EG-Service

: 친환경 구미산단을 위한 서비스

Team

:K2R1

전민욱

데이터 분석

최재준

서비스 기획

Salakhov Tagir

AI 설계

목차

1 개요

5 서비스 소개 및 설계

필요성 도출

6 기대효과

3 목적

4

활용 데이터 및 참고문헌

데이터 분석 및 모델 학습

8 Q&A

01. 개요

"

02. 필요성 도출

전기요금 부담

재생 에너지 사용 장벽

정책 정보 부재

03. 목적

03. 목적

전기 사용량을 줄일 수 있는 시스템

OP WER

재생 에너지를 쉽게 사용 가능한 시스템

재생 에너지와 전력 에너지 자유롭게 스위칭 사용

정책 정보를 쉽게 얻을 수 있는 시스템

정책을 빠르게 사용자에게 전달

03. 목적

전력 에너지 사용 실시간 예측 정보를 통한 행동 유도

실시간 전력량 예측 AI 모델

재생 에너지와 전력 에너지 자유롭게 스위칭 사용

실시간 계측기 별 전력량 예측 AI 모델 & 실시간 재생 에너지 발전량 예측 AI 모델

정책을 빠르게 고객에게 전달

접근성이 높은 정책 알림 서비스

실시간 전력량 예측 AI 모델

- 사용 데이터
 구미 산단 데이터톤 DB 전력사용량 데이터
- 데이터 전처리
 0값이나 Nan값이 너무 많은 기업 삭제

● 독립변수 설정

결정계수

- 상관관계 분석 다른 변수들 보다 시간 변수가 결과 높게 나옴 → 시계열 데이터
- 자기상관관계 분석 ---> 과거 데이터와 연관성 ---> O

과거 몇시간만 사용할지

4시간

실시간 전력량 예측 AI 모델

데이터 전처리 및 상관관계 분석

클러스터링

AI 모델 학습

결론

- 클러스터링 이유
 - 클러스터별 예측모델을 통해 높은 예측 정확도 새로운 데이터가 기존 클러스터에 속하면 데이터가 적더라도 높은 예측 정확도
- 클러스터링 결과

실시간 전력량 예측 AI 모델

데이터 전처리 및 상관관계 분석

클러스터링

Al 모델 학습

결론

- 여러 알고리즘 사용 이유
 어떤 알고리즘에 최적인지 알기 위해 여러 알고리즘을 사용
- AI 모델 학습 결과

_								단기												
모델 클러스터	Cluster 1		Cluster 2		Cluster 3		Clus	Cluster 4		Cluster 5		ter 6	Cluster 7		Cluster 8		Cluster 9		Clust	ter 10
T2 20124	R^2	MAE	R^2	MAE	R^2	MAE	R^2	MAE	R^2	MAE	R^2	MAE	R^2	MAE	R^2	MAE	R^2	MAE	R^2	MAE
KNN	0.93	67.89	0.93	32,93	0.92	112.8	0.87	2.67	0.91	8,53	0.92	17.85	0.89	5.77	0.9	20.06	0.94	8.9	0.89	11,45
Linear Regression	0,91	79,39	0,9	39.5	0.89	134,3	0.84	3,23	0.89	9,81	0,87	22,71	0.85	7.3	0.82	30,39	0,93	9,93	0.82	15,97
LSTM	0.93	72,31	0.92	33,63	0.92	120,2	0.88	2,13	0.91	8.67	0.91	18.89	0.9	5.21	0.9	21,03	0.94	9.05	0.9	11,3
Random Forest	0.93	71.63	0,93	31,92	0.93	109.4	0.87	2,35	0.91	8,61	0.92	18,12	0.9	5.14	0.9	21,08	0.94	9.01	0.91	11,23
LGBMRegressor	0.93	70.58	0.92	33.06	0.92	110.6	0.85	3.87	0.91	8.52	0.92	18.03	0.9	5.2	0.9	20,23	0.94	8.91	0.91	11,16
MLPRegressor	0.92	71.65	0.93	32,21	0.93	110,2	0.87	2,52	0.91	8.49	0.92	17,95	0.9	5,24	0.9	20,58	0.94	8.96	0.91	11.09
Gradient Boosting	0.93	69,35	0.93	31,36	0.92	112,7	0.86	3,27	0.91	8,56	0.92	18,03	0,9	5,19	0.9	21,02	0.94	9.01	0.91	11.14
Neural Network	0.93	69,66	0,93	32,15	0,92	111,9	0,88	2,5	0.92	8,45	0.92	17,74	0.91	5.2	0,9	20,13	0.94	8,95	0.91	11,12
Ensemble Model (RF)	0.93	70.21	0.93	32.31	0.93	110.1	0.88	2,48	0.91	8.51	0.92	18.14	0.9	5.13	0.9	19.98	0.94	9.02	0.91	11.08
Ensemble Model (NN)	0.93	71,49	0.93	31.69	0.93	109.8	0.87	2,57	0.91	8.49	0.92	18,16	0.9	5.21	0.9	20,21	0.94	8.99	0.91	11,13
Ensemble Model (Voting)	0.93	70,41	0.93	32,14	0.93	110,5	0.87	2,64	0,91	8,51	0.92	18,14	0,9	5,29	0.9	20,36	0.94	9.01	0.91	11,14
Ensemble Model (Stacking)	0,93	70,35	0.93	31,74	0.93	110.2	0.88	2,49	0.91	8,52	0.92	18.23	0.9	5.26	0.9	20,87	0.94	9.01	0.91	11.09

최적 모델앙상블 모델

실시간 전력량 예측 AI 모델

결론

• 추가 AI 모델

결론

앙상블 모델로 과거 4시간 동안의 전력 사용량 & 태양광 발전량을 독립변수로 미래 1시간 전력사용량 & 태양광 발전량을 예측할 수 있다.

05. 서비스 소개 및 설계

서비스 컨셉

서비스 Blue print

이용자 행동 시뮬레이션 맵

인터페이스

EG(Eco Gumi)-Service는 구미 산업단지 대상으로 '에너지 효율화' 와 '친환경 에너지 사용' 을 달성하고 지속 가능한 에너지 라이프와 함께 '정책 알림 서비스' 를 통합한 복합 플랫폼

05. 서비스 소개 및 설계

서비스 컨셉 서비스 Blue print 이용자 행동 시뮬레이션 맵 인터페이스

05. 서비스 소개 및 설계

2P

25

정책 알림

(호) 설정

2P

25

정책 알림

날짜	시각	사용량	전년대비

실시간 연동 상태

2P

25

정책 알림

실시간 연동 상태

절약 비용

00월 00일

000,000 원

설정

2P

25

정책 알림

실시간 정책 현황

0000 사업 _{구미시청}	시작일: 11월 15일	종료일: 12월 15일	참여 기업 수	10
0000 사업 중소기업 벤처 사업부	시작일: 11월 13일	종료일: 12월 12일	장역 기업 수	6
0000 사업 _{구미시청}	시작일: 11월 09일	종료일: 12월 10일	참여 기업 수:	21

실시간 연동 상태

06. 기대효과

- 그린비즈 인증 기업 증가
- 2P 서비스를 통해 행동 유도로 인한 에너지 사용량 감소
- 2S 서비스를 통해 재생 에너지 사용 장벽을 낮춰 재생 에너지 사용 확대
- 정책 알림 서비스를 통해 높은 정책 참여율, 정책 참여로 인한 기업 성장

07. 사용 데이터 및 참고문헌

참고문헌

논문

- 송경빈, 박래준, 김경환, 원종률. (2017). 다중회귀분석법을 이용한 전력량 예측알고리즘. 조명·전기설비학회논문지, 31(11), 69-74, 10.5207/JIEIE.2017.31.11.069
- 고주원, 박정진, 박진우, 오도희, 김민철. (2022). 캐글 플랫폼 활용한 태양광 데이터셋 형태 구축: 머신 러닝의 적용 가능성. 한국정보통신학회 종합학술대회 논문집
- 안연주, 이택기, 김규호. (2020). 태양광 발전단지 데이터를 활용한 머신러닝 기반의 태양광 전력 시스템의 발전량 예측. 대한전기학회 학술대회 논문집
- 김한결, 이태금, 윤상혁, 정갑주, 박능수. (2019). 태양광 발전량 실시간 예측 시스템. 대한전기학회 학술대회 논문집
- 송재주, 정윤수, 이상호. (2014). 태양광 발전을 위한 발전량 예측 모델 분석. 디지털융복합연구, 12(3), 243-248.
- 박상훈, 김동우, 장나래, 정승현, 홍하경. (2022). 태양광 시스템의 발전량 예측 및 향상을 위한 태양광 시스템 설계 프로그램 구현 프로세스 개발. 대한건축학회 학술발표대회 논문집
- MOHAMED, S. Raja, et al. Design and Implementation of a Smart Switching System for Hybrid Energy System. In: 2021 International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA), IEEE, 2021, p. 1-6.
- KARTIKA, Kurnia Paranita; DHENABAYU, Riska. THE POTENTIAL ECONOMIC ANALYSIS OF SOLAR HOME SYSTEM WITH SWITCHING METHOD ON HOUSEHOLD ELECTRICITY SCALE, Jurnal Manajemen dan Bisnis, 2020, 9.2: 185-194.
- ANDAL, C. Kothai; JAYAPAL, R. Design and implementation of IoT based intelligent energy management controller for PV/wind/battery system. with cost minimization. Renewable Energy Focus, 2022, 43: 255-262.
- ONIPEDE, Bamidele; JOSEPH, Samuel; ODIBA, Omakoji. Developing an automatic switch for home or industrial power supply changeover. British Journal of Applied Science & Technology, 2017, 21.4: 1-7.

인터넷 자료

- https://igoyeenergy.com/a-complete-guide-to-solar-automatic-transfer-switch/
- https://www.solaredge.com/uk/products/smart-energy/smart-energy-devices

• 사용 데이터

사용툴

에너지자급자족사업 참여기업인 구미산단 A사 시간별 전력량 데이터 구미 산단 데이터톤 DB 전력사용량 데이터 구미 산단 데이터톤 DB 태양광 발전 데이터 구미 산단 235개 기업의 에너지자급자족사업 수요 및 설문조사 데이터

Q&A

| 설문조사 질문

문 II-1. 귀사의 전기요금에 대해 기업 운영의 재무적 부담 수준을 평가해주세요 (1~7점으로 표기)

A: 전체의 83.5% 4~7점으로 평가.

문 II-2. 에너지 효율과 관련하여 귀사에서 자체적으로 하고 있는 활동과 계획은 어떻게 되십니까?

A: 현재 50.4%가 '사내 에너지 절약 의식 고취' 활동 진행 / 향후 계획은 22.2%가 에너지 관련 정부 지원 사업 참여

문 IV-3. 귀사가 RE100 및 탄소 절감을 위한 이행 옵션 중 어떤 것을 중점으로 추진하려고 하십니까?

A: 전체의 50.8% 이행옵션, 탄소절감 방법에 대해 모름

문 IV-3. 해당 RE100 및 탄소 절감 방안 선택한 이유는 무엇인가요?

A: 전체의 40.4% 국내 재생 에너지 보급 확대 기여도 때문

문 V-2. 국내 RE100 활성화를 위한 정부 역할 및 정책 우선순위는 무엇입니까?

A: 전체의 45.3% 중소/중견기업에 재생에너지 설비 보급 및 컨설팅 지원

문 V-3. 중소 • 중견기업들의 사업장인 산업단지 RE100 활성화를 위한 지원 정책으로 어떤 것이 가장 필요하십니까?

A: 전체의 37.7% 신재생에너지 설비 구축 지원 사업 팜여 확대를 위한 기업부담금 지원

문 II-3. 기존 에너지 관련 정부 지원사업의 참여경험이 있으신가요?

A: 전체의 83% 정부 지원사업의 참여경험이 없다

문 II-3. 기존 에너지 관련 정부 지원사업의 미참여 이유는 무엇입니까?

A: 전체의 53.8% 지원정책 정보 부재

문 II-4. 기존 에너지 관련 사업 참여 이후 비용절감 효과는 어떠신가요? (1~7점)

A: 전체의 82.5% 5~7점으로 평가

| Opower & 2S 서비스

미국 클린테크(Clean Tech) 선두주자인 오파워(Opower)의 '전력 사용 데이터의 패턴 분석'과 '행동 유도' 방식 활용

- 행동과학기술을 동원해서 소비자들이 매일 어떻게 행동하는지를 연구한다.
- 소비자들이 기본적으로 에너지 절약에 대해서 시간을 쓸 여유가 없다는 것을 가정하고 친숙하고 분명한 메시지를 만든다.
- 소비자들이 행동을 바꿔서 실천할 수 있는 요령을 제공한다.
- 오파워가 제공하는 보고서와 제품을 소비자가 이해하고 사용하도록 지속적인 관계를 형성한다.
- 누구나 어디서나 서비스를 제공할 수 있도록 한다.
 - **절약 행동 유도하여 32테라와트(TW) 시간 이상의 전력을 절약
 - = 33억달러(약 4조3599억원)에 이르는 전기 요금 절감 + 1,600만 미터론의 이산화탄소 배출 절감

25 서비스

- 1.) Automatic transfer switch 설정된 저전압을 감지하면(선호하는 값으로 프로그래밍 가능), 부하를 대체 소스에 연결하기 위한 전환 작업을 시작한다. => 예측하지 않음
- 왜 예측해야 할까요? ->
- 변화에 대한 적응 및 문제 발생을 예방하기 위해
- 자원 최적화: 에너지를 더 잘 계획하고 활용할 수 있음
- 장애 위험 감소
- 기업의 필요에 따라 개별적인 작업에 적응할 수 있음
- 2.) Design and Implementation of a Smart Switching System for Hybrid Energy System. 여러 원천(배터리, 태양 전지, 풍력 발전기)에서의 에너지 흐름을 전력망으로 관리한다. 원천의 이용 가능성과 경제적 효율성에 따라 에너지 원천을 전환한다.
- 3.) Smart Switching in Solar Home System: 예측이 아니다.
- 기업 시스템이 더 어려워서 추가 연구 필요하다. 목적이 다를 수도 있다: 집 꼭 비용을 낮게 해야 한다; 기업 비용을 낮게 하면 좋지만 생산성을 계속 할 수 있게 해야 한다 (즉, 생산하는 프로세스도 고려해야 한다).

| 결정계수 값 & 추가 구미산단 데이터 분석

- lag x에 대한 결정계수 분석

lag x	결정계수
lag 1	0.711
lag 2	0.709
lag 3	0.709
lag 4	0.726
lag 5	0.718
lag 24	0.643
lag 48	0.431
lag 50	0.263

<계약번호 제거한 후 시간별 전력 데이터가 공란으로 되어있는 Clustering 결과 >

| A사 전력량 데이터 분석

분석결과 4개의 Cluster 도출

Cluster 1: 12개

Cluster 2: 4개

Cluster 3: 5개

Cluster 4: 5개

Cluster별 자기상관계수

Cluster 2 안데이터

cluster 0	count 12561	mean 0.000311	cluster 0	count 18843	mean 0.024026		count	mean	cluster 0	count 11030	mean 0.004352	
1	344	0.820500	1	293	8.532038	0 1	18898	0.005553 9.853413	1	264	8,359708	
2	160	0.315694	2	478	2.182124	2	236	5.103104	2	213	5.156888	
3	138	1.145957	3	48	15.360062	3	33	15.246030	3	71	13.775155	
4	341	0.553372	4	126	12.292817	4	233	2.073240	4	197	10.536076	
5	29	1.382621	5	226	5.508334	5	255	8.137757	5	190	2.356947	
6	149	0.165572	6	999	1.154870	6	309	6.639858	6	307	6.709130	
7	137	0.969423	7	185	10.347027	7	117	11.870556	. 7	232	1.165172	
8	136	0.446713	8	297	7.072178	8	1242	0.669877		1025	0.588978	
9	133	0.675556	9	233	3.889994	9	226	3.616765	9	199	3,748721	

| 태양광 발전량 데이터 분석

< 구미 산단 태양열 발전량 데이터 자기상관관계 결과 >

| 다른 데이터 AI 모델 결과값 & 모델 그룹핑

모델 그룹핑

- 1.) Linear Models (선형모델) Linear Regression, SVR
- 2.) Neural Networks (인공신경망) Neural Network (tensorflow), MLPRegression
- 3.) Ensemble Models (앙상블) Random Forest, Ensemble Models using Voting/Stacking 등
- 4.) Gradient Boosting (그래디언트 부스팅) LGBM Regression, Gradient Boosting Regression
- 5.) RNN LSTM
- 6.) KNN

	A사 ?	전력량기	데이터				
모델 클러스터	Clus	ter 1	Clus	ter 3	Clus	ster 4	
모델 클러스터	R^2	MAE	R^2	MAE	R^2	MAE	
KNN	0.91	0.56	0.93	0,35	0.96	1,13	
Linear Regression	0.87	0.74	0.9	0.44	0.94	1.5	
LSTM	0.92	0.58	0.94	0.37	0.97	1,15	
Random Forest	0.92	0.54	0.93	0.33	0.96	1.06	
LGBMRegressor	0.91	0.57	0.94	0.34	0.96	1,14	
MLPRegressor	0.91	0.65	0.94	0.41	0.96	1.59	
Gradient Boosting	0.92	0.57	0.94	0.35	0.97	1,13	
Neural Network	0.92	0,6	0.94	0.39	0.96	1,42	
Ensemble Model (Random Forest)	0.93	0.53	0.93	0.32	0.96	1.01	
Ensemble Model (Neural Network)	0.92	0.56	0.93	0.36	0.96	1.05	
Ensemble Model (Voting)	0.93	0.53	0.94	0.32	0.97	1,05	
Ensemble Model (Stacking)	0.93	0.51	0.94	0.33	0.96	1,02	

					,	구미산	단 기업	태양광	발전링	데이트	†							
모델 클러스터	Clus	Cluster 1		Cluster 2		Cluster 3		Cluster 4		Cluster 5		Cluster 6		Cluster 7		Cluster 8		iter 9
포질 들어스더	R^2	MAE	R^2	MAE														
KNN	0.95	0.2	0.92	0.08	0.96	2,23	0.96	2,54	0.9	0.08	0.93	0.08	0.91	0.08	0,88	0.09	0.83	0.07
Linear Regression	0.93	0,32	0.87	0,15	0.93	4.5	0.93	5.15	0.85	0.14	0.89	0.15	0.85	0.15	0.83	0.15	0.76	0.1
LSTM	0.96	0.21	0.92	0.09	0.96	2.46	0.96	2.8	0.91	0.08	0.93	0.09	0,91	0.08	0.89	0.09	0.85	0.06
Random Forest	0.96	0,19	0.92	0.08	0.96	2,29	0.96	2.65	0.91	0.08	0.93	0.08	0.91	0.08	0.89	0.09	0.85	0.06
LGBMRegressor	0.95	0.21	0.91	0.09	0.96	2,43	0.96	2,78	0.9	0.08	0.93	0.08	0,91	0.08	0.89	0.09	0.85	0.06
MLPRegressor	0.96	0.21	0.92	0.09	0.96	2.61	0.96	2,93	0.91	0.09	0.94	0.09	0.91	0.09	0.89	0.09	0.84	0.07
Gradient Boosting	0.96	0.2	0.92	0.09	0.96	2.45	0.96	2.76	0.91	0.08	0.93	0.08	0.91	0.08	0.89	0.09	0.85	0.06
Neural Network	0.96	0.25	0.92	0.09	0.96	2.74	0.96	3.04	0.91	0.08	0.93	0.11	0.91	0.09	0.89	0.09	0.83	0.07
Ensemble Model (Random Forest)	0.95	0.19	0.92	0.08	0.96	2.15	0.96	2.49	0.91	0.08	0,93	0.08	0.91	0.09	0.89	0.09	0.82	0,07
Ensemble Model (Neural Network)	0.95	0.21	0.92	0.09	0.95	2.6	0.96	2.83	0.9	0.08	0,93	0.09	0.91	0.08	0.88	0.11	0.81	0.07
Ensemble Model (Voting)	0,96	0,2	0.92	0.08	0.96	2,69	0.96	2,61	0.92	0.08	0.94	0.08	0.9	0.09	0.9	0.09	0.85	0,06
Ensemble Model (Stacking)	0.96	0.21	0,92	0.09	0.96	2,71	0.96	2,68	0.91	0.08	0.93	0.09	0,91	0.09	0.89	0.08	0.82	0.07

| 그린비즈 인증

체크한 부분: EG-Service 이용 시 그린비즈 평가기준표에서 유리한 점수를 받을 수 있는 평가기준

印度性	세부지표	가중치
	01. 녹색광명 목표 및 관락 수립 녹색광명 목표 및 관락 수립, 세부조권 개회 수립 수준	7.3
	02. 녹색공정개발 수준 공경효물 개선 수준. 녹색공정 개발 수준	3.0
	03. 녹색제품 서비스 개발 성과 친환경 설계 지원 및 실현 수준, 녹색제품 /서비스 개발 성과	4.7
	04. 학생구에 성과 녹색구매 규정 수집 및 실형, 녹색구매 성과	6.0
1. 전략	05. 기담간 협력지원 수립 기암간 협력 지원 수립 및 실행	4.0
	06. 녹색광영 추진조직 구성 수준 녹색광영 추진 조직 구성 수준	7.7
	07. 부사간 의사소동 시스템 구축 및 운영수준 부사 간 의사소동 시스템 구축 및 운영수준	8.0
	08. 모나터링 정차 수립, 유지, 실행 및 조치 수준 모나터링 절차 수립, 유지, 실행 및 조치 수준	4.0
	09. 내부 심사 넓시 수준 내부 심사 심시 수준, 십사골과 겨리 수준	5.3

	10. 용수사용 원단에 개선 수준 용수사용 DATA 관리, 용수사용 함단에 개선 수준	6.8
2. 저원에너지	11. 원부자제 사용 임단위 개선 수준 원?부자제 사용성 관리, 함?부자제 사용 임단위 개선 수준	6.4
(25%)	12. 자연제활용 수준 원부자제, 폐기물, 사무용품 등의 자원제활용 수준	4.3
	13. 에너지 왔단위 개선 수준 에너지 사용량 관리 및 절감활동. 에너지 원단위 개선 수준	7.5
	14. 온실가스 베출랑 원단위 개선 수준 온실가스 베출랑 관리, 온실가스 베출랑 원단위 개선 수준	4.8
1. 온실가스-환	15. 주요 대기오영물질 배출 계강 대기오영물질 배출 관리. 주요 대기오영물질(SOx, NOx, 연지 등) 배출 수준	3.4
경오염(15%)	16. 주요 수집오염물질 배출 저갑 수질오염물질 배출 관리, 주요 수질오염물질 (유기물질 등) 배출 수준	3.4
	17. 폐기물 발성 원단위 개선 수준 폐기물 발생당 근리, 폐기물 발생 원단위 개선 수준	3.4

_		100
	03. 환경관전 우수사항 기업의 환경관전 우수활동 여부(합약, 사회공전, 인증 등)	3.0
가점	02. 녹색광명 정보 공개 수준 녹색광명 정보 공개, 지속가능보고세(환경보고세) 발간	1.5
	01. 신작상에너지 발견향 신작성에너지 설비 투자, 신작성에너지 생산항	1.5
	20. 전체용의 유해화학문원 검사수준 원제용의 제론환경규제물질 검사 프로세스 및 실행여부	3.3
4. 유생화학급 리(10%)	19. 공청에서의 유배화학물질 사용 원단위 개선 수준 유해화학물질 관리, 유해화학물질 사용 원단위 개선 수준	3.4
	18. 원부자체의 유배화학물을 관리수준 원부자제의 제품환경규제불실과 관련된 지점 및 경보의 관리수준	3.3

그린비즈 인증시 누릴 수 있는 혜택 리스트

78	본야	우대사항	문의제	44	유선님사	■ 우수 그런비즈 인증을 위한 녹색경영 참가기준(원부자와 및 수자원 및 약 계활용 촉진, 에너지 점감, 운실가스 강축, 환경으염 처감)에 직접 관	목위점
	808W	■ 기업은행가(ak 녹색기업다를 우대			15,82.0	한편 기술의 발명 출원시 유선실사 대상 포함	55/31967
	(7)업은행) 대출우대	·영엄정점 급리감면권(제대 1.5%)에 최대 1.0%p 추가감안 가는 - 영정원장 전절된 현도 확대: 신용다음 20억~21억, 당보다음 90억 ~ 100억	기업은행	인력	해외 기술인력 도입	■ 해외 기술인력 도입 지원사업 지원업체 선경사 가경 5경	중소기업진홍공 단
	경험자급	■ 신성장기선자금인 시설자급 - 유자전역 기준(45약원, 비수도권 50약원) 및 마출약(150%) 원도 예 의 작용	출소기압진출공	96	공공구대 남동부대	■ 코달철 골름구마리격실사 및 제약이행이행송객실사 산인도 가정 (1.5~2점) ■ 윤기청 제약이행동력 심사 산인도 평점 1.5점 가산	조망형, 중소기 답형
	동지우대	 ● 신성경기반자금의 문전자금 - 시설자금 용자기업 중 시설도입호 소요되는 호기 가동에 한도(시설자 급의 30%이네/확대(50%이네) 	9		기술개발제품 성능인용 명가	■ 공장심사 웹가시 가끔 1점	중소기업정
38	이번째중	■이행보증 보험의을 무대 - 이행(제약,카액,선금급,하까,기급, 상품편미대급)보증보험있을 10%	uguau-		V002	■ TV/하다오 광고로 점상 단가의 30% 적용(70% 활인)	한국방&광고공 사
	801	확인 를보충한도 확대 - 명업경장 건강권 만도 확대(10억~30억(신용증급별 처음확대)	서울보충보항		수출기업회 기원사업	■ 지원업체 선정시 가렴 5점	중소기업정
	기술보충	■ 낮중급역 사전투력 : 경상 요요자급의 100% 적용/일반 기업은 신용 용급별 자주(80 - 100%)		04	수출역함 강화사업	■ 지원업체 선정시 가정 5점	중소기업정
	\$ C\$	■ 천골원 원화: 신동도 유리기업 체육시 2억원까지 영업성당 천골(남반 기업 1약원) ■ 보충십사 우대: 신용도 유의기업 적용기간 단축(1년 → 6개월)	가술보증기급		수출유당 중소기업 선정	■ 기원업체 선정시 가끔 3원	중소기업정
RED	RAD 지원사업 가접무대	 ■ 중소기업 기술개념사업 지원과제 선정시 가정 1점 ■ 산학명협회 기술개념사업 지원과제 선정시 가정 1점 	중소기업정		해외수출 인큐베이터	■ 지원업체 선형시 가렴 5점	중소기법진출공 단