INTRODUCTION TO ALGORITHMS: COMPUTATIONAL COMPLEXITY

BY VASYL NAKVASIUK, 2013

WHATIS AN ALGORITHM?

WHAT IS AN ALGORITHM?

"An algorithm is a procedure that takes any of the possible input instances and transforms it to the desired output."

Important issues: correctness, elegance and efficiency.

EFFICIENCY

Is this really necessary?

CRITERIA OF EFFICIENCY:

- Time complexity
- Space complexity

Time complexity ≠ Space complexity ≠ Complexity of algorithm

HOW CAN WE MEASURE COMPLEXITY?

HOW CAN WE MEASURE COMPLEXITY?

EMPIRICAL ANALYSIS (BENCHMARKS)
THEORETICAL ANALYSIS (ASYMPTOTIC ANALYSIS)

EMPIRICAL ANALYSIS

VERSION #1

WHAT MEANS "FAST"?

VERSION #2

```
import time
start = time.time() # Return the time in seconds since the epoch.
my_algo(some_input)
end = time.time()

print(end - start)
```

0.048032498359680176

VERSION #3

```
import timeit
timeit.timeit('my_algo(some_input)', number=1000)

1000 loops, best of 3: 50.3 ms per loop
```

VERSION #4

```
import timeit
inputs = [1000, 10000, 500000, 1000000]
for input in inputs:
    timeit.timeit('my algo(input)', number=1000)
list of 1000 items:
1000 loops, best of 3: 50.3 ms per loop
list of 10000 items:
1000 loops, best of 3: 104.7 ms per loop
list of 500000 items:
1000 loops, best of 3: 459.1 ms per loop
list of 1000000 items:
1000 loops, best of 3: 3.12 s per loop
```

VERSION #5

```
# Intel Core i7-3970X @ 3.50GHz, RAM 8 Gb, Ubuntu 12.10 x64, Python 3.
import timeit
inputs = [1000, 10000, 500000, 1000000]
for input in inputs:
    timeit.timeit('my algo(input)', number=1000)
list of 1000 items:
1000 loops, best of 3: 50.3 ms per loop
list of 10000 items:
1000 loops, best of 3: 104.7 ms per loop
list of 500000 items:
1000 loops, best of 3: 459.1 ms per loop
list of 1000000 items:
1000 loops, best of 3: 3.12 s per loop
```

EXPERIMENTAL STUDIES HAVE SEVERAL LIMITATIONS:

- It is necessary to implement and test the algorithm in order to determine its running time.
- Experiments can be done only on a limited set of inputs, and may not be indicative of the running time on other inputs not included in the experiment.
- In order to compare two algorithms, the same hardware and software environments should be used.

ASYMPTOTIC ANALYSIS

THEORETICAL ANALYSIS

ASYMPTOTIC ANALYSIS

EFFICIENCY AS A FUNCTION OF INPUT SIZE

T(n) – running time as a function of n, where n – size of input.

 $n \rightarrow \infty$

Random-Access Machine (RAM)

BEST, WORST, AND AVERAGE-CASE COMPLEXITY

LINEAR SEARCH

```
def linear_search(my_item, items):
    for position, item in enumerate(items):
        if my_item == item:
            return position
```

$$T(n) = n?$$
 $T(n) = 1/2 \cdot n?$
 $T(n) = 1?$

BEST, WORST, AND AVERAGE-CASE COMPLEXITY

BEST, WORST, AND AVERAGE-CASE COMPLEXITY

LINEAR SEARCH

```
def linear_search(my_item, items):
    for position, item in enumerate(items):
        if my_item == item:
            return position
```

Worst case: T(n) = n

Average case: $T(n) = 1/2 \cdot n$

Best case: T(n) = 1

$$T(n) = O(n)$$

HOW CAN WE COMPARE TWO FUNCTIONS?

WE CAN USE ASYMPTOTIC NOTATION

ASYMPTOTIC NOTATION

THE BIG OH NOTATION ASYMPTOTIC UPPER BOUND

 $O(g(n)) = \{f(n): \text{there exist positive constants c and no such that } 0 \le f(n) \le c \cdot g(n) \text{ for all } n \ge n_0\}$

$$T(n) \in O(g(n))$$
or
 $T(n) = O(g(n))$

Ω-NOTATION ASYMPTOTIC LOWER BOUND

 $\Omega(g(n)) = \{f(n): \text{ there exist positive constants c and no such that } 0 \le c \cdot g(n) \le f(n) \text{ for all } n \ge n_0\}$

$$T(n) \in \Omega(g(n))$$
or
 $T(n) = \Omega(g(n))$

O-NOTATIONASYMPTOTIC TIGHT BOUND

 $\Theta(g(n)) = \{f(n): \text{ there exist positive constants } c_1, c_2 \text{ and } n_0 \text{ such that } 0 \le c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n) \text{ for all } n \ge n_0 \}$

$$T(n) \in \Theta(g(n))$$
or
 $T(n) = \Theta(g(n))$

GRAPHIC EXAMPLES OF THE Θ, O AND Ω NOTATIONS

EXAMPLES

$$3 \cdot n^2 - 100 \cdot n + 6 = O(n^2)$$
,
because we can choose $c = 3$ and $3 \cdot n^2 > 3 \cdot n^2 - 100 \cdot n + 6$

$$100 \cdot n^2 - 70 \cdot n - 1 = O(n^2)$$
,
because we can choose $c = 100$ and
 $100 \cdot n^2 > 100 \cdot n^2 - 70 \cdot n - 1$

$$3 \cdot n^2 - 100 \cdot n + 6 \approx 100 \cdot n^2 - 70 \cdot n - 1$$

LINEAR SEARCH

LINEAR SEARCH (VILLARRIBA VERSION):

$$T(n) = O(n)$$

LINEAR SEARCH (VILLABAJO VERSION)

```
def linear_search(my_item, items):
    for position, item in enumerate(items):
        print('poition - {0}, item - {0}'.format(position, item))
        print('Compare two items.')
        if my_item == item:
            print('Yeah!!!')
            print('The end!')
            return position
```

$$T(n) = O(3 \cdot n + 2) = O(n)$$

Speed of "Villarriba version" ≈ Speed of "Villabajo version"

BINARY SEARCH

```
def binary_search(seq, t):
    min = 0; max = len(seq) - 1
    while 1:
        if max < min:
            return -1
        m = (min + max) / 2
        if seq[m] < t:
            min = m + 1
        elif seq[m] > t:
            max = m - 1
        else:
            return m
```

$$T(n) = O(log(n))$$

PRACTICAL USAGE ADD DB "INDEX"

TYPES OF ORDER

Notation	Name
O(1)	Constant
$O(\log(n))$	Logarithmic
$O(\log(\log(n))$	Double logarithmic (iterative logarithmic)
o(n)	Sublinear
O(n)	Linear
$O(n\log(n))$	Loglinear, Linearithmic, Quasilinear or Supralinear
$O(n^2)$	Quadratic
$O(n^3)$	Cubic
$O(n^c)$	Polynomial (different class for each $c > 1$)
$O(c^n)$	Exponential (different class for each $c > 1$)
O(n!)	Factorial
$O(n^n)$	- (Yuck!)

However, all you really need to understand is that:

 $n! \gg 2 \cdot n \gg n^3 \gg n^2 \gg n \cdot \log(n) \gg n \gg \log(n) \gg 1$

THE BIG OH COMPLEXITY FOR DIFFERENT FUNCTIONS

GROWTH RATES OF COMMON FUNCTIONS MEASURED IN NANOSECONDS

Each operation takes one nanosecond (10⁻⁹ seconds).

n f(n)	$\lg n$	n	$n \lg n$	n^2	2^n	n!
10	$0.003 \; \mu s$	$0.01~\mu s$	$0.033 \; \mu s$	$0.1~\mu s$	$1 \mu s$	3.63 ms
20	$0.004~\mu s$	$0.02~\mu s$	$0.086 \ \mu s$	$0.4~\mu s$	1 ms	77.1 years
30	$0.005 \ \mu s$	$0.03~\mu s$	$0.147~\mu s$	$0.9~\mu s$	1 sec	$8.4 \times 10^{15} \text{ yrs}$
40	$0.005 \; \mu s$	$0.04~\mu s$	$0.213 \ \mu s$	$1.6~\mu s$	18.3 min	
50	$0.006~\mu s$	$0.05~\mu s$	$0.282~\mu s$	$2.5~\mu s$	13 days	
100	$0.007 \ \mu s$	$0.1~\mu s$	$0.644~\mu s$	10 μs	$4 \times 10^{13} \text{ yrs}$	
1,000	$0.010 \ \mu s$	$1.00~\mu s$	$9.966 \ \mu s$	1 ms		
10,000	$0.013 \ \mu s$	$10 \ \mu s$	$130 \ \mu s$	100 ms		
100,000	$0.017 \ \mu s$	0.10 ms	1.67 ms	10 sec		
1,000,000	$0.020 \ \mu s$	1 ms	19.93 ms	16.7 min		
10,000,000	$0.023~\mu s$	$0.01 \mathrm{sec}$	$0.23 \mathrm{sec}$	1.16 days		
100,000,000	$0.027~\mu s$	$0.10 \mathrm{sec}$	$2.66 \mathrm{sec}$	115.7 days		
1,000,000,000	$0.030~\mu \mathrm{s}$	1 sec	29.90 sec	31.7 years		

HOW CAN YOU QUICKLY FIND OUT COMPLEXITY?

0(?)

"On the basis of the issues discussed here, I propose that members of SIGACT, and editors of computer science and mathematics journals, adopt the O, Ω and Θ notations as defined above, unless a better alternative can be found reasonably soon."

D. E. Knuth, "Big Omicron and Big Omega and BIg Theta", SIGACT News, 1976.

BENCHMARKS ASYMPTOTIC ANALYSIS? USE BOTH APPROACHES!

SUMMARY

- 1. We want to predict running time of an algorithm.
- 2. Summarize all possible inputs with a single "size" parameter n.
- 3. Many problems with "empirical" approach (measure lots of test cases with various n and then extrapolate).
- 4. Prefer "analytical" approach.
- 5. To select best algorithm, compare their T(n) functions.
- 6. To simplify this comparision "round" the function using asymptotic ("big-O") notation
- 7. Amazing fact: Even though asymptotic complexity analysis makes many simplifying assumptions, it is remarkably useful in practice: if A is $O(n^3)$ and B is $O(n^2)$ then B really will be faster than A, no matter how they're implemented.

LINKS

BOOKS:

- "Introduction To Algorithms, Third Edition", 2009, by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein
- "The Algorithm Design Manual, Second Edition", 2008, by Steven S. Skiena

OTHER:

- "Algorithms: Design and Analysis" by Tim Roughgarden https://www.coursera.org/course/algo
- Big-O Algorithm Complexity Cheat Sheet http://bigocheatsheet.com/

THE END

THANK YOU FOR ATTENTION!

- Vasyl Nakvasiuk
- Email: vaxxxa@gmail.com
- Twitter: @vaxXxa
- Github: vaxXxa

THIS PRESENTATION:

https://github.com/vaxXxa/talks