Levenberg Marquardt

$$y = y(x; \vec{a})$$
 $\chi^{2}(\vec{a}) = \sum_{i=0}^{N-1} \left[y_{i} - y(x_{i}; \vec{a}) \right]^{2}$
 $\chi^{2}(\vec{a}) = \sum_{i=0}^{N-1} \left[y_{i} - y(x_{i}; \vec{a}) \right]^{2}$
 $\chi^{2}(\vec{a}) = \sum_{i=0}^{N-1} \left[\frac{y_{i} - y(x_{i}; \vec{a})}{\delta_{i}} \right]^{2}$
 $\chi^{2}(\vec{a}) = \sum_{i=0}^{N-1} \left[\frac{y_{i} - y(x_{i}; \vec{a})}{\delta_{i}} \right]^{2}$
 $\chi^{2}(\vec{a}) = \sum_{i=0}^{N-1} \left[\frac{\partial y(x_{i}; \vec{a})}{\partial a_{k}} \right]^{2} \left[y_{i} - y(x_{i}) \right]^{2} \left[\frac{\partial^{2} y(x_{i}; \vec{a})}{\partial a_{k}} \right]^{2}$
 $\chi^{2} = 2 \beta_{k}$
 $\chi^{2} = -2 \beta_{k}$
 $\chi^{2} = 2 \chi^{2}$
 $\chi^{2} = -2 \chi^{2}$
 $\chi^{2} = -2$

Step
$$S_{al} = const.$$
 $S_{al} = steepest descent$
 $S_{al} = const.$ $S_{al} = steepest descent$
 $S_{al} = steepest descent

 $S_{al} = steepest descent

S_{al} = steepest$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

) compute $\chi^{2}(a_{guess})$ 2) Pick small χ (ex $\chi = 0.001$)

3) solve $\sum_{k=0}^{M-1} \chi_{kk}^{2} \delta a_{k} = \beta_{k}$ for δa_{k} 4) evaluate $\chi^{2}(a + \delta a_{k}) \geq \chi^{2}(a_{k})$ increase $\chi^{2}(a + \delta a_{k}) \geq \chi^{2}(a_{k})$ decrease $\chi^{2}(a + \delta a_{k}) \leq \chi^{2}(a + \delta a_{k})$ decrease $\chi^{2}(a + \delta a_{k}) \leq \chi^{2}(a + \delta a_{k})$ decrease $\chi^{2}(a + \delta a_{k}) \leq \chi^{2}(a + \delta a_{k})$ decrease $\chi^{2}(a + \delta a_{k}) \leq \chi^{2}(a + \delta a_{k})$ decrease $\chi^{2}(a + \delta a_{k}) \leq \chi^{2}(a + \delta a_{k}) \leq \chi^{2}(a + \delta a_{k})$ decrease $\chi^{2}(a + \delta a_{k}) \leq \chi^{2}(a + \delta a_{k}) \leq \chi^{2}(a + \delta a_{k})$ decrease $\chi^{2}(a + \delta a_{k}) \leq \chi^{2}(a + \delta a_{k}) \leq \chi^{2}(a + \delta a_{k})$ decrease $\chi^{2}(a + \delta a_{k}) \leq \chi^{2}(a + \delta a_{k}) \leq \chi^{2}(a + \delta a_{k})$ decrease $\chi^{2}(a + \delta a_{k}) \leq \chi^{2}(a + \delta a_{k}) \leq \chi^{2}(a + \delta a_{k}) \leq \chi^{2}(a + \delta a_{k})$ decrease $\chi^{2}(a + \delta a_{k}) \leq \chi^{2}(a + \delta a_{k}) \leq \chi^{2}(a + \delta a_{k}) \leq \chi^{2}(a + \delta a_{k})$ decrease $\chi^{2}(a + \delta a_{k}) \leq \chi^{2}(a +$