

Tecnológico Nacional de México

Instituto Tecnológico de Orizaba/Celaya

Modern Computing Algorithms for Process Optimization with Julia Programming. Part I

"1 - Introduction"

By:

Dr. Kelvyn Baruc Sánchez Sánchez

Postdoctoral Researcher/I.T. Celaya

Introduction

- Applications of Optimization
 - Physics
 - Business
 - Biology
 - Engineering
- Objectives to Optimize
 - Efficiency
 - Safety
 - Accuracy

- Constraints
 - Cost
 - Weight
 - Structural Integrity
- Challenges
 - High-Dimensional Search Spaces
 - Multiple Competing Objectives
 - Model Uncertainty

A History

• Queen Dido's Optimization Problem

sea

A History

• Calculus

Numerical Algorithms

Artificial Intelligence

Optimization Process

Basic Optimization Problem

subject to
$$x \in \mathcal{X}$$

- Design Point
- Design Variables
- Objective Function
- Feasible Set
- Minimizer

Basic Optimization Problem

minimize

 \mathbf{x} subject to $\mathbf{x} \in \mathcal{X}$

Constraints

$$\underset{x_1, x_2}{\text{minimize}} \quad f(x_1, x_2)$$

subject to $x_1 \ge 0$

$$x_2 \ge 0$$

$$x_1 + x_2 \le 1$$

Constraints

minimize x

subject to x > 1

Critical Points

Univariate Function

10

Conditions for Local Minima

Univariate Function

- 1. $f'(x^*) = 0$, the first-order necessary condition (FONC)
- 2. $f''(x^*) \ge 0$, the second-order necessary condition (SONC)

Conditions for Local Minima

- Multivariate Functions
 - 1. $\nabla f(\mathbf{x}^*) = 0$, the first-order necessary condition (FONC)
 - 2. $\nabla^2 f(\mathbf{x}^*) \ge 0$, the second-order necessary condition (SONC)

Contour Plots

• $f(x_1, x_2) = x_1^2 - x_2^2$

Overview

> 4. Descent > 5. First-Order 2. Derivatives 3. Bracketing 6. Second-Order 7. Direct > 9. Population 20. Expressions 8. Stochastic > 19. Discrete 10. Constraints > 11. Linear 12. Multiobjective 16. Surrogate 14. Surrogate 15. Probabilistic 13. Sampling Surrogate Models Optimization Models Plans 17. Optimization under Uncertainty > 18. Uncertainty Propagation 21. Multidisciplinary Design Optimization

Summary

- Optimization in engineering is the process of finding the best system design subject to a set of constraints
- Optimization is concerned with finding global minima of a function
- Minima occur where the gradient is zero, but zero-gradient does not imply optimality

