7. Přístup k síti

Způsoby přenosu dat na fyzické vrstvě

- Fyzická vrstva převádí data do 1 a 0
- Data na médiu jsou reprezentována bity. Přenosová média nejsou schopna nést celý rámec najednou, jsou schopna přenášet v jeden čas jeden bit. Reprezentace bitů závisí na typu použitého média. Jsou tři základní formy přenosu dle použitého média:
- metalické vedení elektrické impulzy,
- optické vedení světelné impulzy,
- bezdrátový přenos elektromagnetické vlnění

Charakteristika běžných přenosových médií, příklady kabelů a konektorů

Koaxiál

- Používá se na TV připojení
- Jádro je z mědi
- Je možné ho používat i pro připojení k internetu pomocí modemu

Ethernet

- Jedná se o kroucenou dvojlinku
- Jednotlivé kablíky jsou z mědi
- RJ-45 Konektor, který se dnes používá pro připojení serveru, počítačů apod. 8 pinu
- Varianta FTP Stíněná verze, která slouží pro venkovní použití nebo kde je signálové rušení, je dražší
- Varianta UTP Nestíněná verze, která je vhodná k použití uvnitř domácností
- CAT 5E Nejpoužívanější s podporou 1gigabit připojení
- CAT 6 Modernější verze, která podporuje až 10Gigabit připojení

- Používá se nejčastěji typ B
- RJ-11 Telefonní linka 4 piny

Optické vlákno

- Signál pomocí světla
- Rychlost světla
- Světlo se odráží dokud nedoputuje na konec

Stavba optického vlákna

Jádro

Průměr: 8 µm

Uvnitř jádra se šíří světelný paprsek. Index Iomu jádra se pohybuje kolem 1,48. Světlo se zde tedy pohybuje 1,48× pomalejí než ve vakuu.

Sekundární ochrana

Prûměr: 400 µm

Sekundární ochrana zvyšuje bezpečnostní parametry vlákna. Sekundární ochrana není součástí všech vláken, protože značně zvětšuje průměr vlákna. Vlákno se sekundární ochranou je však mnohem odolnější proti poškození.

Síťová topologie

Hvězda (star) - Hub and Spoke

- Hvězda je dnes nejpoužívanější topologie pro ethernet. Je zde centrální prvek, který realizuje propojení zařízení, a do něj jsou připojena jednotlivá zařízení.
- Jako centrální prvek slouží hub nebo switch, ale z jiného pohledu se může jednat i o router.
- Obdobná je Rozšířená topologie hvězda, která vznikne, když několik samostatných hvězd propojíme dohromady přes centrální prvky.

Kruh (ring)

- V kruhové topologii je každý uzel připojen ke dvěma sousedním a dohromady tvoří kruh.
- V této topologii se často používá Token Ring, který si postupně počítače předávají a kdo ho má může vysílat
- Standardně existuje pouze jedna cesta mezi dvěma uzly.

Sběrnice (bus)

- Sběrnice byla používána v prvních dobách ethernetu a realizovala se pomocí koaxiálního kabelu
- Všechna zařízení jsou zapojena na společnou sběrnici.
- V sítích se od této technologie ustoupilo a dnes se používá převážně zapojení do hvězdy.
- Když někdo používal bus žádné jiné zařízení ji nepomohlo používat protože by došlo ke kolizi

Mřížka (mesh)

- V topologii mesh jsou uzly propojeny s více sousedy.
- Buď se může jednat o Full Mesh (plnou mřížku), kdy je každý uzel spojený se všemi ostatními, takže může komunikovat s každým přímo a v případě výpadku nějaké linky může jednoduše nalézt cestu.
- Pří více uzlech se jedná o složité a drahé zapojení.
- Nebo o Partial Mesh (částečnou mřížku), kdy některé uzly jsou přímo spojeny (point-to-point) s více jinými uzly.

Rámec standardu IEEE 802.3 (Ethernet)

Struktura ethernetového paketu a rámce podle IEEE 802.3

Layer	Preambule	Oddělovač začátku rámce	MAC cíle	MAC zdroje	802.1Q tag (volitelný)	Délka/Typ	Datové pole	Kontrolní posloupnost rámce (32bitový CRC)	Mezera mezi pakety
	7 oktetů	1 oktet	6 oktetů	6 oktetů	(4 oktety)	2 oktety	46(42) ^[3] _ 1500 oktetů	4 oktety	12 oktetů
Ethernetový rámec (linková vrstva)			← 64–1518(1522) oktetů →						

- Preambule: 7 bytů, které slouží k synchronizaci a detekci příjmu paketu na cílovém zařízení.
- SFD (Start Frame Delimiter): 1 byte, který označuje začátek rámce.
- MAC adresa zdroje: 6 bytů, které identifikují zdrojové zařízení.
- MAC adresa cíle: 6 bytů, které identifikují cílové zařízení.
- Typ nebo délka: 2 byty, které udávají typ nebo délku následujícího těla paketu.
- Tělo: Maximálně 1500 bytů, které obsahují data přenášená mezi zařízeními.
- FCS (Frame Check Sequence): 4 byty, které slouží k kontrole integrity paketu pomocí kontrolního součtu (CRC).

MAC Adresa

- Jednoznačný identifikátor síťového rozhraní (Př. Uživatelský PC)
- Má 6 Bytu = 48 bitů
- Prvních 24 bitů si určuje společnost. Díky těmto bitů je možné zjistit výrobce
- Zbytek 24 bitů je na uživateli, takže jsou náhodně generovaná většinou
- Je možné MAC adresu změnit

Přepínání rámců a princip činnosti přepínače (switch)

- Přijímá Ethernetové rámce od jednoho portu a rozhoduje, kam je přesměrovat na jiný port, aby byly doručeny ke správnému cíli.
- Tento proces se provádí na vrstvě síťového protokolu (OSI Layer 2)
- Switch pracuje s MAC adresami v hlavičce

Princip činnosti přepínače (switch) je následující:

- Přijetí rámce: Přepínač přijímá Ethernetový rámec na jednom z portů.
- Identifikace cíle: Přepínač zjistí MAC adresu cíle z hlavičky rámce a porovná ji se svou tabulkou MAC adres.
- Rozhodnutí o přesměrování: Přepínač rozhodne, na který port má rámec přesměrovat, a přesměruje ho na příslušný port. Pokud nemáme v tabulce MAC adresu, kam rámec poslat pošle ho všem (Flood) a pak se popřípadě uživatel s touto MAC adresou ozve.
- Uložení do tabulky MAC adres: Přepínač si uloží MAC adresu zdroje rámce do své tabulky MAC adres, aby mohl rámce příště přesměrovat bez nutnosti vyhledání cíle v tabulce.

ARP

- ARP je protokol, který pošle dotaz všem ARP Request: Jakou MAC adresu má IP adresa 34.40.2.1.20
- Na tento dotaz potom následně odpoví počítač ARP Reply: To jsem já tady máš moji mac adresu
- Pokud dostane zprávu zařízení, co tuto ip adresu nemá zahodí tento paket.
- Jednoduše řečeno se jedná překlad ip adresy na mac adresu

