1 4 ++

الامتحان الوطني الموحد للبكالوريا الدورة الاستدراكية 2019 - الموضوع -

+2XHAX+ 1 HE4OXO +2E-U2-0+ | 10XEX -3-E8O A 20E3+1X -2XX8Hal A 200MEA -3-XXHA A 20XXX -E-00-3

RS25

المركز الوطني للتقويم والامتحانات والتوجيه

4	مدة الانجاز	الرياضيات	المادة
9	المعامل	شعبة العلوم الرياضية: (أ) و (ب) (الترجمة الفرنسية)	الشعبة أو المسلك

- La durée de l'épreuve est de 4 heures.
- L'épreuve comporte 4 exercices indépendants.
- Les exercices peuvent être traités selon l'ordre choisi par le candidat.
- L'exercice1 se rapporte aux nombres complexes(3.5 pts)
 L'exercice2 se rapporte au calcul des probabilités(3 pts)
 L'exercice3 se rapporte aux structures algébriques(3.5 pts)
 L'exercice4 se rapporte à l'analyse(10 pts)

L'usage de la calculatrice n'est pas autorisé L'usage de la couleur rouge n'est pas autorisé RS25

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2019 - الموضوع - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و(ب) (الترجمة الفرنسية)

EXERCICE1:(3.5 points)

Soit α un nombre complexe non nul.

I- On considère dans l'ensemble des nombres complexes $\mathbb C$ l'équation d'inconnue z:

$$(E_{\alpha}) : z^2 - i\alpha\sqrt{3}z - \alpha^2 = 0$$

- 0.25 | 1-a- Vérifier que le discriminant de (E_{α}) est $\Delta = \alpha^2$
- 0.5 b- Résoudre dans \mathbb{C} l'équation (E_{α})
- 0.5 2- Sachant que $\alpha = |\alpha| e^{i\lambda}$ ($\lambda \in \mathbb{R}$), mettre les deux racines de l'équation (E_{α}) sous la forme exponentielle.

II- On suppose que le plan complexe est rapporté à un repère orthonormé direct $\left(O; \vec{u}, \vec{v}\right)$.

On considère les points Ω , M_1 et M_2 d'affixes respectivement α , $z_1 = \frac{1 + i\sqrt{3}}{2}\alpha$ et

$$z_2 = \frac{-1 + i\sqrt{3}}{2}\alpha$$
 et soit R la rotation de centre O et d'angle $\frac{\pi}{3}$

- 0.5 | 1-a-Montrer que $R(\Omega) = M_1$ et que $R(M_1) = M_2$
- 0.25 b- En déduire que les deux triangles $O\Omega M_1$ et OM_1M_2 sont équilatéraux.
- 0.25 | 2-a- Vérifier que : $z_1 z_2 = \alpha$
- 0.5 b-Montrer que Les deux droites (ΩM_2) et (OM_1) sont orthogonales.
- 0.25 c- En déduire que $O\Omega M_1 M_2$ est un losange.
- 0.5 3- Montrer que pour tout réel θ , le nombre : $Z = \frac{z_2 \alpha}{z_1 \alpha} \div \frac{z_2 |\alpha| e^{i\theta}}{z_1 |\alpha| e^{i\theta}}$ est un réel.

EXERCICE2: (3 points)

1

1

1

Une urne contient n boules numérotées de 1 à n ($n \in \mathbb{N}^*, n \ge 3$). On retire, sans remise, l'une après l'autre toutes les boules de cette urne. Toutes les boules sont indiscernables au toucher.

- 1- Quelle est la probabilité pour que les boules 1, 2 et 3 sortent consécutivement et dans cet ordre ?
- 2- Calculer la probabilité que les boules 1, 2 et 3 sortent dans cet ordre (consécutivement ou pas)?
- 3- On considère la variable aléatoire X_n égale au nombre de tirages nécessaire pour obtenir les boules 1, 2 et 3.

Déterminer la loi de probabilité de X_n

EXERCICE3: (3.5 points)

On considère l'espace vectoriel de dimension 2 noté $(V_2,+,.)$.

Soit
$$(\vec{i}, \vec{j})$$
 une base de V_2 . On pose : $\vec{e_1} = \frac{1}{2}\vec{i} + \frac{1}{2}\vec{j}$ et $\vec{e_2} = \frac{1}{2}\vec{i} - \frac{1}{2}\vec{j}$

Soit * la loi de composition interne définie par :

$$\forall (x, y, x', y') \in \mathbb{R}^4 \ (\vec{xi} + \vec{yj}) * (\vec{x'i} + \vec{y'j}) = (xx' + yy')\vec{i} + (xy' + yx')\vec{j}$$

0.25 | 1-a- Montrer que $(\overrightarrow{e_1}, \overrightarrow{e_2})$ est une base de V_2

RS25

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2019 - الموضوع - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و(ب) (الترجمة الفرنسية)

0.25 | b-Vérifier que :
$$\overrightarrow{e_1} * \overrightarrow{e_1} = \overrightarrow{e_1}$$
 ; $\overrightarrow{e_2} * \overrightarrow{e_2} = \overrightarrow{e_2}$ et $\overrightarrow{e_1} * \overrightarrow{e_2} = \overrightarrow{e_2} * \overrightarrow{e_1} = \overrightarrow{0}$

0.25 c- Montrer que:
$$\forall (X, X', Y, Y') \in \mathbb{R}^4 \ (X\overrightarrow{e_1} + Y\overrightarrow{e_2}) * (X'\overrightarrow{e_1} + Y'\overrightarrow{e_2}) = XX'\overrightarrow{e_1} + YY'\overrightarrow{e_2}$$

- 0.25 2-a- Montrer que la loi * est commutative.
- 0.25 b- Montrer que la loi * est associative.
- 0.25 c- Montrer que la loi * admet un élément neutre.
- 0.25 d- Montrer que $(V_2, +, *)$ est un anneau commutatif unitaire.

3- Soit
$$\vec{u} \in V_2 - \{\vec{0}\}$$
. On note : $E_{\vec{u}} = \{\lambda \vec{u} / \lambda \in \mathbb{R}\}$

- 0.25 a- Montrer que $(E_{\vec{k}},+)$ est un sous-groupe du groupe $(V_2,+)$
- b- Montrer que $(E_{\vec{n}}, +, .)$ est un sous-espace vectoriel de l'espace $(V_2, +, .)$
- 0.5 c- Montrer que : $E_{\vec{u}}$ stable pour $*\Leftrightarrow$ la famille $(\vec{u}*\vec{u},\vec{u})$ est liée
 - 4- On suppose que : $(\exists \alpha \in \mathbb{R}^*)$; $\vec{u} * \vec{u} = \alpha \vec{u}$

On considère l'application $\varphi \colon \mathbb{R}^* \to E_{\vec{u}}$

$$x \mapsto \frac{x}{\alpha} u$$

- 0.5 a- Montrer que φ est un isomorphisme de (\mathbb{R}^*,\times) vers $(E_{\vec{n}},*)$
- 0.25 b- En déduire que $(E_{\vec{n}}, +, *)$ est un corps commutatif.

EXERCICE4: (10 points)

PARTIE I

On considère la fonction g définie sur $I =]-1, +\infty[$ par : $g(x) = 1 + x^2 - 2x(1+x)\ln(1+x)$

- 0.25 | 1- a- Montrer que : $\lim_{x \to -1^+} g(x) = 2$
- 0.5 b- Montrer que : $\lim_{x \to +\infty} g(x) = -\infty$
- 0.5 2- Montrer que g est dérivable sur I et que $(\forall x \in I)$ $g'(x) = -2(1+2x)\ln(1+x)$
 - 3- On donne le tableau de variations de g:

x	-1	$-\frac{1}{2}$		0	+∞
g'(x)	-	0	+	0	-
g(x)	2	$\frac{5}{4} - \frac{\operatorname{lr}}{3}$		1	<u> </u>

- 0.5 a-Montrer qu'il existe un réel strictement positif α unique tel que : $g(\alpha) = 0$
- 0.25 b- Vérifier que : α < 1 (On prendra : $\ln 2 = 0.7$)

0.5 c- En déduire que : $(\forall x \in]-1,\alpha[]$ $0 < g(x)$ et que : $(\forall x \in]\alpha,+\infty[]$ $g(x) < 0$ Partie II : On considère la fonction f définie sur $I =]-1,+\infty[$ par : $f(x) = \frac{\ln(1+x)}{1+x^2}$ Soit (C) sa courbe représentative dans un repère orthonormé $(O,\overline{i},\overline{j})$. 1-a- Calculer $\lim_{x \to -1^+} f(x)$ puis interpréter graphiquement le résultat obtenu. b- Calculer $\lim_{x \to +\infty} f(x)$ puis interpréter graphiquement le résultat obtenu. 2- a- Montrer que f est dérivable sur f et que $(\forall x \in I)$ $f'(x) = \frac{g(x)}{(1+x)(1+x^2)^2}$ b- Donner le sens de variation de f sur f c- Vérifier que : $f(\alpha) = \frac{1}{2\alpha(1+\alpha)}$ et que : $f(\alpha) = \frac{1}{2\alpha(1+\alpha)}$ 3-a- Donner l'équation de la tangente $f(\alpha)$ au point d'abscisse $f(\alpha)$ b- Montrer que : $f(\alpha) = \frac{1}{2\alpha(1+\alpha)}$ et $f(\alpha)$ au point d'abscisse $f(\alpha)$ c- En déduire que : $f(\alpha) = \frac{1}{2\alpha(1+\alpha)}$ et $f(\alpha) = \frac{1}{2\alpha(1+\alpha)}$ 1 d- Représenter graphiquement $f(\alpha)$ et $f(\alpha)$ (On prendra : $f(\alpha) = \frac{\pi}{8}$ ln 2 1 a- En utilisant le changement de variable : $f(\alpha) = \frac{1-x}{1+x}$, montrer que : $f(\alpha) = \frac{\pi}{8}$ ln 2 b- Déterminer, en $f(\alpha)$, l'aire du domaine plan limité par la courbe $f(\alpha)$, la tangente $f(\alpha)$, la droite d'équation $f(\alpha)$ et la droite d'équation $f(\alpha)$ au point d'abscisse $f(\alpha)$ la tangente $f(\alpha)$ la droite d'équation $f(\alpha)$ et	الصفحة 4 4	RS25	الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2019 – الموضوع - مادة: الرياضيات – شعبة العلوم الرياضية (أ) و(ب) (الترجمة الفرنسية)				
Soit (C) sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j}) . 1-a- Calculer $\lim_{x \to -1^+} f(x)$ puis interpréter graphiquement le résultat obtenu. b- Calculer $\lim_{x \to +\infty} f(x)$ puis interpréter graphiquement le résultat obtenu. 2- a- Montrer que f est dérivable sur I et que $(\forall x \in I)$ $f'(x) = \frac{g(x)}{(1+x)(1+x^2)^2}$ b- Donner le sens de variation de f sur I c- Vérifier que : $f(\alpha) = \frac{1}{2\alpha(1+\alpha)}$ et que : $(\forall x \in I)$ $f(x) \le \frac{1}{2\alpha(1+\alpha)}$ 3-a- Donner l'équation de la tangente (T) à (C) au point d'abscisse 0 b- Montrer que : $(\forall x > 0)$ $\ln(1+x) < x$ c- En déduire que : $(\forall x > 0)$ $f(x) < x$ d- Représenter graphiquement (T) et (C) (On prendra : $\alpha = 0.8$ et $\ \vec{i}\ = \ \vec{j}\ = 2cm$) Partie III : On pose $J = \int_0^1 f(x) dx$ 1 - a- En utilisant le changement de variable : $t = \frac{1-x}{1+x}$, montrer que : $J = \frac{\pi}{8} \ln 2$ b- Déterminer, en cm^2 , l'aire du domaine plan limité par la courbe (C) , la tangente (T) , la droite d'équation $x = 0$ et la droite d'équation $x = 1$	0.5	0.5 c- En déduire que : $(\forall x \in]-1, \alpha[)$ 0 < $g(x)$ et que : $(\forall x \in]\alpha, +\infty[)$ $g(x) < 0$					
1-a- Calculer $\lim_{x \to -1^+} f(x)$ puis interpréter graphiquement le résultat obtenu. b- Calculer $\lim_{x \to +\infty} f(x)$ puis interpréter graphiquement le résultat obtenu. 2- a- Montrer que f est dérivable sur f et que $(\forall x \in I)$ $f'(x) = \frac{g(x)}{(1+x)(1+x^2)^2}$ b- Donner le sens de variation de f sur f c- Vérifier que : $f(\alpha) = \frac{1}{2\alpha(1+\alpha)}$ et que : $f(\alpha) = \frac{1}{2\alpha(1+\alpha)}$ 3-a- Donner l'équation de la tangente $f(\alpha)$ à $f(\alpha)$ au point d'abscisse $f(\alpha)$ b- Montrer que : $f(\alpha) = \frac{1}{2\alpha(1+\alpha)}$ et que : $f(\alpha) = \frac{1}{2\alpha(1+\alpha)}$ 0.25 c- En déduire que : $f(\alpha) = \frac{1}{2\alpha(1+\alpha)}$ et que : $f(\alpha) = \frac{1}{2\alpha(1+\alpha)}$ 1 d-Représenter graphiquement $f(\alpha) = \frac{1}{2\alpha(1+\alpha)}$ (On prendra : $f(\alpha) = \frac{1}{2\alpha(1+\alpha)}$) Partie III : On pose $f(\alpha) = \frac{1}{2\alpha(1+\alpha)}$ (On prendra : $f(\alpha) = \frac{1}{2\alpha(1+\alpha)}$) 1 a- En utilisant le changement de variable : $f(\alpha) = \frac{1-x}{1+x}$, montrer que : $f(\alpha) = \frac{\pi}{8} \ln 2$ b- Déterminer, en $f(\alpha) = \frac{\pi}{8} \ln 2$ contract du domaine plan limité par la courbe $f(\alpha)$, la tangente $f(\alpha)$, la droite d'équation $f(\alpha) = \frac{\pi}{8} \ln 2$		Partie II : On considère la fonction f définie sur $I =]-1, +\infty[$ par : $f(x) = \frac{\ln(1+x)}{1+x^2}$					
b- Calculer $\lim_{x\to +\infty} f(x)$ puis interpréter graphiquement le résultat obtenu. 2- a- Montrer que f est dérivable sur I et que $(\forall x \in I)$ $f'(x) = \frac{g(x)}{(1+x)(1+x^2)^2}$ b- Donner le sens de variation de f sur I c- Vérifier que : $f(\alpha) = \frac{1}{2\alpha(1+\alpha)}$ et que : $(\forall x \in I)$ $f(x) \le \frac{1}{2\alpha(1+\alpha)}$ 3-a- Donner l'équation de la tangente (T) à (C) au point d'abscisse 0 b- Montrer que : $(\forall x > 0)$ $\ln(1+x) < x$ c- En déduire que : $(\forall x > 0)$ $f(x) < x$ d- Représenter graphiquement (T) et (C) (On prendra : $\alpha = 0.8$ et $\ \vec{i}\ = \ \vec{j}\ = 2cm$) Partie III : On pose $J = \int_0^1 f(x) dx$ 1 1- a- En utilisant le changement de variable : $t = \frac{1-x}{1+x}$, montrer que : $J = \frac{\pi}{8} \ln 2$ b- Déterminer, en cm^2 , l'aire du domaine plan limité par la courbe (C) , la tangente (T) , la droite d'équation $x = 0$ et la droite d'équation $x = 1$		Soit (Soit (C) sa courbe représentative dans un repère orthonormé (O,\vec{i},\vec{j}) .				
2- a- Montrer que f est dérivable sur I et que $(\forall x \in I)$ $f'(x) = \frac{g(x)}{(1+x)(1+x^2)^2}$ b- Donner le sens de variation de f sur I c- Vérifier que : $f(\alpha) = \frac{1}{2\alpha(1+\alpha)}$ et que : $(\forall x \in I)$ $f(x) \le \frac{1}{2\alpha(1+\alpha)}$ 3-a- Donner l'équation de la tangente (T) à (C) au point d'abscisse 0 b- Montrer que : $(\forall x > 0)$ $\ln(1+x) < x$ c- En déduire que : $(\forall x > 0)$ $f(x) < x$ d- Représenter graphiquement (T) et (C) (On prendra : $\alpha = 0.8$ et $\ \vec{i}\ = \ \vec{j}\ = 2cm$) Partie III : On pose $J = \int_0^1 f(x) dx$ 1 1- a- En utilisant le changement de variable : $t = \frac{1-x}{1+x}$, montrer que : $J = \frac{\pi}{8} \ln 2$ b- Déterminer, en cm^2 , l'aire du domaine plan limité par la courbe (C) , la tangente (T) , la droite d'équation $x = 0$ et la droite d'équation $x = 1$	0.5	1-a- Calculer $\lim_{x\to -1^+} f(x)$ puis interpréter graphiquement le résultat obtenu.					
b- Donner le sens de variation de f sur I c- Vérifier que : $f(\alpha) = \frac{1}{2\alpha(1+\alpha)}$ et que : $(\forall x \in I)$ $f(x) \le \frac{1}{2\alpha(1+\alpha)}$ 3-a- Donner l'équation de la tangente (T) à (C) au point d'abscisse 0 b- Montrer que : $(\forall x > 0)$ $\ln(1+x) < x$ c- En déduire que : $(\forall x > 0)$ $f(x) < x$ d- Représenter graphiquement (T) et (C) (On prendra : $\alpha = 0.8$ et $\ \vec{i}\ = \ \vec{j}\ = 2cm$) Partie III : On pose $J = \int_0^1 f(x) dx$ 1 - a- En utilisant le changement de variable : $t = \frac{1-x}{1+x}$, montrer que : $J = \frac{\pi}{8} \ln 2$ b- Déterminer, en cm^2 , l'aire du domaine plan limité par la courbe (C) , la tangente (T) , la droite d'équation $x = 0$ et la droite d'équation $x = 1$	0.5						
0.75 c- Vérifier que : $f(\alpha) = \frac{1}{2\alpha(1+\alpha)}$ et que : $(\forall x \in I)$ $f(x) \le \frac{1}{2\alpha(1+\alpha)}$ 0.25 3-a- Donner l'équation de la tangente (T) à (C) au point d'abscisse 0 0.5 b- Montrer que : $(\forall x > 0)$ $\ln(1+x) < x$ c- En déduire que : $(\forall x > 0)$ $f(x) < x$ 1 d- Représenter graphiquement (T) et (C) (On prendra : $\alpha = 0.8$ et $\ \vec{i}\ = \ \vec{j}\ = 2cm$) Partie III : On pose $J = \int_0^1 f(x) dx$ 1 - a- En utilisant le changement de variable : $t = \frac{1-x}{1+x}$, montrer que : $J = \frac{\pi}{8} \ln 2$ b- Déterminer, en cm^2 , l'aire du domaine plan limité par la courbe (C) , la tangente (T) , la droite d'équation $x = 0$ et la droite d'équation $x = 1$	0.75	2- a- 1	2- a- Montrer que f est dérivable sur I et que $(\forall x \in I)$ $f'(x) = \frac{g(x)}{(1+x)(1+x^2)^2}$				
3-a- Donner l'équation de la tangente (T) à (C) au point d'abscisse 0 b- Montrer que : $(\forall x > 0)$ $\ln(1+x) < x$ c- En déduire que : $(\forall x > 0)$ $f(x) < x$ d- Représenter graphiquement (T) et (C) (On prendra : $\alpha = 0.8$ et $\ \vec{i}\ = \ \vec{j}\ = 2cm$) Partie III : On pose $J = \int_0^1 f(x) dx$ 1 1- a- En utilisant le changement de variable : $t = \frac{1-x}{1+x}$, montrer que : $J = \frac{\pi}{8} \ln 2$ b- Déterminer, en cm^2 , l'aire du domaine plan limité par la courbe (C) , la tangente (T) , la droite d'équation $x = 0$ et la droite d'équation $x = 1$	0.5	b-]	b-Donner le sens de variation de f sur I				
b- Montrer que : $(\forall x > 0) \ln(1+x) < x$ c- En déduire que : $(\forall x > 0) f(x) < x$ d- Représenter graphiquement (T) et (C) (On prendra : $\alpha = 0.8$ et $\ \vec{i}\ = \ \vec{j}\ = 2cm$) Partie III : On pose $J = \int_0^1 f(x) dx$ 1 1- a- En utilisant le changement de variable : $t = \frac{1-x}{1+x}$, montrer que : $J = \frac{\pi}{8} \ln 2$ b- Déterminer, en cm^2 , l'aire du domaine plan limité par la courbe (C) , la tangente (T) , la droite d'équation $x = 0$ et la droite d'équation $x = 1$	0.75	c- `	c- Vérifier que : $f(\alpha) = \frac{1}{2\alpha(1+\alpha)}$ et que : $(\forall x \in I)$ $f(x) \le \frac{1}{2\alpha(1+\alpha)}$				
0.25 c- En déduire que : $(\forall x > 0)$ $f(x) < x$ 1 d- Représenter graphiquement (T) et (C) (On prendra : $\alpha = 0.8$ et $\ \vec{i}\ = \ \vec{j}\ = 2cm$) Partie III : On pose $J = \int_0^1 f(x) dx$ 1 1- a- En utilisant le changement de variable : $t = \frac{1-x}{1+x}$, montrer que : $J = \frac{\pi}{8} \ln 2$ b- Déterminer, en cm^2 , l'aire du domaine plan limité par la courbe (C) , la tangente (T) , la droite d'équation $x = 0$ et la droite d'équation $x = 1$	0.25	3-a- I	3-a- Donner l'équation de la tangente (T) à (C) au point d'abscisse 0				
1 d- Représenter graphiquement (T) et (C) (On prendra : $\alpha = 0.8$ et $\ \vec{i}\ = \ \vec{j}\ = 2cm$) Partie III : On pose $J = \int_0^1 f(x) dx$ 1 - a- En utilisant le changement de variable : $t = \frac{1-x}{1+x}$, montrer que : $J = \frac{\pi}{8} \ln 2$ b- Déterminer, en cm^2 , l'aire du domaine plan limité par la courbe (C) , la tangente (T) , la droite d'équation $x = 0$ et la droite d'équation $x = 1$	0.5	b- N	b- Montrer que : $(\forall x > 0)$ $\ln(1+x) < x$				
Partie III: On pose $J = \int_0^1 f(x) dx$ 1 1- a- En utilisant le changement de variable : $t = \frac{1-x}{1+x}$, montrer que : $J = \frac{\pi}{8} \ln 2$ b- Déterminer, en cm^2 , l'aire du domaine plan limité par la courbe (C) , la tangente (T) , la droite d'équation $x = 0$ et la droite d'équation $x = 1$	0.25	c- E	c- En déduire que : $(\forall x > 0)$ $f(x) < x$				
1 1- a- En utilisant le changement de variable : $t = \frac{1-x}{1+x}$, montrer que : $J = \frac{\pi}{8} \ln 2$ 0.5 b- Déterminer, en cm^2 , l'aire du domaine plan limité par la courbe (C) , la tangente (T) , la droite d'équation $x = 0$ et la droite d'équation $x = 1$	1	d- F	d-Représenter graphiquement (T) et (C) (On prendra : $\alpha = 0.8$ et $\ \vec{i}\ = \ \vec{j}\ = 2cm$)				
b- Déterminer, en cm^2 , l'aire du domaine plan limité par la courbe (C) , la tangente (T) , la droite d'équation $x = 0$ et la droite d'équation $x = 1$		Parti	e III : On pose $J = \int_0^1 f(x) dx$				
droite d'équation $x = 0$ et la droite d'équation $x = 1$	1	1- a-	1- a- En utilisant le changement de variable : $t = \frac{1-x}{1+x}$, montrer que : $J = \frac{\pi}{8} \ln 2$				
droite d'équation $x = 0$ et la droite d'équation $x = 1$	0.5	b-1	Déterminer, en cm^2 , l'aire du domaine plan limité par la courbe (C) , la tangente (T) , la				
1 2- En utilisant la méthode d'intégration par parties, calculer : $K = \int_0^1 \frac{arc \tan(x)}{1+x} dx$	0.0						
	1	2- En	utilisant la méthode d'intégration par parties, calculer : $K = \int_0^1 \frac{arc \tan(x)}{1+x} dx$				

FIN