<mark>딥러닝을 적용한 CFRP 가공 결함 분석</mark> Defect Analysis of CFRP Processing with Deep Learning

2016156026이형석2016156033조현민2016156039최성훈2016156047황규빈

차 례

- 연구 동기 및 관련 연구
- 시스템 수행 시나리오
- 시스템 구성도
- 개발 환경 및 개발 방법
- 업무 분담
- 종합설계 수행일정
- 필요기술 및 참고문헌

연구 동기

Motivation

한국생산기술연구원 보도자료

- 2015년도부터 가공 기술 개발이 활발해짐
- 항공, 우주, 자동차 등의 산업에 여러가지 장점을 갖는 신소재로 CFRP가 떠오 르고 있다는 사실 확인
- 해당 탄소섬유복합재 가공연구는 18년도에 성과를 냈지만 CFRP 소재 특성상 절삭이 어렵고 결함이 자주 발생한다.

연구 동기

Motivation

CFRP(Carbon fiber reinforced plastic)

- 경량·고강도 소재인 탄소섬유복합재의 부품 요구 증대
- 우수한 기계적 물성 때문에 기계가공이 어려움
- 기계가공시 발생하는 오차를 검출하는 시스템 필요

연구 동기

Motivation

- 가공 성능에 치명적인 악영향

CFRP 드릴링 주요 가공결함

- chipping
- spalling
- uncut fiber
- breakout

후처리 가공을 위한 검출 장비 필요!!

Reference

Ki Moon Park: A Study on the Removal of CFRP Machining Defects by Various Tool Geometries (2017)

관련 연구

Related Research

- 실시간으로 검사하기 때문에 특정한 신호에서 결함
 이 발생했는지 검사 가능
- 복잡한 공정 과정이 추가됨
- 전문가가 아닌 이상 다루기 힘듬

<센서를 활용한 결함 분석 장비>

<광학검사 장비를 활용한 결함 분석 장비>

- 구멍 한개당 1초의 시간 소요로 빠른 시간안에 다양
 한 검사를 수행할 수 있음
- 고가의 부품이 필요하여 중소 기업 에서 사용 하기에 부적합

Reference

In Hugh Choi: Open Controller Technology for the Process Monitoring of CFRP Machining(2019)

종합설계 개요

개발 목표 및 연구 개발 효과

Objective

연구 개발 목표

- 가공 이미지로 가공 결함 발생 여부와 <mark>결함의 종류, 결함 위치를</mark> 판별하는 <mark>딥러 닝 모델 구현(CNN</mark> 알고리즘 적용)
- 실제 데이터를 사용하여 가공 결함 분석 실험을 통하여 95% 이상의 검출률을 가진 알고리즘 구현

연구 개발 효과

- 딥러닝을 적용한 가공결함 분석을 통해 컴퓨터가 직접 판단하는 시스템을 구축
- 비용, 시간의 절약

씨스템 수행 시나리오

CFRP 가공 결함 분석을 위한 공정 흐름도

시스템 구성도

CFRP 가공 결함 분석을 위한 시스템 구성도

개발 환경

딥러닝 알고리즘을 위한 개발 환경

Development Environment

서버 : Deep Learning AMI (Amazon Linux 2) Version 38.0 - p2.xlarge

운영체제 : Linux

웹 어플리케이션 서버 : WAS: Tomcat - 9.0.41

클라이언트 운영체제: Windows 10

사용 도구: Chrome 81.0

딥러닝 알고리즘 개발 환경

개발 도구: Pycharm community edition - 2020.1.3

사용언어: Python

웹 서버 개발 환경 개발 도구: Spring Tool Suite 4 - 4.9.0

사용 언어: Java

개발 방법

딥러닝 알고리즘을 위한 개발 방법

Development Method

- 1. 리눅스 톰캣 서버
 - 서버 측에서 사용자에게 보여줄 JSP 페이지 구현
 - 사용자로부터 전송 받은 새로운 이미지를 스토리지에 저장
 - 결함 검출 프로그램으로부터 전송 받은 검출 완료된 이미지를 사용자 뷰 페이지 에 표시
 - 결함 검출 프로그램 실행 시 스토리지에 저장된 이미지를 가져온다.
- 2. 결함 검출 프로그램
 - 톰캣 서버로부터 전송 받은 이미지를 YOLO 알고리즘을 통해 결함 여부를 확인 하고 그 결과를 생성하고 출력한다.
 - YOLO 알고리즘을 통해 결함 여부와 위치에 대해 전송 받는다.
 - 생성된 결과를 톰캣 서버에 전송하여 톰캣의 JSP 페이지의 사용자 뷰에 표시한다.

업무 분담

	이형석	최성훈	황규빈	조현민						
요구사항 정의 및 분석										
시스템 설계	 ❖구체적인 이미지 전처리 수행 절차 및 방식 결정 ❖기존 비전 알고리즘 장단점 분석 ❖팀에서 구현할 알고리즘 결정 ❖개발 환경 구축 (1. AWS 서버 2. Pycharm) 									
구 현	- 서버와 통신 ❖String을 기반으로, 결함 여부를 확인 받고자하는 이미지를 주고 결과를 돌려받는 통신 기능 구현	- 알고리즘 모델 구현 ❖입력된 이미지를 기 반으로 객체 인식 알고 리즘 구현 ❖객체 인식 결과 별 라 벨링을 추가하여 결과 사진으로 반환 구현	- 알고리즘 모델 구현 ❖입력된 이미지를 기 반으로 객체 인식 알고 리즘 구현 ❖객체 인식 결과 별 라 벨링을 추가하여 결과 사진으로 반환 구현	- 이미지 전처리 동작 구현 ❖이미지 입력 후 데이 터 가공 부분 구현						
테스트	❖1. 테스트 데이터를 이용한 예측 결과와 실제 결과를 비교하여, 신뢰도 판단									

종합설계 수행일정

항목	추진사항	12월	01월	02월	03월	04월	05월	06월	07월	08월
사전 조사 및 요구사항 분석	① 사전조사 및 요구사항 분석									
시스템 설계 및 상세 설계	○ 구체적인 이미지 전처리 수행 절차 및 방식 결정 ○ 기존 비전 알고리즘 장단점 분석 ○ 팀에서 구현할 알고리즘 결정 ○ 개발환경 구축(1.AWS, 2.Pycham)									
데이터 수집 및 딥러닝 구현	□ Training/Test를 위한 DataSet 수집 □ 입력된 이미지를 기반으로 객체 인식 알고리즘 구현 □ 객체인식 결과 각각에 라벨링을 추가하여 결과사진으로 반환									
시험 및 데모	 테스트 데이터를 이용한 예측 결과와 실제 결과를 비교하여 신뢰도 판단 가공 시 촬영된 사진을 통해 결함 여부가 제대로 나오는지 확인 									
문서화										

GitHub

 https://github.com/HwangGyuBin/Gradua tion-Work

필요기술 및 참고 문헌

https://www.kitech.re.kr/main/ 한국생산기술연구원 연 도별 성과 – CFRP 가공 기술 개발 한국생산기술연구원 보도자료

https://aws.amazon.com/ 딥 러닝 서버 플랫폼 비용과 사양 측정

https://keras.io/ko/ 파이썬 딥 러닝 라이브러리 CV 이미지 처리 알고리즘 기술

www.springsource.org Spring 프레임워크를 통한 서버 통신 기술

