InfoCSE: Information-aggregated Contrastive Learning of Sentence Embeddings

EMNLP 2022

Xing Wu, Chaochen Gao, Zijia Lin, Jizhong Han, Zhongyuan Wang, Songlin Hu

발제자: 윤예준

01. 연구배경

대조학습: 의미가 유사한 것들은 더 가깝게 만들고 유사하지 않은 것들은 더 멀게 하는 학습 방법

SimCSE

- Positive pair
 - Dropout을 noise로 사용
 - 동일한 문장을 인코더에 두 번 전달
 - 서로 다른 dropout mask가 적용되어 두 개의 다른 임베딩을 얻음
- Negative pair
 - 같은 mini-batch 내의 다른 문장들의 임베딩을 negative pair로 사용

$$H = Enc(x, z), H^{+} = Enc(x, z^{+})$$
 (1)

$$h = Pooler(H), h^{+} = Pooler(H^{+})$$
 (2)

$$\mathcal{L}^{\text{cl}} = -\log \frac{\exp(\sin(h, h^+)/\tau)}{\sum_{h' \in B} \exp(\sin(h, h'^+)/\tau)}$$
(3)

01. 연구배경

- SimCSE는 좋은 결과를 얻었고 다른 sentence와 구별할 수 있는 sentence embedding을 학습할 수 있지만, sentence embedding이 sentence의 semantic을 잘 포함하고 있다고 하기엔 충분하지 않다고 함.
- Sentence embedding이 sentence의 semantic과 sufficiently equivalent하다면, 원래 문장을 재구성 할 수 있어야 함.
- 그러나 실험에 따르면 SimCSE에서 MLM objective는 STS task의 성능을 일관되게 떨어뜨림.
- 이는 MLM objective optimization의 gradients가 인코더 매개변수를 과도하게 업데이트하여 대조학습 task를 방해하기 때문.
- 따라서 contrastive sentence embedding learning에 sentence reconstruction task를 조합하는 것은 쉬운 일이 아님.

Model	STS-B
SimCSE-BERT _{base}	86.2
w/ MLM	
$\lambda = 0.01$	85.7
$\lambda = 0.1$	85.7
$\lambda = 1$	85.1

Table 1: Table from SimCSE (Gao et al., 2021). The masked language model (MLM) objective brings a consistent drop to the SimCSE model in semantic textual similarity tasks. "w/" means "with", λ is the balance hyperparameter for MLM loss.

$$\mathcal{L}^{\text{cl}} = -\log \frac{\exp(\operatorname{sim}(h, h^{+})/\tau)}{\sum_{h' \in R} \exp(\operatorname{sim}(h, h'^{+})/\tau)}$$
(3)

$$\mathcal{L}^{\text{mlm}} = \sum_{j \in masked} CE\left(H^{j}W, \widehat{x}^{j}\right)$$
 (4)

sentence reconstruction task로 contrastive sentence embedding learning을 개선한 InfoCSE 제안

02. 제안 방법

Symbol definition

- Sentences $x \in X$
- 12-layer Transformer blocks BERT model: Enc
- Sentence x of length I, we append a special [CLS] token to it, and then feed it into BERT for encoding.
- The output of each layer is a vector list of length l+ 1: hidden states
- The Last layer's hidden states: H
- The vector at [CLS] position: h
- The hidden state of the 6th layer: M
- The other hidden states of the 6th layer except the [CLS] position: M>0

02. 제안 방법

1. Pre-training of The Auxiliary Network

- Auxiliary network의 6계층은 BERT 하위 6계층과 공 유됨
- 두 개의 MLM objective를 동시에 최적화

$$\mathcal{L}^{\text{mlm}} = \sum_{j \in masked} CE\left(H^{j}W, \widehat{x}^{j}\right) \tag{4}$$

$$\tilde{H} = [h, M^{>0}]$$

$$\mathcal{L}^{\text{aux}} = \sum_{j \in masked} CE\left(\widetilde{H}^{j} W, \widehat{x}^{j}\right)$$
 (5)

$$\mathcal{L}^{\text{pretrain}} = \mathcal{L}^{\text{aux}} + \mathcal{L}^{\text{mlm}}$$
 (6)

Figure 1: Comparison of InfoCSE and SimCSE structures. SimCSE learns sentence representations through contrastive learning on the [CLS] output embeddings of the BERT model. In addition to contrastive learning, InfoCSE designs an auxiliary network for sentence reconstruction with the [CLS] embeddings, enabling to learn better sentence representations.

02. 제안 방법

2. Joint Training of MLM and Contrastive Learning

- Auxiliary network의 6계층은 BERT 하위 6계층과 공 유하지 않음
- 이때 Auxiliary network의 6계층은 frozen
- sentence x는 두 번 복사됨
 - positive pair: x^+
 - masked input: \hat{x}

$$\mathcal{L}^{\text{cl}} = -\log \frac{\exp(\operatorname{sim}(h, h^{+})/\tau)}{\sum_{h' \in B} \exp(\operatorname{sim}(h, h'^{+})/\tau)}$$
(3)

$$C = [h, Detach(M^{>0})]$$

$$\mathcal{L}^{\text{joint}} = \mathcal{L}^{\text{cl}} + \mathcal{L}^{\text{aux}} * \lambda \tag{7}$$

Figure 1: Comparison of InfoCSE and SimCSE structures. SimCSE learns sentence representations through contrastive learning on the [CLS] output embeddings of the BERT model. In addition to contrastive learning, InfoCSE designs an auxiliary network for sentence reconstruction with the [CLS] embeddings, enabling to learn better sentence representations.

Setup

- Pretraining the auxiliary network
 - Dataset: Bookcorpus, Wikipedia
- Jointly optimizing contrastive objective and the auxiliary MLM objective
 - Dataset:1-million sentences randomly drawn from English Wikipedia for training
- 모든 평가는 BERT output만 사용

STS(semantic textual similarity) task

- 7개의 STS task에서 실험 진행

Model	STS12	STS13	STS14	SICK15	STS16	STS-B	SICK-R	Avg.
GloVe embeddings(avg.)	55.14	70.66	59.73	68.25	63.66	58.02	53.76	61.32
BERT _{base} (first-last avg.)	39.70	59.38	49.67	66.03	66.19	53.87	62.06	56.70
$BERT_{base}$ -flow	58.40	67.10	60.85	75.16	71.22	68.66	64.47	66.55
BERT _{base} -whitening	57.83	66.90	60.90	75.08	71.31	68.24	63.73	66.28
IS-BERT _{base} \triangle	56.77	69.24	61.21	75.23	70.16	69.21	64.25	66.58
CT -BERT _{base} \triangle	61.63	76.80	68.47	77.50	76.48	74.31	69.19	72.05
$ConSERT_{base} \heartsuit$	64.64	78.49	69.07	79.72	75.95	73.97	67.31	72.74
$BERT_{base}$ -flow \diamondsuit	63.48	72.14	68.42	73.77	75.37	70.72	63.11	69.57
SG-OPT-BERT _{base} \spadesuit	66.84	80.13	71.23	81.56	77.17	77.23	68.16	74.62
Mirror-BERT _{base} \sharp	69.10	81.10	73.00	81.90	75.70	78.00	69.10	75.40
$SimCSE-BERT_{base}$	68.40	82.41	74.38	80.91	78.56	76.85	72.23	76.25
ESimCSE-BERT _{base} \star	73.40	83.27	77.25	82.66	78.81	80.17	72.30	78.27
DiffCSE-BERT _{base} \P	72.28	84.43	76.47	83.90	80.54	80.59	71.23	78.49
InfoCSE-BERT $_{base}$	70.53	84.59	76.40	85.10	81.95	82.00	71.37	78.85
$ConSERT_{large} \heartsuit$	70.69	82.96	74.13	82.78	76.66	77.53	70.37	76.45
$BERT_{large}$ -flow \diamondsuit	65.20	73.39	69.42	74.92	77.63	72.26	62.50	70.76
$SG-OPT-BERT_{large} \spadesuit$	67.02	79.42	70.38	81.72	76.35	76.16	70.20	74.46
$SimCSE-BERT_{large}$	70.88	84.16	76.43	84.50	79.76	79.26	73.88	78.41
ESimCSE-BERT _{large} \star	73.21	85.37	77.73	84.30	78.92	80.73	74.89	79.31
DiffCSE-BERT _{large} †	72.11	84.99	76.19	85.09	78.65	80.34	73.93	78.76
InfoCSE-BERT _{large}	71.89	86.17	77.72	86.20	81.29	83.16	74.84	80.18

Table 2: Sentence embedding performance on 7 semantic textual similarity (STS) test sets. \clubsuit : results from official published model by (Gao et al., 2021). \heartsuit : results from (Yan et al., 2021). \spadesuit : results from (Kim et al., 2021). \diamondsuit : results from (Li et al., 2020). \triangle : results are reproduced and reevaluated by (Gao et al., 2021). \sharp : results from (Liu et al., 2021). \star : results from (Wu et al., 2021a). \P : results from (Chuang et al., 2022). \dagger : The original paper does not report the results of BERT-large, so we use the official public code to perform a grid search on important hyperparameters for the best results.

Open-domain Retrieval Tasks

- embedding의 zero-shot performance 측정
- BEIR(benchmarking information retrieval) 이용
 - 18개 dataset 중 14개 사용

Dataset	Sim	CSE	ESin	nCSE	Diff	CSE	Info	CSE
	base	large	base	large	base	large	base	large
trec-covid	0.2750	0.2264	0.2291	0.2829	0.2368	0.2291	0.3937	0.3166
nfcorpus	0.1048	0.1356	0.1149	0.1483	0.1204	0.1470	0.1358	0.1576
nq	0.1628	0.1671	0.0935	0.1705	0.1188	0.1556	0.2023	0.1790
fiqa	0.0985	0.0975	0.0731	0.1117	0.0924	0.1027	0.0991	0.1000
arguana	0.2796	0.2078	0.3376	0.2604	0.2500	0.2572	0.3244	0.4133
webis-touche2020	0.1342	0.0878	0.0786	0.1057	0.0912	0.0781	0.0935	0.0920
quora	0.7375	0.7511	0.7411	0.7615	0.7491	0.7471	0.8241	0.8268
cqadupstack	0.1349	0.1082	0.1276	0.1196	0.1197	0.1160	0.2097	0.1881
dbpedia-entity	0.1662	0.1495	0.1260	0.1650	0.1537	0.1571	0.2101	0.1838
scidocs	0.0611	0.0688	0.0657	0.0796	0.0673	0.0699	0.0837	0.0859
climate-fever	0.1420	0.1065	0.0796	0.1302	0.1019	<u>0.1087</u>	0.0937	0.0840
scifact	0.2492	0.2541	0.3013	0.2875	0.2666	0.2811	0.3269	0.3801
hotpotqa	0.2382	0.1896	0.1213	0.1970	0.1730	0.2068	0.3177	0.2781
fever	0.2916	0.1776	0.0756	0.1689	0.1416	0.1849	0.1978	0.1252
average	0.2197	0.1948	0.1832	0.2135	0.1916	0.2030	0.2509	0.2436

Table 3: Zero-shot evaluation results on the BEIR benchmark. All scores denote **nDCG@10**. The best score on a given dataset is marked in **bold**, and the second best is <u>underlined</u>.

03. 실험 결괴

Pre-training of The Auxiliary Network

 Joint Training of MLM and Contrastive Learning

- The Impact of Gradient Detach in Joint Training

Model	STS-B
InfoCSE	85.49
w/o pre-training	83.73

Table 4: Development set results of STS-B for InfoCSE with or without auxiliary network pre-training. "w/o" denotes without.

Model	STS-B
InfoCSE	85.49
w/o MLM loss	82.45
w/o Contrastive loss	40.00

Table 5: Development set results of STS-B for InfoCSE variants, where we vary the objective. "w/o" denotes without.

Model	STS-B
InfoCSE	85.49
w/o gradient detach	84.41

Table 6: Development set results of STS-B for InfoCSE with or without gradient detach. "w/o" denotes without.

- The Impact of Mask Rate

- The Impact of Coefficient λ

- The Impact of Pooler

Mask Rate	10%	15%	20%	25%
STS-B	83.97	84.62	84.74	85.08
Mask Rate	<i>30%</i> 84.19	35%	40%	45%
STS-B		84.70	85.49	84.13

Table 7: Development set results of STS-B when we vary the mask rate.

λ	0.	5e-6	1e-5	5e-5
STS-B	82.45	84.50	85.49	84.7
λ	1e-4	5e-3	1e-2	5e-2
STS-B	84.29	80.48	76.15	75.27

Table 8: Development set results of STS-B when we vary the coefficient λ .

Model	cls	cls_before_pooler
SimCSE	81.72	82.45
DiffCSE	83.90	84.56
InfoCSE	85.08	85.49

Table 9: Development set results of STS-B where we vary the pooler choice. "cls" denotes using the representation of [CLS] token; "cls_before_pooler" denotes using the representation of [CLS] token without the extra linear+activation.

- Transfer Tasks

Model	MR	CR	SUBJ	MPQA	SST	TREC	MRPC	Avg.
GloVe embeddings (avg.)	77.25	78.30	91.17	87.85	80.18	83.00	72.87	81.52
Skip-thought	76.50	80.10	93.60	87.10	82.00	92.20	73.00	83.50
Avg. BERT embeddings	78.66	86.25	94.37	88.66	84.40	92.80	69.54	84.94
BERT-[CLS] embedding	78.68	84.85	94.21	88.23	84.13	91.40	71.13	84.66
$\text{IS-BERT}_{base} \triangle$	81.09	87.18	94.96	88.75	85.96	88.64	74.24	85.83
SimCSE 🐥	81.18	86.46	94.45	88.88	85.50	89.80	74.43	85.81
w/MLM 🐥	82.92	87.23	95.71	88.73	86.81	87.01	78.07	86.64
InfoCSE	81.76	86.57	94.90	88.86	87.15	90.60	76.58	86.63

Table 10: Results on transfer tasks of different sentence embedding models, in terms of accuracy. \clubsuit : results from official published model by (Gao et al., 2021). \heartsuit : results from (Yan et al., 2021). \triangle : results are reproduced and reevaluated by (Gao et al., 2021). \P : results from (Chuang et al., 2022).

- In-domain Retrieval Task
 - In-domain에서 2758개 문장 사용

- Compatibility of Different Auxiliary Objectives

Model	R@1	R@5	R@10
SimCSE DiffCSE	74.23 79.38	94.85 96.91	95.88 98.97
InfoCSE		100.00	100.00

Table 11: In-domain retrieval results. "R@" denotes recall.

Model	STSB	Avg.
SimCSE	82.45	76.25
w/ RTD (DiffCSE)	84.56	78.27
w/ MLM (InfoCSE)	85.49	78.49
w/ RTD + MLM	85.83	79.39

Table 12: The comparison of the improvement brought by different auxiliary objectives to SimCSE. "w/" denotes without. "STS-B" denotes the best result on the STS-B development set. "Avg." denotes the corresponding average result on 7 semantic textual similarity (STS) test sets.

감사합니다.