Cours MP2I

Alexandre

Table des matières

1	Notes	1
2	Rappels : relations d'équivalence	1
3	Anneaux	2
	3.1 Remarques	2
	3.2 Idéaux	2
4	Propriétés des anneaux	2
	4.1 Notions d'idéaux	;
	4.2 Types d'anneaux	9
	4.2.1 Anneaux noethériens	;
	4.2.2 Anneaux factoriels	;
	4.2.3 Anneaux intégralement clos	9

1 Notes

Nullstellensatz : (démo?)

- Idéaux
- Algébriquement clos
- Bézout?

Topologie de Zariski:????

— Lemme de Zorn (AC)

Dimension:?
Projectif/Affine:?

2 Rappels : relations d'équivalence

Soit E un ensemble et \sim une relation sur E.

Définition 1 (relation d'équivalence)

Une relation d'équivalence \sim vérifie les propriétés suivantes sur E :

- -- ~ réfléxive : $\forall x \in E, x \sim x$
- $--\sim$ symétrique
- \sim transitive

Définition 2 (classe d'équivalence)

Soit $x \in E$. L'ensemble $\tilde{x} = \{y \in E, x \sim y\}$ est la classe d'équivalence de x.

Définition 3 (partition)

Une partition d'un ensemble E est définie par :

- $-- \biguplus_{i \in I} X_i = X$
- $-- \forall i \in I, X_i \neq \emptyset$
- $\forall i, j \in I, i \neq j \Rightarrow X_i \cap X_j \neq \emptyset$

Lemme 4

Soient $x,y \in E$. On a :

$$x \sim y \iff x = y$$

Démonstration. tkt

Théorème 5 (parition formée par les classes d'équivalence)

L'ensemble des classes d'équivalences sous \sim forme une parition de E.

 $D\'{e}monstration.$

Définition 6 (ensemble quotient)

TODOf

<application canonique>

3 Anneaux

3.1 Remarques

Définition 7 (anneau quotient)

Soient A un anneau et I un idéal bilatère (idéal à gauche et à droite) de A. On définit la relation d'équivalence $\mathscr R$ suivante :

$$\forall x, y \in A, x \mathcal{R} y \iff x - y \in I$$

On dit aussi alors que x et y sont congrus modulo $I: x \equiv y \mod I$

On peut munir l'ensemble quotient A/I (càd l'ensemble des classes d'équivalence sur A) des lois induites par I :

$$+: t \longrightarrow a \text{ et } \cdot: t \longrightarrow a$$
 $e \longmapsto f$
 $e \longmapsto f$

A/I est muni d'une structure d'anneau.

3.2 Idéaux

Définition 8 (idéal d'un anneau)

Soit A un anneau. Un sous-ensemble $I\subseteq A$ est un idéal de A si :

- -(I,+) est un sous groupe de (A,+)
- $\forall a \in A, \forall b \in I, ab = ba \in I$

lien avec les noyeaux de morphismes etc>

Définition 9 (idéal premier)

Soit A un anneau, I un idéal de A, I est premier si et seulement si l'anneau A/I est intègre. Cela revient au même d'imposer :

- $-A \neq I$
- $\forall a, b \in A, ab \in I \Longrightarrow a \in I \text{ ou } b \in I$

Définition 10 (idéal maximal)

Un idéal I de A est dit maximal si $I \neq A$ et si pour tout idéal J de A tel que $I \subseteq J$ et $J \neq A$, on a J = I. (I est l'élément maximal pour l'inclusion)

Proposition 11

Soit I un idéal de A. On a donc :

I maximal $\iff A/I$ est un corps $\implies A/I$ intègre $\iff I$ premier

4 Propriétés des anneaux

Définition 12 (éléments associés)

Soit A un anneau <u>intègre</u>. Deux éléments a et b de A sont dits associés si a divise b et si b divise a.

Par exemple, si on se place dans $\mathbb{K}[X]$, deux polynomes associés sont égaux si et seulement si ils sont unitaire.

4.1 Notions d'idéaux

4.2 Types d'anneaux

4.2.1 Anneaux noethériens

On rappelle qu'on idéal I d'un anneau A est dit de type fini s'il est engendré par un nombre fini d'éléments.

Définition 13 (anneau noethérien)

Un anneau noethérien est un anneau qui vérifie l'une des trois propriété équivalentes suivantes :

- (1) tout idéal de A est de type fini
- (2) toute suite croissante $(I_n)_n$ d'idéaux de A est stationnaire
- (3) tout ensemble non vide d'idéaux de A a un élément maximal pour l'inclusion

Démonstration.

 $(1) \Rightarrow (2)$: On défini une suite $(I_n)_n$ croissante et on pose $I = \prod_{n \in \mathbb{N}} I_n$. Alors il existe $N \in \mathbb{N}$ tel

que $I \subseteq I_N$. On a par définition de $I:I_N \subseteq I$. Donc $I=I_n$

- $(2) \Rightarrow (3) : TODO$
- $(3) \Rightarrow (1)$: Pas compris

Théorème 14 (Hilbert)

Si A est noethérien, A[X] est noethérien.

Corollaire 15

Si A est noethérien, $A[X_1, \ldots, X_n]$ est noethérien.

4.2.2 Anneaux factoriels

La notion d'anneau factoriel généralsie la propriété de décomposition unique en facteurs premiers dans \mathbb{Z} . Il faut noter que toutes les propriétés de \mathbb{Z} ne s'y applique pas forcément.

Définition 16

Soit A un anneau. L'anneau A est factoriel s'il vérifie ces trois propriétés :

- (1) A est intégre (il n'a pas de diviseur de zéro)
- (2) tout élément a non nul de A s'écrit $a=up_1\dots p_r$ avec $u\in A^\times$ et p_1,\dots,p_r irréductible dans A
- (3) cette décomposition est unique, à permutation près et à des inversibles près : si $a = up_1 \dots p_r = vq_1 \dots q_s$, alors r = s et il existe $\sigma \in \mathscr{S}_r$ tel que p_i et $q_{\sigma(i)}$ soient associé

4.2.3 Anneaux intégralement clos