3ВІТ З ЛАБОРАТОРНОЇ РОБОТИ №2

RC-CR чотирьохполюсники

Роботу виконали:

Коваль Андрій Терентьєв Максим

Вступ

Мета: Вивчення характеристик пасивних лінійних RC-чотириполюсників, а також перетворення сигналів з їх допомогою.

Обладнання: Осцилограф Hantek DSO3104, інтегруючий RC-ланцюжок, диференціюючий CR-ланцюжок.

Чотирипоолюсник — електрична схема з чотирма виводами, на два з яких подається вхідний сигнал, а з двох інших знімається вихідний сигнал.

Прикладом чотириполюсника є підсилювач, і будь-який прилад зі входом та виходом, призначений для передачі й переробки сигналів. Окремі функціональні блоки в радіотехнічних чи електронних схемах теж є чотириполюсниками. Чотириполюсники можуть мати у своєму складі як лінійні, так і нелінійні елементи.

Для чотириполюсника з лінійними елементами існує лінійний взаємозв'язок між вхідними і вихідними величинами

Хід роботи

Дослідження диференціюючого СК-чотирьохполюсника

Перехідну характеристику чотирьохполюсника визначають як залежність від часу вихідного сигналу, якщо на його вхід подано стандартний сигнал — сходинка одиничної амплітуди. В просторі Лапласа він має вигляд U1 р , а вихідний сигнал визначатиме перехідну характеристику чотирьохполюсника.

1. Схема диференціюючого чотирьохполюсника

2. Диференціюючий чотирьохполюсник. Міадр. Моделювання

Апроксимуючи криву формулою $y = a \cdot \exp(bx)$, отримали:

3. Диференціальний чотирьохполюсник, міандр

Отримуємо значення характеристик: $t_1 = -\ln(2)/b = 14.4527$ мкс, $\tau = -1/b = 48.0169$ мкс, $\omega = 1/2t_1 = 34.5$ к Γ ц

На графіку 4 нами була побудована амплітудно-частотна характеристика для диференціюючого чотирьохполюсника.

$$K = \frac{\omega RC}{\sqrt{1 + (\omega rc)^2}}$$

Нами була отримана та побудована, на графіку 5, фазово-частотна залежність диференціюючого чотирьохполюсника.

$$\varphi = \tan^{-1} \frac{1}{\omega RC}$$

4. Амплітудно — частотна характеристика диференціюю чого чотирь охполюсника

5. Фазово—частотна характеристика диференціюючого чотирьохполюсника

6. Диференціюючий чотирьохполюсник. Синус

7. Диференціюючий чотирьохполюсник. Синус. Моделювання

Дослідження інтегруючого RC-чотирьохполюсника

Для інтегруючого RC-ланцюжка (схема A на рис.1) зображення вихідного сигналу набуває вигляду:

$$U_2(p) = U_1 \frac{1}{p} \frac{1/pC}{(R+1/pC)} = U_1 \frac{1}{p(p\tau+1)}$$

Оригінал (перехідну характеристику) знаходимо по таблицях перетворення Лапласа:

$$U_2(t) = U_1(1 - exp(-t/\tau))$$

6. Схема інтегруючого чотирьохполюсника

7. Інтегруючий чотирьохполосник міандр, моделювання

8. Інтегруючий чотирьохполосник сінус, моделювання

9. Інтегруючий чотирьохполосник, синус

Апроксимуючи криву формулою y = a(1 - exp(-bx)), отримали:

10. Інтегруючий чотирьохполосник, міандр

Отримуємо значення характеристик: $\tau = 1/b = 49.135$ мкс, $t_{\text{H}} = \tau \cdot \text{ln}(9) = 46.88$ мкс, $\omega = b = 20.352$ КГц.

На графіку 11 нами була побудована амплітудно-частотна характеристика для інтегруючого чотирьохполюсника.

$$K = \frac{1}{\sqrt{1 + (\omega rc)^2}}$$

Нами була отримнана та побудована, на графіку 12, фазово-частотна залежність інтегруючого чотирьохполюсника.

$$\varphi = -\tan^{-1} \omega RC$$

11. Амплітудно—частотна характеристика диференціюючого чотирьохполюсника

12.Фазово—частотна характеристика диференціюючого

Порівняння значень τ

Ми обрали конденсатор ємністю C = 68 нФ і резистор опором R = 430 Ом, отже отримане значення τ = RC = 29.24 мс.

Теоретично очікуване τ	29.24мкс
Перехідна характеристика CR — чотирьохполюсника	48.0169 мкс
Перехідна характеристика RC — чотирьохполюсника	49.1350 мкс
Частотна характеристика CR — чотирьохполюсника	47.0376 мкс
Частотна характеристика RC — чотирьохполюсника	48.9310 mec

Висновок

В ході виконання даної роботи нами були досліджені основні характеристики диференціюючого та інтегруючого чотирьохполюєників. а саме перехідні характеристики для синусоїди та міандру, амплітудно-частотну та фазово-частотну характеристики. Із отриманих даних нами були розраховані та порівняні між собою значення параметру τ для інтегруючої та диференціюючої схем. З порівняння видно, що похибка між експериментально визначеними τ відносно мала. Також в роботі ми провели моделювання інтегруючої та диференціюючої схем і порівняли отримані результати із експериметальними залежностями. Нами було досліджено зміну сигналів при проходженні через чотирьохполусники.