Алгебра Страница 2

1 Лекция 1.04

Определение 1. Множество с бинарной операцией \circ — множество M с заданным отображением $M \times M \to M$, такое что $(a,b) \to a \circ b$.

Определение 2. (M, \circ) называется полугруппой, если операция ассоциативна, то есть $(a \circ b) \circ c = a \circ (b \circ c)$.

Полугруппа обозначается как (S, \circ) .

Определение 3. Полугруппа (S, \circ) называется моноидом, если в ней существует нейтральный элемент $e \ (e \in S)$, то есть такой, что $\forall s \in S : e \circ s = s \circ e = s$.

Пример. $(\mathbb{N}, +)$ — не моноид, $(\mathbb{Z}_{>0}, +)$ — моноид.

Лемма 1. Нейтральный элемент единствен.

Доказательство. Пусть их хотя бы 2. Обозначим их за e_1 и e_2 соответственно. Тогда:

$$e_1 \circ e_2 = e_1 = e_2$$

Определение 4. Моноид (S, \circ) называется группой, если все его элементы обратимы, то есть $\forall a \in S \exists b \in S : a \circ b = b \circ a = e$. Тогда говорят, что b обратен a. Обозначается как $b = a^{-1}$.

Лемма 2. Обратный элемент, если он существует, единственен.

Определение 5. Группа (G, \circ) называется коммутативной (или абелевой), если $\forall a, b \in G : a \circ b = b \circ a$.

Обозначения

- Произвольные группы (мультипликативные) обозначаем как (G, \circ) .
- Коммутативные группы обозначаем как (A, +).

Определение 6. Порядок группы G — число элементов в ней. Обозначается как |G|.

Примеры групп

- 1. Числовые аддитивные: $(\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +), (\mathbb{C}, +), (\mathbb{Z}_n, +).$
- 2. Числовые мультипликативные: $(\mathbb{Q}\setminus\{0\},\times)$, $(\mathbb{R}\setminus\{0\},\times)$, $(\mathbb{C}\setminus\{0\},\times)$, $(\mathbb{Z}_p\setminus\{0\},\times)$, (\mathbb{Z}_n^*,\times) .
- 3. Группы матриц (по умножению):
 - (a) $GL_n(\mathbb{R}) = \{ A \in M_n(\mathbb{R}) \mid \det A \neq 0 \}$
 - (b) $SL_n(\mathbb{R}) = \{ A \in M_n(\mathbb{R}) \mid \det A = 1 \}$
- 4. Группы подстановок S_n . Также есть группа четных перестановок $A_n = \{ \sigma \in S_n \mid \sigma \text{ четна} \}$. Нетрудно видеть, что $|A_n| = \frac{n!}{2}$. A_n также называют знакопеременной.

Упражнение. S_n – коммутативна ⇔ $n \le 2$.

Упражнение. A_n – коммутативна ⇔ $n \le 3$.

Определение 7. Подмножество $H \subseteq G$, где G — группа, называется подгруппой, если $H \neq \emptyset$ и $\forall a, b \in H$: $ab^{-1} \in H$.

П

Алгебра Страница 3

Нетрудно видеть, что это определение эквивалентно:

- 1. $e \in H$
- 2. $\forall a, b \in H : ab \in H$
- 3. $\forall a \in H : a^{-1} \in H$

В любой группе есть 2 несобственные подгруппы: $H_1 = \{e\}, H_2 = G$.

Пример. $G = (\mathbb{Z}, +), H = 2\mathbb{Z}.$

Утверждение 1. Всякая подгруппа в $(\mathbb{Z}, +)$ имеет вид $k\mathbb{Z}$, где $k \in \mathbb{Z}_+$.

Доказательство. Ясно, что $k\mathbb{Z}$ — подгруппа. Пусть H — подгруппа. Если H = {0}, то k = 0. Иначе пусть k — наименьшее натуральное число в H. Тогда $k\mathbb{Z} \subseteq H$. Теперь в обратную сторону, возьмем $a \in H$. Представим a = kq + r, где $q \in \mathbb{Z}$, $0 \le r \le k - 1$. Тогда $r = a - kq \in H$, но так как k — минимальное натуральное, r = 0.

Определение 8. Пусть G — группа и $g \in G$. Тогда циклическая подгруппа в G, порожденная элементом g, это подгруппа $H = \langle g \rangle = \{g^m \mid m \in \mathbb{Z}\}$. Элемент g называется порождающим (или образующим).

Пример. $2\mathbb{Z} \subseteq \mathbb{Z}$, причем $2\mathbb{Z} = \langle 2 \rangle = \langle -2 \rangle$.

Определение 9. Пусть G — группа $u g \in G$. Тогда порядком элемента g называется наименьшее натуральное s, такое что $g^s = e$. Если такого s не существует, то порядок равен ∞ . Обозначается как $\operatorname{ord}(g)$.

Утверждение 2. Пусть $G - \operatorname{группa} u g \in G$. Тогда $\operatorname{ord}(g) = |\langle g \rangle|$.

Доказательство. Заметим, что $g^k = g^s$ тогда и только тогда, когда $g^{k-s} = e$. Поэтому если $\operatorname{ord}(g) = \infty$, то все g^m ($m \in \mathbb{Z}$) попарно различны. Следовательно $\operatorname{ord}(g) = |\langle g \rangle| = \infty$.

Теперь рассмотрим случай, когда $\operatorname{ord}(g) = m$. Тогда элементы g^0, g^1, \dots, g^{m-1} попарно различны. С другой стороны, $g^n = g^{mq+r} = (g^m)^q \cdot g^r = 1^q \cdot g^r = g^r$. Поэтому $|\langle g \rangle| = |\{g^0, g^1, \dots, g^{m-1}\}| = m = \operatorname{ord}(g)$, что и требовалось.

Определение 10. Группа G называется циклической, если существует такой $g \in G$, что $G = \langle g \rangle$.