MA 562: Notes

Carlos Salinas

January 13, 2016

1 Preliminaries

These set of notes are based off of Boothby's Differential Geometry book, chapters 1 through 6. **Definition 1.** A topological space M is a pair (X, \mathcal{T}) , where X is a set, \mathcal{T} is a collection of subsets of X such that

- (a) $\emptyset, X \in \mathfrak{T}$.
- (b) The union of any subcollection of \mathcal{T} is in \mathcal{T} .

$$\{U_{\alpha}\}\subset \mathfrak{T}\quad \Longrightarrow\quad \bigcup_{\alpha}U_{\alpha}\in \mathfrak{T}.$$

(c) Intersection of a finite subcollection of \mathcal{T} is in \mathcal{T} .

$$\{U_1, ..., U_k\} \subset \mathfrak{T} \quad \Longrightarrow \quad \bigcap_{j=1}^k U_j \in \mathfrak{T}.$$

 \mathcal{T} is called the *topology* of M. Elements of \mathcal{T} are called the *open sets* of M. By abuse of notation, we sometimes refer to X as M.

Definition 2. (a) A metric on X is a function $d: X \times X \to \mathbf{R}$ such that

- (1) $d(x,y) > 0 \ \forall x,y \in X \text{ and } d(x,y) = 0 \iff x = y.$
- (2) d(x,y) = d(y,x).
- (3) $d(x,y) + d(y,z) \ge d(x,z)$ (the triangle inequality).
- (b) $B_d(x,r) = \{ y \in X \mid d(x,y) < r \}.$
- (c) A topological space M is a metric space if the set of balls $B_d(x,r)$ form a basis of M, i.e., any open set of M can be written as a union of open balls $B_d(x,r)$ for some $x \in X$, r > 0.

Definition 3. A topological space X is Hausdorff if for any $x_1 \neq x_2$ in X, there exist open sets $U_1 \ni x_1, U_2 \ni x_2$ such that $U_1 \cap U_2 = \emptyset$.

Definition 4. A topological manifold M of dimension n is a topological space such that

- (a) M is Hausdorff.
- (b) locally Euclidean, i.e., $\forall x \in M$ there exists a neighborhood U of X which is homeomorphic to $V \subset \mathbf{R}^n$ (there exists a map $f \colon U_x \to V \subset \mathbf{R}^n$ such that f is bijective, continuous and f^{-1} is continuous).
- (c) M has a countable basis of open sets.

Theorem 1 (Boothby I.3.6). A topological manifold is metrizable (also locally connected, locally compact, and normal).

Definition 5. (a) A covering of a topological manifold is a collection of open sets $\{U_{\alpha}\}$ such that any $x \in M$ is contained in some U_{α} .

(b) A manifold is *compact* if every open cover contains a finite subcover.

Definition 6. (1) Half space

$$\mathbf{H}^n = \{ x \in \mathbf{R}^n \mid x_n \ge 0 \}.$$

- (2) Manifold with boundary. (Similar to definition 4)
 - (a) M is Hausdorff.
 - (b) M has a countable basis of open sets.
 - (c) For any $x \in M$, there exists U open, $x \in U$ such that:
 - (i) $\varphi \colon U \to V \subset \mathbf{R}^n$ is a homeomorphism, or
 - (ii) $\varphi \colon U \to V \subset \mathbf{H}^n$ is a homeomorphism with x such that $\varphi(x) \in \partial \mathbf{H}^n$ referred to as boundary points.

(3)

1.1 Unit Quaternions and Rotations in R³

$$f(v) = z \wedge z^{-1}$$
 $v = (v_1, v_2, v_3) = v_1 i + v_2 j + v_3 k$

where $z = \cos(\alpha/2) + \sin(\alpha/2)\hat{v}$. $\hat{v} = v/||v||$. Quaternion multiplication:

$$ij = k$$
 $ji = -k$ $jk = i$ $kj = -i$ $ik = -j$.

Can check that z and -z correspond to the same rotation.

Topologically, unit quaternions $\simeq S^3 = \{ x \in \mathbf{R}^4 \mid ||x|| = 1 \}$ and rotations $\simeq S^3/\sim, z \sim -z$

$$\mathbf{RP}^3 \simeq \mathbf{R}^4 \smallsetminus \{0\}/\{\, x \sim \lambda x\,\}.$$

for all $\mathbf{R}^{n+1} \setminus \{0\}$ can always find λ such that has norm 1. There are precisely 2 such λ which differ by a sign. Therefore, \mathbf{RP}^n can be constructed by identifying antipodal points of S^n in \mathbf{R}^{n+1} .