CMPE 212 Principles of Digital Design

Lecture 28

Design Examples of Finite State Machines

May 4, 2016

www.csee.umbc.edu/~younis/CMPE212/CMPE212.htm

Sequential Circuit Model

- Possible realization:
- Mealy model
- Moore model

- Can be synchronous or asynchronous
 - Composed of a combinational logic unit and delay elements in a feedback path, which maintains state information
 - ☐ Defined by output relation to input and circuit state (values in flip-flops)

Delay elements (one per state bit)

Example: FSM for Modulo-4 Counter

- ☐ Finite state machines use flip flops and combinational logic to implement the desired function
- □ A counter is a sequential circuit that tracks the number of ones or zeros in an input or the number of clock cycles
- □ A modulo-4 counter has two output lines, which take on values of 00, 01, 10, and 11 on subsequent clock cycles

State Transition Diagram

- □ State transition diagram captures the the behavior change and output based on the current and previous inputs
- ☐ The number of bits (flip flops)
 needed are determined based on
 the number of states
- ☐ The states and transitions among states depend on the function to be implemented
- ☐ State diagrams are widely used notation for controllers

State diagram for Mod-4 Counter

State Table for Mod-4 Counter

☐ The state table is a rewrite of the state transition diagram

State Assignment for Mod-4 Counter

☐ After creating the state table, states are assigned binary codes

Number of bits (flip flops) depends on number of states

Input Present	RESET			
state (S_t)	0	1		
A:00	01/01	00/00		
B:01	10/10	00/00		
C:10	11/11	00/00		
D:11	00/00	00/00		

Truth Table for Mod-4 Counter

Input Present	RES	SET
state (S_t)	0	1
A:00	01/01	00/00
B:01	10/10	00/00
C:10	11/11	00/00
D:11	00/00	00/00

- □ From the state table we can extract the truth tables for the next state and output functions
- The indices for the state variables indicate timing relationships

RESET r(t)	$s_1(t)$	$s_{\theta}(t)$	$s_1 s_0(t+1)$	$q_1q_0(t+1)$
0	0	0	01	01
0	0	1	10	10
0	1	0	11	11
0	1	1	00	00
1	0	0	00	00
1	0	1	00	00
1	1	0	00	00
1	1	1	00	00

$$s_{0}(t+1) = r(t)s_{1}(t)s_{0}(t) + r(t)s_{1}(t)s_{0}(t)$$

$$s_{1}(t+1) = r(t)s_{1}(t)s_{0}(t) + r(t)s_{1}(t)s_{0}(t)$$

$$q_{0}(t+1) = r(t)s_{1}(t)s_{0}(t) + r(t)s_{1}(t)s_{0}(t)$$

$$q_{1}(t+1) = r(t)s_{1}(t)s_{0}(t) + r(t)s_{1}(t)s_{0}(t)$$

Logic Design for Mod-4 Counter

$$s_0(t+1) = \overline{r(t)}\overline{s_1(t)}\overline{s_0(t)} + \overline{r(t)}\overline{s_1(t)}\overline{s_0(t)}$$

$$s_1(t+1) = \overline{r(t)} \overline{s_1(t)} s_0(t) + \overline{r(t)} s_1(t) \overline{s_0(t)}$$

$$q_0(t+1) = \overline{r(t)}\overline{s_1(t)}\overline{s_0(t)} + \overline{r(t)}\overline{s_1(t)}\overline{s_0(t)}$$

$$q_1(t+1) = \overline{r(t)}s_1(t)s_0(t) + \overline{r(t)}s_1(t)\overline{s_0(t)}$$

Sequence Detector

☐ Design a machine that outputs a 1 when exactly two of the last three inputs are 1, e.g. input sequence of 011011100 produces an output sequence of 001111010.

☐ Assume input is a 1-bit serial line.

☐ Use D flip-flops and 8-to-1 Multiplexers

→ Start by constructing a state transition diagram

Sequence Detector State Table

Input	X
Present state	0 1
A	B/0 C/0
B	D/0 $E/0$
C	F/0 $G/0$
D	D/0 $E/0$
E	F/0 $G/1$
F	D/0 $E/1$
G	F/1 $G/0$

Sequence Detector State Assignment

Input Present state	X 0 1
1 Tesent state	
A B C D E F G	B/0 C/0 D/0 E/0 F/0 G/0 D/0 E/0 F/0 G/1 D/0 E/1 F/1 G/0

There is no state for "111"

Input and	Next state
state at	and output at
time t	time $t+1$

s_2	s_1	s_0	х	s_2 s_1 s_0 z
0 0 0 0 0 0 0 1 1 1 1	0 0 0 0 1 1 1 1 0 0 0 0	0 0 1 1 0 0 1 1 0 0 1 1 0	$\begin{array}{c} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{array}$	0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 1 0 1 1 0 1 0 0 1 1 0 1 1
1 1 1	1 1 1	0 1 1	1 0 1	1 1 0 0 d d d d d d d d

Sequence Detector Logic Diagram

- ☐ The "don't care" entries have not been a factor when a MUX is used
- ☐ A gate level implementation can achieve further optimization (logic reduction)

Next state

Input and

MUX-based implementation

CLK

Vending Machine Controller

Design a finite state machine for a vending machine controller that accepts nickels, dimes, and quarters. When the value of the money inserted equals or exceeds twenty cents, the machine vends the item and returns change if any, and waits for next transaction.

State Table and State Assignment

Input P.S.	N 00	D 01	Q 10
A	B/000	C/000	A/110
B	C/000	D/000	A/101
C	D/000	A/100	A/111
D	A/100	A/110	<i>B</i> /111

Input	N	D	Q
P.S.	$\begin{array}{c} x_1 x_0 \\ 00 \end{array}$	$\begin{array}{c} x_1 x_0 \\ 01 \end{array}$	$\begin{array}{c} x_1 x_0 \\ 10 \end{array}$
$s_1 s_0$		s_1s_0 / z_2z_1z	70
A:00	01/000	10/000	00/110
B:01	10/000	11/000	00/101
C:10	11/000	00/100	00/111
D:11	00/100	00/110	01/111

PLA Vending Machine Controller

Moore Counter

- ☐ Mealy Model: Outputs are functions of Inputs and Present State.
- ☐ Moore Model: Outputs are functions of Present State only
- ☐ Both Mealy and Moore models are used in practice
- The Mealy model is more powerful and expressive than the Moore model

☐ Moore model is easier to analyze since the output is synchronized with the

Serial Adder

State transition diagram, state table, and state assignment for a serial adder.

Serial Adder Next-State Functions

Truth table showing next state functions for a serial adder for D, S-R, T, and J-K flip-flops

	Q_t	Q_{t+1}	J	K	
J-K flip-flop	0 0 1	0 1 0	0 1 d	d d 1	
	1	1	и	U	

Input	XY				
Present state (S_t)	00	01	10	11	
A:0	0/0	0/1	0/1	1/0	
B:1	0/1	1/0	1/0	1/1	

X	!	resent State S_t	D	(Set) ((Reset)) T	J	K	Z	
0	0	0	0	0	0	0	0	d	0	
0	0	1	0	0	1	1	d	1	1	
0	1	0	0	0	0	0	0	d	1	
0	1	1	1	0	0	0	d	0	0	
1	0	0	0	0	0	0	0	d	1	
1	0	1	1	0	0	0	d	0	0	
1	1	0	1	1	0	1	1	d	0	
1	1	1	1	0	0	0	d	0	1	

J-K Flip-Flop Serial Adder Circuit

D Flip-Flop Serial Adder Circuit

