11.6 Problem set: Exact values of standard trigonometry ratios

1. A right $\triangle ABC$ is shown with side lengths 1, $\sqrt{3}$, and 2, as marked. Identify each true statement

(a)
$$1^2 + (\sqrt{3})^2 = 2^2$$

$$(b) \cos A = \frac{1}{2}$$

$$\Box \text{ (c) } \sin B = \frac{\sqrt{3}}{2} \text{ } \checkmark$$

$$\square (d) \ m \angle A = 60^{\circ}$$

$$\mathbf{D}(\mathbf{e}) \cos B = \frac{\sqrt{3}}{2}$$

$$\square (f) \ m \angle A = 2 \times m \angle B$$

- 2. Two similar, right isosceles triangles $\triangle HAT \sim \triangle CAB$ have a scale factor k=3. Angles $\angle H$ and $\angle C$ measure 90° and HA=HT=1, as shown.
 - (a) Find the length of the hypotenuse TA

$$TA^2 = l^2 + l^2 = 2$$

 $TA = \sqrt{2}$

(b) Write down the measure of $\angle T$

(c) Find the altitude of $\triangle CAB$, BC

3. Using a calculator, find θ and round to the nearest whole degree.

(a)
$$\theta = \sin^{-1} 0.500$$

(c)
$$\tan \theta = 1.000$$

(b)
$$\theta = \cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$$

(d)
$$\cos \theta = 0.707$$