Add WeChat powcoder

Introduction to Assignment Project Exam Help Information Retrieval https://powcoder.com

Lecture 6: Scoring, Term Weighting and the Vector Space Model

This lectured Mc Sections 6.2-6.4.3

- Ranked retrieval
- Scoring documents
- Term frequency

 Assignment Project Exam Help
- Collection statistics://powcoder.com
- Weighting schemesWeChat powcoder
- Vector space scoring

Ranked retrieWaChat powcoder

- Thus far, our queries have all been Boolean.
 - Documents either match or don't.
- Good for expert users with precise understanding of their needs and the plactique.com
 - Also good for applications: Applications can easily consume 1000s of results.
- Not good for the majority of users.
 - Most users incapable of writing Boolean queries (or they are, but they think it's too much work).
 - Most users don't want to wade through 1000s of results.
 - This is particularly true of web search.

Problemswith Broke are are the second report of the control of the

- Boolean queries often result in either too few (=0) or too many (1000s) results.
- Query 1: "Standard User dink & 50m H200,000 hits
- Query 2: "standopd: Upervalinde 6.50 mo card found": 0 hits
- Add WeChat powcoder
 It takes a lot of skill to come up with a query that produces a manageable number of hits.
 - AND gives too few; OR gives too many

Ranked retrieWaClmtodelgder

- Rather than a set of documents satisfying a query expression, in ranked retrieval models, the system returns an ordering of verticet (top) additionents in the collection with respect to a query https://powcoder.com
- Free text queries: Rather than a query language of Add WeChat powcoder operators and expressions, the user's query is just one or more words in a human language
- In principle, there are two separate choices here, but in practice, ranked retrieval models have normally been associated with free text queries and vice versa

Feast of farmine! root axproblem in ranked retrieval Chat powcoder

- When a system produces a ranked result set, large result sets are not an issue
 - Indeed, the sign of the Project Exam Halpue
 - We just show the top k (≈ 10) results
 - We don't overwhelm the user
 Add WeChat powcoder
 - Premise: the ranking algorithm works

Scoring as Athe basis of redriked retrieval

- We wish to return in order the documents most likely to be useful to the searcher
- How can we rank-order the documents in the collection with respect to a query in
- Assign a score say in [0, 1] to each document Add WeChat powcoder
 This score measures how well document and query
- This score measures how well document and query "match".

Query-document than scores

- We need a way of assigning a score to a query/document pair
- Let's start Assignment Project Exam Help
- If the query tehmpdoesowotookauroimthe document: score should be 0

 Add WeChat powcoder
- The more frequent the query term in the document, the higher the score (should be)
- We will look at a number of alternatives for this.

Take 1: Jackdride Coefficie of the

- Recall from Lecture 3: A commonly used measure of overlap of two sets A and B
- jaccard(A, B) signment | Project Exam Help
- jaccard(A,A) = https://powcoder.com
- jaccard(A,B) = Add Awe & Fall powcoder
- A and B don't have to be the same size.
- Always assigns a number between 0 and 1.

Jaccard coefficient: Scoring example

- What is the query-document match score that the Jaccard coefficient computes for each of the two documents setoment Project Exam Help
- Query: ides of μησκεργονοσίας.com
- Document 1: caesar died in march Add WeChat powcoder
- Document 2: the long march

the term *Ides of March* is best known as the date that Julius Caesar was killed in 709 AUC or 44 B.C

Issues with date and for searing

- 1 It doesn't consider *term frequency* (how many times a term occurs in a document)
- 2 Rare terms in a collection of a remove informative than frequent the small decould do and the small decould do and the small decould be a small
- We need a more sophisticated way of normalizing for length

Recall (Leisturet In) Bir Fary Hermdocument ind Welmtermatrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1 A agian	mant Drai	oot Evon	Light	0	1
Brutus	ASSIGII	ment Proje	ect Exam	neth	0	0
Caesar	1 htt	ps://powce	oder com	1	1	1
Calpurnia	0	ps.//powe		0	0	0
Cleopatra	1 A	ld WeCha	t powcode	0	0	0
mercy	1		t poweout	1	1	1
worser	1	0	1	1	1	0

Each document is represented by a binary vector $\in \{0,1\}^{|V|}$

Term-docarderechargement rices

- Consider the number of occurrences of a term in a document:
 - Each document in Each

https://powcoder.com

	Antony and Cleopath	dining control	TPOTWES C	e ¶Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0

Bag of words Machine owcoder

- Vector representation doesn't consider the ordering of words in a document
- John is quicker than Mary and Helpicker than John have the hame/yestersder.com
- This is called the bag of words model.
 Add WeChat powcoder
- In a sense, this is a step back: The positional index was able to distinguish these two documents.
- We will look at "recovering" positional information later in this course.
- For now: bag of words model

Term frequently Chat powcoder

- The term frequency $tf_{t,d}$ of term t in document d is defined as the number of times that t occurs in d.
- We want to use the when computing query-document match scores. But how wooder.com
- Raw term frequency is not what we want:
 Add WeChat powcoder
 A document with 10 occurrences of the term is more
 - A document with 10 occurrences of the term is more relevant than a document with 1 occurrence of the term.
 - But not 10 times more relevant.
- Relevance does not increase proportionally with term frequency.

NB: frequency = count in IR

Log-frequency weightinger

The log frequency weight of term t in d is

$$w_{t,d} = \begin{cases} 1 + \log_{10} tf_{t,d}, & \text{if } tf_{t,d} > 0\\ \text{ssignment Project Exam Help} \\ \text{otherwise} \end{cases}$$

- $0 \to 0, 1 \to 1, \frac{\text{bttps1/3p,ovc} \circ 2r, 4000}{2} \to 4, \text{ etc.}$
- Score for a documentequenty pair over terms t in both q and d:
- score $=\sum_{t \in q \cap d} (1 + \log t f_{t,d})$

The score is 0 if none of the query terms is present in the document.

Document frequency wooder

- Rare terms are more informative than frequent terms
- Recall stop words
 Assignment Project Exam Help
 Consider a term in the query that is rare in the
- Consider a term in the query that is rare in the collection (e.g., https://poweneder.com
- A document containing thiatterm is very likely to be relevant to the query arachnocentric
- → We want a high weight for rare terms like arachnocentric.

Document frequency, continued

- Frequent terms are less informative than rare terms
- Consider a query term that is frequent in the collection (e.g., mon, increase, Finne) Help
- A document contraining swedlarterm is more likely to be relevant than a document that doesn't Add WeChat powcoder
- But it's not a sure indicator of relevance.
- For frequent terms, we want high positive weights for words like high, increase, and line
- But lower weights than for rare terms.
- We will use document frequency (df) to capture this.

idf weightAdd WeChat powcoder

- df_t is the <u>document</u> frequency of t: the number of documents that contain t
 - df, is an Aveige measure of the Fram Attomess of t
 - $df_t \le N$ https://powcoder.com
- We define the idf (inverse document frequency) of t by Add WeChat powcoder

$$idf_t = log_{10} (N/df_t)$$

• We use $\log (N/df_t)$ instead of N/df_t to "dampen" the effect of idf.

Will turn out the base of the log is immaterial.

idf exampled supposew when million

term	df_t	idf _t
calpurnia	1 · · · · · · · · · · · · · · · · · · ·	T.T. 1
animal ASS1g	nment Project Exam	Неір
sunday h	ttps://powcoder.com	
fly	10,000 Add WeChat powcode 100,000	ar
under	100,000	
the	1,000,000	

$$idf_t = log_{10} (N/df_t)$$

There is one idf value for each term t in a collection.

Effect of idelowedankingcoder

- Does idf have an effect on ranking for one-term queries, like
 - iPhone Assignment Project Exam Help
- idf has no effention: ranking onectarm queries
 - idf affects the ranking of documents for queries with at least two terms dd WeChat powcoder
 - For the query capricious person, idf weighting makes occurrences of capricious count for much more in the final document ranking than occurrences of person.

Collection Add. Wookument frequency

 The collection frequency of t is the number of occurrences of t in the collection, counting multiple occurrences. Project Exam Help

Example: https://powcoder.com

Word	Collection frequency Add WeChat po	Document frequency wcoder
insurance	10440	3997
try	10422	8760

Which word is a better search term (and should get a higher weight)?

tf-idf weighting Chat powcoder

 The tf-idf weight of a term is the product of its tf weight and its idf weight.

weight and its idf weight. Assignment Project Exam Help
$$\mathbf{w}_{t,d} = (1 + \log t \mathbf{f}_{t,d}) \times \log_{10}(N/d\mathbf{f}_{t})$$
 https://powcoder.com

- Best known weighti Mgescheinpe incindormation retrieval
 - Note: the "-" in tf-idf is a hyphen, not a minus sign!
 - Alternative names: tf.idf, tf x idf
- Increases with the number of occurrences within a document
- Increases with the rarity of the term in the collection

Final ranking of choouments for a query

$$Score(q,d) = \sum_{\text{Assignment Projects Exame Help}} tf.idf_{t,d}$$

https://powcoder.com

Add WeChat powcoder

Binary -> counterweight matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	5.25	3.18	_0	0	0	0.35
Brutus	1.2 SSigni	ment Proje	ect Exam	Help	0	0
Caesar	8.59	2.54	0	1.51	0.25	0
Calpurnia	o htt	ps://pawco	oder.com	0	0	0
Cleopatra	2.85	0	0	0	0	0
mercy	1.51 Ad	ld WeChat	t powcode	er _{0.12}	5.25	0.88
worser	1.37	0	0.11	4.15	0.25	1.95

Each document is now represented by a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$

Documents & Velatory coder

- So we have a |V|-dimensional vector space
- Terms are axes of the space
- Assignment Project Exam Help
 Documents are points or vectors in this space
- Very high-dimethational? Yers of simensions when you apply this to a web search engine
- These are very sparse vectors most entries are zero.

Queries as we't chat powcoder

- Key idea 1: Do the same for queries: represent them as vectors in the space
- Key idea 2 Rank documents according to their proximity to the guery in this page
- proximity = similarity of vectors Add WeChat powcoder proximity ≈ inverse of distance
- Recall: We do this because we want to get away from the you're-either-in-or-out Boolean model.
- Instead: rank more relevant documents higher than less relevant documents

Formalizing dector space proximity

- First cut: distance between two points
 - (= distance between the end points of the two vectors)
- Euclidean Assignment Project Exam Help
- Euclidean distantes is pobacoideracom
- ... because Euclidean distance is large for vectors of different lengths.

Why distance is hat back idea

Use angle Arts tead a provistance

- Thought experiment: take a document d and append it to itself. Call this document d'.
- "Semantically gument d'noject the same lontent
- The Euclidean latistan/que between the two documents can be quite large Add WeChat powcoder
- The angle between the two documents is 0, corresponding to maximal similarity.

 Key idea: Rank documents according to angle with query.

From angled twe costimes oder

- The following two notions are equivalent.
 - Rank documents in <u>decreasing</u> order of the angle between query and stogument Project Exam Help
 - Rank documents in increasing order of https://powcoder.com cosine(query,document)
- Cosine is a mondth weally at ecreasider function for the interval [0°, 180°]

From angled twe costimes oder

But how – and why – should we be computing cosines?

Length noted Wiz attion wooder

- A vector can be (length-) normalized by dividing each of its components by its length for this we use the L₂ norm: Assignment Project Exam Help $\|\vec{x}\|_2 = \sqrt{\sum_i x_i^2}$ https://powcoder.com
- Dividing a vector by its L₂ norm makes it a unit Add WeChat powcoder (length) vector (on surface of unit hypersphere)
- Effect on the two documents d and d' (d appended to itself) from earlier slide: they have identical vectors after length-normalization.
 - Long and short documents now have comparable weights

cosine(query, Wodament)ler

 q_i is the tf-idf weight of term i in the query d_i is the tf-idf weight of term i in the document

 $\cos(\vec{q}, \vec{d})$ is the cosine similarity of \vec{q} and \vec{d} ... or, equivalently, the cosine of the angle between \vec{q} and \vec{d} .

Cosine for length an ormalized vectors

For length-normalized vectors, cosine similarity is simply the dot product (or scalar product):

Assignment Project Exam Help

$$\cos(\vec{q}, d) = \vec{q} \cdot d = \sum_{i=1}^{n} q_i d_i$$
Add WeChat powerater

for q, d length-normalized.

Cosine simila Mit Chillustrated

Cosine similarity among stordocuments

How similar are

the novels	ann	term	SaS	PaP	WH
SaS: Sense and	giiii	affection	115	1eip 58	20
Sensibility	http	Sjeap@WCO	der.com ₀	7	11
PaP: Pride and	Add	w eichat	powcod e i	0	6
<i>Prejudice,</i> and		wuthering	0	0	38

WH: Wuthering

Term frequencies (counts)

Heights?

Note: To simplify this example, we don't do idf weighting in this example.

3 documents example contd.

Log frequency weighting

After length normalization

term	SaS	Assignr	nehtPr	01	ecteExan	n Help	PaP	WH
affection	3.06	2.76	2.30	J	affection	0.789	0.832	0.524
jealous	2.00	1/8/4]	OS://pow	VC	gder con	0.515	0.555	0.465
gossip	1.30	0	1.78		gossip	0.335	0	0.405
wuthering	0	Aa	u wet 1 2.58	na	gossip I <mark>t powco</mark> wuthering	der 0	0	0.588

cos(SaS,PaP) ≈

 $0.789 \times 0.832 + 0.515 \times 0.555 + 0.335 \times 0.0 + 0.0 \times 0.0$

 ≈ 0.94

 $cos(SaS,WH) \approx 0.79$

 $cos(PaP,WH) \approx 0.69$

Computing do wire the some selection of the computing the selection of the selection of

```
CosineScore(q)
      float Scores[N] = 0
      float Assignificant Project Exam Help
      for each https://powcoder.com
      do calculate w_{t,q} and fetch postings list for t for each WeChat powcoder pair (a, tf_{t,d}) in postings list
           do Scores[d] + = w_{t,d} \times w_{t,q}
  6
      Read the array Length
      for each d
  8
      do Scores[d] = Scores[d]/Length[d]
      return Top K components of Scores[]
 10
```

tf-idf weighting that many variants

Term f	requency	Docum	ent frequency	Normalization		
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1	
I (logarithm)	$\frac{1 + \log(tf_{t,d})}{ASSig1}$	t (idf) nment Pi	roject Exam max $\{0, \log \frac{N-\mathrm{df}_t}{\mathrm{df}_t}\}$ wcoder.com	c (cosine) Help	$\frac{1}{\sqrt{w_1^2 + w_2^2 + \ldots + w_M^2}}$	
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$\max\{0,\log rac{N-\mathrm{df}_t}{\mathrm{df}_t}\}$	u (pivoted unique)	1/u	
b (boolean)	$\begin{cases} 1 & \text{if } \Pi_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$			b (byte size)	$1/\mathit{CharLength}^{lpha}, \ lpha < 1$	
L (log ave)	$\frac{1 + \log(\operatorname{tf}_{t,d})}{1 + \log(\operatorname{ave}_{t \in d}(\operatorname{tf}_{t,d}))} A$	dd WeC	that powcod	er		

Columns headed 'n' are acronyms for weight schemes.

Why is the base of the log in idf immaterial?

Weighting may differ implier ies vs documented WeChat powcoder

- Many search engines allow for different weightings for queries vs. documents
- SMART Notation denotes the combination in use in an engine, with the motation ddd aga, using the acronyms from the previous table

 Add We Chat powcoder
- Add WeChat powcoder

 A very standard weighting scheme is: Inc.ltc
 - Document: logarithmic tf (l as first character), no idf and cosine normalization
 - Query: logarithmic tf (l in leftmost column), idf (t in second column), cosine normalization ...

tf-idf example de the trewcoder

Document: car insurance auto insurance

Query: best car insurance

Term		Assignment Project Exam Hebpument									Pro d
	tf- raw	tf-wt	brttp	Sidfp	OWC	od e r e	.cfoaw	tf-wt	wt	n'liz e	
auto	0	0	5 00 0	1 286	eCha	it pov	vcode	er 1	1	0.52	0
best	1	1	50000	1.3	1.3	0.34	0	0	0	0	0
car	1	1	10000	2.0	2.0	0.52	1	1	1	0.52	0.27
insurance	1	1	1000	3.0	3.0	0.78	2	1.3	1.3	0.68	0.53

Exercise: what is N, the number of docs?

Doc length =
$$\sqrt{1^2 + 0^2 + 1^2 + 1.3^2} \approx 1.92$$

Score =
$$0+0+0.27+0.53 = 0.8$$

Representation/feature perspective

- Inc.ltc
 - doc vector:
 - tf-vectorssignment Project Exam Help
 - normalized to unit length https://powcoder.com
 - query vector
 - tf-idf-vectorAdd WeChat powcoder
 - normalized to unit length
 - score = similarity = inner product between the two vectors

Summary Advector spaced ranking

- Represent the query as a weighted tf-idf vector
- Represent each document as a weighted tf-idf vector
- Compute the cosine similarity score for the query vector and each document vector
- Rank documents with the complete to the query by score
- Return the top K (e.g., K = 10) to the user

Resources Afdr Moday sweeture

- IIR 6.2 6.4.3
- Assignment Project Exam Help http://www.miislita.com/information-retrieval-tutorial/cosinehtipsil/apity/cotlerizoontml
 - Term weighting and cosine similarity tutorial for SEO folk!