Оглавление

1	Матрицы. Ранг матрицы.					
	1.1 Про матрицы					3
	1.2 Элементарные преобразования строк					3
	1.3 Обратная матрица					4
	1.4 Ранг матрицы					6
2	Системы линейных уравнений.					8
	2.1 Запись систем линейных уравнений					8
	2.2 Поиск решений					8
3	Линейные пространства и подпространства.					13
	3.1 Определение линейного пространства					13
	3.2 Примеры					14
	3.3 Примеры и способы задания линейных подпространств					15
4	Замена базиса. Сумма и пересечение подпространств.					19
	4.1 Замена базиса					19
	4.2 Сумма и пересечение подпространств					20
	4.3 Понятие проекции вектора на подпространство				•	22
5	Линейные отображения. Часть 1.					24
	5.1 Определение линейного отображения					24
	5.2 Матрица линейного отображения		•			26
6	Линейные отображения. Часть 2.					29
	6.1 Рассмотрение ядра и образа					29
	6.2 Два важных частных случая					31
	6.3 Матрица отображения в новых базисах					32
	6.4 Линейные функции		•			33
7	Инвариантные и собственные подпространства. Часть 1.					35
	7.1 Инвариантные подпространства					35
	7.2 Матрица преобразования					36
	7.3 Собственный вектор					37
	7.4 Алгоритм поиска собственных значений и собственных векторов					38
	7.5 Диагонализируемость матрицы		•		•	39
8	Инвариантные и собственные подпространства. Часть 2.					41
	8.1 Решение задач					41
	8.2 Проекторы					44

10 Критерий Сильвестра. Евклидовы пространства.	46
10.1 Критерий Сильвестра	46
10.2 Евклидовы пространства	48
	49
	50
11 Евклидовы пространства. Сопряженное преобразование.	53
11.1 Ортогонализация Грама-Шмидта	54
11.2 Сопряжённые преобразования	55
12 Ортогональное преобразование и функции на евклидовых пространствах.	59
12.1 Ортогональные матрицы	59
12.2 Ортогональное преобразование	60
	62
	62

Семинар 1 3

Семинар 1

Матрицы. Ранг матрицы.

1.1. Про матрицы

Уже умеем

- сложение и умножение на число (поэлементно)
- транспонировать
- умножать

Свойства умножения

$$1.^{\circ} A \cdot B \neq B \cdot A$$
 (если $A \cdot B = B \cdot A$, то A, B — перестановочные матрицы)

$$2^{\circ} A \cdot E = E \cdot A = A$$

$$3.^{\circ} (AB)C = A(BC)$$

4.°
$$A(B+C) = AB + AC$$
; $(B+C)A = BA + CA$

$$5^{\circ} \alpha(AB) = (\alpha A)B = A(\alpha B)$$

$$6.^{\circ} (AB)^{\Upsilon} = B^{\mathrm{T}} A^{\mathrm{T}}$$

Пример 1

Верно ли:

a)
$$(A+B)^2 = A^2 + 2AB + B^2$$

Проверка:

$$(A+B)^2 = (A+B)(A+B) = A^2 + AB + BA + B^2$$

Т.о. в общем случае выражение неверно.

6)
$$(A+B)^2 + (A-B)^2 = 2(A^2 + B^2)$$

Проверка:

$$A^{2} + AB + BA + B^{2} + A^{2} - AB - BA + B^{2} = 2(A^{2} + B^{2})$$

Т.о. в общем случае выражение верно.

1.2. Элементарные преобразования строк

- умножение строки на число, неравное 0
- сложение строк

Также, элементарными преобразованиями являются:

- добавление к строке другой строки, умноженной на число
- перестановка строк

Очевидно, что элементарные преобразования обратимы.

Рассмотрим: SA = A', где S — матрица элементарного преобразования.

• умножение:
$$\begin{pmatrix} 1 & 0 \\ 0 & \lambda \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ \lambda c & \lambda d \end{pmatrix}$$

• сложение:
$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ a+c & b+d \end{pmatrix}$$

Элементарная матрица получается элементарными преобразованиями из единичной.

Для преобразования столбцов элементарную матрицу нужно умножать справа.

Запись нескольких преобразований: $S_1,...,S_N$, то $S_N \cdot ... \cdot S_1 A$.

Строки $a_1,...,a_k$ матрицы A называются ЛНЗ (линейно-независимыми), если

- ЛНЗ: $\alpha_1 a_1 + ... + \alpha_k a_k = 0 \Leftrightarrow \alpha_1 = ... = \alpha_k = 0$, называются ЛЗ (линейно-зависимыми), если
- ЛЗ: $\exists \alpha_1,...,\alpha_k: \alpha_1^2+...+\alpha_k^2 \neq 0 \Rightarrow \alpha_1a_1+...+\alpha_ka_k = 0$

Все свойства из аналита.

- Если есть нулевая строка, то матрица ЛЗ
- Если часть строк ЛЗ, то и матрица ЛЗ
- Любая часть ЛНЗ ЛНЗ

Квадратная матрица вырожденная, если она содержит ЛЗ строки.

Элементарные преобразования не нарушают линейных зависимостей в матрице.

В частности: вырожденная матрица при элементарных преобразованиях перейдёт в вырожденную матрицу, а невырожденная матрица при элементарных преобразованиях перейдёт в невырожденную матрицу.

Теорема 1.2.1. Каждая невырожденная матрица с помощью элементарных преобразований может быть превращена в единичную

Пример 2

Привести к E.

$$\begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & -1 \\ 2 & 3 & 1 \end{pmatrix}$$

Решение: Прямой ход метода Гаусса:

$$\begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & -1 \\ 2 & 3 & 1 \end{pmatrix} \xrightarrow{(2)-(1)} \begin{pmatrix} 1 & 2 & 1 \\ 0 & -1 & -2 \\ 0 & -1 & -1 \end{pmatrix} \xrightarrow{(3)-(2)} \begin{pmatrix} 1 & 2 & 1 \\ 0 & -1 & -2 \\ 0 & 0 & 1 \end{pmatrix} - \text{ступенчатый вид матрицы.}$$

Обратный ход метода Гаусса:

$$\xrightarrow[(2)+2(3)]{(1)-(3)} \begin{pmatrix} 1 & 2 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{(1)+2(2)} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{(2)\times(-1)} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Теорема 1.2.2. *Матрица невырождена* \Leftrightarrow *раскладывается* в *произведение* элементарных матриц.

Доказательство. (⇒): см. метод Гаусса (пример 2).

 $\exists T_1,...,T_M$ — элементарные преобразования строк: $T_M \cdot ... \cdot T_1 A = E$

Элементарные преобразования обратимы $\Rightarrow \exists S_1,...,S_M: S_M \cdot ... \cdot S_1E = A \Leftrightarrow S_M \cdot ... \cdot S_1 = A$ (\Leftarrow): $A = S_M \cdot ... \cdot S_1E$

Т.к. единичная матрица невырождена, а элементарные преобразования вырожденности не меняют $\Rightarrow A$ невырождена.

1.3. Обратная матрица

Определение 1.3.1. Матрица X обратная к матрице A, если

$$XA = AX = E$$
,

где A — невырождена, X — единственна.

5

Свойства:

1.°
$$(AB)^{-1} = B^{-1}A^{-1}$$

2.° $(A^{T})^{-1} = (A^{-1})^{T}$

Метод Жордана-Гаусса

$$T_M \cdot \dots \cdot T_1 A = E \quad | \cdot A^{-1}$$

 $T_M \cdot \dots \cdot T_1 E = A^{-1}$

Пример 3

Доказать, что A невырождена и найти обратную, если

$$A^2 + A + E = O$$

Доказательство:

$$A^{2} + A + E = O$$

$$A(A + E) + E = O$$

$$A(-A - E) = E$$

$$\det E = 1, \qquad \det(A(-A - E)) = \det A \cdot \det(-A - E) \Rightarrow \det A \neq 0.$$

Отсюда же следует, что

$$A^{-1} = -A - E$$

Пример 4

$$A^m = O$$
 — нильпотентная матрица

Доказать

$$(E-A)^{-1} = E + A + A^2 + \dots + A^{m-1}$$

Доказательство:

$$(E-A)^{-1} = E + A + A^2 + \dots + A^{m-1} \quad | \cdot (E-A)$$

$$E = E - A + A - A^2 + A^2 + \dots + A^{m-1} - A^m = E$$

Пример 5

a)
$$\begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix} X = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$
 6) $X \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ a) $AX = B \quad A^{-1} \cdot |$ $X = A^{-1}B$

$$6) XA = B \quad | \cdot A$$

б)
$$XA = B \mid \cdot A^{-1}$$

$$X = BA^{-1}$$

Найдём A^{-1} :

$$\left(\begin{array}{cc|c} 2 & 5 & 1 & 0 \\ 1 & 3 & 0 & 1 \end{array}\right) \xrightarrow{(1) \times \frac{1}{2}} \left(\begin{array}{cc|c} 1 & 5/2 & 1/2 & 0 \\ 1 & 3 & 0 & 1 \end{array}\right) \xrightarrow{(2)-(1)} \left(\begin{array}{cc|c} 1 & 5/2 & 1/2 & 0 \\ 0 & 1/2 & -1/2 & 1 \end{array}\right) \xrightarrow{(2) \times 2} \left(\begin{array}{cc|c} 1 & 5/2 & 1/2 & 0 \\ 0 & 1 & -1 & 2 \end{array}\right) \xrightarrow{(2)}$$

$$\xrightarrow{(1)-5/2\times(2)} \left(\begin{array}{cc|c} 1 & 0 & 3 & -5 \\ 0 & 1 & -1 & 2 \end{array}\right)$$

T.o.
$$A^{-1} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$$
.

Otbet: a)
$$X = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}$$
, 6) $X = \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}$.

1.4. Ранг матрицы

Пусть у матрицы $A\ r\ -\ ЛН3$ строк и нет ЛН3 системы строк большего числа. Тогда $r\ -\$ строчный ранг матрицы.

Определение 1.4.1. Строчный ранг матрицы — максимальное число ЛНЗ строк.

Теорема 1.4.1. Система из r строк ЛНЗ $\Leftrightarrow \exists$ невырожденная подматрица порядка r.

Первые две строки ЛНЗ. Вычерченный фрагмент содержит непропорциональные строки.

Определение 1.4.2. Подматрица порядка r называется базисной, если она невырождена, а все квадратные подматрицы большего порядка вырождены.

Определение 1.4.3. Ранг матрицы — порядок базисной подматрицы.

Ранг матрицы равен строчному рангу. Ранг не меняется при элементарных преобразованиях. Свойства:

 $\operatorname{Rg} AB \leqslant \min(\operatorname{Rg} A, \operatorname{Rg} B)$

1.4.1. Алгоритм поиска ранга

Приводим матрицу к ступенчатому виду. Ранг — число ненулевых строк.

Пример 6

Найти Rg.

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ 3 & 2 & 1 \end{pmatrix} \xrightarrow{(2)-(1)} \begin{pmatrix} 1 & 1 & 1 \\ 0 & -1 & -2 \\ 0 & -1 & -2 \end{pmatrix} \xrightarrow{(3)-(2)} \begin{pmatrix} 1 & 1 & 1 \\ \hline 0 & -1 & -2 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow Rg = 2$$

Пример 7

Найти Rg.

$$\begin{pmatrix} 2 & -1 & 3 & -5 & 1 \\ 1 & -1 & -5 & 0 & 2 \\ 3 & -2 & -2 & -5 & 3 \\ 7 & -5 & -9 & -10 & 8 \end{pmatrix} \xrightarrow{1/5 \times (4)} \begin{pmatrix} 1 & -1 & 3 & 2 & 1 \\ 0 & -1 & -5 & 1 & 2 \\ 1 & -2 & -2 & 3 & 3 \\ 2 & -5 & -9 & 7 & 8 \end{pmatrix} \xrightarrow{(3)-(1)} \begin{pmatrix} 1 & -1 & 3 & 2 & 1 \\ 0 & -1 & -5 & 1 & 2 \\ 0 & -1 & -5 & 1 & 2 \\ 0 & -3 & -15 & 3 & 6 \end{pmatrix}$$

3 и 4 строчку можно вычеркнуть, т.к. они ЛЗ. Т.о. Rg = 2.

Пример 8

Найти Rg в зависимости от параметра.

$$\begin{pmatrix} 0 & 0 & 1 & -2 & \alpha \\ 2 & -4 & 3 & -2 & 3 \\ 3 & -6 & 2 & 2 & 2 \\ -3 & 6 & 1 & -4 & \beta \end{pmatrix} \xrightarrow{(1) \leftrightarrow (4)} \begin{pmatrix} 2 & -4 & 3 & -2 & 3 \\ 3 & -6 & 2 & 2 & 2 \\ -3 & 6 & 1 & -4 & \beta \end{pmatrix} \xrightarrow{(2) - 3/2 \times (1)} \begin{pmatrix} 2 & -4 & 3 & -2 & 3 \\ 0 & 0 & -5/2 & 5 & -5/2 \\ 0 & 0 & 7/2 & -7 & \beta + 9/2 \\ 0 & 0 & 1 & -2 & \alpha \end{pmatrix} \rightarrow \underbrace{\frac{(3) - 5/7 \times (2)}{(4) + 2/5 \times (1)}}_{(4) + 2/5 \times (1)} \begin{pmatrix} 2 & -4 & 3 & -2 & 3 \\ 0 & 0 & -5/2 & 5 & -5/2 \\ 0 & 0 & 0 & \beta + 1 \\ 0 & 0 & 0 & 0 & \alpha - 1 \end{pmatrix}$$

Семинар 1 7

$$\mathrm{Rg}=2$$
 при $\alpha=-\beta=1.$

Rg = 3 в остальных случаях.

Пример 9

Верно ли $\forall A, B$:

a)
$$Rg(A + B) = Rg A + Rg B$$

Неверно, например:

$$A = B = E_2$$

6)
$$\operatorname{Rg}(A + B) \leq \operatorname{Rg} A + \operatorname{Rg} B$$

Верно. Докажем:

$$\operatorname{Rg}(A+B) \leqslant \operatorname{Rg}(\underbrace{A+B}_{\operatorname{JI3}}|A|B) = \operatorname{Rg}(A|B)$$

$$r = \operatorname{Rg} A, \qquad s = \operatorname{Rg} B$$

$$\operatorname{Rg}(A|B) \leqslant r + s$$

T.e.

$$\operatorname{Rg}(A+B) \leqslant \operatorname{Rg} A + \operatorname{Rg} B.$$

Системы линейных уравнений.

2.1. Запись систем линейных уравнений

Способы записи систем линейных уравнений:

$$(*) \Leftrightarrow \begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + \dots + a_{mn}x_n = b_m \end{cases}$$

Можно записать расширенную матрицу:

$$(*) \Leftrightarrow \begin{pmatrix} a_{11} & a_{1n} & b_1 \\ a_{21} & a_{2n} & b_2 \\ \dots & \dots & \dots \\ a_{m1} & a_{mn} & b_m \end{pmatrix}$$
или $(A|b)$

Расширенная матрица выдерживает элементарные преобразования строк и перестановку столбцов (аккуратно, т.к. нужно соблюдать нумерацию столбцов).

$$(*) \Leftrightarrow x_1 \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix} + \dots + x_n \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$
$$(*) \Leftrightarrow Ax = b$$

В школе геометрической интерпретацией системы линейных уравнений (СЛУ) размера 3 на 3 было пересечение (необязательно) плоскостей. Для любых m и n геометрическая интерпретация есть пересечение гиперплоскостей.

Система называется совместной, если она имеет хотя бы одно решение, и несовместной, если у неё нет ни одного решения.

Теорема 2.1.1 (Критерий Кронекера-Капелли). Система совместна $\Leftrightarrow \operatorname{Rg}(A|b) = \operatorname{Rg}(A)$.

2.2. Поиск решений

Если матрица A невырождена, то

$$Ax = b \qquad A^{-1} \cdot |$$
$$x = A^{-1}b$$

9

Метод Жордана-Гаусса

 $\exists T_1, \ldots, T_M$ — элементарные преобразования

$$T_M \cdot \dots \cdot T_1 A = E \qquad | \cdot A^{-1} b$$

$$T_M \cdot \dots \cdot T_1 b = A^{-1} b = x$$

Пример 1

$$\begin{cases} x_1 + x_2 - x_3 = 7 \\ 2x_1 - 3x_2 + 3x_3 = 4 \\ 3x_1 - x_2 - 2x_3 = 4 \end{cases}$$

Решение:

Запишем расширенную матрицу СЛУ:

$$\begin{pmatrix} 1 & 1 & -1 & | & 7 \\ 2 & -3 & 3 & | & 4 \\ 3 & -1 & -2 & | & 4 \end{pmatrix} \xrightarrow{(2)-2(1)} \begin{pmatrix} 1 & 1 & -1 & | & 7 \\ 0 & -5 & 5 & | & -10 \\ 0 & -4 & 1 & | & -17 \end{pmatrix} \xrightarrow{(2)/(-5)} \begin{pmatrix} 1 & 1 & -1 & | & 7 \\ 0 & 1 & -1 & | & 2 \\ 0 & -4 & 1 & | & -17 \end{pmatrix} \xrightarrow{(3)+4(2)}$$

$$\rightarrow \begin{pmatrix} 1 & 1 & -1 & | & 7 \\ 0 & 1 & -1 & | & 7 \\ 0 & 1 & -1 & | & 2 \\ 0 & 0 & -3 & | & -9 \end{pmatrix} \xrightarrow{(3)/(-3)} \begin{pmatrix} 1 & 1 & -1 & | & 7 \\ 0 & 1 & -1 & | & 2 \\ 0 & 0 & 1 & | & 3 \end{pmatrix} \xrightarrow{(1)+(3)} \begin{pmatrix} 1 & 1 & 0 & | & 10 \\ 0 & 1 & 0 & | & 5 \\ 0 & 0 & 1 & | & 3 \end{pmatrix} \xrightarrow{(1)-(2)} \begin{pmatrix} 1 & 0 & 0 & | & 5 \\ 0 & 1 & 0 & | & 5 \\ 0 & 0 & 1 & | & 3 \end{pmatrix}$$

Ответ: $(x_1 \ x_2 \ x_3)^{\mathrm{T}} = (5 \ 5 \ 3)^{\mathrm{T}}$

Пример 2

$$\begin{cases} x_1 & +3x_2 & +3x_3 & +2x_4 & +6x_5 & = 0 \\ x_1 & -x_2 & -2x_3 & -3x_5 & = 0 \\ x_1 & +11x_2 & +7x_3 & +6x_4 & +18x_5 & = 0 \end{cases}$$

Решение:

Данная система уравнений называется однородной. Она всегда совместна, т.к. имеет частное решение $x_i = 0$ $i = \overline{1.5}$

шение
$$x_i = 0, i = 1, 5$$
.
$$\begin{pmatrix} 1 & 3 & 3 & 2 & 6 & | & 0 \\ 1 & -1 & -2 & 0 & -3 & | & 0 \\ 1 & 11 & 7 & 6 & 18 & | & 0 \end{pmatrix} \xrightarrow{(2)-(1)} \begin{pmatrix} 1 & 3 & 3 & 2 & 6 & | & 0 \\ 0 & -4 & -5 & -2 & -9 & | & 0 \\ 0 & 8 & 4 & 4 & 12 & | & 0 \end{pmatrix} \xrightarrow{(3)+2(2)} \begin{pmatrix} 1 & 3 & 3 & 2 & 6 & | & 0 \\ 0 & -4 & -5 & -2 & -9 & | & 0 \\ 0 & 0 & -6 & 0 & -6 & | & 0 \end{pmatrix} \rightarrow \xrightarrow{(3)/(-6)} \begin{pmatrix} 1 & 3 & 3 & 2 & 6 & | & 0 \\ 0 & -4 & -5 & -2 & -9 & | & 0 \\ 0 & 0 & 1 & 0 & 1 & | & 0 \end{pmatrix} \xrightarrow{(2)+5(3)} \begin{pmatrix} 1 & 3 & 0 & 2 & 3 & | & 0 \\ 0 & -4 & 0 & -2 & -4 & | & 0 \\ 0 & 0 & 1 & 0 & 1 & | & 0 \end{pmatrix} \xrightarrow{(2)/(-4)} \rightarrow \begin{pmatrix} 1 & 3 & 0 & 2 & 3 & | & 0 \\ 0 & 1 & 0 & 1/2 & 1 & | & 0 \\ 0 & 0 & 1 & 0 & 1 & | & 0 \end{pmatrix} \xrightarrow{(1)-3(2)} \rightarrow \begin{pmatrix} 1 & 3 & 0 & 2 & 3 & | & 0 \\ 0 & 1 & 0 & 1/2 & 1 & | & 0 \\ 0 & 0 & 1 & 0 & 1 & | & 0 \end{pmatrix} \xrightarrow{(1)-3(2)} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1/2 & 0 & | & 0 \\ 0 & 0 & 1 & 0 & 1 & | & 0 \end{pmatrix} \xrightarrow{(1)-3(2)} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1/2 & 0 & | & 0 \\ 0 & 0 & 1 & 0 & 1 & | & 0 \end{pmatrix} \xrightarrow{(1)-3(2)} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1/2 & 0 & | & 0 \\ 0 & 0 & 1 & 0 & 1 & | & 0 \end{pmatrix}$$

$$\rightarrow \left(\begin{array}{ccc|c} 1 & 0 & 0 & 1/2 & 0 & 0 \\ 0 & 1 & 0 & 1/2 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \end{array}\right)$$

параметрические неизв.

Эта матрица эквивалентна системе

$$\begin{cases} x_1 = -\frac{1}{2}x_4 \\ x_2 = -\frac{1}{2}x_4 - x_5 \\ x_3 = -x_5 \end{cases}$$

Тогда
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -1/2 & 0 \\ -1/2 & -1 \\ 0 & -1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = c_1 \begin{pmatrix} -1/2 \\ -1/2 \\ 0 \\ 1 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} 0 \\ -1 \\ -1 \\ 0 \\ 1 \end{pmatrix}, \qquad c_1, c_2 \in \mathbb{R}$$

Это и есть ответ к данной задаче.

$$< egin{pmatrix} -1/2 \\ -1/2 \\ 0 \\ 1 \\ 0 \end{pmatrix}, egin{pmatrix} 0 \\ -1 \\ -1 \\ 0 \\ 1 \end{pmatrix} > -$$
 линейная оболочка.

Пример 3

$$\begin{cases} 2x_1 & -3x_2 & -8x_3 & +4x_4 & -4x_5 & = 3\\ 2x_2 & & +4x_5 & = 2\\ -3x_1 & +x_2 & +12x_3 & -6x_4 & -x_5 & = -8\\ -x_1 & -2x_2 & +4x_3 & -2x_4 & -5x_5 & = -5 \end{cases}$$

$$\begin{pmatrix}
2 & -3 & 8 & 4 & -4 & 3 \\
0 & 2 & 0 & 0 & 4 & 2 \\
-3 & 1 & 12 & -6 & -1 & -8 \\
-1 & -2 & 4 & -2 & -5 & | -5
\end{pmatrix}
\xrightarrow{(4)\times(-1);(2)/(2)}
\begin{pmatrix}
1 & 2 & -4 & 2 & 5 & | 5 \\
0 & 1 & 0 & 0 & 2 & | 1 \\
-3 & 1 & 12 & -6 & -1 & | -8 \\
2 & -3 & 8 & 4 & -4 & | 3
\end{pmatrix}
\xrightarrow{(4)-2(1)}$$

$$\rightarrow \begin{pmatrix}
1 & 2 & -4 & 2 & 5 & | 5 \\
0 & 1 & 0 & 0 & 2 & | 1 \\
0 & 7 & 0 & 0 & 14 & | 7 \\
0 & -7 & 0 & 0 & -14 & | -7
\end{pmatrix}
\xrightarrow{(4)+7(2)}
\begin{pmatrix}
1 & 2 & -4 & 2 & 5 & | 5 \\
0 & 1 & 0 & 0 & 2 & | 1 \\
0 & 0 & 0 & 0 & 0 & | 0 \\
0 & 0 & 0 & 0 & 0 & | 0
\end{pmatrix}
\xrightarrow{(1)-2(2)}
\begin{pmatrix}
1 & 0 & -4 & 2 & 1 & | 3 \\
0 & 1 & 0 & 0 & 2 & | 1
\end{pmatrix}$$

Альтернатива Кронекера-Капелли:

Система несовместна \Leftrightarrow она содержит строку $(0 \cdots 0|1)$.

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 4 & -2 & -1 \\ 0 & 0 & -2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + c_1 \begin{pmatrix} 4 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} -2 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} + c_3 \begin{pmatrix} -1 \\ -2 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \qquad c_1, c_2, c_3 \in \mathbb{R}.$$

Запишем фундаментальную систему решений (решение однородной системы):

$$\Phi = \begin{pmatrix} 4 & -2 & -1 \\ 0 & 0 & -2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Матрица ФСР выдерживает элементарные преобразования столбцов.

Будем говорить об однородной СЛУ. Столбцы Φ CP — базис в пространстве решений однородной системы.

Пусть $\Phi'_{m\times n}$, $\Phi_{m\times n} - \Phi$ CP системы Ax = 0.

$$\exists C_{n\times n}: C$$
— неврожденная & $\Phi'_{m\times n} = \Phi_{m\times n}C$.

Число столбцов Φ CP = числу свободных неизвестных = число всех неизвестных (n) - число главных неизвестных $(\operatorname{Rg} A)$.

Пример 4

$$\begin{cases} 3x_1 +2x_2 +x_3 = 7 \\ -4x_1 +5x_2 +x_4 = 3 \end{cases}$$

Решение:

$$\begin{pmatrix}
3 & 2 & 1 & 0 & 7 \\
-4 & 5 & 0 & 1 & 3
\end{pmatrix}$$

Очевидно, что ничего преобразовывать не надо, единичная матрица уже есть.

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 7 \\ 3 \end{pmatrix} + c_1 \begin{pmatrix} 1 \\ 0 \\ -3 \\ 4 \end{pmatrix} + c_2 \begin{pmatrix} 0 \\ 1 \\ -2 \\ -5 \end{pmatrix}, \qquad c_1, c_2, c_3 \in \mathbb{R}.$$

Пример 5

Дана ФСР

$$\Phi = \begin{pmatrix} 1 & 0 \\ 1 & -1 \\ 0 & 1 \\ -4 & -1 \end{pmatrix}$$

Найти Ax = 0.

Решение:

Припишем справа столбец неизвестных. Т.к. он линейно выражается через строки матрицы A, то это не изменит ранг нашей матрицы.

To sto He uswellar path Hameu Marpungsi.
$$\begin{pmatrix} 1 & 0 & x_1 \\ 1 & -1 & x_2 \\ 0 & 1 & x_3 \\ -4 & -1 & x_4 \end{pmatrix} \xrightarrow{(2)\longleftrightarrow(3)} \begin{pmatrix} 1 & 0 & x_1 \\ 0 & 1 & x_3 \\ 1 & -1 & x_2 \\ -4 & -1 & x_4 \end{pmatrix} \xrightarrow{(3)-(1)} \begin{pmatrix} 1 & 0 & x_1 \\ 0 & 1 & x_3 \\ 0 & -1 & x_2 - x_1 \\ 0 & -1 & x_4 + 4x_1 \end{pmatrix} \xrightarrow{(4)+(2)} \begin{pmatrix} 1 & 0 & x_1 \\ 0 & 1 & x_3 \\ 0 & 0 & x_2 - x_1 + x_3 \\ 0 & 0 & x_4 + 4x_1 + x_3 \end{pmatrix}$$

$$OTBET: \begin{cases} -x_1 & +x_2 & +x_3 & = 0 \\ 4x_1 & +x_3 & +x_4 & = 0 \end{cases}$$

Пример 6

При каких α и β система совместна? Решить ее.

$$\begin{cases} 2x_1 & -4x_2 & +3x_3 & -2x_4 & = 3\\ & x_3 & -2x_4 & = \alpha\\ 3x_1 & -6x_2 & +2x_3 & +2x_4 & = 2\\ -3x_1 & +6x_2 & -x_3 & -4x_4 & = \beta \end{cases}$$

Решение:

$$\begin{pmatrix} 2 & -4 & 3 & -2 & | & 3 \\ 0 & 0 & 1 & -2 & | & \alpha \\ 3 & -6 & 2 & 2 & | & 2 \\ -3 & 6 & -1 & -4 & | & \beta \end{pmatrix} \xrightarrow{\text{(1)} \cdot 3} \begin{pmatrix} 6 & -12 & 9 & -6 & | & 9 \\ 0 & 0 & 1 & -2 & | & \alpha \\ 6 & -12 & 4 & 4 & | & 4 \\ -6 & 12 & -2 & -8 & | & 2\beta \end{pmatrix} \xrightarrow{\text{(3)} - (1)} \begin{pmatrix} 3 - (1) & | & 3 \\ 4 - 6 & 12 & -2 & -8 & | & 2\beta \end{pmatrix} \xrightarrow{\text{(3)} - (1)} \begin{pmatrix} 3 - (1) & | & 3 \\ 4 - 6 & 12 & -2 & -8 & | & 2\beta \end{pmatrix} \xrightarrow{\text{(3)} - (1)} \begin{pmatrix} 3 - (1) & | & 3 \\ 4 - 6 & 12 & -2 & -8 & | & 2\beta \end{pmatrix} \xrightarrow{\text{(4)} + (1); (1)/3} \begin{pmatrix} 2 - 4 & 3 & -2 & | & 3 \\ 0 & 0 & 1 & -2 & | & 3 \\ 0 & 0 & 1 & -2 & | & 1 \end{pmatrix} \xrightarrow{\text{(1)} - 3(2)} \begin{pmatrix} 2 & -4 & 0 & 4 & | & 0 \\ 0 & 0 & 1 & -2 & | & 1 \end{pmatrix} \xrightarrow{\text{(1)} - 3(2)} \begin{pmatrix} 1 & -2 & 0 & 2 & | & 0 \\ 0 & 0 & 1 & -2 & | & 1 \end{pmatrix} \xrightarrow{\text{(2)}} \rightarrow \begin{pmatrix} 1 & 0 & -2 & 2 & | & 0 \\ 0 & 1 & 0 & -2 & | & 1 \end{pmatrix} \xrightarrow{\text{(2)}} \begin{pmatrix} 2 & -2 & 0 & 2 & | & 1 \\ 1 & 0 & 0 & 1 & -2 & | & 1 \end{pmatrix} \xrightarrow{\text{(2)}} \begin{pmatrix} 2 & 1 & 2 & 2 & | & 0 \\ 0 & 1 & 0 & -2 & | & 1 \end{pmatrix} \xrightarrow{\text{(2)}} \begin{pmatrix} 2 & 2 & 2 & | & 1 \\ 1 & 0 & 0 & 1 & | & 2 & | & 1 \end{pmatrix} \xrightarrow{\text{(2)}} \begin{pmatrix} 2 & 1 & 2 & | & 2 \\ 1 & 0 & 0 & 1 & | & 2 & | & 1 \end{pmatrix} \xrightarrow{\text{(2)}} \begin{pmatrix} 2 & 1 & 2 & | & 2 \\ 1 & 0 & 0 & 1 & | & 2 & | & 1 \end{pmatrix}$$

2.2.1. Примечание

Обратимся к примеру 3. Мы получили такую расширенную матрицу:

$$\left(\begin{array}{ccc|ccc} 1 & 0 & -4 & 2 & 1 & 3 \\ 0 & 1 & 0 & 0 & 2 & 1 \end{array}\right)$$

Она эквивалентна системе:

$$\begin{cases} x_1 & -4x_3 +2x_4 +x_5 = 3 \\ x_2 & +2x_5 = 1, \end{cases}$$

откуда

$$\begin{cases} x_1 = 3 + 4x_3 - 2x_4 - x_5 \\ x_2 = 1 - 2x_5. \end{cases}$$

Тогда можно записать:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 3 + 4x_3 - 2x_4 - x_5 \\ 1 - 2x_5 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} 4 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} -2 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} + x_5 \begin{pmatrix} -1 \\ -2 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \quad x_3, x_4, x_5 \in \mathbb{R}.$$

Так мы пришли к ответу, не прибегая к умножению матриц.

Семинар 3

Линейные пространства и подпространства.

3.1. Определение линейного пространства

Определение 3.1.1. Пространство L — линейное пространство, если:

- $\bullet \ \forall x, y \in L : x + y \in L$
- $\forall x \in L, \forall \alpha \in \mathbb{R} : \alpha x \in L$

+ 8 аксиом:

1.°
$$x + y = y + x$$

$$2^{\circ} (x+y) + z = x + (y+z)$$

$$3.^{\circ} \exists o : \forall x \rightarrow x + o = x$$

$$4.^{\circ} \exists (-x) : \forall x \rightarrow x + (-x) = 0$$

$$5^{\circ} \ \alpha(x+y) = \alpha x + \alpha y$$

$$6.^{\circ} (\alpha + \beta)x = \alpha x + \beta x$$

7.°
$$(\alpha\beta)x = \alpha(\beta x)$$

$$8.^{\circ} \exists 1: x \cdot 1 = x$$

Вектор — элемент линейного пространства.

• Понятия ЛЗ и ЛНЗ со всеми вытекающими свойствами полностью из аналита.

Определение 3.1.2. <u>Базис в L</u> — конечная, упорядоченная ЛНЗ система векторов, такая что каждый вектор из L по ней раскладывается.

Если базис состоит из n векторов, то пространство называется n-мерным (dim L=n).

Примеры:

• Векторы в
$$3^x$$
 (dim $L=n$). Базис: $\left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\}$

ullet Столбцы высотой $n\ (\dim L=n).$ Базис: $\left\{ \left(egin{array}{c} 1 \\ 0 \\ \vdots \\ 0 \end{array} \right), \ldots, \left(egin{array}{c} 0 \\ 0 \\ \vdots \\ 1 \end{array} \right) \right\}$

• Матрицы
$$m \times n$$
 (dim $L = m \times n$). Базис:
$$\left\{ \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} \right\}$$
• Множество функций, опредедённых на отрезке $[0,1]$

- Множество функций, определённых на отрезке [0,1]
- Многочлены $(\dim L = \infty)$
- Многочлены степени $\leq n \; (\dim L = n+1)$. Базис: $\{1, t, t^2, \dots, t^n\}$

Определение 3.1.3. Линейное подпространство. L' — линейное подпространство в L, если:

- $\forall x, y \in L' : x + y \in L'$
- $\forall x \in L', \forall \alpha \in \mathbb{R} : \alpha x \in L'$

Пример: диагональные матрицы в пространстве обычных матриц.

3.2. Примеры

В примерах 1-3 вопрос следующий: является ли данное множество линейным подпространством в данном пространстве L.

Пример 1

L — множество n-мерных векторов.

Решение:

а) L' — множество векторов, координаты которых равны

Да, является;
$$\dim L' = 1$$
, базис: $\left\{ \begin{pmatrix} 1\\1\\\vdots\\1 \end{pmatrix} \right\}$

б) L' — множество векторов, сумма координат которых равна 0

Да, является;
$$\dim L'=n-1$$
, базис: $\left\{\begin{pmatrix}1\\0\\\vdots\\0\\-1\end{pmatrix},\cdots,\begin{pmatrix}0\\\vdots\\0\\1\\-1\end{pmatrix}\right\}$

в) L' — множество векторов, сумма координат которых равна 1 Hет, не является.

Пример 2

L — множество матриц размера $n \times n$.

Решение:

а) L' — матрицы с нулевой первой строкой

Да, является; dim $L' = n^2 - n$

б) L' — множество диагональных матриц

Да, является; $\dim L' = n$

в) L' — множество верхнетреугольных матриц

Да, является; dim $L' = \frac{n(n+1)}{2}$ (т.е. $(1+2+\cdots+n)$)

г) L' — множество вырожденных матриц

Heт, не является; $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Пример 3

L — множество функций, определенных на отрезке [0,1].

Решение:

а) L' — множество функций, ограниченных на отрезке [0,1]

Да, является.

б) Г' — множество строго монотонных функций

Нет, не является.

в) L' — множество строго возрастающих функций

 $0 \cdot x = 0 \Longrightarrow$ нет, не является.

3.3. Примеры и способы задания линейных подпространств

0 — тоже линейное пространство

Определение 3.3.1. Линейная оболочка векторов $a_1, a_2, \cdots, a_k \ (< a_1, a_2, \cdots, a_k >)$ — всевозможные линейные комбинации этих векторов:

$$\langle a_1, a_2, \cdots, a_k \rangle = \left\{ \sum_{i=1}^k \lambda_i a_i, \lambda_i \in R \right\}$$

Пример 4

Найти размерность и базис линейной оболочки

Решение:

$$<\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\1\\3 \end{pmatrix}, \begin{pmatrix} 3\\-5\\7\\2 \end{pmatrix}, \begin{pmatrix} 1\\-7\\5\\2 \end{pmatrix}>$$

Т.к. dim $L' = \operatorname{Rg} A$:

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 3 \\ 3 & -5 & 7 & 2 \\ 1 & -7 & 5 & 2 \end{pmatrix} \xrightarrow{(2)-(1), (4)-(1)} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 2 \\ 0 & -8 & 4 & 1 \\ 0 & -8 & 4 & 1 \end{pmatrix}$$

 $(3) = (4) \Rightarrow (4)$ вычеркиваем!

$$\dim L' = 3$$
, базис: $\left\{ \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\2 \end{pmatrix}, \begin{pmatrix} 0\\-8\\4\\1 \end{pmatrix} \right\}$

Пример 5

(ycловие - cм. пример 4)

Решение:

$$<\begin{pmatrix} 6 & 8 & 9 \\ 0 & 1 & 6 \end{pmatrix}, \begin{pmatrix} 2 & 1 & 1 \\ 3 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 6 & 7 \\ -6 & 1 & 4 \end{pmatrix} >$$

Задача не изменится, если взять

$$<\begin{pmatrix} 6\\8\\9\\0\\1\\6 \end{pmatrix}, \begin{pmatrix} 2\\1\\1\\3\\0\\1 \end{pmatrix}, \begin{pmatrix} 2\\6\\7\\-6\\1\\4 \end{pmatrix} > \begin{pmatrix} 6&8&9&0&1&6\\2&1&1&3&0&1\\2&6&7&-6&1&4 \end{pmatrix}$$

Т.к. строка (3) ЛНЗ ((1)-2(2)=(3)), ее можно вычеркнуть.
$$\dim L'=2, \ \text{базис:} \left\{\begin{pmatrix} 6 & 8 & 9 \\ 0 & 1 & 6 \end{pmatrix}, \begin{pmatrix} 2 & 1 & 1 \\ 3 & 0 & 1 \end{pmatrix}\right\}$$

Пример 6

Доказать, что матрицы A, B, C, D образуют базис в пространстве матриц 2×2 и найти координаты вектора F в этом базисе.

Решение:

$$A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}, B = \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix}, C = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, D = \begin{pmatrix} 3 & 4 \\ 5 & 7 \end{pmatrix}, F = \begin{pmatrix} 5 & 14 \\ 6 & 13 \end{pmatrix}$$

Если A, B, C, D — базис, то $\exists ! \ x_1, x_2, x_3, x_4$:

$$Ax_1 + Bx_2 + Cx_3 + Dx_4 = F$$
,

что эквивалентно СЛУ:

$$\begin{cases} x_1 +2x_2 +x_3 +3x_4 = 5\\ -x_1 +5x_2 +x_3 +4x_4 = 14\\ x_1 +x_2 +5x_4 = 6\\ x_1 +3x_2 +x_3 +7x_4 = 13 \end{cases}$$

Решая эту СЛУ, получим:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ -1 \\ 1 \end{pmatrix}$$

Т.о., решив систему, убедились в единственности решения (факт базиса).

Пример 7

Найти размерность и базис линейной оболочки.

Решение:

$$<(1+t)^3,t^3,t+t^2,1>$$

Стандартный базис многочлена: $\{1, t, t^2, t^3\}$. Тогда координаты наших векторов в стандартном базисе есть:

$$<\begin{pmatrix}1\\3\\3\\1\end{pmatrix},\begin{pmatrix}0\\0\\0\\1\end{pmatrix},\begin{pmatrix}0\\1\\1\\0\end{pmatrix},\begin{pmatrix}1\\0\\0\\0\end{pmatrix}>$$

Тогда запишем матрицу, аналогично примеру 4:

$$\begin{pmatrix}
1 & 3 & 3 & 1 \\
0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0
\end{pmatrix}$$

1 строка ЛНЗ, ее можно вычеркнуть. Тогда

$$\dim L' = 3$$
, базис: $\{t^3, t^2 + t, 1\}$.

Пример 8

Доказать, что

$$1, t - \alpha, (t - \alpha)^2, \dots, (t - \alpha)^n$$

— базис в пространстве многочленов, степени не выше n. Найти в этом базисе разложение $P_n(t)$.

Решение:

Ответ на эту задачу дал математик Брук Тейлор:

$$P_n(t) = P_n(\alpha) + \frac{1}{1!}P'(\alpha)(t-\alpha) + \dots + \frac{1}{n!}P_n^{(n)}(\alpha)(t-\alpha)^n$$

Т.к. данное разложение $\exists!$, это базис. Запишем коэффициенты разложения:

$$\begin{pmatrix} P_n(\alpha) \\ \frac{1}{1!}P'_n(\alpha) \\ \dots \\ \frac{1}{n!}P_n^{(n)}(\alpha) \end{pmatrix}$$

Пример 9

Найти размерность и базис подпространства, заданного в виде Ax = 0, где

$$A = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 3 & 4 & -2 & 5 \end{pmatrix}.$$

Решение:

Решения однородной системы образуют линейные подпространства.
$$\begin{pmatrix} 1 & 2 & 0 & 1 & 0 \\ 3 & 4 & -2 & 5 & 0 \end{pmatrix} \xrightarrow{\text{Алгоритм Гаусса}} \begin{pmatrix} 1 & 0 & -2 & 3 & 0 \\ 0 & 1 & 1 & -1 & 0 \end{pmatrix}$$
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 2 & -3 \\ -1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$$

Отсюда, получаем линейную оболочку:

$$< \begin{pmatrix} 2\\-1\\1\\0 \end{pmatrix}, \begin{pmatrix} -3\\1\\0\\1 \end{pmatrix} >, \quad \dim L' = 2$$

Столбцы этой линейной оболочки будут являться базисом в этом линейном подпространстве.

Пример 10

Задать подпространство в виде однородной системы

$$< \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \\ 1 \end{pmatrix} > .$$

Решение:

Задача по сути является задачей из прошлого семинара:

$$\begin{pmatrix} 1 & 0 & x_1 \\ 2 & 1 & x_2 \\ 3 & -1 & x_3 \\ 4 & 1 & x_4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & x_1 \\ 0 & 1 & x_2 - 2x_1 \\ 0 & 0 & -5x_1 + x_2 + x_3 \\ 0 & 0 & -2x_2 - x_2 + x_4 \end{pmatrix}$$

Для того, чтобы система была совместной, требуется равенство 0 последних двух строк. Отсюда ответ:

$$\begin{cases}
-5x_1 & +x_2 & +x_3 & = 0 \\
-2x_1 & -x_2 & +x_4 & = 0
\end{cases}$$

Замена базиса. Сумма и пересечение подпространств.

4.1. Замена базиса.

Рассмотрим базис $\overline{e}(e_1, e_2, \dots, e_n)$.

Координаты x в базисе \overline{e} : $\begin{pmatrix} \xi_1 \\ \vdots \\ \xi_n \end{pmatrix} = \overline{\xi}$

Тогда: $x = \sum_{i=1}^{n} \xi_i e_i = \overline{e}\overline{\xi}$.

Пусть есть два базиса $\overline{e}, \overline{e'}$. Выразим один базис через другой:

$$\left. \begin{array}{l}
 e'_1 = a_{11}e_1 + \dots + a_{1n}e_n \\
 e'_2 = \dots \\
 e'_n = a_{n1}e_1 + \dots + a_{nn}e_n
 \end{array} \right\} \Rightarrow e'_i = \sum_{j=0}^n a_{ij}e_j$$

S — матрица перехода от \overline{e} к $\overline{e'}$ (det $S \neq 0$).

$$S = \begin{pmatrix} a_{11} & \dots & a_{n1} \\ \dots & \dots & \dots \\ a_{1n} & \dots & a_{nn} \end{pmatrix} \Rightarrow \overline{\overline{e'} = \overline{e}S}$$

Связь координат:

$$x = \overline{e}\overline{\xi}$$

$$x = \overline{e'\xi'} = \overline{e} \underline{S}\overline{\xi'} \Rightarrow \overline{\overline{\xi}} = S\overline{\overline{\xi'}}$$

Пример 1

Доказать, что $F: \begin{pmatrix} 4\\2\\1 \end{pmatrix}, \begin{pmatrix} 5\\3\\2 \end{pmatrix}, \begin{pmatrix} 3\\2\\1 \end{pmatrix}$ и $G: \begin{pmatrix} -1\\4\\0 \end{pmatrix}, \begin{pmatrix} 4\\3\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\3 \end{pmatrix}$ — базис в \mathbb{R}^3 1. Найти S от F к G.

- 2.° Зная $\overline{\xi'}$ в G, найти $\overline{\xi}$ в F.

dghfhf

Решение:

$$G = \begin{pmatrix} -1 & 4 & 1 \\ 4 & 3 & 2 \\ 0 & 1 & 3 \end{pmatrix}, \quad \det G = -47 \neq 0 \Rightarrow G -$$
базис

1.°
$$G = FS$$
 $F^{-1}|$ · $F^{-1}G = S$

Пусть F — невырожденная, тогда $\exists T_1, \dots, T_n$ (элементарные преобразования матриц):

$$T_n \dots T_1 F = E \mid F^{-1} G$$

$$T_n \dots T_1 G = F^{-1} G = S$$

Т.е. преобразования, которые переведут F в E, переведут G в S.

$$\begin{pmatrix}
4 & 5 & 3 & -1 & 4 & 1 \\
2 & 3 & 2 & 4 & 3 & 2 \\
1 & 2 & 1 & 0 & 1 & 3
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 0 & -5 & 0 & 4 \\
0 & 1 & 0 & -4 & 1 & 4 \\
0 & 0 & 1 & 13 & 3 & -1
\end{pmatrix}
\Rightarrow S = \begin{pmatrix}
-5 & 0 & 4 \\
-4 & 1 & 4 \\
13 & 3 & -1
\end{pmatrix}$$

$$\overline{\xi} = S\overline{\xi'}$$

$$\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} -5 & 0 & 4 \\ -4 & 1 & 4 \\ 13 & 3 & -1 \end{pmatrix} \begin{pmatrix} \xi_1' \\ \xi_2' \\ \xi_3' \end{pmatrix} = \begin{pmatrix} -5\xi_1 + 4\xi_3 \\ -4\xi_1 + \xi_2 + 4\xi_3 \\ 13\xi_1 + 3\xi_2 - \xi_3 \end{pmatrix}$$

Пример 2

(Условие то же, что и в примере 1)
$$F\colon <\left(\begin{smallmatrix} 0 & 1 & -2 \\ -1 & 0 & 3 \\ 2 & -3 & 0 \end{smallmatrix}\right), \left(\begin{smallmatrix} 0 & 0 & -1 \\ 0 & 0 & 4 \\ 1 & -4 & 0 \end{smallmatrix}\right), \left(\begin{smallmatrix} 0 & -1 & 2 \\ 1 & 0 & -2 \\ -2 & 2 & 0 \end{smallmatrix}\right)> \quad G\colon <\left(\begin{smallmatrix} 0 & 1 & 1 \\ -1 & 0 & -1 \\ -1 & 1 & 0 \end{smallmatrix}\right), \left(\begin{smallmatrix} 0 & 3 & 5 \\ -3 & 0 & 2 \\ -5 & -2 & 0 \end{smallmatrix}\right), \left(\begin{smallmatrix} 0 & 1 & 0 \\ -1 & 0 & 3 \\ 0 & -3 & 0 \end{smallmatrix}\right)>$$

Решение:

Заметим, что перед нами кососимметричные матрицы.

Определение 4.1.1. Кососимметричная (кососимметрическая) матрица — квадратная матрица A, удовлетворяющая соотношению:

$$A^{\mathrm{T}} = -A \Leftrightarrow a_{ii} = -a_{ii} \ \forall i,j = \overline{1,n}.$$

Отсюда следует, что
$$\dim L'=3$$
. Базис: $\left\{\begin{pmatrix}0&1&0\\-1&0&0\\0&0&0\end{pmatrix},\begin{pmatrix}0&0&1\\0&0&0\\-1&0&0\end{pmatrix},\begin{pmatrix}0&0&0\\0&0&1\\0&-1&0\end{pmatrix}\right\}$

Тогда координаты наших векторов F и \dot{G} в этом базисе:

$$F\begin{pmatrix} 1\\ -2\\ 3 \end{pmatrix}, \begin{pmatrix} 0\\ -1\\ 4 \end{pmatrix}, \begin{pmatrix} -1\\ 2\\ -2 \end{pmatrix} \quad G\begin{pmatrix} 1\\ 1\\ -1 \end{pmatrix}, \begin{pmatrix} 3\\ 5\\ 2 \end{pmatrix}, \begin{pmatrix} 1\\ 0\\ 3 \end{pmatrix}$$

Выполним действия аналогично примеру 1 и получим:

$$S = \begin{pmatrix} 9 & 40 & 9 \\ -3 & -11 & -2 \\ 8 & 37 & 8 \end{pmatrix}$$

4.2. Сумма и пересечение подпространств

Рассмотрим линейные подпространства L_1 и L_2 .

Семинар 4 21

Определение 4.2.1. Пересечением L_1 и L_2 называется множество векторов принадлежащих и L_1 , и L_2 .

 $L_1 \cap L_2$ — линейное подпространство.

Определение 4.2.2. Суммой L_1 и L_2 называется линейная оболочка их объединения.

Определение 4.2.3. Если $L_1 \cap L_2 = \{0\}$, то пишут так:

$$L_1 + L_2 = L_1 \oplus L_2,$$

а сумму называют прямой суммой.

Если $L=L_1\oplus L_2$, то говорят, что L_1 и L_2 — прямые дополнения друг друга.

Примеры:

a)

б)

Рис. 4.1. Рисунки подпространств к примерам а) и б)

a)
$$L_1$$
: $\langle \overline{a}_1 \rangle$ dim $L_1 = 1$
 L_2 : $\langle \overline{a}_2, \overline{a}_3 \rangle$ dim $L_2 = 2$

В данном случае вектора некомпланарны.

$$L_1 + L_2 = \langle \overline{a}_1, \overline{a}_2, \overline{a}_3 \rangle = \mathbb{R}^3$$

 $\dim(L_1 + L_2) = 3 = \dim L_1 + \dim L_2$

T.o.

$$L_1 + L_2 = L_1 \oplus L_2$$

6)
$$\underline{L_1}$$
: $<\overline{a_1}, \overline{a_4}> \dim L_1 = 2$
 $\underline{L_2}$: $<\overline{a_2}, \overline{a_3}> \dim L_2 = 2$
 $L_1 + L_2$: $<\overline{a_1}, \overline{a_2}, \overline{a_3}, \overline{a_4}>$: \mathbb{R}^3

Ho dim $(L_1 + L_2) = 3$, т.к. \overline{a}_4 можно выкинуть.

В общем случае:

$$\dim(L_1 + L_2) \leqslant \dim L_1 + \dim L_2$$

Ответ о размерности даёт формула Грассмана:

$$\dim(L_1 + L_2) = \dim L_1 + \dim L_2 - \dim(L_1 \cap L_2).$$

4.3. Понятие проекции вектора на подпространство

Определение 4.3.1. Пусть $\exists a \in L_1, b \in L_2, x \in L_1 + L_2 : \exists ! x = a + b \Leftrightarrow L_1 + L_2 = L_1 \oplus L_2$. При этом вектор a называется проекцией вектора x на L_1 параллельно L_2 .

Пример 3

Найти проекцию $X(0-1-1\ 4)^{\mathrm{T}}$ на подпространство $L_1: x_1+x_2+x_3+x_4=0$ вдоль линейной оболочки $L_2: <(1\ -1\ 1\ 0)^{\mathrm{T}}>.$

Решение:

$$L_1: (1\ 1\ 1\ 1\ |\ 0) \Rightarrow \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -1 & -1 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} \text{ или } L_1: < \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} > .$$

$$L_2$$
: $< \begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \end{pmatrix} >$

Разложим вектор X:

$$\begin{pmatrix} 0 \\ -1 \\ -1 \\ 4 \end{pmatrix} = k \begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \end{pmatrix} + \alpha \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + \gamma \begin{pmatrix} 4 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\xrightarrow{b \in L_2} b \in L_2$$

Очевидно, что это уравнение задает нам СЛУ. Составим ее расширенную матрицу и решим систему:

$$\begin{pmatrix} 1 & -1 & -1 & 4 & 0 \\ -1 & 1 & 0 & 0 & -1 \\ 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} k \\ \alpha \\ \beta \\ \gamma \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ -3 \\ 4 \end{pmatrix}.$$

Отсюла легко найти, что

$$x_{\rm np} = \begin{pmatrix} 0 \\ -1 \\ -1 \\ 4 \end{pmatrix} - 2 \begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ -3 \\ 4 \end{pmatrix}.$$

Пример 4

Найти размероность и базис суммы подпространств U_1 и U_2 .

$$U_1: < \begin{pmatrix} 1 \\ 0 \\ -2 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \\ 0 \\ 2 \end{pmatrix} > U_2: \begin{cases} x_1 & -2x_2 & -3x_3 & +4x_4 & = 0 \\ 3x_1 & +x_2 & -2x_3 & -2x_4 & = 0 \end{cases}$$

Решение:

$$U_1: \begin{pmatrix} 1 & 0 & -2 & 0 \\ 2 & 1 & -1 & 1 \\ 3 & 2 & 0 & 2 \end{pmatrix} \xrightarrow[(3)-3(1)]{(2)-2(1)} \begin{pmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & 3 & 1 \\ 0 & 2 & 6 & 2 \end{pmatrix}$$

Последняя строка ЛЗ со второй, ее можно вычеркнуть $\Rightarrow \dim U_1 = 2$, базис: $\left\{ \begin{pmatrix} 1 \\ 0 \\ -2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 3 \\ 1 \end{pmatrix} \right\}$.

Семинар 4 23

Переведём способ задания U_2 из СЛУ в линейную оболочку. Для этого решим эту СЛУ:

$$\begin{pmatrix} 1 & -2 & -3 & 4 & 0 \\ 3 & 1 & -2 & -2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & 0 & 0 \\ 0 & 1 & 1 & -2 & 0 \end{pmatrix}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -1 & 2 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}, \quad \dim U_2 = 2, \quad \text{ базис } U_2 : \left\{ \begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -2 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

$$U_{1} + U_{2} : < \begin{pmatrix} \frac{1}{0} \\ -\frac{2}{0} \end{pmatrix}, \begin{pmatrix} \frac{0}{1} \\ \frac{1}{3} \end{pmatrix}, \begin{pmatrix} \frac{1}{-1} \\ \frac{1}{0} \end{pmatrix}, \begin{pmatrix} \frac{0}{2} \\ \frac{2}{0} \end{pmatrix} > .$$

$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 2 \\ 2 & 3 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix} \xrightarrow{(3)-(1)} \begin{pmatrix} 1 & 0 & - & 2 & 0 \\ 0 & 1 & 3 & 1 \\ 0 & -1 & 3 & 0 \\ 0 & 2 & 0 & 1 \end{pmatrix}$$

3 строка ЛЗ с 2 и 4, ее можно вычеркнуть
$$\Rightarrow \dim(U_1 + U_2) = 3$$
, базис: $\left\{ \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix} \right\}$.

Пример 5

В условиях примера 4 найти размерность и базис пересечения.

Решение:

$$\dim(U_1 + U_2) = \dim U_1 + \dim U_2 - \dim(U_1 \cap U_2)$$

$$\dim(U_1 + U_2) = 3, \dim U_1 = 2, \dim U_2 = 2 \Rightarrow \dim(U_1 \cap U_2) = 1$$

1 способ

Зададим
$$U_1$$
 как систему: U_1 : $<\begin{pmatrix} 1\\0\\-2\\0\end{pmatrix},\begin{pmatrix} 0\\1\\3\\1\end{pmatrix}>$

$$\begin{pmatrix}
1 & 0 & | & x_1 \\
0 & 1 & | & x_2 \\
-2 & 3 & | & x_3 \\
0 & 1 & | & x_4
\end{pmatrix}
\xrightarrow{(3)+2(1),(3)-3(2)}
\begin{pmatrix}
1 & 0 & | & x_1 \\
0 & 1 & | & x_2 \\
0 & 0 & | & x_3+2x_1-3x_2 \\
0 & 0 & | & x_4-x_2
\end{pmatrix}$$

$$U_1: \begin{cases} 2x_1 & -3x_2 & +x_3 & = 0\\ 2x_1 & +x_2 & +x_4 & = 0 \end{cases}$$

$$U_1 \cap U_2 = \begin{cases} U_1 & & & \\ U_2 & & & \\ & & & \end{cases}$$

$$\begin{pmatrix} 1 & 0 & -1 & 0 & 0 \\ 0 & 1 & 1 & -2 & 0 \\ 2 & -3 & -1 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 \end{pmatrix} \Rightarrow < \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} > (базис $U_1 \cap U_2$)$$

2 способ

Базис $U_1: a_1, a_2$ Базис $U_2: b_1, b_2$ $P \in U_1, P \in U_2;$ $P = \alpha_1 a_1 + \alpha_2 a_2 = \beta_1 b_1 + \beta_2 b_2 \Rightarrow \alpha_1, \alpha_2$

Линейные отображения. Часть 1.

5.1. Определение линейного отображения

Определение 5.1.1. Пусть заданы L и \overline{L} — два линейных пространства. Отображение φ из L в \overline{L} — правило, по которому каждому вектору из L ставится в соответствие единственный вектор из \overline{L} .

Обозначение: $\varphi: L \to \overline{L}$.

Определение 5.1.2. Сюрьекция — отображение, при котором каждый элемент из \overline{L} является образом вектора из L.

Рис. 5.1. Сюръективная функция

Определение 5.1.3. Инъекция — отображение, при котором каждый образ из \overline{L} имеет единственный прообраз в L.

Определение 5.1.4. Сюрьекция + инъекция = биекция - это отображение, которое является одновременно и сюръективным, и инъективным (взаимно-однозначное соответствие).

Определение 5.1.5. Если в результате отображения $L=\overline{L},$ то такое отображение называется преобразованием.

Определение 5.1.6. Отображение π называется линейным, если выполнено:

$$\begin{cases} \varphi(x+y) = \varphi(x) + \varphi(y) \\ \varphi(\alpha x) = \alpha \varphi(x). \end{cases}$$

Рис. 5.2. Инъективная функция

Примеры:

- аффинные преобразования плоскости
- геометрия 3D (т.е. преобразования в трёхмерном пространстве: поворот, симметрия и т.д.)
- присвоение координат в линейном пространстве (пространство многочленов \rightarrow пространство столбцов т.е. координатный изоморфизм)
- умножение на матрицу, транспонирование
- дифференцирование, интегрирование (только для определённого интеграла, чтобы избежать появление константы)

Очевидно, что $\varphi(0) = 0$.

Рассмотрим ЛЗ систему векторов a_1, \ldots, a_n .

$$\alpha_1 a_1 + \dots + \alpha_n a_n = 0.$$

Подействуем преобразованием φ :

$$\alpha_1 \varphi(a_1) + \dots + \alpha_n \varphi(a_n) = 0.$$

Отсюда видно, что система образов — тоже ЛЗ система векторов с теми же коэффициентами. Но для ЛНЗ системы векторов данное утверждение не верно (контрпример: нуль-преобразование).

Определение 5.1.7. Образ $\varphi: \operatorname{Im} \varphi: \{\varphi(x) \in \overline{L}: x \in L\}$ — множество всех образов из L в \overline{L} .

Определение 5.1.8. Ядро $\varphi: \ker \varphi: \{x \in L: \varphi(x) = 0\}$ — множество векторов из L, которые переходят в 0.

Определение 5.1.9. Ранг $\varphi : r = \dim(\operatorname{Im} \varphi)$ — размерность образа.

Пример 1

Работаем в \mathbb{R}^3 , ОНБ, $\mathbf{a}\neq\mathbf{0}$, $\mathbf{n}\neq\mathbf{0}$.

Найти φ , если φ — ортогональная проекция на:

- a) L_1 : [**r**, **a**] = **0**
- б) L_2 : (**r**, **n**) = 0

Решение:

а) $\varphi(\mathbf{x}) = \frac{(\mathbf{x}, \mathbf{a})}{\left|\mathbf{a}\right|^2} \mathbf{a}$ — формула для проекции вектора на прямую (из

аналит. геометрии).

 $\ker \varphi : (\mathbf{r}, \mathbf{a}) = 0$ — плоскость, ортогональная вектору \mathbf{a} .

 $\operatorname{Im} \varphi : [\mathbf{r}, \mathbf{a}] = \mathbf{0}.$

r=1 (прямая).

Рис. 5.3. К примеру 1a

б)
$$\varphi(\mathbf{x}) = \mathbf{x} - \mathbf{p}$$

$$\varphi(\mathbf{x}) = \mathbf{x} - \frac{(\mathbf{x}, \mathbf{n})}{|\mathbf{n}|^2} \mathbf{n}.$$

$$\ker \varphi : [\mathbf{r}, \mathbf{n}] = \mathbf{0}.$$

$$\operatorname{Im} \varphi : (\mathbf{r}, \mathbf{n}) = 0 \text{ (плоскость)}.$$

$$r = 2 \text{ (плоскость)}.$$

5.2. Матрица линейного отображения

Рис. 5.4. К примеру 16

$$\varphi: L \to \overline{L}, \dim L = n < \infty, \dim \overline{L} = m < \infty$$

Базисы в $L: \mathbf{e}(e_1, \dots, e_n)$, в $\overline{L}: \mathbf{f}(f_1, \dots, f_m)$, $a \in L$. $\varphi(a) \in \overline{L}$.

Пусть a имеет в L координатный столбец \mathbf{x} , а $\varphi(a)$ в \overline{L} координатный столбец \mathbf{y} . Построим такую матрицу A: $\underset{m \times n}{A} \cdot \underset{n \times 1}{\mathbf{x}} = \underset{m \times 1}{\mathbf{y}}$.

Пусть $\mathbf{x} = e_1 : (1 \ 0 \ \cdots \ 0)^{\mathrm{T}}.$

 $y=\varphi(e_1)_{\text{в базисе }f}=Ae_1=A\cdot(1\ 0\ \cdots\ 0)^{\mathrm{T}}=a_1$ — первый столбец из А. Аналогично поступим с вторым,

третьим и т.д. столбцами. Тогда матрица линейного отображения А имеет вид:

$$A = \left(\left[\varphi(e_1) \right] \cdots \left[\varphi(e_n) \right] \right) \right\} m$$

В данном случае, столбцы матрицы — это координатные столбцы $\varphi(e_i)$ в базисе f т.к.:

$$a = \alpha_1 e_1 + \dots + \alpha_n e_n$$

Подействуем на него преобразованием φ :

$$\varphi(a) = \alpha_1 \varphi(e_1) + \dots + \alpha_n \varphi(e_n)$$

В примерах 2–5 вопрос следующий: найти A, если задано φ — преобразование \mathbb{R}^3 , в ОНБ.

Пример 2

 φ — поворот вокруг e_3 на угол $\frac{\pi}{2}$.

Решение:

$$L \xrightarrow{L} \overline{L} \xrightarrow{\overline{L}} \overset{1}{\overset{1}{\cdot}}.$$

$$\varphi(\mathbf{e}_1) = \mathbf{e}_2 : \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

$$\varphi(\mathbf{e}_2) = -\mathbf{e}_1 : \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}$$

$$\varphi(\mathbf{e}_3) = \mathbf{e}_3 : \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Рис. 5.5. К примеру 2

Для построения матрицы A нам необходимо и достаточно образов преобразования.

 $^{^{1}}$ Всегда в решении задачи обязательно нужно выбрать базисы.

Пример 3

 φ — ортогональное проецирование на L: x = y = z.

Решение:

$$L_{e_1,e_2,e_3} \to \overline{L}_{e_1,e_2,e_3}$$
$$\varphi(\mathbf{x}) = \frac{(\mathbf{x}, \mathbf{a})}{|\mathbf{a}|^2} \mathbf{a}$$

«Прогоним» через эту формулу все базисные векторы:

$$\varphi(\mathbf{e}_1) = \frac{1}{3} \begin{pmatrix} 1\\1\\1 \end{pmatrix}$$

$$\varphi(\mathbf{e}_2) = \frac{1}{3} \begin{pmatrix} 1\\1\\1 \end{pmatrix}$$

$$\varphi(\mathbf{e}_3) = \frac{1}{3} \begin{pmatrix} 1\\1\\1 \end{pmatrix}$$

$$\Rightarrow A = \frac{1}{3} \begin{pmatrix} 1&1&1\\1&1&1\\1&1&1 \end{pmatrix}$$

27

Рис. 5.6. К примеру 3

Пример 4

 φ - отражение относительно $\alpha{:}\ 2x-2y+z=0$

Решение:

$$\begin{split} & \underset{\mathbf{e}_{1},\mathbf{e}_{2},\mathbf{e}_{3}}{L} \rightarrow \underset{\mathbf{e}_{1},\mathbf{e}_{2},\mathbf{e}_{3}}{\overline{\mathbf{L}}} \\ & \mathbf{n}(2;-2;1) \\ & |\mathbf{n}|^{2} = 9 \\ & \varphi(\mathbf{p}) = \mathbf{p} - 2 \frac{(\mathbf{p},\mathbf{a})}{|\mathbf{a}|^{2}} \mathbf{n} \\ & \varphi(\mathbf{e}_{1}) = \begin{pmatrix} 1\\0\\0 \end{pmatrix} - 2 \cdot \frac{2}{9} \begin{pmatrix} -\frac{2}{2}\\1 \end{pmatrix} \; ; \; \varphi(\mathbf{e}_{1}) = \frac{1}{9} \begin{pmatrix} 1\\8\\-4 \end{pmatrix} ; \\ & \varphi(\mathbf{e}_{2}) = \frac{1}{9} \begin{pmatrix} -8\\4\\1 \end{pmatrix} ; \\ & \varphi(\mathbf{e}_{3}) = \frac{1}{9} \begin{pmatrix} -4\\4\\1 \end{pmatrix} ; \end{split}$$

Рис. 5.7. К примеру 4

$$A = \frac{1}{9} \begin{pmatrix} 1 & 8 & -4 \\ 8 & -7 & 4 \\ -4 & 4 & 1 \end{pmatrix}$$

Пример 5

$$L_1: x=0$$

$$L_2: 2x = 2y = -z$$

Решение:

$$\underset{\mathbf{e}_{1},\mathbf{e}_{2},\mathbf{e}_{3}}{L}\rightarrow\underset{\mathbf{e}_{1},\mathbf{e}_{2},\mathbf{e}_{3}}{\overline{L}}$$

arphi — проецирование на $L_1||L_2|$

Рис. 5.8. К примеру 5

$$L_{1}: \langle \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \rangle, L_{2}: \langle \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ -1 \end{pmatrix} \rangle$$

$$\mathbf{p} = \underbrace{\alpha \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}}_{\in L_{1}} + \underbrace{\gamma \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}}_{\in L_{2}}$$

$$\mathbf{e}_{1}: \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \underbrace{\alpha \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}}_{\varphi(\mathbf{e}_{1})} + \gamma \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ -1 \end{pmatrix} \Rightarrow \gamma = 2 \Rightarrow \varphi(\mathbf{e}_{1}) = \begin{pmatrix} 0 \\ -\frac{1}{2} \end{pmatrix}$$

$$\mathbf{e}_{2}: \varphi(\mathbf{e}_{2}) = \mathbf{e}_{2};$$

$$\mathbf{e}_{3}: \varphi(\mathbf{e}_{3}) = \mathbf{e}_{3}.$$

$$Other: \begin{pmatrix} 0 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}$$

Понимая пример 5 как отображение, можно заметить, что $\dim(\operatorname{Im}\varphi)=2$, а значит, для описания всевозможных результатов в \bar{L} можно было выбрать базис из двух векторов.

$$f = \left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$

$$\varphi(\mathbf{e}_1) = \begin{pmatrix} -1 \\ 2 \end{pmatrix}, \varphi(\mathbf{e}_2) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \varphi(\mathbf{e}_3) = \begin{pmatrix} 0 \\ 1 \end{pmatrix};$$

$$A = \begin{pmatrix} -1 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}$$

Пример 6

$$\varphi: L \xrightarrow{\mathbf{L}} \Rightarrow \overline{L}$$

$$L: \langle \underbrace{1}_{e_1, e_2, e_3}, \underbrace{x}_{f_1, f_2, f_3, f_4}, L: \langle \underbrace{1}_{e_1}, \underbrace{x}_{e_2}, \underbrace{x}_{e_3}^2 \rangle, L: \langle \underbrace{1}_{e_1}, \underbrace{x}_{e_2}, \underbrace{x}_{e_3}^2 \rangle$$

Решение:

$$\varphi(x) = \int_{0}^{x} f(t)dt$$

$$\varphi(e_1) = \int_0^x 1 dt = x \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}
\varphi(e_2) = \int_0^x t dt = \frac{x^2}{2} \begin{pmatrix} 0 \\ 0 \\ \frac{1}{2} \\ 0 \end{pmatrix}
\varphi(e_3) = \int_0^x t^2 dt = \frac{x^3}{3} \begin{pmatrix} 0 \\ 0 \\ 0 \\ \frac{1}{3} \end{pmatrix}$$

Линейные отображения. Часть 2.

Для начала решим небольшой пример по прошлому семинару.

Пример 1

 $\varphi: M_{2\times 2} \to M_{2\times 1}, \varphi(\mathbf{x}) = \mathbf{x}\left(\frac{1}{4}\right)$. Найти матрицу линейного преобразования A.

Решение:

Запишем базисы:

 $M_{2\times2}:\mathbf{e}\left\{ \left(\begin{smallmatrix} 1 & 0 \\ 0 & 0 \end{smallmatrix} \right), \left(\begin{smallmatrix} 0 & 1 \\ 0 & 0 \end{smallmatrix} \right), \left(\begin{smallmatrix} 0 & 0 \\ 1 & 0 \end{smallmatrix} \right), \left(\begin{smallmatrix} 0 & 0 \\ 0 & 1 \end{smallmatrix} \right) \right\}$

 $M_{2\times 1}: \mathbf{f}\left\{ \begin{pmatrix} 1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1 \end{pmatrix} \right\}.$

Для удобства в общем виде найдём, что значит наше преобразование:

$$\varphi(\mathbf{x}) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 \\ 4 \end{pmatrix} = \begin{pmatrix} a+4b \\ c+4d \end{pmatrix}.$$

Далее «прогоним» через преобразование базис е:

 $\varphi(\mathbf{e}_1) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 4 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \hat{\varphi}(\mathbf{e}_2) = \begin{pmatrix} 4 \\ 0 \end{pmatrix}, \quad \varphi(\mathbf{e}_3) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad \varphi(\mathbf{e}_4) = \begin{pmatrix} 0 \\ 4 \end{pmatrix}.$

Отсюда, получаем ответ:

$$A = \begin{pmatrix} 1 & 4 & 0 & 0 \\ 0 & 0 & 1 & 4 \end{pmatrix}.$$

6.1. Рассмотрение ядра и образа

Рассмотрим $\varphi: \underset{\dim L=n}{L} \to \overline{\underset{\dim \overline{L}=m}{\overline{L}}}.$

Ядро: $\ker \varphi : \{ \mathbf{x} \in L : A\mathbf{x} = \mathbf{o} \}$

Очевидно, что Π H3 решения такого уравнения формируют Φ CP, а Φ CP задаёт линейное подпространство. Вспоминая количество столбцов в Φ CP, легко получить формулу:

$$\dim \ker \varphi = n - \operatorname{Rg} A. \tag{6.1}$$

Образ Im $\varphi : \{ \mathbf{y} \in \overline{L} : \exists \mathbf{x} \in L : A\mathbf{x} = \mathbf{y} \}.$

Аналогично $\operatorname{Im} \varphi \in \overline{L}$ формирует линейное подпространство т.к.

$$A\mathbf{x}_1 + A\mathbf{x}_2 = A(\mathbf{x}_1 + \mathbf{x}_2)$$
$$A\alpha\mathbf{x} = \alpha A\mathbf{x}.$$

Выберем в L базис $\mathbf{e} : \{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}.$

 $\forall \mathbf{x} \in L : \mathbf{x} = \alpha_1 \mathbf{e}_1 + \dots + \alpha_n \mathbf{e}_n \leftarrow \varphi$ (это обозначение значит «подействуем преобразованием φ »)

$$\varphi(\mathbf{x}) = \alpha_1 \varphi(\mathbf{e}_1) + \dots + \alpha_n \varphi(\mathbf{e}_n) = \langle \mathbf{a}_1, \dots, \mathbf{a}_n \rangle.$$

Заметим, что $\mathbf{a}_1, \dots, \mathbf{a}_n$ — столбцы матрицы A. Отсюда следует формула:

$$\dim \operatorname{Im} \varphi = \operatorname{Rg} A = r \,. \tag{6.2}$$

Сложим формулы (6.1) и (6.2) и получим:

$$\dim \ker \varphi + \dim \operatorname{Im} \varphi = n \,. \tag{6.3}$$

В примерах 2–5:
$$L = \mathbb{R}^4$$
, $\overline{L} = \mathbb{R}^3$, $A = \begin{pmatrix} 0 & 0 & 2 & -2 \\ 2 & -4 & 1 & 1 \\ -1 & 2 & 1 & -2 \end{pmatrix}$.

Пример 2

Найти образ $\mathbf{x} = \begin{pmatrix} 1\\1\\1 \end{pmatrix}$.

Решение:

 $\varphi: A\mathbf{x} = \mathbf{y}$, т.е. нужно перемножить матрицу A и вектор \mathbf{x} . $\begin{pmatrix} 0 & 0 & 2 & -2 \\ 2 & -4 & 1 & 1 \\ -1 & 2 & 1 & -2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \mathbf{o} \Rightarrow$ ядро не пусто.

Пример 3

Найти прообраз $\mathbf{y} = \begin{pmatrix} 4 \\ 0 \\ 3 \end{pmatrix}$.

Решение:

Итак $\varphi : \underline{A}\mathbf{x} = \mathbf{y}$. Мы знаем то, что подчёркнуто. Очевидно, что мы получили СЛУ относи-

тельно **х**. Решим ее.
$$\begin{pmatrix} 0 & 0 & 2 & -2 & | & 4 \\ 2 & -4 & 1 & 1 & | & 0 \\ -1 & 2 & 1 & -2 & | & 3 \end{pmatrix} \xrightarrow{(3) \cdot 0.5; (1) \cdot (-1)} \begin{pmatrix} -1 & 2 & 1 & -2 & | & 3 \\ 2 & -4 & 1 & 1 & | & 0 \\ 0 & 0 & 1 & -1 & | & 2 \end{pmatrix} \xrightarrow{(2) - 2(1)} \begin{pmatrix} -1 & 2 & 1 & -2 & | & 3 \\ 0 & 0 & 3 & -3 & | & 6 \\ 0 & 0 & 1 & -1 & | & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 0 & 1 & | & -1 \\ 0 & 0 & 1 & -1 & | & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -2 & 1 & | & -1 \\ 0 & 1 & 0 & -1 & | & 2 \end{pmatrix}$$

$$\xrightarrow{x_1 \ x_2 \ x_3 \ x_4} \qquad x_1 \ x_3 \ x_2 \ x_4$$

$$\begin{pmatrix} x_1 \\ x_3 \\ x_2 \\ x_4 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 2 & -1 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 2 \\ 0 \end{pmatrix} + \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \end{pmatrix} c_1 + \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix} c_2$$

Пример 4

Найти ядро отображения.

Решение:

Для этого нужно решить СЛУ $A\mathbf{x} = \mathbf{o} \Rightarrow$

$$\Rightarrow \ker \varphi : \left\langle \begin{pmatrix} 2\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} -1\\0\\1\\0 \end{pmatrix} \right\rangle^{1}, \quad \dim \ker \varphi = 2.$$

Пример 5

Найти образ $\operatorname{Im} \varphi$.

Решение:

$$\operatorname{Im} \varphi : \left\langle \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ -4 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -2 \\ 1 \\ -2 \end{pmatrix} \right\rangle$$

$$A = \begin{pmatrix} 0 & 2 & -1 \\ 0 & -4 & 2 \\ 2 & 1 & 1 \\ -2 & 1 & -2 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 2 & -1 \\ 0 & -4 & 2 \\ 2 & 1 & 1 \\ -2 & 1 & -2 \end{pmatrix}$$

Очевидно, что $(2) = -2(1), (4) = (3) + (1) \Rightarrow 2$ и 4 строку можно вычеркнуть.

$$\operatorname{Im} \varphi : \left\langle \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \right\rangle$$

 $\dim\operatorname{Im}\varphi=2$

 $\dim\operatorname{Im}\varphi+\dim\ker\varphi=4$

6.2. Два важных частных случая

1.° Если dim ker $\varphi = 0$:

$$\dim\operatorname{Im}\overline{\varphi=n=\operatorname{Rg}}A\Rightarrow$$
 (столбцы ЛНЗ)

$$\mathbf{y} \in \overline{L} \ker \varphi = 0$$

Пусть
$$\mathbf{y} = A\mathbf{x}_1 = A\mathbf{x}_2$$

$$A(\mathbf{x}_1 - \mathbf{x}_2) = 0 \Rightarrow \mathbf{x}_1 - \mathbf{x}_2 \in \ker \varphi = \{0\} \Rightarrow \mathbf{x}_1 = \mathbf{x}_2$$

Если $\ker \varphi = \{0\}$, то это <u>инъекция</u>.

Оказывается, верно и обратное:

Отображение инъективно $\Leftrightarrow \ker \varphi = 0$

Докажем в другую сторону:

Пусть dim ker $\varphi \geqslant 1 \Rightarrow \exists \mathbf{x}_0 \neq 0 \in \ker \varphi$

$$A\mathbf{x} = \mathbf{y}$$

$$A(\mathbf{x} + \mathbf{x}_0) = A\mathbf{x} + A\mathbf{x}_0 = \mathbf{y}$$
 — противоречие инъекции $\Rightarrow \ker \varphi = \{0\}$

Число прообразов $=0,1,\infty$

$$\dim\operatorname{Im}\overline{\varphi=m=\operatorname{Rg}A}-\operatorname{строки}\Pi$$
НЗ \leftarrow сюръекция

Биекция = сюръекция + инъекция

 2° Если $\operatorname{Im} \varphi = \mathbb{R}^m = \overline{L}$:

$$\operatorname{Rg} A = n = m$$

Т.о. биекция задаётся невырожденной матрицей. В таком случае

$$\dim L = \dim \overline{L}$$

Изоморфизм — биективное линейное отображение.

Если существует изоморфизм $L \to \overline{L}$, то говорят, что L и \overline{L} изоморфны.

 $^{^1\}mathrm{B}$ примере 2 как раз и был вектор из $\ker\varphi$

Для изоморфизма $\exists \varphi^{-1}$ — обратное отображение, его матрица A^{-1} .

Пример 6

Доказать, что отображение $\varphi(f(x)) = 2f(x) + f'(x)$ — изоморфизм в пространстве P_2 — многочленов степени не выше 2. Найти φ^{-1} .

Решение:

Стандартный базис L: $\{1, x, x^2\}$, где $\mathbf{e}_1 = 1$, $\mathbf{e}_2 = x$, $\mathbf{e}_3 = x^2$. Общий вид $f(x) = ax^2 + bx + c$, dim L = 3.

$$\varphi(f(x)) = 2ax^2 + 2bx + 2c + 2ax + b = 2ax^2 + (2a + 2b)x + (b + 2c), \quad \overline{L}: \{1, x, x^2\}$$

$$\varphi(e_1) = 2 \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}
\varphi(e_2) = 2x + 1 \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}
\varphi(e_3) = 2x^2 + 2x \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix}$$

$$\Rightarrow A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 2 \end{pmatrix}$$

 $Rg = 3 \Rightarrow$ изоморфизм. Найдем A^{-1} :

$$A^{-1} = \frac{1}{4} \begin{pmatrix} 2 & -1 & 1 \\ 0 & 2 & -2 \\ 0 & 0 & 2 \end{pmatrix}.$$

Otbet:
$$\varphi^{-1}$$
: $A^{-1} = \frac{1}{4} \begin{pmatrix} 2 & -1 & 1 \\ 0 & 2 & -2 \\ 0 & 0 & 2 \end{pmatrix}$.

6.3. Матрица отображения в новых базисах.

Пусть в L и \overline{L} выбраны базисы \mathbf{e} и \mathbf{f} , задано отображение $\varphi\colon L\to \overline{L}:A$. Поменяем базисы: $\mathbf{e}'=\mathbf{e}S,\ \mathbf{f}'=\mathbf{f}P.$ Найдём A':

$$\mathbf{x} \in L, \, \mathbf{x} = \begin{pmatrix} \xi_1 \\ \vdots \\ \xi_n \end{pmatrix} = \boldsymbol{\xi}; \qquad \mathbf{y} \in L, \, \mathbf{y} = \begin{pmatrix} \eta_1 \\ \vdots \\ \eta_n \end{pmatrix} = \boldsymbol{\eta}$$

Из теории отображений: $\boldsymbol{\eta} = A\boldsymbol{\xi}; \quad \boldsymbol{\eta}' = A'\boldsymbol{\xi}';$

Из замены базиса: $\eta = P\eta'$; $\xi = S\xi'$;

$$P\eta' = A\xi = AS\xi' \Rightarrow \eta' = P^{-1}AS\xi' = A'\xi' \Rightarrow A' = P^{-1}AS.$$

Если φ — преобразование, то P=S и $A'=S^{-1}AS$

Пример 7

Дано преобразование φ : $A = \begin{pmatrix} 0 & 2 \\ -1 & -3 \end{pmatrix}$ в базисе \mathbf{e} . Смена базиса: $\mathbf{e}' = \mathbf{e} \begin{pmatrix} 2 & 1 \\ -1 & -1 \end{pmatrix}$. Найти A'.

Воспользуемся $A' = S^{-1}AS$. Посчитаем S^{-1} :

$$S^{-1} = \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix}$$

Решение:

$$A' = \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ -1 & -3 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -1 & -1 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -2 \end{pmatrix}$$

6.4. Линейные функции

Определение 6.4.1. Функция f(x) на линейном пространстве L — правило, которое $\forall x \in L$ ставит в соответствие $f(x) \to \mathbb{R}$.

Функция f линейная, если

$$\begin{cases} f(x+y) = f(x) + f(y) \\ f(\alpha x) = \alpha f(x) \end{cases}$$

Это частный случай линейного отображения при m=1.

Примеры:

- а) Присвоить вектору его *і*-тую координату.
- б) Скалярное произведение (\mathbf{x}, \mathbf{a}) , где \mathbf{a} фиксированный вектор в \mathbb{R}^3 .
- в) Определённый интеграл.

A - строка функции $A=(\varphi_1\cdots\varphi_n)$, где φ_i — образ i-го базисного вектора (т.е. $\varphi_i=\varphi(\mathbf{e}_i)$)

Линейные функции образуют линейное пространство.

Пример 8

Может ли $\forall x \in L$ выполняться:

- а) f(x) > 0? Ответ: нет, так как нет нуля;
- б) $f(x) \ge 0$? Ответ: только если $f(x) \equiv 0$;
- в) $f(x) = \alpha$? Ответ: только для $\alpha \equiv 0$, $f(x) \equiv 0$.

Решение:

Пример 9

P(t) — многочлен степени $\leq n, f(P(t)) = P'(1)$. Найти A.

Решение:

Базис: $\{1, t, \cdots, t^n\}$

$$\varphi(\mathbf{e}_1) = 0
\varphi(\mathbf{e}_2) = 1
\varphi(\mathbf{e}_3) = 2
\dots \dots \dots \dots \dots
\varphi(\mathbf{e}_{n+1}) = n$$

Отсюда получаем ответ:

$$A = \begin{pmatrix} 0 & 1 & 2 & \cdots & n \end{pmatrix}$$

Инвариантные и собственные подпространства. Часть 1.

7.1. Инвариантные подпространства

Будем работать только с преобразованиями.

7.1.1. Определение

Определение 7.1.1. Подпространство $L'\subset L$ называется инвариантным относительно преобразования $oldsymbol{arphi}$, если

$$\forall \mathbf{x} \in L' \mapsto \varphi(\mathbf{x}) \in L'$$
 или $\varphi(L') \subset L'$.

Например:

- o, L вырожденные случаи.
- Поворот \mathbb{R}^3 вокруг \mathbf{e}_3 на $\pi/2$ (рис. 7.3). Инвариантные подпространства: $\mathbf{o}, \mathbb{R}^3, \langle \mathbf{e}_1, \mathbf{e}_2 \rangle, \langle \mathbf{e}_3 \rangle$.
- Ядро преобразования φ (ker φ) всегда инвариантно относительно этого преобразования φ .
- $\operatorname{Im} \varphi$

Теорема 7.1.1. Если какое-то подпространство содержит в себе образ, то L' инвариантно относительно φ .

Доказательство.

$$\forall \mathbf{x} \in L' \mapsto \varphi(\mathbf{x}) \subset \operatorname{Im} \varphi \subset L'$$

7.1.2. Свойства инвариантных подпространств

Предложение 7.1.1. Сумма инвариантных подпространств инвариантна.

Доказательство.

$$\left. \begin{array}{l} \mathbf{x} \in L_1, \varphi(\mathbf{x}) \in L_1 \\ \mathbf{y} \in L_2, \varphi(\mathbf{y}) \in L_2 \end{array} \right\} \Rightarrow \varphi(\mathbf{x}) + \varphi(\mathbf{y}) \in L_1 + L_2$$

Предложение 7.1.2. Пересечение инвариантных подпространств инвариантно.

Доказательство.

$$\left. \begin{array}{l} \mathbf{x} \in L_1, \varphi(\mathbf{x}) \in L_1 \\ \mathbf{x} \in L_2, \varphi(\mathbf{x}) \in L_2 \end{array} \right\} \Rightarrow \varphi(\mathbf{x}) \in L_1 \cap L_2$$

Рис. 7.1. Подпространство в L

7.2. Матрица преобразования

7.2.1. Вид матрицы преобразования

Рассмотрим линейное пространство L, $\dim L = n$. Пусть $L' \subset L$, $\dim L' = k$ — инвариантное подпространство относительно φ , базис в $L' : \{\mathbf{e}_1, \dots, \mathbf{e}_k\}$, базис в $L : \{\mathbf{e}_1, \dots, \mathbf{e}_k, \mathbf{e}_{k+1}, \dots, \mathbf{e}_n\}$.

Напомним, что матрица преобразования A строится из образов базисных векторов:

$$A = \left(\left[\varphi(e_1) \right] \cdots \left[\varphi(e_n) \right] \right)$$

Т.о. матрица преобразования в выбранном базисе имеет следующий вид:

$$A = \left(egin{array}{c|c} A_1 & A_2 \\ \hline O & A_4 \end{array}
ight)^\square$$
 — клетчочно-треугольный вид. 1

Пусть теперь $L = L_1 \oplus L_2 \oplus \cdots \oplus L_s, \forall i \ L_i$ — инвариантное подпространство относительно φ .

Рис. 7.2. Прямая сумма подпространств

Тогда матрица преобразования имеет вид:

$$A = egin{pmatrix} A_1 & O & \dots & O \\ O & A_2 & \dots & O \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \dots & A_s \end{pmatrix}^\square -$$
 клеточно–диагноальный вид.

 $^{^{1}}$ Квадрат над матрицей значит, что матрица блочная.

Ширина и высота каждой клетки равны размерности инвариантного подпространства.

Пример 1

Найти инвариантные подпространства в \mathbb{R}^3 относительно φ .

Решение:

$$A = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ \hline 0 & 0 & 1 \end{pmatrix}$$

Из вида A видно, что существует два не пересекающихся инвариантных подпространства.

$$\mathbf{o}, \mathbb{R}^3, \langle \mathbf{e}_1, \mathbf{e}_2 \rangle, \langle \mathbf{e}_3 \rangle.$$

Геометрический смысл матрицы преобразо-7.2.2. вания

Рис. 7.3. К примеру 1

Поговорим о геометрии. Научимся определять по внешнему виду матрицы ее геометрический смысл.

$$\left(egin{array}{cccc} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & -1 \end{array}
ight)$$
 — отражение относительно $\langle {f e}_1, {f e}_2 \rangle$. $\left(egin{array}{ccccc} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 0 \end{array}
ight)$ — проекция. $\left(egin{array}{ccccc} 1 & 0 & 0 \ 0 & 3 & 0 \ 0 & 0 & 1 \end{array}
ight)$ — растяжение вдоль ${f e}_2$ в 3 раза.

Нам интересны матрицы вида:

$$A = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}$$
 — обобщённое растяжение $\Leftrightarrow \varphi(\mathbf{e}_i) = \lambda_i \mathbf{e}_i$.

Собственный вектор 7.3.

7.3.1. Определение

Рассмотрим преобразование φ с матрицей A, тогда ненулевой вектор \mathbf{x} называется собственным вектором, если $\varphi(\mathbf{x}) = \lambda \mathbf{x}$; λ — собственное значение.

Множество собственных векторов, отвечающих одному и тому же собственному значению, образует собственное пространство.

7.3.2. Свойства

Предложение 7.3.1. Собственный вектор (и только он) порождает одномерное инвариантное nodnpocmpaнcmвo.

Доказательство. Рассмотрим инвариантное подпространство $\langle \mathbf{x} \rangle \Rightarrow \varphi(\alpha \mathbf{x}) = \alpha \varphi(\mathbf{x}) = \alpha \lambda \mathbf{x} \in \langle \mathbf{x} \rangle$.

Алгоритм поиска собственных значений и собственных 7.4.векторов

$$\varphi(\mathbf{x}) = \lambda \mathbf{x}$$
$$\varphi(\mathbf{x}) - \lambda \mathbf{x} = \mathbf{o}$$

Рассмотрим тождественное преобразование Id, матрица его преобразования E.

$$(\varphi - \lambda Id)(\mathbf{x}) = \mathbf{o}$$

Перейдём к матричному виду:

$$(\varphi - \lambda E)\mathbf{x} = \mathbf{o} \tag{*}$$

Итак, мы получили СЛУ размеров $n \times n$. Она имеет либо одно решение (нулевое), но оно нам не интересно, т. к. $\mathbf{x} \neq \mathbf{o}$, либо бесконечно много решений $\Rightarrow A$ должна быть вырожденной $\Rightarrow \det(A - \lambda E) = 0 \rightarrow \lambda_i$ — собственное значение $\rightarrow (*) \rightarrow \mathbf{x}$ — собственный вектор.

Пример 2

Найти собственные значения и собственные векторы.

$$A = \left(\begin{array}{rrr} 2 & 2 & 1 \\ -2 & -3 & 2 \\ 3 & 6 & 0 \end{array}\right)$$

Решение:

Найдём λ из условия $\det(A - \lambda E) = 0$:

$$\begin{vmatrix} 2 - \lambda & 2 & 1 \\ -2 & -3 - \lambda & 2 \\ 3 & 6 & -\lambda \end{vmatrix} = 0 = -\lambda^3 - \lambda^2 + 17\lambda - 15 \Rightarrow \lambda_1 = 1, \lambda_2 = 3, \lambda_3 = -5$$
Here Houctarm which a λ R (*):

Далее подставим числа λ в (*):

$$1^{\circ}$$
 $\lambda_{1}=1:\begin{pmatrix} 1 & 2 & 1 & 0 \ -2 & -4 & 2 & 0 \ 3 & 6 & -1 & 0 \end{pmatrix}$, $L_{1}=\begin{pmatrix} \frac{x_{1}}{x_{2}} \end{pmatrix}=\langle \begin{pmatrix} -\frac{2}{1} \ 0 \end{pmatrix} \rangle\leftarrow$ Собственный вектор, перейдёт сам в себя т.к. $\lambda=1$. 2° $\lambda_{2}=3:L_{2}=\begin{pmatrix} \frac{x_{1}}{x_{2}} \ x_{3} \end{pmatrix}=\langle \begin{pmatrix} 1 \ 0 \ 1 \end{pmatrix} \rangle$ 3° $\lambda_{3}=-5:L_{3}=\begin{pmatrix} \frac{x_{1}}{x_{2}} \ x_{3} \end{pmatrix}=\langle \begin{pmatrix} -\frac{1}{8} \ 0 \end{pmatrix} \rangle$

Лемма 7.4.1. Собственные векторы, соответствующие различным собственным значениям, попарно линейно независимы.

Соберём базис
$$\mathbf{f} \left\{ \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -8 \\ 9 \end{pmatrix} \right\}$$

$$\mathbf{f}_1 \quad \mathbf{f}_2 \quad \mathbf{f}_3$$

$$\varphi(\mathbf{f}_1) = \mathbf{f}_1$$

$$\varphi(\mathbf{f}_2) = 3\mathbf{f}_2 \to A' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -5 \end{pmatrix}$$
 в базисе \mathbf{f} .

7.5.Диагонализируемость матрицы

Пример 3

Диагонализировать матрицу

$$A = \begin{pmatrix} 3 & 1 & -2 \\ 2 & 2 & -2 \\ 2 & 1 & -1 \end{pmatrix}$$

Решение:

$$\det(A - \lambda E) = 0$$
: $\begin{vmatrix} 3 - \lambda & 1 & -2 \\ 2 & 2 - \lambda & -2 \\ 2 & 1 & -1 - \lambda \end{vmatrix} = 0 \leftrightarrow (\lambda - 1)^2 (\lambda - 2) = 0$ Не забывайте про свойства детерминанта $\lambda = 1$ — корень алгебраической кратности 2.

 $\lambda=1$ — корень алгебраической кратности 2

 $\lambda = 2$ — корень алгебраической кратности 1 (простой корень).

$$\begin{array}{c|cccc} 1.^{\circ} & \lambda = 1 \\ \begin{pmatrix} 2 & 1 & -2 & | & 0 \\ 2 & 1 & -2 & | & 0 \\ 2 & 1 & -2 & | & 0 \end{pmatrix}, \ L_{1} = \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \langle \underbrace{\begin{pmatrix} -1/2 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}}_{\text{формирует}} \rangle$$

 $\dim L_1 = 2$ — геометрическая кратность (размерность собственного подпространства).

 $2^{\circ} \lambda = 2$

$$\implies \begin{pmatrix} 1 & 1 & -2 & | & 0 \\ 2 & 0 & -2 & | & 0 \\ 2 & 1 & -3 & | & 0 \end{pmatrix} \Rightarrow L_1 = \langle \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \rangle = \langle \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \rangle$$

Выберем базис: $\left\{ \begin{pmatrix} -1/2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$

Поэтому $\varphi(\mathbf{f}_1) = \mathbf{f}_1$, $\varphi(\mathbf{f}_2) = \mathbf{f}_2$, $\varphi(\mathbf{f}_3) = 2\mathbf{f}_3$

Ответ:
$$A' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
.

- Если геометрическая кратность строго меньше (<) алгебраической кратности хотя бы для одного λ , то преобразование недиагонализируемо.

Пример 4

Диагонализировать матрицу:
$$A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

Решение:

$$\det (A - \lambda E) = 0 \Rightarrow \begin{vmatrix} 2 - \lambda & 1 & 0 \\ 0 & 2 - \lambda & 1 \\ 0 & 0 & 2 - \lambda \end{vmatrix} = (2 - \lambda)^3 = 0$$

Получаем, что $\lambda = 2$ алгебраической кратности 3.

$$\Longrightarrow \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}; \ L_1 = \langle \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \rangle = \langle \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \rangle$$

Получили, что геометрическая кратность (равна 1) меньше алгебраической кратности (равна 3). Тогда матрица недиагонализируема (не хватило собственных векторов).

Пример 5

Диагонализировать матрицу:

$$A = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Решение:

$$\det (A - \lambda E) = 0 \Rightarrow \begin{vmatrix} -\lambda & -1 & 0 \\ 1 & -\lambda & 0 \\ 0 & 0 & 1 - \lambda \end{vmatrix} = (\lambda - 1)(\lambda^2 + 1) = 0$$

$$\lambda = 1, \quad \underbrace{\lambda = \pm i}_{\text{отвечают за}}$$

$$\underbrace{\lambda = \pm i}_{\text{инвариантную}}$$

$$\begin{pmatrix} -1 & -1 & 0 & | & 0 \\ 1 & -1 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}; L_1 = \langle \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \rangle$$

Условие диагонализируемости матрицы:

- 1.° B частности: $A_{n\times n}$ диагонализируема, если A имеет n различных вещественных собственных значений.
- $2.^{\circ}$ В общем случае: A диагонализируема $\Leftrightarrow L$ раскладывается в прямую сумму собственных подпространств.

Семинар 8

Инвариантные и собственные подпространства. Часть 2.

Решение задач 8.1.

Пример 6

Найти собственные значения и собственные векторы. $p = \langle 1, t, t^2 \rangle$, если $\varphi(p) = t^2 p'' - t p' + 2 p$.

Решение:

$$\begin{cases} \varphi(1) &= 2: \begin{pmatrix} 2\\0\\0\\0 \end{pmatrix} \\ \varphi(t) &= t: \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix} \\ \varphi(t^2) &= 2t: \begin{pmatrix} 0\\1\\0\\2 \end{pmatrix} \end{cases} \Rightarrow A_{\varphi} = \begin{pmatrix} 2 & 0 & 0\\0 & 1 & 0\\0 & 0 & 2 \end{pmatrix}$$

$$\lambda_1 = 1, \text{ собственный вектор: } \{t\}.$$

 $\lambda_1 = 1$, собственный вектор: $\{t\}$.

$$\lambda_{2,3} = 2$$
, собственный вектор: $\{1, t^2\}$.

Для $\lambda_1 : \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \Rightarrow L_1 = \langle \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \rangle$.

Проверим: $\varphi(7t) = -7t + 14t = 7t$.

Пример 7

При каких α преобразование диагонализируемо?

$$\begin{pmatrix}
1 & 0 & \alpha^2 - \alpha \\
0 & 1 & 0 \\
0 & 0 & \alpha^2
\end{pmatrix}$$

Решение:

Решение основывается на данном утверждении:

Число столбцов
$$\mathbf{\Phi}\mathbf{CP} = n - \operatorname{Rg} A =$$
 число собственных векторов

(a)
$$\alpha = 1:\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 — матрица уже диагональная.

(b)
$$\alpha = -1:\begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow \lambda = 1$$
 — корень алгебраической кратности 3.

Тогда система уравнений: $\begin{pmatrix} 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} \Rightarrow 2$ вектора, т.е. для построения базиса собственных векторов не хватает.

II. $\alpha^2 \neq 1$:

 $\lambda = 1$ — корень алгебраической кратности 2.

 $\lambda = \alpha^2$ — простой корень.

(a)
$$\lambda = 1$$
.
$$\begin{pmatrix} 0 & 0 & \alpha^2 - \alpha & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & \alpha - 1 & | & 0 \end{pmatrix}, \quad \text{Rg} = 1, n = 3 \Rightarrow 2 \text{ собственных вектора.}$$
(b) $\lambda = \alpha^2$:
$$\begin{pmatrix} 1 - \alpha^2 & 0 & \alpha^2 - \alpha & | & 0 \\ 0 & 1 - \alpha^2 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}, \quad \text{Rg} = 2, n = 3 \Rightarrow 1 \text{ собственный вектор.}$$

Otbet: $\alpha \neq -1$.

Пример 8

Рассмотрим $\varphi : \mathbb{R}^3 \to \mathbb{R}^3$.

Вопрос: всегда ли существует одномерное инвариантное подпространство?

Решение:

Рассмотрим определитель третьего порядка:

$$P(\lambda) = \begin{vmatrix} a_{11} - \lambda & a_{12} & a_{13} \\ a_{21} & a_{22} - \lambda & a_{23} \\ a_{31} & a_{32} & a_{33} - \lambda \end{vmatrix} = -\lambda^3 + \beta_1 \lambda^2 + \beta_2 \lambda + \beta_3$$

$$P(\lambda) \xrightarrow{\lambda \to +\infty} -\infty$$
 $\Rightarrow P(\lambda)$ пересечет ноль и сменит знак $\Rightarrow \exists \lambda_0 : P(\lambda_0) = 0$ $P(\lambda) \xrightarrow{\lambda \to -\infty} +\infty$

Следовательно, существует вещественное собственное значение $\Rightarrow \exists$ собственный вектор $\Rightarrow \exists$ одномерное инвариантное пространство.

Этот же вывод справедлив для любой нечетной степени характеристического многочлена.

Пример 9

Доказать, что характеристический многочлен не зависит от выбора базиса.

Решение:

Рассмотрим преобразование φ с матрицей A,

 $A' = S^{-1}AS$, характеристический многочлен $\det(A' - \lambda E)$.

$$\det(A' - \lambda E) = \det(S^{-1}AS - \lambda S^{-1}S) = \det(S^{-1}(A - \lambda E)S) = \det(S^{-1}\det(A - \lambda E)\det(S - \lambda E) = \det(S^{-1}\det(A - \lambda E) = \det(A - \lambda E).$$

Отсюда следует:

$$\det(A' - \lambda E) = \det(A - \lambda E)$$

Очевидно, собственные значения не меняются при замене базиса.

Рассмотрим подробнее характеристический многочлен.

$$P(\lambda) = \det(A - \lambda E) = \begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{vmatrix} =$$

$$= (a_{11} - \lambda)(a_{22} - \lambda) \dots (a_{nn} - \lambda) + \dots + \tilde{P}(0) =$$
только в этом члене есть λ^n и λ^{n-1}

$$= (-1)^n \lambda^n - (-1)^n (a_{11} + a_{22} + \dots + a_{nn}) \lambda^{n-1} + \dots + \det A$$

Вспомним, что для квадратного уравнения вида

$$ax^2 + bx + c = 0, \quad a \neq 0$$

справедлива теорема Виета, которую мы знаем еще из школы:

$$\begin{cases} x_1 + x_2 = -b/a \\ x_1 x_2 = c/a \end{cases}$$

Обобщенная теорема Виета: Произведение корней: $(-1)^n \cdot \frac{\{\text{свободный член}\}}{\{\text{первый коэффициент}\}}$

Сумма корней: $-\frac{\{\text{второй коэффициент}\}}{\{\text{первый коэффициент}\}}$ $\lambda_1 \lambda_2 \dots \lambda_n = (-1)^n \cdot \frac{\det A}{(-1)^n} = \det A$

$$\lambda_1 \lambda_2 \dots \lambda_n = (-1)^n \cdot \frac{\det A}{(-1)^n} = \det A$$

 $\lambda_1 + \dots + \lambda_n = (a_{11} + a_{22} + \dots + a_{nn}) = \operatorname{tr} A$ (т.е. след матрицы A).

T.o. оказывается, что $\det A$ и $\operatorname{tr} A$ не зависят от выбора базиса.

Пример 10

Пусть A — матрица вращения \mathbb{R}^3 . Найти угол вращения.

Решение:

Выберем ортонормированный базис так, что поворот вокруг e_3 .

В этом базисе:

$$A_{\varphi} = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{pmatrix}$$

T.K. $\operatorname{tr} A = 2\cos\alpha + 1 = \operatorname{const}$:

$$\cos \alpha = \frac{1}{2} \left(\operatorname{tr} A - 1 \right)$$

Пример 11

Пусть $\lambda_1,\ \dots\ ,\lambda_n$ — собственные значения преобразования φ с матрицей А. Какие собственные значения у а) φ^2 ; б) φ^{-1} ?

Решение:

$$\det(A - \lambda E) = 0 \tag{*}$$

1). φ^2 : $\det(A^2 - \widetilde{\lambda}E)$

$$(*)|\cdot \det(A+\lambda E) \Rightarrow \det(A-\lambda E)\det(A+\lambda E) = \det(A^2-\lambda^2 E) = 0 \Rightarrow \widetilde{\lambda} = \lambda^2$$

2).
$$\varphi^{-1}$$
: $\det(A^{-1} - \tilde{\lambda}E) = \det(A^{-1} - \tilde{\lambda}A^{-1}A) = 0$

$$\Rightarrow \det A^{-1} \cdot \det(E - \tilde{\lambda}A) = 0$$

Так как $\det A^{-1} \neq 0$ (матрица A невырожденная), то верно:

$$\det(E - \tilde{\lambda}A) = 0$$

Разделим равенство на $(-1)^n \tilde{\lambda}^n$:

$$\det(A - \frac{E}{\tilde{\lambda}}) = 0 \implies \tilde{\lambda} = \frac{1}{\lambda} = \lambda^{-1}.$$

Заметим, что собственные векторы при этом не изменятся.

8.2. Проекторы

Пусть
$$L = L_1 \oplus L_2$$
;

 $\forall \mathbf{x} \in L : \mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$ — единственный прообраз, где $\mathbf{x}_1 \in L_1, \, \mathbf{x}_2 \in L_2$

Тогда:
$$P_1(\mathbf{x}) = \mathbf{x}_1$$
 — проектор на $L_1 \parallel L_2$ $P_2(\mathbf{x}) = \mathbf{x}_2$ — проектор на $L_2 \parallel L_1$ $\operatorname{Im} P_1 = L_1$ и $\ker P_1 = L_2$ $\operatorname{Im} P_2 = L_2$ и $\ker P_2 = L_1$

$$P_1(\mathbf{x}) + P_2(\mathbf{x}) = \mathbf{x}_1 + \mathbf{x}_2 = \mathbf{x} \implies (P_1 + P_2)(\mathbf{x}) = \mathbf{x} \implies P_1 + P_2 = \mathrm{Id}$$

Пример 12

Рассмотрим ортогональный проектор A в \mathbb{R}^3 .

Найти собственные значения и собственные векторы.

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Решение:

1.° Собственное значение $\lambda = 1$: собственные векторы $\{e_1, e_2\}$.

2.° Собственное значение $\lambda = 0$: собственный вектор $\{e_3\}$.

Пример 13

Пусть $L = L_1 \oplus L_2$.

 $\dim L = n$, $\dim L_1 = k \Rightarrow \dim L_2 = n - k$.

Найти собственные значения и собственные векторы P_1 ,

где P_1 — проектор $L_1 \| L_2$

Решение:

Пусть базис в L_1 : { $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_k$ }.

Пусть базис в L_2 : { $\mathbf{e}_{k+1}, \dots, \mathbf{e}_n$ }.

$$P_1(\mathbf{e}_1) = \mathbf{e}_1, P_1(\mathbf{e}_2) = \mathbf{e}_2, \dots, P_1(\mathbf{e}_k) = \mathbf{e}_k$$

$$P_1(\mathbf{e}_{k+1}) = \cdots = P_1(\mathbf{e}_n) = \mathbf{o}$$

Тогда матрица преобразования будет выглядеть таким образом:

$$A = \begin{pmatrix} E & O \\ \hline O & O \end{pmatrix}$$

1.° Собственное значение $\lambda = 1$: собственные векторы $\{\mathbf{e}_1, \dots, \mathbf{e}_k\}$.

2.° Собственное значение $\lambda = 0$: собственные векторы $\{\mathbf{e}_{k+1}, \dots, \mathbf{e}_n\}$.

• Размерность образа при проектировании равна следу матрицы

$$rg P = tr A.$$

Пример 14

а) Доказать, что для проектора $\varphi^2 = \varphi$.

б) Доказать, что если $\varphi^2 = \varphi \ (\varphi \neq 0, \neq \mathrm{Id})$, то φ — проектор на образ \parallel ядру.

Решение:

а) Т.к. имеем дело с проектором, все пространство раскладывается на прямую сумму двух подпространств:

$$L = L_1 \oplus L_2 \Rightarrow \mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2.$$

Тогда, применив наше преобразование (т.е. проектор), получим:

$$\varphi(\mathbf{x}) = P_1(\mathbf{x}) = \mathbf{x}_1.$$

Теперь к полученному результату применим преобразование ещё раз. Т.к. вектор \mathbf{x}_1 лежит в L_1 , то его проекция на L_1 и есть сам вектор \mathbf{x}_1 :

$$\varphi^2(x) = \varphi(\varphi(\mathbf{x})) = \varphi(\mathbf{x}_1) = \mathbf{x}_1 \Rightarrow \boxed{\varphi^2 = \varphi}$$

- б) Пусть L линейное пространство, $\varphi: \varphi^2 = \varphi$. Пусть $\mathbf{y} \neq \mathbf{o}, \mathbf{y} \in \operatorname{Im} \varphi, \mathbf{y} \in \ker \varphi$.
 - 1.° $\varphi(\mathbf{y}) = \mathbf{o}$ (т.к. $\mathbf{y} \in \ker \varphi$).
 - $2^{\circ} \exists \mathbf{x} \in L : \varphi(\mathbf{x}) = \mathbf{y} \text{ (t.k. } \mathbf{y} \in \text{Im } \varphi).$
 - 3.° $\varphi^2(\mathbf{x}) = \varphi(\varphi(\mathbf{x})) \stackrel{\text{п.2})}{=} \varphi(\mathbf{y}) \stackrel{\text{п.1})}{=} \mathbf{o}$, откуда получаем, что $\mathbf{y} = \mathbf{o}$. Противоречие. Отсюда же следует,

$$\ker \varphi \cap \operatorname{Im} \varphi = \{\mathbf{o}\}\$$

Рассмотрим подпространство L':

$$L' = \ker \varphi \oplus \operatorname{Im} \varphi \subset L.$$

$$\dim L' = \dim \ker \varphi + \dim \operatorname{Im} \varphi = \dim L.$$

Отсюда следует, что наше подпространство L' и есть линейное пространство L:

$$L' \equiv L \Rightarrow L = \ker \varphi \oplus \operatorname{Im} \varphi.$$

Семинар 10

Критерий Сильвестра. Евклидовы пространства.

10.1. Критерий Сильвестра

10.1.1. Положительно и отрицательно определенные функции

Квадратичная функция называется положительно определенной, если для любого вектора $x \neq 0$, верно: k(x) > 0. Например, функция $\mathbf{k}(x) = x_1^2 + 4x_2^2$.

Квадратичная функция называется **отрицательно определенной**, если для любого вектора $x \neq 0$, верно: k(x) < 0. Например, функция $\mathbf{k}(x) = -2x_1^2 - x_2^2$.

Важной является следующая задача: определить, является ли квадратичная функция положительно определенной. Мы уже можем дать ответ на этот вопрос. Для этого можно привести функцию к каноническому виду, и в случае если на диагонали находятся только *+1, дать утвердительный ответ, иначе дать отрицательный ответ. Однако, оказывается, что для того, чтобы выяснить положительную определенность функции необязательно приводить ее к каноническому виду. Ответ на поставленный вопрос дает критерий Сильвестра.

10.1.2. Критерий Сильвестра

Теорема 10.1.1 (Критерий Сильвестра). Для положительной определенности квадратичной функции необходимо и достаточно, чтобы миноры ее матрицы удовлетворяли неравенствам:

$$\Delta_k = \begin{vmatrix} \beta_{11} & \cdots & \beta_{1k} \\ \vdots & \vdots & \vdots \\ \beta_{k1} & \cdots & \beta_{kk} \end{vmatrix} > 0, \quad k = 1, \dots, n.$$

Миноры в левой части называются главными минорами матрицы.

Доказательство. <u>Центральный тезис</u>: при методе элементарных преобразований главные миноры в процессе не меняются в силу свойств детерминанта.

Heoбxoдимость: в диагональном виде все диагональные элементы положительны, поэтому в исходном виде $M_k > 0$.

Достаточность: Докажем по индукции. Для первого элемента: $M_1 > 0 \Rightarrow \beta_{11} = \varepsilon_1 > 0$. Тогда

на k-ом шаге:

$$B = \begin{pmatrix} \varepsilon_1 & \dots & 0 & \\ & \ddots & & O \\ \hline 0 & \dots & \varepsilon_k & \\ \hline & O & & C_k \end{pmatrix}$$

В таком виде
$$\varepsilon_{k+1}=\frac{M_{k+1}}{M_k}>0$$
, т.к. $M_{k+1}>0$ и $M_k>0$.

Пример 1

Является ли квадратичная функция $\mathbf{k}(x) = 2x_1^2 - 4x_1x_2 + 5x_2^2$ положительно определенной?

Решение:

Матрица квадратичной функция: $B = \begin{pmatrix} 2 & -2 \\ -2 & 5 \end{pmatrix}$.

Рассмотрим главные миноры: $\Delta_1 = |2| = 2 > 0$, $\Delta_2 = \begin{vmatrix} 2 & -2 \\ -2 & 5 \end{vmatrix} = 10 - 4 = 6 > 0$.

Все главные миноры положительны, таким образом получили Ответ: да, является положительно определенной.

Пример 2

Дана квадратичная функция: $\mathbf{k}(x) = x_1^2 + \lambda x_2^2 + 4x_3^2 - 2x_1x_2 + 2x_1x_3$. При каком λ функция $\mathbf{k}(x)$ положительно определена?

Решение:

Матрица квадратичной функции: $B = \begin{pmatrix} 1 & -1 & 1 \\ -1 & \lambda & 0 \\ 1 & 0 & 4 \end{pmatrix}$.

Согласно критерию Сильвестра, для положительной определенности квадратичной функции необходимо и достаточно, чтобы ее главные миноры были положительны. Рассмотрим их:

$$\Delta_1 = |1| = 1 > 0, \quad \Delta_2 = \begin{vmatrix} 1 & -1 \\ -1 & \lambda \end{vmatrix} = \lambda - 1 > 0, \quad \Delta_3 = \begin{vmatrix} 1 & -1 & 1 \\ -1 & \lambda & 0 \\ 1 & 0 & 4 \end{vmatrix} = 3\lambda - 4 > 0.$$

Получили систему из двух условий: $\begin{cases} \lambda - 1 > 0, \\ 3\lambda - 4 > 0 \end{cases} \Leftrightarrow \lambda > \frac{4}{3}.$

 $\underline{\text{Ответ:}} \ \lambda > \frac{4}{3}.$

Пример 3

При каких α квадратичная форма $\mathbf{k}(x)=2x_1^2+x_2^2+3x_3^2+2\alpha x_1x_2-2x_1x_3$ положительно определена?

Решение:

Матрица квадратичной функции:
$$B = \begin{pmatrix} 2 & \alpha & -1 \\ \alpha & 1 & 0 \\ -1 & 0 & 3 \end{pmatrix}$$
 .

Согласно критерию Сильвестра, для положительной определенности квадратичной функции необходимо и достаточно, чтобы ее главные миноры были положительны. Рассмотрим их:

$$\Delta_1 = |2| = 1 > 0, \quad \Delta_2 = \begin{vmatrix} 2 & \alpha \\ \alpha & 1 \end{vmatrix} = 2 - \alpha^2 > 0, \quad \Delta_3 = \begin{vmatrix} 2 & \alpha & -1 \\ \alpha & 1 & 0 \\ -1 & 0 & 3 \end{vmatrix} = 5 - 3\alpha^2 > 0.$$

Получили систему из двух условий:
$$\begin{cases} 2-\alpha^2>0,\\ 5-3\alpha^2>0 \end{cases} \Leftrightarrow \alpha \in \left(-\sqrt{\frac{5}{3}},\sqrt{\frac{5}{3}}\right).$$

Пример 4

Доказать, что для отрицательной определенности квадратичной функции необходимо и достаточно, чтобы знаки главных миноров ее матрицы чередовались, начиная со знака «—».

Решение:

Рассмотрим квадратичную функцию $\mathbf{k}(x)$ с матрицей B. Пусть она отрицательно определена. Тогда функция $-\mathbf{k}(x)$ с матрицей -B определена положительно. Поэтому критерием (необходимым и достаточным) отрицательной определенности функции $\mathbf{k}(x)$ является положительность всех главных миноров матрицы:

$$-B = \begin{pmatrix} -\beta_{11} & -\beta_{12} & \cdots & -\beta_{1n} \\ -\beta_{21} & -\beta_{22} & \cdots & -\beta_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -\beta_{n1} & -\beta_{n2} & \cdots & -\beta_{nn} \end{pmatrix}.$$

Иначе говоря:

$$\Delta_1 = -\beta_{11} > 0, \quad \Delta_2 = \begin{vmatrix} -\beta_{11} & -\beta_{12} \\ -\beta_{21} & -\beta_{22} \end{vmatrix} > 0, \quad \Delta_3 = \begin{vmatrix} -\beta_{11} & -\beta_{12} & -\beta_{13} \\ -\beta_{21} & -\beta_{22} & -\beta_{23} \\ -\beta_{31} & -\beta_{32} & -\beta_{33} \end{vmatrix} > 0, \quad \dots$$

Опираясь на свойства детерминанта (вынесем минус из каждой строки, всего k раз, где k – порядок минора), перепишем последнее:

$$\Delta_1 = \beta_{11} < 0, \quad \Delta_2 = \begin{vmatrix} \beta_{11} & \beta_{12} \\ \beta_{21} & \beta_{22} \end{vmatrix} > 0, \quad \Delta_3 = \begin{vmatrix} \beta_{11} & \beta_{12} & \beta_{13} \\ \beta_{21} & \beta_{22} & \beta_{23} \\ \beta_{31} & \beta_{32} & \beta_{33} \end{vmatrix} < 0, \quad \dots$$

Таким образом, доказали важное следствие критерия Сильвестра: для отрицательной определенности квадратичной функции необходимо и достаточно, чтобы знаки главных миноров ее матрицы чередовались, начиная со знака «—».

 ${\bf C}$ целью не забыть, с какого знака начинается чередование, полезно помнить, квадратичная функция с матрицей E (где E - единичная матрица) положительна определена, а квадратичная функция с матрицей -E отрицательно определена.

10.2. Евклидовы пространства

10.2.1. Определения

Определение 10.2.1. Линейное пространство $\mathcal E$ называется евклидовы, если на нем задано скалярное произведение.

Определение 10.2.2. Скалярное произведение в вещественном линейном пространстве L ставит в соответствие число, обозначаемое (\mathbf{x}, \mathbf{y}) , таким образом, что для любых векторов $\mathbf{x}, \mathbf{y}, \mathbf{z}$ и чисел α , β выполнены следующие условия:

- 1) (x, y) = (y, x).
- 2) (x+y, z) = (x, z) + (y, z).
- 3) $(\alpha \mathbf{x}, \mathbf{y}) = \alpha(\mathbf{x}, \mathbf{y}).$
- 4) $\forall \mathbf{x} \neq 0 \longmapsto (\mathbf{x}, \mathbf{x}) > 0$.

Видно, что «школьное» скалярное произведение подходит. Иначе говоря, <u>задана положительно</u> определенная квадратичная форма.

Пример 5

Является ли в пространстве многочленов степени $\leqslant n$ скалярным произведением

$$(\mathbf{p}, \mathbf{q}) = \int_{-1}^{1} p(t)q(t)dt$$

Решение:

Проверим условия, определенные для скалярного произведения:

- 1) $p \cdot q = q \cdot p$.
- 2, 3) Определённый интеграл обладает свойствами линейности.
 - 4) Если $p(t) \not\equiv 0$ на отрезке [-1, 1]:

$$(\mathbf{p},\,\mathbf{p}) = \int_{-1}^{1} p^2(t)dt,$$

 $p^{2}(t)$ — четная функция. Значение этого интеграла — площадь подграфика. Т.к. $p(t) \not\equiv 0$, эта площадь не отрицательна $\Rightarrow (\mathbf{p}, \mathbf{p}) > 0$.

Таким образом, так действительно определено скалярное произведение в пространстве многочленов.

10.3. Матрица Грама

10.3.1. Определение

Определение 10.3.1. Выберем базис $e\{e_1, \dots, e_n\}$. Тогда $\mathbf{x} = \boldsymbol{\xi}$, $\mathbf{y} = \boldsymbol{\eta}$ — координаты векторов \mathbf{x} , \mathbf{y} в базисе \mathbf{e} . Вспомним, что тогда скалярное произведение запишется так:

$$(\mathbf{x}, \mathbf{y}) = \boldsymbol{\xi} \Gamma \boldsymbol{\eta},$$

где

$$\Gamma = egin{pmatrix} (\mathbf{e}_1, \, \mathbf{e}_1) & (\mathbf{e}_1, \, \mathbf{e}_2) & \dots & (\mathbf{e}_1, \, \mathbf{e}_n) \ (\mathbf{e}_2, \, \mathbf{e}_1) & (\mathbf{e}_2, \, \mathbf{e}_2) & \dots & (\mathbf{e}_2, \, \mathbf{e}_n) \ dots & dots & \ddots & dots \ (\mathbf{e}_n, \, \mathbf{e}_1) & (\mathbf{e}_n, \, \mathbf{e}_2) & \dots & (\mathbf{e}_n, \, \mathbf{e}_n) \end{pmatrix}$$

— матрица Грама.

10.3.2. Свойства матрицы Грама

Свойства матрицы Грама:

- 1) Симметричность.
- 2) Положительная ориентированность

$$egin{array}{c|cccc} |\mathbf{e}_1, \, \mathbf{e}_1) & (\mathbf{e}_1, \, \mathbf{e}_2) \\ |\mathbf{e}_2, \, \mathbf{e}_1) & (\mathbf{e}_2, \, \mathbf{e}_2) | > 0 \Leftrightarrow (\mathbf{e}_1, \, \mathbf{e}_2)^2 < \mathbf{e}_1^2 \, \, \mathbf{e}_2^2 \end{array}$$

Для линейно независимых векторов \mathbf{x} и $\mathbf{y} \longmapsto (\mathbf{x}, \mathbf{y})^2 < \mathbf{x}^2 \mathbf{y}^2$. Для линейно зависимых векторов \mathbf{x} и $\mathbf{y} \longmapsto (\mathbf{x}, \mathbf{y})^2 = \mathbf{x}^2 \mathbf{y}^2$.

Итак,

$$\forall \mathbf{x}, \mathbf{y} \longmapsto (\mathbf{x}, \mathbf{y})^2 \leqslant \mathbf{x}^2 \mathbf{y}^2$$

— неравенство Коши-Буняковского-Шварца.

Определим длину вектора как

$$|\mathbf{x}| = \sqrt{(\mathbf{x}, \, \mathbf{x})},$$

а угол между векторами

$$\cos \varphi = \frac{(\mathbf{x}, \mathbf{y})}{|\mathbf{x}||\mathbf{y}|}.$$

Пример 6

Посчитать скалярное произведение, если
$$\mathbf{x} = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}, \mathbf{y} = \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix}, \Gamma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 8 \\ 3 & 8 & 14 \end{pmatrix}$$

Решение:

$$(\mathbf{x}, \mathbf{y}) = \boldsymbol{\xi}^{\mathrm{T}} \Gamma \boldsymbol{\eta} = (-1 - 1 \quad 1) \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 8 \\ 3 & 8 & 14 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix} = 10$$

Для выражения матрицы Грама в новом базисе используется следующая формула:

$$\Gamma' = S^{\mathrm{T}} \Gamma S$$

10.4. Типы базисов

Пусть задан $\mathbf{h}_1, \dots, \mathbf{h}_n$ — ортогональный базис.

Тогда $\mathbf{x} = \alpha_1 \mathbf{h}_1 + \dots + \alpha_n \mathbf{h}_n$.

Чему равны коэффициенты $\alpha_1, \alpha_2, \dots, \alpha_n$?

В ортогональных базисах скалярное произведение $(\mathbf{h}_i, \mathbf{h}_j) = 0$ при $i \neq j$.

$$\mathbf{x} = \alpha_1 \mathbf{h}_1 + \dots + \alpha_n \mathbf{h}_n |\cdot \mathbf{h}_1$$

$$(\mathbf{x}, \mathbf{h}_1) = \alpha_1 |\mathbf{h}|_1^2$$
, где $\alpha_1 = \frac{(\mathbf{x}, \mathbf{h}_1)}{|\mathbf{h}_1|^2}$

T. e.
$$\alpha_i = \frac{(\mathbf{x}, \mathbf{h}_i)}{|\mathbf{h}_i|^2}$$
, поэтому

$$\mathbf{x} = rac{(\mathbf{x}, \mathbf{h}_1)}{|\mathbf{h}_1|^2} \mathbf{h}_1 + \dots + rac{(\mathbf{x}, \mathbf{h}_n)}{|\mathbf{h}_n|^2} \mathbf{h}_n$$

Вектор равен сумме ортогональных проекций этого вектора на базисные вектора данного базиса.

Выполнено только для ортогонального базиса, иначе произведение $(\mathbf{h}_i, \mathbf{h}_j) = 0$ при $i \neq j$ не будет выполнено.

Определение 10.4.1. Ортонормированный базис — базис, в котором

$$(\mathbf{e}_i, \, \mathbf{e}_j) = \begin{cases} 0, i \neq j \\ 1, i = j. \end{cases}$$

Здесь
$$\Gamma = E$$
, $(\mathbf{x}, \mathbf{y}) = \boldsymbol{\xi}^T \boldsymbol{\eta}$.

Определение 10.4.2. Рассмотрим подпространство $U \in E$. Тогда U^{\perp} называется ортогональным дополнением подпространства U, если

$$U^{\perp}: \{\mathbf{y}: \mathbf{y} \perp U\}, \text{ r.e. } \mathbf{y} \perp \mathbf{x}, \forall \mathbf{x} \in U, U \oplus U^{\perp} = \mathcal{E}$$

Пример 7

Дано U. Найти U^{\perp} в \mathcal{E}^3 .

Решение:

$$\Gamma = E; U = \langle \begin{pmatrix} 1 \\ -5 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \rangle; \quad U^{\perp} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix};$$

$$\begin{cases} y_1 - 5y_2 + y_3 = 0; \\ -y_1 + y_2 + y_3 = 0; \end{cases} \begin{pmatrix} 1 & -5 & 1 & | & 0 \\ -1 & 1 & 1 & | & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & -5 & 1 & | & 0 \\ 0 & -4 & 2 & | & 0 \end{pmatrix} \sim$$

$$\sim \begin{pmatrix} 1 & 0 & -3/2 & | & 0 \\ 0 & 1 & -1/2 & | & 0 \end{pmatrix} \Rightarrow U^{\perp} = \langle \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} \rangle$$

Почему U^{\perp} ортогональное дополнение? Дело в том, что его сумма с U дает нам все евклидово пространство.

$$U \oplus U^{\perp}_{n-k} = \mathcal{E}_n$$

Пример 8

Дано
$$U$$
. Найти U^{\perp} в \mathcal{E}^3 . $\Gamma=E,\,U:\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix};\, \begin{cases}x_1-3x_2&+4x_3=0;\\x_1&-3x_3=0\end{cases};\qquad U^{\perp}=?$

Решение:

По аналогии предыдущему примеру, получаем: $U^{\perp}: \langle \begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -3 \end{pmatrix} \rangle$.

Пример 9

Дано
$$U$$
. Найти U^{\perp} как СЛУ. $\Gamma = \begin{pmatrix} 1 & -2 & 3 \\ -2 & 5 & -8 \\ 3 & -8 & 14 \end{pmatrix}$, $U = \begin{cases} x_1 & +x_3 = 0; \\ x_1 + x_2 & = 0; \end{cases}$, $U^{\perp} = ?$

Решение:

Из матрицы, задающей подпространство U, получаем, что $U = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$. Пусть U^{\perp} задана как

$$\langle \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \rangle$$
. Тогда:

$$(\mathbf{x}, \mathbf{y}) = 0 = \begin{pmatrix} -1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -2 & 3 \\ -2 & 5 & -8 \\ 3 & -8 & 14 \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$
$$\Rightarrow \begin{pmatrix} 0 & -1 & 3 \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = 0 \Rightarrow -y_2 + 3y_3 = 0$$

Ответ: $-y_2 + 3y_3 = 0$

Пример 10

Найти проекцию ${\bf x}$ на подпространство U. (Здесь $\Gamma=E$)

$$U : \begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ -1 \\ 0 \\ 1 \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} 1 \\ 0 \\ 2 \\ -2 \end{pmatrix} \quad \Pi \mathbf{p}_U^{\mathbf{x}} = ?$$

Решение:

Первый способ:

$$\mathbf{x} = \underbrace{\alpha \mathbf{a} + \beta \mathbf{b}}_{\in \mathbf{a}} + \underbrace{c}_{\in \mathbf{b}}$$
, причем $\mathbf{c} \perp \mathbf{a}$, $\mathbf{c} \perp \mathbf{b}$.

Домножим это выражение скалярно на ${\bf a}$ и на ${\bf b}$ и составим систему:

$$\begin{cases} (\mathbf{x}, \mathbf{a}) = \alpha |\mathbf{a}|^2 + \beta(\mathbf{a}, \mathbf{b}) + 0 \\ (\mathbf{x}, \mathbf{b}) = \alpha(\mathbf{a}, \mathbf{b}) + \beta |\mathbf{b}|^2 + 0 \end{cases} \Leftrightarrow \begin{cases} 3 = 3\alpha + 3\beta \\ 0 = 3\alpha + 6\beta \end{cases}$$

Отсюда $\alpha = 2, \beta = -1$. Искомая проекция равна:

$$\Pi \mathbf{p}_{U}^{\mathbf{x}} = \alpha \mathbf{a} + \beta \mathbf{b} = 2\mathbf{a} - \mathbf{b} = \begin{pmatrix} 0 \\ -1 \\ 2 \\ 1 \end{pmatrix}$$

Второй способ:

Как было показано выше, в ОНБ проекция вектора равна сумме проекций на каждый из базисных векторов. Однако в случае произвольного базиса это не так:

$$\Pi \mathrm{p}_U^{\mathbf{x}}
eq \Pi \mathrm{p}_{\mathbf{a}}^{\mathbf{x}} + \Pi \mathrm{p}_{\mathbf{b}}^{\mathbf{x}}$$
 — не работает, если $\mathbf{a} \not\perp \mathbf{b}$!

Было бы здорово, если бы в U был базис $\{\mathbf{a}', \mathbf{b}'\}$ такой, что $\mathbf{a}' \perp \mathbf{b}'$, тогда соотношение будет работать. Для этого *ортогонализируем* базис:

$$\mathbf{a}' = \mathbf{a}$$

$$\mathbf{b}' = \mathbf{b} - \Pi \mathbf{p}_{\mathbf{a}}^{\mathbf{b}} = \mathbf{b} - \frac{(\mathbf{b}, \mathbf{a})}{|\mathbf{a}|^2} \mathbf{a} = \begin{pmatrix} 1\\0\\-1\\1 \end{pmatrix}$$

Итак, в
$$U$$
 мы нашли новый базис: $\{\mathbf{a}',\mathbf{b}'\}=\left\{\begin{pmatrix}1\\-1\\1\\0\end{pmatrix},\begin{pmatrix}1\\0\\-1\\1\end{pmatrix}\right\}$

Здесь уже можем пользоваться приведенным соотношением для нахождения проекции:

$$\Pi p_U^{\mathbf{x}} = \Pi p_{\mathbf{a}'}^{\mathbf{x}} + \Pi p_{\mathbf{b}'}^{\mathbf{x}} = \frac{(\mathbf{x}, \mathbf{a}')}{|\mathbf{a}'|^2} \mathbf{a}' + \frac{(\mathbf{x}, \mathbf{b}')}{|\mathbf{b}'|^2} \mathbf{b}' = \begin{pmatrix} 0 \\ -1 \\ 2 \\ 1 \end{pmatrix}$$

Замечание. Хотя мы и нашли новый базис, координаты векторов \mathbf{x} , \mathbf{a} , \mathbf{b} все ещё выражены в старом базисе, а поэтому и скалярное произведение мы считаем, используя матрицу Грама в старом базисе.

Семинар 11

Евклидовы пространства. Сопряженное преобразование.

Решим пару примеров на пройденные темы.

Пример 1

Может ли данная матрица быть матрицей Грама?

$$A = \left(\begin{array}{ccc} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 2 \end{array}\right)$$

Решение:

Вспомним из семинара 10 свойства матрицы Грама.

- Симметричность
- Положительная определённость

Наша матрица симметрична, проверим на положительную определенность.

$$M_1 = 1 \ge 0$$

$$M_2 = -3 \leqslant 0$$

Матрица не положительно определена \Rightarrow не матрица Грама.

Пример 2

Найти ортогональную проекцию вектора $\mathbf{a}(1 \quad 0-2 \quad 2)^T$ на $U: x_1+x_2+x_3+x_4=0; \quad \Gamma=E.$

Решение:

Можно записать U как

$$U(1 \quad 1 \quad 1 \quad 1|0) \qquad U: \langle \begin{pmatrix} -1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} -1\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} -1\\0\\1\\0 \end{pmatrix} \rangle$$

$$U^{\perp}: \langle \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} \rangle$$

$$\mathbf{a} = \Pi \mathbf{p}_U^{\mathbf{a}} + \Pi \mathbf{p}_{U^{\perp}}^{\mathbf{a}} \Leftrightarrow \Pi \mathbf{p}_U^{\mathbf{a}} = \mathbf{a} - \Pi \mathbf{p}_{U^{\perp}}^{\mathbf{a}} = \mathbf{a} - \frac{(\mathbf{a}, \mathbf{b})}{|\mathbf{b}|^2} \mathbf{b}$$

$$\Pi \mathbf{p}_{U}^{\mathbf{a}} = \begin{pmatrix} 1\\0\\-2\\2 \end{pmatrix} - \frac{1}{4} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 3\\-1\\-9\\7 \end{pmatrix}$$

11.1. Ортогонализация Грама-Шмидта

Пусть дан базис $\mathbf{f}_1, \dots, \mathbf{f}_n$

Наша задача: построить отрогональный базис $\mathbf{h}_1, \dots, \mathbf{h}_n$

1) $\mathbf{h}_1 = \mathbf{f}_1$

2)
$$\mathbf{h}_2 = \mathbf{f}_2 - \prod \mathbf{p}_{\mathbf{h}_1}^{\mathbf{f}_2} = \mathbf{f}_2 - \frac{(\mathbf{h}_1, \mathbf{f}_2)}{|\mathbf{h}_1|^2} \mathbf{h}_1$$

3)
$$\mathbf{h}_3 = \mathbf{f}_3 - \prod_{\langle \mathbf{h}_1, \mathbf{h}_2 \rangle}^{\mathbf{f}_3} = \mathbf{f}_3 - \frac{(\mathbf{f}_3, \mathbf{h}_1)}{|\mathbf{h}_1|^2} \mathbf{h}_1 - \frac{(\mathbf{f}_3, \mathbf{h}_2)}{|\mathbf{h}_2|^2} \mathbf{h}_2$$

Для построения ортонормированного базиса, каждый вектор нужно разделить на его длину, т.е.

$$\mathbf{e}_i = rac{\mathbf{h}_i}{|\mathbf{h}_i|}.$$

Пример 3

Ортонормировать систему векторов со стандартным (т.е. $\Gamma = E$) скалярным произведением

$$\mathbf{f}_1 = \begin{pmatrix} 1 & 2 & 1 & 2 \end{pmatrix}^{\mathrm{T}}, \quad \mathbf{f}_2 = \begin{pmatrix} 4 & 0 & 4 & 1 \end{pmatrix}^{\mathrm{T}}, \quad \mathbf{f}_3 = \begin{pmatrix} 1 & 13 & -1 & -3 \end{pmatrix}^{\mathrm{T}}.$$

Решение:

На первом шаге возьмем вектор \mathbf{f}_1 за основу нового базиса, т.е. $\mathbf{h}_1 = \mathbf{f}_1 = \begin{pmatrix} 1 & 2 & 1 & 2 \end{pmatrix}^T, |\mathbf{h}_1| = \sqrt{10}$. На втором шаге найдем следующий вектор по рекуррентной формуле, полученной выше

$$\mathbf{h}_2 = \mathbf{f}_2 - \frac{(\mathbf{f}_2, \mathbf{h}_1)}{|\mathbf{h}_1|^2} \mathbf{h}_1 = \begin{pmatrix} \frac{4}{0} \\ \frac{4}{1} \end{pmatrix} - \frac{10}{10} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{3}{2} \\ \frac{3}{2} \end{pmatrix}, \quad |\mathbf{h}_2| = \sqrt{23}.$$

Можно убедиться, что $(\mathbf{h}_2, \mathbf{h}_1) = 0$. Далее, найдем третий вектор

$$\mathbf{h}_3 = \mathbf{f}_3 - \frac{(\mathbf{f}_3, \mathbf{h}_1)}{|\mathbf{h}_1|^2} \mathbf{h}_1 - \frac{(\mathbf{f}_2, \mathbf{h}_2)}{|\mathbf{h}_2|^2} \mathbf{h}_2 = \begin{pmatrix} 2 & 7 & 0 & -8 \end{pmatrix}^{\mathrm{T}}, \quad |\mathbf{h}_3| = \sqrt{17}.$$

Осталось только нормировать полученный базис, т.е. разделить каждый вектор на его длину. Ответ: $\mathbf{e}_1 = \frac{1}{\sqrt{10}} \begin{pmatrix} 1 & 2 & 1 & 2 \end{pmatrix}^\mathrm{T}, \mathbf{e}_2 = \frac{1}{\sqrt{23}} \begin{pmatrix} 3 & -2 & 3 & -1 \end{pmatrix}^\mathrm{T}, \mathbf{e}_3 = \frac{1}{\sqrt{17}} \begin{pmatrix} 2 & 7 & 0 & 8 \end{pmatrix}^\mathrm{T}$.

Пример 4

В пространстве многочленов, степени не выше второй, задано скалярное произведение в таком виде:

$$(f,g) = \int_{1}^{1} f(t)g(t)dt.$$

Построить ортогональный базис в этом пространстве.

Решение:

За основу возьмем стандартный базис $\{1, t, t^2\}$. Пусть первый вектор в нашем новом базисе $\mathbf{h}_1 = \mathbf{f}_1 \mathbf{f}_2 \mathbf{f}_3$ $\mathbf{f}_1 = 1$. Найдем длину \mathbf{h}_1^{-1} :

$$|\mathbf{h}_1|^2 = \int_{-1}^{1} 1^2 dt = 2.$$

Для ортогонализации необходимо найти скалярное произведения \mathbf{f}_1 и \mathbf{f}_2 . Будем искать их по заданному определению:

$$(\mathbf{f}_1, \mathbf{f}_2) = \int_1^1 1 \cdot t = 0 \Rightarrow 1 \perp t.$$

Теперь подставим числа в рекуррентную формулу и получим второй вектор базиса:

$$\mathbf{h}_2 = \mathbf{f}_2 - \frac{(\mathbf{f}_2, \mathbf{h}_1)}{|\mathbf{h}_1|^2} \mathbf{h}_1 = \mathbf{f}_2 \quad |\mathbf{h}_2|^2 = \int_{-1}^1 t^2 dt = \frac{2}{3}.$$

Т.к. $(\mathbf{f}_3, \mathbf{h}_2) = 0$,

$$(\mathbf{h}_1, \mathbf{f}_3) = \int_{-1}^{1} 1 \cdot t^2 = \left. \frac{t^3}{3} \right|_{-1}^{1} = \frac{2}{3},$$

$$\mathbf{h}_{3} = \mathbf{f}_{3} - \frac{(\mathbf{f}_{3}, \mathbf{h}_{2})}{|\mathbf{h}_{2}|^{2}} \mathbf{h}_{2} - \frac{(\mathbf{f}_{3}, \mathbf{h}_{1})}{|\mathbf{h}_{1}|^{2}} \mathbf{h}_{1},$$

TO

$$\mathbf{h}_3 = t^2 - \frac{2}{3 \cdot 2} \cdot 1 = t^2 - \frac{1}{3}.$$

Otbet: $\{1, t, t^2 - \frac{1}{3}\}$.

11.2. Сопряжённые преобразования

11.2.1. Определение

Определение 11.2.1. Линейное преобразование евклидова пространства φ^* называется сопряжённым с преобразованием φ , если

$$\boxed{(\varphi(\mathbf{x}), \mathbf{y}) = (\mathbf{x}, \varphi^*(\mathbf{y})), \forall \mathbf{x}, \mathbf{y} \in \mathcal{E}}$$

Пусть в базисе \mathbf{e} : $\mathbf{x} = \boldsymbol{\xi}$, $\mathbf{y} = \boldsymbol{\eta}$. Матрицы преобразований φ и φ^* равны соответственно A и A^* , то есть:

$$\varphi(\mathbf{x}) = A\boldsymbol{\xi}; \ \varphi^*(\mathbf{y}) = A^*\boldsymbol{\eta}$$
$$(\varphi(\mathbf{x}), \mathbf{y}) = (\mathbf{x}, \varphi^*(\mathbf{y})) \Leftrightarrow (A\boldsymbol{\xi})^{\mathrm{T}}\Gamma\boldsymbol{\eta} = \boldsymbol{\xi}^{\mathrm{T}}\Gamma(A^*\boldsymbol{\eta})$$
$$\boldsymbol{\xi}^{\mathrm{T}}A^{\mathrm{T}}\Gamma\boldsymbol{\eta} = \boldsymbol{\xi}^{\mathrm{T}}\Gamma A^*\boldsymbol{\eta}$$

Отбросив $\boldsymbol{\xi}^{T}$ и $\boldsymbol{\eta}$ в обоих частях последнего равенства (т.к. данное равенство выполнено для любых $\boldsymbol{\xi}^{T}$ и $\boldsymbol{\eta}$), получим:

$$A^{\mathrm{T}}\Gamma = \Gamma A^*$$

В ортонормированном базисе получим:

$$A^{\rm T} = A^*$$

 $^{^{1}}$ Как может показаться длина единицы равна 1. Но т.к. по определению длина вектора — корень из его скалярного произведения самого на себя, это не так.

11.2.2. Свойства сопряжённых преобразований

- 1) Характеристические многочлены совпадают.
- 2) Если подпространство $U \in \mathcal{E}$ инвариантно относительно φ , то его ортогональное дополнение U^{\perp} инвариантно относительно φ^* .

Доказательство. (пункт 2): Возьмём произвольные
$$x \in U$$
 и $y \in U^{\perp}$. $\varphi(\mathbf{x}) \in U \Rightarrow (\varphi(\mathbf{x}), \mathbf{y}) = 0 \Rightarrow (\mathbf{x}, \varphi^*(\mathbf{y})) \Rightarrow \varphi^*(\mathbf{x}) \perp \mathbf{x}$, то есть $\varphi^*(\mathbf{x}) \in U^{\perp}$

11.2.3. Самосопряжённые преобразования

Определение 11.2.2. Линейное преобразование евклидова пространства φ называется самосопряжённы если

$$(\varphi(\mathbf{x}), \mathbf{y}) = (\mathbf{x}, \varphi(\mathbf{y}))$$

В ортонормированном базисе получим:

$$A=A^{\mathrm{T}}$$
, где A — симметрическая $\Leftrightarrow \varphi$ — симметрическое

 \triangle Наличие пары комплексных корней в уравнении $\det(A - \lambda E) = 0$ порождает двумерное инвариантное подпространство без собственных векторов. \blacktriangle

Лемма 11.2.1. Самосопряжённое преобразование φ имеет только вещественные собственные значения.

Доказательство. Пусть есть пара комплексных корней \Rightarrow существует двумерное инвариантное подпространство L' без собственных векторов. Для этого пространства преобразование φ задается:

$$(\alpha - \lambda)(\gamma - \lambda) - \beta^2 = 0$$

 $\lambda^2 - (\alpha + \gamma)\lambda + \alpha\gamma - \beta^2 = 0$
 $D = \alpha^2 - 2\alpha\gamma + \gamma^2 + 4\beta^2 = (\alpha - \gamma)^2 + 4\beta^2 \geqslant 0$
 \Rightarrow в этом пространстве существует собственный вектор. Противоречие.

Лемма 11.2.2. Собственные подпространства самосопряженных преобразований φ ортогональны (собственные векторы, отвечающие различным собственным значениям, ортогональны).

Доказательство.
$$\begin{cases} \varphi(\mathbf{x}) = \lambda \mathbf{x} \\ \varphi(\mathbf{y}) = \mu \mathbf{y} \Rightarrow \begin{cases} (\varphi(\mathbf{x}), \mathbf{y}) = \lambda(\mathbf{x}, \mathbf{y}) \\ (\mathbf{x}, \varphi(\mathbf{y})) = \mu(\mathbf{x}, \mathbf{y}) \end{cases} \ominus \\ 0 = (\lambda - \mu)(\mathbf{x}, \mathbf{y}) \Rightarrow (\mathbf{x}, \mathbf{y}) = 0 \Rightarrow \mathbf{x} \perp \mathbf{y}, \text{ что и требовалось доказать.}$$

11.2.4. Центральная теорема

Теорема 11.2.1. φ — самосопряженное $\Leftrightarrow \exists$ *OHE из собственных векторов.*

Доказательство. (\Rightarrow) Пусть $U=U_1\oplus\ldots\oplus U_n$ — сумма всех собственных подпространств. Докажем, что $U=\mathcal{E}\Leftrightarrow U^\perp=0$

 $\varphi(U^{\perp})$ — самосопряженное $\stackrel{\text{Лемма } 1}{\Rightarrow} \exists \lambda \in \mathbb{R} \Rightarrow \exists$ собственный вектор $\in U^{\perp}$, но все собственные векторы $\in U \Rightarrow U^{\perp} = 0 \Rightarrow U = \mathcal{E} \Rightarrow$ существует базис из собственных векторов, этот базис можно сделать.

Этот базис можно сделать ортогональным в силу леммы 11.2.2.

Геометрический смысл

- 1) "Сжатие" вдоль перпендикулярного направления
- 2) Ортогональное проецирование
- 3) Отражение

Пример 5

В ортонормированном базисе φ задана матрица $A = \begin{pmatrix} 1 & 2 \\ 2 & -2 \end{pmatrix}$. Найти ОНБ из собственных векторов.

Решение:

В ОНБ: $-A = A^{\mathbf{T}} \Rightarrow \varphi$ — самосопряженное преобразование.

$$\det(A - \lambda E) = 0 \Leftrightarrow \lambda^{2} + \lambda - 6 = 0 \Leftrightarrow \begin{bmatrix} \lambda = -3 \\ \lambda = -2 \end{bmatrix}$$

$$1)\lambda = -3 \quad \begin{pmatrix} 4 & 2 & | & 0 \\ 2 & 1 & | & 0 \end{pmatrix} \quad L_{1} : \langle \begin{pmatrix} -1 \\ 2 \end{pmatrix} \rangle = \mathbf{f}_{1}$$

$$1)\lambda = 2 \quad \begin{pmatrix} -1 & 2 & | & 0 \\ 2 & -4 & | & 0 \end{pmatrix} \quad L_{1} : \langle \begin{pmatrix} 2 \\ 1 \end{pmatrix} \rangle = \mathbf{f}_{2}$$

$$\mathbf{e'}_{1} = \frac{1}{\sqrt{5}} \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$

$$\mathbf{e'}_{2} = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$A' = \begin{pmatrix} -3 & 0 \\ 0 & 2 \end{pmatrix}$$

Пример 6

В ортонормированном базисе φ задана матрица A. Найти ОНБ из собственных векторов.

$$A=egin{pmatrix}1&2&2\\2&1&-2\\2&-2&1\end{pmatrix}$$
 В ОНБ $A=A^{\mathbf{T}}\Rightarrow \varphi$ — самосопряженное

Решение:

$$\det(A - \lambda E) = 0 \Leftrightarrow (\lambda - 3)^{2}(\lambda + 3) = 0 \Leftrightarrow \lambda = 3 \quad \text{кратность 2}$$

$$\lambda = -3 \quad \text{кратность 1}$$

$$1)\lambda = 3 \quad \begin{pmatrix} -2 & 2 & 2 & 0 \\ 2 & -2 & -2 & 0 \\ 2 & -2 & -2 & 0 \end{pmatrix} \quad L_{1} : \langle \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \mathbf{f}_{1}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \mathbf{f}_{2} \rangle$$

$$2)\lambda = -3 \quad \begin{pmatrix} 4 & 2 & 2 & 0 \\ 2 & 4 & -2 & 0 \\ 2 & -2 & 4 & 0 \end{pmatrix} \quad L_{2} : \langle \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} = \mathbf{f}_{2} \rangle$$

$$\begin{aligned} \mathbf{h}_1 &= \mathbf{f}_1 \\ \mathbf{h}_2 &= \mathbf{f}_2 - \frac{(\mathbf{f}_2, \mathbf{h}_1)}{|\mathbf{h}_1|^2} \mathbf{h}_1 = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} \\ \mathbf{h}_3 &= \mathbf{f}_3 \end{aligned}$$

$$\begin{aligned} \mathbf{e}_1 &= \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1\\0 \end{pmatrix} \mathbf{e}_2 = \frac{1}{\sqrt{6}} \begin{pmatrix} 1\\-1\\2 \end{pmatrix} \mathbf{e}_3 = \frac{1}{\sqrt{3}} \begin{pmatrix} -1\\1\\1 \end{pmatrix} \\ \mathbf{B} \text{ этом базисе:} \\ A &= \begin{pmatrix} 3 & 0 & 0\\0 & 3 & 0\\0 & 0 & -3 \end{pmatrix} \end{aligned}$$

Семинар 12

Ортогональное преобразование и функции на евклидовых пространствах.

12.1. Ортогональные матрицы.

Рассмотрим два ОНБ

$$\mathbf{e}$$
 и $\mathbf{e}' = \mathbf{e}S$.

В этих базисах

$$\Gamma = E$$
 и $\Gamma' = E$.

Мы знаем, что

$$\Gamma' = S^{\mathrm{T}} \Gamma S.$$

Из этих равенств следует, что

$$S^{\mathsf{T}}S = E \Rightarrow S^{\mathsf{T}} = S^{-1}.\tag{*}$$

Такие матрицы, для которых выполнено (*), называются ортогональными, причем

$$\det S^{\mathsf{T}} S = \det S \det S^{\mathsf{T}} = \det E.$$

Т.к. $\det S = \det S^{\mathrm{T}}$, то

$$\det^2 S = 1 \Rightarrow \det S = \pm 1.$$

Рассмотрим подробнее матрицу S. Матрица S состоит из столбцов s_i^{\uparrow}

$$S = \begin{pmatrix} s_1^{\uparrow} & s_2^{\uparrow} & \cdots & s_n^{\uparrow} \end{pmatrix},$$

тогда S^{T} из строк $\vec{s_i}$

$$S^{\mathrm{T}} = \begin{pmatrix} \vec{s}_1 \\ \vec{s}_2 \\ \vdots \\ \vec{s}_n \end{pmatrix}.$$

T.к. для матрицы S выполнено (*), то

$$(s_1^{\uparrow} \quad s_2^{\uparrow} \quad \cdots \quad s_n^{\uparrow}) \begin{pmatrix} \vec{s}_1 \\ \vec{s}_2 \\ \vdots \\ \vec{s}_n \end{pmatrix} = E,$$

откуда следует, что

$$\begin{cases} s_i s_j = 1, \forall i = j \\ s_i s_j = 0, \forall i \neq j \end{cases} \Leftrightarrow s_i s_j = \delta_{ij},$$

где δ_{ij} — символ Кронекера.

Таким образом, столбцы/строки матрицы S формируют ОНБ.

Если мы имеем дело с матрицами размерами 2×2 , то они имеют вид:

$$S = \begin{pmatrix} \cos \alpha & \mp \sin \alpha \\ \sin \alpha & \pm \cos \alpha \end{pmatrix}.$$

12.2. Ортогональное преобразование.

Определение 12.2.1. Преобразование φ с матрицей A евклидового пространства \mathcal{E} называется ортогональным, если оно сохранет скалярное произведение, т.е.

$$\forall \mathbf{x}, \mathbf{y} \in \mathcal{E} \longmapsto (\varphi(\mathbf{x}), \varphi(\mathbf{y})) = (\mathbf{x}, \mathbf{y}).$$

Также сохраняются углы и длины — геометрический смысл «движения».

Из семинара 11:

$$\forall \mathbf{x}, \mathbf{y} \in \mathcal{E} \longmapsto (\varphi(\mathbf{x}), \mathbf{y}) = (\mathbf{x}, \varphi^*(\mathbf{y})),$$

где φ^* — сопряженное преобразование. Заменим **y** на $\varphi(\mathbf{y})$ (т.к. говорим об ортогональных преобразованиях)

$$(\mathbf{x}, \mathbf{y}) = (\varphi(\mathbf{x}), \varphi(\mathbf{y})) = (\mathbf{x}, \varphi^* \varphi(\mathbf{y})).$$

Используя свойство линейности, перепишем равенство так

$$(\mathbf{x}, \varphi^* \varphi(\mathbf{y}) - \mathbf{y}) = 0.$$

Т.к. это равенство выполнено для любых х, у:

$$\varphi^* \varphi(\mathbf{y}) - \mathbf{y} = \mathbf{o} \Rightarrow \varphi^* \varphi(\mathbf{y}) = \mathbf{y} \Rightarrow \varphi^* \varphi = \mathrm{Id},$$

где Id — тождественное преобразование. Т.е. мы получили, что $A^*A=E$. В ОНБ $A^*=A^{\rm T}$, откуда следует, что

$$A^{\mathrm{T}}A = E$$
,

т.е. ортогональное преобразование задает ортогональная матрица.

Свойства:

1) Ортогональное преобразование инъективно.

Доказательство. Пусть
$$\mathbf{x} \in Ker \ \varphi$$
, т.е. $\varphi(\mathbf{x}) = 0$. $(\varphi(\mathbf{x}), \varphi(\mathbf{x})) = (\mathbf{x}, \mathbf{x}) = 0 \Rightarrow \mathbf{x} = \mathbf{o} \Rightarrow$ инъекция.

2) Собственные значения ортогонального преобразования равны ± 1 .

Доказательство.
$$\varphi(\mathbf{x}) = \lambda \mathbf{x}, \mathbf{x} \neq \mathbf{o}.$$

$$(\varphi(\mathbf{x}), \varphi(\mathbf{x})) = \lambda^2(\mathbf{x}, \mathbf{x}) = (\mathbf{x}, \mathbf{x}) \Leftrightarrow \lambda^2 = 1.$$

3) Пусть подпространство $U\subset\mathcal{E}.$ Если U инвариантно относительно $\varphi,$ то U^{\perp} инвариантно относительно $\varphi.$

Пример 1

 φ переводит столбцы матрицы A в столбцы B. Скалярное произведение стандартное. Ортогонально ли φ ?

Решение:

Первый способ

$$\overline{A = \begin{pmatrix} 4 & 2 \\ 7 & 1 \end{pmatrix}} \rightarrow B = \begin{pmatrix} 8 & 2 \\ 1 & -1 \end{pmatrix}$$

$$\mathbf{x} \begin{pmatrix} 4 \\ 7 \end{pmatrix} \qquad \varphi(\mathbf{x}) \begin{pmatrix} 8 \\ 1 \end{pmatrix} \qquad (\mathbf{x}, \mathbf{y}) = 15$$

$$\mathbf{y} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \qquad \varphi(\mathbf{y}) \begin{pmatrix} 2 \\ -1 \end{pmatrix} \qquad (\varphi(\mathbf{x}), \varphi(\mathbf{y})) = 15$$

$$(\mathbf{x}, \mathbf{x}) = 65 \quad (\varphi(\mathbf{x}), \varphi(\mathbf{x})) = 65$$

$$(\mathbf{y}, \mathbf{y}) = 5 \quad (\varphi(\mathbf{y}), \varphi(\mathbf{y})) = 5$$

$$\Rightarrow \varphi - \text{ортогональное.}$$

Может возникнуть мысль, что достаточно проверить два соотношения из трех, однако этого оказывается недостаточно:

$$(\mathbf{x}, \mathbf{z}) = (\mathbf{x}, \alpha \mathbf{x} + \beta \mathbf{y}) = \alpha \underline{(\mathbf{x}, \mathbf{x})} + \beta \underline{(\mathbf{x}, \mathbf{y})} = (\varphi(\mathbf{x}), \varphi(\mathbf{z})) = (\varphi(\mathbf{x}), \alpha \varphi(\mathbf{x}) + \beta \varphi(\mathbf{y}))$$
$$= \alpha(\varphi(\mathbf{x}), \varphi(\mathbf{x})) + \beta(\varphi(\mathbf{x}), \varphi(\mathbf{y}))$$

Контрпример:

$$\mathbf{x} \begin{pmatrix} -2 \\ 2 \end{pmatrix} \qquad \varphi(\mathbf{x}) \begin{pmatrix} 3 \\ 1 \end{pmatrix} \qquad (\mathbf{x}, \mathbf{y}) = 6 \qquad (\varphi(\mathbf{x}), \varphi(\mathbf{y})) = 15$$

$$\mathbf{y} \begin{pmatrix} -2 \\ 1 \end{pmatrix} \qquad \varphi(\mathbf{y}) \begin{pmatrix} 0 \\ 6 \end{pmatrix} \quad \mathbf{Ho!} \quad (\mathbf{x}, \mathbf{x}) = 8 \qquad (\varphi(\mathbf{x}), \varphi(\mathbf{x})) = 10$$

$$(\mathbf{x}, \mathbf{x}) = 65 \quad (\varphi(\mathbf{x}), \varphi(\mathbf{x})) = 65$$

$$(\mathbf{y}, \mathbf{y}) = 5 \qquad (\varphi(\mathbf{y}), \varphi(\mathbf{y})) = 5$$

Длины не сохраняются \Rightarrow не ортогонально!

Второй способ:

$$X\left(\begin{array}{cc} 4 & 2 \\ 7 & 1 \end{array}\right) = \left(\begin{array}{cc} 8 & 2 \\ 1 & -1 \end{array}\right)$$

Транспонируя с обеих сторон, получаем:

$$\left(\begin{array}{cc} 4 & 7 \\ 2 & 1 \end{array}\right) X^{\mathrm{T}} = \left(\begin{array}{cc} 8 & 1 \\ 2 & -1 \end{array}\right)$$

Умножая второе уравнение на первое слева, получим

$$\begin{pmatrix} 4 & 7 \\ 2 & 1 \end{pmatrix} X X^{\mathrm{T}} \begin{pmatrix} 4 & 2 \\ 7 & 1 \end{pmatrix} = \begin{pmatrix} 8 & 1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} 8 & 2 \\ 1 & -1 \end{pmatrix}$$

Если X — ортогональна $\Rightarrow XX^{\mathrm{T}} = E$

$$\begin{pmatrix} 65 & 15 \\ 15 & 5 \end{pmatrix} = \begin{pmatrix} 65 & 15 \\ 15 & 5 \end{pmatrix} \Rightarrow$$
 Предложение верно $\Rightarrow \varphi$ ортогонально

12.3. Полярное разложение

Теорема 12.3.1. Любое линейное преобразование евклидова пространства φ представимо в виде $\varphi = q$, где q — ортогональное преобразование, а s — самосопряженное преобразование.

Иначе говоря, любая матрица А раскладывается в произведение

$$A = QS, \tag{\diamondsuit}$$

где Q — ортогональная матрица, S — симметрическая матрица.

То есть существует такое ортогональное преобразование $P: P^{-1}SP = D$ — диагональная матрица.

$$S = PDP^{-1} \Rightarrow (\clubsuit) \Rightarrow A = \underbrace{QP}_{Q_1} D \underbrace{P^{-1}}_{Q_2} \Rightarrow \boxed{A = Q_1 D Q_2},$$
 где Q_1, Q_2 — ортогональные матрицы,

D — диагональная.

12.4. Билинейные функции на евклидовом пространстве

Определение 12.4.1. Линейное преобразование φ называется присоединенным к билинейной форме $b(\mathbf{x}, \mathbf{y})$, если $\forall \mathbf{x}, \mathbf{y} \in \mathcal{E} \to b(\mathbf{x}, \mathbf{y}) = (\mathbf{x}, \varphi(\mathbf{y}))$

Фиксируем базис $\mathbf{e}, \varphi : A, \mathbf{x} = \boldsymbol{\xi}, \mathbf{y} = \boldsymbol{\eta}, \varphi(\mathbf{y}) = A\boldsymbol{\eta}.$

Пусть B — матрица билинейной формы.

$$b(\mathbf{x}, \mathbf{y}) = \boldsymbol{\xi}^{\mathrm{T}} B \boldsymbol{\eta} = \boldsymbol{\xi}^{\mathrm{T}} \Gamma A \boldsymbol{\eta}$$
$$B = \Gamma A \Rightarrow A = \Gamma^{-1} B$$

Пример 2

Найти матрицу присоединенного преобразования.

$$\Gamma = \begin{pmatrix} 1 & 1 \\ 1 & 3 \end{pmatrix}$$
 $k(\mathbf{x}) = 4x_1^2 + 16x_1x_2 + 6x_2^2$

Решение:

 $\exists T_1 \dots T_m$ элементарные преобразования строк такие, что

$$T_1 \dots T_m \Gamma = E|\cdot \Gamma^{-1} B$$

 $T_1 \dots T_m B = A$

$$\begin{pmatrix} 1 & 1 & 4 & 8 \\ 1 & 3 & 8 & 6 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 2 & 9 \\ 0 & 1 & 2 & -1 \end{pmatrix}$$
, где $A = \begin{pmatrix} 2 & 9 \\ 2 & -1 \end{pmatrix}$

В ортонормированном базисе $\Gamma = E \Rightarrow A = B$

У симметричной квадратичной функции в ортонормированном базисе матрица B равна матрице A.

Если A задаёт самосопряжённое преобразование $\Rightarrow \exists$ ортонормированный базис из собственных векторов $\Rightarrow A$ имеет диагональный вид $\Rightarrow B$ также имеет диагональный вид.

Теорема 12.4.1. В евклидовом пространстве для любой квадратичной формы существует ортонормированный базис, в котором она имеет диагональный вид.

Пример 3

В ортонормированном базисе задана квадратичная форма. Найти ортонормированный базис, в котором она имеет диагональный вид.

$$k(\mathbf{x}) = -4x_1^2 + 10x_1x_2 - 4x_2^2$$

$$B = \begin{pmatrix} -4 & 5 \\ 5 & -4 \end{pmatrix} = A$$
, т.к базис ортонормированный

A — симметрическая \Rightarrow A — самосопряжённое преобразование.

$$\det(A - \lambda E) = 0 \Leftrightarrow \begin{bmatrix} \lambda_1 = 1 \\ \lambda_2 = -9 \end{bmatrix}$$

1)
$$\lambda = 1$$

$$\begin{pmatrix} -5 & 5 & | & 0 \\ 5 & -5 & | & 0 \end{pmatrix}; L_1 = \langle \begin{pmatrix} 1 \\ 1 \end{pmatrix} \rangle; \mathbf{h}_1 = \frac{1}{\sqrt{2}} \langle \begin{pmatrix} 1 \\ 1 \end{pmatrix} \rangle$$

$$\lambda = -9$$

$$\begin{pmatrix} 5 & 5 & | & 0 \\ 5 & 5 & | & 0 \end{pmatrix}; \ L_1 = \langle \begin{pmatrix} 1 \\ -1 \end{pmatrix} \rangle; \ \mathbf{h}_2 = \frac{1}{\sqrt{2}} \langle \begin{pmatrix} 1 \\ -1 \end{pmatrix} \rangle$$

$$A = \begin{pmatrix} 1 & 0 \\ 0 & -9 \end{pmatrix} = B$$

$$k(\mathbf{x}) = \tilde{x}_1^2 - 9\tilde{x}_2^2$$

Вернёмся в линейное подпространство.

Теорема 12.4.2. Пусть даны квадратичные функции k(x) и h(x), причём h(x) — положительно определена. Тогда в L существует базис, в котором $k(\boldsymbol{x})$ имеет диагональный вид, а $h(\boldsymbol{x})$ – канонический вид.

Доказательство. Пусть H — вспомогательное скалярное произведение, $\Gamma = H$.

- 1) $h(\mathbf{x})$ приводится к каноническому виду. В ортонормированном базисе $\hat{H} = E$.
- 2) K приводится к \hat{K} . В ортонормированном базисе $\hat{K} = S^{\mathrm{T}}KS$.

Для $\ddot{K} \exists \text{OHE}$, в котором она имеет диагональный вид,

 $K = \operatorname{diag}(\ldots), H = E.$

Алгоритм

 $A = H^{-1}K$ — присоединенное преобразование, K — квадратичная форма;

A- самосопряженное $\Rightarrow \exists OHE$ из собственных векторов $\Rightarrow H=E$.

Пример 4

Привести две квадратичные формы к диагональному виду:

$$k(\mathbf{x}) = 4x_1^2 + 16x_1x_2 + 6x_2^2; h(\mathbf{x}) = x_1^2 + 2x_1x_2 + 3x_2^2;$$

 $h(\mathbf{x})$ положительно определена.

Решение:

 \triangle

$$\det(H^{-1}K - \lambda E) = 0 \iff \det(H^{-1}(K - \lambda H)) = 0$$

$$\det H^{-1}\det(K-\lambda H)=0 \ \Rightarrow \ \det(K-\lambda H)=0$$

$$\blacktriangle$$

$$\Gamma = H \begin{pmatrix} 1 & 1 \\ 1 & 3 \end{pmatrix}; \quad K = \begin{pmatrix} 4 & 8 \\ 8 & 6 \end{pmatrix}; \quad \det(K - \lambda H) = 0; \quad \det \begin{pmatrix} 4 - \lambda & 8 - \lambda \\ 8 - \lambda & 6 - 3\lambda \end{pmatrix} = 0 \Rightarrow \begin{bmatrix} \lambda = -4 \\ \lambda = 5 \end{bmatrix}$$

1)
$$\lambda = -4$$
 $\mathbf{h}_1 = \begin{pmatrix} -3\\2 \end{pmatrix}$

$$2) \lambda = 5 \quad \mathbf{h}_2 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$

$$|\mathbf{h}_1|^2 = (\mathbf{h}_1, \mathbf{h}_2) = \begin{pmatrix} -3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} -3 \\ 2 \end{pmatrix} = 9, \ |\mathbf{h}_1| = 3, \ |\mathbf{h}_2| = 3\sqrt{2}$$

$$\tilde{\mathbf{h}}_1 = \begin{pmatrix} -1\\2/3 \end{pmatrix} \quad \tilde{\mathbf{h}}_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1/3 \end{pmatrix}$$

$$\Gamma = \widetilde{H} = E \quad \hat{h}(\mathbf{x}) = \widetilde{x}_1^2 + \widetilde{x}_2^2;$$

$$\Gamma = \widetilde{H} = E \quad \hat{h}(\mathbf{x}) = \widetilde{x}_1^2 + \widetilde{x}_2^2;$$

$$A = \begin{pmatrix} -4 & 0 \\ 0 & 5 \end{pmatrix} = K \Rightarrow \hat{k}(\mathbf{x}) = -4\widetilde{x}_1^2 + 5\widetilde{x}_2^2$$