某些特殊概率分布之间的相互变换

杨航锋

1 离散分布的情况下

已知 $rand_n()$ 表示可以均匀产生 $\{1,2,\cdots,n\}$ 之间的离散整数发生器,可以记作 $rand_n()\sim DU(1,n)$ (DU表示离散均匀分布)。现有 $rand_n()$ 怎么构造 $rand_n()$ 呢? 或者,可以先思考稍微简单点的问题怎么通过 $rand_n()$ 构造 $rand_n()$ 呢?很容易想到既然 $rand_n()$ 可以均匀产生 $\{1,2,\cdots,10\}$,那么只需要把大于7的数字过滤掉即可,遵循这个算法可以得到如下代码:

```
def rand_7():
    rand = float("inf")
    while rand > 7:
        rand = rand_10()
    return rand
```

要证明这个算法产生 $rand_7()$ 的正确性,即证明 $p(x=k)=\frac{1}{7}, k\in\{1,2,\cdots,7\}$ 。因为 $rand_10()$ 可能在第一次就产生合格的 k ,也可能第二次才产生合格的 k ,可能在第m次才产生合格的 k ,在这里仅证明 k=1 的情形,其它同理即可。故由概率论和幂级数(等比数列)相关知识可得

$$p(x = 1) = \frac{1}{10} + \frac{3}{10} \times \frac{1}{10} + \dots + (\frac{3}{10})^{m-1} \times \frac{1}{10}$$
$$= \frac{1}{10} \times (1 + \frac{3}{10} + \dots + (\frac{3}{10})^{m-1})$$
$$= \frac{1}{10} \times \frac{1}{1 - \frac{3}{10}}$$
$$= \frac{1}{7}$$

至此证明完毕。根据上面的证明可以得到一个一般性的结论:当 a>b 时, $rand_a()$ 可以实现 $rand_b()$ 。

```
def rand_b():
    rand = float("inf")
    while rand > b:
        rand = rand_a()
    return rand
```

现在再来分析 $rand_{-}7()$ 怎么构造 $rand_{-}10()$,如果能够把 $rand_{-}7()$ 映射到 $rand_{-}t()$ 且 t>10 时就能够利用上述结论解决该问题。构造 $(rand_{-}7()-1)\times 7+rand_{-}7()$,首先分析 $rand_{-}7()-1$ 的取值范围为 $\{0,1,\cdots,6\}$,那么 $rand_{-}7()-1)\times 7$ 的取值范围为 $\{0,7,\cdots,42\}$,而且每个数都只有一种组合得到,所以可以构造映射函数 $rand_{-}49()$,即 $rand_{-}49()=(rand_{-}7()-1)\times 7+rand_{-}7()$ 。故可编写如下代码

```
def rand_10():
    rand = float("inf")
    while rand > 10:
        rand = (rand_7() - 1) * 7 + rand_7() #rand_49()
    return rand
```

上述代码可能有些瑕疵,从概率学的角度来说 rand 有很大的可能性会大于10,因此 while 循环将需要执行多次才能产生符合要求的 rand ,从而可以优化该代码,让 rand 与最接近 49且小于49的10的倍数做比较,于是判断条件可以修改为 $rand \in \{1,2,\cdots,40\}$,然后通过模运算 rand%10+1 映射到 $\{1,2,\cdots,10\}$ 。

```
def rand_10():
    rand = float("inf")
    while rand > 40:
        rand = (rand_7() - 1) * 7 + rand_7()
    return rand % 10 + 1
```

从特殊到一般归纳假设,假设有离散整数发生器 $rand_a()$ 和 $rand_b()$ 且 $a \neq b$,利用 $rand_a()$ 表示 $rand_b()$:

- 1. 如果 a>b 则进入步骤2;否则,构造 $rand_a^2=(rand_a-1)\times a+rand_a$,如果 $a^2< b$ 继续构造 $rand_a^3=(rand_a^2-1)\times a^2+rand_a^2$ 直到 $a^k>b$,此时得到 $rand_a^k$ 记为 $rand_A$;
- 2. 经过步骤1有 a>b 或者 $a^k>b$,利用下面代码构造 $rand_b$

```
def rand_b():
    rand = float("inf")
    while rand > b * (A // b): #表示与最接近A且小于A的b的倍数作比较。
    rand = rand_A()
    return rand % b + 1
```

2 连续分布的情况下

不妨考虑一般化的情况,假设 $rand_ab()\sim U(a,b)$ 、 $rand_cd()\sim U(c,d)$,如何通过 $rand_ab()$ 来构造 $rand_cd()$ 呢?从几何的角度上看,可以把区间 [a,b] 上的点 x ——映射到区间 [c,d] 上,只需要构造线性变换 $f:\frac{x-a}{b-a}\times (d-c)+c$ 即可。如果能够证明 $\vartheta=\frac{rand_ab()-a}{b-a}\times (d-c)+c$ 且 $\vartheta\sim U(c,d)$ 那么也就是构造出了 $rand_ab()$ 到 $rand_cd()$ 之间的映射关系。接下来将证明该结论:

由 $rand_ab() \sim U(a,b)$ 可知其概率密度函数为

$$f_X(x) = \left\{ egin{array}{l} rac{1}{b-a}, & a\leqslant x\leqslant b \ 0 \end{array}
ight.$$

又因为 $artheta = rac{X-a}{b-a} imes (d-c) + c$,故 artheta 的概率分布函数为 $F_{artheta}(heta)$

$$egin{aligned} F_{artheta}(heta) &= p(artheta \leqslant heta) = p\left(rac{d-c}{b-a}X - rac{d-c}{b-a}a + c \leqslant heta
ight) \ &= p\left(X \leqslant rac{b-a}{d-c}(heta-c) + a
ight) \ &= F_X\left(rac{b-a}{d-c}(heta-c) + a
ight) \ &= \int_a^{rac{b-a}{d-c}(heta-c) + a} rac{1}{b-a}dx \ &= rac{ heta}{d-c} - rac{c}{d-c} \end{aligned}$$

其中 $a \leqslant \frac{b-a}{d-c}(\theta-c) + a \leqslant b$,化简即 $c \leqslant \theta \leqslant d$ 。对上式求导得 $f_{\vartheta}(\theta)$

$$f_{artheta}(heta) = \left\{ egin{array}{ll} rac{1}{d-c}, & c \leqslant heta \leqslant d \ 0 \end{array}
ight.$$

至此证明完毕。