2018 FALL COMPUTATIONAL STATISTIC FINAL

# Sequential Importance Sampling

For Object Tracking Problem: Following a Moving Target

182STG18 이하경

#### 1. Sequential Importance Sampling (SIS)

- Sequential Monte—Carlo
- Weight Degeneracy & Rejuvenation
- SIS for Hidden Markov Models

#### 2. Following a Moving Target

- Resample-Move Algorithm
- Implementation

#### 3. Discussion

# 1. Sequential Importance Sampling (SIS)

useful for time stochastic process

#### ► Sequential Monte-Carlo Method (SMC)

When

Target density f가 High-Dimension일 때

$$f(X_1, ..., X_t)$$

How

Split into a sequence of simpler steps & Update the previous one

$$f(X_1, ..., X_t) = f(X_1) \cdot f(X_2 | X_1) \cdot ... \cdot f(X_t | X_1, ..., X_t)$$



Time Stochastic Process를 포함한

사물의 실시간 궤도 추정, 고분자 화합물의 확산 등에 관한 연구에 이용

# IS

Sample from ISF g (envelope)

Calculate Importance weight w = f/g

**IS** Estimator

$$\hat{\mu}_{IS} = \sum_{i=1}^{n} w(X_i) \cdot h(X_i) / \sum_{i=1}^{n} w(X_i)$$

#### Sequential IS

Target 
$$f(x_{1:t}) = f(x_1)f(x_2|x_1) \cdot \dots \cdot f(x_t|x_{1:t-1})$$

Envelope 
$$g(x_{1:t}) = g(x_1)g(x_2|x_1) \cdot \dots \cdot g(x_t|x_{1:t-1})$$

Importance Weight 
$$w(x_{1:t}) = w(x_1)w(x_2|x_1) \cdot \cdots \cdot w(x_t|x_{1:t-1})$$

$$w_{1:t} = w_{t-1} * u_t, \qquad u_t = \frac{f(x_t|x_{1:t-1})}{g(x_t|x_{1:t-1})}$$

# IS

Sample from ISF g (envelope)

Calculate Importance weight w = f/g

IS Estimator

$$\hat{\mu}_{IS} = \sum_{i=1}^{n} w(X_i) \cdot h(X_i) / \sum_{i=1}^{n} w(X_i)$$

#### Sequential IS

t = 1 Sample  $X_1$  from ISF  $g_1$  (envelope)

t > 1 Calculate Importance weight  $w_1 = f_1/g_1 = u_1$ 

Sample  $X_t | x_{1:t-1} \sim g_t(X_t | x_{1:t-1})$ 

Append  $x_t$  to  $x_{1:t-1}$ 

Calculate  $u_t = f_t(x_t|x_{1:t-1})/g_t(x_t|x_{1:t-1})$ 

Update weight  $w_t = w_{t-1} \cdot u_t$ 

#### Sequential Importance Sampling

#### ► Weight Degeneracy & Rejuvenation

- t가 증가함에 따라 가중치가 계속 누적됨
- n개 중 특정 sequence에 일반적이지 않은 sample이
   포함될 경우 가중치 약화 (회복 불가)
- 일부 sequence들에만 가중치가 집중될 가능성이 있음













#### Sequential Importance Sampling

#### ► Weight Degeneracy & Rejuvenation

- t가 증가함에 따라 가중치가 계속 누적됨
- n개 중 특정 sequence에 일반적이지 않은 sample이포함될 경우 가중치 약화 (회복 불가)
- 일부 sequence들에만 가중치가 집중될 가능성이 있음















#### SISR

Sequential Importance Sampling with Resampling

#### ► SIS with Resampling

- 특정 시점에 해당 시점까지의 weight을 이용해 Resampling
- Resampling한 sequence들로 sample을 재구성
- Weight을 1/n으로 동일하게 초기화함

$$\widehat{N}(g,f) = \frac{1}{\sum_{i=1}^{n} w(x^{(i)})^2}$$



#### ► Particle Filters: Bootstrap Filter

- 모든 시점에 Resampling step을 수행하자!
- t 시점의 weight는 해당 시점의 Resampling step에만 사용됨

#### SISR

Sequential Importance Sampling with Resampling

#### ► SIS with Resampling

- 특정 시점에 해당 시점까지의 weight을 이용해 Resampling
- Resampling한 sequence들로 sample을 재구성
- Weight을 1/n으로 동일하게 초기화함

$$\widehat{N}(g,f) = \frac{1}{\sum_{i=1}^{n} w(x^{(i)})^2}$$

#### ► Particle Filters: Bootstrap Filter

- 모든 시점에 Resampling step을 수행하자!
- t 시점의 weight는 해당 시점의 Resampling step에만 사용됨





#### SIS

Sequential Importance Sampling

#### ► SIS for Hidden Markov Models

- 관측이 불가능한 Markov Sequence  $X_0, X_1, ..., X_t$ 

$$f(X_t|X_1,...,X_{t-1}) = f(X_t|X_{t-1})$$

Markov

관측 가능한 Y<sub>0</sub>, Y<sub>1</sub>, ..., Y<sub>t</sub>

$$Y_t \sim f_y(y_t|x_t)$$
 &  $X_t \sim f_x(x_t|x_{t-1})$ 

**Target** 

$$f_t(x_{1:t}|y_{1:t}) = f_t(x_{1:t-1}|y_{1:t-1}) \cdot f_x(x_t|x_{t-1}) f_y(y_t|x_t)$$

Posterior density

$$\frac{f_t(x_{1:t}|y_{1:t})}{f_t(x_{1:t-1}|y_{1:t-1})f_x(x_t|x_{t-1})} = f_y(y_t|x_t) = u_t$$



Importance Weight ∝ Likelihood

# 2. Object Tracking Problem: Following a Moving Target

- Monte Carlo inference for dynamic Bayesian models (W. R. Gilks and Berzuini, 2001)

Following a Moving Target - W. R. Gilks and Berzuini (2001)

#### Bearings-only Tracking

- 움직이는 선박의 실시간 궤도를 추정
- t 시점의 선박의 x축, y축 위치는 관측 불가능
- 관측지점인 원점으로부터 각도 + noise 관측 가능

$$\dot{x}_{t} \sim N(\dot{x}_{t-1}, \tau^{-1})$$

$$\dot{y}_{t} \sim N(\dot{y}_{t-1}, \tau^{-1})$$

$$x_{t} = x_{t-1} + \dot{x}_{t-1}$$

$$y_{t} = y_{t-1} + \dot{y}_{t-1}$$

$$z_t = \tan^{-1}(y_t/x_t) + N(0, \eta^2)$$



$$\theta_t = (\tau^{-1}, x_1, y_1, \dot{x}_1, \dot{y}_1, \dots, \dot{x}_t, \dot{y}_t)$$

Set of Parameters of Interest at time t

Following a Moving Target - W. R. Gilks and Berzuini (2001)

#### Bearings—only Tracking

#### **Target Posterior distribution**

$$\pi_t(\theta_t) = p(\theta \mid z_{1:t}) \propto p(\theta_t) \cdot \prod_{i=1}^t p(z_i \mid \theta_i)$$



$$p(\theta_t) \propto \tau \cdot ex \, p\{-0.5\tau \sum (\dot{x}_t - \dot{x}_{t-1})^2 - 0.5\tau \sum (\dot{y}_t - \dot{y}_{t-1})^2\}$$

Following a Moving Target - W. R. Gilks and Berzuini (2001)

▶ Resample-Move Algorithm: MCMC Sampling과 Sequential ISR의 결합

#### Initialization

T=1 sample size n의 독립적인 sample set  $S_1=(\tau,\mathbf{x}_1,\mathbf{y}_1,\dot{\mathbf{x}}_1,\dot{\mathbf{y}}_1)$ 을 구성한다.

#### Rejuvenation

n개의 sample particle (i)에 대한 Importance Weights  $w_t^{(i)} = p(z_t^{(i)}|\theta_{t-1}^{(i)})$ 을 계산한다.

#### T > 1 〈 Resample Step 〉

weigh를 사용하여 n개의 particle들을 Resampling하여 Sample set을 다시 구성한다.

#### 〈 Move Step 〉

재구성된 sample set에 대하여 unknown parameter τ를 조건부 sampling을 이용하여 update한다.

Following a Moving Target - W. R. Gilks and Berzuini (2001)

#### ► Generated Real Data



| $x_1$ | $y_1$ | $\dot{x}_1$ | $\dot{y}_1$ | $	au^{-1}$ | η     |
|-------|-------|-------------|-------------|------------|-------|
| 0.01  | 20    | 0.002       | -0.06       | 0.000001   | 0.005 |

Following a Moving Target - W. R. Gilks and Berzuini (2001)

Predicted by

Resample-Move

(n = 1000)



| $x_1$ | $y_1$ | $\dot{x}_1$ | $\dot{y}_1$ | $	au^{-1}$ | η     |
|-------|-------|-------------|-------------|------------|-------|
| 0.01  | 20    | 0.002       | -0.06       | 0.000001   | 0.005 |

Following a Moving Target - W. R. Gilks and Berzuini (2001)





#### Series of Tau



Following a Moving Target - W. R. Gilks and Berzuini (2001)



Following a Moving Target - W. R. Gilks and Berzuini (2001)

#### t = 50 x와 y 위치의 사후 평균과 표준오차

| X50  | RS-M    | RS      | NOT    |
|------|---------|---------|--------|
| mean | -0.1492 | -0.1592 | 0.0321 |
| sd   | 0.0392  | 0.0421  | 2.0220 |

| Y50  | RS-M    | RS      | NOT     |
|------|---------|---------|---------|
| mean | 17.1925 | 17.7886 | 17.6322 |
| sd   | 1.4475  | 1.8205  | 1.9644  |



Resample-Move & Resample & SIS



#### SISR & Resample—Move Algorithm

Discussion

## Summary

- Real—Time Sequential Forecasting
  - ▶ Financial & Medical Time Series, Control Engineering, Speech Recognition 등
- Resample-Move Algorithm은 다양한 MC Simulation 및 Bayesian Inference & Prediction에
   하나의 framework을 제공함
- 특히 누적된 정보를 이용하여 Unknown hyperparameter를 Update할 필요가 있는 경우와 High-Dimensional (Evolving) Target Distribution에 효과적으로 이용 가능
- MCMC의 계산 부담을 줄일 수 있음
- 추가적인 고려사항
  - ▶ the number of Rejuvenation Step, Which Parameters to move

# THANK YOU

# Self-Avoiding Walk (SAW)

in Infinite Lattice

# Untrapped

(example) t = 30



- 가능한 경우의 수가 매우 많음
- 고분자 화합물에 관한 연구 등에서 Simulation의 중요성이 큼



