2. Sekvenčné logické obvody

Definujte sekvenčný logický obvod (SLO).

SLO sú LO, *výstupné hodnoty premenných závisia jednoznačne od aktuálnych hodnôt na vstupe* a od postupnosti vstupov v predchádzajúcom čase (podľa histórie). Stav systému je uložený v **pamäti**.

Preklápací obvod = obvod, ktorý nadobúda 2 stavy stav "1" = H a "0" = L. My sa tu zaoberáme BKO(bistabilný) = základ SLO!, ktorý má 1/viac vstupov a 2 výstupy, t.j. jeden je negáciou druhého (sú komplementárne). Využívajú sa v IO (je ich tam mnoho) → napr. SRAM obsahuje RS preklápací obvod. Využívame ich ako 1-bitovú pamäť (majú schopnosť si pamätať 1 bit).

S-SET R-RESET

S=1, R=0, nastaví výstup Q na 1

S=0, R=1, nastaví výstup Q na 0

S=0, R=0, pamäťové správanie

S=1, R=1, zakázaná kombinácia, vedie k hazardnému stavu

Tabul'ka prechodov:

Skrátená tabuľka:

	ř	T		Q_n
S	R	Q_{n+1}		0
0	0	Qn		U
0	1	0		0
1	0	1		1
1	1	X	-zakázaná kombinácia	1
	1	10		

Q_n	Q_{n+1}	S	R
0	0	0	X
0	1	1	0
1	0	0	1
1	1	X	0

an	JR	Qm+1	0 8
0	00	0	0 0
0	0 1	0	01 10
0	10	1	4 1 1 20
0	11	X	57 (1)
1	00	1	Yolologa
1	01	0	RI TO VIV

JK – preklápací obvod

JK preklápací obvod pracuje ako RS preklápací obvod, ale má odstránený hazardný stav, pričom J zodpovedá S, K zodpovedá R.

Pri kombinácii 11 začne preklápať - pracuje ako multivibrátor

Skrátená tabuľka:

Tabuľka prechodov:

J	K	Q_{n+1}	Q_n	Q_{n+1}	J	K
0	0	Qn	0	0	0	X
0	1	0	0	1	1	X
1	0	1	1	0	X	1
1	1	$\overline{Q_n}$	1	1	X	0

T – preklápací obvod

Tabul'ka prechodov:

T	Q_{n+1}
0	Qn

Skrátená tabuľka:

Q_n	Q_{n+1}	T
0	0	0
0	1	1
1	0	1
1	0 1 0 1	0

Ak je na vstupe **T** (Time) **log. 0**, obvod zachováva predošlý stav. Po privedení **log. 1** na vstup T sa predošlý stav zneguje. Obvod T je základ čítačov a deličov frekvencie

D – preklápací obvod

Q

D

D	Q_{n+1}
0	0
1	1

Tabul'ka prechodov:

Q_n	Q_{n+1}	D
0	0	0
0	1	1
1	1 0 1	0
1	1	1

Na výstupe obvod **D** (Data) zobrazí to čo je na vstupe D, ak je povolený hodinový vstup (ak existuje). D obvody tvoria základ posuvných registrov.

Definujte synchrónny a asynchrónny preklápací obvod:

Asynchrónne: k zmene stavu (preklopenie) môže byť v ľubovoľnom čase, po zmene úrovne vstupu

*Patrí sem RS**

Synchrónne: pribudne ďalší hodinový (synchronizačný) vstup, ktorý povoľuje reakciu obvodu na riadiace vstupy \rightarrow Ak platí C = 1.

Patria sem JK, T, D, RS+clock

Počítadlo:

Počítadlo je **SLO**, ktoré **počítajú impulzy**.

<u>Môžu počítať</u>: nahor, nadol, alebo obojsmerne Módom sa nazýva počet stavov počítadla.

Asynchrónne počítadlo: počítadlá sa privádzajú iba na jeden PO a postupne sa tie informácie takto prenášajú, *Princíp:* nastaví sa prvý prepošle, nastaví sa druhý prepošle. Tu vznikajú medzi-stavy, t.j. Prvý je už nastavený, ale druhý a tretí ešte nie.

Synchrónne počítadlo: počítané impulzy privádzame na všetky PO naraz (synchrónne). Tu sa nastavujú naraz – v tom je to synchrónne.

Majú spoločné: obidva typy využívajú synchrónne PO

10 7493 vo vnútornom zapojení sú 4-krát JK preklápacie obvody výstup predchádzajúceho sa stáva vstupom nasledujúceho

Vnútorné zapojenie

A – vstup jednobitového počítadla

B – vstup trojbitového počítadla

R01, R02 – nulovacie vstupy, ak sú oba vstupy v logickej jednotke, počítadlo sa vynuluje

QA – výstup jednobitového počítadla

QB, Qc, QD – výstupy trojbitového počítadla

<u>Príklad</u> – Nakreslite s použitím **IO 7493** asynchrónne počítadlo s **módom = 13** a označte výstupy, na ktorých je **vst. frekvencia** podelená a napíšte koľkými

Uveďte typy preklápacích obvodov a možnosti ich realizácie:

<u>Monostabilný PO</u> – **1 nestabilný a 1 stabilný stav**. To znamená, že po aktivácii je výstup po určitú dobu v opačnom stave (nestabilnom). Je možné ho využiť napr. pre časovače, ošetrenie zákmitov kontaktov a pod.

<u>Bistabilný PO</u> – **2 stabilné stavy.** Realizujeme ho pomocou akýchkoľvek 2 spínačov (relé, tranzistory, ...). V každom z nich dokáže **zotrvať dlhú dobu**. Preto ho môžeme využiť napr. ako **pamäť**, tvorí i **základ zložitých SLO** – **počítadlá** a pod. Najčastejšie sa stretneme s typmi **RS**, **JK**, **D**, **T** napr. v podobe **IO**. Má **dva vstupy** a **dva výstupy**. Preklopí sa po privedení **spúšťacieho impulzu**.

Astabilný PO – 2 nestabilné stavy a žiadny stabilný. Ak preklopíme obvod do astabilného stavu, tak sa v ňom udrží nejakú dobu (tá je daná τ – časová konštanta) – 0,7 * RC. Po tejto dobe sa vráti naspäť do stabilného stavu. Jeho výstup sa stále prepína medzi 1 a 0. Využívame ako blikač, zdroj hodinového impulzu, generátor pravouhlého signálu.

Porovnajte realizáciu preklápacieho obvodu diskrétnymi súčiastkami a 10 typu 555:

Porovnanie budeme realizovať napr. na obvode RS

Realizácia pomocou tranzistorov:

Zo znalostí VYT vieme, že **SLO typu RS** sa **skladá zo 4 NAND** hradiel, alebo **2 NAND a 2 NOT** hradiel, t.j. **NAND vo vstupnom skrate tvorí náhradu hradla NOT**

V elektrotechnike sa **hradlo NAND skladá z 2 tranzistorov** a **hradlo NOT z 1 tranzistora.** (Tranzistory NPN sú zapojené so spoločným emitorom + majú komplementárne odpory).

Celková schéma RS pomocou tranzistorov:

Realizácia pomocou NE 555:

Zapojenie aj s komplementárnymi komponentami na dosiahnutie plnej funkčnosti bloku obvodu RSs

Porovnanie !!!

Obvod s pomocou NE555P naproti diskrétnym súčiastkam je o niečo jednoduchší - integrujeme Oba NAND bloky do 555ky. Nič viac - hradlá NOT neintegrujeme do 555ky, na to by sme potrebovali ďalšie 555ky a to už by bolo zbytočne komplikované. Ďalej sa nedá spraviť funkčnú obdobu obvodu RS (obvod blbne, pri zakázaných stavoch), ale už priamo lepší obvod RS₅.

Popíšte obsah výkresu súčiastky:

Viď. protokol **2. ročník** - meranie na polovodičových diódach (dá sa použiť k vysvetleniu)

Je to súbor všetkých podstatných parametrov danej súčiastky. Nájdeme tu nominálne a maximálne hodnoty akejkoľvek elektronickej súčiastky. Ďalej tu nájdeme zakótovaný technický výkres puzdra.

Príklad: Usmerňovacia Si dióda; KY701F Tesla Piešťany

Z protokolu vedieť vymenovať nejaké základné katalógové údaje.

Uveďte postup pri vybavovaní dlhodobého úveru

Vysvetlite formy dlhodobého úveru – doba splatnosti úveru je dlhšia ako cca 5 rokov

Hypotekárny úver – úver na bývanie, banka získava záložné právo na nehnuteľnosť,

Hodnotí rating klienta – faktory ratingu: priemerný čistý mesačný príjem za 3,6, 12 mesiacov,

u podnikateľov je to daňové priznanie za posledný rok alebo 2 roky

Najvyššie dosiahnuté vzdelanie, zamestnanie klienta, dĺžka pracovného pomeru, priemerný

Čistý mesačný príjem, rodinný stav, iná formy príjmu klienta, výška mesačných splátok finančných záväzkov, stavebný úver a medziúver

Nedoplatky na iných úveroch prípadne exekúcie

Kontrola v úverovom registri – ako si klient plní finančné záväzky voči bankám, či pravidelne spláca úvery a pod.

Ročná percentuálna miera nákladov RPMN – celková nákladovosť pôžičky, t. j. úroky plus poplatky za úver