Cours de Mathématiques

Mathilde Andre

Vendredi 18 Juillet 2014

Sommaire

1	Rap	pels du lycée	2
	1.1	Multiple et division euclidienne	2
	1.2	Nombres premiers	4
	1.3	Congruence	ŝ
2	Alg	ebre	7
	_	Quelques rappels sur \mathbb{N}	7
	2.2	Construction de \mathbb{Z}	
	2.3	Les groupes	9
		2.3.1 Les sous groupes	
		2.3.2 Morphisme de groupe)
		2.3.3 Noyau	
		2.3.4 Groupe quotient	1

Chapitre 1

Rappels du lycée

1.1 Multiple et division euclidienne

Définition 1.1.

Soient a et $b \in \mathbb{Z}$

a est un multiple de b ssi $\exists k \in \mathbb{Z}$ tel que :

a = kb

On dit aussi que:

- → a est divisible par b
- → b est un diviseur a
- → b divise a

Définition 1.2.

Soient $a \in \mathbb{Z}$ et $b \in \mathbb{N}$.

On appele division euclidienne de a par b l'opération qui au couple (a,b) associe un couple (q,r) tel que :

$$a = b \times q + r \text{ avec } 0 \le r < b$$

On appele a le dividende, b le diviseur, q le quotient et r le reste.

Définition 1.3.

Soient a, $b \in \mathbb{N}$

pgcd:

On appele $\operatorname{pgcd}(a,b)$ le plus grand commun diviseur de a et de b.

ppcm :

On appele ppcm(a,b) le plus petit commun multiple de a et de b.

Proposition 1.1.

Soient a, b $\in \mathbb{N}$ $ppcm(a, b) \times pgcd(a, b) = a \times b$

Demonstration:

Soient m = ppcm(a, b) et $\delta = pgcd(a, b)$

On a : $a|\delta$ et $b|\delta$ cad $\exists k, k' \in \mathbb{Z}$ tel que $a = k \times \delta$ et $b = k' \times \delta$ On devrait alors avoir $m \times \delta = k \times \delta \times k' \times \delta \Leftrightarrow m = k \times k' \times \delta$ Montrons donc que $kk'\delta = ppcm(a, b)$

- → $kk'\delta$ est un multiple de a et b cad a|m et b|m?? On a $a = k \times \delta$ cad $k' \times a = k' \times k \times \delta$ cad $a|k'k\delta$ Idem pour b
- $\rightarrow kk'\delta$ est le **plus petit** multiple de a, b??

Proposition 1.2.

Soient a, b $\in \mathbb{N}$ $pgcd(a,b) = \delta \Leftrightarrow a\mathbb{Z} + b\mathbb{Z} = \delta\mathbb{Z}$

$D\'{e}monstration:$

Aide: $a\mathbb{Z} + b\mathbb{Z} = \{ak + bk' | k, k' \in \mathbb{Z}\}$

- \Rightarrow Si $pgcd(a,b) = \delta$, montrons que $a\mathbb{Z} + b\mathbb{Z} = \delta\mathbb{Z}$ Soit $m \in a\mathbb{Z} + b\mathbb{Z}$ donc $\exists a', b' \in \mathbb{Z}$ tel que $m = a \times a' + b \times b'$ Or $\delta | a$ et $\delta | b$ donc $\exists k, k' \in \mathbb{Z}$ tel que $a = k \times \delta$ et $b = k' \times \delta$ Donc $m = k \times \delta \times a' + k' \times \delta \times b' \Leftrightarrow m = \delta \times (ka' + k'b')$ cad $m \in \delta\mathbb{Z}$
- \Leftarrow Si $a\mathbb{Z} + b\mathbb{Z} = \delta\mathbb{Z}$, montrons que $pgcd(a,b) = \delta$
 - 1. Montrons que δ est un diviseur commun á a et b. $a = a \times 1 + b \times 0 \in a\mathbb{Z} + b\mathbb{Z}$ donc $a \in \delta\mathbb{Z}$ cad $\delta|a$ Idem pour b.
 - 2. Montrons que δ est bien le **plus grand** diviseur de a et b. Soit Δ un diviseur commun á a et b donc $\exists a', b' \in \mathbb{Z}$, $a = a'\Delta$ et $b = b'\Delta$

Nous allons montrer que $\Delta | \delta$ cad $\Delta \leq \delta$ $\delta \in \delta \mathbb{Z}$ donc $\delta \in a \mathbb{Z} + b \mathbb{Z}$ donc $\exists k, k' \in \mathbb{Z}$ tel que

$$\delta = ak + bk'$$

$$\Leftrightarrow \delta = a'\Delta k + b'\Delta k'$$

$$\Leftrightarrow \delta = \Delta \times (ka' + k'b')$$

Donc $\Delta | \delta$ cad $\Delta \leq \delta$ cad $\delta = pgcd(a, b)$

1.2 Nombres premiers

Définition 1.4.

Soit $n \in \mathbb{N}$.

On dit que n est un nombre premier s'il admet exactement deux diviseurs : 1 et lui-même.

Proposition 1.3.

Soit $n \in \mathbb{N}, n > 1$

- 1. n admet au moins un diviseur premier
- 2. si n
 n'est pas premier, n admet au moins un diviseur premier p
 tel que $p \leq \sqrt{n}$

Demonstration:

- Si n est premier, la propriété est vérifié : n|n
 - \rightarrow Si n n'est pas premier, il admet dans $\mathbb N$ d'autres diviseurs que 1 et n.

Soit p le plus petit diviseur de n.

p est-il premier?

Raisonnement par l'absurde :

Si p n'est pas premier, alors appelons p' son plus petit diviseur.

On a : $p'|p \Rightarrow p'|n$ mais p' Contradiction!

② On a montré que si n n'est pas premier il admet au moins un diviseur premier. Soit p ce diviseur.

Alors p|n donc $\exists k \in \mathbb{Z}$ tel que $n = k \times p$. Donc k est aussi un diviseur de n et $k \geq p$ d'où $n = pk \geq p^2$ donc $\sqrt{n} \geq p$.

Theoreme 1.1.

Il existe une infinité de nombres premiers.

Demonstration:

Raisonnement par l'absurde :

Supposons que \mathcal{P} est finit. Donc on peut écrire $\mathcal{P} = \{p_1, p_2, p_3, \dots, p_n\}$ Considérons $k \in \mathbb{N}$ tel que $k = p_1 \times p_2 \times \dots \times p_n + 1$

 $k \geq 2$, donc d'après la proposition précedente, k possède un diviseur premier notons le q.

Le nombre q est l'un des p_i .

```
Donc \mathbf{q}|p_1 \times p_2 \times \ldots \times p_n et \mathbf{q}|\mathbf{k}.
Donc q|k-p_1 \times p_2 \times \ldots \times p_n.
Donc q|1 cad \mathbf{q}=1 mais 1 n'est pas premier \Rightarrow Contradiction!!
```

1.3 Congruence

Définition 1.5.

Soient $n \in \mathbb{N}, n \geq 2$ et $a,b \in \mathbb{Z}$ On dit que deux entiers a et b sont congru modulo n ssi ils ont même restepar la division euclidienne par n.

On note alors : $a \equiv b \pmod{n}$ ou $a \equiv b \pmod{n}$

Theoreme 1.2.

Soient $n \in \mathbb{N}, n \ge 2$ et $a, b \in \mathbb{Z}$ $a \equiv b \pmod{n} \Leftrightarrow (a - b) \equiv 0 \pmod{n}$

 $D\acute{e}monstration. \Rightarrow$

Chapitre 2

Algèbre

Cours 1

2.1 Quelques rappels sur $\mathbb N$

Proposition 2.1.

Tout ensemble A non vide $\subset \mathbb{N}$ a un plus petit élément

Définition 2.1.

Majorant: On dit que M est un majorant de A $\subset \mathbb{N}$ ssi $\forall n \in \mathbb{N}$ n< M

On dit aussi que A est majoré

Définition 2.2.

Relation d'équivalence : Soit \mathcal{R} une relation binaire sur $A \subset \mathbb{N}$. \mathcal{R} est une relation d'équivalence ssi elle est :

- 1. reflexive : $\forall x \in A, x\mathcal{R}x$
- 2. symetrique : \forall (a,b) \in A², si a \mathcal{R} b \Rightarrow b \mathcal{R} a
- 3. transitive : \forall (a,b,c) \in A³, si a \mathcal{R} b et b \mathcal{R} c \Rightarrow $a\mathcal{R}c$

Classe d'équivalence : La classe d'équivalence de x pour \mathcal{R} est tous les y tel que $x\mathcal{R}y$, on la note \overline{x}

2.2 Construction de \mathbb{Z}

Comment construire \mathbb{Z} ?

Soit \mathcal{R} une relation d'équivalence sur $\mathbb{N} \times \mathbb{N}$ définit ainsi : $\forall (a,b) \in A^2$ et $(a',b') \in A^2$, $(a,b)\mathcal{R}(a',b')$ ssi a+b'=a'+b

Quelles sont les classes d'équivalences de (0, 0) et (0, a)?

- 1. $\overline{(0,0)} = \{(x,y) \in \mathbb{N} \times \mathbb{N}, (x,y)\mathcal{R}(0,0)\} = \{(x,y) \in \mathbb{N} \times \mathbb{N}, x = y\} = \{(x,x), x \in \mathbb{N}\}$
- 2. $\overline{(0,a)} = \{(x,y) \in \mathbb{N} \times \mathbb{N}, x+a=y\} = \{(x,x+a), x \in \mathbb{N}\}$

On a : $\overline{(a,b)} + \overline{(c,d)} = \overline{(a+c,b+d)}$ On a donc : $\underline{(0,a)} + \overline{(a,0)} = \overline{(a,a)} = \overline{(0,0)}$ Et on note : $\overline{(a,0)} = -a$

La démonstration par récurrence :

On va montrer que P(n) vraie pour tout $n \in \mathbb{N} \Leftrightarrow$

- 1. P(0) vrai
- 2. Supposons P(n) vrai alors P(n+1) vrai

Supposons $\mathcal{P}(0)$ vrai et

Si $\mathcal{P}(n)$ vrai $\Rightarrow \mathcal{P}(n+1)$ vrai

On va faire une démonstration par l'absurde :

Il existe un $m \in \mathbb{N}$, $\mathcal{P}(m)$ faux

Soit $A = \{n \in \mathbb{N}, \mathcal{P}(n) faux\}$

 $A \subset \mathbb{N} \Rightarrow A$ admet un plus petit element, appelons le i.

Donc $i \neq 0$ et $\mathcal{P}(i-1)$ est vrai.

D'après notre supposition on a alors $\mathcal{P}(i)$ vrai : CONTRADICTION

2.3 Les groupes

Définition 2.3.

On dit que (G,*) est un groupe avec G un ensemble et * une loi sur G ssi :

- 1. * est associative cad $\forall x, y, z \in G$ (x * y) * z = x * (y * z)
- 2. G admet un élement neutre : $\exists e \in G, \forall x \in G, x * e = e * x = x$
- 3. Tout élement de G admet un symétrique : $\forall x \in G, \exists x^{-1}, x*x^{-1} = x^{-1}*x = e$

On dit qu'un groupe est abélien ou commutatif si * est commutative.

Exemple 2.1.

Exemple de groupe non abélien : Les permutations

$$a = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} b = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

Calculer $a \circ b$ puis $b \circ a$

$$\begin{array}{l} b \circ c = \left(\begin{smallmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{smallmatrix} \right) \\ c \circ b = \left(\begin{smallmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{smallmatrix} \right) \end{array}$$

Donc l'ensembre des permutations muni de la loi de composition n'est pas un groupe abélien.

2.3.1 Les sous groupes

Définition 2.4.

On dit que $(H, *) \subset G$ un ensemble et * est un sous-groupe de G ssi :

- 1. $H \neq \emptyset$
- 2. H admet le même élément neutre que G
- 3. H est stable : $\forall x, y \in G, x * y \in H$

Exemple 2.2.

Quels sont les sous-groupes de \mathbb{Z} ?

Les sous groupes de \mathbb{Z} sont les $k\mathbb{Z}$ $k\mathbb{Z} = \{ \forall x \in \mathbb{Z}, kx \}$

Demo : Soit H un sous groupe de \mathbb{Z} ne contenant pas 0 $H \cap \mathbb{N}^* \in \mathbb{N}$ est non vide donc il admet un plus élément, notons le k Soit $h \in H \cap \mathbb{N}^*$ alors division euclidienne de h par k : $\exists (q,r) \in \mathbb{Z} \times \mathbb{H}$ tel que $h = k^*q + r$ ac $0 \le r < k$ mais k est le plus petit élément de H donc r=0.

2.3.2 Morphisme de groupe

Définition 2.5.

Soient $(G_1, *_1)et(G_2, *_2)$ deux groupes, et $\phi : G_1 \longrightarrow G_2$, ϕ est un morphisme de groupe ssi : $\phi(x_1 *_1 x_2) = \phi(x_1) *_2 \phi(x_2)$ avec $x_1, x_2 \in G_1$

2.3.3 Noyau

Définition 2.6.

Soient $(G_1, *_1)et(G_2, *_2)$ deux groupes, et $\phi : G_1 \longrightarrow G_2$, On note $Ker(\phi) = \{ y \in G_1, \phi(y) = e_2 \}$

Proposition 2.2.

 $Ker(\phi) = \{\emptyset\} \Leftrightarrow \phi \text{ est injective }$

 $D\'{e}monstration:$

• Si ϕ injective alors si $x, y \in G_1$ et $\phi(x) = \phi(y) \Rightarrow x = y$

$$\phi(x) = \phi(y)$$

$$\Leftrightarrow \phi(x) * \phi(y)^{-1} = e_2$$

$$\Leftrightarrow \phi(x) * \phi(y^{-1}) = e_2$$

$$\Leftrightarrow \phi(x * y^{-1}) = e_2$$

Or
$$x = y$$

 $x * y^{-1} = e_1$
Donc $\phi(e_1) = e_2$ et $Ker(\phi) = \{\emptyset\}$

• Si $Ker(\phi) = \{\emptyset\}$: Soient $x, y \in G_1$ tel que $\phi(x) = \phi(y)$.

Alors
$$\phi(x) * \phi(y)^{-1} = e_2$$

 $\Leftrightarrow \phi(x) * \phi(y^{-1}) = e_2$
 $\Leftrightarrow \phi(x * y^{-1}) = e_2$
 $\Leftrightarrow x * y^{-1} = e_2$
 $\Leftrightarrow x = y$

Donc ϕ est injective.

2.3.4 Groupe quotient

kzkzk