

February 18, 2025

Scalable Surrogate Models for High-Dimensional Physics-based Systems

Somdatta Goswami
Civil and Systems Engineering
Johns Hopkins University

BIRS workshop Uncertainty Quantification in Neural Network Models

Centrum IntelliPhysics

- Mission: Develop machine learning tools to accelerate engineering innovation
- Focus: Physics-Informed Machine Learning
 - Efficient training strategies for neural operators
 - Developing hybrid solvers (operators + solvers)
- Applications: Multiscale Modeling in Materials, Engineering and Biomedical Systems

Physics-based Models

Can represent the Processes of Nature

☐ Physics-based models are approximated viaODEs/PDEs

To model earthquake:
$$m \frac{d^2u}{dt^2} + k \frac{du}{dt} + F_0 = 0$$

To model waves:
$$\frac{\partial^2 u}{\partial t^2} - v^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) = 0$$

☐ Computational Mechanics helps us simulate these equations.

Simulation of Orion Spacecraft Launch Abort System (NASA Ames)

Detailed flow around an Aircraft's landing gear (NASA Ames)

CFD Simulation of a Patient-Specific Intracranial Aneurysm

Challenges with Numerical Methods

- Require knowledge of conservation laws, and boundary conditions
- Time consuming and strenuous simulations.
- Difficulties in mesh generation.
- Solving inverse problems or discovering missing physics can be prohibitively expensive.

Develop Physics-based surrogate models for these systems to create a fast-to-evaluate alternative.

Surrogate Modeling Techniques

- Discretized Data
- Discretization dependent
- Queries on mesh
- Learning functions between vector spaces

PCA

Auto-encoders

K-PCA

Diffusion maps

Finite Dimensional

PINNs

Functional Data

Data-driven

- Discretization Invariant
- Continuous quantities
- Learning operators between function spaces

f-PCA DeepONet LNO
F-RKHS FNO WNO

Infinite Dimensional

PI-DeepONet PINO

Operator Learning Framework

Input-output map

$$\Phi: \mathcal{U} \to \mathcal{S}$$

Data $\{\mathcal{U}_n, \mathcal{S}_n\}_{n=1}^N$ and/or Physics

$$\mathcal{S}_n = \Phi(\mathcal{F}_n)$$
 , $\mathcal{F}_n \sim \mu \ i. \ i. \ d$

Operator learning

$$\Psi:\times\Theta\to\mathcal{S}$$
 such that $\Psi(.,\theta^*)\approx\Phi$

Training
$$\theta^* = \operatorname{argmin}_{\theta} l(\{\mathcal{U}_n, \Psi(\mathcal{S}_n, \theta)\})$$

Deep Operator Network (DeepONet)

- Generalized Universal Approximation Theorem for Operator [Chen '95, Lu et al. '19]
- Branch net: Input $\{u(x_i)\}_{i=1}^m$, output: $[b_1, b_2, ..., b_p]^T \in \mathbb{R}^p$
- **Trunk net**: Input y, output: $[t_1, t_2, ..., t_p]^T \in \mathbb{R}^p$
- Input u is evaluated at the fixed locations $\{y_i\}_{i=1}^m$

Physics-Informed DeepONet

- Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of parametric partial differential equations with physics-informed DeepONets. Science Advances, 7(40), October 2021.
- Somdatta Goswami, Yin, M., Yu, Y., & Karniadakis, G. E. (2022). A physics-informed variational DeepONet for predicting crack path in quasi-brittle materials. Computer Methods in Applied Mechanics and Engineering, 391, 114587.

Our Proposed framework

Computer Methods in Applied Mechanics and Engineering

Volume 434, 1 February 2025, 117586

Separable physics-informed DeepONet: Breaking the curse of dimensionality in physics-informed machine learning

Luis Mandl ^a, Somdatta Goswami ^b $\stackrel{\diamond}{\sim}$ \boxtimes , Lena Lambers ^a, Tim Ricken ^a

Introducing Separation of Variables

Vanilla Trunk network

Separated Trunk network

Introduced in PINNs: Cho, J., Nam, S., Yang, H., Yun, S. B., Hong, Y., & Park, E. (2022). Separable PINN: Mitigating the curse of dimensionality in physics-informed neural networks. ArXiv preprint - 2211.08761.

Vanilla – Physics Informed DeepONet

Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of parametric partial differential equations with physics-informed DeepONets. Science Advances, 7(40), October 2021.

Separable DeepONet Framework

Numerical Examples

Problem	Model	d	$egin{aligned} \mathbf{Relative} \ \mathcal{L}_2 \ \mathbf{error} \end{aligned}$	$\begin{array}{c} \mathbf{Run\text{-}time} \\ \mathrm{(ms/iter.)} \end{array}$
Burgers Equation	Vanilla Separable (Ours)	2	5.1e-2 $6.2e-2$	136.6 3.64
Consolidation Biot's Theory	Vanilla Separable (Ours)	2	$7.7e ext{-}2 \ 7.9e ext{-}2$	169.43 3.68
Parameterized Heat Equation	Vanilla Separable (Ours)	4	- 7.7 <i>e</i> -2	10,416.7 91.73

Burgers' Equation

$$\frac{\partial s(x,t)}{\partial t} + s \frac{\partial s(x,t)}{\partial x} - \nu \frac{\partial^2 s(x,t)}{\partial x^2} = 0,$$

$$s(0,t) = s(1,t),$$

$$\frac{\partial s(0,t)}{\partial x} = \frac{\partial s(1,t)}{\partial x},$$

$$s(x,0) = u(x), \quad x \in [0,1]$$

Model	Branch	Trunk	p	r	Parameters	\mathcal{L}_2 rel. err.	Runtime [s]	Runtime improvment
Vanilla PI-DeepONet	6×[100]	6×[100]	100	-	131,701	5.14e-2	6,829.2	-
Sep-PI-DeepONet	$ \bar{6} \times [\bar{1}0\bar{0}] \\ 6 \times [100] \\ 6 \times [100] $	$ \begin{array}{c} \bar{6} \times [100] \\ 6 \times [100] \\ 6 \times [50] \end{array} $	50 20 20	$ \begin{array}{r} -50 \\ 20 \\ 20 \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ar{6.24e-2} \ 6.04e-2 \ 6.46e-2$	182.1 197.8 197.0	97,33% $97,10%$ $97,12%$

Biot's Consolidation

$$(\lambda + 2\mu) \frac{\partial^2 u(z,t)}{\partial z^2} - \frac{\partial p(z,t)}{\partial z} = 0$$

$$\frac{\partial^2 u(z,t)}{\partial t \partial z} - \frac{k}{\rho g} \frac{\partial^2 \tilde{p}(z,t)}{\partial z^2} = 0,$$

$$u(z,0) = 0, \qquad p(0,t) = 0,$$

$$p(z,0) = f(0), \qquad u(L,t) = 0,$$

$$\sigma(0,t) = -f(t), \qquad \frac{\partial p(L,t)}{\partial z} = 0,$$

Implementing Physics-Informed DeepONet is not an easy task for complicated systems

Can we harness the explosion of data to extract knowledge, insight and decision?

BIG Decisions need BIG MODELS

But we have: sparse high-dimensional datasets

Physics-Informed Operator Learning on Latent Spaces

Part – I: Data-driven operator learning on reduced spaces

Part – II: Integrating physics and data to learn operator on reduced spaces

Our Proposed framework

nature communications

Article

https://doi.org/10.1038/s41467-024-49411-w

Learning nonlinear operators in latent spaces for real-time predictions of complex dynamics in physical systems

Viscous Shallow water equation

- Model the dynamics of large-scale atmospheric flows
- Perturbation is used to induce the development of barotropic instability

$$\frac{\mathrm{d}\boldsymbol{V}}{\mathrm{d}t} = -f\boldsymbol{k} \times \boldsymbol{V} - g\nabla h + \nu\nabla^{2}\boldsymbol{V}$$

$$\frac{\mathrm{d}h}{\mathrm{d}t} = -h\nabla\cdot\boldsymbol{V} + \nu\nabla^{2}h$$

$$h'(\lambda, \phi) = \hat{h}\cos(\phi)e^{-(\lambda/\alpha)^{2}}e^{-[(\phi_{2} - \phi)/\beta]^{2}}$$

$$rvs: \alpha \sim U[0.\overline{1}, 0.5] \beta \sim U[0.0\overline{3}, 0.2]$$

Operator: $G: h'(\lambda, \varphi, t = 0) \mapsto u(\varphi, \lambda, t)$

Input Dimension: 65,536

Gaussian Random Perturbation

Output Dimension: 4,718,592

Atmospheric Flow

Latent DeepONet for time-dependent PDEs

Operator $\mathcal{G}: \mathcal{X} \to \mathcal{Y}$ $\mathcal{G}_{\theta}: \mathcal{X} \to \mathcal{Y}, \ \theta \in \Theta$ Training data $\{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^N$

Latent DeepONet for time-dependent PDEs

Operator $\mathcal{G}: \mathcal{X} \to \mathcal{Y}$ $\mathcal{G}_{\theta}: \mathcal{X} \to \mathcal{Y}, \ \theta \in \Theta$ Training data $\{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^N$

Latent DeepONet for time-dependent PDEs

PCA: principal component analysis

Consolidated results

Accuracy of L-DeepONet for MLAE and PCA

Application	d	with MLAE	with PCA
Brittle material fracture	9		$2.71 \cdot 10^{-3} \pm 6.62 \cdot 10^{-6}$
Diffue material fracture	64	$2.02 \cdot 10^{-4} \pm 1.88 \cdot 10^{-5}$	
Rayleigh-Bénard fluid flow	25		$3.90 \cdot 10^{-3} \pm 4.73 \cdot 10^{-5}$
		$3.55 \cdot 10^{-3} \pm 1.46 \cdot 10^{-4}$	
Shallow water equation	25		$7.98 \cdot 10^{-4} \pm 8.01 \cdot 10^{-7}$
	81	$2.23 \cdot 10^{-4} \pm 1.83 \cdot 10^{-5}$	$4.18 \cdot 10^{-4} \pm 4.67 \cdot 10^{-6}$

Computational training time in seconds (s) on an NVIDIA A6000 GPU

Application	L-DeepONet	Full DeepONet	FNO-3D
Brittle material fracture	1,660	15,031	128,000
Rayleigh-Bénard fluid flow	2,853	6,772	1,126,400
Shallow water equation	15,218	379,022	_

Spherical shallow water equations

- Model the dynamics of large-scale atmospheric flows
- Barotropically unstable mid-latitude jet (*Ref: Galewsky et al. 2004*)
- Perturbation is used to induce the development of barotropic instability

Shallow-water equations

$$\frac{\mathrm{d}V}{\mathrm{d}t} = -f\mathbf{k} \times V - g\nabla h + \nu\nabla^2 V$$

$$\frac{\mathrm{d}h}{\mathrm{d}t} = -h\nabla \cdot V + \nu\nabla^2 h$$

- V = iu + jv: velocity vector tangent to the sphere
- *h*: height field (thickness of the fluid layer)
- $f = 2\Omega \sin \varphi$: Coriolis parameter
- φ : latitude, Ω : angular velocity of Earth, ν : diff. coeff.

Initial condition

$$u(\phi) = \begin{cases} 0 & \text{for } \phi \le \phi_0 \\ \frac{u_{\text{max}}}{e_n} \exp\left[\frac{1}{(\phi - \phi_0)(\phi - \phi_1)}\right] & \text{for } \phi_0 < \phi < \phi_1 \\ 0 & \text{for } \theta \ge \phi_1 \end{cases}$$

$$h'(\lambda, \phi) = \hat{h} \cos(\phi) e^{-(\lambda/\alpha)^2} e^{-[(\phi_2 - \phi)/\beta]^2}$$
rvs: $\alpha \sim U[0.\overline{1}, 0.5]$ $\beta \sim U[0.0\overline{3}, 0.2]$

Operator:
$$\mathcal{G}: h'(\lambda, \varphi, t = 0) \mapsto u(\varphi, \lambda, t)$$

Results

Training Time (seconds)

MLAE + Latent DON: 15, 218

Full DON: 379,022

- $\Omega = [0.2\pi] \times [0.2\pi]$, $(n_x \times n_y) = (256 \times 256)$ mesh points
- Output dimensionality: 72x256x256 = 4,718,592
- Simulation: t = [0.360h], $\delta t = 0.1\overline{6}h$, Time steps: $n_t = 72$

Results

Latent DeepONet and Full DeepONet

Shortcomings

1

The framework requires voluminious training data.

Since it's a two-stage training, the governing physics cannot be incorporated.

Physics-Informed Operator Learning on Latent Spaces

Part – I: Efficient algorithms beyond the existing ones

Part – II: Data-driven operator learning on reduced spaces

Part – III: Integrating physics and data to learn operator on reduced spaces

Our Proposed framework

Physics-Informed Latent Neural Operator: Integrating Physics and Data using Reduced Order Modeling

Manuscript in preparation

One-shot Learning: Physics Informed Latent Neural Operator

Operator $\mathcal{G}: \mathcal{X} \to \mathcal{Y}$ $\mathcal{G}_{\theta}: \mathcal{X} \to \mathcal{Y}, \ \theta \in \Theta$ Training data $\{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^N$

N(way less than data-driven)

Case	Diffusion-reaction dynamics	Burgers' transport dynamics	Advection
PDE	$ \frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} + ku^2 + s(x), D = 0.01, k = 0.01, (t, x) \in (0, 1] \times (0, 1], u(0, x) = 0, x \in (0, 1) u(t, 0) = 0, t \in (0, 1) u(t, 1) = 0, t \in (0, 1) \mathcal{G}_{\mathcal{\theta}} : s(x) \to u(t, x). $	$\begin{split} \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} - \nu \frac{\partial^2 u}{\partial x^2} &= 0, \\ \nu &= 0.01, \\ (t, x) \in (0, 1] \times (0, 1], \\ u(0, x) &= g(x), \ x \in (0, 1) \\ u(t, 0) &= u(t, 1) \\ \frac{\partial u}{\partial x}(t, 0) &= \frac{\partial u}{\partial x}(t, 1) \\ \mathcal{G}_{\boldsymbol{\theta}} : g(x) \to u(t, x). \end{split}$	$\begin{split} \frac{\partial u}{\partial t} + s(x) \frac{\partial u}{\partial x} &= 0, \\ (t, x) \in (0, 1] \times (0, 1], \\ u(0, x) &= \sin(\pi x) \ \forall \ x \in (0, 1), \\ u(t, 0) &= \sin(0.5\pi t) \ \forall \ t \in (0, 1), \\ s(x) &= v(x) - \min_{x} v(x) + 1 \\ \mathcal{G}_{\boldsymbol{\theta}} : v(x) \to u(t, x). \end{split}$
Input Function	$s(x) \sim \text{GP}(0, k(x, x')),$ $\ell_x = 0.2, \ \sigma^2 = 1.0,$ $k(x, x') = \sigma^2 \exp\left\{-\frac{\ x - x'\ ^2}{2\ell_x^2}\right\}.$	$g(x) \sim \mathcal{N}\left(0, 25^2 \left(-\Delta + 5^2 I\right)^{-4}\right),$	$v(x) \sim \text{GP}(0, k(x, x')),$ $\ell_x = 0.2, \ \sigma^2 = 1.0,$ $k(x, x') = \sigma^2 \exp\left\{-\frac{\ x - x'\ ^2}{2\ell_x^2}\right\}.$
Samples	0.8 - 0.576 -	0.8 - 0.17 - 0.11 - 0.05 - 0.00 - 0.05 - 0.01 - 0.15 - 0.1	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	0.8 - 0.80 0.8 - 0.60 0.4 - 0.20 0.4 - 0.20 0.4 - 0.20 0.4 - 0.80 0.4 - 0.80 0.5 - 0.80 0.6 - 0.80 0.7 - 0.80 0.8 -	0.50 0.25 0.6 0.6 0.7 0.00 0.0	100 088 089 069 069 069 069 069 069 069 069 069 06

Accuracy Comparison

Reaction Diffusion Dynamics

Runtime Scaling

Memory Scaling

Key Takeaways

- These methods have a niche in real world problems, where partially physics in known and some measurements of quantities of interest are available.
- Separable architecture introduces the possibility of employing physics in neural operators.
- Learning NOs on reduced spaces with data and physics opens up the possibly of exploring large design spaces efficiently.

Acknowledgement

Funding

Thank you!