

Thermodynamic Analysis on High Temperature Heat Pump cycles using Low-GWP refrigerants for Heat recovery

Sho Fukuda Chieko Kondou Nobuo Takata Shigeru Koyama

Introduction

- -Background-
 - Refrigerants used in heat pump [

High global warming potential

In the past few years

GWP

Currently: R245fa 858 similar thermodynamic properties

Alternative:R1234ze(Z), R1233zd(E) < 1

-Objective-

Candidate low-GWP refrigerants with different levels of critical temperature are selected, and two different cycle configurations are proposed for a case study.

Calculated refrigerants

The characteristics and properties of the selected refrigerants for industrial high-temperature heat pumps.

	GWP ₁₀₀ *	Critical Pressure	Critical temp.	NBP**	Latent heat***	Density***	
		[MPa]	[°C]	[°C]	[kJ·kg-1]	[kg·r	m-3]
						Liquid	Vapor
R1234ze(Z)	<1	3.53	150.1	9.7	144.12	982.3	69.39
R1233zd(E)	<1	3.62	166.5	18.3	142.25	1049.7	56.26
R365mfc	794	3.27	186.9	40.2	154.04	1075.5	33.20

^{*}IPCC 5th report **Normal boiling point ***at bulk temperature 100 ° C

[•]R1234ze(Z) \rightleftharpoons R245fa •R365mfc \rightleftharpoons HFE refrigerants NOT correct physical property

Calculated heat pump cycle

Single-stage compressed cycle

Two-stage compressed extraction cycle

extraction process to extract the vapor from the compressor.

Calculation condition

Temperat	80 °C	
Compressed water	inlet temperature (after pre-heating)	70 °C
	outlet temperature	160 °C
Heat source fluid	inlet temperature	80 °C
(waste heat	outlet temperature	70 °C
Compressed	water mass flow rate	0.2 kg/s

Model of the temperature distribution on the T-s diagram

Calculation method

-Single-stage compressed cycle-

Compressor efficiency

 $\begin{array}{ll} \text{Isentropic}(\eta_{\text{ise}}) & 0.85 \\ \text{Mechanical} & 0.90 \\ \text{Motor} & 0.90 \\ \end{array}$

Calculation method

-Two-stage compressed extraction cycle-

Compressor efficiency

Isentropic(η_{ise}) 0.85 Mechanical 0.90 Motor 0.90

Data reduction

The COPs are defined as,

$$COP = \frac{Q_1}{W_1}$$

-Single-stage compressed cycle-

$$COP = \frac{Q_1 + Q_2 + Q_3}{W_1 + W_2}$$

 $COP = \frac{Q_1 + Q_2 + Q_3}{W_1 + W_2}$ -Two-stage compressed extraction cycle-

Total irreversible loss in W is,

$$L_{\mathsf{total}} = L_{\mathsf{COND}} + L_{\mathsf{EVA}} + L_{\mathsf{EXP}} + L_{\mathsf{COMPR}}$$

Specific irreversible losses in J·kg⁻¹ are expressed as,

$$\begin{split} L_{\text{COND}} &= m_{\text{ref}} \times \sum_{n} \left[\left(T_{\text{R,i}} - T_{\text{W,i}} \right) + \left(T_{\text{R,i-1}} - T_{\text{W,i-1}} \right) \right] \Delta s_{i} / 2 \\ L_{\text{EVA}} &= m_{\text{ref}} \times \sum_{n} \left[\left(T_{\text{W,i}} - T_{\text{R,i}} \right) + \left(T_{\text{W,i-1}} - T_{\text{R,i-1}} \right) \right] \Delta s_{i} / 2 \\ L_{\text{EXP}} &= \int_{s_{\text{EXP,in}}}^{s_{\text{EXP,out}}} T_{\text{R}} ds \\ L_{\text{COMPR}} &= \int_{s_{\text{COMPR,in}}}^{s_{\text{COMPR,out}}} T_{\text{R}} ds \end{split}$$

Results -COP-

-Single-stage compressed cycle-

Refrigerant	COP	Pd/Ps
R1234ze(Z)	4.24	5.94(2.44)
R1233zd(E)	4.18	6.36(2.52)
R365mfc	3.68	8.30(2.88)

-Two-stage compressed extraction cycle-

СОР	Pd/Ps1	Pd/Ps2	
4.58	2.65(1.63)	2.26(1.50)	
4.55	2.74(1.65)	2.35(1.53)	
4.44	2.59(1.61)	3.21(1.79)	

 \Rightarrow R1234ze(Z) is appropriate in this calculation condition

Results - irreversible loss (single-stage compressed cycle) -

			<i>L</i> [kW]		
Refrigerant	COND	EVA	EXP	COMPR	TOTAL
R1234ze(Z)	3.10	1.24	1.06	2.07	7.48
R1233zd(E)	3.47	1.24	0.90	2.11	7.71
R365mfc	5.48	1.19	0.75	2.43	9.85

The value difference of irreversible loss in condenser between R1234ze(Z) and R365mfc are large.

Results - irreversible loss (two-stage compressed extraction cycle) -

			<i>L</i> [KVV]		
Refrigerant	COND	EVA	EXP	COMPR	TOTAL
R1234ze(Z)	2.03	1.26	1.02	1.97	6.28
R1233zd(E)	2.29	1.26	0.84	1.99	6.37
R365mfc	2.73	1.25	0.53	2.05	6.55

Refrigerant	COND	EVA	EXP	COMPR	TOTAL
R1234ze(Z)	3.10	1.24	1.06	2.07	7.48
R1233zd(E)	3.47	1.24	0.90	2.11	7.71
R365mfc	5.48	1.19	0.75	2.43	9.85

Conclusion

The cycle performances and irreversible loss of three refrigerants, R1234ze(Z), R1233zd(E) and R365mfc, were thermodynamically analyzed by using heat recovery systems. The following conclusions are drawn from the results:

- (1) In both the single-stage compressed cycle and two-stage compressed extraction cycle, COP: R1234ze(Z) > R1233zd(E) > R365mfc
- (2) In single-stage compressed cycle,

All irreversible loss of R1234ze(Z) is lowest

⇒ irreversible loss in condenser is the lowest specifically.

(3) In two-stage compressed extraction cycle,

The tendency of each irreversible loss by the difference in refrigerant two-stage = single-stage

Each irreversible loss expect for evaporator two-stage < single-stage

Thank you for your attentions

