Chapter Three Part One: Data Visualization and the Shape of Distributions

Remember, a	is a variable	that i	is measured	on a	numeric
scale.					

•

•

When trying to glean information from quantitative variables there are two things we look at:

1.

2.

Data Visualization - Histograms

While a histogram looks similar to a bar plot, they mean different things. A histogram is a graphical display of the ______ of a quantitative variable. This is a summary of quantitative information it does not _____

Histogram of Quantiative Variable Page 10 12 14 16 18 20 22 Variable

To build a histogram, we perform the following actions:

1.

2.

3.

4.

5.

Example The dataset USStates contains information about the 50 states in the US. A porption of the data is shown below:

	State	HouseholdIncome	IQ	ObamaMcCain
1	Alabama	38160	95.70	M
2	Alaska	57071	99.00	M
3	Arizona	46693	97.40	M
4	Arkansas	37458	97.50	M
5	California	54385	95.50	0
6	Colorado	53900	101.60	0
7	Connecticut	60551	103.10	0
8	Delaware	52676	100.40	0
9	Florida	45038	98.40	0
10	Georgia	48388	98.00	M
				·

1. Create bins.

2. Count the number of cases in each bin.

3. Create the Histogram.

Be careful with how you choose your bins!

Example Below is a histogram of the tips(in dollars) received by a server at a restaurant in one week.

The fourth largest bin has a count of 11. This indicates:

- (a) There were 11 seven dollar tips.
- (b) There were 11 tips between six to eight dollars.
- (c) There were 11 eight dollar tips.
- (d) There were 11 six dollar tips.

Example A histogram for the number of states in the U.S. visited by a random sample of 100 STAT 101 students is given below:

Choose the best description of the vertical axis in this image.

- (a) The number of states
- (b) The mean number of states in each bin
- (c) The number of students
- (d) The mean number of students in each bin

Example Below is a histogram for arrival delays of flights for an airline.

How many flights were delayed between 10 and 20 minutes?

- (a) 12
- (b) 5
- (c) 18
- (d) 10

Example Students at another university completed an in class survey. Consider the following variables and select the one you think is displayed in the histogram below:

- (a) Hours of sleep on a typical weeknight
- (b) Monetary amount in dollars of carried coins
- (c) Randomly selected integer between 0 and 9
- (d) Height in inches

Stem-and-Leaf Plot

A stem-and-leaf plot is another way of displaying the distribution of a				
•				
•				
•				
_				
To build a stem-and-leaf plot we:				
1.				
2.				
3.				
4.				
Note: JMP orders stems in increasing order from bottom to top (backwards from usual)				

Example Suppose we have data of the weight filled soda cans in grams.

```
348, 348, 349, 351, 352, 353, 353, 354, 355, 355, 355, 356
357, 362, 365, 366, 367, 368, 368, 369, 369, 370, 370, 373, 378
```

Create a stem-and-leaf plot from the data given.

Here is an example of a stem-and-leaf plot in JMP.

Stem	Leaf	Count				
7	01	2				
6	8899999	7				
6	666677	6				
6	444444455555	12				
6	2223333	7				
6	000000011111111	15				
5	88899	5				
5	666666677	9				
5	4444555	7				
5	2233	4				
5	0	1				
5 0 represents 50						

What w	e notice	from	the	JMP	plot:
--------	----------	------	-----	-----	-------

•	JMP	puts	things	in	a	non-intuitive	order

- Key at the bottom of the plot
- Manageable amount of cases, but generally, _____

Describing the Shape of a Distribution

There are three main attributes that we u	use to discuss the shape of a distribution,	especially
when we are describing	·	
•		

•

The acronym I use to remember these three attributes is MiSO soup!

Modes

- Uniform:
- Unimodal:
- Bimodal:
- Multimodal:

Let's draw a uniform, unimodal, and bimodal distribution.

Symmetry

The symmetry of a distribution refers to whether both sides of a distribution are roughly equal or symmetric. For example, if the plot were to be folded in half, the distribution would cover itself up.

Example Example of symmetric and non-symmetric distributions

Another aspect of symmetry is whether or not the distribution is _____

- Skewed Right:
- Skewed Left:

Example Example of right and left skewed distributions

Outliers

Outliers are extreme values present in our distribution that differentiate themselves from the rest of the distribution. Typically found in the _____ of the distribution. Understanding and making note of outliers is important for three key reasons:

- Can occasionally be informative or indicative of some sort of error
- Impact the statistical methods we employ when analyzing data
- Can dramatically impact results

To look for outliers on a histogram we look for _____

Example Describe the shape of the distribution:

Example Describe the shape of the distribution:

Example Describe the shape of the distribution:

