Math 416 Jordan Form (Chapter 7)

(Exclude §1.7, §2.6, §2.7, §3.3, §4.4, §6.6 \sim §6.11, §7.3, §7.4)

§7.1, §7.2

- 1. Classify all types of the Jordan Canonical Form of 2×2 and 3×3 matrices up to similarity.
- 2. You are given a 4×4 matrix

$$A = \begin{pmatrix} 4 & -2 & 0 & 2 \\ 0 & 2 & 0 & 2 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 4 \end{pmatrix}.$$

- genvalues of A. Does the characteristic polynomial of A split over \mathbb{R} ? $(4-t)^2(2-t)^2$
- 5. You are given a 4×4 matrix $\begin{bmatrix}
 -1 & 1 & 1 & 0 \\
 -1 & 1 & -1 \\
 0 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 -1 & 1 & 1 & 0 \\
 -1 & 3 & 1 & -1 \\
 0 & 0 & 2 & 1 \\
 0 & 0 & 0 & 2
 \end{bmatrix}$ $\lambda = 2 \quad M = 4.$ O (1) Compute all the eigenvalue of A = B
 - - (2) Find a basis of each of the generalized eigenspaces.
 - campunical basis for A and construct a matrix Q, and then write the corresponding

Jordan canonical from
$$J$$
 so that $Q^{-1}AQ = J$.

$$\begin{array}{c}
A \text{ and construct a matrix } Q = I \\
O \\
O \\
O
\end{array}$$

- (1) Compute all the eigenvalues of A. Does the characteristic polynomial of A split over \mathbb{R} ?
- (2) Find a basis of each of the generalized eigenspaces.
- (3) Find a Jordan canonical basis for A and construct a matrix Q, and then write the corresponding Jordan canonical from J so that $Q^{-1}AQ = J$.
- 5. What if the characteristic polynomial does not split?