1) Definitions & Properties Linear Dependence - If we have pivot vars, we pe		change of basis or a series of rotations and reflections. Orthogonal transformations don't	Each $J_{k}(\lambda)$ is a Jordan block of size k with a	14.1) Convergence Under Specific Conditions; The LU Decomposition:	4) Condition Numbers of a Linear Equation: Ax = b = Condition Number of Coeff Mat A.	Power Iteration has limitations: 1. x_0 is chosen at random, it's possible for it to	They represent the rate of change of z, with respect to x or y, when the other is fixed. The
are linearly independent, else we're not.	or periodical	change the norm. 4) det = 1 or -1.		A non-singular matrix $A \in \mathbb{R}^{nn}$ can be factorised as $A = LU$	Big norm != ill conditioned, we might just be working with big numbers!!	be such that $\alpha 1 = = \alpha p = 0$. In this case, the	higher derivatives are computed as imagined Clairaut's theorem Suppose f is defined on a
For a matrix R'''' n = rows, m = cols. Rows are across the matrix, cols are down the matrix.	Computational Techniques 1 Vector Norms: Computing size on a vector.	5) All eigenvalues have modulus 1	[, , , , ,]	L is a lower triangular matrix	5.1) The Pseudoinverse of a Matrix:	iteration yields second dominant eigenvalue and eigenvector. We need to make sure there	disk D that contains the point (a, b). If the
1.1) Determinants: For A, B ∈ R	roperties: For vector x, y in Rn, scalar k		Even if $A \in \mathbb{R}^{nn}$, a JNF might not be in \mathbb{R}^{nn} but rather in \mathbb{C}^{nn} .	U is an upper triangular matrix We can do this if and only if A can be	$Ax = b \Leftrightarrow A^{T}Ax = A^{T}b \Leftrightarrow x = (A^{T}A)^{-1}A^{T}b$. The matrix $(A^{T}A)^{-1}A^{T}$ is known as the pseudo	a non zero component in the corresponding eigenspace - usually happens in computers du	
 det(AB) = det(BA) = det(A)det(B). det(kA) = 2) KX = K X	If A is a real symmetric matrix, then all its Eigenvalues are real.	Blocks in JNF and Multiplicities of	reduced to its row echelon form without swapping any two rows.	inverse of A, and denoted A [†] .	to floating point error. 2. Eigenvalues might not have distinct	19.3) Directional Derivatives For a function $z = f(x, y)$, the partial derivatives
		2) If A is a real symmetric matrix, then for each Eigenvalue the algebraic multiplicity and	Eigenvalues: The algebraic multiplicity of an eigenvalue λ is the sum of the sizes of blocks	Properties of the LU Decomposition:	5.2) Cond Numbers of non square matrices: Compute the Pseudoinverse of A. Then to	modulus, in which case the power iteration will	
	= Sum of absolute vector elems	geometric multiplicity are equal.	with λ on the diagonal. The geometric multiplicity of λ is the number of blocks with λ	is non singular: If A = LU and the diagonal	compute the condition number of a non squar matrix A: $k(A) = A^{\dagger} A $	econverge to a linear combination of the corresponding eigenvectors.	of unit vectors i and j. (calculated in the same
by getting REF and multiplying by lead diag.	_z = Euclidean Norm _∞ = Max absolute vector entry.	If A is an n by n real symmetric matrix, eigenvectors for distinct eigenvalues are	on the diagonal.	elements of L are all one, the decomposition is unique.	6) Conditioning of a Problem:	Convergence might be slow if dominant eve isn't too dominant.	The rate of change of an arbitrary unit vector
	iny two vector norms . _a and . _b in R ⁿ are quivalent. Formally:	orthogonal. 6.1) Spectral Theorem	11) Cholesky Decomposition A matrix A ⁿⁿ is lower triangular $\forall i \leq j$, $A_{ij} = 0$	2) Let $A \in \mathbb{R}^{nn}$ be a symmetric positive definite matrix with distinct eigenvalues	To decide if a problem is well or ill conditioned we can use this Rule of Thumb to guide us: For	18.1) Inverse Power Iteration Finds the smallest eigenvalue and its	can be found with basic trig. Our tangent line represents the rate of change
2) Adding/subbing rows does nothing 3) If any two rows are equal, or lead diag = 0, L.		TEA is a seed assessmental assessment them it sees he	A matrix A^{nn} is upper triangular $\forall i > j$, $A_{ij}^{0} = 0$	$\lambda_1 > \lambda_2 > > \lambda_n > 0$ with eigendecomposition	a condition number x(A), you lose about log10(x(A)) significant figures in accuracy. If	eigenvector. We do this by taking the inverse	of z at a specific point, the direction of which
then det = 0. 1.	$ x _{\infty} \le x _2 \le x _1$		These matrices exhibit useful properties. The equation Ax = b can easily be solved on them.	$A = Q_AQ^T$. Suppose $Q^T = LU$ with unit lower triangular L and the diagonal elements of U are	the state of the s		to. (e.g, how much do we move in x and y as we
scalar. 3.	$\ x\ _2 \le \sqrt{n} \ x\ _{\infty}$ $\ x\ _1 \le \sqrt{n} \ x\ _2$	where: Q is an orthogonal matrix D is the diagonal eigenvalue matrix.	b) Thot Ecting Ap and then Az with an ect	positive. Then A _k 7 A	iose about 6 up iii pi ecisioii.	"eigenvalue of A. Inverse Power Iteration Theorem:	progress?) Theorem: If f is a differentiable function of x
Trace - sum of diag elems. 2 Rank of invertible matrices - 1)	() Matrix Norms (MN);) A > 0	7) Singular Value Decomposition A is real symmetric matrix.	substitution and so on, on lower triangular matrices. For upper triangular we get x, first,	15) Fixed Points 1) Convergence of a Sequence of Real	17) Iterative Solutions to Linear Equations $A \in \mathbb{R}^{n}$ and $b \in \mathbb{R}^{n}$. We want to solve $Ax = b$.	Let $A \in \mathbb{R}^{nn}$ be a diagonalisable non-singular matrix with eigenvalues of distinct modulus.	and y, then f has a directional derivative in the direction of a unit vector $\mathbf{u} = a$, b;
nxn matrix is invertible \Leftrightarrow rank is n \Leftrightarrow cols are $\stackrel{>}{3}$; lin indep, rows too) A + B ≤ A + B ,	Positive Definite: A is positive definite iff: $\forall x \in \mathbb{R}^{N}$	and go backwards. Additional Properties of Symmetric Matrices	Numbers: Let $(a_n)_{n\in\mathbb{N}}\in\mathbb{R}^\mathbb{N}$ be a sequence of real numbers and $l\in\mathbb{R}$. The sequence (a_n) is said to	Gaussian Elimination O(n³) is too expensive.	Let $\lambda \in R$ be the eigenvalue with the smallest	$D_{u}f(x, y) = f_{x}(x, y)a + f_{y}(x, y)b$ If the unit vector u makes an angle θ with the
Singular - A square matrix is non-singular if M	MNs: which have	R" - $\{0\}$, $x^tAx > 0$. Positive Semi_Definite iff:	Let A \(\) De a Symmetric matrix.	converge to its limit 1 lim . a = 1 if and only if:	. 1) Theorem of Convergence of Sequences Le	modulus. We consider the sequence (x,) tdefined by x. , =	positive x-axis, then we can write $u = \langle \cos \theta, \sin \theta \rangle$
or det(A) =/= 0. Else its singular.	Computing the Norms:	$\forall x \in \mathbb{R}^n - \{0\}, x^T A x >= 0.$ Theorem: Positive Definiteness in Terms of	elements are strictly positive	$\forall e > 0$, $\exists N \in N$ such that $\forall n > N$, $ a_n - l < e$	$M \in \mathbb{R}^{nn}$ and $c \in \mathbb{R}^n$. Let $\ .\ $ be a consistent norm on \mathbb{R}^{nn} , if $\ M\ \le 1$ then the sequence (x_i)	$A^{-1} x_k / \ A^{-1} x_k\ $ and $x_0 \in \mathbb{R}^n \setminus \{0\}$. Then,	θ and the formula becomes $D_{\mu}f(x, y) = f_{\nu}(x, y) \cos \theta + f_{\nu}(x, y) \sin \theta$
U is closed under addition and scalar	: = max absolute column sum (add up abs alues of each entry)	Eigenvalues: 1) Positive definite ⇔ all eigenvalues are	2) If A is positive semi-definite, all its diagonal elements are non-negative.	numbers converges:	defined by $x_{k+1} = Mx_k + c$ converges for any	$x_k \xrightarrow[k\to\infty]{v} \text{ and } \ A^{-1}x_k\ \xrightarrow[k\to\infty]{\frac{1}{k}}$	20) The Gradient Vector
multiplication: 1) For all u, v ∈ U, u + v ∈ U 2) For all u ∈ U and c ∈ R, cu ∈ U	2 = Largest Singular value of A (on a square	strictly positive	 If A is positive definite then max (A_{ij}, A_{ij}) > A_{ij} . If A is positive semi definite then max (A_{ij}, 	1) Find the limit l 2) Take e > 0	starting point x _o . So, to solve Ax+b we solve the equation	18.2) Shifts Let $A \in \mathbb{R}^{nn}$ and $s \in \mathbb{R}$. The matrix A-sI is the	$D_{y}f(x,y) = \langle f_{x}(x,y), f_{y}(x,y) \rangle$. u The first vector in the dot product is the
Vector Subspace: subset of a Vector Space	。 = Maximum absolute row sum for vector norms ⋅ _a and ⋅ _b :	2) Fusitive seriii del lilite \(\in \) elgerivaldes al e rioi	A_{ij}) >= $ A_{ij} $. Thus, the largest coefficient of A is	Find N∈N such that a_n - 1 < e for n > N, the value of N will usually depend on e, in an	$x = Mx + c$. Where $M = -G^{-1}R$, $c = G^{-1}b$.	shifted matrix and with the following property:	gradient vector, denoted as grad f or Vf. It is given by this formula:
			on its diagonal. 4) If A is positive definite then the 1x1, 2x2,	inversely proportional relationship	solution to the equation, thanks to fixed point	Let $A \in \mathbb{R}^{nn}$ and $s \in \mathbb{R}$. $\lambda \in \mathbb{R}$ is an eigenvalue of A	$\sqrt{\nabla f(x,y)} = \langle f_{\chi}(x,y), f_{\chi}(x,y) \rangle$
of its vectors.	$\forall A \in \mathbb{R}^{m \times n}, x \in \mathbb{R}^{n}. Ax _{b} \leq A x _{a}$	I) A A E K aliu AA E K ale both symmetric	mum matrices in the unner left corner of A	2) Cauchy Sequence: Let $(a_n)_{n\in\mathbb{N}} \in \mathbb{R}^n$ a sequence of real numbers. Then (a_n) is said to	theory would be when $x_{k+1} = x_k$	the same eigenvectors. Thanks to the shifted	= $\partial f/\partial x \mathbf{i} + \partial f/\partial y \mathbf{j}$ Tangent Plane: The tangent plane to a surface
basis is one with as many 0s, as possible, get A	Compatible: A matrix norm is compatible with the vector	and positive-semi definite. This gives rise to SVD - a more general	definite.	be a Cauchy sequence if and only if: ve > 0, ∃N ∈	1. We want G ⁻¹ Rx and G ⁻¹ b to be easy to	matrix, it is possible to focus on a particular eigenvalue of the matrix A.	at a given point is a flat plane that locally approximates the surface at that point, and is
pivot columns span as our simple basis.	orms if	decomposition than enactral which takes	We can quickly notice non-positive-semi definite matrices - if we have a symmetric	N such that $\forall n, m > N, a_n - a_m \le e$ This gives rise to the Cauchy Test: Let $(a_n)_{n \in \mathbb{N}} \in$	compute 2. We want IMI is small (for fast convergence	Theorem of Shifts: $A \in \mathbb{R}^{nn}$ is a diagonalisable	parallel to the plane spanned by the partial derivatives of the surface at that point. We
Dimension = num basis vectors St			matrix with a negative diagonal element, it cannot be PSD. Also: if we see a matrix	R ^N a sequence of real numbers. Then (a _n) is	to a solution).	and s e k. Suppose that the shifted matrix A -	have these for 3 valued functions.
	l ^{m×n} → R is:	Take arbritrary A ∈ R ^{mn} . SVD of A is any	element $ A_{ij} > \max(A_{ij}, A_{jj})$ then it's not PSD (e.g if the 3 rd element in the first row = 3.1 st in	convergent if and only if it is a Cauchy sequence	does we can do a change of basis to achieve it): 3) The ADLU Split We can write A = D + L + U	sI is non-singular (it is non-singular as long as is not an eigenvalue of A), then by performing inverse nower iterations, we can find the	direction of fastest increase of f.
Aso) Character of Desir Assessing	vector norm is compatible with its	decomposition of the form: A = USV ^T	(e.g if the 3 element in the first row = 3,1 in 1st row = 2, 3rd in 3rd row = 1, then we violate	3) Metric Spaces: A metric space is a tuple (S, d) where S is a non-empty set and	where D is the diagonal of A, L, U are the lower	inverse power iterations, we can find the	$\nabla F(x_0, y_0, z_0)$ is orthogonal to the level surface s of f through P .
of the other basis, and each representation is	ubordinate matrix norm AKA: for all A"" and	$U \in R^{mm}$ and $V \in R^{nn}$ are orthogonal.	rule 3 as above). Cholesky Decomposition any decomposition	d is a metric over S. d: S × S → R is such that:	and upper triangle parts of A respectively. 4) The Jacobi Method: 1) Set R = L+U	Thus we can use the Inverse Power Method and Shifts to discover all eigenvalues.	If we consider a topographical map of a hill and let $f(x, y)$ represent the height above sea level
Euclidean norm: magnitude of vector: root of M	AN is subordinate to the vector norm. Thus	$S \in \mathbb{R}^{mn}$ is a diagonal matrix, $S = diag(\sigma_1, \sigma_2, \sigma_3,, \sigma_n)$ where $p = min(m, n)$.	of a real square matrix Ann of the form A = LLT,	$\forall x, y \in S, d(x, y) \ge 0 \text{ (positivity)}$ $\forall x, y \in S, d(x, y) = 0 \iff x = y \text{ (reflexivity)}$	2) We want to solve, for some vector $b \in \mathbb{R}^n$ $Ax = b$. $Ax = b \Leftrightarrow (D+R)x = b \Leftrightarrow x = -D^{-1}Rx + D^{-1}b$	18.3) Rayleigh Quotient	at a point with coordinates (x, y) then a curve
Parallelegram Lauren u.s. Philipping. III.	he matrix norm is also compatible with the ector norm.	$\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_p \geq 0$ (We write largest first)	where L is a lower triangular matrix. If A is not positive semi-definite then it		$\Leftrightarrow x = Mx + c. (M = -D^{-1}R, c = -D^{-1}b).$	Let $A \in \mathbb{R}^{nn}$ and $x \in \mathbb{R}^{n} \setminus \{0\}$. Rayleigh quotient	of steepest ascent can be drawn as shown in the figure by making it perpendicular to all of the contour lines
$v ^2 = 2 u ^2 + 2 v ^2$		The values $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_p \geq 0$, are known as	is positive semi definite then it always has a	vector enace equipped with the norm	This splitting is good as x ^{k-1} is easily computed as:	on each x in our sequence of power iteration. When using an iterative technique to find the	Maxima and Minima:
cos(x) = u,v / u v	Conjugate of a Matrix: Compute the conjugate	Useful Properties of SVD:	Cholesky Decomposition. Also there exists a version of L with strictly positive diagonal	Let d be the function $d: \{ V * V \to \mathbb{R} : \}$	D ⁻¹ = reciprocal of each diag element as diags, F	REVal/EVec of a matrix the Rayleigh quotient	Local Maximum & Local Min; Absolute Max and Absolute Min - remember these terms.
2) Orthogonality Take vectors u,v Orthogonal. If	f a vector, scalar or matrix = its conjugate, hen its real.	1) SVD: A = USV ¹ If U = [u _v , u _m] and V = [v _v , v _n], then	elements. 12) QR Decomposition	d is a metric space. From here we consider the concepts seen in R	= the combination of the upper and lower triangle matrices, so: $Mx = -D^{-1}Rx =$	it gives access to an approximation of the	21) Gradient Based Optimization
Orthonormal: orthogonal A u &v's magnitudes St	tandard Inner Product <u, v="">: Of two vectors</u,>	$\mathbf{A} = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \sigma_2 \mathbf{u}_2 \mathbf{v}_2^T + \cdots + \sigma_r \mathbf{u}_r \mathbf{v}_r^T$	QR decomposition is a matrix factorisation	but generalised to a metric space (S, d).	$\left[\sum_{j\neq 1} a_{1,j} x_j\right] \left[-\frac{1}{a_{1,1}} \sum_{j\neq 1} a_{1,j} x_j\right]$	eigenvalue (rather than the modulus). 18.4) Deflation	A quadratic n variable function looks like: $Q(\mathbf{x}_{p}, x_n) = b_{11}x_1^2 + b_{12}x_1x_2 + \cdots + b_{i1}x_1x_i + \cdots + b_{nn}x_n^2$
Orthogonal Matrix: $A \in \mathbb{R}^{n \times n}$ is invertible with T_1	ı, v ∈ C" = ū¹v. 'he inner product is <u>conjugate</u> symmetric: <u,< td=""><td>2) rk A = num singular positive values in S 3) For A = R^{mn} A = largest singular value of A</td><td>method, decomposing our matrix A into an orthogonal matrix Q and an upper triangular</td><td>Convergence in a metric space, Let (3, u) be a</td><td>$-D^{-1}$ $\left \sum_{j\neq 2} a_{2,j} x_j \right = \left -\frac{1}{a_{2,2}} \sum_{j\neq 2} a_{2,j} x_j \right$:</td><td>We can use the power method to get the max eigenvalue. But it's a problem to get the next</td><td>We can write this more conveniently with</td></u,<>	2) rk A = num singular positive values in S 3) For A = R ^{mn} A = largest singular value of A	method, decomposing our matrix A into an orthogonal matrix Q and an upper triangular	Convergence in a metric space, Let (3, u) be a	$-D^{-1}$ $\left \sum_{j\neq 2} a_{2,j} x_j \right = \left -\frac{1}{a_{2,2}} \sum_{j\neq 2} a_{2,j} x_j \right $:	We can use the power method to get the max eigenvalue. But it's a problem to get the next	We can write this more conveniently with
A - A	tandard Norm on w. /=T-	The positive singular values of A = positive	matrix R such that A = QR. Using the Gram-Schmidt Process:	metric space and (a_n) a sequence in S. Then a_n is said to converge to a limit $l \in S$ iff:	$\left[\sum_{j\neq n} a_{n,j} x_j\right] = \frac{1}{a_{n,n}} \sum_{j\neq n} a_{n,j} x_j$	eigenvalue, as we have to perform a shift - but	vector with elements x_i , $1 \le i \le n$, and A is a
For which II which I have 0	ID \ O. if it is 0 then u = 0 Compley	square roots of the eigenvalues of AA or A A	a a are the vector columns of A: [aa].	$\forall e > 0, \exists N \in N \text{ such that } \forall n > N, d(a_i, l) < e$	(This makes sense as -D ⁻¹ is the negative of the	we don't actually know what to shift by. Instead we can deflate our matrix into an A ⁽ⁿ⁻¹⁾	symm. matrix with $a_{ij} = b_{ij} + b_{ji} / 2$ Notex _i x _i = x _i x _i . Eg:
01 - 11 11 1 1 1 1 1 1 1 1	a real fluctive can be complex. This flicans	 The span of the first r columns of U = im(A). The span of the last m-r columns is ker(A), where r is the rank 			multiply this by L+U, which is a matrix of	$^{1)(n-1)}$ matrix, removing the dominant eigenvector. Let λ_{ν} , λ_{n} be the eigenvalues of	$Q(x_1,x_2) = x_1^2 - ax_1x_2 + bx_2x_1 - cx_1x_3 + 5x_2^2$ is
		6) The Principal Axes and First Principal Axis	orthonormal basis (e_1e_n) s.t span $\{e_1,e_n\}$ = span $\{a_1,,a_n\}$.	(a.) is a Caucity sequence iii: ve / 0, iii e ii	elements except the diagonal). Since $x^{(k+1)} = Mx^{(k)} + c$, to solve $Ax = b$ we have	A, ordered according to their magnitude with	expressed as
$u_{\perp} v \Leftrightarrow u + v ^2 = u ^2 + v ^2$	Indomorphism: A linear man where the	of a Collection of Samples: Assume $A \in \mathbb{R}^{mn}$ represents m samples of n dimensional data.	2) Selecting Q and R: Set Q = [e ₁ ,, e _n]. It is	such that $\forall n, m > N, d(a_n, a_m) < e$ 7) Cauchy Test on a Metric Space: Let (S, d) be	$r^{(k+1)} = \frac{1}{2} \left(h - \sum_{k=1}^{n} a_{k} \cdot r^{(k)} \right)$	A Deing the dominant one. Define H as a non-	$\mathbf{x} = [\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_2]^{\mathrm{T}} \qquad A = \begin{bmatrix} 1 & \frac{1}{2} & -\frac{1}{2} \\ \frac{a+b}{2} & 5 & 0 \end{bmatrix}$
A map from one vector subspace to another is A	lutomorphism: bijective endomorphism.	The principal axes of A are the columns of V, i.e., v_i for $1 \le i \le r$. The first (principal) axis of		a metric space and (a) a sequence in S: if (a) is convergent, then it is a Cauchy sequence.	$a_{i,i} \left(\begin{array}{c} \sum_{j \neq i} a_{i,j} \\ \end{array} \right)$ Using the formula to compute it shown on the		
For all $u, v \in V$, $f(u + v) = f(u) + f(v)$ f:	$: \mathbb{R}^n \to \mathbb{R}^n \longrightarrow f \text{ injective (ker(f)=(0))} \longrightarrow f$	the collection of m samples is defined as: w(1)	=like so: $\begin{bmatrix} 0 & e_2a_2 & \cdots & e_2a_n \\ \vdots & 0 & \ddots & \vdots \end{bmatrix}$	8) Complete Space: Let (S, d) be a metric	other page.	$Hx_1 = \alpha e_1$, where $\alpha \in R \setminus \{0\}$ and e1=[1,0,, 0] ¹ is the first vector in the standard basis. We then have:	And then $x^T A x = Q(x_1, x_2)$
For all $u \in V$ and $c \in R$, $f(cu) = cf(u)$ A basis change matrix from u to v is a linear	uriective (im(f) = R ⁿ)	argmax w ^T A ^T Aw w =1 7) The Principal Axes of a Singular Value	[0 0 e _n a _n] 13) OR Algorithm	and only if every Cauchy sequence in S	5) Gauss-Seidel Method: Reuse the ADLU splitting, but do A = (D+L) + U.	$HAH^{-1}e_1 = HA x_1/\alpha = H \lambda_1/\alpha x_1 = \lambda_1e_1$	23.1) Gradient Descent: $\nabla f(\mathbf{x}^{(k)})$ is a gradient of an n-dimensional
map. Example: (map from 2 dimensions to 3)	et U ⊂ R ^m be an n dimensional subspace	Decomposition Assume A ∈ R ^{mn} represents m	Efficiently finds the eigenvalues of a matrix. 1) We start with our matrix A	converges to a value in S. 9) Completeness of L1, L2 and L. Norms: For	Then $Ax = b \Leftrightarrow (D+L)x = b - Ux \Leftrightarrow x = Mx + c$, Where $M = -(D+L)^{-1}U = (D+L)^{-1}b$	The first column of $HAH^1is[\lambda_1, 0, 0]^T$ and so $HAH^1 = [\lambda_1, b^T, 0 B]$, where	function f(x) at iteration k. The Gradient Descent Formula:
	enerated by an ordered basis (u_1, \dots, u_n) . Let $U = U \dots U$	samples of n dimensional data. Assume we have the following singular value	2) Use GS method to get the QR	any $k > 0$, R^k equipped with any of the three	D+L is a lower triangle matrix with a diagonal D, U is an upper triangle matrix.	Bis an (n-1) by (n-1) matrix with eigenvalues λ_2	Gradient descent* at iteration $k + 1$:
	'he orthogonal projection Π ₁₁ on U is the	decomposition for A: $A = USV^T$, where $V = [v_y,$	decomposition: A = QR. "3) Compute the product RQ, set A = RQ.	The space (C[a, b], $\ \cdot\ _{\infty}$) is complete.	And then $x^{k+1} = Mx^k + c \Leftrightarrow (D+L)x^{k+1} = -Ux^k + b$, An.	$\underline{x}^{(k+1)} = \underline{x}^{(k)} - \alpha \nabla f(\underline{x}^{(k)}), \ \alpha > 0$ is a fixed step size. (AKA, to compute the next point, we take the
For an f: K" → R" linear map, the Image Space:	$L: \mathbb{R}^m \to \mathbb{R}^m$	v_n] Then, v_1 is the first (principal) axis of A. It corresponds to the column vector of V	4) Repeat steps 2-3, until A converges to a	10) Only Cauchy Sequences Converge in Complete Metric Spaces: Let (S, d) be a	$\forall i \in [1, n] \sum_{i \in I} a_{i,j} x_j^{(k+1)} = - \sum_{i \in I} a_{i,j} x_j^{(k)} + b_i$	They also have the property: Let λ_2 be the second dominant eigenvector of	current point and subtract the gradient and some step size).
	N # (A) = 11(11 ^T 11) ^A 11 ^T	associated with the largest singular value of A. 8) The Principal Components (Scores of a	the eigenvalues of A. Properties of the OR Decomposition	complete metric space and (a.) a sequence in S.	So the i th element of x ⁽ⁿ⁺¹⁾ can be computed	A with $\lambda_2 = /= \lambda_1$. An eigenvector x, of A corresponding to	Steepest Descent is a faster version - as we minimise what we have left.
the N space that is 0.	$m(\Lambda) + ker(\Lambda^{T})$	Selection of Samples)	1) For $k \in \mathbb{N}$ A is similar to A	44) Fixed Doint: Lot C he a non-empty cot and f	thanks to A, x ", b and the k " elements of x "	eigenvalue λ_2 is: $x_2 = H^1[\beta z_2]$	minimise what we have left. $\underline{x}^{(k+1)} = \underline{x}^{(k)} - \alpha_k \nabla f(\underline{x}^k)$
R with Mat $A \in R$: $G(R) = G(R)$	Inique Vector Decomposition: Let $A \in \mathbb{R}^{mn}$ For Il vectors $b \in \mathbb{R}^m$, there exists unique $b \in \mathbb{R}^m$	principal components or scores or A.	2) For $k \in \mathbb{N}$, we have $A_k = Q_k^{-1}AQ_k$ from above. So, A_k and A have the same eigenvalues and v is	$S \rightarrow S$ a function from S to itself. $p \in S$ is a fixed spoint if: $f(p) = p$	recent quantities, the convergence is faster with the GS method.	With $\beta = \mathbf{b}^{T} \mathbf{z}_{2} / \lambda_{2} - \lambda_{1}$ and \mathbf{z}_{2} is a dominant	$a_k = \operatorname{argmin} f(x^{(k)} - \alpha \nabla f(x^k))$
4) Eigenvalues and Eigenvectors Eigenvalues in	$m(A)$, and unique $b_i \in ker(A^1)$ such that; $b = b_i +$	9) Generalised Eigenvectors Take a square matrix A R ⁿⁿ	an eigenvector of A, if and only if Q,v is an	and f: S → S. f is called a contraction of S (or a	These methods are only guaranteed to	eigenvector of B 19) Functions of Several Variables	Graphically, we compute the gradient at our point, then go the opposite direction by step
= solutions to the Char, Polynomial (CP) (A-\l), D	h.	Generalised Fidenvector: A nonzero vector V =	eigenvector of A 3) The sequence (A,) converges to an upper	contracting map) if there exists 0 ≤ α < 1 called the contraction constants.t:	converge as A is strictly row diagonally dominant – AKA $\forall i, a_{i_i} > \sum_{j \neq i} a_{i_j} $	Functions of N Variables are rules which assign to each ordered tuple of real numbers	size a, and repeat. For quadratic functions of the form
Spectrum: set of EigVals of a Mat. Tr(A) = sum Le of eigenvalues.	olution for $x \in \mathbb{R}^n$, i.e., $b \in / \text{im}(A)$.	C of rank m associated with eigenvalue A	and the second s	$\forall x. y \in S. d(f(x), f(y)) \leq \alpha d(x, y).$	1) Influence of the Condition Number on Convergence: These techniques converge	(x ₁ , x ₂ , x _n) a unique real number denoted by	$f(x) = 1/2x^{T}Qx - b^{T}x$ where
Multiplicity (AM) of an eigenvalue = num times	SM finds $x \in \mathbb{R}^n$ such that	Any eigenvector associated with its eigenvalue	4) (if A is symmetric) The eigenvalues of an	complete metric space and f a contraction of S.	faster for low condition numbers. If big, it	$f(x_1, x_2 x_n)$. Range = set of values f takes, domain = set of	Q ⁱⁱⁱⁱ is real symmetric positive definite matrix, b ⁿ is a real vector, and x ⁿ is a real vector the
of the eigenspace of eigenvalue.	AX - D ₂ , or equivalently AX - D ₂ is minimised. Av.b is minimised when	An eigenvector of A associated with A and	elements, So, the OR decomposition is easily		2) Irreducible: A matrix is irreducible if it can'	values taken by params. The graph of f is the test of all points (x, y, z) in \mathbb{R}^{n+1} .	gradient of the function is: $\nabla f(x) = Qx - b$, Hessian = $\nabla^2 f(x) = Q$.
1 <= AM <= GM <= Dim of Matrix.	$\mathbf{A}\mathbf{x} \cdot \mathbf{b}_{i} \ _{2}^{2} = 0 \Leftrightarrow \mathbf{A}\mathbf{x} = \mathbf{b}_{i}$	zero vector.	findable, and from this, we can converge it to an upper triangle matrix, from which	14) Uniqueness of Solutions of Differential	take the form: $\begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}$	19.1) Level Contours	With this the ontimal sten size a at iteration k
eigenvectors.		If A has a generalized eigenvector of rank 1 associated with λ , then when you multiply it by		solutions: there exists a unique function x: (t.	3) If A is weakly row diagonally dominant and	The level curves of a function on two variables are the curves with equation	IS: $a_k = (g^n)^*(g^n) / ((g^n)^n) H g^n$ $e^{g^k} = \mathbb{F}f(y) \text{ and } H = 0 = \mathbb{F}^{2}f(y)$
similar Matrices: Two matrices A and B are similar if there is a matrix P such that A= PBP 1 are Cayley Hamilton Theorem Take CP of A; take W	nd a is a real vector of dimension n. Ve want to find the model of best fit with	A - AI, the result will be another eigenvector	14) Application of the OR Decomposition to	v(+) = v	irreducible, Jacobi and G-S still converge. 18) Iterative Techniques for computing	f(x, y) = k, where k is a constant (in the range of f) A level curve $f(x, y) = k$ is the set of all points	
A as lambda, we get the 0 matrix. We find	arameters $s \in \mathbb{R}$ and $s \in \mathbb{R}^n$ so the sum of the	associated with λ . If A has a generalized eigenvector of rank 2	Symmetric Matrices If A is symmetric, so are all the A.	$\int_{-\infty}^{\infty} \frac{dx}{dt} = \dot{x}(t) = f(x, t)$	Eigenvectors and Eigenvalues	in the domain of f at which f takes on a given	
inverses this way: A = $\binom{1}{2} - \binom{1}{1}$ CP: x^2 -2x+3= 0.	rrors squared is minimized:	associated with λ , then when you multiply it by	If A is symmetric, the algorithm converges,	$(x(t_0) = x_0)$ Where d = min(a,b/(B+bc)) with B =		value k. These look like rings at a height k, around the parts of the graph which assume that value.	
Then: $-A^2+2A=3I \Leftrightarrow A^*1/3(-A+2I) = I$ $A^{-1}=1/3(-A+2I) = I$. So $A^{-1}=1/3(2I-A)$		a rank 1 generalized eigenvector and another eigenvector associated with \(\lambda\). This pattern	hand the side of the section of A and in afficial the	$\sup\{ f(x,t) : x-x_0 < b, t-t_0 < a\} > 0$	The Dominant Eigenvalue of A is the eigenvalue with the largest modulus, a	Like contour maps, the surface is steep where	
The Rank of a Matrix = Rank of its Transpose.	Ve require s₀+s.a₁≈y₁	continues for higher-rank generalized	columns of Q k for large enough k	Condition numbers are the measure of	dominant eigenvector is an eigenvector of a	level curves are close. 19.2) Partial Derivatives	
provable. Σ	$\lim_{\substack{i=1\\ i\neq j}} (s_0 + s * a_i - y_i)^2 = Az - y ^2,$	eigenvectors. Example:		sensitivity of a system to small fluctuations in input.	Power Iteration Theorem:	For a function of two variables, the partial derivatives are denoted by	
Orthogonal transformations do not change the 6	Spectral Decomposition of Symmetric	Take A = $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ CP: $(1-\lambda)^3$,		$ s(d) - s(d + \epsilon) $	Let $A \in \mathbb{R}^{nn}$ be a diagonalisable matrix with eigenvalues of distinct modulus. Let $\lambda \in \mathbb{R}$ be	$f_x(x, y) = \lim_{h\to 0} f(x+h, y) - f(x,y)/h$	
which are perpendicular to each other	roperties of Orthogonal Matrices:	$\lambda_1 = 1$ (with AM = 3). We end up with two linearly indep EVecs: $(0, 1, -1)^T$, $(1, 0, 0)^T$. There		$\kappa(P) = \max_{\epsilon} {\ \epsilon\ }$	the dominant eigenvalue.	$f_y(x, y) = \lim_{h\to 0} f(x, y+h) - f(x, y)/h$ (AKA just differentiate with respect to 1 and	
prata T	reserve Euclidean length of vectors.	is one more EVec $v_3 = (0, 0, 1)^T$. We compute		$ d $ $ s(d) - s(d + \epsilon) $	We consider the sequence (x_i) defined by $x_{i+1} = Ax_i / Ax_i $ and $x_i \in R^n \setminus \{0\}$.	treat the other as a constant). Geometrically, the partial derivatives of a 2	
B'A' For a matrix to be diagonalisable, the number	$u \in \mathbb{R}^{n}$, $ Ou _{2} = u _{2}$	10) Jordan Normal Form		3) Condition Numbers on Square Matrices	Then, as $k \rightarrow infinity$, $x_k \rightarrow v$, and $ Ax_k \rightarrow \lambda $. Thi	svalued functions are tangent lines that are constant to the dimension which they "ignore"	•
	, or mosonar manaror manura preserve lile	AND AND HELD THE PARTY OF THE P		Let A be a non-singular matrix. The Condition	convergence to v is not rigorous - if λ is	constant to the annension which they lettore	
of eigenvectors must be equal to its dimension. (Diagonalizable matrices are always square)		A matrix is in Jordan Normal Form if it is of		Number of A, $\kappa(A) = A^{-1} A = Relative$	negative then we oscillate between v and -v.	(as seen by T_1 and T_2 which are tangents to C_1	
of eigenvectors must be equal to its dimension. (Diagonalizable matrices are always square). An Eigenvector scales a matrix by its	nagnitude of the angle between vectors \mathbf{u}_i $\mathbf{v} \in \mathbb{R}^n$, $\sqrt{uQv-uv}$.) The transformations performed by an rthogonal matrix can be interpreted as a	A matrix is in Jordan Normal Form if it is of this form: $ \begin{bmatrix} h_{i_1}(\lambda_i) & \cdots & 0 \\ \vdots & \ddots & \vdots \end{bmatrix} $		Number of A, $\kappa(A) = \ A^{-1}\ \ A\ = Relative$ Condition Number.	negative then we oscillate between v and -v.	(as seen by T_1 and T_2 which are tangents to C_1 and C_2 (both curves are in the range) at P .	