Onde Fluidi e Termodinamica

Riassunto da:

"FISICA: Meccanica e Termodiamica - P. Mazzoldi, M. Nigro, C. Voci"

corso A Università degli studi di Torino, Torino Maggio 2024

Indice

_	_			_			
1	Ond						
	1.1		meccaniche	3			
			Onde in una sbarra solida	4			
			Onde in una corda tesa	6			
			Onde nei gas	7			
			Densità	7			
			Pressione	8			
			Forza	8			
			Modulo di compressibilità adiabatica	8			
	1.2	Onde	piane armoniche	10			
		1.2.1	Propagazione dell'energia in una barra solida	11			
			Energia per unità di volume	11			
			Intensità dell'onda	12			
		1.2.2	Propagazione dell'energia in una corda tesa	12			
			Energia per unità di lunghezza	13			
	1.3	Onde s	sonore	13			
		1.3.1	Pressione	13			
			Potenza	14			
		1.3.3	Intensità	14			
		1.3.4	Fonometria	14			
			Livello sonoro	15			
	1.4	Onde i	n più dimensioni	15			
			Onde elastiche in una membrana tesa	16			
		1.4.2	Onde sferiche	17			
			Intensità	17			
			Onde cilindriche	17			
		1.4.4	Assorbimento dell'energia	19			
	1.5	Pacche	etti d'onde	20			
		1.5.1	Velocità di fase e velocità di gruppo	20			
	1.6	Effetto	Doppler	23			
		1.6.1	Sorgente in moto	23			
		1.6.2	Rivelatore in moto	24			
		1.6.3	Espressione generale	24			
		1.6.4	Onda d'urto	24			
		1.6.5	Onde sferiche	25			
	1.7	Interfe	erenza	25			
		1.7.1	Interferenza con stessa ampiezza	25			
			Interferenza costruttiva e distruttiva				
			Interferenza con ampiezze diverse				
			Interferenza costruttiva e distruttiva				
			Sorgenti puntiformi				
	10		iona a trasmissiona	20			

	1.9	Onde	stazionarie	29
		1.9.1	Corda tesa con due estremi fissi	30
		1.9.2	Corda tesa con un estremo fisso	31
		1.9.3	Onde stazionarie in una colonna di gas	31
		1.9.4	Timbro	31
2	Flui	idodina	amica	33
	2.1	Pressi	ione	33
		2.1.1	Equilibrio statico di un fluido	33
		2.1.2	Lavoro della pressione	35
		2.1.3	Equilibrio in presenza di forza peso	35
	2.2	Princi	ipio di Archimede	35
	2.3	Liqui	do in rotazione	36
	2.4	Moto	di un fluido	37
		2.4.1	Descrizioni del moto	38
		2.4.2	Tubi di flusso e portata	38
		2.4.3	Teorema di Bernoulli	39
		2.4.4	Moto laminare	40
		2.4.5	Moto turbolento	40
		2.4.6	Effetto Magnus e Portanza	41

Onde

1.1 Onde meccaniche

Se in casi come il pendolo o un corpo attaccato ad una molla l'oscillazione è **macroscopica** perché tutto il sistema oscilla, in corpi continui elastici possono prodursi moti oscillatori locali, provocati in una zona specifica del corpo. Questa oscillazione indotta localmente si **propaga nel mezzo** con una certa velocità costituendo così un'**onda**.

Definizione: Onda

Un'onda è una perturbazione locale impulsiva e periodica che si porpaga in un mezzo (corpo continuo ed elastico) con una certa velocità v. Nel caso unidimensionale parliamo di **onda piana** $\xi(x,t)$ la cui deformazione è costante in tutti i punti con stessa x

Per descrivere l'andamento di un'onda possiamo: **fissare un istante** *t* e osservare la deformazione su tutto lo spazio *x*, come se fosse una foto dell'onda; oppure **fissare un punto dello spazio** *x* e osservare al variare del tempo come varia la forma dell'onda, come se fosse un filmato.

inserire grafici

Vediamo ora come possiamo scrivere l'equazione che descrive la perturbazione in funzione della posizione \mathbf{x} e del tempo \mathbf{t} : per farlo serviamoci di un sistema di riferimento $\mathbf{0}$ solidale con l'istante t=0 e un sistema di riferimento $\mathbf{0}'$ solidale con lo spostamento dell'onda che viaggia a velocità v.

Possiamo quindi descrivere la posizione l'andamento di un'onda piana tramite una funzione del tipo

$$\begin{cases} x' = x \pm vt \\ \xi' = \xi \end{cases} \Rightarrow \xi(x, t) = \mathbf{f}(\mathbf{x} \pm \mathbf{vt})$$

Una funzione del tipo $\mathbf{f}(\mathbf{x} \pm \mathbf{v}\mathbf{t})$ soddisfa l'equazione differenziale detta **equazione delle onde** o **equazione** di d'Alembert:

$$\nabla_{\xi}^{2} - \frac{1}{v^{2}} \frac{\partial^{2} \xi}{\partial t^{2}} = 0 \quad \Rightarrow \quad \boxed{\frac{\partial^{2} \xi}{\partial x^{2}} = \frac{1}{v^{2}} \frac{\partial^{2} \xi}{\partial t^{2}}}$$

- dimostrazione

$$\mathbf{z} = \mathbf{x} - \mathbf{v} \mathbf{t} \iff \begin{bmatrix} \frac{\partial z}{\partial x} = 1 \end{bmatrix} \begin{bmatrix} \frac{\partial z}{\partial t} = -v \end{bmatrix} \iff \mathbf{f} = \mathbf{f}(\mathbf{z})$$

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial z} \frac{\partial z}{\partial x} \right) = \frac{\partial^2 f}{\partial z^2}$$

$$\frac{\partial^2 f}{\partial t^2} = \frac{\partial}{\partial t} \left(\frac{\partial f}{\partial t} \right) = \frac{\partial}{\partial t} \left(\frac{\partial f}{\partial z} \frac{\partial z}{\partial t} \right) = \frac{\partial}{\partial t} \left(-v \frac{\partial f}{\partial z} \right) = -v \frac{\partial}{\partial z} \left(-v \frac{\partial f}{\partial z} \right) = v^2 \frac{\partial^2 f}{\partial z^2}$$

$$\frac{\partial^2 \xi}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 \xi}{\partial t^2}$$

Il passaggio più ambiguo è quello evidenziato in ciano, in cui viene cambiata variabile di derivazione da t a z. Trattando una funzione qualsiasi, la derivata di qualsiasi funzione rispetto a t è uguale a -v derivata rispetto a z (-v rappresenta il dz che va a moltiplicare).

Notare che l'equazione delle onde è soddisfatta solo per funzioni che hanno come argomento combinazioni lineari di x e t ($\xi(x\pm vt)$); è perciò **l'argomento che importa e non la funzione in sè**. Una combinazione lineare di soluzioni è ancora soluzione dell'equazione, la soluzione generale ha forma

$$G(x, t) = f(x - vt) + g(x + vt)$$

1.1.1 Onde in una sbarra solida

Prendiamo una sbarra solida e supponiamo di sollecitare il tratto iniziale applicando una **forza impulsiva**. Analiziamo un segmento di lunghezza dx: su di esso agiscono la forza elastica F(x,t) esercitata dagli elementi a sinistra del segmento e la forza elastica -F(x+dx,t) di verso opposto esercitata dagli elementi a destra.

Alla cessazione dello stimolo (t') agiscono le forze elastiche e si ha che la lunghezza dell'elemento passa da dx a

$$(x+dx) + \xi(x+dx,t') - x - \xi(x,t') = dx + d\xi$$

Per quanto riguarda le forze invece vale la legge di Hooke secondo la quale

Legge di Hooke
$$F(x) = ES \frac{\partial \xi}{\partial x}$$

Possiamo quindi scrivere la legge del moto con accelerazione $a = \partial^2 \xi / \partial t^2$:

Risultante
$$dF = \frac{\partial F}{\partial x} dx = \frac{\partial}{\partial x} \left(ES \frac{\partial \xi}{\partial x} \right) dx = ES \frac{\partial^2 \xi}{\partial x^2} dx = \mathbf{dma} = dm \frac{\partial^2 \xi}{\partial t^2}$$

esprimendo la massa come $dm = \rho S dx$ si ottiene l'equazione delle onde di d'Alembert dove il coefficiente del termine a destra gioca il ruolo di $1/v^2$, da questo possiamo scrivere la velocità di propagazione dell'onda:

$$ES\frac{\partial^2 \xi}{\partial x^2} dx = \rho S dx \frac{\partial^2 \xi}{\partial t^2}$$

$$\frac{\partial^2 \xi}{\partial x^2} = \frac{\rho}{E} \frac{\partial^2 \xi}{\partial t^2} \qquad \qquad \nu = \sqrt{\frac{E}{\rho}}$$
 (1.1)

Inoltre oltre allo spostamento $\xi(x,t)$ si propaga anche la forza F(x,t). Ciò è verificabile riutilizzando l'epressione della forza nella Legge di Hooke (derivandola prima rispetto a t e poi rispetto a x) e ricordando il Teorema di Schwartz, secondo il quale in una derivata mista non dipende dall'ordine di derivazione:

$$\frac{\partial^{2} F}{\partial t^{2}} = \frac{\partial^{2}}{\partial t^{2}} \left(ES \frac{\partial \xi}{\partial x} \right) = \frac{\partial}{\partial x} \left(ES \frac{\partial^{2} \xi}{\partial t^{2}} \right) = \frac{\partial}{\partial x} \left(ES v^{2} \frac{\partial^{2} \xi}{\partial x^{2}} \right)$$

$$\frac{\partial^{2} F}{\partial x^{2}} = \frac{\partial^{2}}{\partial x^{2}} \left(ES \frac{\partial \xi}{\partial x} \right) = \frac{\partial}{\partial x} \left(ES \frac{\partial^{2} \xi}{\partial x^{2}} \right)$$

$$\left\{ \frac{\partial}{\partial x} \left(ES \frac{\partial^{2} \xi}{\partial x^{2}} \right) = \frac{\partial^{2} F}{\partial x^{2}} \right\}$$

$$\left\{ \frac{\partial}{\partial x} \left(ES v^{2} \frac{\partial^{2} \xi}{\partial x^{2}} \right) = \frac{\partial^{2} F}{\partial t^{2}} \right\}$$

$$\left\{ \frac{\partial}{\partial x} \left(ES \frac{\partial^{2} \xi}{\partial x^{2}} \right) = \frac{\partial^{2} F}{\partial x^{2}} \right\}$$

$$\left\{ \frac{\partial}{\partial x} \left(ES \frac{\partial^{2} \xi}{\partial x^{2}} \right) = \frac{\partial^{2} F}{\partial x^{2}} \right\}$$

$$\left\{ \frac{\partial}{\partial x} \left(ES \frac{\partial^{2} \xi}{\partial x^{2}} \right) = \frac{\partial^{2} F}{\partial x^{2}} \right\}$$

$$\frac{\partial^2 F}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 F}{\partial t^2} \qquad v = \sqrt{\frac{E}{\rho}}$$
 (1.2)

-Definizione: onde lognitudinali-

Quando, come in questo caso, sia lo spostamento $\xi(x\pm vt)$ sia la forza $F(x\pm vt)$, campi che descrivono le onde che si propagano lungo l'asse x, sono paralleli alla direzione in cu si propaga la perturbazione, l'onda viene chiamata **onda longitudinale**.

1.1.2 Onde in una corda tesa

Quando si sposta rapidamente in direzione trasversale l'estremo di una corda tesa (con un estremo fisso) vediamo la perturbazione che si propaga lungo la corda da un estremo all'altro. Supponiamo di spostare leggermente la corda dalla sua posizione di equilibrio e andiamo a studiare le tensioni che agiscono su un segmento di corda \mathbf{dl} . Per piccoli angoli α e α' possiamo introdurre le seguenti approssimazioni:

$$\cos \alpha = 1$$
 $\cos \alpha' = 1$ $\sin \alpha = \tan \alpha$ $\sin \alpha' = \tan \alpha'$
$$\tan \alpha = \frac{\partial \xi}{\partial x} = S(x, t)$$

$$dF_x = T(\cos\alpha' - \cos\alpha) = 0$$

$$dF_y = T(\sin \alpha' - \sin \alpha) = T(\tan \alpha' - \tan \alpha)$$

$$= T[S(x + dx, t) - S(x)] = TdS = T\frac{\partial S}{\partial x}dx$$

$$= T\frac{\partial}{\partial x} \left(\frac{\partial \xi}{\partial x}\right) dx = T\frac{\partial^2 \xi}{\partial x^2} dx$$

Risultante
$$dF = T \frac{\partial^2 \xi}{\partial x^2} dx = \mathbf{dma} = dm \frac{\partial^2 \xi}{\partial t^2}$$

esprimendo la massa come $dm = \mu dx$ si ottiene l'equazione delle onde di d'Alembert dove il coefficiente del termine a destra gioca il ruolo di $1/v^2$, da questo possiamo scrivere la velocità di propagazione dell'onda:

$$T\frac{\partial^2 \xi}{\partial x^2} dx = \mu dx \frac{\partial^2 \xi}{\partial t^2}$$

$$\frac{\partial^2 \xi}{\partial x^2} = \frac{\mu}{T} \frac{\partial^2 \xi}{\partial t^2} \qquad \qquad v = \sqrt{\frac{T}{\mu}}$$
 (1.3)

Definizione: onde trasversali

Quando, come in questo caso, le particelle del mezzo attraversato subiscono spostamenti in direzione perpendicolare alla direzione in cui si propaga l'onda l'onda viene chiamata **onda trasversale**.

1.1.3 Onde nei gas

Se per i solidi la deformazione dipende dal modulo di Young secondo la legge $\frac{\Delta L}{L} = \frac{1}{E}\sigma$, nel caso dei gas la variazione relativa di volume segue la legge

$$\frac{\Delta V}{V} = -\frac{1}{\beta} \Delta p$$

Supponiamo di avere del gas imperturbato (ρ_0 , p_0) bloccato da due pistoni. Fornendo un impulso di pressione tramite i pistoni provociamo una compressione adiacente con una **conseguenti variazione di densità di massa**.

Densità

Considero un elemnto di gas di massa $dm = \rho_0 S(dx)$ che a seguito della perturbazione subisce uno spostamento che lo porta a stare tra

$$x + \xi(x, t')$$
 e $x + dx + \xi(x + dx, t')$

Così la sua dimensione diventa

$$x + dx + \xi(x + dx, t') - x - \xi(x, t') = dx + \xi(x + dx, t') - \xi(x, t') = dx + \frac{\partial \xi}{\partial x} dx = dx \left(1 + \frac{\partial \xi}{\partial x} \right)$$

A partire da questa nuova espressione della "larghezza" dell'elemnto infinitesimo posso scrivere l'espressione della densità dopo la compressione:

$$\rho(x,t) = \frac{dm}{dV} = \frac{\rho_0 S(dx)}{Sdx \left(1 + \frac{\partial \xi}{\partial x}\right)} = \rho_0 \left(1 + \frac{\partial \xi}{\partial x}\right)^{-1}$$

Ora andremo ad applicare una semplificazione bizzarra. Se la deformazione specifica $|\varepsilon| = \left| \frac{\partial \xi}{\partial x} \right| << 1$, allora si può applicare la formula del binomio:

$$(1+\varepsilon)^{-n} = 1 - n\varepsilon + \frac{n(n+1)}{2!}\varepsilon^2...$$

Quindi posso scrivere la densità come

$$\rho(x,t) \approx \rho_0 \left(1 - \frac{\partial \xi}{\partial x} \right)$$

da cui la variazione

$$d\rho(x,t) = \rho(x,t) - \rho_0 = -\rho_0 \frac{\partial \xi}{\partial x}$$
(1.4)

in cui il segno meno indica ce se il volumetto è compresso la densità aumenta, mentre se si espande la densità diminuisce.

Pressione

Ad una variazione di densità corrisponde una variazione di pressione secondo la legge

$$\beta = \rho_0 \frac{dp}{d\rho} \rightarrow dp(x, t) = p(x, t) - p_0 = \beta \frac{d\rho}{\rho_0}$$

da cui derivo che la pressione è

$$p(x,t) = \beta \frac{d\rho}{\rho_0} + p_0$$

Sostituendo l'espressione della densità trovata prima nella 1.4 scrivo

$$p(x,t) = \beta \frac{-\rho_0 \frac{\partial \xi}{\partial x}}{\rho_0} + p_0 = p_0 - \beta \frac{\partial \xi}{\partial x}$$
(1.5)

Forza

La variazione di pressione causa un movimento del gas e la risultante su dm è

$$-dF = F(x, t') - F(x + dx.t') = S \left[p(x, t') - p(x + dx, t') \right]$$

$$= S(dp)$$

$$= -S \frac{\partial p}{\partial x} dx$$

$$= -S \frac{\partial}{\partial x} \left(p_0 - \beta \frac{\partial \xi}{\partial x} \right) dx$$

$$= S\beta \frac{\partial^2 \xi}{\partial x^2} dx$$

Risultante
$$-dF = S\beta \frac{\partial^2 \xi}{\partial x^2} dx = \mathbf{dma} = \rho_0 S(dx) \frac{\partial^2 \xi}{\partial t^2}$$

$$\frac{\partial^2 \xi}{\partial x^2} = \frac{\rho_0}{\beta} \frac{\partial^2 \xi}{\partial t^2} \qquad \qquad \nu = \sqrt{\frac{\beta}{\rho_0}}$$
 (1.6)

Lungo la colonna di gas si propagano anche un'onda i pressione e una perturbazione di densità del gas, tuttue con la stessa velocitù data da 1.6.

Modulo di compressibilità adiabatica

Nel caso di trasformazioni adiabatiche vale (come dimostreremo più avanti) l'uguaglianza

$$pV^{\lambda} = \text{costante}$$

dalla quale, sviluppando il differenziale si possono trovare alcune caratteristiche di β in condizioni adiabatiche:

$$\begin{split} d\left(pV^{\gamma}\right) &= V^{\gamma}(dp) + \gamma p V^{(\gamma-1)} dV = \mathbf{0} \\ &\rightarrow V^{\gamma}(dp) = \gamma p V^{(\gamma-1)}(dV) \rightarrow \frac{V^{\gamma}(dp)}{pV^{\gamma}} = \frac{\gamma p V^{(\gamma-1)}(dV)}{pV^{\gamma}} \end{split}$$

Dalla quale otteniamo (confrontata con l'espressione precedente di β)

$$\frac{dp}{p} = \gamma \frac{dV}{V}$$

$$\frac{dV}{V} = \frac{1}{p\gamma}dp \qquad \qquad \frac{\Delta V}{V} = -\frac{1}{\beta}\Delta p$$

Da cui si ottiene la nuova espressione di β

$$\beta = \gamma p \tag{1.7}$$

calcolo velocità del suono–

Se assimiliamo l'aria ad un gas perfetto biatomico ($\gamma = 7/5$) dai risultati ottenuti fin'ora si trova che:

$$v = \sqrt{\frac{\beta}{\rho_0}} = \sqrt{\frac{\gamma p_0}{\rho_0}} = \sqrt{\frac{(7/5) \cdot 1.01325 \cdot 10^5}{1.29}} = 331.6 \frac{m}{s}$$

Il risultato ottenuto è in accordo (3%) con quello misurato, possiamo quindi dedurre che l'aprossimazione adiabatica è una bona approssimazione.

1.2 Onde piane armoniche

Un tipo molto importante di onda piana è l'onda armonica la cui forma si scrive

$$\xi(x, t) = \xi_0 \sin(kx \mp \omega t + \delta)$$

dove k è il **numero d'onde**.

Periodo spaziale Fissato un tempo $t=t_0$, definiamo la lunghezza d'onda λ come la periodicità spaziale dell'onda. Essendo λ lo spazio tra due creste d'onda possiamo calcolarla come $\lambda=x_2-x_1=2\pi/k$, da cui si deduce che k è uguale al numero di lunghezze d'onda in un intervallo spaziale pari a 2π metri.

In generale il periodo spaziale può essere espresso tramite λ o k.

-Lunghezza d'onda λ -

La lungheza d'onda è lo spazio percorso dalla perturbaione nell'intervallo di tempo di un periodo T.

$$\lambda = \frac{2\pi}{k} = \nu T$$

Periodo temporale Fissato unpunto nello spazio $x = x_0$, definiamo il periodo $T = t_2 - t_2$

$$T = \frac{2\pi}{\omega}$$

come l'intervallo temporale tra due istanti nei quali l'onda, essendo armonica, assume lo stesso valore. Sapendo che la pulsazione è la velocità dell'onda nel percorrere un giro (2π) , i due periodi dono legati dalla relazione

$$\lambda = \nu T$$

Quindi possiamo esprimere il periodo temporale tramite T, f, ω .

Tutte le espressioni della funzione d'onda sono:

$$\xi(x,t) = \xi_0 \sin(kx \mp \omega t + \delta) \qquad \xi(x,t) = \xi_0 \sin\left[2\pi \left(\frac{x}{\lambda} \mp \frac{t}{T}\right) + \delta\right] \qquad \xi_0 \sin\left[\frac{2\pi}{\lambda} (x \mp \nu t) + \delta\right]$$

1.2.1 Propagazione dell'energia in una barra solida

La propagazione di un campo che descrive in'onda è sempre accompagnato da una propagazione di energia. Osserviamo prima il fenomeno del flusso di energia legato alla propagazione di un'onda piana armonica in una barra solida andando a calcolare la potenzia media e l'energia per untià di volume ad essa associata.

Per prima cosa mettiamo in evidenza le equazioni che entrano in gioco:

Onda:
$$\xi(x, t) = \xi_0 \sin(kx - \omega t)$$

Forza:
$$F = -ES \frac{\partial \xi}{\partial x}$$

L'espressione della potenza è

$$\mathcal{P} = F \cdot \vec{u}$$

$$= -ES \frac{\partial \xi}{\partial x} \frac{\partial \xi}{\partial t}$$

$$= -ES [k\xi_0 \cos(kx - \omega t)] [-\omega \xi_0 \cos(kx - \omega t)]$$

$$= ESk\omega \xi_0^2 \cos^2(kx - \omega t)$$

La potenza quindi è una cosinusoide traslata in alto di una sua ampiezza (con avvallamenti tangenti all'asse orizzontale). la potenza media è espirmibile come la retta che interseca la cosinusoide alla quota pari a metà la sua ampiezza; poi ricordandoci che

$$v = \sqrt{E/\rho} \qquad E = v^2 \rho$$

$$\mathcal{P}_m = \frac{1}{2} E S k \omega \xi_0^2$$

$$= \frac{1}{2} (v^2 \rho) S \left(\frac{\omega}{v}\right) \omega \xi_0^2$$

$$\mathcal{P}_m = \frac{1}{2} \rho \omega^2 \xi^2 S v$$
(1.8)

Energia per unità di volume

Considero l'elemento infinitesimo di massa $dm = \rho dV = \rho S dx$ descrive un moto armonico con

Posizione:
$$\xi(x, t) = \xi_0 \sin(kx - \omega t)$$

Velocità
$$v(x,t) = \frac{\partial \xi}{\partial t} = \omega \xi_0 \cos(kx - \omega t)$$

Quindi l'energia meccanica risulta pari all'energia cinetica massima assunto dall'elemento dm, che si trova utilizzando la velocità massima $v_{\text{max}} = \omega \xi_0$:

$$dU = \frac{1}{2}(dm)v_{\text{max}}^2 = \frac{1}{2}\rho S(dx)\omega^2 \xi_0^2 = \frac{1}{2}\rho(dV)\omega^2 \xi_0^2$$

Chiamiamo densità di energia per unità di volume il valore

$$W = \frac{dU}{dV} = \frac{1}{2}\rho\omega^2\xi_0^2$$

con la quale possiamo esprimere la potenza media come

$$\mathscr{P}_m = \mathscr{W} S v \tag{1.9}$$

Intensità dell'onda

Definiamo l'intensità di un'onda come potenza media per unità di superficie, quindi

$$I = \frac{\mathscr{P}_m}{S} = \frac{1}{2}\rho\omega^2\xi_0^2\nu$$

1.2.2 Propagazione dell'energia in una corda tesa

Studiamo ora lo stesso fenomeno ma in una corda tesa. La situazione è simile con la differenza che l'onda ora è trasversale.

Per prima cosa mettiamo in evidenza le equazioni che entrano in gioco:

Onda:
$$\xi(x, t) = \xi_0 \sin(kx - \omega t)$$

Forza:
$$F = T$$

L'espressione della potenza è

$$\mathcal{P} = F \cdot \vec{u}$$

$$= T \frac{\partial \xi}{\partial t} \cos\left(\frac{\pi}{2} + \alpha\right) \qquad \cos\left(\frac{\pi}{2} + \alpha\right) = \sin \alpha \approx \tan \alpha = \frac{\partial \xi}{\partial x}$$

$$= T \frac{\partial \xi}{\partial t} \frac{\partial \xi}{\partial x}$$

$$= T k \omega \xi_0^2 \cos^2(kx - \omega t)$$

Trovo la potenza media come prima esprimendo k e T come

$$v = \sqrt{T/\mu} \qquad T = v^2 \mu$$

$$\mathcal{P}_m = \frac{1}{2} \mu \omega^2 \xi^2 v$$
(1.10)

Energia per unità di lunghezza

Considero l'elemento infinitesimo di massa $dm = \mu dx$ descrive un moto armonico con

Posizione:
$$\xi(x, t) = \xi_0 \sin(kx - \omega t)$$

Velocità
$$v(x,t) = \frac{\partial \xi}{\partial t} = \omega \xi_0 \cos(kx - \omega t)$$

Quindi l'energia meccanica risulta pari all'energia cinetica massima assunto dall'elemento dm, che si trova utilizzando la velocità massima $v_{\text{max}} = \omega \xi_0$:

$$dU = \frac{1}{2}(dm)v_{\text{max}}^2 = \frac{1}{2}\mu(dx)\omega^2\xi_0^2$$

Chiamiamo densità di energia per unità di lunghezza il valore

$$W = \frac{dU}{dx} = \frac{1}{2}\mu\omega^2\xi_0^2$$

con la quale possiamo esprimere la potenza media come

$$\mathscr{P}_m = \mathcal{W} v \tag{1.11}$$

1.3 Onde sonore

Consideriamo ora delle onde sonore come onde di spostamento sempre accompagnate da onde di pressione:

Spostamento:
$$\xi = \xi_0 \sin(kx - \omega t)$$

Pressione:
$$dp = -\beta \frac{\partial \xi}{\partial x}$$

1.3.1 Pressione

L'espressione della pressione era stata ricavata nel capitolo sulle onde nei gas (1.5)

$$p(x,t) = p_0 - \beta \frac{\partial \xi}{\partial x}$$
 \rightarrow $dp(x,t) = p(x,t) - p_0 = -\beta \frac{\partial \xi}{\partial x}$

Sviluppando la derivata parziale, e ricordando alcune equivalenze

$$\boxed{v = \sqrt{\frac{\beta}{\rho_0}} \to \beta = v^2 \rho_0} \qquad \boxed{k = \frac{\omega}{v}}$$

troviamo

$$dp = -\beta k \xi_0 \cos(kx - \omega t)$$

$$= \frac{v^2 \rho_0}{v} \frac{\omega}{v} \cos(kx - \omega t)$$

$$= \rho_0 v \omega \xi_0 \cos(kx - \omega t)$$

$$= \Delta p_{\text{max}} \sin(kx - \omega t - \pi/2)$$

Le onde di pressione sono quindi in ritardo di $\pi/2$.

1.3.2 Potenza

$$\mathcal{P} = \overrightarrow{F} \cdot \overrightarrow{v} = (dp)Sv = -\beta \frac{\partial \xi}{\partial x} S \frac{\partial \xi}{\partial t}$$

$$\mathcal{P} = \beta k \xi_0 \cos(kx - \omega t) S\omega \xi_0 \cos(kx - \omega t)$$

$$= v^2 \rho_0 \frac{\omega}{v} \xi_0 \cos(kx - \omega t) S\omega \xi_0 \cos(kx - \omega t)$$

$$= \rho_0 v \omega^2 S \xi_0^2 \cos^2(kx - \omega t)$$

Si ottiene quindi una potenza media pari a metà la sua ampiezza

$$\mathscr{P}_m = \frac{1}{2} \rho_0 v \omega^2 S \xi_0^2$$

1.3.3 Intensità

Ricordando che l'intensità è la potenza per unità di superficie:

$$I = \frac{\mathcal{P}_m}{S} = \frac{1}{2} \rho_0 v \omega^2 \xi_0^2$$

Riconosciamo che $\Delta p_{\rm max}$ = $\rho_0 v \omega \xi_0$ e che quindi possiamo scrivere l'intensità come

$$I = \frac{(\rho_0 \nu \omega \xi_0)^2}{2\rho_0 \nu} = \frac{\Delta p_{\text{max}}^2}{2\rho_0 \nu}$$
 (1.12)

1.3.4 Fonometria

Per essere messo in movimento il timpano ha bisogno di un'intensità minima che chiamiamo **soglia di udibilità**. Il limite superiore invece è chiamata **soglia del dolore** e rappresenta l'intensità sopra alla quale si percepisce una sensazione dolorosa. Entrambe vengono espresse o in funzione della frequenza o in funzione della lunghezza d'onda ($\lambda = v/f$); si ha quindi che le frequenze all'interno delle due soglie sono

$$20\,\mathrm{Hz} < f < 20\,000\,\mathrm{Hz}$$

$$17.15 \,\mathrm{m} < \lambda < 1.715 \,\mathrm{cm}$$

La **soglia minima** convenzionale dell'udibilità è l'intensità $I_0 = 10^{-12} \text{W/m}^2$ alla frequenza $f = 10^3 \text{Hz}$. A questa si possono associare la corrispondente onda di pressione e ampiezza delle oscillazioni:

$$\Delta p_{\text{max}} = \sqrt{2\rho_0 v I_0} = 2.97 \cdot 10^{-5} \text{Pa}$$

e poiché $\Delta p_{\text{max}} = \rho_0 v \omega \xi_0$

$$\xi_0 = \frac{\Delta p_{\text{max}}}{2\pi f \rho_0 \nu} = 1.07 \cdot 10^{-11} \text{m}$$

Alla soglia del dolore invece si ottengono

$$\Delta p_{\text{max}} = \sqrt{2\rho_0 v I_0} = 29.7 \text{Pa}$$

$$\xi_0 = \frac{\Delta p_{\text{max}}}{2\pi f \rho_0 \nu} = 1.07 \cdot 10^{-5} \text{m}$$

In sintesi: l'orecchio umano si estendi su

• 3 ordini di grandezza in **frequenza**: $0 - 10^3$ Hz

• 12 ordini di grandezza in **intensità**: 1 – 10¹2W/m²

• 6 ordini di grandezza in **ampiezza di oscillazione**: $10^{-11} - 10^{-5}$ m

Livello sonoro

Presa una certa intensità I si definisce un **livello sonoro** L rispetto a I_0 . Il livello sonoro è una valutazione logaritmica relativa di intensità e si esprime in decibel (dB).

Al livello sonoro associamo delle curve isofoniche, ovvero il luogo dei punti in cui si percepisce la stessa sensazione uditiva *S*.

$$L = 10\log_{10}\frac{I}{I_0} \tag{1.13}$$

Vediamo come il livello sonoro risulta essere particolarmente pratico poiché L=0 con I_0 per f=1000Hz, quindi vale 0 alla soglia di udibilità; e vale 120 con $I/I_0=10^{12}$ alla soglia del dolore.

- Attenzione-

Il valore d'intensità I_0 dipende dalla frequenza. Per questo anche il livello sonoro L non dipende tanto da I_0 quanto più dalla frequenza.

Le curve isofoniche infatti non descrivono eguale intensità I ma eguale rapporto I/I_0 , che dipende dalla frequenza. Possiamo dire che S è una grandezza *fisiologica* e L una grandezza *fisio*.

Secondo la legge psicofisica di Fechner e Weber

$$S = kB = k10\log_1 0 \frac{I}{I_0} = k'\log_1 0 \frac{I}{I_0}$$

quindi

$$S_2 - S_1 = k' \log_1 0 \frac{I_2}{I_1} \tag{1.14}$$

la sensazione sonora è proporzionale al logaritmo del rapporto tra le intensità che hanno prodotto le sensazioni

1.4 Onde in più dimensioni

Prima di tutto definiamo **fronte d'onda** la superfici su cui in un certo istante la fase dell'onda è costante $(\phi = kx - \omega t)$.

Per le onde piane il fronte d'onda è un piano che si sposta con velocità ν dell'onda. Per caratterizzare la direzione di propagazione dell'onda introduciamo il **vettore di propagazione** \vec{k} con $k = 2\pi/\lambda$ e verso

uguale a quello di \vec{v} e il vettore posizione \vec{r} che individua la posizione di un punto P su un certo fronte d'onda. Con queste informazioni possiamo riscrivere la funzione d'onda come

$$\xi(r, t) = \xi_0 \sin(\vec{k} \cdot \vec{r} - \omega t)$$

In un sistema di tre coordinate l'equazione generale delle onde ammette altre soluzioni che rappresentano **onde sferiche** e **onde cilindriche**:

$$\nabla^2 \xi(x, y, z, t) = \frac{1}{v^2} \frac{\partial^2 \xi(x, y, z, t)}{\partial t^2}$$

1.4.1 Onde elastiche in una membrana tesa

Consideriamo una membrana piana tesa con tensione T. Supponiamo di spostare leggermente la membrana dalla sua posizione di equilibrio e andiamo a studioare le tensioni che agiscono su un'area dxdy.

Il ragionamento è uguale a quello fatto per la corda tesa, in questo caso però la tensione si distribuisce su tutto il lato d* e diventa T(d*):

$$dF_{x}(x, y, z, t) = T(dx) \frac{\partial^{2} \xi(x, y, t)}{\partial y^{2}} dy = T \frac{\partial^{2} \xi(x, y, t)}{\partial y^{2}} dx dy$$

$$dF_{y}(x, y, z, t) = T \frac{\partial^{2} \xi(x, y, t)}{\partial x^{2}} dx = T(dy) \frac{\partial^{2} \xi(x, y, t)}{\partial x^{2}} dx dy$$

$$dF = T \left(\frac{\partial^{2} \xi(x, y, t)}{\partial y^{2}} + \frac{\partial^{2} \xi(x, y, t)}{\partial x^{2}} \right) dx dy = (\mathbf{dm}) \mathbf{a} = \rho_{s} (dx dy) \frac{\partial^{2} \xi(x, y, t)}{\partial t^{2}}$$

esprimendo la massa come $dm = \rho_s(dxdy)$ si ottiene l'equazione delle onde di d'Alembert dove il coefficiente del termine a destra gioca il ruolo di $1/v^2$, da questo possiamo scrivere la velocità di propagazione dell'onda:

$$T\left(\frac{\partial^{2}\xi(x,y,t)}{\partial y^{2}} + \frac{\partial^{2}\xi(x,y,t)}{\partial x^{2}}\right) \frac{\partial^{2}\xi(x,y,t)}{\partial x^{2}} dxdy = \rho_{s}(\frac{\partial^{2}\xi(x,y,t)}{\partial t^{2}} dxdy) \frac{\partial^{2}\xi(x,y,t)}{\partial t^{2}} dxdy$$

$$\frac{\partial^{2}\xi(x,y,t)}{\partial y^{2}} + \frac{\partial^{2}\xi(x,y,t)}{\partial x^{2}} = \frac{\rho_{s}}{T} \frac{\partial^{2}\xi(x,y,t)}{\partial t^{2}} \qquad \nu = \sqrt{\frac{T}{\rho_{s}}} dxdy$$
(1.15)

1.4.2 Onde sferiche

Se il mezzo è *isotropo* è quindi la velocità di propagazione è uguale in tutte le direzioni, la funzoine d'**onda sferica armonica** è $\xi(r,t) = A(r)\sin(kr - \omega t)$ dove r è la distanza dalla sorgfente e A(r) è l'ampiezza funzione di r.

Diciamo che la nostra sorgente emetta un'onda di intensità $I(r) = CA^2(r)$ dove C è una costante dipendente dal mezzo. In un'onda sferica la **potenza media** trasmessa attraverso la superficie sferica $S = 4\pi r^2$ deve risultare **costante** ad ogni valore di r:

$$\mathcal{P}_m = IS = \cos t$$
.

$$\mathcal{P}_m = CA^2 4\pi r^2 = \cos t.$$

$$A(r) = \sqrt{\frac{\mathcal{P}_m}{4\pi r^2}} = \frac{1}{r} \sqrt{\frac{4\mathcal{P}_m}{\pi}}$$

Risulta quindi che l'ampiezza è inversamente proporzionale alla distanza r, come la pressione, e quindi può essere scritta come $A = \xi_0/r$.

$$\xi(r,t) = \frac{\xi_0}{r}\sin(kr - \omega t) \tag{1.16}$$

Intensità

Supponendo che le onde in questione siano onde sonore, andando quindi ad utilizzare le espressioni di pressione della sezione 1.3 e andando a sostituire ogni ξ_0 con ξ_0/r si ottiene la seguente espressione dell'intensità:

$$I(r) = \frac{\mathscr{P}_m}{S} = \frac{1}{2} \rho_0 v \omega^2 \frac{\xi_0^2}{r^2}$$

1.4.3 Onde cilindriche

Le onde cilindriche hanno come fronti d'onda gusci cilindrici coassiali. La sorgente potrebbe essere intesa come un gruppo di sorgenti puntiformi poste una dopo l'altra.

Come per le onde sferiche sappiamo che la potenza media trasmessa attraverso la superficie cilindrica deve essere costante per ogni valore di *r*:

$$\mathcal{P}_m = IS = \text{cost}$$

$$\mathcal{P}_m = CA^2 2\pi r h = \text{cost}$$

$$A(r) = \sqrt{\frac{\mathcal{P}_m}{2C\pi r h}} = \frac{1}{\sqrt{r}} \sqrt{\frac{\mathcal{P}_m}{2C\pi h}}$$

L'ampiezza è inversamente proporzionale alla radice del raggio e può essere riscritta come ξ_0/\sqrt{r} .

$$\xi(r,t) = \frac{\xi_0}{\sqrt{r}}\sin(kr - \omega t) \tag{1.17}$$

1.4.4 Assorbimento dell'energia

Come abbiamo visto l'intensità di un'onda non rimane costante ma decresce al propagarsi dell'onda (nelle onde sferiche più rapidamente, nelle cilindriche meno...). Questo comportamento viene attribuito ad un **assorbimento di energia** dovuto a fenomeni di attrito interno. Studiando il fenomeno su uno spessore dx si ha un'aattenuazione che può essere considerata proporzionale all'intensità in x e allo spessore dx.

$$dI = -\alpha I(x) dx$$

dove α è il **coefficiente di assorbimento**.

$$\int_{I_0}^{I} \frac{dI}{I} = -\alpha \int_0^x dx$$

$$I(x) = I_0 e^{-\alpha x}$$
(1.18)

Quindi la decrescità dell'intensità è esponenziale. Definiamo la distanza $x_0 = \frac{1}{\alpha}$ detta **lunghezza di assorbimento** la distanza tra due punti tali che $I(x_1)/I(x_2) = \frac{1}{\rho}$.

Abbiamo appurato precedentemente che l'ampiezza dell'onda è direttamente proporzionale a \sqrt{I}

$$I = CA^2 \rightarrow A = \sqrt{\frac{I}{C}} = \sqrt{\frac{I_0 e^{-\alpha x}}{C}}$$

quindi la funzione d'onda in un mezzo che assorbe energia è:

Onde piane:
$$\xi = \left(\frac{I_0 e^{-\alpha x}}{C}\right)^{\frac{1}{2}} \sin(kx - \omega t) = \xi_0 \left(I_0 e^{-\alpha x/2}\right)^{\frac{1}{2}} \sin(kx - \omega t)$$

Onde sferiche:
$$\xi = \frac{\left(\frac{I_0 e^{-\alpha x}}{C}\right)^{\frac{1}{2}}}{r} \sin(kx - \omega t) = \xi_0 \frac{\left(I_0 e^{-\alpha x/2}\right)^{\frac{1}{2}}}{r} \sin(kx - \omega t)$$

Onde cilindriche:
$$\xi = \frac{\left(\frac{I_0 e^{-\alpha x}}{C}\right)^{\frac{1}{2}}}{\sqrt{r}} \sin(kx - \omega t) = \xi_0 \frac{\left(I_0 e^{-\alpha x/2}\right)^{\frac{1}{2}}}{\sqrt{r}} \sin(kx - \omega t)$$

1.5 Pacchetti d'onde

Fino ad ora abbiamo considerato onde armoniche di lunghezza e durata infinita. Tutte le sorgenti emettono onde attraverso processi di durata finita, quindi, nella realtà, un'onda ha una propria durata e estensione spaziale.

Considerato un pacchetto di lughezza Δx e durata Δt , tali che $\Delta x = v \Delta t$. Il pacchetto è poi caratterizzato da N oscillazioni tali che

$$\Delta x = N\lambda$$
 $\Delta t = NT$

ed esprimiamo il numero di onde k e la pulsazione ω come

$$k = \frac{2\pi}{\lambda} = \frac{2\pi N}{\Delta x}$$
 $\omega = \frac{2\pi}{T} = \frac{2\pi N}{\Delta t}$

Se ammettiamo (come nella figura) che N non sia fisso ma abbia una acerta indeterminazione che esprimiamo come ΔN = 1, possiamo trovare altre espressioni per k e ω :

Queste osservazioni mettono i vevidenza la sostanziale differenza tra onda e pacchetto d'onda: mentre la prima ha una lunghezza d'onda λ e una frequenza f ben definite che la descrivono completamente, nel secondo è presente una **banda di frequenze** e un **intervallo di numeri d'onda**

$$\Delta f = \frac{1}{\Delta t}$$
 $\Delta k = \frac{2\pi}{\Delta x}$

Da quest'ultime espressioni notiamo che al crescere di Δx e Δt minori risultano queste bande, infatti la limite per $\Delta x, \Delta t \to \infty$ troviamo l'onda armonica. Se andiamo a considerare **brevi durate e piccole lunghezze** nel pacchetto sono contenute bande di lunghezze d'onda e frequenze distribuite significatibamente nell'intorno di λf .

1.5.1 Velocità di fase e velocità di gruppo

Poiché diversi segmenti d'onda contenuti in un pacchetto possono avere frequenze diverse, la velocità del pacchetto non può essere identificata con quella delle componenti. Tuttavia è essenziale identificare la

velocità del pacchetto perché il fenomeno fisico è rappresentato proprio dal pacchetto ed è la sua velocità quella con cui si propaga l'**energia** dell'onda.

Andiamo quindi a distinguere la **velocità di fase**, quella con cui si muovono le singole componenti dell'onda, e **velocità di gruppo**. La velocità dell'onda dipende dalla frequenza quando la propagazione avviene in un **mezzo dispersivo** come può avvenire per onde sulla superficie di un liquido o onde elettromagnetiche in mezzi materiali o in cavità conduttrici.

Mostriamo un esempio di velocità di gruppo nel caso di un pacchetto con solo due onde armoniche:

$$\xi(x,t) = \xi_0 \sin(k_1 x - \omega_1 t) + \xi_0 \sin(k_2 x - \omega_2 t)$$

$$prostaferesi: \quad \sin\alpha + \sin\beta = 2\sin\left(\frac{\alpha + \beta}{2}\right)\cos\left(\frac{\alpha - \beta}{2}\right)$$

$$\xi(x,t) = 2\xi_0 \sin\left(\frac{(k_1 + k_2)x - (\omega_1 + \omega_2)t}{2}\right)\cos\left(\frac{(k_1 - k_2)x + (\omega_2 - \omega_1)t}{2}\right)$$

Definiti k_m , ω_m e Δk , $\Delta \omega$

$$\boxed{k_m = \frac{k_1 + k_2}{2}} \qquad \boxed{\omega_m = \frac{\omega_1 + \omega_2}{2}} \qquad \boxed{\Delta k = \frac{k_1 - k_2}{2}} \qquad \boxed{\Delta \omega = \frac{\omega_1 - \omega_2}{2}}$$

$$\xi(x, t) = 2\xi_0 \cos\left(\frac{\Delta k}{2}x - \frac{\Delta \omega}{2}t\right) \sin(k_m x - \omega_m t)}$$

In sostanza il moto relativo di un'onda rispetto all'altra produce la sovrapposizione mostrata sopra: **l'onda di alta frequenza cambia** durante il moto ma **l'inviluppo conserva la stessa forma**.

L'ampiezza dell'onda modulata

$$A = 2\xi_0 \cos\left(\frac{\Delta k}{2}x - \frac{\Delta \omega}{2}t\right)$$

non è costante ma presenta una struttura di tipo ondulatorio e descrive l'inviluppo dell'onda di alta frequenza.

Abbiamo quindi un'onda di alta frequenza che si propaga con **velocità di fase media** v_f e con ampiezza modulata da un'onda che si propaga con velocità v_g **velocità di gruppo**:

$$v_f = \frac{\omega_m}{k_m}$$
 $v_g = \frac{\Delta \omega}{\Delta k}$

Più in dettaglio la velocità di gruppo, nel limite del continuo, è definita come

$$v_g = \frac{d\boldsymbol{\omega}}{d\boldsymbol{k}}$$

invece dall'espressione della velocità di fase possiamo esprimere la pulsazione in funzione di v_f e k:

$$\boldsymbol{\omega(k)} = v_f(k)\boldsymbol{k}$$

da cui

$$v_g = v_f + k \frac{dv_f}{dk} \tag{1.19}$$

La velocità di gruppo può quindi essere minore o maggiore della velocità di fase, dipende dal segno della derivata di v_f : se la velocità delle singole componenti decresce, allora la velocità di gruppo sarà minore, se invece è in crescita, la velocità di gruppo sarà maggiore. Il caso di **mezzo non dispersivo**, ovvero quando $v_g = v_f$ si ha quando $dv_f/dk = 0$.

 $Servendosi\ delle\ seguenti\ uguaglianze$

$$\left[\frac{dk}{k} \right] = \left[-\frac{d\lambda}{\lambda} \right] = \left[\frac{df}{f} \right]$$

la 1.19 è riscrivibile come

$$= v_f - \lambda \frac{dv_f}{d\lambda} = v_f + f \frac{dv_f}{df}$$

E' bene capire che la struttura del pacchetto in generale si modifica durante la propagazione e proprio per questo la velocità di fase (delle singole componenti) varia in funzione di k così come la velocità di gruppo

1.6 Effetto Doppler

Se una sorgente di onde S e un rivelatore di onde R sono n moto reciproco la frequenza percepita dal rivelatore è in generale diversa dalla frequenza propira della sorgenre. Questo fenomeno prende il nome di effetto Doppler e si osserva per tutti i tipi di onde.

Prendiamo in esame una sorgente che emette un qualsiasi tipo di onde armoniche sferiche di velocità v, chiamiamo **fronte d'onda** la superficie sferica su cui la fase è costante e facciamo coincidere il fronte d'onda con una cresta. La cresta successiva a quella fissata sul fronte d'onda si trova a distanza spaziale λ e temporale T con differenza di fase 2π . In un tempo Δt l'onda avanza di uno spazio $v\Delta t$ e il rivelatore viene attraversato da tanti fronti contenuti nello spazio $v\Delta t$:

$$N = \frac{v\Delta t}{\lambda}$$

quindi il rivelatore percepisce una frequenza

$$f_R = \frac{N}{\Delta t} = \frac{v\Delta t}{\lambda \Delta t} = \frac{v}{\lambda} = f$$

In questa condizione la frequenza percepita dal rivelatore è la frequenza propria della sorgente.

1.6.1 Sorgente in moto

Supponiamo che la sorgente si stia muovendo con velocità $v_S < v$ verso il rivelatore. Ogni intervallo T_0 la sorgente percorre un tratto $v_S T_0$ sicuramente minore di λ ($v_S < v \rightarrow v_S T_0 < \lambda_0 = v T$). Si ha quindi che la distanza tra due fronti d'onda consecutivi è

$$\lambda_R = \lambda_0 - \nu_S T$$

quindi il rivelatore è attraversato da più fronti d'onda del caso precedente poiché è aumentata la loro "densità". Riscrivendo l'espressione di λ_R possiamo trovare una nuova espressione della frequenza percepita da R:

$$\lambda_R = \lambda_0 - \nu_S T_0 = \nu T_0 - \nu_S T_0 = \nu \frac{1}{f_0} - \nu_S \frac{1}{f_0} = \frac{\nu - \nu_S}{f_0}$$

quindi essendo la frequenza il numero di creste in un periodo: $f = \frac{N}{T}$, esprimendo N come numero di lunghezze d'onda nello spazio percorso in un periodo: $N = \frac{\nu T}{\lambda}$, troviamo che un'espressione della frequenza è il rapporto tra la velocità dell'onda e la lunghezza d'onda

$$f_R = \frac{v}{\lambda_R} = \frac{v}{\frac{v - v_S}{f_0}} \rightarrow$$

$$f_R = \frac{v}{v - v_S} f_0$$

$$(1.20)$$

1.6.2 Rivelatore in moto

Diciamo che il rivelatore si stia muovento con velocità v_R . In questo caso i fronti d'onda non variano la loro densità, tuttavia il rivelatore ne percepirà comunque di più o di meno (in base se si sta avvicinando o allontanando) a causa del suo moto. I fronti d'onda che investono il rivelatore sono

$$N = \frac{\text{spazio percorso}}{\lambda_0} = \frac{(\nu - \nu_R) \Delta t}{\lambda_0}$$

da cui ricaviamo la frequenza percepita dal rivelatore

$$f_R = \frac{v}{\lambda_R} = \frac{v - v_R}{v T_0} = \frac{v - v_R}{v (1/f_0)} \rightarrow$$

$$f_R = \frac{v - v_R}{v} f_0$$
(1.21)

Come possiamo vedere dalle espressioni di f_R ottenute non sono simmetriche: seppur è il **moto relativo** quello che conta, non è lo stesso se la sorgente si muove o è il rivelatore a farlo.

1.6.3 Espressione generale

Le espressioni trovate nei due casi possono essere riassunte in un'unica formula. Diciamo quindi di avere sia una v_S sia una v_R . La distanza tra i fronti d'onda è influenzata solo dalla velocità della sorgente e vale

$$\lambda_R = \lambda_0 - \nu_S T_0 == \nu T_0 - \nu_S T_0 = \frac{\nu - \nu_S}{f_0}$$

invece il numero N di fronti d'onda che investono il rivelatore dipende anche da ν_R :

$$N = \frac{\text{spazio percorso}}{\lambda_R} = \frac{(\nu - \nu_R)T_0}{\frac{\nu - \nu_s}{f_0}} = \frac{(\nu - \nu_R)\frac{1}{f_0}}{\frac{\nu - \nu_s}{f_0}} = \frac{\nu - \nu_R}{\nu - \nu_S}$$

Da queste due otteniamo che la frequenza (il numero di creste in un periodo) percepita vale

$$f_R = \frac{\frac{v - v_R}{v - v_S}}{T_0} \rightarrow$$

$$f_R = \frac{v - v_R}{v - v_S} f_0$$
(1.22)

1.6.4 Onda d'urto

Quando la sorgente si muove a velocità superiori a quella di propagazione dell'onda ($v_S > v$), i fronti d'onda di quest'ultima ammettono un **inviluppo** rappresentato da due rette convergenti. L'inviluppo rappresenta **il luogo di punti di egual fase** e costituisce il **nuovo fronte d'onda** che prende il nome di **onda d'urto**. Possiamo trovare gli angoli che descrivono le due rette tramite semplici calcoli trigonometrici:

Poiché P e Q sono punti di egual fase, il tempo che impiega l'onda a percorrere il tratto S_1S_1' deve essere uguale al tempo che impiega la sorgente a percorrere il tratto S_1S_2 (a tempi uguali corrispondono uguali differenze di fase).

1.6.5 Onde sferiche

$$\boxed{a = S_1 S_2} \qquad \boxed{S_1 S_1' = a \cos(\theta)}$$

quindi l'uguaglianza dei temi diventa

$$\frac{a}{v_s} = \frac{a\cos(\theta)}{v}$$

$$\sin(\theta') = \cos(\theta) = \frac{v}{v_s}$$
(1.23)

Da quest'ultima risulta evidente che la superficie conica (o triangolare) di egual fase può esistere solo se la sorgente si muove più velocemente dell'onda (risulterebbero seno e coseno maggiori di uno se no).

1.7 Interferenza

Prima di tutto diamo una definizione di sorgenti coerenti e incoerenti:

-Sorgenti coerenti

Se la **differenza di fase** tra due onde in un punto qualsiasi è **costante** nel tempo, le sorgenti si dicono **coerenti**. Se ciò non si verifica (o si verifica in tempi bresi rispetto all'osservazione) le sorgenti sono dette **incoerenti**.

Quando due o più sorgenti coerenti emettono onde con **stessa pulsazione** ω e queste onde si sovrappongono avviene il fenomeno dell'**interferenza**. Si verificano interferenze in ogni tipo di onde, si ha infatti una trattazione analitica indipendente dalla natura di esse.

1.7.1 Interferenza con stessa ampiezza

Studiamo il caso unidimensionale di due onde piane coerenti con **medesima frequenza** f **e ampiezza** ω che si propagano lungo la stessa direzione x. Consideriamo un punto P distante x_1 dalla primas sorgente e x_2 dalla seconda. In P si avranno le seguenti espressioni delle due onde:

$$\xi_1 = A_0 \cos(kx_1 - \omega t + \phi_1) = A_0 \cos(\omega t - kx_1 - \phi_1)$$

$$\xi_2 = A_0 \cos(kx_2 - \omega t + \phi_2) = A_0 \cos(\omega t - kx_2 - \phi_2)$$

Sappiamo che, essendo le sorgenti coerenti, lo sfasamento tra le due onde è fisso; chiamiamo questo sfasamento δ così da eliminare il termine ϕ_2 :

$$\delta = k(x_2 - x_1) + (\phi_2 - \phi_1)$$

$$\xi_1 = A_0 \cos(\omega t - kx_1 - \phi_1)$$

$$\xi_2 = A_0 \cos(\omega t - kx_2 - \phi_1 - \delta)$$

In P, l'onda risultante sarà la somma $\xi_1 + \xi_2$

$$\xi = \xi_1 + \xi_2 = A_0 \cos(\omega t - kx_1 - \phi_1) + A_0 \cos(\omega t - kx_2 - \phi_1 - \delta)$$

prostaferesi:
$$\cos \alpha + \cos \beta = 2 \cos \left(\frac{\alpha + \beta}{2} \right) \cos \left(\frac{\alpha - \beta}{2} \right)$$

$$\xi = A_0 \cos(\omega t - kx_1 - \phi_1) + A_0 \cos(\omega t - kx_2 - \phi_1 - \delta)$$

= $2A_0 \cos(\delta/2) \cos(\omega t - kx_1 - \phi_1 + \delta/2)$

Come abbiamo visto precedentemente l'intensità è sempre proporzionale all'ampiezza al quadrato:

$$I = KA^2$$

(in K sono kontenuti altri termini caratteristici e la superficie su cui si sta calcolando I),

$$I = 4KA_0^2\cos^2(\delta/2)$$

$$KA_0^2 = I_0$$

$$I = 4I_0 \cos^2 \left(\delta/2\right) \tag{1.24}$$

1.7.2 Interferenza costruttiva e distruttiva

Nel caso di due onde con ampiezze uguali abbiamo l'equazione

$$\xi_1 = A_0 \cos \left(\omega t - kx_1 - \phi_1\right) \qquad \xi_2 = A_0 \cos \left(\omega t - kx_2 - \phi_1 - \delta\right)$$

l'interferenza sarà costruttiva se le due onde sono in fase, ovvero quando

$$\delta = 2m\pi \rightarrow \delta/2 = m\pi$$

Si avrà un'interferenza distruttiva invece quando le due onde sono **in opposizione di fase**, quindi quando (una e a 1 e l'altra a -1)

$$\delta = 2m\pi + \pi \rightarrow \delta = (2m+1)\pi$$

condizioni che assumono senso anche nell'espressione dell'intensità: se l'interferenza è costruttiva mi aspetto che l'intensità sia massima, cosa che accade proprio quando $\delta/2 = m\pi$; se invece l'interferenza è distruttiva mi aspetto un'intensità nulla, che si ha quando $\delta = m\pi$:

$$I = 4I_0 \cos^2(2m\pi) = 4I_0 = I_{\text{max}}$$

$$I = 4I_0 \cos^2{(m\pi)} = 0$$

1.7.3 Interferenza con ampiezze diverse

Prendiamo in considerazine due onde ξ_1 e ξ_2 con ampiezze diverse. Ci è comodo rappresentare le onde in "forma vettoriale" così da poter esplicitare alcuni termini più agevolmente.

$$\xi_1 = A_1 \cos(kx_1 - \omega t + \phi_1) = A_1 \cos(\omega t + \alpha_1)$$

$$\xi_2 = A_2 \cos(kx_2 - \omega t + \phi_2) = A_2 \cos(\omega t + \alpha_2)$$

$$\boldsymbol{\xi} = \xi_1 + \xi_2 = A\cos(\omega t + \boldsymbol{\alpha})$$

Rappresentiamo A_1 , A_2 e A come dei vettori rotanti (per il contributo del coseno) visti all'istante t = 0, quindi senza il termine ωt :

inserire grafici

Esplicitiamo l'angolo α :

$$A\cos\alpha = A_1\cos\alpha_1 + A_2\cos\alpha_2$$
$$A\sin\alpha = A_1\sin\alpha_1 + A_2\sin\alpha_2$$

da cui, elevando al quadrato:

$$\begin{split} A^2\cos^2\alpha + A^2\sin^2\alpha &= (A_1\cos\alpha_1 + A_2\cos\alpha_2)^2 + (A_1\sin\alpha_1 + A_2\sin\alpha_2)^2 \\ A^2 &= A_1^2\cos^2\alpha_1 + 2A_2A_1\cos\alpha_1\cos\alpha_2 + A_2^2\cos^2\alpha_2 + \\ &\quad + A_1^2\sin^2\alpha_1 + 2A_2A_1\sin\alpha_1\sin\alpha_2 + A_2^2\sin^2\alpha_2 \\ &= A_1^2(\cos^2\alpha_1 + \sin^2\alpha_1) + A_2^2(\cos^2\alpha_2 + \sin^2\alpha_2) + 2A_2A_1(\cos\alpha_1\cos\alpha_2 + \sin\alpha_1\sin\alpha_2) \\ &= A_1^2(\cos^2\alpha_1 + \sin^2\alpha_1) + A_2^2(\cos^2\alpha_2 + \sin^2\alpha_2) + 2A_2A_1\cos(\alpha_1 - \alpha_2) \end{split}$$

$$A = \sqrt{A_1^2 + A_2^2 + 2A_2 A_1 \cos \delta}$$
 (1.25)

Come prima, sapendo che l'intensità è proporzionale all'ampiezza al quadrato:

$$I = KA^{2}$$

$$= K (A_{1}^{2} + A_{2}^{2} + 2A_{2}A_{1}\cos\delta)$$

$$= KA_{1}^{2} + KA_{2}^{2} + 2KA_{1}A_{2}\cos\delta$$

$$\boxed{KA_1^2 = I_1} \qquad \boxed{KA_2^2 = I_2}$$

per esprimere il termine rettangolare in funzione di I_1 e I_2 sviluppo $I_1I_2 = K^2A_1^2A_2^2$ e quindi

$$\sqrt{I_1 I_2} = K A_1 A_2$$

da cui

$$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \delta \tag{1.26}$$

1.7.4 Interferenza costruttiva e distruttiva

Nel caso di due onde con ampiezze diverse

trova

1.7.5 Sorgenti puntiformi

guarda slides

1.8 Riflessione e trasmissione

Prendiamo in esame una corda divisa in due segmenti uniti ma con densità lineari differenti. La velocità, dipendendo da μ , sarà diversa nei due mezzi:

$$v_1 = \sqrt{\frac{T}{\mu_1}} \qquad v_2 = \sqrt{\frac{T}{\mu_2}}$$

da cui, poiché $k = \omega / v$, anche i due k saranno diversi

$$k_1 = \omega \sqrt{\frac{\mu_1}{T}}$$
 $k_2 = \omega \sqrt{\frac{\mu_2}{T}}$

Andiamo quindi a distinguere tre tipi di onde che si propagano sulla corda: una incidente, una trasmessa e una riflessa:

$$\xi_i = \xi_{0i} \sin(k_1 x - \omega t)$$

$$\xi_r = \xi_{0r} \sin(k_1 x + \omega t)$$

$$\xi_t = \xi_{0t} \sin(k_2 x - \omega t)$$

Nel punto di contatto tra i due tratti imponiamo la continuità della funzione d'onda:

1.9 Onde stazionarie

Un'altro tipo di oscellazioni rilevanti sono le onde stazionarie, onde i cui punti oscillano con ampiezza che varia solo con la posizione. Si osserva che le posizioni di massima ampiezza e dei punti fermi (nodi) non variano nel tempo, per questo possiamo definire questo tipo di oscillazione un'oscillazione collettiva del fenomeno cui non è associato un fenomeno di propagazione.

Consideriamo una corda fissa ad un solo estremo $\mathbf{0}$ su cui poniamo lo zero dell'asse x; sull'estremo libero applichiamo una perturbazione **sinusoidale** regressiva di frequenza f tramite un diapason:

$$\xi_1(x,t) = A\sin(kx + \omega t)$$

L'onda si propaga fino all'estremo fisso $\mathbf{0}$ che deve rimanere fermo, tuttavia sappiamo che in $\mathbf{0}$ risulta una perturbazione $\xi_1(0, t)$. Ci deve essere una seconda perturbazione $\xi_2(0, t)$ generata dal vincolo tale che

$$\xi_1(0,t) + \xi_2(0,t) = 0$$
 \rightarrow $\xi_2(0,t) = -A\sin(\omega t) = A\sin(-\omega t)$

quindi la seconda onda si propaga nel verso positivo dell'asse x con equazione

$$\xi_2(x, t) = A \sin(kx - \omega t)$$

L'equazione complessiva dell'onda si ottiene sommando le due

$$\xi(x,t) = \xi_1(x,t) + \xi_2(x,t) = A\left[\sin\left(kx + \omega t\right) + \sin\left(kx - \omega t\right)\right]$$

$$prostaferesi: \quad \sin\alpha + \sin\beta = 2\sin\left(\frac{\alpha + \beta}{2}\right)\cos\left(\frac{\alpha - \beta}{2}\right)$$

$$\xi(x,t) = 2A\sin\left(kx\right)\cos\left(\omega t\right) \tag{1.27}$$

L'equazione rappresenta un'oscillazione armonica semplice di pulsazione ω e con **ampiezza che dipende dalla posizione**; come ci aspettavamo nell'equazione **non compare il termine** $kx \pm \omega t$ proprio perché l'oscillazione non si propaga. Troviamo i massimi e i minimi ponendo

$$\sin(kx) = \pm 1 \qquad \rightarrow \qquad kx = \frac{1}{2}\pi + m\pi \qquad \rightarrow \qquad \frac{2\pi}{\lambda}x = \frac{\pi}{2}(1 + 2m) \qquad \rightarrow$$

$$\text{Ventri:} \qquad x = \frac{\lambda}{4}(1 + 2m) \qquad m = 0, 1, 2, \dots \qquad (1.28)$$

invece i nodi li troviamo ponendo

$$\sin(kx) = 0 \qquad \rightarrow \qquad kx = m'\pi \qquad \rightarrow \qquad \frac{2\pi}{\lambda}x = m'\pi \qquad \rightarrow$$

$$\mathbf{Nodi:} \qquad x = \frac{\lambda}{2}m' \qquad m' = 0, 1, 2, \dots \tag{1.29}$$

1.9.1 Corda tesa con due estremi fissi

Supponiamo di avere una corda vibrante di lunghezza L con nodi nei punti di coordinate x=0 e x=L. Vediamo come fissata una lunghezza L della corda, in questa possono aver luogo soltanto le onde stazionarie di lunghezza d'onda λ_m e frequenza f_m : dalla 1.29 si ha che i nodi, in x=0 e x=L, sono descritti da

$$x = \frac{\lambda}{2}m \longrightarrow \begin{cases} 0 = \frac{\lambda}{2}m \\ L = \frac{\lambda}{2}m \end{cases}$$
dalla seconda: $\rightarrow \lambda = \lambda_m = \frac{2L}{m}$ (1.30)

Ricaviamo invece la frequenza dalla sua normale espressione utilizzando la 1.3 per la velocità:

$$f_m = \frac{v}{\lambda_m} = \frac{\sqrt{\frac{T}{\mu}}}{2\frac{L}{m}} \rightarrow f_m = \frac{m}{2L}\sqrt{\frac{T}{\mu}}$$

In una corda tesa esiste dunque una **serie discreta** di lunghezze d'onda e frequenze detta **serie armonica** in cui la frequenza più bassa f_1 è chiamata **frequenza fondamentale** o **prima armonica**, tutte le altre sono dette **armoniche superiori**

- Modo della corda

Viene chiamato **modo** della corda una particolare onda stazionaria con *tot* nodi. Una coda ha pertanto ∞^1 modi discreti. Un particolare modo può essere eccitato pizzicando opporunamente la corda oppure per mezzo di un diapason.

Nel caso del diapason: se questo è posto su un estremo della corda così da fungere da nodo, genera un'onda che arrivata all'estremo opposto si andrà a riflettere tornando dal diapason per poi rifletersi nuovamente, tutto questo in un certo tempo t che possiamo trovare: sappiamo che l'onda viaggia a velocità v e deve percorrere un tratto lungo 2L, quindi

$$t = \frac{2L}{v}$$

dalla 1.30 sappiamo che $2L = \lambda m$

$$t = \frac{\lambda m}{v}$$

e sappiamo che il periodo è il tempo impiegato a percorrere una lunghezza d'onda: $T = \frac{\lambda}{\nu}$

$$t = mT$$

quindi l'onda viene riflessa in un tempo multiplo del periodo e perciò l'onda sarà **in fase** con la crestà dell'onda che il diapason emette al tempo t + mT creando un fenomeno di **risonanza**. L'oscillazione tende quindi ad aumentare e il limite a questo aumento è solo posto a fenomeni di smorzamento dati da vincoli non ideali e attriti.

Nel caso in cui non fosse soddisfattta la 1.30, e quindi non si possa esprimere $2L = \lambda m$ si stabilisce un'onda risultante di tutte le onde che hanno origine nelle varie riflessioni la cui ampiezza coincide con quella del diapason.

1.9.2 Corda tesa con un estremo fisso

La condizione da soddisfare per avere onde stazionarie stabili in una corda con un estremo libero è imporre che une dei due estremi rimanga fisso (nodo), e che l'altro sia un ventre:

Ventre:
$$x = \frac{\lambda}{4}(1+2m) \rightarrow L = \frac{\lambda}{4}(1+2m) \rightarrow \lambda = \lambda_m = \frac{4L}{1+2m}$$
 (1.31)

come nel caso a due estremi fissi ricaviamo la frequenza:

$$f_m = \frac{v}{\lambda_m} = \frac{\sqrt{\frac{T}{\mu}}}{\frac{4L}{1+2m}} \longrightarrow$$

$$f_m = \frac{1+2m}{4L} \sqrt{\frac{T}{\mu}} \tag{1.32}$$

Come prima se poniamo un diapason sull'estremo fisso si hanno le condizioni di risonanza: l'onda che arriva all'estremo libero viene riflessa senza capovolgersi, arrivata al diapason si capovolge e torna verso l'estremo libero; vediamo quanto impiega l'onda a percorrere la corda:

$$t = \frac{2L}{v}$$

dalla 1.31 sappiamo che $2L = \frac{1+2m}{2}\lambda$

$$t = \frac{1+2m}{2v}\lambda = \frac{1+2m}{2}\frac{\lambda}{v}$$

e poiché il periodo è il tempo impiegato a percorrere una lunghezza d'onda: $T = \frac{\lambda}{n}$

$$t = \frac{1+2m}{2}T$$

Anche in questo caso l'onda impiega un tempo proporzionale al periodo nonm ho ben capito. riguarda questa parte sulle slide

1.9.3 Onde stazionarie in una colonna di gas

Andiamo a considerare, in una canna di un organo per esempio, un'onda di pressione e una di spostamento. Se la canna è aperta in entrambi gli estremisi realizzano le stesse condizioni per la pressione e per lo spostamento, in sostanza la condizione è equivalente alla corda con due estremi fissi.

Se invece un estremo è chiuso, nel punto di chiusura si avràun ventre di pressione (che sale) e un nodo di spostamento (l'aria si ferma); la situazione è quindi analoga a quella di una corda con un estremo fisso e uno libero.

riporta calcoli

1.9.4 **Timbro**

Uno strumento fornisce un massimo di potenza quando la frequenza di eccitazione coincide con una delle frequenze della serie armonica. Il fenomeno elle riflessioni multible esalta le frequenze della serie armonica e smorza tute le altre che risultano quasi assenti. Perciò comprendiamo come la stessa nota con frequenza fondamentale f_1 abbia una composizione armonica che dipende dallo strumento, proprio perché ogni strumento fornisce frequenze di eccitazioni differenti.

– Timbro −

La composizione armonica di una nota dipendente dallo strumento e dalla particolare frequenza di eccitazione è chiamata ${\bf timbro}$

Fluidodinamica

2.1 Pressione

Poiché non possiamo parlare di forza applicata in un punto del fluido andiamo a considerare un elemento infinitesimo di massa dm e volume dV e andiamo a distinguere le forze agenti su di esso. Distinguiamo le **forze di volume**, ovvero tutte quelle forze proporzionali a dV, e **forze di superficie** porporzionali a dS. Nel caso delle forze di superficie è bene caratterizzarle come somma di un termine normal a S e uno parallelo; noi consideriamo il fluido in equilibrio quindi il termine parallelo è nullo.

Forze di volume:
$$dF_V = dma_z = \rho dVa_z$$

Forze di superficie: $dF_{S\perp} = pdS$

Le forze di superficie si riducono quindi alla sola componente perpendicolare e sono caratterizzate dalla pressione. La pressione che funge da coefficiente alla superficie **non ha caratteristiche direzionali**, è funzione scalare del punto che si considera e **non dipende deall'orientazione della superficie**.

inserire grafici

$$CH = AH\cos(\theta)$$

$$BH = AH\sin(\theta)$$

$$p_A = \frac{F_A}{AH}$$

$$\begin{cases} F_C = F_A\cos(\theta) \\ F_B = F_A\sin(\theta) \end{cases} \rightarrow \begin{cases} p_C = \frac{F_C}{CH} = \frac{F_A\cos(\theta)}{AH\cos(\theta)} = \frac{F_A}{AH} \\ p_B = \frac{F_B}{BH} = \frac{F_A\sin(\theta)}{AH\sin(\theta)} = \frac{F_A}{AH} \end{cases}$$

$$\Rightarrow p_A = p_B = p_C = \mathbf{p}$$

Quindi la pressione è una **quantità scalare** e il suo valore **dipende** in generale **dalla posizione del punto** ma non dalla direzione.

2.1.1 Equilibrio statico di un fluido

La condizione di equilibrio è che la somma di tutte le forze di volume e di superficie si annulli

$$\overrightarrow{F}_{Vtot} + \overrightarrow{F}_{Stot} = 0$$

Considero solo le forze dovute ad un'accelerazione lungo l'asse \boldsymbol{z}

Forze di volume:
$$dF_V = dma_z = \rho a_z dV$$

Forze di superficie:
$$dF_{S\perp} = p(z)dS - p(z+dz)dS$$

 $= p(z)dS - p(z)dS - p(dz)dS$ inserire grafici
 $= -\frac{\partial p}{\partial z}dzdxdy$
 $= -\frac{\partial p}{\partial z}dV$

Quindi per soddisfare la condizione di equilibrio deve valere

$$\rho a_z dV - \frac{\partial p}{\partial z} dV = 0 \quad \rightarrow$$

$$\frac{\partial p}{\partial z} = \rho a_z \tag{2.1}$$

che se estendiamo su tutte e tre le dimensioni diventa

$$\overrightarrow{\nabla} p = \rho \overrightarrow{a}$$
 (2.2)

Quindi la pressione aumenta lungo il verso positivo della forza (determinata dall'accelerazione a_*). La forza di volume tende infatti a spostare il volumetto determinando una **reazione** del fluido che si manifesta come una variazione di pressione. *Notare l'analogia della pressione con la tensione in un filo massivo*. Si ottiene inoltre che la pressione è uniforme solo quando $\rho a = 0$ che sulla terra sembrerebbe non poter mai essere verificata data l'accelerazione di gravità. Tuttavia per densità molto basse o volumi molto piccoli la pressione può essere considerata uniforme.

Se la forza di volume agente sul fluido è conservativa il lavoro compiuto non dipende dal particolare percorso seguito, ma solo dalle coordinate dal punto iniziale e finale; inoltre vale

$$\overrightarrow{F} = m\overrightarrow{a} = -\overrightarrow{\nabla} E_p$$

perciò si può esprimere la 2.2 come $-\rho$ per il gradiente dell'**energia potenziale per unitàdi massa**

$$\overrightarrow{\nabla} p = -\rho \frac{\overrightarrow{\nabla} E_p}{m}$$

$$\overrightarrow{\nabla} p = -\rho \overrightarrow{\nabla} E_{p,m}$$
(2.3)

Infatti le **superfici isobariche coincidono con quelle equipotenziali**, quindi le variazioni di pressione e di energia potenziale sono le stesse ovunque nel passaggio da una superficie equipotenziale ad un'altra. Se espelicitiamo i due nabla otteniamo l'espressione della variazione infinitesima di pressione:

$$\boxed{ \left| \overrightarrow{\nabla} p \right| = \left| \frac{dp}{ds} \right| } \qquad \boxed{ \left| \overrightarrow{\nabla} E_{p,m} \right| = \left| \frac{dE_{p,m}}{ds} \right| }$$
$$|dp| = -\rho |dE_{p,m}|$$

quindi se lungo una superficie isobarica e equipotenziale si hanno pressione ed energia potenziale costanti, anche la densità lo è. Pertanto in un fluido sottoposto a forze conservative la **variazione di densità** segue geometricamente qualla di pressione e di energia potenziale.

2.1.2 Lavoro della pressione

Nel caso di equilibrio statico non ci sono spostamenti di conseguenza il lavoro è nullo. Nel caso di non equilibrio invece, considerando una situazione semplice di una forza verticale ortogonale alla superficie:

$$dW = dFdh = pSdh = dpdV$$

$$W = \int pdV \tag{2.4}$$

2.1.3 Equilibrio in presenza di forza peso

Applichiamo i risultati ottenuti precedentemente. In questo caso abbiamo come accelerazione $a_z = -g$, quindi secondo la 2.2 la pressione **varia solo lungo l'asse z**. Esplicitiamo i due gradienti così da esplicitare la 2.3:

$$\nabla p_z = \frac{dp}{dz}$$

$$\nabla E_{p,m,z} = \frac{dE_{p,m}}{dz} = g$$

$$\frac{dp}{dz} = -\rho g$$

$$\int_{p_1}^{p_2} dp = -\rho g \int_{z_1}^{z_2} dz$$

$$p_2 - p_1 = -\rho g (z_2 - z_1)$$

Quindi se la densità è costante, la pressione in un fluido in equilibrio sotto l'azione della forza di gravità varia secondo la **legge di Stevino** ($p_2 = p_0$ e $z_2 = 0$ e $z_1 = -h$)

$$p(h) = p_0 - \rho g h \tag{2.5}$$

2.2 Principio di Archimede

Un corpo immerso in un fluido riceve una spinta verticale verso l'alto pari al peso del volume di fluido spostato

$$\overrightarrow{F}_A = -\rho V \overrightarrow{g} \tag{2.6}$$

Vediamo come ottenere questa relazione: immaginiamo una prozione di fluido "immerso" di volume V_0 ; essendo in equilibrio la somma delle forze di volume e delle forze di pressione deve essere nulla

$$\overrightarrow{F}_V + \overrightarrow{F}_P = 0 \rightarrow F_P = mg$$

se andiamo a sostituire il volume di fluido con un altro corpo di densità ρ' , allora le forze di pressione esercitate dal fluido circostante rimane la stessa, mentre varia la forza eso. Pertanto non sussiste più la condizione di equilibrio e vale

E' importante notare che la forza di Archimede si deve ritenere **applicata al centro di massa**, pertanto oltre alla spinta verso l'alto, nel caso di corpi estesi, si deve pensare anche ad un **momento risultante**.

inserire grafici

2.3 Liquido in rotazione

Andiamo a considerare un elemento dm di liquido e analiziamo le forze in gioco ponendoci nel sistema di riferimento non ineraziale del liquido rotante:

- 1. Chiaramente la forza peso: *dmg*;
- 2. Compiendo una traiettoria circolare è soggetto ad una forza centripeta: $dm\omega^2 R = \rho dV\omega^2 R$;
- 3. Infine una forza di pressione che va ad equilibrare le altre due: dF_P

L'elemento dm è quindi soggetto a due forze di volume (conservative) e a una forza di pressione. Essendo soggetto a forze conservative possiamo scrivere l'espressione della sua energia potenziale come

$$dW = \overrightarrow{F} \cdot d\overrightarrow{s} = (dm\overrightarrow{g} - dm\omega^{2}\overrightarrow{r}) \cdot d\overrightarrow{s}$$
$$= dmgdz - dm\omega^{2}(x + y)dxdy$$

ponendo lo zero di energia potenziale a terra possiamo ottenere l'espressione di quest'ultima:

$$E_p = mgz - \frac{1}{2}m\omega^2(x^2 + y^2)$$

o espressa in unità di massa

$$E_{p,m} = gz - \frac{1}{2}\omega^2(x^2 + y^2)$$

da cui possiamo ottenere l'espressione della coordinata z in funzione di x, y:

$$z = h + \frac{\omega^2}{2g}(x^2 + y^2) \tag{2.7}$$

equazione di un paraboloide di rotazione

Andiamo ora studiare lo stesso caso ma in un sistema di riferimento inerziale. In questo caso l'elemento di liquido non è più in quiete, la risultante delle forze su di esso dovrà dare un termine centripeto. La condizione di equilibrio è soddisfatta solamente lungo la direzione verticale e, come sappiamo dalla 2.2, vale

$$\overrightarrow{F}_{V,z} + \overrightarrow{F}_{p,z} = 0$$

$$dmg + p(z)dS - p(z + dz)dS = 0 \rightarrow dmg - p(dz)dS = 0$$

$$dmg - \frac{\partial p}{\partial z}dzdxdy = 0$$

$$dmg - \frac{\partial p}{\partial z}dV = 0 \rightarrow \rho dVg - \frac{\partial p}{\partial z}dV = 0$$

$$\rho g = \frac{\partial p}{\partial z}$$

Per le forze radiali invece non sono soddisfatte le condizioni di equilibrio (e ricordando che sono forze

centripete):

$$dF_r = p(r)dS - p(r+dr)dS$$

$$= -\frac{\partial p}{\partial r}drdS$$

$$= -\frac{\partial p}{\partial r}dV$$

$$-dm\omega^2 r = -\frac{\partial p}{\partial r}dV$$

$$-\rho dV\omega^2 r = -\frac{\partial p}{\partial r}dV$$

$$\rho \omega^2 r = \frac{\partial p}{\partial r}$$

dalle due espressioni si ricava quella della pressione in funzione della distanza radiale e verticale:

$$p(r,z) = -\rho gz + \frac{1}{2}\rho\omega^2 r^2 + p(0,0)$$
 (2.8)

dove $p(0,0) = p_0 + \rho g h$ e, ricordando che la superficie libera è isobarica, la pressione atmosferica p_0 deve equilibrare p(r,z)

$$p_0 = -\rho gz + \frac{1}{2}\rho\omega^2 r^2 + p_0 + \rho gh$$

e quindi ritroviamo l'espressione di z di prima

$$z = h + \frac{\omega^2}{2g}(x^2 + y^2)$$

2.4 Moto di un fluido

Durante lo scorrimento tra due elementi di fluiso compare una **forza di attrito interno** con verso opposto alla velocit relativa tra i due. Sperimentalmente si trova che il modulo della forza d attrito vale

$$dF = \eta dS \frac{dv}{dn} \tag{2.9}$$

Il coefficiente η indica la **viscosià del fluido**; nei liquidi decresce all'aumentare della temperatura, nei gas cresce. Chiamiamo **fluido ideale** o **non viscoso e incomprimibile** un fluido con η = 0 e ρ = costante.

111

Il concetto di viscosità assume importanza solo nei fluidi in movimento. La condizione di equilibrio statico dv/dn = 0 non dipende da η .

La variazione di forma discussa prima è in parte dovuta all'attrito interno. Il contenitore si mette in modo iniziando a trascinare gli elementi di liquido sulle pareti e sul fondo; glie lementi si portano verso l'esterno fino a che non si stabilisce l'equilibrio dinamico.

2.4.1 Descrizioni del moto

- Lagrangiana-

Prende in esame un elemento di fluido e ne segue il moto dovuto alle varie forze agenti. In sostanza è una descrizione analoga a quella di un punto materiale.

Euleriana-

Si fissa l'attenzione su un punto della massa fluida P(x, y, z) e si considera la velocità v(x, y, z, t) dell'elemento fluido che passa in P all'instante t.

Spesso risulta più comoda la descrizione euleriana soprattuto se consideriamo la **velocità indipendente dal tempo**. In questo caso scompare la dipendenza dal tempo che sarebbe rimasta nella visuale lagrangiana (dove si segue il moto del punto).

Regime stazionario

La situazione fisica in cui tutti gli elementi di fluido che passano in istanti diversi in *P* hanno in quella posizione sempre stessa velocità, è chiamata **regime stazionario**.

2.4.2 Tubi di flusso e portata

Si tracciano delle linee orientate le cui tangenti serovono a descrivere la direzione e la velocità in quel punto. L'insieme di tutte le linee di corrente attraverso una data sezione prende il nome di **tubo di flusso**.

-Portata

Viene definita **portata del tubo di flusso** il volume di fluido che è passato attraverso la sezione in un secondo:

$$dq = vdS \tag{2.10}$$

E' importante notare che se la configurazione delle linee di corrente è immutabile, quindi se il fluido è ideale e ci troviamo in condizioni di regime stazionario, la portata deve essere la stessa attraverso qualsiasi sezione. Il fluido in questione infatti, essendo ideale, al variare della sezione non può variare di densità.

In regime stazionario, se la densità è costante, è costante la portata di un tubo di flusso infinitesimo:

vdS = costante

2.4.3 Teorema di Bernoulli

Prendiamo un fluido ideale che scorre in conidzioni di regime stazionario. Il volume $dV_1 = S_1 d\ell_1$ che attraversa la sezione S_1 nel tempo dt è uguale a quello $dV_2 = S_2 d\ell_2$ che attraversa nello stesso intervallo la sezionem S_2 :

Andiamo ora a studiare il lavoro delle forze di volume e delle forze di pressione sui due volumi in considerazione:

 h_1

Lavoro forza peso $dW_G = -dE_p = \\ = -dm(h_2 - h_1)g \\ = -\rho dV(h_2 - h_1)g$ $= -p dV(h_2 - h_1)g$

Da cui si ricava una variazione di energia cinetica ($W = \Delta E_K$) pari a

$$dE_K = dW_G + dW_P$$

$$\frac{1}{2}\rho dV v_2^2 - \frac{1}{2}\rho dV v_1^2 = (p_1 - p_2)dV - \rho dV(h_2 - h_1)g$$

 $dE_K = dW_G + dW_P = (p_1 - p_2)dV - \rho dV(h_2 - h_1)g$

$$p_1 + \frac{1}{2}\rho v_1^2 + \rho g h_1 = p_2 + \frac{1}{2}\rho v_2^2 + \rho g h_2$$
(2.11)

Teorema di Bernoulli

In un fluido ideale in moto con regime stazionario la somma della: **pressione**, **densità di energia cinetica** e della **densità di energia potenziale** è costante lungo il condotto (lungo qualunque tubo di flusso).

Notare che dalla legge della dinamica appena presentata, si ricavano tutte le leggi della statica precedenti: la statica è sempre un caso particolare della dinamica. Inoltre si rileva che la pressione misurata in un fluido in movimento è sempre minore di quelal misurata in un fluido in quiete.

2.4.4 Moto laminare

Trattiamo ora il moto di **fluidi reali**, ovvero fludi di cui non si può più apprissimare $\eta = 0$ e per cui la densità è approssimabile a un valore costante $\rho \approx$ costante. A velocità *non elevate* il moto è detto **laminare**: il regime è stazionario con le linee di corrente costanti nel tempo

Considerando un condotto lungo l e di raggio R si dimostra che la velocità in base alla distanza radiale vale

$$v(r) = \frac{p_1 - p_2}{4\eta l} (R^2 - r^2) \tag{2.12}$$

In queste condizioni cambia la formula della portata che diventa

$$q = \int_0^R v(r) 2\pi r \ dr$$

da cui si ottiene la legge di Hagen-Poiseuille (valida per raggi molto piccoli)

$$q = \frac{\pi R^4}{8\eta} \frac{p_1 - p_2}{l} \tag{2.13}$$

dalla quale possiamo trovare il valore della velocità media:

$$v_m = \frac{q}{S} = \frac{\frac{\pi R^4}{8\eta} \frac{p_1 - p_2}{l}}{\pi R^2} = \frac{R^2}{8\eta} \frac{p_1 - p_2}{l}$$
 (2.14)

Come nel caso di un punto materiale in presenza di attrito radente, per mantenere il flusso di fluido è necessaria una differenza di pressione, ovvero una forza per vincere la resistenza del moto dovuta all'attrito interno.

_ !!! -

Per i fluidi reali Bernoulli vale solo in misura approssimata dv/dn = 0 non dipende da η .

2.4.5 Moto turbolento

Al crescere del raggio del condotto compaiono vortici nel fluido e si parla di **moto turbolento o vorti- coso**. I vortici sono causati da forti variazioni di velocità ortogonalmente alle linee di corrente, e quindi, a **notevoli forze di attrito interno** (altre cause sono variazione di forma del condotto...).

Se il condotto è a sezione costante vale la legge sperimentale descritta da Reynolds che ha provato che si ha la transizione da regime laminare a turbolento quando il parametro $\mathcal R$ detto numero di Reynolds super un certo valore critico:

$$\mathscr{R} = \frac{\rho vL}{\eta} \qquad v_{\text{crit}} = \mathscr{R}_{\text{crit}} \frac{\eta}{\rho L}$$

dove L è la **lunghezza caratteristica convenzionale** (per tubazioni cilindriche è il diametro).

All'aumentare della differenza di pressione si raggiunge un **regime di moto stabile in regime turbolento** e si trova che la velocità media si può esprimere come

$$v_m^2 = 2\frac{L}{k} \frac{\rho}{2} \frac{p_1 - p_2}{l}$$

Vediamo quindi come il gradiente di pressione $(p_1 - p_2/l)$ sia necessario per mantenere una certa velocità di flusso, più precisamente in regime vorticoso questo è una funzione quadratica della velocità, in regime laminare è una funzione lineare.

Consideriamo una sfera immers in un fluido in moto. Se il fluido è ideale si avrà **completa simmetria delle linee di corrente**, quindi eguale pressione a monte e a valle della sfera che rimarrà ferma; questo risultato è indicato come **paradosso di D'Alembert**.

Se invece il fluido è reale si forma una scia vorticosa con pressione a valle maggiore e conseguente applicazione di una forza sulla sfera.

Dove la prima è detta **legge di Stokes** e vale per oggetti di forma sferica, mentre la seconda ha il coefficiente adimensionale c che dipende dalla forma dell'oggetto (soprattuto la parte posteriore).

2.4.6 Effetto Magnus e Portanza

Supponiamo che ora la sfera immersa nel fluido stia anche **ruotando su se stessa**. Ruotando trasporta per attrito una parte di fluido generando una **asimmetria** nelle velocità in alto e in basso. In generale la velocità del fluido sarà più alta dove viene trasportato il fluido dalla rotazione (in basso in figura). La differenza di velocità causa una differenza di pressione e quindi una spinta. Questo fenomeno prende il nome di **effetto Magnus**.

Un altro fenomeno importante è la **portanza**: una spinta verso l'alto dovuta alla differenza di pressioni nelle due parti inferiore e posteriore di un'ala.

Per ricavare un'espressione della forza possiamo passare dall'equazione di Bernoulli. Si hanno i seguenti valori di pressione e velocità:

• **A monte**: *p* e *v*;

• **Sopra**: $p_1 e v + \Delta v$;

• Sotto: $p_2 \in v - \Delta v$.

Deve valere

$$p + \frac{1}{2}\rho v^2 = p_1 + \frac{1}{2}\rho(v + \Delta v)^2 = p_2 + \frac{1}{2}\rho(v - \Delta v)^2$$

da cui

$$p_2 - p_1 = 2\rho v \Delta v$$

che, con una superficie alare A, ci dà

$$F = 2A\rho v \Delta v \tag{2.17}$$