Date: 13/11/2020

Aim: 3 Phase Transformer Connections Verification

Tool used: MATLAB

Electrical Circuit:

Star-Star

Star-Delta

Y-Δ Connection

Delta-Delta Δ-Δ Connection Delta-Star

Parameters used for the study

Transformer rating = 25KVA Frequency f=50 Hz

Transformer ratio=2

V1=400V

V2=200V

 $R_1 = 0.7488$ ohm (Primary winding resistance)

 $X_{11} = 1.00224$ ohm (Primary winding reactance)

 $R_2 = 0.007488$ ohm (Secondary winding resistance)

 $X_{12} = 0.0100224$ ohm (Secondary winding reactance) $X_M = 5,008$ ohm (Magnetizing reactance) $R_c = 33,391$ ohm (Resistance for core losses)

Theoretical Analysis

Three-phase Transformer Line Voltage and Current

Primary-Secondary Configuration	Line Voltage Primary or Secondary	Line Current Primary or Secondary
Delta - Delta	$V_L \Rightarrow nV_L$	$I_L \Rightarrow \frac{I_L}{n}$
Delta - Star	$V_L \Rightarrow \sqrt{3}.nV_L$	$I_L \Rightarrow \frac{I_L}{\sqrt{3}.n}$
Star - Delta	$V_L \Rightarrow \frac{nV_L}{\sqrt{3}}$	$I_L \Rightarrow \sqrt{3} \cdot \frac{I_L}{n}$
Star – Star	$V_L \Rightarrow nV_L$	$I_{L} \Rightarrow \frac{I_{L}}{n}$

Simulation Diagram:

Star-Star

Star-Delta

Procedure for simulation study

- Write the coding for initializing the input parameters and as per requirement of plots in m file and save it.
- Open new Simulink file and make mathematical modelling as per circuit diagram and save it. Run the m file first, after that run Simulink file.
- View the result in Scope.
- Again, run m file and view the plots.
- Make various plots and write the results.

Results and Discussions

	VL(Primary)	VL(Secondary)	VP(Primary)	VP(Secondary)
Star-Star	400	200	230.9	115.4
Star-Delta	400	115.4	230.9	115.5
Delta-Delta	400	200	400	200
Delta-Star	400	345.7	400	200

Conclusion

Hence Verified voltage relations for each type of 3 phase transformer connection.

Inference

Theoretical analysis matched with observed readings.

References

NIL