

Taxi Driver

Kick-off

T10 - Artificial Intelligence

T-AIA-902

Reinforcement Learning

Implement a learning agent

Run an agent with a specific strategy who will learn to play a game.

Reinforcement Learning

Implement a learning agent

Run an agent with a specific strategy who will learn to play a game.

Modelisation

Define state, action and reward ...

Reinforcement Learning

Implement a learning agent

Run an agent with a specific strategy who will learn to play a game.

Modelisation

Define state, action and reward ...

Many applications: video games, finance

Learning frameworks

model-based vs model-free

RL algorithm

	stimulus	action	stimulus	action	reward
Trial 1:	← 😤 →	ॐ →	**	*	0000
Trial 2:	← 🌪 →	ॐ →	**	*	
Trial 3:	← 🌪 →	ॐ ←		ZZZ	000
Trial 4:					

Q-learning

RL algorithm

Trial 4:

Q-learning SARSA

•••

RL algorithm

Trial 4:

Q-learning SARSA Deep Q-learning

•••

RL algorithm

Trial 4:

Q-learning SARSA Deep Q-learning Monte-Carlo methods

•••

Optimizing parameters

Tuning parameters to maximize your metrics

Optimizing parameters

Tuning parameters to maximize your metrics

Algorithms parameters: Learning rate, discount factor

Optimizing parameters

Tuning parameters to maximize your metrics

Algorithms parameters: Learning rate, discount factor

Game parameters: rewards, state, actions

Taxi Driver

• Train an agent to solve a game

Taxi Driver

- Train an agent to solve a game
- Use Reinforcement Learning to solve games quicker and with better results than other non probabilistic methods

Taxi Driver

- Train an agent to solve a game
- Use Reinforcement Learning to solve games quicker and with better results than other non probabilistic methods
- Evalute your result and do parameters optimization to obtain better performances

Any questions

?

