## F.E. sem. I. Colorce Based

O.P. Code: 16830

## Time: 3 hours

## Total Marks: 80

- 1. Question No. 1 is compulsory
- 2. Attempt any three questions from the remaining five
- 3. Figures to the right indicate full marks
- 4. Wherever not mentioned value of resistance is in ohms
- 5. Assume suitable data if necessary
- a) Find the ratio V<sub>U</sub>V<sub>S</sub> in the circuit shown below using Kirchoff's laws.



b) Find the rms value for the following waveform.



- Draw the phasor diagram for a three phase star connected load with leading power factor. Indicate all the line and phase voltages and currents.
- d) A 5 kVA, 240/2400 V, 50 Hz single phase transformer has the maximum value of flux density as 1 Tesla. If the emf per turn is 10. Calculate the number of primary & secondary turns and the full load primary and secondary currents.
- e) Explain the principle of operation of DC generator.
- a) Find the current through 3 Ω resistor by mesh analysis. 02.



b) Find the current delivered by the source.



## Q.P. Code: 16830

- c) The voltage and current in a circuit are given by  $\overline{1} = 12 \angle 30^{\circ}$  V and
- i) = 3 2 60° A. The frequency of the supply is 50 Hz. Find
  ii) Equation for voltage and current in both the rectangular and standard form.
  - ii) Impedance, reactance and resistance,
  - iii) phase difference, power factor and power loss.
  - Draw the circuit diagram considering a simple series circuit of two elements indicating their values.
- Q3. a) Find the resultant voltage and its equation for the given voltages which are connected in series.

$$e_1 = 2 \sin \omega t$$
,  $e_2 = -\cos \left(\omega t - \frac{\pi}{6}\right)$ ,  $e_3 = 2 \cos \left(\omega t - \frac{\pi}{4}\right)$ ,  $e_4 = -2 \sin \left(\omega t + \frac{\pi}{3}\right)$ 

b) Find the current through 20  $\Omega$  resistor by using superposition theorem.

- c) Two parallel branches of a circuit comprise respectively of i) a coil having 5  $\Omega$  resistance and inductance of 0.05 H, ii) a capacitor of capacitance 100  $\mu$ F in series with a resistance of 10  $\Omega$ . The circuit is connected to a 100 V, 50 Hz supply Find
  - i) impedance and admittance of each branch,
  - ii) equivalent admittance and impedance of the circuit,
  - the supply current and power factor of the circuit.
    Draw its equivalent series circuit using two elements indicating their values.
- Q4. a) How are DC machines classified?
  - b) Find the current through  $10~\Omega$  resistor by using Norton's theorem.



e) An inductive coil has a resistance of  $20\,\Omega$  and inductance of 0.2 H. It is connected in parallel with a capacitor of  $20\,\mu\text{F}$ . This combination is connected across a  $230\,\text{V}$  supply having variable frequency. Find the frequency at which the total current drawn from the supply is in phase with the supply voltage. What is this condition called F ind the values of total current drawn and the impedance of the circuit at this frequency. Draw the phasor diagram and indicate the various currents & voltages in the circuit.