

- **Exercise 1.2** Show that $\frac{-1+\sqrt{3}i}{2}$ is a cube root of 1 (meaning that its cube equals 1).
- **Exercise 1.3** Prove that -(-v) = v for every $v \in V$.
- **Exercise 1.4** Prove that if $a \in \mathbf{F}$, $v \in V$, and av = 0, then a = 0 or v = 0.
- **Exercise 1.6** Give an example of a nonempty subset U of \mathbf{R}^2 such that U is closed under addition and under taking additive inverses (meaning $-u \in U$ whenever $u \in U$), but U is not a subspace of \mathbf{R}^2 .
- **Exercise 1.7** Give an example of a nonempty subset U of \mathbb{R}^2 such that U is closed under scalar multiplication, but U is not a subspace of \mathbb{R}^2 .
- **Exercise 1.8** Prove that the intersection of any collection of subspaces of V is a subspace of V.
- **Exercise 1.9** Prove that the union of two subspaces of V is a subspace of V if and only if one of the subspaces is contained in the other.
- **Exercise 2.1** Prove that if (v_1, \ldots, v_n) spans V, then so does the list $(v_1 v_2, v_2 v_3, \ldots, v_{n-1} v_n, v_n)$ obtained by subtracting from each vector (except the last one) the following vector.
- **Exercise 2.2** Prove that if (v_1, \ldots, v_n) is linearly independent in V, then so is the list $(v_1 v_2, v_2 v_3, \ldots, v_{n-1} v_n, v_n)$ obtained by subtracting from each vector (except the last one) the following vector.
- **Exercise 2.6** Prove that the real vector space consisting of all continuous realvalued functions on the interval [0, 1] is infinite dimensional.

- **Exercise 3.1** Show that every linear map from a one-dimensional vector space to itself is multiplication by some scalar. More precisely, prove that if dim V = 1 and $T \in \mathcal{L}(V, V)$, then there exists $a \in \mathbf{F}$ such that Tv = av for all $v \in V$.
- **Exercise 3.8** Suppose that V is finite dimensional and that $T \in \mathcal{L}(V, W)$. Prove that there exists a subspace U of V such that $U \cap \text{null } T = \{0\}$ and range $T = \{Tu : u \in U\}$.
- **Exercise 3.9** Prove that if T is a linear map from \mathbf{F}^4 to \mathbf{F}^2 such that null $T = \{(x_1, x_2, x_3, x_4) \in \mathbf{F}^4 : x_1 = 5x_2 \text{ and } x_3 = 7x_4\}$, then T is surjective.
- **Exercise 3.10** Prove that there does not exist a linear map from \mathbf{F}^5 to \mathbf{F}^2 whose null space equals $\{(x_1, x_2, x_3, x_4, x_5) \in \mathbf{F}^5 : x_1 = 3x_2 \text{ and } x_3 = x_4 = x_5\}$.
- **Exercise 3.11** Prove that if there exists a linear map on V whose null space and range are both finite dimensional, then V is finite dimensional.
- **Exercise 4.4** Suppose $p \in \mathcal{P}(\mathbf{C})$ has degree m. Prove that p has m distinct roots if and only if p and its derivative p' have no roots in common.
- **Exercise 5.1** Suppose $T \in \mathcal{L}(V)$. Prove that if U_1, \ldots, U_m are subspaces of V invariant under T, then $U_1 + \cdots + U_m$ is invariant under T.
- **Exercise 5.4** Suppose that $S, T \in \mathcal{L}(V)$ are such that ST = TS. Prove that $\text{null}(T \lambda I)$ is invariant under S for every $\lambda \in \mathbf{F}$.
- **Exercise 5.11** Suppose $S, T \in \mathcal{L}(V)$. Prove that ST and TS have the same eigenvalues.
- **Exercise 5.12** Suppose $T \in \mathcal{L}(V)$ is such that every vector in V is an eigenvector of T. Prove that T is a scalar multiple of the identity operator.
- **Exercise 5.13** Suppose $T \in \mathcal{L}(V)$ is such that every subspace of V with dimension dim V-1 is invariant under T. Prove that T is a scalar multiple of the identity operator.
- **Exercise 5.20** Suppose that $T \in \mathcal{L}(V)$ has dim V distinct eigenvalues and that $S \in \mathcal{L}(V)$ has the same eigenvectors as T (not necessarily with the same eigenvalues). Prove that ST = TS.
- **Exercise 5.24** Suppose V is a real vector space and $T \in \mathcal{L}(V)$ has no eigenvalues. Prove that every subspace of V invariant under T has even dimension.

Exercise 6.2 Suppose $u, v \in V$. Prove that $\langle u, v \rangle = 0$ if and only if $||u|| \le ||u + av||$ for all $a \in \mathbf{F}$.

Exercise 6.3 Prove that $\left(\sum_{j=1}^n a_j b_j\right)^2 \leq \left(\sum_{j=1}^n j a_j^2\right) \left(\sum_{j=1}^n \frac{b_j^2}{j}\right)$ for all real numbers a_1, \ldots, a_n and b_1, \ldots, b_n .

Exercise 6.7 Prove that if V is a complex inner-product space, then $\langle u,v\rangle=\frac{\|u+v\|^2-\|u-v\|^2+\|u+iv\|^2i-\|u-iv\|^2i}{4}$ for all $u,v\in V$.

Exercise 6.13 Suppose (e_1, \ldots, e_m) is an or thonormal list of vectors in V. Let $v \in V$. Prove that $||v||^2 = |\langle v, e_1 \rangle|^2 + \cdots + |\langle v, e_m \rangle|^2$ if and only if $v \in \text{span}(e_1, \ldots, e_m)$.

Exercise 6.16 Suppose U is a subspace of V. Prove that $U^{\perp} = \{0\}$ if and only if U = V

Exercise 6.17 Prove that if $P \in \mathcal{L}(V)$ is such that $P^2 = P$ and every vector in null P is orthogonal to every vector in range P, then P is an orthogonal projection.

Exercise 6.18 Prove that if $P \in \mathcal{L}(V)$ is such that $P^2 = P$ and $||Pv|| \le ||v||$ for every $v \in V$, then P is an orthogonal projection.

Exercise 6.19 Suppose $T \in \mathcal{L}(V)$ and U is a subspace of V. Prove that U is invariant under T if and only if $P_U T P_U = T P_U$.

Exercise 6.20 Suppose $T \in \mathcal{L}(V)$ and U is a subspace of V. Prove that U and U^{\perp} are both invariant under T if and only if $P_{U}T = TP_{U}$.

Exercise 6.29 Suppose $T \in \mathcal{L}(V)$ and U is a subspace of V. Prove that U is invariant under T if and only if U^{\perp} is invariant under T^* .

Exercise 7.4 Suppose $P \in \mathcal{L}(V)$ is such that $P^2 = P$. Prove that P is an orthogonal projection if and only if P is self-adjoint.

Exercise 7.5 Show that if dim $V \ge 2$, then the set of normal operators on V is not a subspace of $\mathcal{L}(V)$.

Exercise 7.6 Prove that if $T \in \mathcal{L}(V)$ is normal, then range $T = \text{range } T^*$.

Exercise 7.8 Prove that there does not exist a self-adjoint operator $T \in \mathcal{L}(\mathbf{R}^3)$ such that T(1,2,3) = (0,0,0) and T(2,5,7) = (2,5,7).

Exercise 7.9 Prove that a normal operator on a complex inner-product space is self-adjoint if and only if all its eigenvalues are real.

Exercise 7.10 Suppose V is a complex inner-product space and $T \in \mathcal{L}(V)$ is a normal operator such that $T^9 = T^8$. Prove that T is self-adjoint and $T^2 = T$.

Exercise 7.11 Suppose V is a complex inner-product space. Prove that every normal operator on V has a square root. (An operator $S \in \mathcal{L}(V)$ is called a square root of $T \in \mathcal{L}(V)$ if $S^2 = T$.)

Exercise 7.14 Suppose $T \in \mathcal{L}(V)$ is self-adjoint, $\lambda \in \mathbf{F}$, and $\epsilon > 0$. Prove that if there exists $v \in V$ such that ||v|| = 1 and $||Tv - \lambda v|| < \epsilon$, then T has an eigenvalue λ' such that $|\lambda - \lambda'| < \epsilon$.

Exercise 7.15 Suppose U is a finite-dimensional real vector space and $T \in \mathcal{L}(U)$. Prove that U has a basis consisting of eigenvectors of T if and only if there is an inner product on U that makes T into a self-adjoint operator.