CS 97SI: INTRODUCTION TO PROGRAMMING CONTESTS

Today's Lecture: Graph Algorithms

- What are graphs?
- Adjacency Matrix and Adjacency List
- Special Graphs
- Depth-First Search and Breadth-First Search
- Topological Sort
- Eulerian Circuit
- Minimum Spanning Tree (MST)
- Strongly Connected Components (SCC)

What are graphs?

- An abstract way of representing connectivity using nodes (or vertices) and edges
- \square We will label the nodes from 1 to n
- $\ \square \ m$ edges connect some pairs of nodes
 - Edges can be either one-directional (directed) or bidirectional
- Nodes and edges can have some auxiliary information

Figure from Wikipedia

Why study graphs?

- Lots of problems formulated and solved in terms of graphs
 - Shortest path problems
 - Network flow problems
 - Matching problems
 - 2-SAT problem
 - Graph coloring problem
 - Traveling Salesman Problem (TSP): still unsolved!
 - and many more...

Storing Graphs

- $\ \square$ We need to store both the set of nodes V and the set of edges E
 - Nodes can be stored in an array
 - Edges must be stored in some other way
- We want to support the following operations
 - Retrieving all edges incident to a particular node
 - Testing if given two nodes are directly connected
- Use either adjacency matrix or adjacency list to store the edges

Adjacency Matrix

- An easy way to store connectivity information
 - lacktriangle Checking if two nodes are directly connected: O(1) time
- \square Make an $n \times n$ matrix A
 - $lacksquare a_{ij} = 1$ if there is an edge from i to j
 - $a_{ii} = 0$ otherwise
- □ Uses $\Theta(n^2)$ memory
 - $lue{}$ Only use when n is less than a few thousands,
 - AND when the graph is dense

Adjacency List

- Each node has its own list of edges
 - The lists have variable lengths
 - lacksquare Space usage: $\Theta(n+m)$

From		То	
1	2	3	5
2	3	5	
3	2		•
4	2	5	
5			•

Implementing Adjacency List

- Solution 1. Using linked lists
 - Too much memory/time overhead
 - Using dynamic allocated memory or pointers is bad
- Solution 2. Using an array of vectors
 - Easier to code, no bad memory issues
 - But very slow
- Solution 3. Using arrays (!)
 - Assuming the total number of edges is known
 - Very fast and memory-efficient

Implementation Using Arrays

ID	То	Next Edge ID		
1	2	-		
2	3	-		
3	3	1		
4	5	3		
5	3	-		
6	2	-		
7	2	5		
8	5	2		

From	1	2	3	4	5
Last Edge ID	4	8	6	7	-

Implementation Using Arrays

- $lue{}$ Have two arrays $lue{}$ of size m and $lue{}$ of size n
 - E contains the edges
 - LE contains the starting pointers of the edge lists
- □ Initialize LE[i] = -1 for all i
 - □ LE[i] = 0 is also fine if the arrays are 1-indexed
- \blacksquare Inserting a new edge from u to v with ID k
 - \blacksquare E[k].to = \forall
 - \square E[k].nextID = LE[u]
 - \blacksquare LE[u] = k

Implementation Using Arrays

□ Iterating over all edges starting at u:

```
for(ID = LE[u]; ID != -1; ID = E[ID].nextID)
// E[ID] is an edge starting from u
```

- It's pretty hard to modify the edge lists
 - The graph better be static!

Special Graphs

- Tree: a connected acyclic graph
 - The most important type of graph in CS
 - Alternate definitions (all are equivalent!)
 - lacksquare A connected graph with n-1 edges
 - \blacksquare An acyclic graph with n-1 edges
 - There is exactly one path between every pair of nodes
 - An acyclic graph but adding any edge results in a cycle
 - A connected graph but removing any edge disconnects it

Special Graphs

- Directed Acyclic Graph (DAG): the name says what
 it is
 - Equivalent to a partial ordering of nodes

- Bipartite Graph
 - Nodes can be separated into two groups S and T such that edges exist between S and T only (no edges within S or within T)

Graph Traversal

- The most basic graph algorithm that visits nodes of a graph in certain order
- Used as a subroutine in many other algorithms

- We will cover two algorithms
 - Depth-First Search (DFS): uses recursion (stack)
 - Breadth-First Search (BFS): uses queue

Depth-First Search Pseudocode

- \square DFS(v): visits all the nodes reachable from v in depth-first order
 - \square Mark v as visited
 - \blacksquare For each edge $v \rightarrow u$:
 - \blacksquare If u is not visited, call DFS(u)

- Use non-recursive version if recursion depth is too big (over a few thousands)
 - Replace recursive calls with a stack

Breadth-First Search Pseudocode

- \square BFS(v): visits all the nodes reachable from v in breadth-first order
 - lacksquare Initialize a queue Q
 - lacksquare Mark v as visited and push it to Q
 - \square While Q is not empty:
 - lacktriangle Take the front element of Q and call it w
 - For each edge $w \rightarrow u$:
 - lacksquare If u is not visited, mark it as visited and push it to Q

Topological Sort

- \square Input: a DAG G = (V, E)
- \Box Output: an ordering of nodes such that for each edge $u \to v$, u comes before v
- There can be many answers
 - e.g. {6, 1, 3, 2, 7, 4, 5, 8}
 and {1, 6, 2, 3, 4, 5, 7, 8}
 are valid orderings for
 the graph on the right

Topological Sort

- Any node without an incoming edge can be the first element
- After deciding the first node, remove outgoing edges from it
- □ Repeat!

- □ Time complexity: $O(n^2 + m)$
 - □ Ugh, too slow...

Topological Sort (faster version)

- lacktriangledown Precompute the number of incoming edges $\deg(v)$ for each node v
- lacksquare Put all nodes with zero $\deg(\cdot)$ into a queue Q
- \square Repeat until Q becomes empty:
 - lacksquare Take v from Q
 - \blacksquare For each edge $v \rightarrow u$
 - Decrement deg(u) (essentially removing the edge $v \rightarrow u$)
 - If deg(u) becomes zero, push u to Q
- □ Time complexity: $\Theta(n+m)$

Eulerian Circuit

- \square Given an undirected graph G
- We want to find a sequence of nodes that visits every edge exactly once and comes back to the starting point
- Eulerian circuits exist if and only if
 - $\square G$ is connected
 - and each node has an even degree

Constructive Proof of Existence

- \square Pick any node in G and walk randomly(!) without using the same edge more than once
- Each node is of even degree, so when you enter a node, there will be an unused edge you exit through
 - Except at the starting point, at which you can get stuck
- □ When you get stuck, what you have is a cycle
 - Remove the cycle and repeat the process in each connected component
 - Glue the cycles together to finish!

Related Problems

Eulerian path: exists if and only if the graph is connected and the number of nodes with odd degree is 0 or 2.

Hamiltonian path/cycle: a path/cycle that visits every node in the graph exactly once. Looks similar but still unsolved!

Minimum Spanning Tree (MST)

- \square Given an undirected weighted graph G = (V, E)
- $lue{}$ Want to find a subset of E with the minimum total weight that connects all the nodes into a tree

- We will cover two algorithms:
 - Kruskal's algorithm
 - Prim's algorithm

Kruskal's Algorithm

- lacktriangle Main idea: the edge e^\star with the smallest weight has to be in the MST
 - Simple proof:
 - \blacksquare Assume not. Take the MST T that doesn't contain e^* .
 - lacksquare Add e^{\star} to T, which results in a cycle.
 - Remove the edge with the highest weight from the cycle.
 - lacktriangle The removed edge cannot be e^\star since it has the smallest weight.
 - lacksquare Now we have a better spanning tree than T
 - Contradiction!

Kruskal's Algorithm

- Another main idea: after an edge is chosen, the two nodes at the ends can be merged and considered as a single node (supernode)
- □ Pseudocode:
 - Sort the edges in increasing order of weight
 - Repeat until there is one supernode left:
 - lacktriangle Take the minimum weight edge e^{\star}
 - If e^* connects two different supernodes:
 - Connect them and merge the supernodes (use union-find)
 - lacksquare Otherwise, ignore e^* and go back

Prim's Algorithm

- Main idea:
 - lacksquare Maintain a set S that starts out with a single node S
 - □ Find the smallest weighted edge $e^* = (u, v)$ that connects $u \in S$ and $v \notin S$
 - lacksquare Add e^{\star} to the MST, add v to S
 - $lue{}$ Repeat until S = V
- Differs from Kruskal's in that we grow a single supernode S instead of growing multiple ones here and there

Prim's Algorithm Pseudocode

- \square Initialize S to $\{s\}$, D_v to $\mathrm{cost}(s,v)$ for every v
 - □ If there is no edge between s and v, $cost(s, v) = \infty$
- \square Repeat until S = V:
 - $lue{}$ Find $v \notin S$ with smallest D_v
 - Use a priority queue or a simple linear search
 - $lue{}$ Add v to S, add D_v to the total weight of the MST
 - \blacksquare For each edge (v, w):
 - Update D_w to $min(D_w, cost(v, w))$
- Can be modified to compute the actual MST along with the total weight

Kruskal's vs Prim's

- Kruskal's Algorithm
 - \square Takes $O(m \log m)$ time
 - Pretty easy to code
 - Generally slower than Prim's
- Prim's Algorithm
 - Time complexity depends on the implementation:
 - Can be $O(n^2 + m)$, $O(m \log n)$, $O(n \log n)$
 - A bit trickier to code
 - Generally faster than Kruskal's

Strongly Connected Components (SCC)

- \square Given a directed graph G = (V, E)
- $\hfill A$ graph is strongly connected if all nodes are reachable from every single node in V
- $lue{}$ Strongly connected components of G are maximal
 - strongly connected subgraphs of G
 - The graph on the right has 3 SCCs: {a, b, e}, {c, d, h}, {f, g}

Figure from Wikipedia

Kosaraju's Algorithm

- \square Initialize counter c=0
- While not all nodes are labeled:
 - $lue{}$ Choose an arbitrary unlabeled node v
 - $lue{}$ Start DFS from v
 - \blacksquare Check the current node x as visited
 - Recurse on all unvisited neighbors
 - \blacksquare After the DFS calls are finished, increment c and set x's label to c
- Reverse the direction of all the edges
- \square For node v with label $n \dots 1$
 - $lue{}$ Find all reachable nodes from v and group them as an SCC

Kosaraju's Algorithm

- □ We won't prove why this works ©
- Two graph traversals are performed
 - \blacksquare Running time: $\Theta(n+m)$

- Other SCC algorithms exist but this one is particularly easy to code
 - and asymptotically optimal