CÁLCULO 1- LISTA 1-2022/2 (Livros: Stewart vol 2 e Hélio Lopes)

1. Liste os 5 primeiros termos da sequência.

a)
$$a_n = \frac{2^n}{2n+1}$$

b)
$$a_n = \frac{n^2 - 1}{n^2 + 1}$$

c)
$$a_n = \frac{2n}{n^2 + 1}$$

a)
$$a_n = \frac{2^n}{2n+1}$$
 b) $a_n = \frac{n^2-1}{n^2+1}$ c) $a_n = \frac{2n}{n^2+1}$ d) $a_1 = 6$, $a_{n+1} = \frac{a_n}{n}$

- $oldsymbol{2}$. Encontre uma fórmula para o termo geral a_n da sequência, assumindo que o padrão continue.
 - a) 1/2, 1/4,1/6, 1/8, ...
 - b) 4, -1, 1/4, -1/16, 1/64, ...
 - c) 1,0,-1,0,1,0,-1,0,...
- 3. Determine se a sequência é convergente ou divergente. Se ela for convergente encontre o limite.

a)
$$a_n = \frac{3+5n^2}{n+n^2}$$
 b) $a_n = \frac{3+5n^2}{1+n^2}$ c) $a_n = \frac{\cos^2 n}{n}$ d) $a_n = \frac{(-1)^n n^3}{n^3 + 2n + 1}$

b)
$$a_n = \frac{3+5n^2}{1+n^2}$$

c)
$$a_n = \frac{\cos^2 n}{n}$$

d)
$$a_n = \frac{(-1)^n n^3}{n^3 + 2n + 1}$$

- d) $a_n = \frac{(-1)^n n}{n^2 + 1}$
- 4. Se (a_n) é uma sequência tal que todo termo a_n é um inteiro e (a_n) é convergente, o que se pode afirmar sobre a sequência?
- 5. Seja (a_n) uma sequência e a um número real tais que $|a_n$ a $|<\frac{1}{2^n}$, para n>1. Determine n tal que a_n seja uma aproximação de a com erro menor que
- 6. Dê exemplo de sequências (a_n) e (b_n) divergentes tais que $(a_n b_n) \to 0$.
- \mathbb{Z} . Considere a proposição: Se $\lim (a_n b_n) = 0$, então $\lim a_n$ $\lim b_n = 0$.
 - i) Decida se a proposição é verdadeira ou falsa:
 - Escolha, entre as opções abaixo, aquela que melhor justifique sua ii) resposta:
 - a) Pois $\lim (a_n b_n) = \lim a_n \lim b_n$.
 - b) Pois, pelo teorema sobre operações com limite, $\lim (a_n b_n) =$

- c) Pois se $a_n = (-1)^n + \frac{1}{n} e b_n = (-1)^n$, então $(a_n b_n) = \frac{1}{n} e (a_n)$ não converge.
- d) Pois se $a_n = b_n$, então $a_n b_n = 0$.
- e) Pois $a_n b_n$ é praticamente zero, isto é $a_n = b_n$.
- 8. Considere a seguinte proposição: Se x_n é limitada, então x_n tem limite.
 - a) $x_n = 1 + (-1)^n$ é um contraexemplo para a proposição?
 - b) $x_n = \frac{1}{2^n} + (-1)^n$ é um contraexemplo para a proposição?
 - c) $x_n = n + \frac{(-1)^n}{n^2}$ é um exemplo para a proposição?

d)
$$x_n = n + \frac{(-1)^n}{n^2}$$
 é um contraexemplo para a proposição.

9. Seja
$$(a_n)$$
 definida por: $a_n = \begin{cases} 0 & para \ n \ impar \\ \frac{n}{2} & para \ n \ par \end{cases}$

Decida qual das informações abaixo é correta:

a)
$$\lim a_n = 0$$

b)
$$(a_n)$$
 não é convergente

c)
$$\lim a_n = \infty$$

10. Seja
$$(a_n)$$
, a sequência definida por: $a_n = \begin{cases} \frac{-(n+1)}{2} & para \ n \ impar \\ \frac{n}{2} & para \ n \ par \end{cases}$

Decida qual das informações abaixo é correta:

a)
$$\lim a_n = -\infty$$

b)
$$\lim a_n = \infty$$

c)
$$\lim |a_n| = \infty$$

11.: Dê exemplo de sequências (a_n) e (b_n) que satisfaçam $\lim a_n = \infty$, $\lim b_n = -\infty$ e $\lim (a_n + b_n) = 6$.

12. Dê exemplo de sequências (a_n) e (b_n) que satisfaçam $\lim a_n = \infty$, $\lim b_n = -\infty$ e:

a)
$$\lim \frac{a_n}{b_n} = 0$$

b)
$$\lim \frac{a_n}{b_n} = -5.8$$

c)
$$\lim \frac{a_n}{b_n} = -\infty$$

13. Verifique se as sequências u_n são convergentes. Para as convergentes, dê o limite.

a)
$$u_n = \frac{n^2 + 8}{n^2 + 100}$$

b)
$$u_n = \frac{3n^3 + 10}{n - 10}$$

c)
$$u_n = \frac{(n+1)(n+2)n^2}{n^3}$$

d)
$$u_n = n + \frac{1}{(-2)^n}$$

e)
$$u_n = n + (-1)^n$$

14. Dê um exemplo de sequências (a_n) e (b_n) limitadas e divergentes tal que $\lim (a_n + b_n)$ exista.

c)
$$a_1 = \frac{2n}{n^2H} \int a_1 = \frac{21}{4} \int a_2 = \frac{4}{5} \int a_3 = \frac{6}{5} \int a_4 = \frac{8}{12} \int a_5 = \frac{10}{25} \int a_5 = \frac{10}$$

Resposto do manidos:
$$an = -\left(\frac{3-(-1)^n}{2}\right)\left(-\frac{1}{2}\right)^{\frac{n+1}{2}}$$
 (nel 423... y).

(3) $an = \frac{3+5n^2}{n^2n^2} = \frac{n^2\left(\frac{3+5}{n^2}\right)}{\sqrt{n^2\left(\frac{1}{n+1}\right)}} = \frac{3+5}{n^2} = \frac{5}{5} = \frac{5}{5}$
 $\frac{3}{n^2} + 5$ é convergende para 5

 $\frac{1}{n} \cdot 1$ é convergende para 1

. Se (an) $e(b)$ a d'elem limides $a = b$, respectivamente, e são convergendes, então $\lim_{n \to \infty} \left(\frac{an}{bn}\right) = \frac{a}{b}$

es lande (bn) apa seguérais e têm limites a els, respectivaments, e são cenvergendes, então lim (an.lon) = a.b.

in séconorgede paras

c) on = cesin Sohnos que -15 com 31. : Os cos nes. Logo as nél milodo se on ebn mo agrevoios interformate, partibon e limbor no q) on = (-1), n3 = (-1), n4 (1+5+7) (1+5+7) come him 1 1 - 1 - 1 e (-1) mo é convergente endão lim (-1)". 1 não existe. Por firm, (-1)" 1 (18/10 iden 30)) e) an = (-1), m = (-1), m, (+1)

(-1), m, (-1), m, (+1)

(1+1)

(1+1)

como lin 1,00 a 100 h 11/1 1 1 1 adoo lin (-1) 1/2 -0 (an) è convergende e an EZ. Chome e lin an de K. Parhordo Kean. Se an é convergende, endão dodo um mein, nom e Exo (EEIR) occore K-E Lan LK+E. Poro un E mide pegeno, chegones.

que an = K. o pordir de umo orden un (meine nom). (5) tores que lan-alle c lan-alle. Preveros un n que sotisfoz 1 LE=1 2" LE=1000. O mor nein que satisfoz m > 1000 € n=10] (6) an= (-1)" + 1 (divergende) bn=(-1)" (divergade) · lim (an-bn) = lim (+ (-4)"-(-4)") = lim = 50

(30) on - 130 b) on = 303+10 = 8 (3+ 10) One lim(1-1) -0 un vão converge · Se limon explore: In Unalim 3+10 = 3 (\$) c) nu= (n+3)(n+5)v, = ~(+2). ~(+5) = ~(+5)(+5)

d) $u_n = n + \frac{1}{(-2)^n}$, cono n vivo converge e $\lim_{t \to 0^n} \left(\frac{t}{t - v^n}\right) = 0$ e) un = n+(-1), como n e (-1), vois con vergen, un (an), (bn) limidades e divergentes tois que lim (an+bn) on = 1 + (-2)" lim(on+bn) = lim(1+(-1)" - (-1)") = lim1=0 pn=-(-1)