LA SYNTHÈSE D'IMAGES

- Modélisation -

Jonathan Fabrizio

Version: Fri Feb 12 17:02:29 2021

- ► Rendu temps réel
 - ► Maillages/polygones
- ► Rendu photoréaliste (algorithmes type raytracing)
 - ► Maillages/polygones
 - ► Mathématiques
- ► Animation :
 - Modèles physiques

Chaque objet est décrit par une formule mathématique

- ► Très compact et bien adapté pour les algorithmes type raytracing
- ► Formule compliquée ou impossible à déterminer pour la plupart des objets

Formes de base - primitives 2D/3D :

- ► Sphere
- ► Cylindre
- ► Cube
- ► Plan
- ▶ Tore
- ightharpoonup

Maillages

Construction d'objets par assemblage de polygones

- ► Bonne modélisation des objets avec peu de courbes (architecture...)
- ► Peu compacte mais facile à manipuler

Maillages : Représentation

- ► Polygone utilisé :
 - ► Majoritairement le triangle
 - ► Facilite le traitement (remplissage...)
- ► Représentation en interne :
 - Liste de coordonnées de sommets par polygone
 - Duplication des sommets communs à plusieurs polygones
 - ► Pas de connaissance de la topologie
 - Liste de sommets puis liste d'indices par polygone
 - ► Gain de place
 - ► Réduction de la quantité d'information
 - ► Pas de connaissance de la topologie

Maillage : Triangulation de Delaunay

Diagramme de Voronoï

Maillage : Mesh Refinement

Adaptive mesh refinement

► Depth tagging

Bézier (1960 - Renault)

- ► Courbes de Bézier
- ► Surfaces de Bézier

Courbes de Bézier

► Définir une courbe passant par deux points :

- ▶ Définir une courbe passant par deux points :
 - Lissage linéaire
 - $ightharpoonup P_1t + P_2(1-\overline{t}) ext{ avec } 0 \leq t \leq 1$
 - ► Si plus de points : continu par morceau

- ► Lissage polynomial de Hermite
 - $\triangleright x(t) = Q(t) = a_3t^3 + a_2t^2 + a_1t + a_0$
 - $\triangleright y(t) = R(t) = b_3t^3 + b_2t^2 + b_1t + b_0$
 - ightharpoonup Pour garder la dérivabilité en P_1 et P_2 :
 - $Q'(t) = 3a_3t^2 + 2a_2t + a_1$
 - ldem pour y(t)
 - ▶ Il faut trouver les a_i et les b_i

- Lissage polynomial de Hermite
 - $\triangleright x(t) = \overline{Q(t) = a_3 t^3 + a_2 t^2 + a_1 t + a_0}$
 - \triangleright $y(t) = R(t) = b_3t^3 + b_2t^2 + b_1t + b_0$
 - ightharpoonup Pour garder la dérivabilité en P_1 et P_2 :
 - $P Q'(t) = 3a_3t^2 + 2a_2t + a_1$

 - ightharpoonup Idem pour y(t)
- On va utiliser :
 - \triangleright $x(0) = xP_1$
 - $ightharpoonup x(1) = xP_2$
 - $x'(0) = x'P_1$
 - $x'(1) = x'P_2$
- Ce qui donne :
 - $\triangleright x(t) = (2t^3 3t^2 + 1)xP_1 + (-2t^3 + 3^2)xP_2 + (t^3 2t^2 + 1)xP_2 + (t^3 2t^2 + 1)xP_3 + (t^3$ $t)x'P_1 + (t^3 - t^2)x'P_2$
 - ightharpoonup Idem pour y(t)

Courbes de Bézier

- ► Comment avoir les
 - $x'(0) = x'P_1$
 - $x'(1) = x'P_2$

Ajout de points de contrôle pour déterminer la dérivée localement

Les vecteurs tangents sont déduit par $3(D_1 - P_1)$

- ► Cela donne :
 - $ightharpoonup xP_1(1-t)^3 + xD_1(3t(1-t)^2) + xD_23t^2(1-t) + xP_2t^3$

- Pour définir une courbe plus complexe :
 - ► Augmenter le degré
 - La modification d'un point de contrôle perturbe toute la courbe
 - ► Joindre plusieurs courbes de Bézier
- Pour appliquer des transformations affines :
 - Appliquer les transformations affines aux points de contrôle

Surfaces de Bézier

- ► Par extension : surfaces de Bézier
 - ▶ 4 points de contrôle en 2D, 16 points de contrôle en 3D
 - ► Joindre plusieurs surfaces de Bézier

Lissage de polygones

Lissage de polygones : Surface de subdivision

Différents algorighmes : Algorithme de Catmull-Clark, Doo-Sabin. Un exemple en 2D :

- diviser chaque segment en 3 parties égales
- joindre les divisions successives
- ► Recommencer jusqu'au niveau lissage désiré

A faire en 3D.

Exemple:

source : réalisé avec Blender

Exemple :

Modélisation par assemblage

C.S.G.: Constructive Solid Geometry

- ► Combiner des briques de base (solides) par des opérations :
 - ► Union
 - ► Intersection
 - Différence

Union

source : réalisé avec Blender

Intersection

source : réalisé avec Blender

Intersection

source : réalisé avec Blender

Différence

source : réalisé avec Blender

Différence

source : réalisé avec Blender

CSG: Constructive Solid Geometry

► Représentation sous forme d'arbre :

- Fonction implicite d'un solide : F(x, y, z)
 - ightharpoonup F(x,y,z) < 0 intérieur
 - ightharpoonup F(x,y,z)=0 surface
 - ► F(x, y, z) > 0 extérieur
- ightharpoonup Pour le calcul des C.S.G.: -1, 0, 1
 - - $F_{A \cup B}(p) = \min(F_A(p), F_B(p))$

Modélisation par révolution

Modélisation par révolution

- L'objet est construit par la rotation d'une forme autour d'un axe de révolution
 - ► fonction d'un angle
 - ► fonction d'un pas d'échantillonnage

Modélisation par révolution

Tracé du contour

source : réalisé avec Blender

Modélisation par révolution

Rotation du contour

Modélisation par révolution

Rotation du contour

source : réalisé avec Blender

- L'objet est construit par une surface suivant une trajectoire
- Le chemin peut être plus ou moins compliqué

source : réalisé avec Blender

source : réalisé avec Blender

Cartes d'altitudes

Permet généralement de représenter les terrains

- ► Construction :
 - ► Itérative

Cartes d'altitudes

source : Matthieu Chopir

Représentation d'un objet par isosurface

Représentation d'un objet par isosurface

Représentation d'un objet par isosurface

source: Pierre Nerzic http://perso.univ-rennes1.fr/pierre.nerzic/IN/Cours/54P4%20-%20Synthese%20d%27images.htm

- ▶ Rendu
 - ► En raytracing, évaluation le long du rayon
 - ► Algorithme des « marching cubes »
 - ► Particules
 - ► Attention au calcul des normales
- ► Modélisation
 - ► Eau
 - **>**

Modélisation de la végétation : Graftales

Modélisation des plantes

source : wikipedia

Modélisation de la végétation : Graftales

Modélisation des plantes

- ► L-Systems (Lindenmayer, 1968)
 - ► Similaire à une grammaire
 - Souvent utilisé pour modéliser la végétation (mais pas seulement)

source: wikipedia

Acquisition

Scan 3D

Acquisition : création du modèle

source : Le Monde de Nemo - Pixar

Acquisition : modèle numérique

source : Le Monde de Nemo - Pixar

Acquisition : modèle numérique

source : Le Monde de Nemo - Pixar

Acquisition: enrichissement

Modélisation

source : Avatar

Modéliation

Sculpture 3D.

Codage des Formes/Maillages

- ► Arêtes aillées
- ► B-Rep
- ► Array of vertex
- ► Array of indexes

Arêtes aillées

Une arête :

- ▶ une orientation
- ► deux faces
- ▶ deux sommets
- quatre arêtes

Boundary Representation B-Rep

Un solide est modélisé par les éléments extérieurs

- ► Cela donne une surface fermée
 - ► Ensemble de :
 - Faces, arêtes et sommets + relations topologiques
 - Les faces ne doivent pas s'intersecter ailleurs que sur des arêtes explicites (de la B-REP)
 - Les faces doivent séparer l'intérieur de l'extérieur du solide
- ▶ Redondance des données → risque d'incohérence

Modélisation d'une scène

Déformation/Mouvements/Objets articulés

► Représentation hiérarchique

Modélisation d'une scène : Déformations libres

source : Déformation Continue de Forme Libre. Dominique Bechmann. Yves Bertrand and Sylvain Therv

Animation

Animation

- ► Génération de toutes les images qui composent l'animation
 - ► Il faut donc modéliser les transformations
 - Déplacements
 - Déformations
 - ► Changements de couleur
 - ▶ ...

Animation

- ► Équation de mouvement
 - ▶ Définitions des positions et orientations trajectoire à suivre
- ► Position clé et interpolation
 - ► Spécification que de quelques positions puis interpolation automatique pour générer les positions intermédiaires (pas facile de respecter toutes les contraintes)
- ► Modèle physique
 - Donne du réalisme au mouvement

source:http://www.moondoganimation.com,

source: http://www.moondoganimation.com/

Animation : positions clés

source

e:http://www.moondoganimation.com/

Animation : vitesse du mouvement

source: http://www.moondoganimation.com/

source : Le monde de Nemo - Pixai

source : Pixa

- ▶ Définition de l'animation complète du personnage
 - ► Difficile et consommation mémoire trop élevée
- ► Définition d'un « squelette » et d'une « peau »
 - Le mouvement est spécifié uniquement pour le squelette
 - ► Gain de place

- Définition d'un « squelette »
 - ► Le corps humain comporte environ 200 os
 - Environ une centaine d'articulations
 - ► Assemblage de segments rigides
 - Structure arborescente hiérarchique
 - Rotation avec ajout de contraintes
 - Cinématique inverse
 - ► Trouver la bonne position
 - Le déplacement des os entraîne le déplacement de la peau

- 📐 La peau
 - Cylindres
 - ► Maillages ou surfaces (Splines...)
 - ► Attachement de chaque point à un os
 - ► Pondération de l'attachement d'un point aux os voisins
 - Modèles de muscles
 - Modélisation par blobs et surfaces implicites
 (Dans l'ensemble ce type de modèles n'est plus trop utilisé)
 - Modélisation des muscles par des ressorts

- ► La peau
 - Modélisation par particules hiérarchiques
 - ► Noyau : lié au reste du modèle
 - ► Derme : déformation de l'objet
 - ► Épiderme : cohésion et surface + interaction et collisions avec le reste du monde
- → Diminution de la complexité
 - ► Interaction uniquement avec la couche voisine
 - ► Interaction avec l'exterieur gérée au niveau de l'épiderme
 - diminution du nombre de particules
 - ► diminution de la quantité de calculs

- ► Problème de jointures
 - ► Augmentation du maillage aux jointures
 - ► Ajout d'os dans l'articulation
 - ► Ajout de contraintes : section minimal autour de chaque os...
 - Lissage des pondérations des contributions des os sur l'enrobage

Animation de visages

Quelques positions modélisées

- ► Normal, souriant...
- ► Calcul automatique des transitions (morphing)

Animation de visages

Temps réel : Blend shape

- ► Position neutre
- Codage des deltas pour arriver à une pose particulière

source : Avatar - James Cameroi

source : Avatar - James Cameron

source : Avatar - James Cameron

source: Avatar - James Cameron

source: Avatar - James Cameron

Animation |

source : Arg?

source : Arg?

source : Arg?

source : Arg?

source

: Arg

source : Arg?

source : Arg

Animation : Tissus et vêtements

Modèle masses-ressorts

- ► Maillage de Provot
 - ► Ajout de ressorts pour le cisaillement et la courbure

Animation : Tissus et vêtements

Collisions et autocollisions

- ► Beaucoup de calculs
 - division de l'espace et volumes englobants

Conclusions

Modélisation et animation

Conclusions

