计算方法第三次编程作业报告

崔士强 PB22151743

2024年4月14日

1 实验结果

两个矩阵的计算结果分别如下表所示

\overline{k}	$Y^{(k)}$						
0	1	1	1	1	1		
1	0.5625	-1	0.5625	-0.107143	0.00446429		
2	0.49103	-1	0.658639	-0.151467	0.00798141		
3	0.490426	-1	0.65975	-0.152097	0.00804664		

\overline{k}	$X^{(k+1)}$					λ
0	630	-1120	630	-120	5	0.000892857
1	146253	-297849	196175	-45114.4	2377.25	3.35741×10^{-6}
2	149113	-304047	200595	-46244.7	2446.56	3.28896×10^{-6}
3	149157	-304142	200661	-46261.1	2447.54	3.28794×10^{-6}

对于 A_1 , 经过 4 轮迭代后得到按模最小特征值为 3.28794×10^{-6} . 对应特征向量为 $(0.490426, -1, 0.65975, -0.152097, 0.00804664)^T$

\overline{k}	$Y^{(k)}$					
0	1	1	1	1		
1	0	1	0	0.5		
2	-0.111111	1	-0.422222	0.622222		
3	-0.115543	1	-0.425034	0.624484		
4	-0.115725	1	-0.425687	0.624769		
5	-0.115732	1	-0.425694	0.624774		
6	-0.115732	1	-0.425695	0.624775		

\overline{k}		λ			
0	0	2	0	1	0.5
1	-0.625	5.625	-2.375	3.5	0.177778
2	-0.933333	8.07778	-3.43333	5.04444	0.123796
3	-0.93621	8.08992	-3.44378	5.05433	0.123611
4	-0.936712	8.09382	-3.44549	5.05681	0.123551
5	-0.936719	8.09386	-3.44551	5.05684	0.123551
6	-0.93672	8.09386	-3.44552	5.05684	0.12355

对于 A_2 ,经过 7 轮迭代后得到按模最小特征值为 0.12355. 对应特征向量为 $(-0.115732, 1, -0.425695, 0.624775)^T$

2 结果分析

2.1 收敛速度

对于两个矩阵,迭代次数分别为 4 和 7,另外从按模最小特征值来看, A_1 远小于 A_2 ,因此在这个例子中有"按模最小特征值越接近于 0,收敛越快".

2.2 数值问题

实验过程中并未出现数值问题. 另外可以注意到,在对 A_1 进行处理时,作规范化处理时如果除以向量的无穷范数,分母数值很小,从而增大误差. 而这个无穷范数实际上是上一轮迭代得到的特征值的倒数,因此可以利用 $Y^{(k)} = X^{(k)} \lambda^{(k-1)}$ 进行迭代.