CSC 226

Algorithms and Data Structures: II

Union Find

Tianming Wei

twei@uvic.ca

ECS 466

Kruskal's algorithm requires an efficient way of testing whether an edge creates a cycle with the edges already selected.

 The union-find data structure helps do this.

Kruskal's Algorithm

```
Algorithm Kruskal
Input: a weighted connected graph G = (V, E)
Output: an MST T for G
Data structure: Disjoint sets (lists or union-find) DS;
   sorted weights priority queue A; and tree T
for each v \in V do C(v) \leftarrow DS.insert(v) end // one cluster per vertex
for each (u,v) \in E do A.insert((u,v)) end // sort edges by weight
T \leftarrow \emptyset
while T has fewer than n-1 edges do
  (u, v) ← A.deleteMin() // edge with smallest weight
  C(u)← DS.findCluster(u);
  C(v) \leftarrow DS.findCluster(v);
 if C(u) \neq C(v) then
    add edge (u, v) to T;
    DS.insert(DS.union(C(v), C(u))); // merge two clusters
 end
end
return T
```

Disjoint-Set Data Structure

- Given a set of elements, it is often useful to break them up or partition them into a number of separate, nonoverlapping sets
- A disjoint-set data structure is a data structure that keeps track of such a partitioning
- There are three useful operations on such a data structure:
 - Find: Determine which set a particular element is in. Also useful for determining if two elements are in the same set.
 - Union: Combine or merge two sets into a single set.
 - MakeSet: Creates a set containing only a given element

Disjoint Set Data Structure

- The universe consists of n elements, named 1, 2,
 ..., n
- The ADT is a collection of sets of elements
- Each element is in exactly one set
 - Sets are disjoint
 - To start, each set contains one element
- Each set has a name
 - Which is the name of one of its elements
 - Any name of one of its elements will do

Disjoint Set Operations

find(elementName)

Returns the name of the unique set that contains the given element

union(setName1, setName2)

Merges two sets and replaces them with one

Time complexity analysis

 Involves analyzing the amortized worst-case running time over a sequence of f find and u union operations

Disjoint Set Implementation I

- Create a linked list for each set and choose the element at the head of the list as the representative
- *MakeSet* creates a list of one element
- Union simply appends two lists, a constant-time operation
- Find requires linear time (i.e., may search entire list)
- A sequence of m union-find operations takes time O(mn). The amortized time per operation is O(n).

How should we represent the sets?

- Each set is a rooted tree
- Each element of a set corresponds to a node in a tree
- Canonical element (= name of set) is the root of the tree
- The textbook has 3, increasingly better, ways of implementing this.
 - 1. quick-find
 - 2. quick-union
 - 3. weighted quick-union

Quick-find [eager approach]

Data structure.

• Integer array id[] of length n.

if and only if

• Interpretation: id[p] is the id of the component containing p.

	0	1	2	3	4	5	6	7	8	9
id[]	0	1	1	8	8	0	0	1	8	8

0, 5 and 6 are connected 1, 2, and 7 are connected 3, 4, 8, and 9 are connected

Quick-find [eager approach]

Data structure.

- Integer array id[] of length n.
- Interpretation: id[p] is the id of the component containing p.

	0	1	2	3	4	5	6	7	8	9
id[]	0	1	1	8	8	0	0	1	8	8

Find. What is the id of p?

Connected. Do p and q have the same id?

$$id[6] = 0$$
; $id[1] = 1$
6 and 1 are not connected

Union. To merge components containing p and q, change all entries whose id equals id[p] to id[q].

problem: many values can change

Cost model. Number of array accesses (for read or write).

algorithm	initialize	union	find	connected
quick-find	N	N	1	1

order of growth of number of array accesses

quadratic

Union is too expensive. It takes N^2 array accesses to process a sequence of N union operations on N objects.

Quick-union [lazy approach]

Data structure.

- Integer array id[] of length n.
- Interpretation: id[i] is parent of i.
- Root of i is id[id[id[...id[i]...]]].

								7		
id[]	0	1	9	4	9	6	6	7	8	9

keep going until it doesn't change (algorithm ensures no cycles)

parent of 3 is 4 root of 3 is 9

Quick-union [lazy approach]

Data structure.

- Integer array id[] of length n.
- Interpretation: id[i] is parent of i.
- Root of i is id[id[id[...id[i]...]]].

Find. What is the root of p?

Connected. Do p and q have the same root?

Union. To merge components containing p and q, set the id of p's root to the id of q's root.

root of 3 is 9

root of 5 is 6

3 and 5 are not connected

Cost model. Number of array accesses (for read or write).

algorithm	initialize	union	find	connected
quick-find	N	N	1	1
quick-union	N	N †	N	N

† includes cost of finding roots

Quick-find defect.

• Union too expensive (N array accesses).

Quick-union defect.

- Trees can get tall.
- Find/connected too expensive (could be N array accesses).

Weighted quick-union.

- Modify quick-union to avoid tall trees.
- Keep track of size of each tree (number of objects).
- Balance by linking root of smaller tree to root of larger tree.

Weighted quick-union demo

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 id[]
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

union(4, 3)

 $\left(3\right) \quad \left(4\right) \quad \left(5\right) \quad \left(6\right)$

1 2 3 4 5 6 0 id[]

union(4, 3)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 id[]
 0
 1
 2
 4
 4
 5
 6
 7
 8
 9

union(3, 8)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 id[]
 0
 1
 2
 4
 4
 5
 6
 7
 4
 9

union(6, 5)

union(6, 5)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 id[]
 0
 1
 2
 4
 4
 6
 6
 7
 4
 9

union(9, 4)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 id[]
 0
 1
 2
 4
 4
 6
 6
 7
 4
 4

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 id[]
 0
 1
 2
 4
 4
 6
 6
 7
 4
 4

union(2, 1)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 id[]
 0
 1
 2
 4
 4
 6
 6
 7
 4
 4

union(2, 1)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 id[]
 0
 2
 2
 4
 4
 6
 6
 7
 4
 4

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 id[]
 0
 2
 2
 4
 4
 6
 6
 7
 4
 4

union(5, 0)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 id[]
 6
 2
 2
 4
 4
 6
 6
 7
 4
 4

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 id[]
 6
 2
 2
 4
 4
 6
 6
 7
 4
 4

union(7, 2)

	0	1	2	3	4	5	6	7	8	9
id[]	6	2	2	4	4	6	6	7	4	4

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 id[]
 6
 2
 2
 4
 4
 6
 6
 2
 4
 4

	0	1	2	3	4	5	6	7	8	9
id[]	6	2	2	4	4	6	6	2	4	4

union(6, 1)

	0	1	2	3	4	5	6	7	8	9
id[]	6	2	2	4	4	6	6	2	4	4

union(6, 1)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 id[]
 6
 2
 6
 4
 4
 6
 6
 2
 4
 4

	0	1	2	3	4	5	6	7	8	9
id[]	6	2	6	4	4	6	6	2	4	4

union(7, 3)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 id[]
 6
 2
 6
 4
 4
 6
 6
 2
 4
 4

union(7, 3)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 id[]
 6
 2
 6
 4
 6
 6
 6
 2
 4
 4

Quick-union and weighted quick-union example

equick-union The second displace to use: 5.11

weighted

Quick-union and weighted quick-union (100 sites, 88 union() operations).

Data structure. Same as quick-union, but maintain extra array sz[i] to count number of objects in the tree rooted at i.

Find/connected. Identical to quick-union.

Union. Modify quick-union to:

- Link root of smaller tree to root of larger tree.
- Update the sz[] array.

Running time.

- Find: takes time proportional to depth of p.
- Union: takes constant time, given roots.

Proposition. Depth of any node x is at most $\log n$.

log = base-2 logarithm

$$N = 11$$

$$depth(x) = 3 \leq log n$$

Running time.

- Find: takes time proportional to depth of p.
- Union: takes constant time, given roots.

log = base-2 logarithm

Proposition. Depth of any node x is at most $\log n$.

Pf. What causes the depth of object *x* to increase?

Increases by 1 when tree T_1 containing x is merged into another tree T_2 .

- The size of the tree containing x at least doubles since $|T_2| \ge |T_1|$.
- Size of tree containing x can double at most $\log n$ times. Why?

Running time.

• Find: takes time proportional to depth of p.

Union: takes constant time, given roots.

Proposition. Depth of any node x is at most $\log n$.

algorithm	initialize	union	find	connected	
quick-find	n	n	1	1	
quick-union	n	n †	n	n	
weighted QU	n	log n †	log n	log n	

† includes cost of finding roots

- Q. Stop at guaranteed acceptable performance?
- A. No, easy to improve further.

Bottom line. Now, find() has the side effect of compressing the tree.

Two-pass implementation: add second loop to find() to set the id[] of each examined node to the root.

Simpler one-pass variant (path halving): Make every other node in path point to its grandparent.

```
public int find(int i)
{
    while (i != id[i])
    {
        id[i] = id[id[i]];
        i = id[i];
    }
    return i;
}
```

In practice. No reason not to! Keeps tree almost completely flat.

Proposition. [Hopcroft-Ulman, Tarjan] Starting from an empty data structure, any sequence of m union—find ops on n objects takes $O(n + m \log^* n)$ array accesses.

- Analysis can be improved to $n + m \alpha(n)$.
- Simple algorithm with fascinating mathematics.

n	log* n
1	0
2	1
4	2
16	3
65536	4
2^{65536}	5

iterated log function

Linear-time algorithm for m union-find ops on n objects?

- Cost within constant factor of reading in the data.
- In theory, WQUPC is not quite linear.
- In practice, WQUPC is linear.

Amazing fact. [Fredman-Saks] No linear-time algorithm exists.

log*(n): The iterated logarithm

• $\log^*(n) = \min\{i : t(i) \ge n\}$ is the inverse of the tower-of-twos function t(i) where

$$t(i) = \begin{cases} 1 & \text{if } i = 0 \\ 2^{t(i-1)} & \text{if } i \ge 1 \end{cases}$$

$\alpha(n)$: inverse of Ackerman function A(n)

 $\alpha(n) = \min\{m : A(m) \ge n\}$ where $A(n) = A_n(n)$ and

$$A_{i}(n) = \begin{cases} 2n & \text{for } i = 0 \text{ and } n \ge 0 \\ A_{i-1}(2) & \text{for } i \ge 1 \text{ and } n = 1 \\ A_{i-1}(A_{i}(n-1)) & \text{for } i \ge 1 \text{ and } n \ge 2 \end{cases}$$

$\alpha(n)$: inverse Ackerman function

$$A(2) = A_2(2) = A_1(A_2(1)) = A_1(A_1(2))$$

$$= A_1(A_0(A_1(1))) = A_1(A_0(2^2))$$

$$= A_1(2 \cdot 2^2) = A_1(2^3) = A_0(A_1(2^3 - 1))$$

$$= A_0(A_0(A_1(2^3 - 2))) = A_0(A_0(A_0(A_1(2^3 - 3))))$$

$$= A_0(A_0(A_0(A_0(A_1(2^3 - 4)))))$$

$$= A_0(A_0(A_0(A_0(A_0(A_1(2^3 - 5))))))$$

$$= A_0(A_0(A_0(A_0(A_0(A_0(A_1(2^3 - 5))))))$$

$$= A_0(A_0(A_0(A_0(A_0(A_0(A_0(A_1(2^3 - 5)))))))$$

$$= A_0(A_0(A_0(A_0(A_0(A_0(A_0(A_0(A_1(2^3 - 5)))))))))$$

$\alpha(n)$: inverse Ackerman function

$$= A_0(A_0(A_0(A_0(A_0(A_0(A_0(A_0(A_1(1))))))))$$

$$= A_0(A_0(A_0(A_0(A_0(A_0(A_0(2^2))))))))$$

$$= A_0(A_0(A_0(A_0(A_0(A_0(2^3)))))))$$

$$= A_0(A_0(A_0(A_0(A_0(2^4)))))$$

$$= A_0(A_0(A_0(A_0(2^5))))$$

$$= A_0(A_0(A_0(A_0(2^5))))$$

$$= A_0(2^8) = 2^9$$

Key point. Weighted quick union (and/or path compression) makes it possible to solve problems that could not otherwise be addressed.

algorithm	worst-case time
quick-find	O(m n)
quick-union	O(m n)
weighted QU	$O(n + m \log n)$
QU + path compression	$O(n + m \log n)$
weighted QU + path compression	$O(n + m \log^* n)$

order of growth for m union-find operations on a set of n objects

Ex. [109 unions and finds with 109 objects]

- WQUPC reduces time from 30 years to 6 seconds.
- Supercomputer won't help much; good algorithm enables solution.

Kruskal's algorithm: Java implementation

```
public class KruskalMST
   private Queue < Edge > mst = new Queue < Edge > ();
   public KruskalMST(EdgeWeightedGraph G)
      MinPQ<Edge> pq = new MinPQ<Edge>(G. edges());
                                                                              build priority queue
                                                                                    (or sort)
      UF uf = new UF(G. V());
      while (!pq. isEmpty() && mst. size() \langle G.V()-1 \rangle
         Edge e = pq. delMin();
                                                                             greedily add edges to MST
          int v = e.either(), w = e.other(v);
                                                                             edge v-w does not create cycle
          if (!uf.connected(v, w))
                                                                               merge sets
             uf.union(v, w);
                                                                              add edge to MST
             mst.enqueue(e);
   public Iterable<Edge> edges()
     return mst; }
```