INSTITUTO FEDERAL DE SANTA CATARINA – IFSC DEPARTAMENTO DE ELETRÔNICA SISTEMAS ELETRÔNICOS

AMPLIFICADORES OPERACIOANAIS

MARCELO BRANCALHÃO GASPAR MATHEUS AUGUSTO MARTIM

> FLORIANÓPOLIS JUNHO DE 2013

SUMÁRIO

I – Introd	ução	. 3
II - Objeti	vos	4
III – Intro	dução Teórica	5
1.	Função de Transferencia (F.T.)	5
2.	Amplificação e Atenuação	.5
3.	Decibéis	.7
4.	Amplificadores Operacionais	7
5.	Saturação	9
6.	Métodos de Polarização	9
7.	Curto circuito Virtual e Terra Virtual1	LO
8.	Circuito ultilizando Ampop	11
IV – Dese	nvolvimento	12
V – Anális	se Teórica	12
VI – Simu	lação	13
VII – Mon	ntagens e Resultados	18
VIII – Con	siderações Finais2	23
IX – Refer	rências Bibliográficas	24
X – Anexo	OS	25

I – INTRODUÇÃO

O Amplificador Operacional também conhecido como AMPOP é um amplificador de tensão com **entrada diferencial,** cujas entradas se aproximam das de um amplificador ideal.

Neste trabalho, apresentaremos estudos de casos com dois Ampops, LM741 e LM324, onde os mesmos trabalharão em corrente contínua, alternada senoidal e triangular, e também como amplificadores inversores.

II – OBJETIVOS

- Definir requisitos para o circuito de amplificação
- Calcular parâmetros de amplificação
- Analisar, projetar e montar os amplificadores operacionais
- Verificar os resultados obtidos teóricamente e compará-los com os valores práticos
- Compreender a saturação e corte dos Ampops

III – INTRODUÇÃO TEÓRICA

1. Função de Transferência (F.T)

É uma equação matemática literal, que relaciona uma saída e uma entrada de um sistema linear.

Figura 1 - Função de Transferência de um Sistema Linear

Do sistema linear anterior, podemos definir as F.T's:

2. Amplificação e Atenuação (Ganho)

De acordo com o valor numérico da F.T, tem-se o que se chama de amplificação ou atenuação.

Amplificação
$$\rightarrow$$
 |F.T| > 1 \rightarrow |Ganho| > 1
Atenuação \rightarrow |F.T| < 1 \rightarrow |Ganho| < 1

Figura 2 - Sistema de ganho e atenuação

O ganho pode relacionar quaisquer grandezas em um circuito.

Os mais utilizados são:

Ganho de Tensão

Ganho de Corrente

Ganho de Potência

3. Decibéis

O Debicel representa em escala logarítmica o valor do Ganho.

$$Gp(dB) = 10 log . Ps/Pe$$

$$Gv(dB) = 20 \log . Vs/Ve$$

$$GI(dB) = 20 \log . Is/Ie$$

$$G > 1 \rightarrow G(dB) > 0$$

$$G = 1 \rightarrow G(dB) = 0$$

$$G < 1 \rightarrow G(dB) < 0$$

4. AMPLIFICADORES OPERACIOANAIS

O Ampop é um amplificador de tensão com entrada diferencial cujas características se aproximam das de um amplificador ideal.

Caractecterísticas:

- Resistência de entrada infinita (Re → Infinito)
- Resistência de saída nula (Rs → 0)
- Resposta da frequência infinita (C.C → Infinito HZ)
- Estável com variação da temperatura

Figura 3 – Simbologia do Ampificador Operacional

V+ → Entrada não Inversora

V- → Entrada Inversora

Vs → Saída

Vcc, Vee → Tensão de Alimentação

Figura 4 - Modelo Interno do Amplificador Operacional

Gv → Ganho de Malha Aberta

Re → Resistência de Entrada

Rs → Resistência de Saída

Vd = V+ - V- → Diferença das Tensões de Entrada

Gv.Vd → Amplificação da Diferença

Como:

Gv → ∞

Gv.Vd → + ou - ∞

Vs = Gv.Vd - Rs.is

Rs \rightarrow 0

Vs ⇒ Gv.VD

Vs → ∞

Assim, conclui-se teóricamente que não existe limite para a tensão de saída, porém veremos a seguir em Saruração que as características do componente limitam o ganho assim limitando a Tensão de Saída "Vs".

5. SATURAÇÃO

Sendo ideal,

Vs = Gv.Vd

Vs = Gv.(V+ - V-)

Se,
$$V+>V \rightarrow$$
 $VD>0$ \rightarrow $Vs=+\infty$ \rightarrow $Vs=Vcc$
Se, $V+ \rightarrow $VD<0$ \rightarrow $Vs=-\infty$ \rightarrow $Vs=Vee$$

Portanto comprova-se que a saturação de um amplificador operacioanal ocorre nas tesões de alimentação "Vcc" ou "Vee".

6. MÉTODOS DE REALIMENTAÇÃO

Ao associarmos aos ampop's outros dispositivos (R,L,C, Transistores, Diodos) concebe-se circuitos com características próprias de funcionamento.

Basicamente estes circuitos podem ser classificados em lineares e não lineares.

Podemos realimentar o Amplificador Operacional de 3 maneiras: sem realimentação, realimentação positiva e Realimentação negativa.

✓ Sem Realimentação – Conhecida como operação em malha aberta, pois não se tem o controle da amplificação, ultiliza-se os dados do fabricante.

Figura 5 – Amplificador Operacional sem Realimentação

✓ Realimentação Positiva – Denomina-se este modelo como operação em malha fechada. O valor do ganho é definido em projeto e assim o amplificador não poderá trabalhar para amplificar outros sinais, pois a configuração impede-o.

Figura 6 – Amplificador Operacional com Realimentação Positiva

✓ Realimentação Negativa – Este circuito é amplamente utlizado em circuitos com Ampops. Nele a saída realimenta a entrada inversora atraves de RF.

Figura 7- Amplificador Operacional com Realimentação Negatva

7. CURTO CIRCUITO E TERRA VIRTAL

O ampop com realimentação negativa é considerado um curto virtual devido a sua alta impedância de entrada e ao seu ganho de malha aberta tender ao infinito. Portanto como a tensão entre as duas entradas é nula (curto circuito), mas apesar disso a corrente é nula, por causa disso dizemos que entre as duas entradas existe um "curto circuito" virtual e que na entrada inversora temos um terra virtual.

Figura 8 – Amplificador Operacional com Realimentação Negatva e Terra Virtual

8. CIRCUITOS ULTILIZANDO AMPOP

✓ Amplificador Inversor - No circuito do amplificador inversor verifica-se um sinal de saída defasado 180° em relação ao sinal de entrada, por isso denomina-se Aplificador Inversor.

Figura 9 - Amplificador Inversor

Dele obtemos a expressão de Ganho:

$$G = -RF/R1$$

Onde $G \le 0$.

✓ Amplificador não Inversor – o amplifica não inversor não possui defasagem, portanto só visualizamos em sua saída a amplificação sem inversão.

Figura 10 - Amplificador não Inversor

Dele obtemos a expressão de Ganho:

$$G = 1 + (RF/R1)$$

Onde $G \ge 1$.

IV – DESENVOLVIMENTO

Para a realização de todo o experimento realizamos os seguintes passos:

- Calcular os valores dos resistores para obter-se o ganho como desejado, utilizando valores comerciais.
- 2. Simular os circuitos obtidos no simulador PROTEUS.
- 3. Montar os circuitos na matriz de contatos e verificar os valores com o osciloscópio, analisando os resultados práticos.

Materiais Utilizados:

- 1. Fonte de Tensão CC Regulável ICELmanaus PS-5000;
- 2. Osciloscópio Digital TDS 1001C EDU;
- 3. Gerador de função MFG 4201ª;
- 4. Cabos banana-jacaré;
- 5. Matriz de contatos;
- 6. Cabos do tipo "jumpers" para interligação dos componentes;
- 7. Resistores: 1k, 2.2K, 22K, 10k, 5k, 19k;
- 8. Ampop 741 e 324;

V – ANÁLISE TEÓRICA

Utilizando as fórmulas de ganho:

$$G = 1 + (RF/R1)$$
 (não Inversor)

- 1. Ampop LM741. Com alimentação de Vcc = 10 V e Vee = -10 V;
- a. Inversor

$$G = -2$$

$$G = -20$$

$$R2 = 2k2 e R1 = 1K$$

$$R2 = 22k e R1 = 1K$$

b. Inversor

$$G = -2$$

$$R2 = 2k2 e R1 = 1K$$

$$G = -20$$

$$R2 = 22k e R1 = 1K$$

$$G = 2$$

$$D2 = 10l_{20} D1 = 10l_{20}$$

$$R2 = 10k e R1 = 10K$$

$$G = 20$$

$$R2 = 40k e R1 = 2K2$$

d. Não Inversor

$$G = 2$$

$$R2 = 10k e R1 = 10K$$

$$G = 20$$

$$R2 = 40k e R1 = 2K2$$

VI - SIMULAÇÃO

- 1. Ampop LM741. Com alimentação de Vcc = 10 V e Vee = -10 V;
- **a.** Inversor

$$G = -2$$

$$R2 = 2k2 e R1 = 1K$$

Figura 11 – Simulação do Ampop 741, Inversor com ganho -2

$$G = -20$$

R2 = 22k e R1 = 1K

Figura 12 - Simulação do Ampop 741, Inversor com ganho -20

b. Inversor

Vent = 1 Vpp (Tensão alternada senoidal)

G = -2

R2 = 2k2 e R1 = 1K

Figura 13 – Simulação do Ampop 741, Inversor com ganho -2, com entrada senoidal

Entrada do sinal senoidal (Vp=1V), em amarelo

Saida do sinal amplificado, em azul

Figura 14 - Comparação do sinal de entrada e de saída no Ampop 741, Inversor com ganho -2

G = -20

R2 = 22k e R1 = 1K

Figura 15 – Comparação do sinal de entrada e de saída no Ampop 741, Inversor com ganho -20 Observa que o Ampop 741 satura em 8,8V e em -8,6V no simulador PROTEUS 7.0.

c. Não Inversor

Vent = 1 Vcc

G = 2

R2 = 10k e R1 = 10K

Figura 16 – Simulação do Ampop 741, Não inversor com ganho 2

$$G = 20$$

R2 = 40k e R1 = 2K2

Figura 16 – Simulação do Ampop 741, Não inversor com ganho 20

Observa que em corrente contínua o Ampop 741 satura em 9Vcc.

d. Não Inversor

Vent = 1 Vpp (Tensão alternada triangular) G = 2

R2 = 10k e R1 = 10K

Figura 17 – Simulação do Ampop 741, Não inversor com ganho 2, com tensão alternada triangular

Entrada do sinal alternado triangular (Vp=1V), em amarelo

Saida do sinal amplificado, em azul

Figura 16 – Comparação do sinal de entrada e de saída no Ampop 741, não inversor com ganho 2

G = 20

R2 = 40k e R1 = 2K2

Figura 17 – Comparação do sinal de entrada e de saída no Ampop 741, não inversor com ganho 20 Observa que o Ampop 741 satura em 9V e em -8,5V no simulador PROTEUS 7.0.

VII – MONTAGENS E RESULTADOS

- 1. Ampop LM741. Com alimentação de Vcc = 10 V e Vee = -10 V;
- a. Inversor

Vent = 1 Vcc

G = -2

R2 = 2k2 e R1 = 1K

Entrada do sinal DC, em amarelo

Saida do sinal amplificado, em azul

Figura 18 – Montagem do Ampop 741, com ganho -2

Figura 19 – Sinais de entrada e saída medidos no 741, com ganho -2

Para G = -20 R2 = 22k e R1 = 1K

Figura 20 - Sinais medidos no 741, com ganho -20

Obtevemos um valor de Vs de -7,9 Vcc, o que mostra que na prática temos um valor de saturação inferior ao que realmente simulamos no PROTEUS, e que o componente satura em valores não ideais como teóricamente imaginamos.

b. Inversor

Vent = 1 Vpp (Tensão alternada senoidal)

G = -2

R2 = 2k2 e R1 = 1K

Figura 21 – Montagem do Ampop 741, com ganho -2 e entrada senoidal

Figura 22 – Sinais de entrada e saída medidos no 741, com ganho -2 e entrada senoidal

G = -20R2 = 22k e R1 = 1K

Figura 23 – Sinais de entrada e saída medidos no 741, com ganho -20 e entrada senoidal

Observa-se a Saturação em 9V e -7,80Vca do AMPOP LM741.

c. Não Inversor

Vent = 1 Vcc

G = 2

R2 = 10k e R1 = 10K

Figura 24 – Montagem do Ampop 741, com ganho 2

Figura 25 – Sinais medidos no 741, com ganho 2

G = 20R2 = 40k e R1 = 2K2

Figura 26 - Sinais medidos no 741, com ganho 20

Observa-se a sauração em 9,44Vcc.

d. Não Inversor

Vent = 1 Vpp (Tensão alternada triangular)

G = 2

R2 = 10k e R1 = 10K

Figura 27 – Montagem do Ampop 741, com ganho 2

Figura 28 – Sinais de entrada e saída medidos no 741, com ganho 2 e entrada alternada triangular

G = 20

R2 = 40k e R1 = 2K2

Figura 29 – Sinais de entrada e saída medidos no 741, com ganho 20 e entrada alternada triangular

Observa-se saturação em 9,60V e -8,20V, lembrando que a tensão é alternada triangular.

COMPARANDO RESULTADOS

Observou durante o experimento a diferença que há entre os valores obtidos teoricamente, na simulação e na prática. Na teoria o Ampop tem uma resistência de entrada infinita, uma resistência de saída nula e ganho infinito. Na prática percebemos

que a entrada possui uma resistência muito alta, mas não infinita, uma resistência baixa de saída, mas não nula e um alto ganho, mas não infinito.

O simulador Proteus aproxima do que esperamos encontrar na prática, mas também pode-se perceber diferenças, uma delas é a saturação.

Em teoria os Ampops deveriam saturar na tensão de alimentação. Observamos que nem na simulação e nem na prática isso aconteceu, devido às perdas do circuito.

De acordo com as simulações e práticas demonstradas aqui nesse relatório, pudemos fazer uma tabela comparativa de valores teóricos (calculados), simulados e práticos (medidos).

Ampop 741		
Ganho em -2 e Corrente Continua		
Teoria	Simulação	Prática
-2V	-2V	-1,92V

Ampop 741		
Ganho em -20 e Corrente Continua		
Teoria	Simulação	Prática
-20V	-8,51V	-7,92V

Ampop 741		
Ganho em -2 e Corrente Alternada		
Teoria	Simulação	Prática
-2V	-2V	-1,92V

Ampop 741		
Ganho em -20 e Corrente Alternada		
Teoria	Simulação	Prática
-20V	-8,51V	-7,92V

Ampop 741		
Ganho em 2 e Corrente Continua		
Teoria	Simulação	Prática
2V	2V	-1,92V

Ampop 741		
Ganho em 20 e Corrente Continua		
Teoria	Simulação	Prática
20V	9V	9,44V

Ampop 741		
Ganho em 2 e Corrente Alternada Triangular		
Teoria	Simulação	Prática
2V	2V	3,08V

Ampop 741		
Ganho em 20 e Corrente Alternada Triangular		
Teoria	Simulação	Prática
20V	9V	9,6V

VIII – CONSIDERAÇÕES FINAIS

De acordo com os objetivo traçados no início do experimento, pudemos nos organizar de modo a relatar da melhor maneira toda a prática. Assim o compreendimento se tornou mais fácil uma vez que passamos por etapas: 1° análise teorica, 2° simulações e por fim a própria montagem física e validação dos resultados obtidos.

Essas etapas nos mostrou que os Ampop são circuitos que se aproximam muito do que teoricamemte simulamos e calculamos, porém algumas imperfeições são encontradas, tais como impedância de entrada e saída, o que justifica o componente não ser "ideal".

Cabe ressaltar, que os amplificadores operacionais tericamente apresentam resistência de entrada infinita, resistência de saída nula e ganho de tensão infinito, porém na prática, a resistência de entrada é grande, entre $10M\Omega$, a resistência de saída é aproximadamente 75 Ω , o ganho de tensão não é infinito.

IX - REFERÊNCIAS BIBLIOGRÁFICAS

Anotações em sala de aula do Professor Luiz Carlos Martinhago Schlichiting

Relatório seguido como exemplo da aluna Jéssika Melo de Andrade

UNICAMP. Introdução ao AmpOp. Disponivel em:

http://www.ifi.unicamp.br/~kleinke/f540/e amp1.htm Acesso em 28 de junho de 2013

INSTITUTO SUPERIOR DE CIÊNCIAS DO TRABALHO E DA EMPRESA. Apontameto sobre Circuitos com Amplificadores Operacionais. Disponivel em:

http://cadeiras.iscte.pt/cse//Folhas/AMPOPs/AMPOPs.htm Acesso em 28 de junho de 2013