Homework 4

CMPSC 360

Kinner Parikh February 10, 2022

Question 1:

 $NEWS_KIT = I$ was reading the newspaper in the kitchen H1: NEWS_KIT → GLASS_KIT GLASS_KIT = My glasses are on the kitchen table H2: $GLASS_KIT \rightarrow GLASS_BREAK$ $GLASS_BREAK = I saw my glasses at breakfast$ H3: ¬ GLASS_BREAK NEWS_LIV = I was reading the newspaper in the living room H4: NEWS_LIV ∨ NEWS_KIT GLASS_COFF = My glasses are on the coffee table H5: NEWS_LIV \rightarrow GLASS_COFF

1. GLASS_KIT \rightarrow GLASS_BREAK	H2
2. ¬GLASS_BREAK	H3
3 ¬GLASS KIT	Modus Tollens o

Modus Tollens on 1 and 2 3. ¬GLASS_KIT

4. NEWS_KIT \rightarrow GLASS_KIT

5. ¬NEWS_KIT Modus Tollens on 4 and 3

6. NEWS_LIV ∨ NEWS_KIT

Disjunctive Syllogism on 6 and 57. NEWS_LIV

8. NEWS_LIV \rightarrow GLASS_COFF H5

9. GLASS_COFF Modus Ponens on 8 and 7

Therefore, the glasses are at on the coffee table.

Question 2:

H1:
$$(\neg v \lor \neg p) \to (s \land z)$$

H2: $s \to o$
H3: $\neg o$
C: v

$$\begin{array}{ll} 1. \ s \rightarrow o & \text{H2} \\ 2. \ \neg o & \text{H3} \end{array}$$

 $3. \neg s$ Modus Tollens on 1 and 2 Contrapositive of H1 4. $\neg (s \land z) \rightarrow \neg (\neg v \lor \neg p)$ 5. $(\neg s \vee \neg z) \rightarrow (\neg \neg v \wedge \neg \neg p)$ DeMorgan's Law 6. $(\neg s \lor \neg z) \to (v \land p)$ Double Negation 7. $\neg s \lor \neg z$ Addition on 3

Modus Ponens on 6 and 7 8. $v \wedge p$ Simplification of 8 9. v

Question 3:

- 1. This is not a valid argument Ex. a^2 is positive, but a could be either $\pm a$ Therefore, this is not a valid argument by counter example
- 2. $P(x) = \text{if } x^2 \neq 0$, then $x \neq 0$ Domain: $x \in \mathbb{Z}$, x > 0 $\forall x P(x)$ $\therefore P(a)$ such that $a \in Domain$ Therefore, this statement is true through universal instantiation

Question 4:

```
 \begin{array}{l} \operatorname{TAKEN}(x) = x \text{ has taken CMPSC-360} \\ \operatorname{CANTAKE}(x) = x \text{ can take CMPSC-465} \\ \operatorname{U} = \text{ all students} \\ \operatorname{R} = \left\{ \operatorname{Miranda}, \operatorname{Tom}, \operatorname{Shilpa}, \operatorname{Mark}, \operatorname{and Desiree} \right\} \text{ where } \operatorname{R} \in \operatorname{U} \\ \forall x \operatorname{TAKEN}(x) \\ \forall x \operatorname{TAKEN}(x) \to \operatorname{CANTAKE}(x) \\ \hline \therefore \forall x \operatorname{CANTAKE}(x) \\ \end{array}  Therefore, by universal instantiation  \begin{array}{l} \operatorname{TAKEN}(c) \text{ for an arbitrary } c \in \operatorname{U} \\ \overline{\operatorname{TAKEN}}(c) \to \operatorname{CANTAKE}(c) \\ \hline \therefore \operatorname{CANTAKE}(c) \text{ by Modus Ponens} \\ \end{array}  Therefore by universal generalization,  \forall x \in \operatorname{R} \operatorname{TAKEN}(x) \\ \forall x \in \operatorname{R} \operatorname{TAKEN}(x) \to \operatorname{CANTAKE}(x) \\ \hline \therefore \forall x \in \operatorname{R} \operatorname{CANTAKE}(x) \\ \end{array}
```

Question 5:

Proof:

Suppose
$$\frac{n}{3} + \frac{n^2}{2} + \frac{n^3}{6}$$
, and we know that $n \in \mathbb{N}$ $\frac{n}{3} + \frac{n^2}{2} + \frac{n^3}{6} = \frac{2n}{6} + \frac{3n^2}{6} + \frac{n^3}{6}$ using algebra $= \frac{n}{6}(2 + 3n + n^2)$ simplifying the equation $= \frac{1}{6}n(n+1)(n+2)$ factoring

By definition of divides, n(n+1)(n+2) = 6c where $c \in \mathbb{N}$ A natural number n can either be 1 or x+1 where $x \ge 1$

Case 1: n = 1

$$n(n+1)(n+2) = (1)(1+1)(1+2)$$
 substitute 1 for n
= $(1)(2)(3)$ addition
= 6 multiplication

therefore, 6 = 6c, which simplifies to c = 1. Since $1 \in \mathbb{N}$, the case n = 1 is validated

Case 2: n = x + 1 where $x \in \mathbb{Z}$

$$n(n+1)(n+2) = (x+1) \cdot [(x+1)+1] \cdot [(x+1)+2]$$
 plugging in $x+1$ for n
 $= (x+1)(x+2)(x+3)$ addition
 $= x^3 + 6x^2 + 11x + 6$ algebra
 $= (x^3 + 3x^2 + 2x) + (3x^2 + 9x + 6)$ algebra
 $= x(x+1)(x+2) + 3(x+1)(x+2)$ factoring
 $= 6c + 3(x+1)(x+2)$ substitute $x(x+1)(x+2)$ for $6c$

Case 2a: x is even, such that x = 2a for some $a \in \mathbb{N}$

$$6c + 3(x+1)(x+2) = 6c + 3(2a+1)(2a+2)$$
 plugging in $2a$ for x
= $6c + 3(2a+1)[2(a+1)]$ factoring out 2
= $6c + 6(2a+1)(a+1)$ multiplication
= $6[c + (2a+1)(a+1)]$ factoring out 6
= $6 \cdot k_1$ for some $k_1 \in \mathbb{N}$ where $k_1 = [c + (2a+1)(a+1)]$

Therefore, by definition of an even number, 6c + 3(x+1)(x+2) is divisible by 6

Case 2b: x is odd, such that x = 2a + 1 for some $a \in \mathbb{N}$

$$6c + 3(x + 1)(x + 2) = 6c + 3(2a + 1 + 1)(2a + 1 + 2) \text{ plugging in } 2a + 1 \text{ for } x$$

$$= 6c + 3(2a + 2)(2a + 3) \qquad \text{addition}$$

$$= 6c + 3[2(a + 1)](2a + 3) \qquad \text{factoring out } 2$$

$$= 6c + 6(a + 1)(2a + 3) \qquad \text{multiplication}$$

$$= 6[c + (a + 1)(2a + 3)] \qquad \text{factoring out } 6$$

$$= 6 \cdot k_2 \text{ for some } k_2 \in \mathbb{N} \text{ where } k_2 = [c + (a + 1)(2a + 3)]$$

Therefore, by definition of an odd number, 6c + 3(x+1)(x+2) is divisible by 6 We notice that n(n+1)(n+2) where n=x+1 is divisible by 6 in both cases We notice that n(n+1)(n+2) is divisible by 6 in both cases.

Therefore, for all natural numbers $n, \frac{n}{3} + \frac{n^2}{2} + \frac{n^3}{6}$ is a natural number. \square

Question 6:

- i) The assumption is that n is an odd natural number
- ii) We want to conclude that $n^2 1$ is always divisible by 8

Proof:

Suppose n is an odd natural number

By definition of odd, we know that n = 2a + 1 such that $a \in \mathbb{N}$

$$n^2 - 1 = (2a + 1)^2 - 1$$
 plugging in $2a + 1$ for n
 $= 4a^2 + 4a + 1 - 1$ algebra
 $= 4a^2 + 4a$ subtraction
 $= 4a(a + 1)$ factoring out $4a$

A natural number a can be either an even or odd natural number

Case 1: Suppose a is an even natural number. By definition of even we get $a = 2x; x \in \mathbb{N}$

```
4a(a+1) = 4(2x)(2x+1) plugging in 2x for a
= 8x(2x+1) multiplication
= 8 \cdot k for some k \in \mathbb{N} where k = x(2x+1)
```

Therefore, when a is even, the function is divisible by 8

Case 2: Suppose a is an odd natural number. By definition of odd we get $a=2x+1; x\in\mathbb{N}$

```
4a(a+1) = 4(2x+1)(2x+1+1) plugging in 2x+1 for a = 4(2x+1)(2x+2) addition
= 4(2x+1)[2(x+1)] factoring out 2
= 8(2x+1)(x+1) multiplication
= 8 \cdot k for some k \in \mathbb{N} where k = (2x+1)(x+1)
```

Therefore, when a is odd, the function is divisible by 8

We notice that 4a(a+1) is divisible by 8 for both cases.

Therefore, $n^2 - 1$ is always divisible by 8 when n is an odd natural number \square

Question 7:

- i) We know that $m \in \mathbb{Z}$
- ii) Assume that m is odd
- iii) Prove 3m + 7 is even

Proof:

Suppose $m \in \mathbb{Z}$, and we know that m is odd

By definition of odd, we know that m = 2a + 1 such that $a \in \mathbb{Z}$

$$3m + 7 = 3(2a + 1) + 7$$
 plugging in $2a + 1$ for m

$$= 6a + 3 + 7$$
 multiplication
$$= 6a + 10$$
 addition
$$= 2(3a + 5)$$
 factoring out 2

$$= 2 \cdot k$$
 for some $k \in \mathbb{Z}$ where $k = 3a + 5$

Therefore, by the definition of an even number, 3m+7 is even when m is odd. \square

Question 8:

```
Prove that the product of any two odd integers is odd. Proof: Suppose a \in \mathbb{Z} and b \in \mathbb{Z} such that a and b are odd By definition of odd, a = 2x + 1 such that x \in \mathbb{Z} and b = 2y + 1 such that y \in \mathbb{Z} so, a \cdot b = (2x + 1)(2y + 1) substituting a for 2x + 1 and b for 2y + 1 = 4xy + 2x + 2y + 1 multiplication = 2(2xy + x + y) + 1 factoring out 2 = 2k + 1 for some k \in \mathbb{Z} where k = 2xy + x + y Therefore, by the definition of an odd number, a \cdot b is odd Therefore, the product of any two odd integers is odd. \square
```