Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО МГТУ «СТАНКИН»)

Институт информационных систем и технологий

Кафедра информационных систем

Основная образовательная программа по УГСН 09.03.02 «Информационные системы и технологии» (академический бакалавриат)

Электронная презентация по дисциплине Б1.Б.18 «СИСТЕМЫ УПРАВЛЕНИЯ ЖИЗНЕННЫМ ЦИКЛОМ ИЗДЕЛИЙ»

Лектор:

Поляков Сергей Дмитриевич

доцент кафедры информационных систем, к.т.н., доцент

Лекция 11. Интегрированные системы автоматизации, управления и информационной поддержки ЖЦ изделий

Структура лекции

- ✓ Проблемы и решения интеграции систем информационной поддержки ЖЦ изделий
- ✓ Интегрированные CAD/CAM/CAE системы
- ✓ Интегрированные (PLM) решения для информационной поддержки ЖЦ изделий (IBM, Dassault Systemes, UGS PLM Solutions, PTC, SAP и др.).
- ✓ Интегрированные системы управления предприятием (SAP R3 и др.)
- ✓ Системы интегрированной логистической поддержки изделий (LSA, MRO, FRACAS, ИЭТР, ТРМ)
- ✓ Особенности интеграции PDM и ERP систем
- ✓ Особенности интеграции ERP и MES систем

Основные постулаты интегрированной автоматизации

- 1. **Автоматизация осуществляется** с помощью CAD/CAE/CAPP/CAM систем;
- **2. Необходимость организации хранения** проектных **данных** в общей базе (осуществленная с помощью PDM-систем);
- 3. Поглощение мелких специализированных компаний крупными;
- **4. Создание ведущими разработчиками САПР единых комплексов** программных решений от одного поставщика;
- **5. Частичная автоматизация** не всегда дает ожидаемого повышения эффективности функционирования предприятий;
- **6. Предпочтительным является** внедрение интегрированных САПР, автоматизирующих все основные этапы проектирования изделий;
- 7. Сущность интеграции заключается в способности создавать данные в одном приложении (CAD) и при малых изменениях использовать их в другом приложении (CAE, CAM);
- **8. Дальнейшее повышение эффективности** производства и повышение конкурентоспособности выпускаемой продукции возможно за счет интеграции систем проектирования, управления и документооборота.

Основные преимущества интегрированных систем автоматизации

Качество продукции:

- ✓ установление требований к продукции
- ✓ измерение качества продукции:
 - подготовка данных для статистики системы контроля производства;
 - > подготовка данных для оборудования лабораторного тестирования;
 - проведение аппаратного контроля измерения с использованием станков с числовым программным управлением (ЧПУ).

Потребительская стоимость

Время разработки

Автоматизация

Поддержка производственной технологии

Сокращение ошибок и удобство внесения инженерных изменений Широкие вычислительные сети, связи предприятия

Компоненты Интегрированной системы автоматизации

Автоматизированная система инженерного обеспечения (АСИО) включает:

- ✓ CAПР/ACTПП.
- ✓ Процедуры АСУ производством (АСУП).
- ✓ Процедуры АС планирования производства (АСПП).
- ✓ Планирование процесса проектирования с использованием комплексного ПО.
- ✓ Система автоматизации проектирования инструмента и процесса обработки.
- ✓ Система автоматизации процесса усовершенствования.
- ✓ Система автоматизации проектирования расположения оборудования на производстве, включая графическую имитацию робототехники.
- ✓ Полная интеграция отраслей АСИО вместе с интегрированными экономическими и бухгалтерскими системами, называется компьютерным интегрированным пространством (КИП).

5

Интеграция геометрических и конечно-элементных моделей

Интеграция CAD и CAE систем:

- ✓ конечно-элементная модель, необходимая для инженерного расчёта в САЕ системе, строится по геометрической модели в САD системе.
- ✓ для построения конечно-элементной модели в CAD системах используется приложение FEM (Finit Element Modeling конечно-элементное моделирование):
 - > преобразование геометрической модели в сетку конечных элементов;
 - > проведение итерационного анализа для оптимизации проекта;
 - > обоснование конструкторских изменений геометрии модели.

Интеграция геометрической модели с технологической подготовкой производства

Интеграция CAD/CAM систем:

- ✓ геометрическая модель объекта используется для:
 - разработки технологических процессов изготовления и контроля реальной детали;
 - для проектирования заготовки детали;
 - проектирования литейной и штамповой технологической оснастки:
 - ❖ доработка геометрической модели детали с учётом термодинамических свойств материала детали;
 - назначение литейных или штамповочных припусков на механическую обработку с коррекцией геометрической модели;
 - по геометрическим моделям заготовки конструируется технологическая оснастка.

Требования к современным системам, обусловленные интеграцией

- ✓ Твердотельное моделирование с использованием вариационной геометрии с ассоциативными связями.
- ✓ Параметрическое геометрическое моделирование.
- ✓ Распространение ассоциативных связей на все уровни проекта, включая сборочные единицы, расчетные модули системы, технологическую подготовку производства.
- ✓ Обеспечение горизонтальной и вертикальной интеграции и сбалансированности модулей в рамках единой системы.
- ✓ Наличие средств поддержки параллельного проектирования и методов коллективной работы.
- ✓ Интерфейсы, реализованные в системе форматами межпрограммных обменов (IGES, DXF, Express (стандарт ISO 10303-11, STEP), SAT (формат ядра ACIS).

Интегрированные решения САD/САМ/САЕ систем

Интеграция CAD/CAM/CAE-систем

Классификация САD/САМ/САЕ-систем:

- ✓ чертежно-ориентированные системы;
- ✓ системы, позволяющие создавать трехмерную электронную модель объекта;
- ✓ системы, поддерживающие концепцию полного электронного описания объекта (EPD Electronic Product Definition).

Технология EPD –

Классификация CAD/CAM/CAE-систем по функциональному уровню и степени интеграции:

- ✓ системы верхнего уровня;
- ✓ системы среднего уровня;
- ✓ системы нижнего уровня.

Интегрированные решения САD/САМ/САЕ систем

Примеры CAD/CAM/CAE-систем

Примеры систем верхнего уровня:

- ✓ Pro/Engineer;
- ✓ Unigraphics;
- ✓ CATIA;
- ✓ EUCLID;
- ✓ I-DEAS (все они имеют расчетную часть САЕ).

Типы твердотельных геометрических ядр:

- ✓ Parasolid от фирмы Unigraphics Solutions;
- ✓ ACIS or Spatial Technology.

Примеры систем среднего уровня на основе ядра ACIS:

- ✓ ADEM (Omega Technology);
- ✓ Cimatron (Cimatron Ltd.);
- ✓ Mastercam (CNC Software, Inc.);
- ✓ AutoCAD, Mechanical Desktop и Autodesk Inventor (Autodesk Inc.);
- ✓ Powermill (DELCAM);
- ✓ CADdy++ Mechanical Design (Ziegler Informatics GmbH);
- ✓ семейство продуктов Bravo (Unigraphics Solutions), IronCad (VDS) и др. 10

Интегрированные решения САD/САМ/САЕ систем

Примеры CAD/CAM/CAE-систем

Примеры систем среднего уровня на основе ядра Parasolid:

- ✓ MicroStation Modeler (Bentley Systems Inc.);
- ✓ CADKEY 99 (CADKEY Corp.);
- ✓ Pro/Desktop (Parametric Technology Corp.);
- ✓ SolidWorks (SolidWorks Corp.);
- ✓ Anvil Express (MCS Inc.),
- ✓ Solid Edge и Unigraphics Modeling (Unigraphics Solutions);
- √ IronCAD (VDS)
- ✓ KOMΠAC 3D
- ✓ T-FLEX CAD 3D и др.

Примеры систем нижнего уровня:

- ✓ AutCAD LT;
- ✓ Medusa;
- ✓ TrueCAD;
- √ KOMΠAC;
- ✓ БАЗИС и др., применяются только при автоматизации чертежных работ.

Решения комплексной автоматизации фирмы Dassault Systemes (CATIA V5/V6, SolidWorks) – CAD/CAM/CAE/PDM

Платформа управления жизненным циклом изделия PLM V6 объединяет:

- ✓ системы автоматизации проектирования САТІА (виртуальное проектирование продукции);
- ✓ 3D проектирование SolidWorks;
- ✓ автоматизация инженерных расчетов SIMULIA;
- ✓ управления инженерными данными ENOVIA (взаимодействие и совместное управление бизнес-процессами и жизненным циклом изделий);
- ✓ подготовка производства DELMIA (виртуальное производство);
- ✓ реалистичная трехмерная визуализация 3DVIA (виртуальный опыт).

Характеристики САПР SolidWorks:

- ✓ мощное средство проектирования;
- ✓ передовые технологии гибридного параметрического моделирования;
- ✓ интегрированные средства электронного документооборота SWR-PDM/Workflow;
- ✓ высокая производительность и надежность;
- ✓ интуитивно понятный интерфейс;
- ✓ русификация и поддержка ЕСКД.

Решения комплексной автоматизации фирмы Siemens (г. Плано, штат Техас, США)

Характеристики Siemens PLM:

- ✓ степень поддержки жизненного цикла **CAD/CAM/CAE/CSE/PDM**, (концептуальный дизайн, проектирование, подготовку производства и инженерный анализ);
- ✓ применяется система **Siemens PLM Software** (NX (старое название Unigraphics Solutions), Solid Edge):
 - > Solid Edge система параметрического/гибридного 3D-моделирования;
 - FactoryCAD инструмент построения и анализа трехмерных моделей производства;
 - ▶ Plant Simulation система имитационного моделирования;
 - Process Simulate система 3D-моделирования технологических процессов и их оптимизации;
 - ▶ RobotExpert решение для моделирования, программирования и симуляции роботизированных процессов;
 - CAM Express система подготовки производства;
 - FactoryFLOW анализ цеховой транспортной логистики;
 - **Femap** система поддержки инженерных расчетов;
 - Тeamcenter система управления инженерными данными;
 - ➤ Tecnomatix это линейка продуктов, предназначенная для автоматизации технологической подготовки производства;
 - **Factory** семейство продуктов для планирования производственных площадей;
 - > Syncrofit интегрированная с CAD система управления соединениями сложных аэрокосмических и автомобильных сборочных конструкций.

Решения комплексной автоматизации фирмы Parametric Technology Corporation (РТС) (г. Уолтхэм, шт. Массачусетс, США)

Характеристики PLM PTC:

- ✓ степень поддержки жизненного цикла CAD/CAM/CAE/PDM;
- ✓ применяется система для создания инженерных данных **Pro/ENGINEER**;
- ✓ применяется система для управления инженерными данными и проектами **Windchill**;
- ✓ решения реализованы в виде системы поддержки разработок (PDS) компании РТС.
- ✓ Pro/ENGINEER Wildfire интегрированное решение от РТС в области 3D CAD/CAE/CAM предоставляет пользователям возможности, которые позволят им преодолевать традиционные препятствия в процессе проектирования, сделав процесс разработки изделия быстрым, эффективным и инновационным.

Решения комплексной автоматизации фирмы Autodesk (г. Сан-Рафаэль, шт. Калифорния, США)

Характеристики PLM Autodesk:

- ✓ степень поддержки жизненного цикла CAD/CAM/CAE/PDM;
- ✓ применяется система трехмерного твердотельного проектирования AutoCAD Inventor Professional Suite, включающая:
 - ➤ AutoCAD Inventor Suite для 2D- и 3D-моделирования, а также для подготовки технической документации;
 - AutoCAD Inventor Simulation Suite для анализа прочности и моделирования динамики;
 - ➤ AutoCAD Inventor Routed Systems Suite для проектирования кабельных систем и трубопроводов;
 - ➤ AutoCAD Inventor Tooling Suite для проектирования и анализа прессформы для изготовления пластмассовых изделий;
 - Vault/Productstream/Buzzsav система управления инженерными данными.

Решения комплексной автоматизации компании Топ Системы (г. Москва)

Характеристики PLM Топ Системы:

- ✓ комплекс программ T-FLEX PLM+ CAD/CAM/CAE/CAPP/PDM/CRM;
- ✓ базируется на ядре Parasolid фирмы Unigraphics Solutions;
- ✓ **T-FLEX CAD, T-FLEX CAD 2D+** для 2D- и 3D параметрическое моделирование моделирования, а также для подготовки технической документации;
- ✓ T-FLEX Технология, T-FLEX Техническое нормирование, T-FLEX ТОиР, T-FLEX ОКП (MES), T-FLEX ЧПУ 2D и 3D технологическая подготовка производства
- ✓ **T-FLEX ЧПУ 2D и 3D** система подготовки программ для станков с ЧПУ;
- ✓ T-FLEX DOCs, T-FLEX DocsLine, T-FLEX CRM, T-FLEX Управление проектами системы автоматизированного документооборота и управления инженерными данными.
- ✓ **T-FLEX Анализ, T-FLEX Динамика** система поддержки инженерных расчетов;
- ✓ T-FLEX Печатные платы, T-FLEX Раскрой, T-FLEX Электротехника, T-FLEX VR прикладные программы.

16

T. FLEX PLM

Проектирование электротехнических изделий

Управление структурами изделий и конфигурациями

Управление изменениями и версиями

Инженерный анализ изделий

Технологическая подготовка производства и нормирование

Подготовка

управляющих

программ для

станков с ЧПУ

T-FLEX PLM+

Конструкторское проектирование. Интеграция с разными CAD-системами

> Управление требованиями

Электронный архив и технический документооборот

Офисный и канцелярский документооборот

Управление взаимоотношениями с клиентами

Управление проектами, планирование ресурсов и затрат

Интеграция с ERP и другими информационными системами

Собственные информационные системы

Прикладные системы: метрология, инструментальная кладовая и др.

Складской учёт и управление закупками

Платформа T-FLEX PLM

Программные компоненты для построения инженерных и информационных систем

Формирование физической структуры изделия

Эксплуатация и послепродажное обслуживание

Планирование производства

Техническое обслуживание и ремонт

T-FLEX VR

Решения комплексной автоматизации компании АСКОН (г. Санкт-Петербург)

Характеристики PLM ACKOH:

- ✓ степень поддержки жизненного цикла CAD/CAM/PDM;
- ✓ универсальная система трёхмерного проектирования КОМПАС-3D;
- ✓ автоматизированная система разработки и оформления конструкторской и проектной документации – КОМПАС-График;
- ✓ система автоматизированного проектирования технологических процессов **ВЕРТИКАЛЬ**;
- ✓ программная платформа для создания информационной системы управления данными об изделии **ЛОЦМАН:PLM:**
 - управление хранением данных и документов;
 - управление структурой и конфигурациями изделия;
 - > управление коммуникациями и обмен сообщениями;
 - интеграция с САПР и другими программами-инструментами;
 - календарное планирование и управление проектами;
 - > управление процессами (WorkFlow);
 - формирование отчетов.

ЛОЦМАН:PLM

Компания АСКОН

ПРИКЛАДНЫЕ МОДУЛИ

ПОЦМАН:РІМ ИЗВЕЩЕНИЯ
ПОЦМАН:РІМ АРХИВ
ПОЦМАН:РІМ ТЕХНОЛОГИЯ

ЛОЦМАН:РЕМ ИМПОРТ-ЭКСПОРТ ЛОЦМАН:РЕМ ОБМЕН ДАННЫМИ

Решения комплексной автоматизации компании CSoft Development (Москва)

CSoft Development (ранее – Consistent Software Development) – ведущий разработчик программного обеспечения для рынка САПР в области машиностроения, промышленного и гражданского строительства, архитектурного проектирования, землеустройства и ГИС, электронного документооборота, обработки сканированных чертежей, векторизации и гибридного редактирования.

Разработки на базе 2D- и 3D-технологий — TechnologiCS, TDMS, Project StudioCS, Model Studio CS, GeoniCS обеспечивают:

- ✓ автоматизацию процессов проектирования и производства;
- ✓ повышение конкурентоспособности и культуры производства;
- ✓ освоение новейших методик проектирования;
- ✓ решение задач в области САПР на самом высоком уровне и с учетом российских реалий.

Решения комплексной автоматизации компании Компания ИНТЕРМЕХ (Белоруссия)

Компания ИНТЕРМЕХ предоставляет полный спектр программных продуктов для комплексной автоматизации конструкторского проектирования и технологической подготовки производства.

PLM – CAD/CAPP/TDM/PDM/PLM/WorkFlow:

- ✓ Единое информационное пространство для всех служб предприятия Search, IMBase, IMH.
- ✓ Повышение эффективности коллективной работы в рамках холдингов и корпораций <u>IPS WebPortal</u>, <u>IMProject.</u>
- ✓ Повышение производительности и качества конструкторского проектирования <u>Cadmech</u> для <u>Inventor</u>, <u>Creo (Pro/Engineer)</u>, <u>Solid Edge</u>, <u>SOLIDWORKS</u>, NX, AutoCAD, BricsCAD, <u>AVS</u>.
- ✓ У скорение цикла технологической подготовки производства <u>TECHCARD</u>, <u>LCAD</u>.
- ✓ Обмен данными с различными MRP/ERP системами (Галактика, 1С:УПП, ИС-Про и др.) экспорт/импорт XML.

Решения комплексной автоматизации компании Компания ИНТЕРМЕХ (Белоруссия)

Программный комплекс ИНТЕРМЕХ

Ведущие мировые и российские разработчики РЬМ-систем

17 21 22 22 22 22 22 22	Класс решения	Компоненты PLM-системы				
Компания		CAD	CAM	CAE	PDM	
Dassault Systemes Франция	Тяжелые	Catia			Enovia, Smarteam	
	Средние	Solid Works	CAMWorks	Cosmos	PDM Works	
SPLMS (UGS) США	Тяжелые	Unigraphics/NX			Teamcenter	
	Средние	Solid Edge	NX CAM Express	Femap	Teamcenter Express	
РТС США	Тяжелые	Pro/Engineer Wildfire			Windchill	
Autodesk США	Средние	Inventor	; :=	Simulation Suit	Vault/Productstream/Buzzsaw	
Аскон Россия	Средние	Компас 3D	12	-	Лоцман:PLM	
Топ Системы Россия	Средние	T-FLEX CAD 3D	T-FLEX ЧПУ	T-FLEX Анализ	T-FLEX DOCs	

Методология интегрированной логистической поддержки (ИЛП)

Интегрированная логистическая поддержка –

Поддерживаемость изделия –

Ключевые виды деятельности ИЛП:

- ✓ анализ логистической поддержки;
- ✓ планирование и управление техническим обслуживанием и ремонтом (ТОиР) изделия;
- ✓ планирование и управление материально-техническим обеспечением (МТО);
- ✓ разработку и сопровождение эксплуатационной и ремонтной документации.

Методология ИЛП

Периферийные виды деятельности ИЛП:

- ✓ обеспечение заказчика специальным, вспомогательным и измерительным оборудованием, необходимым для эксплуатации, обслуживания и ремонта изделия;
- ✓ планирование и организацию обучения персонала, в том числе разработку технических средств обучения;
- ✓ поддержка программного обеспечения и вычислительных средств;
- ✓ планирование и организацию процессов упаковывания, погрузки/разгрузки, хранения, транспортировки изделия;
- ✓ разработка инфраструктуры системы технической эксплуатации;
- ✓ мониторинг технического состояния изделия и процессов эксплуатации и технического обслуживания.
- ✓ планирование и организация процессов утилизации изделия и его составных частей.

Схема интегрированной логистической поддержки продукции

Анализ логистической поддержки (АЛП) -

Этапы анализа логистической поддержки:

- ✓ анализ и определение сценариев использования изделия по назначению;
- ✓ формирование специализированных составов изделия (логистического и функционального);
- ✓ проведение анализа видов, последствий и критичности отказов;
- ✓ разработка процессов технического обслуживания и ремонта изделия (ТОиР);
- ✓ определение рациональной периодичности ТОиР;
- ✓ определение потребности в материалах, запасных частях, специальном оборудовании и инструменте;
- ✓ оценка затрат, связанных с эксплуатацией и ремонтом;
- ✓ разработка эксплуатационных документов.

Схема анализа логистической поддержки изделий

Результат АЛП – модель системы эксплуатации с оптимальным соотношением затрат, необходимых для обеспечения заданного уровня готовности изделия

Управление информационным пространством ИЛП

Состав классов систем информационного пространства ИЛП:

- ✓ PLM (Product Lifecycle Management) и (Computer Aided Design) CADсистемы;
- ✓ системы для проведения АЛП (Анализ логистической поддержки);
- ✓ системы управления стоимостью изделия;
- ✓ системы класса PMS (Project Management System);
- ✓ системы управления требованиями;
- ✓ системы класса ERP (Enterprise Resource Planning);
- ✓ системы класса MRO (Maintenance, Repair and Overhaul);
- ✓ системы класса MPM (Manufacturing Process Management);
- ✓ системы класса HR (Human Resources Management);
- ✓ системы класса ECM (Enterprise Content Management);
- ✓ системы класса LMS (Learning Management System);
- ✓ системы сбора и анализа данных об изделии, его эксплуатации и техническом обслуживании.

Спецификации ASD S1000D, AECMA 2000М

Стандарты

ASD 2000M. i.4, ASD S3000L i.0.1, ASD S4000M i.0.1

DSTAN

Стандарты серии DEF STAN 00-60

Стандарты MIL-PRF-49506 MIL-HDBK-502 ГОСТ РВ 15.7XX Обеспечение эксплуатации и ремонта

ГОСТ Р 51901. АВПКО. Надежность изделий ГОСТ Р 53392, ГОСТ Р 53393, ГОСТ Р 53394. ИЛП

ГОСТ Р 54087, ГОСТ Р 54088, ГОСТ Р 54089, ГОСТ Р 54090. ИЛП Базовые документы интегрированной логистической поддержки

БАЗОВЫЕ ДОКУМЕНТЫ

Роль и место послепродажного обслуживания в ЖЦ изделий

необходимость иметь систему технической поддержки (ИЛП) для наукоемких, высокотехнологичных систем длительного пользования признана важнейшим элементом для успешного осуществления бизнеса

Реализация систем логистической поддержки изделий:

- ✓ В качестве базовых подсистем/модулей корпоративных информационных систем (КИС), поддерживающих отдельно логистику (MRP I, DRP II и т.д.);
- ✓ В качестве подсистем/модулей MRP I, DRP I, DRP II интегрировались в стандартные подсистемы (модули или контуры) «Логистика» и SCM в КИС класса MRPII/ERP/ERPII/CSRP-систем.
- ✓ В качестве отдельных (разнесенных) функций логистики между подсистемами КИС, реализующие идеологию систем ERP/CSRP, например модулей:
 - Управление материальными потоками ММ» и «Продажа, отгрузка, фактурирование – SD» в базовой системе SAP R/3 (компании SAP AG);
 - «Производство», «Транспорт», «Сбыт, снабжение, склады» в системе ВААN IV (компании Ваап);
 - «Управление материальными потоками снабжение и сбыт»,
 «Управление производством» в системе Oracle Applications
 (корпорации Oracle) и т.п.

Реализация систем интегрированной логистической поддержки изделий

✓ чаще в качестве встраиваемого в КИС модуля SCM (Supply Chain Management, управления цепочками поставок), например решения: SAP AG:

- > mySAP SCM;
- > mySAPAPO;
- mySAP Business Suite;
- > mySAP All-in-One.
- ✓ Microsoft Business Solution:
 - > KUC AXAPTA;
 - КИС Navision;
- ✓ i2 CIS:
 - > 2_SCM;
- ✓ в качестве APS (Advanced Planning and Scheduling) оптимизированное производственное планирование ресурсов предприятия по 3-м уровням:
 - ERP для объёмно-календарного планирования;
 - APS для формирования производственного расписания в масштабах всего предприятия;
 - МЕЅ для создания оперативного плана производства по цехам.

Реализация систем интегрированной логистической поддержки

	Класс ИС	ИС (вендор)		
1.	PLM система	Teamcenter (Siemens PLM Sof	tware)	
2.	CAD система	NX (Siemens PLM Software)	Пример сос	тава ЕИП ИЛ
3.	Система для проведения АЛП	RAM Commander (A.L.D.) FRACAS FavoWeb (A.L.D.)		LM Software
4.	Система управления стоимостью изделия	D-LCC (A.L.D.)	•	дприятия ной отрасли
5.	PMS система	Oracle Primavera (Oracle) + Teamcenter (Siemens PLM Sof		•
6.	Система управления требованиями	IBM Rational DOORS (IBM) + Teamcenter (Siemens PLM Sof	tware)	
7.	ERP система Oracle E-Business Suite ERP (Oracle)		Oracle)	
8.	MRO система	Oracle cMRO (Oracle) + Temcenter (Siemens PLM Software)		
9.	MPM система Tecnomatix (Siemens PLM Software) + Temcenter (Siemens PLM Software)			
10.	HR система	Oracle Управление персонал	ом (Oracle)	
11.	ЕСМ система	Teamcenter (Siemens PLM Sof Cortona3D Rapid AuthorS (Par Graphics)		
12.	LMS система	Moodle (Moodle) + Oracle Управление персонал	ом (Oracle)	
13.	Система сбора и анализа данных об изделии, его эксплуатации и техническом обслуживании.	Специализированные систе изделия	иы для	37

Интегрированные логистические решения НИЦ «Прикладная Логистика» (Россия)

Logistic Support Analysis Suite (LSA Suite, LSS) реализует полный цикл процедур анализа логистической поддержки (АЛП):

- ✓ проведение функционального анализа;
- ✓ создание логистической структуры изделия;
- ✓ проведение анализов видов, последствий и критичности отказов;
- ✓ разработка программы планового технического обслуживания;
- ✓ описание технологических процессов обслуживания;
- ✓ расчет потребности в запасных частях;
- ✓ расчет прямых затрат на техническое обслуживание.

Интегрированные логистические решения НИЦ «Прикладная Логистика» (Россия)

Система ILS Suite (Integrated Logistic Support Suite) предназначена для решения задач мониторинга технического состояния сложных машиностроительных изделий в ходе их испытаний и эксплуатации:

- ✓ оперативный Web мониторинг технического состояния парка техники;
- ✓ учет и анализ происшествий, связанных с безопасностью в эксплуатации;
- ✓ учет фактов эксплуатации и наработки изделия;
- ✓ учет отказов и повреждений и их последствий, расчет показателей надежности;
- ✓ автоматизация рекламационной работы для представителей выездных/гарантийных бригад;
- ✓ формирование сводной отчетности по качеству;
- ✓ отслеживание истории эксплуатации изделия и его комплектующих;
- ✓ учет выполнения бюллетеней;
- ✓ расчет параметров МТО.

Интегрированные логистические решения НИЦ «Прикладная Логистика» (Россия)

Система ATLAS является является частью системы интегрированной логистической поддержки (ИЛП) изделий авиационной техники. Функциональность системы обеспечивает получение от эксплуатантов (авиакомпаний) данных о ходе эксплуатации воздушных судов (ВС), их накопление, обработку и анализ, с тем, чтобы обеспечить непрерывный мониторинг состояния эксплуатируемых изделий и обеспечить высокий уровень безопасности.

Система ATLAS состоит из следующих разделов:

- ✓ Комплектность
- ✓ Эксплуатация
- ✓ Учет неисправностей
- ✓ Журнал заданий
- ✓ Учет изделий
- ✓ Настройка типов воздушных судов
- ✓ Анализ надежности
- ✓ Настройка пользователей

Интегрированные логистические решения компании «Иторум» (Россия)

Комплекс ПО для решения задач ИЛП Компании «Иторум» включает:

- ✓ систему управления данными об изделии на базе PDM/PLM;
- ✓ модуль для решения задач анализа логистической поддержки на основе Logistic Support Analysis Suite (LSS) или Integrated Logistic Support Suite (ILS);
- ✓ модуль разработки и поставки пользователям эксплуатационной и ремонтной документации, включающий Technical Guide Builder (TGB), Technical Guide WebServer (TG WebServer), CorelDRAW Technical Suite;
- ✓ модуль сбора и анализа информации о результатах эксплуатации и ремонта изделий на базе или Integrated Logistic Support Suite (ILS).

Интегрированные логистические решения фирмы Би Питрон (Россия)

RAM Commander – это система методологии RAMS (Reliability Availability Maintenance Safety – безотказность, готовность, ремонтопригодность, безопасность), программный комплекс технических и математических инструментов, охватывающих весь спектр задач оценки уровня надежности инженерной системы.

Основанный на вероятностных расчетах, сложный математический аппарат RAM Commander реализуется в максимально понятные формы и позволяет провести необходимые расчеты и получить практические характеристики, необходимые для совершенствования современной продукции.