Course Syllabus

Jump to Today

#	Торіс	Content	Recap
	Data-driven Analysis ^{week 1}	Components of a learning algorithm	
1		Categorizing learning problems: Supervised, Unsupervised, Reinforcement Learning	
	Unsupervised Learning ^{weeks} 1-2	Clustering: <i>k-means clustering</i>	
2		Dimensionality reduction: Principle Component Analysis	Linear Algebra
		Learning data distribution: Gaussian Mixture Model	Probability Theory
	Supervised Learning weeks 3-9	Basic regression approach: linear regression	
		Binary classification: logistic regression and Perceptron	
		Training via gradient descent: function optimization and the steepest descent (ascent) algorithm	Functional Analysis
3		Support vector machines	
		Overfitting and underfitting: Lagrange multipliers and regularization	Optimization
		Multiclass classification	
		Non-linearity and representation learning: kernels and neural networks	
	Deep Models weeks 10-12	Expressive power of neural networks: <i>Universal</i> approximation theorem	
		Multilayer perceptrons: feedforward neural networks	
4		Training neural networks: backpropagation algorithm, stochastic gradient descent	Chain Rule for Derivatives
		More advanced deep models: convolutional neural networks, beyond FNNs	

Course Summary:

Date	Details	Due
Tue Jan 28, 2025	Assignment 1 (https://q.utoronto.ca/courses/381364/assignments/1464987)	due by 11:59pm
Thu Feb 13, 2025	Assignment 2 (https://q.utoronto.ca/courses/381364/assignments/1473418)	due by 11:59pm
Tue Feb 25, 2025	Midterm Exam (https://q.utoronto.ca/courses/381364/assignments/1484705)	due by 11:59pm
Fri Mar 7, 2025	Group Forming (https://q.utoronto.ca/courses/381364/assignments/1483929)	due by 11:59pm
Sun Mar 9, 2025	Assignment 3 (https://q.utoronto.ca/courses/381364/assignments/1480665)	due by 11:59pm
Tue Mar 25, 2025	Assignment 4 (https://q.utoronto.ca/courses/381364/assignments/1489446)	due by 11:59pm
	Midterm Practice (https://q.utoronto.ca/courses/381364/assignments/1480429)	