MATH 31AH - Homework 5

Merrick Qiu

November 5, 2021

1 Linear functionals and nonzero vectors

Proof. There exists some $\lambda \in V^*$ with $\lambda(v) \neq 0$.

Let $\mathcal{B} = \{v_1, v_2, ..., v_n\}$ be a basis for V, and let $\mathcal{B}^* = \{\lambda_1, \lambda_2, ..., \lambda_n\}$ be the dual basis of V^* . Since v is nonzero, there exists a linear combination $v = c_1v_1 + c_2v_2 + ... + c_nv_n$ equal to v with some c_i nonzero. Using the definition of λ_i , we have that

$$\lambda_i(v) = \lambda_i(c_1v_1 + c_2v_2 + \dots c_nv_n) \tag{1}$$

$$= c_1 \lambda_i(v_1) + c_2 \lambda_i(v_2) + \dots + c_i \lambda_i(v_i) + \dots + c_n \lambda_i(v_n)$$
 (2)

$$=c_i\lambda_j(v_i) \tag{3}$$

$$=c_i$$
 (4)

. Since $\lambda_i(v) = c_i \neq 0$, there exists some $\lambda \in V^*$ with $\lambda(v) \neq 0$.

2 Induced maps

Proof. If T is injective, then T^* is surjective.

The definition of T^* on some $\mu \in W^*$ and some $v \in V$ is $(T^*(\mu))(v) = \mu(T(v))$. T^* is surjective if and only if for every $\varphi \in V^*$, there exists some $\mu \in W^*$ such that $T^*(\mu) = \varphi$ or $(T^*(\mu))(v) = \mu(T(v)) = \varphi(v)$ for all $v \in V$.

Let $\varphi \in V^*$ be arbitrary. Let \mathcal{B} be a basis for W. Since T is injective, there exists a left-inverse T^{-1} for it. We can uniquely define a linear transformation by where it maps the basis vectors in \mathcal{B} . For all $b \in \mathcal{B}$, let $\mu \in W^*$ such that if $b \in Image(T)$, then $\mu(b) = \varphi(T^{-1}(b))$. Otherwise, $\mu(b) = 0$. In other words,

$$\mu(b) = \begin{cases} \varphi(T^{-1}(b)) & b \in Image(T) \\ 0 & b \notin Image(T) \end{cases}$$

If $w \in Image(T)$, then $\mu(w) = \varphi(T^{-1}(w))$. Since $\mu(T(v)) = \varphi(T^{-1}(T(v))) = \varphi(v)$ for all $v \in V$, there exists a μ where $\mu(T(v)) = \varphi(v)$, and thus T^* is surjective.

Proof. If T is surjective, then T^* is injective

The definition of T^* on some $\mu \in W^*$ and some $v \in V$ is $(T^*(\mu))(v) = \mu(T(v))$. T^* is injective if and only if for all $\varphi, \psi \in W^*$, $\varphi \neq \psi$ implies $T^*(\varphi) \neq T^*(\psi)$, or $\varphi(T(v)) \neq \psi(T(v))$ for some $v \in V$.

Let $\varphi, \psi \in W^*$ be arbitrary linear functionals such that $\varphi \neq \psi$. Let \mathcal{B} be a basis for W. Since $\varphi \neq \psi$, there exists a $b \in \mathcal{B}$ such that $\varphi(b) \neq \psi(b)$. Since T is surjective, there exists a $v \in V$ such that T(v) = b.

Since $\varphi(T(v)) = \varphi(b) \neq \psi(b) = \psi(T(v))$, we know that $\varphi \neq \psi$ implies $T^*(\varphi) \neq T^*(\psi)$, so T^* is injective.

3 Infinite dimensionality and double duals

Proof. φ is still injective when V is infinite-dimensional.

The proof for the injectivity of φ when V is finite-dimensional still holds for infinite dimensions. φ is injective when $Ker(\varphi) = 0$. Let $\mathcal{B} = \{e_1, e_2, ...\}$ be a basis for V, and let $\mathcal{B}^* = \{\lambda_1, \lambda_2, ...\}$ be the dual set of V^* such that $\lambda_i(e_i) = 1$ when i = j, and $\lambda_i(e_i) = 0$ when $i \neq j$

Since all $v \in V$ can be writen as a finite linear combination, $v = c_1 e_1 + ... + c_n e_n$, we have that for all $i \geq 1$,

$$0 = \varphi(v)(\lambda_i) \tag{5}$$

$$=\lambda_i(v) \tag{6}$$

$$=\lambda_i(c_1e_1+\ldots+c_ne_n)\tag{7}$$

$$=c_i$$
 (8)

(9)

This forces v=0. Therefore, $Ker(\varphi)=0$ and φ is injective.

Proof. φ is not surjective when V is infinite-dimensional.

Let $\mathcal{B} = \{e_1, e_2, ...\}$ be a basis for V. Let $\mathcal{B}^* = \{\lambda_1, \lambda_2, ...\}$ be the dual set of \mathcal{B} such that $\lambda_i(e_j) = 1$ when i = j and $\lambda_i(e_j) = 0$ when $i \neq j$. Since \mathcal{B}^* is a linearly independent subset of V^* , \mathcal{B}^* is a subset of some basis of V^* .

 φ is not surjective if there exists a $\mu \in V^{**}$ such that for all $v \in V$, $\varphi(v) \neq \mu$. In other words, for some $\mu \in V^{**}$, for all $v \in V$, for some $\lambda \in V^{*}$, $(\varphi(v))(\lambda) := \lambda(v) \neq \mu(\lambda)$. Let $\mu_i \in V^{**}$ be the double dual vector that sends $\lambda_i \in \mathcal{B}^*$ to 1 and all other basis vectors to 0. Let v be an arbitrary $v \in V$. We have that for $\lambda_i \in \mathcal{B}^*$,

$$(\varphi(v))(\lambda_i) = \lambda_i(v) \tag{10}$$

$$= \lambda_i (c_1 e_1 + \dots + c_i e_i + \dots + c_n e_n)$$
 (11)

$$= c_1 \lambda_i(e_1) + \dots + c_i \lambda_i(e_i) \dots + c_n \lambda_i(e_n)$$

$$\tag{12}$$

$$=c_i \tag{13}$$

Since $(\mu_i)(\lambda_i) = 1$, we have that $c_i = 1$ for all i if $\lambda_i(v) = \mu_i(\lambda_i)$ for all v. Since v can only be a finite linear combination, this cannot be true. So, for some $\mu \in V^{**}$, for all $v \in V$, for some $\lambda \in V^*$, $(\varphi(v))(\lambda) := \lambda(v) \neq \mu(\lambda)$. Therefore, φ is not surjective.

4 Matrices, duals, and linear maps

Proof. T_A is linear

For $A \in Mat_{n \times n}(\mathbb{F})$ and $v, v', w \in \mathbb{F}^n$,

$$(T_A(v+v'))(w) = (v+v')^T A w (14)$$

$$= (v^T + v'^T)Aw \tag{15}$$

$$= v^T A w + {v'}^T A w \tag{16}$$

$$= (T_A(v))(w) + (T_A(v'))(w)$$
(17)

For $A \in Mat_{n \times n}(\mathbb{F})$, $\lambda \in \mathbb{F}$, and $v, w \in \mathbb{F}^n$,

$$(T_A(\lambda v))(w) = (\lambda v)^T A w \tag{18}$$

$$= \lambda v^T A w \tag{19}$$

$$= (\lambda T_A(v))(w) \tag{20}$$

Since T_A preserves addition and scalar multiplication, T_A is linear.

5 Internal Direct Sums

Proof. Being able to uniquely write v = u + w is equivalent to $U \cup W$ spans V and $U \cap W = 0$.

If every vector $v \in V$ can be uniquely written as v = u + w for $u \in U$ and $w \in W$, then $U \cup W$ spans V. Let $u \in U$ and $w \in W$. If some $x \in U, W$ with $x \neq 0$, then some $v \in V$ can be written as (u + x) + w = u + (w + x) = v. Since every vector v can only be uniquely written in one way, x cannot exist and so $U \cap W = 0$.

If the union $U \cup W$ spans V, then every vector $v \in V$ can be written as a linear combination of vectors in U and W; since U and W and subspaces, then some v = u + w for $u \in U$ and $w \in W$. If $U \cap W = 0$, then the union of any basis of U and any basis of W is linearly independent since basis vectors cannot be the zero vector. This implies that there is only one way to write each v in terms of u and w.

Since uniquely writing v = u + w implies $U \cup W$ spans V with $U \cap W = 0$ and $U \cup W$ spans V with $U \cap W = 0$ implies uniquely writing v = u + w, the two statements are equivalent.

6 Determinants and transposition

Proof. $\det A = \det A^T$

If A is not invertible, then A^T is not invertible, and $\det A = \det A^T = 0$. If A is invertible, then it can be written as a product of elementary matrices, $A = E_1 E_2 ... E_n$. Since $(AB)^T = B^T A^T$, $A^T = (E_1 E_2 ... E_n)^T = E_n^T ... E_2^T E_1^T$. Since the transpose of an elementary matrix has the same

determinant and det(AE) = det(A) det(E), we have that

$$\det(A) = \det(E_1 E_2 \dots E_n) \tag{21}$$

$$= \det(E_1) \det(E_2) \dots \det(E_n) \tag{22}$$

$$= \det(E_n) \dots \det(E_2) \det(E_1) \tag{23}$$

$$= \det(E_n^T) \dots \det(E_2^T) \det(E_1^T) \tag{24}$$

$$= \det(E_n^T ... E_2^T E_1^T) \tag{25}$$

$$= \det(A^T) \tag{26}$$

Therefore, $\det A = \det A^T$.

7 Determinants and the plane

Proof. A counterclockwise rotation has det(T) = 1.

A counterclockwise rotation in \mathbb{R}^2 by θ takes the form $\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$. The determinant of a 2D rotation matrix matrix is equal to

$$\det(T) = \cos(\theta)\cos(\theta) - (-\sin(\theta))(\sin(\theta)) \tag{27}$$

$$=\cos^2(\theta) + \sin^2(\theta) \tag{28}$$

$$=1 (29)$$

Therefore,
$$det(T) = 1$$
.

Proof. A reflection across a line has det(T) = -1.

Reflecting a vector across a line that is θ counterclockwise of the x-axis is equivalent to rotating the vector by $-\theta$, reflecting across the x-axis, then rotating the vector by θ . The determinant for a rotation matrix is 1. The matrix for negating the y-component is $F = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, so the determinant of reflecting across the x-axis is 1(-1) - 0(0) = -1. If R is the matrix that rotates by θ , then the determinant of the matrix that reflection across a line is

$$\det(T) = \det(RTR^{-1}) \tag{30}$$

$$= \det(R) \det(F) \det(R^{-1}) \tag{31}$$

$$= 1(-1)(1) \tag{32}$$

$$= -1 \tag{33}$$

Therefore, $\det T = -1$.

8 Determinants and block matrices

Proof. If the bottom left $m \times n$ block is zeros, the determinant is equal to $\det(A) \cdot \det(C)$.

Base Case: When
$$\begin{bmatrix} A & B \\ 0 & C \end{bmatrix}$$
 is a 2×2 matrix, $\det(A) = AC - B \cdot 0 = AC = \det(A) \cdot \det(C)$.

Inductive Step: Assume that $\begin{bmatrix} A & B \\ 0 & C \end{bmatrix} = \det(A) \cdot \det(C)$ for when A is $m \times m$ and C is $n-1 \times n-1$. For any row index i, the cofactor formula says that

$$\det(M) = \sum_{j=1}^{m+n} (-1)^{i+j} m_{ij} \det(M_{ij})$$

Let i = m + n. In the cofactor formula, the first n terms are equal to zero since $m_{ij} = 0$. When $n < j \le m + n$, the term is equal to $(-1)^{i+j}m_{ij}\det(M_{ij})$. By our assumption for when C is $n - 1 \times n - 1$, $\det(M_{ij}) = \det(A) \cdot \det(C_{ij})$. Therefore,

$$\det(M) = \sum_{j=n+1}^{m+n} (-1)^{i+j} m_{ij} \det(A) \cdot \det(C_{ij}) = \det(A) \sum_{j=n+1}^{m+n} (-1)^{i+j} m_{ij} \det(C_{ij}) = \det(A) \cdot \det(C)$$
(34)

This completes the inductive step, so $det(M) = det(A) \cdot det(C)$

5