

Stochastic Gradient Descent

Validation

How do we combine validation with our optimization algorithms?

Iterations

Iterations

Iterations

Early Stopping

Can check validation loss as we go

Can check validation loss as we go

Iterations

Early Stopping

Can check validation loss as we go

Iterations

- Can check validation loss as we go
- Instead of optimizing to convergence, optimize until validation loss stops improving

Iterations

- Can check validation loss as we go
- Instead of optimizing to convergence, optimize until validation loss stops improving
- Helps save computational cost

Iterations

- Can check validation loss as we go
- Instead of optimizing to convergence, optimize until validation loss stops improving
- Helps save computational cost
- Will perform better in the real world

- Can check validation loss as we go
- Instead of optimizing to convergence, optimize until validation loss stops improving
- Helps save computational cost
- Will perform better in the real world

- Can check validation loss as we go
- Instead of optimizing to convergence, optimize until validation loss stops improving
- Helps save computational cost
- Will perform better in the real world