

A Tool for the Automated
Development of a Boundary
Representation for the
Generation of Volume Grids for
CFD Calculations of Ships Flows

Bachelor Thesis

Vasil Yordanov University of Rostock, Chair Shipbuilding

Introduction

Problem Definition Technical Specifications Goals to be achieved

Implemented Algorithms

Simple Boundary Surfaces Generation Complex Boundary Surfaces Generation Hull Cutting Topology Detection

Investigating the Results

MOERI KCS Container Ship Sample Submarine Topology Detection

Introduction

Problem Definition Technical Specifications Goals to be achieved

Implemented Algorithms

Simple Boundary Surfaces Generation Complex Boundary Surfaces Generation Hull Cutting Topology Detection Boolean Intersection

Investigating the Results

MOERI KCS Container Ship Sample Submarine Topology Detection

Introduction

Problem Definition Technical Specifications Goals to be achieved

Implemented Algorithms

Simple Boundary Surfaces Generation Complex Boundary Surfaces Generation Hull Cutting Topology Detection Boolean Intersection

Investigating the Results

MOERI KCS Container Ship Sample Submarine Topology Detection

Introduction

Problem Definition
Technical Specifications
Goals to be achieved

Implemented Algorithms

Simple Boundary Surfaces Generation Complex Boundary Surfaces Generation Hull Cutting Topology Detection Boolean Intersection

Investigating the Results

MOERI KCS Container Ship Sample Submarine Topology Detection

An overview of the operations prior to a CFD simulation

Pre-CFD stages

1. Defining of the ship geometry This step is done by using 3D Ship Design Software

An overview of the operations prior to a CFD simulation

Pre-CFD stages

- 1. Defining of the ship geometry This step is done by using 3D Ship Design Software
- 2. Defining of a boundary box of the fluid domain This step is done by using CAD Software

An overview of the operations prior to a CFD simulation

Pre-CFD stages

- 1. Defining of the ship geometry This step is done by using 3D Ship Design Software
- 2. Defining of a boundary box of the fluid domain This step is done by using CAD Software
- 3. Building a volume mesh This step is done by using Numeca meshing module HEXPRESS

An overview of the operations prior to a CFD simulation

Pre-CFD stages

- 1. Defining of the ship geometry This step is done by using 3D Ship Design Software
- 2. Defining of a boundary box of the fluid domain This step is done by using CAD Software
- 3. Building a volume mesh This step is done by using Numeca meshing module HEXPRESS

Main objective

The main aim of the thesis is to provide a tool which builds the boundary box automatically without using any third-party CAD software.

Technical Specifications

Information about the used hull representation

STL file - structure

```
solid name
...
facet normal n_i n_j n_k
outer loop
vertex x_1 y_1 z_1
vertex x_2 y_2 z_2
vertex x_3 y_3 z_3
endloop
endfacet
...
endsolid name
```


Technical Specifications

Information about the used hull representation

STL file - structure

```
solid name
...
facet normal n_i n_j n_k
outer loop
vertex x_1 y_1 z_1
vertex x_2 y_2 z_2
vertex x_3 y_3 z_3
endloop
endfacet
...
endsolid name
```


Technical Specifications

Information about the used hull representation

Figure: STL representation of the initial ship geometry

Disadvantages

No topology information is presented in this format

Advantages

This is the most simplified representation possible

Process sequence

1. Reading the initial ship triangulation from STL file

- 1. Reading the initial ship triangulation from STL file
- 2. Trimming the ship hull

- 1. Reading the initial ship triangulation from STL file
- 2. Trimming the ship hull
- 3. Building boundary planes

- 1. Reading the initial ship triangulation from STL file
- 2. Trimming the ship hull
- 3. Building boundary planes

- 1. Reading the initial ship triangulation from STL file
- 2. Trimming the ship hull
- 3. Building boundary planes

- 1. Reading the initial ship triangulation from STL file
- 2. Trimming the ship hull
- 3. Building boundary planes

- 1. Reading the initial ship triangulation from STL file
- 2. Trimming the ship hull
- 3. Building boundary planes

- 1. Reading the initial ship triangulation from STL file
- 2. Trimming the ship hull
- 3. Building boundary planes

- 1. Reading the initial ship triangulation from STL file
- 2. Trimming the ship hull
- 3. Building boundary planes
- 4. Writing the boundary to new STL file

Introduction

Problem Definition
Technical Specifications
Goals to be achieved

Implemented Algorithms

Simple Boundary Surfaces Generation Complex Boundary Surfaces Generation Hull Cutting Topology Detection Boolean Intersection

Investigating the Results

MOERI KCS Container Ship Sample Submarine Topology Detection

Simple Surfaces

- Inlet Plane
- Outflow Plane
- Bottom Plane
- Port side Plane

Simple Surfaces

- Inlet Plane
- Outflow Plane
- Bottom Plane
- Port side Plane

Generation Logic

1. Defining of the surface boundaries

Simple Surfaces

- Inlet Plane
- Outflow Plane
- Bottom Plane
- Port side Plane

- 1. Defining of the surface boundaries
- 2. Dividing the surface in the first direction

Simple Surfaces

- Inlet Plane
- Outflow Plane
- Bottom Plane
- Port side Plane

- 1. Defining of the surface boundaries
- 2. Dividing the surface in the first direction
- 3. Dividing the surface in the second direction

Simple Surfaces

- Inlet Plane
- Outflow Plane
- Bottom Plane
- Port side Plane

- 1. Defining of the surface boundaries
- 2. Dividing the surface in the first direction
- 3. Dividing the surface in the second direction
- 4. Dividing the rectangles into triangles

Simple Surfaces

- Inlet Plane
- Outflow Plane
- Bottom Plane
- Port side Plane

- 1. Defining of the surface boundaries
- 2. Dividing the surface in the first direction
- 3. Dividing the surface in the second direction
- 4. Dividing the rectangles into triangles
- Dividing the rectangles into thangles
 Writing these triangles to CTL file
- 5. Writing these triangles to STL file

Complex Surfaces

Waterline and Centerline surfaces are assumed as complex

Complex Surfaces

Waterline and Centerline surfaces are assumed as complex

Used Approach

1. Defining complex surface contour

Complex Surfaces

Waterline and Centerline surfaces are assumed as complex

Used Approach

- 1. Defining complex surface contour
- 2. Adding all non-intersecting diagonals

Complex Surfaces

Waterline and Centerline surfaces are assumed as complex

Used Approach

- 1. Defining complex surface contour
- 2. Adding all non-intersecting diagonals
- 3. Writing result triangles to STL file

Procedure for trimming the initial hull with waterline and/or centerline planes

Algorithm logic

Defining the initial hull triangulation

Procedure for trimming the initial hull with waterline and/or centerline planes

Algorithm logic

- Defining the initial hull triangulation
- 2. Defining the cutting plane

Procedure for trimming the initial hull with waterline and/or centerline planes

Algorithm logic

- Defining the initial hull triangulation
- 2. Defining the cutting plane
- Calculating all intersections of initial triangulation edges with the cutting plane

Procedure for trimming the initial hull with waterline and/or centerline planes

Algorithm logic

- Defining the initial hull triangulation
- 2. Defining the cutting plane
- Calculating all intersections of initial triangulation edges with the cutting plane
- 4. Converting of all trapezoids to triangles

Hull Cutting

Procedure for trimming the initial hull with waterline and/or centerline planes

- Defining the initial hull triangulation
- 2. Defining the cutting plane
- Calculating all intersections of initial triangulation edges with the cutting plane
- 4. Converting of all trapezoids to triangles
- 5. Sorting of triangles depending on their position in the plane

Hull Cutting

Procedure for trimming the initial hull with waterline and/or centerline planes

- Defining the initial hull triangulation
- 2. Defining the cutting plane
- Calculating all intersections of initial triangulation edges with the cutting plane
- Converting of all trapezoids to triangles
- 5. Sorting of triangles depending on their position in the plane
- 6. Writing the result triangulation to STL file

Procedure for detection of rapid geometry changes

Nature of the algorithm

The topology detection algorithm is implemented as a sorting algorithm with special separation criteria.

Procedure for detection of rapid geometry changes

Nature of the algorithm

The topology detection algorithm is implemented as a sorting algorithm with special separation criteria.

Separation Criteria

Normal Vector Components				
Region	x - component	y - component	z - component	
Transom	$x \neq 0$	$y \approx 0$	$z \approx 0$	
Flat Boards	$x \approx 0$	$y \neq 0$	$z\approx 0$	
Flat Bottom	$x \approx 0$	$y \approx 0$	$z \neq 0$	

Procedure for detection of rapid geometry changes

Nature of the algorithm

The topology detection algorithm is implemented as a sorting algorithm with special separation criteria.

Separation Criteria

Normal Vector Components				
Region	x - component	y - component	z - component	
Transom	$x \neq 0$	$y \approx 0$	$z \approx 0$	
Flat Boards	$x \approx 0$	$y \neq 0$	$z \approx 0$	
Flat Bottom	$x \approx 0$	$y \approx 0$	$z \neq 0$	

Disadvantages

Works only for planes parallel to the base planes

Another approach for dealing with the complex surfaces

Algorithm Logic

1. All domain boundary surfaces are built as simple

Another approach for dealing with the complex surfaces

- 1. All domain boundary surfaces are built as simple
- 2. Hull boundary edges are sorted in native order

Another approach for dealing with the complex surfaces

- 1. All domain boundary surfaces are built as simple
- 2. Hull boundary edges are sorted in native order
- 3. Adaptation of the boundary surface triangulation to the hull boundary edges

Another approach for dealing with the complex surfaces

- 1. All domain boundary surfaces are built as simple
- 2. Hull boundary edges are sorted in native order
- 3. Adaptation of the boundary surface triangulation to the hull boundary edges
- 4. Removing of the enclosed by the hull contour triangles

Another approach for dealing with the complex surfaces

- 1. All domain boundary surfaces are built as simple
- 2. Hull boundary edges are sorted in native order
- 3. Adaptation of the boundary surface triangulation to the hull boundary edges
- 4. Removing of the enclosed by the hull contour triangles
- 5. Writing the result triangulation to STL file

Introduction

Problem Definition
Technical Specifications
Goals to be achieved

Implemented Algorithms

Simple Boundary Surfaces Generation Complex Boundary Surfaces Generation Hull Cutting Topology Detection

Investigating the Results

MOERI KCS Container Ship Sample Submarine Topology Detection

MOERI KCS Container Ship

Figure: Perspective view of the entire domain in HEXPRESS

MOERI KCS Container Ship

Figure: Detailed view of the bow region in HEXPRESS

MOERI KCS Container Ship

Figure: Detailed view of the stern region in HEXPRESS

Sample Submarine

Figure: Perspective view of the entire domain in HEXPRESS

Sample Submarine

Figure: Detailed view of the bow region in HEXPRESS

Sample Submarine

Figure: Detailed view of the stern region in HEXPRESS

Figure: Transom Detection

Figure: Flat Bottom Detection

Figure: Flat Boards Detection

- The application works with wide range of ships and scenarios
- Created boundary domain is completely watertight and compatible with HEXPRESS
- The topology detection algorithm works when the ship geometry is defined accurately

- The application works with wide range of ships and scenarios
- Created boundary domain is completely watertight and compatible with HEXPRESS
- The topology detection algorithm works when the ship geometry is defined accurately

- The application works with wide range of ships and scenarios
- Created boundary domain is completely watertight and compatible with HEXPRESS
- The topology detection algorithm works when the ship geometry is defined accurately

Thank you for your attention!

- ► Triangulation by leaf remova
- Entry Data
- ▶ Domain Simplification Submarine
 - ► Domain Simplification Catamaran

Defining the polygon

Implementation

▶ Back

- Defining the polygon
- Defining the polygon triangulation

- Defining the polygon
- Defining the polygon triangulation
- Presenting the triangulation as a tree / non-circular graph /
 Implementation

▶ Back

- Defining the polygon
- Defining the polygon triangulation
- Presenting the triangulation as a tree / non-circular graph /

1. We have to enumerate all the vertices of this polygon

- Defining the polygon
- Defining the polygon triangulation
- Presenting the triangulation as a tree / non-circular graph /

- 1. We have to enumerate all the vertices of this polygon
- Testing for every three ordered points if they define a diagonal and if so then adding the triangle to STL file
- 3. Looping through remaining points until only 3 remain

- Defining the polygon
- Defining the polygon triangulation
- Presenting the triangulation as a tree / non-circular graph /

- 1. We have to enumerate all the vertices of this polygon
- Testing for every three ordered points if they define a diagonal and if so then adding the triangle to STL file
- 3. Looping through remaining points until only 3 remain