

Introduction aux statistiques bayésiennes

Application dans le vieillissement avec JASP

GRÉGOIRE Coline

Directeur de thèse: Steve MAJERUS

Projet de thèse : « Vers une meilleure compréhension des capacités d'inhibition dans le vieillissement »

Tours, le 10/09/19

Sommaire

Partie A – Statistiques Bayésiennes

- 1. Postulats de base
- 2. Facteurs de Bayes
- 3. Exemples
- 4. Fréquentistes vs Bayésiennes

Partie B - JASP

Partie A

Introduction aux statistiques bayésiennes

Statistiques bayésiennes = Degré de **vraisemblance** (likelihood) d'un modèle

Données observées vs données a priori (prior)

Vraisemblance a posteriori (posterior)

Postulat de base: comment ça fonctionne?

Jours de précipitations, 1 mm/jour⁽⁸⁾ 10.7

Jours de précipitations, 10 mm/jour⁽⁸⁾ 1.7

Croyances postérieures

Posterior distribution

$$\frac{P(h|d)}{P(d)} * P(h)$$

Les croyances antérieures sont mises à jour à l'aide des données afin de générer des croyances postérieures.

$$\frac{P(h|d)}{P(d)} = \frac{P(d|h)}{P(d)} * P(h)$$

« Je dispose d'un parapluie. Pensez-vous qu'il va pleuvoir? »

h: hypothèse: il va pleuvoir

d : données : Je dispose d'un parapluie

Quelles sont les croyances antérieures, a priori ?

$$\frac{P(h|d)}{P(d)} = \frac{P(d|h)}{P(d)} * P(h)$$

h: hypothèse: peut-être qu'il va pleuvoir, ou pas

d : données : Je dispose d'un parapluie

Quelles sont les croyances antérieures, a priori ?

hypothèse h	Degré de croyance		
	0,45	Jours de précipitations, 1 mm/jour ⁽⁸⁾ Jours de précipitations, 10 mm/jour ⁽⁸⁾	10.7 1.7
-	0,55		
	_		

$$\frac{P(h|d)}{P(d)} = \frac{P(d|h)}{P(d)} * P(h)$$

← Quelles sont les probabilités concernant les données, leur vraisemblance?

	donnees d		
hypothèse h			
	0,20	0,80	
	0,05	0,95	

Il est important de se rappeler que chaque cellule de ce tableau décrit vos opinions sur les données qui seront conservées, compte tenu de la véracité d'une hypothèse particulière h.

Cette «probabilité conditionnelle» est écrite P(d|h) que vous pouvez lire comme «la probabilité de d étant donné h». Dans les statistiques bayésiennes, on parle de probabilité de données d étant donné l'hypothèse h.

$$\frac{P(h|d)}{P(d)} = \frac{P(d|h)}{P(d)} * P(h)$$

\subseteq Quelles sont les probabilités jointes des données P(d,h)?

	donnees d		
hypothèse h			
	0,09	0,36	
-	0,0275	0,5225	
11/09/2019	0,1175 Coline GREGOIRE, o	0,8825 coline.gregoire@doct.uliege.	

La probabilité qu'il pleuve aujourd'hui (c'est-àdire que l'hypothèse h soit vraie) et que je porte un parapluie (c'est-à-dire que les données d sont observées).

$$P(d,h) = P(d|h) * P(h)$$

- = P(parapluie, pluie)
- = probabilité que je me souvienne de mon parapluie un jour de pluie 20% * prior de la probabilité d'un jour de pluie 45%

$$= 0.20 * 0.45 = 0.09$$

$$\frac{P(h|d)}{P(d)} = \frac{P(d|h)}{P(d)} * P(h)$$

← Comment met-on à jour les croyances selon la règle de Bayes?

	données d		
hypothèse <i>h</i>	T		
***	0,77	0	
-	0,33	0	
	1	0	

On vous dit que je porte vraiment un parapluie, ce qui n'avait que 11,75% de chance d'arriver, alors ma probabilité « parapluie » = 1

plausibilité qu'il pleuve =

$$= \frac{\text{probabilité jointe "pluie et parapluie"}}{\text{"chances totales de parapluie"}} = \frac{P(d, h)}{P(d)}$$

$$=\frac{0.09}{0.1175}=0.77$$

$$\frac{P(h|d)}{P(d)} = \frac{P(d|h)}{P(d)} * P(h)$$

← Comment met-on à jour les croyances selon la règle de Bayes?

	donnees a		
hypothèse h	7		
•••	0,77	0	
-)-	0,33	0	
	1	0	

La probabilité postérieure de pluie (sa plausibilité) à Liège en septembre étant donné que je porte un parapluie est de : P(h|d) = 77%

$$\frac{P(h|d)}{P(d)} = \frac{P(d|h)}{P(d)} * P(h)$$

données d

← Comment met-on à jour les croyances selon la règle de Bayes?

	domino	.cs u	
hypothèse h			
	0,77	0	
	0,33	0	
11/09/2019	1 Coline GRÉGOIRE,	O coline.gregoire@doct.ulie	ge.

$\frac{P(h d)}{P(d)} = \frac{P(d,h)}{P(d)}$
et
P(d,h) = P(d h) * P(h)
alors
$P(h d) = \frac{P(d h)}{P(d)} * P(h)$

Les adultes âgés n'ont peut-être pas systématiquement des scores d'inhibition (STROOP) moins bons que les adultes jeunes. → Implication théorique?

Les données tendent à ne montrer aucune différence entre les performances des jeunes et des âgés: variabilité dans les groupes.

Les adultes âgés ont des scores d'inhibition (STROOP) moins bons que les adultes jeunes « et de toute façon, avec l'avancée en âge, les performances diminuent».

	Group	N	Mean	SD	SE
Indice d'inhibition 1	1 2	24 24	0.401 0.488	0.143 0.137	0.029 0.028

BF₁₀

Test d'hypothèse bayésien

Les croyances antérieures sont mises à jour à l'aide des données afin de générer des croyances postérieures.

$$H_0$$
: $P(H_0|d) = \frac{P(d|H_0)}{P(d)} * P(H_0)$

$$H_1$$
: $P(H_1|d) = \frac{P(d|H_1)}{P(d)} * P(H_1)$

Test d'hypothèse bayésien

$$H_0$$
: $P(H_0|d) = \frac{P(d|H_0)}{P(d)} * P(H_0)$

$$\frac{P(H_1 | données)}{P(H_0 | données)} = \frac{P(données | H_1)}{P(données | H_0)} * \frac{P(H_1)}{P(H_0)}$$

probabilités postérieures = facteur bayésien * probabilités antérieures

le Facteur Bayésien

- indice statistique qui quantifie l'évidence d'une hypothèse par rapport à une autre hypothèse.
- occupe une place particulière dans les tests d'hypothèses bayésiennes, car il joue un rôle similaire à la valeur p dans les tests d'hypothèses orthodoxes.

BF01 ou BF10?

Preuve\Quantité d'évidence en faveur de Ho

Preuve\Quantité d'évidence en faveur de H1

Interprétation : que nous dit le facteur bayes?

Les adultes âgés ont des scores d'inhibition (STROOP) moins bons que les adultes jeunes

	Group	N	Mean	SD	SE
Indice d'inhibition 1	1	24	0.401	0.143	0.029
	2	24	0.488	0.137	0.028

Independent Samples T-Test			
	t	df	р
Indice d'inhibition 1	-2.144	46.000	0.037
Note. Student's t-test.			

Bayesian Independent Samples T-Test ▼		
	BF ₁₀	error %
Indice d'inhibition 1	1.791	2.514e -4

Test de normalité ✓ Test d'égalité des variances ✓

Interprétation : que nous dit le BF?

Expérience 1 : visant à évaluer l'impact des connaissances lexico-sémantiques sur une tâche MCTv à l'aide d'une procédure running-span rapide: manipulation de mots et non-mots.

Table 1	
Bayesian Factor values as a function of serial	position and stimulus condition – Experiment 1.

	List length	List length													
	Item recall crite	rion		Strict serial recall criterion											
	6	9	12	6	9	12									
Effects	Bayesian Repeate	ed Measure ANOVA													
Lexicality	→ +∞	→ +∞	→ +∞	6.45e + 9	→ + ∞	→ +∞									
Serial position	→ + ∞	→ + ∞	→ + ∞	6.01e+15	→ + ∞	→ +∞									
Lexicality * Serial position	.95	2.50e +8	→ +∞	24.26	2.37e + 10	→ +∞									
Effects	Bayesian Paired T-Test														
Pre-recency	9617	218897.06	1218.263	4.40	44,085	7.461									
Recency	2.90e + 6	1.26e+9	1.96e+7	20241.11	184,736	256504.46									

Note. For main effects and the interaction term (Bayesian ANOVA), the values represent $BF_{inclusion}$. For pre-recency and recency effects (Bayesian T-Test), values represent BF_{10} .

Pour résumer

« La règle de Bayes permet la révision probabiliste, et est utilisée dans le cadre de probabilités conditionnelles binaires (malade / non malade sachant que je présente les symptômes).

[...] permet de réviser notre jugement dès lors que nous obtenons une nouvelle information.

Ceci équivaut à passer d'une probabilité a priori -précédent la prise en compte du nouvel élément- à une probabilité a posteriori -faisant suite à la prise de connaissance de la nouvelle information-. » (p.28)

statistiques bayésiennes

VS

statistiques fréquentistes

 Probabilité des évènements selon une théorie

 Probabilité des évènements selon certains évènements

Statistiques fréquentistes	Statistiques bayésiennes							
• Test d'hypothèse Ho vs Ho	• Test d'hypothèse Ho vs Ho							
• Probabilité d'observer un événement si Ho est vraie	Vraisemblance d'un événement compte tenu de données a priori							
• alpha < .05	• BF > 3 / >10 / >30							
 Certains biais? Calcul de probabilité? Subjectivité Que représente alpha? 	 Vision moins biaisée? Preuve en faveur de H0 et H1 Contrôle de la subjectivité Mesure plus continue 							

Partie B

Introduction aux statistiques bayésiennes avec JASP 1

Nécessite l'utilisation de JASP

Gratuit: https://jasp-stats.org/download/

Facile d'utilisation

Manuels JASP gratuits

- Statistical Analysis in JASP. A Guide for Students by Mark Goss-Sampson
- Learning Statistics with JASP: A Tutorial for Psychology Students and Other Beginners
- → Chapitre sur les statistiques bayésiennes
- Introduction à JASP et aux statistiques bayésiennes (diaporama)
- Vidéos et résumés d'utilisation: https://jasp-stats.org/how-to-use-jasp/

Téléchargement

https://jasp-stats.org/download/

Welcome to JASP

- JASP is an open-source project with structural support from the University of Free: Amsterdam.
- Friendly: JASP has an intuitive interface that was designed with the user in mind.
- Flexible: JASP offers standard analysis procedures in both their classical and Bayesian manifestations.

So open a data file and take JASP for a spin!

Preferences

JASP et ses utilisations

Descriptives	Regression									
 Descriptive stats 	 Correlation matrix 									
 Reliability analysis* 	 Linear regression 									
	 Logistic regression 									
T-Tests	Frequencies									
 Independent 	 Binomial test 									
Paired	 Multinomial test 									
One sample	 Contingency tables 									
	 Log-linear regression* 									
ANOVA	Factor									
 Independent 	 Principal Component Analysis (PCA)* 									
Repeated measures	 Exploratory Factor Analysis (EFA)* 									
 ANCOVA 	 Confirmatory Factor Analysis (CFA)* 									
MANOVA * Coline GRÉGOIRE, coline.gregoire@doct.uliege.be	28									

Comment ouvrir un document dans JASP?

Formats supportés: .csv (comma separated value) sous excel et statistica

.txt (plain text) also can be saved in Excel

.sav (IBM SPSS data file)

.ods (Open Document spreadsheet)

Depuis Excel ou Open Office Calc

Ouvrir votre fichier dans Excel ou Open Office Calc.

Fichier → Enregistrer sous.

Dans le menu "Format du fichier" Sélectionner "CSV (Windows) (séparateur : point-virgule) (.csv)

Compléter les données nécessaires à vos analyses (noms dans la 1ère colonne ou 1ère ligne)

Depuis Statistica

Ouvrir votre fichier (.sta) dans Statistica

Fichier → Enregistrer sous

Compléter les données nécessaires à vos analyses (noms dans la 1ère colonne ou 1ère ligne)

11/09/2019 Coline GRÉGOIRE, coline.gregoire@doct.uliege.be

Depuis statistica

		1 2 3 4 5 0 7 8 0 10 11 12 12 14 15 10 17 10 10 20														^						
		1	Groupe	3	4	5	niveau	7	8	9	10	Dépressi	_12	13	14	PS/IPmo	PS.nonm	IP.nonm	PS/IPno	19	20	2
		Sujets	ماهمم	âge réel	sexe	ContreB	diátuda	MMSE	Mill Hill	N-Back	Anxiété	on	Total	PS.mots		to	oto	oto	nmoto		A Stroop B	Stro
	1_	J01	1	40	1	1	17		23	25	9	7	16	61	61	1	29	29	1	114	66	3
	2	J02	1	40	2	2	17		26	23	3	5	8	61	65	0,93846	41	42	0,97619	120	80	3
	3	J03	1	23	2	1	13		22	26	5	11	16	48	51	0,94118	20	23	0,86957	83	62	3
	4	J04	1	31	1	2	17		27	23	3	4	7	54	61	0,88525	37	48	0,77083	112	92	5
	5	J05	1	29	2	1	17		27	24	5	8	13	66	68	0,97059	42	42	1	104	72	4
	6	J06	1	25	1	2	17		20	24	2	5	7	63	65	0,96923	37	39	0,94872	107	87	/
	/	J07	1	25	1	1	15		20	27	8	2	10	62	62	1	38	40	0,95	89	61	4
	8	108	1	22	2	2	15		28	27	13	5	18	61	63	0,96825	39	39	1	127	97	6
	9	J09	1	28	1	1	17		27	26	3	4	7	61	63	0,96825	41	43	0,95349	133	107	E
	10	J10	1	22	2	2	15		31	25	15	5	20	48	67	0,85714	32	36	0,88889	105	74	4
	11	J11	1	24	2	1	15		28	27	9	3	12	35		0,52239	35	63	0,55556	94	76	E
	12	J12	1	21	2	2	12		25	26	16	5	21	44	53	0,83019	38	41	0,92683	80	78	E
8	13	J13	1	22	2	1	12		19	24	5	10	15	55	57	0,96491	33	33	1	111	73	4
	14	J14	1	37	2	2	15		27	17	11	5	16	44	47	0,93617	25	30	0,83333	79	62	2
	15	J15	1	34	2	1	9		17	23	12	13	25	37	50	0,74	16	23	0,69565	75	56	2
	16	J16	1	32	2	2	13		16	19	4	1	5	45	49	0,91837	16	16	0.02022	90	66	4
Φ.	17	J17	1	38	1	2	15		19	24	8	9	17	62	66	0,93939	40	43	0,93023	97	61	1
⊗	18	J18	1	22		1	15		25	27	20	13	33	68	73	0,93151	44	48	0,91667	99	77	3
	19 20	J19	1	21	2	1	15		20	24 26	15	9	24	50	60	0,83333	35	38	0,92105	126	84	- 4
	21	J20	1	21 36	2	2	15 13		25	27	9	5	14	54 37	63	0,85714	42	43	0,97674	118 97	103 78	2
	22	J21	1	22	1	2	15		20 30	22	2	-	8		46	0,80435 0,9375	20 41	23 41	0,86957	124	83	6
	23	J22 J23	1		2	2			23	22	1	6 3	4	60 49	64	0,9375			U 03203	99	78	
	24			21 28	2	1	15 15		17	23	16		24	49	54	-	25 24	27 36	0,92593	82	67	2
	25	J24 J25	1	28	1				20	26	3	2	5	49	56 57	0,82143	22		0,66667 0,91667	119	91	5
	26			20	2	1	12 12					10					39	24	0,91007	119		
	27	J26	1	60		1	10	20	19	26	11	10	21	61	63	0,96825	39	39	0.06420		71	5 ~
/	,,,							,,	,,,	,-	•							. ,0		011		

Instant pratique

Comment faire un test-t? Exemple

2 groupes 24 adultes jeunes 24 adultes âgés

Score d'interférence : neutre-inhibition

 $H_1 \rightarrow Les$ adultes âgés seront plus affectés par l'interférence phonologique que les adultes jeunes.

Instant pratique

Bayesian Independent T-test

median = -0.940 95% CI: [-1.562, -0.344]

BF₁₀ = 45,444 Odds de 45,444:1 en faveur de H₁

BF₀₁ =
$$\frac{1}{45.444}$$
 Odds de 1:45,444 en faveur de H₀

Quelle interprétation peut-on faire?

Les données sont 45,44 fois plus susceptibles de se produire sous H1 que sous H0.

median = -0.940 95% CI: [-1.562, -0.344]

BF₁₀ = 45,444 Odds de 45,444:1 en faveur de H₁

BF₀₁ =
$$\frac{1}{45.444}$$
 Odds de 1:45,444 en faveur de H₀

Quelle interprétation peut-on faire?

Il est 45 fois plus probable qu'il y ait une différence pour l'interférence phonologique entre âgés et jeunes, plutôt qu'il n'y en ait pas

Instant pratique

Instant pratique Régression Linéaire

Régression Linéaire

Régression Linéaire bayésienne: Big-V

Merci pour votre attention

MyORBI | PsyNCog | LinkedIn | GoogleScholar