conformity with the assigned structure.

[0084] Mass m/z : 388 (M⁺ + 1), 195 ($C_7H_{11}NO_5$).

[0085] The compounds of the present invention lowered random blood sugar level, triglyceride, total cholesterol, LDL, VLDL and increased HDL. This was demonstrated by in vitro as well as in vivo animal experiments.

[0086] Demonstration of Efficacy of Compounds

[0087] A) In vitro:

[0088] a) Determination of hPPARa activity

[0089] Ligand binding domain of hPPARα was fused to DNA binding domain of

Yeast transcription factor GAL4 in eucaryotic expression vector. Using superfect (Qiagen, Germany) as transfecting reagent HEK-293 cells were transfected with this plasmid and a reporter plasmid harboring the luciferase gene driven by a GAL4 specific promoter. Compound was added at different concentrations after 42 hrs of transfection and incubated overnight. Luciferase activity as a function of compound binding/activation capacity of PPAR α was measured using Packard Luclite kit (Packard, USA) in Top Count (Ivan Sadowski, Brendan Bell, Peter Broag and Melvyn Hollis. Gene. 1992. 118: 137–141; Superfect Transfection Reagent Handbook. February 1997. Qiagen, Germany).

[0090] b) Determination of hPPARy activity

[0091] Ligand binding domain of hPPARγ1 was fused to DNA binding domain of Yeast transcription factor GAL4 in eucaryotic expression vector. Using lipofectamine (Gibco BRL, USA) as transfecting reagent HEK-293 cells were transfected with this plasmid and a reporter plasmid harboring the luciferase gene driven by a GAL4 specific promoter. Compound was added at 1μM concentration after 48 hrs of transfection and incubated overnight. Luciferase activity as a function of drug binding/activation capacity of PPARγ1 was measured using Packard Luclite kit (Packard, USA) in Packard Top Count (Ivan Sadowski, Brendan Bell, Peter Broag and Melvyn Hollis. Gene. 1992. 118: 137–141; Guide to Eukaryotic Transfections with Cationic Lipid Reagents. Life Technologies, GiBCO BRL, USA).

	Example No.	Concentration	PPARα	PPARγ	Concentration
ĺ	2	50 μM	3.0	1 μM	9.8
	3	50 μM	5.2	1 μM	19
ı	5	50 μM	3.5	1 μM	7.6
ı	6	50 µM	4.7	1 uM	21

[0092] c) Determination of HMG CoA reductase inhibition activity

[0093] Liver microsome bound reductase was prepared from 2% cholestyramine fed rats at mid-dark cycle. Spectrophotometric assays were carried out in 100 mM KH₂PO₄, 4 mM DTT, 0.2 mM NADPH, 0.3 mM HMG CoA and 125μg of liver microsomal enzyme. Total reaction mixture volume was kept as 1 ml. Reaction was started by addition of HMG CoA. Reaction mixture was incubated at 37°C for 30 min and decrease in absorbance at 340 nm was recorded. Reaction mixture without substrate was used as blank (Goldstein, J. L and Brown, M. S. Progress in understanding the LDL receptor and HMG CoA reductase, two membrane proteins that regulate the plasma cholesterol. J. Lipid Res. 1984, 25: 1450 – 1461). The test compounds are expected to inhibit the HMG CoA reductase enzyme.

[0094] B) <u>In vivo</u>:

[0095] a) Efficacy in genetic models

[0096] Mutation in colonies of laboratory animals and different sensitivities to dietary regimens have made the development of animal models with non-insulin dependent diabetes and hyperlipidemia associated with obesity and insulin resistance possible. Genetic models such as db/db and ob/ob (Diabetes, (1982) 31(1): 1-6) mice and zucker fa/fa rats have been developed by the various laboratories for understanding the pathophysiology of disease and testing the efficacy of new antidiabetic compounds (Diabetes, (1983) 32: 830-838; Annu. Rep. Sankyo Res. Lab. (1994). 46: 1-57). The homozygous animals, C57 BL/KsJ-db/db mice developed by Jackson Laboratory, US, are obese, hyperglycemic, hyperinsulinemic and insulin resistant (J. Clin. Invest., (1990) 85 : 962-967), whereas heterozygous are lean and normoglycemic. In db/db model, mouse progressively develops insulinopenia with age, a feature commonly observed in late stages of human type II diabetes when blood sugar levels are insufficiently controlled. The state of pancreas and its course vary according to the models. Since this model resembles that of type II diabetes mellitus, the compounds of the present invention were tested for blood sugar and triglycerides lowering activities.

[0097] Male C57BL/KsJ-db/db mice of 8 to 14 weeks age, having body weight range of 35 to 60 grams, bred at Dr. Reddy's Research Foundation (DRF) animal house, were used in the experiment. The mice were provided with standard feed (National Institute of Nutrition (NIN), Hyderabad, India) and acidified water, ad libitum. The animals having more than 350 mg / dl blood sugar were used for testing. The number of animals in each group was 4.

[0098] Test compounds were suspended on 0.25% carboxymethyl cellulose and administered to test group at a dose of 0.1 mg to 30 mg/kg through oral gavage daily for 6 days. The control group received vehicle (dose 10 ml/kg). On 6th day the blood samples were collected one hour after administration of test compounds/vehicle for assessing the biological activity.

[0099] The random blood sugar and triglyceride levels were measured by collecting blood (100µl) through orbital sinus, using heparinised capillary in tubes containing EDTA which was centrifuged to obtain plasma. The plasma glucose and triglyceride levels were measured spectrometrically, by glucose oxidase and glycerol-3-PO₄ oxidase/peroxidase enzyme (Dr. Reddy's Lab. Diagnostic Division Kits, Hyderabad, India) methods respectively.

[0100] The blood sugar and triglycerides lowering activities of the test compound was calculated according to the formula.

[0101] No adverse effects were observed for any of the mentioned compounds of invention in the above test.

	Compound	Dose (mg / kg)	Reduction in Blood Glucose Level (%)	Triglyceride Lowering (%)
Г	Example 2	0.03	56	59

[0102] The ob/ob mice were obtained at 5 weeks of age from Bomholtgard, Denmark and were used at 8 weeks of age. Zucker fa/fa fatty rats were obtained from IffaCredo, France at 10 weeks of age and were used at 13 weeks of age. The animals were maintained under 12 hour light and dark cycle at 25 + 1°C. Animals were given standard laboratory chow (NIN, Hyderabad, India) and water, ad libitum (Fujiwara, T., Yoshioka, S., Yoshioka, T., Ushiyama, I and Horikoshi, H. Characterization of new oral antidiabetic agent CS-045. Studies in KK and ob/ob mice and Zucker fatty rats. Diabetes.