

SUBSPACES

Why

1

Definition

A *subspace* of a vector space is a subset of vectors that is a vector space when restriction vector addition and scalar multiplication to the set. In other words, a subspace is a subset of a vector space which is closed under vector addition and scalar multiplication.

For example, the entire set of vectors is a subspace. As a second example, the set consisting only of the zero vector is a subspace; we call this the *zero subspace*. These two subspaces are the *trivial subspaces*. A *nontrivial subspace* is a subspace that is not trivial.

Notation

Let (V, \mathbf{F}) be a vector space. Let $U \subset V$ with

$$\alpha u + \beta v \in U$$

for all $\alpha, \beta \in \mathbf{F}$ and $u, v \in U$. Then U is a subspace of (V, \mathbf{F}) .

Properties

Prop. 1. The intersection of a family of subspaces is a subspace.

Prop. 2. There exists a family of subspaces whose union is not a subspace;

Remark 1. In other words: the union of a family subspaces need not be a subspace.

¹Future editions will include.

Prop. 3. A subspace must contain the zero vector; in other words, every subspace is nonempty.

