- 人 (1) (a) 字母表 {0,1} 上以 0开始并以 0 结尾的长度大于1 的所有净染合.
 - (c) 宇母表{0,1}上倒数第3个位置为0的长度大于2的所有事联合.
 - (色) 字母表107上0的个数和1的个数都是偶数的所有事杂合。

(i) $(0|1)^* 0 (0|1)(0|1)$ $\frac{1}{4} \frac{1}{4} = 0 = 0$ $\frac{1}{4} = 0 = 0$

(e) $(00|11)^{\frac{1}{2}}(01|10)(00|11)^{\frac{1}{2}}(01|10)(00|11)^{\frac{1}{2}})^{\frac{1}{2}}$ $\frac{446}{0} = \frac{2}{0} =$

确定化和极小化、计算不同端入时,不同状态的全国包。

(c) $H = \{0, 1, 2\}$ \(\text{2-clusture} \(\text{move} (\Phi, \nu) \) = \(\text{2-clusture} (\frac{\partial}{2} 1, \frac{\partial}{2} 1, \frac{\partial}{2} \) = \(\frac{\partial}{2} 1, \frac{\partial}{2} 1, \frac{\partial}{2} 1, \frac{\partial}{2} \) = \(\frac{\partial}{2} 1, \frac{\partial}{2} 1, \frac{\partial}{2} 1, \frac

 $B = \{1, 2, 3\}$ $\mathcal{E} - \text{clusive}(\text{move}(B, 0)) = \mathcal{E} - \text{clusive}(\{1, 3, 4\}) = \{1, 2, 3, 4\} = D$ $\mathcal{E} - \text{clusive}(\text{move}(B, 1)) = \mathcal{E} - \text{clusive}(\{1, 4\}) = \{1, 2, 4\} = E$

$$C = \{1, 2\}$$

$$E - clusture (muve(C, 0)) = \{1, 2, 3\} = B$$

$$E - clusture (muve(D, 0)) = \{1, 2\} = C$$

$$D = \{1, 2, 3, 4\}$$

$$E - clusture (muve(D, 0)) = \{1, 2, 3, 4, 5\} = F$$

$$E - clusture (muve(D, 0)) = \{1, 2, 3, 4, 5\} = G$$

$$E = \{1, 2, 4\}$$

$$E - clusture (muve(E, 0)) = \{1, 2, 3, 5\} = H$$

$$E - clusture (muve(F, 0)) = \{1, 2, 3, 4, 5\} = F$$

$$E - clusture (muve(F, 0)) = \{1, 2, 3, 4, 5\} = F$$

$$E - clusture (muve(F, 0)) = \{1, 2, 4, 5\} = G$$

$$G = \{1, 2, 4, 5\}$$

$$E - clusture (muve(G, 0)) = \{1, 2, 3, 5\} = H$$

$$E - clusture (muve(G, 0)) = \{1, 2, 3, 4\} = D$$

$$E - clusture (muve(H, 0)) = \{1, 2, 3, 4\} = D$$

$$E - clusture (muve(H, 0)) = \{1, 2, 3, 4\} = D$$

$$E - clusture (muve(I, 0)) = \{1, 2, 3\} = B$$

$$E - clusture (muve(I, 0)) = \{1, 2, 3\} = B$$

$$E - clusture (muve(I, 0)) = \{1, 2, 3\} = B$$

$$E - clusture (muve(I, 0)) = \{1, 2, 3\} = B$$

$$E - clusture (muve(I, 0)) = \{1, 2, 3\} = B$$

F

H

F

G

Ι

G

D

E

F

得到DFA-如下:

 G
 H
 I

 H
 D
 E

 I
 B
 C

下进行简化得到

- ①分组得到 fA,B,C,D,E?, fF?fG?fH} f1?
- ②易知 A和 C 行为相同, 继续分组 SA, C}, SB3, SD3, SE3, {F} {G? {H? {I}}
- ②取So= {A, C}, S1= {B}, S2= {D}, S3= {E}, S4= {F3, S1= {G3}} S6= {H3, S7= {1}}

le) 下以至代替 E-clusure, m 代替 move

$$A = \{0,1,2,3\} \qquad \mathcal{E}(m(A,00)) = \mathcal{E}(\{1\}) = \{1,2,3\} = B$$

$$\mathcal{E}(m(A,10)) = \mathcal{E}(\{4\}) = \{4\} = C$$

$$\mathcal{E}(m(A,10)) = \mathcal{E}(\{4\}) = C$$

$$\mathcal{E}(m(A,10)) = \mathcal{E}(\{4\}) = C$$

$$\mathcal{E}(m(A,10)) = \mathcal{E}(\{1\}) = B$$

$$\mathcal{E}(m(A,00)) = \mathcal{E}(\{1\}) = B$$

$$\mathcal{E}(m(A,00)) = \mathcal{E}(\{4\}) = C$$

$$\mathcal{E}(m(A,00)) = \mathcal{E}(\{4\}) =$$

状态,	新入状态,				⇒得到 DFA
	סט	0]	10	11	_ 4 1/2 A - vo 11 - B 200 11
	B				01/10 01/10
	₽				
C	С	P	D	C	(2) 10 D

不简化

- 0 {A, B, C] {D}
- 2 {A,B}, {C}, {D}
- @ So = {A, B}. S1 = {C}. S2 = {D}

另一种画法:

m DFA D:

以太, Si: 模5合, i (0≤i≤4) 假设从高位读取二进制数.

		編入字符		小叶为为:
_	状态	0	1	
	So	So	8,	THE SI-SI-SI-SI-SI-SI-SI-SI-SI-SI-SI-SI-SI-S
	Sı	Sz	Sz	0
	Sz	S4	So	
	Sz	S,	S ₂	
	S 4	Sz	S ₄	

12) 添加新的开始状态X和接受状态,Y

删除一个从田的入边开始与田的出边相连

删除,多

删除,2

$$\frac{A^{\frac{1}{2}}}{2} \times \frac{\mathcal{E}}{2} = 0$$

$$\frac{(0|11)(0|^{\frac{1}{2}}01)^{\frac{1}{2}}}{10} \times \frac{(0|11)(0|^{\frac{1}{2}}01)^{\frac{1}{2}}}{10} \times \frac{(0|11)(0|11)(0|11)^{\frac{1}{2}}}{10} \times \frac{(0|11)(0|11)(0|11)^{\frac{1}{2}}}{10} \times \frac{(0|11)(0|11)(0|11)^{\frac{1}{2}}}{10} \times \frac{(0|11)(0|11)(0|11)(0|11)^{\frac{1}{2}}}{10} \times \frac{(0|11)(0|11$$

删除, 1

$$\frac{A_{4}}{4} \otimes \frac{\mathcal{E}}{4} \otimes \frac{$$

 $\Rightarrow R_{||} = (0 | 1((0|11)(0|^*01)^*0|^*00|10)^*(0|11)(0|^*01)^*1))^*$ 类似也, 按 $\Rightarrow 241$ 依次删去节点开答到: $R_{2} = (0 | 1((0|11)0(1|0|0)^*00|10)^*(0|11)1|(0|11)0(1|0|0)^*0|0)^*$

https://blog.csdn.net/qq_40294512/article/details/89004777 https://cyberzhg.github.io/toolbox/