计算方法试题

一、已知数据点 $\{x_i, y_i\}_{i=1}^N$,求出分段 3 次拉格朗插值多项式,

并求积分
$$\int_{12}^{3.0} y(x) dx$$
 的近似值。(60 分)

x_i	1. 2	1. 3	1. 4	1. 5	1.6	1. 7
y_i	4. 43527	5. 62935	6. 97251	8. 42681	9. 93669	11. 4313
1.8	1. 9	2. 0	2. 1	2. 2	2. 3	2. 4
12. 8292	14. 0454	15. 0000	15. 6264	15. 8792	15. 7399	15. 2187
2.5	2. 6	2. 7	2.8	2. 9	3. 0	
14. 3534	13. 2049	11.8502	10. 3737	8. 85849	7. 37926	

- 1、简述所用的数值计算方法要点。
- 2、建立相应的计算程序并给出对程序的验证说明。
- 3、给出计算结果及说明(或给出计算结果图示及说明)。
- 二、微分方程的数值解(40分)
- 1、简述求解二阶微分方程的四阶 Runge-Kutta 方法(或诺曼诺夫方法)要点。
- 2、建立四阶 Runge-Kutta (或诺曼诺夫) 方法数值解二阶微分方程的计算程序。
- 3、对计算程序进行验证(给出验证说明、给出验证结果的图示)。
- 4、用计算程序数值求解下列方程,给出结果的图示及说明。

$$\frac{d^2y(x)}{dx^2} = F(x)y(x) + G(x); \quad 0.0 \le x \le 5.0$$

其中:
$$F(x) = \frac{18.0 \exp[6.0x - 12.0]}{(1.0 + \exp[3.0x - 6.0])^2};$$
 $G(x) = \frac{9.0 \exp[3.0x - 6.0]}{(1.0 + \exp[3.0x - 6.0])^2}$

$$y(0.0) = 0.99752738$$
, $y'(0.0) = -0.0073995279$, $y(0.02) = 0.99737488$