# Data Analytics in Business Outliers vs. Influential Points

## **Sridhar Narasimhan**

Professor
Scheller College of Business

**Outliers and Influential Points** 

#### **Outliers and Influential Points**

- **Objective**: In fitting a model to a given body of data, we would like to ensure that the fit is not overly determined by one or a few observations, aka **outliers**.
- There are two types of outliers:
  - 1. Y (response) outlier
  - 2. X (predictor) outlier, Leverage Point
- An outlier has the potential to be identified as an influential data point if it unduly influences the regression analysis.
- The next few slides will define the two types of outliers and how to classify the outlier as an influential point.



# **Outliers in the Response Y Variable**

- An outlier is a point that has a  $y_i$  value that is far from its predicted value  $\hat{y_i}$ . It will have a large standardized residual.
  - Since the standardized residuals are approximately normally distributed with mean = 0 and a standard deviation = 1, points with standardized residuals larger than 2 or 3 standard deviation away from the mean (zero) are called outliers.
  - If removal of the outlier causes substantial change to the regression analysis, then it is an influential outlier (see influential point definition).
- **Detection**: One way to visualize/identify outliers is to plot residuals (or standardized residuals) against predicted values of  $y(\hat{y}_i)$
- Why do outliers occur?
  - Outliers could occur because of incorrect data recording, because of real anomalous events recorded correctly or because the phenomenon could very well be non-linear.
  - Do not assume that an outlier observation should automatically be removed. It may signal a model deficiency (i.e. a missing predictor)



# Outliers in the Predictor X Variable (Leverage Points)

- Extreme x values (x is the predictor variable) are high leverage points
  - The data point  $x_i$  will be unusually out of range of the other predictor X values
  - Does not have a large standardized residual
  - Can affect regression results
- **Detection**: Identify leverage points via index plot, dot plots, box plot, or Cook's Distance (next slide)
  - If the leverage point is flagged via Cook's distance, then it is also an influential point and thus has substantial influence to the fitted model (next slide)
- Why does the leverage point exist?
  - Requires a case-by-case data analysis
  - Often, it is best to analyze the leverage point by creating models with and without the data point to see the effect it has on the fitted line
  - This method of analysis applies to both y (response) outliers and influential points



### **Influential Points**

- An outlier is an *influential point* if its deletion (by itself or with 2 or 3 other points) causes substantial changes in the fitted model (estimated coefficients, fitted values, slope, t-tests, hypothesis tests, etc.)
  - Deletion must cause large changes, thus the data point has undue influence
  - See plot below of (X,Y) least squares fitted line with an influential point.

#### **Detection:**

- With several variables, we cannot detect influential points graphically.
- Measure influential points via Cook's Distance  $(C_i)$ : The difference between
  - 1. the regression coefficients obtained from the full data WITH observation point 'i'
  - and the regression coefficients obtained by DELETING the 'ith' data point
    - Rule of thumb is to identify points with  $C_i > 1$  as highly influential



