Função Exponencial

Definição

Definição da Função Exponencial

Definição da Função Exponencial

Definição:

Uma função exponencial é toda função da forma:

$$f(x) = a^x \quad (a > 0 e a \neq 1)$$

Onde:

- x é a variável (expoente)
- a é a base da potência

Condições da base a:

- ullet a>0: para garantir que a função esteja bem definida para todo número real x.
- ullet a
 eq 1: pois, se a=1, a função seria constante f(x)=1.

Exemplos de funções exponenciais

Exemplos de funções exponenciais

$$f(x)=2^x o$$
 base $a=2$ $g(x)=\left(rac{1}{2}
ight)^x o$ base $a=rac{1}{2}$ $h(x)=10^x o$ base $a=10$

Propriedades básicas

Propriedades básicas

O **domínio** da função exponencial é \mathbb{R} (todos os números reais).

A imagem é sempre $(0, +\infty)$, ou seja, nunca assume valores negativos nem zero.

A função sempre passa pelo ponto (0,1), pois $a^0=1$.

Dependendo do valor da base a:

- Se a > 1 → a função é crescente.
- Se 0 < a < 1 → a função é decrescente.

Exemplos de comportamento

Exemplos de comportamento

Função crescente:

$$f(x) = 2^x$$

- Quanto maior o valor de x, maior o valor de f(x).
- Exemplo: $2^1 = 2$, $2^2 = 4$, $2^3 = 8$.

Função decrescente:

$$g(x) = \left(\frac{1}{2}\right)^x$$

- Quanto maior o valor de x, menor o valor de g(x).
- Exemplo: $(\frac{1}{2})^1 = \frac{1}{2}, (\frac{1}{2})^2 = \frac{1}{4}$.

Resumo Esquemático

Resumo esquemático

Elemento	Característica
Definição	$f(x)=a^x$, com $a>0$ e $a eq 1$
Domínio	$\mathbb R$ (todos os reais)
Imagem	$(0, +\infty)$
Ponto fixo	Sempre passa por $\left(0,1\right)$
Crescimento	Se $a>1$: crescente; Se $0< a<1$: decrescente