

"Experimental Data Processing"

Topic 6 "Key parameters to extract the process regularities"

Tatiana Podladchikova
Term 1B, October 2017
t.podladchikova@skoltech.ru

Sunspot number observations 1700-2016

Visible regularities from smoothed curve

11-year sunspot cycle

The ascent phase is shorter than the decent one

Stronger cycles grow faster in the beginning of ascent phase compared to weaker cycles

Sunspot number observations 1700-2016

Hathaway et al.: 1994, The shape of the sunspot cycle. *Solar Physics*, 151, 177.

Kalman filter requires the knowledge of noise statistics

Noise statistics identification

Forecasting the 11-year sunspot cycle strength

Solar – terrestrial relationships

Geomagnetic storm index

Dst dynamics is mainly driven by

Solar wind speed

Southward componentof Interplanetarymagnetic field (IMF)

Forecasting peak of geomagnetic storm

Forecasting peak of geomagnetic storm

Geomagnetic Storm Saturation 24 – 25 October 2011

Key parameter

Saturation point

Geomagnetic storm forecasting service www.spaceweather.ru

Coronal mass ejections December 7, 2007

Wave rate: 123 km/s, Wave height: 14 000 - 100 000 km

Coronal mass ejections May 12, 1997, SOHO images

Eruptive center

EUV wave propagates quasi-circular.

However, propagation of EUV wave
toward northwest is stopped by coronal hole

Coronal mass ejections May 12, 1997, SOHO difference images

5:07 - 4:34 UTC

Difference image allows observing the dynamics of EUV wave propagation

Estimation of coronal wave radial rate and front width

SOHO difference images, May 12 1997

Determination of the angular velocity of EUV wave in the solar corona

Polar coordinates \vec{r}, ϕ of a pixel on the solar disk. The center of a system is at eruptive center.

Determination of the angular velocity of EUV wave in the solar corona

Front of EUV wave propagates over the solar disc

Dependence of intensity of EUV wave front on angle

The information about the wave front localization is hidden in the noise.

Smoothing is needed.

Dependence of smoothed intensity of EUV wave front on angle

Running smoothing

Each pixel is replaced by the sum of all pixels on the angular interval of length $\pi/8$ centered on the considered point.

Dependence of smoothed intensity of EUV wave front on angle

Intensity from 2 to 4 radians corresponding to northwest direction is excluded from analysis

Coordinate of intensity center

$$j^c = \sum_{j=1}^N j \cdot I_j / \sum_{j=1}^N I_j$$

To determine the angular velocity of EUV coronal wave we need to analyze the dynamics of polar angles for intensity centers $\phi(j^c)$

Determination of the angular velocity of EUV wave in the solar corona

For two sequent images the angle of EUV wave propagation slightly increases