Chapitre 7:Les Files

1. Définition

On appelle file d'attente (ou tout simplement file) un ensemble formé d'un nombre variable, éventuellement nul de données, sur lequel les opérations suivantes peuvent être effectuées :

creer_file : permet de créer une file vide (création).

file_vide : permet de tester la vacuité d'une file, ou si la file est vide ou non (consultation).

enfiler : permet d'ajouter une donnée de type T à la file (modification).

defiler: permet d'obtenir une nouvelle file (modification).

premier : permet d'obtenir l'élément le plus ancien dans la file (consultation).

<u>Opérations illégales</u>: il y a des opérations définies sur la SD file d'attente exigent des pré-conditions: défiler exige que la file soit non vide.

premier exige que la file soit non vide.

2. Propriétés

Dans ce paragraphe on va citer (énumérer) les propriétés qui caractérisent la sémantique des opérations applicables sur la SD file d'attente.

F1 : creer_file permet de créer une file vide.

F2 : si un élément entré (enfiler) dans la file résultante est non vide.

F3 : un élément qui entre (grâce à enfiler) dans la file d'attente devient immédiatement le premier : si la file vide sinon (file non vide) le premier reste inchangé.

F4 : une entrée et une sortie successive sur une file vide la laissent vide.

F5 : une entrée et une sortie successive sur une file non vide peuvent être effectuées dans n'importe quel ordre.

Illustration:

File non vide: 561

Cas 1:561

enfiler $8 \rightarrow 5618$ defiler $\rightarrow 618$

Cas 2:561

defiler \rightarrow 61 enfiler 8 \rightarrow 618

La structure de File obéit à la loi FIFO: First In, First Out.

3. Représentation physique

On distingue deux types de représentations physiques :

- -représentation contiguë
- -représentation chaînée

3.1 Représentation contiguë

TDA FILE concrétisé par une représentation contiguë

Il s'agit d'un tableau à deux points d'entrée : deux indices tête et queue.

3.2 Représentation chaînée

premier : coût une indirection en partant du pointeur tête defiler : coût une indirection en partant du pointeur tête

enfiler : coût il faut parcourir toute la file en partant du pointeur tête.

Ceci nécessite plusieurs indirections. Ainsi, il ne faut pas retenir la solution proposée Remède : on a besoin d'une représentation physique à deux points d'entrées : tête et queue.

Le pointeur tête favorise l'implémentation efficace des opérations : premier et defiler. Le pointeur queue favorise l'implémentation efficace de l'opération enfiler.

Remarque:

La SD file d'attente est structurée à deux points d'entrée. Par contre la SD pile est une structure à un seul point d'entrée.

4Matérialisation de la SD File comme type de donnée abstrait

/*représentation chainée*/ **Types** Cellule = Struct cle: entier Suiv: ^Cellule **FinStruct** File = Struct tete: ^Cellule queue: ^Cellule **FinStruct**

```
Procedure creer_File (varF :File )
Début
       F.tete←Nil
       F.queue←Nil
Fin Proc
Fonction File_vide (F :File): boolean
Debut
       File_vide←( F.queue=Nil)
fin Fn
Procédure enfiler (x : Entier , Var F : File)
Var
       P: ^Cellule
Début
       Allouer(P)
       P^.cle← x
       P^.Suiv←Nil
       Si File_vide(F) alors
             F.tête← P
              F.queue ← P
       sinon
              F.queue^.Suiv←P
              F.queue← P
       FinSi
Fin Proc
Procédure défiler (Var F : File)
Var
       Q: ^Cellule
Début
       Assure (non File_vide(F))
       Q←F.Tête
       F.Tête←F.Tête^.Suiv
      Libérer(Q)
       Si F.Tête = NIL alors
         F.queue ← NIL
      FinSi
Fin Proc
Fonction premier (F : File) : entier
Début
       Assure (non File_vide(F))
       premier←F.tête^.cle
Fin Fn
```