Introdução sobre Estruturas de Dados Espaciais e Árvore de Quadrante

Henrique Dantas Pighini 21.1.4025 Caio Silas de Araujo Amaro 21.1.4111 Arthur Henrique Santos Celestino 21.1.4019 Marcella Silveira Campos 21.1.4008

Mauro Lucio Afonso Paulino dos Santos Filho 21.1.4002

Dados Escalares vs Dados Espaciais

Dados Escalares

1. As variáveis escalares são usadas para representar objetos de dados de tamanho fixo individuais, tais como inteiros e ponteiros.

2. Exemplos:

Tipos primitivos: int, char, bool.

Campo Estado de uma Struct pessoa.

Inscrição	Nota	Estado	Cidade	Curso			
00467354	47,8	MG	VIÇOSA	ADMINISTRAÇÃO			
00085820 52,0		MG	UBERLÂNDIA	DIREITO			
00015022	51,0	MG	ALFENAS	ENGENHARIA CIVIL			
00403068	8,0	MG	VARGINHA	ENGENHARIA QUÍMICA			
00130230	36,3	MG	UBERABA	MEDICINA VETERINÁRIA			

Dados Espaciais

 Dado espacial é qualquer tipo de dado que descreve fenômenos aos quais esteja associada alguma dimensão espacial.

2. Exemplos:

Latitude, Longitude.

Posição de um ponto em um modelo 3d.

Latitude	Longitude					
-20º 45' 14"	-42º 52' 55"					
-18° 55' 07''	-48° 16' 38''					
-21° 25' 45''	-45° 56' 50'					
-21° 33' 05''	-45° 25' 49''					
-19° 44' 54''	-47° 55' 55''					

Dados Escalares + Dados Espaciais

Inscrição	Nota	Estado	Cidade	Curso			
00467354	47,8	MG	VIÇOSA	ADMINISTRAÇÃO			
00085820	52,0	MG	UBERLÂNDIA	DIREITO			
00015022	51,0	MG	ALFENAS	ENGENHARIA CIVIL			
00403068	8,0	MG	VARGINHA	ENGENHARIA QUÍMICA			
00130230	36,3	MG	UBERABA	MEDICINA VETERINÁRIA			

Qual a média dos alunos que moram próximo de Ouro Preto?

Quais alunos moram no máximo a até 100 km de Uberaba?

Dados Escalares + Dados Espaciais

Dados Escalares + Dados Espaciais

Tipos centrais de aplicação de Dados Espaciais

- Dados geográficos ou georreferenciados.
- 2. Sistema CAD(Desenho guiado por computador)
- B. Bancos de dados espaciais.

Utilização dos Dados Espaciais

Utilização dos Dados Espaciais

Apenas mapeamento e localização ??

Utilização dos Dados Espaciais

Utilização dos Dados Espaciais

Banco de Dados

Banco de Dados

- Coleção de dados estruturada.
 - Representada por tabelas com campos.
- Armazenadas eletronicamente.
 - Em nuvens ou servidores.
- Vários tipos de BD

Banco de Dados Espaciais

- 1. Focados em dados espaciais.
 - a. coordenadas, CEPs, pontos
- 2. Capaz de gerar e calcular dados geométricos
 - a. polígonos, área
- 3. Amplas maneiras de utilizar o Banco de Dados
 - a. SIG (Cartografia)
 - b. CAD (Computer-Aided Design)
 - c. Bancos de dados espaciais de aplicações Web (Foursquare, Tinder, etc).

SIG - Sistema de Informação Geográfica

- Método de manipulação de dados Geográfica.
 - Várias maneiras de manusear os dados.

• Utilizado em GPS e APPs que necessitam de localização.

Estrutura de Dados Espaciais

- Conjunto de tudo apresentado.
 - Dados espaciais que representam um espaço.
 - Armazenados em um banco de dados.
 - Sendo implementados por um método espacial.
- Métodos:
 - o QuadTree
 - \circ Grid
 - o Árvore kD
 - o Árvore R

Estrutura de Dados Espaciais

- É possível realizar manipulações a partir das estruturas.
 - Medir distâncias, perímetro, áreas
 - Calcular a conectividade e o caminho mais curto entre dois pontos
 - Analisar pontos e linhas dentro de um polígono
 - Realizar buscas por região (intervalo)

	Id	Local					X (Leste)	Y (Norte)		
	1	Newcastle Museum					14	58		
	2	Waterworld					31	65		
	3		one Potte		luseu	m	74	23		
-	4		m Gard				20	00		
	5		ctoria T		er		18		55	
	6		k Potter	-			66		25	
	7		rt Potter	У			54		36	
	8	Spode Pottery					37	43		
	9	Minton	Pottery				36	39		
	10	Royal Doulton Pottery					31	87		
-	11	City Mi	City Museum					62		
	12	Westpo					17	92		
	13	Ford G	reen Hal	11			53	99		
	14	Park Ha	all Coun	try P	ark		86	44		
90	no.	-	-10		nima.	el-pateril				
70			Elizare - L	DISSESSED IN	de Orion	No. (Tax	To Gard			
60	data Storie		. 2	. 11	7	and the				
50	7	5.	STATE OF THE	(40,	50)		10			
40	Talley .	STATE OF STATE	8 .	_			book to	14	-	
	TVID		9		• 7		in inch			
30	(2	20,20)	FO COVE	x br	STATE	6.	.3	2.57		
20			/	Ministra C.	(bell	1000	arrange.			
10		1 1		EEST	11777					
		74								

Dados Vetoriais

O dado Vetorial constitui uma maneira de representar elementos do mundo real dentro do ambiente SIG.

Dados Matriciais

O dado Matricial é composto por linhas e colunas de pixels, onde cada pixel representa uma região do mundo real.

O que é a Árvore Quadrante

- 1. O espaço bidimensional é dividido em 4 caixas.
- 2. Se uma caixa tem um ou mais pontos nela, construa um objeto filho, armazenando nele o espaço bidimensional da caixa
- 3. Se uma caixa não possui pontos, não crie um filho para ela
- 4. Faça recursão para todos os filhos.

Aplicações:

- Tratamento de fotografias (por exemplo, retirar olhos vermelhos de fotos)
- Ecografias (identifica tumores pela cor da imagem)
- Games (detectando se algum projétil atingiu certo local)
- Compressão de imagens
- Videochamadas (mandando apenas o que foi alterado na imagem)

Vantagens:

- Útil na compactação de imagens
- Tem estrutura enxuta (gasta-se pouco tempo para chegar aos filhos em geral)
- Não necessita de balancear a cada inserção, fazendo cada inserção não afetar o desempenho da árvore.
- Pode ser usada para realizar mudanças (como rotações) na imagem com facilidade.

Desvantagens:

- Em imagens complexas, com muitas cores e detalhes, a árvore pode ficar muito grande e complexa, se tornando por vezes até maior que a imagem original.
- Devido ao problema acima, também pode haver alto gasto de CPU
- Somente imagens bidimensionais podem ser tratadas com ela.

Há mais de um tipo de Árvore Quadrante. Dentre eles, temos:

- -> Region
- -> Point
- -> Point-Region
- -> Edge
- -> Polygon Map
- -> Compressed

Region QuadTree

A Region QuadTree é usada para representar uma partição do espaço em duas dimensões, quebrando a região em quatro quadrantes iguais, sub-quadrantes, e então cada nó folha consiste em informação correspondente a uma sub-região. Cada nó na árvore ou é associado com exatamente quatro filhos ou nenhum.

Uma Region QuadTree com uma altura **n** pode ser implementada para representar uma imagem que consiste de **2nx2n** pixels, em que cada pixel tem o valor de 0 ou 1. O nó raiz pode ser usado para representar uma região inteira da imagem. Se os pixels em qualquer região não são inteiramente 0 ou 1, ela é subdividida. Nessa aplicação, cada nó folha é usado para representar um bloco de pixels que são ou todos 0 ou todos 1.

Point QuadTree

A Point QuadTree é uma adaptação de uma árvore binária implementada para representar uma informação de um ponto 2-dimensional. Características de todas QuadTrees são compartilhadas pela Point QuadTree.

Elas são geralmente muito eficientes em comparar informações de pontos 2-dimensional, usualmente executado em tempo de O(log n). As Point QuadTrees são uma menção valiosa para a completude, mas as árvores k-d as superam como ferramentas para busca binária generalizada.

Point-Region QuadTree

Na Point-Region QuadTree (também referida como PR QuadTree) cada nó tem exatamente quatro filhos ou é uma folha. Isto é, A PR QuadTree é uma árvore de modelo 4-ária. A PR QuadTree representa uma coleção de informações de pontos de duas dimensões, decompondo a região que contém os pontos em quatro sub quadrantes, e assim por diante, até que nenhum nó folha tenha mais que um único ponto. Em outras palavras, se uma região contém zero ou um ponto, então ela é representada por uma PR QuadTree com um único nó folha. Se a região contém mais que um único ponto, então a região se divide em quatro quadrantes iguais.

Quadtree edge

Quadtree edge são usados para armazenar linhas em vez de pontos. As curvas são aproximadas e subdivide as células em uma resolução muito fina, especificamente até que haja um segmento de linha única por célula. Perto de cantos/vértices, os quadtree edge continuam se dividindo até atingirem seu nível máximo de decomposição.

A decomposição quadtree é uma técnica adequada para detecção de bordas porque há uma diferença distinta entre bordas e pixels vizinhos. Se a decomposição quadtree é realizada sobre as imagens, as folhas do quadtree ou o nível acima das folhas representarão uma intensidade máxima desses pixels.

Polygon map

O quadtree de mapa poligonal (ou PM Quadtree) é uma variação de quadtree que é usado para armazenar coleções de polígonos que podem ser degenerados (o que significa que eles têm vértices isolados ou bordas).

Uma grande diferença entre quadtrees pm e quadtrees de borda é que a célula em consideração não é subdividida se os segmentos se encontram em um vértice na célula.

Compressed

Usada para compressão de imagem, funciona dividindo recursivamente a imagem em quatro subespaços com cada um segurando a cor RGB média e o erro, determinando a cor para seus subespaços. O limiar é definido com base nesse erro e ajuda a árvore a determinar se um nó deve ser dividido mais ou não.

Pseudo-Código

```
struct XY
  float x;
  float y;
struct AABB
  XY center;
  float half Dimension;
  function __construct(XY center, float halfDimension) {...}
  function containsPoint(XY point) {...}
  function intersects AABB (AABB other) {...}
```

```
class QuadTree
                                                                Classe Principal
  // Arbitrary constant to indicate how many elements can be stored in this quad tree node
  constant int QT NODE CAPACITY = 4;
  // Axis-aligned bounding box stored as a center with half-dimensions
  // to represent the boundaries of this quad tree
  AABB boundary;
  // Points in this quad tree node
  Array of XY [size = QT NODE CAPACITY] points;
  // Children
  QuadTree* northWest, northEast, southWest, southEast;
  // Methods
  function construct(AABB boundary) {...}
  function insert(XY p) {...}
  function subdivide() \{...\} // create four children that fully divide this quad into four quads of equal area
  function queryRange(AABB range) {...}
```

```
class QuadTree
                                                           Função de Inserção (pt 1)
  // Insert a point into the QuadTree
  function insert(XY p){
     // Ignore objects that do not belong in this quad tree
    if (!boundary.containsPoint(p))
       return false; // object cannot be added
     // If there is space in this quad tree and if doesn't have subdivisions, add the object here
     if (points.size < QT NODE CAPACITY && northWest == null){
       points.append(p);
       return true;
     // Otherwise, subdivide and then add the point to whichever node will accept it
     if (northWest == null)
       subdivide();
     // We have to add the points/data contained in this quad array to the new quads if we only want
     // the last node to hold the data
```

Função de Inserção (pt 2)

```
***continua***
    if (northWest->insert(p)) return true;
    if (northEast->insert(p)) return true;
    if (southWest->insert(p)) return true;
    if (southEast->insert(p)) return true;

    // Otherwise, the point cannot be inserted for some unknown reason (this should never happen)
    return false;
}
{ (CLASS BRACKET)
```

```
class QuadTree
                                                          Função de Pesquisa (pt 1)
  // Find all points that appear within a range
  function queryRange(AABB range)
     // Prepare an array of results
     Array of XY pointsInRange;
     // Automatically abort if the range does not intersect this quad
    if (!boundary.intersectsAABB(range))
       return pointsInRange; // empty list
     // Check objects at this quad level
    for (int p = 0; p < points.size; p++)
       if (range.containsPoint(points[p]))
         pointsInRange.append(points[p]);
***continua***
```

```
***continua***
    // Terminate here, if there are no children
    if (northWest == null)
       return pointsInRange;
    // Otherwise, add the points from the children
    pointsInRange.appendArray(northWest->queryRange(range));
    pointsInRange.appendArray(northEast->queryRange(range));
    pointsInRange.appendArray(southWest->queryRange(range));
    pointsInRange.appendArray(southEast->queryRange(range));
    return pointsInRange;
} (CLASS BRACKET)
```

Bibliografia:

- Quadtree. Disponível em: https://en.wikipedia.org/wiki/Quadtree. Acesso em 23/10.
- Estruturas de Dados Espaciais. Dísponivel em:

https://moodlepresencial.ufop.br/pluginfile.php/1204661/mod_resource/content/3/ApresentacaoDadosEspaciaisLeandro.pdf. Acesso em 23/10.

- Quadtree. Disponível em: https://www.geeksforgeeks.org/quad-tree/. Acesso em 23/10
- Region QuadTree. Disponível em: https://www.tutorialspoint.com/region-quadtrees-in-data-structure. Acesso em 23/10
- Point QuadTree. Disponível em: https://www.tutorialspoint.com/point-quadtrees-in-data-structure. Acesso em 23/10
- -Quadtree edge. Disponível em : Região Quad-Tree Base de detecção de borda para imagens médicas PMC (nih.gov). Acesso em 24/10
- -Quadtree compression, Disponível em: Página de Vercy. Acesso em 24/10
- -Dados espaciais. Disponível em:

 $\underline{\text{http://www.csr.ufmg.br/geoprocessamento/publicacoes/Modelagem\%20de\%20dados\%20geografico.PDF}.\ Acesso\ em\ 24/10$

-Estrutura de dados espaciais. Disponível em:

 $\underline{http://www.decom.ufop.br/guilherme/BCC203/geral/ed2\ introducao-estruturas-dados-espaciais\ josiane.pdf.}$

Acesso em 24/10