TP1

bosio@lirmm.fr

PC configuration

- Eclipse
 https://www.eclipse.org/home/index.php
- Board STM32F3 Discovery
- System workbench (www.openstm32.org)

Eclipse

· Run eclipse

Create a new project

Create a new project

Create a new project

Create a new project: select the development board

Download the Firmware

Project Structure

- Your project is composed of several files
- Let's have a look…

Project Structure

HAL Library

 HAL Driver: developed by ST, deliver high level function to access peripherals (one file each periph.)

Some usueful functions, we will use in the first Labs

First Project

- · Download the file
 - www.lirmm.fr/~bosio/L3/lab1.c
- Open the lab1.c with a text editor and copy the code into the main.c of your eclipse project

Look at the code

Look at the code

```
Function parameters
20⊖ int main() {
     int size, location, maximum; //Int variables (32 bit)
     //Array of Unsigned 8 bit
     char array[] = {3, 6, 3, 7, 12, 15, 1, 8, 256, 2, 763, 85};
     //Compute size of the array
     size = sizeof(array)/sizeof(array[0]);
     location = find maximum(array, size-1);
     maximum = array[location];
                                                                                        Local variables
     BSP LED Init(LED4);
     BSP LED On(LED4);
32
33
     while(1);
34
35
360 int find_maximum(char *a, int n)
     int c, max, index;
     max = a[0];
     index = 0;
     for (c = 1; c < n; c++) {
      if (a[c] > max) {
                                                                                        Return result
43
          index = c;
          max = a[c];
46
     return index;
48
```

Build the project

Build Result

Execute your code

 We have to send the binary code to the hoard

JTAG for programming

- To program a device we have two alternatives:
 - Using a USB / UART / ... connection in bootloader mode
 - Using JTAG and programmer to

JTAG for programming

- To use JTAG we have to pass through the DEBUGGER
 - It use OpenOCD (http://openocd.org/)

Debug your code

Debug your code

Debug your code

The debug view

Debug yourself

- Try to debug code on the board
- Monitor variables
- Check debug steps buttons
- Is everything working correctly?
- · Do the functions works properly?
- Are the results correct?
 - If not why?

Exercise

- Un palindrome est un mot qui reste le même qu'on le lise de gauche à droite ou de droite à gauche (par exemple, PIERRE n'est pas un palindrome, alors que OTTO est un palindrome).
 - Ecrire un programme qui vérifie si une chaîne simple (sans espace) est un palindrome: si oui allumer le LED4, sinon le LED7
 - La chaîne est constante (comme pour l'exemple précédente)