In the Claims:

Please amend claims 1-5 and enter new claims 24-28 as follows.

Please withdraw 8-14 and cancel claims 15-23 without prejudice or disclaimer.

This listing of claims will replace all prior versions and listings of claims in the application.

Listing of Claims:

1. (Currently amended) A compound of Formula (I):

$$X^{2}$$
 X^{3}
 X^{4}
 X^{4}
 X^{4}
 X^{5}
 X^{4}
 X^{5}
 X^{6}
 X^{7}
 X^{7

or a stereoisomer or pharmaceutically acceptable salts, hydrates, or prodrugs thereof, wherein:

W is -CH₂CH₂-, -CH₂CR⁴R⁵-, -CR⁴R⁵CH₂-, -CHR⁴CHR⁵-, -CH=CH-, or -CR⁴=CR⁵-, -CR⁴=N-, -CH₂CH₂-CH₂-, or -CR⁴R⁵CH₂CH₂-;

 L_1 is $-CH_2$, $-CH_2$ CH₂, $-CH_2$ S(O)_p, or $-CH_2$ C(O)-;

 $L_2 \text{ is a bond, } -(CR^6R^{6n})_{1-2} -, -O -, -NR^7 -, -C(O) -, -S(O)_p -, -(CR^6R^{6n})C(O) -, \\ -C(O)(CR^6R^{6n}) -, -(CR^6R^{6n})O -, -O(CR^6R^{6n}) -, -(CR^6R^{6n})NR^7 -, -NR^7(CR^6R^{6n}) -, \\ -(CR^6R^{6n})S(O)_p -, -S(O)_p(CR^6R^{6n}) -, -C(O)O -, -OC(O) -, -C(O)NR^8 -, -NR^8C(O) -, \\ -S(O)NR^8 -, -S(O)_2NR^8 -, -NR^8S(O) -, or -NR^8S(O)_2 -; \\$

A is <u>phenyl</u> C₃₋₁₀ carbocycle substituted with 0-3 R¹¹ and 0-1 R¹², or <u>pyridyl</u> a 5-12 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p, and substituted 0-3 R¹¹ and 0-1 R¹²;

B is phenyl C_{1-6} -alkyl substituted with 0-2 R^{11} -and 0-1 R^{12} , C_{2-6} -alkenyl substituted with 0-2 R^{11} -and 0-1 R^{12} , C_{2-6} -alkynyl substituted with 0-2 R^{11} -and R^{12} ,

 C_{3-10} carbocycle substituted with 0-3 R¹¹ and 0-1 R¹², or <u>pyridyl</u> a 5-12 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and $S(O)_{B}$, and substituted with 0-3 R¹¹ and 0-1 R¹²;

 X^1 , X^2 , X^3 and X^4 independently represent CR^1 , CR^2 , CR^3 or N; X^2 is CR^1 ;

R¹ is H, -NH₂, NH(C₁₋₃ alkyl), -N(C₁₋₃ alkyl)₂, -C(=NH)NH₂,
-NHC(=NH)NH₂, -C(O)NH₂, or -CH₂NH₂, -CH₂NH(C₁-3 alkyl), -CH₂N(C₁-3 alkyl)₂,
-CH₂CH₂NH₂, -CH₂CH₂NH(C₁-3 alkyl), -CH₂CH₂N(C₁-3 alkyl)₂, -C(=NR⁸)NR⁷R⁹,
-NHC(=NR⁸)NR⁷R⁹, -ONHC(=NR⁸)NR⁷R⁹, NR⁸CH(=NR⁷), -C(=NR⁸a)NR⁷R⁹,
-NR⁸CH(=NR⁸a), ONHC(=NR⁸a)NR⁷R⁸, -NHC(=NR⁸a)NR⁷R⁹, -NR⁷R⁸,
-C(O)NR⁷aR⁸, -S(O)_pNR⁸R⁹, F, Cl, Br, I, OCF₃, CF₃, OR^a, SR^a, CN or C₁₋₆-alkyl
substituted with 1 R¹a;

 $R^{1a} \text{ is } -C(=NR^8)NR^7R^9, \quad NHC(=NR^8)NR^7R^9, \quad ONHC(=NR^8)NR^7R^9, \\ -C(=NR^{8a})NR^7R^9, \quad NR^8CH(=NR^{8a}), \quad ONHC(=NR^{8a})NR^7R^8, \quad NHC(=NR^{8a})NR^7R^9, \\ -NR^8CH(=NR^7), \quad NR^7R^8, \quad C(O)NR^{7a}R^8, \quad S(O)_pNR^8R^9, \quad F, \quad OCF_3, \quad CF_3, \quad OR^a, \quad SR^a, \quad or \quad CN;$

 R^2 is H, F, Cl, Br, I, OCF₃, CF₃, ORa, SRa, CN, NO₂, -NR⁷R⁸, -C(O)NR⁷aR⁸, -NR¹⁰C(O)Rb, -S(O)pNR⁸R⁹, -S(O)Rc, -S(O)₂Rc, C₁₋₆ alkyl substituted with 0-2 R^{2a}, C₂₋₆ alkenyl substituted with 0-2 R^{2a}, -(CH₂)_r-C₃₋₁₀ carbocycle substituted with 0-3 R^{2b}, or -(CH₂)_r-5-10 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p, and substituted with 0-3 R^{2b};

each R^{2a} is, independently at each occurrence, H, F, OCF₃, CF₃, OR^a, SR^a, CN, -NR⁷R⁸, -C(O)NR⁷aR⁸, -NR¹⁰C(O)R^b, -S(O)_DNR⁸R⁹, -S(O)R^c, or -S(O)₂R^c;

each R^{2b} is, independently at each occurrence, H, F, Cl, Br, I, ORa, SRa, CN, NO₂, CF₃, -SO₂Rc, -NR⁷R⁸, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₆ cycloalkyl, C₁₋₄ haloalkyl, C₁₋₄ haloalkyloxy-, C₁₋₄ alkyloxy-, C₁₋₄ alkylthio-, C₁₋₄ alkyl-C(O)-, or C₁₋₄ alkyl-C(O)NH-;

alternately, when R¹ and R² are substituted on adjacent ring carbon atoms, they can be taken together with the ring carbon atoms to which they are attached to form a 5-7 membered carbocycle or heterocycle substituted with 0-2 R^{2b};

R³ is H, F, Cl, Br, I, OCF₃, CF₃, OR^a, SR^a, CN, NO₂, -NR⁷R⁸, -C(O)NR^{7a}R⁸,
-NR¹⁰C(O)R^b, -S(O)_pNR⁸R⁹, -S(O)R^e, -S(O)₂R^e, C₁₋₆ alkyl substituted with 0-2 R^{3a},
C₂₋₆ alkenyl substituted with 0-2 R^{3a}, C₂₋₆ alkynyl substituted with 0-2 R^{3a},
-(CH₂)_r-C₃₋₁₀ carbocycle substituted with 0-3 R^{3b}, or -(CH₂)_r-5-10 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_{p3} and substituted with 0-3 R^{3b};

each R^{3a} is, independently at each occurrence, H, F, OCF_3 , CF_3 , OR^a , SR^a , CN, $-NR^7R^8$, $-C(O)NR^{7a}R^8$, $-NR^{10}C(O)R^b$, $-S(O)_pNR^8R^9$, $-S(O)R^e$, or $-S(O)_2R^e$;

each R^{3b} is, independently at each occurrence, H, F, Cl, Br, I, OR^a, SR^a, CN, NO₂, CF₃, SO₂R^e, NR⁷R⁸, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂₋₆ alkynyl, C₃₋₆ eyeloalkyl, C₁₋₄ haloalkyl, C₁₋₄ haloalkyloxy-, C₁₋₄ alkyloxy-, C₁₋₄ alkyloxy-, C₁₋₄ alkyl-C(O), or C₁-C₄ alkyl-C(O)NH-;

R⁴ is H, F, ORa, SRa, -NR⁷R⁸, -NR¹⁰C(O)NR⁷aR⁸, -NR¹⁰SO₂Rc, -C(O)ORa,

-(CH₂)_r-C(O)NR⁷aR⁸, C₁₋₄ haloalkyl, C₁₋₆ alkyl substituted with 0-3 R⁴a,

C₂₋₆ alkenyl substituted with 0-3 R⁴a, C₂₋₆ alkynyl substituted with 0-3 R⁴a,

-(CH₂)_r-C₃₋₁₀ carbocycle substituted with 0-3 R⁴b, or -(CH₂)_r-5-10 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p, and substituted with 0-3 R⁴b;

each R^{4a} is, independently at each occurrence, H, C_{1-4} alkyl, OR^a , F, =O, CF_3 , CN, $-C(O)R^a$, $-C(O)OR^a$, $-C(O)NR^{7a}R^8$, $-NR^{10}COR^c$, or $-S(O)_pR^b$;

each R^{4b} is, independently at each occurrence, H, OH, Cl, F, Br, I, CN, NO₂, CF₃, -C(O)OR^a, -SO₂R^c, -NR⁷R⁸, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₆ cycloalkyl, C₁₋₄ haloalkyl, C₁₋₄ haloalkyloxy-, C₁₋₄ alkyloxy-, C₁₋₄ alkylthio-, C₁₋₄ alkyl-C(O)-, C₁₋₄ alkyl-C(O)NH-, -C(O)NR^{7a}R⁸, -NR¹⁰C(O)R^c, -NR¹⁰S(O)₂NR⁸R⁹, or -S(O)₂NR⁸R⁹;

 R^5 is H, F, C_{1-4} haloalkyl, C_{1-6} alkyl substituted with 0-3 R^{5a} , C_{2-6} alkenyl substituted with 0-3 R^{5a} , C_{2-6} alkynyl substituted with 0-3 R^{5a} , $-(CH_2)_r$ - C_{3-10} carbocycle substituted with 0-3 R^{5b} , or $-(CH_2)_r$ -5-10 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and $S(O)_p$, and substituted with 0-3 R^{5b} ;

each R^{5a} is, independently at each occurrence, H, C_{1-4} alkyl, OR^a , F, =O, CF_3 , CN, $-C(O)R^a$, $-C(O)OR^a$, $-C(O)NR^{7a}R^8$, or $-S(O)_pR^c$;

each R^{5b} is, independently at each occurrence, H, OH, Cl, F, Br, I, CN, NO₂, CF₃,
-C(O)OR^a, -SO₂R^c, -NR⁷R⁸, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl,

Consequently Controlled Con

 C_{3-6} cycloalkyl, C_{1-4} haloalkyl, C_{1-4} haloalkyloxy-, C_{1-4} alkyloxy-, C_{1-4} alkyl-C(O)-, or C_{1-4} alkyl-C(O)NH-;

each R^6 is, independently at each occurrence, H, C_{1-4} alkyl, $-(CH_2)_rC(O)OR^a$, $-(CH_2)_rS(O)_2NR^{7a}R^8$, or $-(CH_2)_rOR^a$;

each R^{6a} is, independently at each occurrence, H or C_{1-4} alkyl;

each R⁷ is, independently at each occurrence, H, C₁₋₆ alkyl, -(CH₂)_n-phenyl,

 $(C_{1-6} \text{ alkyl})C(O)$ -, $(C_{6-10} \text{ aryl})$ - $C_{0-4} \text{ alkyl}$ -C(O)-, $(C_{3-6} \text{ cycloalkyl})$ - $C_{0-4} \text{ alkyl}$ -C(O)-,

(5-10 membered heteroaryl)-C₀₋₄ alkyl-C(O)-, (C₁₋₄ alkyl)OC(O)-,

 $(C_{6-10} \text{ aryl})-C_{1-4} \text{ alkyl}-OC(O)-, (C_{1-4} \text{ alkyl})-C(O)O-(C_{1-4} \text{ alkyl})-OC(O)-,$

 $(C_{6\text{-}10}\,\text{aryl})\text{-}C(O)O\text{-}(C_{1\text{-}4}\,\text{alkyl})\text{-}OC(O)\text{-}, (5\text{-}10\,\text{membered heteroaryl})\text{-}CH_2\text{-}OC(O)\text{-},$

 $(C_{1-6} \text{ alkyl})\text{-NHC}(O)$ -, $(C_{6-10} \text{ aryl})\text{-}C_{0-4} \text{ alkyl-NHC}(O)$ -,

(5-10 membered heteroaryl)-C₀₋₄ alkyl-NHC(O)-, (C₁₋₆ alkyl)-S(O)₂-,

 $(C_{6-10} \text{ aryl})$ - $(C_{0-4} \text{ alkyl})$ - $S(O)_2$ -, (5-10 membered heteroaryl)- $C_{0-4} \text{ alkyl}$ - $S(O)_2$ -,

 $(C_{1-6} \text{ alkyl})_2 NC(O)$ -, phenyl-NHC(O)-, or (phenyl)($C_{1-6} \text{ alkyl}$)NHC(O)-, wherein said phenyl, aryl and heteroaryl are substituted with 0-2 R^f;

each R^{7a} is, independently at each occurrence, H, C_{1-4} alkyl substituted with 0-2 R^{7b} and/or 0-2 R^{7c} , - $(CH_2)_r$ - C_{3-10} carbocycle substituted with 0-3 R^f , or a - $(CH_2)_r$ -5-12 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and $S(O)_p$, and substituted 0-3 R^f ;

each R^{7b} is, independently at each occurrence, =O, ORg, F, CN, NO₂, -NR⁷R⁸, -C(O)Rg, -C(O)ORg, -NR⁸C(O)Rg, -C(O)NR⁸R⁹, -NR⁸C(O)NR⁸R⁹, -NR⁸SO₂NR⁸R⁹, -NR⁸SO₂NR⁸R⁹, -NR⁸SO₂-Cl₋₄ alkyl, -NR⁸SO₂CF₃, -NR⁸SO₂-phenyl, -S(O)₂CF₃, -S(O)_p-Cl₋₄ alkyl, -S(O)_p-phenyl, or -(CF₂)_rCF₃;

each R^{7c} is, independently at each occurrence, C_{3-10} carbocycle substituted with 0-3 Rf; or a 5-12 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p, and substituted 0-3 Rf;

each R^8 is, independently at each occurrence, H, C_{1-6} alkyl, or -(CH₂)_n-phenyl; each R^{8a} is, independently at each occurrence, H, OH, C_{1-6} alkyl, C_{1-4} alkoxy, (C₆₋₁₀ aryl)-C₁₋₄ alkoxy, -(CH₂)_n-phenyl, (C₁₋₆ alkyl)C(O)-,

 $(C_{6-10} \text{ aryl})-C_{0-4} \text{ alkyl-C(O)-}, (C_{3-6} \text{ cycloalkyl})-C_{0-4} \text{ alkyl-C(O)-},$

(5-10 membered heteroaryl)-C₀₋₄ alkyl-C(O)-, (C₁₋₄ alkyl)OC(O)-,

 $(C_{6-10} \text{ aryl})-C_{1-4} \text{ alkyl}-OC(O)-, (C_{1-4} \text{ alkyl})-C(O)O-(C_{1-4} \text{ alkyl})-OC(O)-,$

 $(C_{6-10} \text{ aryl})-C(O)O-(C_{1-4} \text{ alkyl})-OC(O)-,$

(5-10 membered heteroaryl)- C_{0-4} alkyl-OC(O)-, C_{1-4} alkoxy, $(C_{1-4}$ alkyl)C(O)O-, or $(C_{6-10}$ aryl)- $(C_{0-4}$ alkyl)-C(O)O-; wherein said phenyl, aryl and heteroaryl are substituted with 0-2 Rf;

alternatively, R^7 and R^8 , or R^{7a} and R^8 , when attached to the same nitrogen, combine to form a 5-10 membered heterocyclic ring consisting of carbon atoms and 0-2 additional heteroatoms selected from the group consisting of N, O, and $S(O)_p$, and optionally substituted with 0-2 R^d ;

each R^9 is, independently at each occurrence, H, C_{1-6} alkyl, or - $(CH_2)_n$ -phenyl; each R^{10} is, independently at each occurrence, H, C_{1-6} alkyl substituted with 0-2 R^{10a} , C_{2-6} alkenyl substituted with 0-2 R^{10a} , C_{2-6} alkynyl substituted with 0-2 R^{10a} , - $(CH_2)_r$ - C_{3-10} carbocycle substituted with 0-3 R^d , or - $(CH_2)_r$ -5-10 membered heterocycle consisting of carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and $S(O)_p$, and substituted with 0-3 R^d ;

each R^{10a} is, independently at each occurrence, H, C_{1-4} alkyl, OR^a , F, =O, CF_3 , CN, NO_2 , $-C(O)R^a$, $-C(O)OR^a$, $-C(O)NR^{7a}R^8$, or $-S(O)_pR^c$;

each R¹¹ is, independently at each occurrence, H, =O, -(CH₂)_r-OR^a, F, Cl, Br, I, CF₃, CN, NO₂, -(CH₂)_r-NR⁷R⁸, -(CH₂)_r-C(=NR⁸)NR⁷R⁹, -C(O)R^a, -C(O)OR^a, -(CH₂)_r-NR⁸C(O)R^a, -NR⁸C(O)OR^c, -NR⁸CO(CH₂)_rCO₂R^a, -C(O)NR⁷aR⁸, -NR⁸C(O)NR⁸R¹⁰, -SO₂NR⁸R¹⁰, -NR⁸SO₂NR⁸R¹⁰, -NR⁸SO₂-C₁₋₄ alkyl, -NR⁸SO₂CF₃, -NR⁸SO₂-phenyl, -S(O)₂CF₃, -S(O)_p-C₁₋₄ alkyl, -S(O)_p-phenyl, -(CF₂)_rCF₃, C₁₋₆ alkyl substituted with 0-2 R^{11a}, C₂₋₆ alkenyl substituted with 0-2 R^{11b}, C₂₋₆ alkynyl substituted with 0-2 R^{11b}, C₂₋₆ alkynyl substituted with 0-2 R^{11b}, phenyl substituted with 0-3 R^c and/or 0-3 R^d, or a 5-7 membered heterocycle consisting of carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p, and substituted with 0-3 R^c and/or 0-3 R^d;

each R^{11a} is, independently at each occurrence, =O, ORa, F, Cl, Br, I, CN, NO₂, -NR⁷R⁸, -C(O)Ra, -C(O)ORa, -NR⁸C(O)Ra, -C(O)NR⁷aR8, -NR⁸C(O)NR⁸R¹⁰, -SO₂NR⁸R¹⁰, -NR⁸SO₂NR⁸R¹⁰, -NR⁸SO₂-Cl₁₋₄ alkyl, -NR⁸SO₂CF₃, -NR⁸SO₂-phenyl, -S(O)₂CF₃, -S(O)_p-Cl₁₋₄ alkyl, -S(O)_p-phenyl, or -(CF₂)_rCF₃;

each R^{11b} is, independently at each occurrence, C_{3-10} carbocycle substituted with 0-3 R^d , or a 5-12 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and $S(O)_p$, and substituted 0-3 R^d ;

each R¹² is, independently at each occurrence, OR^{12a}, -CH₂OR^{12a},
-C(O)NR^{7a}R⁸, -(CH₂)_rCO₂R^{12a}, -(CH₂)_rSO₃H, -OSO₃H, -(CH₂)_rPO₃H, -OPO₃H₂,
-PO₃H₂, -NHCOCF₃, -NHSO₂CF₃, -CONHNHSO₂CF₃, -C(CF₃)₂OH, -SO₂NHR^{12a},
-CONHSO₂NHR^{12a}, -SO₂NHCOR^{12a}, -SO₂NHCO₂R^{12a}, -CONHSO₂R^{12b},

-NHSO₂R^{12b}, -CONHOR^{12b},

$$-(CH_{2})_{r} - (CH_{2})_{r} - (CH$$

each R^{12a} is, independently at each occurrence, H, C_{1-6} alkyl, $-(CH_2)_r$ - C_{3-10} carbocycle substituted with 0-3 R^d, or $-(CH_2)_r$ -5-10 membered heterocycle consisting of carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p, and substituted with 0-3 R^d;

each R^{12b} is, independently at each occurrence, C_{1-6} alkyl substituted with 0-2 R^{12c} , C_{2-6} alkenyl substituted with 0-2 R^{12c} , C_{2-6} alkynyl substituted with R^{12c} , $-(CH_2)_r-C_{3-10}$ carbocycle substituted with 0-3 R^{12c} , or $-(CH_2)_r-5-10$ membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and $S(O)_p$, and substituted with 0-3 R^{12c} ;

each R^{12c} is, independently at each occurrence, H, F, Cl, Br, I, CF₃, OCF₃, CN, NO₂, OR^a, -CO₂R^a, -NR⁷R⁸, -SO₂R^c, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, -(CH₂)_r-C₃₋₁₀ carbocycle substituted with 0-3 R^d, or -(CH₂)_r-5-10 membered heterocycle consisting of carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p, and substituted with 0-3 R^d;

each R^a is, independently at each occurrence, H, C_{1-4} alkyl, $-(CH_2)_r$ - C_{3-7} cycloalkyl, $-(CH_2)_r$ - C_{6-10} aryl, or $-(CH_2)_r$ -5-10 membered heteroaryl, wherein said aryl or heteroaryl groups are optionally substituted with 0-2 R^f ;

each R^b is, independently at each occurrence, CF_3 , OH, C_{1-4} alkoxy, C_{1-6} alkyl, $-(CH_2)_r-C_{3-10}$ carbocycle substituted with 0-2 R^d , or $-(CH_2)_r-5-10$ membered heterocycle containing from 1-4 heteroatoms selected from the group consisting of N, O, and $S(O)_p$ and substituted with 0-2 R^d ;

each R^c is, independently at each occurrence, C_{1-4} alkyl, C_{6-10} aryl, 5-10 membered heteroaryl, (C_{6-10} aryl)- C_{1-4} alkyl, or (5-10 membered heteroaryl)- C_{1-4} alkyl, wherein said aryl and heteroaryl groups are substituted with 0-2 R^d ;

each R^d is, independently at each occurrence, H, =O, OR^a , F, Cl, Br, I, CN, NO_2 , $-NR^7R^8$, $-C(O)R^a$, $-C(O)OR^a$, $-NR^8C(O)R^a$, $-C(O)NR^{7a}R^8$, $-SO_2NR^8R^9$, $-NR^8SO_2NR^8R^9$, $-NR^8SO_2-C_{1-4}$ alkyl, $-NR^8SO_2CF_3$, $-NR^8SO_2$ -phenyl, $-S(O)_2CF_3$, $-S(O)_p-C_{1-4}$ alkyl, $-S(O)_p$ -phenyl, $-(CF_2)_rCF_3$, C_{1-6} alkyl substituted with 0-2 R^e , C_{2-6} alkenyl substituted with 0-2 R^e ;

each Re is, independently at each occurrence, =O, ORa, F, Cl, Br, I, CN, NO₂, -NR⁸R⁹, -C(O)Ra, -C(O)ORa, -NR⁸C(O)Ra, -C(O)NR⁷aR⁸, -SO₂NR⁸R⁹, -NR⁸SO₂NR⁸R⁹, -NR⁸SO₂-Cl₁₋₄ alkyl, -NR⁸SO₂CF₃, -NR⁸SO₂-phenyl, -S(O)₂CF₃, -S(O)₂-Cl₁₋₄ alkyl, -S(O)₂-phenyl, or -(CF₂)₇CF₃;

each R^f is, independently at each occurrence, H, =O, -(CH₂)_r-OR\$, F, Cl, Br, I, CN, NO₂, -NR⁸R⁹, -C(O)R\$, -C(O)OR\$, -NR⁸C(O)R\$, -C(O)NR⁸R⁹, -SO₂NR⁸R⁹, -NR⁸SO₂NR⁸R⁹, -NR⁸SO₂-C₁₋₄ alkyl, -NR⁸SO₂CF₃, -NR⁸SO₂-phenyl, -S(O)₂CF₃, -S(O)_p-C₁₋₄ alkyl, -S(O)_p-phenyl, -(CF₂)_rCF₃, C₁₋₆ alkyl, C₂₋₆ alkenyl, or C₂₋₆ alkynyl; each R\$\frac{g}{2}\$ is, independently at each occurrence, H, C₁₋₆ alkyl, or -(CH₂)_n-phenyl; n, at each occurrence, is selected from 0, 1, 2, 3, and 4; p, at each occurrence, is selected from 0, 1, and 2; and r, at each occurrence, is selected from 0, 1, 2, 3, and 4.

2. (Currently amended) A compound according to Claim 1, wherein the compound is of Formula (Ia):

or a stereoisomer or pharmaceutically acceptable salts, hydrates, or prodrugs thereof, wherein:

W is -CH₂CH₂-, -CH₂CR⁴R⁵-, -CR⁴R⁵CH₂-, <u>or</u> -CR⁴=CH-, -CR⁴=N-, -CH₂CH₂-, or -CR⁴R⁵CH₂CH₂-;

L₂ is a bond, $(CR^6R^{6n})_{1-2}$, O, NR^7 , C(O), $S(O)_p$, $(CR^6R^{6n})C(O)$, $-C(O)(CR^6R^{6n})$, $(CR^6R^{6n})O$, $O(CR^6R^{6n})$, $(CR^6R^{6n})NR^7$, $NR^7(CR^6R^{6n})$, $-(CR^6R^{6n})S(O)_p$, $S(O)_p(CR^6R^{6n})$, C(O)O, OC(O), $-C(O)NR^8$, $NR^8C(O)$, $-S(O)NR^8$, $S(O)_2NR^8$, $NR^8S(O)$, or $NR^8S(O)_2$ -;

A is phenyl substituted with 0-2 R¹¹ and 0-1 R¹², or <u>pyridyl a 5-12 membered</u> heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p, and substituted 0-2 R¹¹ and 0-1 R¹²;

B is phenyl substituted with 0-2 R¹¹ and 0-1 R¹², or <u>pyridyl</u> a 5-12 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_D, and substituted with 0-2 R¹¹ and 0-1 R¹²;

 $R^{1} \text{ is } \frac{H_{3}-NH_{2}, \ NH(C_{1-3}-alkyl), \ N(C_{1-3}-alkyl)_{2}, \ -C(=NH)NH_{2},}{-NHC(=NH)NH_{2}, \ -C(O)NH_{2}, \ \underline{or} \ -CH_{2}NH_{2}, \ -CH_{2}NH(C_{1-3}-alkyl), \ -CH_{2}NH(C_{1-3}-alkyl)_{2}, \ -C(=NR^{8})NR^{7}R^{9},}{-C(=NR^{8})NR^{7}R^{9}, \ -NHC(=NR^{8})NR^{7}R^{9}, \ -NHC(=NR^{8})NR^{7}R^{9}, \ -NHC(=NR^{8a})NR^{7}R^{9}, \ -NHC(=NR^{8a})NR^{7}R^{9},}{-NHC(=NR^{8a})NR^{7}R^{9}, \ -NHC(=NR^{8a})NR^{7}R^{9},}{-NHC(=NR^{8a}), \ -NR^{7}R^{9}, \ -NHC(=NR^{8a}), \ -NR^{7}R^{8}, \ -C(O)NR^{7a}R^{8}, \ -S(O)_{p}NR^{8}R^{9}, \ F, \ Cl, \ Br, \ I, \ OCF_{3}, \ CF_{3},}{-CR^{a}, \ CN \ or \ C_{1-6} \ alkyl \ substituted \ with \ 1 \ R^{1a};}$

 $R^{1a} \text{ is } -C(=NR^8)NR^7R^9, \quad NHC(=NR^8)NR^7R^9, \quad ONHC(=NR^8)NR^7R^9, \\ -NR^8CH(=NR^7), \quad -C(=NR^{8a})NR^7R^9, \quad NHC(=NR^{8a})NR^7R^9, \quad ONHC(=NR^{8a})NR^7R^9, \\ -NR^8CH(=NR^{8a}), \quad -NR^7R^8, \quad -C(O)NR^{7a}R^8, \quad -S(O)_pNR^8R^9, \quad F, \quad Cl, \quad Br, \quad I, \quad OCF_3, \quad CF_3, \quad OR^a, \quad SR^a, \quad or \quad CN;$

 R^2 is H, F, ORa, CN, -NR⁷R⁸, -C(O)NR⁷aR⁸, -NR¹⁰C(O)R^b, -S(O)_pNR⁸R⁹, -S(O)R^c, -S(O)₂R^c, C₁₋₆ alkyl substituted with 0-2 R^{2a}, -(CH₂)_r-C₃₋₇ carbocycle substituted with 0-2 R^{2b}, or -(CH₂)_r-5-7 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p, and substituted with 0-2 R^{2b};

each R^{2a} is, independently at each occurrence, H, F, OCF₃, CF₃, OR^a, SR^a, CN, -NR⁷R⁸, -C(O)NR⁷aR⁸, -S(O)_pNR⁸R⁹, -NR¹⁰C(O)R^b, -S(O)_pNR⁸R⁹, -S(O)R^c, or -S(O)₂R^c;

each R^{2b} is, independently at each occurrence, H, F, OR^a , SR^a , CN, NO_2 , CF_3 , $-SO_2R^c$, $-NR^7R^8$, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-6} cycloalkyl, C_{1-4} haloalkyl, C_{1-4} haloalkyloxy-, C_{1-4} alkyloxy-, C_{1-4} alkyl-C(O)-, or C_{1-4} alkyl-C(O)NH-;

alternately, when R¹ and R² are substituted on adjacent ring carbon atoms, they can be taken together with the ring carbon atoms to which they are attached to form a 5-7 membered carbocycle or heterocycle substituted with 0-2 R^{2b};

 R^4 is H, F, C_{1-4} haloalkyl, $-(CH_2)_r$ - $C(O)NR^{7a}R^8$, C_{1-6} alkyl substituted with 0-3 R^{4a} , C_{2-6} alkenyl substituted with 0-3 R^{4a} , C_{2-6} alkynyl substituted with 0-3 R^{4a} , $-(CH_2)_r$ - C_{3-8} carbocycle substituted with 0-3 R^{4b} , or $-(CH_2)_r$ -5-6 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and $S(O)_p$, and substituted with 0-3 R^{4b} ;

each R^{4a} is, independently at each occurrence, H, C_{1-4} alkyl, OR^a , F, =O, CF_3 , CN, $-C(O)R^a$, $-C(O)OR^a$, $-C(O)NR^{7a}R^8$, $-NR^{10}COR^c$, or $-S(O)_nR^b$;

each R^{4b} is, independently at each occurrence, H, OH, Cl, F, Cl, Br, CN, NO₂, CF₃, -C(O)OR^a, -SO₂R^c, -NR⁷R⁸, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₆ cycloalkyl, C₁₋₄ haloalkyl, C₁₋₄ haloalkyloxy-, C₁₋₄ alkyloxy-, C₁₋₄ alkylthio-, C₁₋₄ alkyl-C(O)-, C₁₋₄ alkyl-C(O)NH-, -C(O)NR^{7a}R⁸, -NR¹⁰C(O)R^c, -NR¹⁰S(O)₂NR⁸R⁹, or -S(O)₂NR⁸R⁹;

each R^5 is, independently at each occurrence, H, F, C_{1-4} haloalkyl, C_{1-6} alkyl substituted with 0-2 R^{5a} , C_{2-6} alkenyl substituted with 0-2 R^{5a} , C_{2-6} alkynyl substituted with 0-2 R^{5a} , $-(CH_2)_r$ - C_{3-7} cycloalkyl substituted with 0-2 R^{5b} , $-(CH_2)_r$ -phenyl substituted with 0-2 R^{5b} , or $-(CH_2)_r$ -5-6 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and $S(O)_p$, and substituted with 0-2 R^{5b} ;

each R^{5a} is, independently at each occurrence, H, C_{1-4} alkyl, OR^a , F, =O, CF_3 , CN, $-C(O)R^a$, $-C(O)OR^a$, $-C(O)NR^{7a}R^8$, or $-S(O)_pR^c$;

each R^{5b} is, independently at each occurrence, H, OH, Cl, F, Br, CN, NO₂, CF₃, -C(O)OR^a, -SO₂R^c, -NR⁷R⁸, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₆ cycloalkyl, C₁₋₄ haloalkyl, C₁₋₄ haloalkyloxy-, C₁₋₄ alkyloxy-, C₁₋₄ alkylthio-, C₁₋₄ alkyl-C(O)NH-;

each R^6 is, independently at each occurrence, H, C_{1-4} alkyl, $-(CH_2)_rC(O)OR^a$, $-(CH_2)_rS(O)_2NR^{7a}R^8$, or $-(CH_2)_rOR^a$;

each R^{6a} is, independently at each occurrence, H or C₁₋₄ alkyl;

each R⁷ is, independently at each occurrence, H, C₁₋₆ alkyl, -(CH₂)_n-phenyl,

 $(C_{1-6} \text{ alkyl})C(O)$ -, $(C_{6-10} \text{ aryl})$ - $C_{0-4} \text{ alkyl}$ -C(O)-, $(C_{3-6} \text{ cycloalkyl})$ - $C_{0-4} \text{ alkyl}$ -C(O)-,

(5-10 membered heteroaryl)-C₀₋₄ alkyl-C(O)-, (C₁₋₄ alkyl)OC(O)-,

 $(C_{6-10} \text{ aryl})-C_{1-4} \text{ alkyl}-OC(O)-, (C_{1-4} \text{ alkyl})-C(O)O-(C_{1-4} \text{ alkyl})-OC(O)-,$

 $(C_{6-10} \text{ aryl})-C(O)O-(C_{1-4} \text{ alkyl})-OC(O)-$, (5-10 membered heteroaryl)-CH₂-OC(O)-,

 $(C_{1-6} \text{ alkyl})\text{-NHC}(O)$ -, $(C_{6-10} \text{ aryl})\text{-}C_{0-4} \text{ alkyl-NHC}(O)$ -,

(5-10 membered heteroaryl)-C₀₋₄ alkyl-NHC(O)-, (C₁₋₆ alkyl)-S(O)₂-,

 $(C_{6-10} \text{ aryl})-(C_{0-4} \text{ alkyl})-S(O)_2-$, (5-10 membered heteroaryl)- $C_{0-4} \text{ alkyl}-S(O)_2-$,

 $(C_{1-6} \text{ alkyl})_2 NC(O)$ -, phenyl-NHC(O)-, benzyl-NHC(O)-, or (phenyl)($C_{1-6} \text{ alkyl})NC(O)$ -, wherein said phenyl, aryl and heteroaryl are substituted with 0-2 R^f;

each R^{7a} is, independently at each occurrence, H, C₁₋₄ alkyl substituted with 0-1 R^{7b} or 0-1 R^c, C₃₋₇ cycloalkyl substituted with 0-2 R^d, phenyl substituted with 0-3 R^f, or a 5-6 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p, and substituted 0-3 R^f;

each R^{7b} is, independently at each occurrence, =O, ORg, F, Cl, Br, I, CN, NO₂, -NR⁷R⁸, -C(O)Rg, -C(O)ORg, -NR⁸C(O)Rg, -C(O)NR⁸R⁹, -NR⁸C(O)NR⁸R⁹, -NR⁸SO₂NR⁸R⁹, -NR⁸SO₂NR⁸R⁹, -NR⁸SO₂-Cl₁₋₄ alkyl, -NR⁸SO₂CF₃, -NR⁸SO₂-phenyl, -S(O)₂CF₃, -S(O)_p-Cl₁₋₄ alkyl, -S(O)_p-phenyl, or -(CF₂)_rCF₃;

each R^{7c} is, independently at each occurrence, C_{3-10} carbocycle substituted with 0-3 Rf; or a 5-12 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p, and substituted 0-3 Rf;

each R^8 is, independently at each occurrence, H, C_{1-6} alkyl, or -(CH_2)_n-phenyl; each R^{8a} is, independently at each occurrence, H, OH, C_{1-6} alkyl, -(CH_2)_n-phenyl, (C_{1-6} alkyl)C(O)-, (C_{6-10} aryl)- C_{1-4} alkyl-C(O)-, (C_{3-6} cycloalkyl)- C_{0-4} alkyl-C(O)-, (C_{1-4} alkyl)C(O)-, (C_{6-10} aryl)- C_{0-4} alkyl-C(O)-, (C_{1-4} alkyl)C(O)-, (C_{1-4} alkyl)-C(O)-(C_{1-4} alkyl)-C(O)-, or (C_{6-10} aryl)- C_{0-4} alkyl)-C(O)-; wherein said phenyl, aryl and heteroaryl are substituted with 0-2 R^f :

alternatively, R⁷ and R⁸, or R^{7a} and R⁸, when attached to the same nitrogen, combine to form a 5-10 membered heterocyclic ring consisting of carbon atoms and 0-2 additional heteroatoms selected from the group consisting of N, O, and S(O)_p;

each R⁹ is, independently at each occurrence, H, C₁₋₆ alkyl, or -(CH₂)_n-phenyl; each R¹⁰ is, independently at each occurrence, H, C₁₋₆ alkyl substituted with 0-2 R^{10a}, C₂₋₆ alkenyl substituted with 0-2 R^{10a}, C₂₋₆ alkynyl substituted with 0-2 R^{10a}, (C₁₋₆ alkyl)C(O)-, (C₃₋₆ cycloalkyl)C₁₋₃ alkyl-C(O)-, (C₃₋₆ cycloalkyl)C(O)-, phenyl-C(O)-, benzyl-S(O)₂-, (C₁₋₆ alkyl)NHC(O)-, (C₁₋₆ alkyl)NC(O)-, phenyl-NHC(O)-, benzyl-NHC(O)-, (phenyl)(C₁₋₆ alkyl)NC(O)-, (benzyl)(C₁₋₆ alkyl)NC(O)-, (C₁₋₆ alkyl)-S(O)₂-, phenyl-S(O)₂-, -(CH₂)_r-C₃₋₁₀ carbocycle substituted with 0-3 R^d, or -(CH₂)_r-5-10 membered heterocycle consisting of carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p, and substituted with 0-3 R^d;

each R^{10a} is, independently at each occurrence, H, C_{1-4} alkyl, OR^a , Cl, F, Cl, Br, I, =O, CF₃, CN, NO₂, -C(O)R^a, -C(O)OR^a, -C(O)NR^{7a}R⁸, or -S(O)_pR^c;

each R^{11} is, independently at each occurrence, H, =O, -(CH₂)_r-OR^a, F, Cl, Br, I, CF₃, CN, NO₂, -(CH₂)_r-NR⁷R⁸, -(CH₂)_r-C(=NR⁸)NR⁷R⁹, -C(O)R^a, -C(O)OR^a,

-(CH₂)_r-NR⁸C(O)Ra, -NHC(O)(CH₂)_rC(O)ORa, -NR⁸C(O)ORc, -C(O)NR⁷aR⁸, -NR⁸C(O)NR⁸R¹⁰, -SO₂NR⁸R¹⁰, -NR⁸SO₂NR⁸R¹⁰, -NR⁸SO₂-C₁₋₄ alkyl, -NR⁸SO₂CF₃, -NR⁸SO₂-phenyl, -S(O)₂CF₃, -S(O)_p-C₁₋₄ alkyl, -S(O)_p-phenyl, -(CF₂)_rCF₃, C₁₋₆ alkyl substituted with 0-2 R^{11a}, C₂₋₆ alkenyl substituted with 0-2 R^{11a}, C₁₋₆ alkyl substituted with 0-2 R^{11b}, or C₂₋₆ alkynyl substituted with 0-2 R^{11b};

each R^{11a} is, independently at each occurrence, =O, ORa, F, Cl, Br, I, CN, NO₂, -NR⁷R⁸, -C(O)Ra, -C(O)ORa, -NR⁸C(O)Ra, -C(O)NR⁷aR⁸, -NR⁸C(O)NR⁸R¹⁰, -SO₂NR⁸R¹⁰, -NR⁸SO₂NR⁸R¹⁰, -NR⁸SO₂-Cl₁₋₄ alkyl, -NR⁸SO₂CF₃, -NR⁸SO₂-phenyl, -S(O)₂CF₃, -S(O)_p-Cl₁₋₄ alkyl, -S(O)_p-phenyl, or -(CF₂)_rCF₃;

each R^{11b} is, independently at each occurrence, C_{3-10} carbocycle substituted with 0-3 R^d , or a 5-12 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and $S(O)_p$, and substituted 0-3 R^d ;

each R¹² is, independently at each occurrence, OR^{12a}, -CH₂OR^{12a},
-C(O)NR^{7a}R⁸, -(CH₂)_rCO₂R^{12a}, -(CH₂)_rSO₃H, -OSO₃H, -(CH₂)_rPO₃H, -OPO₃H₂,
-PO₃H₂, -NHCOCF₃, -NHSO₂CF₃, -CONHNHSO₂CF₃, -C(CF₃)₂OH, -SO₂NHR^{12a},
-CONHSO₂NHR^{12a}, -SO₂NHCOR^{12a}, -SO₂NHCO₂R^{12a}, -CONHSO₂R^{12b},
-NHSO₂R^{12b}, -CONHOR^{12b},

$$-(CH_{2})_{r} - (CH_{2})_{r} - (CH$$

each R^{12a} is, independently at each occurrence, H, C_{1-6} alkyl, $-(CH_2)_r$ - C_{3-10} carbocycle substituted with 0-3 R^d , or $-(CH_2)_r$ -5-10 membered heterocycle consisting of carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and $S(O)_p$, and substituted with 0-3 R^d ;

each R^{12b} is, independently at each occurrence, C_{1-6} alkyl substituted with 0-2 R^{12c} , C_{2-6} alkenyl substituted with 0-2 R^{12c} , C_{2-6} alkynyl substituted with 0-2 R^{12c} , $-(CH_2)_r-C_{3-10}$ carbocycle substituted with 0-3 R^{12c} , or $-(CH_2)_r-5-10$ membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and $S(O)_p$, and substituted with 0-3 R^{12c} ;

each R^{12c} is, independently at each occurrence, H, F, Cl, Br, I, CF₃, OCF₃, CN, NO₂, OR^a, -CO₂R^a, -NR⁷R⁸, -SO₂R^c, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, -(CH₂)_r-C₃₋₁₀ carbocycle substituted with 0-3 R^d, or -(CH₂)_r-5-10 membered heterocycle consisting of carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p, and substituted with 0-3 R^d;

each R^a is, independently at each occurrence, H, C_{1-4} alkyl, $-(CH_2)_r$ - C_{3-7} cycloalkyl, $-(CH_2)_r$ - C_{6-10} aryl, or $-(CH_2)_r$ -5-10 membered heteroaryl, wherein said aryl or heteroaryl groups are optionally substituted with 0-2 R^f :

each R^b is, independently at each occurrence, CF_3 , OH, C_{1-4} alkoxy, C_{1-6} alkyl, $-(CH_2)_r$ - C_{3-10} carbocycle substituted with 0-2 R^d , or $-(CH_2)_r$ -5-10 membered heterocycle containing from 1-4 heteroatoms selected from the group consisting of N, O, and $S(O)_p$ and substituted with 0-2 R^d ;

each R^c is, independently at each occurrence, C_{1-4} alkyl, C_{6-10} aryl, 5-10 membered heteroaryl, (C_{6-10} aryl)- C_{1-4} alkyl, or (5-10 membered heteroaryl)- C_{1-4} alkyl, wherein said aryl and heteroaryl groups are substituted with 0-2 R^d ;

each R^d is, independently at each occurrence, H, =O, OR^a, F, Cl, Br, I, CN, NO₂,
-NR⁷R⁸, -C(O)R^a, -C(O)OR^a, -NR⁸C(O)R^a, -C(O)NR⁷aR⁸, -SO₂NR⁸R⁹,
-NR⁸SO₂NR⁸R⁹, -NR⁸SO₂-C₁₋₄ alkyl, -NR⁸SO₂CF₃, -NR⁸SO₂-phenyl, -S(O)₂CF₃,
-S(O)_p-C₁₋₄ alkyl, -S(O)_p-phenyl, -(CF₂)_rCF₃, C₁₋₆ alkyl substituted with 0-2 R^e,
C₂₋₆ alkenyl substituted with 0-2 R^e, or C₂₋₆ alkynyl substituted with 0-2 R^e;
each R^e is, independently at each occurrence, =O, OR^a, F, Cl, Br, I, CN, NO₂,
-NR⁸R⁹, -C(O)R^a, -C(O)OR^a, -NR⁸C(O)R^a, -C(O)NR⁷aR⁸, -SO₂NR⁸R⁹,

-NR⁸SO₂NR⁸R⁹, -NR⁸SO₂-C₁₋₄ alkyl, -NR⁸SO₂CF₃, -NR⁸SO₂-phenyl, -S(O)₂CF₃, -S(O)_p-C₁₋₄ alkyl, -S(O)_p-phenyl, or -(CF₂)_rCF₃;

each Rf is, independently at each occurrence, H, =O, -(CH₂)_r-ORg, F, Cl. Br, I, CN, NO₂, -NR⁸R⁹, -C(O)Rg, -C(O)ORg, -NR⁸C(O)Rg, -C(O)NR⁸R⁹, -SO₂NR⁸R⁹, -NR⁸SO₂NR⁸R⁹, -NR⁸SO₂-Cl₁₋₄ alkyl, -NR⁸SO₂CF₃, -NR⁸SO₂-phenyl, -S(O)₂CF₃, -S(O)_p-Cl₁₋₄ alkyl, -S(O)_p-phenyl, -(CF₂)_rCF₃, Cl₁₋₆ alkyl, Cl₂₋₆ alkenyl, or Cl₂₋₆ alkynyl; each Rg is, independently at each occurrence, H, Cl₁₋₆ alkyl, or -(CH₂)_n-phenyl; n, at each occurrence, is selected from 0, 1, 2, 3, and 4; p, at each occurrence, is selected from 0, 1, and 2; and r, at each occurrence, is selected from 0, 1, 2, 3, and 4.

3. (Currently amended) A compound according to Claim 2, wherein the compound is of Formula (Ib):

$$R^1$$
 N
 A
 L_2
 B
 (Ib)

or a stereoisomer or pharmaceutically acceptable salts, hydrates, or prodrugs thereof, wherein:

W is -CH₂CH₂-, -CH=CH-, -C(benzyl)=CH-, -C(C₁₋₄ alkyl)=CH-, -CH=N-,
-C(C₁₋₄ alkyl)=NH-, -C(benzyl)=N-, -CH(benzyl)CH₂-, -CH(phenyl)CH₂CH₂-,
-C(Me)(phenyl)CH₂CH₂-, -C(3,5-diMe-benzyl)=CH-, -C(CH₂OH)=CH,
-C(CONHMe)=CH-, -C(CONHPh)=CH-, -C(4-CO₂H-benzyl)=CH-, or
-C(CH₂CONHMe)=CH-;

L₂ is a bond, $\frac{\text{CH}_2}{1-2}$, $\frac{\text{O}}{1-2}$, $\frac{\text{O}}{1-2}$, $\frac{\text{CH}_2}{1-2}$, \frac

A is phenyl substituted with 0-2 R¹¹, or pyridyl substituted with 0-2 R¹¹;

B is phenyl substituted with 0-2 R^{11} and 0-1 R^{12} , or pyridyl substituted with 0-2 R^{11} and 0-1 R^{12} :

 R^1 is -C(=NH)NH₂, -C(=O)NH₂, <u>or</u> -CH₂NH₂, -C(O)NR^{7a}R⁸, OMe, Cl, H, F, NH₂ or CN;

each R⁷ is, independently at each occurrence, H, C₁₋₆ alkyl, or benzyl; each R^{7a} is, independently at each occurrence, H, C₁₋₄ alkyl substituted with 0-1 R^{7b} or 0-1 R^c, C₃₋₇ cycloalkyl substituted with 0-2 R^d, phenyl substituted with 0-3 R^f, or a 5-6 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p, and substituted 0-3 R^f;

each R^{7b} is, independently at each occurrence, =O, ORg, F, Cl, Br, I, CN, NO₂, -NR⁷R⁸, -C(O)Rg, -C(O)ORg, -NR⁸C(O)Rg, -C(O)NR⁸R⁹, -NR⁸C(O)NR⁸R⁹, -NR⁸SO₂NR⁸R⁹, -NR⁸SO₂NR⁸R⁹, -NR⁸SO₂CF₃, -NR⁸SO₂-phenyl, -S(O)₂CF₃, -S(O)_p-C₁₋₄ alkyl, -S(O)_p-phenyl, or -(CF₂)_rCF₃;

each R^{7c} is, independently at each occurrence, C_{3-10} carbocycle substituted with 0-3 Rf; or a 5-12 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and $S(O)_p$, and substituted 0-3 Rf;

each R^8 is, independently at each occurrence, H, C_{1-6} alkyl, or benzyl; each R^9 is, independently at each occurrence, H, C_{1-6} alkyl, or benzyl; each R^{11} is, independently at each occurrence, H, F, Cl, CF_3 ,

 C_{1-6} alkyl, -(CH₂)_r-OR^a, CN, -(CH₂)_r-NR⁷R⁸, -(CH₂)_r-C(=NR⁸)NR⁷R⁹,

-C(O)Ra, -C(O)ORa, -(CH2)r-NR8C(O)Ra, -NR8C(O)ORc, -C(O)NR7aR8,

 $-NR^8C(O)NR^8R^{10}$, $-SO_2NR^8R^{10}$, $-NR^8SO_2NR^8R^{10}$, or $-NR^8SO_2-C_{1-4}$ alkyl;

 R^{12} is -C(O)NR^{7a}R⁸, -(CH₂)_rCO₂R^{12a}, -CH₂OR^{12a}, -SO₂NHR^{12a},

 $-\mathsf{SO}_2\mathsf{NHCOR}^{12a},\,-\mathsf{SO}_2\mathsf{NHCO}_2\mathsf{R}^{12a},\,-\mathsf{CONHSO}_2\mathsf{R}^{12b},\,-\mathsf{NHSO}_2\mathsf{R}^{12b},\,\mathsf{or}$

- $(CH_2)_r$ -5-tetrazolyl;

each R^{12a} is, independently at each occurrence, H or C_{1-6} alkyl; each R^{12b} is, independently at each occurrence, C_{1-4} alkyl substituted with 0-1 R^{12c} , C_{2-4} alkenyl substituted with R^{12c} , - $(CH_2)_r$ - C_{3-7} carbocycle substituted with 0-2 R^{12c}, or - $(CH_2)_r$ -5-6 membered heterocycle consisting of: carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p, and substituted with 0-2 R^{12c};

each R^{12c} is, independently at each occurrence, H, F, Cl, Br, I, CF₃, OCF₃, CN, NO₂, OR^a, -CO₂R^a, -NR⁷R⁸, -SO₂R^c, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, -(CH₂)_r-C₃₋₁₀ carbocycle substituted with 0-3 R^d; or -(CH₂)_r-5-10 membered heterocycle consisting of carbon atoms and 1-4 heteroatoms selected from the group consisting of N, O, and S(O)_p, and substituted with 0-3 R^d;

each R^a is, independently at each occurrence, H, C_{1-4} alkyl, $-(CH_2)_r - C_{3-7} \text{ cycloalkyl, } -(CH_2)_r - C_{6-10} \text{ aryl, or } -(CH_2)_r - 5-10 \text{ membered heteroaryl,}$ wherein said aryl or heteroaryl groups are optionally substituted with 0-2 R^f ;

each R^c is, independently at each occurrence, C_{1-4} alkyl, phenyl or benzyl; each R^f is, independently at each occurrence, H, =0, - $(CH_2)_r$ -ORg, F, CI, Br, CF_3 , CN, NO_2 , - NR^8R^9 , -C(O)Rg, -C(O)ORg, - $NR^8C(O)Rg$, - $C(O)NR^8R^9$, - $SO_2NR^8R^9$, - NR^8SO_2 - C_{1-4} alkyl, - $NR^8SO_2CF_3$, - $S(O)_2CF_3$, - $S(O)_p$ - C_{1-4} alkyl, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, or C_2 - C_6 alkynyl;

each Rg is, independently at each occurrence, H or C_{1-4} alkyl; p, at each occurrence, is selected from 0, 1, and 2; and r, at each occurrence, is selected from 0, 1, 2, 3, and 4.

4. (Currently amended) A compound according to Claim 3, wherein:

W is -CH₂CH₂-, -CH=CH-, -C(benzyl)=CH-, -C(C_{1-4} alkyl)=CH-, -CH=N-,

- -CH(benzyl)CH₂-, -CH(phenyl)CH₂CH₂-, -C(Me)(phenyl)CH₂CH₂-,
- -C(3,5-diMe-benzyl)=CH-, -C(CH₂OH)=CH, -C(CONHMe)=CH-,
- -C(CONHPh)=CH-, -C(4-CO₂H-benzyl)=CH-, or -C(CH₂CONHMe)=CH-;

 $L_2 \text{ is a bond, } \textcolor{red}{\textbf{CH_2-, O-, CONH-, -NHCO-, (CH_2)O-, or -OCH_2-;}}$

A is phenyl substituted with 0-2 R¹¹, or pyridyl substituted with 0-2 R¹¹;

B is phenyl substituted with 0-2 R^{11} and 0-1 R^{12} , or pyridyl substituted with 0-2 R^{11} and 0-1 R^{12} ;

 R^1 is $-C(=NH)NH_2$, $-C(=O)NH_2$, or $-CH_2NH_2$, H, F, Cl, or OMe; each R¹¹ is, independently at each occurrence, H, F, CF₃, C₁₋₄ alkyl, OH, -CH₂OH, OMe, OEt, CN, -NH₂, -CH₂NH₂, -CH₂NMe₂, -C(=NH)NH₂, -CH₂C(=NH)NH₂, -CH₂NHAc, -CO₂H, -CO₂Me, -NHAc, -NHCOEt, -NHCOPr, -NHCO(i-Pr), -NHC(O)(i-Bu), -NHCO(phenyl), -NHCO(benzyl), -NHCO(tetrazol-5-yl), -NHCOCH₂(tetrazol-5-yl), -NHCO(CH₂)₂(tetrazol-5-yl), -CO(1-morpholino), -CO[4-(2-OH-ethyl)-1-piperdinyl], -CO[4-(2-OMe-ethyl)-1-piperdinyl], -CO[4-(2-CO₂Et-ethyl)-1-piperdinyl], $-C(O)NH_2$, -C(O)NHMe, -C(O)NHEt, -C(O)NHPr, -C(O)NH(i-Bu), -C(O)NHisoamyl, -C(O)NH(CH₂CH₂N(Me)₂), -CONHCH₂CO₂H, -CONH(CH₂)₂CO₂H, -CONH(CH₂)₃CO₂H, -CONH(CH₂)₃OH, -CONHcyclopropylmethyl, -CONHcyclohexylmethyl, -CONHphenyl, -CONH(benzyl), -CONHCH(Me)phenyl, -CONH(4-OMe-benzyl), -CONH(3,5-diOMe-benzyl), -CONH(4-Cl-benzyl), -CONH(phenethyl), -CONH(3-Cl-phenethyl), -CONH(phenylpropyl), -CONH[(2-pyridyl)-methyl], -CONH[(3-pyridyl)-methyl], -CONH[2-(2-pyridyl)-ethyl], -CONHCH₂(4-tetrahydropyranyl), -CONHCH₂(1-indanyl), -CONH(1-naphthyl), -NHSO₂Me, or -NHSO₂Et; and

 $\rm R^{12}$ is OH, -CH₂OH, -CO₂H, -CH₂(CO₂H), -CO₂Me, -SO₂NH₂, or -CONH₂.

5. (Currently amended) A compound according to Claim 4, wherein:

W is -CH₂CH₂-, -CH=CH-, -C(benzyl)=CH-, -CH(benzyl)CH₂-, or

-C(C₁₋₄ alkyl)=CH-;

L₂ is a bond, -CONH-, -NHCO-, -(CH₂)O-, or -OCH₂-;

A is 1,2-phenylene, 3-carboxy-1,2-phenylene, 4-methyl-1,2-phenylene, 4-methoxy-1,2-phenylene, 4-amidino-1,2-phenylene, 4-amidinomethyl-1,2-phenylene, 4-acetoamidomethyl-1,2-phenylene, 5-(N,N-dimethylaminoethylcarbamoyl)-1,2-phenylene, 5-carboxy-1,2-phenylene,

- 5-hydroxymethyl-1,2-phenylene, 5-acetylamino-1,2-phenylene,
- 5-propionylamino-1,2-phenylene, 5-butyrylamino-1,2-phenylene,
- 5-(3-methylbutyrylamino)-1,2-phenylene,
- 5-(2,2-dimethylpropionylamino)-1,2-phenylene,
- 5-benzylcarbonylamino-1,2-phenylene, 4-methoxy-5-hydroxy-1,2-phenylene,
- 5-carbamoyl-1,2-phenylene, 5-methylcarbamoyl-1,2-phenylene,
- 5-ethylcarbamoyl-1,2-phenylene, 5-propylcarbamoyl-1,2-phenylene,
- 5-isopropylcarbamoyl-1,2-phenylene, 5-isobutylcarbamoyl-1,2-phenylene,
- 5-t-butylcarbamoyl-1,2-phenylene, 5-isoamylcarbamoyl-1,2-phenylene,
- 5-carboxymethylcarbamoyl-1,2-phenylene, 5-(2-carboxyethyl)carbamoyl-1,2-phenylene,
- 5-(3-hydroxypropyl)carbamoyl-1,2-phenylene,
- 5-(3-carboxypropyl)carbamoyl-1,2-phenylene,
- 5-cyclopropylmethylcarbamoyl-1,2-phenylene,
- 5-cyclohexylmethylcarbamoyl-1,2-phenylene, 5-phenylcarbamoyl-1,2-phenylene,
- 5- benzylcarbamoyl-1,2-phenylene, 5-(1-phenylethyl)carbamoyl-1,2-phenylene,
- 5-phenethylcarbamoyl-1,2-phenylene, 5-(3-phenylpropylcarbamoyl)-1,2-phenylene,
- 5-(4-methoxybenzyl)carbamoyl-1,2-phenylene,
- 5-(3,5,dimethoxybenzyl)carbamovl-1,2-phenylene,
- 5-(4-chlorobenzyl)carbamoyl-1,2-phenylene,
- 5-[2-(3-chloropheny)ethyl]carbamoyl-1,2-phenylene,
- 5-(2-pyridylmethyl)carbamoyl-1,2-phenylene,
- 5-(3-pyridylmethyl)carbamoyl-1,2-phenylene,
- 5-[2-(2-pyridyl)ethyl]carbamoyl-1,2-phenylene,
- 5-(4-tetrahydropyranyl)methylcarbamoyl-1,2-phenylene,
- 5-(morpholine-4-carbonyl)-1,2-phenylene,
- 5-[4-(2-hydroxyethyl)-piperdine-1-carbonyl]-1,2-phenylene,
- 5-[4-(2-methoxyethyl)-piperdine-1-carbonyl]-1,2-phenylene,
- 5-[4-(ethoxycarbonylmethyl)-piperdine-1-carbonyl]-1,2-phenylene,
- 5-(1-naphthyl)carbamoyl-1,2-phenylene, 5-(1-indanyl)carbamoyl-1,2-phenylene,
- 1,3-phenylene, 5-amino-1,3-phenylene, 5-acetylamino-1,3-phenylene,
- 5-propionylamino-1,3-phenylene, 5-butyrylamino-1,3-phenylene,

- 5-(3-methylbutyrylamino)-1,2-phenylene,
- 5-(2,2-dimethylpropionylamino)-1,2-phenylene, or 6-amino-2,3-pyridylene; wherein the attachment to L₂ is at carbon 1 of said phenylene rings;

B is 2-carboxy-phenyl, 2-aminosulfonyl-phenyl, 3-carboxymethyl-phenyl, 2,4-dicarboxy-phenyl, 2,4-dicarboxy-phenyl, 2,4-dicarboxyl-phenyl, 2-carboxy-4-methoxycarbonyl-phenyl, 2-carboxy-4-methyl-phenyl, 2-carboxy-4-methoxy-phenyl, 2-carboxy-4-flouro-phenyl, 2-carboxy-4-amino-phenyl, 2-carboxy-4-cyano-phenyl, 2-carboxy-4-acetylamino-phenyl, 2-carboxy-4-carbamoyl-phenyl, 2,5-dicarboxy-phenyl, 2,5-dicarboxy-4-methoxy-phenyl, 2-carboxy-4-triflouromethyl-phenyl, 2-carboxy-4-methoxy-phenyl, 3-carboxy-4-triflouromethyl-phenyl, 5-carboxy-4-methoxy-phenyl, 3-carboxy-4-pyridyl, or 2-carboxy-6-methoxy-3-pyridyl; and

 R^1 is $-C(=NH)NH_2$, $-C(=O)NH_2$, $-NH_2$, or $-CH_2NH_2$, F, H, CI, or OMe.

- 6. (Original) A compound of Claim 1 selected from:
 - 2'-(5-carbamimidoyl-2,3-dihydroindol-1-ylmethyl)-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydroindol-1-ylmethyl)-biphenyl-2,4-dicarboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydroindol-1-ylmethyl)-4-isobutylcarbamoyl-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydroindol-1-ylmethyl)-4-methoxybiphenyl-2-carboxylic acid;
- 4-acetylamino-2'-(5-carbamimidoyl-2,3-dihydroindol-1-ylmethyl)-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydroindol-1-ylmethyl)-4'-methoxy-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-carbamoyl-biphenyl-2-carboxylic acid;
 - 3'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-biphenyl-2-carboxylic acid;

- 3'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-biphenyl-2,4-dicarboxylic acid;
 - 1-(2'-sulfamoyl-biphenyl-3-ylmethyl)-2,3-dihydro-1H-indole-5-carboxamidine;
 - [2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-biphenyl-3-yl]-acetic acid;
- 5'-acetylamino-2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-5'-phenethylcarbamoyl-biphenyl-2-carboxylic acid;
- 5'-benzylcarbamoyl-2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-5'-(3-phenylpropylcarbamoyl)-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-5'-(2-pyridin-2-ylethylcarbamoyl)-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methoxy-5'-phenethylcarbamoyl-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methoxy-5'-(3-chloro-phenethyl)carbamoyl-biphenyl-2-carboxylic acid;
 - 2'-(5-carbamimidoyl-indol-1-ylmethyl)-biphenyl-2-carboxylic acid;
- 2'-(3-benzyl-5-carbamimidoyl-indol-1-ylmethyl)-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(3-benzyl-5-carbamimidoyl-indol-1-ylmethyl)-4-methoxy-5'-phenethylcarbamoyl-biphenyl-2-carboxylic acid;
- 2'-(3-benzyl-5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(3-benzyl-5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methoxy-5'-phenethylcarbamoyl-biphenyl-2-carboxylic acid;
- 2'-(6-carbamimidoyl-3,4-dihydro-2H-quinolin-1-ylmethyl)-biphenyl-2-carboxylic acid;

- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-5'-phenethylcarbamoyl-biphenyl-2-carboxylic acid;
- 5'-benzylcarbamoyl-2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methoxy-5'-phenethylcarbamoyl-biphenyl-2-carboxylic acid;
- 5'-benzylcarbamoyl-2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methoxy-biphenyl-2-carboxylic acid;
 - 2-benzyloxy-5-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-benzoic acid;
 - 2-benzyloxy-3-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-benzoic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methoxy-4'-methylbiphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-indol-1-ylmethyl)-4-methoxy-4'-methyl-biphenyl-2-carboxylic acid;
- 2'-(3-benzyl-5-carbamimidoyl-indol-1-ylmethyl)-4-methoxy-4'-methyl-biphenyl-2-carboxylic acid;
- 2'-(3-benzyl-5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methoxy-4'-methyl-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-indol-1-ylmethyl)-4-methoxy-5'-(2-pyridin-2-ylethylcarbamoyl)-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-ethoxy-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-fluoro-biphenyl-2-carboxylic acid;
- 5'-benzylcarbamoyl-2'-(5-carbamimidoyl-indol-1-ylmethyl)-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(3-benzyl-5-carbamimidoyl-indol-1-ylmethyl)-4'-carbamimidoyl-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methoxy-5'-phenylacetylamino-biphenyl-2-carboxylic acid;
 - 2'-(5-carbamimidoyl-indol-1-ylmethyl)-4-methoxy-biphenyl-2-carboxylic acid;

- 6'-(3-benzyl-5-carbamimidoyl-indol-1-ylmethyl)-4-methoxy-biphenyl-2,3'-dicarboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4,5-dimethoxy-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methyl-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-indol-1-ylmethyl)-5'-[2-(3-chloro-phenyl)-ethylcarbamoyl]-4-methoxy-biphenyl-2-carboxylic acid;
- 6'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methoxy-biphenyl-2,3'-dicarboxylic acid;
 - 2'-(5-carbamimidoyl-indol-1-ylmethyl)-4-carbamoyl-biphenyl-2-carboxylic acid;
- 4'-aminomethyl-2'-(3-benzyl-5-carbamimidoyl-indol-1-ylmethyl)-4-methoxy-biphenyl-2-carboxylic acid;
- 4'-(acetylamino-methyl)-2'-(3-benzyl-5-carbamimidoyl-indol-1-ylmethyl)-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(3-benzyl-5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4'-carbamimidoyl-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methoxy-5'-propylcarbamoyl-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoylindol-1-ylmethyl)-4-methoxy-5'-propylcarbamoyl-biphenyl-2-carboxylic acid;
- 2'-[5-carbamimidoyl-3-(3,5-dimethyl-benzyl)-indol-1-ylmethyl]-4-methoxy-biphenyl-2-carboxylic acid;
- 4'-aminomethyl-2'-(3-benzyl-5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-[5-carbamimidoyl-3-(3,5-dimethyl-benzyl)-2,3-dihydro-indol-1-ylmethyl]-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoylindol-1-ylmethyl)-5'-(carboxymethyl-carbamoyl)-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-5'-(carboxymethyl-carbamoyl)-4-methoxy-biphenyl-2-carboxylic acid;

- 2'-(5-carbamimidoylindol-1-ylmethyl)-biphenyl-2,5-dicarboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-biphenyl-2,5-dicarboxylic acid;
- 5'-benzylcarbamoyl-2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methyl-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-trifluoromethyl-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoylindol-1-ylmethyl)- 4-methoxy-biphenyl-2,5-dicarboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methyl-5'propylcarbamoyl-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-5'-(cyclohexylmethyl-carbamoyl)-4-methyl-biphenyl-2-carboxylic acid;
- 2-[6-amino-2-(5-carbamimidoyl-indol-1-ylmethyl)-pyridin-3-yl]-5-methoxybenzoic acid;
- 2-[6-amino-2-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-pyridin-3-yl]-5-methoxy-benzoic acid;
- 2'-(3-benzyl-5-carbamimidoyl-indol-1-ylmethyl)-5'-carbamoyl-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(3-benzyl-5-carbamimidoyl-indol-1-ylmethyl)-4-methoxy-5'-methylcarbamoyl-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methyl-5'-[(pyridin-2-ylmethyl)-carbamoyl]-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-5'-isobutylcarbonylamino-4-methoxy-biphenyl-2-carboxylic acid;
- 5'-benzylcarbamoyl 2'-(5-carbamimidoyl-indol-1-ylmethyl)-4-methyl-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-3-methylcarbamoyl-indol-1-ylmethyl)-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-3-phenylcarbamoyl-indol-1-ylmethyl)-4-methoxy-biphenyl-2-carboxylic acid;

- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-5'-(3,5-dimethoxy-benzylcarbamoyl)-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methoxy-5'-[(naphthalen-1-ylmethyl)-carbamoyl]-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-5'-(2-carboxy-ethylcarbamoyl)-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methoxy-biphenyl-2,5-dicarboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methoxy-5'-(4-methoxy-benzylcarbamoyl)-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-3-hydroxymethyl-indol-1-ylmethyl)-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-5'-(cyclopropylmethyl-carbamoyl)-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-5'-(4-chloro-benzylcarbamoyl)-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(3-benzyl-5-carbamimidoyl-indol-1-ylmethyl)-4-methyl-5'-methylcarbamoyl-biphenyl-2-carboxylic acid;
- 2'-(3-benzyl-5-carbamimidoyl-indol-1-ylmethyl)-4-carbamoyl-5'-methylcarbamoyl-biphenyl-2-carboxylic acid;
- 2'-(3-benzyl-5-carbamimidoyl-indol-1-ylmethyl)-4-methoxy-biphenyl-2,5-dicarboxylic acid;
- 2'-(3-benzyl-5-carbamimidoyl-indol-1-ylmethyl)- 4-methoxy-5'-methylcarbamoyl-biphenyl-2,5-dicarboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methoxy-5'-(morpholine-4-carbonyl)-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methoxy-5'-[4-(2-methoxy-ethyl)-piperazine-1-carbonyl]-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-5'-isobutylcarbamoyl-4-methoxy-biphenyl-2-carboxylic acid;

- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methoxy-5'-(3-methyl-butylcarbamoyl)-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methoxy-5'-[(pyridin-3-ylmethyl)-carbamoyl]-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methoxy-5'-[(tetrahydropyran-4-ylmethyl)-carbamoyl]-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-5'-[4-(ethoxycarbonylmethyl)]-piperazine-1-carbonyl-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-indol-1-ylmethyl)-4-methoxy-biphenyl-2,6-dicarboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methoxy-5'-((S)-1-phenyl-ethylcarbamoyl)-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-methoxy-5'-((R)-1-phenyl-ethylcarbamoyl)-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-5'-(indan-1-ylcarbamoyl)-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(3-benzyl-5-carbamimidoyl-indol-1-ylmethyl)-5'-ethylcarbamoyl-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(3-benzyl-5-carbamimidoyl-indol-1-ylmethyl)-4-methoxy-5'-propylcarbamoyl-biphenyl-2-carboxylic acid;
- 2'-(3-benzyl-5-carbamimidoyl-indol-1-ylmethyl)-5'-(cyclopropylmethyl-carbamoyl)-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(3-benzyl-5-carbamimidoyl-indol-1-ylmethyl)-5'-isobutylcarbamoyl-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-5'-(3-hydroxypropylcarbamoyl)-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-5'-methylcarbamoyl-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-5'-(3-carboxypropylcarbamoy)l-4-methoxy-biphenyl-2-carboxylic acid;

- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-5'-(4-(2-hydroxyethyl)-piperazine-1-carbonyl)-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-5'-[2-(N,N-dimethylamino)ethyl]carbamoyl-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(3-benzyl-5-carbamimidoyl-indol-1-ylmethyl)-5'-methylcarbamoyl-4-methoxy-biphenyl-3-carboxylic acid;
- 2'-(3-(4-carboxybenzyl)-5-carbamimidoyl-indol-1-ylmethyl)-4-methoxy-5'-methylcarbamoyl-biphenyl-2-carboxylic acid;
- 3-{2-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-5-[(pyridin-2-ylmethyl)-carbamoyl]-phenyl}-6-methoxy-pyridine-2-carboxylic acid;
- 2'-(5-carbamimidoyl-3-methylcarbamoylmethyl-indol-1-ylmethyl)-5'-methylcarbamoyl-4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-5'-[(pyridin-2-ylmethyl)-carbamoyl]-biphenyl-2-carboxylic acid;
- 3'-(5-carbamimidoyl-2,3-dihydro-indol-1-ylmethyl)-4-carbamoyl-biphenyl-2-carboxylic acid;
- 4-{2-[5-carbamimidoylindol-1-ylmethyl)-5-[(pyridin-2-ylmethyl)-carbamoyl]-phenyl}-nicotinic acid;
- 2'-(5-carbamoyl-2,3-dihydro-indol-1-ylmethyl)-5'-(3-chlorophenethyl-carbamoyl)-4-methoxy-biphenyl-2-carboxylic acid;
- 5'-benzylcarbamoyl-2'-(5-carbamoyl-2,3-dihydro-indol-1-ylmethyl)- -4-methoxy-biphenyl-2-carboxylic acid;
- 2'-(5-aminomethyl-3-benzyl-indol-1-ylmethyl)-4-methyl-5'-methylcarbamoyl-biphenyl-2-carboxylic acid; and
- 2'-(5-carbamimidoyl-3-benzyl-indol-1-ylmethyl)-5'-dimethylcarbamoyl-4-methoxy-biphenyl-2-carboxylic acid;
- or a stereoisomer or a pharmaceutically acceptable salt, hydrate or prodrug form thereof.

7. (Original) A pharmaceutical composition, comprising: a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of Claim 1 or a pharmaceutically acceptable salt or hydrate thereof.

- 8. (Withdrawn) A method for treating thromboembolic disorders, comprising: administering to a patient in need thereof a therapeutically effective amount of a compound of Claim 1 or a pharmaceutically acceptable salt or hydrate thereof.
- 9. (Withdrawn) A method according to Claim 8, wherein the thromboembolic disorder is selected from the group consisting of arterial cardiovascular thromboembolic disorders, venous cardiovascular thromboembolic disorders, and thromboembolic disorders in the chambers of the heart.
- 10. (Withdrawn) A method according to Claim 9, wherein the thromboembolic disorder is selected from unstable angina, an acute coronary syndrome, first myocardial infarction, recurrent myocardial infarction, ischemic sudden death, transient ischemic attack, stroke, atherosclerosis, peripheral occlusive arterial disease, venous thrombosis, deep vein thrombosis, thrombophlebitis, arterial embolism, coronary arterial thrombosis, cerebral arterial thrombosis, cerebral embolism, kidney embolism, pulmonary embolism, and thrombosis resulting from (a) prosthetic valves or other implants, (b) indwelling catheters, (c) stents, (d) cardiopulmonary bypass, (e) hemodialysis, or (f) other procedures in which blood is exposed to an artificial surface that promotes thrombosis.
- 11. (Withdrawn) A method for treating inflammatory disorders, comprising: administering to a patient in need thereof a therapeutically effective amount of a compound of Claim 1 or a pharmaceutically acceptable salt or hydrate thereof.
- 12. (Withdrawn) A method according to Claim 11, wherein the inflammatory disorder is selected from the group consisting of sepsis, acute respiratory dystress syndrome, and systemic inflammatory response syndrome.

- 13. (Withdrawn) A method of treating a patient in need of thromboembolic disorder treatment, comprising: administering a compound of Claim 1 or a pharmaceutically acceptable salt or hydrate thereof in an amount effective to treat a thromboembolic disorder.
- 14. (Withdrawn) A method, comprising: administering a compound of Claim 1 or a pharmaceutically acceptable salt or hydrate thereof in an amount effective to treat a thromboembolic disorder.

15-23. (Canceled)

- 24. (New) A pharmaceutical composition, comprising: a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of Claim 2 or a pharmaceutically acceptable salt or hydrate thereof.
- 25. (New) A pharmaceutical composition, comprising: a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of Claim 3 or a pharmaceutically acceptable salt or hydrate thereof.
- 26. (New) A pharmaceutical composition, comprising: a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of Claim 4 or a pharmaceutically acceptable salt or hydrate thereof.
- 27. (New) A pharmaceutical composition, comprising: a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of Claim 5 or a pharmaceutically acceptable salt or hydrate thereof.
- 28. (New) A pharmaceutical composition, comprising: a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of Claim 6 or a pharmaceutically acceptable salt or hydrate thereof.