You are a waiter at a party. There are N stacked plates on pile A_0 . Each plate has a number written on it. Then there will be Q iterations. In i-th iteration, you start picking up the plates in A_{i-1} from the top one by one and check whether the number written on the plate is divisible by the i-th prime. If the number is divisible, you stack that plate on pile B_i . Otherwise, you stack that plate on pile A_i . After Q iterations, plates can only be on pile $B_1, B_2, \ldots, B_Q, A_Q$. Output numbers on these plates from top to bottom of each piles in order of $B_1, B_2, \ldots, B_Q, A_Q$.

Input Format

The first line contains two space separated integers, N and Q.

The next line contains N space separated integers representing the initial pile of plates, i.e., A_0 . The leftmost value represents the bottom plate of the pile.

Constraints

```
1 \le N \le 5 \times 10^4

2 \le number_i \le 10^4

1 \le Q \le 1200
```

Output Format

Output N lines. Each line contains a number written on the plate. Printing should be done in the order defined above.

Sample Input 0

5 1 3 4 7 6 5

Sample Output 0

Explanation 0

Initially:

$$A_0 = [3, 4, 7, 6, 5] < \text{-TOP}$$

After 1 iteration:

$$A_0 = [] < -TOP$$

$$B_1 = [6, 4] < \text{-TOP}$$

$$A_1 = [5, 7, 3] < -TOP$$

We should output numbers in B_1 first from top to bottom, and then output numbers in A_1 from top to bottom.

Sample Input 1

5 2 3 3 4 4 9

Sample Output 1

Explanation 1

Initially:

$$A_0 = [3, 3, 4, 4, 9] < \text{-TOP}$$

After $\mathbf{1}^{st}$ iteration:

$$A_0 = [] < TOP$$

$$B_1 = [4, 4] < \text{-TOP}$$

$$A_1 = [3, 3, 9] < \text{-TOP}$$

After 2^{nd} iteration:

$$A_1 = [] < TOP$$

$$B_1 = [4, 4] < TOP$$

$$B_2 = [3, 3, 9] < \text{-TOP}$$

We should output numbers in B_1 first from top to bottom, and then output numbers in B_2 from top to bottom.