Revisiting SAT Techniques for Abstract Argumentation

Jonas Klein, Matthias Thimm

Institute for Web Science and Technologies, University of Koblenz-Landau

COMMA 2020

- Many existing solvers for abstract argumentation rely on reductions to satisfiability (SAT) problems
- They employ existing SAT solvers for solving these subproblems
- ▶ Different SAT solvers use different search strategies
- \rightarrow what is the impact of the choice of SAT solver?

Our contributions:

- miniAF: a lightweight and customizable AF solver based on SAT solving
- A general experimental evaluation on the impact of SAT solvers for solving abstract argumentation problems

See also [Gning, Mailly; SAFA20] for a very similar work

- Abstract argumentation
- 2 The reduction-based approach via SAT
- 3 Experiments
- 4 Summary

Abstract Argumentation Framework

Definition (Dung, 1995)

An abstract argumentation framework (AA) AF = (A, R) is a directed graph with nodes A and directed edges $R \subseteq A \times A$.

Semantics

An extension E is a set $E \subseteq A$ and is supposed to model a "plausible and jointly acceptable" set of arguments.

Definition

E is admissible iff

- 1. for all $a, b \in E$ it is not the case that aRb,
- 2. for all $a \in E$, if bRa then there is $c \in E$ with cRb and it is *complete* if additionally
 - 3. every argument c that is defended by E, belongs to E

Definition

- E is grounded if and only if E is minimal (wrt. set inclusion).
- E is preferred if and only if E is maximal (wrt. set inclusion).
- ightharpoonup E is stable if and only if E attacks all arguments A \ E.

Example

 $E = \{a_1, a_5\}$ is admissible, complete, preferred, and stable.

 $E' = \emptyset$ is admissible, complete, and grounded.

- Abstract argumentation
- 2 The reduction-based approach via SAT
- 3 Experiments
- 4 Summary

Computational tasks

Let $\sigma \in \{\text{complete}, \text{preferred}, \ldots\}$

- Given AF = (A, R), determine some σ -extension (**SE**)
- Given AF = (A, R), determine all σ -extensions (**EE**)
- ▶ Given AF = (A, R) and some $a \in A$, decide whether a is contained in some σ -extension (**DC**)
- ▶ Given AF = (A, R) and some $a \in A$, decide whether a is contained in all σ -extension (**DS**)

Note on complexity (see e.g. [Dvořák, Dunne; 2018]):

- problems related to grounded semantics are tractable
- most other decision problems are on the first level of the polynomial hierarchy
- ▶ preferred-**DS** is even Π_2^P -complete

Reduction to SAT 1/3

Task: Find some stable extension

Argumentation framework AF = (A, R)

Definition

A stable extension $E \subseteq A$ is conflict-free and attacks every $a \in A \setminus E$.

Idea: model graph and semantics in propositional logic:

- ightharpoonup Arguments: in_a, in_b, in_c, ...
- ► Conflict-freeness: $\bigwedge_{(X,Y)\in R} \neg (\operatorname{in}_X \wedge \operatorname{in}_Y)$
- ► Stability: $\bigwedge_{Y \in A} (\neg in_Y \Leftrightarrow \bigvee_{(X,Y) \in R} in_X)$

Reduction to SAT 2/3

$$T_{\mathsf{AF}} = \{ \bigwedge_{(X,Y) \in R} \neg (\mathsf{in}_X \wedge \mathsf{in}_Y), \bigwedge_{Y \in \mathsf{A}} (\neg \mathsf{in}_Y \Leftrightarrow \bigvee_{(X,Y) \in R} \mathsf{in}_X) \}$$

Theorem (Besnard, Doutre; 2004)

AF has a stable extension iff T_{AF} has a model; every stable extension of AF corresponds to a model of T_{AF} .

Reduction approach to AF reasoning:

- Similar encodings work for other semantics
- ► Can be used to solve tasks SE, EE, DS, DC
- Solvers: CoQuiAAS [Lagniez, Lonca, Mailly; 2019], ArgSemSAT [Cerutti et al.; 2017], μ -toksia [Niskanen, Järvisalo; 2019], . . .

Reduction to SAT 2/3

- 2 parameters:
 - 1. Encoding/encoding strategy
 - 2. SAT solver
- SAT instances of abstract argumentation problems have a very similar structure
- Different search strategies of different SAT solvers behave differently on
 - different domains,
 - different instance structures
 - different hardness categories
- \rightarrow what is the impact of the choice of SAT solver?
- \rightarrow what is the "best" search strategy for abstract argumentation?

miniAF

- Lightweight SAT-based argumentation solver written in C https://github.com/jklein94/miniAF
- parameterisable with any SAT solver following the interface of the SAT competition
- supports
 - grounded semantics
 - complete semantics
 - preferred semantics
 - stable semantics

and tasks EE, SE, DC, DS

- Abstract argumentation
- 2 The reduction-based approach via SAT
- 3 Experiments
- 4 Summary

Setup

Aim:

Compare performance of miniAF using different SAT solvers

Details:

- tasks EE, SE, DC, DS, all four semantics
- ► ICCMA'17 benchmark data set and setting
- ▶ 12 SAT solvers (default and non-parallel configuration):
 - CaDiCal
 - Glucose
 - MapleLCMDistChronoBT-DL-v2.1
 - ► MapleLCMDistChronoBT-DL-v2.2
 - MapleLCMDistChronoBT-DL-v3
 - MapleLCMdistCBTcoreFirst
 - MergeSAT
 - ► PADC_Maple_LCM_Dist
 - PSIDS_MapleLCMDistChronoBT
 - PicoSAT
 - Relaxed_LCMDistChronoBT
 - optsat

Results 1/2

CO												
SAT	EE		SE		DS		DC					
	PAR10	Cov.	PAR10	Cov.	PAR10	Cov.	PAR10	Cov.				
CaDiCal	3009.22	50.29	35.83	99.43	41.75	99.33	882.95	85.43				
Glucose	3084.61	49.14	131.47	98.29	197.61	97.33	857.38	86.00				
MapleLCMDistChronoBT-DL-v2.1	2974.07	51.14	_2 2 9. 2 9 _	96.57	230.37	96.67	678.69	89.14				
MapleECMDistChronoBT-DL-v2.2	2988.36	50.86	⁻ 244.73 ⁻	96.29	230.38	96.67	679.64	89.14				
MapleLCMDistChronoBT-DL-v3	3022.13	50.29	245.54	96.29	249.69	96.33	822.01	86.57				
MapleLCMdistCBTcoreFirst	2968.79	51.14	269.04	96.00	330.52	95.00	693.15	88.86				
MergeSAT — — — — — — —	2965.29	51.14	197.32	97.14	230.39	96.67	709.02	88.57				
PADC_Maple_LCM_Dist	2947.17	51.43	² 46.77	96.29	^{230.77}	96.67	660.84	89.43				
PSIDS_MapleLCMDistChronoBT =	<u>2950.45</u>	51.43	⁻ 228.95 ⁻	96.57	⁻ 248.92 ⁻	96.33	677.13	-89.14				
PicoSAT	3212.29	46.86	35.90	99.43	- 4 1. 9 0 -	99.33	934.61	84.57				
Relaxed_LCMDistChronoBT	3121.88	48.86	_213.51 _	96.86	230.26	96.67	819.41	86.86				
optsat	3183.14	47.43	258.05	97.14	306.84	96.67	757.36	87.71				

Results 2/2

Too Hard												
SAT	EE		SE		DS		DC					
	PAR10	Cov.	PAR10	Cov.	PAR10	Cov.	PAR10	Cov.				
CaDiCal	6000.0	0.0	2949.47	51.0	2387.0	60.67	2555.19	57.67				
Glucose	6000.0	0.0	3010.92	50.0	2627.89	56.67	2766.28	54.0				
MapleLCMDistChronoBT-DL-v2.1	6000.0	- _{0.0} -	2837.28	53.0	2498.8	58.67	2055.83	$^{-}6\overline{6}.6\overline{7}$				
MapleECMDistChronoBT-DL-v2.2	6000.0	_ _{0.0} _	2731.88	55.0	2464.64	59.33	2112.71	$^{-}6\overline{5}.6\overline{7}$				
MapleLCMDistChronoBT-DL-v3	6000.0	0.0	2891.96	52.0	2653.66	56.0	2519.44	58.33				
MapleLCMdistCBTcoreFirst	6000.0	0.0	2673.72	56.0	2538.8	58.0	- _{2109.2} -	$^{-}6\overline{5}.6\overline{7}$				
MergeSAT — — — — — —	6000.0	0.0	2901.41	52.0	2466.64	59.33	2126.66	$-65.3\overline{3}$				
PADC_Maple_LCM_Dist	6000.0	0.0	2719.46	55.0	2497.63	58.67	2014.59	$^{-}67.3\overline{3}$				
PSIDS_MapleLCMDistChronoBT	6000.0	_ _{0.0} _	2897.68	52.0	2581.88	57.33	2052.36	$^{-}6\overline{6}.6\overline{7}$				
PicoSAT	6000.0	0.0	3066.47	49.0	3011.66	50.0	2800.98	53.33				
Relaxed_LCMDistChronoBT	6000.0	- _{0.0} -	2538.58	58.0	2136.9	65.0	2447.71	⁻ 59.6				
optsat	6000.0	_ _{0.0} _	2950.19	51.0	2447.11	_6 0. 0_	2332.47	-61.67				

Insights

- Performance is generally comparable between hardness categories, but we observe some differences between categories and tasks
- CaDiCal is significantly better than all other solvers for stable semantics
- PicoSAT solver exhibit good results for the Very Easy, Easy and the DC instances of the Medium set, but is in the lower range for the Hard and Too Hard instances
- Relaxed_LCMDistChronoBT system tends to achieve higher scores for the Hard and Too Hard instances, but lower scores for the Very Easy, Easy and Medium sets

- Abstract argumentation
- 2 The reduction-based approach via SAT
- 3 Experiments
- 4 Summary

Summary and Future Work

Contributions:

- miniAF: a lightweight and customizable AF solver based on SAT solving
- A general experimental evaluation on the impact of SAT solvers for solving abstract argumentation problems

Future work:

- Configuration options of SAT solvers
- Comparison with other AF solvers
- Portfolio solvers

Thank you for your attention