עבודת בית 1

$$[T]_{C}^{B} = \begin{bmatrix} -1 & 1 & 5 \\ 1 & 0 & -1 \\ 3 & 1 & 2 \\ 2 & -1 & -3 \end{bmatrix}$$
, העתקה לינארית, $T: \mathbb{R}^{3} o \mathbb{R}^{4}$: .1

$$, B = ((1,0,1),(1,1,3),(4,2,7))$$

$$C = ((1,0,1,1),(0,1,1,-1),(0,0,-1,1),(0,0,0,-1))$$

T(x,y,z)=(*,*,*,*) , כלומר, כלומר של המפורשת המפורשת מצאו את ההגדרה המפורשת

$$T(x,y) = (x-y,7x-3y), T: \mathbb{R}^2 \to \mathbb{R}^2$$
 נתון: .2
$$B = ((1,2),(2,3))$$
 כאשר $[T]_B^B$ מצאו את

- V בסיס ל- $B = (\vec{u}, \vec{v}, \vec{w})$ יהי (געל מעל מרחב וקטורי מעל 3
- $V \lambda$ גם בסיס ל- $C = (\vec{u} + \vec{v} + 2\vec{w}, \vec{u} + \vec{v} + 3\vec{w}, \vec{u} + 2\vec{v} + 2\vec{w})$ גם גם א.
 - $[I]_{C}^{C}$ ב. מצאו את
 - $[I]_{c}^{B}$ ג. מצאו את
 - $[3\vec{u} \vec{v} + 8\vec{w}]_C$. מצאו את
- 4. יהיו V,W מרחבים וקטוריים מעל שדה F, תהיינה $T,S:V\to W$ שתי העתקות. נזכיר V,W יהיו V,V לכל V,V לכל V,V מוגדרת כך: V,V מוגדרת כך: V,V לכל V,V לכל V,V היא גם העתקה הוכיחו שאם $V,S:V\to W$ העתקות לינאריות אזי העתקה $V,S:V\to W$ היא גם העתקה לינארית.
- קיימים לינארית, עבור כל $\vec{v}\in V$, א העתקה לינארית, עבור כל $\vec{v}\in V$, א קיימים פון $\vec{v}\in V$, א מרחב וקטורי מעל שדה $\vec{v}:V\to V$, א כך $\vec{v}=\vec{u}+\vec{w}-\vec{w}$ כך $\vec{v}=\vec{u}+\vec{w}-\vec{w}$ כך $\vec{v}=\vec{u}+\vec{w}-\vec{w}$ הוכיחו ש $\vec{v}=\vec{v}$ אם ורק אם $\vec{v}=\vec{v}$