Cryptography

Corso di Laurea Magistrale in Informatica

Private-Key Authentication Schemes

Ugo Dal Lago

Academic Year 2023-2024

Secrecy

Secrecy

Authentication

Authentication

- ▶ We want to guarantee that the receiver is sure of the integrity and authenticity of the received message.
- ▶ Authentication and secrecy are distinct properties: solving the problem of secrecy does not necessarily automatically solve the problem of authentication.
 - ▶ If we use Π^G , where G is a pseudorandom generator, a hypothetical adversary could easily construct, from $Enc(k,m) = G(k) \oplus m$, the ciphertext for a message exactly similar to m.
 - Attacks similar to the previous one also affect CBC (where a modification of *IV* affects the first block) and also CTR (where a change to block *i* only affects block *i*).

Message Authentication Codes

- ▶ The same way ciphers are the tool to guarantee secrecy, message authentication codes (or MAC) are the tool to solve the authentication problem.
- ▶ A MAC is a triple $\Pi = (Gen, Mac, Vrfy)$ of PPT algorithms such that
 - ▶ Gen takes as input a string in the form 1^n , to be interpreted as the security parameter, and outputs a key k, which can be such that $|k| \ge n$.
 - The Mac algorithm takes as input a key k and a message m, and outputs a $tag\ t$.
 - The Vrfy algorithm takes as input a key k, a message m and a tag t, and outputs a boolean b.
- ▶ A MAC $\Pi = (Gen, Mac, Vrfy)$ is correct when Vrfy(k, m, Mac(k, m)) = m.

► The question, as in the case of secrecy, is: what do we want an adversary **not to be able** to do?

- ► The question, as in the case of secrecy, is: what do we want an adversary **not to be able** to do?
- The answer here is quite simple: we don't want the adversary to be able to forge (i.e. to produce a valid tag for) a message of his choice m, without knowing the key k.
- ► In this case, we are very pessimistic from the beginning and assume that:
 - ▶ The adversary has access to an oracle for $Mac_k(\cdot)$.
 - Instead, a pair (m, t) obtained through access to the oracle is not to be considered a correct forging.
 - ▶ The adversary has to be, as usual, a PPT algorithm.

Let us proceed, as usual, by giving a suitable notion of experiment:

```
\begin{split} & \mathsf{MacForge}_{A,\Pi}(n) \colon \\ & k \leftarrow \mathit{Gen}(1^n); \\ & (m,t) \leftarrow A(1^n,\mathit{Mac}_k(\cdot)); \\ & \mathbb{Q} \leftarrow \{m \mid A \text{ queries } \mathit{Mac}_k(\cdot) \text{ on } m\}; \\ & \mathbf{Result: } \ (m \not\in \mathbb{Q} \land \mathit{Vrfy}(k,m,t) = 1) \end{split}
```

Let us proceed, as usual, by giving a suitable notion of experiment:

```
\begin{aligned} & \mathsf{MacForge}_{A,\Pi}(n) \colon \\ & k \leftarrow \mathit{Gen}(1^n); \\ & (m,t) \leftarrow A(1^n,\mathit{Mac}_k(\cdot)); \\ & \mathbb{Q} \leftarrow \{m \mid A \text{ queries } \mathit{Mac}_k(\cdot) \text{ on } m\}; \\ & \mathbf{Result: } \ (m \not\in \mathbb{Q} \land \mathit{Vrfy}(k,m,t) = 1) \end{aligned}
```

Definition

A MAC Π is *secure* iff for every PPT adversary A there exists a negligible function $\varepsilon \in \mathcal{NGL}$ such that

$$Pr(\mathsf{MacForge}_{\Pi,A}(n) = 1) = \varepsilon(n)$$

Some Comments on the Definition

- ► From a certain point of view, the definition is **very strong**:
 - Concretely, an adversary is interested in forging meaningful messages.
 - ▶ Here we consider it problematical that the adversary forges any message.
- From another point of view, the definition would seem a bit weak:
 - There is a class of attacks that our definition does not take into account, namely the *replay attacks*.
 - ▶ In such attacks, the same pair (m, t) is sent multiple times over the channel, the first time by a legitimate user, the others by the adversary.
 - ▶ In practice, replay attacks are handled at a higher level in the stack, through mechanisms such as *sequence numbers* or *timestamps*.

Constructing a Secure MAC

▶ The first example of Secure MAC that we will give is based on a notion we are already familiar with, namely that of Pseudorandom Function.

Constructing a Secure MAC

▶ The first example of Secure MAC that we will give is based on a notion we are already familiar with, namely that of Pseudorandom Function.

Definition (PRF induced MAC)

Given a PRF F, the MAC $\Pi^F = (\mathit{Gen}, \mathit{Mac}, \mathit{Vrfy})$ is defined as follows:

- ▶ The algorithm Gen for input 1^n outputs every string long n with same probability, i.e. $\frac{1}{2^n}$.
- $Mac(k,m) = F_k(m).$
- $Vrfy(k, m, t) = (F_k(m) \stackrel{?}{=} t).$

Constructing a Secure MAC

▶ The first example of Secure MAC that we will give is based on a notion we are already familiar with, namely that of Pseudorandom Function.

Definition (PRF induced MAC)

Given a PRF F, the MAC $\Pi^F = (\mathit{Gen}, \mathit{Mac}, \mathit{Vrfy})$ is defined as follows:

- ▶ The algorithm Gen for input 1^n outputs every string long n with same probability, i.e. $\frac{1}{2^n}$.
- $Mac(k,m) = F_k(m).$
- $Vrfy(k, m, t) = (F_k(m) \stackrel{?}{=} t).$

Theorem

If F is pseudorandom, then the MAC Π^F is secure.

- ▶ The Π^F construction allows messages as long as the keys to be handled.
 - ▶ Once again, therefore, we have a scheme with great security properties, but not very useful.
- ▶ Given a message $m = m_1 || \cdots || m_n$, we could try to proceed as follows:
 - 1. Authenticate $\bigoplus_{i=1}^n m_i$. In this case, however, an adversary would easily succeed in forging a message $p = p_1 || \cdots || p_n$ where $\bigoplus_{i=1}^n m_i = \bigoplus_{i=1}^n p_i$.

- ▶ The Π^F construction allows messages as long as the keys to be handled.
 - ▶ Once again, therefore, we have a scheme with great security properties, but not very useful.
- Given a message $m = m_1 || \cdots || m_n$, we could try to proceed as follows:
 - 1. Authenticate $\bigoplus_{i=1}^{n} m_i$. In this case, however, an adversary would easily succeed in forging a message $p = p_1 || \cdots || p_n$ where $\bigoplus_{i=1}^{n} m_i = \bigoplus_{i=1}^{n} p_i$.
 - 2. Authenticate each block m_i separately, and then take the xor: $Mac(k,m) = \bigoplus_{i=1}^{n} Mac(k,m_i)$. In this case, however, an adversary could easily forge the message $p = m_{\pi(1)} \cdots m_{\pi(n)}$, where π is a permutation.

- ▶ The Π^F construction allows messages as long as the keys to be handled.
 - Once again, therefore, we have a scheme with great security properties, but not very useful.
- Given a message $m = m_1 || \cdots || m_n$, we could try to proceed as follows:
 - 1. Authenticate $\bigoplus_{i=1}^{n} m_i$. In this case, however, an adversary would easily succeed in forging a message $p = p_1 || \cdots || p_n$ where $\bigoplus_{i=1}^{n} m_i = \bigoplus_{i=1}^{n} p_i$.
 - 2. Authenticate each block m_i separately, and then take the xor: $Mac(k, m) = \bigoplus_{i=1}^{n} Mac(k, m_i)$. In this case, however, an adversary could easily forge the message $p = m_{\pi(1)} \cdots m_{\pi(n)}$, where π is a permutation.
 - 3. Authenticate each block m_i separately with the sequence number i, i.e. $Mac(k,m) = \bigoplus_{i=1}^{n} Mac(k,m_i||i)$. Even in this case, however, the adversary could easily forge other messages.

- ▶ Different ideas need to be put together, i.e block division, sequence numbers and randomization.
- ▶ Given a MAC $\Pi = (Gen, Mac, Vrfy)$ for fixed-length messages, we can construct a new MAC $\Pi^* = (Gen, Mac^*, Vrfy^*)$ for variable-length messages as follows:

```
Vrfy^*(k, m, (r, t_1, ..., t_d)):
Mac^*(k,m):
                                                       m_1 || \cdots || m_d \leftarrow m;
m_1 || \cdots || m_d \leftarrow m;
                                                       /* such that |m_i| = \frac{n}{4}
/* such that |m_i| = \frac{n}{4}
     */
                                                       \ell \leftarrow |m|;
\ell \leftarrow |m|;
                                                       for i \leftarrow 1 to d do
r \leftarrow \{0,1\}^{\frac{n}{4}};
for i \leftarrow 1 to d do
                                                               Vrfy(k,r||\ell||i||m_i) =
      t_i \leftarrow
                                                               0 then
        Mac(k,r||\ell||i||m_i)
                                                                   Result: 0
Result: (r, t_1, \ldots, t_d)
                                                       Result: 1
```

- ▶ Different ideas need to be put together, i.e block division, sequence numbers and randomization.
- ▶ Given a MAC $\Pi = (Gen, Mac, Vrfy)$ for fixed-length messages, we can construct a new MAC $\Pi^* = (Gen, Mac^*, Vrfy^*)$ for variable-length messages as follows:

```
Vrfy^*(k, m, (r, t_1, ..., t_d)):
Mac^*(k,m):
                                                       m_1 || \cdots || m_d \leftarrow m;
m_1 || \cdots || m_d \leftarrow m;
                                                       /* such that |m_i| = \frac{n}{4}
/* such that |m_i| = \frac{n}{4}
                                                       \ell \leftarrow |m|;
\ell \leftarrow |m|;
                                                       for i \leftarrow 1 to d do
r \leftarrow \{0,1\}^{\frac{n}{4}};
for i \leftarrow 1 to d do
                                                               Vrfy(k,r||\ell||i||m_i) =
     t_i \leftarrow
                                                               0 then
        Mac(k,r||\ell||i||m_i)
                                                                   Result: 0
Result: (r, t_1, \ldots, t_d)
                                                       Result: 1
```

Theorem

If Π is secure, then Π^* is also secure.

CBC-MAC Construction

- The construction we have just seen, when applied to a PRF F, calls the latter 4d times, while the tag is 4dn long.
- ▶ This can be avoided by the CBC-MAC construction, also based on a PRF F, but defined differently and parameterized on ℓ .

```
\begin{array}{lll} \mathit{Mac}^{\mathit{CBC}}(k,m) \colon & & & \\ \ell \leftarrow \ell(|k|); & & & \\ \mathit{m}_1||\cdots||m_\ell \leftarrow m; & & \mathit{Vrfy}^{\mathit{CBC}}(k,m,t) \colon \\ \not * & \mathsf{such that } |m_i| = |k| & & \mathsf{if } \ell(|k|) \cdot |k| \neq |m| \mathsf{ then } \\ & & * / & & & \mathsf{Result: } 0 \\ t_0 \leftarrow 0^n; & & & \mathsf{Result: } t \stackrel{?}{=} \\ \mathsf{for } i \leftarrow 1 \mathsf{ to } \ell \mathsf{ do } & & & \mathit{Mac}^{\mathit{CBC}}(k,m) \\ & & & & \mathsf{Loch}(k,m) & & & \mathsf{Loch}(k,m) \\ & & & & \mathsf{Result: } t_\ell & & & \mathsf{Loch}(k,m) \\ & & & & \mathsf{Result: } t_\ell & & & \mathsf{Loch}(k,m) \\ & & & & \mathsf{Result: } t_\ell & & & \mathsf{Loch}(k,m) \\ & & & & \mathsf{Loch}(k,m) & & & \mathsf{Loch}(k,m) \\ & & & & & \mathsf{Loch}(k,m) & & & \mathsf{Loch}(k,m) \\ & & & & & \mathsf{Loch}(k,m) & & & \mathsf{Loch}(k,m) \\ & & & & & \mathsf{Loch}(k,m) & & & \mathsf{Loch}(k,m) \\ & & & & & \mathsf{Loch}(k,m) & & & \mathsf{Loch}(k,m) \\ & & & & & \mathsf{Loch}(k,m) & & & \mathsf{Loch}(k,m) \\ & & & & & \mathsf{Loch}(k,m) & & & \mathsf{Loch}(k,m) \\ & & & & & \mathsf{Loch}(k,m) & & & \mathsf{Loch}(k,m) \\ & & & & & \mathsf{Loch}(k,m) & & & \mathsf{Loch}(k,m) \\ & & & & & \mathsf{Loch}(k,m) & & & \mathsf{Loch}(k,m) \\ & & & & & \mathsf{Loch}(k,m) & & & \mathsf{Loch}(k,m) \\ & & & & & \mathsf{Loch}(k,m) & & & \mathsf{Loch}(k,m) \\ & & & & & \mathsf{Loch}(k,m) & & & \mathsf{Loch}(k,m) \\ & & & & & \mathsf{Loch}(k,m) & & & \mathsf{Loch}(k,m) \\ & & & & & \mathsf{Loch}(k,m) & & & \mathsf{Loch}(k,m) \\ & & & & & \mathsf{Loch}(k,m) & & & \mathsf{Loch}(k,m) \\ & & & & & \mathsf{Loch}(k,m) & & & \mathsf{Loch}(k,m) \\ & & & & & \mathsf{Loch}(k,m) & & & \mathsf{Loch}(k,m) \\ & & & & & \mathsf{Loch}(k,m) & & & \mathsf{Loch}(k,m) \\ & & & & & \mathsf{Loch}(k,m) & & & \mathsf{Loch}(k,m) \\ & & & & & \mathsf{Loch}(k,m) & & & \mathsf{Loch}(k,m) \\ & & & & & \mathsf{Loch}(k,m) & & & \mathsf{Loch}(k,m) \\ & & & & & \mathsf{Loch}(k,m) & & & \mathsf{Loch}(k,m) \\ & & & & & \mathsf{Loch}(k,m) & & & \mathsf{Loch}(k,m) \\ & & & & & \mathsf{Loch}(k,m) & & & \mathsf{Loch}(k,m) \\ & & & & & \mathsf{Loch}(k,m) & & & \mathsf{Loch}(k,m) \\ & & & & & \mathsf{Loch}(k,m) & & & \mathsf{Loch}(k,m) \\ & & & & & \mathsf{Loch}(k,m) & & & \mathsf{Loch}(k,m) \\ & & & & & \mathsf{Loch}(k,m) & & & \mathsf{Loch}(k,m) \\ & & & & & \mathsf{Loch}(k,m) & & & \mathsf{Loch}(k,m) \\ & & & & & \mathsf{Loch}(k,m) & & & \mathsf{Loch}(k,m) \\ & & & & & \mathsf{Loch}(k,m) & & & \mathsf{Loch}(k,m) \\ & & & & & \mathsf{Loch}(k,m) & & & \mathsf{Loch}(k,m) \\ & & & & & \mathsf{Loch}(k,m) & & & \mathsf{Loch}(k,m) \\ & & & & & \mathsf{Loch}(k,m) & & & \mathsf{Loch}(k,m) \\ & & & & & \mathsf{L
```

CBC-MAC Construction

- The construction we have just seen, when applied to a PRF F, calls the latter 4d times, while the tag is 4dn long.
- ▶ This can be avoided by the CBC-MAC construction, also based on a PRF F, but defined differently and parameterized on ℓ .

```
\begin{array}{lll} \mathit{Mac}^\mathit{CBC}(k,m) \colon & & & \\ \ell \leftarrow \ell(|k|); & & & \\ \mathit{m}_1||\cdots||m_\ell \leftarrow m; & & \mathit{Vrfy}^\mathit{CBC}(k,m,t) \colon \\ \not * \text{ such that } |m_i| = |k| & & & \mathsf{if } \ell(|k|) \cdot |k| \neq |m| \text{ then } \\ & * \not & & & \mathsf{L} \text{ Result: } 0 \\ t_0 \leftarrow 0^n; & & & \mathsf{Result: } t \stackrel{?}{=} \\ \mathbf{for } i \leftarrow 1 \text{ to } \ell \text{ do} & & & \mathit{Mac}^\mathit{CBC}(k,m) \\ & & & \mathsf{L} \text{ to } \ell \text{ do} & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & \mathsf{L} \text{ to } \ell \text{ do} \\ & & & \mathsf{L} \text{
```

Theorem

If ℓ is a polynomial and F is a PRF, then Π^{CBC} is a secure MAC.

Hash Functions

- ► Hash functions are functions that compress long strings into shorter ones, so that there are as few collisions as possible.
 - A collision for a hash function H is a pair (x, y) such that H(x) = H(y) with $x \neq y$.
 - ▶ Hash functions are used for the design of data structures, but also in cryptography

Hash Functions

- ▶ Hash functions are functions that compress long strings into shorter ones, so that there are as few collisions as possible.
 - A collision for a hash function H is a pair (x, y) such that H(x) = H(y) with $x \neq y$.
 - ▶ Hash functions are used for the design of data structures, but also in cryptography
- ► In cryptography, we require something more from hash functions, namely that:
 - 1. Collisions are not only as few as possible, but in some way *impossible* to determine.
 - 2. The impossibility of determining collisions must also be valid for adversaries built specifically to find them.
- More specifically, a hash function is seen as a function $H: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$ such that:
 - ▶ The first parameter is a key s, which however is made public.
 - ightharpoonup The second is a string x, which the function H tries to compress.

Hash Functions

Definition

A hash function is a pair of PPT algorithms (Gen, H) such that:

- ▶ Gen is an algorithm that takes as input a security parameter 1^n and returns a key s (from which n can be efficiently calculated).
- ▶ There exists a polynomial ℓ such that H(s,x) returns a string of length $\ell(n)$ (where n is the implicit parameter in s).
- ▶ If there exists a polynomial p such that $p(n) > \ell(n)$, for every n, and H(s,x) is defined only when |x| = p(n) (and s is the parameter implicit in s), then H is called a fixed-length hash function.
- As usual, we denote H^s the function that, for input x, returns H(s,x)

Collision-Resistant Hash Functions

▶ Hash functions can be defined to be secure in different ways. The strongest, most restrictive notion is based on the following experiment:

```
\begin{split} & \mathsf{HashColl}_{A,\Pi}(n) \colon \\ & s \leftarrow \mathit{Gen}(1^n); \\ & (x,y) \leftarrow A(s); \\ & \mathbf{Result:} \ (x \neq y) \land (H(x) = H(y)) \end{split}
```

Definition

A hash function $\Pi = (Gen, H)$ is *collision-resistant* iff for every adversary PPT A there exists a negligible function ε such that

$$Pr(\mathsf{HashColl}_{A,\Pi}(n) = 1) \le \varepsilon(n)$$

Weaker Notions of Security

► Second Preimage Resistance

• Given s and x, it must be impossible for A to construct $y \neq x$ such that $H^s(x) = H^s(y)$.

► Preimage Resistance

- Given s and $z = H^s(x)$, it must be impossible for A to construct y such that $H^s(y) = z$.
- ► The three notions of security we have just seen are progressively weaker.
 - ▶ A few proofs by reduction are sufficient to realize this.

Birthday Attacks

- ▶ The question is how to attack "brute force" a hash function, and what is the complexity of this attack.
- Let us consider a situation in which the key s is already fixed and in which the adversary A wants to find a collision in $H^s: \{0,1\}^* \to \{0,1\}^{\ell}$.

Birthday Attacks

- ► The question is how to attack "brute force" a hash function, and what is the complexity of this attack.
- Let us consider a situation in which the key s is already fixed and in which the adversary A wants to find a collision in $H^s: \{0,1\}^* \to \{0,1\}^{\ell}$.
- ▶ The adversary could simply randomly choose q strings in $\{0,1\}^*$ and test H^s on each of them, hoping to find two for which H^s returns the same value.
 - ▶ If $q > 2^{\ell}$, a collision is assured.
 - ▶ What if, on the other hand, q is much smaller 2^{ℓ} ?

Theorem (Birthday Theorem)

Given q uniformly chosen random values in a finite set of cardinality N, the probability that two of them are identical is $\Theta(\frac{q^2}{N})$.

Birthday Attacks

▶ If we assume that the behaviour of H^s is as close as possible to that of a random function (i.e. if we are in the worst case), we can then conclude that a birthday attack where $q = \Theta(2^{\frac{\ell}{2}})$ will have probability of success

$$\Theta\left(\frac{(2^{\frac{\ell}{2}})^2}{2^{\ell}}\right) = \Theta\left(\frac{2^{\ell}}{2^{\ell}}\right) = \Theta(1)$$

i.e. constant probability, independent of q and ℓ .

- ▶ Birthday attacks can be improved in two ways:
 - ▶ Reducing Complexity in Space
 - ► Making the Attack Context-Dependent

The Merkle-Damgård Transform

- ➤ Is it possible for a fixed-length hash function to handle arbitrary-length messages?
 - ... while remaining collision-resistant.
- ► The answer is yes, and is called **Merkle-Damgård** transformation.
- ▶ Suppose that (Gen, H) is a hash function for messages of length p(n) = 2n (and the output is n long) and construct from it (Gen, H^{MD}) as follows

```
\begin{array}{lll} H^{MD}(s,x) \colon & x_{B+1} \leftarrow |x|; \\ B \leftarrow \lceil |x|/n \rceil; & z_0 \leftarrow 0^n; \\ x_1||\cdots||x_B \leftarrow x; & \text{for } i \leftarrow 1 \text{ to } B+1 \text{ do} \\ & \lfloor z_i \leftarrow H(s,z_{i-1}||x_i) \\ & \text{Result: } z_{B+1} \end{array}
```

Theorem

If (Gen, H) is collision-resistant, then so is (Gen, H^{MD}) .

Hash-and-Mac

- ► How can hash functions be useful in the construction of MACs?
- A very interesting way of using (collision-resistant) hash functions is to construct a MAC that is secure for variable-length messages from one which is only secure for fixed-length messages.

Hash-and-Mac

- How can hash functions be useful in the construction of MACs?
- A very interesting way of using (collision-resistant) hash functions is to construct a MAC that is secure for variable-length messages from one which is only secure for fixed-length messages.
- ▶ Given a MAC $\Pi = (Gen, Mac, Vrfy)$ and a hash function (Gen', H), we define the MAC $\Pi^H = (Gen^H, Mac^H, Vrfy^H)$ as follows
 - ▶ Gen^H on input 1^n outputs (the encoding of) a pair (s, k) where s is the result of $Gen'(1^n)$ and k is the result of $Gen(1^n)$.
 - $\blacktriangleright Mac^{H}((s,k),m)$ outputs $Mac_{k}(H^{s}(m))$.
 - As usual, Vrfy((s,k),m,t) outputs 1 iff $Mac^H((s,k),m)=t$.

Hash-and-Mac

- ► How can hash functions be useful in the construction of MACs?
- ▶ A very interesting way of using (collision-resistant) hash functions is to construct a MAC that is secure for variable-length messages from one which is only secure for fixed-length messages.
- ▶ Given a MAC $\Pi = (Gen, Mac, Vrfy)$ and a hash function (Gen', H), we define the MAC $\Pi^H = (Gen^H, Mac^H, Vrfy^H)$ as follows
 - ▶ Gen^H on input 1^n outputs (the encoding of) a pair (s, k) where s is the result of $Gen'(1^n)$ and k is the result of $Gen(1^n)$.
 - $ightharpoonup Mac^H((s,k),m)$ outputs $Mac_k(H^s(m))$.
 - ▶ As usual, Vrfy((s,k), m, t) outputs 1 iff $Mac^H((s,k), m) = t$.

Theorem

If Π is a secure MAC and (Gen', H) is collision-resistant, then Π^H is secure.