中科大 2023 春博资考 代数

- 1、令 R, S 为含幺环。
 - (1) 证明: $M_n(R \times S) \simeq M_n(R) \times M_n(S)$;
 - (2) 若 R 为局部环, m 为 R 极大理想。若 $y \in m$, 证明 1+y 可逆;
 - (3) 若 R, S 为局部环, 则 $R \simeq S$ 当且仅当 $M_n(R) \simeq M_n(S)$ 。
- 2、令 $q = p^r$, p 为素数。 \mathbb{F}_q 为 q 阶有限域。
 - (1) 给出 $SL_n(\mathbb{F}_q)$ 的阶;
 - (2) 给出 $SL_n(\mathbb{F}_q)$ 的一个 sylow p-子群;
- (3) 若群 G 的阶为 p 的方幂。令 $\rho: G \to GL_n(\mathbb{F}_q)$ 的群同态。证明: Im(G) 可以同时相似上三角矩阵。

$$3 \diamondsuit \Gamma(N) = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in SL_2(\mathbb{Z}): \ a-1 \equiv d-1 \equiv b \equiv c \equiv 0 \mod N \right\}.$$

- (1) 证明 $\mathbb{Z} \to \mathbb{Z}/N\mathbb{Z}$ 诱导的群同态 $SL_2(\mathbb{Z}) \to SL_2(\mathbb{Z}/N\mathbb{Z})$ 为满射;
- (2) 证明 $\Gamma(N)$ 是 $SL_2(\mathbb{Z})$ 的正规子群;
- (3) 求 $\Gamma(N)$ 在 $SL_2(\mathbb{Z})$ 的指数。
- 4、若 $f: M \to L$, $g: L \to N$ 为交换群同态。
- (1) 若 Ker(f), Im(f), Im(g) 为有限生成群。证明: Ker(gf) 和 Im(gf) 是有限生成群;
- (2) 若 M 为 27 阶循环群,N 为 18 阶循环群,且有正合列 $0 \to M \to L \to N \to 0$ 。求交换群 L 同构类。

- 5、 (1) 判断 $\mathbb{Z}[\sqrt{-3}]$ 是否为 PID;
 - (2) 求 $x^3 2 = y^2$ 整数解。
- 6、 (1) 证明 (12)、 $(12\cdots n)$ 生成了 S_n ;
 - (2) 判断 $f(x) = x^5 4x + 2$ 在 \mathbb{Q} 上是否可约;
 - (3) 求 f(x) 的 Galois 群。