ASAP 2003 WORKSHOP 11 March 2003

DISTRIBUTION STATEMENT AApproved for Public Release
Distribution Unlimited

TO THE RANGE-DEPENDENCE PROBLEM REGISTRATION-BASED SOLUTIONS IN STAP RADARS

Fabian D. Lapierre and Jacques G. Verly

Department of Electrical Engineering and Computer Science University of Liège Liège, Belgium

20040303 257

INTRODUCTION

• GOAL: TARGET DETECTION FOR ARBITRARY, POSSIBLY UNKNOWN **BISTATIC CONFIGURATIONS** • DIFFICULTY: COMPLEX NATURE OF RANGE-DEPENDENT BISTATIC CLUTTER

OUTLINE

- INTRODUCTION
- · CONFIGURATIONS AND SIGNALS
- RANGE-DEPENDENCE PROBLEM
- SNAPSHOT AND SPECTRUM
- STAP PROCESSOR
- EXISTING COMPENSATION METHODS
- NEW REGISTRATION-BASED METHODS
- SUMMARY

OUTLINE

INTRODUCTION

· CONFIGURATIONS AND SIGNALS

RANGE-DEPENDENCE PROBLEM

SNAPSHOT AND SPECTRUM

· STAP PROCESSOR

• EXISTING COMPENSATION METHODS

NEW REGISTRATION-BASED METHODS

SUMMARY

RADAR-MEASUREMENT CONFIGURATION: **BISTATIC**

GROUND IS ASSUMED TO BE A FLAT (HORIZONTAL) PLANE

ASAP 2003-5 FDL 3/11/03

WHAT DOES THE RADAR MEASURE? **DUAL VIEW**

$$f_d = \frac{V_T}{\lambda_c} \cos \xi_d^T + \frac{V_R}{\lambda_c} \cos \xi_d^R$$

"ROUNDTRIP" DELAY

SPATIAL FREQUENCY

$$f_s \to \nu_s$$

DOPPLER FREQUENCY

$$f_d \to V_d$$

University of Liège

1. 1.

ASAP 2003-6 FDL 3/11/03

ALTERNATE POSITIONING SYSTEM: ISOSURFACES AND ISOCURVES

ASAP 2003-7 FDL 3/11/03

ABSTRACTING CONFIGURATIONS AND SIGNALS: DIRECTION-DOPPLER (DD) CURVES

ISOCURVES

 $(R_b, \mathbf{v_S}, \mathbf{v_d})$

Const. Rb

DIRECTION-DOPPLER (DD) CURVES (for a given $R_{\rm b}$)

GROUND

Const. V

Const. Vs

WHAT HAPPENS WHEN Rb CHANGES?

ASAP 2003-8 FDL 3/11/03

OUTLINE

- INTRODUCTION
- · CONFIGURATIONS AND SIGNALS

- RANGE-DEPENDENCE PROBLEM
- SNAPSHOT AND SPECTRUM
- · STAP PROCESSOR
- EXISTING COMPENSATION METHODS
- NEW REGISTRATION-BASED METHODS
- · SUMMARY

BISTATIC, IN-TRAIL, SIDELOOKING **EXAMPLE DD CURVES:**

ASAP 2003-10 FDL 3/11/03

BISTATIC, WING-TO-WING, SIDELOOKING EXAMPLE DD CURVES:

ASAP 2003-11 FDL 3/11/03

BISTATIC, WING-TO-FUSELAGE, SIDELOOKING EXAMPLE DD CURVES:

ASAP 2003-12 FDL 3/11/03

PROBLEM: DD CURVES ARE RANGE-DEPENDENT (EXCEPT FOR MONOSTATIC-SIDELOOKING CASE)

USEFUL CONCEPT: DD SURFACE

ASAP 2003-14 FDL 3/11/03

OUTLINE

- INTRODUCTION
- · CONFIGURATIONS AND SIGNALS
- RANGE-DEPENDENCE PROBLEM

- SNAPSHOT AND SPECTRUM
- STAP PROCESSOR
- EXISTING COMPENSATION METHODS
- NEW REGISTRATION-BASED METHODS
- · SUMMARY

RADAR SNAPSHOT AND POWER SPECTRUM

ASAP 2003-16 FDL 3/11/03

EXAMPLE POWER SPECTRUM: CLUTTER ONLY

DOES THIS GRAPH TRIGGER ANY THOUGHT?

THE KEY LINK BETWEEN THEORY AND MEASUREMENT

ASAP 2003-18 FDL 3/11/03

OUTLINE

- INTRODUCTION
- · CONFIGURATIONS AND SIGNALS
- RANGE-DEPENDENCE PROBLEM
- SNAPSHOT AND SPECTRUM

- STAP PROCESSOR
- EXISTING COMPENSATION METHODS
- NEW REGISTRATION-BASED METHODS
- SUMMARY

THE OPTIMUM STAP PROCESSOR

ASAP 2003-20 FDL 3/11/03

WHAT VALUE DO WE USE FOR \underline{R} IN $\underline{w} = \underline{R}^{-1}\underline{v}$?

	THEORETICAL & BEST	PRACTICAL & WORST
	TRUE ESTIMATE	BIASED ESTIMATE
COVARIANCE MATRIX $\underline{\underline{R}}(l)$	$\underline{\underline{R}}(l) = \mathrm{E}\{\underline{\mathbf{y}}_{k}\underline{\mathbf{y}}_{k}^{H}\}$	$\frac{\hat{\mathbf{R}}(l) = \frac{1}{N_l} \sum_{k \in S_l} \underline{\mathbf{R}}(k)}{\underline{\mathbf{R}}(k) = \underline{\mathbf{y}}_k \underline{\mathbf{y}}_k^H}$
PROCESSOR	OPTIMUM PROCESSOR (OP)	STRAIGHT-AVERAGING PROCESSOR (SA)

WE MUST <u>ALIGN CLUTTER RIDGES</u> OF $\overline{\mathrm{R}}(k)$'s! TO GET UNBIASED ESTIMATE OF $\overline{\mathbb{R}}(l)$

ALIGNING CLUTTER RIDGES, i.e., DD CURVES THE CRUX OF STAP:

FIXED CURVE AT / (REFERENCE)

HOW DO WE ALIGN DD CURVES?

ASAP 2003-22 FDL 3/11/03

A MATHEMATICAL THEORY OF DD CURVES **AN ABSOLUTE MUST:**

WE HAVE DEVELOPPED FORMULAS FOR ARBITRARY DD CURVES: ONLY FOR THE MATHEMATICALLY-INCLINED

ASAP 2003-23 FDL 3/11/03

HOW TO QUANTIFY PROCESSOR PERFORMANCE? SINR LOSS

THEORY, MEASUREMENT AND PERFORMANCE THE LINK BETWEEN

DD CURVE

CLUTTER RIDGE (POWER SPECTRUM)

CLUTTER NOTCH (SINR LOSS)

V_d 0

ASSUMPTION OF STATIONARITY:

REDUCTION OF DIMENSIONALITY OF CLUTTER COVARIANCE MATRIX

University of Liège

ASAP 2003-26 FDL 3/11/03

OUTLINE

- INTRODUCTION
- CONFIGURATIONS AND SIGNALS
- RANGE-DEPENDENCE PROBLEM
- SNAPSHOT AND SPECTRUM
- STAP PROCESSOR
- ► EXISTING COMPENSATION METHODS
- NEW REGISTRATION-BASED METHODS
- · SUMMARY

EXISTING RANGE-COMPENSATION METHODS:

(1) PRINCIPLE

DOPPLER WARPING (DW)

WEIGHT CONSISTS IN A RANGE-DEPENDENT DOPPLER SHIFT

DEPENDENT ON V.

INDEPENDENT OF u_s

$$\underline{w}(k) = \underline{w}(l) + (k-l)\underline{\hat{w}}(l)$$

EXISTING RANGE-COMPENSATION METHODS: (2) COMPARISON

DW	HODW	DBU
• SIMPLE IMPLEMENTATION	• NEARLY-PERFECT COMPENSATION	• PARAMETERS NOT REQUIRED
• POOR PERFORMANCE FOR BS CONFIGURATION • PARAMETERS REQUIRED	• COMPLICATED DOPPLER FILTERING • PARAMETERS REQUIRED	GOOD PERFORMANCE FOR SOME BS CONFIGURATIONS TWICE AS MANY DOF REQUIRED

OUR GOAL: GENERAL BS CONFIGURATIONS, UNKNOWN PARAMETERS, LOW COMPLEXITY WITHOUT ANY INCREASE IN NUMBER OF DOF

University of Liège

ASAP 2003-29 FDL 3/11/03

OUTLINE

- INTRODUCTION
- · CONFIGURATIONS AND SIGNALS
- RANGE-DEPENDENCE PROBLEM
- SNAPSHOT AND SPECTRUM
- STAP PROCESSOR
- EXISTING COMPENSATION METHODS
- NEW REGISTRATION-BASED METHODS
- SUMMARY

PEAK-MAPPING RANGE-DEPENDENCE

 $\mathrm{MC}(k)$ = moving curve at range gate k= FIXED CURVE AT REFERENCE RANGE GATE FC(l)

 $\underline{\underline{\Gamma}}(l) = \frac{1}{N_l} \sum_{k \in S_l} T_{lk}^{\Gamma} \{ \underline{\underline{\Gamma}}(k) \}$

HOW DO WE FIND $\mathbf{T}_{lk}^{\mathtt{l}}$ FOR ALL k AND l ?

PEAK-MAPPING RANGE-DEPENDENCE COMPENSATION: (2) System

ASAP 2003-32 FDL 3/11/03

TRANSFORMATION (ST): (1) PRINCIPLE PEAK-MAPPING BY SCALING

ASAP 2003-33 FDL 3/11/03

FRANSFORMATION (ST): (2) PERFORMANCE PEAK-MAPPING BY SCALING

University of Liège

ASAP 2003-34 FDL 3/11/03

TRANSFORMATION (AT): PRINCIPLE **PEAK-MAPPING BY AFFINE**

ASAP 2003-35 FDL 3/11/03

TRANSFORMATION (WT): (1) PRINCIPLE PEAK-MAPPING BY WARPING

University of Liège

ASAP 2003-36 FDL 3/11/03

TRANSFORMATION (WT): (2) PERFORMANCE PEAK-MAPPING BY WARPING

ASAP 2003-37 FDL 3/11/03

THE CONFIGURATION PARAMETERS? HOW DO WE FIND

CONFIGURATION	PEAK EXTRACTION (2)	CURVE FITTING
MS	THRESHOLDING	SIMPLE MMSE
BS	WATERSHED SEGM. (Image processing)	DIFFICULT MMSE (Theory of DD curves)

RANGE COMPENSATION METHODS COME IN TWO TYPES AND SIX FLAVORS!

OPEN-LOOP (OL)

DATA-ADAPTIVE (DA)

PEAK-MAPPING COMPENSATION	OPEN-LOOP (OL)	DATA-ADAPTIVE (DA)
SCALING TRANSFORMATION (MS)	OL-ST-MS	DA-ST-MS
AFFINE TRANSFORMATION (BS)	OL-AT-BS	DA-AT-BS
WARPING TRANSFORMATION (BS)	OL-WT-BS	DA-WT-BS

University of Liège

ASAP 2003-39 FDL 3/11/03

PERFORMANCE COMPARISON: (1) ST-MS

ASAP 2003-40 FDL 3/11/03

PERFORMANCE COMPARISON:

ASAP 2003-41 FDL 3/11/03

PERFORMANCE COMPARISON: (3) WT-BS

ASAP 2003-42 FDL 3/11/03

PERFORMANCE COMPARISON:

ASAP 2003-43 FDL 3/11/03

PERFORMANCE COMPARISON:

- WITH DIRECTIVE SENSORS **BS CONFIGURATIONS** SAME RESULTS FOR
- POOR PERFORMANCE FOR **BS DA METHODS WITH** DIRECTIVE SENSORS

ASAP 2003-44 FDL 3/11/03

OUTLINE

- INTRODUCTION
- · CONFIGURATIONS AND SIGNALS
- RANGE-DEPENDENCE PROBLEM
- SNAPSHOT AND SPECTRUM
- STAP PROCESSOR
- EXISTING COMPENSATION METHODS
- NEW REGISTRATION-BASED METHODS
- → SUMMARY

SUMMARY

- · RANGE-DEPENDENCE OF BS CLUTTER SPECTRUM MAKES **BS CLUTTER REJECTION A CHALLENGE IN STAP**
- WE REVIEWED EXISTING COMPENSATION METHODS
- DOPPLER WARPING (DW)
- HIGH-ORDER DOPPLER WARPING (HODW)
- Configuration parameters required
- DERIVATIVE-BASED UPDATING (DBU)
 - Doubling of number of DOF
- WE PROPOSED NEW REGISTRATION-BASED COMPENSATION METHODS
- Nearly perfect compensation for all MS and BS configurations Configuration parameters not required
- No increase of number of DOF
- High computational load
- Complex implementation
- Robustness