EEST N° 5 "Roberto Noble"

MÓDULO TEÓRICO – PRÁCTICO DE TALLER - CICLO BASICO

LENGUAJE TECNOLÓGICO NIVEL 3

Jefe de departamento: Prof. ZELAYA Marcelo

IRAM 4503: Letras y números

Establece los tamaños y características de las letras y números a utilizar en dibujo técnico.

- Alturas y espesores: Las letras mayúsculas, minúsculas, los números y los renglones se relacionarán entre sí a partir de la altura nominal h (altura de la letra mayúscula).

Partiendo de una altura nominal 'h" se determinarán, para las letras y números, las características indicadas en la tabla siguiente:

Características	Cota	Espesor		
Caracteristicas	Cota	"A"	"B"	
Altura de la letra mayúscula	h	1 h	1 h	
Altura de la letra minúscula	С	0,7 h	0,7 h	
Distancia entre las letras, según el espacio disponible	a	0,14 h	0,2 h	
Distancia entre renglones	b	1,6 h	1,6 h	

- Inclinación: La inclinación de las letras y números con respecto a la línea sobre la cual se trazan, será 75° ó 90°.

- Ancho: El ancho de las letras y números, tomando como base al cuadriculado de las figuras siguientes, podrá variarse a voluntad, manteniendo el mismo ancho para cada caso en particular (frase, lámina, etc.).

Inclinación de 75°

Inclinación de 90°

IRAM 4502: Las líneas

Los tipos de líneas, la proporción de sus espesores y su aplicación, serán los indicados en la siguiente tabla.

LÍNEAS						
TIPO	REPRESENTACIÓN	DESIGNACIÓN	ESPESOR	PROPOR- CIÓN *	APLICACIÓN	
Α		Continua	gruesa	1	Contornos y aristas visibles	
В		Continua	fina	0,2	 Línea de cota y auxiliares Rayados en cortes y secciones Contornos y bordes imaginarios Contornos de secciones rebatidas, interpoladas, etc. 	
С					Interrupción en áreas grandes	
D					Interrupción de vistas y cortes parciales	
E		De trazos	media	0,5	Contornos y aristas ocultos	
F		Trazo largo y trazo corto	fina	0,2	 Ejes de simetría Posiciones extremas de piezas móviles Líneas de centros y circunferen- cias primitivas de engranajes 	
G		Trazo largo y trazo corto	gruesa y media	1 0,5	Indicaciones de cortes y secciones	
Н	<u>-</u>	Trazo largo y trazo corto	gruesa	1	Indicación de incremento o dema- sías	

Las dimensiones de los trazos y los grupos están indicadas en la siguiente tabla.

		GRUPOS				
	Dimensiones aproximadas de los trazos, según (e, d, c, b y a)	е	d	с	b	a
Α		1,2	1,0	0,8	0,6	0,4
В		0,5	0,2	0,1	0,1	0,1
С	2-3-5-7 y9	0,5	0,2	0,1	0,1	0,1
D		0,5	0,2	0,1	0,1	0,1
E	1 3-4-6-8 y 10	8,0	0,5	0,4	0,4	0,2
F	10-15-20-25 y 30 1 2-3-4 y 5	0,5	0,2	0,1	0,1	0,1
G	10-15-20-25 y 30 1 2-3-4 y 5	1,2 0,8	1,0 0,5	0,8 0,4	0,6 0,4	0,4 0,2
н	10-15-20-25 y 30 1 2-3-4 y 5	1,2	1,0	8,0	0,6	0,4

<u>LENGUAJES TECNOLÓGICOS 3 Profesores: Rodriguez F. Zelaya M. – Pág. 4</u>

- Línea continua "A": Se utilizara para representar los contornos y las aristas visibles.
- Línea continúa "B": Se utilizara para representación de líneas de cota, líneas auxiliares de cota, rallado en secciones y cortes, diámetro interior de rosca, etc.
- Línea "C": Se utiliza como línea de interrupción cuando el área a cortar sea grande.

- Línea "D": Se utilizara para interrumpir el dibujo de vistas y para limitar el área de cortes parciales.
- Línea "E": Se utilizara para la representación de contornos y aristas no visibles y en todos los casos en que su uso se considere conveniente

- Línea "F": Se utilizara para la representación de ejes, líneas de centros y circunferencias primitivas de engranajes, y posiciones extremas de piezas móviles

- Línea "G": Se utilizara para la indicación de secciones y cortes.

IRAM 4504: Formatos

El formato es el recuadro dentro del cual se realizan todos los dibujos técnicos. Estos recuadros o formatos están normalizados, es decir, están sujetos a determinadas normas o reglas que se deben seguir para su elaboración.

A5- 149mm x 210mm

A4- 210mm x 297mm

A3- 297mm x 420mm

A2- 420mm x 594mm

A1- 594mm x 841mm

A0- 841mm x 1189mm

Ejemplo – Formato A4

IRAM 4508: Rótulo

Cada hoja del dibujo llevará un recuadro destinado al rótulo, que debe ubicarse dentro de la zona de ejecución del dibujo. En el mismo se indican la denominación y la clave o número de lo representado, las siglas o nombre del propietario del plano, la fecha, la escala y demás datos referentes a la confección e identificación de la lámina.

Ejemplo de Rótulo

IRAM 4513: Cotas

Las cotas se utilizan para representar las magnitudes o medidas exactas del producto representado. Se trata de líneas auxiliares sobre las que se anotan las medidas en valores numéricos.

- Línea de cota: paralela a la medida que se acota.
- Flecha de cota: los extremos de la línea de cota terminan con flechas, formadas por un triángulo isósceles, con una relación b/h de 1:4.
- Línea auxiliar de cota: dos líneas auxiliares paralelas entre sí, y perpendiculares a la línea de cota. Se prolongan 2mm desde la línea de cota.

Acotar es indicar mediante cotas las medidas que tiene el objeto que se representa.

Métodos para acotar

- Acotación en cadena: una cota a continuación de la otra.
- Acotación en paralelo: las líneas de cota de disponen paralelamente, partiendo de una misma línea auxiliar de cota.

acotación en cadena

acotación en paralelo

- Acotación combinada: combinación de acotaciones en cadena y en paralelo.

IRAM 4505: Escalas

La representación de objetos a su tamaño real o natural no siempre es posible, por ejemplo cuando son muy grandes o cuando son muy pequeños. En el primer caso, porque requerirían formatos de dimensiones poco manejables y en el segundo, porque faltaría claridad en la definición de los mismos.

Esta problemática la resuelve la **escala**, aplicando la ampliación o reducción necesarias en cada caso para que los objetos queden claramente representados en el plano del dibujo.

La escala es la relación entre la dimensión dibujada respecto de su dimensión real, y se expresa mediante una fracción, es decir:

En las escalas lineales la unidad de medida del numerador y del denominador es la misma, debiendo quedar entonces expresada sólo por la relación entre números, simplificada de tal manera que el menor de ambos sea la unidad (número 1).

Ej:
$$\frac{10cm}{500cm} = \frac{1 cm}{50cm} = \frac{1}{50} = 1:50$$

Por ejemplo, una escala 1: 50 quiere decir que algo que en la realidad mide 500cm, en el dibujo se representa de 10cm.

Natural, real o 1:1: el objeto de representa con dimensiones iguales a la realidad.

<u>De Reducción:</u> el objeto se representa con dimensiones menores a la realidad. El denominador es mayor que el numerador.

Se utiliza cuando el objeto a representar es demasiado grande para una lámina (por ejemplo, planos de construcción).

Escalas usuales: 1:2, 1:5, 1:10, 1:25, 1:50, 1:75, 1:100, 1:125, 1:200, 1:250, 1:500, 1:1000, 1:5000, etc. Cuanto más grande es el denominador, más chico resulta el dibujo.

<u>De Ampliación:</u> el objeto se representa con dimensiones mayores a la realidad. El numerador es más grande que el denominador.

Se utiliza para piezas pequeñas o para detalles.

Escalas usuales: 2:1, 5:1, 10:1, 20:1, 50:1.

El escalímetro es una regla graduada con diferentes escalas: 1:10, 1:20, 1:25, 1:50, 1:75, 1:125. Estas escalas son válidas igualmente para valores que resulten de multiplicarlas o dividirlas por 10, así por ejemplo, la escala 1:25 es utilizable en planos a escala 1:25 0 ó 1:2500, etc.

En el rótulo del dibujo se deben indicar todas las escalas utilizadas en el mismo, destacando la escala principal con números de mayor tamaño. Las escalas secundarias se indicarán junto a los dibujos correspondientes.

escalímetro

Ejemplos:

- Se desea representar en un formato A3 la planta de un edificio de 60 x 30 metros.
 La escala más conveniente para este caso sería 1:200 que proporcionaría unas dimensiones de 30 x 15 cm, muy adecuadas al tamaño del formato.
- 2) Se desea representar en un formato A4 una pieza de reloj de dimensiones 2 x 1 mm. La escala adecuada sería 10:1
- 3) Sobre una carta marina a E 1:50000 se mide una distancia de 7,5 cm entre dos islotes, ¿qué distancia real hay entre ambos?

Se resuelve con una sencilla regla de tres:

si 1 cm del dibujo →50000 cm reales

7,5 cm del dibujo \rightarrow X cm reales

 $X = 7.5 \times 50000 / 1...$ Esto da como resultado 375.000 cm, que equivalen a 3,75 km.

Acotaciones-Normas IRAM 4513

los elementos que componen la acotación son: cota linea de cota linea de referencia o auxiliar de cota flecha de cota

COTA

Es la expresión numérica del valor de una medida en el dibujo

LINEA DE COTA

Es la linea con la cual se indica la medida a la que corresponde una cota.

Puede ser linea continua o interrumpida. En el primer caso la cota se coloca sobre la linea y si es interrumpida, entre ambos trazos. La linea de cota sera paralela a la dimensión de dicha cota y de igual longitud.

La separación que debe tener la linea de cota, entre si o con respecto al dibujo no debe ser menor que la altura de los numeros. Cuando las lineasde cota sean horizontales, las cotas se colocaras sobre las mismas. Cuando sean verticales las lineas de cota, se ubican de forma que se lean haciendo girar 90º la lamina en sentido horario.

LINEA DE REFERENCIA O AUXILIAR DE COTA

Es la linea perpendicular a la de cota y que sirve para limitarla

FLECHA DE COTA

Los extremos de la linea de cota termina con flechas. Estas se dibujan con forma de triángulos isosceles ennegrecido, cuya base y altura guardan una relación de 1:4. Las flechas en el caso de lineas de cota inclinadas indicanla forma de colocar la cota: si la flecha de la derecha esta a mas altura, se coloca de forma tal que se lea girando el dibujo en sentido horario; y si la de la izquierda es la flecha mas alta, en sentido anti horario. Cuando el espacio a acotar sea reducido, las flechas se trazaran exteriormente y la cota se colocara dentro del espacio o fuera del mismo según la superficie disponible.

ejemplo de acotaciones

Acotaciones en cadena, paralelo y combinadas

Proyección de un punto

Los puntos pueden situarse en cualquier parte del espacio, aunque en este ejemplo, trabajaremos con un punto situado en el primer cuadrante de proyección, definido por el Plano Vertical (PV) y el Plano Horizontal (PH), ayudado del Plano de Perfil (PP), según lo recogido en el apartado Proyecciones.

Todo punto tiene dos proyecciones que están unidas mediante una línea de referencia, perpendicular a la Línea de Tierra (LT) y se cortan en ella.

Cota

Es la distancia del punto a proyectar (punto A) al plano horizontal. Podemos entender que es la "altura" del punto sobre el PH.

Esto implica que la cota será la medida existente entre la proyección vertical del punto a' y la Línea de Tierra (LT).

Alejamiento

De la misma forma, el alejamiento es la distancia del punto A al plano vertical. Lo que implica que será la distancia de la LT a la proyección horizontal del punto (a").

Perspectiva caballera del cubo

Aquí observamos la perspectiva caballera del cubo con una cara en verdadera forma y la profundidad del eje y reducido en este caso al 50%. El ángulo se empieza a contar a partir del eje x hacia la derecha, en este caso particular se ha escogido 315º sexagesimales. La pieza por encima de 180º se observa como si se estuviera viendo desde abajo.

Perspectiva isométrica

La perspectiva isométrica es una técnica de representación gráfica de un objeto tridimensional en dos dimensiones, donde los tres ejes coordenados ortogonales al proyectarse forman ángulos iguales de 120º cada uno sobre el plano. Las dimensiones de los cuerpos paralelas a los ejes se representan a una misma

escala.

El nombre de la perspectiva, isométrica, deriva del griego y significa igual medida. Esto debido a que la escala de medición es la misma a lo largo de cada eje, cosa que no sucede con las otras perspectivas. La perspectiva isométrica tiene la ventaja de permitir la representación a escala, pero sin reflejar la disminución aparente que produce la distancia entre el ojo humano y el objeto.

Los ejes de las X y de las Y se sitúan a 30º de la línea horizontal, pues son los que corresponden al plano horizontal. El eje Z se sitúa perpendicular la línea del horizonte, formando ángulos de 60º con los anteriores.

Para comenzar, situamos los ejes coordenados:

- El eje OX, formando un ángulo de 30° con la horizontal, hacia la derecha.
- El eje OY, formando un ángulo de 30° con la horizontal, hacia la izquierda.
- El eje OZ, formando un ángulo de 90° con la horizontal, dirigido hacia arriba.

Para el trazado de los ejes se necesita un simple juego de escuadras.

La perspectiva isométrica no es un tipo de representación realista, ya que representa los objetos sin distorsionarlos, mientras que nosotros los percibimos distorsionados por la distancia; es decir, un mismo objeto lo percibimos pequeño si está lejos y grande si está cerca. Otra característica de este sistema es que siempre vamos a representar los objetos como vistos desde arriba.

Cortes y secciones

Nos podemos encontrar con piezas complicadas que tienen unas zonas interiores difíciles de representar. Para poder representar estas piezas, aparecen los cortes y las secciones.

Los cortes y secciones se realizan para conseguir mayor claridad en la representación de las piezas que tienen zonas ocultas.

También se practicarán cortes o secciones cuando exista la necesidad de acotar esas zonas ocultas en las piezas.

Representación de un corte

Como podemos observar las líneas ocultas (representadas con línea de trazos) correspondientes al alzado han sido eliminadas, consiguiendo por tanto un plano mucho más limpio y claro, siguiendo el principal criterio del dibujo industrial que debe ser la claridad y facilidad de la interpretación.

El plano de corte se representa con una línea de eje (línea y punto), resaltado con dos trazos gruesos al final y con dos flechas indicando la dirección de proyección del corte, además de la utilización de letras mayúsculas para identificar y denominar el corte. Si el plano de corte es evidente, no haría falta representarlo.

Ir arriba

Diferencia entre corte y sección

Un corte se tendrá que representar con todas las líneas de contorno que contiene la pieza, una vez que eliminamos (imaginariamente) la parte que queda entre el plano de corte y el observador, mientras que una sección es la representación del plano de la pieza por donde pasa el plano de corte. Pensando en un aserrado, sería el trozo de pieza por donde pasase la sierra. Aprovechando el ejemplo anterior, tenemos:

el corte A-A se verá la superficie de corte de la pieza y el contorno posterior de la pieza. la sección A-A, se verá unícamente la parte de la pieza por donde pasa el plano de corte.

Ir arriba

Rayado

Hemos visto cómo los planos afectados por el corte o sección se resaltan mediante un rayado fino y de líneas paralelas, realizadas con 45º de inclinación con respecto a los ejes de simetría (fig 2.2) o al contorno principal de la pieza (fig 2.1).

La separación entre las líneas de rayado dependerá de tamaño de la pieza, pero nunca deberá ser inferior a 0,7 mm. ni superior a 3 mm. (fig 3).

Este rayado debe realizarse según se indica en las normas UNE 1-032-82 o ISO 128. En el apartado RAYADO, encontrareis las normas de para el rayado en cortes y secciones.

Las vistas (IRAM 4501-2)

Proyección ortogonal, sobre un plano, de un cuerpo o pieza situado entre el plano y el observador.

Vista fundamental

Proyección del cuerpo o pieza sobre uno de los planos del triedro fundamental, planos "A", "B" y "C". Es la vista que se elige por permitir una mejor visualización de las características generales.

Vistas principales

Vistas del cuerpo o pieza sobre planos paralelos a los del triedro fundamental, situados a la izquierda, arriba y adelante del cuerpo, planos "D", "E" y "F".

Vistas auxiliares

Las que se obtienen al proyectar el cuerpo o pieza, o partes de ellos que interesen especialmente, sobre planos no paralelos a los del triedro fundamental.

Determinación de vistas

De acuerdo con el triedro fundamental y los planos paralelos al mismo, se obtienen tres vistas fundamentales, "A", "B" y "C", y tres vistas principales, "D", "E" y "F". Las flechas indican el sentido de observación perpendicular a cada plano de proyección.

Vista anterior. La que se obtiene al observar el cuerpo o pieza de frente, considerando esta posición como la inicial del observador "A".

Vista superior. La que se obtiene al observar el cuerpo o pieza desde arriba "B".

Vista lateral izquierda. La que se obtiene al observar el cuerpo o pieza desde la izquierda de la posición inicial del observador "C".

Vista lateral derecha. La que se obtiene al observar el cuerpo o pieza desde la derecha de la posición inicial del observador "D".

Vista inferior. La que se obtiene al observar el cuerpo o pieza desde abajo "E".

Vista posterior. La que se obtiene al observar el cuerpo o pieza desde atrás "F".

Representación de un sillón

Supongamos que nos imaginamos un sillón, y debemos representarlo, por medio de un dibujo para que otros puedan interpretar nuestro diseño.

La forma más utilizada para la representación de la información técnica se llama Proyección ortogonal, o simplemente se la conoce como vistas.

En este tipo de dibujo las medidas son reales o en escala. Es fácil de dibujar, pero no de interpretar: Se debe respetar rigurosamente la presentación y la correspondencia entre vistas.

A estas tres representaciones se las llama vistas fundamentales

Las siguientes figuras realizarlas en formato A4, donde se incluyen los temas de acotaciones, y perspectivas isométricas:

AUTOCAD:

En éste módulo de Autocad, veremos los comandos más importantes que le permitirán realizar cualquier dibujo en 2D (tipo plano).

Para trabajar en 3D (sólidos/objetos), usará estos comandos, y se agregan algunos específicos de 3D.

Al hacer clic en el ícono del escritorio, llegamos a la siguiente pantalla:

Hay muchas herramientas y formas de trabajo que se conservan las originales de la versión 1 de Autocad, inclusive cuando no se utilizaba mouse y todos los comandos eran escritos por el usuario.

Aquí tenemos toda la pantalla de trabajo de Autocad 2007. Las siguientes zonas son las más importantes:

Autocad en cualquier versión interactúa permanentemente con el teclado, donde las teclas mas utilizadas son **los números**, la tecla **ENTER** ó **INTRO** y la tecla **ESC** y la **ruedita del mouse**.

Los números para indicar medidas, ENTER para confirmar un dato ó comando y ESC (Escape) para cancelar un comando y la ruedita del mouse para hacer zoom.

Si se cometiera un error y quiere volver al estado anterior, presione CTRL + Z.

LINEAS:

Podremos hacer líneas rectas. Hacemos clic en el comienzo. Nos movemos hasta el final, o indicando la orientación con el mouse escribimos la longitud.

A medida que nos movemos se muestra el ángulo de esa línea y la longitud desde el comienzo hasta donde se encuentra el mouse.

Respecto al sistema de unidades, podemos decir de manera fácil que 1 pixel equivale a 1 mm.

Por ejemplo si queremos hacer una línea de 210 mm escribimos solamente 210 y presionamos ENTER.

Respecto a las líneas, verifique la botonera de trabajo inferior:

Sabemos que una línea puede tener cualquier ángulo, pero en Autocad se estipula que las líneas pueden ser de 2 tipos:

- a) Las que tienen 0° y 90° (horizontales y verticales (**ORTOGONAL**)
- b) Las que tiene cualquier otro ángulo, por ejemplo 30º (**POLAR**)

Las líneas a 0° y 90° son muy comunes y Autocad las hace automáticamente.

La opción **ortogonal** y **polar** no pueden estar a la ver seleccionadas, al hacer clic en una de des-selecciona la otra.

Al hacer una línea, podrá hacer otra a continuación de la misma manera. Si desea salir del comando línea, presione ESC.

En caso de guerer hacer una línea justo a continuación de otra es muy útil el botón REFENT.

Ahora, porqué es muy útil **REFENT**: Porque quizás de lejos parece que estamos trabajando a continuación de una línea y al acercarnos haciendo zoom están separadas. Hay comandos que Autocad necesita que estén perfectamente unidas las líneas.

Cuando está seleccionado el botón REFENT, y usted mueve el mouse aparecen unas figuras de color:

Cuadrados: Indica que hay un extremo de línea.

Circulo: Indica centro de una circunferencia.

Para ver más puntos de referencias a objetos, debe hacer clic con el botón derecho del mouse sobre **REFENT** y luego seleccionando **parámetros**:

Lo que aquí aparece es lo que Autocad puede avisarnos dentro del dibujo.

El botón **REFENT** es muy útil, pero a veces molesta en el trabajo, puede desactivarlo haciendo clic sobre **REFENT**.

Resulta molesto cuando queremos una línea en un determinado lugar y si se prendió un símbolo, la línea ira automáticamente hasta ahí, querramos o no. En ese caso hay que desactivarlo.

REFENT puede activarse o desactivarse dentro o fuera de un comando.

CIRCULOS:

Se hace clic en el centro, y luego al movernos va indicando el radio de esa circunferencia. Podemos guiarnos con el número de pantalla o escribir el radio deseado.

Hay veces que la circunferencia se ve como un polígono, si eso sucede, seleccione: **Ver -> Regenerar todo**.

Aquí también es útil REFENT para ver el final de una circunferencia, ó el centro.

En la opción: **Dibujo -> Circulo**, verá más manera de hacer una circunferencia.

MOVER / DESPLAZAR OBJETOS:

Es muy común mover algo de lugar para mejorar la apariencia del trabajo o bien para optimizar el espacio.

Seleccione los objetos que desea mover de arriba hacia abajo ó de a uno:

Luego seleccione la herramienta **DESPLAZAR**, y al moverse dentro de los objetos seleccionados y con **REFENT activo** se indica algún punto de donde tomar a esos objetos.

Haga clic sobre alguno de esos puntos y mueva todo a donde desee.

RECORTAR - BORRAR:

Los dibujos se van formando línea tras línea, por ejemplo si usted quiere dibujar:

El dibujo se arma con dos circunferencias concéntricas, de ahí dos líneas en un determinado ángulo y finalmente se borra los dos arcos de circunferencias.

Autocad no lo hace, usted debe hacerlo.

Ahora como se borra algo del dibujo que no sirve.

Antes de nada debe haber un cruce de línea con línea, línea con curva o curva con curva.

Seguir los siguientes pasos:

- a) Seleccionar la herramienta RECORTAR.
- b) Seleccionar todos los objetos involucrados se vayan a borrar o no.
- c) Presionar botón **DERECHO del mouse**,
- d) Luego con el botón **IZQUIERDO del mouse** haga clic en todas las zonas que quiera borrar.
- e) Cuando termine, presione ESC.

A continuación se mostrará como sacar las puntas pasantes de estas líneas:

Al hacer clic en **RECORTAR** y seleccionar luego los objeto, la pantalla queda de la siguiente manera:

Al presionar en botón derecho del mouse. Hacemos clic con el izquierdo sobre cada punta sobrante (se ira borrando), quedo lo siguiente:

Eso era realmente lo que queríamos, presionamos **ESC** para salir del comando.

NOTAS IMPORTANTES:

En cualquier manual de Autocad no se enseña a dibujar, solo se enseñan herramientas de dibujo. Cada dibujante utilizará sus estrategias de dibujo para llegar al dibujo deseado.

Supongamos que se desea dibujar una grampa omega, el dibujo nace así:

Ahora se borrará todo lo que no sirve...:

Y aquí hemos obtenido el dibujo deseado.

SOMBREADO:

Para rellenar zonas con determinadas tramas o macizo utilice esta herramienta. Aquí es fundamental que el área esté bien cerrada en todos sus puntos.

Si esto último no es así el comando no funciona.

Proceder de la siguiente manera:

a) Seleccionar el comando de sombreado y aparece la siguiente ventana:

- b) Seleccione la muestra de cómo quiere rellenar, puede cambiar el ángulo o la escala. Una vez que está listo, haga clic en **Añadir: Designar puntos**.
- c) La ventana de SOMBREADO se oculta y haremos clic en el dibujo en zonas encerradas y se ponen con líneas de puntos.

d) Cuando terminemos, presionar ENTER y aparece nuevamente la ventana de SOMBREADO, y hacemos clic en Aceptar.

Quedando lo siguiente:

OTROS BOTONES DE TRABAJO:

FORZC REJILLA ORTO POLAR REFENT RASTREO DUCS DIN GLN MODELO

REJILLA: Muestra una rejilla de ayuda de puntos para alinear objetos.

ORTOGONAL: Realia lineas a 0° y 90°.

DIN: Al hacer linear ó círculos saca/agrega el casillero de medida y escritura.

GLN: Muestra / oculta los espesores de líneas utilizados.

BORRAR OBJETOS:

Seleccionarlos (se ponen esos puntos azules) y presionar la tecla **Suprimir**.

Verificar que no haya algo seleccionado en otra parte del dibujo, porque será borrado sin aviso previo.

Es muy buen hábito en éste comando presionar ESC un par de veces antes de borrar. Por las dudas.

COPIAR Y PEGAR OBJETOS:

Debe seleccionar los objetos a copiar, cuando estén todos, presione CTRL + C.

Para pegar todo lo anteriormente seleccionado, presione **CTRL + V**, mueva el mouse hasta el destino y haga clic.

OTROS COMANDOS INTERESANTES:

Dibujo -> Arco: Ahí encontrará otras maneras de hacer arcos de circunferencias.

Acotar: Podrá colocar medidas a su dibujo, en las partes lineales, radios, ángulos, etc

En un formato A4, representar la perspectiva y las vistas principales.

*	\otimes	\downarrow		_/_	
Interruptor termomagnético	Làmpara	Masa	Parada de emergencia	Seccionador	Subestación
		<u>_</u>	=	<u></u>	\perp
Tablero general	Tablero de distribución	Tierra	Tierra de protección	Tierra aislada	Tomacorriente, símbolo general
	─		0	\bigcirc	0
Tomacorriente en el piso	Tomacorriente monofásico	Tomacorriente trifásico	Transformador símbolo general	Transformador de aislamiento	Transformador de seguridad
1	ı				
•	===			-///-	
Caja de empalme	Corriente continua	Central hidráulica en servicio	Central térmica en servicio	Conductores de fase	Conductor
Caja de empalme		hidráulica en	térmica en	Conductores	
Caja de empalme Conductor de puesta a tierra		hidráulica en	térmica en	Conductores	
Conductor de	Conmutador	hidráulica en servicio	térmica en servicio	Conductores de fase	Contacto operado

			22		
\$ =	Ø=	♦	Ø=	\neq	#
Bomba de caudal constante	Bomba de caudal regulable	Motor de caudal constante	Motor de caudal variable	eje rotativo con sentido de giro indicado	Eje rotativo con dos sentidos de giro
			<u></u>	>•	→
Línea de presión	Linea de pilotaje	Purga de aire	Enclavamiento	Acoplamiento directo	Acoplamiento con válvula antirretorno
	H	→	Ų	Ţ	→
Depósito a presión	Depósito con carga	Válvula de aislamiento 2 vías	Purga de aire sin conexión	Purga de aire con conexión roscada	Conducto cerrado por antirretorno
Q	-XY	0	0	-3	①
Acumulador hidráulico	Válvula de aislamiento 3 vías	Manómetro	Caudalímetro	Contador	Termómetro
			A	→	\rightarrow
Motor oscilante	Calentador	Refrigerador	refrigerador con fluido refrigerante	Filtro	Filtro con purga
	₹				T.
Limitador de presión	Válvula de escape rápido	Reductor de presión	Reductor de presión regulable	Válvula de seguridad	Válvula limitadora de presión
	甲		WHT THE		=
Cilindro de simple efecto	Cilindro de doble efecto	Cilindro D.E. amortiguado	Cilindro D.E. amortiguación variable	Cilindro S.E. Telescópico	Motor térmico
4	•	w_	Z_	+[→ □
Accionamiento mecánico	Accionamiento por roldana	Accionamiento por resorte	Accionamiento por electroimán	Accionamiento por presión	Accionamiento por depresión
F	Œ	Å	上	ZD	⊕ ≱ _
Accionamiento manual	Accionamiento por pulsador	Accionamiento por palanca	Accionamiento por pedal	Accionamiento por electroimán y presión	Accionamiento por motor monofásico

Transformar todas las perspectivas isometricas del apunte en perspectivas caballeras.