LC 8 : Méthode d'analyse transitoire

Introduction Pédagogique

Bib	liogra	phie
10.		PIIIC

- 1. Atkins
- 2. Cours de Martin Verot

Niveau : L3 Prérequis :

- 1. Configuration électronique : [secondaire]
- 2. Interaction électrostatique [L1]
- 3. Complexe métallique : [L1]
- 4. Liaisons ioniques, liaisons covalentes [L1]
- 5. Acide et bases de Lewis
- 6. Diagramme d'orbitale moléculaire : méthode des fragments [L2]

Objectifs:

- 1. Comprendre comment modéliser la liaison métal-ligand
- 2. Savoir utiliser le modèle pour prédire certaines propriétés des complexes
- 3. Comprendre les limites des modèles utilisés

Difficultés:

1.

TD:

- 1. Analyse documentaire : propriété magnétique des complexes de métaux de transitions
- 2. Construction de diagramme de complexe
- 3. Influence de la géométrie du complexe

TP:

1. Série spectroscopique d'un complexe de Cobalt

Table des matières

1	Intr	oduction	2	
2	Mo	dèle du champ cristallin	2	
	2.1	Hypothèse	2	
	2.2	Éclatement du champ cristallin	2	
	2.3	Limites de modèle	4	
3	Mo	Aodèle du champs de ligand		
	3.1	Interaction σ	4	
	3.2	Interaction π	4	
	3.3	Conclusion : série spectroscopique	4	
	3.4	Au delà du modèle	4	

1 Introduction

Trouver des ordres de grandeurs d'énergie de liaison dans les complexes de métaux de transition : essayer de la comparer avec les liaisons ioniques et covalentes

Complexe de métaux de transition : association d'un acide de Lewis, le métal et d'une base de Lewis, le ligand qui présentent une multitude de propriétés différentes. Optique : projeter différentes poudres de complexes de couleur différentes ou magnétique

Comment modéliser la liaison au sein d'un complexe de métaux de transitions?

2 Modèle du champ cristallin

aller plutôt rapidement sur cette partie, se concentrer sur le modèle du champ de liqund

2.1 Hypothèse

- 1. Les ligands sont considérés comme des charges ponctuelles négatives
- 2. La liaison métal-ligand est purement ionique
- 3. On ne considère que les orbitales d du métal

2.2 Éclatement du champ cristallin

Dans ces hypothèses, on construit l'interaction métal ligand en considérant l'effet des charges négatives des ligands sur les orbitales d du métal :

FIGURE 1 – Représentations des orbitales d simulées avec python

Exemple : $Co(H_2O)_6$

- Dans un premier temps, on considère que les ligands sont un champs sphérique de charge négatives : tous les électrons d interagissent de la même manière, in-différemment de leur orbitale. La proximité de charges négatives **déstabilisent** uniformément les orbitales d.
- On prend ensuite en compte la directionnalité des liaisons au sein des complexes de transitions. Ainsi les orbitales qui pointent vers les ligands, la d_{z^2} et la $d_{x^2-y^2}$ réalisent une interaction électrostatique plus déstabilisante : elles **montent en énergie**. En revanche, les orbitales ne pointant pas vers les ligands subissent une interaction déstabilisante moins importante : elles **diminuent en énergie**

Ainsi, on lève la dégénérescence des orbitales d en 2 groupes. On note les 3 orbitales d'énergie la plus basse \mathbf{t}_{2g} et les 2 orbitales d'énergie plus haute \mathbf{e}_g . On parle d'**éclatement**

du champ cristallin caractérisé par la différence d'énergie entre les 2 groupes d'orbitales notée Δ o

Remplissage électronique : 2 choix possibles : haut spin et bas spin. Résulte de la compétition entre la stabilisation du champs cristallin et l'énergie d'appariement due au fait de mettre 2 charges négatives dans la même orbitales

C'est cette configuration qui est responsable des propriétés optiques et magnétiques des complexes.

2.3 Limites de modèle

L'éclatement du champs cristallin permet de justifier certaines propriétés optiques ou magnétiques des complexes, comme on le verra en TD. Le modèle du champs cristallin a cependant quelques limites :

- 1. Dans ce modèle, former un complexe ne serait pas favorable par rapport à l'ion libre : les complexes ne devraient pas exister
- 2. On ne prend pas en compte l'influence des ligands. Exemple : prendre 2 complexes de même centre métallique mais de couleurs différentes.

3 Modèle du champs de ligand

On prend en compte l'effet des orbitales des ligands en construisant les diagrammes d'orbitales moléculaires.

3.1 Interaction σ

- 1. Construire le diagramme d'orbitale moléculaire de $Co(H_2O)_6^{3+}$ en détaillant l'effet stabilisant sur le orbitales s et p du métal
- 2. Projeter les orbitales frontières de l'eau : cf orbimol

Ainsi, on résout déjà un premier problèmes de la théorie du champs cristallin : c'est la stabilisation des orbitales s et p qui permet de former des complexes stables

3.2 Interaction π

3.2.1 ligand π donneur

- 1. Tracer à la main le diagramme d'orbitale ${\rm CoCl_6}^{3-}$, uniquement le bloc d, en projetant les orbitales du chlore
- 2. Discuter l'effet des ligands sur le paramètre de champs cristallin
- 3. Favorise les complexes haut spin

3.2.2 ligand π accepteur

- 1. Tracer à la main le diagramme d'orbitale $Co(CO)_6^{3+}$, uniquement le bloc d en projetant les orbitales du monoxyde de carbone
- 2. Discuter l'effet des ligands sur le paramètre de champs cristallin
- 3. Favorise les complexes bas spins

3.3 Conclusion : série spectroscopique

Classification des ligands en fonction du paramètre du champs cristalli correspondant.

3.4 Au delà du modèle

On ne prend pas en compte la répulsion électronique : paramètre de Raccah et série néphélauxétique.