

How to construct bizarre objects: from Baire Category to Convex Integration

Master thesis

Relatore: prof. Massimo Gobbino

Alessandro La Farciola

27 Ottobre 2023

- ► Baire category
- Convex integration
- Curve a velocità unitaria
- ► Campi a divergenza nulla
- Il teorema di Nash-Kuiper
- Metodo generale

Definizione (Baire space)

Uno spazio di Baire è uno spazio topologico che soddisfa la seguente proprietà:

• Se $\{C_i\}$ è una famiglia numerabile di chiusi con $Int(C_i) = \emptyset$, allora $\bigcup_{i=1}^{\infty} C_i$ ha parte interna vuota.

Definizione (Baire space)

Uno spazio di Baire è uno spazio topologico che soddisfa la seguente proprietà:

• Se $\{C_i\}$ è una famiglia numerabile di chiusi con $Int(C_i) = \emptyset$, allora $\bigcup_{i=1}^{\infty} C_i$ ha parte interna vuota.

Definizione

Sia X uno spazio topologico. Allora $Y \subseteq X$ è detto

- Magro se è unione numerabile di chiusi a parte interna vuota;
- **Residuale** se $X \setminus Y$ è magro.

Definizione (Baire space)

Uno **spazio di Baire** è uno spazio topologico che soddisfa la seguente proprietà:

• Se $\{C_i\}$ è una famiglia numerabile di chiusi con $Int(C_i) = \emptyset$, allora $\bigcup_{i=1}^{\infty} C_i$ ha parte interna vuota.

Definizione

Sia X uno spazio topologico. Allora $Y \subseteq X$ è detto

- Magro se è unione numerabile di chiusi a parte interna vuota;
- **Residuale** se $X \setminus Y$ è magro.

Teorema (Baire)

Uno spazio metrico completo è uno spazio di Baire.

Proposizione

Sia V lo spazio delle funzioni limitate $f:\mathbb{R}\to\mathbb{R}$ Lipschitz con costante ≤ 1 , con la metrica del sup. Allora l'insieme delle funzioni con costante di Lipschitz =1 in ogni intervallo è residuale.

Proposizione

Sia V lo spazio delle funzioni limitate $f: \mathbb{R} \to \mathbb{R}$ Lipschitz con costante ≤ 1 , con la metrica del sup. Allora l'insieme delle funzioni con costante di Lipschitz = 1 in ogni intervallo è residuale.

- V è uno spazio metrico completo (e quindi di Baire).
- $C_k := \{ f \in V : \exists x_f \in [-k, k] \ t.c. \ |f(x) f(y)| \le \left(1 \frac{1}{k}\right) |x y| \ \forall x, y \in [x_f, x_f + \frac{1}{k}] \}.$
- C_k sono chiusi e $Int(C_k) = \emptyset$.

Baire category theorem

1 Baire category

Proposizione

Sia V lo spazio delle funzioni limitate $f:\mathbb{R}\to\mathbb{R}$ Lipschitz con costante ≤ 1 , con la metrica del sup. Allora l'insieme delle funzioni con costante di Lipschitz =1 in ogni intervallo è residuale.

- V è uno spazio metrico completo (e quindi di Baire).
- $C_k := \{ f \in V : \exists x_f \in [-k, k] \ t.c. \ |f(x) f(y)| \le \left(1 \frac{1}{k}\right) |x y| \ \forall x, y \in [x_f, x_f + \frac{1}{k}] \}.$
- C_k sono chiusi e $Int(C_k) = \emptyset$.

Nello spazio delle funzioni limitate $f: \mathbb{R} \to \mathbb{R}$ che siano 1/2-Hölder in \mathbb{R} , quelle che non sono Lipschitz in nessun intervallo $(a,b) \subseteq \mathbb{R}$ sono residuali.

Nello spazio degli insiemi misurabili $E \subseteq [0, 1]$, quelli che per ogni intervallo $I \subseteq [0, 1]$ sia $E \cap I$ che $E^c \cap I$ hanno misura strettamente positiva sono residuali.

Nello spazio di funzioni $f \in L^2(a,b)$ with $|f(x)| \le 1$ q.o., l'insieme delle funzioni $f(x) \in \{-1,1\}$ q.o. è residuale rispetto alla metrica che induce la convergenza debole nella palla.

Nello spazio delle funzioni limitate $f:\mathbb{R}\to\mathbb{R}$ che siano 1/2-Hölder in \mathbb{R} , quelle che non sono Lipschitz in nessun intervallo $(a,b)\subseteq\mathbb{R}$ sono residuali.

Nello spazio degli insiemi misurabili $E \subseteq [0, 1]$, quelli che per ogni intervallo $I \subseteq [0, 1]$ sia $E \cap I$ che $E^c \cap I$ hanno misura strettamente positiva sono residuali.

Nello spazio di funzioni $f \in L^2(a,b)$ with $|f(x)| \le 1$ q.o., l'insieme delle funzioni $f(x) \in \{-1,1\}$ q.o. è residuale rispetto alla metrica che induce la convergenza debole nella palla.

Nello spazio delle funzioni limitate $f: \mathbb{R} \to \mathbb{R}$ che siano 1/2-Hölder in \mathbb{R} , quelle che non sono Lipschitz in nessun intervallo $(a,b) \subseteq \mathbb{R}$ sono residuali.

Nello spazio degli insiemi misurabili $E \subseteq [0, 1]$, quelli che per ogni intervallo $I \subseteq [0, 1]$ sia $E \cap I$ che $E^c \cap I$ hanno misura strettamente positiva sono residuali.

Nello spazio di funzioni $f \in L^2(a,b)$ with $|f(x)| \le 1$ q.o., l'insieme delle funzioni $f(x) \in \{-1,1\}$ q.o. è residuale rispetto alla metrica che induce la convergenza debole nella palla.

- Baire category
- ► Convex integration
- Curve a velocità unitaria
- Campi a divergenza nulla
- ► Il teorema di Nash-Kuiper
- Metodo generale

2 Convex integration

Teorema (Nash-Kuiper, 1954-1955)

Sia (M^d,g) una varietà Rimanniana d-dimensionale C^∞ chiusa. Sia $\phi:M^d\to\mathbb{R}^n$ un' immersione (o embedding) C^∞ strictly short, con $n\geq d+1$.

Allora, per ogni $\epsilon > 0$ esiste un'immersione (o embedding) isometrica C^1 , $\psi: M^d \to \mathbb{R}^n$ tale che $\|\phi - \psi\|_{C^0} \le \epsilon$.

¹ The image can be found on the website https://hevea-project.fr/ENIndexHevea.html, thanks to the work of V. Borrelli et al.

2 Convex integration

Teorema (Nash-Kuiper, 1954-1955)

Sia (M^d,g) una varietà Rimanniana d-dimensionale C^∞ chiusa. Sia $\phi:M^d\to\mathbb{R}^n$ un' immersione (o embedding) C^∞ strictly short, con $n\geq d+1$.

Allora, per ogni $\epsilon > 0$ esiste un'immersione (o embedding) isometrica C^1 , $\psi : M^d \to \mathbb{R}^n$ tale che $\|\phi - \psi\|_{C^0} \le \epsilon$.

¹ The image can be found on the website https://hevea-project.fr/ENIndexHevea.html, thanks to the work of V. Borrelli et al.

2 Convex integration

Teorema (Nash-Kuiper, 1954-1955)

Sia (M^d,g) una varietà Rimanniana d-dimensionale C^∞ chiusa. Sia $\phi:M^d\to\mathbb{R}^n$ un' immersione (o embedding) C^∞ strictly short, con $n\geq d+1$.

Allora, per ogni $\epsilon > 0$ esiste un'immersione (o embedding) isometrica C^1 , $\psi: M^d \to \mathbb{R}^n$ tale che $\|\phi - \psi\|_{C^0} \le \epsilon$.

• In coordinate locali, la condizione di isometria diventa $\partial_i u \cdot \partial_j u = g_{ij}$, un sistema di $\frac{1}{2}d(d+1)$ equazioni in n incognite.

¹ The image can be found on the website https://hevea-project.fr/ENIndexHevea.html, thanks to the work of V. Borrelli et al.

2 Convex integration

Teorema (Nash-Kuiper, 1954-1955)

Sia (M^d,g) una varietà Rimanniana d-dimensionale C^∞ chiusa. Sia $\phi:M^d\to\mathbb{R}^n$ un' immersione (o embedding) C^∞ strictly short, con $n\geq d+1$.

Allora, per ogni $\epsilon > 0$ esiste un'immersione (o embedding) isometrica C^1 , $\psi: M^d \to \mathbb{R}^n$ tale che $\|\phi - \psi\|_{C^0} \le \epsilon$.

- In coordinate locali, la condizione di isometria diventa $\partial_i u \cdot \partial_j u = g_{ij}$, un sistema di $\frac{1}{2}d(d+1)$ equazioni in n incognite.
- Il nome **convex integration** è dovuto a Gromov (1986), che in seguito ha formalizzato una teoria più generale estendendo il risultato di Nash-Kuiper.

¹ The image can be found on the website https://hevea-project.fr/ENIndexHevea.html, thanks to the work of V. Borrelli et al.

2 Convex integration

Incompressible Euler equations

$$\begin{cases} \partial_t v + (v \cdot \nabla)v + \nabla p = 0 \\ div v = 0 \end{cases}$$

Energia totale

$$e(t) := \frac{1}{2} \int_{\mathbb{T}^3} |v(x,t)|^2 dx$$

2 Convex integration

Incompressible Euler equations

$$\begin{cases} \partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla)\mathbf{v} + \nabla \mathbf{p} = 0 \\ div \, \mathbf{v} = 0 \end{cases}$$

Energia totale

$$e(t) := \frac{1}{2} \int_{\mathbb{T}^3} |v(x,t)|^2 dx$$

Congettura (Onsager, 1949)

Consideriamo le soluzioni deboli delle equazioni di Eulero 3-dimensionali periodiche, dove la velocità v è Hölderiana con esponente θ .

- 1. Se $\theta > \frac{1}{3}$, allora l'energia totale di v è costante.
- 2. Per ogni $\theta < \frac{1}{3}$ esistono soluzioni v per cui l'energia totale non è costante.

2 Convex integration

Incompressible Euler equations

$$\begin{cases} \partial_t v + (v \cdot \nabla)v + \nabla p = 0 \\ div \ v = 0 \end{cases}$$

Energia totale

$$e(t) := \frac{1}{2} \int_{\mathbb{T}^3} |v(x,t)|^2 dx$$

Congettura (Onsager, 1949)

Consideriamo le soluzioni deboli delle equazioni di Eulero 3-dimensionali periodiche, dove la velocità v è Hölderiana con esponente θ .

- 1. Se $\theta > \frac{1}{3}$, allora l'energia totale di v è costante.
- 2. Per ogni $\theta < \frac{1}{3}$ esistono soluzioni v per cui l'energia totale non è costante.
- A partire dai lavori di C. De Lellis e L. Székelyhidi, si è potuto applicare il metodo della convex integration per costruire soluzioni deboli che dissipano l'energia.
- La procedura iterativa utilizzata per Eulero segue la stessa strategia di Nash per le immersioni isometriche.

- Baire category
- Convex integration
- ► Curve a velocità unitaria
- Campi a divergenza nulla
- ► Il teorema di Nash-Kuiper
- Metodo generale

3 Curve a velocità unitaria

Teorema

Consideriamo V l'insieme delle curve

$$V := \{u : [0,1] \longrightarrow \mathbb{R}^d : u \in \mathcal{C}^1, \ \left\| u'(t) \right\|_{\mathbb{R}^d} \le 1 \ \forall t \in [0,1] \}.$$

Allora, quelle con velocità unitaria

$$W:=\{u:[0,1] o \mathbb{R}^d\ :\ u\in \mathcal{C}^1,\ \left\|u'(t)
ight\|_{\mathbb{R}^d}=1\ \ orall t\in [0,1]\}$$

sono C^0 -dense in V. Ovvero, per ogni $u\in V$ e per ogni $\epsilon>0$, esiste una curva $u_\epsilon:[0,1]\to\mathbb{R}^d$ con

- (i) $||u'_{\epsilon}(t)||_{\mathbb{R}^d} = 1$, $\forall t \in [0, 1]$;
- (ii) $||u_{\epsilon}(t) u(t)||_{\mathbb{D}^d} \leq \epsilon$, $\forall t \in [0, 1]$.

- Baire category
- Convex integration
- ► Curve a velocità unitaria
- ► Campi a divergenza nulla
- ► Il teorema di Nash-Kuiper
- Metodo generale

4 Campi a divergenza nulla

Teorema

Sia $\Omega\subset\mathbb{R}^3$ un aperto limitato. Esistono infiniti $u\in L^\infty(\mathbb{R}^3,\mathbb{R}^3)$ tali che

$$egin{cases} \operatorname{div} u = 0 & ext{in } \mathcal{D}'(\mathbb{R}^3), \ \|u(x)\|_{\mathbb{R}^3} = 1 & ext{per quasi ogni } x \in \Omega. \ u(x) = 0 & ext{per quasi ogni } x
otin \mathcal{D}'(\mathbb{R}^3), \ \|u(x)\|_{\mathbb{R}^3} = 1 & ext{per quasi ogni } x
otin \mathcal{D}'(\mathbb{R}^3), \ \|u(x)\|_{\mathbb{R}^3} = 1 & ext{per quasi ogni } x
otin \mathcal{D}'(\mathbb{R}^3), \ \|u(x)\|_{\mathbb{R}^3} = 1 & ext{per quasi ogni } x
otin \mathcal{D}'(\mathbb{R}^3), \ \|u(x)\|_{\mathbb{R}^3} = 1 & ext{per quasi ogni } x
otin \mathcal{D}'(\mathbb{R}^3), \ \|u(x)\|_{\mathbb{R}^3} = 1 & ext{per quasi ogni } x
otin \mathcal{D}'(\mathbb{R}^3), \ \|u(x)\|_{\mathbb{R}^3} = 1 & ext{per quasi ogni } x
otin \mathcal{D}'(\mathbb{R}^3), \ \|u(x)\|_{\mathbb{R}^3} = 1 & ext{per quasi ogni } x
otin \mathcal{D}'(\mathbb{R}^3), \ \|u(x)\|_{\mathbb{R}^3} = 1 & ext{per quasi ogni } x
otin \mathcal{D}'(\mathbb{R}^3), \ \|u(x)\|_{\mathbb{R}^3} = 1 & ext{per quasi ogni } x
otin \mathcal{D}'(\mathbb{R}^3), \ \|u(x)\|_{\mathbb{R}^3} = 1 & ext{per quasi ogni } x
otin \mathcal{D}'(\mathbb{R}^3), \ \|u(x)\|_{\mathbb{R}^3} = 1 & ext{per quasi ogni } x
otin \mathcal{D}'(\mathbb{R}^3), \ \|u(x)\|_{\mathbb{R}^3} = 1 & ext{per quasi ogni } x
otin \mathcal{D}'(\mathbb{R}^3), \ \|u(x)\|_{\mathbb{R}^3} = 1 & ext{per quasi ogni } x
otin \mathcal{D}'(\mathbb{R}^3), \ \|u(x)\|_{\mathbb{R}^3} = 1 & ext{per quasi ogni } x
otin \mathcal{D}'(\mathbb{R}^3), \ \|u(x)\|_{\mathbb{R}^3} = 1 & ext{per quasi ogni } x
otin \mathcal{D}'(\mathbb{R}^3), \ \|u(x)\|_{\mathbb{R}^3} = 1 & ext{per quasi ogni } x
otin \mathcal{D}'(\mathbb{R}^3), \ \|u(x)\|_{\mathbb{R}^3} = 1 & ext{per quasi ogni } x
otin \mathcal{D}'(\mathbb{R}^3), \ \|u(x)\|_{\mathbb{R}^3} = 1 & ext{per quasi ogni } x
otin \mathcal{D}'(\mathbb{R}^3), \ \|u(x)\|_{\mathbb{R}^3} = 1 & ext{per quasi ogni } x
otin \mathcal{D}'(\mathbb{R}^3), \ \|u(x)\|_{\mathbb{R}^3} = 1 & ext{per quasi ogni } x
otin \mathcal{D}'(\mathbb{R}^3), \ \|u(x)\|_{\mathbb{R}^3} = 1 & ext{per quasi ogni } x
otin \mathcal{D}'(\mathbb{R}^3), \ \|u(x)\|_{\mathbb{R}^3} = 1 & ext{per quasi ogni } x
otin \mathcal{D}'(\mathbb{R}^3), \ \|u(x)\|_{\mathbb{R}^3} = 1 & ext{per quasi ogni } x
otin \mathcal{D}'(\mathbb{R}^3), \ \|u(x)\|_{\mathbb{R}^3} = 1 & ext{per quasi ogni } x
otin \mathcal{D}'(\mathbb{R}^3), \ \|u(x)\|_{\mathbb{R}^3} = 1 & ext{per quasi ogni } x
otin \mathcal{D}'(\mathbb{R}^3), \ \|u(x)\|_{\mathbb{R}^3} = 1 & ext{per quasi ogni } x
otin \mathcal{D}'(\mathbb{R}^3), \ \|u(x)\|_{\mathbb{R}^3} = 1 & ext{per quasi ogni } x
otin \mathcal{D}'(\mathbb{R}^3), \ \|u(x)\|_{\mathbb{R}^3}$$

La prima condizione è equivalente a

$$\int_{\mathbb{R}^3} u \cdot \nabla \varphi = 0 \qquad \forall \varphi \in \mathcal{C}_0^{\infty}(\mathbb{R}^3).$$

- ▶ Baire category
- ▶ Convex integration
- ► Curve a velocità unitaria
- Campi a divergenza nulla
- ► Il teorema di Nash-Kuiper
- Metodo generale

5 Il teorema di Nash-Kuiper

Sia $D^2 \subset \mathbb{R}^2$ il disco unitario.

Definizione

Sia $u:D^2 o \mathbb{R}^N$ un'immersione. Allora diciamo che u è **short** se per ogni curva

 $\gamma:[0,1] o D^2$ di classe \mathcal{C}^1

$$\ell(u \circ \gamma) \le \ell(\gamma),$$

dove ℓ rappresenta la lunghezza della curva. Mentre, u è **strictly short** se $\ell(u \circ \gamma) < \ell(\gamma)$. In più, diciamo che u è **isometrica** se $\ell(u \circ \gamma) = \ell(\gamma)$.

5 Il teorema di Nash-Kuiper

Sia $D^2 \subset \mathbb{R}^2$ il disco unitario.

Definizione

Sia $u:D^2\to\mathbb{R}^N$ un'immersione. Allora diciamo che u è **short** se per ogni curva

 $\gamma:[0,1] o D^2$ di classe \mathcal{C}^1

$$\ell(u \circ \gamma) \le \ell(\gamma),$$

dove ℓ rappresenta la lunghezza della curva. Mentre, u è **strictly short** se $\ell(u \circ \gamma) < \ell(\gamma)$. In più, diciamo che u è **isometrica** se $\ell(u \circ \gamma) = \ell(\gamma)$.

Teorema (Nash-Kuiper nel disco)

Sia $N \geq 3$. Sia $u: D^2 \to \mathbb{R}^N$ un'immersione C^{∞} strictly short.

Allora per ogni $\epsilon>0$ esiste un'immersione \mathcal{C}^1 isometrica $u_\epsilon:\mathcal{D}^2\to\mathbb{R}^N$ tale che

$$||u-u_{\epsilon}||_{C^0} \leq \epsilon.$$

5 Il teorema di Nash-Kuiper

Definizione

Consideriamo $u:D^2\to\mathbb{R}^N$ un'immersione di classe C^1 . Allora definiamo $M_u:D^2\to\mathbb{R}^{2\times 2}$ come

$$M_u(x) := Ju(x)^T Ju(x),$$

dove Ju rappresenta la matrice jacobiana.

5 Il teorema di Nash-Kuiper

Definizione

Consideriamo $u:D^2 o \mathbb{R}^N$ un'immersione di classe \mathcal{C}^1 . Allora definiamo

$$M_u:D^2 o\mathbb{R}^{2 imes 2}$$
 come

$$M_u(x) := Ju(x)^T Ju(x),$$

dove Ju rappresenta la matrice jacobiana.

Lemma (Caratterizzazione delle immersioni short)

Sia $u: D^2 \to \mathbb{R}^N$ un'immersione. Allora,

- u è **short** se e solo se $M_u \leq Id$, cioè esiste $R_u : D^2 \to \mathbb{R}^{2 \times 2}$ simmetrica e semidefinita positiva tale che $M_u + R_u = Id$.
- $u \stackrel{.}{e}$ strictly short se e solo se $M_u < Id$, cioè R_u simmetrica definita positiva.
- u è **isometrica** se e solo se $M_u = Id$, cioè $R_u = 0$.

- Baire category
- Convex integration
- ► Curve a velocità unitaria
- Campi a divergenza nulla
- Il teorema di Nash-Kuiper
- ► Metodo generale

	Curve a velocità unitaria	Campi a divergenza nulla	Nash-Kuiper
Goal: risolvere un'equa-	$\left\ u'(t) ight\ _{\mathbb{R}^d}=1$	$\ u(x)\ _{\mathbb{R}^3}=1$	$M_u = Id$

	Curve a velocità unitaria	Campi a divergenza nulla	Nash-Kuiper
Goal: risolvere un'equa- zione	$\left\ u'(t) ight\ _{\mathbb{R}^d}=1$	$\ u(x)\ _{\mathbb{R}^3}=1$	$M_u = Id$
Rilassamento : partire da <i>sottosoluzioni</i>	$\ u'(t)\ _{\mathbb{R}^d} < 1$	$\ u(x)\ _{\mathbb{R}^3}<1$	$M_u < Id$

	Curve a velocità unitaria	Campi a divergenza nulla	Nash-Kuiper
Goal: risolvere un'equa- zione	$\left\ u'(t) ight\ _{\mathbb{R}^d}=1$	$\ u(x)\ _{\mathbb{R}^3}=1$	$M_u = Id$
Rilassamento : partire da sottosoluzioni	$\ u'(t)\ _{\mathbb{R}^d} < 1$	$\ u(x)\ _{\mathbb{R}^3}<1$	$M_u < Id$
Gap : distanza dall'obiettivo, che definiamo $I(u)$	$1-\ u'(t)\ _{\mathbb{R}^d}^2$	$\int_{\Omega} (1 - \ u(x)\ _{\mathbb{R}^3}^2) \ dx$	$\ Id-M_u\ _{C^0}$

	Curve a velocità unitaria	Campi a divergenza nulla	Nash-Kuiper
Goal: risolvere un'equa- zione	$\left\ u'(t) ight\ _{\mathbb{R}^d}=1$	$\ u(x)\ _{\mathbb{R}^3}=1$	$M_u = Id$
Rilassamento : partire da <i>sottosoluzioni</i>	$\ u'(t)\ _{\mathbb{R}^d}<1$	$\ u(x)\ _{\mathbb{R}^3}<1$	$M_u < Id$
Gap : distanza dall'obiettivo, che definiamo $I(u)$	$1-\ u'(t)\ _{\mathbb{R}^d}^2$	$\int_{\Omega} (1 - \ u(x)\ _{\mathbb{R}^3}^2) \ dx$	$\ Id-M_u\ _{C^0}$
Metrica	C^{0}	Debole L^2	\mathcal{C}^{0}

Claim: $\{I(u) = 0\}$ denso

17/24

in

Convex integration 6 Metodo generale

 ${||u'(t)||_{\mathbb{D}^d} \leq 1}$

	Curve a velocità unitaria	Campi a divergenza nulla
Goal: risolvere un'equa- zione	$\left\ u'(t) ight\ _{\mathbb{R}^d}=1$	$\ u(x)\ _{\mathbb{R}^3}=1$
Rilassamento : partire da <i>sottosoluzioni</i>	$\ u'(t)\ _{\mathbb{R}^d} < 1$	$\ u(x)\ _{\mathbb{R}^3}<1$
Gap: distanza dall'obiettivo, che definiamo $I(u)$	$1-\ u'(t)\ _{\mathbb{R}^d}^2$	$\int_{\Omega} (1 - \ u(x)\ _{\mathbb{R}^3}^2) \ dx$
Metrica	C^0	Debole L^2

 $||x|||_{\mathbb{R}^3} < 1$ $\int_{\mathbb{R}^3} (1 - ||u(x)||_{\mathbb{R}^3}^2) dx$ ebole L^2

$$\|u(x)\|_{\mathbb{R}^3} < 1$$
 $M_u < Id$ $\int_{\Omega} (1-\|u(x)\|_{\mathbb{R}^3}^2) \ dx$ $\|Id-M_u\|_{\mathcal{C}^0}$ Debole L^2 \mathcal{C}^0 $\overline{\{u\in\mathcal{C}_0^\infty(\Omega): div\ u=0,\ \|u(x)\|_{\mathbb{R}^3}<1\}}$ $\{u\ ext{short}\}$

Nash-Kuiper

 $M_u = Id$

Curve in codimensione 2: iterazione

6 Metodo generale

Supponiamo che $u:[0,1]\to\mathbb{R}^3$.

- Approssimo u con una curva affine a tratti e in ogni tratto $[t_i,t_{i+1}]$ chiamo $a_i^2:=I(u)$.
- Considero la spirale a velocità unitaria. Ovvero, presi $\xi, \eta \in \mathbb{R}^3$ di norma unitaria tale che $\xi \perp \eta \perp u'$, definisco

$$u_n:=u+rac{a_i}{2\pi n}(\xi\cos(2\pi nt)+\eta\sin(2\pi nt)).$$

- Da cui $u_n' = u' + a_i(-\xi \sin(2\pi nt) + \eta \cos(2\pi nt))$. Quindi, $\|u_n'\|_{\mathbb{R}^3}^2 = \|u'\|_{\mathbb{R}^3}^2 + a_i^2 = 1$.
- In più, $u_n \xrightarrow{C^0} u$.

Curve in codimensione 1: iterazione

6 Metodo generale

Supponiamo che $u:[0,1] o \mathbb{R}^2$.

Lemma

Consideriamo $v \in B(0,1) \subseteq \mathbb{R}^2$. Allora esiste un loop $h:[0,1] \to \mathcal{S}^1$ tale che

$$v = \int_0^1 h(s) ds.$$

² E. Bartzos, V. Borrelli, et al. . An Explicit Isometric Reduction of the Unit Sphere into an Arbitrarily Small Ball. F. of Comp. Math., 2018, 18(4), pp.1015-1042.

Curve in codimensione 1: iterazione

6 Metodo generale

Supponiamo che $u:[0,1] o \mathbb{R}^2$.

Lemma

Consideriamo $v \in B(0,1) \subseteq \mathbb{R}^2$. Allora esiste un loop $h:[0,1] \to \mathcal{S}^1$ tale che

$$v = \int_0^1 h(s) ds.$$

• Definisco
$$u_n(t) := u(0) + \int_0^t u'_n(s) ds$$
.

• In più,
$$||u_n - u||_{C^0} \to 0$$
.

2

² E. Bartzos, V. Borrelli, et al. . An Explicit Isometric Reduction of the Unit Sphere into an Arbitrarily Small Ball. F. of Comp. Math., 2018, 18(4), pp.1015-1042.

Campi a divergenza nulla: perturbation argument

6 Metodo generale

- Idea: $u_n(x) := u(x) + curl v_n(x)$.
- Prendiamo $\xi, \eta \in \mathbb{R}^3$ tale che $\|\xi\|_{\mathbb{R}^3} = \|\eta\|_{\mathbb{R}^3} = 1$ e $\xi \perp \eta$.
- Data $\phi \in \mathcal{C}_0^\infty(\Omega)$ una funzione cut-off, definiamo

$$v_n(x) := \frac{\eta}{2n} (1 - \|u(x)\|_{\mathbb{R}^3}^2) \phi(x) \sin(nx \cdot \xi).$$

· Quando derivo, ottengo

$$\operatorname{curl} v_n = \frac{\xi \times \eta}{2} (1 - \|u(x)\|_{\mathbb{R}^3}^2) \phi(x) \cos(nx \cdot \xi) + O\left(\frac{1}{n}\right).$$

Codimensione 2

6 Metodo generale

Supponiamo che $R_u = a^2 v v^T$ sia rank one, con a di classe C^{∞} e v di norma unitaria.

• Idea: $u_n = u + v_n$.

• Definiamo:

$$v_n(x) := \frac{a(x)}{n} (\xi(x) \cos(nx \cdot v) + \eta(x) \sin(nx \cdot v)).$$

• I due campi $\xi, \eta: D^2 o \mathbb{R}^4$ sono di classe \mathcal{C}^∞ e tale che per ogni $x \in D^2$

(i)
$$\|\xi(x)\|_{\mathbb{R}^4} = \|\eta(x)\|_{\mathbb{R}^4} = 1$$
;

(ii)
$$\xi(x) \perp \eta(x) \perp \partial_{x_1} u(x) \perp \partial_{x_2} u(x)$$
.

Per il caso generale, possiamo sfruttare una decomposizione rank one del gap metrico: $R_u(x) = \sum_{k=1}^K a_k(x)^2 v_k v_k^T$, per opportune funzioni C^{∞} a_k e vettori unitari v_k .

Codimensione 2

6 Metodo generale

Supponiamo che $R_u = a^2 v v^T$ sia rank one, con a di classe C^{∞} e v di norma unitaria.

- Idea: $u_n = u + v_n$.
- Definiamo:

$$v_n(x) := \frac{a(x)}{n} (\xi(x) \cos(nx \cdot v) + \eta(x) \sin(nx \cdot v)).$$

- I due campi $\xi, \eta: D^2 \to \mathbb{R}^4$ sono di classe \mathcal{C}^{∞} e tale che per ogni $x \in D^2$
 - (i) $\|\xi(x)\|_{\mathbb{R}^4} = \|\eta(x)\|_{\mathbb{R}^4} = 1$;
 - (ii) $\xi(x) \perp \eta(x) \perp \partial_{x_1} u(x) \perp \partial_{x_2} u(x)$.

Per il caso generale, possiamo sfruttare una decomposizione rank one del gap metrico: $R_u(x) = \sum_{k=1}^K a_k(x)^2 v_k v_k^T$, per opportune funzioni C^∞ a_k e vettori unitari v_k .

Codimensione 1

6 Metodo generale

- Idea: $u_n = u + v_n$.
- Prendiamo due campi $\zeta,\eta:D^2 o\mathbb{R}^3$ di classe \mathcal{C}^∞ tale che per ogni $x\in D^2$
 - (i) $\|\zeta(x)\|_{\mathbb{R}^3} = \|\eta(x)\|_{\mathbb{R}^3} = 1$;
 - (ii) $\eta(x) \perp \partial_{x_1} u(x) \perp \partial_{x_2} u(x)$;
 - (iii) $\zeta(x) \perp \eta(x) \perp \partial_{x_2} u(x)$;
 - (iv) $\zeta(x) \cdot \partial_{x_1} u(x)$ sempre positivo.
- Definiamo:

$$v_n(x) := \frac{a(x)}{n} (\zeta(x)\gamma_1(x, \{nx \cdot v\}) + \eta(x)\gamma_2(x, \{nx \cdot v\})),$$

dove $\gamma_i: D^2 \times [0,1] \to \mathbb{R}$ soddisfano una relazione differenziale.

"Nash, like Columbus, unwillingly discovered a new land. [...] It may be hard to decide what this land is but it is easy to say what it is not: what Nash discovered is not any part of Riemannian geometry, neither has it much (if anything at all) to do with classical PDE"

Michail Leonidovič Gromov³

³ M. Gromov; Geometric, algebraic, and analytic descendants of Nash isometric embedding theorems, Bull. Amer. Math. Soc.(N.S.) 54 (2017), no. 2, 173–245.

GRAZIE PER L'ATTENZIONE