





<sup>1</sup>The Swiss AI Lab IDSIA USI-SUPSI, Università della Svizzera italiana (CH)

Andrea Cini\*1 Ivan Marisca\*1 Daniele Zambon<sup>1</sup>

Cesare Alippi<sup>12</sup>

<sup>2</sup>Politecnico di Milano (IT) \*Equal contribution



#### Motivation

Spatiotemporal GNNs (STGNNs) are effective in forecasting collections of time series, but fully global models often underperform.

- Global models share parameters among time series.
- ► While very flexible, they might fail in accounting for the **specific** dynamics of each time series.
- Understanding the interplay between global and local components in graph-based predictors is critical.
- Guidelines to design effective hybrid global-local STGNNs, amenable to **transfer learning**, are missing.

#### **Graph-based Forecasting**



We consider graph-based forecasting models composed of 3 blocks:

**ENCODER** encodes input features (e.g., with an MLP).

(ST)GNN propagates information along time and through the graph.

**DECODER** generates forecasts from obtained node representations.

#### The Issue

Models of this kind are **global**, i.e., all parameters are shared among the time series.

© Fewer parameters (in total)

Work in inductive settings

- Struggle to model local effects
- (a) More data available for training (b) Require large model capacity...
  - ...or impractically long windows
- Make STGNNs global-local with specialized local components!

# Main Findings

- Local components can be crucial for accurate predictions.
- ► Node embeddings can amortize the learning of local components.
- Global-local STGNNs capture local effects with contained model complexity and smaller input windows w.r.t. global approaches.
- Node embeddings facilitate transferability of global-local models.
- Structuring the embedding space is an effective regularization.

#### Taming local effects in STGNNs

We study the impact of introducing local components in global STGNNs.





- Amortize the cost of learning local components
- **Ease transfer learning**



### Structuring the Embedding Space

Regularizing the embedding space improves transferability and interpretability.

► Variational: the smoother embedding space enables interpolation.

$$\mathcal{L}_{t}^{\mathsf{r}} \doteq \mathbb{E}_{\boldsymbol{Q} \sim \boldsymbol{M}} \left[ \left\| \widehat{\boldsymbol{X}}_{t:t+H} - \boldsymbol{X}_{t:t+H} \right\|_{2}^{2} \right] + \beta D_{\mathrm{KL}}(\boldsymbol{M} | \mathcal{N} \left( \boldsymbol{0}, \mathbb{I} \right))$$

► Clustering: clusters in the latent space improve interpretability.

$$\mathcal{L}_{reg} \doteq \mathbb{E}_{\boldsymbol{M}} [\| \boldsymbol{V} - \boldsymbol{M} \boldsymbol{C} \|_{2}], \quad p(\boldsymbol{M}_{ij} = 1) = \frac{e^{\boldsymbol{S}_{ij}/\tau}}{\sum e^{\boldsymbol{S}_{ik}/\tau}}$$

# Some Empirical Results

| Models          | MetrLA               | PemsBAY                            | CER-E                           | AQI                           | MetrLA               | PemsBAY                               | CER-E                   | AQI                                     |
|-----------------|----------------------|------------------------------------|---------------------------------|-------------------------------|----------------------|---------------------------------------|-------------------------|-----------------------------------------|
| Reference arch. |                      | Globa                              | l models                        |                               | + Embeddings         |                                       |                         |                                         |
| RNN             | 3.54±.00             | 1.77±.00                           | 456.98 <sub>±0.61</sub>         | 14.02±.04                     | 3.15 <sub>±.03</sub> | 1.59±.00                              | 421.50 <sub>±1.78</sub> | 13.73±.04                               |
| T&S-IMP         | 3.35±.01             | 1.70±.01                           | 443.85±0.99                     | 12.87±.02                     | 3.10 <sub>±.01</sub> | 1.59±.00                              | 417.71 <sub>±1.28</sub> | <b>12.48</b> ±.03                       |
| TTS-IMP         | 3.34 <sub>±.01</sub> | $1.72 \scriptstyle{\pm .00}$       | $439.13{\scriptstyle \pm 0.51}$ | $12.74 \scriptstyle{\pm .02}$ | 3.08±.01             | $1.58 \scriptstyle{\pm .00}$          | 412.44 <sub>±2.80</sub> | $\textbf{12.33} \scriptstyle{\pm .02}$  |
| T&S-AMP         | 3.22±.02             | $1.65 \scriptstyle{\pm .00}$       | N/A                             | N/A                           | 3.07±.02             | $\pmb{1.59} \scriptstyle{\pm .00}$    | N/A                     | N/A                                     |
| TTS-AMP         | 3.24 <sub>±.01</sub> | $1.66 \scriptstyle{\pm .00}$       | $431.33{\scriptstyle \pm 0.68}$ | $12.30 \scriptstyle{\pm .02}$ | 3.06±.01             | $\textbf{1.58} \scriptstyle{\pm .01}$ | 412.95 <sub>±1.28</sub> | $\textbf{12.15} {\scriptstyle \pm .02}$ |
| Baseline arch.  | Original             |                                    |                                 |                               | + Embeddings         |                                       |                         |                                         |
| DCRNN           | 3.22±.01             | 1.64±.00                           | 428.36 <sub>±1.23</sub>         | 12.96±.03                     | 3.07±.02             | <b>1.60</b> ±.00                      | 412.87 <sub>±1.51</sub> | 12.53±.02                               |
| GraphWaveNet    | 3.05±.03             | $\pmb{1.56} \scriptstyle{\pm .01}$ | 397.17 <sub>±0.67</sub>         | 12.08±.11                     | 2.99±.02             | $1.58 \scriptstyle{\pm .00}$          | 401.15 <sub>±1.49</sub> | <b>11.81</b> ±.04                       |
| AGCRN           | 3.16±.01             | <b>1.61</b> ±.00                   | 444.80 <sub>±1.25</sub>         | 13.33±.02                     | 3.14 <sub>±.00</sub> | $1.62 \scriptstyle{\pm .00}$          | 436.84 <sub>±2.06</sub> | 13.28 <sub>±.03</sub>                   |

Table 1. Performance (MAE) on benchmark datasets.

Node embeddings are a table of learnable parameter vectors, each associated with a



|        |               |                   |                                | 8                 |                   |
|--------|---------------|-------------------|--------------------------------|-------------------|-------------------|
|        | TTS-IMP       | PEMS03            | PEMS04                         | PEMS07            | PEMS08            |
| ine-tı | Global        | 15.30±.03         | $21.59 {\scriptstyle \pm .11}$ | 23.82±.03         | 15.90±.07         |
|        | Embeddings    | 14.64±.05         | 20.27±.11                      | <b>22.23</b> ±.08 | 15.45±.06         |
|        | - Variational | <b>14.56</b> ±.03 | $20.19 \pm .05$                | 22.43±.02         | <b>15.41</b> ±.06 |
|        | - Clustering  | 14.60±.02         | 19.91±.11                      | <b>22.16</b> ±.07 | 15.41±.06         |
|        | Zero-shot     | 18.20±.09         | 23.88±.08                      | 32.76±.69         | 20.41±.07         |

Transfer Learning

Table 2. Performance (MAE) on traffic datasets.

#### Clusterized embedding space (CER dataset)













Check out our library for STGNNs! **TorchSpatiotemporal/tsl** 





