## Tut 6: Naive Bayes Classifier

Jan 2022

The general mathematical formulation of a generative model:

$$h_{D}(\boldsymbol{x}) = \underset{j \in \{1, \dots, K\}}{\operatorname{argmax}} \mathbb{P}(Y = j | \boldsymbol{X} = \boldsymbol{x})$$

$$= \underset{j \in \{1, \dots, K\}}{\operatorname{argmax}} \frac{\mathbb{P}(\boldsymbol{X} = \boldsymbol{x} | Y = j) \mathbb{P}(Y = j)}{\mathbb{P}(\boldsymbol{X} = \boldsymbol{x})}$$

$$= \underset{j \in \{1, \dots, K\}}{\operatorname{argmax}} \mathbb{P}(\boldsymbol{X} = \boldsymbol{x} | Y = j) \mathbb{P}(Y = j)$$

$$= \underset{j \in \{1, \dots, K\}}{\operatorname{argmax}} [\ln \mathbb{P}(\boldsymbol{X} = \boldsymbol{x} | Y = j) + \ln \mathbb{P}(Y = j)]$$

$$(6.1)$$

Naive Bayes:

$$\boxed{\mathbb{P}(\boldsymbol{X} = \boldsymbol{x}|Y = j) \approx \prod_{i=1}^{p} \mathbb{P}(X_i = x_i|Y = j)}$$

1. Ahmad would like to construct a model to decide if a day is suitable to play tennis. The table in the next slide shows the results whether to play tennis, based on Outlook, Temperature and Wind, collected by Ahmad.

Using Naïve Bayes approach with Laplace smoothing, predict whether a sunny day with strong wind, 27°C, is suitable to play tennis.

| Day | Outlook  | Temperature | Wind   | PlayTennis |
|-----|----------|-------------|--------|------------|
| D1  | Sunny    | 34          | Weak   | No         |
| D2  | Sunny    | 32          | Strong | No         |
| D3  | Overcast | 28          | Weak   | Yes        |
| D4  | Rain     | 22          | Weak   | Yes        |
| D5  | Rain     | 16          | Weak   | Yes        |
| D6  | Rain     | 8           | Strong | No         |
| D7  | Overcast | 12          | Strong | Yes        |
| D8  | Sunny    | 20          | Weak   | No         |
| D9  | Sunny    | 10          | Weak   | Yes        |
| D10 | Rain     | 23          | Weak   | Yes        |
| D11 | Sunny    | 19          | Strong | Yes        |
| D12 | Overcast | 21          | Strong | Yes        |
| D13 | Overcast | 31          | Weak   | Yes        |
| D14 | Rain     | 25          | Strong | No         |



2. The testing dataset of an insurance claim is given in Table 2.1. The variables "gender", "bmi", "age\_bracket" and "previous\_claim" are the predictors and the "claim" is the response.

Table 2.1: The testing data of an insurance claim (randomly sampled with repeated entry).

| gender             | bmi               | age_bracket | previous_claim | claim            |
|--------------------|-------------------|-------------|----------------|------------------|
| female             | $under_weight$    | 18-30       | 0              | $no_{-}claim$    |
| female             | $under_{-}weight$ | 18-30       | 0              | ${ m no\_claim}$ |
| $_{\mathrm{male}}$ | $over\_weight$    | 31-50       | 0              | ${ m no\_claim}$ |
| female             | under_weight      | 50+         | 1              | $no\_claim$      |
| $_{\mathrm{male}}$ | $normal_weight$   | 18-30       | 0              | $no\_claim$      |
| female             | $under\_weight$   | 18-30       | 1              | $no\_claim$      |
| $_{\mathrm{male}}$ | over_weight       | 18-30       | 1              | $no\_claim$      |
| $_{\mathrm{male}}$ | over_weight       | 50+         | 1              | claim            |
| female             | normal_weight     | 18-30       | 0              | no_claim         |
| female             | obese             | 50+         | 0              | claim            |

The "gender" is binary categorical data, the "bmi" is a four-value categorical data with values under\_weight, normal\_weight, over\_weight and obese, the "age\_bracket" is a three-value categorical data with value "18-30", "31-50" and "50+", the "previous\_claim" is a binary categorical data with 0 indicating "no previous claim" and 1 indicating "having a previous claim". The "claim" is a binary response with values "no\_claim" (negative class, with value 1) and "claim" (positive class, with value 0).

(b) Write down the mathematical formula for the Naive Bayes model with the predictors and response in Table 2.3. Use the Naive Bayes model trained on the training data from Table 2.3 to **predict** the "claim" of the insurance data in Table 2.1 as well as **evaluating** the performance of the model by calculating the confusion matrix, accuracy, sensitivity, specificity, PPV, NPV of the logistic model.

Table 2.3: The training dataset of an insurance claim data for Naive Bayes model.

| Obs. | gender | bmi               | $age\_bracket$ | $previous\_claim$ | $\operatorname{claim}$ |
|------|--------|-------------------|----------------|-------------------|------------------------|
| 1    | female | obese             | 50+            | 1                 | no_claim               |
| 2    | female | under_weight      | 31-50          | 0                 | $no\_claim$            |
| 3    | male   | $under_weight$    | 31-50          | 1                 | ${ m no\_claim}$       |
| 4    | female | over_weight       | 18-30          | 1                 | ${ m no\_claim}$       |
| 5    | female | normal_weight     | 31-50          | 0                 | ${ m no\_claim}$       |
| 6    | female | $under_weight$    | 31-50          | 0                 | $no\_claim$            |
| 7    | female | obese             | 18-30          | 0                 | $no\_claim$            |
| 8    | male   | $under_weight$    | 50+            | 1                 | $no\_claim$            |
| 9    | female | $normal_weight$   | 31-50          | 0                 | $no\_claim$            |
| 10   | male   | $over\_weight$    | 31-50          | 0                 | $no\_claim$            |
| 11   | female | $normal_weight$   | 50+            | 0                 | $\operatorname{claim}$ |
| 12   | male   | $over\_weight$    | 31-50          | 1                 | $\operatorname{claim}$ |
| 13   | male   | underweight       | 31-50          | 1                 | $\operatorname{claim}$ |
| 14   | male   | $over\_weight$    | 31-50          | 1                 | $\operatorname{claim}$ |
| 15   | male   | obese             | 50+            | 0                 | $\operatorname{claim}$ |
| 16   | male   | $under_{-}weight$ | 50+            | 0                 | $\operatorname{claim}$ |
| 17   | female | obese             | 31-50          | 1                 | $\operatorname{claim}$ |
| 18   | female | under_weight      | 50+            | 1                 | $\operatorname{claim}$ |
| 19   | female | normal_weight     | 50+            | 1                 | claim                  |
| 20   | female | under_weight      | 18-30          | 1                 | claim                  |

| Note: The default cut-off is 0.5. |  |  |  |  |  |
|-----------------------------------|--|--|--|--|--|
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |



3. (Jan 2021 Final Q4(b)) Suppose the mood (M) of a student is affected by two features, the weather (W) and his result (R) and the Table 4.2.

Table 4.2: Observed Data.

| Weather (W)           | Result (R) | Mood (M) |
|-----------------------|------------|----------|
| Bad                   | Poor       | Unhappy  |
| $\operatorname{Good}$ | Poor       | Unhappy  |
| $\operatorname{Good}$ | Poor       | Unhappy  |
| $\operatorname{Good}$ | Poor       | Unhappy  |
| Bad                   | Good       | Unhappy  |
| Bad                   | Good       | Нарру    |
| Bad                   | Good       | Нарру    |
| $\operatorname{Good}$ | Good       | Нарру    |

(a) Using Table 4.2 and a Naive Bayes classifier to predict the mood if today's situation is that the weather is good, the result is good. Show your computations clearly and write down the classifier's prediction. (1.5 marks)

| ]   |                                                                                                    |                 |                 |                    |               |
|-----|----------------------------------------------------------------------------------------------------|-----------------|-----------------|--------------------|---------------|
| ١ ١ |                                                                                                    |                 |                 |                    |               |
| 1   | Using Table 4.2 and a Naive Baye the weather is bad, the result is pelassifier's prediction.       |                 | _               | -                  |               |
|     |                                                                                                    |                 |                 |                    |               |
|     |                                                                                                    |                 |                 |                    |               |
|     |                                                                                                    |                 |                 |                    |               |
|     |                                                                                                    |                 |                 |                    |               |
|     | Suppose an additional feature, ex                                                                  | ercise (E), w   | hich indicates  | that the studen    | at will carry |
|     | outdoor exercise or not, is added t                                                                | to the Table 4  | 4.2 to form Tab | le 4.3.            | V             |
|     |                                                                                                    |                 | ata with New F  |                    |               |
|     | $\frac{\text{Weather (W)}}{\text{Bad}}$                                                            | Result (R) Poor | Exercise (E) No | Mood (M)           |               |
|     | Good                                                                                               | Poor            | Yes             | Unhappy<br>Unhappy |               |
|     |                                                                                                    |                 |                 |                    |               |
|     |                                                                                                    |                 |                 |                    |               |
|     |                                                                                                    |                 |                 |                    |               |
|     |                                                                                                    |                 |                 |                    |               |
|     |                                                                                                    |                 |                 |                    |               |
|     |                                                                                                    |                 |                 |                    |               |
|     | Good Good Bad Bad Bad Good  Using Table 4.3 and the Naive Bat be performance of the Naive Bayes cl | classifier's p  | orediction. Wil | l the new feat     | ure impro     |
|     | definition that the payer of                                                                       | assiner moni    | the one built b | ased on Table 4    |               |
| ]   | · · · · · · · · · · · · · · · · · · ·                                                              |                 |                 |                    |               |
| ]   | answer.                                                                                            |                 |                 |                    | (2 ma         |