Theorem Lemma

Towards Mordell's Theorem: A useful Homomorphism

Sayak Chakrabarti

October 3, 2021

• Height
$$h(x) = h(\frac{m}{n}) = \max\{|m|, |n|\}$$

- Height $h(x) = h(\frac{m}{n}) = \max\{|m|, |n|\}$
- Finiteness property of Height

• Height
$$h(x) = h(\frac{m}{n}) = \max\{|m|, |n|\}$$

- Finiteness property of Height
- Bounds of heights of sums of 2 points

Lemma 1

For every $M \in \mathbb{R}$, $|\{P \in C(\mathbb{Q})|h(P) \leq M\}|$ is finite

Lemma 1

For every $M \in \mathbb{R}$, $|\{P \in C(\mathbb{Q})|h(P) \leq M\}|$ is finite

Lemma 2

Let P_0 be a fixed rational point of C. Then $\exists \kappa_0 \in \mathbb{Q}$ depending on P_0, a, b, c such that

$$h(P+P_0) \leq 2h(P) + \kappa_0 \ \forall P \in C(\mathbb{Q})$$

Lemma 3

 $\exists \kappa \in \mathbb{Q}$ depending on a,b,c such that

$$h(2P) \ge 4h(P) - \kappa \ \forall P \in C(\mathbb{Q})$$

Lemma 1

For every $M \in \mathbb{R}$, $|\{P \in C(\mathbb{Q})|h(P) \leq M\}|$ is finite

Lemma 2

Let P_0 be a fixed rational point of C. Then $\exists \kappa_0 \in \mathbb{Q}$ depending on P_0, a, b, c such that

$$h(P+P_0) \leq 2h(P) + \kappa_0 \ \forall P \in C(\mathbb{Q})$$

Lemma 3

 $\exists \kappa \in \mathbb{Q}$ depending on a, b, c such that

$$h(2P) \ge 4h(P) - \kappa \ \forall P \in C(\mathbb{Q})$$

Lemma 4

The index $(C(\mathbb{Q}): 2C(\mathbb{Q}))$ is finite

• Already defined: $C(\mathbb{Q})$

- Already defined: $C(\mathbb{Q})$
- $\Gamma = C(\mathbb{Q})$

- Already defined: $C(\mathbb{Q})$
- $\Gamma = C(\mathbb{Q})$
- Weierstrass normal form: $C: y^2 = f(x) = x^3 + ax^2 + bx + c$

- Already defined: $C(\mathbb{Q})$
- $\Gamma = C(\mathbb{Q})$
- Weierstrass normal form: $C: y^2 = f(x) = x^3 + ax^2 + bx + c$
- Suppose f(x) has a rational root, x_0 , translate origin to $(x_0, 0)$

- Already defined: $C(\mathbb{Q})$
- $\Gamma = C(\mathbb{Q})$
- Weierstrass normal form: $C: y^2 = f(x) = x^3 + ax^2 + bx + c$
- Suppose f(x) has a rational root, x_0 , translate origin to $(x_0, 0)$
- New curve $C: y^2 = f(x) = x^3 + ax^2 + bx$

- Already defined: $C(\mathbb{Q})$
- $\Gamma = C(\mathbb{Q})$
- Weierstrass normal form: $C: y^2 = f(x) = x^3 + ax^2 + bx + c$
- Suppose f(x) has a rational root, x_0 , translate origin to $(x_0, 0)$
- New curve $C: y^2 = f(x) = x^3 + ax^2 + bx$
- Discriminant $D=b^2(a^2-4b)$ (assumption: non-singular curve)

- Already defined: $C(\mathbb{Q})$
- $\Gamma = C(\mathbb{Q})$
- Weierstrass normal form: $C: y^2 = f(x) = x^3 + ax^2 + bx + c$
- Suppose f(x) has a rational root, x_0 , translate origin to $(x_0, 0)$
- New curve $C: y^2 = f(x) = x^3 + ax^2 + bx$
- Discriminant $D = b^2(a^2 4b)$ (assumption: non-singular curve)
- Define T = (0,0), we know $2T = \mathcal{O}$

• Want to analyze $(\Gamma : 2\Gamma) \iff$ order of factor group $\Gamma/2\Gamma$

- Want to analyze (Γ : 2Γ) \iff order of factor group $\Gamma/2\Gamma$
- Analyze duplication map $P \rightarrow 2P$ (we will write this as a composition of 2 maps of degree 2)

$$C: y^2 = x^3 + ax^2 + bx$$

 $\bar{C}: y^2 = x^3 + \bar{a}x^2 + \bar{b}x$

C:
$$y^2 = x^3 + ax^2 + bx$$

 \bar{C} : $y^2 = x^3 + \bar{a}x^2 + \bar{b}x$
Given by $\bar{a} = -2a$; $\bar{b} = a^2 - 4b$

C:
$$y^2 = x^3 + ax^2 + bx$$

 \bar{C} : $y^2 = x^3 + \bar{a}x^2 + \bar{b}x$
Given by $\bar{a} = -2a$; $\bar{b} = a^2 - 4b$

$$C: y^2 = x^3 + ax^2 + bx$$

$$\bar{C}: y^2 = x^3 + \bar{a}x^2 + \bar{b}x$$
Given by $\bar{a} = -2a$; $\bar{b} = a^2 - 4b$
Consider $\bar{\bar{C}}: y^2 = x^3 + \bar{\bar{a}}x^2 + \bar{\bar{b}}x$

$$C: y^2 = x^3 + ax^2 + bx$$

$$\bar{C}: y^2 = x^3 + \bar{a}x^2 + \bar{b}x$$
Given by $\bar{a} = -2a$; $\bar{b} = a^2 - 4b$
Consider $\bar{C}: y^2 = x^3 + \bar{\bar{a}}x^2 + \bar{\bar{b}}x$

$$\bar{\bar{a}} = 4a, \bar{\bar{b}} = 16b$$

$$C: y^2 = x^3 + ax^2 + bx$$

$$\bar{C}: y^2 = x^3 + \bar{a}x^2 + \bar{b}x$$
Given by $\bar{a} = -2a$; $\bar{b} = a^2 - 4b$
Consider $\bar{C}: y^2 = x^3 + \bar{\bar{a}}x^2 + \bar{\bar{b}}x$
 $\bar{\bar{a}} = 4a, \bar{\bar{b}} = 16b$
Note that $\bar{\bar{C}} \sim C$

$$C: y^2 = x^3 + ax^2 + bx$$

 $\bar{C}: y^2 = x^3 + \bar{a}x^2 + \bar{b}x$
Given by $\bar{a} = -2a$; $\bar{b} = a^2 - 4b$
Consider $\bar{\bar{C}}: y^2 = x^3 + \bar{\bar{a}}x^2 + \bar{\bar{b}}x$
 $\bar{\bar{a}} = 4a, \bar{\bar{b}} = 16b$
Note that $\bar{\bar{C}} \sim C$
 $(x, y) \rightarrow (4x, 8y)$

Goal: Define map $\phi:C\to \bar{C}$ (This will also give $\Gamma\to \bar{\Gamma}$)

```
Goal: Define map \phi:C\to \bar{C} (This will also give \Gamma\to \bar{\Gamma}) Similarly \bar{\phi}:\bar{C}\to \bar{\bar{C}}
```

$$\phi(x,y) = (\bar{x},\bar{y}) = (x+a+\tfrac{b}{x},y(1-\tfrac{b}{x^2})) = (\tfrac{y}{x^2},y(1-\tfrac{b}{x^2}))$$

$$\phi(x,y) = (\bar{x},\bar{y}) = (x+a+\tfrac{b}{x},y(1-\tfrac{b}{x^2})) = (\tfrac{y}{x^2},y(1-\tfrac{b}{x^2}))$$

(Can be verified easily!)

$$\phi(x,y) = (\bar{x},\bar{y}) = (x+a+\tfrac{b}{x},y(1-\tfrac{b}{x^2})) = (\tfrac{y}{x^2},y(1-\tfrac{b}{x^2}))$$

(Can be verified easily!)

 \rightarrow Is this always defined?

$$\phi(x,y) = (\bar{x},\bar{y}) = (x+a+\tfrac{b}{x},y(1-\tfrac{b}{x^2})) = (\tfrac{y}{x^2},y(1-\tfrac{b}{x^2}))$$

(Can be verified easily!)

ightarrow Is this always defined?

Define
$$\phi(T) = \bar{\mathcal{O}}, \phi(\mathcal{O}) = \bar{\mathcal{O}}$$

Kernel of ϕ ?

Kernel of ϕ ? Only 2 points T and $\mathcal O$ sent to $\bar{\mathcal O}$

Kernel of ϕ ? Only 2 points T and $\mathcal O$ sent to $\bar{\mathcal O}$

- $\{\mathcal{O}, T\}$ subgroup of C
- C is abelian group

- $\{\mathcal{O}, T\}$ subgroup of C
- C is abelian group
- Intuition: \bar{C} is isomorphic the quotient subgroup $C/\{\mathcal{O}, T\}$

Main Proposition

Proposition 1

Let C, \bar{C} be elliptic curves as defined.

- (a) There is a homomorphism $\phi: \mathcal{C} \to \bar{\mathcal{C}}$ as defined before
- (b) Same process gives the map $ar{\phi}:ar{\mathcal{C}} oar{ar{\mathcal{C}}}$ denoted by $\psi.$ Also

$$\psi \cdot \phi : C \to \overline{\overline{C}}$$
 given by $(x, y) \to (\frac{x}{4}, \frac{y}{8})$

(c) We have $\psi \cdot \phi : C \to C$ given by

$$\psi \cdot \phi(P) = 2P$$

The "calculative" Proof

(a) Left to prove that $\phi(P+Q)=\phi(P)+\phi(Q)$

(a) Left to prove that $\phi(P+Q) = \phi(P) + \phi(Q)$ If any one of them is \mathcal{O} then trivial

(a) Left to prove that $\phi(P+Q)=\phi(P)+\phi(Q)$ If any one of them is $\mathcal O$ then trivial If any one of them is T, we show that $\phi(P+T)=\phi(P)$. We have $P+T=(x+y)+(0,0)=(\frac{b}{x},-\frac{by}{x^2})$. Can check from this that $\phi(\frac{b}{x},-\frac{by}{x^2})=(x,y)$. However this is true when $P\neq T$. When P=Q=T, we have $\phi(T+T)=\phi(\mathcal O)=\bar{\mathcal O}=\mathcal O+\mathcal O$ as expected.

Also we show that ϕ is odd, i.e.

(a) Left to prove that $\phi(P+Q)=\phi(P)+\phi(Q)$ If any one of them is $\mathcal O$ then trivial If any one of them is T, we show that $\phi(P+T)=\phi(P)$. We have $P+T=(x+y)+(0,0)=(\frac{b}{x},-\frac{by}{x^2})$. Can check from this that $\phi(\frac{b}{x},-\frac{by}{x^2})=(x,y)$. However this is true when $P\neq T$. When P=Q=T, we have $\phi(T+T)=\phi(\mathcal O)=\bar{\mathcal O}=\mathcal O+\mathcal O$ as expected.

 $\phi(-P) = \phi(x, -y) = \left(\left(\frac{-y}{x} \right)^2, \frac{-y(x^2 - b)}{x^2} \right) = -\phi(x, y) = -\phi(P).$

Next we want to show that if $P_1 + P_2 + P_3 = \mathcal{O}$ then we will have $\phi(P_2) + \phi(P_2) + \phi(P_3) = \bar{\mathcal{O}}$.

(If we have this then $\phi(P_1+P_2)=-\phi(P_3)=\phi(P_1)+\phi(P_2)$ from this)

Also reasonable to assume neither of them are \mathcal{O} or \mathcal{T} .

Next we want to show that if $P_1 + P_2 + P_3 = \mathcal{O}$ then we will have $\phi(P_2) + \phi(P_2) + \phi(P_3) = \bar{\mathcal{O}}$.

(If we have this then $\phi(P_1+P_2)=-\phi(P_3)=\phi(P_1)+\phi(P_2)$ from this)

Also reasonable to assume neither of them are $\mathcal O$ or $\mathcal T$.

Note that P_1, P_2, P_3 are collinear (Why?)

Next we want to show that if $P_1 + P_2 + P_3 = \mathcal{O}$ then we will have $\phi(P_2) + \phi(P_2) + \phi(P_3) = \bar{\mathcal{O}}$.

(If we have this then $\phi(P_1+P_2)=-\phi(P_3)=\phi(P_1)+\phi(P_2)$ from this)

Also reasonable to assume neither of them are \mathcal{O} or T.

Note that P_1, P_2, P_3 are collinear (Why?)

Let $y=\lambda x+\nu$ be the line through them, with $\nu\neq 0$

Next we want to show that if $P_1 + P_2 + P_3 = \mathcal{O}$ then we will have $\phi(P_2) + \phi(P_2) + \phi(P_3) = \bar{\mathcal{O}}$.

(If we have this then $\phi(P_1+P_2)=-\phi(P_3)=\phi(P_1)+\phi(P_2)$ from this)

Also reasonable to assume neither of them are \mathcal{O} or \mathcal{T} .

Note that P_1, P_2, P_3 are collinear (Why?)

Let $y = \lambda x + \nu$ be the line through them, with $\nu \neq 0$

The image of this line in \bar{C} is $y = \bar{\lambda}x + \bar{\nu}$ where $\bar{\lambda} = \frac{\nu\lambda - b}{\nu}$,

$$\bar{\nu} = rac{
u^2 - a
u\lambda + b\lambda^2}{
u}$$

Next we want to show that if $P_1 + P_2 + P_3 = \mathcal{O}$ then we will have

$$\phi(P_2) + \phi(P_2) + \phi(P_3) = \bar{\mathcal{O}}.$$

(If we have this then $\phi(P_1+P_2)=-\phi(P_3)=\phi(P_1)+\phi(P_2)$ from this)

Also reasonable to assume neither of them are \mathcal{O} or \mathcal{T} .

Note that P_1, P_2, P_3 are collinear (Why?)

Let $y=\lambda x+\nu$ be the line through them, with $\nu\neq 0$

The image of this line in \bar{C} is $y = \bar{\lambda}x + \bar{\nu}$ where $\bar{\lambda} = \frac{\nu\lambda - b}{\lambda}$,

$$\bar{\nu} = rac{
u^2 - a
u\lambda + b\lambda^2}{
u}$$

To check this, verify that $\bar{\lambda}\bar{x}_i + \bar{\nu} = \bar{y}_i$ putting values of $\bar{\lambda}, \bar{\nu}, \bar{x}_i, \bar{y}_i$; for i = 1, 2, 3

Next we want to show that if $P_1 + P_2 + P_3 = \mathcal{O}$ then we will have $\phi(P_2) + \phi(P_2) + \phi(P_3) = \bar{\mathcal{O}}$.

(If we have this then $\phi(P_1+P_2)=-\phi(P_3)=\phi(P_1)+\phi(P_2)$ from this)

Also reasonable to assume neither of them are \mathcal{O} or T.

Note that P_1, P_2, P_3 are collinear (Why?)

Let $y = \lambda x + \nu$ be the line through them, with $\nu \neq 0$

The image of this line in \bar{C} is $y = \bar{\lambda}x + \bar{\nu}$ where $\bar{\lambda} = \frac{\nu\lambda - b}{\nu}$,

$$\bar{\nu} = rac{
u^2 - \mathsf{a}\nu\lambda + \mathsf{b}\lambda^2}{
u}$$

To check this, verify that $\bar{\lambda}\bar{x}_i + \bar{\nu} = \bar{y}_i$ putting values of $\bar{\lambda}, \bar{\nu}, \bar{x}_i, \bar{y}_i$; for i = 1, 2, 3

Can be shown that $(\lambda x + \nu) = f(x)^2$ has only distinct roots

Next we want to show that if $P_1 + P_2 + P_3 = \mathcal{O}$ then we will have $\phi(P_2) + \phi(P_2) + \phi(P_3) = \bar{\mathcal{O}}$.

(If we have this then $\phi(P_1+P_2)=-\phi(P_3)=\phi(P_1)+\phi(P_2)$ from this)

Also reasonable to assume neither of them are \mathcal{O} or T.

Note that P_1, P_2, P_3 are collinear (Why?)

Let $y = \lambda x + \nu$ be the line through them, with $\nu \neq 0$

The image of this line in \bar{C} is $y = \bar{\lambda}x + \bar{\nu}$ where $\bar{\lambda} = \frac{\nu\lambda - b}{\nu}$,

$$\bar{\nu} = rac{
u^2 - \mathsf{a}\nu\lambda + \mathsf{b}\lambda^2}{
u}$$

To check this, verify that $\bar{\lambda}\bar{x}_i + \bar{\nu} = \bar{y}_i$ putting values of $\bar{\lambda}, \bar{\nu}, \bar{x}_i, \bar{y}_i$; for i=1,2,3

Can be shown that $(\lambda x + \nu) = f(x)^2$ has only distinct roots Same thing can be done for complex numbers as well, showing ϕ is a homomorphism in general.

(b) We have
$$\bar{C}: y^2 = x^3 + 4ax^2 + 16bx$$

(b) We have $\bar{\bar{C}}: y^2 = x^3 + 4ax^2 + 16bx$ Isomorphism from $\bar{\bar{C}} \to C$ given by $(x,y) \to (\frac{x}{4},\frac{x}{8})$.

(b) We have $\bar{\bar{C}}: y^2 = x^3 + 4ax^2 + 16bx$ Isomorphism from $\bar{\bar{C}} \to C$ given by $(x,y) \to \left(\frac{x}{4},\frac{x}{8}\right)$. From (a) there is a homomorphism $\bar{\phi}: \bar{C} \to \bar{\bar{C}}$.

(b) We have $\bar{C}: y^2 = x^3 + 4ax^2 + 16bx$ Isomorphism from $\bar{C} \to C$ given by $(x,y) \to \left(\frac{x}{4},\frac{x}{8}\right)$. From (a) there is a homomorphism $\bar{\phi}: \bar{C} \to \bar{C}$. $\psi: \bar{C} \to C$ is given by composition of homomorphism $\bar{\phi}$ and isomorphism $\bar{C} \to C$.

Required homomorphism from \bar{C} to C

(b) We have $\bar{C}: y^2 = x^3 + 4ax^2 + 16bx$ Isomorphism from $\bar{C} \to C$ given by $(x,y) \to (\frac{x}{4},\frac{x}{8})$. From (a) there is a homomorphism $\bar{\phi}: \bar{C} \to \bar{C}$. $\psi: \bar{C} \to C$ is given by composition of homomorphism $\bar{\phi}$ and isomorphism $\bar{C} \to C$.

(c) To show that $\psi\cdot\phi$ is multiplication by 2.

(c) To show that $\psi \cdot \phi$ is multiplication by 2. We have

$$2P = 2(x,y) = \left(\frac{(x^2 - b)^2}{4y^2}, \frac{(x^2 - b)(x^4 + 2ax^3 + 6bx^2 + 2abx + b^2)}{8y^3}\right)$$

(c) To show that $\psi \cdot \phi$ is multiplication by 2. We have

$$2P = 2(x,y) = \left(\frac{(x^2 - b)^2}{4y^2}, \frac{(x^2 - b)(x^4 + 2ax^3 + 6bx^2 + 2abx + b^2)}{8y^3}\right)$$

We have
$$\phi(x,y) = \left(\frac{y^2}{x^2}, \frac{y(x^2-b)}{x^2}\right)$$
, $\psi(\bar{x}, \bar{y}) = \left(\frac{\bar{y}^2}{4\bar{x}^2}, \frac{\bar{y}(\bar{x}^2-b)}{8x^2}\right)$

(c) To show that $\psi\cdot\phi$ is multiplication by 2. We have

$$2P = 2(x,y) = \left(\frac{(x^2 - b)^2}{4y^2}, \frac{(x^2 - b)(x^4 + 2ax^3 + 6bx^2 + 2abx + b^2)}{8y^3}\right)$$

We have $\phi(x,y) = \left(\frac{y^2}{x^2}, \frac{y(x^2-b)}{x^2}\right)$, $\psi(\bar{x}, \bar{y}) = \left(\frac{\bar{y}^2}{4\bar{x}^2}, \frac{\bar{y}(\bar{x}^2-b)}{8\bar{x}^2}\right)$ Using this and some calculations later, can be shown that

$$\psi(\phi(x,y)) = \left(\frac{(x^2 - b)^2}{4y^2}, \frac{(x^2 - b)(x^4 + 2ax^3 + 6bx^2 + 2abx + b^2)}{8y^3}\right)$$

(c) To show that $\psi\cdot\phi$ is multiplication by 2. We have

$$2P = 2(x,y) = \left(\frac{(x^2 - b)^2}{4y^2}, \frac{(x^2 - b)(x^4 + 2ax^3 + 6bx^2 + 2abx + b^2)}{8y^3}\right)$$

We have $\phi(x,y) = \left(\frac{y^2}{x^2}, \frac{y(x^2-b)}{x^2}\right)$, $\psi(\bar{x}, \bar{y}) = \left(\frac{\bar{y}^2}{4\bar{x}^2}, \frac{\bar{y}(\bar{x}^2-b)}{8\bar{x}^2}\right)$

Using this and some calculations later, can be shown that

$$\psi(\phi(x,y)) = \left(\frac{(x^2 - b)^2}{4y^2}, \frac{(x^2 - b)(x^4 + 2ax^3 + 6bx^2 + 2abx + b^2)}{8y^3}\right)$$

This gives $\psi \cdot \phi(x, y) = 2(x, y)$

Next Lecture

In next lecture, Lemma 4 will be completely proved using this homomorphism, with the proof of Mordell's Theorem.

Acknowledgements

Most of the content has been taken from Silverman, JH and Tate, T; Rational Points on Elliptic Curves, *Springer*, 2015.