Network modelling for high-dimensional data - II

Instructors:

Carel F.W. Peeters & Wessel N. van Wieringen

cf.peeters@vumc.nl &

w.vanwieringen@vumc.nl

Dept. Epidemiology and Biostatistics, VUmc & Dept. Mathematics, Vrije Universiteit Amsterdam Amsterdam, The Netherlands

Experiment

Aim + model

Unrolled:

VAR(1) model:

$$Y_{1,t+1} = + e_{1,t}$$

 $Y_{2,t+1} = a_{21} Y_{1,t} + e_{2,t}$
 $Y_{3,t+1} = a_{31} Y_{1,t} + a_{32} Y_{2,t} + e_{3,t}$

where:

$$Y_1 \leftrightarrow P53$$
; $Y_2 \leftrightarrow IGF1$; $Y_3 \leftrightarrow BBC3$

Curled up:

Model

VAR(1) model:

$$Y_{1,t+1} = + e_{1,t}$$

 $Y_{2,t+1} = a_{21} Y_{1,t} + e_{2,t}$
 $Y_{3,t+1} = a_{31} Y_{1,t} + a_{32} Y_{2,t} + e_{3,t}$

where:

$$Y_1 \leftrightarrow P53$$
; $Y_2 \leftrightarrow IGF1$; $Y_3 \leftrightarrow BBC3$

In matrix notation:

$$egin{array}{ll} \mathbf{Y}_t &= \mathbf{A}\mathbf{Y}_{t-1} + oldsymbol{arepsilon}_t \ & ext{with } oldsymbol{arepsilon}_t \sim \mathcal{N}(\mathbf{0}_{p imes 1}, oldsymbol{\Omega}_arepsilon^{-1}) \end{array}$$

A and ε: propagation of endo- and exogenous signal, resp.ε innovation of the system.

Parameters as heatmap:

Model

VAR(1) model:

Coherent feed forward loop:

exogenous pulse

Incoherent feed forward loop:

TSCG

Time Series Chain Graph (TSCG)

→ conditional (in)dependencies

Temporal CI:

$$Y_{j_1,t} \perp \!\!\! \perp Y_{j_2,t+1} \mid$$
 other $Y_{j,t}$'s

Example:

- → CI: BBC3 & P53 (no edge)
- → not CI: P53 & IGF1 (directed edge)

Contemporaneous CI:

$$Y_{j_1,t} \perp \!\!\! \perp Y_{j_2,t} \mid Y_{j,t-1}$$
's, other $Y_{j,t}$'s

Example:

- → CI: BBC3 & IGF1 (no edge)
- → not CI: P53 & IGF1 (undirected edge)

TSCG

TSCG harbors global conditional (in)dependencies:

$$Y_{j_1,*} \perp \!\!\! \perp Y_{j_2,*} \mid$$
 other $Y_{j,*}$'s

Wermuth condition for CI: unconnected nodes may not exert influence on the same node.

CI of nodes 1 and 4 forbids motifs:

Estimation

Augment log-likelihood with ridge penalty:

$$|\lambda_a||\mathbf{A}||_2^2 + |\lambda_\omega||\mathbf{\Omega}_\varepsilon||_2^2$$

Include targets.

Analytic estimators:

$$\operatorname{vec}[\hat{\mathbf{A}}(\lambda_a)] = [\lambda_a \mathbf{I}_{p^2 \times p^2} + \hat{\mathbf{\Gamma}}(0) \otimes \mathbf{\Omega}_{\varepsilon}]^{-1} \operatorname{vec}[\mathbf{\Omega}_{\varepsilon} \hat{\mathbf{\Gamma}}(-1)],$$

$$\hat{\mathbf{\Omega}}_{\varepsilon}(\lambda_{\omega}) = \left\{ \left[\lambda_{\omega} \mathbf{I}_{p \times p} + \frac{1}{4} \mathbf{S}_{\varepsilon}^{2} \right]^{1/2} + \frac{1}{2} \mathbf{S}_{\varepsilon} \right\}^{-1}.$$

Initiate and iterate.

Rewrite vec(A) for computational efficiency

Support

Known

Equality constraints for known absent temporal edges:

$$\max_{\{\mathbf{A}_c: \mathbf{C} \, \mathrm{VeC}(\mathbf{A}_c) = \mathbf{d}\}} \mathcal{L}^{\mathrm{pen}}(\mathbf{Y}; \mathbf{A}_c, \mathbf{\Omega}_{\varepsilon}; \lambda_a, \lambda_{\omega})$$

Analytic solution, efficiently evaluable.

Similarly for known absent contemporaneous edges.

Infer

Sparsification by:

- → empirical Bayes,
- → largest elements.

HPV-induced oncogenesis

- → P53 pathway,
- \rightarrow 64 genes,
- → fit + LOOCV,
- \rightarrow sparsify A and Ω ,
- → re-fit + LOOCV.

Biology

- → P53 knocked-out by HPV: zero connections
- → HPV-related IGF1/IGFBP3: many connections.

Diagnostics

- → LOOCV contourplot,
- → fit vs. data.

cross-validated log-likelihood

Histogram of the correlation fit vs. observation

Fit better than:

- → Previous observation,
- → Average other cell lines.

Node analysis

	$\deg^-(\mathbf{A})$	$\deg^+(\mathbf{A})$	between.	close.	eigen centr.
BBC3	0	17	17	0.00192	1.00000
CCND2	0	12	18	0.00187	0.68783
IGF1	1	14	0	0.00191	0.97635
IGFBP3	0	16	7	0.00190	0.87513
THBS1	0	11	0	0.00188	0.87717
CCNG1	6	0	0	0.00177	0.25154
CDKN2A	12	0	0	0.00181	0.49508
SERPINE1	8	4	0	0.00185	0.70869
SESN2	8	0	0	0.00180	0.26759
STEAP3	9	0	0	0.00179	0.36285

upper five ≈ 'regulators' lower five ≈ 'regulatees'

'regulator'

'regulatee'

Downstream

Mutual information.

A generalized 'correlation' measure, between a variate at some time and all variates at a future time point (given the past):

$$\mathcal{I}(\mathbf{Y}_{*,t+\tau}, Y_{j,t} \mid \mathbf{Y}_{*,t-1}) = \mathcal{H}(\mathbf{Y}_{*,t+\tau} \mid \mathbf{Y}_{*,t-1}) - \mathcal{H}(\mathbf{Y}_{*,t+\tau} \mid Y_{j,t}, \mathbf{Y}_{*,t-1})$$

where:

$$\mathcal{H}(\mathbf{Y}_{*,t+\tau} \mid \mathbf{Y}_{*,t-1}) = \log(|\mathbb{V}(\mathbf{Y}_{*,t+\tau} \mid \mathbf{Y}_{*,t-1})|)$$

```
E.g.:

'regulator' (deg^{+}=17):

\rightarrow I(all_{t+1}, BBC3_{t} | ...) = 0.05605

'regulatee' (deg^{-}=12):

\rightarrow I(all_{t+1}, CDKN2A_{t} | ...) = 0.00000
```

Downstream

Impulse response.

Assess the change in variates at future time points due to a change in a variate at the current time:

$$\frac{\partial \mathbf{Y}_{*,t+\tau}}{\partial \boldsymbol{\varepsilon}_{*,t}} = \mathbf{A}^{\tau}$$

Facilitates prediction of knock-out effect.

E.g.:

- \rightarrow 'regulator' (deg⁺=17): effect of BBC3_t on all_{t+1}= 0.01497
- \rightarrow 'regulatee' (deg=12): effect of CDKN2A_t on all_{t+1} = 0.00000

Downstream

Covariance decomposition.

Given TSCG, decompose conditional covariance in terms of paths:

-0.003168 = -0.002483 + -0.0006845

References + contributors

- → Viktorian Miok
- → Renske Steenbergen
- → Saskia Wilting

Based on:

Miok, V., Wilting, S.M., Van Wieringen, W.N. (2017), "Ridge estimation of the VAR(1) model and its timeseries chain graph model from multivariate timecourse omics data", Biometrical Journal, 59(1), 172-191.

This material is provided under the Creative Commons Attribution/Share-Alike/Non-Commercial License.

See http://www.creativecommons.org for details.

Slides by: Wessel N. van Wieringen