Exploring the utility of the planned CYGNSS mission for investigating the initiation and development of the Madden-Julian Oscillation

Timothy J. Lang (NASA MSFC)
John Mecikalski, Xuanli Li, Themis Chronis (UAH)
Alan Brewer, Jim Churnside, Brandi McCarty (NOAA ESRL)

Background

One of the most distinctive signals of the Madden-Julian Oscillation (MJO) is the upscale development and organization of convection in the Indian Ocean.

Dynamics of the MJO (DYNAMO) campaign occurred in late 2011 – early 2012 to investigate this genesis stage. One of the best non-satellite wind datasets ever obtained over the ocean.

The Cyclone Global Navigation Satellite System (CYGNSS) mission can exploit this dataset to better understand the performance of the satellite constellation in regions of deep convection, in particular for characterizing the MJO.

Three Scientific Objectives

- Produce a high-resolution surface wind dataset for multiple MJO onsets using WRF-assimilated winds and other data from DYNAMO.
- Use the DYNAMO datasets, along with available scatterometer observations, to study the causes and impacts of wind variability at spatial and temporal scales finer than those planned to be provided by CYGNSS, and the implications of these processes for CYGNSS observations.
- 3. Using a simulated CYGNSS dataset for the MJO, perform observing system simulation experiments to determine the benefits of CYGNSS for improving scientific understanding and forecasting of the MJO, particularly its genesis over the Indian Ocean.

WRF Model Simulation and Assimilation of DYNAMO Data

WRF model

- Advanced Research WRF v3.5.1
- A: 3-km resolution DYNAMO domain
- B: 1-km high-resolution smaller domain
- 40 sigma levels (more levels in lower troposphere)
- Separate runs for domains A and B
- Mesoscale features for MJO events

WRF model domain setup

WRF 3DVAR

Solve for Cost Function:

$$J = \frac{1}{2} (X - X_b)^T B^{-1} (X - X_b) + \frac{1}{2} (Y - H(x))^T R^{-1} (Y - H(x))$$

Background Error Matrix: NMC Method

$$\overline{[X^{f}(T+24)-X^{f}(T+12)][X^{f}(T+24)-X^{f}(T+12)]^{T}}$$

Assimilation Plan:

 Cycled assimilation of available sounding, dropsonde, surface, buoy, radar, lidar, scatterometer data into both domains using WRF 3DVAR

Progress:

- Conducting WRF runs for B matrix generation
- Processing the observational data and prepare for assimilation

WRF Simulation on 3-km grid (2011-11-24)

Fcst: $0.00\ h$ Valid: 0000 UTC Thu 24 Nov 11 (1700 MST Wed 23 Nov 11) at pressure = 850 hPa

Focusing on roughly last two weeks of each DYNAMO month:

- November 2011
- 2. October 2011
- 3. December 2011

Will produce hi-res wind maps for each of these periods, at least 3-km resolution, 0.5-1 h time steps

Use these maps to study wind variability at time and spatial scales smaller than CYGNSS can provide

DYNAMO Radars

NASA TOGA (Revelle) Mirai C-band SMART-R (Gan) NCAR S-PolKa (Gan)

Assimilate radial velocity into WRF, will also test reflectivity

Most QC done, working with CSU and Texas A&M to de-alias the TOGA and SMART-R velocities, and also fix some azimuthal errors with TOGA

Other DYNAMO datasets

- Radiosondes
- Dropsondes (P-3)
- Surface/buoy/ship-based meteorological observations

Straightforward assimilation process for WRF 3DVAR

DYNAMO/CINDY/AMIE SOUNDING NETWORK

DYNAMO/CINDY/AMIE sounding network for the period October-December 2011

Johnson and Ciesielski (2012)

Scatterometer Vector Winds during DYNAMO

Assimilate when available, but also produce test dataset without these inputs but with rest of DYNAMO observations

NOAA High-Resolution Doppler Lidar (HRDL)

- On Revelle for Cruises 1-3 (1 September 6 December 2011)
- Produced both vertical profiles (incl. ~15 m winds) and horizontally resolved data
- Test assimilation into WRF try both polar-coordinate data and vertical profiles

NOAA Task - Compare OSCAT, ASCAT, Lidar winds

Create subsets based on wind speed (high or low) and atmospheric stability (stable or unstable), and compare winds within each subset

Though CYGNSS uses Fresnel reflection, and OSCAT/ASCAT use Bragg, comparison valid because both types of wind retrievals depend on sea-surface roughness, parameterized by the mean square slope (MSS).

Use TOGA to confirm HRDL view

Why do this?

MSS/wind speed relationship is not linear, and depends on atmospheric stability!

NEXT STEPS – Immediate future

Transfer funds to NOAA and UAH!

Incorporate CYGNSS science team feedback into analysis approach

De-alias SMART-R/TOGA velocities and correct occasional TOGA azimuthal errors

Prep other DYNAMO data for assimilation

Update WRF 3DVAR framework as needed to handle DYNAMO datastream

Test various assimilation schemes, determine which will be most useful, and execute

NOAA to begin HRDL/scatterometer comparison

Later – Use WRF to perform Observing System Simulation Experiments

Nature run TBD

<u>Goal</u>: Determine how best to assimilate CYGNSS winds into a limited-domain, cloud system resolving forecast model, and provide guidance to CYGNSS leadership on optimal data resolution.

Table 1. Proposed sample OSSE experiments under Objective 3.

Experiment	Data Assimilation	Model Domain	Horizontal
	Focus		Resolution
Background	N/A	2- or 3-level nested	12-km, 4-km (also
		domains	possibly 1.333-km)
CYG	CYGNSS data	2-level nested	12-km, 4-km
		domains	
CYG_NoRain	CYGNSS data in	2-level nested	12-km, 4-km
	heavy rain areas	domains	
	eliminated		
CYG_OBS	CYGNSS data, basic	2-level nested	12-km, 4-km
	multi-platform obs	domains	
OBS	Basic multi-platform	2-level nested	12-km, 4-km
	obs	domains	
OBS_DYN	Enhanced obs from	2- or 3-level nested	12-km, 4-km (also
	DYNAMO-style	domains	possibly 1.333-km)
	instrument array		
CYG_HiRes	Higher-resolution,	2- or 3-level nested	12-km, 4-km (also
	less accurate	domains	possibly 1.333-km)
	CYGNSS data		
Obs_Err	Sensitivity exp with	2-level nested	12-km, 4-km
	different observation	domains	
	error setup		
BG_Err	Sensitivity exp with	2-level nested	12-km, 4-km
	different background	domains	
	error setup		