BOOSTING 2

-Introduction to Data Science-

Lecturer: Darren Homrighausen, PhD

Preamble:

- Nonparametric methods provide a flexible fit but can only be used in low dimensions
- Boosting is an algorithm for fitting a greedy, stepwise nonparametric procedure
- Unlike nonparametric methods, the basis ϕ is also estimated from the data
- Regularization via a learning rate λ and the number of steps B is important

BOOSTING SO FAR...

SUMMARY: In the previous lecture, we made the following observations

- When p is very small, we can flexibly fit a local average to estimate the Bayes' rule
 (e.g. splines)
- When p is larger, we need to limit the flexibility (e.g. with generalized additive models (GAMs) or GLMs $(\beta^T X)$)
- One drawback is that GAMs and GLMs encode strong assumptions
 - (In particular, no interactions between features)

How does boosting work?

Boosting fits a type of nonparametric model

$$f(X) = \sum_{b=1}^{B} \beta_b \phi_b(X) = \beta^{\top} \Phi(X)$$

where

- β are weights
- \bullet ϕ is some base learner

The base learner will be a fixed family of procedures that depend on some parameters, θ

So, we will write $\phi_b(X) = \phi(X, \theta_b)$

EXAMPLE: ϕ could be a tree. Then θ_b would be the split points, the values for the decisions made at each split point, and the predictions at each terminal node

How does boosting work?

NONPARAMETRICS:

$$f(X) = \sum_{j=1}^{K} \beta_j \phi_j(X)$$

Which we can fit via

$$\hat{\beta} = \mathop{\rm argmin}_{\beta} \left| \left| Y - \Phi \beta \right| \right|_{2}^{2},$$

and form $\hat{f}(X) = \hat{\beta}^{\top} \Phi(X)$. Note:

- ullet all the coefficients eta are estimated at the same time
- the basis ϕ_k is specified before hand (e.g. splines)

What if instead we estimate both the coefficients and basis?

This creates a nonconvex optimization problem

 \rightarrow fit in a greedy, stepwise manner

FORWARD STEPWISE NONPARAMETRICS

Specify a starting point $\hat{f}(X) = 0$

For $b = 1, \ldots, B$

1. Fit:
$$\hat{\beta}_b$$
, $\hat{\theta}_b = \operatorname{argmin}_{\beta,\theta} \sum_{i=1}^n \ell(\hat{f}(X_i) + \beta \phi(X_i, \theta), Y_i)$

- 2. Set: $\hat{f}_b(X) = \hat{\beta}_b \phi(X; \hat{\theta}_b)$
- 3. Update: $\hat{f}(X) \leftarrow \hat{f}(X) + \hat{f}_b(X)$

Under squared error loss $\ell(f(X), Y) = (Y - f(X))^2$

$$\ell(\hat{f}(X_i) + \beta\phi(X_i, \theta), Y_i) = (Y_i - \hat{f}(X_i) - \beta\phi(X_i, \theta))^2$$
$$= (\tilde{R}_i - \beta\phi(X_i, \theta))^2$$

where \tilde{R}_i is the i^{th} residual from \hat{f}

Hence, finding the \hat{f}_b means fitting to the residuals...

Back to Boosting for Regression

Reminder: Boosting regression trees

Set $\hat{f} \equiv 0$ and $R = Y \in \mathbb{R}^n$. For b = 1, ..., B, do:

FORWARD, STEPWISE NONPARAMETRIC REGRESSION:

- 1. Fit: $\hat{\beta}_b, \hat{\theta}_b = \operatorname{argmin}_{\beta,\theta} \sum_{i=1}^n (Y_i \hat{f}(X_i) \beta \phi(X_i, \theta))^2$
- 2. Set: $\hat{f}_b(X) = \hat{\beta}_b \phi(X; \hat{\theta}_b)$
- 3. Update: $\hat{f}(X) \leftarrow \hat{f}(X) + \hat{f}_b(X)$

BOOSTING FOR REGRESSION:

- 1. Fit \hat{f}_b with M regions to $\tilde{\mathcal{D}} = \{(X_1, R_1), \dots, (X_n, R_n)\}$
- 2. Update: $R \leftarrow R \lambda \hat{f}_b(X)$
- 3. Update: $\hat{f}(X) \leftarrow \hat{f}(X) + \lambda \hat{f}_b(X)$

These are the same, except for two minor differences:

- Boosting includes the learning rate λ
- A slight difference in how R and \tilde{R} are defined (These differences are to reduce overfitting. See ESL 10.10 and/or

"boostingExtras.pdf" for extra details)

Boosting for classification

FORWARD STEPWISE NONPARAMETRICS

As boosting can be seen as a greedy, stepwise fit:

$$\hat{eta}_b, \hat{ heta}_b = \operatorname*{argmin}_{eta, heta} \sum_{i=1}^n \ell(\hat{f}(X_i) + eta \phi(X_i, heta), Y_i)$$

If we change the loss function, we get a different boosting procedure

We'll want to choose a new loss for classification as squared error loss doesn't work well

Loss functions for classification

REMINDER:

$$Y \in \{-1,1\}$$

$$Yf(X)$$
 is $\begin{cases} > 0 & \text{if correct} \\ < 0 & \text{if incorrect} \end{cases}$

f(X) is (signed) distance from decision boundary

 \rightarrow loss functions for classification should seek to make Yf(X) as large as possible

BOOSTING FOR CLASSIFICATION

We can adapt boosting to classification by changing the loss function

This will produce an additive model $\hat{f}(X) = \sum_{b=1}^{B} \lambda \hat{f}_b(X)$ (Again, \hat{f}_b is the trained base learner that minimizes the training error at the b^{th} step)

This gets converted to a classifier via $\hat{g}(X) = \operatorname{sgn}(\hat{f}(X))$

For classification, two common choices of ℓ are:

- Adaboost
- Bernoulli or Logistic

BOOSTING FOR CLASSIFICATION

More details:

 ADABOOST: Iteratively fits a classifier on reweighted training data such that misclassified observations are upweighted

It turns out this is equivalent to stepwise nonparametrics with the exponential loss function:

$$\ell(f(X), Y) = \exp\{-f(X)Y\}$$

 Bernoulli or Logistic: If we assume a Bernoulli distribution with logistic link, we acquire another stepwise nonparametric procedure:

$$\ell(f(X), Y) = \log\left(1 + \exp\{-2Yf(X)\}\right)$$

(Note that the '2' is from us defining $Y \in \{-1,1\}$ whereas the Bernoulli is commonly written $Y \in \{0,1\}$ and hence our label is "twice" the usual label)

Adaboost outline

We give an overview of 'AdaBoost.M1.'

(Freund and Schapire (1997))

Select a base classifier that you want to boost

(E.g. a tree with a very small number of terminal nodes)

First, train the base classifier as usual on the training data ${\cal D}$

Then start iterating $b = 1, 2, \dots B$,

At each step b,

1. the observations are re-weighted to increase the weights of misclassified observations

(Implicitly, this lowers the weight on correctly classified observations)

2. A new classifier is trained on the re-weighted training data

(Discrete) AdaBoost algorithm

Assume $Y \in \{-1, 1\}$

- 1. Initialize $w_i \equiv 1/n$ for $i = 1, \ldots, n$
- 2. For b = 1, ..., B
 - 2.1 Fit the base classifier on \mathcal{D} , weighted by $w_i \to \hat{g}_b$
 - 2.2 Compute

$$\hat{R}_b = \frac{\sum_{i=1}^n w_i \mathbf{1}(Y_i \neq \hat{g}_b(X_i))}{\sum_{i=1}^n w_i}$$

- 2.3 Find $\hat{\beta}_b = \log((1 \hat{R}_b)/\hat{R}_b)$
- 2.4 Set $w_i \leftarrow w_i \exp{\{\hat{\beta}_b \mathbf{1}(Y_i \neq \hat{g}_b(X_i))\}}$
- 3. Output: $\hat{g}(X) = \operatorname{sgn}\left(\sum_{b=1}^{B} \hat{\beta}_b \hat{g}_b(X)\right)$

Some supporting simulations

SIMULATION: EQUAL PROBABILITY

BASE LEARNER: 'depth 2-stumps'

(These are trees, but constrained to have no more than 4 terminal nodes)

FIGURE: The solid, black line is the Bayes' rule w.r.t. 0 -1 loss

SIMULATION: EQUAL PROBABILITY

Using a depth-2 stump:

SIMULATION: EQUAL PROBABILITY

Using an unpruned tree:

(Note that I used rpart, which parameterizes splits differently than tree)

AdaBoost: Increasing B (train)

AdaBoost: Increasing B (test)

RANDOM FOREST: INCREASING B (TRAIN)

RANDOM FOREST: INCREASING B (TEST)

RESULTS: CONFUSION MATRICES

(These are at best B solution)

			Tru	uth	
			-1	1	Mis-Class
	Unpruned	-1	84	18	
		1	11	87	14.5%
Our Preds	STUMP	-1	77	16	
		1	18	89	17%
	Boost	-1	92	8	
		1	5	92	8%
	RF	-1	87	9	
		1	8	96	8.5%

SIMULATION: UNEQUAL PROBABILITY

Let's change the simulation so that the class probabilities aren't the same

SIMULATION: UNEQUAL PROBABILITY

Using a depth-2 stump:

SIMULATION: UNEQUAL PROBABILITY

Using an unpruned tree:

(Note that I used rpart, which parameterizes splits differently than tree)

AdaBoost: Increasing B (train)

AdaBoost: Increasing B (test)

RANDOM FOREST: INCREASING B (TRAIN)

RANDOM FOREST: INCREASING B (TEST)

RESULTS: CONFUSION MATRICES

(These are at best B solution)

			Truth		
			-1	1	Mis-Class
	Unpruned	-1	51	10	
		1	11	128	10.5%
Our Preds	STUMP	-1	50	22	
		1	12	116	17%
	Boost	-1	51	12	
		1	3	134	7.5%
	RF	-1	53	5	
		1	9	133	7%

DISCRETE ADABOOST

This algorithm became known as 'discrete AdaBoost' (This is due to the base classifier returning a discrete label)

Output:
$$\hat{g}(X) = \operatorname{sgn}\left(\sum_{b=1}^{B} \hat{\beta}_b \hat{g}_b(X)\right)$$

This was adapted to real-valued predictions in Real AdaBoost (In particular, probability estimates)

REAL ADABOOST

Assume $Y \in \{-1, 1\}$

- 1. Initialize $w_i \equiv 1/n$ for $i = 1, \ldots, n$
- 2. For b = 1, ..., B
 - 2.1 Fit the base classifier on \mathcal{D} , weighted by w_i $\rightarrow \hat{p}_b(X) = \hat{\mathbb{P}}(Y = 1|X)$
 - 2.2 Set $\hat{f}_b(X) \leftarrow \frac{1}{2} \log(\hat{p}_b(X)/(1-\hat{p}_b(X)))$
 - 2.3 Set $w_i \leftarrow w_i \exp\{-Y_i \hat{f}_b(X_i)\}$
- 3. Output: $\hat{g}(X) = \operatorname{sgn}\left(\sum_{b=1}^{B} \hat{f}_b(X)\right)$

This is referred to as Real AdaBoost and it used the class probability estimates to construct the contribution of the b^{th} classifier, instead of the estimated label

REAL ADABOOST

Assume $Y \in \{-1, 1\}$

- 1. Initialize $w_i \equiv 1/n$ for $i = 1, \ldots, n$
- 2. For b = 1, ..., B
 - 2.1 Fit the base classifier on \mathcal{D} , weighted by w_i $\rightarrow \hat{p}_b(X) = \hat{\mathbb{P}}(Y = 1|X)$
 - 2.2 Set $\hat{f}_b(X) \leftarrow \frac{1}{2} \log(\hat{p}_b(X)/(1-\hat{p}_b(X)))$
 - 2.3 Set $w_i \leftarrow w_i \exp\{-Y_i \hat{f}_b(X_i)\}$
- 3. Output: $\hat{g}(X) = \operatorname{sgn}\left(\sum_{b=1}^{B} \hat{f}_b(X)\right)$

This is referred to as Real AdaBoost and it used the class probability estimates to construct the contribution of the b^{th} classifier, instead of the estimated label

(Care is needed when computing \hat{f}_b in practice due to numerical issues with probabilities near 0 or 1. We need to be sure that we aren't taking log of 0 or infinity)

(Discrete) AdaBoost interpretation

Forward stagewise additive modeling:

(Using a general loss ℓ)

- 1. $\hat{\beta}_b, \hat{\theta}_b = \operatorname{argmin}_{\beta,\theta} \sum_{i=1}^n \ell(Y_i, \hat{f}(X_i) + \beta \phi(X_i, \theta))$
- 2. Set $\hat{f}(X) = \hat{f}(X) + \hat{\beta}_b \phi(X; \hat{\theta}_b)$

(Discrete) AdaBoost implicitly does this via the exponential loss function

$$\ell(Y, f) = \exp\{-Yf(X)\}\$$

w/ basis function/base classifier/base learner $\phi(X, \theta) = g_b(X)$

(See 'boostingExtra.pdf' notes for the details on this connection)

Why exponential loss?

It can be shown that the Bayes' rule with respect to exponential loss is

$$\underset{f}{\operatorname{argmin}} \mathbb{E}[\exp\{-Yf(X)\}] = \frac{1}{2} \log \left(\frac{\mathbb{P}(Y=1|X)}{\mathbb{P}(Y=-1|X)} \right)$$

Hence, we are estimating (half) the log odds \rightarrow use the sgn rule for classification

This is the same form for the Bayes' rule for the logistic loss

$$\ell(f(X), Y) = \log(1 + \exp\{-2Yf(X)\})$$

(They give similar results, though there is some evidence that logistic tends to get lower misclassification rates in practice)

BOOSTING FOR CLASSIFICATION

FIGURE: Here, I've rescaled the logistic loss so that it is easier to compare to Adaboost

REGULARIZATION IN BOOSTING

Boosting benefits from regularization

(We are minimizing the training error in a stepwise fashion, after all)

In boosting, this is usually done via

- Choosing the parameter *B* via a risk estimate
- Including a learning rate

$$\hat{f}(X) = \hat{f}(X) + \lambda \hat{f}_b(X)$$

There is a strong interaction between these two parameters

It has been observed repeatedly that

- ullet setting λ to a small constant achieves lower risk than
- not including λ at all

(This is one aspect of the general philosophy of learning slow. If possible, make a huge number of tiny improvement instead of a small number of large improvements).

NEXT LECTURE

Discuss two current, popular algorithms and their R implementations

- GBM
- XGBoost

Postamble:

- Nonparametric methods provides a flexible fit, but can only be used in low dimensions
- Boosting is an algorithm for fitting a greedy, stepwise nonparametric procedure
 - (Specify a loss function and iteratively minimize the training error)
- Unlike nonparametric methods, the basis ϕ is also estimated from the data
 - (In this case, the basis function ϕ is known as the base learner or base classifier)
- Regularization via a learning rate λ and the number of steps B is important
 - (Set λ to be a small number and choose B via a risk estimation procedure like K-fold CV)