Topological methods for the analysis of high dimensional data sets and 3d object recognition.

Singh, Gurjeet and Mémoli, Facundo and Carlsson, Gunnar E Department of Mathematics, Stanford University Institute for Computational and Mathematical Engineering, Stanford University

Journal: PBG@ Eurographics, 2007

Introduction

High Dimensional Data Sets

- Data coming from real applications is massive, such as big data
- Impossible to visualize and discern structure even in low dimensional projection
 - Different projection methods: PCA, tSNE, MDS, and etc.
 - ▶ Problem: Which method should we choose?

Aim

To introduce a new algorithm "Mapper" to visualize high-dimensional data sets in low-dimensional image which is easier to understand, and point to areas of interest.

Topological Background and Motivation

Definition

Nerve: Given a finite collection of sets $\mathcal{U} = \{U_{\alpha}\}_{{\alpha} \in A}$, the *nerve* of \mathcal{U} is defined to be the simplicial complex $N(\mathcal{U})$ whose vertex is the index set A, and where a subset $\{\alpha_0, \alpha_1, ... \alpha_k\}$ of A spans a k-simplex in $N(\mathcal{U})$ if and only if $U_{\alpha_0} \cap U_{\alpha_1} \cap ... \cap U_{\alpha_k} \neq \phi$

Topological Background and Motivation

Definition

Nerve: Given a finite collection of sets $\mathcal{U} = \{U_{\alpha}\}_{\alpha \in A}$, the *nerve* of \mathcal{U} is defined to be the simplicial complex $N(\mathcal{U})$ whose vertex is the index set A, and where a subset $\{\alpha_0, \alpha_1, ... \alpha_k\}$ of A spans a k-simplex in $N(\mathcal{U})$ if and only if $U_{\alpha_0} \cap U_{\alpha_1} \cap ... \cap U_{\alpha_k} \neq \phi$

Topological Background and Motivation

- 1. If we can not imagine what our data looks like, how is it possible to select a cover \mathcal{U} ?
- 2. Solution: We can project the data into a space which is easier for us to imagine, such as the Euclidean space or sphere S_1 .

Applications

- ► The Miller-Reaven diabetes study
- six dimensional data:
 - 1. age,
 - 2. relative weight,
 - 3. fasting plasma glucose,
 - area under the plasma glucose curve for the three hour glucose tolerance test (OGTT),
 - 5. area under the plasma insulin curve for the (OGTT)

Applications

- ► The Miller-Reaven diabetes study
- six dimensional data:
 - 1. age,
 - 2. relative weight,
 - 3. fasting plasma glucose,
 - area under the plasma glucose curve for the three hour glucose tolerance test (OGTT),
 - 5. area under the plasma insulin curve for the (OGTT)

Applications

► For AI

Reference

- Computational Topology for Data Analysis
- https://docs-tda.giotto.ai/0.2.0/modules/mapper.html
- van Veen et al., (2019). Kepler Mapper: A flexible Python implementation of the Mapper algorithm. Journal of Open Source Software, 4(42), 1315
- ▶ Hendrik Jacob van Veen, Nathaniel Saul, David Eargle, and Sam W. Mangham. (2019, October 14). Kepler Mapper: A flexible Python implementation of the Mapper algorithm (Version 1.4.1).
- Single-cell topological RNA-seq analysis reveals insights into cellular differentiation and development