

MCD: Mutual Clustering across Multiple Social Networks

Philip S. Yu^{1,2}, Jiawei Zhang¹

Background Knowledge:

(1) users are involved in multiple online social networks simultaneously (2) social networks containing common users share similar structures

Problem Studied: Mutual Clustering across Multiple Aligned Social Networks

Challenges

Challenge 1: Similarity measure among users with heterogeneous information in social networks

Challenge 2: Community detection in each network

Challenge 3: Mutual community detection

Solution to Challenge 1: Meta Path based Similarity Measure

ID	Notation	Heterogeneous Network Meta Path
1	$U \rightarrow U$	User \xrightarrow{follow} User
2	$U \to U \to U$	User \xrightarrow{follow} User \xrightarrow{follow} User
3	$U \to U \leftarrow U$	User \xrightarrow{follow} User $\xrightarrow{follow^{-1}}$ User
4	$U \leftarrow U \rightarrow U$	User $\xrightarrow{follow^{-1}}$ User \xrightarrow{follow} User
5	$U \to P \to W \leftarrow P \leftarrow U$	User \xrightarrow{write} Post $\xrightarrow{contain}$ Word
		$\xrightarrow{contain^{-1}} $ Post $\xrightarrow{write^{-1}}$ User
6	$U \to P \to T \leftarrow P \leftarrow U$	User \xrightarrow{write} Post $\xrightarrow{contain}$ Time
		$\xrightarrow{contain^{-1}} \text{Post} \xrightarrow{write^{-1}} \text{User}$
7	$U \to P \to L \leftarrow P \leftarrow U$	User \xrightarrow{write} Post \xrightarrow{attach} Location
		$\xrightarrow{attach^{-1}} \text{Post} \xrightarrow{write^{-1}} \text{User}$

e.g., similarity score between x and y based on meta path 1-7

New York City, USA

June 27 - July 2, 2015

$$\operatorname{Sim}(x,y) = \sum_{i} \omega_{i} \left(\frac{|\mathcal{P}_{i}(x \leadsto y)| + |\mathcal{P}_{i}(y \leadsto x)|}{|\mathcal{P}_{i}(x \leadsto \cdot)| + |\mathcal{P}_{i}(y \leadsto \cdot)|} \right)$$

Solution to Challenge 2: Normalized-Cut based Isolated Community Detection

let $C = \{U_1, U_2, \dots, U_k\}$ be the community structures detected from G.

$$cut(\mathcal{C}) = \frac{1}{2} \sum_{i=1}^{k} S(U_i, \overline{U_i}) = \frac{1}{2} \sum_{i=1}^{k} \sum_{v \in \overline{U_i}, v \in \overline{U_i}} S(u, v), \quad Ncut(\mathcal{C}) = \frac{1}{2} \sum_{i=1}^{k} \frac{S(U_i, \overline{U_i})}{S(U_i, \cdot)} = \sum_{i=1}^{k} \frac{cut(U_i, \overline{U_i})}{S(U_i, \cdot)},$$

Solution to Challenge 3: Normalized-Discrepancy based Mutual Community Detection

Let u_i and u_j be two anchor users in the network, $d_{ij}(\mathcal{C}^{(1)},\mathcal{C}^{(2)}) = \left(\mathbf{h}_i^{(1)}(\mathbf{h}_i^{(1)})^T - \mathbf{h}_i^{(2)}(\mathbf{h}_i^{(2)})^T\right)^2$

Definition 2 (Discrepancy): The discrepancy between the clustering results of u_i and u_j across aligned networks $G^{(1)}$ and $G^{(2)}$ is defined as the difference of confidence scores of u_i and u_j being partitioned in the same cluster across aligned networks.

$$d_{ij}(\mathcal{C}^{(1)}, \mathcal{C}^{(2)}) = \left(\mathbf{h}_{i}^{(1)}(\mathbf{h}_{i}^{(1)})^{T} - \mathbf{h}_{i}^{(2)}(\mathbf{h}_{j}^{(2)})^{T}\right)^{2}$$
$$d(\mathcal{C}^{(1)}, \mathcal{C}^{(2)}) = \sum_{i=1}^{n^{(1)}} \sum_{j=1}^{n^{(2)}} d_{ij}(\mathcal{C}^{(1)}, \mathcal{C}^{(2)}),$$

$$Nd(\mathcal{C}^{(1)}, \mathcal{C}^{(2)}) = \frac{d(\mathcal{C}^{(1)}, \mathcal{C}^{(2)})}{\left(\left|A^{(1,2)}\right|\right)\left(\left|A^{(1,2)}\right| - 1\right)}.$$

Joint Objective Function

$$\arg\min_{\mathcal{C}^{(1)},\mathcal{C}^{(2)}} \alpha \cdot Ncut(\mathcal{C}^{(1)}) + \beta \cdot Ncut(\mathcal{C}^{(2)}) + \theta \cdot Nd(\mathcal{C}^{(1)},\mathcal{C}^{(2)})$$

1 University of Illinois at Chicago

2 Tsinghua University

psyu@cs.uic.edu, jzhan9@uic.edu