Step-1

 $b = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}, \text{ where } b_1 \text{ and } b_2 \text{ are to be fixed.}$

For any $x = (x_1, x_2)^T$, such that $x \ge 0$, we want $Ax \ne b$.

We have,

$$Ax = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
$$= \begin{bmatrix} x_1 \\ -x_2 \end{bmatrix}$$

Step-2

Since $x \ge 0$ and $Ax = \begin{bmatrix} x_1 \\ -x_2 \end{bmatrix}$, this gives us the idea that if b_2 is positive, $-x_2 < b_2$.

Therefore, let $b = [0,1]^T$.

Step-3

Similarly, let $y = [y_1, y_2]$.

Consider the following:

$$yA = \begin{bmatrix} y_1, y_2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
$$= \begin{bmatrix} y_1, -y_2 \end{bmatrix}$$

Step-4

Let $c = [c_1, c_2]$.

We want $yA \not \leq c$. This gives us the idea that if c_1 is negative, then $c_1 < y_1$. Therefore, let c = [-1, 0].

Step-5

Thus, in order to have both feasible sets empty, let $b = [0,1]^T$ and let c = [-1,0].