低压伺服电机驱动器

YZ-ACSD608_v6.8

一. 产品特件

- 1. 低噪音,低振动,高速定位,高可靠性。
- 2. FOC 场定向矢量控制,支持位置/速度闭环。
- 3. 可工作在零滞后给定脉冲状态,跟随零滞后。
- 4. 可自动找原点信号,自动找 Z 信号。
- 5. 16 位电子齿轮功能。
- 6. 内部光耦隔离 modbus RTU 通信(19200, 8,N,1)。
- 7. 位置模式,支持脉冲+方向信号和正交脉冲信号。
- 8. 速度模式支持 PWM 占空比信号 或 4~20ma 电流 或 0.6~3V 电压信号控制。
- 9. 供电电压+20V~50V。支持 50~500W 交流伺服电机。
- 10. 提供隔离输出的 到位信号、报警输出信号、编码器零点信号。
- 11. 具有欠压,过压,堵转,过热保护。

二. 驱动器接口

1. 控制信号接口(驱动器上标识: Singal)

名称						
PU+(+5V)	脉冲控制信号:脉冲上升沿有效; PU-高电平时 $4\sim5$ V,低电平时 $0\sim0.5$ V。					
PU-(PU)	为了可靠响应脉冲信号,脉冲宽度应大于 1.2μs。如采用+12V 或+24V 时需串电阻。					
DIR+(+5V)	方向信号: 高/低电平信号, 为保证电机可靠换向, 方向信号应先于脉冲信号					
DIR-(DIR)	至少 $5\mu s$ 建立。DIR-高电平时 $4\sim5V$,低电平时 $0\sim0.5V$ 。					
EN+(+5V)	使能信号:此输入信号用于使能或禁止。ENA+接+5V,ENA-接低电平(或内部光耦导通)时,驱动器					
EN-(EN)	将切断电机各相的电流使电机处于自由状态,此时					
	脉冲不被响应。当不需用此功能时,使能信号端悬空即可。另外,当驱动器报警时,可以禁止再使能,					
	可以清除报警。					

ACSD608 驱动器采用差分式接口电路可适用差分信号,单端共阴及共阳等接口,内 置高速光电耦合器,允许接收长线驱动器,集电极开路和 PNP 输出电路的信号。在环境恶劣的场合,我们推荐用 长线驱动器电路,抗干扰能力强。

2. 强电接口(驱动器上标识: Power Motor)

名称	功能
+V	直流电源正极,+24V~+48V,电压过低会引起驱动器报警停机。
GND	直流电源地。
U	电机 U 相线圈。
V	电机 V 相线圈。
W	电机 W 相线圈。

3. 电机信号接口(驱动器上标识: Encoder)

端子号	符号	功能
1	A+	编码器 A 相正
2	B+	编码器B相正
3	GND	+5v 电源地
4	HALL_W	磁极信号 W 相
5	HALL_U	磁极信号U相
6	PG	外壳
7	Z+	编码器Z相正
8	Z-	编码器Z相负
9	HALL_V	磁极信号V相
10	NC	无连接
11	A-	编码器 A 相负
12	B-	编码器B相负
13	+5V	+5v 电源,给传感器供电
14	NC	无连接
15	NC	无连接

4. 通信与输出信号接口(驱动器上标识: Uart)

可以通过专用 485 电缆连接 PC 机。通过提供的上位机软件可以设置驱动器参数,和测试驱动器,并提供一些诊断信息,来排除驱动器故障。

注: 1 脚为下排左边第一个引脚, 6 脚为上排左边第一个引脚

	1 311/2/2/30 1 31/3/4/	- 41/4-411			
端子号	符号	_ <mark>功能</mark>			
1	GND	信号地			
2	485A	485 通信 A 端(D+端)			
3	485B	驱动器串口接收端(TTL 电平)			
4	+5V	外供 5V 最大 100mA			
5	V_in	调速电压或电流信号输入			
6	COM	输出信号公共端			
7	WR	报警信号输出。报警时为低电平			
8	PF	到位信号输出。到位时为低电平			
9	ZO	编码器零点信号输出。到零点时为低电平			
10	5V_485	内部 485 供电接口(需要外部供电)。485 供电的地为 COM 引脚			

5. DIP 开关

功能选择:

SW1			控制方式
OFF	OFF	位置模式	脉冲+方向
OFF	ON	位置模式	编码器跟随

ON	OFF 速度模式		PWM 占空比				
ON	ON	速度模式	4~20MA 或 0.6~3V				

6. 状态指示与报警

开机后红灯绿灯都亮一次,用于检验 LED 是否工作正常。而后绿灯亮,红灯灭为正常状态。如果遇到报警状态,可以通过红色闪烁来判断原因,也可以通过 modbus 读取报警代码。

报警代码	红灯闪烁	报警原因	报警处理
0x10	一长闪	系统高温报警 >70℃	继续运行
0x20	二长闪	写 flash 失败	继续运行
0x11	一长闪一短闪	系统过热报警 >90℃	停机 温度降至 70℃以下继续运行
0x12	一长闪二短闪	系统堵转报警	停机
0x13	一长闪三短闪	系统欠压报警 <20V	停机 电压超过 20V 继续运行
0x14	一长闪四短闪	失速报警,负载过重	停机

三. 驱动器接线图与控制方式

1. 驱动器典型接线图

如下图所示,驱动器工作需要接上 20~50VDC 的电源,电压根据电机的额定电压来选择,电机的 UVW 和编码器已做好插头,直接插在驱动器上,如果需要加长线可做转接线加长。此版本提供光耦输出的 报警信号、到位信号、编码器零点信号,可以根据需要连接。下图有 5 个小框,分别是可以选择的 5 种控制方式,上电后只能选择其中一种控制方式,接线如下图所示。

2. 指令脉冲+方向位置控制模式

一圈的脉冲数 = 编码器线数*4/电子齿轮 例如: 2500 线的编码器,电子齿轮为 4:1,

一圈的脉冲数 = 2500 * 4 / (4/1) = 2500

指令脉冲频率 = (需要电机运行的转速/60)* 一圈的脉冲数

例如: 需要点击 3000RPM 一圈脉冲数为 2500 脉冲频率 = 3000/60 * 2500 = 125000 = 125k

3. 正交指令脉冲位置控制模式

这种模式可以用于编码器跟随,如一个轴接了编码器,将编码器输出接到驱动器(接线方式如 驱动器典型接线图),驱动器就能控制伺服电机,按输入编码器的信号,随动于控制的编码器。可以通过调节电子齿轮,来设置控制编码器和电机转动角度的比例。

正转脉冲:

电机转动的方向: PU 上升沿超前 DIR 上升沿 为正转。PU 上升沿滞后 DIR 上升沿 为反转。

4. PWM 占空比速度控制模式

通过给 PU 的脉冲的咱空比来控制转速,占空比转速范围 10%~90%代表 0~Max_Speed (Max_Speed 为位置模式保存的目标转速,通过设置这个参数,可以更精确的控制需要的转速,也不用担心出现超过所设定的速度)。给 PU 的频率为 1K~10K。

PU 占空比 = (目标转速/3000) * 80% + 10%

例如: 需要转速 2000

PU 占空比 = (2000/3000) * 0.8 + 0.1 = 63.3%

5. 电压或电流信号速度控制模式

通过给 V-IN 和 GND 之间电压或电流信号以控制转速。4mA~20mA(或 0.6~3V)信号对应 0~Max_Speed(Max_Speed 为位置模式保存的目标转速,通过设置这个参数,可以更精确的控制需要的转速,也不用担心出现超过所设定的速度)。 如果需要电位器控制转速,按 驱动器典型接线图 中的接法即可。

四. 参数调试

根据电机所接负载不同,参数需要调整才能达到最佳效果。

1. 内部加减速曲线

根据控制器输出信号的不同来选择是否使用内部加减速曲线。

使用内部加速曲线:

当电机加速度小于60000时,驱动器会使能内部加减速曲线,具体加速度的大小就和设置的值相同。

使用场合:使用内部加速曲线,会产生滞后脉冲的现象,一些不需要实时跟随的场合,可以使用内部加速曲线。有些控制器,脉冲直接给到对应速度的频率,没有加减速的情况,就使用内部加减速曲线,可以降低控制器编程难度。

禁止内部加速曲线:

当电机加速度大于等于 60000 时,驱动器根据外部脉冲的加减速允许,内部加速度无效。

使用场合:例如雕刻机,控制器输出的脉冲就是有加减速的,就不需要驱动器内部的加速曲线,如果这个时候使用,会滞后于实际的脉冲。

2. 丝杆负载

首先介绍下扭矩, 先用 400W 电机, 1.3NM。负载是 5mm 螺距的丝杆, 就是电机轴转一圈负载移动 5mm, 这样的话,

负载等效力臂 = 5mm / 3.14 = 1.592 mm

那电机能提供的推力就是

经过丝杆传动的推力 = 1.3NM / (1.592mm*0.001) = 816 N

那能推动负载的重量就大约是 80KG, 这个是垂直的, 平推可以稍微大些。

由于丝杆负载电机转动一圈移动的距离较短,所以驱动器的参数 (加速度可以较大,如 20000,位置环 KP 可以较大,如 3000)。伺服电机最适合此种负载。

3. 皮带轮负载

伺服电机其实不是很适合接这种负载。因为皮带轮一般直径比较大,例如直径 30mm。那电机转一圈,负载移动的距离就是 $30mm^*\pi=94.2$,比上面说的丝杆 5mm 大了很多倍。

那电机能提供的推力就是

经过皮带传动的推力 = 1.3NM / (30mm*0.001) = 43.3 N

那能推动负载的重量大约是 4.3KG. 所以伺服电机其实不适合接同步轮,因为同步轮转动一圈负载移动的距离太长,力臂长。如果这种场合要用伺服电机,可以选择直接尽量小的同步轮或通过电机轴接小同步轮,负载端接大同步轮,这样减速几倍,可以达到较好的效果。这种场合驱动器参数(加速度设置较小,如 5000,位置环 KP 设置较小,如 1000),这样设置参数的目的是减小加速度和减速度,因为负载等效惯性大。

4. 圆盘负载

这种负载伺服无法直接带动,一般都需要接减速器。例如直径 200mm 重量 10KG 的圆盘。半径就是 100mm, 重量等效半径就是 50mm。力臂很大。如果伺服要接此类负载,比较接减速器再接负载。

如果圆盘不是特别重,可以牺牲一些定位精度和刚性来控制。具体方法,电机加速度设置到比较小,例如 1000 左右。 速度 KI 设置到 2000,取消积分作用。位置 KP 改到 1000. 改这些参数一般的圆盘负载也能用。

5. 自动找原点功能

自动找原点功能通过改 寄存器地址 0x19 (特殊功能)的参数来选择。如果需要上电自动找原点,先拔掉电机线,然后 modbus 使能 发送 1,特殊功能 (地址 0x19)发送 1~3 (根据下面的介绍选择),参数保存发送 1,再接上电机,重新上电,就会自动找原点。如果再工作过程中,需要通过通信来控制找原点,可以电机停止后,直接向寄存器地址 0x19 (特殊功能)发送 1~3 (根据下面的介绍选择)来实现。找原点的方向通过改 寄存器地址 0x9 (DIR 极性)为 0或者 1来选择正转或者是反转。

1. 寄存器地址 0x19 (特殊功能) 等于 1.

这种方式需要驱动器的 EN 信号接入原点信号(具体接法 EN+接供电 5V, EN-通过开关信号或者 NPN 信号接到 GND, EN-以导通一次 GND 为得到一次信号)。

新上电 0x19 寄存器为 1,或者通过通信改为 1 后,电机自动以固定低速反转,一直到出现 EN 信号后停下,并往和刚刚相反方向慢速转到得到电机 Z 信号(此动作为提高找原点精度)。找原点完成后寄存器地址 0x19 (特殊功能)会自动置 0.

2. 寄存器地址 0x19 (特殊功能) 等于 2.

新上电 0x19 寄存器为 2,或者通过通信改为 2 后,电机自动以固定低速反转,一直到出现 EN 信号后停下,找远点过程结束。这种方式对比上一种,不会找 Z 信号。找原点完成后寄存器地址 0x19 (特殊功能)会自动置 0.

3. 寄存器地址 0x19 (特殊功能) 等于 3.

新上电 0x19 寄存器为 3,或者通过通信改为 3 后,电机自动以固定低速反转,一直到出现得到电机 Z 信号后停下。找原点完成后寄存器地址 0x19 (特殊功能)会自动置 0.

6. 通信方式清除位置

清除绝对位置:如果在运行过程中需要将绝对位置清 0,先电子齿轮分子发送 0 (通信模式下电子齿轮无效,用于此特殊功能。如果通信控制可以直接电子齿轮分子保存成 0),然后绝对位置 (0x16)发送 0,就直接给绝对位置清 0.

急停:在通信模式下,如果剩余了很多脉冲需要走,需要急停的情况。先电子齿轮分子发送 0 (通信模式下电子齿轮无效,用于此特殊功能。如果通信控制可以直接电子齿轮分子保存成 0,再目标位置 (0x0C)发送 0,就可以急停。急停也有少量减速距离,减速距离长短通过位置环 KP 控制。

7. 上电默认通信控制

只要设置电子齿轮分子为 0, 保存以后, 重新上电, modbus 使能 默认 是 1. 如果是速度模式, 上电默认通信方式控制, 上电自动运行保存过的目标转速。

五. Modbus 控制方式

1. 硬件连接

驱动器内部 485 都通过光耦隔离,解决了一台主机连接多台从机容易被干扰和损坏的问题。

2. 寄存器说明

驱动器可以通过 modbus (RTU 模式)来控制驱动器。主机可以通过 modbus 的读写寄存器功能来设置驱动器参数和控制运行。驱动器支持的功能码为 0x3 (读寄存器)、0x6 (写寄存器)、0x78 (写目标位置)、0x7a (修改备地址)。

寄存器列表如下:

地址	参数名称	只读/读写	参数范围	参数说明		
0x00	Modbus 使能	读写	0~1	0: modbus 禁止		
				1: modbus 使能		
0x01	驱动器输出使能	读写	0~1	0: 驱动器输出禁止		
				1: 驱动器输出使能		
0x02	电机目标速度	读写	0~3000 r/min	速度模式时,目标速度		
				位置模式时,最大速度		
0x03	电机加速度	读写	0~65535	参数小于 60000 时,驱动器内部产生加减速曲线,参数大于		

			(r/min)/s	60000 时,驱动器内部不产生加减速脉冲		
0x04	电机起始速度	读写	0~500	位置模式时,电机的最小转速(建议设置 0~10)		
			r/min			
0x05	速度环比例系数	读写	0~10000	代表 0.0~10.0		
0x06	速度环积分时间	读写	2~2000	积分时间 2~2000ms		
			ms			
0x07	位置环比例系数	读写	60~5000	位置模式下速度下降的速率		
0x08	速度前馈	读写	0~8.0V/KRP	速度前馈每 1KRPM 对应的电压幅值		
			M			
0x09	DIR 极性	读写	0~1	0:外部 DIR 不导通顺时针旋转		
				1: 外部 DIR 导通顺时针旋转		
0x0A	电子齿轮分子	读写	0~65535	16 位电子齿轮分子		
				如果电子齿轮分子为0,可以实现特殊功能具体看前文介绍		
0x0B	电子齿轮分母	读写	1~65535	16 位电子齿轮分母		
0x0C	目标位置低 16 位	只读		需要走步数的高 16 位		
0x0D	目标位置高 16 位	只读		需要走步数的低 16 位		
0x0E	报警代码	只读				
0x0F	系统电流	只读	0~32767	实际电流为 x/2000(A)		
0x10	电机当前速度	只读	-30000~30000	实际电机转速=电机当前速度/10		
			r/min			
0x11	系统电压	只读	0~32767	实际电压为 x/327(V)		
0x12	系统温度	只读	0~100	摄氏度		
0x13	系统输出的 PWM	只读	-32768~32767	代表-100%~100%		
0x14	参数保存标志	读写	0~1	0: 参数未保存		
				1: 保存参数中		
				2: 保存完毕		
0x15	设备地址	只读	0~255	设备地址		
0x16	绝对位置低 16 位	读写		走过步数的高 16 位		
0x17	绝对位置高 16 位	读写		走过步数的低 16 位		
0x18	速度滤波频率	读写	1~2000	默认 100		
0x19	特殊功能	读写	0~100	1: 自动反转直至 EN 有导通信号停下,再自动正转到编码器		
				Z信号停下。		
				2. 自动反转直至 EN 有导通信号停下		
				3. 自动反转直至编码器 Z 信号停下		

3. Modbus 通信格式

a. modbus 主机读取数据及从机应答格式 (功能码 03)

主机读取数据 格式								
设备地址 功能码 第一个寄 第一个寄 寄存器个 寄存器个 CRC 高 CRC 低								
	存器的高 存器的低 数高位 数低位 位 位							
	位地址 位地址							
0x01	0x01 0x03 0x00 0x00 0x00 0x01 0x84 0x0a							

设备地址	功能码	数据长度	第一个数据高字节	第一个数据低字节	CRC 高位	CRC 低位
0x01	0x03	0x02	0x00	0x01	0x79	0x84

串口接收到的数据都是无符号数,如果寄存器是有符号数,发送的则是二进制补码的格式,转换成有符号数的算法如下(VB代码):

If modbus.data(11) > 32767 Then

disp modbus data.PU = (modbus.data(11) - 32768) * 65536 + modbus.data(10)

disp_modbus_data.PU = -((&H7FFFFFF - disp_modbus_data.PU) + 1)

Else

disp_modbus_data.PU = dmodbus.data(11) * 65536 + modbus.data(10)

End If

注: modbus.data(11)为目标位置高 16 位 modbus.data(10)为目标位置低 16 位

b. modbus 主机写数据及从机应答格式 (功能码 06)

主机写数据 格式								
设备地址 功能码 第一个寄 第一个寄 数据高位 数据低位 CRC 高 CRC 低								
存器的高「存器的低」								
位地址 位地址								
0x01	0x01 0x06 0x00 0x00 0x00 0x01 0x48 0x0a							

从机应答 格式									
设备地址	功能码	第一个寄	第一个寄	数据高位	数据低位	CRC	CRC	低	
		存器的高	存器的低			位	位		
		位地址	位地址						
0x01	0x06	0x00	0x00	0x00	0x01	0x48	0x0a		

c. modbus 主机写脉冲数 (功能码 0x10)

主机写双字节数据 (写 PU 脉冲数)									
设备地址	功能码	第一个寄存器的高位地址	第一个寄 寄存器个 存器的低 数高位 位地址 ()		寄存器个数低位	数据长度			
0x01	0x10	0x00	0x0c	0x00	0x02	0x04			
PU:8~15 位	PU:0~7 位	PU:24~31 位	PU:16~23 位	CRC 高位	CRC 低位				
0x27	0x10	0x00	0x00	0xf8	0x8b				

脉冲数是有符号数,一个负数(假设此数为 X)转换成 32 位 16 进制数的算法如下(vb 代码):

If $X \le 0$ Then

X = &H7FFFFFFF + (X + 1)

 $PU24_31 = Fix(X / (256 * 65536)) + &H80$

Else

 $PU24_31 = Fix(X / (256 * 65536))$

End If

PU16 $23 = Fix(X / 65536) \mod 256$

 $PU8_15 = Fix(X / 256) \mod 256$

 $PU0 7 = X \mod 256$

注: fix() 为取整函数

从机应答 格式

位地	器的高 存器的 也址 位地址	数低位	位	位	
		3X IKV IZ.	<u> </u>	177	

d. modbus 主机写脉冲数 (特殊功能码 0x78)

主机特殊功能码 0x78 格式 (写 PU 脉冲数)									
设备地址 功能码 PU:24~3 PU:16~2 PU:8~15 PU:0~7 CRC 高 CRC						CRC 低			
		1位	3 位	位	位	位	位		
0x01	0x78	0x00	0x00	0x27	0x10	0xbb	0xfc		

从机应答 格式									
设备地址	功能码	PU:8~15	PU:0~7	PU:24~3	PU:16~2	CRC 高	CRC 低		
		位	位	1位	3 位	位	位		
0x01	0x78	0x27	0x0e	0x00	0x00	0xca	0xb7		

4. CRC 校验示例代码

unsigned short CRC16(puchMsg, usDataLen)

```
unsigned char *puchMsg; /* 要进行 CRC 校验的消息 */
unsigned short usDataLen; /* 消息中字节数 */
unsigned char uchCRCHi = 0xFF; /* 高 CRC 字节初始化 */
unsigned char uchCRCLo = 0xFF; /* 低 CRC 字节初始化 */
unsigned uIndex; /* CRC 循环中的索引 */
while (usDataLen--) /* 传输消息缓冲区 */
uIndex = uchCRCHi ^ *puchMsgg++; /* 计算 CRC */
uchCRCHi = uchCRCLo ^ auchCRCHi[uIndex} ;
uchCRCLo = auchCRCLo[uIndex] ;
return (uchCRCHi << 8 | uchCRCLo);
}
/* CRC 高位字节值表 */
static unsigned char auchCRCHi[] = {
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80,
0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00,
0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80,
0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
```

 $0x80,\ 0x41,\ 0x00,\ 0xC1,\ 0x81,\ 0x40,\ 0x01,\ 0x40,\ 0x01,\ 0xC0,\ 0x80,\ 0x41,\ 0x01,\ 0xC0,\ 0x80,\ 0x41,\ 0x00,\ 0xC1,\ 0x81,\ 0x40,\ 0xC1,\ 0xC0,\ 0xC1,\ 0xC0,\ 0xC1,\ 0xC0,\ 0xC1,\ 0xC0,\ 0xC1,\ 0xC0,\ 0xC1,\ 0xC1,\ 0xC0,\ 0xC1,\ 0xC1,\$

0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,

0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,

0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,

0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x81, 0xA0, 0xA1, 0xC0, 0xC0, 0xA1, 0xC0, 0xC0

0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40 };

/* CRC 低位字节值表*/

static char auchCRCLo[] = {

0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0xCF, 0xCE, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09, 0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3, 0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32, 0x36, 0xF6, 0xF7, 0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A, 0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE, 0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26, 0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1, 0x63, 0xA3, 0xA2, 0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F, 0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB8, 0xB9, 0x79, 0xBB, 0x7B, 0x7A, 0xBA, 0xBE, 0x7E, 0xFF, 0x7D, 0xBD, 0x5D, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C, 0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x4D, 0x4C, 0x8C, 0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80, 0x40, 0x40, 0x40, 0x4C, 0x8C, 0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80, 0x40, 0x40,

5. modbus 方式主机控制过程

a: 位置模式

通过拨码开关 SW1 打 OFF 再上电即为位置模式。

先上电可以通过我们提供上位机软件设置如下参数:

- 1. Modbus 使能 发送 1 (只有 modbus 使能为 1 才能改其他参数,且外部脉冲信号无效。) HEX 源码命令 : 01 06 00 00 00 148 0A
- 2. 电机加速度 发送 5000 (根据实际需要设置加速度,不设置即使用默认参数 20000) HEX 源码命令: 01 06 00 03 13 88 74 9C
- 3. 目标转速 发送 1500 (根据实际运行需要设置运行的速度,不设置即使用默认参数 2800) HEX 源码命令: 01 06 00 02 05 DC 2A C3
- 4. 电子齿轮分子 发送 0 (电子齿轮分子保存为 0 后,下次上电 mdobus 使能默认是 1) HEX 源码命令 : 01 06 00 0A 00 00 A9 C8
- 5. 参数保存标志 发送 1 (发此参数后,前面设置的参数保存到内部) HEX 源码命令: 01 06 00 14 00 01 08 0E
- 6. 重新上电,看参数是否已经正确保存。以上设置只需要用提供的上位机设置即可,HEX 源码不需要自己通过串口发送。

参数设置完以后,就可以通过 PLC 或者单片机,或者自己设计的上位机软件发位置命令。发位置命令只需要过 0x10 命令发送需要走的位置就行。

1. 发增量位置(增量位置的含义是,发送的数据即为电机需要向前或者向后走的位置)

例如需要向前走一圈(假设电机编码器为1000线编码器,一圈脉冲数即为4000)

HEX 源码命令: 01 10 00 0C 00 02 04 0F A0 00 00 F0 CC

例如需要向前后一圈(假设电机编码器为 1000 线编码器,一圈脉冲数即为-4000)-4000 的二进制计算方法如下: 4000 的二进制为 00 00 0F A0。(注: 0= FF FF FF FF +1)

-4000 即为 0 - 00 00 0F A0 =FF FF FF FF - 00 00 0F A0 +1=FF FF F0 5F +1 = FF FF F0 60

HEX 源码命令: 01 10 00 0C 00 02 04 F0 60 FF FF C1 54

2. 发绝对位置(绝对位置的含义是,刚刚上电或者绝对位置清 0 或者自动找原点后的时候定义位置为 0,绝对位置就是走到新发的位置,如第一次发 4000 为走一圈,第二次发已经走到了 4000 的位置,再发相同命令电机不走)

例如需要电机走到2圈位置(假设电机编码器为1000线编码器,2圈脉冲数即为8000)

HEX 源码命令: 01 10 00 16 00 02 04 1F 40 00 00 74 89

例如需要电机走回原点(当电子齿轮分子为 0 的时候,发送 0 为清除当前位置,所以走回原点发送 1,此时一个脉冲并不会影响精度)

HEX 源码命令: 01 10 00 16 00 02 04 00 01 00 00 23 49

注:控制电机只需要先发送需要的位置(尽量用绝对位置指令,因为可以重复发多次,依然是走到相同位置),然后可以通过读取绝对位置对比是否走到设置位置,来判断是否执行下一条指令(注意判断的时候需要允许+-2的误差)。或者可以通过接 PF 信号,走到位后,驱动器会给出一个光耦输出的开关量信号。

读取绝对位置指令如下: 01 03 00 16 00 02 25 CF

b: 速度模式

通过拨码开关 SW1 打 ON 再上电即为速度模式。

先上电可以通过我们提供上位机软件设置如下参数:

1. Modbus 使能 发送 1 (只有 modbus 使能为 1 才能改其他参数,且外部脉冲信号无效。)

HEX 源码命令: 01 06 00 00 00 01 48 0A

2. 电机加速度 发送 5000 (根据实际需要设置加速度,不设置即使用默认参数 20000)

HEX 源码命令 : 01 06 00 03 13 88 74 9C

3. 目标转速 发送 0 (这个保存的转速,如果是 0,下次上电默认不转,如果是一个数,下次上电默认按保存的转速转)

HEX 源码命令: 01 06 00 02 05 DC 2A C3

4. 电子齿轮分子 发送 0 (电子齿轮分子保存为 0 后,下次上电 mdobus 使能默认是 1)

HEX 源码命令: 01 06 00 0A 00 00 A9 C8

5. 参数保存标志 发送 1 (发此参数后,前面设置的参数保存到内部)

HEX 源码命令 : 01 06 00 14 00 01 08 0E

6. 重新上电,看参数是否已经正确保存。以上设置只需要用提供的上位机设置即可,HEX 源码不需要自己通过串口发送。

参数设置完以后,就可以通过 PLC 或者单片机,或者自己设计的上位机软件发位置命令。发位置命令只需要过 0x06 命令发送需要的转速就行。

例如需要电机转 1000RPM

HEX 源码如下: 01 06 00 02 03 E8 28 B4

六. 上位机软件使用说明

本驱动器提供一个上位机软件,用于监测和测试驱动器。可以通过软件查看和设置驱动器内部参数。

如上图所示,软件分为波形显示,电机运行参数等几个部分。下面介绍一下各个部分的功能和作用。

波形显示:一共有4个通道,分别用4种颜色表示。颜色和 电机运行参数 内的字体颜、

色相同。即:蓝表示电流,绿表示输出的脉宽,红表示当前转速,黑表示电压。

电机运行参数:表示电机运行的实时数据。

驱动器设置参数:显示驱动器的拨码开关,和方向使能设置。如果是 modbus 模式,此 栏无效。

驱动器运行状态: 此栏会显示驱动器的报警状态,如果没有报警会显示运行正常。

Modbus 控制参数: 此栏内的参数是驱动器内部的参数,如果要修改这些参数,必须先对 modbus 使能写 1。具体的参数含义参考 寄存器说明。

Modbus 读取: 此栏可设定驱动器的地址,读取驱动器数据的周期,和是否读取。

Modbus 发送: 此栏用于修改驱动器参数,首先选定参数类型,再设定好参数数据,然后点发送即可。

七. 常见问题处理

1. 如果脉冲控制端口 DIR 导通方向和我所需要的方向不同怎么改?

答:可以通过上位机来设置 DIR 的极性,接上上位机后,modbus 使能写 1 , DIR 极性 写 0. 最后参数保存标志 写 1. 重新上电即可。

2. 上电驱动器不报警,给运行脉冲后驱动器报警,怎么回事?

答: 检查接插件是否松动, 电机 UVW 和编码器线任何一根断或顺序交换都会无法正常运行。

3. 怎么通过上位机控制运行

答:连接好电机,驱动器上电,通过提供的 USB 线连接驱动器和电脑,根据"上位机使用说明"设置好,使得上位机能读取到数据后。 Modbus 使能 发送 1。然后 PU 步数 发送需要走的距离。