Generative Adversarial Nets

Xinjie Fan

Department of Statistics and Data Sciences

The University of Texas at Austin

December 4, 2017

Overview

- Generative models
- Quantity of the second of t
 - Basic idea
 - Motivation: two perspectives
 - Vanilla GAN
 - Code
 - Why it works?
 - Why it does not work?
 - Variations of GANs
 - Tricks and tips
- Fun stuff and references

Generative models

Here we focus on using generative model to solve the unsupervised problem:

given training data(without labels), generate new samples from same distribution.

Training data $\sim p_{data}(x)$

Generated samples $\sim p_{\text{model}}(x)$

Question: why generative models?

Popular generative models

GANs: don't work with explicit density function.

Basic idea: two-player game

Generator network: try to fool the discriminator by generating real-looking images.

Discriminator network: try to distinguish between real and fake images.

First perspective on the motivation: adversarial example

Turning Objects into "Airplanes"

Adversarial example

Panda or gibbon?

 $+.007 \times$

Second perspective: what is maximum likelihood?

In this case likelihood is intractable, because we cannot go back from images to latent variable. Therefore, we change the direction.

Vanilla GAN

Objective function:

$$\min_{G} \max_{D} [E_{x \sim p_{data}} \log D(x) + E_{z \sim noise} \log (1 - D(G(z)))]$$

Here, discriminator outputs likelihood in (0,1) of input images. Alternating optimization leads to the minimization problem unbounded. Therefore, usually we alternate between:

$$\max_{D} [E_{x \sim p_{data}} \log D(x) + E_{z \sim noise} \log (1 - D(G(z)))]$$

$$\max_{G} E_{z \sim noise} \log (D(G(z)))$$

The algorithm

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)}\right) + \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right) \right) \right).$$

end for

Demonstrations

Demo on MNIST example (compare with VAE):

MNIST

Demo on 1D example: Demo on 1D example:

Why it works?

Does the choice of divergence matter?

Loosely speaking, GAN would find a p_{model} such that the following Jensen-Shannon divergence is minimized:

$$JSD(p_{data}||p_{model}) = rac{\mathit{KL}(p_{data}||rac{p_{data}+p_{model}}{2}) + \mathit{KL}(p_{model}||rac{p_{data}+p_{model}}{2})}{2}$$

In contrast, VAE minimizes KL divergence.

Unfortunately...

But that is not the answer!

We can minimize KL divergence in GAN framework by minimizing

$$J^G = \frac{1}{2} E_{z \sim p_{model}} \exp(\sigma^{-1}(D(G(z)))).$$

And it still works.

Why it does not work?

The problem of mode collapse: GANs often choose to generate from very few modes; fewer than the limitation imposed by the model capacity.

One explanation: it is problematic to use alternating minimization as minimax is not equivalent to maxmin in this case.

Variations of GANs

GAN	DISCRIMINATOR LOSS	GENERATOR LOSS
MM GAN	$\mathcal{L}_{\scriptscriptstyle \mathrm{D}}^{\scriptscriptstyle \mathrm{GAN}} = -\mathbb{E}_{x \sim p_d}[\log(D(x))] + \mathbb{E}_{\hat{x} \sim p_g}[\log(1 - D(\hat{x}))]$	$\mathcal{L}_G^{GAN} = -\mathcal{L}_D^{GAN}$
NS GAN	$\mathcal{L}_{ ext{D}}^{ ext{NSGAN}} = \mathcal{L}_{ ext{D}}^{ ext{GAN}}$	$\mathcal{L}_{G}^{\text{NSGAN}} = \mathbb{E}_{\hat{x} \sim p_g}[\log(D(\hat{x}))]$
WGAN	$\mathcal{L}_{\mathrm{D}}^{\mathrm{WGAN}} = -\mathbb{E}_{x \sim p_d}[D(x)] + \mathbb{E}_{\hat{x} \sim p_g}[D(\hat{x})]$	$\mathcal{L}_G^{WGAN} - = \mathcal{L}_D^{WGAN}$
WGAN GP	$\mathcal{L}_{\mathrm{D}}^{\mathrm{wgan}} = \mathcal{L}_{\mathrm{D}}^{\mathrm{wgan}} + \lambda \mathbb{E}_{\hat{x} \sim p_g}[(\nabla D(\alpha x + (1 - \alpha \hat{x}) _2 - 1)^2]$	$\mathcal{L}_{\mathrm{G}}^{\mathrm{wgan}} = -\mathbb{E}_{\hat{x} \sim p_g}[D(\hat{x})]$
LS GAN	$\mathcal{L}_{\mathrm{D}}^{\mathrm{LSGAN}} = -\mathbb{E}_{x \sim p_d}[(D(x) - 1)^2] + \mathbb{E}_{\hat{x} \sim p_g}[D(\hat{x})^2]$	$\mathcal{L}_{G}^{LSGAN} = -\mathbb{E}_{\hat{x} \sim p_g}[(D(\hat{x} - 1)^2)]$
DRAGAN	$\mathcal{L}_{\mathbf{D}}^{\text{DRAGAN}} = \mathcal{L}_{\mathbf{D}}^{\text{GAN}} + \lambda \mathbb{E}_{\hat{x} \sim p_d + \mathcal{N}(0,c)}[(\nabla D(\hat{x}) _2 - 1)^2]$	$\mathcal{L}_{G}^{DRAGAN} = -\mathcal{L}_{D}^{NS \; GAN}$
BEGAN	$\mathcal{L}_{\mathrm{D}}^{\mathrm{BEGAN}} = \mathbb{E}_{x \sim p_d}[x - \mathrm{AE}(x) _1] - k_t \mathbb{E}_{\hat{x} \sim p_g}[\hat{x} - \mathrm{AE}(\hat{x}) _1]$	$\mathcal{L}_{\mathrm{G}}^{\mathrm{BEGAN}} = \mathbb{E}_{\hat{x} \sim p_g}[\hat{x} - \mathrm{AE}(\hat{x}) _1]$

What? They are equal? Are GANs Created Equal? A Large-Scale Study

Tricks and tips

- Tanh as the last layer of the generator output
- Dropout
- Conditional on labels (reduce the number of modes)
- Batch normalization
- Deeper discriminator
- Label smoothing for discriminator

Improved techniques for training GANs. Tips and tricks to make GANs work

Fun stuff and references

```
Cycle GAN: • Cycle GAN • Face change with Cycle GAN
```

Adversarial examples: Adversarial examples and adversarial training

Tutorial: Tutorial on GAN

Stanford course video: Generative models

The End