浙江大学 2017 - 2018 学年春夏学期

《概率论与数理统计》期末考试试卷 B

课程号: _06189090, 开课学院: _数学科学学院 , 任课教师: ______

	考试试	卷: A卷、	B 卷~/(请在选定	项上打√)			
	考试形式:闭入、开卷(请在选定项上打入),允许带无存储功能计算器入场								
	考试日期: _2018 年 7 月 7_日,考试时间: _120 分钟								
		10 100012			沉着应考,		₽•		
	61334		卷共六人						
¥			开或撕页 学				f i		
]	тип.			٦٠		— чт.	,		1
	题序		=	Ξ	四	五	六	总分	
ĺ	得分								
	评卷人								
备	用数据:	$\Phi(1) = 0.$.84, Φ(1.	645) = 0.9	95, Φ(1.9	(6) = 0.97	5, Φ(2)	=0.98,	
t_0	$_{10}(15)=1$.34, t _{0.05} ((15) = 1.75	$t_{0.025}(1.5)$	5) = 2.13	$\chi^2_{0.05}(15)$	= 25.0, ₂	$y_{0.025}^2(15) = 2$	7.5,
X	$\frac{2}{0.975}(15) =$	6.26, X	$\frac{1}{0.95}(15) = 7$	7.26, $\chi^2_{0.05}$	(5) = 11.0	$7, \chi^2_{0.05}(4)$) = 9.49,	$\chi^2_{0.05}(3) = 7.$.82.
-	. 填空题	(每小格	3分,共:	39分):					
1.	设 A ,	B 是两·	个随机事	件,已经	P(A) =	0.4, P(B) = 0.3, I	$P(A \cup B) = 0$	0.58,则
P	$(A A \cup B$)=	; A	与 В 相互	独立吗?	答:			
2.	设 $X \sim P$	(え) (泊松	分布) ,	Var(X) =	2 ,则え	=	P(X =	1 X ≥ 1) = _	
3.	设(X,Y)服从正さ	5分布,	$X \sim N(2)$	$,4),Y\sim N$	V(1,4),	X 与Y的	相关系数为	0.75,则
P	(X-1>1)	<u>(7)</u> =	, 2.	X + Y 与 2	2 <i>X - Y</i> 的	相关系数	カ	·	
4.	设总体】	<i>Y</i> ~ <i>U</i> (1, 3) (均匀分	布) <i>,X</i> ₁	$,,X_n$ (no	>2)是 X 的	简单随机	样本, \bar{X} 是	样本均值,
A	$2 = \frac{1}{n} \sum_{i=1}^{n} J^i$	K_i^2 ,	$P(\max(X_1))$	$(X_2) > 2$)=	, 当 <i>n</i> →	∞时, ⊿	$A_2 \xrightarrow{P} $;若
n	=192 , 5	$P(\bar{X} > 0)$	49/24) ≈		·				

- 二.(12 分)设随机变量 X 的概率密度函数 $f(x) = \begin{cases} ax, & 0 < x < 1, \\ a(x-1), 1 \le x < 2, & (1) 求常数 <math>a$; (2) 0, 其他.

求 X 的分布函数 F(x); (3)若 P(X>c)=0.68,求 c 的值;(4)求 $E[(X-1)^2]$.

三.(12 分)设 $X \sim B(1,0.4)$, $Y \sim B(2,0.4)$,已知 P(X=1,Y=2)=0,且 X与 Y不相关,求 (X,Y) 的联合分布律;并判断 X与 Y是否相互独立?说明理由.

四. (13 分) 设 (X,Y) 的联合概率密度函数为 $f(x,y) = \begin{cases} 3x, & 1-x < y < 1,0 < x < 1, \\ 0, &$ 其他. (1)

求 (X,Y) 的联合分布函数值 F(1,0.5) ; (2)分别求 X 与 Y 的边际概率密度函数 $f_X(x)$ 和 $f_Y(y)$,并判断 X 与 Y 是否相互独立; (3)求 Cov(X,Y) ,并判断 X 与 Y 是否相关.

五. (8 分)设总体 X 取值在区间(0,3),对总体进行 216 次观察,数据统计如下:

X的取值	(0, 1]	(1, 1.5]	(1.5, 2]	(2, 2.5]	(2.5, 3)	
频数	15	27	36	56	82	

在显著水平 0.05 下,用 χ^2 拟合优度检验法检验假设 $H_0: X$ 的概率密度函数为

$$f(x) = \begin{cases} x^2/9, 0 < x < 3, \\ 0, 其他. \end{cases}$$

六.(16 分) 设总体 $X \sim U[0,\theta]$,未知参数 $\theta > 0$,从总体中抽取容量为 n(n > 2) 的简单随机 样本 X_1, \dots, X_n , (1) 分别求 θ 的矩估计量和极大似然估计量;(2) 逐个判断 $\hat{\theta}_1 = 2X_1$, $\hat{\theta}_2 = X_1 + X_2$, $\hat{\theta}_3 = 1.5 \max(X_1, X_2)$ 是否为 θ 的无偏估计量;(3) 对于 $\hat{\theta}_1$, $\hat{\theta}_2$, $\hat{\theta}_3$ 中的无偏估计量,比较哪个最有效?说明理由.

浙江大学 20<u>17</u> - 20<u>18</u> 学年<u>春夏</u>学期 《概率论与数理统计》期末考试试卷 B 解答

课程号: 06189090, 开课学院: _数学科学学院 , 任课教师: ______

考试试卷: A 卷、B 卷、/ (请在选定项上打、/)

考试形式:闭入、开卷(请在选定项上打入),允许带无存储功能计算器入场

考试日期: _2018 年 7 月 7 日, 考试时间: _120 分钟

- 一. 填空题 (每小格3分,共39分):
- 1. 20/29, 独立.

2. 2,
$$\frac{\lambda e^{-\lambda}}{1 - e^{-\lambda}} = \frac{2}{e^2 - 1} = 0.313$$
.

- 3. 0.5, 3/4.
- 4. 3/4, 13/3, 0.16.
- 5. 16, (1.396, 6.134), 0.1, 接受.

二. (12分)

解: (1)
$$1 = \int_{-\infty}^{+\infty} f(x) dx = \int_{0}^{1} ax dx + \int_{1}^{2} a(x-1) dx = \frac{a}{2} + \frac{a}{2} = a$$
; 4分

(2)
$$F(x) = \int_{-\infty}^{x} f(t)dt = \begin{cases} 0, & x < 0, \\ x^{2}/2, & 0 \le x < 1, \\ x^{2}/2 - x + 1, & 1 \le x < 2, \end{cases}$$
 6 \(\frac{1}{2}\)

(3)
$$F(c) = P(X \le c) = 0.32, \Rightarrow 0 < c < 1, : F(c) = c^2/2 = 0.32, c = 0.8$$
; 10 $\%$

(4)
$$E[(X-1)^2] = \int_0^1 x(x-1)^2 dx + \int_1^2 (x-1)^3 dx = \frac{1}{3}$$
.

三.(12分)

$$P(X=0) = 0.6, P(X=1) = 0.4$$

$$P(Y = 0) = 0.36, P(Y = 1) = 0.48, P(Y = 2) = 0.16$$

$$Cov(X,Y) = E(XY) - E(X)E(Y) = 0$$
, $\Rightarrow E(XY) = 0.32$

所以,
$$E(XY) = P(X = 1, Y = 1) + 2P(X = 1, Y = 2) = P(X = 1, Y = 1) = 0.32$$
,

$$P(X = 0, Y = 1) = P(Y = 1) - P(X = 1, Y = 1) = 0.16$$
,

$$P(X = 0, Y = 2) = P(Y = 2) = 0.16$$
,

$$P(X = 1.Y = 0) = P(X = 1) - P(X = 1.Y = 1) - P(X = 1.Y = 2) = 0.08$$

$$P(X = 0, Y = 0) = 0.28$$
 8 $\%$

$X \setminus Y$	0	1	2
0	0.28	0.16	0.16
1	0.08	0.32	0
P(Y=j)	0.36	0.48	0.16

$$P(X=1,Y=2)=0 \neq P(X=1)P(Y=2)=P(X=1,Y=1)=0.064$$
,所以, X 与 Y 不独立。 12 分

四. (13分)

解: (1)
$$F(1,0.5) = \int_{0.5}^{1} dx \int_{1-x}^{0.5} 3x dy = \frac{5}{16}$$
,

(2)
$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy = \begin{cases} \int_{1-x}^{1} 3x dy = 3x^2, 0 < x < 1, \\ 0, & \text{ #.de.} \end{cases}$$

$$f_{Y}(y) = \int_{-\infty}^{\infty} f(x, y) dx = \begin{cases} \int_{1-y}^{1} 3x dx = 3y - 3y^{2}/2, 0 < y < 1, \\ 0, & \text{ 其他}. \end{cases}$$

$$X$$
与 Y 不相互独立,因为 $f(x,y) \neq f_X(x)f_Y(y)$, $0 < x, y < 1$. 9分

$$E(XY) = \int_0^1 dx \int_{1-x}^1 3x^2 y dy = \frac{9}{20}, E(X) = \int_0^1 dx \int_{1-x}^1 3x^2 dy = \frac{3}{4}, E(Y) = \int_0^1 dx \int_{1-x}^1 3xy dy = \frac{5}{8}$$

$$Cov(X,Y) = E(XY) - E(X)E(Y) = \frac{-3}{160} < 0, \quad X = Y(\textcircled{\texttt{D}})$$
 相关。
13 分

五. (8分)

X的取值	(0, 1]	(1, 1.5]	(1.5, 2]	(2, 2.5]	(2.5, 3)	
频数	15	27	36	56	82	
理论概率	8/216	19/216	37/216	61/216	91/216	
理论频数	8	19	37	61	91	

4分

$$\chi^2 = \sum_{k=1}^5 \frac{n_k^2}{np_k} - n = 10.82 > \chi_{0.05}^2(4) = 9.49$$
,拒绝原假设。 8分

六. (16分)

解:(1)矩估计法:
$$\mu_{\!\!\!1}=E(X)=\theta/2$$
 , $\hat{\mu}_{\!\!\!1}=\bar{X}$,所以 θ 的矩估计量 $\hat{\theta}=2\bar{X}$,

极大似然估计: 似然函数 $L(\theta) = \theta^{-n}$, $0 \le x_i \le \theta, i = 1, ..., n$,

似然函数是 θ 的单调减函数,且 $\theta \geq \max\{X_1, \dots, X_n\}$,所以 θ 的极大似然估计量

$$\hat{\theta} = \max\{X_1, \dots, X_n\}.$$
8 \(\text{\text{3}}\)

(2) $E(\hat{\theta}_1) = E(2X_1) = \theta$, $E(\hat{\theta}_2) = \theta$, $\hat{\theta}_1$, $\hat{\theta}_2$ 均是 θ 的无偏估计,

计算得
$$M=\max\{X_1,X_2\}$$
 的密度函数为 $f_M(x)=\begin{cases} \dfrac{2x}{\theta^2}, 0\leq x\leq \theta, \\ 0, \qquad$ 其它.

$$E(\hat{\theta}_3) = \frac{3}{2} \int_0^{\theta} \frac{2x^2}{\theta^2} dx = \frac{3}{2} \times \frac{2\theta}{3} = \theta$$
; $\hat{\theta}_3$ 也是 θ 的无偏估计,

(3)
$$Var(\hat{\theta}_1) = Var(2X_1) = \theta^2/3$$
, $Var(\hat{\theta}_2) = 2Var(X_1) = \theta^2/6$,

$$E(\hat{\theta}_3^2) = 9\theta^2/8$$
, $Var(\hat{\theta}_3) = \theta^2/8$, 所以 $\hat{\theta}_3$ 最有效.