ASSIGNMENT 3: CONSTRAINED OPTIMIZATION, SVMS

Johannes Kofler

Copyright statement:

This material, no matter whether in printed or electronic form, may be used for personal and non-commercial educational use only. Any reproduction of this material, no matter whether as a whole or in parts, no matter whether in printed or in electronic form, requires explicit prior acceptance of the authors.

SVMs for linear separability: The formal setup: Part 5: Abstract problem formulation

Original Problem: For given linearly separable data set \mathbf{Z} , $\mathbf{w} \in \mathbb{R}^d$ and $b \in \mathbb{R}$:

$$\label{eq:maximize} \begin{array}{ll} \text{Maximize} & \frac{2}{\|\mathbf{w}\|} \\ \text{subject to} & y_i(\mathbf{w}\cdot\mathbf{x}_i-b)-1\geq 0 & \text{for } i=1,\dots,l. \end{array}$$

Equivalent: Primal Problem:

$$\begin{aligned} &\text{Minimize} && \frac{1}{2}\|\mathbf{w}\|^2 = \frac{1}{2}\sum_{i=1}^d w_i^2\\ &\text{subject to} && -(y_i(\mathbf{w}\cdot\mathbf{x}_i-b)-1)\leq 0 && \text{for } i=1,\dots,l. \end{aligned}$$

■ → Convex quadratic optimization problem with linear constraints. Next: recall basic mathematical tools.

SVMs for linear separability: The formal setup: Part 3

- Red: Global minimum
- Green: Constrained minimum under constraint w > 1

*

- Assumptions: we have functions f and h_i (i = 1, ..., l) from \mathbb{R}^d to \mathbb{R} with following requirements:
 - 1. Convex
 - 2. Continuously Differentiable
 - 3. Slater condition: there exists \mathbf{w}' with $h_i(\mathbf{w}') < 0$ for all i = 1, ..., l.
- Primal Problem:

$$\label{eq:minimize} \begin{aligned} & \text{Minimize} & & f(\mathbf{w}) \\ & \text{subject to} & & h_i(\mathbf{w}) \leq 0 & & \text{for } i = 1, \dots, l. \end{aligned}$$

- For simplicity: we don't deal with equality constraints here
- Next slide: strategy how to solve this problem

Interlude: constrained convex optimization: Part 4

Lagrange function:

$$L(\mathbf{w}; \alpha_1, \dots, \alpha_l) = f(\mathbf{w}) + \sum_{i=1}^l \alpha_i h_i(\mathbf{w})$$

 $\alpha_1, \ldots, \alpha_l$: Lagrange multipliers.

■ Dual Problem:

$$\label{eq:local_local_local} \begin{array}{ll} \text{Maximize} & \mathcal{L}(\alpha_1,\dots,\alpha_l) = \inf_{\mathbf{w}} L(\mathbf{w};\alpha_1,\dots,\alpha_l) \text{ wrt. } \alpha_1,\cdots,\alpha_l \\ \text{subject to} & \alpha_i \geq 0 \quad \text{for } i=1,\dots,l. \end{array}$$

- Karush-Kuhn-Tucker (KKT): w* solves primal problem ⇔ there exist non-negative Lagrange multipliers with:
 - 1. $\mathcal{L}(\alpha_1,\ldots,\alpha_l)=L(\mathbf{w}^*;\alpha_1,\ldots,\alpha_l)$
 - 2. $\alpha_1,...,\alpha_l$ solve dual problem, i.e. they maximize \mathcal{L} .
 - 3. $\alpha_i h_i(\mathbf{w}^*) = 0$ for all i = 1, ..., l.

Interlude: constrained convex optimization: Part 5

Illustrative example (toy problem):

$$\begin{array}{ll} \text{Minimize} & f(w_1,w_2) = (w_1-2)^2 + w_2^2 \\ \text{subject to} & h_1(w_1,w_2) = -w_1 \leq 0 \\ & \text{and} & h_2(w_1,w_2) = w_1 - w_2 \leq 0. \end{array}$$

Lagrange function:

$$L(w_1, w_2, \alpha_1, \alpha_2) = (w_1 - 2)^2 + w_2^2 - \alpha_1 w_1 + \alpha_2 (w_1 - w_2)$$

■ To find $\inf_{(w_1,w_2)} L(w_1,w_2,\alpha_1,\alpha_2)$ for given (α_1,α_2) , consider:

$$\frac{\partial L}{\partial w_1}(w_1, w_2, \alpha_1, \alpha_2) = 2 w_1 - 4 - \alpha_1 + \alpha_2$$

$$\frac{\partial L}{\partial w_2}(w_1, w_2, \alpha_1, \alpha_2) = 2 w_2 - \alpha_2$$

- Setting the two derivatives to 0, we obtain $w_1^*=2+\frac{\alpha_1-\alpha_2}{2}$ and $w_2^*=\frac{\alpha_2}{2}$. (This must be a minimum as L is convex and no maximum exists.)
- Furthermore:

$$\mathcal{L}(\alpha_1, \alpha_2) = L(w_1^*, w_2^*, \alpha_1, \alpha_2)$$

= $-\frac{1}{4}(\alpha_1^2 + 8\alpha_1 - 2\alpha_1\alpha_2 - 8\alpha_2 + 2\alpha_2^2)$

- Dual problem: maximize $\mathcal{L}(\alpha_1, \alpha_2)$ subject to $\alpha_1 \geq 0$ and $\alpha_2 \geq 0$. Yields $\alpha_1 = 0$ and $\alpha_2 = 2$ and thus $w_1^* = 1$ and $w_2^* = 1$. Can be deduced by KKT-conditions.
- In many practical situations: algorithms for solving dual problem exist, especially for SVMs (as we will see later). Here: argument for toy example using KKT conditions.

*

- By the third KKT condition: $\alpha_1 h_1(w_1^*, w_2^*) = 0$.
- Assume $h_1(w_1^*, w_2^*) < 0$. Then $\alpha_1 = 0$. Now look at the second KKT-condition $\alpha_2 h_2(w_1^*, w_2^*) = 0$.
 - □ If $\alpha_2 = 0$: $h_2(w_1^*, w_2^*) = 2 > 0$ which contradicts constraint on h_2 \rightarrow can be ruled out.
 - □ If $h_2(w_1^*, w_2^*) = 0$ we can deduce $w_1^* = w_2^*$ and thus $\alpha_2 = 2$. (recall: $\alpha_1 = 0$). All the constraints are satisfied, thus we are done, since we have unique solution because of convexity. For sake of completeness, we will also provide arguments ruling out other possibilities:
- **Assume** $h_1(w_1^*, w_2^*) = 0$. Then $\alpha_2 = 4 + \alpha_1$.
 - \square If $\alpha_2=0$ then $\alpha_1=-4\to {\rm can}\ {\rm be}\ {\rm ruled}\ {\rm out}\ {\rm as}\ \alpha_i\geq 0.$
 - □ If $\alpha_2 \neq 0$ then $h_2(w_1^*, w_2^*) = 0$, which implies $\alpha_2 = \frac{\alpha_1}{2} + 2$, i.e. $4 + \alpha_1 = \frac{\alpha_1}{2} + 2$, i.e. $\alpha_1 = -4 \rightarrow$ can be ruled out again.
- Solution: $\alpha_1 = 0, \alpha_2 = 2$, yielding: $w_1^* = 1, w_2^* = 1$ and $f(w_1^*, w_2^*) = 2$.

- Red: global minimum (not obeying the constraints)
- Green: solution for minimization under constraints

Associated Lagrange function is given as

$$L(\mathbf{w}, b; \alpha_1, \dots, \alpha_l) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^l \alpha_i (y_i (\mathbf{w} \cdot \mathbf{x}_i - b) - 1)$$
$$= \frac{1}{2} \|\mathbf{w}\|^2 - \mathbf{w} \cdot \sum_{i=1}^l \alpha_i y_i \mathbf{x}_i + b \sum_{i=1}^l \alpha_i y_i + \sum_{i=1}^l \alpha_i$$

Solving the dual problem enforces the conditions

$$\frac{\partial L}{\partial \mathbf{w}}(\mathbf{w}, b; \alpha_1, \dots, \alpha_l) = 0$$
 $\frac{\partial L}{\partial b}(\mathbf{w}, b; \alpha_1, \dots, \alpha_l) = 0,$

This implies:

$$\mathbf{w}^* = \sum_{i=1}^l \alpha_i y_i \mathbf{x}_i \qquad \sum_{i=1}^l \alpha_i y_i = 0$$

Furthermore:

$$\mathcal{L}(\alpha_1,\ldots,\alpha_l) = \sum_{i=1}^l \alpha_i - \frac{1}{2} \sum_{i=1}^l \sum_{j=1}^l \alpha_i \,\alpha_j \,y_i \,y_j \,\mathbf{x}_i \cdot \mathbf{x}_j.$$

Final solution: maximize $\mathcal L$ with respect to α_i subject to $\alpha_i \geq 0$ (for all $i=1,\ldots,l$) and $\sum_{i=1}^l \alpha_i\,y_i=0$.

*

Back to linear SVMs: Part 2

Introduce

$$\mathbf{0} = (0, \dots, 0)^T, \qquad \qquad \boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_l)^T, \\ \mathbf{1} = (1, \dots, 1)^T, \qquad \qquad \mathbf{Q} = (y_i \ y_j \ \mathbf{x}_i \cdot \mathbf{x}_j)_{i=1,\dots,l}^{j=1,\dots,l},$$

The dual problem can be written as follows:

Minimize
$$-\mathcal{L} = \frac{1}{2} \boldsymbol{\alpha}^T \mathbf{Q} \boldsymbol{\alpha} - \mathbf{1}^T \boldsymbol{\alpha} \text{ wrt. } \boldsymbol{\alpha}$$
 subject to
$$\boldsymbol{\alpha} \geq \mathbf{0} \text{ and } \boldsymbol{\alpha}^T \mathbf{y} = 0.$$

- Easy observation: Q is positive semi-definite.
- → convex quadratic optimization problem with linear constraints: only global minima: uniqueness if positive definite.

Once we solved the dual problem \rightarrow obtain $\alpha_1, \dots, \alpha_l$ which also solve primal problem. By the KKT-conditions:

$$\alpha_i(y_i(\mathbf{w} \cdot \mathbf{x}_i - b) - 1) = 0$$
 for $i = 1, \dots, l$.

- Thus, for i = 1, ..., l:
 - \Box either $\alpha_i = 0$
 - \square or $y_i(\mathbf{w} \cdot \mathbf{x}_i b) 1 = 0$
 - or both.
- Samples \mathbf{x}_i for which $\alpha_i > 0$ holds (i.e. $y_i(\mathbf{w} \cdot \mathbf{x}_i b) 1 = 0$) lie on the margin border and are called support vectors (encircled in red in next slide).

Given Lagrange multipliers $\alpha_1, \ldots, \alpha_l$ solving the primal problem, we can construct w as noted above already:

$$\mathbf{w} = \sum_{i=1}^{l} \alpha_i \, y_i \, \mathbf{x}_i$$

■ → final classification function, i.e. the linear Support Vector Machine (SVM), is given as

$$g(\mathbf{x}) = \operatorname{sign}(\mathbf{w} \cdot \mathbf{x} - b) = \operatorname{sign}\left(\underbrace{\sum_{i=1}^{l} \alpha_i \, y_i \, \mathbf{x}_i \cdot \mathbf{x} - b}_{\text{discriminant function } \bar{g}(\mathbf{x})}\right).$$

For arbitrary support vector \mathbf{x}_j (with $\alpha_j > 0$), the KKT condition implies $y_j(\mathbf{w} \cdot \mathbf{x}_j - b) = 1$, and thus

$$b = -y_j + \mathbf{w} \cdot \mathbf{x}_j = -y_j + \sum_{i=1}^{l} \alpha_i y_i \mathbf{x}_i \cdot \mathbf{x}_j$$

- Recommended: don't base the computation of b on only one support vector (for reasons of numerical precision), but compute a b value for each support vector and use the average finally.
- Under specific conditions: it may be useful to adjust b according to some other quality measure after training.

$\star\star$

C-SVMs: Non-linear separability: Part 1

If positive and negative samples are not linearly separable, the constraints

$$y_i(\mathbf{w} \cdot \mathbf{x}_i - b) \ge 1 \quad (i = 1, \dots, l)$$

cannot be all fulfilled simultaneously.

Introduce non-negative slack variables $\xi_i \geq 0$:

$$y_i(\mathbf{w} \cdot \mathbf{x}_i - b) \ge 1 - \xi_i \quad (i = 1, \dots, l)$$

- Require slack variables to be as small as possible. Are scaled by factor ${\cal C}>0$.
- The adapted primal problem (called C-SVM) is given as:

$$\begin{aligned} & \text{Minimize} & & \frac{1}{2}\|\mathbf{w}\|_2^2 + C \sum_{i=1}^t \xi_i \\ & \text{subject to} & & -(y_i \left(\mathbf{w} \cdot \mathbf{x}_i - b\right) - 1 + \xi_i) \leq 0 \\ & & \text{and} & & -\xi_i \leq 0 \end{aligned}$$

C-SVMs: Non-linear separability: Part 2

- Using the same techniques as for linear case (i.e. formulate dual problem and apply KKT-Theorem), the problem can be cast into the framework of convex quadratic optimization again.
- Classification function g also has similar structure, however, KKT-conditions are a bit more involved
- Overview of calculations: next slides.
- As meaning of C is not very intuitive: different variant called ν -SVM also exists (see later slides). KKT Theorem applies again.
- Connection to hinge loss: $L_h(y_i, \bar{g}(\mathbf{x}_i)) = \max(0, 1 y_i \bar{g}(\mathbf{x}_i))$. In case of SVMs:
 - \Box L_h is zero \Leftrightarrow data point lies on correct side of margin.
 - ☐ If not: loss value is proportional to distance from margin.

C-SVMs: Mathematical details: Part 1

Again introduce $\alpha_1, \ldots, \alpha_l$ and $\lambda_1, \ldots, \lambda_l$. Then:

$$L(\mathbf{w}, b, \xi_1, \dots, \xi_l; \alpha_1, \dots, \alpha_l, \lambda_1, \dots, \lambda_l)$$

$$= \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^l \xi_i - \sum_{i=1}^l \alpha_i (y_i(\mathbf{w} \cdot \mathbf{x}_i - b) - 1 + \xi_i) - \sum_{i=1}^l \lambda_i \xi_i$$

- For dual problem: minimize L for \mathbf{w} , b and ξ_1, \ldots, ξ_l .
- This enforces:

$$\begin{array}{l} \frac{\partial L}{\partial \mathbf{w}}(\mathbf{w},b,\xi_1,\ldots,\xi_l;\alpha_1,\ldots,\alpha_l,\lambda_1,\ldots,\lambda_l) = 0,\\ \frac{\partial L}{\partial b}(\mathbf{w},b,\xi_1,\ldots,\xi_l;\alpha_1,\ldots,\alpha_l,\lambda_1,\ldots,\lambda_l) = 0,\\ \frac{\partial L}{\partial \xi_j}(\mathbf{w},b,\xi_1,\ldots,\xi_l;\alpha_1,\ldots,\alpha_l,\lambda_1,\ldots,\lambda_l) = 0, \end{array} \text{ for all } j = 1,\ldots,l \end{array}$$

■ Which implies (the first two conditions are the same as for linear SVMs):

$$\mathbf{w} = \sum_{i=1}^l \alpha_i \, y_i \, \mathbf{x}_i,$$

$$\sum_{i=1}^l \alpha_i \, y_i = 0,$$
 $C - \alpha_j - \lambda_j = 0 \; ext{ for all } j = 1, \dots, l$

C-SVMs: Mathematical details: Part 2

- Equalities $C \alpha_j \lambda_j = 0$ imply $\lambda_j = C \alpha_j$.
- Constraints $\lambda_j \geq 0$ imply that we must ensure $C \alpha_j \geq 0$, hence $\alpha_j \leq C$ for all $j = 1, \dots, l$.
- Finally, we obtain the same objective function

$$\mathcal{L}(\alpha_1,\ldots,\alpha_l) = \sum_{i=1}^l \alpha_i - \frac{1}{2} \sum_{i=1}^l \sum_{j=1}^l \alpha_i \, \alpha_j \, y_i \, y_j \, \mathbf{x}_i \cdot \mathbf{x}_j.$$

- Solution: maximize $\mathcal L$ with respect to α_i subject to $\alpha_i \geq 0$ (for all $i=1,\ldots,l$), $\sum_{i=1}^l \alpha_i y_i = 0$, and additional constraints $\alpha_i \leq C$ (for all $i=1,\ldots,l$).
- Dual problem:

$$\begin{aligned} & \text{Minimize} & & \frac{1}{2} \boldsymbol{\alpha}^T \mathbf{Q} \boldsymbol{\alpha} - \mathbf{1}^T \boldsymbol{\alpha} \\ & \text{wrt.} & & \boldsymbol{\alpha} \\ & \text{subject to} & & \boldsymbol{\alpha}^T \mathbf{y} = 0 \text{ and } \mathbf{0} \leq \boldsymbol{\alpha} \leq C \mathbf{1}. \end{aligned}$$

*

C-SVMs: Mathematical details: Part 3

Analogously:

$$g(\mathbf{x}) = \operatorname{sign}(\mathbf{w} \cdot \mathbf{x} - b) = \operatorname{sign}\left(\sum_{i=1}^{l} \alpha_i y_i \mathbf{x}_i \cdot \mathbf{x} - b\right).$$

- \blacksquare Computation of b, however, requires a bit more caution.
- In non-separable case, the KKT-conditions tell us that $\alpha_i \left(y_i (\mathbf{w} \cdot \mathbf{x}_i b) 1 + \xi_i \right) = 0$ holds for all $i = 1, \dots, l$. If we choose an i such that $\alpha_i > 0$, we would need ξ_i to determine b.
- However, note that KKT conditions also imply (for the other set of constraints $\xi_i \geq 0$) that $\lambda_i \xi_i = (C \alpha_i) \xi_i = 0$ holds for all i = 1, ..., l.
- If we find j with $0 < \alpha_j < C$, we can infer $\xi_j = 0$ and thus $y_j(\mathbf{w} \cdot \mathbf{x}_j b) 1 = 0$, i.e. can use same method as before.
- Every $\alpha_j > 0$ corresponds to a support vector \mathbf{x}_j .

C-SVMs: Illustration

- Linear separability is very restrictive.
- The higher the dimensionality, however, the easier linear separability can be achieved.

- Left: (x_1, x_2) , data not linearly separable
- Right: $(x_1, x_2, x_3 = x_1^2 + x_2^2)$, data linearly separable

- Basic idea of nonlinear SVMs: transform data into a higher-dimensional space such that problem hopefully becomes linearly separable there.
- More formal: choose a Hilbert space \mathcal{H} and a (nonlinear) mapping $\Phi: X \to \mathcal{H}$.
- Then try to apply linear method (presented in earlier slides) in the space \mathcal{H} .
- Problem: how to specify \mathcal{H} and Φ ?

- Recall: In solving the dual problem and computing the final classification function: need only scalar products of pairs of samples. Therefore: not necessary to explicitly know \mathcal{H} and Φ .
- Only need $\langle \Phi(\mathbf{x}_i), \Phi(\mathbf{x}_j) \rangle_{\mathcal{H}}$ for all $\mathbf{x}_i, \mathbf{x}_j$ (i, j = 1, ..., l).
- Required for computing the classification of a new sample \mathbf{x} : $\langle \Phi(\mathbf{x}), \Phi(\mathbf{x}_i) \rangle_{\mathcal{H}}$ for all $i = 1, \dots, l$.
- Suppose we are given a mapping $k: X \times X \to \mathbb{R}$ (the kernel) for which we know that there exists Hilbert space \mathcal{H} and mapping $\Phi: X \to \mathcal{H}$ such that $k(\mathbf{x}, \mathbf{y}) = \langle \Phi(\mathbf{x}), \Phi(\mathbf{y}) \rangle_{\mathcal{H}}$ for all $\mathbf{x}, \mathbf{y} \in X$.

- This is the case \Leftrightarrow (Aronszajn) k is positive semi-definite and symmetric, i.e.
 - 1. $\sum_{i,j} c_i k(\mathbf{x}_i, \mathbf{x}_j) c_j \geq 0$
 - $2. k(\mathbf{x}_i, \mathbf{x}_j) = k(\mathbf{x}_j, \mathbf{x}_i)$

for
$$i, j = 1, ..., l, c_i, c_j \in \mathbb{R}, \mathbf{x}_i, \mathbf{x}_j \in X$$
.

- Equivalent formulation: Gram matrix $\mathbf{K} = (k_{ij})_{i=1,\dots,l}^{j=1\dots,l} = (k(\mathbf{x}_i,\mathbf{x}_j))_{i=1,\dots,l}^{j=1\dots,l}$ is positive semi-definite and symmetric.
- In practice: make an a priori choice of k using common sense and, if available, prior knowledge about problem: → "kernel trick".

- Which kernels? \to Assume $X = \mathbb{R}^n$ and $k : X^2 \to \mathbb{R}$ continuous. The following statements are equivalent:
 - \square k is a kernel
 - □ For $(Af)(\mathbf{x}) = \int_X k(\mathbf{x}, \mathbf{y}) f(\mathbf{y}) d\mathbf{y}$ the inequality $\langle Af, f \rangle_{L^2(X)} = \int_{X^2} k(\mathbf{x}, \mathbf{y}) f(\mathbf{x}) f(\mathbf{y}) d\mathbf{x} d\mathbf{y} \geq 0.$

holds for all square-integrable functions $f \in L^2(X)$.

- Mercer's Theorem: If in addition the diagonal k(x,x) is integrable:
 - □ There are sequences $(\varphi_m)_{m \in \mathbb{N}}$ of continuous eigenfunctions and positive eigenvalues $(\sigma_m)_{m \in \mathbb{N}}$ of A.
 - \square $k(\mathbf{x}, \mathbf{y}) = \sum_{m \geq 1} \sigma_m \varphi_m(\mathbf{x}) \varphi_m(\mathbf{y})$ and sum converges uniformly on compact sets of X^2 .
- More details with proofs: e.g. these notes, chapter 3.5.
- Standard kernels ("." here denotes Euclidean inner product):
 - 1. Linear: $k(\mathbf{x}, \mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$
 - 2. Polynomial: $k(\mathbf{x}, \mathbf{y}) = (\mathbf{x} \cdot \mathbf{y} + \beta)^{\alpha}$
 - 3. Gaussian / RBF: $k(\mathbf{x}, \mathbf{y}) = \exp(-\frac{1}{2\sigma^2} ||\mathbf{x} \mathbf{y}||^2)$
 - 4. Sigmoid: $k(\mathbf{x}, \mathbf{y}) = \tanh(\alpha \mathbf{x} \cdot \mathbf{y} + \beta)$

C-SVM Illustration Part 1: C = 1, Kernel = linear

C-SVM Illustration Part 2: C = 1000, Kernel = linear

C-SVM Illustration Part 3: C=1, Kernel = RBF, $\frac{1}{2\sigma^2}=1$

C-SVM Illustration Part 4: C=1000, Kernel = RBF, $\frac{1}{2\sigma^2}=100$

