

Общероссийский математический портал

Р. В. Голованов, К. И. Луцкий, Вычисление интегральной функции Ферми–Дирака, $Mame_{M.}$ моделирование, 2012, том 24, номер 2, 129–138

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 89.175.96.54

3 июня 2016 г., 16:36:34

ВЫЧИСЛЕНИЕ ИНТЕГРАЛЬНОЙ ФУНКЦИИ ФЕРМИ-ДИРАКА

© 2012 г. **Р.В. Голованов, К.И. Луцкий***

Московский институт электронной техники, Зеленоград; golovanovrv@gmail.com * Институт прикладной математики им. М.В. Келдыша РАН konstantin.lutskiy@gmail.com

Работа поддержана грантом РФФИ №11-01-00102.

Функции Ферми-Дирака играют важную роль во многих областях физики. Проблема их вычислений изучается давно. В задачах физики высоких энергий требуется также вычислять производимые от них специальные функции. Предложен численный метод, позволяющий с высокой точностью вычислять одну такую функцию, выражающую обменную поправку к энергии электрона при произвольной температуре.

Ключевые слова: функция Ферми-Дирака, высокая точность.

COMPUTATION OF THE INTEGRAL FERMI-DIRAC FUNCTION

R.V. Golovanov, K.I. Luzkii*

National Research University of Electronic Technology, Zelenograd, Moscow * Keldysh Institute of Applied Mathematics, Moscow

The Fermi-Dirac functions appear in many areas of physics. The problem of their computation has been studied for a long time. In high energy physics it is also required to compute more complex special functions that use Fermi-Dirac functions. A numerical method is suggested to allow precise computation of one of such functions which is used to calculate the exchange correction to electron energy for arbitrary temperature.

Key words: Fermi-Dirac function, high-precision.

Введение

Важную роль в физике экстремального состояния вещества играют специальные функции Ферми-Дирака (ФД) [1]. Они определяются следующим образом:

$$F_k(x) = \frac{1}{\Gamma(k+1)} \int_0^\infty \frac{y^k dy}{e^{y-x} + 1}.$$
 (1)

Здесь $\Gamma(x)$ — гамма-функция Эйлера. В физических приложениях функции ФД требуются с целыми и полуцелыми индексами k. В уравнениях состояния требуются целые индексы, а в задачах переноса энергии — полуцелые. В ряде теоретических моделей используются различные комбинации этих функций.

5 Математическое моделирование, №2

При вычислении обменной поправки к энергии взаимодействия электронов в квазиклассическом приближении возникает одна нетривиальная комбинация [2]. Это интегральная функция ФД:

$$J(x) = \int_{0}^{x} \left[F'_{1/2}(\xi) \right]^{2} d\xi. \tag{2}$$

Она является обобщением поправки Слэтера для холодного атома.

В [3] производится расчёт термодинамики модели Томаса-Ферми с квантовыми и обменными поправками. Там же предложен следующий способ вычисления функции (2) на сетке. При задании начального значения $J(x_0)$ остальные значения в узлах $J(x_i)$ получаются рекуррентно:

$$J(x_0) = J(-8) = \frac{\pi}{8}e^{-16} \left(1 - \frac{2\sqrt{3}}{3}e^{-8}\right), \qquad J(x_{n+1}) = J(x_n) + \int_{x_n}^{x_{n+1}} \left[F'_{1/2}(\xi)\right]^2 d\xi.$$
 (3)

Последний интеграл в (3) берётся по формуле трапеций с применением сгущения сеток и приемом Рунге-Ричардсона. Окончательно

$$J(x_{n+1}) = J(x_n) + \frac{h}{22680} \left\{ 217 \cdot F_{-1/2}^2(x_n) + 1024 \cdot F_{-1/2}^2(x_n + \frac{h}{8}) + 352 \cdot F_{-1/2}^2(x_n + \frac{h}{4}) + 1024 \cdot F_{-1/2}^2(x_n + \frac{3h}{8}) + 436 \cdot F_{-1/2}^2(x_n + \frac{h}{2}) + 1024 \cdot F_{-1/2}^2(x_n + \frac{5h}{8}) + 1024 \cdot F_{-1/2}^2(x_n + \frac{3h}{4}) + 1024 \cdot F_{-1/2}^2(x_n + \frac{7h}{8}) + 217 \cdot F_{-1/2}^2(x_n + h) \right\}.$$

$$(4)$$

При этом относительная погрешность термодинамических функций модели [3], использующих формулу (4), не превышает 10^{-6} . Это не удовлетворяет современным требованиям, предъявляемым к термодинамическим таблицам, и особенно влияет на вычисление таких характеристик, как изэнтропы и ударные адиабаты.

В данной работе предложен новый численный метод, позволяющий вычислить эту функцию с относительной погрешностью не хуже 10^{-12} .

Функция Ферми-Дирака

При расчёте J(x), основная трудность связана с точным вычислением функции $F'_{1/2}(x)$. В современных работах предлагаются методы, обеспечивающие точность до 10^{-14} . Существует рекуррентное соотношение [4]:

$$F'_k(x) = k \cdot F_{k-1}(x), \quad k > -1.$$
 (5)

Тогда из (2) и (5) следует

$$J(x) = \frac{1}{4} \int_{-\infty}^{x} \left[F_{-1/2}(\xi) \right]^2 d\xi. \tag{6}$$

Асимптотические приближения

Для функций $F_k(x)$, x < 0 существует асимптотическое приближение рядом, предложенное в [5]:

$$F_k(x) = \sum_{i=1}^{\infty} (-1)^{i-1} \frac{e^{ix}}{i^{k+1}}, \quad x < 0, \quad k > -1.$$
 (7)

Ряд является истинно сходящимся. В [7, 9] при $x \le -5$ использование пяти первых членов суммы обеспечивает точность 10^{-12} . На рис.1 показана зависимость скорости сходимости ряда от x. Для x > -1 сходимость ряда заметно ухудшается (например, для $x = -10^{-5}$ требуется уже более 10^3 членов ряда). Поэтому на практике [6, 8] ряд (7) используют только для $x \le -1$.

Рис.1. Зависимость относительной погрешности асимптотики (7) от числа членов M для $F_{-1/2}(x)$.

Для случая x > 0, k > -1 предложен следующий асимптотически сходящийся ряд [7]:

$$F_k(x) = \frac{1}{\Gamma(k+1)} \frac{x^{k+1}}{k+1} \left[1 + \sum_{\nu=1}^{\infty} 2\tau_{2\nu} \left(\prod_{n=k-2\nu+2}^{k+1} n \right) x^{-2\nu} \right].$$
 (8)

Здесь

$$\tau_0 = \frac{1}{2}, \quad \tau_n = \sum_{p=1}^{\infty} \frac{(-1)^{p+1}}{p^n} = (1 - 2^{1-n})\zeta(n), \tag{9}$$

где $\zeta(n)$ есть дзета-функция Римана. Скорость сходимости (8) показана на рис. 2. Видно, что точность в 14 знаков достигается для $x \ge 30$.

Рис.2. Зависимость относительной погрешности асимптотики (8) от числа членов M для $F_{-1/2}(x)$.

Аппроксимация

На оставшемся отрезке $x \in [-1;30]$ ранее известные способы дают невысокую относительную точность 10^{-6} . Распространенным методом является использование полиномов Чебышева первого рода [11]. Такие аппроксимации с высокой точностью (до 10^{-14}) были построены в библиотеке GSL [10]. Там отрезок $x \in [-1;30]$ разбивается на 4 отрезка:

$$x \in [-1;1] \cup x \in [1;4] \cup x \in [4;10] \cup x \in [10;30].$$
 (10)

На каждом из отрезков используются свои разложения по многочленам Чебышева $P_n(x)$:

$$P_1(x), x \in [-1;1],$$
 (11)

$$P_2(t), \quad t = \frac{2}{3}(x-1)-1, \quad x \in [1;4],$$
 (12)

$$P_3(t), \quad t = \frac{1}{3}(x-4) - 1, \quad x \in [4;10],$$
 (13)

$$\sqrt{x} \cdot P_4(t), \quad t = 0.1x - 2, \quad x \in [10; 30].$$
 (14)

Коэффициенты этих разложений приведены в табл.1. В результате для $F_{-1/2}(x)$ имеем систему из уравнений: (7)–(8) и (11)-(14), которые обеспечивают точность до 14 знаков.

Таблица 1. Коэффициенты многочленов Чебышева первого рода для аппроксимации функции $F_{-1/2}(x)$ на интервале $x \in [-1;30]$.

	<i>x</i> ∈[−1;1]	<i>x</i> ∈[1;4]
	1.2663290042859741974,	3.270796131942071484,
C_k	0.3697876251911153071,	0.5809004935853417887,
	0.0278131011214405055,	-0.0299313438794694987,
	-0.0033332848565672007,	-0.0013287935412612198,
	-0.0004438108265412038,	0.0009910221228704198,
	0.0000616495177243839,	-0.0001690954939688554,
	8.7589611449897e-6,	6.5955849946915e-6,
	-1.2622936986172e-6,	3.5953966033618e-6,
	-1.837464037221e-7,	-9.430672023181e-7,
	2.69495091400e-8,	8.75773958291e-8,
	3.9760866257e-9,	1.06247652607e-8,
	-5.894468795e-10,	-4.9587006215e-9,
	-8.77321638e-11,	7.160432795e-10,
	1.31016571e-11,	4.5072219e-12,
	1.9621619e-12,	-2.3695425e-11,
	-2.945887e-13,	4.9122208e-12,
	-4.43234e-14,	-2.905277e-13,
	6.6816e-15,	-9.59291e-14,
	1.0084e-15,	3.00028e-14,
	-1.561e-16	-3.4970e-15

	$x \in [4;10]$	<i>x</i> ∈[10;30]
Ck	$x \in [4;10]$ 5.828283273430595507, 0.677521118293264655, -0.043946248736481554, 0.005825595781828244, -0.000864858907380668, 0.000110017890076539, -6.973305225404e-6, -1.716267414672e-6, 8.59811582041e-7, -2.33066786976e-7, 4.8503191159e-8, -8.130620247e-9, 1.021068250e-9, -5.3188423e-11,	$x \in [10;30]$ 2.2530744202862438709, 0.0018745152720114692, -0.0007550198497498903, 0.0002759818676644382, -0.0000959406283465913, 0.0000324056855537065, -0.0000107462396145761, 3.5126865219224e-6, -1.1313072730092e-6, 3.577454162766e-7, -1.104926666238e-7, 3.31304165692e-8, -9.5837381008e-9, 2.6575790141e-9,
	,	,
	8.750506e-12, -2.324897e-12, 4.83102e-13,	1.747111336e-10, -4.04909605e-11, 8.5104999e-12,

Таблица 1. (продолжение)

	$x \in [4;10]$	$x \in [10;30]$
C_k	-8.1207e-14,	-1.5261885e-12,
	1.0132e-14,	1.876851e-13,
	-4.64e-16,	1.00574e-14,
	-2.24e-16,	-1.82002e-14,
	9.7e-17,	8.6634e-15,
	-2.6e-17,	-3.2058e-15,
	5.e-18	1.0572e-15,
		-3.259e-16,
		9.60e-17,
		-2.74e-17,
		7.6e–18,
		-1.9e-18

Прецизионные вычисления интегральной функции

Возведение в квадрат. Для вычисления (6) необходимо знать аналитическое приближение для функции $\left[F_{-1/2}(x)\right]^2$. Явные аппроксимации $F_{-1/2}(x)$ приведены выше. Остается возвести их в квадрат. Для этой операции используется стандартный метод перемножения двух рядов. В результате для ряда (7) получим следующую левую асимптотику:

$$[F_{-1/2}(x)]^2 = e^x \sum_{i=0}^{\infty} (-1)^{i+1} e^{ix} b_i,$$
(15)

где

$$b_i = \sum_{k=0}^{i} \left[(i+1-k)(k+1) \right]^{-1/2}.$$
 (16)

Абсолютная сходимость этого ряда следует из абсолютной сходимости (7). Аналогично для (8) будем иметь выражение:

$$[F_{-1/2}(x)]^2 = 4x \sum_{i=0}^{\infty} x^{-2i} d_i,$$
(17)

где

$$d_{i} = 4 \sum_{j=0}^{i} \left(\left(\prod_{k=3/2-2j}^{1/2} k \right) \left(\prod_{k=3/2-2(i-j)}^{1/2} k \right) (1 - 2^{-2j+1}) (1 - 2^{-2(i-j)+1}) \zeta(2j) \zeta(2(i-j)) \right).$$
 (18)

Поскольку исходный ряд (8) имеет асимптотическую сходимость, полученный ряд также будет иметь асимптотическую сходимость. Количественная зависимость точности от

числа членов ряда после возведения в квадрат может отличаться от исходных значений. Отметим, что в результате возведения ряда в квадрат может наблюдаться эффект ухудшения сходимости. Этот вопрос будет исследован далее.

На промежуточном отрезке $x \in [-1;30]$, где функция Φ Д представлена полиномами, эти полиномы просто были возведены в квадрат. При этом относительная погрешность в норме C могла возрасти не более чем в 2 раза.

Интегрирование. Аппроксимация для интегральной функции ФД получается точным интегрированием приведенных выше аппроксимаций. С учетом того что

$$J(-\infty) = 0, (19)$$

для $x \le -1$ получим

$$J(x) = \int_{-\infty}^{x} \left[F_{-1/2}(\xi) \right]^{2} d\xi = e^{2x} \left[\frac{b_{0}}{2} - e^{x} \frac{b_{1}}{3} + e^{2x} \frac{b_{2}}{4} + \dots \right], \tag{20}$$

где b_i определяется из (16). Ряд (20) позволяет вычислить J(-1). Правее этой точки интегрирование даёт

$$J(x) = J(-1) + \frac{1}{2} \int_{-1}^{x} \left[F_{-1/2}(x) \right]^{2} dx.$$
 (21)

Из него можно получить значение на правом конце очередного отрезка $x \in [-1;1]$:

$$J(x) = J(-1) + \int_{-1}^{x} P_1^2(t)dt, \quad x \in [-1;1].$$
 (22)

Аналогичным образом находится аналитическое представление J(x) на оставшихся отрезках:

$$J(x) = J(1) + \frac{3}{2} \int_{-1}^{\xi} P_2^2(t) dt, \quad \xi = \frac{2}{3} (x - 1) - 1, \quad x \in [1; 4],$$
 (23)

$$J(x) = J(4) + 3 \int_{-1}^{\xi} P_3^2(t)dt, \quad \xi = \frac{1}{3}(x - 4) - 1, \quad x \in [4; 10]$$
 (24)

$$J(x) = J(10) + 100 \int_{-1}^{\xi} t P_4^{2}(t) dt + 200 \int_{-1}^{\xi} P_4^{2}(t) dt, \quad \xi = 0.1x - 2, \quad x \in [10; 30].$$
 (25)

Операция интегрирования многочленов представляет собой явное нахождение первообразной.

Для x > 30 имеем

$$J(x) = J(30) + 4 \int_{30}^{x} \left(\xi d_0 + \xi^{-1} d_1 + \xi^{-3} d_2 + \dots + \xi^{1-2r} d_r \right) d\xi.$$
 (26)

В результате интегрирования сходимость асимптотик (20) и (26) могла улучшиться. Результаты анализа сходимости этих асимптотик приведены на рис.3, 4. Видно, что скорость сходимости незначительно выросла. Это является естественным следствием улучшения сходимости рядов при интегрировании.

Рис.3. Зависимость относительной погрешности асимптотики (20) от числа членов M для J(x) .

Оценка погрешности

Для оценки погрешности вычисления J(x) воспользуемся формулой:

$$F_{-1/2}(\xi) = \tilde{F}_{-1/2}(\xi) \pm \Delta(\xi), \tag{27}$$

где $\Delta(\xi)$ – абсолютная погрешность, а знак « \sim » – значение, полученное численным методом. В результате

$$J(x) = \int_{-\infty}^{x} \left(\tilde{F}_{-1/2}(\xi) \pm \Delta(\xi) \right)^2 d\xi, \tag{28}$$

откуда следует

$$J(x) = \tilde{J}(x) \pm 2 \int_{-\infty}^{x} \tilde{F}_{-1/2}(\xi) \Delta(\xi) d\xi + \int_{-\infty}^{x} \Delta^{2}(\xi) d\xi,$$

$$D(x)$$
(29)

где D(x) — оценка абсолютной погрешности вычисления функции J(x). Вторым слагаемым в D(x) можно пренебречь. Для того чтобы рассчитать D(x), использовались грубые оценки для $\Delta(\xi)$ и $\tilde{F}_{-1/2}(\xi)$. В результате мажорантной оценки было получено значение относительной точности не хуже 12 знаков.

Рис.4. Зависимость относительной погрешности асимптотики (26) от числа M для J(x) .

СПИСОК ЛИТЕРАТУРЫ

- 1. Raseong Kim, Mark Lundstrom. Notes on Fermi-Dirac Integrals 2nd edition. Network for Computational Nanotechnology Purdue University, June 27, 2008.
- 2. *Н.Н. Калиткин, Л.В. Кузьмина*. Математическое моделирование в низкотемпературной плазме. Энциклопедия низкотемпературной плазмы, 2008.
- 3. *Л.В. Кузьмина*. Численный расчёт термодинамических функций вещества в статистической модели атома с квантово-обменными поправками. Кандидат. диссерт., ИПМ АН СССР, 1978.
- 4. *Н.Н. Яненко*. Асимптотические и приближенные формулы для давления и внутренней энергии вещества в обобщенной модели атома Томаса-Ферми [Работа 1958 года] // Избранные труды. М.: Наука, 1991, с.317-352.
- 5. *J. McDougall and E.C. Stoner*. The Computation of Fermi-Dirac Functions. Phil. Trans. Roy. Soc. London 237, 1938, 67-104.

- 6. *M. Goano*. Algorithm 745: Computation of the Complete and Incomplete Fermi-Dirac Integral. ACM Trans. Math. Softw.21, 1995, 221-232
- 7. *L.D. Cloutman.* Numerical evaluation of the Fermi-Dirac integrals // Astrophysical J. Suppl. Series 1989, v.71, p.677-699.
- 8. *A.J. Macleod.* Algorithm 779: Fermi-Dirac Functions of Order -1/2, 1/2, 3/2, 5/2, ACM Trans. Math. Softw. 24, p.1-12.
- 9. *J.P. Cox and R.T. Giuli.* Principles of Stellar Structures. Volume 2. Applications to Stars, Gordon and Beach, New York, 1968.
- 10. http://www.gnu.org/s/gsl The GNU Scientific Library (GSL) is a numerical library for C and C++ programmers.
- 11. W.J. Cody, H.C. Thacher Jr. Rational Chebyshev Approximations for Fermi-Dirac Integrals of Orders -1/2, ½ and 3/2, U.S. Atomic Energy Commission, 1966.

Поступила в редакцию 20.06.2011.