# Variant prioritization

#### **University of Cambridge**

Cambridge, UK 10<sup>th</sup> June 2014







#### Marta Bleda Latorre

mbleda@cipf.es

PhD Student at the Computational Genomics Institute Centro de Investigación Príncipe Felipe (CIPF) Valencia, Spain

# The objective



### And now what?

### Finding the mutations causative of diseases

The simplest case: monogenic disease due to a single gene



### And now what?

#### Finding the mutations causative of diseases



Clear individual gene associations are difficult to find in some diseases

Same phenotype can be due to **different mutations and different genes** (or combinations)

Many cases have to be used to obtain significant associations to many markers

The only common element is the pathway (yet unknown) affected

# Strategies

- Filtering using family information
- Network (Systems biology) approaches
  - PPIs
  - Gene regulatory elements (miRNAs, Tfs)
  - GO terms
- GWAS

- Families containing control and disease individuals can help us to reduce the number of variants obtained
- Individuals from the same family → less variability
- Filter variants present in healthy people



#### Dominant inheritance



Recessive homozygous



Recessive - Compound heterozygosity



# Using network information



# Example with Inherited Retinal Dystrophies (IRD)

- Prevalence 1 in 3000
- Clinically and genetically very heterogeneous
- 190 GENES account for aprox. 50% of IRDs.

Is genetic overlapping among IRDs related to protein interaction?

# Example with Inherited Retinal Dystrophies (IRD)



# Example with Inherited Retinal Dystrophies (IRD)



SNOW Tool. Minguez et al., NAR 2009 Implemented in Babelomics (http://www.babelomics.org)

### **SNOW**

- The SNOW tool introduces protein-protein interaction data into the functional profiling of genomic data
  - Evaluates role of the list within the interactome: identifies hubs in the list of proteins/genes (nodes) and evaluates the topological parameters of the within the interactome
  - Evaluates the list's cooperative behaviour as a functional module



http://babelomics.bioinfo.cipf.es/functional.html

### NetworkMiner

#### Prioritizing disease candidate genes

#### Scenario

http://babelomics.bioinfo.cipf.es/functional.html

#### You have:

- 1. a list of disease candidates (ranked by their populational frequency)
- 2. a list of genes that are known to be associated to the disease

#### You want to see:

which of your candidates are functionally related or interacting with the known disease genes

#### **NetworkMiner Study**

Tests whether any of the candidates is significantly located in the neighborhood of the known disease genes



### NetworkMiner

### Prioritizing disease candidate genes

Example: Genome-Wide Association Study in Bipolar Disorder

Seed list: Genes associated to Bipolar Disorder

Ranked list: Genes ranked according the association degree in a Case-Control Association Study

#### **Network Miner**





# **RENATO** (REgulatory Network Analsis TOol)

### Identifying common regulatory elements

- Sometimes, the problem is not in the gene
- Example: Mutation in the DNA binding domain of a TF
- Tool for the interpretation and visualization of transcriptional (TFs) and post-transcriptional (miRNAs) regulatory information
- Designed to identify common regulatory elements in a list of genes
- RENATO maps these genes to the regulatory network, extracts the corresponding regulatory connections and evaluate each regulator for significant over-representation in the list.

http://renato.bioinfo.cipf.es





