Consider \mathbb{Z}_7 .

$1^{-1} = 1$	$\therefore 1 \cdot 1 = 1$	(1)
	by Existence of a Multiplicative Identity	
$2^{-1} = 4$	$\therefore 2 \cdot 4 \equiv 1 \pmod{7}$	(2)
$3^{-1} = 5$	$\because 3 \cdot 5 \equiv 1 \pmod{7}$	(3)
$4^{-1} = 2$	$\therefore 4 \cdot 2 \equiv 1 \pmod{7}$	(4)
$5^{-1} = 3$	$\because 5 \cdot 3 \equiv 1 \pmod{7}$	(5)
$6^{-1} = 6$	$: 6 \cdot 6 \equiv 1 \pmod{7}$	(6)