Problem Set Measure Theory

OSELab2019

Luca Maria Schüpbach

I'm extremely sorry for not being able to finish more of this problem set. I tried, got help, then failed, (in loop) and decided at some point to focus on the other topics of this week.

Problem 1.3

Following the definitions we can see that: \mathcal{G}_1 is not a $(\sigma$ -)algebra as \mathcal{G}_1 is not closed under complements. \mathcal{G}_2 is an algebra but not a σ -algebra. \mathcal{G}_3 is an algebra and a σ -algebra.

Problem 1.7

The power set is the 'largest' possible σ -algebra because it includes all possible subsets of X.

As \mathcal{A} is an algebra, we know that $\emptyset \in \mathcal{A}$. For the second requirement to hold it must be true that: $\emptyset^c = X - \emptyset^c = X \in \mathcal{A}$. Thus, by fullfilling the definition of an algebra, we know that $\{\emptyset, X\} \subset \mathcal{A}$, which is the 'smallest' possible σ -algebra.

Problem 1.10

To proof that the intersection is also a σ -algebra we have to proof the three conditions that need to be met.

1) $\emptyset \in \cap_{\alpha} S_{\alpha}$:

As $\{S_{\alpha}\}$ is a family of σ -algebras, by definition, $\emptyset \in S_{\alpha}$ holds for each σ -algebra in the family. Thus, also for the intersection.

2) Let $A \in \cap_{\alpha} S_{\alpha} \ \forall \ \alpha$. We know by definition: $A \in S_{\alpha} \ \forall \ \alpha$. As S_{α} is a σ -algebra, it must hold that $A^c \in S_{\alpha} \ \forall \ \alpha$. Hence, this also holds for the family of σ -algebras: $A^c \in \cap_{\alpha} S_{\alpha} \ \forall \ \alpha \implies \cap_{\alpha} S_{\alpha}$ is closed under complements and finite unions.

3) ...

Problem 1.22

Monotone:

As A is a subset of B and by the definition of a measure: $\mu(B) = \mu(B \cap A^c) + \mu(A)$. As the measure is set to be non-negative, this implies that $\mu(A) \leq \mu(B) = \lambda(A) \leq \mu(B)$

Countably subadditive:

. . .

Problem 1.23

- i) λ is defined such that $\lambda(A) = \mu(A \cap B)$. If $A = 0 \implies \lambda(\emptyset) = \mu(\emptyset \cap B) = \mu(\emptyset)$
- ii) By the definition of a measure assuming that: $\{A_i\}_{i=1}^{\infty} \subset \mathcal{S}$ s.t. $A_i \cap A_j = \emptyset \forall i \neq j$

holds. Then $\mu(\bigcup_{i=1}^{\infty} A_i) = \mu((\bigcup_{i=1}^{\infty} A_i) \cap B)$ Since the A_i 's are disjoint, we can re-write: $\mu(\bigcup_{i=1}^{\infty} (A_i \cap B)) = \sum_{i=1}^{\infty} \mu(A_i \cap B)$

Problem 1.26 Let $A = \bigcap_{n=1}^{\infty} A_n$ and $B = \bigcup_{n=1}^{\infty} B_n$. This is an increasing sequence $\Longrightarrow \{B_n\}_{n=1}^{\infty}$

Hence:

$$\mu(A_1 - A) = \mu(B) = \mu(\bigcup_{n=1}^{\infty} B_n) = \lim_{n \to \infty} \mu(B_n) = \mu(A_1) - \lim_{n \to \infty} \mu(A_n)$$

Problem 2.10

B can be written as: $B = (B \cap E) \cup (B \cap E^c)$. By countable subadditivity $\mu^*(B) \leq \mu^*(B \cap E) + \mu^*(B \cap E^c)$ and $\mu^*(B) \geq \mu^*(B \cap E) + \mu^*(B \cap E^c)$. Hence, $\mu^*(B) = \mu^*(B \cap E) + \mu^*(B \cap E^c)$ holds.

Problem 2.14

Problem 3.1

Let $A = (a_1, a_2, \dots a_n)$ be a countable set. Let $a \in R$, then $a \subset [a - \epsilon, a + \epsilon]$, then $\lambda(a) \leq \lambda(a - \epsilon, a + \epsilon) = 2\epsilon$ for all $\epsilon > 0$. Hence, $\lambda(a) = 0$ and as $A = (a_1, a_2, \dots a_n)$ is a countable set, we know that: $\lambda(A) = 0$

Problem 3.7

To show:

$$\{x \in X : f(x) < a\}$$

can be replaced with any of the following:

$$\{ x \in X : f(x) \le a \}$$

$$\{ x \in X : f(x) > a \}$$

$$\{ x \in X : f(x) \ge a \}$$

We know that: $\{x \in X : f(x) < a\} \in \mathcal{M}$ and closed under complements. $\implies f^{-1}([a,\infty)) = (f^{-1}(-\infty,a))^c$ hence, $f^{-1}([a,\infty)) \in \mathcal{M}$. Therefore, we know that: $\{x \in X : f(x) < a\} = \{x \in X : f(x) \le a\}$.

Next, we use that $f^{-1}((a,\infty)) = \bigcap_{n=1}^{\infty} f^{-1}\left(\left(a-\frac{1}{n},\infty\right)\right)$. As \mathcal{M} is closed under countable intersection, we have $f^{-1}(a,\infty) \in \mathcal{M}$. Hence, we know that: $\{x \in X : f(x) \leq a\} = \{x \in X : f(x) > a\}$

Analogue procedure for the last one.