

Model Development Phase Template

Date	15 JULY 2024
Team ID	740075
Project Title	Detection Of Autistic Spectrum Disorder: Classification
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

Paste the screenshot of the model training code

Model Validation and Evaluation Report:

Model	Classification Report	Accuracy	Confusion Matrix
1. K Nearest Neighbors Model	from sklearn.neighbors import theighborsclassifier know. Neighborsclassifier(n_neighborsss_netrics_minouski_pp = 2) know.fit(Δ_{c} vain, χ_{c} vain)	55.18867	<pre>from skleann.metrics import accuracy_score accuracy_KNN = accuracy_score (y_test, y_pred) print(f'Accuracy_KNN: {accuracy_KNN*199}')</pre>

			precision recall f1-score support apple 1.00 1.00 1.00 23 banana 1.00 1.00 1.00 26 blackgram 0.91 1.00 0.95 21 chickpea 1.00 1.00 1.00 22 coconut 1.00 1.00 1.00 22 coconut 1.00 1.00 1.00 22 coconut 1.00 1.00 1.00 22 corffee 1.00 1.00 1.00 24 corffee 1.00 1.00 1.00 22 corffee 1.00 1.00 1.00 20 graphs 1.00 1.00 1.00 20 graphs 1.00 1.00 1.00 20 graphs 1.00 1.00 1.00 20 margo 1.00 1.00 1.00 20 margo 1.00 1.00 1.00 25 margo 1.00 1.00 1.00 25 murgbeam 1.00 1.00 1.00 12 musbaselon 1.00 1.00 1.00 12 musbaselon 1.00 1.00 1.00 12 crange 1.00 1.00 1.00 1.00 12 papaya 1.00 0.93 0.93 25 papaya 1.00 0.93 0.93 25 papaya 1.00 0.90 1.00 1.00 1.00 1.00 1.00 1.00
2. SVM Model	<pre>from sklearn.svm import SVC svm=SVC(kernel='rbf', random_state=0) svm.fit(X_train,y_train)</pre>	9.433	y_pred_svc=svm.predict(X_test) print('Training Set:',svm.score(X_train,y_train)) print('Training Set:',svm.score(X_test,y_test)) Training Set: 0.12213821382138 Training Set: 0.00433962264150944
3.Decision Tree Model	dt=DecisionTreeClassifier() dt.fit(X_train,y_train) - DecisionTreeClassifier DecisionTreeClassifier()	97.166	y_pred_dt=dt.predict(X_test) print('Training Set:',dt.score(X_train,y_train)) print('Training Set:',dt.score(X_test,y_test)) Training Set: .0 Training Set: 0.9716981132875472
4. Random Forest Model	rand_forest-RandomForestClassifier(random_state=42) rand_forest.fit(X_train,y_train)	97.1669	predictionRr-mand_forest.predict(X_test) print('Training Set:',rand_forest.score(X_train,y_train)) print('Training Set:',rand_forest.score(X_test,y_test)) training Set: training Set: e.3726459943990224