Classic McEliece Algorithm Explained in Detail

CONTENT

Chapter 1: Key Generation Phase

Chapter 2: Encapsulation Phase

Chapter 3: Decapsulation Phase

01. Key Generation Phase

The goal of the key generation phase is to produce a public key T and a private key (δ, c, g, a, s) .

- Public Key: T
- Private Key: (δ, c, g, a, s)
 - $lacksquare c = (c_{mt-\mu}, \ldots, c_{mt-1})$
 - $\bullet \quad \alpha = (\alpha'_0, \dots, \alpha'_{n-1}, \alpha_n, \dots, \alpha_{q-1})$

1. Key Generation Steps

1.1 Generate a uniformly random *I*-bit string δ .

This δ serves as the seed for a Pseudorandom Generator (PRG).

1.2 Run $SeededKeyGen(\delta)$ to generate the public and private keys.

- **1.2.1** Compute $E = PRG(\delta)$, which is an $n + \sigma_2 q + \sigma_1 t + l$ bit string.
- **1.2.2** Define δ' as the last l bits of E.

- **1.2.3** Define s as the first n bits of E.
- **1.2.4** Use the next $\sigma_2 q$ bits from E to compute $\alpha_0, \ldots, \alpha_{q-1}$ via the FieldOrdering algorithm. If it fails, set $\delta \leftarrow \delta'$ and restart the algorithm.
- **1.2.5** Use the next $\sigma_1 t$ bits from E to compute g via the Irreducible algorithm. If it fails, set $\delta \leftarrow \delta'$ and restart the algorithm.

Note: As mentioned in Chapter 9 of the code and documentation, this step also involves calculating the control bits for the Benes network corresponding to the permutation $\pi(i)$ stored in the private key sk. This is handled by the control bits from permutation function.

- **1.2.6** Define $\Gamma = (g, \alpha_0, \alpha_1, \dots, \alpha_{n-1})$. (Note that $\alpha_n, \dots, \alpha_{g-1}$ are not used in Γ).
- **1.2.7** Compute $(T, c_{mt-\mu}, \dots, c_{mt-1}, \Gamma') \leftarrow MatGen(\Gamma)$. If it fails, set $\delta \leftarrow \delta'$ and restart the algorithm.
- **1.2.8** Write Γ' as $(g, {\alpha'}_0, {\alpha'}_1, \ldots, {\alpha'}_{n-1})$.
- **1.2.9** Output T as the public key and (δ, c, g, a, s) as the private key, where $c = (c_{mt-\mu}, \ldots, c_{mt-1})$ and $a = (\alpha'_0, \ldots, \alpha'_{n-1}, \alpha_n, \ldots, \alpha_{q-1})$.

1. Key Generation Phase --- 1.2.4 FieldOrdering Algorithm

This algorithm generates the support elements for the Goppa code.

- 1. Take the first σ_2 input bits $b_0, b_1, \ldots, b_{\sigma_2-1}$ and interpret them as an integer a_0 (σ_2 bits): $a_0 = b_0 + 2b_1 + \ldots + 2^{(\sigma_2-1)} * b_{\sigma_2-1}$. Repeat this process to generate a_1, \ldots, a_{q-1} .
- 2. If there are any duplicate values among $a_0, a_1, \ldots, a_{q-1}$, return \perp (failure).
- 3. Sort the pairs (a_i, i) lexicographically to get $(\alpha_{\pi(i)}, \pi(i))$, where π is a permutation of $0, 1, \ldots, q-1$.
- 4. Define α_i as a polynomial: $\alpha_i = \sum_{j=0}^{m-1} \pi(i)_j \cdot z^{(m-1-j)}$.

Here, $\pi(i)_j$ represents the j-th least significant bit of $\pi(i)$. The finite field F_q is constructed as $F_2[z]/f(z)$.

1. Key Generation Phase --- 1.2.5 Irreducible Algorithm (Computing g)

This algorithm takes a $\sigma_1 t$ -bit input string $d_0, d_1, \ldots, d_{\sigma_1 t-1}$ and outputs either \bot (failure) or a monic, irreducible polynomial g of degree t in $F_q[x]$.

1. For each $j \in 0, 1, \ldots, t-1$, define $eta_j = \Sigma_{i=0}^{m-1} d_{\sigma_1 j+i} z^i$.

Within each block of σ_1 input bits, only the first m bits are used. The algorithm ignores the remaining bits.

- 2. Define $\beta = \beta_0 + \beta_1 y + \ldots + \beta_{t-1} y^{(t-1)} \in F_q[y]/F(y)$. This is used to construct a matrix.
- 3. Compute the minimal polynomial g of β over F_q .

By definition, g is monic and irreducible, and $g(\beta)=0$.

• Construct a linearly dependent set: We know g(x) has degree t. Therefore, the t+1 elements $1,\beta,\beta^2,\ldots,\beta^t$ must be linearly dependent in $F_(2^m)t$. This means there exist coefficients $g_0,g_1,\ldots,g_t\in F_2m$, not all zero, such that:

$$g_0 \cdot 1 + g_1 \cdot \beta + g_2 \cdot \beta^2 + \ldots + g_t \cdot \beta^t = 0$$

Since g(x) is monic, we can set $g_t = 1$.

• Build the matrix: Express each power β^k (for $k=0,\ldots,t$) as a polynomial in y of degree less than t:

$$\beta^k = b_{k,0} + b_{k,1}y + \ldots + b_{k,t-1}y^{(t-1)}$$

By expanding the linear dependency equation and setting the coefficient of each power of y to zero, we obtain a txt system of linear equations for the unknown coefficients

$$g_{\scriptscriptstyle 0},\ldots,g_{t-1}.$$

• Matrix Form: The system of equations can be written in matrix form:

```
1  [ b<sub>0</sub>,<sub>0</sub> b<sub>1</sub>,<sub>0</sub> ... b_{t-1},<sub>0</sub> ] [ g<sub>0</sub> ] [ b_{t},0} ]
2  [ b<sub>0</sub>,<sub>1</sub> b<sub>1</sub>,<sub>1</sub> ... b_{t-1},<sub>1</sub> ] [ g<sub>1</sub> ] [ b_{t},1} ]
3  [ : : ... : ] [ : ] =-[ : ]
4  [ b<sub>0</sub>,t-<sub>1</sub> b<sub>1</sub>,t-<sub>1</sub> ... b_{t-1},t-<sub>1</sub>] [ g_{t-1} ] [ b_{t},t-1} ]
```

- Solve the System: Use a method like Gaussian elimination over the field F_2m to solve this linear system and find the unique solution $g_0, g_1, \ldots, g_{t-1}$.
- Construct g(x): The final Goppa polynomial is: $g(x) = g_0 + g_1 x + \ldots + g_{t-1} x^t + \ldots + g_t + \ldots +$
- 4. If the degree of g is t, return g. Otherwise, return \bot .

This check is equivalent to determining if the matrix after Gaussian elimination has a non-zero pivot in every column.

5. This step is not part of the Irreducible algorithm itself but is mentioned on slide 10. The FieldOrdering algorithm (1.2.4) outputs $(\alpha_0, \alpha_1, \dots, \alpha_{q-1})$.

$\textbf{1. Key Generation Phase ---} \ control bits from permutation$

This algorithm is used to compute the control bits for a Benes network to perform a permutation, which is crucial for security and efficiency.

- **Problem Context**: We need to reorder a large set of data (e.g., an array). A naive approach of creating a new array and copying elements can have two major drawbacks:
 - **Security**: In cryptography, data access patterns (e.g., the order of reading memory addresses) can leak secret information. This is known as a **Timing Attack**.
 - **Efficiency**: For hardware implementations, specialized circuits are often much faster than general-purpose memory read/write operations.

- **Permutation Networks**: These are specialized hardware structures designed to solve this problem. They consist of a series of basic "switches" that can realize any permutation of the input data. The **Beneš network** is a classic and efficient type of permutation network. To make the network perform a specific permutation (e.g., transform (a, b, c, d) to (c, a, d, b)), each switch in the network must be set to the correct state (either pass-through or swap inputs). These settings are the **control bits**.
- **Core Problem**: Given a desired permutation π , how do we quickly and correctly compute the set of control bits needed to configure the network?

Beneš Network Decomposition

A key property of a Beneš network for $n=2^k$ inputs is that its permutation π can be decomposed into a composition of three sub-operations:

$$\pi = F \circ M \circ L$$

(Function composition is executed from right to left).

- **L** (**Input Side**): The first layer of switches, controlled by a set of bits l (lastcontrol). It performs conditional swaps on adjacent input pairs (x, x + 1), specifically $(0,1), (2,3), (4,5), \ldots$
- **M** (**Middle**): The core of the network. After the L operation, the data enters two smaller, independent Beneš networks, each of size n/2. M represents the permutation performed by these two sub-networks. M has a crucial **parity-preserving property**: even-indexed inputs are only ever sent to even-indexed outputs, and odd-indexed inputs are only ever sent to odd-indexed outputs. Because of this, M can be decomposed into two independent permutations of size n/2:
 - M_0 : Permutes the even-indexed positions.
 - M_1 : Permutes the odd-indexed positions.
- **F** (Output Side): The final layer of switches, controlled by a set of bits f (firstcontrol). Its function is similar to L, performing conditional swaps on adjacent positions (x, x + 1) to complete the final steps of the permutation.

The core task of the algorithm is to compute the correct f and l and deduce the sub-permutations M_0 and M_1 . Then, the same algorithm is called recursively on M_0 and M_1 until the network size is reduced to 2.

Algorithm Steps

Step 1: Introduce the XbackXforth Transform (Define π)

The algorithm first applies a clever transformation to the original permutation π to get a new permutation π' .

```
\pi' = XbackXforth(\pi), defined as \pi'(x) = \pi(\pi^{-1}(x \oplus 1) \oplus 1) where \oplus is the bitwise XOR operation. This gives \pi' a useful property (Theorem 4.4): cyclemin(\pi')(x \oplus 1) = cyclemin(\pi')(x) \oplus 1
```

This means that if we calculate the "cycle minimum" for an even number x, we can find the cycle minimum for its odd neighbor $x \oplus 1$ with a single XOR operation, effectively halving the computation.

Step 2: Compute Cycle Minimum (*cyclemin*)

The goal is to compute $c(x) = cyclemin(\pi')(x)$.

- **Definition**: A permutation consists of disjoint cycles. $cyclemin(\pi')(x)$ refers to the smallest element in the cycle that contains x. This smallest value is called the **cycle leader** of x.
- **Computation** (*fastcyclemin*): This is an iterative process suitable for parallelization.
 - Let $c^0(x) = x$
 - $ullet c_1(x) = min(c^{0}(x), c^{0}(\pi'(x))) = min(x, \pi'(x))$
 - $c_2(x)=min(c_1(x),c_1(\pi'^2(x)))$ (This finds the minimum among $x,\pi'(x),\pi'^2(x),\pi'^3(x)$)
 - **.**..
 - $c_i(x) = min(c_{i-1}(x), c_{i-1}(\pi'(2^{(i-1))})(x))$ For an input size $n = 2^m$, after m-1 iterations, $c_{m-1}(x)$ will find the minimum value in the entire cycle containing x.

Step 3: Compute first control (f)

$$f_j = c(2j) mod 2$$
 (for j from 0 to $n/2-1$)

The j-th control bit f_j is simply the parity (0 for even, 1 for odd) of the cycle leader c(2j) of the j-th even number 2j.

Step 4: Compute last control (I)

The calculation for l is slightly more complex, depending on both the original permutation π and the F operation (defined by f).

$$l_{ extsf{k}} = F(\pi(2k)) mod 2$$
 (for k from 0 to $n/2-1$)

- 1. Take the k-th even number 2k.
- 2. Find where the original permutation π maps it: $\pi(2k)$.
- 3. Apply the F operation to this result: $F(y) = y \oplus f[y/2]$.
- 4. The parity of the final result is l_k .

Step 5: Compute and Decompose the Middle Permutation M

With F and L known, M can be derived from the relation $\pi = F \circ M \circ L$:

$$M=F^{ extsf{-}_1}\circ\pi\circ L^{ extsf{-}_1}$$

Since F and L are composed of conditional swaps, they are their own inverses ($F^{-1} = F$,

$$L^{-1} = L$$
). So:

$$M=F\circ\pi\circ L$$

Theorem 5.5 guarantees that this M is parity-preserving. It can therefore be decomposed into two sub-permutations:

- $M_0(j) = M(2j)/2$
- $M_1(j) = (M(2j+1)-1)/2$

Recursion and Termination

- Recursive Call: The algorithm is now called on the two new permutations M_0 and M_1 (of size n/2) to repeat steps 1-5 and find their respective control bits.
- **Termination Condition**: The recursion stops when n=2. The permutation is either (0,1)->(0,1) or (0,1)->(1,0), and the control bit is simply $\pi[0]$.
- Combined Result: The final, complete control bit sequence for the n-input network is constructed by concatenating the results: the bits for f, followed by the interleaved bits from the recursive calls on M_0 and M_1 , followed by the bits for l.

1. Key Generation Phase --- 1.2.5 Computing the Systematic Form

This section describes how the public key matrix T is derived from the Goppa code's parity-check matrix.

Case 1: Systematic Form $(\mu, \nu) = (0, 0)$

- 1. Compute the txn matrix $M=h_{i,j}$ over F_q , where $h_{i,j}=a_j{}^i/g(a_j)$, for $i=0,\ldots,t-1$ and $j=0,\ldots,n-1$.
- 2. Expand this into a binary mtxn matrix N by replacing each entry $u_0+u_1z+\ldots+u_{m-1}z^(m-1)$ of M with an m-bit column vector $(u_0,u_1,\ldots,u_{m-1})^{\tau}$.
- 3. Reduce N to systematic form $(I_{mt}|T)$, where I_{mt} is the mtxmt identity matrix. If this fails, return \bot . The right-hand part T is a portion of the public key.
- 4. Return (T, Γ) .

The Goppa Code Parity-Check Matrix (H)

• Phase 1: Initial Form over $GF(2^m)$

The initial parity-check matrix H is constructed as:

All operations (addition, multiplication, inversion) are performed in the finite field $GF(2^m)$

Phase 2: Conversion to a Binary Matrix

The matrix H has elements from $GF(2^m)$, not the bits 0 and 1 (GF(2)) that computers handle directly. A "trace construction" is used for conversion.

• $GF(2^m)$ can be viewed as an m-dimensional vector space over GF(2). This means any element of $GF(2^m)$ can be uniquely represented as an m-bit binary vector.

■ Conversion Process:

- 1. Expand each row of H into m rows.
- 2. Replace each element (from $GF(2^m)$) in the original matrix with its corresponding mx1 binary column vector.
- This results in a binary mtxn parity-check matrix H_bin .

• Using Gaussian elimination, H_bin is converted to systematic form: $H_s y s = [I|T]$

where I is an mtxmt identity matrix and T is the mtx(n-mt) public key matrix.

Case 2: Semi-Systematic Form (General µ, v)

For the general case, the algorithm produces a matrix in semi-systematic form.

- 1. Steps 1 and 2 (calculating M and N) are the same as in the systematic case.
- 2. Reduce N to (μ, ν) -semi-systematic form to get matrix H'. If this fails, return \perp .

In this form, for $0 \leq i < mt - \mu$, the i-th row has its leading 1 at column $c_i = i$. For the remaining rows, the leading 1s are at columns c_i where $mt-\mu \leq c_{mt-\mu} < \ldots < c_{mt-1} < mt-\mu + \nu.$

$$mt - \mu \le c_{mt-\mu} < \ldots < c_{mt-1} < mt - \mu + \nu$$

- 3. Set $(\alpha'_0, \ldots, \alpha'_{n-1}) \leftarrow (\alpha_0, \ldots, \alpha_{n-1})$.
- 4. For i from $mt \mu$ to mt 1 (in order), swap column i with column c_i in H'. Simultaneously, swap a'_i and a'_{c_i} .

After this swap, the i-th row has its leading 1 in the i-th column. If $c_i=i$, no swap is performed.

5. The matrix H' is now in the full systematic form $(I_{mt}|T)$. The algorithm returns $(T, c_{mt-\mu}, \ldots, c_{mt-1}, \Gamma')$, where Γ' contains the modified support elements.

02. Encapsulation Phase

The randomized Encap algorithm takes the public key T as input and outputs a ciphertext Cand a session key K.

Algorithm for non-pc parameter sets:

- 1. Generate a vector $e \in F_2^n$ of weight t using the FixedWeight algorithm.
- 2. Compute C = Encode(e, T).
- 3. Compute K = Hash(1, e, C).
- 4. Output ciphertext C and session key K.

Algorithm for pc parameter sets:

- 1. Generate a vector $e \in F_2^n$ of weight t using the FixedWeight algorithm.
- 2. Compute $C_0 = Encode(e, T)$.
- 3. Compute $C_1 = Hash(2, e)$. Let $C = (C_0, C_1)$.
- 4. Compute K = Hash(1, e, C).
- 5. Output ciphertext C and session key K.

2. Encapsulation Phase --- 2.1 FixedWeight()

This algorithm outputs a vector $e \in F_2^n$ with Hamming weight t.

- 1. Generate $\sigma_1 \tau$ uniformly random bits, where τ is a pre-calculated integer $\tau \geq t$.
- 2. For each $j \in 0, 1, ..., \tau 1$, define d_j by taking a block of σ_1 bits and interpreting the first m of them as an integer.
- 3. Define $a_0, a_1, \ldots, a_{t-1}$ as the first t unique entries selected from $d_0, d_1, \ldots, d_{\tau-1}$ in the range $0, 1, \ldots, n-1$. If fewer than t unique entries are found, restart the algorithm.
- 4. If there are any duplicate elements among $a_0, a_1, \ldots, a_{t-1}$, restart.
- 5. Define the weight-t vector $e = (e_0, e_1, \dots, e_{n-1}) \in F_2^n$ such that for each i, $e_{a_i} = 1$.
- 6. Return e.

2. Encapsulation Phase --- 2.2 Encode(e, T)

This algorithm takes two inputs: a weight-t column vector $e \in F_2$ ⁿ and the public key T, which is an mtxk matrix over F_2 . It outputs a vector $C \in F_2$ ^{mt}.

- 1. Define the public parity-check matrix $H = (I_{mt}|T)$.
- 2. Compute and return $C = He \in F_2^{mt}$.

03. Decapsulation Phase

The Decap algorithm takes a ciphertext C and the private key as input and outputs a session key K.

Algorithm for non-pc parameter sets:

- 1. Set $b \leftarrow 1$.
- 2. Extract $s \in F_2^n$ and $\Gamma' = (g, \alpha'_0, \dots, \alpha'_{n-1})$ from the private key.
- 3. Compute $e \leftarrow Decode(C, \Gamma')$. If $e = \perp$ (decoding failure), set $e \leftarrow s$ and $b \leftarrow 0$.
- 4. Compute K = Hash(b, e, C).
- 5. Output session key K.

Algorithm for pc parameter sets:

- 1. Split the ciphertext C into (C_0, C_1) , where $C_0 \in F_2^{mt}$. Set $b \leftarrow 1$.
- 2. Extract $s \in F_2^n$ and $\Gamma' = (g, \alpha'_0, \dots, \alpha'_{n-1})$ from the private key.
- 3. Compute $e \leftarrow Decode(C_0, \Gamma')$. If $e = \perp$, set $e \leftarrow s$ and $b \leftarrow 0$.
- 4. Compute $C'_1 = Hash(2, e)$.
- 5. If $C'_1 \neq C_1$, set $e \leftarrow s$ and $b \leftarrow 0$.
- 6. Compute K = Hash(b, e, C).
- 7. Output session key K.

3. Decapsulation Phase --- 3.3 Decode(C, Γ')

The Decode function attempts to decode a syndrome $C \in F_2^{mt}$ into an error word e of Hamming weight wt(e) = t such that C = He. If it cannot find such a word, it returns failure (\bot).

The function uses the private key components:

- Γ' has the form $(g, \alpha'_0, \dots, \alpha'_{n-1})$.
- ullet g is a monic, irreducible Goppa polynomial of degree t loaded from sk.
- $\alpha'_0, \ldots, \alpha'_{n-1}$ are distinct elements of F_q , which form the support set L. The permutation to generate these is reconstructed from the Benes network control bits stored in sk.

Algorithm:

- 1. Extend C with k zeros to form $v=(C,0,\ldots,0)\in F_2^n$.
- 2. Find the unique codeword $c \in F_2^n$ such that (1)Hc = 0 and (2) the Hamming distance between c and v is $\leq t$. If no such c exists, return \perp .
- 3. Set e = v + c.
- 4. If wt(e) = t and C = He, return e. Otherwise, return \perp .

3. Decapsulation Phase --- 3.3.1 Finding c (Decoding)

Phase 1: Compute Syndromes and Derive the Key Equation

1. **Syndrome Definition**: Assume the Goppa code is defined by the polynomial g(x) and support set $L = \alpha_0, \ldots, \alpha_{n-1}$. If an error occurs at a set of positions I, the j-th component of the syndrome vector $s = (s_0, \ldots, s_{2t-1})$ is:

$$s_{\, extit{i}} = arSigma_{i}^{\, extit{j}}/g(lpha_{i})^{2}$$

For convenience, this is often expressed as a formal power series called the **syndrome polynomial**:

2. **Error-Locator Polynomial** $\sigma(z)$: This polynomial's roots reveal the error locations.

$$\sigma(z) = arPi_{i \in I} (1 - lpha_i z)$$

- The reciprocal of its roots, $1/\alpha_i$, are the support elements corresponding to the error locations.
- Its degree $deg(\sigma(z))$ is the number of errors, |I|. Since the system can correct up to t errors, $deg(\sigma(z)) \leq t$.
- Its constant term is $\sigma(0) = 1$.
- 3. **Key Equation Derivation**: By multiplying $\sigma(z)$ and S(z), we arrive at the **Key Equation** of decoding theory:

$$\sigma(z)S(z)=\omega(z)$$

where $\omega(z)$ is the **error-evaluator polynomial**. The degree of $\omega(z)$ is less than t.

4. **Meaning (Connection to LFSRs)**: The Key Equation implies that the syndrome sequence s_k can be generated by a Linear Feedback Shift Register (LFSR). For $k \geq L$ (where L is the number of errors), we have:

$$s_{\mathsf{k}} + \sigma_1 s_{k-1} + \ldots + \sigma_L s_{k-L} = 0$$

This means that from term L onwards, each syndrome term can be calculated as a fixed

linear combination of the previous L terms. The coefficients of this linear relationship, $(\sigma_1, \ldots, \sigma_L)$, are precisely the coefficients of the error-locator polynomial $\sigma(z)$. The problem of finding $\sigma(z)$ is equivalent to finding the minimal polynomial of the syndrome sequence.

Phase 2: Solving with the Berlekamp-Massey (BM) Algorithm

The BM algorithm is an efficient method to find the shortest LFSR (and thus the minimal polynomial $\sigma(z)$) for a given sequence $s_0, s_1, \ldots, s_{N-1}$.

Key Variables:

- C(z): The current best guess for $\sigma(z)$.
- L: The length (degree) of the current LFSR/C(z).
- *d*: The discrepancy (error) when predicting the next sequence element.
- B(z): A "backup" polynomial from the last time L was updated.
- b: The discrepancy associated with B(z).
- *m*: A counter for steps since the last *L* update.

Algorithm Iteration (at step N):

1. Calculate Discrepancy d_N :

$$d_N = s_N + \Sigma_{i=1}^L C_i s_{N-i}$$

2. Check Discrepancy:

- If $d_N=0$: The prediction is correct. C(z) is still valid. No changes are needed. Move to the next step N+1.
- If $d_N
 eq 0$: Prediction failed. C(z) must be corrected. The core update formula is: $C_{new}(z) = C_{old}(z) d_N \cdot b^{-_1} \cdot z \cdot B(z)$

(Note: the slides use $z^{(N-m)}$, but a simplified z term is often used in basic descriptions. The core idea is to "patch" the current polynomial using a scaled and shifted version of a previous good polynomial).

3. Update State Variables (only if $d_N \neq 0$):

• If $2L \leq N$: The current length L is "too short" to explain the sequence. We must increase the length.

- 1. $L_{new} = N + 1 L_{old}$
- 2. Update the backup state: The old C(z) and d_N become the new "best snapshot".
 - $lacksquare B(z) \leftarrow C_{old}(z)$
 - $lacksquare b \leftarrow d_N$
 - $lacksquare m \leftarrow N$
- If 2L>N: The length L is still "long enough". We only updated the coefficients of C(z), not its degree. Do not update L, B(z), or b.

Phase 3: Find the Roots of $\sigma(z)$

Once the BM algorithm terminates, we have the error-locator polynomial $\sigma(z)$. The final step is to find the error locations.

- 1. **Iterate through all possible locations**: For each index j from 0 to n-1:
 - a. Get the corresponding support element α_j .
 - b. Evaluate $\sigma(z)$ at $z = \alpha_j^{-1}$.
- 2. Check the result:
 - If $\sigma(\alpha_j^{-1}) = 0$, we have found a root. This means an error occurred at position j.
 - If $\sigma(\alpha_j^{-1}) \neq 0$, there is no error at position j.
- 3. **Record Error Locations**: Create a list of all indices j for which the check in step 2 was true. This list is the set of error positions I, which defines the error vector e.