Sisteme de numerație

Bazele aritmetice ale tehnicii de calcul

Definitii

- Numerele se reprezintă prin simboluri elementare denumite cifre.
- Totalitatea regulilor de reprezentare a numerelor, împreună cu mulțimea cifrelor poartă denumirea de sistem de numerație. Numărul cifrelor definește baza sistemului de numerație.

Sisteme de numerație

- Sistemul zecimal (0,...9)
- Sistemul binar (0,1)
- Sistemul ternar (0,...2)
- Sistemul octal (0,...7)
- Sistemul hexazecimal (0,...9, A, ...F)

Regula de reprezentare a numerelor în sistemul zecimal

$$(3856,43)_{10}$$
 = 3 * 10³ + 8 * 10² + 5 * 10¹ + 6 + 4 * 10⁻¹ + 3 * 10⁻²

Sisteme de numerație

- Sistemele în care semnificația cifrelor depinde de poziția ocupată în cadrul numerelor se numesc sisteme de numerație poziționale. (cifre arabe)
- Sistemele în care semnificația cifrelor nu depinde de poziția ocupată în cadrul numerelor se numesc sisteme de numerație nepoziționale. (cifre romane)

Conversia numărului din orice

bază în sistemul zecimal

Presupunem că numărul N are partea întreagă formată din n+1 cifre, iar partea fracționară – din m cifre:

$$N = c_n c_{n-1} \dots c_1 c_0, c_{-1} c_{-2} \dots c_{-m}.$$

Valoarea acestui număr se evaluează în funcție de baza sistemului:

$$(N)_b = c_n b^n + c_{n-1} b^{n-1} + \dots + c_1 b^1 + c_0 b^0 + c_{-1} b^{-1} + c_{-2} b^{-2} + \dots + c_{-m} b^{-m}.$$

Efectuînd calculele respective, se va realiza **conversiunea** numărului $(N)_b$ din baza b în sistemul zecimal.

De exemplu,

$$(101,1)_{10} = 1 \cdot 10^{2} + 0 \cdot 10^{1} + 1 \cdot 10^{0} + 1 \cdot 10^{-1} = 101,1;$$

$$(101,1)_{2} = 1 \cdot 2^{2} + 0 \cdot 2^{1} + 1 \cdot 2^{0} + 1 \cdot 2^{-1} = 5,5;$$

$$(101,1)_{3} = 1 \cdot 3^{2} + 0 \cdot 3^{1} + 1 \cdot 3^{0} + 1 \cdot 3^{-1} = 10,333...;$$

$$(101,1)_{8} = 1 \cdot 8^{2} + 0 \cdot 8^{1} + 1 \cdot 8^{0} + 1 \cdot 8^{-1} = 65,125;$$

$$(101,1)_{16} = 1 \cdot 16^{2} + 0 \cdot 16^{1} + 1 \cdot 16^{0} + 1 \cdot 16^{-1} = 257,0625.$$

Conversia numerelor din sistemul

zecimal în orice altă bază

- Se împarte la baza respectivă partea întreagă și câturile obținute după fiecare împărțire, până se obține câtul zero; rezultatul părții întregi este constituit din resturile obținute, considerate în ordinea inversă de apariție.
- Se înmulțește cu baza partea fracționară, apoi toate părțile fracționare obținute din produsul anterior; rezultatul conversiunii pății fracționare este constituit din părțile întregi ale produselor, considerate în ordinea apariției.

Exemplu

1) Să se transforme numărul zecimal 53,40625 în echivalentul său binar.

```
53: 2 = 26 + \frac{1}{2};

26: 2 = 13 + \frac{0}{2};

13: 2 = 6 + \frac{1}{2};

6: 2 = 3 + \frac{0}{2};

3: 2 = 1 + \frac{1}{2};

1: 2 = 0 + \frac{1}{2}.
```

Prin urmare, partea întreagă a numărului binar va fi 110101.

```
0,40625 \times 2 = 0,8125;

0,8125 \times 2 = 1,625;

0,625 \times 2 = 1,25;

0,25 \times 2 = 0,5;

0,5 \times 2 = 1,0.
```

Partea fracționară a numărului binar va fi 01101. Prin urmare,

 $(53,40625)_{10} = (110101,01101)_2.$

Exemplu

3) Să se efectueze conversiunea numărului 1996,0625 din sistemul zecimal în sistemul octal.

$$1996: 8 = 249 + \frac{4}{8};$$

 $249: 8 = 31 + \frac{1}{8};$
 $31: 8 = 3 + \frac{7}{8};$
 $3: 8 = 0 + \frac{3}{8};$

$$0,0625 \times 8 = 0,5;$$

 $0,5 \times 8 = 4.$

Prin urmare,

 $(1996,0625)_{10} = (3714,04)_8.$

Exemplu

4) Să se transforme numărul 2914,25 din sistemul zecimal în sistemul hexazecimal.

$$2914:16=182+2/16;$$

$$182:16=11+6/16;$$

$$11:16=0+\frac{11}{16}$$
;

$$0.25 \times 16 = 4.$$

Prin urmare,

$$(2914,25)_{10} = (B62,4)_{16}$$

Conversia din binar în octal,

hexazecimal și invers

Conversia binar-octală și octal-binară, 8 = 2³

```
0 = 000; 4 = 100; 1 = 001; 5 = 101; 2 = 010; 6 = 110; 7 = 111.
```

 Conversia binar-nexazecimala şi hexazecimal-binară 16 = 2⁴

0 = 0000;	8 = 1000;
1 = 0001;	9 = 1001;
2 = 0010;	A = 1010;
3 = 0011;	B = 1011;
4 = 0100;	C = 1100;
5 = 0101;	D = 1101;
6 = 0110;	E = 1110;
7 = 0111;	F = 1111.

Exerciții

- •Ex. 5 p. 70
- •Ex. 4, 5, 6 p. 73
- •Ex. 2, 3, 6, 7 p. 75
- •Ex. 9 p. 75
- •Ex. 10 p.76