Testing Exogeneity of Instrumental Variables Using Pretest-Posttest Designs

Naram Gwak Yongnam Kim

Department of Education Seoul National University

Overview

Exogeneity of Instrumental Variables (IV)

- Exogeneity assumption determines the validity of IV
- Empirically verifying this assumption is infeasible

Developing Approach for Testing the Validity of Exogeneity

- By utilizing pretest-posttest designs, possible to assess exogeneity
- A new approach for empirically testing violations of exogeneity

We cannot identify the causal effect of X on Y, due to unobserved confounders

Using IV, we can identify the causal effect of X on Y

Steiner et al. (2017)

1. Effect of IV on Y

$$\frac{Cov(IV,Y)}{Var(IV)} = \frac{Var(IV)\gamma\tau}{Var(IV)} = \gamma\tau$$

1. Effect of IV on Y: $\gamma \tau$

2. Effect of IV on X

$$\frac{Cov(IV,X)}{Var(IV)} = \frac{Var(IV)\gamma}{Var(IV)} = \gamma$$

1. Effect of IV on Y: $\gamma \tau$

2. Effect of IV on X: γ

3. Ratio between the two effects

$$\frac{\gamma\tau}{\nu} = \tau$$

Exogeneity Assumption

Instrument Exogeneity – Exclusion Restriction woold

Wooldridge (2019)

IV should have no effect on Y, after X and confounders have been controlled for

Exogeneity Assumption

Instrument Exogeneity – Independence

IV should be uncorrelated with the confounders

IV in Pretest-Posttest Designs

Still, we can identify the causal effect of X on Y

$$\frac{\text{Effect of } IV \text{ on } Y}{\text{Effect of } IV \text{ on } X} = \tau$$

We can identify the causal effect of X on Y, based on the common trend assumption $(\beta_1 = \beta_2)$

Kim & Steiner (2021)

If the common trend assumption is violated $(\beta_1 \neq \beta_2)$, we obtain biased estimates

$$\hat{G} = a + bX$$
, $b = \tau + \alpha \beta_2 - \alpha \beta_1$

Compass Variable

Kim, Gwak, & Lee (2022)

A variable that is associated with P and Y only via U

Quantify the difference between β_1 and β_2

Quantify the difference between β_1 and β_2

$$\hat{P} = a_1 + b_1 C + c_1 X, \ b_1 = \gamma \beta_1 K$$

$$\widehat{Y} = a_2 + b_2 C + c_2 X, \quad b_2 = \gamma \beta_2 K$$

The difference between β_1 and β_2 : $\delta = \frac{\beta_2}{\beta_1}$

$$\hat{P} = a_1 + b_1 C + c_1 X, \ b_1 = \gamma \beta_1 K$$

$$\widehat{Y} = a_2 + b_2 C + c_2 X, \quad b_2 = \gamma \beta_2 K$$

Compass Variable

A variable that is associated with P and Y only via U

An IV can also be a compass variable

The IV estimate when Z is a valid IV

1)
$$\hat{X} = a_1 + b_1 Z$$

 $(b_1 = \gamma)$

2)
$$\hat{Y} = a_2 + b_2 Z$$

 $(b_2 = \gamma \tau)$

3)
$$\frac{b_2}{b_1} = \tau$$

The adjusted DiD estimate when Z is a valid IV

1)
$$\hat{P} = a_1 + b_1 Z + c_1 X$$
$$b_1 = \gamma \alpha \beta_1$$

2)
$$\hat{Y} = a_2 + b_2 Z + c_2 X$$

 $b_2 = \gamma \alpha \beta_2$

3)
$$\widehat{G}^* = a_3 + b_3 X$$

$$b_3 = \tau + \alpha \beta_2 - \alpha \beta_1 \delta$$

$$= \tau + \alpha \beta_2 - \alpha \beta_1 \frac{\beta_2}{\beta_1}$$

$$= \tau$$

If Z is a valid IV,

(Z is also a valid compass variable)

Then the IV estimate and the adjusted DiD estimate should equal

The IV estimate when Z is not a valid IV

1)
$$\hat{X} = a_1 + b_1 Z$$

 $(b_1 = \gamma + k\alpha)$

2)
$$\hat{Y} = a_2 + b_2 Z$$

 $(b_2 = \gamma \tau + k\alpha \tau + k\beta_2)$

3)
$$\frac{b_2}{b_1} = \tau + \frac{k\beta_2}{\gamma + k\alpha}$$
 bias

The adjusted DiD estimate when Z is not a valid IV

1)
$$\hat{P} = a_1 + b_1 Z + c_1 X$$
$$(b_1 = \gamma \alpha \beta_1 + k \beta_1)$$

2)
$$\hat{Y} = a_2 + b_2 Z + c_2 X$$
$$(b_2 = \gamma \alpha \beta_2 + k \beta_2)$$

3)
$$\widehat{G}^* = a_3 + b_3 X$$

$$b_3 = \tau + \alpha \beta_2 - \alpha \beta_1 \delta$$

$$= \tau + \alpha \beta_2 - \alpha \beta_1 \frac{(\gamma \alpha + k) \beta_2}{(\gamma \alpha + k) \beta_1}$$

$$= \tau$$

If Z is a valid instrumental variable, (Z is also a valid compass variable)

Then the IV estimate and the adjusted DiD estimate should equal

If IV estimate and adjusted DiD estimate are different,

Then Z is not a valid instrumental variable

R simulation

Data-generating model

$$Z = \epsilon_{Z}$$

$$U = \mathbf{k} \times Z + \epsilon_{U}$$

$$A = Z + U + \epsilon_{A}$$

$$P = U + \epsilon_{P}$$

$$Y = .777 \times X + 2 \times U + \epsilon_{Y}$$

 The possibility that IV estimates are different with adjusted DiD estimates

Discussion

- Tests empirically whether exogeneity is violated
- Encourages the conventional use of IV, especially by educational researchers

Discussion

- Tests empirically whether exogeneity is violated
- Encourages the conventional use of IV, especially by educational researchers

Limitations

- IV estimates and adjusted DiD estimates can both be biased
- We cannot ascertain whether an IV is valid, but we can identify when it is invalid

References

- Kim, Y., Gwak, N., & Lee, S. (2022). Detection of and Correction for Violation of the Common Trend Assumption in Gain Score Analysis. *Journal of Education Evaluation*, 3 5(4), 743-761.
- Kim, Y. & Steiner, P. M. (2021). Gain scores revisited: A graphical models perspective. e. Sociological Methods & Research, 50(3), 1353-1375.
- Steiner, P. M., Kim, Y., Hall, C. E., & Su, D. (2017). Graphical Models for Quasi-experimental Designs. *Sociological Methods & Research, 46*(2), 155–188.
- Wooldridge, J. M. (2019). Introductory econometrics: A modern approach. (7th Ed.). Cengage Learning.