Homework 3 Anthony Jones 1. Let a, b, c E _ s.t. alb and alc. By the definition of divisibility, there are two integers u and v 5.t. $b = a \cdot u$ and c = a.v. Substituting for 6 and c, observe that b+c = a·u + a·v = a(u+v). By the rules of integer addition, there is some integer in s.t. b+c = a.w, which is to say al(b+c). Q 2. Let &, b, d, x, y & // s.t. dla and dlb. Also let and v = by By the defigition of divisibility, there are two integers q and p s.t. a =/d·q and b = d.p. so that now u = d. A.x and v = d.p.g. By the rules of integer multiplication, there are

ت

J

-

7

-

100

-

-1

-

-

Homework 3 2. (cant) Let a, b, d, x, y, u, v \ Z s.t. dla, dib, u = ax, and V = 64. the definition of divisibility , there are two integers p and 9 s.t. $a = d \cdot P$ and b = d. 9 , so that now $u = d \cdot p \cdot x$ and v = d.9.y. By the rules of integer multiplications there are two integers f and eg s.t. u = d.f and $v = d \cdot g$ which is to say dlu and dlv. Given the proof to question (1), we know that dl(u+v), or after substituding: d1(ax+by). \$

	Homework 3
3.	Let x, b, c \in \mathbb{Z} \s.t.
	199 x = 26-1 and b=c+1.
	Observe that substituding for b gives
	x=2(c+1)-1=2c+1
	which by the definition of odd implies that x is odd.
	Let X, My E I s.t. x is odd.
	Males
	By the desi of odd, there is an integer C 5.t.
	$\chi = 2c + 1.$
	Arranging the terms sives the equation:
	X = 2(c+1)-1
	Let 6 loe and Integer 3.t.
	b = c+1.
	Chosence that when x is odd, there is
	Some integer by that satisfies $x = 2b - 1$. Q

Home Work 3

Tover

4: The err in the proof was
dividing both sides by (a-b),
given that a=b. Here you
are dividing by zero, chansing
the statement

" 0 = 0"

into

"a+b = b"