The Water-Energy-Food Nexus Global conflicts and possible

Lund University, Sweden

iiESI European Workshop DTU 27-28 May 2014

Content

- Setting the scene –
 the water- energy-food nexus
- Energy for water supply and treatment
- Water for energy
 - Fossil fuel extraction
 - Electrical power generation

France 2003 – the hot summer

"Nuclear plants forced to cut back were partly responsible for the deaths of over 10,000 people"

Nuclear capacity reduced 7-15% during 5 weeks doe to lack of cooling water

Summer 2012 in USA – worst drought since the 1950s - 80% of agricultural land was affected.

Price of corn soared

Corn for ethanol or for food?

USA - corn for ethanol production:

2000: **7%** of supply

2014: 40% of supply

Food versus Feed and Fuel

Of the world food-crop calories:

- 55% to directly nourish people
- 36% goes to feed cattle
- 9% goes to fuel (biofuel and industrial products)

We get another 4% indirectly by eating meat, dairy or eggs

Thermal power generation vs. water scarcity - China, 2010 and 2030

Freshwater scarcity rating:

Water deficit

Northern China

60% of China's thermal power capacity 20% of China's renewable freshwater supply

China's 'Big Five' power utilities (500 GW) are all located in water scarce regions

Source: Bloomberg New Energy Finance, National Bureau of Statistics of China. iiESI European Workshop DTU May 2014

Planned dams in the Himalayas

Tibetan plateau, the source of the single largest collection of international rivers in the world.

- Indus Ganges Brahmaputra (Zangbo) -Irrawati – Salween
- Megong (Lancang) Yangtse Huang He (Yellow river)
- The headwater of rivers on which nearly half the world depends
- Half of India's water comes directly from China

Planned dams in the Himalayas

China

- The Tibetan plateau the source of water for nearly 40% of the world's population
- 100 dams in Tibet
- India, Nepal, Bhutan, Pakistan:
 - ->400 dams -- 160,000 MW
- Megong (Lancang) river:
 - 60 dams from Tibet to SE Asia
- 1 dam for every 32 km of river channel

Electricity generation - recent additions to hydropower and other renewables

Source: IEA (2012)

Content

- Setting the scene –
 the water- energy-food nexus
- Energy for water supply and treatment
- Water for energy
 - Fossil fuel extraction
 - Electrical power generation

Swedish averages

Water use

> 50

Pumping

0.06

Water distribution

0.22

Drinking water treatment

sewage

1.5 - 4.5 - 40kWh / kg BOD

 kWh/m^3

0.25 - 0.5

0.24

Wastewater treatment

Pumping to waterworks

Source: Lingsten et al. 2008 Swedish Water

ijΕ

Energy cost to produce cold water

	kWh / m ³
Surface water	0.5 - 4
Recycled water	1 - 6
Desalination	4 - 8
Bottled water	1000 - 4000

Pumping from source to waterworks

Water supply – energy efficiency

Efficient pumping

Variable pressure

control

Leakage

- Detection
- Localisation

Wastewater treatment – energy efficiency

- Pumping
 - Efficient pumps for adequate flows
 - Operating at dynamically changing flows and pressures

- Aeration in wastewater treatment
 - Adequate compressors
 - Controlling the air flow for variable loads

Anaerobic digester control

With increasing water scarcity....

Increased energy for pumping (deeper – longer)

Impaired, reused, brackish, sea water

New technologies to access/treat water will use more energy

Water and Energy – inextricably linked

Demand for more energy

Demand for more water

Demand for more energy

Content

- Setting the scene –
 the water- energy-food nexus
- Energy for water supply and treatment
- Water for energy
 - Fossil fuel extraction
 - Electrical power generation

The fracking frenzy in North Dakota has boosted the U.S. fuel supply—but at what cost?

The New Oil Shale gas — shale oil and scape Hydraulic fracturing Source: National Geographic - N. Dakota al gas flared as waste is a new sight on the Dakota where fracking—a way of extracting hard-to-reach iiESI European Workshop DTU May 2014 nd directional drilling have sparked a boom.

Fracking and U.S. Shale Oil Production

 U.S. shale oil production by fracking has more than tripled in recent years to more than 1 million barrels/day and U.S. oil production now exceeds imports

Fracking fluid facts

- The fracking fluid
 - 80% water
 - 19% proppant natural quartz + man made ceramics
 - 0.5% chemicals additives (many toxic) to inhibit bacterial growth, minimize friction, increase viscosity
- Volumes (during a life time of a well)
 - 25,000 500,000 m³ water
 - Up to 2000 tons of proppant
 - 50+ m³ (or 300+ barrels) of chemicals

Chemicals in fracking fluid

- Purposes: improve fluid viscosity, inhibit corrosion, and limit bacterial growth
- Contain: known carcinogens and air pollutants, BTEX: benzene, toluene, xylene, ethylbenzene
 - Harmful effects on the central nervous system

Risks in fracking

- Chemical content a trade secret
- Cement-casing failures
 methane and chemicals migrate to water sources
- Fracking fluid can leak into ground and surface water during the fracking process
- Accidental spills during truck transportation

Fracking often in dry regions

- Groundwater is sold to the oil company instead of being used for irrigation
- Conflict between energy and food!

In the Barnett Shale (Texas) drillers paid 0.06 cents/m³

The fracking controversy

Coal vs. natural gas

Oil Sand

Athabasca, Alberta Canada

Alberta Tar Sands ndustrial Electrical Engineering and Automation Alberta Tar Sands

Oil sand (1)

- Alberta every day
 - 1 million ton sand
 - 200,000 m³ water
 - Heat the water to 80° C (washing out the bitumen)
 - Heat up the bitumen to 500° C
 - Compress to 100 bar crack the carbohydrate molecules

Oil sand (2)

- Water consumption 3 times larger than crude oil
- Energy for production from natural gas

"Clean energy is used to make dirty energy"

The tailing lakes ("ponds")

- The toxic tailing lakes in Northern Alberta one of the largest human-made structures in the world: 176 km²
- An accident related to the failure of one of the oil sands tailing lakes could have catastrophical impact on the aquatic ecosystem of the Athabasca - Mackenzie River Basin

Water consumption per liter or kg

Source: World Energy Council, 2010

Remember some oil accidents

- Exxon Valdez, Alaska 1979 –
 43 000 m³
- Mexican Gulf, Deepwater Horizon 2010 – 780 000 m³
- Nigeria, the Niger Delta during 50 years 1.4 2.1 million m³
 (one Exxon Valdez every year....)

Niger Delta wetland

Sivibilagbara swamp before oil spill

Water <u>withdrawal</u> - once-through cooling

- Nuclear power plants
 - Typical temp. increase USA 16.5°C
 - 1000 MWe requires 33 m³/s
 - Rule of thumb for 1000 MWe: 25 43 m³/s
- Coal fired plants
 - Typical temp. increase USA 9.5°C
 - 1000 MWe requires $50 \text{ m}^3/\text{s}$ for $\Delta T=10^{\circ}\text{C}$

Out of the 33 m³/s around 0.5 m³/s is **consumed** (evaporated)

In Sweden we use around 150 liters/day/person

The evaporated cooling water would be sufficient for about 300,000 persons

12

Water <u>consumption</u> in electrical generation

World Trade Center 1971

Elevation May 2014 332 m above sea Full = 372 m

Volume = 42% of full pool

Hoover Dam 1971 El power for 500 000 homes

iiESI European Workshop DTU N

Rationale to build dams

- Hydropower generation
- Flood control
- Water storage for irrigation etc.
- Navigation

Today 45 000 dams ≅10% are 60 – 300 *m* high

Large dams – impacts to consider

- Flooded area
- Water loss evaporation
 - Power per reservoir area unit (MW/km²)
 - Temperature
- Hydropower vs. flood control operation
 - Economy vs. risk
- Sedimentation
- Water quality
 - Public health
 - Ecology

Nile flow at Aswan

Source: Strzepek et al. 2013

Evaporation (total)

	ha/MW	Evaporation nm/year	Evaporation Gm ³ /year	liters/kWh
Akosombo Ghana	720	2185	19	3000
Sobradinho, Brazil	400	2841	12	1430
Bayano, Panama	233	2156	0.75	1370
Itezhi Tezhi, Zambia	62	2572	0.95	338
Robert Bourossa, Canada	36	586	1.7	30
San Carlos, Colombia	0.26	1726	0.01	1

Source: Mekonnen & Hoekstra 2012

Range of evaporation

Locations	Range liters/kWh	Average liters/kWh	Reference
Selected 35 plants globally	1-3000	240	Mekonnen- Hoekstra 2012
New Zealand	3 – 115		Herath et al. 2011
California	0.04 – 200	5.4	Gleick (1993) DOE (2006)
USA, Switzerland, Tanzania	1 – 610		Pfister et al. 2011
USA average		17	Atlantic Council 2011
Estimated global average		80	Gerbens-Leenes 2009

Industrial Electrical Engineering and Automation

Number of m³ to produce 1 MWh

Number of m³ to produce 1 MWh

m³/MWh

The demand side

From *supply* oriented to *demand* side oriented

- More focus on the demand side
- Understanding how demand works
 - Habits
 - Life style
 - Pricing
- Water economy needs radical changes
- Understanding regulators and rules

Water – energy considerations

- Saving energy saving water
- Fracking methods need to be transparent
- Increase wind & solar to reduce thermoelectric withdrawal and consumtion
- Minimize once-through cooling
 - will decrease withdrawal but may not decrease consumption
- Review operation of multi-purpose dams
- What would happen if the water will have a cost ("opportunity cost", "society cost")?

Thank you!

gustaf.olsson@iea.lth.se

IWA Publishing 2012

