开物成务

学号: 周次: 9

一、选择题 (每题 5 分 , 共计 40 分 , 未写必要过程每题扣 2 分) 2g/mol : 4g/mol

1、两容器内分别盛有氢气和氦气,若它们的温度和质量分别相等,则(

A.两种气体分子的平均平动动能相等. B.两种气体分子的平均动能相等.

C.两种气体分子的平均速率相等. D.两种气体的内能相等.

> 单原子 多原子

2、一容器内装有 N_1 个氩原子和 N_2 个二氧化碳分子, 当系统处于温度为T的平衡 态时其内能为(

A.
$$(N_1 + N_2)(\frac{3}{2}kT + \frac{5}{2}kT)$$
 B. $\frac{1}{2}(N_1 + N_2)(\frac{3}{2}kT + \frac{5}{2}kT)$

B.
$$\frac{1}{2}(N_1 + N_2)(\frac{3}{2}kT + \frac{5}{2}kT)$$

C.
$$\frac{3}{2}N_1kT + \frac{6}{2}N_2kT$$

D.
$$\frac{5}{2}N_1kT + \frac{3}{2}N_2kT$$

4g/mol : 32g/mol

3、1mol 的两种气体 He 和 O_2 ,在温度相同时,以下说法正确的是(

②它们的方均根速率相同

- ②它们的内能相同
- ③两种气体分子的平均平动动能相同 ④两种气体分子的总平动动能相同
- A. (1)(2):
- B. (1)(3);
- C. 24;
- D. (3)(4).

4、在标准状态下,若氮气(视为刚性双原子分子的理想气体)和氦气的体积比

 $V_1/V_2=1/2$, 则其内能之比 E_1/E_2 为: (

A. 3 / 10

B. 1/2

C. 5/6

D. 5/3

5、麦克斯韦速率分布曲线如图所示,图中A、B两部分面积相等, 则该图表示(

- $A. v_0$ 为最概然速率 $B. v_0$ 为平均速率
- $C. v_0$ 为方均根速率 D.速率大于和小于 v_0 的分子数各占一半

6、已知一定量的某种理想气体,在温度为 T_1 和 T_2 时分子的最概然速率分别为 v_{n1} 和 v_{v2} ,分子速率分布函数的最大值分别为 $f(v_{v1})$ 和 $f(v_{v2})$,已知 $T_1 > T_2$,则在下 列几个关系式中正确的是(

A. $v_{p1} > v_{p2}$, $f(v_{p1}) > f(v_{p2})$ B. $v_{p1} < v_{p2}$, $f(v_{p1}) > f(v_{p2})$

C. $v_{p1} > v_{p2}$, $f(v_{p1}) < f(v_{p2})$ D. $v_{p1} < v_{p2}$, $f(v_{p1}) < f(v_{p2})$

7、有两个相同的容器,容积固定不变,一个盛有氨气,另一个盛有氡气(看成 刚性分子的理想气体),它们的压强和温度都相等,现将 5J 的热量传给氢气,使 氢气温度升高,如果使氨气也升高同样的温度,则应向氨气传递热量是:(

- **A.** 6 J
- B. 5 J
- C. 3 J
- D. 2 J

8、1mol 的单原子分子理想气体从状态 A 变为状态 B, 如果不知是什么气体, 变 化过程也不知道,但 A、B 两态的压强、体积和温度都知道,则可求出:()

A. 气体所作的功

B. 气体内能的变化

C. 气体传给外界的热量

D. 气体的质量

_	植灾略 /	何穴 5 ひ	井計 45 乙	土它心西过担有明切。	۷ ۱
-	央工赵(、安全3万,	- 六川 43 万 ,	,未写必要过程每题扣 2	刀丿

二、填空题(每空 5 分,共计 45 分,未写必要过程每题扣 2 分)
1 、一个容器内有摩尔质量分别为 M_1 和 M_2 两种不同的理想气体,当此混合气体
处于平衡状态时,1和2两种气体分子的方均为根速率之比是。
2、设声波通过理想气体的速率正比于气体分子的热运动的方均根速率,则声波通过具有相同温度的氧气和氢气的速率之比为。
3、若某种理想气体分子的方均根速率 $\sqrt{\overline{v^2}}$ =450m/s,气体压强为 P=7×10 ⁴ Pa,则该气体的密度 ρ =。
4、1 mol 氧气(视为刚性双原子分子的理想气体)贮于一氧气瓶中,温度为27℃,这瓶氧气的内能为J; 分子的平均平动动能为J; 分子的平均总动能为J
5 、压强、体积和温度都相同的氢气和氦气(均视为刚性分子的理想气体),它们的质量之比为 m : $m=$,它们的内能之比为 E : $E_2=$,如果它们分别在

三、计算题(15分,含必要解题过程)

下角标 1 表示氢气, 2 表示氦气)

1、3 mol 的理想气体开始时处在压强 p_1 =6 atm、温度 T_1 =500 K 的平衡态。 经过一个等温过程,压强变为 $p_2=3$ atm。该气体在此等温过程中吸收的热量为Q.

等压过程中吸收了相同的热量,则它们对外作功之比为 $W_1:W_2=_____$ 。(各量