Chapter 8. Classification: Basic Concepts

นางสาวสุภาภรณ์ บุตุธรรม 623020543-8

- □ Classification: Basic Concepts
- Decision Tree Induction
- Bayes Classification Methods
- Linear Classifier
- Model Evaluation and Selection

- □ Techniques to Improve Classification Accuracy: Ensemble Methods
- Additional Concepts on Classification
- Summary

Classifier Evaluation Metrics: Confusion Matrix

Confusion Matrix

•	Class ที่แท้จริง	Precision		
	Actual class\Predicted class	C ₁	- C ₁	
	C_1	True Positives (TP)	False Negatives (FN)	Re
	- C ₁	False Positives (FP)	True Negatives (TN)	

- ☐ In a confusion matrix w. m classes, CM_{i,i} indicates # of tuples in class i that were labeled by the classifier as class j
- May have extra rows/columns to provide totals
- Example of Confusion Matrix:

Actual class\Predicted class	buy_computer = yes	buy_computer = no	Total
buy_computer = yes	6954	46	7000
buy_computer = no	412	2588	3000
Total	7366	2634	10000

Classifier Evaluation Metrics: Accuracy, Error Rate, Sensitivity and Specificity

Α\P	С	¬C	
С	TP	FN	Р
¬C	FP	TN	N
	P'	N'	All

- Classifier accuracy, or recognition rate
- Percentage of test set tuples that are correctly classified
- Accuracy = (TP + TN)/All
- □ Error rate: 1 accuracy, or Error rate = (FP + FN)/All

- Class imbalance problem
- One class may be rare
- E.g., fraud, or HIV-positive
- □ Significant majority of the negative class and minority of the positive class
- Measures handle the class imbalance problem
- Sensitivity (recall): True positive recognition rate
 - Sensitivity = TP/P
- Specificity: True negative recognition rate
- Specificity = TN/N

Classifier Evaluation Metrics: Precision and Recall, and F-measures

- □ Precision: Exactness: what % of tuples that the classifier labeled as positive are actually positive? $P = Precision = \frac{..}{TP + FP}$
- □ Recall: Completeness: what % of positive tuples did the classifier label as positive?
- Range: [0, 1]
- ☐ The "inverse" relationship between precision & recall
- □ F measure (or F-score): harmonic mean of precision and recall
- □ In general, it is the weighted measure of precision & recall

F1-measure (balanced F-measure)

P=Precision
R= Receit
R= Receit
P= R fin = F fin

50

Chapter 9. Classification: Advanced Methods

□ Bayesian Belief Networks
□ Support Vector Machines
Neural Networks and Deep Learning
□ Pattern-Based Classification
□ Lazy Learners and K-Nearest Neighbors
 Other Classification Methods
Summary

From Naïve Bayes to Bayesian Networks

- Naïve Bayes classifiers assume that the value of a particular feature is independent
 of the value of any other feature, given the class variable
- ☐ This assumption is often too simple to model the real world well
- ☐ Bayesian network (or Bayes network, belief network, Bayesian model or probabilistic directed acyclic graphical model) is a probabilistic **graphical model**
 - Represented by a set of random variables and their conditional dependencies via a directed acyclic graph (DAG)
 - Ex. Given symptoms, the network can be used to compute the probabilities of the presence of various diseases

Discussion on the k-NN Algorithm

□ k-NN for <u>real-valued prediction</u> for a given unknown tuple

- Returns the mean values of the k nearest neighbors อามคนที่อยู่ใกล้เคียว เป็นจำนวนศ์เพื่อเอกฉันท์
- □ <u>Distance-weighted</u> nearest neighbor algorithm
- □ Weight the contribution of each of the *k* neighbors according to their distance
- to the query xq Give greater weight to closer neighbors

- Robust to noisy data by averaging $\frac{k-\text{nearest neighbors}}{k+\text{nearest neighbors}}$
- <u>Curse of dimensionality</u>: distance between neighbors could be dominated by irrelevant attributes
- $\hfill\Box$ To overcome it, axes stretch or elimination of the least relevant attributes

67