Поздравляем! Вы прошли тест!

○ False

. / Correct

для успешного прохождения 80% или выше

Продолжить обучение

оценка 88.88%

Practice Quiz			
1.	What is the target policy in Q-learning?	1/16ann	
2.	Which Bellman equation is the basis for the Q-learning update? Bellman equation for state values Bellman optimality equation for state values Bellman optimality equation for action values Correct Correct Correct The Q-learning update is based on the Bellman optimality equation for action values.	1/16ann	
3.	Which Bellman equation is the basis for the Sarsa update? Bellman equation for state values Bellman equation for action values Bellman optimality equation for action values Bellman optimality equation for action values	0/16ann	
4.	Incorrect Incorrect. Please review Lesson 1 (Video: GPI with TD: Sarsa) Which Bellman equation is the basis for the Expected Sarsa update? Bellman equation for state values Bellman optimality equation for state values Bellman optimality equation for action values	1/16ann	
5.	Correct Correct! The Expected Sarsa update is based on the Bellman equation for action values. Which algorithm's update requires more computation per step? Expected Sarsa Sarsa Correct	1/16ann	
6.	Correct! Expected Sarsa computes the expectation over next actions. Which algorithm has a higher variance target? Expected Sarsa Sarsa Correct Correct Correct! We saw that Sarsa was more sensitive to the choice of step-size because its target has higher variance.	1/16ann	
7.	Q-learning does not learn about the outcomes of exploratory actions. True	1/1балл	

	Correct! The update in Q-learning only learns about the greedy action. As demonstrated in Cliff World, it ignores the outcomes of exploratory actions.	
8.	Sarsa, Q-learning, and Expected Sarsa have similar targets on a transition to a terminal state. True False	(1/1балл
	Correct Correct! The target in this case only depends on the reward.	
9.	Sarsa needs to wait until the end of an episode before performing its update. True False	1/16ann
	Correct Correct! Unlike Monte Carlo methods, Sarsa performs its updates at every time-step using the reward and the next action-value estimate.	