Supplementary Data

eXNVerify: coverage analysis for long and short read sequencing data in clinical context

1 Test data source

We utilized Extensive Sequence Dataset of Gold-Standard Samples for Benchmarking and Development from https://console.cloud.google.com/storage/browser/brain-genomics-public/research/sequencing/grch38/bam

2 Per-base BED file preparation

For example, HG003 sample from PacBio Hifi (BAM and BAI files) is downloaded and following mosdepth execution is performed to obtain per-base BED file:

```
docker run -it -v ~/data/pacbio_hifi/:/input \
quay.io/biocontainers/mosdepth:0.2.4--he527e40_0 \
mosdepth -t 32 --fast-mode \
input/HG003.pacbio-hifi.21x.haplotag.grch38.bam \
input/HG003.pacbio-hifi.21x.haplotag.grch38.bam
Then, per-base-bed.gz file is decompressed:
```

gzip -d HG003.pacbio-hifi.21x.haplotag.grch38.bam.per-base.bed.gz

Analogous per-base BED file generation should be done for all later samples.

3 Example of coverage analysis for BRCA1 gene and three considered sequence technologies

```
docker run -it --rm -v ~/data/pacbio_hifi/:/input \
-v ~/data/pacbio_hifi/:/output -v ~/data/refs/:/refs \
porebskis/exnverify:1.0 ./geneCoverage.py \
input/HG003.pacbio-hifi.21x.haplotag.grch38.bam.per-base.bed \
refs/Exome_Reference_refined.bed refs/SNV_patho_germline.txt \
refs/SNV_patho_somatic.txt \
15 BRCA1
docker run -it --rm -v ~/data/hiseqx_wgs_pcr_free/:/input \
-v ~/data/hiseqx_wgs_pcr_free/:/output -v ~/data/refs/:/refs \
porebskis/exnverify:1.0 ./geneCoverage.py \
input/HG003.hiseqx.pcr-free.20x.dedup.grch38.bam.per-base.bed \
refs/Exome_Reference_refined.bed refs/SNV_patho_germline.txt \
refs/SNV_patho_somatic.txt \
15 BRCA1
docker run -it --rm -v ~/data/novaseq_wes_agilent/:/input \
-v ~/data/novaseq_wes_agilent/:/output -v ~/data/refs/:/refs \
porebskis/exnverify:1.0 ./geneCoverage.py \
input/HG003.novaseq.wes-agilent.100x.dedup.grch38.per-base.bed \
refs/Exome_Reference_refined.bed refs/SNV_patho_germline.txt \
refs/SNV_patho_somatic.txt \
100 BRCA1
```


Supplementary Figure 1: BRCA1 coverage for samples: A – PacBio Long Read, B – Illumina WGS, C – Illumina Exome Agilent

4 Example of coverage analysis for genes highly relevant for medical genetics and cancer genomics

```
docker run -it --rm -v ~/data/pacbio_hifi/:/input \
  -v ~/data/pacbio_hifi/:/output -v ~/data/refs/:/refs \
  porebskis/exnverify:1.0 ./geneCoverage.py \
  input/HG003.pacbio-hifi.21x.haplotag.grch38.bam.per-base.bed \
  refs/Exome_Reference_refined.bed refs/SNV_patho_germline.txt \
  refs/SNV_patho_somatic.txt \
  21 MSH6 TP53 ABCA4 PDGFRB LEMD2 CFTR HTT DMD
```

As the result, gene coverage report file and eight figures related to input genes are generated.

```
geneCoverage - HG003.pacbio-hifi.21x.haplotag.grch38.bam.per-base.bed
Input genes: ['MSH6', 'TP53', 'ABCA4', 'PDGFRB', 'LEMD2', 'CFTR', 'HTT', 'DMD']
Pathogenic (G - germline, S - somatic) SNV coverage: - 'count' is the number of variants in a given region
   'AT' is the percentage of SNV coverage above threshold (21x)
   gene
                 \mathsf{chr} \ \mathsf{count}(\mathsf{G}) \ \ \mathsf{median}(\mathsf{G}) \ \ \mathsf{std}(\mathsf{G}) \ \ \mathsf{min}(\mathsf{G}) \ \ \mathsf{max}(\mathsf{G}) \ \ \mathsf{AT}(\mathsf{G}) \ \ \mathsf{count}(\mathsf{S}) \ \ \ \mathsf{median}(\mathsf{S}) \ \ \mathsf{std}(\mathsf{S}) \ \ \mathsf{min}(\mathsf{S}) \ \ \mathsf{max}(\mathsf{S}) \ \ \mathsf{AT}(\mathsf{S}) 
                                                  21
22
                                                                                     23
28
                                                                                                                                                                  23
0
   TP53
             chr17
                                89
                                                                          14
                                                                                             65%
                                                                                                              68
                                                                                                                               21
                                                                                                                                                       14
                                                                                                                                                                          60%
  ARCA4
                                                                3
                                                                          16
                                                                                             68%
                                                                                                               0
                                                                                                                                 Θ
                                                                                                                                             0
                                                                                                                                                                            0%
               chr1
                               166
                                                                                                                                                        0
                                                                                                                                                                  17
PDGFRB
                                                  17
                                                                          17
                                                                                     17
                                                                                                                                                       17
                                                                0
                                                                                               0%
                                                                                                                                                                            0%
               chr5
                                                                                                                                17
                                                                                                                                             0
                                  1
                                                                                                               1
                                                                                                                                                                    0
                                                                                                                                                                            0%
               chr6
   CFTR
               chr7
                               192
                                                  27
                                                                4
                                                                          19
                                                                                     39
                                                                                             94%
                                                                                                               0
                                                                                                                                 Θ
                                                                                                                                             0
                                                                                                                                                        0
                                                                                                                                                                    0
                                                                                                                                                                            0%
                                                                                               0%
                                                                                                                                                                    0
                                                                                                                                                                            0%
    HTT
               chr4
                                                    0
                                                                0
                                                                           0
                                                                                      0
                                                                                                               0
                                                                                                                                 0
                                                                                                                                             0
                                                                                                                                                        0
     DMD
              chrX
                               144
                                                  11
                                                                4
                                                                                     18
                                                                                               0%
                                                                                                               0
                                                                                                                                 0
                                                                                                                                                        0
                                                                                                                                                                   0
                                                                                                                                                                            0%
                                                                                                                                             0
```


Supplementary Figure 2: MSH6 coverage

Supplementary Figure 3: TP53 coverage

Supplementary Figure 4: ABCA4 coverage

Supplementary Figure 5: PDGFRB coverage

Supplementary Figure 6: LEMD2 coverage

Supplementary Figure 7: CFTR coverage

Supplementary Figure 8: HTT coverage

Supplementary Figure 9: DMD coverage

5 Example of Clinical Depth Coverage for the whole sequence samples

· PacBio Long Read

```
docker run -it --rm -v ~/data/pacbio_hifi/:/input -v ~/data/pacbio_hifi/:/output \ -v ~/data/refs/:/refs porebskis/exnverify:0.89b ./SNVScore.py \ input/HG003.pacbio-hifi.21x.haplotag.grch38.bam.per-base.bed \ refs/SNV_patho_germline.txt refs/SNV_patho_somatic.txt 15
```

 ${\tt SNV}\ coverage\ report\ -\ HG003.pacbio-hifi.21x.haplotag.grch38.bam.per-base.bed$

81% of all pathogenic germline SNVs and 91% of all pathogenic somatic SNVs are covered above threshold (15)

Whole genome coverage:

median mean $% \frac{1}{2}$ std 1st quartile 3rd quartile min $% \frac{1}{2}$ max $\frac{1}{2}$ 32 $\frac{1}{2}$ 190 $\frac{1}{8}$ 26 $\frac{1}{2}$ 24444

Pathogenic (G - germline, S - somatic) SNV coverage: ('count' is the number of variants in a given region)

 $region\ count(G)\ median(G)\ std(G)\ min(G)\ max(G)\ count(S)\ median(S)\ std(S)\ min(S)\ max(S)$

ALL	14157	20	6	1	43	310	20	5	9	36
chr1	1182	21	5	8	37	10	24	3	17	29
chr2	1118	22	6	5	39	33	20	5	12	33
chr3	774	20	5	8	37	40	21	6	10	33
chr4	270	20	7	7	41	6	16	2	15	19
chr5	538	21	5	5	36	10	18	4	15	29
chr6	511	22	6	4	43	Θ	0	0	0	0
chr7	717	22	5	6	43	13	26	4	21	34
chr8	335	23	6	8	37	Θ	Θ	0	0	0
chr9	479	20	6	2	37	1	27	0	27	27
chr10	362	20	6	9	36	32	20	7	9	36
chr11	966	19	6	6	36	9	14	6	11	27
chr12	709	22	5	10	38	12	23	3	16	25
chr13	910	17	5	9	37	26	22	5	11	29
chr14	324	23	4	9	34	6	21	4	13	27
chr15	533	21	5	8	35	4	17	1	17	20
chr16	643	19	6	3	40	1	17	0	17	17
chr17	1561	20	4	8	37	88	21	2	14	24
chr18	154	20	6	11	35	4	25	2	25	30
chr19	720	18	4	7	27	10	12	4	9	20
chr20	146	18	5	8	35	0	0	0	0	0
chr21	174	14	6	2	28	1	22	0	22	22
chr22	181	16	5	1	29	2	18	6	12	24
chrX	850	10	4	3	24	2	14	4	9	18
chrY	0	0	0	0	0	Θ	0	0	0	Θ

• Illumina WGS

```
docker run -dit --rm -v \sim/data/hiseqx_wgs_pcr_free/:/input \ -v \sim/data/hiseqx_wgs_pcr_free/:/output -v \sim/data/refs/:/refs \ porebskis/exnverify:0.89b ./SNVScore.py \ input/HG003.hiseqx.pcr_free.20x.dedup.grch38.bam.per_base.bed \ refs/SNV_patho_germline.txt refs/SNV_patho_somatic.txt 15
```

SNV coverage report - HG003.hiseqx.pcr-free.20x.dedup.grch38.bam.per-base.bed

94% of all pathogenic germline SNVs and 98% of all pathogenic somatic SNVs are covered above threshold (15)

Whole genome coverage:

median mean std 1st quartile 3rd quartile min max 24 28 158 21 28 0 144498

Pathogenic (G – germline, S – somatic) SNV coverage: ('count' is the number of variants in a given region)

 $region\ count(G)\ median(G)\ std(G)\ min(G)\ max(G)\ count(S)\ median(S)\ std(S)\ min(S)$

ALL	14157	24	6	2	54	310	24	6	9	41
chr1	1182	25	6	10	44	10	26	4	18	33
chr2 chr3	1118 774	24 24	5 5	5 9	54 41	33 40	25 24	4 6	15 14	32 37
chr4	270	24	6	10	43	6	26	3	21	32
chr5	538	25	5	7	40	10	27	5	16	34
chr6	511	24	5	10	44	0	0	0	0	0

chr7	717	24	6	10	45	13	25	1	23	29
chr8	335	24	5	12	39	Θ	0	0	0	0
chr9	479	24	5	13	46	1	19	0	19	19
chr10	362	25	6	10	39	32	23	7	10	39
chr11	966	24	6	8	44	9	23	4	20	33
chr12	709	23	5	11	43	12	28	5	14	30
chr13	910	25	5	12	43	26	24	4	16	34
chr14	324	24	5	12	43	6	20	6	17	33
chr15	533	25	6	10	42	4	26	8	16	33
chr16	643	24	5	11	42	1	28	0	28	28
chr17	1561	25	5	7	42	88	24	6	16	41
chr18	154	24	5	11	41	4	24	4	17	28
chr19	720	25	5	10	41	10	27	6	12	36
chr20	146	24	5	11	36	0	Θ	0	0	0
chr21	174	22	7	2	33	1	27	0	27	27
chr22	181	25	5	12	41	2	22	2	19	24
chrX	850	12	4	2	26	2	12	4	9	16
chrY	0	Θ	0	0	0	Θ	Θ	0	0	0

• Illumina Exome Agilent

```
docker run -dit --rm -v ~/data/novaseq_wes_agilent/:/input \
  -v ~/data/novaseq_wes_agilent/:/output -v ~/data/refs/:/refs \
  porebskis/exnverify:0.89b ./SNVScore.py \
  input/HG003.novaseq.wes-agilent.100x.dedup.grch38.per-base.bed \
  refs/SNV_patho_germline.txt refs/SNV_patho_somatic.txt 100
```

SNV coverage report - HG003.novaseq.wes-agilent.100x.dedup.grch38.per-base.bed

73% of all pathogenic germline SNVs and 84% of all pathogenic somatic SNVs are covered above threshold (100)

Whole genome coverage:

median mean std 1st quartile 3rd quartile min max 18 53 106 8 71 0 51189

Pathogenic (G - germline, S - somatic) SNV coverage: ('count' is the number of variants in a given region)

 $region\ count(G)\ median(G)\ std(G)\ min(G)\ max(G)\ count(S)\ median(S)\ std(S)\ min(S)\ max(S)$

ALL	14157	141	100	0	1087	310	162	108	46	863
chr1	1182	138	109	0	1087	10	146	39	82	179
chr2	1118	143	98	19	956	33	181	95	46	432
chr3	774	152	98	0	646	40	165	85	68	468
chr4	270	122	73	0	551	6	88	19	75	133
chr5	538	146	113	0	875	10	187	68	130	373
chr6	511	145	154	0	1070	0	0	0	0	0
chr7	717	139	114	0	798	13	132	61	124	280
chr8	335	138	97	23	753	0	Θ	0	0	0
chr9	479	125	83	0	519	1	78	0	78	78
chr10	362	154	112	12	863	32	136	214	50	863
chr11	966	122	84	9	869	9	95	39	66	201
chr12	709	142	91	11	580	12	150	31	119	214
chr13	910	198	89	2	772	26	173	159	48	772
chr14	324	152	82	6	452	6	198	77	92	309
chr15	533	139	82	30	740	4	185	54	90	221
chr16	643	136	80	7	602	1	226	0	226	226
chr17	1561	163	91	0	938	88	197	71	88	359
chr18	154	142	78	3	576	4	188	51	168	297
chr19	720	148	105	11	644	10	120	72	54	280
chr20	146	142	177	0	1084	Θ	Θ	0	0	0
chr21	174	104	63	19	455	1	69	0	69	69
chr22	181	132	55	33	301	2	237	9	228	246
chrX	850	72	55	0	316	2	167	23	144	190
chrY	Θ	Θ	0	0	0	0	Θ	Θ	Θ	0

7