Setul 3

de probleme și exerciții de matematică

(cu privire la serii de numere reale - serii cu termeni pozitivi)

S3.1 Stabiliți natura următoarelor serii utilizând, iar în caz de convergență, determinați sumele lor:

a)
$$\sum_{n=0}^{\infty} \arctan \frac{1}{n^2 + n + 1}$$
; b) $\sum_{n=1}^{\infty} \left(\frac{1}{n} + \ln \frac{n}{n+1} \right)$; c) $\sum_{n=1}^{\infty} \frac{n+1}{n^2 \cdot n!}$;

d)
$$\sum_{n=1}^{\infty} \frac{3^{n-1} + 2^{n+1}}{6^n}$$
; e) $\sum_{n=1}^{\infty} \frac{1}{n(n+k)}$, unde $k \in \mathbb{N}^*$ este fixat;

f)
$$\sum_{n=1}^{\infty} \ln \left(1 + \frac{2}{n(n+3)} \right)$$
; g) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{2n+1} - \sqrt{2n-1}}$.

- S3.2 Să se demonstreze criteriul lui D'Alembert pentru stabilirea naturii unei serii de numere reale pozitive (fără a utiliza Criteriul lui Kummer).
- **S3.3** Să se demonstreze *criteriul logaritmului* pentru stabilirea naturii unei serii de numere reale pozitive:

"Fie seria
$$\sum_{n\in\mathbb{N}^*} x_n$$
, unde $x_n > 0$, $\forall n \in \mathbb{N}^*$, astfel încât există $\lim_{n\to\infty} \frac{\ln\frac{1}{x_n}}{\ln n} = \lambda$. Atunci:

- i) $dac \ \lambda > 1$, $seria \sum_{n \in \mathbb{N}^*} x_n$ este convergentă;
- ii) dacă $\lambda < 1$, seria $\sum_{n \in \mathbb{N}^*} x_n$ este divergentă;
- iii) dacă $\lambda=1$, nu ne putem pronunța asupra naturii seriei $\sum_{n\in\mathbb{N}^*} x_n$."
- S3.4 Să se arate că dacă seriile de numere reale $\sum_{n\in\mathbb{N}^*}a_n^4$ şi $\sum_{n\in\mathbb{N}^*}\sqrt[3]{b_n^4}$ sunt convergente, atunci şi seria $\sum_{n\in\mathbb{N}^*}a_nb_n$ este convergentă.
- S3.5 Folosind diverse criterii de convergență, să se stabilească natura fiecăreia dintre seriile de mai jos. Să se calculeze apoi, ori de câte ori este posibil, sumele în cauză:

a)
$$\sum_{n \in \mathbb{N}^*} \frac{1}{\sqrt{n(n+1)(n+2)}};$$
 b) $\sum_{n \in \mathbb{N}^*} \frac{1!+2!+...+n!}{(n+2)!};$ c) $\sum_{n \in \mathbb{N}^*} \frac{2^n+3^{n+1}-6^{n-1}}{12^n};$

d)
$$\sum_{n=3}^{\infty} \frac{4n-3}{n(n^2-4)}$$
; e) $\sum_{n\in\mathbb{N}} \frac{1}{n^2+n(1+2\sqrt{2})+2+\sqrt{2}}$; f) $\sum_{n\in\mathbb{N}^*} \operatorname{arctg} \frac{1}{2n^2}$;

g)
$$\sum_{n=2}^{\infty} \left(\sqrt{n+1} - \sqrt{n} \right)^a \ln \left(\frac{n+1}{n-1} \right), a \in \mathbb{R}; \quad \text{h) } \sum_{n \in \mathbb{N}^*} \left[\frac{1}{\sqrt{n}} - \sqrt{\ln \left(\frac{n+1}{n} \right)} \right];$$

i)
$$\sum_{n \in \mathbb{N}^*} \arcsin \frac{1}{n\sqrt[3]{n} + 5}; \quad \text{j)} \sum_{n \in \mathbb{N}^*} \frac{1}{e \cdot \sqrt{e} \cdot \sqrt[3]{e} \cdot \ldots \cdot \sqrt[n]{e}}; \quad \text{k)} \sum_{n \in \mathbb{N}^*} \frac{\arctan(n\alpha)}{(\ln 3)^n}, \alpha \in \mathbb{R};$$

l)
$$\sum_{n=2}^{\infty} (\sqrt[n]{n} - 1)^n$$
; m) $\sum_{n \in \mathbb{N}^*} \frac{1}{2^n} \left(\frac{n+1}{n} \right)^{n^2}$; n) $\sum_{n \in \mathbb{N}^*} \left(\frac{1^3 + 2^3 + \ldots + n^3}{n^3} - \frac{n}{4} \right)^n$.

o)
$$\sum_{n\geq 2} \frac{1}{(\ln n)^{\ln{(\ln n)}}};$$
 p) $\sum_{n\in\mathbb{N}^*} \frac{\ln n}{n^2};$ q) $\sum_{n\in\mathbb{N}^*} \left(\frac{n!}{n^n}\right)^2.$

S3.6 Fie $\sum_{n\in\mathbb{N}^*}u_n$ o serie convergentă din \mathbb{R} , cu $u_n\geq 0, \ \forall \ n\in\mathbb{N}^*$. Ce se poate spune despre natura seriei $\sum_{n\in\mathbb{N}^*}\left(\frac{u_n}{1+u_n}\right)^{\alpha}$, unde α este un număr real?

S3.7 Să se analizeze natura seriilor cu termenii generali următori și, dacă este posibil, să se afle sumele în cauză:

a)
$$\frac{2n+1}{n(n+1)(n+2)}$$
, $n \in \mathbb{N}^*$; b) $\ln \frac{n^2+3n+2}{n(n+3)}$, $n \in \mathbb{N}^*$; c) $\left(\frac{n}{n+1}\right)^n$, $n \in \mathbb{N}^*$;

d)
$$\frac{\sqrt{n+2}-\sqrt{n-2}}{n^{\alpha}}$$
, $\alpha \in \mathbb{R}$, $n \in \mathbb{N}^*$, $n \ge 2$; e) $\frac{(2n-1)!!}{(2n)!!} \cdot \frac{1}{2n+1}$, unde $(2n-1)!! = 1 \cdot 3 \cdot \dots \cdot (2n-1)$;

$$f) \left(\frac{\pi}{2} - \operatorname{arctg} n\right)^{n}, n \in \mathbb{N}^{*}; \quad g) \frac{\alpha(\alpha+1) \cdot \ldots \cdot (\alpha+n-1)}{n! n^{\beta}}, \alpha \in \mathbb{R}^{*}_{+}, \beta \in \mathbb{R}, n \in \mathbb{N}^{*};$$

$$h) \frac{1^{2} \cdot 5^{2} \cdot 9^{2} \cdot \ldots \cdot (4n-3)^{2}}{3^{2} \cdot 7^{2} \cdot 11^{2} \cdot \ldots \cdot (4n-1)^{2}}, \ n \in \mathbb{N}^{*}.$$

S3.8 Să se analizeze seria cu termenul general

$$\arccos \frac{n(n+1) + \sqrt{(n+1)(n+2)(3n+1)(3n+4)}}{(2n+1)(2n+3)}, n \in \mathbb{N}^*$$

și, în caz de convergență a sa, să i se afle suma.

Bibliografie selectivă

- 1. C, Drăgușin, O. Olteanu, M. Gavrilă *Analiză matematică. Probleme (Vol. I)*, Ed. Matrix Rom, București, 2006.
- 2. S. Găină, E. Câmpu, Gh. Bucur Culegere de probleme de calcul diferențial și integral (Vol. II), Ed. tehnică, București, 1966.
- **3.** M. Roşculeţ, C. Bucur, M. Craiu Culegere de probleme de analiză matematică, E. D. P., Bucureşti, 1968.
- I. Radomir, A. Fulga Analiză matematică. Culegere de probleme, Ed. Albastră, Cluj-Napoca, 2005.
 - 5. P. L. Clark Sequences and Series. A Sourcebook, 2012.
- **6.** V. Pop, Liliana Popa ş.a. Teme şi probleme pentru concursurile studenţeşti de matematică (Vol. II), Ed. Univ. Bucureşti, 2011.
- 7. M. K. Warby, J. E. Furter Exercises on Sequences and Series of Real Numbers, Brunel University London, 2015.
 - 8. *** http://mathsforall.co.uk/home/pages/mathematical-analysis