Colle MP 8: Séries

12 novembre 2018

Colle 1

MAUBLANC Paul (14): assez bien Lise (15): bien

Exercice 1. Critère de D'Alembert.

Exercice 2. Convergence puis équivalent de $\sum_{2}^{\infty}\frac{1}{k\ln(k)}$?

Exercice 3. Calcul de $\sum_{1}^{\infty} \ln(1 - \frac{1}{n^2})$?

Colle 2

Rémi (12): Ne connaît pas bien la preuve. Ok pour l'exo. Eloïse (15): Bien.

Exercice 1. Critère spécial des séries alternées.

Montrer que chaque condition est nécessaire. (considérer $u_n = \frac{1}{n}$ si n pair, $\frac{1}{n^2}$ sinon)

Exercice 2. Convergence puis calcul de $\sum_{k=0}^{\infty} \frac{1}{k(k+1)}$?

Exercice 3. Convergence puis calcul de $\sum_{k=1}^{\infty} \frac{k}{2^k}$?

Colle 3

ANDRIEU Grégoire (8) : ne connaît pas du tout la preuve. Dit que ${\cal A}^k$ $(a_{i,j}^k)$. Julie (14) : Assez bien.

Exercice 1. Exponentielle de matrice.

Exercice 2. Equivalent de $\ln(n!)$ quand $n \longrightarrow \infty$?

Exercice 3.

- **Exercise 3.** Calculer $\sum_{k=0}^{n} sin(k)$.

 En déduire que $\sum_{k=0}^{n} |\sin(k)| \to \infty$ et que $\sum_{k=0}^{\frac{\sin^{2}(k)}{k}}$ converge.

 (Abel) Mq $\sum_{k=0}^{\frac{\sin(k\theta)}{k}}$ converge.