

HCC/HCF40192B HCC/HCF40193B

PRESETTABLE UP/DOWN COUNTERS (DUAL CLOCK WITH RESET) 40192B – BCD TYPE 40193B – BINARY TYPE

- INDIVIDUAL CLOCK LINES FOR COUNTING UP OR COUNTING DOWN
- SYNCHRONOUS HIGH-SPEED CARRY AND BORROW PROPAGATION DELAYS FOR CAS-CADING
- ASYNCHRONOUS RESET AND PRESET CA-PABILITY
- MEDIUM-SPEED OPERATION f_{CL} = 8MHz (typ.) @ 10V
- STANDARDIZED SYMMETRICAL OUTPUT CHARACTERISTICS
- 5V, 10V, AND 15V PARAMETRIC RATINGS
- INPUT CURRENT OF 100nA AT 18V AND 25°C FOR HCC DEVICE
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDECTEN-TATIVE STANDARD N° 13A, "STANDARD SPE-CIFICATIONS FOR DESCRIPTION OF "B" SERIES CMOS DEVICES"

EY F (Plastic Package) (Ceramic Frit Seal Package) M1 C1 (Chip Carrier) (Plastic Chip Carrier) ORDER CODES: HCC401XXBF HCF401XXBM1 HCF401XXBEY HCF401XXBC1

DESCRIPTION

The HCC40192B, HCC40193B, (extended temperature range) and the HCF40192B, HCF40193B (intermediate temperature range) are monolithic integrated circuits, available in 16-lead dual in-line plastic or ceramic package and platic micro package. The HCC/HCF40192B Presettable BCD Up/Down Counter and the HCC/HCF40193B Presettable Binary Up/Down Counter each consist of 4 synchronously clocked, gated "D" type flip-flops connected as a counter. The inputs consist of 4 individual jam lines, a PRESET ENABLE control, individual CLOCK UP and CLOCK DOWN signals and a master RESET. Four buffered Q signal outputs as well as CARRY and BORROW outputs for multiple-stage counting schemes are provided. The counter is cleared so that all outputs are in a low state by a high on the RESET line. A RESET is accomplished asynchronously with the clock. Each output is individually programmable asynchronously with the clock to the level on the corresponding jam input when the PRESET ENABLE control is low. The counter counts up one count on the positive clock edge of the CLOCK UP signal provided the CLOCK DOWN line is high. The counter counts down one count on the positive clock edge of the CLOCK DOWN signal provided the CLOCK UP line

June 1989 1/15

is high. The CARRY and BORROW signals are high when the counter is counting up or down. The CARRY signal goes low one-half clock cycle after the counter reaches its maximum count in the countup mode. The BORROW signal goes low one-half clock cycle after the counter reaches its minimum

count in the count-down mode. Cascading of multiple packages is easily accomplished without the need for additional external circuitry by tying the BORROW and CARRY outputs to the CLOCK DOWN and CLOCK UP inputs, respectively, of the succeeding package.

FUNCTIONAL DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DD} *	Supply Voltage : HCC Types HCF Types	- 0.5 to + 20 - 0.5 to + 18	V V
Vi	Input Voltage	- 0.5 to V _{DD} + 0.5	V
I_1	DC Input Current (any one input)	± 10	mA
P _{tot}	Total Power Dissipation (per package) Dissipation per Output Transistor for T _{op} = Full Package-temperature Range	200 100	mW mW
Top	Operating Temperature : HCC Types HCF Types	- 55 to + 125 - 40 to + 85	°C °C
T _{stg}	Storage Temperature	- 65 to + 150	°C

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for external periods may affect device reliability. * All voltages are with respect to V_{SS} (GND).

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage: HCC Types HCF Types	3 to 18 3 to 15	V
	nor types	3 10 15	V
V_{I}	Input Voltage	0 to V _{DD}	V
Top	Operating Temperature : HCC Types	- 55 to + 125	°C
	HCF Types	- 40 to + 85	°C

LOGIC DIAGRAMS

TIMING DIAGRAMS

Internal Logic of Flip-flop.

TRUTH TABLE

Clock Up	Clock Down	Preset Enable	Reset	Action
/	1	1	0	Count Up
/	1	1	0	No Count
1	_/_	1	0	Count Down
1	_/_	1	0	No Count
X	X	0	0	Preset
Х	Х	Х	1	Reset

 $^{1 = \}text{High Level}$ 0 = Low Level X = Don't Care.

STATIC ELECTRICAL CHARACTERISTICS (over recommended operating conditions)

			Т	est Con	dition	s	Value							
Symbol	Parame	ter	٧ı	۷o	I ₀	V _{DD}	ΤL	T _{Low} * 25°C				T _{High} *		Unit
			(V)	(V)	(μA)	(V)	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
ΙL	Quiescent		0/ 5			5		5		0.04	5		150	
	Current	нсс	0/10			10		10		0.04	10		300	
		Types	0/15			15		20		0.04	20		600	
			0/20			20		100		0.08	100		3000	μΑ
			0/ 5			5		20		0.04	20		150	
		HCF Types	0/10			10		40		0.04	40		300	
		1,7,000	0/15			15		80		0.04	80		600	
V _{OH}	Output Higl	h	0/ 5		< 1	5	4.95		4.95			4.95		
	Voltage		0/10		< 1	10	9.95		9.95			9.95		V
			0/15		< 1	15	14.95		14.95			14.95		
V _{OL}	Output Low	1	5/0		< 1	5		0.05			0.05		0.05	
	Voltage		10/0		< 1	10		0.05			0.05		0.05	V
			15/0		< 1	15		0.05			0.05		0.05	
V_{IH}	Input High			0.5/4.5	< 1	5	3.5		3.5			3.5		
	Voltage			1/9	< 1	10	7		7			7		V
				1.5/13.5	< 1	15	11		11			11		
V_{IL}	Input Low			4.5/0.5	< 1	5		1.5			1.5		1.5	V
	Voltage			9/1	< 1	10		3			3		3	
				13.5/1.5	< 1	15		4			4		4	
I _{OH}	Output		0/ 5	2.5		5	- 2		- 1.6	- 3.2		- 1.15		
	Drive Current	HCC	0/ 5	4.6		5	- 0.64		- 0.51	- 1		- 0.36		
	Current	Types	0/10	9.5		10	- 1.6		- 1.3	- 2.6		- 0.9		
			0/15	13.5		15	- 4.2		- 3.4	- 6.8		- 2.4		mA
			0/ 5	2.5		5	- 1.53		- 1.36	- 3.2		- 1.1		
		HCF	0/ 5	4.6		5	- 0.52		- 0.44	- 1		- 0.36		
		Types	0/10	9.5		10	- 1.3		- 1.1	- 2.6		- 0.9		
			0/15	13.5		15	- 3.6		- 3.0	- 6.8		- 2.4		
I _{OL}	Output	HCC	0/ 5	0.4		5	0.64		0.51	1		0.36		
	Sink Current	Types	0/10	0.5		10	1.6		1.3	2.6		0.9		
	Odifont	71	0/15	1.5		15	4.2		3.4	6.8		2.4		mA
		шог	0/ 5	0.4		5	0.52		0.44	1		0.36		
		HCF Types	0/10	0.5		10	1.3		1.1	2.6		0.9		
		,, .,	0/15	1.5		15	3.6		3.0	6.8		2.4		
I _{IH} , I _{IL}	Input Leakage	HCC Types	0/18	Any In	put	18		± 0.1		±10 ⁻⁵	± 0.1		± 1	^
	Current HCF	HCF Types	0/15	, any m		15		± 0.3		±10 ⁻⁵	± 0.3		± 1	μА
Cı	Input Capa	citance		Any In	put					5	7.5			pF

^{*} $T_{Low} = -55^{\circ}\text{C}$ for HCC device : -40°C for HCF device. * $T_{High} = +125^{\circ}\text{C}$ for HCC device : $+85^{\circ}\text{C}$ for HCF device. The Noise Margin for both "1" and "0" level is : 1V min. with $V_{DD} = 5V$, 2V min. with $V_{DD} = 10V$, 2.5V min.

DYNAMIC ELECTRICAL CHARACTERISTICS ($T_{amb} = 25^{\circ}C$, $C_{L} = 50 pF$, $R_{L} = 200 k\Omega$, typical temperature coefficient for all V_{DD} values is $0.3\%/^{\circ}C$, all input rise and fall time = 20ns)

0	B	Test Conditions					
Symbol	Parameter		V _{DD} (V)	Min.	Тур.	Max.	Unit
t _{PHL} ,	Propagation Delay Time		5		250	500	
tplH	Clock Up or Clock Down to Q		10		120	240	ns
	Reset to Q		15		90	180	
	PE to Q		5		200	400	
			10		100	200	ns
			15		70	140	
	Clock Up to Carry		5		160	320	
	Clock Down to Borrow		10		80	160	ns
			15		60	120	
	Reset or PR to Borrow or Carry		5		300	600	
			10		150	300	ns
			15		110	220	
t _{THL} ,	Transition Time		5		100	200	
t _{TLH}			10		50	100	ns
			15		40	80	
t _{re m} *	Removal <u>Ti</u> me		5	80	40		
	Reset or PE		10	40	20		ns
			15	30	15		
t _W	Clock Input Pulse Width		5	480	240		
	Reset		10	300	150		ns
			15	260	130		
	PE		5		120	240	
			10		85	170	ns
			15		70	140	
	Clock		5		90	180	
			10		45	90	ns
			15		30	60	
t _r , t _f	Clock Input Rise or Fall Time		5			15	
			10			15	μs
			15			5	
f _{CL}	Maximum Clock Input Frequency		5	2	4		
			10	5	8		MHz
			15	5.5	11		

^{*} The time required for Reset or Preset Enable control to be removed before clocking (see timing diagram).

Timing Diagram Defining trem.

Output Low (sink) Current Characteristics.

Typical Transition Time vs. Load Capacitance.

Output high (source) Current Characteristics.

Typical Propagation Delay Time vs. Load Capacitance.

Typical Dynamic Power Dissipation.

TYPICAL APPLICATION

CASCADED COUNTER PACKAGES

TEST CIRCUITS

Quiescent Device Current.

Input Voltage.

TEST CIRCUITS (continued)

Input Leakage Current.

Dynamic Power Dissipation.

Plastic DIP16 (0.25) MECHANICAL DATA

DIM.		mm		inch			
Dim.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
a1	0.51			0.020			
В	0.77		1.65	0.030		0.065	
b		0.5			0.020		
b1		0.25			0.010		
D			20			0.787	
E		8.5			0.335		
е		2.54			0.100		
e3		17.78			0.700		
F			7.1			0.280	
I			5.1			0.201	
L		3.3			0.130		
Z			1.27			0.050	

Ceramic DIP16/1 MECHANICAL DATA

DIM.		mm		inch			
Diiii.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А			20			0.787	
В			7			0.276	
D		3.3			0.130		
Е	0.38			0.015			
e3		17.78			0.700		
F	2.29		2.79	0.090		0.110	
G	0.4		0.55	0.016		0.022	
Н	1.17		1.52	0.046		0.060	
L	0.22		0.31	0.009		0.012	
М	0.51		1.27	0.020		0.050	
N			10.3			0.406	
Р	7.8		8.05	0.307		0.317	
Q			5.08			0.200	

SO16 (Narrow) MECHANICAL DATA

DIM.		mm		inch			
Dilvi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α			1.75			0.068	
a1	0.1		0.2	0.004		0.007	
a2			1.65			0.064	
b	0.35		0.46	0.013		0.018	
b1	0.19		0.25	0.007		0.010	
С		0.5			0.019		
c1			45°	(typ.)			
D	9.8		10	0.385		0.393	
Е	5.8		6.2	0.228		0.244	
е		1.27			0.050		
e3		8.89			0.350		
F	3.8		4.0	0.149		0.157	
G	4.6		5.3	0.181		0.208	
L	0.5		1.27	0.019		0.050	
М			0.62			0.024	
S			8° (ı	max.)			

PLCC20 MECHANICAL DATA

DIM.		mm		inch			
Diiii.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	9.78		10.03	0.385		0.395	
В	8.89		9.04	0.350		0.356	
D	4.2		4.57	0.165		0.180	
d1		2.54			0.100		
d2		0.56			0.022		
E	7.37		8.38	0.290		0.330	
е		1.27			0.050		
e3		5.08			0.200		
F		0.38			0.015		
G			0.101			0.004	
М		1.27			0.050		
M1		1.14			0.045		

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

