Semantic Argument Classification

28. Januar 2015

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Institut für Computerlinguistik Universität Heidelberg

Gliederung

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellung Anwendungsbereic

Anwendungsberei

Umeotzun

Features

Featureextraktion Schwierigkeiten

Evaluation

Ausblick

Literatur

Referenze

Problemstellung

Anwendungsbereich

Daten

Problemstellung

Umsetzung

Features

Featureextraktion

Schwierigkeiten

Evaluation

Ausblick

Literatur

Institut für Computerlinguistik Ruprecht-Karls-Universität Heidelberg

Semantic Argument Classification

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellung

Anwendungsbereid

Dater

Problemstellu

Umsetzun

Featureextraktion

Evaluatio

Ausblick

Literatur

Heterenzei

Was ist Semantic Argument Classifcation?

- ➤ Zuweisung bestimmter Rollen in einem Satz ⇒ "Wer tut wem was an?"
- It operates stores mostly in Iowa and Nebraska
- ► [Arg0 It][Pred operates][Arg1 stores][ArgLoc mostly in Iowa and Nebraska]

Institut für Computerlinguistik Ruprecht-Karls-Universität Heidelberg

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellung Anwendungsbereich

Anwendungsbereich

Daten

Problemstellun

Umsetzun

Features

Featureeytrakt

Cobusionialvoito

Evaluation

Ausblick

Literatur

Referenzen

- ► NLTK
- ► PropBank

Institut für Computerlinguistik Ruprecht-Karls-Universität Heidelberg

PropBank

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellung Anwendungsbereich

Naten Daten

Droble

FIODIBITISTALIO

UIIISEIZI

Features Featureextraktion

Evaluation

Aushlick

Literatur

Referenzer

- lacktriangledown versucht generalisierte Argumente zu verwenden ightarrow Parser
- ▶ Argumentrollen sind für jedes Verb in Frames organisiert → weniger spezifisch
- ▶ ARG0 = Proto-Agent
- ▶ ARG1 = Proto-Patient
- ► ARG2-ARG5 = Argumente mit steigender Intensität

Penn Treebank

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Daten

Aushlick

Literatur

- Subkorpus aus WSJ und Brown Corpus, bestehend aus ungefähr 3.500.000 Wörtern
- 112.917 Sätze annotiert nach PropBank-Annotationsschema
- 292,975 Instanzen
- ▶ wsj/00/wsj 0001.mrg 1 10 gold publish.01 p—a 10:0-rel 11:0-ARG0

Penn Treebank

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellung

nwendungsbereid

Daten

Umsetzun

Footureoutrals

Schwieriekei

Evaluation

Ausblick

Literatur

Referenzei

Institut für Computerlinguistik Ruprecht-Karls-Universität Heidelberg

Features

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Daten

Features

Aushlick

Literatur

▶ Predicate

- ► Path
- ► Phrase Type
- ▶ Position
- ▶ Voice

No.	Label	Count
1	ARG0	48267
2	ARGM	44558
3	ARG1	63820
4	ARG2	14737
5	ARG4	1900
6	ARG3	2442
7	ARG5	51
- 8	ARGA	10
lass: cl	ass (Nom)	▼ Visualize
lass: cl		▼ Visualize
18267	53820 4558	▼ Visualize

Institut für Computerlinguistik Ruprecht-Karls-Universität Heidelbera

Predicate

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellung

Daten

Problemstellur

Umeotzuna

Features

Featureextraktion

Schwierigkeiten

Evaluation

Aushlick

Literatur

Referenzen

► lemmatisierte Prädikat

▶ 3966 distinct

Institut für Computerlinguistik Ruprecht-Karls-Universität Heidelberg

Path

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellung Anwendungsbereich

Daten

.....

Features

Featureextraktion

Evaluatio

Aushlick

Literatur

Referenzen

- beschreibt Pfad zwischen ARG und Predicate
- ▶ vereinfacht z.B. NP-SBJ → NP
- extrahiert über Lowest Common Ancestor
- ▶ beispielsweise: NP↑S↓VP↓VBD
- ▶ 41737 distinct

Institut für Computerlinguistik Ruprecht-Karls-Universität Heidelberg

Phrase Type

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellung

Daten

Umentzung

Features

Featureextrak

Schwierigkeiter

Evaluatio

Ausblick

Literatur

Referenzen

beschreibt die Kategorie des Argument

► z.B: NP, MD, PP, SBAR

► 65 distinct

Position

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellung

Anwendungsbereit

Problemstellun

Jmsetzung

Features

Featureextraktion

Schwierigkeiten

Evaluatio

Ausblick

Literatur

Referenzer

- Beschreibt, ob das Argument vor oder nach dem Prädikat steht
- berechnet mithilfe von WordNum
- ► 2 distinct

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellung
Anwendungsbereich

Daten

Umsetzung Features

Features Featureeytraktion

Schwierigkeiten

Evaluatio

Aushlick

Literatur

Referenzen

- gibt an, ob das Prädikat aktiv oder passiv ist
- ▶ größtenteils annotiert
- ▶ 3 distinct: active, passive, unknown

No.	Label	Count
1	active	146032
2	passive	23064
3	NONE	6689
lass: class (Nom)		
lass: cl	ass (Nom)	▼ Visualize A
146032	ass (Nom)	▼ Visualize A

Featureextraktion

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellung

Anwendungsbereic

Daten

Fioblemstellul

Features

Featureextraktion

Schwierigkeiten

Evaluation

Aushlick

Literatur

Referenzei

featureList = [...] # zu extrahierende Features

for pbInstance in pbInstances :

for pbArg in pbInstance.arguments :

features = []

for feature in featureList:

 $feature List. append (extFeature (feature, \, pbArg, \,$

pbInstance))

write features to file in ARFF

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellung Anwendungsbereic

Daten

1 TODIOTHSCORD

Features

Featureextraktion

Evaluation

Aushlick

Literatur

Referenze

@relation SAC_All

@attribute predicate {join,publish,name,use, make, cause, ...}

@attribute phraseType {NP, MD, PP, NN, ADVP, S, ...}

@attribute position {before, after}

@attribute path {NP^S!VP!VP, MD^VP^S!VP!VP,...}

@attribute voice {active, passive, NONE}

@attribute class {ARG0, ARGM, ARGA, ARG1, ...}

@data

join, NP, before, NP^S!VP!VP, active, ARG0 join, MD, before, MD^VP^S!VP!VP, active, ARGM join, NP, after, NP^VP^VP^S!VP!VP, active, ARG1 join, PP, after, PP^VP^VP^S!VP!VP, active, ARGM join, NP, after, VP^VP^S!VP!VP, active, ARGM

Institut für Computerlinguistik Ruprecht-Karls-Universität Heidelberg

Quellen

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellung Anwendungsbereich

Daten

Umsetzung Features

Featureextraktion Schwierigkeiten

Evaluation

Ausblick

Literatur

Referenzen

- [1] Omri Abend und Roi Reichart. Unsupervised Argument Identification for Semantic Role Labeling.
- [2] Jean Carletta. "Assessing agreement on classification tasks: the kappa statistic". In: Computational Linguistics (1996), S. 249–254.
- [3] Daniel Gildea. "Automatic labeling of semantic roles". In: *Computational Linguistics* 28 (2002), S. 245–288.
- [4] Alessandro Moschitti und Cosmin Adrian Bejan. "A Semantic Kernel for Predicate Argument Classification". In: IN CONLL 2004. 2004, S. 17–24.
- [5] Sameer Pradhan u. a. Support Vector Learning for Semantic Argument Classification. 2005.

Vielen Dank für Eure Aufmerksamkeit! Noch Fragen?

