Homework Assignment 1

ECSE 507 / MATH 560 Optimization, Winter 2017

Released: January 15, 2017 Due: January 24, 2017

1. (Nocedal and Wright, Exercise 2.1) Compute the gradient $\nabla f(x)$ and Hessian $\nabla^2 f(x)$ of the Rosenbrock function

$$f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$
.

Show that $x^* = (1, 1)^T$ is the only local minimizer of this function, and that the Hessian matrix at that point is positive definite.

2. (Nocedal and Wright, Exercise 2.8) We say that a set $X \subseteq \mathbb{R}^n$ is convex if for every $x, y \in X$,

$$\alpha x + (1 - \alpha)y \in X$$
, for all $\alpha \in [0, 1]$.

Suppose that f is a convex function. Show that the set of global minimizers of f is a convex set.

3. (Nocedal and Wright, Exercise 2.10) Let $f: \mathbb{R}^n \to \mathbb{R}$ be twice continuously differentiable. Let g(y) = f(Ay + b) for a given matrix $A \in \mathbb{R}^{n \times n}$ and vector $b \in \mathbb{R}^n$. Show that

$$\nabla g(y) = A^{\top} \nabla f(Ay + b)$$
, and $\nabla^2 g(y) = A^{\top} \nabla^2 f(Ay + b)A$.

(*Hint*: Use the chain rule to express dg/dy_i in terms of df/dx_i and dx_i/dy_j for all i, j = 1, ..., n.

- 4. Prove the following properties of convex functions:
 - (a) Show that $f(x) = e^{ax}$ is convex on \mathbb{R} for any real number $a \in \mathbb{R}$, where $x \in \mathbb{R}$.
 - (b) Show that $f(x) = ||x||_2$ is convex, where $x \in \mathbb{R}^n$.
 - (c) Suppose $f_1: \mathbb{R}^n \to \mathbb{R}$ and $f_2: \mathbb{R}^n \to \mathbb{R}$ are two convex functions. Show that $f(x) = f_1(x) + f_2(x)$ is convex
 - (d) Suppose $f_1 : \mathbb{R}^n \to \mathbb{R}$ and $f_2 : \mathbb{R}^n \to \mathbb{R}$ are two convex functions. Show that $f(x) = \max\{f_1(x), f_2(x)\}$ is convex.
 - (e) Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ is convex, and let g(y) = f(Ay + b) for a given matrix $A \in \mathbb{R}^{n \times m}$ and vector $b \in \mathbb{R}^n$. Show that g(y) is convex.