

Using Optical Measurements to Characterize the Orbital Debris Environment in GEO

Dr. Alyssa Manis
Radar and Optical Measurements Lead
NASA Orbital Debris Program Office
9 February 2023

Agenda

- Orbital Debris Engineering Model (ORDEM) Background
- Building/Validating the GEO Population for ORDEM 3.1
- Eugene Stansbery Meter-Class Autonomous Telescope (ES-MCAT) Overview

ORDEM – An Engineering Model

- **An engineering model is a tool used primarily by satellite designers and operators in order to compute the mission risk to their vehicles from orbital debris impacts**
 - NASA's Orbital Debris Engineering Model (ORDEM) provides information on debris impact rate as a function of size, material density, and impact speed and direction
 - Latest version is ORDEM 3.2, released in March 2022
 - The orbital debris risk computed by an engineering model is different than the risk computed for a satellite conjunction
 - ORDEM computes long-term impact risk as probabilities
 - ORDEM covers debris sizes too small to be tracked
 - Mission-ending risk is dominated by small, untracked debris
- **Since the orbital debris environment is dynamic, ORDEM must be updated periodically to better reflect reality**

Optical Data Sources for ORDEM

- **SSN catalog**
 - Nearly complete for objects down to approximately 10 cm in LEO and 1 m in GEO
- **Michigan Orbital DEbris Survey Telescope (MODEST)**
 - Provides statistical GEO population for ORDEM below 1 m
 - 0.6 m telescope located at Cerro Tololo Inter-American Observatory
 - Primary optical source for NASA from 2001-2014
 - Data is correlated with SSN catalog
 - Correlated Targets (CTs) and Uncorrelated Targets (UCTs)
 - Assumed circular orbits (eccentricity = 0, circular mean motion)
 - Datasets covering 2004-2006 and 2007-2009 were used for building the ORDEM 3.1 GEO population
 - Dataset covering 2013-2014 was used for ORDEM 3.1 validation

Data Coverage

MODEST Magnitude Distribution

GEO Debris Ring Filter (1/2)

- **GEO debris ring used to filter data for fragmentation debris**
 - Non-GEO objects may be misclassified as GEO objects due to the short-time arc for GEO observations and the circular orbit assumption
 - Uncontrolled objects in GEO naturally precess in inclination / right ascension space, follow a loop in Cartesian coordinates of

$$(INC \cdot \cos(RAAN), INC \cdot \sin(RAAN))$$

INC = inclination

RAAN = right ascension of the ascending node

- Controlled, intact objects tend to clump near $(0^\circ, 0^\circ)$ while derelict intact satellites and debris tend to spread out
- Orbit angle = angle between object's orbit and stable Laplace plane used to identify objects within the debris ring

GEO Debris Ring Filter (2/2)

Assigning Non-Circular Orbital Elements

- Circular orbit assumption is made for MODEST UCTs
- Non-circular orbital elements (eccentricity and mean motion) sought to obtain a more realistic orbit
 - Based on modeled breakup events using NASA SSBM

GEO Population Validation: Clock Angle Distribution

Clock angle defined as angle in
($INC \cdot \cos(RAAN)$, $INC \cdot \sin(RAAN)$)

Initial comparisons showed more objects in MODEST dataset in clock angle range $0-60^\circ$ and $240-300^\circ$
 → added simulated breakups to represent unconfirmed GEO breakups

New Assets: ES-MCAT Overview

- **Eugene Stansbery Meter-Class Autonomous Telescope (ES-MCAT)**
 - **1.3-m, f/4**, DFM Engineering fast-tracking optical telescope paired with an ObservaDome fast-tracking dome to accommodate tracking debris at all orbital altitudes
 - **Field of View: 0.68 degrees x 0.68 degrees, 0.96 degrees diagonal**
 - **Limiting Magnitude**: 19.48 ± 0.18 (estimated from data for primary mirror in good condition in r')
 - Current limiting magnitude: 16.63 ± 0.285 (g' prime, current condition 01/01/2022 and 03/14/2022)
 - Deployed on Ascension Island ($7^{\circ} 58' S$, $14^{\circ} 4' W$, 350' EI)
 - **Joint NASA-Air Force Research Labs (AFRL) project**, located on the U.S. Space Force base (45th Space Wing, Detachment 2 near the Ascension Auxiliary Air Field)
 - Its near equatorial latitude ensures that low-inclination LEO, GEO, and GEO transfer orbit (GTO) target orbits pass overhead (less atmosphere to see through and ability to view all orbit inclinations)

Credit: Ben Hanna

ES-MCAT Milestones

- **Milestones**

- Concept development (2000 - 2003)
- Groundbreaking on Ascension (2014)
- First-light (2015)
- URR (2017)
- IOC (2019)
- FOC (7 September 2021)
 - Proven autonomous capability to safely acquire/process GEO survey data
 - Characterized astrometric and photometric uncertainties using the GAIA catalog
 - Transmit results to NASA/JSC
- First GEO survey completed (2022)

GEO Survey Approach

- **Survey Method**
 - Avoid week around full moon
 - Otherwise point anti-solar, to maximize illumination
 - 1-h in HA/RA leading/trailing the Earth's shadow
 - Declination decreases by -0.5 degrees each night until minimum Declination is hit (5 deg below GEO belt)
 - Results in a diagonal path
- **Daily motion for GEO Belt objects at Ascension**

Purple
Line
represents
Earth
Shadow
trail

Green
squares are
Field
Centers

- **A “Complete GEO survey”**
 - Region of Interest – a “donut” area with a diameter between 7.5 and 15 centered at $7.5 \text{ INC}^*\sin(\text{RAAN})$ and $7.5 \text{ INC}^*\cos(\text{RAAN})$
 - Produces images that can provide an expectation value (EVAL) above threshold (0.3 or 0.2) coverage in the INC/RAAN space of interest.

INC = orbit inclination; RAAN = Right ascension ascending node

ES-MCAT's First GEO Survey

CTs

UCTs

Thank you!

- Any questions?

