

UNIVERSIDAD EAFIT ESCUELA DE INGENIERÍA DEPARTAMENTO DE INFORMÁTICA Y SISTEMAS

Código: ST247

Estructura de Datos 2

Laboratorio Nro. 2: Fuerza Bruta

Alejandro Cano Munera

Universidad Eafit Medellín, Colombia acanom@eafit.edu.co

Sebastián Giraldo Gómez

Universidad Eafit Medellín, Colombia sgiraldog@eafit.edu.co

3) Simulacro de preguntas de sustentación de Proyectos

1. El problema de las N reinas también puede ser resuelto usando una estrategia de backtracking, en el cual básicamente se van haciendo las combinaciones y una vez una combinación de tablero falle, no sigue, todo esto con el fin de optimizar tiempo y recursos, evitando hacer operaciones innecesarias que una vez ya se sabe que determinada solución no es válida no se deben hacer.

2. Tabla y gráfica:

3. Este ejercicio usa como principio el ejercicio 1.1, el cuál retorna un ArrayList de tableros posibles para un determinado número de reinas, el algoritmo inicialmente recibe un número N y recibe un tablero NxN por consola, dicho tablero lo guarda en una matriz NxN.

El algoritmo ejecuta el método del ejercicio 1.1, y evalúa cada posible solución con el tablero NxN que contiene los huecos que no se pueden usar, en caso de que un tablero sirva, suma un contador, dicho contador almacena

UNIVERSIDAD EAFIT ESCUELA DE INGENIERÍA DEPARTAMENTO DE INFORMÁTICA Y SISTEMAS

Código: ST247
Estructura de Datos 2

el número de tableros que cumplen la condición de las N reinas y cumplen no tener ninguna reina en un hueco.

4. Se utilizan las siguientes estructuras de datos en la resolución del problema: Cola (Queue): Para guardar el número N de tableros que cumplen las condiciones y al final del algoritmo decir cuál fue el número N para cada caso (en orden, (Case 1, Case 2, etc)).

Matrices: Para almacenar el tablero que contiene los huecos en los que no es posible ubicar una reina, para compararlo con los tableros y así decidir cuál se puede y cuál no.

Arreglo (ArrayList): Para almacenar los tableros con las soluciones al problema de las N reinas y después comparar uno por uno con el tablero que contiene los huecos no utilizables.

- 5. Complejidad: O(nm + np + n(gm))
- **6.** Variables:
 - **n:** Número de situaciones a evaluar.
 - **m:** Número ingresado a evaluar (Tablero de 4, 8, etc.).
 - **p:** Número de instrucciones que realiza el algoritmo de las N Queens para retornar los tableros posibles.
 - g: Cantidad de tableros retornados por el algoritmo de las N Queens.

4) Simulacro de Parcial:

- 1.
- 1.a maximo < actual
- 1.b Complejidad O(n^2)
- 2.
 - 2.a arr, k + 1
 - 2.b Complejidad O(n^2)
- 3
- 3.1 i-(m);
- 3.2 n-1;
- 3.3 Complejidad O(n*m)