrt{3}y + \sqrt{2}z = -2\sqrt{3}(5 - \sqrt{3})/\sqrt{2} + \sqrt{2}$$

$$= -\sqrt{6}(5 - \sqrt{3}) + \sqrt{2}$$

$$= -5\sqrt{6} + 3\sqrt{2} + \sqrt{2}$$

$$\sqrt{3}x + \sqrt{3}y - \sqrt{2}z = 5\sqrt{6} - 4\sqrt{2}$$

3. Find an equation of the plane tangent to the surface

$$x = e^s$$
 $y = t^2 e^{2s}$ $z = 2e^{-s} + t$

at the point (1, 4, 0).

Solution.

We have:

$$\mathbf{T}_s = (e^s, 2t^2e^{2s}, -2e^{-s})$$

 $\mathbf{T}_t = (0, 2te^{2s}, 1)$

The standard normal vector is:

$$\begin{split} \mathbf{N} &= \mathbf{T}_{s} \times \mathbf{T}_{t} \\ &= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ e^{s} & 2t^{2}e^{2s} & -2e^{-s} \\ 0 & 2te^{2s} & 1 \end{vmatrix} \\ &= \mathbf{i}(2t^{2}e^{2s} + 4te^{s}) - \mathbf{j}(e^{s}) + \mathbf{k}(2te^{3s}) \\ &= e^{s}((2t^{2}e^{s} + 4t)\mathbf{i} - \mathbf{j} + (2te^{2s})\mathbf{k}) \end{split}$$

Since $e^s=1$, s=0. Also, as $4=t^2\cdot 1$, we have $t=\pm 2$. Moreover, 0=2+t, so t=-2. So, $\mathbf{N}(0,-2)$ is:

$$\mathbf{N}(0, -2) = -\mathbf{i} - 4\mathbf{k}$$

The equation of the tangent plane at $\mathbf{X}(0, -2)$ is:

$$\mathbf{N} \cdot (x - 1, y - 4, z) = 0$$
$$-(y - 4) - 4z = 0$$
$$y + 4z = 4$$

4. Let $\mathbf{X}(s,t) = (s^2 \cos t, s^2 \sin t, s), -3 \le s \le 3, 0 \le t \le 2\pi$.

(a) Find a normal vector at (s, t) = (-1, 0).

Solution.

We have:

$$\mathbf{T}_s = (2s\cos t, 2s\sin t, 1)$$
$$\mathbf{T}_t = (-s^2\sin t, s^2\cos t, 0)$$

The standard normal vector N is:

$$\begin{split} \mathbf{N} &= \mathbf{T}_s \times \mathbf{T}_t \\ &= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2s\cos t & 2s\sin t & 1 \\ -s^2\sin t & s^2\cos t & 0 \end{vmatrix} \\ &= \mathbf{i}(-s^2\cos t) - \mathbf{j}(s^2\sin t) + \mathbf{k}(2s^3\cos^2 t + 2s^3\sin^2 t) \\ &= -s^2\cos t\mathbf{i} - s^2\sin t\mathbf{j} + 2s^3\mathbf{k} \end{split}$$

The vector at (s,t)=(-1,0) is:

$$\mathbf{N}(-1,0) = -\mathbf{i} - 2\mathbf{k}$$

Hence, the equation of the tangent plane at $\mathbf{X}(-1,0) = (1,0,-1)$ is:

$$\begin{aligned} (-\mathbf{i} - 2\mathbf{k}) \cdot ((x, y, z) - (1, 0, -1)) &= 0 \\ -(x - 1) - 2(z + 1) &= 0 \\ x - 1 + 2z + 2 &= 0 \\ x + 2z + 1 &= 0 \end{aligned}$$

(b) Find an equation for the image of **X** in the form F(x, y, z) = 0.

Solution.

Let $x = s^2 \cos t$, $y = s^2 \sin t$. Then, $x^2 + y^2 = s^4(\cos^2 t + \sin^2 t) = s^4 = z^4$. So, $F(x, y, z) = x^2 + y^2 - z^4 = 0$.

5. Consider the parameterized surface $\mathbf{X}(s,t) = (s,s^2+t,t^2)$.

(a) Graph the surface for $-2 \le s \le 2$, $-2 \le t \le 2$.

Solution.

The s-coordinate curve at t = 0 is:

$$x = s$$
$$y = s^2$$
$$z = 0$$

This is the parabolic curve $y = x^2$ in the xy-plane.

The s-coordinate curve at $t=t_0$ is:

$$x = s$$
$$y = s^{2} + t_{0}$$
$$z = t_{0}^{2}$$

Thus, we get parabolas parallel to the xy-plane.

t	Curve	Center	z-plane
$t_0 = -2$	$y + 2 = x^2$	(x,y) = (0,-2)	z=4
$t_0 = -1$	$y+1=x^2$	(x,y) = (0,-1)	z = 1
$t_0 = 0$	$y = x^2$	(x,y) = (0,0)	z = 0
$t_0 = 1$	$y - 1 = x^2$	(x,y) = (0,1)	z = 1
$t_0 = 2$	$y - 2 = x^2$	(x,y) = (0,2)	z=4

The t-coordinate curve at s = 0 is:

$$x = 0$$
$$y = t$$
$$z = t^2$$

These are parabolas parallel to the yz-plane.

t	Curve	Center	x-plane
$s_0 = -2$	$z = (y-4)^2$	(y,z) = (2,0)	x = -2
$s_0 = -1$	$z = (y-1)^2$	(y,z) = (1,0)	x = -1
$s_0 = 0$	$z = y^2$	(y,z) = (0,0)	x = 0
$s_0 = 1$	$z = (y-1)^2$	(y,z) = (1,0)	x = 1
$s_0 = 2$	$z = (y-4)^2$	(y,z) = (2,0)	x = 2

Figure. $\mathbf{X}(s,t) = (s, s^2 + t, t^2)$.

(b) Is the surface smooth?

Solution. The surface is smooth.

(c) Find an equation for the tangent plane at the point (1,0,1).

Solution.

We have:

$$\mathbf{T}_s = (1, 2s, 0)$$

$$\mathbf{T}_t = (0, 1, 2t)$$

The standard normal vector N is:

$$\begin{aligned} \mathbf{N} &= \mathbf{T}_s \times \mathbf{T}_t \\ &= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2s & 0 \\ 0 & 1 & 2t \end{vmatrix} \\ &= 4st\mathbf{i} - 2t\mathbf{j} + \mathbf{k} \end{aligned}$$

The point (1,0,1) is $(s_0 = 1, t_0 = -1)$.

$$\mathbf{N}(1,-1) = -4\mathbf{i} + 2\mathbf{j} + \mathbf{k}$$

The equation of the tangent plane at (1, -1) is:

$$(-4,2,1) \cdot (x-1,y,z-1) = 0$$

$$-4(x-1) + 2y + (z-1) = 0$$

$$4(x-1) - 2y - (z-1) = 0$$

$$4x - 4 - 2y - z + 1 = 0$$

$$4x - 2y - z = 3$$

6. Describe the parameterized surface of exercise problem 1 by an equation of the form z = f(x, y). Solution.

The parametric surface $\mathbf{X}(s,t)$ is:

$$X(s,t) = (s^2 - t^2, s + t, s^2 + 3t)$$

In exercise (1), we see that x=(s-t)(s+t)=y(s+t) so s+t=x/y and y=s-t. This allows us to solve simultaneously for s and t. 2s=x/y+y and 2t=x/y-y. This means that $z=s^2+3t$ can be written as $z=\frac{1}{4}\left(\frac{x}{y}+y\right)^2+\frac{3}{2}\left(\frac{x}{y}-y\right)$.

7. Let S be the surface parameterized by:

$$x = s \cos t$$
$$y = s \sin t$$
$$z = s^2$$

where $s \geq 0$, $0 \leq t \leq 2\pi$.

(a) At what points is S smooth? Find an equation for the tangent plane at the point $(1, \sqrt{3}, 4)$. Solution.

The surface S is $x^2 + y^2 = z$. This is a paraboloid. It is smooth at all points.

We have:

$$\mathbf{T}_s = (\cos t, \sin t, 2s)$$
$$\mathbf{T}_t = (-s \sin t, s \cos t, 0)$$

The standard normal vector N is:

$$\mathbf{N} = \mathbf{T}_s \times \mathbf{T}_t$$

$$= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \cos t & \sin t & 2s \\ -s \sin t & s \cos t & 0 \end{vmatrix}$$

$$= (-2s^2 \cos t)\mathbf{i} - (2s^2 \sin t)\mathbf{j} + (s \cos^2 + s \sin^2 t)\mathbf{k}$$

$$= (-2s^2 \cos t)\mathbf{i} - (2s^2 \sin t)\mathbf{j} + s\mathbf{k}$$

At s = 2, $t = \pi/6$,

$$N(2, \pi/6) = -4\sqrt{3}i - 4j + 2k$$

The equation of the tangent plane at $\mathbf{X}(2, \pi/6)$ is:

$$\begin{aligned} (-4\sqrt{3}, -4, 2) \cdot (x - 1, y - \sqrt{3}, z - 4) &= 0 \\ 4\sqrt{3}(x - 1) + 4(y - \sqrt{3}) - 2(z - 4) &= 0 \\ 4\sqrt{3}x - 4\sqrt{3} + 4y - 4\sqrt{3} - 2z + 8 &= 0 \\ 4\sqrt{3}x + 4y - 2z &= 8(\sqrt{3} - 1) \\ 2\sqrt{3}x + 2y - z &= 4(\sqrt{3} - 1) \end{aligned}$$

(b) Sketch the graph of S. Can you recognize S as a familiar surface?

Figure. $\mathbf{X}(s,t) = (s\cos t, s\sin t, s^2)$

(c) Describe S by an equation of the form z = f(x, y).

Solution. Again $z = x^2 + y^2$.

(d) Using your answer in part(c), discuss whether S has a tangent plane at every point.

Solution.

S has a tangent plane at every point and is smooth. Part (a) takes care of every point except the origin. At the origin $\mathbf{N} = (0,0,0)$. But, we easily see, that the tangent plane at the origin is the horizontal plane z=0. Thus, smoothness as defined in the text, depends on both the parameterization and the geometry of the underlying surface.

8. Verify that the image of the parametrized surface

$$\mathbf{X}(s,t) = (2\sin s \cos t, 3\sin s \sin t, \cos s)$$

 $0 \le s \le \pi$ and $0 \le t \le 2\pi$ is an ellipsoid.

Solution.

We can easily write:

$$\frac{x^2}{4} + \frac{y^2}{9} + \frac{z^2}{1} = 1$$

Figure. $\mathbf{X}(s,t) = (2\sin s \cos t, 3\sin s \sin t, \cos s)$

9. Verify that, for the torus of example 5, the s-coordinate curve, when $t = t_0$ is a circle of radius $a + b \cos t_0$. Solution.

The parametric equations of the Torus in example 5 were:

$$x = (a + b\cos t)\cos s$$
$$y = (a + b\cos t)\sin s$$
$$z = b\sin t$$

The s-coordinate curve at $t = t_0$ is:

$$x = (a + b\cos t_0)\cos s$$
$$y = (a + b\cos t_0)\sin s$$
$$z = b\sin t_0$$

These are circles of radius $a + b \cos t_0$ in the plane $z = b \sin t_0$.

And they satisfy $x^2 + y^2 = (a + b\cos t_0)^2$.

Figure. Torus $\mathbf{X}(s,t) = ((a+b\cos t)\cos s, (a+b\cos t)\sin s, b\sin t)$

9. The surface in \mathbb{R}^3 parametrized by:

$$\mathbf{X}(r,\theta) = (r\cos\theta, r\sin\theta, \theta)$$

where $r \geq 0$ and $-\infty < \theta < \infty$ is called a helicoid.

(a) Describe the r-coordinate curve when $\theta=\pi/3$. Give a general description of the r-coordinate curves. Solution.

The r-coordinate curve when $\theta=\pi/3$ is:

$$x = r/2$$
$$y = \sqrt{3}r/2$$
$$z = \pi/3$$

It is the straight-line $y = \sqrt{3}x$ in the plane $z = \pi/3$.

The r-coordinate curve when $\theta = \theta_0$ is:

$$x = r \cos \theta_0$$
$$y = r \sin \theta_0$$
$$z = \theta_0$$

It is the straight line $y = (\tan \theta_0)x$ in the plane $z = \theta_0$.

(b) Describe the θ -coordinate curve when r=1. Give a general description of the θ -coordinate curves. Solution.

The θ -coordinate curve when r = 1 is:

$$x = \cos \theta$$
$$y = \sin \theta$$
$$z = \theta$$

This is a helix with parameter θ and radius 1.

The θ -coordinate curve when $r=r_0$ is:

$$x = r_0 \cos \theta$$
$$y = r_0 \sin \theta$$
$$z = \theta$$

These are helixes of radius $r_0 \ge 0$.

(c) Sketch the graph of the helicoid using a computer for $0 \le r \le 1$, $0 \le \theta \le 4\pi$. Can you see why the surface is called a helicoid?

Figure. Helicoid $\mathbf{X}(r, \theta) = (r \cos \theta, r \sin \theta, \theta)$

11. Given a sphere of radius 2 centered at (2, -1, 0), find an equation for the plane tangent to it at the point $(1, 0, \sqrt{2})$ in three ways: (a) by consider the sphere as the graph of the function $f(x, y) = \sqrt{4 - (x - 2)^2 - (y + 1)^2}$. Solution.

We have:

$$\operatorname{grad} f = \begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \end{bmatrix}$$
$$= \begin{bmatrix} -\frac{(x-2)}{\sqrt{4-(x-2)^2-(y+1)^2}} & -\frac{(y+1)}{\sqrt{4-(x-2)^2-(y+1)^2}} \end{bmatrix}$$

Thus,

grad
$$f(1,0) = (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$$

So, the tangent plane at the point $(1, 0, \sqrt{2})$ is:

$$\begin{split} z &= f(1,0) + (\mathbf{x} - \mathbf{a}) \cdot \nabla f \\ &= \sqrt{2} + (x - 1, y) \cdot ((1/\sqrt{2}), -(1/\sqrt{2})) \\ &= \sqrt{2} + \frac{x - 1}{\sqrt{2}} - \frac{y}{\sqrt{2}} \\ \sqrt{2}z &= 2 + (x - 1) - y \\ x - y + 1 &= \sqrt{2}z \end{split}$$

(b) by considering the sphere as a level surface of the function

$$F(x, y, z) = (x - 2)^{2} + (y + 1)^{2} + z^{2}$$

The gradient ∇F is :

$$\nabla F = \begin{bmatrix} \frac{\partial F}{\partial x} & \frac{\partial F}{\partial y} & \frac{\partial F}{\partial z} \end{bmatrix}$$
$$= \begin{bmatrix} 2(x-2) & 2(y+1) & 2z \end{bmatrix}$$

If $\mathbf{x}_0 = (x_0, y_0, z_0)$ is a point on the level set $S = \{(x, y, z) : F(x, y, z) = c\}$, then the gradient vector $\nabla F(\mathbf{x})$ at the point \mathbf{x}_0 is perpendicular to S. $(1, 0, \sqrt{2})$ is point on the level set $S = \{(x, y, z) | (x - 2)^2 + (y + 1)^2 + z^2 = 4\}$. So, $\nabla F(1, 0, \sqrt{2}) = (-2, 2, 2\sqrt{2})$ is the normal vector to the sphere F(x, y, z) = 4 at the point $(1, 0, \sqrt{2})$.

If (x, y, z) is an arbitrary point in the tangent plane, we must have:

$$(x-1, y, z - \sqrt{2}) \cdot (-2, 2, 2\sqrt{2}) = 0$$

$$(x-1, y, z - \sqrt{2}) \cdot (-1, 1, \sqrt{2}) = 0$$

$$-(x-1) + y + \sqrt{2}(z - \sqrt{2}) = 0$$

$$(x-1) - y - \sqrt{2}(z - \sqrt{2}) = 0$$

$$x - y - \sqrt{2}z + 1 = 0$$

$$x - y + 1 = \sqrt{2}z$$

(c) By considering the sphere as the surface parametrized by:

$$X(s,t) = (2 \sin s \cos t + 2, 2 \sin s \sin t - 1, 2 \cos s)$$

Solution.

We have:

$$\mathbf{T}_s = (2\cos s \cos t, 2\cos s \sin t, -2\sin s)$$
$$\mathbf{T}_t = (-2\sin s \sin t, 2\sin s \cos t, 0)$$

The standard normal vector N is:

$$\mathbf{N} = \mathbf{T}_s \times \mathbf{T}_t$$

$$= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2\cos s \cos t & 2\cos s \sin t & -2\sin s \\ -2\sin s \sin t & 2\sin s \cos t & 0 \end{vmatrix}$$

$$= 4\sin^2 s \cos t \mathbf{i} - (-4\sin^2 s \sin t) \mathbf{j} + (4\sin s \cos s \cos^2 t + 4\sin s \cos s \sin^2 t) \mathbf{k}$$

$$= 4\sin^2 s \cos t \mathbf{i} + 4\sin^2 s \sin t \mathbf{j} + 4\sin s \cos s \mathbf{k}$$

Now, $2\cos s = \sqrt{2}$ so $\cos s = \frac{1}{\sqrt{2}}$ and thus $s = \pi/4$. Consequently, $\sqrt{2}\cos t + 2 = 1$ and therefore $\cos t = -\frac{1}{\sqrt{2}}$, which implies $t = 3\pi/4$. The normal vector at $\mathbf{X}(\pi/4, 3\pi/4)$ is:

$$\mathbf{N}(\pi/4, 3\pi/4) = 4 \cdot \frac{1}{2} \cdot \frac{-1}{\sqrt{2}}\mathbf{i} + 4 \cdot \frac{1}{2} \cdot \frac{1}{\sqrt{2}}\mathbf{j} + 2\mathbf{k}$$
$$= -\sqrt{2}\mathbf{i} + \sqrt{2}\mathbf{j} + 2\mathbf{k}$$

The equation of the tangent plane is:

$$(-\sqrt{2}, \sqrt{2}, 2) \cdot (x - 1, y, z - \sqrt{2}) = 0$$
$$(-1, 1, \sqrt{2}) \cdot (x - 1, y, z - \sqrt{2}) = 0$$
$$x - y + 1 = \sqrt{2}z$$

In exercises 12-15, represent the given surface as a piecewise smooth parameterized surface.

12. The lower hemisphere $x^2 + y^2 + z^2 = 9$ including the equatorial circle.

Solution.

We can parametrize the lower hemisphere of the sphere as $\mathbf{X}(s,t)=(s,t,-\sqrt{9-(x^2+y^2)})$. Alternatively, we may parametrize it as $\mathbf{X}(\phi,\theta)$:

$$x = 3 \sin \phi \cos \theta$$
$$y = 3 \sin \phi \sin \theta$$
$$z = 3 \cos \phi$$

where $0 \le \theta \le 2\pi$ and $\pi/2 \le \phi \le \pi$.

13. The part of the cylinder $x^2 + z^2 = 4$ lying between y = -1 and y = 3.

Solution.

We can parametrize the cylinder as:

$$x = 2\cos s$$
$$y = t$$
$$z = 2\sin s$$

where $0 \le s \le 2\pi$ and $-1 \le t \le 3$.

14. The closed triangular region in \mathbb{R}^3 with vertices (2,0,0), (0,1,0) and (0,0,5).

Solution

A parameterization of a plane can be written as:

$$\mathbf{x} = s\mathbf{a} + t\mathbf{b} + \mathbf{p}$$

where **a** and **b** are two vectors in the plane and **p** is a point in the plane. To see why this is the case, suppose $\mathbf{x} = (x, y, z)$ is an arbitrary point in the plane and $\mathbf{p} = (x_0, y_0, z_0)$ is a known point. Then $\overrightarrow{PX} = \mathbf{x} - \mathbf{p}$ must be a linear combination of **a** and **b**. So, $\mathbf{x} - \mathbf{p} = s\mathbf{a} + t\mathbf{b}$.

We have four planes that are described by:

$$\mathbf{X}(s,t) = s(2,0,-5) + t(0,1,-5) + (0,0,5) = (2s,t,-5s-5t+5)$$

Since we are interested in the first octant of \mathbf{R}^3 all coordinates must be non-negative. So, $0 \le 2s \le 2$, that is $0 \le s \le 1$, $0 \le t \le 1$ and $-5s - 5t + 5 \ge 0$. In other words, $t \le 1 - s$.

14. The hyperboloid $z^2 - x^2 - y^2 = 1$. (Hint: Use two maps to parametrize the surface) *Solution.*

The equation of the hyperboloid as:

$$z = \pm \sqrt{1 + x^2 + y^2}$$

Therefore, the hyperboloid may be paramterized with two maps:

$$\begin{aligned} \mathbf{X}_1(s,t) &= (s,t,\sqrt{1+x^2+y^2}) \\ \mathbf{X}_2(s,t) &= (s,t,-\sqrt{1+x^2+y^2}) \end{aligned}$$

- 16. This problem concerns the parameterized surface $\mathbf{X}(s,t)=(s^3,t^3,st)$.
- (a) Find an equation of a plane tangent to this surface at the point (1, -1, -1). *Solution.*

We have:

$$\mathbf{T}_s = (3s^2, 0, t)$$
$$\mathbf{T}_t = (0, 3t^2, s)$$

The standard normal vector \mathbf{N} is:

$$\mathbf{N} = \mathbf{T}_s \times \mathbf{T}_t$$

$$= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3s^2 & 0 & t \\ 0 & 3t^2 & s \end{vmatrix}$$

$$= -3t^3\mathbf{i} - 3s^3\mathbf{j} + 9s^2t^2\mathbf{k}$$

We have $s_0 = 1$, $t_0 = -1$. So, $\mathbf{N}(1, -1) = (3, -3, 9)$. The equation of the tangent plane to the surface at (1, -1, -1) is:

$$(3,-3,9)\cdot(x-1,y+1,z+1) = 0$$

$$(1,-1,3)\cdot(x-1,y+1,z+1) = 0$$

$$(x-1)-(y+1)+3(z+1) = 0$$

$$x-1-y-1+3z+3 = 0$$

$$x-y+3z+1 = 0$$

(b) Use a computer to graph this surface for $-1 \le s \le 1, -1 \le t \le 1$. Solution.

Figure. **X** $(s,t) = (s^3, t^3, st)$

(c) Is the surface smooth?

Solution.

The normal vector $\mathbf{N} = 0$ at $(s_0, t_0) = (0, 0)$ that is at (0, 0, 0). So, the surface fails to be smooth there.

17. The surface given parametrically by $\mathbf{X}(s,t)=(st,t,s^2)$ is known as Whitney's umbrella.

(a) Verify that this surface may also be described by the xyz-coordinate equation $y^2z=x^2$.

Solution.

Clearly,
$$y^2z = (t^2)(s^2) = (st)^2 = x^2$$
.

(b) Is X smooth?

Solution.

We have:

$$\mathbf{T}_s = (t, 0, 2s)$$

$$\mathbf{T}_t = (s, 1, 0)$$

The standard normal vector is:

$$\mathbf{N} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ t & 0 & 2s \\ s & 1 & 0 \end{vmatrix}$$
$$= -2s\mathbf{i} + 2s^2\mathbf{j} + t\mathbf{k}$$

The normal vector $\mathbf{N} = (0,0,0)$ at (s,t) = (0,0) that is at the point (0,0,0). Hence, \mathbf{X} is not smooth at this point.

(c) Use a computer to graph this surface for $-2 \leq s \leq 2, \, -2 \leq t \leq 2.$

Solution.

Figure. $\mathbf{X}(s,t) = (st,t,s^2)$