Appunti Algebra 1

APPUNTI DEL CORSO DI ALGEBRA 1 TENUTO DALLA PROF. DEL CORSO E DAL PROF. LOMBARDO

Diego Monaco d.monaco2@studenti.unipi.it

Anno Accademico 2022-23

Indice

1	Gruppi		
	1.1	Automorfismi di G	4
	1.2	Automorfismi interni	4
	1.3	Azione di un gruppo su un insieme	9
	1.4	Azione di coniugio	13
	1.5	Applicazioni ai p-gruppi	14
	1.6	Teorema di Cauchy	
	1.7	Azione di coniugio su un sottogruppo	16
	1.8	Teorema di Cayley	17
	1.9	Permutazioni	20
	1.10	Classi di coniugio in S_n	26
		Prodotto diretto	
	1.12	Prodotto semidiretto	30
		Teorema di struttura per i gruppi abeliani finiti	
		Teorema Di Sylow	
		Gruppo dei Quaternioni	

Ringraziamenti

Davide Ranieri, Federico Allegri, Pietro Crovetto, Francesco Sorce, Leonardo Migliorini, Matteo Gori, Daniele Lapadula, Alessandro Fenu, Leonardo Alfani, Clementina Salamina, Giorgia Capecchi.

§1 Gruppi

§1.1 Automorfismi di G

Dato un gruppo G possiamo definire l'insieme degli automorfismi di G come segue:

$$\operatorname{Aut}(G) = \{ \varphi : G \longrightarrow G | \varphi \text{ isomorfismo} \}$$

si verifica facilmente che $(\operatorname{Aut}(G), \circ)$ è un gruppo, e in particolare $\operatorname{Aut}(G) \leqslant S(G)$, ovvero il gruppo delle permutazioni di G. Si osserva che $id \in Aut(G), \varphi \in Aut(G) \implies \varphi^{-1} \in$ $\operatorname{Aut}(G) \in \varphi, \psi \in \operatorname{Aut}(G) \implies \varphi \circ \psi \in \operatorname{Aut}(G).$

Esempio 1.1 (Esempi di automorfismi)

Esempi di insiemi di automorfismi:

- $\operatorname{Aut}(\mathbb{Z}) = \{\pm id\}.$
- $\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z}) \cong \mathbb{Z}/n\mathbb{Z}^*$.
- $\operatorname{Aut}(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}) \cong S_3$.
- Aut $(\underline{\mathbb{Z}/p\mathbb{Z} \times \ldots \times \mathbb{Z}/p\mathbb{Z}}) \cong GL_n(\mathbb{F}_p)$

§1.2 Automorfismi interni

Definizione 1.2. Dato un gruppo G possiamo definire l'omomorfismo di coniugio:

$$\varphi_q: G \longrightarrow G: x \longmapsto gxg^{-1}$$

dove l'elemento qxq^{-1} si dice **coniugato** di q.

Proposizione 1.3

Valgono i seguenti fatti:

- (1) $\varphi_g \in \operatorname{Aut}(G), \forall g \in G.$ (2) $\{\varphi_g | g \in G\} = \operatorname{Inn}(G) \leq \operatorname{Aut}(G).^a$

Dimostrazione. Proviamo le due affermazioni:

(1) Per verificare che φ_g è un automorfismo bisogna verificare che φ_g è ben definita, ma ciò segue dalla chiusura di g per l'operazione. Verifichiamo che sia un omomorfismo:

$$\varphi_q(xy) = gxyg^{-1} = gxg^{-1}gyg^{-1} = \varphi_q(x)\varphi_q(y) \qquad \forall x, y \in G$$

ci resta da verificare che sia una bigezione. Partiamo dalla surgettività, vogliamo verificare che $\forall y \in G, \exists g \in G$:

$$\varphi_g(x) = y$$

in tal caso basta prendere $x = qyq^{-1} \in G$. Per l'iniettività si osserva:

$$\ker \varphi_g = \{ x \in G | \varphi_g(x) = e \} = \{ x \in G | gxg^{-1} = e \iff x = e \} = \{ e \}$$

pertanto φ_q è iniettivo.

 $^{^{}a}Inn(G)$ si definisce gruppo degli automorfismi interni.

(2) Verifichiamo che $\operatorname{Inn}(G) \leq \operatorname{Aut}(G)$; mostriamo prima che $\operatorname{Inn}(G)$ è un sottogruppo di $\operatorname{Aut}(G)$, infatti: $id = \varphi_e \in \operatorname{Inn}(G)$, $\forall g_1, g_2 \in G$ vale che $\varphi_{g_1} \circ \varphi_{g_2} = \varphi_{g_1g_2} \in \operatorname{Inn}(G)$, infatti:

$$\varphi_{g_1} \circ \varphi_{g_2}(x) = \varphi_{g_1}(g_2 x g_2^{-1}) = g_1 g_2 x g_2^{-1} g_1^{-1} = \varphi_{g_1 g_2}(x)$$

infine, $(\varphi_q)^{-1} = \varphi_{q^{-1}} \in \text{Inn}(G)$:

$$(\varphi_q)^{-1} \circ \varphi_q(x) = (\varphi_q)^{-1}(gxg^{-1}) = x \iff (\varphi_q)^{-1} = \varphi_{q^{-1}}$$

e analogamente per l'inversa a destra. Per verificare la normalità bisogna mostrare che:

$$f \circ \operatorname{Inn}(G) \circ f^{-1} \subseteq \operatorname{Inn}(G)$$
 $\forall f \in \operatorname{Aut}(G)$

ovvero:

$$f \circ \varphi_q \circ f^{-1} \in \operatorname{Inn}(G)$$
 $\forall f \in \operatorname{Aut}(G), \forall \varphi_q \in \operatorname{Inn}(G)$

si osserva che $f \circ \varphi_g \circ f^{-1} = \varphi_{f(g)} \in \text{Inn}(G)$, infatti:

$$f \circ \varphi_g \circ f^{-1}(x) = f(\varphi_g(f^{-1}(x))) = f(g(f^{-1}(x))g^{-1}) =$$
$$= f(g)f(f^{-1}(x))f(g^{-1}) = f(g)x(f(g))^{-1} = \varphi_{f(g)}$$

Osservazione 1.4 — Se G è abeliano, allora $Inn(G) = \{id\}$, infatti:

$$gxg^{-1} = gg^{-1}x = x$$
 $\forall x \in G, \forall g \in G$

Proposizione 1.5

Dato un gruppo G si ha:

$$\operatorname{Inn}(G) \cong {}^{G}\!\!/_{Z(G)}$$

Dimostrazione. Per dimostrare il teorema ci basta trovare un omomorfismo surgettivo da G in Inn(G) e poi sfruttare il Primo Teorema di Omomorfismo. Sia:

$$\phi: G \longrightarrow \operatorname{Inn}(G): g \longmapsto \varphi_g$$

tale applicazione è chiaramente ben definita, ed è surgettiva per come abbiamo definito Inn(G). Verifichiamo che è un omomorfismo:

$$\phi(g_1g_2) = \varphi_{g_1g_2} = \varphi_{g_1} \circ \varphi_{g_2} = \phi(g_1) \circ \phi(g_2) \qquad \forall g \in G$$

dove la penultima uguaglianza è vera per quanto visto nella dimostrazione del (2) della proposizione precedente. A questo punto, per il primo teorema di omomorfismo si ha che:

dunque:

$$\frac{G}{\ker \phi} \cong \operatorname{Inn}(G)$$

non ci resta che osservare:

$$\ker \phi = \{g \in G | \phi(g) = \varphi_g = id\} = \{g \in G | gxg^{-1} = x, \forall x \in G\} = \{g \in G | gx = xg, \forall x \in G\} = Z(G)\}$$

Osservazione 1.6 — L'isomorfismo trovato è del tipo $gZ(G) \longmapsto \varphi_g$, ricordiamo che è ben definito per il Primo Teorema di Omomorfismo.

Osservazione 1.7 — Si ricorda che se G/Z(G) è ciclico, allora G è abeliano (e quindi G/Z(G) è banale), infatti, sia:

$$G_{Z(q)} = \langle gZ(G) \rangle$$

Presi $g_1, g_2 \in G$, si ha che $g_1Z(G) = g^{k_1}Z(G)$ e $g_2Z(G) = g^{k_2}Z(G)$, da cui:

$$g^{-k_1}g_1Z(G) = Z(G) \iff g^{-k_1}g_1 \in Z(G)$$

ovvero $\exists z_1 \in Z(G) : q_1 = q^{k_1} z_1$ e analogamente $q_2 = q^{k_2} z_2$, da cui:

$$g_1g_2 = g^{k_1}z_1g^{k_2}z_2 = g^{k_1}g^{k_2}z_1z_2 = g^{k_1+k_2}z_1z_2$$

e contemporaneamente:

$$q_2q_1 = q^{k_2}z_2q^{k_1}z_1 = q^{k_2}q^{k_1}z_2z_1 = q^{k_2+k_1}z_2z_1 = q^{k_1+k_2}z_1z_2$$

dove nell'ultimo passaggio si è sfruttato il fatto che $k_1, k_2 \in \mathbb{Z}$ e $z_1, z_2 \in Z(G)$. Da ciò segue che G è abeliano.

Osservazione 1.8 — Dunque ${\rm Inn}(G)$ ciclico $\Longrightarrow G/_{Z(G)}$ ciclico $\Longrightarrow G$ abeliano da cui:

$$\operatorname{Inn}(G) \cong {}^{G}\!/_{Z(G)} \cong \{e\}$$

Osservazione 1.9 — $N \leqslant G \iff \forall \varphi_g \in \text{Inn}(G) \text{ si ha } \varphi_g(N) = N \text{ (o anche } \varphi_g(N) \subseteq N)$. Equivalentemente, i sottogruppi normali di G sono i sottogruppi invarianti per automorfismi interni (ovvero sono tali che $gNg^{-1} = N, \forall g \in G$). Se $N \leqslant G$, si può considerare:

$$\operatorname{Inn}(G) \longrightarrow \operatorname{Aut}(N) : \varphi_g \longmapsto \varphi_{q|N}$$

con $\varphi_{g|N}: N \longrightarrow N$ che è un automorfismo, infatti rimane iniettivo, la surgettività segue dal fatto che $\varphi_g(N) = N$, e infine, essendo φ_g un omomorfismo su tutti gli elementi di G, lo sarà in particolare anche su tutti gli elementi di N. Dunque

quando si ha un sottogruppo normale, ogni automorfismo interno si restringe a un automorfismo di N.

Abbiamo visto che i sottogruppi normali sono invarianti per automorfismi interni, possiamo generalizzare quest'idea e considerare i sottogruppi invarianti per automorfismi:

Definizione 1.10. Dato un sottogruppo $H \leq G$, esso si dice **caratteristico** se è invariante per automorfismi:

$$f(H) = H \qquad \forall f \in Aut(G)$$

Anche in questo caso basta verificare che $f(H) \subseteq H$, $\forall f \in \operatorname{Aut}(G)$, perché si ha anche che:

$$f^{-1}(H) \subseteq H$$

da cui si ottiene:

$$f(f^{-1}(H)) \subseteq f(H)$$

Osservazione 1.11 — Si osserva che se H è caratteristico in G, allora è invariante per tutti gli automorfismi di G (e quindi in particolare quelli interni), dunque se H è caratteristico in G, allora è anche normale. Il viceversa è falso.

Osservazione 1.12 — Se H è caratteristico in G (dunque normale), si può scrivere un'applicazione:

$$\operatorname{Aut}(G) \longrightarrow \operatorname{Aut}(H) : f \longmapsto f_{|H}$$

dove $f_{|H}$ è un automorfismo di H.

Osservazione 1.13 — Si osserva che se H è l'unico sottogruppo di G di un certo ordine, allora H è caratteristico in G (segue immediatamente dal fatto che gli automorfismi preservano gli ordini degli elementi).

Esercizio 1.14. Il centro di un gruppo, Z(G) è un sottogruppo caratteristico.

Soluzione. Per dimostrare che Z(G) è caratteristico è sufficiente far vedere che:

$$f(Z(G)) \subseteq Z(G) \quad \forall f \in Aut(G)$$

ovvero:

$$f(z) \in Z(G)$$
 $\forall f \in Aut(G), \forall z \in Z(G)$

dunque bisogna verificare che:

$$gf(z) = f(z)g \qquad \forall g \in G$$

poiché f è un automorfismo, allora $\exists h \in G : f(h) = g$, dunque:

$$gf(z) = f(h)f(z) = f(hz) = f(zh) = f(z)f(h) = f(z)g$$
 $\forall g \in G$

Esempio 1.15

Sia $G = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} = \{(\overline{0}, \overline{0}), (\overline{1}, \overline{0}), (\overline{0}, \overline{1}), (\overline{1}, \overline{1})\}, G$ ha ordine 4 ed ha tre sottogruppi ciclici di ordine 2:

$$H_1 = \langle (\overline{1}, \overline{0}) \rangle$$
 $H_2 = \langle (\overline{0}, \overline{1}) \rangle$ $H_3 = \langle (\overline{1}, \overline{1}) \rangle$

ed essendo G abeliano si ha $H_1, H_2, H_3 \leq G$ (e quindi i sottogruppi sono invarianti per automorfismi interni). Tuttavia nessuno dei sottogruppi è caratteristico, infatti possiamo prendere un automorfismo non banale (e quindi non uno interno) e vedere come i sottogruppi di questo tipo non siano invarianti:

$$f = \begin{cases} (\overline{1}, \overline{0}) \longmapsto (\overline{1}, \overline{1}) \\ (\overline{0}, \overline{1}) \longmapsto (\overline{0}, \overline{1}) \end{cases}$$

la definizione della mappa data tuttavia non è completa, perché abbiamo stabilito solo dove vengono mandati i generatori, dobbiamo definire cosa faccia un elemento generico:

$$f((\overline{a},\overline{b})) = af((\overline{1},\overline{0})) + bf((\overline{0},\overline{1})) = (\overline{a},\overline{a}) + (\overline{0},\overline{b}) = (\overline{a},\overline{a+b})$$

a questo punto abbiamo definito completamente l'applicazione (rimarrebbe da verificare che f sia un omomorfismo), e si verifica facilmente che $f(H_1) = H_3$ quindi $H_1 \leq G$, ma non caratteristico.

A questo punto è facile verificare che:

$$\operatorname{Aut}(\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z})\cong S_3$$

infatti, ogni automorfismo del gruppo si ottiene fissando l'elemento neutro $(\overline{0}, \overline{0}) \longmapsto (\overline{0}, \overline{0})$, quindi il numero possibile di bigezioni è al più 3!, occorre verificare che tutte e 6 le funzioni sono omomorfismi. Dimostriamo invece che:

$$\operatorname{Aut}(S_3) \cong S_3$$

Per farlo, poiché S_3 non è abeliano, possiamo osservare che:

$$\operatorname{Inn}(S_3) \cong S_3/_{Z(S_3)} \cong S_3$$

in quanto l'unico elemento che commuta con tutti gli altri in S_3 è l'identità, quindi $Z(S_3) = \{id\} \cong \{e\}$. Per quanto detto si ha $\mathrm{Inn}(S_3) \leq \mathrm{Aut}(S_3)$ e quindi $\mathrm{Aut}(S_3)$ contiene una copia isomorfa di S_3 come sottogruppo normale, pertanto, se verifichiamo che $|\mathrm{Aut}(S_3)| \leq 6$ abbiamo concluso. Sia $f \in \mathrm{Aut}(S_3)$, f può al più scambiare i 3 elementi di ordine 2, d'altra parte, fissate le immagini di τ_1, τ_2, τ_3^1 , i due 3-cicli² sono completamente determinati, ciò significa che si hanno al più 3! automorfismi, dunque:

$$\operatorname{Aut}(S_3) = \operatorname{Inn}(S_3) \cong S_3 \implies \operatorname{Aut}(S_3) \cong S_3$$

 $^{^{1}}$ Con τ_{i} si intendono le trasposizioni che lasciano fisso l'elemento i.

²Come si vedrà $S_3 = \langle \tau_1, \tau_2, \tau_3 \rangle$

§1.3 Azione di un gruppo su un insieme

Definizione 1.16. Sia G un gruppo e X un insieme, un'azione di G su X è un omomorfismo:

$$\varphi: G \longrightarrow S(X): g \longmapsto \varphi_q$$

dove $\varphi_g: X \longrightarrow X: x \longmapsto \varphi_g(x)^3$, con φ_g bigettiva, $\forall g \in G$. Si può definire un'azione anche come:

$$\varphi: G \times X \longrightarrow X: (g, x) \longmapsto \varphi_q(x)$$

Un'azione di G su X si indica con $G \circlearrowleft X$.

Esempio 1.17

Sia X = G, quindi $\varphi : G \longrightarrow S(G) : g \longmapsto \varphi_g$, con φ_g coniugio, φ è un'azione. Come si è visto nell'(1) della Proposizione 1.3 φ_g è un automorfismo di G (e quindi una bigezione), e φ è un omomorfismo. In questo caso si ha che:

$$\varphi_g(x) = gxg^{-1}$$

Esempio 1.18

Sia V un K-spazio vettoriale, sia:

$$\varphi: K^* \longrightarrow S(V): \lambda \longmapsto \varphi_{\lambda}$$

con $\varphi_{\lambda}: V \longrightarrow V: \underline{v} \longmapsto \lambda \underline{v}, \varphi$ è un'azione di K^* su V.

Sia $\varphi: G \longrightarrow S(X)$ un'azione, φ definisce una relazione di equivalenza su X:

$$x \sim y \iff \exists g \in G : \varphi_g(x) = y$$

ovvero due elementi sono in relazione se esiste un'applicazione $\varphi_g \in S(X)$, per cui un elemento è l'immagine dell'altro mediante tale applicazione. La relazione è appunto di equivalenza, infatti: $x \sim x$, per g = e si ha (essendo φ un omomorfismo) $\varphi_e(x) = id(x) = x$, $x \sim y \implies y \sim x$:

$$\varphi_q(x) = y \implies x = (\varphi_q(y))^{-1} = \varphi_{q^{-1}}(y)$$

infine $x \sim y, y \sim z \implies x \sim z$, infatti si avrebbe: $\varphi_q(x) = y, \varphi_h(y) = z$ da cui:

$$z = \varphi_h(\varphi_g(x)) = \varphi_{hg}(x) \implies x \sim z$$

Definizione 1.19. Data la relazione di equivalenza \sim si definiscono **orbite** le classi di equivalenza di X rispetto alla relazione \sim :

$$\operatorname{Orb}(x) = \{\varphi_q(x) | g \in G\} (\subseteq X)$$

Da cui:

$$X = \bigcup_{x \in \mathcal{R}} \operatorname{Orb}(x)$$

Con \mathcal{R} insieme di rappresentanti. Un'orbita è quindi l'insieme di tutte le immagini di un elemento in un insieme, mediante tutte le possibili applicazioni (permutazioni) dell'insieme $\varphi(G)$.

³Alternativamente si può indicare l'immagine con $\varphi_g: x \longmapsto g * x$ dove il simbolo * indica l'azione di g su x.

Definizione 1.20. Per ogni $x \in X$ si dice **stabilizzatore** di x:

$$\operatorname{St}(x) = \{ g \in G | \varphi_g(x) = x \}$$

Cioè lo stabilizzatore è l'insieme degli elementi di G, che danno origine mediante φ alle applicazioni $\varphi_q \in S(X)$, che lasciano fisso un determinato elemento.

Esempio 1.21

Se $X = \mathbb{R}^2$ e G è il gruppo di traslazioni di vettore $\underline{v} = (0, l)$, allora:

$$\varphi: G \longrightarrow S(X): \tau_{(0,l)} \longmapsto \tau_{(0,l)}^{a}$$

con:

$$Orb(x,y) = \{(x,y+l)|l \in \mathbb{R}\}\ e\ St(x,y) = \{\tau_{(0,l)}|(x,y+l) = (x,y)\} = \{id\}$$

Esempio 1.22

Se $X = \mathbb{R}^2$ e G è il gruppo delle rotazioni di centro O, allora:

$$\varphi: G \longrightarrow S(\mathbb{R}^2): r_\theta \longmapsto r_\theta$$

con:

$$St(x,y) = \begin{cases} \{id\} & \text{se } (x,y) \neq (0,0) \\ G & \text{se } (x,y) = (0,0) \end{cases}$$

e, detta ω la circonferenza di centro O e raggio $\sqrt{x^2 + y^2}$:

$$Orb(x, y) = \{(x', y') \in \mathbb{R}^2 | (x', y') \in \omega\}$$

Proposizione 1.23 ($St(x) \leq G$)

Dato un gruppo G e un'azione $\varphi: G \longrightarrow S(X)$, si ha che $St(x) \leqslant G$.

Dimostrazione. Si osserva che $e \in St(x)$, in quanto $\varphi_e(x) = id(x) = x$, inoltre, presi $g, h \in St(x)$, ovvero $\varphi_g(x) = \varphi_h(x) = x$, allora:

$$\varphi(gh) = \varphi_{gh}(x) = \varphi_g \circ \varphi_h(x) = \varphi_g(\varphi_h(x)) = \varphi_g(x) = x \implies gh \in \operatorname{St}(x)$$

dove si ha che $\varphi_{gh}(x) = \varphi_g \circ \varphi_h(x)$ in quanto φ è un omomorfismo. Infine, preso $g \in \text{St}(x)$, si ha $g^{-1} \in \text{St}(x)$, infatti φ_g è bigettiva e quindi ammette inversa:

$$(\varphi_g)^{-1} \circ \varphi_g(x) = x \implies (\varphi_g)^{-1}(\varphi_g(x)) = x \implies (\varphi_g)^{-1}(x) = x$$

con $(\varphi_q)^{-1}(x) = (\varphi(g))^{-1}(x) = (\varphi(g^{-1}))(x) = \varphi_{g^{-1}}(x)$ e per quanto detto:

$$\varphi_{g^{-1}}(x) = x \implies g^{-1} \in \operatorname{St}(x)$$

^aSi osserva che il primo $\tau_{(0,l)}$ è un elemento del gruppo G, mentre il secondo è un'applicazione bigettiva di X.

^aIn generale lo stabilizzatore non è un sottogruppo normale.

Osservazione 1.24 — Sia $x \in X$ e $g, h \in G$, allora:

$$\varphi_q(x) = \varphi_h(x) \iff \varphi_{h^{-1}}(\varphi_q(x)) = x$$

e per le proprietà di omomorfismo dell'azione φ , si ha:

$$\varphi_{h^{-1}}(\varphi_g(x)) = x \iff \varphi_{h^{-1}g}(x) = x \iff h^{-1}g \in \operatorname{St}(x)$$

ovvero $g \operatorname{St}(x) = h \operatorname{St}(x)$, in quanto $\operatorname{St}(x) \leq G$ e la condizione ottenuta è esattamente quella dell'equivalenza modulo $\operatorname{St}(x)$, quindi:

$$\operatorname{Orb}(x) \longleftrightarrow \operatorname{classi} \operatorname{laterali} \operatorname{di} \operatorname{St}(x) \operatorname{in} G$$

cioè due elementi danno la stessa immagine se e solo se stanno nella stessa classe laterale modulo St(x), e la corrispondenza biunivoca tra orbita e classi laterali è data da:

$$g \operatorname{St}(x) \longmapsto \varphi_g(x)$$
 e $h \operatorname{St}(x) \longmapsto \varphi_h(x)$

che è ben definita e per quanto detto all'inizio è iniettiva:

$$\varphi_q(x) = \varphi_h(x) \iff g\operatorname{St}(x) = h\operatorname{St}(x)$$

(quindi due elementi di un'orbita sono uguali se e solo se lo sono le classi laterali dei rispettivi elementi che generano le applicazioni sono uguali modulo St(x), duqnue per ogni elemento dell'orbita c'è una classe laterale di St(x)) e surgettiva:

$$\forall y \in \operatorname{Orb}(x), y = \varphi_g(x) \implies g\operatorname{St}(x) \longmapsto y$$

e quindi concludiamo che il numero di classi laterali di St(x) in G è lo stesso della cardinalità di Orb(x).

Per quanto detto si ha:

$$|G| = |\operatorname{St}(x)|[G : \operatorname{St}(x)]|$$

ma [G : St(x)] è il numero di classi laterali di St(x) in G, che è proprio uguale a |Orb(x)| pertanto vale la seguente:

Proposizione 1.25

Sia G un gruppo finito e X un insieme, allora:

$$|G| = |\operatorname{Orb}(x)||\operatorname{St}(x)| \quad \forall x \in X$$

Osservazione 1.26 — Si osserva che essendo $St(x) \leq G$, allora è ovvio (per Lagrange) che $|St(x)| \mid |G|$, tuttavia, per la proposizione precedente, si ha che: $|Orb(x)| \mid |G|$ con $Orb(x) \subseteq X$.

Ricordando che:

$$X = \bigcup_{x \in \mathcal{R}} \operatorname{Orb}(x)$$

se $|X| < +\infty$ si ha:

$$|X| = \sum_{x \in \mathcal{R}} |\operatorname{Orb}(x)| = \sum_{x \in \mathcal{R}} \frac{|G|}{|\operatorname{St}(x)|}$$

§1.4 Azione di coniugio

Definizione 1.27. Si parla di **azione di coniugio**, quando si ha un'azione di G su G stesso:

$$\varphi: G \longrightarrow \operatorname{Inn}(G)(\leqslant S(G)): g \longrightarrow \varphi_q$$

Abbiamo già osservato che è un'azione (ovvero che φ è un omomorfismo). In questo caso:

$$Orb(x) = \{ \varphi_g(x) | g \in G \} = \{ gxg^{-1} | g \in G \} = \mathcal{C}\ell_G(x)$$

dove $\mathcal{C}\ell_G(x)$ prende il nome di classe di coniugio di x. Mentre:

$$St(x) = \{g \in G | \varphi_g(x) = gxg^{-1} = x\} = Z_G(x)$$

dove $Z_G(x)$ si dice **centralizzatore** di x. Per quanto detto in precedenza si ha:

$$|G| = |\mathcal{C}\ell_G(x)||Z_G(x)|$$

In particolare $|\mathcal{C}\ell_G(x)| \mid |G|$ e:

$$|G| = \sum_{x \in \mathcal{R}} |\mathcal{C}\ell_G(x)| = \sum_{x \in \mathcal{R}} \frac{|G|}{|Z_G(x)|}$$

Osservazione 1.28 — $\mathcal{C}\ell_G(x)$ è un sottoinsieme, non un sottogruppo di G, poiché non c'è mai l'identità.

Osservazione 1.29 — Osserviamo che $Z_G(x) = G \iff x \in Z(G)$, infatti la per un elemento del centro si ha che $\forall g \in G$ l'elemento commuta, e dunque il suo centralizzatore è tutto il gruppo.

Osservazione 1.30 — Per un'azione di coniugio ha che $x \in Z(G)$ se e solo se $Orb(x) = \{x\}$ (ovvero $\varphi_g(x) = x, \forall g \in G$).

$$|G| = \sum_{x \in Z(G)} \frac{|G|}{|Z_G(x)|} + \sum_{x \in \mathcal{R} \setminus Z(G)} \frac{|G|}{|Z_G(x)|}$$

ma, per quanto detto, se $x \in Z(G)$, allora $\frac{|G|}{|Z_G(x)|} = |\mathcal{C}\ell_G(x)| = \{x\}$, segue dunque la relazione:

$$|G| = |Z(G)| + \sum_{x \in \mathcal{R} \setminus Z(G)} \frac{|G|}{|Z_G(x)|}$$

che prende il nome di **formula delle classi** (di coniugio).

§1.5 Applicazioni ai p-gruppi

Definizione 1.31. Si definisce p-gruppo un gruppo di ordine p^n , con p primo e $n \ge 1$.

Se G è un p-gruppo la formula delle classi diventa:

$$p^{n} = |G| = |Z(G)| + \sum_{x \in \mathcal{R} \setminus Z(G)} \frac{|G|}{|Z_{G}(x)|}$$

con $|Z(G)| = p^z$, $0 \le z \le n$, facciamo due osservazioni fondamentali:

(1) Il centro di un *p*-gruppo non è mai banale, infatti, se osserviamo la formula delle classi, si ha:

$$p^{n} = |Z(G)| + \sum_{x \in \mathcal{R} \setminus Z(G)} \frac{|G|}{|Z_{G}(x)|} \implies |Z(G)| + \sum_{x \in \mathcal{R} \setminus Z(G)} \frac{|G|}{|Z_{G}(x)|} \equiv 0 \pmod{p}$$

con $\frac{|G|}{|Z_G(x)|} > 1$, poiché se un elemento sta nel centro tutti gli addendi sono 1 per quanto detto, viceversa deve essere che $\frac{|G|}{|Z_G(x)|} = p^{k_x}$, k > 0, poiché G è un p-gruppo, dunque:

$$|Z(G)| \equiv 0 \pmod{p} \implies |Z(G)| \ge 2$$

e quindi il centro di un p-gruppo non è mai banale.

(2) Un gruppo di ordine p^2 è abeliano, infatti, si ha:

$$|G|=p^2 \implies |Z(G)|= \begin{cases} 1 & \text{non può accadere per (1)} \\ p & \text{no perché allora } G/Z(G) \text{ ciclico, ma } G \text{ non è abeliano} \\ p^2 & \end{cases}$$

dunque l'unica possibilità è che $Z(G) = G \iff G$ abeliano.

§1.6 Teorema di Cauchy

Teorema 1.32 (Teorema di Cauchy)

Dato un gruppo G e un primo p, se $p \mid |G|$, allora $\exists x \in G : \operatorname{ord}_G(x) = p$.

^aSi considera già noto il teorema per gruppi abeliani.

Dimostrazione. Sia |G| = pn, procediamo per induzione su n, nel caso n = 1 il teorema è ovvio. Supponiamo vera la tesi per i gruppi di ordine pm, con $1 \le m < n$ e proviamola per n. Distinguiamo due casi:

- Se esiste $H \leq G$ con $p \mid H$, ovvero $|H| = pm \implies$ vale il teorema di Cauchy per ipotesi induttiva (essendo m < n), quindi $\exists x \in H : \operatorname{ord}_H(x) = p$, ma essendo $H \subset G \implies x \in G$ e quindi la tesi è vera.
- Se $\forall H \leq G$ si ha $p \nmid |H|$, allora si può applicare a G la formula delle classi:

$$pn = |G| = |Z(G)| + \sum_{x \in \mathcal{R} \backslash Z(G)} \frac{|G|}{|Z_G(x)|}$$

ricordando il centralizzatore di x è uno stabilizzatore (e quindi un sottogruppo di G), si ha $p \nmid |Z_G(x)|$, e quindi:

$$p \mid \sum_{x \in \mathcal{R} \setminus Z(G)} \frac{|G|}{|Z_G(x)|}$$

da cui segue che $p \mid |Z(G)| = |G| - \sum pl_x$, per quanto premesso $(\forall H \leq G \text{ si ha } p \nmid |H|)$, ed essendo $Z(G) \leq G$, l'unica possibilità è che Z(G) = G e vale il teorema poiché è già stato dimostrato per il caso in cui G è abeliano.

§1.7 Azione di coniugio su un sottogruppo

Sia $X = \{H \leqslant G\}$ e $\varphi : G \longrightarrow S(X) : g \longmapsto \varphi_g(X)$, con $\varphi_g : X \longrightarrow X : H \longmapsto gHg^{-1}$. Si verifica facilmente che φ è un omomorfismo; mostriamo invece che φ_g è una permutazione, per l'iniettività si osserva che:

$$\varphi_g(H) = \varphi_g(K) \iff gHg^{-1} = gKg^{-1} \iff H = K$$

mentre per la surgettività si ha che $\forall H \in X, \exists L \in X$:

$$\varphi_q(L) = H \iff gLg^{-1} = H \implies L = g^{-1}Hg$$

inoltre si ha anche:

$$Orb(H) = \{\varphi_q(H)|g \in G\} = \{gHg^{-1}|g \in G\} \quad St(H) = \{g \in G|\varphi_q(H) = H\} = N_G(H)$$

dove Orb(H) è l'insieme dei coniugati di H, mentre $St(H) = N_G(H)$ prende il nome di **normalizzatore** di H.

Osservazione 1.33 — Si osserva che $H \leq G$ se e solo se $Orb(H) = \{H\} \iff N_G(H) = G$, ovvero se H è sempre chiuso per coniugio in G.

Per quanto affermato nella Proposizione 1.25 si ha:

$$|G| = |\operatorname{Orb}(H)||N_G(H)| \implies |\operatorname{Orb}(H)| = \frac{|G|}{|N_G(H)|}$$

Osservazione 1.34 — Quindi in generale, dato $H \leq G$ si ha che $\#\{gH\} = [G:H]$ e $\#\{gHg^{-1}\} = [G:N_G(H)]$.

Osservazione 1.35 (Sulla definizione di sottogruppo normale) — I sottogruppi normali possono essere ridefiniti nella maniera seguente, $H \leq G$ se e solo se:

$$H = \bigcup_{h \in H} C_h$$

cioè un sottogruppo è normale se e solo se è l'unione delle classi di coniugio dei suoi elementi. Infatti:

$$H \leqslant G \iff ghg^{-1} \in H \qquad \forall h \in H, \forall g \in G$$

che equivale a:

$$C_h = \{ghg^{-1}|h \in H\} \subseteq H \quad \forall h \in H \implies \bigcup_{h \in H} C_h \subseteq H$$

d'altra parte se H è normale è chiuso per coniugio, ovvero il coniugio di ogni suo elemento è ancora in H ($ghg^{-1} = h'$, $\forall h \in H$) e in particolare ciò significa che:

$$H \subseteq \bigcup_{h \in H} C_h$$

§1.8 Teorema di Cayley

Teorema 1.36 (Teorema di Cayley)

Ogni gruppo è isomorfo ad un sottogruppo di un gruppo di permutazioni. In particolare, se |G| = n, allora G è isomorfo a un sottogruppo di S_n .

Dimostrazione. Definiamo la mappa:

$$\lambda: G \longrightarrow S(G): g \longmapsto \varphi_g$$

con $\varphi_g: G \longrightarrow G: x \longmapsto gx$, l'applicazione λ prende il nome di **rappresentazione** regolare a sinistra di G, si vuole dimostrare che λ è un omomorfismo iniettivo. Osserviamo innanzitutto che λ è ben definita, cioè $\varphi_g \in S(G)$, infatti φ_g è iniettiva (segue dalle leggi di cancellazione) e surgettiva, perché $\forall y \in G, \exists g^{-1}y \in G : \varphi_q(g^{-1}y) = y.$ Verifichiamo che λ è un omomorfismo:

$$\lambda(g_1g_2) = \varphi_{g_1g_2}$$

con $\varphi_{q_1q_2}(x) = \varphi_{q_1} \circ \varphi_{q_2}(x), \forall x \in G$, e quindi:

$$\lambda(g_1g_2) = \lambda(g_1)\lambda(g_2) \quad \forall g_1, g_2 \in G$$

infine, per l'iniettività si ha che:

$$\ker \lambda = \{g \in G | \lambda(g) = \varphi_g = id = \varphi_e\} = \{e\}$$

da ciò segue che $G \cong \operatorname{Im}(G) \leqslant S(G)$, e se |G| = n si ha che $\operatorname{Im}(G) \leqslant S_n$.

Osservazione 1.37 — In generale, dato $G = \{g_1 = e, g_2, \dots, g_n\}$ e $\lambda : G \longrightarrow$ $S(G) \cong S_n$, si ha che:

$$g_1 = e \longmapsto \lambda_{g_1} \quad \text{con} \quad \lambda_{g_1} : G \longrightarrow G : g_i \longmapsto g_i$$

$$g_1 = e \longmapsto \lambda_{g_1} \quad \text{con} \quad \lambda_{g_1} : G \longrightarrow G : g_i \longmapsto g_i$$

$$g_2 \longmapsto \lambda_{g_2} \quad \text{con} \quad \lambda_{g_2} : G \longrightarrow G : x \longmapsto g_2 x \longmapsto g_2^2 x \longmapsto \ldots \longmapsto g_2^{k-1} x$$

con $k=\operatorname{ord}_G(g_2)$. λ_{g_2} può essere rappresentata mediante la notazione dei cicli:

$$(x, g_2 x, \dots, g_2^{k-1} x)$$

preso poi $y \notin \lambda_{g_2}(G)$, si ha analogamente:

$$(y, g_2y, \dots, g_2^{k-1}y)$$

Esempio 1.38

Nel caso in cui $G = \mathbb{Z}/8\mathbb{Z}$ consideriamo l'azione:

$$\lambda: G \longrightarrow S(\mathbb{Z}/8\mathbb{Z}) \cong S_8^a : \overline{a} \longmapsto \lambda_a$$

che, per quanto visto genera ad esempio le applicazioni: ^b

$$1 \longmapsto \lambda_1: X \longrightarrow X: a \longmapsto 1+a \implies (0,1,\ldots,7)$$

$$2 \longmapsto \lambda_2: X \longrightarrow X: a \longmapsto 2+a \implies (0,2,4,6)(1,3,5,7)$$

$$4 \longmapsto \lambda_4: X \longrightarrow X: a \longmapsto 4+a \implies (0,4)(1,5)(2,6)(3,7)$$

$$A \longrightarrow A: X \longrightarrow X: a \longrightarrow A+a \longrightarrow (0,2,4,0)(1,5,5,7)$$

che permutano gli elementi di X secondo i cicli trovati.

Definizione 1.39. Un'azione λ si dice **fedele** se è iniettiva.

Ad esempio l'azione di rappresentazione regolare a sinistra è fedele:

$$\ker \lambda = \{g \in G | \lambda(g) = id\} = \{g \in G | \lambda_g(e) = e\} = \{g \in G | ge = e\} = \{e\}$$

da cui λ fedele.

Osservazione 1.40 — Esiste anche un'applicazione $\rho: G \longrightarrow S(G) \cong S_n$, (n = |G|), detta azione di rappresentazione regolare a destra, con:

$$g \longmapsto \rho_g : x \longmapsto xg^{-1}$$

Lemma 1.41

Sia G un gruppo abeliano di ordine n, allora $\forall d \mid n, \exists H \leq G : |H| = d$.

Dimostrazione. Si consideri innanzitutto il caso $d = p^k$, p primo, e mostriamolo per induzione: per k = 1 la tesi è equivalente al Teorema di Cauchy (anche solo per i gruppi abeliani). Supponiamo la tesi per k-1. Poiché in particolare $p \mid |G|$ scegliamo un sottogruppo H di G di ordine p; tale sottogruppo è normale poiché G è abeliano. $p^{k-1} \mid |G/H| \implies \text{per ipotesi induttiva } \exists K \leqslant G, \ |K| = p^{k-1}.$

Prendendo la controlimmagine di K tramite la projezione al quoziente troviamo il sottogruppo di G cercato. A questo punto possiamo scrivere in generale $d = p_1^{k_1} \dots p_s^{k_s}$; per ogni i troviamo sottogruppi H_i di ordini $p_i^{k_i}$ (tutti normali). Si ha quindi che $H_1H_2\leqslant G$ per normalità, inoltre $|H_1\cap H_2|=1$ poiché l'ordine di un elemento in tale intersezione deve dividere $(p_1^{k_1}, p_2^{k_2}) = 1$. Pertanto $|H_1H_2| = p_1^{k_1} p_2^{k_2}$. Ragionando per induzione otteniamo che il sottogruppo $H_1 \dots H_k$ ha ordine d come voluto.

^aPerché appunto $S(\mathbb{Z}/8\mathbb{Z})$ è l'insieme di permutazioni di un insieme di 8 elementi.

^bPer + si intende la somma modulo 8.

 $[^]a\mathrm{La}$ dimostrazione non è stata fatta durante il corso, ma è stata comunque aggiunta per completezza.

Esercizio 1.42. Sia G un gruppo, se $|G| = p^n$, allora esiste:

$$\{e\} = H_n < H_{n-1} < \dots < H_1 < G$$

 $\{e\} = H_n < H_{n-1} < \ldots < H_1 < G$ con $H_i \leqslant G$ e $|H_i| = p^{n-i}, \, \forall i \in \{1,\ldots,n\}.$

Soluzione. Procediamo per induzione su n, per n=1 è ovvio, infatti si ha $H_1=\{e\} \leqslant G$. Supponiamo la tesi vera $\forall 1 \leq k \leq n-1$, osserviamo che G è un p-gruppo, pertanto il suo centro non è banale:

$$|Z(G)| = p^z$$
 $z \ge 1$

sia $\mathcal{G} = G/Z(G)$, essendo $|G/Z(G)| < p^n$ (perché deve essere $|Z(G)| \ge p$), allora vale l'ipotesi induttiva, dunque $|\mathcal{G}| = p^m,$ con m = n - z (< n), allora esiste:

$$\mathcal{H}_m = \{e_{\mathcal{G}}\} < \mathcal{H}_{m-1} < \ldots < \mathcal{H}_1 < \mathcal{G}$$

con $|\mathcal{H}_i| = p^{m-i}$ e $\mathcal{H}_i \leqslant \mathcal{G}$. Data la proiezione al quoziente:

$$\pi_{Z(G)}: G \longrightarrow \mathcal{G}$$

per il Teorema di Corrispondenza dei sottogruppi, esiste una bigezione tra i sottogruppi di $G_{Z(G)}$ e i sottogruppi di G che contengono Z(G), la quale preserva normalità e indice del sottogruppo, pertanto preso $\mathcal{H}_i \leqslant G_{Z(G)}$ è sufficiente applicare $\pi_{Z(G)}^{-1}$ alla catena scritta sopra, e si trova:

$$Z(G) = \pi_{Z(G)}^{-1}(\mathcal{H}_m) < \ldots < \pi_{Z(G)}^{-1}(\mathcal{H}_1) < \pi_{Z(G)}^{-1}(\mathcal{G}) (= G)$$

Segue per il teorema di corrispondenza che $\pi_{Z(G)}^{-1}(\mathcal{H}_i) = H_i \leq G$, ovvero si preserva la normalità dei sottogruppi, inoltre, segue sempre dal teorema che:

$$p^i = [\mathcal{G}: \mathcal{H}_i] = [G: H] = p^i$$

dunque la catena esiste e $|H_i| = p^{n-i}$ per $1 \le i \le m$, essendo Z(G) abeliano, i sottogruppi di ogni suo ordine (che esistono sempre per il Lemma Di Ranieri) sono normali in Z(G), inoltre $|Z(G)| = p^z$ (dunque si hanno sottogruppi normali di ordine p^l per $l \mid z$), pertanto esiste la catena:

$$\{e\} = H_n < \ldots < H_m = Z(G)$$
 con $|H_j| = p^{n-j}, \forall m \le j \le n$

bisogna infine verificare che $H_i \leq G$, dunque:

$$gH_ig^{-1} = H_i \qquad \forall g \in G$$

ma $H_i \subset Z(G)$ (sta nel centro, quindi è invariante per coniugio con tutti i $g \in G$, e in particolare quelli richiesti) dunque è sempre verificata l'ultima uguaglianza.

§1.9 Permutazioni

Ricordiamo brevemente che:

Definizione 1.43. Dato un insieme X si definsce **permutazione** un'applicazione bigettiva di X in se stesso.

Indichiamo con S(X) il gruppo delle permutazioni di X e con S_n il gruppo delle permutazioni di un insieme di cardinalità n, che per semplicità indichiamo con $\{1, \ldots, n\}$. Le permutazioni si possono indicare in vari modi, ad esempio, preso $\sigma \in S_{12}$ si può rappresentare mediante la matrice di permutazione:

o anche con la notazione dei cicli:

$$\sigma = (1\ 3\ 4\ 5)(6\ 9)(7\ 8)(10\ 12)$$

ogni ciclo prende il nome di k-ciclo (dove k indica la sua lunghezza), come si osserva i cicli di lunghezza 1 sono stati omessi, in quanto lasciano fissi gli elementi, inoltre, i 2-cicli prendono il nome di **trasposizioni**. Formalmente, sia $\sigma \in S_n$ una permutazione di un insieme di n elementi, possiamo considerare l'insieme X, con |X| = n, il gruppo $G = \langle \sigma \rangle$ e definire l'azione:

$$\varphi: G = \langle \sigma \rangle \longrightarrow S(X) \cong S_n: \sigma \longmapsto \sigma$$

con $\sigma \in S_n$ e $\sigma : i \longmapsto \sigma(i)$. Osserviamo quindi che:

$$Orb(x) = \{\sigma(x) | \sigma \in \langle \sigma \rangle\} = \{\sigma^l(x) | l \in \mathbb{N}\} = \{x, \sigma(x), \sigma^2(x), \dots, \sigma^{m-1}(x)\}\$$

con $|\operatorname{Orb}(x)| = m_x$, con $m_x = \min\{k > 0 | \sigma^k(x) = x\}$, perché se $\sigma^k(x) = x$, allora $\sigma^{k+1}(x) = \sigma(x)$, pertanto, sia $k \in \mathbb{N}$ tale che $\sigma^k(x) \in \{x, \dots, \sigma^{k-1}(x)\}$, allora $\exists h :$

$$\sigma^k(x) = \sigma^h(x) \qquad \text{con } 0 \le h < k$$

Dunque vale che $\sigma^{k-h}(x) = x \in \{x, \dots, \sigma^{k-1}(x)\}$ e per la minimalità di k si ha che h = 0. L'azione di $\langle \sigma \rangle$ su X divide X in orbite e su ogni orbita σ agisce ciclicamente (ovvero $\sigma(\operatorname{Orb}(x)) = \operatorname{Orb}(x)$).

Definizione 1.44. Si dice ciclo di $\sigma \in S_n$ l'orbita di un elemento $x \in \{1, ..., n\}$ vista come insieme ordinato:

$$(x, \sigma(x), \ldots, \sigma^{m_x-1}(x))$$

Osservazione 1.45 — Un ciclo di lunghezza k (un k-ciclo) ha k scritture distinte, in quanto possiamo scegliere arbitrariamente il primo elemento.

Osservazione 1.46 — Data $\sigma \in S_n$, essa è determinata dalle immagini di $\{1, \ldots, n\}$, dunque è determinata dai suoi cicli.

Esempio 1.47

Presa ad esempio $\sigma \in S_{10}$:

$$\sigma = (1\ 2\ 3)(4\ 5)(6\ 7\ 8\ 9)$$

chiamiamo i suoi cicli:

$$\sigma_1 = (1\ 2\ 3)$$
 $\sigma_2 = (4\ 5)$ $\sigma_3 = (6\ 7\ 8\ 9)$

dove appunto $\sigma_1, \sigma_2, \sigma_3 \in S_{10}$ e:

$$\sigma = \sigma_1 \circ \sigma_2 \circ \sigma_3$$

Definizione 1.48. Una permutazione si dice ciclica se ha un unico ciclo (orbita) non banale. 4

Osservazione 1.49 — Si osserva che:

- Cicli disgiunti commutano.
- L'ordine di una permutazione ciclica è la lunghezza del suo ciclo:

$$\sigma = (x_1, \dots, x_k) \implies \operatorname{ord} \sigma = k$$

quindi $\sigma^k = id$ e se d < k, allora $\sigma^d(x_1) = x_{d+1} \neq x$.

Proposizione 1.50 (Struttura Delle Permutazioni)

Ogni permutazione si scrive in modo unico (a meno dell'ordine e della scrittura di cicli) come prodotto di cicli disgiunti, ovvero come composizione di permutazioni cicliche che agiscono su insiemi disgiunti.

Dimostrazione. I cicli della permutazione sono univocamente determinati in quanto orbite della permutazione, sappiamo che ogni permutazione si scrive come prodotto dei suoi cicli, e per concludere basta osservare che i cicli disgiunti commutano.

Osservazione 1.51 — Si osserva che l'unicità della scrittura di una permutazione vista nella Proposizione 1.50 è effettivamente valida solo nel caso di cicli disgiunti, infatti, prendendo ad esempio:

$$\sigma = (1\ 2)(2\ 4) \in S_4$$
 con $\sigma_1 = (2\ 4)$ e $\sigma_2 = (1\ 2)$

non essendo σ_1, σ_2 cicli disgiunti, si osserva che $\sigma_2 \circ \sigma_1 = (2\ 4\ 1)$ e quindi σ era in realtà un 3-ciclo, e la sua fattorizzazione è unica come tale (mentre non era unica come prodotto di cicli non disgiunti).

⁴D'ora in avanti si utilizzeranno i termini "permutazione ciclica" e "ciclo" come sinonimi, in quanto una permutazione ciclica è appunto un singolo ciclo non banale.

Corollario 1.52

 S_n è generato dalle permutazioni cicliche.

Dimostrazione. Segue immediatamente dal fatto che ogni permutazione si ottiene mediante composizione di permutazioni cicliche. \Box

Esempio 1.53

Per esempio, preso S_4 , le permutazioni possibili sono cicli del tipo:

$$id$$
 $(a b)$ $(a b c)$ $(a b c d)$ $(a b)(c d)$

per contare il numero di 2-cicli, ci basta scegliere 2 elementi dell'insieme in $\binom{4}{2}$ modi e poi considerare tutti i possibili riordinamenti ciclici (dove la scelta del primo elemento è arbitraria), e ciò può essere fatto in $\frac{2!}{2}$ modi, per un totale di:

$$\binom{4}{2}\frac{2!}{2} = 6$$

e ragionando analogamente per i 3-cicli e i 4-cicli si ottiene:

$$\binom{4}{3}\frac{3!}{3} = 8$$
 e $\binom{4}{4}\frac{4!}{4} = 6$

infine, per quanto riguarda le permutazioni ottenute dalla composizione di due 2-cilci, possiamo scegliere e permutare due coppie di elementi, come nei casi precedenti, tuttavia, essendo i cicli disgiunti commutano (banalmente perché lasciano fissi gli altri elementi del dominio), quindi bisogna anche dividere per il numero di scambi per i cicli della stessa lunghezza, ovvero 2! dunque:

$$\binom{4}{2} \frac{2!}{2} \binom{2}{2} \frac{2!}{2} \cdot \frac{1}{2!} = 3$$

e dal conteggio delle permutazioni di S_4 divise per cicli di diversa lunghezza si ottiene: $6+8+6+3+1=24=|S_4|$.

Osservazione 1.54 — Quanto visto nell'esempio precedente può essere generalizzato ottenendo:

$$\#\{\sigma \in S_n | \sigma \text{ è un } k\text{-ciclo}\} = \binom{n}{k} \frac{k!}{k} = \binom{n}{k} (k-1)!$$

Esempio 1.55

Per quanto detto risulta semplice ad esempio calcolare:

$$\#\{\sigma \in S_{20} | \sigma \text{ si fattorizza in cicli del tipo } 2+2+2+4+5+5\}$$

applicando quanto detto nell'osservazione pretendente si trovano:

$$\frac{\binom{20}{2}\binom{18}{2}\binom{16}{2}1!1!1!}{3!}\cdot\binom{14}{4}3!\cdot\frac{\binom{10}{5}\binom{5}{5}4!4!}{2!}$$

Proposizione 1.56 (Ordine Di Una Permutazione)

Data $\sigma \in S_n$ con $\sigma = \sigma_1 \dots \sigma_k$, con σ_i cicli disgiunti, allora:

$$\operatorname{ord} \sigma = [\operatorname{ord} \sigma_1, \dots, \operatorname{ord} \sigma_k]$$

Dimostrazione. Sia σ_i un l_i -ciclo, ovvero ord $\sigma_i = l_i$, vogliamo dimostrare che:

ord
$$\sigma = [l_1, \dots, l_k] = d$$

osserviamo che $\sigma^d = (\sigma_1 \dots \sigma_k)^d = \sigma_1^d \dots \sigma_k^d$, in quanto i cicli σ_i sono disgiunti (pertanto commutano), essendo $d = [l_1, \dots, l_k] \implies d \mid l_i, \forall \in \{1, \dots, k\}$, pertanto:

$$\sigma^d = \sigma_1^d \dots \sigma_k^d = id \implies \operatorname{ord} \sigma = m \mid d$$

d'altra parte, si ha che:

$$\sigma^m = \sigma_1^m \dots \sigma_k^m = id \iff \sigma_i = id, \forall i \in \{1, \dots, k\}$$

dunque ord $\sigma_i = l_i \mid m, \forall i \in \{1, ..., k\}$, ovvero $[l_1, ..., l_k] \mid m$ da cui si conclude che $m = [l_1, ..., l_k]$.

Proposizione 1.57

Le trasposizioni generano S_n , $\forall n \geq 3$.

Dimostrazione. Per dimostrare l'affermazione bisogna mostrare che ogni permutazione è prodotto di trasposizioni (in generale non disgiunte). Poiché ogni permutazione, per quanto affermato nella Proposizione 1.50, è il prodotto di cicli (permutazioni cicliche) disgiunti, è sufficiente mostrare che i cicli sono tutti prodotto di trasposizioni, infatti si può osservare che:

$$(1 \ldots k) = (1 k)(1 k - 1) \ldots (1 2)$$

dove l'uguaglianza è tra funzioni, quindi ci basta mostrare che danno la stessa immagine. Se i > k, allora entrambe le funzioni mandano $i \longmapsto i$, se $i \le k$, allora la funzione a sinistra manda $i \longmapsto i+1$ e $k \longmapsto 1$, quella a destra lascia fisso i fino al ciclo $(1\ i)$ che manda $i \longmapsto 1 \longmapsto i+1$ che rimane fisso in i+1, mentre $k \longmapsto \ldots \longmapsto 1$.

Osservazione 1.58 — La scrittura di una permutazione come prodotto di trasposizioni non è unica. Ad esempio in S_4 :

$$\sigma = (1\ 2)(2\ 4) = (1\ 2)(3\ 4)(3\ 4)(2\ 4)$$

La seguente proposizione ci mostra invece che è fissata la parità della decomposizione in trasposizioni, cioè se σ si compone come prodotto di m trasposizioni, ogni altra decomposizione come prodotto di trasposizioni ha un numero di trasposizioni con la stessa parità.

Proposizione 1.59

L'applicazione:

$$sgn: S_n \longrightarrow \{\pm 1\}: \sigma \longmapsto sgn(\sigma) = \prod_{1 \le i < j \le n} \frac{\sigma(i) - \sigma(j)}{i - j}$$

è un omomorfismo di gruppi. Inoltre, se σ è una trasposizione, allora $sgn(\sigma)=-1.$

Dimostrazione. Osserviamo inizialmente che sgn è ben definita cioè:

$$sgn(\sigma) = \prod_{1 \le i < j \le n} \frac{\sigma(i) - \sigma(j)}{i - j} \in \{\pm 1\}$$

al denominatore del prodotto vi sono tutte le possibili coppie i-j (in $\{1,\ldots,n\}$) e anche al numeratore poiché σ è bigettiva, l'unica cosa che può cambiare è l'ordine (ovvero potrebbe comparire i-j al numeratore e j-i al denominatore), quindi $sgn(\sigma) \in \{\pm 1\}$. Mostriamo che sgn è un omomorfismo:

$$sgn(\sigma \circ \tau) = \prod_{i < j} \frac{\sigma(\tau(i)) - \sigma(\tau(j))}{i - j} = \prod_{i < j} \frac{\sigma(\tau(i)) - \sigma(\tau(j))}{i - j} \frac{\tau(i) - \tau(j)}{\tau(i) - \tau(j)}$$

da cui:

$$\prod_{i < j} \frac{\sigma(\tau(i)) - \sigma(\tau(j))}{\tau(i) - \tau(j)} \frac{\tau(i) - \tau(j)}{i - j} = \underbrace{\prod_{i < j} \frac{\sigma(\tau(i)) - \sigma(\tau(j))}{\tau(i) - \tau(j)}}_{sgn(\sigma)} \underbrace{\prod_{i < j} \frac{\tau(i) - \tau(j)}{i - j}}_{sgn(\tau)} \quad \forall \sigma, \tau \in S_n$$

Ci resta da verificare che il segno di una trasposizione è -1. Sia $\sigma = (a \ b)$, analizziamo il segno delle varie coppie, distinguiamo le seguenti possibilità:

- $\{i,j\}\cap\{a,b\}=\emptyset$, in tal caso σ lascia fissi gli elementi, $\sigma(i)=i,\sigma(j)=j\implies \frac{\sigma(i)-\sigma(j)}{i-j}=1.$
- $\{i,a\}$ (o $\{i,b\}$), in tal caso $\frac{\sigma(i)-\sigma(a)}{i-a}=\frac{i-b}{i-a}$, però vi è anche $\frac{\sigma(i)-\sigma(b)}{i-b}=\frac{i-a}{i-b}$ e quindi il fattore dà 1.
- Infine, nel caso in cui $\{i, j\} = \{a, b\}$ si ha:

$$\frac{\sigma(a) - \sigma(b)}{a - b} = \frac{b - a}{a - b} = -1$$

Dunque si conclude che $sgn((a\ b)) = -1$.

d.monaco2@studenti.unipi.it (Anno Accademico 2022-23)

Osservazione 1.60 — La proposizione appena vista dimostra quanto detto sopra, ovvero:

$$\sigma = \tau_1 \dots \tau_m$$
 con τ_i trasposizione

allora
$$sgn(\sigma) = \prod_{1 \le i \le m} sgn(\tau_i) = (-1)^m$$
.

Definizione 1.61. Una permutazione $\sigma \in S_n$ si dice **pari** se $sgn(\sigma) = 1$, **dispari** se $sgn(\sigma) = -1$.

Definizione 1.62. Dato l'omomorfismo $sgn: S_n \longrightarrow \{\pm 1\}$, si definisce **gruppo alterno**:

$$\mathcal{A}_n = \ker sgn = \{ \sigma \in S_n | \sigma \text{ è pari} \}$$

Osservazione 1.63 — Si osserva che $A_n \leqslant S_n$ e $|A_n| = \frac{n!}{2}$ poiché $S_n/A_n \cong \{\pm 1\}$.

Osservazione 1.64 — Per quanto detto nella Proposizione 1.57, un k-ciclo si può scrivere nella forma:

$$(1 \dots k) = \underbrace{(1 \ k)(1 \ k - 1) \dots (1 \ 2)}_{k-1 \text{ trasposizioni}}$$

dunque un k-ciclo è pari se $k \equiv 1 \pmod{2}$, dispari se $k \equiv 0 \pmod{2}$.

§1.10 Classi di coniugio in S_n

Teorema 1.65

Due permutazioni in S_n sono coniugate se e solo se hanno la stessa decomposizione in cicli disgiunti.

Dimostrazione. Mostriamo le due implicazioni:

• Presa $\sigma = (a_1 \dots a_k)$ e $\tau \in S_n$, vogliamo dimostrare che $\tau \circ \sigma \circ \tau^{-1}$ è ancora un k-ciclo. Sia $\tau(a_i) = b_i$, allora $\tau \sigma \tau^{-1} = (b_1 \dots b_k)$, con $b_i \neq b_j$, $\forall i \neq j$, poiché τ è bigettiva; verifichiamo l'uguaglianza mostrando che le due funzioni coincidono per tutti gli elementi. Si osserva che nel ciclo a destra accade semplicemente che $b_i \longmapsto b_{i+1}$, a sinistra invece:

$$b_i \xrightarrow{\tau^{-1}} a_i \xrightarrow{\sigma} a_{i+1} \xrightarrow{\tau} b_{i+1} \quad \forall i \in \{1, \dots, k\}$$

Se, invece, $x \neq b_i$, a sinistra si ha $\tau \sigma \underbrace{\tau^{-1}(x)}_{\neq a_1, \dots, a_k}$ (ciò poiché non si parte da alcun b_i),

quindi $\sigma(\tau^{-1}(x)) = \tau^{-1}(x)$, e quindi $\tau \circ \tau^{-1}(x) = x$; a destra invece, non essendo x alcun b_i viene lasciato fisso, ciò conclude che le due funzioni sono uguali e che quella a sinistra è quindi un k-ciclo.

• Mostriamo ora che due permutazioni con la stessa fattorizzazione in cicli disgiunti sono coniugate. Siano:

$$\sigma = (a_1 \ldots a_l)(b_1 \ldots b_s) \ldots (z_1 \ldots z_t)$$

$$\rho = (a'_1 \dots a'_l)(b'_1 \dots b'_s) \dots (z'_1 \dots z'_t)$$

per dimostrare la tesi è sufficiente trovare $\tau \in S_n$ tale che $\tau \circ \sigma \circ \tau^{-1} = \rho$. Scegliamo τ definita da:

$$\tau(a_i) = a_i', \tau(b_i) = b_i', \dots, \tau(z_i) = z_i'$$

ed eventualmente si aggiungono altri elementi. Verifichiamo allora che $\tau \circ \sigma \circ \tau^{-1} = \rho$, consideriamo (WLOG) il primo ciclo:

$$a_i' \xrightarrow{\tau^{-1}} a_i \xrightarrow{\sigma} a_{i+1} \xrightarrow{\tau} a_{i+1}'$$

e quindi $a_i' \longmapsto a_{i+1}',$ pertanto $\tau \circ \sigma \circ \tau^{-1}$ e ρ coincidono sempre.

Esempio 1.66

In S_5 le classi di coniugio di $\sigma = (1\ 2)(3\ 4)$ sono $C_{\sigma} = \{(a\ b)(c\ d) \in S_5\}$, con:

$$#C_{\sigma} = \frac{\binom{5}{2}\binom{3}{2}1!1!}{2!} = 15$$

e da ciò si ricava anche che:

$$\#Z_{S_5}(\sigma) = \frac{|S_5|}{|C_{\sigma}|} = \frac{5!}{15} = 8$$

Esempio 1.67

Sia $\sigma=(3\ 5)(14)\in S_5$ e sia $\rho=(1\ 2)(3\ 4),$ cerchiamo $\tau\in S_5$ tale che:

$$\tau\circ\sigma\circ\tau^{-1}=\rho$$

si può scegliere $\tau=(1\ 3)(2\ 5),$ da cui:

$$(1\ 3)(2\ 5)(3\ 5)(14)(1\ 3)(2\ 5) = (1\ 2)(3\ 4) = \rho$$

Corollario 1.68

Valgono i seguenti fatti:

- (1) Il numero di classi di coniugio in S_n è uguale al numero di partizioni di n.
- (2) Se $H \leq S_n$, allora $H \leq S_n$ se e solo se contiene tutte le permutazioni di un certo tipo o nessuna.

§1.11 Prodotto diretto

Ricordiamo brevemente che se G_1 e G_2 sono gruppi, allora l'insieme $G_1 \times G_2$ con l'operazione fatta componente per componente prende il nome di **prodotto diretto**.

Esempio 1.69

Presi ad esempio $\mathbb{Z}/7\mathbb{Z}$ e S_4 , si ha $\mathbb{Z}/7\mathbb{Z} \times S_4$, con $\sigma = (\overline{1}, (1\ 2\ 3))$ e $\rho = (\overline{4}, (1\ 4\ 2\ 4))$ in $\mathbb{Z}/7\mathbb{Z} \times S_4$ e l'operazione:

$$\sigma \cdot \rho = (\overline{1} + \overline{4}, (1\ 2\ 3) \circ (1\ 4\ 2\ 3)) = (\overline{5}, (1\ 4\ 3\ 2))$$

Osservazione 1.70 — Si ricordano i seguenti fatti:

- Se $H, K \leq G$ in generale HK non è un sottogruppo, ma $HK \leq G \iff HK = KH$. Ovviamente se uno tra H e K è normale in G, allora questo è sempre vero.
- $H \times K \leqslant G \times G$.

Lemma 1.71

Siano $H, K \leq G$ e $H \cap K = \{e\}$, allora hk = kh, $\forall h \in H$, $\forall k \in K$.

Dimostrazione. Preso $hkh^{-1}k^{-1}$, si ha:

$$hkh^{-1}k^{-1} = \underbrace{(hkh^{-1})}_{=k'}k^{-1} = h\underbrace{(kh^{-1}k^{-1})}_{=h'}$$

dunque $hkh^{-1}k^{-1} \in H \cap K \implies hkh^{-1}k^{-1} = e$, da cui segue la tesi.

Teorema 1.72 (Decomposizione in prodotto diretto)

Sia G un gruppo e siano $H, K \leq G$ tali che:

- (1) HK = G.
- (2) $H \cap K = \{e\}.$

Allora $G \cong H \times K$.

Dimostrazione. Definiamo l'applicazione:

$$\varphi: H \times K \longrightarrow G: (h, k) \mapsto hk$$

Si verifica che è un omomorfismo:

$$\varphi((h_1, k_1)(h_2, k_2)) = \varphi((h_1 h_2, k_1 k_2)) = h_1 h_2 k_1 k_2$$

per il Lemma 1.71 si ha che $h_1h_2k_1k_2 = h_1k_1h_2k_2 = \varphi((h_1, k_1))\varphi((h_2, k_2)), \forall h_1, h_2 \in H$, $\forall k_1, k_2 \in K$. Si osserva ora che φ è surgettiva, per l'ipotesi (1); infine, è iniettiva in quanto:

$$\ker \varphi = \{(h, k) \in H \times K | hk = e\} = \{(h, k) \in H \times K | h = k^{-1}\} = \{e\}$$

dove nell'ultima uguaglianza si è usato il fatto che $H \cap K = \{e\}$.

Osservazione 1.73 — Se abbiamo due sottogruppi G_1 e G_2 e costruiamo $G = G_1 \times G_2$, allora presi:

$$H = G_1 \times \{e_2\} \leqslant G$$
 e $K = \{e_1\} \times G_2 \leqslant G$

H, K sono normali, hanno intersezione banale e sono tali che HK = G, quindi verifichiamo le ipotesi del teorema, pertanto $G \cong H \times K$.

Esempio 1.74

Sia G un gruppo con $|G|=p^2$, dalla formula delle classi avevamo ottenuto che G è necessariamente abeliano, quindi G è isomorfo a $\mathbb{Z}/p^2\mathbb{Z}$ o $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$. Se G è ciclico, allora $G \cong \mathbb{Z}/p^2\mathbb{Z}$. Mostriamo che se non lo è, allora $G \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$ e in questo caso tutti gli elementi di G hanno ordine p.

Consideriamo $(e \neq)x \in G$ e $H = \langle x \rangle \leq G$ (in quanto G abeliano); prendiamo $y \in G \setminus \langle x \rangle$ e analogamente $K = \langle y \rangle \leq G$, da ciò segue che $H \cap K = \{e\}$, infatti H e K sono sottogruppi ciclici di G di ordine p e quindi hanno in comune solo l'elemento neutro. Osservando infine che HK = G, per cardinalità:

$$|HK| = \frac{|H||K|}{|H \cap K|} = \frac{p \cdot p}{1} = p^2$$

le ipotesi del Teorema 1.72 sono verificate, dunque:

$$G \cong H \times K \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$$

§1.12 Prodotto semidiretto

Definizione 1.75. Dati due gruppi H, K e l'azione:

$$\varphi: K \longrightarrow \operatorname{Aut}(H)(\leqslant S(H)): k \longmapsto \varphi_k$$

si dice **prodotto semidiretto** di H e K via φ :

$$H \rtimes_{\omega} K$$

(o anche $K_{\varphi} \ltimes H$) l'insieme ottenuto come prodotto cartesiano $H \times K$ con l'operazione definita da:

$$(h,k)(h',k') = (h \cdot_H \varphi_k(h'), k \cdot_K k')$$

Proposizione 1.76 (Il Prodotto Semidiretto è un gruppo)

Dati due gruppi H, K, allora $H \rtimes_{\varphi} K$ è un gruppo.

Dimostrazione. Come si verifica facilmente l'operazione indotta dal prodotto semidiretto è associativa, verifichiamo che (e_H, e_K) è l'elemento neutro:

$$(h,k)(e_H, e_K) = (h \cdot \varphi_k(e_H), ke_K) = (he_H, k) = (h,k)$$

dove $\varphi_k(e_H) = e_H$ poiché φ_k è un automorfismo (e quindi in particolare un omomorfismo), a sinistra, invece, si ha:

$$(e_H, e_K)(h, k) = (e_H \cdot \varphi_{e_K}(h), e_K k) = (e_H \cdot id(h), k) = (e_H h, k) = (h, k)$$

Per l'inverso si osserva:

$$(h,k)^{-1} = ((\varphi_k)^{-1}(h^{-1}),k^{-1}) = (\varphi_{k^{-1}}(h^{-1}),k^{-1})^{\frac{1}{2}}$$

dunque si verifica a destra:

$$(h,k)(\varphi_{k^{-1}}(h^{-1}),k^{-1}) = (h \cdot \varphi_k(\varphi_{k^{-1}}(h^{-1})),kk^{-1}) =$$

$$= (h \cdot id(h^{-1}),e_K) = (hh^{-1},e_K) = (e_H,e_K)$$

e analogamente a sinistra:

$$\begin{split} (\varphi_{k^{-1}}(h^{-1}),k^{-1})(h,k) &= (\varphi_{k^{-1}}(h^{-1})\cdot\varphi_{k^{-1}}(h),k^{-1}k) = \\ &= (\varphi_{k^{-1}}(h^{-1}h),e_K) = (\varphi_{k^{-1}}(e_H),e_K) = (e_H,e_K) \end{split}$$

⁵L'uguaglianza $(\varphi_k)^{-1} = \varphi_{k-1}$ segue dal fatto che φ è un omomorfismo e quindi manda inversi in inversi.

Osservazione 1.77 — Si osserva che $H \rtimes_{\varphi} K$ è il prodotto diretto se e solo se $\varphi_k = e, \forall k \in K$. Infatti:

$$(h,k)(h',k') = (h \cdot \varphi_k(h'), kk') = (hh', kk') \iff \varphi_k(h') = h' \qquad \forall k \in K$$

e dunque $\varphi_k = id_H$.

Teorema 1.78 (Decomposizione in prodotto semidiretto)

Sia G un gruppo e siano $H, K \leq G$, con $H \leq G$, tali che:

- (1) HK = G.
- (2) $H \cap K = \{e\}.$

Allora $G \cong H \rtimes_{\varphi} K$, dove $\varphi : K \longrightarrow \operatorname{Aut}(H) : k \longmapsto \varphi_k$, con $\varphi_k : H \longmapsto H : h \longmapsto khk^{-1}$.

Dimostrazione. Costruiamo esplicitamente un isomorfismo tra i due gruppi:

$$\mathcal{F}: H \rtimes_{\varphi} K \longrightarrow G: (h,k) \longmapsto hk$$

Verifichiamo che è un omomorfismo:

$$\mathcal{F}((h,k)(h',k')) = \mathcal{F}(h \cdot \varphi_k(h'),kk') = \mathcal{F}(h\underbrace{kh'k^{-1}}_{=\varphi_k(h')},kk') = hkh'k^{-1}kk' = \underbrace{hk}_{=\mathcal{F}(h,k)}\underbrace{h'k'}_{=\mathcal{F}(h',k')}$$

Si vede inoltre che \mathcal{F} è surgettiva per l'ipotesi (1) e iniettiva per la (2), infatti:

$$\ker \mathcal{F} = \{(h, k) \in H \rtimes_{\varphi} K | \mathcal{F}(h, k) = hk = e\} = \{e\}$$

Osservazione 1.79 — Si osserva che φ_k è la restrizione al sottogruppo H dell'automorfismo interno $g \longmapsto kgk^{-1}$, poiché $H \leq G$, allora la restrizione a H di ogni elemento di Inn(G) è un automorfismo di H.

Osservazione 1.80 — Sapendo che $G \cong H \rtimes_{\varphi} K$ e seguendo i passaggi della verifica di omomorfismo al contrario, si ricava che necessariamente φ è esattamente l'azione di coniugio su H.

Osservazione 1.81 — Siano $\overline{H} = H \times \{e_K\}$ e $\overline{K} = \{e_H\} \times K$, si osserva che $\overline{H}, \overline{K} \leq G = H \rtimes_{\varphi} K$, infatti sono chiusi per prodotto (ristretto):

$$(h, e_K)(h', e_K) = (h \cdot \varphi_{e_K}(h'), e_K) = (h \cdot id(h'), e_K) = (hh', e_K)$$

$$(e_H, k)(e_H, k') = (e_H \cdot \varphi_k(e_H), kk') = (e_H, kk')$$

e si verifica facilmente anche per inverso. Si osserva che $\overline{H} \leq G^a$, in quanto $H = \ker \pi$, con:

$$\pi: H \rtimes_{\varphi} K \longrightarrow K: (h, k) \longmapsto k$$

con π omomorfismo come si vede:

$$\pi((h,k)(h',k')) = \pi(h \cdot \varphi_k(h'), kk') = kk' = \pi((h,k))\pi((h',k'))$$

Per come li abbiamo presi si nota subito che $\overline{HK} = G$ e $\overline{H} \cap \overline{K} = \{e\}$, quindi valgono le ipotesi del Teorema 1.79, pertanto:

$$\overline{H} \times \overline{K} \cong G = H \rtimes_{\varphi} K$$

Esempio 1.82 $(S_n \cong \mathcal{A}_n \rtimes_{\varphi} \langle (1\ 2) \rangle)$

Verifichiamo che S_n è prodotto semidiretto di $H = \mathcal{A}_n$ e $K = \langle (1\ 2) \rangle^a$ usando il Teorema 1.78, per quanto detto nel (1) del Corollario 1.68 sappiamo che $\mathcal{A}_n \triangleleft S_n$, inoltre, sempre per il punto (1), essendo $|\mathcal{A}_n| = \frac{n!}{2}$, segue per cardinalità che $HK = S_n$. Essendo $\mathcal{A}_n = \ker sgn$ e $\langle (1\ 2) \rangle$ una trasposizione $H \cap K = \{e\}$ (in quanto il nucleo dell'omomorfismo segno contiene solo permutazioni pari), pertanto segue la tesi:

$$S_n \cong \mathcal{A}_n \rtimes_{\varphi} \langle (1\ 2) \rangle$$

Osserviamo inoltre che:

$$\varphi: \langle (1\ 2) \rangle \longrightarrow \operatorname{Aut}(\mathcal{A}_n): (1\ 2) \longmapsto \varphi_{(1\ 2)}, id \longmapsto id$$

$$\operatorname{con} \varphi_{(1\ 2)}: \mathcal{A}_n \longrightarrow \mathcal{A}_n: \rho \longmapsto (1\ 2)\rho(1\ 2).$$

 $^{{}^}a\overline{K}$ in generale non è normale, lo è solo se il prodotto è diretto, infatti in quel caso vale il Teorema 1.72.

^aIn generale va bene qualsiasi trasposizione (che esiste sempre in S_n per $n \geq 2$).

Esempio 1.83 $(D_n \cong \mathbb{Z}/n\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}/2\mathbb{Z})$

Ricordando che $D_n = \langle r, s | r^n = s^2 = id, srs^{-1} = r^{-1} \rangle$, possiamo osservare ancora una volta che le ipotesi del Teorema 1.78 sono soddisfatte. Poiché ord r = n, allora $|\langle r \rangle| = n$, e in particolare $[D_n : \langle r \rangle] = 2 \implies \langle r \rangle \triangleleft D_n$; inoltre, $\langle r \rangle \cap \langle s \rangle = \{id\}$ perché $\det(r_i) = 1$, mentre $\det(sr_i) = -1$, $\forall i \in \{1, \ldots, n\}$. Infine, essendo ord s = 2, allora il prodotto di sottogruppi avrà cardinalità:

$$|\langle r \rangle \langle s \rangle| = \frac{|\langle r \rangle| |\langle s \rangle|}{|\langle r \rangle \cap \langle s \rangle|} = \frac{2n}{1} = 2n$$

dunque $\langle r \rangle \langle s \rangle = D_n$. Pertanto $D_n \cong \langle r \rangle \rtimes_{\varphi} \langle s \rangle$, dove $\langle r \rangle \cong \mathbb{Z}/n\mathbb{Z}$ e $\langle s \rangle \cong \mathbb{Z}/2\mathbb{Z}$, quindi:

$$D_n \cong \mathbb{Z}/n\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}/2\mathbb{Z}$$

con:

$$\varphi: \langle s \rangle \longrightarrow \operatorname{Aut}(\langle r \rangle): s \longmapsto \varphi_s$$

dove $\varphi_s: \langle r \rangle \longrightarrow \langle r \rangle: r \longmapsto srs^{-1} (=r^{-1})$. Si osserva che deve essere ord $\varphi_s |$ ord s=2, quindi ci sono soltanto due possibilità:

$$\varphi_s = \begin{cases} id \\ r \longmapsto r^{-1} \end{cases}$$

nel caso in cui $\varphi_s = id$ si ottiene il prodotto diretto, nell'altro caso si ottiene il prodotto semidiretto che definisce D_n . Se in $\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$ ci sono altri elementi di ordine due (ad esempio se $\operatorname{Aut}(\mathbb{Z}/8\mathbb{Z}) \cong \mathbb{Z}/8\mathbb{Z}^* \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$) si possono definire anche altri prodotti semidiretti:

$$\mathbb{Z}/n\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}/2\mathbb{Z}$$

Rimane il problema di verificare se danno o meno due gruppi isomorfi.

Esempio 1.84 (Gruppi di ordine pq)

Sia |G| = pq, per il Teorema Di Cauchy esistono $x, y \in G$ tali che ord x = q, ord y = p, assumiamo (WLOG) q > p, allora si ha che:

$$H = \langle x \rangle \triangleleft G$$

poiché [G:H]=p, con p più piccolo primo che divide |G|. Alternativamente si può vedere che H è caratteristico in G poiché è l'unico sottogruppo di quell'ordine; se H' < G e |H'| = q, se fosse $H \neq H'$, allora $H \cap H' = \{e\}$ e quindi:

$$|HH'| = \frac{|H||H'|}{|H \cap H'|} = \frac{q \cdot q}{1} = q^2 > pq$$

quindi H' non può essere un sottogruppo di G. Si verifica che, detto $K = \langle y \rangle$, le ipotesi del Teorema 1.78 sono soddisfatte:

$$HK = G$$
 $H \cap K = \{e\}$ $H \triangleleft G$

da ciò segue che ogni gruppo di ordine pq è prodotto semidiretto: $G \cong H \rtimes_{\varphi} K$.

Per classificare tutti i gruppi di ordine pq bisogna classificare tutti i possibili prodotti semidiretti $\mathbb{Z}/q\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}/p\mathbb{Z}$ a meno di isomorfismo. Osserviamo che un prodotto semidiretto deve avere un'operazione definita da:

$$\varphi: \mathbb{Z}/p\mathbb{Z} \longrightarrow \operatorname{Aut}(\mathbb{Z}/q\mathbb{Z}) \cong \mathbb{Z}/q\mathbb{Z}^* \cong \mathbb{Z}/(q-1)\mathbb{Z}$$

Essendo $\mathbb{Z}/p\mathbb{Z} = \langle y \rangle$ e $\mathbb{Z}/q\mathbb{Z} = \langle x \rangle$ possiamo scrivere:

$$\varphi: \langle y \rangle \longrightarrow \operatorname{Aut}(\langle x \rangle) (\cong \mathbb{Z}/q\mathbb{Z}^* \cong \mathbb{Z}/(q-1)\mathbb{Z}) : y \longmapsto \varphi_y$$

 $\operatorname{con} \varphi_y : \langle x \rangle \longrightarrow \langle x \rangle : x \longmapsto x^l$. Per definire φ su $\langle y \rangle$ (un dominio ciclico) basta assegnare φ_y con la condizione $\operatorname{ord} \varphi_y \mid \operatorname{ord} y = p$, inoltre, $\varphi_y \in \operatorname{Aut}(\mathbb{Z}/q\mathbb{Z}) \cong \mathbb{Z}/(q-1)\mathbb{Z} \Longrightarrow \operatorname{ord} \varphi_y \mid q-1$, quindi $\operatorname{ord} \varphi_y \mid (p,q-1)$. Distinguiamo due casi:

- Se $p \nmid q-1$, si ha che ord $\varphi_y \mid 1 \implies \varphi_y = id$, dunque l'unico automorfismo possibile di $\mathbb{Z}/q\mathbb{Z}$ è l'identità, pertanto si ha un prodotto diretto tra $\mathbb{Z}/p\mathbb{Z}$ e $\mathbb{Z}/q\mathbb{Z}$ e quindi esiste ed è unico il gruppo di ordine pq, $\mathbb{Z}/pq\mathbb{Z}$.
- Se $p \mid q-1$, allora o ord $\varphi_y = 1$ e quindi ancora $\varphi_y = id$; oppure ord $\varphi_y = p$, e poiché ci sono p-1 elementi di ordine p in $\mathbb{Z}/(q-1)\mathbb{Z}$, abbiamo p-1 scelte per φ_y che danno un prodotto semidiretto.

Si osserva che ord $\varphi_y = \operatorname{ord}_{\mathbb{Z}/q\mathbb{Z}^*}(\bar{l})$ e:

$$\varphi_y(x) = x^l \implies (\varphi_y(x))^k = x^{l^k}$$

quindi ord $\varphi_y = p \iff l^p \equiv 1 \pmod{q} \iff \text{ord } l = p$. Le p-1 scelte per φ_y danno tutte gruppi isomorfi, quindi se $p \mid q-1$ ci sono esattamente due gruppi di ordine pq a meno di isomorfismo. Infatti, detti:

$$G_1 = \langle x \rangle \rtimes_{\varphi} \langle y \rangle$$
 e $G_2 = \langle x \rangle \rtimes_{\psi} \langle y \rangle$

con $\varphi_y(x) = x^l$, ord l = p e $\psi_y(x) = x^{\lambda}$, ord $\lambda = p$, pertanto $\langle l \rangle = \langle \lambda \rangle$ se e solo se $l = \lambda^r$, con 0 < r < p. Possiamo scrivere l'applicazione:

$$\mathcal{F}: G_1 \longrightarrow G_2: x \longmapsto x, y \longmapsto y^r$$

che definisce un isomorfismo tra i due gruppi:

$$G_1 = \langle x, y | x^q = y^p = 1, yxy^{-1} = x^l \rangle$$
 e $G_2 = \langle x, y | x^q = y^p = 1, yxy^{-1} = x^{\lambda} \rangle$

Per mostrare che è un isomorfismo basta osservare che:

$$\mathcal{F}(x^q) = (\mathcal{F}(x))^q = id$$
 in quanto $x^q = id$

e anche:

$$\mathcal{F}(y^p) = (\mathcal{F}(y))^p = id$$
 in quanto $y^p = id$

ed infine:

$$\mathcal{F}(yxy^{-1}) = \mathcal{F}(x^l)$$

in quanto:

$$\mathcal{F}(yxy^{-1}) = \mathcal{F}(y)\mathcal{F}(x)\mathcal{F}(y^{-1}) = \underbrace{y^rxy^{-r}}_{\in G_2} = x^{\lambda^r} = x^e = \mathcal{F}(x)$$

ciò garantisce che \mathcal{F} ottenuto estendendo l'assegnamento $x \longmapsto x, y \longmapsto y^r$ è un omomorfismo, segue banalmente che è anche una bigezione e quindi è un isomorfismo.

⁶Quest'ultima pagina non è in versione definitiva e necessita di ulteriori revisioni.

§1.13 Teorema di struttura per i gruppi abeliani finiti

Teorema 1.85 (Teorema Di Struttura Dei Gruppi Abeliani Finiti)

Sia G un gruppo abeliano finito, allora G è prodotto diretto di gruppi ciclici, cioè:

$$G \cong \mathbb{Z}/n_1\mathbb{Z} \times \ldots \times \mathbb{Z}/n_s\mathbb{Z}$$

Inoltre tale scrittura è unica se $n_{i+1} \mid n_i, \forall i \in \{1, \ldots, s-1\}.$

Osservazione 1.86 (Schema della dimostrazione) — Sia:

$$G(p) = \{ g \in G | \operatorname{ord}(g) = p^k, k \in \mathbb{N} \}$$

G(p) prende il nome di p-componente o componente di p-torsione. Si osserva che:

• G(p) è un sottogruppo di G perché G è abeliano, dunque:

$$\operatorname{ord}(xy) \mid [\operatorname{ord}(x), \operatorname{ord}(y)] \qquad \forall x, y \in G$$

quindi se x ed y hanno per ordine una potenza di p, anche il prodotto ha per ordine una potenza di p, quindi $xy \in G(p)$, ed essendo G finito allora G(p) è un sottogruppo. ^a

• G(p) è un sottogruppo caratteristico di G (ciò segue dal fatto che gli automorfismi conservano l'ordine degli elementi, e quindi G(p) viene mandato in G(p)).

Teorema 1.87 (I gruppi abeliani sono prodotto loro delle *p*-componenti)

Sia G un gruppo abeliano, con $|G|=n=p_1^{e_1}\dots p_s^{e_s}$, con i primi $p_i\neq p_j,\ \forall i\neq j,$ allora:

$$G \cong G(p_1) \times \ldots \times G(p_s)$$

Inoltre la decomposizione di G come prodotto di p-gruppi di ordine tra loro coprimi è unica.

Teorema 1.88 (I p-gruppi si spezzano come prodotto di p-gruppi ciclici)

Sia G un p-gruppo abeliano. Esistono e sono univocamente determinati r_1, \ldots, r_s tali che $r_1 \geq r_2 \geq \ldots \geq r_t^a$, per i quali:

$$G \cong \mathbb{Z}/p^{r_1}\mathbb{Z} \times \ldots \times \mathbb{Z}/p^{r_t}\mathbb{Z}$$

 $^{{}^}a\mathrm{Si}$ osserva che le p-componenti sono p-gruppi.

 $[^]a\mathrm{L}'$ ordine degli esponenti assicura l'unicità della fattorizzazione.

Segue la dimostrazione del Teorema Di Struttura Dei Gruppi Abeliani Finiti:

Dimostrazione. Esistenza: Dato il gruppo G, abeliano e finito, per il Teorema 1.87 si ha:

$$G \cong G(p_1) \times \ldots \times G(p_s)$$

possiamo applicare il Teorema 1.88 ad ognuno dei fattori $G(p_i)$ ed ottenere:

$$G \cong G(p_1) \times \ldots \times G(p_s) \cong$$

$$\cong (\mathbb{Z}/p_1^{r_{1_1}} \mathbb{Z} \times \ldots \mathbb{Z}/p_1^{r_{1_{t_1}}} \mathbb{Z}) \times \ldots \times (\mathbb{Z}/p_s^{r_{s_1}} \mathbb{Z} \times \ldots \mathbb{Z}/p_s^{r_{s_{t_s}}} \mathbb{Z})$$

con $r_{i_1} \geq \ldots \geq r_{i_{t_i}}$. Per il Teorema Cinese del Resto possiamo rimettere assieme i termini formati da primi distinti in modo da mantenere la relazione di divisibilità (e quindi unicità) richiesta dal teorema:

$$\mathbb{Z}/(\underbrace{p_1^{r_{1_1}}\dots p_s^{r_{s_1}}}_{n_1})\mathbb{Z}\times \dots \times \mathbb{Z}/(\underbrace{p_1^{r_{1_t}}\dots p_s^{r_{s_t}}}_{n_t})\mathbb{Z}$$

dove $t = \max\{t_1, \ldots, t_s\}$ e poniamo $r_{i_h} = 0$ se $h > t_i$. Si osserva che, per come abbiamo riscritto la fattorizzazione si ha: $n_t \mid n_{t-1} \mid \ldots \mid n_1$.

<u>Unicità:</u> Segue dall'unicità del <u>Teorema 1.87</u> e del <u>Teorema 1.88</u>, infatti se ci fossero due decomposizioni di G diverse con ordini che si dividono in catena, ripercorrendo gli isomorfismi, avremmo all'inizio due diverse decomposizioni per G(p) (o per G come prodotto di p-componenti).

Esempio 1.89

Sia $G\cong \mathbb{Z}/100\mathbb{Z}\times\mathbb{Z}/8\mathbb{Z}\times\mathbb{Z}/6\mathbb{Z}\times\mathbb{Z}/15\mathbb{Z}\cong \mathbb{Z}/2^2\mathbb{Z}\times\mathbb{Z}/5^2\mathbb{Z}\times\mathbb{Z}/2^3\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/3\mathbb{Z}\times\mathbb{Z}/3\mathbb{Z}\times\mathbb{Z}/5\mathbb{Z}$, e raggruppando in base all'ordine degli elementi otteniamo i p-sottogruppi:

$$G \cong \underbrace{(\mathbb{Z}/2^3\mathbb{Z} \times \mathbb{Z}/2^2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})}_{G(2)} \times \underbrace{(\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z})}_{G(3)} \times \underbrace{(\mathbb{Z}/5^2\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z})}_{G(5)}$$

e per il Teorema Di Struttura possiamo riscrivere il prodotto in ordine decrescente (rimettendo assieme p-gruppi cicli di ordine massimo):

$$G \cong \mathbb{Z}/(2^3 \cdot 3 \cdot 5^2)\mathbb{Z} \times \mathbb{Z}/(2^2 \cdot 3 \cdot 5)\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$$

Esempio 1.90

Classificare i gruppi abeliani di ordine 1000. Per fare ciò osserviamo che 1000 = $2^3 \cdot 5^3$, allora:

$$G = G(2) \times G(5)$$

con $|G(2)| = 2^3$, e $|G(5)| = 5^3$ pertanto le *p*-componenti possono essere scritti come prodotto di gruppi ciclici nei seguenti modi:

$$G(2) \cong \begin{cases} \mathbb{Z}/2^{3}\mathbb{Z} & \text{e} & G(5) \cong \begin{cases} \mathbb{Z}/5^{3}\mathbb{Z} \\ \mathbb{Z}/2^{2}\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} & \mathbb{Z}/2\mathbb{Z} \end{cases} \end{cases}$$

Dunque i gruppi abeliani di ordine 1000 (a meno di isomorfismo) sono $3 \cdot 3 = 9$, in quanto per il Teorema di Struttura abbiamo una fattorizzazione unica come prodotto di gruppi cicli finiti, e per tale fattorizzazione abbiamo 3 scelte per la 2-componente e 3 scelte per la 5-componente.

Dimostriamo ora il Teorema 1.87

Dimostrazione. Esistenza: Sia |G| = n, con $n = p_1^{e_1} \dots p_s^{e_s}$, procediamo per induzione su s. Nel caso in cui s = 1, si ha $|G| = p_1^{e_1} \implies G = G(p_1)$. Supponiamo la tesi vera $\forall m: 2 \leq m < n$, possiamo scrivere n = mm' con (m, m') = 1 e m, m' < n, allora (in notazione additiva) vogliamo verificare che:

$$G \cong mG \times m'G$$

È facile verificare che mG, m'G < G (basta vedere la chiusura per l'operazione), ed essendo G abeliano si ha anche $mG, nG \triangleleft G$; si osserva inoltre che, essendo (m, m') = 1, allora $\exists h, k \in \mathbb{Z}$:

$$mh + m'k = 1 \implies m(gh) + m'(gk) = g \qquad \forall g \in G \implies G \subseteq mG + m'G$$

il contrario è ovvio, dunque:

$$mG + m'G = G$$

Inoltre, sia $x \in mG \cap m'G$, ovvero x = mg = m'g', allora si osserva che m'x = m'mg = nx = 0 e mx = mm'g' = nx = 0, dunque:

$$\operatorname{ord}(x) \mid m$$
 e $\operatorname{ord}(x) \mid m' \Longrightarrow \operatorname{ord}(x) \mid (m, m') = 1 \Longrightarrow x = 0$

Quindi $mG \cap m'G = \{e\}$, pertanto sono verificate ipotesi del Teorema 1.72, dunque è vero che $G \cong mG \times m'G$. Osserviamo che:

$$mG = G_{m'} = \{g \in G | m'g = 0\}$$
 e $m'G = \{g \in G | mg = 0\}$

Verifichiamo (WLOG) $m'G = G_m$ mostrando la doppia inclusione tra insiemi; $m'G \subseteq G_m$, ovvero $m'x \in G_m$, perché mm'x = nx = 0, viceversa, preso $x \in G_m$, ovvero mx = 0, per quanto visto sopra abbiamo che:

$$\underbrace{mx}_{=0}h + m'kx = x \implies x = m'(kx) \implies x \in m'G$$

quindi $G_m \subseteq m'G \implies m'G = G_m$. Pertanto possiamo scrivere:

$$G \cong G_m \times G_{m'}$$

Poiché $|G_m|, |G_{m'}| < |G|$, perché G_m contiene tutti e soli gli elementi di G di ordine che divide m, inoltre $G_m \neq \{0\}$ (per Cauchy, dato che 1 < m < n), quindi $G_{m'} \leq G$ e viceversa. Possiamo quindi applicare l'ipotesi induttiva e scrivere:

$$G_m = \prod_{i \in I} G(p_i)$$
 e $G_{m'} = \prod_{j \in J} G(p_j)$

con $I \cup J = \{1, \dots, s\}$ e $I \cap J = \emptyset$ (poiché (m, m') = 1).

<u>Unicità</u>: La scrittura come prodotto di p-componenti è unica, perché se G fosse anche isomorfo ad altri p-gruppi:

$$G \cong H_1 \times \ldots \times H_n$$
 con H_i p_i -gruppo e $H_i < G$

allora $H_i \subseteq G(p_i)$ (in quanto $G(p_i)$ contiene tutti gli elementi di ordine potenze di p_i), ma:

$$|G| = |H_1| \dots |H_s| = |G(p_1)| \dots |G(p_s)| \implies |H_i| = |G(p_i)| \quad \forall i \in \{1, \dots, s\}$$

quindi segue che $H_i = G(p_i), \forall i \in \{1, \dots, s\}.$

Lemma 1.91

Sia G un p-gruppo abeliano, e sia x_1 un elemento di ordine massimo in G, preso $\overline{x} \in G/\langle x_1 \rangle$ esiste $y \in \pi^{-1}(\overline{x}) : \operatorname{ord}_G(y) = \operatorname{ord}_{G/\langle x_1 \rangle}(\overline{x})$.

Dimostrazione. Osserviamo che $\pi^{-1}(\overline{x}) = x + \langle x_1 \rangle$, dunque $y \in \pi^{-1}(\overline{x})$ è della forma:

$$y = x + ax_1$$

Sappiamo che $\pi(y) = \pi(x) = \overline{x}$, allora $p^r = \operatorname{ord}(\pi(y)) = \operatorname{ord}(\overline{x}) \mid \operatorname{ord}(y)$ (per le proprietà di omomorfismo), scegliamo y (cioè a) in modo che:

$$0 = p^r y = p^r x + p^r a x_1 \iff p^r x = -p^r a x_1$$

dove $\operatorname{ord}(\overline{x}) = p^r \implies p^r x \in \langle x_1 \rangle \implies p^r x = b x_1$, tuttavia, dato che x_1 ha ordine massimo p^{r_1} , deve essere che $r \leq r_1$, ma:

$$0 = p^{r_1}x = p^{r_1-r}p^rx = p^{r_1-r}bx_1$$

ma ord $(x_1) = p^{r_1} \implies p^r \mid b \implies b = p^r b_1$. Scegliendo $a = -b_1$ si ha:

$$p^r y = p^r x - p^r b_1 x_1 = b x_1 - \underbrace{p^r b_1}_{=b} x_1 = 0$$

Dimostriamo ora il Teorema 1.88:

Dimostrazione. Esistenza: Sia G un p-gruppo, $|G| = p^n$, proviamo la tesi per induzione su n. Per n = 1 si ha che $|G| = p \implies G \cong \mathbb{Z}/p\mathbb{Z}$, e quindi la tesi è verificata. Supponiamo la tesi vera per $1 \le m < n$ e proviamola per n; sia $x_1 \in G$ un elemento di ordine massimo, ord $(x_1) = p^{r_1}$:

- Se $r_1 = n$, allora G è ciclo $\implies G \cong \mathbb{Z}/p^n\mathbb{Z}$.
- Se $r_1 < n$, poiché G è abeliano si ha $\langle x_1 \rangle \triangleleft G$, quindi possiamo considerare $G_{\langle x_1 \rangle}$ che ha ordine $p^{n-r_1} < p^n$, dunque vale l'ipotesi induttiva ed il gruppo quoziente può essere fattorizzato come prodotto di gruppi ciclici:

$$G_{\langle x_1 \rangle} \cong \langle \overline{x_2} \rangle \times \ldots \times \langle \overline{x_t} \rangle^7$$

sia $\operatorname{ord}(\overline{x_i}) = p^{r_i}$, e supponiamo di aver scritto il prodotto diretto in modo ordinato, con $r_2 \geq \ldots \geq r_t$. Consideriamo la proiezione al quoziente:

$$\pi: G \longrightarrow G/\langle x_1 \rangle \cong \langle \overline{x_2} \rangle \times \ldots \times \langle \overline{x_t} \rangle^8$$

per il Lemma 1.91 esistono $x_2, \ldots, x_t \in G$ tali che $\operatorname{ord}_G(x_i) = \operatorname{ord}_{G/\langle x_1 \rangle}(\overline{x_i}) = p^{r_i}$. Vogliamo mostrare allora che:

$$H = \langle x_2, \dots, x_t \rangle \cong \langle x_2 \rangle \times \dots \times \langle x_t \rangle$$

ovvero che il sottogruppo di G finitamente generato da x_2, \ldots, x_t è isomorfo al prodotto diretto dei singoli sottogruppi ciclici generati dai medesimi elementi. Consideriamo di nuovo la proiezione al quoziente modulo $\langle x_1 \rangle$, ma ristretta ad H:

$$\pi_{|H}: H \longrightarrow G_{\langle x_1 \rangle} \cong \langle \overline{x_2} \rangle \times \ldots \times \langle \overline{x_t} \rangle : a_2 x_2 + \ldots + a_t x_t \longmapsto (a_2 \overline{x_2}, \ldots, a_t \overline{x_t})$$

è un isomorfismo, infatti π è un omomorfismo, è surgettivo (in quanto si possono mandare tutti i generatori x_i di H nelle t-uple di generatori di $G/\langle x_1 \rangle$); per l'iniettività si osserva che gli elementi del nucleo sono del tipo:

$$\pi(a_2x_2+\ldots+a_tx_t)=(a_2\overline{x_2},\ldots,a_t\overline{x_t})=(0,\ldots,0) \iff a_i\overline{x_i}=0 \quad \forall i\in\{2,\ldots,t\}$$

cioè se e solo se $\operatorname{ord}_{G/\langle x_1 \rangle}(\overline{x_i}) = p^{r_i} \mid a_i, \forall i \in \{2, \ldots, t\}$. Segue che $\pi_{|H}$ è un isomorfismo e si ha:

$$H \cong \langle \overline{x_2} \rangle \times \ldots \times \langle \overline{x_t} \rangle \cong \langle x_2 \rangle \times \ldots \times \langle x_t \rangle$$

Dove l'ultimo isomorfismo deriva dal fatto che abbiamo scelto elementi di ordini uguali, che quindi generano gli stessi gruppi ciclici a meno di isomorfismo. Mostriamo che $G \cong \langle x_1 \rangle \times H (\cong \langle x_2 \rangle \times \ldots \times \langle x_t \rangle)$ e per farlo verifichiamo che le ipotesi del Teorema 1.72 siano soddisfatte.

Per mostrare che l'intersezione è banale, consideriamo un elemento in quest'ultima, ovvero un elemento che può essere scritto come:

$$a_1x_1 = a_2x_2 + \ldots + a_tx_t$$

⁷Dunque si ha $|\langle \overline{x_2} \rangle \times \ldots \times \langle \overline{x_t} \rangle| = p^{n-r_1}$.

⁸L'isomorfismo tra i due gruppi è quello che manda $(G/\langle x_1 \rangle \ni) \overline{g} = a_2 \overline{x_2} + \ldots + a_t \overline{x_t}$ (poiché $G/\langle x_1 \rangle$ è finito è anche finitamente generato) in $(a_2 \overline{x_2}, \ldots, a_t \overline{x_t}) (\in \langle \overline{x_2} \rangle \times \ldots \times \langle \overline{x_t} \rangle)$.

applicando π alle due scritture si ha:

$$\overline{0} = a_2 \overline{x_2} + \ldots + a_t \overline{x_t} \iff (a_2 \overline{x_2}, \ldots, a_t \overline{x_t}) = (\overline{0}, \ldots, \overline{0})$$

in quanto $G/\langle x_1\rangle\cong\prod_{i=2}^t\langle\overline{x_i}\rangle$, dunque l'unica possibilità di annullare la somma scritta è che $a_i\equiv 0\pmod{p^{r_1}}$ (ovvero a_i è multiplo dell'ordine di $\overline{x_i}$), $\forall i\in\{2,\ldots,t\}$, da ciò segue che anche nel gruppo di partenza $a_i=0$ e quindi $a_1x_1=0$, pertanto $\langle x_1\rangle\cap H=\{0\}$. Per mostrare che $\langle x_1\rangle+H=G$, osserviamo che $\langle x_1\rangle+H\subseteq G$ e che la sua cardinalità è:

$$|\langle x_1 \rangle + H| = \frac{|\langle x_1 \rangle||H|}{|\langle x_1 \rangle \cap H|} = \frac{p^{r_1} \cdot p^{n-r_1}}{1} = p^n$$

Le ipotesi sono soddisfatte e quindi $G \cong \langle x_1 \rangle \times H \cong \langle x_1 \rangle \times \ldots \times \langle x_t \rangle$.

<u>Unicità</u>: Sia $|G| = p^n$ e procediamo ancora per induzione su n. Per n = 1 segue sempre $G \cong \mathbb{Z}/p\mathbb{Z}$ e quindi la tesi è verificata. Supponiamo la tesi vera per m < n e proviamola per n; sia:

$$G \cong \mathbb{Z}/p^{r_1}\mathbb{Z} \times \ldots \times \mathbb{Z}/p^{r_t}\mathbb{Z} \cong \mathbb{Z}/p^{k_1}\mathbb{Z} \times \ldots \times \mathbb{Z}/p^{k_s}\mathbb{Z}$$

dove supponiamo $r_1 \ge ... \ge r_t$ e $k_1 \ge ... \ge k_s$. Deve essere necessariamente che t = s, perché, considerando:

$$G_p = \{g \in G | pg = 0\}$$

con G_p gruppo caratteristico (poiché gli isomorfismi conservano gli ordini degli elementi) e quindi:

$$G_p \cong (\mathbb{Z}/p\mathbb{Z})^t \cong (\mathbb{Z}/p\mathbb{Z})^s \implies t = s$$

Qunidi le lunghezze delle fattorizzazioni sono uguali, per concludere ci basta utilizzare l'ipotesi induttiva al gruppo pG (con $|pG| = p^{n-t}$):

$$pG \cong \frac{p\mathbb{Z}}{p^{r_1}\mathbb{Z}} \times \ldots \times \frac{p\mathbb{Z}}{p^{r_t}\mathbb{Z}} \cong \mathbb{Z}/p^{r_1-1}\mathbb{Z} \times \ldots \times \mathbb{Z}/p^{r_t-1}\mathbb{Z} \cong \mathbb{Z}/p^{k_1-1}\mathbb{Z} \times \ldots \times \mathbb{Z}/p^{k_t-1}\mathbb{Z}$$

quindi G_p ha decomposizione unica, da cui:

$$r_1 - 1 = k_1 - 1, \dots, r_t - 1 = k_t - 1 \iff r_1 = k_1, \dots, r_t = k_t$$

Osservazione 1.92 — Il Lemma 1.91 non vale in generale per quozienti qualsiasi, ad esempio:

$$\mathbb{Z}/p^2\mathbb{Z}_{\langle p\rangle}\cong\frac{\mathbb{Z}/p^2\mathbb{Z}}{\mathbb{Z}/p\mathbb{Z}}\cong\mathbb{Z}/p\mathbb{Z}$$

e con la proiezione:

$$\pi: \mathbb{Z}/p^2\mathbb{Z} \longrightarrow \frac{\mathbb{Z}/p^2\mathbb{Z}}{\mathbb{Z}/p\mathbb{Z}} \cong \mathbb{Z}/p\mathbb{Z}: 1 \longmapsto \overline{1}$$

con $\overline{1}$ che ha ordine p nel gruppo di arrivo, mentre:

$$\pi^{-1}(\overline{1}) = \{1 + kp\}_{k=1,\dots,p-1}$$

con 1+kp che ha ordine p^2 , $\forall k:1\leq k\leq p$, dunque stiamo quozientando per un elemento che non ha ordine massimo; nelle condizioni del lemma, invece, stiamo quozientando per un elemento di ordine massimo.

§1.14 Teorema Di Sylow

Osservazione 1.93 — Dato un gruppo G finito cosa possiamo dire dell'esistenza di elementi e sottogruppi di un certo ordine? Riepiloghiamo di seguito i principali risulati visti:

- $H \leqslant G \implies |H| \mid |G|$ (Teorema Di Lagrange).
- $\forall p$ primo tale che $p \mid |G|, \exists x \in G : \operatorname{ord}_G(x) = p$ (Teorema Di Cauchy).
- Se G è cicleo, $\forall d \mid |G|, \exists x \in G : \operatorname{ord}_G(x) = d$ (per definizione di gruppo ciclico).
- G è cicleo se e solo se d = |G|.
- Se G è abeliano $\forall d \mid |G|, \exists H \leq G$ tale che |H| = d (Lemma Di Ranieri).

L'ultimo fatto può essere ricavato (alternativamente) dal Teorema di Struttura, infatti:

$$G = G_{p_1} \times \ldots \times G_{p_r}$$

con $|G|=p_1^{e_1}\dots p_r^{e_r}$, se $d=p_1^{a_1}\dots p_r^{a_r}$, bisogna verificare che per ogni i esiste $H_{p_i}\leqslant G_{p_i}$ tale che $|H_{p_i}|=p^{a_i}$. Poiché:

$$G = \mathbb{Z}/p^{n_1}\mathbb{Z} \times \dots \mathbb{Z}/p^{n_s}\mathbb{Z}$$
 con $\sum n_i = e$

possiamo costruire sottogruppi di ogni ordine 9 ; inoltre, dato che G è abeliano il prodotto di sottogruppi è un sottogruppo:

$$H_{p_1} \dots H_{p_r} < H$$

e inoltre:

$$H_{n_1} \dots H_{n_r} \cong H_{n_1} \times \dots \times H_{n_r}$$

poiché $H_{p_i} \cap H_{p_i} = \{e\}$, dunque:

$$|H_{p_1} \dots H_{p_r}| = \prod |H_{p_i}| = \prod p_i^{a_i} = d$$

e quindi otteniamo il sottogruppo di ordine d voluto.

Osservazione 1.94 — Se G non è abeliano e $d \mid |G|$ non è detto che G abbia sottogruppi di ordine d.

 $^{{}^9{}m Ad}$ esempio $|H_p|=p^{72}$, preso $G_p=\mathbb{Z}/p^{30}\mathbb{Z}\times\mathbb{Z}/p^{30}\mathbb{Z}\times\mathbb{Z}/p^{30}\mathbb{Z}$, può essere ottenuto come $H_p=\mathbb{Z}/p^{30}\mathbb{Z}\times\mathbb{Z}/p^{30}\mathbb{Z}\times p^{18}\mathbb{Z}/p^{30}\mathbb{Z}$.

Esempio 1.95 (A_4 non contiene sottogruppi di ordine 6)

Sappiamo che $|\mathcal{A}_4| = 4!/2 = 12$, se $\exists H < \mathcal{A}_4$ di ordine 6, allora $H \triangleleft \mathcal{A}_4$; per Cauchy $\exists x \in H : \operatorname{ord}(x) = 2$, con $x = (a\ b)(c\ d)$, deve essere quindi che:

$$\mathcal{C}\ell_{\mathcal{A}_4}(x) \subset H$$

poiché $H \triangleleft A_4$ e per definizione è unione di classi di coniugio in A_4 . Sappiamo che:

$$\mathcal{C}\ell_{\mathcal{A}_4}(x) = \{(1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\}$$

Visto che $|\mathcal{C}\ell_{\mathcal{A}_4}((a\ b)(c\ d))| = 3$, allora $\mathcal{C}\ell_{\mathcal{A}_4}((a\ b)(c\ d)) = \mathcal{C}\ell_{S_4}((a\ b)(c\ d))$, dunque se $H \triangleleft \mathcal{A}_4 \implies H \supset \{e, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\} = V^a$, allora V < H, ma $4 \nmid 6 \implies$ assurdo.

Lemma 1.96

Sia G un p-gruppo e $H \leq G$, allora $H \leq N_G(H)$.

Dimostrazione.

Definizione 1.97. Dato G un gruppo finito e p un primo, tali che $|G| = p^n m$, con $p^n \parallel |G|^{10}$ e $n \ge 1$ e (m, p) = 1, allora un sottogruppo di G di ordine p^n prende il nome di p-sottogruppo di Sylow (p-Sylow).

^aV prende il nome di **gruppo di Klein** o **Klein 4-group**.

 $^{^{10}}$ Il simbolo $\|$ indica la divisibilità esatta, ovvero p^n è la massima potenza di p che divide |G|.

 $^{^{11}}$ I p-sottogruppi di Sylow possono anche essere pensati come p-sottogruppi di ordine massimale.

Teorema 1.98 (Teorema Di Sylow)

Sia G un gruppo finito, con $|G| = p^n m$, con p primo, $n \ge 1$ e (m, p) = 1 a, allora:

- (1) $\forall \alpha : 0 < \alpha < n, \exists H \leqslant G : |H| = p^{\alpha}$. (Esistenza)
- (2) $\forall \alpha : 0 \leq \alpha \leq n-1$, ogni sottogruppo di ordine p^{α} è contenuto in un sottogruppo di ordine $p^{\alpha+1}$. In particolare, ogni p-sottogruppo è contenuto in un p-sottogruppo di Sylow. (Inclusione)
- (3) Due qualunque p-sottogruppi di Sylow di G sono coniugati (quindi tutti i p-sottogruppi di ordine massimale sono isomorfi). (Coniugio)
- (4) Sia n_p il numero di p-sottogruppi di Sylow di G, allora: (Numero)

$$n_p \mid |G|$$
 e $n_p \equiv 1 \pmod{p}$ e $n_p = [G:N_G(S)]^b$

Dimostrazione. Dimostriamo tutte le affermazioni del teorema:

(1) Dimostriamo che $\forall \alpha : 0 \leq \alpha \leq n$ esiste almeno un sottogruppo di ordine p^{α} ; sia $\mathcal{M} = \{X \subset G | \#X = p^{\alpha}\}$, allora:

$$|\mathcal{M}| = {|G| \choose |X|} = {p^n m \choose p^{\alpha}} = \frac{p^n m (p^n m - 1) \dots (p^n m - p^{\alpha} + 1)}{p^{\alpha} (p^{\alpha} - 1) \dots (p^{\alpha} - p^{\alpha} + 1)} {}_{12}$$

Possiamo riscrivere il prodotto dei termini nel modo seguente:

$$\prod_{i=0}^{p^{\alpha}-1} \frac{p^n m - i}{p^{\alpha} - i} = p^{n-\alpha} m \prod_{i=1}^{p^{\alpha}-1} \frac{p^n m - i}{p^{\alpha} - i}$$

dove nell'ultimo passaggio abbiamo raccolto il primo termine, $p^{n-\alpha}m$, e lo abbiamo portato fuori dalla produttoria.

Osserviamo a questo punto che $p^{n-\alpha}$ è la più grande potenza di p che divide $|\mathcal{M}|^{13}$, infatti, si osserva che $p \nmid \prod_{i=1}^{p^{\alpha}-1} \frac{p^n m-i}{p^{\alpha}-i}$, cioè $\forall \in \{1, \ldots, p^{\alpha}-1\}$ si ha che $p \nmid \frac{p^n m-i}{p^{\alpha}-i}$, come si osserva infatti:

$$\nu_p(p^n m - i) = \nu_p(p^\alpha - i) = \nu_p(i)$$

dunque, se $p \nmid i \implies p^n m - i$ e $p^{\alpha} - i$ non sono divisibili per p; se fosse $i = p^k j$, con (j,p) = 1, allora $p^{\alpha} - i = p^{\alpha} - p^k j = p^k \underbrace{(p^{\alpha-k} - j)}_{\text{non divisibile per } p}$, con $k < \alpha$, (analogamente

per $p^n m - i$), per quanto abbiamo detto deve essere necessariamente che:

$$p^{n-\alpha} \parallel |\mathcal{M}|$$

ovvero $p^{n-\alpha}$ è l'esatta potenza di p che divide $|\mathcal{M}|$. Consideriamo $M \in \mathcal{M}$, allora $gM \in \mathcal{M}$, $\forall g \in G$, dunque possiamo considerare l'azione:

$$\phi: G \longrightarrow S(\mathcal{M}): g \longmapsto \varphi_g$$

^aOvvero $p^n \parallel |G|$, o anche $\nu_p(|G|) = n$ (dove con ν_p intendiamo la valutazione p-adica).

 $^{{}^{}b}$ Con S ci si riferisce a un qualsiasi p-Sylow, per un p fissato.

¹²Si osserva che abbiamo semplificato al numeratore e al denominatore il termine $(p^n m - p^{\alpha})!$.

¹³O anche $p^{n-\alpha} \parallel |\mathcal{M}|$, o ancora $\nu_p(|\mathcal{M}|) = n - \alpha$.

dove $\varphi_q: \mathcal{M} \longrightarrow \mathcal{M}: M \longmapsto gM$ è una bigezione. Data l'azione ϕ sappiamo che:

$$\mathcal{M} = \bigcup_{i=1}^{s} \operatorname{Orb}(M_i) \implies |\mathcal{M}| = \sum_{i=1}^{s} |\operatorname{Orb}(M_i)| = \sum_{i=1}^{s} \frac{|G|}{|\operatorname{St}(M_i)|}$$

unendo ciò a quanto detto si ha che $p^{n-\alpha} \parallel \sum_{i=1}^s \frac{|G|}{|\operatorname{St}(M_i)|}$, quindi non tutte le orbite possono essere divisibili per una potenza maggiore di $p^{n-\alpha}$, ovvero esiste almeno un i tale per cui $p^{n-\alpha+1} \nmid |\operatorname{Orb}(M_i)|$ (ovvero non può essere diviso per una potenza più grande di quanto detto), da ciò segue: $p^{n-\alpha+1} \nmid |\operatorname{Orb}(M_i)| = \frac{|G|}{|\operatorname{St}(M_i)|} = \frac{p^n m}{|\operatorname{St}(M_i)|}$, pertanto deve essere necessariamente che:

$$p^{\alpha} \mid |\operatorname{St}(M_i)| = t$$

cioè, affinché il rapporto non sia divisibile per p^{α} , al denominatore deve esserci una potenza di p maggiore o uguale ad α . D'altra parte, sia $x \in M_i$, la funzione:

$$\varphi_x : \operatorname{St}(M_i) \longrightarrow M_i : y \longmapsto yx$$

è iniettiva¹⁴, dunque $t = |\operatorname{St}(M_i)| \le |M_i| = p^{\alpha}$, segue quindi $t = p^{\alpha}$, pertanto $\operatorname{St}(M_i)$ è il sottogruppo di ordine p^{α} cercato.

(2) Sia S un p-sottogruppo di Sylow di G, con $|S| = p^n$, e sia $H \leq G$, con $|H| = p^{\alpha}$; consideriamo l'insieme G/S = X dato dalle classi laterali di S in G, allora:

$$|X| = [G:S] = \frac{p^n m}{p^n} = m$$

Consideriamo l'azione di H su X data da:

$$\varphi: H \longrightarrow S(X): h \longmapsto \varphi_h$$

con $\varphi_h:X\longrightarrow X:gS\longmapsto hgS$ bigezione; per la formula delle classi si ha:

$$m = |X| = \sum_{i=1}^{r} |\operatorname{Orb}(g_i S)| = \sum_{i=1}^{r} \frac{|H|}{|\operatorname{St}(g_i S)|} = \sum_{i=1}^{r} p^{a_i}$$

(essendo p-gruppi). Poiché per ipotesi $p \nmid m$, allora esiste i tale che $a_i = 0$ (dunque c'è un 1 nella fattorizzazione che impedisce la divisibilità di m per p) $\Longrightarrow \operatorname{Orb}(g_iS) = \{g_iS\} \Longrightarrow \operatorname{St}(g_iS) = H$ (ovvero per tale i si ha una classe laterale g_iS la cui orbita è solo se stessa, e quindi il suo stabilizzatore è tutto H). Da ciò segue che $\forall h \in H$:

$$hg_iS = g_iS \iff hg_i \in g_iS \iff h \in g_iSg_i^{-1} \iff H \subset g_iSg_i^{-1}$$

dove $|g_iSg_i^{-1}| = |S|$ dunque $g_iSg_i^{-1}$ è un p-Sylow ed H di ordine p^{α} è contenuto in un p-Sylow. Questo dimostra il punto (3), ovvero due p-Sylow di G sono coniugati, infatti la relazione trovata vale per ogni α ed in particolare prendendo $|H| = p^n \implies H \leqslant g_iSg_i^{-1}$ ma i due sottogruppi hanno lo stesso ordine, quindi $H = g_iSg_i^{-1}$; pertanto, tutti i p-Sylow per ogni p sono coniugati tra loro in G. Per completare la dimostrazione del punto (2) utilizziamo il risultato del Lemma 1.95, considerando $|H| = p^{\alpha}$, con $\alpha \le n - 1$ e $H \le S$, dunque $H \le N_S(H)^{-15}$, sia

¹⁴Si vede che $\varphi_x(y) = \varphi_x(z) \iff yx = zx \iff y = z$.

 $^{^{15}\}mathrm{Si}$ noti che abbiamo preso il normalizzatore di H in S

ora $\frac{N_S(H)}{H}$, esso è un p-gruppo non banale e per il Teorema di Cauchy esiste una classe laterale $\overline{x}(=xH)$ di ordine p, infine, per il Teorema di Corrispondenza 16 , $\pi_H^{-1}(\langle \overline{x} \rangle)$ è un sottogruppo di $N_S(H)$ che contiene H (sempre per il Teorema Di Corrispondenza) ed ha ordine $p^{\alpha+1}$ (poiché stiamo considerando la controimmagine di un sottogruppo con p elementi, ciascuno dei quali fatto da classi laterali di p^{α} elementi, dunque la cardinalità della controimmagine si ottiene moltiplicando la fibra di ciascun elemento, che appunto ha ordine p^{α} , per il numero di elementi p).

(4) Sia n_p il numero dei p-sottogruppi di Sylow, per quanto detto al punto (3) i p-sottogruppi di Sylow sono tutti coniugati, dunque per ciò che abbiamo visto sul numero di coniugi rispetto all'azione di coniugio si ha $n_p = |\mathcal{C}\ell(S)| = [G:N_G(S)]$, da cui:

$$n_p = \frac{|G|}{|N_G(S)|} \implies |G| = n_p|N_G(S)| \implies n_p \mid |G|$$

Sia X l'insieme dei p-Sylow di G, consideriamo l'azione di coniugio:

$$\phi: S \longrightarrow S(X): s \longmapsto \varphi_s$$

con $\varphi_s: X \longrightarrow X: H \longmapsto sHs^{-1}$ bigezione; ϕ ha un'unica orbita banale, ovvero quella del gruppo S, $Orb(S) = \{S\}$, infatti, per ogni altra orbita si ha:

$$Orb(H) = \{sHs^{-1} | s \in S\} = \{H\} \iff sHs^{-1} = H \qquad \forall s \in S$$

ovvero:

$$S \subset N_G(H) \qquad \forall s \in S$$

ma sappiamo anche che $H \leq N_G(H)$, pertanto si deve avere che:

$$HS < N_G(H)$$

(poiché S normalizza H il prodotto di sottogruppi da un sottogruppo), ma questo è assurdo se $S \neq H$, perché avremmo:

$$|SH| = \frac{|S||H|}{|S \cap H|} = \frac{p^n \cdot p^n}{p^k} {}^{17} = p^{2n-k} \nmid |G|$$

Quindi esiste un'unica orbita banale e applicando la formula delle classi otteniamo:

$$n_p = |X| = \sum_{i=1}^r \underbrace{|\operatorname{Orb}(H_i)|}_{p^{\alpha_i} \neq 1} + \underbrace{|\operatorname{Orb}(S)|}_{=1} = pf + 1 \qquad f \in \mathbb{Z}$$

o equivalentemente $n_p \equiv 1 \pmod{p}$.

Tra i sottogruppi di $\frac{N_S(H)}{H}$ ed i sottogruppi di $N_S(H)$ che contengono H.

 $^{^{17}}k < n$.

Corollario 1.99

Sia G un gruppo abeliano finito, $\forall p$ primo tale che $p \mid |G|$, G(p) è l'unico p-Sylow di G. Inoltre G è il prodotto diretto dei suoi p-Sylow:

$$G \cong G(p_1) \times \ldots \times G(p^r)$$

con $|G| = \prod p_i^{e_i}$.

Dimostrazione.

Esempio 1.100 (Classificazione dei gruppi di ordine 12)

Poiché $12=2^2\cdot 3$, per Sylow, sappiamo che $\exists P_2,P_3$, con P_2 2-Sylow, P_3 3-Sylow e $|P_2|=4$, $|P_3|=3$; abbiamo che $P_2\cap P_3=\{e\}$ poiché p-gruppi distinti, dunque $G=P_2P_3$, in quanto:

$$|P_2P_3| = \frac{|P_2||P_3|}{|P_2 \cap P_3|} = \frac{4 \cdot 3}{1} = 12$$

inoltre, almeno uno tra P_2 e P_3 è normale. Se $P_3 \triangleleft G$ allora abbiamo un sottogruppo normale; se $P_3 \not \subset G$, allora osserviamo che, per quanto detto al punto (4) del Teorema Di Sylow, possiamo avere solo che $n_3 = 1, 4$, ma non essendo P_3 normale n_3 non può essere 1, dunque $n_3 = 4$; da ciò segue che in G ci sono 8 elementi di ordine 3^a e 4 elementi di ordine diverso da 4, che quindi formano l'unico 2-Sylow, equivalentemente $n_2 = 1$, e quindi P_2 è normale. Osserviamo che supponendo invece $P_2 \not \subset G$, si arriva simmetricamente a concludere che $P_3 \triangleleft G$, pertanto uno dei due sottogruppi di Sylow è necessariamente normale e in entrambi i casi sono soddisfatte le ipotesi del Teorema 1.78, segue che G è un prodotto semidiretto tra P_2 e P_3 . Studiamo separatamente i due casi.

 $^{^{}a}4 \cdot 3 - 4 = 8.$

Esempio 1.101 $(G \cong P_2 \rtimes_{\varphi} P_3)$

Se $P_2 \triangleleft G$, allora $G \cong P_2 \rtimes_{\varphi} P_3$. P_2 ha ordine 4, dunque è $\mathbb{Z}/4\mathbb{Z}$ o $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, mentre P_3 è necessariamente $\mathbb{Z}/3\mathbb{Z}$; nel primo caso abbiamo:

$$\mathbb{Z}/4\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}/3\mathbb{Z} \qquad \text{con} \qquad \varphi: \mathbb{Z}/3\mathbb{Z} \longrightarrow \operatorname{Aut}(\mathbb{Z}/4\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}$$

in questo caso l'unica possibilità è $[1]_3 \longmapsto id$, dunque il prodotto semidiretto è in realtà sempre un prodotto diretto, dunque il primo gruppo trovato è:

$$\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \cong \mathbb{Z}/12\mathbb{Z}$$

nel secondo caso abbiamo:

$$(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}) \rtimes_{\varphi} \mathbb{Z}/3\mathbb{Z}$$
 con $\varphi : \mathbb{Z}/3\mathbb{Z} \longrightarrow \operatorname{Aut}(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}) \cong S_3$

a questo punto, possiamo o mandare $[1]_3 \longmapsto id$ ottenendo il prodotto diretto:

$$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$$

oppure mandare $[1]_3$ in un altro elemento il cui ordine divida 3 (in questo caso uno dei due 3-cicli), dunque abbiamo due scelte per $\varphi([1]_3)$; entrambe le scelte danno origine a due prodotti semidiretti isomorfi^a. Osserviamo che abbiamo:

$$(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}) \rtimes_{\varphi} \mathbb{Z}/3\mathbb{Z} = G \hookrightarrow S_4$$

infatti, G agisce per coniugio sull'insieme $\{P_3, P_3', P_3'', P_3'''\}$ dei quattro 3-Sylow di G, pertanto abbiamo l'azione transitiva $\phi: G \longrightarrow S(X) \cong S_4$, con ker $\phi = \{id\}$ (dunque è un'azione fedele). Si verifica facilmente che l'unica possibilità è che G sia isomorfo al gruppo alternante di 4 elementi, dunque abbiamo ottenuto il gruppo:

 \mathcal{A}_4

^aCome nel caso dei gruppi di ordine pq.

Esempio 1.102 $(G \cong P_3 \rtimes_{\varphi} P_2)$

Se $P_3 \triangleleft G$, allora $G \cong P_3 \rtimes_{\varphi} P_2$. Analogamente a quanto visto prima P_2 ha ordine 4, dunque è $\mathbb{Z}/4\mathbb{Z}$ o $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, e P_3 è $\mathbb{Z}/3\mathbb{Z}$. Il primo prodotto che abbiamo è:

$$\mathbb{Z}/3\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}/4\mathbb{Z} \quad \text{con} \quad \varphi: \mathbb{Z}/4\mathbb{Z} \longrightarrow \operatorname{Aut}(\mathbb{Z}/3\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}$$

dunque $[1]_4 \longmapsto id$, -id, nel primo caso riotteniamo il prodotto diretto e $\mathbb{Z}/12\mathbb{Z}$, nel secondo caso invece otteniamo un prodotto semidiretto che ci dà il gruppo:

$$\mathbb{Z}/3\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}/4\mathbb{Z}$$

L'ultimo prodotto possibile è:

$$\mathbb{Z}/3\mathbb{Z} \rtimes_{\varphi} (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})$$
 con $\varphi : \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \longrightarrow \operatorname{Aut}(\mathbb{Z}/3\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}$

se mandassimo tutti gli elementi nell'identità otterremmo un prodotto semidiretto, alternativamente, riscrivendo $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ come $\langle x \rangle \times \langle y \rangle$ (i cui elementi saranno $\{e,x,y,xy\}$), abbiamo due elementi di ordine 2 che vanno in -id e l'elemento neutro e un altro elemento di ordine 2 che vanno in id. Possiamo dunque costruire tre prodotti semidiretti che danno origine a gruppi isomorfi, supponiamo (WLOG) che:

$$\varphi_x = id$$
 $\varphi_y = -id$ $\varphi_{xy} = -id$

dunque abbiamo:

$$\langle x \rangle \times \langle y \rangle \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$$
 e $\langle z \rangle \cong \mathbb{Z}/3\mathbb{Z}$

possiamo osservare che:

$$\varphi_x(Z) = xzx^{-1} = id(z) = z \implies x \text{ commuta con } z$$

similmente:

$$\varphi_y(z) = yzy^{-1} = -id(z) = -z$$

dunque il sottogruppo generato da y e z è:

$$\langle y, z | y^2 = 1, z^3 = 1, yzy^{-1} = z^{-1} \rangle \cong D_3$$

quindi il gruppo che si ottiene con i tre prodotti semidiretti è $\mathbb{Z}/2\mathbb{Z} \times D_3$ (il prodotto diretto deriva dal fatto che x commuta sia con y che con z), ovvero:

 D_6

Abbiamo qundi classificato tutti i gruppi di ordine 12:

$$\mathbb{Z}/12\mathbb{Z}$$
 $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$ \mathcal{A}_4 $\mathbb{Z}/3\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}/4\mathbb{Z}$ D_6

§1.15 Gruppo dei Quaternioni

Definizione 1.103. Si definisce gruppo dei **quaternioni** il gruppo con la seguente presentazione:

$$Q_8 = \langle i, j | i^4 = 1, i^2 = j^2, ij = j^3 i \rangle$$

Osservazione 1.104 (Ordini di $i \in j$) — Osserviamo che ord(i) = 4, per la definizione che ne abbiamo dato, da ciò si ricava che, essendo $j^2 = i^2$, allora $j^4 = 1 \implies \operatorname{ord}(j) \mid 4$, ciò unito al fatto che:

$$\operatorname{ord}(j^2) = \frac{\operatorname{ord}(j)}{(2,\operatorname{ord}(j))} = \operatorname{ord}(i^2) = 2$$

implica che ord(j)=4. Dunque abbiamo due gruppi cicl
ci di ordine 4, $\langle i \rangle$ e $\langle j \rangle$, con $\langle i \rangle \cap \langle j \rangle = \{1, i^2=j^2\}$.

Dalla presentazione del gruppo, sappiamo che $Q_8 = \langle i \rangle \langle j \rangle$ dunque possiamo stabilire l'ordine:

$$|Q_8| = |\langle i \rangle \langle j \rangle| = \frac{|\langle i \rangle| |\langle j \rangle|}{|\langle i \rangle \cap \langle j \rangle|} = \frac{4 \cdot 4}{2} = 8$$

quindi il gruppo dei quaternioni ha 8 elementi, dati da:

$$Q_8 = \{1, i, j, i^2 = j^2, i^3, j^3, ij, i^3j\}$$

Osservazione 1.105 — Q_8 non è abeliano perché:

$$ij = j^3 i = j^{-1} i \neq ji$$

Osservazione 1.106 — Osserviamo che $\langle i \rangle$, $\langle j \rangle \triangleleft Q_8$ perché hanno indice 2, inoltre $\langle i^2 \rangle$, $\langle j^2 \rangle \triangleleft Q_8$ (per verifica diretta).

Ricordando che un sottogruppo di ordine 2 è normale se e solo se è un sottogruppo di Z(G) 18, possiamo osservare che:

Osservazione 1.107 — $\langle i^2 \rangle = Z(Q_8)$, infatti, per quanto detto si deve avere che $\langle i^2 \rangle \leqslant Z(Q_8)$, inoltre Q_8 è un p-gruppo non abeliano, ed essendo $|Q_8| = p^3$ segue che:

$$|Z(Q_8)| = \begin{cases} 1 & \text{assurdo per quanto detto sui p-gruppi} \\ p & \\ p^2 & \text{ma allora } Q_8/Z(Q_8) \text{ ciclico } \Longrightarrow Q_8 \text{ abeliano} \\ p^3 & \Longrightarrow Z(Q_8) = Q_8, \text{ assurdo} \end{cases}$$

ovvero $|Z(Q_8)| = 2$ e quindi è proprio $\langle i^2 \rangle$

Posto convenzionalmente ij = k, gli elementi si possono riscrivere anche come:

$$Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$$

con
$$i^2 = -1$$
, $i^3 = -i$, $j^3 = -j$, $i^3j = -k$.

Infatti, preso $H = \{e, h\} \leq G$, allora $gHg^{-1} = H$, $\forall g \in G$, ovvero $ghg^{-1} \in H \iff ghg^{-1} = h \iff gh = hg$, $\forall g \in G$, dunque $h \in Z(G)$ (nel caso in cui $ghg^{-1} = e$, allora h = e, e ovviamente appartiene al centro), pertanto $H \leq Z(G)$.

Osservazione 1.108 (Prodotto in Q_8) — I prodotti tra gli elementi di Q_8 seguono il 3-ciclo:

che percorso in senso orario ci dà i prodotti:

$$ij = k$$
 $jk = i$ $ki = j$

ed in senso antiorario:

$$ji = -k$$
 $ik = -j$ $kj = -i$

Le operazioni fatte in questo modo sono equivalenti a quelle che si ottengono con le regole di commutazione della presentazione, ad esempio:

$$k^2 = (ij)^2 = ijij = ijj^3i = i^2$$

Osservazione 1.109 (Ordine degli elementi) — Dunque in Q_8 1 ha ordine 1, -1 ha ordine 2, mentre i, -i, j, -j, k, -k hanno ordine 4.

Abbiamo visto che Q_8 è un gruppo di ordine 8 non è abeliano, e per quanto detto $Q_8 \cong D_4$, poiché ha Q_8 ha sei elementi di ordine 4, mentre D_4 ne ha soltanto uno.

Osservazione 1.110 (Sottogruppi di Q_8) — Per quanto riguarda i sottogruppi di Q_8 osserviamo in primis che $\langle -1 \rangle = Z(Q_8)$ ed è caratteristico (perché è il centro oppure perché è l'unico sottogruppo di ordine 2); $\langle i \rangle$, $\langle j \rangle$, $\langle k \rangle$ sono sottogruppi di ordine 4, dunque sono normali. Abbiamo quindi dimostrato che tutti i sottogruppi (includendo ovviamente quelli banali) di Q_8 sono normali.

Concludiamo la discussione su Q_8 osservando che non può essere prodotto semidiretto di due suoi sottogruppi, infatti $\forall H_1, H_2 \leq Q_8$ si ha $H_1 \cap H_2 \neq \{1\}$, infatti, l'intersezione contiene sempre il sottogruppo $\{1, -1\}$.

Esercizio 1.111. Dimostrare che $Q_8 \hookrightarrow GL_2(\mathbb{C})$.

 \Box

A questo punto siamo pronti per classificare tutti i gruppi di ordine 8:

Esempio 1.112 (Classificazione dei gruppi di ordine 8)

Distinguiamo innanzitutto i gruppi in base all'abelianità:

• Se G è abeliano, allora per il nel Teorema di Struttura abbiamo che $G \cong G(2)$ e per la 2-componente abbiamo le seguenti possibilità:

$$\mathbb{Z}/8\mathbb{Z}$$
 $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$

• Se G non è abeliano, allora ha almeno un elemento di ordine 4 (se avesse tutti elementi di ordine 2 sarebbe isomorfo a $(\mathbb{Z}/2\mathbb{Z})^3$), sia $a \in G$ tale che ord(a) = 4, allora $\langle a \rangle \triangleleft G$ e:

$$G_{\langle a \rangle} = \{ \langle a \rangle, b \langle a \rangle \} \qquad b \in G \setminus \langle a \rangle$$

dove deve essere $b^2 \langle a \rangle = \langle a \rangle$, infatti se fosse $b^2 \langle a \rangle = b \langle a \rangle \implies b \langle a \rangle = \langle a \rangle \implies b \in \langle a \rangle$, che è assurdo, dunque:

$$b^2 \langle a \rangle = \langle a \rangle \implies b^2 \in \{e, a, a^2, a^3\}$$

ma non può essere che $b^2=a,a^3,$ altrimenti b avrebbe ordine 8, dunque rimangono soltanto i casi $b^2=1$ e $b^2=a^2.$

(1) Se $a^4 = 1$ e $b^2 = 1$, allora $G = \{1, a, a^2, a^3, b, ba, ba^2, ba^3\}$ da cui (si verificano facilmente le ipotesi del Teorema 1.78) segue:

$$G \cong \langle a \rangle \rtimes_{\varphi} \langle b \rangle \cong D_4$$

dove $\varphi : \langle b \rangle \longmapsto \operatorname{Aut}(\langle a \rangle) \cong \mathbb{Z}/2\mathbb{Z} : b \longmapsto \varphi_b \in \varphi_b : \langle a \rangle \longmapsto \langle a \rangle : a \longmapsto a^{-1}$ (ovvero $\varphi_b = -id$, se avessimo scelto l'identità avremmo ottenuto uno dei prodotti diretti già visti sopra).

(2) Se $a^4 = 1$ e $b^2 = a^2$, osserviamo che $bab^{-1} \in \langle a \rangle$ (essendo il generato da a normale in G), inoltre non può essere che $bab^{-1} = 1$ (altrimenti a = 1) o $bab^{-1} = a^2$ (poiché il coniugio conserva l'ordine degli elementi) e non piò nemmeno essere che $bab^{-1} = a$ (poiché abbiamo supposto che G non sia commutativo). Pertanto abbiamo necessariamente $bab^{-1} = a^3 \iff ba = a^3b$, da cui segue:

$$G \cong Q_8$$

dove l'isomorfismo manda $a \longmapsto i \in b \longmapsto j$.

Dunque i gruppi di ordine 8 sono:

$$\mathbb{Z}/8\mathbb{Z}$$
 $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ D_4 Q_8

Esercizio 1.113. Determinare il minimo n tale che $Q_8 \hookrightarrow S_n$.

Soluzione. Osserviamo inizialmente che per il Teorema di Cayley $n \leq 8$ e che per quello di Lagrange l'ordine dell'immagine di Q_8 deve dividere quello di S_n , pertanto $n \geq 4$, dunque abbiamo un numero finito di possibilità:

$$S_4, S_5, S_6, S_7, S_8$$

Se Q_8 si immergesse in S_4 , con $|S_4| = 2^3 \cdot 3$, sarebbe un suo 2-Sylow; poiché D_n si immerge sempre in S_n ¹⁹, sappiamo che $D_4 \hookrightarrow S_4$, ed in particolare D_4 è un 2-Sylow di S_4 , ma ciò significa che Q_8 non è in S_4 , poiché non è un conjugato di D_4 .

Si ragiona in maniera analoga per S_5 , infatti $|S_5| = 2^3 \cdot 3 \cdot 5$ e $D_4 \subset S_4 \subset S_5$, dunque i due 2-Sylow di S_4 sono isomorfi a quelli di S_5 , ed ancora una volta ciò significa che Q_8 non si immerge nel gruppo.

Sia $|S_6| = 2^4 \cdot 3^2 \cdot 5$, detto P_2 un 2-Sylow di S_6 , osserviamo che se fosse $Q_8 \hookrightarrow S_6$, dovremmo avere:

$$i \longmapsto \sigma$$
 $j \longmapsto \rho$ $k \longmapsto \sigma \rho = \eta$

con $\operatorname{ord}(\sigma) = \operatorname{ord}(\rho) = 4$ e $\sigma^2 = \rho^2 = \eta^2$, dove $\operatorname{ord}(\sigma^2) = \operatorname{ord}(\rho^2) = \operatorname{ord}(\eta^2) = 2$. Osserviamo che le permutazioni di ordine 4 in S_6 possono essere soltanto 4-cicli o 4-cicli uniti a 2-cilci, mentre le permutazioni di ordine 2 sono prodotto di trasposizioni (al più tre, essendo in S_6).

Osservazione 1.114 — Osserviamo che una permutazione è un quadrato se e solo se i cicli di lunghezza pari compaiono a coppie. Infatti:

• Se η è un k-ciclo, con k dispari, η è un quadrato di un k-ciclo, ovvero:

$$\eta = \eta^{k+1} = \left(\eta^{\frac{k+1}{2}}\right)^2$$

Se η è un k-ciclo, con k pari, allora si verifica che:

$$(a_1 \ldots a_k)(b_1 \ldots b_k) = (a_1 b_1 \ldots a_k b_k)^2$$

• Se $x^2 = (\eta_1 \dots \eta_2)^2 = \eta_1^2 \dots \eta_s^2$, allora otteniamo cicli di lunghezza dispari e coppie di cicli.

Ad esempio, in S_6 , una coppia di 3-cicli può essere sia un quadrato di un ciclo di lunghezza pari, sia il quadrato di altri due 3-cicli:

$$(1\ 2\ 3)(4\ 5\ 6) = (1\ 4\ 2\ 5\ 3\ 6)^2 = ((1\ 2\ 3)(4\ 5\ 6))^2$$

mentre in S_4 una coppia di cicli di lunghezza pari può essere soltanto il quadrato di un 4-ciclo:

$$(1\ 2)(3\ 4) = ((1\ 4\ 2\ 3))^2 = ((1\ 3\ 2\ 4))^2$$

Dunque il fatto che $\sigma^2 = \rho^2 = \eta^2$ hanno ordine 2 (quindi sono fatte da sole trasposizioni) e che sono quadrati (quindi i cicli di lunghezza pari compaiono a coppie), ci dice che le trasposizioni sono prodotti di un numero pari di trasposizioni, pertanto l'unica possibilità è che:

$$\sigma^2 = \rho^2 = \eta^2 = (a\ b)(c\ d)$$

 $^{^{19}}$ In tal caso infatti basta mandare $x \in D_4$ nella corrispondete permutazione dei vertici.

Risolvendo $x^2 = (1\ 2)(3\ 4)$, otteniamo:

$$x_1 = (1 \ 3 \ 2 \ 4)$$
 $x_2 = (1 \ 4 \ 2 \ 3)$ $x_3 = (1 \ 3 \ 2 \ 4)(5 \ 6)$ $x_4 = (1 \ 4 \ 2 \ 3)(5 \ 6)$

abbiamo quindi 4 soluzioni in S_6 , mentre in Q_8 ne avevamo 6, pertanto nemmeno S_6 contiene una copia isomorfa di Q_8 .

 Q_8 non si immerge nemmeno in S_7 perché i 2-Sylow di S_7 sono isomorfi a quelli di S_6 , e quindi siamo nello stesso caso di prima.

Dunque per esclusione deve essere necessariamente che:

$$Q_8 \hookrightarrow S_8 \implies n = 8$$

Per Cayley l'immersione è di Q_8 in $S(Q_8)$, dunque la mappa che realizza ciò è data da:

$$i \longmapsto \varphi_i \quad \text{con} \quad \varphi_i : Q_8 \longrightarrow Q_8 : x \longmapsto ix$$

in particolare con la notazione dei cicli abbiamo che l'immagine di φ_i di Q_8 è data da:

$$(1 i - 1 i)(j k - j - k)$$

analogamente per $\varphi_j(Q_8)$:

$$(1 \ j \ -1 \ -j)(i \ -k \ -i \ k)$$

e numerando in qualsiasi ordine gli elementi di Q_8 possiamo scrivere le permutazioni corrispondenti in S_8 :

$$i \longmapsto (1 \ 2 \ 3 \ 4)(5 \ 6 \ 7 \ 8) \qquad j \longmapsto (1 \ 5 \ 2 \ 6)(3 \ 8 \ 4 \ 7)$$

Esempio 1.115 (Classificazione dei gruppi di ordine 30)

Osserviamo che $|G| = 2 \cdot 3 \cdot 5$ e distinguiamo due casi:

• Se G è abeliano, allora per il Teorema di Struttura $G \cong G(2) \times G(3) \times G(5)$, dunque l'unica possibilità è che il gruppo sia ciclico:

$$G \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z} \cong \mathbb{Z}/30\mathbb{Z}$$

Se G non è abeliano, osserviamo che (in generale) 30 = 2d, con d dispari, dunque G ha un sottogruppo di ordine 15, che è normale in quanto ha indice 2 ed è ciclco, in quanto è un gruppo di ordine pq con p ∤ q − 1, pertanto G contiene una copia isomorfa di Z/15Z. Per Cauchy esiste un elemento di ordine 2 e quindi anche una copia isomorfa a Z/2Z in G (in particolare potevamo prendere direttamente il 2-Sylow), dunque i due gruppi verificano le ipotesi del Teorema 1.78, da cui: ^a

$$G \cong \mathbb{Z}/15\mathbb{Z} \rtimes_{\omega} \mathbb{Z}/2\mathbb{Z}$$

con:

$$\varphi: \mathbb{Z}/2\mathbb{Z} \longrightarrow \operatorname{Aut}(\mathbb{Z}/15\mathbb{Z}) \cong \mathbb{Z}/15\mathbb{Z}^* \cong \mathbb{Z}/3\mathbb{Z}^* \times \mathbb{Z}/5\mathbb{Z}^* \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$$

dove abbiamo che $[1]_2 \longmapsto \varphi_y$, e adottando la notazione moltiplicativa, φ_y : $\mathbb{Z}/15\mathbb{Z} \longmapsto \mathbb{Z}/15\mathbb{Z}: \overline{x} \longmapsto \overline{x}^l$, abbiamo $\operatorname{ord}(\varphi_y) \mid 2$, dunque ci sono due possibilità, o $\varphi_y = id$ (quindi l = 1), o $\varphi_y^2 = id \Longrightarrow \varphi_y^2(x) = (x^l)^l = x^{l^2} = x$, da cui segue (essendo x un generatore di $\mathbb{Z}/15\mathbb{Z}$):

$$l^2 \equiv 1 \pmod{15} \implies x \equiv \pm 1, \pm 4 \pmod{15}$$

Dunque, per l = 1 otteniamo il prodotto diretto già trovato sopra, per gli altri tre possibili l invece otteniamo 3 gruppi non isomorfi di ordine 30, infatti, per l = -1, abbiamo:

$$\varphi_y(x) = x^{-1} \iff yxy^{-1} = x^{-1} \implies \mathbb{Z}/15\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}/2\mathbb{Z} \cong D_{15}$$

Per l=4 invece si ottiene $D_5 \times \mathbb{Z}/3\mathbb{Z}$ e per l=-4 si ottiene $D_3 \times \mathbb{Z}/5\mathbb{Z}$ ^b, i quali sono gruppi non isomorfi, ad esempio perché hanno centri diversi:

$$Z(D_{15}) = \langle id \rangle$$
 $Z(D_5 \times \mathbb{Z}/3\mathbb{Z}) = Z(D_5) \times Z(\mathbb{Z}/3\mathbb{Z}) \cong \mathbb{Z}/3\mathbb{Z}$ $Z(D_3 \times \mathbb{Z}/5\mathbb{Z}) \cong \mathbb{Z}/5\mathbb{Z}$

I gruppi di ordine 30 sono quindi:

$$\mathbb{Z}/30\mathbb{Z}$$
 D_{15} $D_5 \times \mathbb{Z}/3\mathbb{Z}$ $D_3 \times \mathbb{Z}/5\mathbb{Z}$

^aLa direzione del prodotto semidiretto è data dal fatto che $\mathbb{Z}/15\mathbb{Z}$ è l'unico normale tra i due sottogruppi.

^bAndrebbe aggiunto il perché ma non è chiarissimo dalle note della Del Corso.