

9 S2

GND 8

CONNECTION DIAGRAM

PINOUT A

DESCRIPTION — The '151 is a high speed 8-input digital multiplexer. It provides in one package, the ability to select one line of data from up to eight sources. The '151 can be used as a universal function generator to generate any logic function of four variables. Both assertion and negation outputs are provided.

ORDERING CODE: See Section 9

	PIN	COMMERCIAL GRADE	MILITARY GRADE	PKG	
PKGS	ОПТ	$V_{CC} = +5.0 \text{ V } \pm 5\%,$ $T_A = 0^{\circ}\text{C to } +70^{\circ}\text{C}$	$V_{CC} = +5.0 \text{ V} \pm 10\%,$ $T_A = -55^{\circ}\text{ C to} +125^{\circ}\text{ C}$	TYPE	
Plastic DIP (P)	Α	74151APC, 74S151PC 74LS151PC		9B	
Ceramic DIP (D)	Α	74151ADC, 74S151DC 74LS151DC	54151ADM, 54S151DM 54LS151DM	6B	
Flatpak (F)	А	74151AFC, 74S151FC 74LS151FC	54151AFM, 54S151FM 54LS151FM	4L	

LOGIC SYMBOL

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	54/74 (U.L.) HIGH/LOW	54/74\$ (U.L.) HIGH/LOW	54/74LS (U.L.) HIGH/LOW	
l ₀ — l ₇ S ₀ — S ₂ E	Data Inputs Select Inputs	1.0/1.0 1.0/1.0	1.25/1.25 1.25/1.25	0.5/0.25 0.5/0.25	
Ē Z	Enable Input (Active LOW) Data Output	1.0/1.0 20/10	1.25/1.25 25/12.5	0.5/0.25 10/5.0	
Z	Inverted Data Output	20/10	25/12.5	(2.5) 10/5.0 (2.5)	

FUNCTIONAL DESCRIPTION — The '151 is a logical implementation of a single pole, 8-position switch with the switch position controlled by the state of three Select inputs, S₀, S₁, S₂. Both assertion and negation outputs are provided. The Enable input (E) is active LOW. When it is not activated, the negation output is HIGH and the assertion output is LOW regardless of all other inputs. The logic function provided at the output is:

$$Z = \overline{E} \bullet (I_0 \bullet \overline{S}_0 \bullet \overline{S}_1 \bullet \overline{S}_2 + I_1 \bullet S_0 \bullet \overline{S}_1 \bullet \overline{S}_2 + I_2 \bullet \overline{S}_0 \bullet S_1 \bullet \overline{S}_2 + I_3 \bullet S_0 \bullet S_1 \bullet \overline{S}_2 + I_4 \bullet \overline{S}_0 \bullet \overline{S}_1 \bullet S_2 + I_5 \bullet S_0 \bullet \overline{S}_1 \bullet S_2 + I_6 \bullet \overline{S}_0 \bullet S_1 \bullet S_2 + I_7 \bullet S_0 \bullet S_1 \bullet S_2).$$

The '151 provides the ability, in one package, to select from eight sources of data or control information. By proper manipulation of the inputs, the '151 can provide any logic function of four variables and its negation.

TRUTH TABLE

	INPUTS				OUTPUTS			
Ē	S ₂	S ₁	S ₀	Ž	Z			
HLLL	X L L	X L L	XLHL	H 10 11 12	L lo l ₁ l ₂			
		H L H H	ILILI	13 14 15 17	l3 l4 l5 l6 l7			

H = HIGH Voltage Level L = LOW Voltage Level

LOGIC DIAGRAM

los

lcc

Current

Power Supply Current

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) 54/74 54/74\$ 54/74LS SYMBOL PARAMETER UNITS CONDITIONS Min Max Min Max Min Max **Output Short Circuit** ΧM -20 -55 -40 -100 -20 -100

-55

48

-40

-100

70

-20

-100

10

mΑ

mΑ

V_{CC} = Max

V_CC = Max

AC CHARACTERISTICS: V_{CC} = +5.0 V, T_A = +25°C (See Section 3 for waveforms and load configurations)

-18

XC

		54/7	54/74		54/74\$		74LS	UNITS	CONDITIONS
SYMBOL	PARAMETER				C _L = 15 pF R _L = 280 Ω		15 pF		
		Min N	/lax	Min	Max	Min	Max		
tPLH tPHL	Propagation Delay S_n to \overline{Z}	1	26 30		15 13.5		23 34	ns	Figs. 3-1, 3-20
tPLH tPHL	Propagation Delay S_n to Z		38 38		18 18		48 30	ns	Figs. 3-1, 3-20
tPLH tPHL	Propagation Delay Ē to Ž		21 23		13 12		24 30	ns	Figs. 3-1, 3-5
tplH tpHL	Propagation Delay Ē to Z	1	33 33		16.5 18		42 32	ns	Figs. 3-1, 3-4
tplH tpHL	Propagation Delay In to Z	i .	14 14		7.0 7.0		21 20	ns	Figs. 3-1, 3-4
tplh tphl	Propagation Delay In to Z		20 27		12 12		32 26	ns	Figs. 3-1, 3-5