

REQUEST FOR RECONSIDERATION

Claims 1-6 and 8 are active in the case.

The provisional rejection of Claims 9-14 under 35 U.S.C. §101 as claiming the same invention as that of Claims 1-7 of co-pending U.S. Application Serial No. 09/903,776 is traversed. In view of the cancellation of Claims 9-14 this rejection is moot.

The provisional rejection of Claims 9-14 under 35 U.S.C. §102(e) as anticipated by co-pending U.S. Application Serial No. 09/903,776 is traversed. In view of the fact that Claims 9-14 have been canceled this rejection is moot.

The rejection of Claims 1, 2, 4-6 and 8 under 35 U.S.C. §103(a) as unpatentable over Albanese et al is traversed.

In view of the amendment of Claim 1 including the limitation of allowable Claim 7 therein, the claims distinguish over the reference.

It is submitted that Claims 1-6 and 8 are allowable and such action is respectfully requested.

Respectfully submitted,

OBLON, SPIVAK, McCLELLAND,
MAIER AND NEUSTADT, P.C.

Norman F. Oblon
Registration No. 24,618
Attorney of Record

22850

Roland E. Martin
Registration No. 48,082

TEL: (703) 413-3000
FAX: (703) 413-2220
I:\atty\rem\205328us-am.wpd

DOCKET NO.: 205328US0
SERIAL NO.: 09/903,777

MARKED-UP COPY OF
AMENDMENT AND REQUEST FOR RECONSIDERATION

IN THE CLAIMS

1. (Amended) A process for the synthesis of hydrogen cyanide, comprising:
reacting methane or methane-containing natural gas, ammonia and oxygen-enriched air or oxygen in the presence of a catalyst comprising platinum or a platinum alloy;
wherein oxygen and nitrogen are present in a molar ratio which satisfies the following relationship:

$$\frac{[O_2]}{[O_2+N_2]} = 0.25 \text{ to } 1.0;$$

wherein methane and ammonia are present in a molar ratio of

$$\frac{[CH_4]}{[NH_3]} = 0.95 \text{ to } 1.05;$$

and wherein a molar ratio of ammonia to the sum of oxygen and nitrogen [obeys]
satisfies the following relationship:

$$Y = m \cdot X - a,$$

wherein

$$Y = \frac{[NH_3]}{[O_2 + N_2]}$$

$$X = \frac{[O_2]}{[O_2 + N_2]}$$

m = 1.25 to 1.40[;] and

a = 0.05 to 0.14; and

wherein said methane-containing natural gas contains at least 88 vol.% of methane.

7. (Canceled).

9-14. (Canceled).