Project 1 Integration of Merge Sort & Insertion Sort

Team 4

- 1. He Qi Xin
- 2. Dinh Pham Minh Anh
- 3. Hong Jia Yang

Preamble: Overhead in Merge Sort

$$MergeSort(n) = \Theta(n \log(n))$$

$$InsertionSort(n) = \Theta(n^2)$$

$$\exists k \in \mathbb{N} : c_1 k^2 \le c_2 k \log(k), 0 < c_1 < c_2$$

When size of sublists is small enough, insertion sort should be performed instead

Class Structure

Main Program

```
A = \langle a_0, a_1, \dots, a_{n-2}, a_{n-1} \rangle
     void sort(int p, int r) {
123456789
                 if (r - p + 1 <= k) {
                      insertionSort(p, r);
                                                         size[A] = (n-1) - 0 + 1 = n
                      return;
                 if (p < r) {
                                                           A' = \langle a_p, a_{p+1}, \dots, a_{r-1}, a_r \rangle
                            int q = (p+r) / 2;
                            sort(p, q);
                                                                 size[A'] = r - p + 1
10
                            sort(q+1, r);
11
                            merge(p, q, r);
13
                                                                                         A' \in A
```


Insertion Sort (Trivial)

```
void insertionSort(int p, int r) {
               for (int i = p+1; i <= r; i++) {
                     for (int j = i ; j > p; j--) {
                           key_cmp_insertionSort++;
5
                           key_cmp++;
6
7
                           if (A[j] < A[j-1]) {
                                int t = A[j];
8
                                A[j] = A[j-1];
9
                                A[i-1] = t;
10
11
                           else break;
12
13
14
```


Merge (Trivial)

```
void merge(int p, int q, int r) {
                  vector<int> L, R;
                  for (int i = p; i <= q; i++) L.push_back(A[i]);
                  for (int i = q+1; i <= r; i++) R.push_back(A[i]);
                  int idx_L{}, idx_R{}, idx_A{ p };
                  while (idx_L < L.size() && idx_R < R.size()) {
8
                        if (L[idx_L] < R[idx_R]) {
9
                              A[idx\_A] = L[idx\_L];
10
                              idx L++;
11
                        else {
12
13
                              A[idx_A] = R[idx_R];
14
                              idx R++;
15
16
                        idx A++;
17
                        key_cmp++;
18
```


(b) Generate Input Data

Simple Python Script

```
file index = 1
    i = MIN SIZE
     while (i <= MAX_SIZE):
       try:
          file = open('input_%i.txt' % file_index, 'w')
        except OSError:
          print("[-] Error in writing file 'input_%i.txt'" % file_index)
          sys.exit()
10
       A = [str(random.randint(1, MAX_INT))  for k in range(1, i+1)]
11
       file.write(("\n").join(A))
12
       file.write("\n")
13
       file index += 1
14
       i *= SCALE FACOTR
15
       file.close()
16
        msg = "[+] input_{0}.txt generated. number of elements is {1}."
17
        print(msg.format(file_index-1, i))
```

Array length grow by a factor of 10, for a total of 5 input files

(b) Generate Input Data

Visualisation of Distribution

Rather "Linear" for the given input sizes

Time Complexity of Insertion Sort

length of sublists
$$= S = k$$

number of sublists =
$$\frac{n}{k}$$

$$InsertionSort() = \Theta(k^2 \cdot \frac{n}{k}) = \Theta(nk)$$

Time Complexity of Merge Sort

$$MergeSort() = \Theta\left(n\log(\frac{n}{k})\right)$$

$$HybridSort(n,k) = \Theta\left(kn + n\log\frac{n}{k}\right)$$

Time Complexity of Hybrid Sort

By definition,
$$HybridSort(n,k) = \Theta\left(kn + n\log\frac{n}{k}\right)$$

$$\exists n_0 \exists c_1 \exists c_2 \in \mathbb{N} : \forall n > n_0,$$

$$0 < c_1 \left(kn + n\log\frac{n}{k}\right) \le HybridSort(n, k) \le c_2 \left(kn + n\log\frac{n}{k}\right)$$

Let $c_1 = 1/2$, $c_2 = 2$. Observe that the condition is satisfied

Verified (RHS)

$$HybridSort(n, k) = \Theta\left(kn + n\log\frac{n}{k}\right)$$
$$k(n) \in O(\log n)$$
$$\Theta(kn + n\log\frac{n}{k}) = \Theta(kn + n\log n - n\log k)$$
$$= \Theta(n\log n + n\log n - n\log(\log n)$$
$$= O(n\log n)$$

Hybrid sort will be as slow as merge sort if the value of k = S approaches asymptotic value of O(logn)

$$HybridSort(n,k) = \Theta\left(kn + n\log\frac{n}{k}\right)$$

Key Comparisons give rough estimate of runtime

Periods of **Constant**Periods of **Spikes**

Periods of Constant

	(num_sublist, ASize)	Comparisons
S = 600	(1666, 600) (1, 400)	133710976

(num_sublist, ASize)

Total Key

Periods of **Spikes**

This shape is **non-trivial**Stay tuned

$$T(n,k) = c_1 nk + c_2 \log \frac{n}{k} + c_3$$

Want to solve for
$$T'(k_s) = 0$$

For each n, such that $T''(k_s) > 0$

In practice, it is **not feasible** to do this. Instead, we will **run tests** and give an **estimate**

Need to adjust down range of S

$$S = 61$$

min(S) = 61

S = 77min(S) = 61

$$S = 47$$

min(S) = 47

S = 60min(S) = 47

S = 37min(S) = 37

S = 37min(S) = 37

Runtime gives the best representation

Runtime gives the best representation

S must be sufficiently large before time saving

	ArraySize	s	TotalKeyCmp	KeyCmpInsertionSort	Runtime
0	1000	37	13395	8456	0.3275
1	1000	60	13395	8456	0.3312
2	10000	37	143844	54826	3.9552
3	10000	60	183142	103648	3.7200
4	100000	37	1862508	670504	42.0865
5	100000	60	2380698	1284737	42.9996
6	1000000	37	23201902	8266274	486.0120
7	1000000	60	23201902	8266274	487.0390
8	10000000	37	242332523	53347890	5981.0200
9	10000000	60	281253476	101769647	5937.8500

60 has similar runtime

(d) Compare Hybrid Algorithm to Merge Sort

Set k = S = 0 gives merge sort

	ArraySize	s	TotalKeyCmp	KeyCmpInsertionSort	Runtime
0	10000000	60	281253476	101769647	5851.06
1	10000000	0	220097824	0	11886.70

```
1    if (r - p + 1 <= k) {
2         insertionSort(p, r);
3         return;
4    }</pre>
```

Despite having about 28% more key comparisons, the hybrid algorithm is about 101% faster

(d) Compare Hybrid Algorithm to Merge Sort

Set k = S = 0 gives merge sort

	ArraySize	s	TotalKeyCmp	KeyCmpInsertionSort	Runtime
0	10000000	60	281253476	101769647	5851.06
1	10000000	0	220097824	0	11886.70

```
1    if (r - p + 1 <= k) {
2         insertionSort(p, r);
3         return;
4    }</pre>
```

Number of key comparisons is **only an estimate**The runtime depends on the various **overheads**

Back to this..

Intuition 1:

Before a certain threshold, **S is too** small such that runtime is slower

Key comparisons also happened to be lowest for small S

What happens if we adjust the scale?

- When S ≤ 1, the key comparisons are completely done by Merge Sort (slower than hybrid)
- When S == Size of Array, the key comparisons are completely done by Insertion Sort
- The number of key comparisons made by pure merge sort will be the minimum number of comparisons (local min)
- The number of key comparisons made by pure insertion sort will be the **maximum** number of comparisons (local max)

$$HybridSort(n,k) = \Theta\left(kn + n\log\frac{n}{k}\right)$$

$$k(n) \in O(\log n)$$

$$\Theta(kn + n\log\frac{n}{k}) = \Theta(kn + n\log n - n\log k)$$

$$= \Theta(n\log n + n\log n - n\log(\log n))$$

$$= O(n\log n)$$

- When S ≤ threshold, most of the sorting is still done by the slower merge sort, resulting slower run time despite lower key comparison
- As S increases, more key comparisons is done using insertion sort, and less key comparisons is needed from merge sort because the increasingly longer sublists are already sorted
- This leads to increase in total key comparisons overtime because growth in key comparisons in insertion sort is $O(n^2/2)$
- The way we write the code for key comparison is such that comparison terminates when either array is empty, and this explains the period of constants and peaks
- Additionally, previous graphs used a linear scale for S, which makes it more difficult to see a clear relationship

