CS 4092 Database Design and Development (DDD)

02: Relational Model

Seokki Lee

Slides are adapted from:

Database System Concepts, 6th & 7th Ed. ©Silberschatz, Korth and Sudarshan

Example of a Relation

Attribute Types

- The set of allowed values for each attribute is called the domain or data type of the attribute
- Attribute values are (normally) required to be atomic; that is, indivisible
 - Integer values?
 - Address?

Attribute Types

- The set of allowed values for each attribute is called the domain or data type of the attribute
- Attribute values are (normally) required to be atomic; that is, indivisible
 - Integer values
 - Not address (street, city, zip code, state, country)
- The special value null is a member of every domain
 - Means unknown or not applicable
- The null value causes complications in the definition of many operations
 - Will be detailed later

Relation Schema and Instance

- $A_1, A_2, ..., A_n$ are *attributes names*
- $R = (A_1, A_2, ..., A_n)$ is a *relation schema* Example:

instructor = (ID, name, dept_name, salary)

• Formally, given sets D_1 , D_2 , D_n of domains a **relation** r (or **relation instance**) is a subset of

$$D_1 \times D_2 \times ... \times D_n$$

Thus, a relation is a **set** of *n*-tuples $(a_1, a_2, ..., a_n)$ where each $a_i \in D_i$

Relation Schema and Instance

- The current values (relation instance) of a relation are often specified in tabular form
 - Ordered or Unordered?

Relation Schema and Instance

- The current values (relation instance) of a relation are often specified in tabular form
 - Caveat: being a set, the tuples of the relation do not have any order defined as implied by the tabular representation
- An element t of r is a tuple, represented as a row in a table

Alternative Definitions

- Tuples are sometimes defined as functions from attribute names to values (order of attributes does not matter)
 - E.g., t.name = 'Bob' or t(name) = 'Peter'
- A relation r can be specified as a function
 - $D_1 \times D_2 \times ... \times D_n \rightarrow \{true, false\}$
 - $\mathbf{t} = (a_1, a_2, ..., a_n)$ is mapped to *true* if \mathbf{t} is in \mathbf{r} and to *false* otherwise
- These alternative definition are useful in database theory
 - We will stick to the simple definition!

Relations are Unordered

- A relation is a set → the elements of a set are not ordered
- From a pratical perspective:
 - Order of tuples is irrelevant (tuples may be stored or returned in an arbitrary order) → "CS7071"
- Example: instructor relation with unordered tuples

ID	name	dept_name	salary
22222	Einstein	Physics	95000
12121	Wu	Finance	90000
32343	El Said	History	60000
45565	Katz	Comp. Sci.	75000
98345	Kim	Elec. Eng.	80000
76766	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
76543	Singh	Finance	80000

Database

- A database schema S consists of multiple relation schema.
- A database instance / for a schema S is a set of relation instances.
 - One relation for each relation schema in S
- Information about an enterprise is broken up into parts

```
instructor
student
advisor
```

Bad design:

```
univ (instructor -ID, name, dept_name, salary, student_ld, ..)
```

- repetition of information (e.g., two students have the same instructor)
- the need for many null values (e.g., represent an student with no advisor)
- Normalization theory (Chapter 7) deals with how to design "good" relational schemas avoiding these problems

- Changing the budget of the 'Physics' department
 - Updates to many rows!
 - ▶ Easy to break integrity
 - If we forget to update a row, then we have multiple budget values for the physics department!

ID	name	salary	dept_name	building	budget
22222	Einstein	95000	Physics	Watson	70000
12121	Wu	90000	Finance	Painter	120000
32343	El Said	60000	History	Painter	50000
45565	Katz	75000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp. Sci	Taylor	100000
15151	Mozart	40000	Music	Packard	80000
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Painter	120000

Deleting all employees from the 'Physics' department

ID	name	salary	dept_name	building	budget
22222	Einstein	95000	Physics	Watson	70000
12121	Wu	90000	Finance	Painter	120000
32343	El Said	60000	History	Painter	50000
45565	Katz	75000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp. Sci	Taylor	100000
15151	Mozart	40000	Music	Packard	80000
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Painter	120000

- Deleting all employees from the 'Physics' department
 - How to avoid deleting the 'Physics' department?

ID	name	salary	dept_name	building	budget
22222	Einstein	95000	Physics	Watson	70000
12121	Wu	90000	Finance	Painter	120000
32343	El Said	60000	History	Painter	50000
45565	Katz	75000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp. Sci	Taylor	100000
15151	Mozart	40000	Music	Packard	80000
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Painter	120000

- Deleting all employees from the 'Physics' department
 - How to avoid deleting the 'Physics' department?
 - Dummy employee's to store departments?

ID	name	salary	dept_name	building	budget
22222	Einstein	95000	Physics	Watson	70000
12121	Wu	90000	Finance	Painter	120000
32343	El Said	60000	History	Painter	50000
45565	Katz	75000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp. Sci	Taylor	100000
15151	Mozart	40000	Music	Packard	80000
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Painter	120000

- Deleting all employees from the 'Physics' department
 - How to avoid deleting the 'Physics' department?
 - Dummy employee's to store departments?
 - This is bad. E.g., counting the number of employees per department becomes more involved.

ID	name	salary	dept_name	building	budget
22222	Einstein	95000	Physics	Watson	70000
12121	Wu	90000	Finance	Painter	120000
32343	El Said	60000	History	Painter	50000
45565	Katz	75000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp. Sci	Taylor	100000
15151	Mozart	40000	Music	Packard	80000
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Painter	120000

- Within a given relation, tuples should be distinguished.
- Typically expressed in terms of their attributes
 - Values of attribute values can uniquely identify each tuple.
 - In other words, no two tuples in a relation are allowed to have exactly the same value for all attributes.

- Superkey
- Candidatekey
- Primarykey

- Let K ⊆ R
- K is a superkey of R if values for K are sufficient to identify a unique tuple of each possible relation r(R)
 - Example: {ID} and {ID,name} are both superkeys of instructor.
- Superkey K is a candidate key if K is minimal (no subset of K is also a superkey)

Example: {ID} is a candidate key for Instructor

- One of the candidate keys is selected to be the primary key.
 - which one? → domain specific design choice

- A foreign key constraint FK is quartuple (R, K, R', K') where R and R' are relation schemata, $K \subseteq R$, K' is the primary key of R', and IKI = IK'I
- A foreign key holds over an instance {r, r'} for {R,R'} iff

• ∀t ∈ R:∃t' ∈ R': t.K = t'.K'

- Foreign key constraint: value in one relation must appear in another
 - Referencing relation
 - Referenced relation

nstruct	r	
ID	name dept_name	salary
22222 12121 32343 45565 98345 76766 10101 58583 83821 15151 33456 76543	Einstein Physics Wu Finance El Said History Katz Comp. Sci Kim Elec. Eng. Crick Biology Crinivasan Comp. Sci Califieri History Brandt Comp. Sci Mozart Music Gold Physics Finance	80000 72000 65000 62000

Schema Diagram for the University Database

Recap

- Database Schema (or short schema)
 - Logical design of database
 - Set of relation schemata
 - List of attribute names
- Database Instance (or short database)
 - Set of relations instances
 - Set of tuples
 - List of attribute values

Recap

Integrity Constraints

- Keys (Super-, Candidate-, Primary-)
 - For identifying tuples (no two tuples are allowed)
 - A (set of) attribute value(s)
 - Superkey: sufficient to identify a tuple uniquely
 - Candidate key: superkeys that are minimal
 - Primary key: chosen from a candidate key

Foreign keys

For referencing tuples in other relations

Corresponding Reading Materials

- Relational Model
 - Database System Concepts 7th Edition
 - Chapter 2