HW03

the runtime is 38s

Jie Ren

March 5, 2019

Exercise 1: Data Description

```
rm(list=ls())
ptm <- proc.time()</pre>
# install.packages("bayesm")
# install.packages("data.table")
# install.packages("mlogit")
library("mlogit")
library("bayesm")
library("data.table")
data("margarine")
choicePrice <- margarine$choicePrice</pre>
demos
             <- margarine$demos
# Mark the chosen one
                         <- colnames(choicePrice[,-(1:2)])[choicePrice$choice]</pre>
choicePrice$chosen
choicePrice$chosenChar <- sapply(strsplit(choicePrice$chosen, "_"), "[[", 2)</pre>
choicePrice$chosenBrand <- sapply(strsplit(choicePrice$chosen, "_"), "[[", 1)</pre>
```

Avg and Sd of Price by characteristic

By Type

```
## average sd
## Stk 0.6066458 0.2494704
## Tub 0.9151370 0.2448335
```

By Brand

```
# Extract price data by Brand
# Getting a list of brand
brandlist <- unique(sapply(strsplit(colnames(choicePrice)[3:12],"_"),"[[", 1))
byBrand <- data.frame(avg = numeric(7),Sd = numeric(7) ,row.names = brandlist)
for (i in 1:length(brandlist)){
   price <- as.matrix(choicePrice[,grepl(brandlist[i],colnames(choicePrice))])
   byBrand[i,]<-c(mean(price),sd(price))
}
byBrand</pre>
```

```
## PPk 0.7979228 0.29981617
## PBB 0.5432103 0.12033186
## PFl 1.1021980 0.09284114
## PHse 0.5029105 0.11836152
## PGen 0.3452819 0.03516605
## PImp 0.7807785 0.11464607
## PSS 0.8250895 0.06121159
```

By columns

```
byCol <- data.frame(avg = apply(choicePrice[,3:12],2,mean)
,Sd = apply(choicePrice[,3:12],2,sd)
,row.names = colnames(choicePrice)[3:12])
byCol</pre>
```

```
## PPk_Stk 0.5184362 0.15051740

## PBB_Stk 0.5432103 0.12033186

## PFl_Stk 1.0150201 0.04289519

## PHse_Stk 0.4371477 0.11883123

## PGen_Stk 0.3452819 0.03516605

## PImp_Stk 0.7807785 0.11464607

## PSS_Tub 0.8250895 0.06121159

## PPk_Tub 1.0774094 0.02972613

## PFl_Tub 1.1893758 0.01405451

## PHse_Tub 0.5686734 0.07245500
```

Market Share

Market Share by Brand

```
table(choicePrice$chosenBrand)/nrow(choicePrice)
```

```
##

## PBB PF1 PGen PHse PImp PPk

## 0.15637584 0.10469799 0.07046980 0.14004474 0.01655481 0.44049217

## PSS

## 0.07136465
```

Market Share by Char

```
table(choicePrice$chosenChar)/nrow(choicePrice)
```

```
##
## Stk Tub
## 0.8255034 0.1744966
```

Market Share by Both

```
table(choicePrice$chosen)/nrow(choicePrice)
```

```
##
## PBB_Stk PFl_Stk PFl_Tub PGen_Stk PHse_Stk PHse_Tub
## 0.15637584 0.05436242 0.05033557 0.07046980 0.13266219 0.00738255
## PImp_Stk PPk_Stk PPk_Tub PSS_Tub
## 0.01655481 0.39507830 0.04541387 0.07136465
```

Mapping between observed attributes and choices

```
## $Income
##
         choicePrice$chosen
## x
              PBB Stk
                          PF1 Stk
                                       PF1 Tub
                                                  PGen Stk
                                                              PHse Stk
##
          0.080000000 0.000000000 0.040000000 0.120000000 0.040000000
##
         0.183050847 0.044067797 0.074576271 0.064406780 0.115254237
     12.5 0.214141414 0.082828283 0.050505051 0.046464646 0.0888888889
##
##
     17.5 0.147710487 0.039881832 0.029542097 0.031019202 0.163958641
##
     22.5 0.145907473 0.040332147 0.035587189 0.145907473 0.182680902
##
     27.5 0.197478992 0.018907563 0.071428571 0.037815126 0.140756303
     32.5 0.153005464 0.051001821 0.060109290 0.098360656 0.116575592
##
##
     37.5 0.121863799 0.060931900 0.032258065 0.082437276 0.103942652
     42.5 0.108910891 0.108910891 0.046204620 0.019801980 0.075907591
##
##
     47.5 0.117021277 0.122340426 0.010638298 0.037234043 0.085106383
##
          0.149253731 0.054726368 0.084577114 0.034825871 0.159203980
     67.5 0.078431373 0.019607843 0.000000000 0.117647059 0.156862745
##
##
     87.5 0.270270270 0.081081081 0.324324324 0.000000000 0.027027027
##
     130 0.038461538 0.115384615 0.192307692 0.076923077 0.307692308
##
         choicePrice$chosen
## x
             PHse Tub
                         PImp Stk
                                       PPk Stk
                                                   PPk Tub
                                                               PSS Tub
          0.000000000 0.000000000 0.380000000 0.020000000 0.320000000
##
     2.5
##
         0.003389831 0.006779661 0.396610169 0.020338983 0.091525424
##
     12.5 0.006060606 0.018181818 0.395959596 0.016161616 0.080808081
##
     17.5 0.002954210 0.007385524 0.469719350 0.028064993 0.079763663
     22.5 0.009489917 0.002372479 0.346381969 0.042704626 0.048635824
##
##
     27.5 0.008403361 0.012605042 0.409663866 0.052521008 0.050420168
     32.5 0.009107468 0.007285974 0.380692168 0.034608379 0.089253188
##
##
     37.5 0.017921147 0.003584229 0.473118280 0.050179211 0.053763441
##
     42.5 0.003300330 0.066006601 0.412541254 0.069306931 0.089108911
##
     47.5 0.015957447 0.090425532 0.441489362 0.047872340 0.031914894
##
          0.000000000 0.014925373 0.233830846 0.208955224 0.059701493
##
     67.5 0.019607843 0.039215686 0.372549020 0.058823529 0.137254902
##
     87.5 0.000000000 0.027027027 0.243243243 0.000000000 0.027027027
##
     130 0.000000000 0.076923077 0.192307692 0.000000000 0.000000000
##
   $Fs3_4
##
##
      choicePrice$chosen
                       PF1 Stk
                                    PF1 Tub
                                               PGen Stk
## X
           PBB Stk
                                                           PHse Stk
##
     0 0.148423818 0.079246935 0.068739054 0.056042032 0.129159370
##
     1 0.164684355 0.028362306 0.031107045 0.085544373 0.136322049
##
      choicePrice$chosen
## x
          PHse Tub
                      PImp Stk
                                   PPk Stk
                                                PPk Tub
                                                            PSS Tub
##
     0 0.009194396 0.024518389 0.378283713 0.035464098 0.070928196
##
     1 0.005489478 0.008234218 0.412625801 0.055809698 0.071820677
##
## $Fs5.
      choicePrice$chosen
##
## x
           PBB Stk
                       PF1 Stk
                                   PF1 Tub
                                               PGen Stk
                                                           PHse Stk
##
     0 0.160631143 0.057682359 0.055354371 0.065183652 0.122866011
##
     1 0.129139073 0.033112583 0.018211921 0.104304636 0.195364238
##
      choicePrice$chosen
## x
                      PImp_Stk
                                                PPk_Tub
          PHse Tub
                                    PPk Stk
                                                            PSS Tub
##
     0 0.003879979 0.013191930 0.394205898 0.049663735 0.077340921
##
     1 0.029801325 0.038079470 0.400662252 0.018211921 0.033112583
```

```
##
##
   $Fam Size
##
      choicePrice$chosen
                       PF1 Stk
## x
           PBB Stk
                                    PF1 Tub
                                               PGen Stk
                                                           PHse Stk
##
     1 0.139204545 0.107954545 0.096590909 0.028409091 0.065340909
##
     2 0.159638554 0.092620482 0.084337349 0.041415663 0.115963855
     3 0.172233820 0.030271399 0.050104384 0.062630480 0.124217119
##
##
     4 0.158794788 0.026872964 0.016286645 0.103420195 0.145765472
##
     5 0.134177215 0.050632911 0.027848101 0.083544304 0.182278481
##
     6 0.121546961 0.000000000 0.000000000 0.132596685 0.182320442
     7 0.083333333 0.000000000 0.000000000 0.166666667 0.666666667
##
     8 0.125000000 0.000000000 0.000000000 0.250000000 0.312500000
##
##
      choicePrice$chosen
## x
          PHse Tub
                      PImp Stk
                                    PPk Stk
                                                PPk Tub
                                                            PSS Tub
##
     1 0.000000000 0.019886364 0.420454545 0.051136364 0.071022727
     2 0.002259036 0.019578313 0.356927711 0.039156627 0.088102410
##
##
     3 0.003131524 0.011482255 0.417536534 0.048016701 0.080375783
##
     4 0.007328990 0.005700326 0.408794788 0.061889251 0.065146580
     5 0.032911392 0.058227848 0.405063291 0.005063291 0.020253165
##
##
     6 0.027624309 0.000000000 0.419889503 0.049723757 0.066298343
##
     7 0.000000000 0.000000000 0.083333333 0.000000000 0.000000000
     8 0.00000000 0.000000000 0.312500000 0.000000000 0.000000000
##
##
   $college
##
##
      choicePrice$chosen
## x
                       PF1 Stk
                                    PF1_Tub
           PBB Stk
                                               PGen Stk
                                                           PHse Stk
##
     0 0.157068063 0.043520942 0.053337696 0.074934555 0.137107330
     1 0.154879774 0.077793494 0.043847242 0.060820368 0.123055163
##
##
      choicePrice$chosen
## x
          PHse Tub
                      PImp Stk
                                    PPk Stk
                                                PPk Tub
                                                            PSS Tub
##
     0 0.005890052 0.013743455 0.394306283 0.049410995 0.070680628
##
     1 0.010608204 0.022630835 0.396746818 0.036775106 0.072842999
##
## $whtcollar
##
      choicePrice$chosen
## x
           PBB Stk
                       PF1 Stk
                                    PF1 Tub
                                               PGen Stk
                                                           PHse Stk
##
     0 0.170405983 0.059294872 0.050747863 0.048076923 0.129273504
     1 0.146266359 0.050808314 0.050038491 0.086605081 0.135103926
##
##
      choicePrice$chosen
## x
          PHse Tub
                      PImp Stk
                                    PPk Stk
                                                PPk Tub
##
     0 0.001068376 0.017094017 0.405448718 0.046474359 0.072115385
     1 0.011932256 0.016166282 0.387605851 0.044649731 0.070823711
##
##
## $retired
##
      choicePrice$chosen
                       PF1 Stk
## x
           PBB Stk
                                    PF1 Tub
                                               PGen Stk
                                                           PHse Stk
     0 0.151541096 0.032534247 0.041095890 0.076769406 0.143264840
##
     1 0.173913043 0.133540373 0.083850932 0.047619048 0.094202899
##
##
      choicePrice$chosen
## x
          PHse Tub
                      PImp Stk
                                    PPk Stk
                                                PPk Tub
                                                            PSS Tub
     0 0.008276256 0.013127854 0.403538813 0.052226027 0.077625571
##
     1 0.004140787 0.028985507 0.364389234 0.020703934 0.048654244
##
```

Exercise 2: First Model

This is a condicionnal logit model, as price is alternative specific.

Manually

```
n <- nrow(choicePrice)
b <- rep(-1,10)

LL.2 <- function(b,Predict = F){
    c <- cbind(0, t(replicate(n,b[1:9]))) # Calculate the constants
    Xb <- as.matrix(choicePrice[,3:12])*b[10] # Calculate latent utility for alternative specific char
    XB <- Xb + c # Calculate latent utility
    P <- exp(XB)/rowSums(exp(XB)) # Calculate probability
    LL <- sum(-log(P[cbind(seq(n),choicePrice$choice)])) # Only use the prob for choice that is se lected
    ifelse(Predict == F, return(LL), return(P)) # To allow the output of the probability matrix wh en Predit = T
}

result.2 <- optim(par = b, LL.2)
result.2$par</pre>
```

```
## [1] -0.7539690 1.5021992 -1.6159214 -2.9593816 -1.0913599 0.2050317
## [7] 1.6467839 2.3765521 -3.8519185 -6.7023977
```

result.2\$value

```
## [1] 7486.294
```

Check with mlogit

```
choicePrice.n <- data.frame(choicePrice)
setnames(choicePrice.n, old = c("PPk_Stk", "PBB_Stk", "PFl_Stk", "PHse_Stk", "PGen_Stk", "PImp_S
tk", "PSS_Tub", "PPk_Tub", "PFl_Tub", "PHse_Tub"), new = c("Price1", "Price2", "Price3", "Price4",
    "Price5", "Price6", "Price7", "Price8", "Price9", "Price10")) # rename the column names to allow resh
aping

# Reshape the data for mlogit function
Ch <- mlogit.data(choicePrice.n, shape = "wide", varying = 3:12, choice = "choice", sep = "", al
t.levels = 1:10)

# Regress using the mlogit function
result.2.m <- mlogit(choice ~ Price, data = Ch, method = "nr")
summary(result.2.m)</pre>
```

```
##
## Call:
## mlogit(formula = choice ~ Price, data = Ch, method = "nr")
##
## Frequencies of alternatives:
##
           1
                     2
                               3
                                                   5
                                                             6
## 0.3950783 0.1563758 0.0543624 0.1326622 0.0704698 0.0165548 0.0713647
##
           8
                     9
## 0.0454139 0.0503356 0.0073826
##
## nr method
## 6 iterations, 0h:0m:1s
## g'(-H)^-1g = 2.19E-08
## gradient close to zero
##
## Coefficients :
##
                   Estimate Std. Error z-value Pr(>|z|)
## 2:(intercept) -0.954307
                              0.050046 -19.0685 < 2.2e-16 ***
                              0.108651 11.9370 < 2.2e-16 ***
## 3:(intercept)
                   1.296968
                              0.054158 -31.7096 < 2.2e-16 ***
## 4:(intercept) -1.717332
                              0.071461 -40.6379 < 2.2e-16 ***
## 5:(intercept) -2.904005
## 6:(intercept) -1.515311
                              0.126230 -12.0043 < 2.2e-16 ***
## 7:(intercept)
                   0.251768
                              0.079164
                                        3.1803 0.001471 **
## 8:(intercept)
                              0.118047 12.4092 < 2.2e-16 ***
                  1.464868
## 9:(intercept)
                   2.357505
                              0.133774 17.6230 < 2.2e-16 ***
## 10:(intercept) -3.896593
                              0.177419 -21.9627 < 2.2e-16 ***
## Price
                              0.174279 -38.1949 < 2.2e-16 ***
                  -6.656580
## ---
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Log-Likelihood: -7464.9
## McFadden R^2: 0.099075
## Likelihood ratio test : chisq = 1641.8 (p.value = < 2.22e-16)
```

Interpretation: The negative sign on the price coefficient indicating that as the price of one alternative increases, the individual is less likly to buy that alternative.

Exercise 3: Second Model

This is a multinomial logit model, as income is individual specific.

Mannually

```
b <- c(-1,-2,-1,-2,-4,-1,-3,-2,-4,rep(0,9))

LL.3 <- function(b,Predict = F){
    c <- cbind(0, t(replicate(n,b[1:9]))) # Calculate the constants
    Xb <- cbind(0, t(replicate(n,b[10:18])))*choicePrice$Income # Calculate latent utility for ind
ividual specific char
    XB <- Xb+c # Calculate latent utility
    P <- exp(XB)/rowSums(exp(XB)) # Calculate probability
    LL <- sum(-log(P[cbind(seq(n),choicePrice$choice)])) # Only use the prob for choice that is se
lected
    ifelse(Predict == F, return(LL), return(P))
}
result.3 <- optim(par = b, LL.3)
result.3$par</pre>
```

```
## [1] -0.6869351117 -2.0701660438 -0.9987654551 -1.4928755533 -3.9028707170

## [6] -1.1239676158 -2.8393017277 -2.4470402370 -4.2454577722 -0.0059463453

## [11] 0.0075277238 -0.0001509262 -0.0056968769 0.0263947649 -0.0176220806

## [16] 0.0223534519 0.0144906320 0.0097841836
```

result.3\$value

```
## [1] 8246.721
```

check with mlogit

```
result.3.m <- mlogit(choice ~ 0 | Income, data = Ch, method = "nr")
summary(result.3.m)</pre>
```

```
##
## Call:
## mlogit(formula = choice ~ 0 | Income, data = Ch, method = "nr")
##
## Frequencies of alternatives:
                                                                   7
##
          1
                    2
                             3
                                                5
                                                          6
## 0.3950783 0.1563758 0.0543624 0.1326622 0.0704698 0.0165548 0.0713647
##
          8
                    9
                            10
## 0.0454139 0.0503356 0.0073826
##
## nr method
## 6 iterations, 0h:0m:1s
## g'(-H)^-1g = 0.000261
## successive function values within tolerance limits
##
## Coefficients :
##
                  Estimate Std. Error z-value Pr(>|z|)
## 2:(intercept) -0.8453241 0.0931354 -9.0763 < 2.2e-16 ***
## 3:(intercept) -2.3998575 0.1335802 -17.9657 < 2.2e-16 ***
## 4:(intercept) -1.2013265 0.0971021 -12.3718 < 2.2e-16 ***
## 5:(intercept) -1.6905817 0.1269952 -13.3122 < 2.2e-16 ***
## 6:(intercept) -4.1397653 0.2109890 -19.6208 < 2.2e-16
## 7:(intercept) -1.5310415 0.1280434 -11.9572 < 2.2e-16
## 8:(intercept) -2.8483522 0.1393848 -20.4352 < 2.2e-16 ***
## 9:(intercept) -2.5755972 0.1361400 -18.9187 < 2.2e-16 ***
## 10:(intercept) -4.2822699 0.3457920 -12.3839 < 2.2e-16 ***
## 2:Income
                 -0.0030887 0.0031140 -0.9919 0.3212477
## 3:Income
                  0.0145862 0.0038255
                                       3.8129 0.0001373 ***
## 4:Income
                  0.0040504 0.0030926
                                       1.3097 0.1902878
## 5:Income
                 ## 6:Income
                  0.0306120 0.0046740
                                       6.5494 5.775e-11 ***
                 ## 7:Income
## 8:Income
                  0.0228862 0.0036217
                                       6.3192 2.629e-10 ***
                  0.0177430 0.0037623
                                       4.7160 2.405e-06 ***
## 9:Income
## 10:Income
                  0.0107909 0.0101300
                                       1.0652 0.2867676
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Log-Likelihood: -8236.8
## McFadden R^2: 0.0059257
## Likelihood ratio test : chisq = 98.199 (p.value = < 2.22e-16)
```

Interpretation: 2:Income -0.0030887: More income, less likely to choose choice 2 over choice 1.

3:Income 0.0145862: More income, more likely to choose choice 3 over choice 1.

4:Income 0.0040504: More income, more likely to choose choice 4 over choice 1.

5:Income -0.0012536: More income, less likely to choose choice 5 over choice 1.

6:Income 0.0306120: More income, more likely to choose choice 6 over choice 1.

7:Income -0.0069326: More income, less likely to choose choice 7 over choice 1. 8:Income 0.0228862: More income, more likely to choose choice 8 over choice 1.

9:Income 0.0177430: More income, more likely to choose choice 9 over choice 1.

10:Income 0.0107909: More income, more likely to choose choice 10 over choice 1.

Exercise 4: Marginal Effects

Marginal Effect for Conditional Logit

```
Pij <- LL.2(result.2$par, Predict = T) # output the probability matrix at optimized beta
# Average Marginal effect
Marginal.C <- matrix(0,10,10)
for (j in 1:10){
   for(k in 1:10){
     delta <- ifelse(j == k, 1, 0)
        Marginal.C[j,k] <- mean(Pij[,j]*(delta-Pij[,k])*result.2$par[10])
   }
}
Marginal.C</pre>
Marginal.C
```

```
##
                [,1]
                             [,2]
                                          [,3]
                                                      [,4]
                                                                   [,5]
##
    [1,] -1.25868739
                     0.311476148
                                  0.128393202
                                               0.29117679
                                                            0.132348010
##
    [2,]
         0.31147615 -0.813719253
                                  0.068689230
                                                0.15210471
                                                           0.072236980
##
    [3,]
          0.12839320
                     0.068689230 -0.376914414
                                                0.05866559
                                                            0.030416047
##
    [4,]
         0.29117679
                     0.152104706
                                  0.058665591 -0.73659173
                                                            0.059129583
    [5,]
##
         0.13234801
                     0.072236980 0.030416047
                                               0.05912958 -0.387574420
##
    [6,]
         0.04984952
                     0.026097442 0.011213914
                                               0.02411775
                                                            0.010976139
##
    [7,]
          0.12923709
                     0.068231451
                                  0.029224028
                                               0.05863711
                                                           0.030173012
    [8,]
##
         0.10304066
                     0.055141719
                                  0.024251525
                                               0.04448637
                                                            0.024656553
##
    [9,]
          0.09731001
                     0.052239018
                                  0.022674101
                                                0.04229289
                                                            0.023695774
##
  [10,]
          0.01585598
                     0.007502558
                                  0.003386774
                                                0.00598094
                                                            0.003942323
##
                 [,6]
                              [,7]
                                           [,8]
                                                        [,9]
                                                                    [,10]
##
   [1,]
         0.049849517
                      0.129237087
                                   0.103040659
                                                0.097310007
                                                             0.015855977
##
    [2,]
         0.026097442
                      0.068231451
                                   0.055141719
                                                0.052239018
                                                             0.007502558
    [3,]
##
          0.011213914
                      0.029224028
                                   0.024251525
                                                0.022674101
                                                             0.003386774
##
    [4,]
         0.024117751
                      0.058637112
                                   0.044486371
                                                0.042292887
                                                             0.005980940
##
    [5,]
          0.010976139
                      0.030173012
                                   0.024656553
                                                0.023695774
                                                             0.003942323
    [6,]
        -0.150325018
                                                0.007953811
##
                      0.010667552
                                   0.008358536
                                                             0.001090356
    [7,]
##
          0.010667552 -0.378096704
                                   0.025180878
                                                 0.023032642
                                                             0.003712941
##
    [8,]
          0.008358536
                      0.025180878 -0.308526030
                                                0.020208144
                                                             0.003201645
    [9,]
          0.007953811
##
                      0.023032642
                                   0.020208144 -0.292438132
                                                             0.003031748
## [10,]
          0.001090356
                      0.003712941
```

Each unit increase in price of an alternative decrease the probability of selecting that alternative and increases the probability of the other alternatives, by one percent.

Marginal Effect for Multinomial Logit

```
Pij <- LL.3(result.3$par, Predict = T)
# Average Marginal effect
Marginal.M <- NULL
beta.avg <- Pij %*% c(0,result.3$par[10:18])

for (j in 1:10){
   Marginal.M[j] <- mean(Pij[,j]*(c(0,result.3$par[10:18])[j]-beta.avg))
}
Marginal.M</pre>
```

```
## [1] 4.835376e-05 -9.188830e-04 4.379739e-04 -2.605439e-06 -3.953643e-04
## [6] 4.453585e-04 -1.337209e-03 9.474912e-04 7.061107e-04 6.877356e-05
```

Each unit increase in the income increases/decreases the probability of selecting alternative j by a percent.

Exercise 5: IIA

Mixed logit on income and price (Manually)

```
result.5$value
```

```
## [1] 7724.235
```

Check with mlogit package

```
result.5.m <- mlogit(choice ~ Price | Income, data = Ch, method = "nr")
summary(result.5.m)</pre>
```

```
##
## Call:
## mlogit(formula = choice ~ Price | Income, data = Ch, method = "nr")
##
## Frequencies of alternatives:
##
          1
                    2
                                                  5
                                                            6
## 0.3950783 0.1563758 0.0543624 0.1326622 0.0704698 0.0165548 0.0713647
##
                    9
                             10
          8
## 0.0454139 0.0503356 0.0073826
##
## nr method
## 6 iterations, 0h:0m:1s
## g'(-H)^-1g = 4.23E-08
## gradient close to zero
##
## Coefficients :
##
                   Estimate Std. Error z-value Pr(>|z|)
## 2:(intercept) -0.8406734 0.1038446 -8.0955 6.661e-16 ***
## 3:(intercept)
                  0.8886069 0.1594585
                                         5.5727 2.509e-08 ***
## 4:(intercept) -1.8284916 0.1032180 -17.7149 < 2.2e-16 ***
                 -2.8734106 0.1347573 -21.3229 < 2.2e-16 ***
## 5:(intercept)
## 6:(intercept) -2.4571186 0.2154260 -11.4059 < 2.2e-16 ***
## 7:(intercept)
                  0.4968691 0.1424824
                                         3.4872 0.000488 ***
## 8:(intercept)
                  0.8030599 0.1709199
                                        4.6985 2.621e-06 ***
## 9:(intercept)
                  1.8641253 0.1799469 10.3593 < 2.2e-16 ***
## 10:(intercept) -4.1423855  0.3506563 -11.8132 < 2.2e-16 ***
## Price
                 -6.6596694 0.1747698 -38.1054 < 2.2e-16 ***
## 2:Income
                 -0.0042599 0.0034392 -1.2386 0.215480
## 3:Income
                  0.0143440 0.0039221
                                         3.6572 0.000255 ***
## 4:Income
                  0.0040998 0.0032042
                                         1.2795 0.200715
## 5:Income
                 -0.0011829 0.0042971 -0.2753 0.783108
                                         6.3065 2.855e-10 ***
                  0.0298090 0.0047267
## 6:Income
## 7:Income
                 -0.0092456 0.0045935 -2.0128 0.044140 *
## 8:Income
                  0.0219965 0.0038203
                                         5.7578 8.522e-09 ***
                                         4.3394 1.428e-05 ***
## 9:Income
                  0.0169911 0.0039155
## 10:Income
                  0.0087596 0.0103007
                                         0.8504 0.395112
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Log-Likelihood: -7417.9
## McFadden R^2: 0.10475
## Likelihood ratio test : chisq = 1735.8 (p.value = < 2.22e-16)
```

MTT mannually

Take out alternative 10

```
choicePrice.alt <- data.frame(choicePrice)[choicePrice$choice!=10,]</pre>
bf.alt<- c(-1,-2,-1,-2,-4,-1,-3,-2,rep(0,8),-6)
n.alt <- nrow(choicePrice.alt)</pre>
LL.5.alt <- function(bf){
      <- cbind(0, t(replicate(n.alt,bf[1:8]))) # Calculate the constants
  Xb2 <- cbind(0, t(replicate(n.alt,bf[9:16])))*choicePrice.alt$Income # Calculate latent utilit
y for individual specific
  Xb1 <- as.matrix(choicePrice.alt[,3:11])*bf[17] # Calculate latent utility for alternative spe
cific char
  XB <- Xb1 + Xb2 + c # Calculate latent utility
     <- exp(XB)/rowSums(exp(XB)) # Calculate probability</pre>
  LL <- sum(-log(P[cbind(seq(n.alt),choicePrice.alt$choice)])) # Only use the prob for choice t
hat is selected
  return(LL)
}
result.5.alt <- optim(par = bf.alt, LL.5.alt)
result.5.alt$par
```

```
## [1] -1.108873723 -2.113105391 -0.576189489 -2.238853826 -5.046778720

## [6] -0.106029541 -2.470041806 -0.037259008 0.003407758 0.071025754

## [11] -0.029802540 -0.015715316 0.081341074 -0.014670954 0.080839230

## [16] 0.043933367 -5.586361229
```

```
result.5.alt$value
```

```
## [1] 7697.535
```

Test statistic for MTT test

```
MTT <- 2*(LL.5.alt(result.5$par[c(1:8,10:17,19)]) - LL.5.alt(result.5.alt$par))
MTT</pre>
```

```
## [1] -304.9121
```

```
pchisq(MTT,df = length(result.5.alt$par),lower.tail = F)
```

```
## [1] 1
```

From the p-value, we can't reject the null hypothese and state that IIA is hold.

Check IIA test by hmftest

```
result.5.m.alt <- mlogit(choice ~ Price | Income, data = Ch, method = "nr", alt.subset = c("1",
"2","3","4","5","6","7","8","9"))
# summary(result.5.m.alt)
hmftest(result.5.m, result.5.m.alt)</pre>
```

```
##
## Hausman-McFadden test
##
## data: Ch
## chisq = -8.5483, df = 17, p-value = 1
## alternative hypothesis: IIA is rejected
```

```
# check run time
proc.time()-ptm
```

```
## user system elapsed
## 37.844 5.528 36.409
```