

A DIGITAL CAMERA SYSTEM HAVING MOTION DEBLURRING MEANS Field of the Invention

The present invention relates to digital image processing and in particular discloses A Camera System Having Motion Deblurring Means.

Further the present invention relates to the field of digital image cameras and in particular discloses a camera system having motion blur compensating means.

Background of the Invention

Motion blur in the taking of images is a common significant problem. The motion blur normally occurs as a result of movement of the camera while taking the picture or otherwise as a result of movement of objects within an image.

As a result of motion blur, it is often the case that the image taken is non optimal.

Summary of the Invention

It is an object of the present invention to provide a camera system having the ability to overcome the effects of motion blur.

In accordance with the first aspect of the present invention there is provided a camera system for outputting deblurred images, said system comprising;

an image sensor for sensing an image; a velocity detection means for determining any motion of said image relative to an external environment and to produce a velocity output indicative thereof; a processor means interconnected to said image sensor and said velocity detection means and adapted to process said sensed image utilising the velocity output so as to deblurr said image and to output said deblurred image.

Preferably, the camera system is connected to a printer means for immediate output of said deblurred image and is a portable handheld unit. The velocity detection means can comprise an accelerometer such as a micro-electro mechanical (MEMS) device.

Brief Description of the Drawings

Notwithstanding any other forms which may fall within the scope of the present invention, preferred forms of the

invention will now be described, by way of example only, with reference to the accompanying drawing in which:

Fig. 1 illustrates a schematic implementation of the preferred embodiment.

Description of Preferred Embodiments

The preferred embodiment is preferably implemented through suitable programming of a hand held camera device such as that described in Australian Provisional Patent Application No. P07991 filed 15 July, 1997 entitled "Image Processing Method and Apparatus (ART01)", in addition to Australian Provisional Patent Application entitled "Image Processing Method and . Apparatus (ART01a)" filed concurrently herewith by the present applicant, the content of which is hereby specifically incorporated by cross reference.

The aforementioned patent specifications disclose a camera system, hereinafter known as an "Artcam" type camera, wherein sensed images can be directly printed out by an internal Artcam portable camera unit. Further, the aforementioned specification discloses means and methods for performing various manipulations on images captured by the camera sensing device leading to the production of various effects in any output image. The manipulations are disclosed to be highly flexible in nature and can be implemented through the insertion into the Artcam of cards having encoded thereon various instructions for the manipulation of images, the cards hereinafter being known as "Artcards". The Artcam further has significant onboard processing power by an Artcam Central Processor unit (ACP) which is interconnected to a memory device for the storage of important data and images.

In the preferred embodiment, the Artcam device is modified so as to include a two dimensional motion sensor. The motion sensor can comprise a small micro-electro mechanical system (MEMS) device or other suitable device leave to detect motion in two axes. The motion sensor can be mounted on the camera device and its output monitored by the Artcam central processor device which is disclosed in the afore-mentioned patent specifications.

Turning now to Fig. 1, there is illustrated a schematic of the preferred arrangement of the preferred embodiment. accelerometer 1 outputs to the Artcam central processor 2 which also receives the blurred sensed image from the CCD device. The Artcam central processor 2 utilises the accelerometer readings so as to determine a likely angular velocity of the camera when the picture was taken. This velocity factor is then utilised by a suitably programmed Artcard processor 2 to apply a deblurring function to the blurred sensed image 3 thereby outputting a deblurred output image 4. The programming of the Artcard processor 2 so as to perform the deblurring can utilise standard algorithms known to those skilled in the art of computer programming and digital image restoration. example, reference is made to the "Selected Papers on Digital Image Restoration", M. Ibrahim Sezan, Editor, SPIE Milestone series, volume 74, and in particular the reprinted paper at pages 167-175 thereof. Further, simplified techniques are shown in the "Image Processing Handbook", second edition, by John C. Russ, published by CRC Press at pages 336-341 thereof.

It would be therefore obvious to the person skilled in the art that many different techniques for motion blur removal can be utilised in the preferred embodiment. Additionally, other forms of motion sensors may be provided. Once the input image has been deblurred, the image is then able to be printed out by the Artcam device in accordance with the techniques as discussed in the afore-mentioned patent specification.

It would be appreciated by a person skilled in the art that numerous variations and/or modifications may be made to the present invention as shown in the specific embodiment without departing from the spirit or scope of the invention as broadly described. The present embodiment is, therefore, to be considered in all respects to be illustrative and not restrictive.

Ink Jet Technologies

The embodiments of the invention use an ink jet printer type device. Of course many different devices could be used. However presently popular ink jet printing technologies are unlikely to be suitable.

The most significant problem with thermal inkjet is power consumption. This is approximately 100 times that required for high speed, and stems from the energy-inefficient means of drop ejection. This involves the rapid boiling of water to produce a vapor bubble which expels the ink. Water has a very high heat capacity, and must be superheated in thermal inkjet applications. This leads to an efficiency of around 0.02%, from electricity input to drop momentum (and increased surface area) out.

The most significant problem with piezoelectric inkjet is size and cost. Piezoelectric crystals have a very small deflection at reasonable drive voltages, and therefore require a large area for each nozzle. Also, each piezoelectric actuator must be connected to its drive circuit on a separate substrate. This is not a significant problem at the current limit of around 300 nozzles per print head, but is a major impediment to the fabrication of pagewide print heads with 19,200 nozzles.

Ideally, the inkjet technologies used meet the stringent requirements of in-camera digital color printing and other high quality, high speed, low cost printing applications. To meet the requirements of digital photography, new inkjet technologies have been created. The target features include:

low power (less than 10 Watts)
high resolution capability (1,600 dpi or more)
photographic quality output
low manufacturing cost
small size (pagewidth times minimum cross section)
high speed (< 2 seconds per page).

All of these features can be met or exceeded by the inkjet systems described below with differing levels of difficulty. 45 different inkjet technologies have been developed by the Assignee to give a wide range of choices for high volume manufacture. These technologies form part of separate applications assigned to the present Assignee as set out in the table below.

The inkjet designs shown here are suitable for a wide range of digital printing systems, from battery powered one-time use digital cameras, through to desktop and network printers, and through to commercial printing systems

For ease of manufacture using standard process equipment, the print head is designed to be a monolithic 0.5 micron CMOS chip with MEMS post processing. For color photographic applications, the print head is 100 mm long, with a width which depends upon the inkjet type. The smallest print head designed is IJ38, which is 0.35 mm wide, giving a chip area of 35 square mm. The print heads each contain 19,200 nozzles plus data and control circuitry.

Ink is supplied to the back of the print head by injection molded plastic ink channels. The molding requires 50 micron features, which can be created using a lithographically micromachined insert in a standard injection molding tool. Ink flows through holes etched through the wafer to the nozzle chambers fabricated on the front surface of the wafer. The print head is connected to the camera circuitry by tape automated bonding.

Cross-Referenced Applications

The following table is a guide to cross-referenced patent applications filed concurrently herewith and discussed hereinafter with the reference being utilized in subsequent tables when referring to a particular case:

Docket No.	Reference	Title
IJ01US	IJO1	Radiant Plunger Ink Jet Printer
IJ02US	IJ02	Electrostatic Ink Jet Printer
IJ03US	IJ03	Planar Thermoelastic Bend Actuator Ink Jet
IJ04US	IJ04	Stacked Electrostatic Ink Jet Printer
IJ05US	IJO5	Reverse Spring Lever Ink Jet Printer
IJ06US	IJ06	Paddle Type Ink Jet Printer
IJ07US	IJO7	Permanent Magnet Electromagnetic Ink Jet Printer
IJ08US	1J08	Planar Swing Grill Electromagnetic Ink Jet Printer

IJ09US	IJ09	Pump Action Refill Ink Jet Printer
IJ10US	IJ10	Pulsed Magnetic Field Ink Jet Printer
LITUS	U11	Two Plate Reverse Firing Electromagnetic Ink Jet Printer
IJ12US	IJ12	Linear Stepper Actuator Ink Jet Printer
IJ13US	IJ13	Gear Driven Shutter Ink Jet Printer
IJ14US	IJ13	
		Tapered Magnetic Pole Electromagnetic Ink Jet Printer
IJ15US	IJ15	Linear Spring Electromagnetic Grill Ink Jet Printer
IJ16US	IJ16	Lorenz Diaphragm Electromagnetic Ink Jet Printer
IJ17US	IJ17	PTFE Surface Shooting Shuttered Oscillating Pressure Ink Jet Printer
IJ18US	IJ18	Buckle Grip Oscillating Pressure Ink Jet Printer
IJ19US	IJ19	Shutter Based Ink Jet Printer
IJ20US	IJ20	Curling Calyx Thermoelastic Ink Jet Printer
IJ21US	IJ21	Thermal Actuated Ink Jet Printer
IJ22US	IJ22	Iris Motion Ink Jet Printer
IJ23US	IJ23	Direct Firing Thermal Bend Actuator Ink Jet Printer
IJ24US	IJ24	Conductive PTFE Ben Activator Vented Ink Jet Printer
IJ25US	IJ25	Magnetostrictive Ink Jet Printer
IJ26US	IJ26	Shape Memory Alloy Ink Jet Printer
IJ27US	IJ27	Buckle Plate Ink Jet Printer
IJ28US:	IJ28	Thermal Elastic Rotary Impeller Ink Jet Printer
IJ29US	IJ29	Thermoelastic Bend Actuator Ink Jet Printer
IJ30US	IJ30	Thermoelastic Bend Actuator Using PTFE and Corrugated Copper
		Ink Jet Printer
IJ31US	IJ31 [.]	Bend Actuator Direct Ink Supply Ink Jet Printer
IJ32US	IJ32	A High Young's Modulus Thermoelastic Ink Jet Printer
IJ33US	IJ33	Thermally actuated slotted chamber wall ink jet printer
IJ34US	IJ34	Ink Jet Printer having a thermal actuator comprising an external coiled spring
IJ35US	IJ35	Trough Container Ink Jet Printer
IJ36US	IJ36	Dual Chamber Single Vertical Actuator Ink Jet
JJ37US	IJ37	Dual Nozzle Single Horizontal Fulcrum Actuator Ink Jet
1J38US	IJ38	Dual Nozzle Single Horizontal Actuator Ink Jet Dual Nozzle Single Horizontal Actuator Ink Jet
IJ39US	IJ39.	A single bend actuator cupped paddle ink jet printing device
IJ40US	IJ40	A single bend actuator cupped paddle ink jet printing device A thermally actuated ink jet printer having a series of thermal
		actuator units
IJ41US	IJ41	A thermally actuated ink jet printer including a tapered heater element
IJ42US	IJ42	Radial Back-Curling Thermoelastic Ink Jet
IJ43US.	IJ42	
1J43US	IJ44	Inverted Radial Back-Curling Thermoelastic Ink Jet
IJ44US		Surface bend actuator vented ink supply ink jet printer
114202	IJ45	Coil Acutuated Magnetic Plate Ink Jet Printer

Tables of Drop-on-Demand Inkjets

Eleven important characteristics of the fundamental operation of individual inkjet nozzles have been identified. These characteristics are largely orthogonal, and so can be

elucidated as an eleven dimensional matrix. Most of the eleven axes of this matrix include entries developed by the present assignee.

The following tables form the axes of an eleven dimensional table of inkjet types.

Actuator mechanism (18 types)

Basic operation mode (7 types)

Auxiliary mechanism (8 types)

Actuator amplification or modification method (17 types)

Actuator motion (19 types)

Nozzle refill method (4 types)

Method of restricting back-flow through inlet (10 types)

Nozzle clearing method (9 types)

Nozzle plate construction (9 types)

Drop ejection direction (5 types)

Ink type (7 types)

The complete eleven dimensional table represented by these axes contains 36.9 billion possible configurations of inkjet nozzle. While not all of the possible combinations result in a viable inkjet technology, many million configurations are viable. It is clearly impractical to elucidate all of the possible configurations. Instead, certain inkjet types have been investigated in detail. These are designated IJ01 to IJ45 above.

Other inkjet configurations can readily be derived from these 45 examples by substituting alternative configurations along one or more of the 11 axes. Most of the IJ01 to IJ45 examples can be made into inkjet print heads with characteristics superior to any currently available inkjet technology.

Where there are prior art examples known to the inventor, one or more of these examples are listed in the examples column of the tables below. The IJ01 to IJ45 series are also listed in the examples column. In some cases, a printer may be listed more than once in a table, where it shares characteristics with more than one entry.

Suitable applications include: Home printers, Office network printers, Short run digital printers, Commercial print systems, Fabric printers, Pocket printers, Internet WWW printers, Video printers, Medical imaging, Wide format printers, Notebook PC printers, Fax machines, Industrial printing systems, Photocopiers, Photographic minilabs etc.

The information associated with the aforementioned 11 dimensional matrix are set out in the following tables:

ACTUATOR MECHANISM (APPLIED ONLY TO SELECTED INK DROPS)

Actuator Mechanism	Description	Advantages	Disadvantages	Examples
Thermal bubble	An electrothermal heater heats the ink to above boiling point, transferring significant heat to the aqueous ink. A bubble nucleates and quickly forms, expelling the ink. The efficiency of the process is low, with typically less than 0.05% of the electrical energy being transformed into kinetic energy of the drop.	 Large force generated Simple construction No moving parts Fast operation Small chip area required for actuator 	 High power Ink carrier limited to water Low efficiency High temperatures required High mechanical stress Unusual materials required Large drive transistors Cavitation causes actuator failure Kogation reduces bubble formation Large print heads are difficult to fabricate 	 Canon Bubblejet 1979 Endo et al GB patent 2,007,162 Xerox heater-in-pit 1990 Hawkins et al USP 4,899,181 Hewlett-Packard TIJ 1982 Vaught et al USP 4,490,728
Piezoelectric	A piezoelectric crystal such as lead lanthanum zirconate (PZT) is electrically activated, and either expands, shears, or bends to apply pressure to the ink, ejecting drops.	 Low power consumption Many ink types can be used Fast operation High efficiency 	 Very large area required for actuator Difficult to integrate with electronics High voltage drive transistors required Full pagewidth print heads impractical due to actuator size Requires electrical poling in high field strengths during manufacture 	 Kyser et al USP 3,946,398 Zoltan USP 3,683,212 1973 Stemme USP 3,747,120 Epson Stylus Tektronix 104

Electro- strictive	An electric field is used to activate electrostriction in relaxor materials such as lead lanthanum zirconate titanate (PLZT) or lead magnesium niobate (PMN).	 Low power consumption Many ink types can be used Low thermal expansion Electric field strength required (approx. 3.5 V/µm) can be generated without difficulty Does not require electrical poling 	 Low maximum strain (approx. 0.01%) Large area required for actuator due to low strain Response speed is marginal (~ 10 μs) High voltage drive transistors required Full pagewidth print heads impractical due to actuator size 	 Seiko Epson, Usui et all JP 253401/96 1J04
Ferroelectric	An electric field is used to induce a phase transition between the antiferroelectric (AFE) and ferroelectric (FE) phase. Perovskite materials such as tin modified lead lanthanum zirconate titanate (PLZSnT) exhibit large strains of up to 1% associated with the AFE to FE phase transition.	 Low power consumption Many ink types can be used Fast operation (< 1 µs) Relatively high longitudinal strain High efficiency Electric field strength of around 3 V/µm can be readily provided 	 Difficult to integrate with electronics Unusual materials such as PLZSnT are required Actuators require a large area 	♦ IJ04
Electrostatic	Conductive plates are separated by a compressible or fluid dielectric (usually air). Upon application of a voltage, the plates attract each other and displace ink, causing drop ejection. The conductive plates may be in a comb or honeycomb structure, or stacked to increase the surface area and therefore the force.	 Low power consumption Many ink types can be used Fast operation 	 Difficult to operate electrostatic devices in an aqueous environment The electrostatic actuator will normally need to be separated from the ink Very large area required to achieve high forces High voltage drive transistors may be required Full pagewidth print heads are not competitive due to actuator size 	• IJ02, IJ04

Electrostatic	A strong electric field is applied to	 Low current consumption 	 ◆ High voltage required 	+ 1989 Saito et al, USP
pull on ink	the ink, whereupon electrostatic	 ◆ Low temperature 	 May be damaged by sparks due to air 	4,799,068
	attraction accelerates the ink towards		breakdown	 ◆ 1989 Miura et al,
	the print medium.		◆ Required field strength increases as the	USP 4,810,954
			drop size decreases	◆ Tone-jet
			 ◆ High voltage drive transistors required 	•
			◆ Electrostatic field attracts dust	
Permanent	An electromagnet directly attracts a	 ◆ Low power consumption 	◆ Complex fabrication	◆ IJ07, IJ10
magnet	permanent magnet, displacing ink	◆ Many ink types can be used	 Permanent magnetic material such as 	
electro-	and causing drop ejection. Rare earth	 ◆ Fast operation 	Neodymium Iron Boron (NdFeB)	
magnetic	magnets with a field strength around	 ◆ High efficiency 	required.	
	I lesla can be used. Examples are:	 Easy extension from single 	 ◆ High local currents required 	
	Samarium Cobalt (SaCo) and	nozzles to pagewidth print	 Copper metalization should be used for 	
	magnetic materials in the	heads	long electromigration lifetime and low	
	neodymium fron boron family		resistivity	-
	(Indreib, IndDyFeBing, IndDyFeB,		 Pigmented inks are usually infeasible 	
			 ◆ Operating temperature limited to the 	
			Curie temperature (around 540 K)	
Soft magnetic	A solenoid induced a magnetic field	 Low power consumption 	◆ Complex fabrication	♦ IJ01, IJ05, IJ08, IJ10
core electro-	in a soft magnetic core or yoke	 Many ink types can be used 	 Materials not usually present in a 	◆ IJ12, IJ14, IJ15, IJ17
magnetic	fabricated from a ferrous material	 Fast operation 	CMOS fab such as NiFe, CoNiFe, or	
	such as electroplated iron alloys such	 ◆ High efficiency 	CoFe are required	
	as Conife [1], Cofe, or Nife alloys.	 Easy extension from single 	 High local currents required 	
	lypically, the soft magnetic material	nozzles to pagewidth print	◆ Copper metalization should be used for	
	is in two parts, which are normally	heads	long electromigration lifetime and low	
	neid apart by a spring. When the		resistivity	
	solenoid is actuated, the two parts		◆ Electroplating is required	
	actions, displacing the line.		 High saturation flux density is required 	
٠			(2.0-2.1 T is achievable with CoNiFe	
			(1)	

Magnetic	The Lorenz force acting on a current	◆ Low power consumption	◆ Force acts as a twisting motion	♦ 1J06, 1J11, 1J13, 1J16
Lorenz force	carrying wire in a magnetic field is utilized.	Many ink types can be usedFast operation	 Typically, only a quarter of the solenoid length provides force in a 	
	This allows the magnetic field to be	♦ High efficiency	useful direction	
	for example with rare earth	 Easy extension from single nozzles to pagewidth print 	◆ Copper metalization should be used for	
	permanent magnets.	heads	long electromigration lifetime and low	
	Only the current carrying wire need be fabricated on the print-head,		resistivity • Pigmented inks are usually infeasible	
	simplifying materials requirements.			
Magneto-	The actuator uses the giant	 ◆ Many ink types can be used 	◆ Force acts as a twisting motion	 ◆ Fischenbeck, USP
striction	magnetostrictive effect of materials	◆ Fast operation	◆ Unusual materials such as Terfenol-D	4,032,929
_	such as Terfenol-D (an alloy of	◆ Easy extension from single	are required	€ 1025
	terbium, dysprosium and iron	nozzles to pagewidth print	 ◆ High local currents required 	
	developed at the Naval Ordnance	heads	◆ Copper metalization should be used for	
	Laboratory, hence 1er-re-NOL). For	 ◆ High force is available 	long electromigration lifetime and low	
	best efficiency, the actuator should		resistivity	
	be pre-stressed to approx. 8 MPa.		 ◆ Pre-stressing may be required 	
Surface	Ink under positive pressure is held in	 ◆ Low power consumption 	◆ Requires supplementary force to effect	◆ Silverbrook, EP 0771
tension	a nozzle by surface tension. The	Simple construction	drop separation	658 A2 and related
reduction	surface tension of the ink is reduced	◆ No unusual materials	 Requires special ink surfactants 	patent applications
	below the bubble threshold, causing	required in fabrication	 Speed may be limited by surfactant 	
	the ink to egress from the nozzle.	◆ High efficiency	properties	
		 Easy extension from single 		
		nozzles to pagewidth print		
		heads		

osilsoso "oziose

- 13 -

Viscosity	The ink viscosity is locally reduced	◆ Simple construction	◆ Requires supplementary force to effect	◆ Silverbrook, EP 0771
reduction	to select which drops are to be	 ♦ No unusual materials 	drop separation	658 A2 and related
	ejected. A viscosity reduction can be	required in fabrication	 Requires special ink viscosity 	patent applications
	achieved electrothermally with most	◆ Easy extension from single	properties	
	inks, but special inks can be	nozzles to pagewidth print	 ◆ High speed is difficult to achieve 	
	engineered for a 100:1 viscosity	heads	 ◆ Requires oscillating ink pressure 	
	reduction.		◆ A high temperature difference	
			(typically 80 degrees) is required	
Acoustic	An acoustic wave is generated and	◆ Can operate without a	 ◆ Complex drive circuitry 	 ◆ 1993 Hadimioglu et
	focussed upon the drop ejection	nozzle plate	◆ Complex fabrication	al, EUP 550,192
	region.		◆ Low efficiency	 ◆ 1993 Elrod et al, EUP
······································			◆ Poor control of drop position	572,220
			 ◆ Poor control of drop volume 	
Thermoelastic	An actuator which relies upon	 ◆ Low power consumption 	◆ Efficient aqueous operation requires a	◆ 1J03, IJ09, IJ17, IJ18
bend actuator	differential thermal expansion upon	 Many ink types can be used 	thermal insulator on the hot side	+ IJ19, IJ20, IJ21, IJ22
	Joule heating is used.	 Simple planar fabrication 	 Corrosion prevention can be difficult 	 1J23, IJ24, IJ27, IJ28
		 Small chip area required for 	 Pigmented inks may be infeasible, as 	 1129, 1130, 1131, 1132
-		each actuator	pigment particles may jam the bend	 IJ33, IJ34, IJ35, IJ36
		 Fast operation 	actuator	♦ 1J37, IJ38 ,IJ39, IJ40
		 High efficiency 		◆ IJ41
		 CMOS compatible voltages 		
		and currents		
		 Standard MEMS processes 		
		can be used		
		 Easy extension from single 		
		nozzles to pagewidth print		
		heads		

High CTE thermoelastic actuator	A material with a very high coefficient of thermal expansion (CTE) such as polytetrafluoroethylene (PTFE) is used. As high CTE materials are usually non-conductive, a heater fabricated from a conductive material is incorporated. A 50 µm long PTFE bend actuator with polysilicon heater and 15 mW power input can provide 180 µN force and 10 µm deflection. Actuator motions include: 1) Bend 2) Push 3) Buckle 4) Rotate	 High force can be generated PTFE is a candidate for low dielectric constant insulation in ULSI Very low power consumption Many ink types can be used Simple planar fabrication Small chip area required for each actuator Fast operation High efficiency CMOS compatible voltages and currents Easy extension from single nozzles to pagewidth print heads 	 Requires special material (e.g. PTFE) Requires a PTFE deposition process, which is not yet standard in ULSI fabs PTFE deposition cannot be followed with high temperature (above 350 °C) processing Pigmented inks may be infeasible, as pigment particles may jam the bend actuator 	• 1109, 1117, 1118, 1120 • 1121, 1122, 1123, 1124 • 1127, 1128, 1129, 1130 • 1131, 1142, 1143, 1144
Conductive polymer thermoelastic actuator	A polymer with a high coefficient of thermal expansion (such as PTFE) is doped with conducting substances to increase its conductivity to about 3 orders of magnitude below that of copper. The conducting polymer expands when resistively heated. Examples of conducting dopants include: 1) Carbon nanotubes 2) Metal fibers 3) Conductive polymers such as doped polythiophene	 High force can be generated Very low power consumption Many ink types can be used Simple planar fabrication Small chip area required for each actuator Fast operation High efficiency CMOS compatible voltages and currents Easy extension from single nozzles to pagewidth print heads 	 Requires special materials development (High CTE conductive polymer) Requires a PTFE deposition process, which is not yet standard in ULSI fabs PTFE deposition cannot be followed with high temperature (above 350 °C) processing Evaporation and CVD deposition techniques cannot be used Pigmented inks may be infeasible, as pigment particles may jam the bend actuator 	1124

Shape memory		 ◆ High force is available 	 Fatigue limits maximum number of 	+ 1J26
alloy	(also known as Nitinol - Nickel	(stresses of hundreds of	cycles	
	Titanium alloy developed at the	MPa)	◆ Low strain (1%) is required to extend	
	Naval Ordnance Laboratory) is	 ◆ Large strain is available 	fatigue resistance	
	thermally switched between its weak	(more than 3%)	 Cycle rate limited by heat removal 	
	martensitic state and its high	 High corrosion resistance 	 Requires unusual materials (TiNi) 	
	stiffness austenic state. The shape of	◆ Simple construction	 The latent heat of transformation must 	
	the actualor in its martensitic state is	 ◆ Easy extension from single 	be provided	
	deformed relative to the austenic	nozzles to pagewidth print	◆ High current operation	
	snape. The snape change causes	heads	• Requires pre-stressing to distort the	
	ejection of a drop.	 Low voltage operation 	martensitic state	
Linear	Linear magnetic actuators include	◆ Linear Magnetic actuators	◆ Requires unusual semiconductor	+ IJ12
Magnetic	the Linear Induction Actuator (LIA),	can be constructed with	materials such as soft magnetic alloys	
Actuator	Linear Permanent Magnet	high thrust, long travel, and	(e.g. CoNiFe [1])	
	Synchronous Actuator (LPMSA),	high efficiency using planar	 Some varieties also require permanent 	
	Linear Reluctance Synchronous	semiconductor fabrication	magnetic materials such as	
	Actuator (LRSA), Linear Switched	techniques	Neodymium iron boron (NdFeB)	
	Reluctance Actuator (LSRA), and	 Long actuator travel is 	◆ Requires complex multi-phase drive	
	the Linear Stepper Actuator (LSA).	available	circuitry	
		 Medium force is available 	 High current operation. 	
		 Low voltage operation 	•	

BASIC OPERATION MODE

Operational mode	Description	Advantages	Disadvantages	Examples
Actuator directly pushes ink	This is the simplest mode of operation: the actuator directly supplies sufficient kinetic energy to expel the drop. The drop must have a sufficient velocity to overcome the surface tension.	 Simple operation No external fields required Satellite drops can be avoided if drop velocity is less than 4 m/s Can be efficient, depending upon the actuator used 	 Drop repetition rate is usually limited to less than 10 KHz. However, this is not fundamental to the method, but is related to the refill method normally used All of the drop kinetic energy must be provided by the actuator Satellite drops usually form if drop velocity is greater than 4.5 m/s 	 Thermal inkjet Piezoelectric inkjet IJ01, IJ02, IJ03, IJ04 IJ05, IJ06, IJ07, IJ09 IJ11, IJ12, IJ14, IJ16 IJ20, IJ22, IJ23, IJ24 IJ25, IJ26, IJ27, IJ28 IJ29, IJ30, IJ31, IJ32 IJ39, IJ34, IJ35, IJ36 IJ37, IJ38, IJ39, IJ40 IJ41, IJ42, IJ43, IJ44
Proximity	The drops to be printed are selected by some manner (e.g. thermally induced surface tension reduction of pressurized ink). Selected drops are separated from the ink in the nozzle by contact with the print medium or a transfer roller.	 Very simple print head fabrication can be used The drop selection means does not need to provide the energy required to separate the drop from the nozzle 	 Requires close proximity between the print head and the print media or transfer roller May require two print heads printing alternate rows of the image Monolithic color print heads are difficult 	• Silverbrook, EP 0771 658 A2 and related patent applications
Electrostatic pull on ink	The drops to be printed are selected by some manner (e.g. thermally induced surface tension reduction of pressurized ink). Selected drops are separated from the ink in the nozzle by a strong electric field.	 Very simple print head fabrication can be used The drop selection means does not need to provide the energy required to separate the drop from the nozzle 	 Requires very high electrostatic field Electrostatic field for small nozzle sizes is above air breakdown Electrostatic field may attract dust 	 Silverbrook, EP 0771 658 A2 and related patent applications Tone-Jet

	į			
Magnetic pull on ink	The drops to be printed are selected by some manner (e.g. thermally induced surface tension reduction of pressurized ink). Selected drops are separated from the ink in the nozzle by a strong magnetic field acting on the magnetic ink.	 Very simple print head fabrication can be used The drop selection means does not need to provide the energy required to separate the drop from the nozzle 	 Requires magnetic ink Ink colors other than black are difficult Requires very high magnetic fields 	• Silverbrook, EP 0771 658 A2 and related patent applications
Shutter	The actuator moves a shutter to block ink flow to the nozzle. The ink pressure is pulsed at a multiple of the drop ejection frequency.	 High speed (>50 KHz) operation can be achieved due to reduced refill time Drop timing can be very accurate The actuator energy can be very low 	 Moving parts are required Requires ink pressure modulator Friction and wear must be considered Stiction is possible 	 U13, U17, U21
Shuttered grill	The actuator moves a shutter to block ink flow through a grill to the nozzle. The shutter movement need only be equal to the width of the grill holes.	 Actuators with small travel can be used Actuators with small force can be used High speed (>50 KHz) operation can be achieved 	 Moving parts are required Requires ink pressure modulator Friction and wear must be considered Stiction is possible 	◆ IJ08, IJ15, IJ18, IJ19
Pulsed magnetic pull on ink pusher	A pulsed magnetic field attracts an 'ink pusher' at the drop ejection frequency. An actuator controls a catch, which prevents the ink pusher from moving when a drop is not to be ejected.	 Extremely low energy operation is possible No heat dissipation problems 	 Requires an external pulsed magnetic field Requires special materials for both the actuator and the ink pusher Complex construction 	• IJ10

AUXILIARY MECHANISM (APPLIED TO ALL NOZZLES)

Anvillan	0000			
Mechanism		Advantages	Uisadvantages	Examples
None	The actuator directly fires the ink drop, and there is no external field or other mechanism required.	 Simplicity of construction Simplicity of operation Small physical size 	 Drop ejection energy must be supplied by individual nozzle actuator 	 Most inkjets, including piezoelectric and thermal bubble. 1101-1107, 1109, 1111 1112, 1114, 1120, 1122
Oscillating ink pressure (including acoustic stimulation)	The ink pressure oscillates, providing much of the drop ejection energy. The actuator selects which drops are to be fired by selectively blocking or enabling nozzles. The ink pressure oscillation may be achieved by vibrating the print head, or preferably by an actuator in the ink supply.	 Oscillating ink pressure can provide a refill pulse, allowing higher operating speed The actuators may operate with much lower energy Acoustic lenses can be used to focus the sound on the nozzles 	 Requires external ink pressure oscillator Ink pressure phase and amplitude must be carefully controlled Acoustic reflections in the ink chamber must be designed for 	 Silverbrook, EP 0771 658 A2 and related patent applications 1008, 1113, 1115, 1117 1118, 1119, 1121
Media proximity	The print head is placed in close proximity to the print medium. Selected drops protrude from the print head further than unselected drops, and contact the print medium. The drop soaks into the medium fast enough to cause drop separation.	 Low power High accuracy Simple print head construction 	 Precision assembly required Paper fibers may cause problems Cannot print on rough substrates 	• Silverbrook, EP 0771 658 A2 and related patent applications

Transfer roller	Drops are printed to a transfer roller	 ◆ High accuracy 	♦ Bulky	◆ Silverbrook, EP 0771
	instead of straight to the print	 Wide range of print 	◆ Expensive	658 A2 and related
	medium. A transfer roller can also be	substrates can be used	◆ Complex construction	patent applications
	used for proximity drop separation.	 Ink can be dried on the 	,	 Tektronix hot melt
		transfer roller		piezoelectric inkjet
				 Any of the IJ series
Electrostatic	An electric field is used to accelerate	◆ Low power	 ◆ Field strength required for separation 	◆ Silverbrook, EP 0771
	selected drops towards the print	 Simple print head 	of small drops is near or above air	658 A2 and related
	medium.	construction	breakdown	patent applications
				◆ Tone-Jet
Direct	A magnetic field is used to accelerate	 ◆ Low power 	◆ Requires magnetic ink	◆ Silverbrook, EP 0771
magnetic field	selected drops of magnetic ink	 Simple print head 	 Requires strong magnetic field 	658 A2 and related
	towards the print medium.	construction		patent applications
Cross	The print head is placed in a constant	 ◆ Does not require magnetic 	◆ Requires external magnet	◆ IJ06, IJ16
magnetic field	magnetic field. The Lorenz force in a	materials to be integrated in	 Current densities may be high, 	
	current carrying wire is used to move	the print head	resulting in electromigration problems	
	the actuator.	manufacturing process	•	
Pulsed	A pulsed magnetic field is used to	 ♦ Very low power operation 	◆ Complex print head construction	◆ IJ10
magnetic field	cyclically attract a paddle, which	is possible	 Magnetic materials required in print 	
	pushes on the ink. A small actuator	 ♦ Small print head size 	head	
	moves a catch, which selectively			
	prevents the paddle from moving.			

ACTUATOR AMPLIFICATION OR MODIFICATION METHOD

Actuator amplification	Description	Advantages	Disadvantages	Examples
None	No actuator mechanical amplification is used. The actuator directly drives the drop ejection process.	◆ Operational simplicity	 Many actuator mechanisms have insufficient travel, or insufficient force, to efficiently drive the drop ejection process 	Thermal Bubble Inkjet101, IJ02, IJ06, IJ071J16, IJ25, IJ26
Differential expansion bend actuator	An actuator material expands more on one side than on the other. The expansion may be thermal, piezoelectric, magnetostrictive, or other mechanism.	 Provides greater travel in a reduced print head area The bend actuator converts a high force low travel actuator mechanism to high travel, lower force mechanism. 	 High stresses are involved Care must be taken that the materials do not delaminate Residual bend resulting from high temperature or high stress during formation 	 Piezoelectric 1103, 1109, 1117-1124 1127, 1129-1139, 1142, 1143, 1144
Transient bend actuator	A trilayer bend actuator where the two outside layers are identical. This cancels bend due to ambient temperature and residual stress. The actuator only responds to transient heating of one side or the other.	 Very good temperature stability High speed, as a new drop can be fired before heat dissipates Cancels residual stress of formation 	 High stresses are involved Care must be taken that the materials do not delaminate 	 • IJ40, IJ41
Actuator stack	A series of thin actuators are stacked. This can be appropriate where actuators require high electric field strength, such as electrostatic and piezoelectric actuators.	Increased travelReduced drive voltage	 Increased fabrication complexity Increased possibility of short circuits due to pinholes 	Some piezoelectric ink jets◆ IJ04
Multiple actuators	Multiple smaller actuators are used simultaneously to move the ink. Each actuator need provide only a portion of the force required.	 Increases the force available from an actuator Multiple actuators can be positioned to control ink flow accurately 	 Actuator forces may not add linearly, reducing efficiency 	 112, 1113, 1118, 1120 1122, 1128, 1142, 1143

Linear Spring	A linear spring is used to transform a motion with small travel and high force into a longer travel, lower force motion.	 Matches low travel actuator with higher travel requirements Non-contact method of motion transformation 	 Requires print head area for the spring 	♦ IJ15
Reverse spring	The actuator loads a spring. When the actuator is turned off, the spring releases. This can reverse the force/distance curve of the actuator to make it compatible with the force/time requirements of the drop ejection.	• Better coupling to the ink	 Fabrication complexity High stress in the spring 	• 1105, IJ11
Coiled actuator	A bend actuator is coiled to provide greater travel in a reduced chip area.	 Increases travel Reduces chip area Planar implementations are relatively easy to fabricate. 	 Generally restricted to planar implementations due to extreme fabrication difficulty in other orientations. 	 1117, 1121, 1134, 1135
Flexure bend actuator	A bend actuator has a small region near the fixture point, which flexes much more readily than the remainder of the actuator. The actuator flexing is effectively converted from an even coiling to an angular bend, resulting in greater travel of the actuator tip.	• Simple means of increasing travel of a bend actuator	 Care must be taken not to exceed the elastic limit in the flexure area Stress distribution is very uneven Difficult to accurately model with finite element analysis 	• IJ10, IJ19, IJ33
Gears	Gears can be used to increase travel at the expense of duration. Circular gears, rack and pinion, ratchets, and other gearing methods can be used.	 Low force, low travel actuators can be used Can be fabricated using standard surface MEMS processes 	 Moving parts are required Several actuator cycles are required More complex drive electronics Complex construction Friction, friction, and wear are possible 	• IJ13

Catch	The actuator controls a small catch.	 ♦ Very low actuator energy 	◆ Complex construction	◆ IJ10
	The catch either enables or disables movement of an ink pusher that is controlled in a bulk manner.	 Very small actuator size 	 Requires external force Unsuitable for pigmented inks 	
Buckle plate	A buckle plate can be used to change a slow actuator into a fast motion. It can also convert a high force, low travel actuator into a high travel, medium force motion.	 Very fast movement achievable 	 Must stay within elastic limits of the materials for long device life High stresses involved Generally high power requirement 	◆ S. Hirata et al, "An Ink-jet Head", Proc. IEEE MEMS, Feb. 1996, pp 418-423.
Tapered magnetic pole	A tapered magnetic pole can increase travel at the expense of force.	 ◆ Linearizes the magnetic force/distance curve 	◆ Complex construction	♦ IJ14
Lever	A lever and fulcrum is used to transform a motion with small travel and high force into a motion with longer travel and lower force. The lever can also reverse the direction of travel.	 Matches low travel actuator with higher travel requirements Fulcrum area has no linear movement, and can be used for a fluid seal 	 High stress around the fulcrum 	 1132, 1136, 1137
Rotary impeller	The actuator is connected to a rotary impeller. A small angular deflection of the actuator results in a rotation of the impeller vanes, which push the ink against stationary vanes and out of the nozzle.	 High mechanical advantage The ratio of force to travel of the actuator can be matched to the nozzle requirements by varying the number of impeller vanes 	 Complex construction Unsuitable for pigmented inks 	+ 1J28
Acoustic lens	A refractive or diffractive (e.g. zone plate) acoustic lens is used to concentrate sound waves.	 No moving parts 	 Large area required Only relevant for acoustic ink jets 	 1993 Hadimioglu et al, EUP 550,192 1993 Elrod et al, EUP 572,220
Sharp conductive point	A sharp point is used to concentrate an electrostatic field.	• Simple construction	 ◆ Difficult to fabricate using standard VLSI processes for a surface ejecting ink-jet ◆ Only relevant for electrostatic ink jets 	◆ Tone-jet

ACTUATOR MOTION

Actuator motion	Description	Advantages	Disadvantages	Examples
Volume expansion	The volume of the actuator changes, pushing the ink in all directions.	◆ Simple construction in the case of thermal ink jet	 High energy is typically required to achieve volume expansion. This leads to thermal stress, cavitation, and kogation in thermal ink jet implementations 	 Hewlett-Packard Thermal Inkjet Canon Bubblejet
Linear, normal to chip surface	The actuator moves in a direction normal to the print head surface. The nozzle is typically in the line of movement.	 Efficient coupling to ink drops ejected normal to the surface 	 High fabrication complexity may be required to achieve perpendicular motion 	1J01, 1J02, 1J04, 1J071J11, 1J14
Linear, parallel to chip surface	The actuator moves parallel to the print head surface. Drop ejection may still be normal to the surface.	Suitable for planar fabrication	Fabrication complexityFrictionStiction	♦ 1J12, 1J13, 1J15, 1J33, ♦ 1J34, 1J35, 1J36
Membrane push	An actuator with a high force but small area is used to push a stiff membrane that is in contact with the ink.	 The effective area of the actuator becomes the membrane area 	 Fabrication complexity Actuator size Difficulty of integration in a VLSI process 	◆ 1982 Howkins USP 4,459,601
Rotary	The actuator causes the rotation of some element, such a grill or impeller	 Rotary levers may be used to increase travel Small chip area requirements 	 Device complexity May have friction at a pivot point 	 1105, 1108, 1113, 1128
Bend	The actuator bends when energized. This may be due to differential thermal expansion, piezoelectric expansion, magnetostriction, or other form of relative dimensional change.	 A very small change in dimensions can be converted to a large motion. 	 Requires the actuator to be made from at least two distinct layers, or to have a thermal difference across the actuator 	 1970 Kyser et al USP 3,946,398 1973 Stemme USP 3,747,120 1103, 1109, 1110, 1119 1123, 1124, 1125, 1129 1130, 1131, 1133, 1134 1135

BEOTZO OSOETTBO

	ı
•	7
C	`
	,

Swivel	The actuator swivels around a central	◆ Allows operation where the	◆ Inefficient coupling to the ink motion	◆ IJ06
	pivot. This motion is suitable where	net linear force on the		
	there are opposite forces applied to	paddle is zero		
	opposite sides of the paddle, e.g.	 ◆ Small chip area 		
	Lorenz force.	requirements		
Straighten	The actuator is normally bent, and	 Can be used with shape 	 Requires careful balance of stresses to 	◆ IJ26, IJ32
	straightens when energized.	memory alloys where the	ensure that the quiescent bend is	
		austenic phase is planar	accurate	
Double bend	The actuator bends in one direction	 One actuator can be used to 	 Difficult to make the drops ejected by 	 ◆ IJ36, IJ37, IJ38
	when one element is energized, and	power two nozzles.	both bend directions identical.	
	bends the other way when another	 Reduced chip size. 	 A small efficiency loss compared to 	
	element is energized.	 Not sensitive to ambient 	equivalent single bend actuators.	
		temperature		
Shear	Energizing the actuator causes a	 Can increase the effective 	◆ Not readily applicable to other actuator	 ◆ 1985 Fishbeck USP
	shear motion in the actuator material.	travel of piezoelectric	mechanisms	4,584,590
		actuators		
Radial	The actuator squeezes an ink	 Relatively easy to fabricate 	 ◆ High force required 	◆ 1970 Zoltan USP
constriction	reservoir, forcing ink from a	single nozzles from glass	◆ Inefficient	3,683,212
	constricted nozzle.	tubing as macroscopic	◆ Difficult to integrate with VLSI	
		structures	processes	
Coil / uncoil	A coiled actuator uncoils or coils	◆ Easy to fabricate as a planar	◆ Difficult to fabricate for non-planar	 IJ17, IJ21, IJ34, IJ35
	more tightly. The motion of the free	VLSI process	devices	
	end of the actuator ejects the ink.	 ◆ Small area required, 	 ◆ Poor out-of-plane stiffness 	
		therefore low cost		
Вом	The actuator bows (or buckles) in the	 Can increase the speed of 	 Maximum travel is constrained 	+ IJ16, IJ18, IJ27
	middle when energized.	travel	◆ High force required	
		 ◆ Mechanically rigid 		
Push-Pull	Two actuators control a shutter. One	 ◆ The structure is pinned at 	 ♦ Not readily suitable for inkjets which 	+ IJ18
	actuator pulls the shutter, and the	both ends, so has a high	directly push the ink	
	other pushes it.	out-of-plane rigidity		

Curl inwards	A set of actuators curl inwards to reduce the volume of ink that they enclose.	 Good fluid flow to the region behind the actuator increases efficiency 	♦ Design complexity	 IJ20, IJ42
Curl outwards	A set of actuators curl outwards, pressurizing ink in a chamber surrounding the actuators, and expelling ink from a nozzle in the chamber.	Relatively simple construction	• Relatively large chip area	◆ IJ43
Iris	Multiple vanes enclose a volume of ink. These simultaneously rotate, reducing the volume between the vanes.	◆ High efficiency◆ Small chip area	 High fabrication complexity Not suitable for pigmented inks 	• 1122
Acoustic vibration	The actuator vibrates at a high frequency.	 ◆ The actuator can be physically distant from the ink 	 Large area required for efficient operation at useful frequencies Acoustic coupling and crosstalk Complex drive circuitry Poor control of drop volume and position 	 1993 Hadimioglu et al, EUP 550,192 1993 Elrod et al, EUP 572,220
None	In various ink jet designs the actuator does not move.	◆ No moving parts	 Various other tradeoffs are required to eliminate moving parts 	 Silverbrook, EP 0771 658 A2 and related patent applications Tone-jet

Nozzle Refill Method

Nozzle refill method	Description	Advantages	Disadvantages	Examples
Surface tension	After the actuator is energized, it typically returns rapidly to its normal position. This rapid return sucks in air through the nozzle opening. The ink surface tension at the nozzle then exerts a small force restoring the meniscus to a minimum area.	 Fabrication simplicity Operational simplicity 	 Low speed Surface tension force relatively small compared to actuator force Long refill time usually dominates the total repetition rate 	 Thermal inkjet Piezoelectric inkjet IJ01-IJ07, IJ10-IJ14 IJ16, IJ20, IJ22-IJ45
Shuttered oscillating ink pressure	Ink to the nozzle chamber is provided at a pressure that oscillates at twice the drop ejection frequency. When a drop is to be ejected, the shutter is opened for 3 half cycles: drop ejection, actuator return, and refill.	 High speed Low actuator energy, as the actuator need only open or close the shutter, instead of ejecting the ink drop 	 Requires common ink pressure oscillator May not be suitable for pigmented inks 	♦ 1108, 1113, 1115, 1117 ♦ 1118, 1119, 1121
Refill actuator	After the main actuator has ejected a drop a second (refill) actuator is energized. The refill actuator pushes ink into the nozzle chamber. The refill actuator returns slowly, to prevent its return from emptying the chamber again.	 High speed, as the nozzle is actively refilled 	Requires two independent actuators per nozzle	• IJ09
Positive ink pressure	The ink is held a slight positive pressure. After the ink drop is ejected, the nozzle chamber fills quickly as surface tension and ink pressure both operate to refill the nozzle.	 High refill rate, therefore a high drop repetition rate is possible. 	 Surface spill must be prevented Highly hydrophobic print head surfaces are required 	 Silverbrook, EP 0771 658 A2 and related patent applications Alternative for: 1101-1107, 1110-1114 1116, 1120, 1122-1145

METHOD OF RESTRICTING BACK-FLOW THROUGH INLET

Inlet back-flow	Description	Advantages	Disadvantages	Examples
restriction method			,	
Long inlet	The ink inlet channel to the nozzle	 Design simplicity 	◆ Restricts refill rate	 ◆ Thermal inkjet
channel	chamber is made long and relatively	 Operational simplicity 	 May result in a relatively large chip 	 Piezoelectric inkjet
	narrow, relying on viscous drag to	 Reduces crosstalk 	area	♦ IJ42, IJ43
	reduce inlet back-flow.		 ♦ Only partially effective 	
Positive ink	The ink is under a positive pressure,	 ◆ Drop selection and 	 Requires a method (such as a nozzle 	◆ Silverbrook, EP 0771
pressure	so that in the quiescent state some of	separation forces can be	rim or effective hydrophobizing, or	658 A2 and related
	the ink drop already protrudes from	reduced	both) to prevent flooding of the	patent applications
	the nozzle.	 Fast refill time 	ejection surface of the print head.	 Possible operation of
	This reduces the pressure in the			the following:
	nozzle chamber which is required to			 ◆ IJ01-IJ07, IJ09-IJ12
	eject a certain volume of ink. The			 ◆ IJ14, IJ16, IJ20, IJ22,
	reduction in chamber pressure results			◆ IJ23-IJ34, IJ36- IJ41
	in a reduction in ink pushed out			◆ IJ44
	through the inlet.			
Baffle	One or more baffles are placed in the	 ◆ The refill rate is not as 	◆ Design complexity	♦ HP Thermal Ink Jet
	inlet ink flow. When the actuator is	restricted as the long inlet	 May increase fabrication complexity 	◆ Tektronix
	energized, the rapid ink movement	method.	(e.g. Tektronix hot melt Piezoelectric	piezoelectric ink jet
	creates eddies which restrict the flow	 ◆ Reduces crosstalk 	print heads).	
	through the inlet. The slower refill			
	process is unrestricted, and does not			
	result in eddies.			
Flexible flap	In this method recently disclosed by	 ◆ Significantly reduces back- 	◆ Not applicable to most inkjet	◆ Canon
restricts inlet	Canon, the expanding actuator	flow for edge-shooter	configurations	
	(bubble) pushes on a flexible flap	thermal ink jet devices	 ◆ Increased fabrication complexity 	
	that restricts the inlet.		 Inelastic deformation of polymer flap 	
			results in creep over extended use	

Inlet filter	A filter is located between the ink	• Additional advantage of ink	◆ Restricts refill rate	7011 ACIT CITT AOIT 4
	inlet and the nozzle chamber. The filter has a multitude of small holes or slots, restricting ink flow. The	filtration In filter may be fabricated with no additional process	May result in complex construction	• 1129, 1130
	Inter also removes particles which may block the nozzle.	steps		
Small inlet	The ink inlet channel to the nozzle	◆ Design simplicity	• Restricts refill rate	 IJ02, IJ37, IJ44
nozzle	cross section than that of the nozzle,		 May result in a relatively large chip area 	
	resulting in easier ink egress out of the nozzle than out of the inlet.		 ♦ Only partially effective 	
Inlet shutter	A secondary actuator controls the	◆ Increases speed of the ink-	◆ Requires separate refill actuator and	60∏ ◆
	position of a shutter, closing off the ink inlet when the main actuator is	Jet print head operation	drive circuit	
	energized.			
The inlet is	The method avoids the problem of	Back-flow problem is eliminated	• Requires careful design to minimize	♦ IJ01, IJ03, 1J05, IJ06
the ink-	pushing surface of the actuator		include pressure belling the pagnic	◆ IJU', IJIO, IJII, IJI4 ◆ IJI6, IJ22, IJ23, IJ25
pushing	between the inlet and the nozzle.			 IJ28, IJ31, IJ32, IJ33
D 00 100 100 100 100 100 100 100 100 100	•			 IJ34, IJ35, IJ36, IJ39
				◆ IJ40, IJ41
Part of the actuator	The actuator and a wall of the ink chamber are arranged so that the	◆ Significant reductions in back-flow can be achieved	 Small increase in fabrication complexity 	 1J07, IJ20, IJ26, IJ38
moves to shut	motion of the actuator closes off the	 ◆ Compact designs possible 	•	
Nozzle	In come confirmations of int is	▲ Int hoot flow archieve in	Nonce de de la	* C:1tt. CD 0221
actuator does	there is no expansion or movement	eliminated	actuation	♦ Silverbrook, EF 0771 658 A2 and related
not result in	of an actuator which may cause ink			patent applications
ink back-flow	back-flow through the inlet.			◆ Valve-jet
				◆ Tone-jet
				◆ IJ08, IJ13, IJ15, IJ17
				◆ IJ18, IJ19, IJ21

NOZZLE CLEARING METHOD

Nozzla	Docorintion			
Clearing		Advantages	Uisadvantages	Examples
Normal nozzle firing	All of the nozzles are fired periodically, before the ink has a chance to dry. When not in use the nozzles are sealed (capped) against air.	• No added complexity on the print head	 May not be sufficient to displace dried ink 	 Most ink jet systems 101-1107, 1109-1112 1114, 1116, 1120, 1122 1123-1134, 1136-1145
	The nozzle firing is usually performed during a special clearing cycle, after first moving the print head to a cleaning station.			
Extra power to ink heater	In systems which heat the ink, but do not boil it under normal situations, nozzle clearing can be achieved by over-powering the heater and boiling ink at the nozzle.	 Can be highly effective if the heater is adjacent to the nozzle 	 Requires higher drive voltage for clearing May require larger drive transistors 	 Silverbrook, EP 0771 658 A2 and related patent applications
Rapid succession of actuator pulses	The actuator is fired in rapid succession. In some configurations, this may cause heat build-up at the nozzle which boils the ink, clearing the nozzle. In other situations, it may cause sufficient vibrations to dislodge clogged nozzles.	 Does not require extra drive circuits on the print head Can be readily controlled and initiated by digital logic 	 Effectiveness depends substantially upon the configuration of the inkjet nozzle 	 May be used with: 1101-1107, 1109- 1111 1114, 1116, 1120, 1122 1123-1125, 1127-1134 1136-1145
Extra power to ink pushing actuator	Where an actuator is not normally driven to the limit of its motion, nozzle clearing may be assisted by providing an enhanced drive signal to the actuator.	 A simple solution where applicable 	 Not suitable where there is a hard limit to actuator movement 	 May be used with: 103, 1109, 1116, 1120 1123, 1124, 1125, 1127 1129, 1130, 1131, 1132 1139, 1140, 1141, 1142 1143, 1144, 1145

Acoustic resonance	An ultrasonic wave is applied to the ink chamber. This wave is of an	◆ A high nozzle clearing capability can be achieved	◆ High implementation cost if system does not already include an acoustic	◆ 1J08, 1J13, 1J15, 1J17 ◆ 1J18, 1J19, 1J21
	appropriate amplitude and frequency to cause sufficient force at the nozzle to clear blockages. This is easiest to achieve if the ultrasonic wave is at a resonant frequency of the ink cavity.	 May be implemented at very low cost in systems which already include acoustic actuators 	actuator	170, 610, 610
Nozzle clearing plate	A microfabricated plate is pushed against the nozzles. The plate has a post for every nozzle. The array of posts	♦ Can clear severely clogged nozzles	 Accurate mechanical alignment is required Moving parts are required There is risk of damage to the nozzles Accurate fabrication is required 	• Silverbrook, EP 0771 658 A2 and related patent applications
Ink pressure pulse	The pressure of the ink is temporarily increased so that ink streams from all of the nozzles. This may be used in conjunction with actuator energizing.	 May be effective where other methods cannot be used 	 Requires pressure pump or other pressure actuator Expensive Wasteful of ink 	 ◆ May be used with all IJ series ink jets
Print head wiper	A flexible 'blade' is wiped across the print head surface. The blade is usually fabricated from a flexible polymer, e.g. rubber or synthetic elastomer.	 Effective for planar print head surfaces Low cost 	 Difficult to use if print head surface is non-planar or very fragile Requires mechanical parts Blade can wear out in high volume print systems 	 ◆ Many ink jet systems
Separate ink boiling heater	A separate heater is provided at the nozzle although the normal drop eection mechanism does not require it. The heaters do not require individual drive circuits, as many nozzles can be cleared simultaneously, and no imaging is required.	 Can be effective where other nozzle clearing methods cannot be used Can be implemented at no additional cost in some inkjet configurations 	 Fabrication complexity 	• Can be used with many IJ series ink jets

NOZZLE PLATE CONSTRUCTION

Nozzle plate construction	Description	Advantages	Disadvantages	Examples
Electrotormed	A nozzle plate is separately	Fabrication simplicity	 High temperatures and pressures are 	 Hewlett Packard
IIICKE!	rabricated from electroformed nickel,		required to bond nozzle plate	Inermal Inkjet
	and bonded to the print head chip.		 ◆ Minimum thickness constraints 	
			 ◆ Differential thermal expansion 	
Laser ablated	Individual nozzle holes are ablated	 ♦ No masks required 	◆ Each hole must be individually formed	 Canon Bubblejet
or drilled	by an intense UV laser in a nozzle	 ◆ Can be quite fast 	 ◆ Special equipment required 	♦ 1988 Sercel et al.,
polymer	plate, which is typically a polymer	 ◆ Some control over nozzle 	 Slow where there are many thousands 	SPIE, Vol. 998
	such as polyimide or polysulphone	profile is possible	of nozzles per print head	Excimer Beam
		◆ Equipment required is	 May produce thin burrs at exit holes 	Applications, pp. 76-
		relatively low cost		83
				 ◆ 1993 Watanabe et al.,
				USP 5,208,604
Silicon micro-	A separate nozzle plate is	 High accuracy is attainable 	 ◆ Two part construction 	◆ K. Bean, IEEE
machined	micromachined from single crystal		◆ High cost	Transactions on
	silicon, and bonded to the print head		◆ Requires precision alignment	Electron Devices,
	wafer.		• Nozzles may be closged by adhesive	Vol. ED-25, No. 10,
			a realization (a maggarage (mill comment)	1978, pp 1185-1195
				 ◆ Xerox 1990 Hawkins
				et al., USP 4,899,181
Glass	Fine glass capillaries are drawn from	 No expensive equipment 	◆ Very small nozzle sizes are difficult to	◆ 1970 Zoltan USP
capillaries	glass tubing. This method has been	required	form	3,683,212
	used for making individual nozzles,	 Simple to make single 	 ♦ Not suited for mass production 	
	but is difficult to use for bulk	nozzles		
	manufacturing of print heads with			
	thousands of nozzles.			

ed techniques. Nozzles are etched in the nozzle plate using VLSI lithography and etching. Ses The nozzle plate is a buried etch stop in the wafer. Nozzle chambers are etched in the front of the wafer, and the wafer is thinned from the back side. Nozzles are then etched in the etch stop layer. Various methods have been tried to eliminate the nozzles entirely, to prevent nozzle clogging. These include thermal bubble mechanisms and acoustic lens mechanisms and acoustic lens mechanisms. There is no nozzle plate. Slit The elimination of nozzle holes and replacement by a slit encompassing many actuator positions reduces	The nozzle plate is deposited as a → High accuracy (<1 μm)	◆ Requires sacrificial layer under the	◆ Silverbrook, EP 0771
techniques. Nozzles are etched in the nozzle plate using VLSI lithography and etching. Ses The nozzle plate is a buried etch stop in the wafer. Nozzle chambers are etched in the front of the wafer, and the wafer is thinned from the back side. Nozzles are then etched in the etch stop layer. Various methods have been tried to eliminate the nozzles entirely, to prevent nozzle clogging. These include thermal bubble mechanisms and acoustic lens mechanisms and acoustic lens mechanisms. Each drop ejector has a trough through which a paddle moves. There is no nozzle plate. Slit The elimination of nozzle holes and replacement by a slit encompassing many actuator positions reduces	•	nozzle plate to form the nozzle	658 A2 and related
nozzle plate using VLSI lithography aphic and etching. The nozzle plate is a buried etch stop in the wafer. Nozzle chambers are etched in the front of the wafer, and the wafer is thinned from the back side. Nozzles are then etched in the etch stop layer. Various methods have been tried to eliminate the nozzles entirely, to prevent nozzle clogging. These include thermal bubble mechanisms and acoustic lens mechanisms and acoustic lens mechanisms. Each drop ejector has a trough through which a paddle moves. There is no nozzle plate. Slit The elimination of nozzle holes and replacement by a slit encompassing many actuator positions reduces	•	chamber	patent applications
aphic and etching. ses The nozzle plate is a buried etch stop in the wafer. Nozzle chambers are etched in the front of the wafer, and the wafer is thinned from the back side. Nozzles are then etched in the etch stop layer. Various methods have been tried to eliminate the nozzles entirely, to prevent nozzle clogging. These include thermal bubble mechanisms and acoustic lens mechanisms and acoustic lens mechanisms. Each drop ejector has a trough through which a paddle moves. There is no nozzle plate. Slit The elimination of nozzle holes and replacement by a slit encompassing many actuator positions reduces	•	 Surface may be fragile to the touch 	◆ IJ01, IJ02, IJ04, IJ11
The nozzle plate is a buried etch stop in the wafer. Nozzle chambers are etched in the front of the wafer, and the wafer is thinned from the back side. Nozzles are then etched in the etch stop layer. Various methods have been tried to eliminate the nozzles entirely, to prevent nozzle clogging. These include thermal bubble mechanisms and acoustic lens mechanisms and acoustic lens mechanisms. Each drop ejector has a trough through which a paddle moves. There is no nozzle plate. The elimination of nozzle holes and replacement by a slit encompassing many actuator positions reduces	pesn		◆ IJ12, IJ17, IJ18, IJ20
thic, The nozzle plate is a buried etch stop in the wafer. Nozzle chambers are etched in the front of the wafer, and the wafer is thinned from the back side. Nozzles are then etched in the etch stop layer. Various methods have been tried to eliminate the nozzles entirely, to prevent nozzle clogging. These include thermal bubble mechanisms and acoustic lens mechanisms Each drop ejector has a trough through which a paddle moves. There is no nozzle plate. There is no nozzle plate. The elimination of nozzle holes and replacement by a slit encompassing many actuator positions reduces			 1122, 1124, 1127, 1128
thic, The nozzle plate is a buried etch stop in the wafer. Nozzle chambers are etched in the front of the wafer, and the wafer is thinned from the back side. Nozzles are then etched in the etch stop layer. Various methods have been tried to eliminate the nozzles entirely, to prevent nozzle clogging. These include thermal bubble mechanisms and acoustic lens mechanisms and acoustic lens mechanisms. Each drop ejector has a trough through which a paddle moves. There is no nozzle plate. Slit The elimination of nozzle holes and replacement by a slit encompassing many actuator positions reduces			◆ 1J29, 1J30, IJ31, IJ32
thic, The nozzle plate is a buried etch stop in the wafer. Nozzle chambers are etched in the front of the wafer, and the wafer is thinned from the back side. Nozzles are then etched in the etch stop layer. Various methods have been tried to eliminate the nozzles entirely, to prevent nozzle clogging. These include thermal bubble mechanisms and acoustic lens mechanisms Each drop ejector has a trough through which a paddle moves. There is no nozzle plate. There is no nozzle plate. The elimination of nozzle holes and replacement by a slit encompassing many actuator positions reduces			◆ 1J33, IJ34, IJ36, IJ37
thic, The nozzle plate is a buried etch stop in the wafer. Nozzle chambers are etched in the front of the wafer, and the wafer is thinned from the back side. Nozzles are then etched in the etch stop layer. Various methods have been tried to eliminate the nozzles entirely, to prevent nozzle clogging. These include thermal bubble mechanisms and acoustic lens mechanisms and acoustic lens mechanisms. Each drop ejector has a trough through which a paddle moves. There is no nozzle plate. The elimination of nozzle holes and replacement by a slit encompassing many actuator positions reduces			◆ 1J38, 1J39, 1J40, 1J41
thic, The nozzle plate is a buried etch stop in the wafer. Nozzle chambers are etched in the front of the wafer, and the wafer is thinned from the back side. Nozzles are then etched in the etch stop layer. Various methods have been tried to eliminate the nozzles entirely, to prevent nozzle clogging. These include thermal bubble mechanisms and acoustic lens mechanisms and acoustic lens mechanisms. Each drop ejector has a trough through which a paddle moves. There is no nozzle plate. Slit The elimination of nozzle holes and replacement by a slit encompassing many actuator positions reduces			◆ 1J42, 1J43, IJ44
in the wafer. Nozzle chambers are etched in the front of the wafer, and the wafer is thinned from the back side. Nozzles are then etched in the etch stop layer. Various methods have been tried to eliminate the nozzles entirely, to prevent nozzle clogging. These include thermal bubble mechanisms and acoustic lens mechanisms Each drop ejector has a trough through which a paddle moves. There is no nozzle plate. There is no nozzle plate. The elimination of nozzle holes and replacement by a slit encompassing many actuator positions reduces	•	 Requires long etch times 	◆ 1J03, 1J05, 1J06, 1J07
the wafer is thinned from the back side. Nozzles are then etched in the etch stop layer. Various methods have been tried to eliminate the nozzles entirely, to prevent nozzle clogging. These include thermal bubble mechanisms and acoustic lens mechanisms. Each drop ejector has a trough through which a paddle moves. There is no nozzle plate. Slit The elimination of nozzle holes and replacement by a slit encompassing many actuator positions reduces	•	 Requires a support wafer 	◆ IJ08, IJ09, IJ10, IJ13
side. Nozzles are then etched in the etch stop layer. Various methods have been tried to eliminate the nozzles entirely, to prevent nozzle clogging. These include thermal bubble mechanisms and acoustic lens mechanisms. Each drop ejector has a trough through which a paddle moves. There is no nozzle plate. The elimination of nozzle holes and replacement by a slit encompassing many actuator positions reduces	•		♦ IJ14, IJ15, IJ16, IJ19
etch stop layer. Various methods have been tried to eliminate the nozzles entirely, to prevent nozzle clogging. These include thermal bubble mechanisms and acoustic lens mechanisms and acoustic lens mechanisms. Each drop ejector has a trough through which a paddle moves. There is no nozzle plate. The elimination of nozzle holes and replacement by a slit encompassing many actuator positions reduces	om the back No differential expansion		◆ IJ21, IJ23, IJ25, IJ26
Various methods have been tried to eliminate the nozzles entirely, to prevent nozzle clogging. These include thermal bubble mechanisms and acoustic lens mechanisms and acoustic lens mechanisms. Each drop ejector has a trough through which a paddle moves. There is no nozzle plate. The elimination of nozzle holes and replacement by a slit encompassing many actuator positions reduces	מבונים ווו חוב		
eliminate the nozzles entirely, to prevent nozzle clogging. These include thermal bubble mechanisms and acoustic lens mechanisms. Each drop ejector has a trough through which a paddle moves. There is no nozzle plate. The elimination of nozzle holes and replacement by a slit encompassing many actuator positions reduces	-	◆ Difficult to control drop position	♦ Ricoh 1995 Sekiya et
prevent nozzle clogging. These include thermal bubble mechanisms and acoustic lens mechanisms Each drop ejector has a trough through which a paddle moves. There is no nozzle plate. The elimination of nozzle holes and replacement by a slit encompassing many actuator positions reduces		accurately	al USP 5,412,413
include thermal bubble mechanisms and acoustic lens mechanisms Each drop ejector has a trough through which a paddle moves. There is no nozzle plate. The elimination of nozzle holes and replacement by a slit encompassing many actuator positions reduces	lg. These	 Crosstalk problems 	◆ 1993 Hadimioglu et
and acoustic lens mechanisms Each drop ejector has a trough through which a paddle moves. There is no nozzle plate. Slit The elimination of nozzle holes and replacement by a slit encompassing many actuator positions reduces	mechanisms		al EUP 550,192
Each drop ejector has a trough through which a paddle moves. There is no nozzle plate. Slit The elimination of nozzle holes and replacement by a slit encompassing many actuator positions reduces	. sanisms		 1993 Elrod et al EUP 572.220
through which a paddle moves. There is no nozzle plate. The elimination of nozzle holes and replacement by a slit encompassing many actuator positions reduces	•	 Drop firing direction is sensitive to 	+ IJ35
The elimination of nozzle holes and replacement by a slit encompassing many actuator positions reduces		wicking.	
replacement by a slit encompassing many actuator positions reduces	-	◆ Difficult to control drop position	♦ 1989 Saito et al USP
		accurately	4,799,068
nozzle clogging, but increases	is reduces icreases	Crosstalk problems	
crosstalk due to ink surface waves	face waves		

DROP EJECTION DIRECTION

Ejection	Description	Advantages	Disadvantages	Examples
Edge ('edge shooter')	Ink flow is along the surface of the chip, and ink drops are ejected from the chip edge.	 Simple construction No silicon etching required Good heat sinking via substrate Mechanically strong Ease of chip handing 	 Nozzles limited to edge High resolution is difficult Fast color printing requires one print head per color 	 Canon Bubblejet 1979 Endo et al GB-patent 2,007,162 Xerox heater-in-pit 1990 Hawkins et al USP 4,899,181 Tone-iet
Surface ('roof shooter')	Ink flow is along the surface of the chip, and ink drops are ejected from the chip surface, normal to the plane of the chip.	 No bulk silicon etching required Silicon can make an effective heat sink Mechanical strength 	Maximum ink flow is severely restricted	 ◆ Hewlett-Packard TIJ 1982 Vaught et al USP 4,490,728 ◆ 1J02, IJ11, IJ12, IJ20 ◆ IJ22
Through chip, forward ('up shooter')	Ink flow is through the chip, and ink drops are ejected from the front surface of the chip.	 High ink flow Suitable for pagewidth print High nozzle packing density therefore low manufacturing cost 	• Requires bulk silicon etching	 Silverbrook, EP 0771 658 A2 and related patent applications IJ04, IJ17, IJ18, IJ24 IJ27-IJ45
Through chip, reverse ('down shooter')	Ink flow is through the chip, and ink drops are ejected from the rear surface of the chip.	 High ink flow Suitable for pagewidth print High nozzle packing density therefore low manufacturing cost 	 Requires wafer thinning Requires special handling during manufacture 	 101, 1103, 1105, 1106 107, 1108, 1109, 1110 1113, 1114, 1115, 1116 1119, 1121, 1123, 1125 1126
Through actuator	Ink flow is through the actuator, which is not fabricated as part of the same substrate as the drive transistors.	 Suitable for piezoelectric print heads 	 Pagewidth print heads require several thousand connections to drive circuits Cannot be manufactured in standard CMOS fabs Complex assembly required 	Epson Stylus Tektronix hot melt piezoelectric ink jets

INK TYPE

Ink type	Description	Advantages	Disadvantages	Examples
Aqueous, dye	Water based ink which typically contains: water, dye, surfactant, humectant, and biocide. Modern ink dyes have high waterfastness, light fastness	 Environmentally friendly No odor 	 Slow drying Corrosive Bleeds on paper May strikethrough Cockles paper 	 Most existing inkjets All IJ series ink jets Silverbrook, EP 0771 658 A2 and related patent applications
Aqueous, pigment	Water based ink which typically contains: water, pigment, surfactant, humectant, and biocide. Pigments have an advantage in reduced bleed, wicking and strikethrough.	 Environmentally friendly No odor Reduced bleed Reduced wicking Reduced strikethrough 	 Slow drying Corrosive Pigment may clog nozzles Pigment may clog actuator mechanisms Cockles paper 	 102, 104, 1121, 1126 1127, 1130 Silverbrook, EP 0771 658 A2 and related patent applications Piezoelectric ink-jets Thermal ink jets (with significant restrictions)
Methyl Ethyl Ketone (MEK)	MEK is a highly volatile solvent used for industrial printing on difficult surfaces such as aluminum cans.	 Very fast drying Prints on various substrates such as metals and plastics 	OdorousFlammable	 ◆ All IJ series ink jets
Alcohol (ethanol, 2- butanol, and others)	Alcohol based inks can be used where the printer must operate at temperatures below the freezing point of water. An example of this is in-camera consumer photographic printing.	 Fast drying Operates at sub-freezing temperatures Reduced paper cockle Low cost 	 Slight odor Flammable 	◆ All IJ series ink jets

Phase change (hot melt)	The ink is solid at room temperature, and is melted in the print head before jetting. Hot melt inks are usually wax based, with a melting point around 80 °C. After jetting the ink freezes almost instantly upon contacting the print medium or a transfer roller.	 No drying time- ink instantly freezes on the print medium Almost any print medium can be used No paper cockle occurs No wicking occurs No bleed occurs No strikethrough occurs 	 High viscosity Printed ink typically has a 'waxy' feel Printed pages may 'block' Ink temperature may be above the curie point of permanent magnets Ink heaters consume power Long warm-up time 	 Tektronix hot melt piezoelectric ink jets 1989 Nowak USP 4,820,346 All IJ series ink jets
ĪĪ	Oil based inks are extensively used in offset printing. They have advantages in improved characteristics on paper (especially no wicking or cockle). Oil soluble dies and pigments are required.	 High solubility medium for some dyes Does not cockle paper Does not wick through paper 	 High viscosity: this is a significant limitation for use in inkjets, which usually require a low viscosity. Some short chain and multi-branched oils have a sufficiently low viscosity. Slow drying 	• All IJ series ink jets
Microemulsion	A microemulsion is a stable, self forming emulsion of oil, water, and surfactant. The characteristic drop size is less than 100 nm, and is determined by the preferred curvature of the surfactant.	 Stops ink bleed High dye solubility Water, oil, and amphiphilic soluble dies can be used Can stabilize pigment suspensions 	 Viscosity higher than water Cost is slightly higher than water based ink High surfactant concentration required (around 5%) 	 All IJ series ink jets

Ink Jet Printing

A large number of new forms of ink jet printers have been developed to facilitate alternative ink jet technologies for the image processing and data distribution system. Various combinations of ink jet devices can be included in printer devices incorporated as part of the present invention. Australian Provisional Patent Applications relating to these ink jets which are specifically incorporated by cross reference include:

Australian Provisional Number	Filing Date	Title
PO8066	15-Jul-97	Image Creation Method and Apparatus (IJ01)
PO8072	15-Jul-97	Image Creation Method and Apparatus (IJ02)
PO8040	15-Jul-97	Image Creation Method and Apparatus (IJ03)
PO8071	15-Jul-97	Image Creation Method and Apparatus (IJ04)
PO8047	15-Jul-97	Image Creation Method and Apparatus (IJ05)
PO8035	15-Jul-97	Image Creation Method and Apparatus (IJ06)
PO8044	15-Jul-97	Image Creation Method and Apparatus (IJ07)
PO8063	15-Jul-97	Image Creation Method and Apparatus (IJ08)
PO8057	15-Jul-97	Image Creation Method and Apparatus (IJ09)
PO8056	15-Jul-97	Image Creation Method and Apparatus (IJ10)
PO8069	15-Jul-97	Image Creation Method and Apparatus (IJ11)
PO8049	15-Jul-97	Image Creation Method and Apparatus (IJ12)
PO8036	15-Jul-97	Image Creation Method and Apparatus (IJ13)
PO8048	15-Jul-97	Image Creation Method and Apparatus (IJ14)
PO8070	15-Jul-97	Image Creation Method and Apparatus (IJ15)
PO8067	15-Jul-97	Image Creation Method and Apparatus (IJ16)
PO8001	15-Jul-97	Image Creation Method and Apparatus (IJ17)
PO8038	15-Jul-97	Image Creation Method and Apparatus (IJ18)
PO8033	15-Jul-97	Image Creation Method and Apparatus (IJ19)
PO8002	15-Jul-97	Image Creation Method and Apparatus (IJ20)
PO8068	15-Jul-97	Image Creation Method and Apparatus (IJ21)
PO8062	15-Jul-97	Image Creation Method and Apparatus (IJ22)
PO8034	15-Jul-97	Image Creation Method and Apparatus (IJ23)
PO8039	15-Jul-97	Image Creation Method and Apparatus (IJ24)
PO8041	15-Jul-97	Image Creation Method and Apparatus (IJ25)
PO8004	15-Jul-97	Image Creation Method and Apparatus (IJ26)

Ink Jet Manufacturing

Further, the present application may utilize advanced semiconductor fabrication techniques in the construction of large arrays of ink jet printers. Suitable manufacturing techniques are described in the following Australian provisional patent specifications incorporated here by cross-reference:

Australian Provisional Number	Filing Date	Title
PO7935	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM01)
PO7936	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM02)
PO7937	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM03)
PO8061	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM04)
PO8054	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM05)
PO8065	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM06)
PO8055	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM07)
PO8053	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM08)
PO8078	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM09)

PO7933	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM10)
PO7950	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM11)
PO7949	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM12)
PO8060	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM13)
PO8059	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM14)
PO8073	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM15)
PO8076	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM16)
PO8075	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM17)
PO8079	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM18)
PO8050	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM19)
PO8052	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM20)
PO7948	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM21)
PO7951	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM22)
PO8074	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM23)
PO7941	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM24)
PO8077	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM25)
PO8058	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM26)
PO8051	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM27)
PO8045	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM28)
PO7952	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM29)
PO8046	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM30)
PO8503 [.]	11-Aug-97	A Method of Manufacture of an Image Creation Apparatus (IJM30a)
PO9390	23-Sep-97	A Method of Manufacture of an Image Creation Apparatus (IJM31)
PO9392	23-Sep-97	A Method of Manufacture of an Image Creation Apparatus (IJM32)
PP0889	12-Dec-97	A Method of Manufacture of an Image Creation Apparatus (IJM35)
PP0887	12-Dec-97	A Method of Manufacture of an Image Creation Apparatus (IJM36)
PP0882	12-Dec-97	A Method of Manufacture of an Image Creation Apparatus (IJM37)
PP0874.	12-Dec-97	A Method of Manufacture of an Image Creation Apparatus (IJM38)
PP1396	19-Jan-98	A Method of Manufacture of an Image Creation Apparatus (IJM39)
PP2591	25-Mar-98	A Method of Manufacture of an Image Creation Apparatus (IJM41)
PP3989	9-Jun-98	A Method of Manufacture of an Image Creation Apparatus (IJM40)
PP3990	9-Jun-98	A Method of Manufacture of an Image Creation Apparatus (IJM42)
PP3986	9-Jun-98	A Method of Manufacture of an Image Creation Apparatus (IJM43)
PP3984	9-Jun-98	A Method of Manufacture of an Image Creation Apparatus (IJM44)
PP3982	9-Jun-98	A Method of Manufacture of an Image Creation Apparatus (IJM45)

Fluid Supply

Further, the present application may utilize an ink delivery system to the ink jet head. Delivery systems relating to the supply of ink to a series of ink jet nozzles are described in the following Australian provisional patent specifications, the disclosure of which are hereby incorporated by cross-reference:

Australian Provisional Number	Filing Date	Title	
PO8003	15-Jul-97	Supply Method and Apparatus (F1)	
PO8005	15-Jul-97	Supply Method and Apparatus (F2)	
PO9404	23-Sep-97	A Device and Method (F3)	

MEMS Technology

Further, the present application may utilize advanced semiconductor microelectromechanical techniques in the construction of large arrays of ink jet printers. Suitable microelectromechanical techniques are described in the following Australian provisional patent specifications incorporated here by cross-reference:

Australian Provisional Number	Filing Date	Title
PO7943	15-Jul-97	A device (MEMS01)
PO8006	15-Jul-97	A device (MEMS02)
PO8007	15-Jul-97	A device (MEMS03)
PO8008.	15-Jul-97	A device (MEMS04)
PO8010	15-Jul-97	A device (MEMS05)
PO801 ¹ 1	15-Jul-97	A device (MEMS06)
PO7947	15-Jul-97	A device (MEMS07)
PO7945	15-Jul-97	A device (MEMS08)
PO7944	15-Jul-97	A device (MEMS09)
PO7946	15-Jul-97	A device (MEMS10)
PO9393	23-Sep-97	A Device and Method (MEMS11)
PP0875	12-Dec-97	A Device (MEMS12)
PP0894	12-Dec-97	A Device and Method (MEMS13)

5

Further, the present application may include the utilization of a disposable camera system such as those described in the following Australian provisional patent specifications incorporated here by cross-reference:

Australian Provisional Number	Filing Date	Title
PP0895	12-Dec-97	An Image Creation Method and Apparatus (IR01)
PP0870	12-Dec-97	A Device and Method (IR02)
PP0869	12-Dec-97.	A Device and Method (IR04)
PP0887	12-Dec-97	Image Creation Method and Apparatus (IR05)
PP0885.	12-Dec-97	An Image Production System (IR06)
PP0884	12-Dec-97	Image Creation Method and Apparatus (IR10)
PP0886	12-Dec-97	Image Creation Method and Apparatus (IR12)
PP0871	12-Dec-97	A Device and Method (IR13)
PP0876	12-Dec-97	An Image Processing Method and Apparatus (IR14)
PP0877	12-Dec-97	A Device and Method (IR16)
PP0878	12-Dec-97	A Device and Method (IR17)
PP0879	12-Dec-97	A Device and Method (IR18)
PP0883	12-Dec-97	A Device and Method (IR19)
PP0880	12-Dec-97	A Device and Method (IR20)
PP0881	12-Dec-97	A Device and Method (IR21)

DotCard Technologies

Further, the present application may include the utilization of a data distribution system such as that described in the following Australian provisional patent specifications incorporated here by cross-reference:

Australian Provisional Number	Filing Date	Title
PP2370	16-Mar-98	Data Processing Method and Apparatus (Dot01)
PP2371	16-Mar-98	Data Processing Method and Apparatus (Dot02)

Artcam Technologies

Further, the present application may include the utilization of camera and data processing techniques such as an Artcam type device as described in the following Australian provisional patent specifications incorporated here by cross-reference:

	Filing Date	Title
Provisional Number		
PO7991	15-Jul-97	Image Processing Method and Apparatus (ART01)
PO8505	11-Aug-97	Image Processing Method and Apparatus (ART01a)
PO7988	15-Jul-97	Image Processing Method and Apparatus (ART02)
PO7993	15-Jul-97	Image Processing Method and Apparatus (ART03)
PO8012	15-Jul-97	Image Processing Method and Apparatus (ART05)
PO8017	15-Jul-97	Image Processing Method and Apparatus (ART06)
PO8014	15-Jul-97	Media Device (ART07)
PO8025	15-Jul-97	Image Processing Method and Apparatus (ART08)
PO8032	15-Jul-97	Image Processing Method and Apparatus (ART09)
PO7999	15-Jul-97	Image Processing Method and Apparatus (ART10)
PO7998	15-Jul-97	Image Processing Method and Apparatus (ART11)
PO8031	15-Jul-97	Image Processing Method and Apparatus (ART12)
PO8030	15-Jul-97	Media Device (ART13)
PO8498	11-Aug-97	Image Processing Method and Apparatus (ART14)
PO7997	15-Jul-97	Media Device (ART15)
PO7979	15-Jul-97	Media Device (ART16)
PO8015	15-Jul-97	Media Device (ART17)
PO7978 ⁻	15-Jul-97	Media Device (ART18)
PO7982	15-Jul-97	Data Processing Method and Apparatus (ART19)
PO7989	15-Jul-97	Data Processing Method and Apparatus (ART20)
PO8019	15-Jul-97	Media Processing Method and Apparatus (ART21)
PO7980	15-Jul-97	Image Processing Method and Apparatus (ART22)
PO7942	15-Jul-97	Image Processing Method and Apparatus (ART23)
PO8018	15-Jul-97	Image Processing Method and Apparatus (ART24).
PO7938	15-Jul-97	Image Processing Method and Apparatus (ART25)
PO8016	15-Jul-97	Image Processing Method and Apparatus (ART26)
PO8024	15-Jul-97	Image Processing Method and Apparatus (ART27)
PO7940	15-Jul-97	Data Processing Method and Apparatus (ART28)
PO7939	15-Jul-97	Data Processing Method and Apparatus (ART29)
PO8501	11-Aug-97	Image Processing Method and Apparatus (ART30)

PO8500	11-Aug-97	Image Processing Method and Apparatus (ART31)
PO7987	15-Jul-97	Data Processing Method and Apparatus (ART32)
PO8022	15-Jul-97	Image Processing Method and Apparatus (ART33)
PO8497	11-Aug-97	Image Processing Method and Apparatus (ART30)
PO8029	15-Jul-97	Sensor Creation Method and Apparatus (ART36)
PO7985	15-Jul-97	Data Processing Method and Apparatus (ART37)
PO8020	15-Jul-97	Data Processing Method and Apparatus (ART38)
PO8023	15-Jul-97	Data Processing Method and Apparatus (ART39)
PO9395	23-Sep-97	Data Processing Method and Apparatus (ART4)
PO8021	15-Jul-97	Data Processing Method and Apparatus (ART40)
PO8504	11-Aug-97	Image Processing Method and Apparatus (ART42)
PO8000	15-Jul-97	Data Processing Method and Apparatus (ART43)
PO7977	15-Jul-97	Data Processing Method and Apparatus (ART44)
PO7934	15-Jul-97	Data Processing Method and Apparatus (ART45)
PO7990-	15-Jul-97	Data Processing Method and Apparatus (ART46)
PO8499	11-Aug-97	Image Processing Method and Apparatus (ART47)
PO8502	11-Aug-97	Image Processing Method and Apparatus (ART48)
PO7981	15-Jul-97	Data Processing Method and Apparatus (ART50)
PO7986	15-Jul-97	Data Processing Method and Apparatus (ART51)
PO7983	15-Jul-97	Data Processing Method and Apparatus (ART52)
PO8026	15-Jul-97	Image Processing Method and Apparatus (ART53)
PO8027	15-Jul-97	Image Processing Method and Apparatus (ART54)
PO8028	15-Jul-97	Image Processing Method and Apparatus (ART56)
PO9394	23-Sep-97	Image Processing Method and Apparatus (ART57)
PO9396	23-Sep-97	Data Processing Method and Apparatus (ART58)
PO9397	23-Sep-97	Data Processing Method and Apparatus (ART59)
PO9398	23-Sep-97	Data Processing Method and Apparatus (ART60).
PO9399	23-Sep-97	Data Processing Method and Apparatus (ART61)
PO9400	23-Sep-97	Data Processing Method and Apparatus (ART62)
PO9401	23-Sep-97	Data Processing Method and Apparatus (ART63)
PO9402	23-Sep-97	Data Processing Method and Apparatus (ART64)
PO9403	23-Sep-97	Data Processing Method and Apparatus (ART65)
PO9405	23-Sep-97	Data Processing Method and Apparatus (ART66)
PP0959	16-Dec-97	A Data Processing Method and Apparatus (ART68)
PP1397	19-Jan-98	A Media Device (ART69)

We Claim:

5

10

1. A camera system for outputting deblurred images, said system comprising:

an image sensor for sensing an image;

a velocity detection means for determining any motion of said image relative to an external environment and to produce a velocity output indicative thereof;

a processor means interconnected to said image sensor and said velocity detection means and adapted to process said sensed image utilising the velocity output so as to deblurr said image and to output said deblurred image.

- 2. A camera system as claimed in claim 1 wherein said processor means is connected to a printer means for immediate output of said deblurred image.
- 3. A camera system as claimed in claim 1 wherein said camera system is a portable handheld camera device.
- 4. A camera system as claimed in claim 1 wherein said velocity detection means comprises an accelerometer.
- 5. A camera system as claimed in claim 4 wherein said accelerometer comprises a mircro-electro mechanical device.

ADD AI

Abstract

A camera system is disclosed having the ability to overcome the effects of motion blur. The camera system includes an image sensor; a velocity detection means such as a MEMS accelerometer for determining any motion of the image relative to an external environment; a processor means interconnected to the image sensor and the velocity detection means and adapted to process the sensed image so as to deblurr the image and to output the deblurred image to a printer means.

5