שיעור 6 אי-כריעות משפט הרדוקציה

 $L_{
m acc}$ 6.1 הגדרה

 $L_{\text{acc}} = \{ \langle M, w \rangle \mid w \in L(M) \} \in RE \backslash R$

 $L_{
m halt}$ 6.2 הגדרה

 $L_{ ext{halt}} = \{\langle M, w
angle \mid w$ עוצרת על א $M \} \in RE \backslash R$

 $L_{
m d}$ 6.3 הגדרה

 $L_{d} = \{ \langle M \rangle \mid \langle M \rangle \notin L(M) \} \notin RE$

 $L_{
m acc} \in RE$ 6.1 משפט

 $L_{\rm acc} \in RE$.

 $L_{
m acc}\in$ לכן לכן , $L_{
m acc}$ את מכיוון ש- מכיוון ש- , $L(U)=L_{
m acc}$, לכן המכונת טיורינג האוניברסלית אשר מקבלת את .RE

 $L_{\mathsf{halt}} \in RE$ 6.2 משפט

 $L_{\text{halt}} \in RE$.

. תעצור ותקבל. U' שהיא למעשה U' פרט למקום שבו U עצרה ודחתה, U' תעצור ותקבל.

 $:L_{
m halt}$ את מקבלת U' נוכיח כי

 $x \in L_{\mathrm{halt}}$ אם

w ו- M עוצרת על $x = \langle M, w \rangle \Leftarrow$

x עוצרת ומקבלת את $U' \Leftarrow$

אם מקרים: $x \notin L_{\mathsf{halt}}$ אם

- x את דוחה את $U' \Leftarrow x \neq \langle M, w \rangle$
- .x עוצרת על $U' \Leftarrow w$ לא עוצרת לא M -ו $x = \langle M, w \rangle$

$L_{ m d} otin RE$ 6.3 משפט

$L_{\rm d} \notin RE$.

הוכחה:

 $L_{
m d}\in RE$ נניח בשלילה כי

$$.L_{ exttt{d}}$$
 את המקבלת את המקבלת $\exists \Leftarrow$

$$.L(M_d) = L_d \Leftarrow$$

 $:\langle M_d
angle$ על M_d על ריצה של

$$L(M_{
m d})
eq L_{
m d} \quad \Longleftarrow \quad \langle M_{
m d}
angle
eq L_{
m d} \quad \Longleftarrow \quad \langle M_{
m d}
angle \in L(M_{
m d})$$
 אם •

$$L(M_{\mathrm{d}})
eq L_{\mathrm{d}} \quad \Leftarrow \quad \langle M_{\mathrm{d}}
angle \in L_{\mathrm{d}} \quad \Leftarrow \quad \langle M_{\mathrm{d}}
angle \notin L(M_{\mathrm{d}})$$
 אם •

 $L_{
m d} \notin RE$ ולכן ולכן $L(M_{
m d}) = L_{
m d}$ שיבלנו סתירה לכך בשני המקרים קיבלנו

משפט 6.4 לא כריעה $L_{ m acc}$

$$L_{\mathrm{acc}} = \{\langle M, w \rangle \mid w \in L(M)\} \notin R$$
.

הוכחה:

 $L_{
m acc}$ את המכריעה המ"ט המריעה ותהי ותהי בשלילה כי $L_{
m acc} \in R$

.(6.3 כפי שהוכחנו במשפט ב- לבנות מ"ט $M_{
m d}$ כפי שהוכחנו במשפט $M_{
m d}$ כפי שהוכחנו במשפט $M_{
m acc}$ -בסתירה לכך ש

$$L_{\rm d} = \left\{ \langle M, w \rangle \mid \langle M \rangle \notin L(M) \right\} .$$

$M_{ m d}$ התאור של

$$x$$
 על קלט $=M_{\rm d}$

- בודקת האם $\langle M \rangle = x$. אם לא \Rightarrow דוחה.
 - $\langle x \rangle = \langle \langle M \rangle \rangle$ מחשבת מחשבת (2
 - $:\langle M,\langle M
 angle
 angle$ על הזוג $M_{
 m acc}$ את מריצה (3
 - . דוחה $M_{
 m d} \Leftarrow M_{
 m acc}$ מקבלת $M_{
 m acc}$
 - . אם $M_{
 m d} \Leftarrow M_{
 m acc}$ אם $M_{
 m acc}$

 $:\!L_{
m d}$ את מכריעה את מכריעה $M_{
m d}$

 $x \in L_{\mathsf{d}}$ אם

$$\langle M \rangle \notin L(M)$$
 -1 $x = \langle M \rangle \Leftarrow$

$$\langle M, \langle M \rangle
angle$$
 דוחה את הזוג $M_{
m acc} \Leftarrow$

$$.x$$
 את מקבלת $M_{
m d} \Leftarrow$

:אם $x \notin L_{\mathrm{d}}$ שני מקרים

$$x$$
 את את דוחה את $M_{\mathrm{d}} \leftarrow x \neq \langle M \rangle$ דוחה את מקרה (1):

$$\langle M \rangle \in L(M)$$
 -ו $x = \langle M \rangle$ מקרה (2):

$$\langle M, \langle M
angle
angle$$
 מקבלת את אוג $M_{
m acc} \Leftarrow$

$$.x$$
 דוחה את $M_{
m d}$

משפט 6.5 לא כריעה $L_{ m halt}$

$$L_{ ext{halt}} = ig\{\langle M, w
angle \mid w$$
 עוצרת על $M ig\}
otin R$.

הוכחה:

 $L_{
m halt}$ את מ"ט המכריעה את נניח בשלילה כי ותהי ותהי ותהי $L_{
m halt} \in R$

. (בסתירה לכך ש- $L_{\rm acc} \notin R$ כפי שהוכחנו במשפט $M_{\rm acc}$ כפי שהוכחנו במשפט $M_{\rm acc}$ כדי לבנות מ"ט מ"ט $M_{\rm acc}$

$M_{ m acc}$ התאור של

:x על קלט $=M_{\rm acc}$

.x על $M_{
m acc}$ על (1

דוחה. $M_{
m acc} \Leftarrow T$ דוחה $M_{
m halt}$ דוחה.

. מריצה U על x ועונה כמוה מריצה $M_{\mathrm{acc}} \leftarrow M_{\mathrm{halt}}$ מקבלת \bullet

<u>אבחנה</u>

 $:L_{
m acc}$ את מכריעה $M_{
m acc}$

 $x \in L_{\mathrm{acc}}$ אם

$$\langle w \rangle \in L(M)$$
 -1 $x = \langle M, w \rangle \Leftarrow$

x את מקבלת את מקבלת את מקבלת $M_{\mathrm{halt}} \Leftarrow$

.x מקבלת את $M_{\mathrm{acc}} \Leftarrow$

אם מקרים: $x \notin L_{\mathrm{acc}}$

 $x \neq \langle M, w \rangle$:(1) מקרה

x דוחה את $M_{\mathrm{halt}} \Leftarrow$

.x דוחה את $M_{\mathrm{acc}} \Leftarrow$

מקרים: שני מקרים: $x=\langle M,w \rangle \notin L(M)$ -ו $x=\langle M,w \rangle$

x את אותה את דוחה את דוחה את אוצרת על אוצרת על אוצרת את מקרה (א): $M_{\mathrm{halt}} \leftarrow w$

 $M_{\mathrm{acc}} \leftarrow x$ דוחה את $M_{\mathrm{acc}} \leftarrow x$ דוחה את אבל $M_{\mathrm{halt}} \leftarrow w$ מקרה (ב):

 $L_{
m acc} \notin R$ -ש בסתירה לכך מכריעה את מכריעה $M_{
m acc}$

 $.L_{\mathsf{halt}} \notin R$ לכן

משפט 6.6

$$\begin{array}{ccc} L_{\rm acc} \in RE \backslash R & \Rightarrow & \bar{L}_{\rm acc} \notin RE \ , \\ L_{\rm halt} \in RE \backslash R & \Rightarrow & \bar{L}_{\rm halt} \notin RE \ , \\ L_{\rm d} \notin RE \backslash R \ . \end{array}$$

6.1 מ"ט המחשבת את פונקציה

הגדרה 6.4 מ"ט המחשבת פונקציה

 $x \in \Sigma^*$ אם לכל את מחשבת מ"ט מ"ט $f: \Sigma^* \to \Sigma^*$ אם לכל בהינתן בהינתן בהינתן אומרים אומרים אומרים אומרים בהינתן

- וגם f(x) אום בסוף בסוף $q_{
 m acc}$ מגיעה מגיעה M
 - f(x) רשום M רשום •

הערה 6.1

מ"ט שמחשבת פונקציה עוצרת תמיד.

הגדרה 6.5 מ"ט המחשבת פונקציה

f את המחשבת מ"ט קיימת היים כי $f:\Sigma^*\to\Sigma^*$ אומרים בהינתן בהינתן ליים אומרים ליים אומרים ליים אומרים בהינתן היים ליים אומרים ליים אומרים ליים אומרים ליים המחשבת את

דוגמה 6.1

$$f_1(x) = xx . ag{6.1}$$

חשיבה. $f_1(x)$

דוגמה 6.2

$$f_2(x) = \begin{cases} x & |x| \leq x \\ xx & |x| \leq x \end{cases}$$
 (6.2)

.חשיבה $f_2(x)$

דוגמה 6.3

$$f_3(x) = \begin{cases} \langle M' \rangle & x = \langle M \rangle \\ \langle M^* \rangle & x \neq \langle M \rangle \end{cases}$$
 (6.3)

כאשר

- .ט שמקבלת כל קלט M^*
- מ"ט המקבלת את השפה M'

$$L(M') = \{ w \in \Sigma^* \mid ww \in L(M) . \}$$

, ואם כן, אם לא, מחזירה קידוד קבוע (M^*) ואם כן. אם אם אם אם $x=\langle M\rangle$ ואם מ"ט שבודקת מ"ט שבודקת האם $f_3(x)$ מחזירה קידוד $\langle M'\rangle$ ע"י הוספת מעברים המשכפלים את הקלט בתחילת הקידוד $\langle M'\rangle$ ע"י הוספת

דוגמה 6.4

$$f_4(x) = \begin{cases} 1 & x = \langle M \rangle \land \langle M \rangle \in L(M) \\ 0 & \text{אחרת} \end{cases}$$
 (6.4)

 $.\langle M \rangle$ לא עוצרת לM -ו $x = \langle M \rangle$ קלטים קלטים כי חשיבה לא $f_4(x)$

6.2 רדוקציות

הגדרה 6.6 רדוקציות

ומסמנים ל- גיתנת לרדוקציה ל- אומרים כי $L_1,L_2\subseteq \Sigma^*$ שפות שתי שפות בהינתן אומרים ל

$$L_1 \leqslant L_2$$
,

אם $f: \Sigma^* \to \Sigma^*$ המקיימת:

- חשיבה f (1
- $x \in \Sigma^*$ לכל (2

$$x \in L_1 \quad \Leftrightarrow \quad f(x) \in L_2 \ .$$

דוגמה 6.5

נתונות השפות

$$L_1 = \left\{ x \in \{0,1\}^* \mid \mathsf{inc} \mid |x| \right\} \; ,$$
 $L_2 = \left\{ x \in \{0,1\}^* \mid \mathsf{inc} \mid |x| \right\} \; .$

הוכיחו כי

$$L_1 \leqslant L_2$$
.

פתרון:

נגדיר את הפונקציה

$$f(x) = egin{cases} 1 & \text{ii.} & |x|, \ 10 & \text{iii.} & |x| \end{cases}$$
 אי-זוגי |x|

הוכחת הנכונות:

$$f(x) \in L_2$$
 אי-זוגי $|f(x)| \Leftarrow f(x) = 1 \Leftarrow |x| \Leftarrow x \in L_1$

$$f(x) \notin L_2$$
 אני $|f(x)| \Leftarrow f(x) = 10 \Leftarrow x$ אני $|x| \Leftarrow x \notin L_1$

משפט 6.7 משפט הרדוקציה

לכל שתי שפות $L_1,L_2\subseteq\Sigma^*$ אם קיימת רדוקציה

 $L_1 \leqslant L_2$

אזי התנאים הבאים מתקיימים:

 $L_1 \in R \quad \Leftarrow \quad L_2 \in R \quad \text{(1)}$

 $L_1 \in RE \iff L_2 \in RE$ (2)

 $L_1 \notin R \implies L_2 \notin R$ (3)

 $L_1 \notin RE \implies L_2 \notin RE$ (4)

הוכחה: מכיוון ש-

 $L_1 \leqslant L_2$

:קיימת פונקציה f חשיבה המקיימת

 $x \in L_1 \quad \Leftrightarrow \quad f(x) \in L_2$

 $x \in \Sigma^*$ לכל

f מ"ט המחשבת את M_f

 $\underline{L_1 \in R \Leftarrow L_2 \in R}$ נוכיח (1)

 $.L_2$ את המכריעה את מ"ט M_2 תהי $.L_1$ את המכריעה את M_1 נבנה מ"ט

 M_1 של התאור

x על קלט $=M_1$

 M_f בעזרת f(x) את מחשבת . 1

. מריצה את f(x) על M_2 את מריצה . 2

 $.L_1$ את מכריעה M_1 נוכיח נוכיח

- x את את מקבלת את מקבלת את מקבלת $M_2 \Leftarrow f(x) \in L_2 \Leftarrow x \in L_1$ אם
 - x את את $M_1 \Leftarrow f(x)$ דוחה את $M_2 \Leftarrow f(x) \notin L_2 \Leftarrow x \notin L_1$ אם •

$$L_1 \in RE \Leftarrow L_2 \in RE$$
 נוכיח (2)

 $.L_2$ את המקבלת מ"ט M_2 מ"ט המקבלת את נבנה מ"ט M_1

M_1 התאור של

x על קלט $= M_1$

- M_f בעזרת f(x) את מחשבת.1
- . מריצה את f(x) על M_2 את מריצה .2

 $:\!L_1$ את מקבלת מקבלת כי נוכיח כי

- x את מקבלת את מקבלת את מקבלת מקבלת $M_2 \Leftarrow f(x) \in L_2 \Leftarrow x \in L_1$ אם •
- .x את מקבלת לא $M_1 \Leftarrow f(x)$ את מקבלת לא $M_2 \Leftarrow f(x) \notin L_2 \Leftarrow x \notin L_1$ אם •

(3)

כלל 6.1

אם רדוקציה שקיימת פורים שפה אחרת אם בוחרים אבה לשהי לשהי שקיימת בדוקציה שפה אחרת בוחרים שפה לשהי לשהי שקיימת בדוקציה •

$$L \leqslant L'$$
.

לדודמה:

$$L \leqslant L_{\rm acc}$$

(R' כנ"ל לגבי)

אם רדוקציה שקיימת להוכיח אם בוחרים שפה בוחרים בוחרים שקיימת בדוקציה שקיימת להוכיח כי שפה להוכיח בוחרים שפה בוחרים שפה לשהי

$$L' \leqslant L$$
.

לדוגמה

 $L_{\rm d} \leqslant L$

(R (כנ"ל לגבי)).