CMSC 474, Game Theory

5. Imperfect-Information Games

Dana Nau University of Maryland

Motivation

- So far, we've assumed that players in an extensive-form game always know what node they're at
 - Know all prior choices
 - Both theirs and the others'
 - > Thus "perfect information" games
- But sometimes players
 - Don't know all the actions the others took or
 - Don't recall all their past actions
- Extend extensive-form game representation to include this

Definition

- **Imperfect-information** game: extensive-form game in which each agent's choice nodes are partitioned into information sets
 - > An information set = {all choice nodes an agent *might* be at}
- Let $H = \{$ all nodes where it's agent i's move $\}$
 - \triangleright Agent i's information sets are $I_{i1}, ..., I_{im}$ for some m, where
 - $I_{i1} \cup \ldots \cup I_{im} = H$ $I_{ij} \cap I_{ik} = \emptyset$ for all $j \neq k$ What is this called?
- If h and h' are in the same information set, they are **indistinguishable** to i
 - > So they must have the same set of actions
 - $\gamma(h) = \gamma(h')$
 - > But the actions may have different outcomes
- A perfect-information game is a special case
 - \triangleright Each I_{ij} contains just one node

- Agent 1 has two information sets
 - $ightharpoonup I_{11}$ and I_{12}
- In I_{12} , agent 1 doesn't know whether agent 2 chose C or D
- Agent 2 has just one information set
 - > *I*₂₁

Strategies

- **Pure strategy** for agent *i*
 - \triangleright a function s_i telling what action to take in each of i's information sets
 - $> s_i(I)$ = agent i's action in information set I
- Suppose *i* has information sets $I_{i1}, ..., I_{im}$
 - \triangleright {all pure strategies for i} = $\chi(I_{i1}) \times ... \times \chi(I_{im})$
- Agent 1's pure strategies:
 - \rightarrow {A,B} \times {E, F} = $\{(A,E), (A,F), (B,E), (B,F)\}$
- Agent 2's pure strategies: {C, D}

Extensive Form > Normal Form

- Can transform any extensive-form imperfect-information game into an equivalent normal-form game
 - Same strategies and same payoffs
 - > Thus same Nash equilibria, same Pareto optimal strategy profiles, etc.
- Just like we did it for perfect-information games
 - > *n*-dimensional payoff matrix
 - \rightarrow i'th dimension \Leftrightarrow agent i's pure strategies

	C	D	
(A,E)	0, 0	2, 4	
(A,F)	2, 4	0, 0	
(B,E)	1, 1	1, 1	
(B,F)	1, 1	1,1	

Updated 9/29/16

Normal Form → Extensive Form

- Can translate any normal-form game into an equivalent extensive-form imperfect-information game
 - > *n*-level game tree, one level for each agent
 - each agent has exactly one information set
- Same strategies, payoffs, Nash equilibria, Pareto optimal strategy profiles, etc.
- Example: Prisoner's Dilemma
 - > Two equivalent game trees

	I_{11}	1	
	/c	D	
2	 ,		R ²
c/	$\backslash D$	21 C	D
(3,3)	(0,5)	(5,0)	(1,1)

Different Kinds of Strategies

Pure strategy:

for each information set an agent makes the same move at all nodes in the information set

E.g., agent 1 choosing D in the normal form game

• same as choosing D at both of these nodes

Mixed strategy:

Does the agent make the same move at all nodes in the information set?

D

0, 5

3, 3

Different Kinds of Strategies

- New class of strategies: behavioral strategies
 - \triangleright Suppose agent *i* has behavioral strategy s_i

Each time i is in information set I_{ij} , he/she chooses from the same probability distribution $s_i(I_{ij})$

• independently of i's choices at other nodes in I_{ij}

- > Same probability distributions over outcomes
- > Example
 - Behavioral strategy for Agent 1: $(I_{11}, \{(0.3, C), (0.7, D)\})$
 - Mixed strategy is basically the same: {(0.3, C), (0.7, D)}
- More examples later

- A behavioral strategy for Agent 1:
 - \rightarrow In I_{11} , {(0.4, A), (0.6, B)}
 - \rightarrow In I_{12} , {(0.3, G), (0.7, H)}
- An equivalent mixed strategy:
 - {(0.12, (A,G)), (0.28, (A,H)),(0.18, (B,G)),(0.42, (B,H))

How did I get those numbers?

- A mixed strategy for agent 1:
 - > {(0.6, (A,G)), (0.4, (B,H))}
- The choices in the two information sets aren't independent
 - ➤ Choose A in $I_{11} \Leftrightarrow$ choose G in I_{12}
 - Choose B in $I_{11} \Leftrightarrow$ choose H in I_{12}

Is there an equivalent behavioral strategy?

- A mixed strategy for agent 1:
 - > {(0.6, (A,G)), (0.4, (B,H))}
- The choices in the two information sets aren't independent
 - \triangleright Choose A in $I_{11} \Leftrightarrow$ choose G in I_{12}
 - \triangleright Choose B in $I_{11} \Leftrightarrow$ choose H in I_{12}
- Is there an equivalent behavioral strategy?
 - In I_{11} , {(p, A), (1-p, B)}
 - In I_{12} , {(q, G), (1-q, H)}
- Look for *p* and *q* that give the same probabilities of outcomes
 - Pr[A] = p = 0.6
 - Pr[(B,G)] = (1-p) q = 0
 - Pr[(B,H)] = (1-p)(1-q) = 0.4

Behavioral vs. Mixed Strategies

- In some games, there are
 - mixed strategies that have no equivalent behavioral strategy
 - > behavioral strategies that have no equivalent mixed strategy
- Thus mixed and behavioral strategies can produce different Nash equilibria
- Example:
 - \triangleright Both of Agent 1's choice nodes are in the same information set, I_{11}
 - How could this ever happen?

Behavioral vs. Mixed Strategies

- Mixed strategy $\{(p, L), (1-p, R)\}$
 - agent 1 chooses L or R randomly, but commits to it
 - ightharpoonup Choose L \Rightarrow history $\langle L,L \rangle$
 - ightharpoonup Choose R \Rightarrow history $\langle R,U \rangle$ or $\langle R,D \rangle$
 - \triangleright never $\langle L,R \rangle$
- Nash equilibrium in mixed strategies:
 - For agent 1, R is strictly dominant
 - For agent 2, D is strictly dominant
 - ➤ So (R,D) is the unique Nash equilibrium

Behavioral vs. Mixed Strategies

- Behavioral strategy $(I_{11}, \{(q, L), (1-q, R)\})$
 - Remake the choice each time agent 1 is in I_{11}
 - ightharpoonup If p = q = 0, have the pure strategy L
 - ightharpoonup If p = q = 1, have the pure strategy R
 - ➤ In all other cases, $Pr[\langle L,R \rangle] = q(1-q) > 0$
- Nash equilibrium in behavioral strategies:
 - > For 2, D is strictly dominant
 - Find 1's best response among behavioral strategies

•
$$u_1 = 1 q^2 + 100 q(1-q) + 2 (1-q) = -99q^2 + 98q + 2$$

$$-198q + 98 + 0 = 0$$

$$q = 49/99$$

• Equilibrium is ({(49/99, L), (50/99, R)}, D)

Games of Perfect Recall

- The reason the strategies weren't equivalent was because agent 1 could be in the same information set more than once
 - \triangleright Mixed strategy \Rightarrow agent 1 will make the same move every time
 - \triangleright Behavioral strategy \Rightarrow agent 1 may make a different move each time
 - Like mixed strategy + faulty memory
- Look at games where agents have perfect memories
 - > Agent *i* has **perfect recall** if *i* never forgets anything *i* knew earlier
 - \triangleright G is a game of perfect recall if every agent in G has perfect recall

Theorem: For every history in a game of perfect recall, no agent will have the same information set more than once

Games of Perfect Recall

- **Theorem:** For every history in a game of perfect recall, no agent will have the same information set more than once
- **Proof:** Let *h* be any history for *G*. Suppose that
 - At one point in h, i's information set is I
 - At another point later in h, i's information set is J
 - > Then i must have made at least one move in between
 - ➤ If *i* remembers all his/her moves, then
 - At *J*, *i* remembers a longer sequence of moves than at *I*
 - Thus I and J are different information sets
- **Theorem** (Kuhn, 1953). In a game of perfect recall, for every mixed strategy there is an equivalent behavioral strategy, and vice versa
- Corollary: In a game of perfect recall, the set of Nash equilibria doesn't change if we consider behavioral strategies instead of mixed strategies

Sequential Equilibrium

- For perfect-information games, subgame-perfect equilibria were useful
 - > Avoided non-credible threats; could be computed more easily
 - Each agent's strategy must be a best response in every subgame
- Generalize to imperfect-information games?
- Information set ⇔ a set of possible subgames

One for each element of the information set

Could we require an agent's strategy to be a best response in all of the subgames?

- No strategy is a best response to both *C* and *R*
- Assume common knowledge of rationality
 - > 1 will never choose C
 - > 2 only needs a best response to *R*

- No strategy is a best response to both *C* and *R*
- Assume common knowledge of rationality
 - > 1 will never choose L
- Suppose the agents' mixed strategies are

$$s_1 = \{(p, C), (1-p, R)\}$$
 and

- $> s_2 = \{(q, U), (1-q, D)\}$
- Can show there is one Nash equilibrium, at $p = q = \frac{1}{2}$
 - ▶ But $q = \frac{1}{2}$ is not a best response to either C or R

Sequential Equilibrium

- In general, need Bayesian reasoning about the players' strategy profiles
- This leads to a complicated solution concept called sequential equilibrium
 - A little like a trembling-hand perfect equilibrium, but with additional complications to deal with the tree structure

Definition 5.3.1 (Sequential equilibrium). A strategy profile S is a sequential equilibrium of an extensive-form game G if there exist probability distributions $\mu(h)$ for each information set h in G, such that the following two conditions hold:

- 1. $(S, \mu) = \lim_{n \to \infty} (S^n, \mu^n)$ for some sequence (S^1, μ^1) , (S^2, μ^2) , ..., where S^n is fully mixed, and μ^n is consistent with S^n (in fact, since S^n is fully mixed, μ^n is uniquely determined by S^n); and
- 2. For any information set h belonging to agent i, and any alternative strategy S'_i of i, we have $|S|(h, \mu(h)) \ge u_i((S', S_{-i}) | h, \mu(h))$.
- Every finite game of perfect recall has a sequential equilibrium
- Every subgame-perfect equilibrium is a sequential equilibrium, but not vice versa

I won't discuss it further

Summary

- Topics covered:
 - > information sets
 - behavioral vs. mixed strategies
 - games of perfect recall
 - equivalence between behavioral and mixed strategies in such games
 - very brief discussion of sequential equilibrium