Diseño de Bases de Datos

Clase 5

Prof. Luciano Marrero

Pablo Thomas

Rodolfo Bertone

Agenda

Optimización de Consultas

- Costo de Consulta
- Accesos
- Operaciones básicas

Componentes del "costo" de ejecución de una consulta:

- Costo de acceso a almacenamiento secundario → acceder al bloque de datos que reside en disco.
- Costo de cómputo → Costo de realizar operaciones sobre memoria RAM
- Costo de comunicación → Costo de enviar la consulta y los resultados (si es un Sistema Distribuido)

Optimización Lógica

- Expresiones equivalentes → Algebra relacional
 - existe una secuencia de resolución
 - se puede encontrar una expresión más eficiente que otra.

Selección: Personas del género masculino que sean solteros

- σ Genero='M' ∧ ECivil='Soltero' (Persona)
 - Se aplican 2 condiciones a 7 tuplas
- $\sigma_{\text{Genero}='M'}(\sigma_{\text{ECivil}='\text{Soltero}'})$ (Persona)) \rightarrow
 - Se aplica 1 condición a 7 tuplas y 1 condición a 1 tupla

Conclusión: el caso 2 es mejor, por lo que conviene realizar la selección lo

antes posible

DNI	Nombre	Genero	ECivil
22456980	Josefina	F	Casado
32456789	Juan	M	Casado
24567876	María	F	Casado
21345654	Roberto	M	Soltero
20987654	Alfredo	M	Casado
20897656	Fernanda	F	Casado
21345678	Raul	M	Casado

DBD - CLASE 5

DNI	Nombre	IdCiudad
22456980	Josefina	1
32456789	Juan	2
24567876	María	3
21345654	Roberto	1
20987654	Alfredo	2
20897656	Fernanda	3
21345678	Raul	1

IdCiudad	Nombre		
1	Junín		
2	Pergamino		
3	La Plata		

- Proyección: DNI de las personas que vivan en la ciudad de Junín
 - 1. π_{DNI} (Persona | x | $\sigma_{Nombre='Junin'}$ (Ciudad))
 - 2. π_{DNI} ($\pi_{DNI,IdCiudad}$ (Persona) | x | $\pi_{IdCiudad}$ ($\sigma_{Nombre='Junín'}$ (Ciudad))
- Conclusión: el caso 2 es mejor, por lo que conviene realizar la proyección para disminuir la cantidad de información que se almacena en buffers de memoria.

La conclusión anterior respecto a la proyección se puede aplicar a otras operaciones binarias:

- Union,
- Intersección,
- Diferencia

Algunos valores:

- CT tabla (cantidad de tuplas de la tabla)
- CB tabla (cantidad de bytes que ocupa cada tupla de la tabla)
- CV (a, tabla) (cantidad de ocurrencias de distintas del atributo a en la tabla)

Costo en bytes selección: σ (at = "valor") (Tabla)

• (CT tabla / CV (at, tabla)) * CB tabla

Costo en bytes proyección: π at1, at2, .. atn (Tabla)

• (CB at1 + CB at2 + .. + CB atn) * CT tabla

Costo en bytes producto cartesiano: T1 X T2

• (CT 11 * CT 12) * (CB 11 + CB 12)

Costo producto natural: T1 | X | T2

- Sin atributos en común → T1 X T2
- Con atributo "a" en común, donde: a es PK en T1 y FK en T2.
 - T1 | X | T2 → un fila de T1 con muchas de T2.
 - Clave secundaria.
 - T2 |X| T1 \rightarrow un fila de T2 con una de T1.
 - Clave primaria.
- Con atributo "a" en común:
 - (CT t1 * CT t2) / MAX(CV (a, t1), CV (a, t2))

Dado el siguiente modelo relacional:

- PRODUCTOS (<u>idproducto</u>, código, descripción, precio, idvendedor)
 - FK (vendedor, VENDEDORES) la clave foránea no permite nulos
- VENDEDORES (<u>idvendedor</u>, nombre_vendedor, sucursal)

Ejemplo 1: la siguiente **consulta**: "Listar los datos de los productos que vende la sucursal de JUNIN"

- SELECT p.producto, p.descripción, p.precio, v.nombre_vendedor
- FROM PRODUCTOS p, VENDEDORES v
- WHERE p.idvendedor = v.idvendedor and v.sucursal = 'JUNIN';

```
Π p.producto, p.descripción, p.precio, v.nombre_vendedor ( p.idvendedor - v.idvendedor - sucursal = 'JUNIN' (PRODUCTOS X VENDEDORES) )
```

- Sabiendo que: CT(productos) = 7000 CT(vendedores) = 300
 - CV (sucursal = 'JUNIN', vendedores) = 10
 - 1000 productos de vendedores de JUNIN

Árbol Inicial

π p.producto, p.descripción, p.precio, v.nombre_vendedor

σ p.idvendedor = v.idvendedor AND sucursal= 'JUNIN'

X

PRODUCTOS VENDEDORES

	Plan	Pasos	Operación	Cantidad de lecturas	Costo de acceso	Cantidad de Tuplas	Costo Total
	Α	1	Producto Cartesiano	7.000 + 300	7.300	2.100.000	7.300
		2	O (A1) p.idvendedor = v.idvendedor	2.100.000	2.100.000	7.000	2.107.300
DB	BD - CLASE	3	O (A2) sucursal= 'JUNIN'	7.000	7.000	1.000	2.114.300

Plan	Paso	Operación	Cantidad de lecturas	Costo de acceso	Cantidad de Tuplas	Costo Total
В	1	O sucursal = 'JUNIN' (vendedores)	300	300	10	300
	2	B1 x PRODUCTOS	10 + 7.000	7.010	70.000	7.310
DBD - CLA	3 4SE 5	O (B2) p.idvendedor = v.idvendedor	70.000	70.000	1.000	77.310

 $\Pi_{\text{p.producto, p.descripción, p.precio, v.nombre_vendedor}}(PRODUCTOS[X](\sigma_{\text{sucursal = 'JUNIN'}} VENDEDORES))$

Pla n	Nivel	Operación	Cantidad de lecturas	Costo de acceso	Cantida d de Tuplas	Costo Total
С	1	(vendedores) sucursal = 'JUNIN'	300	300	10	300
DBD - CLA	2 ASE 5	PRODUCTOS Ix I C1	10 + 7.000	7.010	1.000	7.310

CONSULTA ORIGINAL:

SELECT p.producto, p.descripción, p.precio, v.nombre_vendedor

FROM PRODUCTOS p, VENDEDORES V

WHERE p.idvendedor = v.idvendedor and v.sucursal = 'JUNIN';

CONSULTA MÁS EFICIENTE:

SELECT p.codigo, p.descripcion, p.precio, v.nombre_vendedor

FROM Productos p NATURAL JOIN (SELECT Idvendedor, nombre_vendedor

FROM Vendedores

WHERE sucursal = 'JUNIN') v

VS LEGIBILIDAD

CONSULTA MÁS LEGIBLE:

SELECT p.codigo, p.descripcion, p.precio, v.nombre_vendedor

FROM Productos p NATURAL JOIN Vendedores v

WHERE v.sucursal = 'JUNIN'

DBD - CLASE 5