Module-VI(half part)

Course: Manufacturing processes

Instructor: Prof. Alok Kumar Das

Topics to be covered: CNC machine operation, 3D printing and scanning, Robots in manufacturing process

No of classes: 03

What is NC and CNC machines? Why these machines are needed?

NC: Numerical Control

CNC: Computer Numerical Control

Classification of CNC machines based on:

- Types of cutter movement
- Type of control-open loop and close loop
- Number of axes- 2,3,4,5axes machines etc.
- Based on the tool motion: Point-to-point & Contouring or continuous systems
 - **Point-to-point systems**: drilling, boring and tapping machines, spot welding, die-sinking EDM, brazing etc.

Features:

- The control system does not require an interpolator
- cutter moves from one point to another and carries out operation
- Distance between these points is covered with max. possible velocity.

Types of CNC machines contd......

• Contouring or continuous systems: 1) linear cut, 2) linear and circular cut

Example: milling and lathe operations

1) linear cut

Major Components of a CNC System

- Part program:
- Program input device:
- Machine Control Unit:
- Drive System:
- Machine Tool:
- Feed Back System:

1. CNC Part Programming fundamentals:

Machining involves an important aspect of relative movement between cutting tool and workpiece. In machine tools this is accomplished by either moving the tool with respect to workpiece or vice versa. In order to define relative motion of two objects, reference directions are required to be defined. These reference directions depend on type of machine tool and are defined by considering an imaginary coordinate system on the machine tool.

A program defining motion of tool / workpiece in this coordinate system is known as a part program. Lathe and Milling machines are taken for case study but other machine tools like CNC grinding, CNC Hobbing, CNC filament winding machine, etc. can also be dealt with in the same manner.

CNC Part Programming contd..

1.1) Reference Points in CNC machines

- a) Machine Origin
- b) Program Origin

c) Part Origin

Reference points and axis on a Milling Machine

Reference points and axis on a lathe

CNC Part Programming contd..

1.2) Axis Designation

An object in space can have six degrees of freedom with respect to an imaginary Cartesian coordinate system. Three of them are liner movements and other three are rotary. Machining of simple part does not require all degrees of freedom. With the increase in degrees of freedom, complexity of hardware and programming increases. Number of degree of freedom defines axis of machine.

Axes interpolation means simultaneous movement of two or more different axes to generate required contour. For typical lathe machine degree of freedom is 2 and so it called 2 axis machines. For typical milling machine degree of freedom is $2\frac{1}{2}$, which means that two axes can be interpolated at a time and third remains independent.

1.3) Setting up of Origin

In case of CNC machine tool rotation of the reference axis is not possible. Origin can set by selecting three reference planes X, Y and Z. Planes can be set by touching tool on the surfaces of the workpiece and setting that surfaces as X=x, Y=y and Z=z.

1.4) Coding Systems

The programmer and the operator must use a coding system to represent information, which the controller can interpret and execute.

2) CNC Code Syntax

- 3) Types of CNC codes
- (3.1) Preparatory codes

The term "preparatory" in NC means that it "prepares" the control system to be ready for implementing the information that follows in the next block of instructions. A preparatory function is designated in a program by the word address G followed by two digits. Preparatory functions are also called G-codes and they specify the control mode of the operation.

(3.2) Miscellaneous codes

Miscellaneous functions use the address letter M followed by two digits. They perform a group of instructions such as coolant on/off, spindle on/off, tool change, program stop, or program end. They are often referred to as machine functions or M-functions. Some of the M codes are given below.

M00 Unconditional stop

M02 End of program

M03 Spindle clockwise

M04 Spindle counter clockwise

M05 Spindle stop

M06 Tool change

Command group	G-code	Function and Command Statement	Illustration
	G00	Rapid traverse G00 Xx Yy Zz	(x,y,z) Y G00
	G01	Linear interpolation G01 Xx Yy Zz Ff	(x,y,z) y G01
Tool motion	G02	Circular Interpolation in clock- wise direction G02 Xx Yy Ii Jj G02 Xx Zz Ii Kk G02 Yy Zz Jj Kk	Z (y,z) Y (x,y) Y G02
	G03	Circular interpolation in counter- clockwise direction G03 Xx Yy Ii Jj G03 Xx Zz Ii Kk G03 Yy Zz Jj Kk	Z (y,z) Y (x,y) Y G03

G00 RAPID TRAVERSE

G01 LINEAR INTERPOLATION (STRAIGHT LINE MOVEMENT)

G02 CIRCULAR INTERPOLATION (CLOCKWISE)

G03 CIRCULAR INTERPOLATION (COUNTERCLOCKWISE)

Command group	G-code	Function and Command Statement	Illustration
	G17	XY - Plane selection	Σ {x,y}
Plane Selection	G18	ZX - Plane selection	(x,z) Y
	G19	YZ - plane selection	Σ (γ, τ) γ

Command group	G-code	Function and Command Statement	Illustration
	G20 or G70	Inch unit selection	
Unit Selection	G21 or G71	Metric unit selection	

Command group	G- code	Function and Command Statement	Illustration
	G40	Cutter diameter compensation cancel	cutter center path and Programmed path are same
Offset and compensation		Cutter diameter cancellation left	Progrmmed path
	G42	Cutter diameter compensation righ	Progrmmed path

Command group	G-code	Function and Command Statement	Illustration
	G00	Rapid traverse G00 Xx Zz	X G00 (x,z) Z
	G01	Linear interpolation G01 Xx Zz	X (x,z)
Tool motion	G02	Circular Interpolation in clock- wise direction G02 Xx Zz Ii Kk (or) G02 Xx Zz Rr	X i (x,z) G02
	G03	Circular interpolation in counter- clockwise direction G03 Xx Zz li Kk (or) G03 Yy Zz Rr	(x,z)

main axes of a vertical machining center

incremental system mode

Axes in CNC lathe

Axis in CNC Milling

Ø60 P5 P6 Ø40 Ø20 (0,0) 15 10 10

DIMENSION SYSTEM

ABSOLUTE DIMENSIONING			INCREMENIAL DIMENSIONING		
POINTS	Х	z	POINTS	U	w
P1	10	0	P1	10	0
P2	10	-10	P2	0	-10
Р3	20	-10	P3	10	0
P4	20	-25	P4	0	-15
P5	30	-25	P5	10	0
P6	30	-35	P6	0	-10

POINTS	X VALUE	¥ VALUE
P1	0	0
P2	20	0
Р3	20	20
P4	70	20
P5	70	0
P6	100	0
P7	100	40
P8	70	70
P9	0	70

POINTS	XVALUE	VALUE
P1	0	0
P2	20	0
Р3	0	20
P4	50	0
P5	0	-20
P6	30	0
P7	0	40
P8	-30	30
P9	-70	0

ABSOLUTE SYSTEM (G90) INCREMENTAL SYSTEM (G91)

The profile shown in the figure below is to be cut using a CNC milling. The thickness of the plate is 10 mm. Assuming all curvature of radius 25mm, write the CNC code in incremental mode.

	O5678	Program number
	N02 G21	Metric programming
•	N03 M03 S1000	Spindle start clockwise with 1000rpm
	N04 G00 X0 Y0	Rapid motion towards (0,0)
	N05 G00 Z-10.0	Rapid motion towards Z=-10 plane
	N06 G01 X50.0	Linear interpolation
	N07 G01 Y20.0	Linear interpolation
	N08 G02 X25.0 Y45.0 R25.0	Circular interpolation clockwise(cw)
	N09 G03 X-25.0 Y45.0 R25.0	Circular interpolation counter clockwise(ccw)
	N10 G02 X-50.0 Y20.0 R25.0	Circular interpolation clockwise(cw)
	N11 G01 Y0.0	Linear interpolation
	N12 G01 X0.0	Linear interpolation
	N13 G00 Z10.0	Rapid motion towards Z=10 plane
	N14 M05 M09	Spindle stop and program end

PREPARATORY FUNCTION (G - FUNCTION)

G codes are instructions describing machine tool movement

G00	Rapid Traverse
G01	Linear Interpolation (cutting feed)
G02	Circular Interpolation (clockwise)
G03	Circular Interpolation (counter clockwise)
G20	Imperial (input in inches)
G21	Metric (input in metric)
G28	Goto Reference Point (Home Position)
G70	Finishing Cycle
G71	Stock Removal in Turning (Multiple Turning Cycle)
G74	Peck Drilling Cycle
G76	Multiple Threading Cycle
G90	Box Turning Cycle
G98	Feed Per Minute
G99	Feed Per Rev.

MISCELLANEOUS FUNCTIONS (M - CODES)

M Codes are instructions describing miscellaneous functions like calling the tool, spindle rotation, coolant on/off etc.,

M00 Program Stop M01 Optional Stop M02 Program End M03 Spindle Forward M04 Spindle Reverse M05 Spindle Stop M06 Automatic Tool change M08 Coolant On M09 Coolant Off M10 Vice / Chuck Open M11 Vice / Chuck Close M30 Program Stop & Rewind M38 Door Open M39 Door Close M98 Sub program Call M99 Subprogram Exit		
M02 Program End M03 Spindle Forward M04 Spindle Reverse M05 Spindle Stop M06 Automatic Tool change M08 Coolant On M09 Coolant Off M10 Vice / Chuck Open M11 Vice / Chuck Close M30 Program Stop & Rewind M38 Door Open M39 Door Close M98 Sub program Call	M00	Program Stop
M03 Spindle Forward M04 Spindle Reverse M05 Spindle Stop M06 Automatic Tool change M08 Coolant On M09 Coolant Off M10 Vice / Chuck Open M11 Vice / Chuck Close M30 Program Stop & Rewind M38 Door Open M39 Door Close M98 Sub program Call	M01	Optional Stop
M04 Spindle Reverse M05 Spindle Stop M06 Automatic Tool change M08 Coolant On M09 Coolant Off M10 Vice / Chuck Open M11 Vice / Chuck Close M30 Program Stop & Rewind M38 Door Open M39 Door Close M98 Sub program Call	M02	Program End
M05 Spindle Stop M06 Automatic Tool change M08 Coolant On M09 Coolant Off M10 Vice / Chuck Open M11 Vice / Chuck Close M30 Program Stop & Rewind M38 Door Open M39 Door Close M98 Sub program Call	M03	Spindle Forward
M06 Automatic Tool change M08 Coolant On M09 Coolant Off M10 Vice / Chuck Open M11 Vice / Chuck Close M30 Program Stop & Rewind M38 Door Open M39 Door Close M98 Sub program Call	M04	Spindle Reverse
M08 Coolant On M09 Coolant Off M10 Vice / Chuck Open M11 Vice / Chuck Close M30 Program Stop & Rewind M38 Door Open M39 Door Close M98 Sub program Call	M05	Spindle Stop
M09 Coolant Off M10 Vice / Chuck Open M11 Vice / Chuck Close M30 Program Stop & Rewind M38 Door Open M39 Door Close M98 Sub program Call	M06	Automatic Tool change
M10 Vice / Chuck Open M11 Vice / Chuck Close M30 Program Stop & Rewind M38 Door Open M39 Door Close M98 Sub program Call	M08	Coolant On
M11 Vice / Chuck Close M30 Program Stop & Rewind M38 Door Open M39 Door Close M98 Sub program Call	M09	Coolant Off
M30 Program Stop & Rewind M38 Door Open M39 Door Close M98 Sub program Call	M10	Vice / Chuck Open
M38 Door Open M39 Door Close M98 Sub program Call	M11	Vice / Chuck Close
M39 Door Close M98 Sub program Call	M30	Program Stop & Rewind
M98 Sub program Call	M38	Door Open
1 2 2 2	M39	Door Close
M99 Subprogram Exit	M98	Sub program Call
	M99	Subprogram Exit

END of CNC machines

Rapid Prototyping

Other names: additive fabrication, three dimensional printing, solid freeform fabrication (SFF), layered manufacturing

(1) Introduction

- (2) Methodology of Rapid Prototyping (RP)
- (2.1) Development of a CAD model
- (2.2) Generation of Standard triangulation language (STL) file
- (2.3) Slicing the STL file
- (2.4) Support Structures
- (2.5) Manufacturing
- (2.6) Post processing

Some of the commercially popular RP processes are :

Selective Laser Sintering

Laminated Object manufacturing (LOM)

Fusion Deposition Modeling (FDM)

END OF 3D Printing

Application of robots in Manufacturing

Introduction to robot and robotics

- What is a robot?
- What is robotics?
- Why do we study robotics?
- How can we teach a robot to perform a particular task?
- What are possible applications of robots?
- Can a human being be replaced by a robot?, and so on.

Definitions

- The term: robot has come from the Czech word: robota, which means forced or slave laborer
- In 1921, Karel Capek, a Czech playwright, used the term: robot first in his drama named Rossum's Universal Robots (R.U.R)
- According to Karel Capek, a robot is a machine look-wise similar to a human being

- According to Oxford English Dictionary
 A machine capable of carrying out a complex series of actions automatically, especially one programmable by a computer
- 2) According to International Organization for Standardization (ISO): An automatically controlled, reprogrammable, multipurpose manipulator programmable in three or more axes, which can be either fixed in place or mobile for use in industrial automation applications
- 3) According to Robot Institute of America (RIA) It is a reprogrammable multi-functional manipulator designed to move materials, parts, tools or specialized devices through variable programmed motions for the performance of a variety of tasks

Note: A CNC machine is not a robot: Level of reprogram ability is more in robot

Robotics:

- It is a science, which deals with the issues related to design, manufacturing, usages of robots
- In 1942, the term: robotics was introduced by Isaac Asimov in his story named Runaround
- 3 Hs of human beings are copied into Robotics, such as
 - Hand
 - Head
 - Heart

Motivation

To cope with increasing demands of a dynamic and competitive market, modern manufacturing methods should satisfy the following requirements:

- Reduced production cost
- Increased productivity
- Improved product quality

Notes:

- (1) Automation can help to fulfil the above requirements
- (2) Automation: Either Hard or flexible automation
- (3) Robotics is an example of flexible automation

A brief history of Robotics

Year	Events and Development
1954	First patent on manipulator by George Devol, the father of robot
1956	Joseph Engelberger started the first robotics company: Unimation
1962	General Motors used the manipulator: Unimate in die-casting application

Year	Events and Development
1967	General Electric Corporation made a 4-legged vehicle
1969	 SAM was built by the NASA, USA Shakey, an intelligent mobile robot, was built by Stanford Research Institute (SRI)
1970	 Victor Scheinman demonstrated a manipulator known as Stanford Arm Lunokhod I was built and sent to the moon by USSR ODEX 1 was built by Odetics

Year	Events and Development
1973	Richard Hohn of Cincinnati Milacron Corporation manufactured T ³ (The Tomorrow Tool) robot
1975	Raibart at CMU, USA, built a one-legged hopping machine, the first dynamically stable machine
1978	Unimation developed PUMA (Programmable Universal Machine for Assembly)

Year	Events and Development
1983	Odetics introduced a unique experimental six-legged device
1986	ASV (Adaptive Suspension Vehicle) was developed at Ohio State University, USA
1997	Pathfinder and Sojourner was sent to the Mars by the NASA, USA

A brief history of Robotics contd....

Year	Events and Development
2000	Asimo humanoid robot was developed by Honda
2004	The surface of the Mars was explored by Spirit and Opportunity
2012	Curiosity was sent to the Mars by the NASA, USA
2015	Sophia (humanoid) was built by Hanson Robotics, Hong Kong

A robotic system

2.Links and Joints 5.Drive / Actuator

Serial manipulator: Robot with fixed base

Interdisciplinary Areas in Robotics

Mechanical Engineering

- Kinematics: Motion of robot arm without considering the forces and /or moments
- Dynamics: Study of the forces and/or moments
- Sensing: Collecting information of the environment

Computer Science

- Motion Planning: Planning the course of action
- Artificial Intelligence: To design and develop suitable brain for the robots

Electrical and Electronics Engg.

Control schemes and hardware implementations

General Sciences

- Physics
- Mathematics

tool to be gripped by the **Classification of Robots** end-effector of the manipulator plate Based on the Type of Tasks Performed Point-to-Point Robots **Examples:** Unimate 2000 **T**3 tool to be gripped by the **Continuous Path Robots** end-effector of the manipulator **Examples:** plate **PUMA** CRS

PUMA: Programmable Universal Machine for Assembly.

Classification based on the types of controller

- 1. Non-Servo-Controlled Robots
- Open-loop control system Examples: Seiko PN-100
- Less accurate and less expensive
- 2. Servo-Controlled Robots
- Closed-loop control system Examples: Unimate 2000, PUMA, T³
- More accurate and more expensive

- Based on Configuration (coordinate system) of the Robot
- 1. Cartesian Coordinate Robots
- Linear movement along three different axes
- Have either sliding or prismatic joints, that is, SSS or PPP
- Rigid and accurate
- Suitable for pick and place type of operations
- Examples: IBM's RS-1, Sigma robot

- 2. Cylindrical Coordinate Robots
- Two linear and one rotary movements
- Represented as TPP, TSS
- Used to handle parts/ objects in manufacturing
- Cannot reach the objects lying on the floor
- Poor dynamic performance
- Examples: Versatran 600

3. Spherical Coordinate or Polar Coordinate Robots

- One linear and two rotary movement
- Represented as TRP, TRS
- Suitable for handling parts/objects in manufacturing
- Can pick up objects lying on the floor
- Poor dynamic performance
- Examples: Unimate 2000B

- 4. Revolute Coordinate or Articulated Coordinate Robots
- Rotary movement about three independent axes
- Represented as TRR
- Suitable for handling parts/components in manufacturing system
- Rigidity and accuracy may not be good enough
- Examples: T3, PUMA

PUMA: Programmable Universal Machine for Assembly.

Workspace of Manipulators

It is the volume of space that the end-effector of a manipulator can reach

