Detecting Phases and

Distinguishing Local and Non-Local Order using t-SNE and Monte Carlo Methods

Matthew Duschenes

Perimeter Scholar's International 2018

Supervisors: Dr. Roger Melko and Dr. Lauren Hayward Sierens

Objectives

Overview

Spin models and critical behaviour

- Monte Carlo simulations
- Dimensional reduction

- Numerical analysis with PCA and t-SNE
- Future work

Spin Models

- Local order:
 - Ising model: Continuous transition

• q-state Pott's model: First order transition for q > 4.

$$H_{Potts} = -J \sum_{\langle ij \rangle} \delta_{s_i, s_j} \qquad s_i \in \{1, 2, \dots, q\}$$

- Non-local order:
 - \mathbb{Z}_2 lattice gauge theory: Topological transition

Monte Carlo Simulations

• Process of N steps to estimate observables O:

$$\langle \mathcal{O} \rangle \approx \bar{\mathcal{O}} = \frac{1}{N} \sum_{t} \mathcal{O}_{t}$$

- State transitions $\nu \to \eta$ must satisfy:
 - Ergodicity
 - Markov Process
 - Equilibrate

q=4 Pott's model Wolff cluster updates at $T < T_{\rm C}$.

Pott's Model Sampling

Dimensional Reduction

• From higher N dimensional datasets, lower \widetilde{N} dimensional representations are learned through training.

• Patterns and symmetries in datasets are recognized and taken advantage of during optimization (Carrasquilla and Melko, 2017).

Principal Component Analysis (PCA)

• Linear transformation to matrix similar to diagonalized eigenvalues λ_n .

• First $\widetilde{N} \ll N$ components are analysed.

• Explained variance ratio $r_n = \frac{\lambda_n}{\sum_m \lambda_m}$ depicts relative magnitude of new components (Wang, 2016).

Variance Ratio of Principal Components

t-distributed Stochastic Neighbour Embedding (t-SNE)

- Non-linear transformation (van der Maaten and Hinton, 2008).
- Higher N dimensional $x_i \mapsto \text{Lower } \widetilde{N}$ dimensional y_i .

$$p_{ij} \sim e^{\frac{-|x_i - x_j|^2}{\sigma_i^2}} \mapsto q_{ij} \sim \frac{1}{1 + |y_i - y_j|^2}$$

• Minimization of KL divergence aims to preserve distances:

$$KL(p,q) \equiv \sum_{i,j} p_{ij} \log \frac{q_{ij}}{p_{ij}}$$

PCA of Pott's model

t-SNE (with PCA) of Pott's model

t-SNE (with PCA) of Ising model

t-SNE (without PCA) of Ising model

t-SNE (without PCA) of Ising model

PCA and t-SNE (with PCA) of \mathbb{Z}_2 Gauge Theory

t-SNE (without PCA) of \mathbb{Z}_2 Gauge Theory

Learning of Features versus Interpretability

- PCA and t-SNE are capable of distinguishing phases in:
 - Local systems with first-order and continuous transitions.

- t-SNE is further capable of identifying phases in:
 - Non-local systems with topological transitions.
- Trade-off between ability of methods to distinguish features, and ease of interpretation of such features.

Future Work

- Physical features being learned during training:
 - PCA Order parameter (Wang, 2016).

• Coexistence of phases at first order transitions (Landau and Binder, 2009).

- Local minima effects
- Sampling effects
- Training and optimization procedures

