Odtwarzacz FLAC na płytce STM32F746G-DISCOVERY

Łukasz Jezapkowicz, Maciej SIkora

18 maja 2021

1 Przykładowe użycie dla Kowalskiego

- Upewnij się, że program jest wgrany na płytkę
- Aby usłyszeć dźwięk potrzebne jest podłączenie głośników aktywnych lub słuchawek do zielonego wyjścia audio znajdującego się z boku płytki, wtyczką mini jack.
- Upewnij się, że na nośniku USB znajdują się pliki w formacie FLAC, i znajdują się one w głównym katalogu
- Podłącz nośnik USB z plikami
- Poczekaj, aż zobaczysz menu odtwarzacza muzycznego
- Przyciśnięcie przycisku " start/stop ", gdy znajduje się na nim symbol trójkąta spowoduje rozpoczęcie odtwarzania pliku, którego nazwa jest wyświetlona pod paskiem postępu odtwarzania
- Przyciśnięcie przycisków ze strzałkami w prawo/lewo spowoduje zmianę aktualnie odtwarzanego pliku

2 Dokumentacja techniczna

2.1 Ogólna idea

Dekodowanie pliku rozpoczyna się od odczytania metadanych znajdujących się na początku każdego pliku FLAC. Następnie czytane są ramki, które zawierają informacje o dźwięku. Tylko dekodując plik ramka po ramce jesteśmy w stanie przetworzyć cały plik, ponieważ takie API jest udostępnione przez bibliotekę libFLAC.

Aby móc płynnie odtwarzać dźwięk z mikroprocesora nie możemy odtwarzać całego pliku bit po bicie, ponieważ operacje które wykonują się w między czasie zajmują zbyt dużo czasu. Rozwiązaniem tego problemu jest równoległe wykorzystanie buffora podzielonego na dwie części.

Jeden wątek programu ma dostęp do części \mathbf{A} , nazwijmy go writer, na której zapisuje on kolejne bity zdekodowane z pliku FLAC, a wątek który zajmuje się odtwarzaniem dźwięku, jego nazwiemy player, ma dostęp do części \mathbf{B} z której czyta on dane potrzebne mu do otwarzania dźwięku.

W momencie w którym writer kończy zapisywanie w swoim segmencie pozwala na wejście do niego playerowi, gdy tamten skończy swoją część i oczekuje na możliwość dostępu do sekcji, w której obecnie pracuje player. Proces ten powtarza się, aż do zakończenia pobierania danych z pliku.

2.2 Struktura programu

- Podstawowa struktura projektu została wygenerowana za pomocą STM32CubeMX.
- Plik Makefile został wygenerowany z open source'owego programu (na GitHubie) do generacji Makefile dla projektów z STM32CubeMX. Link do projektu znajduje się w bibliografii.
- Pliki nagłówkowe stworzone przez nas zawierają się w folderze Inc z prefixem stm32f476g-disco-LJMS-.
- Pliki źródłowe zawierają się w folderze Src z takim samym prefixem.

2.3 Najważniejsze funkcje

- Plik źródłowy flac.c zapewnia interfejs do czytania metadanych oraz kolejnych ramek.
 - bool read_flac_metadata(Flac *flac, FlacMetadata *info);
 - bool read_flac_frame(Flac *flac, FlacFrame **frame);
- Plik źródłowy flac_frame_buffer.c zapewnia interfejs do tworzenia i usuwania buffora, oraz do czytania kolejnych ramek z pliku.
 - FlacBuffer create_new_flac_buffer(Flac *flac)
 - void destroy_input_stream(InputStream *self);
 - int read_flac_buffer(FlacBuffer *self, void *dest, int size)
- Plik źródłowy flac_input_stream.c udostępnia interfejs do czytania z InputStream do buffora.
 - int read_input_stream(InputStream *self, void *buf, int len)
 - void destroy_input_stream(InputStream *self)
- Plik źródłowy main.c zawiera główną logikę działania, jest punktem startowym naszego programu.
- Plik źródłowy flac_player.c zawiera implementacje odtwarzania muzyki z plików FLAC.
 - void flac_player_play(const char *filename)
 - void flac_player_pause(void)
 - void flac_player_resume(void)
 - void flac_player_stop(void)
- Plik źródłowy flac_screen.c odpowiada za zarządzanie interfejsem graficznym. Główną funkcją jest

 $render_flac_player$

- void render_flac_player(int files_count, int current_file, const char *current_filename, unsigned sample_rate, unsigned current_timer, unsigned max_timer, bool is_playing)
- static void flip_layer(void)
- void init_screen(void)
- static void fill_lcd_polygon(Point position, const Point *points, uint16_t point_count)
- void display_info_on_screen(const char *info)
- void render_usb(int which_big)
- Plik źródłowy flac_search_files.c zawiera funkcję, która umożliwia przeglądanie podłączonego USB w poszukiwaniu plików FLAC.
 - void search_for_flac_files(const char *path, Files *files)

2.4 Wprowadzanie własnych zmian

Własne zmiany powinno się wprowadzać w plikach z odpowiednim prefiksem podanym w sekcji **2.2** Struktura programu. Aby zagłębić się w najważniejsze funkcje należy zapznać się z sekcją **2.3** Najważniejsze funkcje i klasy.

2.5 Bibliografia

- Double buffer
- Makefile for CubeMX
- Drivers

3 Dokumentacja procesu realizacji projektu

3.1 Spotkanie 11.03

Spotkanie na MS Teams w sprawie wyboru tematu. Temat, który został wybrany to Odtwarzacz plików dźwiękowych FLAC na płytce STM32F746G-DISCOVERY.

3.2 Spotkanie 18.03

Ustalenie osobistego odbioru płytki w D17.

3.3 Spotkanie 8.04

Spotkanie, na którym przedstawiono postępy pracy. Na dzień 8.04 udało się skonfigurować środowisko programistyczne i uruchomić przykładowy projekt na płytce.

3.4 Spotkanie 22.04

Projekt wyświetla elementy UI oraz oczekuje na podpięcie USB. Dyskusja z prowadzącym na temat testowania odtwarzacza (słuchawki/głośniki, gdzie podpiąć).

3.5 Spotkanie 6.05

Mikrokontroler poprawnie działa po podpięciu USB (przed podpięciem - prosty interfejs graficzny oczekiwania na USB). Prezentacja UI odtwarzacza oraz działających przycisków (play/pause, next, previous). Pliki są już przechowywane w pamięci, lecz nie są jeszcze odtwarzane. Na ekranie zaimplementowane mockowe wartości takie jak czas trwania, nazwa piosenki, ilość piosenek.

3.6 Spotkanie 20.05

Prezentacja gotowego produktu oraz dokumentacji prowadzącemu. Dyskusja na temat ewentualnych poprawek oprogramowania/dokumentacji.

3.7 Spotkanie 27.05

Prezentacja gotowego produktu oraz dokumentacji grupie.

4 Galeria

