Math 1309 Concepts to Review

- Definition of Function and how to determine if a graph represents a function Example: Is the circle with equation $x^2 + y^2 = 25$ a function? Why or why not?
- Factoring

Example: Factor the expressions $x^2 + x - 6$ and $2x^2 + 7x + 3$

- Reducing algebraic expressions to lowest terms

Example: Simplify the expression $\frac{x^2 + x - 6}{x + 3}$

- Graphs of the basic functions (these MUST BE MEMORIZED)

Linear: f(x) = mx + b

Quadratic: $f(x) = x^2$

Cubic: $f(x) = x^3$

Absolute Value: f(x) = |x|

Square Root: $f(x) = \sqrt{x}$

Exponential: $f(x) = e^x$

Logarithmic: $f(x) = \ln(x)$

- Exponential functions:

In general base a: $f(x) = a^x$ where a is a positive constant and $a \ne 0$

0 < a < 1 exponential decay (function is decreasing)

a > 1 exponential growth (function is increasing)

In particular base e: $f(x) = e^x$ (exp growth) and $f(x) = e^{-x}$ (exp decay)

Laws of Exponents

For any non-zero quantities a and b, and any positive integers n and m:

$$1) a^n a^m = a^{n+m}$$

6)
$$a^{-n} = \frac{1}{a^n}$$

2)
$$(a^n)^m = a^{nm}$$

7)
$$a^{1/m} = \sqrt[m]{a}$$
 (assume a>0)

$$3) \ \frac{a^n}{a^m} = a^{n-m}$$

8)
$$a^{n/m} = \sqrt[m]{a^n} = (\sqrt[m]{a})^n$$
 (assume a>0)

$$4) (ab)^n = a^n b^n$$

9)
$$a^0 = 1$$

$$5) \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

REMEMBER: $(a \pm b)^n \neq a^n \pm b^n$ and $\sqrt{a \pm b} \neq \sqrt{a} \pm \sqrt{b}$

Special Products

1)
$$(a+b)^2 = a^2 + 2ab + b^2$$

2)
$$(a-b)^2 = a^2 - 2ab + b^2$$

3)
$$(a+b)(a-b) = a^2 - b^2$$

4)
$$(a+b)^3 = (a+b)(a+b)(a+b) = a^3 + 3a^2b + 3ab^2 + b^3$$

5)
$$(a-b)^3 = (a-b)(a-b)(a-b) = a^3 - 3a^2b + 3ab^2 - b^3$$

REMEMBER:
$$(a+b)^2 \neq a^2 + b^2$$
 and $(a+b)^3 \neq a^3 + b^3$

Lines

- 1) Slope of the line that goes through the points (x_1, y_1) and (x_2, y_2) : $m = \frac{y_2 y_1}{x_2 x_1}$
- 2) Slope-intercept form: y = mx + b
- 3) Slope-point form: $y y_1 = m(x x_1)$