Fundamentos Teóricos da Computação

CIÊNCIA DA COMPUTAÇÃO

Prof. Dr. João Paulo Aramuni

- * Formas Normais
 - * Forma normal de Greibach
 - * Forma normal de Chomsky

- * Por que manipular gramáticas?
 - * Todas as técnicas de manipulação apresentadas não alteram a linguagem gerada pela gramática
 - * Se a linguagem é a mesma, por que não deixar a gramática como foi criada?
- * Não alteram a linguagem, mas alteram a estrutura da gramática
 - * Facilitam sua utilização dentro de alguns contextos
 - * Ex: Reduzem o número de derivações, facilitam verificar se uma sentença pertence ou não à linguagem gerada pela gramática.

- * Por que manipular gramáticas?
 - * Todas as técnicas de manipulação apresentadas não alteram a linguagem gerada pela gramática
 - * Se a linguagem é a mesma, por que não deixar a gramática como foi criada?
- * Não alteram a linguagem, mas alteram a estrutura da gramática
 - * Facilitam sua utilização dentro de alguns contextos
 - * Ex: Reduzem o número de derivações, <u>facilitam verificar se</u> uma sentença pertence ou não à linguagem gerada pela gramática.

- * Uma gramática é dita normalizada em relação a um certo padrão quando todas as suas produções satisfazem às restrições impostas pelo padrão em questão
- * Formas Normais = Padrão
- Restrições rígidas na definição das produções
- * Usadas no desenvolvimento de algoritmos e provas de teoremas

* As formas normais estabelecem restrições rígidas na definição das produções, sem reduzir o poder de geração das Gramáticas Livres de Contexto. São usadas principalmente no desenvolvimento de algoritmos (com destaque para reconhecedores de linguagens) e na prova de teoremas.

* Iremos destacar as duas Formas Normais mais conhecidas, essas que receberam os nomes de seus autores **Sheila Greibach** professora de Ciência da Computação da Universidade da Califórnia em Los Angeles que também criou a Linguística e a Matemática Aplicada e **Avram Noam Chomsky**, linguista, filósofo, ativista político estadunidense, professor de linguística da Universidade de Tecnologia de Massachusetts (MIT). Chomsky é considerado o pai da linguística moderna.

* Sheila Greibach

* Avram Noam Chomsky

- * Nascimento: 6 de outubro de 1939 (79 anos), Nova Iorque, Nova Iorque, EUA
- Formação: Universidade Harvard

- Nascimento: 7 de dezembro de 1928 (90 anos), Oak Lane, Pensilvânia, EUA
- * <u>Formação</u>: Universidade da Pensilvânia

Forma Normal de Greibach

- * Uma GLC $G = (V, \Sigma, R, P)$ é dita estar na forma normal de Greibach (FNG) se todas as suas regras são da forma:
 - * $P \rightarrow \lambda$ se $\lambda \in L(G)$;
 - * $X \rightarrow ay$ para $a \in \Sigma$ e $y \in V^*$;
- * Sempre existe uma gramática na FNG equivalente a uma GLC qualquer.
- * A FNG não será estudada profundamente neste curso

Forma Normal de Chomsky

- * A forma normal de Chomsky permite a criação de algoritmos eficientes para verificar se uma determinada sentença pertence ou não a uma linguagem gerada por uma gramática
 - * Aplicação direta em <u>Analisadores Sintáticos!</u>
 - * Assunto de extrema importância em <u>Compiladores!</u>
- * Esta forma permite um teste eficiente da pertinência de uma palavra a uma Linguagem Livre de Contexto.

Forma Normal de Chomsky

- * Uma GLC $G = (V, \Sigma, R, P)$ é dita estar na forma normal de Chomsky (FNC) se todas as suas regras são da forma:
 - * $P \rightarrow \lambda$ se $\lambda \in L(G)$;
 - * $X \rightarrow YZ$ para $Y, Z \in V$;
 - * $X \rightarrow a$ para $a \in \Sigma$;
- * Sempre existe uma gramática na FNC equivalente a uma GLC qualquer.

Passos para obter uma gramática na FNC

- * Criar a regra $P' \rightarrow P$;
- * Eliminar regras λ;
- Eliminar regras unitárias;
- * Eliminar variáveis inúteis;
- * Modificar cada regra $X \to w$, onde |w| >= 2, se necessário, de forma que ela fique contendo apenas variáveis.
 - * Cada símbolo a de w que pertença ao alfabeto deve ser substituído por uma variável Y cuja única regra $Y \rightarrow a$. Se esta regra não existir, criá-la, sendo Y uma nova variável;
 - * Substituir cada regra $X \rightarrow Y_1 Y_2 ... Y_{n,} n >= 3$ pelo conjunto das regras:
 - * $X \rightarrow Y_1 Z_1$
 - * $Z_1 \rightarrow Y_2 Z_2$, ...,
 - * $Z_{\text{n-2}} \rightarrow Y_{\text{n-1}} Y_{\text{n}}$, em que
 - * $Z_1, Z_2, ..., Z_{n-2}$ são variáveis novas.

Exemplo 1

* Seja a GLC $G = (\{L, S, E\}, \{a, (,)\}, R, L)$, em que R contém as seguintes regras:

*
$$L \rightarrow (S)$$

*
$$S \rightarrow SE \mid \lambda$$

*
$$E \rightarrow a \mid L$$

* Construa uma GLC G' equivalente a G na FNC

* Acrescentando a regra para a nova variável de partida:

- $* P \rightarrow L$
- * $L \rightarrow (S)$
- * $S \rightarrow SE \mid \lambda$
- * $E \rightarrow a \mid L$

* Eliminando regras λ :

* $P \rightarrow L$ * $L \rightarrow (S)$ * $S \rightarrow SE \mid \lambda$ * $E \rightarrow a \mid L$

* Eliminando regras λ :

```
* P \rightarrow L

* L \rightarrow (S) \mid ()

* S \rightarrow SE \mid \lambda

* E \rightarrow a \mid L
```

* Eliminando regras λ :

```
* P \rightarrow L

* L \rightarrow (S) \mid ()

* S \rightarrow SE \mid E \mid \lambda

* E \rightarrow a \mid L
```

* Eliminando regras λ :

*
$$P \rightarrow L$$

* $L \rightarrow (S) \mid ()$
* $S \rightarrow SE \mid E$
* $E \rightarrow a \mid L$

* Obs: P não é anulável, então λ não faz parte da linguagem L(G)

```
* P \rightarrow L

* L \rightarrow (S) \mid ()

* S \rightarrow SE \mid E

* E \rightarrow a \mid L
```

```
* P \rightarrow (S) \mid ()

* L \rightarrow (S) \mid ()

* S \rightarrow SE \mid E

* E \rightarrow a \mid (S) \mid ()
```

```
* P \rightarrow (S) \mid ()

* L \rightarrow (S) \mid ()

* S \rightarrow SE \mid E

* E \rightarrow a \mid (S) \mid ()
```

```
* P \to (S) \mid ()

* L \to (S) \mid ()

* S \to SE \mid a \mid (S) \mid ()

* E \to a \mid (S) \mid ()
```

* Eliminando símbolos inúteis:

*
$$P \to (S) \mid ()$$

* $L \to (S) \mid ()$
* $S \to SE \mid a \mid (S) \mid ()$
* $E \to a \mid (S) \mid ()$

* Eliminando símbolos inúteis:

*
$$P \to (S) \mid ()$$

* $S \to SE \mid a \mid (S) \mid ()$
* $E \to a \mid (S) \mid ()$

*
$$P \to (S) \mid ()$$

* $S \to SE \mid a \mid (S) \mid ()$
* $E \to a \mid (S) \mid ()$

* Escrevendo na FNC

*
$$P \to (S) \mid ()$$

* $S \to SE \mid a \mid (S) \mid ()$
* $E \to a \mid (S) \mid ()$

* |w| >= 2 e w contém terminais

```
* P \to (S) \mid ()

* S \to SE \mid a \mid (S) \mid ()

* E \to a \mid (S) \mid ()

* A \to (
```

```
* P \to AS) | A )

* S \to SE | a | (S) | () 
* E \to a | (S) | () 
* A \to (
```

```
* P \rightarrow AS) | A)

* S \rightarrow SE | a | (S) | ()

* E \rightarrow a | (S) | ()

* A \rightarrow (

* B \rightarrow )
```

```
* P \rightarrow ASB \mid AB

* S \rightarrow SE \mid a \mid (S) \mid ()

* E \rightarrow a \mid (S) \mid ()

* A \rightarrow (

* B \rightarrow )
```

```
* P \rightarrow ASB \mid AB

* S \rightarrow SE \mid a \mid ASB \mid AB

* E \rightarrow a \mid ASB \mid AB

* A \rightarrow (

* B \rightarrow )
```

```
* P \rightarrow ASB \mid AB

* S \rightarrow SE \mid a \mid ASB \mid AB

* E \rightarrow a \mid ASB \mid AB

* A \rightarrow (

* B \rightarrow )
```

```
* P \rightarrow ASB \mid AB

* S \rightarrow SE \mid a \mid ASB \mid AB

* E \rightarrow a \mid ASB \mid AB

* A \rightarrow (

* B \rightarrow )

* C \rightarrow SB
```

```
* P \rightarrow AC \mid AB

* S \rightarrow SE \mid a \mid AC \mid AB

* E \rightarrow a \mid AC \mid AB

* A \rightarrow (

* B \rightarrow )

* C \rightarrow SB
```

```
* P \rightarrow AC \mid AB

* S \rightarrow SE \mid a \mid AC \mid AB

* E \rightarrow a \mid AC \mid AB

* A \rightarrow (

* B \rightarrow )

* C \rightarrow SB
```

Obrigado.

joaopauloaramuni@gmail.com joaopauloaramuni@fumec.br

