

AD

TECHNICAL REPORT ARCSL-TR-77065

COMPUTER PROGRAM FOR REDUCTION AND PRESENTATION OF HIGH-PRESSURE CAPILLARY VISCOMETER DATA

by

Lawrence D. Whiting III Frederick H. Gaskins

Research Division

September 1977

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND

Access to the party of the part

Approved the parties which the destination destination

Disclaime

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Disposition

Destroy this report when it is no longer needed. Do not return it to the originator.

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM REPORT NUMBE 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER ARCSL-TR-77065 Technical Report OMPUTER PROGRAM FOR REDUCTION AND April 1976-January 1977 PRESENTATION OF HIGH-PRESSURE CAPILLARY VISCOMETER DATA. 8. CONTRACT OR GRAN Lawrence D. Whiting III Frederick H. Gaskins PERFORMING ORGANIZATION NAME AND ADDRESS Director, Chemical Systems Laboratory /TT161101A91A Attn: DRDAR-CLB-P 1W662619A06501 Aberdeen Proving Ground, Maryland 21010 1. CONTROLLING OFFICE NAME AND ADDRESS Director, Chemical Systems Laboratory September 1977 Attn: DRDAR-CLJ-R Aberdeen Proving Ground, Maryland 21010 14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS. (of this report) UNCLASSIFIED 15a. DECLASSIFICATION DOWNGRADING SCHEDULE 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Capillary viscometer Viscoelastic fluids Recoverable shear Rheology Shear stress Normal stress Newtonian liquids Shear rate Shear modulus Non-Newtonian liquids Digital computer CALCOMP plotter Univac 1108 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This report is a description of a digital computer program for reducing and presenting data from the high-pressure capillary viscometer (HPCV). The HPCV is used to investigate the rheological behavior of viscoelastic fluids. A discussion of the theory and the viscometer's application is included. FORTRAN computer listings, sample input and output, and examples of the plotted rheological variables are further inclusions.

DO 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

SUMMARY

A digital computer program was developed to reduce significantly time and costs incurred in the reduction and presentation of the high-pressure capillary viscometer (HPCV) data. A savings of approximately 40 man-hours per experiment has already been achieved. Further benefits include greater accuracy and clearer and more precise graphics. Perhaps the most beneficial factor, however, is that erroneous data can be identified and corrected more rapidly than with the manual data reduction process. This is an important aspect because many test fluids deteriorate in storage and, if experiments are to be repeated, the test fluids may no longer be representative of the test series.

PREFACE

The work described in this report was performed under ILIR Task 1T161101A91A, In-House Laboratory Independent Research; Characterization of Liquids by Their Rheological Properties, and Task 1W662619A06501, Flame and Incendiary Agent Technology. The work was begun in April 1976 and completed in January 1977.

The use of trade names in this report does not constitute an official endorsement or approval of the use of such commercial hardware or software. This report may not be cited for purposes of advertisement.

Reproduction of this document in whole or in part is prohibited except with permission of the Director, Chemical Systems Laboratory, Attn: DRDAR-CLJ-R, Aberdeen Proving Ground, Maryland 21010; however, Defense Documentation Center and the National Technical Information Service are authorized to reproduce the document for United States Government purposes.

Acknowledgments

*The authors acknowledge the assistance of Edmund M. Wilbur and Charles M. Lawson, fellow workers in the Physics Branch of Research Division.

PRECEDING PAGE BLANK-NOT FILMED

CONTENTS

INTR	ODUCTION	
THEC	DRY AND APPLICATIONS	
COMI	PUTER-PROGRAM DESCRIPTION	
Α. 5	Short-Series Phase	
B. 1	Long-Series Phase	
OPER	RATING INSTRUCTIONS	
CONC	CLUSIONS	
SELE	CTED REFERENCES	
GLO	SSARY	
PROC	GRAM VARIABLES	
APPE	NDIXES	
A.	Flow Chart for Short-Series Phase	
В.	Flow Chart for Long-Series Phase	
	Procedure for the High-Pressure Capillary Viscometer Experiment Evaluation	
	RIBUTION LIST	

COMPUTER PROGRAM FOR REDUCTION AND PRESENTATION OF HIGH-PRESSURE CAPILLARY VISCOMETER DATA

INTRODUCTION.

This report describes a digital computer program for reduction of rheological data acquired from the high-pressure capillary viscometer (HPCV) and presentation of that reduced data by preparation of graphs of the prime rheological parameters.

The program is written for the Edgewood Arsenal Univac 1108 computer in FORTRAN V language. Double-logarithmic plots of the reduced data are drawn by the California Computer Products CALCOMP plotter.

II. THEORY AND APPLICATIONS. 1

The HPCV is used in the investigation of the rheological behavior of viscoelastic fluids. It is designed to permit calculation of rheological variables (refer to glossary) from geometric parameters combined with pressure, mass flow, and time data. The HPCV provides a steady-state unidirectional laminar flow of the test fluid by generating a constant stress at controlled pressure levels.

The nucleus of the HPCV is the removable precision-bore capillary tube which is inserted between two 100-ml test fluid reservoirs. The capillary tube and reservoir assembly, including lead-in lines and connecting tubes, are constructed of stainless steel. To insure complete temperature control of the test sample, the fluid reservoir assembly is placed into a temperature bath. In operation, pressurized gas, controlled by a network of valves and regulators and monitored by a bank of precision gages, forces test fluid from one reservoir through the capillary tube to the second reservoir. This action forces gas from the second reservoir to impinge on a low-viscosity fluid, such as n-hexane, driving it through a burette at the same flow rate being experienced by the test fluid.

Volumetric flow-time relationships are determined from the burette readings. Pressure gradients of 10^{-3} to 10^3 psig can be applied with the HPCV resulting in an operating shear rate range of 10^{-3} to 10^6 seconds⁻¹.

Table 1 presents a listing of the capillary tube sets and their dimensions.

Two basic experiments are performed with the HPCV. The short-series experiment involves volume flow-rate measurements performed with the longest capillary tube of each group. These data permit shear stress, shear rate, and apparent viscosity to be calculated.

The calculated data can then be used to generate shear stress versus shear rate and viscosity versus shear rate plots. These generated plots are known as the basic flow curves and are adequate to describe fully the rheological behavior of Newtonian or inelastic non-Newtonian liquids.

¹ Gaskins, Frederick H. EATR 4472. Characterization of Thickened Aluminum Alkyl Fuels. II. Steady-State Flow Properties of Concentrated Solutions of Polyisobutylene in Triethylaluminum. January 1971. UNCLASSIFIED Report.

Table 1. Capillary Viscometer Parameters

Group	Tube No.	Length		Nominal diameter		R	L/R
		in	cm	in	cm	cm	
A	11	2.0020	5.0851	0.205	0.52	0.26	19.6
В	7	1.9914	5.0582	0.127	0.322	0.161	31.4
	10	0.4485	1.1392	0.127	0.322	0.161	7.08
C	5	1.9985	5.0759	0.0646	0.164	0.0820	61.9
	8	0.6502	1.6515	0.0646	0.164	0.0820	20.1
	15	0.1839	0.4671	0.0646	0.164	0.0820	5.70
D	9	2.0021	5.0353	0.0244	0.0619	0.0310	164.0
	6	0.5960	1.5138	0.0244	0.0619	0.0310	48.8
	14	0.1534	0.3896	0.0244	0.0619	0.0310	12.6
E	3	1.5082	3.8308	0.0146	0.0370	0.0185	207.0
	4	0.3318	0.8428	0.0146	0.0370	0.0185	45.6
	13	0.0859	0.2182	0.0146	0.0370	0.0185	11.8
F.	1	1.0155	2.5794	0.00807	0.0205	0.0103	250.0
	2	0.2346	0.5959	0.00807	0.0205	0.0103	57.9
	12	0.317	0.0805	0.00807	0.0205	0.0103	7.82

More information is needed to describe the flow of high-polymer or other viscoelastic solutions. This is accomplished by the use of all the capillary tubes in a long-series experiment. These additional data permit calculation of recoverable shear, shear modulus, relaxation time, and normal stress, parameters needed to describe the fluid's elasticity.

The HPCV is limited by the shear-rate range in which it can operate. For lower shear rates, less than 10^{-3} seconds⁻¹, the rotational viscometer or the Weissenberg rheogoniometer is used to acquire needed data. The Weissenberg rheogoniometer also is more accurate since it measures elasticity directly as compared to the HPCV where elasticity is a computed function of physical and rheological factors.

III. COMPUTER-PROGRAM DESCRIPTION.

The computer program matches the basic experiments performed with the HPCV; i.e., the first phase provides data reduction and graphic interpretation for the short-series experiments and the second phase provides data reduction and graphic interpretation for the long-series experiments.

A. Series Phase.

pendix A contains the flow chart and the program listing.

The first section establishes arrays and procedures for data input. Volume-time data, i.e., the flow rates through the capillary tubes, for each pressure level are fed into the computer. Appendix A contains sample input. A slope and y-intercept are calculated at each pressure level from the volume-time coordinates.

Values for shear rate and shear stress are then calculated by using capillary tube dimensions and the following rheological relationships:

$$\dot{\gamma}_{\rm m} = 4S/\pi r^3 \tag{1}$$

$$\sigma = r \Delta P / 2\ell \tag{2}$$

where

 $\dot{\gamma}_{\rm m}$ = shear rate, sec⁻¹

r = capillary tube radius, cm

S = slope or volumetric flow rate, cc/sec

 σ = shear stress, dynes/cm²

 $\Delta P = \text{pressure}, \, \text{dynes/cm}^2$

& = capillary tube length, cm

The apparent viscosity at each pressure level is calculated as a function of the shear stress divided by the shear rate.

The reduced data are printed in tabular form. Appendix A contains sample output.

Two double-logarithmic plots of the reduced data are drawn by the CALCOMP plotter. One plot is a graph of shear rate versus shear stress; the other plot presents apparent viscosity versus shear rate. On each graph, a best fit curve is drawn through the data points. This curve is computed using E. Wilbur's program for fitting a polynomial equation as high as the sixth degree to the data.

Appendix A contains a sample plot of the basic flow curves (figures A-1 and A-2).

B. Long-Series Phase.

Appendix B contains a flow chart and the program listing.

The input is basically the same as for a short series, except that an extra card is used to read in the number of groups of capillary tubes and their designations. Appendix B contains sample input. The same basic calculations are performed for shear rate, shear stress, and viscosity, and a double logarithmic plot of shear rate versus shear stress is drawn. A curve is plotted for each capillary used. A sample plot of these basic intermediate curves for one capillary group is contained in appendix B (figure B-1).

Values for shear rate and shear stress selected for this intermediate plot are then used to predict certain viscoelastic properties of the material studied. Furthermore, by examining the general slope of these curves and recognizing those points that deviate from the norm, erroneous data are located and immediately deleted.

For each group of capillary tubes, six isoshear rates are selected. For each selected shear rate, a corresponding shear stress, the total shear stress (refer to glossary), is calculated. The total shear stress then permits the applied pressure to be computed:

$$\sigma_t = (\dot{\gamma}_{ms} - BT)/S_t \tag{3}$$

$$\Delta P = (2\ell/r)\sigma_{t} \tag{4}$$

where

 σ_t = total shear stress, dynes/cm²

 $\dot{\gamma}_{ms}$ = selected shear rate, sec⁻¹

BT = y-intercept of shear rate versus shear stress curve

S_t = slope of shear rate versus shear stress curve

 $\triangle P$ = applied pressure, dynes/cm²

ℓ = length of capillary tube, cm

r = radius of capillary tube, cm

Analyzing the applied pressure versus ℓ/r ratios of the capillary tubes by groups, values for corrected shear stress and recoverable shear are computed. The corrected shear stress equals the slope of the applied pressure versus the ℓ/r ratio curve divided by two. Recoverable shear equals the X-axis intercept multiplied by a negative two. More detailed explanations are contained in the glossary and table 2.

Table 2. Matrix for the Capillary Experiment*

Function	X-intercept	Y-intercept	Slope
$\sigma_{t} = f(r/\mathfrak{l})$	$(r/\ell)_{\sigma_t \to o} = -2/\gamma_R$	$(\sigma_{\mathbf{t}})_{\ell \to \infty} = \sigma_{\mathcal{C}}$	$\sigma_{\rm c}(\gamma_{\rm R}/2)$
$P_t = f(\ell/r)$	$(\ell/r)_{P_f \to o} = -\gamma_R/2$	$(P_t)_{\ell \to 0} = \sigma_c \cdot \gamma_R$	$2\sigma_{\rm c}$

^{*}According to Philippoff and Gaskins.² Note that the original matrix in the reference (page 269) has been modified by deletion of the Couette correction, "n". This simplification is based on the rationale that "n", which is an entrance correction, is constant for various capillary tubes with the same radius, and the computer program sequence presented in this report evaluates elasticity from data for groups of tubes of the same radius at constant shear rates.

Additional rheological parameters, including apparent and effective viscosity, shear modulus, relaxation time, and normal stress, are calculated as follows:

$$\eta_{a} = \sigma_{c} / \dot{\gamma}_{ms} \tag{5}$$

$$\eta_{\rm e} = \eta_{\rm a} (1 + \gamma_{\rm R}) \tag{6}$$

$$G = \sigma_{c}/\gamma_{R} \tag{7}$$

$$t = \gamma_{R} / \dot{\gamma}_{ms} \tag{8}$$

$$N_1 = \sigma_c \cdot \gamma_R \tag{9}$$

where

 η_a = apparent viscosity, poise

 η_e = effective viscosity, poise (empirical relationship)

 σ_c = corrected shear stress, dynes/cm²

²Philippoff, W., and Gaskins, F. H. The Capillary Experiment in Rheology. Transactions of the Society of Rheology *II*, 263-284 (1958).

 $\dot{\gamma}_{\rm ms}$ = selected shear rate, sec⁻¹

 $G = \text{shear modulus, dynes/cm}^2$

 γ_R = recoverable shear, dimensionless

t = relaxation time, seconds

 N_1 = normal stress, dynes/cm²

Five double logarithmic plots of the computed viscoelastic properties are drawn.

Plot one, the flow curve, is selected shear rate versus corrected shear stress. The inverse slope at any point is the apparent viscosity.

Plot two, the viscosity-rate curve, shows the apparent viscosity vessus the selected shear rate.

Plot three, the deformation curve, is recoverable shear versus the corrected shear stress. The inverse slope at any point is the shear modulus.

Plot four, the deformation-rate curve, shows recoverable shear versus selected shear rates. The slope at any point equals the relaxation time.

Plot five, the normal stress-rate curve, is the normal stress versus the selected rates.

Appendix B also contains samples of these five plots for a viscoelastic fluid combining all the capillary groups (figure B-2).

IV. OPERATING INSTRUCTIONS.

A deck of Hollerith cards containing all of the FORTRAN V statements and control cards is necessary for operation of the program and assigning plot tapes. The Univac 1108 uses the EXEC VIII control language. The number and format of control cards may vary somewhat in different computer installations; therefore, they are not considered in this report. Consult your computer information directorate for appropriate control cards.

V. CONCLUSIONS.

This computer program reduces significantly the time and costs for data reduction and evaluation for experiments conducted with the HPCV. Sixteen man-hours are saved for each short-series experiment and approximately 40 man-hours are saved for each long-series experiment. A step-to-step procedure for manual data reduction is presented in appendix C.

Additional benefits are greater accuracy and minimization of errors inherent in manual data reduction. The curve-fitting technique further reduces errors or distortions caused by visual evaluation and manual attempts to fit curves to data points. The program provides an equation of

the best-fit curve which permits further information to be predicted accurately. Finally, clearer and more precise graphics, ready-made for inclusion in reports, are produced.

Probably the most important benefit is that erroneous data can be identified rapidly and a test-series experiment can be repeated immediately. This is an important aspect because many test fluids deteriorate in storage and are not representative of the test series if repeat experiments are delayed as was usually the case when manual data reduction was necessary.

SELECTED REFERENCES

- 1. Programming CALCOMP Pen Plotters. California Computer Productions, Inc. September 1969.
- 2. CALCOMF Graphics Functional Software, USA FORTRAN/Scientific. California Computer Products, Inc. July 1969.
- 3. Wilbur, Edmuné. Least Squares Program for Fitting Polynomial Curves. To be published as an ARCSL technical report. 1977.
- 4. The Weissenberg Rheogoniometer, Instruction Manual for Model R.18. Sangamo Controls Limited. Sussex, England.

GLOSSARY

- 1. Shear rate, $\dot{\gamma}_{\rm m}$, \sec^{-1} : The deformation rate developed across the stress field; also, the irreversible shear flow of the fluid.
- 2. Shear stress, σ , dynes/cm²: The tangential force per unit area exerted on the fluid causing deformation, orientation, or flow.
 - a. Total shear stress, σ_t : Calculated value based on the tube geometry and the total pressure gradient which includes the pressure utilized in reversible elastic deformation (see equation 3 in text).
 - b. Corrected shear stress, σ_c : Reduced value based only on portion of pressure utilized in irreversible viscous flow.
- 3. Recoverable shear, γ_R , dimensionless: The reversible elastic shear strain developed in the fluid under shear that may be recovered in real time after cessation of flow or removal of stress.
- 4. Viscosity, $\eta = \sigma/\dot{\gamma}_{\rm m}$, in poise or dynes-sec/cm²: The resistance to flow offered by the fluid under shear.
 - a. Apparent viscosity, η_a : Variable function of shear rate.
 - b. Effective viscosity, η_e , dynes/cm²: An empirical term relating a fluid's viscous and elastic components $-\eta_e = \eta_a (1 + \gamma_R)$. Note also relaxation time definition.
- 5. Normal stress, $N_1 = \sigma \cdot \gamma_R$, dynes/cm²: The first normal stress functions; force perpendicular to direction of flow.
- 6. Shear modulus, $G = \sigma/\gamma_R$, dynes/cm²: The modulus of elasticity measured in shear (equivalent to Hooke's law).
- 7. Relaxation time, $t = \eta/G = \gamma_R/\dot{\gamma}_m$, sec: The time required for a strained or sheared material to recover after stress removal (also called retardation time).
- 8. Newtonian fluid: Viscosity is a constant, independent of shear rate.
- 9. Non-Newtonian fluid: Viscosity is a variable function of shear rate.
- 10. <u>Viscoelastic fluid</u>: Material under shear demonstrates viscous response (irreversible flow) and elastic response (reversible storage).
- 11. Inelastic fluid: Material under shear demonstrates no elastic response.

PROGRAM VARIABLES

VARIABLE	DESCRIPTION
1. GROUP	A, B, C, D, E, F
2. TL	Tube lengths
3. TR	Tube radii
4. TK	Constant ratio (2 l/r)
5. DK	Constant $\left(\frac{4}{\pi r^3}\right)$
6. IG	Number of groups
7. IGN	Group number
8. IT or I	Number of tubes
9. ITUB or J	Tube number
10. NP	Number of pressure readings
11. PRESS	Pressure readings
12. KOUNT	Number of volume readings
13. VOL	Volume levels recorded
14. T	Time
15. SIGMA	Slope of VOL versus T readings
16. B	Y-intercept of VOL versus T data
17. TAU	Shear stress
18. D	Shear rate
19. VIS	Viscosity
20. DM	Maximum D for each tube
21. DMX	Minimum maximum D for each group
22. DN	Minimum D for each tube

Midpoint of R

23. DMN

24. R

25. PM

Maximum minimum D for each group

Maximum D minus minimum D

VARIABLE

DESCRIPTION

	MADE	DESCRIPTION
26.	SD	Selected D
27.	SIGMAT	Slope of D versus TAU data
28.	TAUT	Shear stress for each SD
29.	DP	Pressure for each TAUT
30.	TKS	TK/2
31.	TAUC	Slope DP versus \(\ell/r\) data
32.	RSC	Recoverable shear
33.	VISA	Apparent viscosity
34.	G	Shear modulus
35.	RT	Relaxation time
36.	ВС	Y-intercept of DP versus TKS
37.	NN	Pressure number (NP)
38.	BT	Y-intercept of D versus TAU
39.	NM	Tube number (IT)
40.	PN	Normal stress
41.	D2 or DS	D values for plot
42.	VIS2 or VISS	VIS values for plot
43.	TAU2 or TAUS	TAU values for plot
44.	SD2	SD values for plot
45.	TAUC2	TAUC values for plot
46.	VISA2	VISA values for plot
47.	RSC1	RSC values for plot
48.	PN2	PN values for plot
49.	XPAGE	X-values for plot
50.	YPAGE	Y-values for plot
51.	FPR	Predicted Y-axis values
52.	EV	Effective viscosity

APPENDIX A

FLOW CHART FOR SHORT-SERIES PHASE


```
TNG.5316J065212, RFSFAR. 2.100
```

LARRYW. 6-02/04-12:37

RRYW.

RYW.

ISCAP..VISCAP 2/04/77-12:37:42 (.0) SAMPLE LISTING FOR SHORT SERIES

OGRAM

USED: CODE(1) 000725; DATA(0) 015534; BLANK COMMON(2) 000000

L REFERENCES (BLOCK . NAME)

PLOTS
PLOT
FACTOR
LGAXS
LGLIN
SYMBOL
FITCUR
SMOOT
NINTRS
NRDUS
NIO15
NIO25
NWDUS
ALOG10

NSTOPS

ASSIGNMENT (BLOCK, TYPE, RELATIVE LOCATION, NAME)

015361	15	0000		015364	100F	0000		015416	104F	0001		000013	1.
000076	1426	0.201		000113	1566	nnnc		015362	2F	0001		000422	21
000476	202L	0001		000511	203L	0001		000515	2041.	0001		000223	2.
000243	2216	0000		015363	3F	0001		000622	300L	0001		000664	31
000712	303L	0001		000716	304L	0001		000046	51.	0001		000207	51
007607	В	0000	R	011413	n	nnor	R	000055	nk	nonn	R	013524	ne
015336	I	0000	1	015360	ID	0000	T	000074	J	nnnn	I	015341	. 14
015344	KOUNT	0000	1	015340	L	nnor	I	015343	М	0000	I	015345	NI
015357	NA	0000	1	013217	NN	0000	T	015342	ND	0000	I	015356	KI'S
006705	SIGMA	0000	R	015346	ST	nnnn	R	015347	STS	0000	R	015352	c.
015351	SVS	0000	R	003751	T	nnor	R	010511	TAU	0000	R	013236	TI
000000	TL	0000	R	015354	TM	nnor	R	000017	TR	nonn	R	015355	TI
014012	VISS	0000	R	001015	VOL	0000	R	014566	XPAGE	0000	R	015052	At.

1* DIMENSION TL(15)*TR(15),TK(15)*DK(15)*PRESS(15*30)*VOL(30*50 2* C)*T(30*50)*SIGMA(15*30)*R(15*30)*TAU(15*30)*D(15*30)*VTS(15*30)*NN

```
C(15) . TAUS(182) . DS(182) . VTSS(182) . FPP(182)
 4 *
               DIMENSION XPAGE (180) . YPAGE (180)
               DATA TL/2.5794.0.5959.3.8308.0.8428.5.0759.1.5138.5.0582.1.6515.5.
 5*
 6*
             C0853.1.1392.5.0851.0.0805.0.2182.0.3896.0.4671/
 7*
               DATA TR/0.0103.0.0103.0.0185.0.0185.0.0820.0.0310.0.1610.0.0820.0.
 9.
              C0310.0.1610.0.2600.0.0103.0.0185.0.0310.0.0820/
0.
               DATA TK/138.,597.,167.,751.,554.,702.,1095.,1710.,209.5,4870.,1760
             C.,4410.,2920.,2740.,6050./
10+
               DATA DK/1.17E+6,1.17F+6,2.01F+5,2.01F+5,2.3F+3,4.26F+4,3.05F+2,2.3
11 *
              CE+3,4.26E+4,3.05E+2,7.22F+1,1.17F+6,2.01F+5,4.26E+4,2.3F+3/
12+
               READ(5.1) I.(J(K),K=1.1)
13*
             1 FORMAT( )
14+
15*
               L=1
             6 JK=J(L)
16*
17*
               READ(5:2) NP. (PRESS(JK.K).K=1.NP)
18+
            2 FORMAT( )
19*
               M=1
             5 READ (5.3) KOUNT, (VOL (M.N) .T (M.N) .N=1.KOUNT)
201
21+
            3 FORMAT( )
22*
            30 ST=0.
23*
               STS=0.
24*
               SV=n.
               SVS=n.
25*
26*
               STV=n.
27+
               DO 10 NK=1 . KOUNT
28*
               ST=ST+T(M,NK)
20+
               STS=STS+T(M+NK) **2.
30*
               SV=SV+VOL (M.NK)
31 *
               SVS=SVS+VOL (M,NK) **2.
32*
               STV=STV+T(M+NK) *VOL(M+NK)
33*
            10 CONTINUE
               SIGMA(L+M)=(STV-((ST+SV)/KOINT))/(STS-(ST++2.)/KOUNT)
34 *
35*
               TM=ST/KOUNT
36*
               TV=SV/KOUNT
37+
               B(L,M)=TV-SIGMA(L,M) *TM
38*
               TAU(L,M)=PRESS(JK,M)*TK(JK)
30+
               D(L,M)=SIGMA(L,M) *DK(JK)
               VIS(L,M)=TAU(L,M)/D(L,M)
40*
41*
               IF (M.EQ.NP) GO TO 22
42*
               M=M+1
              GO TO 5
43+
44*
            25 NN(7K)=Nb
45*
               IF(L.EQ.I) 60 TO 50
46*
               L=L+1
47*
               GO TO 6
40 *
           50 WRITE(6,100)
                             CAPILLARY
40*
          100 FOR AT ( 11 ...
                                         PRESSIPE
                                                      SLOPE
                                                               SHEAR STREES
                                                                               SHEAD
              CRATE
50*
                     VISCOSITY'/'
                                      MIMRED
                                                    DST
                                                              CCICEC
                                                                        DYNES/100
51*
                 1/SEC
                               POISF!)
              C
52*
               NXY=1
53*
               DO 102 K=1.1
54*
               JK=J(K)
55*
               NP=NN(JK)
56*
               DO 103 NM=1 NP
57*
               WRITE(6,104) J(K), PRESS(JK, NM), STGMA(K, NM), TAH(K, NM), D(V, NM), VTS(K
58*
             C.NM)
          104 FORMAT(6X,12,6X,F7.2,4X,F5.3,4X,F9.2,6X,F9.2,3X,F9.4)
50+
```

.0

```
TAUS (NXY) = TAU(K,NM)
60*
61 *
               DS(NXY)=D(K.NM)
62*
               VISS(NXY)=VIS(K,NM)
63*
               NXY=NXY+1
64*
           103 CONTINUE
65*
           102 CONTINUE
66*
               NXY=NXY-1
67*
           500 CALL PLOTS(ID. ID. 8)
68*
               CALL PLOT(0.0,-36.0,-3)
               CALL PLOT (0.0.2.0.-3)
100
70+
               CALL FACTOR (0.75)
               TAUS (NXY+1)=1.0
71+
72*
               TAUS (NXY+2)=.50
73*
               DS(NXY+1)=1.0
74*
               DS(NXY+2)=.50
75*
               CALL LGAXS(0.0,0.0,29HSHEAP STDESS-DYNES/CM-SQUARED,-29,12.0,0.0,
76*
              C1.0..501
77*
               CALL LGAXS(0.0,0.0,29HSHEAP PATF-RECIPROCAL SECONDS,29,12.0,90.0,
78*
              C1.0..50)
70*
               CALL LGLIN(TAUS.DS.NXY.1.-1.11.0)
               CALL SYMBOL (3.0.12.0..21.27HSHEAR RATE VS. SHEAR STRESS,0.0.27)
*08
81*
               CALL FITCUR(TAUS, DS, NXY, FPR)
               FPR(NXY+1)=1.0
82*
83*
               FPR(NXY+2)=.50
               CALL LGLIN(TAUS, FPR, NXY, 1,-1,2,0)
84*
85*
               N=1
86*
           200 XPAGE(N)=(ALOGIO(TAUS(N)))/TAUS(NXY+2)
87*
               YPAGE(N)=(ALOG10(FPR(N)))/D5(NXY+2)
               IF(N.EQ.1) GO TO 201
88*
89*
               IF (N.EQ.NXY) GO TO 202
               CALL SMOOT (XPAGE (N), YPAGE (N),-2)
90 *
91*
               GO TO 203
92*
           201 CALL SMOOT (XPAGE (N) , YPAGE (N) , 0)
93*
               GO TO 203
94*
           202 CALL SMOOT (XPAGE (N) , YPAGF (N) ,-24)
               GO TO 204
95*
96*
           203 N=N+1
               GO TO 200
97*
98+
           204 CALL PLOT (0.0.16.0.-3)
99*
               VISS(NXY+1)=.01
               VISS(NXY+2)=.50
00+
               CALL LGAXSID.D.D.29HSHEAP PATE-RECTPROCAL SECONDS .- 20,12.0.0.0.
01*
              (1.0..50)
02*
               CALL LGAXS(0.0.0.0.15HVISCOSTTY-POTSF,15,12.0,00.0,.01..50)
03*
               CALL LGLIN(DS.VISS.NXY.1.-1.11.0)
04*
               CALL SYMBOL (3.0,12.0,.21,24HVTSCOSITY VS. SHEAR RATF,0.0,24)
05*
06*
               CALL FITCUR(DS, VISS, NXY, FPR)
07*
               FPR(NXY+1)=.01
08*
               FPR(NXY+2)=.50
00+
               CALL LGLIN(DS.FPR.NXY.1,-1,2,0)
10*
               N=1
           300 XPAGE(N)=(ALOG10(DS(N)))/DS(NXY+2)
11*
12*
               YPAGE(N)=((ALOG10(FPR(N)))/VTSS(NXY+2))+4.
13*
               IF(N.EQ.1) GO TO 301
14*
               IF (M.EQ.NXY) GO TO 302
15*
               CALL SMOOT (XPAGE (N) , YPAGE (N) ,-2)
16*
               GO TO 303
```

```
17+
          301 CALL SMOOT (XPAGE (N) , YPAGE (N) , 0)
18*
               GO TO 303
19*
           302 CALL SMOOT (XPAGE (N) , YPAGE (N) , -24)
50*
               GO TO 304
115
           303 N=N+1
22+
               GO TO 300
23*
           304 CALL PLOT (0.0.0.0.999)
24 *
```

OF COMPILATION: NO DIAGNOSTICS.

TCUR . FTCUR 2/04/77-12:37:48 (.0)

USED: CODE (1) 002656; DATA(0) 002615; BLANK COMMON(2) 000000

OF COMPILATION: NO DIAGNOSTICS.

71-3 02/04/77 12:37:58 IN TPFS. LIB MISD*PLOT.

MITS

001000 023250 9385 IRANK WORDS DECIMAL 11104 DRANK WORDS DECIMAL

DORESS 022324

SEGMENT	SMA INS	001	1000 023250	0.4	1000 065	537
-F2	\$(1)	001000	001022			
-F3	\$(1)	001023	001106	\$(2)	040000	040011
E2	\$(1)	001107	001314	\$(2)	040012	040031
Ix	\$(1)	001315	001445	\$(2)	040032	040107
-F2	\$(1)	001446	001730	\$(2)	040110	040123
E2	\$(1)	001731	001753			
68	\$(1)	001754	002175	\$(2)	040124	040220
-F3	\$(1)	002176	002433	\$(2)	040221	040246
				\$(2)	040247	042474
69	\$(1)	002434	002460			
-E3	\$(1)	002461	002515			
68	\$(1)	002516	002551			
68	\$(1)	002552	002663			
-F3	\$(1)	002664	003061	\$(2)	042475	042546
-F3	\$(1)	003062	003356	\$(2)	042547	042552
X	\$(1)	003357	005072	\$(2)	042553	042614
IX	\$(1)	005073	005314	\$(2)	042615	042764
IX	\$(1)	005315	005551	\$(2)	042765	042765
IX	\$(1)	005552	007162	\$(2)	042766	043021
E 3	\$(1)		010045	\$(2)	043022	043076

SHORT SERIES

INPUT

Card 1 I – Number of capillaries

J - Capillary number

Card 2 NP – Number of pressures

PRESS - Pressure levels, psi

Card 3 KOUNT – Number of volume-time data points

VOL – Volume, cm³

T - Time, sec

OUTPUT

J - Capillary number

PRESS - Pressure, psi

SIGMA - Slope of volumetric rate curve

TAU – Shear stress, dynes/cm²

D - Shear rate, sec⁻¹

VIS - Viscosity, poise

			MPLE OUTPUT_		
CAPTLLARY	FISESCHOF	SLAPE	SHEAR STRES	SHEAR PATE .	VISCOSITY
TIMHER	PSI	CCISEC	DANEZICMS	1/656	POISE
1	14.90	.001	2056.20	1388.19	1.4012
1	28.75	.005	3967.50	1050.00	2.0346
1	50.50	.003	6969.00	2041.72	2.3690
1	70.00	. 104	9660.00	4420.00	2.1855
1	97.50	.006	13455.00	6474.00	2.0783
1	130.00	• 006	17040.00	0234.04	1.0428
1	189.00	.012	26082.00	14129.14	1.8460
1	305.00	.019	42090.00	22285.72	1.8887
1	437.00	.028	60306.00	33204.86	1.9113
1	6.05.00	• 0 3 B	83490.00	44905.72	1.8592
1	760.00	.049	104880.00	56761.72	1.8477
1	933.00	• 060	128754.00	70356.00	1.8300
3	4.00	.001	668.00	268.00	2.4925
*	7.20	.002	1202.40	320.64	3.7500
	13.70	.003	2287.90	674.79	3.3006
3	21.00	•005	3507.00	1048.07	3.3461
3	28.75	.007	4801.25	1424.23	3.3711
3	46.00	.012	7682.00	2408.14	
3	65.00	.010	10055.00	7920.01	2.8409
2	86.00	.027	14362.00	E398.71	
3	112.00	.037	18704.00	7504.00	2.4925
	145.00	.051	24215.00	10104.86	
	190.00	.069	31730.00	13818.75	2.2962
3	285.00	•107	47595.00	21527.01	
	415.00	.157	69305.00	31497.12	2.2011
3	598.00	.231	99866.00	61402.37	2.0368
3	750.00	• 306	125250.00		
3	915.00	.380	152805.00	76320.00	2.0006 4.7287
0	2.50	• 113	523.75	110.76	5.2691
q	4.00	.004	1257.00	264.12	4.7592
9	6.00	.006	1885.50	428.84	4.3967
a	9.00	.010			3.8513
9	13.00	.017	2723.50 3980.50	707.15	3.6217
	19.00	.026	5132.75	1479.64	3.4689
C,	24.50	.042	6075.50	1797.72	3.3796
			9637.00	2030.40	3.2786
G G	46.00	.100	12570.00	4240.04	2.9640
g i	60.00 80.00	.142	16760.00	6066.02	2.7620
9	115.00	.226	24092.50	0622.84	2.5037
q	132.00	.260	27654.00	11001.12	2.4933
G	154.00	•306	32263.00	13016.67	2.4786
4	182.00	. 367	38129.00	15620.00	2.4410
9	250.00	.500	52375.00	21300.00	2.4589
,	. 25	.000	138.50	21.59	6.4137
5	.30	.013	207.75	30.61	6.7868
	•50	.019	277.00	42.81	6.4704
5	.75	. 727	415.50	61.33	6.7745
5	1.00	.038	554.00	87.53	6.3294
6	1.50	.058	P31.00	133.89	6.2065
5	2.00	.080	1108.00	193.91	6.0246
£.	3.00	.130	1662.00	208.28	5.5710
1,	4.50	.210	2493.00	112.07	5.1714
A 5	6.00	.307	3324.00	707.04	4.7013
5	8.00	.432	4432.00	994.27	4.4575

Figure A-1. Sample of Basic Flow Curve (Shear Rate Versus Shear Stress)

Figure A-2. Sample of Basic Flow Curve (Viscosity Versus Shear Rate)

APPENDIX B
FLOW CHART FOR LONG-SERIES PHASE

PRECEDING PAGE BLANK-NOT FILMED

Appendix B

SAMPLE LISTING FOR LONG SERIES

```
DIMENSION TAUT (6, 15,6)
 2 .
               DIMENSION GROUP(6),TL(15),TR(15),TK(15),TKS(15),DK(15),TGN(6),ITUR
              C(6,15).PRESS(6,15,30).VOL(30,50).T(30,50).SIGMA(6,15,30).B(6,15,30
 3+
              C),RS(6,15,30),TAU(6,15,30),D(6,15,30),VTS(6,15,30),DM(6,15),DMX(6)
 4 *
 5.
              C+DN(6+15)+DMN(5)+R(6)+PM(6)+SD(6+6)+STGMAT(6+15)+DP(6+15+6)+TAUC(6
 5.
              C+6) +RSC(6+6) +VISA(6+6) +G(6+6) +RT(6+6) +BC(6+6) +NN(15) +BT(6+15) +NM(6
 7*
              C) . PN(6.6) . EV(6.6)
 9*
               DIMENSION D2(500).VIS2(500).TAU2(500).SD2(90).TAUC2(90).VISA2(90).
              CRSC2(90) . PN2(90)
 0+
10+
               DATA TL/2.5794,0.5959,3.8308,0.8428,5.0759,1.5138,5.0582,1.6515,5.
              C0853,1.1392,5.0851,0.0805,0.2182,0.3896,0.4671/
11+
12+
               DATA TR/0.0103:0.0103:0.0185:0.0185:0.0820:0.0310:0.161:0.082:0.03
13+
              C1.0.161.0.26.0.0103.0.0185.0.031.0.092/
14+
              DATA TK/138.,597.,167.,751.,554.,702.,1095.,1710.,209.5,4870.,1760
              C.,4410.,2929.,2749.,6050./
15+
16*
              DATA TKS/250..57.9.207.,45.6.61.9.48.8.31.4.20.1.164..7.08.19.6.7.
17*
              C82,11.8,12.6,5.7/
19+
               DATA DK/1.17E+6,1.17E+6,2.01E+5,2.01F+5,2.3F+3,4.26F+4,3.05E+2,2.3
19*
              CE+3,4.26E+4,3.05E+2,72.2,1.17F+6,2.01E+5,4.26E+4,2.3E+3/
20*
               DATA GROUP/'A', 'B', 'C', 'D', 'F', 'F'/
21*
               READ(5.1) IG. (IGN(J). J=1.IG)
             1 FORMAT( )
22*
23+
               I = 1
24*
            65 L=I3V(I)
               READ(5:2) IT. (ITUB(L.J), J=1, IT)
25*
26*
              FORMAT (
27*
               M=1
29*
             8 MM=TTUB(L,M)
20+
               READ(5.3) NP, (PRESS(L.MM.K), K=1, NP)
39+
             3 FORMAT( )
31*
               N=1
32*
             6 READ (5.4) KOUNT, (VOL (N.KK) .T (N.KK) .KK=1.KOUNT)
33*
             4 FORMAT( )
34*
               ST=0.
35*
               STS=0.
35*
               SV=0.
37*
               STV=0.
               DO 10 NK=1 . KOUNT
ST=ST+T(N,NK)
38*
39*
40*
               STS=STS+T(N,NK) **2.
41*
               SV=SV+VOL(N,NK)
42*
               STV=STV+T(N+NK) *VOL(N+NK)
            10 CONTINUE
43*
               SIGMA(L,MM,N)=(STV-((ST*SV)/KOUNT))/(STS-(ST**2.)/KOUNT)
444
45*
               TM=ST/KOUNT
               TV=SV/KOUNT
46*
47*
               B(L,MM,N)=TV-SIGMA(L,MM,N)+TM
               TAU(L, MM, N) = PRESS(L, MM, N) +TK(MM)
40+
49#
               D(L,MM,N)=SIGMA(L,MM,N)+DK(MM)
50*
               VIS(L,MM,N)=TAU(L,MM,N)/D(L,MM,N)
```

```
424
                IF (Y.EQ.NP) GO TO 5
53*
               N=N+1
54+
               GO TO 6
55*
             5 NN(MM)=NP
56*
               55=n.
57+
                STAU=0.
504
               STAUS=0.
5.0.
               SDTAU=0.
60*
                DO 21 NX=1. NP
61*
               SS=SS+D(L,MM,NX)
521
               STAU=STAU+TAU(L, MM.NY)
63*
               STAUS=STAUS+TAU(L, MM, NX) **2.
64+
               SDTAU=SDTAU+D(L,MM,NX)+TAU(L,MM,NX)
55*
            21 CONTINUE
56*
                SIGMAT(L,MM)=(SDTAU-((SS*STAU)/NP))/(STAUS-(STAU*+2.)/MP)
67*
                TTAU=STAU/NP
68 +
                TD=55/NP
 59*
                BT(L,MM)=TD-STGMAT(L,MM) *TTAIL
70+
                DM(L,MM)=0.
71*
               DO 20 J=1 NP
 72*
            20 IF(D(L,MM,J).GT.DM(L,MM)) DM(L,MM)=D(L,MM,J)
 73*
                DN(L,MM)=1000000.
 74 *
                DO 32 J=1.40
            22 IF()(L,MM,J).LT.DN(L,MM)) DN(L,MM)=D(L,MM,J)
 75*
 76*
                IF(M.EQ.IT) GO TO 7
 77*
                M=4+1
 78*
                GO TO 8
 79*
              7 NM(L)=IT
 *08
                DMX(L)=1000000.
 81*
                DO 23 J=1, IT
 82*
                MM=ITUB(L,J)
 83×
            23 IF()M(L,MM).LT.DMX(L)) DMX(L)=DM(L,MM)
 84*
                DMN(L)=0.
 85*
                DO 24 J=1.IT
                MM=TTUB(L.J)
 86*
 97*
            24 IF(DN(L, MM).GT.DMN(L)) DMN(L)=DN(L, MM)
                R(L)=DMX(L)-DMN(L)
 83*
 89*
                PM(L)=R(L)/2.
 90*
                SD(L.1)=DMN(L)
                SD(L,2)=DMN(L)+.2*R(L)
 91*
92*
                50(L,3)=DMN(L)+.4*R(L)
 93*
                50(L+4)=DMN(L)+.6*R(L)
 94*
                SD(L,5)=DMN(L)+.8*R(L)
 95*
                SD(L.6)=DMX(L)
 96*
                DO 25 J=1.IT
 97*
                MM=ITUB(L,J)
 99*
                00 26 K=1.6
                TAUT(L.MM.K)=(SO(L.K)-BT(L.MM))/SIGMAT(L.MM)
 90+
100*
                DP(L,MM,K)=2.*TKS(MM)*TAUT(L,MM,K)
             26 CONTINUE
101*
102*
             25 CONTINUE
103*
                K=1
             55 STKS=0.
104*
105*
                STKSS=0.
                SDP=0.
106*
107*
                STKSDP=0.
108*
                DO 31 J=1.IT
```

```
100+
                MM=ITUB(L.J)
110 +
                STKS=STKS+TKS(MM)
                STKSS=STKSS+TKS(MM) ** 2.
111+
1124
                SOP=SOP+OP(L, MM.K)
113+
                STKSOP=STKSOP+TKS(MM) +OP(L, MM, K)
114+
             31 CONTINUE
115*
                TAUC(L+K)=((STKSDP-((STKS*SDP)/IT))/(STKS$-(STKS**2.)/IT))/2.
                TTKS=STKS/IT
115*
117*
                TOP=SOP/IT
118*
                BC(L,K)=TDP-(TAHC(L,K)+TTK5)+2.
110+
                RSC(L.K)=BC(L.K)/TAUC(L.K)
120+
                VISA(L.K)=TAUC(L.K)/SD(L.K)
                PN(L+K)=TAUC(L+K) *RSC(L+K)
121*
122+
                G(L,K)=TAUC(L,K)/RSC(L,K)
123*
                RT(L,K)=RSC(L,K)/SD(L,K)
124*
                EV(L,K)=VISA(L,K)*(1.+RSC(L,K))
125*
                IF(K.EQ.6) AN TO 50
126+
                K=K+1
127*
                GO TO 55
             50 IF(I.EQ.IG) GO TO 60
128*
129*
                I=I+1
130*
                GO TO 65
131*
             60 WRITE(6.100)
132#
            100 FORMAT( 11 .
                               GROUP
                                       CAPILLARY
                                                     POFSSURE
                                                                 SLOPE
                                                                         SHEAR STRESS
133*
                 SHEAR RATE
                                VISCOSITY 1/1
                                                         NUMBER
                                                                       PSI
                                                                                 CC/SEC
               C
                                                   POISF*)
134*
                   DYNES/CM2
                                      1/SEC
135*
                NXY=1
                DO 70 I=1.16
136*
137*
                L=ISV(I)
138*
                IT=MM(L)
139*
                DO 71 J=1.IT
140+
                MM=ITUB(L,J)
141*
                VP=VV(MM)
142*
                DO 72 K=1.NP
143*
                WRITE(6:101) GROUP(L):ITUB(L:J):PRESS(L:MM:K):SIGMA(L:MM:K):TAU(L:
144*
               CMM.K).D(L.MM.K).VIS(L.MM.K)
145*
            101 FORMAT (4X+A1+8X+12+7X+F7.3+4X+F5.3+4X+F9.2+6X+F9.1+3X+F9.4)
146*
                D2(NXY)=D(L,MM.K)
147*
                TAU2(NXY)=TAU(L,MM,K)
148*
                VIS2(NXY)=VIS(L,MM,K)
149+
                NXY=NXY+1
150*
             72 CONTINUE
151*
             71 CONTINUE
152*
             70 CONTINUE
153*
                WRITE(6,102)
154*
            102 FORMAT('1','
                               GROUP
                                        SHEAR
                                                  TOTAL
                                                              APPLIED
                                                                         CORRECTED
                                                     RELAXATION
155*
                              APPARENT
                                           SHEAR
                                                                   NORMAL
                                                                              EFFECTIVE
               CECOVERABLE
156*
               C./.
                                RATE
                                         SHEAR
                                                    PRFSSURE
                                                                   SHEAR
                                                                                SHEAR
                                 MODULUS
                                              TIME
                                                          STRESS
                                                                     VISCOSITY'/'
157*
                    VISCOSITY
               C
                                                                               1/SEC
158*
                                STRESS
                                                           STRESS'/
                                                                       POISE
159*
               C DYVES/CM2
                              DYNES/CM2
                                           DYNES/CM2
                                                                                 DYNES/
                                 DYNES/CH2
               CCM2 SECONDS
                                               POISE .)
160*
161*
                NYZ=1
162*
                DO 110 I=1.16
163*
                L=IGN(I)
164*
                IT=NM(L)
165*
                DO 111 J=1, IT
```

```
1 ...
                MM=TTUB(L.J)
157*
                DO 112 K=1.5
1-0+
                WRITE(6.113) GROUP(L).SO(L.K).TAUT(L.MM.K).OP(L.MM.K).TAUC(L.K).RS
169+
               CC(L,K).VISA(L,K).G(L,K).RT(L,K).PN(L,K).FV(L,K)
176 *
            113 FORMAT(4X, A1, 2X, F9.2, 2X, F9.1, 3X, F9.0, 3X, F9.2, 4X, F0.2, 2X, F9.4, 1Y, F0
171+
               C.2.1X.F9.5.4Y.F9.0.4X.F9.5)
1700
                502 (NYZ) =50 (L.K)
174+
                TAHCE (NYZ) = TAUC (L.K)
174*
                VISA2(NYZ)=VTSA(L,K)
175+
                RSC2(NYZ)=RSC(L,K)
175*
                PN2(NYZ)=PN(L.K)
177*
                NYZ=NYZ+1
179+
            112 CONTINUE
170*
            111 CONTINUE
1400
            110 CONTINUE
1 1 +
                NXY=NYY-1
1 . . . .
                CALL PLOTS (TO. ID. 9)
1 - 1+
                CALL PLOT (0.0, -36.0, -3)
1 11 11 *
                CALL PLOT(0.0.2.0,-3)
155.
                CALL FACTOR (0.75)
196*
                D2(NXY+1)=1.0
                D2(4XY+2)=.50
14.7*
1 198 *
                TAU2(NXY+1)=1.0
1 -0+
                TAU2(NXY+2)=.50
190*
                CALL LGAXS(0.0,0.0,29HSHEAR STRESS-DYNES/CM-SOUARED,-20,12.0,0.0,1
191*
               C.O..50)
                CALL LGAXS(0.0,0.0,29HSHEAR RATE-RECTPROCAL SECONDS,29,12.0,90.0,1
192*
103+
               C.01.50)
194*
                CALL LGLIN(TAHZ, DZ, NXY, 1,-1, 11,0)
1954
                CALL SYMBOL (3.0,12.0,.21,27HSHEAP RATE VS. SHEAR STPESS,0.0,27)
                CALL PLOT(0.0.16.0.-3)
195+
197*
                VIS2(NXY+1)=.01
190+
                VIS2(NXY+2)=.50
199*
                CALL LGAXS(0.0.0.0.29HSHEAR RATE-RECTPROCAL SECONDS:-29.12.0.0.0.1
200+
               (.0..50)
201*
                CALL LGAXS(0.0,0.0,15HVTSCOSTTY-POIST,15,12.0,90.0,.01,.50)
2024
                CALL LGLIN(D2, VIS2, NXY, 1,-1, 11,0)
203+
                CALL SYMBOL (3.0,12.0,.21,24HVTSCOSITY VS. SHEAR RATF,0.0,24)
204+
                NYZ=NYZ-1
205+
                WRITE(6,500) 1177
            500 FORMAT (///24, NY? = 1,13)
206*
                CALL PLOT(15.0.-16.0.-3)
207*
20A*
                TAUC2(NYZ+1)=1.0
209*
                TAUC2(NYZ+2)=1.0
210*
                502(NYZ+1)=10.0
                SD2(11YZ+2)=1.0
211*
                CALL LGAXS(0.0.0.0.20HSHEAR STRESS-TYNES/CM-SQUARED,-20.6.0.0.0.1.
212*
213*
               (0.1.0)
214*
                CALL LGAXS(0.0,0.0,29HSHEAR RATE-RECTPROCAL SECONDS,29,6.0,90.0,10
215*
               C.0.1.0)
                CALL LGLIN(TAHC2.SD2.NYZ.1.-1.11.0)
216*
217*
                CALL SYMBOL(1.0,6.0,.14,37HSHEAR RATE VS. CORRECTED SHEAR STRESS.O.
213*
               C.0.37)
219+
                CALL SYMBOL (1.5,5.6,.07, 39HTNVFRSE SLOPE EQUALS APPARENT VISCOSTTY
227+
               C.0.0.39)
221*
                CALL PLOT (0.0.8.0,-3)
222*
                VISA2(NYZ+1)=.001
```

43

1

```
2731
               VISA2(NYZ+2)=1.0
2.4+
               CALL LGAXS(0.0.0.0.29HSHEAR PATE-RECTPROCAL SECONDS,-20.6.0.0.0.10
225*
               C.0.1.0)
226*
                CALL LGAXS(0.0,0.0,15HVISCOSITY-POIST,15,6.0,90.0,.001,1.0)
2:7+
               CALL LGLIN(SD2, VISA2, NYZ, 1, -1, 11, 0)
2:00
                CALL SYMBOL(1.0,6.0,.14,33HAPPADENT VISCOSITY VS. SHEAD RATE,0.0,3
2231
               731
230*
               CALL PLOT (0.0.8.0,-3)
231*
               RSC2(NYZ+1)=.10
232+
               RSC2(NYZ+2)=1.0
2424
                CALL LGAXS(0.0,0.0,29HSHFAR STRESS-DYNES/CM-SOUARED,-20,6.0,0.0,1.
234+
               (0.1.0)
235 +
                CALL LGAXS(0.0.0.0.17HRECOVERABLE SHEAR, 17,6.0,90.0,.10,1.0)
236+
                CALL LGLIM(TAUCZ.RSC2.NY7.1,-1,11.0)
237+
                CALL SYMBOL (1.0,6.0,.14,34HPFCOVERABLE SHEAR VS. SHEAR STRESS,0.0,
239+
               C34)
230+
                CALL SYMBOL (1.5,5.6,.07,34HTNVFRSF SLOPE EQUALS SHEAR MODULUS,0.0,
240+
               (34)
241 *
                CALL PLOT (0.0.9.0.-3)
                CALL LGAXS(0.0,0,0,0,29HSHEAR RATE-RECTPROCAL SECONDS,-20,6.0,0,0,10
242*
243*
               C.0.1.0)
244*
                CALL LGAXS(0.0.0.0.17HRECOVERABLE SHEAR,17,6.0,90.0,.10,1.0)
245+
                CALL LGLIN(SD2, RSC2, NYZ, 1, -1, 11, 0)
245*
                CALL SYMBOL (1.0.6.0..14.32HRECOVERABLE SHEAR VS. SHEAR RATE, 0.0.32
247*
248*
                CALL SYMBOL (1.5,5.6,.07,28HSLOPE EQUALS RELAXATION TIME,0.0,28)
249+
                CALL PLOT(10.0,-24.0,-3)
250+
                PN2(NYZ+1)=10.0
251+
                PN2(NYZ+2)=1.0
2724
                CALL LGAXS(0.0,0.0.0,29HSHEAR RATE-RECTPROCAL SECONDS,-20,6.0,0.0,10
253+
               C.0.1.0)
254*
                CALL LGAXS(0.0,0.0.30HNORMAL STPESS-DYNES/CM-SQUARED,30.6.0,90.0,1
255*
               (0.0.1.0)
256*
                CALL LGLIN(Sn2,PM2,NYZ,1,-1,11,n)
257*
                CALL SYMBOL (1.0,6.0,.14,28HNORMAL STRESS VS. SHEAR PATE,0.0,28)
258*
                CALL PLOT (0.0.0.0,999)
259*
                END
```

D OF COMPILATION: NO DIAGNOSTICS.

L71-3 01/19/77 09:54:31 IN TPF5. LIB MISD*PLOT.

1MITS 001000 020157 7792 IRANK WORDS DECIMAL 040000 130117 29752 DBANK WORDS DECIMAL 4DDRESS 016306

SEGMENT \$MAIN\$ 001000 020157 040000 130117

R-E2 \$(1) 001000 001022

LONG SERIES

INPUT

Card 1 IG – Number of groups

IGN - Group number

Card 2 IT – Number of tubes for each group

ITUB - Tube number

Card 3 NP – Number of pressure for each tube

PRESS - Pressure levels

Card 4 KOUNT – Number of volume-time pairs

VOL - Volumes

T - Time

OUTPUT

Table 1 GROUP - Group name

ITUB - Tube number

PRESS - Pressure level, psi

SIGMA - Slope of volume-time curves

TAU - Shear stress, dynes/cm²

D - Shear rate, sec-1

VIS - Viscosity, poise

Table 2 GROUP - Group name

SD - Selected shear rate, sec-1

TAUT - Total shear stress, dynes/cm²

DP - Applied pressure, dynes/cm²

TAUC - Corrected shear stress, dynes/cm²

OUTPUT

RSC - Recoverable shear

VISA - Apparent viscosity, poise

G – Shear modulus, dynes/cm²

RT – Relaxation time, seconds

PN – Normal stress, dynes/cm²

EV - Effective viscosity, poise

SAMPLE OUTPUT

GROUF	CAPILLARY	PRESSURE	SLUPL	SHEAR STRESS	SHEAR RATE	VISCOSITY
GROOF	HUMBER	PS1	CC/SEC	LYNES/CM2	1/SEC	POISE
_		12.000	.004	1656.00	5237.1	•3162
F	1	20.000	.007	2760.00	7800.0	.3538
		30.000	.008		9438.0	.4387
	+	50.000	.012	4140.00 6900.00	14040.0	.4915
	1	80.000	.022		25316.6	.4301
				11040.00		.4105
r	1	120.000	.034	16560.00	40357.1	•3990
	1	163.000	.048	22494.00	56382.9	.3818
•	1	205.000	.063	28290.00	74100.0	
+	1	250.000	.082	34500.00	95963.3	.3594
+	1	200.000	.092	41400.00	107533.2	.3850
•	1	400.000	.153	55200.00	178515.5	.3092
+	1	500.000	.224	690Un•0U	261940.3	.2634
+	1	000.000	.321	82800.00	375766.4	.2203
۲	1	700.000	.459	96600.00	536752.6	.1800
+	4	∠.000	.003	1194.00	3744.0	•3189
F	۷ .	0.000	.007	2985.00	7722.0	• 3806
F	2	9.000	.009	5373.00	10563.4	•5086
F	2	12.000	.011	7104.00	12636.0	•5670
۲	2	20.000	.016	11940.00	18742.3	.6371
+	2	30.000	.022	17910.0u	25896.0	.6916
+	2	50.000	.033	29850.00	39000.0	.7654
+	4	70.000	.050	41790.00	58032.0	.7201
F	4	90.000	.075	5373n • 00	87248.6	•6158
+	4	122.000	.096	72834.00	112786.0	.6458
F	2	151.000	.147	90147.00	172261.6	.5233
F	4	220.000	.243	131340.00	284594.6	.4615
F	4	300.000	.333	179100.00	390000.0	.4592
F	4	400.000	.511	238800.00	598295.4	. 3991
F.	12	1.000	.004	4410.00	4498.0	•9804
F	12	2.000	.005	8820.00	5901.4	1.4795
F	12	5.000	.067	22050.00	8112.0	2.7182
+	12	10.000	.010	44100.00	11727.9	3.7603
+	12	20.000	.017	88200.00	19812.0	4.4518
	12	30.000	.026	158700.00	30447.9	5.2142
+	12	50.000	.040	220500.00	46644.0	4.7273
F	12	80.000	.073	352800.00	85566.0	4.1231
F	14	122.000	.144	538020.00	167951.6	3.2034
F	12	104.000	.183	723240.00	214024.4	3.3792
F	14	230.000	.335	******	391406.2	2.5910
F	14	300.000	.459	******	536752.6	2.4648
		more a second				

,	4
*	U
	š
	5
-	3
	ä
	8
4	-
-	_
-	2
	-
	3
5	9
1	-2
	ď
1	AMPI
•	Š
4	12

Part
See
\$\text{Strict}\$ \$\text{Strict}
SHEAN TOTAL PRESSURE CHEAN CHE
SHEAR TOTAL APPLIED CHERT SHEAR SHEAR 1/SEC NYMES/CW DYNES/CW 3408.00 2194.0 715.57 015.70 12958.13 1899.2 177847 4407.00 12958.13 1899.2 177847 4407.00 12958.13 1899.2 177847 4407.00 12958.13 1899.2 177847 17065.62 26033.33 18374.8 6266047 17065.62 26033.33 18374.8 6266047 17065.62 26033.33 18374.8 6266047 17065.62 26033.33 18374.8 6266047 17065.62 26033.33 18374.8 6266047 17065.62 26033.33 18374.8 6266047 17065.62 26033.33 18374.8 6266047 17065.62 26033.33 18374.8 6266047 17065.62 26033.33 18374.8 6266047 17065.62 26033.33 18419.8 726584 17065.62 26033.33 16419.8 726678 17065.62 26033.34 14419.8 726678 17065.62 26033.35 18419.8 726878 17651.80 26033.35 18419.8 726878 17651.80 26033.35 18419.8 726869 17651.80 26033.3 18426.3 184687 17651.80 26033.3 18426.3 184687 17651.80 26033.3 18426.3 184687 17651.80 26033.3 18426.3 184687 17651.80 26033.3 18426.3 184687 17651.80 26034.2 18426.3 176440 17567.67 26136.3 18426.3 176440 17567.67 26136.3 18426.3 176440 17643.56 26136.4 11689.3 166815.7 76437.59 26146.4 11689.3 166815.7 76437.59 26146.4 11689.3 166815.7 76437.59 26166.4 16681.8 26946604 76437.59 26166.4 16681.8 26946604 76437.59 2616.4 11689.3 1841066 7767.7 7643.56 2616.4 11689.3 186816 7769 2616.4 11689.3 186816 7769 2616.4 11689.3 176916
SHEAN TOTAL APPLIED CARESTON STRESS. 1/SEC NYMES/CW 7/16457. 12458.13 1842.2 176447. 12458.13 1842.2 2 184477. 12568.27 15136.6 4964816. 22568.13 18374.9 6025697. 12458.13 18374.9 6025697. 12458.13 18374.9 802697. 12458.13 18374.9 1848290. 22568.27 2925.21 135689. 12458.13 15533.1 1350591. 12458.13 18374.9 1848290. 22568.27 2925.22 2225257. 2258.33 37 2548.6 142277. 22683.45 4657.4 102081.1 26611.1 3 1492.2 176799. 22683.45 4657.4 102081.1 26611.1 3 1492.2 2222257. 22683.45 4657.4 102081.1 26611.1 3 1492.2 2222257. 22683.45 4657.4 102081.1 26611.1 3 1492.2 2222257. 22683.45 4657.4 102081.1 26611.1 3 1492.2 2222257. 22683.45 4657.4 102081.1 26611.1 3 1492.2 2222257. 22683.45 4657.4 102081.1 26611.1 3 1492.2 2222257. 22683.45 4634.5 5465.0 1644.6 102081.1 3 1630.2 22222257. 22683.45 4634.5 5642.1 1020.4 4 45071.7 11049.3 15648.6 56211.1 3 1684.6 56211.1 3 16
\$\text{RATE}\$ \$\text{RATE}\$ \$\text{ALEANE}\$ \$ALE
\$\text{PARTY}\$\tex
SHEAN ## ATE 1 / SEC 3 4 / SEC 3 4 / SEC 3 4 / SEC 3 4 / SEC 4 / SEC 5 / SEC 5 / SEC 6 / SEC 7 / S

Appendix B

BEST AWWLABLE COPY

Figure B-1. Sample of Intermediate Flow Curve (Capillary Group F)

A

B

Figure B-2. Sample of Flow Curves Characterizing the Properties of a Viscoelastic Fluid Using All of the Capillary Groups

 \boldsymbol{c}

D

Figure B-2. Continued

Appendix B

E

Figure B-2. Continued

APPENDIX C

PROCEDURE FOR THE HIGH-PRESSURE CAPILLARY VISCOMETER EXPERIMENT EVALUATION

- I. Construct deformation-recoil curve:
 - a. Plot \triangle volume versus time rectilinearly for each applied pressure $\triangle P$.
 - b. Graphically determine the slope of volume versus Δ time.
 - c. Calculate the shear rate, shear stress, and apparent viscosity.
- II. Construct consistency curve:
 - a. Plot log shear rate versus log shear stress for each group.
 - b. For selected isoshear rates graphically determine total shear stresses.
 - c. Calculate the total applied pressure for the associated total shear stress.
- III. Construct pressure-dimension curve:
 - a. Plot total applied pressure versus ℓ/r ratio for each tube by groups.
- b. Graphically determine the corrected shear stress (equals the slope of each curve divided by two) and the recoverable shear (equals the X-intercept value multiplied by a negative two).
- IV. Construct curves of generalized viscoelastic functional parameters:
- a. Plot the log of the selected shear rates versus the log of the corrected shear stress for all of the groups. The inverse slope equals the apparent viscosity.
 - b. Plot log apparent viscosity versus the log of the selected shear rates for all groups.
- c. Plot log recoverable shear versus the log of the corrected shear stress for each group. The inverse slope equals the shear modulus.
- d. Plot log recoverable shear versus log shear rate for each group. The slope equals the relaxation time.
 - e. Plot log normal stress versus the log of the selected shear rate for each group.

DISTRIBUTION LIST 6

Names	Copies	Names	Copies
CHEMICAL SYSTEMS LABORATORY		Director	
		Defense Civil Preparedness Agency	
SAFETY OFFICE		Attn: PO(DC)	1
Attn: DRDAR-CLF	1	Washington, DC 20301	
ERDA SUPPORT OFFICE		CINCUICADEUD	
Attn: DRDAR-CLE	1	CINCUSAREUR Attn: AEAGC-DS	1
PLANS & PROGRAMS OFFICE	4	APO New York 09403	
Attn: DRDAR-CLR-L		Aro new lork opens	
AUTHOR'S COPIES: Research Division	2	Chief, Office of Research, Development & Acquisition	
BIOMEDICAL LABORATORY		Attn: DAMA-CSM-CM	1
Attn: DRDAR-CLL	1	Attn: DAMA-ARZ-D	1
Attn: DRDAR-CLL-B	1	Washington, DC 20310	
Attn: DRDAR-CLL-M	i		
Attn: DRDAR-CLL-V	i	Headquarters, Sixth US Army	
		NBC Office	
DEVELOPMENTAL SUPPORT DIVISION	•	Attn: AFKC-OP-PN	1
Attn: DRDAR-CLJ-R	2 3	Presidio of San Francisco, CA 94129	
Attn: DRDAR-CLJ-L	1		
Attn: DRDAR-CLJ-M	1	HQDA (DAMI-FIT)	1
Attn: DRDAR-CLJ-P		WASH, DC 20310	
MUNITIONS DIVISION			
Attn: DRDAR-CLN	1	US ARMY HEALTH SERVICE COMMAND	
PHYSICAL PROTECTION DIVISION		Superintendent	
Attn: DRDAR-CLW-P	1	Academy of Health Sciences	
		US Army	
RESEARCH DIVISION		Attn: HSA-CDC	1
Attn: DRDAR-CLB	1	Attn: HSA-IHE	1
Attn: DRDAR-CLB-B	1	Fort Sam Houston, TX 78234	
Attn: DRDAR-CLB-C	1		
Attn: DRDAR-CLB-P	1	US ARMY MATERIEL DEVELOPMENT AND	
Attn: DRDAR-CLB-R	1	READINESS COMMAND	
Attn: DRDAR-CLB-T	1		
		Commander US Army Materiel Development and	
SYSTEMS ASSESSMENTS OFFICE		Readiness Command	
Attn: DRDAR-CLY-A	1	Attn: DRCDE-DM	1
Attn: DRDAR-CLY-R		Attn: DRCLDC	1
DEPARTMENT OF DEFENSE		Attn: DRCMT	1
DEPARTMENT OF DEFENSE		Attn: DRCSF-S	1
Administrator		5001 Eisenhower Ave	
Defense Documentation Center		Alexandria, VA 22333	
Attn: Accessions Division	12		
Cameron Station		Project Manager Smoke/Obscurance	
Alexandria, VA 22314		Attn: DRCPM-SMK	1
Director		Aberdeen Proving Ground, MD 21005	
Defense Intelligence Agency		Commander	
Attn: DB-4G1	1	US Army Foreign Science & Technology Center	
Washington, DC 20301		Attn: DRXST-IS1	2
		220 Seventh St., NE	
DEPARTMENT OF THE ARMY		Charlottesville, VA 22901	
HQDA (DAMO-SSC)	1	Redstone Scientific Information Center	
WASH DC 20310		Attn: Chief, Documents	1
		US Army Missile Command	
		Redstone Arsenal, AL 35809	

DISTRIBUTION LIST 6 (Contd)

Names	Copies	Names	Copies
Director		US ARMY TRAINING & DOCTRINE COMMAND	
DARCOM Field Safety Activity			
Attn: DRXOS-C	1	Commandant	
Charlestown, IN 47111		US Army Infantry School	
Charlestown, III 47111		Attn: NBC Division	1
Commander		Fort Benning, GA 31905	
		Tolt Lemming, OK 51705	
DARCOM, STITEUR		Commandant	
Attn: DRXST-ST1	1	US Army Missile & Munitions Center & School	
Box 48, APO New York 09710			
		Attn: ATSK-CD-MD	1
Commander		Attn: ATSK-DT-MU-EOD	1
US Army Science & Technology		Redstone Arsenal, AL 35809	
Center-Far East Office	1		
APO San Francisco 96328		Commander	
		US Army Logistics Center	
US ARMY ARMAMENT RESEARCH AND		Attn: ATCL-MM	1
DEVELOPMENT COMMAND		Fort Lee, VA 23801	
Commander		Commandant	
US Army Armament Research and		US Army Military Police School/Training Center	
Development Command		Attn: ATZN-CDM	1
Attn: DRDAR-TD	1	Attn: ATZN-TDP-C	1
Attn: DRDAR-TSS	1	Attn: ATSJ-TD-CR	1
		Fort McClellan, AL 36205	
Dover, NJ 07801		Tort McCichari, AL 30203	
CDR, APG		Commander	
USA ARRADCOM		US Army Infantry Center	
Attn: DRDAR-QAC-R	1	Attn: ATSH-CD-MS-C	1
Attn: DRDAR-ACW	1	Fort Benning, GA 31905	
Aberdeen Proving Ground, MD 21010			
riociacen from gorouna, nie 21070		Commandant	
US ARMY ARMAMENT MATERIEL READINESS CO	OMMAND	US Army Ordnance & Chemical Center & School	
OS AIGHT ARMAMENT MATERIEE READINESS CO	3141111111	Attn: ATSL-CL-NB	1
C		Attn: ATSL-CL-CD	1
Commander		Aberdeen Proving Ground, MD 21005	
US Army Armament Materiel Readiness Command		Abelucen Hoving Ground, MD 21003	
Attn: DRSAR-ASN	1	HE ARMY TEST & FUALILIATION COMMAND	
Attn: DRSAR-IMB-C	1	US ARMY TEST & EVALUATION COMMAND	
Attn: DRSAR-SA	1		
Rock Island, IL 61201		Record Copy	
		CDR, APG	
CDR, APG		Attn: STEAP-AD-R/RHA	1
USA ARRCOM		APG-Edgewood Area, Bldg E5179	
Attn: SARTE	1		
Aberdeen Proving Ground, MD 21010		CDR, APG	
Aberticen Flowing Ground, MD 21010		Attn: STEAP-TL	1
C		APG-Aberdeen Area	
Commander		ATO-AUCIDEON AICA	
US Army Dugway Proving Ground		Commandor	
Attn: Technical Library, Docu Sect	1	Commander	
Dugway, UT 84022		US Army Test & Evaluation Command	
		Attn: DRSTE-FA	1
Commander		APG-Aberdeen Area	
Rocky Mountain Arsenal			
Attn: SARRM-QA	1	Commander	
Commerce City, CO 80022		US Army Tropic Test Center	
		Attn: STETC-MO-A (Tech Library)	1
Commander		APO New York 09827	
Pine Bluff Arsenal			
		Commander	
Attn: SARPB-ETA	1	Dugway Proving Ground	
Pine Bluff, AR 71611		Attn: STEDP-PO	1
		Dugway, UT 84022	

DISTRIBUTION LIST 6 (Contd)

Names	Copies	Names	Copies
DEPARTMENT OF THE NAVY		HQ, USAF/SGPR	1
		Forrestal Bldg	
Commander		WASH DC 20314	
Naval Explosive Ordnance Disposal Facility			
Attn: Army Chemical Office	1	HQ, Ogden ALC/MMWRA	1
Indian Head, MD 20640		Hill AFB, UT 84406	
Commander		Commander	
Naval Su ce Weapons Center		Armament Development & Test Center	
Attn: Tech Lib & Info Svcs Br	1	Attn: DLOSL (Technical Library)	1
White Oak Laboratory		Eglin AFB, FL 32542	
Silver Spring, MD 20910			
		NORAD Combat Operations Center/DBN	1
Commander		Cheyenne Mtn Complex, CO 80914	
Naval Surface Weapons Center			
Dahlgren Laboratory		OUTSIDE AGENCIES	
Attn: DX-21	1		
Dahlgren, VA 22448		Battelle, Columbus Laboratories	
		Attn: TACTEC	1
Chief, Bureau of Medicine & Surgery		505 King Avenue	
Department of the Navy		Columbus, OH 43201	
Attn: CODE 5	1		
Washington, DC 20372		Director of Toxicology	1
		National Research Council	
Commanding Officer		2101 Constitution Ave, NW	
Naval Weapons Support Center		Washington, DC 20418	
Attn: Code 5042/Dr. B. E. Douda	1		
Crane, IN 47522			
DEPARTMENT OF THE AIR FORCE			
HQ Foreign Technology Division (AFSC)			
Attn: PDRR	1		
Wright-Patterson AFB, OH 45433			
Commander			
Aeronautical Systems Division			
Attn: ASD/AELD	1		
Wright-Patterson AFB, OH 45433			