

STRIVING FOR SIMPLICITY: THE ALL CONVOLUTIONAL NET

이상용 / 2020-03-27

Computational Data Science LAB

STRIVING FOR SIMPLICITY: THE ALL CONVOLUTIONAL NET

Computational Data Science LAB			
목차	 INTRODUCTION MODEL DESCRIPTION EXPERIMENTS 		
논의사항 및 결정사항			
관련문서	Springenberg, J. T., Dosovitskiy, A., Brox, T., & Riedmiller, M. (2014). Striving for simplicity: The all convolutional net. Accepted as a workshop contribution at ICLR 2015		

CONTENTS

- 1. INTRODUCTION
- 2. MODEL DESCRIPTION
- 3. EXPERIMENTS

01 | INTRODUCTION

- 현대 대부분의 CNN은 object recognition 문제를 풀 때 동일한 원칙을 가지고 있음
- 주로 convolution과 max-pooling layer를 교대로 사용하거나 fully connected layer를 사용

• 본 논문은 정확도의 손실없이 max-pooling을 간단한 convolution layer로 바꾸는 새로운 아키텍쳐를 제안

02 | MODEL DESCRIPTION

- CNN에서 pooling layer가 사용되는 이유
 - 1. p norm을 사용하면 feature들을 좀 더 invariant하게 만들 수 있음
 - 2. Spatial dimensionality reduction을 수행하기 때문에, 큰 사이즈의 이미지 입력을 허용
 - 3. Convolution을 사용하여 얻은 mixed feature보다 optimization이 쉬움
- Pooling layer의 단점
 - ✓ pooling을 통해 dimensionality reduction을 수행하면, 일부 feature information이 손실될 수 있음
- Convolution layer로의 대체
 - ✓ CNN으로 **우수한 성능**을 달성하는 이유 중 하나를 pooling layer가 사용되는 이유의 **두 번째**라고 가정한다면, convolution을 사용하여 feature information을 잃지 않으면서 spatial dimensionality reduction을 수행 가능

02 | MODEL DESCRIPTION

p-norm subsampling(pooling)

$$s_{i,j,u}(f) = \left(\sum_{h=-\left\lfloor \frac{k}{2} \right\rfloor}^{\left\lfloor \frac{k}{2} \right\rfloor} \sum_{w=-\left\lfloor \frac{k}{2} \right\rfloor}^{\left\lfloor \frac{k}{2} \right\rfloor} \left| f_{g(h,w,i,j,u)} \right|^{p} \right)^{1/p}$$

f: output of convolutional layer

 $s_{i,j,u}$: outtut of p-norm subsampling with 3-dimensional array of size $i \times j \times u$ h,w: height, width of feature map

k: pooling size

p: order of the p-norm (for $p \to \infty$, it becomes the commonly used max pooling) $g(h,w,i,j,u) = (r \cdot i + h,r \cdot j + w,u)$ r: stride

convolution with stride 2

$$c_{i,j,o}(f) = \sigma \left(\sum_{h=-\left\lfloor \frac{k}{2} \right\rfloor}^{\left\lfloor \frac{k}{2} \right\rfloor} \sum_{w=-\left\lfloor \frac{k}{2} \right\rfloor}^{N} \theta_{h,w,u,o} \cdot f_{g(h,w,i,j,u)} \right)$$

N: number of channels in output of convolutional layer

 $\sigma(\cdot)$: activation function

 θ : convolutional weights (kernel weights, filters)

 $o: o \in [1, M]$ number of output feature of the convolutional layer

02 | MODEL DESCRIPTION

- CNN에서 pooling layer를 1보다 큰 stride를 갖는 convolution layer로 교체
 - ✓ Filter와 stride로 dimensionality reduction을 수행하여 pooling과 동일한 shape의 출력을 생성하는 convolution layer로 교체

- Pooling layer를 convolution layer로 바꾸는 것은 θ 에 어느 제한이 있지 않는 한 **feature**들 간의 **관계성 고려** 가능
- Convolution layer를 사용하는 것은 pooling layer의 고정된 값을 '사용' 하는 것이 아닌 값을 '학습' 하는 것

03 | EXPERIMENTS

• 사용된 모델

Model

Strided-CNN-C	ConvPool-CNN-C	All-CNN-C				
Input 32×32 RGB image						
3×3 conv. 96 ReLU	3×3 conv. 96 ReLU	3×3 conv. 96 ReLU				
3×3 conv. 96 ReLU	3×3 conv. 96 ReLU	3×3 conv. 96 ReLU				
with stride $r=2$	3×3 conv. 96 ReLU					
	3×3 max-pooling stride 2	3×3 conv. 96 ReLU				
		with stride $r=2$				
3×3 conv. 192 ReLU	3 × 3 conv. 192 ReLU	3×3 conv. 192 ReLU				
3×3 conv. 192 ReLU	3×3 conv. 192 ReLU	3×3 conv. 192 ReLU				
with stride $r=2$	3×3 conv. 192 ReLU					
	3×3 max-pooling stride 2	3×3 conv. 192 ReLU				
		with stride $r=2$				
		with strice $r=2$				

Pooling

Convolution

• 실험결과

CIFAR-10 classification error

Model	Error (%)	# parameters		
without data augmentation				
Model A	12.47%	$\approx 0.9 \text{ M}$		
Strided-CNN-A	13.46%	$\approx 0.9 \text{ M}$		
ConvPool-CNN-A	10.21 %	$\approx 1.28 \text{ M}$		
ALL-CNN-A	10.30%	$\approx 1.28 \text{ M}$		
Model B	10.20%	$\approx 1 \text{ M}$		
Strided-CNN-B	10.98%	$\approx 1 \text{ M}$		
ConvPool-CNN-B	9.33%	$\approx 1.35 \text{ M}$		
ALL-CNN-B	9.10 %	$\approx 1.35 \text{ M}$		
Model C	9.74%	$\approx 1.3 \text{ M}$		
Strided-CNN-C	10.19%	$\approx 1.3 \text{ M}$		
ConvPool-CNN-C	9.31%	$\approx 1.4 \text{ M}$		
ALL-CNN-C	9.08 %	$\approx 1.4 \text{ M}$		

03 | EXPERIMENTS

Guided-backpropagation

- 네트워크를 분석하기위해 'deconvolution' approach 수행
 - ✓ 본 논문은 pooling을 쓰지 않기 때문에, pooling 없이도 시각화가 가능한 새로운 방법 제안

03 | EXPERIMENTS

Q&A

감사합니다.