

ASIGNATURA FÍSICA GENERAL

Profesor: Luis Bustamante Donayre

Agosto 2024 Sesión 02

OBJETIVOS

✓ Al finalizar el cadete estará en facultad de comprender las operaciones con vectores y la composición de fuerzas concurrentes.

CONTENIDO

- ✓ OPERACIONES CON VECTORES. MAGNITUD DE UN VECTOR.
- ✓ VECTOR FUERZA, CONCEPTO. COMPOSICIÓN DE FUERZAS CONCURRENTES.

PRIMERA PARTE

Operaciones con vectores. Forma binómica de un vector. Magnitud.

Situación motivadora

Jorge usa una llave inglesa para aflojar una tuerca. La llave tiene 25 cm de longitud y él ejerce una fuerza de 17 N en el extremo del mango formando un ángulo de 37° con éste.

1. ¿Cómo descomponemos la fuerza de 17 N.

2. ¿Cuál de las componentes haría **rotar** la llave?

OPERACIONES CON VECTORES

Tenemos dos vectores \vec{u} y \vec{v} expresados como $\vec{u} = (u_x; u_y)$ y $\vec{v} = (v_x; v_y)$.

Suma de vectores:

La suma de los vectores \vec{u} y \vec{v} se calcula como $\vec{u} + \vec{v} = (u_x + v_x; u_y + v_y)$.

Ejemplo 1:

Para los vectores $\vec{u}=(2;3)$ y $\vec{v}=(-5;4)$, hallemos $\vec{u}+\vec{v}$.

$$\vec{u} + \vec{v} = (2;3) + (-5;4)$$

$$\vec{u} + \vec{v} = (2 - 5; 3 + 4)$$
 \longrightarrow $\vec{u} + \vec{v} = (-3; 7)$

Diferencia de vectores:

La diferencia de los vectores \vec{u} y \vec{v} se calcula como $\vec{u} - \vec{v} = (u_x - v_x; u_y - v_y)$.

Ejemplo 2:

Para los vectores $\vec{u}=(8;5)$ y $\vec{v}=(3;2)$, hallemos $\vec{u}-\vec{v}$.

$$\vec{u} - \vec{v} = (8; 5) - (3; 2)$$

$$\vec{u} - \vec{v} = (8 - 3; 5 - 2)$$
 \longrightarrow $\vec{u} - \vec{v} = (5; 3)$

Producto de un número real y un vector:

El producto del número real r y el vector \vec{v} se calcula como $r\vec{v} = (r v_x; r v_y)$.

Ejemplo 3:

Para r = 7 y $\vec{v} = (3; 5)$, hallemos $r\vec{v}$.

$$r\vec{v} = 7(3; 5) = (7 \cdot 3; 7 \cdot 5)$$

$$r\vec{v} = (21; 35)$$

Operaciones combinadas de vectores

Ejemplo 4:

Para $\vec{u} = (4; 7)$ y $\vec{v} = (-2; 3)$, hallar $2\vec{u} + 5\vec{v}$.

$$2\vec{u} + 5\vec{v} = 2(4;7) + 5(-2;3)$$

$$2\vec{u} + 5\vec{v} = (8; 14) + (-10; 15)$$

$$2\overrightarrow{u} + 5\overrightarrow{v} = (-2; 29)$$

Representación gráfica de una suma de vectores

Gráficamente la suma de los vectores \vec{u} y \vec{v} se puede representar de la siguiente manera:

Actividad 1:

Para cada par de vectores, hallar la operación combinada correspondiente:

1.
$$\vec{u} = (6; 2) \ y \ \vec{v} = (4; 9)$$
 \longrightarrow $5\vec{u} + 7\vec{v}$

2.
$$\vec{u} = (-1; -3) \ y \ \vec{v} = (0; 8)$$
 \longrightarrow $3\vec{u} - 9\vec{v}$

3.
$$\vec{u} = (3; 4)$$
 y $\vec{v} = (-8; 6)$ \longrightarrow $4\vec{u} + 0.5\vec{v}$

Producto escalar:

El producto escalar de los vectores \vec{u} y \vec{v} que forman un ángulo θ se puede calcular de dos formas:

$$1. \ \vec{u} \cdot \vec{v} = u_x \cdot v_x + u_y \cdot v_y$$

2.
$$\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos\theta$$

Ejemplo 5:

1.
$$\vec{u} = (2; 4)$$
 $\vec{v} = (3; 5)$

$$\vec{u} \cdot \vec{v} = (2)(3) + (4)(5)$$

$$\vec{u} \cdot \vec{v} = 26$$

2.

$$\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos\theta$$

$$\vec{u} \cdot \vec{v} = (3)(5)\cos 37^{\circ}$$

$$\vec{u} \cdot \vec{v} = 12$$

Actividad 2:

Hallar los productos escalares de los siguientes vectores en cada caso:

1.
$$\vec{u} = (2;3)$$
 $\vec{v} = (6;7)$

4.
$$\vec{u} = (1;0)$$
 y $\vec{v} = (0;1)$

2.
$$\vec{u} = (3;4)$$
 \vec{y} $\vec{v} = (-8;6)$

5.
$$\|\vec{u}\| = 3$$
, $\|\vec{v}\| = 2$, $\theta = 60^{\circ}$

3.
$$\vec{u} = (5; 0)$$
 $\vec{v} = (9; 2)$

6.
$$\|\vec{u}\| = 6$$
, $\|\vec{v}\| = 7$, $\theta = 90^{\circ}$

Producto vectorial:

El producto vectorial de los vectores \vec{a} y \vec{b} que forman un ángulo θ es un vector en tercera dimensión perpendicular al plano formado por los vectores a y b y se calcula de la siguiente manera:

$$\vec{a} = (a_x; a_y)$$

$$\vec{b} = (b_x; b_y)$$

$$\vec{a} \times \vec{b} = (0; 0; a_x b_y - a_y b_x)$$

Ejemplo 6:

Hallamos el **producto vectorial** de los vectores: $\vec{a} = (2; 9)$, $\vec{b} = (5; 3)$

$$\vec{a} \times \vec{b} = (0; 0; (2)(3) - (9)(5))$$

$$\vec{a} \times \vec{b} = (0; 0; -39)$$

Actividad 3:

Hallar los productos vectoriales de los siguientes vectores en cada caso:

1.
$$\vec{u} = (3; 2) \ y \ \vec{v} = (4; 5)$$

3.
$$\vec{u} = (2; 1)$$
 $\vec{v} = (0; 4)$

2.
$$\vec{u} = (4; -3)$$
 $\vec{v} = (1; 6)$ 4. $\vec{u} = (1; 0)$ $\vec{v} = (0; 1)$

4.
$$\vec{u} = (1;0)$$
 $\vec{v} = (0;1)$

Forma binómica de un vector:

En el plano XY existen dos vectores unitarios rectangulares i, j, con los cuales podemos expresar un vector en forma binómica.

Tales vectores son $\vec{i} = (1; 0)$ y $\vec{j} = (0; 1)$.

Si tenemos: Para el vector $\vec{v} = (-4; 5)$, escribimos:

$$\vec{v} = (-4; 0) + (0; 5)$$

$$\vec{v} = -4(1; 0) + 5(0; 1)$$

$$\vec{v} = -4\vec{i} + 5\vec{j} \quad \text{(forma binómica del vector } \vec{v} \text{)}$$

En general,
$$\vec{v} = (x; y) = x\vec{i} + y\vec{j}$$

Actividad 4:

Expresar los siguientes vectores en la forma binómica:

1.
$$\vec{u} = (3;7)$$

4.
$$\vec{u} = (1; -1)$$

2.
$$\vec{u} = (2; -4)$$

5.
$$\vec{u} = (12; 40)$$

3.
$$\vec{u} = (-6; 9)$$

6.
$$\vec{u} = (10; 12)$$

Magnitud de un vector:

En el plano xy, la magnitud del vector $\vec{v} = v_x \vec{i} + v_y \vec{j}$ está definido por

$$\|\vec{v}\| = \sqrt{v_x^2 + v_y^2}$$

Ejemplo 7:

Para el vector $\vec{v} = -4\vec{\iota} + 3\vec{\jmath}$, tenemos que su magnitud se calcula como:

$$\|\vec{v}\| = \sqrt{(-4)^2 + 3^2} = 5$$

Actividad 5:

Encontrar las magnitudes de los siguientes vectores:

1.
$$\vec{v} = -9\vec{i} + 12\vec{j}$$
 3. $\vec{v} = \vec{i} + \vec{j}$

$$3. \ \vec{v} = \vec{\iota} + \vec{\jmath}$$

2.
$$\vec{v} = 15\vec{i} - 8\vec{j}$$

4.
$$\vec{v} = -2\vec{i} + 6\vec{j}$$

SEGUNDA PARTE

Fuerza. Composición y descomposición de fuerzas.

¿QUÉ ES LA FUERZA?

Una fuerza es la acción que un cuerpo ejerce sobre otro cuerpo en una dirección y sentido determinado.

Por ejemplo:

Al levantar pesas, al golpear una pelota con la cabeza o con el pie, al empujar algún objeto.

Vector fuerza:

Las fuerzas son magnitudes vectoriales y se representan mediante vectores. Las fuerzas, por lo tanto, se miden por su intensidad o módulo las cuales están medidas en Newton (N).

Composición de fuerzas concurrentes:

Un sistema de fuerzas $\overrightarrow{F_1}$, $\overrightarrow{F_2}$, $\overrightarrow{F_3}$ son concurrentes cuando sus líneas de acción convergen en un solo punto y la suma de dichas fuerzas (representadas en forma consecutiva) equivale a una fuerza resultante $\overrightarrow{F_R}$.

Cuenta la fuerza resultante es cero, entonces se dice que el objeto sobre el cual actúa dicha fuerza se encuentra en equilibrio.

$$\overrightarrow{F_1} + \overrightarrow{F_2} + \overrightarrow{F_3} = \overrightarrow{0}$$

Los vectores están en equilibrio.

Descomposición de una fuerza

Una fuerza en el plano se puede descomponer en dos fuerzas rectangulares llamadas **componentes**.

$$F_x = F \cos \alpha$$

$$F_{\nu} = F sen \alpha$$

Convención de signos en los ejes coordenados

Sistemas de fuerzas concurrentes

Un sistema de fuerzas concurrentes da como resultado una fuerza resultante equivalente.

Ejemplo 8: Hallar la fuerza resultante y módulo del siguiente sistema de fuerzas :

$$\|\vec{A}\| = 8 \text{ N} \qquad \|\vec{B}\| = 5 \text{ N} \qquad \|\vec{C}\| = 4 \text{N}$$

Solución: Se aplican las siguientes fórmulas, refiriendo todos los ángulos solo al eje X:

$$F_{x} = \sum_{i=1}^{n} F_{i} \cos \alpha_{i}$$
, $F_{y} = \sum_{i=1}^{n} F_{i} \sin \alpha_{i}$

$$F_x = 8\cos 30 - 5\cos 37 - 4\cos 45 = 0.1066$$

$$F_{v} = 8 sen30 + 5 sen37 - 4 sen45 = 4.1806$$

$$\vec{F} = 0.1066\vec{\imath} + 4.1806j$$

$$\|\vec{F}\| = \sqrt{0.1066^2 + 4.1806^2} = 4.1820 N$$

Actividad 6

Hallar la fuerza resultante y módulo del siguiente sistema de fuerzas :

$$\|\vec{A}\| = 8$$
, $\|\vec{B}\| = 5$ y $\|\vec{C}\| = 10$

Lecciones Aprendidas

✓ Operaciones con vectores y composición de fuerzas concurrentes.

Bibliografía

- ✓ Young, H. D., Freedman, R. A., Ford, A. L., Flores, F. V. A., & Rubio, P. A. (2009). Sears-Zemansky, Física universitaria, decimosegunda edición, volumen 1. Naucalpan de Juárez: Addison-Wesley.
- ✓ Bedford, A. & Fowler, W. (2008). Mecánica para la ingeniería: Estática. México D.F.: Pearson Educación.
- ✓ Tippens, P. (2007). Física, Conceptos y Aplicaciones. Séptima edición. Mac Graw Hill interamericana.
- ✓ Serway, R. & Jewet, J. (2009). Física para ciencias e ingeniería. Sétima edición internacional. Thompson editores.

