

Physiologie rénale

Chapitre 8:

Réabsorption et sécrétion dans le tubule terminal et leur régulation

Professeur Diane GODIN-RIBUOT

Réabsorption et sécrétion dans le dernier segment du tubule rénal

Liquide tubulaire : 10% du Na+, du K+ et des HCO₃et 20% de l'eau filtrés

Réabsorption et sécrétion dans le TCD et dans le tubule collecteur

Cellules principales
Homéostasie du Na+,
du K+ et de l'eau
sous contrôle hormonal

- Réabsorption de Na+
- Sécrétion de K+
- Réabsorption d'eau

Cellules intercalaires Equilibre acido-basique en fonction des besoins

- Génération ou excrétion de HCO₃⁻
- Réabsorption ou sécrétion de H⁺

Cellules principales vs intercalaires

Réabsorption de l'eau et régulation de l'osmolarité des liquides corporels

Cellules principales

L'équilibre hydrique

Le problème physiologique

- Entrées = Sorties = 2,5 L par jour

Adaptation : osmolarité urinaire < osmolarité plasmatique

 Demain vous avez prévu de faire du sport pour vous détendre un peu : un exercice prolongé peut vous faire perdre plusieurs litres d'eau par transpiration : sorties

Adaptation : osmolarité urinaire > osmolarité plasmatique

La concentration et la dilution de l'urine

- Débit urinaire normal entre 0,5 à
 20 L par jour
 ∞ quantité de liquide ingérée
- Quantité de solutés dans l'urine stable
- Osmolarité urinaire normale entre 50 et 1200 mOsm/L
 Inversement ∞ au volume d'urine produite

Maintien de l'équilibre hydrique

 Osmolarité plasmatique maintenue entre 280-285 mOsm/L

- 3 mécanismes de contrôle :
 - Sécrétion d'hormone antidiurétique (ADH aussi appelée vasopressine) qui augmente la perméabilité du tubule rénal à l'eau
 - Mécanismes rénaux permettant de diluer ou de concentrer l'urine
 - Soif

L'hormone antidiurétique (ADH)

- Egalement appelée vasopressine
- Produite par des neurones de l'hypothalamus : neurohormone
- Libérée dans le sang au niveau de l'hypophyse postérieure ou neurohypophyse lors de la stimulation des neurones hypothalamiques

Mécanisme d'action de l'ADH

Le diabète insipide

- Excrétion de grands volumes d'urine diluée : polyurie > 4 litres par jour
- Plusieurs causes
 - Héréditaire: défaut de la réponse rénale à l'ADH (perte de fonction du récepteur V2 ou de l'aquaporine 2)
 - Défaut de sécrétion d'ADH suite à une lésion de l'hypothalamus ou de l'hypophyse (traumatique ou interne)
- A ne pas confondre avec le diabète « sucré » : polyurie osmotique provoquée par la présence de glucose dans l'urine (glycosurie)

Régulation de la sécrétion d'ADH

Régulation osmotique

Régulation de la sécrétion d'ADH

- Régulation osmotique : la plus puissante
- Facteurs hémodynamiques
 Diminution de la pression artérielle ou du volume sanguin d'au moins 10%
- → Barorécepteurs et volorécepteurs
- → Hypothalamus-hypophyse
- → ADH

Facteurs indépendants

- + Angiotensine II, stress émotionnel, douleur, nausée, nicotine, médicaments
- Alcool, facteur natriurétique auriculaire (FNA), médicaments

Manipulation rénale de l'eau

Rôle du TCD et du tubule collecteur

Production d'une urine diluée

Diurèse: 50 mOsm/L

Production d'une urine concentrée

Antidiurèse: 1200 mOsm/L

Effets de l'hormone antidiurétique

Effets de l'hormone antidiurétique

Rôle de l'urée

- Principale osmole de l'urine
- 50% réabsorbés dans le TCP
- ADH: réabsorption d'eau dans le TCD et le tubule collecteur cortical (imperméables à l'urée)
- ↑ [urée] du filtrat
- Sortie d'urée dans l'interstitium au niveau du tubule collecteur médullaire (perméabilité ∞ à l'ADH)
- Contribution au gradient médullaire et à la concentration de l'urine

Contrôlez vos connaissances

Quels changements se produiront dans votre organisme si vous passez 24 h sans boire ? Décrivez la régulation qui se mettra alors en place.

Réponse

Quels changements se produiront dans votre organisme si vous passez 24 h sans boire ? Décrivez la régulation qui se mettra alors en place.

Votre métabolisme (en particulier celui des protéines) ajoutera des solutés dans votre sang et vous perdrez insensiblement de l'eau par les poumons et la peau. En l'absence d'apport d'eau, l'osmolarité de votre plasma et de votre LEC va augmenter. Vos osmorécepteurs hypothalamiques vont détecter cette élévation et stimuler la sécrétion d'ADH.

L'effet de l'ADH sur vos reins va entraîner une diminution du débit urinaire et une rétention d'eau, minimisant ainsi l'élévation de l'osmolarité du plasma et du LEC.

<u>A noter</u>: la diminution de l'apport en eau n'aura **pas d'effet notable sur le volume plasmatique** du fait de la **contraction** du volume interstitiel et intracellulaire.

Le mécanisme de la soif

- Nécessaire pour compenser les pertes d'eau inévitables (peau, respiration)
- Action couplée à celle de l'ADH : mécanisme déclenché par les mêmes facteurs (osmolarité, volume du LEC, pression artérielle) mais aussi par :
 - + sécheresse de la bouche
 - distension de l'estomac
- Centre nerveux de la soif : dans la même région de l'hypothalamus que les neurones sécréteurs d'ADH
- Fonctionnement similaire : osmorécepteurs

Réabsorption du sodium et régulation du volume des liquides corporels

Cellules principales

Sodium et volume du liquide extracellulaire

- Volume du LEC ~20% du poids corporel : 14 litres chez un adulte de 70 kilos
- Dépend des sels de Na+ qui constituent 90 à 95% des solutés du LEC : responsables de 280 des 300 mOsm/L (2X la natrémie de 140 mOsm)
- Le volume du LEC est déterminé par l'égalité des entrées et sorties de sel et d'eau
- En présence d'un système fonctionnel ADH/soif : une variation de la concentration en sodium du LEC s'accompagne d'une variation proportionnellement identique de la quantité de liquide extracellulaire (ex : augmentation du contenu en sodium → rétention rénale d'eau)
- Rôle majeur des reins dans la régulation du volume du LEC : ajustement de l'excrétion urinaire de sel et d'eau en fonction des apports

Importance de l'équilibre sodique

- Ingestion quotidienne de NaCl ~9 g par jour : 150 mosmoles de Na⁺ et 150 mosmoles de Cl⁻
- Pertes minimes par la sueur et le tube digestif en conditions normales
- Excrétion quotidienne de sodium par le rein adaptée aux apports (ici 150 mosmoles de Na+ seront excrétées) pour maintenir la quantité de sodium et le volume du LEC
- Maintien du volume du LEC = maintien du volume plasmatique = maintien du débit cardiaque, de la pression sanguine et de la perfusion tissulaire

Système de contrôle

- Composante afférente : récepteurs capables de détecter le volume du LEC
- LEC = compartiment vasculaire + liquide interstitiel
- Volume du compartiment interstitiel déterminé par le compartiment plasmatique à travers les échanges capillaires (forces de Starling)
- Détection et régulation du volume du LEC à travers celle du volume plasmatique = volume sanguin efficace (VSE) qui correspond au degré de remplissage du système circulatoire
- Composante efférente : mécanismes modifiant la fonction rénale

Récepteurs du volume sanguin efficace

Mécanismes effecteurs

Régulation neurohormonale de la fonction rénale

Excrétion = Filtration glomérulaire - Réabsorption tubulaire

Mécanismes d'activation du système rénineangiotensine par la diminution de la volémie

Barorécepteurs artériels et volorécepteurs

↓ Pression ↓ Volume

Stimulation du SN sympathique

↑ rénine via les récepteurs β₁

adrénergiques

Osmorécepteurs
de la macula densa

✓ Débit de filtration glomérulaire

✓NaCl dans le tubule distal

↑ rénine

Synthèse et libération d'aldostérone

Régulation de la sécrétion d'aldostérone

Stimulation par

- Angiotensine II
- Faible [Na+] plasmatique
- Forte [K+] plasmatique

Inhibition par

- Facteur natriurétique auriculaire
- Forte [Na+] plasmatique
- Faible [K+] plasmatique

Effets de l'aldostérone

Cellules principales du tubule rénal

Réabsorption indépendante du sodium et de l'eau

Effet de l'aldostérone en absence d'ADH:
Réabsorption de Na+ sans réabsorption d' H₂O

Effet de l'aldostérone en présence d'ADH:
Réabsorption de Na+ et d' H₂O

Régulation séparée dans les cellules principales du dernier segment du néphron

Effets du facteur natriurétique auriculaire

Effets sur le rein

- Augmentation du DFG sans changement du débit sanguin rénal (vasodilatation de l'a. afférente et vasoconstriction de l'a. efférente)
- Diminution de la réabsorption du Nat par blocage des canaux sodiques des cellules principales
- Diminution de la sécrétion de rénine

Autres actions

- •Inhibition de la libération d' aldostérone
- •Effets sur l'hypothalamus : diminution de la libération d'ADH et de la soif

Cardiomyocytes auriculaires
G: Granules de stockage du FNA
N: noyau, M: myofibrilles

En résumé

↑ volume du liquide extracellulaire

↑ volume sanguin efficace

↓ Aldostérone, ↑ FNANatriurèse

↓ osmolarité du LEC

↓ ADH

Diurèse

↓ volume du liquide extracellulaire

↓ volume du liquide extracellulaire

↑ Aldostérone, ↓ FNA

Réabsorption de Na⁺

↑ osmolarité du LEC

↑ ADH, soif

Antidiurèse

↑ volume du liquide extracellulaire

↑ FNA
↓ ADH
Diurèse

↓ FNA ↑ ADH Antidiurèse

Régulation de l'équilibre acido-basique

Cellules intercalaires

Le rein et le pH

Les reins prennent en charge les 25% de compensation que les poumons n'ont pas effectué

Régulation rénale :

- •Réabsorption massive (90%) des ions HCO₃- au niveau du tubule proximal
- •En ajustant finement le pH :
 - en réabsorbant ou sécrétant des ions H⁺
 - en générant ou excrétant des ions HCO₃⁻

Deux types de cellules intercalaires :

•Type A : acidose

•Type B : alcalose

Cellules intercalaires de type A Acidose

Cellule intercalaire de type B Alcalose

Homéostasie du potassium

- Majoritairement réabsorbé dans le tubule contourné proximal (65%) puis dans l'anse de Henlé (25%)
- Ajustement final de la kaliémie dans le dernier segment du néphron
- Cellules principales

Contrôle hormonal par l'aldostérone :

- → K+ plasmatique stimule la libération d'aldostérone
- Cellules principales : ↑ sécrétion de K⁺
- → K+ plasmatique diminue la libération d'aldostérone
- Cellules intercalaires

Régulation de l'équilibre acido-basique

- Type A : réabsorption de K+
- Type B : sécrétion de K+

Fiche mémo

Segment du tubule	Perméabilité à l'eau	Substances réabsorbées	Taux de réabsorption	Mécanisme
TCP	Oui	Na+	65 %	Transport actif primaire ou secondaire
		K+	65 %	Diffusion passive
		Eau	65 %	Osmose, réabsorption obligatoire
		Glucose, a. aminés, vitamines	100 %	Transport actif secondaire
		Bicarbonates	90 %	Diffusion passive
		CI-	50 %	Diffusion passive
Anse de Henlé				
Branche descendante	Oui	Eau	15 %	Osmose
Branche ascendante	Non	Na+, Cl ⁻ K+	15 % * 25 %	Transport actif primaire et secondaire
TCD et tubule collecteur	Variable	Na+, K+	Variable	Transport actif primaire Nécessite l'aldostérone
		H+, K+, HCO ₃ -	Variable	Transport actif primaire ou diffusion passive
		Eau	Variable	Osmose Nécessite l'ADH

^{*} Sur les 25% de NaCl extraits du filtrat, 10% restent dans la médullaire rénale

http://www.youtube.com/watch?v=aQZaNXNroVY

http://www.youtube.com/watch?v=glu0dzK4dbU&feature=related

Mentions légales

L'ensemble de ce document relève des législations française et internationale sur le droit d'auteur et la propriété intellectuelle. Tous les droits de reproduction de tout ou partie sont réservés pour les textes ainsi que pour l'ensemble des documents iconographiques, photographiques, vidéos et sonores.

Ce document est interdit à la vente ou à la location. Sa diffusion, duplication, mise à disposition du public (sous quelque forme ou support que ce soit), mise en réseau, partielles ou totales, sont strictement réservées à l'Université Grenoble Alpes (UGA).

L'utilisation de ce document est strictement réservée à l'usage privé des étudiants inscrits en Première Année Commune aux Etudes de Santé (PACES) à l'Université Grenoble Alpes, et non destinée à une utilisation collective, gratuite ou payante.

