

Summer Internship

Real Time Text Recognition from Instrument Display

Ashish Kumar Gupta

SC19B135 [SAC ID : RS00472] B.Tech

Department of Avionics Indian Institute of Space science and Technology Thiruvananthapuram, Kerala

Shri Saket Chawla

Scientist/Engineer – SE Space Applications Centre, Ahmedabad Indian Space Research Organisation

Dr. Deepak Mishra

Professor & Head
Department of Avionics
Indian Institute of Space science and Technology
Thiruvananthapuram, Kerala

Content

- Objective
- > Applications
- > Definition of Text Detection and Recognition
- ➤ Selection of a method for Testing of Target Dataset
 - Evaluation of methods on sample dataset
 - Observation
 - Conclusion
- > Testing on Target Dataset
 - Target dataset
 - Problems in Target dataset
 - Observation
 - Conclusion
- > Improve the efficiency for Target Dataset
 - Software Implementation
 - Model Training
- > Result
- References

Objective

Real-time Text Detection and Recognition from display devices

Applications

- Automation of data collection in scientific experiments
- Vehicle Number Plate Recognition
- Assisted-KYC

Text Detection and Recognition

Optical Character Recognition (OCR):

Printed text — Machine-encoded text.

Y. Du, C. Li, R. Guo, X. Yin, W. Liu, J. Zhou, Y. Bai, Z. Yu, Y. Yang, Q. Dang *et al.*, "Pp-ocr: A practical ultra lightweight ocr system," *arXiv* preprint arXiv:2009.09941,2020

Work Procedure

Selection of a method for testing of target dataset

Testing of target dataset

Improve the efficiency for Target Dataset

STEP: 1

Select one of the following methods to test target dataset.

OCR methods

- 1. Tesseract [2]
- 2. EasyOCR [3]
- 3. Paddle OCR [4]
- 4. Keras-OCR [5]

Types of Images

- 1. Sharp
- 2. Blur
- 3. Tilted
- 4. Tilted Blur
- 5. Haze

[&]quot;Airport timetable hi-res stock photography and images - alamy," https://www.alamy.com/stock-photo/airport-timetable.html,

Tesseract

Implementation of Methods on sample dataset

• The code can take input as images, video, Google Drive link, url link of video, images or Image Folder

Observation

Sharp Imas

Methods	Total Images	Execution Time	Text Detection	Text recognition	Detection %	Recognition %
Tesseract	41	0:01:48	13	1	31.71	2.44
EasyOCR	41	0:06:40	27	6	65.85	14.63
PaddleOCR	41	0:03:37	32	24	78.05	58.54
Keras-OCR	41	00:17:56	34	3	82.93	7.32

ritted Images

Method	Total	Execution Time	Text Detection	Text recognition	Detection %	Recognition %	
Tesseract	26	0:01:27	5	0	19.23	0.00	
EasyOCR	26	0:04:33	17	3	65.38	11.54	
PaddleOCR	26	0:02:55	15	15 8 57.69		30.77	
Keras-OCR	26	0:14:13	19	1	73.08	3.85	

- 1. Tesseract is taking least execution time while Keras-OCR is taking most execution time.
- 2. Keras-OCR has high Text Detection efficiency.
- 3. Tesseract fails in Text Recognition in tilted images.
- 4. Paddle OCR has high Text Recognition efficiency.

Observation

TUY IMABEL

Method	Total	Execution Time	Text Detection	Text recognition	Detection %	Recognition %
Tesseract	73	0:02:41	9	0	12.33	0.00
EasyOCR	73	0:12:01	36	1	49.32	1.37
PaddleOCR	73	0:05:09	40	26	54.79	35.62
Keras-OCR	73	0:37:44	37	2	50.68	2.74

Blur Images

Method	Total	Execution Time	Text Detection	Text recognition	Detection %	Recognition %
Tesseract	31	0:01:17	1	0	3.23	0.00
EasyOCR	31	0:05:50	13	0	41.94	0.00
PaddleOCR	31	0:02:28	15	9	48.39	29.03
Keras-OCR	31	0:15:01	9	1	29.03	3.23

- 1. Tesseract is taking least execution time while Keras-OCR is taking most execution.
- 2. Tesseract and EasyOCR fail in Text Recognition of tilted Blur Images.
- 3. Paddle OCR has high Text Detection and Recognition efficiency.

Sharp Image

Tesseract

Lon	don Departure	S	
Desti	nation	Plat	Due
11:15	London Waterloo	2	Delayed
11:18	London Waterloo		Delayed
11:28	London Waterloo		Delaued

EasyOCR

London Departure	S
Destination	Plat peloved Due
11:15 London Waterloo	2 Delayed
11:19 London Waterloo	2 Delayed
11:28 London Waterloo	2 Delaued

- Tesseract failed in detection.
- EasyOCR failed in Special character Recognition.
- KerasOCR performed well in Detection but failed in recognition

PaddleOCR

London Departure	S	
Destination	Plat Plat	Due Due
11:15 London Waterloo	2	Delayed
11:19 London Waterloo	2	Delayed
11:28 London Waterloo	2	Delayed

Keras-OCR

Tilted Image

 EasyOCR and KerasOCR both failed in special Character Recognition.

Paddle OCR

Keras-OCR

Observation

Method	Total	Execution Time	Text Detection	Text recognition	Detection %	Recognition %
Tesseract	140	0:05:56	27	1	19.29	0.71
EasyOCR	140	0:23:14	80	10	57.14	7.14
PaddleOCR	140	0:11:41	87	58	62.14	41.43
Keras-OCR	140	1:09:53	90	6	64.29	4.29

- 1. Tesseract is taking least execution Time while Keras -OCR is taking most execution time.
- 2. Keras-OCR have high text Detection efficiency.
- 3. Paddle OCR have high text recognition efficiency.

Conclusion

Paddle OCR is the most suitable method for testing of target dataset.

STEP: 2

Testing of PaddleOCR on Target Dataset

Target Data: Video of instrument shown on right.

I have collected sample data of Target system for Statistical evaluation.

"Paddlepaddle/paddleocr: Awesome multilingual ocr toolkits based on paddlepaddle." https://github.com/PaddlePaddleOCR,

Target Data

Video Condition:

- Sharp
- Tilted
- Blur
- Haze
- Cropped

Problems in Recognizing target data

Observation

In the videos of target data, from duration of approx. 430 sec, I pick up one frame after 5 seconds for evaluation

Param	eters	1	2	3	4	5	6	7	8	9	10	11	12
Total Sample		81	81	81	81	81	81	81	81	81	81	81	81
Detec	tion	75	66	39	52	51	63	42	59	47	57	47	54
Detection I	Efficiency	0.93	0.81	0.48	0.64	0.63	0.78	0.52	0.73	0.58	0.70	0.58	0.67
	Number	74	58	22	50	33	60	25	56	4	47	38	51
True Becamition	Min confidence	0.62	0.51	0.69	0.82	0.71	0.83	0.81	0.68	0.79	0.6	0.79	0.53
True Recognition	Max confidence	1	0.96	0.99	1	0.99	1	0.99	1	0.87	1	0.99	0.99
	Mean confidence	0.91	0.7	0.95	0.93	0.93	0.92	0.97	0.93	0.84	0.93	0.92	0.94
	Number	1	8	17	2	18	3	17	3	43	10	9	3
Folos Bossanition	Min confidence	0.83	0.51	0.5	0.62	0.52	0.6	0.51	0.68	0.53	0.51	0.56	0.62
False Recognition	Max confidence	0.83	0.88	0.93	0.65	0.93	0.98	0.97	0.83	0.98	0.78	0.83	0.82
	Mean confidence	0.83	0.66	0.62	0.64	0.68	0.83	0.67	0.76	0.78	0.62	0.8	0.71
Recognition	Efficiency	0.91	0.72	0.27	0.62	0.41	0.74	0.31	0.69	0.05	0.58	0.47	0.63

Conclusion

To completely automate data gathering from instrument, we will try to achieve 100% efficiency for instrument reading and measurement unit

STEP: 3

Improve the efficiency for Target Dataset

Improving efficiency:

- > Software Implementation
- > Train the model for Target Dataset

1. Software Implementation

By Evaluating based on conditions implementation in Software.

Condition Evaluated on a frame for accepting the result

- \triangleright If Number of Detection boxes ≥ 2 .
- Identification of Numerical value and units of Instrument reading.
- ▶ Based on evaluation of sample target dataset. Identify the Threshold of confidence level, which is used for box detection.

1. Number of Detection boxes ≥ 2

2. Identification of Numerical value and units of Instrument reading.

Identification of box for numerical value

- The bounding box with maximum area have numerical value if its area is at least 5 time greater than others.
- Bounding box should contain float.

Identification of box for units

• If distance between maximum point of numerical box and minimum points of nearby box of numerical box is less than half of width.

3. Based on evaluation of sample target dataset, a threshold for confidence level over instrument reading and unit was identified.

After identifying the text-box for instrument reading and unit, if the confidence level of instrument reading is greater than their threshold, Then frame is accepted.

If a frame is rejected, we search for a desired frame with high confidence level on all parameters in nearby frame.

Algorithm 5.0: Condition for Correct Output 1 Input:Image Frame; 2 Output: Caution(Condition satisfied or not); 3 Output = PaddleOCR(Image Frame); 4 Para1 = Output which contain highest area Para2 = Nearest neighbourhood of Para1; 5 **if** $length(Output) \ge 2$ $distance(para1,para2) \le height(para1)/2$ **then if** Confidence(each parameter of Output) \geq Threshold **then** Caution = True else Caution = **False** end 11 else Caution = False 13 end

```
Algorithm 5.0: Real-Time Text Recognition from Display Screen
1 Input:Frame of video;
2 Output: Detected Text with confidence level;
3 frame No = 0:
4 frameset = Interval of frame after which we want to process the frame;
5 Caution = False;
6 while True do
     frame No \leftarrow frame No + 1;
     frame = Single frame from camera;
     if (frame No / frameset == 0) then
         Caution = Condition Algorithm 1;
10
         if Caution == True then
11
            Process the frame and Recognize the text
12
         else
13
            Move to next frame
         end
     end
```

```
else if frame No / frameset == 1& Caution == False then
         Caution = Condition Algorithm 1;
18
         if Caution == True then
            Process the frame and Recognize the text
21
             Move to next frame
22
23
         end
      else if loop is continue till( frame No /frameset) = frameset-1;
      else if frame No / frameset == frameset-1 & Caution == False then
         Caution = Condition Algorithm 1;
27
         if Caution == True then
28
            Process the frame and Recognize the text
         else
            Recognize Text = None
31
             Move to next frame
35 end
```

Observation

In the videos of target data, from duration of approx. 430 sec, We are choosing one frame in the interval of 5 seconds for evaluation and exporting the data into .csv file.

Table: Result of Implemented Software								
Instrument r	eadings	1 (Numerical value)	2 (Units)					
Number of Sample	2	89	89					
Skip Samples		1	1					
Detected Sample		88	88					
Correct Recognize	d Sample	88	88					
Detection efficiend	су	98.87	98.87					
Recognition Efficie (On Detected Sam	•	100	100					
	Mean	0.902	0.687					
Confidence Level	Maximum	1.000	0.932					
	Minimum	0.678	0.527					

Software shows 98.87% accuracy on detection and 100% recognition accuracy on detected frame.

Result

We achieve 100% efficiency on recognized data.

2. Training

Input Data

Images

Labels in text file

Package of PaddleOCR

https://github.com/PaddlePaddle/PaddleOCR

Training

Dataset:

100 Training Data 50 Testing Data

Train the model in Google-Colab for epoch 10 and observe the loss.

Epoch	Loss
1	7.62
2	6.87
3	6.66
4	5.91
5	6.61
6	5.04
7	5.59
8	4.82
9	4.59
10	5.53

Optimization the execution time

Train the model in Google-Colab to optimize the execution time

No. of CPU: 1 No. of Core: 2

Train Size	Test Size	No. of Epoch	Batch Size	No. of worker	Execution Time
100	50	1	16	1	00:09:29
100	50	1	16	2	00:09:39
100	50	1	16	4	00:09:30
100	50	1	16	6	00:09:38
100	50	1	16	8	00:10:07
100	50	1	16	16	00:09:49

Train Size	Test Size	No. of Epoch	No. of worker	Batch Size	Execution Time
100	50	1	1	1	00:06:44
100	50	1	1	2	00:06:33
100	50	1	1	4	00:07:13
100	50	1	1	8	00:07:19
100	50	1	1	16	00:09:29
100	50	1	1	32	> 00:30:00

Batch Size: Number of sample used together to train model.

Number of workers: Number of threads used for data processing

Train Size	Test Size	No. of Epoch	No. of worker	Batch Size	No. of worker(Test Data)	Execution Time
100	50	1	1	2	1	00:06:33
100	50	1	1	2	2	00:06:36
100	50	1	1	2	4	00:06:42
100	50	1	1	2	8	00:06:37
100	50	1	1	2	16	00:06:39

Conclusion

```
Less Execution Time:
No. of CPU: 1 No. of Core: 2

Training Dataset:
Batch Size: 2
No of Worker: 1

Testing Dataset:
No. of Worker: 1
```

Result

- We evaluated different libraries for Text detection and recognition
- We have successfully completed Real-time text detection with 100 % recognition efficiency in target environment.
- We have established the process for training the model for further use.

Future Works

Design a website which contain:

Image to Word converter

PDF to word Converter

Training of Model for Different Language

Improve the efficiency for EasyOCR and KerasOCR

References

- 1. Y. Du, C. Li, R. Guo, X. Yin, W. Liu, J. Zhou, Y. Bai, Z. Yu, Y. Yang, Q. Dang *et al.*, "Pp-ocr: A practical ultra lightweight ocr system," *arXiv preprint arXiv:2009.09941*, 2020
- 2. "Tesseract open source our engine (main repository)," https://github.com/tesseract-our/tesseract.
- 3. "Easyocr: Ready-to-use ocr with 80+ supported languages and all popular writing scripts including latin, chinese, arabic, devanagari, cyrillic and etc." https://github.com/JaidedAI/EasyOCR,
- 4. "Paddlepaddle/paddleocr: Awesome multilingual ocr toolkits based on paddlepaddle." https://github.com/PaddlePaddle/PaddleOCR,
- 5. "Keras-ocr: A packaged and flexible version of the craft text detector and keras crnn recognition model." https://github.com/faustomorales/keras-ocr, "Airport timetable hi-res stock photography and images alamy," https://www.alamy.com/stock-photo/airport-timetable.html,
- 6. "Airport timetable hi-res stock photography and images alamy," https://www.alamy.com/stock-photo/airport-timetable.html,
- 7. Train timetable usa hi-res stock photography and images alamy," https://www.alamy.com/stock-photo/train-timetable-usa.html,

Thank You