Malaria Classification using Custom CNN

1. Introduction

Malaria detection using deep learning has significantly advanced the field of medical image analysis. This project implements a Convolutional Neural Network (CNN) to classify malaria-infected cells from uninfected ones using grayscale microscopy images. The goal is to achieve high classification accuracy through a custom CNN architecture and hyperparameter tuning.

2. Dataset Details

- Dataset Type: Microscopy Images

- Classes: 2 (Parasitized **, Uninfected **)

- Total Images:

- Training Set: 27,558 images

- Testing Set: 15,832 images

- Image Size: 224x224 (grayscale, single-channel)

- Preprocessing:

- Rescaling (Normalizing pixel values between 0 and 1)

- Augmentation (Rotation, Brightness, Shear Transformations, Zoom)

3. Model Architecture

This model utilizes a custom CNN architecture designed for feature extraction and binary classification.

3.1 CNN Layers and Parameters:

- Conv2D Layer 1: 32 or 64 filters, kernel size 3x3, ReLU activation, Batch Normalization, MaxPooling2D
- Conv2D Layer 2: Tunable (32, 64, or 128 filters), kernel size 3x3, ReLU activation, MaxPooling2D
- Conv2D Layer 3 (Optional): Applied based on Hyperparameter tuning
- Global Average Pooling Layer
- Dense Layer: 128 to 512 neurons (ReLU activation)
- Dropout Layer: 0.3 to 0.5 to prevent overfitting
- Output Layer: 1 neuron (Sigmoid activation for binary classification)

3.2 Model Compilation Settings:

- Optimizer: Adam (`learning_rate = 5e-5`, adjusted with `ReduceLROnPlateau`)
- Loss Function: Binary Crossentropy
- Metrics: Accuracy

4. Training Process

4.1 Data Augmentation Applied

- Rotation: ±30 degrees

- Brightness Adjustment: Range 0.5 to 1.5

- Zoom & Shift Transformations: Applied for better generalization

- Shear Transformations: Used to add variation

4.2 Training Configuration

- Batch Size: 8, 16, or 32 (Tuned)

- Epochs: 25-30

- Class Weights: Adjusted to balance the dataset

- Early Stopping: Enabled (patience = 5 epochs)

- ReduceLROnPlateau: Reduce LR by 0.5 when validation loss stagnates

5. Results and Evaluation

5.1 Model Summary

Model: "sequential"				
Layer (type)	Output Shape	Param #		
conv2d (Conv2D)	(None, 224, 224, 64)	640		
batch_normalization (BatchNormalization)	(None, 224, 224, 64)	256		
max_pooling2d (MaxPooling2D)	(None, 112, 112, 64)	0		
conv2d_1 (Conv2D)	(None, 112, 112, 64)	36,928		
batch_normalization_1 (BatchNormalization)	(None, 112, 112, 64)	256		
max_pooling2d_1 (MaxPooling2D)	(None, 56, 56, 64)	0		
conv2d_2 (Conv2D)	(None, 56, 56, 32)	18,464		
batch_normalization_2 (BatchNormalization)	(None, 56, 56, 32)	128		
max_pooling2d_2 (MaxPooling2D)	(None, 28, 28, 32)	0		
dropout (Dropout)	(None, 28, 28, 32)	0		
flatten (Flatten)	(None, 25088)	0		
dense (Dense)	(None, 128)	3,211,392		
dropout_1 (Dropout)	(None, 128)	0		
dense_1 (Dense)	(None, 1)	129		
Total params: 9,803,941 (37.40 MB) Trainable params: 3,267,873 (12.47 MB)				

Total params: 9,803,941 (37.40 MB)
Trainable params: 3,267,873 (12.47 MB)
Non-trainable params: 320 (1.25 KB)
Optimizer params: 6,535,748 (24.93 MB)

5.2 Confusion Matrix Analysis

5.3 Classification Report and Final Model Accuracy

<pre>Classification Report:</pre>						
	precision	recall	f1-score	support		
Parasitized	0.97	0.95	0.96	7952		
Uninfected	0.95	0.97	0.96	7880		
accuracy			0.96	15832		
macro avg	0.96	0.96	0.96	15832		
weighted avg	0.96	0.96	0.96	15832		
▼ Model Accı	racy: 96.18%					

5.4 Best Trials and Hyperparameters over-time and Accuracy Loss Graph

6. Conclusion

This deep learning model successfully classifies malaria-infected cells with high accuracy. The key factors contributing to its success include:

- Carefully designed CNN architecture with Batch Normalization
- Fine-tuning hyperparameters for optimal performance
- Data augmentation to improve generalization
- Learning rate optimization with ReduceLROnPlateau

Future Work & Improvements

- Test model on external malaria datasets for robustness
- Deploy as a web-based or mobile application
- Experiment with deeper architectures or ensemble models for further improvements

7. References

https://github.com/aryannnn07/DS_Assignment.git

Streamlit app: app.py

Jupyter Notebook: Aryan_ML.ipynb

Model: malaria_best_model.keras