Nome:	Matrícula:	Turma:
	ROTEIRO DE AUL	A PRÁTICA 6 -
Aula 08	AMPLIFIC.	ADOR OPERACIONAL
/ /		

OBJETIVOS: Entender como funcionam os filtros ativos que se utilizam amplificadores operacionais; Determinar experimentalmente as frequências de corte (a partir dos gráficos) para filtros ativos e comparar com os valores teóricos; Verificar o funcionamento de um reforçador de corrente push-pull.

PARTE TEORICA

- 1- Calcule o ganho global do FPB abaixo.
- 2- Calcule a frequência de corte do FPB abaixo.
- 3- Calcule o ganho global do FPA abaixo.
- 4- Calcule a frequência de corte do FPA abaixo.

PARTE PRÁTICA

FILTROS ATIVOS COM AMP-OP - FILTRO PASSA-BAIXAS DE 1 PÓLO

- 1- Monte o circuito do FPB de 1 Pólo esquematizado na figura 1 utilizando-se do Amp-Op 741;
- 2- Ajuste o gerador de sinais para uma forma de onda senoidal de 200Hz com amplitude de 2Vp-p.

Considere: Vcc=15V e -Vcc=-15V, resistores: R1=4,7k Ω , R2=10k Ω e R3=330 Ω e Capacitor C1= 33nF

- 3- Meça simultaneamente os sinais de entrada e saída do circuito e anote os resultados na tabela. Varie a frequência para os valores indicados na mesma tabela e anote os resultados.
- 4- Calcule o ganho experimental e apresente a curva de resposta em frequência do FPB em um gráfico.

OBS: Caso observe deformação na onda de saída devido ao *slew-rate* do amp-op, diminua a amplitude do sinal de entrada.

4- Calcule o ganho de tensão experimental

em dB e apresente a curva de resposta em frequência do FPB em um gráfico.

- 5- Determine a frequência de corte (fc) no gráfico e observe a taxa de inclinação acima de fc.
- 6- Calcule o ganho teórico e a frequência de corte e compare com o resultado prático.

F (Hz)	50	100	200	300	400	500	600
Vin (Vpp)							
Vout (Vpp)							
Ganho (dB)							

F (Hz)	700	800	900	1000	1250	1500	1750
Vin (Vpp)							
Vout (Vpp)							
Ganho							
(dB)							

F (Hz)	2000	2250	2500	2750	3000	3,5k	4k
Vin (Vpp)							
Vout (Vpp)							
Ganho							
(dB)							

F (Hz)	4,5k	5k	5,5k	6k	7k	8k	9k	10k	12k
Vin (Vpp)									
Vout (Vpp)									
Ganho									
(dB)									

F (Hz)	14k	16k	18k	20k	30k	50k	100k
Vin (Vpp)							
Vout (Vpp)							
Ganho (dB)							

- 7- Coloque os resultados da simulação: (Esquema elétrico Diagramas nos principais pontos Explique detalhadamente os resultados da simulação e seus valores.)
- 8- Conclua seus resultados e observações. Compare com os valores teóricos e práticos.

FILTROS ATIVOS COM AMP-OP - FILTRO PASSA-ALTA

- 1- Monte o circuito do FPa de 1 Pólo esquematizado na figura 2 utilizando-se do Amp-Op 741;
- 2- Ajuste o gerador de sinais (Vin) para uma forma de onda senoidal de 10000Hz com amplitude de 2Vp-p.

Considere: Vcc=15V e -Vcc=-15V, resistores: $R1=100k\Omega$, $R2=10k\Omega$ e $R3=3k\Omega$ e Capacitor C1=100nF

- 3- Meça simultaneamente os sinais de entrada e saída do circuito e anote os resultados na tabela. Varie a frequência para os valores indicados na mesma tabela e anote os resultados.
- 4- Calcule o ganho experimental e apresente a curva de resposta em frequência do FPA em um gráfico.
- OBS: Caso observe deformação na onda de saída devido ao *slew-rate* do amp-op, diminua a amplitude do sinal de entrada.
- 4- Calcule o ganho de tensão experimental em dB

e apresente a curva de resposta em frequência do FPA em um gráfico.

- 5- Determine a frequência de corte (fc) no gráfico e observe a taxa de inclinação acima de fc.
- 6- Calcule o ganho teórico e a frequência de corte e compare com o resultado prático.

F (Hz)	50	100	300	500	700	900	1000
Vin (Vpp)							
Vout (Vpp)							
Ganho							
(dB)							

F (Hz)	1500	2000	2500	3000	3500	4000	4500
Vin (Vpp)							
Vout (Vpp)							

C 1							
Ganho							
(dB)							
F (Hz)	5000	5500	6000	6500	7000	7,5k	8k
Vin (Vpp)							
Vout (Vpp)							
Ganho							
(dB)							
F (Hz)	8,5k	9k	9,5k	10k	12k	15k	18k
Vin (Vpp)							
Vout (Vpp)							
Ganho							
(dB)							
F (Hz)	20k	25k	50k	100k	200k	500k	1M
Vin (Vpp)							
Vout (Vpp)							
Ganho							
(dB)							

⁷⁻ Coloque os resultados da simulação: (Esquema elétrico - Diagramas nos principais pontos - Explique detalhadamente os resultados da simulação e seus valores.)

Projete um filtro Passa Faixa.

1- Considere o circuito abaixo e faixa de frequência: Frequência de corte inferior 1kHz e uma frequência de corte superior de 10kHz.

- 2- Simule o circuito e coloque os resultados da simulação: (Esquema elétrico Diagramas nos principais pontos Explique detalhadamente os resultados da simulação e seus valores.)
- 3- Conclua seus resultados e observações. Compare com os valores teóricos e práticos.

⁸⁻ Conclua seus resultados e observações. Compare com os valores teóricos e práticos.