

UNIVERSIDAD NACIONAL DEL LITORAL

Facultad de Ingeniería y Ciencias Hídricas

Processamento Digital de Imagens

Entrega II - A

Aluna: Carla de Oliveira Barden

Santa Fe, Abril de 2020

Introdução

Conforme dito anteriormente, em Processamento de Imagens, operações realizadas no domínio espacial consistem na manipulação direta de cada pixel que compõe a imagem. Matematicamente, g(x,y) = T[f(x,y)], onde g(x,y) é a imagem de saída, f(x,y) é a imagem de entrada e T é o operador.

No caso onde g depende apenas do valor de f em um único ponto (x,y), T é dito uma Função de Transformação de Intensidade , sendo apresentada na forma: s=T(r), onde s e r são variáveis que indicam a intensidade de g e f em qualquer ponto (x,y). Há diversos tipos de transformações de intensidade, dentre elas:

Operações com somente uma imagem

- Transformações Lineares (negativo, amplificação, offset)
- Limiarização
- Transformação Logarítmica
- Transformação de Potência (Gama)
- Operação Lógica NOT (operação unária bit-a-bit)

Operações entre várias imagens

- Operações Aritméticas (soma, subtração, média, multiplicação, divisão, etc)
- Operações Lógicas (AND, OR, XOR todas bit-a-bit)
- Operações Relacionais (>; <; >=; <=)

Uma das possíveis aplicações desse tipo de operação é o **realce** de características relevantes da imagem, de forma que a imagem transformada seja mais adequada à aplicação que se destina do que a imagem original.

Problema Proposto

Ao final do processo de manufatura de placas-mãe, da marca ASUS®, modelo A7V600, obtém-se duas classes de produto final:

- A7V600-X,
- A7V600-SE.

Implementar um algoritmo que, a partir de uma imagem, determine que tipo de placa é. Usar as técnicas de realce aprendidas e as imagens a7v600-x.gif y a7v600-SE.gif. Adaptar o método proposto de forma que contemple o reconhecimento de imagens que foram afetadas por um ruído aleatório impulsivo (a7v600-x(RImpulsivo).gif y a7v600-SE(RImpulsivo).gif).

(b) A7V600-SE

(c) A7V600-X (ruído)

(d) A7V600-SE (ruído)

Figura 1: Imagens Fornecidas

Solução Proposta

A solução proposta encontra-se no seguinte local: https://tinyurl.com/wkyz599. Para executá-la, é necessário passar como parâmetro, nesta ordem, o caminho da imagem original da placa A7V600-X, o caminho da imagem original da placa A7V600-SE e o caminho da imagem a ser analisada.

Metodologia

Observando-se as imagens 1(a) e 1(b), não é possível identificar muitas diferenças além das indicadas na figura 2.

Figura 2: Diferença entre as placas facilmente identificada por um observador.

Porém, ao aplicar-se uma técnica de realce conhecida como *Limiarização*, geram-se duas imagens binárias e tornam-se mais nítidas as diferenças entre as duas placas (figura 3).

Figura 3: Diferença entre as placas após Limiarização.

Matematicamente, a Limiarização é definida como s = T(r), onde:

$$s = \begin{cases} 0, & se \ r < k; \\ 255, & se \ r >= k. \end{cases}$$

Para esta aplicação, o valor de k foi empiricamente definido como 50.

Sendo assim, a estratégia escolhida para a resolução do problema foi criar uma máscara para cada placa e compará-la com a imagem a ser analisada. A fim de criar as máscaras, efetuou-se a operação de *subtração* entre as imagens binárias, como segue:

 $mascara \ X = imagem \ SE \ binaria - imagem \ X \ binaria$ $mascara \ SE = imagem \ X \ binaria - imagem \ SE \ binaria$

Figura 4: Máscaras geradas

Comparando-se as figuras 3 e 4, fica nítido que, se aplicada a *operação lógica AND* entre a imagem binária da placa a ser analisada e as máscaras, a imagem resultante será composta somente de zeros (preta) se e somente se a máscara e a imagem analisada corresponderem à mesma placa (figura 5). A operação AND é realizada bit-a-bit entre as imagens e equivale a uma multiplicação.

Figura 5: Resultado da operação AND entre máscara e imagem analisada

Computacionalmente, isso consiste em contar o número de pixeis brancos na imagem. Se esse número for maior que zero, a máscara e a imagem analisada não correspondem à mesma placa. Para tratar o caso de imagens de entrada ruidosas, a aplicação considera que se até 1% dos pixeis forem brancos (valor obtido empiricamente), ainda se trata da mesma placa (figura 6).

Figura 6: Resultado da operação AND entre máscara e imagem ruidosa

Resultados

A aplicação foi capaz de reconhecer corretamente as placas (mediante passagem correta de parâmetros). Ela imprime no *shell* onde foi invocada o resultado da análise e mostra a imagem analisada e o resultado em uma janela (figura 7).

Exemplo de execução:

 $python 3\ 000-placas.py\ -ipx\ imgs/a7v600-X.gif\ -ips\ imgs/a7v600-SE.gif\ -img\ imgs/a7v600-XRImpulsivo.gif$

Figura 7: Exemplo de Execução da Aplicação.

Referências

Videoaulas da Disciplina;

Processamento Digital de Imagens - Rafael C. Gonzalez e Richard E. Woods - 3a edição.