15.2 Call Routing System

Πολυτεχνείο Κρήτης Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Η/Υ Στατιστική Μοντελοποίηση και Αναγνώριση Προτύπων (ΤΗΛ 311) Εαρινό Εξάμηνο 2018

Μαρία Αποστολίδου, 2012030114 Νικόλας Κυπαρισσάς, 2012030112

Problem: Call Routing

Solution

Text classification using Gaussian Mixture Models (GMMs)

Form of Data

```
Class

Text

ah credit card six seven nine one five ...

card two oh four eight two two ask on ...

like to make a credit card call

hi I'd like to make a call to london and ...

hi I wanna use my credit card

yes I'd like to place a long distance ...

yes I'm trying to call a long distance ...

yes operator I'd like to make a time I ...
```

Example data:

I'd like some cake
I'd like to buy some cake

Dictionary:

I'd	like	some	cake	to	buy	a
-----	------	------	------	----	-----	---

Term Document:

d1	1	1	1	1	0	0	0
d2	1	1	0	1	1	1	1

$$TF(t) = \frac{Number\ of\ times\ term\ t\ appears\ in\ a\ document}{Total\ number\ of\ terms\ in\ the\ document}$$

Dictionary:

I ' d	like	some	cake	to	buy	a
--------------	------	------	------	----	-----	---

Term Frequency (TF):

d1	1/4	1/4	1/4	1/4	0	0	0
d2	1/6	1/6	0	1/6	1/6	1/6	1/6

$$IDF(t) = ln\left(\frac{Total\ number\ of\ documents}{Total\ number\ of\ documents\ with\ term\ t\ in\ it}\right)$$

Dictionary:

I'd like some cake to buy a	1 'd	like	some		to	[][]/	a
-----------------------------	------	------	------	--	----	-------	---

Inverse Document Frequency (IDF):

In(1)	ln(1)	ln(2)	ln(1)	In(2)	In(2)	ln(2)
=0	=0	=0.69	=0	=0.69	=0.69	=0.69

Dict:	I ' d	like	some	cake	to	buy	a
TF:	414	414	414	414	0	0	
d1	1/4	1/4	1/4	1/4	0	0	0
d2	1/6	1/6	0	1/6	1/6	1/6	1/6
IDF:	0	0	0.69	0	0.69	0.69	0.69
	-						

\mathbf{T}	F	I	\mathbf{D}	F	
1	T	I	v	T	

0	0	0.1725	0	0	0	0
0	0	0	0	0.115	0.115	0.115

Feature Dimensionality Reduction

- Sort dictionary, TF and IDF according to TFIDF values
- Discard the least important terms from *dictionary*, *TF* and *IDF*

Feature Extraction

 Dimensionality Reduction of *TFIDF* with Truncated Singular-value Decomposition (SVD)

Gaussian Mixture Models (GMMs)

- Gather the corresponding TFIDF samples for each class
- A GMM is trained for each class to estimate a distribution over the features

Classification

- Transform the test samples to the dimensions of the feature space
- Calculate the loglikelihood probabilities for each GMM
- Find the maximum loglikelihood probability
- Cassify test samples to the classes for which the loglikelihood probability is maximum

Testing

We examined different values for the parameters of:

- initial word reduction
- number of SVD components
- number of each GMM's components

Comparative Results

Comparative Results

Comparative Results

State of the art - Future work

- Naive Bayes
- SVM, cosine similarity
- Edit Distance:
 - i. Find a representative super sentence for each class
 - ii. classify samples to the class for which the edit distance between respresentative and sample sentence is minimum

Thank you for your attention!

