

STRATEGY & ECONOMIC RATIONALE

The investment universe consists of equity industry funds (or ETFs), which are proxy for equity industry indexes. An investor uses ten years of past data to calculate the industry's alpha ba sed on the CAPM model (from the regression model industry_return = alpha + beta*market return, it is possible to use alternative models like the Fama/French 3 factor model).

A bubble in an industry is detected if the industry's alpha is statistically significant (acade mic source paper uses a 97,5% significance threshold, but it is possible to use other values).

The investor is long in each industry experiencing a bubble by applying 1/N rule (investment is divided equally between industries in a bubble). If no bubble is detected, then he/she makes no investment. Data examination, alpha calculation, and portfolio rebalancing is done monthly.

BUY	SELL	
industry experiencing a bubb le	The opposite	

PARAMETER & VARIABLES

PARAMETER	VALUE	
MARKETS	Equity	
TRADED		
FINANCIAL INSTRUMENTS	ETFs, funds	
REGION	Global	
PERIOD OF	Monthly	
REBALANCING	Honenty	
NO. OF TRADED INSTRUMENTS	5	
WEIGHTING	Equal weighting	
LOOKBACK PERIODS	Month	
LONG/SHORT	Long only	

ALGORITHM

```
import numpy as np
from AlgorithmImports import *
import statsmodels.api as sm

class RidingIndustryBubbles(QCAlgorithm):

    def Initialize(self):
        self.SetStartDate(2008, 1, 1)
        self.SetCash(100000)

        self.spy = 'SPY'
        self.symbols = ['XLF', 'XLV', 'XLP', 'XLY', 'XLI', 'XLE', 'XLB', 'XLK', 'XLU']
        self.period = 10 * 12 * 21
        self.SetWarmUp(self.period)

# Daily price data.
        self.data = {}
```

```
Not Over Thinking – where I share my journey to algorithmic trading and investments in shortest words possible
        for symbol in self.symbols + [self.spy]:
            data = self.AddEquity(symbol, Resolution.Daily)
            self.data[symbol] = RollingWindow[float](self.period)
        self.recent month = -1
    def OnData(self, data):
        # Store daily price data.
        for symbol in self.symbols + [self.spy]:
            symbol_obj = self.Symbol(symbol)
            if symbol_obj in data and data[symbol_obj]:
                self.data[symbol].Add(data[symbol_obj].Value)
        if self.recent_month == self.Time.month:
            return
        self.recent month = self.Time.month
        if not self.data[self.spy].IsReady and self.spy in data: return
        market_closes = [x for x in self.data[self.spy]]
        separete_months = [market_closes[x:x+21] for x in range(0, len(market_closes),21)]
        market_monthly_returns = []
        for month in separete_months:
            month_of_prices = [x for x in month]
            market_monthly_returns.append(month_of_prices[0] / month_of_prices[-1] - 1)
        # Prepared for regression.
        market_monthly_returns = np.array(market_monthly_returns).T
        market_monthly_returns = sm.add_constant(market_monthly_returns)
        t_stat = {}
        for symbol in self.symbols:
            if self.data[symbol].IsReady and symbol in data:
                closes = [x for x in self.data[symbol]]
                separete_months = [closes[x:x+21] for x in range(0, len(closes),21)]
                etf_monthly_returns = []
                for month in separete_months:
                    month_of_prices = [x for x in month]
                    etf_monthly_returns.append(month_of_prices[0] / month_of_prices[-1] -
                # alpha t-stat calc.
                model = sm.OLS(etf monthly returns, market monthly returns)
                results = model.fit()
                alpha_tstat = results.tvalues[0]
                alpha_pvalue = results.pvalues[0]
                t_stat[symbol] = (alpha_tstat, alpha_pvalue)
        long = []
        if len(t_stat) != 0:
            long = [x[0]] for x in t_stat.items() if x[1][0] >= 2 and x[1][1] >= 0.025] #
The result is statistically significant, by the standards of the study, when p \le \alpha
```

1)

```
# Trade execution.
invested = [x.Key.Value for x in self.Portfolio if x.Value.Invested]
for symbol in invested:
    if symbol not in long:
        self.Liquidate(symbol)

for symbol in long:
    self.SetHoldings(symbol, 1 / len(long))
```

BACKTESTING PERFORMANCE

Fig 1. Overall Performance

PSR	0.068%	Sharpe Ratio	0.317
Total Trades	108	Average Win	2.78%
Average Loss	-2.33%	Compounding Annual Return	3.403%
Drawdown	23.300%	Expectancy	0.423
Net Profit	66.381%	Loss Rate	35%
Win Rate	65%	Profit-Loss Ratio	1.19
Alpha	0.014	Beta	0.18
Annual Standard Deviation	0.086	Annual Variance	0.007
Information Ratio	-0.298	Tracking Error	0.16
Treynor Ratio	0.151	Total Fees	\$793.65
Estimated Strategy Capacity	\$73000000.00	Lowest Capacity Asset	XLK RGRPZX100F39

Fig 2. Performance Metrics

Fig 3. Drawdown

Fig 4. Assets Sales Volume