Міністерство освіти і науки України Національний авіаційний університет Навчально-науковий інститут комп'ютерних інформаційних технологій Кафедра комп'ютеризованих систем управління

Лабораторна робота №1 з дисципліни «Комп'ютерна схемотехніка» на тему «Дослідження дешифраторів і шифраторів»

> Виконав: студент ННІКІТ СП-225 Клокун В. Д. Перевірив: Іскренко Ю. Ю.

1 Мета роботи

Вивчення принципів побудови, логіки роботи й синтезу дешифраторів і шифраторів. Освоєння методики дослідження схем дешифраторів і шифраторів. Визначення основних характеристик і параметрів дешифраторів і шифраторів на інтегральних мікросхемах.

2 Хід роботи

2.1 Дослідження лінійного дешифратора на 2 входи і 4 інверсні виходи на елементах I—HE

Складаємо схему лінійного дешифратора на 2 входи і 4 інверсні виходи на елементах І—НЕ (рис. 1). За результатами експерименту заповнюємо таблицю істинності (табл. 1).

X_2	X_1	L_0	L_1	L_2	L_3
0	0	0	1	1	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	1	1	1	0

Рис. 1: Схема лінійного дешифр. на 2 входи і 4 інверсні виходи шифр. на 2 входи і 4 інв. виходи

2.2 Дослідження лінійного дешифратора на 2 входи і 4 прямі виходи на елементах I—HE

Складаємо схему лінійного дешифратора на 2 входи і 4 прямі виходи на елементах І—НЕ (рис. 2). За результатами експерименту заповнюємо таблицю істинності (табл. 2).

X_2	X_1	L_0	L_1	L_2	L_3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Рис. 2: Схема лінійного дешифр. на 2 входи і 4 прямі виходи шифр. на 2 входи і 4 прямі виходи

2.3 Дослідження лінійного дешифратора на 2 входи і 4 прямі виходи зі стробними входами

Складаємо схему лінійного дешифратора на 2 входи і 4 прямі виходи зі стробними входами (рис. 3). За результатами експерименту заповнюємо таблицю істинності (табл. 3).

W	X_2	X_1	F_0	F_1	F_2	F_3
0			1	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

Рис. 3: Схема лінійного дешифр. на 2 вхо- Табл. 3: Таблиця істинності лінійного деди і 4 прямі виходи зі стробуван-МЯН

шифр. на 2 входи і 4 прямі виходи зі стробуванням

2.4 Дослідження пірамідального дешифратора на 3 входи і 8 прямих виходів

Складаємо схему пірамідального дешифратора на 3 входи і 8 прямих виходи (рис. 4). За результатами експерименту заповнюемо таблицю істинності (табл. 4).

Рис. 4: Схема пірамідального дешифратора на 3 входи і 8 прямих виходи

X_3	X_2	X_1	F_0	F_1	F_2	F_3	V_3	V_2	V_1	F_4	F_5	F_6	F_7
0	0	0	1	0	0	0	1	0	0	0	0	0	0
0	0	1	0	1	0	0	1	0	1	0	0	0	0
0	1	0	0	0	1	0	1	1	0	0	0	0	0
0	1	1	0	0	0	1	1	1	1	0	0	0	0

Табл. 4: Таблиця істинності пірамідального дешифратора на 3 входи і 8 прямих виходи

2.5 Дослідження шифратора на 6 входів і 3 виходи на елементах І—НЕ

Складаємо схему пірамідального шифратора на 6 входів і 3 виходи на елементах І— НЕ (рис. 5). За результатами експерименту заповнюємо таблицю істинності (табл. 5).

C_5	C_4	C_3	C_2	C_1	C_0	X_3	X_2	X_1	P
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	1	0	0	0	1
0	0	0	0	1	0	0	0	1	1
0	0	0	1	0	0	0	1	0	1
0	0	1	0	0	0	0	1	1	1
0	1	0	0	0	0	1	0	0	1
1	0	0	0	0	0	1	0	1	1

Рис. 5: Схема пірамідального шифратора на 6 входів і 3 виходи

пірамідаль- Табл. 5: Таблиця істинності пірамідального шифратопратора на ра на 6 входів і 3 виходи

3 Висновок

Виконуючи дану лабораторну роботу, ми вивчили принципи побудови, логіки роботи й синтезу дешифраторів і шифраторів; освоїли методику дослідження схем дешифраторів і шифраторів; визначили основні характеристики і параметри дешифраторів і шифраторів на інтегральних мікросхемах.