a)	It is responsible for moving data between the physical devices and its local buffer storage, as well as sending signals to the OS to indicate readiness for data transfer.
b)	 a. Process & Thread Management b. Memory Management c. File Management d. Deadlock Management e. Input/Output Management
c)	Based on the architecture, each instruction need move from RAM to CPU. Processor calculation speeds are much faster than data movement between memory and CPU.
d)	Save the virtual address of the next instruction.
e)	Similar jobs are collected and save in a magnetic tape and load one by one to the system and implement sequentially.
f)	Several jobs are loaded into RAM and OS provide pseudo-parallelism.
g)	Save the address of the top of the stack for the currently running process. (top of stack save local variables)
h)	OS stops what currently doing and immediately transfers execution to a fixed location where the service routine for the interrupt is located.
i)	CPU detect interrupt from the interrupt-request line and it reads the interrupt number and jump to the interrupt handler routine
j)	DMA (Direct Memory Access)

k)	Since limited number resources which must be shared between processes.
I)	To achieve high reliability, OS is broken into small well-defined module. Only one module (Microkernel) run in kernel mode and the rest run as user mode.
m)	
	 Issue I/O command to devices catch interrupts from each I/O devices handle errors
n)	 Mutual exclusion Circular Wait Hold and Wait No Preemption
o)	Due to heavy data transfer, bus becomes a bottleneck.
p)	• Increased latency when a CPU must access remote memory across the system interconnect, creating a possible performance penalty
q)	
•	Asymmetric clustering- one machine is in hot-standby mode. Hot-standby host machine does just monitoring the active server. If that server fails, the hot-standby host becomes the active server.
•	$\label{eq:continuous} \textbf{Symmetric clustering} - \textbf{two or more hosts are running application and monitoring each other.}$
r)	

• Decide which processes are to be loaded into memory when memory space

• Keep track of which parts of memory are currently being used by which process

• Allocate and deallocate memory space as needed for each process

become available.

s)	 Mounting and unmounting a device. Free-space management Storage allocation Disk scheduling Partition Protection
t) u)	 Non-maskable interrupt line – reserved for event such as unrecoverable hardware error. Maskable interrupt line – used by device controllers to request service. Mechanical component (device itself), electrical component (device controller) and device driver.
v)	jobs for processes (I/O jobs) are saved in a file and executed one by one (i.e. network printer)
w)	process status, snapshot of CPU, scheduling information, memory management information I/O status information.
x)	a. Protection between jobsb. Job schedulingc. virtual memory
у)	Since instruction cycle are three steps: fetch, encoding, and execute
z)	Multiple terminals are connected to a host computer through networks and each user are shared CPU time.