Convergence Analysis

November 3, 2022

Notation & Definitions

- t: time index, $t \in \mathbb{Z}^+$.
- z_t : position of the target at time $t, z_t \in \mathbb{R}^d$.
- x_t : position of the agent at time $t, x_t \in \mathbb{R}^d$.
- $\ell_t(x, z)$: stochastic loss as evaluated by the zeroth-order oracle at time t, with the position of agent as x, and the position of target as z for $x, z \in \mathbb{R}^d$.
- $\ell_{\mu,t}(x,z) := \mathbb{E}_u[\ell_t(x+\mu u,z)]$ for $x,z \in \mathbb{R}^d$, $u \sim \mathcal{N}(0,I_d)$ and $\mu \in \mathbb{R}$.
- $\nabla \ell_{\mu,t}(x,z) := \mathbb{E}_u \left[g_{\mu,t}(x,z) \right]$ where $g_{\mu,t}(x,z) := \frac{\ell_t(x+\mu u,z) \ell_t(x,z)}{\mu} u$ for $x,z \in \mathbb{R}^d$, $u \sim \mathcal{N}(0,I_d)$ and $\mu \in \mathbb{R}$.
- $\ell_t(x) := \mathbb{E}_z \left[\ell_t(x, z) \right] \text{ for } x, z \in \mathbb{R}^d.$

Assumptions

Assumption 1. (Unbiased Stochastic Zeroth-Order Oracle) For any $t \in \mathbb{Z}^+$ and $x, z \in \mathbb{R}^d$, we have

$$\mathbb{E}_z \left[\ell_t(x, z) \right] = \ell_t(x_t). \tag{1}$$

Assumption 2. (Unbiased Stochastic First-Order Oracle with Bounded Variance) For any $t \in \mathbb{Z}^+$ and $x, z \in \mathbb{R}^d$, we have

$$\mathbb{E}_z \left[\nabla \ell_t(x, z) \right] = \nabla \ell_t(x) \tag{2}$$

and

$$\mathbb{E}_z \left[\|\nabla \ell_t(x, z) - \nabla \ell_t(x)\|^2 \right] \le \sigma^2.$$
 (3)

Assumption 3. (L-smoothness) Each $\ell_t(x,z)$ is continuously differentiable and L-smooth over x on \mathbb{R}^d , that is, there exists an $L \geq 0$ such that for all $x, y, z \in \mathbb{R}^d$ and $t \in \mathbb{Z}^+$, we have

$$\|\nabla \ell_t(x, z) - \nabla \ell_t(y, z)\| \le L\|x - y\|. \tag{4}$$

We denote this by $\ell_t(x,z) \in C_L^{1,1}(\mathbb{R}^d)$.

Assumption 4. (Contractive Compression) The compression function C is a contraction mapping, that is,

$$\mathbb{E}_{\mathcal{C}}\left[\|\mathcal{C}(x) - x\|^2 \mid x\right] \le (1 - \delta) \|x\|^2 \tag{5}$$

for all $x \in \mathbb{R}^d$ where $0 < \delta \le 1$, and the expectation is over the randomness generated by compression C.

Assumption 5. (Bounded Stochastic Gradients) For any $t \in \mathbb{Z}^+$ and $x, z \in \mathbb{R}^d$, there exist $\sigma, M > 0$ such that

$$\mathbb{E}_z \left[\|\nabla \ell_t(x, z)\|^2 \right] \le \sigma^2 + M \|\nabla \ell_{\mu, t}(x)\|^2. \tag{6}$$

Assumption 6. (Bounded Drift in Time) There exists a nonnegative sequence $\{\omega_t\}_{t=1}^T$ such that for all $t \in \mathbb{Z}^+$, $|\ell_t(x,z) - \ell_{t+1}(x,z)| \le \omega_t$ for any $x,z \in \mathbb{R}^d$. Note that in the case where $\ell_{t+1} = \ell_t$, this assumption holds with $\omega_t = 0$.

Lemmas

Suppose $\ell_t(x,z) \in C_L^{1,1}(\mathbb{R}^d)$ over x. We have the following results:

Lemma 1. $\ell_{\mu,t}(x,z) \in C_{L_{\mu}}^{1,1}(\mathbb{R}^d)$ over x, where $L_{\mu} \leq L$.

Lemma 2. $\ell_{\mu,t}(x,z)$ has the following gradient with respect to x:

$$\nabla \ell_{\mu,t}(x,z) = \frac{1}{(2\pi)^{d/2}} \int \frac{\ell_t(x+\mu u,z) - \ell_t(x,z)}{\mu} u e^{(-\frac{1}{2}||u||^2)} du, \tag{7}$$

where $u \sim \mathcal{N}(0, I_d)$.

Lemma 3. For any $x, z \in \mathbb{R}^d$, we have

$$|\ell_{\mu,t}(x,z) - \ell_t(x,z)| \le \frac{\mu^2 L d}{2}.$$
 (8)

Lemma 4. For any $x, z \in \mathbb{R}^d$, we have

$$\|\nabla \ell_{\mu,t}(x,z) - \nabla \ell_t(x,z)\| \le \frac{\mu}{2} L(d+3)^{\frac{3}{2}},$$
 (9)

where the gradient is with respect to x.

Lemma 5. For any $x, z \in \mathbb{R}^d$, we have

$$\mathbb{E}_{u} \left[\left\| \frac{\ell_{t}(x + \mu u, z) - \ell_{t}(x, z)}{\mu} u \right\|^{2} \right] \leq \frac{\mu^{2}}{2} L^{2} (d + 6)^{3} + 2(d + 4) \|\nabla \ell_{t}(x, z)\|^{2}, \tag{10}$$

where $u \sim \mathcal{N}(0, I_d)$ and the gradient is with respect to x.

Lemma 6. (Young's inequality) For any $x, y \in \mathbb{R}^d$ and $\lambda > 0$, we have

$$\langle x, y \rangle \le \frac{\|x\|^2}{2\lambda} + \frac{\|y\|^2 \lambda}{2}.\tag{11}$$

EF-ZO-SGD Convergence Analysis

We work with the following algorithm:

Algorithm 1 EF-ZO-SGD

Input: Number of time steps $T \in \mathbb{Z}^+$, smoothing parameter $\mu \in \mathbb{R}$, initial source position $x_0 \in \mathbb{R}^d$, learning rate $\eta \in \mathbb{R}$, sequence of target positions $\{z_t\}_{t=1}^T \subset \mathbb{R}^d$.

Output: Sequence of optimal source positions $\{x_t\}_{t=1}^T \subset \mathbb{R}^d$.

- 1: $e_0 = 0$
- 2: **for** t = 1, ..., T **do**
- 3: $u_t \sim \mathcal{N}(0, I_d)$

4:
$$g_{\mu,t}(x_t, z_t) = \frac{\ell_t(x_t + \mu u_t, z_t) - \ell_t(x_t, z_t)}{\mu} u_t$$

- 5: $p_t = g_{\mu,t}(x_t, z_t) + e_t$
- 6: $x_{t+1} = x_t \eta \mathcal{C}(p_t)$
- 7: $e_{t+1} = p_t \mathcal{C}(p_t)$
- 8: end for

In the analysis, we assume that $z_t \in \mathbb{R}^d$ are *i.i.d.* random variables for all $t \in \mathbb{Z}^+$.

Let \tilde{x}_t be defined as follows (following the analysis in [1]):

$$\tilde{x}_t = x_t - \eta e_t. \tag{12}$$

From algorithm 0, we know that $e_{t+1} = p_t - \mathcal{C}(p_t)$ and $p_t = g_{\mu,t}(x_t, z_t) + e_t$, so we can rewrite \tilde{x}_{t+1} as

$$\tilde{x}_{t+1} = x_{t+1} - \eta p_t + \eta \mathcal{C}(p_t)
= x_t - \eta \mathcal{C}(p_t) - \eta g_{\mu,t}(x_t, z_t) - \eta e_t + \eta \mathcal{C}(p_t)
= x_t - \eta e_t - \eta g_{\mu,t}(x_t, z_t)
= \tilde{x}_t - \eta g_{\mu,t}(x_t, z_t),$$
(13)

where
$$g_{\mu,t}(x_t, z_t) := \frac{\ell_t(x_t + \mu u_t, z_t) - \ell_t(x_t, z_t)}{\mu} u_t$$
 and $u_t \sim \mathcal{N}(0, I_d)$.

By definition, $\ell_{\mu,t}(x_t, z_t) := \mathbb{E}_{u_t} [\ell_t(x_t + \mu u_t, z_t)]$, so by assumption 3, we can write the following:

$$\ell_{\mu,t}(\tilde{x}_{t+1}, z_{t+1}) \le \ell_{\mu,t}(\tilde{x}_t, z_t) + \langle \nabla \ell_{\mu,t}(\tilde{x}_t, z_t), \tilde{x}_{t+1} - \tilde{x}_t \rangle + \frac{L}{2} \|\tilde{x}_{t+1} - \tilde{x}_t\|^2.$$
(14)

Now by assumption 6, we get:

$$\ell_{\mu,t+1}(\tilde{x}_{t+1}, z_{t+1}) \le \ell_{\mu,t}(\tilde{x}_t, z_t) - \eta \langle g_{\mu,t}(x_t, z_t), \nabla \ell_{\mu,t}(\tilde{x}_t, z_t) \rangle + \frac{L\eta^2}{2} \|g_{\mu,t}(x_t, z_t)\|^2 + \omega_t$$
 (15)

Since $\nabla \ell_{\mu,t}(x_t, z_t) = \mathbb{E}_{u_t} [g_{\mu,t}(x_t, z_t)]$, we have the following:

$$\mathbb{E}_{u_{t}}\left[\langle g_{\mu,t}(x_{t}, z_{t}), \nabla \ell_{\mu,t}(\tilde{x}_{t}, z_{t})\rangle\right] = \langle \nabla \ell_{\mu,t}(x_{t}, z_{t}), \nabla \ell_{\mu,t}(\tilde{x}_{t}, z_{t})\rangle$$

$$= \frac{1}{2} \|\nabla \ell_{\mu,t}(x_{t}, z_{t})\|^{2} + \frac{1}{2} \|\nabla \ell_{\mu,t}(\tilde{x}_{t}, z_{t})\|^{2} - \frac{1}{2} \|\nabla \ell_{\mu,t}(x_{t}, z_{t}) - \nabla \ell_{\mu,t}(\tilde{x}_{t}, z_{t})\|^{2}.$$
(16)

In the last step, we use the fact that $2\langle a,b\rangle = ||a||^2 + ||b||^2 - ||a-b||^2$. Plugging this into (15), we get:

$$\ell_{\mu,t+1}(\tilde{x}_{t+1}, z_{t+1}) \leq \ell_{\mu,t}(\tilde{x}_t, z_t) - \frac{\eta}{2} \|\nabla \ell_{\mu,t}(x_t, z_t)\|^2 - \frac{\eta}{2} \|\nabla \ell_{\mu,t}(\tilde{x}_t, z_t)\|^2 + \frac{L^2 \eta}{2} \|x_t - \tilde{x}_t\|^2 + \frac{L \eta^2}{2} \|g_{\mu,t}(x_t, z_t)\|^2 + \omega_t.$$
(17)

Note that $\|\nabla \ell_{\mu,t}(x_t, z_t) - \nabla \ell_{\mu,t}(\tilde{x}_t, z_t)\|^2 \le L^2 \|x_t - \tilde{x}_t\|^2$ because of lemma 1. Also, we can drop $-\frac{\eta}{2} \|\nabla \ell_{\mu,t}(\tilde{x}_t, z_t)\|^2$ because it is always nonpositive. Using the fact that $\tilde{x}_t - x_t = \eta e_t$, we get:

$$\underbrace{\frac{\eta}{2} \|\nabla \ell_{\mu,t}(x_t, z_t)\|^2}_{\text{Term III}} \leq \underbrace{[\ell_{\mu,t}(\tilde{x}_t, z_t) - \ell_{\mu,t+1}(\tilde{x}_{t+1}, z_{t+1})]}_{\text{Term II}} + \underbrace{\frac{L\eta^2}{2} \|g_{\mu,t}(x_t, z_t)\|^2}_{\text{Term I}} + \underbrace{\frac{\eta^3 L^2}{2} \|e_t\|^2}_{\text{Term IV}} + \omega_t. \quad (18)$$

We will put an upper bound to the terms I, II, IV and a lower bound to term III. Starting with term I, by lemma 5, we know that

$$\mathbb{E}_{u_t, z_t} \left[\|g_{\mu, t}(x_t, z_t)\|^2 \right] \le 2(d+4) \mathbb{E}_{z_t} \left[\|\nabla \ell_t(x_t, z_t)\|^2 \right] + \frac{\mu^2 L^2}{2} (d+6)^3, \tag{19}$$

where $\mathbb{E}_{z_t}[\|\nabla \ell_t(x_t, z_t)\|^2] \leq \|\nabla \ell_t(x_t)\|^2 + \sigma^2$ by assumption 2.

We can put the following upper bound to **term II** by means of a telescoping sum and subsequently applying lemma 3:

$$\sum_{t=1}^{T} \left[\ell_{\mu,t}(\tilde{x}_{t}, z_{t}) - \ell_{\mu,t+1}(\tilde{x}_{t+1}, z_{t+1}) \right] = \ell_{\mu,1}(\tilde{x}_{1}, z_{1}) - \ell_{\mu,T+1}(\tilde{x}_{T+1}, z_{T+1})
\leq \mu L^{2} d + \ell_{1}(\tilde{x}_{1}, z_{1}) - \ell_{T+1}(\tilde{x}_{T+1}, z_{T+1})
= \mu L^{2} d + \ell_{1}(x_{1}, z_{1}) - \ell_{T+1}(\tilde{x}_{T+1}, z_{T+1}),$$
(20)

where we use the fact that $\ell(x_1, z_1) = \ell_1(\tilde{x}_1, z_1)$ because $\tilde{x}_1 = x_1$ by definition. If we take the expectation of both sides with respect to $z_{1:T+1} = \{z_1, z_2, ..., z_{T+1}\}$, owing to the fact that z_t 's are i.i.d., we get

$$\ell_{\mu,1}(\tilde{x}_1) - \ell_{\mu,T+1}(\tilde{x}^*) \le \mu L^2 d + \ell_1(x_1) - \ell_{T+1}(\tilde{x}_{T+1}) \le \mu L^2 d + \ell_1(x_1) - \ell_{T+1}(x_{T+1}^*),$$
(21)

where $x_{T+1}^* = \arg\min_x \ell_{T+1}(x)$.

We can put the following lower bound to term III by using lemma 4 and lemma 6:

$$\frac{1}{2} \|\nabla \ell_t(x_t, z_t)\|^2 - \frac{\mu^2 L^2}{4} (d+3)^3 \le \|\nabla \ell_{\mu, t}(x_t, z_t)\|^2.$$
 (22)

Lastly, we can put the following upper bound to **term IV** by assumption 4 and lemma 6:

$$\mathbb{E}_{u_{1:T},z_{1:T},\mathcal{C}_{1:T}}[\|e_{t+1}\|^{2}] = \|p_{t} - \mathcal{C}_{t}(p_{t})\|^{2} \leq (1-\delta)\|p_{t}\|^{2} = (1-\delta)\|e_{t} + g_{\mu,t}(x_{t},z_{t})\|^{2}
\leq (1-\delta)(1+\varphi)\mathbb{E}_{u_{1:T},z_{1:T},\mathcal{C}_{1:T}}[\|e_{t}\|^{2}] + (1-\delta)(1+\frac{1}{\varphi})\mathbb{E}_{u_{1:T},z_{1:T}}[\|g_{\mu,t}(x_{t},z_{t})\|^{2}]
= \sum_{i=1}^{t} \left[(1-\delta)(1+\varphi)\right]^{t-i} (1-\delta)(1+\frac{1}{\varphi})\mathbb{E}_{u_{i},z_{i}}[\|g_{\mu,i}(x_{i},z_{i})\|^{2}],$$
(23)

for some $\varphi > 0$, z_t, x_t, \mathcal{C}_t are *i.i.d.*, and $\mathbb{E}_{\mathcal{C}_t}[\cdot]$ denotes the expectation over the randomness at time t due to the compression used. Note that by assumption 5 and using lemma 5,

$$\mathbb{E}_{u_t, z_t}[\|g_{\mu, t}(x_t, z_t)\|^2] \le A\|\nabla \ell_t(x_t)\|^2 + B, \tag{24}$$

where

$$B = 2\sigma^2(d+4) + \frac{\mu^2 L^2}{2}(d+6)^3$$
 and
 $A = 2M(d+4)$. (25)

So we can rewrite (23) as follows:

$$\mathbb{E}_{u_{1:T}, z_{1:T}, \mathcal{C}_{1:T}} \left[\|e_{t+1}\|^2 \right] \le \sum_{i=1}^t \left[(1-\delta)(1+\varphi) \right]^{t-i} (1-\delta)(1+\frac{1}{\varphi}) \left[A \|\nabla \ell_i(x_i)\|^2 + B \right]. \tag{26}$$

If we set $\varphi := \frac{\delta}{2(1-\delta)}$, then $1 + \frac{1}{\varphi} \leq \frac{2}{\delta}$ and $(1-\delta)(1+\varphi) = (1-\frac{\delta}{2})$, so we get:

$$\mathbb{E}_{u_{1:T}, z_{1:T}, \mathcal{C}_{1:T}} \left[\|e_{t+1}\|^2 \right] \le \sum_{i=1}^t \left(1 - \frac{\delta}{2} \right)^{t-i} \left[A \|\nabla \ell_i(x_i)\|^2 + B \right] \frac{2(1-\delta)}{\delta}. \tag{27}$$

If we sum through all $\mathbb{E}_{u_{1:T},z_{1:T},\mathcal{C}_{1:T}}[\|e_t\|^2]$, we get:

$$\sum_{t=1}^{T} \mathbb{E}_{u_{1:T}, z_{1:T}, C_{1:T}} \left[\|e_{t}\|^{2} \right] \leq \sum_{t=1}^{T} \sum_{i=1}^{t-1} \left(1 - \frac{\delta}{2} \right)^{t-i} \left[A \|\nabla \ell_{i}(x_{i})\|^{2} + B \right] \frac{2(1-\delta)}{\delta}
\leq \sum_{t=1}^{T} \left[A \|\nabla \ell_{t}(x_{t})\|^{2} + B \right] \sum_{i=0}^{\infty} \left(1 - \frac{\delta}{2} \right)^{i} \frac{2(1-\delta)}{\delta}
\leq \sum_{t=1}^{T} \left[A \|\nabla \ell_{t}(x_{t})\|^{2} + B \right] C,$$
(28)

where $C = \frac{2(1-\delta)}{\delta} \frac{2}{\delta} \leq \frac{4}{\delta^2}$. If we define $\Delta := \ell_1(x_1) - \ell_{T+1}(x_{T+1}^*)$ and combine the upper bounds derived in (19), (20), (23), and the lower bound derived in (22) and plug them into (18), we get the following:

$$\sum_{t=1}^{T} \frac{\eta}{4} \mathbb{E}_{z_{t}} \left[\|\nabla \ell_{t}(x_{t}, z_{t})\|^{2} \right] - \frac{\eta \mu^{2} L^{2}}{8} (d+3)^{3} T$$

$$\leq \mu L^{2} d + \Delta + \frac{T \mu^{2} L^{3} \eta^{2}}{4} (d+6)^{3} + \frac{L \eta^{2}}{2} \sigma^{2} T \times 2(d+4)$$

$$+ \frac{L \eta^{2}}{2} \times 2M(d+4) \sum_{t=1}^{T} \mathbb{E}_{z_{t}} \left[\|\nabla \ell_{t}(x_{t}, z_{t})\|^{2} \right] + \frac{\eta^{3} L^{2}}{2} \times \frac{4}{\delta^{2}} T \left[2\sigma^{2} (d+4) + \frac{\mu^{2} L^{2}}{2} (d+6)^{3} \right]$$

$$+ \frac{\eta^{3} L^{2}}{2} \times \frac{4}{\delta^{2}} \sum_{t=1}^{T} 2M(d+4) \mathbb{E}_{z_{t}} \left[\|\nabla \ell_{t}(x_{t}, z_{t})\|^{2} \right] + \sum_{t=1}^{T} \omega_{t}.$$
(29)

Now, since z_t 's are *i.i.d.* for all $t \in \mathbb{Z}^+$, we have:

$$\frac{E}{T} \sum_{t=1}^{T} \mathbb{E}_{z_{t}} \left[\|\nabla \ell_{t}(x_{t}, z_{t})\|^{2} \right] \leq \frac{\mu L^{2} d + \Delta}{T} + \frac{\eta^{2} L^{3} \mu^{2} (d+6)^{3}}{4} + L \eta^{2} \sigma^{2} (d+4) + \frac{\eta \mu^{2} L^{2} (d+3)^{3}}{8} + \frac{\eta^{3} L^{2}}{\delta^{2}} 4 \sigma^{2} (d+4) + \frac{\eta^{3} L^{2}}{\delta^{2}} \mu^{2} L^{2} (d+6)^{3} + \frac{1}{T} \sum_{t=1}^{T} \omega_{t}, \tag{30}$$

where

$$E = \frac{\eta}{4} - LM\eta^{2}(d+4) - \frac{L^{2}\eta^{3}}{\delta^{2}} 4M(d+4)$$

$$= \eta \left[\frac{1}{4} - LM\eta(d+4) \left(1 + \frac{4L\eta}{\delta^{2}} \right) \right].$$
(31)

If $\eta \leq \frac{1}{4L}$, instead first upper bound will be:

$$1 + \frac{4L\eta}{\delta^2} \le 1 + \frac{1}{\delta^2} = \frac{\delta^2 + 1}{\delta^2} \le \frac{2}{\delta^2}.$$
 (32)

We proceed to find an η such that

$$\frac{2}{\delta^2} LM\eta(d+4) \le \frac{1}{8}.\tag{33}$$

Then, we get

$$\eta \le \frac{\delta^2}{16LM(d+4)},\tag{34}$$

which implies $E \geq \frac{\eta}{8}$. Multiplying all terms in the bound by $\frac{8}{\eta}$,

$$\frac{1}{T} \sum_{t=1}^{T} \mathbb{E}_{z_{t}} \left[\|\nabla \ell_{t}(x_{t}, z_{t})\|^{2} \right] \leq \frac{8\Delta}{(\eta T)} + \frac{8\mu L^{2}d}{\eta T} + 2\eta L^{3}\mu^{2}(d+6)^{3}
+ 8L\eta\sigma^{2}(d+4) + \mu^{2}L^{2}(d+3)^{3}
+ \frac{32\eta^{2}L^{2}}{\delta^{2}}\sigma^{2}(d+4) + \frac{8\eta^{2}L^{4}\mu^{2}(d+6)^{3}}{\delta^{2}} + \frac{8}{\eta T} \sum_{t=1}^{T} \omega_{t}.$$
(35)

Let

$$\eta = \frac{1}{\sigma\sqrt{(d+4)MTL}} \quad \text{and} \quad \mu = \frac{1}{(d+4)\sqrt{T}}.$$
(36)

Then, for a numerical constant C > 0, we have

$$\frac{1}{CT} \sum_{t=1}^{T} \mathbb{E}_{z_t} \left[\|\nabla \ell_t(x_t, z_t)\|^2 \right] \le \frac{1}{\delta^2} \frac{dL\Delta}{T} + \sigma \sqrt{\frac{d}{T} L \Delta M} + \frac{1}{\eta T} \sum_{t=1}^{T} \omega_t.$$
 (37)

Defining $\bar{\omega} := \sum_{t=1}^{T} \omega_t$, the number of times steps T to obtain a ξ -first order solution is

$$T = \mathcal{O}\left(\frac{d\sigma^2 L \Delta M}{\xi^2} + \frac{dL\Delta}{\delta^2 \xi} + \frac{\bar{\omega}\sigma^2 dML}{\xi^2}\right). \tag{38}$$

Remark: In choosing $\eta = \frac{1}{\sigma\sqrt{(d+4)MTL}}$, we assumed that it satisfies (34). For this to hold, T can be made arbitrarily large as long as it does not exceed the bound we found in (38). (36) and (34) imply that

 $T = \Omega\left(\frac{dLM}{\delta^4 \sigma^2}\right). \tag{39}$

In practice, since $\xi \ll \delta$, this term is smaller than (37). This fact is also demonstrated by our experiments.

Lastly, if $\omega_t = 0$ for all $t \in \mathbb{Z}^+$, i.e., in the case where the loss function is time-invariant, the number of time steps T to obtain a ξ -first order solution is:

$$T = \mathcal{O}\left(\frac{d\sigma^2 L \Delta M}{\xi^2} + \frac{dL\Delta}{\delta^2 \xi}\right). \tag{40}$$

References

[1] S. P. Karimireddy, Q. Rebjock, S. U. Stich, and M. Jaggi, "Error feedback fixes signsgd and other gradient compression schemes," 2019.

FL-EF-ZO-SGD Convergence Analysis

We work with the following algorithm in the experiments section of the paper:

Algorithm 2 FL-EF-ZO-SGD

Input: Number of time steps $T \in \mathbb{Z}^+$, number of agents $N \in \mathbb{Z}^+$, smoothing parameter $\mu \in \mathbb{R}$, initial agent positions $x_0^{1:N} \in \mathbb{R}^{Nd}$, learning rate $\eta \in \mathbb{R}$, sequence of target positions $\{z^{1:N}\}_{t=1}^T \subset \mathbb{R}^{Nd}$.

```
Output: Sequence of optimal target positions \{x^{1:N}\}_{t=1}^T \subset \mathbb{R}^{Nd}.
 1: for i=1,\ldots,N do
            e_0^i = 0
 2:
 3: end for
 4: for t = 1, ..., T do
       Runs on each agent:
            for i = 1, \ldots, N do
                 \tilde{u}_t^i \sim \mathcal{N}(0, I_{Nd})
                u_t^i = \operatorname{mask}_{\mathcal{D}_t^i}(\tilde{u}_t^i)
               g_{\mu,t}^i(x_t^{1:N}, z_t^i) = \frac{\ell_t(x_t^{1:N} + \mu u_t^i, z_t^i) - \ell_t(x_t^{1:N}, z_t^i)}{\mu} u_t^i
                \begin{aligned} p_t^i &= g_{\mu,t}^i(x_t^{1:N}, z_t^i) + e_t^i \\ \tilde{g}_t^i &= \mathcal{C}(p_t^i) \\ e_{t+1}^i &= p_t^i - \tilde{g}_t^i \\ \text{transmit}\left(\tilde{g}_t^i\right) \end{aligned}
10:
11:
12:
            end for
        Runs on the server:

\mathcal{G}_{t} = \frac{1}{N} \sum_{i=1}^{N} \tilde{g}_{t}^{i} 

x_{t+1}^{1:N} = x_{t}^{1:N} - \mathcal{G}_{t}

14:
15:
            transmit (x_{t+1}^{1:N})
16:
17: end for
```

where $\operatorname{mask}_{\mathcal{D}_{i}^{i}}(\cdot)$ is a function for equating the coordinates corresponding to the coordinates of agents which are not in the neighborhood of the i^{th} agent to 0.