AMPLIFIER KERNEL THEORY: CLASSIFICATION, MOLLIFIER DUALITY, AND AIDRIVEN ENTROPYLANGLANDS INTEGRATION

PU JUSTIN SCARFY YANG

ABSTRACT. We develop the formal theory of amplifier kernels, generalizing analytic amplifier constructions in subconvexity and spectral separation into a fully structured kernel framework. Amplifier kernels are classified by entropy magnification behavior, convolution operator symmetry, and duality with mollifiers via inverse* convolution. We construct the Amplifier-Mollifier Duality Table, introduce a Python module for AI-driven amplifier optimization, and show how these kernels integrate into the entropy-Langlands stack convolution hierarchy.

Contents

1.	Introduction	1	
2.	Definition and Classification of Amplifier Kernels	2	
2.1.	General Structure	2	
2.2.	Three Structural Classes of Amplifier Kernels	2	
2.3.	Amplifier–Mollifier Duality Table	3	
3.	AI–Driven Amplifier Kernel Module	3	
3.1.	Neural Amplifier Architecture	3	
3.2.	Python Simulation Model (Spectral Amplifier Learner)	4	
3.3.	Integration into the Entropy-Langlands Stack Kernel Hierarchy	4	
4.	Conclusion and Outlook	5	
Refe	References		

1. Introduction

Amplifiers have long been used in analytic number theory as tools to isolate specific automorphic components, enhance signal-to-noise in L-function moments, and derive subconvex bounds. Traditionally built from linear combinations of Hecke

Date: May 24, 2025.

eigenvalues or shifted convolutions, their behavior has remained function-specific and non-canonical.

In this paper, we lift amplifier constructions to kernel-theoretic form—defining amplifier kernels as entropy-enhancing convolution operators, dual in structure to mollifiers—and classify them formally within the Langlands-period trace setting.

Our goals are:

- To define amplifier kernels abstractly and classify their structural types;
- To exhibit their duality with mollifier kernels via entropy-convolution inversion:
- To model amplifier learning via Python-AI modules targeting entropy-optimal design;
- To integrate amplifier kernels into Yang-style entropy-convolution flows for RH and Langlands stacks.

We begin with definitions and the three amplifier kernel classes.

2. Definition and Classification of Amplifier Kernels

2.1. General Structure.

Definition 2.1 (Amplifier Kernel). An **amplifier kernel** is a spectral convolution operator of the form:

$$A_n(x,y) := \sum_{\lambda \in \Lambda_n} \alpha_{\lambda} \phi_{\lambda}(x) \overline{\phi_{\lambda}(y)},$$

where:

- ϕ_{λ} are eigenfunctions in a spectral basis (e.g., automorphic, Fourier, or sheaf-derived);
- α_{λ} is an amplification weight function satisfying $\alpha_{\lambda} \gg 1$ in a chosen target band:
- Λ_n is a filtered index set bounded by entropy or geometric complexity.

Remark 2.2. The amplifier kernel acts on functions f via:

$$A_n * f(x) = \int A_n(x, y) f(y) dy = \sum_{\lambda \in \Lambda_n} \alpha_\lambda \langle f, \phi_\lambda \rangle \phi_\lambda(x),$$

selectively enhancing the contributions of spectral components with large α_{λ} .

2.2. Three Structural Classes of Amplifier Kernels.

Definition 2.3 (Type I – Character Amplifiers). Defined by:

$$\alpha_{\lambda} = \chi(\lambda),$$

AMPLIFIER KERNEL THEORY: CLASSIFICATION, MOLLIFIER DUALITY, AND AIDRIVEN ENTROPYLANGLANDS INTO

where χ is a character (additive or multiplicative) acting on a spectral group, e.g.:

$$\alpha_n := \left(\frac{n}{q}\right), \quad \text{or} \quad \alpha_n := e(n\theta).$$

These are classical in Dirichlet character amplifiers and additive modulations.

Definition 2.4 (Type II – Spectral Sharpening Amplifiers). Amplifiers built to concentrate mass around a spectral target λ_0 via a smoothing envelope:

$$\alpha_{\lambda} := \exp\left(-\frac{(\lambda - \lambda_0)^2}{\sigma^2}\right),$$

used to separate close eigenvalues or emphasize target automorphic representations.

Definition 2.5 (Type III – AI-Entropy Adaptive Amplifiers). Amplifier weights generated dynamically via a trained AI model:

$$\alpha_{\lambda} := \mathcal{A}_{\theta}(\lambda), \text{ where } \mathcal{A}_{\theta} : \Lambda \to \mathbb{R}_{\geq 0}$$

is a neural function tuned to maximize entropy-layer contrast, spectral alignment, or zeta-response sharpness. This permits learning amplifiers tailored to specific period stacks or L-function configurations.

2.3. Amplifier-Mollifier Duality Table.

Property	Amplifier Kernel A_n	Mollifier Kernel M_n
Spectral Action	Enhances λ -mass	Suppresses λ -mass
Entropy Effect	Increases gradient/contrast	Decreases variation/noise
Target Use	Subconvexity, Separation	Smoothing, Zeta Mollification
Convolution Type	Signal extraction	Noise averaging
Yang Duality	$A_n \simeq (M_n^{-1})^*$	$M_n \simeq (A_n^{-1})^*$
AI Mode	Learns entropy gradients	Learns harmonic cancellations

Remark 2.6. This table formalizes the dual roles of amplifiers and mollifiers as entropy—convolution opposites: one selective and enhancing, the other smoothing and averaging. Their compositions often yield spectral identity operators.

3. AI-Driven Amplifier Kernel Module

3.1. Neural Amplifier Architecture. Let Λ_n be a discrete spectral domain (e.g. Hecke eigenvalues or automorphic Laplacian spectrum). We define an AI-learned amplifier:

$$\alpha_{\lambda} = \mathcal{A}_{\theta}(\lambda), \text{ with } \mathcal{A}_{\theta} : \Lambda_n \to \mathbb{R}_{\geq 0},$$

trained to maximize:

• Entropy separation;

- Spectral energy concentration near a target λ_0 ;
- Performance on zeta functional response or trace kernel alignment.

3.2. Python Simulation Model (Spectral Amplifier Learner).

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import RBF
# Simulated spectrum
Lambda = np.linspace(0, 50, 200)
target = 20.0
# Entropy cost: distance from target
def entropy_penalty(lmbda, target):
    return (lmbda - target)**2
# Gaussian Process model as amplifier learner
X = Lambda.reshape(-1, 1)
y = np.exp(-entropy_penalty(Lambda, target) / 10)
kernel = RBF(length_scale=5.0)
gpr = GaussianProcessRegressor(kernel=kernel, alpha=0.01)
gpr.fit(X, y)
Lambda_pred = np.linspace(0, 50, 500).reshape(-1, 1)
alpha_pred, sigma = gpr.predict(Lambda_pred, return_std=True)
# Plot
plt.plot(Lambda_pred, alpha_pred, label="Amplifier Kernel Weight")
plt.fill_between(Lambda_pred.ravel(), alpha_pred - sigma, alpha_pred + sigma, alph
plt.axvline(target, linestyle="--", color="r", label="Target Spectral Peak")
plt.title("AI{Learned Amplifier Kernel Profile")
plt.xlabel("Spectral Parameter ")
plt.ylabel("Amplification Weight ()")
plt.legend()
plt.grid(True)
plt.show()
```

3.3. Integration into the Entropy-Langlands Stack Kernel Hierarchy.

Theorem 3.1 (Amplifier Integration into Entropy–Langlands Flow). Let $\mathcal{M}Lang$ be a stack of automorphic period sheaves, and let $\mathcal{K}^{(A)}$ be an amplifier kernel constructed via spectral entropy $\lambda \mapsto \alpha \lambda$. Then:

$$\mathcal{K}^{(A)}: \operatorname{Sh}(\mathcal{M}_{\operatorname{Lang}}) \to (\mathcal{M}_{\operatorname{Lang}})$$

 $acts\ as\ an\ entropy\mbox{-}gradient\ Hecke\ convolution,\ satisfying:$

$$\mathcal{K}^{(A)}$$
, $\mathcal{K}^{(A)} \cong \mathrm{Id}_{\mathrm{Sh}}$.

Remark 3.2. This shows that amplifier and mollifier kernels form entropy-convolution inverses (up to regularization), enabling stack-level trace modulation and spectral filtration in the Langlands program and RH zeta framework.

4. Conclusion and Outlook

We have established amplifier kernel theory as a fully structured analytic–categorical system:

- Defined amplifier kernel classes and their spectral/entropy behavior;
- Constructed their duality with mollifiers via inverse* convolution;
- Introduced a Python-based AI module for spectral amplifier learning;
- Integrated these kernels into Langlands stacks and entropy-trace dynamics.

In the next article, we construct the **Ultra Amplifier Family**, identifying and classifying amplifiers that not only approximate but exactly reconstruct automorphic or zeta-theoretic targets, forming the upper envelope of entropy-based convolutional operators.

References

- [1] P. Michel and A. Venkatesh, The subconvexity problem for GL(2), Pub. Math. IHES.
- [2] J. Conrey, Mollifiers and the zeros of the Riemann zeta function, LMS Lectures.
- [3] P.J.S. Yang, Entropy Amplifier Kernels and Periodic Spectral Operators, 2025.