Rule for Recognizing Safe Edges (4/7)

- Since the cut respects A, edge (x, y) is not in A.
- To form T' from T:
 - Remove (x, y). Breaks T into two components.
 - Add (u, v). Reconnects.
- So $T' = T \{(x, y)\} \cup \{(u, v)\}.$
- T' is a spanning tree.
- w(T') = w(T) w(x, y) + w(u, v) $\leq w(T)$, since $w(u, v) \leq w(x, y)$.

Jen-Wei Hsieh, CSIE, NTUST

National Taiwan University of Science and Technology

Rule for Recognizing Safe Edges (6/7)

- So, in GENERIC-MST:
 - A is a forest containing connected components.
 Initially, each component is a single vertex.
 - Any safe edge merges two of these components into one. Each component is a tree.
 - Since an MST has exactly |V|-1 edges, the **for** loop iterates |V|-1 times. Equivalently, after adding |V|-1 safe edges, we're down to just one component.

Jen-Wei Hsieh, CSIE, NTUST

Rule for Recognizing Safe Edges (7/7)

Rule for Recognizing Safe Edges (5/7)

• Since T' is a spanning tree, $w(T') \leq w(T)$, and

T is an MST, then T' must be an MST.

• Need to show that (*u*, *v*) is safe for *A*:

- Since T' is an MST, (u, v) is safe for A.

 $-A \subseteq T$ and $(x, y) \notin A \Rightarrow A \subseteq T'$.

 $-A \cup \{(u,v)\} \subseteq T'$.

- Corollary 23.2 Let G = (V, E) be a connected, undirected graph with a real-valued weight function w defined on E. Let A be a subset of E that is included in some minimum spanning tree for G, and let $C = (V_C, E_C)$ be a connected component (tree) in the forest $G_A = (V, A)$. If (u, v) is a light edge connecting C to some other component in G_A , then (u, v) is safe for A.
- **Proof:** Set $S = V_C$ in the theorem.
- This idea naturally leads to the algorithm known as Kruskal's algorithm to solve the minimumspanning-tree problem.

Outline

- Overview
- Growing a Minimum Spanning Tree
- The Algorithms of Kruskal and Prim

Jen-Wei Hsieh, CSIE, NTUST

Kruskal's Algorithm

- G = (V, E) is a connected, undirected, weighted graph. $w: E \to \mathbb{R}$
 - Starts with each vertex being its own component.
 - Repeatedly merges two components into one by choosing the light edge that connects them (i.e., the light edge crossing the cut between them).
 - Scans the set of edges in monotonically increasing order by weight.
 - Uses a disjoint-set data structure to determine whether an edge connects vertices in different components.

Jen-Wei Hsieh, CSIE, NTUST

Stages in Kruskal's Algorithm

Stages in Kruskal's Algorithm

Stages in Kruskal's Algorithm

Jen-Wei Hsieh, CSIE, NTUST

Stages in Kruskal's Algorithm

Jen-Wei Hsieh, CSIE, NTUST

Stages in Kruskal's Algorithm

Stages in Kruskal's Algorithm

Stages in Kruskal's Algorithm

Jen-Wei Hsieh, CSIE, NTUST

Pseudo Code of Kruskal's Algorithm

```
MST-KRUSKAL(G, w)

1 A = \emptyset

2 for each vertex v \in G.V

3 MAKE-SET(v)

4 sort the edges of G.E into nondecreasing order by weight w

5 for each edge (u, v) \in G.E, taken in nondecreasing order by weight

6 if FIND-SET(u) \neq FIND-SET(v)

7 A = A \cup \{(u, v)\}

UNION(u, v)

9 return A
```

Jen-Wei Hsieh, CSIE, NTUST

Prim's Algorithm (1/3)

- Builds one tree, so A is always a tree.
- Starts from an arbitrary "root" *r*.
- At each step, find a light edge crossing cut (V_A, V_A) , where V_A = vertices that A is incident on.

Add this edge to *A*.

Prim's Algorithm (2/3)

How to Find the Light Edge Quickly?

- Use a priority queue *Q*:
 - Each object is a vertex in $V V_A$.
 - Key of v is minimum weight of any edge (u, v), where $u \in V_A$.
 - Then the vertex returned by EXTRACT-MIN is v such that there exists $u \in V_A$ and (u, v) is light edge crossing $(V_A, V V_A)$.
 - Key of v is ∞ if v is not adjacent to any vertices in V_A .

Prim's Algorithm (3/3)

The edges of *A* will form a rooted tree with root *r*:

- *r* is given as an input to the algorithm, but it can be any vertex.
- Each vertex knows its parent in the tree by the attribute $v.\pi = \text{parent of } v. \ v.\pi = \text{NIL if } v = r \text{ or } v$ has no parent.
- As algorithm progresses, $A = \{(v, v.\pi) : v \in V \{r\} Q\}.$
- At termination, $V_A = V \Rightarrow Q = \emptyset$, so MST is $A = \{(v, v.\pi) : v \in V \{r\}\}.$

Jen-Wei Hsieh, CSIE, NTUST

Stages in Prim's Algorithm

Jen-Wei Hsieh, CSIE, NTUST

Stages in Prim's Algorithm

Stages in Prim's Algorithm

Stages in Prim's Algorithm

Jen-Wei Hsieh, CSIE, NTUST

Stages in Prim's Algorithm

Jen-Wei Hsieh, CSIE, NTUST

TARWAN TECH 38

Stages in Prim's Algorithm

Pseudo Code of Prim's Algorithm MST-PRIM(G, w, r)

```
for each u \in G.V
                             u.key = \infty
Initialize the min-
priority queue Q
                             u.\pi = NIL
to contain all the
                        r.kev = 0
   vertices.
                        O = G.V
                                          will be the first vertex processed.
                        while Q \neq \emptyset
                             u = \text{EXTRACT-MIN}(Q)
It identifies a vertex u \in Q
                             for each v \in G.Adj[u]
incident on a light edge that
                                  if v \in Q and w(u, v) < v. key
crosses the cut (V-Q, Q).
                                        \nu.\pi = u
```

v.key = w(u, v)

Homework Assignment #6

Please implement both Kruskal's Algorithm and Prim's Algorithm.

- TAs will announce the detailed Input/Output format in Moodle.
- Please submit your program to e-Tutor.
- Please submit your README document to Moodle.
- Due Date: 14 June 2017.

Jen-Wei Hsieh, CSIE, NTUST

