Last	Name:	

First Name: _____

Section:

Instructions:

The use of notes, lecture material, hw, quizzes, electronic devices, etc. is not allowed.

Question	Points	Score
1	8	
2	8	
3	20	
4	8	
5	12	
6	16	
7	9	
8	11	
9	8	
10	0	
Total:	100	

1. (8 points) Let $S = \{\emptyset, a, \{1\}, \{a, \emptyset\}, \{a, 1\}\}$. State whether each item below, x, is an element of S ($x \in S$), a subset of S ($x \subseteq S$), neither, or both.

(a) Ø	(b) $\{a, \{\emptyset\}\}$
(c) {1}	(d) $\{\{1,a\}\}$

- (a) $\emptyset \in S$, $\emptyset \subseteq S$ both
- (b) neither
- (c) $\{1\} \in S$
- (d) $\{\{1,a\}\}\subseteq S$
- 2. (8 points) Construct a truth table for the expression $(\neg p \land r) \rightarrow (r \leftrightarrow \neg q)$

p	\mathbf{q}	r	$ \neg p$	$\neg q$	$\neg p \wedge r$	$r \leftrightarrow \neg q$	
\overline{T}	Т	Τ	F	F	F	F	Т
${ m T}$	\mathbf{T}	\mathbf{F}	F	\mathbf{F}	F	${ m T}$	${ m T}$
${ m T}$	\mathbf{F}	${\rm T}$	F	${ m T}$	F	${ m T}$	\mathbf{T}
${\rm T}$	\mathbf{F}	\mathbf{F}	F	${ m T}$	F	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{T}	$\mid T \mid$	\mathbf{F}	T	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{F}	$\mid T \mid$	\mathbf{F}	F	${ m T}$	\mathbf{T}
\mathbf{F}	\mathbf{F}	${\rm T}$	Γ	${ m T}$	T	${ m T}$	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{F}	$\mid T \mid$	${ m T}$	F	\mathbf{F}	Τ

- 3. (20 points) Let $A = \{b, \emptyset, \{c\}\}, B = \{b, \{c, a\}\}, \text{ and } C = \{\emptyset, \{c, a\}\}.$ Let $U = A \cup B \cup C$.
 - (a) (2 points) $|B \cup C| =$

3

(b) (2 points) $A \cap C$

 $A\cap C=\{\emptyset\}$

(c) (2 points) $A \cup B$

 $A \cup B = \{\ b,\emptyset,\{c\},\{c,a\}\ \}$

(d) (2 points) C - B

 $C - B = \{ \emptyset \}$

(e) (2 points) \overline{A}

 $\overline{A} = \{\{c,a\}\}$

(f) (3 points) $B - (A \cup C)$

 $B - (A \cup C) = B - \{b, \emptyset, \{c\}, \{c, a\}\} = \{\}$

(g) (4 points) P(A)

 $P(A) = \{\emptyset, \{b\}, \{\emptyset\}, \{\{c\}\}, \{b, \emptyset\}, \{b, \{c\}\}, \{\emptyset, \{c\}\}, \{b, \emptyset, \{c\}\}\}$

(h) (3 points) $A \times C$

 $A \times C = \{(b\emptyset), (b, \{c, a\}), (\emptyset, \emptyset), (\emptyset, \{c, a\}), (\{c\}, \emptyset), (\{c\}, \{c, a\})\}$

(a) (4 points) $f : \mathbf{R} - \{0\} \to \mathbf{R}$, where $f(n) = \frac{1}{n} + 1$

(i) one-to-one?	(ii) onto?

- (i) f is one-to-one
- (ii) f is not onto, f never maps to $1, \ldots$
- (b) (4 points) $f: \mathbf{Z} \times \mathbf{Z} \to \mathbf{Z} \times \mathbf{Z}$, where f(n, m) = (m + n, m + 2m)

(i) one-to-one?	(ii) onto?

- (i) f is one-to-one.
- (ii) f is not onto.
- 5. (12 points) Determine whether the following binary relations are reflexive, symmetric, antisymmetric, and transitive?

 $R = \{(1,1), (2,3), (3,2)\}$, where R is a relation on the set $\{1,2,3\}$ S on the set \mathbb{Z} where $x \, S \, y$ if and only if $x^2 = y^2$ T on the set \mathbb{Z} where $x \, T \, y$ if and only if $x^2 + y^2$ is even

	Reflexive	Symmetric	Antisymmetric	Transitive
Relation	(Yes/No)	(Yes/No)	(Yes/No)	(Yes/No)
R	No	Yes	No	No
S	Yes	Yes	No	Yes
T	Yes	Yes	No	Yes

6. (16 points) Let $A = \{a, b, c, d, e\}, B = \{v, w, x, y, z\}, f : A \to B, \text{ and } g : B \to A.$

$$f(a) = y, f(b) = w, f(c) = z, f(d) = v, f(e) = x$$

 $g(v) = a, g(w) = d, g(x) = c, g(y) = b, g(z) = a$

(a) (2 points) What is the domain of f?

of g?

$$A=\{a,b,c,d,e\} \hspace{1cm} B=\{v,w,x,y,z\}.$$

(b) (2 points) What is the co-domain of f?

of g?

$$B = \{v, w, x, y, z\}$$

$$A = \{a, b, c, d, e\}$$

(c) (2 points) What is the range of f?

of g?

$$\{v,w,x,y,z\}$$
 $\{a,b,c,d\}$

(d) (3 points) List all of the following properties that apply to the function f: onto, one-to-one, one-to-one correspondence, none-of-the-above.

one-to-one, onto, one-to-one correspondence

(e) (3 points) List all of the following properties that apply to the function g: onto, one-to-one, one-to-one correspondence, none-of-the-above.

none-of-the-above

- (f) (4 points) Define the inverse function or state "Not Defined" for:
 - (i) *f*

(ii) g

(i)
$$f^{-1} = \{(y,a), (w,b), (z,c), (v,d), (x,e)\}$$

(ii) not defined

7. (9 points) Investigate composition of functions. Let f, g, and h be functions mapping from \mathbf{R} to \mathbf{R} where

$$f(x) = x^3$$
, $q(x) = \sqrt{x^2 + 2}$, $h(x) = x^2 - 3$.

Calculate the following. Express answer in reduced algebraic form.

(a) (2 points) $(g \circ f)(x)$

$$(g \circ f)(x) = g(f(x)))$$

$$= g(x^3)$$

$$= \sqrt{(x^3)^2 + 2}$$

$$= \sqrt{x^6 + 2}$$

(b) (2 points) $(h \circ g)(x)$

$$(h \circ g)(x) = h(g(x))$$

$$= h(\sqrt{x^2 + 2})$$

$$= (\sqrt{x^2 + 2})^2 - 3)$$

$$= x^2 - 1$$

(c) (3 points) $((h \circ g) \circ f)(x)$

$$((h \circ g) \circ f)(x) = h(g(f(x)))$$

$$= h(g(x^{2}))$$

$$= h(\sqrt{(x^{3})^{2} + 2})$$

$$= (\sqrt{(x^{3})^{2} + 2})^{2} - 3$$

$$= x^{6} - 1$$

(d) (2 points) True or False. Are $(h \circ (g \circ f))(x)$ and $((h \circ g) \circ f)(x)$ equal.

TRUE

8. Consider the relations R and S on the set $\{1, 2, 3, 4\}$ with

$$R = \{(1,1), (1,2), (2,4), (3,2), (3,4), (4,3)\}$$

$$S = \{(1,1), (1,2), (2,1), (3,2), (4,3)\}$$

(a) (3 points) Find R - S (list all ordered pairs in the relation).

$$R - S = \{(2, 4), (3, 4)\}$$

(b) (4 points) $S \circ R$ (list all ordered pairs in the relation).

$$S \circ R = \{(1,1), (1,2), (2,3), (3,1), (3,3), (4,2)\}$$

(c) (4 points) Compute S^2 (list all ordered pairs)

$$S^2 = \{(1,1), (1,2), (2,1), (2,2), (3,1), (4,2)\}$$

9. Consider a music library. The universal set U refers to all songs in the library. Songs are also classified by their genre (a song may receive more than one classification) as: P - pop, L - latin, C - classical, R - rock, H - hip hop, I - instrumental, J - jazz, E - English, O - other language. Each set is a subset of U.

Translate the following expressions from English to mathematical notation or vice versa.

(a) (2 points) $J \cap R = \emptyset$

No song is both jazz and rock.

(b) (2 points) The set of instrumental and jazz songs excluding those that are classical.

 $(I \cup J) - C$

(c) (2 points) All rock songs are also pop songs.

 $R \subseteq P$

(d) (2 points) $\overline{P \cup C \cup J} = \emptyset$

All songs are either pop, classical, or jazz.

10. (2 points (bonus)) Given sets A, B, and C. Identify a simple equivalent expression to: $(B-A)\cup (C-A)\cup \overline{(A\cup B\cup C)}$

 $\overline{m{A}}$

Identity	Name	Identity	Name
$A \cup \emptyset = A$	Identity	$A \cup U = U$	Domination
$A\cap U=A$	laws	$A\cap\emptyset=\emptyset$	laws
$A \cup A = A$	Idempotent		Complementation
$A\cap A=A$	laws	$\overline{(\overline{(A)})} = A$	law
$A \cup B = B \cup A$	Commutative	$\overline{A \cup B} = \overline{A} \cap \overline{B}$	De Morgan's
$A\cap B=B\cap A$	laws	$\overline{A\cap B}=\overline{A}\cup\overline{B}$	laws
$A \cup (A \cap B) = A$	Absorption	$A\cup \overline{A}=U$	Complement
$A\cap (A\cup B)=A$	laws	$A\cap \overline{A}=\emptyset$	laws
Identity		Name	
$A \cup (B \cup C) = (A$	$(\cup B) \cup C$	Associative	
$A \cap (B \cap C) = (A$	$(\cap B) \cap C$	laws	
$A \cap (B \cup C) = (A$	$(A \cap B) \cup (A \cap C)$	Distributive	
$A \cup (B \cap C) = (A$	$(\cup B) \cap (A \cup C)$	laws	