

概率统计课件之4

至讲教师 邓小艳

正态分布

§ 4-1 正态分布

§ 4-2 正态随机变量的线性组合

§ 4-3 中心极限定理

一、正态分布

1、定义

设连续型随机变量X的概率密度为:

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

其中 μ , σ (0 < σ < 1) 为常数,则称X服从参数为

 μ , σ^2 的正态分布(高斯分布).记作: $X \sim N(\mu, \sigma^2)$

2、性质

- ① 曲线关于 $x = \mu$ 对称.
- ② 当 $x = \mu$ 时取到最大值 $f(\mu) = \frac{1}{\sqrt{2\pi}\sigma}$.
- ③ 以x轴为渐近线.

二、标准正态分布

1、定义

设连续型随机变量的概率密度为:

$$\varphi(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

则称X服从标准正态分布.记为: $X \sim N(0,1)$

分布函数为:

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$

2、性质

- ① 曲线关于y轴对称.
- ② 当 x=0 时取到最大值 $\frac{1}{\sqrt{2\pi}}$.

(4)
$$\Phi(-x) = 1 - \Phi(x)$$

⑤
$$\Phi(0) = 0.5$$

3、 $\Phi(x)$ 函数分布表 标准正态分布表

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-r^2/2} dt$$

-87	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636		5 13 THE R. D. CO. L. S. C. L.	
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987				
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406			
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772			
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7703	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9278	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9430	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.2495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9648	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9700	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9762	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9874	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
8.5	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
0.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997		0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

$$\Phi(1.04) = 0.8508$$

$$\Phi(1.82) = 0.9656$$

4、标准正态分布的上 α 分位数(点)

定义: 设X~N(0,1), 若对 $\forall \alpha (0 < \alpha < 1)$ 有

$$P\{X > z_{\alpha}\} = \int_{z_{\alpha}}^{+\infty} \varphi(x) dx = \alpha$$

则称 Z_{α} 为标准正态分布的 上 α 分位数(点)。

注意:

$$(1)\Phi(z_{\alpha}) = P\{X \le z_{\alpha}\} = 1 - P\{X > z_{\alpha}\} = 1 - \alpha, \text{ 故对给定的}$$

 α , 由 $\Phi(x)$ 函数分布表,可求得 z_{α} ;

$$(2) \ \ z_{1-\alpha} = -z_{\alpha}$$

例: (1)若 α =0.05 , 求 z_{α}

解:
$$\Phi(z_{0.05}) = 1 - 0.05 = 0.95 = \Phi(1.645)$$

$$z_{0.05} = 1.645$$

(2)若 α =0.025,求 z_{α}

解:
$$\Phi(z_{0.025}) = 1 - 0.025 = 0.975 = \Phi(1.96)$$

$$\therefore z_{0.025} = 1.96$$

(3) 若 α =0.975,求 z_{α}

解:
$$z_{0.975} = -z_{0.025} = -1.96$$

三、正态分布与标准正态分布的关系

1、若 $X \sim N(\mu, \sigma^2)$,则

(2)
$$Y = \frac{X - \mu}{\sigma} \sim N(0.1)$$

证明: (1):
$$X \sim N(\mu, \sigma^2)$$
 : $f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

$$F_{Y}(y) = P\{Y \leq y\} = P\{aX + b \leq y\}$$

$$= \begin{cases} P\{X \leq \frac{y-b}{a}\} = F_X(\frac{y-b}{a}) & a > 0 \\ P\{X \geq \frac{y-b}{a}\} = 1 - F_X(\frac{y-b}{a}) & a < 0 \end{cases}$$

$$f_{Y}(y) = \begin{cases} f_{X}(\frac{y-b}{a}) \cdot \frac{1}{a} & a > 0 \\ -f_{X}(\frac{y-b}{a}) \cdot \frac{1}{a} & a < 0 \end{cases} = f_{X}(\frac{y-b}{a}) \cdot \frac{1}{|a|}$$

$$= \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(\frac{y-b}{a}-\mu)^2}{2\sigma^2}} \cdot \frac{1}{|a|} = \frac{1}{\sqrt{2\pi}|a|\sigma} e^{-\frac{[y-(a\mu+b)]^2}{2(|a|\sigma)^2}}$$

$$\therefore \mathbf{Y} \sim N((a\mu + b), a^2\sigma^2)$$

(2)
$$\diamondsuit a = \frac{1}{\sigma}$$
, $b = -\frac{\mu}{\sigma}$,则

💌 当前无法显示此图像。

$$\mathbb{P} \quad \frac{X - \mu}{\sigma} \sim N(0,1)$$

$$\frac{X - \mu}{\sigma} \sim N(0,1)$$

(1)
$$F(x) = P\{X \le x\} = P\{\frac{X - \mu}{\sigma} \le \frac{x - \mu}{\sigma}\} = \Phi\left(\frac{x - \mu}{\sigma}\right)$$

$$f(x) = F'(x) = \frac{1}{\sigma} \varphi \left(\frac{x - \mu}{\sigma} \right)$$

(2) 故对 ∀[a, b]有

$$P\{a \le X \le b\} = F(b) - F(a) = \Phi\left(\frac{b - \mu}{\sigma}\right) - \Phi\left(\frac{a - \mu}{\sigma}\right)$$

因此,由标准正态分布的分布函数即能求出任意正态 R.V.落入任意区间的概率.

3、概率的计算

(1)
$$X \sim N(0,1)$$
时, $P\{a < X \le b\} = \Phi(b) - \Phi(a)$

例1: 已知X~N(0,1), 求:

(1)
$$P\{X < 2.35\}$$
; (2) $P\{X < -1.24\}$; (3) $P\{X | < 1.54\}$

解: (1)
$$P{X < 2.35} = \Phi(2.35) = 0.9904$$

(2)
$$P{X < -1.24} = \Phi(-1.24) = 1 - \Phi(1.24) = 1 - 0.8975 = 0.1075$$

(3)
$$P\{|X| < 1.54\} = P\{-1.54 < X < 1.54\} = \Phi(1.54) - \Phi(-1.54)$$

= $2\Phi(1.54) - 1 = 2 \times 0.9382 - 1 = 0.8764$

(2) $X \sim N(\mu, \sigma^2)$ 时, $P\{a \leq X \leq b\} = \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)$

例2: 已知X~N(1.5,4), 求:

(1)
$$P\{X < 3.5\}$$
 (2) $P\{X > 2\}$

(2)
$$P\{X > 2\}$$

(3)
$$P\{X < -4\}$$
 (4) $P\{|X| < 3\}$

(4)
$$P\{|X| < 3\}$$

解: (1)
$$P{X < 3.5} = F(3.5) = \Phi\left(\frac{3.5 - 1.5}{2}\right) = \Phi(1) = 0.8413$$

(2)
$$P{X > 2} = 1 - F(2) = 1 - \Phi\left(\frac{2 - 1.5}{2}\right) = 1 - \Phi(0.25) = 0.4013$$

(3)
$$P{X < -4} = F(-4) = \Phi(\frac{-4-1.5}{2}) = \Phi(-2.75)$$

= $1 - \Phi(2.75) = 1 - 0.9970 = 0.003$

(4)
$$P\{|X| < 3\} = P\{-3 < X < 3\} = F(3) - F(-3)$$

$$=\Phi(\frac{3-1.5}{2})-\Phi(\frac{-3-1.5}{2})=\Phi(0.75)-\Phi(-2.25)$$

$$= \Phi(0.75) + \Phi(2.25) - 1 = 0.7612$$

(2)
$$X \sim N(\mu, \sigma^2)$$
时, $P\{a \leq X \leq b\} = \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)$

例3: 己知X~N(500,100)

(1) 若
$$P{X < x} = 0.9$$
 , 求 x ;

(2) 若
$$P{X>y}=0.04$$
 , 求y

解: (1)
$$P{X < x} = F(x) = \Phi(\frac{x - 500}{10}) = 0.90$$

$$∴ Φ(1.28) ≈ 0.90$$
 $∴ \frac{x-500}{10} ≈ 1.28$ $∴ x ≈ 512.8$

(2)
$$P\{X > y\} = 1 - \Phi(\frac{y - 500}{10}) = 0.04 \Rightarrow \Phi(\frac{y - 500}{10}) = 0.96$$

$$∴ Φ(1.75) ≈ 0.96$$
 $∴ \frac{y-500}{10} ≈ 1.75$ $∴ y ≈ 517.5$

四、正态分布R.V.的期望与方差

1、标准正态R.V.的期望与方差

设
$$X \sim N(0,1)$$
, $\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$ $-\infty < x < \infty$

$$E(X) = \int_{-\infty}^{+\infty} x \, \frac{1}{\sqrt{2\pi}} \, e^{-x^2/2} dx = 0$$

$$D(X) = E(X^{2}) - [E(X)]^{2} = \int_{-\infty}^{+\infty} x^{2} \frac{1}{\sqrt{2\pi}} e^{-x^{2}/2} dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-x^2/2} dx = \frac{1}{\sqrt{2\pi}} \cdot \sqrt{2} \int_{-\infty}^{+\infty} e^{-(x/\sqrt{2})^2} d\frac{x}{\sqrt{2}}$$

$$= \frac{1}{\sqrt{2\pi}} \cdot \sqrt{2} \cdot \sqrt{\pi} = 1$$

2、正态R.V.的期望与方差

设
$$Y \sim N(\mu, \sigma^2)$$
, 则 $Y = \mu + \sigma X$

$$E(Y) = E(\mu + \sigma X) = \mu + \sigma E(X) = \mu$$

$$D(Y) = D(\mu + \sigma X) = \sigma^2 D(X) = \sigma^2$$

注意:

(1) 若
$$X \sim N(\mu, \sigma^2)$$
, 则 $E(X) = \mu$, $D(X) = \sigma^2$

 μ 决定了图形的中心位置, σ 决定了图形中峰的陡峭程度.

(2) 正态分布的性质

① 如果固定 σ ,改变的 μ 值,则图形沿 σ 0x轴平移,而不改变形状.

②如果固定 μ ,当 σ 越小时图形变得越尖;当 σ 越大时图形变得越平坦.

③ "3σ"法则

当 $X \sim N(0,1)$ 时

$$P(|X| \le 1) = 2\Phi(1) - 1 = 0.6826$$

$$P(|X| \le 2) = 2\Phi(2) - 1 = 0.9954$$

$$P(|X| \le 3) = 2\Phi(3) - 1 = 0.9974$$

这说明: X的取值几乎全部集中在[-3,3]区间内,超出

这个范围的可能性仅占不到0.03%.

当 $X \sim N(\mu, \sigma^2)$ 时

$$P\{|X - \mu| < \sigma\} = 2\Phi(1) - 1 = 0.6826$$

$$P\{|X-\mu|<2\sigma\}=2\Phi(2)-1=0.9544$$

$$P\{|X - \mu| < 3\sigma\} = 2\Phi(3) - 1 = 0.9974$$

这说明: X的取值几乎全部集中在区间 [μ -3 σ , μ +3 σ]

这在统计学上称作"3σ准则".

