- it can be directly seen from the definition that
 - $\mathbf{A} \succeq \mathbf{0} \Longrightarrow a_{ii} \geq 0$ for all i
 - $\mathbf{A} \succ \mathbf{0} \Longrightarrow a_{ii} > 0$ for all i
- extension (also direct): partition A as

$$\mathbf{A} = egin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix}.$$

Then, $\mathbf{A}\succeq\mathbf{0}\Longrightarrow\mathbf{A}_{11}\succeq\mathbf{0},\mathbf{A}_{22}\succeq\mathbf{0}$. Also, $\mathbf{A}\succ\mathbf{0}\Longrightarrow\mathbf{A}_{11}\succ\mathbf{0},\mathbf{A}_{22}\succ\mathbf{0}$

- further extension:
 - a principal submatrix of \mathbf{A} , denoted by $\mathbf{A}_{\mathcal{I}}$, where $\mathcal{I} = \{i_1, \ldots, i_m\} \subseteq \{1, \ldots, n\}$, m < n, is a submatrix obtained by keeping only the rows and columns indicated by \mathcal{I} ; i.e., $[\mathbf{A}_{\mathcal{I}}]_{jk} = a_{i_j,i_k}$ for all $j,k \in \{1,\ldots,m\}$
 - if A is PSD (resp. PD), then any principal submatrix of A is PSD (resp. PD), and then any principal minor of A is nonnegative (resp. positive)

- (Sylvester's criterion). Let $\mathbf{A} \in \mathbb{S}^n$.
 - \mathbf{A} is PD \iff all its leading (and trailing) principal minors are positive (for $\mathbf{A} \in \mathbb{S}^n$, the positivity of the leading principal minors implies the positivity of all its principal minors)
 - A is PSD \iff all its principal minors are nonnegative
 - If the first n-1 leading principal minors (and the last n-1 trailing principal minors) of \mathbf{A} are positive and det $\det(\mathbf{A}) \geq 0$, then \mathbf{A} is PSD.
- ullet A is ND \Longleftrightarrow its odd leading principal minors are negative and even are positive
- ullet A is NSD \Longleftrightarrow its odd principal minors are nonpositive and even are nonnegative
- ullet A is indefinite \Longleftrightarrow there are two of its odd leading principal minors that have different signs or there is one of its even leading principal minors that is negative

- To obtain conditions for a matrix to be PD or ND, we need to examine the leading principal minors.
- To obtain conditions for a matrix to be PSD or NSD, we need to examine all the principal minors.
- Procedures for checking the definiteness of a matrix
 - find the leading principal minors and check if the conditions for positive or negative definiteness are satisfied; if they are, the the matrix is PD or ND
 - if the conditions are not satisfied, check if they are strictly violated; if they are,
 then the matrix is indefinite
 - if the conditions are not strictly violated, find all its principal minors and check
 if the conditions for positive or negative semidefiniteness are satisfied

Application: Classification of Stationary Points

Stationary point (critical point): For a differentiable function $f: \mathbb{R}^n \to \mathbb{R}$, a stationary point is a point on the surface of the graph where $\nabla f(\mathbf{x}) = \mathbf{0}$.

- local extrema: given a stationary point \mathbf{x} , \mathbf{x} is a local maximum (resp. a local minimum) if there exists a neighborhood \mathcal{R} of \mathbf{x} such that for all $\mathbf{x}' \in \mathcal{R}$, $f(\mathbf{x}') \leq f(\mathbf{x})$ (resp. $\geq f(\mathbf{x})$)
- saddle points: given a stationary point \mathbf{x} , \mathbf{x} is a saddle point if for any neighborhood \mathcal{R} of \mathbf{x} there exists a $\mathbf{x}' \in \mathcal{R}$ such that $f(\mathbf{x}') > f(\mathbf{x})$ and a $\mathbf{x}'' \in \mathcal{R}$ such that $f(\mathbf{x}'') < f(\mathbf{x})$
- ullet Suppose f is twice-differentiable, at a stationary point ${f x}$ we have

$$f(\mathbf{x} + \mathbf{r}) - f(\mathbf{x}) = \frac{1}{2} \mathbf{r}^T \nabla^2 f(\mathbf{x}) \mathbf{r} + \mathcal{O}(|\mathbf{r}|^3)$$

- A twice-differentiable function f has a local minimum (resp. a local maximum, a saddle point) \mathbf{x} if $\nabla f(\mathbf{x}) = \mathbf{0}$ and $\nabla^2 f(\mathbf{x}) \succ \mathbf{0}$ (resp. $-\nabla^2 f(\mathbf{x}) \succ \mathbf{0}$, $\nabla^2 f(\mathbf{x}) \not\succeq \mathbf{0}$) at that point.
- Unfortunately, it is inconclusive if $\nabla f(\mathbf{x}) = \mathbf{0}$ and $\nabla^2 f(\mathbf{x})$ is only semidefinite and not definite. (consider the example: $f(x_1, x_2) = x_1^3 + x_2^2$)

- A is PSD, $\mathbf{x}^T \mathbf{A} \mathbf{x} = 0 \iff \mathbf{A} \mathbf{x} = \mathbf{0}$ for an \mathbf{x} . (how to prove it?)
 - proved by eigenvalue properties of PSD matrices
 - alternative proof: the "if" part is easy; the "only if" part: constructing

$$p(\lambda) = (\mathbf{x} + \lambda \mathbf{y})^T \mathbf{A} (\mathbf{x} + \lambda \mathbf{y}) = \lambda^2 \mathbf{y}^T \mathbf{A} \mathbf{y} + 2\lambda \mathbf{y}^T \mathbf{A} \mathbf{x} + \mathbf{x}^T \mathbf{A} \mathbf{x}.$$

Since for all \mathbf{x} , λ , and \mathbf{y} , $p(\lambda) \geq 0$, we have the discriminant for $p(\lambda)$ should be nonpositive, i.e.,

$$4(\mathbf{y}^T \mathbf{A} \mathbf{x})^2 - 4(\mathbf{y}^T \mathbf{A} \mathbf{y})(\mathbf{x}^T \mathbf{A} \mathbf{x}) \le 0$$

If $\mathbf{x}^T \mathbf{A} \mathbf{x} = 0$, the discriminant is nonpositive only if $\mathbf{y}^T \mathbf{A} \mathbf{x} = 0$ for all \mathbf{y} or, equivalently, if $\mathbf{A} \mathbf{x} = \mathbf{0}$.

- ullet A is PSD and nonsingular \Longleftrightarrow A is PD
- ullet for a PSD f A, it is PD $\Longleftrightarrow f A$ is nonsingular

Property 1. Let $\mathbf{A} \in \mathbb{S}^n$, $\mathbf{B} \in \mathbb{R}^{n \times m}$, and

$$C = B^T A B$$
.

We have the following properties:

- 1. $\mathbf{A}\succeq\mathbf{0}\Longrightarrow\mathbf{C}\succeq\mathbf{0}$ (specially, $\mathbf{A}\succ\mathbf{0}\Longrightarrow\mathbf{C}\succeq\mathbf{0}$)
- 2. suppose $A \succ 0$. It holds that $C \succ 0 \iff B$ has full column rank
- 3. suppose ${\bf B}$ is nonsingular. It holds that ${\bf A}\succ {\bf 0}\Longleftrightarrow {\bf C}\succ {\bf 0}$, and that ${\bf A}\succeq {\bf 0}\Longleftrightarrow {\bf C}\succ {\bf 0}$.
- proof sketch: the 1st property is trivial. For the 2nd property, observe

$$\mathbf{C} \succ \mathbf{0} \iff \mathbf{x}^T \mathbf{C} \mathbf{x} > 0, \ \forall \ \mathbf{x} \neq \mathbf{0} \iff \mathbf{z}^T \mathbf{A} \mathbf{z} > 0, \ \forall \ \mathbf{z} = \mathbf{B} \mathbf{x}, \ \mathbf{x} \neq \mathbf{0}.$$
 (*)

If $A \succ 0$, (*) reduces to $C \succ 0 \iff Bx \neq 0$, $\forall x \neq 0$ (or B has full column rank). The 3rd property is proven by the similar manner.

Example: Correlation Matrix

Given the random variable $\mathbf{y} = [y_1, \dots, y_n]^T \in \mathbb{R}^n$

- ullet μ_i is the mean or expected value of y_i
- ullet σ_i is the standard deviation and σ_i^2 is the variance of y_i
- \bullet σ_{ij} , for i, j, is the covariance of y_i and y_j
- $\rho_{ij} = \sigma_{ij}/(\sigma_i\sigma_j)$, for $i \neq j$, is the correlation between y_i and y_j (variables y_i and y_j are uncorrelated if $\rho_{ij} = 0$, or equivalently, $\sigma_{ij} = 0$)
- the correlation matrix has i, j element $\rho_{ij} = \sigma_{ij}/(\sigma_i\sigma_j)$ for $i \neq j$ and 1 for i = j:

$$\mathbf{R} = \begin{bmatrix} 1 & \rho_{12} & \dots & \rho_{1n} \\ \rho_{21} & 1 & \dots & \rho_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{n1} & \rho_{n2} & \dots & 1 \end{bmatrix}$$

which is symmetric and is the covariance matrix of the standardized variables $\tilde{y}_i = (y_i - \mu_i)/\sigma_i$

Example: Correlation Matrix

• the correlation matrix can also be defined as

$$R = D\Sigma D$$

where Σ is the covariance matrix and ${f D}$ is the diagonal matrix

$$\mathbf{D} = \begin{bmatrix} \sigma_1^{-1} & 0 & \dots & 0 \\ 0 & \sigma_2^{-1} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sigma_n^{-1} \end{bmatrix}$$

- since covariance is PSD, the correlation matrix is also PSD
- both covariance and correlation matrices are called second moment matrices

Theorem 2. A matrix $\mathbf{A} \in \mathbb{S}^n$ is PSD if and only if it can be factored as

$$\mathbf{A} = \mathbf{B}^T \mathbf{B}$$

for some $\mathbf{B} \in \mathbb{R}^{m \times n}$. (we can also write it as $\mathbf{A} = \mathbf{B}\mathbf{B}^T$ for some $\mathbf{B} \in \mathbb{R}^{n \times m}$)

- proof:
 - sufficiency: $\mathbf{A} = \mathbf{B}^T \mathbf{B} \Longrightarrow \mathbf{x}^T \mathbf{A} \mathbf{x} = \mathbf{x}^T \mathbf{B}^T \mathbf{B} \mathbf{x} = \|\mathbf{B} \mathbf{x}\|_2^2 \ge 0$ for all \mathbf{x}
 - necessity: let $\mathbf{\Lambda}^{1/2} = \operatorname{Diag}(\lambda_1^{1/2}, \dots, \lambda_n^{1/2})$ with $\lambda_i \geq 0$. $\mathbf{A} \succeq \mathbf{0} \Longrightarrow \mathbf{A} = \mathbf{V}\mathbf{\Lambda}\mathbf{V}^T = (\mathbf{V}\mathbf{\Lambda}^{1/2})(\mathbf{\Lambda}^{1/2}\mathbf{V}^T)$, with $\mathbf{\Lambda}^{1/2}\mathbf{V}^T$ being real
- corollary: Given $\mathbf{A} = \mathbf{B}^T \mathbf{B}$, $\mathbf{A} \mathbf{x} = \mathbf{0} \iff \mathbf{B} \mathbf{x} = \mathbf{0}$ for an \mathbf{x} $\mathcal{N}(\mathbf{A}) = \mathcal{N}(\mathbf{B})$, nullity(\mathbf{A}) = nullity(\mathbf{B}), and rank(\mathbf{A}) = rank(\mathbf{B})
- corollary: $\mathbf{A} \in \mathbb{S}^n$ is PSD with $rank(\mathbf{A}) = r$ if and only if there exists a \mathbf{B} with $rank(\mathbf{B}) = r$ such that $\mathbf{A} = \mathbf{B}^T \mathbf{B}$.
- corollary: $\mathbf{A} \in \mathbb{S}^n$ is PD if and only if there exists a full column-rank $\mathbf{B} \in \mathbb{R}^{m \times n}$ or there exists a nonsingular $\mathbf{B} \in \mathbb{R}^{n \times n}$ such that $\mathbf{A} = \mathbf{B}^T \mathbf{B}$.
 - While **B** is not unique, there exists a unique upper-triangular matrix $\mathbf{B} \in \mathbb{R}^{n \times n}$ with $b_{ii} > 0$ s.t. $\mathbf{A} = \mathbf{B}^T \mathbf{B}$, which is the Cholesky factorization of **A**.
 - \mathbf{A} is PD iff has an LU (or LDL) factorization with all pivots being positive.

- ullet the factorization ${f A}={f B}^T{f B}$ has non-unique factor ${f B}$
 - for any orthogonal $\mathbf{U} \in \mathbb{R}^{n \times n}$, $\mathbf{B} = \mathbf{U} \mathbf{\Lambda}^{1/2} \mathbf{V}^T$ is a factor for $\mathbf{A} = \mathbf{B}^T \mathbf{B}$
- denote

$$\mathbf{A}^{1/2} = \mathbf{V} \mathbf{\Lambda}^{1/2} \mathbf{V}^T.$$

- $-\mathbf{B} = \mathbf{A}^{1/2}$ is a factor for $\mathbf{A} = \mathbf{B}^T \mathbf{B}$
- ${f A}^{1/2}$ is also a symmetric factor
- $\mathbf{A}^{1/2}$ is the *unique symmetric PSD* factor for $\mathbf{A} = \mathbf{B}^T \mathbf{B}$
- $A^{1/2}$ is called the PSD square root of A
 - note: in general, a matrix $\mathbf{B} \in \mathbb{R}^{n \times n}$ is said to be a square root of another matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ if $\mathbf{A} = \mathbf{B}^2$

Example: PD Covariance Matrices

ullet the sample covariance matrix based on $\mathbf{Y}_c \in \mathbb{R}^{n imes T}$ is

$$\hat{\mathbf{\Sigma}} = \frac{1}{T} \mathbf{Y}_c \mathbf{Y}_c^T = \frac{1}{T} \mathbf{Y} \mathbf{C} \mathbf{C}^T \mathbf{Y}^T$$

- based on Theorem 2, conditions for $\hat{\Sigma}$ to be PD is $\mathrm{rank}(\mathbf{Y}_c) = \mathrm{rank}(\mathbf{Y}_c^T) = n$, i.e., \mathbf{Y}_c is full row-rank
- we further have $\operatorname{rank}(\mathbf{Y}_c) = \operatorname{rank}(\mathbf{YC}) \leq \min\{\operatorname{rank}(\mathbf{Y}), \operatorname{rank}(\mathbf{C})\} = \min\{\operatorname{rank}(\mathbf{Y}), T-1\} \leq \min\{n, T, T-1\} = \min\{n, T-1\}$
 - conditions for $\hat{\Sigma}$ to be PD is \mathbf{Y} has full rank and $T \geq n+1$
- ullet if the samples \mathbf{y}_i 's are random, we at least need T=n+1 samples

Property 2. Let $\mathbf{A} \in \mathbb{R}^{m \times k}$ and $\mathbf{B} \in \mathbb{R}^{k \times n}$, and suppose that \mathbf{B} has full row rank. Then

$$\mathcal{R}(\mathbf{AB}) = \mathcal{R}(\mathbf{A})$$

- proof:
 - observe that $\dim \mathcal{R}(\mathbf{B}) = \operatorname{rank}(\mathbf{B}) = k$, which implies $\mathcal{R}(\mathbf{B}) = \mathbb{R}^k$.
 - we have $\mathcal{R}(\mathbf{AB}) = \{\mathbf{y} = \mathbf{Az} \mid \mathbf{z} \in \mathcal{R}(\mathbf{B})\} = \{\mathbf{y} = \mathbf{Az} \mid \mathbf{z} \in \mathbb{R}^k\} = \mathcal{R}(\mathbf{A}).$
- corollary: if A is a PSD matrix with factorization $A = BB^T$ for some full-column rank B, then $\mathcal{R}(A) = \mathcal{R}(B)$.

Property 3. Let $\mathbf{B} \in \mathbb{R}^{n \times k}$, $\mathbf{C} \in \mathbb{R}^{n \times k}$ be full-column rank matrices. It holds that

$$\mathbf{B}\mathbf{B}^T = \mathbf{C}\mathbf{C}^T \iff \mathbf{C} = \mathbf{B}\mathbf{Q} \text{ for some orthogonal } \mathbf{Q} \in \mathbb{R}^{k \times k}$$

- proof: we consider "⇒" only, as "⇐=" is trivial
 - suppose $\mathbf{B}\mathbf{B}^T = \mathbf{C}\mathbf{C}^T$.
 - from

$$\mathbf{I} = (\mathbf{B}^{\dagger}\mathbf{B})(\mathbf{B}^{\dagger}\mathbf{B})^{T} = \mathbf{B}^{\dagger}(\mathbf{B}\mathbf{B}^{T})(\mathbf{B}^{\dagger})^{T} = \mathbf{B}^{\dagger}(\mathbf{C}\mathbf{C}^{T})(\mathbf{B}^{\dagger})^{T} = (\mathbf{B}^{\dagger}\mathbf{C})(\mathbf{B}^{\dagger}\mathbf{C})^{T},$$
 we see that $\mathbf{B}^{\dagger}\mathbf{C}$ is orthogonal (note that $\mathbf{B}^{\dagger}\mathbf{C}$ is square).

– let ${f Q}={f B}^{\dagger}{f C}$. We have ${f B}{f Q}={f B}{f B}^{\dagger}{f C}={f P}_{f B}{f C}$, or equivalently,

$$\mathbf{B}\mathbf{q}_i = \Pi_{\mathcal{R}(\mathbf{B})}(\mathbf{c}_i), \quad i = 1, \dots, k.$$

- from Property 2 we see that $\mathcal{R}(\mathbf{B}) = \mathcal{R}(\mathbf{B}\mathbf{B}^T) = \mathcal{R}(\mathbf{C}\mathbf{C}^T) = \mathcal{R}(\mathbf{C})$. It follows that $\Pi_{\mathcal{R}(\mathbf{B})}(\mathbf{c}_i) = \mathbf{c}_i$ for all i.

• For PSD matrices A, B, and C of equal size,

$$\det(\mathbf{A} + \mathbf{B} + \mathbf{C}) + \det(\mathbf{C}) \ge \det(\mathbf{A} + \mathbf{C}) + \det(\mathbf{B} + \mathbf{C})$$

with the corollary $det(\mathbf{A} + \mathbf{B}) \ge det(\mathbf{A}) + det(\mathbf{B})$.

PSD Matrix Inequalities

- the notion of PSD matrices can be used to define inequalities for matrices
- PSD matrix inequalities are frequently used in topics like semidefinite programming
- definition:
 - $-\mathbf{A}\succeq\mathbf{B}$ means that $\mathbf{A}-\mathbf{B}$ is PSD
 - $-\mathbf{A} \succ \mathbf{B}$ means that $\mathbf{A} \mathbf{B}$ is PD
 - $\mathbf{A} \not\succeq \mathbf{B}$ means that $\mathbf{A} \mathbf{B}$ is indefinite
- This defines a partial ordering and a strict partial ordering on the set of all square matrices, which is called the Loewner order.
- results that immediately follow from the definition: let $A, B, C \in \mathbb{S}^n$.
 - $-\mathbf{A}\succeq\mathbf{B},\mathbf{B}\succeq\mathbf{C}$ (resp. $\mathbf{A}\succeq\mathbf{B},\mathbf{B}\succ\mathbf{C})\Longrightarrow\mathbf{A}\succeq\mathbf{C}$ (resp. $\mathbf{A}\succ\mathbf{C})$
 - $-\mathbf{A} \not\succeq \mathbf{B}$ does **not** imply $\mathbf{B} \succeq \mathbf{A}$

PSD Matrix Inequalities

- more results: let $\mathbf{A}, \mathbf{B} \in \mathbb{S}^n$.
 - $-\mathbf{A} \succeq \mathbf{B} \Longrightarrow \lambda_k(\mathbf{A}) \geq \lambda_k(\mathbf{B})$ for all k; the converse is not always true
 - $-\mathbf{A} \succeq \mathbf{I}$ (resp. $\mathbf{A} \succ \mathbf{I}$) $\iff \lambda_k(\mathbf{A}) \geq 1$ for all k (resp. $\lambda_k(\mathbf{A}) > 1$ for all k)
 - $\mathbf{I} \succeq \mathbf{A}$ (resp. $\mathbf{I} \succ \mathbf{A}$) $\iff \lambda_k(\mathbf{A}) \leq 1$ for all k (resp. $\lambda_k(\mathbf{A}) < 1$ for all k)
 - if $\mathbf{A}, \mathbf{B} \succ \mathbf{0}$ then $\mathbf{A} \succeq \mathbf{B} \Longleftrightarrow \mathbf{B}^{-1} \succeq \mathbf{A}^{-1}$
- some results as consequences of the above results:
 - for $\mathbf{A} \succeq \mathbf{B} \succeq \mathbf{0}$, $\det(\mathbf{A}) \ge \det(\mathbf{B})$
 - for $\mathbf{A} \succeq \mathbf{B}$, $\operatorname{tr}(\mathbf{A}) \ge \operatorname{tr}(\mathbf{B})$
 - for $\mathbf{A} \succeq \mathbf{B} \succ \mathbf{0}$, $\det(\mathbf{A}^{-1}) \le \det(\mathbf{B}^{-1})$ and $\operatorname{tr}(\mathbf{A}^{-1}) \le \operatorname{tr}(\mathbf{B}^{-1})$
- Example: $\mathcal{E}(\mathbf{Q}) = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x}^T \mathbf{Q}^{-1} \mathbf{x} \leq 1 \}$, for some PD $\mathbf{Q} \in \mathbb{S}^n$, $\mathcal{E}(\mathbf{P}) \supseteq \mathcal{E}(\mathbf{Q}) \iff \mathbf{P} \succeq \mathbf{Q}$