

版本号	修改日期	主要更改内容	修改人
1.0.0	2020.06.09	首次撰写	sch

脸谱组件库(face-id私有化)白皮书

一.简介

EBG-TDC 跟据之前 face-id 在金融行业中的应用,提炼出一套**私有化**部署的人脸识别验证服务——脸谱组件库。

脸谱组件库主要面向技术能力较强的行业集成商。按照组件库功能,可以分为以下三类:

■ 证件识别:通过 OCR 技术自动识别证件信息

■ 活体检测:通过使用人脸关键点定位和人脸追踪等技术,确保是真人操作

■ 人脸比对:通过深度学习技术,将用户照片与待比对照片进行精准对比,判断非本人风险

二.产品详述

1.产品定位

脸谱组件库提供的是一整套的AI开发组件,本身和实际业务脱离,无法直接提供终端客户所需的业务能力;同时,脸谱组件库提供了全移动端(Android、Ios、windows)组件及服务器端(支持 Linux,windows)组件。因此,集成脸谱组件库需要有一定的开发能力和开发工作量。所以脸谱组件库主要面向较有开发实力的**行业解决方案提供商**

脸谱组件库本身不提供和业务直接相关的功能,即客户无法直接在脸谱组件库上完成其业务流程。脸谱组件库必须由相关合作伙伴完成集成后,才能基于合作伙伴的产品为客户提供业务功能。

▮脸谱组件库 (Face-Id私有云) 业务架构

MEGVII 旷视

2.组件介绍

脸谱组件库提供的组件基本上可以分为 硬件层、前端。dk、后端服务。

▮ 脸谱组件库 (Face-Id私有云) 产品架构

MEGVII 旷视

(1)硬件

型号 描述

MegEye- 130/300万 (Y) 近红外双目摄像头 活体检测软+硬产品,通过分析摄像头采集的RBG、IR C3V-71T 图像,判断操作者是否为真人,判断为真人后采集一张质量最优的人脸照片。活体防攻击机能力≥99%,真人通过率≥99%。

MegEye- 130/300万 (Y) 近红外双目摄像头 活体检测软+硬产品,通过分析摄像头采集的RBG、IR C3V- 图像,判断操作者是否为真人,判断为真人后采集一张质量最优的人脸照片。活体防攻击 11Y 机能力299%,真人通过率299%。

型号 描述

MegEye- C3V- 72Y	200/200万 (Y) 近红外双目摄像头 活体检测软+硬产品,通过分析摄像头采集的RBG、IR 图像,判断操作者是否为真人,判断为真人后采集一张质量最优的人脸照片。活体防攻击机能力≥99%,真人通过率≥99%。
MegEye- C3V- 73Y	300/300万(Y)近红外双目摄像头活体检测软+硬产品,通过分析摄像头采集的RBG、IR图像,判断操作者是否为真人,判断为真人后采集一张质量最优的人脸照片。活体防攻击机能力≥99%,真人通过率≥99%。

双目相机模组

■ 基本功能

Android

Android端双目活体SDK通过JavaAPI接口对外提供了以下功能:

- 人脸检测:可以输出以下信息:
 - 人脸关键点信息 (landmarks)
 - 人脸属性:各种人脸属性包括:嘴部、鼻部、眼部状态,嘴部、眼部遮挡状态
 - 人脸质量判断:包括模糊度,人脸左右偏转角度(yaw),人脸俯仰偏转角度(pitch),人脸摇摆角度(roll),人脸是否完整等
- 人脸特征值提取:支持IR图、RGB图片的特征提取
- 图片1:1比对
- 特征值1:1比对
- 支持端上小底库: 底库量级20

windows

infrared-ocx是一个主要用于浏览器调用集成的ocx控件,主要包括如下功能:

- 人脸检测: 当人脸出现在摄像头视野中时,标识出人脸位置.
- 活体检测: 对摄像头中出现的人脸进行活体判断.
- 人脸图像抓取: 获取摄像头中的人脸图片信息.

(2)前端SDK

型 号	版本	描述
动作活体(Android、IOS双平台)	2.4.7	点头,转头,眨眼,张嘴动作判断活体,集成于用 户APP
Windows动作活体	2.2.3	windows环境点头,转头,眨眼,张嘴动作判断活体,集成于用户浏览器
人脸对比(Android、IOS双平台)	1.0.1	人脸检测,人脸质量检测,活体检测,人脸比对
windows人脸对比	1.0.2	windows环境人脸检测,人脸质量检测,活体检测, 人脸比对

身份证ocr前端质量检测 SDK(Android、IOS双平台) 1.2.2 前端质量检测SDK (Android、IOS双平台)

1.动作活体SDK

■ 基本功能

Android/IOS

动作活体SDK主要是通过对点头、摇头、张嘴、眨眼等动作识别来判定是否是真人。

动作活体SDK输出为N+2张照片和delta,其中N为动作数量(均为人脸照),2为image_best(动作活体过程中最佳人脸照片)和image_env(最佳照片的全景图),delta可以通过后端服务(minions/fmp)来校验图片的是否是来自动作活体SDK。

Windows

Windows动作活体控件是一个主要用于浏览器调用集成的activex控件,主要包括如下功能:

- 人脸检测: 当人脸出现在摄像头视野中时,标识出人脸位置.
- 活体检测: 对摄像头中出现的人脸进行活体判断.
- 人脸图像抓取: 获取摄像头中的人脸图片信息.

■ 部署环境

Android 4.4以上、IOS 8 以上; win动作活体要求支持Windows系统,仅支持 windows-xp PS3以上., 运行环境适用于 IE9 以上;

2.人脸对比SDK

本SDK对应 fmp 活体检测 SDK (KASSilentLive)、端上人脸比对 SDK (megfacepp)、端上人脸质量 SDK (FaceQuality);

■ 基本功能

端上人脸质量SDK (FaceQuality)

端上人脸质量SDK,支持人脸检测,人脸质量检测,Android支持人脸跟踪,ios不支持人脸跟踪。

端上人脸比对SDK (megfacepp)

端上人脸比对SDK,支持人脸检测、人脸特征提取及特征比对。该SDK不包含任何UI,提供函数方法进行人脸检测,人脸比对等功能。

fmp活体检测SDK (KASSilentLive)

静默活体检测SDK,实质上是基于RGB的端上FMP。该SDK不包含任何UI,提供函数方法进行图片的活体检测。

静默活体检测输出为bool类型。

■ 部署环境

Android 4.4以上;

3.身份证检测

■ 基本功能

身份证OCR SDK主要是对获取身份证照片进行质量检测,使得获取的身份证照片传输到后端识别具有更高的准确率。

身份证OCR SDK输出为一张身份证照片。

■ 部署环境

Android 4.4以上;

(3)后端服务

型号	版本	描述
人脸比对(后端1: 1) - 12TPS	minions- 2.13.0_200430	服务端1: 1
人脸搜索(后端1: N) - 12TPS	group-2.7.5	服务端1: N。支持人脸数据持久化
后端攻击检测 FMP (liveness)- 12TPS	fmp: 1.0.1 meglive-1.1.1	后端攻击检测模型,检测对象为图片,可与活体检 测算法配合增强安全性
唇语H5 视频活体 - 12TPS	h5-1.0.1	通过上传视频,判断活体防范攻击;后端服务器部 署
身份证服务端 (OCRIDCard API) -12TPS	idcard-ocr-3.6.0-noinfer	服务端 (OCRIDCard API)

1.人脸对比-Minions服务

■ 基本功能

服务端

Minions是人脸1:1对比的算法服务,通过一组restful接口对外提供了以下功能:

- 人脸检测: 人脸检测按照类型分类,又包括以下几种:
 - 人脸关键点检测:返回人脸关键点信息 (landmarks)
 - 人脸属性检测:各种人脸属性包括:年龄,性别,头发,少数民族,胡子,帽子,肤色,口罩,眼镜,嘴部,眼睛等状态
 - 人脸质量判断:包括模糊度,人脸左右偏转角度(yaw),人脸俯仰偏转角度(pitch),人脸摇 摆角度(roll)
- 人脸特征值提取:支持去网纹
- 图片1:1比对: 支持去网纹, 旋转图片
- 特征值1:1比对

windows web端插件

minions-ocx是一个主要用于浏览器调用集成的ocx控件,主要包括如下功能:

■ 人证对比:对比两张图片中的人脸相似度.

■ 产品架构

Minions 架构图

■ 部署环境

Minions 支持 Redhat/Centos/Ubuntu/Suse等多种操作系统;支持 GPU CPU Minions-ocx支持Windows系统,仅支持 windows-xp PS3以上.,运行环境适用于 IE9 以上.

2.人脸后端搜索-Group服务

■ 基本功能

Group是人脸1:N特征值搜索的算法服务,通过一组restful接口对外提供了以下功能:

- 底库的管理:包括底库的创建/删除/列表等操作:
- 特征值管理:包含特征值入库/删除/清空/数量等操作,其中特征值入库支持单个特征值入库和多个 特征值批量入库
- 特征值搜索: 查找底库中与目标特征值比分最高的top n个人脸

■ 产品架构

Group 架构图

■ 部署环境

Group支持 Redhat/Centos/Ubuntu/Suse等多种操作系统; 支持GPU CPU

3.FMP活体检测

■ 基本功能

fmp 是基于单目RGB的活体算法服务,通过restful接口对外提供了以下功能:

■ 图片活体检测:支持图片旋转,支持csg动作sdk生成的delta校验

4.Meglive活体检测

■ 基本功能

meglive 是基于单目RGB的活体算法服务,通过restful接口对外提供了以下功能:

■ 图片活体检测: 支持图片旋转

5.唇语H5活体

■ 基本功能

H5视频数组活体是对唇动数字活体的算法服务,通过一组restful接口对外提供了以下功能:

- 提供四位随机数字
- 视频唇动数字校验
- 本产品不提供JSSDK, js 端无法压缩视频

■ 部署环境

Windows语音检测服务,需要win server 2008 R1 或win server 2008 R2 或 win server 2012 R1 或win server 2012 R2。硬件最低配置1核2G内存。

Linux系统操作系统没有特别要求,硬件最低配置 4核 8G内存,CPU型号推荐E5-V3 及以上。

推荐部署方式:

建议在多台4C 8G上部署Linux的服务,不建议单台多CPU和多内存。

如:推荐使用两台4c 8g,而不是一台8c 16g。

Linux服务性能为4c 8g 一个TPS, Windows 服务性能为1c 2g 八个TPS

6.身份证检测服务

■ 基本功能

身份证OCR是用于检测和识别中华人民共和国第二代身份证的服务,通过一组restful接口对外提供了以下功能:

- 身份证检测: 可检测出身份证的分类:
 - 正常有效的身份证
 - 临时身份证
 - 用工具合成或编辑过的身份证
 - 身份证复印件
 - 屏幕显示的身份证
- 身份证识别:可识别出身份证正面和反面的文字
 - 正面:包括姓名,性别,民族,住址,生日,身份证号,人脸框的位置
 - 反面: 签发机关, 有效日期等信息

■ 部署环境

身份证OCR支持 Redhat/Centos/Ubuntu/Suse等多种操作系统

性能指标及配置要求

配置要求

后端1:1—minions服务

软件环境要 求	硬件最低配置	硬件推荐配置	注意事项
CentOS > 6.5,推荐 7.4 Redhat > 6.5,推荐 7.4 Ubuntu > 16.04 SUSE > 12	CPU 4核/内存4G/硬盘 50G 可支持6TPS CPU 40核/内存128G/硬 盘100G/GPU 1070ti 可支持250TPS	CPU增加1核,内存增加1G性能可增加1.5TPS没有上限	老人,儿童未经过系统 测试。效果可能不佳

后端1: N—minions+group服务

软件环境要求 硬件最低配置 硬件推荐配置 注意事项

软件环境要求	硬件最低配置	硬件推荐配置	注意事项
CentOS > 6.5, 推荐7.4 Redhat > 6.5, 推 荐7.4 Ubuntu > 16.04 SUSE > 12	CPU 8核/内存16G/硬盘50G 可支持12TPS CPU 40核/内存128G/硬盘 100G/GPU 1070ti 可支持500TPS	CPU增加1核,内存增加1G 性能可增加3TPS	支持集群 部署

后端攻击检测FMP OR Meglive

软件环境要求	硬件最低配置	硬件推荐配置	注意 事项
CentOS > 6.5, 推荐7.4 Redhat > 6.5, 推荐7.4 Ubuntu > 16.04 SUSE > 12	CPU 4核/内存4G/硬盘50G 可支持16TPS CPU 40核/内存128G/硬盘 100G/GPU 1070ti 可支持250TPS	CPU增加1核,内存增加1G 性能可增加 4TPS 没有上限	

后端唇语视频活体

软件环境要求	硬件最低配置	硬件推荐配置	注意事项
CentOS > 6.5,推荐7.4 Redhat > 6.5,推荐7.4 Ubuntu > 16.04 SUSE > 12	CPU 4核/内存4G/硬盘 50G 可支持4TPS	CPU增加1核,内存增加1G,性能可增加 1TPS,每个并发相应大概5s	暂不支持 实 时 视频流

后端身份证ocr

软件环境要求	硬件最低配置	硬件推荐配置	注意事 项
CentOS > 6.5,推荐7.4 Redhat > 6.5,推荐7.4 Ubuntu > 16.04 SUSE > 12	CPU 4核/内存4G/硬盘50G 可支持4TPS	CPU增加1核,内存增加1G 性能可增加1TPS	

性能参数

1:1性能

■ 计算性能:

鳘	片大
//\	

不同显卡配置

	256*256				102*120			
	VU(并 发)	AVG(单 次相应时 间ms)	TPS	GPU 使用 率	VU(并 发)	AVG(单 次相应 时间 ms)	TPS	GPU 使用 率
GPU: 1080 单卡 CPU:i7- 8700K CPU @ 3.70GHz	20	120	160	50%	20	99	188	25%
	40	171	225	62%	40	108	352	55%
GPU: Tesla T4 单卡 CPU:Intel(R) Xeon(R) E5- 2630 v4 @ 2.20GHz	20	125	148	50%	20	105	172	35%
	40	145	254	60%	40	106	338	65%
	80	210	345	90%	80	142	499	90%

■ 模型性能

底库规模	TPR(通过率)	FPR(误识率)
100w	99.56%	1e-6

1:N性能

■ 计算性能:

图片分辨率: 358*441; CPU模式

Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz				
底库数量: group1=1194792				
search(分布式部署)	vu	avg	tps	cpu使用率
	10	43ms	219	60%
	20	61ms	296.4	58%
	30	65ms	423.5	58%
	40	62ms	557.8	60%
extract_and_search(单机部署)	10	117ms	83.5	39%
	20	141ms	138.3	48%
	30	155ms	185.3	57%

40 168ms 228 64%

图片分辨率: 358*441; 双卡GPU 1070ti

底库数量: group2=1194792				
search	vu	avg	tps	gpu使用率
	20	22	690	50-60%
	40	40	680	
	60	61	664	
extract_and_search	20	101	190	双卡能正常分配
	40	112	335	双卡能正常分配
	60	124	444	双卡能正常分配
	80	140	528	双卡能正常分配

■ 模型性能:

■ 精准识别模型

底库规模	TPR(通过率)	FPR(误识率)
5k	99.97%	0.35%
10w	99.29%	0.50%
20w	97.92%	0.50%

■ 大底库模型

底库规模	TPR(通过率)	FPR(误识率)
100w	97.00%	0.50%

戴口罩模型

底库规模	TPR(通过率)	FPR(误识率)		
1w	90.00%	0.50%		

后端活体性能

计算性能:

CPU	Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz40 processing units (2 CPU * 10 core * 2 threads)
Memory	128G
GPU	GeForce GTX 1070 Ti (单卡)

Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz40 processing units (2 CPU * 10 core * 2 threads)

OS Ubuntu 16.04.2 LTSBootos Version: 1.3.2

并发数	QPS(q/s)	Average (ms)	CPU(%)	GPU(%)	Memory(GB)
1	9.96	98	2.6	30~55	6.392
40	21.40	1858	5.5	90~100	6.419
60	21.42	2782	5.5	90~100	6.458

模型识别性能:

CPU

真人FP 2%左右	整纸	抠像	抠脸	电子屏幕	真人误杀
正常光	0	0.01%	0	2%	1%
暗光	0	0	0	1%	1.50%
逆光	0	0.01%	0	0.01%	4%
过曝	0	0.04%	0	0	无