# Numerical Algorithms

Jingke Li

Portland State University

Jingke Li (Portland State University)

CS 415/515 Numerical Algorithms

1 / 28

# Basic Numerical Algorithms

- ► Dense-Matrix Algorithms:
  - Matrix-vector multiplication
  - Matrix-matrix multiplication
  - Gaussian elimination
- ► Sparse-Matrix Algorithms:
  - Jacobi relaxation
  - Gauss-Seidel
  - Multi-grid method

For all these algorithms, parallelizing them to run on a shared-memory system is trivial. They all have easily-parallelizable loops.

Jingke Li (Portland State University)

CS 415/515 Numerical Algorithms

# Matrix-Vector Multiplication

Compute y = Ax (A is an  $n \times n$  matrix, x, y are  $n \times 1$  vectors)

Sequential Algorithm:

```
void matrix_vector(int n, double a[n][n], double x[n], double y[n]) {
   int i, j;
   for (i = 0; i < n; i++) {
     y[i] = 0;
     for (j = 0; j < n; j++)
        y[i] += a[i][j] * x[j];
   }
}</pre>
```

Complexity:  $T = O(n^2)$ 

Parallelization (for Distributed-Memory Systems):

▶ Need to decide partition and communication.

Jingke Li (Portland State University)

CS 415/515 Numerical Algorithms

3 / 28

# Distributed-Memory Matrix-Vector Multiplication

▶ 1D Partition (row-wise):



Complexity:  $T_p \approx \frac{n^2}{p} + t_s \log p + t_w n$ 

Jingke Li (Portland State University)

CS 415/515 Numerical Algorithms

# Distributed-Memory Matrix-Vector Multiplication (cont.)

▶ 2D Partition:



(a) Initial data distribution and communication steps to align the vector along the diagonal

(b) One-to-all broadcast of portions of the vector along process columns



(c) All-to-one reduction of partial result



d) Final distribution of the result vecto

Complexity: 
$$T_p pprox rac{n^2}{p} + t_s \log p + t_w rac{n}{\sqrt{p}} \log p$$

Jingke Li (Portland State University)

CS 415/515 Numerical Algorithms

5 / 28

## Matrix-Matrix Multiplication

Compute C = AB  $(A, B, C \text{ are } n \times n \text{ dense matrices})$ 

Sequential Algorithm:

```
void matrix_mult(int n, double a[n][n], double b[n][n], double c[n][n]) {
  int i, j, k;
  for (i = 0; i < n; i++) {
    for (j = 0; j < n; j++) {
      c[i][j] = 0;
      for (k = 0; k < n; k++)
           c[i][j] += a[i][k] * b[k][j];
    }
}</pre>
```

Complexity:  $T = O(n^3)$  (Best is  $O(n^{2.8})$  — Strassen's Algorithm)

Jingke Li (Portland State University)

CS 415/515 Numerical Algorithms

## Distributed-Memory Matrix-Matrix Multiplication

Partition Choices:



- Communication Choices:
  - A single broadcast The needed data is broadcast to all destinations once for all.
    - A single step, but needs a lot of buffer storage.
  - Multiple shifts The needed data is shifted towards its destination one step at a time.
    - Only local communication and very little buffer space, but takes multiple steps for data to reach destination.

Jingke Li (Portland State University)

CS 415/515 Numerical Algorithms

7 / 28

# A Simple 2D Matrix-Mult Algorithm

- ▶ Processors are arranged in a logical  $\sqrt{p} \times \sqrt{p}$  2D topology.
- ► Each processor gets a block of  $\frac{n}{\sqrt{p}} \times \frac{n}{\sqrt{p}}$  block of A, B, &C.
- Perform all-to-all broadcasts within processor rows for A's blocks.
- ► Take  $\sqrt{p}$  iterations of the following steps:
  - 1. Multiply A's block with B's block to form C's block.
  - 2. Shift *B*'s blocks within processor columns.







Complexity:  $T_p \approx \frac{n^3}{p} + t_s \log p + 2t_w \frac{n^2}{\sqrt{p}}$ 

Jingke Li (Portland State University)

CS 415/515 Numerical Algorithms

# Cannon's Matrix-Mult Algorithm

Memory efficient variant of the simple algorithm.

Key Idea: Replace the standard loop

$$C_{i,j} = \sum_{k=0}^{\sqrt{p}-1} A_{i,k} \times B_{k,j}$$

with a skewed loop

$$C_{i,j} = \sum_{k=0}^{\sqrt{p}-1} A_{i,(i+j+k) \bmod \sqrt{p}} \times B_{(i+j+k) \bmod \sqrt{p},j}$$

Communication: Multiple shifts for both arrays A and B.

Complexity: 
$$T_p pprox rac{n^3}{p} + 2t_s\sqrt{p} + 2t_wrac{n^2}{\sqrt{p}}$$

Jingke Li (Portland State University)

CS 415/515 Numerical Algorithms

9 / 28

# Cannon's Matrix-Mult Algorithm (cont.)

### Initial Skewing of A and B:

| A 00 | $A_{01}$ | $A_{02}$ | A <sub>03</sub> |
|------|----------|----------|-----------------|
| A 11 | A 12     | A 13     | A 10            |
| A 22 | A 23     | A 20     | A 21            |
| A 33 | A 30     | A 31     | A 32            |

| В 00 | В 11 | В 22            | В 33            |
|------|------|-----------------|-----------------|
| B 10 | B 21 | B 32            | $B_{03}$        |
| B 20 | B 31 | $B_{02}$        | B <sub>13</sub> |
| B 30 | В 01 | B <sub>12</sub> | B <sub>23</sub> |

#### Iterations:

- Multiply A and B blocks.
- Shift A blocks towards left.
- Shift B blocks upwards.

| $A_{0,0}$        | $A_{0,1}$         | A <sub>0,2</sub> | A <sub>0,3</sub> |
|------------------|-------------------|------------------|------------------|
| A <sub>1,0</sub> | A <sub>1,1</sub>  | A <sub>1,2</sub> | A <sub>1,3</sub> |
| A <sub>2,0</sub> | A <sub>2,1,</sub> | Ã <sub>2,2</sub> | A <sub>2,3</sub> |
| A <sub>3,0</sub> | A <sub>3,1</sub>  | A <sub>3,2</sub> | A <sub>3,3</sub> |

| B <sub>0,0</sub> | B <sub>0,1</sub>   | B <sub>0,2</sub>      | В <sub>0.</sub>      |
|------------------|--------------------|-----------------------|----------------------|
| B <sub>1,0</sub> | B <sub>1,1</sub> , | B <sub>1,2</sub>      | В1.                  |
| B <sub>2,0</sub> | В <sub>2,1 д</sub> | В <sub>2,2</sub>      | В2.                  |
| B <sub>3,0</sub> | В <sub>3,1</sub>   | ў<br>В <sub>3,2</sub> | У<br>В <sub>3,</sub> |

(a) Initial alignment of A

| 1                | ä                  | 1                  | 8                  |
|------------------|--------------------|--------------------|--------------------|
| A <sub>0,0</sub> | < A <sub>0,1</sub> | A <sub>0,2</sub> < | A <sub>0,3</sub> < |
| B <sub>0.0</sub> | $_{A}B_{1,1}$      | B <sub>2,2</sub>   | B <sub>3,3</sub>   |
| A <sub>1,1</sub> | A <sub>1.2</sub>   | A <sub>1,3</sub> = | A <sub>1,0</sub> < |
| B <sub>1,0</sub> | B <sub>2,1</sub>   | B <sub>3,2</sub>   | B <sub>0,3</sub>   |
| A <sub>2.2</sub> | A <sub>2,3</sub>   | A <sub>2,0</sub> < | A <sub>2,1</sub> < |
| B <sub>2,0</sub> | B <sub>3,1</sub>   | B <sub>0,2</sub>   | B <sub>1,3</sub>   |
| A <sub>3,3</sub> | A <sub>3,0</sub>   | A <sub>3,1</sub> < | A <sub>3,2</sub> < |
| A <sub>3,3</sub> | A <sub>3,0</sub>   | A <sub>3,1</sub> ~ | A <sub>3,2</sub>   |



(a) A and B about third all answers

(d) Submatrix locations after first shift

| 1      |                                                   | 1                    | 11                                  |
|--------|---------------------------------------------------|----------------------|-------------------------------------|
| A<br>B | A <sub>0,2</sub> A <sub>0,</sub> B <sub>3,1</sub> |                      | A <sub>0,1</sub> < B <sub>1,3</sub> |
|        | 1,3 A <sub>1,</sub>                               | o < A <sub>1,1</sub> | A <sub>1,2</sub> < B <sub>2,3</sub> |
| A<br>B |                                                   |                      | A <sub>2,3</sub> < B <sub>3,3</sub> |
| A<br>B | 3,1 A3,                                           |                      | A <sub>3,0</sub> < B <sub>0,3</sub> |

| A <sub>0,3</sub> | A <sub>0,0</sub> | A <sub>0,1</sub> | A <sub>0,2</sub> |
|------------------|------------------|------------------|------------------|
| B <sub>3,0</sub> | B <sub>0,1</sub> | B <sub>1,2</sub> | B <sub>2,3</sub> |
| A <sub>1,0</sub> | A <sub>1,1</sub> | A <sub>1,2</sub> | A <sub>1,3</sub> |
| B <sub>0,0</sub> | B <sub>1,1</sub> | B <sub>2,2</sub> | B <sub>3,3</sub> |
| A <sub>2,1</sub> | A <sub>2,2</sub> | A <sub>2,3</sub> | A <sub>2,0</sub> |
| B <sub>1,0</sub> | B <sub>2,1</sub> | B <sub>3,2</sub> | B <sub>0,3</sub> |
| A <sub>3,2</sub> | A <sub>3,3</sub> | A <sub>3,0</sub> | A <sub>3,1</sub> |
| B <sub>2,0</sub> | B <sub>3,1</sub> | B <sub>0,2</sub> | B <sub>1,3</sub> |

#### Gaussian Elimination

A well-known algorithm for solving a linear system Ax = b.

#### Idea:

- First reduce Ax = b to an upper triangular system Tx = c.
- ► Then use back substitution to solve for x.

The two needed operations are:

- ▶ Interchange any two rows (this simply reorders the *n* equations).
- ▶ Replace any row by a linear combination of itself and another row.

Jingke Li (Portland State University)

CS 415/515 Numerical Algorithms

11 / 28

## Gaussian Elimination Example

► The initial linear system:

```
2.0 x1 + 1.0 x2 + 3.0 x3 + 4.0 x4 = 29.0
5.0 \times 1 + 2.0 \times 2 + 0.0 \times 3 + 1.0 \times 4 = 13.0
1.0 x1 + 0.0 x2 + 0.0 x3 + 1.0 x4 =
                                          5.0
3.0 x1 + 1.0 x2 + 1.0 x3 + 0.0 x4 =
                                           8.0
```

Matrix form and triangulating:

```
2.0 1.0 3.0 4.0 29.0
                                2.0 1.0 3.0 4.0 29.0
0.0 -0.5 -7.5 -9.0 -59.5 |
                               0.0 -0.5 -7.5 -9.0 -59.5
0.0 -0.5 -1.5 -1.0 -9.5
                               0.0 0.0 6.0 8.0 50.0
0.0 -0.5 -3.5 -6.0 -35.5
                               0.0 0.0 0.0 -2.3 -9.3
```

Back to linear system form:

```
2.0 \times 1 + 1.0 \times 2 + 3.0 \times 3 + 4.0 \times 4 = 29.0
         -0.5 \times 2 - 7.5 \times 3 - 9.0 \times 4 = -59.5
                        6.0 x3 + 8.0 x4 = 50.0
                                  -2.3 x4 = -9.3
```

▶ Use back-substitution to solve: | x1=1, x2=2, x3=3, x4=4

Jingke Li (Portland State University)

CS 415/515 Numerical Algorithms

#### Naive Gaussian Elimination

```
void gaussian_naive(int n, double a[n][n], double b[n], double x[n]) {
  int i, j, k;
  for (k = 0; k < n; k++) {
    for (j = k+1; j < n; j++) {
      a[k][j] = a[k][j] / a[k][k];
    }
    x[k] = b[k] / a[k][k];
  for (i = k+1; i < n; i++) {
    for (j = k+1; j < n; j++) {
      a[i][j] -= a[i][k] * a[k][j];
    }
    b[i] = a[i][k] * x[k];
    a[i][k] = 0;
  }
}</pre>
```

Complexity:  $T = O(n^3)$ 

Jingke Li (Portland State University)

CS 415/515 Numerical Algorithms

13 / 28

# Naive Gaussian Elimination (cont.)



Jingke Li (Portland State University)

CS 415/515 Numerical Algorithms

## Gaussian Elimination with Partial-Pivoting

The naive GE algorithm runs into trouble when a pivot element is zero. (In fact, it runs into trouble whenever a pivot element is "small.")

Partial-Pivoting — Search the column below the diagonal and find the largest element in absolute magnitude; perform row interchange to bring this element to the diagonal.

#### Example:

```
Initial:
                             => Pivoting:
   2.0 1.0 3.0 4.0 29.0
                                 5.0 2.0 0.0 1.0 13.0
   1.0 0.0 0.0 1.0 5.0
                                 1.0 0.0 0.0 1.0
                                                      5.0
   3.0 1.0 1.0 0.0 8.0
                                 3.0 1.0 1.0 0.0
                                                    8.0
   5.0 2.0 0.0 1.0 13.0
                                 2.0 1.0 3.0 4.0 29.0
  => Elimination:
                             =>
   5.0 2.0 0.0 1.0 13.0
   0.0 -0.4 0.0 0.8 2.4
                                Continue for other columns ...
   0.0 -0.2 1.0 -0.6
                      0.2
   0.0 0.2 3.0 3.6 23.8
                         CS 415/515 Numerical Algorithms
                                                                   15 / 28
Jingke Li (Portland State University)
```

# Parallel GE with 1-D Partitioning

| $P_0$          | 1 | (0,1) | (0,2) | (0,3) | (0,4) | (0,5) | (0,6) | (0,7) |
|----------------|---|-------|-------|-------|-------|-------|-------|-------|
| P <sub>1</sub> | 0 | 1     | (1,2) | (1,3) | (1,4) | (1,5) | (1,6) | (1,7) |
| P <sub>2</sub> | 0 | 0     | 1     | (2,3) | (2,4) | (2,5) | (2,6) | (2,7) |
| P <sub>3</sub> | 0 | 0     | 0     | (3,3) | (3,4) | (3,5) | (3,6) | (3,7) |
| P <sub>4</sub> | 0 | 0     | 0     | (4,3) | (4,4) | (4,5) | (4,6) | (4,7) |
| P <sub>5</sub> | 0 | 0     | 0     | (5,3) | (5,4) | (5,5) | (5,6) | (5,7) |
| P <sub>6</sub> | 0 | 0     | 0     | (6,3) | (6,4) | (6,5) | (6,6) | (6,7) |
| P <sub>7</sub> | 0 | 0     | 0     | (7,3) | (7,4) | (7,5) | (7,6) | (7,7) |
| $P_0$          | 1 | (0,1) | (0,2) | (0,3) | (0,4) | (0,5) | (0,6) | (0,7) |
| p.             | 0 | 1     | (1,2) | (1,3) | (1,4) | (1,5) | (1,6) | (1.7) |

| (a) Computation | on: |
|-----------------|-----|

- $(i) \ A[k,j] := A[k,j]/A[k,k] \ for \ k \le j \le$
- (ii) A[k,k] := 1

| $P_0$          | 1 | (0,1) | (0,2) | (0,3) | (0,4)  | (0,5)  | (0,6)  | (0,7)  |
|----------------|---|-------|-------|-------|--------|--------|--------|--------|
| P <sub>1</sub> | 0 | Ī     | (1,2) | (1,3) | (1,4)  | (1,5)  | (1,6)  | (1,7)  |
| P,             | 0 | 0     | 1     | (2,3) | (2,4)  | (2,5)  | (2,6)  | (2,7)  |
| P <sub>3</sub> | 0 | 0     | 0     | 1 [   | (3,4)  | (3,5)  | (3,6)  | (3,7)  |
| P <sub>4</sub> | 0 | 0     | 0     | (4,3) | (4,4)  | V(4,5) | V(4,6) | ¥(4,7) |
| P <sub>5</sub> | 0 | 0     | 0     | (5,3) | (5,4)  | V(5,5) | V(5,6) | V(5,7) |
| P <sub>6</sub> | 0 | 0     | 0     | (6,3) | (6,4)  | V(6,5) | V(6,6) | ¥(6,7) |
| P <sub>7</sub> | 0 | 0     | 0     | (7,3) | V(7,4) | V(7,5) | V(7,6) | Ý(7,7) |

(b) Communication:

One-to-all broadcast of row A[k,\*]

| $P_0$          | 1 | (0,1) | (0,2) | (0,3) | (0,4) | (0,5) | (0,6) | (0,7) |
|----------------|---|-------|-------|-------|-------|-------|-------|-------|
| P <sub>1</sub> | 0 | 1     | (1,2) | (1,3) | (1,4) | (1,5) | (1,6) | (1,7) |
| P <sub>2</sub> | 0 | 0     | 1     | (2,3) | (2,4) | (2,5) | (2,6) | (2,7) |
| P <sub>3</sub> | 0 | 0     | 0     | 1     | (3,4) | (3,5) | (3,6) | (3,7) |
| P <sub>4</sub> | 0 | 0     | 0     | (4,3) | (4,4) | (4,5) | (4,6) | (4,7) |
| P <sub>5</sub> | 0 | 0     | 0     | (5,3) | (5,4) | (5,5) | (5,6) | (5,7) |
| P <sub>6</sub> | 0 | 0     | 0     | (6,3) | (6,4) | (6,5) | (6,6) | (6,7) |
| P <sub>7</sub> | 0 | 0     | 0     | (7,3) | (7,4) | (7,5) | (7,6) | (7,7) |

- (c) Computation:
- (i) A[i,j] := A[i,j] A[i,k]x A[k,j]for  $k \le i \le n$  and  $k \le j \le n$
- (ii) A[i,k] := 0 for  $k \le i \le n$

Jingke Li (Portland State University)

CS 415/515 Numerical Algorithms

# Parallel GE with 1-D Partitioning

- Assign one row to each process.
- Execute the outer loop sequentially.
- At iteration k+1, process  $P_k$  either broadcast or shift its row to processes  $P_{k+1}, \ldots, P_{n-1}$ .
- ▶ Each process performs local computation.

Complexity:

$$T_p = \frac{3}{2}n(n-1) + t_s n \log n + \frac{1}{2}t_w n(n-1) \log n$$

Jingke Li (Portland State University)

CS 415/515 Numerical Algorithms

17 / 28

## **Improvements**

Problems with the Simple Algorithm — The partition is fine-grained, and towards the end, the active region of the matrix is shrinking towards lower right corner; implies that processes fall idle.

Solutions: block and cyclic partitions.

|       | 1 | (0,1) | (0,2) | (0,3) | (0,4) | (0,5) | (0,6) | (0,7) |
|-------|---|-------|-------|-------|-------|-------|-------|-------|
| $P_0$ | 0 | 1     | (1,2) | (1,3) | (1,4) | (1,5) | (1,6) | (1,7) |
| -     | 0 | 0     | 1     | (2,3) | (2,4) | (2,5) | (2,6) | (2,7) |
| $P_1$ | 0 | 0     | 0     | 1     | (3,4) | (3,5) | (3,6) | (3,7) |
| _     | 0 | 0     | 0     | (4,3) | (4,4) | (4,5) | (4,6) | (4,7) |
| $P_2$ | 0 | 0     | 0     | (5,3) | (5,4) | (5,5) | (5,6) | (5,7) |
|       | 0 | 0     | 0     | (6,3) | (6,4) | (6,5) | (6,6) | (6,7) |
| $P_3$ | 0 | 0     | 0     | (7,3) | (7,4) | (7,5) | (7,6) | (7,7) |

|       | 1 | (0,1) | (0,2) | (0,3) | (0,4) | (0,5) | (0,6) | (0,7) |
|-------|---|-------|-------|-------|-------|-------|-------|-------|
| $P_0$ | 0 | 1     | (1,2) | (1,3) | (1,4) | (1,5) | (1,6) | (1,7) |
|       | 0 | 0     | 1     | (2,3) | (2,4) | (2,5) | (2,6) | (2,7) |
| $P_1$ | 0 | 0     | 0     | (3,3) | (3,4) | (3,5) | (3,6) | (3,7) |
|       | 0 | 0     | 0     | (4,3) | (4,4) | (4,5) | (4,6) | (4,7) |
| $P_2$ | 0 | 0     | 0     | (5,3) | (5,4) | (5,5) | (5,6) | (5,7) |
|       | 0 | 0     | 0     | (6,3) | (6,4) | (6,5) | (6,6) | (6,7) |
| $P_3$ | 0 | 0     | 0     | (7,3) | (7,4) | (7,5) | (7,6) | (7,7) |

(a) Block 1-D mapping

| ъ              | (0,7) | (0,6) | (0,5) | (0,4) | (0,3) | (0,2) | (0,1) | 1 |
|----------------|-------|-------|-------|-------|-------|-------|-------|---|
| $P_0$          | (4,7) | (4,6) | (4,5) | (4,4) | (4,3) | 0     | 0     | 0 |
| $P_1$          | (1,7) | (1,6) | (1,5) | (1,4) | (1,3) | (1,2) | 1     | 0 |
| 11             | (5,7) | (5,6) | (5,5) | (5,4) | (5,3) | 0     | 0     | 0 |
| P <sub>2</sub> | (2,7) | (2,6) | (2,5) | (2,4) | (2,3) | 1     | 0     | 0 |
| 12             | (6,7) | (6,6) | (6,5) | (6,4) | (6,3) | 0     | 0     | 0 |
| D              | (3,7) | (3,6) | (3,5) | (3,4) | (3,3) | 0     | 0     | 0 |
| $P_3$          | (7,7) | (7,6) | (7,5) | (7,4) | (7,3) | 0     | 0     | 0 |

(b) Cyclic 1-D mapping

Jingke Li (Portland State University)

CS 415/515 Numerical Algorithms

## Parallel GE with Partial-Pivoting

- ▶ Distribute the matrix as complete rows; each process stores approximately n/p rows of the matrix.
- Processes collectively decide on which two rows need to be swapped to do the partial pivoting.
- ► Two processes do a send/recv to each other to do the swap. (Alternatively, we can keep track of which row is which through an indirection array.)
- ▶ The pivot row is broadcast to all processes.
- ▶ In each process, we loop over those rows below the pivot row and apply the elimination step (an saxby() operation).
- ▶ Repeat until we hit bottom.

Jingke Li (Portland State University)

CS 415/515 Numerical Algorithms

19 / 28

# Parallel GE with 2-D Partitioning

Each processor gets a 2D block of the matrix.

### Steps:

- Broadcast the "active" column along the rows.
- Prepare the pivot row concurrently.
- Broadcast the pivot row along the columns.
- Perform the elimination step concurrently.

| 1 | (0,1) | (0,2) | (0,3) | (0,4) | (0,5) | (0,6) | (0,7 |
|---|-------|-------|-------|-------|-------|-------|------|
| 0 | 1     | (1,2) | (1,3) | (1,4) | (1,5) | (1,6) | (1,7 |
| 0 | 0     | 1     | (2,3) | (2,4) | (2,5) | (2,6) | (2,7 |
| 0 | 0     | 0     | (3,3) | (3,4) | (3,5) | (3,6) | (3,7 |
| 0 | 0     | 0     | (4,3) | (4,4) | (4,5) | (4,6) | (4,7 |
| 0 | 0     | 0     | (5,3) | (5,4) | (5,5) | (5,6) | (5,7 |
| 0 | 0     | 0     | (6,3) | (6,4) | (6,5) | (6,6) | (6,  |
| 0 | 0     | 0     | (7,3) | (7,4) | (7,5) | (7,6) | (7,7 |

(a) Rowwise broadcast of A[i,k] for (k - 1) < i < n

| 1 | (0,1) | (0,2) | (0,3) | (0,4) | (0,5) | (0,6) | (0,7) |
|---|-------|-------|-------|-------|-------|-------|-------|
| 0 | 1     | (1,2) | (1,3) | (1,4) | (1,5) | (1,6) | (1,7) |
| 0 | 0     | 1     | (2,3) | (2,4) | (2,5) | (2,6) | (2,7) |
| 0 | 0     | 0     | 1     | (3,4) | (3,5) | (3,6) | (3,7) |
| 0 | 0     | 0     | (4,3) | (4,4) | (4,5) | (4,6) | (4,7) |
| 0 | 0     | 0     | (5,3) | (5,4) | (5,5) | (5,6) | (5,7) |
| 0 | 0     | 0     | (6,3) | (6,4) | (6,5) | (6,6) | (6,7) |
| 0 | 0     | 0     | (7,3) | (7,4) | (7,5) | (7,6) | (7,7) |

(c) Columnwise broadcast of A[k,j] for  $k \le j \le n$ 

| 1 | (0,1) | (0,2) | (0,3) | (0,4) | (0,5) | (0,6) | (0,7) |
|---|-------|-------|-------|-------|-------|-------|-------|
| 0 | 1     | (1,2) | (1,3) | (1,4) | (1,5) | (1,6) | (1,7) |
| 0 | 0     | 1     | (2,3) | (2,4) | (2,5) | (2,6) | (2,7) |
| 0 | 0     | 0     | (3,3) | (3,4) | (3,5) | (3,6) | (3,7) |
| 0 | 0     | 0     | (4,3) | (4,4) | (4,5) | (4,6) | (4,7) |
| 0 | 0     | 0     | (5,3) | (5,4) | (5,5) | (5,6) | (5,7) |
| 0 | 0     | 0     | (6,3) | (6,4) | (6,5) | (6,6) | (6,7) |
| 0 | 0     | 0     | (7,3) | (7,4) | (7,5) | (7,6) | (7,7) |

(b) A[k,j] := A[k,j]/A[k,k]for k < j < n

| 1 | (0,1) | (0,2) | (0,3) | (0,4) | (0,5) | (0,6) | (0,7 |
|---|-------|-------|-------|-------|-------|-------|------|
| 0 | 1     | (1,2) | (1,3) | (1,4) | (1,5) | (1,6) | (1,7 |
| 0 | 0     | Ī     | (2,3) | (2,4) | (2,5) | (2,6) | (2,7 |
| 0 | 0     | 0     | 1     | (3,4) | (3,5) | (3,6) | (3,7 |
| 0 | 0     | 0     | (4,3) | (4,4) | (4,5) | (4,6) | (4,7 |
| 0 | 0     | 0     | (5,3) | (5,4) | (5,5) | (5,6) | (5,7 |
| 0 | 0     | 0     | (6,3) | (6,4) | (6,5) | (6,6) | (6,7 |
| 0 | 0     | 0     | (7,3) | (7,4) | (7,5) | (7,6) | (7,7 |

 $\begin{array}{l} (d) \ \ A[i,j] := A[i,j] \text{-} A[i,k] \ \ \mathsf{X} \ \ A[k,j] \\ \text{for } k \leq i \leq n \text{ and } k \leq j \leq n \end{array}$ 

## Block and Cyclic 2-D Partitions



| , | (0,6) (0,7) | (0,4) (0,5) | (0,3) | (0,2) | (0,1) | 1 |
|---|-------------|-------------|-------|-------|-------|---|
| ) | (1,6) (1,7) | (1,4)(1,5)  | (1,3) | (1,2) | 1     | 0 |
| ) | (2,6) (2,7) | (2,4) (2,5) | (2,3) | 1     | 0     | 0 |
| , | (3,6) (3,7) | (3,4) (3,5) | 1     | 0     | 0     | 0 |
| ) | (4,6) (4,7) | (4,4) (4,5) | (4,3) | 0     | 0     | 0 |
| ) | (5,6) (5,7) | (5,4) (5,5) | (5,3) | 0     | 0     | 0 |
| ) | (6,6) (6,7) | (6,4) (6,5) | (6,3) | 0     | 0     | 0 |
| ) | (7,6) (7,7) | (7,4) (7,5) | (7,3) | 0     | 0     | 0 |

 $n/\sqrt{p}$ 

- (a) Rowwise broadcast of A[i,k] for i = k to (n - 1)
- (b) Columnwise broadcast of A[k,j] for j = (k+1) to (n-1)

| 1 | (0,1) | (0,2) | (0,3) | (0,4) | (0,5) | (0,6) | (0,7) |
|---|-------|-------|-------|-------|-------|-------|-------|
| 0 | 1     | (1,2) | (1,3) | (1,4) | (1,5) | (1,6) | (1,7) |
| 0 | 0     | 1     | (2,3) | (2,4) | (2,5) | (2,6) | (2,7) |
| 0 | 0     | 0     | (3,3) | (3,4) | (3,5) | (3,6) | (3,7) |
| 0 | 0     | 0     | (4,3) | (4,4) | (4,5) | (4,6) | (4,7) |
| 0 | 0     | 0     | (5,3) | (5,4) | (5,5) | (5,6) | (5,7) |
| 0 | 0     | 0     | (6,3) | (6,4) | (6,5) | (6,6) | (6,7) |
| 0 | 0     | 0     | (7,3) | (7,4) | (7,5) | (7,6) | (7,7) |



- (a) Block-checkerboard mapping
- (b) Cyclic-checkerboard mapping

Jingke Li (Portland State University)

CS 415/515 Numerical Algorithms

21 / 28

# Solving Large, Sparse Linear Systems

Large sparse matrices often appear in scientific or engineering applications when solving partial differential equations. As an example, consider the Laplace Equation:

$$\phi_{i,j} = \frac{1}{4} (\phi_{i+1,j} + \phi_{i-1,j} + \phi_{i,j+1} + \phi_{i,j-1}), \quad 0 < i, j < n$$

It describes a computation over an  $n \times n$  mesh.  $\phi_{i,j}$  deotes the value at the mesh point [i,j].



- The value at point [i,j] is related to the values of its four neighbors.
- The values at the four boarder lines are typically fixed.

Jingke Li (Portland State University)

CS 415/515 Numerical Algorithms

# Solving the Laplace Equation

The Laplace Equation is a linear system with  $n^2$  unknowns. It can be turned into the standard  $\mathbf{A}\mathbf{x} = \mathbf{b}$  form:

Let  $I = i \cdot n + j$ , then the system becomes:

$$\phi_{I+n} + \phi_{I-n} + \phi_{I+1} + \phi_{I-1} - 4\phi_I = 0, \quad 0 < I < n^2$$

which can also be expressed in matrix form:



- The matrix is very large, yet sparse.
- It can be solved by using Gaussian Elimination, but the cost would be very high:  $O(n^6)$ .

A better approach is to directly solve the system over the original  $n \times n$  mesh domain.

Jingke Li (Portland State University)

CS 415/515 Numerical Algorithms

23 / 28

# Jacobi Relaxation Algorithm

It is an iterative algorithm:

► Cycle through the mesh points, compute a new value for each point using the average of the four-neighboring "old" values.

$$\phi_{i,j}^{(t+1)} = \frac{1}{4} (\phi_{i+1,j}^{(t)} + \phi_{i-1,j}^{(t)} + \phi_{i,j+1}^{(t)} + \phi_{i,j-1}^{(t)}), \quad 0 < i, j < N$$

- ▶ Once all the new values are found, replace old values with new ones.
- ▶ Repeat until the difference between old and new is small enough.

#### Parallelization:

For the distributed-memory case, simply partition the mesh in both dimensions; each processor will handle a  $\frac{n}{\sqrt{p}} \times \frac{n}{\sqrt{p}}$  sub-mesh. Communications are only required on the "peripheral" of the mesh region in each processor.

Jingke Li (Portland State University)

CS 415/515 Numerical Algorithms

# Jacobi Relaxation Algorithm (cont.)

```
int jacobi(int n, double x[n][n], double epsilon) {
 double xnew[n][n], delta;
 int i, j, cnt = 0;
 do {
   cnt++;
   delta = 0.0;
   for (i = 1; i < n-1; i++) {
     for (j = 1; j < n-1; j++) {
       xnew[i][j] = (x[i-1][j] + x[i][j-1]
                      + x[i+1][j] + x[i][j+1]) / 4.0;
       delta = fmax(delta, fabs(xnew[i][j] - x[i][j]));
   for (i = 1; i < n-1; i++) {
     for (j = 1; j < n-1; j++) {
       x[i][j] = xnew[i][j];
 } while (delta > epsilon);
 return cnt;
```

Jingke Li (Portland State University)

CS 415/515 Numerical Algorithms

25 / 28

# Gauss-Seidel Algorithm

While simple, the Jacobi relaxation algorithm has two drawbacks, (1) It needs buffers to store old mesh point values; and (2) Its convergence speed can be slow.

Gauss-Seidel algorithm is an improvement over the Jacobi algorithm. It's like Jacobi, except that mesh points are updated "in-place," overwriting the old value.

The order of mesh point updates does not really matter. Here are two possible orders:

$$\phi_{i,j}^{(t+1)} = \frac{1}{4} (\phi_{i+1,j}^{(t)} + \phi_{i-1,j}^{(t+1)} + \phi_{i,j+1}^{(t)} + \phi_{i,j-1}^{(t+1)}), \quad 0 < i, j < N$$

$$\phi_{i,j}^{(t+1)} = \frac{1}{4} (\phi_{i+1,j}^{(t+1)} + \phi_{i-1,j}^{(t)} + \phi_{i,j+1}^{(t+1)} + \phi_{i,j-1}^{(t)}), \quad 0 < i, j < N$$

► Gauss-Seidel algorithm does not need buffers and has a better convergence speed (since newer values are used in all updates).

Jingke Li (Portland State University)

CS 415/515 Numerical Algorithms

# Parallelizing Gauss-Seidel

Due to the "in-place" updates, race condition may happen among multiple reads and a single write to the same memory location. But this is not really a problem for an iterative algorithm — using an old value vs. using a new value affects only the convergency rate.

The following are the common parallel approaches:

- Natural index ordering (allow race condition)
- Red-black ordering (avoid race condition)

```
    Denote alternating points as "red" and "black".
```

- Repeat following two steps until convergence:
  - . update all red points (in any order)
  - . update all black points (in any order)
- ► Wavefront ordering (avoid race condition)
  - Proceed along diagonal line.
     3 4 5 . . .
     4 5 . . . .
    - Repeat until success. 5 .....

Jingke Li (Portland State University)

CS 415/515 Numerical Algorithms

27 / 28

### Multi-Grid Methods

Observations — Iterative algorithms converge to solutions faster on coarser grids than on finer grids. Iterative algorithms converge quicker if the initial approx. of the values of the variables are good.

#### Algorithm:

- ▶ Begin with the original problem, where the solution is defined (and desired) on an  $n \times n$  mesh.
- ▶ (*Projection*) Coarsen the problem by several powers of 2:  $n \rightarrow n/2^m$ . Boundary values need to be averaged down to the coarser mesh.
- ▶ (*Relaxation*) Solve the coarse version problem using any iterative solver. It should go fast since the mesh is small.
- ▶ (*Interpolation*) Boost up the problem by a factor of 2, interpolating field points. What was one mesh point turns into 4 mesh points.
- ▶ Re-run relaxation on this problem.
- ▶ Repeat *Relaxation/Interpolation* steps until back to original problem.