

Linear Algebra I

Chapter 4. Linear Transformations

Boqing Xue

WELCOME! 2023 Fall

Chapter 4. Linear Transformations

- §4.1 General Linear Transformations
- §4.2 Matrices for General Linear Transformations
- §4.3 Properties of General Linear Transformations
- §4.4 Similarity
- §4.5 Eigenvalues and Eigenvectors
- §4.6 Diagonalization

Definition of Linear Transformation

Recall: For a matrix $A \in M_{m \times n}(\mathbb{R})$, the matrix transformation $T_A : \mathbb{R}^n \to \mathbb{R}^m$ is given by

$$T_A(\mathbf{x}) = A\mathbf{x}, \quad (\forall \mathbf{x} \in \mathbb{R}^n).$$

It satisfies that

$$T_A(\mathbf{u} + \mathbf{v}) = T_A(\mathbf{u}) + T_A(\mathbf{v}), \quad T_A(k\mathbf{u}) = kT_A(\mathbf{u})$$

for any $\mathbf{u}, \mathbf{u} \in \mathbb{R}^n$ and any scalar k.

Definition. Let V,W be \mathbb{F} -vector spaces. A map $T:V\to W$ is called a linear transformation if the following two properties hold for all vectors $\mathbf{u},\mathbf{v}\in V$ and for all scalars $k\in\mathbb{F}$:

- (i) $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$
- (ii) $T(k\mathbf{u}) = kT(\mathbf{u})$.

Remark: \diamond When V = W, we also call T a linear operator on V.

$$\diamond (i) + (ii) \iff T(ku + \ell v) = kT(u) + \ell T(v) \ (\forall u, v \in V \text{ and } k, \ell \in \mathbb{F}).$$

$$\diamond T(\mathbf{0}) = \mathbf{0}.$$

$$\diamond T(k_1\mathbf{u}_1+\ldots k_n\mathbf{u}_n)=k_1T(\mathbf{u}_1)+\ldots+k_nT(\mathbf{u}_n).$$

Example. The matrix Transformations $T_A : \mathbb{C}^n \to \mathbb{C}^m$, $\mathbf{x} \mapsto A\mathbf{x}$ with $A \in M_{m \times n}(\mathbb{C})$ are linear.

Example. For any vector spaces V and W, the zero transformation is defined by $0:V\to W$ is defined by

$$0(\mathbf{u}) = \mathbf{0}, \quad (\forall \mathbf{u} \in \mathbf{V}).$$

Example. Let V be a real vector space and $k \in \mathbb{R}$. Then $T: V \to V$ defined by

$$T(\mathbf{u}) = k\mathbf{u}, \quad (\forall \mathbf{u} \in V)$$

is a linear operator on V.

When k = 0, it is the zero operator.

When k = 1, it is called the identity operator and denoted by T := I.

When 0 < k < 1, it is called contraction of V with factor k.

When k > 1, it is called dilation of V with factor k.

Example. Recall that P_n is the space of polynomials with real coefficients and of degree $\leq n$. The following two transformations are linear.

- $\diamond M: P_n \to P_{n+1}$ given by M(p(x)) = xp(x);
- $\diamond D: P_{n+1} \to P_n$ given by D(p(x)) = p'(x).

Example. Recall that C(a,b) is the space of real-valued continuous functions on (a,b), and $C^{\infty}(a,b)$ is the space of real-valued functions on (a,b) with derivatives of all orders. The following two operators are linear.

$$\diamond D: C^{\infty}(a,b) \to C^{\infty}(a,b)$$
 given by $D(f(x)) = f'(x)$;

 $\diamond S: C(a,b) \to C(a,b)$ given by

$$S(f(x)) = \int_a^x f(t)dt, \quad (a < x < b).$$

Example. Let V be the space of all real Cauchy sequences. The transformation Lim : $V \to \mathbb{R}$ defined by

$$\operatorname{Lim}(\{a_n\}) = \lim_{n \to \infty} a_n, \quad (\forall \{a_n\} \in V)$$

is linear.

Example. The map $T_1: \mathbb{R}^3 \to \mathbb{R}^3$ and $T_2: \mathbb{R}^3 \to \mathbb{R}^2$ defined by $T_1(x,y,z) = (x,y,0), \quad T_2(x,y,z) = (x,y)$

are linear transformations. The effect of these transformations are projection on the xOy-plane in \mathbb{R}^3 .

Now we step further to infinite-dimensional spaces (countable case).

Example. Recall that

$$\mathbb{R}^{\mathbb{N}} = \{(x_1, x_2, \dots, x_n, x_{n+1}, \dots) : x_i \in \mathbb{R} (i = 1, 2, \dots)\}$$

is the space of all sequences. Given indices $i_1, i_2, \ldots, i_r \in \mathbb{N}$, the projection $T: \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^r$ on the given components, given by

$$T(x_1, x_2, \ldots, x_n, \ldots) = (x_{i_1}, x_{i_2}, \ldots, x_{i_r}),$$

is a linear transformation.

For example, taking r=3 and $i_1=1, i_2=2, i_3=3$, we have

$$T(1,2,3,4,\ldots,n,\ldots)=(1,2,3),$$

$$T(1,-1,1,-1,\ldots,(-1)^n,\ldots)=(1,-1,1).$$

Next we step further to infinite-dimensional spaces (uncountable case).

Example. Let V be any subspace of F(a,b), the space of all functions on (a,b). Take $x_1,x_2,\ldots,x_r\in(a,b)$. The evaluation transformation on V at x_1,x_2,\ldots,x_r is linear. Indeed, it is given by $T:V\to\mathbb{R}^r$, where

$$T(f) = (f(x_1), f(x_2), \ldots, f(x_r)) \quad (\forall f \in V).$$

A bridge on a river (one side at 0 and the other side at 1) has two piers (at $x_1=1/3$ and $x_2=2/3$). The height of the surface of the river can be viewed as a continuous function on (0,1). To obtain the height at the piers, we take r=2 and above x_1,x_2 . For example

$$T(0.2\cos(99\pi x)) = (0.2\cos(33\pi), 0.2\cos(66\pi)) = (-0.2, 0.2).$$

Example. The followings give For a given vector $\mathbf{v}_0 \in \mathbb{R}^n$, we have the linear transformation $T: \mathbb{R}^n \to \mathbb{R}$ given by

$$T(\mathbf{u}) = \mathbf{u} \cdot \mathbf{v}_0, \quad (\forall \mathbf{u} \in \mathbb{R}^n).$$

Example. The following two transformations are linear.

- $\diamond T: M_{m \times n} \to M_{n \times m}, A \mapsto A^T.$
- $\diamond \ T: \ M_n(\mathbb{F}) \to \mathbb{F}, \ A \mapsto \mathsf{tr}(A).$

Example. Given $B, C \in M_n$, we have the followings linear operators on M_n .

- $\diamond T_{B,C}(A) = BAC.$
- $\diamond ad_B(A) = BA AB.$

Remark: We can write $ad_B = T_{B,I} - T_{I,B}$.

Example. The follow transformations are NOT linear.

- $\diamond T: M_n(\mathbb{R}) \to \mathbb{R}, A \mapsto \det(A)$. Here $n \geq 2$.
- $\diamond T: \mathbb{R}^n \to \mathbb{R}^n, \mathbf{x} \mapsto \mathbf{x} + \mathbf{x}_0. \text{ Here } \mathbf{x}_0 \neq \mathbf{0}.$

Operations on Linear Transformations

Definition. Let $T, T_1, T_2: V \to W$ be linear transformation, and let c be a scalar. We define the addition and scalar multiplication by

$$(T_1+T_2)(\mathbf{v})=T_1(\mathbf{v})+T_2(\mathbf{v}), \quad (cT)(\mathbf{v})=c\ T(\mathbf{v}), \quad (\mathbf{v}\in V).$$

Remark: $T_1 + T_2$ and cT above are also linear transformation. Prove it!

Theorem. Let V, W be linear spaces. Then set L(V, W) of all linear transformations from V to W, with the addition and scalar multiplication defined above, is a also a linear space.

Example. Note that $L(\mathbb{R}^n, \mathbb{R}^m) = M_{m \times n}(\mathbb{R})$.

Chapter 4. Linear Transformations

- §4.1 General Linear Transformations
- §4.2 Matrices for General Linear Transformations
- §4.3 Properties of General Linear Transformations
- §4.4 Similarity
- §4.5 Eigenvalues and Eigenvectors
- §4.6 Diagonalization

Describing a Linear Transformation

Question: How to describe a linear transform in an efficient way?

- ★ Philosophy: Whenever we know the information about basis, we can make clear the information of whole space!
- o $T: V \rightarrow W$: a linear transformation.
- $\circ B = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$: a basis for V.
- $\circ B = \{\mathbf{w}_1, \dots, \mathbf{w}_m\}$: a basis for W.
- For any $\mathbf{x} \in V$, there are scalars x_1, x_2, \dots, x_n such that

$$\mathbf{x} = x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \ldots + x_n \mathbf{v}_n = \sum_{j=1}^n x_j \mathbf{v}_j.$$

Now

$$T(\mathbf{x}) = x_1 T(\mathbf{v}_1) + x_2 T(\mathbf{v}_2) + \ldots + x_n T(\mathbf{v}_n) = \sum_{j=1}^n x_j T(\mathbf{v}_j).$$

• Since $T(\mathbf{v}_j) \in W$, there are scalars a_{ij} $(1 \le i \le m, \ 1 \le j \le n)$ such that

$$T(\mathbf{v}_j) = a_{1j}\mathbf{w}_1 + a_{2j}\mathbf{w}_2 + \ldots + a_{mj}\mathbf{w}_m = \sum_{i=1}^{n} a_{ij}\mathbf{w}_i$$

for all 1 < j < n.

• Finally,

$$T(\mathbf{x}) = \sum_{i=1}^{m} \sum_{j=1}^{n} \mathbf{w}_{i} a_{ij} x_{j}.$$

Describing a Linear Transformation

Finally,

$$T(\mathbf{x}) = \sum_{i=1}^{m} \sum_{j=1}^{n} \mathbf{w}_i a_{ij} x_j.$$

Rewirte (Only notation, not real matrices):

$$\mathbf{x} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}$$

$$T(\mathbf{x}) = \begin{bmatrix} \mathbf{w}_1 & \mathbf{w}_2 & \dots & \mathbf{w}_m \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}$$

• Two representations of $T(\mathbf{v})$:

$$T(\mathbf{x}) = \begin{bmatrix} \mathbf{w}_1 & \mathbf{w}_2 & \dots & \mathbf{w}_m \end{bmatrix} \begin{bmatrix} [T(\mathbf{v}_1)]_{\widetilde{B}} & [T(\mathbf{v}_2)]_{\widetilde{B}} & \dots & [T(\mathbf{v}_n)]_{\widetilde{B}} \end{bmatrix} [\mathbf{x}]_B$$
$$= \begin{bmatrix} \mathbf{w}_1 & \mathbf{w}_2 & \dots & \mathbf{w}_m \end{bmatrix} [T(\mathbf{x})]_{\widetilde{B}}$$

Matrix of a Linear Transformations

Definition. Let $T:V\to W$ be a linear transform. Let $B=\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}$ and $\widetilde{B}=\{\mathbf{w}_1,\ldots,\mathbf{w}_m\}$ be bases for V and W, respectively. Then the matrix for T relative to B and \widetilde{B} is defined to be

$$[T]_{\widetilde{B},B} = [T(\mathbf{v}_1)]_{\widetilde{B}} \mid [T(\mathbf{v}_2)]_{\widetilde{B}} \mid \dots \mid [T(\mathbf{v}_n)]_{\widetilde{B}}].$$

Remark: Now $T: V \rightarrow W$ can be determined by

$$[T(\mathbf{x})]_{\widetilde{B}} = [T]_{\widetilde{B},B} [\mathbf{x}]_B.$$

Remark: The subscripts $[]_{\widetilde{B},B}$ correspond to $[]_{m\times n}$.

Remark: When W = V, we usually choose $\widetilde{B} = B$. Then we write

$$[T]_B = \left[T(\mathbf{v}_1)]_B \quad [T(\mathbf{v}_2)]_B \quad \dots \quad [T(\mathbf{v}_n)]_B \right].$$

Remark: When it makes no confusion, we abbreviate it as [T].

Example. Let $A \in M_{m \times n}(\mathbb{R})$. Let S and \widetilde{S} be the standard bases for \mathbb{R}^n and \mathbb{R}^m , respectively. Then $[T_A]_{\widetilde{S},S} = A$.

Example. (1) Find the matrix for zero transformation $0:V\to W$ relative to any bases.

(2) Find the matrix for the identity operator I on V relative to any basis.

Example. (1) Find the matrix for $T: P_1 \rightarrow P_2$ defined by

$$T(p(x)) = xp(3x - 5)$$

relative to the standard bases $B = \{1, x\}$ and $\widetilde{B} = \{1, x, x^2\}$.

(2) Compute T(1+2x) (a) directly; (b) by using this matrix. Solution:

Example. Let V be the subspace of $F(-\infty, +\infty)$ spanned by

$$\{e^{2x}, xe^{2x}, x^2e^{2x}, x^3e^{2x}\}.$$

The differentiation operator $D=\frac{d}{dx}$ is a linear operator on V. Find the matrix of D relative to the given basis.

Solution:

Example. Let
$$B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. For $ad: M_2 \to M_2$ defined by $ad(A) = BA - AB, \quad (A \in M_2),$

Find the matrix of ad relative to the standard basis for M_2 . Solution:

Chapter 4. Linear Transformations

- §4.1 General Linear Transformations
- §4.2 Matrices for General Linear Transformations
- §4.3 Properties of General Linear Transformations
- §4.4 Similarity
- §4.5 Eigenvalues and Eigenvectors
- §4.6 Diagonalization

Kernel and Range

Definition. For a linear transformation $T:V\to W$, the kernel and the range (or image) of T are defined by

$$\mathsf{Ker}(T) = \{\mathbf{v} \in V: \ T(\mathbf{v}) = \mathbf{0}\},$$

$$\mathsf{Ran}(T) = \{T(\mathbf{v}): \ \mathbf{v} \in V\}.$$

Example. Let $A \in M_{m \times n}(\mathbb{F})$. For the matrix transformation T_A : $\mathbb{F}^n \to \mathbb{F}^m$, we have

$$Ker(T_A) = Null(A), Ran(T_A) = Col(A).$$

Theorem. Let $T: V \rightarrow W$ be a linear transformation. Then

- \diamond Ker(T) is a subspace of V;
- $\diamond \operatorname{\mathsf{Ran}}(T)$ is a subspace of W.

Proof:

Kernel and Range

Example. Find the kernel and range of the following linear transformations. Also find the dimensions of theses spaces.

- \diamond The zero operator 0 on a vector space V.
- \diamond The identity operator I on a vector space V.
- $\diamond T: M_n(\mathbb{R}) \to \mathbb{R}, A \mapsto \operatorname{tr}(A). \text{ Here } n \geq 2.$
- $\diamond M: P_n \to P_{n+1}$ given by M(p(x)) = xp(x);
- $\diamond D: P_{n+1} \to P_n$ given by D(p(x)) = p'(x).

Solution:

5

Definition. Let $T:V\to W$ be a linear transform. The rank and nullity of T is defined by

$$rank(T) = dim Ran(T), \quad nullity(T) = dim Ker(T),$$

whenever the above subspaces are finite-dimensional.

Theorem. For any linear transformation $T: V \to W$ with V finite-dimensional, we have $\operatorname{rank}(T) + \operatorname{nullity}(T) = \dim(V)$.

Recall: Injective and Surjective maps

Definition. Let $f: V \to W$ be a map from a set V to a set W.

- \diamond We say that f is injective (one-to-one),
 - if it maps distinct elements in V into distinct elements in W.
- ♦ We say that f is surjective (onto), if every element in V is in the range of f.
- \diamond We say that f is bijective, if it is both injective and surjective.

Definition. A bijective linear transformation from V to W is called an isomorphism. In such case, we say that the two vector spaces V and W are isomorphic.

Remark: They have "same" linear properties!

Examples

Example. One-to-one/Onto/Isomophic or not?

- \diamond The zero operator 0 on a vector space V.
- \diamond The identity operator I on a vector space V.
- \diamond T: $M_n(\mathbb{R}) \to \mathbb{R}$, $A \mapsto \operatorname{tr}(A)$. Here $n \geq 2$.
- $\diamond M: P_n \to P_{n+1}$ given by M(p(x)) = xp(x);
- $\diamond D: P_{n+1} \to P_n$ given by D(p(x)) = p'(x).
- \diamond The right shift T_1 and the left shift T_2 on $\mathbb{R}^\mathbb{N}$ given by

$$T_1(x_1, x_2, \dots, x_n, \dots) = (0, x_1, \dots, x_{n-1}, \dots),$$

 $T_2(x_1, x_2, \dots, x_n, \dots) = (x_2, x_3, \dots, x_{n+1}, \dots).$

Solution:

Recall: An Equivalence Theorem

Theorem. Suppose that V and W are vector spaces with $\dim(V) = n$, $\dim(W) = m$. Let $T: V \to W$ be a linear transformation.

The following three statements are equivalent:

- (1) T is injective;
- (2) $Ker(T) = \{0\}$; or nullity(T) = 0;
- (3) $\operatorname{rank}(T) = n$.

The following three statements are equivalent:

- (1) T is surjective;
- (2) Ran(T) = W; or rank(T) = m;
- (3) nullity(T) = n m.

When m = n, the following three statements are equivalent:

- (1) T is bijective (isomorphic);
- (2) T is surjective (onto);
- (3) T is injective (one-to one).

Remark: If n > m, then T cannot be injective. If n < m, then T cannot be surjective.

Remark: The statements in red are NOT correct for INFINITE-dimensional spaces! (See examples in the previous page.)

Finite Dimensional Vector Spaces

Theorem. Every *n*-dimensional \mathbb{F} -vector space V is isomorphic to \mathbb{F}^n .

Proof:

Remark: For any given basis for V, the coordinate map gives an isomorphism.

Example. (1) Find a "natural" isomorphism from P_{n-1} to \mathbb{R}^n .

(2) Find a "natural" isomorphism from $M_2(\mathbb{R})$ to \mathbb{R}^4 .

Solution:

Composition of Transformations

Definition. Let U, V, W be three sets and f, g be maps such that

$$U \stackrel{f}{\rightarrow} V \stackrel{g}{\rightarrow} W.$$

Then the composition of g with f, denoted by $g \circ f$, is the map $g \circ f$: $U \to W$ defined by

$$(g \circ f)(\mathbf{u}) = g(f(\mathbf{u})), \quad (\forall \mathbf{u} \in U).$$

Remark: Indeed, we may also define the multiplication of T_2 and T_1 by $T_2T_1=T_2\circ T_1$, and write $T^n=T\circ\ldots\circ T$ for n copies of T.

Theorem. If $T_1: U \to V$ and $T_2: V \to W$ are both linear transformations, then $T_2 \circ T_1: U \to W$ is also a linear transformation. Proof:

Theorem. Let $T_1:U\to V$ and $T_2:V\to W$ be linear transformations. Let B,B',B'' be bases for U,V,W, respectively. Then

$$[T_2 \circ T_1]_{B'',B} = [T_2]_{B'',B'} [T_1]_{B',B}.$$

Examples

Example. Find the compositions of linear transformations involving 0 or *I*.

Example. Find the compositions of T_2 with T_1 , where

$$T_1: P_1 \rightarrow P_2, p(x) \mapsto xp(x),$$

$$T_2: P_2 \to P_2, \ p(x) \mapsto p(3x+1).$$

Find $T_2 \circ T_1$ and its matrix relative to the standard bases.

Solution:

Examples

Example. Let U be a certain function space on \mathbb{R} . Prove the following quantum version of uncertainty principle:

$$P \circ Q - Q \circ P = I$$
.

Here P, Q are operators on U defined by

$$(Pf) = f'(x), \quad (Qf)(x) = xf(x), \quad (\forall f \in U).$$

Proof:

Remark: P stands for momentum and Q for position.

Problem*: Show that there are no operators P and Q on a finite-dimensional space V such that $P \circ Q - Q \circ P = I$.

Inverse of a Transformations

Definition. Let $U,\ V$ be two sets. Denote by I_U and I_V the identity maps on U and V, respectively. For a map $f:\ U\to V$, if there is a map $g:\ V\to U$ such that

$$g \circ f = I_U, \quad f \circ g = I_V,$$

then we say that f is invertible, and call g the inverse of f. Sometimes, we denote the inverse of f by f^{-1} .

Problem*: Try to prove that a map $f:U\to V$ is bijective, if and only if f is invertible.

Inverse of a Transformations

Theorem. \diamond Let $T: V \to W$ be an invertible linear transformation. Then $T^{-1}: W \to V$ is also a linear transformation.

 \diamond Moreover, let B and B' be bases for V and W, respectively. Then $[T]_{B',B}$ is an invertible matrix, and

$$[T^{-1}]_{B,B'} = [T]_{B',B}^{-1}.$$

Attention: In our textbook, the inverse of a one-to-one linear transformation $T:V\to W$ is defined to be $T^{-1}:\operatorname{Ran}(T)\to V$. We do NOT use this definition!

$$\underbrace{X} \xrightarrow{f} \underbrace{Y} \xrightarrow{g} \underbrace{Z}$$

$$\underbrace{X} \overset{f^{-1}}{\longleftarrow} \underbrace{X} \overset{g^{-1}}{\longleftarrow} \underbrace{Z}$$

Theorem. Let $T_1:U\to V$ and $T_2:V\to W$ be invertible linear transformations. Then $T_2\circ T_1$ is also invertible, and

$$(T_2 \circ T_1)^{-1} = T_1^{-1} \circ T_2^{-1}.$$

Examples

Example. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear operator defined by

$$T(x_1, x_2, x_3) = (3x_1 + x_2, -2x_1 - 4x_2 + 3x_3, 5x_1 + 4x_2 - 2x_3).$$

Determine whether T is invertible. If so, find T^{-1} .

Solution:

Examples

Example. Let $T: P_2 \rightarrow P_2$ be defined by

$$T(p(x))=p(2x+1).$$

Determine whether T is invertible. If so, find T^{-1} .

Solution:

Properties of an Inverse

The following two theorems have already appeared in the version of matrices.

Theorem. Let V and W be two finite-dimensional vector spaces with same dimension. Let $T:V\to W$ be a linear transformation. (See chapter 4.)

- \diamond If T_1 is injective, then T_1 is invertible.
- \diamond If T_1 is surjective, then T_1 is invertible.

Theorem. Let V and W be two finite-dimensional vector spaces with same dimension. Let $T_1:V\to W$ and $T_2:W\to V$ be two linear transformations. (See chapter 1.)

- \diamond If $T_2 \circ T_1 = I_V$, then T_1 is invertible, and $T_1^{-1} = T_2$.
- \diamond If $T_2 \circ T_1 = I_V$, then T_2 is invertible, and $T_2^{-1} = T_1$.

Problem*: When V and W are infinite-dimensional, try to find counterexamples of the statements in above two theorems.

Problem*: If $T_2 \circ T_1$ is injective, then T_1 is injective.

If $T_2 \circ T_1$ is surjective, then T_2 is surjective.

Find an example such that $T_2 \circ T_1$ is injective but T_2 is not.

Find an example such that $T_2 \circ T_1$ is surjective but T_1 is not.

Chapter 4. Linear Transformations

- §4.1 General Linear Transformations
- §4.2 Matrices for General Linear Transformations
- §4.3 Properties of General Linear Transformations
- §4.4 Similarity
- §4.5 Eigenvalues and Eigenvectors
- §4.6 Diagonalization

Recalling

Definition. Let $B = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ and $B' = \{\mathbf{v}_1', \dots, \mathbf{v}_n'\}$ be two bases of V. The transition matrix from B' to B is defined as $P_{B \leftarrow B'} = \left[\begin{array}{c|c} [\mathbf{v}_1']_B & [\mathbf{v}_2']_B & \dots & [\mathbf{v}_n']_B \end{array}\right]$

Proposition. Let $B = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ and $B' = \{\mathbf{v}'_1, \dots, \mathbf{v}'_n\}$ be two bases of V. Then for any vector $\mathbf{x} \in V$, it satisfies that

$$[\mathbf{x}]_B = P_{B \leftarrow B'} [\mathbf{x}]_{B'}.$$

Main Problem

Physics: Same motion, two different observers. *Motion is relative*.

Mathematics: Same linear operator, two different bases.

Main Problem:

V: a finite-dimensional vector space;

 $B = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$: a basis for V;

 $B' = \{\mathbf{v}'_1, \dots, \mathbf{v}'_n\}$: another basis for V;

 $T: V \rightarrow V$: a linear operator on V.

What relationship exists between the matrices $[T]_B$ and $[T]_{B'}$?

Recall the following example:

Example. Let L be the line through the origin that makes an angle θ with the positive x-axis. Find the standard matrices for the operator P_{θ} that maps each point into its orthogonal projection on L.

$$P_{\theta} = R_{\theta} \circ P_0 \circ R_{-\theta} = (R_{-\theta})^{-1} \circ P_0 \circ R_{-\theta}.$$

Describing a Linear Transformation

Theorem. Let $T:V\to V$ be a linear operator on a finite-dimensional vector space V, and let B and B' be bases for V. Then

$$[T]_{B'} = P_{B \leftarrow B'}^{-1} [T]_B P_{B \leftarrow B'}.$$

Proof:

An Example

Example. Consider the matrix operator $T: \mathbb{R}^2 \to \mathbb{R}^2$ whose standard matrix is

$$[T] = \left[\begin{array}{cc} 1 & 1 \\ -2 & 4 \end{array} \right].$$

Find the matrix of \mathcal{T} relative to another basis $\mathcal{B}'=\{\mathbf{u}_1',\mathbf{u}_2'\}$, in which

$$\mathbf{u}_1' = (1,1), \quad \mathbf{u}_2' = (1,2).$$

Show the relationship between this two matrices.

Similar Matrices

Definition. Let $A, B \in M_n$. We say that A and B are similar, if there is an invertible matrix $P \in M_n$ such that

$$P^{-1}AP=B.$$

Remark: \diamond "Similar" is an equivalent relation on M_n , i.e., reflexive + symmetric + transitive properties.

Similar matrices can represent the same linear operator.

Example. Verify that the matrices A and D are similar, where

$$A = \begin{bmatrix} 1 & 1 \\ -2 & 4 \end{bmatrix}, \quad D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}.$$

Proof:

Remark: The transition matrix P is not unique!

Remark: For a diagonal matrix A, one has $A\mathbf{e}_i = a_{ii}\mathbf{e}_i$.

Similarity Invariants

Theorem. Let $A, B \in M_n$ be two similar matrices. Then

- $\diamond \operatorname{tr}(A) = \operatorname{tr}(B);$ $\diamond \det(A) = \det(B);$ $\diamond \operatorname{rank}(A) = \operatorname{rank}(B);$ $\diamond \text{ nullity}(A) = \text{nullity}(B).$ Proof:

Remark: Trace, determinant, rank and nullity are similarity invariants. Indeed, they characterize the underlying linear transformation.

Chapter 4. Linear Transformations

- §4.1 General Linear Transformations
- §4.2 Matrices for General Linear Transformations
- §4.3 Properties of General Linear Transformations
- §4.4 Similarity
- §4.5 Eigenvalues and Eigenvectors
- §4.6 Diagonalization

Definition of Eigenvalue & Eigenvector

Fact: A linear operator T may be very complicated! Philosophy: Deal with some easy case first! Then simplify T! Idea: The case that T fixes some "axis" is easy to describe. (e.g., compression or dilation in one dimension)

Definition. Let V be an \mathbb{F} -vector space and let $T:V\to V$ be a linear operator. A nonzero vector $\mathbf{x}\in V$ is called an eigenvector of T if

 $T(\mathbf{x}) = \lambda \mathbf{x}$

for some scalar $\lambda \in \mathbb{F}$. Here, the scalar λ is called an eigenvalue of T, and \mathbf{x} is said to be an eigenvector corresponding to λ .

Definition of Eigenvalue & Eigenvector

Definition'. For $A \in M_n(\mathbb{F})$, if

$$A\mathbf{x} = \lambda \mathbf{x}$$

for some non-zero vector $\mathbf{x} \in \mathbb{F}^n$ and some scalar $\lambda \in \mathbb{F}$, then λ is called an eigenvalue of A, and \mathbf{x} is called an eigenvector of A corresponding to λ .

Theorem. Two similar matrices have the same eigenvalues. Proof:

Remark: The corresponding eigenvectors may be different (by a transition matrix)!

Example. Find eigenvalues and eigenvectors of the following linear operators, if exist, by geometric observation.

- (1) Reflection about the line y = x on \mathbb{R}^2 , i.e., T(x, y) = (y, x).
- (2) Contraction or dilation on \mathbb{R}^2 , i.e., T(x,y) = (kx, ky).
- (3) Orthogonal projection on the y-axis in \mathbb{R}^2 , i.e., T(x,y)=(0,y).
- (4) The shear of \mathbb{R}^2 in the x-direction, i.e., T(x,y) = (x + ky, y).
- (5) The rotation operator on \mathbb{R}^2 that moves points counterclockwise about the origin through an angle θ .

Example. Let $D: C^{\infty}(-\infty, +\infty) \to C^{\infty}(-\infty, +\infty)$ be the differential operator, i.e., $D=\frac{d}{dx}$. This operator is linear. For any $\lambda \in \mathbb{R}$, the function $e^{\lambda x}$ is an eigenvector of D, i.e.,

$$D(e^{\lambda x}) = \lambda e^{\lambda x}.$$

Example. Let $T: C^{\infty}(-\pi,\pi) \to C^{\infty}(-\pi,\pi)$ be the second-order differential operator, i.e., $T=-\frac{d^2}{dx^2}$. This operator is linear. For any $k\in\mathbb{Z}$, the functions $\sin kx$ and $\cos kx$ are eigenvectors of T relative to the eigenvalue k^2 , i.e.,

$$T(\sin kx) = k^2 \sin kx$$
, $T(\cos kx) = k^2 \cos kx$.

Remark: Usually, harmonic waves are eigenvectors of a Laplacian operator.

Computing Eigenvalues and Eigenvectors

$$\circ A\mathbf{x} = \lambda \mathbf{x} \Longleftrightarrow (A - \lambda I)\mathbf{x} = \mathbf{0}.$$

Theorem. Let $A \in M_n(\mathbb{F})$. Then $\lambda \in \mathbb{F}$ is an eigenvalue of A, if and only if $\det(\lambda I_n - A) = 0.$

Proof:

Remark: " $det(\lambda I - A) = 0$ " is called the characteristic equation of A.

Definition. For $A \in M_n$, the characteristic polynomial of A is defined to be $f_A(\lambda) = \det(\lambda I_n - A)$.

Remark: $deg(f_A(\lambda)) = n$. The coefficients belong to \mathbb{F} .

Remark: When the scalars are real, $f_A(\lambda)$ may have no root.

When the scalars are complex, $f_A(\lambda)$ has n roots (with multiplicities).

Problem*: Let $A \in M_n(\mathbb{R})$, prove that A and A^T has same eigenvalues. Problem*: Prove that two similar matrices have the same characteristic

polynomial.

上海科技大学 数学科学研究所

Example. Let

$$A = \left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right].$$

- (1) Consider $A \in M_2(\mathbb{R})$, find all eigenvalues of A.
- (2) Consider $A \in M_2(\mathbb{C})$, find all eigenvalues of A.

Example. Find all eigenvalues of

$$A = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -17 & 8 \end{array} \right] \in M_3(\mathbb{R}).$$

Example. Find eigenvalues of

$$A = \left[\begin{array}{ccccc} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a_{22} & a_{23} & a_{24} \\ 0 & 0 & a_{33} & a_{34} \\ 0 & 0 & 0 & a_{44} \end{array} \right].$$

Solution:

Theorem. If A is a triangular matrix, then the eigenvalues of A are the entries on the main diagonal of A.

Eigenspace

Definition. Suppose that $A \in M_n(\mathbb{F})$ and λ is an eigenvalue of A. Then

$$E_{\lambda}(A) := \{ \mathbf{x} \in \mathbb{F}^n : A\mathbf{x} = \lambda \mathbf{x} \} = \text{Null}(\lambda I_n - A)$$

is called the eigenspace of A corresponding to λ .

Remark: The notation $E_{\lambda}(A)$ is used only in our class.

Remark: $E_{\lambda}(A)$ is a subspace of \mathbb{F}^n .

Remark: The effect of the transformation A, restricted to $E_{\lambda}(A)$, is a scalar multiple of λ .

Problem*: Suppose that the two matrices A and B are similar, and λ are their common eigenvalue. Prove that

$$\dim(E_{\lambda}(A)) = \dim(E_{\lambda}(B)).$$

Example. Find a basis for each eigenspace of

$$A = \left[\begin{array}{ccc} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{array} \right] \in M_3(\mathbb{R}).$$

Example. Find the dimension of each eigenspace of the following linear operators.

- (1) Reflection about the line y = x on \mathbb{R}^2 , i.e., T(x,y) = (y,x).
- (2) Contraction or dilation on \mathbb{R}^2 , i.e., T(x,y) = (kx, ky).
- (3) Orthogonal projection on the y-axis in \mathbb{R}^2 , i.e., T(x,y)=(0,y).
- (4) The shear of \mathbb{R}^2 in the x-direction, i.e., T(x,y) = (x + ky, y).
- (5) The rotation operator on \mathbb{R}^2 that moves points counterclockwise about the origin through an angle θ .

Eigenvalues and Invertibility

Theorem. Let $A \in M_n(\mathbb{F})$. The following statements are equivalent.

- (a) A is invertible.
- (t) $\lambda = 0$ is not an eigenvalue of A.

Proof:

Remark: Let $p(\lambda) = \det(\lambda I_n - A)$. Then $\det(A) = (-1)^n p(0)$. Remark: Suppose that A is invertible. If $A\mathbf{x} = \lambda \mathbf{x}$, then $A^{-1}\mathbf{x} = \lambda^{-1}\mathbf{x}$.

Let

$$A = \left[\begin{array}{cc} 1 & 1+i \\ 2 & i \end{array} \right] \in M_2(\mathbb{C}).$$

Find eigenvalues and corresponding eigenvectors of A^{-1} . Solution:

Eigenvalues of Matrix Polynomials

Theorem. Let $A \in M_n(\mathbb{F})$. Let q(x) be a polynomial with coefficients in \mathbb{F} . Then

 $\{\mu: \mu \text{ is an eigenvalue of } q(A)\} \supseteq \{q(\lambda): \lambda \text{ is an eigenvalue of } A\}.$ Indeed, if $A\mathbf{x} = \lambda \mathbf{x}$, then $q(A)\mathbf{x} = q(\lambda)\mathbf{x}$.

Proof:

Remark: When $\mathbb{F} = \mathbb{C}$, the above " \supseteq " can be replaced by "=".

Conjugate Transpose of a Matrix

Definition. Let $A \in M_{m \times n}(\mathbb{C})$, the adjoint (conjugate transpose) of A, denoted by A^* , is defined to be the matrix in $M_{n \times m}(\mathbb{C})$ such that

$$(A^*)_{ij} = \overline{(A)_{ji}}, \quad (1 \leq i \leq m, \ 1 \leq j \leq n).$$

Proposition. Let $A, B \in M_{m \times n}(\mathbb{C})$, $C \in M_{n \times k}(\mathbb{C})$ and $c \in \mathbb{C}$. Then

- (i) $(A + B)^* = A^* + B^*$.
- (ii) $(cA)^* = \overline{c}A^*$.
- (iii) $(A^*)^* = A$.
- (iv) $(AC)^* = C^*A^*$.

Theorem. Let $A \in M_n(\mathbb{C})$. If λ is an eigenvalue of A, then $\overline{\lambda}$ is an eigenvalue of A^* .

Proof:

Let

$$A = \begin{bmatrix} 1 & 1+i \\ 2 & i \end{bmatrix} \in M_2(\mathbb{C}).$$

Find the eigenvalues and corresponding eigenvectors of

(i)
$$A^5$$
; (ii) $A^2 + A - 3I_2$.

Find the eigenvalues of (iii) A^* .

Chapter 4. Linear Transformations

- §4.1 General Linear Transformations
- §4.2 Matrices for General Linear Transformations
- §4.3 Properties of General Linear Transformations
- §4.4 Similarity
- §4.5 Eigenvalues and Eigenvectors
- §4.6 Diagonalization

Concept of Diagonalizazion

Fact: A linear operator T may be very complicated!

Philosophy: Deal with some easy case first! Then simplify T! Idea: The case that T fixes some "axis" is easy to describe.

Idea: Now we consider the case that T can be $\operatorname{COMPLETELY}$ determined

by such fixed "axes"!

Example. The eigenvalues of the diagonal matrix

$$\left[\begin{array}{ccc} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{array}\right]$$

are exactly $\lambda_1, \lambda_2, \dots, \lambda_n$. And the standard basis $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$ are the corresponding eigenvectors, respectively.

Definition. A square matrix $A \in M_n$ (or a linear operator T on V with $\dim(V) = n$) is said to be diagonalizable if it has n linearly independent eigenvectors.

Example. Are the following linear operators diagonalizable? If so, determine the effect of the operators by the eigenvectors.

- (1) Reflection about the line y = x on \mathbb{R}^2 , i.e., T(x,y) = (y,x).
- (2) Contraction or dilation on \mathbb{R}^2 , i.e., T(x, y) = (kx, ky).
- (3) Orthogonal projection on the y-axis in \mathbb{R}^2 , i.e., T(x,y)=(0,y).
- (4) The shear of \mathbb{R}^2 in the x-direction, i.e., T(x,y) = (x+ky,y).
- (5) The rotation operator on \mathbb{R}^2 that moves points counterclockwise about the origin through an angle θ .

Example. Let V be set of functions f on $[-\pi, \pi]$ which have derivatives of all order and satisfy $f(-\pi) = f(\pi) = 0$. The Fourier series gives

$$f(x) = \sum_{n=1}^{\infty} (a_n \sin nx + b_n \cos nx),$$

where a_n, b_n are Fourier coefficients. Indeed, $\sin nx$ and $\cos nx$ are eigenvectors of $\frac{d^2}{dx^2}$.

Remark: The theories for infinite-dimensional spaces are much more complicated. Please ignore the details!

Equivalent Statements for Diagonalizazion

Theorem. Let $A \in M_n(\mathbb{F})$. The following statements are equivalent.

- (i) A has n linearly independent eigenvectors.
- (ii) $P^{-1}AP = D$ for some invertible P and diagonal D.

Proof:

Remark: Indeed, P is the transition matrix from the basis formed by the eigenvectors to the standard basis.

Remark: Indeed, the entries on the main diagonal of D are exactly eigenvalues of A.

Diagonalise a Matrix

Examples. In $M_3(\mathbb{R})$, diagonalize A and find the corresponding transition matrix P. Here

$$A = \left[\begin{array}{ccc} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{array} \right].$$

Solution:

Problem*: To summarize the main steps of diagonalization.

Remark: The choice of *P* is not unique!

Linearly Independent Eigenvectors

Theorem. If $\lambda_1, \lambda_2, \ldots, \lambda_k$ are distinct eigenvalues of A, and $E_{\lambda_i}(A)$ ($1 \le i < k$) has basis

$$\mathbf{v}_{i,1},\mathbf{v}_{i,2},\ldots,\mathbf{v}_{i,m_k}.$$

Then the vectors

$$\textbf{v}_{1,1},\ldots,\textbf{v}_{1,m_1},\quad \textbf{v}_{2,1},\ldots,\textbf{v}_{2,m_2},\quad,\ldots,\quad \textbf{v}_{k,1},\ldots,\textbf{v}_{k,m_k}$$

are linearly independent.

Proof:

Remark: Let $A \in M_n$. Suppose that all the distinct eigenvalues of A are $\lambda_1, \lambda_2, \ldots, \lambda_k$. Then A is diagonalizable if and only if

$$\dim E_{\lambda_1}(A) + \dim E_{\lambda_2}(A) + \ldots + \dim E_{\lambda_k}(A) = n.$$

Corollary. Let $A \in M_n$. If A has n distinct eigenvalues then A is diagonalizable.

Diagonalise a Matrix

Examples. Show that $B \in M_3(\mathbb{R})$ is not diagonalizable, where

$$B = \left[\begin{array}{rrr} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 1 & 2 \end{array} \right].$$

Computing Powers of a Diagonalizable Matrix

Observation:

- \circ If $A\mathbf{x} = \lambda \mathbf{x}$, then $A^k \mathbf{x} = \lambda^k \mathbf{x}$.
- $\circ (P^{-1}AP)^k = P^{-1}A^kP.$
- For a polynomial f(x), we have $f(P^{-1}AP) = P^{-1}f(A)P$.

Idea: Diagonalise the matrix before computing powers.

Example. Evaluate
$$A^5$$
, where $A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$. Solution:

Remark: $A^n = PD^nP$.

Recurrence Relation

Example. The Fibonacci sequence is defined by the recurrence relation

$$a_0 = 0$$
, $a_1 = 1$, $a_n = a_{n-1} + a_{n-2}$ $(n \ge 2)$.

Find an expression for a_n by using 2×2 matrices.

