Conservative and Definitional Extensions

Revision: May 10, 2016; Rendered: May 25, 2021

Conservative and definitional extension (see, e.g., [Hod97]). Actually, a generalization of definitional extension is presented here. Formalized with the *PIE* system.

1 Conservative Extension

Formula G is a conservative extension of formula F if and only if the following biconditional is valid. The right-to-left direction can be expressed as first-order validity, since second-order quantification is only in the antecedent and only existential there. The left-to-right direction in

 $conservative \ extension(F, G)$

Defined as

 $F \leftrightarrow proj(S, G),$

where

 $S := \mathsf{free} _\mathsf{predicates}(F).$

1.1 Examples for Conservative Extensions

 f_1

Defined as

 $\mathsf{a} \to \mathsf{b}$.

 ex_ce_1

Defined as

conservative extension $(f_1, (f_1 \land (p \leftrightarrow a)))$.

This formula is valid: $ex ce_1$.

 ex_ce_2

Defined as

$$conservative_extension(f_1, (f_1 \land (p \leftarrow a))).$$

This formula is valid: ex_ce_2 .

1.2 Counterexamples for Conservative Extensions

ex ce_3

Defined as

conservative extension
$$(f_1, (f_1 \land (b \rightarrow p) \land (p \rightarrow a)))$$
.

Failed to validate this formula: ex ce_3 .

 $def_extx(F,G)$

Defined as

$$\mathsf{predicate_definiens}(P,(F,G)),$$

where

$$\begin{split} S_F &:= \mathsf{free_predicates}(F), \\ S_G &:= \mathsf{free_predicates}(G), \\ S_X &:= S_G \setminus S_F, \\ \mathsf{singleton} \quad \mathsf{to} \quad \mathsf{member}(\mathsf{S} \quad \mathsf{X}, \mathsf{P}). \end{split}$$

2 Implicit Definitional Extensions

We define the following concept: Formula G is an *implicit definitional extension* of formula F by unary predicate p iff

- 1. p does not occur in F.
- 2. There exists a formula Dx with no occurrences of p and with no bound occurrences of x such that $G \models \forall x \, px \leftrightarrow Dx$.
- 3. $F \equiv \exists p G$.

That property can be verified with just first-order reasoning: Dx is a definiens of p that can be computed by interpolation. The right-to left direction of the conservative extension property, condition (3), can generally be expressed as first-order validity. Also the left-to-right condition can be expressed as first-order validity, as shown by the following equivalences:

$$F \models \exists p \, G[p]$$
 iff
$$F \models \exists p \, G[p] \land \forall x \, px \leftrightarrow Dx$$
 iff
$$F \models \exists p \, G[D] \land \forall x \, px \leftrightarrow Dx$$
 iff
$$F \models G[D],$$

where G[p] = G and G[D] stands for G with all occurrences of p replaced by Dx with x instantiated to the argument of p at the respective occurrence. The following entailment is another equivvalent way to express the above entailments. It is first-order expressible and might be more convenient since the replacement of the occurrences of p does not have to be explicitly performed:

$$F \models \forall p \neg (\forall x \, px \leftrightarrow Dx) \lor G[p].$$

 $predicate_definiens_xyz(P,F)$

Defined as

$$\exists P (F \land P_X) \rightarrow \neg \exists P (F \land \neg P_X),$$

where

$$N := \text{arity of } P \text{ in } F,$$

 $X := x_1, \dots, x_N,$
 $P_X := P(X).$

A version of predicate_definiens with fixed arguments (as obtained by mac_make_args). It is assumed that these are not used as constants elsewhere.

The following predicate implements the sketched method for verifying the implicit definitional extension property by means of first-order reasoning. The formula arguments are passed to the ppl $_$ predicates that perform macro expansion. The predicate succeeds iff the property holds and returns a definiens for the argument predicate as binding of D.

 f_2

Defined as

$$f_1 \wedge (p \rightarrow a) \wedge (a \wedge b \rightarrow p).$$

 f_3

Defined as

$$f_1 \wedge (\mathsf{p} \to \mathsf{a}).$$

Both formulas f_2 and f_3 are conservative extensions of f_1 :

This formula is valid: $conservative_extension(f_1, f_2)$. This formula is valid: $conservative_extension(f_1, f_3)$.

We can test the predicate implicit_definitional_extension with these calls:

```
?- implicit_definitional_extension(f1, f2, p, D). % succeeds
?- implicit_definitional_extension(f1, f3, p, D). % fails
```

Only formula f_2 but not f_3 is an implicit definitional extension of f_1 . The following formula is a computed definiens D for

implicit_definitional_extension(f1, f2, p, D):

 $a \wedge b$.

References

[Hod97] Wilfrid Hodges. A Shorter Model Theory. Cambridge University Press, Cambridge, 1997.

\mathbf{Index}

$conservative_extension(F,G),\ 1$	f_1 , 1	
$def_extx(F,G),2$	$f_2, 4 \\ f_3, 4$	
ex_ce_1 , 1		
ex_ce_2 , 2		
$ex ce_3, 2$	predicate definiens xyz(P, F), 3	3