3D MAGNETIC MODELLING FOR ELLIPSOIDS

Diego Takahashi Tomazella¹ and Vanderlei C. Oliveira Jr¹

¹Department of Geophysics, Observatorio Nacional, Rio de Janeiro, Brazil

Correspondence to: DIEGO TAKAHASHI TOMAZELLA (diego.takahashi@gmail.com)

Abstract.

TEXT

1 Introduction

TEXT

5 2 Methodology

2.1 Geometrical aspects

Let (x, y, z) be a point referred to a Cartesian coordinate system with axes x, y and z pointing to, respectively, North, East and down.

Consider an ellipsoidal body with centre at the point (x_c, y_c, z_c) , semi-axes defined by positive constants a, b, c, and orientation defined by three angles α , β , and γ .

The points (x, y, z) located on the surface of this ellipsoidal body satisfy the following equation:

$$(\mathbf{r} - \mathbf{r}_c)^T \mathbf{A} (\mathbf{r} - \mathbf{r}_c) = 1, \tag{1}$$

where $\mathbf{r} = [\begin{array}{ccc} x & y & z\end{array}]^{\top}$, $\mathbf{r}_c = [\begin{array}{ccc} x_c & y_c & z_c\end{array}]^{\top}$, \mathbf{A} is a positive definite matrix given by

$$\mathbf{A} = \mathbf{V} \begin{bmatrix} a^{-2} & 0 & 0 \\ 0 & b^{-2} & 0 \\ 0 & 0 & c^{-2} \end{bmatrix} \mathbf{V}^{\top}, \tag{2}$$

and V is an orthogonal matrix whose columns are defined by unit vectors v_1 , v_2 , and v_3 .

The vectors \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 have the same direction as the semi-axes a, b, c of the ellipsoid, depend on the orientation angles α , β , γ and are defined according to the ellipsoid type.

For triaxial ellipsoids (i.e., a > b > c), the vectors \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 are given by (?):

$$\mathbf{v}_{1} = \begin{bmatrix} -\cos\alpha \cos\delta \\ -\sin\alpha \cos\delta \\ -\sin\delta \end{bmatrix}, \tag{3}$$

$$\mathbf{v}_{2} = \begin{bmatrix} \cos \alpha & \cos \gamma & \sin \delta + \sin \alpha & \sin \gamma \\ \sin \alpha & \cos \gamma & \sin \delta - \cos \alpha & \sin \gamma \\ -\cos \gamma & \cos \delta \end{bmatrix}, \tag{4}$$

$$\mathbf{5} \quad \mathbf{v}_{3} = \begin{bmatrix}
\sin \alpha \cos \gamma - \cos \alpha \sin \gamma \sin \delta \\
-\cos \alpha \cos \gamma - \sin \alpha \sin \gamma \sin \delta \\
\sin \gamma \cos \delta
\end{bmatrix}.$$
(5)

Similarly, the vectors \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 defining the semi-axes of prolate ellipsoids (i.e., a > b = c) are calculated by using equations 3, 4, and 5, but with $\gamma = 0^{\circ}$ (?).

Finally, the vectors \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 defining the semi-axes of oblate ellipsoids (i.e., a < b = c) are PAREI AQUI

10 **2.2** TEXT

2.2.1 TEXT

TEXT

3 Conclusions

TEXT

Appendix A

A1

35 Author contributions. TEXT

Acknowledgements. TEXT

References

Clark, D., Saul, S., and Emerson, D.: Magnetic and gravity anomalies of a triaxial ellipsoid, Exploration Geophysics, 17, 189–200, 1986.

References

40	Clark, D., Saul, S., and Emerson, D.: Magnetic and gravity anomalies of a triaxial ellipsoid, Exploration Geophysics, 17, 189–200, 1986.