Support Vector Machines in Python

Contents

- 1. Understanding Association Rules
- 2. Introduction to Market Basket Analysis
 - i. Uses
 - ii. Definitions and Terminology
- 3. Rule Evaluation
 - i. Support
 - ii. Confidence
 - iii. Lift
- 4. Market Basket Analysis in Python

Contents

- 1. Introduction to Support Vector Machine (SVM)
- 2. Understanding Hyper Planes
 - i. What is a Hyper Plane
 - ii. Hyper Plane Separation
- 3. Linear Separators
 - i. Classification Margin
- 4. Mathematical Approach to Linear SVM
- 5. Non-Linear SVM
- 6. About the Kernel Function
- 7. SVM in Python
 - i. SVM Modeling
 - ii. Confusion Matrix and Area Under ROC Curve

Introduction to Support Vector Machines

- Support Vector Machines (SVM's) are a relatively new learning method generally used for classification problem.
- Although the first paper dates way back to early 1960's it is only in 1992-1995 that
 this powerful method was universally adopted as a mainstream machine learning
 paradigm

The basic idea is to find a hyper plane which separates the d-dimensional data perfectly into its classes. However, since training data is often not linearly separable, SVM's introduce the notion of a "Kernel-induced Feature Space" which casts the data into a higher dimensional space where the data is separable.

What is a Hyper Plane

In two dimensions, a hyper plane is defined by the equation:

$$W_1 X_1 + W_2 X_2 + b = 0$$

This is nothing but equation of line.

The above equation can be easily extended to the p-dimensional setting:

$$W_1X_1 + W_2X_2 + \dots + W_pX_p + b = 0$$

In short,

$$\mathbf{W}^{\mathrm{T}}\mathbf{X} + \mathbf{b} = \mathbf{0}$$

In p > 3 dimensions, it can be hard to visualize a hyper planes.

Separating a Hyper Plane

• Binary classification can be viewed as the task of separating classes in feature space:

Linear Separators

The objective in SVM is to find optimum separator

Fig. 02: Linear Separators

Classification Margin

Distance from case x_i to the separator is

$$r = \frac{w^T x_i + b}{\parallel w \parallel}$$

Here | w | is length of a vector given by sqrt(sum(W^2))

- Cases closest to the hyper plane are Support Vectors
- Margin ρ of the separator is the distance between support vectors

Maximum Margin Classification

- The objective is now to maximize the margin $\boldsymbol{\rho}$ of the separator
- The focus is on 'Support Vectors'
- Other cases are not considered in the algorithm

Mathematical Approach to Linear SVM

Let training set be separated by a hyper plane with margin ρ . Then for each training observation

$$w^{T}x_{i} + b \leq -\rho/2 \quad \text{if } y_{i} = -1$$

$$w^{T}x_{i} + b \geq \rho/2 \quad \text{if } y_{i} = 1$$

$$y_{i}(w^{T}x_{i} + b) \geq \rho/2$$

For every support vector \mathbf{x}_s the above inequality is an equality

After rescaling w and b by $\rho/2$ in the equality, we obtain that distance between each x_s and the hyper plane is

$$r = \frac{y_i(w^Tx_s + b)}{\|w\|} = \frac{1}{\|w\|}$$

Margin can be expressed through (rescaled) w and b as:

$$\rho = 2r = \frac{2}{\parallel w \parallel}$$

Mathematical Approach to Linear SVM

Quadratic Optimisation problem is:

Find w and b such that

$$\rho = \frac{2}{\|\mathbf{w}\|} \text{ is maximised}$$
 and

$$y_i(w^Tx_i + b) \ge 1$$

which can be reformulated as:

Find w and b such that $\phi(w) = w^T w \text{ is minimised}$ and $y_i(w^T x_i + b) \ge 1$

Non-Linear SVMs – Feature Spaces

General idea: The original feature space can always be mapped to some higher-dimensional feature space where the training set is separable

The "Kernel Trick"

The linear classifier relies on inner product between vectors

$$K(x_i, x_j) = x_i^T x_j$$

If every data point is mapped into high-dimensional space via some transformation $\phi\colon\thinspace x\to\phi(x)$ then the inner product becomes

$$K(x_i, x_j) = \varphi(x_i)^T \varphi(x_j)$$

A kernel function is a function that is equivalent to an inner product in some feature space

The "Kernel Trick"

Example:

2-dimensional vector $\mathbf{x} = [\mathbf{x}_1 \ \mathbf{x}_2];$

Let
$$K(x_i, x_j) = (1 + x_i^T x_j)^2$$

Need to show that $K(x_i, x_i) = \phi(x_i)^T \phi(x_i)$:

$$\begin{split} &K\big(x_i,x_j\big) = (1+x_i{}^Tx_j)^2 \\ &= 1+x_{i1}{}^2x_{j1}{}^2+2x_{i1}x_{j1}x_{i2}x_{j2}+x_{i2}{}^2x_{j2}{}^2+2x_{i1}x_{j1}+2x_{i2}x_{j2} \\ &= [1 \quad x_{i1}{}^2\sqrt{2}x_{i1}x_{i2} \quad x_{i2}{}^2\sqrt{2}x_{i1} \quad \sqrt{2}x_{i2}] \ T \ [1 \\ &x_{j1}{}^2\sqrt{2}x_{j1}x_{j2} \quad x_{j2}{}^2\sqrt{2}x_{j1} \quad \sqrt{2}x_{j2}] \\ &= \phi(x_i)^T\phi(x_j) \ \text{where} \ \phi(x) = [1 \ x_1{}^2\sqrt{2}x_1x_2 \ x_2{}^2\sqrt{2}x_1\sqrt{2}x_2] \end{split}$$

Thus, a kernel function implicitly maps data to a high-dimensional space (Without the need to compute each $\phi(x)$ explicitly)

Examples of Kernel Functions

Linear

$$K(x_i, x_j) = x_i^T x_j$$

Mapping φ

 $x \to \phi(x)$ where $\phi(x)$ is x itself

Polynomial of power ρ

$$K(x_i, x_j) = (1 + x_i^T x_j)^{\rho}$$

Gaussian (Radial basis function)

$$K(x_i, x_j) = e^{-\frac{\|x_i - x_j\|^2}{2\sigma^2}}$$

Case Study – Predicting Loan Defaulters

Background

• The bank possesses demographic and transactional data of its loan customers. If the bank has a robust model to predict defaulters it can undertake better resource allocation.

Objective

 To predict whether the customer applying for the loan will be a defaulter

Available Information

- Sample size is 700
- Age group, Years at current address, Years at current employer, Debt to Income Ratio, Credit Card Debts, Other Debts are the independent variables
- **Defaulter** (=1 if defaulter, 0 otherwise) is the dependent variable

Data Snapshot

SVM in Python

Importing the Libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
from sklearn.svm import SVC

from sklearn.metrics import confusion_matrix, f1_score,
precision_score, recall_score, accuracy_score,
roc_curve, roc_auc_score,auc
```

Importing and Readying the Data

```
bankloan = pd.read_csv("BANK LOAN.csv")

bankloan['AGE'] = pd.Categorical(bankloan['AGE'])

bankloan.info()
bankloan1 = bankloan.drop(['SN','AGE'], axis = 1)
pd.Categorical()
changes age from an integer to a factor variable.
```

info() is used to check if the conversion to category has taken place and if all other variable formats are appropriate, before moving to SVM modeling.

SVM in Python

Output

Creating Train and Test Data Sets

SVM in Python

Model fitting svclassifier = SVC(kernel='linear',probability=True) svclassifier.fit(X train, y train) **svc()** trains a support vector machine. **kernel=** specifies the kernel type to be used in the algorithm'(linear', 'poly', 'rbf', 'sigmoid', 'precomputed'). # Output SVC(kernel='linear', probability=True) # Predicted Probabilities predprob test = svclassifier.predict_proba(X test) **predict proba()** returns predicted probabilities for the test data.

Predictions Based on SVM

Custom Cutoff Value for Prediction Labels

Output

Confusion Matrix and Area Under ROC Curve

```
# Confusion Matrix
confusion matrix(y test, pred_test, labels=[0, 1])
array([[118, 36],
                                            accuracy_score() = number of correct
                                            predictions out of total predictions
        [ 13, 43]])
                                            precision_score() = true positives /
accuracy_score(y test, pred test)
                                            (true positives + false positives)
0.7666666666666667
                                            recall_score() also known as
precision_score(y test, pred test)
                                            'Sensitivity' = true positives / (true
0.5443037974683544
                                            positives + false negatives)
recall score(y test, pred test)
0.7678571428571429
```

Area Under ROC Curve
auc = roc_auc_score(y_test, predprob_test[:,1])
print('AUC: %.3f' % auc)
AUC: 0.847

ROC Curve and Area Under ROC Curve

ROC Curve

```
fpr, tpr, thresholds = roc_curve(y test, predprob test[:,1])
#Compute AUC using 'auc' function
roc auc = auc(fpr, tpr)
#Plot the curve for model
plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area =
%0.2f)' % roc auc)
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend(loc="lower right")
plt.show()
```

ROC Curve and Area Under ROC Curve

Output:

Quick Recap

In this session, we learnt about **Support Vector Machines**:

Support Vector Machines

- SVMs find a hyper plane which separates the d-dimensional data perfectly into its classes
- Since training data is often not linearly separable, SVM's introduce the notion of a "Kernel-induced Feature Space" which casts the data into a higher dimensional space where the data is separable

SVM in Python

- Library "sklearn.svm" has SVC() that trains a support vector machine
- The function takes arguments to specify whether SVC()
 is to be used for classification or regression; if
 probabilities are to be returned and which kernel to
 use for training and predicting