

Feature Selection & Midterm review

Le Song

Machine Learning CSE/ISYE 6740, Fall 2019

Wine dataset

- First run PCA to reduce the dimension to 2
- Clear cluster structure
- Can we fit 3 Gaussians?

Theory underlying EM

- Recall that in MLE, we intend to learn the model parameter that would have maximize the likelihood of the data.
 - $l(\theta; D) = \log \sum_{z} p(x, z | \theta) = \log \sum_{z} p(x | z, \theta) P(z | \theta)$
- But we are iterating these:
 - Expectation step (E-step)

•
$$f(\theta) = E_{q(z)}[\log p(x, z|\theta)]$$
, where $q(z) = P(z|x, \theta^t)$

- Maximization step (M-step)
 - $\theta^{t+1} = argmax_{\theta} f(\theta)$
- Does maximizing this surrogate yield a maximizer of the likelihood?

Jensen's inequality

- For concave function f(x), eg. log(x)
 - $f(\sum_i \alpha_i x_i) \ge \sum_i \alpha_i f(x_i)$, where $\sum_i \alpha_i = 1$, $\alpha_i \ge 0$
- Most general case: If x is a random variable, and f is concave, $f(\mathbf{E}x) \ge \mathbf{E}f(x)$

Lower bound of log-likelihood

• Log-likelihood $l(x; \theta) = \log \sum_{z} p(x, z | \theta)$

$$= \log \sum_{z} q(z) \frac{p(x, z|\theta)}{q(z)} \text{ (arbitrary } q(z)\text{)}$$

$$\geq \sum_{z} q(z) \log \frac{p(x, z | \theta)}{q(z)} \text{ (Jensen's inequality } f\left(\sum_{i} \alpha_{i} x_{i}\right) \geq \sum_{i} \alpha_{i} f(x_{i}))$$

$$= \sum_{z} q(z) \log p(x, z|\theta) - \sum_{z} q(z) \log q(z)$$

$$= E_{q(z)}[\log p(x, z|\theta)] + H_{q(z)}$$

What *q* to use?

What attains equality?

- $q(z) = p(z|x, \theta^t)$: posterior of z given x attains the equality at θ^t
- Let $F(q,\theta) = \sum_{z} q(z) \log \frac{p(x,z|\theta)}{q(z)} \le l(x;\theta) = \log \sum_{z} p(x,z|\theta)$

- $F(p(z|x,\theta^t),\theta^t) = \sum_{z} p(z|x,\theta^t) \log \frac{p(x,z|\theta^t)}{p(z|x,\theta^t)}$
- = $\sum_{z} p(z|x, \theta^{t}) \log p(x|\theta^{t})$
- $\bullet = \log p(x|\theta^t)$
- $\bullet = \log \sum_{z} p(x, z | \theta^{t})$

Feature selection

What are the best pixels for classifying photos of boys and girls?

A feature selection algorithm

- Given a dataset $S=\{(x^1,y^1),\ldots,(x^m,y^m)\},\ x\in R^d,y=\{1,\ldots,K\}$ Label: male, female...
- For each value of the label y = k
 - Estimate density p(y = k)
- For each feature x_i 下标: dimension; 上标: 数据
 - Estimate its density $p(x_i)$
 - For each value of the label y = k
 - Estimate the density $p(x_i|y=k)$
 - Score feature x_i using

$$I_{i} = \int \sum_{k=1}^{K} p(x_{i}|y=k)p(y=k)\log_{2}\frac{p(x_{i}|y=k)}{p(x_{i})} dx_{i}$$

ullet Choose those feature x_i with high score I_i

Informativeness of a feature

- ullet We are uncertain about the label Y before seeing any input
 - Suppose we quantify using H(Y)
- Given a particular feature X_i , the uncertainty of Y changes
 - Suppose we quantify using $H(Y|X_i)$
- ullet The reduction in uncertainty is the informativeness of feature X_i
 - $I(X_i, Y) = H(Y) H(Y|X_i)$
- How to quantify uncertainty?

Entropy: quantify uncertainty

• Entropy H(Y) of a random variable Y

$$H(Y) = -\sum_{k=1}^{K} P(y = k) \log_2 P(y = k)$$

- H(Y) is the expected number of bits needed to encode a randomly drawn value of Y (under most efficient code)
- Information theory:

Most efficient code assigns $-\log_2 P(Y=k)$ bits to encode the message Y=k, So, expected number of bits to code one random Y is:

$$-\sum_{k=1}^{K} P(y=k) \log_2 P(y=k)$$

Sample Entropy

- S is a sample of coin flips
- p_+ is the proportion of heads in S
- p_- is the proportion of tails in S
- ullet Entropy measure the uncertainty of S

$$H(S) \equiv -p_{+} \log_{2} p_{+} - p_{-} \log_{2} p_{-}$$

Examples for computing Entropy

$$H(S) \equiv -p_{+} \log_{2} p_{+} - p_{-} \log_{2} p_{-}$$

head	0
tail	6

P(h) =
$$0/6 = 0$$
 P(t) = $6/6 = 1$
Entropy = $-0 \log 0 - 1 \log 1 = -0 - 0 = 0$

head	1
tail	5

P(h) =
$$1/6$$
 P(t) = $5/6$
Entropy = $-(1/6) \log_2 (1/6) - (5/6) \log_2 (1/6) = 0.65$

head	2
tail	4

$$P(h) = 2/6$$
 $P(t) = 4/6$

Entropy =
$$-(2/6) \log_2(2/6) - (4/6) \log_2(4/6) = 0.92$$

Conditional entropy

• Conditional entropy H(Y|X) of a random variable Y given X_i

 $H(y|x) = - \sum_{i=1}^{n} p(x_i, y_j) \log p(y_j|x_i)$

$$H(Y|X_i) = -\int \left(\sum_{k=1}^K P(y=k|x_i)\log_2 P(y=k)\right) p(x_i) dx_i$$

 $H(x,y) = - \sum_{i=1}^{n} p(x,y) \log p(x,y) = H(x) + H(y|x)$

- ullet Quantify the uncerntainty in Y after seeing feature X_i
- H(Y) is the expected number of bits needed to encode a randomly drawn value of Y
 - ullet given X_i , and
 - ullet average over the likelihood of seeing particular value of x_i

Mutual information: reduction in uncertainty

• Mutual information: quantify the reduction in uncerntainty in Y after seeing feature X_i

$$I(X_i, Y) = H(Y) - H(Y|X_i)$$

- The more the reduction in entropy, the more informative a feature.
- Mutual information is symmetric

•
$$I(X_i, Y) = I(Y, X_i) = H(X_i) - H(X_i|Y)$$

•
$$I(Y, X_i) = \int \sum_{k=0}^{K} p(x_i, y = k) \log_2 \frac{p(x_i, y = k)}{p(x_i)p(y = k)} dx_i$$

• =
$$\int \sum_{k}^{K} p(x_i|y=k) p(y=k) \log_2 \frac{p(x_i|y=k)}{p(x_i)} dx_i$$

A feature selection algorithm

- Given a dataset $S = \{(x^1, y^1), ..., (x^m, y^m)\}, x \in \mathbb{R}^d, y = \{1, ..., K\}$
- For each value of the label y = k
 - Estimate density p(y = k)
- For each feature x_i
 - Estimate its density $p(x_i)$
 - For each value of the label y = k
 - Estimate the density $p(x_i|y=k)$
 - Score feature x_i using $I_i = \int \sum_{k=1}^K p(x_i|y=k)$ $k)p(y=k)\log_2\frac{p(x_i|y=k)}{p(x_i)} dx_i$
- Choose those feature x_i with high score I_i

Midterm Review

Keys topics before midterm

- Unsupervised learning techniques
 - Dimensionality reduction
 - PCA
 - Graph based methods
 - Clustering
 - Kmeans
 - Graph based methods (spectral algorithms)
 - Density estimation
 - Parametric models
 - Histogram
 - Kernel density estimator
 - Mixture of Gaussian
 - Feature selection

The process of designing ML systems

- What is the objective?
 - Extract group? Visualization? Reduce computation/memory? Compress data? Find useful features? Classification?
- Formulate the objective
 - Understand your data, and make assumptions: Independent? variance enough? Linear? Gaussian? Euclidean distance?
 - Parametrization: parametric? Nonparametric? Prior? Constraint?
- Looking for algorithms
 - Convex? Nonconvex? Computational and memory complexity? Iterative or one-shot? Global best? Guarantee to improve or stop?
- Interpretation:
 - Results make sense? What groups? What principal component? Selected feature meaningful? What errors made by classifier? Improvements?

Key mathematical tools

- Linear algebra and vector spaces
 - Vector, projection, linear combination
 - inner product, distance
 - Eigen-decomposition: $A = U\Sigma U^{\mathsf{T}}$, or $Av = \lambda v$
 - Singular value decomposition: $A = USV^{T}$, or $Av = \sigma u$

Statistics

- Mean, variance
- Density, distribution, parametric models
- Sum rule, product rule, Bayes rule
- Maximum likelihood estimation
 - Fully observed case (often convex)
 - With hidden variables (expectation-maximization algorithm)

Key mathematical tools (cont.)

Optimization

- Convex/concave function
- Derivative of function (and with respect to vectors, matrices)
- Lagrangian function
- Optimality conditions

Computer Science

- Complexity: computation and memory, trade-off
- Data structures: image and graph representation
- Local search heuristic (greedy algorithms)
- Sophisticated algorithm: shortest path, nearest neighbor search
- Programming: loop vs. vectorized, underflow

Example question

- Use Euclidian distance, run one step:
 - Cluster assignment
 - New Center
- Will it terminate in one step?
- What about other distance?

Example question

- Given you a few point
- What is the first principal axis?
- How about the second one?
- Represent the data using leading principal axis?
- What is the residue?

Example question

Given you a table

• How to estimate the parameter for X_1 ?

Example	X_1	X_2
1	0	1
2	1	0
3	1	0
4	1	?
5	0	1

• How to estimate the joint probability of X_1 and X_2 with missing values?

sum $log P(x1, x2) + log sum_x2 P(x1, x2)$