

Network Correlations Tutorial

CAMP 2016, Bangalore Martin Angelhuber & Arvind Kumar

Outline

- What are correlations?
- Mechanisms
- Effect on neural coding

Outline

- What are correlations?
- Mechanisms
- Effect on neural coding

Correlation Coefficient:

Spike recordings from a pair of neurons

Correlation Coefficient:

Spike recordings from a pair of neurons

Correlation Coefficient:

- Spike recordings from a pair of neurons
- Slide window of size T and count events

Correlation Coefficient:

- Spike recordings from a pair of neurons
- Slide window of size T and count events
- Compute correlation coefficient of the two series:

$$\rho_{T} = \frac{Cov[n_{1}, n_{2}]}{\sqrt{Var[n_{1}]Var[n_{2}]}} \qquad Cov[n_{1}, n_{2}] = E[(n_{1} - E[n_{1}])(n_{2} - E[n_{2}])]}{Var[n_{1}] = E[(n_{1} - E[n_{1}])^{2}] = Cov[n_{1}, n_{1}]}$$

Correlation Coefficient:

Pairwise correlations are ubiquitous in vivo!

→ Retina: Mastronade, 1983

 \rightarrow LGN: *Alonso et al 1996*

Spik \rightarrow V1: Kohn and Smith, 2005; Ecker et al, 2010

→ PFC: Constanidis & Goldman-Rakic, 2002

→ Motor Cortex: Vaadiaet al, 1995

 \rightarrow S1: Romo et al, 2003

→ Somatosensory thal.: Bruno & Sakmann, 2006

Slid

Con

Cross-Correlation-function:

Cross-Correlation-function:

$$\begin{cases} t_1^{(1)}, t_2^{(1)}, t_3^{(1)} \dots \\ S_1 = \sum \delta(t_i^{(1)})$$

$$\begin{cases} t_1^{(2)}, t_2^{(2)}, t_3^{(2)} \dots \\ S_2 = \sum \delta(t_i^{(2)}) \end{cases}$$

Take the time difference $t_j^{(2)} - t_i^{(1)}$ for all events of S_2 around each spike of S_1

Cross-Correlation-function:

$$\begin{bmatrix} t_1^{(1)}, t_2^{(1)}, t_3^{(1)} \dots \end{bmatrix}$$

$$S_1 = \sum \delta(t_i^{(1)})$$

$$\begin{cases} t_1^{(2)}, t_2^{(2)}, t_3^{(2)} \dots \\ S_2 = \sum \delta(t_i^{(2)}) \end{cases}$$

- Take the time difference $t_i^{(2)} t_i^{(1)}$ for all events of S_i around each spike of S_i
- Make a histogram of the time differences:

$$\begin{split} R_{12}(\Delta t) &= E[S_1(t)S_2(t + \Delta t)] = \\ &= \lim_{\delta \to 0} \frac{1}{\delta} Pr(N_2(t + \Delta t, t + \Delta t + \delta) > 0 \land N_1(t, t + \delta) > 0) = \\ &= \lim_{\delta \to 0} \frac{1}{\delta} Pr(t_j^{(2)} - t_i^{(1)} \in [\Delta t, \Delta t + \delta]) \end{split}$$

Cross-Covariance-function:

$$\begin{bmatrix} t_1^{(1)}, t_2^{(1)}, t_3^{(1)} \dots \end{bmatrix}$$

$$S_1 = \sum \delta(t_i^{(1)})$$

$$\begin{cases} t_1^{(2)}, t_2^{(2)}, t_3^{(2)} \dots \\ S_2 = \sum \delta(t_i^{(2)}) \end{cases}$$

- Cross-Covariance-function:
 - → Subtract the mean rates

$$C_{12}(\Delta t) = E[S_1(t)S_2(t+\Delta t)] - E[S_1(t)]E[S_2(t+\Delta t)] = R_{12}(\Delta t) - v_1 v_2$$

- 1) Compute the correlation coefficients and cross-correlation functions for the spiketrains provided. Interpret the data. Use simple_neuron to create new spiketrains and examine their correlations.
- 2) Try different time window sizes T. How does this change the measured correlation coefficient?
- 3)* Compare ρ_T to the integral of C(Δ t) from -T to T. Verify the following identity numerically (*Shea-Brown*, 2008):

$$\rho_T = \frac{\int_{-T}^T C_{12}(t) \frac{T - |t|}{T} dt}{\sqrt{\int_{-T}^T C_{11}(t) \frac{T - |t|}{T} dt \int_{-T}^T C_{22}(t) \frac{T - |t|}{T} dt}}$$

Outline

- What are correlations?
- Mechanisms
- Effect on neural coding

Mechanisms

Possible origins of correlations:

Possible origins of correlations:

Common external input signal:

→ Signal correlations

Mechanisms

Possible origins of correlations:

Common external input signal:

→ Signal correlations

"Network driven" correlations:

→ Noise correlations

Mechanisms for noise correlations:

Direct connections:

Mechanisms for noise correlations:

Direct connections:

Common background input:

Mechanisms for noise correlations:

Direct connections:

Common background input:

Assignment 2: Common Input

1) Create two correlated spiketrains:

- 2) Investigate the correlation coefficient of the output spiketrains, when you use y_1 and y_2 as inputs. Plot the correlation coefficient of the output spiketrains ρ_{out} for different correlation coefficients ρ_{in} between y_1 and y_2 , the socalled correlation transfer function.
- 3) How does this correlation transfer function ρ_{out} vs. ρ_{in} change for different input rates and synaptic weights?

Correlations increase with output rate (de la Rocha, Doiron et al, 2007;
 Shea-Brown et al, 2008)

Correlations increase with output rate (de la Rocha, Doiron et al, 2007;
 Shea-Brown et al, 2008)

- Correlations increase with output rate (de la Rocha, Doiron et al, 2007; Shea-Brown et al, 2008)
- Pooling causes increase in correlation! (Rosenbaum et al, 2010)

- Correlations increase with output rate (de la Rocha, Doiron et al, 2007;
 Shea-Brown et al, 2008)
- Pooling causes increase in correlation! (Rosenbaum et al, 2010)

$$Var[X_{1}] = Var[\sum_{i} x_{i}] =$$

$$= \sum_{i}^{N} Var[x_{i}] + \sum_{i,j} Cov[x_{i}, x_{j}] =$$

$$= N Var[x_{i}] + N (N-1) \rho_{11} Var[x_{i}] =$$

$$= Var[x_{i}](N (\rho_{11}N - \rho_{11} + 1))$$

$$Cov[X_{1}, X_{2}] = Cov[\sum_{i}^{N} x_{i}, \sum_{j}^{N} x_{j}] =$$

$$= \sum_{i}^{N} \sum_{j}^{N} Cov[x_{i}, x_{j}] =$$

$$= N^{2} Cov[x_{i}, x_{j}] = Var[x_{i}]N^{2} \rho_{12}$$

$$c = \frac{Cov[X_{1}, X_{2}]}{\sqrt{Var[X_{1}]Var[X_{2}]}} \approx \frac{N \rho_{12}}{\rho_{11} N - \rho_{11} + 1}$$

- Correlations increase with output rate (de la Rocha, Doiron et al, 2007; Shea-Brown et al, 2008)
- Pooling causes increase in correlation! (Rosenbaum et al, 2010)
- Cancellation between E- and I-input decorrelates network activity (Renart, de la Rocha, 2010)

- Correlations increase with output rate (de la Rocha, Doiron et al, 2007; Shea-Brown et al, 2008)
- Pooling causes increase in correlation! (Rosenbaum et al, 2010)
- Cancellation between E- and I-input decorrelates network activity (Renart, de la Rocha, 2010)

- Correlations increase with output rate (de la Rocha, Doiron et al, 2007; Shea-Brown et al, 2008)
- Pooling causes increase in correlation! (Rosenbaum et al, 2010)
- Cancellation between E- and I-input decorrelates network activity (Renart, de la Rocha, 2010)

Outline

- What are correlations?
- Mechanisms
- Effect on neural coding

Model system: Orientation tuning curves (Hubel & Wiesel, 1962)

Firing rate is orientationdependent

- Firing rate is orientationdependent
- Each neuron has a preferred orientation φ

 Population code: N independent cells with the same preferred orientation

 Population code: N independent cells with the same preferred orientation

Variance decreases:

$$\mathbf{v} = \frac{1}{N} \sum_{i}^{N} \mathbf{v}_{i}$$

$$E[\mathbf{v}] = \frac{1}{N} \sum_{i}^{N} \mathbf{v}_{i} = \frac{1}{N} N E[\mathbf{v}_{i}] = E[\mathbf{v}_{i}]$$

$$Var[\mathbf{v}] = \frac{1}{N^2} \sum_{i}^{N} Var[\mathbf{v}_i] = \frac{1}{N} Var[\mathbf{v}_i]$$

Improved precision!

 Population code: N correlated cells with the same preferred orientation

 Population code: N correlated cells with the same preferred orientation

Variance increases with ρ:

$$Var[\mathbf{v}] = \frac{1}{N^2} \left(\sum_{i}^{N} Var[\mathbf{v}_i] + \sum_{i \neq j} Cov[\mathbf{v}_i \mathbf{v}_j] \right)$$

$$= \frac{1}{N^2} Var[\mathbf{v}_i] \left(N + N(N - 1)\rho \right)$$

$$\approx \rho Var[\mathbf{v}_i]$$

0

 $-\pi/2$

 Population code: N correlated cells with the same preferred orientation

Variance increases with ρ:

$$Var[\mathbf{v}] = \frac{1}{N^2} \left(\sum_{i}^{N} Var[\mathbf{v}_i] + \sum_{i \neq j} Cov[\mathbf{v}_i \mathbf{v}_j] \right)$$

$$= \frac{1}{N^2} Var[\mathbf{v}_i] \left(N + N(N - 1)\rho \right)$$

$$\approx \rho Var[\mathbf{v}_i]$$

 $\log(N)$

 Population code: N correlated cells with the same preferred orientation

Variance increases with ρ:

$$Var[\mathbf{v}] = \frac{1}{N^{2}} \left(\sum_{i}^{N} Var[\mathbf{v}_{i}] + \sum_{i \neq j} Cov[\mathbf{v}_{i}\mathbf{v}_{j}] \right)$$

$$= \frac{1}{N^{2}} Var[\mathbf{v}_{i}] \left(N + N(N-1)\rho \right)$$

$$\approx \rho Var[\mathbf{v}_{i}]$$

Network correlations - Tutorial

Correlations degrade signal encoding!

 Population code: 2 cells with different preferred orientations

Network correlations - Tutoria

 Population code: 2 cells with different preferred orientations

07.16 Network correlations -

 Population code: 2 cells with different preferred orientations

Readout: Rates v_1 and v_2

O7.16 Network correlations -

 Population code: 2 cells with different preferred orientations

1) v_1 and v_2 independent:

- 1) Plot the rates of neuron 1 and neuron 2 together using the provided code. What happens when you induce correlations?
- 2) Try different combinations of stimuli and preferred orientation and check how noise correlations affect the separability of the output firing rates.
- 3) How does the difference between prefered orientations relate to signal correlations?

 Population code: 2 cells with different preferred orientations

2) v_1 and v_2 correlated:

 Population code: 2 cells with different preferred orientations

2) v_1 and v_2 correlated:

Effect depends on φ (Averbeck et al, 2006)

9.07.16

Network correlations - Tutoria

 Effect of noise correlations depends on signal correlations (Averbeck et al, 2006; Abbott & Dayan, 1999)

- Effect of noise correlations depends on signal correlations (Averbeck et al, 2006; Abbott & Dayan, 1999)
- Details matter in studying the effect of correlations on coding!

09.07.16

Effect on neural coding

- Effect of noise correlations depends on signal correlations (Averbeck et al, 2006; Abbott & Dayan, 1999)
- Details matter in studying the effect of correlations on coding!
- Active role of correlations in coding also possible! (Gray & Singer 1989; Riehle & Grun, 1997)

- Effect of noise correlations depends on signal correlations (Averbeck et al, 2006; Abbott & Dayan, 1999)
- Details matter in studying the effect of correlations on coding!
- Active role of correlations in coding also possible! (Gray & Singer 1989; Riehle & Grun, 1997)
- Still many open questions: higher order correlations...

References and further reading

These slides are based on lecture slides titled 'Introduction to correlated spiking in neural coding and dynamics' by Eric Shea-Brown, available online.

Mechanisms:

de la Rocha, Doiron et al., Correlation between neural spike trains increaseswith firing rate, Nature, 2007 Shea-Brown et al., Correlation and Synchrony Transfer in Integrate-and-Fire Neurons: Basic Properties and Consequences for Coding, PRL, 2008

Rosenbaum et al., Pooling and correlated neural activity, Front Comput Neurosci, 2010

Renart, de la Rocha et al., The Asynchronous State in Cortical Circuits, Science, 2010

Effects on coding:

Averbeck et al., Neural correlations, population coding and computation, Nat Neurosci Reviews, 2006

Abbot & Dayan, The effect of correlated variability on the accuracy of a population code, Neural Computation, 1999

Gray & Singer, Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex, Proc Natl Acad Sci, 1989

Riehle, Grun et al, Spike synchronization and rate modulation differentially involved in motor cortical function, Science, 1997

Spiketrains & point processes:

Nawrot et al, Measurement of variability dynamics in cortical spike trains, Jneurosci Methods, 2008