

Einführung in Wissensgraphen

Wissensgraphen und große Sprachmodelle in den Digital Humanities Workshop @ DHd 2025

Prof. Dr. Ralf Krestel
Christian-Albrechts-Universität zu Kiel &
ZBW – Leibniz-Informationzentrum Wirtschaft

Wie speichert man Wissen?

- Grundlegendes Problem der Menschheit seit Anbeginn
 - Höhle von Lascaux (16000 v. Chr.)
- Wie speichert man Daten?

Vom Datenspeicher zum Wissensspeicher

- Daten in einer Datenbank (DB) (+ Schema)
 - Relationale / Graph- / NoSQL-DB

Beispiel: Datenbank

- Informationen über
 - Bücher
 - Verleger
 - Autoren

Books

Title	Author	Publisher	Year Published	Followed By
To Kill a Mockingbird	Harper Lee	J. B. Lippincott Company	1960	Go Set a Watchman
Go Set a Watchman	Harper Lee	HarperCollins, LLC; Heinemann	2015	
The Picture of Dorian Gray	Oscar Wilde	J. B. Lippincott & Co.	1890	
2001: A Space Odyssey	Arthur C. Clarke	New American Library, Hutchinson	1968	

Publishers

Name	City	Country
J. B. Lippincott & Company	Philadelphia	United States
HarperCollins, LLC	New York City	United States
Heinemann	Portsmouth	United States
New American Library	New York City	United States
Hutchinson	London	United Kingdom

Authors

Name	Country of Birth
Harper Lee	United States
Oscar Wilde	Ireland
Arthur C. Clarke	United Kingdom

Vom Datenspeicher zum Wissensspeicher

- Daten in einer Datenbank (DB) (+ Schema)
 - Relationale / Graph- / NoSQL-DB
- Metadaten in einer Ontologie
 - Informationen über Daten und wie diese zusammenhängen (üblicherweise in Form von Tripeln)

Beispiel: Ontologie

- Klassen, z.B.
 - Bücher
 - Autoren
 - Verleger
 - Orte
- Attribute, z.B.
 - Bücher werden zu einem Datum veröfffentlicht
- Relationen, z.B.
 - Bücher haben Autoren
 - Bücher haben Verleger
 - Bücher können einen "Nachfolger" haben

Vom Datenspeicher zum Wissensspeicher

- Daten in einer Datenbank (DB) (+ Schema)
 - Relationale / Graph- / NoSQL-DB
- Metadaten in einer Ontologie
 - Informationen über Daten und wie diese zusammenhängen (üblicherweise in Form von Tripeln)
- Fakten in einer Wissensbasis (Knowledge Base, KB)
 - Fakten in Form von Fakten-Tripeln)

Beispiel: Wissensbasis

Harper Lee

- Sammlung von Fakten:
 - Harper Lee → arbeitet mit → JBL&C
 - JBL&C → gelegen_in → Philadelphia
 - To Kill a Mockingbird → hat_Autor → Harper Lee
 - To Kill a Mockingbird → hat_Verleger→ JBL&C
 - Philadelphia → gelegen_in → United States of America

- ..

- Zusätzliche Relation "ist_ein/e" oder "ist_vom_Typ" können Fakten mit Konzepten aus einer Ontologie verbinden
 - Harper Lee → ist eine → Autorin
 - To Kill a Mockingbird → ist_ein → Buch
 - Philadelphia → ist eine → Stadt

Darstellung als Tripel: Subjekt-Prädikat-Objekt

-

To Kill a

Mockingbird

Vom Datenspeicher zum Wissensspeicher

- Daten in einer Datenbank (DB) (+ Schema)
 - Relationale / Graph- / NoSQL-DB
- Metadaten in einer Ontologie
 - Informationen über Daten und wie diese zusammenhängen (üblicherweise in Form von Tripeln)
- Fakten in einer Wissensbasis (Knowledge Base, KB)
 - Fakten in Form von Fakten-Tripeln)
- Verbundene Fakten in einem Wissensgraphen (Knowledge Graph, KG)
 - Die Fakten-Tripel werden zu einem Netzwerk verbunden

03.03.2025

Beispiel: Wissensgraph

Ein Graph mit allen Tripeln aus der Wissensbasis miteinander verbunden

Wissensgraph = Wissensbasis + Graph

Definition: Wissensgraph

- Ein Wissensgraph ist
 - strukturiert (nutzt eine bestimmte Datenstruktur)
 - normalisiert (besteht aus Knoten (Entitäten) und Kanten (Relationen)
 - vernetzt (mit Verbindungen zwischen Objekten)

- Wissensgraphen sind typischerweise
 - explizit (bewusst erstellt mit dem klaren Ziel Wissen zu speichern)
 - deklarativ (selbsterklärend und unabhängig von individuellen Implementierungen)
 - annotiert (angereichert mit Kontextinformationen, Metadaten, Quellen)
 - nicht-hierarchisch (keine einfache Baum-Struktur)
 - sehr groß (Millionen von Elementen)

Unternehmenswissensgraphen

	Data model	Size of the graph	Development stage
Microsoft	The types of entities, relations, and attributes in the graph are defined in an ontology.		Actively used in products
Google	Strongly typed entities, relations with domain and range inference	1 billion entities, 70 billion assertions	Actively used in products
Facebook	All of the attributes and relations are structured and strongly typed, and optionally indexed to enable efficient retrieval, search, and traversal.	~50 million primary entities, ~500 million assertions	Actively used in products
eBay	Entities and relation, well- structured and strongly typed	Expect around 100 million products, >1 billion triples	Early stages of development and deployment
IBM	Entities and relations with evidence information associated with them.	Various sizes. Proven on scales documents >100 million, relationships >5 billion, entities >100 million	Actively used in products and by clients

Noy, N., Gao, Y., Jain, A., Narayanan, A., Patterson, A., & Taylor, J. (2019). Industry-scale knowledge graphs: lessons and challenges. *Communications of the ACM*, 62(8), 36-43.

Offene Wissengraphen

- Bekannte offene KGs
 - Dbpedia
 - YAGO
 - Freebase
 - Wikidata
- Große, allgemeine Wissensgraphen
- Beinhalten vielfältige Entitäten und Relationen
- Sind in RDF modelliert
- Veröffentlicht nach den Linked Data Prinzipien
- Ermöglichen Zugriff via
 - download (RDF)
 - Knotenabfrage (Linked Data)
 - Graphmuster/Anfragen (SPARQL)

Wikidata

WIKIDATA

- Kollaborativer Wissensgraph
- Wikimedia-Projekt (2012)
 - Federführend ist Wikimedia Deutschland

- Sprachunabhängige Zentralisierung von Fakten/Wissen
- Bietet einen zentralen Ort für Infobox-Daten für alle Wikipedias
- Erzeugen und Updaten von List-Artikeln basierend auf Wikidata-Daten
- Wikidata query service (2015)
- Statistiken
 - >100m items, 11k properties, >2b edits, 25k active users

03.03.2025

https://www.wikidata.org/wiki/Wikidata:Statistics

Wissensgraph nutzen

- Zum Beispiel um Antworten auf komplexe Fragen zu bekommen
- Beispiel: Wikidata-Wissensgraph
 - https://query.wikidata.org/
 - SPARQL Anfragesprache

Anfragen beantworten

Woran sind die meisten adeligen Menschen gestorben?

Ursache Ai	nzahl	Ursache	Anzahl
im Einsatz getötet	423	Schlaganfall	141
Enthauptung	295	Herzinfarkt	137
Krankheit	266	Ertrinken	118
Tuberkulose	232	Gift	109
Kindbettfieber	198	Krebs	97
Pest	197	Sturz vom Pferd	91
Lungenentzündun	g 179	Exekution	90
Schusswunde	144	Hängen	81
Pocken	144	Straßenverkehrsunfall	61

```
SELECT ?cause ?causeLabel (COUNT(?person) AS ?count) WHERE {
    ?person wdt:P31 wd:Q5;
        wdt:P509 ?cause;
        wdt:P53 [].

SERVICE wikibase:label { bd:serviceParam wikibase:language "de".}}
GROUP BY ?cause ?causeLabel
HAVING(?count > 1)
ORDER BY DESC(?count)
```


Anfragen beantworten

Nach welchen Frauen wurden die meisten Straßen in den Niederlanden benannt?

591
commons:Jacob Merkelbach, ...
Wilhelmina of the Netherlands
Q wd:Q150747

515

☐ commons:Prinses Beatrix.jpg

Beatrix of the Netherlands

Q wd:Q29574

370
commons:Princes Irene 1978.jpg
Princess Irene of the Netherlands
Q wd:Q263623

370

commons:Prinses Irene van BourbonPrincess Irene of the Netherlands
Q. wd:Q263623

255

☑ commons:Emma van WaldeckEmma of Waldeck and Pyrmont

Q wd:057664

255
commons:Prinses Christina eer.
Princess Christina of the Netherla...
Q. wd:0435324

190
Commons: Queen Juliana of the Juliana of the Netherlands
O wdt 0154046

160

☐ commons:Margriet der Nederlan...
Princess Margriet of the Netherlands
☐ wd:0268821

6/
Commons:Aletta Jacobs, 1895-1905.jpg
Aletta Jacobs
Q wd:Q463478

GO Commons:Marie Curie c. 1920...

Marie Curie

Q. wd: 07186

Antwort als Karte

 Was und wo auf der Welt wurde nach früheren französischen Präsidenten benannt?

https://t.co/LHkfuHLiq2

```
#defaultView:Map
SELECT ?truc ?presLabel ?trucLabel ?coord ?layer WHERE {{
    SELECT DISTINCT ?truc (SAMPLE(?coord) AS ?coord) (SAMPLE(?layer) AS ?layer) WHERE {
        ?pres wdt:P39 wd:Q191954 ; rdfs:label ?layer. FILTER((LANG(?layer)) = "fr")
        ?truc wdt:P138 ?pres ; wdt:P625 ?coord.}
    GROUP BY ?truc ?trucLabel}
SERVICE wikibase:label { bd:serviceParam wikibase:language "fr".}}
```

03.03.2025

Komplexe Anfragen

Welche Gemälde von Johannes Vermeer zeigen eine Landkarte?

```
#defaultView: ImageGrid
SELECT ?painting ?paintingLabel ?object ?objectlabel ?image
where
  ?painting wdt:P31/wdt:P279* wd:Q3305213 .
  ?painting wdt:P180 ?object .
  ?painting wdt:P170 wd:Q41264 .
  ?object wdt:P31/wdt:P279* wd:Q4006 .
  ?painting wdt:P18 ?image .
  SERVICE wikibase: label {
          bd:serviceParam
          wikibase:language "en" }}
```


commons: Vermeer - Woman with a Lute near. Q wd-Q28873626

commons: Vermeer, Johannes - Woman readin.

- Q wd-Q28873420
- Q The Love Letter

commons:Jan Vermeer van Delft 019.jpg Q wd:Q28873546

- Q Woman with a Water Jug

commons: Johannes Vermeer - De Soldaat en het L... Q wd:Q28873420

commons: Johannes Vermeer - The Astronomer - ...

03.03.2025

Domänenspezifischer Wissensgraph

Am Beispiel Kunstgeschichte

- Kunsthistoriker/innen, sowie Laien können Wissensgraphen explorieren und neue, nicht-offensichtliche Muster und Beziehungen entdecken
- Spezifische Entitätstypen und Relationen

- Kunstwerke, Gallerien, Museen, Kunstströmungen, ...

- Beeinflusst_von, Teil_der_Kunstströmung, ...

- Existierende, allgemeine Kunst-Ontologie
 - Passend? Verständlich? Vollständig?
- Maßgeschneiderte Ontologie?
 - Nicht-Trivial und teuer!

Kunstgeschichtliche Wissensgraphen

- ArCo: the Italian Cultural Heritage Knowledge Graph
 - http://wit.istc.cnr.it/arco/?lang=en
- Rijksmuseum collection
 - Dijkshoorn, C. et al. (2018). The Rijksmuseum collection as linked data. Semantic Web, 9(2), 221-230.
- Smithsonian American Art Museum
 - https://americanart.si.edu/about/lod
- ArtGraph
 - Castellano, G., et al (2022). Leveraging Knowledge Graphs and Deep Learning for automatic art analysis. Knowledge-Based Systems, 248, 108859.

• ...

Ontologien

- CIDOC Conceptual Reference Model (CRM)
 - https://cidoc-crm.org/
- Europeana Data Model (EDM)
 - https://pro.europeana.eu/page/edm-documentation

Aufgaben / Anwendungen

- Wissensgraphkonstruktion
 - Aufbau von Grund auf
 - Existierender Wissensgraph vervollständigen
 - Benannte Entitäten
 - Erkennen (NER)
 - Typisieren
 - Disambiguieren (NED) / Verlinken (NEL)
 - Relationen
 - Extrahieren (RE)
 - Verfeinern, Zusammenführen,...
- Reasoning / Inference
 - QA, Chatbots, IR
- Wissensrepräsentation / KG Embeddings

http://deepdive.stanford.edu/kbc

Potenzielle Anwendungesgebiete für LLMs

- Unterstützung beim Benutzen von KGs
 - Automatisch SPARQL-Anfragen aus natürlicher Sprache generieren
 - Explorieren und Zusammenfassen existierender KGs
 - Kompetenzfragen in SPARQL-Anfragen übersetzen (zur Evaluierung von KGs)
 - Code-Generierung oder Konfiguration von Verarbeitungspipelines
- Unterstützung bei KG-Konstruktion
 - KGs bevölkern
 - Erzeugen oder Erweitern von KG-Schemas/Ontologien
 - Erkennen von KG-Design-Problemen durch Probleme des LLM
 - Suche nach Konzepten/Entitäten in anderen, exisitierenden KGs
 - Verbessern von KGs durch Kompetenzfragen

Meyer, L. P., Stadler, C., Frey, J., Radtke, N., Junghanns, K., ... & Martin, M. (2023). LLM-assisted knowledge graph engineering: Experiments with chatGPT. In *Working conference on AI Development for a Resilient and Sustainable Tomorrow* (pp. 103-115).

Zusammenfassung

- Wissensgraphen
 - Speichern Faktenwissen
 - Klare Struktur und klar definierte Semantik
 - Erlaubt strukturierte (komplexe) Anfragen
 - Erlaubt manuelles korrigieren
 - Selbsterklärend, transparent, verständlich
- Wissensgraphkonstruktion
 - Allgmein oder domänenspezifisch
 - Automatische Erstellung & Erweiterung / Vervollständigung
 - Klassische Methoden für jeden Schritt (NER, RE, ...)
- LLMs können unterstützen bei
 - Wissensgraphkonstruktion (einzelne Schritte, komplett?)
 - Wissensgraphbenutzung (Anfragen, Explorieren, Konfigurieren)

Aktuelle Forschung: Kombination von KGs und LLMs

Weiterführende Literatur

- Hogan, A., Blomqvist, E., Cochez, M., d'Amato, C., Melo, G. D., ... & Zimmermann, A. (2021).
 Knowledge graphs. ACM Computing Surveys (Csur), 54(4), 1-37.
- Zhong, L., Wu, J., Li, Q., Peng, H., & Wu, X. (2023). **A comprehensive survey on automatic knowledge graph construction**. *ACM Computing Surveys*, *56*(4), 1-62.
- Meyer, L. P., Stadler, C., Frey, J., Radtke, N., Junghanns, K., ... & Martin, M. (2023).
 LLM-assisted knowledge graph engineering: Experiments with chatGPT. In Working conference on AI Development for a Resilient and Sustainable Tomorrow (pp. 103-115).
- Veseli, B.; Singhania, S.; Razniewski, S.; Weikum, G. (2023). Evaluating Language Models for Knowledge Base Completion. In Proceedings of the Semantic Web—20th International Conference, ESWC 2023; Volume 13870 (pp. 227–243).

Webseiten zur (praktischen) Einführung

- https://www.dataversity.net/what-is-a-knowledge-graph/
- https://towardsdatascience.com/a-guide-to-the-knowledge-graphs-bfb5c40272f1

03.03.2025

- https://medium.com/@ayushlall/how-to-build-your-own-knowledge-graph-using-janusgraph-and-gremlin-1a0c69524cb
- https://medium.com/@jenlindadsouza/how-to-prompt-an-llm-to-generate-a-research-knowledge-graph-kg-for-complex-scientific-domains-2447fe8ff081

Bildernachweis

- https://pxhere.com/en/photo/1452649
- https://commons.wikimedia.org/wiki/File:Lascaux_04_%28with_circle%29.jpg
- https://commons.wikimedia.org/wiki/File:Linecons_database.svg
- https://commons.wikimedia.org/wiki/File:Bildschirmfoto 2021-02-14 um 15.59.17.png
- https://commons.wikimedia.org/wiki/File:William_Gladstone_as_a_jockey,_falling_from_his_horse_Wellcome_V0050380.jpg
- https://community.atlassian.com/t5/image/serverpage/image-id/123489i7BBAEFC53942889D/image-dimensions/2000

Anhang: Wissensgraphkonstruktion

Zhong, L., Wu, J., Li, Q., Peng, H., & Wu, X. (2023). A comprehensive survey on automatic knowledge graph construction. *ACM Computing Surveys*, *56*(4), 1-62.

