Домашнее 7. Характеристические функции

1. Будем говорить, что случайная величина ξ имеет *peшётчатое распределение*, если существуют числа $a,h \in \mathbb{R}, h > 0$, такие что ξ почти наверное принимает значения из множества $\{a+kh\}_{k\in\mathbb{Z}}$, т.е.

$$\sum_{k \in \mathbb{Z}} \mathbb{P}\{\xi = a + kh\} = 1$$

Докажите, что ξ имеет решётчатое распределение тогда и только тогда, когда $|\varphi_{\xi}(\frac{2\pi}{h})|=1$ для некоторого h>0.

2. Может ли следующая функция быть характеристической функцией некоторой случайной величины:

$$\varphi(t) = \begin{cases} 1, t \in [-T, T] \\ 0, t \notin [-T, T] \end{cases}$$

Изменится ли ответ, если сгладить разрывы φ в точках (-T), T?

- 3. Пусть ξ и η независимые одинаковые распределённые случайные величины с характеристической функцией $\varphi(t)$. Найти характеристическую функцию случайной величины $\xi \eta$.
- 4. На вероятностном пространстве $(\Omega, \mathcal{F}, \mathbb{P})$, представляющем собой отрезок [0,1] с σ -алгеброй борелевских множеств и мерой Лебега, определена случайная величина $\xi(\omega)$. Найти её характеристическую функцию, если

a)
$$\xi(\omega) = \begin{cases} 2\omega, & 0 \leqslant \omega \leqslant \frac{1}{2} \\ 2\omega - 1, & \frac{1}{2} < \omega \leqslant 1 \end{cases}$$

b)
$$\xi(\omega) = \begin{cases} \log \omega, \ \omega > 0 \\ 0, \ \omega = 0 \end{cases}$$

c)
$$\xi(\omega) = \begin{cases} 1, & 0 \le \omega \le \frac{1}{3} \\ 0, & \frac{1}{3} < \omega < \frac{2}{3} \\ 1, & \frac{2}{3} \le \omega \le 1 \end{cases}$$