

Enrolment No: FTCSF10827 _____ Name of Student: ______ MAD HAV

brupts

Department/ School:

END-TERM EXAMINATION, ODD SEMESTER DECEMBER 2024

COURSE CODE: CSET346

MAX. DURATION:

2 HRS

COURSE NAME: Natural Language Processing PROGRAM: B.Tech

TOTAL MARKS:

40

Q.No. A1 A2 A3 A4												
CO	1	A2	73	A4	A5	B1	B2	В3	B4	B5		
PO	1	12	2,3	1,2	2,3	1	2,3	1,3	1,2	2,3		
BTL	1	2,2	2,3	3, 4	2,3	2,3	1,2	4,5	1,2	3,5		
			1	2	3	1	3	2	3	4		

GENERAL INSTRUCTIONS: -

- 1. Do not write anything on the question paper except name, enrolment number and department/school.
- 2. Carrying mobile phones, smartwatches and any other non-permissible materials in the examination hall is an act of UFM.

COURSE INSTRUCTIONS:

- a) All the answers should be written with proper index number.
- b) In case of incorporating any diagram, it should be neat and clear.
- c) All questions are compulsory to answer.

SECTION A

 $[5Q \times 3 \text{ Marks} = 15 \text{ Marks}]$

A1) a) Explain the different components of NLP?

[2+1=3 Marks]

- b) Describe the disadvantages of N-gram model?
- A2) Explain Vanishing and Exploding Gradients with proper example?

[3 Marks]

- A3)a) Illustrate the disadvantages of context free language modelling techniques in NLP?
 - b) Write the Markov assumption?

[2+1=3 Marks]

A4) a) Describe Perplexity along with the formula? .

[1+2=3 Marks]

- b) Explain the key components of Hidden Markov Models?
- A5) Define smoothing? How does smoothing deals with zero probability?

[2+1=3 Marks]

B1) Consider the following training data	[5×1 =5 Marks]
<s>I am Mike</s>	
<s>Mike I am</s>	
<s>Mike I like</s>	
<s>Mike I do like</s>	
<s>Do I like Mike</s>	

Assume that we use a bigram language model based on above data. What does the most probable next word predict by the model of the following data?

1.	<s>Mike '</s>
2.	<s>Mike I do</s>
3.	<s>Mike I am</s>
4.	<s>Do I like</s>
5	<\$>I

- B2) a) Explain the Multinomial Naïve Bayes algorithm and write the mathematical expression for text classification?
 - b) Consider the following dataset of Documents classification problem, where 4 documents (Doc1, Doc2, Doc3, and Doc4) and their corresponding classes (A and B) are there. Predict the class of Doc5 using Multinomial Naïve Bayes Classifier?

 [2+3 = 5 Marks]

Doc	Word contains	Class
Number		
Doc1	Apple, Mango, Apple	A
Doc2	Apple, Apple, Banana	A
Doc3	Apple, Cherry	A
Doc4	Lemon, Orange, Apple	В
Doc5	Apple, Apple, Apple, Lemon, Orange	?

- B3) a) Is stemming technique improve effectiveness in the text processing tasks? Justify your answer?
 - b) Explain the different types of Tokenization in NLP with proper example? [2+2+1=5 Marks]
 - c) Why is regular expression necessary in text processing? Justify your answer?
- B4) a) Explain the components of GRU?

[3+2=5 Marks]

- b) Explain the BERT model in NLP. How does BERT differ from traditional language models?
- B5) A weather prediction system uses a Hidden Markov Model (HMM) to forecast the weather for the next few days. There are three possible hidden states: Sunny (S), Cloudy (C), and Rainy (R). The observable outputs are two weather conditions: Umbrella (U) and Raincoat (RC).

The model has the following parameters:

15 Marks

Transition Probabilities: [arrow (\rightarrow) represents the transition from one state to another state]

$$P(S \rightarrow S) = 0.5$$
 $P(S \rightarrow C) = 0.3$ $P(S \rightarrow R) = ?$ $P(R \rightarrow S) = 0.4$ $P(C \rightarrow C) = ?$ $P(C \rightarrow R) = 0.4$ $P(R \rightarrow C) = 0.3$ $P(R \rightarrow R) = ?$ $P(R \rightarrow R) = ?$

Emission Probabilities:

$$P(U \mid S) = 0.7$$
 $P(U \mid C) = 0.3$ $P(U \mid R) = 0.1$ $P(RC \mid S) = 0.3$ $P(RC \mid C) = 0.7$ $P(RC \mid R) = 0.9$

Initial State Probabilities:

$$P(S) = 0.5$$
 $P(C) = 0.3$ $P(R) = 0.2$

a) Draw the state transition diagram for the given data?

[1+2+2=5 Marks]

- b) Given that the weather on day 1 is sunny, what is the probability that the weather for the next 5 days will be "Sunny Sunny Cloudy- Cloudy Rainy?
- c) Determine the probability of hidden sequence (Sunny Sunny Cloudy Cloudy Rainy) that led to the observed sequence: (Umbrella Umbrella Raincoat- Umbrella Raincoat)?