MAT0206/MAP0216 - Análise Real - IME - 2007

Prof. Gláucio Terra

4^a Lista de Exercícios - Resolução dos Exercícios

20-) Sejam $X \subset \mathbb{R}$ e $f: X \to \mathbb{R}$ monótona, tal que f(X) seja denso num intervalo limitado. Mostre que existe uma única função contínua, monótona, $\phi: \overline{X} \to \mathbb{R}$ tal que $\phi|_X = f$.

DEMONSTRAÇÃO: O fato de ser f monótona e limitada implica (conforme já demonstrado em aula) que, para todo $a \in X'_+$, existe $\lim_{x\to a^+} f(x)$, e, para todo $a \in X'_-$, existe $\lim_{x\to a^-} f(x)$. Afirmo que:

- (i) se $a \in X \cap X'_+$, então $f(a) = \lim_{x \to a^+} f(x)$;
- (ii) se $a \in X \cap X'_-$, então $f(a) = \lim_{x \to a^-} f(x)$;
- (iii) se $a \in X'_- \cap X'_+$, então $\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x)$.

Com efeito, suponha que f seja crescente (se for decrescente, o argumento que segue é o mesmo, invertendo-se algumas desigualdades), e que sua imagem seja densa no intervalo $I \subset \mathbb{R}$. Se $a \in X \cap X'_+$, podemos tomar $b \in X$ tal que b > a; então, pelo fato de ser f crescente, segue-se $f(a) \leqslant \lim_{x \to a^+} f(x) \leqslant f(b)$, portanto $[f(a), \lim_{x \to a^+} f(x)] \subset I$ (uma vez que $f(a), f(b) \in I$). Além disso, o fato de ser f crescente implica que não existe ponto em $]f(a), \lim_{x \to a^+} f(x)[$ que esteja na imagem de f; assim, $]f(a), \lim_{x \to a^+} f(x)[$ deve ser vazio, caso contrário a imagem de f não seria densa em I. Ora, o intervalo $[f(a), \lim_{x \to a^+} f(x)]$ tem interior vazio se, e somente se, $f(a) = \lim_{x \to a^+} f(x)$ (i.e. o intervalo é degenerado). Isto prova a afirmação (i); as afirmações (ii) e (iii) se demonstram por um argumento análogo.

As afirmações (i), (ii) e (iii), implicam que, para todo $x \in X'$, existe $\lim_{y \to x} f(y)$, e que, se $x \in X \cap X'$, $\lim_{y \to x} f(y) = f(x)$. Definimos $\phi : \overline{X} \to \mathbb{R}$ por $\phi|_X = f$ e $(\forall x \in X' \setminus X) \phi(x) \doteq \lim_{y \to x} f(y)$. Afirmo que ϕ é contínua. De fato, seja $x \in \overline{X}$. Se $x \in \overline{X} \setminus X'$, então x é um ponto isolado de X (logo um ponto isolado de \overline{X}), portanto ϕ é contínua em x. Por outro lado, se $x \in X'$, então $\phi(x) = \lim_{y \to x} f(y)$. Assim, dado $\epsilon > 0$, existe $\delta > 0$ tal que, se $y \in X$ e $0 < |y - x| < \delta$, então $|f(y) - \phi(x)| < \epsilon$. Seja $w \in \overline{X}$ tal que $0 < |w - x| < \delta$. Tomando $(y_n)_{n \in \mathbb{N}}$ seqüência em X tal que $y_n \to w$, como $(x - \delta, x + \delta) \setminus \{x\}$ é um aberto que contém w, existe $n_0 \in \mathbb{N}$ tal que $y_n \in (x - \delta, x + \delta) \setminus \{x\}$ para $n \geqslant n_0$, donde $|f(y_n) - \phi(x)| < \epsilon$ para $n \geqslant n_0$. Ora, $|f(y_n) - \phi(x)| \to |\phi(w) - \phi(x)|$, portanto $|\phi(w) - \phi(x)| \leqslant \epsilon$. Como $\epsilon > 0$ foi tomado arbitrariamente, segue-se que $\lim_{w \to x} \phi(w) = \phi(x)$, portanto ϕ é contínua em x. Isto mostra que $\phi : \overline{X} \to \mathbb{R}$ é uma extensão contínua de f, e é a única tal extensão (vide questão 12). Resta mostrar que ϕ é crescente. Com efeito, dados $x, y \in \overline{X}$ com x < y, podemos tomar seqüências $(x_n)_{n \in \mathbb{N}}$ e $(y_n)_{n \in \mathbb{N}}$ em X tais que $x_n \to x$ e $y_n \to y$. Então existe $n_0 \in \mathbb{N}$ tal que, para $n \geqslant n_0$, tem-se $x_n < y_n$, portanto $f(x_n) \leqslant f(y_n)$ para $n \geqslant n_0$. Como $f(x_n) \to \phi(x)$ e $f(y_n) \to \phi(y)$, segue-se $\phi(x) \leqslant \phi(y)$, o que mostra que ϕ é crescente.

23-) (TEOREMA DO PONTO FIXO DE BROUWER EM DIMENSÃO 1) Seja $f:[a,b] \to [a,b]$ contínua. Prove que f tem um ponto fixo (i.e. existe $x \in [a,b]$ tal que f(x) = x). Dê um exemplo de uma função contínua $f:[0,1) \to [0,1)$ sem ponto fixo.

DEMONSTRAÇÃO: Se f(a) = a ou f(b) = b, não há o que fazer; suponha $f(a) \neq a$ (portando f(a) > a) e $f(b) \neq b$ (portanto f(b) < b). Seja $\phi : [a, b] \to \mathbb{R}$ dada por $(\forall x \in [a, b]) \phi(x) = f(x) - x$. Então ϕ é

1

contínua, $\phi(a) > 0$ e $\phi(b) < 0$; pelo teorema do valor intermediário, segue-se que existe $x \in (a, b)$ tal que $\phi(x) = 0$, i.e. f(x) = x.

31-) Toda função contínua monótona limitada $f:I\to\mathbb{R},$ definida num intervalo I, é uniformemente contínua.

DEMONSTRAÇÃO: Seja $\epsilon > 0$; queremos mostrar que existe $\delta > 0$ tal que, se $x, y \in I$ são tais que $|x - y| < \delta$, então $|f(x) - f(y)| < \epsilon$.

Sem perda de generalidade, suponha que f seja crescente. Sejam a < b os extremos do intervalo I (pomos $a = -\infty$ se I não for limitado inferiormente, e $b = +\infty$ se I não for limitado superiormente). Sendo f contínua e definida num intervalo, segue-se como corolário do teorema do valor intermediário que sua imagem é um intervalo; e, sendo, f limitada, tal intervalo deve ser limitado. Digamos, pois, que a imagem de f seja um intervalo com extremos $m \in \mathbb{R}$ e $M \in \mathbb{R}$, m < M. Ou seja, $m = \lim_{x \to a} f(x) = \inf f(I)$ e $M = \lim_{x \to b} f(x) = \sup f(I)$. Então existem $\alpha, \beta \in \mathbb{R}$, $a < \alpha < \beta < b$, tais que $(\forall x \in I \cap (-\infty, \alpha]) f(x) < m + \epsilon/3$, e $(\forall x \in I \cap [\beta, +\infty)) f(x) > M - \epsilon/3$. Por adoos $x, y \in I \cap (-\infty, \alpha]$ ou $x, y \in I \cap [\beta, +\infty)$, tem-se $|f(x) - f(y)| < \epsilon/3$. Por outro lado, sendo $[\alpha, \beta]$ compacto, a restrição de f a este intervalo é uniformemente contínua; assim, existe $\delta > 0$ tal que, se $x, y \in [\alpha, \beta]$ são tais que $|x - y| < \delta$, então $|f(x) - f(y)| < \epsilon/3$. Afirmo que, se $x, y \in I$ são tais que $|x - y| < \delta$, então $|f(x) - f(y)| < \epsilon/3$. Afirmo que, se $x, y \in I$ são tais que $|x - y| < \delta$, então $|f(x) - f(y)| < \epsilon/3$. Sem perda de generalidade. Sendo $|f(x) - f(y)| < \epsilon/3$. Ou tal que, se $x, y \in I$ são tais que $|x - y| < \delta$, então $|f(x) - f(y)| < \epsilon/3$. Afirmo que, se $x, y \in I$ são tais que $|x - y| < \delta$, então $|f(x) - f(y)| < \epsilon/3$. Afirmo que, se $x, y \in I$ são tais que $|x - y| < \delta$, então $|f(x) - f(y)| < \epsilon/3$. Afirmo que, se $x, y \in I$ são tais que $|f(x) - f(y)| < \epsilon/3$. Sem perda de generalidade. Sendo $|f(x) - f(y)| < \epsilon/3$. Sem perda de generalidade. Sendo $|f(x) - f(y)| < \epsilon/3$. Afirmo que, se $x, y \in I$ são tais que $|f(x) - f(y)| < \epsilon/3$. Sem perda de generalidade. Sendo $|f(x) - f(y)| < \epsilon/3$. Sem perda de generalidade. Sendo $|f(x) - f(y)| < \epsilon/3$.

- (a) se $x, y \in I \cap (-\infty, \alpha]$ ou $x, y \in I \cap [\beta, +\infty)$, já vimos que $|f(x) f(y)| < \epsilon/3$;
- (b) se $x \in I \cap (-\infty, \alpha]$ e $y \in [\alpha, \beta]$, então $|x y| < \delta$ implica $|y \alpha| < \delta$, portanto $|f(x) f(y)| \le |f(x) f(\alpha)| + |f(\alpha) f(y)| < \epsilon/3 + \epsilon/3 < \epsilon$ (e analogamente para o caso $x \in [\alpha, \beta]$ e $y \in I \cap [\beta, +\infty)$);
- (c) se $x \in I \cap (-\infty, \alpha]$ e $y \in I \cap [\beta, +\infty)$, então $|x-y| < \delta$ implica $|\beta \alpha| < \delta$, portanto $|f(x) f(y)| \le |f(x) f(\alpha)| + |f(\alpha) f(\beta)| + |f(\beta) f(y)| < \epsilon/3 + \epsilon/3 = \epsilon$.

33-) Uma função contínua $\phi:[a,b]\to\mathbb{R}$ diz-se poligonal se existirem $a=a_0< a_1<\cdots< a_n=b$ tais que $\phi|_{[a_{i-1},a_i]}$ é um polinômio de grau menor ou igual a 1, para $1\leqslant i\leqslant n$. Prove que, se $f:[a,b]\to\mathbb{R}$ é uma função contínua, para todo $\epsilon>0$ existe $\phi:[a,b]\to\mathbb{R}$ poligonal tal que $(\forall x\in[a,b])|f(x)-\phi(x)|<\epsilon$.

DEMONSTRAÇÃO:

Seja $\epsilon > 0$. Como ϕ é contínua no compacto [a,b], segue-se que ϕ é uniformemente contínua (já demonstramos em aula que toda função contínua num compacto é uniformemente contínua). Assim, existe $\delta > 0$ tal que, se $x,y \in [a,b]$ são tais que $|x-y| < \delta$, então $|f(x)-f(y)| < \epsilon/2$. Tome $a=a_0 < a_1 < \cdots < a_n = b$ tais que, para $1 \leq i \leq n$, $|a_i-a_{i-1}| < \delta$. Defina $\phi:[a,b] \to \mathbb{R}$ tal que, para cada $i \in \{1,\ldots,n\}$, $\phi|_{[a_{i-1},a_i]}$ é a função afim tal que $\phi(a_{i-1}) = f(a_{i-1})$ e $\phi(a_i) = f(a_i)$. Então ϕ é poligonal e, para cada $i \in \{1,\ldots,n\}$, $(\forall x \in [a_{i-1},a_i]) |\phi(x)-\phi(a_{i-1})| \leq |\phi(a_i)-\phi(a_{i-1})| = |f(a_i)-f(a_{i-1})| < \epsilon/2$. Ora, dado $x \in [a,b]$, existe $i \in \{1,\ldots,n\}$ tal que $x \in [a_{i-1},a_i]$, portanto $|f(x)-\phi(x)| \leq |f(x)-f(a_{i-1})| + |f(a_{i-1})-\phi(x)| < \epsilon/2 + \epsilon/2 = \epsilon$.

- 37-) Sejam $X \subset \mathbb{R}$ compacto e $f: X \to \mathbb{R}$. Se f é s.c.s., então f tem um ponto de máximo em X (i.e. existe $x_0 \in X$ tal que $f(x_0) = \max f(X)$); analogamente, se f é s.c.i., então f tem um ponto de mínimo em X.
 - DEMONSTRAÇÃO: Seja $f: X \to \mathbb{R}$ s.c.s. em X compacto. Provemos que f tem um ponto de máximo em X.
 - (a) Afirmo que f é limitada superiormente. Com efeito, para cada $n \in \mathbb{N}$, $f^{-1}(]-\infty,n[)$ é aberto em X, pelo fato de ser f s.c.s. (vide questão 36); ou seja, para cada $n \in \mathbb{N}$, $f^{-1}(]-\infty,n[)$ é a intersecção de um aberto $A_n \subset \mathbb{R}$ com X. Além disso, para todo $x \in X$, existe $n \in \mathbb{N}$ tal que f(x) < n, i.e. $x \in f^{-1}(]-\infty,n[)$. Assim, $(A_n)_{n\in\mathbb{N}}$ é uma cobertura aberta do compacto X, da qual podemos (por Borel-Lebesgue) extrair uma subcobertura finita $(A_{n_i})_{1\leqslant i\leqslant k}$. Ora, tomando $N \doteq \max\{n_i : 1\leqslant i\leqslant k\}$, tem-se $(\forall x \in X) f(x) < N$.
 - (b) Seja $M \stackrel{\cdot}{=} \sup f(X)$ (existe, pelo item anterior e pelo axioma do supremo). Queremos mostrar que $M \in f(X)$. Tome $(y_n)_{n \in \mathbb{N}}$ seqüencia em f(X) tal que $y_n \to M$. Para cada $n \in \mathbb{N}$, tome $x_n \in X$ tal que $f(x_n) = y_n$. Pela propriedade de Bolzano-Weierstrass, a seqüência $(x_n)_{n \in \mathbb{N}}$ do compacto X possui uma subseqüência convergente $(x_{n_k})_{k \in \mathbb{N}}$, com limite $x_0 \in X$. Sendo f s.c.s., segue-se que $\limsup f(x_{n_k}) \leqslant f(x_0)$ (vide questão 36). Mas, sendo $\{f(x_{n_k})\}_{k \in \mathbb{N}}$ uma subseqüência de $\{y_n = f(x_n)\}_{n \in \mathbb{N}}$, segue-se de $f(x_n) \to M$ que $\limsup f(x_{n_k}) = M$, donde $M \leqslant f(x_0)$. E, por ser $M = \sup f(X)$, também temos $f(x_0) \leqslant M$, portanto $M = f(x_0) \in f(X)$.

A demonstração de que $f: X \to \mathbb{R}$ s.c.i. em X compacto tem ponto de mínimo em X é análoga. \square