A formal Analysis for Capturing Replay Attacks in Cryptographic Protocols

Han Gao, Chiara Bodei, Pierpaolo Degano, y Hanne Riis Nielson

Katherine Sullivan FCEIA - UNR

Índice

- Introducción
- Cálculo LySA
 - ¿Qué es LySA?
 - Sintaxis
 - Semántica operacional
 - Análisis estático
 - Propiedades
 - Modelado de atacantes
- Resultados principales
 - Frescura dinámica
 - Implementación
 - Validación del protocolo de Needham-Schroeder
 - Comentarios finales

Índice

- Introducción
 - Cálculo LySA
 - ¿Qué es LySA?
 - Sintaxis
 - Semántica operacional
 - Análisis estático
 - Propiedades
 - Modelado de atacantes
- Resultados principales
 - Frescura dinámica
 - Implementación
 - Validación del protocolo de Needham-Schroeder
 - Comentarios finales

Introducción Cálculo LYSA Resultados principales Comentarios finales

Introducción

• ¿En qué consisten los ataques por repetición?

- ¿En qué consisten los ataques por repetición?
 - Tipo de ataque en el que un adversario intercepta y retransmite datos previamente capturados para intentar ganar acceso no autorizado o causar un mal funcionamiento en un sistema.

- ¿En qué consisten los ataques por repetición?
 - Tipo de ataque en el que un adversario intercepta y retransmite datos previamente capturados para intentar ganar acceso no autorizado o causar un mal funcionamiento en un sistema.

 ¿Cómo se hará el análisis formal para capturar ataques por repetición?

- ¿En qué consisten los ataques por repetición?
 - Tipo de ataque en el que un adversario intercepta y retransmite datos previamente capturados para intentar ganar acceso no autorizado o causar un mal funcionamiento en un sistema

- ¿Cómo se hará el análisis formal para capturar ataques por repetición?
 - A través de la extensión de LYSA, un álgebra de procesos, y su respectivo análisis de flujo de control, con anotaciones de sesiones.

Índice

- Introducción
- 2 Cálculo LySA
 - ¿Qué es LySA?
 - Sintaxis
 - Semántica operacional
 - Análisis estático
 - Propiedades
 - Modelado de atacantes
- Resultados principales
 - Frescura dinámica
 - Implementación
 - Validación del protocolo de Needham-Schroeder
 - Comentarios finales

Introducción Cálculo LYSA Resultados principales Comentarios finales ¿Qué es LYSA? Sintaxis Semántica operacional Análisis estático Propiedades Modelado de atacantes

¿Qué es LySA?

¿Qué es LySA? Sintaxis Semántica operacional Análisis estático Propiedades Modelado de atacantes

¿Qué es LySA?

Es un álgebra de procesos desarrollada en Automatic Validation of Protocol Narration (2003) y en Static Validation of Security Protocols (2005) por Chiara Bodei, Mikael Buchholtz, Pierpaolo Degano, Flemming Nielson y Hanne Riis Nielson con ciertas particularidades:

¿Qué es LySA?

Es un álgebra de procesos desarrollada en Automatic Validation of Protocol Narration (2003) y en Static Validation of Security Protocols (2005) por Chiara Bodei, Mikael Buchholtz, Pierpaolo Degano, Flemming Nielson y Hanne Riis Nielson con ciertas particularidades:

 No hay canales: en LYSA todos los procesos tienen acceso solo a un único canal de comunicación global.

¿Qué es LySA?

Es un álgebra de procesos desarrollada en Automatic Validation of Protocol Narration (2003) y en Static Validation of Security Protocols (2005) por Chiara Bodei, Mikael Buchholtz, Pierpaolo Degano, Flemming Nielson y Hanne Riis Nielson con ciertas particularidades:

- No hay canales: en LYSA todos los procesos tienen acceso solo a un único canal de comunicación global.
- Las verificaciones asociadas con inputs (recepciones de mensajes) y desencriptaciones son expresadas usando pattern matching.

Introducción Cálculo LySA Resultados principales Comentarios finales ¿Qué es LYSA? Sintaxis Semántica operacional Análisis estático Propiedades Modelado de atacantes

Sintaxis LYSA

¿ Que es LYSA?

Sintaxis

Semántica operacional

Análisis estático

Propiedades

Modelado de atacantes

Sintaxis LYSA

La sintaxis de expresiones resulta simple de comprender, estando conformada por nombres, variables y expresiones encriptadas. Vale la pena detenerse en la sintaxis de procesos.

Sintaxis LYSA

La sintaxis de expresiones resulta simple de comprender, estando conformada por nombres, variables y expresiones encriptadas. Vale la pena detenerse en la sintaxis de procesos.

```
E ::= n|x|\{E_1, ..., E_k\}_{E_0}
P ::= \langle E_1, ..., E_k \rangle.P \qquad \qquad \text{(env\'io de msj)}
|(E_1, ..., E_j; x_{j+1}, ..., x_k).P \qquad \qquad \text{(recepci\'on de msj)}
|\text{decrypt } E \text{ as } \{E_1, ..., E_j; x_{j+1}, ..., x_k\}_{E_0}^I \text{ in } P \qquad \text{(desencriptaci\'on)}
|(\nu n)P \qquad \qquad \text{(nuevo nombre)}
|P_1|P_2 \qquad \qquad \text{(paralelismo)}
|P \qquad \qquad \text{(replicaci\'on)}
|0 \qquad \qquad \text{(proceso nulo)}
```

¿Qué es LYSA? Sintaxis Semántica operacional Análisis estático Propiedades Modelado de atacantes

Sintaxis LYSA extendida I

¿ Qué es LYSA? Sintaxis Semántica operacional Análisis estático Propiedades Modelado de atacantes

Sintaxis LYSA extendida I

Ahora cada término y proceso llevará un identificador de la sesión a la que pertenece.

Sintaxis LYSA extendida I

Ahora cada término y proceso llevará un identificador de la sesión a la que pertenece.

$$\begin{split} \mathcal{E} &::= [n]_s \mid x \mid [\{\mathcal{E}_1, \dots, \mathcal{E}_k\}_{\mathcal{E}_0}]_s \\ \mathcal{P} &::= \langle \mathcal{E}_1, \dots, \mathcal{E}_k \rangle. \mathcal{P} \mid (\mathcal{E}_1, \dots, \mathcal{E}_j; x_{j+1}, \dots, x_k). \mathcal{P} \mid \\ & \text{decrypt } \mathcal{E} \text{ as } \{\mathcal{E}_1, \dots, \mathcal{E}_j; x_{j+1}, \dots, x_k\}_{\mathcal{E}_0}^l \text{ in } \mathcal{P} \mid \\ & (\nu \ [n]_s) \mathcal{P} \mid \mathcal{P}_1 | \mathcal{P}_2 \mid [!P]_s \mid 0 \end{split}$$

Sintaxis LYSA extendida I

Ahora cada término y proceso llevará un identificador de la sesión a la que pertenece.

$$\begin{split} \mathcal{E} &::= [n]_s \mid x \mid [\{\mathcal{E}_1, \dots, \mathcal{E}_k\}_{\mathcal{E}_0}]_s \\ \mathcal{P} &::= \langle \mathcal{E}_1, \dots, \mathcal{E}_k \rangle. \mathcal{P} \mid (\mathcal{E}_1, \dots, \mathcal{E}_j; x_{j+1}, \dots, x_k). \mathcal{P} \mid \\ & \text{decrypt } \mathcal{E} \text{ as } \{\mathcal{E}_1, \dots, \mathcal{E}_j; x_{j+1}, \dots, x_k\}_{\mathcal{E}_0}^l \text{ in } \mathcal{P} \mid \\ & (\nu \ [n]_s) \mathcal{P} \mid \mathcal{P}_1 | \mathcal{P}_2 \mid [!P]_s \mid 0 \end{split}$$

Pero, ¿cómo se mapean términos y procesos estándar a unos de la sintaxis extendida?

Sintaxis LySA extendida I

Ahora cada término y proceso llevará un identificador de la sesión a la que pertenece.

$$\begin{split} \mathcal{E} &::= [n]_s \mid x \mid [\{\mathcal{E}_1, \dots, \mathcal{E}_k\}_{\mathcal{E}_0}]_s \\ \mathcal{P} &::= \langle \mathcal{E}_1, \dots, \mathcal{E}_k \rangle. \mathcal{P} \mid (\mathcal{E}_1, \dots, \mathcal{E}_j; x_{j+1}, \dots, x_k). \mathcal{P} \mid \\ & \text{decrypt } \mathcal{E} \text{ as } \{\mathcal{E}_1, \dots, \mathcal{E}_j; x_{j+1}, \dots, x_k\}_{\mathcal{E}_0}^l \text{ in } \mathcal{P} \mid \\ & (\nu \ [n]_s) \mathcal{P} \mid \mathcal{P}_1 | \mathcal{P}_2 \mid [!P]_s \mid 0 \end{split}$$

Pero, ¿cómo se mapean términos y procesos estándar a unos de la sintaxis extendida? Añadiendo identificadores de sesión inductivamente a través de dos funciones: \mathcal{F} y \mathcal{T} .

Sintaxis LySA extendida II

Sintaxis LYSA extendida II

$$\begin{split} \mathcal{F}: E \times SID &\rightarrow \mathcal{E} \\ &-\mathcal{F}(n,s) = [n]_s \qquad -\mathcal{F}(x,s) = x \\ &-\mathcal{F}(\{E_1,\ldots,E_k\}_{E_0},s) = [\{\mathcal{F}(E_1,s),\ldots,\mathcal{F}(E_k,s)\}_{\mathcal{F}(E_0,s)}]_s \end{split}$$

$$\mathcal{T}: P \times SID \rightarrow \mathcal{P}$$

$$-\mathcal{T}(\langle E_1,\ldots,E_k\rangle,P,s) = \langle \mathcal{F}(E_1,s),\ldots,\mathcal{F}(E_k,s)\rangle,\mathcal{T}(P,s)$$

$$-\mathcal{T}(\langle E_1,\ldots,E_j;x_{j+1},\ldots,x_k\rangle,P,s) = \\ &(\mathcal{F}(E_1,s),\ldots,\mathcal{F}(E_j,s);x_{j+1},\ldots,x_k).\mathcal{T}(P,s)$$

$$-\mathcal{T}(decrypt\ E\ as\ \{E_1,\ldots,E_j;x_{j+1},\ldots,x_k\}_{E_0}^{l}\ in\ P,s) = \\ &decrypt\ \mathcal{F}(E,s)\ as\ \{\mathcal{F}(E_1,s),\ldots,\mathcal{F}(E_j,s);x_{j+1},\ldots,x_k\}_{\mathcal{F}(E_0,s)}^{l}\ in\ \mathcal{T}(P,s)$$

$$-\mathcal{T}(P\ |\ Q,s) = \mathcal{T}(P,s)\ |\ \mathcal{T}(Q,s) \qquad -\mathcal{T}((\nu\ n)P,s) = (\nu\ [n]_s)\mathcal{T}(P,s)$$

$$-\mathcal{T}(P,s) = [P]_s \qquad -\mathcal{T}(0,s) = 0 \end{split}$$

Semántica operacional I

Semántica operacional I

Se consideran dos variantes de la relación de reducción $\to_{\mathcal{R}}$, identificadas por una diferente instanciación de la relación R, que decora la relación de transición.

¿Qué es LySA? Sintaxis Semántica operacional Análisis estático Propiedades Modelado de atacante:

Semántica operacional I

Se consideran dos variantes de la relación de reducción $\to_{\mathcal{R}}$, identificadas por una diferente instanciación de la relación R, que decora la relación de transición.

Una variante (\rightarrow_{RM}) aprovecha las anotaciones, la otra (\rightarrow) las descarta: esencialmente, la primera semántica verifica la frescura de los mensajes, mientras que la otra no lo hace.

Semántica operacional II

¿Qué es LySA? Sintaxis Semántica operacional Análisis estático Propiedades Modelado de atacante:

Semántica operacional II

Antes de pasar a la definición de la relación necesitamos de dos definiciones:

¿Qué es LYSA? Sintaxis Semántica operacional Análisis estático Propiedades Modelado de atacantes

Semántica operacional II

Antes de pasar a la definición de la relación necesitamos de dos definiciones:

Semántica operacional II

Antes de pasar a la definición de la relación necesitamos de dos definiciones:

• La relación de equivalencia $V_1 \stackrel{f}{=} V_2$ definida como la menor equivalencia sobre Val que (de manera inductiva) ignora los identificadores de sesión.

Semántica operacional II

Antes de pasar a la definición de la relación necesitamos de dos definiciones:

- La relación de equivalencia $V_1 \stackrel{f}{=} V_2$ definida como la menor equivalencia sobre Val que (de manera inductiva) ignora los identificadores de sesión.
- La función $\mathcal{I}: Val \to SID$ de extracción de identificadores de sesión definida como sigue:

$$\mathcal{I}([n]_s) = s$$

$$\mathcal{I}([v_1, \dots, v_{k_{v_0}}]_s) = s$$

¿Qué es LYSA? Sintaxis Semántica operacional Análisis estático Propiedades Modelado de atacantes

Semántica operacional III

¿Qué es LYSA? Sintaxis Semántica operacional Análisis estático Propiedades Modelado de atacante:

Semántica operacional III

Ahora sí, pasemos a la definición de la relación de reducción.

Semántica operacional III

Ahora sí, pasemos a la definición de la relación de reducción.

$$(\text{Com}) \ \frac{ \bigwedge_{i=1}^{j} V_{i} \overset{f}{=} V_{i}' }{ \langle V_{1}, \dots, V_{k} \rangle . \mathcal{P} \mid (V_{1}', \dots, V_{j}'; x_{j+1}, \dots, x_{k}) . \mathcal{P}' }{ \bigwedge_{\mathcal{P}} \mathcal{P} \mid \mathcal{P}'[V_{j+1}'/x_{j+1}, \dots, V_{k}'/x_{k}] }$$

$$(\text{Dec}) \ \frac{ \bigwedge_{i=0}^{j} V_{i} \overset{f}{=} V_{i}' \wedge \bigvee_{i=1}^{j} \mathcal{R}(\mathcal{I}(V_{i}), \mathcal{I}(V_{i}')) }{ \text{decrypt } \{V_{1}, \dots, V_{k}\}_{V_{0}} \text{ as } \{V_{1}', \dots, V_{j}'; x_{j+1}, \dots, x_{k}\}_{V_{0}'}^{l} \text{ in } \mathcal{P} }$$

$$\longrightarrow_{\mathcal{R}} \mathcal{P}[V_{j+1}'/x_{j+1}, \dots, V_{k}'/x_{k}] }$$

$$(\text{Res}) \ \frac{\mathcal{P} \longrightarrow_{\mathcal{R}} \mathcal{P}'}{(\nu [n]_{s})\mathcal{P} \longrightarrow_{\mathcal{R}} (\nu [n]_{s})\mathcal{P}'} \qquad (\text{Repl}) \ [!P]_{s} \longrightarrow_{\mathcal{R}} \mathcal{T}(P, s) \mid [!P]_{s'} \quad (s' \text{ is fresh})$$

$$(\text{Par}) \ \frac{\mathcal{P}_{1} \longrightarrow_{\mathcal{R}} \mathcal{P}_{1}'}{\mathcal{P}_{1} \mid \mathcal{P}_{2} \longrightarrow_{\mathcal{R}} \mathcal{P}_{1}' \mid \mathcal{P}_{2}} \qquad (\text{Congr}) \ \frac{P \equiv P' \wedge \mathcal{T}(P', s) \longrightarrow_{\mathcal{R}} \mathcal{T}(P'', s)}{\mathcal{T}(P, s) \longrightarrow_{\mathcal{R}} \mathcal{T}(P'', s)}$$

Semántica operacional IV

¿Qué es LYSA? Sintaxis Semántica operacional Análisis estático Propiedades Modelado de atacante:

Semántica operacional IV

Con la relación de reducción definida podemos pasar a dar una de las definiciones más relevantes: la de frescura.

Semántica operacional IV

Con la relación de reducción definida podemos pasar a dar una de las definiciones más relevantes: la de frescura.

Def. Frescura. Un proceso P asegura la propiedad de frescura si, para todas las ejecuciones posibles $P \to_{\mathcal{R}}^* P' \to P''$ cuando $P' \to P''$ se deriva usando (Dec) en

decrypt
$$[\{V_1,\ldots,V_k\}_{V_0}]_s$$
 as $\{V_1',\ldots,V_j';x_{j+1},\ldots,x_k\}_{V'}^I$ in P ,

existe al menos un i $(1 \le i \le j)$ tal que $\mathcal{I}(V_i) = \mathcal{I}(V_i')$.

Ejemplo: Protocolo Wide Mouthed Frog

Ejemplo: Protocolo Wide Mouthed Frog

Se usa una versión simplificada (sin timestamps) del protocolo WMF, un protocolo de gestión de claves simétrico cuyo objetivo es establecer un secreto clave de sesión K_{ab} entre A y B que comparten sus claves secretas K_A y K_B con un servidor de confianza S, para mostrar como ejemplo.

Ejemplo: Protocolo Wide Mouthed Frog

Se usa una versión simplificada (sin timestamps) del protocolo WMF, un protocolo de gestión de claves simétrico cuyo objetivo es establecer un secreto clave de sesión K_{ab} entre A y B que comparten sus claves secretas K_A y K_B con un servidor de confianza S, para mostrar como ejemplo.

Narración:

1.
$$A \rightarrow S$$
: $\{B, K_{ab}\}_{K_A}$

$$2. S \to B : \{A, K_{ab}\}_{K_B}$$

3.
$$B \rightarrow A : \{Msg\}_{K_{ab}}$$

Ejemplo: protocolo Wide Mouthed Frog

Ejemplo: protocolo Wide Mouthed Frog

Especificación LYSA:

Ejemplo: protocolo Wide Mouthed Frog

Especificación LySA:

Análisis de términos I

Análisis de términos I

• $\rho: X \to \wp(Val)$ es el entorno de variables que asigna las variables a los conjuntos de valores a los que pueden estar vinculadas.

Análisis de términos I

- $\rho: X \to \wp(Val)$ es el entorno de variables que asigna las variables a los conjuntos de valores a los que pueden estar vinculadas.
- Se utilizará $\rho \vdash \mathcal{E} : \vartheta$ para indicar que el conjunto ϑ es una estimación aceptable (una sobreaproximación correcta) de los posibles valores a los que el término \mathcal{E} puede evaluar en el entorno ρ .

Análisis de términos I

- $\rho: X \to \wp(Val)$ es el entorno de variables que asigna las variables a los conjuntos de valores a los que pueden estar vinculadas.
- Se utilizará $\rho \vdash \mathcal{E} : \vartheta$ para indicar que el conjunto ϑ es una estimación aceptable (una sobreaproximación correcta) de los posibles valores a los que el término \mathcal{E} puede evaluar en el entorno ρ .
- Se emplean dos tipos de pruebas de pertenencia: $V \in \vartheta$ para comprobar si V está en el conjunto ϑ y $V \propto \vartheta$ para probar si hay un valor V' en ϑ que es igual a V, ignorando las anotaciones.

Análisis de términos II

Análisis de términos II

(Name)
$$\frac{[n]_s \in \vartheta}{\rho \models [n]_s : \vartheta} \qquad \text{(Var)} \quad \frac{\rho(x) \subseteq \vartheta}{\rho \models x : \vartheta}$$

$$\wedge_{i=0}^k \rho \models \mathcal{E}_i : \vartheta_i \wedge \wedge$$
(Enc)
$$\frac{\forall V_0, \dots, V_k : \wedge_{i=0}^k V_i \in \vartheta_i \Rightarrow [\{V_1, \dots, V_k\}_{V_0}]_s \in \vartheta}{\rho \models [\{\mathcal{E}_1, \dots, \mathcal{E}_k\}_{\mathcal{E}_0}]_s : \vartheta}$$

Análisis de procesos l'

Análisis de procesos I

• $\kappa \subseteq \wp(Val^*)$ es el entorno de red abstracto que incluye todas las tuplas que forman un mensaje que puede fluir en la red.

Análisis de procesos I

- $\kappa \subseteq \wp(Val^*)$ es el entorno de red abstracto que incluye todas las tuplas que forman un mensaje que puede fluir en la red.
- ψ es un conjunto posiblemente vacío de componentes de error que recopila una sobreaproximación de violaciones de frescura. Un $I \in \psi$ significa que el valor vinculado después de un descifrado exitoso, marcado con la etiqueta I, viola las anotaciones de frescura y, por lo tanto, no está permitido.

Análisis de procesos I

- $\kappa \subseteq \wp(Val^*)$ es el entorno de red abstracto que incluye todas las tuplas que forman un mensaje que puede fluir en la red.
- ψ es un conjunto posiblemente vacío de componentes de error que recopila una sobreaproximación de violaciones de frescura. Un $I \in \psi$ significa que el valor vinculado después de un descifrado exitoso, marcado con la etiqueta I, viola las anotaciones de frescura y, por lo tanto, no está permitido.
- Se utiliza el símbolo $\rho, \kappa \vDash_{\mathsf{RM}} \mathcal{P} : \psi$ para expresar que $\rho, \kappa, \mathsf{y} \ \psi$ son estimaciones de análisis válidas para el proceso \mathcal{P} .

Análisis de procesos II

Análisis de procesos II

$$\begin{array}{c} \wedge_{i=1}^{k}\rho \models \mathcal{E}_{i}:\vartheta_{i} \wedge \\ \forall V_{1},\ldots,V_{k} \wedge_{i=1}^{k}V_{i} \in \vartheta_{i} \Rightarrow \\ (\mathrm{Out}) & \frac{\langle V_{1},\ldots,V_{k} \rangle \in \kappa \wedge \rho, \kappa \models_{\mathsf{RM}} \mathcal{P}:\psi}{\rho,\kappa \models_{\mathsf{RM}} \langle \mathcal{E}_{1},\ldots,\mathcal{E}_{k} \rangle.\mathcal{P}:\psi} \\ & \frac{\wedge_{i=1}^{j}\rho \models \mathcal{E}_{i}:\vartheta_{i} \wedge \\ \forall \langle V_{1},\ldots,V_{k} \rangle \in \kappa : \wedge_{i=1}^{j}V_{i} \varpropto \vartheta_{i} \Rightarrow \\ (\mathrm{Inp}) & \frac{\wedge_{i=j+1}^{k}V_{i} \in \rho(x_{i}) \wedge \rho, \kappa \models_{\mathsf{RM}} \mathcal{P}:\psi}{\rho,\kappa \models_{\mathsf{RM}} (\mathcal{E}_{1},\ldots,\mathcal{E}_{j};x_{j+1},\ldots,x_{k}).\mathcal{P}:\psi} \\ & \frac{\rho \models \mathcal{E}:\vartheta \wedge \wedge_{i=0}^{j}\rho \models \mathcal{E}_{i}:\vartheta_{i} \wedge \\ \forall [\{V_{1},\ldots,V_{k}\}_{V_{0}}]_{s} \in \vartheta : \wedge_{i=0}^{j}V_{i} \varpropto \vartheta_{i} \Rightarrow \\ (\wedge_{i=j+1}^{k}V_{i} \in \rho(x_{i}) \wedge \rho, \kappa \models_{\mathsf{RM}} \mathcal{P}:\psi \wedge \\ (\not\exists i:1\leq i\leq k: (\mathcal{I}(V_{i})=\mathcal{I}(\mathcal{E}_{i})) \Rightarrow l \in \psi)) \\ \hline \rho,\kappa \models_{\mathsf{RM}} \mathsf{decrypt} \; \mathcal{E} \; \mathsf{as} \; \{\mathcal{E}_{1},\ldots,\mathcal{E}_{j};x_{j+1},\ldots,x_{k}\}_{\mathcal{E}_{0}}^{l} \; \mathsf{in} \; \mathcal{P}:\psi \end{array}$$

Análisis de procesos III

Análisis de procesos III

$$(\operatorname{Rep}) \ \frac{\rho, \kappa \models_{\mathsf{RM}} \mathcal{T}([P]_s) : \psi \ \land \ \rho, \kappa \models_{\mathsf{RM}} \mathcal{T}([P]_{s'}) : \psi}{\rho, \kappa \models_{\mathsf{RM}} [!P]_s : \psi} \quad (\operatorname{Nil}) \ \rho, \kappa \models_{\mathsf{RM}} 0 : \psi$$

$$(\operatorname{Par}) \ \frac{\rho, \kappa \models_{\mathsf{RM}} \mathcal{P} : \psi \ \land \ \rho, \kappa \models_{\mathsf{RM}} \mathcal{Q} : \psi}{\rho, \kappa \models_{\mathsf{RM}} \mathcal{P} \mid \mathcal{Q} : \psi} \quad (\operatorname{Res}) \ \frac{\rho, \kappa \models_{\mathsf{RM}} \mathcal{P} : \psi}{\rho, \kappa \models_{\mathsf{RM}} \mathcal{P} \mid \mathcal{Q} : \psi}$$

Introducción Cálculo LySA Resultados principales Comentarios finales ¿Qué es LYSA? Sintaxis Semántica operacional Análisis estático Propiedades Modelado de atacantes

Propiedades I

Propiedades I

Las estimaciones son resistentes a la sustitución de términos cerrados por variables.

Propiedades I

Las estimaciones son resistentes a la sustitución de términos cerrados por variables.

Lemma 1. (Substitution)

1.
$$\rho \models \mathcal{E} : \vartheta$$
 and $\mathcal{E}' \in \rho(x)$ imply $\rho \models \mathcal{E}[\mathcal{E}'/x] : \vartheta$

2.
$$\rho, \kappa \models P : \psi$$
 and $\mathcal{E} \in \rho(x)$ imply $\rho, \kappa \models P[\mathcal{E}/x] : \psi$

Introducción Cálculo LYSA Resultados principales Comentarios finales ¿Qué es LYSA? Sintaxis Semántica operacional Análisis estático Propiedades Modelado de atacantes

Propiedades II

Propiedades II

Una estimación para un proceso extendido P es válida para cualquier proceso extendido congruente con P.

Propiedades II

Una estimación para un proceso extendido P es válida para cualquier proceso extendido congruente con P.

Lemma 2. (Congruence)
If
$$P \equiv Q$$
 and $\rho, \kappa \models \mathcal{T}([P]_s) : \psi$ then $\rho, \kappa \models \mathcal{T}([Q]_s) : \psi$

Introducción Cálculo LYSA Resultados principales Comentarios finales ¿Qué es LYSA? Sintaxis Semántica operacional Análisis estático Propiedades Modelado de atacantes

Propiedades III

Propiedades III

El resultado del análisis para un proceso es válido para sus derivados en la reducción \mathcal{R}_{\cdot}

Propiedades III

El resultado del análisis para un proceso es válido para sus derivados en la reducción \mathcal{R} .

Theorem 1. (Subject reduction)

- If P →_R Q and ρ, κ |= P : ψ then also ρ, κ |= Q : ψ;
- 2. Furthermore, if $\psi = \emptyset$ then $P \rightarrow_{RM} Q$

Proof. The proof is done by induction of the inference of $\mathcal{P} \to_{\mathcal{R}} \mathcal{Q}$.

Introducción Cálculo LySA Resultados principales Comentarios finales ¿Qué es LYSA? Sintaxis Semántica operacional Análisis estático Propiedades Modelado de atacantes

Propiedades IV

Propiedades IV

Si el conjunto de etiquetas ψ es vacío, entonces el monitor de referencia no puede abortar el proceso \mathcal{P} , ie.

$$\nexists \mathcal{Q}, \mathcal{Q}'/\mathcal{P} \to_{\mathcal{R}}^* \mathcal{Q} \to_{\mathsf{RM}} \mathcal{Q}' \land \mathcal{P} \to_{\mathcal{R}}^* \mathcal{Q} \nrightarrow_{\mathsf{RM}}$$

Propiedades IV

Si el conjunto de etiquetas ψ es vacío, entonces el monitor de referencia no puede abortar el proceso \mathcal{P} , ie.

$$\nexists \mathcal{Q}, \mathcal{Q}'/\mathcal{P} \to_{\mathcal{R}}^* \mathcal{Q} \to_{\mathsf{RM}} \mathcal{Q}' \land \mathcal{P} \to_{\mathcal{R}}^* \mathcal{Q} \nrightarrow_{\mathsf{RM}}$$

Theorem 2. (Static check for reference monitor)

If
$$\rho, \kappa \models P : \emptyset$$
 then RM cannot abort P .

Proof Suppose *per absurdum* that such \mathcal{Q} and \mathcal{Q}' exist. A straightforward induction extends the subject reduction result to $\mathcal{P} \to^* \mathcal{Q}$ giving $\rho, \kappa \models_{\mathsf{RM}} \mathcal{Q} : \emptyset$. Theorem 1 part 2 of applied to $\mathcal{Q} \to \mathcal{Q}'$ gives $\mathcal{Q} \to_{\mathsf{RM}} \mathcal{Q}'$ which is a contradiction.

Ejemplo: análisis estático de WMF

Ejemplo: análisis estático de WMF

Análisis:

Ejemplo: análisis estático de WMF

Análisis:

where
$$\rho$$
, κ and ψ have the following entries
$$\rho: y \mapsto \{\{[A]_0, [K_{ab}]_0\}_{[K_B]_0}, \{[A]_1, [K_{ab}]_1\}_{[K_B]_1}\}$$

$$z \mapsto \{\{[Msg]_0\}_{[K_{ab}]_0}, \{[Msg]_1\}_{[K_{ab}]_1}\}$$

$$p \mapsto \{\{[B]_0, [K_{ab}]_0\}_{[K_A]_0}, \{[B]_1, [K_{ab}]_1\}_{[K_A]_1}\}$$

$$k \mapsto \{[K_{ab}]_0, [K_{ab}]_1\}$$

$$k' \mapsto \{[K_{ab}]_0, [K_{ab}]_1\}$$

$$z_m \mapsto \{[Msg]_0, [Msg]_1\}$$

$$\kappa: \{\langle [A]_0, [S]_0, [\{[B]_0, [K_{ab}]_0\}_{[K_A]_0}]_0\rangle, \langle [A]_1, [S]_1, [\{[B]_1, [K_{ab}]_1\}_{[K_A]_1}]_1\rangle\}\cup$$

$$\{\langle [B]_0, [A]_0, [\{[Msg]_0\}_{[K_{ab}]_0}]_0\rangle, \langle [S]_1, [A]_1, [\{[Msg]_1\}_{[K_a]_1}]_1\rangle\}\cup$$

$$\{\langle [S]_0, [B]_0, [\{[A]_0, [K_{ab}]_0\}_{[K_B]_0}]_0\rangle, \langle [S]_1, [B]_1, [\{[A]_1, [K_{ab}]_1\}_{[K_B]_1}]_1\rangle\}$$

$$\psi: \{l1, l2, l3\}$$

 $\rho, \kappa \models_{\mathsf{PM}} WMF : \psi$

¿Qué es LYSA? Sintaxis Semántica operacional Análisis estático Propiedades Modelado de atacantes

Ejemplo: análisis estático de WMF

¿Qué es LYSA? Sintaxis Semántica operacional Análisis estático Propiedades Modelado de atacantes

Ejemplo: análisis estático de WMF

Posible ataque:

Ejemplo: análisis estático de WMF

Posible ataque:

```
\begin{array}{l} 1. \ [A]_1 \to [S]_1 : \{[B]_1, [K_{ab}]_1\}_{[K_A]_1} \\ 2. \ [S]_1 \to M : \ \{[A]_1, [K_{ab}]_1\}_{[K_B]_1} \\ M \to [B]_1 : \{[A]_0, [K_{ab}]_0\}_{[K_B]_0} \\ 3. \ [B]_1 \to [A]_1 : \{[Msg]_1\}_{[K_{ab}]_0} \end{array}
```

Introducción Cálculo LySA Resultados principales Comentarios finales ¿Qué es LYSA? Sintaxis Semántica operacional Análisis estático Propiedades Modelado de atacantes

Modelado de atacantes I

Modelado de atacantes I

- Se dice que un proceso $\mathcal{P}_{\mathsf{sys}}$ tiene el tipo $(\mathcal{N}_f, \mathcal{A}_\kappa, \mathcal{A}_{\mathsf{Enc}})$ cuando:
 - Es cerrado.
 - ② Todos los nombres libres de \mathcal{P}_{sys} están en \mathcal{N}_f .
 - **3** Todas las aridades utilizadas para enviar o recibir están en A_{κ} .

Modelado de atacantes I

- Se dice que un proceso \mathcal{P}_{sys} tiene el tipo $(\mathcal{N}_f, \mathcal{A}_\kappa, \mathcal{A}_{Enc})$ cuando:
 - Es cerrado.
 - 2 Todos los nombres libres de \mathcal{P}_{sys} están en \mathcal{N}_f .
 - **3** Todas las aridades utilizadas para enviar o recibir están en A_{κ} .
 - f 0 Todas las aridades utilizadas para encriptar o desencriptar están en ${\cal A}_{\sf Enc}.$
- Se considerarán atacantes Dolev-Yao activos.

Introducción Cálculo LYSA Resultados principales Comentarios finales ¿Qué es LYSA? Sintaxis Semántica operacional Análisis estático Propiedades Modelado de atacantes

Modelando atacantes II

¿Qué es LYSA? Sintaxis Semántica operacional Análisis estático Propiedades Modelado de atacantes

Modelando atacantes II

Atacantes Dolev-Yao activos:

Modelando atacantes II

Atacantes Dolev-Yao activos:

(1) $\land_{k \in A_{\kappa}} \forall \langle v_1, \dots, v_k \rangle \in \kappa : \land_{i=1}^k v_i \in \rho(z_{\bullet})$ the attacker may learn by eavesdropping

(2)
$$\wedge_{k \in A_{Enc}} \forall [\{v_1, \dots, v_k\}_{v_0}]_s \in \rho(z_{\bullet}) :$$

 $v_0 \propto \rho(z_{\bullet}) \Rightarrow \wedge_{i=1}^k v_i \in \rho(z_{\bullet})$

the attacker may learn by decrypting messages with keys already known

(3)
$$\wedge_{k \in \mathcal{A}_{\mathsf{Enc}}} \forall v_0, \dots, v_k : \wedge_{i=0}^k v_i \in \rho(z_{\bullet}) \Rightarrow [\{v_1, \dots, v_k\}_{v_0}]_{s_{\bullet}} \in \rho(z_{\bullet})$$
 the attacker may construct new encryptions using the keys known

(4)
$$\land_{k \in \mathcal{A}_{\kappa}} \ \forall v_1, \dots, v_k : \land_{i=1}^k v_i \in \rho(z_{\bullet}) \Rightarrow \langle v_1, \dots, v_k \rangle \in \kappa$$
 the attacker may actively forge new communications

(5)
$$\{[n_{\bullet}]_{s_{\bullet}}\} \cup \mathcal{N}_f \subseteq \rho(z_{\bullet})$$

the attacker initially has some knowledge

Introducción Cálculo LYSA Resultados principales Comentarios finales ¿Qué es LYSA? Sintaxis Semántica operacional Análisis estático Propiedades Modelado de atacantes

Modelando atacantes III

¿Que es LYSA? Sintaxis Semántica operacional Análisis estático Propiedades Modelado de atacantes

Modelando atacantes III

Se define una fórmula \mathcal{F}^{DY}_{RM} del tipo $(\mathcal{N}_f, \mathcal{A}_\kappa, \mathcal{A}_{Enc})$ como la conjunción de los cinco componentes en la tabla mostrada anteriormente

Modelando atacantes III

Se define una fórmula \mathcal{F}_{RM}^{DY} del tipo $(\mathcal{N}_f, \mathcal{A}_\kappa, \mathcal{A}_{Enc})$ como la conjunción de los cinco componentes en la tabla mostrada anteriormente y se establece que la fórmula \mathcal{F}_{RM}^{DY} es capaz de caracterizar el efecto potencial de todos los atacantes \mathcal{Q} del tipo $(\mathcal{N}_f, \mathcal{A}_\kappa, \mathcal{A}_{Enc})$.

Modelando atacantes III

Se define una fórmula $\mathcal{F}^{\mathrm{DY}}_{\mathrm{RM}}$ del tipo $(\mathcal{N}_f, \mathcal{A}_\kappa, \mathcal{A}_{\mathsf{Enc}})$ como la conjunción de los cinco componentes en la tabla mostrada anteriormente y se establece que la fórmula $\mathcal{F}^{\mathrm{DY}}_{\mathrm{RM}}$ es capaz de caracterizar el efecto potencial de todos los atacantes \mathcal{Q} del tipo $(\mathcal{N}_f, \mathcal{A}_\kappa, \mathcal{A}_{\mathsf{Enc}})$.

Theorem 3. (Correctness of the extended Dolev-Yao condition)

If (ρ, κ) satisfies \mathcal{F}_{RM}^{DY} of type $(\mathcal{N}_f, \mathcal{A}_\kappa, \mathcal{A}_{Enc})$ then there exists ψ such that for all attackers \mathcal{Q} of type $(\mathcal{N}_f, \mathcal{A}_\kappa, \mathcal{A}_{Enc})$ $\rho, \kappa \models_{RM} \overline{\mathcal{Q}} : \psi$

Proof. The proof is done by structural induction on \overline{Q} .

Índice

- Introducción
- Cálculo LySA
 - ¿Qué es LySA?
 - Sintaxis
 - Semántica operacional
 - Análisis estático
 - Propiedades
 - Modelado de atacantes
- Resultados principales
 - Frescura dinámica
 - Implementación
 - Validación del protocolo de Needham-Schroeder
 - Comentarios finales

Frescura dinámica Implementación Validación del protocolo de Needham-Schroede

Frescura dinámica

Frescura dinámica

Se dice que \mathcal{P}_{sys} garantiza frescura dinámica con respecto a las anotaciones en \mathcal{P}_{sys} si el monitor de referencia \mathcal{RM} no puede abortar $\mathcal{P}_{sys} \mid \mathcal{Q}$ independientemente de la elección del atacante \mathcal{Q} .

Frescura dinámica

Se dice que \mathcal{P}_{sys} garantiza frescura dinámica con respecto a las anotaciones en \mathcal{P}_{sys} si el monitor de referencia \mathcal{RM} no puede abortar $\mathcal{P}_{sys} \mid \mathcal{Q}$ independientemente de la elección del atacante \mathcal{Q} . Se muestra que frescura estática implica frescura dinámica.

Frescura dinámica

Se dice que \mathcal{P}_{sys} garantiza frescura dinámica con respecto a las anotaciones en \mathcal{P}_{sys} si el monitor de referencia \mathcal{RM} no puede abortar $\mathcal{P}_{sys} \mid \mathcal{Q}$ independientemente de la elección del atacante \mathcal{Q} . Se muestra que frescura estática implica frescura dinámica.

Theorem 4. If P guarantees static freshness then P guarantees dynamic freshness.

Proof. If $\rho, \kappa \models_{\mathsf{RM}} \mathcal{P}_{sys} : \emptyset$ and (ρ, κ) satisfies $\mathcal{F}^{\mathsf{DY}}_{\mathsf{RM}}$ then, by Theorems 2 and 3, RM does not abort $\mathcal{P}_{sys} \mid \overline{\mathcal{Q}}$ regardless of the choice of attacker \mathcal{Q} .

Implementación

Implementación

Para obtener una implementación, se transforma el análisis en una formación lógicamente equivalente escrita en Alternation-free Least Fixed Point logic (ALFP) (Nielson-Seidl-Nielson, 2002), y se utiliza el Succinct Solver (Nielson-Seidl-Nielson, 2002), que calcula la interpretación mínima de los símbolos predicados en una fórmula ALFP dada.

Validación del protocolo de Needham-Schroeder I

Validación del protocolo de Needham-Schroeder I

1.
$$A \rightarrow S : A, B, N_a$$

2.
$$S \to A : \{N_a, B, K, \{K, A\}_{K_b}\}_{K_a}$$

3.
$$A \to B : \{A, K\}_{K_b}$$

$$A: B \rightarrow A: \{N_b\}_K$$

5.
$$A \to B : \{N_b - 1\}_K$$

6.
$$A \rightarrow B : \{Msg\}_K$$

1.
$$A \rightarrow S$$
: A, B, N_a

$$\begin{array}{llll} 1. \ A \to S: \ A, B, N_a \\ 2. \ S \to A: \ \{N_a, B, K, \{K, A\}_{K_b}\}_{K_a} \\ 3. \ A \to B: \{A, K\}_{K_b} \\ 4. \ B \to A: \{N_b\}_K \\ 5. \ A \to B: \{N_b - 1\}_K \\ 6. \ A \to B: \{Msg\}_K \\ & the \ protocol \ narration \\ \end{array} \begin{array}{ll} 1. \ A \to S: \ A, B, N_a \\ 2. \ S \to A: \ \{N_a, B, K, \{K, A\}_{K_b}\}_{K_a} \\ 3. \ M(A) \to B: \{A, K'\}_{K_b} \\ 4. \ B \to M(A): \{N_b\}_{K'} \\ 5. \ M(A) \to B: \{N_b - 1\}_{K'} \\ 6. \ M(A) \to B: \{Msg\}_{K'} \\ a \ replay \ attack \ scenario \\ \end{array}$$

3.
$$M(A) \to B : \{A, K'\}_{K_b}$$

4.
$$B \to M(A) : \{N_b\}_{K'}$$

5.
$$M(A) \to B : \{N_b - 1\}_{K'}$$

6.
$$M(A) \rightarrow B : \{Msg\}_{K'}$$

Validación del protocolo de Needham-Schroeder II

Validación del protocolo de Needham-Schroeder II

La solución propuesta por Needham y Schroeder implica la introducción de un nuevo fresco llamado N_a' . Después de la corrección, el protocolo incluirá una solicitud adicional del nuevo valor N_a' por parte de A a B, y este valor se enviará al servidor para su retorno encriptado.

En el nuevo protocolo corregido, las primeras tres etapas del intercambio de claves se modifican como sigue:

1.
$$A \to S$$
: A, B, N_a, N'_a
2. $S \to A$: $\{N_a, B, K, \{A, N'_a, K\}_{K_b}\}_{K_a}$

3.
$$M(A) \to B : \{A, N'_a, K\}_{K_b}$$

Después de aplicar el análisis al protocolo corregido, el resultado indica que no hay violaciones posibles, es decir, $\psi = \emptyset$.

Índice

- Introducción
- 2 Cálculo LySA
 - ¿Qué es LySA?
 - Sintaxis
 - Semántica operacional
 - Análisis estático
 - Propiedades
 - Modelado de atacantes
- Resultados principales
 - Frescura dinámica
 - Implementación

Comentarios finales

• Validación del protocolo de Needham-Schroeder

Comentarios finales

Comentarios finales

 Trabajos relacionados: Authenticity by Tagging and Typing (Bugliesi-Focardi-Maffei, 2004) - Types and Effects for Asymmetric Cryptographic Protocols (Gordon-Jeffrey, 2002).

Comentarios finales

- Trabajos relacionados: Authenticity by Tagging and Typing (Bugliesi-Focardi-Maffei, 2004) - Types and Effects for Asymmetric Cryptographic Protocols (Gordon-Jeffrey, 2002).
- Este trabajo está enmarcado en un proyecto donde varias propiedades de comunicación de protocolos son analizadas mediante anotaciones y fácilmente se puede combinar con otro tipo de anotaciones, por ejemplo anotaciones de confidencialidad o anotaciones para el abordaje de type flaw attacks.