2017 IMO #1

Tristan Shin 27 July 2017

For each integer $a_0 > 1$, define the sequence a_0, a_1, a_2, \ldots for $n \ge 0$ as

$$a_{n+1} = \begin{cases} \sqrt{a_n} & \text{if } \sqrt{a_n} \text{ is an integer,} \\ a_n + 3 & \text{otherwise.} \end{cases}$$

Determine all values of a_0 such that there exists a number A such that $a_n = A$ for infinitely many values of n.

The answer is $3 \mid a_0$.

Let k be a positive integer. We will call the sequence a_n with $a_0 = k$ the Snorlax sequence of k. Call k tasty if there exists a number A_k such that the Snorlax sequence of k contains A_k infinitely many times.

First, note that if k is tasty and k is in the Snorlax sequence of j, then j is also tasty. This is because we can choose $A_j = A_k$.

On a similar note, if k is not tasty and k is in the Snorlax sequence of j, then j is also not tasty. Indeed, let M be the largest number of times any number appears in the Snorlax sequence of k (M is finite because k is not tasty) and let $a_i = k$ in the Snorlax sequence of j. Then every number appears at most M + i times in the Snorlax sequence of j (because $a_i, a_{i+1}, a_{i+2}, \ldots$ is the Snorlax sequence of k), so j is not tasty.

We will also note that k is tasty if and only if the Snorlax sequence of k repeats a term. This is true because if k is tasty, then the Snorlax sequence of k must repeat a term at some point (in fact, infinitely many times), and if the Snorlax sequence of k repeats a term - say $a_d = a_e = c$ (d < e), then $a_{d+n(e-d)} = c$ for all nonnegative integers n, so then k is tasty.

We will show that n is tasty if and only if n is divisible by 3 by casework modulo 3.

Case 1: $n \equiv 0 \pmod{3}$

Let n = 3k with k a positive integer. We will show that n is tasty by strong induction on k. The base case of k = 1 is true because the Snorlax sequence of 3 goes

$$3 \rightarrow 6 \rightarrow 9 \rightarrow 3$$

and repeats a term, so $3 \cdot 1$ is tasty. Now, assume that 3k is tasty with k = 1, 2, ..., j for some positive integer j. We will prove that 3(j + 1) is tasty.

Note that $9\left\lceil \frac{\sqrt{a_0}}{3}\right\rceil^2$ is the smallest perfect square which is a multiple of 3 and is larger than a_0 . Thus, the Snorlax sequence of 3(j+1) goes

$$3(j+1) \rightarrow \ldots \rightarrow 9 \left\lceil \frac{\sqrt{3(j+1)}}{3} \right\rceil^2 \rightarrow 3 \left\lceil \frac{\sqrt{3(j+1)}}{3} \right\rceil.$$

2017 IMO #1 Tristan Shin

But note that

$$3\left\lceil \frac{\sqrt{3(j+1)}}{3} \right\rceil = 3\left\lceil \sqrt{\frac{j+1}{3}} \right\rceil < 3\left(\sqrt{\frac{j+1}{3}} + 1\right) < 3(j+1)$$

because $j \ge 1$, so $3\left\lceil \frac{\sqrt{3(j+1)}}{3} \right\rceil$ is tasty by the inductive hypothesis, so 3(j+1) is tasty.

Thus, by induction, n = 3k is tasty.

Case 2: $n \equiv 2 \pmod{3}$

We will show that n is not tasty by showing that the Snorlax sequence of n is an arithmetic sequence. To do so, we will prove by induction on i that $a_i \equiv 2 \pmod{3}$ and $a_{i+1} = a_i + 3$ for $i \geq 0$. The base case of i = 0 is true because $a_0 = n \equiv 2 \pmod{3}$ and since $\left(\frac{a_0}{3}\right) = \left(\frac{2}{3}\right) = -1$, $\sqrt{a_0}$ is not an integer, so $a_1 = a_0 + 3$. Now, assume that $a_i \equiv 2 \pmod{3}$ and $a_{i+1} = a_i + 3$ for some positive integer j. We will prove that $a_{j+1} \equiv 2 \pmod{3}$ and $a_{j+2} = a_{j+1} + 3$.

Note that $a_{j+1} = a_j + 3 \equiv 2 \pmod{3}$ by the inductive hypothesis, so $\left(\frac{a_{j+1}}{3}\right) = \left(\frac{2}{3}\right) = -1$, so $\sqrt{a_{j+1}}$ is not an integer, so $a_{j+2} = a_{j+1} + 3$.

Thus, by induction, $a_{i+1} = a_i + 3$. But then the Snorlax sequence of n is an arithmetic sequence, so n is not tasty.

Case 3: $n \equiv 1 \pmod{3}$

We will prove by strong induction on k that if $n \in (k^2, (k+1)^2]$, then n is not tasty. The base case of k=1 is true, as then n=4, so $a_1=2$, and since 2 is not tasty, we have that 4 is not tasty. Now, assume that $n \in (k^2, (k+1)^2]$ implies that n is not tasty for $k=1,2,\ldots,j$ for some positive integer j. We will prove that $n \in ((j+1)^2, (j+2)^2]$ implies that n is not tasty.

We will casework on j modulo 3.

Subcase 3.1: $j \equiv 1 \pmod{3}$

Then the Snorlax sequence of n will go

$$n \to \dots$$
(skip over $(j+2)^2$) $\to (j+3)^2 \to j+3$.

Note that the perfect square that n will go to is $(j+3)^2$ because $(j+2)^2 \equiv 0 \pmod 3$ while $(j+3)^2 \equiv 1 \pmod 3$, and the Snorlax sequence of n will progress arithmetically until it hits a perfect square. But $j+3 \equiv 1 \pmod 3$ and $1 < j+3 \le (j+1)^2$, so by the inductive hypothesis, j+3 is not tasty, so n is not tasty.

Subcase 3.2: $j \equiv 0 \pmod{3}$

Note that $(j+2)^2 \equiv 1 \pmod{3}$. Then the Snorlax sequence of n will go

$$n \to \ldots \to (j+2)^2 \to j+2.$$

2017 IMO #1 Tristan Shin

But $j + 2 \equiv 2 \pmod{3}$, so j + 2 is not tasty, so n is not tasty.

Subcase 3.3: $j \equiv 2 \pmod{3}$

Note that $(j+2)^2 \equiv 1 \pmod{3}$. Then the Snorlax sequence of n will go

$$n \to \ldots \to (j+2)^2 \to j+2.$$

But $j + 2 \equiv 1 \pmod{3}$ and $1 < j + 2 \le (j + 1)^2$, so by the inductive hypothesis, j + 2 is not tasty, so n is not tasty.

In all cases, n is not tasty when $n \in ((j+1)^2, (j+2)^2]$.

Thus, by induction, $n \equiv 1 \pmod{3}$ is not tasty.

In conclusion, n is tasty if and only if n is a multiple of 3. Thus, the answer is $a_0 \in \{3k \mid k \in \mathbb{N}\}$.