D6: Turing Reductions

Sec 101: MW 3:00-4:00pm DOW 1018

IA: Eric Khiu

Waquackquack is hacking the BBB Blinken Bulbs!

- ▶ Waquackquack is in Florida now, attempting to hack the BBB Blinken Bulbs. Unsure if his code worked, he consults the mysterious Oracle, which accepts a query (*i*, *c*) if bulb *i* is displaying color *c* and rejects otherwise.
- Suppose he uses the following TM to query the oracle:

```
D = "On input w:
    for i=1 to 100 do
        if i is odd then
        if \mathcal{O}(i, \text{blue}) rejects then reject
        else
        if \mathcal{O}(i, \text{yellow}) rejects then reject
accept"
```


Q: What pattern is Waquackquack aiming to achieve with the light bulbs?

Agenda

- Turing Reductions
- ► Proving Undecidability
- ► More Turing Reductions

Recap: Decidable Language

- \blacktriangleright A language L is decidable iff there exists a TM that
 - ightharpoonup accepts all $x \in L$
 - ightharpoonup rejects all $x \notin L$
 - ► halts on all inputs
- ▶ One way to prove that a language is decidable is by describing a TM that decides it (i.e., a decider)
- ▶ Note 1: You are allowed to hardcode constant values in your machine (seen in HW3)
- Note 2: If some deciders are known to exists, you can use them in your machine (e.g., D_S and D_T from last week for $S \setminus T$)

Today: Proving *Un*decidability

- We know that the following languages are undecidable:
 - ▶ $L_{BARBER} = \{\langle M \rangle : M \text{ is a TM and } M \text{ does not accept } \langle M \rangle \}$
 - $ightharpoonup L_{HALT} = \{(\langle M \rangle, x) : M \text{ is a TM and } M \text{ halts on } x\}$
 - ► $L_{ACC} = \{(\langle M \rangle, x) : M \text{ is a TM and } M \text{ accepts } x\}$
- ▶ Now, say we want to prove that *L* is undecidable
- ► We use proof by contradiction:
 - ► Suppose for contradiction that *L* is decidable
 - ...[something happen]...
 - ► Therefore, [insert undecidable language] is now decidable. Contradiction.

Turing Reductions

Turing Reducible

 \blacktriangleright A language A is *Turing reducible* to language B, written as

$$A \leq_T B$$

which means

- ▶ If, I have a TM that decides B, say \mathcal{O}_B (black box/ oracle)
- ► Then, I can decide *A*

Warning: This tells me the *relationship* between languages A and B, I don't know anything (most importantly, decidability) of A and B *individually*

Turing Reductions Example

Let A and B be defined as follows:

$$A = \{a^n : n \ge 0\}$$
 $B = \{b^n : n \ge 0\}$

- ▶ By using blackbox decider of B, prove that $A \leq_T B$
- ▶ Want to show: If I have an oracle \mathcal{O}_B for B, then I can decide A.
- ▶ To do so, we build a decider for A, say D_A that uses \mathcal{O}_B .
- ▶ Step 1: Identify the inputs of D_A and \mathcal{O}_B
 - ▶ We will pass in a string, say x, into D_A and check if $x \in L_A$
 - ▶ We will pass in a string, say x', into \mathcal{O}_B and check if $x' \in L_B$
 - ▶ Note: x' may be the same as x, but we don't know yet so assume they're different for now

Desired Behavior of D_A

- \triangleright Step 2: Draft Desired Behavior of D_A (can be used as correctness proof later)
 - \blacktriangleright $x \in A \Rightarrow x = a^n \Rightarrow \cdots \Rightarrow D_A(x)$ accepts
 - $\blacktriangleright x \notin A \Rightarrow x \neq a^n \Rightarrow \cdots \Rightarrow D_A(x)$ rejects
- ▶ Now, let's work backwards from the other direction.
- Using the blackbox decider essentially means using the output of that decider
- Which means we have two choices:
 - ▶ Do the same as the blackbox decider ("return same")
 - ▶ Do the opposite as the blackbox decider ("return opposite")
- ▶ Often, one choice is more intuitive than another, so just pick one and try!

Desired Behavior of D_A

- \triangleright Step 2: Draft Desired Behavior of D_A (can be used as correctness proof later)
 - \blacktriangleright $x \in A \Rightarrow x = a^n \Rightarrow \cdots \Rightarrow \mathcal{O}_B(x')$ accepts $\Rightarrow D_A(x)$ accepts
 - ▶ $x \notin A \Rightarrow x \neq a^n \Rightarrow \cdots \Rightarrow \mathcal{O}_B(x')$ rejects $\Rightarrow D_A(x)$ rejects
- Suppose we picked "return same"
- ▶ Since we assumed the correctness of D_B , we must have $x' \in B$ if $\mathcal{O}_B(x')$ accepts, otherwise $x' \notin B$
- So we have
 - ▶ $x \in A \Rightarrow \cdots \Rightarrow x' \in B \Rightarrow \mathcal{O}_B(x')$ accepts $\Rightarrow D_A(x)$ accepts
 - ▶ $x \notin A \Rightarrow \cdots \Rightarrow x' \notin B \Rightarrow \mathcal{O}_B(x')$ rejects $\Rightarrow D_A(x)$ rejects

Input(s) For \mathcal{O}_B

- ▶ Desired Behavior of D_A : On input x:
 - $\blacktriangleright x \in A \Rightarrow x = a^n \Rightarrow \cdots \Rightarrow x = b^n \Rightarrow x' \in B \Rightarrow \mathcal{O}_B(x') \text{ accepts} \Rightarrow D_A(x) \text{ accepts}$
 - ▶ $x \notin A \Rightarrow x \neq a^n \Rightarrow \cdots \Rightarrow x \neq b^n \Rightarrow x' \notin B \Rightarrow \mathcal{O}_B(x')$ rejects $\Rightarrow D_A(x)$ rejects
- **Step 3: Generate input(s) for** \mathcal{O}_B
 - \blacktriangleright We want $x' = b^n$ if $x = a^n$
 - \blacktriangleright We want $x' \neq b^n$ if $x \neq a^n$
 - Note: Technically we can just check x (since we can hardcode 'a' into the machine), but since we want to use \mathcal{O}_B , we need to come out with the mapping
 - ▶ Brainstorm: What can we do to generate x'? Possibly by making use of x?
 - ▶ Flip all characters of x (aaa→bbb, aba→bab)

Putting Everything together

ightharpoonup Build D_A as follows:

```
D_A = "On input x:

x' \leftarrow \text{Flip all bits in } x

Run \mathcal{O}_B on x'

if \mathcal{O}_B(x') accepts then accept

else reject"
```

lacktriangle Or equivalently, Run \mathcal{O}_B on x' and return the same"

- Correctness Proof:
 - $\blacktriangleright x \in A \Rightarrow x = a^n \Rightarrow x' = b^n \Rightarrow x' \in B \Rightarrow \mathcal{O}_B(x') \text{ accepts}$
 - ▶ $x \notin A \Rightarrow x \neq a^n \Rightarrow x' \neq b^n \Rightarrow x' \notin B \Rightarrow \mathcal{O}_B(x')$ rejects $\Rightarrow D_A(x)$ rejects

Turing Reductions Overview

- ▶ Suppose we want to show that $A \leq_T B$
- ▶ Step 1: Identify the inputs of D_A and O_B
 - ▶ Is the input a number? A string? Multiple strings? A machine?
- Step 2: Draft Desired Behavior of D_A
 - ► Choose between "return same" and "return opposite"
 - ▶ Return same: $x \in A \Leftrightarrow \cdots \Leftrightarrow x' \in B \Leftrightarrow \mathcal{O}_B(x')$ accepts $\Leftrightarrow D_A(x)$ accepts
 - ▶ Return opposite: $x \in A \Leftrightarrow \cdots \Leftrightarrow x' \notin B \Leftrightarrow \mathcal{O}_B(x')$ rejects $\Leftrightarrow \mathcal{D}_A(x)$ accepts

Note: Here we condense the two cases using iff

- ▶ Step 3: Generate input(s) for \mathcal{O}_B
 - ▶ Return same: How to generate x', possibly using x, such that $x \in A \Rightarrow x' \in B$ and $x \notin A \Rightarrow x' \notin B$?
 - ▶ Return opposite: How to generate x', possibly using x, such that $x \in A \Rightarrow x' \notin B$ and $x \notin A \Rightarrow x' \in B$?

Proving Undecidability

Very Important Theorem

- ▶ Suppose $A \leq_T B$. If B is decidable, then A is decidable.
- ► Analogy: *B* is a *harder* problem than *A*. If I can solve the harder problem, then I can solve the easier problem.
- ► Contrapositive: p = B is decidable; q = A is decidable
 - ▶ If p then q is equivalent to If $\neg q$ then $\neg p$
 - ► If *A* is <u>un</u>decidable, then *B* is <u>un</u>decidable

Conclusion
?
${\cal B}$ undecidable
$\it A$ decidable
?

Undecidability Proof Outline

- ► Know: [insert undecidable language] is undecidable
- ► Task: Prove *L* is undecidable
- We use proof by contradiction:
 - ► Suppose for contradiction that *L* is decidable
 - ▶ ...[something happen]...
 - ► Therefore, [insert undecidable language] is now decidable. Contradiction.

Undecidability Proof Outline

- ightharpoonup Know: L_{BARBER} is undecidable
- ► Task: Prove L_{ACC} is undecidable
- We use proof by contradiction:
 - \blacktriangleright Suppose for contradiction that L_{ACC} is decidable
 - ...[something happen]...
 - ightharpoonup Therefore, L_{BARBER} is now decidable. Contradiction.

Undecidability Proof Outline

- ► Know: L_{BARBER} is undecidable
- ► Task: Prove L_{ACC} is undecidable
- We use proof by contradiction:
 - \blacktriangleright Suppose for contradiction that L_{ACC} is decidable
 - ▶ We have shown that $L_{BARBER} \leq_T L_{ACC}$
 - ▶ By this theorem: Suppose $A \leq_T B$. If B is decidable, then A is decidable.
 - ▶ Since we have $L_{BARBER} \leq_T L_{ACC}$ and L_{ACC} is decidable by assumption
 - ightharpoonup Therefore, L_{BARBER} is now decidable. Contradiction.

TL; DPA

- ▶ We discussed how to prove that a language is undecidable using Turing reduction
- ▶ In general, to show that a language is undecidable, reduce it from an undecidable language $(L_{BARBER}, L_{ACC}, L_{HALT})$

Concept Check

- ▶ Which of the following proves that *L* is <u>un</u>decidable? [Select all applies]
 - $\Sigma^* \leq_T L$
 - $ightharpoonup L \leq_T \emptyset$
 - $ightharpoonup L \leq_T L_{BARBER}$
 - $ightharpoonup L_{HALT} \leq_T L$

- ► Another thing you are allowed to do is to create a machine (without running it) and pass it to the backbox decider
- ► For example, I want to use the black box decider D_E that decides $L_E = \{\langle M \rangle : L(M) = \emptyset\}$

to build a decider for L_{ACC} . I can do the following:

```
D_A= "On input (\langle M \rangle, x): Construct M' as follows: TODO Run \mathcal{O}_E on \langle M' \rangle and return same"
```

- ▶ **Discuss:** Why do I have to create M'? Why can't I just use M?
 - ▶ The input of \mathcal{O}_E must be a machine
 - \blacktriangleright We don't know L(M), so we can't tell if \mathcal{O}_E accepts/ rejects M

▶ For example, I want to use the black box decider \mathcal{O}_E that decides

$$L_E = \{ \langle M \rangle : L(M) = \emptyset \}$$

to build a decider for L_{ACC} . I can do the following:

```
D_A= "On input (\langle M \rangle, x):
   Construct M' as follows: TODO
   Run \mathcal{O}_E on \langle M' \rangle and return same"
```

- Correctness proof draft
 - ▶ $(\langle M \rangle, x) \in L_{ACC} \Rightarrow M$ accepts $x \Rightarrow ... \Rightarrow \mathcal{O}_E(\langle M' \rangle)$ accepts $\Rightarrow D_A(\langle M \rangle, x)$ accepts
 - ▶ $(\langle M \rangle, x) \notin L_{ACC} \Rightarrow M$ does not accept $x \Rightarrow ... \Rightarrow \mathcal{O}_E(\langle M' \rangle)$ rejects $\Rightarrow D_A(\langle M \rangle, x)$ rejects

▶ For example, I want to use the black box decider \mathcal{O}_E that decides

$$L_E = \{ \langle M \rangle : L(M) = \emptyset \}$$

to build a decider for L_{ACC} . I can do the following:

```
D_A= "On input (\langle M \rangle, x):
   Construct M' as follows: TODO
   Run \mathcal{O}_E on \langle M' \rangle and return same"
```

- Correctness proof draft
 - ▶ $(\langle M \rangle, x) \in L_{ACC} \Rightarrow M$ accepts $x \Rightarrow ... \Rightarrow L(M') = \emptyset \Rightarrow \mathcal{O}_E(\langle M' \rangle)$ accepts $\Rightarrow D_A(\langle M \rangle, x)$ accepts
 - ▶ $(\langle M \rangle, x) \notin L_{ACC} \Rightarrow M$ does not accept $x \Rightarrow ... \Rightarrow L(M') \neq \emptyset \Rightarrow \mathcal{O}_E(\langle M' \rangle)$ rejects $\Rightarrow D_A(\langle M \rangle, x)$ rejects

Brainstorm Time

- Correctness proof draft
 - \blacktriangleright $(\langle M \rangle, x) \in L_{ACC} \Rightarrow M$ accepts $x \Rightarrow ... \Rightarrow L(M') = \emptyset \Rightarrow D_A(\langle M' \rangle)$ accepts
 - ▶ $(\langle M \rangle, x) \notin L_{ACC} \Rightarrow M$ does not accept $x \Rightarrow ... \Rightarrow L(M') \neq \emptyset \Rightarrow D_A(\langle M' \rangle)$ rejects
- **Brainstorm 1:** How to make $L(M') = \emptyset$ happen?
 - ► Just make *M'* <u>rejects</u> all inputs!
 - ► M'= "On input w: Reject"

Trigger this if M accepts x

- **Brainstorm 2:** How to make $L(M') \neq \emptyset$ happen?
 - ▶ Just make *M'* accepts some inputs, say "duck"
 - ▶ M'= "On input w: If w = 'duck' then accept Else reject"
 - ▶ Even easier: make M' accepts all inputs, i.e., $L(M') = \Sigma^*$
 - ► M'= "On input w: accept"

Trigger this if *M* does not accepts *x*

Putting Everything together...

```
D<sub>A</sub>= "On input (\langle M\rangle, x):
    Construct M' as follows:

    M' = "On input w:
        Run M on x
        if M accepts x then reject
        else accept"
```

Run \mathcal{O}_E on $\langle M' \rangle$ and return same"

- Correctness Proof:
 - \blacktriangleright $(\langle M \rangle, x) \in L_{ACC} \Rightarrow M$ accepts $x \Rightarrow M'$ rejects all inputs $\Rightarrow L(M') = \emptyset \Rightarrow \mathcal{O}_E(\langle M' \rangle)$ accepts $\Rightarrow D_A(\langle M \rangle, x)$ accepts
 - ▶ $(\langle M \rangle, x) \notin L_{ACC} \Rightarrow M$ does not accept $x \Rightarrow M'$ accepts all inputs $\Rightarrow L(M') \neq \emptyset \Rightarrow \mathcal{O}_E(\langle M' \rangle)$ rejects $\Rightarrow D_A(\langle M \rangle, x)$ rejects

 \blacktriangleright Let L_U be defined as follows:

$$L_U = \{ (\langle M_1 \rangle, \langle M_2 \rangle) : L(M_1) \cup L(M_2) = \emptyset \}$$

- ▶ Prove via reduction $L_{ACC} \leq_T L_U$ that L_U is undecidable.
- Step 1: Identify the inputs of D_{ACC} and O_U
 - $ightharpoonup D_{ACC}$ takes $(\langle M \rangle, x)$
 - \triangleright \mathcal{O}_{II} takes $(\langle M_1 \rangle, \langle M_2 \rangle)$
- Step 2: Draft Desired Behavior of D_A
 - ▶ $(\langle M \rangle, x) \in L_{ACC} \Rightarrow M(x)$ accepts $\Rightarrow \cdots \Rightarrow D_{ACC}(\langle M \rangle, x)$ accepts
 - ▶ $(\langle M \rangle, x) \in L_{ACC} \Rightarrow M(x)$ does not accept $\Rightarrow \cdots \Rightarrow D_{ACC}(\langle M \rangle, x)$ rejects

Suppose we pick "return same"

 \blacktriangleright Let L_U be defined as follows:

$$L_U = \{ (\langle M_1 \rangle, \langle M_2 \rangle) : L(M_1) \cup L(M_2) = \emptyset \}$$

- ▶ Prove via reduction $L_{ACC} \leq_T L_U$ that L_U is undecidable.
- \triangleright Step 1: Identify the inputs of D_{ACC} and O_U
 - $ightharpoonup D_{ACC}$ takes $(\langle M \rangle, x)$
 - \triangleright \mathcal{O}_U takes $(\langle M_1 \rangle, \langle M_2 \rangle)$
- Step 2: Draft Desired Behavior of D_A
 - ▶ $(\langle M \rangle, x) \in L_{ACC} \Rightarrow M(x)$ accepts $\Rightarrow \cdots \Rightarrow \mathcal{O}_U(\langle M_1 \rangle, \langle M_2 \rangle)$ accepts $\Rightarrow D_{ACC}(\langle M \rangle, x)$ accepts
 - ▶ $(\langle M \rangle, x) \in L_{ACC} \Rightarrow M(x)$ does not accept $\Rightarrow \cdots \Rightarrow \mathcal{O}_U(\langle M_1 \rangle, \langle M_2 \rangle)$ rejects $\Rightarrow D_{ACC}(\langle M \rangle, x)$ rejects

Q: What does it mean for $\mathcal{O}_U(\langle M_1 \rangle, \langle M_2 \rangle)$ to accept/ reject?

 \blacktriangleright Let L_U be defined as follows:

$$L_U = \{ (\langle M_1 \rangle, \langle M_2 \rangle) : L(M_1) \cup L(M_2) = \emptyset \}$$

- ▶ Prove via reduction $L_{ACC} \leq_T L_U$ that L_U is undecidable.
- Step 1: Identify the inputs of D_{ACC} and O_U
 - $ightharpoonup D_{ACC}$ takes $(\langle M \rangle, x)$
 - \triangleright \mathcal{O}_U takes $(\langle M_1 \rangle, \langle M_2 \rangle)$
- Step 2: Draft Desired Behavior of D_A
 - $(\langle M \rangle, x) \in L_{ACC} \Rightarrow M(x) \text{ accepts} \Rightarrow \cdots \Rightarrow L(M_1) \cup L(M_2) = \emptyset \Rightarrow \mathcal{O}_U(\langle M_1 \rangle, \langle M_2 \rangle) \text{ accepts} \Rightarrow D_{ACC}(\langle M \rangle, x) \text{ accepts}$
 - $(\langle M \rangle, x) \in L_{ACC} \Rightarrow M(x) \text{ does not accept} \Rightarrow \cdots \Rightarrow L(M_1) \cup L(M_2) \neq \emptyset \Rightarrow \mathcal{O}_U(\langle M_1 \rangle, \langle M_2 \rangle) \text{ rejects} \Rightarrow D_{ACC}(\langle M \rangle, x) \text{ rejects}$

- Correctness proof draft
 - $(\langle M \rangle, x) \in L_{ACC} \Rightarrow M(x) \text{ accepts} \Rightarrow \cdots \Rightarrow L(M_1) \cup L(M_2) = \emptyset \Rightarrow \mathcal{O}_U(\langle M_1 \rangle, \langle M_2 \rangle) \text{ accepts} \Rightarrow D_{ACC}(\langle M \rangle, x) \text{ accepts}$
 - ▶ $(\langle M \rangle, x) \in L_{ACC} \Rightarrow M(x)$ does not accept $\Rightarrow \cdots \Rightarrow L(M_1) \cup L(M_2) \neq \emptyset \Rightarrow \mathcal{O}_U(\langle M_1 \rangle, \langle M_2 \rangle)$ rejects $\Rightarrow D_{ACC}(\langle M \rangle, x)$ rejects
- ▶ Brainstorm 1: How to make $L(M_1) \cup L(M_2) = \emptyset$ happen?
 - ► Example: $\emptyset \cup \emptyset = \emptyset$ Trigger this if M accepts x
- ▶ Brainstorm 2: How to make $L(M_1) \cup L(M_2) \neq \emptyset$ happen?
 - **Example:** $\Sigma^* \cup \Sigma^* = \Sigma^* \neq \emptyset$ **Trigger this if** *M* does not accepts *x*
- ▶ Observe that we can use the same TM for M_1 and M_2 . Why?
 - ▶ $L(M_1) = L(M_2)$ in both cases

```
D_ACC = "On input (\langle M\rangle, x):
    Construct M as follows:

    M' = "On input w:
        Run M on x
        if M accepts x then reject
        else accept"
```

Run \mathcal{O}_U on $(\langle M' \rangle, \langle M' \rangle)$ and return same"

- ▶ $(\langle M \rangle, x) \in L_{ACC} \Rightarrow M(x) \text{ accepts} \Rightarrow L(M_1) = L(M_2) = \emptyset \Rightarrow L(M_1) \cup L(M_2) = \emptyset \Rightarrow \mathcal{O}_U(\langle M_1 \rangle, \langle M_2 \rangle) \text{ accepts}$ $\Rightarrow D_{ACC}(\langle M \rangle, x) \text{ accepts}$
- ► $(\langle M \rangle, x) \in L_{ACC} \Rightarrow M(x)$ does not accept $\Rightarrow L(M_1) = L(M_2) = \Sigma^* \Rightarrow L(M_1) \cup L(M_2) \neq \emptyset \Rightarrow$ $\mathcal{O}_U(\langle M_1 \rangle, \langle M_2 \rangle)$ rejects $\Rightarrow D_{ACC}(\langle M \rangle, x)$ rejects

Make your own TMs

Make your own TMs

- ► Create a TM *M* such that
 - $ightharpoonup L(M) = \Sigma^*$
 - $ightharpoonup L(M) = \emptyset$
 - $L(M) = \{3,7,6\}$
 - ightharpoonup L(M) is finite
 - ightharpoonup |L(M)| is even
 - ► M loops on x if $x \notin \{3,7,6\}$?
- ightharpoonup Create two TMs M_1 and M_2 such that
 - $\blacktriangleright \ L(M_1) \cup L(M_2) = \Sigma^*$
 - $\blacktriangleright \ L(M_1) \cup L(M_2) = \emptyset$
 - $L(M_1) \cap L(M_2) = \emptyset$
 - $|L(M_1) \cap L(M_2)| = 1$

M: M is a Turing machine and $L(M) = \Sigma^*$

► Example solution:

M: M is a Turing machine and $L(M) = \emptyset$

► Example solution:

M: M is a Turing machine and $L(M) = \{3,7,6\}$

Example solution:

```
M = "On input w:

if w \in \{3,7,6\} then accept

else reject"
```

M: M is a Turing machine and L(M) is finite

Example solution:

```
M = "On input w:
    if w = "duck" then accept
    else reject"
```

▶ In this example, $L(M) = \{\text{"duck"}\}$, which is finite

M: M is a Turing machine and L(M) is even

Example solution:

```
M = "On input w:
    if w = "duck" or w = "chicken" then accept
    reject"
```

▶ In this example, $L(M) = \{\text{"duck", "chicken"}\}$, so |L(M)| = 2 which is even

M: M is a Turing machine M loops on x if $x \notin \{3,7,6\}$

Example solution:

```
M = "On input w:

if w \in \{3,7,6\} then accept

else loop"
```

► Note: We don't have to explicitly describe how we want the machine to loop, it can be something simple like

```
for x = 1,2, \dots do do nothing
```

$M_1, M_2: L(M_1) \cup L(M_2) = \Sigma^*$

- \blacktriangleright There are a lot of ways to make the union of two languages Σ^* , for example, we can have
 - ▶ {the set of strings that start with a 1} ∪ {the set of strings that does not start with a 1}
 - $ightharpoonup L \cup \overline{L}$
 - $\triangleright \Sigma^* \cup \{\varepsilon\}$
 - $\Sigma^* \cup \Sigma^*$
- We just need to build M_1, M_2 based on the desired language. For example, say we want $L(M_1) = \Sigma^*$ and $L(M_2) = \{\varepsilon\}$,

```
M_1 = "On input w: M_2 = "On input w: if w = \varepsilon then accept accept" else reject"
```

$M_1, M_2: L(M_1) \cup L(M_2) = \emptyset$

▶ Example solution: $\emptyset \cup \emptyset = \emptyset$

$M_1, M_2: L(M_1) \cap L(M_2) = \emptyset$

▶ Example: $\emptyset \cap \emptyset = \emptyset$, you could also get more creative by having $L(M_2) = \overline{L(M_1)}$, or $\{0\} \cap \{1\}$

$M_1, M_2: |L(M_1) \cap L(M_2)| = 1$

► Example: $\{a, b, c\} \cap \{a, d, e\} = \{a\}$

```
M_1 = "On input w:
    if w \in \{a, b, c\} then accept
    else reject"

M_2 = "On input w:
    if w \in \{a, d, e\} then accept
    else reject"
```

Back Matter

Reducibility of Decidable Languages

- ▶ Claim: $L \leq_T L'$ for any decidable language L and any language L'.
- ▶ Intuition: Suppose L is decidable, there is a TM D that decides it. Given an oracle E that decides L, a machine that decides L given access to E is simply... itself!
- The point is this: In a Turing reduction from L to L', even though an oracle that decides L' is available, the reduction is not required to use it

\leq_T is Reflexive

- ▶ Claim: Every language is Turing-reducible to itself, i.e., $L \leq_T L$ for all language L
- \blacktriangleright Intuition: If I have access to an oracle that decides L, then... I can already decide L!

\leq_T is Transitive

- ▶ Claim: \leq_T is transitive, i.e., if $A \leq_T B$ and $B \leq_T C$, then $A \leq_T C$
- ▶ **Proof:** By assumption, there is a TM M_A that could decide A with access to an oracle \mathcal{O}_B that decides B. Similarly, there is a TM M_B that could decide B with access to an oracle \mathcal{O}_C that decides C.
- This does not have to be the same oracle that M_B uses Now, we construct a decider D_A for A using some oracle \mathcal{O}_C that decides C as follow:
 - ▶ It does what M_A does, except whenever M_A would query its oracle \mathcal{O}_B on some input, D_A instead runs M_B as a subroutine on the same input. Whenever M_B queries \mathcal{O}_C , M makes the same query to its own oracle \mathcal{O}_C and provides the answer to M_B
- ▶ Analysis: Since $\mathcal{O}_{\mathcal{C}}'$ is a decider of \mathcal{C} , it must give the same output as $\mathcal{O}_{\mathcal{C}}$, which by assumption allows M_B to decide B. Hence, D_A has access to a correct decider of B, which by assumption allows D_A to decide A.
- ▶ Warning: $A \leq_T B$ and $B \leq_T A$ does NOT imply that A = B!

Existence of a Common Reducible Language

- ▶ Claim: For any two languages A and B, a language J exists, where $A \leq_T J$ and $B \leq_T J$
- ▶ Proof: Let $J = 0A \cup 1B$ (this is equivalent to what both math and CS folks often call a "disjoint union" or "tagged union"- intuitively it lets us union two sets while also keeping track of which set each element came from)
- \blacktriangleright Now, let \mathcal{O}_I be an oracle that decides J.
- We can decide A using the decider D_A = "On input w, query the oracle about 0w and return the same."
- Similarly, we can decide B using the decider D_B = "On input w, query the oracle about 1w and return the same."

Turing Incomparable

- ▶ Claim: There exists two languages A and B such that $A \not\leq_T B$ and $B \not\leq_T A$
- In this statement, we don't have any Turing Machine that can work as Oracle Turing Machine to detect decidability and Turing reducibility.
- \triangleright So, there is no language from A and B which could be replaced by any intermediate language.
- Also, Turing Machine cannot be constructed until decidability is proved.
- ► Thus, no solution can be defined in our case to prove decidability of two languages so that language *A* and *B* are not Turing Reducible.

Rice's Theorem

▶ Let *A* be a recognizable language, and define the language

$$L_A = \{\langle M \rangle : M \text{ is a Turing machine and } L(M) = A\}$$

▶ Consisting of (the description) of all Turing machines M for which L(M) = A. Then L_A is undecidable