Time-course experiments and Fourier analysis

Neuro-genomics Class 4

Example of the need for time-course experiments: circadian biology

Credit: Nobel Assembly at Karolinska Institutet

Organisms' biological clocks are controlled by oscillations in the level of PER, a protein produced from the *period* gene (1). When complexed with the TIMELESS protein, or TIM (2), PER accumulates in the nucleus, where it inhibits *period* gene activity (3).

The circadian clock in vertebrates

What makes circadian biology so important?

Fig. 1: The mammalian circadian clock.

What makes circadian biology so important?

What is the ideal circadian measurement?

Resolution in time domain

Molecular methods for measuring the circadian clock

Which tissues are circadian?

qRT-PCR

- Advantages
- Disadvantages

Resolution in time domain

In Situ Hybridization (ISH)

Resolution in time domain

Bioluminescence and fluorescence rhythms

Clock gene promoter EGFP/Luciferase

- Rhythms in all examined tissues (Yoo et al., PNAS, 2004)
- And if we don't see rhythm?

Single-cells measurements

Carr and Whitmore, Nature Cell Biology, 2005

Molecular methods for measuring the circadian clock

One or few genes (until ~2000)

- qRT-PCR
- ISH
- Bioluminescence and fluorescence rhythms

Resolution in time domain

Molecular methods for measuring the circadian clock

Next-generation sequencing

Resolution in time domain

Next-generation sequencing of mRNA (mRNA-seq)

Tissue / whole animal

Sequencing Reads

- 1) ACTAGTCAACCTCGGGGAATCA
- 2) TGTGACGTACACGTCACA
- 3) TTGGCTCCACACTGCC
- 4) AAACACACGTGCGTGCACG
- 5) GTGTCACGTGCACCACGTGTG
- 6) GTAAACACGTGTCTGCGTCA
- 7) TGTTGACGTAACACACTGT
- 8) ...
- 9) ...

. . .

200,000,000) ...

Each read is ~100 bases

mRNA sequencing

mRNA-seq – measuring gene expression

Sequencing reads

AGTCTTCCTCGA

CTTCCTCGAGATA

GAGATACGATA

ATATACCGCC

CCATTTAGT

TAGTTTTTTGAG

TGAGAGACG

ACGCGCAGAGA

GAGAGGA

AGTCTTCCTCGAGATACGATATACCGCCCATTTAGTTTTTGAGAGACGCGCAGAGAGA

mRNA sequence

mRNA-seq – measuring gene expression

mRNA-seq – measuring gene expression

 The number of reads for each gene is proportional to the gene expression level and?

Measuring genome-wide gene expression

Next-generation sequencing

 Simultaneous measurements of the RNA levels of all the genes!

the flow cell for simultaneous analysis on the Illumina Genome Analyzer.

Which genes are clock-controlled?

Experimental design

- One sample at night (24:00), one sample at day (12:00)
- We will measure the expression levels of all the genes and look for changes
- What can we lose?

Experimental design

- One sample at night (24:00), one sample at day (12:00)
- We will measure the expression levels of all the genes and look for changes
- What can we lose?
- One sample every 4-hr through the daily cycle
- Measure two consecutive days

Gene A

Gene B

Identifying circadian genes

How 'circadian' looks like?

Identifying circadian genes

How 'circadian' looks like?

- The 'visual inspection' method
- Time domain (fit to sine) and frequency domain (Fourier analysis)

Identifying circadian genes

$$egin{align} X_k &= \sum_{n=0}^{N-1} x_n \cdot e^{-rac{i2\pi}{N}kn} \ &= \sum_{n=0}^{N-1} x_n \cdot \left[\cos\!\left(rac{2\pi}{N}kn
ight) - i \cdot \sin\!\left(rac{2\pi}{N}kn
ight)
ight], \end{split}$$
 (Eq.1)

G-factor = Fourier intensity in one frequency divided by the sum of all intensities

Period [hr]

How can we know the statistical significance of a given G-factor?

How can we know the statistical significance of a given G-factor?

True-Positive [%] versus G-factor

True-Positives [%] versus list length

Variance analysis

- Advantages
- Disadvantages

Log expression

We got tens of circadian genes, now what?

G-factor	Gene symbol	Gene name	Peak tim	ne Annotation
0.7833	GS01YF04	novel	4:00	little similarity found
0.7756	B033-H1	novel	4:00	splicing factor, arginine/serine-rich, marked as splicing factor, arginine/serine-rich B (sfrs-b)
0.7753	B043-D8	novel	4:00	THO complex 4 (chaperone, binds mRNA and process it by splicing and export)
0.7706	B027-B1	heat shock protein 90	16:00	
0.7696	D024-F7	GRP94 (hsp90)(gp96)	16:00	
0.762	A008-E3	calreticulin	16:00	(binds melatonin in the cell nuclear, has chaperone activity)
0.7616	B026-B3	novel	4:00	splicing factor, arginine/serine-rich, marked as splicing factor, arginine/serine-rich B (sfrs-b)
0.7567	D015-F1	heat shock protein 90	16:00	
0.7559	B035-F2	GRP94 (hsp90)(gp96)	16:00	
0.7554	A004-E3	novel	4:00	no similarity found
0.7447	A031-H7	heat shock protein 90	16:00	
0.7443	C003-G9	NA	4:00	NA
0.7424	A049-A7	novel	16:00	little similarity found
0.7344	A032-E10	NA	20:00	

The clustering concept

- Eisen et al., PNAS, 1998
- ~20,000 citations
- What is 'similar'?
- Pearson definition

Research question

Clock-controlled genes?

K-means clustering

Genes in the same cluster share the same function

Group with peak at 16:00

- Almost all the genes in this group have the same function
- Unknown genes? Solution to a very hard problem

Regulatory mechanisms

Thinking outside the (E-)box

- Key assumption: similar expression = similar regulation
- The third concept that resulted from Eisen paper

```
Promoter 1: ATCTGCCCTAGGCACGAAAATCGCG
Promoter 2: CCCACGAAATAGGCTCAAGGTAGTA
Promoter 3: GGTTCCACAACCATGCACACGAAGA
Promoter 4: GCGCATCGCACGAAATATTGATGCG
Promoter 5: CCCACCATTACCAGACACACGAAGA
Promoter 6: CGCACGAAATTGCCTCATGGTAGTA
Promoter 7: CCAGGAAGAGGCCACGAAAAGAGGGC
```

- ab initio motif detection programs
- need DNA sequences ...