Simulation

Jasmine Ju

June 4th 2016

Outline

- Simulation Results (Thesis Paper Setup)
- Why PostLasso is Better than Lasso? Exploration of 1st Stage Estimation
- Simulation Results (JASA Paper Setup)

Simulation Setup (Thesis paper)

Data generation

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta}_0 + \boldsymbol{\epsilon}$$
 $\mathbf{X} = \mathbf{Z}^T \boldsymbol{\Pi} + \boldsymbol{\omega}$

$$(\epsilon_i, \omega_i) \sim N \left(0, egin{bmatrix} 1 & \sigma_{\epsilon\omega} \ \sigma_{\epsilon\omega} & \sigma_{\omega}^2 \end{bmatrix}\right)$$

- $\mathbf{z}_i = [z_{i1}, ..., z_{iq}]^T \sim N(0, \Sigma_z), \operatorname{Corr}(z_{ih}, z_{ij}) = 0.5^{|i-h|}$
- ▶ Set $\beta = 1$, the strength of the instruments F = 10, 40, 160

$$\sigma_{\omega}^2 = \frac{n\Pi^T \Sigma_z \Pi}{F \Pi^T \Pi}$$

▶ Consider $Corr(\epsilon, \omega) = 0.3$ and $Corr(\epsilon, \omega) = 0.6$

Simulation Setup n > p (Thesis paper)

- ► Example 1: $\Pi = (3, 1.5, 0, 0, 2, 0, 0, 0), n = 20, p = 8$
- ► Example 2: $\Pi_i = 0.85, i = 1, ..., 8, n = 20, p = 8$
- Example 4: $\Pi = (\text{rep}(1,5), \text{rep}(0,95)), n = 500, p = 100$
- ▶ For each example, we tried $Corr(\epsilon, \omega) = 0.3/Corr(\epsilon, \omega) = 0.6$ and presented the results separately (as in the thesis paper).

Data Generation for Example 3?

Code in the Thesis:

```
dat.function <- function(n.p.cor.beta.pi1.fstar){
      # create the column of the matrix Z
      x1 <- replicate(5,rnorm(n)) + rnorm(n,sd=sqrt(0.01))</pre>
      x2 <- replicate(5.rnorm(n)) + rnorm(n.sd=sqrt(0.01))</pre>
      x3 <- replicate(5,rnorm(n)) + rnorm(n,sd=sgrt(0.01))
      x4 <- replicate(25, rnorm(n))
      Z \leftarrow cbind(x1.x2.x3.x4)
      # generete e n and v n
      cov.matrix <- cov(Z)
      sigmav \leftarrow n*(t(pi1)%*%cov.matrix%*%pi1)/(fstar*t(pi1)%*%pi1)
      cov_ve <- cor*sqrt(sigmav)
      covmatr.error <- matrix(c(1,cov_ve,cov_ve,sigmav),ncol=2)</pre>
      mat <- rmvnorm(n.sigma=covmatr.error)</pre>
      v \leftarrow mat[,2]
      e <- mat[.1]
      # generate endogenous variable
      X <- Z%*%pi1 + v
      # Response variable v
      Y \leftarrow beta * X + e
      #Output
      out<-list(dat=data.frame(Y=Y.X=X.Z=Z))
      out
}
```

• W part for $Z_1, ..., Z_5$ are different?

Results: $Cor(\epsilon, v) = 0.3, p < n$, RMSE of $\hat{\beta}$

	2SLS	PostLasso	Lasso	F
Example 1	0.06	0.05	0.11	10
Example 2	0.06	0.06	0.25	10
Example 3	0.01	0.01	0.09	10
Example 4	0.02	0.01	0.75	10
Example 1	0.05	0.05	0.07	40
Example 2	0.07	0.06	0.08	40
Example 3	0.01	0.01	0.04	40
Example 4	0.02	0.01	0.26	40
Example 1	0.05	0.05	0.06	160
Example 2	0.07	0.06	0.07	160
Example 3	0.01	0.01	0.02	160
Example 4	0.02	0.01	0.11	160

- ▶ Table shows the RMSE of the estimated coefficient $\hat{\beta}$
- \triangleright λ is chosen by five-folds cross validation
- ► Lasso has better performance compared with the thesis paper

Results: $Cor(\epsilon, v) = 0.3, p < n$, Number of Selected Vars

Explore 1st Stage (Example 1, 100 iterations)

- ▶ Lasso underestimate positive X, overestimate negative X
- lacktriangle Overestimate eta in the second stage ($\hat{eta} > 1$)
- Similar discovery for other examples

Explore 1st Stage (Example 2, 100 iterations)

Explore 1st Stage (Example 3, 50 iterations)

Explore 1st Stage (Example 4, 100 iterations)

Explore 1st Stage (Summary)

- ► Lasso is useful for selecting variables, but the predicted value in the first stage is always biased
- **Explain** the overestimation of β in the second stage
- ▶ The performance of high dimension scenarios? (n < p)

	2C1 C	Dootl acco	1	F
	2SLS	PostLasso	Lasso	Г
Example 1	0.06	0.05	0.12	10
Example 2	0.07	0.06	0.26	10
Example 3	0.02	0.02	0.10	10
Example 4	0.04	0.02	0.76	10
Example 1	0.05	0.05	0.07	40
Example 2	0.07	0.06	0.09	40
Example 3	0.01	0.01	0.04	40
Example 4	0.04	0.02	0.27	40
Example 1	0.05	0.05	0.06	160
Example 2	0.07	0.06	0.07	160
Example 3	0.01	0.01	0.02	160
Example 4	0.03	0.02	0.11	160

My Simulation Results: $Cor(\epsilon, v) = 0.3, p > n$

	PostLasso	Lasso	F
Example 5	0.01	0.09	10
Example 6	0.01	0.08	10
Example 7	0.01	0.31	10
Example 8	0.01	0.67	10
Example 5	0.01	0.07	40
Example 6	0.01	0.04	40
Example 7	0.01	0.19	40
Example 8	0.01	0.67	40
Example 5	0.01	0.06	160
Example 6	0.01	0.03	160
Example 7	0.01	0.17	160
Example 8	0.01	0.66	160

My Simulation Results: $Cor(\epsilon, v) = 0.6, p > n$

	PostLasso	Lasso	F
Example 5	0.01	0.09	10
Example 6	0.01	0.09	10
Example 7	0.02	0.31	10
Example 8	0.01	0.67	10
Example 5	0.01	0.07	40
Example 6	0.01	0.04	40
Example 7	0.01	0.19	40
Example 8	0.01	0.67	40
Example 5	0.01	0.06	160
Example 6	0.01	0.03	160
Example 7	0.01	0.15	160
Example 8	0.01	0.65	160