摘要

题目的运行结果和分析

1 A用 pp 样条拟合函数

图 1: pp 样条拟合函数

图 2: pp 样条拟合函数

几种情况下在区间中点的误差为

	linear	natural	complete	not-a-knot	periodic	specified
knots 6	0.042189	0.131401	0.129445	0.177149	0.135823	0.133095
knots 11	0.0417277	0.047166	0.0471638	0.0472169	0.0473469	0.0471672
3knots 21	0.0135534	0.0044802	0.0044802	0.0044802	0.0044802	0.00448023
knots 41	0.00367977	0.000139672	0.000139672	0.000139672	0.000553506	0.000557674
knots 81	0.000950222	6.43681e-06	6.41586e-06	6.41586e-06	0.000270492	0.000275263

表 1: 不同节点和样条拟合的最大误差

用 N 表示节点数目。对于 S_3^2 最大误差关于节点的最大误差大约是 10^{-log_2N} ,对于线性样条,N 比较小的时候比较难判断,但是 N 很大的时候,最大误差大约是 10^{-log_2N+1}

2 C用 b 样条拟合 $\frac{1}{1+x^2}$

使用五种不同边界条件的 S_3^2 B 样条和线性样条拟合,结果如下

图 4: B 样条拟合函数

(a) Theorem 3.58

我们可以看出来,对于一个轴对称的函数来说,要想让最大误差尽可能地小,应该取奇数个节点,并且在对称 轴上取一个节点。

3 D 特定节点上的误差

两种取节点的方式下,对不同样条得到的误差如下:

knots	-3.5	-3	-0.5	0	0.5	3	3.5
linear	-0.00394007	-1.38778e-17	0.05	0	0.05	-2.77556e-17	-0.00394007
quadratic	1.249e-16	-0.00141838	0	0.1202380	0	-0.00141838	1.249e-16
cubic_natural	0.000789971	1.38778e-16	-0.0205306	0	-0.0205306	-8.60423e-16	0.000789971

表 2: 三种 B 样条在给定节点上的误差

这里 -3, 3, 0 正好是一阶和三阶 B 样条的节点, 因此误差应该是 0, 而在 3, -3 处数据很接近机器误差是因为

B 样条是又基函数和系数决定的,系数是通过求解线性方程组得到,而接近 0 的浮点数在计算机里会有 catastrophic cancellation 的现象,因此误差会在机器误差左右。

综合来看,如果用最大误差来作为衡量标准, S_2^1 样条的效果不如 S_3^2 ,对于不同边界条件的 S_3^2 样条的误差,可以在终端输出的信息中找到,这里就不再列出。

4 E 曲线拟合

对于曲线拟合的结果,由于图片太多,这里只放几张比较有代表性的,所有的结果都可以在 figure 文件夹找到。对平面曲线的 cumulate_chordal 参数,分别用 pp 样条和 B 样条拟合,用来验证两种样条得到的结果相同;由于 B 样条需要额外取节点,因此对于均匀节点作为参数,只用了 pp 样条拟合,把这三种拟合的结果放在一起对比,能够看出如果节点一致 B 样条和 pp 样条得到的结果是相同的,这正好对应了定理 3.7. 拟合心形线,因为是闭合曲线,所以边界条件选择 periodic

图 6: 拟合心形函数

我们能发现,在 x=0 的时候,拟合效果是最差的,猜测这是由于心形线本来在这些点并不可导,而 S_3^2 本身有二阶正则性。

拟合螺旋形,选择了 natural 边界条件

图 8: 拟合螺旋线

拟合球面曲线,选择了 complete 边界条件

图 10: 拟合球面曲线

图 11: 拟合球面曲线

当取的节点很少的时候,两种曲线参数差别会有一点,尤其是对螺旋线选择了 periodic 边界条件,如果只用极坐标下的均匀节点,能看出拟合的样条曲线在第一个节点处非常"尖锐"。这里推测均匀节点得到的样条曲线可能比 cumulative chordal lengths 节点更容易自交。

$\mathbf{5}$ F $(t-x)_+^n$ 的差商表

根据题目的意思,对 t 做插商,则差商表的每个元素是关于 x 的函数,n=1 时,节点选择 $0.0,\ 1.0,\ 2.0$,结果如下:

2 时, 节点选择 0.0, 0.5, 0.7, 1.0, 结果如下

可以看到确实有 $B_i^n(x)=(t_{i+n}-t_{i-1})\cdot[t_{i-1},...,t_{i+n}](t-x)_+^n$ 。而且通过提高差商的阶数,改善了一开始支集不是局部的问题。