Finite Automata

Part Three

Recap from Last Time

Tabular DFAs

Tabular DFAs

If D is a DFA, the **language** of D, denoted $\mathcal{L}(D)$, is $\{ w \in \Sigma^* \mid D \text{ accepts } w \}$.

A language L is called a **regular language** if there exists a DFA D such that $\mathcal{L}(D) = L$.

NFAs

- An **NFA** is a
 - Nondeterministic
 - Finite
 - Automaton
- Can have missing transitions or multiple transitions defined on the same input symbol.
- Accepts if *any possible series of choices* leads to an accepting state.

ε-Transitions

- NFAs have a special type of transition called the ε-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

New Stuff!

Designing NFAs

Designing NFAs

- Embrace the nondeterminism!
- Good model: **Guess-and-check**:
 - Is there some information that you'd really like to have? Have the machine *nondeterministically guess* that information.
 - Then, have the machine *deterministically check* that the choice was correct.
- The *guess* phase corresponds to trying lots of different options.
- The *check* phase corresponds to filtering out bad guesses or wrong options.

```
L = \{ w \in \{0, 1\}^* \mid w \text{ ends in 010 or 101} \}
```



```
L = \{ w \in \{a, b, c\}^* \mid \text{at least one of } a, b, \text{ or } c \text{ is not in } w \}
```


 $L = \{ w \in \{a, b, c\}^* \mid \text{at least one of } a, b, \text{ or } c \text{ is not in } w \}$

Nondeterministically guess which character is missing.

Deterministically check whether that character is indeed missing.

NFAs and DFAs

- Any language that can be accepted by a DFA can be accepted by an NFA.
- Why?
 - Every DFA essentially already is an NFA!
- Question: Can any language accepted by an NFA also be accepted by a DFA?
- Surprisingly, the answer is yes!

Thought Experiment:

How would you simulate an NFA in software?

a b a b a

	а
$\{q_0\}$	$\{q_0, q_1\}$

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_{0}\}$

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$		

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$		

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$		

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$		

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$		

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$		

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$		

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_{0}\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$		

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$		

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$		

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$		

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$		

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$		

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$		

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$		

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$		

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$		

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$		

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$		

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_{0}\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$	$\{q_0, q_1\}$	

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_{0}\}$
$\{q_0, q_1, q_3\}$	$\{q_0, q_1\}$	

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$	$\{q_0, q_1\}$	

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_{0}\}$
$\{q_0, q_1, q_3\}$	$\{q_0, q_1\}$	

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$	$\{q_0, q_1\}$	

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$	$\{q_0, q_1\}$	

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$	$\{q_0, q_1\}$	

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_{0}\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$*{q_0, q_1, q_3}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$*{q_0, q_1, q_3}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$

	а	Ь
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$*{q_0, q_1, q_3}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$

a b a a b a

a b a a b a

a b a a b a

The Subset Construction

- This procedure for turning an NFA for a language L into a DFA for a language L is called the **subset construction**.
 - It's sometimes called the *powerset construction*; it's different names for the same thing!
- Intuitively:
 - Each state in the DFA corresponds to a set of states from the NFA.
 - Each transition in the DFA corresponds to what transitions would be taken in the NFA when using the massive parallel intuition.
 - The accepting states in the DFA correspond to which sets of states would be considered accepting in the NFA when using the massive parallel intuition.
- There's an online *Guide to the Subset Construction* with a more elaborate example involving ε-transitions and cases where the NFA dies; check that for more details.

The Subset Construction

- In converting an NFA to a DFA, the DFA's states correspond to sets of NFA states.
- Useful fact: $|\wp(S)| = 2^{|S|}$ for any finite set S.
- In the worst-case, the construction can result in a DFA that is *exponentially larger* than the original NFA.
- **Question to ponder:** Can you find a family of languages that have NFAs of size n, but no DFAs of size less than 2^n ?

A language L is called a **regular language** if there exists a DFA D such that $\mathcal{L}(D) = L$.

An Important Result

Theorem: A language L is regular if and only if there is some NFA N such that $\mathcal{L}(N) = L$.

Proof Sketch: Pick a language L. First, assume L is regular. That means there's a DFA D where $\mathcal{L}(D) = L$. Every DFA is "basically" an NFA, so there's an NFA (D) whose language is L.

Next, assume there's an NFA N such that $\mathcal{L}(N) = L$. Using the subset construction, we can build a DFA D where $\mathcal{L}(N) = \mathcal{L}(D)$. Then we have that $\mathcal{L}(D) = L$, so L is regular. \blacksquare -ish

Why This Matters

- We now have two perspectives on regular languages:
 - Regular languages are languages accepted by DFAs.
 - Regular languages are languages accepted by NFAs.
- We can now reason about the regular languages in two different ways.

Properties of Regular Languages

- If L_1 and L_2 are languages over the alphabet Σ , the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?

- If L_1 and L_2 are languages over the alphabet Σ , the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?

- If L_1 and L_2 are languages over the alphabet Σ , the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?

- If L_1 and L_2 are languages over the alphabet Σ , the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?

- If L_1 and L_2 are languages over the alphabet Σ , the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?

- If L_1 and L_2 are languages over Σ , then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2 .
- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?

- If L_1 and L_2 are languages over Σ , then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2 .
- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?

 $L_{_1}$

- If L_1 and L_2 are languages over Σ , then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2 .
- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?

- If L_1 and L_2 are languages over Σ , then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2 .
- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?

$$\overline{L}_1 \cup \overline{L}_2$$

- If L_1 and L_2 are languages over Σ , then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2 .
- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?

Concatenation

String Concatenation

- If $w \in \Sigma^*$ and $x \in \Sigma^*$, the *concatenation* of w and x, denoted wx, is the string formed by tacking all the characters of x onto the end of w.
- Example: if w = quo and x = kka, the concatenation wx = quokka.
- This is analogous to the + operator for strings in many programming languages.
- Some facts about concatenation:
 - The empty string ε is the *identity element* for concatenation:

$$w\varepsilon = \varepsilon w = w$$

• Concatenation is *associative*:

$$wxy = w(xy) = (wx)y$$

Concatenation

• The *concatenation* of two languages L_1 and L_2 over the alphabet Σ is the language

```
L_1L_2 = \{ wx \in \Sigma^* \mid w \in L_1 \land x \in L_2 \}
```

Concatenation Example

- Let $\Sigma = \{$ a, b, ..., z, A, B, ..., Z $\}$ and consider these languages over Σ :
 - **Noun** = { Puppy, Rainbow, Whale, ... }
 - **Verb** = { Hugs, Juggles, Loves, ... }
 - *The* = { The }
- The language *TheNounVerbTheNoun* is
 - ThePuppyHugsTheWhale, TheWhaleLovesTheRainbow, TheRainbowJugglesTheRainbow, ... }

Concatenation

• The *concatenation* of two languages L_1 and L_2 over the alphabet Σ is the language

$$L_1L_2 = \{ wx \in \Sigma^* \mid w \in L_1 \land x \in L_2 \}$$

- Two views of L_1L_2 :
 - The set of all strings that can be made by concatenating a string in L_1 with a string in L_2 .
 - The set of strings that can be split into two pieces: a piece from L_1 and a piece from L_2 .

- If L_1 and L_2 are regular languages, is L_1L_2 ?
- Intuition can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?

- If L_1 and L_2 are regular languages, is L_1L_2 ?
- Intuition can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?

Machine for L_1

Machine for L_2

- If L_1 and L_2 are regular languages, is L_1L_2 ?
- Intuition can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?

b o o k k e e p e r

- If L_1 and L_2 are regular languages, is L_1L_2 ?
- Intuition can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?

b o o k k e e p e r

- If L_1 and L_2 are regular languages, is L_1L_2 ?
- Intuition can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?

Machine for L_1

Machine for L_2

b	0	0	k
---	---	---	---

k e e p e r

- If L_1 and L_2 are regular languages, is L_1L_2 ?
- Intuition can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?

• *Idea*:

- Run a DFA/NFA for L_1 on w.
- Whenever it reaches an accepting state, optionally hand the rest of w to a DFA/NFA for L_2 .
- If the automaton for L_2 accepts the rest, $w \in L_1L_2$.
- If the automaton for L_2 rejects the remainder, the split was incorrect.

Machine for $L_{\scriptscriptstyle 1}$

Machine for L_1

Machine for L_2

Lots and Lots of Concatenation

- Consider the language $L = \{ aa, b \}$
- LL is the set of strings formed by concatenating pairs of strings in L.

```
{ aaaa, aab, baa, bb }
```

• LLL is the set of strings formed by concatenating triples of strings in L.

```
{ aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}
```

• LLLL is the set of strings formed by concatenating quadruples of strings in L.

```
{ aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa, aabaab, aabbaa, aabbb, baaaaaa, baaaab, baabaa, baabb, bbaaaa, bbbb}
```

Language Exponentiation

- We can define what it means to "exponentiate" a language as follows:
- $L_0 = \{ \epsilon \}$
 - Intuition: The only string you can form by gluing no strings together is the empty string.
 - Notice that $\{\epsilon\} \neq \emptyset$. Can you explain why?
- $I_{n+1} = I_{n}I_{n}$
 - Idea: Concatenating (n+1) strings together works by concatenating n strings, then concatenating one more.
- *Question to ponder:* Why define $L^0 = \{\epsilon\}$?
- **Question to ponder:** What is Ø⁰?

The Kleene Closure

• An important operation on languages is the *Kleene Closure*, which is defined as

$$L^* = \{ w \in \Sigma^* \mid \exists n \in \mathbb{N}. \ w \in L^n \}$$

• Mathematically:

$$w \in L^* \quad \leftrightarrow \quad \exists n \in \mathbb{N}. \ w \in L^n$$

- Intuitively, L^* is the language all possible ways of concatenating zero or more strings in L together, possibly with repetition.
- **Question to ponder:** What is Ø*?

The Kleene Closure

```
If L=\{ a, bb \}, then L*=\{ \epsilon, a, bb, aa, abb, bba, bbbb, aaa, aabb, abba, abbbb, bbaa, bbbbb, bbbbbb, ...
```

Think of L* as the set of strings you can make if you have a collection of stamps - one for each string in L - and you form every possible string that can be made from those stamps.

- If L is regular, is L^* necessarily regular?
- A Bad Line of Reasoning: A
 - $L^0 = \{ \epsilon \}$ is regular.
 - $L^1 = L$ is regular.
 - $L^2 = LL$ is regular
 - $L^3 = L(LL)$ is regular
 - •
 - Regular languages are closed under union.
 - So the union of all these languages is regular.

Reasoning About the Infinite

- If a series of finite objects all have some property, the "limit" of that process *does not* necessarily have that property.
- In general, it is not safe to conclude that some property that always holds in the finite case must hold in the infinite case.
 - (This is why calculus is interesting).
- So our earlier argument ($L^* = L^0 \cup L^1 \cup ...$) isn't going to work.
- We need a different line of reasoning.

Idea: Can we directly convert an NFA for language L to an NFA for language L^* ?

Machine for L^*

Closure Properties

- Theorem: If L_1 and L_2 are regular languages over an alphabet Σ , then so are the following languages:
 - \overline{L}_1
 - $L_1 \cup L_2$
 - $L_1 \cap L_2$
 - L_1L_2
 - *L*₁*
- These properties are called closure properties of the regular languages.

Next Time

- Regular Expressions
 - Building languages from the ground up!
- Thompson's Algorithm
 - A UNIX Programmer in Theoryland.
- Kleene's Theorem
 - From machines to programs!