Programmier-Paradigmen

Tutorium – Gruppe 2 & 8 Henning Dieterichs

Typinferenz

Wiederholung: Herleitbarkeit

- Für Term t, Typ τ und Typannahmen Γ heißt " $\Gamma \vdash t : \tau$ ":
 - Für t kann unter Typannahmen Γ der Typ τ hergeleitet werden
- "⊢" ist definiert durch:

CONST:
$$\frac{c \in \textit{Const}}{\Gamma \mid -c : \tau_c}$$

VAR:
$$\frac{\Gamma(x) = \tau' \qquad \tau' \succeq \tau}{\Gamma \vdash x : \tau}$$

APP:
$$\frac{\Gamma \vdash t_1 : \tau_2 \to \tau \qquad \Gamma \vdash t_2 : \tau_2}{\Gamma \vdash t_1 \ t_2 : \tau}$$

ABS:
$$\frac{\Gamma, x : \tau_1 \vdash t : \tau_2 \qquad \tau_1 \text{ kein Typschema}}{\Gamma \vdash \lambda x. \ t : \tau_1 \rightarrow \tau_2}$$

LET:
$$\frac{\Gamma \vdash t_1 : \tau_1 \qquad \Gamma, x : ta(\tau_1, \Gamma) \vdash t_2 : \tau_2}{\Gamma \vdash \text{let } x = t_1 \text{ in } t_2 : \tau_2}$$

Herleitungsbaum vs. Typinferenz

- Herleitungsbäume beweisen, dass ein Term unter gegebenen Typannahmen einen bestimmten Typ haben kann
- Typinferenz sucht einen Typ τ zu einem gegebenem Term t und Typannahmen Γ, sodass:
 - $\forall \tau' : \Gamma \vdash t : \tau' \Rightarrow \exists \sigma \in Subst_{Typ} : \tau' = \sigma(\tau)$.
 - τ heißt dann allgemeinster Typ von t.
- Typinferenz sollte korrekt und vollständig sein

Aufgabe 1: λ-Terme und die Herleitung ihrer allgemeinsten Typen

$$t_1 = \lambda z$$
. z
 $t_2 = \lambda f$. λx . $f x$
 $t_3 = \lambda f$. λx . $f (f x)$
 $t_4 = \lambda x$. λy . $y (x y)$

Führen Sie für jeden dieser Terme eine Typinferenz durch. Gehen Sie dabei vor, wie auf den Folien 313ff. beschrieben:

- 1. Erstellen Sie zum gegebenen Term t_j zunächst einen Herleitungsbaum und verwenden Sie überall frische Typvariablen α_i .
- 2. Extrahieren Sie gemäß der Typisierungsregeln ein Gleichungssystem C für die α_i .
- 3. Bestimmen Sie einen allgemeinsten Unifikator σ_C , der C löst.
- 4. Bestimmen Sie einen allgemeinsten Typen von t_j als $\sigma_C(\alpha_1)$, wobei α_1 die für t_j gewählte Typvariable ist.

Aufgabe 2: Typabstraktion

In der Typabstraktion $ta(\tau, \Gamma)$ werden nicht *alle* freien Typvariablen von τ quantifiziert, sondern nur die, die nicht frei in den Typannahmen Γ vorkommen.

Überlegen Sie anhand des λ -Terms λx . **let** y = x **in** y x was passiert, wenn man diese Beschränkung aufhebt!

3 Typinferenz, let-Polymorphismus

Bestimmen Sie einen allgemeinsten Typ für den Ausdruck $let k = \lambda x$. λy . x in k a (k b c) unter der Typannahme $\Gamma = a$: int, b: bool, c: char. Gehen Sie hierzu vor, wie auf den Folien 332ff. beschrieben: Extrahieren Sie für das abgedruckte Skelett einer Typherleitung die Constraint-Menge C_{let} und berechnen Sie einen allgemeinsten Unifikator $mgu(C_{let}) =: \sigma_{let}$ für die linke Teilherleitung der let-Regel. Bestimmen Sie dann die vereinfachte Constraint-Menge C'_{let} , Γ' sowie Constraints $C_0 \cup C_1$ für den Rest des Herleitungsbaums (C_0 : Constraints, die vor Betreten des linken Teilbaums eingesammelt werden; C_1 : Constraints, die nach Verlassen des linken Teilbaums eingesammelt werden). Geben Sie anschließend einen allgemeinsten Unifikator σ_C von $C := C'_{let} \cup C_0 \cup C_1$ an.

Aufgabe 3: let-Polymorphismus

- Bestimme Typ von let $k = \lambda x$. λy . x in k a (k b c)
 - Unter Typannahme $\Gamma = a : int, b : bool, c : char$

Const:
$$\frac{c \in \mathit{Const}}{\Gamma \mid -c : au_c}$$

VAR:
$$\frac{\Gamma(x) = \tau' \qquad \tau' \succeq \tau}{\Gamma \vdash x : \tau}$$

APP:
$$\frac{\Gamma \vdash t_1 : \tau_2 \to \tau \qquad \Gamma \vdash t_2 : \tau_2}{\Gamma \vdash t_1 \ t_2 : \tau}$$

ABS:
$$\frac{\Gamma, x : \tau_1 \vdash t : \tau_2 \qquad \tau_1 \text{ kein Typschema}}{\Gamma \vdash \lambda x. \ t : \tau_1 \rightarrow \tau_2}$$

LET:
$$\frac{\Gamma \vdash t_1 : \tau_1 \qquad \Gamma, x : ta(\tau_1, \Gamma) \vdash t_2 : \tau_2}{\Gamma \vdash \text{let } x = t_1 \text{ in } t_2 : \tau_2}$$