

VOLTDB

FAST DATA - THE NEW BIG DATA

OVERVIEW

- Trends
- Fast vs Big
- Approaches
- Use Cases

DATA-FICATION OF LIFE

The 10 Trillion Device World

"Smartness can be embedded everywhere," said Professor Sangiovanni-Vincentelli, EE/CS at University of California at Berkeley.

"The entire environment is going to be full of sensors of all kinds. Chemical sensors, cameras and microphones of all types and shapes. Sensors will check the quality of the air and temperatures. Microphones around your environment will listen to you giving commands."

Computerworld, September 2015

Fast Data

Big Data

All data originates as fast data, why wait to analyze and act on it?

FAST = ADVANTAGE

"Real-time" contextual offers

=

offer uptake rates 75% data revenues by 15%."

Source: Openet 2014 survey of 87 mobile operators

Fast (in motion)

Streaming Analytics:

real time summary and aggregation

Transaction Processing:

per-event decisions using context + history

Big (at rest)

Exploration:

data science, investigation of large data sets

Reporting:

recommendation matrices, search indexes, trend and BI

IN THE BEGINNING THERE WAS BATCH....

- Collect data, process it (used to be overnight), produce a report (output)
 - If batch job fails, delete the data, and start over
- Distributed systems made this better, more efficient
- Challenges
 - Response time (latency)
 - Processing events in order

NOSQL AND "EVENTUALLY CONSISTENT" SOLUTIONS

- Combine stream processing frameworks with NoSQL DBs
- Challenges
 - DiY requires building in reliability, code for 'book keeping' to ensure accuracy
 - Response time/latency goes up as components are added
 - Failure modes

Lambda Architecture

NEW ENTERPRISE ARCHITECTURE: FAST + BIG

ARCHITECTURE IS IMPORTANT....

Fast data requires a different architecture.

STREAMING ANALYTICS

What:

Filter, aggregate, enrich, and analyze a high throughput of data from <u>live</u> data sources

Why:

To identify patterns, detect urgent situations, and automate immediate actions in real-time

1ST GENERATION FAST DATA: STREAMING ANALYTICS

 Examples: Spark Streaming, Storm, Kinesis, TIBCO StreamBase, et al.

Technical:

- Lack "state" for transaction processing (operational)
- Complex programming model
- No ability to do ad hoc queries

Functional:

- 1st Gen only offers streaming analytics
- Separate database required for any meaningful work
- Proprietary interface is inconsistent with the rest of the data pipeline
- Does not support applications requirement for interaction

2ND GENERATION FAST DATA: STREAMING ANALYTICS & OPERATIONAL WORK

- Streaming Analytics converges with the operational applications
 - Convergence is necessary to use data in real-time
 - Automated application interactions are informed by data
 - Brings the application into the "data analytics" world
- Streaming Analytics alone is passive, Fast Data is interactive

WHAT'S NEW HERE?

Combining streaming analytics and transactions allows you to act at the rate that you learn.

TRANSLYTICAL DATABASES

"By definition the only way to do streaming analytics is to do it **in-memory**. Don't make the mistake of thinking that streaming is just about ingestion. Streaming analytics is about *analytics* more than it is about *ingestion*."

"Spark Streaming is micro batch processing. That's still batch processing but it does it in micro batches. I don't consider that a true real-time streaming platform because it's geared more for batch processing."

A new category of databases is emerging we call **translytical databases**: streaming analytics with transactions in a single database.

FAST DATA REQUIRES ANALYTICS WITH (TRANS)ACTIONS

Customer-Facing

- Personalization
- Customer experience

Operations-Facing

- Network optimization
- API monitoring
- Sensors

THE TIME VALUE OF DATA

VOLTDB: A SUPERIOR ARCHITECTURE FOR FAST DATA

- ✓ In-Memory performance
- ✓ Scale-out, shared nothing
- ✓ ACID & SQL & Java
- ✓ Continuous, per event
- ✓ Reliability and fault tolerance
- ✓ Hadoop ecosystem integration

VoltDB is really different than everything else

THE SO WHAT

VoltDB allows companies to act on data in real-time, enabling new levels of application functionality and performance that drive new revenue streams while reducing infrastructure costs

USE CASE EXAMPLES: ANALYTICS + (TRANS)ACTIONS

	Streaming Analytics (Stream Proc. or OLTP)	(Trans)Actions (OLTP)	
Mobile Usage	Count current usage minutes	Will current usage plus previous balance cause the customer to exceed his quota?	
Gaming	Real-time stats on player effectiveness	Change game interaction to increase engagement of the player	
Real-time Risk	Determine position values as prices and positions change	Does a new trade violate the defined risk tolerance? If "no," place trade	
Ad placement	With which segment is this user identified	Identify ad, check vendor quota balance, determine best network and place ad	
Content Delivery Service	Count content views	Update log records in real time for accurate billing based on content views	

USE CASES

Telco

- Subscriber Management
- Session Management
- OSS/BSS policy, billing, routing
- SLA Management

Media and Entertainment

- Personalization
- Digital Advertising
- Content Delivery
- Gaming

Financial Services

- Risk Management (portfolio, trading)
- Fraud Detection
- Compliance (BB&O)
- Customer Engagement

IoT/Sensors

- Smart Energy
- Connected Home
- Patient Monitoring

SIMPLIFYING THE LAMBDA ARCHITECTURE

Content delivery network service provider

	Cassandra or HBase	VoltDB
Number of Environments to Manage	At least 3	1
Atomicity	Single-write	Multi-write
Unit of Atomicity	A single row	A single partition
Indexed Look-Up Requirements Per Micro- Batch	150,000	336
Transaction ID Space Requirements Per Micro- Batch	18 GBs	0.000012 GB

Tridont with

Implementing VoltDB and micro-batching with multi-write atomicity within the Lambda framework simplified management and improved performance, storage, scalability, and operations.

Use Case

 Counting "content" views in real time for billing and reporting

Why VoltDB?

- Real-time analytics + transactions w/scale
- Need for accuracy chose VoltDB over Trident/Storm+Cassandra combination for real-time streaming aggregations with "exactly once" semantic

MaxCDN uses 1/10th compute resources of alternate solutions.

Behzad Pirvali
Performance Architect

- Mobile advertising service
- Managing over 150,000 applications

HYPERTARGET

Real-Time targeting = f(persona, interests, behaviors)

Requirement:
Hundreds of
thousands of
concurrent
connections with
round-trip
latencies in
milliseconds

Before (MySQL)

After (VoltDB)

7 servers

"Achieved a previously impossible level of budget management accuracy"

Dan Khasis Chief Technology Officer

APPLICATIONS BUILT WITH VOLTDB ARE:

- ✓ Faster, more performant
 - tps, latency
- ✓ Simpler
 - Fraction of components and coding vs. alternatives
 - Lower maintenance and support
- ✓ Better
 - Lower system risk
 - Correct results
 - Higher availability and reliability

WHY VOLTDB? Our customers realize exceptional business value

QUESTIONS?

- Use the chat window to type in your questions
- Try VoltDB yourself:
 - Free trial of the Enterprise Edition:
 - www.voltdb.com/Download
 - Open source version is available on github.com
- Use the chat tab to ask your questions.
- Join the conversation on Twitter #VoltDBFastData
- Download our latest report from O'Reilly in the resources window

