Министерство цифрового развития

Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный университет телекоммуникаций и информатики» (СибГУТИ)

Кафедра прикладной математики и кибернетики

Отчёт

по лабораторной работе № 1 «Первичный анализ и предобработка данных»

Выполнил:

студент группы ИП-216

Русецкий А.С. ФИО студента

Работу проверил: Преподаватель

должность преподавателя Сороковых Д.А. ФИО преподавателя

Введение

Краткое описание выбранного набора данных:

Название: House-price

Объём данных: 187,531 запись

Количество признаков: 21

Постановка задачи:

Выберите набор данных с различными типами признаков и наличием пропусков. Проведите все этапы разведочного анализа (EDA).

Основная часть

1. Загрузка и первичный осмотр

Скачиваем набор данных в формате .csv

```
[15]: import kagglehub

# Download Latest version
path = kagglehub.dataset_download("juhibhojani/house-price")
print("Path to dataset files:", path)
```

Загружаем данные в DataFrame и выводим первые 5 строк

```
import pandas as pd
file_path = 'C:/Users/porog/.cache/kagglehub/datasets/juhibhojani/house-price/versions/1/house_prices.csv'
df = pd.read_csv(file_path)
df.head()
```

	ndex	Title	Description	Amount(in rupees)	Price (in rupees)	location	Carpet Area	Status	Floor	Transaction	 facing	overlooking	Society	Bathroom	Balcony	Car Parking	
0	0	1 BHK Ready to Occupy Flat for sale in Srushti	Bhiwandi, Thane has an attractive 1 BHK Flat f	42 Lac	6000.0	thane	500 sqft	Ready to Move	10 out of 11	Resale	 NaN	NaN	Srushti Siddhi Mangal Murti Complex	1	2	NaN	
1	1	2 BHK Ready to Occupy Flat for sale in Dosti V	One can find this stunning 2 BHK flat for sale	98 Lac	13799.0	thane	473 sqft	Ready to Move	3 out of 22	Resale	 East	Garden/Park	Dosti Vihar	2	NaN	1 Open	
2	2	2 BHK Ready to Occupy Flat for sale in Sunrise	Up for immediate sale is a 2 BHK apartment in	1.40 Cr	17500.0	thane	779 sqft	Ready to Move	10 out of 29	Resale	 East	Garden/Park	Sunrise by Kalpataru	2	NaN	1 Covered	
3	3	1 BHK Ready to Occupy Flat for sale Kasheli	This beautiful 1 BHK Flat is available for sal	25 Lac	NaN	thane	530 sqft	Ready to Move	1 out of 3	Resale	 NaN	NaN	NaN	1	1	NaN	
4	4	2 BHK Ready to Occupy Flat for sale in TenX Ha	This lovely 2 BHK Flat in Pokhran Road, Thane	1.60 Cr	18824.0	thane	635 sqft	Ready to Move	20 out of 42	Resale	 West	Garden/Park, Main Road	TenX Habitat Raymond Realty	2	NaN	1 Covered	

Используем методы .info(), .describe(), .shape

```
import pandas as pd
file_path = 'C:/Users/porog/.cache/kagglehub/datasets/juhibhojani/house-price/versions/1/house_prices.csv'
df = pd.read_csv(file_path)
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 187531 entries, 0 to 187530
Data columns (total 21 columns):
                                 Non-Null Count Dtype
# Column
                                             -----
---
0 Index 187531 non-null inte4
1 Title 187531 non-null object
2 Description 184508 non-null object
       Amount(in rupees) 187531 non-null object
4 Price (in rupees) 169866 non-null float64
5 location 187531 non-null object
6 Carpet Area 106858 non-null object
7 Status 186916 non-null object
8 Floor 180454 non-null object
9 Transaction 187448 non-null object
10 Furnishing 184634 non-null object
11 facing 117298 non-null object
12 overlooking 106095 non-null object
13 Society 77853 non-null object
14 Bathroom 186703 non-null object
15 Balcony 138596 non-null object
16 Car Parking 84174 non-null object
17 Ownership 122014 non-null object
18 Super Area 79846 non-null object
19 Dimensions 0 non-null float64
20 Plot Area 0 non-null float64
dtypes: float64(3), int64(1), object(17)
  4 Price (in rupees) 169866 non-null float64
dtypes: float64(3), int64(1), object(17)
memory usage: 30.0+ MB
```

```
import pandas as pd

file_path = 'C:/Users/porog/.cache/kagglehub/datasets/juhibhojani/house-price/versions/1/house_prices.csv'

df = pd.read_csv(file_path)

df.describe()
```

	Index	Price (in rupees)	Dimensions	Plot Area
count	187531.000000	1.698660e+05	0.0	0.0
mean	93765.000000	7.583772e+03	NaN	NaN
std	54135.681003	2.724171e+04	NaN	NaN
min	0.000000	0.000000e+00	NaN	NaN
25%	46882.500000	4.297000e+03	NaN	NaN
50%	93765.000000	6.034000e+03	NaN	NaN
75%	140647.500000	9.450000e+03	NaN	NaN
max	187530.000000	6.700000e+06	NaN	NaN

```
import pandas as pd

file_path = 'C:/Users/porog/.cache/kagglehub/datasets/juhibhojani/house-price/versions/1/house_prices.csv'
df = pd.read_csv(file_path)
df.shape

(187531, 21)
```

Количество записей: 187531 Количество признаков: 21

Типы признаков:

- Числовые (4 признака)
 - o Index
 - o Price
 - Dimensions
 - o Plot Area
- Категориальные (17 признаков) все имеют тип object

Пропущенные значения:

- Dimensions и Plot Area 100%
- Super Area 57%
- Society 58%
- Car parking 55%
- Overlooking 43%
- Facing 37%
- Balcony 26%
- 2. Анализ пропусков

```
plt.figure(figsize=(12,6))
sns.heatmap(df.isnull(), cbar=False, yticklabels=False)
plt.title("Матрица пропусков")
plt.show()
display(miss_df.head(20))
```


	missing_count	missing_percent
Plot Area	187531	100.000000
Dimensions	187531	100.000000
Society	109678	58.485264
Super Area	107685	57.422506
Car Parking	103357	55.114621
overlooking	81436	43.425354
Carpet Area	80673	43.018488
facing	70233	37.451408
Ownership	65517	34.936624
Balcony	48935	26.094352
Price (in rupees)	17665	9.419776
Floor	7077	3.773776
Description	3023	1.612000
Furnishing	2897	1.544811
Bathroom	828	0.441527
Status	615	0.327946
Transaction	83	0.044259
Amount(in rupees)	0	0.000000
Title	0	0.000000
Index	0	0.000000

Столбцы с наибольшим процентом пропусков: Dimensions и Plot Area (100%), Super Area (57.4%), Society (58.5%), Car Parking (55.1%)

Стратегия обработки:

- Удалить полностью пустые столбцы
- Для столбцов с >50% пропусков использовать удаление или заполнение значением «Не указано»
- Для числовых признаков с пропусками заполнить медианной
- Для категориальных признаков заполнить модой

3. Анализ числовых признаков

```
fig, axes = plt.subplots(2, 2, figsize=(15, 10))
axes = axes.flatten()
for i, col in enumerate(numeric_cols):
   if i < 4:
       axes[i].hist(df[col].dropna(), bins=50, alpha=0.7, color='skyblue', edgecolor='black')
       axes[i].set title(f'Распределение {col}', fontsize=12)
       axes[i].set_xlabel(col)
        axes[i].set_ylabel('Частота')
plt.tight_layout()
plt.show()
fig, axes = plt.subplots(1, len(numeric_cols), figsize=(15, 5))
for i, col in enumerate(numeric cols):
   axes[i].boxplot(df[col].dropna())
   axes[i].set_title(f'Boxplot {col}')
   axes[i].set_ylabel('Значения')
plt.tight_layout()
plt.show()
stats_df = pd.DataFrame(stats, columns=['feature','mean','median','std','skew'])
stats_df
```


Распределение цены показывает значительные выбросы (6.7e6 при медиане 6034). Столбец Index равномерно распределён.

4. Анализ категориальных признаков

```
reasonable_cats = [col for col in categorical_cols if df[col].nunique() <= 20]</pre>
                                                                                        □ ↑ ↓ 古 〒 🗎
fig, axes = plt.subplots(4, 2, figsize=(15, 20))
axes = axes.flatten()
for i, col in enumerate(reasonable_cats[:8]): # Первые 8 признаков
   value_counts = df[col].value_counts().head(10) # Ton-10 καπε2ορυŭ
   axes[i].bar(value_counts.index.astype(str), value_counts.values)
   axes[i].set_title(f'Распределение {col}', fontsize=12)
   axes[i].tick_params(axis='x', rotation=45)
   axes[i].set_ylabel('Количество')
plt.tight_layout()
plt.show()
print("\nКоличество уникальных категорий:")
print("-" * 35)
for col in categorical_cols:
   unique_count = df[col].nunique()
   print(f"{col}: {unique_count} уникальных значений")
```


Количество уникальных категорий:

-----Title: 32446 уникальных значений

Description: 65634 уникальных значений Amount(in rupees): 1561 уникальных значений

location: 81 уникальных значений Carpet Area: 2758 уникальных значений

Status: 1 уникальных значений Floor: 947 уникальных значений Transaction: 4 уникальных значений Furnishing: 3 уникальных значений facing: 8 уникальных значений overlooking: 19 уникальных значений Society: 10376 уникальных значений Bathroom: 11 уникальных значений Balcony: 11 уникальных значений Car Parking: 229 уникальных значений Ownership: 4 уникальных значений Super Area: 2976 уникальных значений

Признаки с высокой кардинальностью:

- Title (высокая уникальность)
- Description
- Location

5. Анализ взаимосвязей

```
# 5.1 Матрица корреляций
correlation_matrix = df[numeric_cols].corr()
plt.figure(figsize=(8, 6))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', center=0)
plt.title('Матрица корреляций числовых признаков', fontsize=16)
plt.show()
# 5.2 Диаграммы рассеяния для Price
plt.figure(figsize=(10, 6))
plt.scatter(df['Index'], df['Price (in rupees)'], alpha=0.5)
plt.title('Зависимость цены от индекса')
plt.xlabel('Index')
plt.ylabel('Price (in rupees)')
plt.show()
# 5.3 Boxplot категориальных и числовых признаков с небольшим кол-ом категорий
cat_for_analysis = [col for col in reasonable_cats if df[col].nunique() <= 5][:3]</pre>
fig, axes = plt.subplots(1, len(cat_for_analysis), figsize=(18, 6))
for i, col in enumerate(cat_for_analysis):
    sns.boxplot(x=df[col], y=df['Price (in rupees)'], ax=axes[i])
    axes[i].set_title(f'Цена по {col}')
    axes[i].tick_params(axis='x', rotation=45)
plt.tight_layout()
plt.show()
```


Корреляция между числовыми признаками слабая из-за малого количества. Зависимость цены от индекса не прослеживается. Boxplot показывают различия в распределении цен по категориям.

6. Базовая предобработка

```
# 6.1 Приведение названий столбцов к нижнему регистру
print("ИСХОДНЫЕ НАЗВАНИЯ СТОЛБЦОВ:")
print(df.columns.tolist())
print()
df.columns = df.columns.str.lower().str.replace(' ', '_').str.replace('(', '').str.replace(')', '')
print("НОВЫЕ НАЗВАНИЯ СТОЛБЦОВ (после очистки):")
print(df.columns.tolist())
print("\n" + "="*80)
# 6.2 Обработка пропусков
print("АНАЛИЗ ПРОПУСКОВ ДО ОБРАБОТКИ:")
missing_before = df.isnull().sum()
print(missing_before[missing_before > 0])
print()
# Удаляем полностью пустые столбцы, а также проверяем актуальные названия
empty_columns = []
for col in df.columns:
    if df[col].isnull().sum() == len(df):
        empty_columns.append(col)
        print(f"Обнаружен полностью пустой столбец: {col}")
if empty_columns:
    print(f"УДАЛЯЕМ ПОЛНОСТЬЮ ПУСТЫЕ СТОЛБЦЫ: {empty_columns}")
    df = df.drop(empty_columns, axis=1)
    print(f"Размерность после удаления пустых столбцов: {df.shape}")
    print("Полностью пустых столбцов не обнаружено")
print()
```

```
ИСХОДНЫЕ НАЗВАНИЯ СТОЛБЦОВ:
['Index', 'Title', 'Description', 'Amount(in rupees)', 'Price (in rupees)', 'location', 'Carpet Area', 'Status',
'Floor', 'Transaction', 'Furnishing', 'facing', 'overlooking', 'Society', 'Bathroom', 'Balcony', 'Car Parking',
'Ownership', 'Super Area', 'Dimensions', 'Plot Area']
НОВЫЕ НАЗВАНИЯ СТОЛБЦОВ (после очистки):
['index', 'title', 'description', 'amountin_rupees', 'price_in_rupees', 'location', 'carpet_area', 'status', 'fl oor', 'transaction', 'furnishing', 'facing', 'overlooking', 'society', 'bathroom', 'balcony', 'car_parking', 'ow
nership', 'super_area', 'dimensions', 'plot_area']
_____
АНАЛИЗ ПРОПУСКОВ ДО ОБРАБОТКИ:
                    3023
description
price_in_rupees
                    17665
                   80673
carpet_area
status
                     615
floor
                     7077
                  2897
transaction
furnishing
facing
                   70233
facing overlooking 81450 109678
                    828
bathroom
balcony
                   48935
                103357
car_parking
ownership
                   65517
                  107685
super area
dimensions
                  187531
plot area
                   187531
dtype: int64
Обнаружен полностью пустой столбец: dimensions
Обнаружен полностью пустой столбец: plot_area
УДАЛЯЕМ ПОЛНОСТЬЮ ПУСТЫЕ СТОЛБЦЫ: ['dimensions', 'plot_area']
Размерность после удаления пустых столбцов: (187531, 19)
# Заполняем числовые пропуски медианой
numeric_cols_updated = df.select_dtypes(include=[np.number]).columns.tolist()
print("ЧИСЛОВЫЕ ПРИЗНАКИ ДЛЯ ЗАПОЛНЕНИЯ МЕДИАНОЙ:")
for col in numeric_cols_updated:
   missing_count = df[col].isnull().sum()
    if missing_count > 0:
       median_val = df[col].median()
       print(f" {col}: {missing_count} пропусков → заполняем медианой ({median_val:.2f})")
       df[col] = df[col].fillna(median val)
    else:
       print(f" {col}: пропусков нет")
print()
# Заполняем категориальные пропуски модой
categorical_cols_updated = df.select_dtypes(include=['object']).columns.tolist()
print("КАТЕГОРИАЛЬНЫЕ ПРИЗНАКИ ДЛЯ ЗАПОЛНЕНИЯ МОДОЙ:")
for col in categorical_cols_updated:
   missing_count = df[col].isnull().sum()
    if missing_count > 0:
       mode_val = df[col].mode()[0] if not df[col].mode().empty else 'Unknown'
       print(f" {col}: {missing_count} пропусков → заполняем модой ('{mode_val}')")
       df[col] = df[col].fillna(mode_val)
       print(f" {col}: пропусков нет")
print()
print("ПРОВЕРКА ПОСЛЕ ЗАПОЛНЕНИЯ ПРОПУСКОВ:")
missing after = df.isnull().sum()
remaining_missing = missing_after[missing_after > 0]
```

if len(remaining_missing) > 0:
 print("Осталось пропусков:")
 print(remaining missing)

print("\n" + "="*80)

print("Все пропуски успешно заполнены!")

else:

```
ЧИСЛОВЫЕ ПРИЗНАКИ ДЛЯ ЗАПОЛНЕНИЯ МЕДИАНОЙ:
 index: пропусков нет
 price in rupees: 17665 пропусков → заполняем медианой (6034.00)
КАТЕГОРИАЛЬНЫЕ ПРИЗНАКИ ДЛЯ ЗАПОЛНЕНИЯ МОДОЙ:
 title: пропусков нет
 description: 3023 пропусков \rightarrow заполняем модой ('Multistorey apartment is available for sale. It is a good loca
tion property. Please contact for more details.')
 amountin rupees: пропусков нет
 location: пропусков нет
 carpet_area: 80673 пропусков → заполняем модой ('1000 sqft')
 status: 615 пропусков → заполняем модой ('Ready to Move')
 floor: 7077 пропусков → заполняем модой ('2 out of 4')
 transaction: 83 пропусков → заполняем модой ('Resale')
 furnishing: 2897 пропусков → заполняем модой ('Semi-Furnished')
 facing: 70233 пропусков → заполняем модой ('East')
 overlooking: 81436 пропусков → заполняем модой ('Main Road')
 society: 109678 пропусков → заполняем модой ('Hamdam Apartment')
 bathroom: 828 пропусков → заполняем модой ('2')
 balcony: 48935 пропусков → заполняем модой ('2')
 car_parking: 103357 пропусков → заполняем модой ('1 Covered')
 ownership: 65517 пропусков → заполняем модой ('Freehold')
 super_area: 107685 пропусков → заполняем модой ('1100 sqft')
ПРОВЕРКА ПОСЛЕ ЗАПОЛНЕНИЯ ПРОПУСКОВ:
Все пропуски успешно заполнены!
ПОИСК ПОЛНОСТЬЮ ПУСТЫХ СТОЛБЦОВ:
index: 0/187531 пропусков (0.0%)
title: 0/187531 пропусков (0.0%)
description: 0/187531 пропусков (0.0%)
amountin_rupees: 0/187531 пропусков (0.0%)
price_in_rupees: 0/187531 пропусков (0.0%)
location: 0/187531 пропусков (0.0%)
carpet_area: 0/187531 пропусков (0.0%)
status: 0/187531 пропусков (0.0%)
floor: 0/187531 пропусков (0.0%)
transaction: 0/187531 пропусков (0.0%)
furnishing: 0/187531 пропусков (0.0%)
facing: 0/187531 пропусков (0.0%)
overlooking: 0/187531 пропусков (0.0%)
society: 0/187531 пропусков (0.0%)
bathroom: 0/187531 пропусков (0.0%)
balcony: 0/187531 пропусков (0.0%)
car_parking: 0/187531 пропусков (0.0%)
ownership: 0/187531 пропусков (0.0%)
super_area: 0/187531 пропусков (0.0%)
```

7. Обработка выбросов

```
# 7.1 Выбираем признак с выбросами - price_in_rupees
price_data = df['price_in_rupees'].dropna()

# Boxplot до обработки
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
plt.boxplot(price_data)
plt.title('Boxplot цены до обработки')

# 7.2 Логарифмическое преобразование
price_log = np.log1p(price_data)

# Boxplot после обработки
plt.subplot(1, 2, 2)
plt.boxplot(price_log)
plt.title('Вохрlot цены после логарифмирования')
plt.tight_layout()
plt.show()
```



```
# 7.3 IQR обрезка
Q1 = price data.quantile(0.25)
Q3 = price_data.quantile(0.75)
IQR = Q3 - Q1
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
price_trimmed = price_data[(price_data >= lower_bound) & (price_data <= upper_bound)]</pre>
print(f"До обработки: {len(price_data)} записей")
print(f"После IQR обрезки: {len(price_trimmed)} записей")
print(f"Удалено выбросов: {len(price_data) - len(price_trimmed)}")
# Сравнение распределений
fig, axes = plt.subplots(1, 3, figsize=(18, 5))
axes[0].hist(price_data, bins=50, alpha=0.7, color='blue')
axes[0].set_title('Исходное распределение')
axes[0].set_xlabel('Цена')
axes[1].hist(price_log, bins=50, alpha=0.7, color='green')
axes[1].set_title('После логарифмирования')
axes[1].set_xlabel('log(Цена)')
axes[2].hist(price_trimmed, bins=50, alpha=0.7, color='red')
axes[2].set_title('После IQR обрезки')
axes[2].set_xlabel('Цена')
plt.tight_layout()
plt.show()
```

До обработки: 187531 записей После IQR обрезки: 177086 записей

Удалено выбросов: 10445

Заключение

1. Проблема с пропущенными значениями

В данном наборе данных оказалось 2 полностью пустых столбца dimensions и plot_area. Также был высокий уровень пропусков в ключевых признаках super_area, society и car_parking. В признаке price_in_rupees были умеренные пропуски.

2. Проблема выбросов

Сильные выбросы в ценах: максимальное значение 6,700,000 при медиане ~6000.

3. Проблема высокой кардинальности

Категориальные признаки с большим количеством уникальных значений: title, description, location.

В данной работе было использовано:

- Удаление полностью пустых столбцов исключение бесполезных признаков
- Заполнение числовых пропусков медианой устойчивость к выбросам
- Заполнение категориальных пропусков модой сохранение наиболее частых значений

Обработка выбросов осуществлялась с помощью логарифмического преобразования для нормализации распределения цен, а также IQR-обрезка.

Влияние на дальнейшее построение моделей:

- Улучшение качества данных при помощи устранения пропусков и обработки выбросов
- Повышение эффективности моделей
- Улучшение интерпретируемости

Ссылка на датасет:

https://www.kaggle.com/datasets/juhibhojani/house-price

Ссылка на google colab:

https://colab.research.google.com/drive/1zvd84-V5tAsKdy63g6FkoLrS6A2Ggz8L?usp=sharing