Calcul 1 MATH1400 **Introduction**

Franz Girardin

11 janvier 2024

Table des matières

CHAPITRE 1 Suites infinies

1.1	Les suites §Stewart 1.1 2	
1.2	Suites arithmétiques §Stewart 1.1	2
1.3	Suites géométriques §Stewart 1.1	2
1.4	Limite d'une suite §Stewart 1.1	2
1.5	Monotonicité §Stewart 1.1 4	
16	Bornes d'une suite 5	

Suites infinies

1.1 LES SUITES §STEWART 1.1

Définition 1 Suite

Une suite est une **fonction** $\mathbb{N}^* \to \mathbb{R}$. Chaque suite accepte donc tous les **entiers naturels** non-nuls et engendre une séquence de **nombre réels** dans un ordre définit par la fonction.

Syntaxe. 1 Notation et terminologies d'une suite

$$- \{a_n\}_{n>1} ::= a_1, a_2, \dots a_n$$

$$-a_{n+1} ::=$$
Successeur de a_n

—
$$a_{n-1} := \text{Prédécesseur de } a_n$$

— Définition à partir d'un rang n_0 :

▶ $\{u_n\}_{n \ge n_0}$::= une **suite** dont les termes sont définit après $n_0 \in \mathbb{Z}$.

 \triangleright **Exemple** : $\{\ln(n-1)\}_{n>5}$

► ln(4), ln(5), ln(6), ...

1.2 SUITES ARITHMÉTIQUES \$STEWART 1.1

Définition 2 Suite Arithmétique

Une **suite arithmérique** est une suite de nombres où chacun d'eux, sauf le premier, est **la somme du précédent et d'un nombre fixe appelé** raison de la suite.

Syntaxe. 2 Notation et d'une suite arithmétique

$$a_n ::= \begin{cases} a_1 = r & \text{raison} \\ a_n = a_{n-1} + r & \text{récurrence} \end{cases}$$

Note:

La différence entre deux termes consécutifs d'une suite arithmétique est égale à la raison de la suite :

$$r = a_n - a_{n-1} | n \ge 2$$

Concept. 1 Identifier le n-ième terme d'une suite arithmétique

Le n-ième terme d'une suite arithmétique est donné

par :

$$a_n = a_1 + (n-1) \cdot n \mid n \ge 1$$

1.3 SUITES GÉOMÉTRIQUES \$STEWART 1.1

Définition 3 Suite géométrique

Une suite géométrique dépend du terme précédant et d'un terme non nul, la raison de la suite

Syntaxe. 3 Notation et d'une suite géométrique

$$a_n := \begin{cases} a_1 = r & \text{raison} \\ a_n = a_{n-1} \cdot r & \text{récurrence} \end{cases}$$

Note:

Le quotient entre deux termes consécutifs d'une suite géométrique est égale à la raison

$$r = \frac{a_n}{a_{n-1}} \mid n \ge 2$$

Concept. 2 Identifier le n-ième terme d'une suite géométrique

Le n-ième terme d'une suite géométrique est donné par :

$$a_n = a_1 r^{n-1} \mid n \ge 1$$

Théorème 1 Convergence d'une suite géométrique

1.4 LIMITE D'UNE SUITE \$STEWART 1.1

Soit toute valeur arbitrairement petite $\varepsilon \ge 0$ et une7 certaine valeur $L \in \mathbb{R}$, s'il existe un certain rang $N \in \mathbb{N}^*$ à partir duquel pour tout $n \ge N$, toutes les différences correspondantes $|a_n - L|$ sont plus petites que ε , alors on dit que la suite a_n a pour limite L.

On dit qu'une suite $\{a_n\}$ a pour **limite** $L \in \mathbb{R}$ si on peut rendre ses termes aussi proche de L qu'on le veut en prenant n suffisamment grand.

Définition 4 Définition formelle de convergence d'une suite

Une suite $\{a_n\}$ a pour **limite** L et on écrit

$$\lim_{n\to\infty} a_n = L \quad \text{ou} \quad a \xrightarrow{n\to\infty} L$$

si et seulement si,

$$\forall \varepsilon > 0, \exists N(\varepsilon) > 0 : n > N(\varepsilon) \implies |a_n - L| < \varepsilon$$
 (1.1)

On dit qu'une suite $\{a_n\}$ diverge ou diverge vers ∞ si pour tout nombre $M \in \mathbb{R}$ il existe un rang $N \in \mathbb{N}^*$ à partir duquel $a_n \geq M$ pour tout les entiers $n \geq N$ plus que ce rang.

Plus simplement, on peut toujours trouver un entier non nul N après lequel tous les entiers n > N dans le domaine de $\{a_n\}$ ont une image a_n plus grand qu'un certain $M \in \mathbb{R}$.

Définition 5 Définition formelle de divergence d'une suite

Une suite $\{a_n\}$ **diverge** et on écrit

$$\lim_{n\to\infty} a_n = \infty \quad \text{ou} \quad a \xrightarrow{n\to\infty} \infty$$

si et seulement si,

$$\forall M \in \mathbb{R}, \exists N \in \mathbb{N}^* : n > N \implies |a_n| > M$$

Corollaire

Si $\lim_{n\to+\infty} a_n = \infty$, alors,

$$\lim_{n\to+\infty}\frac{1}{a_n}=0$$

Preuve 1

Soit a_n une suite telle que $\lim_{n\to+\infty}a_n=\infty$. Nous voulons montrer que

$$\lim_{n\to+\infty}\frac{1}{a_n}=0$$

Selon la définition de la limite, pour tout $\varepsilon > 0$, il doit exister un entier naturel N tel que pour tout $n \ge N$,

$$\left|\frac{1}{a_n}-0\right|<\varepsilon$$

Puisque $a_n \to \infty$, pour un $\varepsilon > 0$ donné, il existe nécessairement un N tel que pour tout $n \ge N$, $a_n > \frac{1}{\varepsilon}$. Et nous savons que si $a_n > \frac{1}{\varepsilon}$, alors, $\frac{1}{a_n} < \varepsilon$.

Cela prouve que $\lim_{n\to+\infty}\frac{1}{a_n}=0$, conformément à la définition de la limite d'une suite.

Note:

La réciproque du corollaire n'est pas vraie. Autrement dit

$$\lim_{n \to \infty} \frac{1}{a_n} = 0 \implies \lim_{n \to +\infty} a_n = \infty$$

Lemme 1

1. Lorsque a_n est éventuellement positive

Si $\{a_n\}$ est une suite **éventuellement positive**, alors,

$$\lim_{n \to +\infty} \frac{1}{a_n} = 0 \implies \lim_{n \to +\infty} a_n = \infty$$

2. Lorsque a_n est éventuellement négative

Si $\{a_n\}$ est une suite **éventuellement négative**, alors,

$$\lim_{n \to +\infty} \frac{1}{a_n} = 0 \implies \lim_{n \to +\infty} a_n = -\infty$$

Preuve 2

Soit a_n une suite telle que $\lim_{n\to+\infty}\frac{1}{a_n}=0$ et a_n est éventuellement positive. Nous voulons montrer que

$$\lim_{n\to+\infty}a_n=\infty$$

Supposons que $\lim_{n\to+\infty}\frac{1}{a_n}=0$. Par la définition de convergence d'une suite, cela signifie que pour tout $\epsilon>0$, il existe un entier M tel que pour tout $n\geq M$, $\left|\frac{1}{a_n}\right|<\epsilon$.

Puisque $\{a_n\}$ est éventuellement positive, il existe un entier N tel que pour tout $n \ge N$, $a_n \ge 0$. Soit $K = \max\{M, N\}$. Alors, pour tout $n \ge K$, nous avons et

$$a_n \ge 0$$
 et $\left| \frac{1}{a_n} \right| < \epsilon$

Le fait que $\left|\frac{1}{a_n}\right| < \epsilon$ pour $\epsilon > 0$ et $a_n \ge 0$ implique que $\frac{1}{a_n} > \frac{1}{\epsilon}$ pour $n \ge K$. Ainsi, $a_n < \epsilon$ pour $n \ge K$ Puisque ϵ est arbitraire, cela signifie que pour tout $\epsilon > 0$, il existe un rang K tel que pour tout $n \ge K$, $a_n < \epsilon$. Ceci est précisément la définition de $\lim_{n \to +\infty} a_n = 0$.

Par conséquent, si $\lim_{n\to+\infty} \frac{1}{a_n} = 0$ et $\{a_n\}$ est éventuellement positive, alors $\lim_{n\to+\infty} a_n = 0$.

Note:

Nous pouvons utiliser le même raisonnement pour montrer que **si** a_n est éventuellemet négative et que $\lim_{n\to+\infty}\frac{1}{a_n}=0$, **alors**

$$\lim_{n\to+\infty}a_n=-\infty$$

Concept. 3 Propriétés des limites

Si $\{a_n\}$ et $\{b_n\}$ sont des suites convergentes et si c est une constante, alors

$$\lim_{n\to\infty} (a_n + b_n) = \lim_{n\to\infty} a_n + \lim_{n\to\infty} b_n$$

$$\lim_{n\to\infty} (a_n - b_n) = \lim_{n\to\infty} a_n - \lim_{n\to\infty} b_n$$

$$\lim_{n\to\infty} ca_n = c \lim_{n\to\infty} a_n$$

$$\lim_{n\to\infty} (a_n b_n) = \lim_{n\to\infty} a_n \cdot \lim_{n\to\infty} b_n$$

$$\lim_{n\to\infty} \left(\frac{a_n}{b_n}\right) = \frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n} \operatorname{si} \lim_{n\to\infty} b_n \neq 0$$

$$\lim_{n\to\infty} a_n^p = \left[\lim_{n\to\infty} a_n\right]^p \text{si } p > 0 \text{ et } a_n > 0$$

Concept. 4 Limite d'une suite polynomiale

Soit deux polynomes,

$$\lim_{n\to\infty}\frac{p(n)}{q(n)}$$

On considère

$$k = \min(deg(p), deg(q))$$

On effectue ensuite le quotient :

$$\lim_{n \to +\infty} \frac{p(n)/n^k}{q(n)/n^k}$$

Autrement dit, on effectue la division du numérateur et du dénominateur par le terme du polynôme ayant le plus petit degré.

Note:

Il est aussi possible d'utilsier la **règle de l'Hôpital**. La simplification du polynôme pourrait être plus rapide, selon les circonstances.

1.5 MONOTONICITÉ SSTEWART 1.1

Soit une suite $\{a_n\}$, on dit que la suite est :

- Strictement croissant si $\forall n \geq 1, a_{n+1} > a_n$
- Croissante si $\forall n \geq 1, a_{n+1} \geq a_n$
- Strictement décroissante si $\forall n \geq 1, a_{n+1} < a_n$
- Décroissante si $\forall n \geq 1, a_{n+1} < a_n$
- Stationnaire ou constante si $\forall n \geq 1, a_{n+1} < a_n$
- Monotone

1.6 BORNES D'UNE SUITE

Définition 6 Minorant et majorant

Une suite de terme général a_n est *minorée* par le nombre réel m si et seulement si, pour tout n on a : $a_n \ge m$

Minonant
$$m := \exists m \in \mathbb{R} : \forall n \in \{a_n\}, a_n \geq m$$

Une suite de terme général a_n est *majorée* par le nombre réel M si, et seulement si, pour tout n on a : $a_n \le M$

Majorant
$$M := \exists M \in \mathbb{R} : \forall n \in \{a_n\}, a_n \leq M$$

Une suite est bornée si elle est à la fois majorée et minorée.

Théorème 2 Théorème des suites monotones

Toute suite monotone et bornée est convergente

Lemme 2

- Toute suite éventuellement croissante et majorée est également **convergente**
- Tout suite éventuellement décroissante et minorée est également convergente

$$\lim_{n\to 0^+} x \ln(x)$$

Utiilisation de la règle de l'H.

$$\lim_{n \to 0^+} x \ln(x) = \lim_{n \to 0^+} \frac{\ln(x)}{1/x}$$

$$= \dots \text{ derivation haut et bas}$$

$$= \lim_{n \to 0^+} \frac{1/x}{-1/x^2}$$

$$= \lim_{n \to +^+} -x = 0$$

Exercice 1

Résoudre

$$\lim_{n\to\infty} 5^{0.5} =$$