

Detection Datasets

VOC 2007 / 2012:

- 20 classes
- i.e. person, cat, dog, car, chair, bottle

MS COCO:

- 80 classes
- i.e. book, apple, teddy bear, scissors

ImageNet1000:

- 1000 classes
- i.e. German shepherd, golden retriever, European fire salamander

YOLO – The Target Output

الانتخاب الماليات به العلميات المعلمات

YOLO - The Detected Output

YOLO Versions

- YOLO (caffe) https://github.com/xingwangsfu/caffe-yolo
- YOLO (tensorflow) https://github.com/thtrieu/darkflow
- YOLO (darknet) https://pjreddie.com/darknet/yolov1/ (C++)
- YOLO v2 (darknet) https://pjreddie.com/darknet/yolov2/
 (C++) Better and faster 91 fps for 288 x 288
- YOLO v3 (darknet) https://pjreddie.com/darknet/yolo/ (C++)

YOLO as Object Detection and Localization

Detection Frameworks	Train	mAP	FPS
Fast R-CNN [5]	2007+2012	70.0	0.5
Faster R-CNN VGG-16[15]	2007+2012	73.2	7
Faster R-CNN ResNet[6]	2007+2012	76.4	5
YOLO [14]	2007+2012	63.4	45
SSD300 [11]	2007+2012	74.3	46
SSD500 [11]	2007+2012	76.8	19
YOLOv2 288×288	2007+2012	69.0	91
$YOLOv2\ 352 \times 352$	2007+2012	73.7	81
YOLOv2 416×416	2007+2012	76.8	67
$YOLOv2 480 \times 480$	2007+2012	77.8	59
YOLOv2 544×544	2007+2012	78.6	40

- PASCAL VOC 2007 as a dataset;
- different sizes of input for YOLOv2;
- all timing information is on a Geforce GTX Titan X.

mAP Mean Average Precision (Quality) FPS Frames per second (processing)

Confidence of Detected Objects

Acceptance criteria IOU > 0.5

(The higher the better)

IOU is a measure of overlap between two bounding boxes

Non-Max Supression

Ground Truth
Objects centers and corresponding
Bounding Boxes

Remove Redundant Boxes using Non-Max Supression

Intersection Width = Min (X_{12}, X_{22}) - Max (X_{11}, X_{21}) Intersection Height = Min (Y_{12}, Y_{22}) - Max (Y_{11}, Y_{21})

Union AREA = $(X_{12} - X_{11}) * (Y_{12} - Y_{11}) + (X_{22} - X_{21}) * (Y_{22} - Y_{21}) - Intersection AREA$