Digital Image Processing

Connected component

Connected component labeling

the process of identifying the connected components in an image and assigning each one a unique label, like this:

```
BW = [0 0 0 0 0 0 0 0 0;

0 1 1 0 0 0 3 3;

0 1 1 0 0 0 0 3 3;

0 1 1 0 0 0 0 0 0;

0 0 0 0 2 2 0 0 0;

0 0 0 0 2 2 0 0 0;

0 0 0 0 2 2 0 0 0;

0 0 0 0 0 0 0 0 0;
```

Labeled Connected Components

Original Image

Labeled Objects

Intensity Transformation

Contents

- **■** Spatial domain vs. Transform domain
- Enhancement
- Intensity transformation functions
 - Linear
 - Logarithmic
 - Power law
- **■** Piecewise-Linear Transformation function
 - Contrast stretching
 - Intensity-level slicing
 - Bit-plane slicing

Spatial Domain vs. Transform Domain

Spatial domain

image plane itself, directly process the intensity values of the image plane

■ Transform domain

process the transform coefficients, not directly process the intensity values of the image plane

Enhancement

- To manipulate an image so that the result is more suitable than the original for a specific application
 - Problem oriented

Spatial Domain Process

g(x, y) = T[f(x, y)]f(x, y): input image g(x, y): output image T: an operator on f defined over a neighborhood of point (x, y)

Spatial Operations

- Point/Pixel operations
 - Output value at specific coordinates (x,y) is dependent only on the input value at (x,y)

- Local/neighborhood operations
 - The output value at (x,y) is dependent on the input values in the neighborhood of (x,y)

- Geometric spatial transformations
 - Affine transformation
 - Image Registration

Point/Pixel operations

Intensity transformation function

$$s = T(r)$$

a b

FIGURE 3.2

Intensity transformation functions.

- (a) Contraststretching function.
- (b) Thresholding function.

Local/neighborhood operation

FIGURE 3.1

A 3 \times 3 neighborhood about a point (x, y) in an image in the spatial domain. The neighborhood is moved from pixel to pixel in the image to generate an output image.

Local/neighborhood operation

Geometric/Spatial transformation

•

TABLE 2.2

Affine transformations based on Eq. (2.6-23).

Transformation Name	Affine Matrix, T	Coordinate Equations	Example
Identity	[1 0 0]	x = v	
	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	y = w	1
Scaling	$\begin{bmatrix} c_x & 0 & 0 \end{bmatrix}$	$x = c_x v$	
	$\begin{bmatrix} c_x & 0 & 0 \\ 0 & c_y & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$y = c_y w$	
Rotation	$\cos \theta \sin \theta 0$	$x = v \cos \theta - w \sin \theta$	45
	$\begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$y = v\cos\theta + w\sin\theta$	
Translation	[1 0 0]	$x = v + t_x$	
	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ t_x & t_y & 1 \end{bmatrix}$	$y = w + t_y$	
Shear (vertical)	1 0 0	$x = v + s_v w$	
	$\begin{bmatrix} 1 & 0 & 0 \\ s_v & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	y = w	
Shear (horizontal)	$\begin{bmatrix} 1 & s_h & 0 \end{bmatrix}$	x = v	, 20
	$\begin{bmatrix} 1 & s_h & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$y = s_h v + w$	//

- One of the most important applications of geometric transformations is image registration
- Goal: Image registration seeks to align images taken in different times, or taken from different
- How: estimate a transformation that aligns the two or more images.
- Image registration has applications especially in
 - Medicine
 - Remote sensing
 - Entertainment

■ Background—Example, Panorama Stitching

image 1

image 2

Two images, sharing some objects

Transform image 1 into the same coordinate system of image 2

Finally, stitch the transformed image 1 with image 2 to get the panorama

Intensity transformation functions

- **Linear**
 - Negative
 - Identity
- **■** Logarithmic
 - Log transform
 - Inverse Log transform
- **■** Power law
 - nth power
 - nth root

Some Basic Intensity Transformation Functions

FIGURE 3.3 Some basic intensity transformation functions. All curves were scaled to fit in the range shown.

Image Negatives

Image negatives

$$s = L - 1 - r$$

Example: Image Negatives

Original Image

Image negative

Log Transformations

Log Transformations $s = c \log(1+r)$

Example: Log Transformations

a b

FIGURE 3.5

(a) Fourier spectrum. (b) Result of applying the log transformation in Eq. (3.2-2) with c = 1.

Power-Law (Gamma) Transformations

$$s=cr^{\gamma}$$

FIGURE 3.6 Plots of the equation $s = cr^{\gamma}$ for various values of γ (c = 1 in all cases). All curves were scaled to fit in the range shown.

Example: Gamma Transformations

a b c d

FIGURE 3.7

(a) Intensity ramp image. (b) Image as viewed on a simulated monitor with a gamma of 2.5. (c) Gamma-corrected image. (d) Corrected image as viewed on the same monitor. Compare (d) and (a).

Example: Gamma Transformations

Example: Gamma Transformations

a b c d

FIGURE 3.8 (a) Magnetic resonance image (MRI) of a fractured human spine. (b)-(d) Results of applying the transformation in Eq. (3.2-3) with c = 1 and $\gamma = 0.6, 0.4, \text{ and }$ 0.3, respectively. (Original image courtesy of Dr. David R. Pickens, Department of Radiology and Radiological Sciences, Vanderbilt University

Medical Center.)

Examnle: Gamma Transformations

a b c d

FIGURE 3.9

(a) Aerial image. (b)–(d) Results of applying the transformation in Eq. (3.2-3) with c=1 and $\gamma=3.0$, 4.0, and 5.0, respectively. (Original image for this example courtesy of NASA.)

Piecewise-Linear Transformations

- Contrast Stretching
 - Expands the range of intensity levels in an image so that it spans the full intensity range of the recording medium or display device.
- Intensity-level Slicing
 - Highlighting a specific range of intensities in an image often is of interest.

a b c d

FIGURE 3.10

Contrast stretching.

(a) Form of
transformation
function. (b) A
low-contrast image.
(c) Result of
contrast stretching.
(d) Result of
thresholding.
(Original image
courtesy of Dr.

Roger Heady,

University,

Canberra, Australia.)

Research School of

Biological Sciences, Australian National

Bit-plane Slicing

Bit-plane Slicing

FIGURE 3.14 (a) An 8-bit gray-scale image of size 500×1192 pixels. (b) through (i) Bit planes 1 through 8, with bit plane 1 corresponding to the least significant bit. Each bit plane is a binary image.

Bit-plane Slicing

a b c

FIGURE 3.15 Images reconstructed using (a) bit planes 8 and 7; (b) bit planes 8, 7, and 6; and (c) bit planes 8, 7, 6, and 5. Compare (c) with Fig. 3.14(a).