

DBMS

Introduction to Database

Overview

- The definition of database systems
- The importance of database systems
- Data abstraction and database models
- Database languages
- Database system components
- Users and creators of database systems
- Database products and applications
- Database research and trends

ลำดับชั้นการเก็บข้อมูล

- ▶ บิต (bit) ย่อมาจาก Binary Digit
 - ข้อมูลในคอมพิวเตอร์ 1 บิต จะแสดงได้ 2 สถานะคือ 0 และ 1
- ไบต์ (byte) คือ การเรียงต่อกันของบิต จำนวน 8 บิต เช่น
 01100001 หมายถึง a
 01100010 หมายถึง b
- เขตข้อมูล (field) คือ การเรียงต่อกันของไบต์ เช่น
 - ▶ เขตข้อมูลชื่อ (Name)
 - เขตข้อมูลนามสกุล (Last name)

ลำดับชั้นการเก็บข้อมูล (ต่อ)

- ระเบียน(Record) คือ การเรียงต่อกันของเขตข้อมูล เช่น
 - 🕨 ระเบียน ที่ 1 เก็บ ชื่อ นามสกุล วันเดือนปีเกิด ของ นักเรียนคนที่ 1
 - 🕨 ระเบียน ที่ 2 เก็บ ชื่อ นามสกุล วันเดือนปีเกิด ของ นักเรียนคนที่ 2

- ▶ แฟ้มข้อมูล(File) คือ การเก็บระเบียนหลาย ๆ ระเบียน รวมกัน เช่น
 - แฟ้มข้อมูล นักเรียน จะเก็บ ชื่อ นามสกุล วันเดือนปีเกิด ของนักเรียน จำนวน
 500 คน เป็นต้น

ลำดับชั้นการเก็บข้อมูล (ต่อ)

- ฐานข้อมูล(Database) คือ การจัดเก็บ แฟ้มข้อมูล หลายๆ แฟ้มข้อมูล
 ไว้ภายใต้ระบบเดียวกัน เช่น
 - 🕨 เก็บแฟ้มข้อมูล นักเรียน อาจารย์ วิชาที่เปิดสอน เป็นต้น

ลำดับชั้นการเก็บข้อมูล (ต่อ)

Database Personnel file (Project database) Department file Payroll file 098-40-1370 Fiske, Steven 01-05-1985 Files 549-77-1001 Buckley, Bill 02-17-1979 (Personnel file) 005-10-6321 Johns, Francine 10-07-1997 Recordประกอบด้วย รหัส, 098-40-1370 Fiske, Steven 01-05-1985 Records นามสกุลและชื่อ,วันที่จ้างงาน **Fields** Fiske Field นามสกุล **Characters** ตัวอักษร F ใน ASCII 1000100 (Byte) Bit 0,1

The Importance of DB Systems

- ก่อนจะมีระบบฐานข้อมูล
 - > ระบบแฟ้มข้อมูล(File-based system) คือ ชุดของโปรแกรมประยุกต์ที่ให้ผู้ใช้ ใช้เพื่อประมวลผลงานที่ต้องการ โดยแต่ละโปรแกรมก็จะกำหนดและจัดการ แฟ้มข้อมูลของตนเอง
 - แฟ้มข้อมูลที่ใช้ในระบบไฟล์จะแยกจากกันเป็นเอกเทศ และอาจไม่มี ความสัมพันธ์กัน
 - โดยส่วนใหญ่ข้อมูลและโปรแกรมมักรวมอยู่ด้วยกันเป็นแฟ้มข้อมูล

Fix 1.1 File Systems

Limitation of File-Based System

- ข้อมูลถูกแบ่งและเก็บแยกจากกัน
- ข้อมูลมีความซ้ำซ้อนกัน
- มีความขึ้นต่อกันของข้อมูล
- รูปแบบข้อมูลไม่ตรงกัน
- โปรแกรมที่ใช้งานมีความคงที่ไม่ยืดหยุ่น

ข้อมูลถูกเก็บและเก็บแยกจากกัน

เมื่อข้อมูลต่าง ๆ ถูกเก็บกันไว้คนละไฟล์ หากต้องการนำข้อมูลต่าง ๆ มาสร้าง เป็นรายงาน โปรแกรมเมอร์ต้องสร้างไฟล์ชั่วคราว(Temporary file)ขึ้นมา เพื่อดึง ข้อมูลต่าง ๆ จากไฟล์ต่าง ๆ มารวมกันก่อน แล้วค่อยสร้างเป็นรายงาน

ข้อมูลมีความซ้ำซ้อน

สืบเนื่องจากข้อมูลถูกเก็บแยกจากกัน ทำให้ไม่สามารถควบคุมความซ้ำซ้อน ข้อมูลได้ ทำให้สูญเสียพื้นที่ในการจัดเก็บข้อมูลมากขึ้น และก่อให้เกิดความ ผิดพลาดในการดำเนินการกับข้อมูล 3 ลักษณะ ได้แก่

- ความผิดพลาดจากการเพิ่มข้อมูล (Insertion anomalies)
- ความผิดพลาดจากการปรับปรุงข้อมูล (Modification anomalies)
- ความผิดพลาดจากการลบข้อมูล (Deletion anomalies)

มีความขึ้นต่อกันของข้อมูล

เนื่องจากโครงสร้างทางกายภาพและการจัดเก็บข้อมูลถูกสร้างโดยการเขียนโปรแกรม ประยุกต์(Application program) ดังนั้นหากต้องการเปลี่ยนแปลงโครงสร้างข้อมูล เช่น ชื่อของพนักงาน จากเดิม 20 ตัวอักษร เป็น 30 ตัวอักษร มีขั้นตอนการทำงานดังนี้

- 1. เปิดไฟล์หลักพนักงานเพื่ออ่านข้อมูล
- 2. เปิดไฟล์ชั่วคราวที่มีโครงสร้างคล้ายไฟล์หลัก แต่ปรับโครงสร้างของชื่อพนักงาน จาก 20 ตัวอักษร เป็น 30 ตัวอักษร
- 3. อ่านข้อมูลจากไฟล์หลัก และย้ายไปเก็บไว้ในไฟล์ชั่วคราว จนกระทั่งครบทุกรายการ
- 4. ลบไฟล์หลักทิ้ง
- 5. เปลี่ยนชื่อไฟล์ชั่วครามให้ชื่อเดียวกับไฟล์หลัก

รูปแบบข้อมูลไม่ตรงกัน

โครงสร้างข้อมูลจะขึ้นอยู่กับภาษาคอมพิวเตอร์ที่ใช้ในการเขียนโปรแกรม ประยุกต์ ถ้าแต่ละฝ่ายใช้ภาษาในการเขียนต่าง ๆ กัน ก็อาจทำให้โครงสร้าง ข้อมูลของแฟ้มไม่ตรงกัน ทำให้ไม่สามารถนำไฟล์ข้อมูลมาใช้ร่วมกันได้

โปรแกรมที่ใช้งานคงที่ไม่ยืดหยุ่น

ระบบแฟ้มข้อมูล มีความขึ้นกับโปรแกรมประยุกต์ ข้อมูลหรือรายงาน ต่าง ๆ จะถูกกำหนดรูปแบบตายตัวในโปรแกรมแล้ว ดังนั้นหาก ต้องการรายงานใหม่ จะต้องให้โปรแกรมเมอร์เขียนโปรแกรมขึ้นมา ใหม่ ทำให้เสียค่าใช้จ่าย

Database Systems: Definition

- A Database System (DBS) consists of
 - 🕨 ฐานข้อมูล (Database หรือ DB)
 - 🕨 ระบบจัดการฐานข้อมูล (Database Management Systems หรือ DBMS)
 - A Database is
 - ▶ โครงสร้างของการจัดเก็บข้อมูลที่มีความสัมพันธ์เกี่ยวข้องกันไว้ในที่เดียวกัน เพื่อให้ สามารถนำข้อมูลมาประมวลเพื่อช่วยในการตัดสินใจ และสามารถใช้ข้อมูลร่วมกันได้
 - A Database Management Systems is
 - กลุ่มของโปรแกรมที่จัดการข้อมูล

Database Systems (cont.)

- ฐานข้อมูลมีส่วนที่ทำหน้าที่ในการอธิบายความหมายของรายการ
 ข้อมูลที่เก็บอยู่ในฐานข้อมูลด้วย เรียกส่วนนี้ว่า
 - บัญชีระบบ (system catalog)
 - พจนานุกรมของข้อมูล (Data Dictionary)
 - เมตาดาต้า (Meta-data)

Database Systems (cont.)

- โครงสร้างของข้อมูลจะถูกแยกออกจากโปรแกรมประยุกต์และเก็บเอาไว้ในส่วนที่ เรียกว่า "ฐานข้อมูล"
- ถ้ามีการเพิ่มหรือปรับปรุงโครงสร้างของข้อมูลก็จะไม่มีผลกระทบกับโปรแกรม ประยุกต์

Database Systems (cont.)

Database Management System: DBMS

- ระบบจัดการฐานข้อมูล
- หมายถึง ซอฟต์แวร์ที่ใช้ในการจัดการข้อมูลในฐานข้อมูล
- ▶ DBMS จะทำหน้าที่เป็นตัวกลางระหว่างฐานข้อมูลกับโปรแกรมที่มาใช้งาน ฐานข้อมูลและผู้ใช้งานฐานข้อมูล ที่ติดต่อไปยังฐานข้อมูลเพื่อทำงานที่ผู้ใช้ ต้องการให้สำเร็จ
- เช่น การจัดเก็บข้อมูลลงในฐานข้อมูล , การค้นหาข้อมูลที่ต้องการออกมาแสดง หรือ การลบข้อมูล เป็นต้น

Goal of DBMS

- เพื่อทำให้การจัดเก็บและนำสารสนเทศจากฐานข้อมูลมาใช้งานได้อย่างสะดวก และมีประสิทธิภาพ
- ▶ DBMS จะต้องมีความสามารถดังนี้
 - Data Persistency
 - 🕨 ข้อมูลจะต้องมีความคงทน ไม่สูญหาย
 - System Reliability
 - ระบบต้องมีความน่าเชื่อถือ
 - Scalability
 - ระบบจะต้องมีความสามารถในการจัดการข้อมูลที่มีจำนวนมหาศาล และ รองรับผู้ใช้งานจำนวนมาก

Management of Data

- ▶ DBMS จะต้องรับผิดชอบในส่วนการจัดการข้อมูล ซึ่งจะรวมถึงสิ่ง เหล่านี้ด้วย
 - ▶ DDL : กำหนดโครงสร้างเพื่อจัดเก็บสารสนเทศ
 - DML : มีกลไกเพื่อจัดการสารสนเทศ (แสดง, เพิ่ม, ลบ, ปรับปรุง)
 - System Reliability: ต้องสร้างความมั่นใจในด้านความปลอดภัยของ
 ข้อมูลที่จัดการ แม้จะเหตุการณ์ระบบล่ม (System crashes)
 - > System Security : หรือ ความพยายามที่จะเข้าสู่ระบบโดยไม่ได้รับ อนุญาต (Unauthorized access)
 - Concurrency Control: ป้องกัน ความผิดปกติที่อาจเกิดขึ้นได้ เมื่อ มีการแบ่ง หรือมีผู้ที่สามารถเข้าถึงข้อมูลได้พร้อม ๆ กันหลายคน

File Systems vs. Database Systems

File Systems	Database Systems
ข้อมูลซ้ำซ้อน	ข้อมูลสอดคล้อง
เข้าถึงข้อมูลยาก	เข้าถึงข้อมูลง่าย
Integrity problem	Integrity constraint
Atomic problem	Ensure atomicity
Concurrent access anomalies	Concurrency control
ปัญหาด้านความปลอดภัย	กลไกการเข้าถึงข้อมูล
พัฒนานาน	พัฒนาเร็ว
ผูกติดกับตัวโปรแกรมที่ใช้พัฒนา	Data independence

Table 1.1 เปรียบเทียบ File system กับ Database system

การประยุกต์ใช้ระบบงานฐานข้อมูล

- การซื้อของจากซูเปอร์มาเก็ต
- การซื้อของโดยใช้บัตรเครดิต
- การจองตั๋วเครื่องบินผ่านตัวแทนจำหน่าย
- การใช้บริการห้องสมุด
- การใช้งานอินเทอร์เน็ต
- การเรียนในมหาวิทยาลัย
- การบริหารในองค์กร
- ฯลฯ อีกมากมาย

Advantages of DB Systems

- มีความเป็นอิสระต่อกันระหว่างโปรแกรมและข้อมูล
- ลดความซ้ำซ้อนของข้อมูล
- เพิ่มความตรงกันของข้อมูล
- สามารถใช้ข้อมูลร่วมกันได้
- บังคับให้เป็นมาตรฐานเดียวกันได้
- ป้องกันและควบคุมการเข้าถึงข้อมูลได้ง่ายขึ้น
- ลดปัญหาในการบำรุงรักษาโปรแกรม

Disadvantages of DB Systems

- ชับซ้อน(Complexity)
- ขนาดใหญ่(Size)
- ราคาของ DBMS ค่อนข้างมีราคาสูง (Cost of DBMS)
- ราคาของฮาร์ดแวร์แพง (Additional hardware cost)
- ค่าใช้จ่ายในการแปลงระบบ (Cost of conversion)
- ผลกระทบจากความเสียหายสูง (Higher impact of a failure)

Data Abstraction

- จุดประสงค์หลักของ database system คือ ให้ผู้สามารถเห็นมุมมองของ
 ข้อมูลที่ถูกจัดเก็บได้
- database system ทำหน้าที่ซ่อนรายละเอียดการจัดเก็บและการ บำรุงรักษาข้อมูล โดยไม่แสดงให้ผู้ใช้เห็น
- lange เพื่อให้ง่ายต่อการใช้งาน user interface ถูกจัดทำให้กับผู้ใช้
- เพื่อประสิทธิภาพ โครงสร้างข้อมูลที่ซับซ้อนจะถูกแทนที่ด้วยข้อมูลภายใน

Database

View of Data

- ข้อมูลนามธรรม (data abstraction) สามารถแสดงได้ในหลายระดับ (Multilevels)
- ตัวอย่าง ข้อมูลส่วนตัวบุคคลสามารถมีมุมมอง เช่น
 - ▶ High-level: ข้อมูลยา, ข้อมูลประวัติการศึกษา
 - Intermediate-level: ชื่อ (alphabetic), อายุ(numeric), เพศ(enumeration
 : Mail/Female)
 - Low-level: sequences of bits, bytes, blocks
- ▶ ใน ค.ศ. 1978 "ANSI/SPARC" architecture กำหนด ข้อมูลรูปแบบได้ 3 ระดับ
 - External Level (View)
 - Conceptual Level (Logical)
 - Internal Level (Physical)

ANSI/SPARC Architecture

- ▶ ใน ANSI/SPARC Architecture , a Database ประกอบด้วย
 - View schema
 - ▶ อธิบายมุมมองของ Database (External Level)
 - Logical schema
 - ▶ อธิบายการออกแบบที่ระดับตรรกะ (Logical level) (Conceptual Level)
 - Physical schema
 - ▶ อธิบายการออกแบบที่ระดับกายภาพ (Physical Level) (Internal Level)

Schema

▶ A Schema of a database

- โครงสร้างโดยรวมของข้อมูลในฐานข้อมูลและความสัมพันธ์ของข้อมูลเหล่านั้น
- Schema นาน ๆ ครั้งจึงมีการเปลี่ยนแปลง ในขณะที่ Data จะมีการเปลี่ยนแปลง อย่างต่อเนื่อง

Levels of Data Abstraction

View Level

- ส่วนติดต่อกับผู้ใช้
- แสดงมุมมองที่แตกต่างกันของข้อมูล

Logical Level

- ข้อมูลอะไรที่ถูกเก็บในฐานข้อมูล และ..
- ความสัมพันธ์ระหว่างข้อมูลเหล่านั้น

Physical Level

ข้อมูลถูกเก็บไว้อย่างไร

View level : ระดับมุมมอง

- ติดต่อกับผู้ใช้
- ผู้ใช้แต่ละคนอาจจะมีมุมมองข้อมูลแตกต่างกันหรือเหมือนกันก็ได้
- > รูปแบบข้อมูลที่เห็นในระดับภายนอก เรียกว่า เค้าร่างภายนอก (External schema)หรือ วิว(View) ซึ่งอาจนำเสนอได้หลายรูปแบบ
- แต่ละฐานข้อมูลสามารถมี View ได้หลายรูปแบบ

View level

User A

User B

User C

ชื่อ	โทรศัพท์	
กนก	0-4221-1040	
ขนิษ	0-4224-4505	

รหัส	ชื่อ	ที่อยู่	โทรศัพท์
001	กนก	48/7 ถ.อุดรดุษฎี	0-4221-1040

	1		
′	รหัสวิชา	ชื่อวิชา	หน่วยกิต
	DB01	ระบบฐานข้อมูล	3
	PR01	หลักการเขียนโปรแกรม	3
•	NW01	เครือข่ายและ โทรคมนาคม	3

View schema/

Logical schema

รหัส	ชื่อ	ที่อยู่	โทรศัพท์
001	กนก	48/7 ถ.อุดรดุษฎี	0-4221-1040
002	ขนิษ	64 ถ.ทหาร	0-4224-4505

รหัสวิชา	ชื่อวิชา	หน่วยกิต
DB01	ระบบฐานข้อมูล	3
PR01	หลักการเขียนโปรแกรม	3
NW01	เครือข่ายและโทรคมนาคม	3

Logical Level : ระดับแนวคิด

- เป็นโครงสร้างหลักของฐานข้อมูลโดยรวม
- โครงสร้างข้อมูลในระดับนี้มุ่งเน้นความสัมพันธ์(Relationship) ระหว่างข้อมูล
 เป็นหลักสำคัญ หรือเรียกว่าแบบจำลองข้อมูล(Data Model)
- เป็นระดับที่อธิบายถึงว่า ข้อมูลอะไร(What) ที่จะจัดเก็บลงในฐานข้อมูล และมี
 ความสัมพันธ์ระหว่างอย่างไร
- ระดับแนวคิดมีความเกี่ยวข้องกับสิ่งต่อไปนี้
 - จำนวนเอนติตี้ทั้งหมด ซึ่งประกอบด้วย แอตทริบิวต์ และความสัมพันธ์ระหว่างเอนติตี้
 - กฎเกณฑ์ของข้อมูล
 - ความปลอดภัย และความคงสภาพของข้อมูล

Logical Level

- ข้อมูลในระดับแนวคิดจะถูกแสดงตามแบบจำลองข้อมูล ที่ฐานข้อมูลนั้นใช้
 เรียกว่า เค้าร่างแนวคิด (Conceptual schema)
- ผู้ที่ทำหน้าที่บริหารจัดการโครงสร้างในระดับนี้คือ ผู้บริหารฐานข้อมูล (DBA)

Logical Level

001	กนก	48/7 ถ.อุดรดุษฎี	0-4221-1040
002	ขนิษ	64 ถ.ทหาร	0-4224-4505
003	คนึง	55/2 ถ.ศรีชมชื่น	0-4225-5142

Logical schema

Physical schema

Physical Level : ระดับกายภาพ

- เป็นระดับที่จัดเก็บข้อมูลด้วยโครงสร้างที่เหมาะสม ซึ่งมีผลต่อความเร็วและ ประสิทธิภาพในการเข้าถึงข้อมูลที่ต้องการ
- โครงสร้างข้อมูลที่ใช้เก็บ เช่น Tree , B-Tree หรือ Index ขึ้นอยู่กับการกำหนดโดย DBA
- 🕨 รูปแบบข้อมูลที่เห็นในระดับภายในเรียกว่า เค้าร่างภายใน(Internal schema)
- เป็นระดับที่มีการทำงานประสานกับระบบปฏิบัติการ(OS)
- ข้อมูลในระดับภายในยังไม่ใช่รูปแบบการจัดเก็บข้อมูลจริงๆที่เก็บในดิสก์
- การอ่านและเขียนข้อมูลเป็นหน้าที่ของระบบปฏิบัติการ(OS)

Physical Level

003	•	001	กนก	48/7 ถ.อุดรดุษฎี	0-4221-1040
001		002	ขนิษ	64 ถ.ทหาร	0-4224-4505
002		003	คนึ่ง	55/2 ถ.ศรีชมชื่น	0-4225-5142

Physical schema

Physical Disk

1	2	3	4	
5	6	7	8	
9	10	11	12	

Data Independence

Data Independence

การเปลี่ยนแปลง Low-level schema จะไม่มีผลกระทบต่อ schema ระดับที่สูงขึ้นไป รวมทั้งแอพลิเคชั่นต่าง ๆ ด้วย

Physical Data Independence

- ▶ ถ้ามีการเปลี่ยนแปลง physical schema จะไม่ส่งผลกระทบต่อโปรแกรม
- นั่นคือ โปรแกรมประยุกต์จะไม่ขึ้นอยู่กับ physical schema (แต่ะจะขึ้นอยู่กับ logical schema หรือ view schema)

Logical Data

- ถ้ามีการเปลี่ยนแปลง logical schema จะไม่ส่งผลกระทบต่อโปรแกรม
- นั่นคือ โปรแกรมประยุกต์จะไม่ขึ้นอยู่กับ logical schema (แต่ะจะขึ้นอยู่กับ view schema บางตัวเท่านั้น)

Why do we need 3 levels?

- ผู้ใช้แต่ละคนสามารถเข้าถึงข้อมูลเดียวกันได้ แต่อาจจะมีมุมมองในการใช้งาน ต่างกันได้
- ผู้ใช้จะไม่สามารถเข้าถึงข้อมูลในระดับกายภาพได้โดยตรง
- ผู้บริหารฐานข้อมูลสามารถแก้ไขโครงสร้างในการจัดเก็บฐานข้อมูล โดยไม่ส่งผล กระทบต่อมุมมองของผู้ใช้
- โครงสร้างของระดับภายในของฐานข้อมูลจะไม่ได้รับผลกระทบจากการเปลี่ยน ตำแหน่งในการจัดเก็บในระดับกายภาพ
- ผู้บริการฐานข้อมูล(DBA) สามารถที่จะเปลี่ยนโครงสร้างระดับแนวคิดของ ฐานข้อมูลโดยไม่ส่งผลกระทบกับผู้ใช้ทุกคน

DB Models and History

- ▶ 1961, Charles Bachman (1973 Turing Award) designed GE's
- Integrated Data Store: IDS the predecessor of Network Model.
- Late 1960s, IBM built "Information Management System: IMS"
- Hierarchical Model.
- Late 1960s, CODASYL group defined/standardized Network Model.
- ▶ 1969, Relational Model by Edgar Codd [IBM] (1981 Turing Award).
- ▶ 1970s, SEQUEL (SQL), QBE; QUEL, System R (DB2), Ingres
- ▶ 1976, Entity-Relationship Model by Peter Chen
- ▶ 1980s, DB2, Oracle, Sybase, Informix, DBase, Paradox, ...

DB Models and History (cont.)

- 1986, SQL Standard
- ▶ 1980s, distributed databases
- ▶ 1998, James Gray received Turing Award in Transaction Management.
- 1990s-2000s,OODB, ORDB (Postgres); Data Warehouse, OLAP,
- Data Mining, GIS, Mobile DB, Multimedia DB, Web DB, XML DB, ...

Data Model

แบบจำลองข้อมูล(Data Model) หมายถึง แบบจำลองที่ใช้อธิบายและจัดการ
 ข้อมูล , ความสัมพันธ์ระหว่างข้อมูล และข้อบังคับของข้อมูลในระบบ

Database Models

- Hierarchical Model
 - the first DB model
 - e.g., IMS, System 2000
- Network Model
 - DBTG standard; after IDS
 - e.g., IDMS, Total, ...
- Relational Model
 - the most widely used now
 - e.g., System R, Ingres, ..
- Entity-Relationship Model
 - a conceptual model

Object-Oriented Model

- mostly for special purposes
- e.g., ObjectStore, Gemstone,Ontos, O2, Jasmine, Cache,
- Object-Relational Model
 - extends the relational model
 - e.g., Postgres, Informix, DB2, Oracle, ...
- *Semi-structured Data*
 - Focus on data in XML format

แบบจำลองลำดับชั้น(Hierarchical data model)

แบบจำลองเครือข่าย(Network data model)

Data Models – Diagrams Hierarchical and Network

Hierarchical tree-structure diagram

Network data-structure diagram

DBTG data-structure diagram

แบบจำลองลำดับชั้น(Hierarchical data model)

แบบจำลองข้อมูลเชิงสัมพันธ์(Relational data model)

รหัสสาขา	ที่อยู่	จังหวัด	รหัสไปรษณีย์
B003	44/3 ถ.อุดรดุษฎี	อุดรธานี	41000
B005	55/5 ถ.นิตโย	อุดรธานี	41000
B007	16 ถ.โพนพิสัย	หนองคาย	44000
B002	30 ถ.ชยางกูร	อุบลราชธานี	34000
B004	88/10 ถ.ราชสีมา	นครราชสีมา	43000

รหัสพนักงาน	ชื่อ	นามสกุล	ตำแหน่ง	เพศ	วันเกิด	เงินเดือน	รหัสสาขา
SUD21	กนก	คิดถูก	ผู้จัดการ	ช	1 ตค. 2516	30000	B005
SNK37	ขนิษ	คิดดี	พนักงาน	ល្ង	10 พย. 2519	12000	B007
SNK14	คะนึง	คิดชอบ	หัวหน้าแผนก	ช	24 มีค. 2517	20000	B007
SUB09	งาม	ทำถูก	พนักงาน	ល្ង	19 กพ. 2521	9000	B002
SUD04	จัน	ทำดี	ผู้จัดการ	ល្ង	3 กค. 2518	25000	B003
SNR41	ฉันทนา	ทำชอบ	พนักงาน	ល្ង	13 มิย. 2520	9000	B004

Object data model: แบบจำลองเชิงวัตถุ

- แบบจำลองข้อมูลเชิงวัตถุใช้หลักการเกี่ยวกับ เอนติตี้ (Entity) ,
 แอททริบิวท์(Attribute) และความสัมพันธ์(Relationship)
- ตัวอย่างของแบบจำลองนี้ได้แก่ Entity-Relationship , Semantic ,
 Functional , Object-Oriented

Data Models – Diagrams Relational, ER, OO

Entity-Relationship diagram

Relational schema diagram

UML class diagram (OO Model)

Database Languages

Data Definition Language (DDL)

- ใช้เพื่อระบุเจาะจง Database schema
- Database schemas ถูกเก็บไว้ใน Data dictionary
- The data dictionary บรรจุ metadata
- Metadata: data ที่อธิบาย data, e.g. schema

Data Manipulation Language (DML)

- เพื่อแสดงผลข้อมูลในฐานข้อมูล (query) และปรับปรุง (เพิ่ม, ลบ, แก้ไข)
- Procedural DMLs -and- Declarative DMLs

DB Languages : Example

```
Hierarchical Model (DL/I):
DML:
get first customer
where customer.name:="Henry";
```

```
Network Model (DBTG):
DDL:
set name is custlink
   owner is customer
   member is dummy;
DML:
customer.name := "Newton";
find any customer using name;
get customer;
print(customer.address);
```

```
Relational Model (SQL):

DDL:

create table customer (
  name char(30),
  address char(60));

DML:

select address
from customer

where name likes "Robert";
```

```
Object-Oriented Model (ODMG):
DDL:
class customer:public object {
   string name;
   string address;
   set<ref<account>> accounts;
};
```

Data Manipulation Languages

Procedural DMLs

- ผู้ใช้ต้องระบุข้อมูลที่ต้องการ และต้องบอกวิธีการให้ได้มาซึ่งข้อมูลเหล่านั้น
- e.g., relational algebra; (C, Pascal, Java, etc.)

Declarative DMLs (nonprocedural DMLs)

- ผู้ใช้ระบุข้อมูลที่ต้องการเท่านั้น โดย<u>ไม่ต้อง</u>ระบุวิธีการ
- e.g. relational tuple calculus, relational domain calculus, SQL (core), Quel, QBE, Datalog; (Prolog)

A Query Language

ส่วนหนึ่งใน DML ซึ่งใช้ในการเรียกดูข้อมูลเท่านั้น (ไม่มีการปรับปรุงข้อมูล)

What are the components of DBMSs?

- The functional components of a database system
 - Query Processor Component: เพื่อลดความซับซ้อนและอำนวยความสะดวกใน การเข้าถึงข้อมูล (convenient and efficient)
 - Storage Manager Component: ทำหน้าที่จัดการย้ายข้อมูลระหว่างดิสก์และ หน่วยความจำให้มีประสิทธิภาพสูงที่สุด (ใช้เวลาน้อยที่สุด)
 - ► <u>Transaction Manager Component</u>: จัดการความเป็นอันหนึ่งอันเดียวกันของ ข้อมูล (atomicity) และความสอดคล้อง (concurrency) ของแทรนเซคชัน (transactions) และสม่ำเสมอและคงทนของฐานข้อมูล

Query Processor Component

Query Processor:

ldsแกรมโมดูล (program module) ที่เป็นส่วนเชื่อมต่อระหว่างฐานข้อมูลและ โปรแกรมประยุกต์

Components include:

- DDL interpreter
 - ▶ ตีความคำสั่ง (interpret) DDL และบันทึกลงใน data dictionary
- DML compiler
 - ▶ แปลคำสั่ง (translate) DML เป็น query evaluation plans
- Query evaluation engine
 - ▶ ประมวลผลคิวรี (queries) ตามแผนที่ได้จาก query evaluation plans

Storage Manager Component

A Storage Manager is

โปรแกรมโมดูล ที่เป็นส่วนเชื่อมต่อระหว่างข้อมูลที่ถูกเก็บไว้ในฐานข้อมูลและ โปรแกรม ประยุกต์หรือคิวรีที่ถูกส่งเข้าสู่ระบบ

Components include:

- Authorization and integrity manager
- File manager
- Buffer manager

Structures maintained:

data files, data dictionary, indices

Transaction Manager Component

Transaction:

- กลุ่มของการดำเนินงานที่ทำหน้าที่เป็นฟังก์ชั่นเชิงตรรกะเดียวในการประยุกต์
 ฐานข้อมูล
- แทรนเซคชั่นต้องมีคุณสมบัติ ACID ชุดของคุณสมบัติต่าง ๆ ที่จะ รับประกันว่าการเปลี่ยนแปลงรายการของฐานข้อมูลได้ผ่านการประมวลผล มาอย่างเชื่อถือได้ ในทางฐานข้อมูล
- การดำเนินการทางตรรกะกับข้อมูลหนึ่งครั้งจะเรียกว่า 1 transaction เช่น การโอนเงินจากบัญชีหนึ่งของธนาคารไปยังอีกบัญชีหนึ่ง ถือเป็น 1 transaction แม้ว่าจะมีกระบวนการย่อยหลายอย่างใน transaction นั้น ๆ ก็ตาม ความหมายของแต่ละคำจาก ACID คือ

Transaction Manager Component (cont.)

Transaction Properties: ACID

- A tomicity: ผลลัพธ์ในการทำรายการเปลี่ยนแปลงหรือบริการใด ๆ จะมีความ เป็นอันหนึ่งอันเดียวกัน คือ ถูกกระทำและยืนยันผลลัพธ์ทั้งหมด หรือยกเลิกทั้งหมด
- Consistency:คุณสมบัติที่ทำให้แน่ใจว่าฐานข้อมูลจะยังคงมีสภาพที่สอดคล้องกัน ทั้งก่อนหน้าและหลังการทำแทรนเซคชั่น (ไม่ว่าแทรนเซคชั่นนั้น ๆ จะสำเร็จ หรือไม่สำเร็จก็ตาม)
- I solation: จะไม่มีทรานแซคชั่นใด ๆ มาแทรกกลางระหว่างที่ทรานแซคชั่นหนึ่ง กระทำการอยู่
- D urability: การรับประกันว่าข้อมูลที่เป็นผลจากการกระทำของ transaction หนึ่ง ๆ จะยังคงอยู่หลังจากที่ transaction นั้น ๆ ทำงาน สำเร็จแล้วและไม่มีการยกเลิก แม้ว่าระบบจะเกิดล้มเหลวขึ้นก็ตาม

Transaction Manager Component (cont.)

Components include

- Transaction Manager
- Lock Manager
- Recovery Manage

DB System Structure

Who interact with DBMSs?

- Database Administrators (DBAs)
- Database Operators
- Database Designers
- DB Application Developers/Programmers
- End Users
 - Sophisticated End Users
 - Naive End Users
- DB System Designers and Implementers
- Database Tool Developers

DB Administrators (DBAs) and DB Operators

▶ DBAs are responsible for

- เปิด/ปิด ฐานข้อมูล
- บรรจุ, นำเข้า, ส่งออกข้อมูล เข้าสู่/ออกจากฐานข้อมูล
- ให้สิทธิ์การเข้าใช้ฐานข้อมูลและทรัพยากร
- ตรวจสอบการใช้ทรัพยากร
- สำรองฐานข้อมูลตามระยะเวลาและเรียกคืนเมื่อจำเป็น
- ปรับแต่งประสิทธิภาพ
- พิจารณาการอัพเกรดซอฟต์แวร์และฮาร์ดแวร์

DB Operators are responsible for

▶ ช่วยเหลือ DBAs ในการบำรุงรักษาการดำเนินงานฐานข้อมูลทั่วไป

DB Designers and DB Developers / Programmers

Database Designers are responsible for

- วิเคราะห์ความต้องการในเชิงข้อมูล
- ออกแบบโครงสร้างฐานข้อมูล
 - View, logical, and physical structures
- สร้างฐานข้อมูล

DB Application Developers / Programmers

- วิเคราะห์ความต้องการในเชิงการใช้งาน
- พัฒนาโปรแกรม
- ดำเนินการเกี่ยวกับโปรแกรม

End Users

Sophisticated End Users

- ▶ เขียนคิวรีเฉพาะกิจ (ad hoc) เพื่อหาคำตอบที่ต้องการ
- สร้างรายงานแบบเฉพาะกิจเพื่อผู้บริหารระดับสูง

Naive End Users

- 🕨 ใช้งานโปรแกรมประยุกต์ ที่ได้จาก โปรแกรมเมอร์
 - Data entry operators, ...
 - Executives, managers, ...

Very Important Participants

- ผู้นำในวงการอุตสาหกรรม
 - Oracle
 - Oracle
 - ▶ IBM
 - DB2
 - Microsoft
 - SQL Server, Access, FoxPro
 - DDBC, AD
 - Sybase
 - Sybase

Trends of Database Products

- Past and Present : รองรับข้อมูลจำนวนมากและผู้ใช้งานพร้อมกันหลาย
 คน (Multi-user)
 - การบริหารข้อมูลให้มีโครงสร้างที่ดี
 - On-line transaction (OLTP)
 - Scalability

Trends of Database Products (cont.)

- Present and Future : A Complete System
 - การจัดการข้อมูลที่หลากหลายและซับซ้อน
 - Advanced OLTP: workflow
 - Application development tools
 - Data repository: warehouse, data mart
 - Data analysis tools:
 - Online Analytical Processing (OLAP)
 - Data Mining
 - a well-rounded system (รอบรู้)
 - Network-enable
 - XML-complaint, multi-model

DBMS Architectures

- แบ่งตามจำนวนผู้ใช้
 - Single-user Systems
 - ผู้ใช้งานเพียงคนเดียวใช้ระบบในช่วงเวลาหนึ่ง ๆ
 - Multi-user Systems
 - ผู้ใช้งานหลายคนใช้ระบบในช่วงเวลาเดียวกัน
- แบ่งตามสถานที่ตั้งของฐานข้อมูลและผู้ใช้
 - Stand-alone DBMSs
 - ▶ 1 DBMS รองรับผู้ใช้ในเครื่องเดียว
 - Client-Server (Centralized) DBMS
 - ไ ฐานข้อมูลรองรับผู้ใช้หลายลูกข่าย (multiple clients)
 - Distributed DBMSs
 - ▶ DBMS หลาย ๆ ระบบผสานงานกัน

แบ่งตามจำนวนผู้ใช้

- 🕨 ฐานข้อมูที่มีผู้ใช้คนเดียว (Single-User)
 - ▶ บางครั้งเรียกว่า Stand alone database หรือ Desktop database

แบ่งตามจำนวนผู้ใช้(ต่อ)

- 🕨 ฐานข้อมูลที่มีผู้ใช้ครั้งละหลายคน (Multi-User)
 - ระบบฐานข้อมูลแบบนี้จะสนับสนุนการใช้งานของผู้ใช้หลายคนในเวลา เดียวกัน

แบ่งตามสถานที่ตั้งของฐานข้อมูล

ฐานข้อมูลแบบรวมศูนย์ (Centralized Database)

แบ่งตามสถานที่ตั้งของฐานข้อมูล(2)

🕨 ฐานข้อมูลแบบกระจาย (Distributed Database)

DB Application Architectures

- Client-Server(C/S)
 - Client machine: the database users work
 - Server machine: the database system run
- ► C/S: Two-tier architecture: small systems
 - Client : ผู้ใช้และโปรแกรมประยุกต์ฐานข้อมูล (DB application)
 - Server : Database systems
- ightharpoonup C/S: Three-tier architecture: large systems, web
 - ▶ Client : ส่งคำขอ ∕คำสั่งไปที่ Application server
 - Application Server: ดำเนินงานเป็น server สำหรับ client และดำเนินงาน เหมือน client สำหรับ database server
 - ▶ Database Server : ดำเนินงานของ DBMS

End of Introduction