

Error Bound for Approximate Eigenvalues Using Lanczos Iteration

10 points

In this problem, we will examine, for a symmetric matrix A, an error bound on an eigenvalue obtained through Lanczos iteration, compared with a true eigenvalue of A. In particular, this error bound relates the angle of the projection of the true eigenvector associated with A to the closest eigenvector found in the Krylov subspace (A, \boldsymbol{v}) , where \boldsymbol{v} is some arbitrary vector. Let K_k represent the Krylov subspace formed by the symmetric matrix $A \in \mathbb{R}^{n \times n}$ with some vector, \boldsymbol{v} , such that $K_k = \operatorname{span}(\boldsymbol{v}, A\boldsymbol{v}, A^2\boldsymbol{v}, \dots, A^{k-1}\boldsymbol{v})$. Furthermore, let the matrix $Q_k \in \mathbb{R}^{n \times k}$ be an orthogonal matrix that spans this same Krylov subspace that is the collection of vectors $(\boldsymbol{q}_1, \boldsymbol{q}_2, \dots, \boldsymbol{q}_k)$.

Consider finding the eigenvalues of the matrix $T_k=Q_k^TAQ_k$. Let $A{m x}=\lambda{m x}$ and $\|{m x}\|_2=1$. In this problem, we will show that T_k has an eigenvalue μ such that

$$|\lambda - \mu| \le ||A||_2 \tan \theta,$$

where θ represents the angle between the eigenvector and the space spanned by the Krylov space.

- 1. Let $m{x}_\in=Q_kQ_k^Tm{x}$ and $m{x}_\perp=(I-Q_kQ_k^T)m{x}$. Show that $Am{x}=Am{x}_\in+Am{x}_\perp$.
- 2. From Part 1, we can note that $Am{x}_{\in}+Am{x}_{\perp}=\lambdam{x}$. Using this, show that

$$T_k Q_k^T oldsymbol{x} - \lambda Q_k^T oldsymbol{x} = -Q_k^T A oldsymbol{x}_\perp.$$

3. Let H be symmetric and $Holdsymbol{z}-\muoldsymbol{z}=oldsymbol{r}$ and $oldsymbol{z}
eq 0$. Show that

$$\min_{\lambda \in \mathit{eig}(H)} \!\! |\lambda - \mu| \leq rac{\|m{r}\|_2}{\|m{z}\|_2}.$$

Hint: Consider the eigendecomposition of $H=U\Lambda U^T$, where Λ is a diagonal matrix of eigenvalues and U is a matrix of eigenvectors of H.

Hint 2: As an intermediate step, show that $\|m{r}\|_2 = \|(\Lambda - \mu I)U^Tm{z}\|_2$.

4. Now, using the results from parts 2 and 3, prove that

$$|\lambda - \mu| \le ||A||_2 \tan \theta.$$

Review uploaded file (blob:https://relate.cs.illinois.edu/7758a2be-8232-4462-9c30-ca3dcc39d179) · Embed viewer

Uploaded file*

选择文件 未选择任何文件

Your answer is correct.

1. We will approach this part by expanding out $Aoldsymbol{x}_{\in}+Aoldsymbol{x}_{\perp}$.

$$egin{aligned} Aoldsymbol{x}_{\in} + Aoldsymbol{x}_{\perp} &= AQ_kQ_k^Toldsymbol{x} + A(I - Q_kQ_k^T)oldsymbol{x} \ &= AQ_kQ_k^Toldsymbol{x} + Ax - AQ_kQ_k^Toldsymbol{x} \ &= Aoldsymbol{x} \end{aligned}$$

Hence $Aoldsymbol{x} = Aoldsymbol{x}_{\in} + Aoldsymbol{x}_{\perp}$.

2. Starting from $A {m x}_{\in} + A {m x}_{\perp} = \lambda {m x}$, we can see that this is equivalent to $A Q_k Q_k^T {m x} + A {m x}_{\perp} = \lambda {m x}$. We can then multiply on the left Q_k^T to both sides to get $Q_k^T A Q_k Q_k^T {m x} + Q_k^T A {m x}_{\perp} = Q_k^T \lambda {m x}$. Then, using the fact that $T_k = Q_k^T A Q_k$, we now have

$$egin{aligned} T_k Q_k^T oldsymbol{x} + Q_k^T A oldsymbol{x}_\perp &= Q_k^T \lambda oldsymbol{x} \ \Rightarrow T_k Q_k^T oldsymbol{x} - \lambda Q_k^T oldsymbol{x} &= -Q_k^T A oldsymbol{x}_\perp. \end{aligned}$$

3. Since H is symmetric, it will have orthogonal eigevectors and we can write its eigendecomposition as $H=U\Lambda U^T$.

$$(H - \mu I) oldsymbol{z} = oldsymbol{r} \ \Rightarrow (U \Lambda U^T - \mu I) oldsymbol{z} = oldsymbol{r} \ \Rightarrow U (\Lambda - \mu I) U^T oldsymbol{z} = oldsymbol{r} \ \Rightarrow (\Lambda - \mu I) U^T oldsymbol{z} = U^T oldsymbol{r}$$

We can take the norm of both sides of this expression to obtain

$$\|oldsymbol{r}\|_2 = \|(\Lambda - \mu I)U^Toldsymbol{z}\|_2.$$

Because this equality holds for all eigenvalues λ of H, we can write that the right-hand side is bounded from below by the smallest difference between an eigenvalue λ and the approximate eigenvalue μ .

$$\Rightarrow \|m{r}\|_2 \geq \min_{\lambda \in \operatorname{eig}(H)} \!\! |\lambda - \mu| \cdot \|m{z}\|_2$$

Therefore,

$$\min_{\lambda \in eig(H)} \!\! |\lambda - \mu| \leq rac{\|m{r}\|_2}{\|m{z}\|_2}.$$

4. If we consider the result from part 2, we can let $\pmb{z}=Q_k^T\pmb{x}$. Since A is symmetric, $H=T_k$ will also be symmetric. We can now apply the statement in part 3 which gives us that

$$|\lambda-\mu| \leq rac{\|Q_k^T A oldsymbol{x}_\perp\|_2}{\|Q_k^T oldsymbol{x}\|_2}.$$

From the diagram, we see that $\|m{x}_{\in}\|_2=\cos heta$ and $\|m{x}_{\perp}\|_2=\sin heta$. Furthermore, $\|m{x}_{\in}\|_2=\|Q_kQ_k^Tm{x}\|_2=\|Q_k^Tm{x}\|_2$, since Q_k is orthogonal. Therefore,

$$egin{aligned} |\lambda - \mu| & \leq & rac{\|Q_k^T A m{x}_\perp\|_2}{\|Q_k^T m{x}\|_2} \ & \leq & rac{\|A\|_2 \|Q_k^T\|_2 \|m{x}_\perp\|_2}{\|m{x}_\in\|_2} \ & = & \|A\|_2 rac{\sin heta}{\cos heta} \ & = & \|A\|_2 an heta \end{aligned}$$