THE STATE OF INFODEMIC ON TWITTER

BRANDON ATTAI, KELTEN FALEZ, TAHSIN CHOWDHURY

PROBLEM OVERVIEW – WHAT IS BEING SOLVED?

- Identifying misinformation about covid using text(NLP) and tweet metadata
 - Classify tweet as factual/false

ML DEVELOPMENT PROCESS OVERVIEW

DATA COLLECTION

- •Set up account
- •Set access token
- Authenticate

Use Twitter API

Query

- •Use verified article titles as search query.
- •Limited to tweets in English only.
- Work around the APIs rate limit.

Pulled tweets were relevant to the titles.

•All tweets were very recent.

Inspect Response

Parse Response

- •Response is a massive JSON object with lots of metadata.
- •Use Tweepy methods to access and save the ones relevant to the project.

- •Use the saved data from the response to build a dataframe.
- •Save it as csv.

Prepare Dataframe

LABELLING METHODOLOGY

Does the tweet agree/disagree with well-known guidelines set by WHO, CDC, etc?

Verify claim using fact-checking websites such as Politifact, Snopes, Healthfeedback.org

Check account info such as account creation date, account handle, number of followers, replies etc.

AGREEMENT ANALYSIS – DISAGREEMENTS RESOLVED

- Inter-Rater Reliability Method used to judge the quality of labelling: Percentage Agreement.
 - Add the number of agreements between each rater pair for each sample and then calculate the mean of that for the whole dataset.

60%

Disagreements were resolved by accepting the label that was the majority.

DATASET COMPARISON

LABEL DISTRIBUTION: ~APPROX. 50-50 SPLIT

COMPARING THE DATASETS

- In order to check how the additional 1000 data samples compare to the original dataset, the following features were used:
 - Most used platforms to send out the tweet
 - Average retweets
 - Average likes
 - Average followers
 - Average following
 - Percentage of tweets with URLs attached
 - Percentage of accounts with no bio
 - Average account age
 - Average tweet length

ORIGINAL VS NEW DATA – FEATURE COMPARISON

	original	aditional
top_three_sources	[Twitter Web App, Twitter for iPhone, Twitter	[Twitter Web App, Twitter for iPhone, Twitter
avg_rts	5	14
avg_likes	6	20
avg_followers	2327	2079
avg_following	52294	76924
perc_with_links	83.11	82.5099
perc_acc_with_bio	87.0533	86.6601
avg_acc_age_years	7.75603	7.5751
avg tweet length	13	13

Note: avg_tweet_length was calculated after both sets were preprocessed to check if data preprocessing result in different outputs.

PRE-PROCESSING PIPELINE

- Demoji Toolkit
- Replaces emojis with word representation
- 🙂 becomes 'smiley face'

Replacing Emojis

Remove URLs

- URLs add noise to the tweet data
- Twitter API has feature for obtaining URLs in tweet metadata
- Regex created to remove all URLs

- Regex to remove digits from the document
- Regex to remove punctuation such as capitalization, apostrophes etc.

Digits and Punctuation Removal

Spell Correction

- Replace incorrectly spelled words with correctly spelled words
- SpellChecker Toolkit
- Eg. 'yesssssssss' -> 'yes'

PRE-PROCESSING PIPELINE (CONTINUED)

- Removal of stop words within the 'english' word set
- Removal of individual letters and words that are less than 3 characters

Stop Word Removal

Stemming

- Snowball stemmer toolkit used
- Stem the words in each tweet

- Twokenize toolkit used designed for social media text deta from Twitter
- Tokenize each tweet

Tokenization

Evaluation

 Dataset evaluated to ensure the steps were correctly done before next processing stages.

DATA PRE-PROCESSING -IMPLEMENTATION

- Custom Transformer class that can be used used in Pyspark ML's Pipeline() in succession with DocumentAssembler(), Tokenizer(), Stem mer(), StopWordsCleaner
- This Custom transformer has a udf that removes URLS, remove symbols and digits, convert to lowercase, replace emojis, and fix spellings.

CUSTOM TRANSFORMER

```
class CustomTransformer(Transformer, HasInputCol, HasOutputCol, DefaultParamsReadable, DefaultParamsWritable):
 input_col = Param(Params._dummy(), "input_col", "input column name.", typeConverter=TypeConverters.toString)
 output_col = Param(Params._dummy(), "output_col", "output column name.", typeConverter=TypeConverters.toString)
 @keyword only
 def __init__(self, input_col: str = "input", output_col: str = "output"):
   super(CustomTransformer, self).__init__()
   self._setDefault(input_col=None, output_col=None)
   kwargs = self. input kwargs
   self.set_params(**kwargs)
 @keyword only
 def set_params(self, input_col: str = "input", output_col: str = "output"):
   kwargs = self. input kwargs
   self._set(**kwargs)
 def get input col(self):
   return self.getOrDefault(self.input_col)
 def get output col(self):
   return self.getOrDefault(self.output_col)
 def transform(self, df: DataFrame):
   def process_URLs(text):
      return \ re.sub(r'''(?i)\b((?:https?://|ww\d\{0,3\}[.]|[a-z0-9.\-]+[.][a-z]\{2,4\}/)(?:[^\s()<>]+|(([^\s()<>]+\)))*\\))+(?:(([^\s()<>]+\)))*\\)|[^\s^:(),[^\s];(".,<>?(\s)^{*s}))''', "", text) 
   def keep_alphabets_lower(text):
     cleaned_text = re.sub(r"[^a-zA-Z0-9]", " ", text)
     #cleaned text = " ".join(re.findall("[A-Z][^A-Z]*", text))
     cleaned_text = re.sub(r'[0-9]+', '', cleaned_text)
     cleaned_text = re.sub(' +', ' ', cleaned_text)
     return cleaned_text.lower()
```

CUSTOM TRANSFORMER (CONTINUED)

```
def fix spellings(text):
  spellchecker = SpellChecker()
  words = word_tokenize(text)
  corrected = ""
 for word in range(len(words)):
    corrected += (spellchecker.correction(words[word]) + " ")
  return corrected
def replace emojis(text):
  emojis = demoji.findall(text)
 for k, v in emojis.items():
    text = text.replace(k,v)
  return text
def do_all_preprocessing(text):
    no_emojis = replace_emojis(text)
    no_urls = process_URLs(no_emojis)
    just_lower_alphabets = keep_alphabets_lower(no_urls)
    # fixed_spellings = fix_spellings(just_lower_alphabets)
    return just_lower_alphabets #fixed_spellings
input_col = self.get_input_col()
output_col = self.get_output_col()
# The custom action: concatenate the integer form of the doubles from the Vector
transform_udf = F.udf(lambda x: do_all_preprocessing(x), StringType())
return df.withColumn(output col, transform udf(input col))
```

FURTHER DATA PRE-PROCESSING -IMPLEMENTATION

- Create new features such as length of the token
- Scale numeric data
- Generate TF-IDF feature vectors using the tokens
- Encode the labels

```
def preprocess(df):
    df = df.withColumn("text", col("content"))
    custom_transformer = CustomTransformer(input_col = 'text', output_col ="clean_text")
    assembler = DocumentAssembler().setInputCol('clean_text').setOutputCol('doc')
    tokenizer = Tokenizer().setInputCols(['doc']).setOutputCol('tokens_annotations')
    stemmer = Stemmer().setInputCols(["tokens_annotations"]).setOutputCol("stem")
    stop words = StopWordsCleaner.pretrained("stopwords en", "en").setInputCols(["stem"]).setOutputCol("cleanTokens")
    finisher = Finisher().setInputCols(['cleanTokens']).setOutputCols(['tokens']).setOutputAsArray(True)
    pipeline = Pipeline().setStages([custom_transformer, assembler, tokenizer, stemmer ,stop_words, finisher]).fit(df.select('text')) #Pass the custom transformer before the Assembler
    processed = pipeline.transform(df.select('text'))
    modified_df = df.withColumn("mid",monotonically_increasing_id()).join(processed.withColumn("mid",monotonically_increasing_id()),["mid"]).drop("mid").drop('text')
    len udf = udf(lambda s: len(s), IntegerType())
    modified df = modified df.withColumn("token count",len udf(col('tokens')))
    columns_to_scale = ["num_retweets", "num_likes", "followers", "following", "cum_tweets"]
    columns_to_drop = ["num_retweets_vec", "num_likes_vec", "followers_vec", "following_vec", "cum_tweets_vec"]
    #Convert the columns to vectors
    assemblers = [VectorAssembler(inputCols=[col], outputCol=col + " vec") for col in columns to scale]
    scalers = [MinMaxScaler(inputCol=col + " vec", outputCol=col + " scaled") for col in columns to scale]
    #Build a pipeline
    pipeline = Pipeline(stages=assemblers + scalers)
    #Fit and Transform the data
    scalerModel = pipeline.fit(modified df)
    scaledData = scalerModel.transform(modified df).drop(*columns to drop)
    scaledData = scaledData.cache()
    #Hashing Vector TF
    hashing_vec=HashingTF(numFeatures = 2000, inputCol='tokens',outputCol='tf_features')
    hashing_df=hashing_vec.transform(scaledData)
    # hashing_df.select(['text','tokens','tf_features']).show(4,False)
    tf_idf_vec=IDF(inputCol='tf_features',outputCol='tf_idf_features')
    df_with_features = tf_idf_vec.fit(hashing_df).transform(hashing_df)
    df_with_features = df_with_features.cache()
    #df_with_features.show(5)
    temp_va = VectorAssembler(inputCols=['token_count', 'num_retweets_scaled',
                                         'num likes scaled',
                                         'followers_scaled',
    final df = temp va.transform(df with features)
    final df = final df.cache()
    indexer = StringIndexer(inputCol="label", outputCol="categoryIndex")
    df_fully_encoded = indexer.fit(final_df).transform(final_df)
   df_fully_encoded = df_fully_encoded.cache()
   return df_fully_encoded
```

DATA PRE-PROCESSING - RESULTS

- The preprocessed feature columns are used to generate a feature vector using PySpark's VectorAssembler().
- The feature vector and the encoded label columns are then used to create train and test splits that are used in model training.

ML DEVELOPMENT PROCESS OVERVIEW

MODELS – TRAINING: BASELINE MODELS

- Models used:
 - Decision Tree Classifier
 - LinearSVM
 - Random Forest Classifier
- Train-Test split: 75%-25%
- Results for the extended dataset ->

LinearSVM was the best performing baseline model

ORIGINAL + ADDITIONAL 1000 DATA POINTS (BASELINE MODEL)

Decision Tree Results precision: 0.9650744735490498 recall: 0.9053240183088412 f1 score: 0.9342448725916719 -3500 -3000 -2500 -2000

Predicted Value

3758

393

- 1500

- 1000

- 500

precision: 0.9814576358485707
recall: 0.9832301341589267
f1 score: 0.9823430854491558

Random Forest Results

precision: 0.9306164560226979
recall: 0.9636752136752137
f1 score: 0.9468573677995012

ORIGINAL DATASET (BASELINE MODEL)

Random Forest Results

precision: 0.9670445557606117 recall: 0.9158551810237203 f1 score: 0.9407540394973071

Decision Tree Results

precision: 0.8441419802508674
recall: 0.9937166195413132
f1 score: 0.9128427128427129

Linear SVM Results

precision: 0.8460101414464906 recall: 0.9890795631825273 f1 score: 0.9119677790563867

ADDITIONAL 1000 DATA POINTS (BASELINE MODEL)

Decision Tree Results

precision: 0.9741379310344828 recall: 0.8560606060606061 f1 score: 0.9112903225806451

Linear SVM Results

precision: 0.84375

recall: 0.9908256880733946 f1 score: 0.9113924050632912

Random Forest Results

precision: 0.84375

recall: 0.9908256880733946 f1 score: 0.9113924050632912

MODEL TUNING GRID SEARCH

- Grid Search the various hyperparameters of the models to determine the most optimal.
- For a better estimate of the generalization performance, cross-validation to evaluate the performance of each parameter combination.

MODEL TUNING GRID SEARCH

- Hyperparameter tuning was based on the various parameters available for each model.
- Research was conducted to determine the parameters to tune that would have a meaningful impact on the model performance.

Model	Parameter	Definition	
Decision Tree	ma×Bins	Allows the algorithm to consider more split candidates and make fine-grained split decisions.	
	maxDepth	A stopping rule that sets the maximum node depth of the recursive tree construction	
Linear SVM	Regularization Parameter	Limits the importance of each point	
	maxIter	Hard limit on iterations within solver	
RandomForest	numTrees	The number of trees in the forest.	
	maxBins	Allows the algorithm to consider more split candidates and make fine-grained split decisions.	
	bootstrap	Whether bootstrap samples are used when building trees. If False, the whole dataset is used to build each tree.	
	maxDepth	A stopping rule that sets the maximum node depth of the recursive tree construction	

MODEL TUNING GRID SEARCH

 Overview of the hyperparameter values that were tuned for the grid search.

Parameter Grid for Models

Model	Parameter	Value				
Decision Tree	maxBins	16	32	64	-	
	maxDepth	5	7	10	20	
Linear SVM	Regularization Parameter	0.0001	0.001	0.01	0.1	
	maxlter	10	100	1000	-	
RandomForest	numTrees	20	50	64	-	
	ma×Bins	16	32	64	-	
	bootstrap	TRUE	FALSE		-	
	maxDepth	5	7	10	20	

CODE OVERVIEW OF GRID SEARCH AND CROSS VALIDATION

Parameter Grid and Cross Val for Decision Trees

Parameter Grid and Cross Val for Linear SVM

Parameter Grid and Cross Val for Random Forest

- Our classifiers had higher performance compared to Research article.
- Our best performing model : LinearSVM
- Article's best performing model: RandomForestClassifier

GridSearch Results for Models						
Classifier	Best Parameters	Precision	Recall	f1-score		
LinearSVM	regParam: 0.001 maxiter: 10	0.9769	0.9876	0.9822		
Random Forest Classifier	numTrees: 100 maxBins: 32 bootstrap: false maxDepth: 20	0.9492	1.0000	0.9740		
DecisionTreeClassifier	numTrees: 100 maxBins: 16 bootstrap: false maxDepth: 20	0.9776	0.9645	0.9710		

RESULTS – CONTINUED

CONFUSION MATRIX FOR
THE BEST LINEAR SVM
CLASSIFIER

Predicted Value

90

3810

fake

ea-

True Value

3826

- 3500

- 3000

- 2500

- 2000

- 1500

- 1000

- 500

THE BEST RANDOM
FOREST CLASSIFIER

CONFUSION MATRIX FOR THE BEST **DECISION TREE CLASSIFIER**

CONCLUSION

- Dataset had an almost even split of label distribution
- Text data was preprocessed using several NLP techniques Stemming and TF-IDF
- Three classifiers were trained on the data and improved using GridSearch
- Going forward: Deploy LinearSVC model
 - Best performance after performing GridSearch
- Outperformed classifiers in original research paper

THANKYOU