

Subject Name: Theory of Computation

Subject Code: IT-5001

Semester: 5th

Unit-II: Regular Grammar

Grammar:

A grammar G can be formally written as a 4-tuple (N, T, S, P) where

- N or VN is a set of variables or non-terminal symbols
- T or ∑ is a set of Terminal symbols
- S is a special variable called the Start symbol, S ∈ N
- P is Production rules for Terminals and Non-terminals. A production rule has theform $\alpha \to \beta$, where α and β are strings on $V_N \cup \Sigma$ and least one symbol of α belongsto V_N .

Derivations from a Grammar:

Strings may be derived from other strings using the productions in a grammar. If agrammar G has a production $\alpha \rightarrow \beta$, we can say that x α y derives x β y in G. Thisderivation is written as:

$$x\alpha y \Rightarrow x\beta y$$

Example:

Let us consider the grammar:

G2 = ($\{S, A\}, \{a, b\}, S, \{S \rightarrow aAb, aA \rightarrow aaAb, A \rightarrow \epsilon\}$)

Some of the strings that can be derived are:

 $S \rightarrow aAb$ using production $S \rightarrow aAb$

- → aaAbb using production aA → aAb
- → aaaAbbb using production aA → aAb
- \rightarrow aaabbb using production A \rightarrow ϵ

Language generated by a Grammar:

The set of all strings that can be derived from a grammar is said to be the languagegenerated from that grammar. A language generated by a grammar G is a subset formally defined by

$$L(G) = \{ W \mid W \in \Sigma^*, S \Rightarrow W \}$$

If L(G1) = L(G2), the Grammar G1 is equivalent to the Grammar G2.

Example:

If there is a grammar

G: N = {S, A, B} T = {a, b} P = {S
$$\rightarrow$$
AB, A \rightarrow a, B \rightarrow b}

Here S produces AB, and we can replace A by a, and B by b. Here, the only accepted string is ab, i.e., $L(G) = {ab}$

Regular Expression(RE):

Regular expressions are useful for representing certain sets of strings in an algebraic fashion. These describe the languages accepted by finite state automata.

A Regular Expression can be recursively defined as follows:

- 1. ε is a Regular Expression indicates the language containing an empty string.(L (ε)= { ε })
- 2. ϕ is a Regular Expression denoting an empty language. (L (ϕ) = { })
- 3. x is a Regular Expression where L={x}
- 4. If X is a Regular Expression denoting the language L(X) and Y is a Regular Expression denoting the language L(Y), then

- X+Y is a Regular Expression corresponding to the language L(X) U L(Y)where L(X+Y) = L(X) U L(Y).
- X.Y is a Regular Expression corresponding to the language L(X). L(Y)where L(X.Y)= L(X).
 L(Y)
- R* is a Regular Expression corresponding to the language L(R*) whereL(R*) = (L(R))*
- 5. If we apply any of the rules several times from 1 to 5, they are Regular Expressions.

Regular Set:

Any set that represents the value of the Regular Expression is called a Regular Set.

Properties of Regular Set:

Figure 2.1: Properties of Regular Set

Identities related to Regular Expression:

- 1. $Ø^* = \varepsilon$
- 2. $\varepsilon^* = \varepsilon$
- 3. $RR^* = R^*R$
- 4. R*R* = R*
- 5. $(R^*)^* = R^*$
- 6. $RR^* = R^*R$
- 7. (PQ)*P = P(QP)*

- 8. $(a+b)^* = (a^*b^*)^* = (a^*+b^*)^* = (a+b^*)^* = a^*(ba^*)^*$
- 9. $R + \emptyset = \emptyset + R = R$ (The identity for union)
- 10. $R\varepsilon = \varepsilon R = R$ (The identity for concatenation)
- 11. \emptyset L = L \emptyset = \emptyset (The annihilator for concatenation)
- 12. R + R = R (Idempotent law)
- 13. L(M + N) = LM + LN (Left distributive law)
- 14. (M + N) L = LM + LN (Right distributive law)
- 15. $\varepsilon + RR^* = \varepsilon + R^*R = R^*$

Closure properties of Regular Language(RL):

If certain languages are regular then language formed by certain operations is also regular. These is called Closure properties of Regular Language(RL).

- The set of regular languages is closed under the union operation, i.e., if A1 and A2 are regular languages over the same alphabet Σ , then A1 U A2 is also a regular language.
- The set of regular languages is closed under the concatenation operation, i.e., if A1 and A2 are regular languages over the same alphabet Σ , then A1 A2 is also a regular language.
- The set of regular languages is closed under the star operation, i.e., if A is a regular language, then A* is also a regular language.
- The set of regular languages is closed under the complement operation. i.e., Complement of RL is regular.
- The set of regular languages is closed under the difference operation i.e., Difference of two RL is regular.
- The set of regular languages is closed under the reversal operation i.e., Reversal of a RL is regular.

Arden's Theorem:

Statement:

Let P and Q be two regular expressions.

If P does not contain null string, then R = Q + RP has a unique solution that is R = QP*

Proof:

R = Q + (Q + RP)P [After putting the value R = Q + RP]

R = Q + QP + RPP

When we put the value of R recursively again and again, we get the following equation:

R = Q + QP + QP2 + QP3....

 $R = Q (\varepsilon + P + P2 + P3 +)$

 $R = QP^* [As P^* represents (\varepsilon + P + P2 + P3 +)]$

Hence, proved.

Assumptions for Applying Arden's Theorem:

- 1. The transition diagram must not have NULL transitions
- 2. It must have only one initial state

Myhill-Nerode Theorem:

A language L is regular if and only if RL has a finite number of equivalence classes. Moreover, the number of states is the smallest DFA recognizing L is equal to the number of equivalence classes of RL.

The following three statements are equivalent

- 1. The set L $\in \Sigma^*$ is accepted by a FSA
- 2. L is the union of some of the equivalence classes of a right invariant equivalence relation of finite index.
- Let equivalence relation R_L be defined by :

 xR_Ly if for all z in Σ^* xz is in L exactly when yz is in L.

Then R_I is of finite index.

Example:-To show $L = \{a^nb^n \mid n \ge 1\}$ is not regular

- Assume that L is Regular
- Then by Myhill Nerode theorem we can say that L is the union of sum of the Equivalence classes and etc
 - a, aa,aaa,aaaa,.......
- Each of this cannot be in different equivalence classes.

$$a^n \sim a^m$$
 for $m \neq n$

By Right invariance

$$a^nb^n \sim a^m b^n$$
 for $m \neq n$

Hence contradiction: The L cannot be regular.

Pumping lemma:

Pumping lemma is tool that can be used to prove that certain languages are not regular. Observe that for a regular language,

- 1. The amount of memory that is needed to determine whether or not a given string is the language is finite and independent of the length of the string, and
- 2. If the language consists of an infinite number of strings, then this language should contain infinite subsets having a fairly repetitive structure.

Intuitively, languages that do not follow both point should be non-regular.

Example:Consider the language

$$\{0^n \ 1^n : n \ge 0\}.$$

This language should be non-regular, because it seems unlikely that a DFA can remember how many 0s it has seen when it has reached the border between the 0s and the 1s. Similarly the language

should be non-regular, because the prime numbers do not seem to have any repetitive structure that can be used by a DFA.

This property is called the **pumping lemma**. If a language does not have this property, then it must be non-regular. The pumping lemma states that any sufficiently long string in a regularlanguage can be pumped, i.e., there is a section in that string that can be repeated any number of times, so that the resulting strings are all in the language.

Theorem:

Let L be a regular language. Then there exists a constant 'c' such that for every stringw in L: $|w| \ge c$

RGPV NOTES.IN

We can break w into three strings, w = xyz, such that:

- 1. |y| > 0
- 2. $|xy| \le c$
- 3. For all $k \ge 0$, the string xykz is also in L.

Applications of Pumping Lemma:

Pumping Lemma is to be applied to show that certain languages are not regular. It should never be used to show a language is regular.

- If L is regular, it satisfies Pumping Lemma.
- If L does not satisfy Pumping Lemma, it is non-regular.

Method to prove that a language L is not regular

- At first, we have to assume that L is regular.
- So, the pumping lemma should hold for L.
- Use the pumping lemma to obtain a contradiction
 - a) Select \mathbf{w} such that $|\mathbf{w}| \ge \mathbf{c}$
 - b) Select **y** such that $|y| \ge 1$
 - c) Select **x** such that $|xy| \le c$
 - d) Assign the remaining string to z.
 - e) Select k such that the resulting string is not in L.

Hence L is not regular.

Example: Prove that $L = \{a^ib^i \mid i \ge 0\}$ is not regular.

- At first, we assume that **L** is regular and n is the number of states.
- Let $w = a^n b^n$. Thus $|w| = 2n \ge n$.
- By pumping lemma, let w = xyz, where $|xy| \le n$.
- Let $x = a^p$, $y = a^q$, and $z = a^r b^n$, where p + q + r = n, $p \ne 0$, $q \ne 0$, $r \ne 0$. Thus $|y| \ne 0$.

KUPVINU I ED. IIV

- Let k = 2. Then $xy^2z = a^pa^{2q}a^rb^n$.
- Number of as = (p + 2q + r) = (p + q + r) + q = n + q
- Hence, $xy^2z = a^{n+q}b^n$. Since $q \ne 0$, xy^2z is not of the form a^nb^n .
- Thus, xy²z is not in L. Hence L is not regular.

Application of Finite Automata:

Some of the major applications of finite automata are:

Compiler Design: Lexical Analysis

Special purpose hardware design

Protocol specification

String matching algorithm

Minimization of DFA:

DFA minimization stands for converting a given DFA to its equivalent DFA with minimum number of states.

If X and Y are two states in a DFA, we can combine these two states into $\{X, Y\}$ if theyare not distinguishable. Two states are distinguishable, if there is at least one string S, such that one of δ (X, S) and δ (Y, S) is accepting and another is not accepting. Hence, aDFA is minimal if and only if all the states are distinguishable.

Step 1: All the states Q are divided in two partitions: final states and non-final states and are denoted by P0. All the states in a partition are 0th equivalent. Take a counter k and initialize it with 0.

Step 2: Increment k by 1. For each partition in Pk, divide the states in Pk into two partitions if they are k-distinguishable. Two states within this partition X and Y are k-distinguishable if there is an input S such that $\delta(X, S)$ and $\delta(Y, S)$ are (k-1)-distinguishable.

Step 3: If Pk ≠ Pk-1, repeat Step 2, otherwise go to Step 4.

Step 4: Combine kth equivalent sets and make them the new states of the reducedDFA.

We hope you find these notes useful.

You can get previous year question papers at https://qp.rgpvnotes.in.

If you have any queries or you want to submit your study notes please write us at rgpvnotes.in@gmail.com

