Compression, Matrix Range and Completely Positive Map

Yiu Tung Poon Iowa State University

Iowa-Nebraska Functional Analysis Seminar November 5, 2016

Definitions and notations

 $\mathcal{H},\ \mathcal{K}$: Hilbert space. If dim $\mathcal{H}=n<\infty,\ \mathcal{H}\cong\mathbb{C}^n$.

 $\mathcal{B}(\mathcal{H},\mathcal{K})$: bounded linear operators from \mathcal{H} to \mathcal{K} . If dim $\mathcal{H}=m$ and dim $\mathcal{K}=n$, $\mathcal{B}(\mathcal{H},\mathcal{K})\cong M_{n,\,m}$. $\mathcal{B}(\mathcal{H})=\mathcal{B}(\mathcal{H},\mathcal{H})$ and $M_n=M_{n,\,n}$.

 $A \in \mathcal{B}(\mathcal{H})$ is said to be self-adjoint if $A = A^*$. $\mathcal{B}(\mathcal{H})_{\mathrm{sa}}$ will denote the space of self-adjoint operators in $\mathcal{B}(\mathcal{H})$.

Every $A \in \mathcal{B}(\mathcal{H})$ has a self-adjoint decomposition $A = A_1 + iA_2$, $A_1, A_2 \in \mathcal{B}(\mathcal{H})_{sa}$.

If dim $\mathcal{H} = n$, $\mathcal{B}(\mathcal{H})_{sa} = H_n$, the set of $n \times n$ Hermitian matrices.

 $S \subseteq \mathbb{R}^n, \ \mathbb{C}^n$ is said to be **convex** if for all $\mathbf{x}, \ \mathbf{y} \in S$, the line segment $\{t\mathbf{x} + (1-t)\mathbf{y} : 0 \le t \le 1\} \subseteq S$.

Suppose $A \in \mathcal{B}(\mathcal{H})$ and \mathcal{K} is a norm closed subspace of \mathcal{H} . Let $P_{\mathcal{K}} \in \mathcal{B}(\mathcal{H},\mathcal{K})$ be the orthogonal projection of \mathcal{H} onto \mathcal{K} . Then $B = P_{\mathcal{K}}A|_{\mathcal{K}} \in \mathcal{B}(\mathcal{K})$ is called a **compression** of A to \mathcal{K} and A is a **dilation** of B to \mathcal{H} .

Let $A \in M_n$ and $1 \le m \le n$. Then $B \in M_m$ is a compression of A if and only if there exists $V \in M_{n,m}$ such that $V^*V = I_m$ and $B = V^*AV$.

For $A \in \mathcal{B}(\mathcal{H})$ and $m \geq 1$, let

$$W_m(A) = \{B \in M_m : B \text{ is a compression of } A\}$$

For m=1, $W_1(A)=\{\langle Ax,x\rangle:x\in\mathcal{H},\ \langle x,x\rangle=1\}$ is the **numerical** range of A, usually denoted by W(A).

By the Toeplitz- Hausdorff Theorem, W(A) is convex. For m>1, $W_m(A)$ is usually not convex.

Theorem 1 (Sz.-Nagy and Foias)

 $A \in \mathcal{B}(\mathcal{K})$ is a contraction $(\|A\| \le 1)$ if and only if A has a unitary dilation $U \in \mathcal{B}(\mathcal{H})$ such that

$$A^k = P_{\mathcal{K}} U^k \big|_{\mathcal{K}}$$
 for all $k \ge 1$.

Given $A \in \mathcal{B}(\mathcal{H})$, the **numerical radius** of A is given by

$$w(A) = \sup\{|z| : z \in W(A)\}.$$

w(A) is a norm on $\mathcal{B}(\mathcal{H})$ and satisfies $w(A) \leq ||A|| \leq 2w(A)$.

Theorem 2 (Sz.-Nagy and Foias)

 $A \in \mathcal{B}(\mathcal{K})$ satisfies $w(A) \leq 1$ if and only if there is a unitary $U \in \mathcal{B}(\mathcal{H})$ such that

$$A^k = \mathbf{2} P_{\mathcal{K}} U^k \big|_{\mathcal{K}}$$
 for all $k \ge 1$.

Theorem 3 (Ando, Arveson)

 $A \in \mathcal{B}(\mathcal{K})$ satisfies $w(A) \leq 1$ if and only if A is a compression of $\left(egin{array}{cc} 0 & 2I_{\mathcal{H}} \\ 0 & 0 \end{array} \right)$ for some $\mathcal{H}.$

Note:
$$W\left(\left(\begin{array}{cc} 0 & 2I_{\mathcal{H}} \\ 0 & 0 \end{array}\right)\right) = W\left(\left(\begin{array}{cc} 0 & 2 \\ 0 & 0 \end{array}\right)\right) = \{z \in \mathbb{C} : |z| \le 1\}$$

$$w(A) \le 1 \Leftrightarrow W(A) \subseteq W\left(\left(\begin{array}{cc} 0 & 2 \\ 0 & 0 \end{array}\right)\right)$$

Let $A = A_1 + iA_2$ be the self-adjoint decomposition of $A \in \mathcal{B}(\mathcal{K})$. Then

$$W(A) \cong W(A_1, A_2) = \{(\langle A_1 x, x \rangle, \langle A_2 x, x \rangle) : x \in \mathcal{K}, \langle x, x \rangle = 1\} \subset \mathbb{R}^2$$

Given $A_1, \dots, A_p \in \mathcal{B}(\mathcal{K})_{\mathrm{sa}}$, define the joint numerical range $W(A_1, \dots, A_p) = \{(\langle A_1 x, x \rangle, \ , \dots \ , \ \langle A_p x, x \rangle) : x \in \mathcal{K}, \ \langle x, x \rangle = 1\} \subset \mathbb{R}^p$

Completely positive map

 $A \in \mathcal{B}(\mathcal{H})$ is said to be positive $(A \ge 0)$ if $\langle Ax, x \rangle \ge 0$ for all $x \in \mathcal{H}$.

An operator system $\mathcal S$ of a C^* -algebra $\mathcal A$, is a norm-closed self-adjoint $(\mathcal S=\mathcal S^*)$ subspace $\mathcal S$ of $\mathcal A$ containing $1_{\mathcal A}$.

A linear map $\Phi: \mathcal{S} \to \mathcal{B}$ is positive on S if $A \geq 0 \Rightarrow \Phi(A) \geq 0$

$$\Phi_k: M_k(\mathcal{S}) \to M_k(\mathcal{B}), \ \Phi_k((A_{ij})) = (\Phi(A_{ij}))$$

 Φ is *k*-positive if Φ_k is positive.

 Φ is completely positive if Φ is k-positive for all $k \geq 1$.

Theorem 4 (Arveson's Extension Theorem)

Let \mathcal{A} be a unital C^* -algebra and S be an operator system of \mathcal{A} . Then every completely positive map from S to a C^* -algebra \mathcal{B} can be extended to a completely positive map from \mathcal{A} to \mathcal{B} .

Numerical range and positivity

Suppose
$$W(A_1, A_2) \subseteq W(B_1, B_2)$$
.

If
$$c_0I + c_1B_1 + c_2B_2 \ge 0$$
, then we have

$$\langle (c_0 I + c_1 B_1 + c_2 B_2) x, x \rangle \ge 0$$
 for all $x \in \mathcal{H}$ with $\langle x, x \rangle = 1$

$$\Rightarrow$$
 $c_0 + (c_1, c_2) \cdot (b_1, b_2) \ge 0$ for all $(b_1, b_2) \in W(B_1, B_2)$

$$\Rightarrow$$
 $c_0 + (c_1, c_2) \cdot (a_1, a_2) \ge 0$ for all $(a_1, a_2) \in W(A_1, A_2)$

$$\Rightarrow \quad \langle \left(c_0 \mathit{I} + c_1 A_1 + c_2 A_2 \right) x, x \rangle \geq 0 \text{ for all } x \in \mathcal{K} \text{ with } \langle x, x \rangle = 1$$

Therefore, the map

$$\Phi(c_0I + c_1B_1 + c_2B_2) = (c_0I + c_1A_1 + c_2A_2) \tag{1}$$

is positive.

Remark: If $A = A_1 + iA_2$ and $B = B_1 + iB_2$. Then (1) is equivalent to

$$\Phi(c_0I + c_1B + c_2B^*) = (c_0I + c_1A + c_2A^*).$$

Dilation and extension of completely positive map

Theorem 5 (Stinespring's dilation theorem)

Let $\mathcal A$ be a unital C^* -algebra, and let $\Phi:\mathcal A\to\mathcal B(\mathcal H)$ be a linear map. Then Φ is completely positive if and only if there exist a Hilbert space $\mathcal K$, a unital C^* -homomorphism $\pi:\mathcal A\to\mathcal B(\mathcal K)$, and a bounded operator $V\in\mathcal B(\mathcal H,\mathcal K)$ such that

$$\Phi(T) = V^*\pi(T)V$$
 for all $T \in \mathcal{A}$.

Note: Φ is unital if and only if $V^*V = I_{\mathcal{H}}$.

Therefore, A is a compression of $B \otimes I_{\mathcal{H}}$ for some \mathcal{H} if and only if $A = \Phi(B)$ for some unital completely positive map Φ .

Reformulation of Theorem 3

Let
$$B = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} = B_1 + iB_2$$
, $B_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $B_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$.

Theorem 3a

Suppose A_1 , $A_2 \in \mathcal{B}(\mathcal{H})_{\mathrm{sa}}$. Then $W(A_1, A_2) \subseteq W(B_1, B_2)$ if and only if the map

$$\Phi(c_0I_2+c_1B_1+c_2B_2)=c_0I_{\mathcal{H}}+c_1A_1+c_2A_2$$

is completely positive.

Theorem 3b

Suppose $A \in \mathcal{B}(\mathcal{H})$. Then the map

$$\Phi(c_0I_2 + c_1B + c_2B^*) = c_0I_{\mathcal{H}} + c_1A + c_2A^*$$

is positive on span(I_2, B, B^*) if and only if it is completely positive.

Another Proof of Theorem 3b

Theorem 6 (Choi)

Let S_2 be the space of 2×2 complex symmetric matrices. Then every positive map $\Phi: S_2 \to \mathcal{B}(\mathcal{H})$ is completely positive.

Choi proves the above theorem for finite dimensional \mathcal{H} . The infinite dimensional case can be proven from the finite dimensional case.

Theorem 3c

Let $B \in M_2$ and $A \in \mathcal{B}(\mathcal{H})$. Then the map

$$\Phi(c_0I_2 + c_1B + c_2B^*) = c_0I_{\mathcal{K}} + c_1A + c_2A^*$$

is positive on span(I_2, B, B^*) if and only if it is completely positive.

Proof. Every $B \in M_2$ is unitarily similar to a symmetric matrix S. Let $S = \operatorname{span}(I_2, S, S^*)$. If $S = S_2$, the result follows from Theorem 6. If $S \neq S_2$, then $S \cong \mathbb{C}$ or \mathbb{C}^2 and the result follows.

Extension

Recall
$$\begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} = B_1 + iB_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + i \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$
.

Let $B_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. B_1 , B_2 , B_3 are known as the **Pauley matrices**.

Conjecture 1 (Extension of Theorem 3a)

Suppose $A_1,A_2,A_3\in\mathcal{B}(\mathcal{H})_{\mathrm{sa}}$. Then $W(A_1,A_2,A_3)\subseteq W(B_1,B_2,B_3)$ if and only if the map

$$\Phi(c_0I_2 + c_1B_1 + c_2B_2 + c_3B_3) = c_0I_{\mathcal{H}} + c_1A_1 + c_2A_2 + c_3A_3$$

is completely positive.

- **1)** The conjecture fails for dim $\mathcal{H} = 2$. Just take $A_i = B_i^t$.
- 2) If dim $\mathcal{H} \neq 2$, $W(A_1, A_2, A_3)$ is convex but

$$W(B_1, B_2, B_3) = \{ \mathbf{w} \in \mathbb{R}^3 : \|\mathbf{w}\| = 1 \}.$$

If $W(A_1, A_2, A_3) \subseteq W(B_1, B_2, B_3)$, then $W(A_1, A_2, A_3)$ is a singleton. Therefore, all A_i are scalar and the conjecture holds.

Extension

Let B_1 , B_2 , B_3 be the Pauley matrices. Set $\hat{B}_i = B_i \oplus B_i^t$ for i = 1, 2, 3. Then

$$W(\hat{B}_1, \hat{B}_2, \hat{B}_3) = \{ \mathbf{w} \in \mathbb{R}^3 : \|\mathbf{w}\| \le 1 \}$$
 is convex.

Conjecture 2 (Extension of Theorem 3b)

Suppose $A_1, A_2, A_3 \in \mathcal{B}(\mathcal{H})_{\mathrm{sa}}$. Let

$$\Phi(c_0I_2 + c_1\hat{B}_1 + c_2\hat{B}_2 + c_3\hat{B}_3) = c_0I_{\mathcal{K}} + c_1A_1 + c_2A_2 + c_3A_3$$

Then Φ is positive on span(I_2 , \hat{B}_1 , \hat{B}_2 , \hat{B}_3) if and only if Φ is completely positive.

The conjecture holds if dim $\mathcal{H}=n\leq 3$. Let $\Psi:M_2\to M_n$ be given by $\Psi(X)=\Phi(X\oplus X^t)$. If Φ is positive and $n\leq 3$, then Ψ is **decomposable**. There exist completely positive $\Psi_1,\ \Psi_2:M_2\to M_n$ such that $\Psi(X)=\Psi_1(X)+\Psi_2(X)^t$. Then the result follows.

Question Does the result hold for all *n*?

Extension

Theorem 7 (Choi and Li)

Suppose $B \in M_2$ or $B = [b] \oplus B_1 \in M_3$. Then for all $A \in \mathcal{B}(\mathcal{H})$, $W(A) \subseteq W(B)$ if and only if the map

$$\Phi(c_0I_2 + c_1B + c_2B^*) = c_0I_{\mathcal{H}} + c_1A + c_2A^*$$

is completely positive.

Questions:

- 1) If $B \in M_3$ satisfies the conclusion in Theorem 7, must B be unitarily similar to $[b] \oplus B_1$?
- **2)** For which subset S of \mathbb{C} can we find $B \in M_n$ such that W(B) = S and satisfies the conclusion in Theorem 7?
- **3)** Does there exists $B \in M_n$ such that W(B) = the square with vertices $\{1, -1, i, -i\}$ and satisfies the conclusion in Theorem 7? $B = \operatorname{diag}(1, -1, i, -i)$ does not work.

k-positive maps

Suppose S is an operator system of M_m and $k \geq 1$. For a fixed H, let

$$P_k(\mathcal{S},\mathcal{H}) = \{\Phi: \mathcal{S} o \mathcal{B}(\mathcal{H}) \text{ is } k\text{-positive}\}, \text{ and }$$

$$CP(S, \mathcal{H}) = \{\Phi : S \to \mathcal{B}(\mathcal{H}) \text{ is completely posotive}\}.$$

Clearly,

$$CP(S, \mathcal{H}) \subset \cdots \subset P_k(S, \mathcal{H}) \subset \cdots \subset P_2(S, \mathcal{H}) \subset P_1(S, \mathcal{H})$$

The previous results shows that we have

$$CP(S, \mathcal{H}) = P_1(S, \mathcal{H})$$

for

1) $S = \text{span}(I, B, B^*)$ with $B \in M_2$ or $B = [b] \oplus B_1 \in M_3$ and any \mathcal{H} .

2) $S = \text{span}(I, B_1, B_2, B_3)$ and dim $\mathcal{H} \leq 3$.

Question: When will $CP(S, \mathcal{H}) = P_k(S, \mathcal{H})$?

Matrix range

Let $A \in \mathcal{B}(\mathcal{H})$. For each $m \geq 1$, Arveson defines the matrix range $\mathcal{W}_n(A) = \{\Phi(A) : \Phi \text{ is a unital completely positive map from } \mathcal{B}(\mathcal{H}) \text{ to } M_n\}$

Theorem 8 (Arveson)

- 1) $\mathcal{W}_n(A)$ is C^* convex. That is, given $X_1, \ldots, X_k \in \mathcal{W}_n(A)$ and $Z_1, \ldots, Z_k \in M_n$ such that $\sum_{i=1}^k Z_i^* Z_i = I_n$, we have $\sum_{i=1}^k Z_i^* X_i Z_i \in \mathcal{W}_n(A)$. $\mathcal{W}_n(A)$ is the closure of the smallest C^* convex set containing $\mathcal{W}_n(A)$.
- **2)** Let A be a normal operator and let $n \geq 1$. Then $\mathcal{W}_n(A)$ is the closure of

$$\{\sum_{i=1}^r \lambda_i H_i : r \ge 1, \ H_i \ge 0, \ \lambda_i \in \operatorname{sp}(T) \ \text{and} \ \sum_{i=1}^r H_i = I_n \}$$

3) For some irreducible operators, the sequence $\{W_n(A)\}_{n=1}^{\infty}$ is a complete invariant for unitary similarity.

Choi's representation theorem

Theorem 9 (Choi) Suppose $\Phi: M_n \to M_m$ is a linear map. Then the following conditions are equivalent:

- (a) Φ is completely positive.
- (b) Φ is k-positive for $k = \min(m, n)$.
- (c) The Choi matrix $C(\Phi) = (\Phi(E_{ij}))$ is positive semidefinite.
- (d) There exist $V_1, \ldots, V_r \in M_{n, m}$ such that

$$\Phi(A) = \sum_{j=1}^{r} V_j^* A V_j. \tag{2}$$

Furthermore, suppose (d) holds. Then we have

- (1) The map Φ is unital $(\Phi(I_n) = I_m)$ if and only if $\sum_{j=1}^r V_j^* V_j = I_m$.
- (2) The map Φ is trace preserving $(\operatorname{tr}(\Phi(A)) = \operatorname{tr}(A))$ if and only if $\sum_{j=1}^{r} V_j V_j^* = I_n$.

The minimum of r in (2) is called the rank of Φ .

Joint matrix range

Given $n, m \ge 1$, let CP(n, m) be the set of **unital completely positive** maps from M_n to M_m . For $1 \le r \le mn$, let $CP^r(n, m)$ be the set of $\Phi \in CP(n, m)$ of rank $\le r$. Clearly,

$$CP^1(n,m) \subset CP^2(n,m) \subset \cdots \subset CP^{mn}(n,m) = CP(n,m)$$

Let $\mathbf{A}=(A_1,\ A_2,\ldots,\ A_p)\in H_n^p.$ For each $m\geq 1$ and $1\leq r\leq mn$, define

$$\mathcal{W}_m^r(\mathbf{A}) = \{ (\Phi(A_1), \dots, \Phi(A_p)) : \Phi \in CP^r(n, m) \}$$

We have

$$\mathcal{W}_m^1(\mathbf{A}) \subseteq \mathcal{W}_m^2(\mathbf{A}) \subseteq \cdots \subseteq \mathcal{W}_m^{mn}(\mathbf{A}) = \mathcal{W}_m(\mathbf{A})$$

Toeplitz-Haudorff Theorem: $W_1^1(A_1, A_2) = W_1(A_1, A_2)$.

Question: When will $W_m^r(\mathbf{A}) = W_m(\mathbf{A})$?

Note: $\mathcal{W}_m^r(A_1, A_2, \ldots, A_p) = \mathcal{W}_m^1(A_1 \otimes I_r, A_2 \otimes I_r, \ldots, A_p \otimes I_r).$

Joint matrix range

Theorem 10

Suppose $A_1, A_2, \ldots, A_p \in H_n$. Let $1 \le r \le mn - 1$. Then

$$\mathcal{W}_m^r(A_1,\ldots,A_p)=\mathcal{W}_m(A_1,\ldots,A_p)$$
 (*)

if
$$m^2(p+1)-1<(r+1)^2-\delta_{mn,r+1}$$
.

For example, if $p = k^2 - 1$ and n > k, then

$$\mathcal{W}_m^{mk-1}(A_1,\ldots,A_p)=\mathcal{W}_m(A_1,\ldots,A_p)$$

for all $A_1, \ldots, A_p \in H_n$. In this case, one can show that r = mk - 1 is the smallest number for (*) to hold. Putting m = r = 1, we have $\mathcal{W}^1_1(A_1, \ldots, A_p) = \mathcal{W}_1(A_1, \ldots, A_p)$ if

$$p < 2^2 - \delta_{n,2} = 4 - \delta_{n,2}$$
.

Therefore, $W(A_1, A_2, A_3)$ is convex if $n \ge 3$.

Joint matrix range

Recall that for
$$\mathbf{A}=(A_1,\ A_2,\ldots,\ A_p)\in H^p_n$$
,

$$\mathcal{W}_m^1(\mathbf{A})\subseteq\mathcal{W}_m^2(\mathbf{A})\subseteq\cdots\subseteq\mathcal{W}_m^{mn}(\mathbf{A})=\mathcal{W}_m(\mathbf{A})$$

Let $\mathcal{S} = \mathsf{span}(I_n, A_1, \ A_2, \dots, \ A_p)$ and $\mathcal{H} = \mathbb{C}^m$. Define

$$\mathcal{P}_k(\mathbf{A}) = \{(\Phi(A_1), \dots, \Phi(A_p)) : \Phi \in \mathcal{P}_k(\mathcal{S}, \mathcal{H})\}$$

we have

$$\mathcal{W}_m(\mathbf{A}) \subseteq \cdots \subseteq \mathcal{P}_k(\mathbf{A}) \subseteq \cdots \subseteq \mathcal{P}_2(\mathbf{A}) \subseteq \mathcal{P}_1(\mathbf{A})$$

Note:
$$\mathcal{P}_k(\mathbf{A}) = \mathcal{W}_m(\mathbf{A}) \Leftrightarrow P_k(\mathcal{S}, M_m) = CP(\mathcal{S}, M_m)$$

For $n \ge 3$, p = 3 we have

$$\mathcal{W}_1^1(\mathbf{A}) = \mathcal{P}_1(\mathbf{A})$$

Recall that for $A \in \mathcal{B}(\mathcal{H})$ and $m \leq \dim \mathcal{H}$,

$$W_m(A) = \{B \in M_m : B \text{ is a compression of } A\}$$

Theorem 11 (Fan and Pall)

Suppose $A \in H_n$ has eigenvalues $a_1 \geq a_2 \geq \cdots \geq a_n$ and $1 \leq m \leq n$. Then $W_m(A)$ consists of all $B \in H_m$ with eigenvalues $b_1 \geq b_2 \geq \cdots \geq b_m$ satisfying the following inequalities:

$$a_i \ge b_i \ge a_{n-m+i}$$
 for all $1 \le i \le m$

In particular, $B \in W_{n-1}(A)$ if and only if $a_1 \geq b_1 \geq a_2 \geq \cdots \geq b_{n-1} \geq a_n$

Suppose $A \in M_n$ is normal with eigenvalues a_1, a_2, \ldots, a_n . If $a_1, a_2, \ldots, a_n \in \mathbb{C}$ are collinear, then there exist $c \in \mathbb{C}$ and $\theta \in \mathbb{R}$ such that $e^{i\theta}A + cI_n \in H_n$ and we have

$$W_m(e^{i\theta}A + cI_n) = e^{i\theta}W_m(A) + cI_m$$

Compression of normal matrix

Theorem 12 (Fan and Pall)

Let $A\in M_n$ and $B\in M_{n-1}$ be normal matrices with eigenvalues a_1,a_2,\ldots,a_n and b_1,b_2,\ldots,b_{n-1} , respectively. Suppose a_1,a_2,\ldots,a_q are each distinct from b_1,b_2,\ldots,b_{q-1} , while $a_i=b_{i-1}$ for $q+1\leq i\leq n$. Then B is a compression of A if and only if a_1,a_2,\ldots,a_q are collinear and every segment on this line limited by two adjacent a_i 's contains one $b_j,\ 1\leq j\leq q-1$.

If no three a_i 's are collinear, then up to permutation of indices, we must have $a_i = b_i$ for $i = 1, \dots, n-2$ and $b_{n-1} \in \overline{a_{n-1} \ a_n}$.

Compression of normal matrix

Suppose $A \in M_n$ is normal with non-collinear eigenvalues a_1, a_2, \ldots, a_n . Let $\mathcal{D}_m(A) = \{ \operatorname{diag}(B) : B \in W_m(A) \} \subset \mathbb{C}^m$.

Theorem 13

Suppose $A \in M_n$ is normal with non-collinear eigenvalues a_1, a_2, \ldots, a_n . Then the following conditions are equivalent:

- 1) $\mathcal{D}_m(A)$ is convex.
- 2) $W_m(A)$ is convex.
- **3)** $W_m(A)$ is C*-convex. $(\Leftrightarrow \mathcal{W}_m^1(A) = W_m(A) = \mathcal{W}_m(A))$
- **4)** Every vertex of W(A) has multiplicity $\geq m$.

Common compression of matrices

Given $A \in M_n$, $B \in M_m$ and $1 \le k \le n$, m. A and B is said to have a **common k-dimensional compression** if there exist $U \in M_{m,k}$ and $V \in M_{m,k}$ such that $U^*U = I_k = V^*V$ and $U^*AU = V^*BV$.

For $m = k \le n$, this is equivalent to the compression of Hermitian matrices studied by Fan and Pall.

Extension of the result of Fan and Pall

Theorem 14 Suppose and $A \in H_n$ and $B \in H_m$ have eigenvalues $a_1 \geq a_2 \geq \cdots \geq a_n$ and $b_1 \geq b_2 \geq \cdots \geq b_m$, respectively, and $1 \leq k \leq n$, m. Then B and C have a common k-dimensional compression if and only if the following inequalities hold:

$$a_i \ge b_{m-k+i}$$
 and $b_i \ge a_{n-k+i}$ for all $1 \le i \le k$

Common compression of 3×3 normal matrices

Theorem 15 Suppose A and B are 3×3 normal matrices with non collinear eigenvalues a_1, a_2, a_3 and b_1, b_2, b_3 respectively. Then

- 1) A and B have a common 2-dimensional compression C, with degenerate W(C) ($\Leftrightarrow C$ is normal), if and only if either
- (a) W(A) and W(B) have a vertex in common and the corresponding opposite sides intersect, **or**
- **(b)** one vertex v of W(A) lies on an edge s of W(B) and the vertex v' in W(B) opposite to s lies on the edge s' in W(A) opposite to v.

Common compression

- **2)** A and B have a common 2-dimensional compression C, with non-degenerate W(C) ($\Leftrightarrow C$ is not normal), if and only if the following conditions are satisfied:
- (a) $W(A) \cap W(B)$ is an *m*-sided polygon P with $m \ge 3$.
- **(b)** Every edge of W(A) and W(B) intersects a side of P at more than one point.
- (c) For m = 6, the diagonals of P are concurrent.

m = 3

m = 4

m=5

m = 6