Exercice 01:

Un projet d'installation de conduits d'eau alimentant les localités: A, B, C, D, E, F est représenté par le graphe G=(X,U) suivant. Les valeurs portées sur les arêtes représentent la longueur des conduits utilisés pour l'installation.

Donner un plan d'installation minimisant la longueur totale des conduits d'eau utilisés?

Exercice 02:

On considère le graphe G=(X,U) dont les valeurs des arcs représentent des coûts.

Déterminer un arbre de coût minimal?

Exercice 03:

Pour un voyage de la ville A à la ville G, on considère la matrice suivante donnant les liaisons possibles entre ces villes ainsi que la durée de chaque voyage en heurs.

	Α	В	С	D	E	F	G
Α	240	1	3		-	-	-
В	-	944	1	2	2	-	-
C	-	(-)	-0	1	1	-	
D	-	(4 ite	170	315	-	9	-5
E	-	10 0 14	1477	-	=/4=	-	3
F	a , 1	652	150		3	-	4
G	-				- A-	28	

- 1) Représenter sous forme de graphe ordonné les différentes liaisons existant entre ces villes.
- 2) Déterminer une solution permettant d'aller de A à G pour une durée de voyage minimum. Si on démarre de A à 9h du matin, à quelle heure on arrivera à G sachant que le temps d'attente entre deux voles est de 15 minutes.

Exercice 01:

Etant donné un groupe de dix personnes, le tableau suivant indique les paires de personnes qui ont une relation d'amitié.

1	1	2	3	4	5	6	7	8	9	10
Ami de i	3.6.7	6.8	1.6.7	5.10	4.10	1.2.3.7	1.3.6	2		4.5

- 1- Représentez cette situation par un graphe?
- 1- Ce graphe est-il complet? Connexe? (sinon déterminer les composantes connexes)
- 2- Si l'adage (les amis de nos amis sont nos amis) était vérifié, que pourrait on en conclure sur la structure du graphe.

Exercice 02:

Soit le graphe G=(X,U) suivant:

- 2- Est-ce que G est connexe?
- 3- Est-ce que G est fortement connexe? Sinon déterminer les composantes fortement connexes de G et le graphe réduit G_r.

Exercice 03:

La réalisation d'un projet suppose la réalisation de 5 tâches A, B, C, D, E. les conditions d'antériorité entre ces différentes taches sont représentées dans le tableau suivant.

Représenter les tâches de ce projet sous forme d'un graphe ordonné.

Les tâches	Les tâches précédentes			
A	B,C			
В				
C	В			
D	С			
E	A,D			

Exercice 04:

Soit le graphe G=(X,U) suivant:

Est-ce que G est ordonnable? Sinon, déterminer un circuit éventuel.

Exercice 01:

Le tableau ci-dessous donne les liaisons internes assurées par différentes compagnies d'Air Algérie.

	Alger	Bejaia	Annaba	Oran	Constantine	Tamanrasset
Alger		1				
Bejaia	1	-	1			
Annaba	1		-		1	
Oran					1	
Constantine				1		
Tamanrasset	1	1		1		

Représenter les différentes liaisons par un graphe.

2- Déterminer les destinations des vols partant de Annaba.

Exercice 02:

Le tableau suivant représente l'intervention de 5 arbitres dans un tournoi, 6 rencontres sont programmées pour la première journée.

Arbitres	A.	A ₂	A ₃	Λ4	A ₅
Rencontres	$M_1 - M_2$	$M_3 - M_4 - M_2$	M5-M4-M6	M_1-M_3	M_6-M_5

Représenter la programmation du déroulement des rencontres de la première journée par un graphe. Indication: Deux sommets sont reliés par une arête si les rencontres correspondantes peuvent se dérouler au même moment.

Exercice 03:

Représenter les situations ci-dessous à l'aide d'un graphe:

1- On considère un cube; un sommet est associé à une face du cube et deux sommets sont reliés par une arête si les faces correspondantes ont une arête commune;

2- Les sommets du graphe sont tous les sous-ensembles à deux sommets {1,2,3,4}; deux sommets sont reliés si leur intersection est non vide;

3- Comparer les deux graphes définis ci-dessus.

Exercice 04:

Une ligue de football comporte 5 équipes.

1- Il est décidé par le bureau de la ligue que lors d'un week-end d'entraînement, chaque équipe jouera quatre matches.

Faire un planning des rencontres sachant que deux équipes ne peuvent pas se rencontrer plus

2- le calendrier étant trop chargé, les organisateurs décident que chaque équipe ne jouera que trois matches. Comment l'organiser?

On défini une relation R sur l'ensemble des 9 premiers entiers naturels non nuls comme suit: xRy ⇔ x est un diviseur de y

Représenter cette relation par un graphe orienté.

2- Déterminer à partir du graphe l'ensemble des nombres pairs et l'ensemble des nombres premiers.