数据挖掘 第三章关联模式分析

第三章 关联模式分析

- 1 基本概念
- 2 频繁项挖掘算法
- 3 关联分析的评估

1.1 定义: 关联分析 (association analysis)

- 关联分析用于发现隐藏在大型数据集中的令人感兴趣的联系, 所发现的模式通常用关联规则或频繁项集的形式表示。
- 关联规则反映一个事物与其它事物之间的相互依存性和关联性。如果两个或者多个事物之间存在一定的关联关系,那么,其中一个事物发生就能够预测与它相关联的其它事物的发生。

TID	Items	
1	Bread, Milk	
2	Bread, Diaper, Beer, Eggs	
3	Milk, Diaper, Beer, Coke	
4	Bread, Milk, Diaper, Beer	
5	Bread, Milk, Diaper, Coke	

Rules Discovered:
{Diaper} --> {Beer}

1.1 定义: 频繁项集 (Frequent Itemset)

- 项集 (Itemset)
 - 包含0个或多个项的集合
 - 例子: {Milk, Bread, Diaper}
 - k-项集
 - 如果一个项集包含k个项
- 支持度计数 (Support count) (σ)
 - 包含特定项集的事务个数
 - 例如: σ ({Milk, Bread, Diaper}) = 2
- 支持度 (Support)
 - 包含项集的事务数与总事务数的比值
 - 例如: $s(\{Milk, Bread, Diaper\}) = 2/5$
- 频繁项集 (Frequent Itemset)
 - 满足最小支持度阈值 (minsup) 的所有项集

TID	Items	
1	Bread, Milk	
2	Bread, Diaper, Beer, Eggs	
3	Milk, Diaper, Beer, Coke	
4	Bread, Milk, Diaper, Beer	
5	Bread, Milk, Diaper, Coke	

事务Id	项集合
10	A, B, C
20	A, C
30	A, D
40	B, E, F

求以下两个规则的支持度和置信度:

A = > C

C = > A

1.2 最大频繁项集 (Maximal Frequent Itemset)

最大频繁项集是这样的频繁项集,它的直接超集都不是频繁的

1.3 定义: 关联规则 (Association Rule)

• 关联规则

- 关联规则是形如 X → Y的蕴 含表达式, 其中 X 和 Y 是不相 交的项集
- 例子:
 {Milk, Diaper} → {Beer}

• 关联规则的强度

- 支持度 Support (s)
 - 确定项集的频繁程度
- 置信度 Confidence (c)
 - · 确定Y在包含X的事
 - 务中出现的频繁程度

TID	Items	
1	Bread, Milk	
2	Bread, Diaper, Beer, Eggs	
3	Milk, Diaper, Beer, Coke	
4	Bread, Milk, Diaper, Beer	
5	Bread, Milk, Diaper, Coke	

Example:

 $\{Milk, Diaper\} \Rightarrow Beer$

$$s = \frac{\sigma(\text{Milk, Diaper, Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67$$

1.4 关联规则挖掘问题

关联规则挖掘问题:

给定事务的集合 T, 关联规则发现是指找出**支持度大于等于** minsup并且置信度大于等于minconf的所有规则, minsup和 minconf是对应的支持度和置信度阈值

事务Id	项集合
10	A, B, C
20	A, C
30	A, D
40	B, E, F

最小支持度 50% 最小置信度 50%

频繁模式	支持度
{A}	75%
{B}	50%
{C}	50%
{A, C}	50%

支持度 = support($\{A\} \cup \{C\}$) = [填空1]

置信度 = support($\{A\} \cup \{C\}$)/support($\{A\}$) = [填空2]

作答

关联规则挖掘问题:给定事务的集合 T,关联规则发现是指找出支持度大于等于 minsup并且置信度大于等于minconf的所有规

则, minsup和minconf是对应的支持度和置信度阈值

事务Id	项集合
10	A, B, C
20	A, C
30	A, D
40	B, E, F

最小支持度 50% 最小置信度 50%

频繁模式	支持度
{A}	75%
{B}	50%
{C}	50%
{A, C}	50%

规则 $A \Rightarrow C$:

支持度 = support($\{A\} \cup \{C\}$) = 50%

置信度 = support($\{A\} \cup \{C\}$)/support($\{A\}$) = 66.6%

1.4 挖掘关联规则 (Mining Association Rules)

- 大多数关联规则挖掘算法通常采用的一种策略是,将关联规则挖掘任务分解为如下两个主要的子任务:
 - 频繁项集产生 (Frequent Itemset Generation)
 - 其目标是发现满足最小支持度阈值的所有项集, 这些项集称作频繁项集。
 - 规则的产生 (Rule Generation)
 - 其目标是从上一步发现的频繁项集中提取所有高置信度的规则,这些规则称作强规则 (strong rule)。

1.5 关联规则原始方法

- 挖掘关联规则的一种原始方法是: Brute-force approach:
 - 计算每个可能规则的支持度和置信度
 - 这种方法计算代价过高,因为可以从数据集提取的规则的数量 达指数级

第三章 关联模式分析

- 3.1 基本概念
- 2.2 频繁项挖掘算法
- 2.3 关联分析的评估

2 频繁项集产生 (Frequent Itemset Generation)

- Brute-force 方法:
 - 计算开销大

降低产生频繁项集计算复杂度的方法

- 减少候选项集的数量
 - 先验原理: (Apriori)
- 减少比较的次数
 - 替代将每个候选项集与每个事务相匹配,可以使用更高级的数据结构,或存储候选项集或压缩数据集,来减少比较次数(FPGrowth)

2.1 Apriori

• 先验原理:

- 如果一个项集是频繁的,则它的所有子集一定也是频繁的
- 相反,如果一个项集是非频繁的,则它的所有超集也一定是非 频繁的

例子

2.1 Apriori算法过程:最小支持度计数=2

Sup Database TDB

Tid	Items
10	A, C, D
20	B, C, E
30	A, B, C, E
40	B, E

 $Sup_{min} = 2$

1st scan

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

	Itemset	sup
L_{I}	{A}	2
	{B}	3
	{C}	3
	{E}	3

T		
L_2	Itemset	sup
_	{A, C}	2
·	{B, C}	2
	{B, E}	3
	{C, E}	2

Itemset	sup
{A, B}	1
{A, C}	2
{A, E}	1
{B, C}	2
{B, E}	3
{C, E}	2

2nd scan
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

C_2	Itemset
3	$\{B,C,E\}$

3 rd	scan	L_3

Itemset	sup
$\{B,C,E\}$	2

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

尽管集合具有无序性,但为了快速连接操作,**通常对所有商品做一个默认的排序**(类似于建立一个字典索引)

对于任何2个需要连接的项集

A,B,C

A,B,E

对于任何2个需要连接的项集 A,B,**C 去掉第1个项集的尾项** A,B,E

对于任何2个需要连接的项集

A,B,C 去掉第1个项集的尾项

A,B,E 去掉第2个项集的尾项

对于任何2个需要连接的项集

A,B,C 去掉第1个项集的尾项

A,B,E 去掉第2个项集的尾项

若剩下的项 —样 A,B A,B

对于任何2个需要连接的项集

A,B,C 去掉第1个项集的尾项

A,B,E 去掉第2个项集的尾项

对于任何2个需要连接的项集

A,B,C 去掉第1个项集的尾项

A,B,E 去掉第2个项集的尾项

对于任何2个需要连接的项集

A,B,D 去掉第1个项集的尾项

B,C,K 去掉第2个项集的尾项

对于任何2个需要连接的项集

A,B,C 去掉第1个项集的尾项

A,B,E 去掉第2个项集的尾项

 若剩下的项 一样
 A,B 则可连接

 A,B
 A,B,C,E

对于任何2个需要连接的项集

A,B,D 去掉第1个项集的尾项

B,C,K 去掉第2个项集的尾项

Database TDB

Tid	Items
10	A, C, D
20	B, C, E
30	A, B, C, E
40	B, E

$p_{\min} = 2$	Itemset	sup
	{A}	2
C_1	{B}	3
1 at	{C}	3
1 st scan	{D}	1
	{E}	3

	Itemset	sup
L_1	{A}	2
	{B}	3
	{C}	3
	{E}	3

频繁2项集生成的候选 3项集是什么?

$\frac{7}{2}$	Itemset	sup
ا آ	{A, B}	1
	{A, C}	2
	{A, E}	1
- [{B, C}	2
	{B, E}	3
	{C, E}	2

| Itemset | {A, B} | {A, C} | {A, E} | {B, C} | {B, E} | {C, E} |

 C_3 Itemset $\{B, C, E\}$

 3^{rd} scan L_3

 Itemset
 sup

 {B, C, E}
 2

 2^{nd} scan

对于任何2个需要连接的项集

A,B,C 去掉第1个项集的尾项

A,B,E 去掉第2个项集的尾项

对于任何2个需要连接的项集

A,B,D 去掉第1个项集的尾项

B,C,E 去掉第2个项集的尾项

Tid	Items
10	A, C, D
20	B, C, E
30	A, B, C, E
40	B, E
	_

Database TDB

$Sup_{min} = 2$	Itemset	sup
3	{A}	2
C_1	{B}	3
1 st	{C}	3
$\frac{1^{st}}{}$ scan	{D}	1
	{E}	3
1	·	

L_1 {A} 2	
{B} 3	
→ {C} 3	
{E} 3	

			C_2	Itemset	sup
	Itemset	cun	1	{A, B}	1
2		sup		{A, C}	2
	{A, C}	2		{A, E}	1
	{B, C}	2	←		2
\neg	{B, E}	3		{B, C}	
_	{C, E}	2		$\{B, E\}$	3
	$\{C, E\}$		I	{C, E}	2

Itemset	sup	Γ
{A, B}	1	2 nd scan
{A, C}	2	Z nd Scan
{A, E}	1	
{B, C}	2	
{B, E}	3	

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

C_{2}	Itemset
- 3	{B, C, E}

 3^{rd} scan L_3

Itemset	sup
$\{B, C, E\}$	2

对于任何2个需要连接的项集

A,B,C 去掉第1个项集的尾项

A,B,E 去掉第2个项集的尾项

若剩下的项 则可连接 A,B A,B,C,EA,B

对于任何2个需要连接的项集

A,B,D 去掉第1个项集的尾项

B,C,E 去掉第2个项集的尾项

Batacase 1BB		
Tid	Items	
10	A, C, D	
20	В, С, Е	
30	A, B, C, E	
40	B, E	

Database TDB

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3
	{A} {B} {C} {D}

	Itemset	sup
L_1	{A}	2
	{B}	3
	{C}	3
	{E}	3

A,C,E B,C,E

候选项的生成

			C_2	Itemset	sup
-	Itemset	sup	1	{A, B}	1
2		sup		{A, C}	2
	{A, C}	2		{A, E}	1
	{B, C}	2		{B, C}	2
	{B, E}	3			2
	{C, E}	2	1	{B, E}	3
	(-,-)		ı	{C, E}	2
			•		

 $Sup_{min} =$

\mathcal{C}_2	Itemset
2 nd scan	{A, B}
-	{A, C}
	{A, E}
	{B, C}
	{B, E}
	{C, E}

Itemset	3 rd scan	L_{3}	Itemset	su
$\{B, C, E\}$		→]	$\{B, C, E\}$	2

2.5.3 Apriori算法特点

- 多次扫描数据库
- 候选项规模庞大
- 计算支持度开销大

2.1 提高Apriori算法性能的方法

2.1 Apriori算法缺点

Apriori算法需要反复的生成候选项,如果项的数目比较大, 候选项的数目将达到<mark>组合爆炸式的增长</mark>

2.2 FPGrowth

- 背景
 - 韩家炜等人,2000年
- 基本思想
 - 只扫描数据库两遍,构造频繁模式树 (FP-Tree)
 - 自底向上递归产生频繁项集
 - FP树是一种输入数据的压缩表示,它通过逐个读入事务,并把每个事务映射到FP树中的一条路径来构造。

2.2 构造FP树:第一遍扫描

原始事务

TID	Items
1	{B,F,A}
2	{B,C,D}
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	$\{A,B,C\}$
6	{A,B,C,D}
7	{A}
8	$\{A,B,C\}$
9	$\{A,B,D\}$
10	{B,C,E}
11	{G}

删除支持度小于2的项

Item	Count
А	8
В	7
С	6
D	5
Е	3
F	1
G	1

假设事先指定最小 支持度计数为2

Items按照出现次数降序排列

TID	Items
1	{A,B}
2	{B,C,D}
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	$\{A,B,C\}$
6	{A,B,C,D}
7	{A}
8	$\{A,B,C\}$
9	$\{A,B,D\}$
10	{B,C,E}

2.2 构造FP树:第二遍扫描

TID	Items
1	{A,B}
2	$\{B,C,D\}$
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	$\{A,B,C\}$
6	{A,B,C,D}
7	{A}
8	{A,B,C}
9	$\{A,B,D\}$
10	{B,C,E}

2.2 构造FP树:第二遍扫描

TID	Items
1	{A,B}
2	{B,C,D}
3	{A,C,D,E}
4	{A,D,E}
5	{A,B,C}
6	{A,B,C,D}
7	{A}
8	{A,B,C}
9	{A,B,D}
10	{B,C,E}

22 构造FP树:第二遍扫描

Items
{A,B}
$\{B,C,D\}$
$\{A,C,D,E\}$
$\{A,D,E\}$
$\{A,B,C\}$
$\{A,B,C,D\}$
{A}
$\{A,B,C\}$
$\{A,B,D\}$
{B,C,E}

Header table

ltem	Pointer
Α	
В	
С	
D	
Е	

构造E节点的条件FP树

Item	条件模式基	条件FP树	频繁项集
Е	{{ACD:1},{AD:1},{BC:1}}	<a:1,c:1,d:1>,<a:1,d: 1>,<c:1></c:1></a:1,d: </a:1,c:1,d:1>	{AE:2},{CE:2},{DE:2},{ACE:1},{ADE:2},{CDE:1},{ACDE:1}
		17, 10.17	

构造D节点的条件FP树

Item	Pointer
Α	4
В	3
С	3
D	5

Item	条件模式基	条件FP树	频繁项集	
E	{{ACD:1},{AD:1},{BD:1}}	<a:1,c:1,d:1>,<a:1,d:1>,< C:1></a:1,d:1></a:1,c:1,d:1>	{AE:2},{CE:2},{DE:2},{ACE:1},{ADE:2},{CDE: 1},{ACDE:1}	
D				

构造C节点的条件FP树

Item	Pointer
А	4
В	5
С	6

Item	条件模式基	条件FP树	频繁项集
Е	{{ACD:1},{AD:1},{BD:1}}	<a:1,c:1,d:1>,<a:1,d:1>,<c:1></c:1></a:1,d:1></a:1,c:1,d:1>	{AE:2},{CE:2},{DE:2},{ACE:1},{ADE:2},{CDE: 1},{ACDE:1}
D	{{ABC:1},{AB:1},{AC:1},{A:1},{BC:1}}	<a:1,b:1,c:1>,<a:1,b:1>, <a:1,c:1>,<a:1>,<b:1,c: 1></b:1,c: </a:1></a:1,c:1></a:1,b:1></a:1,b:1,c:1>	{AD:4},{BD:3},{CD:3},{ABD:2},{ACD:2},{BCD:2}
С			

Item	Pointer
Α	5
В	7

Item	条件模式基	条件FP树	频繁项集
Е	{{ACD:1},{AD:1},{BD:1}}	<a:1,c:1,d:1>,<a:1,d:1>,<c:1></c:1></a:1,d:1></a:1,c:1,d:1>	{AE:2},{CE:2},{DE:2},{ADE:2}
D	{{ABC:1},{AB:1},{AC:1},{A:1},{BC:1}}	<a:1,b:1,c:1>,<a:1,b:1>,<a:1,c:1>,<a:1>,<b:1,c:1>,<a:1>,<b:1,c:1>,<a:1>,<b:1,c:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a:1>,<a< td=""><td>{AD:4},{BD:3},{CD:3},{ABD:2},{ACD:2},{BCD:2}</td></a<></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></a:1></b:1,c:1></a:1></b:1,c:1></a:1></b:1,c:1></a:1></a:1,c:1></a:1,b:1></a:1,b:1,c:1>	{AD:4},{BD:3},{CD:3},{ABD:2},{ACD:2},{BCD:2}
С	{{AB:3},{A:1},{BC:2}}	<a:3,b:3>,<a:1>,<b:2></b:2></a:1></a:3,b:3>	{AC:4},{BC:5},{ABC:3}
В			

2.2 构造FP树:用FP-tree挖掘频繁集

- 基本思想 (分治)
 - 用FP-tree递归增长频繁集
- 方法
 - 对每个项,生成它的条件模式基,然后生成它的条件 FP-tree
 - 对每个新生成的条件FP-tree, 重复这个步骤
 - 直到结果FP-tree为空,或只含唯一的一个路径(此路径的每个 子路径对应的项集都是频繁集)

<u>TID</u>	Items bought (orde	ered) frequent items	
100	$\{f, a, c, d, g, i, m, p\}$	$\{f, c, a, m, p\}$	
200	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$	
300	$\{b, f, h, j, o\}$	{ <i>f</i> , <i>b</i> }	最小支持度 = 0.5
400	$\{b, c, k, s, p\}$	$\{c, b, p\}$	
500	$\{a, f, c, e, l, p, m, n\}$	$\{f, c, a, m, p\}$	\Box

- 扫描数据库一次,得到频 繁1-项集
- 把项按支持度递减排序
- 再一次扫描数据库,建立 FP-tree

<u>TID</u>	Items bought (ord	<u>ered) frequent items</u>	
100	$\{f, a, c, d, g, i, m, p\}$	$\{f, c, a, m, p\}$	
200	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$	
300	$\{b, f, h, j, o\}$	{ <i>f</i> , <i>b</i> }	最小支持度 = 0.5
400	$\{b, c, k, s, p\}$	$\{c, b, p\}$	
500	${a, f, c, e, l, p, m, n}$	$\{f, c, a, m, p\}$	{ }

- 扫描数据库一次,得到频 繁1-项集
- 把项按支持度递减排序
- 再一次扫描数据库,建立 FP-tree

	头表	
<u>Item</u>	frequency	head
f	4	
С	4	+
а	3	\
b	3	
m	3	
p	3	\ \

<u>TID</u>	Items bought (ord	<u>ered) frequent items</u>	
100	$\{f, a, c, d, g, i, m, p\}$	$\{f, c, a, m, p\}$	
200	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$	
300	$\{b, f, h, j, o\}$	{ <i>f</i> , <i>b</i> }	最小支持度 = 0.5
400	$\{b, c, k, s, p\}$	$\{c, b, p\}$	
500	$\{a, f, c, e, l, p, m, n\}$	$\{f, c, a, m, p\}$	{}

- 扫描数据库一次,得到频 繁1-项集
- 把项按支持度递减排序
- 再一次扫描数据库,建立 FP-tree

<u>TID</u>	Items bought (orde	ered) frequent items	
100	$\{f, a, c, d, g, i, m, p\}$	$\{f, c, a, m, p\}$	
200	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$	
300	$\{b, f, h, j, o\}$	{ <i>f</i> , <i>b</i> }	最小支持度 = 0.5
400	$\{b, c, k, s, p\}$	$\{c, b, p\}$	
500	$\{a, f, c, e, l, p, m, n\}$	$\{f, c, a, m, p\}$	\Box

- 扫描数据库一次,得到频 繁1-项集
- 把项按支持度递减排序
- 再一次扫描数据库,建立 FP-tree

练习: 生成条件模式

- 从FP-tree的头表开始
- 按照每个频繁项的连接遍历 FP-tree
- 列出能够到达此项的所有前缀路径,得到条件模式基

条件模式库				
item	cond. pattern base			
\overline{c}	f: 3			
a	fc: 3			
b	fca: 1, f: 1, c: 1			
m	fca: 2, fcab: 1			

{}

P的条件模式基为:

- f: 2,c: 2,a: 2,m: 2,p: 2
- B f: 2,c: 1,a: 1,m: 1,p: 1
- c f: 1,c: 1,a: 1,m: 1,p: 1
- c: 1,b: 1,p: 1

2.2 构造FP树:用FP-tree挖掘频繁集

- 基本思想 (分治)
 - 用FP-tree递归增长频繁集
- 方法
 - 对每个项,生成它的条件模式基,然后生成它的条件 FP-tree
 - 对每个新生成的条件FP-tree, 重复这个步骤
 - 直到结果FP-tree为空,或只含唯一的一个路径(此路径的每个 子路径对应的项集都是频繁集)

2.2 FP-tree 结构的优点

- 完备:
 - 不会打破交易中的任何模式
 - 包含了频繁模式挖掘所需的全部信息
- 紧密
 - 支持度降序排列: 支持度高的项在FP-tree中共享的机会也高
 - 决不会比原数据库大

2.2 FP-tree 结构的优点 —— 性能对比

Data set T25I20D10K

2.3 挖掘关联规则 (Mining Association Rules)

- 大多数关联规则挖掘算法通常采用的一种策略是,将关联规则挖掘任务分解为如下两个主要的子任务:
 - 频繁项集产生 (Frequent Itemset Generation)
 - —— 其目标是发现满足最小支持度阈值的所有项集,这些项集称作频繁项集。
 - 规则的产生 (Rule Generation)
 - —— 其目标是从上一步发现的频繁项集中提取所有高置信度的规则,这些规则称作强规则(strong rule)。

2.3 产生关联规则

- 任务描述: 给定频繁项集Y, 查找Y的所有非空真子集X ⊂ Y,
 使得 X → Y 的置信度超过最小置信度阈值minconf
 - 例子: If {A,B,C} is a frequent itemset, 候选规则如下:

$$AB \rightarrow C$$
, $AC \rightarrow B$, $BC \rightarrow A$
 $A \rightarrow BC$, $B \rightarrow AC$, $C \rightarrow AB$

如果 |Y| = k, 那么会有 2^k – 2 个候选关联规则 (不包括 Y→ Ø and Ø → Y)

2.3 产生关联规则

- How to efficiently generate rules from frequent itemsets?
 - 通常置信度不满足反单调性 (anti-monotone property) , 例如:
 - c(ABC →D) 可能大于也可能小于 c(AB →D)
 - 但是,针对同一个频繁项集的关联规则,如果规则的后件满足 子集关系,那么这些规则的置信度间满足反单调性
 - e.g., $Y = \{A,B,C,D\}$: $c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$

2.3 Rule Generation for Apriori Algorithm

第三章 关联模式分析

- 3.1 基本概念
- 2.2 频繁项挖掘算法
- 2.3 关联分析的评估

3 关联分析的评估 (Pattern Evaluation)

● play basketball ⇒ eat cereal [支持度= , 置信度=]

	Basket ball	Not basketball	Sum (row)
Cereal 麦片	2000	1750	3750
Not cereal	1000	250	1250
Sum (col.)	3000	2000	5000

3 关联分析的评估 (Pattern Evaluation)

- play basketball \Rightarrow eat cereal [40%, 66.7%] is misleading
 - The overall % of students eating cereal is 75% > 66.7%.
- play basketball ⇒ not eat cereal [20%, 33.3%] is more accurate,
 although with lower support and confidence
- Measure of dependent/correlated events: lift 提升度

$$lift = \frac{P(A \cup B)}{P(A)P(B)}$$

$$lift(B,C) = \frac{2000/5000}{3000/5000*3750/5000} = 0.89$$

$$lift(B, \neg C) = \frac{1000/5000}{3000/5000*1250/5000} = 1.33$$

	Basket ball	Not basketball	Sum (row)
Cereal	2000	1750	3750
Not cereal	1000	250	1250
Sum (col.)	3000	2000	5000