Normalizing Features

CS4780/5780 – Introduction to Machine Learning

Thorsten Joachims Cornell University

Why Normalize?

- K-NN with Euclidian Distance?
 - SAT barely affects distance
- Linear SVM
 - $\overrightarrow{w} = (w_{SAT}, w_{Income})$ needs huge value for w_{GPA} \rightarrow small margin
- Neural Network
 - SGD update makes big steps on w_{Income} and small steps on w_{SAT}
- Etc.

Y=Attend College?

Feature Scaling

• Idea: Transform features $X_1 ... X_N$ so that they all lie on the same scale.

Process:

- 1. Analyze the training set and determine transformation $f_j \colon X_j \to \overline{X}_j$ for each feature $X_j \colon \to f(f_1, \dots, f_N)$
- 2. Apply transformation $f(\vec{x}_i)$ to all training examples $\vec{x}_i \in S_{Train} \rightarrow \bar{S}_{Train}$
- 3. Apply transformation $f(\vec{x}_i)$ to all test examples $\vec{x}_i \in S_{Test} \rightarrow \bar{S}_{Test}$

Min/Max Scaling

- Idea: Scale features so that the minimum and the maximum value of all features become equal.
 - For each feature X_j
 - Find minimum $\min(X_j)$ and maximum $\max(X_j)$ in training sample.
 - $f_j(x_j) = \frac{x_j \min_j}{\max_j \min_j}$

Y=Attend College?

Standardization

- Idea: Scale features so that the mean and standard deviation of all features become equal.
 - For each feature X_j
 - Estimate mean via average (X_j) and standard deviation via $\sqrt{\operatorname{average}(X_j^2) \operatorname{average}(X_j)^2}$ in training sample.
 - $f_j(x_j) = \frac{x_j \text{mean}_j}{\text{stddev}_j}$

Percentile Binning

• Idea: Transform numeric feature X_j into multiple binary features.

- More general:
 - One binary feature for each percentile.
 - Student has SAT above 1500
 - Student has SAT above 1400
 - Student has SAT above 1000
 - Student has SAT above 500
 - \rightarrow Multiple binary features can be "1" for each student.

SAT of
$$1100 \rightarrow (0,0,1,1)$$

SAT of $300 \rightarrow (0,0,0,0)$

Missing Values

- Problem: For some feature X_j , the feature value may be missing for some examples.
 - Not taken SAT $\rightarrow X_{SAT} = NULL$
- Simplest approach
 - Impute value for X_i (e.g. value zero)
 - Indicate that value is imputed via new binary feature

$$X_j^{Missing} = \begin{cases} 1 & X_j = NULL \\ 0 & otherwise \end{cases}$$

Summary

- Typically need to transform features
 - Use same transformation for train and test examples
- Feature scaling relates to how the learning algorithm interprets them
- Indicate and impute missing features