

OF TECHNOLOGY & INNOVATION

Mathematics Concepts For Computing AQ010-3-1-MCFC

Chapter 7
Graph and Tree

Topic & Structure of the lesson

- >Introduction
- > Definition
- Degree of a Vertex
- >Graphs & Representations
- >Paths & Circuits
- >Trees

Graph

General meaning in everyday math:

A plot or chart of numerical data using a coordinate system.

Technical meaning in discrete mathematics:

 A particular class of discrete structures (to be defined) that is useful for representing relations and has a convenient webby-looking graphical representation.

Application of Graphs

- Social networks
 - A friendship graph: two people are connected if they are Facebook friends.
- Communications networks
- Information networks
 - In a web graph, web pages are represented by vertices and links are represented by directed edges.
- Transportation networks

Def 1. A graph G = (V, E) consists of V, a nonempty set of vertices (or nodes), and E, a set of edges. Each edge has either one or two vertices associated with it, called its endpoints. An edge is said to connect its endpoints.

eg. v_1 v_5 v_6

$$G=(V, E)$$
, where $V=\{v_1, v_2, ..., v_7\}$ $E=\{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}\}$ $\{v_3, v_4\}, \{v_4, v_5\}, \{v_4, v_6\}$ $\{v_4, v_7\}, \{v_5, v_6\}, \{v_6, v_7\}\}$

Def A graph in which each edge connects two different vertices and where no two edges connect the same pair of vertices is called a simple graph.

Def Multigraph:

simple graph + multiple edges (multiedges)

eg.

Def. Pseudograph:


```
simple graph + multiedge
+ loop
(a loop: •)
```


Note: is allowed in a directed graph

Note:

The two edges (u,v),(u,v) are multiedges.

The two edges (u,v), (v,u) are not multiedges.

Def. Directed multigraph: digraph+multiedges

Def 1. Two vertices u and v in a undirected graph G are called adjacent (or neighbors) in G if $\{u, v\}$ is an edge of G.

Note: adjacent: a vertex connected to a vertex incident: a vertex connected to an edge

Def 2. The degree of a vertex v, denoted by deg(v), in an undirected graph is the number of edges incident with it.

(Note: A loop adds 2 to the degree.)

Example

What are the degrees of the vertices in the graph H?

Def. A vertex of degree 0 is called isolated.

Thm 1. (The Handshaking Theorem) Let G = (V, E) be an undirected graph with e edges (i.e., |E| = e). Then

$$\sum_{v \in V} \deg(v) = 2e$$

The graph *H* has 11 edges, and

$$\sum_{v \in V} \deg(v) = 22$$

Example

How many edges are there in a graph with 10 vertices each of degree six?

Sol:

$$10 \cdot 6 = 2e \implies e=30$$

Example

Draw a simple graph whose degree sequence is :

- (a) (1, 2, 2, 2, 3, 4)
- (b) (2, 2, 2, 2, 3, 3, 4, 4)

Representing Graphs – Adjacency List

XAdjacency list

Example 1. Use adjacency lists to describe the simple graph given below.

Vertex	Adjacent Vertices
а	b,c,e
b	a
С	a,d,e
d	c,e
e	a.c.d

Example 2.

Initial vertex	Terminal vertices		
а	b,c,d,e		
b	b,d		
c	a,c,e		
d			
e	b,c,d		

Representing Graphs - Adjacency Matrix <

Def. G=(V, E): simple graph, $V=\{v_1, v_2, \dots, v_n\}$.

A matrix A is called the adjacency matrix of G

if
$$A=[a_{ij}]_{n\times n}$$
, where $a_{ij}=\begin{bmatrix} 1, & \text{if } \{v_i,v_j\} \in E, \\ 0, & \text{otherwise.} \end{bmatrix}$

Example 3.

Note:

- 1. There are n! different adjacency matrices for a graph with n vertices.
- 2. The adjacency matrix of an undirected graph is symmetric.

Example 5. (Pseudograph)

Def. If $A=[a_{ij}]$ is the adjacency matrix for the directed graph, then

$$a_{ij} = \begin{cases} 1, & \text{if } \bullet \\ v_i & v_j \\ 0, & \text{otherwise} \end{cases}$$

Example

 Use adjacency list and adjacency matrix to represent the graph:

Paths and Circuits

- A path is sequence of adjacent vertices and edges.
- Simple path is a path that does not contain a repeated edge.
- A simple path is a circuit if it begins and ends at the same vertex.

Example

Does each of these lists of vertices from a path in the following graph? Which paths are simple? Which are circuits? What are the lengths of those that are paths?

- a) a, e, b, c, b
- b) a, e, a, d, b, c, a
- c) e, b, a, d, b, e
- d) c, b, d, a, e, c

Konigsberg- in days past.

Is it possible to start at some location in the town, travel across all the bridges once without crossing any bridge twice, and return to the starting point?

Euler Paths and Circuits

Def 1:

An *Euler circuit* in a graph *G* is a simple circuit containing every edge of *G*.

An *Euler path* in *G* is a simple path containing every edge of *G*.

Thm. 1:

A connected multigraph with at least two vertices has an Euler circuit if and only if each of its vertices has even degree.

Thm. 2:

A connected multigraph has an Euler path (but not an Euler circuit) if and only if it has exactly 2 vertices of odd degree.

Example

Which of the following graphs has an Euler circuit?

yes (a, e, c, d, e, b, a)

no

no, but has Euler path (a, c, d, a, b, d,, e, b)

■ Example: G1 contains exactly two vertices of odd degree, namely, b and d. Hence, it has an Euler path that must have b and d as its endpoints. One such Euler path is d, a, b, c, d, b. Similarly, G2 has exactly two vertices of odd degree, namely, b and d. So, it has an Euler path that must have b and d as endpoints. One such Euler path is b, a, g, f, e, d, c, g, b, c, f, d. G3 has no Euler path because it has six vertices of odd degree.

Hamilton Circuits

Dodecahedron puzzle and it equivalent graph

Is there a circuit in this graph that passes through each vertex exactly once?

Hamilton Circuits

Yes; this is a circuit that passes through each vertex exactly once.

Hamilton Paths and Circuits

Def. 2: A *Hamilton path* is a path that traverses each vertex in a graph *G* exactly once. A *Hamilton circuit* is a circuit that traverses each vertex in *G* exactly once.

Example 1. Which of the following graphs have a Hamilton circuit or a Hamilton path?

Hamilton circuit: G_1

Hamilton path: G_2

Theorem

If a graph G has a Hamilton circuit, then G has a subgraph H with the following properties:

- 1. H contains every vertex of G.
- 2. H is connected.
- 3. H has the same number of edges as vertices.
- 4. Every vertex of H has degree 2.

Example of Hamilton Circuit: Travelling Salesman Problem

A Hamilton circuit or path may be used to solve practical problems that require visiting "vertices", such as:

- road intersections
- pipeline crossings
- communication network nodes

A classic example is the Travelling Salesman

Problem – finding a Hamilton circuit in a complete graph such that the total weight of its edges is minimal.

Summary

	0		Q	
	5			
	1	-	Y	
A	•	P	•	U
ASIA P				

Property	Euler	Hamilton
Repeated visits to a given vertices allowed?	Yes	No
Repeated traversals of a given edge allowed?	No	No
Skipped vertices allowed?	No	No
Skipped edges allowed?	No	Yes

- Complete Graphs: A complete graph on n vertices, denoted by Kn, is a simple graph that contains exactly one edge between each pair of distinct vertices.
- Non-complete: A simple graph for which there is at least one pair of distinct vertex not connected by an edge is called non-complete.

Figure: The Graphs K_n for $1 \le n \le 6$

■ Cycles: A cycle C_n , $n \ge 3$, consists of n vertices v_1, v_2, \ldots, v_n and edges $\{v_1, v_2\}, \{v_2, v_3\}, \ldots, \{v_{n-1}, v_n\}, \text{ and } \{v_n, v_1\}.$

Figure 4.5: The Cycles C_3 , C_4 , C_5 , and C_6

Wheel: We obtain the wheel W_n when we add an additional vertex to the cycle C_n, for n ≥ 3, and connect this new vertex to each of the n vertices in C_n by adding new edges.

Figure 4.6: The Wheels W₃, W₄, W₅, and W₆

- Regular Graph: A graph is regular if every vertex has the same degree.
 - Example: The complete graph K_n is regular of degree n-1.
 - Example: A cycle graph is regular of degree 2.

Bipartite Graphs: A simple graph G is called bipartite if its vertex set V can be partitioned into two disjoint sets V1 and V2 such that every edge in the graph connects a vertex in V1 and a vertex in V2 [so that no edges in G connect either two vertices in V1 or two vertices in V2]. When this condition holds, we call the pair (V1, V2) a bipartition of the vertex set V of G.

- Example I: Is C₃ bipartite?
 - No, because there is no way to partition the vertices into two sets so that there are no edges with both endpoints in the same set.
- Example2: Is C₆ bipartite?
 - C₆ is bipartite because its vertex set can be partitioned into the two sets V₁ = {v₁, v₃, v₅} and V₂ = {v₂, v₄, v₆}, and every edge of C₆ connects a vertex in V₁ and a vertex in V₂.

Figure: C₆ change into Bipartite

Special Simple Graphs

Complete Bipartite: Graphs A complete bipartite graph K_{m,n} is a graph that has its vertex set partitioned into two subsets of m and n vertices, respectively with an edge between two vertices if and only if one vertex is in the first subset and the other vertex is in the second subset.

Figure: Complete Bipartite

Planner Graph

- Planar Graph: A graph is called planar if it can be drawn in the plane without any edges crossing, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross each other.
- Example 1: Is K₄ planar?
 - ✓ Solution: K₄ is planar because it can be drawn without crossings, as shown in Figure.

Graph K₄

K₄ drawn with no crossing

- Graph Coloring: A coloring of a simple graph is the assignment of a color to each vertex of the graph so that no two adjacent vertices are assigned the same color.
- Chromatic number: The chromatic number of a graph is the least number of colors needed for a coloring of this graph. The chromatic number of a graph G is denoted by $\chi(G)$. (Here χ is the Greek letter chi.)
- Theorem 1: The Four-Color Theorem: The chromatic number of a planar graph is no greater than four.

• Example1: What are the chromatic numbers of the graphs G and H shown in Figure?

• Solution: The chromatic number of G is at least three, because the vertices a, b, and c must be assigned different colors. To see if G can be colored with three colors, assign red to a, blue to b, and green to c. Then, d can (and must) be colored red because it is adjacent to b and c. Furthermore, e can (and must) be colored green because it is adjacent only to vertices colored red and blue, and f can (and must) be colored blue because it is adjacent only to vertices colored red and green. Finally, g can (and must) be colored red because it is adjacent only to vertices colored blue and green. This produces a coloring of G using exactly three colors.

• The graph H is made up of the graph G with an edge connecting a and g. Any attempt to color H using three colors must follow the same reasoning as that used to color G, except at the last stage, when all vertices other than g have been colored. Then, because g is adjacent (in H) to vertices colored red, blue, and green, a fourth color, say brown, needs to be used. Hence, H has a chromatic number equal to 4.

Figure: After Coloring Graph G and H

- **Example 2:** What is the chromatic number of K_n ?
 - Solution: A coloring of K_n can be constructed using n colors by assigning a different color to each vertex. No two vertices can be assigned the same color, because every two vertices of this graph are adjacent. Hence, the chromatic number of K_n is n. That is, $\chi(K_n) = n$.

Figure: A Coloring of K₅

- **Example 3:** What is the chromatic number of the complete bipartite graph $K_{m,n}$, where m and n are positive integers?
 - Solution: The number of colors needed may seem to depend on m and n.
 Only two colors are needed, because K_{m,n} is a bipartite graph. Hence,
 χ(K_{m,n}) = 2. This means that we can color the set of m vertices with one
 color and the set of n vertices with a second color. Because edges connect
 only a vertex from the set of m vertices and a vertex from the set of n
 vertices, no two adjacent vertices have the same color.

Figure: A Coloring of K_{3,4}

Example of Tree: Decision Trees

ASIA PACIFIC UNIVERSITY OF TECHNOLOGY & INNOVATION

- A rooted tree in which each internal vertex corresponds to a decision, with a subtree at these vertices for each possible outcome of decision.
- The possible solutions of the problem correspond to the paths to the leaves of this rooted tree.

EXAMPLE

A Decision tree that orders the elements of the list *a*, *b*, *c*

Tree

Definition:

- A tree is a connected undirected graph with no simple circuits.
- Since a tree cannot have a circuit, a tree cannot contain multiple edges or loops.
- Therefore, any tree must be a simple graph.

Theorem:

- An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices.
- In general, we use trees to represent hierarchical structures.

Example 1. Which of the graphs are trees?

Sol: G_1, G_2

Tree Terminology

- If v is a vertex of tree T other than the root, the **parent** of v is the unique vertex u such that there is a directed edge from u to v.
- When u is the parent of v, v is called the child of u.
- If two vertices share the same parent, then they are called siblings.

Tree Terminology (Cont.)

- The ancestors of a vertex other than the root are the vertices in the path from the root to this vertex, excluding the vertex itself and including the root.
- The descendants of a vertex v are those vertices that have v as an ancestor.

Tree Terminology (Cont.)

- A vertex with no children is called a **leaf**.
- Vertices with children are called *internal* vertices.

Tree Terminology (Cont.)

- If a is a vertex in a tree, the **subtree** with a as its root is:
 - the subgraph of the tree consisting of a and its descendants, and
 - -all edges incident to these descendants.

Tree Traversal

- Ordered trees are often used to restore data/info.
- Tree traversal is a procedure for systematically visiting each vertex of an ordered rooted tree to access data.
- Tree traversal algorithm
 - Preorder, inorder and postorder traversal

The lexicographic ordering is:

0 < 1 < 1.1 < 1.2 < 1.3 < 2 < 3 < 3.1 < 3.1.1 < 3.1.2 < 3.1.2.1 < 3.1.2.2 < 3.1.2.3 < 3.1.2.4 < 3.1.3 < 3.2 < 4 < 4.1 < 5 < 5.1 < 5.1.1 < 5.2 < 5.3

Preorder Traversal

- Let T be an ordered rooted tree with root r.
 - If T consists only of r, then r is the preorder traversal of T.
 - If $T_1, T_2, ..., T_n$ are subtrees at r from left to right in T, then the preorder traversal begins by visiting r, continues by traversing T_1 in preorder, then T_2 in preorder, and so on until T_n is traversed in preorder.

EXAMPLE: Preorder Traversal

abejknopfcdglmhi

ITERATION 4

The preorder traversal of *T*

Inorder Traversal

- Let T be an ordered rooted tree with root r.
 - If T consists only of r, then r is the inorder traversal of T.
 - If T_1 , T_2 , ..., T_n are subtrees at r from left to right in T, then the inorder traversal begins by traversing T_1 in inorder, then visiting r, continues by traversing T_2 in inorder, and so on until T_n is traversed in inorder.

TIPS

Inorder Traversal:
Visit leftmost
subtree, Visit root,
Visit other subtrees
left to right.

EXAMPLE: Inorder Traversal

The inorder traversal of T

Postorder Traversal

- Let T be an ordered rooted tree with root r.
 - If T consists only of r, then r is the postorder traversal of T.
 - If $T_1, T_2, ..., T_n$ are subtrees at r from left to right in T, then the preorder traversal begins by traversing T_1 in postorder, then T_2 in postorder, and so on until T_n is traversed in postorder and ends by visiting r.

TIPS

Postorder Traversal: Visit subtrees left to right, Visit root.

Visit T_1 in postorder Visit T_2 in postorder Visit T_n in postorder

EXAMPLE: Postorder Traversal

The postorder traversal of T

Summary

preorder

inorder

postorder

Exercise

In which order does

- a) preorder traversal
- b) inorder traversal
- c) postorder traversal visit the vertices in the ordered rooted tree?

Binary tree:

- Preorder traversal sequence: F, B, A, D, C, E, G, I, H (root, left, right)
- Inorder traversal sequence: A, B, C, D, E, F, G, H, I (left, root, right)
- Postorder traversal sequence: A, C, E, D, B, H, I, G, F (left, right, root)

Spanning Trees

Introduction

Def. Let G be a simple graph. A spanning tree of G is a subgraph of G that is a tree containing every vertex of G.

Example 1 Find a spanning tree of *G*.

Sol.

Remove an edge from any circuit. (repeat until no circuit exists)

Four spanning trees of *G*:

Thm 1 A simple graph is connected if and only if it has a spanning tree.

Spanning Trees

- Spanning Tree: Let G be a simple graph. A spanning tree of G is a subgraph of G that is a tree containing every vertex of G.
- A simple graph is connected if and only if it has a spanning tree.

Properties of spanning tree

- Connected graph G can have more than one spanning tree.
- All possible spanning trees of graph G have the same number of edges and vertices.
- A spanning tree does not have any cycle.
- 4. A complete undirected graph can have maximum n^{n-2} number of spanning trees, where n is the number of nodes. In above graph G, $4^{4-2} = 4^2 \Rightarrow 16$ spanning trees are possible.
- Spanning tree must include every vertex of graph G.
- A spanning tree can't be disconnected. That means it is minimally connected.
- A spanning tree has n vertices and n − 1 edges.

Spanning Trees

Figure: Graph G

 Find the spanning tree of graph G

=> Shortest path Algorithm: Diskstra's Algorithm

Example: use Diskstra's algorithm to find the length of a shonest path bean the ventices A to H in the weighted graph.

Dijkstra's Algorithm

Class work: Find a shortest path between a and z in each of the following weighted graph

Represent Expression by Rooted Tree A P U ASIA PACIFIC UNIVERSITY OF TECHNOLOGY & INNOVATION

 We can represent complicated expression (propositions, sets, arithmetic) using ordered rooted trees.

- Binary tree for an arithmetic expression
 - internal nodes: operators
 - leaves: operands

A binary tree representing

i)
$$((x + y) \uparrow 2) + ((x - 4) / 3)$$

ii)
$$((2 \times (5 - 1)) + (3 \times 2))$$

Question and Answer Session

