第一章 复数和复平面

一、单项选择题

1、设z=1+i,则 z^8 的值为

- (*A*). 16*i*
- (*B*). -16i
- (C). 16
- (D). -16

2、连接 $z_1 = 1 + i$ 与 $z_2 = -1 - 4i$ 的直线段的复数式参数方程为

(A). z = 1 + i + (-2 + 5i)t

(*B*). z = 1 + i + (-2 - 5i)t

(C). z = 1 + i + (2 + 5i)t

- (D). z=1+i+(2-5i)t
- 3、复数 z = -2 + 2i 的幅角主值 arg(z) 的值为

(A). $\pi/4$

- (*B*). $3\pi/4$
- (C). $2k\pi + \pi/4$, $k = 0, \pm 1, \pm 2,...$
- (D). $2k\pi + 3\pi/4$, $k = 0, \pm 1, \pm 2,...$
- 4、满足|z-1| > 2|z+1|的所有z组成的集合是

(A). 有界开区域

(B). 无界开区域

(C). 有界闭区域

(D). 无界闭区域

5、下列结论错误的是

(A). 2i < 3i

- (*B*). 当 $z \neq 0$ 且不为负实数时,有 $|\overline{z}| = |z|$, $\arg(\overline{z}) = -\arg(z)$
- (C). $|z|^2 = z \cdot \overline{z}$
- (D). 对任意的正数M > 0,集合|z| > M为无穷远点的邻域

二、填空题

1、复数 $z = \frac{1}{i} - \frac{3i}{1-i}$ 的实部 $\text{Re}(z) = \underline{\qquad}$, 虚部 $\text{Im}(z) = \underline{\qquad}$, 模 $|z| = \underline{\qquad}$,

辐角主值为arg(z)=_____,三角表示式为z=_____

- 2、方程 $|z+2-3i|=\sqrt{2}$ 表示的曲线是______
- $3 \cdot \lim_{z \to 1+i} (1+2z) = \underline{\hspace{1cm}}$
- 4、复数 $z = \sin(\pi/5) + i\cos(\pi/5)$ 的三角表示式为 z = _______.

三、计算题

- 1. 计算复数的值
- (1). (1+i)(-2+2i).

- (2). $\frac{-2+3i}{3+2i}$.
- (3). $\left(\frac{1-i\sqrt{3}}{2}\right)^3$.
- (4). $\sqrt[4]{-16}$.

2. 将 $f(z) = x^2 - y^2 - i(xy - y)$ 写为 z = x + iy 的函数.

班级

姓名

学号

四、证明题

1.
$$\lim_{z\to 0} \frac{\operatorname{Re}(z)}{z}$$
不存在.

2.
$$f(z) = \begin{cases} \frac{2xy}{x^2 + y^2}, & \exists z \neq 0 \\ 0, & \exists z = 0 \end{cases}$$
 $\text{ then } z = 0$ $\text{ then } z = 0$

姓名

学号

第二章 解析函数

一、单项选择题

- 1. 设二元函数 u(x,y), v(x,y) 在 $P_0(x_0,y_0)$ 点处可微,则其在 $P_0(x_0,y_0)$ 点处满足 C-R 条件是复变函数 f(z) = u(x,y) + iv(x,y) 在 $z_0 = x_0 + iy_0$ 处解析的
 - (A). 充分不必要条件

(B). 必要不充分条件

(C). 充分必要条件

- (D). 以上皆错
- 2. 设 $f(z) = (x^3 + axy^2) + i(3x^2y + by^3)$ 在整个复平面上解析,则实常数 a,b 的值为 【 】
 - (A). -3,1

(B). -3,-1

(C). 3,1

(D). 3,-1

3. 下面结论错误的是

(A). $Ln(z_1z_2) = Ln(z_1) + Ln(z_2)$

(B). $Ln(z_2/z_1) = Ln(z_2) - Ln(z_1)$

 $(C). \quad \left[Ln(z)\right]' = 1/z$

(D). $Ln(z^2) = 2Lnz$

4. 下列函数中周期为 $T = 2\pi i$ 的是

(A). e^z

(B). $\sin z$

(C). Lnz.

- (D). z^{α}
- 5. 下列函数中在整个复平面内解析的是
 - (A). $x^2 y^2 2xyi$

(B). $x^2 + xyi$

(C). $2y(x-1)+i(y^2-x^2+2x)$

(D). $x^3 + iy^3$

二、填空题

- 1. *Ln*(1+*i*) = ______, 其主值为*ln*(1+*i*) = ______.
- 2. 设 $\ln z = i\pi/2$, 则 z =______.
- 3. 设 $1-e^{-z}=0$,则z=_____.
- 4. 函数 f(z) 在 $z = z_0$ 处可导是 f(z) 在 $z = z_0$ 处解析的______条件,而函数 f(z) 在非空区域 D 内可导是 f(z) 在区域 D 内解析的______条件.

三、计算题

- 1. 讨论下列函数的可导性与解析性,并求其在可导点处的导数
- (1). $f(z) = x^2 + 3iy^2$.

(2). $f(z) = x^3 - y^3 + 2ix^2y^2$.

(3). $f(z) = (x - y)(x^2 + 4xy + y^2) + i(3x^2y + 3xy^2 - x^3 - y^3)$.

(4). $f(z) = \frac{az+b}{cz+d}$, 其中 $a,b,c,d \in \mathbb{C}$ 为常数,且 $ad-bc \neq 0$.

2. 求满足下列条件的解析函数 f(z) = u(x, y) + iv(x, y)

(1).
$$u(x, y) = x^2 - y^2$$
.

(2).
$$v(x, y) = 2xy + 3x$$
.

(3).
$$u(x, y) = 2y(x-1), f(0) = -i$$
.

(4).
$$v(x, y) = 3x^2y - y^3, f(0) = 0$$
.

- 3. 求下列各式的值
- (1). $e^{5-i\pi/3}$.

(2). $Ln(\frac{-1+i\sqrt{3}}{2})$.

(3). 3^{2-i} .

四、证明题

1. 证明 $f(z) = e^x [(x\cos y - y\sin y) + i(y\cos y + x\sin y)]$ 处处解析, 并求其导数 f'(z).

班级

姓名

学号

- 2. 若 f(z) = u(x, y) + iv(x, y) 在非空区域 D 内解析,且满足下列条件之一,证明 f(z) 在 D 内恒为常数:
- (1). $\overline{f(z)}$ 在区域D内解析.

(2). $v(x, y) = u^2(x, y)$.

(3). $\operatorname{Im}[f(z)] \equiv 常数$.

(4). $\arg[f(z)] = 常数$.

1

班级

姓名

学号

第三章 复变函数的积分

一、单项选择题

- 1. 设L 为复平面上不经过 $z=\pm 1$ 的简闭正向曲线,则 $\oint_L \frac{zdz}{(z-1)(z+1)^2}=$
 - (A). $\pi i/2$

(B). $-\pi i/2$

(C). 0

- (D). 前三种情况皆有可能
- 2. 设函数 f(z) 在非空单连通区域 D 内解析且 $f(z) \neq 0$,而 L 为 D 内任意一条简单封闭的正

向曲线,则积分
$$\oint_L \frac{f''(z)+2f'(z)+f(z)}{f(z)}dz =$$

(A). $2\pi i$

(*B*). $-2\pi i$

(C). 0

- (D). 不能确定
- 3. 设函数 f(z) 在非空区域 D 内解析,而 L 为 D 内的简闭正向曲线,且由 L 所界的内部区域完全包含于 D 内,而 f(z) 在 L 上的值恒为 2,则 f(z) 在 L 内任一点 z_0 处的值为 【 】
 - (A). 0

(*B*). 1

(C). 2

(D). 不能确定

二、填空题

- 1. 连接 $z_1 = 1, z_2 = i$ 的直线段 L 的复参数方程为 z =,积分 $\int_L z e^z dz =$ _______.
- 2. 设 L 为正向圆周 $|z-z_0|=a$,则 n=1 时, $\oint_L \frac{dz}{(z-z_0)^n} = ______$,而 $n \neq 1$ 为整数时,

$$\oint_L \frac{dz}{(z-z_0)^n} = \underline{\qquad}$$

3. 设 L 为正向圆周 |z| = a,则对整数 $n \ge 0$, 当 0 < a < 1 时,有 $\oint_L \frac{dz}{(z-1)^n} = \underline{\hspace{1cm}}$

而
$$a > 1$$
 时,有 $\oint_L \frac{dz}{(z-1)^n} = \underline{\qquad}$.

4. 设 L 为正向圆周 |z|=1,则 $\oint_L \frac{ze^z dz}{(z-2)(z-3)(z-4)} = \underline{\hspace{1cm}}$.

三、计算题

- 1. 计算 $\int_{L} |z| dz$, 其中积分路径 L 分别为:
- (1). 从 $z_1 = 0$ 到 $z_2 = 1 + i$ 的直线段.

(2)、先从 $z_1=0$ 沿直线到 $z_2=1$,再从 $z_2=1$ 沿直线到 $z_3=1+i$ 的折线段.

(3)、正向圆周 |z|=5.

- 2. 计算下列积分
- (1). $\int_0^i z e^{z^2} dz$.

(2). $\int_0^i (\sin z + 2z) dz$.

姓名

学号

3. 计算下列积分

(1).
$$\oint_{|z|=3/2} \frac{dz}{(z+1)(z-2)}.$$

(2). $\oint_L \frac{dz}{z^2-2}$, 其中 L 是不经过 $\pm\sqrt{2}$ 且仅包含此两点之一的简闭正向曲线.

(3).
$$\oint_{|z|=3} \frac{zdz}{(2z+1)(z-2)}.$$

班级

姓名

学号

4. 计算下列积分:

$$(1). \quad \oint\limits_{|z|=1} \frac{e^z dz}{z^{100}}.$$

(2).
$$\oint_{|z|=5} \frac{dz}{(z-1)^3 (z+1)^4}.$$

第四章 解析函数的级数表示

一、单项选择题

1. 级数 $\sum_{n=1}^{+\infty} \frac{i^n}{n}$ 的敛散性为

- (A). 绝对收敛 (B). 条件收敛
- (C). 发散
- (D). 不确定
- 2. 若幂级数 $\sum_{0 \le n \le n} c_n z^n$ 在 $z_1 = 1 + 2i$ 处收敛,则该幂级数在 $z_2 = 2$ 处的敛散性为

]

- (A). 绝对收敛
- (B). 条件收敛
- (C). 发散
- (D). 不确定

3. 幂级数 $\sum_{n=1}^{+\infty} \frac{\sin(n\pi/2)}{n} (z/2)^n$ 的收敛半径为

- (*A*). 1
- (*B*). 2

- (*C*). $\sqrt{2}$
- (D). $+\infty$

4. 级数 $\sum_{n=1}^{\infty} z^n$ 的收敛域为

- (A). |z| < 1 (B). 0 < |z| < 1 (C). $1 < |z| < +\infty$ (D). 空集
- 5. 函数 $f(z) = \frac{1}{z(z+1)(z-2)(z+4)}$ 在以原点为中心的圆环域的 *Laurent* 级数展开式有 【
 - (A). 1个
- (*B*). 2 ↑
- (C). 3个
- (D). 4个
- 6. 设S(z)为幂级数 $\sum_{0 \le n < \infty} c_n (z z_0)^n$ 的和函数,则下列结论正确的是

- (A). S(z) 在收敛圆域内处处解析
- (B). S(z) 在收敛点处均解析
- (C). 该幂级数在收敛圆周上处处收敛 (D).以上皆错

二、填空题

- 1. 幂级数 $\sum_{r=0}^{+\infty} \frac{z^n}{n!}$ 的收敛半径为 $R = \underline{\qquad}$, 而 $\sum_{r=1}^{+\infty} \frac{z^n}{n \cdot 2^n}$ 的收敛半径为 $r = \underline{\qquad}$.
- 2. 若幂级数 $\sum_{(z+i)^n} c_n(z+i)^n$ 在 $z_1 = i$ 处发散,则该幂级数在 $z_2 = 2$ 处的敛散性为______.
- 3. $\lim_{n\to\infty} \frac{(-1)^n + ni}{n+4} = \underline{\hspace{1cm}}$

班级

姓名

学を

4. 函数
$$f(z) = \frac{1}{1+z^3}$$
 的幂级数展开式为_______,收敛半径为 $R =$ _______.

三、计算题

- 1. 求下列函数 f(z) 在指定点 z_0 处的 Taylor 级数,并指出收敛域:
- (1). $f(z) = \frac{1}{4-3z}$, $z_0 = 1+i$.

(2). $f(z) = \frac{1}{(1-z)^2}$, $z_0 = 0$.

(3). $f(z) = \frac{1}{(z-a)(z-b)}$, $z_0 = 0$, $\sharp + a, b \neq 0$.

(4).
$$f(z) = \frac{z}{(z+1)(z+2)}$$
, $z_0 = 1$ $\not\equiv z_0 = 2$.

姓名

学号

2. 求下列函数 f(z) 在指定环域内的 Laurent 级数:

(1).
$$f(z) = \frac{z^2 - 2z + 5}{(z - 2)(z^2 + 1)}$$
, $1 < |z| < 2$.

(2).
$$f(z) = \frac{1}{(z-1)(z-2)}$$
, $0 < |z-1| < 1$ $\stackrel{?}{\boxtimes} 1 < |z-2| < +\infty$.

班级

姓名

学号

3. 将 $f(z) = \frac{1}{(z^2+9)^2}$ 在以 $z_0 = 3i$ 为中心的圆环域内展为 *Laurent* 级数.

姓名

学号

第五章 留数理论及其应用

一、单项选择题

1. 点
$$z = 0$$
 是 $f(z) = \frac{1 - e^z}{z^4 \sin z}$ 的 m 阶 极 点,则 $m =$

- (A). 5
- (B). 4
- (C). 3
- (D). 2

2. 点
$$z = 1$$
 是 $f(z) = (z-1)\sin[1/(z-1)]$ 的

- (A). 可去奇点
- (B). 一阶极点
- (C). 二阶极点
- (D). 本性奇点

3. 设
$$f(z) = \sum_{0 \le n < +\infty} c_n z^n$$
 在 $|z| < R$ 内解析, $m \ge 1$ 为自然数,则 $Res[f(z)/z^m, 0] =$ 【 】

- (A). c_m
- (B). $m!c_m$
- (C). c_{m-1}
- (D). $(m-1)!c_{m-1}$

- 4. 设 $z_0 \neq \infty$,则下列结论中正确的是
 - (A). 若 $m \ge 1$ 为自然数,且 $\varphi(z)$ 在 $z = z_0$ 处解析,则 $z = z_0$ 为 $f(z) = \frac{\varphi(z)}{(z-z_0)^m}$ 的 m 阶极点
 - (B). 若无穷远点是 f(z)的可去奇点,则 $Res[f(z),\infty]=0$
 - (C). 若 $z = z_0$ 是f(z)的可去奇点或解析点,则 $Res[f(z), z_0] = 0$
 - (D). 若 $\oint_C f(z)dz = 0$,则f(z)在C内无奇点

5. 点
$$z = 0$$
 是 $f(z) = z^2 (e^{z^2} - 1)$ 的 m 阶零点,则 $m =$

- (A). 1
- (B). 2
- (C). 3
- (D). 4

6. 设
$$z_0$$
 ≠∞是 $f(z)$ 的 $m \ge 1$ 阶极点,则下列结论中正确的是

- (A). $f(z) = (z z_0)^{-m} \varphi(z)$, 其中 $\varphi(z)$ 在 $z = z_0$ 处解析
- (B). $Res[f(z), z_0] = \frac{1}{(n-1)!} \lim_{z \to z_0} \frac{d^{n-1}}{dz^{n-1}} [(z-z_0)^n f(z)], 其中 n \ge m 为整数$
- (*C*). $z = z_0$ 是 $\frac{1}{f(z)}$ 的 $m \ge 1$ 阶零点
- (D). $\lim_{z \to z_0} (z z_0)^m f(z) = \infty$

姓名

学号

二、填空题

1.
$$z = 0$$
是 $f(z) = z^3 - \sin(z^3)$ 的 $m = _____$ 阶零点.

2. 若
$$z = z_0 \neq \infty$$
 是 $f(z)$ 的 $m \geq 1$ 阶极点,则 $Res[f(z)/f'(z), z_0] = _____.$

3.
$$Res \left[2z/(z^2+1), \infty \right] = \underline{\hspace{1cm}}$$

4.
$$\oint_{|z|=1} z^3 e^{1/z} dz = \underline{\hspace{1cm}}$$

$$5. \int_{-\infty}^{+\infty} \frac{\sin x}{x} dx = \underline{\qquad}.$$

三、计算题

1. 求下列函数 f(z) 的所有有限奇点,并指出其类型:

(1).
$$f(z) = \frac{1-\cos z}{z^2}$$
.

(2).
$$f(z) = e^{1/(z-1)}$$
.

(3).
$$f(z) = \frac{z-1}{z^3 - z^2 - z + 1}$$
.

(4).
$$f(z) = \frac{\sin z}{z^3}$$
.

(5).
$$f(z) = \frac{\sin z}{z^2 (e^z - 1)}$$
.

(6).
$$f(z) = \frac{6}{(z+1)(z-2)} + \frac{2}{z+1}$$
.

2. 求下列函数 f(z) 在有限孤立奇点处的留数:

(1).
$$f(z) = \frac{1+z^4}{(z^2+1)^3}$$
.

(2).
$$f(z) = z^2 \sin(z^{-1})$$
.

(3).
$$f(z) = \frac{e^z}{(z-1)(z+3)^3}$$
.

(4).
$$f(z) = z^2 \cos(z^{-1})$$
.

3. 判断 $z = \infty$ 是否为函数 f(z) 的孤立奇点? 对孤立的无穷远点,求留数 $Res[f(z),\infty]$

(1).
$$f(z) = \frac{1}{e^z - 1}$$
.

(2).
$$f(z) = \frac{2z}{3+z^2}$$
.

(3).
$$f(z) = z^2 + z^{-1}$$
.

(4).
$$f(z) = e^{z^2}$$
.

4. 利用留数计算积分

(1).
$$\oint_{|z|=2} \frac{e^{2z}dz}{(z-1)^2}.$$

姓名

学号

$$(2). \quad \oint\limits_{|z|=1/2} \frac{\sin z dz}{z(1-e^z)}.$$

(3).
$$\oint_{|z|=2} \frac{(5z-2)dz}{z(z-1)}.$$

(4).
$$\oint_{|z-1|=1} \frac{dz}{(z-1)^3(z+1)^2}.$$

5. 计算积分

$$(1). \quad \oint_{|z|=2} \frac{zdz}{z^4 - 1}.$$

姓名

学号

(2).
$$\oint_{|z|=2} \frac{dz}{(z+i)^{10}(z-1)^5(z-4)}.$$

(3).
$$\oint_{|z|=3} \frac{z^{15}dz}{(z^2-1)^2(z^4+2)^3}.$$

(4).
$$\oint_{|z|=2} \frac{z^3 e^{1/z} dz}{1+z}.$$

班级

姓名

学号

第七章 傅里叶变换与拉普拉斯变换

一、填空题

- 1. 设 $\alpha > 0$ 为常数,则H $\left[\cos(\alpha t)\right] =$ _______,N $\left[\cos(\alpha t)\right] =$ ______.
- 2. 设 $\alpha > 0$ 为常数,则H $\left[\sin(\alpha t)\right] =$ _______,N $\left[\sin(\alpha t)\right] =$ ______.
- 3. 单位阶跃函数u(t)的傅氏变换为H $[u(t)] = _____.$
- 4. 单位脉冲函数 $\delta(t)$ 的傅氏变换为H $\left[\delta(t)\right]$ = ______.
- 5. 若 $f(t) \equiv 1$,则其傅氏变换为H $[f(t)] = ______,拉氏变换为N <math>[f(t)] = ______$.
- 6. 设 $\alpha \neq 0$ 为常数,则 $e^{\alpha i}$ 的拉氏变换为N $\left\lceil e^{\alpha i} \right\rceil =$ _______.

二、计算题

1. 求下列函数的傅氏变换

(2).
$$f(t) = sgn(t)$$
.

(3).
$$f(t) = u(t)\sin(\alpha t)$$
, 其中 $\alpha > 0$ 为常数.

班级

姓名

学号

3. 求下列函数的拉氏变换

(1).
$$f(t) = \begin{cases} 3, & \text{ } \pm 0 \le t < 2 \\ -1, & \text{ } \pm 2 \le t < 4. \\ 0, & \text{ } \pm t \ge 4 \end{cases}$$

(2).
$$f(t) = \begin{cases} t^3, & 若 t \ge 0 \\ 0, & ੜ t \le 0 \end{cases}$$

4. 求下列函数的拉氏逆变换

(1).
$$F(s) = \frac{2}{1-s^2}$$
.

(2).
$$F(s) = \frac{s}{(s^2+1)(s^2+4)}$$
.

5. 求解如下微分方程

(1).
$$\begin{cases} x''(t) - 2x'(t) + x(t) = e^t \\ t = 0 : x'(t) = x(t) = 0 \end{cases}$$
.

姓名

学号

(2).
$$\begin{cases} x''(t) + 4x'(t) + 3x(t) = e^{-t} \\ t = 0 : x'(t) = x(t) = 1 \end{cases}$$

(3).
$$\begin{cases} x'''(t) + 3x''(t) + 3x'(t) + x(t) = 1 \\ t = 0 : x''(t) = x'(t) = x(t) = 0 \end{cases}$$

(4).
$$\begin{cases} x''(t) - x(t) = 4\sin t + 5\cos t \\ t = 0 : x'(t) = -2, x(t) = -1 \end{cases}$$