Challenges in Nanometer Physical Design

Course Contents

- Interconnect-driven design flow
- Signal/Power Integrity: crosstalk and IR drop
- Design for Manufacturability

Interconnect Delay Creates the Timing Closure Problem

Most Slides Courtesy of Prof. Y.-W. Chang, T.-C. Wang and KJ Chang

Improving Delay by Buffering

• 0.18 um technology: Wire: α = 0.068 Ω / μ m, β = 0.118 fF/ μ m²; buffer: α ' = 180 Ω / unit size, β ' = 23.4 fF/unit size; driver resistance R_d = 180 Ω ; unit-sized wire, buffer.

VLSI Design Flow

Traditional design flow

- Two-step process
- Physical design is performed independently after logic design

In nanometer design

- Interconnect dominates delay
- Timing closure
- Signal integrity

New design flow

- Capture real technology
 behaviors early in the design flow
- Break the iteration between physical design and logic design

Interconnect-Centric Design for Timing Closure

Traditional post-layout optimization is not feasible for deep submicron

Shall integrate buffer-block design into floorplanning

Buffer Block Planning for Timing Closure

A, B, C, D: circuit blocks

DS: dead space

Power/Ground Routing Revisited

- Are usually laid out entirely on metal layers for smaller parasitics.
- Two steps:
 - Construction of interconnection topology: non-crossing power, ground trees.
 - Determination of wire widths: prevent metal migration, keep voltage drop small, widen wires for more power-consuming modules and higher density current (1.5 mA per μ m width for Al). (So area metric?)

H.-M. Chen Most Slides Courtesy of Prof. Y.-W. Chang, T.-C. Wang and KJ Chang

IR (Voltage) Drop

- Power consumption and rail parasitics cause actual supply voltage to be lower than ideal
 - Metal width tends to decrease with length increasing in nanometer design
- Effects of IR drop
 - Reducing voltage supply reduces circuit speed (5% IR drop => 15% delay increase)
 - Reduced noise margin may cause functional failures

Introduction to VLSI/SoC

Physical Design Automation

H.-M. Chen Most Slides Courtesy of Prof. Y.-W. Chang, T.-C. Wang and KJ Chang

SI-Driven Design Flow for Design Convergence

Typical flow vs. signal integrity-driven design flow

Noise (Crosstalk)

- Wire-to-wire coupling capacitance and inductance introduce crosstalk.
- Crosstalk may cause unexpected circuit switching or other undesirable behavior.
- Crosstalk between two wires switching in
 - Different directions: (1) increases signal delays (2) decreases signal integrity.
 - Same directions: (1) decreases signal delays (2) increases signal integrity.
- Capacitive crosstalk proportional to overlapping wire length (switching not the same) and inversely proportional to the distance between wires.

Crosstalk Becomes a First-Order Problem

Techniques for Capacitive Crosstalk Reduction

- Capacitive noise is a local effect
- Capacitive crosstalk reduction:
 - Shielding
 - Track permutation: Gao & Liu, ICCAD-93.
 - Buffering: Apert, Devgan, Quay, DAC-98.
 - Wire ordering + Gate/wire sizing: Jiang, Chang, Jou, IEEE
 TCAD-2K (DAC-99).
 - Wire spacing: Saxena & Liu, DAC-99; Pan & Chang, ICCD-2K.
 - Layer & track assignment: Her, Chang, Chen, Lee, ICCAD-2003.

Crosstalk Modeling Considering Switching Behavior

- When two adjacent wires switch in the same direction, the anti-Miller effect shortens transition.
- When two adjacent wires switch in opposite directions, the Miller effect lengthens transition.
- Crosstalk value should be modeled by the product of switching dissimilarity and coupling capacitance.
- Crosstalk between neighboring wires i and j:
 crosstalk(i i) = switching dissimilarity(i i)* counling canacitance(i)

crosstalk(i,j) = switching_dissimilarity(i,j)* coupling_capacitance(i,j)

Simplified Capacitive Crosstalk Computation

- Simplification in gridded channel routing
 - Adjacent tracks or columns only
 - Horizontal or vertical segments overlapping only
 - Linear distance model (k = 1)
- Example: k = 1, $C_{ij} = I_{ij}$ (adjacent tracks/columns only)
 - Net 4: Consider both vertical and horizontal segments ⇒ $C_{4,j}$ = 3+3+4+5+2 = 17
 - = Net 4: Consider horizontal segments only \Rightarrow C_{4, j}= 4+5 = 9

$$C_{ij} = a \frac{l_{ij}}{(d_{ij})^k}$$

Coupling Capacitance

 \hat{f}_{ij} : unit-length fringing capacitance

- Include coupling effect into wire capacitance
 - consider crosstalk effect on delay

$$-c_i = \hat{c}_i x_i + f_i + 2\Sigma c_{ij}$$

Switching Dissimilarity

Switching dissimilarity between wires *i* and *j*:

switching_dissimilarity(i,j) = 1- $\frac{\int_{0}^{T_{D}} f(i,t)f(j,t)dt}{T_{D}}$ $\uparrow (1,t)$ $\uparrow (1,t)$ $\uparrow (1,t)$ $\uparrow (1,t)$

Wire Ordering for Crosstalk Minimization

- Goal: Find a wire ordering s.t. the overall crosstalk is minimized.
 - Construct a complete weighted graph G=(V, E, W): V ↔ wires,
 W ↔ coupling length between each pair of wires.
 - The minimum weighted Hamiltonian path induces the minimum crosstalk.

Circuit Model

Elmore delay model: $D_i = r_i C_i$

 D_i : delay of node i; C_i : downstream capacitance

Crosstalk-Constrained Optimization

NOISE is a crucial concern in nanometer technology

Goal: simultaneous optimization

Taming Noise and Other Objectives

Switching Dissimilarity Consideration
Wire Ordering

Simultaneous post-layout optimization by sizing circuit component

Lagrangian Relaxation

Crosstalk-constrained Multi-Objective Optimization

M:

Minimize A Area

Subject to $D \le D^B$ Delay constraints

 $X \le X^B$ Crosstalk constraints

 $P \le P^B$ Power constraints

 $L \le x \le U$ Sizing constraints

Optimal Gate and Wire Sizing

Design for Manufacturability: Process Variation

- Results from subwavelength lithography
- May create unexpected circuit behavior
- Requires design insensitive to process variation

FEOL Variation

Figure 1 - Deep sub-micron transistors.

BEOL Variation

H.-M. Chen Most Slides Courtesy of Prof. Y.-W. Chang, T.-C. Wang and KJ Chang

Design for Manufacturability: Antenna Effect

- Notes courtesy of Dr. Patrick Groeneveld
- Layout for a 5-layer interconnect:

Antenna Effect: The Problem

- Unconnected wires act as "antennas" that pick up electrical charge gained from plasma etching and CMP
- The longer the wires, the more the charge.

Antenna Effect (1/2)

- Wires are always shorted in the highest metal layer.
- 0.18 (0.13) um technology: the maximum length of an "antenna" wire is 500 um (20 um).

Antenna Effect (2/2)

- Depends on the gate size
 - Aggressive down sizing makes the problem worse!
- Depends on length of the part of the wire that is "unshorted" (that is, not connected to a diffusion drain area)
- The calculation of this design rule is surprisingly different per fab.

Fixing Antenna Effect Using Diodes

- Insert a diode cell next to each input.
 - Costs significant area
 - Adds capacitance at worst spot.

Fixing Antenna Effect through Jumpers

- Adding 'jumpers' after routing
 - The idea: Force a routing pattern that "shoots up" to the highest layer as soon as possible.

Routing Jumpers

Adding "jumpers" after routing

Overall flow for fixing antenna problems

Antenna ratio
violation:
wire area/gate area
≤ spec ratio

H.-M. Chen Most Slides Courtesy of Prof. Y.-W. Chang, T.-C. Wang and KJ Chang Source: "Fixing antenna problem by dynamic diode dropping and jumper insertion," ISQED00

- Break in two those segments of two-pin nets that need jumpers, if the length of them exceeds the minimum allowable gate-strength.
- If they have not exceeded the minimum allowable gate-strength, then try to assign the remaining segments to the highest layer.
- Perform track assignment for long segments, and route short segments by a maze router.
- Perform an antenna check process for every terminal. If nets have antenna violation, rerouted them at the uncoarsening stage.

Metal Filling for Manufacturability

- Add dummy features to achieve global planarization for performance and manufacturability
- May change the parasitics
 - Coupling capacitance? Coupling inductance?

Rule-Based Tiling

Source: RET trends by W. Grobman, ISPD 2001

- Done with Boolean operations
- Only density of the template is variable
- Not adequate for arbitrary design

Model-Based Tiling

Source: RET trends by W. Grobman, ISPD 2001

- Different amount of tiles at different locations
- Uses Linear Programming and in-house software

Large Manufacturability Enhancement considering Model-Based Tiling

ISPD 2001 - Resources, Verification W. Grobman Mask Making

More experimental results (1/3)

Effective density before dummy pattern insertion

Figure.5 Effective density before dummy pattern insertion

Max(ρ)	Min(ρ)	Sta_Dev(ρ)	Peak to Peak(ρ)	Max local pattern density
0.151912	0.101997	0.00826395	0.049915	0.388521

More experimental results (2/3)

Effective density after dummy pattern insertion by FMDI algorithm

Effective density after dummy pattern insertion by FMDI algorithm

Figure.6 FMDI algorithm result

Figure.7 Iterated Smart algorithm result

More experimental results (3/3)

Dummy fill for Cu CMP process

- Cu CMP is different from ILD CMP
- Should consider both deposition (ECP) and polish (CMP) processes

Redundant Via

- Yield loss by via failure becomes critical and requires a good control
- A good solution is to add a redundant via adjacent to a single normal via as a backup
- The extra via enables a single via failure to be tolerated
- Redundant via insertion can be considered in routing stage or post-detailed routing stage

Illustration of Redundant Via

VLSI Design for Manufacturability

H.-M. Chen Part of slides Courtesy of Prof. YW Chang, Prof. KJ Chang, Prof. TC Wang, and Prof. KY Tsai

On/Off Track Redundant Via

- On track Redundant Vias are more preferable since they
 - take less routing resource
 - have better electrical characteristics

Off track redundant via

Relationship Between Lithography and Feature Size

Source: RET trends by W. Grobman, ISPD 2001

Lithography System

Optical Proximity Effect (1/3)

Ideal lithography:
 light passes through features by a straight path

Optical Proximity Effect (2/3)

Real lithography:
 light behaves like waves when feature size is close to wavelength

Optical Proximity Effect (3/3)

H.-M. Chen Most Slides Courtesy of Prof. Y.-W. Chang, T.-C. Wang and KJ Chang

Simulation results of Diffraction (1/2)

Diffraction pattern of single aperture

Simulation results of Diffraction (2/2)

Bridged diffraction pattern

Side lobe effect

Why RET

 With standard mask and illumination, features simply will not print

◆ Need Resolution Enhancement Techniques

Resolution enhancement techniques

- The age of WYSIWYG came to a dramatic and painful end
- Specialized illumination patterns
- Optical proximity corrections (OPC)
- Phase-shift masks (PSM)
- Subresolution assist features (SRAF)

Original design pattern

Optical Proximity Correction

- Nanometer process technologies require advanced optical processing, e.g., optical proximity correction (OPC).
- OPC increases the number of vertices in the layout and thus the size of the layout databases.
 - Make the mask cost much more expensive.

Rule-based OPC

Basic treatments of rule-based OPC

Model-based OPC

Future Lithographic Technologies

- Brief history of optical lithography
 - Increasing the numerical aperture (NA)
 - Imaging at smaller κ-factors with increased use of RETs and tighter control over process variations
 - Evolutionary reduction of the exposure wavelength
- Evolutionary path
 - Immersion lithography
 - Extreme UV lithography (EUVL, also called soft-X ray)
 - Particle beam lithography
 - Multiple electron beam direct write (EBDW)
 - Nanoimprint lithography (NIL)
 - Multiple exposure/patterning (to 22nm)
 - Direct Self Assembly (DSA)

Immersion Lithography (1/2)

This will increase NA, then improve DoF

應用浸潤式微影技術,可以在 晶圓上投射出更微小的電路, 但是水裡的微氣泡會使電路的 完整性受到破壞。

Source: 科學人, 2005.8

在鏡頭與晶圓之間的空隙中填滿水,可提高晶片製造微影技術工具的解析度。雷射光為了要投射出最小的電路線寬,會以極斜的角度穿透鏡頭,如果遇到空隙中的空氣,很容易就會被反射回去(左圖)。反之,光線若以相同的角度遇到水就會發生偏折,因此可抵達焦點(右圖)。浸潤式微影技術也能改善焦深,也就是成像清晰的狀況下,從鏡頭到影像之間的距離。

Immersion Lithography (2/2)

浸潤式微影技術可把水導入微影機台,填滿鏡頭與半導體晶圓上光阻劑之間的空隙,改善晶片上電晶體之間的解析度以及焦深.當鏡頭下的平台挪動晶圓時,機器會把已成像部位上的水吸走.

Source: 科學人, 2005.8

Multiple Exposure/Multiple Patterning

Figure LITH2 Schematic Process Flows for Double Exposure, Double Patterning, and Spacer Double Patterning

Ref. ITRS Roadmap, Lithography, 2007 edition http://www.itrs.net/

Multiple Exposure/Multiple Patterning

- Double exposure and double patterning are both capable of further extending 193nm in 32 and 22nm nodes
 - Successful mask decomposition is essential
- Double exposure
 - Double dipole lithography (DDL) enables semiconductor manufacturers to create smaller chip features by splitting dense circuit patterns into horizontal and vertical masks, then exposing them sequentially
 - Two consecutive mask exposures while the wafer stays on the chuck, allowing only one etch step
- Double patterning technology (DPT) / LELE
 - After the first mask exposure, the wafer is sent to the develop and etch processes, then come back for a second mask exposure (two independent patterning steps)
 - DPT can reduce the effective κ factor to be smaller than 0.25

Patterning solutions for advanced technology nodes

Technology node	Primary solution	First alternative
65-nm	193-nm dry, single exposure	193-nm, double exposure
45-nm (HKMG)	193-nm immersion (193i)	193-nm dry, double patterning
32-nm 28-nm (TSMC)	193i, double patterning	193i, single exposure, high-index fluids
22-nm	193i, double patterning	
16-nm (HKMG FinFET) 14nm	193i, double/triple patterning	
10-nm	193i, multiple patterning (MP)	
7-nm	193i, MP/EUV	EUV
5-nm/3-nm	EUV, double patterning	

Summary

- We have discussed some emerging second order effects in nanometer era
 - Interconnect delay domination
 - Signal integrity: crosstalk and voltage drop
 - DFM: antenna effect, metal filling, RET, and more

2001 MOE IC/CAD Contest Problem 9

- Area filling
 - To control the manufacturing variation due to CMP

2005 MOE IC/CAD Contest Problem 6

- ESD (electrostatic discharge) current path analysis
 - To prevent ESD failure, it is important to verify at design stage whether ESD signal path exists for any two pads.
 - One way to build the protection is to protect all pairs of pins.
 - It may be unnecessary for some protections which protect the pairs of pins that have no current paths.
 - An alternative is to identify those pairs of pins that have current paths between and then to protect those pairs only.