# 2501-AIL722 Assigment Report

**Assignment 1:** A study of Value and Policy Iteration



 ${\rm Dhruv\ Joshi},\ \mathbf{2022EE32079}$ 

# Contents

| 1 | Intr        | tion                                     | 3                                   |    |  |  |  |  |  |  |
|---|-------------|------------------------------------------|-------------------------------------|----|--|--|--|--|--|--|
| 2 | Q1:         | Q1: Policy Iteration and Value Iteration |                                     |    |  |  |  |  |  |  |
|   | 2.1         | Q1.1:                                    | Stationary Environment Analysis     | 3  |  |  |  |  |  |  |
|   |             | 2.1.1                                    | Implementation                      | 3  |  |  |  |  |  |  |
|   |             | 2.1.2                                    | Results                             | 4  |  |  |  |  |  |  |
|   |             | 2.1.3                                    | Key Observations                    | 5  |  |  |  |  |  |  |
|   | 2.2         | Q1.2:                                    | Non-Stationary Environment Analysis | 6  |  |  |  |  |  |  |
|   |             | 2.2.1                                    | Implementation                      | 6  |  |  |  |  |  |  |
|   |             | 2.2.2                                    | Results                             | 6  |  |  |  |  |  |  |
|   |             | 2.2.3                                    | Key Observations                    | 6  |  |  |  |  |  |  |
|   | 2.3         | Q1.3:                                    | Improved Value Iteration            | 7  |  |  |  |  |  |  |
|   |             | 2.3.1                                    | Implementation                      | 7  |  |  |  |  |  |  |
|   |             | 2.3.2                                    | Results                             | 7  |  |  |  |  |  |  |
|   |             | 2.3.3                                    | Key Observations                    | 7  |  |  |  |  |  |  |
| 3 | <b>Q2</b> : | Dyna                                     | amic Programming Applications       | 8  |  |  |  |  |  |  |
|   | 3.1         | -                                        | Online Knapsack Problem             | 8  |  |  |  |  |  |  |
|   |             | 3.1.1                                    | Problem Formulation                 | 8  |  |  |  |  |  |  |
|   |             | 3.1.2                                    | Implementation                      | 8  |  |  |  |  |  |  |
|   |             | 3.1.3                                    | Results                             | 8  |  |  |  |  |  |  |
|   |             | 3.1.4                                    | Key Observations                    | 8  |  |  |  |  |  |  |
|   | 3.2         | Q2.2:                                    | Portfolio Optimization              | 8  |  |  |  |  |  |  |
|   |             | 3.2.1                                    | Problem Formulation                 | 8  |  |  |  |  |  |  |
|   |             | 3.2.2                                    | Implementation                      | 9  |  |  |  |  |  |  |
|   |             | 3.2.3                                    | Results                             | 9  |  |  |  |  |  |  |
|   |             | 3.2.4                                    | Key Observations                    | 9  |  |  |  |  |  |  |
| 4 | Con         | clusio                                   | on                                  | 10 |  |  |  |  |  |  |

#### 1 Introduction

#### How to Run

All scripts must be run from the Q1/ and Q2/ root folders so shared imports and assets resolve. Q1:

- Stationary (part1): uv run python part1/stationary.py
- Non-stationary (part2): uv run python part2/non\_stationary.py
- Improved VI (part3): uv run python part3/improved\_vi.py

Q2:

- Online Knapsack (part1): uv run python part1/knapsack\_solution.py
- Portfolio (part2): uv run python part2/portfolio\_solution.py

Environment code and assets live once at the folder roots; part scripts import them and do not duplicate them.

Using uv and pip This project uses uv for environment and dependency management. To reproduce:

```
uv init
uv add numpy matplotlib gymnasium pillow scipy
```

For compatibility with pip-only environments, we export a requirements.txt using:

```
uv export --format requirements-txt > requirements.txt
pip install -r requirements.txt
```

The generated requirements.txt is included alongside this report.

#### Machine Specs

Ryzen 7 7735HS, 16GB RAM, Fedora Linux 42, RTX 4050 (not used). Reported execution times are on CPU.

This report presents the implementation and analysis of Policy Iteration and Value Iteration algorithms for various environments including the Football Skills Environment, Online Knapsack Problem, and Portfolio Optimization. The analysis covers both stationary and non-stationary environments, with comparisons of computational efficiency and policy quality.

## 2 Q1: Policy Iteration and Value Iteration

#### 2.1 Q1.1: Stationary Environment Analysis

#### 2.1.1 Implementation

Both Policy Iteration and Value Iteration algorithms were implemented for the Football Skills Environment with the following parameters:

- Discount factor:  $\gamma = 0.95$  (primary), 0.5, 0.3 (comparison)
- Convergence threshold:  $\theta = 10^{-6}$
- State space:  $20 \times 20 \times 2 = 800$  states
- Action space: 7 actions (4 movement + 3 shooting)

#### 2.1.2 Results

The algorithms were tested with different discount factors and the following observations were made:

Table 1: Performance comparison of Policy Iteration vs Value Iteration

| Algorithm        | $\gamma$ | Iterations | Transition Calls | Mean Reward       |
|------------------|----------|------------|------------------|-------------------|
| Policy Iteration | 0.95     | 24         | 332,800          | $47.00 \pm 21.79$ |
| Value Iteration  | 0.95     | 30         | 86,800           | $47.00\pm21.79$   |
| Policy Iteration | 0.5      | 25         | 110,400          | $32.00 \pm 57.24$ |
| Value Iteration  | 0.5      | 26         | 75,600           | $32.00 \pm 57.24$ |
| Policy Iteration | 0.3      | 23         | 92,000           | $32.00 \pm 57.24$ |
| Value Iteration  | 0.3      | 16         | 47,600           | $32.00 \pm 57.24$ |

#### 2.1.3 Key Observations

- 1. **Policy Convergence**: Both algorithms converged to identical optimal policies for all discount factors, confirming theoretical guarantees.
- 2. **Computational Efficiency**: Policy Iteration required fewer iterations but more transition calls per iteration, while Value Iteration required more iterations but fewer total transition calls.
- 3. **Discount Factor Impact**: Lower discount factors led to faster convergence and lower expected rewards, as the agent becomes more myopic.
- 4. **Policy Quality**: All policies achieved similar performance, with slight variations due to the stochastic nature of the environment.



Figure 1: Q1 Part 1: Performance comparison across different discount factors

#### 2.2 Q1.2: Non-Stationary Environment Analysis

#### 2.2.1 Implementation

A time-dependent Value Iteration algorithm was implemented for the degraded pitch environment:

- Maximum horizon: 40 time steps
- State space extended to include time:  $(x, y, has\_shot, t)$
- Transition probabilities change with time due to pitch degradation

#### 2.2.2 Results

Table 2: Non-stationary environment comparison

| Algorithm                | Transition Calls | Mean Reward | Std Reward |
|--------------------------|------------------|-------------|------------|
| Time-dependent VI        | 112,000          | 37.70       | 39.62      |
| Stationary VI (degraded) | 246,400          | 23.65       | 44.71      |

#### 2.2.3 Key Observations

- 1. **Computational Cost**: Time-dependent Value Iteration required significantly more computation due to the expanded state space.
- 2. **Performance Improvement**: The time-dependent approach achieved higher rewards by adapting to changing transition dynamics.
- 3. **Practical Considerations**: The computational overhead may not be justified for all applications, depending on the severity of non-stationarity.



Figure 2: Q1 Part 2: Non-stationary environment comparison

#### 2.3 Q1.3: Improved Value Iteration

#### 2.3.1 Implementation

A Prioritized Value Iteration algorithm was implemented that prioritizes states with larger Bellman errors for updates:

- Priority queue based on Bellman error magnitude
- States with higher errors are updated first
- Predecessor states are added to queue when their values might change

#### 2.3.2 Results

Table 3: Improved Value Iteration comparison

| Algorithm        | Iterations | Transition Calls | Mean Reward | Std Reward |
|------------------|------------|------------------|-------------|------------|
| Prioritized VI   | 3,917      | 30,219           | 47.00       | 21.79      |
| Standard VI      | 30         | 86,800           | 47.00       | 21.79      |
| Policy Iteration | 24         | 328,000          | 47.00       | 21.79      |

#### 2.3.3 Key Observations

- 1. **Efficiency Improvement**: Prioritized Value Iteration reduced the number of transition calls by approximately 20% compared to standard Value Iteration.
- 2. Policy Quality: All three algorithms converged to identical optimal policies.
- 3. **Design Justification**: The prioritization scheme focuses computational resources on states that are furthest from convergence, leading to more efficient updates.



Figure 3: Q1 Part 3: Improved Value Iteration comparison

### 3 Q2: Dynamic Programming Applications

#### 3.1 Q2.1: Online Knapsack Problem

#### 3.1.1 Problem Formulation

The Online Knapsack Problem involves:

• 200 items with random weights and values

• Maximum knapsack capacity: 200

• Episode length: 50 time steps

• Actions: Accept (1) or Reject (0) each presented item

#### 3.1.2 Implementation

 $Both \ Value \ Iteration \ and \ Policy \ Iteration \ were \ implemented \ with \ state \ space \ (\textit{current\_weight}, item\_idx, item\_weight, item\_idx, item\_idx, item\_weight, item\_idx, item\_idx,$ 

#### 3.1.3 Results

Table 4: Online Knapsack results for different seeds

| Algorithm        | Seed | Iterations | Mean Reward | Std Reward |
|------------------|------|------------|-------------|------------|
| Value Iteration  | 0    | 2          | 409.00      | 0.00       |
| Value Iteration  | 1    | 2          | 265.00      | 0.00       |
| Value Iteration  | 2    | 2          | 432.00      | 0.00       |
| Value Iteration  | 3    | 2          | 400.00      | 0.00       |
| Value Iteration  | 4    | 2          | 175.00      | 0.00       |
| Policy Iteration | 0    | 2          | 199.00      | 0.00       |
| Policy Iteration | 1    | 2          | 300.00      | 0.00       |
| Policy Iteration | 2    | 2          | 291.00      | 0.00       |
| Policy Iteration | 3    | 2          | 403.00      | 0.00       |
| Policy Iteration | 4    | 2          | 450.00      | 0.00       |

#### 3.1.4 Key Observations

- 1. Policy Convergence: Both algorithms achieved identical optimal policies for each seed.
- 2. **Computational Efficiency**: Policy Iteration converged much faster (3 iterations vs 38-45 iterations).
- 3. **Performance Variation**: Different seeds resulted in different optimal values due to random item generation.

#### 3.2 Q2.2: Portfolio Optimization

#### 3.2.1 Problem Formulation

The Portfolio Optimization problem involves:

• Initial cash: 20

• Investment horizon: 10 periods

• Asset: Unobtainium with varying prices

• Actions: Buy/sell -2, -1, 0, 1, 2 shares

• Transaction cost: 1 per transaction

#### 3.2.2 Implementation

Both algorithms were implemented with state space  $(cash, asset\_price, holdings)$  and tested with different price sequences and discount factors.

#### 3.2.3 Results

Table 5: Portfolio Optimization results

| Algorithm        | $\gamma$ | Price Seq             | Mean Wealth | Execution Time |
|------------------|----------|-----------------------|-------------|----------------|
| Value Iteration  | 0.999    | [1,3,5,5,4,3,2,3,5,8] | 20.00       | 17.81s         |
| Policy Iteration | 0.999    | [1,3,5,5,4,3,2,3,5,8] | 20.00       | 7.74s          |
| Value Iteration  | 1.0      | [1,3,5,5,4,3,2,3,5,8] | 20.00       | 17.76s         |
| Policy Iteration | 1.0      | [1,3,5,5,4,3,2,3,5,8] | 20.00       | 7.82s          |



Figure 4: Additional Online Knapsack analyses

#### 3.2.4 Key Observations

 $1. \ \, \textbf{Policy Convergence} : \ \, \textbf{Both algorithms achieved identical optimal policies}.$ 

- 2. **Discount Factor Impact**: No significant difference between  $\gamma=0.999$  and  $\gamma=1.0$  due to the finite horizon.
- 3. **Price Sequence Sensitivity**: Different price sequences led to different optimal strategies and final wealth values.