Exercise Sheet 5

Discrete Mathematics, 2020.9.29

- 1. Consider the first order language with symbol set $S = \{R\}$ in which R represents a binary predicate.
 - a) Let \mathcal{J}_1 be an S-interpretation such that
 - the domain in \mathcal{J}_1 is \mathbb{N} ,
 - $-\mathcal{J}_1(R, a, b) = \mathbf{T}$ if and only if a < b.

Prove that $[\![\forall x \exists y R(x,y)]\!]_{\mathcal{J}_1} = \mathbf{T}$

- b) Let \mathcal{J}_2 be an S-interpretation such that
 - the domain in \mathcal{J}_2 is \mathbb{N} ,
 - $-\mathcal{J}_2(R, a, b) = \mathbf{T}$ if and only if a > b.
 - $\mathcal{J}_2(x) = 0$

Prove that $[\![\exists y R(x,y)]\!]_{\mathcal{J}_2} = \mathbf{F}$

- c) Let \mathcal{J}_3 be an S-interpretation such that
 - the domain in \mathcal{J}_3 is \mathbb{N} ,
 - $-\mathcal{J}_3(R,a,b) = \mathbf{T}$ if and only if a > b.

Prove that $[\![\forall x \exists y R(x,y)]\!]_{\mathcal{J}_3} = \mathbf{F}$

- d) Prove that $[\![\forall x \forall y (R(x,y) \to \exists z (R(x,z) \land R(z,y))]\!]_{\mathcal{J}_1} = \mathbf{F}.$
- e) Let \mathcal{J}_4 be an S-interpretation such that
 - the domain in \mathcal{J}_4 is \mathbb{Q} (rational numbers, 有理数集),
 - $-\mathcal{J}_4(R, a, b) = \mathbf{T}$ if and only if a < b.

Prove that $[\![\forall x \forall y (R(x,y) \to \exists z (R(x,z) \land R(z,y))]\!]_{\mathcal{J}_4} = \mathbf{T}.$

- 2. Consider the first order language with symbol set $S = \{f, R\}$ in which f represents a binary function and R represents a binary predicate.
 - a) Let \mathcal{J}_1 be an S-interpretation such that
 - the domain in \mathcal{J}_1 is \mathbb{N} ,
 - $\mathcal{J}_1(f, a, b) = a + b,$
 - $-\mathcal{J}_1(R,a,b) = \mathbf{T}$ if and only if a = b.

Prove that $[\![\forall x \forall y R(f(x,y), f(y,x))]\!]_{\mathcal{J}_1} = \mathbf{T}.$

- b) Let \mathcal{J}_2 be an S-interpretation such that
 - the domain in \mathcal{J}_2 is \mathbb{N} ,
 - $\mathcal{J}_2(f, a, b) = a * b,$
 - $-\mathcal{J}_2(R,a,b) = \mathbf{T}$ if and only if a = b.

Prove that $[\![\forall x \forall y R(f(x,y), f(y,x))]\!]_{\mathcal{J}_2} = \mathbf{T}.$

- c) Let \mathcal{J}_3 be an S-interpretation such that
 - the domain in \mathcal{J}_3 is $\{\mathbf{T}, \mathbf{F}\}$,
 - $\mathcal{J}_3(f, a, b) = \llbracket \wedge \rrbracket (a, b),$
 - $-\mathcal{J}_3(R,a,b) = \mathbf{T}$ if and only if a = b.

Prove that $[\![\forall x \forall y R(f(x,y), f(y,x))]\!]_{\mathcal{I}_2} = \mathbf{T}.$

- d) Prove that $\forall x \forall y R(f(x,y), f(y,x))$ is not valid.
- 3. (P56, Ex.43, [R]) Consider the first order language with symbol set $S = \{P, Q\}$ in which P and Q represent two unary predicates. Determine whether $\forall x (P(x) \to Q(x))$ and $\forall x P(x) \to \forall x Q(x)$ are logically equivalent. Justify your answer.
- 4. Is $\neg \forall x(\phi \to \psi)$ logically equivalent to $\exists x(\phi \land \neg \psi)$? You do not need to give a formal proof, but try to explain the intuition behind your answer.
- 5. (P67, Ex.32, [R]) Consider the first order language with symbol set $S = \{P, Q, T\}$ in which P, Q represent two unary predicates and T represents a ternary predicate. Express the negations of each of these statements so that all negation symbols immediately precede predicates.
 - a) $\exists z \forall y \forall x T(x, y, z)$
 - b) $\exists x \exists y P(x,y) \land \forall x \forall y Q(x,y)$
 - c) $\exists x \exists y (P(x,y) \leftrightarrow Q(y,x))$
 - d) $\forall y \exists x \exists z (T(x, y, z) \lor Q(x, y))$
- 6. a) Prove that if $\phi \vDash \psi$ then $\forall x \phi \vDash \forall x \psi$.
 - b) Prove that if $\Phi, \phi \vDash \psi$ and x does not freely occur in Φ then $\Phi, \forall x \phi \vDash \forall x \psi$.
 - c) Demonstrate an example in which
 - $-\Phi, \phi \models \psi$
 - -x does freely occur in Φ
 - $-\Phi, \forall x\phi \not\vDash \forall x\psi.$