Sistema completo de sucesos

Definición. Un conjunto de sucesos C_1, C_2, \dots, C_n asociados a un experimento se dice que forman un **sistema completo de sucesos** si y sólo si:

- Son dos a dos incompatibles $\forall i \neq i' \Rightarrow C_i \cap C_{i'} = \emptyset$
- Su unión es el conjunto Ω de todos los resultados del experimento:

$$\sum_{i=1}^{n} C_{i} = C_{1} + C_{2} + \cdots + C_{n} = \Omega$$

Estas condiciones significan que cualquier resultado de un experimento ocurre uno y sólo uno de los sucesos C_1, C_2, \dots, C_n .

Ejemplos de sistemas completos de sucesos

- $\forall \Omega, \Omega$ conjunto muestral: $\{\Omega, \emptyset\}$ sistema completo trivial.
- $\forall \Omega, \Omega$ conjunto muestral, $\forall A \subseteq \Omega$: $\{A, A^c\}$ sistema completo.
- $\forall \Omega, \Omega$ conjunto muestral, $\forall A, B \subset \Omega$: $\{A \cap B\}$ $A \cap B^c$, $A^c \cap B$, $A^c \cap B^c$ } es un sistema completo de sucesos.

Sistema exhaustivo y excluyente de sucesos

Son una colección de sucesos

$$A_1$$
, A_2 , A_3 , A_4 ...

Tales que la unión de todos ellos forman el espacio muestral, y sus intersecciones son disjuntas.

Divide y vencerás

Todo suceso B, puede ser descompuesto en componentes de dicho sistema.

$$B = (B \cap A_1) \cup (B \cap A_2) \cup (B \cap A_3) \cup (B \cap A_4)$$

Nos permite descomponer el problema B en subproblemas más simples. Créame . Funciona.