Appl. No. 09/922,854

AMENDMENTS TO THE SPECIFICATION

Please replace paragraphs 2-5 on page 8 with the following amended paragraphs:

--In step b), the present invention takes summation of the samples probability F_n , starting from F_0 (samples probability of tone scale 0) to $F_{N/2}$ (samples probability of tone-scale N/2) where N is the tone scale position of the transition point TP. For example, if N=100, then N/2 = 50. If the sum of samples probability F_0 to $F_{N/2}$ equals $[F_1]$ $F_{L,}$ i.e., Σ F_n $(n=0-(N/2))=[F_1]]F_L$ then the maximum downward offset D_1 of a maximum downward offset point P_1 can be calculated as follows:

 $D_1 = C_1 \quad (2P[[F_1]] \underbrace{F_L} - 1) \quad \text{when } 2P[[F_1]] \underbrace{F_L} - 1 < 0 \,, \quad \text{and} \quad$

 $D_1=0$ when $2P[[F_1]]F_{L}-1>0$

Then, we can find out the function and line of the shadow portion color enhancement curve O-TP (as shown in FIG. 4) according to the origin (0,0), the transition point TP (N,N) and the maximum downward offset value D_1 . In the above formula, C_1 is a shadow portion color enhancement constant (positive number). For example, $C_1=N$ in the embodiments of FIGS. $7A \sim 10C$. And $2P[[F_1]]F_L-1$ is a parameter for sufficiency of shadow portion color. $2P[[F_1]]F_L-1>0$

Appl. No. 09/922,854

means shadow portion color is sufficient without the need of further enhancement.

In step c), the present invention takes summation of the samples probability F_n , starting from $F_{(N+255)/2}$ (samples probability of tone-scale of tone-scale (N+255)/2) to F_{255} (samples probability of tone-scale 255) where N is the tone scale of the transition point TP. If the sum of samples probability $F_{(N+255)/2}$ to F_{255} equals F_2 , i.e., $\sum F_n$ $(n=(N+255)/2 \sim 255)=[\{F_2\}]F_L$, then the maximum upward offset D_2 of a maximum upward offset point P_2 can be calculated as follows:

In which, C_2 is a light portion color enhancement constant (positive number). For example, $C_2=255-N$ in the embodiments of FIGS. 7A~10C. And, $(1-2P[[F_2]]\underline{F_H})/(P-1)$ is a parameter for sufficiency of light portion color. $(1-2P[[F_2]]\underline{F_H})/(P-1<0)$ means light portion color is sufficient without the need of further enhancement.--