3.4 Communicate With Algebra

Brain Teaser:

In the diagram, what is the area of the triangle?

A triangle =
$$(base)(height)$$

= $(1a)(9)$
= 54 units^2

Part 1: DO IT NOW

A hockey team gets 2 points for a win, 1 point for a tie, and 0 points for a loss.

a) Write an equation for determining the amount of points a team has:

b) If the Penguins win 54 games, tie 8, and lose 20; how many points will they get?

Part 2: Terms

Term: an expression formed by the **product** of <u>numbers</u> and or <u>variables</u>.

Example of a term:

$$4x^{2}$$

The number in front of the variable is called the coefficient.

Identify the coefficient and the variable for the expression $4x^2$:

Coefficient: _4

Variable: 2

Practice with Terms

Identify the coefficient and the variable of each term:

- a) Jim earns \$7 per hour at his part-time job. If he works for x hours, his earnings, in dollars, are 7x.
- **b)** The depth, in meters, of a falling stone in a well after t seconds is $-4.9t^2$
- **c)** The area of a triangle with base b and height h is $\frac{1}{2}bh$
- **d)** The area of a square with side length k is k^2

Expression	Coefficient	Variable	Comments
7x	7	×	
-4.9t ²	-4.9	ta	The negative sign is included with the coefficient
当品	-12	bh	The variable can consist of more than one letter or symbol
k ²	1	k ^a	When the coefficient is not shown, it is 1.

Part 3: Polynomials

Polynomial: an algebraic expression consisting of one or more terms connected by <u>addition</u> or <u>subtraction</u> operators

Example of a polynomial:

$$3x^2 + 2x$$

A polynomial can be classified by the number of terms it has: A MONOMIAL is a polynomial with only one term. A BINOMIAL is a polynomial with two terms. A TRINOMIAL is a polynomial with three terms. A 4-TERM POLYNOMIAL is a polynomial with four terms.

Classify each polynomial by the number of terms it has:

Polynomial	Number of Terms	Type of Polynomial
$3x^2 + 2x$	2	BINOMIAL
-2 <i>m</i>	1	MONOMIAL
$4x^2 - 3xy + y^2$	3	TRIMOMIAL
a-2b+c-3	4	4-TERM POLYMOMIAL

Hint: You can find the number of terms by looking for theaddition and subtraction operators that separate the terms

Part 4: Degree of a Term

Degree of a term: the sum of the <u>exponents</u> on the variables in a term

Example of determining the degree of a term:

Term: $5x y^{2-3}$

Sum of Exponents on Variables: 2+3=5

Degree of Term: 5

Find the degree of each term by adding the exponents of the variables:

Term	Sum of Exponents	Degree of Term
x ²	a	٦
3y ⁴	4	4
0.7 <i>uv</i>	1+1 = 2	2
$-2a^2b$	2+1=3	3
-5	0	0

Note:

- a variable that appears to have no exponent actually has an exponent of $\underline{\underline{1}}$
- a constant has a degree of O

Part 5: Degree of a Polynomial

The **degree** of a polynomial is equal to the degree of the highest-degree term in the polynomial

Example:

Polynomial: $3x^2y^4 + 11x^2y^2 + y^5$ Highest-Degree Term: $3x^2y^4$

Degree of highest-degree term: 2+4=6

Degree of polynomial: 6

Find the degree of each polynomial:

Polynomial	Term with Highest Degree	Degree of Term with Highest Degree	Degree of Polynomial
x + 3	X	1	1
$5x^2-2x$	5x2	2	2
$3y^3 + 0.2y - 1$	3y ³	3	3
$7x^2y^4 + x^6y$	x6y	6+1 = 7	7

Part 6: Apply Our Knowledge!

Mr. Jensen works part time as a golf instructor. He earns \$125 for the season, plus \$20 for each children's lesson and \$30 for each adult lesson that he gives.

a) Write an expression that describes Mr. Jensen's total earnings for the season. Identify the variables and what they stand for.

b) If Mr. Jensen gave **8 children's** lessons and **6 adult lessons**, what were his total earnings?

Earnings =
$$20(8) + 30(6) + 125$$

Earnings = $160 + 180 + 125$
Earnings = \$465

Review of Terms

: an expression formed by the product of numbers and/or variables:

| POLYNOMIAL | : an algebraic expression consisting of one or more terms connected by addition or subtraction signs.

| MCSREE OF TERM | : the sum of the exponents on the variables in a term |