Software Requirements Specification for VoiceBridge: An Accessible Speech-to-Control System

Team 13, Speech Buddies Mazen Youssef Rawan Mahdi Luna Aljammal Kelvin Yu

October 10, 2025

Contents

Revision History

Date	Version	Notes
October 2, 2025	Rawan and Luna	Filled-In Initial Draft of SRS Document
October 10, 2025	Rawan and Luna	Completed SRS Document
October 10, 2025	Mazen and Kelvin	Reviewed and Edited SRS Document

Table 1: Revision History for SRS Document

1 Purpose of the Project

1.1 User Business

Individuals with speech impairments face significant barriers when interacting with digital devices. VoiceBridge addresses this gap by providing an accurate, inclusive, and accessible speech-to-control system that enables users to communicate with their devices using their speech, regardless of clarity of articulation. Building on familiar technology, such as personal computers and mobile devices, may be one of the most cost-effective and easily adoptable approaches for improving an individual with disability's autonomy and access to the world around them. The rise of automatic speach recognition (ASR) technology and Artificial Intelligence (AI) integrations in the industry provides a novel landscape of opportunities to improve accessibility interfaces. VoiceBridge exploits bleeding-edge technology for a practical and impactful application.

1.2 Goals of the Project

ID	Goal	Description	
G1	Accurate Speech	Reliably convert impaired or slurred speech into	
	Transcription	text.	
G2	Command Mapping	Translate recognized speech into actionable	
		browser commands.	
G3	User Independence Enable users with speech impairments to brow		
		autonomously.	
G4	Lightweight & Ac-	tweight & Ac- Keep the system simple, fast, and cost-effective.	
	cessible Design		
$\overline{G5}$	Cross-Browser Com-	Support major browsers (e.g., Chrome, Edge,	
	${f patibility}$	Firefox).	
G6	Robust Error Han- Detect and recover gracefully from common fai		
	dling ures.		
G7	Data Privacy & Se- Protect user data and ensure secure local pr		
	curity	cessing.	
G8	Customizable Inter-	Allow users to adjust sensitivity, shortcuts, and	
	face	feedback modes.	
G9	Scalable Architec-	Design the system for future integration beyond	
	ture	browsers.	

2 Stakeholders

2.1 Client

The primary client for the VoiceBridge project is the organization or individual funding or commissioning the system. The client is primarily concerned with achieving the following goals: **G1**, **G5**, and **G9**, ensuring accurate speech transcription, cross-browser compatibility, and scalable architecture.

2.2 Customer & Hands-On Users of the Project

The primary customers are also the users of the project, them being individuals with speech impairments, who seek independence and autonomy through technology. Their needs directly relate to: **G1**, **G2**, **G3**, and **G8**.

2.3 Other Stakeholders

Secondary stakeholders include experts in linguistics, speech processing, and healthcare domains:

- Speech researchers and linguistics specialists, including the project supervisor, Dr. Christian Brodbeck, who provide insight toward **G1** and **G6**.
- Healthcare professionals and speech therapists who advise on usability and accessibility, contributing to **G3** and **G8**.
- Accessibility advocates and organizations interested in promoting the application, aligned with **G4** and **G5**.
- Software developers who implement and maintain the system, supporting G9 and G6.

Tertiary stakeholders include caregivers and professionals who interact with end users, supporting G3 and G7.

2.4 Personas

Potential end users of VoiceBridge include:

- Amira, a 45-year-old with Parkinson's disease, uses the system to log into Gmail and send emails.
- David, a stroke survivor, uses the system to browse the web and make purchases.

2.5 Priorities Assigned to Users

The highest priorities are assigned to end users with speech impairments, as their experience with the system defines its success. Secondary priorities include caregivers and technical experts who support the end users in using and maintaining the system.

2.6 User Participation

Individuals matching the target user profiles will be recruited for prototype testing and personalization development. Their participation directly supports refining goals **G1**, **G2**, **G3**, and **G8**.

2.7 Maintenance Users and Service Technicians

Maintenance Users:

• Role: End-users or caregivers performing basic troubleshooting and initiating support requests.

• Responsibilities:

- Reporting errors or unexpected system behavior (**G6**).
- Installing application updates (**G9**).
- Managing user-specific configurations (**G8**).

Service Technicians:

• Role: Trained technical staff with deeper access to system logs and back-end services.

• Responsibilities:

- Investigating reported issues (**G6**).
- Ensuring transcription accuracy (G1).
- Deploying updates and patches (**G9**).
- Ensuring compatibility with operating systems and accessibility frameworks (G5).
- Performing preventive maintenance, including performance monitoring and optimization (G1, G6).

2.8 Society

Society is recognized as an essential stakeholder in the VoiceBridge project, given the system's potential impact on accessibility, inclusion, and digital independence for individuals with speech impairments. The project directly supports broader social goals of equity and participation by enabling users to interact with technology without barriers, contributing to fair access to digital communication and online services.

Health and Safety: VoiceBridge promotes safe technology use by minimizing physical strain associated with traditional input methods, such as typing or clicking, which can be challenging for users with motor limitations. Data privacy and security protocols safeguard user health information and prevent psychological stress caused by data misuse or breaches, aligning with ethical design standards for assistive technology.

Cultural and Ethical Considerations: The system is designed to accommodate diverse speech patterns, dialects, and accents, ensuring that cultural and linguistic differences are respected rather than penalized by the model. VoiceBridge avoids stigmatizing language or error messaging, instead emphasizing supportive feedback to maintain user confidence and dignity.

Social Impact: By reducing communication barriers, VoiceBridge fosters greater inclusion in workplaces, education, and online communities. The system thus contributes to both individual empowerment and collective social benefit.

3 Mandated Constraints

3.1 Solution Constraints

ID	Constraint	Rationale	Fit Criterion
C1		grade hardware ensures	The system must successfully be integrated onto browsers and run on laptops or desktops across the supported operating systems, using either built-in or external microphones.

CO (TI) 1 / 1 11		
C2 The product shall ac	ccept Individuals with speech	The system must be capa-
non-deterministic use	r in- impairments may produce	ble of processing and re-
put in the form of na	tural varied speech patterns	sponding to variable nat-
language speech.	that cannot be handled	ural language inputs with-
	by rigid or deterministic	out requiring a fixed set of
	command structures.	commands.
C3 The product shall grate with a browser trol application to exe voice-based command	con- primary accessibility point ecute for most digital services,	cessfully perform browser actions (e.g., opening tabs, navigating to URLs,

3.2 Implementation Environment of the Current System

ID	Constraint	Rationale	Fit Criterion
C4	within a consumer com- puting environment con- sisting of personal com-	This setup reflects the most common user hardware configuration, ensuring the solution is accessible without additional devices.	

3.3 Partner or Collaborative Applications

ID	Constraint	Rationale	Fit Criterion
C5	The initial integration target is Browser Use, an open-source browser control and automation application.	Leveraging existing open- source browser automa- tion tools accelerates de- velopment and reduces im- plementation complexity.	The system must demonstrate the ability to execute at least three browser actions through the integrated partner application during testing.
C6	Future integrations may include API servers, mobile device agents, and home assistants to extend accessibility and functionality.	Ensuring extensibility allows the system to grow and adapt to new platforms or user needs.	The system architecture must allow seamless in- tegration with additional partner applications with- out major redesign.

3.4 Off-the-Shelf Software

ID Constraint Rationale Fit Criterion

C7 The product will rely on off-the-shelf software components, specifically Browser Use for automation and Project Euphonia for voice recording.

Using established opensource components allows focus on core functionality, improves maintainability, and supports experimentation with realworld data. These components must be successfully integrated into the development workflow, and collected recordings must be stored and processed for model training without licensing conflicts.

3.5 Anticipated Workplace Environment

ID	Constraint	Rationale	Fit Criterion
C8	at home, in public spaces,	The product must function effectively across diverse real-world environments to meet accessibility goals.	_

3.6 Schedule Constraints

ID	Constraint	Rationale	Fit Criterion
С9	-	,	

3.7 Budget Constraints

ID	Constraint	Rationale	Fit Criterion
C10	within the capstone bud-	Budget limitations require prioritizing open-source solutions and efficient resource allocation.	ture, hosting, and third-

3.8 Enterprise Constraints

ID Constraint Rationale Fit Criterion	ID	Constraint	Rationale	Fit Criterion	
---------------------------------------	----	------------	-----------	---------------	--

C11 The product must comply with all relevant accessibility and privacy regulations, including data usage and user privacy agreements.

Compliance protects user rights, upholds institutional standards, and avoids legal or ethical issues.

All data collection and processing workflows must undergo compliance review, and accessibility features must align with recognized standards (e.g., WCAG).

4 Naming Conventions and Terminology

4.1 Glossary of All Terms, Including Acronyms, Used by Stakeholders involved in the Project

Insert your content here.

4.2 Technical Terminology

ASR - Automatic Speech Recognition

 \mathbf{TTS} - Text To Speech

 \mathbf{STT} - Speech To Text

4.3 Medical Terminology

Aphasia - A condition that robs you of the ability to communicate. It can affect your ability to speak, write and understand language, both verbal and written. Aphasia usually occurs suddenly after a stroke or a head injury. But it can also come on gradually, as in the case of a brain tumor or a progressive neurological disease.

ALS - Amyotrophic Lateral Sclerosis

Dysarthria - A motor speech disorder that makes it hard to speak. It is caused by damage to the nervous system, which can affect the muscles used for speaking. People with dysarthria may have slurred or slow speech, and they may have difficulty controlling the pitch, volume, and rhythm of their speech.

5 Relevant Facts And Assumptions

5.1 Relevant Facts

Fact ID	Fact	Explanation / Relevance
F1	Users experience speech impairments of varying severity.	VoiceBridge must handle varying speech clarity, from slurred to partially formed words (related to (G1), (G2)).
F2	Users want to communicate	Motivates autonomy in using the system with-
	and navigate independently.	out reliance on caretakers (supports (G3)).
F3	Users may have limited mobil-	Hands-free operation improves accessibility
	ity.	and inclusion (supports (G3), (G4)).
F4	Users value simplicity and low	Commands should remain intuitive and easy
	cognitive load.	to use (supports $(G4)$).
F5	Users may have emotional sen-	Interface should be respectful and encouraging
	sitivity around speech diffi-	without repeating goals (complements $(G6)$).
	culty.	
F6	Users expect privacy and dig-	Data handling should preserve privacy and
	nity.	transparency (supports $(G7)$).
F7	Users may use different lan-	System must accommodate linguistic diversity
	guages or accents.	without bias (relates to $(G1)$, $(G8)$).
F8	Users may use assistive tools	VoiceBridge should integrate seamlessly with
	concurrently.	other accessibility tools (supports $(G4)$,
		(G8)).
F9	Users will vary in technical	Onboarding should be minimal and low-
	comfort.	friction (supports $(G4)$, $(G8)$).
F10	Users appreciate visual feed-	Feedback builds trust and reduces frustration
	back and control.	(complements $(G1)$, $(G8)$).

Table 12: User-Centered Facts for VoiceBridge with references to project goals

5.2 Business Rules

ID	Business Rule	Rationale
BR1	Users must be able to cancel or stop a command at any time.	Empowers users and prevents frustration. (G3, G4)
BR2	Transcribed text must be displayed for user verification before executing critical commands.	Ensures accuracy, avoids misinterpretation, and maintains user confidence, in- line with (G1)
BR3	Browser commands must not execute without user consent for actions with potential data impact (e.g., sending messages, closing tabs).	Protects user privacy and prevents accidental operations. (G2, G7)
BR4	The system should provide immediate visual feedback within 5 seconds of speech input.	Builds trust, transparency, and usability for impaired users. (G6, G1)
BR5	System must handle moderate back- ground noise without significant degra- dation of performance.	Maintains reliability in real-world environments.(G1, G6)
BR6	Users should be able to configure simple command mappings for personalized tasks.	Supports individual preferences and improves user autonomy. (G2, G3, G8)

Table 14: Business Rules for VoiceBridge

5.3 Assumptions

ID	Assumption	Implication for Design
A1	Users have access to a working microphone and modern	The system assumes functional input hardware and browser APIs for speech capture (see
	browser.	G1, G5).
A2	Users will tolerate minor tran-	Fast feedback and correction options are more
	scription errors if quickly cor-	important than perfect accuracy (see G1, G6).
	rectable.	
A3	Users are willing to train or cal-	A short setup phase (e.g., sample phrases) can
	ibrate the model briefly.	improve recognition quality (see G1, G8).
A4	Users prefer transparent, ex-	VoiceBridge should indicate what command is
	plainable behavior.	being executed to prevent confusion or mis-
		trust (see G8).
A5	Users may be in noisy or un-	Noise-robust models and confirmation
	controlled environments.	prompts are required to maintain reliability
		(see G1, G6).
A6	Users want emotional ease of	Tone and interface language must feel sup-
	use.	portive — e.g., "Let's try again" instead of
		"Error" (see G6).
A7	Users will likely use the tool for	The feature set should prioritize essential
	daily web tasks.	browser actions (navigation, scrolling, typing,
		tab control) (see G2, G3, G8).

Table 16: Design Assumptions for VoiceBridge with references to related project goals (**Goals Table ??**).

6 The Scope of the Work

6.1 The Current Situation

Individuals with speech impairments currently rely on standard speech-to-text or manual input to use browsers and devices. Existing systems struggle with slurred or atypical speech, often requiring caregiver assistance.

Typical workarounds include typing commands, using alternative inputs, or correcting errors, leading to frustration and limited autonomy.

Current workflow: User speaks \rightarrow Standard recognition \rightarrow Frequent errors \rightarrow Manual/caregiver correction \rightarrow Action executed

VoiceBridge aims to replace this with accurate transcription, command mapping, and immediate feedback, enabling independent browser control.

6.2 The Context of the Work

Figure 1: Context Diagram of VoiceBridge

6.3 Work Partitioning

Event Name	Input	Output	Brief BUC Summary	Relevant Data Classes
Input Capture	User speech via microphone	Audio stream to system	Capture speech for processing	Raw audio, timestamp
Speech-to-	Audio stream	Transcribed text	Convert im-	Audio data,
Text Mod-			paired speech to	transcription
\mathbf{elling}			text	
Intent Confir-	Transcribed text	User confirma-	Verify intended	Text data, confi-
mation		tion	command	dence score
Command	Confirmed text	Actionable com-	Map text to	Command def-
Mapping		mand	browser action	initions, user
				preferences
Browser In-	Actionable com-	Executed	Perform com-	Command data,
teraction	mand	browser ac-	mand in browser	page context,
Layer		tion		execution status

Table 18: VoiceBridge Events, Inputs, Outputs, and Data Classes

7 Business Data Model and Data Dictionary

7.1 Business Data Model

Figure 2: VoiceBridge UML Diagram.

7.2 Data Dictionary

Entity / Field	Description	Data Type / Format	Source / Owner	Purpose / Usage
Audio_Input	Raw speech signal cap- tured from microphone	PCM, WAV, 16 kHz, 16-bit	User microphone	Primary input for ASR pro- cessing
Speech_Features	Extracted acoustic features (e.g., MFCCs, spectrogram)	N-dimensional array	Feature extractor module	Internal representation used by ASR engine
${f Transcript}_{f -}{f Text}$	Recognized text output from speech input	UTF-8 encoded free text	ASR engine	Basis for interpreting user intent
$\operatorname{Error}_{\operatorname{-}}\operatorname{Code}$	Status or error indicator for system response	Integer	ASR engine / Controller	0 = Success, ¿0 = specific error type
User_Profile	Speaker- specific data such as ID, preferences, and speech patterns	JSON object	User database	Enables personalized recognition and response
Timestamp	Time marker for recognition or command event	DateTime	System clock	Used for logging, debugging, and tracking
User_Intent	Parsed intent derived from natural language input	JSON (intent and slots)	Interpreter module	Structured meaning representation (e.g., {"intent": "open_file", "file": "report.pdf"})
$Executable_Com$	nsandtured command be- fore browser execution	JSON object or Abstract Syntax Tree	Interpreter module	Translates user intent into executable browser actions
${ m API_Request}$	Outgoing request to external or browser API	REST / GraphQL for- matted message	$\begin{array}{c} \text{Interpreter} \\ \text{module} \ \rightarrow \ \text{API} \\ \text{translator} \end{array}$	Executes com- mand or trig- gers action in external system
Feedback_Messaş		String / Audio / JSON	VoiceBridge UI	Confirms action success or requests clarification

$Session_ID$	Unique identi-	UUID / String	System	con-	Links	data
	fier for a single		$\operatorname{troller}$		objects	across
	user interaction				a single	speech-
	session				to-comm	nand
					event	

8 The Scope of the Product

8.1 Product Boundary

Figure 3: VoiceBridge Use Case Diagram. Each ellipse represents a Product Use Case (PUC) corresponding to a major system function.

8.2 Product Use Case Table

Table 20: Product Use Case (PUC) Table

PUC ID	Event Trigger	Input	Output	Description
PUC-1	User speaks into microphone	Audio signal	Captured speech data	System listens for user speech input.
PUC-2	Speech captured	Speech data	Text transcription	Converts impaired speech to text using trained model.
PUC-3	Transcription complete	Transcribed text	Confirmation prompt / feed- back	Seeks user confirma- tion to ensure correct interpretation.
PUC-4	Intent confirmed	Confirmed command text	Browser command execution	Maps intent to actionable browser function.
PUC-5	Command executed or error	System response	Success or error feedback to user	Provides feedback or prompts retry on fail- ure.

8.2.1 Individual Product Use Cases (PUC's)

Product Use Cases

This section defines the detailed Product Use Cases (PUCs) for the VoiceBridge system. Each PUC describes the interaction between the user and the system, including purpose, actors, triggers, inputs/outputs, and main scenarios.

PUC-1: Capture User Speech

Primary Actor: User

Trigger: User begins speaking into the microphone.

Precondition: The microphone is connected and permissions are granted.

Input: Audio signal (live speech).Output: Captured audio data stream.

Postcondition: Audio data is made available for processing by the ASR (Automatic Speech

Recognition) module.

Main Scenario:

- 1. User activates the VoiceBridge interface (e.g., presses a "Listen" button).
- 2. The system listens through the microphone for input.
- 3. The system captures the speech signal and stores it temporarily in memory.
- 4. Captured data is sent to the speech-to-text module for processing.

Alternative Flow:

• If the microphone is unavailable or access is denied, the system displays an error prompt.

• User can retry after adjusting permissions or hardware connection.

PUC-2: Convert Speech to Text

Primary Actor: System (Speech Recognition Module)

Trigger: Audio capture event completed.

Input: Captured speech data.Output: Transcribed text.

Postcondition: Transcription results are ready for user confirmation.

Main Scenario:

1. System processes the captured audio stream using a trained ASR model.

2. Acoustic and linguistic features are extracted.

3. Speech is converted to text and stored temporarily.

4. Transcribed text is passed to the confirmation display.

Alternative Flow:

• If transcription confidence is below threshold, the system requests a repeat.

PUC-3: Confirm Transcription

Primary Actor: User

Trigger: System displays transcribed text.

Input: Transcribed text.

Output: User confirmation or correction.

Main Scenario:

1. The transcribed text is displayed to the user for verification.

2. User confirms that the text is correct or requests reprocessing.

3. System records the confirmation and proceeds to intent mapping.

Alternative Flow:

• If user rejects the transcription, the system returns to PUC-1 for re-input.

PUC-4: Map Intent to Browser Command

Primary Actor: System (Command Mapping Module)

Trigger: User confirmation received. **Input:** Confirmed command text.

Output: Actionable browser command.

Main Scenario:

1. System parses confirmed text for intent (e.g., "open YouTube").

- 2. System searches for matching browser or OS command.
- 3. Mapped command is passed to the execution layer.

Alternative Flow:

• If no matching command is found, the system provides suggestions.

PUC-5: Execute Command and Provide Feedback

Primary Actor: System

Trigger: Actionable command received.

Input: Command representation (API or accessibility call). Output: Visible browser or OS action, and feedback message.

Main Scenario:

- 1. System executes the command using the browser's API or accessibility layer.
- 2. The target application or tab performs the intended action (e.g., opens a webpage).
- 3. System provides visual and/or auditory feedback to confirm success.

Alternative Flow:

• If the command execution fails, an error message or retry option is displayed.

9 Functional Requirements

9.1 Functional Requirements

9.2 FR1: Accept Speech Audio via Microphone

Description: The system must capture live speech input from the user through a standard built-in or external microphone.

Rationale: Without microphone input, the system cannot acquire the user's speech for transcription. Requiring only standard/built-in microphones keeps the solution accessible and affordable.

Fit Criterion: The system reliably detects and records audio from default OS microphone devices across Windows, macOS, iOS, and Android, with a minimum 16 kHz sampling rate.

9.3 FR2: Convert Impaired Speech to Text with greater than or equal to 80% Accuracy (MVP)

Description: The system must process the captured audio and output a textual representation of the spoken utterance.

Rationale: Accurate transcription is the core functionality that enables communication and command execution. Without acceptable accuracy, the product fails its purpose.

Fit Criterion: In evaluation on a test dataset of impaired speech, transcription accuracy must reach at least 80% word error rate (WER) reduction compared to baseline models, and achieve greater than or equal to 80% accuracy for common commands.

9.4 FR3: Display Transcription for Verification

Description: The transcribed text must be displayed in real time on the user's device interface. **Rationale:** Transparent feedback allows the user to verify correctness, catch errors, and build trust in the system.

Fit Criterion: Every spoken input is displayed within 2 seconds as text on the UI, with at least 95% consistency across trials.

9.5 FR4: Map Text to Arbitrary Device Commands

Description: The system must recognize when transcribed text corresponds to a predefined device action (e.g., "open amazon.ca," "draft a new email") and translate it into the appropriate command representation (API, CLI, or accessibility call).

Rationale: Mapping allows the system to extend beyond communication into real device control, empowering user independence.

Fit Criterion: For a test set of 50 predefined commands, the system maps user input to the correct command representation in at least 90% of cases.

9.6 FR5: Execute Commands on the Host Device

Description: The system must execute the mapped commands through the host device's accessibility framework or APIs, resulting in visible user action (e.g., app launch, scrolling, text entry).

Rationale: Without execution, the system remains a transcription tool only. Execution closes the loop between speech input and device interaction.

Fit Criterion: For each correctly recognized command, the intended system action occurs on the device within 2 seconds, with greater than or equal to 95% reliability across test scenarios.

10 Look and Feel Requirements

10.1 Appearance Requirements

The interface shall have a clean and minimal design to reduce cognitive load. Key elements should be visually distinct, with consistent spacing, and color usage to support quick recognition of actions.

Since it's a browser integration, the user interface should minimally interfere with the visibility of the content on the page. The interface should only capture the user's attention as functionally needed (i.e., listening to user prompts, confirming user intent), but should otherwise blend in with the browser interface.

10.2 Style Requirements

The system shall maintain a professional and neutral visual style suitable for general workplace use. Colors, icons, and fonts should prioritize clarity over branding at this stage. Future iterations may incorporate custom styling or theming.

11 Usability and Humanity Requirements

11.1 Ease of Use Requirements

The system should minimize user effort by providing a simple, intuitive interface. Key actions should be accessible within 3-4 interactions, with clear feedback after each action.

11.2 Personalization and Internationalization Requirements

The system should support basic personalization (e.g., remembering user preferences) and allow easy adaptation for different languages or regions at a later stage. For the PoC, English support is sufficient.

11.3 Learning Requirements

The system should be learnable within 10 minutes without prior training or documentation. Users should be able to complete core tasks on their first attempt through the interfaces navigation tutorial upon first time launch. Additional documentation should be supplemental but not necessary.

11.4 Understandability and Politeness Requirements

The system should use clear, direct, and neutral language in responses. Error messages or clarifications should remain polite and informative.

11.5 Accessibility Requirements

The interface should be navigable using standard assistive tools and offer clear text contrast and legible font sizes. Full accessibility compliance is not required at the PoC stage but should be feasible for future iterations.

12 Performance Requirements

12.1 Speed and Latency Requirements

Under normal operating conditions, latency requirements can be broken down into:

Speech interpretation: 5 s after end of utterance

Command generation & execution: 10-15 seconds after end of speech interpretation

12.2 Safety-Critical Requirements

The system shall enforce guardrails to prevent unsafe or unintended actions, requiring validation and user confirmation for potentially disruptive operations, and provide warnings or fail-safes for errors.

12.3 Precision or Accuracy Requirements

ASR accuracy shall be at least 70% in stationary noise conditions. The system shall achieve at least 80% command recognition precision under stationary noise conditions for the PoC.

12.4 Robustness or Fault-Tolerance Requirements

The system shall remain stable under fluctuating network conditions and noisy input. Fallback mechanisms (e.g., retry logic, error messaging) shall ensure graceful issue handling.

12.5 Capacity Requirements

The system shall support at least 20 concurrent users without service degradation if the product is commercialized.

12.6 Scalability or Extensibility Requirements

The system architecture shall allow horizontal scaling to handle increased traffic and modular extensions fo new interaction capabilities.

12.7 Longevity Requirements

The system shall be designed to operate reliably over a minimum of 5 years, with maintainable and updatable components to support long-term product evolution.

13 Operational and Environmental Requirements

13.1 Expected Physical Environment

The product shall be operable in a variety of typical office, home, or institutional environments where users perform their daily tasks. The system shall be robust to stationary background noise such as air conditioning, computer fans, and ambient hum. It is not required to reliably handle non-stationary noise, including multiple people speaking or sudden loud interruptions. No modifications to the host operating system, browser, or network configuration shall be required.

13.2 Wider Environment Requirements

The primary interface shall be web-based, accessible via standard web browsers, to maximize user accessibility and support flexible use cases.

13.3 Requirements for Interfacing with Adjacent Systems

- 1. The system shall integrate with existing browser-based platforms and may interface with external language interpreter modules.
- 2. Open-source components (e.g., browser interaction agents and libraries) may be incorporated, ensuring compatibility and maintainability.

13.4 Productization Requirements

- 1. The product shall be deployable for multiple users within an organization, supporting secure user accounts and personalized ASR profiles.
- 2. The design shall allow packaging and distribution without requiring technical setup by end users. The product shall have straightforward installation or access via pre-configured web access and automatic model initialization.
- 3. Productization shall include logging suitable for monitoring performance and usage in a hosted environment.
- 4. The system shall include mechanisms for updates to features with minimal disruption to users.

13.5 Release Requirements

The product shall follow a defined release cycle, providing minor updates quarterly and major updates semi-annually. Each release must maintain backward compatibility with user data, personalization settings, and existing features. Release planning will account for maintenance effort, compute resources, and compliance obligations.

14 Maintainability and Support Requirements

14.1 Maintenance Requirements

Code must be modular, documented, and testable to support scalability, debugging, and future updates. Maintenance must be possible by developers who were not the original authors.

14.2 Supportability Requirements

The product shall provide an accessible Help Page and a Frequently Asked Questions (FAQ) section with clear instructions. It shall be displayed with high-contrast visuals, simple language, and auditory and visual aids.

14.3 Adaptability Requirements

The system must run on common workplace platforms via a web browser, including Windows 10 or later, macOS 12 Monterey or later, and Linux distributions such as Ubuntu 20.04 LTS or later, supporting modern web browsers.

15 Security Requirements

15.1 Access Requirements

Only authorized end users shall be able to access personalized ASR features, voice command execution, and saved transcripts. Access shall be role-based:

- Primary users (end users): can access their own data.
- Secondary users (supervisors/SMEs): may have read-only access to assist with support or troubleshooting.
- Tertiary users (caregivers): may have limited access to assist the end user, can view basic usage history and transcripts but cannot modify settings.

Access to external services (e.g., LLM APIs) shall be rate-limited to ensure system stability, control costs, and prevent abuse.

15.2 Integrity Requirements

The system must provide real-time confirmation and validation of commands before execution to ensure they match user intent.

15.3 Privacy Requirements

The system must gather explicity user consent for storing voice and personal data. All user data used for model improvement must be anonymized. Database and personalized ASR models must maintain integrity through secure, versioned backups. Unauthorized changes or corruption of user data must be prevented.

15.4 Audit Requirements

The system shall maintain secure logs of major actions and commands, including loging events, access to profile and personal data, and command execution failures. Logs shall be protected and retained in a secure database.

15.5 Immunity Requirements

The system must be resilient to accidental misuse. It shall handle noisy input robustly, avoid executing unintended commands, and operate safely within rate limits to prevent resource overload.

16 Cultural Requirements

16.1 Cultural Requirements

The system shall maintain a culturally neutral and respectful tone when prompting users, avoiding slang, bias, and discriminatory language. It must include ethical guardrails to prevent the generation of harmful content or execution of potentially dangerous commands.

It shall support inclusive and accessible design to serve users across diverse cultural backgrounds.

17 Compliance Requirements

17.1 Legal Requirements

The project shall comply with the Personal Information Protection and Electronic Documents Act (PIPEDA) regarding the collection, storage, and handling of personal information.

17.2 Standards Compliance Requirements

The application must comply with the Web Content Accessibility Guidelines (WCAG) 2.0, Level AA guidelines to ensure usability by individuals with disabilities.

18 Requirements Likely and Unlikely to Change

18.1 Likely to Change

• 12.1 Speed & Latency: The system shall process speech input and return text in near real-time.

Rationale: Performance targets may improve as speech recognition and browser processing capabilities evolve.

• 14.3 Adaptability: The system shall allow updates for new languages, user preferences, or accessibility features.

Rationale: Future user needs or new assistive technologies may require system modifications.

• 11.2 Personalization & Internationalization: The system shall support preferred voice, accent handling, and language selection.

Rationale: User preferences and supported languages are likely to expand over time.

• 12.6 Scalability & Extensibility: The system shall support an increasing number of concurrent users and new modules.

Rationale: User growth or additional features may require changes in infrastructure.

• 13.5 Release Requirements: Updates shall be deployable on web browsers without downtime.

Rationale: Deployment strategies may change as development tools or environments evolve.

• 26.2 Personalized ASR Fine-Tuning: The system shall allow individualized model tuning to improve transcription accuracy.

Rationale: Model improvements and user feedback may necessitate adjustments.

• 17.2 Standards Compliance Requirements: System shall follow relevant industry standards.

Rationale: Standard adherence ensures safety, reliability, and credibility. As the product evolves, new features may require compliance with additional standards.

18.2 Unlikely to Change

• 9.1 Functional Requirements: The system shall accurately transcribe speech to text for users with speech impairments.

Rationale: Core transcription functionality is foundational and will not change.

• 10.1 Appearance: Interface shall be clean, minimal, and visually organized to reduce cognitive load.

Rationale: Minimal and clear design is essential for accessibility and usability.

- 10.2 Style: Interface shall use consistent fonts, spacing, and colors to support clarity. *Rationale:* Visual consistency is fundamental for usability.
- 11.1 Ease of Use: Users shall complete tasks with minimal steps or cognitive effort. *Rationale:* Streamlined interaction is a core accessibility requirement.
- 15.3 Privacy Requirements: User data shall be encrypted in the database and logs. *Rationale:* Privacy protection is legally required and critical for trust, this requirement will not change.
- 17.1 Legal Requirements: System shall comply with relevant regulations (e.g., PIPEDA). Rationale: Compliance is mandatory for this project, must be complied with at all times.

19 Open Issues

The primary open issue is maintaining high ASR accuracy across the diverse and severe spectrum of dysarthric speech. This requires extensive training and validation data, as well as careful model tuning.

20 Off-the-Shelf Solutions

20.1 Ready-Made Products

The project will evaluate existing, specialized speech recognition models and applications (e.g., Whisper model and Project Euphonia) as performance baselines.

20.2 Reusable Components

Potential reused components could include existing Text-to-Speech (TTS) modules for feedback and LLMs to map user commands into structured actions.

20.3 Products That Can Be Copied

Open-source browser automation agents (e.g., The AI browser agent) may be integrated for command execution via voice input.

21 New Problems

21.1 Effects on the Current Environment

The product shall operate without modifying the user's OS, browser, or network configuration. This separation prevents unintended impact from incorrect commands.

21.2 Effects on the Installed Systems

The product shall not bypass firewalls, alter security settings, access banned sites, install untrusted content, or perform any malware execution.

21.3 Potential User Problems

Due to the non-deterministic nature of dysarthric speech patterns, a user's exact speech type may not be fully captured by the model, leading to higher training overhead for personalization before the system becomes reliably usable for them. Users may experience misinterpretations requiring retries, which can cause frustration.

21.4 Limitations in the Anticipated Implementation Environment That May Inhibit the New Product

Variability in dysarthric speech may necessitate frequent retraining of ASR models.

Real-time performance varies between devices, depending on processing power and low-latency operation.

21.5 Follow-Up Problems

The local operation limits the ability to perform remote problem diagnosis if any issues arise.

22 Tasks

22.1 Project Planning

Breakdown of major tasks:

Our main tasks are centered on preparing the system by training and tuning the dysarthric ASR model, integrating the core command interpreter, designing the accessible interface, and conducting rigorous testing.

22.2 Planning of the Development Phases

A detailed schedule of development phases, milestones, and dependencies is outlined in the PoC and Development Plan.

23 Migration to the New Product

23.1 Requirements for Migration to the New Product

The system shall support new users with no prior ASR and interpreter experience through an onboarding process.

The system shall support transitioning users migrating from an existing system by allowing for easy uploading of recordings of their speech training data.

23.2 Data That Has to be Modified or Translated for the New System

All previous transcripts, audio files, and personalization data shall be tied to secure user accounts

Users shall be able to access their data from any supported device after logging in and authentication.

24 Costs

The primary costs for this product are related to machine learning computation and hosting. Development and training will initially leverage Compute Canada credits provided by the supervising research team, along with Colab Pro (CAD 13.99/month).

No external hosting costs are anticipated for the initial release; however, optional hosting may be required for commercial distribution and deployments. If hosting is included, approximate costs for cloud-based deployment on Google Cloud Platform (GCP) include: training and inference on GPUs (\$50 CAD/month for pilot use), storage (\$3 CAD/month), and minimal networking (\$2–5 CAD/month). Costs scale with the number of users and training frequency. All estimates are approximate and intended for planning purposes.

25 User Documentation and Training

25.1 User Documentation Requirements

The system shall provide clear, accessible documentation, including an instructional guide and FAQ. (As noted in Section 14b, supporting requirements already cover this in detail.)

25.2 Training Requirements

Training shall not require formal instruction; the documentation and interface shall support self-directed onboarding.

26 Waiting Room

The system shall display launch, loading, or processing pages during transitions to provide users with clear feedback and reduce confusion during waiting periods.

27 Ideas for Solution

27.1 Browser-Based Extensions

The product is primarily web-based. Future considerations could include desktop or mobile apps to broaden the scope and accessibility (see Section 13 for environment and interface requirements).

27.2 Personalized ASR Fine-Tuning

Consider incremental model tuning paired with real-time streaming of speech input. This could be an approach to adapt to individual speech patterns while minimizing the training time overhead, related to the adaptability requirements discussed in earlier sections.

27.3 LLM Command Mapping

User intent parsing via context-aware LLMs could improve natural language command interpretation, as mentioned in Section 13.

27.4 Noise Filtering

Beyond stationary noise, adaptive filtering techniques could be adapted to enhance recognition in busier environments. Section 13 already specifies stationary noise handling.

27.5 Open-Source Integrations

Potential use of browser automation or voice control frameworks can be investigated, as mentioned in Section 16 for off-the-shelf solutions.

27.6 Accessibility Enhancements

Additional visual, auditory, or haptic cues for feedback and help features could enhance usability. Section 14 highlights basic supportability requirements that these enhancements would build on.

27.7 Data Encryption

Anonymized logging and privacy approaches can balance model improvement with privacy in mind. Section 15 discusses privacy requirements in detail.

28 Requirements Phase-In Plan

The following plan outlines the order in which the system requirements (9.1–17.2) will be addressed, aligned with project phases. Prioritization ensures that core functional requirements and critical non-functional requirements are validated first, with refinements and extensions added in later phases. Timelines for each phase are detailed in the Development Plan.

28.1 Phase Definitions

- **Proof of Concept (PoC):** Validate feasibility of core functionality and critical performance metrics.
- **Revision 0:** Expand functionality, address usability, accessibility, and integrate initial security/privacy mechanisms.
- **Revision 1:** Final refinement, full productization, compliance, cultural, and maintainability requirements.

28.2 Requirements Phase-In

1. **9.1 Functional Requirements:** Core system behaviors including input processing and basic transcription.

Phase: PoC

Rationale: Core functionality must be demonstrated to validate feasibility.

2. **10.1 Appearance Requirements:** Initial UI layout and interface elements.

Phase: Revision 0

Rationale: Visual interface can be refined after core functions are stable.

3. **10.2 Style Requirements:** Consistent fonts, colors, and spacing.

Phase: Revision 0

Rationale: Enhances readability and user experience once functionality is proven.

4. 11.1 Ease of Use Requirements: Interface must be intuitive and straightforward.

Phase: Revision 0

Rationale: Important for usability testing, applied after functional PoC is complete.

5. 11.2 Personalization and Internationalization Requirements: Language/voice adaptations.

Phase: Revision 1

Rationale: Applied later when system is functionally stable.

6. 11.3 Learning Requirements: System should adapt to repeated user patterns.

Phase: Revision 1

Rationale: Machine learning or adaptation features require validated data pipelines.

7. 11.4 Understandability and Politeness Requirements: Feedback should be clear and respectful.

Phase: Revision 0

Rationale: Improves user experience during early testing.

8. 11.5 Accessibility Requirements: Interface supports assistive technologies.

Phase: Revision 0

Rationale: Early implementation ensures PoC testing is inclusive.

9. 12.1 Speed and Latency Requirements: System responds within acceptable time frames.

Phase: PoC

Rationale: Performance validation is crucial for feasibility.

10. 12.2 Safety-Critical Requirements: Ensure no harmful outputs or behaviors.

Phase: PoC

Rationale: Early validation prevents critical errors in PoC.

11. 12.3 Precision or Accuracy Requirements: Transcription must meet minimum WER/CER.

Phase: PoC

Rationale: Accuracy is the central PoC metric.

12. **12.4 Robustness or Fault-Tolerance Requirements:** Handle errors gracefully.

Phase: Revision 0

Rationale: Necessary for reliable system use beyond PoC.

13. 12.5 Capacity Requirements: Support a small set of concurrent users/data.

Phase: Revision 0

Rationale: Ensure system can handle expected early usage.

14. 12.6 Scalability or Extensibility Requirements: System should allow future growth.

Phase: Revision 1

Rationale: Added after functional validation for longer-term planning.

15. **12.7 Longevity Requirements:** Components maintainable over time.

Phase: Revision 1

Rationale: Stability and maintainability are late-stage concerns.

16. **13.1 Expected Physical Environment:** System works on typical office/lab computers.

Phase: PoC

Rationale: Early testing on target devices is essential.

17. 13.2 Wider Environment Requirements: Browser compatibility.

Phase: Revision 0

Rationale: Once core functionality works, broaden environment testing.

18. 13.3 Requirements for Interfacing with Adjacent Systems: Integration points

identified.

Phase: Revision 1

Rationale: External integration is late-phase after internal systems are stable.

19. 13.4 Productization Requirements: Ready for deployment.

Phase: Revision 1

Rationale: Combines all prior validations for release.

20. 13.5 Release Requirements: Packaging, distribution readiness.

Phase: Revision 1

Rationale: Ensures final delivery meets standards.

21. **14.1 Maintenance Requirements:** System maintainable.

Phase: Revision 1

Rationale: Implemented once core system is functional.

22. 14.2 Supportability Requirements: Technical support procedures.

Phase: Revision 1

Rationale: Late-stage requirement after main functionality.

23. **14.3 Adaptability Requirements:** System can be upgraded.

Phase: Revision 1

Rationale: Flexibility comes after base system is validated.

24. **15.1 Access Requirements:** User roles and permissions.

Phase: Revision 0

Rationale: Early implementation secures initial PoC data.

25. **15.2 Integrity Requirements:** Prevent tampering or corruption.

Phase: Revision 0

Rationale: Ensures reliable data handling.

26. **15.3 Privacy Requirements:** Encrypt data in transit and at rest.

Phase: Revision 0

Rationale: Essential for user trust and legal compliance.

27. 15.4 Audit Requirements: Track critical system events.

Phase: Revision 1

Rationale: Auditing implemented after basic functionality and privacy are validated.

28. **15.5 Immunity Requirements:** Protection from external attacks.

Phase: Revision 1

Rationale: Security hardening is a late-stage activity.

29. 16.1 Cultural Requirements: Respect cultural norms and sensitivities.

Phase: Revision 1

Rationale: Applied after all functional, UI, and content elements are stable.

30. 17.1 Legal Requirements: Comply with laws and regulations.

Phase: Revision 1

Rationale: Legal compliance verified after security, privacy, and functionality are vali-

dated.

31. 17.2 Standards Compliance Requirements: Follow industry standards.

Phase: Revision 1

Rationale: Ensures credibility and certification readiness at final stage.

28.3 Requirement Implementation Timeline

The phasing of requirements for VoiceBridge follows a structured, incremental schedule aligned with prototype maturity and evaluation cycles. The table below summarizes the planned order and target completion dates for each phase.

Phase	Target Date	Focus and Included Requirements
Proof of Concept (PoC)	October–November 2025	Implement core functionality: speech input capture, transcription (FR9.1, 12.1–12.3, 13.1), and safety validation (12.2). Establish baseline latency, accuracy, and system feasibility.
Revision 0	December 2025— January 2026	0,
Revision 1	February–April 2026	Expand system capability and compliance. Add personalization (11.2–11.3), scalability (12.6–12.7), interoperability (13.3–13.5), supportability (14.1–14.3), advanced security (15.4–15.5), and cultural/legal alignment (16.1, 17.1–17.2). Prepare for deployment.

This phased plan ensures that feasibility and safety are validated early (PoC), usability and inclusivity are developed next (Revision 0), and full scalability, compliance, and maintainability are achieved in the final iteration (Revision 1).

29 Formal Specification

This section provides a simplified formal model of the VoiceBridge system using a state-based representation. The goal is to describe how the system transitions between major states during operation.

29.1 System States

Let the system have the following states:

 $Q = \{Idle, Listening, Processing, Confirming, Executing, Error\}$

The system starts in the *Idle* state and reacts to user or system inputs.

29.2 Inputs and Transitions

Inputs to the system are represented as:

```
\Sigma = \{Start, AudioInput, Confirm, Reject, Execute, Fail\}
```

The transition function $\delta(q, \sigma)$ describes how the system changes state:

```
\begin{split} &\delta(Idle,Start) = Listening \\ &\delta(Listening,AudioInput) = Processing \\ &\delta(Processing,Confirm) = Executing \\ &\delta(Processing,Reject) = Listening \\ &\delta(Executing,Execute) = Idle \\ &\delta(Executing,Fail) = Error \end{split}
```

29.3 Output Behavior

Each state produces a specific output:

```
Idle \rightarrow \text{System ready prompt}

Listening \rightarrow \text{Microphone active}

Processing \rightarrow \text{Speech to text conversion}

Confirming \rightarrow \text{User verification message}

Executing \rightarrow \text{Command execution feedback}

Error \rightarrow \text{Error or retry prompt}
```

29.4 Mapping to Requirements

This formal model represents the main workflow of VoiceBridge and aligns with the following functional requirements:

- FR1: Accept Speech Input ($Idle \rightarrow Listening$)
- FR2: Convert Speech to Text (Listening $\rightarrow Processing$)
- FR3: Confirm Transcription ($Processing \rightarrow Confirming$)
- FR4: Map Intent to Command ($Confirming \rightarrow Executing$)
- FR5: Execute Command ($Executing \rightarrow Idle$)

This simplified formalization shows how user input moves through each stage of the system in a predictable, testable way, ensuring clarity and correctness of behavior.

Appendix — Reflection

The purpose of reflection questions is to give you a chance to assess your own learning and that of your group as a whole, and to find ways to improve in the future. Reflection is an important part of the learning process. Reflection is also an essential component of a successful software development process.

Reflections are most interesting and useful when they're honest, even if the stories they tell are imperfect. You will be marked based on your depth of thought and analysis, and not based on the content of the reflections themselves. Thus, for full marks we encourage you to answer openly and honestly and to avoid simply writing "what you think the evaluator wants to hear."

Please answer the following questions. Some questions can be answered on the team level, but where appropriate, each team member should write their own response:

1. What went well while writing this deliverable?

Organizing the SRS using the Volere template went surprisingly smoothly. Breaking down each requirement and writing clear rationales helped us think through the project in a structured way. Separating likely-to-change requirements from unlikely ones also made the document more readable and easier to navigate.

2. What pain points did you experience during this deliverable, and how did you resolve them?

Deciding which requirements might evolve over time versus those that would remain stable was a bit challenging. We resolved this by discussing potential future scenarios for the product and weighing Dr. Brodbeck's expert guidance, which made our decisions much more confident.

3. How many of your requirements were inspired by speaking to your client(s) or their proxies?

Our requirements mostly came from our supervisor, Dr. Brodbeck, who is a linguistics expert and acts as our secondary stakeholder. We didn't consult end-users directly, so the requirements reflect expert advice on accessibility, usability, and system functionality.

4. Which of the courses you have taken, or are currently taking, will help your team succeed with this project?

- SFWRENG 3RA3 Software Requirements and Security: Helped with writing clear Functional and Non-Functional Requirements and thinking about security, privacy, and reliability.
- SFWRENG 4HC3 Human-Computer Interfaces: Provided a foundation for usability, stakeholder engagement, and accessibility considerations.
- Other courses in AI and Machine Learning are also valuable for speech recognition and natural language understanding.

5. What knowledge and skills will the team need to successfully complete this project?

We need to improve on:

- Speech and linguistics for accessibility.
- Web development, particularly browser extensions.
- Machine learning for speech recognition.
- Accessibility standards and usability testing.

• Clear documentation and team coordination.

6. How will each team member acquire these skills or knowledge?

- Speech and linguistics: Weekly guidance from Dr. Brodbeck and reading related literature.
- Web development/browser extensions: Hands-on prototyping, online tutorials, and sharing coding tasks among team members.
- Machine learning: Experimenting with pre-trained speech models and following online courses.
- Accessibility standards: Reviewing WCAG guidelines and testing our prototype with assistive technologies.