Задача 1-1. В первой строке входного потока записано число n. Во второй строке записаны n $(1 \le n \le 1000)$ целых чисел $a_1, a_2, a_3, \ldots, a_n$ $(|a_i| \le 10^9)$. Найдите наибольшую чередующуюся подпоследовательность $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$ последовательности a_1, a_2, \ldots, a_n , то есть такую подпоследовательность, для которой $i_1 < i_2 < \ldots < i_k$, и для любых трех соседних элементов $a_{i_{l-1}}, a_{i_l}, a_{i_{l+1}}$ либо $a_{i_{l-1}} < a_{i_l}, a_{i_l} > a_{i_{l+1}}$, либо $a_{i_{l-1}} > a_{i_l}, a_{i_l} < a_{i_{l+1}}$, при этом k — наибольшее возможное. В выходной поток выведите саму подпоследовательность $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$. Если таких последовательностей несколько, то следует выбрать ту, для которой i_1 минимально. Из всех максимальных с одинаковым i_1 — ту, у которой значение i_2 минимально и так далее.

Пример входа	Пример выхода
10	1 4 2 8 6 7
1 4 2 3 5 8 6 7 9 10	
5	1 2
1 2 3 4 5	
1	100
100	

Задача 1-2. *Правильной скобочной последовательностью* называется строка, состоящая только из скобок, в которой все скобки можно разбить на пары таким образом, что:

- в каждой паре есть левая и правая скобка, причем левая скобка расположена левее правой;
- для любых двух пар скобок либо одна из них полностью внутри другой пары, либо промежутки между скобками в парах не пересекаются
- в паре с круглой скобкой может быть только круглая скобка, с квадратной квадратная, с фигурной фигурная

Примеры:

- Если разрешены только круглые скобки:
 - правильные последовательности: (), (()), ()(), ()(), (())(), ((()))
 - неправильные последовательности:)(,)), ((, ())()(, ()),))((
- Если разрешены круглые и квадратные скобки:
 - правильные последовательности: [],(), [()], [[([])]()]
 - неправильные последовательности: [), ([)], (())()[]][
- Если разрешены еще и фигурные скобки:
 - правильные последовательности: [{(())}({})], []{}(), {}, (), []
 - неправильные последовательности: [{(})], [(]())]{}

Во входе задана непустая строка α длины не более 1 000 000, состоящая только из скобок (круглых, квадратных и/или фигурных). Требуется определить, является ли она правильной скобочной последовательностью. Если да, выведите слово **CORRECT**. Если нет, выведите длину максимального префикса α , который либо сам является правильной скобочной последовательностью, либо может быть продолжен до таковой.

Например, для строки (()))) ответ 4, так как строка (()) является правильной скобочной последовательностью, а строку (())) уже нельзя никаким образом продолжить вправо, чтобы получить правильную скобочную последовательность. Для строки]()) (ответ 0, поскольку строку] нельзя продолжить вправо, чтобы получить правильную скобочную последовательность. Для строки [(()){()()[]]}) ответ CORRECT.

Пример входа	Пример выхода
(())	CORRECT
([)]	2
}]))	4

Задача 1-3. Вам дано несколько кубиков, каждый задается длинами трех сторон, a,b и c. Считается, что один кубик можно вложить в другой, если их можно так расположить в пространстве, чтобы каждая грань одного кубика была параллельна какой-то грани другого кубика и чтобы при этом один из кубиков полностью содержался внутри другого. Общих точек на границе у них при этом также не должно быть. Нужно определить, какую максимальную цепочку кубиков C_1, C_2, \ldots, C_k можно выбрать из данных таким образом, чтобы C_1 можно было вложить в C_2, C_2 — в C_3 и так далее.

В первой строке входного потока дано число n ($1 \le n \le 1000$). В следующих n строках описаны кубики, на каждой по три целых положительных числа, не превосходящих 10^9 , описывающих один кубик. В каждой строке числа выписаны по возрастанию, и первое число следующей строки всегда не меньше первого числа предыдущей. В выходной поток нужно вывести одно число: длину максимальной цепочки вложенных кубиков.

Пример входа	Пример выхода
4	3
1 1 1	
2 2 2	
3 3 3	
3 3 4	

Задача 1-4. Пусть задан массив из n целых чисел. По этому массиву будут ходить два указателя l и r ($1 \le l, r \le n$). Изначально оба они указывают на первый элемент массива (l = r = 1). Оба указателя могут двигаться только вправо, на одну позицию за раз. При этом указатель l никогда не оказывается правее указателя r, и ни один из них не выходит за пределы массива. Вам нужно после каждого перемещения указателя определить максимум всех элементов от указателя l вправо до указателя r (включая позиции, на которые указывают l и r).

В первой строке входного потока задано число n ($1 \le n \le 100\,000$) — размер массива. Во второй строке n целых чисел от $-1\,000\,000\,000$ до $1\,000\,000\,000$ — сам массив. В третьей строке указано число m ($0 \le m \le 2n-2$) — количество перемещений. В четвертой

строке — m символов L или R, разделенных пробелами. L означает, что нужно сдвинуть l вправо, R — что нужно сдвинуть r вправо. Выведите в одну строку ровно m чисел, где i-е число — максимальное значение на отрезке от l до r после выполнения i-й операции.

 $У \kappa a s a h u e$. Учетная стоимость обработки каждого запроса на перемещение и подсчет максимума должна оказаться O(1).

Пример входа	Пример выхода
10	4 4 4 4 5 8 8 8 8 8 8 6
1 4 2 3 5 8 6 7 9 10	
12	
RRLRRLLLRLL	