

Discovery and Properties of anode, cathode rays neutron and Nuclear structure

22. (d) 10^{-8} cm

Explanation:

Atoms are extremely small, but their size is much larger than the nucleus. The typical radius of an atom is about 1 A $^{\circ}$ =10 $^{-10}$ m = 10 $^{-8}$ cm.

23. (c) No charge

Explanation:

Neutrons are neutral particles found in the nucleus. They do **not** carry any electric charge.

24. (b) No charge and a mass of 1 unit

Explanation:

Charge: 0

Mass: approximately 1 atomic mass unit (u), similar to a proton.

ESTD: 2005

25. (d) Mass and charge both

`Explanation:

Cathode rays are streams of **electrons**, which have **mass** ($\approx 9.11 \times 10^{-31}$ kg) and **negative charge**.

26. (c) Size of nucleus is measured in *Fermi* (1 Fermi = $10^{-15}m$).

- **27.** (b) A molecule of an element is a incorrect statement. The correct statement is "an element of a molecule".
- 28. (d) Bohr Isotope

Explanation:

Rutherford → **Proton:** Correct, he discovered the nucleus and proposed the proton as a positively charged particle.

- **J.J. Thomson** → **Electron**: Correct, he discovered the electron in 1897.
- **J.H. Chadwick** → **Neutron**: Correct, he discovered the neutron in 1932.

Bohr → Isotope: Incorrect, Bohr is famous for the Bohr model of the atom, not isotopes. The concept of isotopes was introduced by Frederick Soddy.

- **29.** (c) Proton is represented by *p* having charge +1 discovered in 1988 by Goldstein.
- **31.** (b) The nature of anode rays depends upon the nature of residual gas.
- 30. (a) quantization of charge.
- 32. (d) H^+ (proton) will have very large hydration energy due to its very small ionic size

Hydration energy $\propto \frac{1}{\text{Size}}$

33. (b) Mass of a proton =
$$1.673 \times 10^{-24} g$$

 \therefore Mass of one mole of proton

$$= 9.1 \times 10^{-24} \times 6.02 \times 10^{23} = 10.07 \times 10^{-1} = 1.008g$$

Mass of a electron = $9.1 \times 10^{-28} g$

IIT-JEE CHEMISTRY

.. Mass of one mole of electron

$$= 9.1 \times 10^{-28} \times 6.02 \times 10^{23} = 54.78 \times 10^{-5}g = 0.55mg.$$

34. (c) 10-1010^{-10}10-10 m

Explanation:

The electron orbits around the nucleus at a typical distance called the **atomic** radius.

This distance is on the order of 1 Ångström, which is $1 \text{ A}^{\circ}=10^{-10} \text{ m}$

Distances like 10⁻⁶m are far too large, and 10⁻¹⁵ m corresponds to **nuclear** size, not electron orbit.

- 35. (c) One mole of electron = 6.023×10^{23} electron

 Mass of one electron = 9.1×10^{-28} gm

 Mass of one mole of electrons

 = $6.023 \times 10^{23} \times 9.1 \times 10^{-28}$ gm = 5.48×10^{-4} gm

 = $5.48 \times 10^{-4} \times 1000$ mg = 0.548 gm ≈ 0.55 mg.
- **36.** (a) Charge on proton = +1 unit, charge on α particle = +2 units, 2 : 1.
- 37. (b) $m_p/m_e \approx 1837 \approx 1.8 \times 10^3$.
- **38.** (a) Splitting of signals is caused by protons attached to adjacent carbon provided these are not equivalent to the absorbing proton.
- **39.** (d) Nucleus consists of proton and neutron both are called as nucleon.
- **40.** (c) Positron $(+1e^0)$ has the same mass as that of an electron $(-1e^0)$.
- **41.** (c) Electron $\frac{1}{1837}$ time lighter than proton so their mass ratio will be 1 : 1837

