Motivation and basic concepts

What is a database?

Omnipresence of databases

Databases are in the core of almost all computer systems

- library catalogs, booking systems, ERP-systems
- multi-medial databases
- geographical information systems

Basic operations on databases

- Create
- Read
- Update
- Delete

Database - definition

A database is an organized collection of related data:

- 1. which represents aspects of the part of real world, called the universe of discourse
- 2. data has some inherent meaning
- 3. database is designed to be used for a specific purpose

Database is an organized collection of inter-related data that models an aspect of the real-world

Data storage requirements

- scalability
- performance even with big data sets
- ensuring data integrity
- concurrent access
- structural changes need to be easy to implement
- data protection

Data storage requirements 2

- Massive
- Persistent
- Safe
- Multiuser
- Convenient
- Efficient
- Reliable

Historical development of data stores

1950s punched cards and magnetic tapes

- access is only sequential
- general sensitivity of mediums
- little capacity
 - capacity of a punch card 60 100 Bytes

Historical development of data stores

1960s and 1970s: hard drives

- saving data in logical units
- direct access
- average access times
- data manipulation significantly easier

Question

Which functions should have an application for storing data of customers?

How would you implement these functions?

Historically first approaches

- 1. traditional **file processing** approach (flat file applications)
 - each user has necessary files for its application (there can be distinguished different departments) such as:
 - accounting office
 - grade reporting office
 - **—** ...
- 2. database approach
 - single repository

File processing approach (storing data as a list)

StudentInfo

Student name	Class	Course num	Course name	Department
John Brown	1	CS1310	Database systems	CS
Christine Smith	2	MATH245	Discrete Mathematics	MATH
Christine Smith	2	CS1310	Database systems	cs
Leslie Connor	1	CS2450	C++ programming	cs

Problems with using lists (anomalies):

Insertion problems

inserting a new course with no students

- Deletion problems

 if one deletes the row with Leslie Connor in our example than the data about the course "C++ programming" will also be lost

Update problems

updating the name of a course requires updating it on every place

Flat file application

 each entity has a separate file and the application working with that file

Issues

- someone overwrites the year of students class with an invalid string
- the lack of centralized application everyone can change the file in some strange ways.
- inserting new data, enrolling students on a particular course
- finding a particular record (scanning all records)?
- creating a new application that uses the same database in a new programming language
- two threads try to write to the same file at the same time

Flat file storage

- databases in 60s and 70s
- tight coupling between physical and logical level
- knowing which queries would be executed before designing the database is necessary
- each user implements files needed for a specific software application
- data definition is a part of the application programs
- changes of the structure often require changing of all programs

File based data storage

Issues with storing data in simple lists

- redundancy and inconsistency
- limited access
- problems with multi-user access
- data loss in crashes
- integrity breach
- security problems
- development costs

File based data storage lacks in flexibility.

Example: Part of the university database

The StudentInfo table from the previous page is split into different tables

– What is the difference between this and the previous case?

Student

Stud_num	Student name	Class
1	John Brown	1
2	Christine Smith	2
3	Leslie Connor	1

Course

Course num	Course name	Department
CS1310	Database systems	CS
MATH245	Discrete Mathematics	MATH
CS2450	C++ programming	CS

Enrolled

Stud_num	Course num
1	CS1310
2	MATH245
2	CS1310
3	CS2450

Database functions according to Codd

- Integration
- Operations: CRUD
- Catalog (Data dictionary / Meta-data)
- User views
- Consistency
- Data protection
- Transactions
- Synchronization
- Security

Database system environment

Database system environment

- Database
- Database Management System (DBMS)
 - is a general-purpose software that enables defining, constructing, manipulating and sharing databases
 - querying, update, administration of databases
 - allows users to interact with more databases
 - examples:
 - PostgreSQL
 - Oracle database
 - MSSQL
 - MySQL
 - DB2
 - **.** . . .
 - Metadata database definition and information about data is stored by DBMS
- Applications they access the data in databases exclusively using DBMS

Database approach

- 1. Self describing nature of a database system
 - use of a catalog to store the database description (meta-data)
- 2. Insulation between programs and data, and data abstraction
 - data abstraction using data model
 - program-data independence
 - program-operation independence
- 3. Support of multiple views of the data
 - different users require different perspectives of the database
- 4. Sharing of data and multiuser transaction processing concurrency control
 - online transaction processing (OLTP)
 - online analytical processing (OLAP)

Key people

- database administrators
 - authorizing access
 - monitoring database use
- database designers
 - understanding requirements and choosing appropriate structures
 - creating design to meet requirements
- end users
 - querying, updating, generating report
 - parametric (naive) users use standard transactions
 canned transactions
 - casual users need different information and use a query language
 - sophisticated users
- system analysts and application programmers
- database system designers and implementers
- tool developers

Basic ideas of the database concept

- controlling redundancy
- restricting unauthorized access
- providing persistent storage for program objects
- providing storage structures for efficient query processing
- providing backup and recovery
- providing multiple user interfaces
- representing complex relationships among data
- enforcing integrity constraints
- permitting interfaces and actions using rules

Situations inadequate for DBMS

Sometimes DBMS represents overhead for the system

- embedded systems with limited storage capacity
- systems with with no multiple-user access
- many computer-aided design(CAD) tools
- communication and switching systems
- GIS systems

Modern Database system architecture

Basic client/server DBMS architecture

- client module designed to work on user workstations
 - application programs
 - user-friendly interfaces
- server module handles data storage, access, search and other functions

Data abstraction and data model

Data abstraction is generally a way to **suppress** details of data organization and storage to **highlight essential features** for an improved understanding of data

Data model - a collection of concepts used for describing the structure of a database in order to achieve data abstraction

- data model includes
 - description of data types, relations and constraints over data
 - description of basic operation for specifying retrieval and updates on the database
- Data model (database model) is also related to the work of Edgar Codd
- database model is a type of data model which describes how a database is structured and used

Categories of data models

- 1. Conceptual (high-level) data models
 - entity-relationship model
 - object-data model
- 2. Representational data models
 - Relational data model
 - Relational Algebra
- 3. Physical (low-level) data models describe haw data is stored as files
 - record formats, record orderings, access paths
 - index is an example of the access path

Database Models (Data Models)

- Relational
- Kay/ValueRedis
- GraphNeo4J
- DocumentMongoDb
- Column-family (HBase, Big Table)
- Array/Matrix
- Hierarchical -IBM IMS (IBM Information Management System)
- Network

— ...

Database schema

Data models differentiate between

- description of the database (database schema)
- database itself

Database schema is the description of a database which is specified during database design and is not expected to change frequently.

Database schemas are mostly represented using schema diagrams

Student Stud_num Student name Class Course Course num Course name Department Enrolled Stud_num Course num

An object of the schema is called a **schema construct** (Student, Course)

Database state

Database state (snapshot)

- represents the data in the database at a particular moment in time
- is also called current state of instances (occurrences)

An instance represent an individual entity (record)

Student

Stud_num	Student name	Class
1	John Brown	1
2	Christine Smith	2
3	Leslie Connor	1

It is important to distinguish between database schema and database state

DBMS and database schema

DBMS system has a role to

- maintain every database state as a valid state
- store schema constructs together with constraints

Database schema is also called **intesion**

- it doesn't change so often

Database state is called **extension** of the schema

it is changed constantly

ANSI/SPARC architecture (Three-Schema Architecture)

separates user applications from the physical database

- internal level

- internal schema describes the physical storage structure
- internal schema uses physical data model to describe details

conceptual level

- conceptual schema describes entities, relationships, data types, user operations and constraints
- described by representational data models

– external (view) level

 external schemas (user views) describe the part of the database for a particular user group (typically used representational data models)

Most DBMS support three-schema to some extent

ANSI/SPARC architecture (Three-Schema Architecture)

Data independence

Data independence is a *capacity to change* the schema at one level of a database system without having to change schema at the next higher level

Logical data independence

- capacity to change the conceptual schema without changing external schemas or application programs
- examples: adding or removing constraints, record types or data items

Physical data independence

- capacity to change the internal schema without having to change the conceptual schema
- examples: reorganizing physical files (creating additional access structures)
- capacity to change

Logical independence is harder to achieve

- mappings between layers - to achieve data independence

Database languages

Data Definition Language (DDL)

- DBMS use DDL to design both conceptual and external schemas
- DBMS have a DDL compiler
- used by the DBA and database designers

Data Manipulation Language (DML)

 used to manipulate the database (insertion, retrieval, deletion and modification of data)

Current DBMS use practically the same language

- used for conceptual schema definition, view definition and data manipulation
- combination of DDL, VDL, DML, constraint specification, schema evolution and other features

Data Manipulation Language (DML)

DML in DBMS can be:

- high level
 - such as Structured Query Language (SQL) SELECT * FROM Student WHERE Class = "1"
 - entered interactively or embedded in a general-purpose programming language
- low level (procedural)
 - must be embedded in a general-purpose programming language
 - retrieves individual objects from database and process them separately
 - commands GET UNIQUE, GET NEXT, ...

Query languages in general

Query languages can be categorized as:

- 1. Non-Procedural (declarative) languages
 - Relational-Calculus (formal query language)
 {s | Student(s) ^ s.Class = "1**}

 - proposed first by Codd in 1970s
 - SQL
- 2. Procedural
 - Relational Algebra (formal)

Updates are also considered as a part of a query language in DBMS

DBMS interfaces

Different database users use different ways to interact with a database

- Menu-Based Interfaces for Web clients
 - parametric (naive users) use mostly user-friendly interfaces
 - helpful not to memorize specific commands
- Form-based interfaces
 - display forms with form field that should be filled and are than matched in DBMS to retrieve matching data
- Graphical user interfaces
 - to display schema in diagrammatic form
- Specific interfaces for parametric users
- Natural language interfaces
- other interfaces
 - speech input and output, ...

Classification of DBMSs

Main criterion used for the classification is the data model

- Relational Database Management Systems (RDBMS)
 - relational data model
- object DBMSs
 - object data model
 - not widespread
- Object-relational DBMSs
 - more data models: relational, object, object-relational, hierarchical,
- Native XML DBMSs -
- Hierarchical DBMSs
 - hierarchical data model
 - example: IMS (IBM)
- Network DBMSs
 - network data model
 - examples: IMAGE (Hewlett-Packard), SUPRA (Cincom)

Review questions

- What is a data model?
- What is the difference between a database schema and a database state?
- What is difference between logical and physical data independence?
- Define the term database management system?
- What are disadvantages of the traditional file processing storage?
- In which scenarios features of DBMS are not desirable?
- Explain components of the database system architecture?