To divide a cube into two other cubes, a fourth power or in general any power whatever into two powers of the same denomination above the second is impossible, and I have assuredly found an admirable proof of this, but the margin is too narrow to contain it.

- Pierre de Fermat

#### 7.1 પ્રાસ્તાવિક

ધોરણ IX અને X માં આપણે સમતલ ભૂમિતિનો અભ્યાસ કર્યો અને તેના સંદર્ભમાં જ ધો XI માં યામ ભૂમિતિની કેટલીક સંકલ્પનાઓનો સવિસ્તાર અભ્યાસ કર્યો. સિમેસ્ટર II માં આપણે સિદશ અવકાશનો અભ્યાસ કર્યો. તેમાં આપણે  $R^3$  માં ત્રિપરિમાણીય યામ-ભૂમિતિની સંકલ્પના સમજયા તથા આપણે  $R^3$  માં સિદશનો અભ્યાસ કર્યો. હવે, પ્રશ્ન એ ઉદભવે કે શું આપણે રેખા, સમતલ, ચોરસ, ત્રિકોણ, ગોલક વગેરેનો અભ્યાસ  $R^3$  માં કરી શકીએ? આ પ્રશ્નનો જવાબ છે, હા. ચોક્કસ આવી સંકલ્પનાઓ સિદિશની મદદથી ઘણી સહેલાઈથી સમજી શકાય. આ પ્રકરણમાં આપણે ''અવકાશમાં રેખા'' અને ''સમતલ'' વિશેનો અભ્યાસ કરીશું.

''અવકાશમાં રેખા'' નો અભ્યાસ કરતાં પહેલાં સમતલ ભૂમિતિ અને ત્રિપરિમાણીય ભૂમિતિ વચ્ચેનો તફાવત આપણે સ્પષ્ટ કરી લઈએ. સમતલમાં આવેલ બે રેખાઓ માટે ત્રણ શક્યતાઓ હોય છે, જેવી કે (1) બે રેખાઓ સમાંતર હોય

(2) બે રેખાઓ સંપાતી હોય અને (3) બે રેખાઓ અનન્ય બિંદુમાં છેદે. આ વસ્તુ આપણે સાદા કાગળ (સમતલ) પર રેખાઓ દોરીને સહેલાઈથી ચકાસી શકીએ. પરંતુ R<sup>3</sup> માં આ જરૂરી નથી. સામાન્ય રીતે બે શક્યતાઓ છે, આ રેખાઓને સમાવતું એક સમતલ મળે અથવા આ બે રેખાઓને સમાવતું કોઈ સમતલ ન હોય. જો તે એક જ સમતલમાં હોય, તો તે સમતલીય છે અને તેમના માટે ઉપર પ્રમાણે ત્રણ શક્યતાઓ છે. જો બે રેખાઓને સમાવતું કોઈ સમતલ ન હોય તો તે વિષમતલીય રેખાઓ કહેવાય છે.

આકૃતિ 7.1માં દર્શાવ્યા પ્રમાણે બે રેખાઓ L અને M પૈકી રેખા L ઓરડાના ભોંયતળિયાના સમતલમાં અને રેખા M છતના સમતલમાં છે. આ રેખાઓ L અને M એકબીજાને સમાંતર એવા ભિન્ન સમતલોમાં આવેલી છે. તે બંનેને સમાવતું કોઈ એક સમતલ શક્ય નથી. આવી રેખાઓને વિષમતલીય રેખાઓ કહે છે. આવી શક્યતા સમતલ ભૂમિતિમાં જોવા મળતી નથી.

ખૂબ સૂક્ષ્મ અવલોકન કરતાં માલૂમ પડે છે કે,  $L \perp N$  અને  $M \perp N$  છે. પરંતુ L અને N તથા M અને N એક બીજીને છેદતી નથી. આવું સમતલીય ભૂમિતિમાં જોવા મળતું નથી.

આકૃતિ 7.2 એ ત્રિપરિમાણીય ભૂમિતિમાં (અવકાશમાં) ત્રણ રેખાઓ પરસ્પર લંબ છે તે દર્શાવે છે. આ સંભાવના સમતલ ભૂમિતિમાં શક્ય નથી. 7.2 રેખાની દિશા





આકૃતિ 7.2

આપણે સિંદિશની રેખા વિશે જાણીએ છીએ. જો  $\mathbb{R}^3$ ની રેખા  $\mathbb{L}$  પર બે ભિન્ન બિંદુઓ  $\mathbb{A}$  અને  $\mathbb{B}$  હોય તો  $\overrightarrow{AB}$  અને  $\overrightarrow{BA}$  વિરૂદ્ધ દિશાના સિંદશો છે. જો  $\overrightarrow{AB}$ ની દિશા  $\overline{l}$  હોય, તો  $\overrightarrow{BA}$ ની દિશા  $-\overline{l}$  થશે.  $\overrightarrow{AB}$  (એટલે કે  $\mathbb{L}$ ) ની દિશા  $\pm\overline{l}$  લેવામાં આવે છે.

આમ, આપણે રેખા L ની દિશા  $\overline{l}$  છે તેમ કહીએ ત્યારે તેનો અર્થ રેખા L પરના કોઈપણ સદિશની દિશા  $\overline{l}$  અથવા  $-\overline{l}$  છે એમ થશે.

ત્રિપરિમાણીય ભૂમિતિ 227

#### નોંધ :

- (1) આપશે અવકાશમાં રેખાને L, M, N, ..... વડે દર્શાવીશું.
- (2) જો (i) રેખા એક બિંદુમાંથી પસાર થતી હોય અને તેના પરના કોઈપણ સદિશની દિશા એ  $\overline{I}$ ની અથવા  $-\overline{I}$ ની દિશા હોય તો રેખાની દિશા  $\overline{I}$  છે તેમ કહીશું અને
  - (ii) અવકાશના બે ભિન્ન બિંદુ અનન્ય રેખા નિશ્ચિત કરે છે.

## 7.3 બિંદુ $\mathbf{A}(\overline{a})$ માંથી પસાર થતી તથા શુ-ચેતર સદિશ $\overline{I}$ ની દિશાવાળી રેખાનું સમીકરણ

ધારો કે  $A(\overline{a})$  માંથી પસાર થતી અને  $\overline{l}$  ની દિશાવાળી રેખા L છે.

ધારો કે  $P(\overline{r})$  એ રેખા L પરનું કોઈપણ બિંદુ છે તથા  $P \neq A$ .

$$\therefore$$
  $\overrightarrow{AP}$ ની દિશા એ  $\overline{l}$  અથવા  $-\overline{l}$  ની દિશા છે.

$$\therefore \quad \overrightarrow{AP} = k \overline{l}, \ k \in \mathbb{R} - \{0\}. \ (P \neq A \text{ siquel } k \neq 0)$$

$$\therefore \quad \overline{r} - \overline{a} = k\overline{l}$$

$$\therefore \overline{r} = \overline{a} + k\overline{l}$$

જો k=0, તો  $\overline{r}=\overline{a}$  એટલે કે  $\mathbf{P}=\mathbf{A}$ 

અને A એ રેખા L પરનું બિંદુ છે.

 $\therefore$  રેખા L પરના પ્રત્યેક બિંદુ  $P(\overline{r})$  માટે  $\overline{r} = \overline{a} + k\overline{l}, k \in \mathbb{R}.$ 

આથી ઉલટું, જો અવકાશમાં કોઈ બિંદુ  $P(\overline{r})$  એવું હોય કે જેથી કોઈક  $k\in\mathbb{R}$  માટે  $\overline{r}=\overline{a}+k\overline{l}$ 



(ii) 
$$k \neq 0$$
, તો  $\overline{r} \neq \overline{a}$  અને  $\overline{r} - \overline{a} = k\overline{l}$ ,  $(k \neq 0)$ 

$$\therefore \quad \overrightarrow{AP} = k \overline{l}$$

 $\therefore$   $\overrightarrow{AP}$  ની દિશા એ  $\overrightarrow{l}$  ની દિશા અથવા  $\overrightarrow{l}$  ની દિશાની વિરૂદ્ધ દિશા થશે. પરંતુ  $A \in L$ . તેથી  $P \in L$ .

આમ,  $P(\overline{r}) \in L \Leftrightarrow \overline{r} = \overline{a} + k\overline{l}, k \in R$ 

 $\therefore$  રેખા L નું સદિશ સમીકરણ (Vector Equation)  $\overline{r} = \overline{a} + k\overline{l}$ ,  $k \in \mathbb{R}$  છે તેમ કહેવાય.

રેખાનું સદિશ સમીકરણ એ રેખા પરના કોઈપણ બિંદુનો સ્થાન સદિશ દર્શાવે છે.

રેખાનું સમીકરણ  $\overline{a}$ ની પસંદગી પર આધારિત નથી.

 $\therefore \{\overline{b} + k\overline{l} \mid k \in \mathbb{R}\} = \{\overline{a} + k\overline{l} \mid k \in \mathbb{R}\},$  જ્યાં  $\overline{a}$  અને  $\overline{b}$  બંને L પરના બિંદુના સ્થાન સદિશ છે.

#### -રેખાનું પ્રચલ સમીકરણ ઃ

ધારો કે રેખા L ની દિશા  $\overline{l}=(l_1,\,l_2,\,l_3)$  ની દિશા છે અને તે  $\overline{a}=(x_1,\,y_1,\,z_1)$  માંથી પસાર થાય છે.  $P(\overline{r})\in L$  છે. ધારો કે  $\overline{r}=(x,\,y,\,z),\;\overline{a}=(x_1,\,y_1,\,z_1)$  અને  $\overline{l}=(l_1,\,l_2,\,l_3)$ .



આકૃતિ 7.3

$$\therefore \overline{r} = \overline{a} + k\overline{l}, k \in \mathbb{R}$$

$$\therefore$$
  $(x, y, z) = (x_1, y_1, z_1) + k(l_1, l_2, l_3), k \in \mathbb{R}$ 

$$\therefore$$
  $(x - x_1, y - y_1, z - z_1) = (kl_1, kl_2, kl_3)$ 

$$\therefore x - x_1 = kl_1, y - y_1 = kl_2, z - z_1 = kl_3$$

$$\therefore \quad x = x_1 + kl_1$$

$$y = y_1 + kl_2$$

$$z = z_1 + kl_3$$

$$k \in \mathbb{R}$$

આ સમીકરણોને  $(x_1, y_1, z_1)$ માંથી પસાર થતી અને  $(l_1, l_2, l_3)$  ની દિશાવાળી રેખા Lનાં પ્રચલ સમીકરણ કહે છે અને k પ્રચલ છે.

કાર્તેઝીય સમીકરણ (સંમિત સ્વરૂપ) (Symmetric Form) :

જો આપણે ઉપરના સમીકરણોમાંથી પ્રચલ k નો લોપ કરીએ અને  $l_1 \neq 0,\ l_2 \neq 0,\ l_3 \neq 0$  હોય, તો

$$\frac{x - x_1}{l_1} = \frac{y - y_1}{l_2} = \frac{z - z_1}{l_3} \ (= k) \ \text{Hol}. \tag{(i) 420}$$

આ સમીકરણને રેખાના સમીકરણનું સંમિત સ્વરૂપ અથવા કાર્તેઝીય સ્વરૂપ કહે છે.

જો  $l_1 = 0$  અને  $l_2 \neq 0$ ,  $l_3 \neq 0$  તો (i) પરથી,

$$x = x_1, \frac{y - y_1}{l_2} = \frac{z - z_1}{l_3}$$

[ખરેખર તો 
$$x-x_1=kl_1$$
 અને  $l_1=0$  હોવાથી  $x-x_1=0$ , એટલે કે  $x=x_1$ .]

આ સમીકરણને  $\frac{x-x_1}{0}=\frac{y-y_1}{l_2}=\frac{z-z_1}{l_3}$  (= k) તરીકે લખી શકાય. (અહીં છેદમાં 0 છે તેનો અર્થ સદિશ

 $\overline{l}$  નો પ્રથમ ઘટક  $l_1=0$  છે. છેદનો શૂન્ય માત્ર ઔપચારિક છે.) આ ફક્ત સાંકેતિક સ્વરૂપ છે.

અહીં 
$$x = x_1 + 0k$$
,  $y = y_1 + kl_2$ ,  $z = z_1 + kl_3$ 

$$\therefore$$
  $x = x_1, y = y_1 + kl_2, z = z_1 + kl_3.$ 

આ જ પ્રમાણે  $l_1$ ,  $l_2$ ,  $l_3$ માંથી કોઈ પણ શૂન્ય હોય (અલબત,  $l_1=l_2=l_3=0$  નહીં), તો પણ આપણે સંમિત સ્વરૂપે સમીકરણ લખી શકીએ. જો  $l_1=l_2=0$  તો,  $x=x_1,\ y=y_1$  અને z એ સ્વૈર છે.

સંકેતમાં આપણે તેને 
$$\frac{x-x_1}{0}=\frac{y-y_1}{0}=\frac{z-z_1}{l_3}=k\;(l_3\neq 0 \text{ sizes } \frac{1}{l}\neq \overline{0})$$

પુનઃ અહીં છેદ શૂન્ય હોવાથી શૂન્ય વડે ભાગાકાર છે તેમ સમજીશું નહીં. સામાન્ય રીતે  $x-x_1=0$  અથવા  $x=x_1$  અને  $y-y_1=0$  અથવા  $y=y_1$  તેવો અર્થ છે.

નોંધ : જો  $A(x_1, y_1, z_1)$  માંથી પસાર થતી રેખા Lની દિક્કોસાઈન  $l_1$ ,  $l_2$ ,  $l_3$  હોય, તો L નું સમીકરણ  $\frac{x-x_1}{l_1}=\frac{y-y_1}{l_2}=\frac{z-z_1}{l_3}$  થશે, જ્યાં  $l_1^2+l_2^2+l_3^2=1$ .

ઉદાહરણ 1: A(2, 1, -4)માંથી પસાર થતી અને સિંદશ (1, -1, 2) ની દિશાવાળી રેખાનું સિંદશ તેમજ સંમિત સ્વરૂપે સમીકરણ શોધો.

ઉદેલ: અહીં, 
$$\overline{a}=(2,1,-4)$$
 અને  $\overline{l}=(1,-1,2)$ .

 $\therefore$  Lનું સદિશ સમીકરણ  $\overline{r}=\overline{a}+k\overline{l}$ ,  $k\in \mathbb{R}$  પ્રમાણે,

$$\overline{r} = (2, 1, -4) + k(1, -1, 2), k \in \mathbb{R}$$
 થશે.  
આ રેખાનું સિંદેશ સમીકરણ છે.

રેખાના સમીકરણનું સંમિત સ્વરૂપ : રેખાના સમીકરણનું સંમિત સ્વરૂપ  $\frac{x-x_1}{l_1}=\frac{y-y_1}{l_2}=\frac{z-z_1}{l_3}$ 

$$\therefore \quad \frac{x-2}{1} = \frac{y-1}{-1} = \frac{z+4}{2}$$
એ રેખાના સમીકરણનું સંમિત સ્વરૂપ છે.

# 7.4 બે ભિન્ન બિંદુમાંથી પસાર થતી રેખાનું સમીકરણ

ધારો કે  $A(\overline{a})$  તથા  $B(\overline{b})$  માંથી પસાર થતી  $\overrightarrow{AB}$  નું સમીકરણ મેળવવું છે.  $(A \neq B)$ 

ધારો કે  $P(\overline{r})$  એ  $\overrightarrow{AB}$  પરનું કોઈપણ બિંદુ છે અને  $P \neq A$ .

$$P(\overline{r}) \in \stackrel{\longleftrightarrow}{AB} \Leftrightarrow \stackrel{\longrightarrow}{AP}$$
 અને  $\stackrel{\longrightarrow}{AB}$ ની દિશા

સમાન અથવા પરસ્પર વિરુદ્ધ છે.

$$\Leftrightarrow \overrightarrow{AP} = k \overrightarrow{AB}, k \in \mathbb{R} - \{0\}$$

 $(k \neq 0$  કારણ કે  $P \neq A)$ 

$$\Leftrightarrow \overline{r} - \overline{a} = k(\overline{b} - \overline{a})$$

$$\Leftrightarrow \overline{r} = \overline{a} + k(\overline{b} - \overline{a})$$

$$\Leftrightarrow \overline{r} = (1 - k)\overline{a} + k\overline{b}, k \in \mathbb{R} - \{0\}$$

વળી, 
$$k = 0 \Leftrightarrow \overline{r} = \overline{a}$$
 અને  $A(\overline{a}) \in AB$ 



આકૃતિ 7.4

$$\therefore$$
  $\overrightarrow{AB}$  તું સદિશ સમીકરણ  $\overline{r}=(1-k)\overline{a}+k\overline{b}, k\in\mathbb{R}$  અથવા  $\overline{r}=\overline{a}+k(\overline{b}-\overline{a}), k\in\mathbb{R}$  છે.

અથવા 
$$k = 1 - t$$
 લેતાં  $\bar{r} = (1 - (1 - t))\bar{a} + (1 - t)\bar{b}$ ,  $t \in \mathbb{R}$ 

$$= t\overline{a} + (1-t)\overline{b} = \overline{b} + t(\overline{a} - \overline{b}). \quad t \in \mathbb{R}$$

[સરખાવો :  $R^2$  માં  $x = tx_2 + (1 - t) x_1, y = ty_2 + (1 - t) y_1$ ]

આમ  $\overline{a}$  અને  $\overline{b}$ ની અદલાબદલી કરી શકાય અથવા L પરનાં કોઈપણ બે ભિન્ન બિંદુઓ લઈ સમીકરણ પ્રાપ્ત કરી શકાય.

#### પ્રચલ સ્વરૂપ :

ધારો કે 
$$\overline{a} = (x_1, y_1, z_1), \ \overline{b} = (x_2, y_2, z_2), \ \overline{r} = (x, y, z).$$

$$\vec{r} = \vec{a} + k(\vec{b} - \vec{a}), k \in \mathbb{R} \text{ પરથી,}$$
  $(x, y, z) = (x_1, y_1, z_1) + k(x_2 - x_1, y_2 - y_1, z_2 - z_1), k \in \mathbb{R}$ 

$$\therefore x - x_1 = k(x_2 - x_1), y - y_1 = k(y_2 - y_1), z - z_1 = k(z_2 - z_1)$$
 (i)

#### સંમિત સ્વરૂપ :

ઉપરનાં સમીકરણોમાંથી પ્રચલ k નો લોપ કરતાં,

$$\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1} \ \text{ud}.$$

[સરખાવો : 
$$R^2$$
 માં  $\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1}$ ]

આ સ્વરૂપ એ  $\stackrel{\longleftrightarrow}{AB}$  ના સમીકરણનું કાર્તેઝીય અથવા સંમિત સ્વરૂપ છે.

અહીં પણ જો  $x_1 = x_2$  તો સમીકરણ

$$\frac{x-x_1}{0} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1} \text{ exi.}$$

(જ્યારે છેદ શુન્ય હોય ત્યારે અંશ શુન્ય છે તેમ અર્થઘટન કરવું.)

[અહીં  $x-x_1$ નો છેદ શૂન્ય છે, તેનો અર્થ આપણે  $x=x_1$  સમજીશું. આ માત્ર સાંકેતિક સ્વરૂપ છે.]

એટલે કે  $x = x_1$ ,  $\frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$  સમીકરણ મળે.

ઉદાહરણ 2 : રેખા  $\frac{3-x}{3} = \frac{2y-3}{5} = \frac{z}{2}$  નું સદિશ સ્વરૂપે સમીકરણ લખો.

ઉકેલ : રેખાનું સમીકરણ  $\frac{x-3}{-3} = \frac{y-\frac{3}{2}}{\frac{5}{2}} = \frac{z-0}{2}$  થશે

આથી  $\overline{a} = \left(3, \frac{3}{2}, 0\right)$  અને  $\overline{l} = \left(-3, \frac{5}{2}, 2\right)$  એટલે કે  $\overline{l} = \left(-6, 5, 4\right)$  લઈ શકાય.

 $\therefore$  રેખાના સમીકરણના સદિશ સ્વરૂપ  $\overline{r}=\overline{a}+k\overline{l}$  ,  $k\in\mathbb{R}$  પરથી,

 $\overline{r} = (3, \frac{3}{2}, 0) + k(-6, 5, 4), k \in \mathbb{R}$  એ રેખાનું સદિશ સ્વરૂપે સમીકરણ છે.

ઉદાહરણ 3: સમીકરણ  $\overline{r}=(5,-2,4)+k(0,-4,3),\ k\in\mathbb{R}$  નું કાર્તેઝીય સ્વરૂપમાં પરિવર્તન કરો.

ઉકેલ : અહીં,  $\overline{a}=(5,-2,4)=(x_1,y_1,z_1)$  અને  $\overline{l}=(0,-4,3)=(l_1,l_2,l_3)$ 

રેખાના સમીકરણનું કાર્તેઝીય સ્વરૂપ  $\frac{x-x_1}{l_1}=\frac{y-y_1}{l_2}=\frac{z-z_1}{l_3}$  છે.

$$x - 5 = 0$$
,  $\frac{y + 2}{-4} = \frac{z - 4}{3}$  એ રેખાના સમીકરણનું કાર્તેઝીય સ્વરૂપ છે. ( $l_1 = 0$ )

ઉદાહરણ 4 : (2, 2, –3) અને (1, 3, 5) માંથી પસાર થતી રેખાનું સમીકરણ મેળવો.

ઉકેલ :  $\overline{a}$  અને  $\overline{b}$  માંથી પસાર થતી રેખાનું સમીકરણ  $\overline{r} = \overline{a} + k(\overline{b} - \overline{a}), k \in \mathbb{R}$  છે.

અહીં,  $\overline{a}=(2,\,2,\,-3)$  અને  $\overline{b}=(1,\,3,\,5),\,\overline{b}\,-\overline{a}=(-1,\,1,\,8).$ 

 $\vec{r} = (2, 2, -3) + k(-1, 1, 8), k \in \mathbb{R}$  રેખાનું સદિશ સ્વરૂપે સમીકરણ છે.

 $\therefore$  રેખાના સમીકરણનું કાર્તેઝીય સ્વરૂપ  $\frac{x-2}{-1}=\frac{y-2}{1}=\frac{z+3}{8}$  છે.

# 7.5 સમરેખ બિંદુઓ

ધારોકે  $A(\overline{a})$ ,  $B(\overline{b})$ ,  $C(\overline{c})$  એ  $R^3$  નાં ભિન્ન બિંદુઓ છે.

A, B, C સમરેખ છે.  $\Leftrightarrow C \in \overrightarrow{AB}$ 

$$\Leftrightarrow$$
 sìઈs  $k \in \mathbb{R}$  માટે  $\overline{c} = \overline{a} + k(\overline{b} - \overline{a})$ 

$$(\stackrel{\Longleftrightarrow}{\mathrm{AB}}$$
 નું સમીકરણ  $\overline{r}=\overline{a}+k(\overline{b}-\overline{a}), k\in\mathbb{R})$ 

$$\Leftrightarrow \overline{c} - \overline{a} = k(\overline{b} - \overline{a})$$

$$\therefore$$
 A, B, C સમરેખ છે.  $\Leftrightarrow (\overline{c} - \overline{a}) \times (\overline{b} - \overline{a}) = \overline{0}$ 

આમ,  $A(\overline{a})$ ,  $B(\overline{b})$ ,  $C(\overline{c})$  સમરેખ હોવા માટેની આવશ્યક અને પર્યાપ્ત શરત  $(\overline{c}-\overline{a})\times(\overline{b}-\overline{a})=\overline{0}$  છે.

બિંદુઓ સમરેખ હોવાની આવશ્યક અને પર્યાપ્ત શરત દર્શાવતું એક પ્રમેય નીચે પ્રમાણે છે. આપણે આ પ્રમેય સાબિતી આપ્યા વગર સ્વીકારીશં.

પ્રમેય 7.1 : જો  $A(\overline{a})$ ,  $B(\overline{b})$ ,  $C(\overline{c})$  અવકાશનાં ભિન્ન બિંદુઓ હોય અને શૂન્યેતર વાસ્તવિક સંખ્યાઓ l, m, n એવી મળે કે જેથી l+m+n=0 અને  $l|\overline{a}|+m\overline{b}|+n\overline{c}|=\overline{0}$  તો અને તો જ  $A(\overline{a})$ ,  $B(\overline{b})$ ,  $C(\overline{c})$  સમરેખ છે.

ત્રણ ભિન્ન બિંદુઓ સમરેખ હોવાની એક આવશ્યક શરત આપણે મેળવીશું.

A, B, C સમરેખ છે 
$$\Rightarrow (\overline{c} - \overline{a}) \times (\overline{b} - \overline{a}) = \overline{0}$$

$$\Rightarrow (\overline{c} \times \overline{b}) - (\overline{a} \times \overline{b}) - (\overline{c} \times \overline{a}) + (\overline{a} \times \overline{a}) = \overline{0}$$
વળી  $\overline{a} \times \overline{a} = \overline{0}$  અને  $\overline{c} \times \overline{b} = -\overline{b} \times \overline{c}$ 

$$\Rightarrow (\overline{a} \times \overline{b}) + (\overline{b} \times \overline{c}) + (\overline{c} \times \overline{a}) = \overline{0}$$

$$\Rightarrow (\overline{a} \times \overline{b}) \cdot \overline{c} + (\overline{b} \times \overline{c}) \cdot \overline{c} + (\overline{c} \times \overline{a}) \cdot \overline{c} = 0$$

$$\Rightarrow [\overline{a} \ \overline{b} \ \overline{c}] = 0$$

 $[\overline{a} \ \overline{b} \ \overline{c}] = 0$  એ  $A(\overline{a}), B(\overline{b}), C(\overline{c})$  સમરેખ હોવા માટેની માત્ર આવશ્યક શરત જ છે, પર્યાપ્ત નથી.

આપણે એ નોંધીએ કે  $[\overline{a} \ \overline{b} \ \overline{c}] \neq 0 \Rightarrow A, B, C$  અસમરેખ છે, પરંતુ  $[\overline{a} \ \overline{b} \ \overline{c}] = 0$  થી આપણે કોઈ નિર્ણય લઈ શકીએ નહીં, તે નીચેના ઉદાહરણ પરથી સ્પષ્ટ થશે.

નીચેના ઉદાહરણો આ શરત પર્યાપ્ત નથી તે દર્શાવે છે. :

ઉદાહરણ તરીકે A(1, 2, 0), B(-4, 1, 9) અને C(2, 4, 0) સમરેખ છે કે નહીં તે ચકાસીએ.

ધારો કે 
$$\overline{a}=(1,\,2,\,0),\,\overline{b}=(-4,\,1,\,9)$$
 અને  $\overline{c}=(2,\,4,\,0)$ 

માટે 
$$[\overline{a} \ \overline{b} \ \overline{c}] = \begin{vmatrix} 1 & 2 & 0 \\ -4 & 1 & 9 \\ 2 & 4 & 0 \end{vmatrix} = 1(-36) - 2(-18) + 0 = 0$$

eq. 
$$\overline{c} - \overline{a} = (1, 2, 0)$$
  
 $\overline{b} - \overline{a} = (-5, -1, 9)$   
 $(\overline{c} - \overline{a}) \times (\overline{b} - \overline{a}) = (18, -9, 9) \neq \overline{0}$ 

 $\therefore$  A, B, C અસમરેખ છે. આમ  $[\overline{a} \ \overline{b} \ \overline{c}] = 0$  છે, પરંતુ A, B, C અસમરેખ છે.

એક બીજું સરળ ઉદાહરણ લઈએ,  $\overline{a}=(0,\ 0,\ 0),\ \overline{b}=(1,\ 2,\ 3),\ \overline{c}=(2,\ 3,\ 4)$  લેતાં,  $[\overline{a}\ \overline{b}\ \overline{c}]=0$  પરંતુ  $(\overline{c}\ -\overline{a})\times(\overline{b}\ -\overline{a})=\overline{c}\ \times\overline{b}\neq \overline{0}$ 

 $\therefore \ \overline{a}, \overline{b}, \overline{c}$  અસમરેખ છે.

ઉદાહરણ **5** : સાબિત કરો કે (−1, 2, 5), (−2, 4, 2) અને (1, −2, 11) સમરેખ છે.

$$634: 11: \overline{a} = (-1, 2, 5), \overline{b} = (-2, 4, 2), \overline{c} = (1, -2, 11)$$

$$\therefore \quad \overline{c} - \overline{a} = (2, -4, 6) \text{ evel}$$
$$\overline{b} - \overline{a} = (-1, 2, -3)$$

$$\therefore (\overline{c} - \overline{a}) \times (\overline{b} - \overline{a}) = (0, 0, 0) = \overline{0}$$

∴ આપેલાં બિંદુઓ સમરેખ છે.

રીત 2 : પ્રથમ આપણે બે બિંદુઓ  $\mathbf{A}(\overline{a})=(-1,\,2,\,5)$  અને  $\mathbf{B}(\overline{b})=(-2,\,4,\,2)$  માંથી પસાર થતી રેખાનું સમીકરણ મેળવીશું.

 $\stackrel{\longleftrightarrow}{\mathrm{AB}}$  નું સમીકરણ  $\overline{r}=\overline{a}+k(\overline{b}-\overline{a}),\ k\in\mathrm{R}$  છે.

 $\therefore$   $\overline{r} = (-1, 2, 5) + k(-1, 2, -3), k \in \mathbb{R}$ 

હવે આપણે બતાવીશું કે ત્રીજું બિંદુ  $C(\overline{c}) = (1, -2, 11)$  આ રેખા પર આવેલું છે.

જો  $\overline{c}=(1,-2,\,11)$  એ  $\stackrel{\longleftrightarrow}{\operatorname{AB}}$  પર આવેલું હોય તો કોઈક  $k\in\mathbb{R}$  માટે

(1, -2, 11) = (-1 - k, 2 + 2k, 5 - 3k) થવું જોઈએ.

- :. કોઈક  $k \in \mathbb{R}$  માટે 1 = -1 k, -2 = 2 + 2k, 11 = 5 3k થવું જોઈએ. k = -2 બધાં જ સમીકરણનું સમાધાન કરે છે.
- ∴  $C(\overline{c})$  એ  $\overrightarrow{AB}$  પર છે.
- ∴ A, B, C સમરેખ છે.

#### 7.6 બે રેખા વચ્ચેના ખૂણાનું માપ

ધારો કે અવકાશમાં  $\overline{r}=\overline{a}+k\overline{l}$ ,  $k\in\mathbb{R}$  અને  $\overline{r}=\overline{b}+k\overline{m}$ ,  $k\in\mathbb{R}$  બે ભિન્ન રેખાઓનાં સમીકરણ છે.

- (i) જો  $\overline{l}=\overline{m}$  અથવા  $\overline{l}=-\overline{m}$ , તો  $\overline{l}\times\overline{m}=\overline{0}$ . તેથી બે રેખાઓ વચ્ચેના ખૂણાનું માપ શૂન્ય છે. બંને રેખાની દિશા સમાન છે. તેથી તે સંપાતી અથવા સમાંતર રેખાઓ છે.
  - (ii) જો  $\overline{l} \perp \overline{m}$  એટલે કે  $\overline{l} \cdot \overline{m} = 0$  તો રેખાઓ એકબીજીને લંબ થશે અને તેથી તેમની વચ્ચેના ખૂણાનું માપ  $\frac{\pi}{2}$  લઈશું.
- (iii) જો  $\overline{l} \neq \pm \overline{m}$  અથવા  $\overline{l} \cdot \overline{m} \neq 0$  તો આપેલ રેખાઓ એકબીજાને સમાંતર, સંપાતી અથવા પરસ્પર લંબ નથી. આપણે સદિશો  $\overline{l}$  અને  $\overline{m}$  વચ્ચેના લઘુકોણ ખૂણાના માપને બે રેખા વચ્ચેના ખૂણાના માપ તરીકે લઈશું.

જો બે રેખા વચ્ચેના ખુણાનું માપ α હોય, તો

$$\cos\alpha = \frac{|\overline{l} \cdot \overline{m}|}{|\overline{l}||\overline{m}|}, \ 0 < \alpha < \frac{\pi}{2}$$

α = 0 તથા  $\frac{π}{2}$  માટે પણ આ પરિણામ સત્ય છે.

નોંધ :  $\alpha = 0$  માટે  $|\overline{l} \cdot \overline{m}| = |\overline{l}| |\overline{m}|$ .

 $\therefore \quad \overline{l} \times \overline{m} = \overline{0}$ 

આમ, 
$$cos \alpha = \frac{|\overline{l} \cdot \overline{m}|}{|\overline{l}||\overline{m}|}, \ 0 \le \alpha \le \frac{\pi}{2}$$

7.7 બે ભિન્ન રેખાઓ છેદે તે માટેની શરત

પ્રમેય 7.2 : જો બે રેખાઓ  $\overline{r}=\overline{a}+k\overline{l}$  ,  $k\in\mathbb{R}$  અને  $\overline{r}=\overline{b}+k\overline{m}$  ,  $k\in\mathbb{R}$  પરસ્પર છેદે, તો  $(\overline{a}-\overline{b})\cdot(\overline{l}\times\overline{m})=0.$ 

સાબિતી : ધારો કે બે ભિન્ન રેખાઓ  $\overline{r}=\overline{a}+k\overline{l}$ ,  $k\in\mathbb{R}$  અને  $\overline{r}=\overline{b}+k\overline{m}$ ,  $k\in\mathbb{R}$  એકબીજીને  $\mathrm{C}(\overline{c})$ માં છેદે છે.

તેથી કોઈક  $k_1,\ k_2\in \ \mathbb{R}$  મળે જેથી  $\overline{c}=\overline{a}+k_1\overline{l}=\overline{b}+k_2\overline{m}$  .

$$\therefore \ \overline{a} - \overline{b} = k_2 \overline{m} - k_1 \overline{l}$$

$$\therefore (\overline{a} - \overline{b}) \cdot (\overline{l} \times \overline{m}) = (k_2 \overline{m} - k_1 \overline{l}) \cdot (\overline{l} \times \overline{m}) = k_2 \overline{m} \cdot (\overline{l} \times \overline{m}) - k_1 \overline{l} \cdot (\overline{l} \times \overline{m})$$

$$= 0 - 0 = 0$$

$$\therefore (\overline{a} - \overline{b}) \cdot (\overline{l} \times \overline{m}) = 0$$

$$\therefore$$
 આપેલ રેખાઓ એકબીજીને છેદે તો  $(\overline{a} - \overline{b}) \cdot (\overline{l} \times \overline{m}) = 0$ 

નોંધ ઃ આ શરત આવશ્યક છે પરંતુ પર્યાપ્ત નથી.

જો  $\overline{a}=(x_1,\ y_1,\ z_1),\ \overline{b}=(x_2,\ y_2,\ z_2),\ \overline{l}=(l_1,\ l_2,\ l_3)$  અને  $\overline{m}=(m_1,\ m_2,\ m_3)$  લઈએ તો  $(\overline{a}-\overline{b})\cdot(\overline{l}\times\overline{m})=0$  શસ્તને

$$\begin{vmatrix} x_1 - x_2 & y_1 - y_2 & z_1 - z_2 \\ l_1 & l_2 & l_3 \\ m_1 & m_2 & m_2 \end{vmatrix} = 0$$

સ્વરૂપમાં દર્શાવી શકાય. આ બે રેખાઓ છેદે તે માટેની કાર્તેઝીય સ્વરૂપમાં શરત છે.

ઉદાહરણ 6 : રેખાઓ  $\frac{x-2}{2}=\frac{y-1}{2}=\frac{z+3}{1}$  અને  $\frac{x+2}{4}=\frac{y-4}{1}=\frac{z-3}{8}$  વચ્ચેના ખૂણાનું માપ શોધો.

ઉકેલ : રેખા L નાં સમીકરણ  $\frac{x-2}{2} = \frac{y-1}{2} = \frac{z+3}{1}$  અને M નાં સમીકરણ  $\frac{x+2}{4} = \frac{y-4}{1} = \frac{z-3}{8}$  છે.

∴ 
$$\overline{l} = (2, 2, 1)$$
 અને  $\overline{m} = (4, 1, 8)$ 

જો બે રેખા વચ્ચેના ખૂણાનું માપ lpha હોય તો,  $0 \le lpha \le rac{\pi}{2}.$ 

$$cos\alpha = \frac{|\overline{l} \cdot \overline{m}|}{|\overline{l}||\overline{m}|} = \frac{8+2+8}{\sqrt{9} \cdot \sqrt{81}} = \frac{18}{3 \cdot 9} = \frac{2}{3}$$

$$\therefore \quad \alpha = \cos^{-1}\frac{2}{3}$$

ઉદાહરણ 7: રેખાઓ  $\frac{x-5}{7}=\frac{y-5}{k}=\frac{z-2}{1}$  અને  $\frac{x}{1}=\frac{y-3}{2}=\frac{z+1}{3}$  પરસ્પર લંબ હોય તો k શોધો.

ઉદ્દેલ : અહીં, 
$$\overline{l}=(7,\,k,\,1)$$
 અને  $\overline{m}=(1,\,2,\,3)$ 

રેખાઓ પરસ્પર લંબ હોવાથી  $\overline{l}\cdot\overline{m}=0$ 

$$\therefore$$
 7 + 2k + 3 = 0

$$\therefore$$
  $2k = -10$ 

$$\therefore k = -5$$

ઉદાહરણ 8: રેખા  $\overline{r}=(-3,\ 4,\ 8)+k(3,\ 5,\ 6),\ k\in\mathbb{R}$  ને સમાંતર અને  $(2,\ -4,\ 5)$  માંથી પસાર થતી રેખાનું કાર્તેઝીય સમીકરણ મેળવો.

ઉકેલ : રેખાઓ સમાંતર હોવાથી બંને રેખાની દિશા સમાન થશે.

:. રેખાની દિશા  $\overline{l}=(3,5,6)=(l_1,l_2,l_3)$  છે અને તે બિંદુ  $(2,-4,5)=(x_1,y_1,z_1)$ માંથી પસાર થાય છે. (2,-4,5) એ રેખા  $\overline{r}=(-3,4,8)+k(3,5,6), k\in\mathbb{R}$  પર નથી તેમ બતાવીશું.

ધારો કે કોઈક  $k \in \mathbb{R}$  માટે (2, -4, 5) = (-3, 4, 8) + k(3, 5, 6)

 $\therefore$  (5, -8, -3) = k(3, 5, 6)

પરંતુ કોઈ પણ  $k \in \mathbb{R}$  માટે 5 = 3k, -8 = 5k, -3 = 6k શક્ય નથી.

 $\therefore$  આપેલી રેખાને  $(x_1,\ y_1,\ z_1)$  માંથી પસાર થતી સમાંતર રેખાનું સમીકરણ

$$\frac{x - x_1}{l_1} = \frac{y - y_1}{l_2} = \frac{z - z_1}{l_3}$$

 $\therefore \frac{x-2}{3} = \frac{y+4}{5} = \frac{z-5}{6}$  એ (2, -4, 5) માંથી પસાર થતી અને આપેલ રેખાને સમાંતર રેખાનું સમીકરણ છે.

સમતલીય અને વિષમતલીય રેખાઓ માટેની શરત:

પ્રમેય 7.3 : રેખાઓ  $\overline{r}=\overline{a}+k\overline{l}$ ,  $k\in\mathbb{R}$  અને  $\overline{r}=\overline{b}+k\overline{m}$ ,  $k\in\mathbb{R}$ . સમતલીય હોવાની આવશ્યક શસ્ત  $(\overline{a}-\overline{b})\cdot(\overline{l}\times\overline{m})=0$  છે.

સાબિતી : જો બે ભિન્ન રેખાઓ  $L: \overline{r} = \overline{a} + k\overline{l}$ ,  $k \in \mathbb{R}$  અને  $M: \overline{r} = \overline{b} + k\overline{m}$ ,  $k \in \mathbb{R}$  સમતલીય હોય તો તે અનન્ય બિંદુમાં છેદે અથવા પરસ્પર સમાંતર હોય.

જો તે અનન્ય બિંદુમાં છેદે તો પ્રમેય 7.2 પ્રમાણે  $(\overline{a} - \overline{b}) \cdot (\overline{l} \times \overline{m}) = 0$ .

અને જો તે સમાંતર હોય તો  $\overline{l} \times \overline{m} = \overline{0}$ .

 $\therefore$  બંને વિકલ્પમાં  $(\overline{a} - \overline{b}) \cdot (\overline{l} \times \overline{m}) = 0$  બે રેખાઓ સમતલીય હોવાની આવશ્યક શરત છે.

ઉપરની શરત પર્યાપ્ત છે ?

વિષમતલીય રેખાઓ : જો બે રેખાઓને સમાવતું કોઈ સમતલ ના મળી શકે તો તેમને વિષમતલીય રેખાઓ (Skew lines) કહે છે.

પ્રમેય 7.3 ના વિધાન પરથી એ તો નક્કી થાય છે જ કે

$$(\overline{a} - \overline{b}) \cdot (\overline{l} \times \overline{m}) \neq 0 \Rightarrow$$
 રેખાઓ  $\overline{r} = \overline{a} + k\overline{l}$  અને  $\overline{r} = \overline{b} + k\overline{m}$  વિષમતલીય છે.

ઉદાહરણ 9 : રેખાઓ  $L: \frac{x-3}{4} = \frac{y+2}{-1} = \frac{z+1}{-1}$  અને  $M: \frac{x}{2} = \frac{z+3}{3}$ , y = -1 સમતલીય છે કે નહીં તે ચકાસો.

ઉદ્દેલ : રેખા M ને  $\frac{x}{2} = \frac{y+1}{0} = \frac{z+3}{3}$  પ્રમાણે લઈ શકાય.

અહીં, 
$$\overline{a}=(3,-2,-1), \overline{l}=(4,-1,-1)$$
 અને  $\overline{b}=(0,-1,-3), \overline{m}=(2,0,3)$ 

$$\therefore \quad \overline{a} - \overline{b} = (3, -1, 2)$$

$$(\overline{a} - \overline{b}) \cdot (\overline{l} \times \overline{m}) = \begin{vmatrix} 3 & -1 & 2 \\ 4 & -1 & -1 \\ 2 & 0 & 3 \end{vmatrix}$$
$$= 3(-3) + 1(14) + 2(2)$$
$$= -9 + 14 + 4 = 9 \neq 0$$

∴ L અને M વિષમતલીય રેખાઓ છે.

#### 7.8 બિંદુનું રેખાથી લંબઅંતર :

ધારો કે  $A(\overline{a})$  માંથી પસાર થતી અને દિશા  $\overline{l}$  વાળી રેખા Lનું સમીકરણ  $\overline{r}=\overline{a}+k\overline{l}$  ,  $k\in\mathbb{R}$  છે અને  $P(\overline{p})$  એ  $\mathbb{R}^3$  માં કોઈપણ બિંદુ છે.

જો P ∈ L તો P અને L વચ્ચેનું લંબઅંતર શૂન્ય થશે.

જો P ∉ L તો, P અને L એક અનન્ય સમતલ π નક્કી કરે છે.

ધારો કે P માંથી સમતલ  $\pi$  માં રેખા L પરનો લંબપાદ M છે અને  $(\overline{l}, \stackrel{\wedge}{\mathsf{AP}}) = \alpha$  ધારો કે,  $\mathsf{M} \neq \mathsf{A}$ 

જ્યાં,  $0 < \alpha < \frac{\pi}{2}$ .

ે સ, જે પે સ્ત્રે પ્રાપ્ત કર્યા હોલ સંબંધેતર 
$$= PM$$

$$= AP \sin\alpha$$

$$= \frac{|\overrightarrow{AP}| | \overline{l} | \sin\alpha}{| \overline{l} |} \qquad (\overline{l} \neq \overline{0})$$

$$= \frac{|\overrightarrow{AP} \times \overline{l}|}{| \overline{l} |} \qquad (\alpha = (\overrightarrow{AP}, \overline{l}))$$

$$= \frac{|(\overline{p} - \overline{a}) \times \overline{l}|}{| \overline{l} |}$$
આમ,  $PM = \frac{|(\overline{p} - \overline{a}) \times \overline{l}|}{| \overline{l} |}$  અથવા  $|(\overline{p} - \overline{a}) \times \hat{l}|$ 



આકૃતિ 7.5

$$\left(\hat{l} = \frac{\overline{l}}{|\overline{l}|}\right)$$

$$AM = |\operatorname{Proj}_{\overline{l}} \overrightarrow{AP}| = \frac{|\overrightarrow{AP} \times \overline{l}|}{|\overline{l}|}$$

$$\stackrel{\stackrel{?}{\rightleftharpoons}}{\rightleftharpoons} AP^2 - AM^2$$

$$= AP^2 - \frac{|\overrightarrow{AP} \times \overline{l}|^2}{|\overline{l}|^2}$$

$$= \frac{|\overrightarrow{AP}|^2 |\overline{l}|^2 - |\overrightarrow{AP} \cdot \overline{l}|^2}{|\overline{l}|^2}$$

$$= \frac{|\overrightarrow{AP}|^2 |\overline{l}|^2 - |\overrightarrow{AP} \cdot \overline{l}|^2}{|\overline{l}|^2}$$

$$PM^2 = \frac{|\overrightarrow{AP} \times \overline{l}|^2}{|\overline{l}|^2}$$

$$\therefore PM = \frac{|\overrightarrow{AP} \times \overline{l}|}{|\overline{l}|} = \frac{|(\overline{p} - \overline{a}) \times \overline{l}|}{|\overline{l}|} = |(\overline{p} - \overline{a}) \times \hat{l}|$$

(લાગ્રાન્જનું નિત્યસમ)

નોંધ : જો A માંથી લંબરેખા પર P હોય તો પણ દેખીતું જ પરિણામ સત્ય છે.  $PA = |\overline{p} - \overline{a}|$ 

ઉદાહરણ 10 : બિંદુ (1, 2, -4) નું રેખા  $\frac{x-3}{2} = \frac{y-3}{3} = \frac{z+5}{6}$  થી લંબઅંતર શોધો.

ઉકેલ : અહીં બિંદુ P(1, 2, -4) અને  $A(\overline{a}) = (3, 3, -5), \overline{l} = (2, 3, 6)$  છે.

$$\overrightarrow{AP}$$
 = (1 - 3, 2 - 3, -4 + 5) = (-2, -1, 1) ਅਜੇ

$$\overline{l} = (2, 3, 6)$$

$$\overrightarrow{l} = (-9, 14, -4)$$
  
 $|\overrightarrow{l}| = \sqrt{4+9+36} = 7$ 

∴ P નું આપેલી રેખાથી લંબઅંતર = 
$$\frac{1}{|I|}$$
 =  $\frac{|(-9, 14, -4)|}{7}$  =  $\frac{\sqrt{81+196+16}}{7}$  =  $\frac{\sqrt{293}}{7}$ 

# બે સમાંતર રેખાઓ વચ્ચેનું લંબઅંતર :

ધારો કે L :  $\overline{r} = \overline{a} + k\overline{l}$ ,  $k \in \mathbb{R}$  અને M :  $\overline{r} = \overline{b} + k\overline{l}$ ,  $k \in \mathbb{R}$  એ  $\mathbb{R}^3$  માં બે સમાંતર રેખાઓ છે.

 $L \parallel M$  હોવાથી તે એક અનન્ય સમતલ નક્કી કરે છે.

 $oxdot{L}$  અને  $oxdot{M}$  વચ્ચેનું લંબઅંતર એટલે કે  $oxdot{A(\overline{a})}$ નું  $oxdot{M}$ થી (અથવા  $oxdot{B(\overline{b})}$ નું  $oxdot{L}$ થી) લંબઅંતર



$$=\frac{|\overrightarrow{AB}\times\overline{l}|}{|\overline{l}|}=\frac{|(\overline{b}-\overline{a})\times\overline{l}|}{|\overline{l}|}$$



આકૃતિ 7.6

ઉદાહરણ 11 : રેખાઓ L : 
$$\frac{x-4}{3} = \frac{y+1}{-2} = \frac{z-2}{6}$$
 અને

$$M: \overline{r} = (2, 3, -1) + k(-3, 2, -6), k \in \mathbb{R}$$
 વચ્ચેનું અંતર શોધો.

ઉકેલ : અહીં, 
$$\overline{a} = (4, -1, 2)$$
;  $\overline{l} = (3, -2, 6)$ ,  $\overline{b} = (2, 3, -1)$ ;  $\overline{m} = (-3, 2, -6)$ 

શક્ય હોય તો, ધારો કે  $A(\overline{a}) \in M$ .

તો કોઈક 
$$k \in \mathbb{R}$$
 માટે  $(4, -1, 2) = (2, 3, -1) + k(-3, 2, -6)$ 

$$\therefore$$
 (2, -4, 3) =  $k$ (-3, 2, -6),  $k \in \mathbb{R}$ 

$$\therefore$$
 2 = -3k, -4 = 2k, 3 = -6k

કોઈપણ  $k \in \mathbb{R}$  માટે આ શક્ય નથી, કારણ કે પ્રથમ સમીકરણ પરથી  $k = -\frac{2}{3}$  મળે જે બાકીનાં બે સમીકરણનું સમાધાન કરશે નહી.

$$\therefore$$
 A( $\overline{a}$ )  $\notin$  M

વળી, 
$$\overline{l} = -\overline{m}$$

$$\therefore \quad \overline{l} \times \overline{m} = -\overline{m} \times \overline{m} = \overline{0}$$

$$\overline{l} \times \overline{m} = \overline{0}$$
 અને  $A(\overline{a}) \notin M$ 

∴ આપેલ રેખાઓ સમાંતર રેખાઓ છે.

$$\overline{a} - \overline{b} = (2, -4, 3) \text{ and}$$

$$\overline{l} = (3, -2, 6)$$

$$\vec{a} = (-18, -3, 8), |\vec{l}| = \sqrt{9 + 4 + 36} = 7$$

∴ L તથા M વચ્ચેનું અંતર = 
$$\frac{|(\overline{a} - \overline{b}) \times \overline{l}|}{|\overline{l}|}$$

$$= \frac{\sqrt{324 + 9 + 64}}{7} = \frac{\sqrt{397}}{7}$$

# બે વિષમતલીય રેખાઓ વચ્ચેનું લંબઅંતર :

ધારો કે  $L: \overline{r} = \overline{a} + k\overline{l}$ ,  $k \in \mathbb{R}$  અને  $M: \overline{r} = \overline{b} + k\overline{m}$ ,  $k \in \mathbb{R}$  એ  $\mathbb{R}^3$  ની વિષમતલીય રેખાઓ છે.

L અને M વિષમતલીય હોવાથી  $(\overline{a} - \overline{b}) \cdot (\overline{l} \times \overline{m}) \neq 0$ 

(प्रभेय 7.3)

આપણે સ્વીકારી લઈએ છીએ કે, L તથા M વિષમતલીય હોય, તો એક બિંદુ  $P \in L$  અને બીજું બિંદુ  $Q \in M$  મળે જેથી  $\overleftrightarrow{PQ} \perp L$  તથા  $\overrightarrow{PQ} \perp M$ .



$$\therefore$$
  $\overrightarrow{PO}$  ની દિશા  $\overline{l} \times \overline{m}$  ની દિશા થશે.

હવે, 
$$\overrightarrow{PO} = \overrightarrow{AB}$$
 નો  $\overrightarrow{PO}$  પરનો પ્રક્ષેપ.

$$\therefore \overrightarrow{PQ} = \left[\frac{|(\overline{b} - \overline{a}) \cdot (\overline{l} \times \overline{m})|}{|\overline{l} \times \overline{m}|}\right] \left[\frac{\overline{l} \times \overline{m}}{|\overline{l} \times \overline{m}|}\right]$$

$$PQ = \frac{|(\overline{b} - \overline{a}) \cdot (\overline{l} \times \overline{m})|}{|\overline{l} \times \overline{m}|}$$

$$PQ = \frac{|\overline{b} - \overline{a}| |\overline{l} \times \overline{m}| \cos \alpha}{|\overline{l} \times \overline{m}|} \text{ wii, } \alpha = ((\overline{b} - \overline{a}), (\overline{l} \times \overline{m}))$$
$$= |\overline{b} - \overline{a}| |\cos \alpha|$$

$$\therefore \quad PQ \le |\overline{b} - \overline{a}|$$

 $(|\cos\alpha| \leq 1)$ 

- ∴ અંતર PQ એ L તથા M પરના કોઈપણ બે બિંદુની જોડ વચ્ચેના અંતર કરતાં ઓછું અથવા તેને સમાન છે.
- .. PQ ને L તથા M વચ્ચેનું ન્યૂનતમ અંતર કહે છે.

આમ, L અને M વચ્ચેનું લંબઅંતર અથવા ન્યૂનતમ અંતર 
$$PQ = \frac{|(\overline{b} - \overline{a}) \cdot (\overline{l} \times \overline{m})|}{|\overline{l} \times \overline{m}|}$$

 $\overrightarrow{PQ}$  તથા L છેદતી રેખા છે. આથી તેમને સમાવતું સમતલ  $\pi$  છે. આ સમતલમાં  $\square$  PANQ લંબચોરસ છે.

$$AN = PO$$

 $\stackrel{\leftrightarrow}{AN}$  તથા  $\stackrel{\longleftrightarrow}{PQ}$  સમાંતર છે.

 $\overset{\longleftrightarrow}{PQ}$  તથા  $\overset{\longleftrightarrow}{AB}$  વચ્ચેના ખૂશાનું માપ  $\alpha$  હોય તો  $\overset{\longleftrightarrow}{AB}$  તથા  $\overset{\longleftrightarrow}{AN}$  વચ્ચેના ખૂશાનું માપ  $\alpha$  હોય.

હવે  $\stackrel{\longleftrightarrow}{AN}$  તથા  $\stackrel{\longleftrightarrow}{AB}$  ને સમાવતા સમતલમાં

 $AN = AB \cos \alpha$  કારણ કે  $\triangle$  ANB માં

$$m \angle ANB = \frac{\pi}{2}$$

238



આકૃતિ 7.7

 $(\because \overline{AN} \perp \overline{QN}$  તથા  $\overline{AN} \perp \overline{QB}$  હોવાથી  $\overline{AN}$  એ  $\overline{QN}$  તથા  $\overline{QB}$  ને સમાવતા સમતલને લંબ છે.)

$$\therefore$$
 PQ = AN = | AB  $\cos \alpha$  |

$$=\frac{|\overrightarrow{\mathrm{AB}}\cdot(\overline{l}\times\overline{m})|}{|\overline{l}\times\overline{m}|}=\frac{|(\overline{b}-\overline{a})\cdot(\overline{l}\times\overline{m})|}{|\overline{l}\times\overline{m}|}$$

ઉદાહરણ 12 : રેખાઓ  $\overline{r}=(1,\ 1,\ 0)+k(2,\ -1,\ 1),\ k\in\mathbb{R}$  અને  $\overline{r}=(2,\ 1,\ -1)+k(3,\ -5,\ 2),\ k\in\mathbb{R}$  વચ્ચેનું ટૂંકામાં ટૂંકું અંતર શોધો.

ઉદ્દેલ : અહીં 
$$\overline{a}=(1,\ 1,\ 0);\ \overline{l}=(2,\ -1,\ 1)$$
 અને  $\overline{b}=(2,\ 1,\ -1);\ \overline{m}=(3,\ -5,\ 2)$ 

$$\overline{b} - \overline{a} = (1, 0, -1)$$

$$(\overline{b} - \overline{a}) \cdot (\overline{l} \times \overline{m}) = \begin{vmatrix} 1 & 0 & -1 \\ 2 & -1 & 1 \\ 3 & -5 & 2 \end{vmatrix}$$

$$= 1(3) - 1(-7) = 10 \neq 0$$

∴ આપેલ રેખાઓ વિષમતલીય છે.

હવે, 
$$\overline{l} = (2, -1, 1)$$
 અને  $\overline{m} = (3, -5, 2)$ 

$$\therefore \quad \overline{l} \times \overline{m} = (3, -1, -7)$$

$$\therefore |\overline{l} \times \overline{m}| = \sqrt{9 + 1 + 49} = \sqrt{59}, (\overline{b} - \overline{a}) \cdot (\overline{l} \times \overline{m}) = 3 + 0 + 7 = 10$$

∴ તેમની વચ્ચેનું ટૂંકામાં ટૂંકું અંતર = 
$$\frac{|(\overline{b} - \overline{a}) \cdot (\overline{l} \times \overline{m})|}{|\overline{l} \times \overline{m}|} = \frac{10}{\sqrt{59}}$$

# $7.9 \ \mathbb{R}^3$ ની રેખાઓ વચ્ચેના પરસ્પર સંબંધ

ધારો કે, 
$$L: \overline{r} = \overline{a} + k\overline{l}$$
,  $k \in \mathbb{R}$  અને

$$M: \overline{r} = \overline{b} + k\overline{m}, k \in \mathbb{R}$$
 બે રેખાઓ છે.

જો  $\overline{l} \times \overline{m} = \overline{0}$ , તો L || M અથવા L અને M સંપાતી છે.

ધારો કે  $\overrightarrow{AB}$  અને  $\overline{l}$  અસમરેખ સદિશો છે.

$$\therefore \overrightarrow{AB} \times \overline{l} = (\overline{b} - \overline{a}) \times \overline{l} \neq \overline{0}$$

આથી ઉલટું, જો  $\overrightarrow{AB} \times \overline{l} = (\overline{b} - \overline{a}) \times \overline{l} \neq \overline{0}$ , તો  $\overrightarrow{AB}$  અને  $\overline{l}$  અસમરેખ છે.

આમ જો 
$$(\overline{b} - \overline{a}) \times \overline{l} \neq 0$$
 તથા  $\overline{l} \times \overline{m} = \overline{0}$  તો L  $\parallel$  M

પરંતુ જો  $(\overline{b} - \overline{a}) \times \overline{l} = \overline{0}$ , તો L અને M સમાંતર નથી. તેથી L અને M સંપાતી છે.

તેથી જો 
$$\overline{l} \times \overline{m} = \overline{0}$$
,  $(\overline{b} - \overline{a}) \times \overline{l} = \overline{0}$ , તો L અને M સંપાતી રેખાઓ છે.

જો 
$$\overline{l} \times \overline{m} = \overline{0}$$
,  $(\overline{b} - \overline{a}) \times \overline{l} \neq \overline{0}$ , તો L અને M સમાંતર રેખાઓ છે.

R<sup>3</sup> ની આપેલી બે રેખાઓ વચ્ચે કયા પ્રકારના સંબંધ છે ? તેઓ સમાંતર છે અથવા છેદક રેખાઓ છે અથવા સંપાતી છે અથવા વિષમતલીય છે. આપણે આ પ્રકરણમાં અત્યાર સુધી ચર્ચેલ મુદ્દાઓ પર આધારિત પૃષ્ઠ 240 પર દર્શાવેલ કોષ્ટક પરથી આ બાબત નક્કી કરી શકીશું.





ઉદાહરણ 13 : નીચે આપેલી રેખાઓ વચ્ચેના સંબંધ (એટલે કે વિષમતલીય, સમાંતર, સંપાતી અને છેદક) નક્કી કરો.

(1) 
$$\overline{r} = (2, -5, 1) + k(3, 2, 6), k \in \mathbb{R}$$
 અને  $\frac{x-7}{1} = \frac{y}{2} = \frac{z+6}{2}$ 

(2) 
$$\frac{2x-4}{1} = \frac{3-y}{3} = \frac{z}{1}$$
 with  $\overline{r} = (1, 1, -1) + k(1, -6, 2), k \in \mathbb{R}$ 

(3) 
$$\overline{r} = (1, -2, -3) + k(-1, 1, -2), k \in \mathbb{R}$$
 અને  $\overline{r} = (4, -2, -1) + k(1, 2, -2), k \in \mathbb{R}$ 

(4) 
$$\overline{r} = (3+t)\hat{i} + (1-t)\hat{j} + (-2-2t)\hat{k}, t \in \mathbb{R} \text{ with } x = 4+k, y = -k, z = -4-2k, k \in \mathbb{R}$$

ઉદેલ : (1) 
$$\overline{a} = (2, -5, 1), \overline{l} = (3, 2, 6)$$
 અને 
$$\overline{b} = (7, 0, -6); \overline{m} = (1, 2, 2)$$
 
$$\overline{b} - \overline{a} = (5, 5, -7)$$
 
$$\overline{l} \times \overline{m} = (-8, 0, 4) \neq \overline{0} \text{ અને } (\overline{b} - \overline{a}) \cdot (\overline{l} \times \overline{m}) = (5, 5, -7) \cdot (-8, 0, 4)$$
 
$$= -40 - 28 = -68 \neq 0$$

∴ આપેલ રેખાઓ વિષમતલીય રેખાઓ છે.

(2) પ્રથમ રેખાનું સમીકરણ 
$$\frac{x-2}{\frac{1}{2}} = \frac{y-3}{-3} = \frac{z}{1}$$
 છે.

હવે, 
$$\overline{l} \times \overline{m} = (0, 0, 0) = \overline{0}$$
 અને  $(\overline{b} - \overline{a}) \times \overline{m} = (-1, -2, -1) \times (1, -6, 2) = (-10, 1, 8) \neq \overline{0}$ 

∴ આપેલ રેખાઓ સમાંતર છે.

(3) 
$$\overline{a} = (1, -2, -3); \overline{l} = (-1, 1, -2)$$
  
 $\overline{b} = (4, -2, -1); \overline{m} = (1, 2, -2)$   
 $(\overline{b} - \overline{a}) = (3, 0, 2)$ 

હવે, 
$$\overline{l} \times \overline{m} = (2, -4, -3) \neq \overline{0}$$
 અને  $(\overline{b} - \overline{a}) \cdot (\overline{l} \times \overline{m}) = (3, 0, 2) \cdot (2, -4, -3)$   
=  $6 + 0 - 6 = 0$ 

આપેલ રેખાઓ એ છેદક રેખાઓ છે.

(4) 
$$\overline{a} = (3, 1, -2); \overline{l} = (1, -1, -2)$$
 અને  $\overline{b} = (4, 0, -4); \overline{m} = (1, -1, -2)$   $(\overline{b} - \overline{a}) = (1, -1, -2)$ 

હવે, 
$$\overline{l} \times \overline{m} = (0, 0, 0) = \overline{0}$$
 અને  $(\overline{b} - \overline{a}) \times \overline{l} = (1, -1, -2) \times (1, -1, -2) = \overline{0}$ 

∴ આપેલ રેખાઓ સંપાતી રેખાઓ છે.

#### स्वाध्याय 7.1

- 1. (2, -1, 3) માંથી પસાર થતી અને 2  $\hat{i}$  3  $\hat{j}$  + 4  $\hat{k}$  દિશાવાળી રેખાનું સદિશ તેમજ કાર્તેઝીય સમીકરણ મેળવો.
- 2. (2, 3, -9) અને (4, 3, -5) માંથી પસાર થતી રેખાનું સંમિત સ્વરૂપે અને સદિશ સ્વરૂપે સમીકરણ મેળવો.
- (0, 1, 1), (0, 4, 4) અને (2, 0, 1) સમરેખ છે ? શા માટે ?
- **4.** રેખા x = 4z + 3, y = 2 3zની દિક્કોસાઇન શોધો.
- 5. (1, -2, 1) માંથી પસાર થતી અને રેખાઓ x + 3 = 2y = -12z તથા  $\frac{x}{2} = \frac{y+6}{2} = \frac{3z-9}{1}$  બંનેને લંબરેખાનું સિંદશ તેમજ કાર્તેઝીય સમીકરણ મેળવો.
- **6.** સાબિત કરો કે રેખાઓ  $L: \frac{x+2}{3} = \frac{y-2}{-1}, z+1=0$  અને  $M: \{(4+2k, 0, -1+3k) \mid k \in \mathbb{R}\}$  એકબીજીને છેદે છે. તેમનું છેદબિંદુ પણ શોધો.
- 7. રેખાઓ  $\overline{r} = (1, 2, 1) + k(2, 3, -1), k \in \mathbb{R}$  અને  $\frac{x-1}{4} = \frac{y-2}{3}, z = 3$  વચ્ચેના ખૂણાનું માપ શોધો.
- 8. સાબિત કરો કે (2, 1, -1) અને (-2, 3, 4)થી પસાર થતી રેખા એ (9, 7, 8) અને (11, 6, 10) માંથી પસાર થતી રેખાને લંબ છે.
- 9. નીચેની રેખાઓ સમાંતર, છેદક, વિષમતલીય કે સંપાતી છે તે નક્કી કરો :
  - (1)  $\overline{r} = (1, 2, -3) + k(3, -2, 1), k \in \mathbb{R}$  with  $\frac{x-1}{2} = \frac{3-y}{2} = \frac{z-5}{-1}$ .
  - (2)  $\frac{x-5}{-2} = \frac{y-3}{-2} = \frac{z+2}{4}$  અને  $\frac{x-2}{1} = \frac{3-y}{-1} = \frac{z+2}{-2}$ .
  - (3)  $x = \frac{y-1}{1} = \frac{z+1}{3}$  અને  $\{(2, 1+3k, 2+k) \mid k \in \mathbb{R}\}.$
  - (4)  $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-1}{2}$  અને  $x = 1 + 2t, y = t, z = 4 + 5t, t \in \mathbb{R}$ .
  - (5)  $\frac{x-4}{1} = \frac{y+2}{-2} = \frac{z-1}{3}$  wh  $\frac{x-1}{-2} = \frac{y+2}{4} = \frac{z-2}{-6}$ .
- 10. સાબિત કરો કે રેખાઓ  $\frac{x-1}{3} = \frac{y+1}{2} = \frac{z-1}{5}$  અને  $\frac{x+2}{4} = \frac{y-1}{3} = \frac{z+1}{-2}$  વિષમતલીય છે. તેમના વચ્ચેનું લઘુત્તમ અંતર શોધો.
- 11. બિંદુ (-5, 3, 4) નું રેખા  $\frac{x+2}{-4} = \frac{y-6}{5} = \frac{z-5}{3}$  થી લંબઅંતર શોધો.
- 12. રેખાઓ x = 3 2k, y = k, z = 3 k,  $k \in \mathbb{R}$  અને x = 2k 3, y = 2 k, z = 7 + k,  $k \in \mathbb{R}$  વચ્ચેનું લંબઅંતર શોધો.

#### 7.10 સમતલ

આપણે આગળના ધોરણોમાં સમતલ વિશેની જે પૂર્વધારણાઓનો અભ્યાસ કરેલો તેમને યાદ કરી લઈએ.

- (1) ત્રણ ભિન્ન અસમરેખ બિંદુઓ અનન્ય સમતલ નિશ્ચિત કરે છે.
- (2) બે સમાંતર રેખાઓ એક અનન્ય સમતલ નિશ્ચિત કરે છે.
- (3) અનન્ય બિંદુમાં છેદતી બે રેખાઓ એક અનન્ય સમતલ નિશ્ચિત કરે છે.

#### ત્રણ ભિન્ન અસમરેખ બિંદુમાંથી પસાર થતું સમતલ :

ધારોકે  $A(\overline{a})$ ,  $B(\overline{b})$ ,  $C(\overline{c})$  એ  $R^3$  નાં ત્રણ ભિન્ન અસમરેખ બિંદુઓ છે.

.. A, B, C બિંદુઓ એક અનન્ય સમતલ  $\pi$  નિશ્ચિત કરે છે. ધારો કે  $P(\overline{r})$  સમતલ  $\pi$  પરનું A સિવાયનું કોઈપણ બિંદુ છે. ∴ AP, AB, AC સમતલીય છે.

∴ AP એ AB અને AC નું સુરેખ સંયોજન છે.

 $\therefore \overrightarrow{AP} = m \overrightarrow{AB} + n \overrightarrow{AC}, \text{ set } m, n \in \mathbb{R} \text{ det } m^2 + n^2 \neq 0.$ 

$$\therefore \quad \overline{r} - \overline{a} = m(\overline{b} - \overline{a}) + n(\overline{c} - \overline{a})$$

જો 
$$\overline{r}=\overline{a}$$
, તો  $\mathrm{A}(\overline{a})\in\pi$  તથા  $m=n=0$ 

$$\therefore \overline{r} = \overline{a} + m(\overline{b} - \overline{a}) + n(\overline{c} - \overline{a}), m, n \in \mathbb{R}$$

આથી ઉલટું, જો  $P(\overline{r})$  એ

$$\overline{r} - \overline{a} = m(\overline{b} - \overline{a}) + n(\overline{c} - \overline{a}),$$

$$m, n \in \mathbb{R}, m^2 + n^2 \neq 0$$
 नुं

સમાધાન કરે, તો  $\overrightarrow{AP} = m(\overrightarrow{AB}) + n(\overrightarrow{AC})$ 

AB અને AC જે સમતલમાં છે, તે સમતલમાં AP આવેલો છે.

A એ સમતલ  $\pi$  માં છે. તેથી P  $\in$   $\pi$ .

જો 
$$m=n=0$$
, તો  $\overline{r}=\overline{a}$  એટલે કે  $P=A\in\pi$ .

આમ જો  $P(\overline{r}) \in \pi$  તો અને તો જ  $\overline{r}$  એ સમીકરણ (i)નું સમાધાન કરે.

 $A(\overline{a}), B(\overline{b})$  અને  $C(\overline{c})$  થી નિશ્ચિત થતા સમતલ  $\pi$  નું સમીકરણ

$$\overline{r} = \overline{a} + m(\overline{b} - \overline{a}) + n(\overline{c} - \overline{a}) \quad m, n \in \mathbb{R} \ \vartheta.$$

વળી, જો  $P(\overline{r}) \in \pi$  તો  $\overline{r} = (1 - m - n)\overline{a} + m\overline{b} + n\overline{c}$ .

1-m-n=l એટલે કે l+m+n=1 લેતાં,

$$\therefore \quad \overline{r} = l\overline{a} + m\overline{b} + n\overline{c}, \text{ weil } l, m, n \in \mathbb{R} \text{ even} \ l + m + n = 1.$$

એ ભિન્ન અસમરેખ બિંદુઓ  $A(\overline{a})$ ,  $B(\overline{b})$  અને  $C(\overline{c})$  માંથી પસાર થતા સમતલનું સદિશ સમીકરણ છે.

 $P(\overline{r})$ 

 $A(\overline{a})$ 

 $B(\overline{b})$ 

આકૃતિ 7.9

#### સમતલનાં પ્રચલ સમીકરણો :

ધારો કે P(x, y, z) ભિન્ન અસમરેખ બિંદુઓ  $A(x_1, y_1, z_1)$ ,  $B(x_2, y_2, z_2)$  અને  $C(x_3, y_3, z_3)$  માંથી પસાર થતા સમતલનું કોઈપણ બિંદુ છે.

$$\therefore \quad \overline{r} = l\overline{a} + m\overline{b} + n\overline{c} \qquad \qquad l, m, n \in \mathbb{R} \text{ eval} \ l + m + n = 1.$$

$$\therefore (x, y, z) = l(x_1, y_1, z_1) + m(x_2, y_2, z_2) + n(x_3, y_3, z_3)$$

$$\therefore x = lx_1 + mx_2 + nx_3$$

$$y = ly_1 + my_2 + ny_3$$

 $z = lz_1 + mz_2 + nz_3$  % will,  $m, n \in \mathbb{R}$  det l + m + n = 1

આ બિંદુઓ A, B, C માંથી પસાર થતા સમતલનાં પ્રચલ સમીકરણો છે. અહીં *I, m, n* પ્રચલ છે.

#### સમતલના સમીકરણનાં અન્ય સ્વ3પ :

ભિન્ન અસમરેખ બિંદુઓ  $A(\overline{a})$ ,  $B(\overline{b})$  અને  $C(\overline{c})$  એક સમતલ  $\pi$  નક્કી કરે છે.

$$P(\overline{r}) \in \pi \iff \overrightarrow{AP}, \overrightarrow{AB}, \overrightarrow{AC}$$
 સમતલીય છે.

$$(P \neq A)$$
$$(P \neq A)$$

(i)

 $C(\overline{c})$ 

$$\Leftrightarrow (\overline{r} - \overline{a}), (\overline{b} - \overline{a}), (\overline{c} - \overline{a})$$
 સમતલીય છે.

$$\Leftrightarrow (\overline{r} - \overline{a}) \cdot [(\overline{b} - \overline{a}) \times (\overline{c} - \overline{a})] = 0$$

$$\Leftrightarrow (\overline{r} - \overline{a}) \cdot [(b - \overline{a}) \times (\overline{c} - \overline{a})] = 0$$
 (ii)

વળી, જો  $\overline{r} = \overline{a}$ , તો  $\overline{r} - \overline{a} = \overline{0}$ .

$$\therefore \ \ P(\overline{r}) \in \pi \Leftrightarrow (\overline{r} - \overline{a}) \cdot [(\overline{b} - \overline{a}) \times (\overline{c} - \overline{a})] = 0$$

આમ, અસમરેખ બિંદુઓ A, B, C માંથી પસાર થતા સમતલનું સદિશ સમીકરણ

$$(\overline{r} - \overline{a}) \cdot [(\overline{b} - \overline{a}) \times (\overline{c} - \overline{a})] = 0 \ \vartheta.$$

## કાર્તેઝીય સ્વરૂપ (અદિશ સ્વરૂપ) :

$$\overline{r} = (x, y, z), \ \overline{a} = (x_1, y_1, z_1), \ \overline{b} = (x_2, y_2, z_2) \ \text{with} \ \overline{c} = (x_3, y_3, z_3) \ \text{exist},$$

$$\therefore$$
 સમીકરણ  $(\overline{r} - \overline{a}) \cdot [(\overline{b} - \overline{a}) \times (\overline{c} - \overline{a})] = 0$  તું સ્વરૂપ

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0$$

આ  $(x_1, y_1, z_1)$ ,  $(x_2, y_2, z_2)$  અને  $(x_3, y_3, z_3)$  માંથી પસાર થતા સમતલનું કાર્તેઝીય અથવા અદિશ સ્વરૂપમાં (Scalar Form) સમીકરણ છે.

# R<sup>3</sup> ના ચાર બિંદુઓ સમતલીય હોવાની શરત :

ધારો કે  $A(x_1, y_1, z_1)$ ,  $B(x_2, y_2, z_2)$ ,  $C(x_3, y_3, z_3)$  અને  $D(x_4, y_4, z_4)$  એ  $\mathbb{R}^3$  નાં બિંદુઓ છે.

A, B, C, D સમતલીય છે  $\Leftrightarrow$  D એ A, B, C માંથી પસાર થતા સમતલ પર છે.

$$\Leftrightarrow D(x_4,\ y_4,\ z_4) \ \text{એ સમીકરણ} \ \begin{vmatrix} x-x_1 & y-y_1 & z-z_1 \\ x_2-x_1 & y_2-y_1 & z_2-z_1 \\ x_3-x_1 & y_3-y_1 & z_3-z_1 \end{vmatrix} = 0 \ \text{નું સમાધાન કરે છે}.$$
 
$$\Leftrightarrow \begin{vmatrix} x_4-x_1 & y_4-y_1 & z_4-z_1 \\ x_2-x_1 & y_2-y_1 & z_2-z_1 \\ x_3-x_1 & y_3-y_1 & z_3-z_1 \end{vmatrix} = 0$$

આમ,  $A(x_1,\ y_1,\ z_1),\ B(x_2,\ y_2,\ z_2),\ C(x_3,\ y_3,\ z_3),\ D(x_4,\ y_4,\ z_4)$  સમતલીય હોય તો અને તો જ

$$\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \\ x_4 - x_1 & y_4 - y_1 & z_4 - z_1 \end{vmatrix} = 0$$

ઉદાહરણ 14 : શક્ય હોય, તો A(-6, 0, 7), B(1, 2, 2) અને C(3, -5, -4)માંથી પસાર થતા સમતલનું સમીકરણ મેળવો. ઉકેલ : સૌપ્રથમ A, B, C સમરેખ છે કે કેમ, તે ચકાસીએ.

$$\begin{vmatrix} -6 & 0 & 7 \\ 1 & 2 & 2 \\ 3 & -5 & -4 \end{vmatrix} = -6(2) + 7(-11) = -89 \neq 0$$

- ∴ A, B, C અસમરેખ છે.
- ∴ જેના સભ્ય A, B, C હોય તેવું અનન્ય સમતલ મળે. હવે A, B, C માંથી પસાર થતા સમતલનું કાર્તેઝીય સમીકરણ

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0$$

$$\begin{vmatrix} x+6 & y-0 & z-7 \\ 1+6 & 2-0 & 2-7 \\ 3+6 & -5-0 & -4-7 \end{vmatrix} = 0$$

$$\begin{vmatrix} x+6 & y & z-7 \\ 7 & 2 & -5 \\ 9 & -5 & -11 \end{vmatrix} = 0$$

$$\therefore (x+6)(-47) - y(-32) + (z-7)(-53) = 0$$

$$\therefore -47x - 282 + 32y - 53z + 371 = 0$$

$$\therefore$$
 -47x + 32y - 53z + 89 = 0

∴ 
$$47x - 32y + 53z - 89 = 0$$
 એ A, B, C માંથી પસાર થતા સમતલનું સમીકરણ છે.

ઉદાહરણ 15 : A(4, –2, –1), B(5, 0, –3) અને C(3, –4, 1) અનન્ય સમતલ પસાર થાય છે ? જો થાય, તો તેનું સમીકરણ મેળવો.

ઉકેલ : ચાલો, આપણે પ્રથમ બિંદુઓની સમરેખતા ચકાસીએ.

$$\begin{vmatrix} 4 & -2 & -1 \\ 5 & 0 & -3 \\ 3 & -4 & 1 \end{vmatrix} = 4(-12) + 2(14) - 1(-20)$$

$$= -48 + 28 + 20 = 0$$

પરંતુ આ શરત સમરેખતા માટે પર્યાપ્ત નથી. તેથી આપણે

$$(\overline{c} - \overline{a}) \times (\overline{b} - \overline{a}) = \overline{0}$$
 શરત ચકાસીએ.

$$\therefore \quad (\overline{c} - \overline{a}) \times (\overline{b} - \overline{a}) = \overline{0}$$

∴ A, B, C માંથી પસાર થતું અનન્ય સમતલ ન મળે.



**634:** 
$$\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \\ x_4 - x_1 & y_4 - y_1 & z_4 - z_1 \end{vmatrix} = \begin{vmatrix} -2 & 2 & -2 \\ 1 & 3 & 9 \\ 0 & -3 & -6 \end{vmatrix} = -2(9) - 2(-6) - 2(-3)$$
$$= -18 + 12 + 6 = 0$$

∴ A, B, C, D સમતલીય બિંદુઓ છે.

#### 7.11 સમતલના અંતઃખંડ

જો સમતલ  $\pi$  યામાક્ષોને બિંદુઓ A(a,0,0), B(0,b,0) અને C(0,0,c) માં છેદે, તો a,b,c ને અનુક્રમે સમતલ  $\pi$  ના X-અંતઃખંડ, Y-અંતઃખંડ અને Z-અંતઃખંડ કહે છે.

જો સમતલ  $\pi$  એ X-અક્ષને છેદે નહીં તો સમતલ  $\pi$  નો X-અંતઃખંડ વ્યાખ્યાયિત નથી. તે જ પ્રમાણે Y-અક્ષ અને Z-અક્ષ સાથે સમતલના છેદ માટે પણ કહી શકાય.

# અક્ષો પર અંતઃખંડ a, b, c બનાવતા સમતલનું સમીકરણ :

ધારો કે સમતલ  $\pi$ , X-અક્ષ સાથે a, Y-અક્ષ સાથે b અને Z-અક્ષ સાથે c અંતઃખંડ બનાવે છે. (જ્યાં  $a \neq 0, b \neq 0, c \neq 0$ ).

∴ A(a, 0, 0), B(0, b, 0) અને C(0, 0, c) એ સમતલ  $\pi$  નાં બિંદુઓ છે.

સહજ રીતે કહી શકાય કે, A, B, C અસમરેખ છે. (શા માટે ?)

∴ A, B, C માંથી પસાર થતા સમતલ π નાં પ્રચલ સમીકરણો





$$\therefore \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$
 એ  $a, b$  અને  $c$  અંતઃખંડોવાળા સમતલનું સમીકરણ છે.  $(abc \neq 0)$ 

#### બીજી રીત :

A(a, 0, 0), B(0, b, 0), C(0, 0, c) માંથી પસાર થતા સમતલના કાર્તેઝીય સમીકરણનો ઉપયોગ કરતાં,

$$\begin{vmatrix} x-a & y-0 & z-0 \\ 0-a & b-0 & 0-0 \\ 0-a & 0-0 & c-0 \end{vmatrix} = 0$$
 એ A, B, C માંથી પસાર થતા સમતલનું સમીકરણ છે.

$$\begin{vmatrix} x-a & y & z \\ -a & b & 0 \\ -a & 0 & c \end{vmatrix} = 0$$

$$\therefore (x-a)bc - y(-ac) + z(ab) = 0$$

$$\therefore bcx - abc + acy + abz = 0$$

$$\therefore bcx + acy + abz = abc$$

$$\therefore \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$
 એ  $a, b, c$  અંતઃખંડોવાળા સમતલનું સમીકરણ છે. (abc  $\neq$  0)

ઉદાહરણ 17 : X-અંતઃખંડ 4, Y-અંતઃખંડ –6 અને Z-અંતઃખંડ 3 બનાવતા સમતલનું સમીકરણ મેળવો.

ઉદ્દેલ : અહીં, 
$$a = 4$$
,  $b = -6$ ,  $c = 3$  આપેલાં છે.

સમતલનું સમીકરણ  $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$  છે.

$$\therefore \quad \frac{x}{4} + \frac{y}{6} + \frac{z}{3} = 1$$

∴ 3x - 2y + 4z = 12 એ જેનો X-અંતઃખંડ 4, Y-અંતઃખંડ -6 અને Z-અંતઃખંડ 3 હોય તેવા સમતલનું સમીકરણ છે.

ઉદાહરણ 18 : સમતલ 2x - 3y + 5z = 15 ના યામાક્ષો પરના અંતઃખંડ શોધો.

ઉકેલ : સમતલનું સમીકરણ 2x - 3y + 5z = 15

$$\therefore \quad \frac{x}{\frac{15}{2}} + \frac{y}{-5} + \frac{z}{3} = 1$$

(બંને બાજુએ 15 વડે ભાગતાં)

 $\therefore$  આ સમીકરણને  $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ , સાથે સરખાવતાં X-અંતઃખંડ =  $\frac{15}{2}$ , Y-અંતઃખંડ = -5, Z-અંતઃખંડ = 3.

ઉદાહરણ 19 : સમતલ 3y + 2z = 12 ના અક્ષો પરના અંતઃખંડ શોધો.

6કેલ ઃ સમતલના સમીકરણ 3y + 2z = 12 ની બંને બાજુને 12 વડે ભાગતાં,

$$\frac{y}{4} + \frac{z}{6} = 1 \text{ Hol.}$$

હવે 
$$\frac{y}{4} + \frac{z}{6} = 1$$
 ને  $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$  સાથે સરખાવતાં,

X-અંતઃખંડ અવ્યાખ્યાયિત છે, Y-અંતઃખંડ = 4 અને Z-અંતઃખંડ = 6 છે.

### બીજી રીત :

સમતલનું સમીકરણ 3y + 2z = 12 છે.

તે X-અક્ષને જે બિંદુએ છેદે તે શોધવા માટે y = 0 = z.

- ∴ પરંતુ 0 + 0 = 12 સત્ય નથી.
- $\therefore$  3y + 2z = 12 એ X-અક્ષને છેદશે નહીં.
- ∴ X-અંતઃખંડ મળશે નહીં.

Y-અંતઃખંડ શોધવા માટે x = 0 = z લેતાં,

- $\therefore$  3y = 12
- $\therefore$  y=4
- ∴ Y-અંતઃખંડ 4 છે.

Z-અંતઃખંડ શોધવા માટે x = y = 0 લેતાં,

- $\therefore$  2z = 12
- $\therefore z = 6$
- ∴ Z-અંતઃખંડ 6 છે.

#### 7.12 સમતલનો અભિલંબ

સમતલ  $\pi$  માં આવેલી પ્રત્યેક રેખાને લંબ હોય તેવી રેખાની દિશામાં આવેલા સદિશને સમતલનો અભિલંબ કહે છે. મહદંશે આપણે સમતલના અભિલંબને  $\overline{n}$  વડે અથવા  $\overline{n}_1$ ,  $\overline{n}_2$ ,  $\overline{n}_3$ ,... વડે દર્શાવીશું.



આકૃતિ 7.12

## $\mathbb{A}(\overline{a})$ માંથી પસાર થતા અને $\overline{n}$ અભિલંબવાળા સમતલનું સદિશ સમીકરણ :

ધારો કે સમતલ  $\pi$  એ  $\mathrm{A}(\overline{a})$ માંથી પસાર થાય છે અને તેનો અભિલંબ  $\overline{n}$  છે.

ધારો કે  $P(\overline{r})$  એ સમતલનું કોઈપણ બિંદુ છે.

$$\therefore P(\overline{r}) \in \pi, P \neq A \Rightarrow \overrightarrow{AP} \in \pi$$

$$\Rightarrow \overrightarrow{AP} \perp \overline{n}$$

$$\Rightarrow \overrightarrow{AP} \cdot \overline{n} = 0$$

$$\Rightarrow (\overline{r} - \overline{a}) \cdot \overline{n} = 0$$





આકૃતિ 7.13

$$\therefore \forall P(\overline{r}) \in \pi, (\overline{r} - \overline{a}) \cdot \overline{n} = 0$$

આથી ઉલટું, જો  $P(\overline{r})$  એ અવકાશનું એવું બિંદુ હોય કે જેથી  $(\overline{r}-\overline{a})\cdot\overline{n}=0$ , તો  $\overrightarrow{AP}\perp\overline{n}$ .

 $A \in \pi$  હોવાથી  $P \in \pi$ .

આમ, 
$$P(\overline{r}) \in \pi \iff (\overline{r} - \overline{a}) \cdot \overline{n} = 0$$
  
 $\iff \overline{r} \cdot \overline{n} = \overline{a} \cdot \overline{n}$ 

- $\therefore$   $A(\overline{a})$ માંથી પસાર થતા અને  $\overline{n}$  અભિલંબવાળા સમતલનું સદિશ સમીકરણ  $\overline{r}\cdot\overline{n}=\overline{a}\cdot\overline{n}$  છે.  $\overline{a}\cdot\overline{n}=d$  લેતાં,
- $\vec{r} \cdot \vec{n} = \vec{a} \cdot \vec{n}$  એ  $\vec{r} \cdot \vec{n} = d$  માં પરિવર્તિત થશે.

#### કાર્તેઝીય સ્વરૂપ :

 $\overline{r} = (x, y, z), \ \overline{n} = (a, b, c)$  अने  $\overline{a} = (x_1, y_1, z_1)$  લેતાં,

- $\overline{r} \cdot \overline{n} = d$  એ  $(x, y, z) \cdot (a, b, c) = d$  બનશે જ્યાં  $d = \overline{a} \cdot \overline{n} = ax_1 + by_1 + cz_1$ .
- $\therefore$  જેનો અભિલંબ  $\overline{n}=(a,\ b,\ c)$  હોય તેવા સમતલનું કાર્તેઝીય સમીકરણ ax+by+cz=d છે.  $a^2 + b^2 + c^2 \neq 0$ , size  $\bar{n} \neq \bar{0}$ .

નોંધ : સમતલના સમીકરણમાં x, y, z ના સહગુણકોથી બનતો ક્રમિક ત્રય એ સમતલનો અભિલંબ  $\overline{n}$  દર્શાવે છે.

ઉદાહરણ  $oldsymbol{20}:(4,\,5,\,-1)$ માંથી પસાર થતા અને 3  $\hat{i}\,-\,\hat{j}\,+\,\hat{k}\,$  અભિલંબવાળા સમતલનું સમીકરણ મેળવો.

 $\overline{6}$ લ : અહીં  $\overline{a} = (4, 5, -1), \overline{n} = (3, -1, 1)$ 

- :. સમતલનું સમીકરણ  $\overline{r} \cdot \overline{n} = \overline{a} \cdot \overline{n}$  પ્રમાણે  $(x, y, z) \cdot (3, -1, 1) = (4, 5, -1) \cdot (3, -1, 1)$
- $\therefore$  3x y + z = 12 5 1 = 6
- $\therefore$  3x y + z = 6 એ (4, 5, -1)માંથી પસાર થતા અને  $3\hat{i} \hat{j} + \hat{k}$  અભિલંબવાળા સમતલનું સમીકરણ છે.

ઉદાહરણ 21: સમતલ 2x-z+1=0 નો અભિલંબ તથા સમતલનું સદિશ સમીકરણ મેળવો.

ઉકેલ સમતલનું કાર્તેઝીય સમીકરણ 2x - z + 1 = 0 છે.

 $\therefore$  અભિલંબ  $\overline{n}=(2,0,-1)$ 

- (નોંધ જુઓ)
- $\vec{r} \cdot \vec{n} = d$  એટલે  $2x z + 1 = (2, 0, -1) \cdot (x, y, z) + 1 = 0$
- $\therefore$  સમતલનું સદિશ સમીકરણ  $\overline{r} \cdot (2, 0, -1) + 1 = 0$

## 7.13 ઊગમબિંદુમાંથી સમતલ પરના લંબના ઉપયોગથી સમતલનું સમીકરણ

ધારો કે ઊગમબિંદુમાંથી સમતલ  $\pi$  પરનો લંબપાદ  $N(\overline{n})$  છે.

ધારો કે 
$$ON = p$$

$$|\overline{n}| = p.$$

ધારો કે  $\overline{n}$  ના દિક્ખૂશાઓ  $\alpha$ ,  $\beta$ ,  $\gamma$  છે.

- $\therefore$   $\overline{n}$  ની દિક્કોસાઇન  $\cos \alpha$ ,  $\cos \beta$ ,  $\cos \gamma$  છે.
- $\therefore$   $\overline{n}$  ની દિશાનો એકમ સદિશ

$$\hat{n} = \frac{\overline{n}}{|\overline{n}|} = \frac{\overline{n}}{p} = (\cos\alpha, \cos\beta, \cos\gamma)$$

$$\therefore \quad \overline{n} = (p\cos\alpha, \ p\cos\beta, \ p\cos\gamma)$$

ધારો કે  $P(\overline{r})$  એ સમતલ  $\pi$  નું કોઈપણ બિંદુ છે.

વળી સમતલ  $N(\overline{n})$ માંથી પસાર થાય છે.

$$\therefore \quad \overline{a} = \overline{n} = (p\cos\alpha, \ p\cos\beta, \ p\cos\gamma)$$

સમતલનું સમીકરણ  $\overline{r} \cdot \overline{n} = \overline{a} \cdot \overline{n}$  એ

$$(x, y, z) \cdot (pcos\alpha, pcos\beta, pcos\gamma) = p^2$$



(અહીં 
$$\overline{a} \cdot \overline{n} = \overline{n} \cdot \overline{n} = |\overline{n}|^2 = p^2$$
)

 $\therefore$  જેના અભિલંબના દિક્ખૂણા lpha, eta,  $\gamma$  હોય તથા અભિલંબની લંબાઈ p હોય તેવા સમતલનું સમીકરણ  $x\cos\alpha + y\cos\beta + z\cos\gamma = p \ \vartheta.$ 

નોંધ : જો સમતલનું સમીકરણ ax + by + cz = d સ્વરૂપમાં હોય અને આ સમીકરણને  $x\cos\alpha + y\cos\beta + z\cos\gamma = p$ , સ્વરૂપમાં ફેરવવું હોય, તો આપણે સમીકરણને  $|\overline{n}|$  વડે ભાગીશું, જેથી સમીકરણ  $\frac{a}{|\overline{n}|}x + \frac{b}{|\overline{n}|}y + \frac{c}{|\overline{n}|}z = \frac{d}{|\overline{n}|}$  थशे.

$$\therefore \quad \frac{\overline{n}}{|\overline{n}|} = \left(\frac{a}{|\overline{n}|}, \frac{b}{|\overline{n}|}, \frac{c}{|\overline{n}|}\right) = \hat{n} = (\cos\alpha, \cos\beta, \cos\gamma) \text{ eval} \quad \frac{d}{|\overline{n}|} = p$$

જો 
$$d<0$$
, તો  $\overline{n}=(-a,\,-b,\,-c)$  લઈએ કે જેથી  $\frac{-d}{|\overline{n}|}=p$  ધન થાય.

$$-ax - by - cz = -d$$

$$\therefore \quad \frac{\overline{n}}{|\overline{n}|} = \left(\frac{-a}{|\overline{n}|}, \frac{-b}{|\overline{n}|}, \frac{-c}{|\overline{n}|}\right) = (\cos \alpha, \ \cos \beta, \ \cos \gamma) \ \text{અને } \frac{-d}{|\overline{n}|} = p.$$

ઉદાહરણ 22 : ઊગમબિંદુમાંથી સમતલ 2x - 3y + 6z + 14 = 0 પર દોરેલ લંબની લંબાઈ તથા લંબસદિશની દિક્કોસાઇન શોધો.

ઉકેલ : સમતલ 
$$\pi$$
 નું સમીકરણ  $2x - 3y + 6z = -14$  છે.

આપણે સમીકરણને  $\frac{a}{|\overline{n}|}x + \frac{b}{|\overline{n}|}y + \frac{c}{|\overline{n}|}z = \frac{d}{|\overline{n}|}$  સ્વરૂપમાં ફેરવીશું.

અહીં d = -14 < 0.

સમીકરણને -2x + 3y - 6z = 14 ના સ્વરૂપમાં લખી શકાય કે જેથી -d > 0 થાય.

$$\overline{n} = (-2, 3, -6)$$
 each,  $|\overline{n}| = \sqrt{4+9+36} = 7$ 

:. 
$$p = \frac{-d}{|\vec{n}|} = \frac{14}{7} = 2$$
,  $(\cos \alpha, \cos \beta, \cos \gamma) = (\frac{-2}{7}, \frac{3}{7}, \frac{-6}{7})$ 

ઊગમબિંદુમાંથી દોરેલ લંબની લંબાઈ 2 અને લંબની દિક્કોસાઇન  $\frac{-2}{7}$ ,  $\frac{3}{7}$ ,  $\frac{-6}{7}$  થશે.

રેખા તથા સમતલનો છેદગણ :

ધારો કે સમીકરણ  $\overline{r}=\overline{a}+k\overline{l}$ ,  $k\in\mathbb{R}$  રેખા દર્શાવે છે અને સમીકરણ  $\overline{r}\cdot\overline{n}=d$  એ એક સમતલ દર્શાવે છે.  $(\overline{n}\neq\overline{0})$ 

રેખા  $\overline{r} = \overline{a} + k\overline{l}$  અને સમતલ  $\overline{r} \cdot \overline{n} = d(\overline{l} \neq \overline{0}, \overline{n} \neq \overline{0})$  ના છેદગણનો વિચાર કરીએ.

ધારો કે 
$$\overline{l} = (l_1, l_2, l_3), \overline{n} = (a, b, c), \overline{a} = (x_1, y_1, z_1)$$

કોઈક  $k_1\in \mathbf{R}$  માટે રેખા પરનું બિંદુ  $\overline{r}_1=\overline{a}\,+k_1\overline{l}\,$  એ સમતલ પર પણ આવેલું હોય તો,

$$(\overline{a} + k_1 \overline{l}) \cdot \overline{n} = d.$$

$$\therefore k_1(\overline{l} \cdot \overline{n}) = d - \overline{a} \cdot \overline{n}$$
 (i)

હવે.

248

(1) જો  $\overline{l} \cdot \overline{n} = 0$  તથા  $d - \overline{a} \cdot \overline{n} \neq 0$ , તો (i) શક્ય નથી.

 $\vec{l}\cdot\vec{n}=0$  તથા  $ax_1+by_1+cz_1\neq d$  તો રેખા તથા સમતલ એકબીજાને છેદશે નહિ તથા રેખા સમતલને સમાંતર છે તેમ કહીશું.

(2) જો  $\overline{l} \cdot \overline{n} = 0$  તથા  $d - \overline{a} \cdot \overline{n} = 0$  તો પ્રત્યેક  $k_1 \in \mathbb{R}$  માટે (i)નું સમાધાન થશે. આ વિકલ્પમાં રેખા પરના બધાં બિંદુઓ સમતલમાં આવેલા છે. આમ,  $ax_1 + by_1 + cz_1 = d$  તથા  $\overline{l} \cdot \overline{n} = 0$  તો રેખા સમતલમાં આવેલી છે.

(3) જો  $\overline{l} \cdot \overline{n} \neq 0$  તો આપણને  $k_1$  ની અનન્ય કિંમત મળે.  $k_1 = \frac{d - \overline{a} \cdot \overline{n}}{\overline{l} \cdot \overline{n}}$  થાય. આ વિકલ્પમાં રેખા પરનું બરાબર એક જ બિંદુ સમતલમાં હોય. એટલે કે રેખા સમતલને બરાબર એક જ બિંદુમાં છે દે છે.

7.14 બે સમતલો વચ્ચેના ખૂણાનું માપ

બે સમતલોના અભિલંબ વચ્ચેના ખૂશાનું માપ એ જ બે સમતલો વચ્ચેના ખૂશાનું માપ છે.

બે સદિશો વચ્ચેનો ખૂણો લઘુકોણ લઈએ છીએ તેથી બે સમતલ વચ્ચેનો ખૂણો પણ લઘુકોણ જ લઈશું.



 $\pi_2$   $\overline{n_1}$  C  $\theta$   $\overline{n_2}$   $\overline{n_2}$   $\theta$   $\theta$  A B

આકૃતિ 7.15

આકૃતિ 7.16 એ બે અભિલંબ  $\overline{n}_1$  અને  $\overline{n}_2$  વચ્ચેના ખૂણાનું માપ  $\theta$  દર્શાવે છે. એટલે કે  $(\overline{n}_1, \overline{n}_2) = \theta = m\angle \text{COD}$  પરંતુ  $m\angle \text{COA} = \frac{\pi}{2}$ . તેથી  $m\angle \text{DOA} = \frac{\pi}{2} - \theta$  થશે.

હવે  $\overline{n}_2$  એ  $\pi_2$  નો અભિલંબ છે તેથી  $m\angle BOD = \frac{\pi}{2}$ 

∴  $m\angle AOB = \theta$ , એ બે સમતલો વચ્ચે ખૂશાનું માપ છે.

ધારો કે  $\pi_1:\overline{r}\cdot\overline{n}_1=d_1$  અને  $\pi_2:\overline{r}\cdot\overline{n}_2=d_2$  આપેલા સમતલોનાં સમીકરણો છે.

(1) 
$$\pi_1 \perp \pi_2 \Leftrightarrow \overline{n}_1 \perp \overline{n}_2 \Leftrightarrow \overline{n}_1 \cdot \overline{n}_2 = 0$$

$$\therefore$$
  $\pi_1$  અને  $\pi_2$  વચ્ચેના ખૂણાનું માપ  $\frac{\pi}{2}$  છે.  $\Leftrightarrow$   $\overline{n}_1 \cdot \overline{n}_2 = 0$ .

(2) જો બે સમતલો એકબીજાને છેદે નહીં તો તેઓ સમાંતર સમતલો કહેવાય. અહીં  $\overline{n}_1$  તથા  $\overline{n}_2$  ની દિશા સમાન છે.

$$\therefore \quad \pi_1 \parallel \pi_2 \Leftrightarrow \overline{n}_1 \times \overline{n}_2 = \overline{0}$$

$$\therefore$$
  $\pi_1$  તથા  $\pi_2$  વચ્ચેના ખૂણાનું માપ  $0$  છે  $\Leftrightarrow \overline{n}_1 \times \overline{n}_2 = \overline{0}$ .



$$\therefore cos\theta = \frac{|\overline{n_1} \cdot \overline{n_2}|}{|\overline{n_1}||\overline{n_2}|}$$

$$\therefore \quad \theta = \cos^{-1} \frac{|\overline{n}_1 \cdot \overline{n}_2|}{|\overline{n}_1| |\overline{n}_2|}$$

આ પરિષ્ટામ  $\theta=0$  અને  $\frac{\pi}{2}$  માટે પણ સત્ય છે.

(ચકાસો !)

 $\bar{n}$ 

આકૃતિ 7.17

જો સમતલનાં સમીકરણો  $\pi_1:a_1x+b_1y+c_1z=d_1$  અને  $\pi_2:a_2x+b_2y+c_2z=d_2$  સ્વરૂપમાં હોય તો  $\overline{n}_1=(a_1,\,b_1,\,c_1)$  અને  $\overline{n}_2=(a_2,\,b_2,\,c_2)$ . તેમની વચ્ચેના ખૂણાનું માપ

$$\theta = \cos^{-1} \frac{|a_1a_2 + b_1b_2 + c_1c_2|}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}}.$$

ઉદાહરણ 23 : સમતલો 2x-y+z+6=0 અને x+y+2z-3=0 વચ્ચેના ખૂણાનું માપ શોધો.

ઉકેલ: 
$$\pi_1: 2x - y + z + 6 = 0$$
. તેથી  $\overline{n}_1 = (2, -1, 1)$   
 $\pi_2: x + y + 2z - 3 = 0$ . તેથી  $\overline{n}_2 = (1, 1, 2)$ 

હવે, 
$$\overline{n}_1 \cdot \overline{n}_2 = 2(1) + (-1)1 + 1(2) = 3$$

$$|\overline{n}_1| = \sqrt{4+1+1} = \sqrt{6}, |\overline{n}_2| = \sqrt{1+1+4} = \sqrt{6}$$

$$\therefore \quad \theta = \cos^{-1} \frac{|\overline{n_1} \cdot \overline{n_2}|}{|\overline{n_1}| |\overline{n_2}|} = \cos^{-1} \frac{|3|}{\sqrt{6}\sqrt{6}} = \cos^{-1} \frac{1}{2} = \frac{\pi}{3}$$

 $\therefore$  આપેલા સમતલો વચ્ચેના ખૂણાનું માપ  $\frac{\pi}{3}$  છે.

# 7.15 બે સમાંતર રેખાઓમાંથી પસાર થતા સમતલનું સમીકરણ

ધારો કે 
$$\overline{r} = \overline{a} + k\overline{l}$$
,  $k \in \mathbb{R}$  અને  $\overline{r} = \overline{b} + k\overline{l}$ ,  $k \in \mathbb{R}$ 

બે સમાંતર રેખાઓનાં સદિશ સમીકરણ છે.

∴ તેઓ એક અનન્ય સમતલ નિશ્ચિત કરે છે.

વળી, 
$$\overline{b} \notin \{\overline{r} \mid \overline{r} = \overline{a} + k\overline{l}, k \in \mathbb{R}\}$$

$$\therefore$$
 કોઈપણ  $k \in \mathbb{R}$  માટે  $\overline{b} \neq \overline{a} + k\overline{l}$ 

$$\therefore$$
 કોઈપણ  $k \in \mathbb{R}$  માટે  $\overline{b} - \overline{a} \neq k\overline{l}$ 

$$\therefore (\overline{b} - \overline{a}) \times \overline{l} \neq \overline{0}$$

તેથી 
$$\overline{n} = (\overline{b} - \overline{a}) \times \overline{l}$$
 લેતાં  $\overline{n} \neq \overline{0}$ .



આકૃતિ 7.18

અને માંગેલ સમતલ  $\pi$  નું સમીકરણ  $(\overline{r} - \overline{a}) \cdot \overline{n} = 0$ 

એટલે કે 
$$(\overline{r} - \overline{a}) \cdot [(\overline{b} - \overline{a}) \times \overline{l}] = 0$$
 છે તેમ સાબિત કરીએ.

આપણે બતાવીશું કે, આપેલ રેખાઓ આ સમતલમાં આવેલી છે.

$$\overline{r} = \overline{a} + k\overline{l}$$
 માટે,

$$(\overline{r} - \overline{a}) \cdot [(\overline{b} - \overline{a}) \times \overline{l}] = (k\overline{l}) \cdot [(\overline{b} - \overline{a}) \times \overline{l}] = 0$$

$$\therefore$$
  $\overline{r} = \overline{a} + k\overline{l}$  પરનાં બધાં જ બિંદુઓ  $\pi$  માં છે.

$$\therefore$$
 રેખા  $\overline{r} = \overline{a} + k\overline{l}$  ,  $k \in \mathbb{R}$  સમતલ  $\pi$  માં આવેલી છે.

તે જ પ્રમાણે, 
$$\overline{r} = \overline{b} + k\overline{l}$$
 માટે,

$$(\overline{r} - \overline{a}) \cdot [(\overline{b} - \overline{a}) \times \overline{l}] = (\overline{b} + k\overline{l} - \overline{a}) \cdot [(\overline{b} - \overline{a}) \times \overline{l}]$$

$$= (\overline{b} - \overline{a}) \cdot [(\overline{b} - \overline{a}) \times \overline{l}] + k\overline{l} \cdot [(\overline{b} - \overline{a}) \times \overline{l}]$$

$$= 0$$

$$\therefore$$
 રેખા  $\overline{r} = \overline{b} + k\overline{l}$  એ સમતલ $(\overline{r} - \overline{a}) \cdot [(\overline{b} - \overline{a}) \times \overline{l}] = 0$  નો ઉપગણ છે.

તેથી,  $(\overline{r}-\overline{a})\cdot[(\overline{b}-\overline{a}) imes\overline{l}\ ]=0$  એ આપેલ બે સમાંતર રેખાઓમાંથી પસાર થતા સમતલનું સમીકરણ છે.

# **કार्ते** जीय स्वरूप :

ધારો કે 
$$\overline{a} = (x_1, y_1, z_1), \overline{b} = (x_2, y_2, z_2)$$
 અને  $\overline{l} = (l_1, l_2, l_3).$ 

બે સમાંતર રેખાઓમાંથી પસાર થતા સમતલના સમીકરણનું કાર્તેઝીય સ્વરૂપ

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ l_1 & l_2 & l_3 \end{vmatrix} = 0 \ \vartheta.$$

ઉદાહરણ 24 : સાબિત કરો કે રેખાઓ  $L: \frac{x-3}{3} = \frac{y-3}{-4} = \frac{z-5}{2}$  અને  $M: \frac{x}{6} = \frac{y-5}{-8} = \frac{z-2}{4}$  સમાંતર છે તથા તેમાંથી પસાર થતા સમતલનું સમીકરણ મેળવો.

ઉકેલ : અહીં,  $\overline{l}=(3,-4,2), \overline{m}=(6,-8,4)$ . તેથી  $\overline{l}\times\overline{m}=\overline{0}$ .

∴ L = M અથવા L || M

તથા (3, 3, 5) માટે,  $\frac{3}{6} = \frac{3-5}{-8} = \frac{5-2}{4}$  સત્ય નથી. તેથી (3, 3, 5)  $\notin$  M.

∴ (3, 3, 5) ∈ L અને (3, 3, 5) ∉ M

∴ L ≠ M

∴ L || M

હવે,  $\overline{a} = (3, 3, 5), \overline{b} = (0, 5, 2)$  અને  $\overline{l} = (3, -4, 2)$ .

∴ L અને M માંથી પસાર થતા સમતલનું સમીકરણ 
$$\begin{vmatrix} x-3 & y-3 & z-5 \\ 0-3 & 5-3 & 2-5 \\ 3 & -4 & 2 \end{vmatrix} = 0$$

$$\begin{vmatrix} x-3 & y-3 & z-5 \\ -3 & 2 & -3 \\ 3 & -4 & 2 \end{vmatrix} = 0$$

$$(x-3)(-8) - (y-3)(3) + (z-5)(6) = 0$$

$$\therefore -8x + 24 - 3y + 9 + 6z - 30 = 0$$

x = 8x + 3y - 6z = 3 એ આપેલ સમાંતર રેખાઓમાંથી પસાર થતા સમતલનું સમીકરણ છે.

#### 7.16 બે છેદતી રેખાઓમાંથી પસાર થતા સમતલનું સમીકરણ

ધારો કે બે છેદતી રેખાઓનાં સમીકરણ

$$\overline{r} = \overline{a} + k\overline{l}, k \in \mathbb{R}$$
 અને

$$\overline{r} = \overline{b} + k\overline{m}, k \in \mathbb{R} \ \dot{\Theta}.$$

∴ તેમનામાંથી એક અનન્ય સમતલ પસાર થશે.

વળી, 
$$\overline{l} \times \overline{m} \neq \overline{0}$$
 અને  $(\overline{a} - \overline{b}) \cdot (\overline{l} \times \overline{m}) = 0$ .

(શા માટે ?)



આકૃતિ 7.19

 $\overline{n} = \overline{l} \times \overline{m}$  લેતાં  $\overline{n} \neq \overline{0}$  થશે.

સમતલ  $\pi$  નું સમીકરણ  $(\overline{r} - \overline{a}) \cdot \overline{n} = 0$  લઈએ.

એટલે કે  $(\overline{r}-\overline{a})\cdot(\overline{l}\times\overline{m})=0$  એ માંગેલ સમતલ  $\pi$  નું સમીકરણ છે તેમ સાબિત કરીશું.  $(\overline{n}\neq\overline{0})$  હવે, આપણે આ બંને રેખાઓ સમતલ  $\pi$  માં છે તેમ સાબિત કરીશું.

$$\overline{r} = \overline{a} + k\overline{l}$$
 elai,

$$(\overline{r} - \overline{a}) \cdot (\overline{l} \times \overline{m}) = (k\overline{l}) \cdot (\overline{l} \times \overline{m}) = 0$$

 $\therefore$  રેખા  $\overline{r} = \overline{a} + k\overline{l}$  નાં બધાં જ બિંદુઓ સમતલ  $(\overline{r} - \overline{a}) \cdot (\overline{l} \times \overline{m}) = 0$  માં છે.

એ જ પ્રમાણે,  $\overline{r} = \overline{b} + k\overline{m}$  લેતાં,

$$(\overline{r} - \overline{a}) \cdot (\overline{l} \times \overline{m}) = (\overline{b} + k\overline{m} - \overline{a}) \cdot (\overline{l} \times \overline{m})$$

$$= (\overline{b} - \overline{a}) \cdot (\overline{l} \times \overline{m}) + (k\overline{m}) \cdot (\overline{l} \times \overline{m})$$

$$= 0 \qquad ((\overline{b} - \overline{a}) \cdot (\overline{l} \times \overline{m}) = 0)$$

- $\therefore$  રેખા  $\overline{r} = \overline{b} + k\overline{m}$  ના બધાં જ બિંદુઓ સમતલ  $(\overline{r} \overline{a}) \cdot (\overline{l} \times \overline{m}) = 0$  માં છે.
- $\therefore$  આપેલ બે છેદતી રેખાઓમાંથી પસાર થતા સમતલનું સમીકરણ  $(\overline{r} \overline{a}) \cdot (\overline{l} \times \overline{m}) = 0$  છે.

#### કાર્તેઝીય સ્વરૂપ :

$$\overline{r} = (x, y, z), \overline{a} = (x_1, y_1, z_1), \overline{l} = (l_1, l_2, l_3) \text{ and } \overline{m} = (m_1, m_2, m_3) \text{ exti},$$

બે છેદતી રેખાઓમાંથી પસાર થતા સમતલના સમીકરણનું કાર્તેઝીય સ્વરૂપ

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ l_1 & l_2 & l_3 \\ m_1 & m_2 & m_3 \end{vmatrix} = 0 \ \vartheta.$$

નોંધ : (1) બે છેદતી રેખાઓમાંથી પસાર થતા સમતલના સમીકરણ  $(\overline{r}-\overline{a})\cdot(\overline{l}\times\overline{m})=0$  માં  $\overline{a}$ ને બદલે  $\overline{b}$  નો પણ ઉપયોગ કરી શકાય, એટલે કે  $(\overline{r}-\overline{b})\cdot(\overline{l}\times\overline{m})=0$  પણ બે છેદતી રેખાઓમાંથી પસાર થતા સમતલનું સમીકરણ છે.

(2) સમતલનું સમીકરણ મેળવવા માટે આપણને ત્રણ ભિન્ન અસમરેખ બિંદુઓની જરૂર પડે છે. અહીં  $A(\overline{a})$  અને  $B(\overline{b})$  બે બિંદુઓ તો આપેલાં છે જ, ત્રીજું બિંદુ C એ આપેલ રેખાઓ પરનું કોઈપણ બિંદુ મેળવી શકાય. (આ બિંદુ કોઈ પણ રેખાના સમીકરણમાં  $k \in \mathbb{R} - \{0\}$  લેવાથી મળી શકે છે.)

ઉદાહરણ 25 : સાબિત કરો કે રેખાઓ  $L: \frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$  અને  $M: \frac{x-4}{5} = \frac{y-1}{2} = z$  સમતલીય છે તથા તેમનામાંથી પસાર થતા સમતલનું સમીકરણ મેળવો.

ઉકેલ : અહીં, 
$$\overline{a} = (1, 2, 3), \overline{l} = (2, 3, 4)$$
 અને  $\overline{b} = (4, 1, 0), \overline{m} = (5, 2, 1).$ 

$$\overline{l} \times \overline{m} = (-5, 18, -11) \neq \overline{0}$$
 ਅਜੇ  $\overline{b} - \overline{a} = (3, -1, -3)$ 

$$(\overline{b} - \overline{a}) \cdot (\overline{l} \times \overline{m}) = (3, -1, -3) \cdot (-5, 18, -11) = -15 - 18 + 33 = 0$$

∴ રેખાઓ L અને M એકબીજીને અનન્ય બિંદુમાં છેદતી રેખાઓ છે અને તેથી તેઓ સમતલીય છે.

∴ L અને M માંથી પસાર થતા સમતલનું સમીકરણ,

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ l_1 & l_2 & l_3 \\ m_1 & m_2 & m_3 \end{vmatrix} = 0$$

$$\begin{vmatrix} x - 1 & y - 2 & z - 3 \\ 2 & 3 & 4 \\ 5 & 2 & 1 \end{vmatrix} = 0$$

$$(x-1)(-5) - (y-2)(-18) + (z-3)(-11) = 0$$

$$\therefore$$
 -5x + 5 + 18y - 36 - 11z + 33 = 0

∴ 
$$5x - 18y + 11z - 2 = 0$$
 એ માંગેલ સમતલનું સમીકરણ છે.

બીજી રીત : A(1, 2, 3), B(4, 1, 0) આપેલી રેખાઓ પરનાં બિંદુઓ છે.

રેખાના સમીકરણ  $\overline{r}=(1,\,2,\,3)+k(2,\,3,\,4),\,k\in\mathbb{R}$  માં k=1 લેતાં રેખા L પરનું અન્ય બિંદુ C(3, 5, 7) મળે.

સ્પષ્ટ છે કે A, B, C અસમરેખ છે. કારણ કે 
$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 1 & 0 \\ 3 & 5 & 7 \end{vmatrix} = 7 - 56 + 51 \neq 0.$$

∴ A, B, C માંથી પસાર થતા સમતલનું સમીકરણ 
$$\begin{vmatrix} x-1 & y-2 & z-3 \\ 4-1 & 1-2 & 0-3 \\ 3-1 & 5-2 & 7-3 \end{vmatrix} = 0$$
 છે.

$$\begin{vmatrix} x-1 & y-2 & z-3 \\ 3 & -1 & -3 \\ 2 & 3 & 4 \end{vmatrix} = 0$$

$$(x-1)(5) - (y-2)(18) + (z-3)(11) = 0$$

$$\therefore$$
 5x - 5 - 18y + 36 + 11z - 33 = 0

$$\therefore$$
 5x - 18y + 11z - 2 = 0 એ માંગેલ સમતલનું સમીકરણ છે.

નોંધ : બે સમાંતર રેખાઓમાંથી પસાર થતા સમતલનું સમીકરણ મેળવવા માટે ઉપર દર્શાવેલ બીજી રીતનો ઉપયોગ કરી શકાય.

7.17 સમતલમાં ન હોય તેવા બિંદુનું સમતલથી લંબઅંતર

ધારો કે  $\pi:\overline{r}\cdot\overline{n}=d$  આપેલ સમતલનું સમીકરણ છે અને  $P(\overline{p})$  છે, જ્યાં  $P\not\in\pi$ .

જો  $\mathrm{M}(\overline{m})$  એ બિંદુ  $\mathrm{P}(\overline{p})$  માંથી સમતલ  $\pi$  પરનો લંબપાદ હોય, તો આપણે અંતર PM શોધીશું.

$$\therefore$$
  $\overrightarrow{\mathbf{m}}$  ની દિશા એ  $\overline{n}$  ની દિશા થશે.

$$\therefore$$
  $\stackrel{\longleftrightarrow}{\text{MP}}$  નું સમીકરણ  $\overline{r} = \overline{p} + k\overline{n}, k \in \mathbb{R}$  છે.

વળી, 
$$M(\overline{m}) \in \stackrel{\longleftrightarrow}{\mathsf{MP}}$$
 તેથી કોઈક  $k_1 \in \mathsf{R}$  માટે  $\overline{m} = \overline{p} + k_1 \overline{n}$ .

 $M(\overline{m}) \in \pi$ .

તેથી 
$$\overline{m} \cdot \overline{n} = d$$

$$\therefore (\overline{p} + k_1 \overline{n}) \cdot \overline{n} = d$$

$$\therefore k_1 \mid \overline{n} \mid^2 = d - \overline{p} \cdot \overline{n}$$

$$\therefore k_1 = \frac{d - \overline{p} \cdot \overline{n}}{|\overline{n}|^2} \qquad (\overline{n} \neq \overline{0}) \quad (i)$$

$$(\overline{n} \neq \overline{0})$$
 (i)



આકૃતિ 7.20

 $(\overline{m} = \overline{p} + k_1 \overline{n})$ 

eq. 
$$PM = |\overrightarrow{PM}| = |\overline{m} - \overline{p}|$$

$$= |k_1 \overline{n}|$$

$$= |k_1| |\overline{n}|$$

$$\therefore PM = \frac{|d - \overline{p \cdot n}|}{|\overline{n}|^2} \times |\overline{n}| = \frac{|\overline{p \cdot n} - d|}{|\overline{n}|}$$

$$\therefore PM = \frac{|d - p \cdot n|}{|\overline{n}|^2} \times |\overline{n}| = \frac{|p \cdot n - d|}{|\overline{n}|}$$

કાર્તેઝીય સ્વરૂપ :

ધારો કે  $P(x_1, y_1, z_1)$  આપેલ બિંદુ છે અને સમતલનું સમીકરણ ax + by + cz = d છે.

$$\therefore \quad \overline{p} = (x_1, y_1, z_1), \quad \overline{n} = (a, b, c)$$

.. P થી સમતલ નું લંબઅંતર = 
$$\frac{|ax_1 + by_1 + cz_1 - d|}{\sqrt{a^2 + b^2 + c^2}}$$

અને જો સમતલનું સમીકરણ ax + by + cz + d = 0 સ્વરૂપમાં હોય તો લંબઅંતર

$$= \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

 $(\overline{r} \cdot \overline{n} = d$  માં d ના સ્થાને -d લેતાં)

નોંધ : (1) બિંદુ  $P(\overline{p})$  થી સમતલ  $\overline{r} \cdot \overline{n} = d$  પરનો લંબપાદ  $M(\overline{m})$  હોય તો  $\overline{m} = \overline{p} + k_1 \overline{n}$  જ્યાં  $k_1 = \frac{d - \overline{p} \cdot \overline{n}}{|\overline{n}|^2}$ .

(2) બિંદુ 
$$(x_1, y_1)$$
થી રેખા  $ax + by + c = 0$  ના લંબઅંતર  $\frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$  સાથે સરખાવો.

ઉદાહરણ 26: બિંદુ (-1, 2, -2) નું સમતલ 3x - 4y + 2z + 44 = 0 થી લંબઅંતર મેળવો.

ઉકેલ : 
$$\overline{p}=(-1,\,2,\,-2)$$
 અને  $\pi:3x-4y+2z=-44$  છે. તેથી  $d=-44$ .

$$\therefore \quad \text{eignifical} = \frac{|ax_1 + by_1 + cz_1 - d|}{\sqrt{a^2 + b^2 + c^2}}$$

$$= \frac{|3(-1) - 4(2) + 2(-2) + 44|}{\sqrt{3^2 + (-4)^2 + 2^2}} = \frac{29}{\sqrt{29}} = \sqrt{29}$$

બે સમાંતર સમતલો વચ્ચેનું લંબઅંતર :

ધારો કે  $\pi_1:\overline{r}\cdot\overline{n}=d_1$  અને  $\pi_2:\overline{r}\cdot\overline{n}=d_2$  બે સમાંતર સમતલોનાં સમીકરણ છે.

સમતલ  $\pi_1$  પરના કોઈ પણ બિંદુ  $\mathrm{A}(\overline{a})$  નું સમતલ  $\pi_2$ થી લંબઅંતર એ બે સમાંતર સમતલો વચ્ચેનું લંબઅંતર છે.

$$A(\overline{a}) \in \pi_1 \text{ del } \overline{a} \cdot \overline{n} = d_1$$

$$\therefore$$
  $A(\overline{a})$  થી સમતલ  $\overline{r}\cdot\overline{n}=d_2$  નું લંબઅંતર

$$\frac{|\overline{a \cdot n} - d_2|}{|\overline{n}|} = \frac{|d_1 - d_2|}{|\overline{n}|} \text{ and.}$$



આકૃતિ 7.21

ઉદાહરણ 27 : સમતલો 2x - 2y - z + 4 = 0 અને 4y + 2z - 4x + 1 = 0 વચ્ચેનું અંતર શોધો.

634: 
$$\pi_1: 2x - 2y - z + 4 = 0$$
  
 $\pi_2: 4y + 2z - 4x + 1 = 0$   $\Rightarrow$   $\pi_1: 4x - 4y - 2z = -8$   
 $\pi_2: 4x - 4y - 2z = 1$ 

$$\vec{n} = (4, -4, -2), d_1 = -8, d_2 = 1$$

∴ લંભઅંતર = 
$$\frac{|d_1 - d_2|}{|\overline{n}|}$$

$$= \frac{|-8 - 1|}{\sqrt{4^2 + (-4)^2 + (-2)^2}}$$

$$= \frac{9}{6} = \frac{3}{2}$$

આ સૂત્રના ઉપયોગથી પણ બે વિષમતલીય રેખાઓ વચ્ચેના અંતરનું સૂત્ર મળી શકે.

ધારો કે  $\overline{r}=\overline{a}+k\overline{l}$  ,  $k\in\mathbb{R}$  તથા  $\overline{r}=\overline{b}+k\overline{m}$  ,  $k\in\mathbb{R}$ મે વિષમતલીય રેખાઓ છે. આથી  $(\overline{a}-\overline{b})$  .  $(\overline{l}\times\overline{m})\neq 0$ 

સૌપ્રથમ ધારો કે કોઈક  $k_2 \in \mathbb{R}$  માટે  $\mathbb{P}(\overline{a} + k_2 \overline{l})$ 

એ L પર તથા કોઈક  $k_1\in \mathbb{R}$  માટે Q  $(\overline{b}+k_1\overline{m})$  એ M પર કોઈક બિંદુ છે.



$$\therefore \overrightarrow{PQ} = \overline{b} - \overline{a} + k_1 \overline{m} - k_2 \overline{l}$$

હવે જો  $\overrightarrow{PQ}$  એ L તથા M બંનેને લંબ હોય તો,

$$(\overline{b} - \overline{a} + k_1 \overline{m} - k_2 \overline{l}) \cdot \overline{l} = 0$$

તથા 
$$(\overline{b} - \overline{a} + k_1 \overline{m} - k_2 \overline{l}) \cdot \overline{m} = 0$$

$$\therefore (\overline{l} \cdot \overline{m}) k_1 - |\overline{l}|^2 k_2 = (\overline{a} - \overline{b}) \cdot \overline{l}$$

$$|\overline{m}|^2 k_1 - (\overline{l} \cdot \overline{m}) k_2 = (\overline{a} - \overline{b}) \cdot \overline{m}$$

વળી  $(\overline{l} \cdot \overline{m}) (l \cdot m) - |\overline{l}|^2 |\overline{m}|^2 = (\overline{l} \cdot \overline{m})^2 - |\overline{l}|^2 |\overline{m}|^2 = -|\overline{l} \times \overline{m}|^2 \neq 0$  કારણ કે રેખાઓ વિષમતલીય છે.

- $\therefore$  અનન્ય  $k_1\in \mathbb{R}$  તથા  $k_2\in \mathbb{R}$  મળે જેથી  $\overset{\longleftrightarrow}{PQ}\perp \mathbb{L}$  તથા  $\overset{\longleftrightarrow}{PQ}\perp M$  પરંતુ  $\mathbb{L}$  તથા M ની દિશાઓ અનુક્રમે  $\overline{l}$  તથા  $\overline{m}$  છે
- $\therefore \stackrel{\leftrightarrow}{PQ}$  ની દિશા  $\overline{l} \times \overline{m}$  છે.

સમતલ 
$$(\overline{r} - \overline{a}) \cdot (\overline{l} \times \overline{m}) = 0$$
 રેખા L માંથી પસાર થાય છે.

size 
$$\frac{1}{3} (\overline{a} + k\overline{l} - \overline{a}) \cdot (\overline{l} \times \overline{m}) = 0$$

તે જ રીતે  $(\overline{r} - \overline{b}) \cdot (\overline{l} \times \overline{m}) = 0$  રેખા M માંથી પસાર થાય છે.

વળી  $\overset{\longleftrightarrow}{\mathrm{PQ}}$  ની દિશા  $\overline{l} \times \overline{m}$  હોવાથી તે આ બંને સમાંતર સમતલોને લંબ છે.

$$PQ = \frac{|\underline{d_1} - \underline{d_2}|}{|\overline{l} \times \overline{m}|}$$

$$= \frac{|\overline{a} \cdot (\overline{l} \times \overline{m}) - \overline{b} \cdot (\overline{l} \times \overline{m})|}{|\overline{l} \times \overline{m}|}$$

$$= \frac{|(\overline{a} - \overline{b}) \cdot (\overline{l} \times \overline{m})|}{|\overline{l} \times \overline{m}|}$$

# 7.18 રેખા અને સમતલ વચ્ચેનો ખુણો

ધારો કે  $\overline{r}=\overline{a}+k\overline{l}$  એક રેખાનું સમીકરણ છે તથા  $\overline{r}\cdot\overline{n}=d$  એક સમતલનું સમીકરણ છે. ધારો કે રેખા સમતલને બિંદુ P માં છેદે છે તથા M એ  $A(\overline{a})$ માંથી સમતલ પરનો લંબપાદ છે. આપેલી રેખા અને સમતલ વચ્ચેનો ખૂશો  $\angle$ APM છે.

ધારો કે 
$$m\angle APM = \alpha$$
,  $0 < \alpha < \frac{\pi}{2}$ 

$$\therefore \quad \frac{\pi}{2} - \alpha = (\overline{l}, \widehat{n})$$

$$\therefore \cos\left(\frac{\pi}{2} - \alpha\right) = \frac{|\overline{l} \cdot \overline{n}|}{|\overline{l}||\overline{n}|}$$

$$\therefore \quad sin\alpha = \frac{|\overline{l} \cdot \overline{n}|}{|\overline{l}||\overline{n}|}$$

 $\alpha = \sin^{-1}\frac{|\overline{l}\cdot\overline{n}|}{|\overline{l}||\overline{n}|}$  એ રેખા અને સમતલ વચ્ચેના ખૂણાનું માપ છે.



આકૃતિ 7.23

ઉદાહરણ 28 : રેખા  $\frac{x-1}{2}=\frac{y-3}{2}=\frac{z+1}{1}$  અને સમતલ  $\overline{r}\cdot (-2,\,2,\,-1)=1$  વચ્ચેના ખૂણાનું માપ શોધો.

ઉકેલ : અહીં, 
$$\overline{l}=(2,2,1), \overline{n}=(-2,2,-1)$$

$$\overline{l} \cdot \overline{n} = 2(-2) + 2(2) + 1(-1) = -1$$

$$|\overline{l}| = \sqrt{2^2 + 2^2 + 1^2} = 3,$$

$$|\overline{n}| = \sqrt{(-2)^2 + 2^2 + (-1)^2} = 3$$

$$\therefore$$
 આપેલ રેખા અને સમતલ વચ્ચેના ખૂણાનું માપ =  $\sin^{-1}\frac{|\overline{l}\cdot\overline{n}|}{|\overline{l}||\overline{n}|}$ 

$$= sin^{-1} \frac{|-1|}{3(3)} = sin^{-1} \frac{1}{9}$$

#### 7.19 બે સમતલોનો છેદ

ધારો કે એકબીજાને છેદતાં બે સમતલોનાં સમીકરણ  $\pi_1:\overline{r}\cdot\overline{n}_1=d_1$  અને  $\pi_2:\overline{r}\cdot\overline{n}_2=d_2$  છે.

$$\vec{n}_1 \times \overline{n}_2 \neq \overline{0}$$

ધારો કે 
$$\overline{n} = \overline{n}_1 \times \overline{n}_2$$
.

ધારો કે  $\mathrm{A}(\overline{a})$  એ સમતલ  $\pi_1$  અને  $\pi_2$  એક છેદબિંદુ છે.

$$\therefore$$
 A( $\overline{a}$ )  $\in \pi_1$  અને A( $\overline{a}$ )  $\in \pi_2$ 

$$\vec{a} \cdot \overline{n}_1 = d_1$$
 અને  $\vec{a} \cdot \overline{n}_2 = d_2$ 

$$\therefore$$
  $\pi_1$  અને  $\pi_2$  નાં સમીકરણ  $\overline{r} \cdot \overline{n}_1 = d_1 = \overline{a} \cdot \overline{n}_1$  એટલેકે

$$\therefore \quad (\overline{r} - \overline{a}) \cdot \overline{n}_1 = 0 \text{ તથા}$$
 તે જ પ્રમાણે  $(\overline{r} - \overline{a}) \cdot \overline{n}_2 = 0$  છે.

 $\therefore$  જો  $P(\overline{r})$  એ બંને સમતલો  $\pi_1$  અને  $\pi_2$  નું છેદબિંદુ હોય, તો  $(\overline{r}-\overline{a})\perp \overline{n}_1$  અને  $(\overline{r}-\overline{a})\perp \overline{n}_2$ ,  $P\neq A$ .

$$\therefore \quad \overline{r} - \overline{a} = k(\overline{n}_1 \times \overline{n}_2), \ k \in \mathbb{R} - \{0\}$$

$$\therefore \quad \overline{r} - \overline{a} = k\overline{n}, \ k \in \mathbb{R} - \{0\}$$

$$(\overline{n} = \overline{n}_1 \times \overline{n}_2)$$

જો k=0 તો P=A અને તેથી  $\overline{r}=\overline{a}+k\overline{n},\,k\in\mathbb{R}.$ 

આમ,  $P(\overline{r})\in\pi_1\cap\pi_2$  તો  $\overline{r}=\overline{a}+k\overline{n},\,k\in\mathbb{R}$  જે એક રેખાનું સમીકરણ છે.

$$\therefore$$
  $\pi_1 \cap \pi_2$  પરનું દરેક બિંદુ રેખા  $\overline{r} = \overline{a} + k\overline{n}, k \in \mathbb{R}$  પર આવેલું છે.

આથી ઊલટું, જો 
$$P(\overline{r})$$
 એ રેખા  $\overline{r}=\overline{a}+k\overline{n},\,k\in\mathbb{R}$  નું બિંદુ હોય, તો

$$(\overline{r}-\overline{a})\cdot\overline{n}_1=k\overline{n}\cdot\overline{n}_1=k(\overline{n}_1 imes\overline{n}_2)\cdot\overline{n}_1=0$$
 અને

$$(\overline{r} - \overline{a}) \cdot \overline{n}_2 = k \overline{n} \cdot \overline{n}_2 = k (\overline{n}_1 \times \overline{n}_2) \cdot \overline{n}_2 = 0$$

આમ,  $P(\overline{r}) \in \pi_1 \cap \pi_2$ .



આકૃતિ 7.24

માટે  $\pi_1 \cap \pi_2$  એ રેખા  $\overline{r} = \overline{a} + k\overline{n}, k \in \mathbb{R}$  છે, જ્યાં  $\overline{n} = \overline{n}_1 \times \overline{n}_2$ .

જો  $\overline{n}_1 \times \overline{n}_2 \neq \overline{0}$  હોય, તો બે સમતલો  $\overline{r} \cdot \overline{n}_1 = d_1$  અને  $\overline{r} \cdot \overline{n}_2 = d_2$  એક રેખા  $\overline{r} = \overline{a} + k(\overline{n}_1 \times \overline{n}_2), k \in \mathbb{R}$  માં છેદે છે.

બે સમતલના છેદમાંથી પસાર થતા સમતલનું સમીકરણ :

ધારો કે  $a_1x + b_1y + c_1z + d_1 = 0$  અને  $a_2x + b_2y + c_2z + d_2 = 0$  બે છેદતાં સમતલોનાં સમીકરણ છે. તેમની છેદરેખામાંથી પસાર થતા કોઈપણ સમતલનું સમીકરણ

 $l(a_1x+b_1y+c_1z+d_1)+m(a_2x+b_2y+c_2z+d_2)=0,\ l^2+m^2\neq 0$  છે. આથી ઉલટું, કોઈપણ સમતલનું સમીકરણ

 $l(a_1x+b_1y+c_1z+d_1)+m(a_2x+b_2y+c_2z+d_2)=0,\ l^2+m^2\neq 0$  સ્વરૂપનું હોય, તો તે આપેલાં બે સમતલોની છેદરેખાને સમાવતું સમતલ છે.

આપણે આ બંને વિધાનો સાબિતી વગર સ્વીકારીશું.

અહીં  $l^2+m^2\neq 0$  નો અર્થ l અને m પૈકી ઓછામાં ઓછી એક સંખ્યા શૂન્ય નથી.

જો l=0 તો  $m\neq 0$  અને તેથી માંગેલા સમતલનું સમીકરણ  $a_2x+b_2y+c_2z+d_2=0$  થશે.

જો  $l \neq 0$  તો માંગેલા સમતલનું સમીકરણ  $a_2x + b_2y + c_2z + d_2 = 0$  નથી.

ધારો કે 
$$\frac{m}{l} = \lambda$$

જો  $a_2x+b_2y+c_2z+d_2=0$  એ માંગેલ સમતલનું સમીકરણ ન હોય, તો સમતલનું સમીકરણ  $a_1x+b_1y+c_1z+d_1+\lambda\;(a_2x+b_2y+c_2z+d_2)=0,\;\lambda\in\mathbb{R}$  લઈ શકાય.

ઉદાહરણ 29 : સમતલો 2x + 3y + z - 1 = 0 અને x + y - z - 7 = 0 ની છેદરેખા અને (1, 2, 3) માંથી પસાર થતા સમતલનું સમીકરણ શોધો તથા તેમની છેદરેખાનું સમીકરણ પણ મેળવો.

ઉકેલ : (1,2,3) બિંદુના યામ સમતલના સમીકરણ x+y-z-7=0 માં મૂકતાં  $1+2-3-7=-7\neq 0$ 

$$\therefore$$
 બિંદુ  $(1, 2, 3)$  એ સમતલ  $x + y - z - 7 = 0$  નથી.

$$\therefore$$
  $x+y-z-7=0$  એ માંગેલા સમતલનું સમીકરણ નથી.

ધારો કે તે સમતલનું સમીકરણ  $2x + 3y + z - 1 + \lambda (x + y - z - 7) = 0$  છે. તે (1, 2, 3)માંથી પસાર થાય છે.

$$\therefore 2+6+3-1+\lambda(1+2-3-7)=0$$

$$\therefore$$
  $-7\lambda = -10$ 

$$\lambda = \frac{10}{7}$$

$$\therefore$$
 (i) Hi  $\lambda = \frac{10}{7}$  Hystli,

$$2x + 3y + z - 1 + \frac{10}{7}(x + y - z - 7) = 0$$

$$\therefore 14x + 21y + 7z - 7 + 10x + 10y - 10z - 70 = 0$$

$$\therefore$$
 24x + 31y - 3z - 77 = 0

હવે, છેદરેખાની દિશા 
$$\overline{n}=\overline{n}_1\times\overline{n}_2=(2,\,3,\,1)\times(1,\,1,\,-1)=(-4,\,3,\,-1).$$

ચાલો આપણે બંને સમતલનાં સમીકરણમાં z = 0 મૂકીએ.

- $\therefore$  આપણને સમીકરણો 2x + 3y = 1 અને x + y = 7 મળશે.
- આ સમીકરણોને ઉકેલતાં x = 20, y = -13 મળશે.
- ∴ એક સામાન્ય બિંદુ A(20, −13, 0) થશે.
- ightharpoonup છેદરેખાનું સમીકરણ  $\overline{r} = \overline{a} + k\overline{n}, k \in \mathbb{R}$  પ્રમાણે,  $\overline{r} = (20, -13, 0) + k(-4, 3, -1), k \in \mathbb{R}$  થશે.

નોંધ : બે સમતલોનું સામાન્ય છેદબિંદુ મેળવવા માટે આપણે x, y, z પૈકી કોઈ એક માટે જાણીતી સંખ્યા લેવાથી, બાકીના બે ચલની અનન્ય કિંમત મેળવી શકાય.

#### સ્વાધ્યાય 7.2

- 1. સમતલ 4x 2y + z 7 = 0 નો એકમ અભિલંબ શોધો.
- (1, 1, -1), (2, -1, -3) અને (3, 0, 1)માંથી પસાર થતા સમતલનું સિંદેશ તેમજ કાર્તેઝીય સમીકરણ શક્ય હોય, તો મેળવો.
- 3. 2x 3y 5z + 1 = 0 ને સમાંતર અને (1, 2, -3) માંથી પસાર થતા સમતલનું સમીકરણ મેળવો.
- 4. (-2, 1, 1) અને (0, 5, 1) માંથી પસાર થતી રેખાને લંબ અને (5, -1, 2) માંથી પસાર થતા સમતલનું સમીકરણ મેળવો. આ સમતલના અક્ષો પરના અંતઃખંડ પણ શોધો.
- 5. રેખા  $\overline{r} = (1, 4, -1) + k(2, -3, 3), k \in \mathbb{R}$ માંથી પસાર થતા તથા (2, 0, 1) માંથી પસાર થતા સમતલનું સમીકરણ શોધો.
- **6.** બતાવો કે બિંદુઓ (2, 7, 3), (-10, -10, 2), (-3, 3, 2) અને (0, -2, 4) સમતલીય છે. આ બિંદુઓમાંથી પસાર થતા સમતલનું સમીકરણ પણ મેળવો.
- 7. (3, 4, -5) અને (1, 2, 3) માંથી પસાર થતા Z-અક્ષને સમાંતર સમતલનું સમીકરણ મેળવો.
- 8. સમતલો 2x + y z 1 = 0 અને x y 2z + 7 = 0 વચ્ચેના ખૂશાનું માપ શોધો.
- 9. રેખા  $\frac{x-2}{2} = \frac{y-2}{-3} = \frac{z-1}{2}$  અને સમતલ 2x + y 3z + 4 = 0 વચ્ચેના ખૂણાનું માપ શોધો.
- **10.** બિંદુ (5, 3, 4)થી સમતલ 3x + 2y 5z 13 = 0 નું લંબઅંતર શોધો.
- 11. સમતલો 12x 6y + 4z 21 = 0 અને 6x 3y + 2z 1 = 0 વચ્ચેનું લંબઅંતર શોધો.
- 12. A(1, 3, 5) માંથી પસાર થતા તથા  $\overline{AP}$  ને લંબ સમતલનું સમીકરણ મેળવો, જ્યાં P(3, -2, 1) છે.
- 13. રેખા  $\overline{r} = (2, -4, -6) + k(1, 8, -3), k \in \mathbb{R}$ . સમાવતા અને (1, 1, -1) માંથી પસાર થતા સમતલનું સમીકરણ મેળવો.
- 14. બે છેદક રેખાઓ  $\frac{x+1}{1} = \frac{3-y}{1} = \frac{z+5}{2}$  અને  $\frac{x+1}{3} = \frac{y-3}{1} = \frac{z+5}{2}$  માંથી પસાર થતા સમતલનું સમીકરણ શોધો.

\*

### પ્રકીર્ણ ઉદાહરણો

ઉદાહરણ 30 : જો કોઈ રેખા સમઘનના ચાર વિકર્ણો સાથે  $\alpha$ ,  $\beta$ ,  $\gamma$ ,  $\delta$  માપના ખૂશા બનાવે તો સાબિત કરો કે  $cos2\alpha + cos2\beta + cos2\gamma + cos2\delta = -\frac{4}{3}$ .

ઉકેલ ઃ ધારો કે સમઘનની બાજુની લંબાઈ એક એકમ છે.

શિરોબિંદુઓ આકૃતિ 7.25 માં દર્શાવ્યા પ્રમાણે લઈ શકાય.

સમઘનના ચાર વિકર્ણા  $\overrightarrow{OP} = (1, 1, 1),$ 

$$\overrightarrow{AL} = (-1, 1, 1), \overrightarrow{BM} = (1, -1, 1), \overrightarrow{CN} = (1, 1, -1) \hat{\Theta}.$$





આકૃતિ 7.25

$$\cos\alpha = \frac{|l+m+n|}{\sqrt{3}}, \cos\beta = \frac{|-l+m+n|}{\sqrt{3}}, \cos\gamma = \frac{|l-m+n|}{\sqrt{3}} \text{ and } \cos\delta = \frac{|l+m-n|}{\sqrt{3}}.$$

$$\text{ed, } \cos2\alpha + \cos2\beta + \cos2\gamma + \cos2\delta = 2\cos^2\alpha - 1 + 2\cos^2\beta - 1 + 2\cos^2\gamma - 1 + 2\cos^2\delta - 1$$

$$= 2(\cos^2\alpha + \cos^2\beta + \cos^2\gamma + \cos^2\delta) - 4$$

$$= \frac{2}{3}\left[(l+m+n)^2 + (-l+m+n)^2 + (l-m+n)^2 + (l-m+n)^2 + (l-m+n)^2 + (l-m+n)^2\right] - 4$$

$$= \frac{2}{3}\left[4(l^2+m^2+n^2)\right] - 4$$

$$= \frac{8}{3} - 4 \qquad (l^2+m^2+n^2) = 1$$

$$= -\frac{4}{3}$$

આપેલા બિંદુનું રેખા (સમતલ)માં પ્રતિબિંબ : જો બિંદુ A માંથી રેખા (સમતલ) પરનો લંબપાદ M હોય અને બિંદુ B એવું મળે કે જેથી M એ  $\overline{AB}$ નું મધ્યબિંદુ થાય, તો B ને A નું રેખા (સમતલ)માં પ્રતિબિંબ કહે છે.

ઉદાહરણ 31 : રેખા L : 
$$\frac{x-6}{3} = \frac{y-7}{2} = \frac{7-z}{2}$$
ને સાપેક્ષ A(1, 2, 3)નું પ્રતિબિંબ શોધો.

ઉકેલ : અહીં, 
$$\frac{x-6}{3} = \frac{y-7}{2} = \frac{z-7}{-2}$$
 રેખાનું સમીકરણ છે.

ધારો કે A(1, 2, 3) માંથી રેખા પરનો લંબપાદ M છે.

 $M \in L$  તેથી કોઈક  $k \in R$  માટે

M 
$$(6+3k, 7+2k, 7-2k)$$
 થશે.

$$\overrightarrow{AM} = (6+3k, 7+2k, 7-2k) - (1, 2, 3)$$
$$= (5+3k, 5+2k, 4-2k)$$

$$\overrightarrow{AM} \perp L$$

$$\therefore \quad \overrightarrow{AM} \cdot \overline{l} = 0$$

$$\therefore$$
 (5 + 3k, 5 + 2k, 4 - 2k)  $\cdot$  (3, 2, -2) = 0

$$\therefore$$
 15 + 9k + 10 + 4k - 8 + 4k = 0



આકૃતિ 7.26

$$17k + 17 = 0$$

$$\therefore k = -1$$

:. લંબપાદ 
$$M(6 + 3k, 7 + 2k, 7 - 2k) = M(3, 5, 9)$$
.

જો  $\mathrm{B}(x,\ y,\ z)$  એ રેખાને સાપેક્ષ A નું પ્રતિબિંબ હોય, તો  $\mathrm{M}$  એ  $\overline{\mathrm{AB}}$ નું મધ્યબિંદુ થશે.

$$\therefore$$
 (3, 5, 9) =  $\left(\frac{x+1}{2}, \frac{y+2}{2}, \frac{z+3}{2}\right)$ 

$$x = 5, y = 8, z = 15$$

∴ A ના પ્રતિબિંબ B ના યામ (5, 8, 15) થશે.

ઉદાહરણ 32 : જો l, m, n એ બે રેખાઓની દિક્સંખ્યાઓ હોય અને l+m+n=0 તથા  $l^2-m^2+n^2=0$  હોય તો તેમની વચ્ચેના ખૂણાનું માપ શોધો.

ઉકેલ : અહીં, 
$$l+m+n=0$$

$$\therefore m = -l - n$$

$$l^2 - m^2 + n^2 = 0$$

$$l^2 - (-l - n)^2 + n^2 = 0$$

$$l^2 - l^2 - 2ln - n^2 + n^2 = 0$$

$$\therefore$$
  $ln = 0$ 

$$l=0$$
 અથવા  $n=0$ 

$$\Re l = 0 \text{ di } m = -n$$

(l+m+n=0)

l, m, n એ દિક્સંખ્યાઓ હોવાથી  $(l, m, n) \neq (0, 0, 0)$ 

$$l = 0$$

$$n = 0$$

$$l = -m$$

$$l = -m$$

દિક્સંખ્યા 
$$(0, m, -m)$$

દિક્સંખ્યા 
$$(-m, m, 0)$$
 બને.

બે રેખાઓ વચ્ચેના ખૂશાનું માપ 
$$\alpha$$
 હોય તો,  $\cos \alpha = \frac{\mid (0,m,-m)\cdot (-m,m,0)\mid}{\sqrt{2m^2}\cdot \sqrt{2m^2}}$  
$$= \frac{\mid m^2\mid}{2\mid m\mid^2}$$
 
$$= \frac{1}{2}$$

$$\therefore \alpha = \frac{\pi}{3}$$

ઉદાહરણ 33 : રેખા  $\frac{x-4}{2} = \frac{y-5}{2} = \frac{z-3}{1}$  અને સમતલ x+y+z-2=0 નું છેદબિંદુ શોધો. આ છેદબિંદુ અને Q (8, 9, 5) વચ્ચેનું અંતર પણ મેળવો.

ઉકેલ : અહીં, 
$$\overline{a}=(4,5,3)$$
 અને  $\overline{l}=(2,2,1)$ .

ધારો કે તેમનું છેદબિંદુ P છે. તેથી P એ આપેલી રેખા પર છે.

:. કોઈક  $k \in \mathbb{R}$  માટે P ના યામ (4 + 2k, 5 + 2k, 3 + k) થશે.

P એ સમતલ x + y + z - 2 = 0 પર છે.

$$\therefore 4 + 2k + 5 + 2k + 3 + k - 2 = 0$$

$$\therefore 5k = -10$$

$$\therefore k = -2$$

∴ માંગેલ છેદબિંદુ P (4 + 2(-2), 5 + 2(-2), 3 + (-2)) = (0, 1, 1) છે.
 બિંદુઓ P(0, 1, 1) અને Q(8, 9, 5) વચ્ચેનું અંતર

$$PQ = \sqrt{(8-0)^2 + (9-1)^2 + (5-1)^2} = \sqrt{64+64+16} = \sqrt{144} = 12$$

ઉદાહરણ 34:(2,2,-2) અને (-2,-2,2) માંથી પસાર થતા તથા સમતલ 2x-3y+z-7=0 ને લંબ સમતલનું સમીકરણ મેળવો.

ઉકેલ : ધારો કે માંગેલ સમતલનું સમીકરણ ax + by + cz + d = 0 છે.

જો  $\overline{n}$  આ સમતલનો અભિલંબ હોય, તો  $\overline{n}=(a,\ b,\ c)$ .

આ સમતલ એ સમતલ 2x - 3y + z - 7 = 0 ને લંબ છે.

$$\therefore \quad \overline{n} \cdot (2, -3, 1) = 0 \tag{i}$$

વળી, A(2, 2, -2) અને B(-2, -2, 2) એ સમતલનાં બિંદુઓ છે.

$$\overrightarrow{AB} = (-4, -4, 4)$$

$$\therefore \overline{n} \cdot (-4, -4, 4) = 0$$

$$\therefore \quad \overline{n} \cdot (-1, -1, 1) = 0 \tag{ii}$$

(i) અને (ii) પરથી 
$$\overline{n} = (2, -3, 1) \times (-1, -1, 1)$$

$$\vec{n} = (-2, -3, -5)$$
 અથવા  $\vec{n} = (2, 3, 5)$ 

સમતલ (2, 2, -2) માંથી પસાર થાય છે. તેથી સમતલનું સમીકરણ  $\overline{r} \cdot \overline{n} = \overline{a} \cdot \overline{n}$ .

$$\therefore$$
  $\overline{r} \cdot (2, 35) = (2, 2, -2) \cdot (2, 35)$ 

$$\therefore$$
 2x + 3y + 5z = 4 + 6 - 10 = 0

$$\therefore$$
 માંગેલ સમતલનું સમીકરણ  $2x + 3y + 5z = 0$  છે.

ઉદાહરણ 35 : A(4, 5, 2), B(2, 3, -1) અને C(6, -1, -1) માંથી પસાર થતા સમતલ પરનો બિંદુ P(9, 6, -2) માંથી લંબપાદ શોધો. P થી આ સમતલનું લંબઅંતર પણ શોધો.

ઉકેલ : સમતલનું સમીકરણ

$$\begin{vmatrix} x-4 & y-5 & z-2 \\ 2-4 & 3-5 & -1-2 \\ 6-4 & -1-5 & -1-2 \end{vmatrix} = 0$$

$$\begin{vmatrix} x-4 & y-5 & z-2 \\ -2 & -2 & -3 \\ 2 & -6 & -3 \end{vmatrix} = 0$$

$$(x-4)(-12) - (y-5)(12) + (z-2)(16) = 0$$

$$\therefore$$
 3(x - 4) + 3(y - 5) - 4(z - 2) = 0



આકૃતિ 7.27

∴ 3x + 3y - 4z - 19 = 0 એ A, B, C માંથી પસાર થતા સમતલનું સમીકરણ છે.

ધારો કે  $P(\overline{p})$ માંથી સમતલ  $\pi: 3x + 3y - 4z - 19 = 0$  પરનો લંબપાદ M છે.

અહીં, 
$$\overline{n} = (3, 3, -4)$$

 $\leftrightarrow$  PM નું સમીકરણ  $\overline{r}=\overline{p}+k\overline{n},\,k\in\mathbb{R}$  છે.

$$\vec{r} = (9, 6, -2) + k(3, 3, -4), k \in \mathbb{R}$$

:. sìઈs 
$$k \in \mathbb{R}$$
 માટે M  $(9 + 3k, 6 + 3k, -2 - 4k)$ 

હવે. M ∈ π

$$\therefore$$
 3(9 + 3k) + 3(6 + 3k), -4(-2 - 4k) - 19 = 0

$$\therefore$$
 27 + 9k + 18 + 9k + 8 + 16k - 19 = 0

$$34k = -34$$

$$\therefore k = -1$$

:. લંબપાદ 
$$M(9 + 3(-1), 6 + 3(-1), -2 - 4(-1))$$

∴ લંબઅંતર PM = 
$$\sqrt{(9-6)^2 + (6-3)^2 + (-2-2)^2}$$
  
=  $\sqrt{9+9+16}$   
=  $\sqrt{34}$ 

ઉદાહરણ 36 : સાબિત કરો કે (i) રેખા  $\overline{r} = (1, 2, -3) + k(4, -3, 2), k \in \mathbb{R}$  અને સમતલ 3x + 2y - 3z = 5 એકબીજાને સમાંતર છે. (ii) રેખા  $\overline{r} = (1, -2, -2) + k(1, 2, 1), k \in \mathbb{R}$  એ સમતલ 2x - 3y + 4z = 0 માં આવેલી છે.

ઉંકેલ : (i) રેખા L નું સમીકરણ  $\overline{r} = (1, 2, -3) + k(4, -3, 2), k \in \mathbb{R}$  અને સમતલ  $\pi$  નું સમીકરણ 3x + 2y - 3z = 5 છે.

$$\therefore$$
 A( $\overline{a}$ ) = (1, 2, -3),  $\overline{l}$  = (4, -3, 2) अने  $\overline{n}$  = (3, 2, -3)

હવે, 
$$\overline{l} \cdot \overline{n} = 4(3) - 3(2) + 2(-3) = 12 - 6 - 6 = 0$$

 $\therefore$   $\overline{l} \perp \overline{n}$ . તેથી L  $\parallel \pi$  અથવા L એ  $\pi$  માં આવેલી છે.

$$av(1, \overline{a} \cdot \overline{n} = (1, 2, -3) \cdot (3, 2, -3) = 3 + 4 + 9 = 16 \neq 0$$

 $\therefore$  રેખા L એ સમતલ  $\pi$  ને સમાંતર છે.

(ii) રેખા L નું સમીકરણ  $\overline{r}=(1,-2,-2)+k(1,2,1),\,k\in\mathbb{R}$  અને સમતલ  $\pi$  નું સમીકરણ 2x-3y+4z=0 છે.

∴ 
$$A(\overline{a}) = (1, -2, -2), \overline{l} = (1, 2, 1)$$
 અને  $\overline{n} = (2, -3, 4)$ 

હવે, 
$$\overline{l} \cdot \overline{n} = 1(2) + 2(-3) + 1(4) = 2 - 6 + 4 = 0$$

∴  $\overline{l} \perp \overline{n}$ . તેથી L ||  $\pi$  અથવા L એ  $\pi$  માં આવેલી છે.  $\overline{a} \cdot \overline{n} = (1, -2, -2) \cdot (2, -3, 4) = 2 + 6 - 8 = 0$ 

∴ રેખા L સમતલ π માં આવેલી છે.

#### स्वाध्याय 7

- **1.** P(1, 0, 3) થી A(4, 7, 1) અને B(5, 9, -1) માંથી પસાર થતી રેખા  $\overrightarrow{AB}$  પરનો લંબપાદ, લંબરેખાનું સમીકરણ અને લંબની લંબાઈ શોધો.
- 2. l+m+n=0 અને  $m^2+n^2=l^2$  તથા  $l,\ m,\ n$  બે રેખાઓની દિક્સંખ્યાઓ હોય, તો તેમની વચ્ચેના ખૂણાનું માપ શોધો.
- **3.** સાબિત કરો કે રેખાઓ x=2,  $\frac{y-1}{3}=\frac{z-2}{1}$  અને  $x=\frac{y-1}{1}=\frac{z+1}{3}$  વિષમતલીય છે. તેમની વચ્ચેનું લઘુતમ અંતર શોધો.
- **4.** રેખાઓ  $\frac{x+3}{2} = \frac{5-y}{1} = \frac{1-z}{1}$  અને  $\frac{x+3}{2} = \frac{y-5}{3} = \frac{z-1}{1}$  નું છેદબિંદુ શોધો તથા તેમની વચ્ચેના ખૂણાનું માપ શોધો.
- 5. (1, 2, 3) માંથી પસાર થતી તથા રેખાઓ  $\frac{x-3}{1} = \frac{y-1}{2} = \frac{z+1}{-1}$  અને  $\frac{x-5}{-3} = \frac{y+8}{1} = \frac{z-5}{5}$  બંનેને લંબ હોય તેવી રેખાનું સમીકરણ મેળવો.
- 6. (3, –2, –4) માંથી પસાર થતી અને યામાક્ષો સાથે સમાન માપના ખૂણા બનાવતી રેખાનું સમીકરણ શોધો.
- 7. રેખા  $\frac{x-1}{2} = \frac{2-y}{3} = \frac{z+3}{4}$  અને સમતલ 2x + 4y z = 1 નું છેદબિંદુ શોધો. તે બે વચ્ચેના ખૂણાનું માપ પણ શોધો
- 8. X-અક્ષને સમાંતર, Y-અક્ષ અને Z-અક્ષ પર અનુક્રમે 2 અને 3 અંતઃખંડ કાપતા સમતલનું સમીકરણ મેળવો.
- બિંદુ (1, 5, 1) નું સમતલ x 2y + z + 5 = 0 ને સાપેક્ષ પ્રતિબિંબ શોધો.
- **10.** (0, 2, -2) થી સમતલ 2x 3y + 4z 44 = 0 પરનો લંબપાદ શોધો તથા આ બિંદુમાંથી પસાર થતી સમતલને લંબરેખાનું સમીકરણ અને લંબની લંબાઈ શોધો.
- **11.** સમતલો 2x + 3y z 4 = 0 અને x + y + z 2 = 0 ની છેદરેખામાંથી તથા (1, 2, 2)માંથી પસાર થતા સમતલનું સમીકરણ મેળવો તથા આ સમતલોની છેદરેખાનું સમીકરણ પણ મેળવો.
- 12. જો કોઈ સમતલના અક્ષોને છેદવાથી બનતા ત્રિકો\, કો\, નું મધ્યકેન્દ્ર (2, 1, -1) હોય, તો તે સમતલનું સમીકર\\ મેળવો.
- 13. સાબિત કરો કે રેખાઓ  $\frac{x-1}{2} = \frac{y+2}{3} = \frac{z+4}{4}$  અને  $\frac{x-7}{5} = \frac{y+6}{1} = \frac{z+8}{2}$  એક બીજાને છેદે છે. આ રેખાઓમાંથી પસાર થતા સમતલનું સમીકરણ મેળવો.
- **14.** સમતલ 3x + 4y 6z = 12 ના અક્ષો પરના અંતઃખંડોથી અડધી લંબાઈના અંતઃખંડોવાળા સમતલનું સમીકરણ શોધો.
- 15. (1, 2, -3) અને (-3, 6, 4) ને જોડતા રેખાખંડના લંબદ્વિભાજક સમતલનું સમીકરણ મેળવો.

ત્રિપરિમાણીય ભૂમિતિ

# 16. નીચે આપેલું દરેક વિધાન સાચું બને તે રીતે આપેલા વિકલ્પો (a), (b), (c), (d)માંથી યોગ્ય વિકલ્પ પસંદ કરીને 🔲 માં લખો :

- (1) ઊગમબિંદુમાંથી પસાર થતી અને  $\frac{2\pi}{3}$ ,  $\frac{\pi}{4}$ ,  $\frac{\pi}{3}$  માપના દિક્ખૂણાઓવાળી રેખાનું સમીકરણ ..... થાય.
  - (a)  $x = \frac{y}{-\sqrt{2}} = z$  (b)  $\frac{x}{-1} = \frac{y}{-\sqrt{2}} = z$  (c)  $x = \frac{y}{-\sqrt{2}} = -z$  (d)  $x = \frac{y}{\sqrt{2}} = z$
- (2) (3, 4, 5) અને (4, 5, 6)માંથી પસાર થતી રેખાની દિક્કોસાઇન ..... છે.
- (b)  $\sqrt{3}$ ,  $\sqrt{3}$ ,  $\sqrt{3}$  (c)  $\frac{1}{\sqrt{2}}$ ,  $\frac{1}{\sqrt{2}}$ ,  $\frac{1}{\sqrt{2}}$ (d) 7, 9, 11
- (3)  $\frac{x}{2} = \frac{y}{1} = \frac{z}{3}$  અને  $\frac{x-2}{2} = \frac{y+1}{1} = \frac{3-z}{-3}$  એ ..... રેખાઓ છે.

(b) પરસ્પર લંબ

- - (c) સંપાતી (d) લઘુકોણમાં છેદતી

(b) (2, 0, 2)

(a) સમાંતર

(a) (0, 1, 1)

- (4) ઊગમબિંદુમાંથી પસાર થતી અને Y-અક્ષને સમાંતર રેખાનું સમીકરણ ..... છે.
  - (a)  $\frac{x}{1} = \frac{y}{0} = \frac{z}{0}$  (b)  $\frac{x}{0} = \frac{y}{1} = \frac{z}{0}$  (c)  $\frac{x}{1} = \frac{y}{0} = \frac{z}{1}$  (d)  $\frac{x}{1} = \frac{y}{1} = \frac{z}{0}$
- (5) x = k + 1, y = 2k 1, z = 2k + 3 અને  $\frac{x 1}{2} = \frac{y + 1}{1} = \frac{z 1}{-2}$  વચ્ચેના ખૂશાનું માપ ..... છે.
- (b)  $\cos^{-1}\frac{4}{9}$  (c)  $\sin^{-1}\frac{\sqrt{5}}{3}$ (a)  $sin^{-1} \frac{4}{3}$
- (6) સમતલ *x* = 2 નો અભિલંબ ..... છે.
- (7) સમતલ 3x 4y + 7z = 2 ને લંબ ..... અને (-1, 2, 4) માંથી પસાર થતી રેખાની દિશા ..... છે.

(c) (1, 0, 0)

(d) (0, 1, 0)

- (b) (4, -6, 3) (c) (-3, 4, -7)(d) (-1, 2, 4)
- (8) સમતલ  $\overline{r} \cdot (12, -4, 3) = 65$  નું ઊગમબિંદુથી લંબઅંતર ..... થાય.
  - (c) -5(a) 65 (b) 5
- (9) સમતલ 2x + 3y + 6z 15 = 0 એ X-અક્ષ સાથે ..... માપનો ખૂશો બનાવે છે.
- (a)  $\cos^{-1} \frac{3\sqrt{5}}{7}$  (b)  $\sin^{-1} \frac{3}{7}$  (c)  $\sin^{-1} \frac{2}{\sqrt{7}}$  (d)  $\tan^{-1} \frac{2}{7}$
- (10) સમતલો 2x y + 2z = 1 અને 4x 2y + 4z = 1 વચ્ચેનું લંબઅંતર ..... છે.
  - (c)  $\frac{1}{6}$ (d) 6 (a)  $\frac{1}{3}$ (b) 3
- (11) (1, 1, 1), (1, -1, 1) અને (-1, 3, -5) માંથી પસાર થતું સમતલ જો (2, k, 4) માંથી પસાર થાય તો,
- $k = \dots$ 
  - (a) ન મળે (b) બે કિંમત મળે
  - (c) બધી જ વાસ્તવિક સંખ્યા (d) અનન્ય કિંમત મળે

- (12) ઊગમબિંદુમાંથી સમતલ પરનો લંબપાદ (a, b, c) હોય, તો સમતલનું સમીકર $\dots$  થાય.
  - (a) ax + by + cz = a + b + c
- (b) ax + by + cz = abc

(c)  $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ 

- (d)  $ax + by + cz = a^2 + b^2 + c^2$
- (13) A(-2, 2, 3)માંથી પસાર થતી રેખા L એ  $\overrightarrow{AB}$  ને લંબ હોય તો Lનું સમીકરણ ..... થાય. જ્યાં B (13, -3, 13).
  - (a)  $\frac{x-2}{2} = \frac{y+2}{12} = \frac{z+3}{2}$
- (b)  $\frac{x+2}{3} = \frac{y-2}{13} = \frac{z-3}{2}$
- (c)  $\frac{x+2}{15} = \frac{y-2}{-5} = \frac{z-3}{10}$
- (d)  $\frac{x-2}{15} = \frac{y+2}{-5} = \frac{z+3}{10}$
- (14) જો રેખા  $\frac{x-4}{1} = \frac{y-2}{1} = \frac{z-k}{2}$  એ સમતલ 2x 4y + z = 7 માં આવેલી હોય તો k = .....
- (c) -7
- (d) કોઈ પણ વાસ્તવિક સંખ્યા
- (15) બિંદુ (2, -3, 6) નું સમતલ 3x 6y + 2z + 10 = 0 થી લંબઅંતર = .....
- (b)  $\frac{46}{7}$
- (c) 7
- (16) (2, -3, 1) અને (3, -4, -5)માંથી પસાર થતી રેખા ZX-સમતલને .....માં છેદે છે.

- (a) (-1, 0, 13)
- (b) (-1, 0, 19) (c)  $(\frac{13}{6}, 0, \frac{-19}{6})$  (d) (0, -1, 13)
- (17) જો રેખાઓ  $\overline{r} = (2, -3, 7) + k(2, a, 5), k \in \mathbb{R}$  અને  $\overline{r} = (1, 2, 3) + k(3, -a, a), k \in \mathbb{R}$  પરસ્પર લંબ હોય, તો a = .....
  - (a) 2
- (b) -6
- (c) 1
- (d) -1

સારાંશ

આ પ્રકરણમાં આપણે નીચેના મુદ્દાઓ શીખ્યા :

1.  $A(\overline{a})$  માંથી પસાર થતી અને શૂન્યેતર સદિશ  $\overline{l}$  ની દિશાવાળી રેખાનું સદિશ સમીકરણ  $\overline{r}=\overline{a}+k\overline{l}$ ,  $k \in \mathbb{R}$ 

પ્રચલ સમીકરણો :

$$\left. \begin{array}{l} x = x_1 + k l_1 \\ y = y_1 + k l_2 \\ z = z_1 + k l_3 \end{array} \right\} \qquad k \in \mathbb{R}$$

સંમિત સ્વરૂપ (કાર્તેઝીય સમીકરણો) :  $\frac{x-x_1}{l_1} = \frac{y-y_1}{l_2} = \frac{z-z_1}{l_2}$ 

જો  $l_1=0$  અને  $l_2\neq 0$ ,  $l_3\neq 0$  તો સમીકરણો  $x=x_1$ ,  $\frac{y-y_1}{h}=\frac{z-z_1}{h}$ 

અથવા  $\frac{x-x_1}{0} = \frac{y-y_1}{b} = \frac{z-z_1}{b}$  થશે.

# 2. $A(\overline{a})$ અને $B(\overline{b})$ માંથી પસાર થતી રેખાનું સમીકરણ :

સદિશ સમીકરણ :  $\overline{r} = \overline{a} + k(\overline{b} - \overline{a}), k \in \mathbb{R}$ 

પ્રચલ સમીકરણો :

$$x = x_1 + k(x_2 - x_1)$$

$$y = y_1 + k(y_2 - y_1)$$

$$z = z_1 + k(z_2 - z_1)$$

$$k \in \mathbb{R}$$

સંમિત સ્વરૂપ :

$$\frac{x-x_1}{x_2-x_1}=\frac{y-y_1}{y_2-y_1}=\frac{z-z_1}{z_2-z_1}$$

- 3. સમરેખ બિંદુઓ :  $A(\overline{a})$ ,  $B(\overline{b})$  અને  $C(\overline{c})$  સમરેખ હોય તો અને તો જ  $(\overline{c} \overline{a}) \times (\overline{b} \overline{a}) = \overline{0}$ .
- 4. જો  $A(\overline{a})$ ,  $B(\overline{b})$ ,  $C(\overline{c})$  સમરેખ હોય, તો  $[\overline{a}\ \overline{b}\ \overline{c}]=0$ , પરંતુ  $[\overline{a}\ \overline{b}\ \overline{c}]=0$  હોય તો ચોક્કસપણે A, B, C સમરેખ છે તેમ નક્કી કરી શકાય નહીં.
- 5. બે રેખા વચ્ચેના ખૂણાનું માપ :  $\overline{r}=\overline{a}+k\overline{l}$  ,  $k\in\mathbb{R}$  અને  $\overline{r}=\overline{b}+k\overline{m}$  ,  $k\in\mathbb{R}$  બે ભિન્ન રેખાઓ છે, જો  $\alpha$  એ આ બે રેખા વચ્ચેના ખૂણાનું માપ હોય, તો

$$cos\alpha = \frac{|\overline{l} \cdot \overline{m}|}{|\overline{l}||\overline{m}|}; 0 \le \alpha \le \frac{\pi}{2}$$

બે રેખાઓ લંબ હોય તો અને તો જ  $\overline{l} \cdot \overline{m} = 0$ .

6. જો બે ભિન્ન રેખાઓ  $\overline{r}=\overline{a}+k\overline{l}$ ,  $k\in\mathbb{R}$  અને  $\overline{r}=\overline{b}+k\overline{m}$ ,  $k\in\mathbb{R}$  એકબીજીને અનન્ય બિંદુમાં છેદે, તો  $(\overline{a}-\overline{b})\cdot(\overline{l}\times\overline{m})=0$ ,  $\overline{l}\times\overline{m}\neq\overline{0}$ .

$$\overline{a} = (x_1, y_1, z_1), \overline{b} = (x_2, y_2, z_2), \overline{l} = (l_1, l_2, l_3)$$
 असे  $\overline{m} = (m_1, m_2, m_3)$  લેલાં,

આ શરતને 
$$\begin{vmatrix} x_2-x_1 & y_2-y_1 & z_2-z_1 \\ l_1 & l_2 & l_3 \\ m_1 & m_2 & m_3 \end{vmatrix} = 0$$
 પ્રમાણે પણ દર્શાવી શકાય.

- 7. વિષમતલીય રેખાઓ : બે ભિન્ન રેખાઓ  $\overline{r} = \overline{a} + k\overline{l}$ ,  $k \in \mathbb{R}$  અને  $\overline{r} = \overline{b} + k\overline{m}$ ,  $k \in \mathbb{R}$  માટે જો  $(\overline{a} \overline{b}) \cdot (\overline{l} \times \overline{m}) \neq 0$  તો તેઓ વિષમતલીય રેખાઓ છે.
- 8. બિંદુ  $P(\overline{p})$  નું રેખા  $\overline{r}=\overline{a}+k\overline{l}$  ,  $k\in\mathbb{R}$  થી લંબઅંતર  $\frac{|(\overline{p}-\overline{a})\times\overline{l}|}{|\overline{l}|}$  છે.
- 9. બે સમાંતર રેખાઓ  $\overline{r} = \overline{a} + k\overline{l}$ ,  $k \in \mathbb{R}$  અને  $\overline{r} = \overline{b} + k\overline{l}$ ,  $k \in \mathbb{R}$  વચ્ચેનું લંબઅંતર  $\frac{|(\overline{b} \overline{a}) \times \overline{l}|}{|\overline{l}|}$  છે.
- 10. બે વિષમતલીય રેખાઓ  $\overline{r}=\overline{a}+k\overline{l}$  ,  $k\in\mathbb{R}$  અને  $\overline{r}=\overline{b}+k\overline{m}$  ,  $k\in\mathbb{R}$  વચ્ચેનું લઘુતમ અંતર  $\frac{|(\overline{b}-\overline{a})\cdot(\overline{l}\times\overline{m})|}{|\overline{l}\times\overline{m}|}$  છે.
- 11. અસમરેખ બિંદુઓ  $A(\overline{a})$ ,  $B(\overline{b})$  અને  $C(\overline{c})$  માંથી પસાર થતા સમતલનું સમીકરણ  $\overline{r} = l\overline{a} + m\overline{b} + n\overline{c}$ , જ્યાં l, m,  $n \in \mathbb{R}$  અને l+m+n=1.

#### પ્રચલ સમીકરણો :

$$x = lx_1 + mx_2 + nx_3$$
  
 $y = ly_1 + my_2 + ny_3$   
 $z = lz_1 + mz_2 + nz_3$  જ્યાં  $l, m, n \in \mathbb{R}$  અને  $l + m + n$ 

$$z = lz_1 + mz_2 + nz_3$$
 જ્યાં  $l, m, n \in \mathbb{R}$  અને  $l + m + n = 1$  અને

બિંદુઓ  $A(x_1, y_1, z_1)$ ,  $B(x_2, y_2, z_2)$  અને  $C(x_3, y_3, z_3)$ .

કાર્તેઝીય સ્વરૂપ : 
$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0$$

12. ચાર ભિન્ન બિંદુઓ  $A(x_1, y_1, z_1)$ ,  $B(x_2, y_2, z_2)$ ,  $C(x_3, y_3, z_3)$  અને  $C(x_4, y_4, z_4)$  સમતલીય હોય, તો અને

$$\text{di } \% \begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \\ x_4 - x_1 & y_4 - y_1 & z_4 - z_1 \end{vmatrix} = 0.$$

13. X-અક્ષ પર a, Y-અક્ષ પર b, Z-અક્ષ પર c અંતઃખંડ બનાવતા સમતલનું સમીકરણ

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1 \ (abc \neq 0).$$

 $\mathbf{14.A}(\overline{a})$  માંથી પસાર થતા અને  $\overline{n}$  અભિલંબવાળા સમતલનું સમીકરણ

સંદિશ સમીકરણ 
$$\overline{r} \cdot \overline{n} = \overline{a} \cdot \overline{n}$$

કાર્તેઝીય સ્વરૂપ : જો 
$$\overline{r}=(x,\,y,\,z),\,\overline{n}=(a,\,b,\,c),\,$$
 તો  $ax+by+cz=d,\,(d=\overline{a}\cdot\overline{n})$ 

- 15. ઊગમબિંદુમાંથી સમતલ પરના અભિલંબવાળા સમતલનું સમીકરણ  $: \mathbf{N}(\overline{n})$  એ ઊગમબિંદુથી સમતલ પરનો લંબપાદ છે અને  $|\overline{n}| = p$  હોય તેવા સમતલનું સમીકરણ  $x\cos\alpha + y\cos\beta + z\cos\gamma = p$ જ્યાં,  $cos \alpha$ ,  $cos \beta$ ,  $cos \gamma$  એ  $\overline{n}$  ની દિક્કોસાઇન છે.
- 16. સમતલો વચ્ચેના ખૂશાનું માપ : જો  $oldsymbol{ heta}$  એ સમતલો  $\overline{r}\cdot\overline{n}_1=d_1$  અને  $\overline{r}\cdot\overline{n}_2=d_2$  વચ્ચેના ખૂશાનું માપ હોય,

$$\operatorname{di} \cos \theta = \frac{|\overline{n}_1 \cdot \overline{n}_2|}{|\overline{n}_1| |\overline{n}_2|} ; 0 \le \theta \le \frac{\pi}{2}.$$

સમતલો પરસ્પર લંબ હોય, તો અને તો જ  $\overline{n}_1 \cdot \overline{n}_2 = 0$ .

17.બે સમાંતર રેખાઓમાંથી પસાર થતા સમતલનું સમીકરણ :  $\overline{r}=\overline{a}+k\overline{l}$  ,  $k\in\mathbb{R}$  અને  $\overline{r} = \overline{b} + k\overline{l}, k \in \mathbb{R}$  માંથી પસાર થતા સમતલનું સમીકરણ  $(\overline{r} - \overline{a}) \cdot [(\overline{b} - \overline{a}) \times \overline{l}] = 0.$ કાર્તેઝીય સ્વ3પ :

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ l_1 & l_2 & l_3 \end{vmatrix} = 0$$

જ્યાં, 
$$\overline{a} = (x_1, y_1, z_1), \overline{b} = (x_2, y_2, z_2)$$
 અને  $\overline{l} = (l_1, l_2, l_3).$ 

18.બે છેદતી રેખાઓ  $\overline{r}=\overline{a}+k\overline{l}$  ,  $k\in\mathbb{R}$  અને  $\overline{r}=\overline{b}+k\overline{m}$  ,  $k\in\mathbb{R}$  માંથી પસાર થતા સમતલનું સમીકરણ  $(\overline{r} - \overline{a}) \cdot (\overline{l} \times \overline{m}) = 0.$ 

## **કार्ते** जीय स्व३प :

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ l_1 & l_2 & l_3 \\ m_1 & m_2 & m_3 \end{vmatrix} = 0, \text{ wif } \overline{a} = (x_1, y_1, z_1), \overline{l} = (l_1, l_2, l_3) \text{ wif } \overline{m} = (m_1, m_2, m_3).$$

**19.** બિંદુ  $P(\overline{p})$  નું સમતલ  $\overline{r} \cdot \overline{n} = d$  થી લંબઅંતર  $\frac{|\overline{p} \cdot \overline{n} - d|}{|\overline{n}|}$ .

કાર્તેઝીય સ્વરૂપ:

$$\frac{|ax_1 + by_1 + cz_1 - d|}{\sqrt{a^2 + b^2 + c^2}}$$

જ્યાં સમતલનું સમીકરણ ax + by + cz = d અને બિંદુ P એ  $(x_1, y_1, z_1)$  છે.

- **20.** બે સમાંતર સમતલો  $\pi_1:\overline{r}\cdot\overline{n}=d_1$  અને  $\pi_2:\overline{r}\cdot\overline{n}=d_2$  વચ્ચેનું લંબઅંતર  $=rac{|d_1-d_2|}{|\overline{n}|}$ .
- 21. જો રેખા  $\overline{r}=\overline{a}+k\overline{l}$  ,  $k\in\mathbb{R}$  અને સમતલ  $\overline{r}\cdot\overline{n}=d$  વચ્ચેના ખૂશાનું માપ  $\alpha$  હોય, તો  $\alpha=\sin^{-1}\frac{|\overline{l}\cdot\overline{n}|}{|\overline{l}||\overline{n}|}\;;\;0<\alpha<\frac{\pi}{2}.$
- 22. બે સમતલો  $\pi_1:\overline{r}\cdot\overline{n}_1=d_1$  અને  $\pi_2:\overline{r}\cdot\overline{n}_2=d_2$  નો છેદ એક રેખા દર્શાવે છે. તેનું સમીકરણ  $\overline{r}=\overline{a}+k\overline{n},\ k\in \mathrm{R}$  છે, જ્યાં  $\overline{n}=\overline{n}_1\times\overline{n}_2.$
- 23. બે સમતલો  $a_1x+b_1y+c_1z+d_1=0$  અને  $a_2x+b_2y+c_2z+d_2=0$  ના છેદમાંથી પસાર થતા સમતલનું સમીકરણ  $a_1x+b_1y+c_1z+d_1+\lambda$   $(a_2x+b_2y+c_2z+d_2)=0$  છે.

#### Mahavira

Mahavira was a 9th-century Indian mathematician from Gulbarga who asserted that the square root of a negative number did not exist. He gave the sum of a series whose terms are squares of an arithmetical progression and empirical rules for area and perimeter of an ellipse. He was patronised by the great Rashtrakuta king Amoghavarsha. Mahavira was the author of Ganit Saar Sangraha. He separated Astrology from Mathematics. He expounded on the same subjects on which Aryabhata and Brahmagupta contended, but he expressed them more clearly. He is highly respected among Indian Mathematicians, because of his establishment of terminology for concepts such as equilateral, and isosceles triangle; rhombus; circle and semicircle. Mahavira's eminence spread in all South India and his books proved inspirational to other Mathematicians in Southern India.

268 ગણિત 12 - IV