CMPE 300 ANALYSIS OF ALGORITHMS PROJECT 3 - ANSWERS

PART 1

d) (You can adjust the length of the tables)

Success, n=6

Step	Columns	Available
1	[2]	[0, 4, 5]
2	[2, 5]	[1, 3]
3	[2, 5, 1]	[4]
4	[2, 5, 1, 4]	[0]
5	[2, 5, 1, 4, 0]	[3]
6	[2, 5, 1, 4, 0, 3]	

				,		
	0	1	2	3	4	5
0			Q			
1						Q
2		Q				
3					Q	
4	Q					
5				Q		

Step	Columns	Available
1	[3]	[0, 1, 5]
2	[3, 0]	[2, 4]
3	[3, 0, 4]	[1]
4	[3, 0, 4, 1]	[5]
5	[3, 0, 4, 1, 5]	[2]
6	[3, 0, 4, 1, 5, 2]	

Visualization of the table

	0	1	2	3	4	5
0				Q		
1	Q					
2					Q	
3		Q				
4						Q
5			Q			

Failure, n=6

Step	Columns	Available
1	[0]	[2, 3, 4, 5]
2	[0, 4]	[1]
3	[0, 4, 1]	[5]
4	[0, 4, 1, 5]	[2]
5	[0, 4, 1, 5, 2]	

Failure, n=6

Step	Columns	Available
1	[3]	[0, 1, 5]
2	[3, 0]	[2, 4]
3	[3, 0, 2]	[4, 5]
4	[3, 0, 2, 5]	[1]
5	[3, 0, 2, 5, 1]	

Step	Columns	Available
1	[4]	[0, 1, 2, 6, 7]
2	[4, 7]	[0, 1, 3, 5]
3	[4, 7, 3]	[0, 6]
4	[4, 7, 3, 0]	[2, 6]
5	[4, 7, 3, 0, 2]	[5]
6	[4, 7, 3, 0, 2, 5]	[1]
7	[4, 7, 3, 0, 2, 5, 1]	[6]
8	[4, 7, 3, 0, 2, 5, 1, 6]	

		V 100		LIOIT	, .,,	00,01		
	0	1	2	3	4	5	6	7
0					Q			
1								Q
2				Q				
3	Q							
4			Q					
5						Q		
6		Q						
7							Q	

Step	Columns	Available
1	[2]	[0, 4, 5, 6, 7]
2	[2, 5]	[1, 3, 7]
3	[2, 5, 1]	[4, 6]
4	[2, 5, 1, 6]	[0, 4]
5	[2, 5, 1, 6, 4]	[0]
6	[2, 5, 1, 6, 4, 0]	[7]
7	[2, 5, 1, 6, 4, 0, 7]	[3]
8	[2, 5, 1, 6, 4, 0, 7, 3]	

Visualization of the table

	0	1	2	3	4	5	6	7
	U	1		3	4	3	0	
0			Q					
1						Q		
2		Q						
3							Q	
4					Q			
5	Q							
6								Q
7				Q				

Failure, n=8

Step	Columns	Available
1	[2]	[0, 4, 5, 6, 7]
2	[2, 0]	[3, 5, 6, 7]
3	[2, 0, 6]	[1, 3, 4]
4	[2, 0, 6, 4]	[1, 7]
5	[2, 0, 6, 4, 1]	[5]
6	[2, 0, 6, 4, 1, 5]	[]

Failure, n=8

Step	Columns	Available
1	[5]	[0, 1, 2, 3, 7]
2	[5, 0]	[2, 4, 6]
3	[5, 0, 4]	[1, 6, 7]
4	[5, 0, 4, 7]	

Success, n=10

Step	Columns	Available
1	[6]	[0, 1, 2, 3, 4, 8, 9]
2	[6, 4]	[0, 1, 2, 7, 9]
3	[6, 4, 7]	[0, 1, 5]
4	[6, 4, 7, 0]	[3, 8]
5	[6, 4, 7, 0, 3]	[5, 9]
6	[6, 4, 7, 0, 3, 9]	[2]
7	[6, 4, 7, 0, 3, 9, 2]	[5, 8]
8	[6, 4, 7, 0, 3, 9, 2, 5]	[8]
9	[6, 4, 7, 0, 3, 9, 2, 5, 8]	[1]
10	[6, 4, 7, 0, 3, 9, 2, 5, 8, 1]	

	0	1	2	3	4	5	6	7	8	9
0							Q			
1					Q					
2								Q		
3	Q									
4				Q						
5										Q
6			Q							
7						Q				
8									Q	
9		Q								

Step	Columns	Available
1	[5]	[0, 1, 2, 3, 7, 8, 9]
2	[5, 3]	[0, 1, 6, 8, 9]
3	[5, 3, 0]	[4, 6, 7, 9]
4	[5, 3, 0, 6]	[4, 8]
5	[5, 3, 0, 6, 8]	[1, 2]
6	[5, 3, 0, 6, 8, 1]	[7]
7	[5, 3, 0, 6, 8, 1, 7]	[4]
8	[5, 3, 0, 6, 8, 1, 7, 4]	[2]
9	[5, 3, 0, 6, 8, 1, 7, 4, 2]	[9]
10	[5, 3, 0, 6, 8, 1, 7, 4, 2, 9]	

	the drain zero of the control									
	0	1	2	3	4	5	6	7	8	9
0						Q				
1				Q						
2	Q									
3							Q			
4									Q	
5		Q								
6								Q		
7					Q					
8			Q							
9										Q
Failure, n=10										
umns Available										

Step	Columns	Available
1	[1]	[3, 4, 5, 6, 7, 8, 9]
2	[1, 6]	[0, 2, 4, 8, 9]
3	[1, 6, 4]	[0, 2, 7, 9]
4	[1, 6, 4, 0]	[7, 8]
5	[1, 6, 4, 0, 7]	[3, 5, 9]
6	[1, 6, 4, 0, 7, 9]	[2]
7	[1, 6, 4, 0, 7, 9, 2]	[5]
8	[1, 6, 4, 0, 7, 9, 2, 5]	[8]
9	[1, 6, 4, 0, 7, 9, 2, 5, 8]	

Failure, n=10

Step	Columns	Available
1	[8]	[0, 1, 2, 3, 4, 5, 6]
2	[8, 0]	[2, 3, 4, 5, 7, 9]
3	[8, 0, 5]	[1, 3, 7, 9]
4	[8, 0, 5, 9]	[1, 2, 6]
5	[8, 0, 5, 9, 6]	[1]
6	[8, 0, 5, 9, 6, 1]	[3, 7]
7	[8, 0, 5, 9, 6, 1, 7]	[2, 4]
8	[8, 0, 5, 9, 6, 1, 7, 4]	

d)

n	Number of Success	Number of Trials	Probability	
6	711	10000	0.0711	
8	1273	10000	0.1273	
10	565	10000	0.0565	

PART 2

c)

n = 6

k	Number of Success	Number of Trials	Probability
0	10000	10000	1.0
1	6697	10000	0.6664
2	2251	10000	0.2114
3	1132	10000	0.1185
4	843	10000	0.0832
5	680	10000	0.0857

n = 8

k	Number of Success	Number of Trials	Probability
0	10000	10000	1.0
1	10000	10000	1.0
2	8730	10000	0.8705
3	4946	10000	0.4885
4	2626	10000	0.2575
5	1625	10000	0.1682
6	1345	10000	0.1863
7	1303	10000	0.2981

n = 10

k	Number of Success	Number of Trials	Probability
0	10000	10000	1.0
1	10000	10000	1.0
2	10000	10000	1.0
3	7943	10000	0.8035
4	4182	10000	0.4202
5	1968	10000	0.2073
6	1059	10000	0.1185
7	736	10000	0.0924
8	662	10000	0.1194
9	595	10000	0.2017

d) Comments

The success rates are increased in the second part in all cases because in the second part we decreased the number of probabilistic tries and leave this parts responsibility to the deterministic algorithm. Increasing success rate is a good thing, however in our project, deterministic algorithm is much more costly than the probabilistic algorithm. Consequently, this high success rate comes with a cost. I would prefer to use probabilistic algorithm with multiple runs in a real-life project. Because deterministic algorithm isn't a feasible time algorithm (it is exponential time) and it won't be suitable for scalable projects.

In the second part, when we increase k, generally success rate is increased. However, this correlation is broken if k value is close to n (see the cases n=10 and k=6,7,8,9). This is because we repeat the probabilistic algorithm till, we find a feasible k queen placements. If k is very close to n, then there are a few queens that must be placed, so it is higher probability to be able to successfully place them.