

APPLIED

R: ENVIRONMENTAL

Applied Catalysis B: Environmental 82 (2008) 67-76

www.elsevier.com/locate/apcatb

Kinetic study of photo-oxidation of NH₃ over TiO₂

Seiji Yamazoe, Yutaka Hitomi, Tetsuya Shishido, Tsunehiro Tanaka*

Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan Received 30 October 2007; received in revised form 19 December 2007; accepted 19 December 2007 Available online 11 January 2008

Abstract

Kinetic study was carried out for photo-oxidation of NH₃ (photo-SCO: $4NH_3 + 3O_2 \rightarrow 2N_2 + 6H_2O$) to elucidate the mechanisms of the photo-SCO over anatase and rutile TiO2. The reaction orders of the reactant gases reveal that the photo-SCO activity depends only on the concentration of O2 with either anatase or rutile TiO2. Steady-state kinetics suggests that the rate-determining step is the formation of nitrosoamide species from surface NO species and NH₂ radical. The surface NO species may play an important role in the high activity of the photo-SCO. O₃ anion radical, which is a strong oxidant, was detected only over anatase TiO₂ and the concentration of surface NO species would be increased by O₃ anion radical. This may be the reason why anatase TiO₂ shows higher activity than rutile TiO₂. The photo-SCO activity is enhanced as the reaction temperature increased. 100% NH₃ conversion and 94% N₂ selectivity were achieved at GHSV = $50,000 \, h^{-1}$ at 435 K. This enhancement of the activity at higher reaction temperature is caused by (1) the increase in the surface NO species and (2) the improvement of reactivity between surface NO and NH₂ radical. The SCO activity is moderately high even at low temperature: the Arrhenius activation energy is only 24.4 kJ mol⁻¹. © 2008 Elsevier B.V. All rights reserved.

Keywords: Ammonia oxidation; Kinetics; TiO2; Photocatalyst; SCO

1. Introduction

It is desirable to remove ammonia from exhaust gas and/or waste water in industrial emission source in an environmental point of view. Ammonia can be eliminated by biological treatment, thermal combustion and catalytic oxidation. Recently, selective catalytic oxidation (SCO) of ammonia to nitrogen in the presence of excess oxygen has received much attention because this technique is promising for efficient removal of ammonia from exhaust gas [1-6]. The reaction stoichiometry in the typical SCO condition had been proposed as follows [7-12]:

$$4NH_3 + 3O_2 \rightarrow 2N_2 + 6H_2O \tag{1}$$

The SCO process may be applied to remove unreacted ammonia in the selective catalytic reduction (SCR) of NO with ammonia process [13,14]. In the case of the SCO process located at the downstream of the SCR process, the low-temperature operation of the SCO is often required. Therefore, many efforts have been made in order to develop the lowtemperature SCO. Long and Yang reported that Cu- and Feexchanged ZSM-5 exhibited a good SCO activity at 623 K [1]. Gang et al. reported that Ag/Al₂O₃ showed high activity in the SCO in the range of >433 K [3]. A number of the other catalysts, such as CuO/Al₂O₃ [14,15], V₂O₅/TiO₂ [16], Pt-, Pd- and Rh-exchanged ZSM-5 [17], showed SCO activity. However, the aforementioned catalysts need high temperature (>433 K) in the SCO reaction.

Some kinetic studies of the SCO reaction over metal oxides have been reported in order to determine the rate-determining step and the activation energy [10,18–20]. Eqs. (2)–(5) are the most probable SCO reaction mechanism over metal oxide catalysts [10,14,19-22].

$$NH_3 (+O) \rightarrow NH_2 + e^- + H^+ (O)$$
 (2)

$$NH_2 + O_2 \rightarrow NO + H_2O \tag{3}$$

$$NH_2 + NO \rightarrow NH_2NO$$
 (4)

$$NH_2NO \rightarrow N_2 + H_2O \tag{5}$$

It has been proposed that the rate-determining step of the SCO over metal oxide catalysts is Eq. (2) (NH₃ activation process) [10,18–20]. Additionally, activation energy (E_a) of

Corresponding author. Tel.: +81 75 383 2558; fax: +81 75 383 2561. E-mail address: tanakat@moleng.kyoto-u.ac.jp (T. Tanaka).

Nomenclature

```
N_2 production rate (mol s<sup>-1</sup>)
k
            rate constant
C_{\mathrm{NH_3}}
            concentration of NH<sub>3</sub> (mol L<sup>-1</sup>)
            concentration of O_2 (mol L<sup>-1</sup>)
C_{\rm O}
            reaction order of NH<sub>3</sub>
α
β
            reaction order of O<sub>2</sub>
k_{\pm i}
            rate constant at Step i
K_i
            equilibrium constant at Step i
S
            Lewis acid site on TiO<sub>2</sub>
S
            reduced Lewis acid site
O_{\text{lattice}}^{2-}
            lattice oxygen
            total amount of Lewis acid site on TiO2
[S]_0
            (\text{mol } L^{-1})
[NH_2^{\bullet}-S] concentration of NH_2^{\bullet}-S species (mol L<sup>-1</sup>)
[NO-S<sup>-</sup>] concentration of NO-S<sup>-</sup> species (mol L<sup>-1</sup>)
            concentration of O_2 (= C_{O_2}) (mol L<sup>-1</sup>)
[O_2]
T
            reaction temperature (K)
```

the SCO reaction is high $(76-139 \text{ kJ mol}^{-1})$ [18–20]. These results indicate that the SCO of ammonia at low temperature is difficult due to the high E_a of NH₃ activation. Therefore, a development of new SCO system with low E_a of NH₃ activation is required.

Cant and Cole reported that the SCO reaction was carried out in a closed system over TiO2 photocatalyst under irradiation (photo-SCO) at room temperature although the activity was low [23]. Recently, we have reported that the photo-SCO proceeds with high activity (NH₃ conversion: 100%, N₂ selectivity: 84% at gas hourly space velocity $(GHSV) = 25,000 \text{ h}^{-1})$ at room temperature over TiO_2 in a fixed bed flow system [24]. The photo-SCO reaction stoichiometry is same as that in the conventional SCO (Eq. (1)). The reaction mechanism of the photo-SCO over TiO₂ was elucidated by UV-vis, electron spin resonance (ESR) and Fourier transform infrared (FT-IR) spectroscopies and determined as shown in Scheme 1 [24,25]. Our proposed reaction mechanism is almost similar to the conventional SCO reaction mechanism. NH₃ is adsorbed to Lewis acid site of TiO₂ in the dark (Step 1). Adsorbed NH₃ is activated to NH₂ radical by trapping a photo-formed hole and a photo-formed electron reduces Ti⁴⁺ site to Ti³⁺. O₂ reacts with an electron or a hole, which are formed under UV irradiation, to form oxygen anion radical species (O2 • or O3 •) (Step 3). NH2 radical reacts with oxygen anion radical species to form NO without light (Step 4). The NO reacts with NH₂ radical and NH₂NO species is generated as an intermediate (Step 5). The NH₂NO species is decomposed to N₂ and H₂O (Step 6). Finally, the reduced Ti^{3+} is re-oxidized by the reaction with O_2 (Step 7). Additionally, we found that the crystal phase of TiO₂ affects the types of oxygen anion radical [24]. Rutile TiO₂ generates only O_2 anion radical whereas anatase TiO_2 forms not only O_2 anion radical but also O₃ anion radical. The catalytic activities of various TiO₂ in the photo-SCO reaction indicate that O₃ anion radical plays a key role in the higher activity than O_2 anion radical.

The photo-SCO proceeds even at room temperature, since the activation of NH_3 proceeds at room temperature by photo-excitation (Step 2). Thus, the rate-determining step of the photo-SCO is different from the conventional SCO reaction and the activation energy of the photo-SCO is expected to be lower than that of the conventional SCO. In this study, we carried out the kinetic study of the photo-SCO over TiO_2 using steady-state approximation not only to determine the rate-determining step of the photo-SCO reaction but also to clarify the reaction mechanism as shown in Scheme 1. The thermal effect for the photo-SCO was also investigated. Furthermore, we discussed the reactivity of O_3 and O_2 anion radical species in terms of kinetics.

2. Experimental

2.1. Preparation and characterization of catalysts

Two kinds of TiO₂ (JRC-TIO-3 and JRC-TIO-8 supplied from the Japan Catalysis Society) were hydrated in distilled water for 2 h at 353 K, followed by filtration with suction pump. The sample was dried at 383 K overnight, followed by calcination in dry air at 673 K for 3 h. After the hydration and calcinaton described above, JRC-TIO-3 and JRC-TIO-8 were used in this study.

The specific surface area of the prepared JRC-TIO-3 and JRC-TIO-8 were evaluated to be 46 and 93 m 2 g $^{-1}$ by the BET method using N $_2$ adsorption isotherm at 77 K. We confirmed that the prepared JRC-TIO-3 and JRC-TIO-8 consist of rutile and anatase phases respectively by the XRD patterns. Amount of acid sites on TiO $_2$ was determined by the adsorption equilibrium method of NH $_3$ according to the previous work [24,26]. Before the adsorption equilibrium method, TiO $_2$ was evacuated at 673 K as a pretreatment.

Scheme 1. Proposed reaction mechanism of photo-SCO.

2.2. Catalytic reaction

Photo-SCO was carried out in a conventional fixed bed flow system at an atmospheric pressure and at room temperature. Catalysts were fixed with quartz wool and filled up in a Pyrex reactor which has flat facets $(12 \text{ mm} \times 10 \text{ mm} \times 1 \text{ mm})$. Before reactions, catalysts were pretreated at 673 K by flowing 10% O₂ diluted with Ar at 50 mL min⁻¹ for 1 h. The typical

reaction gas composition was as follows: NH_3 1000 ppm, O_2 2%, Ar balance. A PerkinElmer PE300BF 300 W Xe lamp was used as a light source and samples were irradiated from the one side of the flat facets of the reactor. N_2 and N_2O products were analyzed by a SHIMADSU GC-8A TCD gas chromatograph with MS-5A column for N_2 detection and Porapak Q for N_2O . The quantity of produced NOx (NO and NO_2) was determined by a Shimadzu NOA-7000 NOx analyzer.

Fig. 1. N_2 formation rate in the photo-SCO (a1) over JRC-TIO-8 at 298 K, (b1) over JRC-TIO-3 at 298 K and (c1) over JRC-TIO-8 at 388 K under condition of various NH₃ concentrations (500–1500 ppm = 2.23×10^{-5} to 6.69×10^{-5} mol L⁻¹) (\bigcirc). (a2), (b2) and (c2) show logarithms of (a1), (b1) and (c1) (\bigcirc) and the approximate lines appeared at Eqs. (7), (30) and (37) (line), respectively.

2.3. Kinetics measurements

Kinetics measurements of the photo-SCO were carried out in a conventional fixed bed flow system at an atmospheric pressure and at room temperature. Catalyst was fixed with quartz wool and a given amount of catalyst was packed in a reactor to put a differential condition into practice. Catalysts were pretreated at 673 K by flowing 10% O_2 diluted with Ar at 50 mL min $^{-1}$ for 1 h. The concentration of NH₃ and O_2 was converted at 500–1500 ppm or 1–3%, respectively. In this kinetic study, the photo-SCO reaction took place under the constant light intensity. Accordingly, the logarithms of the N_2 production rate were plotted and approximated by a straight line to determine the reaction orders.

Fig. 2. N_2 formation rate in the photo-SCO (a1) over JRC-TIO-8 at 298 K, (b1) over JRC-TIO-3 at 298 K and (c1) over JRC-TIO-8 at 388 K under condition of various O_2 concentrations (1.5–2.5% = 6.69×10^{-4} to 1.12×10^{-3} mol L^{-1}) (Δ) and the approximate curve derived from Eq. (21) and Table 1 (line). (a2), (b2) and (c2) show logarithms of (a1), (b1) and (c1) (Δ) and the approximate lines appeared at Eqs. (8), (31) and (38) (line), respectively.

3. Results and discussion

3.1. Kinetic study of the photo-SCO over anatase TiO₂

It can be thought that the photo-SCO reaction rate depends on the concentrations of NH₃ and O₂ and light intensity. In the photo-SCO reaction condition, the alternation of the light intensity slightly affects the reaction temperature because a part of the light energy converts to thermal energy [27]. In this study, the photo-SCO reaction was carried out under the constant light intensity in order to ignore the factor of the thermal contribution to the photo-SCO activity, due to the change of the light intensity. Thus, the photo-SCO reaction rate under the constant light intensity is expressed as a following formula:

$$r = kC_{\rm NH_2}^{\alpha}C_{\rm O_2}^{\beta} \tag{6}$$

Figs. 1(a1) and 2(a1) show the N_2 formation rate in the photo-SCO over JRC-TIO-8 (anatase TiO_2) under the condition of various concentrations of NH_3 and O_2 , respectively. The logarithmic plots of Figs. 1(a1) and 2(a1) are shown in Figs. 1(a2) and 2(a2), respectively. These logarithmic plots can be reasonably fitted with by a straight line shown in Figs. 1(a2) and 2(a2). These lines are expressed as following equations:

$$\ln r = -18.6(\pm 0.5) + 0.04(\pm 0.05) \ln C_{\text{NH}_3} \tag{7}$$

$$\ln r = -15.5(\pm 0.1) + 0.50(\pm 0.02) \ln C_{\rm O},\tag{8}$$

Eqs. (6)–(8) show that the reaction orders of NH₃ and O₂ were close to zero and 0.5th order. The reaction orders of NH₃ and O₂ indicate that the rate-determining step of the photo-SCO over anatase TiO₂ would be the reaction process involving O₂ (Steps 3 or 7) or products generated by the reaction of O₂ (Steps 4, 5 or 6). The value of k is estimated at $e^{-15.5(\pm 0.1)}$ from Eqs. (6) and (8). This value is close to that obtained from Eqs. (6) and (7) $(k = e^{-15.1(\pm 0.5)})$, where $C_{\rm O_2} = 8.90 \times 10^{-4}$ mol L⁻¹ and $\beta = 0.5$ were used. According to the above results, the reaction rate is expressed as follows:

$$r = e^{-15.5(\pm 0.1)} \times C_{\text{NH}_3}^0 C_{\text{O}_2}^{0.5}$$
 (9)

In order to verify our proposed reaction mechanism (Scheme 1) and to determine the rate-determining step of the photo-SCO, the obtained rate equation (Eq. (9)) is compared with the rate equation derived from our proposed reaction mechanism. Rate constants and equilibrium constants in each elementary step are defined as follows:

Step 1 NH₃ + S
$$\rightleftharpoons_{k_{-1}}^{k_1}$$
 NH₃-S $K_1 = \frac{k}{k_{-1}}$ (10)

Step 2
$$NH_3-S \xrightarrow[k_{-2}]{k_2} NH_2^{\bullet}-S+H^+$$
 $K_2 = \frac{k_2}{k_{-2}}$ (11)

Step 3
$$O_2(+O_{\text{lattice}}^{2-}) \xrightarrow[k_{-3}]{k_{-3}} O_2^{\bullet -}(+O_3^{\bullet -}) \quad K_3 = \frac{k_3}{k_{-3}}$$
 (12)

Step 4

$$NH_{2}^{\bullet} - S + O_{2}^{\bullet-} (\text{or } O_{3}^{\bullet-}) \xrightarrow{k_{4}} NO - S^{-} + H_{2}O(+O_{\text{lattice}})$$

$$K_{4} = \frac{k_{4}}{k_{-4}}$$

$$(13)$$

Step 5 NO-S⁻ + NH₂•-S
$$\stackrel{k_5}{\longleftrightarrow}$$
 NH₂NO-S⁻ + S
$$K_5 = \frac{k_5}{k_{-5}}$$
(14)

Step 6 NH₂NO-S⁻
$$\stackrel{k_6}{\underset{k_{-6}}{\longleftarrow}}$$
N₂ + H₂O + S⁻ $K_6 = \frac{k_6}{k_{-6}}$ (15)

Step 7
$$S^- + \frac{1}{4}O_2 + H^+ \xrightarrow{k_7 \atop k_{-7}} S^- + \frac{1}{2}H_2O \quad K_7 = \frac{k_7}{k_{-7}}$$
 (16)

We reported that Steps 2 and 3 proceed by photo-irradiation [25]. In Step 3, $O_2^{\bullet-}$ is generated by the reaction of O_2 with photo-formed electron and $O_3^{\bullet-}$ is produced by the reaction of O_2 with lattice oxygen and photo-formed hole [24,28–30]. We derived the following rate equation by assuming that each step is rate-determining step:

$$r = \frac{k_1 K_3^{1/2} K_4^{1/2} K_5^{1/2} K_6 K_7 [S]_0 C_{\text{NH}_3} C_{\text{O}_2}^{1/4}}{k_1 K_3^{1/2} K_4^{1/2} K_5^{1/2} K_6 K_7 C_{\text{O}_2}^{1/4} + K_6^{1/2} + K_3 K_4 K_6^{1/2} C_{\text{O}_2}} + K_3^{1/2} K_4^{1/2} K_5^{1/2} (1 + K_6) \quad \text{(Step 1)}$$

$$(17)$$

$$r = k_2[S]_0 \quad (K_1 \gg 1) \quad (\text{Step 2})$$
 (18)

$$r = k_3[S]_0 C_0$$
, (Step 3) (19)

$$r = \frac{k_4 K_2 K_3 [S]_0 C_{O_2}}{1 + K_2} \quad (K_1 \gg 1) \quad (\text{Step 4})$$
 (20)

$$r = \frac{k_5 K_2^2 K_3 K_4 [S]_0^2 C_{O_2}}{(1 + K_2 + K_2 K_3 K_4 C_{O_2})^2} \quad (K_1 \gg 1) \quad (\text{Step 5})$$
 (21)

$$r = k_6[S]_0 \quad (K_1 \gg 1) \quad (Step 6)$$
 (22)

$$r = \frac{k_7 K_2 [S]_0 C_{O_2}^{3/4}}{1 + K_2 + K_2 K_3 K_4 C_{O_2} + K_2 K_3^{1/2} K_4^{1/2}} K_5^{1/2} K_6^{-1/2} (1 + K_6) C_{O_2}^{1/2} \quad (K_1 \gg 1) \quad (\text{Step 7})$$
(23)

In Step 2 and Steps 4–7, approximation of $K_1 \gg 1$ was used because NH₃ is adsorbed on the Lewis acid site strongly. The reaction orders of NH₃ and O₂ in the Steps 1–4 and 6 do not satisfy Eq. (9). Consequently, Step 5 (Eq. (21)) or Step 7 (Eq. (23)) is the rate-determining step of the photo-SCO. To determine which step is the rate-determining step, the experimental result was fitted with Eqs. (21) or (23).

Eq. (23) can be transformed as follows:

$$\frac{C_{\text{O}_2}^{3/4}}{r} = \frac{1}{k_7 K_2[\text{S}]_0} \left[K_2 K_3 K_4 (C_{\text{O}_2}^{1/2})^2 + K_2 K_3^{1/2} K_4^{1/2} K_5^{1/2} K_6^{-1/2} (1 + K_6) C_{\text{O}_2}^{1/2} + 1 + K_2 \right]$$
(24)

 $C_{\rm O_2}^{3/4}/r$ obtained from Fig. 2a could not be fitted with Eq. (24). Eq. (21) is transformed as follows:

$$\left[\frac{C_{\text{O}_2}}{r}\right]^{1/2} = \frac{1}{\left(k_5 K_2^2 K_3 K_4 [\text{S}]_0^2\right)^{1/2}} \left(K_2 K_3 K_4 C_{\text{O}_2} + 1 + K_2\right)$$
(25)

Fig. 3(a) shows the plot of $(C_{\rm O_2}/r)^{1/2}$ against $C_{\rm O_2}$ using the data of Fig. 2(a1). $(C_{\rm O_2}/r)^{1/2}$ exhibited a good linear correlation with $C_{\rm O_2}$ and the fitted line shown in Fig. 3(a) is expressed as follows:

$$\left(\frac{C_{\rm O_2}}{r}\right)^{1/2} = 1.2(\pm 0.04) \times 10^5 \times C_{\rm O_2} + 300(\pm 4) \tag{26}$$

Thus, we determined that the rate-determining step of the photo-SCO over anatase TiO_2 is the process of the reaction of NH_2 radical with the formed NO species because the dependency of N_2 formation rate on O_2 concentration is interpreted only by Eq. (21). The following relation was derived from Eqs. (25) and (26).

$$\frac{K_2K_3K_4}{1+K_2} = 380(\pm 20) \tag{27}$$

In our previous study, we reported that the lifetime of NH₂ radical is very long and the value of k_{-2} is 1.2×10^{-2} s⁻¹[31]. The rate of charge separation was reported to be $10^8 - 10^{13}$ s⁻¹ in dye-sensitized TiO₂ and artificial photosynthetic systems [32–34]. Applying this value for our system, the value of $K_2 = 10^{10} - 10^{15}$ would be very large. Therefore, Eq. (27) is simplified to the following equation.

$$K_3 K_4 = 380(\pm 20) \tag{28}$$

Substitution of Eq. (27) into Eq. (21) gives the following formula:

$$r = \frac{380 \times k_5 [S]_0^2 C_{O_2}}{[1 + 380 \times C_{O_2}]^2}$$
 (29)

where, the approximation of $K_2\gg 1$ is used. The dependency of N_2 formation rate on O_2 concentration in Fig. 2(a1) is reasonably fitted with Eq. (29) and the value of $k_5[S]_0^2=2.9(\pm 0.01)\times 10^{-8} \mathrm{mol}\,\mathrm{s}^{-1}$ is obtained. The value of $[S]_0$ of TiO₂ (JRC-TIO-8) is estimated at 0.37 mol L⁻¹ (Lewis acid site amount of JRC-TIO-8: 400 μ mol g⁻¹, catalyst amount used in this study: 0.11 g). These values are summarized in Table 1. Consequently, $k_5=2.1\times 10^{-7}\,\mathrm{L}^2\,\mathrm{mol}^{-1}\,\mathrm{s}^{-1}$ is obtained.

Eq. (21) could well account for the experimental results in Fig. 2(a1). The N_2 formation rate of the photo-SCO over anatase TiO_2 (JRC-TIO-8) is expressed by Eq. (29). The correspondence of the experimental results with the calculation results as shown

in Figs. 2(a1) and 3(a) indicates that the proposed reaction mechanism photo-SCO (Scheme 1) is supported by the kinetic study. It is concluded that the rate-determining step of the photo-SCO is the reaction process of NH₂ radical with formed NO species (Step 5). Therefore, the higher surface concentrations of NH₂ radical and formed NO species would provide the higher photo-SCO activity. We have already reported that TiO_2 with the large amount of acid site and the high formation ability of oxygen anion radical species shows high photo-SCO activity. Since the large amount of acid site and the high formation ability of oxygen anion radical species lead to the increase in the amount of NH₂ radical and NO species, it is reasonable that the rate-determining step is Step 5. The values of k, K_3K_4 and k_5 , listed in Table 1, are estimated from the kinetic analysis. There values are discussed below.

3.2. Kinetic study of the photo-SCO over rutile TiO₂

We reported that the reactivity of rutile TiO₂ is different from that of anatase in photo-SCO [24]. We also carried out the kinetic study of the photo-SCO at room temperature over rutile TiO₂. According to the kinetic analysis, the rate-determining step of the photo-SCO over rutile TiO2 is the reaction of NH2 radical with the formed NO species as well as anatase TiO₂. Figs. 1(b1, b2), 2(b1, b2), and 3(b) show the experimental results of the dependency of N₂ formation rate on NH₃ and O₂ concentrations, their logarithmic plots and the plot of $(C_{\rm O_2}/r)^{1/2}$ against $C_{\rm O_2}$ using the data of Fig. 2(b1), respectively. The approximated lines of the data of Figs. 1(b2), 2(b2), and 3(b) are shown in Figs. 1(b2), 2(b2), and 3(b) and the obtained equations of these approximated lines are listed in Table 2. The rate equations over rutile TiO₂ calculated by Eqs. (30) and (31) are listed in Table 3. Additionally, the values of K_3K_4 and k_5 evaluated using Eqs. (25), (32) and $[S]_0 = 0.24 \text{ mol } L^{-1}$ (Lewis acid site amount of JRC-TIO-3: 180 μ mol g⁻¹, the amount of this catalyst used in this study: 0.16 g) are shown in Table 1.

3.3. Comparison of the reactivity between anatase and rutile TiO_2

In this section, the difference in the reactivity between anatase (JRC-TIO-8) and rutile (JRC-TIO-3) TiO_2 is discussed based on the kinetic analysis. As the rate-determining step of the photo-SCO over both anatase and rutile TiO_2 is Step 5 (Eq. (14)), the reaction rate is expressed as follows:

$$r = k_5[\mathrm{NH_2}^{\bullet} - \mathrm{S}][\mathrm{NO} - \mathrm{S}^{-}] \tag{34}$$

The value of k_5 for anatase TiO₂ is almost as same as that for rutile TiO₂ (see Table 1). Therefore, the photo-SCO activity is proportional to both $[NH_2^{\bullet}-S]$ and $[NO-S^-]$. The values of $[NH_2^{\bullet}-S]$ and $[NO-S^-]$ can be estimated by Eq. (34) and the following equation:

$$K_3K_4 = \frac{[\text{NO}-\text{S}^-]}{[\text{NH}_2^{\bullet}-\text{S}][\text{O}_2]}$$
 (35)

Eq. (35) is obtained from Eqs. (12) and (13). $[NH_2^{\bullet}-S]$ and $[NO-S^-]$ were calculated by the substitution of r, k_5 , K_3K_4 and

Fig. 3. (a–c) are the plots of $(C_{O_2}/r)^{1/2}$ against C_{O_2} (Δ) in the results of Fig. 2(a1), (b1) and (c1) and the approximate lines appeared at Eqs. (26), (32) and (39) (line), respectively.

[O₂] into Eqs. (34) and (35). The obtained values of [NH₂•-S] and [NO–S⁻] of anatase and rutile TiO₂ are listed in Table 1 (5.4 × 10⁻⁹ and 2.3 × 10⁻⁹ mol L⁻¹ were used as the values of r of anatase and rutile TiO₂ under the reaction condition of NH₃ = 1000 ppm and O₂ = 2% (8.90 × 10⁻⁴ mol L⁻¹) in Fig. 2(a1) and (b1). In either case, [NO–S⁻] is lower than [NH₂•-S]. As the sum of [NH₂•-S] and [NO–S⁻] is equal to the total amount of acid site ([S]₀) in the case of both anatase and rutile, the acid site on TiO₂ would be covered with NH₂ radical and NO species in the steady-state of the photo-SCO reaction. This result is reasonable because the rate-determining step is Eq (14). Additionally, Eq. (34) is transformed using [S]₀ = [NH₂•-S] + [NO–S⁻] as follows:

$$r = k_5[S]_0^2 \left(\frac{1}{4} - \left(\frac{[NO^- - S]}{[S]_0} - \frac{1}{2}\right)\right)^2$$
 (36)

Eq. (36) clearly indicates that the photo-SCO shows the highest activity when the value of $[NO-S^-]/[S]_0$ is close to 0.5. The values of $[NO-S^-]/[S]_0$ of anatase and rutile are 0.26 and 0.18, respectively (Table 1), and $[NO-S^-]/[S]_0$ of anatase is closer to 0.5 than that of rutile. We reported that the reactivity of anatase TiO_2 , which generates both O_2 and O_3 anion radical, was higher than that of rutile TiO_2 , generating only O_2 anion radical (shown Fig. 7 in Ref. [24]). It is well known that O_3 anion radical has a higher oxidizability than O_2 anion radical [30,35]. This high oxidizability enhances the formation of $NO-S^-$ (Eq. (13)). Therefore, anatase exhibits larger value of $[NO-S^-]/[S]_0$ than rutile.

3.4. Development of the photo-SCO activity by the increase in the reaction temperature

It is expected that the photo-SCO activity is enhanced by the increase in the reaction temperature because the reactivity of

Table 1 Parameters obtained from the kinetic analysis

Catalyst	$k_5 (L^2 \text{ mol}^{-1} \text{ s}^{-1})$	K_3K_4 (L mol ⁻¹)	$[S]_0^a \pmod{L^{-1}}$	$[NH_2^{\bullet}-S] \pmod{L^{-1}}$	$[NO\!\!-\!\!S^-]\;(mol\;L^{-1})$	[NO-S ⁻]/[S] ₀
JRC-TIO-8 at RT ^b	2.1×10^{-7}	380(±20)	0.37	0.27	0.093	0.26
JRC-TIO-3 at RT ^b	2.6×10^{-7}	$250(\pm 30)$	0.24	0.20	0.045	0.18
JRC-TIO-8 at 388 K ^c	1.0×10^{-6}	$540(\pm 40)$	0.15	0.10	0.049	0.33

^a Total amount of acid site on TiO₂ determined by NH₃ adsorption.

b The photo-SCO was carried out at room temperature under photo-irradiation.

^c The photo-SCO was carried out at 388 K under photo-irradiation.

Table 2 Obtained approximate equations

Figure number	Formula		
JRC-TIO-8 at RT ^a			
1b	$\ln r = -18.6(\pm 0.5) + 0.04(\pm 0.05) \ln C_{\text{NH}_3}$		
2b	$\ln r = -15.5(\pm 0.1) + 0.50(\pm 0.02) \ln C_{\text{O}_2}$		
3	$(C_{\rm O_2}/r)^{1/2} = 1.2(\pm 0.04) \times 10^5 \times C_{\rm O_2} + 300(\pm 4)$		
JRC-TIO-3 at RT ^a	, , , , , , , , , , , , , , , , , , , ,		
4b	$\ln r = -18.7(\pm 0.2) + 0.12(\pm 0.02) \ln C_{\text{NH}_3}$		
5b	$\ln r = -15.2(\pm 0.3) + 0.66(\pm 0.04) \ln C_{\text{O}_2}$		
6	$(C_{\rm O_2}/r)^{1/2} = 1.3(\pm 0.16) \times 10^5 \times C_{\rm O_2} + 510(\pm 4)$		
JRC-TIO-8 at 388 K ^b			
9b	$\ln r = -19.3(\pm 0.2) + 0.02(\pm 0.02) \ln C_{\text{NH}_3}$		
10b	$\ln r = -16.4(\pm 0.1) + 0.39(\pm 0.01) \ln C_{\text{O}_2}$		
11	$(C_{\rm O_2}/r)^{1/2} = 1.5(\pm 0.07) \times 10^5 \times C_{\rm O_2} + 290(\pm 7)$		

^a The photo-SCO was carried out at room temperature under photo-irradiation.

surface species is enhanced by the development of their mobility. Fig. 4 shows the effect of the reaction temperature on N_2 formation rate. It is clearly shown that the increase in the reaction temperature enhanced the photo-SCO activity. The SCO reaction does not proceed without the photo-irradiation. These results indicate that the photo-irradiation is essential for the photo-SCO over TiO_2 and that the development of the photo-SCO activity would be caused by the enhancement of the rate of Step 5.

Fig. 5 shows the time course of the photo-SCO reaction over JRC-TIO-8 at 435 K. 100% NH₃ conversion and 94% N₂ selectivity were achieved at GHSV = 50,000 h⁻¹. By-products were N₂O (14 ppm) and NOx (33 ppm). We confirmed that the photo-SCO is the efficient reaction system even at low temperature.

3.5. Kinetic study of the photo-SCO over anatase TiO_2 at 388 K

The photo-SCO activity was enhanced by the increase in the reaction temperature. We also carried out the kinetic study of the photo-SCO over anatase TiO₂ at 388 K in order to clarify causes of the development of the activity. As a result of the kinetic analysis as well as anatase and rutile TiO₂ at room temperature, the rate-determining step of the photo-SCO at 388 K over anatase TiO₂ is also the process of the reaction of NH₂ radical with the formed NO species. Figs. 1(c1, c2), 2(c1, c2), and 3(c) show the experimental results of the dependency

Table 3 Obtained rate equations

Catalyst	Rate equation
JRC-TIO-8 at RT ^a	$r = e^{-15.5(\pm 0.1)} \times C^0 C_{02}^{0.5}$
JRC-TIO-3 at RT ^a	$r = e^{-14.2(\pm 0.3)} \times C^{0.1} C_{O_2}^{0.7}$
JRC-TIO-8 at 388 K ^b	$r = \mathrm{e}^{-16.4(\pm 0.1)} \times C^0 C_{\mathrm{O}_2}^{0.4}$

^a The photo-SCO was carried out at room temperature under photo-irradiation.

of N_2 formation rate on NH_3 and O_2 concentrations, their logarithmic plots and the plot of $(C_{O_2}/r)^{1/2}$ against C_{O_2} using the data of Fig. 2(c1), respectively. The approximated lines of the data in Figs. 1(c2), 2(c2), and 3(c) are shown in Figs. 1(c2), 2(c2), and 3(c) and the obtained equations of these approximated lines are listed in Table 2. The rate equation over anatase TiO_2 at 388 K calculated by Eqs. (37) and (38) is listed in Table 3. Moreover, the values of K_3K_4 and k_5 evaluated using Eqs. (25), (39) and $[S]_0 = 0.15$ mol L^{-1} (catalyst amount used in this study: 0.04 g) are shown in Table 1.

3.6. Comparison of the reactivity of anatase TiO_2 between at room temperature and 388 K

The difference of the reactivity of anatase from room temperature to 388 K is discussed below. The rate-determining step is same (Step 5, Eq. (14)). Therefore, the rate equation can be expressed by Eq. (36). The value of k_5 of anatase TiO₂ at 388 K is about fifth as high as that of anatase at room temperature. The higher k₅ value at 388 K than at room temperature indicates that the reactivity of NH2°-S with NO-S⁻ is enhanced by the increase in the reaction temperature. The concentrations of NH₂•-S and NO-S⁻ of anatase at 388 K were calculated by the substitution of k_5 , r, K_3K_4 and $[O_2]$ into Eqs. (34) and (35). The obtained values of [NH₂•-S] and $[NO-S^-]$ are listed in Table 1 (used values of r was $4.9 \times 10^{-9} \text{ mol L}^{-1}$ under the reaction condition of NH₃ = 1000 ppm and $O_2 = 2\%$ (8.90 × 10^{-4} mol L⁻¹) in Fig. 2(c1). The value of [NO-S⁻] is smaller than that of [NH₂ $^{\bullet}$ -S]. As the sum of [NH $_2^{\bullet}$ -S] and [NO–S $^-$] is equal to the total amount of acid site ([S]₀), the acid site on TiO₂ would be also covered with NH₂ radical and NO species in the steady-state of the photo-SCO reaction at 388 K. Therefore, the ratio of [NO-S⁻]/[S]₀ is the important factor for the photo-SCO activity according to Eq. (36). The value of [NO-S⁻]/[S]₀ of anatase at 388 K was 0.33 and is closer to 0.5 than that of anatase at room temperature (0.26). The high [NO-S⁻]/[S]₀ would be due to the enhancement of the reactivity of NH₂•-S with oxygen anion radical species in Eq. (13) by the increase in the reaction temperature because this process is the reaction of the surface species. Thus, we concluded that the increase in the reaction temperature enhances the photo-SCO activity without the change of the rate-determining step by the development of both k_5 and [NO–S⁻]/[S]₀.

3.7. Activation energy of the photo-SCO over anatase TiO_2

Fig. 6 shows the Arrhenius plot of Fig. 4. The logarithm of N_2 formation showed a good linear relation to the reciprocal number and the obtained approximate line (shown in Fig. 6) was expressed as follows:

$$\ln r = \frac{-11.6(\pm 0.3) - 2930(\pm 110)}{T} \tag{41}$$

From Eq. (41), it was determined that the activation energy of the photo-SCO over anatase TiO_2 is 24.4 (± 0.9) kJ mol⁻¹. The activation energy of the photo-SCO is much lower than that

^b The photo-SCO was carried out at 388 K under photo-irradiation.

^b The photo-SCO was carried out at 388 K under photo-irradiation.

Fig. 4. The dependency of the N_2 formation rate on the reaction temperature in the photo-SCO over JRC-TiO*8 (used catalyst amount: 0.04 g, NH₃: 1000 ppm, O₂: 2%).

Fig. 5. Time course of the photo-SCO reaction over JRC-TIO-8, (\bullet) outlet concentration of N₂, (\blacksquare :) outlet concentration of N₂O. Reaction condition—NH₃: 1000 ppm, O₂: 2%, reaction temperature: 435 K, GHSV = 50,000 h⁻¹.

Fig. 6. Arrhenius plot of Fig. 4 (lacktriangle) and the approximate line appeared in Eq. (41) (line).

of the conventional SCO over metal oxides. It was reported that the rate-determining step of the SCO reaction without photo-irradiation over metal oxide is Eq. (1) and that $E_{\rm a}$ of the SCO reaction is 76–139 kJ mol⁻¹ [18–20]. The high $E_{\rm a}$ indicates that it is difficult to activate NH₃ by thermal energy. On the other hand, the activation of NH₃ (Eq. (11)) proceeds at wide range of the reaction temperature in the case of the photo-SCO because the photo-excitation is the driving force. This easy activation of NH₃ by light energy shifts the rate-determining step to another elementary step (Eq. (14)) having low activation energy. Therefore, the photo-SCO proceeds at room temperature with high activity.

4. Conclusion

The kinetic studies demonstrated that the photo-SCO depends on the concentration of O2 over both anatse and rutile TiO2. The experimental results are interpreted by assuming the steady-state approximation in the case that the rate-determining step is Step 4 (Eq. (14)) in Scheme 1. Thus, the validity of our proposed reaction mechanism (Scheme 1) is proved by the kinetics. The kinetic analysis reveals that the concentration of the surface NO-S⁻ species is important for the photo-SCO activity. The reason why anatase TiO₂ exhibits higher activity than rutile TiO₂ is that the concentration of NO-S⁻ species on anatase TiO₂ keeps high in the steady-state. This high NO-S⁻ concentration results from the strong oxidizabiliy of O₃ anion radical. The photo-SCO activity is enhanced by the increase in the reaction temperature. 100% NH₃ conversion and 94% N₂ selectivity were achieved at GHSV = $50,000 \text{ h}^{-1}$ at 435 K. This enhancement of the activity by the increase in the reaction temperature is caused by the increase in both the rate constant (k_5) in the rate-determining step and the NO-S⁻ concentration. Moreover, the activation energy of the photo-SCO was estimated to be $E_a = 24.4 \text{ kJ mol}^{-1}$ by Arrhenius plot. The low activation energy allows for high SCO activity at low temperature.

Acknowledgement

S. Yamazoe is supported by a JSPS Research Fellowship for Young Scientists.

References

- [1] R. Long, R. Yang, Chem. Commun. (2000) 1651.
- [2] M. Yang, C. Wu, C. Zhang, H. He, Catal. Today 90 (2004) 263.
- [3] L. Gang, B. Anderson, J. van Grondelle, R. van Santen, Appl. Catal. B 40 (2003) 101.
- [4] E. Slavinskaya, S. Veniaminov, P. Notte, A. Ivanova, A. Boronin, Y. Chesalov, I. Polukhina, A. Noskov, J. Catal. 222 (2004) 129.
- [5] L. Gang, B. Anderson, J. van Grondelle, R. van Santen, Catal. Today 61 (2000) 179.
- [6] R. Long, R. Yang, J. Catal. 207 (2002) 158.
- [7] R.W. Mccabe, T. Pignet, L.D. Schmidt, J. Catal. 32 (1974) 114.
- [8] J.L. Gland, V.N. Korchak, J. Catal. 53 (1978) 9.
- [9] A.C.M. van den Broek, J. van Grondelle, R.A. van Santen, J. Catal. 185 (1999) 297.
- [10] M. Amblard, R. Burch, B.W.L. Southward, Catal. Today 59 (2000) 365.

- [11] L. Lietti, G. Ramis, G. Busca, F. Bregani, P. Forzatti, Catal. Today 61 (2000) 187.
- [12] S.A.C. Carabineiro, A.V. Matveev, V.V. Gorodetskii, B.E. Nieuwenhuys, Surf. Sci. 555 (2004) 83.
- [13] Y.J. Li, J.N. Armor, Appl. Catal. B 13 (1997) 131.
- [14] T. Curtin, F. O' Regan, C. Deconinck, N. Knuttle, B. Hodnett, Catal. Today 55 (2000) 189.
- [15] L. Gang, J. van Grondelle, B. Anderson, R. van Santen, J. Catal. 186 (1999) 100.
- [16] N. Sazonova, A. Simakov, T. Nikoro, G. Barannik, V. Lyakhova, V. Zheivot, Z. Ismagilov, H. Veringa, React. Kinet. Catal. Lett. 57 (1996) 71.
- [17] W. Kijlstra, D. Brands, E. Poels, A. Bliek, J. Catal. 171 (1997) 208.
- [18] N.I. Il'Chenko, G.I. Golodets, J. Catal. 39 (1975) 57.
- [19] N.I. Il'Chenko, G.I. Golodets, J. Catal. 39 (1975) 73.
- [20] Z.Y. Ding, L.X. Li, D. Wade, E.F. Gloyna, Ind. Eng. Chem. Res. 37 (1998) 1707
- [21] G. Ramis, L. Yi, G. Busca, M. Turco, E. Kotur, R.J. Willey, J. Catal. 157 (1995) 523.
- [22] R.Q. Long, R.T. Yang, J. Catal. 201 (2001) 145.
- [23] N. Cant, J.R. Cole, J. Catal. 134 (1992) 317.
- [24] S. Yamazoe, T. Okumura, T. Tanaka, Catal. Today 120 (2007) 220.

- [25] S. Yamazoe, T. Okumura, Y. Hitomi, T. Shishido, T. Tanaka, J. Phys. Chem. C 111 (2007) 11077.
- [26] S. Yamazoe, T. Okumura, K. Teramura, T. Tanaka, Catal. Today 111 (2006) 266.
- [27] K. Teramura, T. Tanaka, S. Yamazoe, K. Arakaki, T. Funabiki, Appl. Catal. B 53 (2004) 29.
- [28] A.R. Gonzalez-Elipe, G. Munuera, J. Soria, J. Chem. Soc. Faraday I 75 (1979) 748.
- [29] P. Meriaudeau, J.C. Vedrine, J. Chem. Soc. Faraday I 72 (1976) 472.
- [30] H. Einaga, A. Ogata, S. Futamura, T. Ibusuki, Chem. Phys. Lett. 338 (2001) 303.
- [31] S. Yamazoe, K. Teramura, Y. Hitomi, T. Shishido, T. Tanaka, J. Phys. Chem. C 111 (2007) 11077.
- [32] H. Imahori, Y. Mori, Y. Matano, J. Photochem. Photobiol. C 4 (2003) 51.
- [33] Y. Hu, S. Tsukiji, S. Shinkai, S. Oishi, I. Hamachi, J. Am. Chem. Soc. 122 (2000) 241.
- [34] S.A.P. Merry, S. Kumazaki, Y. Tachibana, D.M. Joseph, G. Porter, K. Yoshihara, J. Barber, J.R. Durrant, D.R. Klug, J. Phys. Chem. 100 (1996) 10469
- [35] M. Okumura, J.M. Coronado, J. Soria, M. Haruta, J.C. Conesa, J. Catal. 203 (2001) 168.