EE2000 Logic Circuit Design

Recap Lecture 2 – Karnaugh Map and Quine-McCluskey (QM) Method

hackthedeveloper.com

2.1 Karnaugh Map

- In 1953, Maurice Karnaugh introduced a map method known as Karnaugh map (K-map)
- A straightforward procedure for minimizing Boolean functions in a tabular form
- Graphical representation of a truth table
- Minterm is used in the cell of the K-map
- n-variable function has 2ⁿ cells:
 - Two-variable K-map has 4 cells
 - Three-variable K-map has 8 cells
 - Four-variable K-map has 16 cells

Four-variable K-map

Note the Gray code order of the rows and columns

Summary

- > Booleans function to be minimized by K-map are always in Canonical SOP or POS (will discuss later) form
- > Arrange cells in 1-bit difference
- \triangleright Group adjacent cells in group size of 2^n , e.g. 2, 4, 8
- > Apply adjacency law

2.2 Minimization using Karnaugh Map

- \triangleright Group adjacent cells in group size of 2^n , e.g. 2, 4, 8
- > Rules:
 - 1. Find the fewest groups that can cover all cells marked with 1s.
 - 2. The groups should be as large as possible.
- ➤ Goal:
 - 1. Reduce the number of product terms to minimum
 - 2. Save the cost

Terminology

Prime Implicant: An implicant that is not fully contained in any one other implicant.

Terminology

Essential Prime Implicant: If a minterm is included in only one prime implicant, that prime implicant is essential prime implicant.

Systematic Approach

- Rules:
 - 1. Find the fewest groups that can cover all cells marked with 1s.
 - 2. The groups should be as large as possible.
- > Approach:
 - 1. Determine all PIs.
 - 2. Select EPIs.
 - 3. Add PI to include the remaining minterm.

Exercise

- 1. Identify all PIs.
- 2. Select all EPIs.
- 3. Add PIs of remaining minterms.

POS

Simplify $f(a, b, c, d) = \sum m(0, 1, 2, 5, 8, 9, 10)$ in POS form

cd	00	01	11	10
00	1	0	0	1
01	1	1	0	1
11	0	0	0	0
10	1	0	0	1

Fill the 1s and 0s into the map

Group the 0s using the same procedure as grouping the 1s

$$f'(a, b, c, d) = ab + cd + bd'$$

 $f(a, b, c, d) = (a'+b')(c'+d')(b'+d)$

2.3 Boolean Functions with Don't Care Cases

The output of Boolean functions are **incompletely specified functions**,

- For some input conditions, the outputs are unspecified
- Input condition has no effects to the function
- Output values are defined as don't Care
- Don't Care term can be minterm / maxterms
- Don't Care term indicates by an \times , d, ϕ or φ

Solutions

- Identify PIs that must include all 1s but don't care term × is optional.
- 2. Use × when possible to create larger group size.
- 3. Select the EPIs first, then remaining PIs

$$f(a, b, c, d) = a'b' + cd$$

$$f(a, b, c, d) = a'd + cd$$

2.4 Quine-McCluskey (QM) Method

- Developed by W. V. Quine and E. J. McCluskey in 1956
- Functionally identical to Karnaugh map
- More efficient in computer algorithms
- Ease to handle large number of variables

For number of variables that is less than or equal to 4, we use K-map; otherwise, QM method will be more efficient.

Step 1: Partition (Group minterms by the number of 1's)

w	X	У	Z	Minterms
0	0	0	0	m_0
0	0	0	1	m_1
0	0	1	0	m_2
0	0	1	1	m_3
0	1	0	0	m_4
0	1	0	1	m_5
0	1	1	0	m_6
0	1	1	1	m_7
1	0	0	0	m_8
1	0	0	1	m_9
1	0	1	0	<i>m</i> ₁₀
1	0	1	1	<i>m</i> ₁₁
1	1	0	0	<i>m</i> ₁₂
1	1	0	1	<i>m</i> ₁₃
1	1	1	0	<i>m</i> ₁₄
1	1	1	1	<i>m</i> ₁₅

Minterms	wxyz
m_0	0000
m_1	0001
m_2	0010
m_4	0100
m_8	1000
m_3	0011
m_5	0101
m_6	0110
m_9	1001
m_{10}	1010
m_{12}	1100
m_7	0111
m_{11}	1011
m_{13}	1101
m_{14}	1110
<i>m</i> ₁₅	1111

Step 1: Partition (Group minterms by the number of 1's)

Simplify $f(a, b, c, d) = \Sigma m(1, 4, 5, 6, 8, 9, 10, 12, 14)$

Minterms	abcd
m_1	0001
m_4	0100
m_8	1000
$m_{\scriptscriptstyle 5}$	0101
m_6	0110
m_9	1001
m_{10}	1010
m_{12}	1100
m_{14}	1110

Step 2: Combine (Apply adjacency property to each pair of terms in consecutive groups)

- Combine adjacent group implicants into (n-1) variable implicants
- Mark the changed bit with "-" and tick the combined impicants

Minterms	abcd
m_1	0001 🗸
m_4	0100
m_8	1000
$m_{\scriptscriptstyle 5}$	0101 🗸
m_6	0110
m_9	1001 🗸
m_{10}	1010
m_{12}	1100
m_{14}	1110

Minterms	abcd
m_1, m_5	0-01
m_1, m_9	-001

Step 2: Combine (Apply adjacency property to each pair of terms in consecutive groups)

- Combine adjacent group implicants into (n-1) variable implicants
- Mark the changed bit with "-" and tick the combined impicants

Minterms	abcd
m_1	0001 🗸
m_4	0100 🗸
m_8	1000 🗸
m_5	0101 🗸
m_6	0110 🗸
m_9	1001 🗸
m_{10}	1010 🗸
<i>m</i> ₁₂	1100 🗸
$m_{_{14}}$	1110 🗸

Minterms	abcd
m_1, m_5	0-01
m_1, m_9	-001
m_4, m_5	010-
m_4, m_6	01-0 🗸
m_4, m_{12}	-100 🗸
m_8, m_9	100-
m_8, m_{10}	10-0
m_8, m_{12}	1-00
m_{6}, m_{14}	-110 🗸
m_{10}, m_{14}	1-10
m_{12}, m_{14}	11-0 🗸

Minterms	abcd
m_4, m_6, m_{12}, m_{14}	-1-0

Step 3: Identify Prime Implicants (PIs)

-All unmarked terms

Minterms	abcd
m_1	0001 🗸
m_4	0100 🗸
m_8	1000 🗸
m_5	0101 🗸
m_{ϵ}	0110 🗸
m_9	1001 🗸
<i>m</i> ₁₀	1010 🗸
$m_{12}^{}$	1100 🗡
m ₁₄	1110 🗸

Minterms	abcd
m_1, m_5	0-01 Pl ₃
m_1, m_9	-001 PI ₄
m_4, m_5	010- PI ₅
m_4, m_6	01-0 🗸
m_4, m_{12}	-100 🗸
m_8, m_9	100- PI ₆
m_8, m_{10}	10-0 🗸
m_{8}, m_{12}	1-00 🗸
m_6, m_{14}	-110 🗸
m ₁₀ , m ₁₄	1-10 🗸
m_{12}, m_{14}	11-0 🗸

Minterms	abcd
m_4, m_6, m_{12}, m_{14}	-1-0 PI ₁
$ m_8, m_{10}, m_{12}, m_{14} $	10 Pl ₂

Step 4: Generate PI chart

- Identify minterms that are covered by only 1 PI
- Identify essential PIs

$$f(a, b, c, d) = \Sigma m(1, 4, 5, 6, 8, 9, 10, 12, 14)$$

PI	Minterms	abcd	1	4	5	6	8	9	10	12	14
PI_1	m_4, m_6, m_{12}, m_{14}	-1-0		Х		Х				Х	Х
PI ₂	$m_8, m_{10}, m_{12}, m_{14}$	10					Х		Х	Х	Х
PI ₃	m_1, m_5	0-01	X		Х						
PI ₄	m_1, m_9	-001	X					X			
PI ₅	m_4, m_5	010-		Х	Х						
PI ₆	m_8, m_9	100-					Х	Х			

Step 4: Generate PI chart

- Identify minterms that are covered by only 1 PI
- Identify essential PIs

PI	Minterms	abcd	1	4	5	6	8	9	10	12	14
PI_1	m_4, m_6, m_{12}, m_{14}	-1-0		Х		X				X	Х
PI ₂	$m_8, m_{10}, m_{12}, m_{14}$	10					X		X	X	Х
PI ₃	m_1, m_5	0-01	X		X						
PI ₄	m_1, m_9	-001	Х					Х			
PI ₅	m_4, m_5	010-		X	X						
PI_6	m_8, m_9	100-					Х	Х			

∴ Pl₁ and Pl₂ are essential Pls.

Step 5: Reduce PI chart

- Remove the rows of EPIs and the columns that covered by them

PI	Minterms	abcd	1	5	9
PI ₃	m_1, m_5	0-01	X	X	
PI ₄	m_1, m_9	-001	X		Х
PI ₅	m_4, m_5	010-		Х	
PI ₆	m_8, m_9	100-			X

Solution 1

PI	Minterms	abcd	1	5	9
PI ₃	m_1, m_5	0-01	X	X	
PI ₄	m_1, m_9	-001	X		X

Solution 2

PI	Minterms	abcd	1	5	9
PI ₃	m_1, m_5	0-01	X	X	
PI ₆	m_8, m_9	100-			X

Solution 3

PI	Minterms	abcd	1	5	9
PI_4	m_1, m_9	-001	X		Х
\overline{PI}_5	m_4, m_5	010-		X	

Step 6: Express the Boolean Function

PI	Minterms	abcd
PI_1	m_4, m_6, m_{12}, m_{14}	-1-0
PI ₂	$m_8, m_{10}, m_{12}, m_{14}$	10
PI ₃	m_1, m_5	0-01
PI ₄	m_1, m_9	-001

$$f(a, b, c, d) = PI_1 + PI_2 + PI_3 + PI_4$$

= $bd' + ad' + a'c'd + b'c'd$

PI	Minterms	abcd
PI ₁	m_4, m_6, m_{12}, m_{14}	-1-0
PI ₂	$m_8, m_{10}, m_{12}, m_{14}$	10
PI ₃	m_1, m_5	0-01
PI ₆	m_8, m_9	100-

$$f(a,b,c,d) = PI_1 + PI_2 + PI_3 + PI_6$$
$$= bd' + ad' + a'c'd + ab'c'$$

PI	Minterms	abcd
PI ₁	m_4, m_6, m_{12}, m_{14}	-1-0
PI ₂	$m_8, m_{10}, m_{12}, m_{14}$	10
PI ₄	m_1, m_9	-001
PI ₅	m_4, m_5	010-

$$f(a, b, c, d) = PI_1 + PI_2 + PI_4 + PI_5$$

= $bd' + ad' + b'c'd + a'bc'$

Exercise (Don't Care Case)

Step 1-3 (Partition, Combine, List Pls): Include Don't Care minterms

Simplify $f(a, b, c, d) = \sum m(4, 8, 9, 10, 12, 15) + \sum d(2, 6, 13)$

Minterms	abcd
m_2	0010 🗸
m_4	0100 🕶
m_8	1000 🗸
m_6	0110 🗸
m_9	1001 🗸
m_{10}	1010 🕶
m_{12}	1100 🗸
<i>m</i> ₁₃	1101 🕶
<i>m</i> ₁₅	1111 🗸

Minterms	abcd
m_2, m_6	0-10 Pl ₂
m_2, m_{10}	-010 PI ₃
m_4, m_6	01-0 PI ₄
m_4, m_{12}	-100 PI ₅
m_8, m_9	100- 🗸
m_8, m_{10}	10-0 PI ₆
m_8, m_{12}	1-00 🗸
m_9, m_{13}	1-01 🗸
m_{12}, m_{13}	110- 🗸
m_{13}, m_{15}	11-1 PI ₇

Minterms	abcd
m_8, m_9, m_{12}, m_{13}	1-0-Pl ₁

Exercise (Don't Care Case)

Step 4: Generate PI chart

- Exclude Don't Care Minterms

Simplify $f(a, b, c, d) = \Sigma m(4, 8, 9, 10, 12, 15) + \Sigma d(2, 6, 13)$

PI	Minterms	abcd	4	8	9	10	12	15
PI ₁	m_8, m_9, m_{12}, m_{13}	1-0-						
PI ₂	$m_2^{}, m_6^{}$	0-10						
PI ₃	m_2, m_{10}	-010						
PI ₄	m_4, m_6	01-0						
PI ₅	m_4, m_{12}	-100						
PI ₆	m ₈ , m ₁₀	10-0						
PI ₇	m_{13}, m_{15}	11-1						

Summary

$$f(a, b, c) = \sum m(2,3,7)$$

$$g(a, b, c) = \sum m(4,5,7)$$

$$f(a, b, c) = \sum m(2,3,7)$$

$$f(a,b,c) = a'b + bc$$

$$g(a,b,c) = ab' + ac$$

$$f(a,b,c) = a'b + bc$$

$$g(a,b,c) = ab' + ac$$

12 gate inputs and 6 gates (how to reduce the cost?)

$$f(a,b,c) = \sum m(2,3,7)$$

$$f(a,b,c) = a'b + bc$$

$$g(a,b,c) = \sum m(4,5,7)$$

$$g(a,b,c) = ab' + ac$$

$$f(a,b,c) = \sum m(2,3,7)$$

$$f(a,b,c) = a'b + abc$$

$$g(a,b,c) = \sum m(4,5,7)$$

$$g(a,b,c) = ab' + abc$$

$$f(a,b,c) = a'b + abc$$

$$g(a,b,c) = ab' + abc$$

11 gate inputs and 5 gates!!!

$$f(a,b,c) = \sum m(2,3,7)$$

 $g(a,b,c) = \sum m(4,5,7)$

- fg: mark as '-' when exist in respective function, else '0'.
- > Terms can be combined when they have a common '-'
- > After combination, any tag with a '0' will be '0', else '-'.
- > Terms are marked if they are covered by the combined terms.

Minterms	abc fg
m_2	010 -0 🗸
m_4	100 0- 🗸
m_3	011 -0 🗸
m_5	101 0- 🗸
m_7	111

Minterms	abc fg
m_2, m_3	010
m_4, m_5	10- 0-
m_3, m_7	-11 -0
m_5, m_7	1-1 0-

Minterms	abc
m_0	000
m_1	001
m_2	010
m_4	100
m_3	011
m_5	101
m_6	110
m_7	111

Minterms	abc fg
m_2	010 -0 🗸
m_4	100 0- 🗸
m_3	011 -0 🗸
m_5	101 0- 🗸
m_7	111

	Minterms	abc fg	
	m_2, m_3	010	Pl_2
	m_4, m_5	10- 0-	PI_3
	m_3, m_7	-11 -0	PI_4
	m_5, m_7	1-1 0-	PI ₅
PI_1			1

PI	Minterms abo	aha	f_{\sim}	f			g		
PI	wiiiiteiiiis	abc	fg	2	3	7	4	5	7
PI_1	m_7	111				X			Х
PI ₂	m_2, m_3	01-	-0	Х	Х				
PI ₃	m_4, m_5	10-	0-				Х	Х	
PI_4	m ₃ , m ₇	-11	-0		Х	Х			
PI ₅	m_5, m_7	1-1	0-					Х	Х

PI	Mintorms	Minterms abc f	for	f			g		
PI	wiiiitei iiis	abc	fg	2	3	7	4	5	7
PI_1	m_7	111				X			X
PI ₂	m_2, m_3	01-	-0	X	Х				
PI ₃	m_4, m_5	10-	0-				X	Х	
PI_4	m ₃ , m ₇	-11	-0		Х	Х			
PI ₅	m_5, m_7	1-1	0-					Х	Х

PI	Minterms	aha	fa	f	g
FI	Williterins	abc	fg	7	7
PI_1	m_7	111		Х	Х
PI ₄	m ₃ , m ₇	-11	-0	Х	
PI ₅	m ₅ , m ₇	1-1	0-		Х

$$f(a,b,c) = PI1 + PI2 = abc + a'b$$

$$g(a,b,c) = PI1 + PI3 = abc + ab'$$

Exercise

Reduce the following functions that will use the least number of gates and gate inputs.

