Discussion 4/5/19

Page Replacement Algorithms

OPT

- What the optimal page replacement would choose if it had perfect knowledge (Which you do!)
- Swap out the page whose next use will occur farthest in the future.

Clock

Otherwise known as second chance (more details on next slide).

FIFO

Evict oldest page in memory

Random Eviction

Randomly select page to evict

LRU

 Least Recently Used (LRU) algorithm is a Greedy algorithm where the page to be replaced is least recently used.

Physical and Virtual memory

	i ilyolodi dila										
Persistent Storage			Pa F#	ble Val							
	0		1	D	Т						
	1			С	F						
	2		0	С	Т						
	3			С	F						
	4		3	D	Т						
	5			С	F						
	6		2	D	Т						
	7			С	F						

Physical Memory (RAM) 4

R 0100101
W 0001111
W 1101010
R 0001111 // Nothing!
R 1000000
W 10010101

What is the LRU order?

Physical and Virtual memory

	уS		11 a	HU
ersiste Storag			ige Ta D/C	
0		1	D	Т
1			С	F
2		0	С	Т
3			С	F
4		3	D	Т
5			С	F
6		2	D	Т
7			С	F

Physical Memory (RAM)

2
0
6
4

Instructions:

 R 0100101
 W 0001111
 W 1101010
 R 0001111 // Nothing!
 R 1000000
 W 10010101

 What is the LRU order?

- vvnat is the LRU order?
 010 -> 110 -> 000 -> 100
- Consider:

R 1110000

Physical and Virtual memory

Physical and									
Persistent Storage	: Pa F#	ige Ta D/C							
0	1	D	Т						
1		С	F						
2		С	F						
3		С	F						
4	3	D	Т						
5		С	F						
6	2	D	Т						
7	0	С	Т						

Physical Memory (RAM)

7
0
6
4

• Instructions:

R 0100101

W 0001111

W 1101010

R 0001111 // Nothing!

R 1000000

W 10010101

- What is the LRU order?
 - o 010 -> 110 -> 000 -> 100
- Consider:

R 1110000

Order is now 110 -> 000 -> 100 -> 111

Beladys Anomaly

- The phenomenon that some page replacement algorithms see an increase in performance with a decrease in frames.
- In other words, increasing amount of frames doesnt yield less page faults!
- Algorithms that are known to experience this:
 - First in first out (FIFO)
 - Second chance algorithm
 - Random page replacement algorithm

Beladys Anomaly

Given the following page accesses:

Consider 4 frames:

1	1	1	1	1	1	2	3	4	5	1	2
	2	2	2	2	2	3	4	5	1	2	3
		3	3	3	3	4	5	1	2	3	4
			4	4	4	5	1	2	3	4	5
PF	PF	PF	PF	Х	Х	PF	PF	PF	PF	PF	PF

Beladys Anomaly

Given the following page accesses:

• Consider 3 frames:

1	1	1	2	3	4	1	1	1	2	5	5
	2	2	3	4	1	2	2	2	5	3	3
		3	4	1	2	5	5	5	3	4	4
PF	Х	X	PF	PF	Х						

How to plot

• See example code in repo!