09/09/2020 Lecture - OH D don't think D'll give you exam questions on this; i) "level of a lest" x is defined as P(Type I error) >x Size of a lest" is exactly P(Type I error) In our example the level was 5% but the size was 7.06% since x = 5% was "unattainable" Of 8/Ho is continuous, then level = size = x. Of its discrete, some sizes won't be altainable If I want a level of x=5% and the size is lower, then I'm "cheating" (We'll see why next class). Ha: 0>00 8/ Ha (Right tail (Left tail) âl Ho · RET -Ha: ++0, (Two tail) - RET what we did in the previous lecture was called a "binomial exact lest of one proportion". Downsides: I you need a binomial PMF calculator and it's lot of work to get the retainment region

	Del XI, X2, Xn we some distribution with mean theorem (CLT) Shows that:
=)	X- M d, N(0,1) means as n gets large, the CDF of the left hand side (1hs) looks more and more (1hs) looks more and more like the CDF of the right hand side (rhs). X ~ N(µ, 0²/n) and T=X,++Xn~N(nµ, n6²)
	Of x_1, \dots, x_n "d Bern (0) and n is "large" then: $\hat{\theta} = \hat{x} \sim N(\theta, \frac{\theta(1-\theta)}{n}) this is a pretty good approximation of the second proximation of the second proximat$
	$\hat{\theta} = \hat{x} \sim N(\theta, \frac{\theta(1-\theta)}{n})$ this is a pretty good approx If θ is not too close to o or 1.
	How to perform an "approximate test"? There are many, many options even for the same DGP. The protocol goes as follows: (1) You think of a "test statistic" that could measure the departure away from Ho.
-	Derive the statistical estimator's approx distribution under Ho, AlHo. 3) Grauge the departure of A from the bulk of the distribution AlHo at level a.

	Type I errors and POWER		
	DGP: X,,, Xn tid Bern(0)		
	11 1 2		
	Ho: 0 = 0.524 = 00 byt Ho: 0= 0.716 = 0a		
		1 11 11 1	
	This is a non-standard setup since	both to and Ha	
	are "point hypotheses". This makes t	he outcome	
	beird: either you retain 0=0.524 or y	ou accept	
	0 = 0.716, But ignore this for now.		
)	\$ Ho~N(0.524,0.112), \$ Ha~N(0.716,0	1.101	
11 8	θ lHo		
	(Prob of AlH. A (Prob of Type I error)		
-	POW	ER	
-			
	0.524 0.636 0.748 0.817 0.88.		
	← RET →.		
	At x = 5%, the 2 value is 1.645 which r	nears the	
	rejection region ends at 8 = 0.524+1	.b45 0.112 = 0.708	
		E	
16	POWER = P(Rejecting HolHa)	Decision.	
	= 1 - P(Retaining Holla)	RET REJ	
	= 1 - P(Type I error) Truth H.		
	Harn H	a. Type Ti	
45	POWER is the probability of proving you	ir theory is level	
-	You want POWER to be LARGE i.e.	near 100'	
_	P(Type 11 error) = P(A Ha E RET) = P(A Ha <	0.708)	
-	= P ((+)+a)-0.716 < 0.708-0.716 - P(25-0.079)		
	(0.101	≈ 47%.	
	⇒ Power ≈ s	537.	