MakeUp 아두이노

#MakeUp아두이노 #05

아두이노 기초

시리얼 통신

변수의 값 또는 함수의 결과를 PC에서 확인하고싶을 때, 아두이노와 USB시리얼 인터페이스를통해 아두이노와 통신할 수 있다. (디지털 0, 1번 핀과 연결되어 있음)

시리얼 통신은 PC외에도 외부 모듈(wifi, bluetooth)과의 통신에도 사용할 수 있다.

시리얼 통신

```
void setup() {
 Serial.begin(9600); // 9600bps 속도로 시리얼 통신을 설정한다.
void loop() {
 sensorValue = analogRead(analogInPin);
 Serial.print("sensor = "); // 문자열 출력
 Serial.print(sensorValue); // 변수 값 출력
 Serial.println(""); // 출력 후 줄바꿈
 delay(100);
```

연산자 (기본)

연산자	설명
대입(=) 연산자	연산자 오른쪽의 값을 왼쪽 변수에 대입한다.
더하기(+) 연산자	피연산자의 값을 더한다.
빼기(-) 연산자	피연산자의 왼쪽 값에서 오른쪽 값을 뺀다.
곱하기(*) 연산자	피연산자의 값을 곱한다.
나누기(/) 연산자	피연산자의 왼쪽 값을 오른쪽 값으로 나눈다.
나머지(%) 연산자	피연산자의 왼쪽 값을 오른쪽 값으로 나눴을 때 구해지는 나머지를 나타낸다.

연산자 (기본)

```
void setup() {
 Serial begin (9600):
void loop() {
                                 COM5 (Arduino/Genuino Uno)
 int a = 10:
 int led:
                                = : 10
 Serial.print("= : ");
                                a+3 : 13
 Serial.println(led = a);
                                a-3:7
 Serial_print("a+3 : ");
                                a*2 : 20
 Serial println(led = a+3);
                                a/2:5
 Serial print("a-3 : ");
                                a%3 : 1
 Serial println(led = a-3):
 Serial print("a*2 : ");
 Serial.println(led = a*2);
 Serial print("a/2 : ");
 Serial.println(led = a/2);
 Serial print("a%3 : ");
 Serial println(led = a%3):
 Serial end();
```

연산자 (비교)

연산자	설명
크다(>)	연산자 왼쪽 값이 오른쪽 값보다 큰가?
크거나 같다(>=)	연산자 왼쪽 값이 오른쪽 값보다 크거나 같은가?
작다(<)	연산자 왼쪽 값이 오른쪽 값보다 작은가?
작거나 같다(<=)	연산자 왼쪽 값이 오른쪽 값보다 작거나 같은가?
같다(==)	연산자 왼쪽 값과 오른쪽 값이 같은가?
!=(다르다)	연산자 왼쪽 값과 오른쪽 값이 다른가?

연산자 (비교)

```
void setup() {
 Serial begin(9600);
void loop() {
 int a = 10:
 int h = 3:
                                   @ COM5 (Arduino/Genuino Uno)
 int led:
 Serial print("a > b : ");
                                  a > b : 1
 Serial println(led = a > b);
                                  a >= b : 1
 Serial.print("a >= b : ");
                                  a < b : 0
 Serial println(led = a \ge b):
                                  a <= b : 0
 Serial print("a < b : ");
                                  a = b : 0
 Serial println(led = a < b):
                                  a != b : 1
 Serial print("a <= b : ");
 Serial println(led = a \le b):
 Serial print("a == b : ");
 Serial println(led = a == b);
 Serial print("a != b : ");
 Serial println(led = a != b);
 Serial end();
```

연산자 (논리)

연산자	설명
논리곱(&&)	연산자 왼쪽 오른쪽 값이 모두 참일 경우에만 참. (하나라도 거짓일 경우 거짓)
논리합()	연산자 왼쪽 오른쪽 값이 하나라도 참이면 참. (모두 거짓일 경우에만 거짓)
논리부정(!)	연산자 오른쪽 값을 반전 시킨다. (참일경우 거짓으로, 거짓일 경우 참으로)

연산자 (논리)

```
void setup() {
  Serial begin(9600):
void loop() {
                                             @ CDM5 (Arduino/Genuino Uno)
  int a = 10;
  int b = 3;
  int led:
                                            a==10 && b==3 : 1
 Serial print("a==10 && b==3 : ");
                                            a==10 && b==5 : 0
 Serial println(led = (a==10 && b==3));
                                            a==10 II b==5 : 1
 Serial print("a==10 && b==5 : ");
                                            a==9 || b==5 : 0
 Serial println(led = (a==10 && b==5));
                                            10 : 1
 Serial.print("a==10 || b==5 : ");
                                            la 1 0
 Serial println(led = (a==10 || b==5));
  Serial.print("a==9 || b==5 : ");
 Serial println(led = (a==9 11 b==5));
 Serial print("!0 : ");
 Serial println(led = !0);
 Serial print("!a : ");
 Serial printin(led = !a);
 Serial end():
```

연산자 (비트)

연산자	설명
비트AND(&)	비트 단위로 AND 연산을 한다.
비트OR()	비트 단위로 OR 연산을 한다.
비트XOR(^)	비트 단위로 XOR 연산을 한다.
비트NOT(~)	모든 비트를 반전시킨다.
왼쪽쉬프트(<<)	비트열을 왼쪽으로 1칸씩 이동시키면서 정수값은 2배로 만든다.
오른쪽쉬프트(>>)	비트열을 오른쪽으로 1칸씩 이동시키면서 정수값을 2로 나눈다.

연산자 (비트)

```
void setup() {
 Serial begin(9600);
void loop() {
 int a = 10;
 int h = 3:
                                     @ COM5 (Arduino/Genuino Uno)
 int led:
 Serial print("a & b : ");
                                    a & b : 2
 Serial println(led = a & b);
                                    a | b : 11
 Serial print("a | b : ");
                                    a ^ b : 9
 Serial println(led = a | b);
                                    ~a : −11
 Serial print("a b : ");
 Serial println(led = a ^ b);
                                    a << 1: 20
                                    a >> 1:5
 Serial print("~a : "):
 Serial println(led = ~a);
 Serial print("a << 1: ");
 Serial println(led = a << 1);
 Serial print("a >> 1 : ");
 Serial printin(led = a >> 1);
  Serial end();
```

연산자 우선순위

우선 순위	연산자	결합방향
1	() [] -> . ++(후위)(후위)	→(왼쪽에서 오른쪽)
2	sizeof ++(전위)(전위) &(주소) ~! *(역참조) +(부호) -(부호) 형변환(casting)	←(오른쪽에서 왼쪽)
3	*(곱셈) /(나눗셈) %(나머지)	→
4	+(덧셈) -(뺄셈)	→
5	<< >>	→
6	>>= < <=	→
7	== !=	→
8	&(비트연산)	→
9	Λ.	→
10		→
11	&&	→
12	ĺl l	→
13	?(삼항)	←(오른쪽에서 왼쪽)
14	= += *= /= %= &= = <<= >>=	←(오른쪽에서 왼쪽)
15	,(콤마)	→

응용해보기1

- analogRead 값을 시리얼 모니터로 출력해보자.
- analogRead 값을 백분율(%)로 나타내보자
- 백분율 = 읽은값/최댓값(1023) * 100
- 가변저항(볼륨)
- 밝기센서

- 시리얼 플로터도 사용해보자.

응용해보기2

아두이노 기초

- MTU6050 가속도 센서의값을 시리얼모니터에 출력해보자

 - i2c_mpu6050 예제 참고

부저가 울리도록 프로그램을 작성하시오.

과제

- MTU6050 가속도 센서가 뒤집어진 상태일 경우