ASSIGNMENT-1

Middepogu Manoj:160050075 Pavan Bhargav Tangirala:160050076 11th AUG, 2017 **PROBLEM 1):-** Given n values $\{x_i\}_{i=0}^n$ having mean μ , and median ν and standard deviation σ and n is even.

 $\underline{R.T.P}:-\langle \mu - \nu \rangle \leq \sigma$. Let $|\mu - \nu|$ be P.

$$\langle \mu - \nu \rangle = \left\langle \frac{\sum_{i=1}^{n} x_i}{n} - \nu \right\rangle$$

$$= > \langle \mu - \nu \rangle = \left\langle \frac{\sum_{i=1}^{n} (x_i - \nu)}{n} \right\rangle$$

(Here, <> denotes modulus here.)

As we know that $|\sum_{i=1}^{n} (x_i - \nu)| \le \sum_{i=1}^{n} |x_i - \nu|$. So,nP is less than $\sum_{i=1}^{n} |x_i - \nu|$ and the equation $\sum_{i=1}^{n} |x_i - x|$ has it's minimum at $x = \nu$.

So we can say that $nP \leq \sum_{i=1}^{n} |x_i - \mu|$. We Know that R.M.S \geq A.M for any 2 set of Positive No.'s.

$$So, \sqrt{\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n}} > = \left(\frac{\sum_{i=1}^{n} |x_i - \mu|}{n}\right)$$

$$(i)\sqrt{\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n-1}} > = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n}} > = \left(\frac{\sum_{i=1}^{n} |x_i - \mu|}{n}\right)$$

$$(ii)\left(\frac{\sum_{i=1}^{n} |x_i - \mu|}{n}\right) > = \left(\frac{\sum_{i=1}^{n} |x_i - \nu|}{n}\right)$$

So, We can prove that $\sigma >= |\mu - \nu|$, and the equality happens when all values are equal(from (i)).

PROBLEM 2):- Given 4 sets of n values $\{x_i\}_{i=1}^n$; $\{y_i\}_{i=1}^n$; $\{z_i\}_{i=1}^n$; $\{w_i\}_{i=1}^n$ where $z_i = ax_i + b$; $w_i = cy_i + d$. Proof:-

Let μ_x be the mean of $\{x_i\}_{i=1}^n$ then $a\mu_x + b$ is the mean of $\{z_i\}_{i=1}^n$. Similarly $c\mu_y + d$ is the mean of $\{w_i\}_{i=1}^n$ where μ_y is the mean of $\{y_i\}_{i=1}^n$.

$$r(z,w) = \frac{\sum_{i=1}^{n} (z_{i} - \mu_{z})(w_{i} - \mu_{w})}{\sqrt{\sum_{i=1}^{n} (z_{i} - \mu_{z})^{2} * \sum_{i=1}^{n} (w_{i} - \mu_{w})^{2}}}$$

$$r(z,w) = \frac{\sum_{i=1}^{n} (ax_{i} + b - (a\mu_{x} + b))(cy_{i} + d - (c\mu_{y} + d))}{\sqrt{\sum_{i=1}^{n} (ax_{i} + b - (a\mu_{x} + b))^{2} * \sum_{i=1}^{n} (cy_{i} + d - (c\mu_{y} + d))^{2}}}$$

$$r(z,w) = \frac{\sum_{i=1}^{n} (ax_{i} - a\mu_{x})(cy_{i} - c\mu_{y})}{\sqrt{\sum_{i=1}^{n} (ax_{i} - a\mu_{x})^{2} * \sum_{i=1}^{n} (cy_{i} - c\mu_{y})^{2}}}$$

$$r(z,w) = \frac{(ac) * \sum_{i=1}^{n} (x_{i} - \mu_{x})(y_{i} - \mu_{y})}{\sqrt{(ac)^{2} \sum_{i=1}^{n} (x_{i} - \mu_{x})^{2} * \sum_{i=1}^{n} (y_{i} - \mu_{y})^{2}}}$$

$$r(z,w) = (ac/|ac|) * \frac{\sum_{i=1}^{n} (x_{i} - \mu_{x})(y_{i} - \mu_{y})}{\sqrt{\sum_{i=1}^{n} (x_{i} - \mu_{x})^{2} * \sum_{i=1}^{n} (y_{i} - \mu_{y})^{2}}}$$

By definition of correlation coefficient r for all x,y:-

$$r(x,y) = \frac{\sum_{i=1}^{n} (x_i - \mu_x)(y_i - \mu_y)}{\sqrt{\sum_{i=1}^{n} (x_i - \mu_x)^2 * \sum_{i=1}^{n} (y_i - \mu_y)^2}}$$

(ac/|ac|) is 1 if ab > 0 and -1 if ab < 0. So,r(z,w) = +r(x,y) if ab > 0, i.e., a and b are of same sign. else r(z,w) = -r(x,y) if ab < 0, i.e., a and b are of different sign. **PROBLEM 3):-** Given set of n values $\{x_i\}_{i=1}^n$ and μ is the mean and σ is the standard deviation.

R.T.P:-
$$|x_i - \mu| \le \sigma \sqrt{n-1}$$

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n-1}}$$
So, $\sigma \sqrt{n-1} = \sqrt{\sum_{i=1}^{n} (x_i - \mu)^2}$

$$\sigma \sqrt{n-1} = \sqrt{\frac{\sum_{j=1}^{n} (x_j - \mu)^2}{n-1}} + (x_i - \mu)^2$$

$$(\sigma \sqrt{n-1})^2 - (x_i - \mu)^2 = \sum_{j=1}^{n} (x_j - \mu)^2$$
As, $\sum_{j=1}^{n} (x_j - \mu)^2 >= 0$

$$(\sigma \sqrt{n-1})^2 - (x_i - \mu)^2 >= 0$$
So, $\sigma \sqrt{n-1} >= |x_i - \mu|$

PROBLEM 4):- Given:- C_1 , C_2 , C_3 are events that the Car is behind doors 1,2,3 respectively.

$$P(C-i) = \frac{1}{3}, i \in \{1, 2, 3\}.$$

(i) Z_i be the event that contestant chose door i.

$$P(C_i|Z_i) = \frac{P(C_i.Z_i)}{P(Z_i)}$$

As, C_i and Z_i are independent

$$P(C_i|Z_i) = \frac{P(C_i)P(Z_i)}{P(Z_i)}$$

$$P(C_i|Z_i) = \frac{\frac{1}{3} * \frac{1}{3}}{\frac{1}{3}}$$

So,
$$P(C_i|Z_i) = \frac{1}{3}$$
.

Same for z = 1 so, $P(C_i|Z_1) = \frac{1}{3}$ for all $i \in \{1, 2, 3\}$.

(ii)

$$P(H_3|C1,Z1) = \frac{1}{2}.$$

$$\frac{C}{Z_1}$$
 — —

As the contestant chose door 1 and the car is in door 1 the host has 2 choices door 2 and door 3 as he doesn't choose the door in which there is a car or the door the contestant chose.

$$\overline{Z_1} \stackrel{C}{=} -$$

$$P(H_3|C2,Z1)=1$$

As the contestant chose door 1 and the car is in door 2 host has only one choice i.e., to go with 3.

$$\overline{Z_1} - \underline{C}$$

$$P(H_3|C3,Z1) = 0$$

As the contestant chose door 1 and the car is in door 3 host has only one chance i.e., to go with 2(not 3).So,probability that he chooses door 3 when car is in door 3 and contestant chose door 1 is Zero.

(iii)

$$P(C_2|H_3, Z_1) = \frac{P(H_3|C_2, Z_1) * P(C_2 Z_1)}{P(H_3 Z_1)}$$

We have calculated the value of $P(H3|C_2, Z_1)$ is 1 in (ii) and $P(C_2|Z_1)$ is $\frac{1}{9}$ as C_2 and Z_1 are 2 independent events so $P(C_2|Z_1)$ is equal to $P(C_2) * P(Z_1)$ i.e., $\frac{1}{9}$.

$$\overline{Z_1} \ \underline{H} \ \underline{H} \ | \ \underline{H} \ \overline{Z_1} \ \underline{H} \ | \ \underline{H} \ \underline{H} \ \underline{Z_1}.$$

These are the 3 cases possible for contestant and host for selecting doors respectively .So totally there are 6 cases and probability that host chooses door3 and contestant choosing door 1 is $\frac{1}{6}$ so $P(H_3 \ Z_1)$ is $\frac{1}{6}$

So, the value of $\frac{P(H_3|C_2,Z_1)*P(C_2Z_1)}{P(H_3Z_1)}$ is $\frac{1*1/9}{1/6} = \frac{2}{3}$.

(iv)

$$P(C_1|H_3, Z_1) = \frac{P(H_3|C_1, Z_1) * P(C_1 Z_1)}{P(H_3 Z_1)}$$

$$P(C_1|H_3, Z_1) = \frac{1}{2}$$
 (by ii). $P(C_1|Z_1) = \frac{1}{9}$

As, C_1 and Z_1 are independent $P(C_1Z_1) = P(C_1) * P(Z_1) = \frac{1}{9}$ and $P(H_3, Z_1) = \frac{1}{6}$ as we have calculate in (iii).

So,
$$\frac{P(H3|C_1,Z_1)*P(C_1Z_1)}{P(H_3Z_1)} = \frac{\frac{1}{2}*\frac{1}{9}}{6} = \frac{1}{3}$$
.

(v)

As, $P(C_2|H_3, Z_1) > P(C_1|H_3, Z_1)$ we can say that Shifting is beneficial to win the Car. where $P(C_2|H_3, Z_1)$ and $P(C_1|H_3, Z_1)$ meanings remain as mentioned in the question.

PROBLEM 5):- Given: There is an island where people speak one or more of n different languages. The proportion of people speaking those languages is $p_1, p_2,, p_n$ where for all i $0 \le p_i \le 1$.

The proportion of people who can speak exactly one language, assuming the ability to speak different languages are all independent is

$$\sum_{i=0}^{n} p_i (1 - p_{i+1}) \dots$$

$$= \prod_{i=1}^{n} (1 - p_i) \left(\frac{p_1}{1 - p_1} + \frac{p_2}{1 - p_2} + \dots \right)$$

$$= \prod_{i=1}^{n} (1 - p_i) \left(\sum_{i=1}^{n} \frac{p_i}{1 - p_i} \right)$$

Note:- Because all languages are independent we can say portion that are speaking only language p_i is $p_i * (1 - p_{i+1}) * ...$ i.e., in terms of probability people speaking p_i for every i and not speaking any other language for all j except i.So,we get the above summation.