Halloween Project Class 09

Sung Lien A16628474

Table of contents

Importing candy data	
Overall Candy Rankings	
Time to add some useful color	
Taking a look at pricepercent	
5 Exploring the correlation structure	
6. Principal Component Analysis	

Today we will examine data from 538 on common Hallloween candy. In particular we will use ggplot, dplyr, and PCA to make some of this multivariate dataset.

Importing candy data

```
candy <- read.csv("candy-data.csv", row.names=1)
head(candy)</pre>
```

	choco	olate	fruity	caramel	peanut	tyalmondy	nougat	crispedr	ricewafer
100 Grand		1	0	1		0	0		1
3 Musketeers		1	0	0		0	1		0
One dime		0	0	0		0	0		0
One quarter		0	0	0		0	0		0
Air Heads		0	1	0		0	0		0
Almond Joy		1	0	0		1	0		0
	${\tt hard}$	bar j	pluribus	sugarpe	ercent	priceper	cent wi	npercent	
100 Grand	0	1	C)	0.732	0	.860	66.97173	
3 Musketeers	0	1	C)	0.604	0	.511	67.60294	
One dime	0	0	C)	0.011	0	.116	32.26109	
One quarter	0	0	C)	0.011	0	.511	46.11650	

 Air Heads
 0
 0
 0.906
 0.511
 52.34146

 Almond Joy
 0
 1
 0
 0.465
 0.767
 50.34755

Q1 How many different candy types are in this data set?

nrow(candy)

[1] 85

Q2 How many fruity candy types are in the dataset?

sum(candy\$fruity)

[1] 38

How many chocolate candy are there in the dataset?

sum(candy\$chocolate)

[1] 37

Q3. What is your favorite candy in the dataset and what is it's winpercent value?

candy["Twix","winpercent"]

[1] 81.64291

candy["Twix",]\$winpercent

[1] 81.64291

candy["Nerds",]\$winpercent

[1] 55.35405

candy["3 Musketeers",]\$winpercent

[1] 67.60294

Q4. What is the winpercent value for "Kit Kat"?

candy["Kit Kat",]\$winpercent

[1] 76.7686

Q5. What is the winpercent value for "Tootsie Roll Snack Bars"?

```
candy["Tootsie Roll Snack Bars","winpercent"]
```

[1] 49.6535

To get a quick overview of a new dataset the skim package can be useful:

library("skimr")
skim(candy)

Table 1: Data summary

A.T.	
Name	candy
Number of rows	85
Number of columns	12
Column type frequency:	
numeric	12
Group variables	None

Variable type: numeric

skim_variable n_	_missingcompl	lete_ra	tmean	sd	p0	p25	p50	p75	p100	hist
chocolate	0	1	0.44	0.50	0.00	0.00	0.00	1.00	1.00	
fruity	0	1	0.45	0.50	0.00	0.00	0.00	1.00	1.00	
caramel	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
peanutyalmondy	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
nougat	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
crispedricewafer	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
hard	0	1	0.18	0.38	0.00	0.00	0.00	0.00	1.00	
bar	0	1	0.25	0.43	0.00	0.00	0.00	0.00	1.00	
pluribus	0	1	0.52	0.50	0.00	0.00	1.00	1.00	1.00	

skim_variable	n_missingcomp	olete_ra	ntmenean	sd	p0	p25	p50	p75	p100	hist
sugarpercent	0	1	0.48	0.28	0.01	0.22	0.47	0.73	0.99	
pricepercent	0	1	0.47	0.29	0.01	0.26	0.47	0.65	0.98	
winpercent	0	1	50.32	14.71	22.45	39.14	47.83	59.86	84.18	

Q6. Is there any variable/column that looks to be on a different scale to the majority of the other columns in the dataset?

N.B. It looks like the winpercent column is on a different scale than the others (0-100% rather than 0-1). I will need to scale this dataset before analysis like PCA

Q7. What do you think a zero and one represent for the candy\$\text{chocolate column}\$? They represent true or false whether the candy bar is a chocolate bar or not.

Q8. Plot a histogram of winpercent values

hist(candy\$winpercent)

Histogram of candy\$winpercent


```
library(ggplot2)

ggplot(candy) +
```

```
aes(winpercent) +
geom_histogram(bins=10, fill="lightblue")
```


Q9. Is the distribution of winpercent values symmetrical?

No

Q10. Is the center of the distribution above or below 50%?

Below

summary(candy\$winpercent)

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 22.45 39.14 47.83 50.32 59.86 84.18
```

- Q11. On average is chocolate candy higher or lower ranked than fruit candy?
- Step 1: find all "chocolate" candy
- Step 2: find their "winpercent" values
- Step 3: summarize these values
- step 4: find all "fruity" candy

- step 5: find their winpercent values
- step 6: summarize these values
- step 7: compare the two summary values
- 1. Find all chocolate candy

```
choc.inds <- candy$chocolate == 1</pre>
```

2. find their "winpercent" values

```
choc.win <- candy[choc.inds,]$winpercent</pre>
```

3. summarize these values

```
choc.mean <- mean(choc.win)
choc.mean</pre>
```

[1] 60.92153

Do the same thing for fruit candy

```
fruit.inds <- candy$fruity == 1
fruit.win <- candy[fruit.inds, "winpercent"]
fruit.mean <- mean(fruit.win)
mean(fruit.win)</pre>
```

[1] 44.11974

Clearly chocolate has a higher mean winpercent than fruity candy

```
choc.mean
```

[1] 60.92153

```
fruit.mean
```

[1] 44.11974

Q12. Is this difference statistically significant?

t.test(choc.win, fruit.win)

Welch Two Sample t-test

```
data: choc.win and fruit.win
t = 6.2582, df = 68.882, p-value = 2.871e-08
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    11.44563 22.15795
sample estimates:
mean of x mean of y
    60.92153 44.11974
```

Overall Candy Rankings

Q13. What are the five least liked candy types in this set?

```
# Not that useful -it just sorts the values
sort(candy$winpercent)
```

```
[1] 22.44534 23.41782 24.52499 27.30386 28.12744 29.70369 32.23100 32.26109 [9] 33.43755 34.15896 34.51768 34.57899 34.72200 35.29076 36.01763 37.34852 [17] 37.72234 37.88719 38.01096 38.97504 39.01190 39.14106 39.18550 39.44680 [25] 39.46056 41.26551 41.38956 41.90431 42.17877 42.27208 42.84914 43.06890 [33] 43.08892 44.37552 45.46628 45.73675 45.99583 46.11650 46.29660 46.41172 [41] 46.78335 47.17323 47.82975 48.98265 49.52411 49.65350 50.34755 51.41243 [49] 52.34146 52.82595 52.91139 54.52645 54.86111 55.06407 55.10370 55.35405 [57] 55.37545 56.49050 56.91455 57.11974 57.21925 59.23612 59.52925 59.86400 [65] 60.80070 62.28448 63.08514 64.35334 65.71629 66.47068 66.57458 66.97173 [73] 67.03763 67.60294 69.48379 70.73564 71.46505 72.88790 73.09956 73.43499 [81] 76.67378 76.76860 81.64291 81.86626 84.18029
```

```
x <- c(10, 1, 100)
order(x)
```

[1] 2 1 3

x[order(x)]

[1] 1 10 100

Root Beer Barrels

The order() function tells us how it arranges the elements of the input to make them sorted -i.e how to order them

we can determine the order of winpercent to make them sorted and use that order to arrange the whole dataset.

```
ord.inds <- order(candy$winpercent)
head(candy[ord.inds, ])</pre>
```

	chocolate	fruity	carar	nel j	peanutyalr	nondy :	nougat	
Nik L Nip	0	1		0		0	0	
Boston Baked Beans	0	0		0		1	0	
Chiclets	0	1		0		0	0	
Super Bubble	0	1		0		0	0	
Jawbusters	0	1		0		0	0	
Root Beer Barrels	0	0		0		0	0	
	crispedrio	cewafer	${\tt hard}$	bar	pluribus	sugar	percent	pricepercent
Nik L Nip		0	0	0	1		0.197	0.976
Boston Baked Beans		0	0	0	1		0.313	0.511
Chiclets		0	0	0	1		0.046	0.325
Super Bubble		0	0	0	0		0.162	0.116
Jawbusters		0	1	0	1		0.093	0.511
Root Beer Barrels		0	1	0	1		0.732	0.069
	winpercent	;						
Nik L Nip	22.44534	l						
Boston Baked Beans	23.41782	2						
Chiclets	24.52499)						
Super Bubble	27.30386	3						
Jawbusters	28.12744	1						

Q14. What are the top 5 all time favorite candy types out of this set?

29.70369

```
tail(candy[ord.inds, ])
```

	chocolate	fruity	caran	nel j	peanutyaln	nondy r	nougat
Reese's pieces	1	0		0		1	0
Snickers	1	0		1		1	1
Kit Kat	1	0		0		0	0
Twix	1	0		1		0	0
Reese's Miniatures	1	0		0		1	0
Reese's Peanut Butter cup	1	0		0		1	0
	crispedri	cewafer	hard	bar	pluribus	sugarp	percent
Reese's pieces		0	0	0	1		0.406
Snickers		0	0	1	0		0.546
Kit Kat		1	0	1	0		0.313
Twix		1	0	1	0		0.546
Reese's Miniatures		0	0	0	0		0.034
Reese's Peanut Butter cup		0	0	0	0		0.720
	priceperce	ent win	percer	nt			
Reese's pieces	0.6	351 73	3.4349	9			
Snickers	0.6	351 76	6.6737	78			
Kit Kat	0.	511 76	6.7686	60			
Twix	0.9	906 8:	1.6429	91			
Reese's Miniatures	0.2	279 8:	1.8662	26			
Reese's Peanut Butter cup	0.6	351 8 ⁴	4.1802	29			
ord.inds <- order(candy\$w:	inpercent,	decreas	sing =	T)			
<pre>head(candy[ord.inds,])</pre>							

	${\tt chocolate}$	fruity	carar	nel	peanutyalr	nondy	nougat
Reese's Peanut Butter cup	1	0		0		1	0
Reese's Miniatures	1	0		0		1	0
Twix	1	0		1		0	0
Kit Kat	1	0		0		0	0
Snickers	1	0		1		1	1
Reese's pieces	1	0		0		1	0
	crispedrio	cewafer	${\tt hard}$	bar	pluribus	suga	rpercent
Reese's Peanut Butter cup		0	0	0	0		0.720
Reese's Miniatures		0	0	0	0		0.034
Twix		1	0	1	0		0.546
Kit Kat		1	0	1	0		0.313
Snickers		0	0	1	0		0.546
Reese's pieces		0	0	0	1		0.406
	priceperce	ent wing	percer	nt			
Reese's Peanut Butter cup	0.6	651 84	1.1802	29			
Reese's Miniatures	0.2	279 83	1.8662	26			

Twix	0.906	81.64291
Kit Kat	0.511	76.76860
Snickers	0.651	76.67378
Reese's pieces	0.651	73.43499

Q15. Make a first barplot of candy ranking based on winpercent values.

```
ggplot(candy) +
  aes(winpercent, rownames(candy))+
  geom_col()
```


Let's rearrange

```
ggplot(candy) +
aes(winpercent, reorder(rownames(candy), winpercent))+
geom_col()
```


Time to add some useful color

```
ggplot(candy) +
  aes(winpercent, reorder(rownames(candy), winpercent), fill=chocolate)+
  geom_col()
```


We need to make our own separate color vector where we can spell out what candy is colored in a particular color.

```
mycols <- rep("gray", nrow(candy))
mycols[candy$chocolate == 1] <- "chocolate"
mycols[candy$bar == 1] <- "brown"
mycols[candy$fruity == 1] <- "blue"
mycols</pre>
```

```
[1] "brown"
                  "brown"
                               "gray"
                                            "gray"
                                                         "blue"
                                                                      "brown"
[7] "brown"
                  "gray"
                               "gray"
                                            "blue"
                                                         "brown"
                                                                      "blue"
                               "blue"
[13] "blue"
                  "blue"
                                            "blue"
                                                         "blue"
                                                                      "blue"
[19] "blue"
                  "gray"
                               "blue"
                                            "blue"
                                                         "chocolate"
                                                                      "brown"
[25] "brown"
                  "brown"
                               "blue"
                                            "chocolate" "brown"
                                                                      "blue"
[31] "blue"
                  "blue"
                                            "chocolate" "blue"
                               "chocolate"
                                                                      "chocolate"
[37] "brown"
                  "brown"
                               "brown"
                                            "brown"
                                                         "brown"
                                                                      "blue"
                  "brown"
                               "blue"
                                            "blue"
                                                         "brown"
                                                                      "chocolate"
[43] "brown"
[49] "gray"
                  "blue"
                               "blue"
                                            "chocolate" "chocolate" "chocolate"
[55] "chocolate"
                  "blue"
                               "chocolate"
                                            "gray"
                                                         "blue"
                                                                      "chocolate"
[61] "blue"
                  "blue"
                               "chocolate" "blue"
                                                                      "brown"
                                                         "brown"
                               "blue"
[67] "blue"
                  "blue"
                                            "blue"
                                                         "gray"
                                                                      "gray"
                               "blue"
                                                                      "brown"
[73] "blue"
                  "blue"
                                            "chocolate" "chocolate"
[79] "blue"
                  "brown"
                               "blue"
                                            "blue"
                                                         "blue"
                                                                      "gray"
```

[85] "chocolate"

```
ggplot(candy) +
  aes(winpercent, reorder(rownames(candy), winpercent))+
  geom_col(fill=mycols)
```


as.logical(c(1,0,1))

[1] TRUE FALSE TRUE

Now, for the first time, using this plot we can answer questions like:

Q17. What is the worst ranked chocolate candy?

Charleston Chew

Q18. What is the best ranked fruity candy?

Nick L Lip

Taking a look at pricepercent

Make a plot of winpercent (x-axis) vs pricepercent (y-axis)

```
ggplot(candy) +
  aes(winpercent, pricepercent, label=rownames(candy)) +
  geom_point(col=mycols) +
  geom_text()
```


To avoid the overplotting of the text labels we can use the add on package **ggrepel**

```
library("ggrepel")
```

```
ggplot(candy) +
  aes(winpercent, pricepercent, label=rownames(candy)) +
  geom_point(col=mycols) +
  geom_text_repel(max.overlaps = 6) +
  theme_bw()
```

Warning: ggrepel: 69 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Q19. Which candy type is the highest ranked in terms of winpercent for the least money - i.e. offers the most bang for your buck?

```
ord <- order(candy$pricepercent, decreasing = FALSE)
head( candy[ord,c(11,12)], n=5 )</pre>
```

	pricepercent	winpercent
Tootsie Roll Midgies	0.011	45.73675
Pixie Sticks	0.023	37.72234
Dum Dums	0.034	39.46056
Fruit Chews	0.034	43.08892
Strawberry bon bons	0.058	34.57899

Tootsie Roll Midgies

Q20. What are the top 5 most expensive candy types in the dataset and of these which is the least popular?

```
ord <- order(candy$pricepercent, decreasing = TRUE)
head( candy[ord,c(11,12)], n=5 )</pre>
```

	pricepercent	winpercent
Nik L Nip	0.976	22.44534
Nestle Smarties	0.976	37.88719
Ring pop	0.965	35.29076
Hershey's Krackel	0.918	62.28448
Hershey's Milk Chocolate	0.918	56.49050

Nick L Lip

5 Exploring the correlation structure

Now that we have explored the dataset a little, we will see how the variables interact with one another.

First we will use correlation and view the results with the **corrplot** package to plot a correlation matrix.

```
cij <- cor(candy)
cij</pre>
```

	chocolate	fruity	caramel	peanutyalmondy	nougat
chocolate	1.0000000	-0.74172106	0.24987535	0.37782357	0.25489183
fruity	-0.7417211	1.00000000	-0.33548538	-0.39928014	-0.26936712
caramel	0.2498753	-0.33548538	1.00000000	0.05935614	0.32849280
peanutyalmondy	0.3778236	-0.39928014	0.05935614	1.00000000	0.21311310
nougat	0.2548918	-0.26936712	0.32849280	0.21311310	1.00000000
${\tt crispedricewafer}$	0.3412098	-0.26936712	0.21311310	-0.01764631	-0.08974359
hard	-0.3441769	0.39067750	-0.12235513	-0.20555661	-0.13867505
bar	0.5974211	-0.51506558	0.33396002	0.26041960	0.52297636
pluribus	-0.3396752	0.29972522	-0.26958501	-0.20610932	-0.31033884
sugarpercent	0.1041691	-0.03439296	0.22193335	0.08788927	0.12308135
pricepercent	0.5046754	-0.43096853	0.25432709	0.30915323	0.15319643
winpercent	0.6365167	-0.38093814	0.21341630	0.40619220	0.19937530
	crispedrice	ewafer	hard	bar plurik	ous
chocolate	0.341	120978 -0.34	417691 0.597	742114 -0.339675	519
fruity	-0.269	936712 0.39	067750 -0.51	506558 0.29972	522
caramel	0.213	311310 -0.12	235513 0.333	396002 -0.269585	501
peanutyalmondy	-0.017	764631 -0.20	555661 0.260	041960 -0.206109	932
nougat	-0.089	974359 -0.13	867505 0.522	297636 -0.310338	384
crispedricewafer	1.000	000000 -0.13	867505 0.423	375093 -0.224693	338
hard	-0.138	367505 1.00	000000 -0.269	516504 0.014531	172

```
bar
                     0.42375093 -0.26516504 1.00000000 -0.59340892
pluribus
                     sugarpercent
                     0.06994969 \quad 0.09180975 \quad 0.09998516 \quad 0.04552282
pricepercent
                     0.32826539 -0.24436534 0.51840654 -0.22079363
winpercent
                     0.32467965 -0.31038158 0.42992933 -0.24744787
                sugarpercent pricepercent winpercent
chocolate
                  0.10416906
                               0.5046754 0.6365167
                              -0.4309685 -0.3809381
fruity
                 -0.03439296
caramel
                  0.22193335
                               0.2543271 0.2134163
peanutyalmondy
                               0.3091532 0.4061922
                  0.08788927
                  0.12308135
                               0.1531964 0.1993753
nougat
crispedricewafer
                  0.06994969
                               0.3282654 0.3246797
hard
                              -0.2443653 -0.3103816
                  0.09180975
bar
                  0.09998516
                               0.5184065 0.4299293
                              -0.2207936 -0.2474479
pluribus
                  0.04552282
sugarpercent
                  1.00000000
                               0.3297064 0.2291507
pricepercent
                  0.32970639
                               1.0000000 0.3453254
                               0.3453254 1.0000000
winpercent
                  0.22915066
```

library(corrplot)

corrplot 0.95 loaded

corrplot(cij)

Q22. Examining this plot what two variables are anti-correlated (i.e. have minus values)?

Chocolate and Fruity are anti-correlated

Q23. Similarly, what two variables are most positively correlated?

Chocolate tends to be bars, have a high pricepercent and high winpercent.

6. Principal Component Analysis

Let's apply PCA using the prcom() function to our candy dataset remembering to set the scale=TRUE argument.

```
pca <- prcomp(candy, scale=TRUE)
summary(pca)</pre>
```

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 PC7 Standard deviation 2.0788 1.1378 1.1092 1.07533 0.9518 0.81923 0.81530 Proportion of Variance 0.3601 0.1079 0.1025 0.09636 0.0755 0.05593 0.05539

attributes(pca)

```
$names
[1] "sdev"     "rotation" "center"     "scale"     "x"
$class
[1] "prcomp"
```

Let's plot our main results as our PCA "score plot"

```
ggplot(pca$x) +
aes(PC1, PC2, label=rownames(pca$x)) +
geom_point(col=mycols)+
geom_text_repel(col=mycols)
```

Warning: ggrepel: 48 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Finally let's look at how the original varaibles contribute to the PCs, start with PC1

```
ggplot(pca$rotation) +
  aes(PC1, rownames(pca$rotation)) +
  geom_col()
```


Q24. What original variables are picked up strongly by PC1 in the positive direction? Do these make sense to you?

Fruity, pluribus, and hard, yes.