EXPONENTS: THE PRODUCT RULE

LEARNING GOAL

- 1. I can identify the **base** and the **exponent** in an exponential expression.
- 2. I can multiply exponential expressions using the **product rule.**

Write each expression in expanded form:

$$1.7^5 =$$

$$2. x^4 =$$

Write each expression using a single base and a power:

$$1.2 \cdot 2 \cdot 2 =$$

$$2.3x \cdot 3x \cdot 3x \cdot 3x =$$

Exponential Rules

Product Rule

$$a^x \times a^y = a^{x+y}$$

Quotient Rule

$$a^{x} \times a^{y} = a^{x+y}$$
 $a^{x} \div a^{y} = a^{x-y}$
 $a^{2} \times a^{3} = a^{5}$ $a^{7} \div a^{3} = a^{4}$

Power Rule

$$\left(a^{x}\right)^{y} = a^{xy}$$
$$\left(a^{7}\right)^{2} = a^{14}$$

$$\left(a^{7}\right)^{2}=a^{14}$$

Negative Rule

$$a^{-x} = \frac{1}{a^x}$$

$$a^{-4} = \frac{1}{a^4}$$

Zero Rule

$$a^{0} = 1$$

	Exponent Form	Base	Exponent	Expanded Form	Standard Form
1.	10^{2}	10	2	10.10	100
2.	3	a a	3	2•2•2	8
3.	(L) ² (4)	<u>1</u> 4	2	4.1	1/6
4.	15 ¹	15	1	15	15
5.	14	1	4	1 ·1 ·1 ·1	1
6.	x^2	~	2	$\chi \cdot \chi$	
7.	b ³	b	3	b.b.b	
8.	7	B	7	<i>y</i>	
9.	(2x) ⁴	2 <i>x</i>	4	2x.2x.2x-2x	
10.	(5n)3	5n	3	$5n \cdot 5n \cdot 5n$	
11.	4(xy) ²	xy	2	4.xy.xy	
12.	3 y 4	ż	4	3·y·y·y·y	
13.	(27yz) ³	2xyz	3	2xyz.2xyz.2xyz	
14.	-2 <i>x</i> ⁶	x	6	~2 x·x· x·x·x·x	
15.	(-4y) ²	-4y	2	-4y4y	<u></u>

Exponents
Worksheet 1

Directions: Complete the table below.

Directions: Complete the chart below.

	and		. (.//1)
	13	Expanded Form	Single Base and a Power
1.	210 • 22	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	213
2.	$3^2 \cdot 3^4$	3.3.3.3.3 27mes 4.7mes	3 ^b
3.	53 • 56	5.5.5 · 5.5.5.5.5 3+imes & +imes	5 ⁽⁹⁾
4.	$x^5 \cdot x$	X·X·X·X·X·X·X 5 times 1 time	X _(P)
5.	$y^3 \cdot y^5$	y-y-y, y-y-y-y	y ⁸
7.	$a^3 \cdot a^4$	a.a.a.a.a	a ⁷
8.	$m^2 \cdot m$	m ² ·m	w ₃
9.	$x^3 \cdot x^6 \cdot x^3 \cdot x^2$	3+1mes 6+2mes 3+1mes 3+1mes	$\chi^9,\chi^5=\chi^{(14)}$
10.	$5y^3 \bullet y \bullet y^5$	5 x x y y y y y y y y	5 y ⁹
11.	$2b^3 \cdot 3b^{10}$	2.6.6.6.3.6.6.6.6.6.6.6.6.6.6.	PP,3

12. Compare the 2nd and 4th columns in the table above. Describe, in words, what you notice about the relationship you see between them.

The exponent in column 4 is the sum of the exponents in column 2.