

Gramáticas

 Recordemos que un lenguaje es un conjunto de cadenas o palabras sobre un determinado alfabeto

$$L \subseteq \Sigma^*$$

- Los conjuntos los podemos definir por
 - Extensión: pero si el conjunto es infinito no nos sirve
 - Compresión
 - Frase explicativa: impreciso y complejo
 - Fórmula sobre las operaciones sobre cadenas: insuficiente para todos los lenguajes
 - Constructivo: Da un método para generar todos los elementos del conjunto y solamente los del conjunto
- Una gramática es un mecanismo constructivo que permite generar un lenguaje formal, basado en producciones

Definición Formal

Una gramática es una 4-úpla

$$G = (V_N, V_T, P, S)$$
 otra notación $G = (V_N, \Sigma, P, S)$

Donde

 V_N es el conjunto de NO terminales o variables V_T , es el conjunto de terminales o alfabeto del lenguaje (Σ)

$$V_N \cap V_T = \emptyset$$

 $V = V_N \cup V_T$ (alfabeto total)

 $S \in V_N$ (Axioma o símbolo inicial)

P es el conjunto de producciones

Producciones

P es un conjunto de pares ordenados que denotamos como

$$\alpha \rightarrow \beta$$
 (leemos: α produce β)

Donde

$$\alpha \in V^+ \land \beta \in V^*$$

 $\alpha = \varphi A \rho \land \varphi, \rho \in V^* \land A \in V_N$

Es decir, α debe contener al menos un no terminal

Nota: la aplicación sucesiva de producciones se conoce como derivación, algunos usan la notación $\alpha \to^* \gamma$ (leemos: α deriva en γ)

Ejemplos

```
Sea L = {"aa", "ab"} Puede ser generado por:
G = ({S,T}, {a, b}, P, S)
P = \{S \rightarrow aT, T \rightarrow a, T \rightarrow b\}
Dada la gramática
G = (\{R,S,T,U\}, \{a, b, c, d, e\}, P, S)
P = \{S \rightarrow aT \mid bRd,
      T \rightarrow c \mid Ub
      U \rightarrow e.
      R \rightarrow a \mid dU
¿Qué lenguaje genera?
```


Jerarquía de Chomsky

- Es de acuerdo a las restricciones que se agregan sobre las producciones
- Tipo **0** : irrestrictas
- Tipo 1: sensibles al contexto
- Tipo 2: independientes del contexto
- Tipo 3: Regulares
- Un lenguaje generado por una gramática de un tipo se dice que es de ese tipo, por ejemplo lenguaje regular si es generado por una gramática tipo 3

Gramáticas Regulares

- Sus producciones deben cumplir
 - A izquierda hay un solo símbolo no terminal
 - A derecha hay un símbolo terminal, posiblemente acompañado de un no terminal, o ε
- Expresado de otro modo sus producciones toman la forma
 - $-A \rightarrow \epsilon$
 - $-A \rightarrow a$
 - A → Ba \acute{o} A → aB Donde A,B \in V_N $_{\land}$ a \in V_T

Lineales a izquierda o derecha

- Se dice que una gramática regular es lineal a derecha si todas las producciones con terminales y no terminales son de la forma A → aB
- Se dice que es lineal a izquierda si dichas producciones son de la forma A → Ba
- Para que la gramática sea regular debe ser una o la otra, la mezcla hace perder la condición de regular
- Algunos autores llaman a esto "gramáticas estrictamente regulares a izquierda (o derecha)"

Definiciones Alternativas

- Hay quienes no admiten ε a derecha
 - Para incluir la cadena vacía permiten la producción S → ε pero en esos casos S no puede figurar a derecha en ninguna producción
- Otros¹ plantean que basta cumplir con

```
A \rightarrow W

A \rightarrow wB \ (o \ A \rightarrow Bw)

donde A_{\Lambda}B \in V_{N-\Lambda} \ w \in V_{T}^{*}
```

 Los autores que a la anterior notación las llaman "estrictas" a estas simplemente las llaman regulares. Si a las anteriores las llaman regulares, entonces a estas las llaman "extendidas"

^{1:} John Hopcroft – jeffrey Ullman (1979) "Introduction to Automata Theory, Languages and Computation" Addison-Wesley

Linealidad y Reversa

- Notar que las lineales a izquierda y a derecha ambas producen todos los lenguajes regulares
- Las extendidas son equivalentes a las estrictas, o sea, ambas generan los lenguajes regulares
- Lineales a izquierda y a derecha pueden plantearse una como el lenguaje reverso de la otra, pero resulta que los lenguajes regulares son cerrados respecto de la operación reversa.

Producciones recursivas

 Es cuando un no terminal aparece a izquierda y derecha de la producción, por ejemplo
 T → aT

- Esto permite generar lenguajes infinitos
- Ejemplos

$$L = \{a^n / n \ge 0 \}$$

$$L = \{a^{2n} / n \ge 0 \}$$

$$S \to \epsilon \mid aS$$

$$S \to \epsilon \mid aS$$

$$T \to a \mid aS$$

Ejemplo Gramática Regular

- $L = \{a^nbc^t / n \ge 0 \land t \ge 0\}$
 - $-S \rightarrow aS \mid bC$
 - $-C \rightarrow cC \mid \epsilon$
 - aabc : S ⇒ aS ⇒ aaS ⇒ aabC ⇒ aabcC ⇒ aabc
- Mismo lenguaje pero con lineal a izquierda
 - $-S \rightarrow Sc \mid Ab$
 - $-A \rightarrow Aa \mid \epsilon$
 - aabc : S ⇒ Sc ⇒ Abc ⇒ Aabc ⇒ Aaabc ⇒ aabc

Ejemplo de reversa

- $L = \{a^nbc^t / n \ge 0 \land t \ge 0\}$
 - $-S \rightarrow aS \mid bC$
 - $-C \rightarrow cC \mid \epsilon$
 - aabc : S ⇒ aS ⇒ aaS ⇒ aabC ⇒ aabcC ⇒ aabc
- Lenguaje reverso
 - S → Sa | Cb
 - $C \rightarrow Cc \mid \epsilon$
 - cbaa : S ⇒ Sa ⇒ Saa ⇒ Cbaa ⇒ Ccbaa ⇒ cbaa

Gramáticas Quasi Regulares

- Son equivalentes a las regulares
- Son útiles porque reducen la cantidad de producciones
- Consiste en reemplazar un conjunto de terminales en varias producciones con un no terminal y agregar una producción donde el nuevo no terminal produce el conjunto que reemplaza
- Ejemplo: las producciones
 S → N | NS
 N → a | b | c | d
 Reemplazan a
 - $S \rightarrow a \mid b \mid c \mid d \mid aS \mid bS \mid cS \mid dS$

Gramáticas independientes del contexto

- El lado izquierdo debe seguir siendo un único símbolo no terminal.
- No hay restricciones sobre el lado derecho
- Ejemplos

```
L = \{a^nb^n / n \ge 0\} \qquad L = \{a^{2n}b^{n+1}a^r / n \ge 1 \land r \ge 0\} S \to aSb \mid \epsilon \qquad S \to aaTbQ T \to aaTb \mid b Q \to aQ \mid \epsilon
```


Proceso de derivación

Representaciones

- Horizontal utilizando el símbolo ⇒
- Vertical con una línea por cada producción aplicada
- Árbol con el axioma como raíz y en cada producción aplicada el no terminal reemplazado es padre de los símbolos que lo reemplazan

Verticales

- A izquierda en cada paso se reemplaza el no terminal más a la izquierda
- A derecha: igual pero a derecha

Otras Gramáticas

- Irrestrictas
 - Basta con que sean gramáticas
- Sensibles al contexto
 - Elimina la restricción de un único símbolo a izquierda, pero el largo de la cadena producida deber ser mayor o igual al de la cadena a iquierda de la producción
 - Entonces si $\alpha \rightarrow \beta \Rightarrow |\alpha| \leq |\beta|$

Ejemplo gramática sensible al contexto

Podemos generar L = {anbncn / n > 0} G = ({S,A,B,C}, {a,b,c}, P, S) Producciones de P

Nro Regla	Producción	Comentario
1	$S \rightarrow A$	Inicio
2	$A \to aABC$	Genero tantas a como quiera con igual cantidad de B y C
3	$A \rightarrow abC$	Última a con correspondiente b y C
4	$CB \to BC$	Ordeno haciendo que B viaje a izquierda
5	$bB \rightarrow bb$	Convierto B en b solo en el contexto adecuado
6	$bC \to bc$	Convierto C en c solo en el contexto adecuado
7	$cC \rightarrow cc$	Convierto C en c solo en el contexto adecuado

Ejemplo para producir aaabbbccc

Rojo: carácter sobre el que aplico la producción ◀

Sobrelineado: Parte derecha de la producción aplicada

Cadena	Por aplicar Regla
S Aplicando	Axioma
A Obtengo	1 $(S \rightarrow A)$
aABC	2 (A \rightarrow aABC)
aaABCBC	2 (A \rightarrow aABC)
aaab <mark>C</mark> BCBC	3 $(A \rightarrow abC)$
aaab <mark>BCCBC</mark>	4 (CB \rightarrow BC)
aaabB <mark>CB</mark> CC	4 (CB \rightarrow BC)
aaa <mark>bB</mark> BCCC	4 (CB \rightarrow BC)
aaab <mark>b</mark> BCCC	5 (bB \rightarrow bb)
aaab <mark>bb</mark> CCC	5 (bB \rightarrow bb)
aaabbbcCC	6 (bC \rightarrow bc)
aaabbbccC	7 (cC \rightarrow cc)
aaabbbccc	7 (cC \rightarrow cc)

Ejemplo gramática irrestricta

Podemos generar L = $\{a^i / i \text{ es } 2^n \text{ con } n > 0\}$ G = $(\{S,A,B,C,D,E\}, \{a\}, P, S)$ Producciones de P

Nro Regla	Producción	Comentario
1	$S \to ACaB$	A y B son límites para los no terminales "viajeros" C, D y E
2	$Ca \to aaC$	C duplica a viajando a derecha
3	$CB \to DB$	Al encontrar el límite muta en D si quiere continuar
4	$CB \to E$	O muta en E si quiere finalizar (consumiendo el límite)
5	$aD \rightarrow Da$	D simplemente viaja a izquierda sin alterar nada
6	$AD \to AC$	Al encontrar el límite muta a C para volver a duplicar a
7	$aE \rightarrow Ea$	E es similar a D, viaja sin alterar
8	$AE \to \epsilon$	Pero al encontrar el límite lo consume para finalizar

Ejemplo para producir aaaa

Cadena	Por aplicar Regla
S	Axioma
ACaB	1 (S \rightarrow ACaB)
AaaCB	2 (Ca → aaC)
Aa <mark>a</mark> DB	3 (CB \rightarrow DB)
A <mark>aD</mark> aB	5 (aD → Da)
AD aaB	5 (aD → Da)
A C aaB	6 $(AD \rightarrow AC)$
Aaa C aB	2 (Ca \rightarrow aaC)

Cadena	Por aplicar Regla
AaaaaCB	2 (Ca → aaC)
Aaaa <mark>E</mark>	4 (CB \rightarrow E)
Aaa <mark>E</mark> a	7 (aE → Ea)
Aa <mark>E</mark> aa	7 (aE \rightarrow Ea)
AaEaaa	7 (aE → Ea)
A Eaaaa	7 (aE \rightarrow Ea)
aaaa	8 (AE $\rightarrow \epsilon$)

Licencia

Esta obra, © de Eduardo Zúñiga, está protegida legalmente bajo una licencia Creative Commons, Atribución-CompartirDerivadasIgual 4.0 Internacional.

http://creativecommons.org/licenses/by-sa/4.0/

Se permite: copiar, distribuir y comunicar públicamente la obra; hacer obras derivadas y hacer un uso comercial de la misma.

Siempre que se cite al autor y se herede la licencia.

