# DEEP LEARNING PROJECT TUMOR IMAGE SEGMENTATION

Varshith P Singh



## **Dataset Description**

Dataset -> BraTS (Brain Tumor Segmentation)

Link - Brain Tumor Segmentation(BraTS2020) | Kaggle

#### **Description**:

- Collection of medical imaging data designed for brain tumor segmentation.
- It includes MRI scans from various sources, covering different modalities:
  - T1-weighted
  - T2-weighted
  - T1-weighted images with contrast enhancement (**T1CE**)
  - Fluid-attenuated inversion recovery (FLAIR) images
- Size of all images is 240×240×155 pixels.

#### **Applications**:

- Benchmark for research in medical image analysis
- Evaluating algorithms for accurate brain tumor segmentation





### Base Model

#### **U-NET Architecture**

- Convolutional neural network due to symmetric architecture.
- It consists of:
  - Encoding layer
    - Extracts features from the input image
  - Decoding layer
    - Samples feature maps
    - Generates the final segmentation mask
  - Skip-connections
    - o Capture fine-grained spatial details in the input image
  - Fully convolutional layer
    - Process input images of any size ,produces segmentation masks of same size.



## U-NET Architecture



