BTS OPTICIEN LUNETIER

Mathématiques SESSION 2014

Note : ce corrigé n'a pas de valeur officielle et n'est donné qu'à titre informatif sous la responsabilité de

Proposition de corrigé par Laurent Deshayes, professeur à l'Institut et Centre d'Optométrie de Bures-sur-Yvette

son auteur par Acuité.

EXERCICE 1

A. Modèle discret du premier traitement : étude de suites

 $\mathbf{1}^{\circ}$ $u_o = 1.8$ car on injecte une dose de 1.8 unités à l'instant t = 0.

 u_{n+1} est égal à la dose précédente u_n diminuée de 30% et augmentée de 1,8 :

$$u_{n+1} = u_n - \frac{30}{100} u_n + 1.8 = (1 - 0.3)u_n + 1.8$$
;

il en découle finalement : $u_{n+1} = 0.7u_n + 1.8$, pour tout entier naturel n.

2° Exprimons v_{n+1} en fonction de v_n :

$$v_{n+1} = u_{n+1} - 6 = 0.7u_n + 1.8 - 6 = 0.7u_n - 4.2$$

avec $v_n = u_n - 6$ donc avec $u_n = v_n + 6$

ainsi,
$$v_{n+1} = 0.7u_n - 4.2 = 0.7(v_n + 6) - 4.2 = 0.7v_n + 4.2 - 4.2$$

donc $v_{n+1} = 0.7 v_n$, pour tout entier n.

Ce qui prouve que la suite (v_n) est la suite géométrique de raison q = 0.7 et de premier terme $v_0 = u_0 - 6 = 1.8 - 6 = -4.2$.

3°
$$v_n = v_0 q^n = -4.2 \times (0.7)^n$$

 $u_n = v_n + 6 \text{ donc } u_n = 6 - 4.2 \times (0.7)^n$

4°

- a) La limite de la suite géométrique (v_n) est égale à zéro car sa raison est comprise entre -1 et 1 donc par addition la limite de la suite (u_n) est égale à 6.
- b) Au bout d'un long moment, la quantité de médicament est proche de 6 unités donc le but, qui est que cette quantité soit supérieure à 5, est atteint au bout de quelques heures. (Un calcul avec une calculatrice donne $u_n > 5$ à partir de n = 5)

B. Modèle continu du second traitement : résolution d'une équation différentielle

1° Les solutions de l'équation (E_0) : y ' + y = 0 sont les fonctions f définies sur l'intervalle [0 ; +∞ [par : f(t) = ke^{-t} , k ∈ \mathbb{R}

2°

- La fonction g est dérivable sur l'intervalle [0; + ∞ [et : g'(t) = 5 x (-0,5 e^{-0,5t})= 2,5 e^{-0,5t}
- On remplace alors la fonction g dans le membre de gauche de l'équation différentielle (E):
 g'(t) + g(t) = -2,5 e ^{-0,5t} + 5 e ^{-0,5t} = 2,5 e ^{-0,5t}, pour tout réel t de [0; +∞ [, donc la fonction g est solution de l'équation différentielle (E)
- **3**° Les solutions de l'équation différentielle (*E*) sont les fonctions définies sur l'intervalle $[0; +\infty[$ par : $f(t) = ke^{-t} + g(t)$; $k \in \mathbb{R}$

C'est-à-dire par
$$f(t) = ke^{-t} + 5 e^{-0.5t}$$
; $k \in \mathbb{R}$

4° Déterminons la constante k telle que f(0) = 0: $f(0) = ke^0 + 5 e^0 = k + 5 = 0 \quad donc \ k = -5$ La fonction f recherchée est la fonction f définie sur l'intervalle $[0; +\infty[$ par : $f(t) = -5 e^{-t} + 5 e^{-0.5t}.$

C. Étude d'une fonction

On remarque que la fonction f définie sur $[0; +\infty[$ par $f(t) = -5e^{-t} + 5e^{-0.5t}$ est la fonction obtenue à la fin de la partie B.

a)
$$\lim_{t \to +\infty} -t = -\infty \quad \text{donc} \quad \lim_{t \to +\infty} e^{-t} = 0$$
 de la même façon
$$\lim_{t \to +\infty} e^{-0.5t} = 0$$
 donc
$$\lim_{t \to +\infty} f(t) = 0$$

b) On en déduit que la courbe C admet, en $+\infty$, une asymptote parallèle à l'axe des abscisses d'équation y = 0.

2°

a) La fonction f est dérivable sur $[0; +\infty [$ et :

f'(t) =
$$-5 \times (-1)e^{-t} + 5 \times (-0.5)e^{-0.5t}$$

= $5 e^{-t} - 2.5e^{-0.5t}$

Développons maintenant l'expression donnée 2,5 e^{-t} $(2 - e^{-0.5t})$: 2,5 e^{-t} $(2 - e^{-0.5t}) = 5 e^{-t} - 2,5 e^{-t} e^{-0.5t} = 5 e^{-t} - 2,5 e^{-t} + 0.5t$ = 5 e^{-t} - 2,5 e^{-0.5t}.

Donc f'(t) = 2,5 e^{-t} (2 - e^{0,5t}), pour tout réel t de l'intervalle [0; + ∞ [

b)
$$f'(t) \ge 0$$

$$2 - e^{-0.5t} \ge 0 \text{ car } 2.5 e^{-t} > 0 \text{ sur } [0; +\infty[$$

$$2 \ge e^{-0.5t}$$

$$\ln 2 \ge 0.5t$$

$$\frac{\ln 2}{0.5} \ge t$$

$$t \le 2\ln 2 \qquad \text{avec } 2\ln 2 = \ln 4$$

c)
$$f(\ln 4) = -5 e^{-\ln 4} + 5e^{-0.5\ln 4} \text{ avec} \begin{cases} e^{-\ln 4} = e^{\ln \frac{1}{4}} = \frac{1}{4} \\ e^{-0.5\ln 4} = e^{-\ln 2} = \frac{1}{2} \end{cases}$$

la valeur exacte de f(ln 4) est finalement : $-\frac{5}{4} + \frac{5}{2} = \frac{5}{4} = 1,25$

Le tableau de variation de la fonction f sur $[0; +\infty [$ est :

t	0	ln 4	+∞
Signe de f'(t)	+	0	_
Variations de f	0	1,25	0

 3° T a pour équation : y = f'(0)(t - 0) + f(0)

Avec
$$\begin{cases} f'(0) = 5 e^{0} - 2,5e^{0} = 5 - 2,5 = 2,5 \\ f(0) = 0 \end{cases}$$

T: y = 2.5t

4°

a) Le logiciel donne l'expression d'une primitive F de la fonction f sur [0 ; $+\infty$ [: $F(t) = 5 e^{-t} - 10 e^{-0.5t}$

Il faut calculer F'(t):

F est dérivable sur $[0; +\infty [$ et F'(t) = $5 \times (-1)e^{-t} - 10 \times (-0.5)e^{-0.5t}$

 $F'(t) = -5 e^{-t} + 5 e^{-0.5t} = f(t)$, pour tout t de l'intervalle $[0; +\infty]$

Donc le logiciel fournit effectivement une primitive de la fonction f sur $[0; +\infty[$.

b)
$$I = \int_0^6 f(t)dt = [F(t)]_0^6 = [5 e^{-t} - 10e^{-0.5t}]_0^6$$
$$= 5 e^{-6} - 10 e^{-3} - (5 e^{0} - 10 e^{0}) = 5 e^{-6} - 10 e^{-3} - (-5)$$
$$I = 5 e^{-6} - 10 e^{-3} + 5.$$

La valeur approchée arrondie à 10^{-2} de l'intégrale I est : 4,51.

EXERCICE 2

A. Événements indépendants

- 1° P(A \cap B) = 0,0006
- 2° P(A U B) = 0,0494
- 3° P($\overline{A} \cap \overline{B}$) = 0,9506
- 4° La probabilité que la lentille prélevée présente un seul des deux défauts est : 0.0488

B. Loi binomiale, loi de Poisson

1°

a) On considère une épreuve élémentaire, qui consiste à prélever une seule lentille dans ce stock, qui a exactement 2 issues : la lentille prélevée est non conforme aux normes de commercialisation de probabilité **0,05** ou non.

On répète **120** fois cette épreuve élémentaire de façon indépendante car ce prélèvement est assimilé à un tirage avec remise.

Donc la variable aléatoire X qui, à tout prélèvement ainsi défini, associe le nombre de lentilles non conformes suit la loi binomiale de paramètres 120 et 0,05.

b)
$$P(X \ge 1) = 1 - P(X=0) = 1 - {120 \choose 0}0,05^0 \times 0,95^{120} = 1 - 0,95^{120} \cong 1 - 0,002 \cong 0.998$$

2°

a)
$$\lambda = 120 \times 0.05 = 6$$

b) $P(Y \le 5) = P(Y=0) + P(Y=1) + ... + P(Y=5)$ et on lit ces valeurs dans la table de la loi de Poisson :

$$P(Y \le 5) \cong 0.002 + 0.015 + 0.045 + 0.089 + 0.134 + 0.161 \cong 0.446.$$

c) Il s'agit de la probabilité de l'événement contraire de l'événement précédent : $P(Y \ge 6) = 1 - P(Y < 6) = 1 - P(Y \le 5) \cong 1 - 0.446 \cong 0.554$.

C. Loi normale

La probabilité qu'une lentille prélevée au hasard soit conforme pour la densité est : $P(0.88 \le Z \le 1.12)$.

On calcule cette probabilité

Soit en utilisant la table de la loi normale centrée réduite : La variable aléatoire Z suit la loi normale de moyenne 1 et d'écart type 0,08 donc la variable aléatoire T définie par $T = \frac{Z-1}{0,08}$ suit la loi normale N(0; 1).

$$P(0.88 \le Z \le 1.12) = P\left(\frac{0.88-1}{0.08} \le T \le \frac{1.12-1}{0.88}\right) = P(-1.5 \le T \le 1.5) = 2\pi(1.5) - 1$$

$$\approx 2 \times 0.9332 - 1 \approx 0.8664 \approx 0.867$$
.

Soit en utilisant une calculatrice qui donne directement le résultat demandé (0,86639)
 (stat DIST NORM puis on rentre 0,88 ; 1,12 ; l'écart type 0,08 ; la moyenne 1)

Ou 2^{nde} distrib normalFRép puis on rentre 0,88 ; 1,12 ; la moyenne 1; 1'écart type 0,08 selon les calculatrices)

D. Intervalle de confiance

1° L'intervalle de confiance recherché est : $[\overline{d} - t \frac{\sigma}{\sqrt{150}}; \overline{d} + t \frac{\sigma}{\sqrt{150}}]$

Avec:
$$\overline{d} = 1{,}108$$
 $\sigma = 0{,}07$

Et la valeur de t est telle que $2\pi(t) - 1 = 0.95$

Donc $\pi(t) = 1,95 / 2 = 0,975$

Et finalement t = 1,96 par lecture inverse de la table de la loi normale centrée réduite.

Application numérique :

$$[1,108 - 1,96 \frac{0,07}{\sqrt{150}}; 1,108 + 1,96 \frac{0,07}{\sqrt{150}}]$$

L'intervalle [1,10; 1,12] est l'intervalle de confiance de la moyenne inconnue μ , avec le coefficient de confiance de 0,95.

 2° L'affirmation « on est sûr que la moyenne μ appartient à l'intervalle de confiance obtenu à la question précédente » est **fausse**; il est possible que la densité moyenne inconnue μ des lentilles de la production annuelle de ce fabriquant n'appartienne pas à l'intervalle de confiance déterminé avec le coefficient de confiance de 95%; le calcul a montré qu'avec un coefficient de confiance différent, les bornes de cet intervalle seraient différentes.