

SELF STUDY
BASED ON MY UNDERSTANDING OF THE SUBJECT

Graph Neural Network

Compilation of my study materials

Author: Dr. Md Arafat Hossain Khan

Last updated: December 1, 2022

Contents

1	Fundamentals					
	1.1	Graph	Neural Network Model Mathematics	1		
			Labels of a graph			
		1.1.2	Local transition and output functions	2		
		1.1.3	Model Variation	3		
		1.1.4	Global transition and output functions	5		
	1.2	Graph	Neural Network Model Implementation	5		
		1.2.1	Computation of the State	6		
		1.2.2	The Learning Algorithm	6		
			1.2.2.1 Learning set	6		
		1.2.3	Transition and Output Function Implementations	6		
\mathbf{A}	Con	ntractio	on mapping theorem	7		
Index						
Bibliography						

Fundamentals

Artificial intelligence is a tool, not a threat. Artificial intelligence is a tool, not a threat. Artificial intelligence is a tool, not a threat.

Rodney Brooks

1.1	Graph	Neural Network Model Mathematics	1
	1.1.1	Labels of a graph	1
	1.1.2	Local transition and output functions	2
	1.1.3	Model Variation	3
	1.1.4	Global transition and output functions	5
1.2	Graph	Neural Network Model Implementation	5
	1.2.1	Computation of the State	6
	1.2.2	The Learning Algorithm	6
		1.2.2.1 Learning set	6
	1.2.3	Transition and Output Function Implementations	6

1.1 Graph Neural Network Model Mathematics

This note is fundametally inspired by the original paper of graph neural network [1] and based on my undertsanding of the subject.

1.1.1 Labels of a graph

A graph G is a pair (N, E), where $N = \{n_1, n_2, \dots, n_{|N|-1}, n_{|N|}\}$ is the set of nodes and $E = \{e_1, e_2, \dots, e_{|E|-1}, e_{|E|}\}$ is the set of edges. $\mathcal{N}(n)$ stands for the neighbors of $n \in N$. If an undirected edge e connects node x and y, we can also denote e as (x, y) or (y, x). All nodes are embedded into some euclidean space of dimention $d_N \in \mathbb{N}$ and all edges are

embedded into some euclidean space of dimention $d_E \in \mathbb{N}$, e.g.

label (embedding) for node n is defined as $\ell_n : n \mapsto \mathbb{R}^{d_N}$, where $n \in N$ label (embedding) for edge e is defined as $\ell_e : e \mapsto \mathbb{R}^{d_E}$, where $e \in E$

The notion of labels can be extended to multiple nodes and edges. Suppose, we take a node set, $\mathfrak{N} = \{\mathfrak{n}_1, \mathfrak{n}_2, \dots, \mathfrak{n}_{|\mathfrak{N}|-1}, \mathfrak{n}_{|\mathfrak{N}|}\} \subseteq N$. Then we define,

$$\ell_{\mathfrak{N}}: \mathbb{R}^{d_N \times |\mathfrak{N}|} \mapsto \mathbb{R}^{d_N} \text{ as } \left(\ell_{\mathfrak{n}_1}, \ell_{\mathfrak{n}_2}, \dots, \ell_{\mathfrak{n}_{|\mathfrak{N}|-1}}, \ell_{\mathfrak{n}_{|\mathfrak{N}|}}\right) \mapsto \mathbb{R}^{d_N}$$

Here, we want $\ell_{\mathfrak{N}}$ to be permutation invariant. Similarly, we take an edge set, $\mathfrak{E} = \{\mathfrak{e}_1, \mathfrak{e}_2, \dots, \mathfrak{e}_{|\mathfrak{E}|-1}, \mathfrak{e}_{|\mathfrak{E}|}\} \subseteq E$. Then we define,

$$\ell_{\mathfrak{E}}: \mathbb{R}^{d_E \times |\mathfrak{E}|} \mapsto \mathbb{R}^{d_E} \text{ as } \left(\ell_{\mathfrak{e}_1}, \ell_{\mathfrak{e}_2}, \dots, \ell_{\mathfrak{e}_{|\mathfrak{E}|-1}}, \ell_{\mathfrak{e}_{|\mathfrak{E}|}}\right) \mapsto \mathbb{R}^{d_E}$$

Here, we want $\ell_{\mathfrak{C}}$ to be permutation invariant. We extend the notion of the labels even further for the entire graph by the following permutation invariant map,

$$\ell: \mathbb{R}^{d_N \times |N|} \times \mathbb{R}^{d_E \times |E|} \mapsto \mathbb{R}^D$$
 as $\left(\ell_{n_1}, \ell_{n_2}, \dots, \ell_{|N|-1}, \ell_{|N|}, \ell_{e_1}, \ell_{e_2}, \dots, \ell_{|E|-1}, \ell_{|E|}\right) \mapsto \mathbb{R}^D$ where $D \in \mathbb{N}$.

1.1.2 Local transition and output functions

Let us take $n \in N$ from the graph G = (N, E) and define the following,

- $\ell_n \in \mathbb{R}^{d_N}$: node label of $n \in N$.
- $\ell_{\mathcal{N}(n)} \in \mathbb{R}^{d_N}$: label of the neighborhood $\mathcal{N}(n) = \{\nu_1, \nu_2, \dots, \nu_{|\mathcal{N}(n)|-1}, \nu_{|\mathcal{N}(n)|}\} \subseteq N$.
- $\mathcal{E}(n)$: edges connected to n i.e $\mathcal{E}(n) = \{(\nu_1, n), (\nu_2, n), \dots, (\nu_{|\mathcal{N}(n)|-1}, n), (\nu_{|\mathcal{N}(n)|}, n)\}.$
- $\ell_{\mathcal{E}(n)}$: edge label of $\mathcal{E}(n)$.

Now we can define something called the *state* of n, denoted as $x_n \in \mathbb{R}^s$, which captures the the local information of n using its own node label $\ell_n \in \mathbb{R}^{d_N}$, node label of the neighbors $\ell_{\mathcal{N}(n)} \in \mathbb{R}^{d_N}$, connected edges lalel $\ell_{\mathcal{E}(n)}$, and the *state* of the neighbors $x_{\mathcal{N}(n)} \in \mathbb{R}^s$. Note that, $x_{\mathcal{N}(n)}$ is a permutation invariant map, defined by

$$x_{\mathcal{N}(n)}: \mathbb{R}^{s \times |\mathcal{N}(n)|} \mapsto \mathbb{R}^s$$
 as $\left(x_{\nu_1}, x_{\nu_2}, \dots, x_{\nu_{|\mathcal{N}(n)|-1}}, x_{\nu_{|\mathcal{N}(n)|}}\right) \mapsto \mathbb{R}^s$.

Then we define the $local\ transition\ function$, that expresses the dependence of a node on its neighborhood as

$$f_w : \mathbb{R}^{d_N} \times \mathbb{R}^{d_E} \times \mathbb{R}^s \times \mathbb{R}^{d_N} \mapsto \mathbb{R}^s \text{ as } \left(\ell_n, \ell_{\mathcal{E}(n)}, x_{\mathcal{N}(n)}, \ell_{\mathcal{N}(n)}\right) \mapsto \mathbb{R}^s.$$
where $\left(\ell_{(\nu_1, n)}, \ell_{(\nu_2, n)}, \dots, \ell_{(\nu_{|\mathcal{N}(n)|-1}, n)}, \ell_{(\nu_{|\mathcal{N}(n)|}, n)}\right) := \ell_{\mathcal{E}(n)}$

$$\left(x_{\nu_1}, x_{\nu_2}, \dots, x_{\nu_{|\mathcal{N}(n)|-1}}, x_{\nu_{|\mathcal{N}(n)|}}\right) := x_{\mathcal{N}(n)}$$

$$\left(\ell_{\nu_1}, \ell_{\nu_2}, \dots, \ell_{\nu_{|\mathcal{N}(n)|-1}}, \ell_{\nu_{|\mathcal{N}(n)|}}\right) := \ell_{\mathcal{N}(n)}$$

And we also express the local output function that describes how the output is produced as follows,

$$g_w : \mathbb{R}^s \times \mathbb{R}^{d_N} \mapsto \mathbb{R}^r$$
 as $(x_n, \ell_n) \mapsto \mathbb{R}^r$

Hence, we have the following model,

local transition function,
$$x_n = f_w \left(\ell_n, \ell_{\mathcal{E}(n)}, x_{\mathcal{N}(n)}, \ell_{\mathcal{N}(n)} \right)$$

local output function, $o_n = g_w(x_n, \ell_n)$

1.1.3 Model Variation

Minimal model

Definition 1: Minimal Model

A model is said to be minimal if it has the smallest number of variables while retaining the same computational power.

Note that, one may wish to remove the labels $\ell_{\mathcal{N}(n)}$, since they include information that is implicitly contained in $x_{\mathcal{N}(n)}$. Thus one can hunt for a minimal model. It can be shown that the minimal model exists but not unique.

Extension of neighborhood

The neighborhood could contain nodes that are two or more links away from n capturing a bigger local region.

Directed and mixed graph

For directed or mixed graph we may find a variation of model definition by incorporating the following map into the model definition,

$$\mathfrak{d}_{\mathcal{E}(n)} : \mathcal{E}(n) \mapsto \{0, 1\} \text{ as}$$

$$\mathfrak{d}_{\mathcal{E}(n)}(e) = \mathfrak{d}_e = \begin{cases} 1 & \text{if } e \in \mathcal{E}(n) \text{ directs towards } n \\ 0 & \text{if } e \in \mathcal{E}(n) \text{ comes out of } n \end{cases}$$

Thus the definition of *local transition function* changes as follows,

$$f_w : \mathbb{R}^{d_N} \times \mathbb{R}^{d_E} \times \mathbb{R}^s \times \mathbb{R}^{d_N} \times \{0,1\}^{|\mathcal{N}(n)|} \mapsto \mathbb{R}^s$$
 as $(\ell_n, \ell_{\mathcal{E}(n)}, x_{\mathcal{N}(n)}, \ell_{\mathcal{N}(n)}, \mathfrak{d}_{\mathcal{E}(n)}) \mapsto \mathbb{R}^s$. where

$$\begin{split} \left(\ell_{(\nu_{1},n)},\ell_{(\nu_{2},n)},\dots,\ell_{(\nu_{|\mathcal{N}(n)|-1},n)},\ell_{(\nu_{|\mathcal{N}(n)|},n)}\right) &:= \ell_{\mathcal{E}(n)} \\ \left(x_{\nu_{1}},x_{\nu_{2}},\dots,x_{\nu_{|\mathcal{N}(n)|-1}},x_{\nu_{|\mathcal{N}(n)|}}\right) &:= x_{\mathcal{N}(n)} \\ \left(\ell_{\nu_{1}},\ell_{\nu_{2}},\dots,\ell_{\nu_{|\mathcal{N}(n)|-1}},\ell_{\nu_{|\mathcal{N}(n)|}}\right) &:= \ell_{\mathcal{N}(n)} \\ \left(\mathfrak{d}_{(\nu_{1},n)},\mathfrak{d}_{(\nu_{2},n)},\dots,\mathfrak{d}_{(\nu_{|\mathcal{N}(n)|-1},n)},\mathfrak{d}_{(\nu_{|\mathcal{N}(n)|},n)}\right) &:= \mathfrak{d}_{\mathcal{E}(n)} \end{split}$$

However, unless explicitly stated, all the results proposed in this paper hold also for directed graphs and for graphs with mixed directed and undirected links.

Node specific local transition and output functions

Moreover, each node can have its own *local transition function* and *the local output function* definition,

local transition function,
$$x_n = f_{w_n}^{(n)} \left(\ell_n, \ell_{\mathcal{E}(n)}, x_{\mathcal{N}(n)}, \ell_{\mathcal{N}(n)} \right)$$

local output function, $o_n = g_{w_n}^{(n)}(x_n, \ell_n)$

However, for the sake of simplicity, our analysis will consider a particular model where all the nodes share the same implementation.

Positional and nonpositional graphs

Nonpositional graphs are those described so far. Positional graphs differ since a unique integer identifier is assigned to each neighbors of a node to indicate its logical position.

Definition 2: Positional graphs

If for a graph G = (N, E) and for each $n \in N$, there exists,

$$\rho_n: \mathcal{N}(n) \hookrightarrow [|N|]$$

then G is called a positional graph. Note that the symbol \hookrightarrow means an injection and [|N|] means the set $\{1, 2, \dots, |N|\}$.

For $n \in N$,

$$\rho_n(u) = i \implies u$$
 is the *i*-th neighbor of *n*.

An example of this assignment can be such that ρ_n might enumerate the neighbors of a node following a clockwise ordering convention. Notice that for nodes n_j and n_k we may have $\rho_{n_j} = \rho_{n_k}$ which implies that this is only a relative positional assignment. Note that, for a complete graph, ρ_n is a bijection for all n, on the other hand for a path graph with at least 3 nodes ρ_n is an injection not a surjection for any n.

Now, f_w will take this positional information. Here is how it is done. Suppose, for a graph G = (N, E),

$$M := \max_{n,u} \rho_n(u)$$

Then $\forall n \in \mathbb{N}$, we make $x_{\mathcal{N}(n)} = (y_1, y_2, \dots, y_M)$ where,

$$y_i = \begin{cases} x_u & \text{if } \rho_n(u) = i \implies u \text{ is the } i\text{-th neighbor of } n \\ x_0 & \text{if there is no } i\text{-th neighbor of } n \end{cases}$$

Here x_0 is some predefined null state. In the same way $\ell_{\mathcal{E}(n)}$ and $\ell_{\mathcal{N}(n)}$ are modified as well.

Positional and non-positional form

Note that in general,

local transition function,
$$x_n = f_w \left(\ell_n, \ell_{\mathcal{E}(n)}, x_{\mathcal{N}(n)}, \ell_{\mathcal{N}(n)} \right)$$

For non-positional graph we assume a significant Simplification of the mdoel which turned out to be useful,

local transition function,
$$x_n = \sum_{\nu_i \in \mathcal{N}(n)} h_w \left(\ell_n, \ell_{(\nu_i, n)}, x_{\nu_i}, \ell_{\nu_i} \right)$$

These two representations are called *positional form* and *non-positional form* respectively.

1.1.4 Global transition and output functions

Note that we have local transition functions for each node of the graph G = (N, E), where $N = \{n_1, n_2, \dots, n_{|N|-1}, n_{|N|}\}$ is the set of nodes and $E = \{e_1, e_2, \dots, e_{|E|-1}, e_{|E|}\}$ is the set of edges.

$$x_{n_{1}} = f_{w} \left(\ell_{n_{1}}, \ell_{\mathcal{E}(n_{1})}, x_{\mathcal{N}(n_{1})}, \ell_{\mathcal{N}(n_{1})} \right)$$

$$x_{n_{2}} = f_{w} \left(\ell_{n_{2}}, \ell_{\mathcal{E}(n_{2})}, x_{\mathcal{N}(n_{2})}, \ell_{\mathcal{N}(n_{2})} \right)$$

$$\vdots$$

$$x_{n_{|N|}} = f_{w} \left(\ell_{n_{|N|}}, \ell_{\mathcal{E}(n_{|N|})}, x_{\mathcal{N}(n_{|N|})}, \ell_{\mathcal{N}(n_{|N|})} \right)$$

We define a global transition function, F_w that takes the graph G as input and returns the state x_n for each $n \in N$. We represent the system of above equations in the following compact fashion,

$$x = F_w(x, \ell)$$

Now, observe the local output functions,

$$o_{n_1} = g_w(x_{n_1}, \ell_{n_1})$$

$$o_{n_2} = g_w(x_{n_2}, \ell_{n_2})$$

$$\vdots$$

$$o_{n_{|N|}} = g_w(x_{n_{|N|}}, \ell_{n_{|N|}})$$

We define a global output function, G_w that takes the graph G as input and returns the output o_n for each $n \in N$. We represent the system of above equations in the following compact fashion,

$$o = F_w(x, \ell_N)$$

At this point we have to make sure that such global transition function and global output function ensures the existence and uniqueness of the solution. Moreover, we also need to figure out a method of computation for the solution.

Existence and uniqueness of global transition and output functions

Let us observe that under standard topology every euclidean space is a complete metric space. Thus if we can ensure that F_w is a contraction mapping with respect to the states then using contraction mapping theorem, Appendix A, we conclude that that there exists unique solution to the states of the nodes. We will enforce the contraction mapping property by an appropriate implementation of the transition function.

1.2 Graph Neural Network Model Implementation

In order to implement the GNN model, the following items must be provided:

1. Computation of the State. That means a method to solve,

local transition function,
$$x_n = f_w \left(\ell_n, \ell_{\mathcal{E}(n)}, x_{\mathcal{N}(n)}, \ell_{\mathcal{N}(n)} \right)$$

local output function, $o_n = g_w(x_n, \ell_n)$

- 2. The Learning Algorithm. That means a learning algorithm to adapt f_w and g_w using examples from the training data set.
- 3. Transition and Output Function Implementations. That means an implementation of f_w and g_w .

1.2.1 Computation of the State

Contraction mapping theorem, Theorem A.1, does not only ensure the existence and the uniqueness of the solution of $x = F_w(x, \ell)$ but it also suggests the following classic iterative scheme for computing the state:

$$x(t+1) = F_w(x(t), \ell).$$

[2]

1.2.2 The Learning Algorithm

1.2.2.1 Learning set

Let us sonsider an arbitrary set of graphs \mathcal{G} . We take a finite set of graphs from \mathcal{G} as,

$$\{G_1, G_2, \dots, G_i, \dots, G_{p-1}, G_p\} \subseteq \mathcal{G} \implies p \leq |\mathcal{G}|.$$

Let us take a subset of the node set of $G_i = (N_i, E_i)$ as,

$$N = \{n_{i,1}, n_{i,2}, \dots, n_{i,j}, \dots, n_{i,q_i-1}, n_{i,q}\} \subseteq N_i \implies q \leq |N_i|.$$

Definition 3: Domain of a supervised learning framework

The domain is the set of pairs of a graph and a node, i.e. $\mathcal{D} = \mathcal{G} \times \mathbb{N}$.

We consider a desired target association $t_{i,j} \in \mathbb{R}^m$ of the node $n_{i,j}$, which is a vector in some euclidean space of dimension m.

Definition 4: Learning Set

We assume a supervised learning framework with the following set,

$$\mathcal{L} = \{ (G_i, n_{i,j}, t_{i,j}) | G_i = (N_i, E_i) \in \mathcal{G}, n_{i,j} \in N_i, t_{i,j} \in \mathbb{R}^m, 1 \le i \le p, 1 \le j \le q_i \}$$

 \mathcal{L} is called the learning set.

Note that \mathcal{G} or $\{G_1, G_2, \ldots, G_i, \ldots, G_{p-1}, G_p\}$ can also be considered as one single graph which may have multiple connected components and modify the definition of learning set accordingly.

1.2.3 Transition and Output Function Implementations

Contraction mapping theorem

Definition 5: Contraction map

Let (X,d) be a complete metric space. Then a map $T:X\to X$ is called a contraction map on X if there exists $q\in[0,1)$ such that

$$d\left(T(x), T(x')\right) \le q d(x, x')$$

for all $x, x' \in X$. Contraction map is also known as contractive map. If the above condition is instead satisfied for $q \in [0, 1]$, then the mapping is said to be a non-expansive map.

More generally, if (X, d_X) and (Y, d_Y) are two metric spaces, then $T: X \to Y$ is a contractive mapping if there is a constant $q \in [0, 1)$ such that

$$d_Y(T(x), T(x')) \le q d_X(x, x')$$

for all x and x' in X.

Definition 6: Lipschitz continuous map

Given two metric spaces (X, d_X) and (Y, d_Y) , a function $f: X \to Y$ is called Lipschitz continuous if there exists a real constant $K \ge 0$ such that, for all x and x' in X,

$$d_Y(f(x), f(x')) \le K d_X(x, x').$$

Any such K is referred to as a Lipschitz constant for the function f and f may also be referred to as K-Lipschitz.

- The smallest constant is sometimes called the (best) Lipschitz constant of f or the dilation or dilatation of f.
- If K=1 the function is called a short map.
- If $0 \le K < 1$, the function is called a contraction [Definition 5].

Lemma A.1

Contraction map \implies Lipschitz continuous map.

Proof. Clearly by definition.

Definition 7: Uniformly continuous map

Let $M_1 = (A_1, d_1)$ and $M_2 = (A_2, d_2)$ be metric spaces. Then a mapping $f : A_1 \to A_2$ is uniformly continuous on A_1 if and only if:

$$\forall \epsilon \in \mathbb{R}_{>0} : \exists \delta \in \mathbb{R}_{>0} : \forall x, y \in A_1 : d_1(x, y) < \delta \implies d_2(f(x), f(y)) < \epsilon.$$

Definition 8: Continuous map

Let $M_1 = (A_1, d_1)$ and $M_2 = (A_2, d_2)$ be metric spaces. Then a mapping $f : A_1 \to A_2$ is continuous at a point $c \in A_1$ if and only if:

$$\forall \epsilon \in \mathbb{R}_{>0} : \exists \delta \in \mathbb{R}_{>0} : d_1(c, y) < \delta \implies d_2(f(c), f(y)) < \epsilon.$$

Lemma A.2

Uniformly continuous map \implies Continuous map.

Proof. Given $\epsilon > 0$. Then by uniform continuity, there is δ such that for all $x, y \in A_1$ we have

$$d_1(x,y) < \delta \implies d_2(f(x),f(y)) < \epsilon.$$

In particular if we take x = c we get that for all $y \in A_1$

$$d_1(x,y) < \delta \implies d_2(f(x),f(y)) < \epsilon.$$

This is the definition of continuity [Definition 8].

Lemma A.3

Lipschitz continuous map \implies Uniformly continuous map.

Proof. Given two metric spaces (X, d_X) and (Y, d_Y) , a Lipschitz continuous map $f: X \to Y$, we get from Definition 6, there exists a real constant $K \geq 0$ such that, for all x and x' in X,

$$d_Y(f(x), f(x')) \le K d_X(x, x').$$

• Case 1 (K = 0): we get for all x and x' in X,

$$d_Y(f(x), f(x')) = 0.$$

Hence, f is a constant map. Clearly f is uniformly continuous [use Definition 6].

• Case 2 (K > 0): By Lipschitz continuity,

$$\forall x, x' \in X : d_Y(f(x), f(x')) < Kd_X(x, x').$$

Take $\epsilon > 0$. Then there exists $\delta = \frac{\epsilon}{K}$. Suppose, $d_X(x, x') < \delta$. Hence, we have,

$$\forall \epsilon \in \mathbb{R}_{>0} : \exists \delta = \frac{\epsilon}{K} \in \mathbb{R}_{>0} : \forall x, x' \in X : d_X(x, x') < \delta$$

$$\Longrightarrow Kd_X(x, x') < \epsilon$$

$$\Longrightarrow d_Y(f(x), f(x')) < \epsilon.$$

Lemma A.4

Contraction map \implies Lipschitz continuous map \implies Uniformly continuous map \implies Continuous map.

Proof. Using Lemma A.1, A.3 and A.2.

Definition 9: Fixed point of a function

c is a fixed point of a function f if c belongs to both the domain and the codomain of f, and f(c) = c.

Definition 10: Cauchy sequence

A sequence a_1, a_2, \ldots is called a Cauchy sequence if the terms of the sequence eventually all become arbitrarily close to one another. That is,

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \ni m, n > N \implies |a_m - a_n| < \epsilon.$$

Definition 11: Complete metric space

A metric space (X, d) is complete if every Cauchy sequence in X converges in X (that is, to some point of X).

Theorem A.1: Contraction mapping theorem

Let (X, d) be a non-empty complete metric space with a contraction mapping $T: X \to X$. Then T admits a unique fixed-point $x^* \in X$ (i.e. $T(x^*) = x^*$). Furthermore, x^* can be found by starting with an arbitrary element $x_0 \in X$ and defining a sequence $(x_n)_{n \in \mathbb{N}}$ by $x_n = T(x_{n-1})$ for $n \geq 1$. Then $\lim_{n \to \infty} x_n = x^*$.

Proof. Existence of fixed point

Let $x_0 \in X$ be arbitrary and define a sequence $(x_n)_{n \in \mathbb{N}}$ by setting $x_n = T(x_{n-1})$. We first note that for all $n \in \mathbb{N}$, we have the inequality

$$d(x_{n+1}, x_n) \le q^n d(x_1, x_0).$$

This follows by induction on n, using the fact that T is a contraction mapping. More explicitely, note that as T is a contraction mapping and using the definition $x_n = T(x_{n-1})$, we claim that there exists $q \in [0,1)$ such that,

$$d(x_2, x_1) = d(T(x_1), T(x_0)) \le q d(x_1, x_0)$$

$$d(x_3, x_2) = d(T(x_2), T(x_1)) \le q d(x_2, x_1) \le q^2 d(x_1, x_0)$$

$$\vdots$$

$$d(x_{n+1}, x_n) \le q^n d(x_1, x_0)$$

This follows by induction on n, using the fact that T is a contraction mapping. Then we can show that $(x_n)_{n\in\mathbb{N}}$ is a Cauchy sequence. In particular, let $m, n \in \mathbb{N}$ such that m > n:

$$d(x_m, x_n) \leq d(x_m, x_{m-1}) + d(x_{m-1}, x_{m-2}) + \dots + d(x_{n+1}, x_n)$$

$$\leq q^{m-1}d(x_1, x_0) + q^{m-2}d(x_1, x_0) + \dots + q^n d(x_1, x_0)$$

$$= q^n d(x_1, x_0) \sum_{k=0}^{m-n-1} q^k$$

$$< q^n d(x_1, x_0) \sum_{k=0}^{\infty} q^k$$

$$= q^n d(x_1, x_0) \left(\frac{1}{1-q}\right).$$

Let $\epsilon > 0$ be arbitrary. Since $q \in [0, 1)$, we can find a large $N \in \mathbb{N}$ so that

$$q^N < \frac{\varepsilon(1-q)}{d(x_1, x_0)}.$$

Therefore, by choosing m and n greater than N we may write:

$$d(x_m, x_n) \le q^n d(x_1, x_0) \left(\frac{1}{1-q}\right) < \left(\frac{\varepsilon(1-q)}{d(x_1, x_0)}\right) d(x_1, x_0) \left(\frac{1}{1-q}\right) = \varepsilon.$$

This proves that the sequence $(x_n)_{n\in\mathbb{N}}$ is Cauchy. By completeness of (X,d), the sequence has a limit $x^* \in X$. Furthermore, x^* must be a fixed point of T:

$$x^* = \lim_{n \to \infty} x_n = \lim_{n \to \infty} T(x_{n-1}) = T\left(\lim_{n \to \infty} x_{n-1}\right) = T(x^*).$$

As a contraction mapping, T is continuous, so bringing the limit inside T was justified.

Uniqueness of fixed point

Let $x, x' \in X$ are both fixed points where $x \neq x'$. Thus $d(x, x') \neq 0$. But notice,

$$d(x, x') = d(T(x), T(x')) \le q d(x, x')$$

$$\implies (1 - q)d(x, x') \le 0$$

$$\implies d(x, x') \le 0 \implies d(x, x') = 0 \iff x = x'.$$

Hence, it is not possible to have two different fixed points.

Calculating the fixed point

We notice that no matter where we choose our arbitrary starting point $x_0 \in X$, by the construction of the sequence using the contraction mapping (i.e. $x_n = T(x_{n-1})$) we always reach to the unique fixed point as the limit of the sequence,

$$\lim_{n\to\infty} x_n = x^*.$$

10

Index

```
cauchy sequence, 9
complete metric space, 9
continuous map, 8
contraction map, 7
contraction mapping theorem, 7
dilatation, 7
dilation, 7
domain, 6
fixed point, 9
l earning Set, 6
label, 1
Lipschitz constant, 7
Lipschitz continuous, 7
minimal model, 3
non-expansive map, 7
nonpositional form, 4
nonpositional graph, 4
output fuction, 2, 5
positional form, 4
positional graph, 4
short map, 7
transition fuction, 2, 5
uniformly continuous, 8
```

Bibliography

- [1] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. "The Graph Neural Network Model". In: *IEEE Transactions on Neural Networks* 20.1 (2009), pp. 61–80. DOI: 10.1109/TNN.2008.2005605 (page 1).
- [2] Michael JD Powell. "An efficient method for finding the minimum of a function of several variables without calculating derivatives". In: *The computer journal* 7.2 (1964), pp. 155–162 (page 6).