S/N: 10/521,377

Reply to Office Action of July 18, 2006

Amendments to the Specification:

Please amend the paragraph (section) beginning on page 2, at line 10 as shown below:

The invention provides a process for the continuous preparation of a silane of the formula I

$$R^6R^5CH-R^4CH-SiR^1R^2R^3$$
 (I),

which comprises continuously reacting a silane of the formula II

$$HSiR^1R^2R^3$$
 (II),

with an alkene of the formula III

$$R^6R^5CH=CHR^4$$
 (III),

$$R^{6}R^{5}C = CHR^{4}$$
 (III),

in the presence of an iridium compound of the formula IV as catalyst

and free diene as cocatalyst, where

- R^1 , R^2 , R^3 are each a monovalent Si-C-bonded, unsubstituted or halogen-substituted C_1 - C_{18} -hydrocarbon radical, a chlorine atom or a C_1 - C_{18} -alkoxy radical,
- R^4 , R^5 , R^6 are each a hydrogen atom, a monovalent C_1 - C_{18} -hydrocarbon radical which may be unsubstituted or bear F, Cl, OR, NR'₂, CN or NCO atoms/groups as substituents, a chlorine atom, a fluorine atom or a C_1 - C_{18} -alkoxy radical, where in each case 2

Reply to Office Action of July 18, 2006

radicals R⁴, R⁵, R⁶ together with the carbon atoms to which they are bound may form a cyclic radical,

R is a hydrogen atom or a monovalent C_1 - C_{18} -hydrocarbon radical and

diene is a C_4 - C_{50} -hydrocarbon compound which may be unsubstituted or bear F, Cl, OR, NR₂, CN or NCO atoms/groups as substituents and has at least two ethylenic C=C double bonds,

with the reaction temperature being 30-200°C and the reaction pressure being 0.11-50.0 Mpa.