1 Appendix

1.1 Unbiased Estimation

In this section We evaluated the effect of multiplying the unbiased estimation term $1/q(v_j|\mathcal{V})$ mentioned in Eq. (4) to the message-passing equation on the test accuracy. Table 1 shows the result of this addition and the comparison with original ReWise-LDRN (without the unbiased term). As the results indicate, although the unbiased estimation term is a correct estimation of the case with no sampling, it slightly reduces the test accuracy. We, therefore, eliminated this term in our experiments.

Table 1: The effect of unbiased estimation on the accuracy of RGCN with ReWise-LDRN. The sampling rate indicates the number of nodes being sampled in each relation. The results are the average of five repeats with standard deviation.

Dataset	Method	Batch Size	Sampling Rate	Accuracy (%)
amplus	ReWise-LDRN (unbiased)	2048	-	76.95 ± 0.86
	ReWise-LDRN (original)	2048	2048	77.59 ± 1.35
dmgfull	ReWise-LDRN (unbiased) ReWise-LDRN (original)	2048	-	71.00 ± 0.26
	ReWise-LDRN (original)	2048	2048	71.35 ± 0.32
mdgenre	ReWise-LDRN (unbiased)	512	-	63.71 ± 0.90
	ReWise-LDRN (original)	512	512	63.79 ± 0.83

1.2 Semantic analysis of dmfgull and mdgenre

Figure 1 shows the result of semantic analysis of dmgfull. As Figures 1a and 1b show, similar to amplus ReWise-LDRN reduces the node frequency of the highly appearing relations, and therefore, the ratio of the less appearing relations increases. For instance, the relation geosparql#sfWithin connects monuments to their corresponding municipality. As the number of monuments is more than the number of municipalities, the inverse of this relation which connects the municipalities to the monuments has more different objects and appears to have the greatest number of objects in layer 1. Moreover, Figures 1c and 1d indicate the match between the top k relations in the RGCN and ReWise-LDRN in the two layers, as the blue line is above the orange line, which compares a random ordering of the relations with RGCN. In layer 1, the RGCN has the highest weight norm for the relation rnaSubject where ReWise-LDRN samples the most nodes from inv-geosparql#sfWithin, and in layer 2, the RGCN has location as the most important relation and ReWise-LDRN geosparql#hasGeometry.

Figure 2 shows the semantic analysis of the relations for mdgenre. Similar to the other two datasets, the top relations for ReWise-LDRN matches mostly with RGCN. However, this is more visible in layer 2 as the blue line

Figure 1: Semantic analysis of the relations in dmgfull dataset with the batch size and sampling rate of 2048. The RGCN in graph (c) and (d) is trained in full batch. 'inv' in the start of the relation label indicates the inverse of that relation. For readability, we only display the top 24 relations for layer 1.

has more distance from the random list indicated by orange. For mdgenre, the most important relation for the RGCN in layer 1 is nominated for, where for ReWise-LDRN is inv-country of citizenship. in layer 2, the RGCN find work period (start) the most important relation and the ReWise-LDRN samples the most nodes from cast member.

Figure 2: Semantic analysis of the relations in mdgenre dataset with the batch size and sampling rate of of 512. The RGCN in graph (c) and (d) is trained in full batch. 'inv' in the start of the relation label indicates the inverse of that relation. For readability, we only display the top 25 relations for layer 1.