A Polyhedral Study of the Triplet Formulation for Single Row Facility Layout Problem

Sujeevraja Sanjeevi and Kiavash Kianfar

Industrial and Systems Engineering Texas A&M University

INFORMS 2010 - Austin, TX

November 10, 2010

Outline

- Single Row Facility Layout Problem
 - Introduction
 - Problem features
 - Motivation for study
 - Research Contributions
- 2 Triplet Polytope
 - Preliminaries
 - Description
- 3 Analysis of Triplet Polytope
 - Dimension of triplet polytope and valid inequalities
 - Projections of triplet polytope
 - Conclusions
- Major References

Single Row Facility Layout Problem (SRFLP)

- I_i Length of department i
- ullet c_{ij} Average daily traffic between departments i and j
- z_{ij}^{π} Distance between centroids of departments i and j in permutation π

Objective of SRFLP:

$$\min_{\pi} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} c_{ij} z_{ij}^{\pi}$$

Features of SRFLP:

- SRFLP generalization of Minimum Linear Arrangement Problem, NP-hard.
- Solution techniques: branch and bound, dynamic programming, non-linear programming, semi-definite programming, linear mixed-integer programming.
- MIP formulations of SRFLP:
 - Distance polytope formulation (Amaral and Letchford (2010)): d_{ij} , distance between departments i and j
 - Triplet polytope formulation (Amaral (2009)): binary decision variables

Motivation for study

- Amaral's MIP formulation of SRFLP triplet formulation (Amaral (2009)).
- Two projections of triplet formulation and its valid inequalities presented in Amaral (2009).
- Linear program solved over these valid inequalities yields optimal solution for several classical instances of size n = 5 to n = 30.

Research contributions:

- Dimension of the triplet polytope is n'' = n(n-1)(n-2)/3.
- Almost all valid inequalities defined for the triplet polytope by Amaral are facet-defining.
- The above results are also true for the other projections of the triplet polytope defined in Amaral (2009).

Polyhedra revisited

- Region enclosed by black lines and axes: $\{x \in \mathcal{R}^2_+ : Ax \leq b\}$
- Region enclosed by red lines: $\{x \in \mathbb{Z}_+^2 : Ax \leq b\}$ MIP convex hull
- Inequalities describing MIP convex hull facet-defining

Variables and Parameters

- Set of departments: $N = \{1, ..., n\}$
- Decision variable:

$$\lambda_{ijk} = \begin{cases} 1 \text{ if dept } k \text{ lies between departments } i \text{ and } j, i < j \\ 0 \text{ otherwise.} \end{cases}$$

For the above permutation, $\lambda_{ijk} = 0$, $\lambda_{ikj} = 1$, $\lambda_{jki} = 0$.

• Decision variable vector: $\lambda = \{\lambda_{ijk} : i, j, k \in \mathbb{N}, i < j\}$

Variables and Parameters

- Number of elements of λ : n' = n(n-1)(n-2)/2
- $P^1 = \left\{\lambda \in \{0,1\}^{n'}: \ \lambda \ \text{represents a permutation of} \ \{1,...,n\} \right\}$
- Triplet polytope: convex hull of P¹.

Objective function of SRFLP:
$$\min \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} c_{ij} \left(\frac{1}{2} (l_i + l_j) + \sum_{k \neq i, k \neq j}^{n} l_k \lambda_{ijk} \right)$$

Valid inequalities for SRFLP

$$0 \le \lambda_{ijk} \le 1 \quad i, j, k \in \mathbb{N}, i < j$$

$$\lambda_{ijk} + \lambda_{ikj} + \lambda_{jki} = 1 \quad i, j, k \in \mathbb{N}, i < j < k$$

$$i \qquad j \qquad k$$

$$i \qquad k \qquad j$$

Valid inequalities for SRFLP

$$\lambda_{jkd} + \lambda_{ikd} \ge \lambda_{ijd}$$
 $i, j, k, d \in \mathbb{N}, i < j < k$ (2)

Here,
$$\lambda_{ijd} = 1, \lambda_{ikd} = 1, \lambda_{jkd} = 0.$$

Similarly,

$$\lambda_{ijd} + \lambda_{jkd} \ge \lambda_{ikd}$$
 $i, j, k, d \in N, i < j < k$ (3)

$$\lambda_{ijd} + \lambda_{ikd} \ge \lambda_{jkd}$$
 $i, j, k, d \in N, i < j < k$ (4)

$$\lambda_{ijd} + \lambda_{jkd} + \lambda_{ikd} \le 2 \quad i, j, k, d \in \mathbb{N}, i < j < k$$
 (5)

T-S inequalities

- Consider $S \subseteq N$.
- Let $T \subseteq N \setminus S$ such that |T| = |S| 1.
- Consider a department $r \in N$, but not in S or T.
- Valid inequality developed using sets *S*, *T* and department *r*:

$$\sum_{p,q \in S: p < q} \lambda_{pqr} + \sum_{p,q \in T: p < q} \lambda_{pqr} \le \sum_{p \in S, q \in T} \lambda_{pqr}$$

$Conv(P^1)$

Theorem 1

 $conv(P^1)$ is of dimension n'' = n(n-1)(n-2)/3.

- No. of variables used to describe P^1 : n' = n(n-1)(n-2)/2.
- No. of linearly independent equalities: $\binom{n}{3}$ (of the form $\lambda_{ijk} + \lambda_{jkj} + \lambda_{jkj} 1 = 0, i < j < k$).
- Consider any other hyperplane of the form

$$\sum_{i,j,k\in N:i< j} a_{ijk}\lambda_{ijk} = b.$$
 (6)

Lemma 1

Lemma 1. For given distinct departments $x, y, z \in N$, let $\pi^1, \pi^2, \pi^3, \pi^4$ be four permutations of the departments in N satisfying the following conditions:

- π^1 : (x, y, ...)
- π^2 : (y, x, ...)
- π^3 : (z, x, y, ...)
- π^4 : (z, y, x, ...)

If the λ vectors corresponding to these permutations lie on the hyperplane

$$\sum_{i,j,k\in\mathbb{N}:i< j} a_{ijk}\lambda_{ijk} = b,\tag{7}$$

then $a_{yzx} = a_{xzy}$.

$Conv(P^1)$

- From lemma 1, for any $i, j, k \in N$ we have $a_{ijk} = a_{ikj} = a_{jki}$.
- Using these relationships between coefficients, the hyperplane can be reduced to,

$$\sum_{i,j,k\in \mathit{N}: i< j} \mathit{a}_{ijk}[\lambda_{ijk} + \lambda_{jki} + \lambda_{ikj} - 1] = 0.$$

• $Dim(Conv(P^1)) = n' - \binom{n}{3} = n''$, where n'' = n(n-1)(n-2)/3.

Valid inequalities of P¹

Theorem 2

The T-S inequalities are facet-defining for $conv(P^1)$.

T-S inequalities: For any $S \subseteq N$, $T \subseteq N \setminus S$ with |T| = |S| - 1 and a department $r \in N \setminus \{S \cup T\}$,

$$\sum_{p,q \in S: p < q} \lambda_{pqr} + \sum_{p,q \in T: p < q} \lambda_{pqr} \le \sum_{p \in S, q \in T} \lambda_{pqr}$$

• Choosing $S = \{i, j\}, T = \{k\}$ and any other department d we get,

$$\lambda_{ijd} \leq \lambda_{ikd} + \lambda_{jkd}$$
.

• We consider the face of the triplet polytope in which the above inequality holds at equality.

Valid inequalities of P^1

Sketch of proof:

- Number of variables used to describe face: n'.
- Number of LI equalities currently known: $\binom{n}{3} + 1$.
- Considering a general hyperplane,

$$\sum_{i,j,k \in \mathbb{N}: i < j} a_{ijk} \lambda_{ijk} = b.$$

- By using lemma 1 several times, we develop relationships between coefficients of this hyperplane.
- With these relationships, we prove that the above hyperplane cannot be a LI equality.
- Hence, Dimension of the face in which a T-S inequality holds at equality = $n' (\binom{n}{2} + 1) = n'' 1$.

Projections of P^1

- Amaral defines two other projections of the triplet polytope and its VIs.
- These results can be established for the projections using affine independence.

Conclusions

- Convex hull of triplet polytope and its projections are of dimension n(n-1)(n-2)/3.
- Several valid inequalities presented for the triplet polytope by Amaral are facet-defining.
- Theoretical support for computational results in Amaral (2009).

Major References

- Amaral, A. R. S. 2009. A new lower bound for the single row facility layout problem. Discrete Applied Mathematics 157(1), 183–190.
- Sanjeevi, S. and Kianfar, K. 2010. A polyhedral study of triplet formulation for single row facility layout problem. Discrete Applied Mathematics 158(16), 1861–1867.

Questions?