Instructions to setting up the

Hallsensor

Project

Easy Scalable, Low-Cost Open Source Magnetic Field Detection System for Evaluating Low-Field MRI Magnets using a Motion Tracked Robot

Pavel Povolni

October 2024

Content

1	Preamble		3
2	Hardwa	re	3
	2.1 As	sembly PCB's	3
	2.1.1	General	3
	2.1.2	Addressing IC's	3
	2.1.3	Connectors	3
	2.2 M	echanical Assembly	3
	2.2.1	Sensor Head	3
	2.2.2	Main CPU	3
3	Embed	ded Software	3
	3.1 C+	+ Code using Arduino IDE	3
	3.1.1	General	3
	3.1.2	Installation ESP32 Environment	3
	3.1.3	Flash	3
	3.1.4	Speed of I2C Transmission (check if adjustment needed)	3
4	Calibration		4
	4.1 So	ftware to calculate magnetic field	4
	4.1.1	Analytical Solution using Biot Savart	4
	4.1.2	FEM Simulation using free Software FEMM & Python	4
	4.2 Ca	libration Run	4
	4.2.1	SetUp	4
	4.2.2	Run Calibration Measurements	4
3	4.3 Ev	aluate Calibration & get Calibration Parameter	4

1 Preamble

This manual is still a work in progress and will be completed in the next few weeks. If you have any questions in the meantime, please feel free to ask

2 Hardware

- 2.1 Assembly PCB's
- 2.1.1 General
- 2.1.2 Addressing IC's
- 2.1.3 Connectors
- 2.2 Mechanical Assembly
- 2.2.1 Sensor Head
- 2.2.2 Main CPU
- 3 Embedded Software
- 3.1 C++ Code using Arduino IDE
- 3.1.1 General
- 3.1.2 Installation ESP32 Environment
- 3.1.3 Flash
- 3.1.4 Speed of I2C Transmission (check if adjustment needed)

4 Calibration

- 4.1 Software to calculate magnetic field
- 4.1.1 Analytical Solution using Biot Savart
- 4.1.1.1 *General*
- 4.1.1.2 calculate winding pattern of second layer
- 4.1.2 FEM Simulation using free Software FEMM & Python
- 4.2 Calibration Run
- 4.2.1 SetUp
- 4.2.2 Run Calibration Measurements
- 4.3 Evaluate Calibration & get Calibration Parameter