Project Development Phase Model Performance Test

Date	9 November 2023	
Team ID	Team-592608	
Project Name ENVISIONING SUCCESS: Predicting		
	University Scores Using Machine Learning	
Maximum Marks	10 Marks	

Model Performance Testing:

S.No.	Parameter	Values	Screenshot
1.	Metrics	Regression Model: MAE - 0.51629 MSE - 1.27606 RMSE - 1.12963 R2 score – 0.97488	<pre> # 5) Random Forest Regression rf = RandomForestRegressor(n_estimators = 100, random_state = 0) rf.fit(x_train, y_train) y_pred5 = rf.predict(x_test) print ("Prediction Evaluation using Random Forest Regression") print ("MAE: ",mean_absolute_error(y_test, y_pred5)) print ("MSE: ",mean_squared_error(y_test, y_pred5)) print ("MSE: ",np.sqrt (mean_squared_error(y_test, y_pred5)) print ("R^2: ",r2_score(y_test, y_pred5)) Prediction Evaluation using Lasso Regression MAE: 0.5162916450216447 MSE: 1.2760879381148183 RMSE: 1.1296273447977516 R^2: 0.974878528282976 </pre>
2.	Tune the Model	Hyperparameter Tuning: MAE - 0.52934 MSE - 1.14916 RMSE - 1.07199 R2 score - 0.97738	### Random Forest Regression Hyper Parameter Tuning from Sklean.Bodd_selection Super RandomizedSearchCV param_dists = { ".g.stimators': [58, 180, 280], 'msfeatures': [cats], Sept', 'log2'], "mssemples_plait': [25, 5, 18], "min_semples_plait': [2, 5,