

CLASSROOM CONTACT PROGRAMME

(Academic Session: 2019 - 2020)

Enthusiast, Leader & Achiever Course

PHASE : (All Phase)
TARGET : PRE-MEDICAL 2020

Test Type: MAJOR Test Pattern: NEET (UG)

TEST DATE: 11-05-2020

.10. 2/11. 1. 00 1010																														
Q.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
A.	2	2	2	1	1	2	2	3	1	3	4	3	1	2	3	1	2	4	3	2	2	3	1	3	4	2	1	1	3	1
Q.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
A.	3	2	4	1	2	1	3	3	2	3	4	3	3	3	4	2	3	1	2	2	3	1	3	2	2	2	1	4	3	2
Q.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
A.	2	1	3	4	3	3	4	4	1	2	2	1	1	4	3	4	4	3	3	4	2	1	1	2	2	4	3	1	2	2
Q.	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
A.	4	3	4	3	2	4	1	2	2	1	2	3	4	2	2	2	2	2	3	4	3	1	2	3	4	2	4	2	1	1
Q.	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150
A.	3	1	1	2	4	4	1	1	1	2	2	3	2	1	2	2	2	2	3	4	1	2	3	1	3	2	3	3	3	4
Q.	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
A.	1	1	2	3	3	3	3	2	3	3	4	2	4	4	4	2	4	3	3	3	3	1	2	3	2	4	1	1	1	4

(HINT - SHEET)

1. Ans (2)

3. Ans (2)

$$\begin{split} &\mu_{ga} = \frac{3}{2} \\ &\mu_{wa} = \frac{4}{3} \\ &\mu_{gw} = \frac{\mu_g}{\mu_w} = \frac{3/2}{4/3} = \frac{9}{8} \end{split}$$

4. Ans (1)

In minimum deviation,

$$r = \frac{A}{2} = \frac{60}{2} = 30^{\circ}$$

8. Ans (3)

9. Ans (1)

$$f = \frac{75 \times 25}{75 - 25} = \frac{75 \times 25}{50} = \frac{75}{2} \text{ cm}$$

$$P = \frac{100 \times 2}{75} = \frac{8}{3} = +2.67 \text{ D}$$

10. Ans (3)

"O" acts as focal point

$$\begin{split} &\frac{1}{f} = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right) \\ &\frac{1}{40} = (\mu - 1) \left(\frac{1}{10} + \frac{1}{10} \right) \\ &\frac{1}{40} = (\mu - 1) \left(\frac{2}{10} \right) \Rightarrow \mu = \frac{9}{8} \end{split}$$

15. Ans (3)

$$W_a = \frac{2D\lambda}{a} = \frac{2 \times 1.5 \times 500 \times 10^{-9}}{0.5 \times 10^{-3}} = 3 \text{ mm}$$

19. Ans (3)

from COLM, $p_M = p_{5M}$

$$\therefore \quad \lambda = \frac{h}{p} \quad \text{so} \quad \frac{\lambda_{M}}{\lambda_{5M}} = \frac{1}{1} = 1$$

20. Ans (2)

The electrostatic P.E. is zero when the electron and proton are far apart from each other. Work done in pulling electronand proton far away from each other

W = E_f - E_i = 0 - E_i = -
$$\left(-\frac{13.6}{n^2} \text{ eV}\right)$$

 \Rightarrow W = $\frac{13.6}{(2)^2} \times 1.6 \times 10^{--19} \text{ J} = 3.4 \times 1.6 \times 10^{-19} \text{ J}$

21. Ans (2)

The velocity of X-rays is always equal to that of light.

22. Ans (3)

Nuclear radius $r \alpha A^{1/3}$

Hence A α r³. Since density = Mass/Volume Mass α A. Also volume α r³.

Hence Mass/volume = constant.

24. Ans (3)

de-Broglie wavelength $\lambda=\frac{h}{mv_{rms}}$, rms velocity of a gas particle at the given temperature (T) is given as

$$\begin{split} &\frac{1}{2}mv_{rms}^2 \ \Rightarrow = \frac{3}{2}kT \ \Rightarrow v_{rms} \ = \sqrt{\frac{3kT}{m}} \ \Rightarrow mv_{rms} \ = \sqrt{3mkT} \\ & \therefore \ \lambda = \frac{h}{mv_{rms}} \ = \frac{h}{\sqrt{3mkT}} \\ & \Rightarrow \frac{\lambda_H}{\lambda_{He}} \ = \sqrt{\frac{m_{He}\,T_{He}}{m_H\,T_H}} \ = \sqrt{\frac{4(273+127)}{2(273+27)}} \ = \sqrt{\frac{8}{3}} \end{split}$$

27. Ans (1)

$$\lambda_{\text{max}} = \frac{12400}{\Delta E_g} = \frac{12400}{2.5 \text{eV}} \text{ (eV-Å)}$$
 $\lambda_{\text{max}} = 4960 \text{Å}$

$$\lambda < \lambda_{max}$$

$$\lambda = 4000 \text{\AA}$$

32. Ans (2)

$$i = 2r$$
 (given)

$$\mu_1 \sin i = \mu_2 \sin r$$

$$1 \times \sin 2r = \mu \sin r$$

$$2 \sin r \cdot \cos r = \mu \sin r$$

$$2 \cos r = \mu$$

$$r = \cos^{-1}(\frac{\mu}{2})$$

33. Ans (4)

$$\mu = \frac{1}{\sin \theta_C}$$

For θ_C minimum, μ is maximum, λ is minimum

37. Ans (3)

$$\beta = \frac{\lambda D}{d}$$

40. Ans (3)

Helium nucleus is called α-particle

41. Ans (4)

Minimum $\lambda \Rightarrow$ series limit

Lyman ⇒

$$\frac{1}{\lambda_1} = R\left(1 - \frac{1}{\infty}\right) \& \frac{1}{\lambda_2} = R\left(\frac{1}{4} - \frac{1}{\infty}\right)$$

$$\frac{\lambda_1}{\lambda_2} = \frac{1}{4}$$

42. Ans (3)

The equation is $O^{17} \rightarrow 0n^1 + O^{16}$ $\therefore \text{ Energy required} = \text{B.E. of } O^{17} - \text{B.E. of } O^{16}$ $= 17 \times 7.75 - 16 \times 7.97 = 4.23 \text{ MeV}$

43. Ans (3)

90% of the sample is decayed and 10% is undecayed. Fraction of (1/10) lies between $(1/2)^3$ to $(1/2)^4$; so the time is less than 4 half-life periods but more than 3 half-life periods, i.e., between 30 to 40 days. The correct choice is 33 days.

44. Ans (3)

$$8 = I_B R_B + V_{BE}$$

$$\Rightarrow 8 = \left(\frac{4 \times 10^{-3}}{100}\right) R_B + 0.6$$

$$\Rightarrow$$
 R_B = 185 k Ω

53. Ans (3)

Rate of nucleophelic substituion at aromatic ring μ Electron with drawing group.

57. Ans (1)

59. Ans (3)

(1)
$$Ph SO_3Na + NaOH \xrightarrow{(i)\Delta} Ph - OH + Na_2SO_4$$

(2)
$$Ph - N_2Cl + H_2O \xrightarrow{Boil} Ph - OH$$

(3)
$$Ph - ONa + R - X \rightarrow Ph - O - R$$

(4)
$$OH + NaOH + CaO \xrightarrow{\Delta} OH$$

$$COONa$$

67. Ans (4)

Buna-S as well as Neoprene both are synthetic rubber.

69. Ans (1)

NCERT XII, II part Pg.# 414

72. Ans (1)

$$\begin{array}{c}
NH_2 \\
\hline
NaNO_2 + HCl \\
\hline
0^{\circ} - 5^{\circ} C
\end{array}$$

$$\begin{array}{c}
N_2Cl \\
\hline
H_3PO_2
\end{array}$$

73. Ans (1)

Fact

77. Ans (4)

Ph–SO₃H + NaHCO₃
$$\longrightarrow$$
 CO₂
Ph–OH + NaHCO₃ \longrightarrow No reaction
Ph–COOH + NaHCO₃ \longrightarrow CO₂
Ph–CO OH + NaHCO₃ \longrightarrow CO₂

79. Ans (3)

Presence of b-keto w.r.t. carboxylic acid increases rate of decarboxylation.

80. Ans (4)

Mesityl oxide CH₃-C=CH-C-CH₃
CH₃
CH₃
4-methyl pent-3-en-2-one

NCERT (XIIth) Part II, Pg. # 352, 366, 367

84. Ans (2)

$$H-C \xrightarrow{Cl} Cl + Ag + Cl \\ Cl & Cl \\$$

$$\xrightarrow{\text{Hg}^{+2}}$$
 CH₃-CHO $\xrightarrow{\text{Fehling solution}}$ Red ppt. of Cu_2O

85. Ans (2)

NCERT Pg - 325; NaBH4 is mild reducing Agent, can reduce Aldehyde & ketone.

86. Ans (4)

All given reagent convert carbonyl compound into alkane.

87. Ans (3)

- 93. Ans (4) NCERT (XIIth) Pg. # 263
- **99. Ans (2)** NCERT-XII, Pg#E-262, H-286
- 119. Ans (1) NCERT XII Pg # 229, 230, 231
- **120. Ans (1)** NCERT Pg. # 227(E), 247 (H)
- **121. Ans (3)** NCERT-XII, Pg. # 222
- **132. Ans (3)** NCERT Pg. # 184 (E), 201 (H)

- **139. Ans (3)** NCERT (XIIth) Pg. # 243
- **142. Ans (2)** NCERT XII Pg. # 226
- **145. Ans (3)** NCERT XII Pg. No. # (E)-224, (H243-244)
- **147. Ans (3)** NCERT XI, Page(E) 254, (H) 277
- **151. Ans (1)** NCERT (XII) Pg. # 151, Para–2
- **155. Ans (3)** NCERT (E) Pg # 153
- **156. Ans (3)**NCERT (XII) Pg. # 153, Para. # 8.2.5
- **160. Ans (3)** NCERT-XII Pg # 153; Para-8.2.5
- **161. Ans (4)**NCERT (XIIth) Pg. # 154-156 (Para 8.3)
- **164. Ans (4)** NCERT Pg. # 158
- **165. Ans (4)** NCERT (E) Page # 152
- **169. Ans (3)** NCERT (E) 159 (H) 172
- **172. Ans (1)** NCERT (XII) Pg # 146, 1st para
- **177. Ans (1)** NCERT(XII) Page# 168/182(H) para 9.1.2
- 178. Ans (1) NCERT (XII) Pg. # 168