Homework 2 - $\exists \forall$ Jiří Klepl

Ukažte, že jazyk L je rozhodnutelný, právě když existují rozhodnutelné jazyky A a B, pro které platí, že $L = \{x | (\exists y) [\langle x, y \rangle \in A]\} = \{x | (\forall y) [\langle x, y \rangle \in B]\}$

"⇒"

Nastavíme $A := \langle L, \{\lambda\} \rangle$ a $B := \langle L, \Sigma^{\star} \rangle$. ¹

L je rozhodnutelný, tedy i A,a Bdíky uzavřenosti rozhodnutelných jazyků na řetězení.

"∕⇒"

Jazyky A a B jsou rozhodnutelné, tedy z uzavřenosti na průnik i $A \cap \langle \Sigma^*, \Sigma^* \rangle$ a $B \cap \langle \Sigma^*, \Sigma^* \rangle$ jsou regulární a dají nám stejnou definici L. Budeme tedy uvažovat tyto průniky jako původní A a B.

Víme, že $A \subseteq \langle L, \Sigma^* \rangle \subseteq B$ a $L' = \{x | (\exists y) [\langle x, y \rangle \in B']\} = \{x | (\forall y) [\langle x, y \rangle \in A']\}.$

Tedy $(\forall x \in L')[\langle x, \rangle \in A' \land \langle x, \rangle \notin A]$ a $(\forall x \in L)[\langle x, \rangle \in B \land \langle x, \rangle \notin B']$.

Tedy problém jazyka L je převoditelný na problém rozhodnutelného jazyka $B \setminus A'$ a tedy L je rozhodnutelný. Mimochodem, to šlo vidět už v zadání.

 $^{^{1}(\}forall X,\overline{Y\subseteq\Sigma^{\star})[\langle X,Y\rangle\text{ je zkratka za }\{\langle\,\}\cdot X\cdot\{,\}\cdot Y\cdot\{\,\rangle\}].$