Cognome e Nome:	
0 0	

Matricola:

Esame di Strutture Discrete

17 Settembre 2021

Soluzioni

Prima parte

1. Trasformare la seguente formula, in forma normale congiuntiva:

$$(a \wedge b \wedge c) \vee (\neg a \wedge b \wedge \neg c) \vee (a \wedge \neg b \wedge \neg c)$$

Risposta: Applichiamo la proprietà distributiva, ovvero prendiamo in tutti i modi possibili uno dei 3 congiunti per ognuna delle 3 congiunzioni e formiamo clausole con 3 disgiunti, eliminando le clausole sempre vere, ovvero clausole dove è presente un letterale x e la sua negazione $\neg x$ e semplificando le clausole dove un letterale è presente più di una volta. Otteniamo

$$\underbrace{(a \vee \neg a \vee a) \wedge (a \vee \neg a \vee \neg b) \wedge (a \vee \neg a \vee \neg c)}_{} \wedge (a \vee b \vee a) \wedge \underbrace{(a \vee b \vee \neg b)}_{} \wedge (a \vee b \vee \neg c) \\ (a \vee \neg c \vee a) \wedge (a \vee \neg c \vee \neg b) \wedge (a \vee \neg c \vee \neg c) \wedge \underbrace{(b \vee \neg a \vee \neg a) \wedge (b \vee \neg a \vee \neg b)}_{} \wedge (b \vee \neg a \vee \neg c) \\ (b \vee b \vee a) \wedge \underbrace{(b \vee b \vee \neg b)}_{} \wedge (b \vee b \vee \neg c) \wedge \underbrace{(b \vee \neg c \vee a) \wedge (b \vee \neg c \vee \neg c)}_{} \wedge \underbrace{(b \vee \neg a \vee \neg b)}_{} \wedge \underbrace{(c \vee \neg a \vee \neg c)}_{}$$

Rimangono le seguenti clausole a cui applichiamo l'ultima semplificazione, ovvero l'eliminazione di clausole che contengono propriamente altre clausole e ovviamente la ripetizione di clausole uguali. Quindi

$$(a \lor b) \land (a \lor b \lor \neg c) \land (b \lor a) \land$$

$$(a \lor \neg c) \land (a \lor \neg e \lor \neg b) \land (a \lor \neg c) \land$$

$$(b \lor \neg c) \land (b \lor \neg a \lor \neg c) (b \lor \neg e \lor a) \land (b \lor \neg c)$$

$$(c \lor \neg a \lor \neg b)$$

2. Dare le definizioni formali di relazione di pre-ordine e di relazione d'ordine.

Risposta: Si dice preordinamento (o preordine) una relazione binaria R assegnata in un insieme U che goda della proprietà riflessiva e transitiva, ossia

- per ogni $x \in U$ si ha R(x, x) (riflessiva);
- per ogni $x, y, z \in U$ si ha che se R(x, y) e R(y, z) sono vere, allora è vero R(x, z).

Una relazione d'ordine è una relazione di pre-ordine che gode anche della proprietà antisimmetrica, ossia

$$\forall x, \forall y \in U \text{ si ha che : se } R(x,y) \text{ e } R(y,x) \text{ sono vere allora } x=y.$$

Seconda parte

3. Dimostrare che $11^{13} \mod 19 = 19^{11} \mod 13$

Risposta:

$$11^{13} \mod 19 = 19^{11} \mod 13 = 11$$

Calcoliamo $11^{13} \mod 19$

$$11^{13} \equiv 11 \cdot (11^2)^6 \equiv 11 \cdot (121 \mod 19)^6 \equiv 11 \cdot 7^6 \equiv 11 \cdot (7^2)^3 \equiv 11 \cdot (49 \mod 19)^3 \equiv 11 \cdot 11^3 \equiv 11^4 \equiv (11^2)^2 \equiv (121 \mod 19)^2 \equiv 7^2 \equiv 49 \equiv 11 \pmod{19}$$

Calcoliamo $19^{11} \mod 13$

$$19^{11} \equiv (19 \mod 13)^{11} \equiv 6^{11} \pmod{13}$$

Dal momento che $\phi(13)=12$ abbiamo che $6^{12}\equiv 1 \pmod{13}$ e quindi 6^{11} è l'inverso di 6 modulo 13. Verifichiamo che sia proprio 11. Abbiamo

$$6 \cdot 11 = 66 \ e \ 66 \ \text{mod} \ 13 = 1$$

Quindi, $11^{13} \mod 19 = 19^{11} \mod 13$

4. Enunciare formalmente la congettura di Collatz.

Risposta: La congettura è basata sul seguente algoritmo

Algoritmo di Collatz Leggi un intero $x \ge 1$ while (x > 1) do if $x \mod 2 == 0$ x = x/2; else x = 3 * x + 1; end_while

ed afferma che l'algoritmo si ferma sempre ovvero non esiste un intero positivo x partendo dal quale non si raggiunge mai il valore 1

Terza parte

5. Supponiamo che $\frac{1}{2}$ degli studenti di UNICT sia residente in provincia di CT. Supponiamo anche che $\frac{1}{3}$ degli studenti residenti in provincia sia residente a Catania. Qual è la probabilità che uno studente scelto a caso sia residente a Catania?

Risposta: Intuizione: supponiamo gli studenti siano 90, i residenti in provincia di CT sono allora 45 e di questi $\frac{1}{3}$, ovvero 15, risiedono a Catania. Quindi gli studenti residenti a CT sono 15 e la probabilità che uno studente scelto a caso sia residente a Catania è allora $\frac{15}{90} = \frac{3}{18} = \frac{1}{6}$.

Formalmente, utilizziamo il Teorema della Probabilità Totale. Definiamo gli eventi CT ovvero residente a Catania, PCT ovvero residente in provincia di Catania. La Probabilità che uno studente scelto a caso sia residente a Catania è allora $P(CT) = P(CT|PCT) \cdot P(PCT) + P(CT|\neg PCT) \cdot P(\neg PCT)$. Ma, ovviamente la probabilità che uno studente risieda a Catania dato che non risiede in provincia di CT è 0. Ouindi,

$$P(CT) = P(CT|PCT) \cdot P(PCT) = \frac{1}{3} \cdot \frac{1}{2} = \frac{1}{6}.$$

6. Enunciare e dimostrare il Teorema Binomiale o Teorema di Newton.

Risposta: Il Teorema Binomiale dice che se a e b numeri reali e n un numero intero non negativo, allora vale l'uguaglianza:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} \cdot b^k$$

La dimostrazione la trovate nei lucidi del corso.

Quarta parte

7. Si prenda il grafo bipartito completo $K_{2,4}$. Dimostrare se tale grafo è euleriano e/o hamiltoniano.

Risposta: L'insieme V dei vertici del grafo bipartito completo $K_{2,4}$ si può partizionare in due insiemi $V_1 = \{1,2\}$ e $V_2 = \{3,4,5,6\}$ ed ha 8 archi: (1,3),(1,4),(1,5),(1,6) e (2,3),(2,4),(2,5),(2,6). Tutti i vertici hanno grado pari e quindi il grafo è euleriano. Il grafo non è hamiltoniano, perché sia che partiamo da un vertice dell'insieme V_1 che da un vertice dell'insieme V_2 dopo V_2 archi abbiamo esaurito i vertici dell'insieme V_1 e restano ancora V_2 vertici di V_2 da raggiungere.

8. Dato un albero T definire formalmente i concetti di altezza dell'albero T e fattore di ramificazione dell'albero T

Risposta:

- L'altezza di T è la lunghezza del cammino più lungo dalla radice di T ad una foglia
- ullet Il fattore di ramificazione di T è il numero massimo di figli che ognuno dei nodi ha.