Introduction à la finance mathématique TD 4, 2/5/2018

Mouvement brownien

Exercice 1 (Martingales). Soit $(B_t)_{t\geq 0}$ un mouvement brownien et \mathcal{F} sa flitration naturelle, montrer que les processus suivants sont des \mathcal{F} -martingales:

- $(B_t)_{t>0}$;
- $(B_t^2 t)_{>0}$;
- $\left(e^{\sigma B_t \frac{\sigma^2 t}{2}}\right)_{t \ge 0}$, avec $\sigma \in \mathbb{R}$, appelé brownien exponentiel.

Exercice 2 (Caractérisation du mouvement brownien). Soit B un processus continu tel que $B_0 = 0$ p.s. et \mathcal{F} sa filtration naturelle. Montrer que B est un mouvement brownien si, et seulement si, pour tout $\lambda \in \mathbb{R}$, le processus complexe M^{λ} défini par :

$$M_t^{\lambda} := e^{i\lambda B_t + \frac{\lambda^2 t}{2}}$$

est une \mathcal{F} -martingale.

Exercice 3 (Mouvements browniens). Soit $(B_t)_{t\geq 0}$ un mouvement brownien. Montrez que les processus suivants sont également des mouvements browniens :

- $\bullet \ \left(\frac{1}{a}B_{a^2t}\right)_{t\geq 0},$
- $(B_{t+t_0} B_{t_0})_{t>0}$,
- Le processus défini par $tB_{1/t}$ pour t > 0 et prolongé par 0 en t = 0.

Exercice 4 (Pont brownien). Soit $(B_t)_{t\geq 0}$ un mouvement brownien. On définit un nouveau processus $Z=(Z_t)_{0\leq t\leq 1}$ par :

$$Z_t = B_t - tB_1.$$

- 1. Montrer que Z est un processus indépendant de B_1 .
- 2. Calculer la fonction de moyenne m_t et la fonction de covariance K(s,t) du processus Z.
- 3. Montrer que le processus défini pour tout $t \in [0,1]$ par $\tilde{Z}_t := Z_{1-t}$ a la même loi que Z.
- 4. Soit $Y_t := (1-t)B_{\frac{t}{1-t}}$ défini pour $0 \le t < 1$.
 - (a) Montrer que Y_t tend vers 0 presque sûrement lorsque t tend vers 1.
 - (b) Montrer que le processus $(Y_t)_{0 \le t \le 1}$ prolongé par 0 en 1 a la même loi que Z.