Trees

Dov Kruger

Department of Electrical and Computer Engineering Rutgers University

January 23, 2024

4.1 Definition of Trees

A tree is an abstract data type representing a hierarchical tree

Consists of nodes, e having 0 or more children

A special node called root is the top of the tree

 Computer science trees grow upside-down!

Nodes with 0 children are called leaf nodes

Binary Trees

In a binary tree all nodes have no more than 2 children

Ordered Binary Trees/Binary Search Tree

An Ordered Binary Tree is a binary tree where

- Each node contains a key
- For each node
 key_{left child} < key_{this node}
 key_{right child} ≥ key_{this node}
 or
 key_{left child} ≤ key_{this node}
 key_{right child} > key_{this node}
 key_{right child} > key_{this node}
- Furthermore this rule applies to the whole subtree

• Example: anything to the right of the root ≥ 6

Inserting into OrderedBinaryTree

```
class Node {
  public int val;
                                     root
  public Node left , right;
Tree must define a Node
OrderedBinaryTree.insert(v)
  if root = null
    root = new Node(v)
    return // special case for empty tree
```

Insert into OrderedBinaryTree, contd

```
p = root
                                        root
  while p != null
    if p.val < v // can be <= also
                                                   left
       if p.right == null
                                                   right
         p.right <- new Node(v)</pre>
         return
                                         1
                                                            5
       end
    else
                                         left
                                                            left
       if p.left == null
                                                            right
                                         right
         p.left = new Node(v)
         return
       end
   end
  p = p.next
```


Recursive Traversal Rules

There are three classic traversal algorithms for binary trees

- Inorder
- Preorder
- Postorder

Inorder

```
inorder(node)
  if node == null
    return // termination condition for recursion!
  end
  inorder(node.left)
  do whatever you want to do to this node (like print it)
  inorder(node.right)
end
```


Preorder

```
preorder(node)
  if node == null
    return // termination condition for recursion!
  end
  do whatever you want to do to this node (like print it)
  preorder(node.left)
  preorder(node.right)
end
```


Postorder

```
postorder(node)
  if node == null
    return // termination condition for recursion!
  end
  postorder(node.left)
  postorder(node.right)
  do whatever you want to do to this node (like print it)
end
```


Another way of Terminating Recursive Traversals

The following code requires testing first that root is not null, but it is more efficient

Complexity is the same

```
postorder(node)
  if node.left != null
    postorder(node.left)
  end
  if node.right != null
    postorder(node.right)
  end
  do whatever you want to do to this node (like print it)
end
```


4.2 Expression Trees

In mathematics we are taught to write expressions inline

$$(x+2)(x-5)+3$$

The operations the above expression represents have an order

Conventions are defined mathematically

The end result is a tree of operations like this:

Three Ways of Writing Expressions

Inorder: (x+2)(x-5)

Preorder: * + x 2 - x 5

Postorder: x2 + x5 - *

All 3 reflect the same tree of operations, traversed using inorder, preorder, postorder

Homework: Optimizing an Expression Tree

Test Yourself

4.3 Ordered Binary Trees

An ordered binary tree is intrinsically sorted

Just add elements to the tree

Print out the elements using inorder traversal

Deletion from an Ordered Binary Tree

To delete, remove a node, then promote one of the children in its place

Implementation of an Ordered Binary Tree

```
class OrderedBinaryTree {
private:
    class Node {
    public:
        Node* left;
        Node* right;
        int val;
    };
    Node* root; // an empty tree has root=null
    ...
}
```


Adding a Parent Pointer

For some applications, if the algorithm is looking at a node it is useful to also be able to find the parent

```
class Node {
public:
   Node* left;
   Node* right;
   Node* parent;
   int val;
};
```


Problem with Ordered Binary Trees/Binary Search Trees

Ordered Binary Trees/Binary Search Trees can get lopsided

- Performance is as bad as lists
- Added overhead of the unused left pointers

Example: Add 1,2,3,4,5 to ordered binary tree

What is the complexity of insertion into a BST?

O(?)

Balanced Case

When a Tree is balanced, n elements fit into $\log_2 n$ levels

$$n=15$$
 elements, levels $=\log_2(n+1)=4$

Trees Cannot be Perfectly Balanced

A Tree with one element on a new level is by definition, unbalanced

Balanced Binary Trees

Ensure trees remain balanced under all possible operation

Insertion and deletion will have to trigger "rebalancing" while not slowing down

Balanced Binary Trees

There are a number of implementations

- Red-Black Trees (RB-Trees)
- AVL Trees
- Fibonacci Trees

We will just do one: RB-Trees

RB Trees

Objective: Maintain a balanced tree no matter the order of insertion

No worse than $2\log_2 n$

Rules

- Each node is assigned a color (red or black, really just binary)
- Red nodes cannot have red children
 Colors alternate
- Optional: root is black

Definitions for RB-Tree

 n_1 .parent is node that has n as a child. This is null for root

n.grandparent() is n's parent's parent, null if it does not exist

n.uncle is a node's grandparent's other child (not parent)

- If a node has no grandparent, it has no uncle
- n_2 has no uncle

Insertion into RB Tree

```
Start with an empty tree
RBTree.insert(3)
calls BST.insert(3)
then RBTree.correct(n)

return // special case, root

root
null
n=root
```


Insertion into RB Tree, part 2

```
RBTree.insert(1)
calls BST.insert(1)
then RBTree.correct(n)
```

```
n parent != null null
```

```
case 2:
if parent.color == BLACK
    return
end
```


Insertion into RB Tree, part 3

```
RBTree.insert(1)
                                            root
  calls BST.insert(1)
  then RBTree.correct(n) parent != null
parent is RED
case 3:
  if n.parent.isred() and n.uncle().isred()
    flip color of parents
    flip color of grandparent
                                             root
    RBTree.correct(grandparent)
recursive
  end
```


Insertion into RB Tree, part 3

```
RBTree.insert (0)
calls BST.insert (0)
then RBTree.correct (n)
parent is RED
[TBD]
```


4.4 BTrees

BTrees are a more complicated generalization of RBTree with a higher degree than 2

Used in database systems to try to keep the depth of the tree to a minimum

Shown: BTree of degree 4

Properties of Disk Access

Hard Disk Drives, and the more modern Solid State Drives (SSD)

- Are Block-oriented devices
- Have high overhead to access a block (latency, and OS call)
- Therefore, try to keep reads to a minimum
- Each block is large, so degree of the BTree can be kept very high (64)

With $n=64\ (2^6)$ we can store

Levels	Power of 2	Elements stored
1	2^{6}	64
2	2^{12}	4096
3	2^{18}	256k
4	2^{24}	16M
5	2^{30}	1 billion

How BTrees are used in Databases

SQL was developed in the 1970s

Creates tables of data, typically with lookup via BTree

The following table defines a primary key

- The records are stored in a BTree using the key
- The records therefore are in sorted order
- Searching for a specific city by name is O(log n)

CREATE TABLE Cities (name varchar(10) primary key, population int

BTrees in SQL

SELECT * FROM cities

results sorted by name

SELECT * FROM cities ORDER BY population requires sorting

SELECT * FROM cities WHERE name='New_York' O(log n)

Adding an Index

```
CREATE INDEX cities_bypopulation
                                            Second sorting order
ON cities (population);
SELECT * FROM cities ORDER BY population
                                            no sorting
```

INSERT INTO cities values ('Tokyo', 15000000) 2x slower

SELECT * FROM cities WHERE population=100 O(log n)

Test Yourself

4.5 Tries

A Trie is a complete tree with a high degree

- 26 for lowercase English letters
- Has not been used much because storage requirements are high
- Hash maps have dominated tries for most applications

Today, there are applications

- Autocompletion of words
- DNA searches

https://brilliant.org/wiki/tries/

Code Structure of a Trie

Α

Trie node has

- boolean stating whether the path is a word or not
- Pointers to the next node

A trie dictionary can contain the root node

- Does not have to be a pointer
- Can never be null


```
class Trie {
  struct Node {
    bool isWord:
    Node * next[26];
  Node root:
public:
 void add(const string& w
  void remove(const string&
  bool contains (const strin
  bool startsWith (const str
```

Inserting into a Trie

Searching for a Word in a Trie

Searching for a Prefix in a Trie

Applications of Trie

The game of Boggle Excellent application using tries. We regularly assign this for homework. Write a program that searches the board

