

04_Advanced Forecasting

Lecture: Intelligent Data Analytics

1. Exponential smoothing (ETS)

2. Autoregressive integrated moving average (ARIMA)

models

1. Exponential smoothing (ETS)

- Motivation
- Simple exponential smoothing (SES)
- Weighted average form
- Initialization
- Optimization
- Holt's linear trend method
- Exponential trend method

1. Autoregressive integrated moving average (ARIMA) models

- The naïve method assumes that only the most current observation is important for the future.
- You can think of it as a weighted average where all the weight is given to the last observation.

$$\hat{y}_{T+h|T} = y_T$$

- The average method assumes that all observations are equally important for the future.
- Therefore, it assigns equal weights to all observations.

$$\hat{y}_{T+h|T} = \bar{y} = \frac{1}{T} \sum_{t=1}^{T} y_t$$

What could be a method between these two extremes for forecasting by using weighted observations?

- Main idea: Assign larger weights to more recent observations than to observations from the distant past.
- Simple exponential smoothing (SES) uses a weighted moving average with weights that decrease exponentially as observations come from further in the past.

Simple exponential smoothing (SES): Forecast equation

$$\hat{y}_{T+h|T} = \alpha y_T + \alpha (1-\alpha) y_{T-1} + \alpha (1-\alpha)^2 y_{T-2} + \cdots$$

• The smoothing parameter α with $0<\alpha\leq 1$ controls the weights decrease. Gewichte misse in Samme 1 sein, highelb χ (1- χ)

```
R
```

```
ses(y, h=10, alpha=0.2, level=FALSE)
#y: the time series; h: forecasting horizon
#alpha: smoothing parameter; if NULL, it is estimated.
#level: confidence levels for prediction intervals
```


Saudi Arabian Oil Production

• The following table shows the weights attached to observations for four different choices of α when forecasting using SES:

observation	$\alpha = 0.2$	$\alpha = 0.4$	$\alpha = 0.6$	$\alpha = 0.8$
${\mathcal Y}_T$	0.2	0.4	0.6	0.8
y_{T-1}	0.16	0.24	0.24	0.16
y_{T-2}	0.128	0.144	0.096	0.032
y_{T-3}	0.1024	0.0864	0.0384	0.0064
y_{T-4}	$(0.2)(0.8)^4$	$(0.4)(0.6)^4$	$(0.6)(0.4)^4$	$(0.8)(0.2)^4$
y_{T-5}	$(0.2)(0.8)^5$	$(0.4)(0.6)^5$	$(0.6)(0.4)^5$	$(0.8)(0.2)^5$

- What happens if $\alpha \downarrow 0$, $\alpha \uparrow 1$, or $\alpha = 1$?
 - $-\alpha \downarrow 0$: observations from the more distant past get more important
 - $-\alpha \uparrow 1$: more weight is given to more recent observations
 - $-\alpha=1$: $\hat{y}_{T+h|T}=y_T$, i.e. we get the naïve method.

A different way to look at "simple exponential smoothing" is its "weighted average form".

• At each time period T an "exponentially smoothed" level l_T is calculated, which updates the previous level l_{T-1} as the current best forecast:

(1)
$$l_{T} = \alpha y_{T} + (1 - \alpha)l_{T-1}, \quad 0 \leq \alpha \leq 1,$$
(2)
$$\hat{y}_{T+1|T} = l_{T}$$

$$\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow \qquad$$

(2)
$$\hat{y}_{T+1|T} = l_{T}$$

$$\text{Vollarge county}$$

• The forecast is the weighted sum of the previous level l_{T-1} and the current time series value y_T .

<u>Proof</u>: By <u>recursively</u> evaluating $\hat{y}_{T+1|T}$ one obtains:

$$\hat{y}_{T+1|T} = \alpha y_T + (1-\alpha)l_{T-1} = \alpha y_T + \alpha (1-\alpha)y_{T-1} + (1-\alpha)^2 l_{T-2} = \cdots$$
$$= \alpha y_T + \alpha (1-\alpha)y_{T-1} + \alpha (1-\alpha)^2 y_{T-2} + \cdots + (1-\alpha)^T l_0$$

Simple Exp. Smoothing (smoothing)

Exponential smoothing is also a method for smoothing the time series (as moving average filter) and forecasting this smoothed time series.

Saudi Arabian Oil Production

Simple Exp. Smoothing (parameters)

Once a value for α as been selected the forecast $\hat{y}_{T+1|T}$ depends only on the two values

- the current actual time series value y_T
- the level l_{T-1} of the previous period (or the forecast for the current period $\hat{y}_{T|T-1}$)

Initialization step needed to start the smoothing period:

$$l_0 = y_0$$

d als och lo = Hyperpurater, de fodgelegt wech nisse, von-

- Disadvantage of SES: It is only suitable for forecasting data with no trend and no seasonal pattern.
- (We will restrict ourselves to non-seasonal methods of exponential smoothing in this lecture, but we will learn how we can respect trends in the time series.)
- Therefore, SES only has a "flat" forecast function, i.e. for longer forecast horizons $h \geq 2$, we get:

$$\hat{y}_{T+h|T} = \hat{y}_{T+1|T}$$

Example (library: fpp)

```
#Train data: oil time series from 1965-2010
Oildata=oil #or window(oil,start=1996,end=2007)
fit1=ses(oildata, alpha=0.2, initial="simple", h=10, level=FALSE)
fit2=ses(oildata, alpha=0.4, initial="simple", h=10, level=FALSE)
fit3=ses(oildata, alpha=0.6, initial="simple", h=10, level=FALSE)
fit4=ses(oildata, alpha=0.8, initial="simple", h=10, level=FALSE)
#Create plot
plot(fit1, ylab="Oil (millions of tonnes)", xlab="Year",
main="Annual oil production in Saudi Arabia (1995-2010)",
fcol="white", lwd=2)
lines(fitted(fit1), col="blue", lwd=2) # smoothing
lines(fitted(fit2), col="red", lwd=2) # smoothing
lines(fitted(fit3), col="green", lwd=2) # smoothing
lines(fitted(fit4), col="pink", lwd=2) # smoothing
lines(fit1$mean, col="blue", lwd=2, lty=1) # forecasting
lines(fit2$mean, col="red", lwd=2, lty=1) # forecasting
lines(fit3$mean, col="green", lwd=2,lty=1) # forecasting
lines(fit4$mean, col="pink", lwd=2,lty=1) # forecasting
legend("topleft", lty="solid", col=c("black", "blue", "red", "green",
"pink"),c("data", expression(alpha==0.2),
expression (alpha==0.4), expression (alpha==0.6),
expression(alpha==0.8)))
```

Extension of SES to allow forecasting of data with a trend.

Holt's linear trend method

Forecast equation: $\hat{y}_{t+h|t} = \ell_t + hb_t$; by ist Trank

Level equation: $\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + b_{t-1})$

Trend equation: $b_t = \beta^* (\ell_t - \ell_{t-1}) + (1 - \beta^*) b_{t-1}$

- α and β^* (with values between 0 and 1) are the smoothing parameters. (We use β^* for β to be consistent with [Hyndman].)
- ℓ_t denotes an estimate of the level of the series at time t.
- b_t denotes an estimate of the trend (slope) of the series at time t.

Optimization can be used to determine parameters α , β^* , ℓ_0 , and b_0 .

Total annual air passengers in Australia (1990-2004)

holt(y, h=10, alpha=NULL, beta=NULL, level=c(80,95))
#y: the time series; h: forecasting horizon
#alpha/beta: smoothing parameters;if NULL => estimated
#level: confidence levels for prediction intervals

Holt's linear trend method

```
air <- window(ausair, start=1990, end=2004)
fit1<-holt(air,alpha=0.8,beta=0.2,initial="simple",h=5)
fit2<-holt(air,alpha=0.6,beta=0.4,initial="simple",h=5)
fit3<-holt(air,alpha=0.4,beta=0.6,initial="simple",h=5)
#Create plot
plot(fit1, ylab="Air passengers in Australia (mio.)",
xlab="Year", main="Total annual air passengers in
Australia (1990-2004) ", fcol="white", plot.conf=F, lwd=2)
lines(fitted(fit1),col="blue",lwd=2)
lines(fitted(fit2),col="red",lwd=2)
lines (fitted (fit3), col="darkgreen", lwd=2)
lines(fit1$mean,col="blue",lwd=2)
lines(fit2$mean, col="red", lwd=2)
lines(fit3$mean,col="darkgreen",lwd=2)
legend("bottomright", lty="solid", ncol=2, col=c("black", "bl
ue", "red", "darkgreen"), c ("data", expression (paste (alpha==0)
.8, ", ", beta==0.2)), expression(paste(alpha==0.6, ", ", beta==
(0.4)), expression (paste (alpha==0.4,", ", beta==0.6)))
```

• A variation from Holt's linear trend method is the exponential trend method:

Exponential trend method

$$\begin{split} \hat{y}_{t+h|t} &= \ell_t \cdot b_t^h \\ \ell_t &= \alpha y_t + (1 - \alpha)(\ell_{t-1} \cdot b_{t-1}) \\ b_t &= \beta^* \left(\frac{\ell_t}{\ell_{t-1}}\right) + (1 - \beta^*)b_{t-1} \end{split}$$


```
holt(y, h=10, alpha=NULL, beta=NULL, exponential=TRUE)
#y: the time series; h: forecasting horizon
#alpha/beta: smoothing parameters;if NULL => estimated
#exponential: logical, if exponential trend is fitted
```

• b_t now represents an estimated growth rate (in relative rather than absolute terms) $\Rightarrow b_t$ is multiplied instead of added to the estimated level ℓ_t

Livestock sheep in Asia (millions))

Comparison of trend methods

```
lstock=window(livestock, start=1970, end=2000)
fit1=ses(lstock,initial="simple",h=10, level=FALSE)
fit2=holt(lstock,initial="simple",h=10, level=FALSE)
fit3=holt(lstock, initial="simple", exponential=TRUE, h=10,
level=FALSE)
#Create plot
plot(fit3, ylab="Livestock sheep in Asia(millions)",
main="Livestock sheep in Asia (millions))",
fcol="white", lwd=2)
lines(fit1$mean,col=2,lwd=2)
lines(fit2$mean,col=3,lwd=2)
lines(fit3$mean,col=5,lwd=2)
legend ("topleft", lty=1, col=1:6, c ("Data", "SES", "Holt's",
"Exponential"))
```

Trend methods: Comparison

Parameter	SES	Holt's	Exponential			
α	1	0.98	0.98			
$oldsymbol{eta}^*$	-	0	0			
l_0	263.92	257.78	255.52			
b_0	-	5.01	1.01			
Training errors						
RMSE	14.77	13.92	14.06			
Forecast errors						
RMSE	25.46	11.88	12.50			


```
accuracy(fit1) # training set
accuracy(fit2)
accuracy(fit3)
accuracy(fit1, livestock) # test set
accuracy(fit2, livestock) # test set
accuracy(fit3, livestock) # test set
```

1. Exponential smoothing (ETS)

- 2. Autoregressive integrated moving average (ARIMA) models
 - **Motivation**
 - Stationarity and differencing
 - Backshift notation
 - Autoregressive models AR(p)
 - Moving average models MA(q)
 - Non-seasonal ARIMA(p, d, q) models
 - Forecasting with ARIMA models

Motivation

- So far, we have seen that exponential smoothing models are based on a description of trend (and seasonality) in the data.
- A different approach is to describe the autocorrelations in the data. This is the aim of Autoregressive integrated moving average (ARIMA) models.

• Autocorrelation is a measure for the linear relationship between lagged values of time series y, e.g. between y_t and y_{t-1} , or between y_t and y_{t-2} , etc.

- Differencing: Computation of the differences between consecutive observations of a time series.
- The transformation "differencing" is one way to make time series stationary.
- Differencing helps to stabilize the mean of a time series by removing changes in the level of a time series, and so eliminating trend and seasonality.

Differenced series:

$$y'_t = y_t - y_{t-1}$$

• A differenced series only has T-1 values.

Seasonal differenced series:

$$y'_t = y_t - y_{t-m}$$
 , $m =$ number of seasons

A very useful notational device is the backward shift operator,
 B (in some literature: L), which is used as follows:

Backshift operator:

$$By_t = y_{t-1}$$

- In other words, B, operating on y_t, has the effect of shifting the data back one period.
- Two applications of B to y_t shifts the data back two periods:

$$B(By_t) = B^2 y_t = y_{t-2}$$

Differencing can then be expressed as follows:

We will be the mit Boty 1 entropilled Einleit warred
$$y'_t = y_t - y_{t-1} = y_t - By_t = (1 - B)y_t$$

cf. Slide 3 of "Seasonal-ARIMA"-slides of R. J. Hyndman, G. Athanasopoulos: Forecasting: principles and practice]

• Autoregressive models model the current value y_t of a time series using a linear combination of its p past (=lagged) values.

$$AR(p)$$
:

$$y_t = c + a_1 y_{t-1} + a_2 y_{t-2} + \dots + a_p y_{t-p} + e_t$$

• p is the order of the model, $a_1, a_2, ..., a_p$ are coefficients, e_t is white noise (also called the *random shock*, or the *residual*), c is an optional constant, and $y_{t-1}, y_{t-2}, ..., y_{t-p}$ are the **lagged** values of y_t .

• Moving average models model the current value y_t as the weighted average of a white noise process e_t , i.e. using a linear combination of the q past (=lagged) forecast errors.

$$MA(q)$$
:

$$y_t = \mu + b_1 e_{t-1} + b_2 e_{t-2} + \dots + b_q e_{t-q} + e_t$$

- E.g.: e_{t-1} is the difference between the actual value and the forecasted value in the previous observation.
- q is the order of the model, μ is the mean of the series (often assumed to be zero), and b_1, b_2, \dots, b_q are coefficients.
- e_t , e_{t-1} , ..., e_{t-q} are white noise, i.e. the current and past, unobserved forecast errors.

• Autoregressive moving average models (ARMA) can model the current value y_t by combining the properties of AR(p) and MA(q) models, i.e. by including both lagged values of y_t and lagged errors.

ARMA(p,q):

$$y_t = c + a_1 y_{t-1} + a_2 y_{t-2} + \dots + a_p y_{t-p} + b_1 e_{t-1} + b_2 e_{t-2} + \dots + b_q e_{t-q} + e_t$$

- They model the short-term dynamics of stationary time series.

 Woun sitt stat. → Dip wh Arima
- An ARMA model applied to differenced data is called an ARIMA model ("I"="Integrated" means the reverse of differencing).

Common feature of AR(I)MA Model

• Every stationary ARMA model specifies y_t as a weighted sum of past residuals (error terms) e.g.

1.)
$$AR(1): y_{t} = ay_{t-1} + e_{t} \iff y_{t} = a^{2}y_{t-2} + a \cdot e_{t-1} + e_{t} \iff y_{t} = a^{2}y_{t-2} + a \cdot e_{t-1} + e_{t} \iff y_{t} = a^{2}y_{t-2} + a \cdot e_{t-1} + e_{t} \iff y_{t} = a^{2}y_{t-2} + a \cdot e_{t-1} + e_{t} \iff y_{t} = a^{2}y_{t-2} + a \cdot e_{t-1} + a^{2}e_{t-2} + \cdots + a^{2}y_{t} \implies y_{t} = a^{2}y_{t-2} + a \cdot e_{t-1} + abe_{t-2} + e_{t} + be_{t-1} \iff y_{t} = a^{2}y_{t-2} + a \cdot e_{t-1} + abe_{t-2} + e_{t} + be_{t-1} \iff y_{t} = a^{2}y_{t-2} + a \cdot e_{t-1} + abe_{t-2} + e_{t} + be_{t-1} \iff y_{t} = a^{2}y_{t} + a^{2}y_{t}$$

In an ARIMA model differencing produces a stationary series.
 These differences are a weighted average of prior errors.

AR Motell ham a MA Should worken bis Zeit pott t A12(2): × t = a, × t. 1 + az × t-z + Et : Lo. ulle t xt-1=01.xt-Z +02./<t-3 * & t-1 x { - z = a1 - x 6-3 + vc + x 6-4 + 8 f - 2 x (= a 1 · a 1 × 6 · z + a 1 a z - f - 3 + a 1 & f - 1 1 uz-un × t-3 4 uz × t-4 + uz · ε t-2 + ε t ARMA (4; Z) ×1-3 = ... ×1-3 × ×1-3 ×1-5 , 61-3 ×6.4 x ×1.5 + ×1.6. & 1.4 => Anma(6;4) bis be: × (Intercept)

$ARIMA(p, \mathbf{d}, q)$:

$$y'_{t} = c + a_{1}y'_{t-1} + a_{2}y'_{t-2} + \dots + a_{p}y'_{t-p} + b_{1}e_{t-1} + b_{2}e_{t-2} + \dots + b_{q}e_{t-q} + e_{t}$$

- y'_t is the differenced series (it may have been differenced more than once).
- p= order of the autoregressive part; d= degree of first differencing involved; q= order of the moving average part.
- AR(p) = ARIMA(p, 0,0) and MA(q) = ARIMA(0,0,q).

Example: Forecasting percentage change in US consumption

Characteristics

- Forecasts from stationary models revert to the mean
- Integrated models revert to the trend
- Accuracy of forecast deteriorates as one extrapolates further
 - » Variance of prediction error grows
 - » Prediction intervals for fixed levels (e.g. 95%) get wider

Calculations

- Fill in the unknown values in the model with predictions
- Pretend estimated model is the true model

$$\begin{array}{c} \text{M.Holwert} = 0 & \text{vou} \\ \text{white noise vorwerden} \\ e_t + be_{t-1} \end{array}$$

e.g.: ARMA(2,1):
$$y_t = a_0 + a_1 y_{t-1} + a_2 y_{t-2} + e_t + b e_{t-1}$$

forecast h=1:
$$\hat{y}_{t+1|t} = a_0 + a_1 y_t + a_2 y_{t-1} + (\hat{e}_{t+1|t} = 0) + be_t$$

forecast h=2:
$$\hat{y}_{t+2|t} = a_0 + a_1 \hat{y}_{t+1|t} + a_2 y_t + (\hat{e}_{t+2|t} = 0) + b(\hat{e}_{t+1|t} = 0)$$

forecast h=3:
$$\hat{y}_{t+3|t} = a_0 + \alpha_1 \hat{y}_{t+2|t} + a_2 \hat{y}_{t+1|t} + 0 + 0$$

forecast h=3: $\hat{y}_{t+3|t} = a_0 + a_1 \hat{y}_{t+2|t} + a_2 \hat{y}_{t+1|t} + 0 + 0$ AR-terms gradually become smaller, MA-terms disappear!

- Assumptions
 - ARMA models represent y_t as weighted sum of past residuals
- Theory: Forecasts work with unknown error terms set to 0 e.g.:

(1)
$$y_{t+1} = \mu + e_{t+1} + b_1 e_t + b_2 e_{t-1} + b_3 e_{t-2} \dots$$
 known values $\hat{y}_{t+1|t} = \mu + b_1 e_t + b_2 e_{t-1} + b_3 e_{t-2} \dots$ $\Rightarrow y_{t+1} - \hat{y}_{t+1|t} = e_{t+1}$ \Rightarrow variance of forecast error=variance(e_{t+1})= σ^2

(2)
$$y_{t+2} = \mu + e_{t+2} + b_1 e_{t+1} + b_2 e_t + b_3 e_{t-1} \dots$$
 known values $\hat{y}_{t+2|t} = \mu + b_2 e_t + b_3 e_{t-1} \dots$ $\Rightarrow y_{t+2} - \hat{y}_{t+2|t} = e_{t+2} + b_1 e_{t+1}$ \Rightarrow variance of forecast error=variance $(e_{t+2} + b_1 e_{t+1}) = \sigma^2 + b_1 \sigma^2$

Variance of forecast error for horizon h grows with $\sigma^2(1+b_1+\cdots+b_{h-1})$

Example: Forecasting the European retail trade index

Forecasts from ARIMA(1,1,1)(0,1,1)[4]


```
auto.arima(y, seasonal=TRUE)
#y: the time series
#seasonal: logical, if searching for a seasonal model
```

```
#NON-SEASONAL EXAMPLE:
#Plot quarterly percentage changes in US consumption
#expenditure
plot(usconsumption[, 1], xlab="Year", ylab="Quarterly
percentage change", main="US consumption")
#Automatically fit an ARIMA model
fit <- auto.arima(usconsumption[,1], seasonal=FALSE)
#Forecasting
plot(forecast(fit, h=10), include=80)
#SEASONAL EXAMPLE:
fit <- auto.arima(euretail, seasonal=TRUE)</pre>
plot(forecast(fit, h=12))
```

ARIMA vs. ETS

Simple exponential smoothing:

Forecasts equivalent to ARIMA(0, 1, 1). SCS

Holt's method:

Forecasts equivalent to ARIMA(0,2,2).

Stationarity

The main assumption when forcasting on time series data has been stationarity, s.t.

- the mean value $\mu_x(t)$ at time t is independent of t s.t. $\mu_x(t) = \mu_x$ and
- the covariance function and variance function

$$\gamma_x(t+h,t) = cov(x_{t+h},x_t) = E[(x_{t+h} - \mu_{t+h})(x_t - \mu_t)]$$

is independent of t for every $h \ge 0$.

Examples of non-stationarity:

- (A) Deterministic trends (trend stationarity).
- (B) Level shifts

Can be captured with a uni root test

- (C) Variance changes.
- (D) Unit roots (stochastic trends i.e. random walk).

of, Slide 25 of "Seasonal-ARIMA"-slides of R. J. Hyndman, G. Athanasopoulos: Forecasting: principles and practice

Unit Root and ARIMA Models

A time series is non-stationary if it contains a unit root

unit root ⇒ nonstationary

The reverse is not true.

- Many results of traditional statistical theory do not apply to unit root process, such as law of large number and central limit theory.
- For unit root process, we need to apply ARIMA model; that is, we take difference (maybe several times) before applying the ARMA model.

Consider the AR(1) time series

$$y_t = c + a_1 y_{t-1} + e_t$$
, with e_t being a white noise process

This time series has a unit root if $a_1 = 1$ (random walk)

In that case the series converges to

$$y_t = ct + y_0 + (e_t + e_{t-1} + e_{t-2} + \dots + e_0)$$
, where

- the ct term implies that the series will have a trend if $c \neq 0$
- the series has non-constant variance $var(y_t) = var(e_t + e_{t-1} + e_{t-2} + \cdots + e_0) = t\sigma^2$
- ⇒ the process is not stationary

[cf. Slide 25 of "Seasonal-ARIMA"-slides of R. J. Hyndman, G. Athanasopoulos: Forecasting: principles and practice

Question: Why do we call the random walk time series

$$y_t = y_{t-1} + e_t$$
, with e_t being a white noise process

a unit root process?

<u>Answer</u>: We can use the lag operator *B* to rewrite the time series as

$$y_t = By_t + e_t \Leftrightarrow (1 - B)y_t = e_t$$

The equation 1 - B = 0 has the root B = 1 which is called unit root.

Multiple Unit Roots:

A times series possibly has multiple unit roots!

For example:

$$(1 - B)(1 - B)y_t = e_t \iff (1 - 2B + B^2)y_t$$
$$\iff y_t = 2y_{t-1} - y_{t-2} + e_t$$

So the AR(2) process

$$y_t = 2y_{t-1} - y_{t-2} + e_t \quad \ \, > \quad \ \,$$

is non-stationary and has two unit roots.

Time

- ARMA-Models cannot be applied to unit roots processes!!
- A times series needs to be transformed into a stationary time series:
 - by differencing
 - by differencing more than once

Given the AR(1) time series

 $y_t = a_1 y_{t-1} + e_t$, with e_t being a white noise process

test the Null Hypothesis

$$H_0$$
: $a_1 = 1$

This is equivalent to rewriting the time series to

$$\Delta y_t = \beta y_{t-1} + e_t$$
, with $\beta = a_1 - 1$

and testing the Null Hypothesis

$$H_0: \beta = 0$$

Dickey-Fuller (DF) is the most popular unit root test

Dickey-Fuller (DF) unit root tests

Three kind of Dickey-Fuller (DF) tests:

(1)
$$y_t = a_1 y_{t-1} + e_t$$
, with e_t white noise: H_0 : $a_1 = 1$

(2)
$$y_t = c + a_1 y_{t-1} + e_t$$
, with e_t white noise H_0 : $a_1 = 1$

(3)
$$y_t = c + mt + a_1y_{t-1} + e_t$$
, with e_t white noise H_0 : $a_1 = 1$

All have a different test statistic!

One as to know in advance,

if the model has a drift $(c \neq 0)$ or a trend $(m \neq 0)$!

Augmented Dickey-Fuller (ADF) unit root tests

Three kind of Augmented Dickey Fuller (ADF) tests:

(1) $y_t = a_1 y_{t-1} + a_2 y_{t-2} + \cdots + a_p y_{t-p} + e_t$, with e_t white noise \Leftrightarrow

$$\Delta y_t = \beta_1 y_{t-1} + \beta_2 y_{t-2} + \cdots + \beta_p y_{t-p} + e_t$$
, with $\beta_1 = a_1 + a_2 + \cdots + a_p - 1$, $\beta_2 = \cdots$

$$H_0$$
: $\beta_1 = 0$

(2) $y_t = c + a_1 y_{t-1} + a_2 y_{t-2} + \cdots + a_p y_{t-p} + e_t$, with e_t white noise \Leftrightarrow

$$\Delta y_t = c + \beta_1 y_{t-1} + \beta_2 y_{t-2} + \cdots + \beta_p y_{t-p} + e_t$$
, with $\beta_1 = a_1 + a_2 + \cdots + a_p - 1$,

$$H_0$$
: $\beta_1 = 0$

(3) $y_t = c + mt + a_1y_{t-1} + a_2y_{t-2} + \cdots + a_py_{t-p} + e_t$, with e_t white noise $\Leftrightarrow \dots$

- R. J. Hyndman, G. Athanasopoulos: Forecasting: principles and practice. Available online at https://www.otexts.org/fpp, 2014
- Sven F. Crone: Tutorial 'Forecasting with Artificial Neural Networks' at the 2005 IEEE Summer School in Computational Intelligence EVIC'05, 14.-16.12.2005, Santiago, Chile. Available online at http://www.neural-forecasting.com/
- J. Han, M. Kamber, J. Pei: Data Mining Concepts and Techniques (3rd Edition), pp. 398-408, 2012, Morgan Kaufmann Verlag