CH 4020: Optimization Techniques I CH331: Engineering Elective 4 - Optimization

Spring 2022

Instructor: Dr. Kishalay Mitra

Global Optimization & Knowledge Unearthing Lab (GOKUL)

Department of Chemical Engineering Indian Institute of Technology Hyderabad

(kishalay@iith.ac.in)

https://sites.google.com/site/kishalaymitra/

How far with analytical methods...

- If objectives, constraints are
 - simple to express and
 - possible to express explicitly in terms of decision variables

Minimize
$$f(\mathbf{X}) = \sum_{i=1}^{11} \rho x_i l_i$$

constraints

$$g_j(\mathbf{X}) = |u_j(\mathbf{X})| - \delta \le 0, \quad j = 1, 2, ..., 10$$

 $x_i \ge 0, \quad i = 1, 2, ..., 11$

$$(4x_4 + x_6 + x_7)u_1 + \sqrt{3}(x_6 - x_7)u_2 - 4x_4u_3 - x_7u_7 + \sqrt{3}x_7u_8 = 0$$

$$\sqrt{3}(x_6 - x_7)u_1 + 3(x_6 + x_7)u_2 + \sqrt{3}x_7u_7 - 3x_7u_8 = -\frac{4Rl}{E}$$

$$-4x_4u_1 + (4x_4 + 4x_5 + x_8 + x_9)u_3 + \sqrt{3}(x_8 - x_9)u_4 - 4x_5u_5$$

$$-x_8u_7 - \sqrt{3}x_8u_8 - x_9u_9 + \sqrt{3}x_9u_{10} = 0$$

$$\sqrt{3}(x_8 - x_9)u_3 + 3(x_8 + x_9)u_4 - \sqrt{3}x_8u_7$$

$$-3x_8u_8 + \sqrt{3}x_9u_9 - 3x_9u_{10} = 0$$

$$-4x_5u_3 + (4x_5 + x_{10} + x_{11})u_5 + \sqrt{3}(x_{10} - x_{11})u_6$$

$$-x_{10}u_9 - \sqrt{3}x_{10}u_{10} = \frac{4Ql}{E}$$

$$\sqrt{3}(x_{10} - x_{11})u_5 + 3(x_{10} + x_{11})u_6 - \sqrt{3}x_{10}u_9 - 3x_{10}u_{10} = 0$$

$$-x_7u_1 + \sqrt{3}x_7u_2 - x_8u_3 - \sqrt{3}x_8u_4 + (4x_1 + 4x_2 + x_7 + x_8)u_7 - \sqrt{3}(x_7 - x_8)u_8 - 4x_2u_9 = 0$$

$$\sqrt{3}x_7u_1 - 3x_7u_2 - \sqrt{3}x_8u_3 - 3x_8u_4 - \sqrt{3}(x_7 - x_8)u_7 + 3(x_7 + x_8)u_8 = 0$$

$$-x_9u_3 + \sqrt{3}x_9u_4 - x_{10}u_5 - \sqrt{3}x_{10}u_6 - 4x_2u_7 + (4x_2 + 4x_3 + x_9 + x_{10})u_9 - \sqrt{3}(x_9 - x_{10})u_{10} = 0$$

$$\sqrt{3}x_9u_3 - 3x_9u_4 - \sqrt{3}x_{10}u_5 - 3x_{10}u_6 - \sqrt{3}(x_9 - x_{10})u_9 + 3(x_9 + x_{10})u_{10} = -\frac{4Sl}{E}$$

Numerical Optimization

- Basic philosophy in any numerical optimization
 - 1. Start with an initial trial p
 - Find a suitable direction direction of the optimum.
 - 3. Find Way peopriate step le
 - 4. calculating roxima

search directions and

Steptlehegyth Xare's op Otherwise set a new i = i

to give us different optimization techniques

One Dimensional Optimization

Classification

Unimodality

- Function which is having only one peak (maximization) or one valley (minimization) in a given interval
- Given 2 values of the variable on the same side of the optimum, one nearer to the optimum gives smaller value in case of minimization

A function f(x) is unimodal if (i) $x_1 < x_2 < x^*$ implies that $f(x_2) < f(x_1)$, and (ii) $x_2 > x_1 > x^*$ implies that $f(x_1) < f(x_2)$, where x^* is the minimum point.

Area Elimination

Unrestricted Search (how to bracket the optimum when the ranges are not given)

Fixed Step Size

Accelerated Step Size

Area Elimination

Exhaustive Search

- Bounds on the search space is known
- Equally spaced n
 points are placed in
 the initial interval,
 L₀ giving rise to n+1
 segments
- Final interval of uncertainty L_n [x₅, x₇] having 2 segments

$$\frac{L_n}{L_0} = \frac{2}{n+1}$$

Exhaustive Search Example

Example 5.4 Find the minimum of f = x(x - 1.5) in the interval (0.0, 1.00) to within 10% of the exact value.

SOLUTION If the middle point of the final interval of uncertainty is taken as the approximate optimum point, the maximum deviation could be 1/(n+1) times the initial interval of uncertainty. Thus to find the optimum within 10% of the exact value, we should have

$$\frac{1}{n+1} \le \frac{1}{10} \quad \text{or} \quad n \ge 9$$

By taking n = 9, the following function values can be calculated:

i	1	2	3	4	5	6	7	8	9
x_i	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
$f_i = f(x_i)$	-0.14	-0.26	-0.36	-0.44	-0.50	-0.54	-0.56	-0.56	-0.54

Since $x_7 = x_8$, the assumption of unimodality gives the final interval of uncertainty as $L_9 = (0.7, 0.8)$. By taking the middle point of L_9 (i.e., 0.75) as an approximation to the optimum point, we find that it is, in fact, the true optimum point.

Dichotomous Search

- Mid point of the interval identified
- 2 points x_1 , x_2 created (δ /2) away from the mid point
- Based on these function values, certain area [x₂, x_f] is eliminated
- Process repeated again

$$x_1 = \frac{L_0}{2} - \frac{\delta}{2}$$
$$x_2 = \frac{L_0}{2} + \frac{\delta}{2}$$

Number of experiments	2	4	6		
Final interval of uncertainty	$\frac{1}{2}(L_0+\delta)$	$\frac{1}{2}\left(\frac{L_0+\delta}{2}\right)+\frac{\delta}{2}$	$\frac{1}{2}\left(\frac{L_0+\delta}{4}+\frac{\delta}{2}\right)+\frac{\delta}{2}$		

$$L_n = \frac{L_0}{2^{n/2}} + \delta \left(1 - \frac{1}{2^{n/2}} \right)$$

Dichotomous Search Example

Example 5.5 Find the minimum of f = x(x - 1.5) in the interval (0.0, 1.00) to within 10% of the exact value.

SOLUTION The ratio of final to initial intervals of uncertainty is given by [from Eq. (5.3)]

$$\frac{L_n}{L_0} = \frac{1}{2^{n/2}} + \frac{\delta}{L_0} \left(1 - \frac{1}{2^{n/2}} \right)$$

where δ is a small quantity, say 0.001, and n is the number of experiments. If the middle point of the final interval is taken as the optimum point, the requirement can be stated as

$$\frac{1}{2}\frac{L_n}{L_0} \le \frac{1}{10}$$

i.e.,

$$\frac{1}{2^{n/2}} + \frac{\delta}{L_0} \left(1 - \frac{1}{2^{n/2}} \right) \le \frac{1}{5}$$

Since $\delta = 0.001$ and $L_0 = 1.0$, we have

$$\frac{1}{2^{n/2}} + \frac{1}{1000} \left(1 - \frac{1}{2^{n/2}} \right) \le \frac{1}{5}$$

i.e.,

$$\frac{999}{1000} \frac{1}{2^{n/2}} \le \frac{995}{5000}$$
 or $2^{n/2} \ge \frac{999}{199} \simeq 5.0$

Since n has to be even, this inequality gives the minimum admissible value of n as 6.

Example...

The search is made as follows. The first two experiments are made at

$$x_1 = \frac{L_0}{2} - \frac{\delta}{2} = 0.5 - 0.0005 = 0.4995$$

 $x_2 = \frac{L_0}{2} + \frac{\delta}{2} = 0.5 + 0.0005 = 0.5005$

with the function values given by

$$f_1 = f(x_1) = 0.4995(-1.0005) \simeq -0.49975$$

 $f_2 = f(x_2) = 0.5005(-0.9995) \simeq -0.50025$

Since $f_2 < f_1$, the new interval of uncertainty will be (0.4995, 1.0). The second per of experiments is conducted at

$$x_3 = \left(0.4995 + \frac{1.0 - 0.4995}{2}\right) - 0.0005 = 0.74925$$
$$x_4 = \left(0.4995 + \frac{1.0 - 0.4995}{2}\right) + 0.0005 = 0.75025$$

which give the function values as

$$f_3 = f(x_3) = 0.74925(-0.75075) = -0.5624994375$$

 $f_4 = f(x_4) = 0.75025(-0.74975) = -0.5624999375$

Since $f_3 > f_4$, we delete (0.4995, x_3) and obtain the new interval of uncertainty as

$$(x_3, 1.0) = (0.74925, 1.0)$$

Indian Institute of Technology Hyderabad

Example...

The final set of experiments will be conducted at

$$x_5 = \left(0.74925 + \frac{1.0 - 0.74925}{2}\right) - 0.0005 = 0.874125$$
$$x_6 = \left(0.74925 + \frac{1.0 - 0.74925}{2}\right) + 0.0005 = 0.875125$$

The corresponding function values are

$$f_5 = f(x_5) = 0.874125(-0.625875) = -0.5470929844$$

$$f_6 = f(x_6) = 0.875125(-0.624875) = -0.5468437342$$

Since $f_5 < f_6$, the new interval of uncertainty is given by $(x_3, x_6) = (0.74925, 0.875125)$. The middle point of this interval can be taken as optimum, and hence

$$x_{\text{opt}} \simeq 0.8121875$$
 and $f_{\text{opt}} \simeq -0.5586327148$

Interval Halving

- Divide the initial interval into 4 equal parts using 3 points – one mid point (x₀) and 2 quarter points (x₁, x₂)
- Based on these function values, certain area (50%) [x₁, x₂] is eliminated
- 2 points are created again using one of the existing points and process repeated again
- Interval of uncertainty remaining at the end of n experiments (n≥3 & n odd)

$$L_n = \left(\frac{1}{2}\right)^{(n-1)/2} L_0$$

Technology Hydera

Interval Halving Example

Example 5.6 Find the minimum of f = x(x - 1.5) in the interval (0.0, 1.0) to within 10% of the exact value.

SOLUTION If the middle point of the final interval of uncertainty is taken as the optimum point, the specified accuracy can be achieved if

$$\frac{1}{2}L_n \le \frac{L_0}{10}$$
 or $\left(\frac{1}{2}\right)^{(n-1)/2}L_0 \le \frac{L_0}{5}$ (E₁)

Since $L_0 = 1$, Eq. (E₁) gives

$$\frac{1}{2^{(n-1)/2}} \le \frac{1}{5}$$
 or $2^{(n-1)/2} \ge 5$ (E₂)

Since n has to be odd, inequality (E₂) gives the minimum permissible value of n as 7. With this value of n = 7, the search is conducted as follows. The first three experiments are placed at one-fourth points of the interval $L_0 = [a = 0, b = 1]$ as

$$x_1 = 0.25,$$
 $f_1 = 0.25(-1.25) = -0.3125$
 $x_0 = 0.50,$ $f_0 = 0.50(-1.00) = -0.5000$
 $x_2 = 0.75,$ $f_2 = 0.75(-0.75) = -0.5625$

Example...

Since $f_1 > f_0 > f_2$, we delete the interval $(a, x_0) = (0.0, 0.5)$, label x_2 and x_0 as the new x_0 and a so that a = 0.5, $x_0 = 0.75$, and b = 1.0. By dividing the new interval of uncertainty, $L_3 = (0.5, 1.0)$ into four equal parts, we obtain

$$x_1 = 0.625,$$
 $f_1 = 0.625(-0.875) = -0.546875$
 $x_0 = 0.750,$ $f_0 = 0.750(-0.750) = -0.562500$
 $x_2 = 0.875,$ $f_2 = 0.875(-0.625) = -0.546875$

Since $f_1 > f_0$ and $f_2 > f_0$, we delete both the intervals (a, x_1) and (x_2, b) , and label x_1, x_0 , and x_2 as the new a, x_0 , and b, respectively. Thus the new interval of uncertainty will be $L_5 = (0.625, 0.875)$. Next, this interval is divided into four equal parts to obtain

$$x_1 = 0.6875,$$
 $f_1 = 0.6875(-0.8125) = -0.558594$
 $x_0 = 0.75,$ $f_0 = 0.75(-0.75) = -0.5625$
 $x_2 = 0.8125,$ $f_2 = 0.8125(-0.6875) = -0.558594$

Again we note that $f_1 > f_0$ and $f_2 > f_0$ and hence we delete both the intervals (a, x_1) and (x_2, b) to obtain the new interval of uncertainty as $L_7 = (0.6875, 0.8125)$. By taking the middle point of this interval (L_7) as optimum, we obtain

$$x_{\rm opt} \approx 0.75$$
 and $f_{\rm opt} \approx -0.5625$

(This solution happens to be the exact solution in this case.)

Fibonacci Search

- 50% area eliminated in every iteration using 2 function evaluation ⇒ 25% area eliminated per function evaluation
- Can we eliminate this much or more area using one function evaluation in each iteration?
- Technique uses Fibonacci numbers to carry out this area elimination process using one function evaluation in one iteration

$$F_0 = F_1 = 1$$

 $F_n = F_{n-1} + F_{n-2}, \qquad n = 2, 3, 4, ...$
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,...

Fibonacci Search

- Based on accuracy required, n and F_n are determined, n is total number of experiments
- 2 test points (x_1, x_2) are placed at a distance L₂* from each end of L₀
- **Using unimodality** assumption, discard area
- In the remaining area, one experiment is already present, one needs to be introduced

$$L_{j}^{*} = \frac{F_{n-j}}{F_{n-(j-2)}} L_{j-1} \qquad \frac{L_{j}}{L_{0}} = \frac{F_{n-(j-1)}}{F_{n}}$$

$$L_{j} = \frac{F_{n-(j-1)}}{F_{n}} L_{0}$$

$$\frac{L_{j}}{L_{0}} = \frac{F_{n-(j-1)}}{F_{n}}$$

$$\frac{L_{n}}{L_{0}} = \frac{F_{1}}{F_{n}} = \frac{1}{F_{n}}$$

Fibonacci Example

Example 5.7 Minimize $f(x) = 0.65 - [0.75/(1 + x^2)] - 0.65x \tan^{-1}(1/x)$ in the interval [0,3] by the Fibonacci method using n = 6. (Note that this objective is equivalent to the one stated in Example 5.2.)

SOLUTION Here n = 6 and $L_0 = 3.0$, which yield

$$L_2^* = \frac{F_{n-2}}{F_n} L_0 = \frac{5}{13} (3.0) = 1.153846$$

Thus the positions of the first two experiments are given by $x_1 = 1.153846$ and $x_2 = 3.0 - 1.153846 = 1.846154$ with $f_1 = f(x_1) = -0.207270$ and $f_2 = f(x_2) = -0.115843$. Since f_1 is less than f_2 , we can delete the interval $[x_2, 3.0]$ by using the unimodality assumption (Fig. 5.10a). The third experiment is placed at $x_3 = 0 + (x_2 - x_1) = 1.846154 - 1.153846 = 0.692308$, with the corresponding function value of $f_3 = -0.291364$.

Since $f_1 > f_3$, we delete the interval $[x_1, x_2]$ (Fig. 5.10b). The next experiment is located at $x_4 = 0 + (x_1 - x_3) = 1.153846 - 0.692308 = 0.461538$ with $f_4 = -0.309811$. Nothing that $f_4 < f_3$, we delete the interval $[x_3, x_1]$ (Fig. 5.10c). The location of the next experiment can be obtained as $x_5 = 0 + (x_3 - x_4) = 0.692308 - 0.461538 = 0.230770$ with the corresponding objective function value of $f_5 = -0.263678$. Since $f_5 > f_4$, we delete the interval $[0, x_5]$ (Fig. 5.10d). The final experiment is positioned at $x_6 = x_5 + (x_3 - x_4) = 0.230770 + (0.692308 - 0.461538) = 0.461540$ with $f_6 = -0.309810$. (Note that, theoretically, the value of x_6 should be same as that of x_4 ; however, it is slightly different from x_4 , due to round-off error).

Since $f_6 > f_4$, we delete the interval $[x_6, x_3]$ and obtain the final interval of uncertainty as $L_6 = [x_5, x_6] = [0.230770, 0.461540]$ (Fig. 5.10e). The ratio of the final to the initial interval of uncertainty is

$$\frac{L_6}{L_0} = \frac{0.461540 - 0.230770}{3.0} = 0.076923$$

This value can be compared with Eq. (5.15), which states that if n experiments (n = 6) are planned, a resolution no finer than $1/F_n = 1/F_6 = \frac{1}{13} = 0.076923$ can be expected from the method.

Fibonacci Example

Golden Section Search

- Same as Fibonacci method except
 - Number of experiments need not to be mentioned in the beginning
 - Location of first 2 experiments does not need the information of total number of experiments – in this case we assume we are going to conduct a large number of experiments

$$L_{2} = \lim_{N \to \infty} \frac{F_{N-1}}{F_{N}} L_{0}$$

$$L_{3} = \lim_{N \to \infty} \frac{F_{N-2}}{F_{N}} L_{0} = \lim_{N \to \infty} \frac{F_{N-2}}{F_{N-1}} \frac{F_{N-1}}{F_{N}} L_{0}$$

$$= \lim_{N \to \infty} \left(\frac{F_{N-1}}{F_{N}}\right)^{2} L_{0}$$

$$F_{N} = F_{N-1} + F_{N-2}$$

$$F_{N} = F_{N-1} + F_{N-2}$$

$$F_{N} = F_{N-1} + F_{N-2}$$

$$L_k = \lim_{N \to \infty} \left(\frac{F_{N-1}}{F_N} \right)^{k-1} L_0$$

$$F_N = F_{N-1} + F_{N-2}$$

$$F_N = F_{N-2}$$

$$\frac{F_N}{F_{N-1}} = 1 + \frac{F_{N-2}}{F_{N-1}}$$

$$\gamma \simeq \frac{1}{\gamma} + 1$$

$$\gamma^2 - \gamma - 1 = 0$$

$$L_k = \left(\frac{1}{\gamma}\right)^{k-1} L_0 = (0.618)^{k-1} L_0$$

 $\gamma = 1.618$.

Value of N
 2
 3
 4
 5
 6
 7
 8
 9
 10
 ∞

 Ratio
$$\frac{F_{N-1}}{F_N}$$
 0.5
 0.667
 0.6
 0.625
 0.6156
 0.619
 0.6177
 0.6181
 0.6184
 0.618

$$\gamma = \lim_{N \to \infty} \frac{F_N}{F_{N-1}}$$

Golden Section Search

- Same as Fibonacci method except
 - First 2 experiments are positioned by

$$L_2^* = \frac{F_{N-2}}{F_N} L_0 = \frac{F_{N-2}}{F_{N-1}} \frac{F_{N-1}}{F_N} L_0 = \frac{L_0}{\gamma^2} = 0.382 L_0$$

Desired accuracy can stop the procedure

$$\frac{d+b}{d} = \frac{d}{b} = \gamma$$

Golden Section Example

Example 5.8 Minimize the function

$$f(x) = 0.65 - [0.75/(1+x^2)] - 0.65x \tan^{-1}(1/x)$$

using the golden section method with n = 6.

SOLUTION The locations of the first two experiments are defined by $L_2^* = 0.382L_0 = (0.382)(3.0) = 1.1460$. Thus $x_1 = 1.1460$ and $x_2 = 3.0 - 1.1460 = 1.8540$ with $f_1 = f(x_1) = -0.208654$ and $f_2 = f(x_2) = -0.115124$. Since $f_1 < f_2$, we delete the interval $[x_2, 3.0]$ based on the assumption of unimodality and obtain the new interval of uncertainty as $L_2 = [0, x_2] = [0.0, 1.8540]$. The third experiment is placed at $x_3 = 0 + (x_2 - x_1) = 1.8540 - 1.1460 = 0.7080$. Since $f_3 = -0.288943$ is smaller than $f_1 = -0.208654$, we delete the interval $[x_1, x_2]$ and obtain the new interval of uncertainty as $[0.0, x_1] = [0.0, 1.1460]$. The position of the next experiment is given by $x_4 = 0 + (x_1 - x_3) = 1.1460 - 0.7080 = 0.4380$ with $f_4 = -0.308951$.

Since $f_4 < f_3$, we delete $[x_3, x_1]$ and obtain the new interval of uncertainty as $[0, x_3] = [0.0, 0.7080]$. The next experiment is placed at $x_5 = 0 + (x_3 - x_4) = 0.7080 - 0.4380 = 0.2700$. Since $f_5 = -0.278434$ is larger than $f_4 = -0.308951$, we delete the interval $[0, x_5]$ and obtain the new interval of uncertainty as $[x_5, x_3] = [0.2700, 0.7080]$. The final experiment is placed at $x_6 = x_5 + (x_3 - x_4) = 0.2700 + (0.7080 - 0.4380) = 0.5400$ with $f_6 = -0.308234$. Since $f_6 > f_4$, we delete the interval $[x_6, x_3]$ and obtain the final interval of uncertainty as $[x_5, x_6] = [0.2700, 0.5400]$. Note that this final interval of uncertainty is slightly larger than the one found in the Fibonacci method, [0.461540, 0.230770]. The ratio of the final to the initial interval of uncertainty in the present case is

$$\frac{L_6}{L_0} = \frac{0.5400 - 0.2700}{3.0} = \frac{0.27}{3.0} = 0.09$$

Comparison

Method	Formula	n = 5	n = 10
Exhaustive search	$L_n = \frac{2}{n+1}L_0$	$0.333331L_0$	$0.18182L_0$
Dichotomous search $(\delta = 0.01 \text{ and } n = \text{even})$	$L_{\kappa} = \frac{L_0}{2^{\kappa/2}} + \delta \left(1 - \frac{1}{2^{\kappa/2}} \right)$	$\frac{1}{4}L_0 + 0.0075$ with $n = 4, \frac{1}{8}L_0 + 0.00875$ with $n = 6$	$0.03125L_0 + 0.0096875$
Interval halving $(n \ge 3$ and odd)	$L_{R} = (\frac{1}{2})^{(n-1)/2} L_{0}$	$0.25L_0$	$0.0625L_0$ with $n = 9$, $0.03125L_0$ with n = 11
Fibonacci	$L_{\kappa} = \frac{1}{F_{\kappa}}L_0$	$0.125L_0$	$0.01124L_0$
Golden section	$L_{\pi} = (0.618)^{\kappa - 1} L_0$	$0.1459L_0$	$0.01315L_0$

Method	Error: $\frac{1}{2} \frac{L_n}{L_0} \le 0.1$	Error: $\frac{1}{2} \frac{L_n}{L_0} \le 0.01$
Exhaustive search	$n \ge 9$	n ≥ 99
Dichotomous search ($\delta = 0.01, L_0 = 1$)	$n \ge 6$	$n \ge 14$
Interval halving $(n \ge 3 \text{ and odd})$	$n \geq 7$	$n \ge 13$
Fibonacci	$n \ge 4$	$n \ge 9$
Golden section	$n \geq 5$	$n \ge 10$

Quadratic Interpolation

- Uses Function values, no derivatives
- Useful for cases when derivative computation is not favorable

3 Stage approach

- Stage 1: Normalize the direction vector
- Stage 2: Apply a quadratic approximation to the given function and find the minimum of the given function through successive quadratic approximation approach
- Stage 3: Terminate based on different criteria

Stage 1: Direction vector normalization

• Any n dimensional direction vector $s = \{s_1, s_2, ..., s_i, ..., s_n\}$ can be normalized by dividing each component by Δ

$$\Delta = \max_{i} |s_{i}|$$

Other way:

$$\Delta = \sqrt{(s_1^2 + s_2^2 + ... + s_n^2)}$$

Stage 2: Quadratic approximation

• $f(\lambda)$ is the univariate function to which the $h(\lambda)$ quadratic function approximation needs to be fitted

$$h(\lambda) = a + b\lambda + c\lambda^2$$

 We need 3 points (A, B and C) to find coefficients for this function

$$f_A = a + bA + cA^2$$

$$f_B = a + bB + cB^2$$

$$f_C = a + bC + cC^2$$

$$a = \frac{f_A B C (C - B) + f_B C A (A - C) + f_C A B (B - A)}{(A - B)(B - C)(C - A)}$$

$$b = \frac{f_A (B^2 - C^2) + f_B (C^2 - A^2) + f_C (A^2 - B^2)}{(A - B)(B - C)(C - A)}$$

$$c = -\frac{f_A (B - C) + f_B (C - A) + f_C (A - B)}{(A - B)(B - C)(C - A)}$$

Quadratic approximation (by making $h'(\lambda) = 0$)

$$\tilde{\lambda}^* = \frac{-b}{2c} = \frac{f_A(B^2 - C^2) + f_B(C^2 - A^2) + f_C(A^2 - B^2)}{2[f_A(B - C) + f_B(C - A) + f_C(A - B)]}$$

Assuming 3 points (A, B and C) as $\lambda = 0$ (f_A), t (f_B) & 2t (f_C), where t is a trial step to be assumed ($\lambda = 0$ saves one function evaluation – next iteration onwards)

$$a = f_A$$

$$b = \frac{4f_B - 3f_A - f_C}{2t}$$

$$c = \frac{f_C + f_A - 2f_B}{2t^2}$$

$$\tilde{\lambda}^* = \frac{4f_B - 3f_A - f_C}{4f_B - 2f_C - 2f_A}t$$

provided

provided
h"(
$$\lambda$$
) > 0
$$c = \frac{fc + f_A - 2f_B}{2t^2} > 0$$

$$\frac{f_A + f_C}{2} > f_B$$

This can be ensured by

- Choose $f_A = f(\lambda = 0)$ and compute $f_1 = f(\lambda = t_0)$
- If $f_1 > f_A$, $f_C = f_1$, compute $f_B = f$ ($\lambda = t_0/2$), compute optimum λ using $t = t_0/2$
- If f₁ < f_A, f_B = f₁, compute f₂ = f
 (λ = 2t₀)
- If f₂ > f₁, f_C = f₂ and f_B = f₁,
 compute optimum λ using t = t₀
- If f₂ < f₁, f₂ = f₁ and t = 2t₀ and repeat above 3 steps till we find f₂ > f₁

Stage 3: Termination

- We need to ensure that optimum λ value of approximate function $h(\lambda)$ is sufficiently close to the true optimum λ value of original function $f(\lambda)$
- Termination criteria

$$\left|\frac{h(\tilde{\lambda}^*) - f(\tilde{\lambda}^*)}{f(\tilde{\lambda}^*)}\right| \leq \varepsilon_1$$

$$\left| \frac{f(\tilde{\lambda}^* + \Delta \tilde{\lambda}^*) - f(\tilde{\lambda}^* - \Delta \tilde{\lambda}^*)}{2\Delta \tilde{\lambda}^*} \right| \leq \varepsilon_2$$

- If termination criteria satisfied, stop
- Else refit a new quadratic polynomial using 3 best points out of 4 points from the previous iteration

$$h'(\lambda) = a' + b'\lambda + c'\lambda^2$$

Refitting

Selection of 3 best points out of all possible situations

	Characteristics	New points for refitting				
Case		New	Old			
1	$\tilde{\lambda}^* > B$	A	В			
	$\tilde{f} < f_B$	B	$\frac{B}{\tilde{\lambda}^*}$			
	50 (90.5)(G)4	C	C			
	Neglect old A					
2	$\tilde{\lambda}^* > B$	A	A			
	$\tilde{\lambda}^* > B$ $\tilde{f} > f_B$	B	В			
		C	$\tilde{\lambda}^*$			
		Neglect old C				
3	$ ilde{\lambda}^* < B \ ilde{f} < f_B$	A	A			
	$\tilde{f} < f_R$	В	$\tilde{\lambda}^*$			
		C	B			
		Neglect old C				
4	$\tilde{\lambda}^* < B$	A	$\tilde{\lambda}^*$			
	$ar{\lambda}^* < B \ ar{f} > f_B$	В	B			
		C	C			
		Neglect old A				

QI - Example

Example 5.10 Find the minimum of $f = \lambda^5 - 5\lambda^3 - 20\lambda + 5$.

SOLUTION Since this is not a multivariable optimization problem, we can proceed directly to stage 2. Let the initial step size be taken as $t_0 = 0.5$ and A = 0.

Iteration 1

$$f_A = f(\lambda = 0) = 5$$

 $f_1 = f(\lambda = t_0) = 0.03125 - 5(0.125) - 20(0.5) + 5 = -5.59375$

Since $f_1 < f_A$, we set $f_B = f_1 = -5.59375$, and find that

$$f_2 = f(\lambda = 2t_0 = 1.0) = -19.0$$

As $f_2 < f_1$, we set new $t_0 = 1$ and $f_1 = -19.0$. Again we find that $f_1 < f_A$ and hence set $f_B = f_1 = -19.0$, and find that $f_2 = f(\lambda = 2t_0 = 2) = -43$. Since $f_2 < f_1$, we again set $t_0 = 2$ and $f_1 = -43$. As this $f_1 < f_A$, set $f_B = f_1 = -43$ and evaluate $f_2 = f(\lambda = 2t_0 = 4) = 629$. This time $f_2 > f_1$ and hence we set $f_C = f_2 = 629$ and compute $\tilde{\lambda}^*$ from Eq. (5.40) as

$$\tilde{\lambda}^* = \frac{4(-43) - 3(5) - 629}{4(-43) - 2(629) - 2(5)}(2) = \frac{1632}{1440} = 1.135$$

Convergence test: Since A = 0, $f_A = 5$, B = 2, $f_B = -43$, C = 4, and $f_C = 629$, the values of a, b, and c can be found to be

$$a = 5$$
, $b = -204$, $c = 90$

QI - Example

and

$$h(\tilde{\lambda}^*) = h(1.135) = 5 - 204(1.135) + 90(1.135)^2 = -110.9$$

Since

$$\tilde{f} = f(\tilde{\lambda}^*) = (1.135)^5 - 5(1.135)^3 - 20(1.135) + 5.0 = -23.127$$

we have

$$\left| \frac{h(\tilde{\lambda}^*) - f(\tilde{\lambda}^*)}{f(\tilde{\lambda}^*)} \right| = \left| \frac{-116.5 + 23.127}{-23.127} \right| = 3.8$$

As this quantity is very large, convergence is not achieved and hence we have to use refitting.

QI - Example

Iteration 2

Since $\tilde{\lambda}^* < B$ and $\tilde{f} > f_B$, we take the new values of A, B, and C as

$$A = 1.135,$$
 $f_A = -23.127$
 $B = 2.0,$ $f_B = -43.0$
 $C = 4.0,$ $f_C = 629.0$

and compute new $\tilde{\lambda}^*$, using Eq. (5.36), as

$$\tilde{\lambda}^* = \frac{(-23.127)(4.0 - 16.0) + (-43.0)(16.0 - 1.29)}{+ (629.0)(1.29 - 4.0)} = 1.661 + (629.0)(1.135 - 2.0)$$

Convergence test: To test the convergence, we compute the coefficients of the quadratic as

$$a = 288.0, \quad b = -417.0, \quad c = 125.3$$

As

$$h(\tilde{\lambda}^*) = h(1.661) = 288.0 - 417.0(1.661) + 125.3(1.661)^2 = -59.7$$

 $\tilde{f} = f(\tilde{\lambda}^*) = 12.8 - 5(4.59) - 20(1.661) + 5.0 = -38.37$

we obtain

$$\left| \frac{h(\tilde{\lambda}^*) - f(\tilde{\lambda}^*)}{f(\tilde{\lambda}^*)} \right| = \left| \frac{-59.70 + 38.37}{-38.37} \right| = 0.556$$

Since this quantity is not sufficiently small, we need to proceed to the next refit.

Cubic Interpolation

Uses Function values and derivatives

4 Stage approach

- Stage 1: Normalize the direction vector
- Stage 2: Bracket the optimum point
- Stage 3: Apply a cubic approximation to the given function and find the minimum of the given function through successive cubic approximation approach
- Stage 4: Terminate based on different criteria

Stage 1: Direction vector normalization

Any n dimensional direction vector s = {s₁, s₂,... s_i, ..., s_n} can be normalized by dividing each component by ∆

$$\Delta = \max_{i} |s_{i}|$$

Other way:

$$\Delta = \sqrt{(s_1^2 + s_2^2 + ... + s_n^2)}$$

Stage 2: Bracketing optimum

f(λ) is univariate function – to bracket the optimum, derivative information at 2 points checked for signs (one –ve and one +ve)

 $f'(\lambda) = \frac{df}{d\lambda} = \frac{d}{d\lambda} f(\mathbf{X} + \lambda \mathbf{S}) = \mathbf{S}^{\mathrm{T}} \nabla f(\mathbf{X} + \lambda \mathbf{S})$

- At $\lambda = 0$ (point A), since S is assumed to be the direction of descent $\frac{df}{d\lambda}\Big|_{\lambda=0} = \mathbf{S}^T \nabla f(\mathbf{X}) < 0$
- We find one more point (point B) where the slope (df/d λ) is +ve λ +t₀, 2t₀, 4t₀, 8t₀ etc. till the above condition satisfied

CI (contd.)

Stage 3: Cubic approximation

• $f(\lambda)$ is the univariate function to which the $h(\lambda)$ cubic function approximation needs to be fitted

$$h(\lambda) = a + b\lambda + c\lambda^2 + \lambda^3$$

We need 4 data (function value of A, B & derivative information $a = f_A - bA - cA^2 - dA^3$

at A, B) to find coefficients

$$f_A = a + bA + cA^2 + dA^3$$

$$f_B = a + bB + cB^2 + dB^3$$

$$f'_A = b + 2cA + 3dA^2$$

$$f'_B = b + 2cB + 3dB^2$$

$$b = \frac{1}{(A-B)^2} (B^2 f'_A + A^2 f'_B + 2ABZ)$$

$$c = -\frac{1}{(A-B)^2} [(A+B)Z + Bf'_A + Af'_B]$$

$$d = \frac{1}{3(A-B)^2}(2Z + f_A' + f_B')$$

$$Z = \frac{3(f_A - f_B)}{B - A} + f'_A + f'_B$$

CI (contd.)

Stage 3: Cubic approximation

Application of optimization conditions leads to

$$\tilde{\lambda}^* = A + \frac{f'_A + Z \pm Q}{f'_A + f'_B + 2Z}(B - A)$$

$$Q = (Z^2 - f_A' f_B')^{1/2}$$

$$\tilde{\lambda}^* = A + \frac{f_A' + Z \pm Q}{f_A' + f_B' + 2Z} (B - A)$$

$$Q = (Z^2 - f_A' f_A')^{1/2}$$

$$A = 0$$

$$\tilde{\lambda}^* = B \frac{f_A' + Z \pm Q}{f_A' + f_B' + 2Z}$$

$$Q = (Z^2 - f_A' f_B')^{1/2} > 0$$

$$Z = \frac{3(f_A - f_B)}{B} + f'_A + f'_B$$

CI (contd.)

Stage 4: Termination

- We need to ensure that optimum λ value of approximate function $h(\lambda)$ is sufficiently close to the true optimum λ value of original function $f(\lambda)$
- Termination criteria

$$\left| \frac{h(\tilde{\lambda}^*) - f(\tilde{\lambda}^*)}{f(\tilde{\lambda}^*)} \right| \leq \varepsilon_1$$

$$\left| \frac{df}{d\lambda} \right|_{\tilde{\lambda}^*} = |\mathbf{S}^{\mathrm{T}} \nabla f|_{\tilde{\lambda}^*}| \leq \varepsilon_2$$

$$\left| \frac{\mathbf{S}^{\mathrm{T}} \nabla f}{|\mathbf{S}| |\nabla f|} \right|_{\bar{\lambda}^*} \le \varepsilon_2$$

- If termination criteria satisfied, stop
- Else refit a new cubic polynomial using 2 best points out of 3 points from the previous iteration

$$h'(\lambda) = a' + b'\lambda + c'\lambda^2 + d'\lambda^3$$

Example 5.11 Find the minimum of $f = \lambda^5 - 5\lambda^3 - 20\lambda + 5$ by the cubic interpolation method.

SOLUTION Since this problem has not arisen during a multivariable optimization process, we can skip stage 1. We take A=0 and find that

$$\frac{df}{d\lambda}(\lambda = A = 0) = 5\lambda^4 - 15\lambda^2 - 20\Big|_{\lambda = 0} = -20 < 0$$

To find B at which $df/d\lambda$ is nonnegative, we start with $t_0 = 0.4$ and evaluate the derivative at $t_0, 2t_0, 4t_0, \ldots$ This gives

$$f'(t_0 = 0.4) = 5(0.4)^4 - 15(0.4)^2 - 20.0 = -22.272$$

$$f'(2t_0 = 0.8) = 5(0.8)^4 - 15(0.8)^2 - 20.0 = -27.552$$

$$f'(4t_0 = 1.6) = 5(1.6)^4 - 15(1.6)^2 - 20.0 = -25.632$$

$$f'(8t_0 = 3.2) = 5(3.2)^4 - 15(3.2)^2 - 20.0 = 350.688$$

Thus we find that[†]

$$A = 0.0,$$
 $f_A = 5.0,$ $f'_A = -20.0$
 $B = 3.2,$ $f_B = 113.0,$ $f'_B = 350.688$
 $A < \lambda^* < B$

Iteration 1

To find the value of $\tilde{\lambda}^*$ and to test the convergence criteria, we first compute Z and Q as

$$Z = \frac{3(5.0 - 113.0)}{3.2} - 20.0 + 350.688 = 229.588$$
$$Q = [229.588^{2} + (20.0)(350.688)]^{1/2} = 244.0$$

Hence

$$\tilde{\lambda}^* = 3.2 \left(\frac{-20.0 + 229.588 \pm 244.0}{-20.0 + 350.688 + 459.176} \right) = 1.84 \text{ or } -0.1396$$

By discarding the negative value, we have

$$\tilde{\lambda}^* = 1.84$$

Convergence criterion: If $\tilde{\lambda}^*$ is close to the true minimum, λ^* , then $f'(\tilde{\lambda}^*) = df(\tilde{\lambda}^*)/d\lambda$ should be approximately zero. Since $f' = 5\lambda^4 - 15\lambda^2 - 20$,

$$f'(\tilde{\lambda}^*) = 5(1.84)^4 - 15(1.84)^2 - 20 = -13.0$$

Since this is not small, we go to the next iteration or refitting. As $f'(\tilde{\lambda}^*) < 0$, we take $A = \tilde{\lambda}^*$ and

$$f_A = f(\tilde{\lambda}^*) = (1.84)^5 - 5(1.84)^3 - 20(1.84) + 5 = -41.70$$

Thus

$$A = 1.84,$$
 $f_A = -41.70,$ $f'_A = -13.0$
 $B = 3.2,$ $f_B = 113.0,$ $f'_B = 350.688$
 $A < \tilde{\lambda}^* < B$

Iteration 2

$$Z = \frac{3(-41.7 - 113.0)}{3.20 - 1.84} - 13.0 + 350.688 = -3.312$$
$$Q = [(-3.312)^2 + (13.0)(350.688)]^{1/2} = 67.5$$

Hence

$$\tilde{\lambda}^* = 1.84 + \frac{-13.0 - 3.312 \pm 67.5}{-13.0 + 350.688 - 6.624}(3.2 - 1.84) = 2.05$$

Convergence criterion:

$$f'(\tilde{\lambda}^*) = 5.0(2.05)^4 - 15.0(2.05)^2 - 20.0 = 5.35$$

Since this value is large, we go the next iteration with $B = \tilde{\lambda}^* = 2.05$ [as $f'(\tilde{\lambda}^*) > 0$] and

$$f_B = (2.05)^5 - 5.0(2.05)^3 - 20.0(2.05) + 5.0 = -42.90$$

Thus

$$A = 1.84,$$
 $f_A = -41.70,$ $f'_A = -13.00$
 $B = 2.05,$ $f_B = -42.90,$ $f'_B = 5.35$
 $A < \lambda^* < B$

Iteration 3

$$Z = \frac{3.0(-41.70 + 42.90)}{(2.05 - 1.84)} - 13.00 + 5.35 = 9.49$$
$$Q = [(9.49)^2 + (13.0)(5.35)]^{1/2} = 12.61$$

Therefore,

$$\tilde{\lambda}^* = 1.84 + \frac{-13.00 + 9.49 \pm 12.61}{-13.00 + 5.35 + 18.98}(2.05 - 1.84) = 2.0086$$

Convergence criterion:

$$f'(\tilde{\lambda}^*) = 5.0(2.0086)^4 - 15.0(2.0086)^2 - 20.0 = 0.855$$

Assuming that this value is close to zero, we can stop the iterative process and take

$$\lambda^* \simeq \tilde{\lambda}^* = 2.0086$$

Root Finding Methods

- Necessary condition to find the minimum of function $f(\lambda)$ is $f'(\lambda) = 0$
- Solving $f'(\lambda) = 0$ is numerical analysis is done by ROOT FINDING METHODS e.g. Newton-Raphson, Quasi Newton, secant methods etc. which is synonymous to finding the minimum

Newton Raphson

• Perform a quadratic approximation for any given function $f(\lambda)$ around a point λ_i for which the minimum needs to be found

$$f(\lambda) = f(\lambda_i) + f'(\lambda_i)(\lambda - \lambda_i) + \frac{1}{2}f''(\lambda_i)(\lambda - \lambda_i)^2$$

Applying the optimization criteria of first derivative going to 0

$$f'(\lambda) = f'(\lambda_i) + f''(\lambda_i)(\lambda - \lambda_i) = 0$$

New points are generated using

$$\lambda_{i+1} = \lambda_i - \frac{f'(\lambda_i)}{f''(\lambda_i)}$$

Terminate when

$$|f'(\lambda_{i+1})| \le \varepsilon$$

NR (contd.)

- Originally developed by Newton for solving nonlinear equations, modified by Raphson later
- Uses both, first and second order derivatives of the function f(λ)
- If f"(λ) ≠ 0, NR has fastest convergence property, quadratic convergence
- If the initial solution is not sufficiently close to the true optimum, NR can diverge instead of converging

NR - Example

Example 5.12 Find the minimum of the function

$$f(\lambda) = 0.65 - \frac{0.75}{1 + \lambda^2} - 0.65\lambda \tan^{-1} \frac{1}{\lambda}$$

using the Newton-Raphson method with the starting point $\lambda_1 = 0.1$. Use $\varepsilon = 0.01$ in Eq. (5.66) for checking the convergence.

SOLUTION The first and second derivatives of the function $f(\lambda)$ are given by

$$f'(\lambda) = \frac{1.5\lambda}{(1+\lambda^2)^2} + \frac{0.65\lambda}{1+\lambda^2} - 0.65 \tan^{-1} \frac{1}{\lambda}$$
$$f''(\lambda) = \frac{1.5(1-3\lambda^2)}{(1+\lambda^2)^3} + \frac{0.65(1-\lambda^2)}{(1+\lambda^2)^2} + \frac{0.65}{1+\lambda^2} = \frac{2.8-3.2\lambda^2}{(1+\lambda^2)^3}$$

Iteration I

$$\lambda_1 = 0.1$$
, $f(\lambda_1) = -0.188197$, $f'(\lambda_1) = -0.744832$, $f''(\lambda_1) = 2.68659$
$$\lambda_2 = \lambda_1 - \frac{f'(\lambda_1)}{f''(\lambda_1)} = 0.377241$$

Convergence check: $|f'(\lambda_2)| = |-0.138230| > \varepsilon$.

NR - Example

Iteration 2

$$f(\lambda_2) = -0.303279$$
, $f'(\lambda_2) = -0.138230$, $f''(\lambda_2) = 1.57296$
 $\lambda_3 = \lambda_2 - \frac{f'(\lambda_2)}{f''(\lambda_2)} = 0.465119$

Convergence check: $|f'(\lambda_3)| = |-0.0179078| > \varepsilon$.

Iteration 3

$$f(\lambda_3) = -0.309881$$
, $f'(\lambda_3) = -0.0179078$, $f''(\lambda_3) = 1.17126$
 $\lambda_4 = \lambda_3 - \frac{f'(\lambda_3)}{f''(\lambda_3)} = 0.480409$

Convergence check: $|f'(\lambda_4)| = |-0.0005033| < \varepsilon$.

Since the process has converged, the optimum solution is taken as $\lambda^* \approx \lambda_4 = 0.480409$.

Quasi Newton

 In case the function f(λ) is not available in closed form or computation of derivative is not possible analytically, we use the finite difference form of computing derivative (e.g. central difference – others could have been used)

$$f'(\lambda_i) = \frac{f(\lambda_i + \Delta \lambda) - f(\lambda_i - \Delta \lambda)}{2\Delta \lambda}$$
$$f''(\lambda_i) = \frac{f(\lambda_i + \Delta \lambda) - 2f(\lambda_i) + f(\lambda_i - \Delta \lambda)}{\Delta \lambda^2}$$

Algorithm and convergence criteria becomes

$$\lambda_{i+1} = \lambda_i - \frac{\Delta \lambda [f(\lambda_i + \Delta \lambda) - f(\lambda_i - \Delta \lambda)]}{2[f(\lambda_i + \Delta \lambda) - 2f(\lambda_i) + f(\lambda_i - \Delta \lambda)]}$$
$$|f'(\lambda_{i+1})| = \left| \frac{f(\lambda_{i+1} + \Delta \lambda) - f(\lambda_{i+1} - \Delta \lambda)}{2\Delta \lambda} \right| \le \varepsilon$$

Function evaluation required at f(λ_i + Δ), f(λ_i - Δ) apart from f(λ_i)

QN - Example

Example 5.13 Find the minimum of the function

$$f(\lambda) = 0.65 - \frac{0.75}{1 + \lambda^2} - 0.65\lambda \tan^{-1} \frac{1}{\lambda}$$

using quasi-Newton method with the starting point $\lambda_1 = 0.1$ and the step size $\Delta \lambda = 0.01$ in central difference formulas. Use $\varepsilon = 0.01$ in Eq. (5.70) for checking the convergence.

SOLUTION

Iteration 1

$$\lambda_1 = 0.1, \quad \Delta \lambda = 0.01, \quad \varepsilon = 0.01, \quad f_1 = f(\lambda_1) = -0.188197,$$

$$f_1^+ = f(\lambda_1 + \Delta \lambda) = -0.195512, \quad f_1^- = f(\lambda_1 - \Delta \lambda) = -0.180615$$

$$\lambda_2 = \lambda_1 - \frac{\Delta \lambda (f_1^+ - f_1^-)}{2(f_1^+ - 2f_1 + f_1^-)} = 0.377882$$

Convergence check:

$$|f'(\lambda_2)| = \left| \frac{f_2^+ - f_2^-}{2\Delta\lambda} \right| = 0.137300 > \varepsilon$$

QN - Example

Iteration 2

$$f_2 = f(\lambda_2) = -0.303368, \quad f_2^+ = f(\lambda_2 + \Delta \lambda) = -0.304662,$$

$$f_2^- = f(\lambda_2 - \Delta \lambda) = -0.301916$$

$$\lambda_3 = \lambda_2 - \frac{\Delta \lambda (f_2^+ - f_2^-)}{2(f_2^+ - 2f_2 + f_2^-)} = 0.465390$$

Convergence check:

$$|f'(\lambda_3)| = \left| \frac{f_3^+ - f_3^-}{2\Delta\lambda} \right| = 0.017700 > \varepsilon$$

Iteration 3

$$f_3 = f(\lambda_3) = -0.309885,$$
 $f_3^+ = f(\lambda_3 + \Delta \lambda) = -0.310004,$
 $f_3^- = f(\lambda_3 - \Delta \lambda) = -0.309650$
 $\lambda_4 = \lambda_3 - \frac{\Delta \lambda (f_3^+ - f_3^-)}{2(f_3^+ - 2f_3 + f_3^-)} = 0.480600$

Convergence check:

$$|f'(\lambda_4)| = \left| \frac{f_4^+ - f_4^-}{2\Delta\lambda} \right| = 0.000350 < \varepsilon$$

Since the process has converged, we take the optimum solution as $\lambda^* \approx \lambda_4 = 0.480600$.

Secant

 Purpose is to bracket the root – so choose 2 points from 2 sides of the root – assume a straight line between them and find the point where the straight line touches the x-axis

$$\frac{y-f'(A)}{x-A} = \frac{f'(A)-f'(B)}{A-B}$$

$$x = A - \frac{f'(A)(A-B)}{(f'(A)-f'(B))}$$

Secant (contd.)

- 1. Set $\lambda_1 = A = 0$ and evaluate f'(A). The value of f'(A) will be negative. Assume an initial trial step length t_0 . Set i = 1.
- 2. Evaluate $f'(t_0)$.
- 3. If $f'(t_0) < 0$, set $A = \lambda_i = t_0$, $f'(A) = f'(t_0)$, new $t_0 = 2t_0$, and go to step 2.
- 4. If $f'(t_0) \ge 0$, set $B = t_0$, $f'(B) = f'(t_0)$, and go to step 5.
- 5. Find the new approximate solution of the problem as

$$\lambda_{i+1} = A - \frac{f'(A)(B-A)}{f'(B) - f'(A)}$$

6. Test for convergence:

$$|f'(\lambda_i + 1)| \le \varepsilon$$

where ε is a small quantity. If Eq. (5.75) is satisfied, take $\lambda^* \approx \lambda_{i+1}$ and stop the procedure. Otherwise, go to step 7.

- 7. If $f'(\lambda_{i+1}) \ge 0$, set new $B = \lambda_{i+1}$, $f'(B) = f'(\lambda_{i+1})$, i = i+1, and go to step 5.
- 8. If $f'(\lambda_{i+1}) < 0$, set new $A = \lambda_{i+1}$, $f'(A) = f'(\lambda_{i+1})$, i = i + 1, and go to step 5.

Secant - Example

Example 5.14 Find the minimum of the function

$$f(\lambda) = 0.65 - \frac{0.75}{1 + \lambda^2} - 0.65\lambda \tan^{-1} \frac{1}{\lambda}$$

using the secant method with an initial step size of $t_0 = 0.1$, $\lambda_1 = 0.0$, and $\varepsilon = 0.01$.

SOLUTION $\lambda_1 = A = 0.0$, $t_0 = 0.1$, f'(A) = -1.02102, $B = A + t_0 = 0.1$, f'(B) = -0.744832. Since f'(B) < 0, we set new A = 0.1, f'(A) = -0.744832, $t_0 = 2(0.1) = 0.2$, $B = \lambda_1 + t_0 = 0.2$, and compute f'(B) = -0.490343. Since f'(B) < 0, we set new A = 0.2, f'(A) = -0.490343, $t_0 = 2(0.2) = 0.4$, $B = \lambda_1 + t_0 = 0.4$, and compute f'(B) = -0.103652. Since f'(B) < 0, we set new A = 0.4, f'(A) = -0.103652, $t_0 = 2(0.4) = 0.8$, $t_0 = 0.8$, and compute t'(B) = +0.180800. Since t'(B) > 0, we proceed to find $t_0 = 0.8$, and compute t'(B) = +0.180800.

Iteration 1

Since $A = \lambda_1 = 0.4$, f'(A) = -0.103652, B = 0.8, f'(B) = +0.180800, we compute

$$\lambda_2 = A - \frac{f'(A)(B-A)}{f'(B) - f'(A)} = 0.545757$$

Convergence check: $|f'(\lambda_2)| = |+0.0105789| > \varepsilon$.

Secant - Example

Iteration 2

Since $f'(\lambda_2) = +0.0105789 > 0$, we set new A = 0.4, f'(A) = -0.103652, $B = \lambda_2 = 0.545757$, $f'(B) = f'(\lambda_2) = +0.0105789$, and compute

$$\lambda_3 = A - \frac{f'(A)(B-A)}{f'(B) - f'(A)} = 0.490632$$

Convergence check: $|f'(\lambda_3)| = |+0.00151235| < \varepsilon$.

Since the process has converged, the optimum solution is given by $\lambda^* \approx \lambda_3 = 0.490632$.

