Mixed / Multilevel Models

Francisco Rodríguez-Sánchez

https://frodriguezsanchez.net

Example dataset: trees

· Data on 1000 trees from 10 sites.

head(trees)

dead	sex	height	dbh	site	
0	male	36.1	29.68	4	1
0	male	42.3	33.29	5	2
0	female	41.9	28.03	2	3
0	female	46.5	39.86	5	4
0	female	43.9	47.94	1	5
0	male	26.2	10.82	1	6

Example dataset: trees

- · Data on 1000 trees from 10 sites.
- Trees per site: 4 392.

head(trees)

	site	dbh	height	sex	dead
1	4	29.68	36.1	male	0
2	5	33.29	42.3	male	0
3	2	28.03	41.9	female	0
4	5	39.86	46.5	female	0
5	1	47.94	43.9	female	0
6	1	10.82	26.2	male	0

Q: What's the relationship between tree diameter and height?

A simple linear model

```
lm.simple <- lm(height ~ dbh, data = trees)</pre>
Call:
lm(formula = height ~ dbh, data = trees)
Residuals:
    Min 10 Median 30
                                   Max
-13.3270 -2.8978 0.1057 2.7924 12.9511
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 19.33920 0.31064 62.26 <2e-16 ***
dbh 0.61570 0.01013 60.79 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

ŀ

Remember our model structure

$$y_i \sim N(\mu_i, \sigma^2)$$

 $\mu_i = \alpha + \beta x_i$

In this case:

Height
$$_i \sim N(\mu_i, \sigma^2)$$

 $\mu_i = \alpha + \beta DBH_i$

lpha: expected height when DBH = 0

eta: how much height increases with every unit increase of DBH

There is only one intercept

What if allometry varies among sites?

Fitting a varying intercepts model with lm

```
Call:
lm(formula = height ~ factor(site) + dbh, data = trees)
Residuals:
    Min
              10
                   Median
                               30
                                       Max
         -1.9885
-10.1130
                   0.0582
                           2.0314 11.3320
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept)
              16.699037
                         0.260565 64.088 < 2e-16 ***
factor(site)2
             6.504303
                         0.256730 25.335 < 2e-16 ***
factor(site)3 4.357457
                         0.354181 12.303 < 2e-16 ***
factor(site)4 1.934650
                         0.356102 5.433 6.98e-08 ***
factor(site)5 3.637432
                         0.339688 10.708 < 2e-16 ***
factor(site)6
             4,204511
                         0.421906 9.966 < 2e-16 ***
factor(site)7
                                           0.7916
              -0.176193
                         0.666772 -0.264
factor(site)8
              -5.312648
                         0.893603 -5.945 3.82e-09 ***
factor(site)9 5.437049
                         1.087766 4.998 6.84e-07 ***
factor(site)10 2.263338
                         1.369986 1.652
                                            0.0988 .
dbh
               0.617075
                         0.007574 81.473 < 2e-16 ***
```

Single vs varying intercept

Mixed models enable us to account for variability

www.esourceresearch.org/

Mixed model with varying intercepts

$$y_{i} = a + \alpha_{j} + b \cdot x_{i} + \varepsilon_{i}$$
$$\alpha_{j} \sim N(0, \tau^{2})$$
$$\varepsilon_{i} \sim N(0, \sigma^{2})$$

In our example:

$$\begin{aligned} \textit{Height}_i &= a + \textit{site}_j + b \cdot \textit{DBH}_i + \varepsilon_i \\ &\textit{site}_j \sim \textit{N}\left(0, \tau^2\right) \\ &\varepsilon_i \sim \textit{N}\left(0, \sigma^2\right) \end{aligned}$$

Mixed models estimate varying parameters

(intercepts and/or slopes)

with pooling among levels

(rather than considering them fully independent)

• complete pooling: Single overall intercept.

· complete pooling: Single overall intercept.

```
· lm (height ~ dbh)
```

- · complete pooling: Single overall intercept.
 - · lm (height ~ dbh)
- · no pooling: One independent intercept for each site.

- · complete pooling: Single overall intercept.
 - · lm (height ~ dbh)
- · no pooling: One independent intercept for each site.
 - · lm (height ~ dbh + site)

- · complete pooling: Single overall intercept.
 - · lm (height ~ dbh)
- no pooling: One independent intercept for each site.
 - · lm (height ~ dbh + site)
- partial pooling: Inter-related intercepts.

- · complete pooling: Single overall intercept.
 - · lm (height ~ dbh)
- no pooling: One independent intercept for each site.
 - · lm (height ~ dbh + site)
- · partial pooling: Inter-related intercepts.
 - · lmer(height ~ dbh + (1 | site))

1. Fixed effects constant across individuals, random effects vary.

http://andrewgelman.com/2005/01/25/why_i_dont_use/

- 1. Fixed effects constant across individuals, random effects vary.
- 2. Effects are fixed if they are interesting in themselves; random if interest in the underlying population.

http://andrewgelman.com/2005/01/25/why_i_dont_use/

- 1. Fixed effects constant across individuals, random effects vary.
- 2. Effects are fixed if they are interesting in themselves; random if interest in the underlying population.
- 3. Fixed when sample exhausts the population; random when the sample is small part of the population.

http://andrewgelman.com/2005/01/25/why i dont use/

- 1. Fixed effects constant across individuals, random effects vary.
- 2. Effects are fixed if they are interesting in themselves; random if interest in the underlying population.
- 3. Fixed when sample exhausts the population; random when the sample is small part of the population.
- 4. Random effect if it's assumed to be a realized value of random variable.

http://andrewgelman.com/2005/01/25/why i dont use/

- 1. Fixed effects constant across individuals, random effects vary.
- 2. Effects are fixed if they are interesting in themselves; random if interest in the underlying population.
- 3. Fixed when sample exhausts the population; random when the sample is small part of the population.
- 4. Random effect if it's assumed to be a realized value of random variable.
- 5. Fixed effects estimated using least squares or maximum likelihood; random effects estimated with shrinkage.

http://andrewgelman.com/2005/01/25/why_i_dont_use/

What is a random effect, really?

Varies by group

Random effects are estimated with *partial pooling*, while fixed effects are not (infinite variance).

What is a random effect, really?

- · Varies by group
- Variation estimated with probability model

Random effects are estimated with *partial pooling*, while fixed effects are not (infinite variance).

Shrinkage improves parameter estimation

Especially for groups with low sample size

From Gelman & Hill p. 253

Fitting mixed/multilevel models

Correlation of Fixed Effects:

(Intr)

```
library("lme4")
mixed <- lmer(height ~ dbh + (1|site), data = trees)
Linear mixed model fit by REML ['lmerMod']
Formula: height ~ dbh + (1 | site)
  Data: trees
REML criterion at convergence: 5108.3
Scaled residuals:
                                Max
   Min
           10 Median 30
-3.3199 -0.6607 0.0227 0.6716 3.7328
Random effects:
Groups Name Variance Std.Dev.
site (Intercept) 11.195 3.346
Residual
                9.261 3.043
Number of obs: 1000, groups: site, 10
Fixed effects:
           Estimate Std. Error t value
(Intercept) 19.011468 1.100444 17.28
dhh
   0.616927 0.007572 81.47
```

17

Retrieve model coefficients

coef(mixed)

```
$site
   (Intercept)
                     dbh
1
      16.70800 0.6169271
      23.19162 0.6169271
3
      21.04229 0.6169271
4
      18.64086 0.6169271
5
      20.32995 0.6169271
6
      20.88200 0.6169271
      16.61686 0.6169271
8
      11.88302 0.6169271
9
      21.84779 0.6169271
10
      18,97228 0,6169271
```

Broom: model estimates in tidy form

```
library(broom.mixed)
tidy(mixed)
```

```
# A tibble: 4 x 6
 effect group
                             estimate std.error statistic
                term
 <chr> <chr>
                <chr>>
                                <dbl>
                                       <dbl>
                                                 <dbl>
1 fixed <NA> (Intercept)
                          19.0 1.10
                                               17.3
2 fixed <NA>
                dbh
                                0.617 0.00757 81.5
3 ran pars site
                sd (Intercept)
                                3.35
                                      NΑ
                                                 NΑ
4 ran_pars Residual sd__Observation
                                3.04
                                      NA
                                                 NA
```

See also broom.mixed

Visualising model: allEffects

allEffects(mixed)

model: height ~ dbh

dbh effect

dbh 5 20 30 40 50 22.09610 31.35001 37.51928 43.68855 49.85782

Visualising model: visreg

visreg(mixed, xvar = "dbh", by = "site", re.form = NULL)

Visualising model

visreg(mixed, xvar = "dbh", by = "site", re.form = NULL, overlay = TRUE)

Visualising model: sjPlot

Using merTools to understand fitted model

```
library("merTools")
shinyMer(mixed)
```

Checking residuals

plot(mixed)

Checking residuals

library("performance") check_model(mixed)

Checking residuals (DHARMa)

DHARMa::simulateResiduals(mixed, plot = TRUE, re.form = NULL)

Model checking with simulated data

check_predictions(mixed)

Posterior Predictive Check

heiaht

R-squared for GLMMs

Many approaches! Somewhat polemic (e.g. see this).

Nakagawa & Schielzeth propose marginal (considering fixed effects only) and conditional R^2 (including random effects too):

r2(mixed)

R2 for Mixed Models

Conditional R2: 0.888 Marginal R2: 0.753

Growing the hierarchy: adding site-level predictors

Model with group-level predictors

We had:

$$y_i = a + \alpha_j + b \cdot x_i + \varepsilon_i$$
$$\alpha_j \sim N(0, \tau^2)$$
$$\varepsilon_i \sim N(0, \sigma^2)$$

Now

$$egin{aligned} y_i &= a + lpha_j + b \cdot x_i + arepsilon_i \ & lpha_j \sim \mathit{N}(\mu_j, au^2) \ & \mu_j &= \delta \cdot \mathit{Predictor}_j \ & arepsilon_i \sim \mathit{N}(0, \sigma^2) \end{aligned}$$

Are height differences among sites related to temperature?

$$\begin{aligned} \textit{Height}_i &= \textit{site}_j + b \cdot \textit{DBH}_i + \varepsilon_i \\ &\quad \textit{site}_j \sim \textit{N}(\mu_j, \tau^2) \\ \mu_j &= a + \delta \cdot \textit{Temperature}_j \\ &\quad \varepsilon_i \sim \textit{N}(0, \sigma^2) \end{aligned}$$

Are height differences among sites related to temperature?

```
sitedata <- read.csv("data/sitedata.csv")
sitedata</pre>
```

```
site temp
      1 15.1
2
      2 22.0
3
      3 20.1
4
      4 20.4
5
      5 20.0
6
      6 20.1
      7 17.5
8
      8 14.6
9
      9 19.2
10
     10 16.0
```

Merging trees and site data

```
trees.full <- merge(trees, sitedata, by = "site")
head(trees.full)</pre>
```

```
      site
      dbh height
      sex dead temp

      1
      1 21.05
      32.2
      male
      0 15.1

      2
      1 46.63
      45.9 female
      0 15.1

      3
      1 43.86
      45.5
      male
      0 15.1

      4
      1 29.03
      35.5
      male
      0 15.1

      5
      1 6.02
      21.1
      male
      0 15.1

      6
      1 40.82
      38.7
      male
      0 15.1
```

Fit multilevel model

```
group.pred <- lmer(height ~ dbh + (1 | site) + temp, data = trees.full)</pre>
Linear mixed model fit by REML ['lmerMod']
Formula: height ~ dbh + (1 | site) + temp
  Data: trees.full
REML criterion at convergence: 5098.2
Scaled residuals:
   Min 10 Median 30
                                Max
-3.3247 -0.6517 0.0192 0.6663 3.7268
Random effects:
Groups Name Variance Std.Dev.
site (Intercept) 3.158 1.777
Residual
           9.266 3.044
Number of obs: 1000, groups: site, 10
Fixed effects:
           Estimate Std. Error t value
(Intercept) -1.730910 4.671330 -0.371
dbh
       0.616894 0.007571 81.484
temp 1.115104 0.248000 4.496
```

Correlation of Fixed Effects:
(Intr) dbh

Centre (and scale) continuous variables

```
mean(sitedata$temp)
```

[1] 18.5

```
trees.full$temp.c <- trees.full$temp - 18</pre>
```

Temperatures now referred as deviations from 18 °C (close to average)

Fit multilevel model

```
group.pred <- lmer(height ~ dbh + (1 | site) + temp.c, data = trees.full)</pre>
Linear mixed model fit by REML ['lmerMod']
Formula: height ~ dbh + (1 | site) + temp.c
  Data: trees.full
REML criterion at convergence: 5098.2
Scaled residuals:
   Min 10 Median 30
                                Max
-3.3247 -0.6517 0.0192 0.6663 3.7268
Random effects:
Groups Name Variance Std.Dev.
site (Intercept) 3.158 1.777
Residual
           9.266 3.044
Number of obs: 1000, groups: site, 10
Fixed effects:
           Estimate Std. Error t value
(Intercept) 18.340954 0.655054 27.999
dbh
        0.616894 0.007571 81.484
temp.c 1.115104 0.248000 4.496
```

Correlation of Fixed Effects:
(Intr) dbh

37

Examine model with merTools

shinyMer(group.pred)

Comparing site effects with and without group predictor

Are site effects related to temperature?

There is overall difference in height among sites (different intercepts)

AND

Relationship between DBH and Height varies among sites (different slopes)

```
mixed.slopes <- lmer(height ~ dbh + (1 + dbh | site), data=trees)</pre>
```

```
Linear mixed model fit by REML ['lmerMod']
Formula: height ~ dbh + (1 + dbh | site)
  Data: trees
REML criterion at convergence: 5105.1
Scaled residuals:
   Min 10 Median 30 Max
-3.3342 -0.6599 0.0375 0.6916 3.7756
Random effects:
Groups Name Variance Std.Dev. Corr
 site (Intercept) 1.566e+01 3.95671
        dbh
            3.087e-04 0.01757 -1.00
Residual 9.226e+00 3.03744
Number of obs: 1000, groups: site, 10
Fixed effects:
          Estimate Std. Error t value
```

(Intercept) 18.95272 1.29190 14.67

0.61837 0.00946 65.37

dbh

```
$site
   (Intercept)
                      dbh
1
      16.34655 0.6299443
2
      23.74733 0.5970814
3
      21.28802 0.6080019
4
      18,57844 0,6200337
5
      20,47961 0,6115916
6
      21.09608 0.6088542
7
      16.17675 0.6306983
8
      10.54681 0.6556978
9
      22.27301 0.6036281
10
      18,99463 0,6181856
attr(,"class")
```

[1] "coef.mer"

Visualising model: sjPlot

Random effects

More examples

sleepstudy (repeated measures)

Varying intercepts and slopes (lme4)

(Intr)

```
sleep <- lmer(Reaction ~ Days + (1+Days|Subject), data = sleepstudy)</pre>
Linear mixed model fit by REML ['lmerMod']
Formula: Reaction ~ Days + (1 + Days | Subject)
  Data: sleepstudy
REML criterion at convergence: 1743.6
Scaled residuals:
   Min
       10 Median 30
                                Max
-3.9536 -0.4634 0.0231 0.4634 5.1793
Random effects:
Groups Name
               Variance Std.Dev. Corr
Subject (Intercept) 612.10 24.741
         Days 35.07 5.922 0.07
Residual
           654.94 25.592
Number of obs: 180. groups: Subject. 18
Fixed effects:
          Estimate Std. Error t value
(Intercept) 251.405 6.825 36.838
Davs 10.467 1.546 6.771
Correlation of Fixed Effects:
```

48

Varying intercepts and slopes (lme4)

visreg(sleep, xvar = "Days", by = "Subject", re.form = NULL)

Fitting multilevel models (GAMM) with mgcv

```
sgamm <- mgcv::gam(Reaction ~ s(Days, Subject, k = 3, bs = "fs"),</pre>
                  data = sleepstudy, method = "REML")
Family: gaussian
Link function: identity
Formula:
Reaction \sim s(Days, Subject, k = 3, bs = "fs")
Parametric coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 298.51 9.05 32.98 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
                  edf Ref.df F p-value
```

s(Davs.Subject) 45.67 53 17.11 <2e-16 ***

Fitting multilevel models (GAMM) with mgcv

visreg(sgamm, xvar = "Days", by = "Subject")

Fitting multilevel models (GAMM) with mgcv

Hierarchical generalized additive models: an introduction with mgcv

```
Eric J Pedersen Corresp., 1,2, David L. Miller 3,4, Gavin L. Simpson 5, Noam Ross 6
```

https://doi.org/10.7287/peerj.preprints.27320v1

Multilevel logistic regression

Q: Relationship between tree size and mortality

Q: Relationship between tree size and mortality

Fit simple logistic regression

```
simple.logis <- glm(dead ~ dbh, data = trees, family=binomial)</pre>
Call:
glm(formula = dead ~ dbh, family = binomial, data = trees)
Deviance Residuals:
   Min 1Q Median 3Q
                                      Max
-0.4805 -0.3520 -0.2647 -0.1928 2.9690
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.77874   0.50902   -9.388   < 2e-16 ***
dhh
      0.05365 0.01377 3.895 9.82e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 360.91 on 999 degrees of freedom
Residual deviance: 343.69 on 998 degrees of freedom
AIC: 347.69
Number of Fisher Scoring iterations: 6
```

Logistic regression with independent site effects

```
logis2 <- glm(dead ~ dbh + factor(site), data = trees, family=binomial)</pre>
Call:
glm(formula = dead ~ dbh + factor(site), family = binomial, data = trees)
Deviance Residuals:
   Min
            1Q Median
                            3Q
                                    Max
-0.6359 -0.3449 -0.2561 -0.1852
                                2.9763
Coefficients:
               Estimate Std. Error z value Pr(>|z|)
(Intercept)
               -4.80123 0.54985 -8.732 <2e-16 ***
dhh
               0.05371 0.01381 3.889 0.0001 ***
factor(site)2 -0.29692 0.46073 -0.644
                                          0.5193
factor(site)3 0.21275 0.52799 0.403
                                          0.6870
factor(site)4 0.39841 0.53025 0.751
                                          0.4524
factor(site)5 -0.42557 0.64018 -0.665
                                          0.5062
factor(site)6 0.66861 0.53656 1.246
                                          0.2127
factor(site)7 0.11862 1.06211 0.112
                                          0.9111
factor(site)8 0.43899 1.08058 0.406
                                          0.6846
factor(site)9 -13.63389 840.90382 -0.016
                                          0.9871
factor(site)10 -13.17148 1042.21823 -0.013
                                          0.9899
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Fit multilevel logistic regression

```
mixed.logis <- glmer(dead ~ dbh + (1|site), data=trees, family = binomial)
Generalized linear mixed model fit by maximum likelihood (Laplace
 Approximation) [glmerMod]
Family: binomial (logit)
Formula: dead ~ dbh + (1 | site)
  Data: trees
   AIC
             BIC logLik deviance df.resid
  349.7 364.4 -171.8 343.7
                                     997
Scaled residuals:
   Min
       1Q Median 3Q
                                 Max
-0.3498 -0.2528 -0.1888 -0.1370 9.0031
Random effects:
Groups Name Variance Std.Dev.
site (Intercept) 0 0
Number of obs: 1000, groups: site, 10
Fixed effects:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.77874    0.50904   -9.388    < 2e-16 ***
dhh
        0.05365 0.01377 3.895 9.83e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Retrieve model coefficients

coef(mixed.logis)

```
$site
   (Intercept) dbh
1
    -4.778744 0.05364989
2
  -4.778744 0.05364989
3
    -4.778744 0.05364989
4
    -4.778744 0.05364989
5
    -4.778744 0.05364989
6
    -4.778744 0.05364989
    -4.778744 0.05364989
8
   -4.778744 0.05364989
9
    -4.778744 0.05364989
10
   -4.778744 0.05364989
```

Visualising model: visreg

visreg(mixed.logis, xvar = "dbh", by = "site", scale = "response")

Visualising model: sjPlot

\$dbh

- Perfect for $structured\ data\ (space-time)$

- Perfect for structured data (space-time)
- \cdot Predictors enter at the appropriate level

- · Perfect for structured data (space-time)
- Predictors enter at the appropriate level
- · Accommodate variation in treatment effects

- Perfect for structured data (space-time)
- Predictors enter at the appropriate level
- Accommodate variation in treatment effects
- · More efficient inference of regression parameters

- Perfect for structured data (space-time)
- Predictors enter at the appropriate level
- Accommodate variation in treatment effects
- · More efficient inference of regression parameters
- $\boldsymbol{\cdot}$ Using all the data to perform inferences for groups with \boldsymbol{small} \boldsymbol{sample} \boldsymbol{size}

Varying intercepts

Varying intercepts

```
\cdot y ~ x + (1 | group)
```

Varying intercepts

$$\cdot$$
 y ~ x + (1 | group)

Varying intercepts and slopes

Varying intercepts

$$\cdot$$
 y ~ x + (1 | group)

Varying intercepts and slopes

$$\cdot$$
 y ~ x + (1 + x | group)

Varying intercepts

$$\cdot$$
 y ~ x + (1 | group)

· Varying intercepts and slopes

$$\cdot$$
 y ~ x + (1 + x | group)

· Varying intercepts, 2 groups (crossed)

Varying intercepts

$$\cdot$$
 y ~ x + (1 | group)

· Varying intercepts and slopes

$$\cdot$$
 y ~ x + (1 + x | group)

· Varying intercepts, 2 groups (crossed)

$$\cdot$$
 y ~ x + (1 | group1) + (1 | group2)

Varying intercepts

$$\cdot$$
 y ~ x + (1 | group)

· Varying intercepts and slopes

$$\cdot$$
 y ~ x + (1 + x | group)

· Varying intercepts, 2 groups (crossed)

$$\cdot$$
 y ~ x + (1 | group1) + (1 | group2)

Varying intercepts, 2 groups (nested)

Varying intercepts

$$\cdot$$
 y ~ x + (1 | group)

· Varying intercepts and slopes

$$\cdot$$
 y ~ x + (1 + x | group)

Varying intercepts, 2 groups (crossed)

$$\cdot$$
 y ~ x + (1 | group1) + (1 | group2)

· Varying intercepts, 2 groups (nested)

$$\cdot$$
 y ~ x + (1 | group/subgroup)

Varying intercepts

$$\cdot$$
 y ~ x + (1 | group)

· Varying intercepts and slopes

$$\cdot$$
 y ~ x + (1 + x | group)

Varying intercepts, 2 groups (crossed)

$$\cdot$$
 y ~ x + (1 | group1) + (1 | group2)

- · Varying intercepts, 2 groups (nested)
 - \cdot y ~ x + (1 | group/subgroup)
 - This is equivalent to $y \sim x + (1 \mid group1) + (1 \mid group2)$ with distinct labelling of group levels.

· Varying intercepts

$$\cdot$$
 y ~ x + (1 | group)

· Varying intercepts and slopes

$$\cdot$$
 y ~ x + (1 + x | group)

Varying intercepts, 2 groups (crossed)

$$\cdot$$
 y ~ x + (1 | group1) + (1 | group2)

- Varying intercepts, 2 groups (nested)
 - \cdot y ~ x + (1 | group/subgroup)
 - This is equivalent to $y \sim x + (1 \mid group1) + (1 \mid group2)$ with distinct labelling of group levels.
- · Varying intercepts and slopes, 2 groups (crossed)

· Varying intercepts

$$\cdot$$
 y ~ x + (1 | group)

· Varying intercepts and slopes

$$\cdot$$
 y ~ x + (1 + x | group)

· Varying intercepts, 2 groups (crossed)

$$\cdot$$
 y ~ x + (1 | group1) + (1 | group2)

- Varying intercepts, 2 groups (nested)
 - \cdot y ~ x + (1 | group/subgroup)
 - This is equivalent to $y \sim x + (1 \mid group1) + (1 \mid group2)$ with distinct labelling of group levels.
- · Varying intercepts and slopes, 2 groups (crossed)

$$\cdot$$
 y ~ x + (1 + x | group1) + (1 + x | group2)

GLMM FAQ

https://bbolker.github.io/mixedmodels-misc/glmmFAQ.html