Prénom:

3^{ème}

Contrôle n°3

Exercice 1 : *sur 2 points*

Factoriser les expressions suivantes :

$$A = (x+5) (4x-2) - (x+5) (9x-1)$$

$$B = 100x^2 - 60x + 9$$

$$C = 81 - 36x$$

Exercice 2: sur 4 points

Dans cet exercice, on utilise le programme de calcul ci-dessous :

- choisir un nombre x,
- retrancher 3 au double de x,
- élever le résultat au carré,
- retrancher 16 au résultat obtenu.
- 1. Si on choisit 5, quel résultat final obtient-on? Détailler les calculs.
- 2. Indiquer, parmi les expressions suivantes, celle qui décrit le programme de calcul donné :

$$A = 2x - 3^2 - 16$$

$$C = (2x - 3) \times 2 - 16$$

$$E = (2x - 3)^2 - 16$$

$$B = [(x-3) \times 2]^2 - 16$$

$$A = 2x - 3^2 - 16$$
 $C = (2x - 3) \times 2 - 16$ $E = (2x - 3)^2 - 16$
 $B = [(x - 3) \times 2]^2 - 16$ $D = 16 - [2 \times (x - 3)]^2$ $F = (3x - 16)^2 - 2$

$$F = (3x - 16)^2 - 2$$

- 3. Développer et réduire **F**.
- 4. Factoriser E.
- 5. Calculer **A** pour x = 0.

Exercice 3: sur 4 points

On considère la pyramide ABCD de hauteur [AD] telle que AD = 5 cm et de base ABC telle que AB = 4.8 cm; BC = 3.6 cm; CA = 6 cm. (La figure n'est pas aux dimensions.)

- 1/ Démontre que le triangle ABC est rectangle en B.
- 2/ Calcule le volume de cette pyramide.
- 3/ On désire fabriquer de telles pyramides en plâtre. Combien peuton en obtenir avec 1 dm³ de plâtre?

Exercice 4: sur 1,5 point

Calculer la valeur exacte du rayon R d'une sphère dont l'aire est égale à 196 π cm².

Prénom:

Exercice 5: sur 5 points

Le culbuto ci-contre est un jouet pour enfant qui oscille sur une base sphérique.

a) Calculer son volume exact puis en donner l'arrondi au cm³.

$$\underline{Rappel}$$
: Volume du cône : $\underline{\pi R^2 h}$

b) On souhaite peindre en rouge la base sphérique. Calculer **l'aire** de la surface à peindre.

En donner la valeur exacte, puis l'arrondi au cm².

Sachant que 1 L de peinture peut couvrir 5,5 m², combien de culbutos pourra-t-on mettre en peinture avec un pot de 2,5 L?

Exercice 6: sur 4 points

Une boîte de forme parallélépipédique contient trois balles de tennis comme indiqué dans la figure ci contre. Les balles sont en contact avec les côtés de la boîte.

- a) Calculer le diamètre d'une balle.
- **b**) Calculer **le volume** \mathfrak{I}_1 de la boîte.
- c) Calculer le volume \mathfrak{V}_2 des 3 balles. En donner la valeur exacte, puis l'arrondi au mm³.
- d) Calculer le pourcentage, arrondi à l'unité, du volume de la boîte occupé par les balles.

Exercice Bonus:

Montrer que les figures ci-dessous ont la même aire.

Corrigé du contrôle n°3

3^{ème}

Exercice 1:

$$A = (x + 5) (4x - 2) - (x + 5) (9x - 1)$$

$$A = (x + 5) [(4x - 2) - (9x - 1)]$$

$$B = 100x^{2} - 60x + 9$$

$$B = (10x - 3)^{2}$$

$$A = (x + 5) (-5x - 1)$$

$$C = (16x^{2} + 40x + 25) + (x - 7) (4x + 5)$$

$$C = (4x + 5)^{2} + (x - 7) (4x + 5)$$

$$C = (4x + 5) [(4x + 5) + (x - 7)]$$

$$C = (4x + 5) (5x - 2)$$

Exercice 2:

- 1. On obtient alors: 33.
- 2. Le programme de calcul est : $\mathbf{E} = (2x 3)^2 16$.

3.
$$F = (3x - 16)^2 - 2$$

 $F = 9x^2 - 96x + 256 - 2$

$$F = 9x^2 - 96x + 254$$

4.
$$E = (2x-3)^2 - 16$$

 $E = [(2x-3)+4][(2x-3)-4]$
 $E = (2x+1)(2x-7)$

5.
$$D = 16 - [2 \times (-1 - 3)]^2$$

 $D = 16 - (-8)^2$
 $D = 16 - 64$

$$D = -48$$

Exercice 3:

$$A = 125^{2} + 2 \times 125 \times 75 + 75^{2}$$

$$A = (125 + 75)^{2}$$

$$A = 200^{2}$$

$$A = 40 000$$

$$B = 10,1^{2} - 9,9^{2}$$

$$B = (10,1 + 9,9) (10,1 - 9,9)$$

$$B = 20 \times 0,2$$

$$B = 4$$

Exercice 4:

$$4\pi \times R^2 = 196\pi$$
 $R^2 = \frac{196\pi}{4\pi}$ $R^2 = 49$ Le rayon est **7 cm.**

Exercice 5: a)
$$\mathfrak{V} = \frac{\pi \times 10^2 \times 20}{3} + \frac{1}{2} \times \frac{4}{3} \times \pi \times 10^3$$

$$\mathfrak{V} = \frac{2\ 000\ \pi}{3} + \frac{2\ 000\ \pi}{3}$$

$$\mathfrak{V} = \frac{4\ 000\ \pi}{3}$$

$$\mathfrak{V} \approx 4\ 189\ \text{cm}^3$$

Prénom:

b) D'après la question a), les volumes de la demi-boule et du cône sont identiques donc le sable occupe 50 % du volume du culbuto.

c) Aire =
$$\frac{1}{2} \times 4 \pi \times 10^2$$

Aire = 200π cm²

Aire $\approx 628 \text{ cm}^2$

La surface à peindre est d'environ 628 cm².

$$2.5 \times 5.5 \times 10\,000 = 137\,500\,\text{cm}^2$$

On peut couvrir une surface de 137 500 cm² avec 2,5 L de peinture.

$$137\ 500 \div 628 \approx 218$$

On peut donc peindre environ 218 culbutos avec 2,5 L de peinture.

Exercice 6:

a)
$$d = 19.5 \div 3$$
 $d = 6.5$ cm Le diamètre d'une balle est 6.5 cm.

b)
$$\mathfrak{V}_1 = 6.5 \times 6.5 \times 19.5$$
 $\mathfrak{V}_1 = 823.875 \text{ cm}^3$ Le volume \mathfrak{V}_1 de la boîte est 823.875 cm³.

c)
$$\mathfrak{V}_2 = 3 \times \frac{4}{3} \times \pi \times 3{,}25^3$$
 $\mathfrak{V}_2 = 137{,}3125\pi \text{ cm}^3$ $\mathfrak{V}_2 \approx 431{,}380 \text{ cm}^3$

Le volume \mathfrak{V}_2 des 3 balles est environ 431,380 cm³.

d)
$$\frac{431,380 \times 100}{823,875} \approx 52$$
 Les balles occupent environ 52 % du volume de la boîte.