Lecture 14 - Unification & Resolution

Vaishnavi Sundararajan

COL703/COL7203 - Logic for Computer Science

Recap: Substitutions & normal forms

- A **substitution** θ is a partial map from \mathcal{V} to $T(\Sigma)$, with a finite domain
- Read $\theta = \{t/x\}$ as "x is replaced by t under θ "
- Substitution lemma
- Q₁x₁ ... Q_nx_n. [φ] is in Prenex Normal Form (PNF) if φ is quantifier-free (qf).
- For any FO expression φ , there exists a logically equivalent ψ in PNF.
- PNF expression $Q_1x_1 ... Q_nx_n$. $[\varphi]$ is in **Skolem Normal Form (SNF)** if $Q_i = \forall$ for every $1 \le i \le n$.
- For any FO sentence φ , there exists an equisatisfiable ψ in SNF.

Recap: Herbrand models & unification

- Universe is $T^g(\Sigma)$, the set of all ground terms over the signature Σ
- Map each symbol in the syntax to itself; variables map to ground terms
- A sentence $\varphi \in FO_{\Sigma}$ is satisfiable iff its SNF form φ_{snf} is satisfiable iff Γ^g , the set of all ground instances of the qf subexpression in φ_{snf} , is satisfied by a Herbrand model.
- A sentence is unsatisfiable iff some finite set of ground instances of its qf subexpressions is unsatisfiable.
- Look to resolution for proving unsatisfiability
- Unification is the problem of finding a substitution θ so as to make some terms identical.
- One solves an equation of the form $t_1\theta = t_2\theta$ to find an appropriate θ .

Recap: Unifiability

- A finite set of terms $T = \{t_i \mid 1 \le i \le n\}$ is said to be **unifiable** if there exists a θ (a **unifier** for T) such that $t_i\theta = t_i\theta$ for all $1 \le i, j \le n$.
- A substitution that is "less constrained" than another is said to be "more general". Look for the most general unifier (mgu).
- If a set of terms is unifiable, then it has an mgu.
- Only two possible obstacles to unification:
 - Function clash (trying to unify f(...) with g(...) where $f \neq g$)
 - Occurs check (trying to unify x and t where $x \in vars(t)$)
- If neither of these occurs, a set is unifiable!

Recap: Algorithm

- Start with a system of equations $l_1 = r_1, l_2 = r_2, ..., l_n = r_n$
- Perform the following transformations till you cannot anymore.
- 1. $l_i = t \notin \mathcal{V}$ and $r_i = x$: Replace $l_i = r_i$ by x = t
- 2. $l_i = x$ and $r_i = x$: Remove the equation
- 3. $l_i = f(...)$ and $r_i = g(...)$: The following cases arise.
 - $f \neq g$: Clash; no unification possible. Terminate.
 - f = g: Then $l_i = f(t_1, ..., t_k)$ and $r_i = f(u_1, ..., u_k)$. Replace $l_i = r_i$ by k new equations, each of the form $t_j = u_j$, for $1 \le j \le k$.
- 4. $l_i = x$ and $r_i = t$: The following cases arise.
 - $x \in vars(t)$: Occurs check; no unification possible. Terminate.
 - $x \notin \text{vars}(t)$: Replace every occurrence of x in $\{l_j \cup r_j \mid 1 \le j \le n, j \ne i\}$ by t.

Example

g(Y) = Xf(X, h(X), Y) = f(q(Z), W, Z)

X = g(Y)f(X, h(X), Y) = f(q(Z), W, Z)

(3)

$$X = g(Y)$$

$$X = g(Z)$$

$$h(X) = W$$

$$Y = Z$$

5

$$Z = Y$$

$$X = g(Z)$$

$$h(g(Z)) = W$$

$$Y = Z$$

(7)

$$X = g(Z)$$
$$h(g(Z)) = W$$
$$Y = Z$$

4

$$g(Z) = g(Y)$$

$$X = g(Z)$$

$$h(g(Z)) = W$$

Y = Z

(6)

$$X = g(Z)$$
$$h(g(Z)) = W$$

Y = Z

Z = Z

X = g(Z)W = h(aC)

(8)

$$W = h(g(Z))$$

$$Y = Z$$

Algorithm: Termination

- Once we swap an equation of the form t = x, we do not swap back
- How many equations of the form x = x can we get for a given input?
- How many new equations does each f(...) = g(...) get replaced by?

Algorithm: Termination

- Once we swap an equation of the form t = x, we do not swap back
- How many equations of the form x = x can we get for a given input?
- How many new equations does each f(...) = g(...) get replaced by?
- So transformations (1)–(3) can only be applied finitely many times.
- (4) can be applied at most once per variable.
- So the algorithm terminates in a finite number of steps.
- When the algorithm terminates, all equations are of the form $x_i = t_i$ (each x_i only occurs once)
- This is called a set of equations in solved form.
- For a set of equations in solved form as above, the substitution $\{t_1/x_1, t_2/x_2, ..., t_n/x_n\}$ is a unifier.

Algorithm: Correctness

- **Soundness**: If the algorithm produces a θ , then θ is a unifier for S.
- Completeness: If S is unifiable, then the algorithm produces a unifier θ.
- Suppose I run the algorithm on a set *S* of equations, and get *S'* after one iteration (applying one instance of one transformation rule).
- **Claim**: A substitution θ is a unifier for S iff it is a unifier for S'.
- We now analyze each rule to see if this holds.
- For now, ignore the rules which cause the algorithm to terminate without returning any unifier.
- We denote by **r** the rule that was applied.

• r = (1): There exists a system of equations T s.t. $S = T \cup \{t = x\}$ and $S' = T \cup \{x = t\}$ for some $x \in \mathcal{V}$ and some $t \notin \mathcal{V}$. $t\theta = x\theta$ iff $x\theta = t\theta$, so θ is a unifier for S iff it is a unifier for S'.

- r = (1): There exists a system of equations T s.t. $S = T \cup \{t = x\}$ and $S' = T \cup \{x = t\}$ for some $x \in \mathcal{V}$ and some $t \notin \mathcal{V}$. $t\theta = x\theta$ iff $x\theta = t\theta$, so θ is a unifier for S iff it is a unifier for S'.
- r = (2): Then, $S = S' \cup \{x = x\}$. Any θ satisfies $x\theta = x\theta$, so the claim holds for this case also.

- r = (1): There exists a system of equations T s.t. $S = T \cup \{t = x\}$ and $S' = T \cup \{x = t\}$ for some $x \in \mathcal{V}$ and some $t \notin \mathcal{V}$. $t\theta = x\theta$ iff $x\theta = t\theta$, so θ is a unifier for S iff it is a unifier for S'.
- r = (2): Then, $S = S' \cup \{x = x\}$. Any θ satisfies $x\theta = x\theta$, so the claim holds for this case also.
- $\mathbf{r} = (3)$: There exists a T s.t. $S = T \cup \{f(t_1, ..., t_k) = f(u_1, ..., u_k)\}$ and $S' = T \cup \{t_1 = u_1, ..., t_k = u_k\}$. One can verify that $f(t_1, ..., t_k)\theta = f(u_1, ..., u_k)\theta$ iff $t_1\theta = u_1\theta, ..., t_k\theta = u_k\theta$. Thus θ is a unifier for S iff it is a unifier for S'.

- r = (4): There is some T s.t. $S = T \cup \{x = t\}$ and $S' = T\{t/x\} \cup \{x = t\}$.
 - Suppose we show that for any l = r in T and any substitution θ s.t. $x\theta = t\theta$, we have $l\theta = r\theta$ iff $(l\{t/x\})\theta = (r\{t/x\})\theta$.
 - Then, if S' has a unifier θ , $(l\{t/x\})\theta$ is identical to $(r\{t/x\})\theta$ for every l=r in T. By the above statement, $l\theta=r\theta$, so θ is also a unifier for S.
 - Similarly, if *S* has a unifier θ , $l\theta$ is identical to $r\theta$, and $(l\{t/x\})\theta = (r\{t/x\})\theta$, so θ is also a unifier for *S'*.
 - How do we show that $l\theta = r\theta$ iff $(l\{t/x\})\theta = (r\{t/x\})\theta$? Note that $x \notin vars(t)$, so $x\theta = t\theta = u$ for some u.
 - If $x \notin \text{vars}(l)$, then $l\{t/x\}\theta = l\theta$.
 - Now suppose $x \in \text{vars}(l)$. Let $x\theta = t\theta = u$. Let $\theta = \{u/x\} \cup \theta'$.

- Suppose $x \in \text{vars}(l)$. Let $x\theta = t\theta = u$. Let $\theta = \{u/x\} \cup \theta'$. Then,
 - $t\theta = t\theta' = u \text{ (since } x \notin \text{vars}(t)\text{)}$
 - $l\{t/x\}\theta = l\{t/x\}(\{u/x\} \cup \theta') = l\{t/x\}\theta' \text{ (since } x \notin \text{vars}(t))$
 - $l\{t/x\}\theta' = l(\{t\theta'/x\} \cup \theta')$ (replacing x by t and then applying θ' is the same as replacing x by the result of applying θ' to t "first", while replacing all other variables by their results under θ')
 - $l(\lbrace t\theta'/x\rbrace \cup \theta') = l(\lbrace u/x\rbrace \cup \theta') = l\theta$
- One can perform a similar analysis for r.
- **Claim**: If the algorithm terminates without a unifier, the original set *S* of equations itself has no unifier.
- **Proof sketch**: If *S* has a unifier, then each new set of equations *S'* must have a unifier too. Since *S'* has no unifier ("bad" termination), chase back to the fact that *S* has no unifier either.

- Suppose the algorithm terminates with a set of equations $S^* = \{x_1 = t_1, ..., x_n = t_n\}$. Let $\theta = \{t_1/x_1, ..., t_n/x_n\}$. Is θ an mgu for S^* ?
- Consider any unifier τ for S^* . $x_i \tau = t_i \tau$ for each $1 \le i \le n$.
- Consider the function $\rho = \tau \upharpoonright (\mathcal{V} \setminus \{x_1, ..., x_n\})$.
- We know that $vars(t_i) \cap \{x_1, ..., x_n\} = \emptyset$. So $t_i \tau = t_i \rho$.
- Then, $x_i(\theta \circ \rho) = (x_i\theta)\rho = t_i\rho = x_i\tau$.
- Therefore, $\tau = \theta \circ \rho$ for **any** τ that unifies S^* , and so θ is an mgu for S^* .
- θ and τ are unifiers of S as well, so θ is an mgu for S also.

Resolution: Roadmap

- $\Gamma \models \varphi$ iff $\Gamma \cup \{\neg \varphi\}$ unsatisfiable
- Every sentence in FO has an equisatisfiable sentence in SCNF
- A sentence is unsatisfiable iff some finite set of ground instances of its qf subexpressions is unsatisfiable.
- Perform resolution to determine unsatisfiability
- What is our notion of clauses now? Literals?
- Want to apply resolution to the "clause form" of $\Gamma \cup \{\neg \phi\}$ and obtain the empty clause to show unsatisfiability.

SCNF, clauses, and literals

- Consider an SCNF sentence $\varphi = \forall x_1 x_2 ... x_n$. $[\psi]$ where ψ qf.
- Suppose $\psi = \bigwedge_{1 \le i \le m} \delta_i$ where each $\delta_i = \bigvee_{1 \le i \le k_i} \ell_i$
- "Ignore" the universal quantifiers, focus on ψ
- Then, we represent φ also by the set of **clauses** $\{\delta_i \mid 1 \leqslant i \leqslant m\}$.
- Each clause δ_i is represented by the set of **literals** $\{\ell_i \mid 1 \le i \le k_i\}$.
- Each literal is of the form P(...) or $\neg P(...)$ for $P \in \mathcal{P}$.
- Perform unification on variables to eliminate contradictory literals across clauses.
- **Achtung**: A "bad" termination of the unification algorithm will not allow resolution to proceed. Avoid accidental bad terminations!

Models of clauses

- For a substitution θ , the result of applying it to a clause is given by $\delta_i \theta = \{\ell_i \theta \mid 1 \le i \le k_i\}$. The set of ground instances of a clause δ is $\Gamma^g(\delta) = \{\delta\theta \mid \theta \text{ is a ground substitution for } \delta\}$.
- An empty clause has no models
- An interpretation is a model of a set of clauses if it is a model for every clause in that set.
- A set *S* of clauses is unsatisfiable iff there is a finite subset $S' \subseteq_{\text{fin}} S$ such that $\Gamma^g(S')$ is unsatisfiable.

- **Exercise**: Show that $\forall x_1 \dots x_n$. $\left[\bigwedge_{1 \leqslant i \leqslant m} \delta_i \right] \Leftrightarrow \bigwedge_{1 \leqslant i \leqslant m} (\forall x_1 \dots x_n. \ [\delta_i])$
- Consider the sentence $\forall x$. $[P(x)] \land \forall x$. $[\neg P(f(x))]$. Is it satisfiable?

- **Exercise**: Show that $\forall x_1 \dots x_n$. $\left[\bigwedge_{1 \leqslant i \leqslant m} \delta_i \right] \Leftrightarrow \bigwedge_{1 \leqslant i \leqslant m} \left(\forall x_1 \dots x_n. \ [\delta_i] \right)$
- Consider the sentence $\forall x$. $[P(x)] \land \forall x$. $[\neg P(f(x))]$. Is it satisfiable? No.
- Can I turn this into the set of clauses $\{P(x)\}, \{\neg P(f(x))\}$?

- **Exercise**: Show that $\forall x_1 \dots x_n$. $\left[\bigwedge_{1 \leqslant i \leqslant m} \delta_i \right] \Leftrightarrow \bigwedge_{1 \leqslant i \leqslant m} (\forall x_1 \dots x_n, [\delta_i])$
- Consider the sentence $\forall x$. $[P(x)] \land \forall x$. $[\neg P(f(x))]$. Is it satisfiable? No.
- Can I turn this into the set of clauses $\{P(x)\}, \{\neg P(f(x))\}$?
- What will the unification algorithm do on these clauses?
- Occurs check!
- So even though original expression was unsat, no way to derive the empty clause.
- Rename bound variables to keep variables across clauses distinct.
- Only consider clauses with distinct variable names from now on.

- For resolution over PL, we resolved one literal at a time.
- Suppose I have two clauses of the form $\delta_1 = \{P(x), P(y)\}$ and $\delta_2 = \{\neg P(m), \neg P(n)\}$. Is $\{\delta_1, \delta_2\}$ satisfiable?

- For resolution over PL, we resolved one literal at a time.
- Suppose I have two clauses of the form $\delta_1 = \{P(x), P(y)\}$ and $\delta_2 = \{\neg P(m), \neg P(n)\}$. Is $\{\delta_1, \delta_2\}$ satisfiable?
- Clearly not. But suppose we only replace y by m in our first attempt. We are then left with a single clause of the form $\{P(x), \neg P(n)\}$.
- Unification cannot happen **inside** a clause, only across clauses!
- Original set was unsat, but no way to proceed from here and get the empty clause.
- **Takeaway**: Substitutions give you power; use it! Unify as much as possible in one go.

• Check if $\forall x$. $[P(x) \lor Q(x)] \models Q(m)$.

- Check if $\forall x$. $[P(x) \lor Q(x)] \models Q(m)$.
- Check if $\forall x$. $[P(x) \lor Q(x)] \cup \{\neg Q(m)\}$ is unsatisfiable.
- Clause for $\forall x$. $[P(x) \lor Q(x)]$ is $\{P(x), Q(x)\}$.
- Suppose $\delta = \{P(x), Q(x)\}$, and $\ell = \neg Q(m)$.
- Need to see if we can derive the empty clause from $\delta \cup \{\ell\}$.
- Q(x) and Q(m) unify (What's the mgu?)

- Check if $\forall x$. $[P(x) \lor Q(x)] \models Q(m)$.
- Check if $\forall x$. $[P(x) \lor Q(x)] \cup \{\neg Q(m)\}$ is unsatisfiable.
- Clause for $\forall x$. $[P(x) \lor Q(x)]$ is $\{P(x), Q(x)\}$.
- Suppose $\delta = \{P(x), Q(x)\}$, and $\ell = \neg Q(m)$.
- Need to see if we can derive the empty clause from $\delta \cup \{\ell\}$.
- Q(x) and Q(m) unify (What's the mgu?)
- So we can resolve, just as we did for propositional logic, but with unification thrown into the mix.

- Check if $\forall x$. $[P(x) \lor Q(x)] \models Q(m)$.
- Check if $\forall x$. $[P(x) \lor Q(x)] \cup \{\neg Q(m)\}$ is unsatisfiable.
- Clause for $\forall x$. $[P(x) \lor Q(x)]$ is $\{P(x), Q(x)\}$.
- Suppose $\delta = \{P(x), Q(x)\}$, and $\ell = \neg Q(m)$.
- Need to see if we can derive the empty clause from $\delta \cup \{\ell\}$.
- Q(x) and Q(m) unify (What's the mgu?)
- So we can resolve, just as we did for propositional logic, but with unification thrown into the mix.

$$\frac{\{P(x), Q(x)\} \qquad \{\neg Q(m)\}}{P(m)} \{m/x\}$$