Linear Algebra II Recitation 5

Yasuyuki Kachi & Shunji Moriya

1. (1) Let
$$f(x) = x^2 - 5x + 2$$
 and $A = \begin{bmatrix} 0 & 10 \\ -1 & 7 \end{bmatrix}$. Calculate $f(A)$.

(2) Let
$$A = \begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix}$$
. Calculate $\chi_A(A)$ (without resorting any theorem).

$$A = \begin{bmatrix} 42384031609 & -33649837 \\ 7017128346 & 1843570134 \end{bmatrix}.$$

Find $\chi_A(A)$. No calculation. Cite an appropriate theorem.

2. Let
$$a, b, c$$
 and d be real numbers. Let $X = \begin{bmatrix} 0 & -d & c \\ d & 0 & -b \\ -c & b & 0 \end{bmatrix}$.

- (1) Find the characteristic polynomial $\chi_X(\lambda)$ of X.
- (2) Use (1) and Cayley-Hamilton's Theorem to write X^4 as a scalar times X^2 .

(3) Let
$$A = (a^2 + b^2 + c^2 + d^2)I + 2aX + 2X^2$$
. Prove

$$A^{T} = (a^{2} + b^{2} + c^{2} + d^{2})I - 2aX + 2X^{2}$$

- (4) Prove that AA^T is a scalar times the identity matrix.
- (5) Find $\det A$.

(The outline of solution was explained by Prof.Kachi at the lecture of July, 9 so you are also requested to give the details such as the calculation process omitted at the lecture.)

3. (Another way to find the *n*-th power) Let
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$$
.

(1) Find two constant numbers p,q such that for any integer $n\geq 0$ the following equation holds.

$$A^{n+2} = p A^{n+1} + q A^n$$

- (2) Write $A^n = \begin{bmatrix} a_n & b_n \\ c_n & d_n \end{bmatrix}$. Obtain a recurrence relation for each of a_n , b_n , c_n , and d_n from the result of (1).
- (3) By solving the recurrence relation of (2), find A^n .

4. Solve the following simultaneous linear equations (or systems of linear equations).

$$(1) \quad \begin{bmatrix} 2 & -1 & 5 \\ 0 & 2 & 2 \\ 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

(2)
$$\begin{bmatrix} 2 & -1 & 9 \\ -1 & 1 & -3 \\ 1 & -3 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Recitation 5, Answer

1.
$$(1)$$

$$\begin{bmatrix} -8 & 20 \\ -2 & 6 \end{bmatrix}$$

$$(2) \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

(3)
$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
, by Cayley-Hamilton's theorem.

2. (1)
$$\chi_X(\lambda) = \lambda^3 + (b^2 + c^2 + d^2)\lambda$$

(2)
$$X^4 = -(b^2 + c^2 + d^2)X^2$$

(3) Omitted.

(4)
$$AA^{T} = (a^{2} + b^{2} + c^{2} + d^{2})^{2}I$$
, the proof is omitted

(5) det
$$A = (a^2 + b^2 + c^2 + d^2)^3$$

3. (1)
$$p = q = 1$$

(2) $a_{n+2} = a_{n+1} + a_n$, and the same recurrence relation holds for b_n, c_n , and d_n . (The sequence $\{a_n\}$ is called *Fibonacci sequence*.)

(3)
$$A^n = \frac{1}{\sqrt{5}} \begin{bmatrix} \alpha^{n-1} - \beta^{n-1} & \alpha^n - \beta^n \\ \alpha^n - \beta^n & \alpha^{n+1} - \beta^{n+1} \end{bmatrix}$$
, where $\alpha = \frac{1+\sqrt{5}}{2}$, $\beta = \frac{1-\sqrt{5}}{2}$.

4. (1)
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -3k \\ -k \\ k \end{bmatrix}$$
 where k is any (real or complex) number.

(2)
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -6k \\ -3k \\ k \end{bmatrix}$$
 where k is any (real or complex) number.

Solution of a 3-term recurrence relation

Problem. Find a closed formula for the general (n-th) term of a sequence $\{a_n\}_n$ which satisfies a 3-term recurrence relation

$$a_{n+2} = pa_{n+1} + qa_n \qquad \cdots (*)$$

where p, q are constant numbers.

Solution. We consider the *characteristic equation*

$$x^2 = px + q$$

of (*). Let α, β be the solutions of the equation. We have

$$\begin{cases} a_{n+2} - \alpha a_{n+1} = \beta (a_{n+1} - \alpha a_n) & \cdots (1) \\ a_{n+2} - \beta a_{n+1} = \alpha (a_{n+1} - \beta a_n) & \cdots (2) \end{cases}$$

By the equation (1), we see the sequence $\{a_{n+1} - \alpha a_n\}$ is a geometric sequence, and its n-th term is given by

$$a_{n+1} - \alpha a_n = \beta^{n-1} (a_2 - \alpha a_1).$$

Similarly we can find the *n*-th term of $\{a_{n+1} - \beta a_n\}$ from (2). By eliminating a_{n+1} from these two explicit formulae, we can find the *n*-th term of $\{a_n\}$.