Motivi (cont.)

- Altro motivo (paradossale):
- La grande competizione negli USA della telefonia fissa, e conseguenti tariffe molto basse (!)
- In Europa invece (specialmente in Italia) il contrario (!), e quindi mercati alternativi (mobile) sono fioriti molto più velocemente

La telefonia mobile: 0G, 1G, 2G, 3G, 4G...

- Si distingue tecnicamente in varie "generazioni"
- Le prime generazioni (0G e 1G) analogiche, le altre digitali

Premessa: tutta la telefonia mobile...

- Si basa su un problema fondamentale: la divisione del territorio
- In altre parole, come gestire l'infrastruttura *fissa* che permette il miracolo della connessione *mobile*

L'appiglio fisso...

• ... è lo switching center ("centralino"), che copre una certa zona di territorio: la cella telefonica

OG: Analogica (1950 circa)

- Deriva dalle trasmissioni radio (che vedremo), che si sono poi evolute nei cosiddetti sistemi PTT
- PTT = Push To Talk (l'equivalente delle moderne radioline walkie-talkie o amatoriali: si preme per parlare)
- ◆ Un solo canale per ricevere e trasmettere, quindi half-duplex → "push" per trasmettere senza ricevere!

Corsi e ricorsi della storia

- OG, il PTT, è stato poi reintrodotto in alcuni cellulari (es. "Moto talk")
- ♦ → essenzialmente un cellulare può anche funzionare da "walkie-talkie"! ②

1960s: il sistema IMTS

- ◆Improved Mobile Telephone System
- Passa a due frequenze, quindi non serve il push to talk
- Aumenta il livello di privacy: finalmente non si sentono le comunicazioni degli altri
 - (pensate ad esempio alle radio dei taxi in uso ancora oggi, o ai PTT).

IMTS (cont.)

- Super-trasmettitori ad altissima potenza
- Per evitare interferenze, "celle" di centinaia di chilometri
- ◆ 23 canali nella banda 150-450 MHz → troppo limitativo (!!)

Però...

◆Ancora in uso in certe zone remote, ad esempio in Canada (vantaggio: servono pochi ripetitori!) ☺

1G: Vent'anni dopo...1982

- ◆I Bell Labs introducono l'AMPS (Advanced Mobile Phone System), anche conosciuto come TACS in Italia (Total Access Communication System)
- Differenza fondamentale rispetto all'IMTS, ora *le celle sono molto piccole*, 10-20 Km

Vantaggi

- ♦ → la capacità (utenti serviti) aumenta di un ordine di grandezza
- ◆ → E, diminuisce la potenza richiesta per la trasmissione (in ambo i versi), quindi minor costo, ed apparecchi telefonici più leggeri

Però...

- Celle più piccole portano all'amplificazione di un problema già presente in 0G...
- L'interferenza tra celle (!)

Come gestiamo la situazione??

Soluzione: separazione di frequenza (!)

Problema...

- Quante frequenze usiamo?
- In teoria, più frequenze usiamo per separare le celle, meno banda abbiamo per singola cella (!)
- Occorrerebbe trovare un numero basso di frequenze che basti a separare tutte le celle...

Beh... non è facile?

Hmm....

Il problema...

- (oltre ad un altro che vedremo dopo), è che nella grande maggioranza dei casi non abbiamo controllo totale sul terreno
- Pensate a città strade fiumi colline etc etc (!)
- Occorre quindi trovare il numero minimo per ogni situazione...

Questo numero...

Deriva da un teorema famoso... e da un altro problema pratico:

1852

Francis Guthrie, cercando di colorare la mappa dell'Inghilterra, nota che sono sufficienti solo quattro colori, e congettura che sia sempre così

La sfida...

- Varie persone dimostrano il teorema...
- Alfred Kempe nel 1879...
- Nel 1890 ci si accorge che la dimostrazione è sbagliata (!!)

La sfida continua

Alcuni provano che è falso:

Continua...

Per poi essere "sdimostrati":

1976

- Il problema resta aperto per ventiquattro anni (!), finchè non viene dimostrato nel 1976:
- bastano quattro colori ("teorema dei quattro colori")...
- ... con una famosa dimostrazione di Kenneth Appel e Wolfgang Haken dell'Università dell'Illinois (...)

Dimostrazioni e computers...

◆1976: 500 pagine, 1936 casi...(!)

Nel 2004, prova formalizzata usando Coq (un proof assistant), da parte di

Benjamin Werner e Georges Gonthier

◆(INRIA-Microsoft)

Esempio

Supponiamo di aver buon controllo sul territorio (quindi, di poter più o meno decidere dove mettere gli switching center)

Occorre capire...

◆Il terreno (→ la società !!)

Le città hanno una struttura(!)

Torniamo al foglio quadrettato...

Come interagirebbe con le strade?

Quindi, usando nella pratica...

In città, si sfasano le celle cercando di usare una matrice esagonale (!)

E quindi... quanti colori?

Ma quando il sistema in certe zone va in overload...

 Si cambia la struttura a celle creando microcelle

Morale

Il numero di "colori" dipende a seconda delle zone, della densità d'uso, e delle necessità di espansione

Tipicamente si usano 3 o 7 colori, ma il

numero può variare

Ogni cella...

- Ha quindi al centro la stazione base (lo switching center)
- Un cellulare è sempre connesso ad una sola cella, finchè non si sposta
- E quindi in qualche modo deve passare il segnale ad un'altra cella
- Quello che si chiama handoff

L'handoff classico (1G)

- Quando il segnale è troppo debole, lo switching office chiede alle celle vicino quanta potenza ricevono dal cellulare
- Alla cella con potenza più alta viene assegnato il cellulare

L'handoff...

- Nell'hard handoff la vecchia stazione "molla" il cellulare, e poi la nuova lo riaggancia
- ♦ → c'e' del *lag*, e in qualche raro caso (sfiga) la linea cade
- richiede in media circa 300msec (0.3s!), che sono tanti se c'è una chiamata in corso

L'handoff "soft"

- L'handoff può anche essere soft: la nuova cella acquisisce il cellulare prima che la vecchia lo lasci
- Il problema è che il cellulare deve sapersi collegare a due frequenze (due celle) contemporaneamente, cosa che aumenterebbe i costi e la potenza