GÖRÜNTÜ İŞLEME

SAYISAL GÖRÜNTÜ İŞLEMEYE GİRİŞ

- Sayısallaştırılmış görüntüler bir boyutlu işaretlerdir
 - Daha iyi anlaşılabilmesi için bir boyutlu işaretlerden iki veya daha çok boyutlu yapılara geçilir ve görüntüler oluşturulur
 - o değişik görüntü biçimleri ve kullanım alanları vardır
- Bu bölümde sayısal görüntüleri daha iyi anlamak ve yorumlayabilmek için gerekli temel kavram ve konular tartışılacaktır.

Sayısallaştırılmış Görüntü

- Görüntü,
 - Çeşitli algılayıcılar (kameralar, tarayıcılar, tıbbi ve uzaktan algılama cihazları gibi) tarafından oluşturulan,
 - Görsel olarak iki boyutta ifade edilmekle beraber daha yüksek boyutta bileşenlere sahip olabilen dış dünya işaretleridir.

Kullanım Alanları

- Kameralar, cep telefonları, bilgisayarlar gibi tüketiciye yönelik ürünler
- Tıp (Röntgen, MRI, CT vb. biyomedikal görüntüler)
- Uzaktan Algılama ve Yer Bilimleri
- Uzay Bilimleri
- Biyometrik Tanıma Sistemleri
- Savunma ve Güvenlik
- Fizik ve Kimya (Elektron mikroskopları, Spektrometreler)

Sayısal Görüntünün Oluşturulması

- Gerçek dünyadan (analog) sayısal dünyaya geçiş veya diğer bir deyişle dış uzaydan 2 boyutlu uzaya (I(x,y)) geçiş, nesnelerin üzerine yansıyan ışığın, kamera gibi çeşitli sayısallaştırıcı algılayıcılar vasıtası ile algılanması şeklinde gerçekleştirilir.
- Burada dikkat edilmesi gereken husus gerçek dünyadan sayısal dünyaya geçişte kullanılan cihazın algılayıcı kalitesi ve ayarlarına göre bilgi kaybının yaşanacağıdır.
- Sonuçta örnekleme yapılacağından, gerçek(analog) dünyadan sayısal dünyaya geçişte her zaman bilgi kaybı olacaktır.

3 Boyutlu nesne uzayından görüntü uzayına aktarım

Sayısal Görüntünün Oluşturulması

 Bu işlem 'Örnekleme' ve 'Nicemleme' adımlarını içerir:

2 Boyutlu Örnekleme:

Görüntüden belirli uzamsal aralıklarda gerek x gerek y yönünde örnekler alınarak sayısallaştırılacak hale getirilmesidir.

Nicemleme:

Görüntüden alınan örneklerin genliklerinin sadece belirli değerleri alacak şekilde düzenlenmesi işlemidir.

İki boyutta örnekleme-nicemlemesayısallaştırma

Piksel (Görüntü Elemanı)

 Bir görüntünün en temel elemanı örneklenmiş olan uzamsal noktaların değerleridir ve görüntü elemanı (picture element) piksel (pixel) olarak adlandırılır.

Uzamsal Çözünürlük

Bu alt bölümde uzamsal çözünürlük kavramı aynı görüntü üzerinde örneklemede alınan örnek sayısına ve nicemlemede seçilen bit sayısına göre ayrı başlıklarda incelenecektir.

Örneklemede Alınan Örnek Sayısına Göre

Belirli bir bölgede alınan uzamsal örneklerin sayısı "uzamsal çözünürlüğü" belirler. Çözünürlüğü ifade ederken kullanılan metrik sisteme göre farklı adlandırmalar yapılabilir.

$$Uzamsal \, \zeta \ddot{o}z \ddot{u}n \ddot{u}r l \ddot{u}k = \frac{piksel \, sayısı}{birim \, boyut}$$

Birimi ppi (piksel per inch), dpi (dot per inch) veya ppm (pixel per meter) olarak belirtilebilir

64 x 64 piksel 14 ppi

Bütün resimlerde fiziksel boyutlar 4,6" x 4,6"

Fiziksel olarak aynı boyutlardaki resimlerde alınan örnek sayısına bağlı olarak çözünürlüğün değişimi

Nicemlemede Seçilen Bit Sayısına Göre

- Nicemlemede seçilen bit sayısı da piksellerin belirteceği
 - o genlik aralıklarının darlığı ile ters orantılı olduğu için
 - o görüntünün kalitesini belirlemede önemli bir parametredir.

Gri seviye bit derinliğine göre uzamsal çözünürlüğün değişimi

Gri seviye bit sayısı =8

Gri seviye bit

šri seviye bit sayısı =6

Gri seviye bit

Gri seviye bit sayısı #4

Gri seviye bit sayısı =3

Gri seviye bit sayısı =2

Gri seviye bit sayısı =1

Görüntü Renk Biçimleri

- Analog dünyada renkler, 380-760 nm dalga boyuna sahip elektromanyetik dalgaların nesneler tarafından yansıtılıp, görme üzerine özelleşmiş bir organ olan göz tarafından algılanması ile insan beyninde oluşturulur.
- Elektromanyetik renk spektrumunda kızılötesi ve mor ötesi (infrared ve ultraviyole) arasına denk düşen bant aralığı görünür ışık bölgesi olarak adlandırılır.
- Gözde bulunan koni ve çubuk tipindeki algılayıcılar vasıtasıyla bu bant aralığındaki renkler ayırt edilebilir.
- Renk kavramının algılanabilmesi için nesnelerden yansıyan ışığın parlaklık (brightness) ve renklilik (chrominance) bilgilerinin anlaşılması gerekmektedir.

Elektromanyetik spektrumda optik bölge

Elektromanyetik Spektrum

- Bu tayfın üst sınırında yer alıp göremediğimiz ışınlara morötesi, bu tayfın alt sınırında yer alıp da göremediğimiz ışınlara kızılaltı ışınlar veya radyasyonlar denir.
- Üst ve alt sınırlar arasındaki gözle görülebilen tayf alanı içindeki tüm ışınımlar bir kaynaktan veya yansıdıkları yerden göze birlikte ulaşırlarsa beyaz renkli görünürler.
- İnsan gözünün algılayabildiği yedi temel dalga boyu kırmızı, turuncu, sarı, yeşil, mavi, çivit ve mordur.

Görüntü Renk Biçimleri

- Renklerin ifade edilebilmesi için çeşitli renk bileşenlerinden yararlanılır. En temelde üç veya dört ana rengin belirli oranlarda karıştırılmasıyla istenilen rengin elde edilebileceği düşünülebilir:
 - RGB (Red-Green-Blue; Kırmızı-Yeşil-Mavi) karışımı ile renkleri ifade etme.
 - CMY (Cyan-Magenta-Yellow; Turkuaz-Kızılımsı Mor-Sarı), ayrıca CMYK renk uzayında K (Siyah) bileşen de eklenerek siyah bulanıklığı giderilmiştir.

RGB ve CMY renk uzayları

- Ayrıca parlaklık ve renklilik bileşenlerine de ayrıştırılarak renk uzayları ifade edilebilir:
 - HSI, HSB veya HSV (Hue-Saturation-Intensity, Brightness veya Value; Renk Özü-Doygunluk, Yoğunluk, Parlaklık veya Değer)
 - YUV (Luminance, Chrominance 1, Chrominance 2)
 - YIQ (NTSC' de kullanılan Luminance, Chrominance 1, Chrominance 2 sistemi)
 - YCbCr (Luminance, Chrominance 1, Chrominance 2 kanallarının ayrıştırıldığı bir diğer sistem)

HSV (**H**ue, **S**aturation, **V**alue) veya **HSB** (**H**ue, **S**aturation, **B**rightness) renk uzayı, renkleri sırasıyla <u>renk özü, doygunluk</u> ve <u>parlaklık</u> olarak tanımlar Raphael Gonzalez, Richard E. Woods (2002) Digital Image Processing, 2 ed, Prentice Hall Press. p. 295, ISBN 0-201-18075-8.

- <u>Renk özü</u>, rengin baskın dalga uzunluğunu belirler, örneğin sarı, mavi, yeşil,
 vb.
 - Açısal bir değerdir 0° 360°, bazı uygulamalarda ise 0-100 arası olağanlaştırılır.
- <u>Doygunluk</u>, rengin "canlılığını" belirler. Yüksek doygunluk canlı renklere neden olurken, düşük olasılık rengin gri tonlarına yaklaşmasına neden olur.
 - o 0-100 arasında değişir.
- <u>Parlaklık</u> ise rengin aydınlığını yani içindeki beyaz oranını belirler.
 - o 0-100 arasından değişir.

bilgisayarlı görme uygulamasında belirli renkteki bir nesneyi ayırt etmek istediğimizde HSV renk *uzayı*nı kullanmak daha elverişlidir. Çünkü RGB'nin aksine sadece HUE değerini kullanarak eşik değer uygulama suretiyle renkleri daha net ayırt edebiliriz.

RGB

$$R,G,B~\in~\{0,1\}$$

 $\max = \max(R, G, B)$

 $\min = \min(R, G, B)$

$$S = \begin{cases} 0 & \max = 0 \\ 1 - \frac{\min}{\max} & \text{diğer} \end{cases}$$

 $V = \max$

$$H = \begin{cases} 0 & \max = \min \\ (G-B)/(6 \times (\max - \min)) & R = \max, B \le G \\ (G-B)/(6 \times (\max - \min)) + 1 & R = \max, B > G \\ (B-R)/(6 \times (\max - \min)) + 1/3 & G = \max \\ (R-G)/(6 \times (\max - \min)) + 2/3 & B = \max \end{cases}$$

$$\begin{bmatrix} Y \\ Cb \\ Cr \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ -0.169 & -0.331 & 0.500 \\ 0.500 & -0.419 & -0.081 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

Görüntü Biçimleri

 Sayısal görüntüler çeşitli algılayıcılar tarafından üretildikten sonra depolama alanlarında çeşitli dosya biçimlerinde saklanırlar.

İkili (Binary) Görüntüler

- İkili görüntülerde piksel değerleri sadece 1 veya 0 değeri alır.
- Oluşturulan ikili görüntü herhangi bir resim dosyası olabileceği gibi, benzer objelerin işaretlendiği (varlığını veya yokluğunu gösteren) bir görüntü veya maskeleme gibi işaret işlemede yaygın olarak kullanılan yardımcı görüntüler oluşturulabilir.

Gri Seviye Görüntüler

- Gri seviye görüntülerde kullanılan bit derinliğine göre (kullanılan bit sayısına göre) beyaz ve siyah arasındaki bütün gri yelpaze ifade edilir.
- Örneğin 8-bit'lik derinliğe sahip gri seviye görüntü için 0 (00H) değeri siyahı ifade ederken 255 (FFH) değeri beyazı ifade eder.
- 0 ile 255 arasındaki bütün değerler en koyu tondan en açığına kadar gri seviyeleri belirtir.

Gri seviye görüntü örnekleri

RGB Renkli Görüntüleri

- Renkli görüntülerin oluşturulabilmesi için en az üç renk bileşeni veya parlaklıkla beraber iki renk bileşeninin kullanılması gerekmektedir.
- Renkli görüntülerin oluşturulmasında her biri farklı bir görüntü bandını ifade eden 2 boyutlu görüntü katmanları (layer veya plane) kullanılır.
- Bu katmanların hepsi birlikte düşünüldüğünde aslında 3 boyutlu bir görüntü küpünü oluşturmaktadır.

Kırmızı Katman

Yeşil Katman

Mavi Katman

RGB görüntü bileşenleri Gri seviye= R*0.3+G*0.59+B*0.11

Görüntü Dosyaları

- Görüntü dosya biçimlerinde sadece parlaklık değerlerinin saklandığı herhangi bir sıkıştırma yapılmamış tipteki dosyalar RAW olarak adlandırılır.
- RAW dosyaları gri-seviye veya renkli görüntülerden oluşabilir. Bu tür dosyalarda bir başlık (header) bulunmaması durumunda görüntü dosyasının boyutu şu şekilde bulunabilir:
- Görüntü dosya boyutu = Toplam piksel sayısı x Katman sayısı x Bit derinliği
- Örnek: RGB RAW tipinde 256 piksel genişliğe, 256 piksel yüksekliğe, 16 bit/piksel derinliğe sahip bir görüntünün hafizada kaplayacağı alan:

Görüntü dosya boyutu = 256 x 256
$$piksel$$
 x 3 x $16\frac{bit}{piksel}$ = 3145728 bit

 Bu durumda RAW dosyanın hafıza biriminde kaplayacağı alan 3145728 bit=393216 byte= 384 kByte olarak hesaplanır.

Görüntü Dosya Tiplerinde Sıkıştırma

- Görüntü dosyalarında parlaklık ve renk bileşenlerinin bellekte daha az yer kaplamaları için herhangi bir sıkıştırma algoritması uygulanabilir.
- Örneğin, BMP dosyaları sıkıştırma işlemi gerçekleştirilmeden saklanırlar.
- Genelde takip edilen yöntemde ise, sıkıştırma işleminin sağladığı dosya boyutu avantajı nedeniyle sıkıştırılmış dosya biçimleri daha çok tercih edilir.

Kayıplı - Kayıpsız Görüntü Sıkıştırma

- Görüntü dosyalarına uygulanan sıkıştırma algoritmaları ikiye ayrılabilir:
 - Kayıpsız Sıkıştırma Algoritmaları: Görüntü sıkıştırıldıktan sonra görüntünün orijinal değerlerinin korunduğu ve aynen elde edilebildiği algoritmalardır.(Run Length Encoding, Huffman, LZVV yöntemleri)
 - Kayıplı Sıkıştırma Algoritmaları: Görüntü sıkıştırıldıktan sonra görüntünün orijinal değerleri tekrar elde edilemez. Sıkıştırma sonucunda orijinal değerlere en yakın yaklaşıklıkla görüntü tekrar oluşturulur.(JPEG, MPEG)

Yaygın Görüntü Biçimleri

- Sayısal görüntü dünyasında çeşitli komitelerce standart haline getirilen birçok görüntü dosya biçimi olduğu gibi görüntüleme alanında çalışan birçok firmanın da kendi geliştirdiği ve yaygın kullanıma sahip saklama biçimleri bulunmaktadır.
- Görüntü işleme alanında sıklıkla rastlayacağımız dosya tiplerine örnek verecek olursak:
 - BMP, JPEG, TIFF, PNG, GIF, PCX, ICO, PBM, PGM, PPM, PSD, JPEG

ÖDEV

Sıkıştırma algoritmaları araştırılıp birer paragraf ile açıklanacak ve bir algoritmaya örnek verilecek.