Álgebra Linear (ALI0001 – CCI-192-02U)

Intersecção e Soma de Subespaços Vetoriais

Professor: Marnei Luis Mandler

Aula do dia 17 de abril de 2023.

Intersecção de Subespaços Vetoriais

Dados dois subespaços vetoriais de um mesmo espaço vetorial V, podemos efetuar operações entre eles, como a intersecção e a união. Começamos com a intersecção:

Definição: Sejam W_1 e W_2 subespaços vetoriais de um mesmo espaço vetorial V. A intersecção entre W_1 e W_2 é definida por

$$W_1 \cap W_2 = \{v \in V; v \in W_1 \mid e \mid v \in W_2\}.$$

Interpretação:

Veja que $W_1 \cap W_2$ é formado por todos os elementos que pertencem simultaneamente a W_1 e a W_2 .

Observação:

Como $\vec{0}_V \in W_1 \text{ e } \vec{0}_V \in W_2$ temos que $\vec{0}_V \in W_1 \cap W_2.$ Logo $W_1 \cap W_2 \neq \phi.$

Teorema da Interseção

<u>Teorema:</u> Se W_1 e W_2 são subespaços vetoriais de um mesmo espaço vetorial V, então a intersecção $W_1 \cap W_2$ também é um subespaço vetorial de V.

Justificativa: Vamos verificar que $W_1 \cap W_2$ é fechado para a adição e para a multiplicação por escalar.

Sejam $u, v \in W_1 \cap W_2$. Logo, pela definição de intersecção, temos que $u, v \in W_1$ e $u, v \in W_2$.

Como W_1 e W_2 são subespaços vetoriais (fechados para a adição), obtemos que

$$u + v \in W_1$$
 e $u + v \in W_2$.

Portanto

$$u + v \in W_1 \cap W_2$$
.

Ainda, se $k \in \mathbb{R}$ e $u \in W_1 \cap W_2$ temos que

$$u \in W_1$$
 e $u \in W_2$

E como W_1 e W_2 são subespaços vetoriais, obtemos que $ku \in W_1$ e $ku \in W_2$.

Assim

 $ku \in W_1 \cap W_2$.

Por ser fechado para a adição e para a multiplicação por escalar, $W_1 \cap W_2$ também é um subespaço vetorial de V. Por isso, podemos obter bases e a dimensão para $W_1 \cap W_2$.

Exercícios: base e dimensão de subespaços

Exercício 1) Em $V=\mathbb{R}^4$ com as operações usuais, considere os subespaços vetoriais dados por

$$W_1 = \{(x, y, z, t) \in \mathbb{R}^4; \ x - 2y + z + 3t = 0 \ \text{e} \ 2x - 3y - z + 5t = 0\}$$
$$W_2 = \{(x, y, z, t) \in \mathbb{R}^4; \ 3x - y + 19z + 2t = 0\}.$$

Determine uma base e a dimensão para:

a)
$$W_1$$

c)
$$W_1 \cap W_2$$

Solução: todos os itens do exercício foram resolvidos durante a aula.

A seguir, há outros exemplos similares, resolvidos detalhadamente.

Exemplo 1) Em $V=\mathbb{R}^4$ considere os subespaços vetoriais dados por

$$W_1 = \{(x, y, z, t) \in \mathbb{R}^4; \ x + 4y + 3z + t = 0\}$$

$$W_2 = \{(x, y, z, t) \in \mathbb{R}^4; 2x - 3y + z - 2t = 0 \text{ e } x - 3y + 3t = 0\}.$$

Determine uma base e a dimensão de:

a)
$$W_1$$

b)
$$W_2$$

c)
$$W_1 \cap W_2$$

Solução: a) Começamos obtendo os geradores de W_1 .

Seja $u=(x,y,z,t)\in W_1$. Logo, pela condição de W_1 temos que

$$x + 4y + 3z + t = 0$$

ou seja

$$t = -x - 4y - 3z$$

 $x, y, z \in \mathbb{R}$. Assim, substituindo em u e isolando as variáveis livres, obtemos que

$$u = (x, y, z, -x - 4y - 3z) = x(1,0,0,-1) + y(0,1,0,-4) + z(0,0,1,-3).$$

Portanto, qualquer $u\in W_1$ é uma combinação linear dos elementos destacados em vermelho, que então são os geradores de W_1 , ou seja:

$$W_1 = ger\{(1,0,0,-1), (0,1,0,-4), (0,0,1,-3)\}.$$

Além disso, é fácil ver que os gerador de W_1 são LI (verifique como exercício).

lacktriangle Portanto, uma base para W_1 é dada por

$$\beta_{W_1} = \{(1,0,0,-1), (0,1,0,-4), (0,0,1,-3)\}.$$

Como encontramos três elementos na base para W_1 , temos que $\dim(W_1) = 3$.

b) Para obter os geradores de W_2 , seja $u=(x,y,z,t)\in W_2$. Logo, pela condição de W_2 :

$$2x - 3y + z - 2t = 0$$
 e $x - 3y + 3t = 0$.

Da segunda condição, obtemos

$$x = 3y - 3t$$

e substituindo na primeira condição, obtemos

$$2(3y - 3t) - 3y + z - 2t = 0 \Rightarrow 6y - 6t - 3y + z - 2t = 0,$$

$$\Rightarrow$$
 $3y - 8t + z = 0$ \Rightarrow $z = -3y + 8t$.

com $y, t \in \mathbb{R}$. Substituindo em u = (x, y, z, t) e isolando as variáveis livres, obtemos que:

$$u = (3y - 3t, y, -3y + 8t, t) = y(3,1, -3,0) + t(-3,0,8,1).$$

Portanto, qualquer $u\in W_2$ é uma combinação linear dos elementos destacados em vermelho, que então são os geradores de W_2 , ou seja:

$$W_2 = ger\{(3,1,-3,0), (-3,0,8,1)\}.$$

lacksquare Além disso, é fácil ver que os gerador de W_2 são LI. (verifique como exercício).

 $lue{\hspace{0.1cm}}$ Portanto, uma base para W_2 é dada por

$$\beta_{W_2} = \{(3,1,-3,0), (-3,0,8,1)\}.$$

- Como encontramos dois elementos na base para W_2 , temos que $\dim(W_2) = 2$.
- c) Para obter os geradores de $W_1 \cap W_2$, consideramos $u = (x, y, z, t) \in W_1 \cap W_2$.

Logo, pela definição de interseção, temos que

$$\begin{cases} u \in W_1 \\ e \\ u \in W_2 \end{cases} \Rightarrow \begin{cases} x + 4y + 3z + t = 0 \\ 2x - 3y + z - 2t = 0 \\ x - 3y + 3t = 0 \end{cases}$$

- Precisamos resolver esse sistema linear homogêneo.
- Note que já obtivemos, das duas últimas equações, que

$$x = 3y - 3t$$
 e $z = -3y + 8t$.

Substituindo-as na primeira equação, obtemos:

$$(3y - 3t) + 4y + 3(-3y + 8t) + t = 0$$

ou seja

$$3y - 3t + 4y + -9y + 24t + t = 0$$

Isto é

$$-2y + 22t = 0 \qquad \Rightarrow \qquad y = 11t.$$

Veja que obter a intersecção $W_1 \cap W_2$ significa resolver um sistema linear.

Substituindo y = 11t em x = 3y - 3t obtemos

$$x = 3.11t - 3t = 30t$$

 \Rightarrow e em z = -3y + 8t, encontramos

$$z = -3.11t + 8t = -25t$$

Dessa forma, voltando em u = (x, y, z, t) e isolando a variável que restou livre, obtemos que

$$u = (x, y, z, t) = (30t, 11t, -25t, t)$$

= $t(30, 11, -25, 1)$

com $t\in\mathbb{R}$. Portanto, qualquer $u\in W_1\cap W_2$ é uma combinação linear do elemento em vermelho, que então é o único gerador de $W_1\cap W_2$, ou seja,

$$W_1 \cap W_2 = ger\{(30, 11, -25, 1)\}.$$

Além disso, como temos um único gerador, que é não nulo, ele é obrigatoriamente LI. Portanto uma base para $W_1 \cap W_2$ é dada por

$$\beta_{W_1 \cap W_2} = \{(30, 11, -25, 1)\}$$

 \longrightarrow e como encontramos apenas um elemento na base de $W_1 \cap W_2$, temos que

$$\dim(W_1 \cap W_2) = 1.$$

União de Subespaços Vetoriais

Se W_1 e W_2 são subespaços vetoriais de um mesmo espaço vetorial V, a união dos subespaços é dada por

Interpretação:

$$W_1 \cup W_2 = \{v \in V; v \in W_1 \text{ ou } v \in W_2\}$$

Veja que $W_1 \cup W_2$ é formado por todos os elementos que pertencem a pelo menos um dos subespaços, W_1 ou W_2 .

- Questão: $W_1 \cup W_2$ é um subespaço vetorial de V?
- Veremos que não necessariamente, pois podemos tomar $u, v \in W_1 \cup W_2$ de tal forma que $u + v \notin W_1 \cup W_2$, conforme esquematizado acima e formalizado no próximo exemplo.

União de Subespaços Vetoriais

Exemplo 2) Em $V=\mathbb{R}^2$, considere os subespaços vetoriais dados por

$$W_1 = \{(x, y) \in \mathbb{R}^2; y = 3x\}$$
 e $W_2 = \{(x, y) \in \mathbb{R}^2; y = -2x\}.$

 \longrightarrow Verifique se $W_1 \cup W_2$ também é um subespaço vetorial de V.

Solução: Sejam $u=(x,y)\in W_1$ e $v=(a,b)\in W_2$. Pelas condições algébricas, temos que

$$u = (x, 3x)$$
 e $v = (a, -2a)$.

Além disso, por definição de união, temos que $u,v\in W_1\cup W_2$. Como

$$u + v = (x, 3x) + (a, -2a) = (x + a, 3x - 2a)$$

é tal que

$$3x - 2a \neq 3x + 3a = 3.(x + a) \Rightarrow u + v \notin W_1$$

e

$$3x - 2a \neq -2x - 2a = -2(x + a) \Rightarrow u + v \notin W_2.$$

obtemos que

$$u + v \notin W_1 \cup W_2$$
.

Assim, $W_1 \cup W_2$ não é fechado para a adição.

Portanto, $W_1 \cup W_2$ NÃO é um subespaço vetorial de \mathbb{R}^2 .

Soma de Subespaços Vetoriais

Portanto, a união $W_1 \cup W_2$ de subespaços não é, necessariamente, um subespaço vetorial. Por isso, definimos uma nova operação entre os subespaços W_1 e W_2 : a soma $W_1 + W_2$.

<u>Definição</u>: Sejam W_1 e W_2 subespaços vetoriais de um mesmo espaço vetorial V.

A soma entre W_1 e W_2 é definida como o conjunto

$$W_1 + W_2 = \{v \in V; \ v = u + w, \text{com } u \in W_1 \text{ e } w \in W_2\}.$$

Teorema 1: Se W_1 e W_2 são subespaços vetoriais de V então a soma $W_1 + W_2$ também é um subespaço vetorial de V.

Justificativa: Vamos verificar que W_1+W_2 é fechado para a adição e para a multiplicação por escalar.

Sejam $v_1, v_2 \in W_1 + W_2$.

Logo existem elementos $u_1, u_2 \in W_1$ e elementos $w_1, w_2 \in W_2$ tais que

$$v_1 = u_1 + w_1$$
 e $v_2 = u_2 + w_2$

Assim,

$$v_1 + v_2 = (u_1 + w_1) + (u_2 + w_2) = (u_1 + u_2) + (w_1 + w_2) \in W_1 + W_2,$$

pois $u_1+u_2\in W_1$ e $w_1+w_2\in W_2$, já que W_1 e W_2 são fechados para a adição.

Soma de Subespaços Vetoriais

 \square Da mesma forma, para $k \in \mathbb{R}$ temos que

$$kv_1 = k(u_1 + w_1) = ku_1 + kw_1 \in W_1 + W_2,$$

pois $ku_1\in W_1$ e $kw_1\in W_2$, já que W_1 e W_2 são fechados para a multiplicação por escalar.

lacksquare Portanto, W_1+W_2 é sempre um subespaço vetorial de V.

 $lue{T}$ Questão: Como obter os geradores do espaço soma W_1+W_2 ?

Teorema 2: Sejam W_1 e W_2 subespaços vetoriais de V dados por

$$W_1 = ger\{u_1, u_2, u_3, ..., u_n\}$$

e

$$W_2 = ger\{w_1, w_2, w_3 ..., w_m\}.$$

Então o subespaço soma W_1+W_2 é gerado pela união entre os geradores de W_1 e os geradores de W_2 , ou seja:

$$W_1 + W_2 = ger\{W_1\} \cup ger\{W_2\} = ger\{u_1, u_2, u_3, ..., u_n, w_1, w_2, w_3, ..., w_m\}.$$

Justificativa: Seja $v \in W_1 + W_2$. Logo

$$v = u + w$$

 $rac{1}{m}$ com $u \in W_1$ e $w \in W_2$.

O Teorema indica que, para obter os geradores de W_1+W_2 não é necessário somar quaisquer elementos.

Basta unir os conjuntos geradores de W_1 e W_2 , que são previamente conhecidos.

Soma de Subespaços Vetoriais

Como
$$u \in W_1 = ger\{u_1, u_2, u_3, ..., u_n\}$$
 temos que

$$u = a_1 u_1 + a_2 u_2 + a_3 u_3 + \dots + a_n u_n.$$

Como $w \in W_2 = ger\{w_1, w_2, w_3, ..., w_m\}$ temos que

$$w = b_1 w_1 + b_2 w_2 + b_3 w_3 + \dots + b_m w_m.$$

Então, somando u e w, obtemos

$$v = u + w = (a_1u_1 + a_2u_2 + a_3u_3 + \dots + a_nu_n) + (b_1w_1 + b_2w_2 + b_3w_3 + \dots + b_mw_m)$$
$$= a_1u_1 + a_2u_2 + a_3u_3 + \dots + a_nu_n + b_1w_1 + b_2w_2 + b_3w_3 \dots + b_mw_m.$$

lacktriangle Logo, v é uma combinação linear entre os geradores de W_1 e os geradores de W_2 , ou seja,

$$v \in ger\{u_1, u_2, u_3, \dots, u_n, w_1, w_2, w_3, \dots, w_m\}.$$

Portanto,

$$W_1 + W_2 = ger\{u_1, u_2, u_3, \dots, u_n, w_1, w_2, w_3, \dots, w_m\} = ger\{W_1\} \cup ger\{W_2\}.$$

ATENÇÃO: Os geradores para W_1+W_2 não são necessariamente LI e, portanto, não necessariamente formam uma base para o espaço soma. É preciso verificar se eles são LI ou LD e, em caso de LD, descartar os geradores associados às variáveis livres.

Exemplo 2) Em $V=\mathbb{R}^4$ considere os subespaços vetoriais W_1 e W_2 dados por

$$W_1 = \{(x, y, z, t) \in \mathbb{R}^4; 3x + 4y - 4z + t = 0 \text{ e } 2x + 3y - z + 6t = 0\}$$
$$W_2 = \{(x, y, z, t) \in \mathbb{R}^4; 7x - y - 62z - 2t = 0\}.$$

Determine uma base e a dimensão para:

a)
$$W_1 \cap W_2$$
 b) $W_1 + W_2$.

b)
$$W_1 + W_2$$
.

Solução: a) Seja $u=(x,y,z,t)\in W_1\cap W_2$. Logo, por definição de intersecção, temos que

$$\begin{cases} u \in W_1 \\ e \\ u \in W_2 \end{cases} \Rightarrow \begin{cases} 3x + 4y - 4z + t = 0 \\ 2x + 3y - z + 6t = 0 \\ 7x - y - 62z - 2t = 0 \end{cases}$$

Resolvendo o sistema homogêneo por escalonamento da sua matriz ampliada:

$$[A \mid 0] = [A] = \begin{bmatrix} 3 & 4 & -4 & 1 \\ 2 & 3 & -1 & 6 \\ 7 & -1 & -62 & -2 \end{bmatrix} \xrightarrow{L_1 \to L_1 - L_2} \sim \begin{bmatrix} 1 & 1 & -3 & -5 \\ 2 & 3 & -1 & 6 \\ 7 & -1 & -62 & -2 \end{bmatrix} \xrightarrow{L_2 \to L_2 - 2L_1} \xrightarrow{L_3 \to L_3 - 7L_1}$$
$$\sim \begin{bmatrix} 1 & 1 & -3 & -5 \\ 0 & 1 & 5 & 16 \\ 0 & -8 & -41 & 33 \end{bmatrix} \xrightarrow{L_3 \to L_3 + 8L_2} \sim \begin{bmatrix} 1 & 1 & -3 & -5 \\ 0 & 1 & 5 & 16 \\ 0 & 0 & -1 & 161 \end{bmatrix}$$

Resolvendo o sistema equivalente obtido:

$$\begin{cases} x + y - 3z - 5t = 0 \\ y + 5z + 16t = 0 \\ -z + 161t = 0 \end{cases} \Rightarrow \begin{cases} x = -y + 3z + 5t = -(-821t) + 3(161t) + 5t = 1309t \\ y = -5z - 16t = -5(161t) - 16t = -821t \\ z = 161t \end{cases}$$

🕶 Assim

$$u = (x, y, z, t) \in W_1 \cap W_2$$

é tal que

$$u = (1309t, -821t, 161t, t) = t(1309, -821, 161, 1).$$

em que $t \in \mathbb{R}$ (variável livre), foi evidenciada. Portanto, qualquer elemento de $W_1 \cap W_2$ é uma combinação linear do elemento destacado em vermelho, que é o gerador desejado. Logo

$$W_1 \cap W_2 = ger\{(1309, -821, 161, 1)\}.$$

Além disso, como temos um único gerador, que é obviamente não nulo, ele é obrigatoriamente LI.

 $lue{\Gamma}$ Portanto uma base para $W_1 \cap W_2$ é dada por

$$\beta_{W_1 \cap W_2} = \{(1309, -821, 161, 1)\}$$
$$\dim(W_1 \cap W_2) = 1.$$

e

 $lue{lue}$ b) Para obter uma base para W_1+W_2 , começamos obtendo seus geradores.

Como pelo Teorema 2 temos que

$$W_1 + W_2 = ger\{W_1\} \cup ger\{W_2\},$$

Precisamos primeiro encontrar os geradores para cada subespaço separadamente.

Para
$$W_1$$
: Seja $u = (x, y, z, t) \in W_1$.

Logo, pela condição algébrica dada:

$$3x + 4y - 4z + t = 0$$
 e $2x + 3y - z + 6t = 0$.

Resolvendo o sistema homogêneo por escalonamento da matriz dos coeficientes:

$$[A] = \begin{bmatrix} 3 & 4 & -4 & 1 \\ 2 & 3 & -1 & 6 \end{bmatrix} \xrightarrow{L_1 \to L_1 - L_2} \sim \begin{bmatrix} 1 & 1 & -3 & -5 \\ 2 & 3 & -1 & 6 \end{bmatrix} \xrightarrow{L_2 \to L_2 - 2L_1} \sim \begin{bmatrix} 1 & 1 & -3 & -5 \\ 0 & 1 & 5 & 16 \end{bmatrix}$$

Interpretando a matriz escalonada:

$$\begin{cases} x + y - 3z - 5t = 0 \\ y + 5z + 16t = 0 \end{cases} \Rightarrow \begin{cases} x = -y + 3z + 5t \\ y = -5z - 16t \end{cases} = -(-5z - 16t) + 3z + 5t \\ x = 8z + 21t \end{cases}$$

 \square Assim, substituindo em u, obtemos

$$u = (x, y, z, t) = (8z + 21t, -5z - 16t, z, t) = z(8, -5, 1, 0) + t(21, -16, 0, 1).$$

em que $z, t \in \mathbb{R}$ (variáveis livres) foram evidenciadas.

Portanto
$$W_1 = ger\{(8, -5, 1, 0), (21, -16, 0, 1)\}.$$

Os elementos destacados em vermelho são os geradores para W_1 .

lacksquare Além disso, é fácil ver que os geradores de W_1 são LI. (verifique como exercício).

lacktriangle Portanto, uma base para W_1 é dada por

$$\beta_{W_1} = \{(8, -5, 1, 0), (21, -16, 0, 1)\}$$

Como são dois elementos na base, temos que

$$\dim(W_1) = 2.$$

Para W_2 : Seja $u=(x,y,z,t)\in W_2$. Logo, pela condição algébrica do subespaço, temos

$$7x - y - 62z - 2t = 0$$

e então

$$y = 7x - 62z - 2t$$

em que $x, z, t \in \mathbb{R}$ (variáveis livres) foram evidenciadas. Logo

geradores para W_2 .

Os elementos destacados

em vermelho são os

$$u = (x, y, z, t) = (x, 7x - 62z - 2t, z, t) = x(1, 7, 0, 0) + z(0, -62, 1, 0) + t(0, -2, 0, 1).$$
 ou seja

$$W_2 = ger\{(1,7,0,0), (0,-62,1,0), (0,-2,0,1)\}.$$

Além disso, é fácil ver que os gerador de W_2 são LI. (verifique como exercício).

Portanto, uma base para W_2 é dada por

$$\beta_{W_2} = \{(1,7,0,0), (0,-62,1,0), (0,-2,0,1)\}$$

e com são três elementos na base, temos que

$$\dim(W_2) = 3.$$

Enfim, podemos obter os geradores para $W_1 + W_2$.

Como obtemos que

$$W_1 = ger\{(8, -5, 1, 0), (21, -16, 0, 1)\}$$

 ϵ

$$W_2 = ger\{(1,7,0,0), (0,-62,1,0), (0,-2,0,1)\},\$$

pelo Teorema 2, obtemos que

$$W_1 + W_2 = ger\{(8, -5, 1, 0), (21, -16, 0, 1), (1, 7, 0, 0), (0, -62, 1, 0), (0, -2, 0, 1)\}.$$

Como desejamos obter uma base para W_1+W_2 , precisamos verificar se os seus geradores são LI. Como W_1+W_2 é um subespaço de \mathbb{R}^4 , temos que

$$\dim(W_1 + W_2) \le \dim(\mathbb{R}^4) = 4.$$

- Portanto, uma base para $W_1 + W_2$ deve ser composta por no máximo 4 elementos.
- Como temos cinco geradores para W_1+W_2 , sabemos então que o conjunto de geradores
- é necessariamente LD e precisamos eliminar pelo menos um elemento do conjunto
- gerador para obter uma base para $W_1 + W_2$.
- Para decidir quantos e quais geradores devem ser descartados, devemos analisar o sistema homogêneo obtido a partir da combinação linear nula dos geradores.

Tomando então:

$$a(8,-5,1,0) + b(21,-16,0,1) + c(1,7,0,0) + d(0,-62,1,0) + e(0,-2,0,1) = (0,0,0,0)$$

obtemos um sistema homogêneo que, de antemão, sabemos que é SPI:

$$\begin{cases} 8a + 21b + c = 0 \\ -5a - 16b + 7c - 62d - 2e = 0 \\ a + d = 0 \\ b + e = 0 \end{cases} \Rightarrow \begin{cases} c = -8a - 21b & c = -8(-d) - 21(-e) \\ a = -d & c = 8d + 21e. \\ b = -e \end{cases}$$

Substituindo na segunda equação: -5(-d) - 16(-e) + 7(8d + 21e) - 62d - 2e = 0

5d + 16e + 56d + 147e - 62d - 2e = 0,

$$-d + 161e = 0$$
. $d = 161e$,

- Com isso, obtemos a=-161e, b=-e, c=1309e, d=161e, com $e\in\mathbb{R}$.
- Portanto, como obtemos um única variável livre, devemos descartar somente um gerador,
- que deve ser o que está associado à variável livre (ou seja, o último vetor), obtemos uma
- \longrightarrow base para $W_1 + W_2$, dada por

$$\beta_{W_1+W_2} = \{(8, -5, 1, 0), (21, -16, 0, 1), (1, 7, 0, 0), (0, -62, 1, 0)\}.$$

Ainda, $\dim(W_1+W_2)=4=\dim(\mathbb{R}^4)$ e podemos afirmar que $W_1+W_2=\mathbb{R}^4$.