Maybre of Book				
			Propositions	Parties d'un ensemble
(1) (1) = 10 + 10-	(1)	commutativités	$(P OU Q) \Leftrightarrow (Q OU P)$	$A \cup B = B \cup A$
$b = b \sigma$	(2)		$(P \ ET \ Q) \Leftrightarrow (Q \ ET \ P)$	$A \cap B = B \cap A$
a + 0 = a	(3)	éléments neutres	(POUF) ⇔ P	$A \cup \emptyset = A$
$a \cdot 1 = a$	(4)		(PET°V) ⇔ P	$A \cap E = A$
$a + b \cdot c = (a + b) \cdot (a + c)$	(5)	distributivités	$(P OU (Q ET R)) \Leftrightarrow ((P OU Q) ET (P OU R))$	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
$a \cdot (b+c) = a \cdot b + a \cdot c$	(6)		$(P \text{ ET } (Q \text{ OU } R)) \Leftrightarrow ((P \text{ ET } Q) \text{ OU } (P \text{ ET } R))$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
$a + \bar{a} = 1$	(7)	tiers-exclu ·	$(P \cup P) \Leftrightarrow V$	$A \cup \bar{A} = E$
$a \cdot \bar{a} = 0$	(8)	non contradiction	(PET P) ⇔ F	$A \cap \bar{A} = \emptyset$
$\bar{\bar{a}} = a$	(9)	involution	$\bar{P} \Leftrightarrow P$	$\bar{\bar{A}} = A$
a+1=1	(10)	éléments absorbants	(POU°V) ⇔ °V	AUE = E
$a \cdot 0 = 0$	(11).		$(P \ \ \mathbb{F}) \Leftrightarrow \mathbb{F}$	$A \cap \emptyset = \emptyset$
a + a = a	(12)	idempotence	(P OU P) ⇔ P	$A \cup A = A$
$a \cdot a = a$	(13)		$(P \ ET \ P) \Leftrightarrow P$	$A \cap A = A$
$a + \bar{b} = \bar{a} \cdot \bar{b}$	(14)	lois de Morgan*	$(\overline{P} \ \overline{Q}) \Leftrightarrow (\overline{P} \ \overline{ET} \ \overline{Q})$	$\overline{A \cup B} = \overline{A} \cap \overline{B}$
$\overline{a \cdot b} = \overline{a} + \overline{b}$	(15)		$(\overline{PETQ}) \Leftrightarrow (\overline{P}OU\overline{Q})$	$\overline{A \cap B} = \overline{A} \cup \overline{B}$
$a + a \cdot b = a$	(16)	absorptions	(POU(PETQ)) ⇔ P	$A \cup (A \cap B) = A$
$a \cdot (a+b) = a$	(17)		(PET (POUQ)) ⇔ P	$A \cap (A \cup B) = A$
(a+b)+c = a+(b+c)	(18)	associativités	$((P OU Q) OU R) \Leftrightarrow (P OU (Q OU R))$	$(A \cup B) \cup C = A \cup (B \cup C)$
$(a \cdot b) \cdot c = a \cdot (b \cdot c)$	(19)		$((P \ ET \ Q) \ ET \ R) \Leftrightarrow (P \ ET \ (Q \ ET \ R))$	$(A \cap B) \cap C = A \cap (B \cap C)$.
• les propriétés du les contrais				

<sup>Les propriétés duales sont présentées ensemble.
Les noms des propriétés sont donnés à titre indicatif, et n'ont pas à être mémorisés.
* Augustus De Morgan (1806-1871) est un mathématicien anglais contemporain de George Boole.</sup>