Analízis II. vizsgatételek

Vághy Mihály

Tartalomjegyzék

1.	Téte	el	6
	1.1.	Függvénysorozat	6
	1.2.	Pontonként konvergens függvénysorozat	6
	1.3.	Egyenletesen konvergens függvénysorozat	6
		Pontonként konvergens függvénysor	6
	1.5.	Egyenletesen konvergens függvénysor	6
	1.6.	Weierstrass kritérium	7
	1.7.	Összegfüggvény folytonossága	7
	1.8.	Összefüggvény integrálhatósága	7
		Összegfüggvény deriválhatósága	8
2 .	Téte	el	9
	2.1.	Fourier sor	9
		2.1.1. Deriváltfüggvény Fourier sora	9
		Fourier sorok konvergenciája	9
			10
	2.4.	Parseval egyenlőség Fourier soroka	10
_			
3.	Téte		11
		Kétváltozós függvény értelmezése, ábrázolása	
	3.2.	Folytonosság pontban	
	3.3.	Sorozatfolytonosság pontban	
		Bolzano tétel	
		Weierstrass tétel	
	3.6.	Egyenletes folytonosság	11
4.	Téte	e] 1	12
٠.		Függvény határértéke	
	4.2.	Parciális derivált	
		4.2.1. Geometriai jelentés	
	4 3	Parciális deriváltak és folytonosság	
	4.4.	Magasabb rendű parciális deriváltak	
	1.1.	4.4.1. Másodrendű parciális deriváltak	
		4.4.2. <i>n</i> -edrendű parciális deriváltak	
	4.5	Parciális deriválások sorrendje, felcserélhetősége	
	2.0.	2 arctime dollaring bolloring, lorestollinesses &	
5.	Téte	e <mark>l</mark> 1	L4
	5.1.	Teljes differenciálhatóság	14
	5.2.	Kapcsolat a parciális deriváltakkal	14
	5.3.	Gradiens	14
	5.4.	Folytonosság és differenciálhatóság	15
		5.4.1. Tétel	15
		5.4.2. Tétel	15
	5.5.	Érintősík egyenlete, normálvektor	15
6.	Téte		16
	6.1.		16
			16
			16
	6.3.		17
			17
	6.5.	Lagrange-féle középértéktétel	17

7.	Tétel	18
	7.1. Implicitfüggvény-tétel, implicit deriválás	18
	7.2. Másodrendű Taylor formula	
	7.3. Szélsőérték	18
	7.3.1. Szükséges feltétel szélsőérték létezéséhez	19
	7.3.2. Stacionárius pont	19
	7.3.3. Nyeregpont	19
8.		2 0
	8.1. Elégséges feltétel szélsőérték létezéséhez I	20
		20
	8.3. Lokális szélsőérték jellemzése <i>n</i> -változós függvényekre	20
	8.4. Feltételes szélsőérték feladat megfogalmazása	20
	8.4.1. Szemléletes jelentés	20
	8.5. Lagrange-féle multiplikátor szabály	21
9.		22
	9.1. Függvényrendszer, koordinátatranszformáció	
	9.2. Jacobi mátrix, Jacobi determináns	
	9.3. Homogén lineáris transzformáció, Jacobi mátrixa	
	9.4. Invertálhatóság	
	9.5. Inverz rendszer Jacobi mátrixa	
	9.5.1. Tétel	22
10	.m441	2.4
ΤÜ		24
	10.1. Riemann integrál két dimenzióban	
	10.2. Integrálás télalap alakú tartományon	
	10.3. Normáltartomány	
	10.4. Integrálás síkbeli normáltartományon	
	10.5. Áttérés polárkoordinátákra kettős integrálban	25
11	.Tétel	26
	11.1. Polárkoordináták a síkon	
	11.1.1. Jacobi mátrixa	
	11.2. Általános helyettesítés kettős integrálban	
	11.3. Riemann integrál három dimenzióban, szemléletes jelentés	
	11.4. Hármas integrál kiszámítása intervallumon	
	11.5. Hármas integrál kiszámítása normáltartományon	27
12	.Tétel	28
	12.1. Hengerkoordináták, Jacobi determináns	28
	12.2. Gömbi polárkoordináták, Jacobi determináns	28
	12.3. Általános helyettesítés hármas integrálban	28
	12.4. Improprius kettős integrál kiszámítása nem korlátos tartományon	29
	12.4.1. Tétel	29
		29
	12.4.3. Következmény	29
13		30
	1 1 0	30
		30
	13.3. Integrálhatóság feltétele nem korlátos függvényre	
	13.4. Komplex függvény értelmezése, ábrázolás	30

	31
14.1. Vonal definíciója	
	31
	31
	31
	32
	32
V	32
	32
	32
	32
14.5.1. Potenciál létezésének szükséges és elégséges feltétele	33
5.Tétel	34
15.1. Fourier sor komplex alakja, együtthatók meghatározása	34
15.2. Fourier transzformáció	
15.3. Fourier transzformáció tulajdonságai	
15.4. Inverz Fourier transzformáció	
	37
16.1. Parseval egyenlet Fourier transzformációra	
16.2. Konvolúció	
16.3. Konvolúció és FT kapcsolata	
16.4. Dirac delta	38
	0.0
	39
17.1. n-edrendű lineáris differenciálegyenlet	
	39
	39
	39
17.5. Megoldások terének jellemzése	39
8.Tétel	41
18.1. Homogén lineáris, állandó együtthatós differenciálegyenlet	41
	41
	41
18.1.3. Harmadik eset	42
	42
	42
	42
	43
	43
	4 4
	44
	44
v ee v	44
	44
	44
	44
	45
	45
19.9. Harmonikus társ	45

${f 0.T { m \acute{e}tel}}$	46
20.1. Elemi függvények	. 46
20.1.1. Exponenciális függvény	
20.1.2. Logaritmus függvény	. 46
20.1.3. Hatványfüggvény	. 47
20.2. Komplex vonalintegrál	. 47
20.3. Vonalintegrál tulajdonságai	. 47
20.4. Vonalintegrál kiszámítása	. 47
20.4.1. Newton-Leibniz formula	. 48
20.5. Cauchy féle alaptétel	. 48
20.6. Cauchy féle integrálformula	. 48
20.7. Taylor sorfejtés	. 48
20.8. Laurent sorfejtés	. 48

Analízis II. 1. TÉTEL

1. Tétel

1.1. Függvénysorozat

Függvénysorozat egy olyan hozzárendelés, mely $\forall n \in \mathbb{N}$ -hez hozzárendel egy

$$f_n(x): [a,b] \mapsto \mathbb{R}$$

függvényt. Ekkor a sorozatot (f_n) -el jelöljük.

1.2. Pontonként konvergens függvénysorozat

Adott az $f_n:[a,b]\mapsto\mathbb{R}$ függvénysorozat. Ekkor azt mondjuk, hogy az (f_n) sorozat pontonként konvergál az $f:[a,b]\mapsto\mathbb{R}$ függvényhez, ha $\forall x\in[a,b]$ esetén

$$\lim_{n \to \infty} f_n(x) = f(x)$$

azaz $\forall \varepsilon > 0$ és $\forall x \in [a, b]$ esetén $\exists N(\varepsilon, x)$, melyre $\forall n \geq N$ esetén

$$\left| f_n(x) - f(x) \right| < \varepsilon.$$

Ekkor $\lim f_n = f$.

1.3. Egyenletesen konvergens függvénysorozat

Adott az $f_n:[a,b]\mapsto\mathbb{R}$ függvénysorozat. Ekkor azt mondjuk, hogy az (f_n) sorozat egyenletesen konvergál az $f:[a,b]\mapsto\mathbb{R}$ függvényhez, ha $\forall \varepsilon>0$ esetén $\exists N(\varepsilon)$, melyre $\forall n\geq N$ esetén

$$\left| f_n(x) - f(x) \right| < \varepsilon$$

teljesül $\forall x \in [a, b].$

1.4. Pontonként konvergens függvénysor

Adottak az $f_n:[a,b]\mapsto \mathbb{R}$ függvények. Ekkor azt mondjuk, hogy a $\left(\sum f_n\right)$ függvénysor pontonként konvergál az $f:[a,b]\mapsto \mathbb{R}$ függvényhez, ha

$$\sum_{n=1}^{\infty} f_n(x) = f(x)$$

teljesül $\forall x \in [a, b]$, azaz $\forall \varepsilon > 0$ és $\forall x \in [a, b]$ esetén $\exists N(\varepsilon, x)$, melyre $\forall n \geq N$ esetén

$$\left| \sum_{k=1}^{n} f_k(x) - f(x) \right| < \varepsilon.$$

Ekkor

$$\sum_{n=1}^{\infty} f_n = f.$$

1.5. Egyenletesen konvergens függvénysor

Adottak az $f_n:[a,b]\mapsto \mathbb{R}$ függvények. Ekkor azt mondjuk, hogy a $\left(\sum f_n\right)$ függvénysor egyenletesen konvergál az $f:[a,b]\mapsto \mathbb{R}$ függvényhez, ha $\forall \varepsilon>0$ esetén $\exists N(\varepsilon)$, melyre $\forall n\geq N$ esetén

$$\left| \sum_{k=1}^{n} f_k(x) - f(x) \right| < \varepsilon$$

teljesül $\forall x \in [a, b]$.

Analízis II. 1. TÉTEL

1.6. Weierstrass kritérium

Adottak az $f_n:[a,b]\mapsto\mathbb{R}$ függvények. Tegyük fel, hogy az f_n függvények korlátosak, és $|f_n(x)|< a_n$. Ekkor ha

$$\sum_{n=1}^{\infty} a_n < \infty$$

akkor

$$\sum_{n=1}^{\infty} f_n$$

egyenletesen konvergens.

Bizonyítás

A végtelen sorokra vonatkozó Cauchy kritérium miatt tudjuk, hogy $\forall \varepsilon > 0$ esetén $\exists N$, melyre

$$\sum_{k=m}^{n} a_k < \varepsilon.$$

Ekkor

$$\left| \sum_{k=m}^{n} f_k(x) \right| \le \sum_{k=m}^{n} \left| f_k(x) \right| \le \sum_{k=m}^{n} a_k < \varepsilon.$$

1.7. Összegfüggvény folytonossága

Tegyük fel, hogy az $f_n:[a,b]\mapsto \mathbb{R}$ függvények folytonosak, továbbá a

$$\sum_{n=1}^{\infty} f_n(x) = f(x)$$

egyenletesen konvergens. Ekkor $f:[a,b]\mapsto \mathbb{R}$ is folytonos.

Bizonyítás

Legyen

$$f(x) = \sum_{k=1}^{\infty} f_k(x) = \sum_{k=1}^{n} f_k(x) + \sum_{k=n+1}^{\infty} f_k(x) = F_n(x) + R_n(x).$$

Az egyenletes konvergencia miatt tetszőleges $\varepsilon > 0$ esetén $\exists N$ küszöbindex, melyre n > N esetén

$$\left| f(x) - \sum_{k=1}^{n} f_k(x) \right| = \left| R_n(x) \right| < \frac{\varepsilon}{4}.$$

Ebből kapjuk, hogy $|R_n(x) - R_n(x_0)| < \frac{\varepsilon}{2}, \forall x, x_0 \in [a, b].$

Mivel $F_n(x)$ véges sok folytonos függvény összege, ezért önmaga is folytonos, tehát $\exists \delta > 0$, melyre $|x - x_0| < \delta$ esetén $|F_n(x) - F_n(x_0)| < \frac{\varepsilon}{2}$.

Azt kaptuk tehát, hogy $|x - x_0| < \delta$ esetén

$$|f(x) - f(x_0)| \le |F_n(x) - F_n(x_0)| + |R_n(x) - R_n(x_0)| < \varepsilon$$

tehát a függvény folytonos.

1.8. Összefüggvény integrálhatósága

Tegyük fel, hogy az $f_n:[a,b]\mapsto\mathbb{R}$ függvényekre $f_n\in\mathcal{R}[\alpha,\beta]$, ahol $[\alpha,\beta]\subset[a,b]$, továbbá a

$$\sum_{n=1}^{\infty} f_n(x) = f(x)$$

egyenletesen konvergens. Ekkor

$$\int_{\alpha}^{\beta} f(x) dx = \int_{\alpha}^{\beta} \left(\sum_{n=1}^{\infty} f_n(x) \right) dx = \sum_{n=1}^{\infty} \int_{\alpha}^{\beta} f_n(x) dx.$$

Analízis II. 1. TÉTEL

1.9. Összegfüggvény deriválhatósága

Tegyük fel, hogy az $f_n:[a,b]\mapsto \mathbb{R}$ függvények differenciálhatóak, továbbá az

$$\sum_{n=1}^{\infty} f_n(x) = f(x)$$

és

$$\sum_{n=1}^{\infty} f_n'(x) = g(x)$$

egyenletesen konvergensek. Ekkor $g(x)=f^{\prime}(x),$ azaz

$$\left(\sum_{n=1}^{\infty} f_n(x)\right)' = \sum_{n=1}^{\infty} f'_n(x).$$

Analízis II. 2. TÉTEL

2. Tétel

2.1. Fourier sor

Az $f: [-\pi, \pi] \to \mathbb{R}$ $[-\pi, \pi]$ -n integrálható függvény Fourier sora

$$f(x) \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos(kx) + b_k \sin(kx) \right)$$

ahol a Fourier együtthatók

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) dx$$

és

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx.$$

A sort közelíthetjük az n-edik Fourier polinommal

$$s_n = \frac{a_0}{2} + \sum_{k=1}^{n} \left(a_k \cos(kx) + b_k \sin(kx) \right).$$

2.1.1. Deriváltfüggvény Fourier sora

Adott $f: \mathbb{R} \mapsto \mathbb{R}$ 2π periódusú, differenciálható függvény. Ekkor f' Fourier sora tagonkénti deriválással kiszámítható, azaz

$$f'(x) \sim \sum_{k=1}^{\infty} \left(-a_k k \sin(kx) + b_k k \cos(kx) \right).$$

Bizonyítás

Vizsgáljuk meg f' Fourier együtthatóit!

$$\alpha_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f'(x) \, dx = 0$$

$$\alpha_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f'(x) \cos(kx) \, dx = \frac{1}{\pi} \left(f(x) \cos(kx) \Big|_{-\pi}^{\pi} + k \int_{-\pi}^{\pi} f(x) \sin(kx) \right) =$$

$$= \frac{k}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) \, dx = kb_k.$$

Hasonlóan belátható, hogy

$$\beta_k = -ka_k.$$

2.2. Fourier sorok konvergenciája

Adott $f: \mathbb{R} \to \mathbb{R}$ 2 π periódusú függvény. Tegyük fel, hogy a $[-\pi, \pi]$ intervallumon f megfelel a Dirichlet feltételnek, azaz szakaszonként folytonos, legfeljebb véges sok szakadási hellyel, amelyek elsőfajú szakadások. Legyen továbbá az x_0 szakadási pontokban

$$f(x_0) = \frac{f(x_0 + 0) + f(x_0 - 0)}{2}.$$

Ekkor f-t előállítja a Fourier sora.

Analízis II. 2. TÉTEL

2.3. Bessel-egyenlőtlenség

Tegyük fel, hogy

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos(kx) + b_k \sin(kx) \right).$$

Ekkor $\forall n \in \mathbb{N}$ esetén

$$\frac{a_0^2}{2} + \sum_{k=1}^n \left(a_k^2 + b_k^2 \right) \le \frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) \, \mathrm{d}x \,.$$

Bizonyítás

Tudjuk, hogy

$$0 \leq \frac{1}{\pi} \int_{-\pi}^{\pi} \left(f(x) - \frac{a_0}{2} - \sum_{k=1}^{n} \left(a_k \cos(kx) + b_k \sin(kx) \right) \right)^2 =$$

$$= \frac{1}{\pi} \left(\int_{-\pi}^{\pi} f^2(x) \, dx + \int_{-\pi}^{\pi} \frac{a_0^2}{4} \, dx + \sum_{k=1}^{n} \left\{ a_k^2 \int_{-\pi}^{\pi} \cos^2(kx) \, dx + b_k^2 \int_{-\pi}^{\pi} \sin^2(kx) \, dx \right\} -$$

$$-a_0 \int_{-\pi}^{\pi} f(x) \, dx + 2 \sum_{j=1}^{n} \sum_{\substack{k=1\\k\neq j}}^{n} \left\{ \int_{-\pi}^{\pi} a_j a_k \cos(jx) \cos(kx) \, dx + \int_{-\pi}^{\pi} b_j b_k \sin(jx) \sin(kx) \, dx \right\} +$$

$$+2 \sum_{j=1}^{n} \sum_{\substack{k=1\\k\neq j}}^{n} \left\{ \int_{-\pi}^{\pi} a_j b_k \cos(jx) \sin(kx) \, dx \right\} -$$

$$-2 \sum_{k=1}^{n} \left\{ a_k \int_{-\pi}^{\pi} f(x) \cos(kx) \, dx + b_k \int_{-\pi}^{\pi} f(x) \sin(kx) \, dx \right\} +$$

$$+a_0 \sum_{k=1}^{n} \left\{ a_k \int_{-\pi}^{\pi} \cos(kx) \, dx + b_k \int_{-\pi}^{\pi} \sin(kx) \, dx \right\} \right\}.$$

Ekkor a trigonometrikus függvényrendszer ortogonalitása miatt azt kapjuk, hogy

$$0 \le \frac{1}{\pi} \int_{-\pi}^{\pi} f^{2}(x) dx + \frac{a_{0}^{2}}{2} + \sum_{k=1}^{n} \left(a_{k}^{2} + b_{k}^{2} \right) - \frac{a_{0}}{\pi} \int_{-\pi}^{\pi} f(x) dx - 2 \sum_{k=1}^{n} \left(\frac{a_{k}}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) dx + \frac{b_{k}}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx \right) = \frac{1}{\pi} \int_{-\pi}^{\pi} f^{2}(x) dx + \frac{a_{0}^{2}}{2} + \sum_{k=1}^{n} \left(a_{k}^{2} + b_{k}^{2} \right) - a_{0}^{2} - 2 \sum_{k=1}^{n} \left(a_{k}^{2} + b_{k}^{2} \right).$$

Átrendezve az egyenlőtlenséget kapjuk, hogy

$$\frac{a_0^2}{2} + \sum_{k=1}^n \left(a_k^2 + b_k^2 \right) \le \frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) \, \mathrm{d}x.$$

2.4. Parseval egyenlőség Fourier soroka

Tegyük fel, hogy

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos(kx) + b_k \sin(kx) \right).$$

Ekkor

$$\frac{a_0^2}{2} + \sum_{k=1}^{\infty} \left(a_k^2 + b_k^2 \right) = \frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) \, \mathrm{d}x$$

Analízis II. 3. TÉTEL

3. Tétel

3.1. Kétváltozós függvény értelmezése, ábrázolása

Adott $S \subset \mathbb{R}^2$. Ekkor

$$f: S \mapsto \mathbb{R}$$

kétváltozós függvény, ahol S pontjaihoz $(x,y)\mapsto u$. Ekkor x,y független változók, u függő változó. Kétváltozós függvényeket három dimenzióban könnyen tudunk ábrázolni, az xy sík legyen az értelmezési tartomány, és az (x,y,0) ponthoz rendeljük hozzá az (x,y,f(x,y)) pontot. Ábrázolhatjuk még két dimenzióban a felület szintvonalait, ilyenkor az f(x,y)=k görbét ábrázoljuk.

3.2. Folytonosság pontban

Adott f kétváltozós függvény és $(x_0, y_0) \in D_f$. Ekkor f folytonos az (x_0, y_0) pontban, ha $\forall \varepsilon > 0$ esetén $\exists \delta > 0$, melyre $\forall (x, y) \in D_f$, $\|(x, y) - (x_0, y_0)\| < \delta$ esetén $|f(x, y) - f(x_0, y_0)| < \varepsilon$.

3.3. Sorozatfolytonosság pontban

Adott f függvény sorozatfolytonos a $P_0 \in D_f$ pontban, ha $\forall (P_n) \subset D_f$ sorozatra $\lim_{n \to \infty} P_n = P_0$ esetén $\lim_{n \to \infty} f(P_n) = f(P_0)$.

3.4. Bolzano tétel

Adott $f: S \to \mathbb{R}$ folytonos függvény, ahol S összefüggő. Legyen $(x_1, y_1), (x_2, y_2) \in S$, melyekre $a = f(x_1, y_1) < f(x_2, y_2) = b$. Ekkor $\forall c \in (a, b)$ számhoz $\exists (x_0, y_0) \in S$, melyre $f(x_0, y_0) = c$.

Bizonyítás

Mivel S folytonos, létezik az (x_1, y_1) és (x_2, y_2) pontokat összekötő folytonos görbe, azaz létezik $\gamma : [\alpha, \beta] \to \mathbb{R}^2$, $\gamma(t) = (x(t), y(t))$ függvény, melyre $\gamma(\alpha) = (x_1, y_1)$ illetve $\gamma(\beta) = (x_2, y_2)$. Ekkor az F(t) = f(x(t), y(t)) függvényre az egydimenziós Bolzano tétel miatt $\exists \xi \in (\alpha, \beta)$, melyre $F(\xi) = c$. Ekkor $(x_0, y_0) := \gamma(\xi)$ -re valóban $f(x_0, y_0) = c$.

3.5. Weierstrass tétel

Adott $f: S \mapsto \mathbb{R}$ folytonos függvény, ahol S korlátos és zárt. Ekkor R_f korlátos és zárt.

3.6. Egyenletes folytonosság

Adott $f: S \to \mathbb{R}$, ahol $S \subset \mathbb{R}^2$. Azt mondjuk, hogy f egyenletesen folytonos S-ben ha $\forall \varepsilon > 0$ -hoz $\exists \delta > 0$, melyre $\forall P, P' \in S$, $\|P - P'\| < \delta$ esetén $|f(P) - f(P')| < \varepsilon$. Ekkor $\delta = \delta(\varepsilon)$ az ε -hoz tartozó folytonossági modulus.

Analízis II. 4. TÉTEL

4. Tétel

4.1. Függvény határértéke

Adott $f: S \to \mathbb{R}$ függvény, és legyen $(x_0, y_0) \in \mathbb{R}^2$ torlódási pont D_f -ben. Azt mondjuk, hogy

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L$$

ha $\forall \varepsilon > 0$ -hoz $\exists \delta > 0$, melyre $(x,y) \in S$, $0 < \|(x,y) - (x_0,y_0)\| < \delta$ esetén $|f(x,y) - L| < \varepsilon$.

4.2. Parciális derivált

Adott $f: S \mapsto \mathbb{R}$ kétváltozós valós függvény. Legyen $(x_0, y_0) \in intS$. Ekkor a függvény x szerinti parciális deriváltja az (x_0, y_0) pontban

$$f'_x(x_0, y_0) = \frac{\partial}{\partial x} f(x_0, y_0) = \lim_{x \to x_0} \frac{f(x, y_0) - f(x_0, y_0)}{x - x_0}.$$

Hasonlóan a függvény y szerinti parciális deriváltja az (x_0, y_0) pontban

$$f'_y(x_0, y_0) = \frac{\partial}{\partial y} f(x_0, y_0) = \lim_{y \to y_0} \frac{f(x_0, y) - f(x_0, y_0)}{y - y_0}.$$

4.2.1. Geometriai jelentés

Rögzített y_0 mellett definiáljuk az $f_1(x) = f(x, y_0)$ függvényt. Ekkor $f'_1(x) = \frac{\partial f}{\partial x}(x, y_0)$, tehát a definiált metszetfüggvény meredekségét kapjuk meg. Ez azt jelenti, hogy a parciális deriváltak a felület érintősíkjának x és y irányú meredekségét adják meg.

4.3. Parciális deriváltak és folytonosság

Adott $f: S \mapsto \mathbb{R}$ ahol $S \subset \mathbb{R}^2$, és legyen $(x_0, y_0) \in intD_f$. Tegyük fel, hogy $\exists U$ környezete (x_0, y_0) -nak, amiben $\exists \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ és $\exists K \in \mathbb{R}$, amire

$$\left| \frac{\partial f}{\partial x} \right| \le K \qquad \left| \frac{\partial f}{\partial y} \right| \le K$$

teljesül $\forall (x,y) \in U$ esetén. Ekkor f folytonos (x_0,y_0) -ban.

Bizonvítás

Vizsgáljuk meg az $|f(x,y) - f(x_0,y_0)|$ kifejezést, ahol $(x,y) \in U$.

$$|f(x,y) - f(x_0,y_0)| = |f(x,y) - f(x_0,y) + f(x_0,y) - f(x_0,y_0)| \le \le |f(x,y) - f(x_0,y)| + |f(x_0,y) - f(x_0,y_0)|.$$

Ekkor a Lagrange-féle középértéktételből

$$f(x,y) - f(x_0,y) = \frac{\partial f}{\partial x}(\xi_x, y)(x - x_0)$$
$$f(x_0, y) - f(x_0, y_0) = \frac{\partial f}{\partial y}(x_0, \xi_y)(y - y_0)$$

alkalmas ξ_x, ξ_y esetén. Ekkor

$$\left| f(x,y) - f(x_0, y_0) \right| \le \left| \frac{\partial f}{\partial x} (\xi_x, y)(x - x_0) \right| + \left| \frac{\partial f}{\partial y} (x_0, \xi_y)(y - y_0) \right| \le K|x - x_0| + K|y - y_0|.$$

Ekkor nyilván

$$\lim_{(x,y)\to(x_0,y_0)} |f(x,y) - f(x_0,y_0)| = 0.$$

Ez azt jelenti, hogy f valóban folytonos.

Analízis II. 4. TÉTEL

4.4. Magasabb rendű parciális deriváltak

4.4.1. Másodrendű parciális deriváltak

Tegyük fel, hogy f kétváltozós függvény kétszer differenciálható az értelmezési tartomány (x,y) belső pontjában. Ekkor a másodrendű parciális deriváltak a $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ parciális deriváltjai az (x,y) pontban. A másodrendű parciális deriváltak

$$\begin{split} \frac{\partial^2 f}{\partial x^2} &= \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) \\ \frac{\partial^2 f}{\partial y \partial x} &= \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) \\ \frac{\partial^2 f}{\partial x \partial y} &= \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) \\ \frac{\partial^2 f}{\partial y^2} &= \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right). \end{split}$$

4.4.2. n-edrendű parciális deriváltak

Tegyük fel, hogy f kétváltozós függvény n-szer differenciálható az értelmezési tartomány (x,y) belső pontjában. Az n-edrendű parciális deriváltak

$$\frac{\partial^n f}{\partial y^k \partial x^m} \qquad \frac{\partial^n f}{\partial x^k \partial y^m}$$

alakúak, ahol k + m = n.

4.5. Parciális deriválások sorrendje, felcserélhetősége

Adott $f: S \mapsto \mathbb{R}$, és legyen $(x_0, y_0) \in intD_f$. Tegyük fel, hogy $\exists U$ környezete (x_0, y_0) -nak, amiben $\exists \frac{\partial^2 f}{\partial x \partial y}, \frac{\partial^2 f}{\partial y \partial x}$ és folytonosak az (x_0, y_0) pontban. Ekkor

$$\frac{\partial^2 f}{\partial x \partial y}(x, y) = \frac{\partial^2 f}{\partial y \partial x}(x, y)$$

teljesül $\forall (x,y) \in U$ esetén.

Analízis II. 5. TÉTEL

5. Tétel

5.1. Teljes differenciálhatóság

Adott $f: S \mapsto \mathbb{R}$ és legyen $(x_0, y_0) \in intD_f$. Azt mondjuk, hogy a függvény differenciálható az (x_0, y_0) pontban, ha $\exists A, B, C \in \mathbb{R}$, melyekre

$$f(x_0 + \Delta x, y_0 + \Delta y) = A\Delta x + B\Delta y + C + o(\sqrt{\Delta x^2 + \Delta y^2})$$

teljesül elegendően kicsi $\Delta x, \Delta y$ esetén, ahol A, B, C függetlenek Δx -től és Δy -tól.

5.2. Kapcsolat a parciális deriváltakkal

Ha f differenciálható az $(x_0, y_0) \in intD_f$ pontban, akkor

$$A = \frac{\partial f}{\partial x}(x_0, y_0)$$
 $B = \frac{\partial f}{\partial y}(x_0, y_0)$ $C = f(x_0, y_0).$

Bizonyítás

1. Legyen $\Delta x = \Delta y = 0$. Ekkor valóban

$$f(x_0, y_0) = C.$$

2. Legyen $\Delta y = 0$. Ekkor

$$f(x_0 + \Delta x, y_0) = A\Delta x + f(x_0, y_0) + o(|\Delta x|).$$

Ebből kapjuk, hogy

$$\frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x} = A + \frac{o(|\Delta x|)}{\Delta x}$$

amiből nyilván

$$\frac{\partial f}{\partial x}(x_0, y_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x} = \lim_{\Delta x \to 0} \left(A + \frac{o(|\Delta x|)}{\Delta x} \right) = A.$$

3. Az előzőhöz analóg módon kapjuk, hogy

$$B = \frac{\partial f}{\partial y}(x_0, y_0).$$

5.3. Gradiens

Ha az f függvény differenciálható az (x_0, y_0) pontban, akkor ebben a pontban a derivált egy kétdimenziós vektor, a gradiens

$$\nabla f(x_0, y_0) = \nabla f(x_0, y_0) = \left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0)\right).$$

Ha egy függvény egy S tartomány minden pontjában differenciálható, akkor a deriváltfüggvény

$$\nabla f: S \mapsto \mathbb{R}^2$$

típusú lesz.

Analízis II. 5. TÉTEL

5.4. Folytonosság és differenciálhatóság

5.4.1. Tétel

Ha f differenciálható az (x_0, y_0) pontban, akkor itt folytonos.

Bizonyítás

Tudjuk, hogyha f differenciálható az (x_0, y_0) pontban, akkor

$$f(x + \Delta x, y + \Delta y) = \frac{\partial f}{\partial x}(x_0, y_0)\Delta x + \frac{\partial f}{\partial y}(x_0, y_0)\Delta y + f(x_0, y_0) + o(\|(\Delta x, \Delta y)\|).$$

Ebből azonnal kapjuk, hogy

$$\lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} f(x + \Delta x, y + \Delta y) = f(x_0, y_0).$$

5.4.2. Tétel

Adott $f: S \mapsto \mathbb{R}$ és legyen $(x_0, y_0) \in intD_f$. Tegyük fel $\exists U$ környezete (x_0, y_0) -nak, ahol $\exists \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ és folytonosak. Ekkor f differenciálható (x_0, y_0) -ban.

Bizonyítás

Vizsgáljuk meg az

$$f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)$$

kifejezés értékét!

$$f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0 + \Delta y) + f(x_0, y_0 + \Delta y) - f(x_0, y_0).$$

Ekkor a Lagrange-féle középértéktételből

$$f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0 + \Delta y) = \frac{\partial f}{\partial x}(x_0 + \theta_1 \Delta x, y_0 + \Delta y) \Delta x$$
$$f(x_0, y_0 + \Delta y) - f(x_0, y_0) = \frac{\partial f}{\partial y}(x_0, y_0 + \theta_2 \Delta y) \Delta y$$

alkalmas $0<\theta_1,\theta_2<1$ esetén. Ekkor a parciális deriváltak folytonossága miatt

$$\frac{\partial f}{\partial x}(x_0 + \theta_1 \Delta x, y_1 + \Delta y) = \frac{\partial f}{\partial x}(x_0, y_0) + \varepsilon(\Delta x, \Delta y)$$
$$\frac{\partial f}{\partial y}(x_0, y_0 + \theta_2 \Delta y) = \frac{\partial f}{\partial y}(x_0, y_0) + \varepsilon(\Delta y).$$

Ekkor

$$f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = \frac{\partial f}{\partial x}(x_0, y_0)\Delta x + \frac{\partial f}{\partial y}(x_0, y_0)\Delta y + o(\Delta x, \Delta y)\Delta x + o(\Delta y)\Delta y$$

azaz f valóban differenciálható.

5.5. Érintősík egyenlete, normálvektor

Ha az f függvény differenciálható az (x_0, y_0) pontban, akkor az ehhez a ponthoz tartozó érintősík egyenlete

$$S: \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0) - (z - f(x_0, y_0)) = 0.$$

Ekkor a sík normálvektora

$$\mathbf{n} = \left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0), -1\right).$$

Analízis II. 6. TÉTEL

6. Tétel

6.1. Iránymenti derivált

Adott f kétváltozós függvény és $\alpha \in [0, 2\pi)$. Ekkor az α irányú iránymenti derivált (ha létezik a határérték)

$$D_{\alpha}f(x_0, y_0) = \frac{\partial f}{\partial \alpha}(x_0, y_0) = \lim_{\rho \to 0} \frac{f(x_0 + \rho \cos \alpha, y_0 + \rho \sin \alpha) - f(x_0, y_0)}{\rho}.$$

Adott $v(v_1, v_2) \in \mathbb{R}^2$ irány esetén, ahol ||v|| = 1, az iránymenti derivált

$$D_v(x_0, y_0) = \frac{\partial f}{\partial v}(x_0, y_0) = \lim_{\varrho \to 0} \frac{f(x_0 + \varrho v_1, y_0 + \varrho v_2) - f(x_0, y_0)}{\varrho}.$$

6.1.1. Tétel

Ha f differenciálható az (x_0, y_0) pontban, akkor itt létezik az iránymenti derivált tetszőleges $\alpha \in [0, 2\pi)$ esetén, és

$$\frac{\partial f}{\partial \alpha}(x_0,y_0) = \cos \alpha \frac{\partial f}{\partial x}(x_0,y_0) + \sin \alpha \frac{\partial f}{\partial y}(x_0,y_0) = \nabla f(x_0,y_0) \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix}.$$

Hasonlóan

$$\frac{\partial f}{\partial v}(x_0, y_0) = v_1 \frac{\partial f}{\partial x}(x_0, y_0) + v_2 \frac{\partial f}{\partial y}(x_0, y_0) = \nabla f(x_0, y_0)v.$$

Bizonyítás

A differenciálhatóság miatt

$$f(x_0 + \varrho \cos \alpha, y_0 + \varrho \sin \alpha) - f(x_0, y_0) = \varrho \cos \alpha \frac{\partial f}{\partial x}(x_0, y_0) + \varrho \sin \alpha \frac{\partial f}{\partial y}(x_0, y_0) + o(|\varrho|).$$

Ekkor

$$\frac{f(x_0 + \varrho \cos \alpha, y_0 + \varrho \sin \alpha) - f(x_0, y_0)}{\rho} = \cos \alpha \frac{\partial f}{\partial x}(x_0, y_0) + \sin \alpha \frac{\partial f}{\partial y}(x_0, y_0) + \frac{o(|\varrho|)}{\rho}$$

így nyilván

$$\lim_{\varrho \to 0} \frac{f(x_0 + \varrho \cos \alpha, y_0 + \varrho \sin \alpha) - f(x_0, y_0)}{\varrho} = \cos \alpha \frac{\partial f}{\partial x}(x_0, y_0) + \sin \alpha \frac{\partial f}{\partial y}(x_0, y_0).$$

6.2. Láncszabály

1. Kétváltozós belső függvény, egyváltozós külső függvény. Legyen $f: \mathbb{R} \mapsto \mathbb{R}$, illetve $\varphi: \mathbb{R}^2 \mapsto \mathbb{R}$. Ekkor $F: \mathbb{R}^2 \mapsto \mathbb{R}$, és

$$F(x,y) = f(\varphi(x,y)).$$

Tegyük fel, hogy φ differenciálható (x,y)-ban, illetve f differenciálható $\varphi(x,y)$ -ban. Ekkor F is differenciálható, és

$$\nabla F(x,y) = \left(f'(\varphi(x,y)) \frac{\partial \varphi}{\partial x}(x,y), f'(\varphi(x,y)) \frac{\partial \varphi}{\partial y}(x,y) \right) = f'(\varphi(x,y)) \nabla \varphi(x,y).$$

2. Két darab egyváltozós belső függvény, kétváltozós külső függvény. Legyen $f: \mathbb{R}^2 \to \mathbb{R}$, illetve $\varphi, \psi: \mathbb{R} \to \mathbb{R}$. Ekkor $F: \mathbb{R} \to \mathbb{R}$, és

$$F(t) = f(\varphi(t), \psi(t)).$$

Tegyük fel, hogy φ, ψ differenciálhatók t-ben, illetve f differenciálható $(\varphi(t), \psi(t))$ -ben. Ekkor F is differenciálható, és

$$F'(t) = \frac{\partial f}{\partial x} (\varphi(t), \psi(t)) \varphi'(t) + \frac{\partial f}{\partial y} (\varphi(t), \psi(t)) \psi'(t).$$

Analízis II. 6. TÉTEL

3. Két darab kétváltozós belső függvény, kétváltozós külső függvény. Legyen $f(u,v): \mathbb{R}^2 \mapsto \mathbb{R}$, illetve $\varphi, \psi: \mathbb{R}^2 \mapsto \mathbb{R}$. Ekkor $F: \mathbb{R}^2 \mapsto \mathbb{R}$, és

$$F(x,y) = f(\varphi(x,y), \psi(x,y)).$$

Tegyük fel, hogy φ, ψ differenciálhatók (x, y)-ban, illetve f differenciálható $(\varphi(x, y), \psi(x, y))$ -ban. Ekkor F is differenciálható, és

$$\frac{\partial F}{\partial x}(x,y) = \frac{\partial f}{\partial u} \big(\varphi(x,y), \psi(x,y) \big) \frac{\partial \varphi}{\partial x}(x,y) + \frac{\partial f}{\partial v} \big(\varphi(x,y,\psi(x,y)) \big) \frac{\partial \psi}{\partial x}(x,y)$$

$$\frac{\partial F}{\partial y}(x,y) = \frac{\partial f}{\partial u} \big(\varphi(x,y), \psi(x,y)\big) \frac{\partial \varphi}{\partial y}(x,y) + \frac{\partial f}{\partial v} \big(\varphi(x,y), \psi(x,y)\big) \frac{\partial \psi}{\partial y}(x,y)$$

azaz

$$\nabla F(x,y) = \nabla f(u,v) \begin{pmatrix} \nabla \varphi(x,y) \\ \nabla \psi(x,y) \end{pmatrix}.$$

6.3. Második derivált

Adott $f: S \mapsto \mathbb{R}$ és $(x_0, y_0) \in S$. Azt mondjuk, hogy f kétszer differenciálható a pontban, ha a függvény differenciálható a pont egy környezetében, és a $\frac{\partial f}{\partial x}$ és a $\frac{\partial f}{\partial y}$ parciális deriváltak differenciálhatók a pontban.

6.4. Hesse mátrix

Ha az f függvény kétszer differenciálható az (x_0, y_0) pontban, akkor értelmezhetők a $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial y \partial x}$, $\frac{\partial^2 f}{\partial x \partial y}$ és a $\frac{\partial^2 f}{\partial y^2}$ parciális deriváltak. Ekkor a ponthoz tartozó Hesse mátrix

$$H(x_0, y_0) = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2}(x_0, y_0) & \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) \\ \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0) & \frac{\partial^2 f}{\partial y^2}(x_0, y_0) \end{pmatrix} = \begin{pmatrix} \nabla \frac{\partial f}{\partial x}(x_0, y_0) \\ \nabla \frac{\partial f}{\partial y}(x_0, y_0) \end{pmatrix}.$$

6.5. Lagrange-féle középértéktétel

Adott $f: D \to \mathbb{R}$ függvény. Legyen $(x_0, y_0) \in intD$, és U egy olyan környezete, ahol f differenciálható és $U \subset D$. Ekkor $\forall (x, y) \in U$ -hoz $\exists \theta \in (0, 1)$, melyre

$$f(x,y) - f(x_0, y_0) = \nabla f(x_0 + \theta \Delta x, y_0 + \theta \Delta y) \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}$$

ahol $\Delta x = x - x_0$, illetve $\Delta y = y - y_0$.

Bizonyítás

Legyen

$$F(t) = f(x_0 + t\Delta x, y_0 + t\Delta y)$$

ahol $F:[0,1]\mapsto\mathbb{R}$ differenciálható. Ekkor $F(0)=f(x_0,y_0)$ és F(1)=f(x,y). A Lagrange-féle középértéktétel miatt $\exists\theta\in(0,1)$, melyre

$$F'(\theta) = F(1) - F(0).$$

Továbbá a láncszabály miatt

$$F'(t) = \nabla f(x_0 + t\Delta x, y_0 + t\Delta y) \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}.$$

Azt kaptuk tehát, hogy θ -ra

$$F'(\theta) = F(1) - F(0) = f(x, y) - f(x_0, y_0) = \nabla f(x_0 + \theta \Delta x, y_0 + \theta \Delta y) \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}.$$

Éppen ezt kellett bizonyítanunk.

Analízis II. 7. TÉTEL

7. Tétel

7.1. Implicitfüggvény-tétel, implicit deriválás

Tegyük fel, hogy F kétváltozós függvény differenciálható az (x_0, y_0) pont környezetében és $F(x_0, y_0) = 0$ illetve $\frac{\partial F}{\partial y}(x_0, y_0) \neq 0$. Ekkor $\exists I = I_1 \times I_2 \subset \mathbb{R}^2$ intervallum, melyre $\forall x \in I_1$ esetén az F(x, y) = 0 egyenletnek pontosan egy $y = f(x) \in I_2$ megoldása van. Tehát egyértelműen létezik $f: I_1 \mapsto I_2$ függvény, melyre

- 1. $f(x_0) = y_0$
- 2. $\forall x \in I_1$ esetén $f(x) \in I_2$
- 3. $\forall x \in I_1$ esetén F(x, f(x)) = 0
- 4. $\forall x \in I_1 \text{ eset\'en } \frac{\partial F}{\partial y}(x, f(x)) \neq 0.$

Továbbá f differenciálható I_1 -ben és

$$f'(x) = -\frac{\frac{\partial F}{\partial x}(x, f(x))}{\frac{\partial F}{\partial y}(x, f(x))}.$$

7.2. Másodrendű Taylor formula

Tegyük fel, hogy $f: D \mapsto \mathbb{R}$ kétszer differenciálható $(x_0, y_0) \in intD$ -ben. Ekkor

$$f(x,y) = f(x_0,y_0) + \frac{\partial f}{\partial x}\Delta x + \frac{\partial f}{\partial y}\Delta y + \frac{1}{2}\left(\frac{\partial^2 f}{\partial x^2}(\Delta x)^2 + 2\frac{\partial^2 f}{\partial y\partial x}\Delta x\Delta y + \frac{\partial^2 f}{\partial y^2}(\Delta y)^2\right) + L_2$$

ahol L_2 a Lagrange-féle maradéktag.

Bizonyítás

Legyen $F:[0,1]\mapsto \mathbb{R}$ függvény és

$$F(t) = f(x_0 + t\Delta x, y_0 + t\Delta y).$$

Ekkor

$$\begin{split} F'(t) &= \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y \\ F''(t) &= \frac{\partial^2 f}{\partial x^2} (\Delta x)^2 + 2 \frac{\partial^2 f}{\partial x \partial y} \Delta x \Delta y + \frac{\partial^2 f}{\partial y^2} (\Delta y)^2. \end{split}$$

Felírva F-re a másodrendű Taylor formulát

$$F(1) - F(0) = \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y + \frac{1}{2} \left(\frac{\partial^2 f}{\partial x^2} (\Delta x)^2 + 2 \frac{\partial^2 f}{\partial x \partial y} \Delta x \Delta y + \frac{\partial^2 f}{\partial y^2} (\Delta y)^2 \right) + L_2$$

azonban $F(1) - F(0) = f(x, y) - f(x_0, y_0)$. Ezzel kapjuk is a bizonyítandót.

7.3. Szélsőérték

Adott $f: S \mapsto \mathbb{R}$, ahol $S \subset \mathbb{R}^2$. Ekkor $(x_0, y_0) \in S$ lokális minimum (maximum), ha $\exists U$ környezete, ahol $\forall (x, y) \in U$ esetén

$$f(x,y) \ge f(x_0, y_0)$$
 $(f(x,y) \le f(x_0, y_0)).$

Ha $U = D_f$, akkor (x_0, y_0) globális szélsőérték.

Analízis II. 7. TÉTEL

7.3.1. Szükséges feltétel szélsőérték létezéséhez

Tegyük fel, hogy f differenciálható. Ekkor ha (x, y) szélsőérték, akkor

$$\nabla f(x,y) = (0,0).$$

Bizonyítás

Legyen $f_1(x) = f(x, y_0)$ a kétváltozós függvény egyik metszetfüggvénye. Ekkor ha x_0 szélsőérték, akkor $f_1'(x_0) = 0$ kell, azonban $f_1'(x_0) = \frac{\partial f}{\partial x}(x_0, y_0)$. Hasonlóan belátható, hogy $\frac{\partial f}{\partial y}(x_0, y_0) = 0$ szükséges.

7.3.2. Stacionárius pont

Azt mondjuk, hogy (x, y) stacionárius pontja f-nek, ha

$$\nabla f(x,y) = (0,0).$$

7.3.3. Nyeregpont

Azt mondjuk, hogy (x,y)nyeregpont, ha stacionárius pont, de nem szélsőérték.

Analízis II. 8. TÉTEL

8. Tétel

8.1. Elégséges feltétel szélsőérték létezéséhez I.

Tegyük fel, hogy f kétszer differenciálható (x_0, y_0) -ban, és $\nabla f(x_0, y_0) = 0$. Ekkor

- 1. det H>0 esetén (x_0,y_0) -ban lokális szélsőérték van, ami
 - (a) $\frac{\partial^2 f}{\partial x^2}(x_0, y_0) < 0$ esetén maximum
 - (b) $\frac{\partial^2 f}{\partial x^2}(x_0, y_0) > 0$ esetén minimum
- 2. $\det H = 0$ esetén további vizsgálat szükséges
- 3. $\det H < 0$ esetén (x_0, y_0) nyeregpont.

8.2. Elégséges feltétel szélsőérték létezéséhez II.

Tegyük fel, hogy f kétszer differenciálható (x_0, y_0) -ban, és $\nabla f(x_0, y_0) = 0$. Ekkor

- 1. H > 0 esetén (x_0, y_0) lokális minimumhely
- 2. H < 0 esetén (x_0, y_0) lokális maximumhely
- 3. ha H szemidefinit, akkor további vizsgálat szükséges.
- 4. ha H indefinit, akkor (x_0, y_0) nyeregpont.

8.3. Lokális szélsőérték jellemzése n-változós függvényekre

Adott $f: S \mapsto \mathbb{R}$, ahol $S \subset \mathbb{R}^n$. Ekkor $x_0 \in S$ lokális minimum (maximum), ha $\exists U$ környezete, ahol $\forall x \in U$ esetén

$$f(x) \ge f(x_0)$$
 $\Big(f(x) \le f(x_0)\Big).$

Ha $U = D_f$, akkor x_0 globális szélsőérték.

Szükséges feltétele a szélsőérték létezésének, hogy $\nabla f = 0$ legyen.

Bizonyítás

Legyen $f_1(x) = f(x, x_2, \dots, x_n)$ az n-válzotós függvény egyik metszetfüggvénye. Ekkor ha y_0 szélsőérték, akkor $f_1'(y_0) = 0$ kell, azonban $f_1'(y_0) = \frac{\partial f}{\partial x_1}(y_0)$. Hasonlóan belátható, hogy $\forall \frac{\partial f}{\partial x_k}(y_0) = 0$ szükséges.

8.4. Feltételes szélsőérték feladat megfogalmazása

Adott $f: S \mapsto \mathbb{R}$ kétválzotós differenciálható függvény és $\varphi(x,y) = 0$ feltétel. A feladat, hogy megkeressük a

$$\min_{\varphi(x,y)=0} f(x,y) \qquad \max_{\varphi(x,y)=0} f(x,y)$$

szélsőértékhelyeket és szélsőértékeket.

8.4.1. Szemléletes jelentés

Tekintsük a kétdimenzióban a $\varphi(x,y)=0$ függvényt és az f(x,y)=c szinvonalakat. Mivel f differenciálható, ezért ezek a szintvonalak monoton, folytonos módon változnak. Ekkor azokat a szintvonalakat keressük, amik "először" (minimum esetén) vagy "utoljára" (maximum esetén) metszik a $\varphi(x,y)=0$ görbét. Ezek a szintvonalak érinteni fogják a görbét, mondjuk az (x,y) pontban. Az érintés miatt

$$\frac{\frac{\partial f}{\partial x}(x,y)}{\frac{\partial f}{\partial y}(x,y)} = \frac{\frac{\partial \varphi}{\partial x}(x,y)}{\frac{\partial \varphi}{\partial y}(x,y)} = \lambda.$$

Analízis II. 8. TÉTEL

Az egyenletet átrendezve azt kapjuk, hogy

$$\nabla f(x,y) - \lambda \nabla \varphi(x,y) = 0.$$

A képen a $\varphi(x,y)=x^2+y^2-9=0$ feltételt láthatjuk (fekete kör), illetve az $f(x,y)=x^2+2y^2$ szinvonalait c=9 (piros ellipszis) és c=18 (kék ellipszis) esetben. A szintvonalak közül a piros az, ami "először" metszi a $\varphi(x,y)=0$ görbét, így ezen a szintvonalon helyezkednek el a feltételes minimumhelyek. Hasonlóan a kék metszi "utoljára" a görbét, így ezen a szinvonalon helyezkednek el a feltételes maximumhelyek.

8.5. Lagrange-féle multiplikátor szabály

Adott f kétváltozós, differenciálható függvény, melynek tekintsük a megszorítását az $\{(x,y) | \varphi(x,y) = 0\}$ halmazon. Legyen $F: \mathbb{R}^3 \mapsto \mathbb{R}$ olyan függvény, melyre

$$F(x, y, \lambda) = f(x, y) - \lambda \varphi(x, y).$$

Ekkor ha (x_0, y_0) -ban feltételes szélsőértéke van f-nek a $\varphi(x, y) = 0$ feltétel mellett, akkor $\exists \lambda_0 \in \mathbb{R}$, melyre

$$\nabla F(x_0, y_0, \lambda_0) = 0.$$

Analízis II. 9. TÉTEL

9. Tétel

9.1. Függvényrendszer, koordinátatranszformáció

Adottak $\Phi, \Psi : D \to \mathbb{R}$, ahol $D \subset \mathbb{R}^2$. Legyen továbbá $\Phi(x,y) = \xi$ és $\Psi(x,y) = \eta$. Ekkor $F : D \to \mathbb{R}^2$ egy függvényrendszer vagy vektormező, melyre

$$F(x,y) = (\Phi(x,y), \Psi(x,y)) = (\xi, \eta).$$

Az ilyen függvényrendszereket koordinátatranszformációként is felfoghatjuk $(x, y) \mapsto (\xi, \eta)$ hozzárendelésként.

9.2. Jacobi mátrix, Jacobi determináns

Ha a Φ, Ψ függvények differenciálhatóak, akkor F is differenciálható, és a derivált a Jacobi mátrix

$$\mathcal{J}(x,y) = \begin{pmatrix} \frac{\partial \Phi}{\partial x}(x,y) & \frac{\partial \Phi}{\partial y}(x,y) \\ \frac{\partial \Psi}{\partial x}(x,y) & \frac{\partial \Psi}{\partial y}(x,y) \end{pmatrix} = \begin{pmatrix} \nabla \Phi(x,y) \\ \nabla \Psi(x,y) \end{pmatrix}.$$

Ekkor $D(x,y) = \det \mathcal{J}(x,y) = \frac{d(\xi,\eta)}{\mathrm{d}(x,y)}$ a Jacobi determináns.

9.3. Homogén lineáris transzformáció, Jacobi mátrixa

A transzformációt így értelmezzük

$$\xi = ax + by$$
$$\eta = cx + dy,$$

A rendszer Jacobi mátrixa

$$\mathcal{J}(x,y) = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Jacobi determinánsa D(x, y) = ad - bc.

9.4. Invertálhatóság

Tegyük fel, hogy a Φ , Ψ függvények injektívek. Ekkor az F leképezés invertálható, és az inverz rendszer alakja

$$x = g(\xi, \eta)$$

$$y = h(\xi, \eta).$$

9.5. Inverz rendszer Jacobi mátrixa

Tegyük fel, hogy az inverz rendszer függvényei differenciálhatók. Ekkor a Jacobi mátrix

$$\mathcal{K}(\xi,\eta) = \begin{pmatrix} \frac{\partial g}{\partial \xi}(\xi,\eta) & \frac{\partial g}{\partial \eta}(\xi,\eta) \\ \frac{\partial h}{\partial \xi}(\xi,\eta) & \frac{\partial h}{\partial \eta}(\xi,\eta) \end{pmatrix} = \begin{pmatrix} \nabla g(\xi,\eta) \\ \nabla h(\xi,\eta) \end{pmatrix}.$$

9.5.1. Tétel

Tegyük fel, hogy egy vektormező Jacobi mátrixa invertálható egy $(x,y) \in intD$ pontban. Ekkor a vektormező invertálható és

$$\mathcal{K}(\xi,\eta) = \left(\mathcal{J}(x,y)\right)^{-1}.$$

Továbbá

$$D(\xi,\eta) = \frac{1}{D(x,y)}.$$

Analízis II. 9. TÉTEL

Bizonyítás

Tudjuk, hogy

$$\xi = \Phi(g(\xi, \eta), h(\xi, \eta))$$
$$\eta = \Psi(g(\xi, \eta), h(\xi, \eta)).$$

Ekkor a láncszabály miatt

$$\nabla \xi(\xi, \eta) = \begin{pmatrix} 1 & 0 \end{pmatrix} = \nabla \Phi(x, y) \begin{pmatrix} \nabla g(\xi, \eta) \\ \nabla h(\xi, \eta) \end{pmatrix}$$
$$\nabla \eta(\xi, \eta) = \begin{pmatrix} 0 & 1 \end{pmatrix} = \nabla \Psi(x, y) \begin{pmatrix} \nabla g(\xi, \eta) \\ \nabla h(\xi, \eta) \end{pmatrix}.$$

Az egyenleteket rendezve azt kapjuk, hogy

$$\begin{split} \frac{\partial g}{\partial \xi} &= \frac{\frac{\partial \Psi}{\partial y}}{\frac{\partial \Phi}{\partial x} \frac{\partial \Psi}{\partial y} - \frac{\partial \Phi}{\partial y} \frac{\partial \Psi}{\partial x}} = \frac{\frac{\partial \Psi}{\partial y}}{D(x,y)} \\ \frac{\partial g}{\partial \eta} &= -\frac{\frac{\partial \Phi}{\partial y}}{\frac{\partial \Phi}{\partial x} \frac{\partial \Psi}{\partial y} - \frac{\partial \Phi}{\partial y} \frac{\partial \Psi}{\partial x}} = -\frac{\frac{\partial \Phi}{\partial y}}{D(x,y)} \\ \frac{\partial h}{\partial \xi} &= -\frac{\frac{\partial \Psi}{\partial x}}{\frac{\partial \Phi}{\partial x} \frac{\partial \Psi}{\partial y} - \frac{\partial \Phi}{\partial y} \frac{\partial \Psi}{\partial x}} = -\frac{\frac{\partial \Psi}{\partial x}}{D(x,y)} \\ \frac{\partial h}{\partial \eta} &= \frac{\frac{\partial \Phi}{\partial x}}{\frac{\partial \Phi}{\partial x} \frac{\partial \Psi}{\partial y} - \frac{\partial \Phi}{\partial y} \frac{\partial \Psi}{\partial x}} = \frac{\frac{\partial \Phi}{\partial x}}{D(x,y)}. \end{split}$$

Ezek alapján

$$\mathcal{K}(\xi,\eta) = \frac{1}{D(x,y)} \begin{pmatrix} \frac{\partial \Psi}{\partial y} & -\frac{\partial \Phi}{\partial y} \\ -\frac{\partial \Psi}{\partial x} & \frac{\partial \Phi}{\partial x} \end{pmatrix} = \Big(\mathcal{J}(x,y)\Big)^{-1}.$$

Éppen ezt kellett bizonyítanunk.

Analízis II. 10. TÉTEL

10. Tétel

10.1. Riemann integrál két dimenzióban

Legyen $R \subset \mathbb{R}^2$ korlátos és zárt mérhető halmaz, és rajta egy $f: R \mapsto \mathbb{R}^+$ folytonos függvény. Legyen

$$R = \bigcup_{k=1}^{n} R_k$$

felosztás, ahol $\forall R_k$ mérhető és $\forall R_k \cap R_j = \emptyset$. Legyen továbbá

$$m_k = \inf \left\{ f(x,y) \middle| x, y \in R_k \right\}$$

 $M_k = \sup \left\{ f(x, y) \middle| x, y \in R_k \right\}$

és

$$s_n = \sum_{k=1}^n A(R_k) m_k \le V(S) \le \sum_{k=1}^n A(R_k) M_k = S_n$$

ahol

$$S = \Big\{(x,y,z) \Big| (x,y) \in R, z \in [0,f(x,y)] \Big\}.$$

Ekkor f folytonossága miatt a Heine-tétel által f egyenletesen folytonos. Emiatt $\forall \varepsilon > 0$ esetén $\exists \delta_0 > 0$, amelyre $\delta < \delta_0$ esetén $M_k - m_k < \varepsilon$. Ekkor

$$S_n - s_n = \sum_{k=1}^n A(R_k)(M_k - m_k) < \sum_{k=1}^n A(R_k)\varepsilon = \varepsilon A(R).$$

Tehát

$$\lim_{\delta \to 0} \left(\inf S_n \right) = \lim_{\delta \to 0} \left(\sup s_n \right)$$

azaz az integrál értelmezhető. Ekkor a keresett térfogat

$$V(S) = \iint_{R} f(x, y) dR = \iint_{R} f(x, y) d(x, y).$$

10.2. Integrálás télalap alakú tartományon

Legyen $R = [a, b] \times [c, d]$. Ekkor

$$\iint_R f(x,y) \, \mathrm{d}(x,y) = \int_a^b \int_c^d f(x,y) \, \mathrm{d}y \, \mathrm{d}x = \int_c^d \int_a^b f(x,y) \, \mathrm{d}x \, \mathrm{d}y.$$

Bizonyítás

Osszuk fel az [a,b] intervallumot n egyenlő részre, a [c,d] intervallumot pedig m egyenlő részre. Legyen továbbá az így létrehozott R_{ij} téglalapokra $(\xi_i,\eta_j)\in R_{ij}$. Ekkor az integrál közelítő összege

$$V_{nm} = \sum_{i=1}^{n} \sum_{j=1}^{m} f(\xi_i, \eta_j) \Delta x \Delta y = \sum_{j=1}^{m} \sum_{i=1}^{n} f(\xi_i, \eta_j) \Delta x \Delta y.$$

Ekkor

$$\lim_{n \to \infty} \lim_{m \to \infty} V_{nm} = \lim_{n \to \infty} \sum_{i=1}^{n} \int_{c}^{d} f(\xi_{i}, y) \, \mathrm{d}y \, \Delta x = \int_{a}^{b} \int_{c}^{d} f(x, y) \, \mathrm{d}y \, \mathrm{d}x.$$

Hasonlóan

$$\lim_{m \to \infty} \lim_{n \to \infty} V_{nm} = \lim_{m \to \infty} \sum_{j=1}^m \int_a^b f(x, \eta_j) dx \, \Delta y = \int_c^d \int_a^b f(x, y) dx dy.$$

Ekkor nyilván

$$\lim_{\substack{n \to \infty \\ m \to \infty}} V_{nm} = \iint_R f(x, y) \, \mathrm{d}(x, y) = \int_a^b \int_c^d f(x, y) \, \mathrm{d}y \, \mathrm{d}x = \int_c^d \int_a^b f(x, y) \, \mathrm{d}x \, \mathrm{d}y.$$

Analízis II. 10. TÉTEL

10.3. Normáltartomány

Adott $R \subset \mathbb{R}^2$ x szerinti normáltartomány, ha $\exists [a,b]$, továbbá $\exists \Phi_1 \leq \Phi_2 : [a,b] \mapsto \mathbb{R}$ szakaszonként folytonos függvények, melyekre

 $R = \left\{ (x, y) \in \mathbb{R}^2 \middle| x \in [a, b], y \in \left[\Phi_1(x), \Phi_2(x) \right] \right\}.$

Hasonlóan $R\subset\mathbb{R}^2$ y szerinti normáltartomány, ha $\exists [c,d]$, továbbá $\exists \Psi_1\leq\Psi_2:[c,d]\mapsto\mathbb{R}$ szakaszonként folytonos függvények, melyekre

$$R = \left\{ (x, y) \in \mathbb{R}^2 \middle| y \in [c, d], x \in \left[\Psi_1(y), \Psi_2(y) \right] \right\}.$$

10.4. Integrálás síkbeli normáltartományon

Legyen R egy x szerinti normáltartomány. Ekkor

$$\iint_R f(x,y) \,\mathrm{d}(x,y) = \int_a^b \int_{\Phi_1(x)}^{\Phi_2(x)} f(x,y) \,\mathrm{d}y \,\mathrm{d}x \,.$$

Hasonlóan, ha R egy y szerinti normáltartomány, akkor

$$\iint_{R} f(x, y) d(x, y) = \int_{c}^{d} \int_{\Psi_{1}(y)}^{\Psi_{2}(y)} f(x, y) dx dy.$$

10.5. Áttérés polárkoordinátákra kettős integrálban

Az áttérés során az (x,y) koordinátákról térünk át az (r,θ) koordinátkra, ahol r az origótól vett távolság, θ pedig az x-tengellyel bezárt szög. Ekkor

$$x = r\cos\theta$$

$$y = r \sin \theta$$

így a Jacobi mátrix

$$\mathcal{J}(r,\theta) = \begin{pmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{pmatrix}$$

amiből a Jacobi determináns $D(r, \theta) = r \cos^2 \theta + r \sin^2 \theta = r$.

Legyen adott $f:D\mapsto \mathbb{R}$ függvény és T az integrálás tartománya. Legyen továbbá a koordinátatranszformáció után az integrálási tartomány T'. Az integrál

$$\iint_T f(x,y) d(x,y) = \iint_{T'} f(r\cos\theta, r\sin\theta) r d(r,\theta).$$

Analízis II. 11. TÉTEL

11. Tétel

11.1. Polárkoordináták a síkon

Adott P(x,y) pont a síkon. Ennek a po
ntnak a polárkoordinátái (r,θ) , ahol r az origótól vett tálvság, θ pedig az x-tengellyel bezárt szög. Ekkor

$$r = \sqrt{x^2 + y^2}$$

$$\theta = \arcsin \frac{y}{x^2 + y^2} = \arccos \frac{x}{x^2 + y^2} = \arctan \frac{y}{x}$$

illetve

$$x = r\cos\theta$$
$$y = r\sin\theta.$$

11.1.1. Jacobi mátrixa

Az áttérés során az (x, y) koordinát
ákról térünk át az (r, θ) koordinátkra, ahol r az origótól vett távolság, θ
pedig az x-tengellyel bezárt szög. Ekkor

$$x = r\cos\theta$$
$$y = r\sin\theta$$

így a Jacobi mátrix

$$\mathcal{J}(r,\theta) = \begin{pmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{pmatrix}$$

amiből a Jacobi determináns $D(r, \theta) = r \cos^2 \theta + r \sin^2 \theta = r$.

11.2. Általános helyettesítés kettős integrálban

Legyen $f: R \mapsto \mathbb{R}$ integrálható függvény. Legyen

$$x = \Phi(u, v)$$
$$y = \Psi(u, v)$$

invertálható és differenciálható függvényrendszer. Legyen továbbá

$$R' = \left\{ (u, v) \in \mathbb{R}^2 \middle| \left(\Phi(u, v), \Psi(u, v) \right) \in R \right\}.$$

Ekkor

$$\iint_R f(x,y) \, \mathrm{d}(x,y) = \iint_{R'} f \big(\Phi(u,v), \Psi(u,v) \big) D(u,v) \, \mathrm{d}(u,v)$$

ahol D(u, v) a Jacobi determináns.

11.3. Riemann integrál három dimenzióban, szemléletes jelentés

Adott $f: S \mapsto \mathbb{R}$ háromváltozós függvény. Az

$$\iiint_T f(x, y, z) \, \mathrm{d}(x, y, z)$$

integrált a kétváltozós esettel analóg módon közelítésekkel értelmezzük, először egy mértéket definiálunk, kockás közelítéssel (kétdimenzióban négyzetes). Ezután a közelítőösszeget definiáljuk az eddigiekkel analóg módon. Tegyük fel, hogy adott T tartomány, melyen az f háromváltozós függvény nemnegatív értékeket vesz fel. Ekkor legyen az f függvény sűrűségfüggvény, tehát f(x, y, z) az (x, y, z) pont sűrűségét jelenti. Így az

$$\iiint_T f(x, y, z) \, \mathrm{d}(x, y, z)$$

integrál a T tartomány (háromdimenziós test) tömegét fogja jelenteni.

Analízis II. 11. TÉTEL

11.4. Hármas integrál kiszámítása intervallumon

Adott f háromváltozós függvény és $T=[a,b]\times [c,d]\times [e,g]\subset \mathbb{R}^3$ intervallum. Az integrál értéke

$$\iiint_T f(x,y,z) \, \mathrm{d}(x,y,z) = \int_a^b \int_c^d \int_e^g f(x,y,z) \, \mathrm{d}z \, \mathrm{d}y \, \mathrm{d}x$$

illetve a kettős integrálhoz hasonlóan, az integrálok tetszőleges permutációja megfelelő.

11.5. Hármas integrál kiszámítása normáltartományon

Adott f háromváltozós függvény és

$$T = \left\{ (x, y, z) \in \mathbb{R}^3 \middle| (x, y) \in S \subset \mathbb{R}^2, z \in \left[F_1(x, y), F_2(x, y) \right] \right\}$$

(x,y) szerinti normáltartomány. Az ingetrál értéke

$$\iiint_T f(x, y, z) \, d(x, y, z) = \iint_S \int_{F_1(x, y)}^{F_2(x, y)} f(x, y, z) \, dz \, d(x, y) \,.$$

Ha ${\cal S}$ intervallum, vagy normáltartomány, akkor tovább egyszerűsödik a képlet.

Analízis II. 12. TÉTEL

12. Tétel

12.1. Hengerkoordináták, Jacobi determináns

Egy (x, y, z) pont hengerkoordinátái (r, θ, z) ahol (r, θ) a pont vetületének polárkoordinátái és

$$x = r \cos \theta$$
$$y = r \sin \theta$$
$$z = z.$$

A Jacobi mátrix

$$\mathcal{J}(r,\theta,z) = \begin{pmatrix} \cos\theta & -r\sin\theta & 0\\ \sin\theta & r\cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Jacobi determinánsa (harmadik sor szerint kifejtve)

$$D(r, \theta, z) = r \cos^2 \theta + r \sin^2 \theta = r.$$

12.2. Gömbi polárkoordináták, Jacobi determináns

Egy (x, y, z) pont gömbi polárkoordinátái (r, θ, φ) , ahol r az origótól vett távolság, θ a pontba mutató vektor vetületének az x-tengellyel bezárt szöge, φ pedig a pontba mutató vektor z-tengellyel bezárt szöge.

$$x = r \sin \varphi \cos \theta$$
$$y = r \sin \varphi \sin \theta$$
$$z = r \cos \varphi$$

A Jacobi mátrix

$$\mathcal{J}(r,\theta,\varphi) = \begin{pmatrix} \sin\varphi\cos\theta & r\cos\varphi\cos\theta & -r\sin\varphi\sin\theta\\ \sin\varphi\sin\theta & r\cos\varphi\sin\theta & r\sin\varphi\cos\theta\\ \cos\varphi & -r\sin\varphi & 0 \end{pmatrix}$$

A Jacobi determinána (utolsó sor szerint kifejtve)

$$D(r, \theta, \varphi) = \cos \varphi \left(r^2 \sin \varphi \cos \varphi \cos^2 \theta + r^2 \sin \varphi \cos \varphi \sin^2 \theta \right) +$$
$$+r \sin \varphi \left(r \sin^2 \varphi \cos^2 \theta + r \sin^2 \varphi \sin^2 \theta \right) = r^2 \sin \varphi \cos^2 \varphi + r^2 \sin^3 \varphi = r^2 \sin \varphi.$$

12.3. Általános helyettesítés hármas integrálban

Legyen $f:R\mapsto \mathbb{R}$ integrálható függvény. Legyen

$$x = \Phi(u, v, w)$$
$$y = \Psi(u, v, w)$$
$$z = \Xi(u, v, w)$$

invertálható és differenciálható függvényrendszer. Legyen továbbá

$$R' = \left\{ (u, v, w) \in \mathbb{R}^3 \middle| \left(\Phi(u, v, w), \Psi(u, v, w), \Xi(u, v, w) \right) \in R \right\}.$$

Ekkor

$$\iint_{B} f(x,y,z) \, \mathrm{d}(x,y,z) = \iint_{B'} f\big(\Phi(u,v,w), \Psi(u,v,w), \Xi(u,v,w)\big) D(u,v,w) \, \mathrm{d}(u,v,w)$$

ahol D(u, v, w) a Jacobi determináns.

Analízis II. 12. TÉTEL

12.4. Improprius kettős integrál kiszámítása nem korlátos tartományon

Adott $f: R \mapsto \mathbb{R}$ folytonos függvény, ahol R nem korlátos. Tegyük fel, hogy $\exists R_1 \subset R_2 \subset \cdots \subset R$ mérhető tartománysorozat, melyre

$$\bigcup_{n=1}^{\infty} R_n = R.$$

Ha

$$\exists \lim_{n \to \infty} \iint_{R_n} f(x, y) \, \mathrm{d}(x, y) < \infty$$

és független az (R_n) sorozat megválasztásától, akkor f improprius értelemben integrálható

$$\iint_R f(x,y) d(x,y) = \lim_{n \to \infty} \iint_{R_n} f(x,y) d(x,y).$$

12.4.1. Tétel

Tegyük fel, hogy $\exists (R_n)$ mérhető tartománysorozat, melyre az integrálok egyenletesen korlátosak, azaz $\exists M$, melyre $\forall n$ esetén

$$\iint_{R_{-}} |f(x,y)| \, \mathrm{d}(x,y) \le M$$

teljesül. Ekkor f improprius értelemben integrálható és minden más megfelelő (S_n) mérhető tartománysorozatra

$$\lim_{n\to\infty}\iint_{S_n}f(x,y)\,\mathrm{d}(x,y)=\lim_{n\to\infty}\iint_{R_n}f(x,y)\,\mathrm{d}(x,y)=\iint_Rf(x,y)\,\mathrm{d}(x,y)\,.$$

12.4.2. Haranggörbe integrálja az egész síkon

Adott $f(x,y) = e^{-x^2 - y^2}$. Legyen

$$R_n = \left\{ (x, y) \in \mathbb{R}^2 \middle| x^2 + y^2 \in [0, n^2] \right\}$$

illetve polárkoordinátákra áttérve

$$R_n' = \Big\{ (r,\theta) \in \mathbb{R}^2 \Big| r \in [0,n], \theta \in [0,2\pi] \Big\}.$$

Ekkor R_n nyilván mérhető, az integrál

$$\iint_{R_n} e^{-x^2 - y^2} d(x, y) = \iint_{R'_n} r e^{-r^2} d(r, \theta) = \pi \int_0^n 2r e^{-r^2} dr = -\pi e^{-r^2} \bigg|_0^n = \pi - \pi e^{-n^2}.$$

Látható, hogy

$$\lim_{n \to \infty} \iint_{R_n} f(x, y) \, \mathrm{d}(x, y) = \pi$$

tehát a függvény improprius értelemben integrálható és

$$\iint_{\mathbb{R}^2} e^{-x^2 - y^2} \, \mathrm{d}(x, y) = \pi.$$

12.4.3. Következmény

Mivel minden más tartománysorozatra ugyanezt az eredményt kapjuk, ezért

$$S_n = \left\{ (x, y) \in \mathbb{R}^2 \middle| |x|, |y| \in [0, n] \right\}$$

esetén

$$\lim_{n \to \infty} \iint_{S_n} e^{-x^2 - y^2} \, \mathrm{d}(x,y) = \lim_{n \to \infty} \int_{-n}^n \int_{-n}^n e^{-x^2 - y^2} \, \mathrm{d}(x,y) = \int_{-\infty}^\infty e^{-x^2} \, \mathrm{d}x \int_{-\infty}^\infty e^{-y^2} \, \mathrm{d}y = \pi.$$

Ebből kapjuk, hogy

$$\int_0^\infty e^{-x^2} \, \mathrm{d}x = \frac{\sqrt{\pi}}{2}.$$

Analízis II. 13. TÉTEL

13. Tétel

13.1. Improprius integrál kiszámítása nem korlátos függvényre

Adott $f: R \mapsto \mathbb{R}$ nem korlátos függvény, azaz legyen f folytonos függvény néhány pont kivételét, ahol nincs véges határértéke. Tegyük fel, hogy $\exists R_1 \subset R_2 \subset \cdots \subset R$ tartománysorozat, ahol f folytonos $\forall R_n$ tartományon és $\lim_{n\to\infty} A(R_n) = A(R)$. Ha

$$\exists \lim_{n \to \infty} \iint_{R} f(x, y) d(x, y) < \infty$$

és független az (R_n) sorozat megválasztásától, akkor f improprius értelemben integrálható.

13.2. Hatványfüggvény integrálja az egységkörben

Legyen

$$f(x) = \frac{1}{\left(\sqrt{x^2 + y^2}\right)^{\alpha}}.$$

ahol $\alpha > 0$ és az integrálási tartomány

$$R = \left\{ (x, y) \in \mathbb{R}^2 \middle| x^2 + y^2 \in [0, 1] \right\}.$$

Legyen

$$R_n = \left\{ (x, y) \in \mathbb{R}^2 \middle| x^2 + y^2 \in \left[\frac{1}{n}, 1 \right] \right\}$$

illetve áttérve polárkoordinátákra

$$R' = \left\{ (r, \theta) \in \mathbb{R}^2 \middle| r \in \left[\frac{1}{n}, 1\right], \theta \in [0, 2\pi] \right\}.$$

Ekkor

$$\iint_{R_n} f(x,y) \, \mathrm{d}(x,y) = \iint_{R_n'} \frac{1}{r^\alpha} r \, \mathrm{d}(r,\theta) = \int_{\frac{1}{r}}^1 \int_0^{2\pi} \frac{1}{r^{\alpha-1}} \, \mathrm{d}\theta \, \mathrm{d}r = 2\pi \int_{\frac{1}{r}}^1 \frac{1}{r^{\alpha-1}} \, \mathrm{d}r \, .$$

Tudjuk, hogy ez az integrál akkor és csak akkor véges, hogyha $\alpha - 1 < 1$, azaz $\alpha < 2$. Azt kaptuk tehát, hogy a hatványfüggvény $0 < \alpha < 2$ esetében integrálható az egységkörön.

13.3. Integrálhatóság feltétele nem korlátos függvényre

Tegyük fel, hogy az $f: R \mapsto \mathbb{R}$ folytonos függvény nem korlátos az R mérhető tartomány egy pontjának környezetében, legyen ez (az egyszerűség kedvéért) az origó. Tegyük fel, hogy $\exists 0 < \alpha < 2, M > 0$ melyekre

$$|f(x,y)| \le \frac{M}{\left(\sqrt{x^2 + y^2}\right)^{\alpha}}$$

teljesül R-en. Ekkor f improprius értelemben integrálható.

13.4. Komplex függvény értelmezése, ábrázolás

Adott $S \subset \mathbb{C}$. Ekkor $f: S \mapsto \mathbb{C}$ komplex függvény, ahol S pontjaihoz $z = x + iy \mapsto w = u + iv$. Ekkor z független változó, w függő változó.

Komplex függvényeket két komplex sík segítségével tudunk ábrázolni. Ebben az esetben az első számsíkra az értelmezési tartományt, a másikra az értékkészletet rajzoljuk. Ilyenkor célszerű egyszerű alakzatok képét megvizsgálni (egyenesek, körök, téglalapok), illetve egyes pontok képét is ábrázolhatjuk.

Analízis II. 14. TÉTEL

14. Tétel

14.1. Vonal definíció ja

14.1.1. \mathbb{R}^2

Adott $[a, b] \in \mathbb{R}$ véges intervallum és $\gamma : [a, b] \mapsto \mathbb{R}^2$ függvény, ahol $\gamma(t) = (x(t), y(t))$. Ekkor legyen Γ görbe

$$\Gamma = \left\{ y(t) \in \mathbb{R}^2 \middle| t \in [a, b] \right\}.$$

A görbe folytonos, ha a koordináta-függvényei folytonosak, illetve sima, ha a koordináta-függvényei simák. Zárt görbe esetén $\gamma(a) = \gamma(b)$.

14.1.2. \mathbb{R}^3

Adott $[a,b] \in \mathbb{R}$ véges intervallum és $\gamma:[a,b] \mapsto \mathbb{R}^3$ függvény, ahol $\gamma(t)=\big(x(t),y(t),z(t)\big)$. Ekkor legyen Γ görbe

$$\Gamma = \Big\{ y(t) \in \mathbb{R}^3 \Big| t \in [a,b] \Big\}.$$

A görbe folytonos, ha a koordináta-függvényei folytonosak, illetve sima, ha a koordináta-függvényei simák. Zárt görbe esetén $\gamma(a) = \gamma(b)$.

14.2. Kétváltozós valós függvény integrálja vonal mentén

Adott $f: R \mapsto \mathbb{R}$ kétváltozós függvény és

$$\Gamma = \left\{ \gamma(t) \middle| t \in [a, b] \right\} \in R$$

sima görbe, ahol $\gamma(t) = (x(t), y(t))$. Ekkor f Γ görbe menti vonalintegrálja

$$\int_{\Gamma} f(x,y) \, ds = \int_{a}^{b} f(x(t), y(t)) \sqrt{x'(t)^{2} + y'(t)^{2}} \, dt.$$

Bizonyítás

Írjunk fel egy közelítő összeget! Legyen

$$\mathcal{F} = \{ a = t_0 < t_1 < \dots < t_n = b \}$$

felosztás. Közelítsük a vonalintegrált téglalapokkal, melynek a magassága $f(\gamma(t_i))$ az alapja pedig

$$\sqrt{(x(t_{i+1})-x(t_i))^2+(y(t_{i+1})-y(t_i))^2}$$
.

Ekkor a közelítő összeg

$$I_n = \sum_{i=0}^{n-1} f(\gamma(t_i)) \sqrt{(x(t_{i+1}) - x(t_i))^2 + (y(t_{i+1}) - y(t_i))^2} =$$

$$=\sum_{i=0}^{n-1}f\left(\gamma(t_i)\right)\sqrt{\left(\frac{x(t_{i+1})-x(t_i)}{t_{i+1}-t_i}\right)^2+\left(\frac{y(t_{i+1})-y(t_i)}{t_{i+1}-t_i}\right)^2}(t_{i+1}-t_i).$$

A Lagrange-féle középértéktétel miatt $\exists \xi_i, \eta_i \in [t_i, t_{i+1}],$ melyekre

$$\frac{x(t_{i+1}) - x(t_i)}{t_{i+1} - t_i} = x'(\xi_i) \qquad \frac{y(t_{i+1}) - y(t_i)}{t_{i+1} - t_i} = y'(\eta_i).$$

Ekkor

$$I_n = f(\gamma(t_i)) \sqrt{x'(\xi_i)^2 + y'(\eta_i)^2} \Delta t_i.$$

Vegyük észre, hogy ez egy Riemann összeg, azaz

$$\lim_{\substack{n \to \infty \\ \delta(\mathcal{F}) \to 0}} I_n = \int_a^b f(\gamma(t)) \sqrt{x'(t)^2 + y'(t)^2} \, \mathrm{d}t = \int_a^b f(x(t), y(t)) \sqrt{x'(t)^2 + y'(t)^2} \, \mathrm{d}t.$$

Analízis II. 14. TÉTEL

14.2.1. Szemléletes jelentés

Állítsunk a görbe minden (x, y) pontjában az xy síkra merőleges f(x, y) hosszú szakaszt. A vonalintegrál értéke megadja a keletkező felület nagyságát.

14.3. Vektormező vonalintegrálja görbe mentén

Adott $F: R \mapsto \mathbb{R}^2$

$$F(x,y) = \begin{pmatrix} f(x,y) \\ g(x,y) \end{pmatrix}$$

vektormező és

$$\Gamma = \Big\{\gamma(t) \Big| t \in [a,b] \Big\} \in R$$

sima görbe. Ekkor a vektormező vonalintegrálja

$$\int_{\Gamma} F(\mathbf{r}) d\mathbf{r} = \int_{a}^{b} \langle F(\gamma(t)), \dot{\gamma}(t) \rangle dt = \int_{a}^{b} (f(\gamma(t))\dot{x}(t) + g(\gamma(t))\dot{y}(t)) dt.$$

14.3.1. Szemléletes jelentés

Egy testet mozgatva a Γ görbe mentén, ha minden (x, y) pontban F(x, y) erő hat a testre, akkor a vonalintegrál értéke megadja a végzett munkát.

14.4. Potenciálos vektormező

Azt mondjuk, hogy F potenciálos vektormező, ha $\exists f$ differenciálható függvény, melyre $F = \nabla f$.

14.4.1. Tétel

Adott F potenciálos vektormező, aminek potenciálja f és adott

$$\Gamma = \left\{ \gamma(t) \middle| t \in [a, b] \right\}$$

sima görbe. Ekkor

$$\int_{\Gamma} F(\mathbf{r}) d\mathbf{r} = f(\gamma(b)) - f(\gamma(a)).$$

Bizonyítás

$$\int_{\Gamma} F(\mathbf{r}) d\mathbf{r} = \int_{a}^{b} \langle F(\gamma(t)), \dot{\gamma}(t) \rangle dt = \int_{a}^{b} \frac{d}{dt} f(\gamma(t)) dt = f(\gamma(b)) - f(\gamma(a)).$$

14.5. Potenciálkeresés

Adott

$$F(x,y) = \begin{pmatrix} g(x,y) \\ h(x,y) \end{pmatrix}$$

vektormező. Ahhoz, hogy F potenciálos legyen

$$\frac{\partial g}{\partial y} = \frac{\partial h}{\partial x}$$

kell. Ekkor g-t integrálva x szerint, illetve h-t integrálva y szerint kapjuk a G(x,y), H(x,y) függvényeket. Ezen függvények közös része lesz a keresett potenciál.

Analízis II. 14. TÉTEL

14.5.1. Potenciál létezésének szükséges és elégséges feltétele

Adott F vektormező és Γ zárt, sima görbe. Ekkor F potenciálos akkor és csak akkor, ha

$$\oint_{\Gamma} F(\mathbf{r}) \, \mathrm{d}\mathbf{r} = 0.$$

Bizonyítás

(Csak szükségesség)

Tegyük fel, hogy F potenciálos, potenciálja f. Ekkor

$$\oint_{\Gamma} F(\mathbf{r}) d\mathbf{r} = f(\gamma(b)) - f(\gamma(a)) = 0.$$

Analízis II. 15. TÉTEL

15. Tétel

15.1. Fourier sor komplex alakja, együtthatók meghatározása

Legyen $f: \mathbb{R} \to \mathbb{R}$ 2 π szerint periodikus, szakaszonként folytonosan differenciálható függvény, melynek csak elsőfajú szakadása van, ahol

 $f(x) = \frac{f(x+0) + f(x-0)}{2}.$

Ekkor

 $f(x) = \sum_{n = -\infty}^{\infty} \alpha_n e^{inx}$

ahol

$$\alpha_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx} \, \mathrm{d}x.$$

Bizonyítás

Tudjuk, hogy

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos(nx) + b_n \sin(nx) \right) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \frac{e^{inx} + e^{-inx}}{2} + b_n \frac{e^{inx} - e^{-inx}}{2i} \right) =$$

$$= \sum_{n=-\infty}^{\infty} \alpha_n e^{inx}$$

ahol

$$\alpha_n = \frac{a_n - ib_n \operatorname{sgn}(n)}{2} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx.$$

15.2. Fourier transzformáció

Legyen $f: \mathbb{R} \to \mathbb{R}$ szakaszonként folytonosan differenciálható, abszolút integrálható függvény, azaz

$$\int_{-\infty}^{\infty} |f(x)| \, \mathrm{d}x < \infty$$

melynek csak elsőfajú szakadása van, ahol

$$f(x) = \frac{f(x+0) + f(x-0)}{2}.$$

Ekkor a függvény Fourier transzformáltja $\hat{f}:\mathbb{R}\mapsto\mathbb{C}$

$$\mathcal{F}(f,s) = \hat{f}(s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-isx} dx.$$

15.3. Fourier transzformáció tulajdonságai

1. Ha f páros, akkor

$$\hat{f}(s) = \sqrt{\frac{2}{\pi}} \int_0^\infty f(t) \cos(st) dt.$$

2. Ha f páratlan, akkor

$$\hat{f}(s) = -i\sqrt{\frac{2}{\pi}} \int_0^\infty f(t) \sin(st) dt.$$

3. \hat{f} folytonos

Analízis II. 15. TÉTEL

4. Linearitás

$$\mathcal{F}(\alpha f + \beta g, s) = \alpha \mathcal{F}(f, s) + \beta \mathcal{F}(g, s)$$

5. Átskálázás

$$\mathcal{F}(f(ax), s) = \frac{1}{|a|} \mathcal{F}(f(x), \frac{s}{a}) \qquad (a \neq 0)$$

6. Időeltolás

$$\mathcal{F}(f(x-x_0),s) = e^{-ix_0s}\mathcal{F}(f(x),s)$$

7. Frekvenciaeltolás

$$\mathcal{F}(e^{ikx}f(x),s) = \mathcal{F}(f(x),s-k)$$

Bizonyítás

1. Tudjuk, hogy

$$\hat{f}(s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) \cos(st) dt - \frac{i}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) \sin(st) dt.$$

Ekkor ha f páros, akkor

$$\hat{f}(s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) \cos(st) dt = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(t) \cos(st) dt.$$

2. Tudjuk, hogy

$$\hat{f}(s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) \cos(st) dt - \frac{i}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) \sin(st) dt.$$

Ekkor ha f páratlan, akkor

$$\hat{f}(s) = -i\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) \sin{(st)} dt = -i\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(t) \sin{(st)} dt.$$

- 3. Az egyenletes konvergenciából következik.
- 4. Az integrálás linearitásából következik.

$$\mathcal{F}(f(ax), s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(ax)e^{-isx} dx = \frac{1}{\frac{1}{a}y = x} \frac{1}{\sqrt{2\pi}} \int_{-\operatorname{sgn} a\infty}^{\operatorname{sgn} a\infty} f(y)e^{-i\frac{s}{a}y} \frac{1}{a} dy = \frac{1}{|a|\sqrt{2\pi}} \int_{-\infty}^{\infty} f(y)e^{-i\frac{s}{a}y} dy = \frac{1}{|a|} \mathcal{F}(f(x), \frac{s}{a})$$

$$\mathcal{F}(f(x-x_0),s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x-x_0)e^{-isx} dx = \sup_{\substack{y=x-x_0 \\ dy=dx}}$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(y)e^{-is(y+x_0)} dy = e^{-isx_0} \mathcal{F}(f(x),s)$$

$$\mathcal{F}\left(e^{ikx}f(x),s\right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-i(s-k)x} \, \mathrm{d}x = \mathcal{F}\left(f(x),s-k\right)$$

Analízis II. 15. TÉTEL

15.4. Inverz Fourier transzformáció

Legyen $f:\mathbb{R}\mapsto\mathbb{R}$ szakaszonként folytonosan differenciálható, abszolút integrálható függvény, azaz

$$\int_{-\infty}^{\infty} |f(x)| \, \mathrm{d}x < \infty$$

melynek csak elsőfajú szakadása van, ahol

$$f(x) = \frac{f(x+0) + f(x-0)}{2}.$$

Ekkor

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(s)e^{isx} ds.$$

Analízis II. 16. TÉTEL

16. Tétel

16.1. Parseval egyenlet Fourier transzformációra

Tegyük fel, hogy

 $\int_{-\infty}^{\infty} |f'(x)| \, \mathrm{d}x < \infty \qquad \int_{-\infty}^{\infty} |f''(x)| \, \mathrm{d}x < \infty.$

Ekkor

$$\int_{-\infty}^{\infty} |f(x)|^2 dx = \int_{-\infty}^{\infty} |\hat{f}(s)|^2 ds.$$

Bizonyítás

$$\int_{-\infty}^{\infty} f^2(x) \, \mathrm{d}x = \int_{-\infty}^{\infty} f(x) \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(s) e^{isx} \, \mathrm{d}s \, \mathrm{d}x = \int_{-\infty}^{\infty} \hat{f}(s) \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{isx} \, \mathrm{d}x \, \mathrm{d}s = \int_{-\infty}^{\infty} \hat{f}(s) \hat{f}(-s) \, \mathrm{d}s = \int_{-\infty}^{\infty} \left| \hat{f}(s) \right|^2 \, \mathrm{d}s$$

16.2. Konvolúció

Adottak $f,g:\mathbb{R}\mapsto\mathbb{R}$ abszolút integrálható függvények. Ekkor a két függvény konvolúciója

$$(f * g)(x) = \int_{-\infty}^{\infty} f(y)g(x - y) \, \mathrm{d}y.$$

16.3. Konvolúció és FT kapcsolata

1.

$$\mathcal{F}(f*g,s) = \sqrt{2\pi}\mathcal{F}(f,s)\mathcal{F}(g,s)$$

2.

$$\mathcal{F}(fg,s) = \frac{1}{\sqrt{2\pi}}\mathcal{F}(f,s)*\mathcal{F}(g,s)$$

Bizonyítás

$$\mathcal{F}(f * g, s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (f * g)(x) e^{-isx} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f(y) g(x - y) dy \right) e^{-isx} dx =$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(y) e^{-isy} dy \int_{-\infty}^{\infty} g(x - y) e^{-is(x - y)} dx = \sqrt{2\pi} \mathcal{F}(f, s) \mathcal{F}(g, s)$$

$$\mathcal{F}(fg,s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)g(x)e^{-isx} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(r)e^{irx} dr \, g(x)e^{-isx} dx =$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(r) \left(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(x)e^{-i(s-r)x} dx \right) dr = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(r)\hat{g}(s-r) dr =$$

$$= \frac{1}{\sqrt{2\pi}} \mathcal{F}(f,s) * \mathcal{F}(g,s)$$

Analízis II. 16. TÉTEL

16.4. Dirac delta

Adott $\varepsilon > 0$. Ekkor legyen

$$\delta_{\varepsilon}(x) = \begin{cases} \frac{1}{2\varepsilon}, & \text{ha } |x| < \varepsilon \\ 0, & \text{ha } |x| \ge \varepsilon \end{cases}.$$

A Dirac delta

$$\delta(x) = \lim_{\varepsilon \to 0} \delta_{\varepsilon}(x).$$

Analízis II. 17. TÉTEL

17. Tétel

17.1. n-edrendű lineáris differenciálegyenlet

Adott L lineáris operátor, melyre

$$L[y] = \sum_{k=0}^{n} a_{n-k} y^{(k)}.$$

Homogén differenciálegyenlet (HDE) esetén L[y] = 0 megoldásait keressük, inomogén differenciálegyenlet (IDE) esetén L[y] = f(x) megoldásait keressük.

17.2. Függvények függetlensége

Adottak az $y_1, y_2, \dots, y_n : D \mapsto \mathbb{R}$ függvények. Azt mondjuk, hogy a függvények lineárisan függetlenek, ha

$$\sum_{k=1}^{n} c_k y_k(x) \equiv 0$$

akkor és csak akkor teljesül, ha $\forall c_k = 0.$

17.3. Wronski determináns

Adottak y_1, y_2, \dots, y_n (n-1)-szer differenciálható függvények. Ekkor a Wronski determináns

$$W[y_1, y_2, \dots, y_n] = \begin{vmatrix} y_1 & y_2 & \dots & y_n \\ y'_1 & y'_2 & \dots & y'_n \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)} & y_2^{(n-1)} & \dots & y_n^{(n-1)} . \end{vmatrix}$$

17.4. Tétel

Az y_1, y_2, \dots, y_n függvények lineárisan összefüggők akkor és csak akkor, ha

$$W[y_1, y_2, \dots, y_n] = 0.$$

Bizonyítás

Tegyük fel, hogy a függvények összefüggők. Ekkor van köztük egy y_k függvény, melyre

$$y_k = -\sum_{j \neq k} \frac{c_j}{c_k} y_j.$$

Hasonlóan

$$y_k' = -\sum_{j \neq k} \frac{c_j}{c_k} y_j'.$$

A gondolatmenetet követve láthatjuk, hogy a mátrix k-adik oszlopa előáll a többi lineáris kombinációjaként, ezért a determináns nulla.

Most tegyük fel, hogy a determináns nulla. Tudjuk, hogy ekkor az oszlopok összefüggő rendszert alkotnak, amiből az előző gondolatmenet mentén láthatjuk, hogy az y_k függvények összefüggő rendszert alkotnak.

17.5. Megoldások terének jellemzése

Az L[y] = 0 egyenletnek létezik n darab lineárisan független megoldása, melyekre az összes többi megoldás ezek lineáris kombinációja.

Analízis II. 17. TÉTEL

Bizonyítás

A tétel második részét látjuk be. Tudjuk, hogy $L[y] = L[y_k] = 0,$ tehát

$$W[y,y_1,\ldots,y_n]=0.$$

Mivel

$$W[y_1, y_2, \dots, y_n] \neq 0$$

így

$$y = \sum_{k=1}^{n} a_k y_k.$$

Analízis II. 18. TÉTEL

18. Tétel

18.1. Homogén lineáris, állandó együtthatós differenciálegyenlet

Ebben az esetben

$$L[y] = y^{(n)} + a_1 y^{(n-1)} + \dots + a_n y = 0$$
 $a_k \in \mathbb{R}$.

A differenciálegyenlet karakterisztikus polinomja

$$P(\lambda) = \lambda^n + a_1 \lambda^{n-1} + \dots + a_n.$$

A HDE megoldásait $y = e^{\lambda x}$ alakban keresve

$$L[e^{\lambda x}] = e^{\lambda x} P(\lambda) = 0 \implies P(\lambda) = 0.$$

18.1.1. Első eset

Tegyük fel, hogy P n különböző gyöke mind valós, legyenek a gyökök $\lambda_1, \lambda_2, \dots, \lambda_n$. Ekkor az alapmegoldások

$$y_1(x) = e^{\lambda_1 x}$$

$$y_2(x) = e^{\lambda_2 x}$$

$$\vdots$$

$$y_n(x) = e^{\lambda_n x}$$

illetve az általános megoldás

$$y(x) = \sum_{k=1}^{n} c_k e^{\lambda_k x}$$
 $c_k \in \mathbb{R}$.

18.1.2. Második eset

Tegyük fel, hogy P m darab gyöke k_m -szeres gyök, ahol nyilván $\sum_{j=1}^m k_j = n$. Ekkor az alapmegoldások

$$y_1(x) = e^{\lambda_1 x}$$

$$\vdots$$

$$y_{k_1}(x) = x^{k_1 - 1} e^{\lambda_1 x}$$

$$y_{k_1 + 1}(x) = e^{\lambda_2 x}$$

$$\vdots$$

$$y_{k_1 + k_2}(x) = x^{k_2 - 1} e^{\lambda_2 x}$$

$$\vdots$$

$$y_{k_1 + k_2 + \dots + 1}(x) = e^{\lambda_m x}$$

$$\vdots$$

$$y_n(x) = x^{k_m - 1} e^{\lambda_m x}$$

illetve az általános megoldás

$$y(x) = \sum_{j=1}^{m} \sum_{l=0}^{k_j - 1} c_{jl} x^l e^{\lambda_j x}.$$

Analízis II. 18. TÉTEL

18.1.3. Harmadik eset

Tegyük fel, hogy az egyenletnek gyöke a $\lambda=\alpha+i\beta$ komplex szám. Ekkor tudjuk, hogy $\overline{\lambda}=\alpha-i\beta$ is gyök. A két alapmegoldás

$$u_1(x) = e^{\lambda x} = e^{\alpha x} (\cos(\beta x) + i \sin(\beta x))$$

$$u_2(x) = e^{\overline{\lambda}x} = e^{\alpha x} (\cos(\beta x) - i \sin(\beta x)).$$

Tudjuk, hogy alapmegoldások lineáris kombinációja is megoldás, ezért a fenti megoldásokból definiáljuk az új, valós alapmegoldásokat

$$y_1(x) = \frac{u_1(x) + u_2(x)}{2} = e^{\alpha x} \cos(\beta x)$$
$$y_2(x) = \frac{u_1(x) - u_2(x)}{2i} = e^{\alpha x} \sin(\beta x).$$

18.1.4. Negyedik eset

Többszörös komplex gyököknél hasonlóan kell eljárni, mint többszörös valós gyököknél.

18.2. IDE megoldások struktúrája

Adott L[y] = f(x) IDE. Ha y_1, y_2 megoldások, akkor $y = y_1 - y_2$ megoldása az L[y] = 0 HDE-nek. Ha y_1 megoldása az HDE-nek és y_2 megoldása a IDE-nek, akkor $y = y_1 + y_2$ megoldása az IDE-nek.

18.3. Állandók variálása

Adott

$$L[y] = y^{(n)} + a_1 y^{(n-1)} + \dots + a_n y = f(x).$$

Legyenek az L[y]=0 homogén differenciálegyenlet alapmegoldásai az y_1,y_2,\ldots,y_n függvények. Ekkor a partikuláris megoldás

$$y_p(x) = \sum_{k=1}^{n} \gamma_k(x) y_k(x)$$

ahol

$$\begin{pmatrix} \gamma_1 \\ \gamma_2 \\ \vdots \\ \gamma_n \end{pmatrix} = \int W^{-1} \begin{pmatrix} 0 & 0 & \dots & f \end{pmatrix}^{\mathrm{T}} d \begin{pmatrix} x \\ x \\ \vdots \\ x \end{pmatrix}.$$

ahol W a Wronski mátrix. Ekkor az általános megoldás

$$y(x) = y_p(x) + \sum_{k=1}^{n} c_k y_k(x).$$

Bizonyítás

Állítsuk az γ_k, y_k függvényekre a következő feltételeket

$$\sum_{k=1}^{n} \gamma'_k y_k = 0$$

$$\sum_{k=1}^{n} \gamma'_k y'_k = 0$$

$$\vdots$$

$$\sum_{k=1}^{n} \gamma'_k y_k^{(n-1)} = f$$

Analízis II. 18. TÉTEL

azaz

$$W\begin{pmatrix} \gamma_1' \\ \gamma_2' \\ \vdots \\ \gamma_n' \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ f \end{pmatrix}.$$

Ekkor $y_p = \sum_{k=1}^n \gamma_k y_k$ esetén

$$y'_p = \sum_{k=1}^n \gamma'_k y_k + \sum_{k=1}^n \gamma_k y'_k = \sum_{k=1}^n \gamma_k y'_k.$$

Hasonlóan

$$y_p^{(m)} = \sum_{k=1}^n \gamma_k' y_k^{(m-1)} + \sum_{k=1}^n \gamma_k y_k^{(m)} = \sum_{k=1}^n \gamma_k y_k^{(m)}$$

illetve

$$y_p^{(n)} = \sum_{k=1}^n \gamma_k' y_k^{(n-1)} + \sum_{k=1}^n \gamma_k y_k^{(n)} = f + \sum_{k=1}^n \gamma_k y_k^{(n)}.$$

Ebből

$$L[y_p] = f + \sum_{k=1}^{n} \gamma_k L[y_k] = f.$$

Tehát $y_p = \sum_{k=1}^n \gamma_k y_k$ valóban megoldása az IDE-nek. Mivel $W \neq 0$, így a feltételekből azonnal következik, hogy

$$\begin{pmatrix} \gamma_1 \\ \gamma_2 \\ \vdots \\ \gamma_n \end{pmatrix} = \int W^{-1} \begin{pmatrix} 0 & 0 & \dots & f \end{pmatrix}^{\mathrm{T}} d \begin{pmatrix} x \\ x \\ \vdots \\ x \end{pmatrix}.$$

18.4. Kezdetiérték feladat

Olyan megoldást keresünk, melyre $y^{(k)}(x_0) = \xi_{k+1}$ teljesül, $k = 0, 1, \dots, n-1$. Ekkor létezik egyértelmű megoldás.

18.5. Peremérték feladat

Olyan megoldást keresünk, melyre $y(x_k) = \xi_k$ teljesül, k = 1, 2, ..., n. Ekkor létezik egyértelmű megoldás.

Analízis II. 19. TÉTEL

19. Tétel

19.1. Komplex függvény kanonikus alakja

Adott $f: \mathbb{C} \to \mathbb{C}$. Ekkor a függvény kanonikus alakja

$$f(z) = u(x, y) + iv(x, y)$$

ahol $u, v : \mathbb{R}^2 \to \mathbb{R}$.

19.2. Függvény határértéke

Adott f függvény határértéke a z_0 pontban H, ha $\forall \varepsilon > 0$ esetén $\exists \delta > 0$, melyre $0 < |z - z_0| < \delta$ esetén $|f(z) - H| < \varepsilon$ teljesül.

19.3. Folytonos függvény

Adott $f: \mathbb{C} \to \mathbb{C}$ komplex függvény. Ekkor f folytonos $z_0 \in D_f$, ha $\forall \varepsilon > 0$ esetén $\exists \delta > 0$, melyre $\forall z \in D_f$, $|z - z_0| < \delta$ esetén $|f(z) - f(z_0)| < \varepsilon$.

19.4. Differenciálhatóság

Adott $f:\mathbb{C}\mapsto\mathbb{C}$ komplex függvény. Ekkor f differenciálható a $z_0\in intD_f$ pontban, ha

$$\exists \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} < \infty.$$

19.5. Analitikus függvény

Azt mondjuk, hogy az f komplex függvény analitikus, ha differenciálható $\forall z \in D_f$ -ben.

19.6. Cauchy-Riemann egyenletek

Adott $f: \mathbb{C} \mapsto \mathbb{C}$ komplex függvény. f differenciálható a $z_0 \in intD_f$ pontban akkor és csak akkor, ha

$$\frac{\partial u}{\partial x}(x_0, y_0) = \frac{\partial v}{\partial y}(x_0, y_0)$$
$$\frac{\partial u}{\partial y}(x_0, y_0) = -\frac{\partial v}{\partial x}(x_0, y_0).$$

Bizonyítás

Tegyük fel, hogy f differenciálható a z_0 pontban. Ekkor

$$f'(z_0) = \lim_{r \to 0} \frac{u(x_0 + r, y_0) + iv(x_0 + r, y_0) - u(x_0, y_0) - iv(x_0, y_0)}{r} =$$

$$= \lim_{r \to 0} \frac{u(x_0 + r, y_0) - u(x_0, y_0)}{r} + i \lim_{r \to 0} \frac{v(x_0 + r, y_0) - v(x_0, y_0)}{r} = \frac{\partial u}{\partial x}(x_0, y_0) + i \frac{\partial v}{\partial x}(x_0, y_0).$$

Hasonlóan

$$f'(z_0) = \lim_{s \to 0} \frac{u(x_0, y_0 + s) + iv(x_0, y_0 + s) - u(x_0, y_0) - iv(x_0, y_0)}{is} =$$

$$= \lim_{s \to 0} \frac{u(x_0, y_0 + s) - u(x_0, y_0)}{is} + i \lim_{s \to 0} \frac{v(x_0, y_0 + s) - v(x_0, y_0)}{is} = \frac{\partial v}{\partial y}(x_0, y_0) - i \frac{\partial u}{\partial y}(x_0, y_0).$$

Ebből azonnal kapjuk az állítást.

Most tegyük fel, hogy a függvény kielégíti a Cauchy-Riemann egyenleteket. Ekkor

$$\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} = \lim_{r + is \to 0} \frac{u(x_0 + r, y_0 + s) + iv(x_0 + r, y_0 + s) - u(x_0, y_0) - iv(x_0, y_0)}{r + is} = \lim_{h \to 0} \frac{u(x_0 + r, y_0 + s) + iv(x_0 + r, y_0 + s) - u(x_0, y_0) - iv(x_0, y_0)}{r + is} = \lim_{h \to 0} \frac{u(x_0 + r, y_0 + s) + iv(x_0 + r, y_0 + s) - u(x_0, y_0) - iv(x_0, y_0)}{r + is} = \lim_{h \to 0} \frac{u(x_0 + r, y_0 + s) + iv(x_0 + r, y_0 + s) - u(x_0, y_0) - iv(x_0, y_0)}{r + is} = \lim_{h \to 0} \frac{u(x_0 + r, y_0 + s) + iv(x_0 + r, y_0 + s) - u(x_0, y_0) - iv(x_0, y_0)}{r + is} = \lim_{h \to 0} \frac{u(x_0 + r, y_0 + s) + iv(x_0 + r, y_0 + s) - u(x_0, y_0) - iv(x_0, y_0)}{r + is} = \lim_{h \to 0} \frac{u(x_0 + r, y_0 + s) + iv(x_0 + r, y_0 + s) - u(x_0, y_0) - iv(x_0, y_0)}{r + is} = \lim_{h \to 0} \frac{u(x_0 + r, y_0 + s) + iv(x_0 + r, y_0 + s) - u(x_0, y_0) - iv(x_0, y_0)}{r + is} = \lim_{h \to 0} \frac{u(x_0 + r, y_0 + s) + iv(x_0 + r, y_0 + s) - u(x_0, y_0) - iv(x_0, y_0)}{r + is} = \lim_{h \to 0} \frac{u(x_0 + r, y_0 + s) + iv(x_0 + r, y_0 + s) - u(x_0, y_0) - iv(x_0, y_0)}{r + is} = \lim_{h \to 0} \frac{u(x_0 + r, y_0 + s) + iv(x_0 + r, y_0 + s) - u(x_0, y_0)}{r + is} = \lim_{h \to 0} \frac{u(x_0 + r, y_0 + s) + iv(x_0 + r, y_0 + s)}{r + is} = \lim_{h \to 0} \frac{u(x_0 + r, y_0 + s) + iv(x_0 + r, y_0 + s)}{r + is} = \lim_{h \to 0} \frac{u(x_0 + r, y_0 + s) + iv(x_0 + r, y_0 + s)}{r + is} = \lim_{h \to 0} \frac{u(x_0 + r, y_0 + s) + iv(x_0 + r, y_0 + s)}{r + is} = \lim_{h \to 0} \frac{u(x_0 + r, y_0 + s) + iv(x_0 + r, y_0 + s)}{r + is} = \lim_{h \to 0} \frac{u(x_0 + r, y_0 + s) + iv(x_0 + r, y_0 + s)}{r + is} = \lim_{h \to 0} \frac{u(x_0 + r, y_0 + s) + iv(x_0 + r, y_0 + s)}{r + is} = \lim_{h \to 0} \frac{u(x_0 + r, y_0 + s) + iv(x_0 + r, y_0 + s)}{r + is} = \lim_{h \to 0} \frac{u(x_0 + r, y_0 + s) + iv(x_0 + r, y_0 + s)}{r + is} = \lim_{h \to 0} \frac{u(x_0 + r, y_0 + s) + iv(x_0 + r, y_0 + s)}{r + is} = \lim_{h \to 0} \frac{u(x_0 + r, y_0 + s) + iv(x_0 + r, y_0 + s)}{r + is} = \lim_{h \to 0} \frac{u(x_0 + r, y_0 + s) + iv(x_0 + r, y_0 + s)}{r + is} = \lim_{h \to 0} \frac{u(x_0 + r, y_0 + s) + iv(x_0 + r, y_0 + s)}{r + is} = \lim_{h \to 0} \frac{u(x_0 + r, y_0 + s)}{r + is} = \lim_{h \to 0} \frac{u(x_0 + r, y_0 + s) + iv(x_0 + r, y_0 + s)}{r + is} = \lim_{h$$

Analízis II. 19. TÉTEL

$$= \lim_{r+is \to 0} \frac{\frac{\partial u}{\partial x}r + \frac{\partial u}{\partial y}s + i\frac{\partial v}{\partial x}r + i\frac{\partial v}{\partial y}s + o(|h|)}{r + is} = \lim_{r+is \to 0} \frac{\frac{\partial u}{\partial x}r - \frac{\partial v}{\partial x}s + i\frac{\partial v}{\partial y}r + i\frac{\partial u}{\partial x}s + o(|h|)}{r + is} =$$

$$= \lim_{r+is \to 0} \frac{\frac{\partial u}{\partial x}(r + is) + \frac{\partial v}{\partial x}(-s + ir) + o(|h|)}{r + is} = \frac{\partial u}{\partial x}(x_0, y_0) + i\frac{\partial v}{\partial x}(x_0, y_0).$$

Azt kaptuk tehát, hogy a határérték létezik, így a függvény differenciálható.

19.7. Harmonikus függvény

Adott $u: \mathbb{R}^2 \mapsto \mathbb{R}$ folytonos, kétszer differenciálható függvény. Azt mondjuk, hogy u harmonikus, ha

$$\Delta u = 0$$

teljesül D_u -n.

19.8. Harmonikus függvények kapcsolata az analitikus fügvénnyel

Ha az f(z) = u(x, y) + iv(x, y) differenciálható, akkor u, v harmonikusak.

Bizonyítás

A Cauchy-Riemann egyenletekből

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

Az első egyenletet x szerint, a másodikat y szerint deriválva

$$\begin{split} \frac{\partial^2 u}{\partial x^2} &= \frac{\partial^2 v}{\partial x \partial y} \\ \frac{\partial^2 u}{\partial y^2} &= -\frac{\partial^2 v}{\partial y \partial x}. \end{split}$$

Ebből

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 v}{\partial x \partial y} - \frac{\partial^2 v}{\partial y \partial x} = 0.$$

Hasonlóan be lehet látni, hogy v harmonikus.

19.9. Harmonikus társ

Adott $u:D\mapsto\mathbb{R}$ harmonikus függvény, ahol D egyszeresen összefüggő tartomány. Ekkor $\exists v:D\mapsto\mathbb{R}$ harmonikus függvény, amelyre f(z)=u(x,y)+iv(x,y) differenciálható. Akkor v az u harmonikus társa és fordítva.

Analízis II. 20. TÉTEL

20. Tétel

20.1. Elemi függvények

20.1.1. Exponenciális függvény

Az exponenciális függvény

$$e^z = e^x(\cos y + i\sin y).$$

1. A függvény analitikus és $(e^z)' = e^z$.

2. $z_1, z_2 \in \mathbb{C}$ esetén

$$e^{z_1 + z_2} = e^{z_1} e^{z_2}.$$

3. A függvény $2\pi i$ szerint periodikus.

Bizonyítás

1. A függvény kanonikus alakja

$$e^z = e^x(\cos y + i\sin y).$$

Legyen $u(x,y) = e^x \cos y$ és $v(x,y) = e^x \sin y$ így $e^z = u(x,y) + iv(x,y)$.

$$\frac{\partial u}{\partial x} = e^x \cos y = \frac{\partial v}{\partial y}$$
$$\frac{\partial u}{\partial y} = -e^x \sin y = -\frac{\partial v}{\partial x}$$

Azt látjuk, hogy a függvény eleget tesz a Cauchy-Riemann egyenleteknek, tehát differenciálható.

$$(e^z)' = e^x \cos y + ie^x \sin y = e^z.$$

2.

$$e^{z_1+z_2} = e^{x_1+x_2+i(y_1+y_2)} = e^{x_1+x_2} \left(\cos(y_1+y_2) + i\sin(y_1+y_2)\right) =$$

$$= e^{x_1+x_2} \left(\cos y_1 \cos y_2 - \sin y_1 \sin y_2 + i(\sin y_1 \cos y_2 + \sin y_2 \cos y_1)\right) =$$

$$= e^{x_1} (\cos y_1 + i\sin y_1) e^{x_2} (\cos y_2 + i\sin y_2) = e^{z_1} e^{z_2}$$

3.

$$e^{z+2\pi i} = e^x (\cos(y+2\pi) + i\sin(y+2\pi)) = e^z.$$

20.1.2. Logaritmus függvény

A logaritmus függvény $z \neq 0$ esetén

$$\ln z = \ln |z| + i(\operatorname{arc} z + 2k\pi) \qquad k \in \mathbb{Z}.$$

A logaritmus főértéke $\operatorname{Ln} z = \ln |z| + i \operatorname{arc} z$.

1.

$$e^{\ln z} = z$$

2. $z_1, z-2 \in \mathbb{C}$ esetén

$$\ln(z_1 z_2) = \operatorname{Ln} z_1 + \operatorname{Ln} z_2 + 2k\pi i \qquad k \in \mathbb{Z}.$$

3.

$$\frac{d}{\mathrm{d}z} \operatorname{Ln} z = \frac{1}{z}$$

Analízis II. 20. TÉTEL

Bizonyítás

1.
$$e^{\ln z} = e^{\ln|z| + i(\operatorname{arc} z + 2k\pi)} = |z|e^{i\operatorname{arc} z} = |z|(\cos(\operatorname{arc} z) + i\sin(\operatorname{arc} z)) = z$$

2.
$$\ln(z_1 z_2) = \ln|z_1 z_2| + i(\operatorname{arc}(z_1 z_2) + 2k\pi) = \ln|z_1| + \ln|z_2| + i(\operatorname{arc}z_1 + \operatorname{arc}z_2 + 2k\pi) =$$
$$= \operatorname{Ln}z_1 + \operatorname{Ln}z_2 + 2k\pi i$$

3.
$$(e^{\operatorname{Ln} z})' = e^{\operatorname{Ln} z} \operatorname{Ln}' z = 1 \implies \operatorname{Ln}' z = \frac{1}{z}$$

20.1.3. Hatványfüggvény

A hatványfüggvény

$$z^{\lambda} = e^{\lambda \ln z}$$

A függvény főértékét kapjuk meg, ha a logaritmus főértékét használjuk.

20.2. Komplex vonalintegrál

Legyen az L görbe egy felosztása $\alpha = t_0 < t_1 < \dots < t_n = \beta$, illetve legyen a k-adik ív tetszőleges pontja ξ_k . Ekkor

$$\int_{L} f(z) dz = \lim_{\substack{\delta \to \infty \\ \delta_n \to 0}} \sum_{k=1}^{n} f(\xi_k) \left(z(t_k) - z(t_{k-1}) \right)$$

ahol δ_n a leghosszabb ív hossza. Ha a görbe zárt, akkor az \oint_L jelölést használjuk.

20.3. Vonalintegrál tulajdonságai

1. Linearitás

$$\int_{L} (\alpha f + \beta g) dz = \alpha \int_{L} f dz + \beta \int_{L} g dz$$

2.

$$\int_{-L} f \, \mathrm{d}z = -\int_{L} f \, \mathrm{d}z$$

3. Ha $L = L_1 + L_2$, ahol $L_1 \cap L_2 = \emptyset$, akkor

$$\int_{L} f \, \mathrm{d}z = \int_{L_1} f \, \mathrm{d}z + \int_{L_2} f \, \mathrm{d}z.$$

- 4. Ha f folytonos, akkor létezik $\int_L f \, dz$.
- 5. Ha f korlátos és $|f(z)| \leq M \ \forall z \in L$ esetén, akkor

$$\left| \int_{L} f \, \mathrm{d}z \right| \le Ms(L).$$

20.4. Vonalintegrál kiszámítása

Legyen az L görbe paraméteres megadása

$$z(t) = x(t) + iy(t) = r(t)e^{i\theta(t)}$$
 $t \in [\alpha, \beta].$

Ekkor

$$\int_{L} f(z) dz = \int_{\alpha}^{\beta} f(z(t))z'(t) dt = \int_{\alpha}^{\beta} f(x(t) + iy(t))(x'(t) + iy'(t)) dt =$$

$$= \int_{\alpha}^{\beta} f(r(t)e^{i\theta(t)})(r'(t)e^{i\theta(t)} + ir(t)e^{i\theta(t)}\theta'(t)) dt.$$

Analízis II. 20. TÉTEL

20.4.1. Newton-Leibniz formula

Adott $f: \mathbb{C} \mapsto \mathbb{C}$ komplex függévény. Tegyük fel, hogy létezik F analitikus komplex függvény, melyre F' = f. Ekkor

$$\int_{I} f(z) dz = F(z(\beta)) - F(z(\alpha))$$

ahol

$$L = \Big\{ z(t) = x(t) + iy(t) \Big| t \in [\alpha, \beta] \Big\}.$$

20.5. Cauchy féle alaptétel

Tegyük fel, hogy $D \subset \mathbb{C}$ egyszeresen összefüggő tartomány és $L \subset D$ egy sima, zárt görbe. Ekkor ha az $f: D \mapsto \mathbb{C}$ függvény analitikus, akkor

$$\oint_L f(z) \, \mathrm{d}z = 0.$$

20.6. Cauchy féle integrálformula

Legyen $D \subset \mathbb{C}$ egyszeresen összefüggő tartomány és $f: D \mapsto \mathbb{C}$ analitikus függvény. Adott $z_0 \in intD$ és $L \subset D$ olyan görbe, amely körbeveszi z_0 -t. Ekkor

$$f(z_0) = \frac{1}{2\pi i} \oint_L \frac{f(z)}{z - z_0} \,\mathrm{d}z.$$

20.7. Taylor sorfejtés

Legyen $f:D\mapsto\mathbb{C}$ függvény, amely differenciálható z_0 környezetében. Ekkor f z_0 -ban Taylor sorba fejthető és

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n$$

ahol $L \subset D$ olyan görbe, amely körbeveszi z_0 -t és

$$c_n = \frac{1}{2\pi i} \oint_L \frac{f(z)}{(z-z_0)^{n+1}} dz.$$

20.8. Laurent sorfejtés

Legyen f analitikus egy

$$D = \left\{ z \in \mathbb{C} \middle| |z - z_0| \in (r, R) \right\}$$

körgyűrűben. Ekkor ebben a körgyűrűben f Laurent sorba fejthető és

$$f(z) = \sum_{n = -\infty}^{\infty} c_n (z - z_0)^n$$

ahol $L \subset D$ olyan görbe, amely körbeveszi z_0 -t és

$$c_n = \frac{1}{2\pi i} \oint_L \frac{f(z)}{(z-z_0)^{n+1}} dz.$$