Question 1. [7 MARKS]

Part (a) [5 MARKS]

Indicate whether each statement is True or False by circling the appropriate answer.

TRUE FALSE All integrity constraints represent a foreign key constraint.

TRUE FALSE Theta joins are natural joins that include a select operator on a condition.

TRUE FALSE The assignment operator is not usually used to update the content of an existing relation.

TRUE FALSE A natural join on two tables with no common attributes results in an empty relation.

TRUE FALSE

If a relational algebra query has a select operator followed by a project operator, you cannot always swap the positions of the operators to get the same resulting relation.

Part (b) [2 MARKS]

Briefly explain what is meant by 'dangling' tuples. Show an example with some small tables.

Must explain dangling tuples and show example - see lecture slides.

Summer 2019

Recall this schema, which we have used many times in class.

Relations

Integrity constraints

 $Student(\underline{sID}, surName, firstName, campus, email, cgpa) \\ Course(\underline{dept, cNum}, name, breadth) \\ Offering(\underline{oID}, dept, cNum, term, instructor) \\ Took(sID, oID, grade)$

$$\begin{split} & \text{Offering}[\text{dept, cNum}] \subseteq \text{Course}[\text{dept, cNum}] \\ & \text{Took}[\text{sID}] \subseteq \text{Student}[\text{sID}] \\ & \text{Took}[\text{oID}] \subseteq \text{Offering}[\text{oID}] \end{split}$$

Question 2. [4 MARKS]

Part (a) [2 MARKS]

Consider this constraint:

Proom(cNum1, cNum2, term) :=

$$\Pi_{O1.cNum,O2.cNum,O1.term}\sigma \qquad {}_{O1.cNum < O2.cNum} \qquad [(\rho_{O1} Offering) \times (\rho_{O2} Offering)]$$

$${}_{O1.dept=O2.dept=`CSC'}$$

$${}_{O1.instructor=O2.instructor}$$

$${}_{O1.term=O2.term}$$

$$\sigma_{P1.cNum1=P2.cNum1}[(\rho_{P1}Proom) \times (\rho_{P2}Proom)] = \emptyset$$

$$P1.cNum2 \stackrel{\wedge}{=} P2.cNum2$$

$$P1.term \stackrel{\wedge}{\neq} P2.term$$

Define an instance of Offering that violates the constraint.

Solution:

oID	dept	cNum	term	instructor
o1	CSC	343	termA	Sina
o2	CSC	443	termA	Sina
o3	CSC	343	termB	Diane
04	CSC	443	termB	Diane

Part (b) [2 MARKS]

Write the following constraint using relational algebra: If a student takes a course taught by Horton, they cannot take a course taught by Gries.

Solution:

Any solution that did something like the following: Find all students taking Horton Courses. Find all students taking Gries Courses. Intersection of the two above should be empty.

Question 3. [8 MARKS]

Write a query in relational algebra to find the following: Consider the student(s) who received the highest grade over all breadth courses (a course where 'breadth' is true). Of those students, find sIDs of the ones who study on the 'St. George' campus.

You should break up your query into steps using the assignment operator. Adding commentary will help you understand your answer and can help us grade your answer.

Solution: this is one possible way to solve this

- All offerings of breath courses.

 $Breadth(oID) := \Pi_{oID}\sigma_{breadth=true}(Course \bowtie Offering)$

-Students who have taken Breadth courses

 $Breadthers(sID, oID, grade) := \Pi_{sID, oID, grade}(Breadth \bowtie Took)$

-Students who don't have the highest grade over all breadth courses

 $NotHighest(sID, OID) := \Pi_{B1.sID,B1.oID}\sigma_{B1.grade < B2.grade}[(\rho_{B1}Breadthers) \times (\rho_{B2}Breadthers)]$

-Students with highest grade over all breadth courses

 $Highest(sID) := \Pi_{sID}(\Pi_{sID,oID}Breadthers - NotHighest)$

- Answer: The students from above that go to St. Geroge.

 $Answer(sID) := \prod_{sID} \sigma_{campus = St.George}[Highest \bowtie Student]$

Question 4. [8 MARKS]

For this question, you will write SQL queries using a version of the Restaurants schema from Assignment 1.

Relations

Restaurant(<u>name</u>, owner, capacity, country) Patron(<u>PID</u>, name, birthday) Dish(<u>DID</u>, name, dietary) Reservation(<u>RID</u>, PID, rname, date) Order(<u>RID</u>, <u>DID</u>, number) Rating(PID, rname, rating, comment)

Integrity constraints

Reservation[PID] \subseteq Patron[PID] Reservation[rname] \subseteq Restaurant[name] Order[RID] \subseteq Reservation[RID] Order[DID] \subseteq Dish[DID] Rating[PID] \subseteq Patron[PID] Rating[rname] \subseteq Restaurant[name]

Part (a) [3 MARKS]

In our schema, users can leave **comments** on their restaurant rating, and the comment text can be null. Write a query in SQL to find, for each Patron who has made a rating for a restaurant (where the comment text is not null), their name and the number of restaurants they have made a comment on. Report the Patron's name and the number of restaurants. Organize the output in non-increasing order by the number of restaurants.

Solution:

```
SELECT name, count (rname)
FROM Patron, Rating
WHERE Patron.pid = Rating.pid
AND comment IS NOT NULL
GROUP BY Patron.name
ORDER BY count(rname) DESC;
```

Part (b) [2 MARKS]

Write a query in SQL that finds the names and owners of all restaurants that have a lower capacity than the restaurant named 'Red Lobster'.

Solution:

```
SELECT name, owner
FROM Restaurant
WHERE capacity <
      (SELECT capacity
      FROM Restaurant
    WHERE name = 'Red Lobster');</pre>
```

The following query is supposed to print the number of pairs of dishes which have the same dietary restriction. It runs but does not always give the correct output.

```
SELECT count(*)
FROM (
    SELECT D1.DID, D2.DID
    FROM Dish D1, Dish D2
    WHERE D1.dietary = D2.dietary
    AND D1.DID <> D2.DID
) as DietaryPairs;
```

Part (c) [1 MARK]

Suppose that Dish has these values. What will be the output of the query?

DID		name		dietary	
1		'veggie burger'			
2	!	'salad'		'veg'	
3	!	'lasagna'	!	'normal'	
4	1	'quinoa'		'gf'	
5	-	'pistachio'	1	'gf'	

Solution:

count -----4

Part (d) [1 MARK]

Generalizing to any dataset, explain what is wrong with the output of this query.

Solution: It counts every pair twice.

Part (e) [1 MARK]

Fix the query by making the smallest change that you can. Write your corrections directly on the query text above.

Solution: One option is:

```
add AND D1.DID < D2.DID (or change the <> to <)
```

Another solution is to do count(*)/2

Question 5. [8 marks]

Suppose we have the following tables from a Twitter database:

Follows:		Profile	e:	
a	l b	id	name	location
	+		+	+
sina	kanyewest	alan	catman	Ottawa
sina	RonConwayFacts	sina	superman	
diane	LilaFontes	diane	superwoma	n Toronto
diane	swcarpentry	miche	lle rockstar	Montreal
diane	mfeathers	(4 rows	s)	
diane	sina			
michelle	sina			
michelle	diane			
michelle	Jeff			
(9 rows)				
Tweets:				
	id content			
	+			
123 ala	•			
125 ala	·			
126 ala	n hellow twitter			
128 ala	n bye twitter			
476 sin	a hellow twitter			
553 dia	ne hellow twitter			

Show the result of running each of the following queries. If a table is produced, include the column names. If the query generates an error, explain.

Solutions

(3 rows)

(6 rows)

SELECT P.id, count(Follows.b) AS followers SELECT a, count(*) FROM Profile RIGHT JOIN Follows From Profile P Join Follows ON a = id GROUP BY a; On P.ID=Follows.b Group by(P.ID) HAVING count(Follows.b) > 1; -- Output: -- Output: id | followers

		id	followers
	count		·
	+	sina	2
michelle	3	(1 row))
diane	4		
sina	2		

Here are the tables again, for easy reference:

Follows:	b	Profile:	name	location	
	kanyewest RonConwayFacts	alan sina	catman superman	Ottawa 	
	LilaFontes	diane	superwoman		
	swcarpentry		e rockstar	Montreal	
	mfeathers sina	(4 rows)			
michelle	•				
michelle					
michelle	Jeff				
(9 rows)					
Tweets:					
	id content				
+					
123 alam	n hellow twitter				
125 alam					
126 alar					
128 alam					
476 sina 553 diam					
(6 rows)	Te Hellow cwiffer				
(O IOWE)					
SELECT P.io	d, count(T.content) AS number		Select Tweets.c	content	
FROM Profile P JOIN Tweets t			From Tweets Join Profile		
On T.userid = P.id			On Tweets.userid = Profile.ID		
AND P.locat	tion='Montreal';		And Profile.loc		
			(select location where name='ca	_	
			where hame— ca	ioman),	
Output:			content		
-					
ERROR: column "p.id" must appear in the GROUP BY hellow twitter					
	be used in an aggregate functi		bye twitter		
LINE 1: SEI	LECT P.id, count(T.content) AS	number	hellow twitter	•	
			bye twitter (4 rows)		
			(T TOMP)		