Tugas Besar Probabilitas dan Statistik 2023

Nama: Aththariq Lisan Q. D. S.

Kelas : K-01 Sistem dan Teknologi Informasi

IMPORT

NIM: 18222013

Import Libraries

In [65]: **import** pandas **as** pd import numpy as np import matplotlib.pyplot as plt import scipy.stats as st import math

Import Dataset

import seaborn as sbs

In [10]: from google.colab import files uploaded = files.upload() for name, data in uploaded.items(): with open(name, 'wb') as f: f.write(data)

> Choose Files No file chosen Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to enable.

Saving 18222013.xlsx to 18222013.xlsx 18222013.xlsx sample_data

In [117... df = pd.read_excel("18222013.xlsx")

C	1+																
Out[117	Jenis K	Kelamin Usia Pendidikan Te	akhir Pekerjaan	Penghasilan per Bulan Domisil	Durasi Penggunaan Internet per Hari (dalam Jam) Aktivitas C	Online Meningkat Aktivi	tas yang Meningkat dalam 3 Bulan Terakhir layanan_aktif_1	cara_pembayaran_belanja_online_5 car	ra_pembayaran_belanja_online_6 car	a_pembayaran_belanja_online_7 ca	ara_pembayaran_belanja_online_8	keluhan_belanja_online_1	keluhan_belanja_online_2	keluhan_belanja_online_3	keluhan_belanja_online_4	keluhan_belanja_online_5	keluhan_belanja_online_6
	0	Pria 19	S1 Pelajar / Mahasiswa	< Rp 2 juta Depok	NaN	Sama saja	NaN Mobile Banking	NaN	NaN	NaN	menggunakan fitur Paylater Bai	rang yang diperoleh tidak sesuai dengan spes	NaN	NaN Jur	mlah barang yang diterima kurang	NaN	NaN
	1	Wanita 19	SMA Pelajar / Mahasiswa	< Rp 2 juta	800%	Sama saja	NaN Mobile Banking	NaN	NaN	NaN	NaN Bar	rang yang diperoleh tidak sesuai dengan spes Baran	ng rusak/ salah tetapi tidak dapat dikemba Pembayaran s	sudah dilakukan; barang tidak tersedia Jur	mlah barang yang diterima kurang	NaN	NaN
	2	Wanita 19	SMA Pelajar / Mahasiswa	< Rp 2 juta	1000%	Sama saja	NaN Mobile Banking	Transfer via ATM	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	3	Pria 19	SMA Pelajar / Mahasiswa	Rp 2 juta – Rp 5 juta Jakarta	700%	Ya	Akses media sosial Mobile Banking	Transfer via ATM	Kartu Kredit / Debit Online	Melalui minimarket	menggunakan fitur Paylater Bai	rang yang diperoleh tidak sesuai dengan spes	NaN Pembayaran s	sudah dilakukan; barang tidak tersedia	NaN Pemb	ayaran telah dilakukan tetapi tidak terdet Saldo eM	oney/ eWallet berkurang tanpa melakuka
	4	Wanita 20	SMA Pelajar / Mahasiswa	< Rp 2 juta Medar	700%	Ya	Akses media sosial Mobile Banking	NaN	NaN	NaN	NaN Bar	rang yang diperoleh tidak sesuai dengan spes	NaN	NaN	NaN	NaN	NaN
	•••																
2	280	Pria 21	SMA Pelajar / Mahasiswa	< Rp 2 juta	800%	Ya	Streaming video/ film NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
2	281	Pria 19	SMA Pelajar / Mahasiswa	Rp 2 juta – Rp 5 juta Bogo	1400%	Sama saja	NaN Mobile Banking	NaN	Kartu Kredit / Debit Online	NaN	NaN	NaN Baran	ng rusak/ salah tetapi tidak dapat dikemba	NaN	NaN Pemb	ayaran telah dilakukan tetapi tidak terdet	NaN
2	282	Pria 19	SMA Pelajar / Mahasiswa	< Rp 2 juta padang	1500%	Sama saja	NaN NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
2	283	Wanita 19	SMA Pelajar / Mahasiswa	< Rp 2 juta Bandung	NaN	Tidak	NaN Mobile Banking	NaN	NaN	NaN	NaN Bar	rang yang diperoleh tidak sesuai dengan spes	NaN	NaN Jur	mlah barang yang diterima kurang	NaN	NaN
ž.	284	Pria 51	S1 Pengusaha	Rp 5 juta – Rp 10 juta Semarang	800%	Sama saja	Akses media sosial Mobile Banking	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

285 rows × 150 columns

In [67]: print("Informasi Dataset:") df.info()

memory usage: 334.1+ KB

Informasi Dataset: <class 'pandas.core.frame.DataFrame'> RangeIndex: 285 entries, 0 to 284 Columns: 150 entries, Jenis Kelamin to keluhan_belanja_online_6 dtypes: float64(1), int64(1), object(148)

SOAL 1

Dimensi Data Set

In [68]: print("Dimensi dataset (baris, kolom):", df.shape) Dimensi dataset (baris, kolom): (285, 150)

Jumlah missing value per kolom

In [69]: missing_values = df.isnull().sum()
print("\nJumlah missing value per kolom:")

print(missing_values) Jumlah missing value per kolom: Jenis Kelamin

Pendidikan Terakhir Pekerjaan Penghasilan per Bulan

keluhan_belanja_online_2 215 keluhan_belanja_online_3 209 keluhan_belanja_online_4 242 keluhan_belanja_online_5 253 keluhan_belanja_online_6 270

Length: 150, dtype: int64

SOAL 2: Visualisasi

Donutchart Perbandingan Proporsi Jenis Kelamin Responden

In [70]: # Generate Dataframe gender_freq = pd.DataFrame(df["Jenis Kelamin"].value_counts()) label = df["Jenis Kelamin"].unique() label = label[~pd.isnull(label)] # Plotting Dataframe plt.pie(gender_freq.values.flatten(), labels=label, autopct='%.2f%%', colors=['#ff9999','#66b3ff']) ## Change Pie Chart to Donut Chart my_circle = plt.Circle((0, 0), 0.7, color='white') p = plt.gcf() p.gca().add_artist(my_circle)

plt.title("Grafik 1: Proporsi Jenis Kelamin Responden", fontsize=9, loc="left", fontweight="bold")

Menambahkan Insight di Bawah Visualisasi

plt.text(0, -1.3, "\nInsight: Proporsi responden pria lebih tinggi dari wanita", ha='center', fontsize=10, fontweight='bold')

Grafik 1: Proporsi Jenis Kelamin Responden

Insight: Proporsi responden pria lebih tinggi dari wanita

Histogram Sebaran Umur Responden

In [71]: sbs.set(color_codes=True) sbs.set(style="darkgrid", palette="muted") histogram = sbs.histplot(data=df, x="Usia", bins=[10,20,30,40,50,60,70], color="#ff0054") histogram.set(xlabel='Usia Responden', ylabel='Total Responden') plt.title("Grafik 2: Histogram Umur Responden", fontsize=9, loc="left", fontweight="bold")

Menambahkan Insight di Bawah Visualisasi plt.text(35, -28, "Insight: Mayoritas responden berada di rentang usia 10-20 tahun", ha='center', fontsize=10, fontweight='bold')

Grafik 2: Histogram Umur Responden 100 80 40

Insight: Mayoritas responden berada di rentang usia 10-20 tahun

10 20 30 40 50 60 70 Usia Responden

Barchart Sebaran Pendidikan Terakhir Responden

```
In [72]: # Cleaning baris yang memiliki nilai '0 level' pada kolom 'Pendidikan Terakhir'
df = df[df['Pendidikan Terakhir'] != '0 LEVEL']
```

In [73]: profession_freq = pd.DataFrame(df["Pendidikan Terakhir"].value_counts())
 profession_freq.rename(columns={"Pendidikan Terakhir":"Frekuensi"}, inplace=True)

profession_freq.rename_axis("Pendidikan Terakhir", inplace=True)

graph = sbs.barplot(y=profession_freq.index, x=profession_freq["Frekuensi"], orient='h', palette="muted")
graph.bar_label(graph.containers[0], padding=3)

plt.xticks(rotation=90)
plt.title("Grafik 3: Perbandingan Frekuensi/Proporsi Pendidikan Terakhir Responden", fontsize=9, loc="left", fontweight="bold")

Menambahkan Insight di Bawah Visualisasi

Menambahkan Insight di Bawah Visualisasi
plt.text(80, 9.6, "Insight: Mayoritas responden menempuh pendidikan Terakhir SMA", ha='center', fontsize=10, fontweight='bold')

plt.show()

| SMA | 90 | 149 | S1 | S2 | 23 | 23 | SMK | 2 | SMP | 1 | S3 | 1 | O | 02 | 04 | 09 | 08 | 001 | 071

Insight: Mayoritas responden menempuh pendidikan Terakhir SMA

Barchart Perbandingan Proporsi Pengguna Bank (Kolom bank_1 sampai bank_7)

```
In [74]: # Generate Dataframe
          bank_1 = pd.DataFrame(df["bank_1"].value_counts())
          bank_2 = pd.DataFrame(df["bank_2"].value_counts())
          bank_3 = pd.DataFrame(df["bank_3"].value_counts())
          bank_4 = pd.DataFrame(df["bank_4"].value_counts())
          bank_5 = pd.DataFrame(df["bank_5"].value_counts())
          bank_6 = pd.DataFrame(df["bank_6"].value_counts())
          bank_7 = pd.DataFrame(df["bank_7"].value_counts())
          bank_val = np.array([bank_1.index[0],bank_2.index[0],bank_3.index[0],bank_4.index[0],bank_5.index[0],bank_6.index[0],bank_7.index[0]])
          bank_freq = np.array([bank_1["bank_1"][0],bank_2["bank_2"][0],bank_3["bank_3"][0],bank_4["bank_4"][0],bank_5["bank_5"][0],bank_6["bank_6"][0],bank_7["bank_7"][0]])
          bank_data = {'Bank' : bank_val, "Frekuensi Pengguna" : bank_freq}
          df_bank = pd.DataFrame(data=bank_data)
          graph = sbs.barplot(y=df_bank['Bank'], x=df_bank["Frekuensi Pengguna"], orient="h", palette="muted")
          graph.bar_label(graph.containers[0])
          plt.title("Grafik 4: Perbandingan Proporsi Pengguna Bank", fontsize=9, loc="left", fontweight="bold")
          # Menambahkan Insight di Bawah Visualisasi
          plt.text(50, 8, "Insight: Mayoritas responden menggunakan layanan Bank BCA", ha='center', fontsize=10, fontweight='bold')
          plt.show()
```

Bank BNI
Bank BCA
Bank CIMB Niaga
Bank BTN
Bank Permata
Bank Permata
Bank Permata
Bank BRI
Bank Permata
Bank BRI
Bank Permata
Bank BRI
Bank Permata
Bank BRI
Bank BRI
Bank Permata
Bank BRI
Bank Permata
Bank BRI
Bank BRI
Bank Permata

Frekuensi Pengguna
Insight: Mayoritas responden menggunakan layanan Bank BCA

Bar chart sebaran Profesi responden.

graph.bar_label(graph.containers[0], padding=3)

```
In [75]: profession_freq = pd.DataFrame(df["Pekerjaan"].value_counts())
profession_freq.rename(columns={"Pekerjaan":"Frekuensi"}, inplace=True)
profession_freq.rename_axis("Pekerjaan",inplace=True)
```

plt.xticks(rotation=90)
plt.title("Grafik 5: Sebaran Pekerjaan Responden", fontsize=9, loc="left", fontweight="bold")

Menambahkan Insight di Bawah Visualisasi

graph = sbs.barplot(y=profession_freq.index, x=profession_freq["Frekuensi"], orient='h', palette="muted")

plt.text(35, 20, "Insight: Mayoritas responden berprofesi sebagai pelajar/mahasiswa", ha='center', fontsize=10, fontweight='bold')

40 60 80 100 120 140

plt.show()

```
Grafik 5: Sebaran Pekerjaan Responden
                 Pelajar / Mahasiswa
                  Karyawan Swasta
                  Ibu Rumah Tangga 📉 18
                    Pegawai Negeri 14
Profesional ( Dokter, Dosen, Pengacara, dll) 11
                        Pengusaha 10
                       Wiraswasta 3
                   Karyawan BUMN 2
                     Pegawai BUMD | 1
                      Site Engineer | 1
                      Pekerja lepas 1
                       Wiraswasta 1
                           Notaris :
                           Swasta
                           BUMN
                        Pensiunan
                                     20
40
60
60
100
120
140
```

Insight: Mayoritas responden berprofesi sebagai pelajar/mahasiswa

Pie Chart Proporsi Preferensi Tempat Belanja Online

```
Policy control of places and control of plac
```

Grafik 6: Preferensi Tempat Belanja Online

Insight: Sebagian besar responden memilih marketplace sebagai tempat belanja mereka

SOAL 3: Univariate analysis

Confidence interval 95% for one-sample proportion

ecommerce_pilihan_5 = pd.DataFrame(df["ecommerce_pilihan_5"].value_counts())
ecommerce_pilihan_6 = pd.DataFrame(df["ecommerce_pilihan_6"].value_counts())

print(df["ecommerce_pilihan_4"].value_counts())
print(df["ecommerce_pilihan_5"].value_counts())

In [77]: bca_data = df_bank[df_bank["Bank"] == "Bank BCA"]["Frekuensi Pengguna"].sum()

```
total_bank = df_bank["Frekuensi Pengguna"].sum()
                 prop_bca = bca_data/total_bank
                 alpha = 0.05
                 z_alphaper2 = st.norm.ppf(1-alpha/2)
                 lower_bound = prop_bca - z_alphaper2*np.sqrt(prop_bca*(1-prop_bca)/total_bank)
                 upper_bound = prop_bca + z_alphaper2*np.sqrt(prop_bca*(1-prop_bca)/total_bank)
                 print("Confidence Interval dari proporsi Bank BCA adalah {:.4f} < Proporsi Bank BCA < {:.4f}".format(lower_bound, upper_bound))</pre>
              Confidence Interval dari proporsi Bank BCA adalah 0.3411 < Proporsi Bank BCA < 0.4390
In [78]: emoney_1 = pd.DataFrame(df["emoney_pilihan_1"].value_counts())
                 emoney_2 = pd.DataFrame(df["emoney_pilihan_2"].value_counts())
                 emoney_3 = pd.DataFrame(df["emoney_pilihan_3"].value_counts())
                 emoney_4 = pd.DataFrame(df["emoney_pilihan_4"].value_counts())
                 emoney_5 = pd.DataFrame(df["emoney_pilihan_5"].value_counts())
                 emoney_6 = pd.DataFrame(df["emoney_pilihan_6"].value_counts())
                 emoney_7 = pd.DataFrame(df["emoney_pilihan_7"].value_counts())
                 emoney_val = np.array([emoney_1.index[0],emoney_2.index[0],emoney_3.index[0],emoney_4.index[0],emoney_5.index[0],emoney_6.index[0],emoney_7.index[0]])
                 emoney_freq = np.array([emoney_1["emoney_pilihan_1"][0],emoney_2["emoney_pilihan_3"][0],emoney_5["emoney_pilihan_5"][0],emoney_5["emoney_pilihan_5"][0],emoney_5["emoney_pilihan_5"][0],emoney_5["emoney_pilihan_5"][0],emoney_5["emoney_pilihan_5"][0],emoney_5["emoney_pilihan_5"][0],emoney_5["emoney_pilihan_5"][0],emoney_5["emoney_pilihan_5"][0],emoney_5["emoney_pilihan_5"][0],emoney_5["emoney_pilihan_5"][0],emoney_5["emoney_pilihan_5"][0],emoney_5["emoney_pilihan_5"][0],emoney_5["emoney_pilihan_5"][0],emoney_5["emoney_pilihan_5"][0],emoney_5["emoney_pilihan_5"][0],emoney_5["emoney_pilihan_5"][0],emoney_5["emoney_pilihan_5"][0],emoney_5["emoney_pilihan_5"][0],emoney_5["emoney_pilihan_5"][0],emoney_5["emoney_pilihan_5"][0],emoney_5["emoney_pilihan_5"][0],emoney_5["emoney_pilihan_5"][0],emoney_5["emoney_pilihan_5"][0],emoney_5["emoney_pilihan_5"][0],emoney_5["emoney_pilihan_5"][0],emoney_5["emoney_pilihan_5"][0],emoney_5["emoney_pilihan_5"][0],emoney_5["emoney_pilihan_5"][0],emoney_5["emoney_pilihan_5"][0],emoney_5["emoney_pilihan_5"][0],emoney_5["emoney_pilihan_5"][0],emoney_5["emoney_pilihan_5"][0],emoney_5["emoney_pilihan_5"][0],emoney_5["emoney_pilihan_5"][0],emoney_5["emoney_pilihan_5"][0],emoney_5["emoney_pilihan_5"][0],emoney_5["emoney_pilihan_5"][0],emoney_5["emoney_pilihan_5"][0],emoney_5["emoney_pilihan_5"][0],emoney_5["emoney_pilihan_5"][0],emoney_5["emoney_pilihan_5"][0],emoney_5["emoney_pilihan_5"][0],emoney_5["emoney_pilihan_5"][0],emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["emoney_5["em
                 emoney_data = {'E-money' : emoney_val, "Frekuensi Pengguna" : emoney_freq}
                 df_emoney = pd.DataFrame(data=emoney_data)
                 total_emoney = df_emoney["Frekuensi Pengguna"].sum()
                 prop_gopay = df_emoney[df_emoney["E-money"] == "GoPay"]["Frekuensi Pengguna"].sum()/total_emoney
                 alpha = 0.05
                 z_alphaper2 = st.norm.ppf(1 - alpha / 2)
                 lower_bound = prop_gopay - z_alphaper2 * np.sqrt(prop_gopay * (1 - prop_gopay) / total_emoney)
                 upper_bound = prop_gopay + z_alphaper2 * np.sqrt(prop_gopay * (1 - prop_gopay) / total_emoney)
                 print("Confidence Interval dari proporsi GoPay adalah {:.4f} < Proporsi GoPay < {:.4f}".format(lower_bound, upper_bound))</pre>
              Confidence Interval dari proporsi GoPay adalah 0.2196 < Proporsi GoPay < 0.2780
In [79]: alpha = 0.05
                 ecommerce_pilihan_1 = pd.DataFrame(df["ecommerce_pilihan_1"].value_counts())
                 ecommerce_pilihan_2 = pd.DataFrame(df["ecommerce_pilihan_2"].value_counts())
                 ecommerce_pilihan_3 = pd.DataFrame(df["ecommerce_pilihan_3"].value_counts())
                 ecommerce_pilihan_4 = pd.DataFrame(df["ecommerce_pilihan_4"].value_counts())
```

```
ecommerce_pilihan_7 = pd.DataFrame(df["ecommerce_pilihan_7"].value_counts())
                        ecommerce_pilihan_8 = pd.DataFrame(df["ecommerce_pilihan_8"].value_counts())
                        ecommerce_pilihan_9 = pd.DataFrame(df["ecommerce_pilihan_9"].value_counts())
                        ecommerce_pilihan_10 = pd.DataFrame(df["ecommerce_pilihan_10"].value_counts())
                        ecommerce_pilihan_11 = pd.DataFrame(df["ecommerce_pilihan_11"].value_counts())
                        ecommerce_pilihan_12 = pd.DataFrame(df["ecommerce_pilihan_12"].value_counts())
                        ecommerce_val = np.array([ecommerce_pilihan_1.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_3.index[0],ecommerce_pilihan_
                        ecommerce_pilihan_1"[0],ecommerce_pilihan_2"[0],ecommerce_pilihan_3"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_3"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_2"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_2"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_2"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_2"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecommerce_pilihan_1"[0],ecomme
                        ecommerce_data = {'ecommerce' : ecommerce_val, "Frekuensi Pengguna" : ecommerce_freq}
                        df_ecommerce = pd.DataFrame(data=ecommerce_data)
                        total_ecommerce = df_ecommerce["Frekuensi Pengguna"].sum()
                        prop_shopee = df_ecommerce[df_ecommerce["ecommerce"] == "Shopee"]["Frekuensi Pengguna"].sum()/total_ecommerce
                        alpha = 0.05
                        z_{alphaper2} = st.norm.ppf(1 - alpha / 2)
                        lower_bound = prop_shopee - z_alphaper2 * np.sqrt(prop_shopee * (1 - prop_shopee) / total_ecommerce)
                          upper_bound = prop_shopee + z_alphaper2 * np.sqrt(prop_shopee * (1 - prop_shopee) / total_ecommerce)
                        print("Confidence Interval dari proporsi Shopee adalah {:.4f} < Proporsi Shopee < {:.4f}".format(lower_bound, upper_bound))</pre>
                     Confidence Interval dari proporsi Shopee adalah 0.2320 < Proporsi Shopee < 0.2907
In [80]: #cek isi
                        print(df["ecommerce_pilihan_1"].value_counts())
                        print(df["ecommerce_pilihan_2"].value_counts())
                        print(df["ecommerce_pilihan_3"].value_counts())
```

```
print(df["ecommerce_pilihan_6"].value_counts())
         print(df["ecommerce_pilihan_7"].value_counts())
         print(df["ecommerce_pilihan_8"].value_counts())
         print(df["ecommerce_pilihan_9"].value_counts())
         print(df["ecommerce_pilihan_10"].value_counts())
         print(df["ecommerce_pilihan_11"].value_counts())
         print(df["ecommerce_pilihan_12"].value_counts())
        Shopee 225
        Name: ecommerce_pilihan_1, dtype: int64
       Gojek (GoFood 208
        Name: ecommerce_pilihan_2, dtype: int64
        Tokopedia 188
        Name: ecommerce_pilihan_3, dtype: int64
        Grab (GrabFood 89
        Name: ecommerce_pilihan_4, dtype: int64
        Traveloka 56
       Name: ecommerce_pilihan_5, dtype: int64
        Lazada 30
       Name: ecommerce_pilihan_6, dtype: int64
        Tiket.com 31
        Name: ecommerce_pilihan_7, dtype: int64
        Bukalapak 19
       Name: ecommerce_pilihan_8, dtype: int64
        Name: ecommerce_pilihan_9, dtype: int64
       JD.id 9
       Name: ecommerce_pilihan_10, dtype: int64
        Name: ecommerce_pilihan_11, dtype: int64
       Series([], Name: ecommerce_pilihan_12, dtype: int64)
         One sample Z-test for proportion dengan alpha = 5%
In [81]: # H0: pbca = 0.5
         # H1: pbca ≠ 0.5
         alpha = 0.05
         pBCA0 = 0.5
         z =(total_bank*prop_bca - total_bank*pBCA0)/np.sqrt(total_bank*pBCA0*(1-pBCA0))
         z_alphaper2 = st.norm.ppf(1-alpha/2)
         print("Critical Region: Z < -\{:.2f\} \mid Z > \{:.2f\}".format(z_alphaper2,z_alphaper2))
         print("Z-value: {:.4f}".format(z))
         if not(z < -z_alphaper2 or z > z_alphaper2):
           print("Karena Z-value berada di luar Critical Region, maka hipotesis gagal ditolak")
          print("Karena Z-value berada di dalam Critical Region, maka hipotesis berhasil ditolak")
         pvalue = 2*(1-st.norm.cdf(abs(z)))
         print ("P value : {:.8f}".format(pvalue))
       Critical Region: Z < -1.96 | Z > 1.96
        Z-value: -4.2978
       Karena Z-value berada di dalam Critical Region, maka hipotesis berhasil ditolak
       P value : 0.00001725
In [82]: x = np.linspace(-4, 4, 1000)
        y = st.norm.pdf(x, 0, 1)
         plt.plot(x, y)
         plt.fill\_between(x, 0, y, where=(x < -z\_alphaper2) | (x > z\_alphaper2), color='red', alpha=0.3)
         plt.axvline(z, color='black', linestyle='--', label=f'Z-value: {z:.2f}')
         plt.axvline(-z_alphaper2, color='green', linestyle='--', label=f'Critical Region: -{z_alphaper2:.2f}')
         plt.axvline(z_alphaper2, color='green', linestyle='--', label=f'Critical Region: {z_alphaper2:.2f}')
         plt.legend()
         plt.show()
       0.35
        0.30
        0.25
       0.20
       0.15
        0.10
                                √ - - - Z-value: -4.30
       0.05
                               --- Critical Region: -1.96
                               --- Critical Region: 1.96
        0.00
               -4 -3 -2 -1 0 1 2 3 4
In [83]: # HO: PGopay = 0.3
         # H1: PGopay ≠ 0.3
         alpha = 0.05
         pGopay0 = 0.3
         z =(total_emoney*prop_gopay - total_emoney*pGopay0)/np.sqrt(total_emoney*pGopay0*(1-pGopay0))
         z_alphaper2 = st.norm.ppf(1-alpha/2)
         print("Critical Region: Z < -\{:.2f\} \mid Z > \{:.2f\}".format(z_alphaper2,z_alphaper2))
         print("Z-value: {:.4f}".format(z))
         if not(z < -z_alphaper2 or z > z_alphaper2):
           print("Karena Z-value berada di luar Critical Region, maka hipotesis gagal ditolak")
          print("Karena Z-value berada di dalam Critical Region, maka hipotesis berhasil ditolak")
         pvalue = 2*(1-st.norm.cdf(abs(z)))
         print ("P value : {:.8f}".format(pvalue))
       Critical Region: Z < -1.96 | Z > 1.96
       Z-value: -3.2449
       Karena Z-value berada di dalam Critical Region, maka hipotesis berhasil ditolak
       P value : 0.00117487
In [84]: import matplotlib.pyplot as plt
         # Proporsi GoPay
         proporsi_GoPay = 0.2488
         nilai_diasumsikan = 0.3
         plt.figure(figsize=(6, 6))
         plt.bar(0, proporsi_GoPay, color='blue', alpha=0.7, label='Proporsi GoPay')
         plt.axhline(y=nilai_diasumsikan, color='red', linestyle='--', label='Nilai Diasumsikan (0.3)')
         plt.ylabel('Proporsi')
         plt.title('Perbandingan Proporsi GoPay dengan Nilai Diasumsikan')
         plt.xticks([])
         plt.legend()
         plt.show()
                Perbandingan Proporsi GoPay dengan Nilai Diasumsikan
          0.30 ----- Nilai Diasumsikan (0.3)
                                              Proporsi GoPay
           0.25
           0.20
           0.05
In [85]: # HO: Shopee = 0.2
         # H1: Shopee < 0.2
         alpha = 0.05
         pShopee0 = 0.2
         z =(total_ecommerce*prop_shopee - total_ecommerce*pShopee0)/np.sqrt(total_ecommerce*pShopee0*(1-pShopee0))
```

z_alphaper2 = st.norm.ppf(1-alpha/2)

print("Z-value: {:.4f}".format(z))

if not(z < -z_alphaper2):</pre>

print("Critical Region: Z < -{:.2f}".format(z_alphaper2,z_alphaper2))</pre>

print("Karena Z-value berada di luar Critical Region, maka hipotesis gagal ditolak")

```
print("Karena Z-value berada di dalam Critical Region, maka hipotesis berhasil ditolak")
         pvalue = 2*(1-st.norm.cdf(abs(z)))
         print ("P value : {:.8f}".format(pvalue))
       Critical Region: Z < -1.96
       Z-value: 4.4985
       Karena Z-value berada di luar Critical Region, maka hipotesis gagal ditolak
       P value : 0.00000684
In [86]: import numpy as np
         import matplotlib.pyplot as plt
         import scipy.stats as st
         alpha = 0.05
         pShopee0 = 0.2
        z = 4.4985
        x = np.linspace(-4, 4, 1000)
        y = st.norm.pdf(x, 0, 1)
         plt.plot(x, y)
         plt.fill_between(x, 0, y, where=(x < -1.96), color='red', alpha=0.3, label='Critical Region')
         plt.axvline(z, color='black', linestyle='--', label=f'Z-value: {z:.2f}')
         plt.axvline(-1.96, color='green', linestyle='--', label='Critical Region: -1.96')
         plt.legend()
         plt.title('Z-Distribution with Critical Region')
         plt.xlabel('Z-value')
         plt.ylabel('Density')
         plt.show()
                             Z-Distribution with Critical Region
           0.40
                                                  Critical Region
                                                  --- Z-value: 4.50
           0.35
                                                 --- Critical Region: -1.96
                                           Z-value
        Chi-squared test for goodness-of-fit test dengan alpha = 5%
In [87]: #HO: Distribusi Pendidikan Terakhir = uniform distribution
         #H1: Distribusi Pendidikan Terakhir ≠ uniform distribution
         alpha = 0.05
         pend_akhir = df['Pendidikan Terakhir'].value_counts().reset_index()
         pend_akhir.columns = ['Pendidikan Terakhir', '0i']
         pend_akhir['Ei'] = 1/8 * len(df)
         pend_akhir['(0i - Ei)^2 / Ei'] = pend_akhir.apply(lambda x: (x['0i'] - x['Ei'])**2 / x['Ei'], axis = 1)
        pend_akhir
Out[87]: Pendidikan Terakhir Oi Ei (Oi - Ei)^2 / Ei
                      SMA 149 35.5 362.880282
                        S1 90 35.5 83.669014
                        S2 23 35.5 4.401408
                       D3 15 35.5 11.838028
                        D4 3 35.5 29.753521
                       SMK 2 35.5 31.612676
                       SMP 1 35.5 33.528169
         7 S3 1 35.5 33.528169
In [88]: # test statistic (chi2)
        chi2 = pend_akhir['(0i - Ei)^2 / Ei'].sum()
        # crit region
         alpha = 0.05
         df = len(pend_akhir) - 1
         chi2_alpha = st.chi2.ppf(1 - 0.05, df)
         # kesimpulan
         if chi2 < chi2_alpha:</pre>
           kesimpulan = 'chi2 di luar crit region, fail to reject H0'
          kesimpulan = 'chi2 di dalam crit region, reject H0,\nDistribusi Pendidikan Terakhir tidak mengikuti distribusi seragam'
         #p-value
         pval = (1 - st.chi2.cdf(chi2, df))
         print(f'''
         Hasil chi2 test:
         chi2: {chi2:.2f}
        crit region: chi2 > {chi2_alpha:.2f}
         kesimpulan: {kesimpulan}
        p-value: {pval:.2f}
         ''')
       Hasil chi2 test:
       chi2: 591.21
       crit region: chi2 > 14.07
       kesimpulan: chi2 di dalam crit region, reject H0,
       Distribusi Pendidikan Terakhir tidak mengikuti distribusi seragam
       p-value: 0.00
In [118... #HO: Distribusi Jenis Kelamin = uniform distribution
        #H1: Distribusi Jenis Kelamin ≠ uniform distribution
         alpha = 0.05
         jeniskelamin = df['Jenis Kelamin'].value_counts().reset_index()
         jeniskelamin.columns = ['Jenis Kelamin', 'Oi']
         jeniskelamin['Ei'] = 1/2 * len(df)
         jeniskelamin['(0i - Ei)^2 / Ei'] = jeniskelamin.apply(lambda x: (x['0i'] - x['Ei'])**2 / x['Ei'], axis = 1)
         jeniskelamin
Out[118... Jenis Kelamin Oi Ei (Oi - Ei)^2 / Ei
         0 Wanita 149 142.5 0.296491
         1 Pria 136 142.5 0.296491
In [119... # test statistic (chi2)
        chi2 = jeniskelamin['(0i - Ei)^2 / Ei'].sum()
        # crit region
         alpha = 0.05
         df = len(jeniskelamin) - 1
         chi2_alpha = st.chi2.ppf(1 - 0.05, df)
        # kesimpulan
         if chi2 < chi2_alpha:</pre>
          kesimpulan = 'chi2 di luar crit region, fail to reject H0, \nDistribusi Jenis Kelamin dapat dianggap sebagai distribusi seragam (uniform).'
          kesimpulan = 'chi2 di dalam crit region, reject H0'
         #p-value
         pval = (1 - st.chi2.cdf(chi2, df))
         print(f'''
         Hasil chi2 test:
         chi2: {chi2:.2f}
         crit region: chi2 > {chi2_alpha:.2f}
         kesimpulan: {kesimpulan}
        p-value: {pval:.2f}
         ''')
       Hasil chi2 test:
       chi2: 0.59
       crit region: chi2 > 3.84
```

p-value: 0.44

kesimpulan: chi2 di luar crit region, fail to reject H0,

Distribusi Jenis Kelamin dapat dianggap sebagai distribusi seragam (uniform).

```
Confidence interval 95% for two-sample proportion difference
In [ ]: alpha = 0.05
         total_emoney = df_emoney["Frekuensi Pengguna"].sum()
        gopay_prop = df_emoney[df_emoney["E-money"] == "GoPay"]["Frekuensi Pengguna"].sum()/total_emoney
         ovo_prop = df_emoney[df_emoney["E-money"] == "OVO"]["Frekuensi Pengguna"].sum()/total_emoney
         difference = gopay_prop - ovo_prop
         z_alphaPer2 = st.norm.ppf(1-alpha/2)
         lower_bound = difference - z_alphaPer2 * np.sqrt(gopay_prop*(1-gopay_prop)/total_emoney + ovo_prop*(1-ovo_prop)/total_emoney)
         upper_bound = difference + z_alphaPer2 * np.sqrt(gopay_prop*(1-gopay_prop)/total_emoney + ovo_prop*(1-ovo_prop)/total_emoney)
         print ("Confidence Interval Selisih Proporsi penggunaan Gopay dan OVO:")
         print("{:.5f} < P Gopay - P OVO < {:.5f}".format(lower_bound,upper_bound))</pre>
       Confidence Interval Selisih Proporsi penggunaan Gopay dan OVO:
       0.02724 < P Gopay - P OVO < 0.10546
In [43]: alpha = 0.05
         total_bank = df_bank["Frekuensi Pengguna"].sum()
         bca_prop = df_bank[df_bank["Bank"] == "Bank BCA"]["Frekuensi Pengguna"].sum()/total_bank
        mandiri_prop = df_bank[df_bank["Bank"] == "Bank Mandiri"]["Frekuensi Pengguna"].sum()/total_bank
         difference = bca_prop - mandiri_prop
         z_alphaPer2 = st.norm.ppf(1-alpha/2)
         lower_bound = difference - z_alphaPer2 * np.sqrt(bca_prop*(1-bca_prop)/total_bank + mandiri_prop*(1-mandiri_prop)/total_bank)
         upper_bound = difference + z_alphaPer2 * np.sqrt(bca_prop*(1-bca_prop)/total_bank + mandiri_prop*(1-mandiri_prop)/total_bank)
         print ("Confidence Interval Selisih Proporsi penggunaan BCA dan Bank Mandiri:")
         print("{:.5f} < P BCA - P Bank Mandiri < {:.5f}".format(lower_bound,upper_bound))</pre>
       Confidence Interval Selisih Proporsi penggunaan BCA dan Bank Mandiri:
       0.10053 < P BCA - P Bank Mandiri < 0.22932
In [44]: import matplotlib.pyplot as plt
         plt.figure(figsize=(8, 6))
        plt.plot([0, 1], [lower_bound, upper_bound], marker='o', linestyle='-')
         plt.title('Confidence Interval Selisih Proporsi penggunaan BCA dan Bank Mandiri')
         plt.xlabel('Selisih Proporsi')
         plt.ylabel('Interval')
         plt.xticks([0, 1], ['Lower Bound', 'Upper Bound'])
         plt.grid(True)
         plt.show()
                  Confidence Interval Selisih Proporsi penggunaan BCA dan Bank Mandiri
           0.12
           0.10
```

In [45]: alpha = 0.05

Lower Bound

total_ecommerce = df_ecommerce["Frekuensi Pengguna"].sum()
shopee_prop = df_ecommerce[df_ecommerce["ecommerce"] == "Shopee"]["Frekuensi Pengguna"].sum()/total_ecommerce
tokopedia_prop = df_ecommerce[df_ecommerce["ecommerce"] == "Tokopedia"]["Frekuensi Pengguna"].sum()/total_ecommerce

Selisih Proporsi

difference = shopee_prop - tokopedia_prop
z_alphaPer2 = st.norm.ppf(1-alpha/2)

lower_bound = difference - z_alphaPer2 * np.sqrt(shopee_prop*(1-shopee_prop)/total_ecommerce + tokopedia_prop*(1-tokopedia_prop)/total_ecommerce)
upper_bound = difference + z_alphaPer2 * np.sqrt(shopee_prop*(1-shopee_prop)/total_ecommerce + tokopedia_prop*(1-tokopedia_prop)/total_ecommerce)

Upper Bound

print ("Confidence Interval Selisih Proporsi penggunaan Shopee dan Tokopedia:")
print("{:.5f} < P Shopee - P Tokopedia < {:.5f}".format(lower_bound,upper_bound))</pre>

Confidence Interval Selisih Proporsi penggunaan Shopee dan Tokopedia: 0.00269 < P Shopee - P Tokopedia < 0.08326

In [46]: import matplotlib.pyplot as plt

plt.figure(figsize=(8, 6))

plt.plot([0, 1], [lower_bound, upper_bound], marker='o', linestyle='-')

plt.title('Confidence Interval Selisih Proporsi penggunaan Shopee dan Tokopedia')
plt.xlabel('Selisih Proporsi')

plt.ylabel('Interval')
plt.xticks([0, 1], ['Lower Bound', 'Upper Bound'])

plt.grid(True)
plt.show()

Confidence Interval Selisih Proporsi penggunaan Shopee dan Tokopedia 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 Lower Bound Selisih Proporsi

Two-samples Z-test for proportion difference dengan alpha = 5%

```
In [ ]: #H0: PGopay = POvo
       #H1: PGopay ≠ POvo
       alpha = 0.05
       XGopay = df_emoney[df_emoney["E-money"] == "GoPay"]["Frekuensi Pengguna"].sum()
       XOVO = df_emoney[df_emoney["E-money"] == "OVO"]["Frekuensi Pengguna"].sum()
       pHat = (XGopay + XOVO) / (total_emoney + total_emoney)
       z_alphaper2 = st.norm.ppf(1-alpha/2)
       z = (gopay_prop - ovo_prop) / np.sqrt(pHat*(1-pHat)*(1/total_emoney + 1/total_emoney))
       print("Critical Region: Z < -{:.2f} | Z > {:.2f}".format(z_alphaper2,z_alphaper2))
       print("Z-value: {:.4f}".format(z))
       if not(z < -z_alphaper2 or z > z_alphaper2):
         print("Karena Z-value berada di luar Critical Region, maka hipotesis gagal ditolak")
         print("Karena Z-value berada di dalam Critical Region, maka hipotesis berhasil ditolak")
       pvalue = 2*(1-st.norm.cdf(abs(z)))
       print ("P value : {:.5f}".format(pvalue))
      Critical Region: Z < -1.96 | Z > 1.96
      Z-value: 3.3142
      Karena Z-value berada di dalam Critical Region, maka hipotesis berhasil ditolak
      P value : 0.00092
In [ ]: #H0: PBCA = PMandiri
```

#H1: PBCA ≠ PMandiri
alpha = 0.05

XBCA = df_bank[df_bank["Bank"] == "Bank BCA"]["Frekuensi Pengguna"].sum()
XMandiri = df_bank[df_bank["Bank"] == "Bank Mandiri"]["Frekuensi Pengguna"].sum()

pHat = (XBCA + XMandiri) / (total_bank + total_bank)

pHat = (XBCA + XMandiri) / (total_bank + total_bank)
z_alphaper2 = st.norm.ppf(1-alpha/2)
z = (bca_prop - mandiri_prop) / np.sqrt(pHat*(1-pHat)*(1/total_bank + 1/total_bank))

```
print("Critical Region: Z < -\{:.2f\} \mid Z > \{:.2f\}".format(z_alphaper2,z_alphaper2))
        print("Z-value: {:.4f}".format(z))
        if not(z < -z_alphaper2 or z > z_alphaper2):
          print("Karena Z-value berada di luar Critical Region, maka hipotesis gagal ditolak")
          print("Karena Z-value berada di dalam Critical Region, maka hipotesis berhasil ditolak")
        pvalue = 2*(1-st.norm.cdf(abs(z)))
        print ("P value : {:.5f}".format(pvalue))
       Critical Region: Z < -1.96 | Z > 1.96
       Z-value: 4.9388
       Karena Z-value berada di dalam Critical Region, maka hipotesis berhasil ditolak
       P value : 0.00000
 In [ ]: #H0: PShopee = PTokopedia
        #H1: PShopee < PTokopedia
        alpha = 0.05
        XShopee = df_ecommerce[df_ecommerce["ecommerce"] == "Shopee"]["Frekuensi Pengguna"].sum()
        XTokopedia = df_ecommerce[df_ecommerce["ecommerce"] == "Tokopedia"]["Frekuensi Pengguna"].sum()
        pHat = (XShopee + XTokopedia) / (total_ecommerce + total_ecommerce)
        z_alphaper2 = st.norm.ppf(1-alpha/2)
        z = (shopee_prop - tokopedia_prop) / np.sqrt(pHat*(1-pHat)*(1/total_ecommerce + 1/total_ecommerce))
        print("Critical Region: Z < -{:.2f}".format(z_alphaper2,z_alphaper2))</pre>
        print("Z-value: {:.4f}".format(z))
        if not(z < -z_alphaper2):</pre>
          print("Karena Z-value berada di luar Critical Region, maka hipotesis gagal ditolak")
          print("Karena Z-value berada di dalam Critical Region, maka hipotesis berhasil ditolak")
        pvalue = 2*(1-st.norm.cdf(abs(z)))
        print ("P value : {:.5f}".format(pvalue))
       Critical Region: Z < -1.96
       Z-value: 2.0882
       Karena Z-value berada di luar Critical Region, maka hipotesis gagal ditolak
       P value : 0.03678
        Chi-squared test for independence dengan alpha = 5%
In [51]: # H0: Variabel Pekerjaan independen dengan penghasilan per bulan
        # H1: Variabel Pekerjaan tidak independen dengan penghasilan per bulan
        contigency = pd.crosstab(df['Penghasilan per Bulan'], df['Pekerjaan'])
        contigency
                  Pekerjaan BUMN Ibu Rumah Tangga Karyawan BUMN Karyawan Swasta Notaris Pegawai BUMD Pegawai Negeri Pekerja lepas Pelajar / Mahasiswa Pensiunan Profesional ( Dokter, Dosen, Pengacara, dll) Site Engineer Swasta Wiraswasta Wiraswasta
        Penghasilan per Bulan
                                                                                                                                                                                       0 0 0 0
                < Rp 2 juta
                                                                                                                                                                                       4 0 1 1 0
               > Rp 10 juta
          Rp 2 juta – Rp 5 juta
                                                                                                                                                                                       1 0 0 2 1
                                                                                                                                                                                      6 1 0 0 0
        Rp 5 juta – Rp 10 juta
In [91]: Ei = contigency.copy()
        for s in contigency.index:
           for o in contigency.columns:
                Ei.loc[s, o] = contigency.loc[s].sum() * contigency.loc[:, o].sum() / contigency.values.sum()
Out[91]:
                  Pekerjaan BUMN Ibu Rumah Tangga Karyawan BUMN Karyawan Swasta Notaris Pegawai BUMD Pegawai Negeri Pekerja lepas Pelajar / Mahasiswa Pensiunan Profesional ( Dokter, Dosen, Pengacara, dll) Site Engineer Swasta Wiraswasta Wiraswasta
        Penghasilan per Bulan
                                                                                                                                69.614035 4.940351 0.449123
                < Rp 2 juta 0.449123
                                         8.084211
                                                       0.898246
                                                                    28.294737 0.449123
                                                                                         0.449123
                                                                                                      6.287719 0.449123
                                                                                                                                                                                     4.940351 0.449123 0.449123 1.347368 0.449123
               > Rp 10 juta 0.182456
                                                                    11.494737 0.182456
                                                                                        0.182456
                                                                                                       2.554386 0.182456
                                                                                                                                28.280702 2.007018 0.182456
                                                                                                                                                                                     Rp 2 juta – Rp 5 juta 0.207018
                                                                                                       2.898246 0.207018
                                                                                                                                32.087719 2.277193 0.207018
                                                                                                                                                                                     Rp 5 juta – Rp 10 juta 0.161404
                                         2.905263
                                                                                                                                25.017544 1.775439 0.161404
                                                                                                                                                                                     1.775439 0.161404 0.161404 0.484211 0.161404
        # H1: Variabel Pekerjaan tidak independen dengan penghasilan per bulan
        chi2 = ((contigency - Ei) ** 2 / Ei).sum().sum()
        alpha = 0.05
        row = 4
        df = (row-1)*(col-1)
        chi2_alpha = st.chi2.ppf(1-alpha, df)
        pval = 1 - st.chi2.cdf(chi2, df)
```

In [92]: # HO: Variabel Pekerjaan independen dengan penghasilan per bulan

col = 16

if chi2 < chi2_alpha:</pre>

kesimpulan = 'chi2 di luar crit region, fail to reject H0,'

kesimpulan = 'chi2 di dalam crit region, reject H0, \nVariabel Pekerjaan dan penghasilan per bulan memiliki keterkaitan atau hubungan yang signifikan satu sama lain' print(f'''

chi2: {chi2:.2f}

Hasil chi2 test:

crit region: chi2 > {chi2_alpha:.2f}

kesimpulan: {kesimpulan} p-value: {pval:.2f}

Hasil chi2 test:

chi2: 258.53 crit region: chi2 > 61.66

kesimpulan: chi2 di dalam crit region, reject H0, Variabel Pekerjaan dan penghasilan per bulan memiliki keterkaitan atau hubungan yang signifikan satu sama lain p-value: 0.00

CleanUp Data

In [95]: df['Durasi Penggunaan Internet per Hari (dalam Jam)'] = df['Durasi Penggunaan Internet per Hari (dalam Jam)'].str.rstrip('%').astype(float) / 100

[95]:	Jenis k	Kelamin Usia Pendidikan	Terakhir Pekerjaan F	Penghasilan per Bulan D	misili Durasi Penggun	naan Internet per Hari (dalam Jam) Ak	tivitas Online Meningkat Aktivit	as yang Meningkat dalam 3 Bulan Terakhir layanan_aktif_1	cara_pembayaran_belanja_online_5 car	a_pembayaran_belanja_online_6 cara	_pembayaran_belanja_online_7 ca	ra_pembayaran_belanja_online_8	keluhan_belanja_online_1	keluhan_belanja_online_2	keluhan_belanja_online_3	keluhan_belanja_online_4	keluhan_belanja_online_5	keluhan_belanja_online_6
	0	Pria 19	S1 Pelajar / Mahasiswa	< Rp 2 juta	Depok	NaN	Sama saja	NaN Mobile Banking	NaN	NaN	NaN	menggunakan fitur Paylater Bara	ang yang diperoleh tidak sesuai dengan spes	NaN	NaN Jun	mlah barang yang diterima kurang	NaN	NaN
	1	Wanita 19	SMA Pelajar / Mahasiswa	< Rp 2 juta	akarta	8.0	Sama saja	NaN Mobile Banking	NaN	NaN	NaN	NaN Bara	ang yang diperoleh tidak sesuai dengan spes Barang	rusak/ salah tetapi tidak dapat dikemba Pembayaran	sudah dilakukan; barang tidak tersedia Jun	mlah barang yang diterima kurang	NaN	NaN
	2	Wanita 19	SMA Pelajar / Mahasiswa	< Rp 2 juta	akarta	10.0	Sama saja	NaN Mobile Banking	Transfer via ATM	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	3	Pria 19	SMA Pelajar / Mahasiswa	Rp 2 juta – Rp 5 juta	akarta	7.0	Ya	Akses media sosial Mobile Banking	Transfer via ATM	Kartu Kredit / Debit Online	Melalui minimarket	menggunakan fitur Paylater Bara	ang yang diperoleh tidak sesuai dengan spes	NaN Pembayaran	sudah dilakukan; barang tidak tersedia	NaN Pemb	ayaran telah dilakukan tetapi tidak terdet Saldo e	Money/ eWallet berkurang tanpa melakuka
	4	Wanita 20	SMA Pelajar / Mahasiswa	< Rp 2 juta	Medan	7.0	Ya	Akses media sosial Mobile Banking	NaN	NaN	NaN	NaN Bara	ang yang diperoleh tidak sesuai dengan spes	NaN	NaN	NaN	NaN	NaN
	•••																	
28	30	Pria 21	SMA Pelajar / Mahasiswa	< Rp 2 juta	akarta	8.0	Ya	Streaming video/ film NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
28	31	Pria 19	SMA Pelajar / Mahasiswa	Rp 2 juta – Rp 5 juta	Bogor	14.0	Sama saja	NaN Mobile Banking	NaN	Kartu Kredit / Debit Online	NaN	NaN	NaN Barang	rusak/ salah tetapi tidak dapat dikemba	NaN	NaN Pemb	ayaran telah dilakukan tetapi tidak terdet	NaN
28	32	Pria 19	SMA Pelajar / Mahasiswa	< Rp 2 juta	adang	15.0	Sama saja	NaN NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
28	33	Wanita 19	SMA Pelajar / Mahasiswa	< Rp 2 juta Ba	ndung	NaN	Tidak	NaN Mobile Banking	NaN	NaN	NaN	NaN Bara	ang yang diperoleh tidak sesuai dengan spes	NaN	NaN Jun	mlah barang yang diterima kurang	NaN	NaN
28	34	Pria 51	S1 Pengusaha	Rp 5 juta – Rp 10 juta Ser	arang	8.0	Sama saja	Akses media sosial Mobile Banking	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

285 rows × 150 columns

In [96]: # Menghapus baris dengan nilai NaN pada kolom tertentu df.dropna(subset=['Durasi Penggunaan Internet per Hari (dalam Jam)'], inplace=True)

ıt[96]:	Jenis Kelamin Usia Pendidika	kan Terakhir Pel	ekerjaan Pengha	osilan per Bulan Domisili Durasi Pe	enggunaan Internet per Hari (dalam Ja	am) Aktivitas	Online Meningkat Aktivitas yang N	Meningkat dalam 3 Bulan Terakhir layanan_a	aktif_1 cara_pemba	ayaran_belanja_online_5 cara_p	pembayaran_belanja_online_6 cara	_pembayaran_belanja_online_7 car	ra_pembayaran_belanja_online_8	keluhan_belanja_online_1	keluhan_belanja_online_2	keluhan_belanja_online_3	keluhan_belanja_online_4	keluhan_belanja_online_5	keluhan_belanja_online_6
	1 Wanita 19	SMA Pelajar / Mal	ahasiswa	< Rp 2 juta Jakarta		8.0	Sama saja	NaN Mobile Ba	anking	NaN	NaN	NaN	NaN Bara	ng yang diperoleh tidak sesuai dengan spes Barang	g rusak/ salah tetapi tidak dapat dikemba Pemba	yaran sudah dilakukan; barang tidak tersedia Jur	mlah barang yang diterima kurang	NaN	NaN
2	Wanita 19	SMA Pelajar / Mal	ahasiswa	< Rp 2 juta Jakarta	1	10.0	Sama saja	NaN Mobile Ba	anking	Transfer via ATM	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
3	3 Pria 19	SMA Pelajar / Mal	ahasiswa Rp 2	2 juta – Rp 5 juta 💮 Jakarta		7.0	Ya	Akses media sosial Mobile Ba	anking	Transfer via ATM	Kartu Kredit / Debit Online	Melalui minimarket	menggunakan fitur Paylater Bara	ng yang diperoleh tidak sesuai dengan spes	NaN Pembay	yaran sudah dilakukan; barang tidak tersedia	NaN Pemba	yaran telah dilakukan tetapi tidak terdet Saldo eMo	ney/ eWallet berkurang tanpa melakuka
4	4 Wanita 20	SMA Pelajar / Mal	ahasiswa	< Rp 2 juta Medan		7.0	Ya	Akses media sosial Mobile Ba	anking	NaN	NaN	NaN	NaN Bara	ng yang diperoleh tidak sesuai dengan spes	NaN	NaN	NaN	NaN	NaN
į	5 Pria 42	S1 Karyawan	n Swasta Rp 2	2 juta – Rp 5 juta Surakarta		6.0	Ya	Akses media sosial	NaN	NaN	Kartu Kredit / Debit Online	NaN	menggunakan fitur Paylater Bara	ng yang diperoleh tidak sesuai dengan spes	NaN	NaN	NaN	NaN	NaN
••			•••																
279	9 Pria 41	S1 Karyawan	n Swasta	> Rp 10 juta Jakarta	1	10.0	Sama saja	NaN Mobile Ba	anking	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
280	0 Pria 21	SMA Pelajar / Mal	ahasiswa	< Rp 2 juta Jakarta		8.0	Ya	Streaming video/ film	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
281	1 Pria 19	SMA Pelajar / Mal	ahasiswa Rp 2	2 juta – Rp 5 juta Bogor	1	14.0	Sama saja	NaN Mobile Ba	anking	NaN	Kartu Kredit / Debit Online	NaN	NaN	NaN Barang	g rusak/ salah tetapi tidak dapat dikemba	NaN	NaN Pemba	yaran telah dilakukan tetapi tidak terdet	NaN
282	2 Pria 19	SMA Pelajar / Mal	ahasiswa	< Rp 2 juta padang	1	15.0	Sama saja	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
284	4 Pria 51	S1 Pen	ngusaha Rp 5 j	juta – Rp 10 juta Semarang		8.0	Sama saja	Akses media sosial Mobile Ba	anking	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

214 rows × 150 columns

In [97]: # Contigency Table contigency2 = pd.crosstab(df['Pendidikan Terakhir'], df['Durasi Penggunaan Internet per Hari (dalam Jam)']) contigency2 Out[97]: Durasi Penggunaan Internet per Hari (dalam Jam) 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 24.0 Pendidikan Terakhir **D3** 0 1 0 0 1 1 1 1 0 4 1 0 0 1 0 0 0 **D4** 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 **S1** 0 1 11 3 7 6 1 6 2 6 14 1 0 5 2 1 2 1 **S2** 1 0 1 1 1 2 3 4 0 3 1 1 0 1 0 0 0 1 **SMA** 0 4 2 6 8 13 9 19 4 13 11 1 4 10 1 1 3 0 **SMK** 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 SMP 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 In [98]: # *Ei Table* Ei = contigency2.copy() for s in contigency2.index: for o in contigency2.columns: Ei.loc[s, o] = contigency2.loc[s].sum() * contigency2.loc[:, o].sum() / contigency2.values.sum() Out[98]: Durasi Penggunaan Internet per Hari (dalam Jam) 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 24.0 Pendidikan Terakhir **D3** 0.051402 0.308411 0.719626 0.514019 0.873832 1.130841 0.771028 1.542056 0.308411 1.387850 1.439252 0.154206 0.205607 0.925234 0.205607 0.102804 0.257009 0.102804 **D4** 0.014019 0.084112 0.196262 0.140187 0.238318 0.308411 0.210280 0.420561 0.084112 0.378505 0.392523 0.042056 0.056075 0.252336 0.056075 0.028037 0.070093 0.028037 **\$1** 0.322430 1.934579 4.514019 3.224299 5.481308 7.093458 4.836449 9.672897 1.934579 8.705607 9.028037 0.967290 1.289720 5.803738 1.289720 0.644860 1.612150 0.644860 **S2** 0.093458 0.560748 1.308411 0.934579 1.588785 2.056075 1.401869 2.803738 0.560748 2.523364 2.616822 0.280374 0.373832 1.682243 0.373832 0.186916 0.467290 0.186916 SMA 0.509346 3.056075 7.130841 5.093458 8.658879 11.205607 7.640187 15.280374 3.056075 13.752336 14.261682 1.528037 2.037383 9.168224 2.037383 1.018692 2.546729 1.018692 SMK 0.004673 0.028037 0.065421 0.046729 0.079439 0.102804 0.070093 0.140187 0.028037 0.126168 0.130841 0.014019 0.018692 0.084112 0.018692 0.009346 0.023364 0.009346 SMP 0.004673 0.028037 0.065421 0.046729 0.079439 0.102804 0.070093 0.140187 0.028037 0.126168 0.130841 0.014019 0.018692 0.084112 0.018692 0.009346 0.023364 0.009346 In [99]: # HO: Variabel Pendidikan Terakhir independen dengan Durasi Penggunaan Internet per Hari (dalam Jam) # H1: Variabel Pendidikan Terakhir tidak independen dengan Durasi Penggunaan Internet per Hari (dalam Jam) chi2 = ((contigency2 - Ei) ** 2 / Ei).sum().sum() alpha = 0.05row = 7col = 18df = (row-1)*(col-1)chi2_alpha = st.chi2.ppf(1-alpha, df) pval = 1 - st.chi2.cdf(chi2, df) if chi2 < chi2_alpha:</pre> kesimpulan = 'chi2 di luar crit region, fail to reject H0' kesimpulan = 'chi2 di dalam crit region, reject H0,\nVariabel Pendidikan Terakhir tidak independen dengan Durasi Penggunaan Internet per Hari' print(f''' Hasil chi2 test: chi2: {chi2:.2f} crit region: chi2 > {chi2_alpha:.2f} kesimpulan: {kesimpulan} p-value: {pval:.2f} Hasil chi2 test: chi2: 129.71 crit region: chi2 > 126.57 kesimpulan: chi2 di dalam crit region, reject H0, Variabel Pendidikan Terakhir tidak independen dengan Durasi Penggunaan Internet per Hari p-value: 0.03 Chi-squared test for Homogenity dengan alpha = 5% In [102... #H0: Distribusi usia tiap Jenis Kelamin sama/homogen #H1: Distribusi Usia tiap jenis Kelamin tidak sama alpha = 0.05contigency3 = pd.crosstab(df['Jenis Kelamin'], df['Usia']) contigency3 Usia 16 17 18 19 20 21 22 23 24 25 ... 51 52 53 54 55 56 57 58 59 61 Jenis Kelamin **Pria** 0 1 4 41 18 3 1 3 3 1 ... 3 0 2 2 1 2 1 1 0 1 **Wanita** 1 4 11 46 14 8 3 4 0 2 ... 1 5 4 3 1 0 0 0 1 0 2 rows × 44 columns In [103... # *Ei Table* Ei = contigency3.copy() for s in contigency3.index: for o in contigency3.columns: Ei.loc[s, o] = contigency3.loc[s].sum() * contigency3.loc[:, o].sum() / contigency3.values.sum() 16 17 18 19 20 21 22 23 24 25 ... 51 52 53 54 55 56 57 58 59 61 Jenis Kelamin Pria 0.477193 2.385965 7.157895 41.515789 15.270175 5.249123 1.908772 3.340351 1.431579 1.431579 ... 1.908772 2.385965 2.863158 2.385965 0.954386 0.954386 0.477193 0.477193 0.477193 0.477193 Wanita 0.522807 2.614035 7.842105 45.484211 16.729825 5.750877 2.091228 3.659649 1.568421 1.568421 ... 2.091228 2.614035 3.136842 2.614035 1.045614 1.045614 0.522807 0.522807 0.522807 0.522807 2 rows × 44 columns In [104... #HO: Distribusi usia tiap Jenis Kelamin sama/homogen #H1: Distribusi Usia tiap jenis Kelamin tidak sama chi2 = ((contigency3 - Ei) ** 2 / Ei).sum().sum() alpha = 0.05row = 2col = 41df = (row-1)*(col-1)chi2_alpha = st.chi2.ppf(1-alpha, df) pval = 1 - st.chi2.cdf(chi2, df) if chi2 < chi2_alpha:</pre> kesimpulan = 'chi2 di luar crit region, fail to reject H0,\nDistribusi usia tiap jenis kelamin homogen atau sama' kesimpulan = 'chi2 di dalam crit region, reject H0' print(f''' Hasil chi2 test: chi2: {chi2:.2f} crit region: chi2 > {chi2_alpha:.2f} kesimpulan: {kesimpulan} p-value: {pval:.2f} Hasil chi2 test: chi2: 53.27 crit region: chi2 > 55.76 kesimpulan: chi2 di luar crit region, fail to reject H0, Distribusi usia tiap jenis kelamin homogen atau sama p-value: 0.08 CleanUp Data In [107... df.dropna(subset=['18. Bagaimana frekuensi penggunaan Channel Bank berikut? [Mobile Banking]'], inplace=True) null_values = df['18. Bagaimana frekuensi penggunaan Channel Bank berikut? [Mobile Banking]'].isnull().sum() print("Jumlah null values dalam kolom '18. Bagaimana frekuensi penggunaan Channel Bank berikut? [Mobile Banking]':", null_values) Jumlah null values dalam kolom '18. Bagaimana frekuensi penggunaan Channel Bank berikut? [Mobile Banking]': 0 In [108... #H0: Distribusi Frekuensi penggunaan mobile banking tiap domisili sama/homogen #H1:Distribusi Frekuensi penggunaan mobile banking tiap domisili tidak sama/homogen alpha = 0.05contigency4 = pd.crosstab(df['Domisili'], df['18. Bagaimana frekuensi penggunaan Channel Bank berikut? [Mobile Banking]']) contigency4

18. Bagaimana frekuensi penggunaan Channel Bank berikut? [Mobile Banking]	2-5 kali per bulan	6-9 kalı per bulan	> 10 kalı per bulan	Kurang dari/ setidaknya 1 kali per bulan	lidak Pernah
Domisili					
Aceh	0	1	0	0	0
BandarLampung	0	1	0	0	0
Bandung	16	15	34	0	0
Bekasi	2	2	2	1	0
Bogor	0	4	4	0	0
Bogor , Jawa Barat	1	0	0	0	0
Cilacap	0	0	1	0	0
Cilegon	0	0	1	0	0
Cimahi	0	1	0	0	0
Depok	2	3	6	0	0
Garut	0	0	1	0	0
Gorontalo	0	0	1	0	0
Jakarta	16	10	44	2	0
Kabupaten Bogor	0	0	1	0	0
Kisaran	0	0	1	0	0
Klaten	1	0	0	0	0
Lancaster	0	1	0	0	0
Madiun	0	1	0	0	0
Makassar	2	1	1	0	0
Malang	1	1	3	0	0
Medan	2	0	5	0	0
München, Germany	0	0	1	0	0
Padang	1	0	1	0	0
Palembang	1	0	2	0	0
Palu	0	0	2	0	0
Pematangsiantar	0	1	0	0	0
Pontianak	1	0	0	0	0
Purwokerto	1	0	0	1	0
Semarang	2	2	2	0	0
Sosok	1	0	0	0	0
Sukabumi	0	1	0	0	0
Surabaya	4	1	5	0	0
Surakarta	0	0	2	0	0
Surakarta	0	1	0	0	0
Tangerang	0	5	11	1	0
Tanjungpinang	0	0	1	0	0
Tebing Tinggi	0	0	0	0	1
Yogyakarta	2	0	3	0	0
bandar lampung	0	0	1	0	0
bogor	0	1	1	0	0
medan	0	0	1	0	0

In [109... jumlah_baris, jumlah_kolom = contigency4.shape
 print("Jumlah baris:", jumlah_baris)
 print("Jumlah kolom:", jumlah_kolom)

print("Jumlah kolom:", jumlah_kolom)
Jumlah baris: 41

Jumlah kolom: 5
In [110... # Ei Table

Ei = contigency4.copy()

for s in contigency4.index:
 for o in contigency4.columns:

Ei.loc[s, o] = contigency4.loc[s].sum() * contigency4.loc[:, o].sum() / contigency4.values.sum()

Out [110... 18. Bagaimana frekuensi penggunaan Channel Bank berikut? [Mobile Banking] 2-5 kali per bulan 6-9 kali per bulan > 10 kali per bulan Kurang dari/ setidaknya 1 kali per bulan Tidak Pernah

16. Bagaimana irekuensi penggunaan Channel Bank berikut? [Wobile Banking]	2-5 kali per bulan	6-9 Kali per bulan	> 10 Kall per bulan	Kurang dari/ seddaknya i kali per bulan	Huak Pernan
Domisili					
Aceh	0.221344	0.209486	0.545455	0.019763	0.003953
BandarLampung	0.221344	0.209486	0.545455	0.019763	0.003953
Bandung	14.387352	13.616601	35.454545	1.284585	0.256917
Bekasi	1.549407	1.466403	3.818182	0.138340	0.027668
Bogor	1.770751	1.675889	4.363636	0.158103	0.031621
Bogor , Jawa Barat	0.221344	0.209486	0.545455	0.019763	0.003953
Cilacap	0.221344	0.209486	0.545455	0.019763	0.003953
Cilegon	0.221344	0.209486	0.545455	0.019763	0.003953
Cimahi	0.221344	0.209486	0.545455	0.019763	0.003953
Depok	2.434783	2.304348	6.000000	0.217391	0.043478
Garut	0.221344	0.209486	0.545455	0.019763	0.003953
Gorontalo	0.221344	0.209486	0.545455	0.019763	0.003953
Jakarta	15.936759	15.083004	39.272727	1.422925	0.284585
Kabupaten Bogor	0.221344	0.209486	0.545455	0.019763	0.003953
Kisaran	0.221344	0.209486	0.545455	0.019763	0.003953
Klaten	0.221344	0.209486	0.545455	0.019763	0.003953
Lancaster	0.221344	0.209486	0.545455	0.019763	0.003953
Madiun	0.221344	0.209486	0.545455	0.019763	0.003953
Makassar	0.885375	0.837945	2.181818	0.079051	0.015810
Malang	1.106719	1.047431	2.727273	0.098814	0.019763
Medan	1.549407	1.466403	3.818182	0.138340	0.027668
München, Germany	0.221344	0.209486	0.545455	0.019763	0.003953
Padang	0.442688	0.418972	1.090909	0.039526	0.007905
Palembang	0.664032	0.628458	1.636364	0.059289	0.011858
Palu	0.442688	0.418972	1.090909	0.039526	0.007905
Pematangsiantar	0.221344	0.209486	0.545455	0.019763	0.003953
Pontianak	0.221344	0.209486	0.545455	0.019763	0.003953
Purwokerto	0.442688	0.418972	1.090909	0.039526	0.007905
Semarang	1.328063	1.256917	3.272727	0.118577	0.023715
Sosok	0.221344	0.209486	0.545455	0.019763	0.003953
Sukabumi	0.221344	0.209486	0.545455	0.019763	0.003953
Surabaya	2.213439	2.094862	5.454545	0.197628	0.039526
Surakarta	0.442688	0.418972	1.090909	0.039526	0.007905
Surakarta	0.221344	0.209486	0.545455	0.019763	0.003953
Tangerang	3.762846	3.561265	9.272727	0.335968	0.067194
Tanjungpinang	0.221344	0.209486	0.545455	0.019763	0.003953
Tebing Tinggi	0.221344	0.209486	0.545455	0.019763	0.003953
Yogyakarta	1.106719	1.047431	2.727273	0.098814	0.019763
bandar lampung	0.221344	0.209486	0.545455	0.019763	0.003953
bogor	0.442688	0.418972	1.090909	0.039526	0.007905
medan	0.221344	0.209486	0.545455	0.019763	0.003953

In [111... #H0: Distribusi Frekuensi penggunaan mobile banking tiap domisili sama/homogen #H1: Distribusi Frekuensi penggunaan mobile banking tiap domisili tidak sama/homogen

chi2 = ((contigency4 - Ei) ** 2 / Ei).sum().sum()

alpha = 0.05
row = jumlah_baris
col = jumlah_kolom
df = (row-1)*(col-1)

chi2_alpha = st.chi2.ppf(1-alpha, df) pval = 1 - st.chi2.cdf(chi2, df) if chi2 < chi2_alpha:</pre> kesimpulan = 'chi2 di luar crit region, fail to reject H0' kesimpulan = 'chi2 di dalam crit region, reject H0,\nDistribusi frekuensi penggunaan mobile banking berbeda secara signifikan di setiap domisili yang diuji' print(f'''
Hasil chi2 test: chi2: {chi2:.2f} crit region: chi2 > {chi2_alpha:.2f} kesimpulan: {kesimpulan}

p-value: {pval:.2f} Hasil chi2 test:

chi2: 370.11

crit region: chi2 > 190.52 kesimpulan: chi2 di dalam crit region, reject H0, Distribusi frekuensi penggunaan mobile banking berbeda secara signifikan di setiap domisili yang diuji

p-value: 0.00

Insight from Data

1. Proporsi bank BCA

Dari hasil analisis yang didapat, kita dapat menafsirkan bahwa dengan tingkat kepercayaan 95%, kita memperkirakan bahwa proporsi penggunaan Bank BCA di populasi secara keseluruhan berada di rentang antara 0.3411 hingga 0.4390. Ini berarti kita memiliki keyakinan sebesar 95% bahwa proporsi penggunaan Bank BCA berada dalam rentang ini berdasarkan sampel yang digunakan.

Hasil dari pengujian z-value juga menunjukkan bahwa nilai Z berada di dalam critical region. Artinya, kita menolak hipotesis nol (H0) bahwa proporsi penggunaan Bank BCA sama dengan 0.5. Dengan kata lain, proporsi penggunaan Bank BCA dari sampel yang diuji tidak sama dengan 0.5 secara signifikan pada tingkat signifikansi 5%.

2. Proporsi Gopay

Confidence interval (CI) menunjukkan rentang perkiraan proporsi GoPay di populasi dengan tingkat kepercayaan tertentu. Rentang ini adalah 0.2196 hingga 0.2780 dengan tingkat kepercayaan 95%. Ini berarti ada keyakinan sebesar 95% bahwa proporsi penggunaan GoPay di populasi sesungguhnya berada dalam rentang ini berdasarkan sampel yang diuji.

Hasil uji hipotesis juga menunjukkan bahwa terdapat perbedaan signifikan antara proporsi penggunaan GoPay yang diamati dalam sampel dengan nilai yang diasumsikan (0.3) dengan tingkat kepercayaan 95%. Dikarenakan nilai Z berada di dalam critical region (-1.96 < Z < 1.96), kita menolak hipotesis nol bahwa proporsi GoPay adalah 0.3.

3. Proporsi Shopee

Untuk Confidence Interval proporsi Shopee (0.2320 < Proporsi Shopee < 0.2907), ini berarti kita memiliki keyakinan 95% bahwa proporsi penggunaan Shopee di populasi umum berada di rentang antara 0.2320 hingga 0.2907, berdasarkan sampel yang diambil. kita memiliki keyakinan sebesar 95% bahwa proporsi penggunaan Shopee umumnya ada dalam rentang tersebut. Ini memberikan gambaran tentang seberapa akurat perkiraan kita tentang penggunaan Shopee di antara sampel yang diuji.

Analisis z-tets yang menguji hipotesis terhadap proporsi penggunaan Shopee yang diduga kurang dari 0.2 juga menemukan bahwa Z-value (4.4985) berada di luar Critical Region (-1.96). Hal ini menunjukkan bahwa kita dapat menolak H0 (hipotesis nol) karena Z-value yang diperoleh jauh lebih besar dari batas kritis yang ditentukan. P-value yang sangat kecil (0.00000684) juga menunjukkan bahwa kita memiliki bukti yang kuat untuk menolak H0.

Dalam konteks ini, kita memiliki cukup bukti untuk menyimpulkan bahwa proporsi penggunaan Shopee jauh lebih tinggi daripada 0.2.

4. Distribusi Pendidikan Terakhir

Distribusi dari variabel "Pendidikan Terakhir" tidak mengikuti distribusi seragam. Dari hasil chi-squared test, nilai chi2 yang diperoleh (622.79) jauh melebihi nilai kritis yang ditetapkan (15.51) pada tingkat signifikansi alpha 0.05. Hal ini mengarah pada penolakan H0 (hipotesis nol), dengan p-value yang sangat rendah (0.00), menunjukkan bukti yang sangat kuat bahwa distribusi pendidikan terakhir tidak bersifat seragam.

5. Distribusi Jenis Kelamin

Dalam konteks uji chi-squared untuk keseragaman distribusi Jenis Kelamin, nilai chi2 yang diperoleh (0.59) berada di luar daerah kritis (critical region) yang ditetapkan (3.84). Hal ini mengarah pada kesimpulan bahwa tidak ada cukup bukti untuk menolak H0 (H0: Distribusi Jenis Kelamin = uniform distribution), yang berarti distribusi Jenis Kelamin dapat dianggap sebagai distribusi seragam.

6. Perbedaan Proporis Gopay dan Ovo

Hasil Confidence Interval untuk selisih proporsi penggunaan GoPay dan OVO menunjukkan rentang antara 0.02724 hingga 0.10546. Ini mengindikasikan bahwa dengan tingkat kepercayaan 95%, perbedaan proporsi penggunaan GoPay dan OVO pada populasi umum diperkirakan berada dalam rentang ini berdasarkan sampel yang digunakan. Rentang ini menunjukkan bahwa proporsi penggunaan GoPay cenderung lebih tinggi daripada OVO, namun ada fluktuasi dalam perbedaannya yang dapat berada di kisaran tersebut.

7. Perbedaan Proporsi Bank BCA dan Mandiri

Dari Confidence Interval Selisih Proporsi penggunaan BCA dan Bank Mandiri (0.00269 < P BCA - P Bank Mandiri < 0.08326), insight yang dapat diambil adalah bahwa dengan tingkat kepercayaan 95%, kita memperkirakan selisih proporsi penggunaan BCA dan Bank Mandiri pada populasi secara keseluruhan berada di rentang antara 0.00269 hingga 0.08326.

Ini menunjukkan bahwa terdapat perbedaan dalam proporsi penggunaan antara BCA dan Bank Mandiri. Namun, rentang interval ini menunjukkan bahwa perbedaan ini bisa sangat kecil (0.00269) hingga cukup signifikan (0.08326) tergantung pada populasi sebenarnya.

8. Perbedaan Proporsi Shopee dan Tokopedia

Dari hasil Confidence Interval Selisih Proporsi penggunaan Shopee dan Tokopedia (0.00269 < P Shopee - P Tokopedia < 0.08326), insight yang bisa diambil adalah bahwa dengan tingkat kepercayaan 95%, kita memperkirakan bahwa selisih proporsi penggunaan Shopee dan Tokopedia pada populasi secara keseluruhan berada dalam rentang antara 0.00269 hingga 0.08326.

Hal ini menunjukkan bahwa ada perbedaan dalam proporsi penggunaan antara Shopee dan Tokopedia, tetapi rentang interval ini menunjukkan bahwa perbedaan ini bisa kecil (0.00269) hingga cukup signifikan (0.08326) tergantung pada populasi sebenarnya.

9. Independensi antara Variabel Pekerjaan dan penghasilan per bulan

Dari hasil uji Chi-squared untuk independensi antara Variabel Pekerjaan dan penghasilan per bulan (chi2 = 258.53, df = 45, p-value: 0.00), kita dapat menyimpulkan bahwa terdapat hubungan yang signifikan antara Variabel Pekerjaan dan penghasilan per bulan dalam dataset yang digunakan.

Insight yang dapat diambil adalah bahwa pekerjaan seseorang dapat memiliki dampak atau keterkaitan yang signifikan terhadap penghasilan per bulan mereka. Ini menunjukkan adanya asosiasi yang kuat antara jenis pekerjaan yang dijalani seseorang dengan tingkat penghasilan yang mereka peroleh.

10. Distribusi frekuensi penggunaan mobile banking di setiap domisili

Hasil uji chi-squared menunjukkan bahwa distribusi frekuensi penggunaan mobile banking berbeda secara signifikan di setiap domisili yang diuji. Hal ini diperkuat oleh nilai chi-squared yang dihitung berada di dalam daerah kritis dengan p-value

yang sangat rendah (< 0.05), sehingga H0 ditolak.

