UNIVERSITÉ de LORRAINE TELECOM Nancy

TELECOM Nancy

Mathématiques Appliquées pour l'Informatique 1ère année formation par apprentissage

Date: 19 décembre 2017 Horaire: 14h à 16h

Durée du sujet : 2h

Une double feuille A4 (à votre nom) autorisée Calculatrices et téléphones non autorisées

Avertissement: les exercices sont indépendants. Les réponses aux questions posées doivent être justifiées. La clarté et le soin de la rédaction sont des éléments de l'appréciation.

Exercice 1 (Théorie des langages : automates et langages réguliers)

1. Soit l'automate A_1 défini par le diagramme suivant :

Calculer une expression rationnelle dénotant le langage reconnu par A_1 . On demande d'établir le système d'équations vérifiées par les langages associés aux états de l'automate et de résoudre ce système.

2. Soit l'automate fini A_2 dont le diagramme est ci-dessous :

Mettre en évidence tous les éléments permettant d'affirmer que A_2 n'est pas déterministe. Déterminiser \mathcal{A}_2 en appliquant l'algorithme vu en TD, et donner tous les éléments de l'automate déterminisé et sa fonction de transition sous forme d'une table.

3. Soit l'automate déterministe $A_3 = (\{a, b, c\}, \{i, i \in \mathbb{N} \ et \ 0 \le i \le 7\}, \ 0, \ \delta, \ \{2, 6\})$ où δ est la table des transitions définie par le tableau suivant :

δ	0	1	2	3	4	5	6	7
a	7	2	6	3	7	5	6	3
b	5	5	6	2	5	5	6	2
c	4	0	6	3	4	5	6	3

Après avoir supprimé les états inaccessibles de A_3 , minimaliser A_3 , donner tous les éléments de l'automate obtenu, sa fonction de transition sous forme d'une table.

Exercice 2 (Théorie des langages : grammaires)

Soit la grammaire $G=(\{X,\ Y\},\{a,\ b,\ c\},\ \to,\ X)$ où la relation \to est définie par les règles suivantes : $X\ \to\ cXb\mid Y$ $Y\ \to\ aY\mid a\mid \varepsilon$

- 1. Quel est L(G), le langage des mots engendrés par G? On ne demande pas de démonstration.
- 2. Montrer que u = ccaabb appartient à L(G) en dessinant un arbre syntaxique de u.
- 3. La grammaire G est-elle ambiguë? Justifier votre réponse.

Exercice 3 (Analyse syntaxique descendante)

1. Soit la grammaire $G_1 = (\{A, B, C, D, E, F\}, \{a, b, c\}, \rightarrow, A)$ dont les règles sont :

$$\left\{ \begin{array}{l} A \rightarrow \ aBcDa \\ B \rightarrow \ CE \mid a \\ C \rightarrow \ bC \mid \varepsilon \end{array} \right. \quad \left\{ \begin{array}{l} D \rightarrow \ bD \mid F \\ E \rightarrow \ aE \mid \varepsilon \\ F \rightarrow \ cFb \mid \varepsilon \end{array} \right.$$

Calculer l'ensemble P_{ε} (l'ensemble des non terminaux produisant le mot vide ε), les ensembles Premier, Suivant et les symboles directeurs des règles de G_1 et en déduire si oui ou non la grammaire G_1 est LL(1).

2. Soit la grammaire $G_2 = (\{S, I, E, F, T, G, V, N\}, \{(,), =, +, -, 0, 1, a, b, f, g, ;\}, \rightarrow, S)$ dont les règles sont :

$$\left\{ \begin{array}{l} S \rightarrow V = EI \\ I \rightarrow ; S \mid \varepsilon \\ E \rightarrow TF \\ F \rightarrow +TF \mid -TF \mid \varepsilon \end{array} \right. \left. \left\{ \begin{array}{l} T \rightarrow G \mid V \mid N \mid (E) \\ G \rightarrow f(E;E) \mid g(E) \\ V \rightarrow a \mid b \\ N \rightarrow 0 \mid 1 \end{array} \right. \right.$$

 G_2 définit une grammaire simplifiée d'une séquence d'instructions dans un langage de programmation. $L(G_2)$ est le langage engendré par la grammaire G_2 .

On donne $P_{\varepsilon} = \{I, F\}$ et le tableau suivant :

	S	I	E	F
Premier	$\{a, b\}$	{;}	$\{(, a, b, f, g, 0, 1)\}$	$\{+, -\}$
Suivant	{\$}	{\$}	$\{\$, ;,)\}$	$\{\$, ;, \}$

	T	G	V	N	
Premier	$\{(, a, b, f, g, 0, 1\}$	$\{f, g\}$	$\{a, b\}$	$\{0, 1\}$	
Suivant	$\{+, -, \$, ;,)\}$	$\{+, -, \$, ;, \}$	$\{+, -, =, \$, ;, \}$	$\{+, -, \$, ;, \}$	

Calculer les symboles directeurs des règles de G_2 et construire la table d'analyse de la grammaire G_2 . G_2 est-elle LL(1)?

Déterminer si les mots α_1 : a=g(0) et α_2 : a=(f(1;a);b=0) appartiennent ou non à $L(G_2)$ en utilisant l'analyseur prédictif et la table précédemment construite. On simulera la construction de l'arbre syntaxique et l'on donnera en parallèle la dérivation à gauche du mot donné lors de l'exécution de l'algorithme, que le mot appartienne ou non à $L(G_2)$.

Barème donné à titre indicatif:

Exercice 1:9 pts Exercice 2:3 pts Exercice 3:8 pts