The purpose of this project is to make a program which implements the LU-decomposition of Gaussian Elimination with partial pivoting to solve a linear system Ax = b.

A main program LU_Solver should consists of the following subprograms: PA_LU, Forward_Sub, Backward_Sub, Cond.

By using your subprograms, find the inverse matrix H^{-1} of a given matrix H and compute the condition number $c(H) = \|H\|_{\infty} \|H^{-1}\|_{\infty}$.

Intputs: Hilbert matrices H_n

$$H_n = \left(h_{ij}\right)_{n \times n}$$
 with $h_{ij} = \frac{1}{i+j-1}$, $1 \le i, j \le n$.

Outputs:

n	$c(H_n)$
4	with e-format such as $3.141+5$ denoting 3.141×10^5
8	
16	
:	
•	
?	

The End