

Automatic Quiz Generation from Textbooks

Ethan A. Chi, Jillian Tang, Emily Wen {ethanchi, jiltang, ewen22}@stanford.edu

Background

- Educational information is most commonly found in the form of textbooks; however, textbooks are often densely written and difficult to understand.
- Our goal is to generate reading comprehension questions from textbook passages that are a) nontrivial, b) answerable upon reading the text, and c) tests the reader on understanding of a central question of the passage.

Datasets

- We evaluate our quality of our models on the reverse AllenAI Textbook Question Answering dataset.
- Since our dataset size is small, we train our machine learning-based models on the reverse Stanford Question Answering Dataset [1], which has over 100,000+ questions. We then perform zero-shot evaluation on the textbook dataset.

Examples

- **Text:** About half the energy used in the U.S. is used in homes and for transportation.
- **Question:** What are the main ways energy is used in the U.S.?

Baselines

- LastSentence: choose last sentence in the source text
- **DirectIn:** we choose the longest subsentence in the source text

Neural Models

- We use pretrained 100-dim GloVe embeddings to embed input tokens.
- For sequential input, we use LSTMs (long short-term memory networks).
- At each timestep, a single input token is fed through a cell to generate another hidden state. We decode using beam search.

Model 1: Sequence to Sequence (Seq2Seq)

- We jointly train **encoder** and **decoder** models, two unidirectional LSTMs. The final hidden state of the encoder is used to initialize the decoder.
- The decoder applies **global attention**. To decode output tokens, we concatenate the output of each LSTM cell with a context vector calculated from the encoder's hidden states weighted by the *attention distribution* (a weighting over the source words, telling the decoder where to focus on for the next word.)

Model 2: Seq2Seq with Copy Attention

- Our first seq2seq model is unable to handle unseen words in the input, especially if the training and evaluation sets are from different domains.
- To avoid this issue, we implement a copy-attention network as described in See et al [3]. At each time step, the network calculates a probability p_{gen} , from which we sample whether to generate or copy a word drawn from the attention distribution. Allows copying unseen words.

Results

- Evaluation metrics:
 - Bilingual evaluation understudy (BLEU): calculates fraction of ngrams that appear in the target
- Recall-Oriented Understudy for Gisting Evaluation: ROUGE-1 (unigrams), ROUGE-2 (bigrams), ROUGE-L (LCS)

Model		BLEU	ROUGE-1	ROUGE-2	ROUGE-L
Last	SQuAD	5.83	0.28	0.11	0.19
	Textbook	2.01	0.18	0.03	0.13
DirectIn	SQuAD	7.83	0.28	0.11	0.22
	Textbook	3.49	0.17	0.04	0.13
Seq2Seq	SQuAD	6.21	0.36	0.09	0.32
	Textbook	2.67	0.16	0.04	0.14
Seq2Seq w/ Copy Attention	SQuAD	8.47	0.39	0.12	0.34
	Textbook	4.22	0.16	0.04	0.14

Analysis

- Zero-shot transfer to textbook domain was generally unsuccessful due to different style of questions
- Copula-based questions: our model often asks about the subject complement and not the subject:
- Text: Muscles are the main organs of the muscular system.
- **Question:** What are muscles?
- **Pred:** what are the main organs of the muscular system?
- Difficulty with words not in the GloVe dataset (attention-based <UNK> replacement did not perform well):
- **Text:** Earths rotation influences their direction. This is called the Coriolis effect.
- **Question:** what is the Coriolis effect?
- **Pred:** what is the <u>effect</u> effect?

Citations

- [1] Rajpurkar, P., Zhang, J., Lopyrev, K., & Liang, P. (2016). Squad: 100,000+ questions for machine comprehension of text. *arXiv preprint arXiv:1606.05250*.
- [2] Kembhavi, A., Seo, M., Schwenk, D., Choi, J., Farhadi, A., & Hajishirzi, H. (2017). Are you smarter than a sixth grader? textbook question answering for multimodal machine comprehension. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (pp. 4999-5007).
- [3] See, A., Liu, P. J., & Manning, C. D. (2017). Get to the point: Summarization with pointer-generator networks. *arXiv preprint arXiv:1704.04368*.