Chap 12 : Suites réelles

I. Généralités

 $\mathbb{R}^{\mathbb{N}} = \{(u_n)_{n \in \mathbb{N}}, \forall n, u_n \in \mathbb{R}\} = \{\text{suites de termes réels}\}$

 $(\mathbb{R}^{\mathbb{N}},+,\times,\cdot)$ est une \mathbb{R} -algèbre : $(\mathbb{R}^{\mathbb{N}},+,\times)$ est un anneau commutatif (non intègre)

et $(\mathbb{R}^{\mathbb{N}},+,\cdot)$ est un \mathbb{R} -espace vectoriel

u est croissante si pour tout $n \in \mathbb{N}, u_n \leq u_{n+1}$

u croissante $\Leftrightarrow (\forall (k,n) \in \mathbb{N}^2, k \leq n \Rightarrow u_k \leq u_n)$

 $u \text{ strict}^{t} \text{ croiss.} \Leftrightarrow (\forall (k, n) \in \mathbb{N}^{2}, k < n \Leftrightarrow u_{k} < u_{n})$

 $(u_n)_{n\in\mathbb{N}}$ est majorée si $\exists M\in\mathbb{R}, \forall n\in\mathbb{N}, u_n\leq M$

 (u_n) est bornée $ssi \exists M \in \mathbb{R}_+, |u_n| \leq M$

 $\mathfrak{G}(\mathbb{R}^{\mathbb{N}}) = \{ u \in \mathbb{R}^{\mathbb{N}} \text{ bornées} \}$

 $(\mathfrak{B}(\mathbb{R}^{\mathbb{N}}),+,\times)$ sous anneau, $(\mathfrak{B}(\mathbb{R}^{\mathbb{N}}),+,\cdot)$ sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$

II. Limites

l est limite de $(u_n)_{n\in\mathbb{N}}$ (en $+\infty$) si : $\forall \varepsilon > 0, \exists N_0 \in \mathbb{N}, \forall n \geq N_0, |u_n - l| \leq \varepsilon$

La limite est unique

(preuve : prendre $\varepsilon = |l_1 - l_2|/3$)

Toute suite convergente est bornée

(preuve : $\varepsilon = 1$, valeurs avant n_0 : borné)

N'utiliser la notation $\lim u_n$ que si on a déjà montré que cette limite existe

 $\mathcal{E}_0 = \{u = (u_n), \lim_{n \to +\infty} u_n = 0\} \text{ est un sous-espace vectoriel} : \forall (u, v) \in \mathcal{E}_0^2, \forall (\alpha, \beta) \in \mathbb{R}, \alpha u + \beta v \in \mathcal{E}_0$

Pour tout $u \in \mathcal{E}_0, v \in \mathfrak{B}(\mathbb{R}^{\mathbb{N}}), (uv) \in \mathcal{E}_0$

 $\lim \lambda u_n = \lambda l$

 $\lim_{n \to +\infty} u_n v_n = l_1 l_2 \qquad \qquad \lim_{n \to +\infty} \frac{1}{u_n} = \frac{1}{l}$

Preuve : utiliser ce qui précède. $n_0 \Rightarrow |u_n - l| \leq \frac{|l|}{2}$ $|u_n| \geq |l| - |u_n - l| \geq \frac{|l|}{2} \Rightarrow \left|\frac{1}{u_n}\right| \leq \frac{2}{|l|}$: borné ...

Si $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ convergentes, et $\forall n, u_n \leq v_n \Rightarrow \lim_{n \to +\infty} u_n \leq \lim_{n \to +\infty} v_n$

(pr:contr.: $l_1 \ge l_2$, $\varepsilon = (l_1 - l_2)/3$)

 $v_n \le u_n \le w_n, v_n$ et $w_n \Longrightarrow$ mêmes limites \Longrightarrow même limite pour u

Les inégalités STRICTES NE PASSENT PAS à la limite

III. Limites infinies

 $\lim u_n = +\infty \Leftrightarrow \forall A > 0, \exists n_0 \in \mathbb{N}, \forall n \ge n_0, u_n \ge A$

Une telle suite n'est pas bornée, ni convergente

 $\lim_{n \to +\infty} u_n = 0^+ \Rightarrow \lim_{n \to +\infty} \frac{1}{u_n} = +\infty \quad \left(\varepsilon = \frac{1}{A}\right)$

 $\lim_{n\to +\infty}u_n=+\infty,\ v\ \text{minor\'ee} \Rightarrow \lim_{n\to +\infty}u_n+v_n=+\infty$

IV. Résultats d'existence de limites

Suite extraite : $v = (u_{\varphi(n)}), \varphi$ strictement croissante ($\Rightarrow \varphi(n) \ge n$)

$$w = (v_{\psi(n)}) = (u_{\varphi \circ \psi(n)})$$

Si $\lim_{n\to +\infty}u_n=l$, alors $\forall \varphi$, $\lim_{n\to +\infty}u_{\varphi(n)}=l$

Moyenne de Césaro :
$$\frac{1}{n+1}\sum_{k=0}^{n}u_k$$
 Si $\lim_{n\to+\infty}u_k=l, \lim_{n\to+\infty}\frac{1}{n+1}\sum_{k=0}^{n}u_k=l$

Si
$$\lim_{n\to+\infty} u_k = l$$
, $\lim_{n\to+\infty} \frac{1}{n+1} \sum_{k=0}^n u_k = l$

Preuve: $\lim finie : séparer la somme : valeurs pour <math>n < N_0$, et valeurs pour $N > n_0$ (epsilon/2 de chaque coté).

Si lim infinie: $A_0 = 2A + 1$

u suite croissante : Soit $\lim u_n = +\infty$

Soit u est bornée et converge vers $\sup\{u_n, n \in \mathbb{N}\}\$

u et v adjacentes si : u croissante, v décroissante, $\lim_{n\to+\infty} u_n - v_n = 0$

u et v adjacentes $\Rightarrow u_n \le v_n$ (preuve par l'absurde), et u et v convergent vers la même limite.

Un segment est un intervalle [a,b] $(a \le b)$

$$(I_n)$$
 suite de segments emboités $\Rightarrow \bigcap_{n \in \mathbb{N}} I_n \neq \emptyset$

Si
$$long(I_n) \to 0$$
, $\bigcap_{n \in \mathbb{N}} I_n = {\alpha}$

Preuve: $a_n \le a_{n+1} \le b_n$ $(a_n) \nearrow maj(b_n) \searrow min, \lim a_n \le \lim b_n$, dble inclusion

Dichotomie : 2 suites réelles (a_n) et (b_n) , division par 2 des intervalles $[a_n,b_n]$ selon la moitié où α se trouve

$$a_n = \frac{E(10^n x)}{10^n}$$
 $b_n = \frac{E(10^n x) + 1}{10^n}$ $\forall n \in \mathbb{N}, a_n \le x \le b_n$ $\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} b_n = x$

$$\forall n \in \mathbb{N}, a_n \leq x \leq b_n$$

$$\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} b_n = x$$

 $\textbf{Preuve}: (a_{\scriptscriptstyle n}) \nearrow : a_{\scriptscriptstyle n+1} - a_{\scriptscriptstyle n} \geq 0 \hspace{0.5cm} (b_{\scriptscriptstyle n}) \searrow : b_{\scriptscriptstyle n+1} - b_{\scriptscriptstyle n} \leq 0$

Ecriture décimale : $u_n = E(10x_n)$ $x_{n+1} = 10x_n - u_{n+1}$ \Rightarrow $\lim_{n \to +\infty} \sum_{k=0}^n \frac{u_k}{10^k} = x$

$$x_{n+1} = 10x_n - u_{n+1}$$

$$\lim_{n \to +\infty} \sum_{k=0}^{n} \frac{u_k}{10^k} = \lambda$$

 $a_n = \sum_{k=0}^{\infty} \frac{u_k}{10^k}$ pour les décimaux : constante égale à 0 à partir d'un rang n₀

Preuve: Récurrence: $x = a_n + 10^n x_n$

Bolzano-Weierstrass : toute suite u bornée admet une sous-suite qui converge

Preuve : dichotomie

V. Relations de comparaison

u est dominée par v ($u_n = O(v_n)$) si $\exists M \in \mathbb{R}_+$ et $N_0 \in \mathbb{N}, \forall n \geq N_0, |u_n| \leq M |v_n|$

$$\begin{split} u_n &= O(v_n) \Leftrightarrow \exists (w_n) \text{ et } n_0 \in \mathbb{N}, (w_n) \text{ born\'ee, } \forall n \geq n_0, u_n = w_n v_n \Leftrightarrow \left(\frac{u_n}{v_n}\right)_n \text{ est born\'ee} \\ u_n &= O(w_n) \qquad v_n = O(w_n) \Rightarrow \alpha u_n + \beta v_n = O(w_n) \\ u_n &= O(v_n) \qquad v_n = O(w_n) \Rightarrow u_n = O(w_n) \end{split}$$

u est négligeable devant v ($u_n = o(v_n)$) si $\forall \varepsilon > 0$, $\exists N_0 \in \mathbb{N}, \forall n \geq N_0, |u_n| \leq \varepsilon |v_n|$

$$u_{n} = o(v_{n}) \Leftrightarrow \exists (\varepsilon_{n}) \text{ et } n_{0} \in \mathbb{N}, \ \forall n \geq n_{0}, u_{n} = \varepsilon_{n} v_{n}, \lim_{n \to +\infty} \varepsilon_{n} = 0 \Leftrightarrow \left(\frac{u_{n}}{v_{n}}\right)_{n} \to 0$$

$$u_{n} = o(v_{n}) \Rightarrow u_{n} = O(v_{n}) \qquad u_{n} = o(1) \Leftrightarrow \lim_{n \to +\infty} u_{n} = 0$$

$$u_{n} = o(v_{n}) \qquad v_{n} = O(w_{n}) \text{ (ou l'inverse)} \Rightarrow u_{n} = o(w_{n})$$

$$u_{n} = o(w_{n}) \qquad v_{n} = o(w_{n}) \Rightarrow \alpha u_{n} + \beta v_{n} = o(w_{n})$$

$$u_n \sim v_n \iff u_n - v_n = o(v_n) \iff \forall n \ge n_n, \ u_n = \alpha_n v_n, \lim_{n \to +\infty} a_n = 0 \iff \lim_{n \to +\infty} \frac{u_n}{v_n} = 0$$

 $\begin{array}{l} \sim \text{ relation d'équivalence compatible avec} \times \text{ et } / \text{ (PAS AVEC} + !) \\ u_n \sim v_n \Rightarrow u_n = O(v_n) \quad v_n = O(u_n) \\ \text{Si } u_n \sim v_n, \ \alpha_n = o(v_n) \Rightarrow (u_n + \alpha_n) \sim v_n \\ u_n = \sum_{j=0}^d a_j n^j \quad \sum_{j=0}^{d-1} a_j n^j = o(n^d) \Rightarrow u_n \sim a_d n^d \\ u_n \sim \alpha \neq 0 \Leftrightarrow \lim_{n \to +\infty} u_n = \alpha \\ \text{(} u_n \sim 0 \Leftrightarrow u_n \text{ est nulle à partir d'un certain rang)} \\ \text{(} \ln n)^\alpha = o(n^\beta) \qquad n^\alpha = o(e^{\alpha n}) \qquad a > 1 : n^\alpha = o(a^n) \qquad a^n = o(n!) \qquad n! = o(n^n) \\ \end{array}$

VI. Suites à valeurs complexes

Pareil, avec modules à la place des valeurs absolues, et sans relation d'ordre. Limites → parties réelles et imaginaires

VII. Compléments

A dense dans $\mathbb{R} \Leftrightarrow \forall y \in \mathbb{R}, \exists (x_n)_{n \in \mathbb{N}} \in A^{\mathbb{N}}, \lim_{n \to \infty} x_n = y$

Suite géométrique :
$$u_{n+1} = au_n$$

$$\sum_{k=1}^{q} a^k = a^p \frac{1 - a^{q-p+1}}{1 - a}$$
 Suite arithmétique : $u_{n+1} = u_n + a$

Suite arithmético-géométrique :
$$u_{n+1} = au_n + b$$

$$f \begin{cases} \mathbb{C} \to \mathbb{C} \\ z \mapsto az + b \end{cases} \text{ similitude directe } \Rightarrow \omega = \frac{b}{1-a}$$

$$f(z) - \omega = a(z - \omega) \quad v_n = u_n - \omega \quad u_{n+1} = av_n \dots$$

Suites homographiques :
$$u_{n+1} = \frac{au_n + b}{cu_n + d}$$
 Point fixe : $cz^2 + (d-a)z - b = 0$

2 racines:
$$v_n = \frac{u_n - \lambda}{u_n - \mu} \Rightarrow g\acute{e}om$$
 1 racine: $\lambda = \frac{a - d}{2c}$ $v_n = \frac{1}{u_n - \lambda}$

Lemme de l'escalier : Si $\lim_{n\to+\infty} u_{n+1} - u_n = h$, alors $\lim_{n\to+\infty} \frac{u_n}{n} = h$