## MISCALIBRATION DUE TO HETEROGENEITY IN RECEIVED TREATMENT IN PROGNOSTIC MODELS: A SIMULATION STUDY

#### SUPPLEMENTARY MATERIALS

### Tables of results for simultaneous heterogeneity in treatment effect size and treatment proportion

The code to create these tables is available at https://github.com/emsulo/Master-Thesis.

Study 1

**Table 1** Study 1 results for the Ignore Treatment approach for the performance measures Calibration-in-the-large coefficient, Calibration slope, c-statistic, and scaled Brier score for heterogeneity in both treatment properties simultaneously.

| Effect size | $ES_d$ | $ES_v$ | Proportion | $p_d$ | $p_v$ | Calibr. coeff. <sup>1</sup> | Calibr. slope <sup>2</sup> | c-statistic | Brier  |
|-------------|--------|--------|------------|-------|-------|-----------------------------|----------------------------|-------------|--------|
| -0.6        | 0.80   | 0.20   | -0.8       | 0.90  | 0.10  | 0.7242                      | 1.0393                     | 0.8106      | 0.2504 |
| -0.6        | 0.80   | 0.20   | -0.4       | 0.50  | 0.10  | 0.3742                      | 1.1269                     | 0.8232      | 0.3033 |
| -0.6        | 0.80   | 0.20   | -0.4       | 0.90  | 0.50  | 0.6305                      | 1.0311                     | 0.8077      | 0.2537 |
| -0.6        | 0.80   | 0.20   | 0.4        | 0.10  | 0.50  | -0.0359                     | 1.0230                     | 0.8059      | 0.2808 |
| -0.6        | 0.80   | 0.20   | 0.4        | 0.50  | 0.90  | 0.2135                      | 1.1419                     | 0.8221      | 0.3069 |
| -0.6        | 0.80   | 0.20   | 0.8        | 0.10  | 0.90  | -0.0986                     | 1.0454                     | 0.8103      | 0.2882 |
| -0.3        | 0.50   | 0.20   | -0.8       | 0.90  | 0.10  | 0.4415                      | 1.0393                     | 0.8068      | 0.2707 |
| -0.3        | 0.80   | 0.50   | -0.8       | 0.90  | 0.10  | 0.6751                      | 1.0207                     | 0.8059      | 0.2462 |
| -0.3        | 0.50   | 0.20   | -0.4       | 0.50  | 0.10  | 0.2530                      | 1.0714                     | 0.8145      | 0.2912 |
| -0.3        | 0.50   | 0.20   | -0.4       | 0.90  | 0.50  | 0.3496                      | 1.0208                     | 0.8027      | 0.2676 |
| -0.3        | 0.80   | 0.50   | -0.4       | 0.50  | 0.10  | 0.3678                      | 1.1066                     | 0.8195      | 0.2966 |
| -0.3        | 0.80   | 0.50   | -0.4       | 0.90  | 0.50  | 0.4782                      | 0.9651                     | 0.7955      | 0.2438 |
| -0.3        | 0.50   | 0.20   | 0.4        | 0.10  | 0.50  | -0.0582                     | 0.9939                     | 0.8027      | 0.2746 |
| -0.3        | 0.50   | 0.20   | 0.4        | 0.50  | 0.90  | 0.0803                      | 1.0784                     | 0.8153      | 0.2970 |
| -0.3        | 0.80   | 0.50   | 0.4        | 0.10  | 0.50  | -0.1838                     | 0.9857                     | 0.7972      | 0.2629 |
| -0.3        | 0.80   | 0.50   | 0.4        | 0.50  | 0.90  | -0.0571                     | 1.1202                     | 0.8211      | 0.3076 |
| -0.3        | 0.50   | 0.20   | 0.8        | 0.10  | 0.90  | -0.1330                     | 1.0203                     | 0.8079      | 0.2828 |
| -0.3        | 0.80   | 0.50   | 0.8        | 0.10  | 0.90  | -0.3900                     | 1.0081                     | 0.8044      | 0.2673 |
| 0.3         | 0.20   | 0.50   | -0.8       | 0.90  | 0.10  | 0.1400                      | 0.9767                     | 0.8097      | 0.2886 |
| 0.3         | 0.50   | 0.80   | -0.8       | 0.90  | 0.10  | 0.3899                      | 0.9761                     | 0.7961      | 0.2544 |
| 0.3         | 0.20   | 0.50   | -0.4       | 0.50  | 0.10  | 0.0578                      | 0.9832                     | 0.7995      | 0.2692 |
| 0.3         | 0.20   | 0.50   | -0.4       | 0.90  | 0.50  | -0.0351                     | 0.9197                     | 0.7998      | 0.2677 |
| 0.3         | 0.50   | 0.80   | -0.4       | 0.50  | 0.10  | 0.1791                      | 1.0353                     | 0.8092      | 0.2839 |
| 0.3         | 0.50   | 0.80   | -0.4       | 0.90  | 0.50  | 0.0402                      | 0.8950                     | 0.7783      | 0.2318 |
| 0.3         | 0.20   | 0.50   | 0.4        | 0.10  | 0.50  | -0.2256                     | 0.9300                     | 0.7906      | 0.2484 |
| 0.3         | 0.20   | 0.50   | 0.4        | 0.50  | 0.90  | -0.3659                     | 1.0007                     | 0.8033      | 0.2655 |
| 0.3         | 0.50   | 0.80   | 0.4        | 0.10  | 0.50  | -0.3487                     | 0.8857                     | 0.7822      | 0.2269 |
| 0.3         | 0.50   | 0.80   | 0.4        | 0.50  | 0.90  | -0.4710                     | 1.0264                     | 0.8066      | 0.2671 |
| 0.3         | 0.20   | 0.50   | 0.8        | 0.10  | 0.90  | -0.4332                     | 0.9861                     | 0.8029      | 0.2600 |
| 0.3         | 0.50   | 0.80   | 0.8        | 0.10  | 0.90  | -0.6781                     | 0.9819                     | 0.8009      | 0.2368 |
| 0.6         | 0.20   | 0.80   | -0.8       | 0.90  | 0.10  | 0.1149                      | 0.9556                     | 0.8051      | 0.2804 |
| 0.6         | 0.20   | 0.80   | -0.4       | 0.50  | 0.10  | 0.0155                      | 0.9803                     | 0.7964      | 0.2637 |
| 0.6         | 0.20   | 0.80   | -0.4       | 0.90  | 0.50  | -0.2026                     | 0.8775                     | 0.7882      | 0.2398 |
| 0.6         | 0.20   | 0.80   | 0.4        | 0.10  | 0.50  | -0.3727                     | 0.8614                     | 0.7774      | 0.2176 |
| 0.6         | 0.20   | 0.80   | 0.4        | 0.50  | 0.90  | -0.6124                     | 0.9849                     | 0.7979      | 0.2390 |
| 0.6         | 0.20   | 0.80   | 0.8        | 0.10  | 0.90  | -0.6919                     | 0.9572                     | 0.7974      | 0.2301 |

**Table 2** Study 1 results for the Treatment-Naïve approach for the performance measures Calibration-in-the-large coefficient, Calibration slope, c-statistic, and scaled Brier score for heterogeneity in both treatment properties simultaneously.

| Effect size | $ES_d$ | $ES_v$ | Proportion | $p_d$ | $p_v$ | Calibr. coeff. <sup>3</sup> | Calibr. slope <sup>4</sup> | c-statistic | Brier  |
|-------------|--------|--------|------------|-------|-------|-----------------------------|----------------------------|-------------|--------|
| -0.6        | 0.80   | 0.20   | -0.8       | 0.90  | 0.10  | -0.0041                     | 0.9750                     | 0.8106      | 0.2792 |
| -0.6        | 0.80   | 0.20   | -0.4       | 0.50  | 0.10  | -0.0101                     | 0.9817                     | 0.8232      | 0.3094 |
| -0.6        | 0.80   | 0.20   | -0.4       | 0.90  | 0.50  | -0.1197                     | 1.0176                     | 0.8077      | 0.2615 |
| -0.6        | 0.80   | 0.20   | 0.4        | 0.10  | 0.50  | -0.1108                     | 0.9682                     | 0.8059      | 0.2787 |
| -0.6        | 0.80   | 0.20   | 0.4        | 0.50  | 0.90  | -0.1832                     | 0.9909                     | 0.8221      | 0.2956 |
| -0.6        | 0.80   | 0.20   | 0.8        | 0.10  | 0.90  | -0.1734                     | 0.9914                     | 0.8103      | 0.2851 |
| -0.3        | 0.50   | 0.20   | -0.8       | 0.90  | 0.10  | 0.0001                      | 1.0085                     | 0.8068      | 0.2787 |
| -0.3        | 0.80   | 0.50   | -0.8       | 0.90  | 0.10  | -0.0456                     | 0.9678                     | 0.8059      | 0.2655 |
| -0.3        | 0.50   | 0.20   | -0.4       | 0.50  | 0.10  | 0.0035                      | 0.9773                     | 0.8145      | 0.2959 |
| -0.3        | 0.50   | 0.20   | -0.4       | 0.90  | 0.50  | -0.0790                     | 1.0009                     | 0.8027      | 0.2650 |
| -0.3        | 0.80   | 0.50   | -0.4       | 0.50  | 0.10  | -0.0108                     | 0.9728                     | 0.8195      | 0.3025 |
| -0.3        | 0.80   | 0.50   | -0.4       | 0.90  | 0.50  | -0.1738                     | 0.9133                     | 0.7955      | 0.2278 |
| -0.3        | 0.50   | 0.20   | 0.4        | 0.10  | 0.50  | -0.1002                     | 0.9637                     | 0.8027      | 0.2731 |
| -0.3        | 0.50   | 0.20   | 0.4        | 0.50  | 0.90  | -0.1618                     | 0.9881                     | 0.8153      | 0.2903 |
| -0.3        | 0.80   | 0.50   | 0.4        | 0.10  | 0.50  | -0.2526                     | 0.9324                     | 0.7972      | 0.2570 |
| -0.3        | 0.80   | 0.50   | 0.4        | 0.50  | 0.90  | -0.4411                     | 0.9839                     | 0.8211      | 0.2671 |
| -0.3        | 0.50   | 0.20   | 0.8        | 0.10  | 0.90  | -0.1789                     | 0.9864                     | 0.8079      | 0.2803 |
| -0.3        | 0.80   | 0.50   | 0.8        | 0.10  | 0.90  | -0.4648                     | 0.9525                     | 0.8044      | 0.2563 |
| 0.3         | 0.20   | 0.50   | -0.8       | 0.90  | 0.10  | -0.0776                     | 0.9778                     | 0.8097      | 0.2811 |
| 0.3         | 0.50   | 0.80   | -0.8       | 0.90  | 0.10  | -0.0226                     | 0.9357                     | 0.7961      | 0.2569 |
| 0.3         | 0.20   | 0.50   | -0.4       | 0.50  | 0.10  | -0.0341                     | 0.9574                     | 0.7995      | 0.2683 |
| 0.3         | 0.20   | 0.50   | -0.4       | 0.90  | 0.50  | -0.2092                     | 0.8706                     | 0.7998      | 0.2501 |
| 0.3         | 0.50   | 0.80   | -0.4       | 0.50  | 0.10  | -0.0551                     | 0.9550                     | 0.8092      | 0.2840 |
| 0.3         | 0.50   | 0.80   | -0.4       | 0.90  | 0.50  | -0.3418                     | 0.8701                     | 0.7783      | 0.1858 |
| 0.3         | 0.20   | 0.50   | 0.4        | 0.10  | 0.50  | -0.2442                     | 0.9162                     | 0.7906      | 0.2464 |
| 0.3         | 0.20   | 0.50   | 0.4        | 0.50  | 0.90  | -0.4607                     | 0.9657                     | 0.8033      | 0.2520 |
| 0.3         | 0.50   | 0.80   | 0.4        | 0.10  | 0.50  | -0.3879                     | 0.8596                     | 0.7822      | 0.2202 |
| 0.3         | 0.50   | 0.80   | 0.4        | 0.50  | 0.90  | -0.6974                     | 0.9505                     | 0.8066      | 0.2212 |
| 0.3         | 0.20   | 0.50   | 0.8        | 0.10  | 0.90  | -0.4525                     | 0.9761                     | 0.8029      | 0.2571 |
| 0.3         | 0.50   | 0.80   | 0.8        | 0.10  | 0.90  | -0.7193                     | 0.9510                     | 0.8009      | 0.2267 |
| 0.6         | 0.20   | 0.80   | -0.8       | 0.90  | 0.10  | -0.0442                     | 0.9308                     | 0.8051      | 0.2750 |
| 0.6         | 0.20   | 0.80   | -0.4       | 0.50  | 0.10  | -0.0713                     | 0.9521                     | 0.7964      | 0.2616 |
| 0.6         | 0.20   | 0.80   | -0.4       | 0.90  | 0.50  | -0.3290                     | 0.8767                     | 0.7882      | 0.2224 |
| 0.6         | 0.20   | 0.80   | 0.4        | 0.10  | 0.50  | -0.3850                     | 0.8501                     | 0.7774      | 0.2153 |
| 0.6         | 0.20   | 0.80   | 0.4        | 0.50  | 0.90  | -0.7133                     | 0.9538                     | 0.7979      | 0.2161 |
| 0.6         | 0.20   | 0.80   | 0.8        | 0.10  | 0.90  | -0.7075                     | 0.9459                     | 0.7974      | 0.2263 |

<sup>&</sup>lt;sup>1</sup>Calibration-in-the-large coefficient

<sup>&</sup>lt;sup>2</sup>Calibration slope

<sup>&</sup>lt;sup>3</sup>Calibration-in-the-large coefficient

<sup>&</sup>lt;sup>4</sup>Calibration slope

Study 2

**Table 3** Study 2 results for the Ignore Treatment approach comprising the median, mean, and variance for the performance measures Calibration-in-the-large coefficient, Calibration slope, c-statistic, and scaled Brier score for heterogeneity in both treatment properties simultaneously.

|                            | var             | -03        | -04        | -03        | -03        | -04        | -04        | -04        | -04        | -03        | -03        | -04        | -04        | -04        | -04        | -03        | -03        | -04        | -04        | -04        | -04        |
|----------------------------|-----------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|                            |                 | 1.0118e-03 | 8.9811e-04 | 1.1985e-03 | 1.3030e-03 | 7.8660e-04 | 7.9646e-04 | 9.4510e-04 | 8.3316e-04 | 1.0692e-03 | 1.1004e-03 | 8.2794e-04 | 8.1338e-04 | 8.6374e-04 | 6.2225e-04 | 1.0336e-03 | 1.0426e-03 | 7.3673e-04 | 6.7491e-04 | 8.3137e-04 | 4.8823e-04 |
| Brier                      | mean            | 0.1320     | 0.1092     | 0.0719     | 0.0195     | 0.1922     | 0.1856     | 0.1473     | 0.1508     | 0.0980     | 0.0928     | 0.2085     | 0.2100     | 0.1647     | 0.1767     | 0.1084     | 0.1193     | 0.2294     | 0.2630     | 0.1886     | 0.2309     |
|                            | median          | 0.1330     | 0.1091     | 0.0715     | 0.0212     | 0.1928     | 0.1867     | 0.1481     | 0.1519     | 0.0981     | 0.0936     | 0.2091     | 0.2103     | 0.1656     | 0.1772     | 0.1086     | 0.1208     | 0.2306     | 0.2653     | 0.1890     | 0.2305     |
| c                          | var             | 7.4189e-05 | 6.6849e-05 | 7.3167e-05 | 6.8318e-05 | 7.9173e-05 | 8.1350e-05 | 7.2792e-05 | 7.1667e-05 | 7.8668e-05 | 7.0425e-05 | 8.0984e-05 | 8.1170e-05 | 7.1869e-05 | 7.3628e-05 | 7.3172e-05 | 7.3612e-05 | 7.7320e-05 | 8.8551e-05 | 7.4413e-05 | 8.0230e-05 |
| c-statistic                | mean            | 0.8007     | 0.7927     | 0.7899     | 0.7862     | 0.8000     | 0.7973     | 0.7967     | 0.7926     | 0.7898     | 0.7904     | 0.8053     | 0.8048     | 0.7996     | 0.7902     | 0.7931     | 0.7955     | 0.8043     | 0.8019     | 0.8018     | 0.7953     |
|                            | median          | 0.8008     | 0.7925     | 0.7898     | 0.7860     | 0.7999     | 0.7972     | 0.7966     | 0.7928     | 0.7899     | 0.7904     | 0.8054     | 0.8048     | 0.7997     | 0.7900     | 0.7930     | 0.7956     | 0.8041     | 0.8022     | 0.8021     | 0.7953     |
| pe <sup>6</sup>            | var             | 3.9997e-03 | 3.9624e-03 | 3.4953e-03 | 3.5020e-03 | 4.0609e-03 | 4.3736e-03 | 3.9926e-03 | 4.2648e-03 | 4.0331e-03 | 3.5147e-03 | 3.9796e-03 | 3.8715e-03 | 4.0323e-03 | 4.0506e-03 | 3.9271e-03 | 4.0430e-03 | 3.7821e-03 | 3.9344e-03 | 3.8383e-03 | 4.2407e-03 |
| Calibr. slope <sup>6</sup> | mean            | 1.0257     | 1.0478     | 0.9853     | 0.9679     | 1.0128     | 1.0151     | 1.0149     | 1.0202     | 0.9900     | 0.9907     | 0.666.0    | 0.9953     | 1.0201     | 1.0279     | 1.0050     | 1.0099     | 0.9904     | 0.9770     | 1.0250     | 1.0500     |
|                            | median          | 1.0230     | 1.0447     | 0.9832     | 0.9648     | 1.0102     | 1.0111     | 1.0130     | 1.0166     | 0.9871     | 9066.0     | 0.9968     | 0.9946     | 1.0203     | 1.0267     | 1.0038     | 1.0080     | 0.9899     | 0.9781     | 1.0228     | 1.0480     |
| ff.5                       | var             | 9.2352e-03 | 7.0874e-03 | 8.2118e-03 | 8.7519e-03 | 9.2026e-03 | 9.4270e-03 | 9.2276e-03 | 8.3831e-03 | 8.7735e-03 | 8.6015e-03 | 9.2571e-03 | 9.7151e-03 | 8.6715e-03 | 7.1694e-03 | 9.0076e-03 | 9.6108e-03 | 9.1343e-03 | 9.2699e-03 | 8.9634e-03 | 7.4221e-03 |
| Zalibr. coeff.⁵            | mean            | 0.2721     | 0.3975     | 0.3317     | 0.4225     | 0.0727     | 0.0843     | 0.1976     | 0.2022     | 0.2849     | 0.2951     | 0.0181     | -0.0005    | 0.1677     | 0.1516     | 0.2733     | 0.2632     | -0.0625    | -0.2076    | 0.1100     | 0.0028     |
|                            | median          | 0.2702     | 0.3934     | 0.3319     | 0.4192     | 0.0694     | 0.0816     | 0.1958     | 0.1970     | 0.2821     | 0.2918     | 0.0144     | 0.0034     | 0.1650     | 0.1493     | 0.2734     | 0.2612     | -0.0697    | -0.2090    | 0.1078     | 0.0017     |
|                            | $p_v$           | 0.10       | 0.10       | 0.50       | 0.50       | 0.10       | 0.10       | 0.50       | 0.50       | 06.0       | 06.0       | 0.15       | 0.15       | 0.55       | 0.55       | 0.95       | 0.95       | 0.50       | 0.50       | 06.0       | 06.0       |
|                            | $\mathbf{p}_d$  | 0.50       | 0.50       | 0.90       | 0.90       | 0.15       | 0.15       | 0.55       | 0.55       | 0.95       | 0.95       | 0.10       | 0.10       | 0.50       | 0.50       | 0.90       | 0.90       | 0.10       | 0.10       | 0.50       | 0.50       |
| ing                        | Prop.           | -0.4       | -0.4       | -0.4       | -0.4       | -0.05      | -0.05      | -0.05      | -0.05      | -0.05      | -0.05      | 0.05       | 0.05       | 0.05       | 0.05       | 0.05       | 0.05       | 0.4        | 0.4        | 0.4        | 0.4        |
| Setting                    | $\mathrm{ES}_v$ | 0.20       | 0.50       | 0.20       | 0.50       | 0.20       | 0.50       | 0.20       | 0.50       | 0.20       | 0.50       | 0.20       | 0.50       | 0.20       | 0.50       | 0.20       | 0.50       | 0.20       | 0.50       | 0.20       | 0.50       |
|                            | $\mathrm{ES}_d$ | 0.50       | 0.80       | 0.50       | 0.80       | 0.50       | 0.80       | 0.50       | 0.80       | 0.50       | 0.80       | 0.50       | 0.80       | 0.50       | 0.80       | 0.50       | 0.80       | 0.50       | 0.80       | 0.50       | 0.80       |
|                            | ES              | -0.3       | -0.3       | -0.3       | -0.3       | -0.3       | -0.3       | -0.3       | -0.3       | -0.3       | -0.3       | -0.3       | -0.3       | -0.3       | -0.3       | -0.3       | -0.3       | -0.3       | -0.3       | -0.3       | -0.3       |
|                            |                 |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |

| 7.6410e-04 | 9.7005e-04 | 6.4523e-04 | 8.5880e-04 | 7.7367e-04 | 7.1794e-04 | 6.3363e-04 | 6.4033e-04 | 4.9128e-04 | 4.7598e-04 | 6.8526e-04 | 7.1679e-04 | 5.7901e-04 | 5.7372e-04 | 4.6010e-04 | 4.9003e-04 | 5.9167e-04 | 5.5210e-04 | 4.6133e-04 | 4.0452e-04 |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 0.1851     | 0.1447     | 0.2119     | 0.1614     | 0.2106     | 0.2036     | 0.2413     | 0.2279     | 0.2780     | 0.2673     | 0.2207     | 0.2260     | 0.2497     | 0.2502     | 0.2841     | 0.2891     | 0.2709     | 0.2974     | 0.3043     | 0.3322     |
| 0.1856     | 0.1462     | 0.2136     | 0.1624     | 0.2118     | 0.2035     | 0.2415     | 0.2292     | 0.2788     | 0.2680     | 0.2209     | 0.2274     | 0.2498     | 0.2508     | 0.2852     | 0.2905     | 0.2720     | 0.2981     | 0.3043     | 0.3337     |
| 8.0223e-05 | 7.7155e-05 | 8.5516e-05 | 8.4672e-05 | 8.4276e-05 | 7.4930e-05 | 8.8822e-05 | 9.7855e-05 | 9.7878e-05 | 8.9669e-05 | 8.9409e-05 | 8.5966e-05 | 9.4460e-05 | 8.8277e-05 | 9.0021e-05 | 1.0112e-04 | 9.9096e-05 | 1.0613e-04 | 9.8405e-05 | 1.0113e-04 |
| 0.7939     | 0.7958     | 0.7819     | 0.7776     | 0.7983     | 0.7957     | 0.7907     | 0.7862     | 0.7933     | 0.7886     | 0.7964     | 0.7995     | 0.7899     | 0.7897     | 0.7916     | 0.7943     | 0.7939     | 0.7945     | 0.7980     | 0.8017     |
| 0.7941     | 0.7962     | 0.7821     | 0.7774     | 0.7984     | 0.7959     | 0.7909     | 0.7863     | 0.7932     | 0.7889     | 0.7965     | 0.7996     | 0.7901     | 0.7897     | 0.7916     | 0.7941     | 0.7942     | 0.7948     | 0.7981     | 0.8018     |
| 3.7945e-03 | 3.7755e-03 | 3.6696e-03 | 3.5353e-03 | 3.7182e-03 | 3.7808e-03 | 3.8041e-03 | 3.7384e-03 | 4.1507e-03 | 3.7310e-03 | 3.5746e-03 | 4.1177e-03 | 3.9974e-03 | 3.8825e-03 | 3.9978e-03 | 4.4758e-03 | 4.0485e-03 | 4.0859e-03 | 4.1626e-03 | 4.3753e-03 |
| 0.9849     | 0.9978     | 0.9413     | 0.9126     | 0.9779     | 0.9789     | 0.9534     | 0.9505     | 0.9750     | 0.9654     | 0.9682     | 0.9658     | 0.9586     | 0.9586     | 0.9847     | 0.9859     | 0.9496     | 0.9317     | 0.9909     | 1.0048     |
| 0.9852     | 0.9971     | 0.9391     | 0.9116     | 0.9752     | 0.9761     | 0.9497     | 0.9467     | 0.9682     | 0.9642     | 0.9668     | 0.9633     | 0.9586     | 0.9580     | 0.9816     | 0.9867     | 0.9462     | 0.9306     | 0.9900     | 1.0038     |
| 8.9368e-03 | 8.7872e-03 | 7.0433e-03 | 7.8206e-03 | 8.7420e-03 | 9.1097e-03 | 8.6401e-03 | 8.3970e-03 | 8.4921e-03 | 8.0397e-03 | 9.0538e-03 | 9.5862e-03 | 8.7845e-03 | 8.3878e-03 | 8.5379e-03 | 8.7019e-03 | 9.2173e-03 | 8.7179e-03 | 8.4600e-03 | 9.2255e-03 |
| 0.0367     | 0.1787     | -0.1428    | -0.0490    | -0.0460    | -0.0253    | -0.1964    | -0.1742    | -0.2954    | -0.2818    | -0.0966    | -0.1075    | -0.2233    | -0.2281    | -0.3130    | -0.3207    | -0.3025    | -0.4288    | -0.3610    | -0.4538    |
| 0.0307     | 0.1744     | -0.1439    | -0.0490    | -0.0479    | -0.0279    | -0.1985    | -0.1731    | -0.3013    | -0.2838    | -0.0982    | -0.1148    | -0.2235    | -0.2299    | -0.3167    | -0.3202    | -0.3047    | -0.4280    | -0.3634    | -0.4583    |
| 0.10       | 0.10       | 0.50       | 0.50       | 0.10       | 0.10       | 0.50       | 0.50       | 06.0       | 06.0       | 0.15       | 0.15       | 0.55       | 0.55       | 0.95       | 0.95       | 0.50       | 0.50       | 06.0       | 0.00       |
| 0.50       | 0.50       | 0.90       | 0.90       | 0.15       | 0.15       | 0.55       | 0.55       | 0.95       | 0.95       | 0.10       | 0.10       | 0.50       | 0.50       | 0.90       | 0.90       | 0.10       | 0.10       | 0.50       | 0.50       |
| -0.4       | -0.4       | -0.4       | -0.4       | -0.05      | -0.05      | -0.05      | -0.05      | -0.05      | -0.05      | 0.05       | 0.05       | 0.05       | 0.05       | 0.05       | 0.05       | 0.4        | 0.4        | 0.4        | 0.4        |
| 0.50       | 0.80       | 0.50       | 0.80       | 0.50       | 0.80       | 0.50       | 0.80       | 0.50       | 0.80       | 0.50       | 0.80       | 0.50       | 0.80       | 0.50       | 0.80       | 0.50       | 0.80       | 0.50       | 0.80       |
| 0.20       | 0.50       | 0.20       | 0.50       | 0.20       | 0.50       | 0.20       | 0.50       | 0.20       | 0.50       | 0.20       | 0.50       | 0.20       | 0.50       | 0.20       | 0.50       | 0.20       | 0.50       | 0.20       | 0.50       |
| 0.3        | 0.3        | 0.3        | 0.3        | 0.3        | 0.3        | 0.3        | 0.3        | 0.3        | 0.3        | 0.3        | 0.3        | 0.3        | 0.3        | 0.3        | 0.3        | 0.3        | 0.3        | 0.3        | 0.3        |

**Table 4** Study 2 results for the Treatment-Naïve approach comprising the median, mean, and variance for the performance measures Calibration-in-the-large coefficient, Calibration slope, c-statistic, and scaled Brier score for heterogeneity in both treatment properties simultaneously.

|      |                 | Seti            | Setting |       |       |         | Calibr. coeff. | ff.7       |        | Calibr. slope <sup>8</sup> | pe <sup>8</sup> |        | c-statistic | ic         |        | Brier  |            |
|------|-----------------|-----------------|---------|-------|-------|---------|----------------|------------|--------|----------------------------|-----------------|--------|-------------|------------|--------|--------|------------|
| ES   | $\mathrm{ES}_d$ | $\mathbf{ES}_v$ | Prop.   | $p_d$ | $p_v$ | median  | mean           | var        | median | mean                       | var             | median | mean        | var        | median | mean   | var        |
| -0.3 | 0.50            | 0.20            | -0.4    | 0.50  | 0.10  | -0.0480 | -0.0478        | 1.3482e-02 | 0.9656 | 0.9670                     | 5.4757e-03      | 0.8000 | 0.7999      | 7.4499e-05 | 0.2321 | 0.2300 | 9.4725e-04 |
| -0.3 | 0.80            | 0.50            | -0.4    | 0.50  | 0.10  | -0.0862 | -0.0846        | 7.6919e-03 | 0.9507 | 0.9548                     | 4.4865e-03      | 0.7924 | 0.7927      | 6.5055e-05 | 0.2435 | 0.2432 | 4.5197e-04 |
| -0.3 | 0.50            | 0.20            | -0.4    | 0.90  | 0.50  | -0.2312 | -0.2171        | 5.3581e-02 | 0.8347 | 0.8473                     | 1.7894e-02      | 0.7772 | 0.7769      | 1.3955e-04 | 0.2180 | 0.2055 | 3.3019e-03 |
| -0.3 | 0.80            | 0.50            | -0.4    | 0.90  | 0.50  | -0.3583 | -0.3448        | 4.2585e-02 | 0.8309 | 0.8328                     | 1.5732e-02      | 0.7755 | 0.7752      | 1.0853e-04 | 0.2385 | 0.2316 | 1.3940e-03 |
| -0.3 | 0.50            | 0.20            | -0.05   | 0.15  | 0.10  | -0.0424 | -0.0407        | 9.5705e-03 | 0.9803 | 0.9815                     | 4.1602e-03      | 0.7996 | 0.7999      | 7.8525e-05 | 0.2212 | 0.2216 | 7.1737e-04 |
| -0.3 | 0.80            | 0.50            | -0.05   | 0.15  | 0.10  | -0.0934 | -0.0911        | 9.0008e-03 | 0.9603 | 0.9656                     | 4.2518e-03      | 0.7972 | 0.7972      | 8.1556e-05 | 0.2304 | 0.2298 | 6.4751e-04 |
| -0.3 | 0.50            | 0.20            | -0.05   | 0.55  | 0.50  | -0.1480 | -0.1479        | 1.3658e-02 | 0.9513 | 0.9522                     | 5.7638e-03      | 0.7954 | 0.7954      | 7.5815e-05 | 0.2477 | 0.2450 | 7.5209e-04 |
| -0.3 | 0.80            | 0.50            | -0.05   | 0.55  | 0.50  | -0.3169 | -0.3153        | 1.0090e-02 | 0.9205 | 0.9241                     | 5.3204e-03      | 0.7915 | 0.7912      | 7.3545e-05 | 0.2730 | 0.2724 | 3.7358e-04 |
| -0.3 | 0.50            | 0.20            | -0.05   | 0.95  | 0.90  | -0.3889 | -0.3695        | 8.2371e-02 | 0.7109 | 0.7306                     | 2.8424e-02      | 0.7652 | 0.7632      | 3.4819e-04 | 0.1968 | 0.1742 | 9.2295e-03 |
| -0.3 | 0.80            | 0.50            | -0.05   | 0.95  | 0.90  | -0.5927 | -0.5686        | 7.9789e-02 | 0.7313 | 0.7480                     | 2.6903e-02      | 0.7677 | 0.7653      | 3.0777e-04 | 0.2282 | 0.2147 | 3.9759e-03 |
| -0.3 | 0.50            | 0.20            | 0.05    | 0.10  | 0.15  | -0.0651 | -0.0622        | 9.0562e-03 | 0.9745 | 0.9767                     | 3.9471e-03      | 0.8055 | 0.8052      | 8.1451e-05 | 0.2299 | 0.2288 | 7.5800e-04 |
| -0.3 | 0.80            | 0.50            | 0.05    | 0.10  | 0.15  | -0.1260 | -0.1245        | 9.5018e-03 | 0.9545 | 0.9590                     | 3.8227e-03      | 0.8045 | 0.8046      | 8.0413e-05 | 0.2406 | 0.2396 | 6.9947e-04 |
| -0.3 | 0.50            | 0.20            | 0.05    | 0.50  | 0.55  | -0.1570 | -0.1533        | 1.2920e-02 | 0.9591 | 0.9599                     | 5.8280e-03      | 0.7986 | 0.7985      | 7.4519e-05 | 0.2546 | 0.2521 | 6.6195e-04 |
| -0.3 | 0.80            | 0.50            | 0.05    | 0.50  | 0.55  | -0.3206 | -0.3214        | 8.1256e-03 | 0.9322 | 0.9320                     | 5.1990e-03      | 0.7886 | 0.7890      | 7.5659e-05 | 0.2722 | 0.2716 | 2.9376e-04 |
| -0.3 | 0.50            | 0.20            | 0.05    | 0.90  | 0.95  | -0.3024 | -0.2778        | 5.4601e-02 | 0.8528 | 0.8673                     | 1.9557e-02      | 0.7805 | 0.7803      | 1.3919e-04 | 0.2388 | 0.2273 | 2.8057e-03 |
| -0.3 | 0.80            | 0.50            | 0.05    | 0.90  | 0.95  | -0.5490 | -0.5459        | 4.3255e-02 | 0.8542 | 0.8619                     | 1.5856e-02      | 0.7849 | 0.7840      | 1.3611e-04 | 0.2760 | 0.2721 | 9.0305e-04 |
| -0.3 | 0.50            | 0.20            | 9.0     | 0.10  | 0.50  | -0.1469 | -0.1428        | 9.0893e-03 | 0.9678 | 9296.0                     | 3.8376e-03      | 0.8040 | 0.8041      | 7.6833e-05 | 0.2486 | 0.2477 | 6.4305e-04 |
| -0.3 | 0.80            | 0.50            | 0.4     | 0.10  | 0.50  | -0.3359 | -0.3323        | 8.9867e-03 | 0.9405 | 0.9392                     | 3.9204e-03      | 0.8016 | 0.8013      | 8.9148e-05 | 0.2864 | 0.2852 | 5.5730e-04 |
| -0.3 | 0.50            | 0.20            | 0.4     | 0.50  | 0.90  | -0.2171 | -0.2123        | 1.3122e-02 | 0.9627 | 0.9645                     | 5.2537e-03      | 0.8011 | 0.8009      | 7.7660e-05 | 0.2699 | 0.2692 | 6.3843e-04 |
| -0.3 | 0.80            | 0.50            | 0.4     | 0.50  | 0.90  | -0.4773 | -0.4766        | 8.4549e-03 | 0.9563 | 0.9598                     | 5.2455e-03      | 0.7953 | 0.7954      | 7.8898e-05 | 0.3032 | 0.3027 | 2.4175e-04 |
| 0.3  | 0.20            | 0.50            | -0.4    | 0.50  | 0.10  | -0.1115 | -0.1043        | 1.5340e-02 | 0.9512 | 0.9514                     | 5.7762e-03      | 0.7923 | 0.7922      | 8.4119e-05 | 0.2214 | 0.2199 | 1.0214e-03 |
| 0.3  | 0.50            | 0.80            | -0.4    | 0.50  | 0.10  | -0.1405 | -0.1406        | 1.3422e-02 | 0.9312 | 0.9345                     | 5.3355e-03      | 0.7946 | 0.7943      | 8.0139e-05 | 0.2371 | 0.2354 | 7.7199e-04 |
| 0.3  | 0.20            | 0.50            | -0.4    | 0.90  | 0.50  | -0.4557 | -0.4279        | 6.4955e-02 | 0.7904 | 0.8011                     | 1.7590e-02      | 0.7684 | 0.7675      | 1.7017e-04 | 0.2343 | 0.2172 | 4.4285e-03 |
| 0.3  | 0.50            | 0.80            | -0.4    | 0.90  | 0.50  | -0.5525 | -0.5435        | 4.7871e-02 | 0.7771 | 0.7855                     | 1.5676e-02      | 0.7659 | 0.7648      | 1.5549e-04 | 0.2478 | 0.2397 | 1.6359e-03 |
| 0.3  | 0.20            | 0.50            | -0.05   | 0.15  | 0.10  | -0.0952 | -0.0954        | 9.8963e-03 | 0.9626 | 0.9632                     | 3.9842e-03      | 0.7981 | 0.7980      | 8.4363e-05 | 0.2231 | 0.2219 | 8.1059e-04 |
| 0.3  | 0.50            | 0.80            | -0.05   | 0.15  | 0.10  | -0.1387 | -0.1359        | 9.4327e-03 | 0.9461 | 0.9482                     | 3.9452e-03      | 0.7952 | 0.7953      | 7.5262e-05 | 0.2310 | 0.2301 | 6.3929e-04 |
| 0.3  | 0.20            | 0.50            | -0.05   | 0.55  | 0.50  | -0.3458 | -0.3423        | 1.7226e-02 | 0.9118 | 0.9170                     | 6.2690e-03      | 0.7885 | 0.7885      | 9.3019e-05 | 0.2688 | 0.2671 | 7.2872e-04 |
| 0.3  | 0.50            | 0.80            | -0.05   | 0.55  | 0.50  | -0.5090 | -0.5049        | 1.2272e-02 | 0.8782 | 0.8831                     | 5.3035e-03      | 0.7836 | 0.7832      | 1.0576e-04 | 0.2885 | 0.2878 | 4.3329e-04 |
| 0.3  | 0.20            | 0.50            | -0.05   | 0.95  | 0.60  | -0.7265 | -0.6884        | 9.8157e-02 | 0.6775 | 0.6933                     | 2.9511e-02      | 0.7659 | 0.7625      | 4.6643e-04 | 0.2397 | 0.2107 | 1.2025e-02 |
| 0.3  | 0.50            | 0.80            | -0.05   | 0.95  | 0.60  | -0.8979 | -0.8835        | 7.7417e-02 | 0.7088 | 0.7148                     | 2.5681e-02      | 0.7645 | 0.7619      | 3.7969e-04 | 0.2632 | 0.2502 | 3.6016e-03 |
| 0.3  | 0.20            | 0.50            | 0.05    | 0.10  | 0.15  | -0.1334 | -0.1307        | 9.4963e-03 | 0.9559 | 0.9578                     | 3.8249e-03      | 0.7964 | 0.7962      | 8.9099e-05 | 0.2287 | 0.2281 | 6.8496e-04 |
| 0.3  | 0.50            | 0.80            | 0.05    | 0.10  | 0.15  | -0.1940 | -0.1862        | 9.4926e-03 | 0.9374 | 0.9424                     | 4.1821e-03      | 0.7991 | 0.7991      | 8.6113e-05 | 0.2449 | 0.2431 | 6.6658e-04 |
| 0.3  | 0.20            | 0.50            | 0.05    | 0.50  | 0.55  | -0.3675 | -0.3610        | 1.4544e-02 | 0.9218 | 0.9248                     | 5.7681e-03      | 0.7882 | 0.7881      | 9.7889e-05 | 0.2745 | 0.2738 | 6.4961e-04 |
| 0.3  | 0.50            | 0.80            | 0.05    | 0.50  | 0.55  | -0.5446 | -0.5375        | 1.2631e-02 | 0.8913 | 0.8934                     | 5.1739e-03      | 0.7872 | 0.7871      | 9.3493e-05 | 0.3010 | 0.3005 | 4.0059e-04 |
| 0.3  | 0.20            | 0.50            | 0.05    | 0.90  | 0.95  | -0.6271 | -0.6087        | 5.9579e-02 | 0.8338 | 0.8412                     | 1.9199e-02      | 0.7786 | 0.7771      | 1.8705e-04 | 0.2881 | 0.2795 | 2.0244e-03 |
| 0.3  | 0.50            | 0.80            | 0.05    | 0.90  | 0.95  | -0.8611 | -0.8517        | 5.5691e-02 | 0.8460 | 0.8542                     | 1.8685e-02      | 0.7826 | 0.7820      | 1.6107e-04 | 0.3174 | 0.3139 | 9.4368e-04 |
| 0.3  | 0.20            | 0.50            | 0.4     | 0.10  | 0.50  | -0.3346 | -0.3344        | 9.5021e-03 | 0.9362 | 0.9402                     | 4.1461e-03      | 0.7939 | 0.7935      | 9.9305e-05 | 0.2779 | 0.2762 | 5.8470e-04 |
| 0.3  | 0.50            | 0.80            | 0.4     | 0.10  | 0.50  | -0.5103 | -0.5058        | 8.7050e-03 | 0.9074 | 0.9080                     | 4.0467e-03      | 0.7940 | 0.7937      | 1.0784e-04 | 0.3082 | 0.3074 | 5.0626e-04 |
| 0.3  | 0.20            | 0.50            | 0.4     | 0.50  | 0.90  | -0.5019 | -0.4993        | 1.3977e-02 | 0.9571 | 0.9577                     | 5.9598e-03      | 0.7968 | 0.7964      | 1.0066e-04 | 0.3222 | 0.3214 | 4.6715e-04 |
| 0.3  | 0.50            | 0.80            | 0.4     | 0.50  | 0.90  | -0.7793 | -0.7732        | 1.2206e-02 | 0.9403 | 0.9437                     | 5.7166e-03      | 0.8006 | 0.8005      | 1.0203e-04 | 0.3600 | 0.3595 | 2.6774e-04 |
|      |                 |                 |         |       |       |         |                |            |        |                            |                 |        |             |            | i      |        |            |

# Visualization of results for simultaneous heterogeneity in treatment effect size and treatment proportion

The presented visualizations were rendered using a version of the Shiny App available at https://emilialoescher.shinyapps.io/6\_visualization\_app/. Plot aesthetics were changed to obtain the presented visualizations. The code for the Shiny App can be found at https://github.com/emsulo/Master-Thesis.

### Study 1



**Figure 1** Study 1 - Calibration-in-the-large coefficient for varying or equal treatment effect and treatment proportion with  $ES_d$  and  $p_d$  being the treatment effect size and proportion at derivation, respectively, and  $ES_v$  and  $p_v$  being the treatment effect size and proportion at validation, respectively.



**Figure 2** Study 1 - Calibration Slope for varying or equal treatment effect and treatment proportion with  $ES_d$  and  $p_d$  being the treatment effect size and proportion at derivation, respectively, and  $ES_v$  and  $p_v$  being the treatment effect size and proportion at validation, respectively.



Figure 3 Study 1 - C-statistic for varying or equal treatment effect and treatment proportion with  $ES_d$  and  $p_d$  being the treatment effect size and proportion at derivation, respectively, and  $ES_v$  and  $p_v$  being the treatment effect size and proportion at validation, respectively.



**Figure 4** Study 1 - Scaled Brier score for varying or equal treatment effect and treatment proportion with  $ES_d$  and  $p_d$  being the treatment effect size and proportion at derivation, respectively, and  $ES_v$  and  $p_v$  being the treatment effect size and proportion at validation, respectively.

### Study 2



**Figure 5** Study 2 - Calibration-in-the-large coefficient for varying or equal treatment effect and treatment proportion with  $ES_d$  and  $p_d$  being the treatment effect size and proportion at derivation, respectively, and  $ES_v$  and  $p_v$  being the treatment effect size and proportion at validation, respectively.



**Figure 6** Study 2 - Calibration Slope for varying or equal treatment effect and treatment proportion with  $ES_d$  and  $p_d$  being the treatment effect size and proportion at derivation, respectively, and  $ES_v$  and  $p_v$  being the treatment effect size and proportion at validation, respectively.



Figure 7 Study 2 - C-statistic for varying or equal treatment effect and treatment proportion with  $ES_d$  and  $p_d$  being the treatment effect size and proportion at derivation, respectively, and  $ES_v$  and  $p_v$  being the treatment effect size and proportion at validation, respectively.



**Figure 8** Study 2 - Scaled Brier score for varying or equal treatment effect and treatment proportion with  $ES_d$  and  $p_d$  being the treatment effect size and proportion at derivation, respectively, and  $ES_v$  and  $p_v$  being the treatment effect size and proportion at validation, respectively.