Neuroinformatik - Blatt 2

Gruppe AC

May 16, 2019

Aufgabe 3

Teilaufgabe 3.1

- **a)** Wie wirkt sich eine Erhöhung von w_1 auf die Funktion $y_1(x)$ aus? für $w_1 > 0$: Je höher w_1 wird, desto steiler wird der Anstieg der Funktion.
- **b)** Was passiert, wenn w_1 negativ wird? Die Steigung der Funktion wird negativ. Je niedriger der Wert von w_1 , desto steiler der Abstieg.
- c) Die Kurve wird wie folgt verschoben:

$$\begin{array}{c|cccc} & w_1 > 0 & w_1 < 0 \\ \hline b_1 \uparrow & \leftarrow & \rightarrow \\ b_1 \downarrow & \rightarrow & \leftarrow \end{array}$$

Teilaufgabe 3.2

Welche Paramter w_1, b_1 für das erste und w_2, b_2 für das zweite Neuron könnten die Funktion erzeugen?

$$y(x) = y_1(x) + y_2(x)$$

= $f(w_1 \cdot x + b_1) + f(w_2 \cdot x + b_2)$ $w_1, b_1, w_2, b_1 \in \{-1, 1\}$

Abbildung 3: Ausgabe des Netzwerkes, welches in Aufgabe 3 verwendet wird.

Sind $w_1 = w_2 = -1$ addieren sich die negativen Steigungen unabhängig von b_1, b_2 , sodass das Potential stetig abnimmt. Sind $w_1 = w_2 = +1$ gilt gleiches, nur dass die Steigung positiv ist.

Ist $w_1 = -w_2$ und sind $b_1 = b_2 = +1$, dann steigt die Kurve zunächst und fällt dann wieder ab. Dagegen verhält sich das Ausgangssignal wie gesucht (siehe Abbildung 3), wenn $w_1 = -w_2$ und $b_1 = b_2 = -1$ gilt. Durch die umgekehrten Vorzeichen von w_i wirken sich die b_i in unterschiedliche Richtungen aus (siehe Teilaufgabe 3.1 (c)), sodass die Potenziale einander entgegenwirken.