고급BA FINAL PROJECT

KAIST 경영공학부

Contents

- 1. 데이터 배경 및 소개
- 2. EDA
- 3. 전처리
- 4. 모델링
- 5. 결론

분석배경 및 데이터 설명

가짜 뉴스, 사회적 문제로 대두

진짜 뉴스 판별 정확도 평균

사람 60%

AI 95%

"가짜뉴스 판별에 AI가 사람의 능력보다 우수한 시대"

- 수많은 정보의 흐름 속에서 신뢰할 수 있는 뉴스에 대한 논쟁이 점차 가열되고 있음
- NH금융과 데이콘 주관 '진짜뉴스 찾기' 대회에 참가해 텍스트마이닝 모델 알고리즘에 대해 배워보고자함

1. 데이터 소개

데이터 소개

EDA

데이터 정제

모델링

데이터 예시

뉴스 데이터 ('20년 1월 - 6월) 의 진짜 유무를 판별하는 이진 분류 문제

[마감]코스닥 기관 678억 순매도 20200605 [마감]코스닥 기관 678억 순매도 NEWS02580 20200605 [마감]코스닥 기관 678억 순매도 20200605

NEWS02580 NEWS02580 20200605 [마감]코스닥 기관 678억 순매도 [이데일리 MARKETPOINT]15:32 현재 코스닥 기관 678억 순매도 실적기반 저가에 매집해야 할 8월 급등유망주 TOP 5 전격공개 하이스탁론, 선취수수료 없는 월 0.4% 최저금리 상품 출시 종합 경제정보 미디어 이데일리 - 무단전재 & 재배포 금지

0

1 1 0

핵심변수로는 제목, 컨텐츠가 있으며, 목표변수는 info임

- Train 118,745건
- Test 142565 건
- Train, Test 기한동일
- 결측치/중복 없음

EDA

정제

목표 변수

진짜, 가짜뉴스 비율 6:4이며, 월별 분포는 비교적 균등한편

- 진짜뉴스 71813 개
- 가짜뉴스 46932 개
- 1월 가짜뉴스 비율이 다소 낮으나 대체로 균등

뉴스기사 길이 분석

진짜 뉴스가 2배 정도로 긴 경향

- 전체 평균길이 50글자
- 진짜 뉴스 길이가 가짜뉴스 대비 2배, 표준편차 도 2배 정도 높음

	가짜뉴스	진짜뉴스
최댓값	1022자	3469자
최소값	2 자	2자
평균값	34.47자	62.34자
표준편차	20.38 자	43.6자

데이터 정제

EDA

모델링

WORD CLOUD

기사에 단어 빈도수를 활용하여 워드클라우드 시각화를 수행하였음

금전 관련 키워드 중심

• 주식, 수익률, 대박주 등 단어성향이 뚜렷하고, 의도가 담겨있음

신문사, 저작권 키워드 다수

- Copyright 마크가 진짜판별에 주요 단서역할
- 코로나 등 경제나 사회 관련 정보전달 목적 기사 다수

EDA

데이터 정제

모델링

잠재 디리클레 할당(LDA 분석) 진짜, 가짜 뉴스를 구분하여 LDA 토픽 분석을 수행

- * LDA는 단어가 특정 토픽에 존재할 확률과 문서에 특정 토픽이 존재할 확률을 결합확률로 추정하여 토픽을 추출함
- * 각 원과의 거리는 각 토픽들이 서로 얼마나 다른지를 보여줍니다. 만약 두 개의 원이 겹친다면, 이 두 개의 토픽은 유사한 토픽이라는 의미

토픽이 획일화 주식, 테마주, 신용/미수 크게 3가지 분류 가능

토픽의 다양성 정부, 사업지원, 부동산, 방역, 정치, 국내시장, 투자, 금융, 코로나경제 등 주제 다변화

EDA

데이터 정제

모델링

핵심단어 유사도 분석

주요 단어간 코사인 유사도를 분석하여 3차원공간에 맵핑을 수행

• 코로나와 가장 유사한 단어는 코로나바이 러스, 감염증, 봉쇄이며, 신용은 미수, 금리, 취급 등으로 나타남

코로나	신용	테마주
코로나바이러스 0.287 감염증 0.328 봉쇄 0.407 경제활동 0.412 감염병 0.414	이 마수 0.117 금리 0.289 취급 0.344 최저 0.366 수수료 0.428	단타 0.076 공략 0.199 대박 0.247 반사 0.279 수혜주 0.290
0.111	5. F20	3.230

전처리

EDA

데이터

정제

모델링

텍스트 전처리 과정

머신러닝은 카운트 기반의 TF-IDF 방식을, 딥러닝은 Keras embedding layer 를 사용하여 전처리를 수행하였음

EDA

데이터 정제

모델링

PYHON CODE 예시

입력 데이터

array([[0,	0,	0, .	,	40427,	490,	30],
[0,	0,	0, .	,	82,	160,	930],
[0,	0,	0, .	,	109,	405,	122],
	,						
[0,	Ο,	0, .	,	165,	185,	99],
[0,	Ο,	0, .	,	147,	124,	41],
]	0,	Ο,	0, .	,	147,	124,	41]],

형태소분석기

최대 단어길이

워드임베딩

Soynlp

407∦

사후학습

모델링

EDA

데이터 정제

모델링

머신러닝/딥러닝 예측모델

전반적으로 대부분이 98% 이상의 우수한 성능을 보였으며, 딥러닝이 약간 더 우수하였음

	트레인 Accuracy	검증셋 Accuracy
로지스틱 회귀	0.9838	0.98
랜덤포레스트	0.999	0.984
LGBM	0.999	0.9914
Keras Squential	1.0	0.993
LSTM	0.999	0.987

- 머신러닝 모델로는 로지스틱회귀, 랜덤포레스 트, LGBM을 수행하였으며, 이중에서 LGBM이 가장 우수
- 딥러닝 모델로는 기본 Sequential 모델이 LSTM보다 우수하였으며, 전체적으로도 가장 퍼포먼스가 뛰어남
- TF-IDF 방식의 머신러닝 모델과, 딥러닝 방식 의 앙상블 가능

5. Conclusion

Result...

- 실제 테스트셋에서는 98%대의 정확도를 보임
- Overfitting문제 측면에서 아직 모델에 개선여지 있음

How to further improve…

- Micro 전처리 : 가짜 뉴스 오분류 체크 등 데이터 추가검증, STOPWORDS 커스터마이징 등
- Pretrained Word Embedding 사용 (FastText, 엘모 등)
- TFIDF and RNN into one ensemble : 앙상블 모델 시험
- 머신러닝/딥러닝 앙상블 실험
- 트랜스포머, Bert Model 등 상위 모델 시험

APPENDIX_딥러닝 모델링

사용된 Deep Learning Model 구조

기본 시퀀셜 모델

* 최대단어길이 40 설정

LSTM 모델

LSTM 원리

기본개요

• 단어 최대길이 : 40

• 배치사이즈: 128

• 에폭 : 20 (Patience = 5)

Activation : Softmax 함수

Loss Function : sparse_categorical_crossentr opy

• Metric : 정확도 (Accuracy)

E.O.D

