Introduction to Graph Cluster Analysis

Outline

- Introduction to Cluster Analysis
- Types of Graph Cluster Analysis
- Algorithms for Graph Clustering
 - □ k-Spanning Tree
 - ☐ Shared Nearest Neighbor
 - ☐ Betweenness Centrality Based
 - ☐ Highly Connected Components
 - ☐ Maximal Clique Enumeration
 - ☐ Kernel k-means
- Application

Outline

- Introduction to Clustering
- Introduction to Graph Clustering
- Algorithms for Graph Clustering
 - □ k-Spanning Tree
 - ☐ Shared Nearest Neighbor
 - ☐ Betweenness Centrality Based
 - ☐ Highly Connected Components
 - ☐ Maximal Clique Enumeration
 - ☐ Kernel k-means
- Application

What is Cluster Analysis?

The process of dividing a set of input data into possibly overlapping, subsets, where elements in each subset are considered related by some similarity measure

Applications of Cluster Analysis

• Summarization

 Provides a macro-level view of the data-set

From Tan, Steinbach, Kumar Introduction To Data Mining, Addison-Wesley, Edition 1

Outline

- Introduction to Clustering
- Introduction to Graph Clustering
- Algorithms for Graph Clustering
 - □ k-Spanning Tree
 - ☐ Shared Nearest Neighbor
 - ☐ Betweenness Centrality Based
 - ☐ Highly Connected Components
 - ☐ Maximal Clique Enumeration
 - ☐ Kernel k-means
- Application

What is Graph Clustering?

- Types
 - Between-graph
 - Clustering a set of graphs
 - Within-graph
 - Clustering the nodes/edges of a single graph

Between-graph Clustering

Between-graph clustering methods divide a set of graphs into different clusters

E.g., A set of graphs representing chemical compounds can be grouped into clusters based on their structural similarity

Within-graph Clustering

Within-graph clustering methods divides the nodes of a graph into clusters

E.g., In a social networking graph, these clusters could represent people with same/similar hobbies

Note: In this chapter we will look at different algorithms to perform within-graph clustering

Outline

- Introduction to Clustering
- Introduction to Graph Clustering
- Algorithms for Within Graph Clustering
 - □ k-Spanning Tree
 - ☐ Shared Nearest Neighbor
 - ☐ Betweenness Centrality Based
 - ☐ Highly Connected Components
 - ☐ Maximal Clique Enumeration
 - ☐ Kernel k-means
- Application

k-Spanning Tree

STEPS:

- Obtains the Minimum Spanning Tree (MST) of input graph G
- Removes k-1 edges from the MST
- Results in k clusters

What is a Spanning Tree?

A connected subgraph with no cycles that includes all vertices in the graph

Note: Weight can represent either distance or similarity between two vertices or similarity of the two vertices

What is a Minimum Spanning Tree (MST)?

The spanning tree of a graph with the minimum possible sum of edge weights, if the edge weights represent distance

Algorithm to Obtain MST Prim's Algorithm

k-Spanning Tree

Note: k – is the number of clusters

k-Spanning Tree R-code

- library(GraphClusterAnalysis)
- library(RBGL)
- library(igraph)
- library(graph)
- data(MST_Example)
- G = graph.data.frame(MST_Example,directed=FALSE)
- E(G)\$weight=E(G)\$V3
- MST_PRIM = minimum.spanning.tree(G,weights=G\$weight, algorithm = "prim")
- OutputList = k_clusterSpanningTree(MST_PRIM,3)
- Clusters = OutputList[[1]]
- outputGraph = OutputList[[2]]
- Clusters

Outline

- Introduction to Clustering
- Introduction to Graph Clustering
- Algorithms for Within Graph Clustering
 - □ k-Spanning Tree
 - ☐ Shared Nearest Neighbor Clustering
 - ☐ Betweenness Centrality Based
 - ☐ Highly Connected Components
 - ☐ Maximal Clique Enumeration
 - ☐ Kernel k-means
- Application

Shared Nearest Neighbor Clustering

Shared Nearest Neighbor Graph (SNN)

STEPS:

- Obtains the Shared Nearest Neighbor Graph (SNN) of input graph G
- Removes edges from the SNN with weight less than τ

What is Shared Nearest Neighbor? (Refresher from Proximity Chapter)

Shared Nearest Neighbor is a proximity measure and denotes the number of neighbor nodes common between any given pair of nodes

Shared Nearest Neighbor (SNN) Graph

Given input graph G, weight each edge (u,v) with the number of shared nearest neighbors between u and v

Node o and Node 1 have 2 neighbors in common: Node 2 and Node 3

Shared Nearest Neighbor Clustering Jarvis-Patrick Algorithm

SNN graph of input graph G

If u and v share more than τ neighbors
Place them in the same cluster

E.g.,
$$\tau = 3$$

SNN-Clustering R code

- library(GraphClusterAnalysis)
- library(RBGL)
- library(igraph)
- library(graph)
- data(SNN_Example)
- G = graph.data.frame(SNN_Example,directed=FALSE)
- tkplot(G)
- Output = SNN_Clustering(G,3)
- Output

Outline

- Introduction to Clustering
- Introduction to Graph Clustering
- Algorithms for Within Graph Clustering
 - □ k-Spanning Tree
 - ☐ Shared Nearest Neighbor Clustering
 - ☐ Betweenness Centrality Based
 - ☐ Highly Connected Components
 - ☐ Maximal Clique Enumeration
 - ☐ Kernel k-means
- Application

What is Betweenness Centrality? (Refresher from Proximity Chapter)

Betweenness centrality quantifies the degree to which a vertex (or edge) occurs on the shortest path between all the other pairs of nodes

Two types:

- Vertex Betweenness
- Edge Betweenness

Vertex Betweenness

The number of **shortest paths in the graph G** that pass through a given node **S**

National Laboratory

E.g., Sharon is likely a liaison between NCSU and DUKE and hence many connections between DUKE and NCSU pass DAK through Sharon

Edge Betweenness

The number of **shortest paths in the graph G** that pass through given edge (S, B)

E.g., Sharon and Bob both study at NCSU and they are the only link between NY DANCE and CISCO groups

Vertices and Edges with high Betweenness form good starting points to identify clusters

Vertex Betweenness Clustering

Given Input graph G

Repeat until highest vertex betweenness ≤ µ

- 1. Disconnect graph at selected vertex (e.g., vertex 3)
- 2. Copy vertex to both Components

Select vertex v with the highest betweenness E.g., Vertex 3 with value 0.67

Vertex Betweenness Clustering R code

- library(GraphClusterAnalysis)
- library(RBGL)
- library(igraph)
- library(graph)
- data(Betweenness_Vertex_Example)
- G = graph.data.frame(Betweenness_Vertex_Example,directed=FALSE)
- betweennessBasedClustering(G,mode="vertex",threshold=0.2)

Edge-Betweenness Clustering Girvan and Newman Algorithm

Given Input Graph G

Repeat until highest edge betweenness ≤ µ

Betweenness for each edge

Disconnect graph at selected edge (E.g., (3,4))

Select edge with Highest Betweenness E.g., edge (3,4) with value 0.571

Edge Betweenness Clustering R code

- library(GraphClusterAnalysis)
- library(RBGL)
- library(igraph)
- library(graph)
- data(Betweenness_Edge_Example)
- G = graph.data.frame(Betweenness_Edge_Example,directed=FALSE)
- betweennessBasedClustering(G,mode="edge",threshold=0.2)

Outline

- Introduction to Clustering
- Introduction to Graph Clustering
- Algorithms for Within Graph Clustering
 - □ k-Spanning Tree
 - ☐ Shared Nearest Neighbor Clustering
 - ☐ Betweenness Centrality Based
 - ☐ Highly Connected Components
 - ☐ Maximal Clique Enumeration
 - ☐ Kernel k-means
- Application

What is a Highly Connected Subgraph?

- Requires the following definitions
 - Cut
 - Minimum Edge Cut (MinCut)
 - Edge Connectivity (EC)

Cut

• The set of edges whose removal disconnects a graph

Minimum Cut

The minimum set of edges whose removal disconnects a graph

MinCut =
$$\{(3,5),(4,2)\}$$

Edge Connectivity (EC)

• Minimum **NUMBER** of edges that will disconnect a graph

Highly Connected Subgraph (HCS)

A graph G = (V,E) is highly connected if EC(G)>V/2

G is NOT a highly connected subgraph

HCS Clustering

HCS Clustering R code

- library(GraphClusterAnalysis)
- library(RBGL)
- library(igraph)
- library(graph)
- data(HCS_Example)
- G = graph.data.frame(HCS_Example,directed=FALSE)
- HCSClustering(G,kappa=2)

Outline

- Introduction to Clustering
- Introduction to Graph Clustering
- Algorithms for Within Graph Clustering
 - □ k-Spanning Tree
 - ☐ Shared Nearest Neighbor Clustering
 - ☐ Betweenness Centrality Based
 - ☐ Highly Connected Components
 - ☐ Maximal Clique Enumeration
 - ☐ Kernel k-means
- Application

What is a Clique?

A subgraph C of graph G with edges between all pairs of nodes

What is a Maximal Clique?

A maximal clique is a clique that is not part of a larger clique.

Maximal Clique Enumeration Bron and Kerbosch Algorithm

BK(C,P,N)

C - vertices in current clique

P – vertices that can be added to C

N – vertices that cannot be added to C

Condition:

If both P and N are empty – output C as maximal clique

Maximal Clique R code

- library(GraphClusterAnalysis)
- library(RBGL)
- library(igraph)
- library(graph)
- data(CliqueData)
- G = graph.data.frame(CliqueData,directed=FALSE)
- tkplot(G)
- maximalCliqueEnumerator (G)

Outline

- Introduction to Clustering
- Introduction to Graph Clustering
- Algorithms for Within Graph Clustering
 - □ k-Spanning Tree
 - ☐ Shared Nearest Neighbor Clustering
 - ☐ Betweenness Centrality Based
 - ☐ Highly Connected Components
 - ☐ Maximal Clique Enumeration
 - ☐ Kernel k-means
- Application

What is k-means?

- k-means is a clustering algorithm applied to vector data points
- k-means recap:
 - Select k data points from input as centroids
 - 1. Assign other data points to the nearest centroid
 - 2. Recompute centroid for each cluster
 - 3. Repeat Steps 1 and 2 until centroids don't change

k-means on Graphs Kernel K-means

- Basic algorithm is the same as k-means on Vector data
- We utilize the "kernel trick" (recall Kernel Chapter)
- "kernel trick" recap
 - We know that we can use within-graph kernel functions to calculate the inner product of a pair of vertices in a userdefined feature space.
 - We replace the standard distance/proximity measures used in k-means with this within-graph kernel function

Outline

- Introduction to Clustering
- Introduction to Graph Clustering
- Algorithms for Within Graph Clustering
 - □ k-Spanning Tree
 - ☐ Shared Nearest Neighbor Clustering
 - ☐ Betweenness Centrality Based
 - ☐ Highly Connected Components
 - ☐ Maximal Clique Enumeration
 - ☐ Kernel k-means
- Application

Application

- **Functional modules** in protein-protein interaction networks
- Subgraphs with pair-wise interacting nodes => Maximal cliques

R-code

- library(GraphClusterAnalysis)
- library(RBGL)
- library(igraph)
- library(graph)
- data(YeasPPI)
- G = graph.data.frame(YeasPPI,directed=FALSE)
- Potential_Protein_Complexes = maximalCliqueEnumerator (G)
- Potential_Protein_Complexes

