Classification Aggregation without unanimity

O. Cailloux M. Hervouin A. Ozkes R. Sanver

LAMSADE, Université Paris-Dauphine

6th April, 2023

- 1 What is Classification Aggregation?
- 2 About Independence and Unanimity
- 3 Classification Aggregation without Unanimity

- 1 What is Classification Aggregation?
- 2 About Independence and Unanimity
- Classification Aggregation without Unanimity

History of Classification Aggregation

- ullet Question "Who is a J?" o Group Identification
- Studied after the Law of return in Israel
- Generalization, objects instead of individuals

Objects and Notations

- N individuals, |N| = n
- X objects, |X| = m
- P categories, $|P| = \rho$
- C surjective classifications $c: X \to P$
- $\alpha: \mathcal{C}^{N} \to \mathcal{C}$ a Classification Aggregation Function (CAF)

Example (MAJ is not a CAF)

$$N = \{1, 2, 3\}, P = \{p, q\}, X = \{x, y, z\}.$$

object	1	2	3	MAJ result
X	р	q	p	p
У	q	р	p	p
Z	p	p	q	p

Why?

Properties

Definition

• Unanimity (U): How would you define it?

Definition

- Unanimity (U): $\forall c \in C, \alpha(c, \ldots c) = c$
- Independence (1): $\forall x \in X, \mathbf{c}, \mathbf{c}' \in \mathcal{C}^N, \mathbf{c}_x = \mathbf{c}'_x \implies \alpha_x(\mathbf{c}) = \alpha_x(\mathbf{c}')$

Example (Independence)

	Preference <i>c</i>				Preference c'			
object	1	2	3	$\mid \alpha(\mathbf{c}) \mid$	1	2	3	$\alpha(c')$
X	р	р	р	p by U	р	р	q	
У	р	q	р	$\alpha_y(c)$	p	q	р	$\alpha_y(c)$ by I
Z	q	q	q	q by U	q	p	р	

- What is Classification Aggregation?
- About Independence and Unanimity
- 3 Classification Aggregation without Unanimity

A simple supposition with a big impact

Example

Reminder: MAJ is not a CAF

object	1	2	3	$\alpha(c)$		
X	p q p		р	q (supposed wlog)		

Build a new similar pref c'

object	1	2	3	$lpha(oldsymbol{c}')$
X	р	q	р	q (by I)
У	q	q	q	<i>q</i> (by U)
Z	q	p	q	p (by surjectivity)

Big impact

By playing arround, one can show 2 is a Global dictator for α .

About Independence and Unanimity

Previous Results

Theorem (from Rubinstein and Fishburn [1986] and Kasher and Rubinstein [1997])

For |X| > |P| = 2, any CAF that satisfies independence and unanimity is a dictatorship.

Theorem (Maniquet and Mongin [2016])

For $|X| \ge |P| \ge 3$, any CAF that satisfies independence and unanimity is a dictatorship.

Proof with ultrafilter technique, doable with pivotal voter.

- What is Classification Aggregation?
- 2 About Independence and Unanimity
- 3 Classification Aggregation without Unanimity

Generalizing U and D

Definition

Generalized Unanimity (GU):

$$\exists \pi \in P \leftrightarrow P, \forall c \in C, \alpha(c, \ldots c) = \pi \circ c$$

Generalized Dictatorship (GD):

$$\exists \pi \in P \leftrightarrow P, \exists d \in N \mid \forall c \in C^N, \alpha(c) = \pi \circ c_d$$

Lemma (Generalized Impossibility)

For $|X| > |P| \ge 2$ any CAF that satisfies independence and Generalized unanimity is a generalized dictatorship.

Proof by pivotal voter.

Still. GU is close to U...

CS under Independence

Definition

An independent CAF α is CS iff

$$\forall x \in X, \forall p \in P, \exists \mathbf{k}_{x,p} \in P^{N} \mid \alpha_{x}(\mathbf{k}_{x,p}) = p$$

Example

	Prefere	ence <i>c</i>	Preference c'		
object	preferences	result	preferences	result	
X	(p,\ldots,p)		(p,\ldots,p)		
У	(q,\ldots,q)		(q,\ldots,q)		
Z	$k_{z,p}$	p (by CS)	$k_{z,q}$	q (by CS)	

By I,
$$\exists \pi \in P \leftrightarrow P \mid \alpha_{\mathsf{x}}(p, \dots, p) = \pi(p), \alpha_{\mathsf{y}}(q, \dots, q) = \pi(q).$$

E	xample					
		Prefer	ence c	Preference c'		
	$\begin{array}{c c} \text{object} & \text{preferences} \\ \hline x & (p, \dots, p) \end{array}$		result	preferences	result	
			$\pi(p)$ by I	$\mathbf{k}_{x,\pi(q)}$	$\pi(q)$ by CS	
	У	$k_{y,\pi(p)}$	$\pi(p)$ by CS	(q,\ldots,q)	$\pi(q)$ by I	
	Z	$\mid (q,\ldots,q) \mid$	$\pi(q)$ by S	(p,\ldots,p)	$\pi(p)$ by S	

One can show that $\forall t \in X, r \in P\alpha_t(r, ..., r) = \pi(r)$ (GU under I)

New result

Lemma

For $|X| > |P| \ge 2$, every citizen sovereign and independent CAF satisfies generalized unanimity.

Proof similar to the tricks just used

Theorem

For $|X| > |P| \ge 2$, every citizen sovereign and independent CAF is a generalized dictatorship.

- Study anonymity, neutrality [Ozkes and Sanver, 2021]
- Solution of fuzzy CAFs [Alcantud and de Andrés Calle, 2017]
- Committee elections with diversity [Bredereck et al., 2018]

Thank you for your attention!

References

- J. C. R. Alcantud and R. de Andrés Calle. The problem of collective identity in a fuzzy environment. *Fuzzy Sets and Systems*, 315:57–75, 2017.
- R. Bredereck, P. Faliszewski, A. Igarashi, M. Lackner, and P. Skowron. Multiwinner elections with diversity constraints. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.
- A. Kasher and A. Rubinstein. On the question "who is a j?" a social choice approach. *Logique et Analyse*, pages 385–395, 1997.
- F. Maniquet and P. Mongin. A theorem on aggregating classifications. *Mathematical Social Sciences*, 79:6–10, 2016.
- A. I. Ozkes and M. R. Sanver. Anonymous, neutral, and resolute social choice revisited. *Social Choice and Welfare*, 57(1):97–113, 2021.

References (cont.)

A. Rubinstein and P. C. Fishburn. Algebraic aggregation theory. *Journal of Economic Theory*, 38(1):63–77, 1986.