Presentation

Jeronimo needs to open his Burger Joint in some Locality (District) of Bogotá, Colombia. Furthermore, he is asking our assistance in finding the best Locality. Business Problem So as to open Jeronimo's burger joint, we will want to utilize some data about the Localities in Bogotá. We should be certain that where the burger joint is opened will have enough clients and furthermore that there aren't an enormous ammount of burer joints in the spot.

Information

Methodology

- For each locality, all office, school, university and burger joints venues data have been collected from Foursquare.
- Then for each locality, the sums of the office, school, university and burger joints were computed.
- For each of this 4 categories, a weight (or penalty) has been defined according to what Jeronimo considers the most important.
- Burger Joints have been weighted with -1, since Paolo wants to avoid concurrence.
- Schools have been weighted with 1, since student are good customers.
- Universities have been weighted with 1.5, since students are good customers.
- Offices have been weighted with 2, since employees are even better customers.
- Note that the weights can be modified according to the importance of each category.
- Lastly, a score was computed for each locality as the weighted sum of the number of venues in each of the 4 categories (school, university, office, burger joints).

Coding

```
In [1]: import pandas as pd
In [2]: url='https://en.wikipedia.org/wiki/List_of_postal_codes_of_Canada:_M'
         tables=pd.read_html(url)
In [7]:
        tables[0].head()
Out[7]:
            Postcode
                                       Neighbourhood
         0 M1A
                      Not assigned
                                       Not assigned
         1 M2A
                      Not assigned
                                       Not assigned
         2 M3A
                      North York
                                       Parkwoods
         3 M4A
                      North York
                                       Victoria Village
         4 M5A
                      Downtown Toronto
                                       Harbourfront
```

```
In [5]: a=tables[0]
a.head(10)
```

Out[5]:

	Postcode	Borough	Neighbourhood
0	M1A	Not assigned	Not assigned
1	M2A	Not assigned	Not assigned
2	МЗА	North York	Parkwoods
3	M4A	North York	Victoria Village
4	M5A	Downtown Toronto	Harbourfront
5	M6A	North York	Lawrence Heights
6	M6A	North York	Lawrence Manor
7	M7A	Queen's Park	Not assigned
8	M8A	Not assigned	Not assigned
9	M9A	Downtown Toronto	Queen's Park

```
In [6]: b=a[a['Borough']!='Not assigned']
b.head(10)
```

Out[6]:

Neighbourhood	Borough	Postcode	
Parkwoods	North York	МЗА	2
Victoria Village	North York	M4A	3
Harbourfront	Downtown Toronto	M5A	4
Lawrence Heights	North York	M6A	5
Lawrence Manor	North York	M6A	6
Not assigned	Queen's Park	M7A	7
Queen's Park	Downtown Toronto	M9A	9
Rouge	Scarborough	M1B	10
Malvern	Scarborough	M1B	11
Don Mills North	North York	M3B	13

In [7]: df1=b.groupby("Postcode").agg(lambda x:','.join(set(x)))
 df1.head(10)

Out[7]:

Borough		Neighbourhood
Postcode		
M1B	Scarborough	Malvern,Rouge
M1C	Scarborough	Port Union,Rouge Hill,Highland Creek
M1E	Scarborough	Morningside, West Hill, Guildwood
M1G	Scarborough	Woburn
M1H	Scarborough	Cedarbrae
M1J	Scarborough	Scarborough Village
M1K	Scarborough	Kennedy Park, East Birchmount Park, Ionview
M1L	Scarborough	Oakridge, Clairlea, Golden Mile
M1M	Scarborough	Scarborough Village West, Cliffcrest, Cliffside
M1N	Scarborough	Cliffside West,Birch Cliff

Out[8]:

	Postal Code	Latitude	Longitude
0	M1B	43.806686	-79.194353
1	M1C	43.784535	-79.160497
2	M1E	43.763573	-79.188711
3	M1G	43.770992	-79.216917
4	M1H	43.773136	-79.239476
5	M1J	43.744734	-79.239476
6	M1K	43.727929	-79.262029
7	M1L	43.711112	-79.284577
8	M1M	43.716316	-79.239476
9	M1N	43.692657	-79.264848

```
In [9]: e.rename({'Postal Code': 'Postcode'}, axis=1, inplace=True)
    e.head(10)
```

Out[9]:

	Postcode	Latitude	Longitude
0	M1B	43.806686	-79.194353
1	M1C	43.784535	-79.160497
2	M1E	43.763573	-79.188711
3	M1G	43.770992	-79.216917
4	M1H	43.773136	-79.239476
5	M1J	43.744734	-79.239476
6	M1K	43.727929	-79.262029
7	M1L	43.711112	-79.284577
8	M1M	43.716316	-79.239476
9	M1N	43.692657	-79.264848

In [10]: neighborhoods=pd.merge(a,e, how='right', on = 'Postcode') neighborhoods.head(15)

Out[10]:

	Postcode	Borough	Neighbourhood	Latitude	Longitude
0	МЗА	North York	Parkwoods	43.753259	-79.329656
1	M4A	North York	Victoria Village	43.725882	-79.315572
2	M5A	Downtown Toronto	Harbourfront	43.654260	-79.360636
3	M6A	North York	Lawrence Heights	43.718518	-79.464763
4	M6A	North York	Lawrence Manor	43.718518	-79.464763
5	M7A	Queen's Park	Not assigned	43.662301	-79.389494
6	M9A	Downtown Toronto	Queen's Park	43.667856	-79.532242
7	M1B	Scarborough	Rouge	43.806686	-79.194353
8	M1B	Scarborough	Malvern	43.806686	-79.194353
9	МЗВ	North York	Don Mills North	43.745906	-79.352188
10	M4B	East York	Woodbine Gardens	43.706397	-79.309937
11	M4B	East York	Parkview Hill	43.706397	-79.309937
12	M5B	Downtown Toronto	Ryerson	43.657162	-79.378937
13	M5B	Downtown Toronto	Garden District	43.657162	-79.378937
14	M6B	North York	Glencairn	43.709577	-79.445073

```
import numpy as np # library to handle data in a vectorized manner
import pandas as pd # library for data analsysis
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
import json # library to handle JSON files
#!conda install -c conda-forge geopy --yes # uncomment this line if you haven't completed the Foursquare API lab
from geopy.geocoders import Nominatim # convert an address into latitude and longitude values
import requests # library to handle requests
from pandas.io.json import json_normalize # tranform JSON file into a pandas dataframe
# Matplotlib and associated plotting modules
import matplotlib.cm as cm
import matplotlib.colors as colors
# import k-means from clustering stage
from sklearn.cluster import KMeans
!conda install -c conda-forge folium=0.5.0 --yes # uncomment this line if you haven't completed the Foursquare API lab
import folium # map rendering library
print('Libraries imported.')
```

Solving environment: done

Package Plan

environment location: /opt/conda/envs/Python36

added / updated specs: - folium=0.5.0

The following packages will be downloaded:

package	build		
vincent-0.4.4 folium-0.5.0 altair-3.3.0 branca-0.3.1 ca-certificates-2019.11.28 certifi-2019.11.28 openss1-1.1.1d	py_1 py_0 py_36_0 py_0 hecc5488_0 py_36_0 h516909a_0	45 KB 747 KB 25 KB 145 KB 149 KB	conda-forge conda-forge conda-forge conda-forge conda-forge conda-forge conda-forge
	Total:	3.2 MB	

The following NEW packages will be INSTALLED:

altair: 3.3.0-py36_0 conda-forge branca: 0.3.1-py_0 conda-forge folium: 0.5.0-py_0 conda-forge vincent: 0.4.4-py_1 conda-forge

The following packages will be UPDATED:

ca-certificates: 2019.10.16-0 --> 2019.11.28-hecc5488_0 conda-forge certifi: 2019.9.11-py36_0 --> 2019.11.28-py36_0 conda-forge

The following packages will be DOWNGRADED:

openss1: 1.1.1d-h7b6447c_3 --> 1.1.1d-h516909a_0 conda-forge

Downloading and Extracting Packages

vincent-0.4.4	28 KB	Т	ı	100%
folium-0.5.0	45 KB		İ	100%
altair-3.3.0	747 KB		İ	100%
branca-0.3.1	25 KB		İ	100%
ca-certificates-2019	145 KB		İ	100%
certifi-2019.11.28	149 KB		İ	100%
openssl-1.1.1d	2.1 MB		İ	100%
Preparing transaction:	done			

Preparing transaction: done Verifying transaction: done Executing transaction: done Libraries imported.

In [12]: toronto_data= neighborhoods[neighborhoods['Borough'].str.contains('Toronto', na = False)].reset_index(drop=True) toronto_data.head()

Out[12]:

	Postcode	Borough	Neighbourhood	Latitude	Longitude
0	M5A	Downtown Toronto	Harbourfront	43.654260	-79.360636
1	М9А	Downtown Toronto	Queen's Park	43.667856	-79.532242
2	M5B	Downtown Toronto	Ryerson	43.657162	-79.378937
3	M5B	Downtown Toronto	Garden District	43.657162	-79.378937
4	M5C	Downtown Toronto	St. James Town	43.651494	-79.375418

In [13]: latitude = 43.6532
longitude= -79.3832

```
map_toronto = folium.Map(location=[latitude, longitude], zoom_start=11)

# add markers to map
for lat, lng, label in zip(toronto_data['Latitude'], toronto_data['Longitude'], toronto_data['Neighbourhood']):
    label = folium.Popup(label, parse_html=True)
    folium.CircleMarker(
        [lat, lng],
        radius=5,
        popup=label,
        color='blue',
        fill_True,
        fill_color='#3186cc',
        fill_opacity=0.7,
        parse_html=False).add_to(map_toronto)
map_toronto
```


Recommendation

The following analysis can be improved with following extensions:

- Consider more categories. For example like "Night life" which is also a good source for customers. But also like "Restaurants", which even if not burger joints may be some concurrence if too many.
- In the Locality itself, it can also be computed the distance between all the venues in order to find a place with the most number of potential customers.
- Using smaller geographical areas like Neighborhoods could improve the accuracy for the scores.