Název	česky: Vizuální lokalizace pro HoloLens				
práce	2. anglicky: Visual Localization with HoloLens				
prace	2. diigiloky. Visual Localization with HoloLens				
Studijní	Otevřená informatika				
program	o to violata inicollitatina				
(název)					
Studijní	magisterský				
program					
(typ)					
Obor:	Umělá inteligence				
Vedoucí	1. doc. Ing. Tomáš Pajdla Ph.D.				
	2. CIIRC ČVUT				
	3. <u>pajdla@fel.cvut.cz</u> , +420-22435-4187				
Oponent	1. RNDr. Zuzana Kukelova, Ph.D.				
	2. Katedra kybernetiky				
	3. <u>kukelova@gmail.com</u>				
student	Pavel Lučivňák, datum narození: 25. 11. 1994				
literatura	[1] Arandjelović, R.; Gronat, P.; et al. NetVLAD: CNN architecture for				
	weakly supervised place recognition. In IEEE Conference on Computer				
	Vision and Pattern Recognition, 2016.				
	[2] Taira, H.; Okutomi, M.; et al. InLoc: Indoor Visual Localization with				
	Dense Matching and View Synthesis. In 2018 IEEE/CVF Conference on				
	Computer Vision and Pattern Recognition, June 2018, ISSN 1063-6919,				
	pp. 7199–7209, doi:10.1109/CVPR.2018.00752.				
	[3] Garg, R.; Kumar, B. V.; et al. Unsupervised CNN for single view depth				
	estimation: Geometry to the rescue. In European Conference on Computer				
	Vision, Springer, 2016, pp. 740–756.				
	[4] Zhang, Y.; Funkhouser, T. Deep Depth Completion of a Single RGB-D				
	Image. The IEEE Conference on Computer Vision and Pattern Recognition				
	(CVPR), 2018.				
	[5] Van Gansbeke, W.; Neven, D.; et al. Sparse and Noisy LiDAR Completion				
	with RGB Guidance and Uncertainty. In 2019 16th International				
	Conference on Machine Vision Applications (MVA), IEEE, 2019, pp. 1–6.				
pokyny	1) Review the state of the art in indoor visual localization, see [1,2] and				
Poryny	references therein.				
	2) Adjust method [2] to local environment and image acquisition using Hololens.				
	Create new 3D data set for the local environment and evaluate the accuracy of the				
	localization w.r.t. a ground truth in that environment.				
	3) Analyze sources of errors and inaccuracies, in particular the influence of				
	incorrectly constructed 3D data set and its maintenance in time on the localization				
	accuracy and propose an improvement of [2] for the local environment.				
	Investigate, e.g., single view depth construction, depth completion methods [3,4].				
	4) Demonstrate and evaluate the improved method for Hololens localization.				
zadavatel	doc. Ing. Tomáš Pajdla Ph.D., CIIRC ČVUT				