

Praca inżynierska

Symulacja propagacji sygnału w linii przesyłowej metodą Monte Carlo

Dyplomant: Maciej Domagalski

Promotor: dr hab. inż. Tomasz Chwiej

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie WYDZIAŁ FIZYKI I INFORMATYKI STOSOWANEJ

Kraków, 28.01.2020

Cel pracy

W niniejszej pracy rozwiązano układ równań różniczkowych opisujących przemieszczanie się sygnału elektrycznego w linii przesyłowej (tzw. równanie telegrafistów) przy użyciu metody Monte Carlo. Symulacje przeprowadzono dla:

- 1. układu nieograniczonego przestrzennie
- 2. układu z warunkiem brzegowym
- 3. układu o zmiennej charakterystyce przestrzennej.

Otrzymane wyniki porównano z teoretycznymi oraz dokonano analizy pod kątem wydajności i dokładności rozwiązań.

Równanie telegrafistów

Postać różniczkowa:

$$\frac{\partial U}{\partial x} = -L\frac{\partial I}{\partial t} - R \cdot I$$

$$\frac{\partial I}{\partial x} = -\mathbb{C}\frac{\partial U}{\partial t} - G \cdot U$$

Postać całkowa:

$$f(x,t) = f_0(x-c\cdot t)e^{-(\lambda+\mu)t} + \lambda \int_0^t dS e^{-(\lambda+\mu)}b(x-c\cdot S,t-S),$$

$$b(x,t) = b_0(x+c\cdot t)e^{-(\lambda+\mu)t} + \lambda \int_0^t dS e^{-(\lambda+\mu)}b(x+c\cdot S,t-S),$$

Układ nieograniczony przestrzennie

Równanie z warunkiem brzegowym - sygnát

Równanie z warunkiem brzegowym - błąd -

Linia o zmiennej charakterystyce

Podsumowanie

Zalety metody MC:

- niezależność od przyjętych parametrów,
- skalowalność,
- kontrola nad stosunkiem jakości do wydajności (liczba iteracji).

Dziękuję za uwagę