3.2. Zračeuje omog tijela - Stelem Boltzman & Wien-

Spektralna raspodjela Zraženja CT

-> Stefen Boltzmanov => P=30T4

Wichou Zukou => 2 maxT=2,898×103 Km

Ukupni intenzikt zakou zračenja I= 5° f(n,T) dn = 5T4

→ valna dubjina koja odgovara maknimumu Zračene energiji obrnub je proporcionalna temperaturi

Rayleigh- Jeansova Comula

· meduja en svale debrole: Ē=kT Ygledomo kao da brojimo stojne valore u volumenna

 \rightarrow -B. stojnuh valovo u podnučju frehvenaji (v, v+dv) => $dN = 8\pi \frac{V}{e^3} V^2 dV$ Xizvad texat, nece non trovel'h' + Boltzmamora respossible por energiana: P(E)=Ce-ET

Modul Arauja: dN=8# 23 v2dv

Sredy's en : dw= E. dN = kT. 811 ve dr

 $= > W = \frac{2}{c} \left(\frac{P}{A} \right) \cdot \frac{1}{\frac{1}{2}}$ where $\frac{1}{2}$ $W = \frac{4}{6}I \Rightarrow dI = \frac{c}{4}dW$

I= Jof (VITIDU

 $\Rightarrow f(v,\tau)dv = f(n,\tau)d\chi = f(n,\tau) = f(v,\tau) \frac{dv}{dn}$ * 12 V=C $\frac{Q \prod L T}{C^2} \cdot \frac{C^2}{n^2} \cdot \left(-\frac{C}{n^2}\right)$

 $= 7 \left[f(n,\tau) = 2\pi C \frac{k\tau}{n^4} \right]$

Planck je prespostavio

Zerbo integralni oblik prelazi u oblik suma

puding, 1+2×+3x+ + ...=

 \rightarrow broginul = $\frac{1}{(1-x)^2}$

 $=\frac{d}{dx}\left(1+x+x^2+\cdots\right)$

- 2a razliku od klanimoj hammoničkog (1D) ored odora čizi lismo everziji spisali (ražumali) preme:
$$= \frac{\int_{\infty}^{\infty} E \cdot f(E) dE}{\int_{0}^{\infty} f(E) dE} = kT \quad \text{a.t.} \quad f(E) = [east] \cdot cxp\left(\frac{-E}{LT}\right)$$

Manch bonstant du Mordne vanjablu: [= nhv| n∈ x/s

 $\overline{E} = \frac{\left[\text{koust}\right] \cdot \sum_{n=1}^{\infty} E \cdot \exp\left(\frac{-E}{kT}\right)}{\left[\text{koust}\right] \cdot \sum_{n=1}^{\infty} \exp\left(\frac{-E}{kT}\right)} = \left(\text{pokrata } x = e^{xp}\left(\frac{-E}{kT}\right)\right)$

 $= h \times v \xrightarrow{1+2x+3x^2+\cdots} = h \times v \xrightarrow{\frac{d}{dx}} (1+x+x^2+\cdots)$ $= \frac{d}{dx} \xrightarrow{1-x} 1$ sumacija bedau $= \frac{d}{1-x}$ $= \frac{d}{dx} \xrightarrow{1-x} 1$

 $\Rightarrow E = h \times v \frac{1}{1-x^{1/2}} = h \times v \frac{1}{1-x} = \left(\frac{uvnhimo}{var} \times exp \right) = \frac{1}{uv}$

27 = C

 $V = \frac{C}{N}$

 $\mathcal{N} = \frac{e}{\mathcal{V}}$

=> sreduja en: $E = \frac{hV}{\exp(\frac{hV}{kT})-1} = kT$ wyshimo u RJ $\exp(\frac{kT}{2\pi a_2}) = 2\pi c \frac{kT}{2\pi a_2}$

=> Planetor reikon račenja ernog týcla: $f(\bar{x},T) = \frac{2\pi hc^2}{\Lambda^5} \cdot \frac{1}{\exp(\frac{hc}{\Lambda kT})-1} = f_{\bar{x}}$

 $exp\left(\frac{h\nu}{kT}\right) \approx 1 + \frac{h\nu}{kT} \Rightarrow \bar{E} = \frac{h\nu}{e^{\frac{h\nu}{kT}-1}} \approx kT$

PSB Zukou ce nam dati uzraz za ukupni intenzitet (spetralim raspodjelu valja integi)

 $I = \int_0^\infty I_{\Lambda} d\Lambda = \int_0^\infty f(V_1 T) dV \quad i \quad x = \frac{hV}{kT} \longrightarrow I = \frac{2\pi V_1^{4}}{c^2 h^3} \int_0^\infty \frac{x^3}{e^{x-1}} dx$

 $\frac{d}{d\lambda} f(\lambda_1 T) = \frac{d}{d\lambda} \left(\frac{2\pi hc^2}{\lambda^5} \frac{1}{\exp(\frac{nc}{\lambda kr}) - 1} \right) = 0$

Povezemost RJ, SB; Wienovog Lihona + Planchor

povesanost RI zakona i Planchovoz zakona

Meirou sahou pornala maknimum spektralne gustoce

PRIMJERI

Primjer 1.) Odrediti gulitee know distruke prosone As = 0,8 W/mk toplinska vodljivost d = 0.3 cm $hu = 6W/m^2 k$ V = 2cmA = 1 M2 2= 0,025W/mk (erat) to phroste vody inst hy = 20W/m2K (varysta) koch konv. Mu = GW/m2k (unutamija) kocf.konv. tok mora liti snuda isti: "koliko undra Poliko van" -> Panr = = = S. Qv = Puntanye no stallo = \$ (\DTs, 2) (gustica topl.)

= (AT25)

= (AT52V)

stable 2 = Ostable van * temperature sisu jednake ΔTus = Turnt - Ts1 → gus1 = (Tunt - Ts1) · hu $\Delta T_{S_12} = T_{S_1} - T_2 \rightarrow g_{S_12} = \lambda_s \frac{T_{S_1} - T_2}{d}$ $\Delta T_2 = T_{S_1} - T_{S_2} \rightarrow g_2 = \lambda_2 \cdot \frac{T_{S_1} - T_{S_2}}{W}$ kondukcija $\Delta T_{2S_{1}} = T_{2} - T_{S_{2}}$ $\Rightarrow g_{2S_{2}} = \lambda_{S} \frac{T_{2} - T_{S_{2}}}{d}$ $\Delta T_{S_{2}} V = T_{S_{2} - T_{V}} \rightarrow g_{S_{2}} V = (T_{S_{2}} - T_{V}) h_{V}$ konvels $\Rightarrow d T_{S_{2}} V = T_{S_{2} - T_{V}} \rightarrow g_{S_{2}} V = (T_{S_{2}} - T_{V}) h_{V}$ $\Rightarrow d T_{S_{2}} V = T_{S_{2} - T_{V}} \rightarrow g_{S_{2}} V = (T_{S_{2}} - T_{V}) h_{V}$ $\Rightarrow d T_{S_{2}} V = T_{S_{2} - T_{V}} \rightarrow g_{S_{2}} V = (T_{S_{2}} - T_{V}) h_{V}$ $\Rightarrow d T_{S_{2}} V = T_{S_{2} - T_{V}} \rightarrow g_{S_{2}} V = (T_{S_{2}} - T_{V}) h_{V}$ => Wempine monging > 1 T = Tu - Tv = [Tu - Ts]+(Ts, - Ts)+(Ts, - T -Ts2) +(ts2-Tv) RSIZ = RSIZ = RS RE hes R= AV AT= Porch = \$\phi \left(R_{us} + \text{RS} \right) $k = \frac{9}{4T} = \frac{\Delta T}{S\Delta T} = \frac{1}{S\Delta T} \cdot \frac{\Delta T}{Ruk} = \frac{1}{SRuk} = \frac{1}{SRuk}$

do = = h DT ne be! Primijer 2) # strijanje m Gras 7=80% To=20'C dQ=mcdT=C·dT t= 205 - T=60°C $\frac{C dt}{dt} = -h (T-T_0)$ te=50s → Tz=? $\frac{dT}{dt} = -h'(T-T_0)C$ $\Rightarrow \frac{dT}{(T-T_0)} = -\frac{h}{c} \frac{dt}{\int \int \frac{dt}{dt}}$ $\left| lu(T-To) \right|_{T_1}^T = -\frac{h}{c} \left(t_1 - 0 \right) = > ln \left(\frac{T-To}{T_1-To} \right) = \frac{-h}{c} t_1$ => $\ln\left(\frac{60-20}{80-20}\right) = \frac{-h}{C} \cdot 205 \Rightarrow \frac{-h}{C} = -0,0203/5$ => $lu(\frac{T-20}{80-20}) \cdot \frac{1}{505} = -0.0203/s$ $lu\left(\frac{7-20}{60}\right) = -1.014/e \rightarrow \frac{7-20}{60} = 0.363$ # zračcuje Rzemy = 6,37x16m Rsuce = 6,95 × 08 in Primier 3.) 12-5=15x101/m povrtira koju seuzima Zmrlja a) Valua dulgine 20 koju surčena svoji flozit zrači mais Wichov Zakon Amax. $T=2,9\times10^3$ mK 7/2 0,5um b) Snagu koju Draž: 1m²? (Surea) Stefan Boltzman => P=SoT4 $S = Im^2$ P = 64, 16 HWo-konstant + + 0 = 5,67 × 10-8 W/m2 K4 - Mujona snaga socaya Suca

Put = A or T^4 => Put = $Rs^2 \cdot 4\pi \cdot (0) = Rs^2 \cdot 4\pi \cdot 64,16 MW$ 2 allaye similare poursime $Put = 3,89 \times 10^{26} W$

B= R2 TT. 574 = 8. 17x1021 W

 $R_2 \Pi \qquad P_2 = \frac{A_2 c_{\text{ML}}}{A_2 c_{\text{MJ}} a_2 c_{\text{MCC}}}, P_S = \frac{R_2^2 \Pi}{4R_s^2 \Pi} P_S$

∠ koj dio prima zemlja?.

T= kaust -> 120termini prooces Primjer (his je na nekom ispitu) PV = N. R. T. $P_{1}V_{1}=n_{1}\cdot P_{2}V_{2}=n_{2}e^{-t}$ $P_{1}V_{1}=n_{1}\cdot P_{2}V_{2}=n_{2}e^{-t}$ $P_{2}V_{2}=n_{2}e^{-t}$ $P_{1}V_{1}=n_{1}\cdot P_{2}V_{2}=n_{2}e^{-t}$ $P_{2}V_{3}=n_{2}e^{-t}$ $P_{1}V_{1}=n_{3}\cdot P_{2}V_{3}=n_{2}e^{-t}$ $P_{2}V_{3}=n_{2}e^{-t}$ $P_{3}V_{4}=n_{3}e^{-t}$ $P_{4}V_{1}=n_{3}\cdot P_{2}V_{2}=n_{2}e^{-t}$ $P_{5}V_{1}=n_{3}\cdot P_{2}V_{3}=n_{2}e^{-t}$ $P_{1}V_{1}=n_{3}\cdot P_{2}V_{3}=n_{2}e^{-t}$ $P_{2}V_{3}=n_{2}e^{-t}$ $P_{3}V_{4}=n_{3}e^{-t}$ $P_{4}V_{1}=n_{3}\cdot P_{2}V_{3}=n_{2}e^{-t}$ $P_{5}V_{1}=n_{3}\cdot P_{3}V_{3}=n_{2}e^{-t}$ $P_{5}V_{1}=n_{3}\cdot P_{3}V_{3}=n_{2}e^{-t}$ $P_{5}V_{1}=n_{3}\cdot P_{3}V_{3}=n_{2}e^{-t}$ $P_{5}V_{1}=n_{3}\cdot P_{3}V_{3}=n_{2}e^{-t}$ $P_{5}V_{1}=n_{3}\cdot P_{3}V_{3}=n_{3}e^{-t}$ $P_{5}V_{1}=n_{3}\cdot P_{3}V_{3}=n_{3}e^{-t}$ $n_2 = P_2 V_1$. $\frac{n_1}{P_1 V_1} = P_2 V_2$. $\frac{n_1 \cdot 3}{P_1 \cdot V_2} = 2 \frac{10^8}{5 \times 10^5} \cdot 1$ u tronutlar to $\frac{P_1' V_1'}{n_2} = \frac{p_2' V_2'}{n_2}$ salvar căwanja mase $n_1 i n_2$ ke re mycujaji mičemu klip + Fe =0 jer Pis= P2 > => P= P2 (ddazi u ravnotšni položej) $\frac{V_1'}{n_1} = \frac{V_2'}{n_2} \rightarrow \frac{V_1'}{V_2'} = \frac{n_1}{n_2} = \frac{1}{c_1 4} \left[\frac{V_1'}{V_2'} = \frac{5}{2} \right] = \frac{V_1'}{V_2'} = \frac{21' \cdot 5}{2' \cdot 5} = \frac{5}{2}$ $L_1 = \frac{5}{2}L_2$ meaning L_1 je na $\frac{5}{7}$ od

rula $T_1 \longrightarrow \lambda_{\text{max}} = 9.66 \times 10^7 \text{ m}$ $CT m^{2}$ $t = 26 T_{2} = 800K$ $T_{0} = 0K$ $C = 155J | 4K (c = \frac{Ct}{m})$ Wienou seeken: Nmax T = 2,898 NO $T_{1} = \frac{21898 \times 10^{3} \text{ mK}}{9166 \times 10^{7}}$ Ti = 3000K → dQ=mcdT (hladise) Stefen Boltzman: $P = S_0 T^4$ $\frac{dQ}{dt} \qquad 4r^2 T \qquad \text{vonst}.$ => -mcdT = SoT' dt -mc $\frac{dT}{T^4}$ = $4r^2 \pi \sigma dt / \int$ $-mc\left(\frac{-1}{3}\right)\cdot\frac{1}{T^3}\bigg|_{\tau_1}^{\tau_2}=4r^2\pi\left(t-\theta\right)^{\frac{1}{2}}$ $\frac{mc}{3} \left(\frac{1}{800} - \frac{1}{3000} \right) = 4r^2 \pi \cdot 20 \rightarrow m - \frac{288000}{11} \cdot \frac{r^2 \pi}{c}$ m=7,5my Gomzi je neketho dolio 11,2 y?R