$$I(J^P) = \frac{1}{2}(1^+)$$

K₁(1400) MASS

VALUE (MeV)	<u>EVTS</u>	DOCUMENT ID		TECN	CHG	COMMENT
1403± 7 OUR	AVERAC	SE				
$1463 \pm 64 \pm 68$	7k	ASNER	00 B	CLEO	\pm	$ au^- ightarrow K^- \pi^+ \pi^- u_{ au}$
$1373 \pm 14 \pm 18$		$^{ m 1}$ ASTON	87	LASS	0	$11 K^- p \rightarrow \overline{K}{}^0 \pi^+ \pi^- n$
1392 ± 18		BAUBILLIER	82B	HBC	0	8.25 $K^{-}p \rightarrow$
						$\kappa_S^0\pi^+\pi^-n$
1410 ± 25		DAUM	81 C	CNTR	_	$63 K^{-} p \rightarrow K^{-} 2\pi p$
1415 ± 15		ETKIN	80	MPS	0	$6 K^- p \rightarrow \overline{K}^0 \pi^+ \pi^- n$
1404 ± 10		² CARNEGIE	77	ASPK	\pm	$13 K^{\pm} p \rightarrow (K \pi \pi)^{\pm} p$
ullet $ullet$ We do not	use the f	ollowing data for	avera	ges, fits,	limits,	etc. • • •
1418± 8	25k	³ ABLIKIM	06 C	BES2		J/ψ $ ightarrow$
						K^* (892) ⁰ $K^+\pi^-$
~ 1350		⁴ TORNQVIST	82 B	RVUE		,
~ 1400		VERGEEST	79	HBC	_	$4.2 K^- p \rightarrow (\overline{K}\pi\pi)^- p$
\sim 1400		BRANDENB	76	ASPK	\pm	$13 K^{\pm} p \rightarrow (K \pi \pi)^{\pm} p$
1420		DAVIS	72	HBC	+	12 $K^{+}p$
1368 ± 18		FIRESTONE	72 B	DBC	+	12 $K^+ d$
_		•				

K₁(1400) WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
174± 13 O	UR AVERA	AGE Error include	s scal	e factor	of 1.6.	See the ideogram below.
$300^{+370}_{-110}\pm 3$	140 7k	ASNER	00 B	CLEO	\pm	$ au^- ightarrow \ K^- \pi^+ \pi^- u_{ au}$
$188\pm~54\pm$	60	⁵ ASTON	87	LASS	0	11 $K^- p \rightarrow \overline{K}^0 \pi^+ \pi^- n$
276 ± 65		BAUBILLIER	82 B	HBC	0	$8.25 K^- p \rightarrow$
						$\kappa_S^0\pi^+\pi^-$ n
$195\pm\ 25$		DAUM	81 C	CNTR	_	$63 K^{-} p \rightarrow K^{-} 2\pi p$
$180\pm~10$		ETKIN	80	MPS		$6 K^- p \rightarrow \overline{K}{}^0 \pi^+ \pi^- n$
142 ± 16		⁶ CARNEGIE	77	ASPK	\pm	13 $K^{\pm} p \rightarrow (K \pi \pi)^{\pm} p$
• • • We do n	ot use the	following data for	avera	ges, fits,	limits,	etc. • • •
152 ± 16	25k	⁷ ABLIKIM	06 C	BES2		$J/\psi ightarrow$
						\overline{K}^* (892) 0 K^+ π^-
~ 200		VERGEEST	79	HBC	_	4.2 $K^- p \rightarrow (\overline{K}\pi\pi)^- p$
\sim 160		BRANDENB	. 76	ASPK	\pm	13 $K^{\pm} p \rightarrow (K \pi \pi)^{\pm} p$
80		DAVIS	72	HBC	+	12 $K^{+}p$
$241\pm~30$		FIRESTONE	72 B	DBC	+	12 $K^+ d$

Created: 5/30/2017 17:21

 $^{^1}$ From partial-wave analysis of $K^0\,\pi^+\,\pi^-$ system. 2 From a model-dependent fit with Gaussian background to BRANDENBURG 76 data. 3 Systematic errors not estimated. 4 From a unitarized quark-model calculation.

⁷ Systematic errors not estimated.

K₁(1400) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	$K^*(892)\pi$	(94 ±6)%
Γ_2	$K \rho$	(3.0±3.0) %
Γ_3	$K f_0(1370)$	(2.0 ± 2.0) %
Γ_4	$K \omega$	$(1.0\pm1.0)\%$
Γ_5	$K_0^*(1430)\pi$	not seen
Γ_6	γK^0	seen

K₁(1400) PARTIAL WIDTHS

$\Gamma(K^*(892)\pi)$						Γ_1
VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT	
117±10	CARNEGIE	77	ASPK	\pm	$13 K^{\pm} p \rightarrow (K \pi \pi)^{\pm} p$	
$\Gamma(K ho)$						Γ2
VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT	
2±1	CARNEGIE	77	ASPK	\pm	13 $K^{\pm} p \rightarrow (K \pi \pi)^{\pm} p$	

HTTP://PDG.LBL.GOV

Page 2

Created: 5/30/2017 17:21

 $^{^{5}\,\}mathrm{From}$ partial-wave analysis of $\mathrm{K}^{0}\,\pi^{+}\,\pi^{-}$ system.

 $^{^6\}mathrm{From}$ a model-dependent fit with Gaussian background to BRANDENBURG 76 data.

$\Gamma(K\omega)$				Γ4
VALUE (MeV)	-			CHG COMMENT
23±12	CARNEGIE	77	ASPK	$\pm 13 K^{\pm} p \rightarrow (K \pi \pi)^{\pm} p$
$\Gamma(\gamma K^0)$				Γ ₆
VALUE (keV)	<u>D</u>	OCUMEI	VT ID	TECN COMMENT
280.8±23.2±40.4	4 A	LAVI-H	IARATI0	$02B KTEV K + A \to K^* + A$
	K ₁ (1400) I	BRAN	CHING	RATIOS
$\Gamma(K^*(892)\pi)/$				Γ ₁ /Γ
VALUE				
0.94 ± 0.06	⁸ DAUM	81 C	CNTR	$63 K^- p \rightarrow K^- 2\pi p$
$\Gamma(K\rho)/\Gamma_{total}$				Γ ₂ /Γ
VALUE				
0.03 ± 0.03	O DAUM	810	CNIR	$63 K^- p \rightarrow K^- 2\pi p$
$\Gamma(Kf_0(1370))/$	$\Gamma_{ m total}$			Г ₃ /Г
<u>VALUE</u>)	TECN	COMMENT
0.02 ± 0.02	⁸ DAUM	81 C	CNTR	$63~K^-p\rightarrow~K^-2\pi p$
$\Gamma(K\omega)/\Gamma_{\text{total}}$				Γ ₄ /Γ
VALUE	DOCUMENT IL)	TECN	-
0.01 ± 0.01	⁸ DAUM	81 C	CNTR	$63 K^- p \rightarrow K^- 2\pi p$
F/W*/1420_\	/⊏			F /F
$\Gamma(K_0^*(1430)\pi)$,	TECN	Γ ₅ /Γ
value not seen	DOCUMENT II.			$63 K^- p \rightarrow K^- 2\pi p$
not seen	DAOW	010	CIVITA	$03 R p \rightarrow R 2 R p$
=	RATIO FOR K_1			
VALUE	DOCUMENT IE			
0.04±0.01		81 C	CNTR	$63 K^- p \rightarrow K^- 2\pi p$
^o Average from	low and high t data.			
	K ₁ (140	00) RE	FEREN	NCES
	_,	•		
ABLIKIM 06C ALAVI-HARATI 02B ASNER 00B ASTON 87 BAUBILLIER 82B TORNQVIST 82B DAUM 81C ETKIN 80 VERGEEST 79 CARNEGIE 77	PL B633 681 PRL 89 072001 PR D62 072006 NP B292 693 NP B202 21 NP B203 268 NP B187 1 PR D22 42 NP B158 265 NP B127 509	A. Alav D.M. A D. Asto M. Bau N.A. To C. Dau A. Etki J.S.M. R.K. Ca	m <i>et al.</i> n <i>et al.</i> Vergeest <i>e</i> arnegie <i>et</i>	t al. (FNAL ŘTeV Collab.) (CLEO Collab.) (SLAC, NAGO, CINC, INUS) al. (BIRM, CERN, GLAS+) (HELS) (AMST, CERN, CRAC, MPIM+) (BNL, CUNY) JP et al. (NIJM, AMST, CERN+) al. (SLAC)
BRANDENB 76 DAVIS 72 FIRESTONE 72B	PRL 36 703 PR D5 2688 PR D5 505	P.J. Da	Brandenburg Ivis <i>et al.</i> Stone <i>et a</i>	`(LBL)

Created: 5/30/2017 17:21