Questão 1

Resolução I

Suponha que haja n+1 vetores LI em \mathbb{F}^n Então, a única maneira de expressar o vetor 0 como combinação linear $\sum_{1 \le i \le n+1} \alpha_i v_i = 0$ é se todo $\alpha_i = 0$.

Suponha uma matriz $M \in \mathbb{F}^{n \times n+1}$ tal que as colunas de M são os n+1 vetores v_i , $1 \le i \le n+1$ do enunciado. Vamos provar que o espaço nulo da equação abaixo não é trivial.

$$M \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_{n+1} \end{bmatrix} = 0$$

Para isso, usaremos o Rank-Nullity Theorem.

A matrix M pode ser associada à função linear $f: \mathbb{F}^{n+1} \to \mathbb{F}^n$. Logo,

$$\dim \mathbb{F}^{n+1} = \dim \text{Null } M + \dim \text{Col } M$$

$$n+1 = \text{nullity } M + \dim \text{Row } M$$

$$n+1 = \text{nullity } M+n \qquad \qquad [\text{ dim Row M \'e no m\'aximo n }]$$
 nullity $M=1$

Provamos que o espaço nulo de M não é trivial. Logo, é impossível que os v_i sejam linearmente independentes.

Resolução II

É conhecido o fato de que toda a base B para \mathbb{F}^n tem cardinalidade n. Logo, todo vetor de \mathbb{F}^n pode ser representado pela combinação linear de certos n vetores linearmente independentes. Em suma, não há mais que n vetores linearmente independentes em \mathbb{F}^n .

Questão 2

Por hipótese, $M \in \mathbb{F}^{n \times n}$ é uma matriz quadrada com rank M = n. Pelo Rank-Nullity Theorem,

$$n = \text{nullity } M + \text{rank } M$$

$$n = \text{nullity } M + n$$

$$\text{nullity } M = 0$$

Associe a matriz M com uma função linear $f: \mathbb{F}^n \to \mathbb{F}^n$.

Pelo Linear-Function Invertibility Theorem, f é inversível see dim Ker f = 0 e dim $\mathbb{F}^n = \dim \mathbb{F}^n$.

Já temos que nullity M=0, o que é equivalente a dim Ker f=0 (critério de injetividade). Também temos que dim $\mathbb{F}^n=\dim \mathbb{F}^n=n$ (critério de sobrejetividade).

Logo, f é de fato inversível, e consequentemente M é uma matriz inversível.

Questão 3

Seja a matriz escalonada $U \in \mathbb{F}^{m \times n}$ com m_1 linhas não-nulas e m_2 linhas nulas.

Sabendo do fato de que as linhas de uma matriz escalonada formam uma **base** para o espaço das colunas, então as linhas não-nulas de U são linearmente independentes e rank Col $U = m_1$

Pelo Rank Theorem, rank Row U = rank Col U; logo rank Row $U = \text{rank Col } U = m_1$.

obs.: O rank diz "quantos vetores linearmente independentes o conjunto possui".

Portanto, também há m_1 colunas linearmente independentes em U.

Questão 4

Item i

A afirmação é falsa.

Vamos prosseguir com um contra-exemplo em GF(2).

Seja $U \in GF(2)^2 = \{[0,0],[1,1]\}$ um espaço vetorial.

A condição primordial para que a soma direta $U \oplus U^0$ exista é se $U \cap U^0 = 0$, ou seja, se o único vetor em comum entre eles é o vetor nulo.

Por definição, o aniquilador de U é $U^0 = \{v \in GF(2)^2 : v \cdot u = 0, \forall u \in U\}$. Observe que $U^0 = \{[0,0], [1,1]\}$. Logo, $U \cap U^0 = 0, [1,1]$ e a condição de soma direta não é satisfeita.

Item ii

Verdadeiro.

Considere as linhas de uma matriz A tal que seu espaço das colunas seja U. Note que U^0 é o espaço nulo de A. Isto pois

$$v\in \text{Null }A\iff A_{1*}(\text{linha 1 de A})\cdot v=0, A_{*2}\cdot v=0,\dots$$

$$\iff v\cdot a\ \forall\ \text{linha de u}$$

$$\iff v\in U^0$$

Note também que o rank A é a dimensão do espaço das colunas de A, e o espaço das colunas de A é U, como definimos anteriormente. Portanto, rank $A = \dim U$.

Usaremos o Rank-Nullity Theorem:

$$\dim \mathbb{F}^n = \operatorname{rank} A + \dim \operatorname{Null} A$$
$$n = \dim U + \dim U^0$$

Item iii

Verdadeiro.

Vamos mostrar que existe $U \oplus U^{\perp}$. A condição é se o único vetor em comum entre eles é o vetor nulo.

Suponha que w seja o único vetor em comum. Então $w \in U \oplus$ e $w \in U^{\perp}$.

Vamos definir $U^{\perp} = \{ v \in \mathbb{R}^n : u \cdot v = 0, \forall u \in U \}.$

obs.: Grosseiramente, U^{\perp} é o espaço vetorial dos vetores que são perpendiculares aos de U.

Note que se w pertence tanto ao espaço U quanto ao espaço U^{\perp} , então pela definição de U^{\perp}

$$w \cdot w = 0$$
$$||w||^2 = 0$$

Observe que é necessário que w=0.

Logo, foi provado que o único vetor em comum entre U e U^{\perp} é de fato o vetor nulo. Portanto, existe tal soma direta.

Item iv

Verdadeiro.

Seguimos da mesma linha de raciocínio de Item ii.

Volte ao item ii e note que U^{\perp} é equivalente ao Null A, sendo A a matriz com o espaço das colunas U. Segue diretamente do Rank-Nullity Theorem que de fato

$$\dim U + \dim U^{\perp} = n$$

Questão 5

Sejam as matrizes enunciadas $A \in \mathbb{F}^{m \times n}$ e $B \in \mathbb{F}^{n \times m}$.

Item i

Vamos provar por contradição. Suponha que B tenha colunas linearmente dependentes. Então é impossível que B tenha o espaço nulo trivial, logo nullity B>0 (falta provar isso). Pelo Rank-Nullity Theorem,

$$\operatorname{rank}\, B + \operatorname{nullity}\, B = m$$

$$m + \operatorname{nullity}\, B = m \ \operatorname{nullity}\, B = 0$$

Temos uma contradição, pois afirmamos que a nulidade de B é maior que 0. Logo, B tem colunas linearmente independentes.

Item ii

 $[\ldots]$

Questão 6

Nem sempre é verdade que MM^{\intercal} também seja igual à matriz identidade.

Sabemos que $M^{\intercal}M = I$. Se também $MM^{\intercal} = I$, então M é inversível e a própria M^{\intercal} seria sua inversa. Sabemos que uma matriz inversa é sempre quadrada, logo basta que M não seja quadrada para que $MM^{\intercal} \neq I$

Para que $MM^{\intercal} = I_m$, então é necessário que M seja uma matriz ortonormal.

Questão 7

[...]

Questão 8

item i

Vamos provar que A é inversível como uma matriz real.

Observe que a matriz é quadrada e as colunas de A são linearmente independente. Logo, A é inversível.

Aprofundando: Seja $f_A: \mathbb{R}^5 \to \mathbb{R}^5$ a função linear associada à matriz A. A função f_A é inversível sse dim $\ker f_A = 0$ (injetividade) e dim $\mathbb{R}^5 = \dim \mathbb{R}^5$ (dimensão do domínio é a dimensão do contradomínio, sobrejetividade).

É fácil de perceber que a dimensão do domínio é igual à dimensão do contradomínio. Falta mostrar que o espaço nulo de A é trivial.

Pelo Rank-Nullity Theorem,

$$\dim \mathbb{R}^5 = \dim \operatorname{Col} A + \dim \operatorname{Null} A$$

$$5 = 5 + \dim \operatorname{Null} A$$

$$\operatorname{nullity} A = 0$$

Logo, A segue o critério de invertibilidade.

item ii

Vamos provar que A não é inversível como uma matriz sobre GF(2).

Observe que a matriz ainda é quadrada, mas as colunas de A não são linearmente independentes, pois a última coluna pode ser obtida pela soma de todas as outras.

Aprofundando: Seja $f_A: \mathrm{GF}(2)^5 \to \mathrm{GF}(2)^5$ a função linear associada à matriz A. A função f_A é inversível sse dim $\ker f_A=0$ (injetividade) e dim $\mathrm{GF}(2)^5=\dim \mathrm{GF}(2)^5$ (dimensão do domínio é a dimensão do contradomínio, sobrejetividade).

É fácil de perceber que a dimensão do domínio é igual à dimensão do contradomínio. Falta mostrar que o espaço nulo de A não é trivial.

Pelo Rank-Nullity Theorem,

$$\dim \operatorname{GF}(2)^5 = \dim \operatorname{Col} A + \dim \operatorname{Null} A$$

 $5 = 4 + \dim \operatorname{Null} A$
 $A = 1$

Logo, A não é inversível.

Questão 9

Note que a matriz do enunciado é uma matriz quadrada com a diagonal principal composta de 0's e os outros espaços compostos por 1's.

Item i

Vamos provar que A é inversível quando n é par. Lembremos o critério de inversibilidade:

```
A matriz A é inversível \iff A é quadrada e as colunas de A são LI \iff A é quadrada e rank A=n \iff A é quadrada e nullity A=0
```

O primeiro passo é perceber que a matriz é quadrada, então temos meio caminho andado. Resta provar que as colunas são linearmente independentes.

Item ii

Item iii