Методы приближенного поиска ближайших соседей

Антюх Михаил

Задача

- Имеем: множество элементов, расположенных в метрическом пространстве и функция близости (метрика), которая задает данное метрическое пространство.
- Хотим: найти элементы близкие к заданному.

Рассматриваемые методы

- К-мерное дерево (k-d tree)
- Инвертированный индекс (inverted index)

К-мерное дерево

- **К-мерное дерево** (*k-d tree*) *это* структура данных, которая позволяет разбить К-мерное пространство на части, посредством сечения этого самого пространства гиперплоскостями (**K** > **3**), плоскостями (**K** = **3**), прямыми (**K** = **2**) ну, и в случае одномерного пространства точкой.
- bounding box параллелепипед, который описывает исходное множество объектов (сам объект), стороны bounding box-а параллельны осям координат.

Построение к-мерного дерева

- Все элементы помещаются в один bounding box, описывающий элементы исходного множества.
- bounding box разбивается плоскостью на две части (добавляются два новых узла).
- Таким же путем каждая из полученных частей разбивается на две и т.д.
- Процесс завершается при достижение определенного условия (например при достижение определенного числа элементов в узле дерева), либо при достижении определенной глубины дерева

Способы разделения

- Провести секущую плоскость через середину наибольшей стороны bounding box-a.
- По медиане, то есть так чтобы в обеих частях было примерно одинаковое количество элементов.
- Использовать SAH (Surface Area Heuristic) функцию оценки.

Разделение по наибольшей стороне

Разделение по медиане

Разделение с помощью SAH

- Основной bounding box делится N плоскостями на N + 1 часть.
- Для плоскостей вычисляют значение функции SAH.
- Выбирается плоскость с минимальным значением SAH.

$$SAH(x) = C_t + C_i \times \frac{S_l(x) \times N_l(x) + S_r(x) \times N_r(x)}{S_{all}(x)}$$

Где:

- C_t стоимость построения плоскости
- C_i стоимость пересечения элемента плоскостью
- S_l , S_r площади поверхности слева и справа от плоскости
- N_l , N_r —количество элементов слева и справа от плоскости
- S_{all} площадь всей поверхности

Разбиение с помощью SAH

- Шаг 1. Находим лист в котором лежит заданный элемент.
- **Шаг 2.** Полным перебором в данном листе ищем ближайший элемент к заданному и обозначаем расстояние за min_dist.
- **Шаг 3.** Строим вокруг заданного элемента сферу с радиусом длины min_dist.
- **Шаг 4.** Запускаем обход дерева с корня и проверяем пересекает ли сфера левый или правый узел, при достижение листа запускаем перебор элементов и если нашелся более близкий чем min_dist, то обновляем min_dist и радиус сферы.
- **Шаг 5.** Продолжаем обход с обновленным радиусом.

- Находим лист в котором лежит заданный элемент.
- Полным перебором в данном листе ищем ближайший элемент к заданному.
- Строим вокруг заданного элемента сферу.

- Запускаем обход дерева с корня.
- При достижение листа запускаем перебор элементов.
- Обновляем радиус сферы.

Время работы и память

- Построение: $O(kn + n \log n)$
- Высота: $O(\log n)$
- Поиск ближайшего соседа:
 - в среднем за $O(\log n)$
 - в худшем случае за O(n)
- Память O(n)

Плюсы и минусы к-мерного дерева

Плюсы:

- Быстрый поиск (в среднем).
- Небольшие затраты памяти.

Минусы:

- Не всегда сбалансировано.
- Возможны ситуации с плохой асимптотикой.
- Трудоемкое построение.
- Не эффективен при большой размерности пространства.

Плохая ситуация

Заданный элемент находится слишком далеко от bounding box, в результате чего сфера пересекает слишком много областей

Инвертированный индекс

• **Инвертированный индекс** - это индекс хранящий сопоставление содержимого, такого как слова, числа, вектора, с его местоположениями.

• Мотивация:

- 1. запросы к инвертированному индексу позволяют избежать оценки расстояний между запросом и каждой точкой в наборе данных и, таким образом, обеспечивают существенное ускорение по сравнению с полным поиском
- 2. Эффективен в пространствах высокой размерности

Примеры использования

- В поисковых системах.
- В компьютерном зрении для поиска сходства (классификация изображений, редактирование изображений и т. д.).
- В биоинформатике в процессе определения коротких последовательностей нуклеиновой кислоты.

Поиск kближайших соседей

- **Шаг 1.** Запускаем на множестве d-мерных векторов алгоритм кластеризации (k-means).
- **Шаг 2.** Вычисляем расстояние от запроса до каждого центра кластера.
- **Шаг 3.** Делаем полный перебор внутри ближайшего кластера.
 - центр кластера
 - запрос
 - запрос

Противоречие

- Необходимо проверять несколько ближайших кластеров.
- Чем больше кластеров, тем лучше.

• Нахождение лучших кластеров должно быть быстрым.

Инвертированный мульти-индекс

Идея:

Заменить k-means кластеризацию исходных d-мерных векторов на две независимые кластеризации первых и вторых половин.

Получаем:

гораздо больше кластеров для того же К.

Недостаток:

Кластеры могут быть пустыми.

Поиск с инвертированным мульти-индексом

- **Шаг 1**. Разбиваем запрос на две части и для каждой части считаем расстояние для соответствующих центроидов.
- Шаг 2. Считаем общее расстояние по двум частям.
- Шаг 3. Составляем очередь обхода.

Поиск с инвертированным мульти-индексом

	\mathbf{q}^2 vs.	\mathcal{V}
j	$\mathbf{v}_{eta(j)}$	s
1	$\overline{\mathbf{v_4}}$	0.1
2	$\mathbf{v_3}$	2
3	$\mathbf{v_5}$	3
4	$\mathbf{v_2}$	6
5	$\mathbf{v_6}$	7
6	$\mathbf{v_1}$	11
	. т	

$[\mathbf{u}_{lpha(i)} \; \mathbf{v}_{eta(j)}]$	(i, j)	r(i) + s(j)
$[\mathbf{u_3} \ \mathbf{v_4}]$	(1,1)	$0.6 \ (0.5+0.1)$
$[\mathbf{u_4} \ \mathbf{v_4}]$	(2,1)	$0.8 \ (0.7+0.1)$
$[\mathbf{u_3} \ \mathbf{v_3}]$	(1,2)	2.5 (0.5+2)
$[\mathbf{u_4} \ \mathbf{v_3}]$	(2,2)	2.7 (0.7+2)
$[\mathbf{u_3} \ \mathbf{v_5}]$	(1,3)	3.5 (0.5+3)
$[\mathbf{u_4} \; \mathbf{v_5}]$	(2,3)	3.7 (0.7+3)
$[\mathbf{u_5} \ \mathbf{v_4}]$	(3,1)	4.1 (4+0.1)
$[\mathbf{u_5} \ \mathbf{v_3}]$	(3,2)	6(4+2)
$[\mathbf{u_3} \ \mathbf{v_2}]$	(1,4)	6.5 (0.5+6)

1	2	3	4	5	6
0.6	0.8	4.1	6.1	8.1	9.1
2.5	2.7	6	8	10	11
3.5	3.7	7	9	11	12
6.5	6.7	10	12	14	15
7.5	7.7	11	13	15	16
11.5	11.7	15	17	19	20
\mathbf{u}_3	\mathbf{u}_{4}	\mathbf{u}_{5}	110	\mathbf{u}_1	\mathbf{u}_{6}

	1	2	3	4	5	6
	0.6	0.8	4.1	6.1	8.1	9.1
	2.5	2.7	6	8	10	11
ľ	3.5	3.7	7	9	11	12
	6.5	6.7	10	12	14	15
	7.5	7.7	11	13	15	16
	11.5	11.7	15	17	19	20
	119 114 115 119 111 116					

Плюсы и минусы мульти-индекса

Плюсы:

- Эффективен для больших размерностей.
- Намного точней, чем базовая версия алгоритма.

Минусы:

- Кластеры могут быть пустыми.
- Работает чуть медленнее, чем базовая версия.

Список источников

К-мерное дерево:

 https://en.wikipedia.org/wiki/K-d_tree https://habr.com/ru/post/312882/

Инвертированный индекс (+ мульти):

- https://en.wikipedia.org/wiki/Inverted index
- https://cache-ash04.cdn.yandex.net/download.yandex.ru/company/cvpr2012.pdf
- https://www.youtube.com/watch?v=UUm4MOyVTnE

Список вопросов

- Опишите два любых способа деления узла при построение kdtree
- Как найти ближайшего соседа в kd-tree к заданной точке?
- В чем причина неточности поиска k-ближайших с помощью инвертированного индекса?