COL 352 Introduction to Automata and Theory of Computation

Nikhil Balaji

Bharti 420 Indian Institute of Technology, Delhi nbalaji@cse.iitd.ac.in

January 5, 2023

Module 1: Finite Automata

- An alphabet $\Sigma = \{a, b, c\}$ is a finite set of letters.
- ▶ A language is a set of strings over some alphabet.
- ▶ Σ^* is the set of all strings over Σ , e.g. $aabbaa \in \Sigma^*$.
- A language L over Σ is then a subset of Σ^* , e.g.,

- An alphabet $\Sigma = \{a, b, c\}$ is a finite set of letters.
- ▶ A language is a set of strings over some alphabet.
- Σ^* is the set of all strings over Σ , e.g. $aabbaa \in \Sigma^*$.
- A language L over Σ is then a subset of Σ^* , e.g.,
 - $L_{even} = \{w \in \Sigma^* : w \text{ is of even length } \}.$

- An alphabet $\Sigma = \{a, b, c\}$ is a finite set of letters.
- ▶ A language is a set of strings over some alphabet.
- Σ^* is the set of all strings over Σ , e.g. $aabbaa \in \Sigma^*$.
- A language L over Σ is then a subset of Σ^* , e.g.,
 - $L_{even} = \{w \in \Sigma^* : w \text{ is of even length } \}.$
 - $L_{a^nb^n} = \{w \in \Sigma^* : w \text{ is of the form } a^nb^n \text{ for } n \ge 0 \}$

- An alphabet $\Sigma = \{a, b, c\}$ is a finite set of letters.
- A language is a set of strings over some alphabet.
- Σ^* is the set of all strings over Σ , e.g. $aabbaa \in \Sigma^*$.
- A language L over Σ is then a subset of Σ^* , e.g.,
 - $L_{even} = \{w \in \Sigma^* : w \text{ is of even length } \}.$
 - $\qquad \qquad L_{a^nb^n} = \left\{ w \in \Sigma^* : w \text{ is of the form } a^nb^n \text{ for } n \geq 0 \right. \right\}$
- ▶ Every decision problem $f: \Sigma^* \to \{0, 1\}$ corresponds to a language $L_f = \{w \in \Sigma^* | f(w) = 1\}.$

- An alphabet $\Sigma = \{a, b, c\}$ is a finite set of letters.
- A language is a set of strings over some alphabet.
- Σ^* is the set of all strings over Σ , e.g. $aabbaa \in \Sigma^*$.
- A language L over Σ is then a subset of Σ^* , e.g.,
 - $L_{even} = \{w \in \Sigma^* : w \text{ is of even length } \}.$
 - $\qquad \qquad L_{a^nb^n} = \left\{ w \in \Sigma^* : w \text{ is of the form } a^nb^n \text{ for } n \geq 0 \right. \right\}$
- ▶ Every decision problem $f: \Sigma^* \to \{0,1\}$ corresponds to a language $L_f = \{w \in \Sigma^* | f(w) = 1\}.$
- ▶ PRIMES = $\{w \in \{a\}^* | |w| \text{ is prime }\}$

- An alphabet $\Sigma = \{a, b, c\}$ is a finite set of letters.
- A language is a set of strings over some alphabet.
- Σ^* is the set of all strings over Σ , e.g. $aabbaa \in \Sigma^*$.
- A language L over Σ is then a subset of Σ^* , e.g.,
 - $L_{even} = \{w \in \Sigma^* : w \text{ is of even length } \}.$
 - $L_{a^nb^n} = \{w \in \Sigma^* : w \text{ is of the form } a^nb^n \text{ for } n \ge 0 \}$
- ▶ Every decision problem $f: \Sigma^* \to \{0, 1\}$ corresponds to a language $L_f = \{w \in \Sigma^* | f(w) = 1\}.$
- ▶ PRIMES = $\{w \in \{a\}^* | |w| \text{ is prime }\}$
- ▶ CONNECTED = $\{w \in \{0,1\}^* | G_w \text{ is connected } \}$

So, given a language: Can we define an automaton that accepts exactly that language?

So, given a language : Can we define an automaton that accepts exactly that language?

Example

- Fix $\Sigma = \{a, b\}$
- Let L be all words over Σ that have odd number of a's.
- ▶ What automaton would accept *L*?

So, given a language : Can we define an automaton that accepts exactly that language?

Example

- Fix $\Sigma = \{a, b\}$
- Let L be all words over Σ that have odd number of a's.
- ▶ What automaton would accept *L*?

Introduced first by two neuro-psychologists Warren S. McCullough and Walter Pitts in 1943 as a model for human brain.

- Introduced first by two neuro-psychologists Warren S. McCullough and Walter Pitts in 1943 as a model for human brain.
- Computation with finite memory!

- Introduced first by two neuro-psychologists Warren S. McCullough and Walter Pitts in 1943 as a model for human brain.
- Computation with finite memory!
- Finite automata can naturally model microprocessors and even software programs working on variables with bounded domain.

- Introduced first by two neuro-psychologists Warren S. McCullough and Walter Pitts in 1943 as a model for human brain.
- Computation with finite memory!
- Finite automata can naturally model microprocessors and even software programs working on variables with bounded domain.
- Capture so-called regular sets of sequences that occur in many different fields (logic, algebra, regEx)

- Introduced first by two neuro-psychologists Warren S. McCullough and Walter Pitts in 1943 as a model for human brain.
- Computation with finite memory!
- Finite automata can naturally model microprocessors and even software programs working on variables with bounded domain.
- Capture so-called regular sets of sequences that occur in many different fields (logic, algebra, regEx)
- Nice theoretical properties

- Introduced first by two neuro-psychologists Warren S. McCullough and Walter Pitts in 1943 as a model for human brain.
- Computation with finite memory!
- Finite automata can naturally model microprocessors and even software programs working on variables with bounded domain.
- Capture so-called regular sets of sequences that occur in many different fields (logic, algebra, regEx)
- Nice theoretical properties
- Applications in digital circuit/protocol verification, compilers, pattern recognition, etc

Finite Automata you use daily

Exercise: Design Automata for these!

Example 1

Example 1

Input: Text file over the alphabet $\{a,b\}$

Example 1

Input: Text file over the alphabet $\{a,b\}$

Check: does the file end with the string 'aa'

Example 1

Input: Text file over the alphabet $\{a,b\}$

Check: does the file end with the string 'aa'

Example 1

Input: Text file over the alphabet $\{a, b\}$

Check: does the file end with the string 'aa'

Idea: Start scanning from left, if you see an 'a' check if the next character is also 'a'. If yes, accept, else reset. If you reach end of string, reject.

Example 1

Input: Text file over the alphabet $\{a, b\}$

Check: does the file end with the string 'aa'

Example 2

Input: Text file over the alphabet $\{a,b\}$

Example 2

Input: Text file over the alphabet $\{a,b\}$

Check: does the file contain the string 'aa'

Example 2

Input: Text file over the alphabet $\{a,b\}$

Check: does the file contain the string 'aa'

Example 2

Input: Text file over the alphabet $\{a, b\}$

Check: does the file contain the string 'aa'

Example 3

Input: $w \in \{a, b\}^*$

Check: does w have odd number of a's?

Example 3

Input: $w \in \{a, b\}^*$

Check: does w have odd number of a's? i.e. is $\#_a(w) \equiv 1 \pmod{2}$?

Example 3

Input: $w \in \{a, b\}^*$

Check: does w have odd number of a's? i.e. is $\#_a(w) \equiv 1 \pmod{2}$?

Example 3

Input: $w \in \{a, b\}^*$

Check: does w have odd number of a's? i.e. is $\#_a(w) \equiv 1 \pmod{2}$?

Exercise: Design an automaton to check if w has an even number of a's in every block of length 4 in w.

Deterministic Finite State Automata

An automaton has

- ► (Finite set of) States
- ► (Finite) Alphabet
- Initial state
- Accepting/final state
- (Finite) Set of transitions

More formally ...

Definition (DFA)

A deterministic finite state automaton (DFA) A = $(Q, \Sigma, q_0, F, \delta)$, where

Definition (DFA)

A deterministic finite state automaton (DFA) $A = (Q, \Sigma, q_0, F, \delta)$, where

Q is a set of states,

 Σ is the input alphabet,

 $q_0 \in Q$ is the initial state,

 $F \subseteq Q$ is the set of final states,

 δ is a set of transitions, i.e. $\delta:Q\times\Sigma\to Q$

Definition (DFA)

A deterministic finite state automaton (DFA) $A = (Q, \Sigma, q_0, F, \delta)$, where

Q is a set of states,

 Σ is the input alphabet,

 $q_0 \in Q$ is the initial state,

 $F \subseteq Q$ is the set of final states,

 δ is a set of transitions, i.e. $\delta:Q\times\Sigma\to Q$ or

 $\delta \subseteq Q \times \Sigma \times Q$ such that

Definition (DFA)

A deterministic finite state automaton (DFA) $A = (Q, \Sigma, q_0, F, \delta)$, where

 ${\cal Q}$ is a set of states,

 Σ is the input alphabet,

 $q_0 \in Q$ is the initial state,

 $F \subseteq Q$ is the set of final states,

 δ is a set of transitions, i.e. $\delta: Q \times \Sigma \to Q$ or

 $\delta \subseteq Q \times \Sigma \times Q$ such that

 $\forall q \in Q, \forall a \in \Sigma, |\delta(q, a)| \le 1.$

Definition (Run of a DFA)

Definition (Run of a DFA)

Let $A = (Q, \Sigma, \delta, q_0, F)$ be a DFA. A run of A on word $w = a_1 \dots a_n$ is a sequence of states q_0, \dots, q_n such that $q_i = \delta(q_{i-1}, a_i)$ for all $1 \le i \le n$.

Definition (Run of a DFA)

Let $A = (Q, \Sigma, \delta, q_0, F)$ be a DFA. A run of A on word $w = a_1 \dots a_n$ is a sequence of states q_0, \dots, q_n such that $q_i = \delta(q_{i-1}, a_i)$ for all $1 \le i \le n$.

Definition (Run of a DFA)

Let $A = (Q, \Sigma, \delta, q_0, F)$ be a DFA. A run of A on word $w = a_1 \dots a_n$ is a sequence of states q_0, \dots, q_n such that $q_i = \delta(q_{i-1}, a_i)$ for all $1 \le i \le n$.

Consider the word a b a b a

Definition (Run of a DFA)

Let $A = (Q, \Sigma, \delta, q_0, F)$ be a DFA. A run of A on word $w = a_1 \dots a_n$ is a sequence of states q_0, \dots, q_n such that $q_i = \delta(q_{i-1}, a_i)$ for all $1 \le i \le n$.

Consider the word a b a b a

Run gives the sequence of states: $q_0 \ q_1 \ q_0 \ q_1 \ q_0$.

Definition (Acceptance)

A word w is accepted by DFA A if there is a run of A on word w that reaches (ends in) an accepting state.

Definition (Acceptance)

A word w is accepted by DFA A if there is a run of A on word w that reaches (ends in) an accepting state.

Extended Transition Function

Let $\hat{\delta}: Q \times \Sigma^* \to Q$ be defined as:

$$\hat{\delta}(q,\varepsilon) = q$$

Definition (Acceptance)

A word w is accepted by DFA A if there is a run of A on word w that reaches (ends in) an accepting state.

Extended Transition Function

Let $\hat{\delta}: Q \times \Sigma^* \to Q$ be defined as:

$$\hat{\delta}(q, \varepsilon) = q$$
 $\hat{\delta}(q, wa) = \delta(\hat{\delta}(q, w), a)$

Definition (Acceptance)

A word w is accepted by DFA A if there is a run of A on word w that reaches (ends in) an accepting state.

Extended Transition Function

Let $\hat{\delta}: Q \times \Sigma^* \to Q$ be defined as:

$$\hat{\delta}(q,\varepsilon) = q$$

$$\hat{\delta}(q,wa) = \delta(\hat{\delta}(q,w),a)$$

So A accepts w iff $\hat{\delta}(q_0, w) \in F$

Definition (Acceptance)

A word w is accepted by DFA A if there is a run of A on word w that reaches (ends in) an accepting state.

Extended Transition Function

Let $\hat{\delta}: Q \times \Sigma^* \to Q$ be defined as:

$$\hat{\delta}(q,\varepsilon) = q$$
 $\hat{\delta}(q,wa) = \delta(\hat{\delta}(q,w),a)$

So A accepts w iff $\hat{\delta}(q_0, w) \in F$ else it is rejected (i.e, when $\hat{\delta}(q_0, w) \notin F$)

Definition (Acceptance)

A word w is accepted by DFA A if there is a run of A on word w that reaches (ends in) an accepting state.

Extended Transition Function

Let $\hat{\delta}: Q \times \Sigma^* \to Q$ be defined as:

$$\hat{\delta}(q, \varepsilon) = q$$
 $\hat{\delta}(q, wa) = \delta(\hat{\delta}(q, w), a)$

So A accepts w iff $\hat{\delta}(q_0, w) \in F$ else it is rejected (i.e, when $\hat{\delta}(q_0, w) \notin F$)

$$L(A) = \{ w \in \Sigma^* \mid \hat{\delta}(q_0, w) \in F \}$$

Regular languages

REG

A language is said to be a **regular** if it is accepted by some DFA.

L is a regular language if there exists some DFA A such that L(A) = L

Examples

```
\begin{array}{ll} L &= \{w \in \{a,b\}^* \mid w \text{ ends with aa}\} \\ L' &= \{w \in \{a,b\}^* \mid w \text{ contains aa}\} \\ L_{odd} &= \{w \in \{a,b\}^* \mid w \text{ contains odd number of a}\} \end{array}
```

Regular languages

REG

A language is said to be a **regular** if it is accepted by some DFA. L is a regular language if there exists some DFA A such that L(A) = L

Examples

```
\begin{array}{ll} L &= \{w \in \{a,b\}^* \mid w \text{ ends with aa}\} \\ L' &= \{w \in \{a,b\}^* \mid w \text{ contains aa}\} \\ L_{odd} &= \{w \in \{a,b\}^* \mid w \text{ contains odd number of a}\} \\ L_3 &= \{w \in \{0,1\}^* \mid w \text{ encodes a number in binary divisible by }3\} \end{array}
```

Can we solve all problems using computers?

Theorem (Turing (1936))

There are some problems for which it is impossible to write a program solving it correctly on all inputs.

Theorem

There exists a language for which there is no finite automata accepting it.

Theorem

There exists a language for which there is no finite automata accepting it.

Intuitive proof

► The number of finite automata are countably infinite (why?)

Theorem

There exists a language for which there is no finite automata accepting it.

- ▶ The number of finite automata are countably infinite (why?)
- Consider the set of languages over alphabet $\{0,1\}$.
- $\{0,1\}^*$ is countably infinite.

Theorem

There exists a language for which there is no finite automata accepting it.

- The number of finite automata are countably infinite (why?)
- Consider the set of languages over alphabet $\{0,1\}$.
- $\{0,1\}^*$ is countably infinite.
- ▶ Hence the set of all languages over $\{0,1\}$ is the power-set of the set of all strings.

Theorem

There exists a language for which there is no finite automata accepting it.

- The number of finite automata are countably infinite (why?)
- Consider the set of languages over alphabet $\{0,1\}$.
- $\{0,1\}^*$ is countably infinite.
- ▶ Hence the set of all languages over $\{0,1\}$ is the power-set of the set of all strings.
- ▶ By Cantor's theorem (for any set $|A| < |2^A|$), it must be the case that for some languages there is no recognizing program.

Example 4

 $\mathsf{Input:} \quad w \in \{0,1\}^*$

Example 4

Input: $w \in \{0, 1\}^*$

Check: is the number represented by w in binary a multiple of 3?

Example 4

Input: $w \in \{0, 1\}^*$

Check: is the number represented by w in binary a multiple of 3?

Idea 1: Possible remainders are $\{0,1,2\}$.

Example 4

Input: $w \in \{0, 1\}^*$

Check: is the number represented by w in binary a multiple of 3?

Idea 1: Possible remainders are $\{0,1,2\}$.

Idea 2: If you read a 0 at a state q then go to state $2q \pmod 3$, else go to state $2q+1 \pmod 3$

Example 4

Input: $w \in \{0, 1\}^*$

Check: is the number represented by w in binary a multiple of 3?

