Отчет о выполнении лабораторной работы 3.2.2

Резонанс напряжений

Г. А. Багров

ФРКТ МФТИ, 24.09.2022

Цель работы: исследование резонанса напряжений в последовательном колебательном контуре с изменяемой ёмкостью, включающее получение амплитудно-частотных и фазово-частотных характеристик, а также определение основных параметров контура.

В работе используются: генератор сигналов, источник напряжения, нагруженный на последовательный колебательный контур с переменной ёмкостью, двулучевой осциллограф, цифровые вольтметры.

Теоретические сведения:

Резонансная частота последовательного контура может быть определена из формулы:

$$f_r = \frac{1}{2\pi\sqrt{LC}}. (1)$$

Суммарное активное сопротивление контура принимается равным:

$$R_{\Sigma} = R_L + R_S + R \tag{2}$$

Из закона Ома получим:

$$R_S = \frac{U_{RS}}{I} = \frac{U_{RS}}{\omega C U_{CS}} = \frac{1}{\omega C} \operatorname{tg} \delta. \tag{3}$$

Далее будем пользоваться методом комплексных амплитуд. Для импедансов индуктивности Z_L ёмкости Z_C и последовательного контура $Z=Z_L+R+Z_C$ с учётом (2), (3) получаем формулы:

$$Z_L = R_L + i\omega L, \qquad Z_C = R_S - i\frac{1}{\omega C}, \qquad Z = R_\Sigma + i\left(\omega L - \frac{1}{\omega C}\right).$$
 (4)

Добротность колебательного контура связана с его параметрами соотношениями:

$$Q = \frac{\rho}{R_{\Sigma}} = \frac{\omega_0 L}{R_{\Sigma}} = \frac{1}{\omega_0 C R_{\Sigma}} \gg 1, \tag{5}$$

где $\omega_0 = 1/\sqrt{LC}$ — резонансная частота контура, при которой импеданс действительный, $\rho = \sqrt{L/C}$ — реактивное, или волновое, сопротивление контура.

Наибольший практический интерес представляет случай, когда отклонение $\Delta \omega = \omega - \omega_0$ частоты внешней ЭДС от частоты удовлетворяет сильному неравенству:

$$|\Delta\omega| \ll \omega_0. \tag{6}$$

Тогда формулы резонансных значений напряжения упрощаются до вида:

$$\overrightarrow{U_L} = EQ \frac{\omega}{\omega_0} \frac{e^{i\varphi_L}}{\sqrt{1 + (\tau \Delta \omega)^2}}, \qquad \varphi_L = \frac{\pi}{2} - \frac{R_L}{\rho} - \arctan(\tau \Delta \omega), \tag{7.1}$$

$$\overrightarrow{U_C} = EQ \frac{\omega_0}{\omega} \frac{e^{i\varphi}}{\sqrt{1 + (\tau \Delta \omega)^2}}, \qquad \varphi_C = -\frac{\pi}{2} + \delta - \arctan(\tau \Delta \omega), \tag{7.2}$$

для тока:

$$\overrightarrow{I} = \frac{E}{R_{\Sigma}} \frac{e^{i\varphi_I}}{\sqrt{1 + (\tau \Delta \omega)^2}}, \qquad \varphi_I = -\arctan(\tau \Delta \omega), \tag{7.3}$$

где $\tau=2L/R_{\Sigma}=2Q/\omega_0$ – время затухания, или «постоянная времени», контура. Величина $\gamma=1/\tau$ называется коэффициентом затухания.

Схожесть поведения вблизи резонанса частотных характеристик тока и напряжений на реактивных элементах последовательного контура с добротностью $Q\gg 1$ упрощает эксперимент, позволяя проводить измерения именно напряжений.

Резонансное напряжение определяется формулой:

$$U_C(\omega_0) \cong QE,$$
 (8)
 $\varphi_C(\omega_0) = -\frac{\pi}{2} + \delta,$

где δ — малая поправка.

Заметим, что с одной стороны, $Q\gg 1$, так как мы пренебрегаем относительными поправками порядка Q^{-2} , но с другой стороны, в контур встроен резистор для намеренного уменьшения Q, чтобы упростить постройку AЧX.

Зная резонансную частоту, по формуле (1) можно найти индуктивность катушки:

$$L = \frac{1}{4\pi^2 C f^2}. (9)$$

Из формулы $\rho = \sqrt{L/C}$ можно найти реактивное сопротивление контура. Зная суммарное активное сопротивление и $R_S = 10^{-3} \rho$, можно найти R_L – активное сопротивление катушки. Для определения добротности контура применяется формула (7.2). R_{Σ} найдём из формулы (5).

При исследовании АЧХ, будем использовать формулу

$$Q = \frac{\omega_0}{\delta\omega},\tag{10}$$

где $\delta\omega$ – ширина резонансной кривой на уровне $U_C(\omega_0)/\sqrt{2}$.

При исследовании ФЧХ применим формулу (7.2). При этом расстояние по оси ω между точками, в которых фаза φ_C меняется от $-\pi/4$ до $-3\pi/4$, равно $2/\tau$, где τ – время релаксации.

Экспериментальная установка

Схема экспериментального стенда для изучения резонанса напряжений в последовательном колебательном контуре показана на рис. 1. Синусоидальный сигнал от генератора GFG-8255A поступает через согласующую RC-цепочку на вход источника напряжения, собранного на операционном усилителе ОУ. Питание операционного усилителя осуществляется встроенным блоком-выпрямителем от сети переменного тока 220 Вольт (цепь питания на схеме не показана). Источник напряжения, обладающий по определению нулевым внутренним сопротивлением, фактически обеспечивает с высокой точностью постоянство амплитуды сигнала на меняющейся по величине нагрузке — последовательном колебательном контуре, изображенном на рис. 1 в виде эквивалентной схемы. Источник напряжения с согласующей цепочкой, колебательный контур и блок питания заключены в отдельный корпус с названием «Резонанс напряжений», отмеченный на рисунке штриховой линией.

Рис. 1: Схема установки

Вольтметры используются для снятия амплитуд входного напряжения и напряжения на конденсаторе C_n с точностью 0.03%. Эти же напряжения попадают на входы осциллографа, который используется для определе- ния положений резонанса. Величины C_n и омическое сопротивление R указаны на установке.

Ход работы и обработка результатов

- 1) После включения всех приборов и настройки осциллографа, выберем первый конденсатор в магазине и настроим генератор на синусоидальную волну с E=201 мВ и $\nu\approx32$ кГц.
- 2)При помощи осциллографа в режиме X-Y определим резонансную частоту (при ней на экране эллипс с осями, параллельными X и Y, т.к. из-за малости $tg\delta$ разность фаз составляет $\frac{\pi}{2}$). На резонансной частоте с помощью вольметра 2 снимем напряжение на конденсаторе. Далее повторим измерения для других 6 конденсаторов. Результаты измерений см. в таблице 1.

n	C_n , н Φ	f_{0n} , к Γ ц	$U_c(f_{0n})$, B	E, мВ
1	25,0	32,015	5,028	201
2	33,2	27,782	4,252	201
3	47,5	23,252	3,892	201
4	57,2	21,192	3,607	201
5	67,4	19,511	3,357	201
6	82,1	17,704	3,030	201
7	99,6	16,048	2,842	201

Таблица 1: Измерения резонансных частот для различных конденсаторов

3) Результаты обработки измерений см. в таблице 2. При этом $\overline{L}\approx 987,0\pm 2,1$ мк Γ н, а $\overline{R_L}\approx 3,9\pm 0,4$ Ом. Относительные косвенные погрешности по порядку схожи с приборными (около $\approx 1\%$) и учтены в выражениии для L, однако ими можно пренебречь при определении R_L .

Зависимость $R_L(f_{0n})$ представлена на рисунке 2, начало координат выбрано в точке $(0,6f_{0n})$. Зависимость R_L от частоты можно объяснить влиянием эффекта гистерезиса в сердеечнике катушки.

Puc. 2: Зависимость R_L от f

n	L , мк Γ н	Q	ρ , Om	R_{Σ} , Om	R_{Smax} , OM	R_L , Ом	I, мА
1	988,5	25,0	198,9	7,95	0,199	4,30	25,3
2	988,5	21,2	172,6	8,16	0,173	4,53	24,6
3	986,3	19,4	144,1	7,44	0,144	3,85	27,0
4	986,1	17,9	131,3	7,32	0,131	3,74	27,5
5	987,2	16,7	121,0	7,25	0,121	3,68	27,7
6	984,4	15,1	109,5	7,26	0,109	3,70	27,7
7	987,5	14,1	99,6	7,04	0,100	3,49	28,5

Таблица 2: Результаты обработки данных

4) Далее проведём снятие АЧХ и ФЧХ для C_3 и C_6 около резонансных частот. Полученные данные занесены в таблицы 3 и 4 соответственно. При этом для ФЧХ x - расстояние до первого пересечения $U_C(x)$ с 0 при синхронизации с E, а x_0 - длина одной волны E.

	n = 3		n = 6
f , к Γ ц	$U(f)/U(f_{0n})$	f ,к Γ ц	$U(f)/U(f_{0n})$
23,06	0,958	17,30	0,833
23,40	0,967	18,00	0,882
23,71	0,812	17,50	0,959
22,80	0,784	17,00	0,638
22,88	0,840	18,30	0,705
23,60	0,872	17,60	0,994
23,50	0,921	17,80	0,980
23,00	0,916	17,90	0,939
23,32	0,988	18,10	0,823
23,18	0,993	18,20	0,761
23,85	0,729	17,10	0,694
22,61	0,658	17,41	0,903
23,90	0,696	18,50	0,598
24,00	0,647	17,20	0,759
22,51	0,604	18,40	0,647
22,70	0,717	16,93	0,598

Таблица 3: АЧХ контура

n=3				n=6			
f , к Γ ц	x	x_0	$\Delta \varphi, \pi$	f , к Γ ц	x	x_0	$\Delta \varphi, \pi$
23,16	10,0	22,0	-0,455	16,36	3,5	31,0	-0,113
22,20	3,5	23,0	-0,152	17,90	17,0	28,5	-0,596
23,66	14,5	22,0	-0,659	18,57	21,5	27,0	-0,796
24,04	16,5	21,5	-0,767	17,00	6,0	30,0	-0,200
22,37	4,0	23,0	-0,174	17,21	7,5	29,5	-0,254
23,37	12,0	22,0	-0,545	18,22	20,0	28,0	-0,714
25,17	18,0	20,5	-0,878	18,60	21,5	27,0	-0,796
24,87	18,0	21,0	-0,857	19,17	22,5	26,5	-0,849
24,31	17,0	21,0	-0,810	16,85	5,0	30,0	-0,167
23,84	23,5	21,5	-1,109	18,73	22,0	27,0	-0,815
22,70	6,0	22,5	-0,267	16,76	4,5	30,0	-0,150
21,88	3,0	23,5	-0,128	17,62	13,0	29,0	-0,448
22,66	5,0	22,5	-0,222	17,98	18,0	28,0	-0,643
22,30	4,0	23,0	-0,174	17,49	11,0	29,0	-0,379
23,17	10,0	22,0	-0,455	17,16	7,5	29,5	-0,254
22,84	6,5	22,5	-0,289	18,58	22,0	27,5	-0,800

Таблица 4: ФЧХ контура

5) Далее построим графики АЧХ (рис.3-4) и ФЧХ (рис.5). Исходя из графика по формуле (10) можно определить добротность (пунктирные линии). Графики построены с помощью МНК, с условием $|\Delta\omega| \ll \omega_0$.

Таким образом, по графикам (используя (7.2) и (10)) определим добротность, сравним её с расчитанной (табл. 2):

$$Q_{
m AYX3} pprox 19, 5 \pm 3, 6$$
 $Q_{
m \Phi YX3} pprox 18, 5 \pm 3, 3$ $Q_{
m pacyer3} pprox 19, 4 \pm 3, 6$ $Q_{
m AYX6} pprox 15, 3 \pm 3, 1$ $Q_{
m \Phi YX6} pprox 15, 5 \pm 3, 0$ $Q_{
m pacyer6} = 15, 1 \pm 3, 1$

Полученные значения близки к тем, что мы получили напрямую из значений резонансных частот. Различия объясняются в первую очередь тем, что точки пересечения определялись по графикам. Дополнительно на разницу влияет смещение максимума U_C относительно ω_0 .

6) Для C_6 построим векторную диаграмму (см. рис.6). Напряжение на конденсаторе отстаёт по фазе от тока на $\pi/2-\delta$. А напряжение на индуктивности обгоняет на $\pi/2-\frac{R_L}{\rho}$.

Рис. 3: АЧХ

Рис. 4: АЧХ в нормированных координатах

Выводы

В работе был исследован резонанс напряжений в последовательном колебательном контуре при различной ёмкости конденсатора. Были получены амплитудно-частотные и фазово-частотные характеристики, а также определены основные параметры контура. Также по теоретической формуле, АЧХ и ФЧХ была определена добротность контура при двух значениях ёмкости. Для каждого значения добротности совпали в пределах погрешности.

Рис. 5: ФЧХ в нормированных координатах

Рис. 6: Векторная диаграмма напряжений вблизи резонанса