1. Norsk: En bygning har dimensjoner 5,0 m X 10,0 m X 3,0 m høy. Volumet er V = 150 m³. Totalt areal på vegger og tak er A_{vegg} = 140 m². Innetemperaturen er T_{inn} = 25°C og utetemperaturen er T_{out} = 10°C (vi ignorerer varmetapet gjennom vinduer foreløpig) Luftens tetthet er: ρ = 1,29 kg/m³

Varmekapasiteten ved konstant lufttrykk er: $c_p = 1000 \text{ J/(kg °C)}$

Veggene og taket er 3 lag med materiale:

- 1: treverk med $d_w = 2.0$ cm med varmeledningsevne $k_w = 0.08$ (J/sm°C)
- 2: Isolasjon med $d_i = 20,0$ cm med termisk ledningsevne $k_i = 0,03$ (J/sm°C)
- 3: treverk med $d_w = 2.0$ cm med varmeledningsevne $k_w = 0.08$ (J/sm°C)
- a) Beregn R-verdien for vegger og tak.
- b) Beregn varmetapet per tid på grunn av ledning gjennom vegger og tak.
- c) Hvis luften i bygningen skiftes ut hver 2. time, hvor stor er varmetapet per tid på grunn av konveksjon?
- d) Hva er den totale varmetilførselen som trengs for å holde inne temperatur på t_{inn} = 25°C

English: A building has dimensions 5.0 m X 10.0 m X 3.0 m high. The volume is $V = 150 \, \text{m}^3$. The total area of the walls and ceiling is $A_{\text{vegg}} = 140 \, \text{m}^2$. The inside temperature is Tin = 25°C and the outside temperature is $T_{\text{out}} = 10$ °C (we ignore the heat loss through windows for now)

The density of air is: $\rho = 1.29 \text{ kg/m}^3$

The heat capacity at constant pressure of air is: $c_p = 1000 \text{ J/(kg °C)}$

The walls and ceiling are 3 layers of material:

- 1: wood $d_w = 2.0$ cm with thermal conductivity $k_w = 0.08$ (J/sm°C)
- 2: Insulation $d_i = 20.0$ cm with thermal conductivity $k_i = 0.03$ (J/sm°C)
- 3: wood $d_w = 2.0$ cm with thermal conductivity $k_w = 0.08$ (J/sm°C)
- a) Calculate the R-value for the walls and ceiling.
- b) Calculate the rate of heat loss due to conduction through the walls and ceiling.
- c) If the air in the building is replaced every 2 hours, what is the rate of heat loss due to convection?
- d) What is the total heat input needed to maintain the inside temperature of Tin = 25°C

Fasit:

a) The R values are given by: R = d/k and $Rtot = R_1 + R_2 + R_3$ For wood: $R_w = d_w/k_w = 0.02 \text{ m} / 0.08 \text{ (J/sm}^{\circ}\text{C)} = 0.25 \text{ m}^{2} ^{\circ}\text{C} / \text{W}$ For insulation: $R_i = d_i/k_i = 0.20 \text{ m} / 0.03 \text{ (J/sm}^{\circ}\text{C)} = 6.67 \text{ m}^{2} ^{\circ}\text{C} / \text{W}$

The total R value for 3 layers: $R_{tot} = R_w + R_i + R_w$

$$R_{tot} = 0.25 \text{ m}^2 \, ^{\circ}\text{C} \, / \, \text{W} + 6.67 \, \text{m}^2 \, ^{\circ}\text{C} \, / \, \text{W} + 0.25 \, \text{m}^2 \, ^{\circ}\text{C} \, / \, \text{W} = 7.17 \, \text{m}^2 \, ^{\circ}\text{C} \, / \, \text{W}$$

- b) Use $\dot{Q} = \frac{Q}{t} = \frac{A\Delta T}{R} = 140 \ m^3 \cdot \frac{15^{\circ}\text{C}}{7.17 m^{2}{}^{\circ}\text{C}/\text{W}} = 293 \ \text{Watts}$
- c) The heat needed to warm the air moved into the house from T_{out} to T_{in}

is given by: $Q = m c \Delta T$

The mass of the air in the house is: $m_{air} = \rho_{air} \ V = 1.29 \ kg/m^3 \cdot 150 \ m^3 = 193.5 \ kg$ We use cp = heat capacity at constant Pressure

The heat needed to warm the air is

Q =
$$m_{air} c_p \Delta T$$
 = 193.5 kg · 1000 kJ/kg °C · 15°C = 2.90 X 10⁶ Joules

The rate of heat loss is:

Q/t = 2. 90 X
$$10^6$$
 J/ (2.0 hours · 60 minutes/hour · 60 seconds/minute)

d) The total heat loss for conduction and convection is:

Norsk: En bygning varmes opp med varmtvann som sirkulerer i radiatorer for å levere varme til rommene. Radiatorene har et samlet areal på $A_r = 10,0 \text{ m}^2$ og strålingsemissivitet e = 0,95. Vannet i radiatorene varmes opp av en oljefyr som varmer opp vannet til $T_B = 80^{\circ}\text{C}$. Temperaturen i bygget holdes på $T_{inn} = 20^{\circ}\text{C}$.

- a) Hva er varmehastigheten som kan leveres til bygget gjennom radiatorene som varmes opp av oljefyr ($T_B = 80.0 \,^{\circ}$ C)?
- b) Oljefyren i bygget erstattes med en varmepumpe som varmer opp vannet i radiatorene til T_{hp} = 60°C. Hva er varmen som kam leveres til huset med varmepumpen som bruker samme radiatorsystem?

English: A building is heated with hot water circulating in radiators to supply heat to the rooms. The radiators have a total area of $A_r = 10.0 \text{ m}^2$ and radiation emissivity e = 0.95. The water in the radiators is heated by a boiler which heats the water to $T_B = 80^{\circ}$ C. The temperature in the building is kept at $T_{in} = 20^{\circ}$ C.

- a) What is the rate of heat that can be delivered to the building through the radiators heated by the boiler ($T_B = 80.0 \, ^{\circ}\text{C}$)?
- b) The boiler in the building is replaced with a heat pump which heats the water in the radiators to $T_{hp} = 60$ °C. What is the rate of heat delivered to the house with the heat pump using the same radiator system?

Fasit: a) The heat radiated by the plates heated by the boiler is given by

$$Q/t = \sigma \ e \ A \ (T_B^4 - T_R^4)$$

$$T_B = Boiler \ temperature = 353 \ K$$

$$T_R = Room \ temperature$$

$$Q/t = 5.67 \ X \ 10-8 \ (W/m^2 \ K^4) \cdot 0.95 \ \cdot 10.0 \ m^2 \ \cdot \ ((353K)^4 - (293K)^4)$$

$$Q/t = 4394 \ W$$

b) The heat radiated by the plates heated by the heat pump is given by $Q/t = \sigma \ e \ A \ (T_B{}^4 - T_R{}^4) \qquad \qquad T_B = \text{Heat pump temperature } = 333 \ K$ $T_R = \text{Room temperature } = 293 \ K$