Assignment of CSE303

Analyzing Financial Factors in Loan Approvals

Submitted By:

Aklhak Hossain 2022-3-60-057 https://akhlak.dev Group: I

Submitted To:

Puja Chakraborty Lecturer Department of CSE East West University

Jim /

Types of data?	3
Balanced & imbalanced dataset & the impact of them in the performan	ce of a model4
A short description of your task and dataset, with columns in the dataset and categories of the values	
Dataset Balance Analysis	
Statistical calculations over the dataset	
Data visualization by columns	12
Bar chart for Column ed:	12
Pie Chart: Loan Default Distribution	13
Line Graph: Average Income by Education Level	13
Bar Chart: Employment Years	14
Correlation heat-map	
Conversion of categorical values to numerical values	17
Handling missing values	17
Conclusion	

Types of data?

What are the data type?
print(df.dtypes)
gives us input type

Column Name	Python Data Type	Qualitative / Quantitative	Nominal / Ordinal	Discrete / Continuous	Explanation
age	float64	Quantitative	-	Continuous	Age in years
employ	int64	Quantitative	-	Discrete	Years of employment
address	int64	Quantitative	-	Discrete	Years at current address
income	float64	Quantitative	-	Continuous	Annual income in currency
debtinc	float64	Quantitative	-	Continuous	Debt-to-income ratio
creddebt	float64	Quantitative	-	Continuous	Credit card debt
othdebt	float64	Quantitative	-	Continuous	Other debts
ed	float64	Quantitative	Ordinal	Discrete	Education level (assumed scale: 1 to 6, etc.)
default	int64	Qualitative	Nominal	Discrete	0 = No default, 1 = Default

Balanced & imbalanced dataset & the impact of them in the performance of a model

Balanced Dataset: A balanced dataset is a type of dataset that has roughly equal numbers of samples in each class.

For example: if we are looking into a dataset where 40% to 60% of the responders are male and the rest are female, meaning the ratio between males and female responders are 50:50 or 60:40, we can call it a balanced dataset.

Imbalanced Dataset: A balanced dataset is a type of dataset that has uneven class distribution.

For example: Examples include fraud detection (where fraud is a minority class) or medical diagnosis (where a rare disease might be the minority class). Even in the large set of data these will always be minor class.

Effect of data balance in prediction model: Imbalanced datasets can lead to models that are highly accurate on the majority class but perform poorly on the minority class. It also leads to a biased model toward the majority class.

A short description of your task and dataset, with columns in the dataset, type, range, and categories of the values

Task: To develop a model to predict what type of people are more likely to default. This is a binary classification task in which the target variable is default (0 = no default, 1 = default).

Dataset Description: The dataset consists of 850 rows and 9 columns. It contains continuous and discrete numeric variables such as age, work experience, debt, income and education. The response variable default refers to approval or denial status.

We can use print(df.describe()) code to get more information about the dataset, Which gives me a output like:

	age	employ	address	income	debtinc	creddebt
\						
count	680.000000	700.000000	700.000000	663.00000	700.000000	700.000000
mean	34.750000	8.388571	8.268571	45.74359	10.260571	1.553553
std	7.973215	6.658039	6.821609	37.44108	6.827234	2.117197
min	20.000000	0.000000	0.000000	14.00000	0.400000	0.011696
25%	28.000000	3.000000	3.000000	24.00000	5.000000	0.369059
50%	34.000000	7.000000	7.000000	34.00000	8.600000	0.854869
75%	40.000000	12.000000	12.000000	54.50000	14.125000	1.901955
max	56.000000	31.000000	34.000000	446.00000	41.300000	20.561310
	othdebt	ed	default			
count	700.000000	680.000000	700.000000			
mean	3.058209	1.717647	0.261429			
std	3.287555	0.925652	0.439727			
min	0.045584	1.000000	0.000000			
25%	1.044178	1.000000	0.000000			
50%	1.987567	1.000000	0.000000			
75%	3.923065	2.000000	1.000000			
max	27.033600	5.000000	1.000000			

Which I can make a table like below:

Column	Туре	Range (Min–Max)	Description
age	float64	20 – 56	Age of the applicant
employ	int64	0 – 31	Years of employment
address	int64	0 – 34	Years at current address
income	float64	14 – 446	Annual income in thousands
debtinc	float64	0.4 – 41.3	Debt-to-income ratio
creddebt	float64	0.01 – 20.56	Credit card debt
othdebt	float64	0.04 – 27.03	Other debts
ed	float64	1 – 5	Education level (ordinal)
default	int64	0 or 1	Loan status: 0 = No default, 1 = Defaulted

Dataset Balance Analysis

For the **Loans and Liability** Dataset, if we count the ratio of the "**default**" class we can get this via python script:

```
counts = df['default'].value_counts()
percentages = df['default'].value_counts(normalize=True) * 100
print("Class Distribution (Count):\n", counts)
print("\nClass Distribution (Percentage):\n", percentages)
We get the ratio like this:
Class Distribution (Count):
default
0
     517
     183
Name: count, dtype: int64
Class Distribution (Percentage):
default
     73.857143
0
    26.142857
Name: proportion, dtype: float64
```

This indicates that the data set is skewed. There is a strong imbalance, with the majority class (0) representing over three quarters of the data and the minority class (1) less than one quarter. This imbalance may cause the machine learning model to be skewed in favor of predicting the majority class and thus lower its ability to accurately predict defaults.

Statistical calculations over the dataset

I could write a code in python to get mean, median, variance and standard deviation of the data continuous numerical values:

```
continuous_cols = ['age', 'income', 'debtinc', 'creddebt', 'othdebt']

for col in continuous_cols:
    print(f"\n Statistics for {col}:")
    print("Mean:", df[col].mean())
    print("Median:", df[col].median())
    print("Variance:", df[col].var())
    print("Standard Deviation:", df[col].std())
```

And frequency and percentage of each type of values for categorical or discrete values:

```
discrete_cols = ['employ', 'address', 'ed', 'default']
print(discrete_cols)

for col in discrete_cols:
    print(f"\n Frequency and Percentage for {col}:")
    counts = df[col].value_counts()
    percentages = df[col].value_counts(normalize=True) * 100
    summary = pd.concat([counts, percentages], axis=1)
    summary.columns = ['Count', 'Percentage']
    print(summary)
```

We get the output like:

```
Continuous Columns:
['age', 'income', 'debtinc', 'creddebt', 'othdebt']

Statistics for age:
Mean: 34.75
Median: 34.0
Variance: 63.57216494845361
Standard Deviation: 7.973215471091548

Statistics for income:
Mean: 45.743589743589745
Median: 34.0
Variance: 1401.83445658068
Standard Deviation: 37.441079799875965
```

Statistics for debtinc: Mean: 10.260571428571428

Median: 8.6

Variance: 46.611118414060904

Standard Deviation: 6.827233584260971

Statistics for creddebt: Mean: 1.553552817142857

Median: 0.8548695

Variance: 4.482523082205469

Standard Deviation: 2.117196987104759

Statistics for othdebt: Mean: 3.0582086114285723

Median: 1.9875675

Variance: 10.808014786001815

Standard Deviation: 3.287554529738148

Discrete Columns:

21

['employ', 'address', 'ed', 'default']

Frequency and Percentage for employ:

Frequency and		Percentage	for	employ:
Count		Percentage		
employ				
0	62	8.857143		
1	49	7.000000		
4	47	6.714286		
6	46	6.571429		
9	45	6.428571		
2	44	6.285714		
3	42	6.000000		
7	38	5.428571		
5	36	5.142857		
8	31	4.428571		
12	30	4.285714		
10	30	4.285714		
13	27	3.857143		
11	26	3.714286		
16	25	3.571429		
15	19	2.714286		
18	17	2.428571		
14	14	2.000000		
22	13	1.857143		
17	12	1.714286		
19	12	1.714286		

8 1.142857

20	5	0.714286
23	5	0.714286
24	4	0.571429
25	3	0.428571
31	3	0.428571
27	2	0.285714
30	2	0.285714
26	1	0.142857
29	1	0.142857
28	1	0.142857

Frequency and Percentage for address:

	Count	Percentage
address		
2	59	8.428571
1	57	8.142857
0	50	7.142857
4	49	7.000000
3	48	6.857143
6	43	6.142857
8	40	5.714286
9	39	5.571429
5	34	4.857143
7	34	4.857143
10	32	4.571429
11	27	3.857143
14	21	3.000000
12	20	2.857143
13	18	2.571429
16	18	2.571429
17	17	2.428571
15	16	2.285714
19	13	1.857143
21	9	1.285714
23	9	1.285714
18	9	1.285714
26	7	1.000000
25	7	1.000000
20	7	1.000000
22	7	1.000000
27	3	0.428571
24	3	0.428571
31	2	0.285714
29	1	0.142857
34	1	0.142857

Frequency and Percentage for ed:

Frequency and Percentage for default:

Count Percentage default 0 517 73.857143 183 26.142857

Data visualization by columns

Bar chart for Column ed:

```
df['ed'].value_counts().sort_index().plot(kind='bar')
plt.title('Distribution of Education Level')
plt.xlabel('Education Level')
plt.ylabel('Count')
plt.grid(True)
plt.show()
```

Which gives a bar chart

Pie Chart: Loan Default Distribution

```
df['default'].value_counts().plot(kind='pie', autopct='%1.1f%%', labels=['No
Default', 'Default'], startangle=90)
plt.title('Loan Default Rate')
plt.ylabel('')
plt.show()
```

Loan Default Rate

Line Graph: Average Income by Education Level

```
df.groupby('ed')['income'].mean().plot(kind='line', marker='o')
plt.title('Average Income by Education Level')
plt.xlabel('Education Level')
plt.ylabel('Average Income')
plt.grid(True)
plt.show()
```


Bar Chart: Employment Years

```
df['employ'].value_counts().sort_values(ascending=False).plot(kind='bar')
plt.title('Years of Employment')
plt.xlabel('Years of Employment')
plt.ylabel('Frequency')
plt.grid(True)
plt.show()
```


Correlation heat-map

Can be derived by:

```
import seaborn as sns

corr = df.corr()

plt.figure(figsize=(10, 8))
sns.heatmap(corr, annot=True, cmap='coolwarm', fmt=".2f", linewidths=0.5)
plt.title('Correlation Heatmap')
plt.show()
```


Conversion of categorical values to numerical values

Numerical inputs are required by machine learning models. Therefore, categorical data must be represented as numerical values before training models. two commonly used approaches:

Label Encoding: method that assigns a unique integer to each category. Ideal for ordinal variables where categories have a logical order (ed: 1 to 5).

Example: Low 0, Medium 1, High 2

One-Hot Encoding: method has an alternate binary column for each category and is used for nominal variables with no ordering.

Example: Red, Blue, Green are three columns with values 0 or 1.

The majority of the features in this dataset are already numeric. If there were any categorical text columns, unordered categories would have one-hot encoding, and ordered ones would have label encoding applied to them.

Handling missing values

To check for missing values we can run

```
print(df.isnull().sum())
```

Which gives:

age	20
employ	0
address	0
income	37
debtinc	0
creddebt	0
othdebt	0
ed	20
default	0
dtyne: int64	

For **age** & **income** we can replace them with the **mean** cause it's less sensitive to the outliers, and for **ed** we can take a **mode** as it is an ordinal value

Code to handle the changes:

```
df['age'] = df['age'].fillna(df['age'].median())
df['income'] = df['income'].fillna(df['income'].median())
df['ed'] = df['ed'].fillna(df['ed'].mode()[0])
```

Conclusion

This project was meant to analyze financial and personal factors impacting loan default choices. The data set had 700 instances and 9 numerical features such as age, income, work record, debt burden, and education. The target variable default was imbalanced with 73.86% non-default instances and 26.14% default instances.

Statistical visualization and modeling revealed income, credit debt, and debt-to-income ratio to be the relevant variables. Income, education, and age had missing values that were handled using median and mode imputation in order to retain data. There are no missing values in the dataset now, and it is fully numeric and therefore ready to be used in machine learning.

Feature encoding and correlation analysis were also performed to render the data compatible and discover correlations. The dataset is now well prepared for creating predictive models to assess loan risks.

Reference Links

Github Url:

https://github.com/Akhlak-Hossain-Jim/Learning-CSE-at-EWU/tree/main/Semester-8/CSE303/Lab/Section%204/Asssignment%201