Lecture 1: Discrete Models and Optimization

Jean-François Houde UW-Madison

November 1, 2021

• Random utility framework:

- ▶ Choice-set: $j \in \{0, 1, ..., J\}$
- ▶ Payoff function:

$$V_{ij} = u_j(X_{ij}; \beta) + \epsilon_{ij}$$

Choice-probabilities: Utility maximization

$$Pr(y_i = j | X_i, \beta) = Pr(V_{ij} > V_{ij'}, \forall j' \neq j | X_i, \beta)$$

=
$$Pr(u_{ij} - u_{ij'} > \epsilon_{ij} - \epsilon_{ij'}, \forall j' \neq j | X_i, \beta)$$

- ► **Goal:** Infer the shape of the payoff function from chosen actions (revealed-preference)
- ► Likelihood function (panel setting):

$$I(Y,X|\beta) = \sum_{i} \ln \Pr(y_{i1},\ldots,y_{iT}|X_i,\beta)$$

• Random utility framework:

- ▶ Choice-set: $j \in \{0, 1, ..., J\}$
- ▶ Payoff function:

$$V_{ij} = u_j(X_{ij}; \beta) + \epsilon_{ij}$$

Choice-probabilities: Utility maximization

$$Pr(y_i = j | X_i, \beta) = Pr(V_{ij} > V_{ij'}, \forall j' \neq j | X_i, \beta)$$

=
$$Pr(u_{ij} - u_{ij'} > \epsilon_{ij} - \epsilon_{ij'}, \forall j' \neq j | X_i, \beta)$$

- ► **Goal:** Infer the shape of the payoff function from chosen actions (revealed-preference)
- Likelihood function (panel setting):

$$I(Y, X|\beta) = \sum_{i} \ln \Pr(y_{i1}, \dots, y_{iT}|X_i, \beta)$$

• Identification:

- Scale invariant: Choices are unaffected by multiplying V by any c>0
- Normalization: Choices are determined by differences in payoffs

• Assumptions:

- Normalizations: $u_0(X_{i0}) = 0$ and $E(\epsilon_{ij}) = 0$
- Linearity (not very restrictive): $u_i(X_{ij}; \beta) = X_{ij}\beta$
- Conditional independence (relaxed later): $F(\epsilon_{ii}|X_i) = F(\epsilon_{ij})$

• Assumptions:

- Normalizations: $u_0(X_{i0}) = 0$ and $E(\epsilon_{ij}) = 0$
- ▶ Linearity (not very restrictive): $u_j(X_{ij}; \beta) = X_{ij}\beta$
- ▶ Conditional independence (relaxed later): $F(\epsilon_{ij}|X_i) = F(\epsilon_{ij})$

Scale restrictions:

- ▶ IID errors: $Var(\epsilon_{ij}) = 1$ and slopes are measured relative to s.d. of ϵ $(\beta/\sigma_{\epsilon})$
- ▶ Correlated errors: Example j = 1, 2, 3.

$$\mathsf{Var}(\epsilon_i) = \Omega = egin{pmatrix} \sigma_1^2 & \sigma_{12} & \sigma_{13} \ . & \sigma_2^2 & \sigma_{23} \ . & . & \sigma_3^2 \end{pmatrix}$$

• After normalizing $(\epsilon_{ij} - \epsilon_{i0})$ and standardizing $(m = var(\epsilon_{i1} - \epsilon_{i0}) = 1)$:

$$\tilde{\Omega} = \begin{pmatrix} 1 & (\sigma_1^2 + \sigma_{23} - \sigma_{12} - \sigma_{13})/m \\ & (\sigma_1^2 + \sigma_3^2 - \sigma_{13})/m \end{pmatrix} = \begin{pmatrix} 1 & \rho \\ & \sigma \end{pmatrix}$$

Binary Choices

• Probit: $\epsilon_{i1} - \epsilon_{i0} \sim N(0,1)$

$$\Pr(y_i = 1 | X_i, \beta) = 1 - \Phi(-X_i\beta) = \text{Normal CDF}$$

• Logit: $\epsilon_{ii} \sim \mathsf{T1EV}(0,1)$

$$\Pr(y_i = 1 | X_i, \beta) = \frac{\exp(X_i \beta)}{1 + \exp(X_i \beta)} = \Lambda(X_i \beta)$$

• Linear probability: $\epsilon_{i1} - \epsilon_{i0} \sim U(-\sigma, \sigma)$

$$\Pr(y_i = 1 | X_i, \beta) = 1 - \Pr(\epsilon_{i1} - \epsilon_{i0} < X_i \beta) = \frac{2\sigma + X_i \tilde{\beta}}{2\sigma} = X_i \beta$$

• Semi-parametric:

$$\Pr(y_i = 1 | X_i, \beta) = G(X_i \beta)$$

where $G(\cdot)$ is the non-parametric CDF (e.g. Kernel or Mixture-of-Normals).

Estimation: Logit example

• ML estimator (cross-section):

$$\max_{\beta} \sum_{i} \ln \left[\Lambda(X_{i}\beta)_{i}^{y} \left(1 - \Lambda(X_{i}\beta)\right)^{1-y_{i}} \right] = \max_{\beta} L(\beta)$$

• The FOC is given by the Score of the log-likelihood:

$$g(\beta) = \sum_{i=1}^{n} (y_i - \Lambda_i) X_i = 0$$

where $\Lambda_i \equiv \Lambda(X_i\beta)$ and $g(\beta)$ is a $1 \times K$ vector.

• The SOC is given by the Hessian:

$$H(\beta) = -\sum_{i=1}^{n} \Lambda_i (1 - \Lambda_i) X_i' X_i < 0$$

Numerical optimization: Newton's Method

• Second-order Taylor's expansion:

$$L(\beta) \approx L(\beta^0) + g(\beta^0)(\beta - \beta^0) + \frac{1}{2}(\beta - \beta^0)'H(\beta^0)(\beta - \beta^0)$$

• If $H(\beta)$ is negative definite, the approximation to the LLF is maximized at:

$$\beta = \beta^0 - H(\beta^0)^{-1} g(\beta^0)'$$

- This suggests an iterative approach to maximize $L(\beta)$:
 - ▶ Initial value: β^0
 - ▶ Iteration $k: \beta^k = \beta^{k-1} H(\beta^{k-1})^{-1} g(\beta^{k-1})'$
 - Repeat until: $||\beta^k \beta^{k-1}|| < \eta$ (e.g. 10^{-12})
- Newton's algorithm converges quadratically when starting values are in a "neighborhood" of the solution. To facilitate convergence, the updating step is augmented by a "line search" parameter $s^k \in (0,1)$:

$$\max_{s^k} L\left(\beta^{k-1} - s_k H\left(\beta^{k-1}\right)^{-1} g(\beta^{k-1})'\right)$$

Alternatives: Quasi-Newton Methods

Quasi-newton methods replace the Hessian with an approximation:

$$\beta^{k} = \beta^{k-1} - B^{k} g(\beta^{k-1})'$$
$$\beta^{k} = \beta^{k-1} - s^{k}$$

• Steepest descent method ($B^k = I$):

$$\beta^k = \beta^{k-1} - g(\beta^{k-1})$$

• BFGS (default method): Update Hessian approximation as follows

$$B^{k+1} = B^k - \frac{B^k z^k z^{k'} B^k}{z^{k'} B^k z^k} + \frac{y^k y^{k'}}{y^{k'} z^k}$$

where
$$y^k = (g(\beta^k) - g(\beta^{k-1}))'$$
 and $z^k = \beta^k - \beta^{k-1}$.

Alternatives: Simplex method (Nelder-Mead)

- Nelder-Mead is a commonly used derivative-free optimization method for multivariate problems (matlab: fminsearch)
- Two-dimension example: $\beta = (\beta_1, \beta_2)$
- Step 1: Simplex calculation

$$\begin{pmatrix} \beta^0 \\ \beta^1 \\ \beta^2 \end{pmatrix} = \begin{pmatrix} (\beta_1, \beta_2) \\ (\beta_1 + s_1, \beta_2) \\ (\beta_1, \beta_2 + s_2) \end{pmatrix}$$

where $s_k = \beta_k \delta$ (e.g. $\delta = .05$)

▶ Notation: Simplex centroid (*M*)

$$M = \sum_{l=1}^{3} \beta^{l} \frac{1}{3}$$

- ▶ Evaluate and re-order function: $L(\beta^{(1)}) > L(\beta^{(2)}) > L(\beta^{(3)})$
- Important: The algorithm updates the parameter by repeatedly replacing the worst point in the simplex $(\beta^{(3)})$

Alternatives: Simplex method (Nelder-Mead)

• Step 2: Evaluate the function at new reflection point β^R

$$\beta^R = M + \alpha (M - \beta^{(3)}), \quad \alpha = 1$$

- Step 3: Update simplex
 - ▶ Case 1 (Improvement) If $L(\beta^R) > L(\beta^1)$, **expand** the simplex in the same direction

$$\beta^{E} = \beta^{R} + \gamma(\beta^{R} - M), \quad \gamma = 1$$

If $L(\beta^E) > L(\beta^0)$, replace $\beta^{(3)}$ with β^E , otherwise use β^R . Repeat 2.

- ► Case 2: If $L(\beta^{(2)}) < L(\beta^R) < L(\beta^1)$, replace $\beta^{(3)}$ by β^R . Repeat 2.
- ▶ Case 3 (Contraction): If $L(\beta^{(2)}) > L(\beta^R)$ we contract the simplex

$$\beta^{C} = \begin{cases} M + \beta(\beta^{R} - M) & L(\beta^{R}) > L(\beta^{(3)}) \\ M + \beta(\beta^{(3)} - M) & L(\beta^{R}) < L(\beta^{(3)}) \end{cases}$$

where $\beta \leq 1/2$. If β^{C} is an improvement over $\beta^{(3)}$, replace and go to 2.

Case 4: Otherwise **shrink** the simplex towards the best direction.

Simplex: Visual example

Simplex Transformations in the Nelder-Mead Algorithm

Reflection

Expansion

Contraction

Shrinkage

Additional options

- Other derivative-free algorithm:
 - Golden search method
 - Simulated Annealing
 - ► Genetics algorithm
 - **...**
- Advices:
 - Know your function: Start with a (univariate) grid searches to verify that the function is smooth
 - ▶ If the function is not smooth... Try to smooth the model!
 - ▶ Before using Newton-based methods, find good starting values using grid-search and/or derivative free methods (e.g. Simplex)
 - ▶ If the model is inherently non-smooth use derivative-free methods and start from different points (and be patient!)
- More advices: Pay attention to the scale of the parameters and of the objective function
 - ▶ Good practice: $\beta^* \approx 1$
 - ▶ Good practice: $\max_{\beta} L(\beta)/N$

Multinomial Choice Models

- McFadden: Multinomial Logit Model
 - ▶ Random-utility:

$$V_{ij} = X_{ij}\beta + \epsilon_{ij}$$

- ▶ Utility shocks: ϵ_{ii} ~ T1EV(0, 1).
- ▶ Choice-probabilities under utility maximization:

$$Pr(y_{i} = 1 | X_{i}, \beta) = Pr(V_{i1} > V_{i0}, ..., V_{i1} > V_{iJ})$$

$$= \frac{\exp(X_{i1}\beta)}{\sum_{j=0}^{J} \exp(X_{ij}\beta)}$$

Likelihood function:

$$\max_{\beta} \sum_{i} \sum_{j=0}^{J} \mathbf{1}(y_i = j) \ln \left[\Pr(y_i = 1 | X_i, \beta) \right]$$

Common Specifications

Multinomial Logit Model: Choice depends chooser's characteristics

$$Pr(y_i = j | x_i) = \frac{\exp(x_i \beta_j)}{1 + \sum_{j'=1}^{J} \exp(x_i \beta_{j'})}$$

Interpretation: β_j measures the marginal effect of individual attribute x_i on the payoff of option j relative to option 0 (scaled by sd of ϵ_{ij}).

Common Specifications

Multinomial Logit Model: Choice depends chooser's characteristics

$$Pr(y_i = j | x_i) = \frac{\exp(x_i \beta_j)}{1 + \sum_{j'=1}^{J} \exp(x_i \beta_{j'})}$$

- Interpretation: β_j measures the marginal effect of individual attribute x_i on the payoff of option j relative to option 0 (scaled by sd of ϵ_{ij}).
- Conditional Logit Model: Choice depends option characteristics

$$\Pr(y_i = j | z_i, X_{i0}, \dots, X_{iJ}) = \frac{\exp(X_{ij}\gamma)}{\sum_{j'=0}^{J} \exp(X_{ij}\gamma)}$$

• Intercept and common variables normalization: $\gamma_0=0$ and $\gamma_z=0$

Example: Major choice

ullet Return to education: Cobb-Douglas function for majors $j=0,\dots,J$

$$\mathsf{In}\,\mathsf{Wage}_{ij} = \gamma_{j0} + \sum_k \mathsf{x}_{ik}\gamma_{jk} + \sigma_\epsilon\epsilon_{ij}$$

Option 0: No college.

Behavioral assumption: Students maximize return to schooling

$$\Pr(\mathsf{Major}_{i} = j | x_{i}) = \begin{cases} \frac{\exp(\beta_{j0} + \sum_{k} x_{ik} \beta_{jk})}{1 + \sum_{j'=1}^{J} \exp(\beta_{j'0} + \sum_{k} x_{ik} \beta_{j'k})} & \text{If } j \geq 1\\ \frac{1}{1 + \sum_{j'=1}^{J} \exp(\beta_{j'0} + \sum_{k} x_{ik} \beta_{j'k})} & \text{If } j = 0 \end{cases}$$

Where
$$\beta_{jk} = (\gamma_{jk} - \gamma_{0k})/\sigma_{\epsilon}$$

Example: Major choice

ullet Return to education: Cobb-Douglas function for majors $j=0,\dots,J$

$$\mathsf{In}\,\mathsf{Wage}_{ij} = \gamma_{j0} + \sum_k \mathsf{x}_{ik}\gamma_{jk} + \sigma_\epsilon\epsilon_{ij}$$

Option 0: No college.

Behavioral assumption: Students maximize return to schooling

$$\Pr(\mathsf{Major}_i = j | x_i) = \begin{cases} \frac{\exp(\beta_{j0} + \sum_k x_{ik} \beta_{jk})}{1 + \sum_{j'=1}^J \exp(\beta_{j'0} + \sum_k x_{ik} \beta_{j'k})} & \text{If } j \ge 1\\ \frac{1}{1 + \sum_{j'=1}^J \exp(\beta_{j'0} + \sum_k x_{ik} \beta_{j'k})} & \text{If } j = 0 \end{cases}$$

Where $\beta_{jk} = (\gamma_{jk} - \gamma_{0k})/\sigma_{\epsilon}$

• Interpretation of β_k ?

Odds ratio_j =
$$\frac{\Pr(\mathsf{Major}_i = j | x_i)}{\Pr(\mathsf{Major}_i = 0 | x_i)} = \exp(\beta_{j0} + \sum_k x_{ik} \beta_k)$$

$$\Rightarrow \frac{\mathsf{Odds}\;\mathsf{ratio}_j(x_{ik}+\Delta)}{\mathsf{Odds}\;\mathsf{ratio}_j(x_{jk})} = \exp(\beta_{jk}\Delta) = \Delta\;\mathsf{Odds}\;\mathsf{of}\;\mathsf{choosing}\;j\;\mathsf{over}\;0$$

Consumer Surplus and Elasticities

Random utility: Surplus

Willingness to Pay_{ij}
$$- p_{ij} \Rightarrow V_{ij} = X_{ij}\beta - \alpha p_{ij} + \epsilon_{ij}, \quad \alpha = 1/\sigma_{\epsilon}$$

Consumer Surplus and Elasticities

• Random utility: Surplus

Willingness to Pay_{ij}
$$- p_{ij} \Rightarrow V_{ij} = X_{ij}\beta - \alpha p_{ij} + \epsilon_{ij}, \quad \alpha = 1/\sigma_{\epsilon}$$

ullet Consumer surplus: Integrating over the distribution of consumer shocks (ϵ_{ij})

$$CS_i(X_{ij}) = \frac{1}{\alpha} E[\max_j V_{ij}] = \frac{1}{\alpha} \ln \left| \sum_j \exp(X_{ij}\beta) \right| = \frac{1}{\alpha} [\text{Inclusive value}]$$

Consumer Surplus and Elasticities

• Random utility: Surplus

Willingness to Pay_{ij}
$$- p_{ij} \Rightarrow V_{ij} = X_{ij}\beta - \alpha p_{ij} + \epsilon_{ij}, \quad \alpha = 1/\sigma_{\epsilon}$$

• Consumer surplus: Integrating over the distribution of consumer shocks (ϵ_{ij})

$$CS_i(X_{ij}) = \frac{1}{\alpha} E[\max_j V_{ij}] = \frac{1}{\alpha} \ln \left[\sum_j \exp(X_{ij}\beta) \right] = \frac{1}{\alpha} [\text{Inclusive value}]$$

• Substitution patterns. Let $D_j = Pr(y = j)$:

$$\frac{\partial D_j}{\partial p_k} = \begin{cases} -\alpha D_j (1 - D_j) & \text{if } j = k \\ \alpha D_j D_k & \text{if } j \neq k \end{cases}$$

• This implies that the elasticity of substitution between j and k is proportional to demand for k

Elasticity_{i,k} =
$$\alpha p_k D_k$$

• The relative odds of choosing alternative *j* over *k* is independent of the characteristics of other options:

$$\frac{\Pr(y_i = j | X_i, \beta)}{\Pr(y_i = k | X_i, \beta)} = \frac{\exp(X_{ij}\beta - \alpha p_{ij}) / \sum_{j'=0}^{J} \exp(X_{ij'}\beta - \alpha p_{ij'})}{\exp(X_{ik}\beta - \alpha p_{ik}) / \sum_{j'=0}^{J} \exp(X_{ij'}\beta - \alpha p_{ij'})}$$
$$= \frac{\exp(X_{ij}\beta - \alpha p_{ij})}{\exp(X_{ik}\beta - \alpha p_{ik})}$$

• The relative odds of choosing alternative *j* over *k* is independent of the characteristics of other options:

$$\frac{\Pr(y_i = j | X_i, \beta)}{\Pr(y_i = k | X_i, \beta)} = \frac{\exp(X_{ij}\beta - \alpha p_{ij}) / \sum_{j'=0}^{J} \exp(X_{ij'}\beta - \alpha p_{ij'})}{\exp(X_{ik}\beta - \alpha p_{ik}) / \sum_{j'=0}^{J} \exp(X_{ij'}\beta - \alpha p_{ij'})}$$
$$= \frac{\exp(X_{ij}\beta - \alpha p_{ij})}{\exp(X_{ik}\beta - \alpha p_{ik})}$$

- Red-bus/Blue-bus:
 - ► Two options: car (c) and blue-bus (bb)
 - Equal choice-probability: $P_c = P_{bb} = 1/2$ and $P_c/P_{bb} = 1/2$

• The relative odds of choosing alternative *j* over *k* is independent of the characteristics of other options:

$$\frac{\Pr(y_i = j | X_i, \beta)}{\Pr(y_i = k | X_i, \beta)} = \frac{\exp(X_{ij}\beta - \alpha p_{ij}) / \sum_{j'=0}^{J} \exp(X_{ij'}\beta - \alpha p_{ij'})}{\exp(X_{ik}\beta - \alpha p_{ik}) / \sum_{j'=0}^{J} \exp(X_{ij'}\beta - \alpha p_{ij'})}$$
$$= \frac{\exp(X_{ij}\beta - \alpha p_{ij})}{\exp(X_{ik}\beta - \alpha p_{ik})}$$

Red-bus/Blue-bus:

- ► Two options: car (c) and blue-bus (bb)
- Equal choice-probability: $P_c = P_{bb} = 1/2$ and $P_c/P_{bb} = 1/2$
- ▶ Identical new red-bus $(X_{i,bb}\beta = X_{i,rb}\beta)$: $P_{bb}/P_{rb} = 1$.
- ▶ If $P_b/P_{rb} = 1$ and $P_c/P_{bb} = 1$, the logit model predicts:

$$P_{bb} = P_c = P_{rb} = 1/3$$

Does it make sense?

• The relative odds of choosing alternative *j* over *k* is independent of the characteristics of other options:

$$\frac{\Pr(y_i = j | X_i, \beta)}{\Pr(y_i = k | X_i, \beta)} = \frac{\exp(X_{ij}\beta - \alpha p_{ij}) / \sum_{j'=0}^{J} \exp(X_{ij'}\beta - \alpha p_{ij'})}{\exp(X_{ik}\beta - \alpha p_{ik}) / \sum_{j'=0}^{J} \exp(X_{ij'}\beta - \alpha p_{ij'})}$$
$$= \frac{\exp(X_{ij}\beta - \alpha p_{ij})}{\exp(X_{ik}\beta - \alpha p_{ik})}$$

Red-bus/Blue-bus:

- ► Two options: car (c) and blue-bus (bb)
- Equal choice-probability: $P_c = P_{bb} = 1/2$ and $P_c/P_{bb} = 1/2$
- ▶ Identical new red-bus $(X_{i,bb}\beta = X_{i,rb}\beta)$: $P_{bb}/P_{rb} = 1$.
- ▶ If $P_b/P_{rb} = 1$ and $P_c/P_{bb} = 1$, the logit model predicts:

$$P_{bb} = P_c = P_{rb} = 1/3$$

- Does it make sense?
- Probably not... It would be more reasonable to expect $P_c = 1/2$ and $P_{bb} = P_{cb} = 1/4$.

Example: Demand for insurance

Source: Apesteguia and Ballester, JPE, 2018

- Two options:
 - ► Risky option:

$$u_{i1} = 0.9 \frac{1^{1-\omega_i}}{1-\omega_i} + 0.1 \frac{60^{1-\omega_i}}{1-\omega_i}$$

Risk-free option:

$$u_{i2} = \frac{5^{1-\omega_i}}{1-\omega_i}$$

Example: Demand for insurance

Source: Apesteguia and Ballester, JPE, 2018

- Two options:
 - Risky option:

$$u_{i1} = 0.9 \frac{1^{1-\omega_i}}{1-\omega_i} + 0.1 \frac{60^{1-\omega_i}}{1-\omega_i}$$

Risk-free option:

$$u_{i2} = \frac{5^{1-\omega_i}}{1-\omega_i}$$

Random-utility model:

$$\max \{u_{i1}/\sigma_{\epsilon} + \epsilon_{i1}, u_{i2}/\sigma_{\epsilon} + \epsilon_{i2}\}$$

If $\epsilon_{ij} \sim T1EV(0,1)$, we get the following probability of choosing the risky option:

$$\Pr(y_i = 1) = \frac{\exp((u_{i1} - u_{i2})/\sigma_{\epsilon})}{1 + \exp((u_{i1} - u_{i2})/\sigma_{\epsilon})}$$

Logit Probability: Demand for Insurance

• Implications: (i) non-monotonic relationship between gamble and risk-aversion, and (ii) Prob(risky) goes to 1/2 as $\omega \to \infty$ (instead of 0).