Dérivation

2BACS-2020/2021

Définition:

- \checkmark On dit que f est dérivable en a si : $\lim_{x \to a} \frac{f(x) f(a)}{x a} = \ell \in \mathbb{R}$
 - \rightarrow Le nombre ℓ est appelé <u>le nombre dérivé de f en a</u> et noté f'(a)

Dérivabilité à droit - Dérivabilité à gauche

- ✓ On dit que f est dérivable à droite en a si $\lim_{x\to a^+} \frac{f(x)-f(a)}{x-a} = \ell \in \mathbb{R}$
 - \rightarrow ℓ est appelé <u>le nombre dérivé de f à droite en a</u> et noté $f'_d(a)$
- ✓ On dit que f est dérivable à gauche en a si $\lim_{x\to a^-} \frac{f(x)-f(a)}{x-a} = \ell' \in \mathbb{R}$
 - \rightarrow ℓ' est appelé <u>le nombre dérivé de f</u> à gauche en α et noté $f'_{\alpha}(\alpha)$

Propriété

 $\begin{cases} f \text{ dérivable à droite et à gauche en a} \\ et \quad f'_d(a) = f'_g(a) \end{cases} \Leftrightarrow f \text{ est dérivable en a}$

L'équation de la tangente à (Cf)

 \checkmark L'équation de la tangente à la courbe (Cf) au point d'abscisse a est : y = f'(a)(x - a) + f(a)

Fonction affine tangente à f

Si f est dérivable en a, la fonction $x \to f'(a)(x-a) + f(a)$ est appelée la fonction affine tangente à f en a. Autrement dit : Si $X \simeq a$: $f(x) \simeq f'(a)(x-a) + f(a)$

Interprétation géométrique de la dérivation

❖ f est dérivable en a

La limite	Interprétation géométrique	Représentation graphique (en exemple)
$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = l \in IR^*$ $f'(a) = l$	(Cf)admet une tangente au point $A(a,f(a))$ d'équation $y=f'(a)(x-a)+f(a)$	
$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = 0$ $f'(a) = 0$	(Cf)admet une tangente horizontale au point $A(a,f(a))$	

❖ f dérivable à gauche ou à droite en a

La limite	Interprétation géométrique	Représentation graphique (en exemple)
$\lim_{\substack{x \to a \\ x > a}} \frac{f(x) - f(a)}{x - a} = l \in IR^*$ $f'_d(a) = l$	(Cf) admet une demi tangente à droite au point $A(a,f(a))$ d'équation $\begin{cases} y=f_d^{'}(a)(x-a)+f(a) \\ x\geq a \end{cases}$	
$\lim_{\substack{x \to a \\ x > a}} \frac{f(x) - f(a)}{x - a} = 0$ $f'_d(a) = 0$	(Cf)admet une demi tangente horizontale à droite au point $A(a,f(a))$	
$\lim_{\substack{x \to a \\ x < a}} \frac{f(x) - f(a)}{x - a} = l \in IR^*$ $f'_g(a) = l$	(Cf) admet une demi tangente à gauche au point $A(a,f(a))$ d'équation $ \begin{cases} y=f_{d}^{'}(a)(x-a)+f(a) \\ x\leq a \end{cases} $	
$\lim_{\substack{x \to a \\ x < a}} \frac{f(x) - f(a)}{x - a} = 0$ $f'_g(a) = 0$	$(\mathcal{C}f)$ admet une demi tangente horizontale à gauche au point $A(a,f(a))$	

❖ f n'est pas dérivable en a

La limite	Interprétation géométrique	Représentation graphique (en exemples)
$\lim_{\substack{x\to a\\x>a}}\frac{f(x)-f(a)}{x-a}=+\infty$	(Cf)admet une demi tangente à droite au point $A(a,f(a))$ dirigée vers le haut	
$\lim_{\substack{x \to a \\ x > a}} \frac{f(x) - f(a)}{x - a} = -\infty$	(Cf)admet une demi tangente à droite au point $A(a,f(a))$ dirigée vers le bas	
$\lim_{\substack{x \to a \\ x < a}} \frac{f(x) - f(a)}{x - a} = -\infty$	(Cf)admet une demi tangente à gauche au point $A(a,f(a))$ dirigée vers le haut	
$\lim_{\substack{x \to a \\ x < a}} \frac{f(x) - f(a)}{x - a} = +\infty$	(Cf)admet une demi tangente à gauche au point $A(a,f(a))$ dirigée vers le bas	

❖ Point anguleux :

f est dérivable à droite et à gauche en , mais $f'_d(a) \neq f'_a(a)$

Dérivabilité des fonctions usuelles

- ✓ toute fonction polynôme est dérivable sur IR.
- √ toute fonction rationnelle est dérivable sur tout intervalle de son domaine de définition.
- ✓ La fonction $x \to \sqrt[n]{x}$ est dérivable sur]0; +∞[. ($n \in IN*$)
- ✓ Les fonctions $x \to sinx$ et $x \to cosx$ sont dérivables sur IR.
- \checkmark La fonction $x \to tanx$ est dérivable en tout point de $IR \setminus \left\{ \frac{\pi}{2} + k\pi / k \in \mathbb{Z} \right\}$.

Opérations sur les fonctions dérivables

Soient f et g deux fonctions dérivables sur I et $k \in IR$ et $n \in IN^*$, alors :

- -> f+g, fg, kf, f^n sont dérivables sur I.
- -> Si g ne s'annule pas sur I, alors $\frac{1}{g}$ et $\frac{f}{g}$ sont dérivables sur I.
- -> Si f > 0 sur I, alors $\sqrt[n]{f}$ est dérivable sur I.

→Voir la formulaire de dérivée page suivante

Dérivée de la composée de deux fonction :

Si f est dérivable sur I et g est dérivable sur f(I), alors la fonction $g \circ f$ est dérivable sur I

$$\forall x \in I$$
 $(gof)'(x) = f'(x) \times g'(f(x))$

Dérivée de la fonction réciproque :

I) Si f est dérivable en a et $f'(a) \neq 0$ alors f^{-1} est dérivable en b = f(a) Et $(f^{-1})'(b) = \frac{1}{f'(a)}$

Et
$$(f^{-1})'(b) = \frac{1}{f'(a)}$$

II) Si f est dérivable sur I et f' ne s'annule pas sur I alors f^{-1} est dérivable sur J = f(I)

Et
$$(\forall x \in J)$$
; $(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$

La dérivation et la monotonie

f est croissante sur I	$\forall x \in I \qquad f'(x) \ge 0$
f est décroissante sur I	$\forall x \in I \qquad f'(x) \le 0$
f est constante sur I	$\forall x \in I \qquad f'(x) = 0$

Extremums d'une fonction

Si f' s'annule en a en changeant de signe alors f admet un extremum en a

 β Valeur minimale

 β valeur maximal

Formulaire de dérivées

Dérivée des fonctions usuelles	Opérations sur les fonction dérivées
(a)' = 0	(af)' = af'
(x)'=1	(f+g)' = f'+g'
(ax)' = a	(fg)' = f'g + fg'
$(x^n)' = nx^{n-1}$	$\left(\frac{1}{f}\right)' = \frac{-f'}{f^2}$
$\left(\frac{1}{x}\right)' = \frac{-1}{x^2}$	$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$
$\left(\sqrt{x}\right)' = \frac{1}{2\sqrt{x}}$	$\left(\sqrt{f}\right)' = \frac{f'}{2\sqrt{f}}$
$\left(\sqrt[n]{x}\right)' = \frac{1}{n} \times \frac{1}{\sqrt[n]{x}^{n-1}}$	$(f^n)' = nf'f^{n-1}$
$\cos'(x) = -\sin(x)$	$\left(\sqrt[n]{f}\right)' = \frac{1}{n} \frac{f'}{\sqrt[n]{f}}$
$\sin'(x) = \cos(x)$	$(fog)' = g' \times f'og$
$tan'(x) = 1 + tan^{2}(x)$ $= \frac{1}{\cos^{2}(x)}$	$\left(f^{-1}\right)' = \frac{1}{f' o f^{-1}}$

(avec $a \in IR$ et f et g deux fonctions numériques)