1. Пространството R^n

4. Отворени, затворени и компактни множества в \mathbb{R}^n . Понятието околност на точка в пространството \mathbb{R}^n позволява да се въведат някои естествени понятия, свързани с точките на дадено множество:

Определение 5. Нека множеството $D \subset \mathbf{R}^n$. Казваме, че една точка $a \in \mathbf{R}^n$ е **вътрешна точка** за множеството D, ако тази точка има околност $K_{\varepsilon}(a) \subset D$ (фиг. 1 а).

Казваме, че една точка $a\in \mathbf{R}^n$ е *външна точка* за множеството D , ако съществува околност $K_{\varepsilon}(a)$, за която $K_{\varepsilon}(a)\cap D=\mathcal{H}$ (фиг. 1 б).

Една точка $a \in \mathbb{R}^n$ се нарича **контурна точка** за множеството D, ако тя не е нито вътрешна, нито външна за D, т.е. когато във всяка нейна околност $K_{\varepsilon}(a)$ има точки от D и точки, които не принадлежат на D (фиг. 1 в).

От предишните определения следва, че за дадено подмножество D на пространството \mathbf{R}^n едно точка a от \mathbf{R}^n е или вътрешна, или външна, или контурна точка за D, като съответните възможности взаимно се изключват.

Ясно е, че ако a е вътрешна точка за множеството $a \in \mathbf{R}^n$, то тя непременно принадлежи на D , понеже дори цяла нейна околност се съдържа в D .

Лесно се вижда също, че външните точки на едно множество D никога на принадлежат на D, и дори са вътрешни за неговото допълнение $\mathbf{R}^n \setminus D$.

За контурните точки на едно множество обаче, в общия случай не може да се твърди нещо определено. Те могат да принадлежат, или да не принадлежат на множеството и това зависи от начина по който е зададено самото множество.

Една характеризация на вътрешните или контурни точки се получава от следното твърдение:

Една точка $a \in \mathbf{R}^n$ е вътрешна или контурна за множеството $D \subset \mathbf{R}^n$ тогава и само тогава, когато съществува редица $x_k \in D$, за която $x_k \to a$ в пространството \mathbf{R}^n .

Предишното твърдение показва, че вътрешните или контурни точки на едно множество $D \subset \mathbf{R}^n$ могат "да се приближават" относно разстоянието в \mathbf{R}^n с точки от самото множество D, независимо дали контурните точки му принадлежат, или не. При това не е изключено всички членове на "приближаващата редица" $x_k \in D$ да съвпадат от известен номер нататък (такъв например е случаят, когато контурната точка е *изолирана*, в смисъл който ще изясним подолу.)

Определение 6. Едно множество V в пространството \mathbf{R}^n се нарича **отворено**, когато всичките му точки са негови вътрешни точки. Едно множество $F \subset \mathbf{R}^n$ се нарича **затворено**, когато съдържа **всичките** си контурни точки.

Пример 1. Затвореното кълбо $B_{\varepsilon}(a) = \{x \in \mathbf{R}^n : \rho(x,a) \leq \varepsilon\}$ е затворено множество, понеже съдържа всичките си контурни точки. Това са точките от сферата $S_{\varepsilon}(a) = \{x \in \mathbf{R}^n : \rho(x,a) = \varepsilon\}$ с радиус ε , която го загражда. Съответно отвореното кълбо $K_{\varepsilon}(a) = \{x \in \mathbf{R}^n : \rho(x,a) < \varepsilon\}$ е отворено множество, понеже лесно се вижда, че всяка негова точка е вътрешна.

Пример 2. Пространството \mathbf{R}^n е едновременно отворено и затворено множество, понеже всяка негова точка $a \in \mathbf{R}^n$ е вътрешна, понеже се съдържа в него заедно с произволна нейна околност $K_{\epsilon}(a) = \{x \in \mathbf{R}^n : \rho(x,a) < \epsilon\}$. От друга страна, можем да считаме, че \mathbf{R}^n съдържа и всичките си контурни точки, просто защото **то няма такива**.

Пример 3. Празното множество Æ е едновременно отворено и затворено множество в пространството \mathbf{R}^n .