Quantitative Management Modeling

Assignment Module 6

THE TRANSPORTATION MODEL

				COST		
		UNIT SHIPPIN	16 COST	UNIT	MONTHLY	
	IM	W2	W3	Production	Production	
Plank A	\$22	\$14	\$30	\$100	100	
Plank B	\$16	820	\$24	\$ 625	120	
Markly Domand	80	60	70			
Hore, to	a supply	> total	demand			

		Co	ST PER UN	IT DISTRI	dat us	
		(3)	2	(3)	(4)	SUPPLY
Rank	A	622	614	630	0	/00
	В	641	645	649	0	/50
Domand		80	60	70	10	

6

-

(2)

Now (el's form the decision variables -

Xpm > Represents the number of AEDS shipped from plant (p) to warehouse (w)

: (P = A, B) and (W = 1,2,3)

The objective function is -

Z = 622 (XA1) + 614 (XA2) + 630 (XA3) + 641 (XB1) + 645 (XB2) + 649 (XB3)

When demand & supply, we create dummy variables

demand < supply : during column demand 7 supply : during now

For transportation cost minimization

VA = 8,0 - 8,0

0

0

0

0000

Max VA = (80Pd + 60Pd + 70Pd) - (100Pi - 120P2)

For Plank A

69 - 60 = 55

Pd - P0 214

P3 - P, 2 30

Plank B

Pd - P2 = 16

P2 - 92 2 20

P3 - P2 2 24

Say for all the non-negative variables we need $Pw \ge 0$ w = 1/2/3

(EXAMPLE)

For maximizing VA: 16 MR 7 MC, the production will increase

Atq1: MR>MC

Quantity.

0

10

-0

•

.

.

(4)

The economic indospretation of the dual problem is there is no solution. Hore, we see that the shadow price is primal.

The dual solution of this transportation model indicates that all the prices for the primal problem is 0. This says there might be no scape of increasing the cost or decreasing the cost even after allocating resources in all the plants (A & B).

Therefore, the feasible solution is that the marginal cost must be equal to the marginal resource.

MR = MC

SHADOW PRICE = 0: NO re-allocation of resources.