Capstone 1: NBA Player Value Based Upon On-Court Performance

Exploratory and Machine Learning Techniques to Predict NBA Player Salary

Introduction

- NBA Players get contracts in varying amounts and timeframes
- How are those contract details determined?
 - Is it based upon their past and predicted stats?
- Win Share statistic a tell all?
 - This is a computed number based upon a players stats.
- Correlations between contracts and statistics
- Data obtained, wrangled, explored and used to construct linear regression models
 - Estimates of player salaries based upon on-court production

Data Wrangling

- Obtained data from Basketball-Reference.com
 - Reliable, up to date information on contracts and player stats.
- Merged together two dataframes
 - o One with contract data and one with statistics
- 22 Features
- Converted data types from object to correct format
 - o Float, integer, string

Features

Rk_x	object		
Player	object		
Pos	object		
Age	float64		
Tm_x	object		
G	float64		
MP	float64		
PER	float64		
TS%	float64		
3PAr	float64		
FTr	float64		
ORB%	float64		
DRB%	float64		
TRB%	float64		
AST%	float64		
STL%	float64		
BLK%	float64		
TOV%	float64		
USG%	float64		

OWS	float64
DWS	float64
WS	float64
WS/48	float64
ОВРМ	float64
DBPM	float64
ВРМ	float64
VORP	float64
Rk_y	object
Tm_y	object
year0	float64
year1	float64
year2	float64
year3	float64
year4	float64
year5	float64
Signed Using	object
Guaranteed	float64

Feature Correlations

- This shows correlations between our features.
- Red is a positive correlation
- Blue is a negative correlation
- The darker the color, the greater the correlation.

Win Share Distribution

- This shows the distribution of players based upon their Win Share statistic.
- We can see that this is skewed and many players are contributing close to 0 or to just a small portion of the teams success.

Salary for 2018-19 Distribution

- This is a distribution of players' salaries for 2018-19 season.
- This is also skewed and shows that many players are receiving salaries less than \$2.5 million per year.

Log Histogram of Salary Data

- This shows the salary data from the previous slide after taking the log of the salaries.
- You can see that this helped to normalize the data slightly to show relative change vs. absolute change in the amounts.

Salary and Win Share

- This shows the correlation between salary and Win Share.
- We can see, visually, that there is a correlation between these two features.

Paired Plot of Most Relevant Features

- After looking closely at our feature correlation plot, these were the features that had the greatest correlation to 2018-19 salary.
- This plot gives us more insight into the correlation of these features with salary as well as with one another.

Statistical Inference

- Salary correlation to multiple features, including Win Share, is significant.
- Win Share is correlated to Salary, and a Pearson's Correlation of: 0.53543
- 8 features are statistically significant with p-values less than .05
 - o Age,
 - Games Played (G),
 - Minutes Played (MP),
 - Usage Rate (USGr),
 - Offensive Box +/- (OBPM),
 - Defensive Box +/- (DBPM),
 - Box +/- (BPM), and
 - Value Over Replacement Player (VORP)

Analysis

- The difference in models using all features (22) vs. our best model (8) is below:
- This reduction in features helps make the model more accurate. The R2 remained relatively similar while we increased the F stat and slightly decreased the AIC.
- This means that we are accounting for roughly the same amount of variance in salary as
 all the features did with just a fraction of the features while simultaneously increasing the
 confidence that these variables are related to the target.

OLS Regression	n Results	
year0	R-squared:	0.480
OLS	Adj. R-squared:	0.465
Least Squares	F-statistic:	32.92
Tue, 09 Jul 2019	Prob (F-statistic):	6.32e-96
10:23:27	Log-Likelihood:	-13675.
809	AIC:	2.740e+04
786	BIC:	2.750e+04
22		
	year0 OLS Least Squares Tue, 09 Jul 2019 10:23:27 809 786	OLS Adj. R-squared: Least Squares F-statistic: Tue, 09 Jul 2019 Prob (F-statistic): 10:23:27 Log-Likelihood: 809 AIC: 786 BIC:

OLS Regression Results			
Dep. Variable:	year0	R-squared:	0.465
Model:	OLS	Adj. R-squared:	0.459
Method:	Least Squares	F-statistic:	86.85
Date:	Tue, 09 Jul 2019	Prob (F-statistic):	2.74e-103
Time:	10:23:27	Log-Likelihood:	-13686.
No. Observations:	809	AIC:	2.739e+04
Df Residuals:	800	BIC:	2.743e+04
Df Model:	8		

Analysis (cont.)

- It is clear that our current model for prediction isn't very accurate in predicting exact player salaries using player statistics.
- What if we created buckets of specified ranges to estimate instead of absolute values?
- Bucket Ranges (USD):
- 1: <= 500,000
- 2: 500,001 1,000,000
- 3: 1,000,001 1,500,000
- 4: 1,500,001 2,000,000
- 5: 2,000,001 3,000,000
- 6: 3,000,001 4,000,000
- 7: 4,000,001 5,000,000
- 8: 5,000,001 7,000,000
- 9 7,000,001 10,000,000
- 10: 10,000,001 15,000,000
- 11: > 15,000,001

Results From Bucket Attempt

 We can see that this model was less accurate than the model built for exact values given that our R² value is lower than before and our F-stat is as well.

 What if we use a more evenly distributed bucketing system instead of pre-defined ranges?

OLS Regression Results			
Dep. Variable:	bucket	R-squared:	0.414
Model:	OLS Adj. R-squared		0.408
Method:	Least Squares F-statistic:		70.52
Date:	Tue, 09 Jul 2019	Prob (F-statistic):	1.51e-87
Time:	10:23:28	Log-Likelihood:	-1916.8
No. Observations:	809	AIC:	3852.
Df Residuals:	800	BIC:	3894.
Df Model:	8		
		BIC:	3894.

Quantile Cut Results

	OLS Regression	Results		
Dep. Variable:	bucket_even	R-squared:	0.405	
Model:	OLS	Adj. R-squared:	0.399	
Method:	Least Squares	F-statistic:	68.09	
Date:	Tue, 09 Jul 2019	Prob (F-statistic):	4.43e-85	
Time:	10:39:30	Log-Likelihood:	-1791.8	
No. Observations:	809	AIC: 360		Freditency
Df Residuals:	800	BIC: 364		T.
Df Model:	8			

• A more even distribution of the data, but a less accurate model than the previous binning attempt.

Linear Models

Model Name and Target	Number of Features	R ² Value	F-Stat Value
m, Salary	1 (Win Shares)	.287	301.0
m_all, Salary	22	.480	32.92
m_sel, Salary	10	.468	70.13
m_1, Salary	8	.465	86.85
m_new, bucket (first)	22	.432	27.20
m_new1, bucket (first)	8	.414	70.52
m1, bucket (second)	22	.422	26.07
m2, bucket (second)	8	.405	68.09

- This is a breakdown of the different models that were created and their primary details.
- We can see that the model that was used for absolute prediction was more accurate than any of our binning models.
- Even our best model accounted for just ~46.5% of the variance in Salary.

Conclusion

- Our best model resulted in an R² value of .465.
 - This is relatively poor, but provided additional insight.
- Given that the use of player statistics for predicting a player's salary results in such a low accuracy, it is clear that a player's value comes from much more than just on-court production.
- Organizations take into consideration the value a player brings to them on the court as well as off the court. Meaning, a player that is more recognized or popular may be given a greater salary because of the added benefit to the organization through the potential of increased ticket sales, merchandise, apparel and value to the organization's name itself.