Chapitre 6 : Les polynômes formels à une indéterminée à coefficients dans un corps **K**.

Dans ce chapitre, (K,+,×) désigne un corps (commutatif) quelconque.

I La construction

A) Etape 1

- Soit $P_{\mathbb{K}}$ l'ensemble des suites d'éléments de \mathbb{K} , indexées pas \mathbb{N} et nulles à partir d'un certain rang.

C'est-à-dire que $P_{\mathbb{K}}$ est l'ensemble des $a \in \mathbb{K}^{\mathbb{N}}$ telles que $\exists N \in \mathbb{N}, \forall n > N, a_k = 0_{\mathbb{K}}$

- On peut définir deux lois + et \times de la manière suivante :

Pour tous
$$P = (a_i)_{i \in \mathbb{N}}, Q = (b_i)_{i \in \mathbb{N}} \in P_{\mathbb{K}}$$
, on pose :

$$P+Q=(a_i+b_i)_{i\in\mathbb{N}}$$

et
$$P \times Q = (p_k)_{k \in \mathbb{N}}$$
 où $\forall k \in \mathbb{N}, p_k = \sum_{i+j=k} a_i b_j = \sum_{i=0}^k a_i b_{k-i}$

Alors:

- + et × constituent des lois de composition internes sur $P_{\mathbb{K}}$, et $(P_{\mathbb{K}},+,\times)$ est un anneau commutatif.
 - Déjà, + est bien une loi de composition interne sur P_{κ} .

En effet, si $P=(a_i)_{i\in\mathbb{N}}$ et $Q=(b_i)_{i\in\mathbb{N}}\in P_\mathbb{K}$, alors il existe $n\in\mathbb{N}$ tel que $\forall i>n, a_i=0_\mathbb{K}$ et $m\in\mathbb{N}$ tel que $\forall i>m, b_i=0_\mathbb{K}$. Donc $\forall i>\max(n,m), a_i+b_i=0_\mathbb{K}$. Donc P+Q est nulle à partir d'un certain rang, donc $P+Q\in P_\mathbb{K}$.

- Montrons que \times est une loi de composition interne sur $P_{\mathbb{K}}$.

Soient $P = (a_i)_{i \in \mathbb{N}}, Q = (b_i)_{i \in \mathbb{N}} \in P_{\mathbb{K}}, n \in \mathbb{N}$ tel que $\forall i > n, a_i = 0_{\mathbb{K}}$ et $m \in \mathbb{N}$ tel que $\forall i > m, b_i = 0_{\mathbb{K}}$. Notons enfin $P \times Q = (p_k)_{k \in \mathbb{N}}$

Alors
$$\forall k > n + m$$
, $p_k = 0_{\mathbb{K}}$. En effet :

Soit k > n + m. Alors pour tout $(i, j) \in \mathbb{N}^2$:

Si
$$i + j = k$$
, alors $i > m$ ou $j > n$

(car sinon $j \le n$ et $i \le m$, et alors $i + j \le m + n < k$)

Donc
$$a_i = 0_{\mathbb{K}}$$
 ou $b_j = 0_{\mathbb{K}}$, soit $a_i b_j = 0_{\mathbb{K}}$

Donc
$$p_k = \sum_{i+j=k} a_i b_j = 0_{\mathbb{K}}$$
.

Donc $P \times Q \in P_{\mathbb{K}}$.

- + n'est autre que la restriction à $P_{\mathbb{K}}$ de la loi + sur $\mathbb{K}^{\mathbb{N}}$.

Donc + est associative et commutative.

De plus, la suite $(0_{\mathbb{K}})_{k\in\mathbb{N}}$ est évidemment neutre pour + et appartient à $P_{\mathbb{K}}$.

Et enfin, si
$$P = (a_i)_{i \in \mathbb{N}} \in P_{\mathbb{K}}$$
, alors $Q = (-a_i)_{i \in \mathbb{N}} \in P_{\mathbb{K}}$ et $P + Q = (0_{\mathbb{K}})_{k \in \mathbb{N}}$.

Pour × :

× est évidemment commutative (car × est commutative sur le corps ℜ)

Il existe un neutre pour \times , c'est $U = (1_{\mathbb{K}}, 0_{\mathbb{K}}, 0_{\mathbb{K}}...)$

En effet : notons $U = (u_i)_{i \in \mathbb{N}}$ avec $u_0 = 1_{\mathbb{K}}$ et $\forall i \ge 1, u_i = 0_{\mathbb{K}}$.

Soit alors $P = (a_i)_{i \in \mathbb{N}} \in P_{\mathbb{K}}$.

Alors
$$PU = (p_k)_{k \in \mathbb{N}}$$
, où $p_k = \sum_{i+j=k} a_i u_j = a_k u_0 = a_k \times 1_{\mathbb{K}} = a_k$

Donc PU = P, et par commutativité UP = P, donc U est bien neutre pour \times . Distributivité de \times sur +:

Soient $P = (a_i)_{i \in \mathbb{N}}, Q = (b_i)_{i \in \mathbb{N}}, R = (c_i)_{i \in \mathbb{N}} \in P_{\mathbb{K}}$. Alors:

 $P \times (Q + R) = (p_k)_{k \in \mathbb{N}}$, où, pour tout $k \in \mathbb{N}$:

$$p_k = \sum_{i+j=k} a_i(b_j + c_j) \underset{\text{distributivité ans le corns } \mathbb{K}}{\overset{\text{distributivité }}{\uparrow}} \sum_{i+j=k} a_i b_j + a_i c_j \underset{\text{commutativité de + dans } \mathbb{K}}{\overset{\text{associativité, }}{\uparrow}} \sum_{i+j=k} a_i b_j + \sum_{i+j=k} a_i c_j$$

Et $P \times Q + P \times R = (q_k)_{k \in \mathbb{N}}$, où, pour tout $k \in \mathbb{N}$:

$$q_k = \sum_{i+j=k} a_i b_j + \sum_{i+j=k} a_i c_j.$$

Donc $P \times (Q + R) = P \times Q + P \times R$

Et
$$(Q+R)\times P = P\times (Q+R) = P\times Q + P\times R = Q\times P + R\times P$$

Associativité de × :

Soient $P = (a_i)_{i \in \mathbb{N}}, Q = (b_i)_{i \in \mathbb{N}}, R = (c_i)_{i \in \mathbb{N}} \in P_{\mathbb{K}}$.

Alors
$$P \times Q = (p_k)_{k \in \mathbb{N}}$$
, où, pour tout $k \in \mathbb{N}$, $p_k = \sum_{i+j=k} a_i b_j$.

Et
$$(P \times Q) \times R = (q_l)_{l \in \mathbb{N}}$$
, où, pour tout $l \in \mathbb{N}$, $q_l = \sum_{k+s=l} p_k c_s$

Donc
$$q_l = \sum_{k+s=l} \left(\left(\sum_{i+j=k} a_i b_j \right) c_s \right) \underset{\text{distributivité}}{=} \sum_{k+s=l} \left(\sum_{i+j=k} a_i b_j c_s \right) \underset{\text{associativité et i } i+j+s=l}{=} \sum_{i+j+s=l} a_i b_j c_s$$

Par ailleurs, on a de même $P \times (Q \times R) = (r_l)_{l \in \mathbb{N}}$, où, pour tout $l \in \mathbb{N}$:

$$r_l = \sum_{i+j+s=l} a_i b_j c_s .$$

D'où $P \times (Q \times R) = (P \times Q) \times R$, et le résultat comme \times est commutative.

Donc $(P_{\mathbb{K}},+,\times)$ est bien un anneau commutatif.

B) Etape 2 : plongement de \mathbb{K} dans $P_{\mathbb{K}}$.

Soit
$$\phi$$
: $\overline{\mathbb{K}} \to P_{\overline{\mathbb{K}}}$
 $\lambda \mapsto \phi(\lambda) = (\lambda, 0_{\mathbb{K}}, 0_{\mathbb{K}}, \dots)$ noté $\hat{\lambda}$

Alors ϕ est un morphisme injectif d'anneaux :

•
$$\phi(\lambda + \mu) = (\lambda + \mu, 0_{\bar{\kappa}}, 0_{\bar{\kappa}}...) = (\lambda, 0_{\bar{\kappa}}, 0_{\bar{\kappa}}...) + (\mu, 0_{\bar{\kappa}}, 0_{\bar{\kappa}}...) = \phi(\lambda) + \phi(\mu)$$

•
$$\phi(\lambda \mu) = (\lambda \mu, 0_{\kappa}, 0_{\kappa}...) = (\lambda, 0_{\kappa}, 0_{\kappa}...)(\mu, 0_{\kappa}, 0_{\kappa}...) = \phi(\lambda)\phi(\mu)$$

Justification de la deuxième égalité :

$$\underbrace{(\lambda, 0_{\mathbb{K}}, 0_{\mathbb{K}}...)}_{(a_i)_{i\in\mathbb{N}}}\underbrace{(\mu, 0_{\mathbb{K}}, 0_{\mathbb{K}}...)}_{(b_i)_{i\in\mathbb{N}}} = (c_k)_{k\in\mathbb{N}}$$

avec
$$c_k = \sum_{i+j=k} a_i b_j$$
.

Donc $c_k = a_0 b_0 = \lambda \mu$ si k = 0 et $c_k = 0_{\mathbb{K}}$ sinon.

- $\phi(1_{\mathbb{K}}) = (1_{\mathbb{K}}, 0_{\mathbb{K}}, 0_{\mathbb{K}}, \dots) = 1_{P_{\mathbb{K}}}$
- Enfin, si $(\lambda, 0_{\pi}, 0_{\pi}...) = (\mu, 0_{\pi}, 0_{\pi}...)$, alors évidemment $\lambda = \mu$

Par conséquent, $\phi(\mathbb{K})$ est un sous anneau de $P_{\mathbb{K}}$, isomorphe à l'anneau $(\mathbb{K},+,\times)$.

(On dit qu'« il y a une copie de $\mathbb K$ dans $P_{\mathbb K}$ ») On va identifier cette copie à $\mathbb K$, c'est-à-dire identifier, pour chaque $\lambda \in \mathbb K$, λ et $\hat{\lambda}$.

Ainsi, pour $\lambda, \mu \in \mathbb{K}$ et $P, Q \in P_{\mathbb{K}}$ (avec $\hat{\lambda} = (u_i)_{i \in \mathbb{N}}, P = (a_i)_{i \in \mathbb{N}}$):

•
$$\lambda P = \hat{\lambda} P = (\lambda, 0_{\mathbb{K}}, 0_{\mathbb{K}}, \dots) P = (c_k)_{k \in \mathbb{N}}$$
 où $c_k = \sum_{i+j=k} u_i a_j = \lambda a_k$

Donc $\lambda P = (\lambda a_0, \lambda a_1, \lambda a_2, ...) = (\lambda a_i)_{i \in \mathbb{N}}$

- $(\lambda + \mu)P = \lambda P + \mu P$
- $\lambda(P+Q) = \lambda P + \lambda Q$
- $(\lambda \mu)P = \lambda(\mu P)$
- $1_{\mathbb{K}} \times P = \hat{1}_{\mathbb{K}} \times P = 1_{P_{\mathbb{K}}} \times P = P$

Les éléments de K seront appelés des scalaires.

C) Etape 3 : introduction de l'indéterminée

Soit X l'élément de $P_{\mathbb{K}}$ défini par :

$$X=(0_{\mathbb{K}},1_{\mathbb{K}},0_{\mathbb{K}},0_{\mathbb{K}},\ldots)$$

C'est-à-dire
$$X = (\delta_i)_{i \in \mathbb{N}}$$
 où $\delta_1 = 1_{\mathbb{K}}$ et $\forall k \in \mathbb{N} \setminus \{1\}, \delta_k = 0_{\mathbb{K}}$

Alors
$$\forall k \in \mathbb{N}, X^k = (u_i^{(k)})_{i \in \mathbb{N}}$$
 où $u_k^{(k)} = 1_{\mathbb{K}}$ et $\forall i \in \mathbb{N} \setminus \{k\}, u_i^{(k)} = 0_{\mathbb{K}}$

Démonstration : par récurrence sur k.

Pour
$$k = 0$$
: $X^0 = 1_{P_{\pi}} = (1_{\mathbb{K}}, 0_{\mathbb{K}}, 0_{\mathbb{K}}...)$

Soit
$$k \in \mathbb{N}$$
, supposons que $X^k = (u_i^{(k)})_{i \in \mathbb{N}}$ où $u_k^{(k)} = 1_{\mathbb{K}}$ et $\forall i \in \mathbb{N} \setminus \{k\}, u_i^{(k)} = 0_{\mathbb{K}}$

Alors
$$X^{k+1} = X^k X = (c_i)_{i \in \mathbb{N}}$$

Où
$$\forall i \in \mathbb{N}, c_i = \sum_{\alpha + \beta = i} u_{\alpha}^{(k)} \delta_{\beta} = \begin{cases} u_{i-1}^{(k)} \delta_1 & \text{si } i \neq 0 \\ u_0^{(k)} \delta_0 & = 0 & \text{si } i = 0 \end{cases}$$

Soit, pour
$$i \neq 0$$
, $c_i = u_{i-1}^{(k)} = \begin{cases} 0 \text{ si } i \neq k+1 \\ 1 \text{ si } i = k+1 \end{cases}$

Donc
$$X^{k+1} = (u_i^{(k+1)})_{i \in \mathbb{N}}$$

Théorème fondamental:

Soit $P \in P_{\mathbb{K}}$. Alors P s'écrit de manière unique sous la forme :

 $P = \sum_{k \in \mathbb{N}} a_k X^k$ où les a_k sont des scalaires, nuls à partir d'un certain rang.

Démonstration:

Soit $P \in P_{\mathbb{K}}$.

P s'écrit $P = (a_k)_{k \in \mathbb{N}}$, suit d'éléments de K nulle à partir d'un certain rang. disons à partir du rang n+1.

On a aussi:

$$P = (a_0, a_1, \dots a_n, 0_{\mathbb{K}}, 0_{\mathbb{K}} \dots)$$

$$= (a_0, 0_{\mathbb{K}}, 0_{\mathbb{K}} \dots) + (0_{\mathbb{K}}, a_1, 0_{\mathbb{K}}, 0_{\mathbb{K}} \dots) + \dots + (0_{\mathbb{K}}, 0_{\mathbb{K}}, \dots 0_{\mathbb{K}}, a_n, 0_{\mathbb{K}}, 0_{\mathbb{K}} \dots)$$

$$= a_0 (1_{\mathbb{K}}, 0_{\mathbb{K}}, 0_{\mathbb{K}} \dots) + a_1 (0_{\mathbb{K}}, 1_{\mathbb{K}}, 0_{\mathbb{K}}, 0_{\mathbb{K}} \dots) + \dots + a_n (0_{\mathbb{K}}, 0_{\mathbb{K}}, \dots 0_{\mathbb{K}}, 1_{\mathbb{K}}, 0_{\mathbb{K}}, 0_{\mathbb{K}} \dots)$$

$$= a_0 X^0 + a_1 X^1 + \dots + a_n X^n$$

D'où l'existence de P sous la forme $\sum a_k X^k$ où les a_k sont nuls à partir d'un certain rang.

• Unicité de l'écriture :

Si
$$\sum_{k \in \mathbb{N}} a_k X^k = \sum_{k \in \mathbb{N}} b_k X^k$$
, où les a_k et les b_k sont nuls à partir d'un certain rang.

Alors
$$(a_k)_{k \in \mathbb{N}} = \sum_{k \in \mathbb{N}} a_k X^k = \sum_{k \in \mathbb{N}} b_k X^k = (b_k)_{k \in \mathbb{N}}$$
.

Vocabulaire:

Les éléments de $P_{\mathbb{K}}$ seront toujours notés sous la forme $\sum a_k X^k$, où les a_k sont des éléments de K nuls à partir d'un certain rang (on oublie la forme $(a_k)_{k\in\mathbb{N}}$).

Ils sont appelés polynômes formels à une indéterminée à coefficients dans K.

- Le polynôme X est appelé l'indéterminée.
- L'ensemble $P_{\mathbb{K}}$ des polynômes à une indéterminée à coefficients dans \mathbb{K} est noté $\mathbb{K}[X]$.

D) Etape 4 : conclusion, récapitulation

• Tout $P \in \mathbb{K}[X]$ s'écrit de manière unique sous la forme $P = \sum_{k=1}^{n} a_k X^k$ où les a_k sont des éléments de \mathbb{K} nuls à partir d'un certain rang.

Ainsi,
$$\sum_{k \in \mathbb{N}} a_k X^k = \sum_{k \in \mathbb{N}} b_k X^k \Rightarrow \forall k \in \mathbb{N}, a_k = b_k$$

- (K[X],+,×) est un anneau, dont K est un sous anneau.
 Si P = ∑_{i∈N} a_iXⁱ, et Q = ∑_{i∈N} b_iXⁱ où les a_i sont nuls à partir du rang n+1 et les b_i à partir du rang m+1, alors :

$$P = \sum_{i=0}^{n} a_{i} X^{i}, \ Q = \sum_{i=0}^{m} b_{i} X^{i}$$

$$P + Q = \sum_{i=0}^{n} a_{i} X^{i} + \sum_{i=0}^{m} b_{i} X^{i} = \sum_{i=0}^{N} a_{i} X^{i} + b_{i} X^{i} = \sum_{i=0}^{N} (a_{i} + b_{i}) X^{i}, \text{ où } N = \max(n, m)$$

$$\begin{split} P \times Q &= \left(\sum_{i=0}^{n} a_{i} X^{i}\right) \left(\sum_{i=0}^{m} b_{i} X^{i}\right) = \sum_{\substack{i \in [[0,n]] \\ j \in [[0,m]]}} (a_{i} X^{i})(b_{j} X^{j}) = \sum_{\substack{i \in [[0,n]] \\ j \in [[0,m]]}} a_{i} b_{j} X^{i+j} \\ &= \sum_{k=0}^{n+m} \sum_{\substack{i \in [[0,n]], j \in [[0,m]] \\ i+j=k}} a_{i} b_{j} X^{i+j} = \sum_{k=0}^{n+m} \sum_{\substack{i \in [[0,n]], j \in [[0,m]] \\ i+j=k}} a_{i} b_{j} X^{k} = \sum_{k=0}^{n+m} c_{k} X^{k} \\ \text{Où } c_{k} &= \sum_{\substack{i+j=k}} a_{i} b_{j} \end{split}$$

II Degré

A) Définition

Soit $P \in \mathbb{K}[X]$, $P = \sum_{i \in \mathbb{N}} a_i X^i$ où les a_i sont des éléments de \mathbb{K} nuls à partir d'un certain rang.

- Si $P = 0_{\mathbb{K}[X]}$, c'est-à-dire $P = 0_{\mathbb{K}}$ ou P = 0. Alors $\forall i \in \mathbb{N}, a_i = 0_{\mathbb{K}}$. On dit alors que P est de degré $-\infty$
- Sinon, $P \neq 0_{\mathbb{K}[X]}$ et donc il existe $i \in \mathbb{N}$ tel que $a_i \neq 0_{\mathbb{K}}$. On peut alors introduire $n = \max\{i \in \mathbb{N}, a_i \neq 0_{\mathbb{K}}\}$ (puisque l'ensemble est non vide, et majoré car les a_i sont nuls à partir d'un certain rang). n est appelé le degré de P.

Ainsi:

Pour tout $P \in \mathbb{K}[X]$, deg $P \in \mathbb{N} \cup \{-\infty\}$, et on a l'équivalence :

$$P \neq 0_{\mathbb{K}[X]} \Leftrightarrow \deg P \in \mathbb{N}$$

Les polynômes de degré 0 sont exactement les $\lambda \in \mathbb{K} \setminus \{0_{\mathbb{K}}\}$

Les polynômes de degré 1 sont exactement les aX + b avec $a \neq 0$

Les polynômes de degré n sont exactement les $\sum_{i=0}^{n} a_i X^i$ avec $a_n \neq 0$.

Les polynômes de degré $\leq n$ sont exactement les $\sum_{i=0}^{n} a_i X^i$

L'ensemble de ces derniers est noté $\mathbb{K}_n[X]$; en particulier, $\mathbb{K}_0[X]$ n'est autre que \mathbb{K} , ensemble des polynômes constants.

B) Propriétés

Soient $P, Q \in \mathbb{K}[X]$ et $\lambda \in \mathbb{K}$. Alors:

- $\deg(P+Q) \le \max(\deg P, \deg Q)$
- $\deg(P \times Q) = \deg P + \deg Q$ $(\forall n \in \mathbb{N}, -\infty + n = -\infty, -\infty + (-\infty) = -\infty)$
- $\deg(\lambda P) = \begin{cases} \deg P & \text{si } \lambda \neq 0 \\ -\infty & \text{sinon} \end{cases}$
- $\forall m \in \mathbb{N}^*, \deg(P^m) = m \deg P \quad (\forall n \in \mathbb{N}^*, n \times (-\infty) = -\infty)$

Démonstration:

- Cas P = Q = 0 évident.

- Si P = 0 et $Q \neq 0$ (ou $P \neq 0$ et Q = 0), le résultat est immédiat aussi.
- Maintenant si $P \neq 0$ et $Q \neq 0$:

Notons $p = \deg P$ et $q = \deg Q$.

• On pose $n = \max(p, q)$.

On a
$$P = \sum_{i=0}^{n} a_i X^i$$
, et $Q = \sum_{i=0}^{n} b_i X^i$

Donc $P+Q = \sum_{i=0}^{n} (a_i + b_i) X^i$, donc $\deg(P+Q) \le n$

•
$$P \times Q = \left(\sum_{i=0}^{p} a_i X^i\right) \left(\sum_{i=0}^{q} b_i X^i\right)$$
 où $a_p \neq 0_{\mathbb{K}}$ et $b_q \neq 0_{\mathbb{K}}$

Donc $P \times Q = \underbrace{a_p b_q}_{q} X^{p+q} + \dots$

- $\lambda P = \sum_{i=0}^{p} \lambda a_i X^i \text{ avec } a_p \neq 0_{\mathbb{K}}$
- Résultat avec une récurrence immédiate sur *m*.

Vocabulaire:

- Si P est un polynôme de degré n, le terme $a_n X^n$ s'appelle le terme dominant de P et a_n le coefficient dominant de P.
- Par convention, le coefficient dominant du polynôme nul est 0.
- a_k s'appelle le coefficient de X^k , et $a_k X^k$ s'appelle le monôme/terme de degré k.
- Un polynôme P non nul est dit unitaire lorsque son coefficient dominant est 1.

III Début d'arithmétique dans $(\mathbb{K}[X],+,\times)$.

Théorème:

 $(\mathbb{K}[X],+,\times)$ est un anneau intègre.

Démonstration :

- Déjà, $(\mathbb{K}[X],+,\times)$ est commutatif et non réduit à $\{0_{\mathbb{K}}\}$.
- Soient maintenant $P, Q \in \mathbb{K}[X]$, supposons que $PQ = 0_{\mathbb{K}}$

Montrons qu'alors $P = 0_{\mathbb{K}}$ ou $Q = 0_{\mathbb{K}}$.

Supposons que non, c'est-à-dire que $P \neq 0_{\mathbb{K}}$ et $Q \neq 0_{\mathbb{K}}$.

Soient alors $p = \deg P, q = \deg Q$. Ainsi, $p, q \in \mathbb{N}$.

Alors
$$P = \sum_{i=0}^{p} a_i X^i$$
 et $Q = \sum_{i=0}^{q} b_i X^i$, avec $a_p \neq 0_{\mathbb{K}}$ et $b_q \neq 0_{\mathbb{K}}$

Mais alors le coefficient de X^{p+q} est $a_p b_q \neq 0_{\mathbb{K}}$, donc $PQ \neq 0_{\mathbb{K}}$, ce qui est exclu.

Autre démonstration :

 $\deg(PQ) = \deg P + \deg Q$, et si $\deg P + \deg Q = -\infty$, alors forcément soit $\deg Q = -\infty$, soit $\deg P = -\infty$.

Chapitre 6 : Les polynômes formels à une indéterminée à coefficients dans un corps K Algèbre et géométrie Page 6 sur 9

Théorème:

Les éléments inversibles de $(\mathbb{K}[X],+,\times)$ sont exactement les éléments de $\mathbb{K}\setminus\{0_{\mathbb{K}}\}$.

Démonstration :

• Soit $P \in \mathbb{K}[X]$. Si P est inversible, alors il existe $Q \in \mathbb{K}[X]$ tel que $PQ = 1_{\mathbb{K}}$. Alors $\deg P + \deg Q = 0$. Or, $\deg P, \deg Q \in \mathbb{N} \cup \{-\infty\}$.

Donc $\deg P = \deg Q = 0$

• Réciproquement, si $P = \lambda \in \mathbb{K} \setminus \{0_{\mathbb{K}}\}$, alors λ admet un inverse λ^{-1} . Donc $Q = \lambda^{-1}$ est inverse de P.

Définition:

Soient $P,Q \in \mathbb{K}[X]$. On dit que P est multiple de Q ou que Q est un diviseur de P lorsqu'il existe $S \in \mathbb{K}[X]$ tel que P = QS.

Définition:

Soient $P, Q \in \mathbb{K}[X]$. On dit que P et Q sont associés lorsque P divise Q et Q divise P (ce qui équivaut à dire qu'il existe $\lambda \in \mathbb{K} \setminus \{0_{\mathbb{K}}\}$ tel que $Q = \lambda P$)

Démonstration de la parenthèse :

- Si $Q = \lambda P$ avec $\lambda \in \mathbb{K} \setminus \{0_{\mathbb{K}}\}$ alors P divise Q et aussi $Q = \lambda^{-1}P$ donc Q divise P.
- Si P divise Q et Q divise P alors il existe $S, S' \in \mathbb{K}[X]$ tels que Q = PS et P = QS'. Donc Q = QSS'. Donc $Q(1_{\mathbb{K}} SS') = 0_{\mathbb{K}}$, d'où, comme $\mathbb{K}[X]$ est intègre, soit $Q = 0_{\mathbb{K}}$ soit $SS' = 1_{\mathbb{K}}$.
 - Si $Q = 0_{\mathbb{K}}$, alors $P = 0_{\mathbb{K}}$ car Q divise P donc il existe $R \in \mathbb{K}[X]$ tel que $P = QS = 0_{\mathbb{K}}$.
 - Si $SS' = 1_{\mathbb{K}}$, alors S est inversible, donc $S = \lambda \in \mathbb{K} \setminus \{0_{\mathbb{K}}\}$, donc $Q = \lambda P$.

A) Division euclidienne dans $\mathbb{K}[X]$.

Théorème:

Soient $A, B \in \mathbb{K}[X]$, avec $B \neq 0_{\mathbb{K}}$.

Alors il existe un unique couple (Q, R) d'éléments de $\mathbb{K}[X]$ tels que A = BQ + R et $\deg(R) < \deg(B)$.

On dit que Q est le quotient dans la division euclidienne de A par B et que R est le reste dans la division euclidienne de A par B.

Démonstration:

• Unicité:

Si A = BQ + R, avec deg(R) < deg(B)

Et A = BQ' + R', avec deg(R') < deg(B),

Alors B(Q-Q') = R'-R. Donc $\deg(B) + \deg(Q-Q') = \underbrace{\deg(R'-R)}_{\leq \max(\deg R, \deg R')}$

Ainsi, $\deg(B) + \deg(Q - Q') < \deg(B)$, donc $\deg(Q - Q') \notin \mathbb{N}$. Donc Q - Q' = 0.

Donc $B \times 0_{\mathbb{K}} = R' - R$, soit R' = R.

D'où l'unicité.

• Existence:

Soit $B \in \mathbb{K}[X] \setminus \{0_{\mathbb{K}}\}$, de degré $p \in \mathbb{N}$ et de coefficient dominant b_n .

Montrons par récurrence que $\forall n \in \mathbb{N}, P(n)$, où :

$$P(n) = \forall A \in \mathbb{K}_n[X], \exists (Q, R) \in \mathbb{K}[X]^2, A = BQ + R \text{ et deg } R < p$$

- Déjà, P(0) est vrai, puisque si deg $A \le 0$, on a :
 - o Soit $p \ge 1$, et alors $A = 0_{\pi} \times B + A$, donc $(0_{\pi}, A)$ convient.
 - o Soit p=0, et donc $B=b \in \mathbb{K} \setminus \{0_{\mathbb{K}}\}$ et donc $A=b(b^{-1}A)+0_{\mathbb{K}}$, donc le couple $(b^{-1}A, 0_{\mathbb{K}})$ convient.
- Soit $n \in \mathbb{N}$, supposons P(n). Soit alors A de degré $\leq n+1$.

Alors
$$A$$
 s'écrit $A = \underbrace{a_{n+1}}_{\in \mathbb{R}} X^{n+1} + \underbrace{a_n X^n + \ldots + a_0 X^0}_{A_1 \text{ où deg } A_1 \leq n}$.

Supposons $p \le n+1$ (dans le cas contraire, $A = 0_{\mathbb{K}} \times B + A$ et $(0_{\mathbb{K}}, A)$ convient) On peut donc écrire :

Donc
$$A = a_{n+1}b_p^{-1}X^{n+1-p}\underbrace{(b_pX^p + B_1)}_{B} - a_{n+1}b_p^{-1}X^{n+1-p}\underbrace{B_1}_{\deg B_1 < p} + A_1$$

$$\underbrace{A = a_{n+1}b_p^{-1}X^{n+1-p}}_{a_{n+1}X^{n+1}} \underbrace{B_1}_{\deg A_2 < p} + A_1$$

$$\underbrace{A = a_{n+1}b_p^{-1}X^{n+1-p}B}_{A_2,\deg A_2 \le n} + A_1$$

Donc
$$A = a_{n+1}b_p^{-1}X^{n+1-p}B + \underbrace{(A_1 - a_{n+1}b_p^{-1}X^{n+1-p}B_1)}_{A_1, \deg A_1 \le n}$$

Or, $\deg A_2 \le n$. Donc $A_2 = BQ_1 + R_1$ avec $(Q_1, R_1) \in \mathbb{K}[X]^2$ et $\deg(R_1) < p$.

Donc
$$A = (a_{n+1}b_p^{-1}X^{n+1-p} + Q_1)B + R_1$$
.

Exemple:

$$A = X^5 + 2X^3 - 2X - 2$$
 $B = X^2 + 1$

$$A = X^{3}(X^{2} + 1) - X^{3} + 2X^{3} - 2X - 2 = X^{3}B + X^{3} - 2X - 2$$

$$= X^{3}B + X(X^{2} + 1) - X - 2X - 2 = (X^{3} + X)B - 3X - 2$$

IV Substitution d'un polynôme à l'indéterminée

A) Définition, propriétés

Soit $P \in \mathbb{K}[X]$. P s'écrit $P = \sum_{k=1}^{n} a_k X^k$ où les a_k sont nuls à partir d'un certain

rang, disons
$$n+1$$
. Donc $P = \sum_{k=0}^{n} a_k X^k$

Soit
$$Q \in \mathbb{K}[X]$$
.

On note
$$\hat{P}(Q) = \sum_{k \in \mathbb{N}} a_k Q^k$$
, soit $\hat{P}(Q) = \sum_{k=0}^n a_k Q^k$

Théorème:

Soient $P_1, P_2 \in \mathbb{K}[X]$ et $Q \in \mathbb{K}[X]$, $\lambda \in \mathbb{K}[X]$. Alors:

$$(P_1 + P_2)(Q) = \hat{P}_1(Q) + \hat{P}_2(Q)$$

$$(P_1 \times P_2)(Q) = \hat{P}_1(Q) \times \hat{P}_2(Q)$$

$$\hat{\lambda}(Q) = \lambda$$

Démonstration:

Soient
$$P_1 = \sum_{k \in \mathbb{N}} a_k X^k$$
, $P_2 = \sum_{k \in \mathbb{N}} b_k X^k$.

On introduit $n \in \mathbb{N}$ tel que $\deg P_1 \le n$ et $\deg P_2 \le n$. On a alors :

•
$$P_1 + P_2 = \sum_{k=0}^{n} (a_k + b_k) X^k$$

Donc
$$\hat{P}_1(Q) + \hat{P}_2(Q) = \sum_{k=0}^n a_k Q^k + \sum_{k=0}^n b_k Q^k = \sum_{k=0}^n (a_k + b_k) Q^k = (P_1 + P_2)(Q)$$

•
$$P_1 \times P_2 = \sum_{k=0}^{2n} c_k X^k$$
 où $c_k = \sum_{i+j=k} a_i b_j$

et
$$\hat{P}_1(Q) \times \hat{P}_2(Q) = \left(\sum_{k=0}^n a_k Q^k\right) \left(\sum_{k=0}^n b_k Q^k\right) = \sum_{0 \le i, j \le n} a_i b_j Q^{i+j} = \sum_{k=0}^{2n} \sum_{i+j=k} a_i b_j Q^k = \sum_{k=0}^{2n} c_k Q^k$$

•
$$\hat{\lambda}(Q) = \hat{\lambda}.\hat{X}^{0}(Q) = \lambda.Q^{0} = \lambda$$

Remarque:

Le théorème s'énonce aussi ainsi :

Pour tout $Q \in \mathbb{K}[X]$, l'application $\mathbb{K}[X] \to \mathbb{K}[X]$ est un endomorphisme de $P \mapsto \hat{P}(Q)$

l'anneau ($\mathbb{K}[X],+,\times$) (mais ni injectif ni surjectif).

Remarque:

Pour $Q \notin \mathbb{K}_0[X]$ et si \mathbb{K} est un sous corps de \mathbb{C} , $P \mapsto \hat{P}(Q)$ est injective.

B) Polynômes pairs, impairs

On suppose ici que $1_{\mathbb{K}} + 1_{\mathbb{K}} \neq 0_{\mathbb{K}}$ (c'est-à-dire que $1_{\mathbb{K}}$ n'est pas un élément d'ordre 2 du groupe $(\mathbb{K}_{+}+)$)

Définition:

Soit $P \in \mathbb{K}[X]$

On dit que P est pair lorsque P(-X) = P(X) (= P)

On dit que *P* est impair lorsque P(-X) = -P(X) (= -P)

Proposition:

P est pair si et seulement si $\forall k \in \mathbb{N}, a_{2k+1} = 0_{\mathbb{K}}$

P est impair si et seulement si $\forall k \in \mathbb{N}, a_{2k} = 0_{\mathbb{K}}$

Démonstration:

$$P(-X) = \sum_{k \in \mathbb{N}} (-1)^k a_k X^k$$
.

Donc P est pair $\Leftrightarrow \forall k \in \mathbb{N}, (-1)^k a_k = a_k \Leftrightarrow \forall i \in \mathbb{N}, -a_{2i+1} = a_{2i+1}$

$$\Leftrightarrow \forall i \in \mathbb{N}, 2.a_{2i+1} = 0_{\mathbb{K}}$$

Or, $2.a_{2i+1} = a_{2i+1} + a_{2i+1} = (1_{\mathbb{K}} + 1_{\mathbb{K}})a_{2i+1}$. On a supposé que $1_{\mathbb{K}} + 1_{\mathbb{K}} \neq 0_{\mathbb{K}}$.

Donc $\forall i \in \mathbb{N}, 2.a_{2i+1} = 0_{\mathbb{K}} \iff \forall i \in \mathbb{N}, a_{2i+1} = 0_{\mathbb{K}}$

On fait de même pour impair.