Projekt 8

(Simulation eines Transformators; stan, stiw, kirs)

Beschreibung Im Primärkreis des Transformators ist die Spannungsquelle $U_{\rm ext}$ an die n_1 Primärwindungen des Transformators angeschlossen. Der gesamte Ohmsche Widerstand des Primärkreises ist im Widerstand R_1 zusammengefasst. An die n_2 Sekundärwindungen des Transformators ist der Verbraucherwiderstand R_2 angeschlossen. Die Spulen des Primär- und des Sekundärkreises sind über einen Weicheisenkern verbunden.

Abbildung 1: Schematische Darstellung des Transformators.

Seien L_p und L_s die Selbstinduktivitäten der Primär- bzw. der Sekundärspule und $L_{\rm ps}$ bzw. $L_{\rm sp}$ die Induktivitäten der Sekundär- auf die Primärspule und umgekehrt (Gegeninduktivitäten).

Wir gehen bei $U_{\rm ext}=U_0\sin(\omega t)$ von einer Wechselspannung mit der Amplitude $U_0=4\,{\rm V}$ und der Kreisfrequenz $\omega=2\pi f$ aus. Zur Simulation des Transformators berechnen wir die beiden Stromstärken $I_p(t)$ und $I_s(t)$ [A] des Primärund den Sekundärstromkreises. Dabei verwenden wir folgende Parameter:

$$f=10^5\,{\rm Hz}, R_1=800\,\Omega, L_p=50\,\mu{\rm H}, L_{ps}=L_{sp}=150\,\mu{\rm H}, R_2=6\,\Omega, L_s=500\,\mu{\rm H}.$$
 Die Anfangsbedingungen sind $I_s(0)=I_p(0)=0.$

Aufgaben

1. Stellen Sie die beiden Differenzialgleichungen für den Primär- und den Sekundärstromkreis auf.

- 2. Formen Sie die Gleichungen aus Aufgabe 1 so um, dass Sie ein Differenzialgleichungssystem erster Ordnung erhalten.
- 3. Lösen Sie das Differenzialgleichungssystem aus Aufgabe 2 für $t \in [0, 50]$ $[\mu s]$ mit dem expliziten Euler-Verfahren (Euler-vorwärts-Verfahren). Ermitteln Sie experimentell die Stabilitätsgrenze für die Schrittweite τ .
- 4. Lösen Sie das Differenzialgleichungssystem aus Aufgabe 2 im gleichen Zeitintervall mit dem impliziten Euler-Verfahren (Euler-rückwärts-Verfahren).
- 5. Implementieren Sie die implizite Trapezregel und lösen Sie das Differenzialgleichungssystem aus Aufgabe 2 im gleichen Zeitintervall wie in Aufgabe 3. Vergleichen Sie die numerische Lösung mit derjenigen des impliziten Euler-Verfahrens hinsichtlich Genauigkeit, Rechenaufwand und Konvergenz.