Санкт-Петербургский государственный университет Математико-механический факультет

Литвинов Степан Сергеевич

Задача кластеризации (k-means)

Практическая работа

Оглавление

1.	Постановка задачи	3
2.	Теорминимум	4
3.	Тесты	5
4.	Доп	6
	4.1. Теорминимум	6
	4.2. Тесты	7
5.	Кол	9

1. Постановка задачи

Построить кластеризации (для одинаковых N и k), используя два разных "расстояния" и разные начальные центры (рандомные и крайние (\boxtimes max/min покоординатам), используя метод k-means.

2. Теорминимум

Выбираем начальные центры кластеров. В наших тестах будем использовать два способа выбора начальных центров: случайный выбор и выбор центров, равных максимуму/минимуму по координатам.

На каждой итерации:

• Определяем кластер, к которому относится точка

$$l_j = \operatorname*{arg\,min}_{i=1,\ldots,k} \rho(x_j, c_i),$$

где l_j — метка кластера, c_i — центр кластера, $\rho(x_j,c_i)$ — функция расстояния. В наших тестах будем использовать две функции расстояния: евклидово расстояние и расстояние городских кварталов.

• Пересчитываем координаты нового центра каждого из кластеров, используя среднее арифметическое.

Продолжаем процесс до тех пор, пока составы кластеров не перестанут меняться.

3. Тесты

Рис. 1: Результаты кластеризации при случайном выборе начальных центров. Функция расстояния: a) евклидово расстояние, b) расстояние городских кварталов.

Рис. 2: Результаты кластеризации при выборе начальных центров, равных максимуму/минимуму по координатам. Функция расстояния: a) евклидово расстояние, b) расстояние городских кварталов.

4. Доп

4.1. Теорминимум

Когда значение k равно 1, сумма квадрата внутри кластера будет большой. По мере увеличения значения k сумма квадратов расстояний внутри кластера будет уменьшаться.

Наконец, мы построим график между значениями k и суммой квадрата внутри кластера, чтобы получить значение k. Мы внимательно рассмотрим график. В какой-то момент значение по оси х резко уменьшится. Эта точка будет считаться оптимальным значением k.

4.2. Тесты

Рис. 3: Манхэттанское расстояние

Рис. 4: Евклидово расстояние

5. Код

Можно посмотреть здесь