Probeklausur Theoretische Informatik 2 6. Juli 2022

Prof. Dr. Roland Meyer René Maseli TU Braunschweig Sommersemester 2022

1.	Bitte am Anfang ausfüllen:

Vorname:	
Nachname:	
Matrikelnummer:	
Nummer des Sitzplatzes:	
Unterschrift:	

- 2. Die Nummer Ihrer Klausur ist # 0. Bitte merken Sie sich die Nummer. Wir werden Ihr Klausurergebnis anonymisiert unter Verwendung dieser Nummer bekanntgeben.
- 3. Achten Sie darauf, dass Ihre Klausur vollständig ist und getackert bleibt (20 Blätter).
- 4. Benutzen Sie **nur das an dieses Blatt angeheftete Papier**. Bei Bedarf können wir weitere Leerblätter austeilen. Wenn der Platz auf der Vorderseite des jeweiligen Aufgabenblatts nicht ausreicht, **machen Sie kenntlich**, wo Sie die Bearbeitung der Aufgabe fortsetzen.
- 5. Als Hilfsmittel sind **ausschließlich** Sprachwörterbücher sowie ein beidseitig **handschriftlich beschriebenes DIN A4-Blatt** erlaubt. Elektronische Geräte müssen während der Klausur ausgeschaltet bleiben. Täuschungsversuche werden als nicht bestanden gewertet und dem Prüfungsamt gemeldet.
- 6. Schreiben Sie leserlich und bearbeiten Sie Ihre Klausur mit einem **dokumentenechten Stift** (nicht mit Bleistift, kein Tipp-Ex, kein Tintenkiller) und **nicht in roter oder grüner Farbe**.
- 7. Wir werden die **Klausurergebnisse** auf unserer Website bekanntgeben: tcs.cs.tu-bs.de/teaching/TheoInf2_SS_2022.html.
- 8. Die Bearbeitungszeit beträgt 120 Minuten (+ ggf. Zeit zum Lüften).
- 9. Mit 28 Punkten ist die Klausur sicher bestanden.

Bepunktung: (wird von den Korrektoren ausgefüllt)

Aufgabe	1	2	3	4	5	6	7	Σ
Max.	10	10	10	10	10	10	10	70
Punkte								

Probeklausur Seite 2 / 20

1. Konstruktion einer DTM

10 Punkte

Konstruieren Sie eine **deterministische** Turingmaschine *M*, welche die Sprache

$$L = \{a^m b^n \mid m, n > 0 \text{ UND } m^2 < 3n\}$$

entscheidet. Beispielsweise sind ab, $aabb \in L$, aber aab, $aaabbb \notin L$.

- Erklären Sie die Arbeitsweise der Maschine ausführlich. Geben Sie insbesondere die Aufgabe jedes Kontrollzustands der Maschine an.
- Geben Sie die Transitionen der Maschine explizit an, z.B. in Form einer Tabelle oder als Zustandsgraph. Im Zustandsgraphen brauchen Sie Transitionen nach q_{rej} nicht zu zeichnen.
- Sie können wahlweise annehmen, dass das Band auf beiden Seiten der Eingabe mit

 -Symbolen gefüllt ist, oder dass das Band auf der linken Seite durch ein \$-Symbol beschränkt ist. Geben Sie an, wofür Sie sich entschieden haben und geben Sie an, auf welches Symbol der Lese-/Schreibkopf initial zeigt.

Hinweis: Die Turingmaschine darf mehrere Bänder verwenden.

Probeklausur Seite 3 / 20

2. NL-Vollständigkeit

6 + 4 Punkte

Sei Σ eine endliche Menge. Ein Σ -gelabelter Graph $G = \langle V, E, \ell \rangle$ besteht aus einem gerichteten Graphen $\langle V, E \rangle$ mit $E \subseteq V \times V$ und einer Kantenlabel-Funktion $\ell \colon E \to \Sigma$, welche adjazente Knotenpaare $\langle u, v \rangle \in E$ auf ein Label $\ell(u, v) \in \Sigma$ abbildet.

Jeder Pfad p in G, bestehend aus einer Knotenfolge $p = \langle s, v_1, v_2, ..., v_k, t \rangle$, beschreibt ein Wort über dem Alphabet Σ , genauer $\ell^*(p) := \ell(s, v_1)\ell(v_1, v_2)...\ell(v_k, t) \in \Sigma^*$.

Betrachten Sie das folgende Problem.

Pfadproblem mit Endlichem Automat (DFA-PATH)

Gegeben: Ein $\{0, 1\}$ -gelabelter Graph $G = \langle V, E, \ell \rangle$, Knoten $s, t \in V$ und einen DFA A über

dem Alphabet {0, 1}.

Entscheide: Gibt es in G einen s-t-Pfad p mit $\ell^*(p) \in \mathcal{L}(A)$?

Zeigen Sie, dass DFA-PATH NL-vollständig (bzgl. logspace-many-one-Reduktionen) ist:

a) "Membership": DFA-PATH ∈ NL.

b) "Hardness": DFA-PATH ist NL-schwer (bzgl. logspace-many-one-Reduktionen).

Probeklausur Seite 4 / 20

3. NP-Vollständigkeit

4 + 6 = 10 Punkte

Betrachten Sie das folgende Problem.

2-Hamilton-Pfade (2HP)

Gegeben: Ein gerichteter Graph $G = \langle V, E \rangle$.

Entscheide: Gibt es zwei unterschiedliche Pfade in G,

die jeweils alle Knoten besuchen?

Dabei sind zum Beispiel $G_1 \in 2HP$ und $G_2 \in 2HP$, aber $G_3 \notin 2HP$.

Zeigen Sie, dass 2HP NP-vollständig (bzgl. Polynomialzeit-Reduktionen) ist:

- a) "Membership": $2HP \in NP$.
- b) "Hardness": 2HP ist NP-schwer (bzgl. Polynomialzeit-Reduktionen).

Probeklausur Seite 5 / 20

4. Entscheidbarkeit II

10 Punkte

Betrachten Sie das folgende Problem.

Strict-Regular-Upward-Boundedness (SRUB)

Gegeben: DTM *M* und DFA *A* mit Eingabealphabet {0, 1}.

Entscheide: Ist $\mathcal{L}(M) \neq \mathcal{L}(A)$, aber liegt jedes $x \in \mathcal{L}(M)$ auch in $\mathcal{L}(A)$?

Beweisen Sie, dass SRUB weder semi-entscheidbar, noch co-semi-entscheidbar ist.

Probeklausur Seite 6 / 20

5. Insert-Delete-Maschinen

5+5=10 Punkte

Wir definieren eine alternative Turingmaschine, die statt Band-Zellen zu überschreiben und sich zu benachbarten Zellen zu bewegen, mittels vier Operationen Zellen einfügen und entfernen kann. Hierzu benutzen wir ε als Markierung für Lösch-Transitionen.

Zum Beispiel entfernt $\delta(q_0, a) = \langle \varepsilon, R, q_1 \rangle$ die aktuelle Zelle und geht nach rechts, $\delta(q_1, b) = \langle c, L, q_2 \rangle$ fügt eine Zelle mit c links neben der aktuellen Zelle ein, $\delta(q_2, b) = \langle \varepsilon, L, q_3 \rangle$ löscht die aktuelle Zelle und geht nach links und $\delta(q_3, c) = \langle d, R, q_4 \rangle$ fügt d in eine neue Zelle rechts daneben hinzu.

П		а		b		П	
		$\overset{ riangle}{oldsymbol{q}_0}$					εR
	ш		b		Ш		
			q_1				cL
	С		b		П		
			q_2				εL
ш		С		Ш			
		q_3					dR
П		С		d		П	
		q_4					

Auch hier gilt, Insert-Delete-Maschinen definieren eine Sprache aus genau den Wörtern, auf die eine Berechnung in einen akzeptieren Zustand möglich ist.

Beweisen Sie:

- a) Jede durch einen Insert-Delete-Maschine akzeptierte Sprache ist semientscheidbar.
- b) Jede semientscheidbare Sprache wird durch eine Insert-Delete-Maschine akzeptiert.

Probeklausur Seite 7 / 20

6. Quiz

2+2+3+3=10 Punkte

Bantworten Sie die folgenden Fragen. Begründen Sie Ihre Entscheidung mit einem kurzen Beweis oder einem Gegenbeispiel.

- a) Ist die Menge der unentscheidbaren Sprachen abzählbar?
- b) Falls das Problem A in NP liegt, aber B unentscheidbar ist, muss $A \cap B$ dann auch unent-scheidbar sein?
- c) Ist die folgende Schlussfolgerung korrekt? Weil das Circuit Value Problem P-hart bzgl. logspace-many-one-Reduktionen ist, aber mittels eines Linear-Platz-beschränkten Algorithmus gelöst werden kann, gibt es für jedes Problem in P einen LBA, der das Problem entscheidet.
- d) Sei $f: \Sigma^* \to \Gamma^*$ eine Funktion mit $f(x) \in SELF$ -ACCEPT genau dann, wenn $x \in UNIVERSALITY$ für jedes $x \in \Sigma^*$. Muss f unberechenbar sein?

Probeklausur Seite 8 / 20

7. Berechenbarkeit

10 Punkte

Es sei $\Sigma = \{0, 1\}$. Betrachten Sie die Funktion *shallowWords* : $\Sigma^* \times \mathbb{N} \to (\mathbb{N} \cup \{\infty\})$, die für die Kodierung $w \in \Sigma^*$ einer deterministischen Turingmaschine M_w und eine Schranke n, die Anzahl der Wörter ausgibt, die von M_w in höchstens n Schritten akzeptiert werden. Dabei soll ∞ ausgegeben werden, falls es unendlich viele solcher Eingaben gibt.

Beweisen Sie, dass die Funktion shallowWords berechenbar ist.

Geben Sie hierzu einen Algorithmus (als Pseudo-Code) an.

Hinweis: Die Kodierung der Zahlen in der Ein- und Ausgabe der Funktion (z.B. unär oder binär) ist für die Bearbeitung der Aufgabe unerheblich.