INFORMATION PROCESSOR

Patent number:

JP8161250

Publication date:

1996-06-21

Inventor:

NAKAGIRI KOJI

Applicant:

CANON KK

Classification:

- international:

G06F3/12; G06F9/445; G06F3/12; G06F9/445; (IPC1-

7): G06F13/10; G06F3/12; G06F9/06; G06F9/445

- european:

G06F3/12J; G06F9/445B5

Application number: JP19940301723 19941206 Priority number(s): JP19940301723 19941206

Also published as:

EP0716371 (A2) US6606669 (B1)

EP0716371 (A3)

EP0716371 (B1)

Report a data error here

Abstract of JP8161250

PURPOSE: To provide an information processor capable of automatically incorporating a device driver suitable for a peripheral equipment to be used in an OS without the aid of a user. CONSTITUTION: A printer 1500 is connected through a bidirectional interface to a host computer 3000 and plural printer drivers corresponding to the respectively different OSes of the host computer are stored in the data ROM 13 or external storage device 14 of the printer 1500. When the printer driver of the printer 1500 is not prepared on the side of the host computer 3000, the printer driver suitable of the OS of the host computer 3000 is transferred from the printer 1500 to the host computer 3000 and incorporated in the OS of the host computer 3000.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-161250

(43)公開日 平成8年(1996)6月21日

(51) Int.Cl. ⁸ G 0 6 F	13/10 3/12 9/06 9/445	識別 32 41	С	庁内整理番号 7368-5E 7230-5B 7230-5B	FΙ			技術表示箇所	
	•				G06F 審査請求		420 讃求項の数5		(全 11 頁)
(21)出願番号		特願平6-301723			(71)出顧人	000001007 キヤノン株式会社			
(22)出顧日		平成6年(19	994) 12 <i>}</i>	16日	(72)発明者	東京都 中桐 東京都	大田区下丸子37		
	•				(74)代理人	弁理士	加藤卓		

(54) 【発明の名称】 情報処理装置

(57) 【要約】

(修正有)

【目的】 使用する周辺装置に適したデバイスドライバをユーザの手を介さずに自動的にOSに組み込むことができる情報処理装置を提供する。

【構成】 ホストコンピュータ3000には双方向性インターフェースを介してプリンタ1500が接続され、プリンタ1500データROM13、あるいは外部記憶装置14に、それぞれ異なるホストコンピュータのOSに対応した複数のプリンタドライバを格納し、ホストコンピュータ3000側にプリンタ1500のプリンタドライバが用意されていない場合、ホストコンピュータ3000のOSに適したプリンタドライバをプリンタ1500からホストコンピュータ3000に転送してホストコンピュータ3000のOSに組み込む。

【特許請求の範囲】

ホストコンピュータと、このホストコン 【請求項1】 ピュータに双方向性インターフェースを介して接続され る周辺機器から構成され、その周辺機器に対応したホス トコンピュータのOSに組み込まれたデバイスドライバ を介してホストコンピュータおよび周辺機器の間でデー タ入出力を行なう情報処理装置において、

前記周辺機器にその周辺機器に対応したデバイスドライ バを格納した記憶手段を設け、必要に応じて前記記憶手 段内のデバイスドライバをホストコンピュータに転送 し、ホストコンピュータのOSに組み込むことを特徴と する情報処理装置。

【請求項2】 ホストコンピュータが周辺機器に対して 周辺機器の識別データを要求し、この識別データにより 識別される周辺機器のためのデバイスドライバがホスト コンピュータに用意されていない場合に、前記の周辺機 器からホストコンピュータへのデバイスドライバの転送 を行なうことを特徴とする請求項1に記載の情報処理装

【請求項3】 前記周辺機器からホストコンピュータへ 20 転送されたデバイスドライバをホストコンピュータの外 部記憶装置に格納することを特徴とする請求項1に記載 の情報処理装置。

【請求項4】 前記周辺機器のデバイスドライバが必要 とされる場合、その都度周辺機器からホストコンピュー タヘデバイスドライバを転送し、ホストコンピュータの 主記憶装置に格納することを特徴とする請求項1に記載 の情報処理装置。

【請求項5】 前記周辺機器の記憶手段に、それぞれ異 なるホストコンピュータのOSに対応した複数のデバイ 30 スドライバが格納され、ホストコンピュータから送信さ れたOSの識別データに応じてホストコンピュータのO Sに対応したデパイスドライバが選択され、ホストコン ピュータに転送されることを特徴とする請求項1に記載 の情報処理装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は情報処理装置、特にホス トコンピュータのOSに組込まれたデバイスドライバを 介して周辺機器との入出力を行う情報処理装置に関する 40 ものである。

[0002]

【従来の技術】従来、ホストコンピュータのOS(オペ レーティングシステム)として種々の製品が使用されて いる。OSソフトウェアのうち、プリンタ、ディスプレ イなどの出力装置を駆動する部分(デバイスドライバ) は、OSのカーネルと一体にコンパイルされている場合 もあるが、近年では、OSのプート時などに設定ファイ ルにしたがって読み込まれるいわゆるローダブルモジュ ールとして構成されていることが多い。また、OSの動 50 バを保存しておく必要が有り、外部メモリ(ハードディ

作中に、別のドライバを起動できるようにアプリケーシ ョンプログラムの形式を持つものもある。

【0003】最近では、特にプリンタのためのデバイス ドライバはプリンタドライバ、プリンタマネージャなど と呼ばれている(以後プリンタドライバという)。ま た、プリンタドライバとしては、従来ではプリンタポー トとのごく低レベルな入出力を行なうものが多かった が、OSによっては、プリンタが理解するページ記述言 語と他のプリンタ制御言語あるいは書式との間で翻訳を 行なうものも考えられている。

【0004】また、プリンタドライバによっては、複数 の装置(プリンタに限らず、プロッタなども含む)に対 応したソフトウェアを内蔵し、プリンタの機種を指定す ることなどにより様々なプリンタなどの出力装置での出 力を行なえるようにしたものがある。

【0005】また、ローダブルなデバイスドライバを採 用したOSでは、プリンタドライバを差し換えることに より、最初、OSがサポートしていなかった装置を使用 できるようになる。最近では、プリンタなどの出力装置 を購入すると、メジャーなOSにおけるその装置専用の デバイスドライバが付属していることがある。

【0006】また、ホストコンピュータを制御するOS も今日多数存在し、同じホストコンピュータが異なるO Sによって制御される、あるいは同一のホストコンピュ ータ上に複数のOSが搭載され、切り替えて起動される といったことも行われている。当然、OSが異なれば、 デバイスドライバの記述形式も異なるために、同一のプ リンタを対象とするプリンタドライバであっても、OS ごとに供給する必要がある。

[0007]

【発明が解決しようとする課題】一方、最近では、出力 装置の側においても、装置を目的に応じて使い分けるた めに、複数のプリンタポートにプリンタを接続したり、 切り換えスイッチを用いるなどしてプリンタを繋ぎ変え たりする手法が用いられている。

【0008】このように、使用するプリンタを変更する 場合には、当然、そのプリンタに対応したプリンタドラ イバを組み込んだり、プリンタドライバの設定を変更し たりする必要があるが、前述のようにプリンタドライバ はOSごとに異なっていたり、またディスク上に異なる ファイルとして存在したりすることがあり、ユーザが正 しくプリンタドライバの組み込みや変更を行なう作業は かなり面倒であり、また手間がかかるという問題があっ た。

【0009】当然、ユーザの指定が誤っていれば、正し くデータ出力を行なえないのはいうまでもない。

【0010】また、数多くのプリンタ装置などの存在す るネットワークに接続されている場合には、すべてのネ ットワーク上のコンピュータにすべてのプリンタドライ

50

スクなど) の資源が無駄に消費されるという問題点があった。

【0011】以上の問題は、プリンタを例として説明したが、ディスプレイや、プロッタ、サウンドカードその他の周辺装置のデバイスドライバであっても事情は同じである。

【0012】本発明の課題は、上記の問題点を解決するためになされたもので、使用する周辺装置に適したデバイスドライバをユーザの手を介さずに自動的にOSに組み込むことができ、誤まったデバイスドライバが使用さ 10れることを防止し、また、コンピュータのメモリ、ディスクなどの資源の無駄を防止できる情報処理装置を提供することにある。

[0013]

【課題を解決するための手段】以上の課題を解決するために、本発明においては、ホストコンピュータと、このホストコンピュータに双方向性インターフェースを介して接続される周辺機器から構成され、その周辺機器に対応したホストコンピュータのOSに組み込まれたデバイスドライバを介してホストコンピュータおよび周辺機器の間でデータ入出力を行なう情報処理装置において、前記周辺機器にその周辺機器に対応したデバイスドライバを格納した記憶手段を設け、必要に応じて前記記憶手段内のデバイスドライバをホストコンピュータに転送し、ホストコンピュータのOSに組み込む構成を採用した。

[0014]

【作用】以上の構成によれば、必要に応じて周辺機器に 用意されたデバイスドライバをホストコンピュータに転 送して自動的にOSに組み込むことができる。

[0015]

【実施例】以下、図面に示す実施例に基づき、本発明を詳細に説明する。以下では、出力装置としてプリンタを、またデバイスドライバとしてプリンタドライバ(プリンタマネージャ)を例に説明する。

【0016】図1は本発明を採用したコンピュータシステムを示している。ここでは、ホストコンピュータ3000およびプリンタ1500から成るシステムを例示するが、以下に説明する本発明は単体の機器であっても、複数の機器からなるシステムであっても、また、LANなどのネットワークを介してプリンタが接続されるよう40なシステムであっても適用可能である。

【0017】図1のホストコンピュータ3000において、符号1はCPUで、本実施例においてCPU1は、ROM3のプログラム用ROM、あるいは外部メモリ

(ハードディスク、フロッピーディスクなど) 11に記憶された文書処理プログラムなどに基づいて図形、イメージ、文字、表(表計算などを含む)などが混在した文書処理を実行するものとするとともに、システムバス4に接続される各デバイスを制御する。

【0018】符号2はRAMで、CPU1の主メモリ、

ワークエリアなどとして機能する。

【0019】符号3はROMで、このROM3のプログラム用ROMあるいは外部メモリ11には、CPU1の制御プログラム(図6)、およびオペレーティングシステムプログラムなどが格納される。また、ROM3は文書処理の際に使用するフォントデータなどを記憶するフォント用ROMの部分、文書処理などを行なう際に使用する各種データを記憶するためのデータ用ROMの部分を有する。

【0020】符号5はキーボードコントローラ(KBC)で、キーボード9や不図示のポインティングデバイスからのキー入力を制御する。6はCRTコントローラ(CRTC)で、CRTディスプレイ(CRT)10の表示を制御する。

【0021】符号7はディスクコントローラ(DKC)で、プートプログラム、各種のアプリケーション、フォントデータ、ユーザファイル、編集ファイル、プリンタ制御コマンド生成プログラム(プリンタドライバ)などを記憶するハードディスク(HD)、フロッピーディスク(FD)などの外部メモリ11との入出力を制御する。

【0022】符号8はプリンタコントローラ(PRTC)で、所定の双方向性インターフェース(たとえばセントロニクスインターフェース)21を介してプリンタ1500との通信制御処理を行なう。

【0023】CPU1の文書処理においては、グラフィカルインターフェースが使用され、プリンタ1500による出力と、CRT10による出力が同じになるような制御、いわゆるWYSIWYG(What You See Is What You Get)処理が行われるものとする。この際、たとえば、RAM2上に設定された表示情報RAMにおいて、フォントROMなどに格納されたビットマップフォントやアウトラインフォントの展開(ラスタライズ)処理が行なわれる。また、表示情報RAM上のビットマップデータをプリンタ1500に転送したり、プリンタ1500に格納されたアウトラインフォントを用いることにより、プリンタ1500およびCRT10において同一の出力を得ることができる。

【0024】また、CPU1は、文書処理において、CRT10上の不図示のマウスカーソルなどで指示されたコマンドに基づいて登録された種々のウインドウを開き、種々のデータ処理を実行する。

【0025】一方、プリンタ1500において、符号12はプリンタCPUで、ROM13のプログラム用ROMに記憶された制御プログラムなどあるいは外部メモリ14に記憶された制御プログラムなどに基づいてシステムバス15に接続される印刷部(プリンタエンジン)17に出力情報としての画像信号を出力する。

【0026】また、このROM13のプログラムROM

には、後述のCPU12の制御プログラム(図3、図4)などを記憶する。ROM13のフォント用ROMには出力情報を生成する際に使用するフォントデータなどを記憶し、ROM13のデータ用ROMにはハードディスクなどの外部メモリ14がないプリンタの場合には、ホストコンピュータ上で利用される情報などを記憶している。CPU12は入力部18を介してホストコンピュータとの通信処理が可能となっておりプリンタ内の情報などをホストコンピュータ3000に通知可能に構成されている。

【0027】符号19はCPU12の主メモリ、ワークエリアなどとして機能するRAMで、図示しない増設ポートに接続されるオプションRAMによりメモリ容量を拡張することができるようになっている。なお、RAM19は、出力情報展開領域、環境データ格納領域、NVRAMなどに用いられる。

【0028】プリンタ1500のハードディスク(HD)、ICカードなどの外部メモリ14は、メモリコントローラ(MC)20によりアクセスを制御される。外部メモリ14は、オプションとして接続され、フォント 20データ、エミュレーションプログラム、フォームデータなどを記憶する。また、操作パネル1501にはユーザインターフェースのためのスイッチおよびLED表示器などが配されている。

【0029】また、ホストコンピュータ3000およびプリンタの外部メモリは1個に限らず、少なくとも1個以上備え、内蔵フォントに加えてオプションフォントカード、言語系の異なるプリンタ制御言語を解釈するプログラムを格納した外部メモリを複数接続できるように構成されていてもよい。さらに、プリンタ1500は、図30示しないNVRAMを有し、操作パネル1501からのプリンタモード設定情報を記憶するようにしてもよい。【0030】さらに、本実施例では、ホストコンピュータ側には様々なプリンタなどの出力装置に対応するプリンタドライバをROM3あるいは外部メモリ11に備えており、ホストコンピュータを制御するオペレーティングシステム(OS)は、RAM2上にロードして実行することにより対応するプリンタなどの出力装置を制御するものとする。

【0031】例えばホストコンピュータ上のアプリケー 40ションプログラムなどを用いて作成された文書などを印刷する場合、RAM2上にロードしたプリンタドライバに種々のパラメータを与えることにより、文書の印刷に必要なプリンタ制御コマンドが生成され、生成されたプリンタ制御コマンドをインターフェース21を介してプリンタへ転送することにより印刷が行なわれる。

【0032】本実施例では、このプリンタドライバをプリンタ1500に用意しておく。すなわち、プリンタ1 500のROM13あるいは外部メモリ14には、自機の仕様に対応したプリンタドライバを格納しておき、こ 50 れをホストコンピュータ3000にアップロードして使用させるものとする。望ましくは、自機の仕様に対応した様々なOS用のプリンタドライバプログラムを種々格納し、後述のようにホストコンピュータ3000から通知されるOSの種類に応じて適切なプリンタドライバプログラムをアップロードできるようにしておく。

【0033】 企来、例えばホストコンピュータ上のアプリケーションプログラムなどを用いて作成された文書などを印刷する場合、接続しているプリンタの制御コマンドを生成するプリンタドライバはROM3または外部メモリ11(ハードディスク)にあらかじめ用意されていない場合には、ユーザに対してフロッピーディスクなどの外部メモリ11からプリンタドライバを供給させる。その後、プリンタドライバを設定ファイルにより、あるいは所定の操作によりOSに対してユーザが指定することにより初めてプリンタドライバのインストールが完成する。

【0034】しかし、本実施例によれば、OSはまずプリンタを識別するためのデータを双方向性インターフェース21を介してプリンタから取得し、そのプリンタ用のプリンタドライバがROM3あるいは外部メモリ11に格納されているプリンタドライバをさらに取得し、外部メモリ11へ格納し、その後、プリンタドライバをRAM2へロードして実行することにより文書の印刷に必要なプリンタ制御コマンドを生成し、インターフェース21を介してプリンタへ転送することができる。

【0035】以下、フローチャートなどを用いて、本発明の一実施例について詳しく述べる。

【0036】図2は、プリンタ1500の構成をより詳細に示している。図2において、ROM13あるいは外部メモリ14には、OSによって異なるプリンタドライバが格納してある。これらのプリンタドライバは、市場においてメジャーな種々のOSに対応したものをできるだけ数多く用意し、ROM13あるいは外部メモリ14に格納しておくのがよい。図2では、ROM13、外部メモリ14の双方に複数のOSのためのプリンタドライバを格納している。これらプリンタドライバのデータ形式はローダブルモジュール形式でもよいし、実行可能形式でもよく、それぞれが対応するOSの仕様にしたがって作成されていればよい。

【0037】本発明では、プリンタが接続されているホストコンピュータを制御しているOSを双方向性インターフェース21を介して特定し、そのOS用のプリンタドライバをOSの指示により転送可能となっている。なお、このプリンタドライバの転送時には、一旦プリンタ上のRAM19へ読み込んでから転送を行ってもよいし、可能であれば、ROM13あるいは外部メモリ14から直接入力部18に転送してもよい。

【0038】図3は、プリンタ1500側の受信データ 処理手順を示している。この処理はプリンタのCPU1 2が実行する。図3のステップS31では、双方向性イ ンターフェース21を介して送信されてきたデータを入 力部18から読み出しRAM19へ転送する。

【0039】ステップS32ではそのデータがOSがプ リンタを識別するためのデータの要求命令であるか判定 し、その場合にはプリンタの識別データをホストコンピ ュータへ送信する(ステップS33)。なお、プリンタ を識別するためのデータの要求命令は、プリンタ150 10 0に対応した正式なプリンタドライバが稼働していない (かもしれない) 段階でプリンタ1500に送信される ものであるので、OSがプリンタドライバを介さずに直 接にプリンタの接続しているポートを制御することで送 信できるような比較的単純な形式(たとえば所定のエス ケープシーケンスなど)が望ましい。

【0040】ステップS34ではその受信したデータが プリンタドライバの送信命令であるか判定し、その場合 にはプリンタ制御コマンドを生成するプログラムである プリンタドライバをデータとしてホストコンピュータへ 20 送信する(ステップS35)。

【0041】ポート識別データ要求、あるいはプリンタ ドライバ送信命令のどちらでもない場合には、通常の印 刷制御命令として印刷処理を行なう(ステップS3 6)。プリンタでは、これらの処理を繰り返し行なう。

【0042】図4は、図3のステップS35におけるプ リンタドライバ転送処理手順を示すフローチャートであ る。この処理はプリンタのCPU12が実行する。ステ ップS34で判定したプリンタドライバ送信命令には、 OSを識別できる識別データが含まれているものとし、 ステップS41ではこのOSの識別データを取り出す。

【0043】そしてステップS42では識別データで指 定されたOS用のプリンタドライバがROM13あるい は外部メモリ14に存在するか調べ、そのプリンタドラ イバが存在しない場合(ステップS43)にはホストコ ンピュータにエラーを示すデータを送信する。指定され たプリンタドライバが存在する場合には、ROM13あ るいは外部メモリ14からステップS41で識別したO Sに対応したプリンタドライバをRAM19へ転送し (ステップS44、S45)、双方向性インターフェー 40 ス21を介してホストコンピュータ3000へ転送す

【0044】図5は、ホストコンピュータ3000の要 部を詳細に示している。図示のように、ROM3あるい は外部メモリ11には、プリンタあるいはプリンタ制御 言語によって異なるプリンタドライバが既に格納されて

【0045】本発明では、ホストコンピュータが接続さ れているプリンタあるいはプリンタ制御言語を双方向性 インターフェース21を介して特定し、OSが必要とす 50

るプリンタドライバをプリンタに転送させることが可能 となっている。前述のように、プリンタドライバをプリ ンタからアップロードさせた場合、受信したプリンタド ライバを一旦ホストコンピュータ上のRAM2へ読み込 んでから外部メモリ11に格納してもよいし、可能であ れば、直接外部メモリ11に転送してもよい。実行時に はなんらかの形でRAM2上にロードして実行される。 プリンタからホストコンピュータへのプリンタドライバ の転送においては、プリンタドライバを所定のフォーマ ットで圧縮して転送してもよい。これにより、プリンタ ~ホストコンピュータ間の転送速度が向上する。

【0046】図6は、ホストコンピュータのOSにおけ るプリンタドライバの取り扱いを示している。図6の処 理はホストコンピュータの CPU 1 が実行する。

【0047】図6のステップS61では、現在、直接 (あるいはネットワークなどを介して) 接続されている プリンタへ対して、プリンタの識別を行なうためのデー 夕要求する命令を送信する(図3ステップS31~S3 3参照)。ステップS62では、プリンタが返してきた プリンタ識別データを解析する。これら(ステップS6 1、ステップS62)の処理は、ホストコンピュータ起 動時やプリンタ起動時、またはそれらの接続状態が更新 された場合などに行なう必要がある。

【0048】ステップS63では、識別されたプリンタ 用のプリンタドライバがROM3あるいは外部メモリ1 1に存在するか否かを調べる。識別されたプリンタ用の プリンタドライバが存在する場合には、そのプリンタド ライバをROM3あるいは外部メモリ11からRAM2 へ転送し、このプリンタドライバを用いてプリンタへ出 力を行なう。このとき、プリンタドライバは、OSやア プリケーションで用いられている描画命令をプリンタが 理解するプリンタ制御コマンドへ変換するなどの処理を 行なう。

【0049】ステップS63においてプリンタドライバ が存在しない場合には、プリンタへ対して、プリンタド ライバ送信命令を送信し(ステップS64)、ステップ S65でプリンタが返してきたデータを受信し、プリン タドライバを外部メモリ11に格納する(ステップS6 6)。そしてステップS67ではプリンタドライバをR AM2上に転送し、それを用いて描画命令をプリンタ制 御コマンドへ変換してプリンタへ出力を行なう。

【0050】ステップS67における外部メモリ11な どからRAM2へのプリンタドライバの転送は、ステッ プS66で受信する際にあらかじめPTRC8から直接 転送しておいてもよい。このRAM2上に転送されたプ リンタドライバを用いて、印刷データをプリンタ印刷制 御命令へ変換して印刷を行なう。

【0051】以上の実施例によれば、接続されているプ <u>リン</u>タのためのプリンタドライバがホストコンピュー<u>タ</u> 上に存在しない場合には、プリンタに内蔵されたプリン

30

タドライバを双方向性インターフェースを介して転送す ることにより、ユーザの手を介することなくプリンタド ライバをOSに自動供給することができる。

【0052】すなわち、プリンタに自機のためのプリン タドライバを種々のOS分だけ用意し、これを必要に応 じてホストに転送しホストのOSに使用させることがで きるため、プリンタドライバをユーザが指定することが なく、正しいプリンタドライバを自動的にOSに組み込 むことができる。

【0053】また、プリンタドライバの選択の際、ユー 10 ザの介入を必要としないためプリンタドライバを誤って 使用することはなく、常に高品位の印刷が可能になる。

【0054】上記実施例では、プリンタドライバをプリ ンタからアップロードさせた場合、外部メモリ(ハード ディスクドライブなど) にプリンタドライバを格納する ことにより、次回からはプリンタドライバのアップロー ドが必要なくなる。しかし、図7に示すように、印刷を 行なう度にプリンタドライバをアップロードする、つま り動的にプリンタドライバを差し換えるような処理も考 えられる。

【0055】図7は、ホスト側の処理を示しており、図 7のステップS71では、現在直接あるいはネットワー クを介して接続されているプリンタへ対して、プリンタ の識別を行なうためのデータ要求命令を送信する。ステ ップS72では、プリンタが返してきたプリンタ識別デ ータを解析する。これら(ステップS71、ステップS 72)の処理は、ホストコンピュータ起動時やプリンタ 起動時、またはそれらの接続状態が更新された場合など に加え、印刷実行時及びWYSIWYG処理のためのフ ォントなどのプリンタ依存の情報の問い合わせが必要な 30 場合にも行わなければならない。

【0056】ステップS73では、その識別されたプリ ンタ用のプリンタドライバがROM3あるいは外部メモ リ11に存在するか調べる。存在する場合には、そのプ リンタドライバをROM3あるいは外部メモリ11から RAM2へ転送し、それを用いて描画命令をプリンタ制 御コマンドへ変換してプリンタへ出力を行なう。存在し ない場合には、プリンタへ対して、プリンタドライバ送 信命令を送信し(ステップS74)、ステップS75で プリンタが返してきたデータを受信し、プリンタドライ 40 バをRAM2に展開する(ステップS76)。

【0057】すなわち、図7では図6と異なり、外部メ モリ11へは格納を行わず、直接RAM2へ展開し、プ ログラムを実行させ、描画命令をプリンタ制御コマンド へ変換してプリンタへ出力を行なう。これによりホスト コンピュータ上にプリンタドライバを格納、保持するこ となく、動的にプリンタドライバを差し換えることがで き、外部メモリの消費を押さえることができる。たとえ ば、ごくたまにしか使用しないプリンタのプリンタドラ イバにより、外部メモリが消費されるのを押さえること 50

10 ができ、ユーザデータの記憶に外部メモリを供すること ができる。

【0058】以上では、プリンタを実施例としたが、デ ィスプレイや、プロッタ、サウンドカードその他の周辺 装置のデバイスドライバであっても同様の構成が可能で ある。周辺装置とホストとのインターフェースはプリン タポートに限定されず、シリアルポートや、SCSIポ ート、拡張バスなどどのようなものであってもよい。要 は周辺装置のデバイスドライバをその周辺装置に用意 し、必要に応じてそのデバイスドライバをホストに転送 してホストのOSに組み込むように構成すれば良い。

[0059]

【発明の効果】以上から明らかなように、本発明によれ ば、ホストコンピュータと、このホストコンピュータに 双方向性インターフェースを介して接続される周辺機器 から構成され、その周辺機器に対応したホストコンピュ 一夕のOSに組み込まれたデバイスドライバを介してホ ストコンピュータおよび周辺機器の間でデータ入出力を 行なう情報処理装置において、前記周辺機器にその周辺 機器に対応したデバイスドライバを格納した記憶手段を 設け、必要に応じて前記記憶手段内のデバイスドライバ をホストコンピュータに転送し、ホストコンピュータの OSに組み込む構成を採用しているので、必要に応じて 周辺機器に用意されたデバイスドライバをホストコンピ ュータに転送して自動的にOSに組み込むことができ、 接続されている周辺機器に適した正しいデバイスドライ バをユーザの手を介さず自動的にOSが使用することが でき、デバイスドライバを誤用することを防止すること ができる。また、周辺機器からホストコンピュータへの デバイスドライバの転送を動的に行なうことにより、ホ ストコンピュータの外部記憶装置の消費を押えることが できる。

【図面の簡単な説明】

【図1】本発明を採用したコンピュータシステムの構成 を説明するプロック図である。

【図2】図1のプリンタにおけるプリンタドライバの転 送を説明するプロック図である。

【図3】図1のプリンタにおける受信データ処理手順を 示すフローチャート図である。

【図4】図1のプリンタにおけるプリンタドライバ転送 処理手順を示すフローチャート図である。

【図5】図1のホストコンピュータにおけるプリンタド ライバの格納およびロードを説明するプロック図であ

【図6】図1のホストコンピュータのOSにおけるプリ ンタドライバの取り扱いを示すフローチャート図であ

【図7】図1のホストコンピュータのOSにおけるプリ ンタドライバの異なる取り扱いを示すフローチャート図 である。

11

【符号の説明】

- 1 CPU
- 2 RAM
- 3 ROM
- 4 システムパス

*12 CPU

13 ROM

19 RAM

1500 プリンタ

* 3000 ホストコンピュータ

【図1】

【図 2 】

【図3】

【図6】

【図7】

【公報種別】特許法第17条の2の規定による補正の掲載

【部門区分】第6部門第3区分

【発行日】平成13年7月19日(2001.7.19)

【公開番号】特開平8-161250

【公開日】平成8年6月21日(1996.6.21)

【年通号数】公開特許公報8-1613

【出願番号】特願平6-301723

【国際特許分類第7版】

G06F 13/10 320 3/12 9/06 410 9/445

[FI]

G06F 13/10 320 A 3/12 C 9/06 410 C 420 L

【手続補正書】

【提出日】平成12年7月11日(2000.7.1)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】発明の名称

【補正方法】変更

【補正内容】

【発明の名称】 <u>出力装置、出力装置のデバイスドライバ送信方法、ホストコンピュータのデバイスドライバ取得装置、ホストコンピュータのデバイスドライバ取得方</u>法、および情報処理システム

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】 <u>ホストコンピュータに対して双方向通信</u> 可能に接続される出力装置であって、

複数のOSごとに、制御コマンドを生成するための複数 のデバイスドライバを格納する記憶手段を有し、

前記ホストコンピュータから、デバイスドライバ送信命令を受信し、このデバイスドライバ送信命令の受信に応じて、前記ホストコンピュータのOSを識別し、

識別されたOSに対応するデバイスドライバが前記記憶 手段に格納されているか否かを判断し、識別されたOS に対応するデバイスドライバが前記記憶手段に格納され ていると判断された後で、前記記憶手段から該当のデバ イスドライバを読み出して前記ホストコンピュータに送 信することを特徴とする出力装置。 【請求項2】 <u>前記記憶手段に識別されたOSに対応するデバイスドライバが存在しないと判断された場合、その旨を前記ホストコンピュータに通知することを特徴と</u>する請求項1に記載の出力装置。

【請求項3】 <u>前記ホストコンピュータに送信するデバイスドライバが、所定のフォーマットで圧縮されている</u> ことを特徴とする請求項1または2に記載の出力装置。

【請求項4】 前記ホストコンピュータから受信した前 記デバイスドライバ送信命令に含まれる識別データに応 じて前記ホストコンピュータのOSを識別することを特 徴とする請求項1~3のいずれかに記載の出力装置。

【請求項5】 <u>前記記憶手段に格納されているデバイス</u>ドライバが設定ファイルにしたがってホストコンピュータに読み込まれ実行されるローダブルモジュールとして構成されていることを特徴とする請求項1~4のいずれかに記載の出力装置。

【請求項6】 <u>前記デバイスドライバがプリンタドライ</u> パであることを特徴とする請求項1~5のいずれかに記 載の出力装置。

【請求項7】 ホストコンピュータで作成されたデータ を印刷する印刷部を有するプリンタとして構成されるこ とを特徴とする請求項1~6のいずれか1項に記載の出 力装置。

【請求項8】 ホストコンピュータに対して双方向通信 可能に接続されるとともに、複数のOSごとに、制御コ マンドを生成するための複数のデバイスドライバを格納 する記憶手段を有する出力装置のデバイスドライバ送信 方法において、

前記ホストコンピュータから、デバイスドライバ送信命 令を受信し、このデバイスドライバ送信命令の受信に応 <u>じて、前記ホストコンピュータのOSを識別するステッ</u>プと、

識別されたOSに対応するデバイスドライバが前記記憶 手段に格納されているか否かを判断し、識別されたOS に対応するデバイスドライバが前記記憶手段に格納され ていると判断された場合は前記記憶手段から該当のデバ イスドライバを読み出して前記ホストコンピュータに送 信するステップを含むことを特徴とする出力装置のデバ イスドライバ送信方法。

【請求項9】 出力装置と双方向通信可能に接続されるホストコンピュータのデバイスドライバ取得装置において、

前記出力装置から該出力装置の識別データを取得し、この識別データに基づき制御コマンドの生成に必要なデバイスドライバを認識し、

認識された該制御コマンドの生成に必要なデバイスドライバの送信を命令するデバイスドライバ送信命令を前記 出力装置に対して送信し、

前記出力装置から、該ホストコンピュータのOSに対応 するデバイスドライバを取得することを特徴とするホス トコンピュータのデバイスドライバ取得装置。

【請求項10】 前記認識された制御コマンドの生成に 必要なデバイスドライバがホストコンピュータに既に用 意されているか否かを判断し、必要なデバイスドライバ がホストコンピュータに既に用意されている場合にはそ のデバイスドライバを読み出し、一方、必要なデバイス ドライバがホストコンピュータに用意されていない場合 は、前記デバイスドライバ送信命令を該出力装置に送信 して該出力装置からそのデバイスドライバを取得するこ とを特徴とする請求項9に記載のホストコンピュータの デバイスドライバ取得装置。

【請求項11】 <u>前記出力装置から取得したデバイスドライバを自身のOSに組み込み、当該デバイスドライバを用いて該出力装置に送信すべき出力データを生成することを特徴とする請求項9または10に記載のホストコンピュータのデバイスドライバ取得装置。</u>

【請求項12】 <u>前記出力装置から取得するデバイスドライバが、所定のフォーマットで圧縮されていることを特徴とする請求項9~11のいずれか1項に記載のホストコンピュータのデバイスドライバ取得装置。</u>

【請求項13】 <u>前記出力装置から取得するデバイスドライバが設定ファイルにしたがって該ホストコンピュータに読み込まれ実行されるローダブルモジュールとして構成されていることを特徴とする請求項9~12のいずれか1項に記載のホストコンピュータのデバイスドライ</u>バ取得装置。

【請求項14】 <u>前記出力装置による出力処理の実行時に前記デバイスドライバを前記出力装置から取得し、取得したプリンタドライバを外部記憶装置に格納することなく主記憶装置に格納して用いることを特徴とする請求</u>

<u>項9~13のいずれかに1項に記載のホストコンピュー</u> タのデバイスドライバ取得装置。

【請求項15】 <u>出力装置と双方向通信可能に接続されるホストコンピュータのデバイスドライバ取得方法において、</u>

前記出力装置から該出力装置の識別データを取得し、こ の識別データに基づき制御コマンドの生成に必要なデバ イスドライバを認識するステップと、

認識された該制御コマンドの生成に必要なデバイスドラ イバの送信を命令するデバイスドライバ送信命令を前記 出力装置に対して送信するステップと、

前記出力装置から、該ホストコンピュータのOSに対応 するデバイスドライバを取得するステップを含むことを 特徴とするホストコンピュータのデバイスドライバ取得 方法。

【請求項16】 ホストコンピュータと、このホストコンピュータに双方向通信可能に接続される出力装置から構成される情報処理システムにおいて、

前記出力装置は、

複数のOSごとに、制御コマンドを生成するための複数 のデバイスドライバを格納する記憶手段を有し、

前記ホストコンピュータから、デバイスドライバ送信命 令を受信し、このデバイスドライバ送信命令の受信に応 じて、前記ホストコンピュータのOSを識別し、

識別されたOSに対応するデバイスドライバが前記記憶 手段に格納されているか否かを判断し、識別されたOS に対応するデバイスドライバが前記記憶手段に格納され ていると判断された後で、前記記憶手段から該当のデバ イスドライバを読み出して前記ホストコンピュータに送 信し、

前記ホストコンピュータは、

<u>前記出力装置から該出力装置の識別データを取得し、この識別データに基づき制御コマンドの生成に必要なデバ</u>イスドライバを認識し、

認識された該制御コマンドの生成に必要なデバイスドラ イバの送信を命令するデバイスドライバ送信命令を前記 出力装置に対して送信し、

前記出力装置から、該ホストコンピュータのOSに対応 するデバイスドライバを取得することを特徴とする情報 処理システム。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】 0001

【補正方法】変更

【補正内容】

[0001]

【産業上の利用分野】本発明は、ホストコンピュータに対して双方向通信可能に接続される出力装置、ホストコンピュータに対して双方向通信可能に接続されるとともに、複数のOSごとに、制御コマンドを生成するための一補?-

複数のデバイスドライバを格納する記憶手段を有する出力装置のデバイスドライバ送信方法、出力装置と双方向通信可能に接続されるホストコンピュータのデバイスドライバ取得装置、出力装置と双方向通信可能に接続されるホストコンピュータのデバイスドライバ取得方法、およびホストコンピュータと、このホストコンピュータに双方向通信可能に接続される出力装置から構成される情報処理システムに関するものである。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】0012

【補正方法】変更

【補正内容】

【0012】本発明の課題は、上記の問題点を解決するためになされたもので、使用する周辺装置に適したデバイスドライバをユーザの手を介さずに自動的に<u>ホストコンピュータの</u>OSに組み込むことができ、誤まったデバイスドライバが使用されることを防止し、また、<u>ホストコンピュータのメモリ、ディスクなどの資源の無駄を防止できるようにすることにある</u>。

【手続補正5】

【補正対象書類名】明細書

【補正対象項目名】0013

【補正方法】変更

【補正内容】

[0013]

【課題を解決するための手段】以上の課題を解決するた めに、本発明においては、ホストコンピュータと、この ホストコンピュータに双方向通信可能に接続される出力 装置から構成される処理システムにおいて、前記出力装 置は、複数のOSごとに、制御コマンドを生成するため の複数のデバイスドライバを格納する記憶手段を有し、 前記ホストコンピュータから、デバイスドライバ送信命 令を受信し、このデバイスドライバ送信命令の受信に応 じて、前記ホストコンピュータのOSを識別し、識別さ れたOSに対応するデバイスドライバが前記記憶手段に 格納されているか否かを判断し、識別されたOSに対応 するデバイスドライバが前記記憶手段に格納されている と判断された後で、前記記憶手段から該当のデバイスド ライバを読み出して前記ホストコンピュータに送信し、 前記ホストコンピュータは、前記出力装置から該出力装 置の識別データを取得し、この識別データに基づき制御 コマンドの生成に必要なデバイスドライバを認識し、認 識された該制御コマンドの生成に必要なデバイスドライ バの送信を命令するデバイスドライバ送信命令を前記出 力装置に対して送信し、前記出力装置から、該ホストコ ンピュータのOSに対応するデバイスドライバを取得す ることを特徴とする構成を採用した。この構成は、前記 出力装置にプリンタなどの周辺機器を対応づけると、ホ ストコンピュータと、このホストコンピュータに双方向

性インターフェースを介して接続される周辺機器から構成され、その周辺機器に対応したホストコンピュータのOSに組み込まれたデバイスドライバを介してホストコンピュータおよび周辺機器の間でデータ入出力を行なう構成において、前記周辺機器にその周辺機器に対応したデバイスドライバを格納した記憶手段を設け、必要に応じて前記記憶手段内のデバイスドライバをホストコンピュータに転送し、ホストコンピュータのOSに組み込む構成に相当することになる。

【手続補正6】

【補正対象書類名】明細書

【補正対象項目名】 0014

【補正方法】変更

【補正内容】

[0014]

【作用】以上の構成によれば、必要に応じて<u>出力装置</u>に 用意されたデバイスドライバをホストコンピュータに転 送して自動的に<u>ホストコンピュータの</u>OSに組み込むこ とができる。

【手続補正7】

【補正対象書類名】明細書

【補正対象項目名】 0 0 5 9

【補正方法】変更

【補正内容】

[0059]

【発明の効果】以上から明らかなように、本発明によれ ば、ホストコンピュータと、このホストコンピュータに 双方向通信可能に接続される出力装置から構成される処 理システムにおいて、前記出力装置は、複数のOSごと に、制御コマンドを生成するための複数のデバイスドラ イバを格納する記憶手段を有し、前記ホストコンピュー タから、デバイスドライバ送信命令を受信し、このデバ イスドライバ送信命令の受信に応じて、前記ホストコン ピュータのOSを識別し、識別されたOSに対応するデ バイスドライバが前記記憶手段に格納されているか否か <u>を判断し、識別されたOSに対応するデバイスドライバ</u> が前記記憶手段に格納されていると判断された後で、前 記記憶手段から該当のデバイスドライバを読み出して前 記ホストコンピュータに送信し、前記ホストコンピュー 夕は、前記出力装置から該出力装置の識別データを取得 し、この識別データに基づき制御コマンドの生成に必要 なデバイスドライバを認識し、認識された該制御コマン ドの生成に必要なデバイスドライバの送信を命令するデ バイスドライバ送信命令を前記出力装置に対して送信 し、前記出力装置から、該ホストコンピュータのOSに 対応するデバイスドライバを取得する構成を採用した。 したがって、必要に応じて出力装置に用意されたデバイ スドライバをホストコンピュータに転送して自動的にO Sに組み込むことができる。たとえば、前記出力装置に プリンタなどの周辺機器を対応づけていえば、必要に応

じて周辺機器に用意されたデバイスドライバをホストコンピュータに転送して自動的にOSに組み込むことができ、接続されている周辺機器に適した正しいデバイスドライバをユーザの手を介さず自動的にOSが使用することができ、デバイスドライバを誤用することを防止する

ことができる。また、周辺機器からホストコンピュータ へのデバイスドライバの転送を動的に行なうことによ り、ホストコンピュータの外部記憶装置の消費を押える ことができる、という優れた効果がある。