CIRCUITOS INTEGRADOS E IMPRESOS (2015-2016)

Grado en Ingeniería Informática Universidad de Granada

LASI - El inversor CMOS

Ricardo Figueiredo Minelli

5 de julio de 2016

Índice

1.	Introducción	3
2.	Tiempos de respuesta del inversor CMOS	6
3.	Tiempo de bajada	6
4.	Tiempo de subida	7
ĺn	idice de figuras	
	1.1. NAND	
	1.2. Inversor CMOS	
	1.3. Transición de estados	
	1.4. Gráfica de transición de estados	
	3.1. Tiempo bajada	6
	4.1. Tiempo subida	7

1. Introducción

Figura 1.1: NAND

El inversor CMOS consta de dos transistores, uno canal p y otro canal n. Cuando la tensión de entrada, Vin, es 0, el transistor p conduce y el transistor n está en corte; con lo que se produce el paso de corriente desde el nodo conectado a VDD (drenador del transistor p) hacia el nodo de salida, que a su vez provoca que la tensión de éste suba hasta alcanzar un valor cercano a VDD. Dicho valor se identifica con un 1 lógico. Por el contrario, cuando Vin=VDD, el transistor p se halla en corte y el n conduce, con lo que la corriente fluye ahora de Vout a tierra (0 lógico).

Figura 1.2: Inversor CMOS

En nuestro fichero ".cir" hemos definido:

Listing 1: Nand.cir

```
* Start of C:\Lasi7\Mosis_rules\Nand.txt
V1 Va O PULSE(0 1.2 .5n 1p 1p 1n 2n)
V2 Vb O PULSE(0 1.2 .5n 1p 1p .5n 1n)
V3 Vdd O 1.2
.tran 4n
.backanno
```

* End of C:\Lasi7\Mosis_rules\Nand.txt

Figura 1.3: Transición de estados

Con este fichero "Nand.cir" tenemos las siguiente transiciones de estados:

Figura 1.4: Gráfica de transición de estados

2. Tiempos de respuesta del inversor CMOS

Las dimensiones W, L de los transistores p y n, así como el valor de la capacidad del nodo de salida determinan los tiempos de subida y bajada del inversor.

3. Tiempo de bajada

Se define el tiempo de bajada como el tiempo necesario para que, cuando Vin=VDD(1 lógico), la capacidad de salida pase del valor 1,2.VDD a 0,6.VDD, aproximadamente 36 ps en nuestro inversor.

Figura 3.1: Tiempo bajada

4. Tiempo de subida

Se define el tiempo de subida como el tiempo necesario para que, cuando Vin=0, la capacidad de salida pase del valor 0,1.VDD a 0,6.VDD, aproximadamente 21 ps en nuestro inversor.

Figura 4.1: Tiempo subida