Spooq2 Documentation

Release 3.2.0

David Eigenstuhler

CONTENTS

1	Table	e of Cont		3
	1.1	Change	log	3
		1.1.1	3.2.0 (2021-04-13)	3
		1.1.2	3.1.0 (2021-01-27)	3
		1.1.3	3.0.1 (2021-01-22)	3
		1.1.4	3.0.0b (2020-12-09)	3
		1.1.5	2.3.0 (2020-11-23)	4
		1.1.6	2.2.0 (2020-10-02)	4
		1.1.7	2.1.1 (2020-09-04)	4
		1.1.8	2.1.0 (2020-08-17)	4
		1.1.9	2.0.0 (2020-05-22)	5
		1.1.10	0.6.2 (2019-05-13)	5
		1.1.11	0.6.1 (2019-03-26)	5
	1.2	Installat	tion / Deployment	5
		1.2.1	Build egg file	5
		1.2.2	Build zip file	5
		1.2.3	Include pre-build package (egg or zip) with Spark	5
		1.2.4		6
		1.2.5	Install Spooq2 directly from git	6
		1.2.6		6
	1.3	Setup fo	or Development, Testing, Documenting	6
		1.3.1	Prerequisites	6
		1.3.2	Setting up the Environment	6
		1.3.3	Activate the Virtual Environment	7
		1.3.4	Creating Your Own Components	7
		1.3.5		7
		1.3.6		7
		1.3.7	Generate Documentation	9
	1.4	Exampl	les	0
		1.4.1	JSON Files to Partitioned Hive Table	0
	1.5	Extracto	ors	4
		1.5.1	JSON Files	4
		1.5.2	JDBC Source	6
		1.5.3	Class Diagram of Extractor Subpackage	8
		1.5.4	Create your own Extractor	9
	1.6	Transfo	rmers	9
		1.6.1	Exploder	9
		1.6.2	Sieve (Filter)	0
		1.6.3	Mapper	1
		1.6.4	Threshold-based Cleaner	9
		1.6.5	Enumeration-based Cleaner	
		1.6.6	Newest by Group (Most current record per ID)	
		1.6.7	Class Diagram of Transformer Subpackage	
		1.6.8	Create your own Transformer	

	1.7	Loaders		44		
		1.7.1	Hive Database	44		
		1.7.2	Class Diagram of Loader Subpackage	47		
		1.7.3	Create your own Loader	48		
	1.8	Pipeline		48		
		1.8.1	Pipeline	48		
		1.8.2	Pipeline Factory	48		
		1.8.3	Class Diagram of Pipeline Subpackage	50		
	1.9	Spoog I	Base	51		
		1.9.1	Global Logger	51		
		1.9.2	Extractor Base Class	52		
		1.9.3	Transformer Base Class	55		
		1.9.4	Loader Base Class	59		
	1.10	Archite	cture Overview	63		
		1.10.1	Typical Data Flow of a Spooq Data Pipeline	63		
		1.10.2	Simplified Class Diagram	64		
2	Indic	es and ta	ables	65		
Py	Python Module Index 6					
In	dex			69		

Spooq is your PySpark based helper library for ETL data ingestion pipeline in Data Lakes.

Extractors, Transformers, and Loaders are independent components which can be plugged-in into a pipeline instance or used separately.

CONTENTS 1

2 CONTENTS

TABLE OF CONTENT

1.1 Changelog

1.1.1 3.2.0 (2021-04-13)

- [MOD] add functionality to log cleansed values into separate struct column (column_to_log_cleansed_values)
- [MOD] add ignore_ambiguous_columns to Mapper
- [MOD] log spooq version when importing
- [REM] Drop separate spark package (bin-folder) as pip package can now handle all tests as well
- [ADD] Github action to test on label (test-it) or merge into master

1.1.2 3.1.0 (2021-01-27)

- [ADD] EnumCleaner Transformer
- [MOD] add support for dynamic default values with the ThresholdCleaner

1.1.3 3.0.1 (2021-01-22)

• [MOD] extended_string_to_timestamp: now keeps milli seconds (no more cast to LongType) for conversion to Timestamp

1.1.4 3.0.0b (2020-12-09)

- [ADD] Spark 3 support (different handling in tests via *only_sparkX* decorators)
- [FIX] fix null types in schema for custom transformations on missing columns
- [MOD] (BREAKING CHANGE!) set default for *ignore_missing_columns* of Mapper to False (fails on missing input columns)

1.1.5 2.3.0 (2020-11-23)

- [MOD] extended_string_to_timestamp: it can now handle unix timestamps in seconds and in milliseconds
- [MOD] extended_string_to_date: it can now handle unix timestamps in seconds and in milliseconds

1.1.6 2.2.0 (2020-10-02)

- [MOD] add support for prepending and appending mappings on input dataframe (Mapper)
- [MOD] add support for custom spark sql functions in mapper without injecting methods
- [MOD] add support for "on"/"off" and "enabled"/"disabled" in extended_string_to_boolean custom mapper transformations
- [ADD] new custom mapper transformations:
 - extended_string_to_date
 - extended_string_unix_timestamp_ms_to_date
 - has_value

1.1.7 2.1.1 (2020-09-04)

- [MOD] drop_rows_with_empty_array flag to allow keeping rows with empty array after explosion
- [MOD] additional test-cases for extended_string mappings (non string inputs)
- [FIX] remove STDERR logging, don't touch root logging level anymore (needs to be done outside spooq to see some lower log levels)
- [ADD] new custom mapper transformations:
 - extended_string_unix_timestamp_ms_to_timestamp

1.1.8 2.1.0 (2020-08-17)

- [ADD] Python 3 support
- [MOD] *ignore_missing_columns* flag to fail on missing input columns with Mapper transformer (https://github.com/Breaka84/Spooq/pull/6)
- [MOD] timestamp support for threshold cleaner
- [ADD] new custom mapper transformations:
 - meters_to_cm
 - unix_timestamp_ms_to_spark_timestamp
 - extended_string_to_int
 - extended_string_to_long
 - extended_string_to_float
 - extended_string_to_double
 - extended_string_to_boolean
 - extended_string_to_timestamp

1.1.9 2.0.0 (2020-05-22)

- [UPDATE] Upgrade to use Spark 2 (tested for 2.4.3) -> will no longer work for spark 1
- Breaking changes (severe refactoring)

1.1.10 0.6.2 (2019-05-13)

- [FIX] Logger writes now to std_out and std_err & logger instance is shared across all spood instances
- [FIX] PyTest version locked to 3.10.1 as 4+ broke the tests
- [MOD] Removes id_function to create names for parameters in test methods (fallback to built-in)
- [ADD] Change SelectNewestByGroup from string eval to pyspark objects
- [FIX] json_string is now able to None values

1.1.11 0.6.1 (2019-03-26)

- [FIX] PassThrough Extractor (input df now defined at instantiation time)
- [ADD] json_string new custom data type

1.2 Installation / Deployment

1.2.1 Build egg file

```
$ cd spooq2
$ python setup.py bdist_egg
```

The output is stored as dist/Spooq2-<VERSION_NUMBER>-py2.7.egg

1.2.2 Build zip file

```
$ cd spooq2
$ rm temp.zip
$ zip -r temp.zip src/spooq2
$ mv temp.zip Spooq2_$(grep "__version__" src/spooq2/_version.py | \
    cut -d " " -f 3 | tr -d \").zip
```

The output is stored as *Spooq2-<VERSION_NUMBER>.zip*.

1.2.3 Include pre-build package (egg or zip) with Spark

For Submitting or Launching Spark:

```
$ pyspark --py-files Spooq2-<VERSION_NUMBER>.egg
```

The library still has to be imported in the pyspark application!

Within Running Spark Session:

```
>>> sc.addFile("Spooq2-<VERSION_NUMBER>.egg")
>>> import spooq2
```

1.2.4 Install local repository as package

```
$ cd spooq2
$ python setup.py install
```

1.2.5 Install Spooq2 directly from git

```
$ pip install git+https://github.com/breaka84/spooq@master
```

1.2.6 Development, Testing, and Documenting

Please refer to Setup for Development, Testing, Documenting.

1.3 Setup for Development, Testing, Documenting

Attention: The current version of Spooq is designed (and tested) for Python 2.7/3.7/3.8 on ubuntu, manjaro linux and WSL2 (Windows Subsystem Linux).

1.3.1 Prerequisites

- python 2.7 or python 3.7/3.8
- Java 8 (jdk8-openjdk)
- pipenv
- Latex (for PDF documentation)

1.3.2 Setting up the Environment

The requirements are stored in the file Pipfile separated for production and development packages.

To install the packages needed for development and testing run the following command:

```
$ pipenv install --dev
```

This will create a virtual environment in ~/.local/share/virtualenvs.

If you want to have your virtual environment installed as a sub-folder (.venv) you have to set the environment variable *PIPENV_VENV_IN_PROJECT* to 1.

To remove a virtual environment created with pipenv just change in the folder where you created it and execute *pipenv –rm*.

1.3.3 Activate the Virtual Environment

Listing 1: To activate the virtual environment enter:

```
$ pipenv shell
```

Listing 2: To deactivate the virtual environment simply enter:

```
$ exit
# or close the shell
```

For more commands of pipenv call pipenv -h.

1.3.4 Creating Your Own Components

Implementing new extractors, transformers, or loaders is fairly straightforward. Please refer to following descriptions and examples to get an idea:

- Create your own Extractor
- Create your own Transformer
- Create your own Loader

1.3.5 Configure Spark

The tests use per default the Spark 3 package in the bin/spark3 folder. To use a different Spark installation for the tests, you have to either:

- set spark_home in the pytest.ini (tests/pytest.ini) to the new location or
- set the environment variable SPARK_HOME and comment out spark_home in pytest.ini

1.3.6 Running Tests

The tests are implemented with the pytest framework.

Listing 3: Start all tests:

```
$ pipenv shell
$ cd tests
$ pytest
```

Test Plugins

Those are the most useful plugins automatically used:

html

Listing 4: Generate an HTML report for the test results:

```
$ pytest --html=report.html
```

random-order

Shuffles the order of execution for the tests to avoid / discover dependencies of the tests.

Randomization is set by a seed number. To re-test the same order of execution where you found an error, just set the seed value to the same as for the failing test. To temporarily disable this feature run with *pytest -p no:random-order -v*

cov

Generates an HTML for the test coverage

Listing 5: Get a test coverage report in the terminal:

```
$ pytest --cov-report term --cov=spooq2
```

Listing 6: Get the test coverage report as HTML

```
$ pytest --cov-report html:cov_html --cov=spooq2
```

ipdb

To use ipdb (IPython Debugger) add following code at your breakpoint::

```
>>> import ipdb
>>> ipdb.set_trace()
```

You have to start pytest with -s if you want to use interactive debugger.

```
$ pytest -s
```

1.3.7 Generate Documentation

This project uses Sphinx for creating its documentation. Graphs and diagrams are produced with PlantUML.

The main documentation content is defined as docstrings within the source code. To view the current documentation open *docs/build/html/index.html* or *docs/build/latex/spooq2.pdf* in your application of choice. There are symlinks in the root folder for symplicity:

- · Documentation.html
- Documentation.pdf

Although, if you are reading this, you have probably already found the documentation...

Diagrams

For generating the graphs and diagrams, you need a working plantuml installation on your computer! Please refer to sphinxcontrib-plantuml.

HTML

```
$ cd docs
$ make html
$ chromium build/html/index.html
```

PDF

For generating documentation in the PDF format you need to have a working (pdf)latex installation on your computer! Please refer to TexLive on how to install TeX Live - a compatible latex distribution. But beware, the download size is huge!

```
$ cd docs
$ make latexpdf
$ evince build/latex/Spooq2.pdf
```

Configuration

Themes, plugins, settings, ... are defined in *docs/source/conf.py*.

napoleon

Enables support for parsing docstrings in NumPy / Google Style

intersphinx

Allows linking to other projects' documentation. E.g., PySpark, Python2 To add an external project, at the documentation link to *intersphinx_mapping* in *conf.py*

recommonmark

This allows you to write CommonMark (Markdown) inside of Docutils & Sphinx projects instead of rst.

plantuml

Allows for inline Plant UML code (uml directive) which is automatically rendered into an svg image and placed in the document. Allows also to source puml-files. See *Architecture Overview* for an example.

1.4 Examples

1.4.1 JSON Files to Partitioned Hive Table

Sample Input Data:

```
"id": 18,
"guid": "b12b59ba-5c78-4057-a998-469497005c1f",
"attributes": {
  "first_name": "Jeannette",
 "last_name": "O'Loghlen",
  "gender": "F",
  "email": "gpirri3j@oracle.com",
  "ip_address": "64.19.237.154",
  "university": "",
  "birthday": "1972-05-16T22:17:41Z",
  "friends": [
      "first_name": "Noémie",
      "last_name": "Tibbles",
      "id": 9952
    },
      "first_name": "Bérangère",
      "last_name": null,
      "id": 3391
    },
      "first_name": "Danièle",
      "last_name": null,
      "id": 9637
    },
      "first_name": null,
      "last_name": null,
      "id": 9939
    },
      "first_name": "Anaëlle",
      "last_name": null,
      "id": 18994
    }
  1
},
"meta": {
  "created_at_sec": 1547371284,
  "created_at_ms": 1547204429000,
```

(continues on next page)

```
"version": 24
}
```

Sample Output Tables

Table 1: Table "user"

id	guid	forename	surname	gender	has_email	has_university	created_at
18	"b12b59ba"	"Jeannette"	"O"Loghlen"	"F"	"1"	NULL	1547204429
			•••				

Table 2: Table "friends_mapping"

id	guid	friend_id	created_at
18	b12b59ba	9952	1547204429
18	b12b59ba	3391	1547204429
18	b12b59ba	9637	1547204429
18	b12b59ba	9939	1547204429
18	b12b59ba	18994	1547204429

Application Code for Updating the Users Table

```
from spooq2.pipeline import Pipeline
import spooq2.extractor as E
import spooq2.transformer as T
import spooq2.loader as L
users_mapping = [
                               "id",
     ("id",
                                                                    "IntegerType"),
     ("guid", "guid", "StringType"),
("forename", "attributes.first_name", "StringType"),
("surename", "attributes.last_name", "StringType"),
("gender", "attributes.gender", "StringType"),
("has_email", "attributes.email", "StringBoolean"),
     ("has_university", "attributes.university", "StringBoolean"), ("created_at", "meta.created_at_ms", "timestamp_ms_to_s"),
]
users_pipeline = Pipeline()
users_pipeline.set_extractor(E.JSONExtractor(input_path="tests/data/schema_v1/
⇔sequenceFiles"))
users_pipeline.add_transformers(
          T.Mapper(mapping=users_mapping),
          T. ThresholdCleaner (
                range_definitions={"created_at": {"min": 0, "max": 1580737513, "default
→": None}}
```

(continues on next page)

1.4. Examples 11

Application Code for Updating the Friends_Mapping Table

```
from spooq2.pipeline import Pipeline
import spooq2.extractor as E
import spooq2.transformer as T
import spooq2.loader as L
friends_mapping = [
                    "id",
    ("id",
                                           "IntegerType"),
    ("guid",
                    "guid",
                                           "StringType"),
    ("friend_id", "friend.id",
                                           "IntegerType"),
    ("created_at", "meta.created_at_ms", "timestamp_ms_to_s"),
1
friends_pipeline = Pipeline()
friends_pipeline.set_extractor(E.JSONExtractor(input_path="tests/data/schema_v1/
⇔sequenceFiles"))
friends_pipeline.add_transformers(
        T.NewestByGroup(group_by="id", order_by="meta.created_at_ms"),
        T.Exploder(path_to_array="attributes.friends", exploded_elem_name="friend
\hookrightarrow"),
        T.Mapper(mapping=friends_mapping),
        T. ThresholdCleaner (
            range_definitions={"created_at": {"min": 0, "max": 1580737513, "default
→": None}}
        ),
    ]
friends_pipeline.set_loader(
   L.HiveLoader(
        db_name="users_and_friends",
        table_name="friends_mapping",
        partition_definitions=[
            {"column_name": "dt", "column_type": "IntegerType", "default_value": _
→20200201}
        1,
```

(continues on next page)

```
repartition_size=20,
)
)
friends_pipeline.execute()
```

Application Code for Updating Both, the Users and Friends_Mapping Table, at once

This script extracts and transforms the common activities for both tables as they share the same input data set. Caching the dataframe avoids redundant processes and reloading when an action is executed (the load step f.e.). This could have been written with pipeline objects as well (by providing the Pipeline an input_df and/or output_df to bypass extractors and loaders) but would have led to unnecessary verbosity. This example should also show the flexibility of Spooq2 for activities and steps which are not directly supported.

```
import spooq2.extractor as E
import spooq2.transformer as T
import spooq2.loader as L
mapping = [
                         "id",
   ("id",
                                                      "IntegerType"),
    ("guid",
                         "guid",
                                                      "StringType"),
    ("forename",
                         "attributes.first_name", "StringType"),
                         "attributes.last_name",
    ("surename",
                         "attributes.rase_...
"attributes.gender", "StringType ,,
"StringBoolean"),
                                                      "StringType"),
    ("gender",
    ("has_email", "attributes.email",
    ("has_university", "attributes.university", "StringBoolean"),
("created_at", "meta.created_at_ms", "timestamp_ms_to_s"),
("friends". "attributes friends".
                                                    "as_is"),
                         "attributes.friends",
    ("friends",
"""Transformations used by both output tables"""
common_df = E.JSONExtractor(input_path="tests/data/schema_v1/sequenceFiles").
⇔extract()
common_df = T.Mapper(mapping=mapping).transform(common_df)
common_df = T.ThresholdCleaner(
    range_definitions={"created_at": {"min": 0, "max": 1580737513, "default": None}
).transform(common_df)
common_df = T.NewestByGroup(group_by="id", order_by="created_at").transform(common_
→df)
common_df.cache()
"""Transformations for users_and_friends table"""
L.HiveLoader(
   db_name="users_and_friends",
    table_name="users",
    partition_definitions=[
        {"column_name": "dt", "column_type": "IntegerType", "default_value":
→20200201}
    ],
    repartition_size=10,
).load(common_df.drop("friends"))
"""Transformations for friends_mapping table"""
friends_df = T.Exploder(path_to_array="friends", exploded_elem_name="friend").
→transform(
    common df
friends_df = T.Mapper(
```

(continues on next page)

1.4. Examples 13

```
mapping=[
        ("id",
                        "id",
                                        "IntegerType"),
        ("guid",
                        "guid",
                                        "StringType"),
        ("friend_id",
                        "friend.id",
                                        "IntegerType"),
        ("created_at", "created_at", "IntegerType"),
    1
).transform(friends_df)
L.HiveLoader(
   db_name="users_and_friends",
    table_name="friends_mapping",
    partition_definitions=[
        {"column_name": "dt", "column_type": "IntegerType", "default_value":
→20200201}
    ],
    repartition_size=20,
).load(friends_df)
```

1.5 Extractors

Extractors are used to fetch, extract and convert a source data set into a PySpark DataFrame. Exemplary extraction sources are **JSON Files** on file systems like HDFS, DBFS or EXT4 and relational database systems via **JDBC**.

class Extractor

Base Class of Extractor Classes.

name

Sets the __name__ of the class' type as name, which is essentially the Class' Name.

```
Type str
```

logger

Shared, class level logger for all instances.

```
Type logging.Logger
```

extract()

Extracts Data from a Source and converts it into a PySpark DataFrame.

Returns

```
Return type pyspark.sql.DataFrame
```

Note: This method does not take ANY input parameters. All needed parameters are defined in the initialization of the Extractor Object.

1.5.1 JSON Files

 $\verb|class JSONExtractor|| (input_path=None, base_path=None, partition=None)|$

The JSONExtractor class provides an API to extract data stored as JSON format, deserializes it into a PySpark dataframe and returns it. Currently only single-line JSON files are supported, stored either as textFile or sequenceFile.

Examples

```
>>> from spooq2 import extractor as E
```

Parameters

- input_path (str) The path from which the JSON files should be loaded ("/*" will be added if omitted)
- base_path (str) Spooq tries to infer the input_path from the base_path and the partition if the input_path is missing.
- partition (str or int) Spood tries to infer the input_path from the base_path and the partition if the input_path is missing. Only daily partitions in the form of "YYYYMMDD" are supported. e.g., "20200201" => <base_path> + "/20/02/01/*"

Returns The extracted data set as a PySpark DataFrame

Return type pyspark.sql.DataFrame

Raises AttributeError - Please define either input_path or base_path and partition

Warning: Currently only single-line JSON files stored as SequenceFiles or TextFiles are supported!

Note: The init method checks which input parameters are provided and derives the final input_path from them accordingly.

If input_path is not None: Cleans input_path and returns it as the final input_path

Elif base_path and partition are not None: Cleans base_path, infers the sub path from the partition and returns the combined string as the final input_path

Else: Raises an AttributeError

extract()

This is the Public API Method to be called for all classes of Extractors

Returns Complex PySpark DataFrame deserialized from the input JSON Files

Return type pyspark.sql.DataFrame

1.5. Extractors

1.5.2 JDBC Source

Examples

```
>>> import spooq2.extractor as E
>>>
>>> extractor = E.JDBCExtractorFullLoad(
      query="select id, first_name, last_name, gender, created_at test_db.
>>>

→from users",
        jdbc_options={
>>>
            "url": "jdbc:postgresql://localhost/test_db",
            "driver": "org.postgresql.Driver",
>>>
            "user": "read_only",
>>>
            "password": "test123",
>>>
>>>
        },
>>> )
>>>
>>> extracted_df = extractor.extract()
>>> type(extracted_df)
pyspark.sql.dataframe.DataFrame
```

Parameters

- **query** (str) Defines the actual query sent to the JDBC Source. This has to be a valid SQL query with respect to the source system (e.g., T-SQL for Microsoft SQL Server).
- jdbc_options (dict, optional) -

A set of parameters to configure the connection to the source:

- url (str) A JDBC URL of the form jdbc:subprotocol:subname. e.g., jdbc: postgresql://localhost:5432/dbname
- driver (str) The class name of the JDBC driver to use to connect to this URL.
- user (str) Username to authenticate with the source database.
- password (str) Password to authenticate with the source database.

See pyspark.sql.DataFrameReader.jdbc() and https://spark.apache.org/docs/2.4.3/sql-data-sources-jdbc.html for more information.

• cache (bool, defaults to True) – Defines, weather to cache () the dataframe, after it is loaded. Otherwise the Extractor will reload all data from the source system eachtime an action is performed on the DataFrame.

Raises exceptions.AssertionError – All jdbc_options values need to be present as string variables.

```
extract()
```

This is the Public API Method to be called for all classes of Extractors

Returns PySpark dataframe from the input JDBC connection.

Return type pyspark.sql.DataFrame

```
 \textbf{class JDBCExtractorIncremental} \ (partition, jdbc\_options, source\_table, spooq2\_values\_table, spooq2\_values\_db='spooq2\_values', spooq2\_values\_partition\_column='updated\_at', cache=True)
```

Connects to a JDBC Source and fetches the data with respect to boundaries. The boundaries are inferred from the partition to load and logs from previous loads stored in the <code>spooq2_values_table</code>.

Examples

```
>>> import spoog2.extractor as E
>>> # Boundaries derived from previously logged extractions => ("2020-01-31...
→03:29:59", False)
>>>
>>> extractor = E.JDBCExtractorIncremental(
>>>
        partition="20200201",
>>>
        jdbc_options={
            "url": "jdbc:postgresql://localhost/test_db",
>>>
            "driver": "org.postgresql.Driver",
>>>
            "user": "read_only",
>>>
            "password": "test123",
>>>
>>>
       },
>>>
        source_table="users",
        spooq2_values_table="spooq2_jdbc_log_users",
>>> )
>>>
>>> extractor._construct_query_for_partition(extractor.partition)
select * from users where updated_at > "2020-01-31 03:29:59"
>>> extracted_df = extractor.extract()
>>> type(extracted_df)
pyspark.sql.dataframe.DataFrame
```

Parameters

- partition (int or str) Partition to extract. Needed for logging the incremental load in the spooq2_values_table.
- jdbc options (dict, optional) -

A set of parameters to configure the connection to the source:

- url (str) A JDBC URL of the form jdbc:subprotocol:subname. e.g., jdbc: postgresql://localhost:5432/dbname
- driver (str) The class name of the JDBC driver to use to connect to this URL.
- user (str) Username to authenticate with the source database.
- password (str) Password to authenticate with the source database.

See pyspark.sql.DataFrameReader.jdbc() and https://spark.apache.org/docs/2.4.3/sql-data-sources-jdbc.html for more information.

- **source_table** (str) Defines the tablename of the source to be loaded from. For example 'purchases'. This is necessary to build the query.
- **spooq2_values_table** (str) Defines the Hive table where previous and future loads of a specific source table are logged. This is necessary to derive boundaries for the current partition.
- **spooq2_values_db** (str, optional) Defines the Database where the spooq2_values_table is stored. Defaults to 'spooq2_values'.

1.5. Extractors

- **spooq2_values_partition_column** (str, optional) The column name which is used for the boundaries. Defaults to 'updated_at'.
- cache (bool, defaults to True) Defines, weather to cache () the dataframe, after it is loaded. Otherwise the Extractor will reload all data from the source system again, if a second action upon the dataframe is performed.

Raises exceptions.AssertionError – All jdbc_options values need to be present as string variables.

extract()

Extracts Data from a Source and converts it into a PySpark DataFrame.

Returns

Return type pyspark.sql.DataFrame

Note: This method does not take ANY input parameters. All needed parameters are defined in the initialization of the Extractor Object.

1.5.3 Class Diagram of Extractor Subpackage

1.5.4 Create your own Extractor

Please see the Create your own Extractor for further details.

1.6 Transformers

Transformers take a pyspark.sql.DataFrame as an input, transform it accordingly and return a PySpark DataFrame.

Each Transformer class has to have a *transform* method which takes no arguments and returns a PySpark DataFrame.

Possible transformation methods can be Selecting the most up to date record by id, Exploding an array, Filter (on an exploded array), Apply basic threshold cleansing or Map the incoming DataFrame to at provided structure.

1.6.1 Exploder

```
class Exploder (path_to_array='included', exploded_elem_name='elem', drop_rows_with_empty_array=True)

Explodes an array within a DataFrame and drops the column containing the source array.
```

Examples

```
>>> transformer = Exploder(
>>> path_to_array="attributes.friends",
>>> exploded_elem_name="friend",
>>> )
```

Parameters

- path_to_array (str, (Defaults to 'included')) Defines the Column Name / Path to the Array. Dropping nested columns is not supported. Although, you can still explode them.
- **exploded_elem_name** (str, (Defaults to 'elem')) Defines the column name the exploded column will get. This is important to know how to access the Field afterwards. Writing nested columns is not supported. The output column has to be first level.
- drop_rows_with_empty_array (bool, (Defaults to True)) By default Spark (and Spooq) drops rows which don't have any elements in the array which is being exploded. To work-around this, set drop_rows_with_empty_array to False.

Warning: Support for nested column:

path_to_array: PySpark cannot drop a field within a struct. This means the specific field can be referenced and therefore exploded, but not dropped.

exploded_elem_name: If you (re)name a column in the dot notation, is creates a first level column, just with a dot its name. To create a struct with the column as a field you have to redefine the structure or use a UDF.

Note: The explode() or explode_outer() methods of Spark are used internally, depending on the $drop_rows_with_empty_array$ parameter.

Note: The size of the resulting DataFrame is not guaranteed to be equal to the Input DataFrame!

```
transform(input_df)
```

Performs a transformation on a DataFrame.

Parameters input_df (pyspark.sql.DataFrame) - Input DataFrame

Returns Transformed DataFrame.

Return type pyspark.sql.DataFrame

Note: This method does only take the Input DataFrame as a parameters. All other needed parameters are defined in the initialization of the Transformator Object.

1.6.2 Sieve (Filter)

class Sieve (filter_expression)

Filters rows depending on provided filter expression. Only records complying with filter condition are kept.

Examples

```
>>> transformer = T.Sieve(filter_expression=""" attributes.last_name rlike "^. \( \( \frac{7}{\} \$" """ \)
```

```
>>> transformer = T.Sieve(filter_expression=""" lower(gender) = "f" """)
```

Parameters filter_expression (str) – A valid PySpark SQL expression which returns a boolean

Raises exceptions.ValueError – filter_expression has to be a valid (Spark)SQL expression provided as a string

Note: The filter() method is used internally.

Note: The Size of the resulting DataFrame is not guaranteed to be equal to the Input DataFrame!

transform(input df)

Performs a transformation on a DataFrame.

 $\textbf{Parameters input_df} \ (\texttt{pyspark.sql.DataFrame}) - Input \ DataFrame$

Returns Transformed DataFrame.

 $\textbf{Return type} \ \texttt{pyspark.sql.DataFrame}$

Note: This method does only take the Input DataFrame as a parameters. All other needed parameters are defined in the initialization of the Transformator Object.

1.6.3 Mapper

Class

class Mapper (mapping, ignore_missing_columns=False, ignore_ambiguous_columns=False, mode='replace')

Constructs and applies a PySpark SQL expression, based on the provided mapping.

Examples

```
>>> from pyspark.sql import functions as F
>>> from spooq2.transformer import Mapper
>>>
>>> mapping = [
       ("id",
>>>
                         "data.relationships.food.data.id",
                                                            "StringType"),
                                                             "extended_string_
        ("version",
                         "data.version",
>>>
>>>
       ("type",
                         "elem.attributes.type",
                                                             "StringType"),
                        "elem.attributes.created_at",
                                                             "extended_string_
       ("created_at",
⇔to_timestamp"),
     ("created_on", "elem.attributes.created_at",
                                                             "extended_string_
>>>
→to_date"),
>>>
                                                             "DateType"),
       ("process_date", F.current_timestamp(),
>>> ]
>>> mapper = Mapper(mapping=mapping)
>>> mapper.transform(input_df).printSchema()
root
|-- id: string (nullable = true)
 |-- version: integer (nullable = true)
 |-- type: string (nullable = true)
 |-- created_at: timestamp (nullable = true)
 |-- created_on: date (nullable = true)
 |-- process_date: date (nullable = false)
```

Parameters

- mapping (list of tuple containing three str or Column or functions) This is the main parameter for this transformation. It gives information about the column names for the output DataFrame, the column names (paths) from the input DataFrame, and their data types. Custom data types are also supported, which can clean, pivot, anonymize, ... the data itself. Please have a look at the <code>spooq2.transformer.mapper_custom_data_types</code> module for more information.
- **ignore_missing_columns** (bool, Defaults to False) Specifies if the mapping transformation should use NULL if a referenced input column is missing in the provided DataFrame. If set to False, it will raise an exception.
- ignore_ambiguous_columns (bool, Defaults to False) It can happen that the input DataFrame has ambiguous column names (like "Key" vs "key") which will raise an exception with Spark when reading. This flag surpresses this exception and skips those affected columns.
- mode (str, Defaults to "replace") Defines weather the mapping should fully replace the schema of the input DataFrame or just add to it. Following modes are supported:
 - replace The output schema is the same as the provided mapping. => output schema:
 new columns
 - append The columns provided in the mapping are added at the end of the input schema. If a column already exists in the input DataFrame, its position is kept. => output schema: input columns + new columns

prepend The columns provided in the mapping are added at the beginning of the input schema. If a column already exists in the input DataFrame, its position is kept. => output schema: new columns + input columns

Note: Let's talk about Mappings:

The mapping should be a list of tuples that contain all necessary information per column.

- Column Name: str Sets the name of the column in the resulting output DataFrame.
- Source Path / Name / Column / Function: str or Column or functions Points to the name of the column in the input DataFrame. If the input is a flat DataFrame, it will essentially be the column name. If it is of complex type, it will point to the path of the actual value. For example: data.relationships.sample.data.id, where id is the value we want. It is also possible to directly pass a PySpark Column which will get evaluated. This can contain arbitrary logic supported by Spark. For example: F.current_date() or F.when(F.col("size") == 180, F.lit("tall")).otherwise(F.lit("tiny")).
- DataType: str or DataType DataTypes can be types from pyspark.sql.types, selected custom datatypes or injected, ad-hoc custom datatypes. The datatype will be interpreted as a PySpark built-in if it is a member of pyspark.sql.types module. If it is not an importable PySpark data type, a method to construct the statement will be called by the data type's name.

Note: The available input columns can vary from batch to batch if you use schema inference (f.e. on json data) for the extraction. Ignoring missing columns on the input DataFrame is highly encouraged in this case. Although, if you have tight control over the structure of the extracted DataFrame, setting *ignore_missing_columns* to True is advised as it can uncover typos and bugs.

Note: Please see <code>spooq2.transformer.mapper_custom_data_types</code> for all available custom data types and how to inject your own.

Note: Attention: Decimal is NOT SUPPORTED by Hive! Please use Double instead!

Activity Diagram

todo: update to new logic

Available Custom Mapping Methods

as_is / keep / no_change / without_casting (aliases)

Only renaming applied. No casting / transformation.

```
unix_timestamp_ms_to_spark_timestamp
unix timestamp in ms (LongType) -> timestamp (TimestampType)
extended_string_to_int
Number (IntegerType, FloatType, StringType) -> Number (IntegerType)
extended_string_to_long
Number (IntegerType, FloatType, StringType) -> Number (LongType)
extended string to float
Number (IntegerType, FloatType, StringType) -> Number (FloatType)
extended_string_to_double
Number (IntegerType, FloatType, StringType) -> Number (DoubleType)
extended_string_to_boolean
Number (IntegerType, FloatType, StringType, BooleanType) -> boolean (BooleanType)
extended string to timestamp
unix timestamp in s or text (IntegerType, FloatType, StringType) -> timestamp (TimestampType)
extended_string_to_date
unix timestamp in s or text (IntegerType, FloatType, StringType) -> date (DateType)
extended_string_unix_timestamp_ms_to_timestamp
unix timestamp in ms or text (IntegerType, FloatType, StringType) -> timestamp (TimestampType)
extended_string_unix_timestamp_ms_to_date
unix timestamp in ms or text (IntegerType, FloatType, StringType) -> date (DateType)
```

meters_to_cm

Number (IntegerType, FloatType, StringType) -> Number * 100 (IntegerType)

has_value

Any data -> False if NULL or empty string, otherwise True (BooleanType)

json_string

Any input data type will be returned as json (StringType). Complex data types are supported!

timestamp ms to ms

Unix timestamp in ms (LongType) -> Unix timestamp in ms (LongType) if timestamp is between 1970 and 2099

timestamp_ms_to_s

Unix timestamp in ms (LongType) -> Unix timestamp in s (LongType) if timestamp is between 1970 and 2099

timestamp_s_to_ms

Unix timestamp in s (LongType) -> Unix timestamp in ms (LongType) if timestamp is between 1970 and 2099

timestamp_s_to_s

Unix timestamp in s (LongType) -> Unix timestamp in s (LongType) if timestamp is between 1970 and 2099

StringNull

Any data -> NULL (StringType)

IntNull

Any data -> NULL (IntegerType)

StringBoolean

Any data -> "1" (StringType) if source columns contains any valid data, otherwise NULL

IntBoolean

Any data -> 1 (IntegerType) if source columns contains any valid data, otherwise NULL

TimestampMonth

Timestamp (TimestampType / DateType) -> 1st day of the input value's month (TimestampType)

Custom Mapping Methods Details

This is a collection of module level methods to construct a specific PySpark DataFrame query for custom defined data types.

These methods are not meant to be called directly but via the the *Mapper* transformer. Please see that particular class on how to apply custom data types.

For injecting your **own custom data types**, please have a visit to the add_custom_data_type() method!

```
add_custom_data_type (function_name, func)
```

Registers a custom data type in runtime to be used with the Mapper transformer.

Example

```
>>> import spooq2.transformer.mapper_custom_data_types as custom_types
>>> import spooq2.transformer as T
>>> from pyspark.sql import Row, functions as F, types as T
```

```
>>> def hello_world(source_column, name):
       "A UDF (User Defined Function) in Python"
>>>
>>>
       def _to_hello_world(col):
>>>
           if not col:
>>>
               return None
>>>
            else:
               return "Hello World"
>>>
>>>
      udf_hello_world = F.udf(_to_hello_world, T.StringType())
>>>
      return udf_hello_world(source_column).alias(name)
>>>
>>> input_df = spark.createDataFrame(
      [Row(hello_from=u'tsivorn1@who.int'),
>>>
        Row(hello_from=u''),
>>>
        Row(hello_from=u'gisaksen4@skype.com')]
>>>
>>> )
>>> custom_types.add_custom_data_type(function_name="hello_world", func=hello_
→world)
>>> transformer = T.Mapper(mapping=[("hello_who", "hello_from", "hello_world
 →")])
>>> df = transformer.transform(input_df)
>>> df.show()
| hello_who|
|Hello World|
      null|
|Hello World|
```

```
>>> def first_and_last_name(source_column, name):
>>>
        "A PySpark SQL expression referencing multiple columns"
        return F.concat_ws("_", source_column, F.col("attributes.last_name")).
→alias(name)
>>>
>>> custom_types.add_custom_data_type(function_name="full_name", func=first_
→and_last_name)
>>>
>>> transformer = T.Mapper(mapping=[
>>>
       ("first_name", "attributes.first_name", "StringType"),
        ("last_name", "attributes.last_name", "StringType"),
>>>
        ("full_name", "attributes.first_name", "full_name"),
>>>
>>> ])
```

Parameters

- **function_name** (str) The name of your custom data type
- func (compatible function) The PySpark dataframe function which will be called on a column, defined in the mapping of the Mapper class. Required input parameters are source column and name. Please see the note about required input parameter of custom data types for more information!

Note: Required input parameter of custom data types:

source_column (pyspark.sql.Column) - This is where your logic will be applied. The transformer takes care of calling this method with the right column so you can just handle it like an object which you would get from df["some_attribute"].

name (str) - The name how the resulting column will be named. Nested attributes are not supported. The Mapper transformer takes care of calling this method with the right column name.

```
_get_select_expression_for_custom_type(source_column, name, data_type)
     Internal method for calling functions dynamically
_generate_select_expression_for_as_is (source_column, name)
     alias for _generate_select_expression_without_casting
_generate_select_expression_for_keep(source_column, name)
     alias for _generate_select_expression_without_casting
_generate_select_expression_for_no_change (source_column, name)
     alias for _generate_select_expression_without_casting
generate select expression without casting (source column, name)
```

Returns a column without casting. This is especially useful if you need to keep a complex data type, like an array, list or a struct.

```
>>> from spooq2.transformer import Mapper
>>>
>>> input_df.head(3)
[Row(friends=[Row(first_name=None, id=3993, last_name=None), Row(first_name=u
→'Ruò', id=17484, last_name=u'Trank')]),
Row(friends=[]),
Row(friends=[Row(first_name=u'Daphnée', id=16707, last_name=u'Lyddiard'),...
→Row(first_name=u'Adélaïde', id=17429, last_name=u'Wisdom')])]
>>> mapping = [("my_friends", "friends", "as_is")]
>>> output_df = Mapper(mapping).transform(input_df)
>>> output_df.head(3)
[Row(my_friends=[Row(first_name=None, id=3993, last_name=None), Row(first_
→name=u'Ruò', id=17484, last_name=u'Trank')]),
                                                                   (continues on next page)
```

```
Row(my_friends=[]),
Row(my_friends=[Row(first_name=u'Daphnée', id=16707, last_name=u'Lyddiard'),

→Row(first_name=u'Adélaïde', id=17429, last_name=u'Wisdom')])]
```

_generate_select_expression_for_json_string(source_column, name)

Returns a column as json compatible string. Nested hierarchies are supported. The unicode representation of a column will be returned if an error occurs.

Example

```
>>> from spooq2.transformer import Mapper
>>>
>>> input_df.head(3)
[Row(friends=[Row(first_name=None, id=3993, last_name=None), Row(first_name=u
→'Ruò', id=17484, last_name=u'Trank')]),
Row(friends=[]),
Row(friends=[Row(first_name=u'Daphnée', id=16707, last_name=u'Lyddiard'),_
→Row(first_name=u'Adélaïde', id=17429, last_name=u'Wisdom')])] >>> mapping_
\rightarrow= [("friends_json", "friends", "json_string")]
>>> mapping = [("friends_json", "friends", "json_string")]
>>> output_df = Mapper(mapping).transform(input_df)
>>> output_df.head(3)
[Row(friends_json=u'[{"first_name": null, "last_name": null, "id": 3993}, {
→"first_name": "Ru\u00f2", "last_name": "Trank", "id": 17484}]'),
Row(friends_json=None),
Row(friends_json=u'[{"first_name": "Daphn\u00e9e", "last_name": "Lyddiard",
→"id": 16707}, {"first_name": "Ad\u00e9la\u00efde", "last_name": "Wisdom", "id
→": 17429}]')]
```

_generate_select_expression_for_timestamp_ms_to_ms (source_column, name)

This Constructor is used for unix timestamps. The values are cleaned next to casting and renaming. If the values are not between 01.01.1970 and 31.12.2099, NULL will be returned. Cast to pyspark.sql. types.LongType

Example

```
>>> from pyspark.sql import Row
>>> from spooq2.transformer import Mapper
>>>
>>> input_df = spark.createDataFrame([
>>> Row(time_sec=1581540839000), # 02/12/2020 @ 8:53pm (UTC)
>>> Row(time_sec=-4887839000), # Invalid!
>>> Row(time_sec=4737139200000) # 02/12/2120 @ 12:00am (UTC)
>>> ])
>>>
>>> mapping = [("unix_ts", "time_sec", "timestamp_ms_to_ms")]
>>> output_df = Mapper(mapping).transform(input_df)
>>> output_df.head(3)
[Row(unix_ts=1581540839000), Row(unix_ts=None), Row(unix_ts=None)]
```

Note: *input* in milli seconds *output* in milli seconds

_generate_select_expression_for_timestamp_ms_to_s (source_column, name)

This Constructor is used for unix timestamps. The values are cleaned next to casting and renaming. If the values are not between 01.01.1970 and 31.12.2099, NULL will be returned. Cast to <code>pyspark.sql.types.LongType</code>

Example

```
>>> from pyspark.sql import Row
>>> from spooq2.transformer import Mapper
>>>
>>> input_df = spark.createDataFrame([
>>>
       Row(time_sec=1581540839000), # 02/12/2020 @ 8:53pm (UTC)
>>>
       Row(time sec = -4887839000),
                                     # Invalid!
       Row(time sec=4737139200000) # 02/12/2120 @ 12:00am (UTC)
>>>
>>> ])
>>>
>>> mapping = [("unix_ts", "time_sec", "timestamp_ms_to_s")]
>>> output_df = Mapper(mapping).transform(input_df)
>>> output_df.head(3)
[Row(unix_ts=1581540839), Row(unix_ts=None), Row(unix_ts=None)]
```

Note: input in milli seconds output in seconds

_generate_select_expression_for_timestamp_s_to_ms (source_column, name)

This Constructor is used for unix timestamps. The values are cleaned next to casting and renaming. If the values are not between 01.01.1970 and 31.12.2099, NULL will be returned. Cast to pyspark.sql.types.LongType

Example

```
>>> from pyspark.sql import Row
>>> from spooq2.transformer import Mapper
>>>
>>> input_df = spark.createDataFrame([
>>>
       Row(time_sec=1581540839), # 02/12/2020 @ 8:53pm (UTC)
       Row(time_sec=-4887839),
                                  # Invalid!
>>>
                                 # 02/12/2120 @ 12:00am (UTC)
       Row(time_sec=4737139200)
>>>
>>> ])
>>>
>>> mapping = [("unix_ts", "time_sec", "timestamp_s_to_ms")]
>>> output_df = Mapper(mapping).transform(input_df)
>>> output_df.head(3)
[Row(unix_ts=1581540839000), Row(unix_ts=None), Row(unix_ts=None)]
```

Note: *input* in **seconds** *output* in **milli seconds**

_generate_select_expression_for_timestamp_s_to_s (source_column, name)

This Constructor is used for unix timestamps. The values are cleaned next to casting and renaming. If the values are not between 01.01.1970 and 31.12.2099, NULL will be returned. Cast to pyspark.sql.types.LongType

Example

```
>>> from pyspark.sql import Row
>>> from spooq2.transformer import Mapper
>>>
>>> input_df = spark.createDataFrame([
>>>
        Row(time_sec=1581540839), # 02/12/2020 @ 8:53pm (UTC)
                                  # Invalid!
>>>
        Row(time sec=-4887839),
        Row(time sec=4737139200) # 02/12/2120 @ 12:00am (UTC)
>>>
>>> ])
>>>
>>> mapping = [("unix_ts", "time_sec", "timestamp_s_to_ms")]
>>> output_df = Mapper(mapping).transform(input_df)
>>> output_df.head(3)
[Row(unix_ts=1581540839), Row(unix_ts=None), Row(unix_ts=None)]
```

Note: input in seconds output in seconds

_generate_select_expression_for_StringNull(source_column, name)

Used for Anonymizing. Input values will be ignored and replaced by NULL, Cast to pyspark.sql. types.StringType

Example

```
>>> from pyspark.sql import Row
>>> from spooq2.transformer import Mapper
>>>
>>> input_df = spark.createDataFrame(
>>>
      [Row(email=u'tsivorn1@who.int'),
        Row(email=u''),
>>>
>>>
        Row(email=u'gisaksen4@skype.com')]
>>> )
>>>
>>> mapping = [("email", "email", "StringNull")]
>>> output_df = Mapper(mapping).transform(input_df)
>>> output_df.head(3)
[Row(email=None), Row(email=None), Row(email=None)]
```

_generate_select_expression_for_IntNull(source_column, name)

Used for Anonymizing. Input values will be ignored and replaced by NULL, Cast to pyspark.sql.types.IntegerType

Example

_generate_select_expression_for_StringBoolean(source_column, name)

Used for Anonymizing. The column's value will be replaced by "1" if it is:

- · not NULL and
- · not an empty string

Example

```
>>> from pyspark.sql import Row
>>> from spooq2.transformer import Mapper
>>>
>>> input_df = spark.createDataFrame(
>>>
        [Row (email=u'tsivorn1@who.int'),
         Row(email=u''),
>>>
>>>
         Row(email=u'gisaksen4@skype.com')]
>>> )
>>>
>>> mapping = [("email", "email", "StringBoolean")]
>>> output_df = Mapper(mapping).transform(input_df)
>>> output_df.head(3)
[Row(email=u'1'), Row(email=None), Row(email=u'1')]
```

_generate_select_expression_for_IntBoolean(source_column, name)

Used for Anonymizing. The column's value will be replaced by I if it contains a non-NULL value.

Example

```
>>> from pyspark.sql import Row
>>> from spooq2.transformer import Mapper
>>>
>>> input_df = spark.createDataFrame(
        [Row(facebook_id=3047288),
>>>
        Row(facebook_id=0),
>>>
         Row(facebook id=None)]
>>>
>>> )
>>>
>>> mapping = [("facebook_id", "facebook_id", "IntBoolean")]
>>> output_df = Mapper(mapping).transform(input_df)
>>> output_df.head(3)
[Row(facebook_id=1), Row(facebook_id=1), Row(facebook_id=None)]
```

Note: θ (zero) or negative numbers are still considered as valid values and therefore converted to I.

_generate_select_expression_for_TimestampMonth(source_column, name)

Used for Anonymizing. Can be used to keep the age but obscure the explicit birthday. This custom datatype requires a pyspark.sql.types.TimestampType column as input. The datetime value will be set to the first day of the month.

Example

```
>>> from pyspark.sql import Row
>>> from datetime import datetime
>>> from spooq2.transformer import Mapper
>>>
>>> input_df = spark.createDataFrame(
>>>
       [Row(birthday=datetime(2019, 2, 9, 2, 45)),
>>>
        Row(birthday=None),
        Row(birthday=datetime(1988, 1, 31, 8))]
>>>
>>> )
>>> mapping = [("birthday", "birthday", "TimestampMonth")]
>>> output_df = Mapper(mapping).transform(input_df)
>>> output_df.head(3)
[Row(birthday=datetime.datetime(2019, 2, 1, 0, 0)),
Row (birthday=None),
Row(birthday=datetime.datetime(1988, 1, 1, 0, 0))]
```

_generate_select_expression_for_meters_to_cm (source_column, name)

Convert meters to cm and cast the result to an IntegerType.

Example

```
>>> from pyspark.sql import Row
>>> from spooq2.transformer import Mapper
>>>
>>> input_df = spark.createDataFrame(
>>>
        [Row(size_in_m=1.80),
>>>
         Row(size_in_m=1.65),
>>>
         Row(size_in_m=2.05)]
>>> )
>>>
>>> mapping = [("size_in_cm", "size_in_m", "meters_to_cm")]
>>> output_df = Mapper(mapping).transform(input_df)
>>> output_df.head(3)
[Row(size_in_cm=180),
Row(size_in_cm=165),
Row(size_in_cm=205)]
```

_generate_select_expression_for_has_value(source_column, name)

Returns True if the source_column is

- · not NULL and
- not "" (empty string)

otherwise it returns False

Warning: This means that it will return True for values which would indicate a False value. Like "false" or 0!!!

Example

```
>>> from pyspark.sql import Row
>>> from spooq2.transformer import Mapper
>>>
>>> input_df = spark.createDataFrame(
>>>
        [Row(input_key=1.80),
>>>
        Row(input_key=None),
         Row(input_key="some text"),
>>>
         Row(input_key="")]
>>>
>>> )
>>>
>>> mapping = [("input_key", "result", "has_value")]
>>> output_df = Mapper(mapping).transform(input_df)
>>> output_df.head(4)
[Row(result=True),
Row(result=False),
 Row (result=True),
 Row(result=False)]
```

Convert unix timestamps in milliseconds to a Spark TimeStampType. It is assumed that the timezone is already set to UTC in spark / java to avoid implicit timezone conversions.

Example

```
>>> from pyspark.sql import Row
>>> from spooq2.transformer import Mapper
>>>
>>> input_df = spark.createDataFrame(
>>>
        [Row(unix_timestamp_in_ms=1591627696951),
        Row(unix_timestamp_in_ms=1596812952000),
>>>
         Row(unix_timestamp_in_ms=946672200000)]
>>> )
>>>
>>> mapping = [("spark_timestamp", "unix_timestamp_in_ms", "unix_timestamp_ms_
→to_spark_timestamp")]
>>> output_df = Mapper(mapping).transform(input_df)
>>> output_df.head(3)
[Row(spark_timestamp=datetime.datetime(2020, 6, 8, 16, 48, 16, 951000)),
 Row(spark_timestamp=datetime.datetime(2020, 8, 7, 17, 9, 12)),
 Row(spark_timestamp=datetime.datetime(1999, 12, 31, 21, 30))]
```

_generate_select_expression_for_extended_string_to_int(source_column, name)

More robust conversion from StringType to IntegerType. Is able to additionally handle (compared to implicit Spark conversion):

- Preceding whitespace
- Trailing whitespace
- · Preceeding and trailing whitespace
- underscores as thousand separators

Hint: Please have a look at the tests to get a better feeling how it behaves under tests/unit/transformer/test_mapper_custom_data_types.py::TestExtendedStringConversions and tests/data/test_fixtures/mapper_custom_data_types_fixtures.py

1.6. Transformers 33

Example

```
>>> from spooq2.transformer import Mapper
>>>
>>> input_df.head(3)
[Row(input_string=" 123456 "),
   Row(input_string="Hello"),
   Row(input_string="123_456")]
>>> mapping = [("output_value", "input_string", "extended_string_to_int")]
>>> output_df = Mapper(mapping).transform(input_df)
>>> output_df.head(3)
[Row(input_string=123456),
   Row(input_string=None),
   Row(input_string=123456)]
```

_generate_select_expression_for_extended_string_to_long(source_column,

name)

More robust conversion from StringType to LongType. Is able to additionally handle (compared to implicit Spark conversion):

- · Preceding whitespace
- · Trailing whitespace
- · Preceeding and trailing whitespace
- underscores as thousand separators

Hint: Please have a look at the tests to get a better feeling how it behaves under tests/unit/transformer/test_mapper_custom_data_types.py::TestExtendedStringConversions and tests/data/test_fixtures/mapper_custom_data_types_fixtures.py

Example

```
>>> from spooq2.transformer import Mapper
>>>
>>> input_df.head(3)
[Row(input_string=" 21474836470 "),
   Row(input_string="Hello"),
   Row(input_string="21_474_836_470")]
>>> mapping = [("output_value", "input_string", "extended_string_to_long")]
>>> output_df = Mapper(mapping).transform(input_df)
>>> output_df.head(3)
[Row(input_string=21474836470),
   Row(input_string=None),
   Row(input_string=21474836470)]
```

_generate_select_expression_for_extended_string_to_float(source_column,

name)

More robust conversion from StringType to FloatType. Is able to additionally handle (compared to implicit Spark conversion):

- Preceding whitespace
- Trailing whitespace
- · Preceeding and trailing whitespace
- underscores as thousand separators

Hint: Please have a look at the tests to get a better feeling how it behaves under tests/unit/transformer/test_mapper_custom_data_types.py::TestExtendedStringConversions and tests/data/test_fixtures/mapper_custom_data_types_fixtures.py

Example

```
>>> from spooq2.transformer import Mapper
>>>
>>> input_df.head(3)
[Row(input_string=" 836470.819 "),
   Row(input_string="Hello"),
   Row(input_string="836_470.819")]
>>> mapping = [("output_value", "input_string", "extended_string_to_float")]
>>> output_df = Mapper(mapping).transform(input_df)
>>> output_df.head(3)
[Row(input_string=836470.819),
   Row(input_string=836470.819)]
```

_generate_select_expression_for_extended_string_to_double(source_column,

name)

More robust conversion from StringType to DoubleType. Is able to additionally handle (compared to implicit Spark conversion):

- Preceding whitespace
- Trailing whitespace
- · Preceeding and trailing whitespace
- underscores as thousand separators

Hint: Please have a look at the tests to get a better feeling how it behaves under tests/unit/transformer/test_mapper_custom_data_types.py::TestExtendedStringConversions and tests/data/test_fixtures/mapper_custom_data_types_fixtures.py

Example

```
>>> from spooq2.transformer import Mapper
>>>
>>> input_df.head(3)
[Row(input_string=" 21474838464.70 "),
   Row(input_string="Hello"),
   Row(input_string="21_474_838_464.70")]
>>> mapping = [("output_value", "input_string", "extended_string_to_double")]
>>> output_df = Mapper(mapping).transform(input_df)
>>> output_df.head(3)
[Row(input_string=21474838464.7),
   Row(input_string=None),
   Row(input_string=21474838464.70)]
```

_generate_select_expression_for_extended_string_to_boolean(source_column,

name)

More robust conversion from StringType to BooleanType. Is able to additionally handle (compared to implicit Spark conversion):

• Preceding whitespace

1.6. Transformers 35

- Trailing whitespace
- · Preceeding and trailing whitespace

Warning: This does not handle numbers (cast as string) the same way as numbers (cast as number) to boolean conversion! F.e.

- 100 to boolean => True
- "100" to extended_string_to_boolean => False
- "100" to boolean => False

Hint: Please have a look at the tests to get a better feeling how it behaves under tests/unit/transformer/test_mapper_custom_data_types.py::TestExtendedStringConversions and tests/data/test_fixtures/mapper_custom_data_types_fixtures.py

Example

```
>>> from spooq2.transformer import Mapper
>>>
>>> input_df.head(3)
[Row(input_string=" true "),
   Row(input_string="0"),
   Row(input_string="y")]
>>> mapping = [("output_value", "input_string", "extended_string_to_boolean")]
>>> output_df = Mapper(mapping).transform(input_df)
>>> output_df.head(3)
[Row(input_string=True),
   Row(input_string=False),
   Row(input_string=True)]
```

$\verb|_generate_select_expression_for_extended_string_to_timestamp| (source_column, the context of the context of$

More robust conversion from StringType to TimestampType. It is assumed that the timezone is already set to UTC in spark / java to avoid implicit timezone conversions.

The conversion can handle unix timestamps in seconds and in milliseconds:

- Timestamps in the range [-MAX_TIMESTAMP_S, MAX_TIMESTAMP_S] are treated as seconds
- Timestamps in the range [-inf, -MAX_TIMESTAMP_S) and (MAX_TIMESTAMP_S, inf] are treated as milliseconds
- There is a time interval (1970-01-01 +- ~2.5 months) where we can not distinguish correctly between s and ms (e.g. 3974400000 would be treated as seconds (2095-12-11T00:00:00) as the value is smaller than MAX_TIMESTAMP_S, but it could also be a valid date in Milliseconds (1970-02-16T00:00:00)

Is able to additionally handle (compared to implicit Spark conversion): * Preceding whitespace * Trailing whitespace * Preceding and trailing whitespace

Example

$\verb|_generate_select_expression_for_extended_string_to_date| (source_column,$

name)

More robust conversion from StringType to DateType. It is assumed that the timezone is already set to UTC in spark / java to avoid implicit timezone conversions.

The conversion can handle unix timestamps in seconds and in milliseconds:

- Timestamps in the range [-MAX_TIMESTAMP_S, MAX_TIMESTAMP_S] are treated as seconds
- Timestamps in the range [-inf, -MAX_TIMESTAMP_S) and (MAX_TIMESTAMP_S, inf] are treated as milliseconds
- There is a time interval (1970-01-01 +- ~2.5 months) where we can not distinguish correctly between s and ms (e.g. 3974400000 would be treated as seconds (2095-12-11T00:00:00) as the value is smaller than MAX_TIMESTAMP_S, but it could also be a valid date in Milliseconds (1970-02-16T00:00:00)

Is able to additionally handle (compared to implicit Spark conversion): * Preceding whitespace * Trailing whitespace * Preceding and trailing whitespace

Hint: Please have a look at the tests to get a better feeling how it behaves under tests/unit/transformer/test_mapper_custom_data_types.py::TestExtendedStringConversions and tests/data/test_fixtures/mapper_custom_data_types_fixtures.py

Example

```
>>> from spooq2.transformer import Mapper
>>>
>>> input_df.head(3)
[Row(input_string="2020-08-12T12:43:14+0000"),
   Row(input_string="1597069446"),
   Row(input_string="2020-08-12")]
>>> mapping = [("output_value", "input_string", "extended_string_to_date")]
>>> output_df = Mapper(mapping).transform(input_df)
>>> output_df.head(3)
[Row(input_string=datetime.datetime(2020, 8, 12)),
   Row(input_string=datetime.datetime(2020, 8, 10)),
   Row(input_string=datetime.datetime(2020, 8, 12))]
```

_generate_select_expression_for_extended_string_unix_timestamp_ms_to_timestamp (source_columname)

More robust conversion from StringType to TimestampType. It is assumed that the timezone is already set to UTC in spark / java to avoid implicit timezone conversions. Is able to additionally handle (compared to implicit Spark conversion):

1.6. Transformers 37

- Unix timestamps in milliseconds
- Preceding whitespace
- · Trailing whitespace
- · Preceeding and trailing whitespace

Hint: Please have a look at the tests to get a better feeling how it behaves under tests/unit/transformer/test_mapper_custom_data_types.py::TestExtendedStringConversions and tests/data/test_fixtures/mapper_custom_data_types_fixtures.py

Example

 $_\texttt{generate_select_expression_for_extended_string_unix_timestamp_ms_to_date~(source_column, and the column)) and the column is a substant of the column is a substant of$

More robust conversion from StringType to DateType. It is assumed that the timezone is already set to UTC in spark / java to avoid implicit timezone conversions and that unix timestamps are in **milli seconds**

Hint: Please have a look at the tests to get a better feeling how it behaves under tests/unit/transformer/test_mapper_custom_data_types.py::TestExtendedStringConversions and tests/data/test_fixtures/mapper_custom_data_types_fixtures.py

Example

```
>>> from spooq2.transformer import Mapper
>>>
>>> input_df.head(3)
[Row(input_string="2020-08-12T12:43:14+0000"),
   Row(input_string="1597069446000"),
   Row(input_string="2020-08-12")]
>>> mapping = [("output_value", "input_string", "extended_string_to_date")]
>>> output_df = Mapper(mapping).transform(input_df)
>>> output_df.head(3)
[Row(input_string=datetime.datetime(2020, 8, 12)),
   Row(input_string=datetime.datetime(2020, 8, 10)),
   Row(input_string=datetime.datetime(2020, 8, 12))]
```

1.6.4 Threshold-based Cleaner

class ThresholdCleaner (thresholds={}, column_to_log_cleansed_values=None)

Sets outiers within a DataFrame to a default value. Takes a dictionary with valid value ranges for each column to be cleaned.

Examples

```
>>> from spooq2.transformer import ThresholdCleaner
>>> transformer = ThresholdCleaner(
>>>
       thresholds={
            "created_at": {
>>>
                "min": 0,
                "max": 1580737513,
>>>
                "default": pyspark.sql.functions.current_date()
>>>
>>>
            "size_cm": {
>>>
>>>
               "min": 70,
                "max": 250,
>>>
                "default": None
>>>
>>>
           },
      }
>>>
>>> )
```

```
>>> from spooq2.transformer import ThresholdCleaner
>>> from pyspark.sql import Row
>>>
>>> input_df = spark.createDataFrame([
       Row(id=0, integers=-5, some_factor=-0.75),
>>>
       Row(id=1, integers= 5, some_factor= 1.25),
>>>
       Row(id=2, integers=15, some_factor= 0.67),
>>> ])
>>> transformer = ThresholdCleaner(
>>> thresholds={
          "integers": {"min": 0, "max": 10},
>>>
           "some_factor": {"min": -1, "max": 1}
>>>
>>>
      },
>>>
       column_to_log_cleansed_values="cleansed_values_threshold"
>>> )
>>> output_df = transformer.transform(input_df)
>>> output_df.show()
+---+----
| id|integers|some_factor|cleansed_values_threshold|
+---+-----
| 0| null| -0.75|
| 1| 5| null|
| 2| null| 0.67|
                                           [-5,]|
                                        [, 1.25]|
                                           [15,]|
>>> output_df.printSchema()
 |-- id: long (nullable = true)
 |-- integers: long (nullable = true)
 |-- some_factor: double (nullable = true)
 |-- cleansed_values_threshold: struct (nullable = false)
     |-- integers: long (nullable = true)
     |-- some_factor: double (nullable = true)
```

Parameters

 thresholds (dict) – Dictionary containing column names and respective valid ranges

1.6. Transformers 39

• column_to_log_cleansed_values (str, Defaults to None) - Defines a column in which the original (uncleansed) value will be stored in case of cleansing. If no column name is given, nothing will be logged.

Note: Following cleansing rule attributes per column are supported:

- min, mandatory any A number or timestamp/date which serves as the lower limit for allowed values. Values below this threshold will be cleansed.
- max, mandatory any A number or timestamp/date which serves as the upper limit for allowed values. Values above this threshold will be cleansed.
- **default, defaults to None Column or any primitive Python value** If a value gets cleansed it gets replaced with the provided default value.

The pyspark.sql.functions.between() method is used internally.

Returns The transformed DataFrame

```
Return type pyspark.sql.DataFrame
```

Raises exceptions.ValueError - Threshold-based cleaning only supports Numeric, Date and Timestamp Types! Column with name: {col_name} and type of: {col_type} was provided

Warning: Only Numeric, TimestampType, and DateType data types are supported!

transform(input_df)

Performs a transformation on a DataFrame.

Parameters input_df (pyspark.sql.DataFrame) - Input DataFrame

Returns Transformed DataFrame.

Return type pyspark.sql.DataFrame

Note: This method does only take the Input DataFrame as a parameters. All other needed parameters are defined in the initialization of the Transformator Object.

1.6.5 Enumeration-based Cleaner

class EnumCleaner (cleaning_definitions={}, column_to_log_cleansed_values=None) Cleanses a dataframe based on lists of allowed|disallowed values.

Examples

```
>>> from spooq2.transformer import EnumCleaner
>>>
>>> transformer = EnumCleaner(
>>> cleaning_definitions={
>>> "status": {
>>> "elements": ["active", "inactive"],
>>> },
>>> "version": {
>>> "elements": ["", "None", "none", "null", "NULL"],
```

(continues on next page)

```
>>> "mode": "disallow",
>>> "default": None,
>>> },
>>> )
```

```
>>> from spooq2.transformer import EnumCleaner
>>> from pyspark.sql import Row
>>> input_df = spark.createDataFrame([
        Row(a="stay", b="positive"),
>>>
        Row(a="stay", b="negative"),
>>>
       Row(a="stay", b="positive"),
>>>
>>> ])
>>> transformer = EnumCleaner(
>>>
    cleaning_definitions={
>>>
            "b": {
                "elements": ["positive"],
>>>
               "mode": "allow",
>>>
>>>
>>>
        column_to_log_cleansed_values="cleansed_values_enum"
>>> )
>>> output_df = transformer.transform(input_df)
>>> output_df.show()
  a| b|cleansed_values_enum|
|stay|positive|
|stay| null|
                        [negative]|
|stay|positive|
>>> output_df.printSchema()
root.
 |-- a: string (nullable = true)
 |-- b: string (nullable = true)
 |-- cleansed_values_enum: struct (nullable = false)
     |-- b: string (nullable = true)
```

Parameters

- **cleaning_definitions** (dict) Dictionary containing column names and respective cleansing rules
- column_to_log_cleansed_values (str, Defaults to None) Defines a column in which the original (uncleansed) value will be stored in case of cleansing. If no column name is given, nothing will be logged.

Note: Following cleansing rule attributes per column are supported:

- **elements, mandatory list** A list of elements which will be used to allow or reject (based on mode) values from the input DataFrame.
- mode, allowldisallow, defaults to 'allow' str "allow" will set all values which are NOT in the list (ignoring NULL) to the default value. "disallow" will set all values which ARE in the list (ignoring NULL) to the default value.
- **default, defaults to None Column or any primitive Python value** If a value gets cleansed it gets replaced with the provided default value.

1.6. Transformers 41

Returns The transformed DataFrame

```
Return type pyspark.sql.DataFrame
```

Raises

- **exceptions.ValueError** Enumeration-based cleaning requires a non-empty list of elements per cleaning rule! Spooq did not find such a list for column: {column_name}
- **exceptions.ValueError** Only the following modes are supported by Enum-Cleaner: 'allow' and 'disallow'.

Warning: None values are explicitly ignored as input values because *F.lit(None).isin(["elem1", "elem2"])* will neither return True nor False but None. If you want to replace Null values you should use the method ~pyspark.sql.DataFrame.fillna from Spark.

transform(input df)

Performs a transformation on a DataFrame.

```
Parameters input_df (pyspark.sql.DataFrame) - Input DataFrame
```

Returns Transformed DataFrame.

Return type pyspark.sql.DataFrame

Note: This method does only take the Input DataFrame as a parameters. All other needed parameters are defined in the initialization of the Transformator Object.

1.6.6 Newest by Group (Most current record per ID)

class NewestByGroup (*group_by=['id']*, *order_by=['updated_at'*, '*deleted_at']*) Groups, orders and selects first element per group.

Example

```
>>> transformer = NewestByGroup(
>>> group_by=["first_name", "last_name"],
>>> order_by=["created_at_ms", "version"]
>>> )
```

Parameters

- group_by (str or list of str, (Defaults to ['id'])) List of attributes to be used within the Window Function as Grouping Arguments.
- **order_by** (str or list of str, (Defaults to ['updated_at', 'deleted_at'])) List of attributes to be used within the Window Function as Ordering Arguments. All columns will be sorted in **descending** order.

Raises exceptions. AttributeError – If any Attribute in group_by or order_by is not contained in the input DataFrame.

Note: PySpark's Window function is used internally The first row (row_number()) per window will be selected and returned.

transform(input_df)

Performs a transformation on a DataFrame.

Parameters input_df (pyspark.sql.DataFrame) - Input DataFrame

Returns Transformed DataFrame.

Return type pyspark.sql.DataFrame

Note: This method does only take the Input DataFrame as a parameters. All other needed parameters are defined in the initialization of the Transformator Object.

1.6.7 Class Diagram of Transformer Subpackage

1.6. Transformers 43

1.6.8 Create your own Transformer

Please see the Create your own Transformer for further details.

1.7 Loaders

Loaders take a pyspark.sql.DataFrame as an input and save it to a sink.

Each Loader class has to have a load method which takes a DataFrame as single paremter.

Possible Loader sinks can be Hive Tables, Kudu Tables, HBase Tables, JDBC Sinks or ParquetFiles.

1.7.1 Hive Database

```
class HiveLoader (db_name, table_name, partition_definitions=[{'column_name': 'dt', 'col-
umn_type': 'IntegerType', 'default_value': None}], clear_partition=True, repar-
tition_size=40, auto_create_table=True, overwrite_partition_value=True)
Persists a PySpark DataFrame into a Hive Table.
```

Examples

```
>>> HiveLoader(
       db_name="users_and_friends",
>>>
        table_name="friends_partitioned",
>>>
        partition_definitions=[{
>>>
            "column_name": "dt",
>>>
            "column_type": "IntegerType",
            "default_value": 20200201}],
>>>
>>>
        clear_partition=True,
>>>
        repartition_size=10,
>>>
        overwrite_partition_value=False,
>>>
        auto_create_table=False,
>>> ).load(input_df)
```

```
>>> HiveLoader(
>>> db_name="users_and_friends",
>>> table_name="all_friends",
>>> partition_definitions=[],
>>> repartition_size=200,
>>> auto_create_table=True,
>>> ).load(input_df)
```

Parameters

- **db_name** (str) The database name to load the data into.
- **table_name** (str) The table name to load the data into. The database name must not be included in this parameter as it is already defined in the *db_name* parameter.
- partition_definitions (list of dict) (Defaults to [{"column_name": "dt", "column_type": "IntegerType", "default_value": None}]).
 - column_name (str) The Column's Name to partition by.
 - column_type (str) The PySpark SQL DataType for the Partition Value as a String.
 This should normally either be 'IntegerType()' or 'StringType()'
 - default_value (str or int) If column_name does not contain a value or overwrite_partition_value is set, this value will be used for the partitioning

- **clear_partition** (bool, (Defaults to True)) This flag tells the Loader to delete the defined partitions before inserting the input DataFrame into the target table. Has no effect if no partitions are defined.
- repartition_size (int, (Defaults to 40)) The DataFrame will be repartitioned on Spark level before inserting into the table. This effects the number of output files on which the Hive table is based.
- auto_create_table (bool, (Defaults to True)) Whether the target table will be created if it does not yet exist.
- **overwrite_partition_value** (bool, (Defaults to True)) Defines whether the values of columns defined in *partition_definitions* should explicitly set by default values.

Raises

- **exceptions.AssertionError** partition_definitions has to be a list containing dicts. Expected dict content: 'column_name', 'column_type', 'default_value' per partition_definitions item.
- exceptions.AssertionError Items of partition_definitions have to be dictionaries.
- exceptions.AssertionError No column name set!
- **exceptions.AssertionError** Not a valid (PySpark) datatype for the partition column {name} | {type}.
- **exceptions.AssertionError** *clear_partition* is only supported if *over-write_partition_value* is also enabled. This would otherwise result in clearing partitions on basis of dynamically values (from DataFrame) instead of explicitly defining the partition(s) to clear.

load(input_df)

Persists data from a PySpark DataFrame to a target table.

Parameters input_df (pyspark.sql.DataFrame) – Input DataFrame which has to be loaded to a target destination.

Note: This method takes only a single DataFrame as an input parameter. All other needed parameters are defined in the initialization of the Loader object.

1.7. Loaders 45

Activity Diagram

1.7.2 Class Diagram of Loader Subpackage

1.7. Loaders 47

1.7.3 Create your own Loader

Please see the Create your own Loader for further details.

1.8 Pipeline

1.8.1 Pipeline

This type of object glues the aforementioned processes together and extracts, transforms (Transformer chain possible) and loads the data from start to end.

1.8.2 Pipeline Factory

To decrease the complexity of building data pipelines for data engineers, an expert system or business rules engine can be used to automatically build and configure a data pipeline based on context variables, groomed metadata, and relevant rules.

class PipelineFactory (*url='http://localhost:5000/pipeline/get'*)

Provides an interface to automatically construct pipelines for Spooq.

Example

```
>>> pipeline_factory = PipelineFactory()
>>>
>>> # Fetch user data set with applied mapping, filtering,
>>> # and cleaning transformers
>>> df = pipeline_factory.execute({
         "entity_type": "user",
>>>
         "date": "2018-10-20",
>>>
>>>
         "time_range": "last_day"})
>>>
      Load user data partition with applied mapping, filtering,
>>> # and cleaning transformers to a hive database
>>> pipeline_factory.execute({
         "entity_type": "user",
>>>
         "date": "2018-10-20"
>>>
         "batch_size": "daily"})
>>>
```

url

The end point of an expert system which will be called to infer names and parameters.

```
Type str, (Defaults to "http://localhost:5000/pipeline/get")
```

Note: PipelineFactory is only responsible for querying an expert system with provided parameters and constructing a Spooq pipeline out of the response. It does not have any reasoning capabilities itself! It requires therefore a HTTP service responding with a JSON object containing following structure:

(continues on next page)

```
{"name": "Type4Transformer", "params": {"key 1": "val 1", "key N":

→"val N"}},

{"name": "Type5Transformer", "params": {"key 1": "val 1", "key N":

→"val N"}},

],

"loader": {"name": "Type1Loader", "params": {"key 1": "val 1", "key N":

→"val N"}}
}
```

Hint: There is an experimental implementation of an expert system which complies with the requirements of PipelineFactory called *spooq_rules*. If you are interested, please ask the author of Spooq about it.

execute (context variables)

Fetches a ready-to-go pipeline instance via get_pipeline() and executes it.

Parameters context_variables (dict) – These collection of parameters should describe the current context about the use case of the pipeline. Please see the examples of the PipelineFactory class' documentation.

Returns

- pyspark.sql.DataFrame If the loader component is by-passed (in the case of ad_hoc use cases).
- None If the loader component does not return a value (in the case of persisting data).

get_metadata(context_variables)

Sends a POST request to the defined endpoint (url) containing the supplied context variables.

Parameters context_variables (dict) – These collection of parameters should describe the current context about the use case of the pipeline. Please see the examples of the PipelineFactory class' documentation.

Returns Names and parameters of each ETL component to construct a Spoog pipeline

Return type dict

get_pipeline (context_variables)

Fetches the necessary metadata via get_metadata() and returns a ready-to-go pipeline instance.

Parameters context_variables (dict) – These collection of parameters should describe the current context about the use case of the pipeline. Please see the examples of the PipelineFactory class' documentation.

Returns A Spooq pipeline instance which is fully configured and can still be adapted and consequently executed.

Return type Pipeline

1.8. Pipeline 49

1.8.3 Class Diagram of Pipeline Subpackage

pipeline (C) PipelineFactory url : str = "http://localhost:5000/pipeline/get" execute(context_variables : dict) get_metadata(context_variables : dict) get_pipeline(context_variables : dict) creates C Pipeline input_df : DataFrame = None bypass loader : bool = False derived extractor : Extractor = None bypass extractor: bool transformers : [Transformer] = [] loader : Loader = None name : str logger : logging.logger execute() extract() transform(input_df : DataFrame) load(input df : DataFrame) set_extractor(extractor: Extractor) add_transformers(transformers : [Transformer]) clear_transformers() set loader(loader : Loader)

1.9 Spooq Base

1.9.1 Global Logger

Global Logger instance used by Spooq2.

Example

```
>>> import logging
>>> logga = logging.getLogger("spooq2")
<logging.Logger at 0x7f5dc8eb2890>
>>> logga.info("Hello World")
[spooq2] 2020-03-21 23:55:48,253 INFO logging_example::<module>::4: Hello World
```

initialize()

Initializes the global logger for Spooq with pre-defined levels for stdout and stderr. No input parameters are needed, as the configuration is received via get_logging_level().

Note:

The output format is defined as:

"[%(name)s] %(asctime)s %(levelname)s %(module)s::%(funcName)s::%(lineno)d: %(message)s" For example "[spooq2] 2020-03-11 15:40:59,313 DEBUG newest_by_group::__init__::53: group by columns: [u'user_id']"

Warning: The root logger of python is also affected as it has to have a level at least as fine grained as the logger of Spooq, to be able to produce an output.

get_logging_level()

Returns the logging level depending on the environment variable SPOOQ_ENV.

Note:

If SPOOQ_ENV is

- dev -> "DEBUG"
- test -> "ERROR"
- something else -> "INFO"

Returns Logging level

Return type str

1.9. Spoog Base 51

1.9.2 Extractor Base Class

Extractors are used to fetch, extract and convert a source data set into a PySpark DataFrame. Exemplary extraction sources are **JSON Files** on file systems like HDFS, DBFS or EXT4 and relational database systems via **JDBC**.

Create your own Extractor

Let your extractor class inherit from the extractor base class. This includes the name, string representation and logger attributes from the superclass.

The only mandatory thing is to provide an *extract()* method which **takes**=> *no input parameters*and **returns** a

All configuration and parameterization should be done while initializing the class instance.

Here would be a simple example for a CSV Extractor:

Exemplary Sample Code

=> PySpark DataFrame!

Listing 7: src/spooq2/extractor/csv_extractor.py:

```
from pyspark.sql import SparkSession
from extractor import Extractor
class CSVExtractor(Extractor):
    This is a simplified example on how to implement a new extractor class.
    Please take your time to write proper docstrings as they are automatically
    parsed via Sphinx to build the HTML and PDF documentation.
    Docstrings use the style of Numpy (via the napoleon plug-in).
    This class uses the :meth:`pyspark.sql.DataFrameReader.csv` method internally.
   Examples
    extracted_df = CSVExtractor(
       input_file='data/input_data.csv'
    ).extract()
   Parameters
    input_file: :any:`str`
        The explicit file path for the input data set. Globbing support depends
        on implementation of Spark's csv reader!
   Raises
    :any: `exceptions.TypeError`:
       path can be only string, list or RDD
    def __init__(self, input_file):
```

(continues on next page)

References to include

Listing 8: src/spooq2/extractor/__init__.py:

```
--- original
+++ adapted
@@ -1,8 +1,10 @@
from jdbc import JDBCExtractorIncremental, JDBCExtractorFullLoad
from json_files import JSONExtractor
+from csv_extractor import CSVExtractor

__all__ = [
    "JDBCExtractorIncremental",
    "JDBCExtractorFullLoad",
    "JSONExtractor",
+ "CSVExtractor",
]
```

Tests

One of Spooq2's features is to provide tested code for multiple data pipelines. Please take your time to write sufficient unit tests! You can reuse test data from *tests/data* or create a new schema / data set if needed. A SparkSession is provided as a global fixture called *spark_session*.

Listing 9: tests/unit/extractor/test_csv.py:

```
import pytest
from spooq2.extractor import CSVExtractor
@pytest.fixture()
def default_extractor():
    return CSVExtractor(input_path="data/input_data.csv")

class TestBasicAttributes(object):
    def test_logger_should_be_accessible(self, default_extractor):
```

(continues on next page)

1.9. Spoog Base 53

```
assert hasattr(default_extractor, "logger")
    def test_name_is_set(self, default_extractor):
        assert default_extractor.name == "CSVExtractor"
    def test_str_representation_is_correct(self, default_extractor):
        assert unicode(default_extractor) == "Extractor Object of Class_
\hookrightarrowCSVExtractor"
class TestCSVExtraction(object):
    def test_count(default_extractor):
        """Converted DataFrame has the same count as the input data"""
        expected\_count = 312
        actual_count = default_extractor.extract().count()
        assert expected_count == actual_count
    def test_schema(default_extractor):
        """Converted DataFrame has the expected schema"""
        do_some_stuff()
        assert expected == actual
```

Documentation

You need to create a *rst* for your extractor which needs to contain at minimum the *automodule* or the *autoclass* directive.

Listing 10: docs/source/extractor/csv.rst:

To automatically include your new extractor in the HTML documentation you need to add it to a *toctree* directive. Just refer to your newly created *csv.rst* file within the extractor overview page.

Listing 11: docs/source/extractor/overview.rst:

```
--- original
+++ adapted
@@ -7,8 +7,9 @@
.. toctree::

    json
    jdbc
+ csv

Class Diagram of Extractor Subpackage
------
.. uml:: ../diagrams/from_thesis/class_diagram/extractors.puml
```

That should be all!

1.9.3 Transformer Base Class

Transformers take a pyspark.sql.DataFrame as an input, transform it accordingly and return a PySpark DataFrame.

Each Transformer class has to have a *transform* method which takes no arguments and returns a PySpark DataFrame.

Possible transformation methods can be Selecting the most up to date record by id, Exploding an array, Filter (on an exploded array), Apply basic threshold cleansing or Map the incoming DataFrame to at provided structure.

Create your own Transformer

Let your transformer class inherit from the transformer base class. This includes the name, string representation and logger attributes from the superclass.

```
The only mandatory thing is to provide a transform() method which takes a => PySpark DataFrame! and returns a => PySpark DataFrame!
```

All configuration and parameterization should be done while initializing the class instance.

Here would be a simple example for a transformer which drops records without an Id:

Exemplary Sample Code

Listing 12: src/spooq2/transformer/no_id_dropper.py:

```
from transformer import Transformer

class NoIdDropper(Transformer):
    """

    This is a simplified example on how to implement a new transformer class.
    Please take your time to write proper docstrings as they are automatically
```

(continues on next page)

1.9. Spoog Base 55

```
parsed via Sphinx to build the HTML and PDF documentation.
   Docstrings use the style of Numpy (via the napoleon plug-in).
   This class uses the :meth:`pyspark.sql.DataFrame.dropna` method internally.
   Examples
   input_df = some_extractor_instance.extract()
   transformed_df = NoIdDropper(
       id_columns='user_id'
   ).transform(input_df)
   Parameters
   id_columns: :any:`str` or :any:`list`
       The name of the column containing the identifying Id values.
       Defaults to "id"
   Raises
   :any:`exceptions.ValueError`:
       "how ('" + how + "') should be 'any' or 'all'"
   :any:`exceptions.ValueError`:
       "subset should be a list or tuple of column names"
   def __init__(self, id_columns='id'):
       super(NoIdDropper, self).__init__()
       self.id_columns = id_columns
   def transform(self, input_df):
       self.logger.info("Dropping records without an Id (columns to consider:
\hookrightarrow {col})"
            .format(col=self.id_columns))
       output_df = input_df.dropna(
           how='all',
           thresh=None,
           subset=self.id_columns
       return output_df
```

References to include

This makes it possible to import the new transformer class directly from *spooq2.transformer* instead of *spooq2.transformer.no_id_dropper*. It will also be imported if you use *from spooq2.transformer import* *.

Listing 13: src/spooq2/transformer/__init__.py:

```
--- original
+++ adapted
@@ -1,13 +1,15 @@
from newest_by_group import NewestByGroup
from mapper import Mapper
from exploder import Exploder
from threshold_cleaner import ThresholdCleaner
from sieve import Sieve
+from no_id_dropper import NoIdDropper
```

(continues on next page)

```
__all__ = [
    "NewestByGroup",
    "Mapper",
    "Exploder",
    "ThresholdCleaner",
    "Sieve",
+    "NoIdDropper",
]
```

Tests

One of Spooq2's features is to provide tested code for multiple data pipelines. Please take your time to write sufficient unit tests! You can reuse test data from *tests/data* or create a new schema / data set if needed. A SparkSession is provided as a global fixture called *spark_session*.

Listing 14: tests/unit/transformer/test_no_id_dropper.py:

```
import pytest
from pyspark.sql.dataframe import DataFrame
from spooq2.transformer import NoIdDropper
@pytest.fixture()
def default_transformer():
    return NoIdDropper(id_columns=["first_name", "last_name"])
@pytest.fixture()
def input_df(spark_session):
    return spark_session.read.parquet("../data/schema_v1/parquetFiles")
@pytest.fixture()
def transformed_df(default_transformer, input_df):
    return default_transformer.transform(input_df)
class TestBasicAttributes(object):
    def test_logger_should_be_accessible(self, default_transformer):
        assert hasattr(default_transformer, "logger")
    def test_name_is_set(self, default_transformer):
        assert default_transformer.name == "NoIdDropper"
    def test_str_representation_is_correct(self, default_transformer):
        assert unicode(default_transformer) == "Transformer Object of Class...
→NoIdDropper"
class TestNoIdDropper(object):
    def test_records_are_dropped(transformed_df, input_df):
        """Transformed DataFrame has no records with missing first_name and last_
⇔name"""
        assert input_df.where("first_name is null or last_name is null").count() >_
← ()
        assert transformed_df.where("first_name is null or last_name is null").
                                                                       (continues on next page)
```

1.9. Spoog Base 57

```
def test_schema_is_unchanged(transformed_df, input_df):
    """Converted DataFrame has the expected schema"""
    assert transformed_df.schema == input_df.schema
```

Documentation

You need to create a *rst* for your transformer which needs to contain at minimum the *automodule* or the *autoclass* directive.

Listing 15: docs/source/transformer/no_id_dropper.rst:

```
Record Dropper if Id is missing

Some text if you like...

.. automodule:: spooq2.transformer.no_id_dropper
```

To automatically include your new transformer in the HTML / PDF documentation you need to add it to a *toctree* directive. Just refer to your newly created *no_id_dropper.rst* file within the transformer overview page.

Listing 16: docs/source/transformer/overview.rst:

That should be it!

1.9.4 Loader Base Class

Loaders take a pyspark.sql.DataFrame as an input and save it to a sink.

Each Loader class has to have a load method which takes a DataFrame as single paremter.

Possible Loader sinks can be Hive Tables, Kudu Tables, HBase Tables, JDBC Sinks or ParquetFiles.

Create your own Loader

Let your loader class inherit from the loader base class. This includes the name, string representation and logger attributes from the superclass.

```
The only mandatory thing is to provide a load() method which takes a => PySpark DataFrame! and returns nothing (or at least the API does not expect anything)
```

All configuration and parameterization should be done while initializing the class instance.

Here would be a simple example for a loader which save a DataFrame to parquet files:

Exemplary Sample Code

Listing 17: src/spooq2/loader/parquet.py:

```
from pyspark.sql import functions as F
from loader import Loader
class ParquetLoader(loader):
    This is a simplified example on how to implement a new loader class.
   Please take your time to write proper docstrings as they are automatically
   parsed via Sphinx to build the HTML and PDF documentation.
    Docstrings use the style of Numpy (via the napoleon plug-in).
    This class uses the :meth: `pyspark.sql.DataFrameWriter.parquet` method_
⇔internally.
    Examples
    input_df = some_extractor_instance.extract()
    output_df = some_transformer_instance.transform(input_df)
    ParquetLoader (
       path="data/parquet_files",
       partition_by="dt",
       explicit_partition_values=20200201,
       compression=""gzip""
    ).load(output_df)
   Parameters
    path: :any:`str`
        The path to where the loader persists the output parquet files.
        If partitioning is set, this will be the base path where the partitions
```

(continues on next page)

1.9. Spoog Base 59

```
are stored.
   partition_by: :any:`str` or :any:`list` of (:any:`str`)
       The column name or names by which the output should be partitioned.
       If the partition_by parameter is set to None, no partitioning will be
       performed.
       Defaults to "dt"
   explicit_partition_values: :any:`str` or :any:`int`
                               or :any:`list` of (:any:`str` and :any:`int`)
       Only allowed if partition_by is not None.
       If explicit_partition_values is not None, the dataframe will
            * overwrite the partition_by columns values if it already exists or
            * create and fill the partition_by columns if they do not yet exist
       Defaults to None
   compression: :any:`str`
       The compression codec used for the parquet output files.
       Defaults to "snappy"
   Raises
   :any:`exceptions.AssertionError`:
       explicit_partition_values can only be used when partition_by is not None
   :any:`exceptions.AssertionError`:
       explicit_partition_values and partition_by must have the same length
   def __init__(self, path, partition_by="dt", explicit_partition_values=None,_
→compression_codec="snappy"):
       super(ParquetLoader, self).__init__()
       self.path = path
       self.partition_by = partition_by
       self.explicit_partition_values = explicit_partition_values
       self.compression_codec = compression_codec
       if explicit_partition_values is not None:
           assert (partition_by is not None,
               "explicit_partition_values can only be used when partition_by is_
⇔not None")
           assert (len(partition_by) == len(explicit_partition_values),
                "explicit_partition_values and partition_by must have the same_
→length")
   def load(self, input_df):
       self.logger.info("Persisting DataFrame as Parquet Files to " + self.path)
       if isinstance(self.explicit_partition_values, list):
           for (k, v) in zip(self.partition_by, self.explicit_partition_values):
               input_df = input_df.withColumn(k, F.lit(v))
       elif isinstance(self.explicit_partition_values, basestring):
           input_df = input_df.withColumn(self.partition_by, F.lit(self.explicit_
→partition_values))
       input_df.write.parquet(
           path=self.path,
           partitionBy=self.partition_by,
           compression=self.compression_codec
       )
```

References to include

This makes it possible to import the new loader class directly from *spooq2.loader* instead of *spooq2.loader.parquet*. It will also be imported if you use *from spooq2.loader import* *.

Listing 18: src/spooq2/loader/__init__.py:

```
--- original
+++ adapted
@@ -1,7 +1,9 @@
from loader import Loader
from hive_loader import HiveLoader
+from parquet import ParquetLoader

__all__ = [
    "Loader",
    "HiveLoader",
+    "ParquetLoader",
]
```

Tests

One of Spooq2's features is to provide tested code for multiple data pipelines. Please take your time to write sufficient unit tests! You can reuse test data from *tests/data* or create a new schema / data set if needed. A SparkSession is provided as a global fixture called *spark_session*.

Listing 19: tests/unit/loader/test_parquet.py:

```
import pytest
from pyspark.sql.dataframe import DataFrame
from spooq2.loader import ParquetLoader
@pytest.fixture(scope="module")
def output_path(tmpdir_factory):
   return str(tmpdir_factory.mktemp("parquet_output"))
@pytest.fixture(scope="module")
def default_loader(output_path):
    return ParquetLoader(
       path=output_path,
       partition_by="attributes.gender",
       explicit_partition_values=None,
        compression_codec=None
    )
@pytest.fixture(scope="module")
def input_df(spark_session):
    return spark_session.read.parquet("../data/schema_v1/parquetFiles")
@pytest.fixture(scope="module")
def loaded_df(default_loader, input_df, spark_session, output_path):
   default_loader.load(input_df)
   return spark_session.read.parquet(output_path)
```

(continues on next page)

1.9. Spood Base 61

Documentation

You need to create a *rst* for your loader which needs to contain at minimum the *automodule* or the *autoclass* directive.

Listing 20: docs/source/loader/parquet.rst:

To automatically include your new loader in the HTML / PDF documentation you need to add it to a *toctree* directive. Just refer to your newly created *parquet.rst* file within the loader overview page.

Listing 21: docs/source/loader/overview.rst:

```
--- original
+++ adapted
@@ -7,4 +7,5 @@
.. toctree::
    hive_loader
+ parquet

Class Diagram of Loader Subpackage
```

That should be it!

1.10 Architecture Overview

1.10.1 Typical Data Flow of a Spooq Data Pipeline

1.10.2 Simplified Class Diagram

CHAPTER

TWO

INDICES AND TABLES

- modindex
- search

PYTHON MODULE INDEX

S

```
spooq2.extractor.extractor,14
spooq2.extractor.jdbc,16
spooq2.extractor.json_files,14
spooq2.loader.hive_loader,44
spooq2.loader.loader,44
spooq2.pipeline.factory,48
spooq2.pipeline.pipeline,48
spooq2.spooq2_logger,51
spooq2.transformer.enum_cleaner,40
spooq2.transformer.exploder,19
spooq2.transformer.mapper_custom_data_types,26
spooq2.transformer.newest_by_group,42
spooq2.transformer.sieve,20
spooq2.transformer.threshold_cleaner,39
spooq2.transformer.transformer,19
```

68

Symbols

```
_generate_select_expression_for_IntBoolean() (in module
       spooq2.transformer.mapper_custom_data_types), 31
_generate_select_expression_for_IntNull() (in module
       spooq2.transformer.mapper_custom_data_types), 30
_generate_select_expression_for_StringBoolean()(in module
       spooq2.transformer.mapper_custom_data_types), 30
_generate_select_expression_for_StringNull() (in module
       spooq2.transformer.mapper_custom_data_types), 30
_generate_select_expression_for_TimestampMonth() (in module
       spooq2.transformer.mapper_custom_data_types), 31
_generate_select_expression_for_as_is() (in module
       spooq2.transformer.mapper_custom_data_types), 27
_generate_select_expression_for_extended_string_to_boolean() (in module
       spooq2.transformer.mapper_custom_data_types), 35
_generate_select_expression_for_extended_string_to_date() (in module
       spooq2.transformer.mapper_custom_data_types), 37
_generate_select_expression_for_extended_string_to_double() (in module
       spooq2.transformer.mapper_custom_data_types), 35
_generate_select_expression_for_extended_string_to_float()(in module
       spooq2.transformer.mapper_custom_data_types), 34
_generate_select_expression_for_extended_string_to_int() (in module
       spooq2.transformer.mapper_custom_data_types), 33
_generate_select_expression_for_extended_string_to_long() (in module
       spooq2.transformer.mapper_custom_data_types), 34
_generate_select_expression_for_extended_string_to_timestamp() (in module
       spooq2.transformer.mapper_custom_data_types), 36
_generate_select_expression_for_extended_string_unix_timestamp_ms_to_date()
       (in\ module\ spood2.transformer.mapper\_custom\_data\_types),\ 38
_generate_select_expression_for_extended_string_unix_timestamp_ms_to_timestamp()
       (in module spooq2.transformer.mapper_custom_data_types), 37
_generate_select_expression_for_has_value() (in module
       spooq2.transformer.mapper_custom_data_types), 32
_generate_select_expression_for_json_string() (in module
       spoog2.transformer.mapper custom data types), 28
_generate_select_expression_for_keep()(in module
       spooq2.transformer.mapper_custom_data_types), 27
_generate_select_expression_for_meters_to_cm() (in module
       spooq2.transformer.mapper_custom_data_types), 32
_generate_select_expression_for_no_change() (in module
       spooq2.transformer.mapper_custom_data_types), 27
_generate_select_expression_for_timestamp_ms_to_ms() (in module
       spooq2.transformer.mapper_custom_data_types), 28
_generate_select_expression_for_timestamp_ms_to_s() (in module
```

```
spooq2.transformer.mapper_custom_data_types), 28
_generate_select_expression_for_timestamp_s_to_ms() (in module
        spooq2.transformer.mapper_custom_data_types), 29
_generate_select_expression_for_timestamp_s_to_s() (in module
        spooq2.transformer.mapper_custom_data_types), 29
_generate_select_expression_for_unix_timestamp_ms_to_spark_timestamp()(in
        module spooq2.transformer.mapper_custom_data_types), 33
_generate_select_expression_without_casting()(in module
        spooq2.transformer.mapper_custom_data_types), 27
_get_select_expression_for_custom_type() (in module
        spooq2.transformer.mapper_custom_data_types), 27
Α
add_custom_data_type() (in module spoog2.transformer.mapper_custom_data_types), 26
Ε
EnumCleaner (class in spooq2.transformer.enum_cleaner), 40
execute() (PipelineFactory method), 49
Exploder (class in spooq2.transformer.exploder), 19
extract() (Extractor method), 14
extract() (JDBCExtractorFullLoad method), 16
extract() (JDBCExtractorIncremental method), 18
extract() (JSONExtractor method), 15
Extractor (class in spooq2.extractor.extractor), 14
G
get_logging_level() (in module spooq2.spooq2_logger), 51
get_metadata() (PipelineFactory method), 49
get_pipeline() (PipelineFactory method), 49
Н
HiveLoader (class in spooq2.loader.hive_loader), 44
ı
initialize() (in module spooq2_logger), 51
J
JDBCExtractor (class in spooq2.extractor.jdbc), 16
JDBCExtractorFullLoad (class in spooq2.extractor.jdbc), 16
JDBCExtractorIncremental (class in spooq2.extractor.jdbc), 16
JSONExtractor (class in spooq2.extractor.json_files), 14
L
load() (HiveLoader method), 45
logger (Extractor attribute), 14
M
Mapper (class in spooq2.transformer.mapper), 21
module
    spooq2.extractor.extractor, 14
    spooq2.extractor.jdbc, 16
    spoog2.extractor.json_files, 14
    spoog2.loader.hive_loader,44
    spoog2.loader.loader,44
    spooq2.pipeline.factory, 48
    spooq2.pipeline.pipeline, 48
    spooq2.spooq2_logger,51
```

70 Index

```
spooq2.transformer.enum_cleaner,40
   spooq2.transformer.exploder, 19
   spooq2.transformer.mapper_custom_data_types, 26
   spooq2.transformer.newest_by_group, 42
   spooq2.transformer.sieve, 20
   spooq2.transformer.threshold_cleaner, 39
   spoog2.transformer.transformer, 19
Ν
name (Extractor attribute), 14
NewestByGroup (class in spooq2.transformer.newest_by_group), 42
PipelineFactory (class in spooq2.pipeline.factory), 48
Sieve (class in spoog2.transformer.sieve), 20
spoog2.extractor.extractor
   module, 14
spooq2.extractor.jdbc
   module, 16
spooq2.extractor.json_files
   module, 14
spooq2.loader.hive_loader
   module, 44
spooq2.loader.loader
   module, 44
spooq2.pipeline.factory
   module, 48
spooq2.pipeline.pipeline
   module, 48
spooq2.spooq2_logger
   module, 51
spooq2.transformer.enum_cleaner
   module, 40
spooq2.transformer.exploder
   module, 19
spooq2.transformer.mapper_custom_data_types
   module, 26
spooq2.transformer.newest_by_group
   module, 42
spooq2.transformer.sieve
   module, 20
spooq2.transformer.threshold_cleaner
   module, 39
spooq2.transformer.transformer
   module, 19
Т
ThresholdCleaner (class in spooq2.transformer.threshold_cleaner), 39
transform() (EnumCleaner method), 42
transform() (Exploder method), 20
transform() (NewestByGroup method), 42
transform() (Sieve method), 20
transform() (ThresholdCleaner method), 40
url (PipelineFactory attribute), 48
```

Index 71