RACHID EL KHAYAT

FINTECH

Capestone Project:

Analyzing the data and finding patterns for "buy now pay later" startup company

The outline

•	The Questions
•	Data exploration
•	Answer to Question 1
•	Answer to Question 2
•	Answer to Question 3
•	Answer to Question 4
•	Answer to Question 5

The Questions

- 1. Using the payment information, calculate:
 - a. Delinquency Rate

$$Delinquency Rate = \frac{\# of \ paid \ late \ payments + \# of \ unpaid \ late \ payments}{Total \ \# of \ payments}$$

b. Recovery Rate

Recovery Rate
$$= \frac{\#of \ paid \ late \ payments}{\#of \ paid \ late \ payments} + \#of \ unpaid \ late \ payments}$$

- We observe a large volume of expired orders, but they are multiple attempts of the same order. Find the number of unique orders that were unsuccessful due to expiry, and were not eventually successful.
- 3. Provide the information for the orders where the 3rd installment has been made before the 2nd. Down payments should not be included in this calculation as they will always be paid to confirm the order.
- 4. What are the top reasons for orders being declined, and what would you suggest to Tamara to reduce the decline rate?
- 5. Using evidence from the data, how would you suggest that ABC improves our bottomline?

Exploring the data

orders Dataframe

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 979609 entries, 0 to 979608
Data columns (total 12 columns):
#
    Column
                      Non-Null Count
                                       Dtype
    created_at
                       979609 non-null datetime64[ns]
    id order
                       979609 non-null object
1
   customer_id
                       758981 non-null object
                    979609 non-null
   merchant_id
                                       object
    merchant_category 979609 non-null
                                       object
                       979609 non-null object
   payment_type
    status
                       979609 non-null
                                       object
    total_amount
                       979609 non-null
                                       float64
   canceled_amount
                       979609 non-null float64
9 captured_amount
10 refunded_amount
                       979609 non-null
                                       float64
                       979609 non-null float64
                     979609 non-null float64
11 paid_amount
dtypes: datetime64[ns](1), float64(5), object(6)
```

After running thorough quality check on each data field to ensure the integrity of the data, we can conclude that the data satisfy by the most part the data quality features: timeliness, consistency, completeness, and accuracy. a deep dive investigation will take place as we move along with the exploration.

Expired orders represent 62% of the entire orders

There are only 9 of the customers with NaN customer_id has a 'fully captured status

status	tnx
expired	220575
canceled	27
fully_captured	9
declined	9
updated	7
fully_refunded	1

order_events Data frame

Range	- eIndex: 1212	93 entries, 0 to	1212092
Data	columns (to	cal 6 columns):	
#	Column	Non-Null Count	Dtype
0	id	1212093 non-null	int64
1	event_id	1212093 non-null	object
2	order_id	1212093 non-null	object
3	event_name	1212093 non-null	object
4	payload	1212093 non-null	object
5	created_at	1212093 non-null	object
dtype	es: int64(1)	, object(5)	

Payment Data frame

	payment_type	total_amount	refunded_amount	paid_amount	pending_paid_amount	issued_refund_amount	refund_shipping_fee_amount	late_fee_amount
count	655757.000000	655757.000000	655757.000000	655757.000000	655757.0	655757.000000	655757.0	655757.000000
mean	1.501567	295.484069	36.959233	256.546644	0.0	3.122639	0.0	3.890568
std	0.626215	250.892193	142.699661	245.771025	0.0	41.745382	0.0	21.297464
min	0.000000	29.115900	0.000000	0.000000	0.0	0.000000	0.0	0.000000
25%	1.000000	155.700000	0.000000	122.830000	0.0	0.000000	0.0	0.000000
50%	2.000000	227.771800	0.000000	199.815000	0.0	0.000000	0.0	0.000000
75%	2.000000	352.331800	0.000000	319.859700	0.0	0.000000	0.0	0.000000
max	2.000000	6713.092000	6107.592000	6713.092000	0.0	4196.980000	0.0	259.500000

Range	eIndex: 655757 entries, 0 to	655756	
Data	columns (total 18 columns):		
#	Column	Non-Null Count	Dtype
0	id_payment	655757 non-null	object
1	payment_type	655757 non-null	int64
2	order_id	655757 non-null	object
3	customer_id	655757 non-null	object
4	merchant_id	655757 non-null	object
5	status	655757 non-null	object
6	total_amount	655757 non-null	float64
7	refunded_amount	655757 non-null	float64
8	paid_amount	655757 non-null	float64
9	pending_paid_amount	655757 non-null	float64
10	issued_refund_amount	655757 non-null	float64
11	refund_shipping_fee_amount	655757 non-null	float64
12	late_fee_amount	655757 non-null	float64
13	due_date	655757 non-null	datetime64[ns]
14	paid_date	576836 non-null	datetime64[ns]
15	last_late_fee_recorded_at	36420 non-null	object
16	created_at	655757 non-null	datetime64[ns]
17	updated_at	655757 non-null	datetime64[ns]
dtype	es: datetime64[ns](4), floate	54(7), int64(1),	object(6)
memo	ry usage: 90.1+ MB		

a. Delinquency Rate

```
Delinquency Rate = \frac{\#of \ paid \ late \ payments \ + \ \#of \ unpaid \ late \ payments}{Total \ \#of \ payments}
```

5.9%

b. Recovery Rate

Recovery Rate

#of paid late payments

#of paid late payments + #of unpaid late payments

79%

Steps implements to achieve this result:

- 1. filter out the unneeded records where the status is related to refund.
- 2. Identify the criteria that will allow us to identify the payment as late as my identifier.
- 3. Create a field 'late_payment' that flags the payment as 'paid' or 'unpaid', non_late payment were considerd as zero in that field.
- 4. Apply the calculations

Important Note:

The 'late_fee_amount' was chosen to be the flag that determines if the record to be considered a late_payment or not. kindly find hereunder the reason that lead to this decision.

When comparing the two dates, where the paid_date is bigger than the due_date, logically this should be considered as a late payment, however there was no late fee and the last_late_fee_recorded_at is empty.

so i found that the criteria of taking date differences between the date seems to be not very reliable and for that reason i opt to chose the late_fee_amount to be my indicator.

Find the number of unique orders that were unsuccessful due to expiry, and were not eventually successful.

Tracing expired order input in all the three tables

Expired orders

Total # of records is: 607588/979609

607588 expired fully_captured 217827 declined 139302 canceled 6958 partially_refunded 3657 fully_refunded 3511 partially_captured 382 authorised 266 updated

Unique records

created_at 921889 id order 979609 customer_id 309284 merchant_id 898 merchant_category payment_type status

total amount ***Data integrity check \$5394 has been done on this canceled amount dataset to ensure that we 524 e working with a proper ptured amount aga that will lead to trusted 13 / ults., the quality seems inded_amount ue fine interms of nsistency, Accuracy, ld_amount evency timleness. however we have 220628 missing data (NAs) in the customer_id which we have to investigate.

Expired orders Events

Total # of records is: 607635/1212093

Event_name Count

OrderWasExpired 607553 OrderWasApproved 38 OrderWasAuthorised 35 OrderWasDeclined

Unique records

607635 event_id 607635 order_id 607588 event_name payload 607635 created_at 54031

****We have 37 duplicated record that seem to be an anomaly to the data, as they follow the following workflow subsequently (approved, authorised), 3 were approved and then expired. in addition to te other 10 declined thus that were expired later on. We can say that we have 34 tnxs that shouldnt be included with the expired tnxs. the next page shows the details of all the above mentioned orders

Expired orders Payments

Total # of records is: 47501/655757

Status of expired records refunded paid pending 20

Unique records

id_payment	47501
payment_type	2
order_id	47499
customer_id	33228
merchant_id	709
status	3
total_amount	11009
refunded_amount	10992
paid_amount	35
pending_paid_amount	1
issued_refund_amount	2
late_fee_amount	3
due_date	47288
paid_date	
47	
last_late_fee_recorded_at	5
created_at	
47289	
updated_at	34030
****there are two paymer	
order_ids (aabfb088-b98f-	
b8e8-cbbf396e30b5, 4bb1	
67b2-415d-9156-7282bc1	621e2)
were refunded twice,	
looking at the time delta b	etween
the first and the second	
transaction in the field	
(updated_at), we can dedu	ce that
it was a system glitch	

	approved	authorised	Declined	expired
order_id				
2ce5ed04-5d9e-4c98-b1d3-8dced7709d45	1.0	NaN	NaN	1.0
3185154b-bab1-4670-a62c-f4ee18d7f8bb	1.0	NaN	NaN	1.0
de10e18d-6264-4108-815a-030252d028b2	1.0	NaN	NaN	1.0
13fa6e96-bb3b-442f-93fd-97590d65edf7	NaN	NaN	1.0	1.0
1ae43e2d-ffdc-497b-9f8d-55e4b32e9164	NaN	NaN	1.0	1.0
3a7df0d0-2ab4-4998-ab8d-e5f5fa574c01	NaN	NaN	1.0	1.0
6341b680-79a7-4c94-a672-3eddee8b651c	NaN	NaN	1.0	1.0
683b16a4-a3f9-4f48-b836-73615450cee5	NaN	NaN	1.0	1.0
a57b8692-f585-4d46-ae3f-25a6bdf2763f	NaN	NaN	1.0	1.0
ae398d24-56fe-462b-b054-c3c2af10b68a	NaN	NaN	1.0	1.0
af389fd4-7a38-4d62-bd5a-8dd7a0e1ada9	NaN	NaN	1.0	1.0
db49dc36-b539-4ae4-b656-3d23f3cbd82e	NaN	NaN	1.0	1.0

3 orders were approved then they eventually expired 9 orders were declined and then they eventually expired

Steps implements to achieve this result:

- 1- filtering the orders with 'expired' status
- 2- look up the list of 'expired' orders in the order_events df
- 3- checking duplicates to know which order has the event name changed
- 4-pivoting the orders against the event_name to trace the change of status
- 5- displaying results

Provide the information for the orders where the 3rd installment has been made before the 2nd. Down payments should not be included in this calculation as they will always be paid to confirm the order.

17

Steps implements to achieve this result:

- 1- filtering the payment df based on status and payment_type
- 2- counting the number of instalment for each order, as we only need the orders that has 3 or more installments.
- 3-create a column to rank the due_date of the installments per order
- 4-create a column to rank the payments for each order
- 5-compare the second rank of the due_date with the rank of the paid 6-present results.
- ** We noticed that most of the payments for the second and third happened on te same same, which means that the clients were settling the overdue payment(s) along with the third payment

	order_id	payment_type	status	total_amount	due_date	paid_date	paid_amount	due_rank	paid_rank
508086	61f1fb27-45fd-4f77-9dce-27cfba66c140	2	paid	288.0277	2021-05-10 07:55:45	2021-07-07 13:38:07	374.5277	2	3
541667	dd06aecf-c5ee-41f5-be40-7427de991ba5	2	paid	244.7950	2021-05-16 11:01:56	2021-03-26 00:42:19	244.7950	2	3
546285	7e115081-fa33-4a1c-98d7-c62302adee8f	2	paid	65.7400	2021-05-17 08:04:44	2021-03-25 20:11:47	65.7400	2	3
548147	293ce15e-9987-4a13-8af0-1baf31b14b37	2	paid	402.2077	2021-05-17 16:31:29	2021-04-02 22:38:16	402.2077	2	3
548893	1688bbca-ca02-41a4-8605-6f6864f82b69	2	paid	1622.1518	2021-05-17 19:04:36	2021-07-05 11:59:13	1622.1518	2	3
576567	66eb5832-15de-4153-9fd4-2bcffbd6d2a5	2	paid	288.0277	2021-05-24 08:36:35	2021-05-22 07:15:22	288.0277	2	3
611438	7799116a-fdd1-4ff4-9ea6-d0461839825c	2	paid	648.4559	2021-05-27 10:49:48	2021-05-27 05:46:16	648.4559	2	3
614156	63cec0b4-5670-4375-95c6- c38d4a8cb767	2	paid	1601.6167	2021-05-27 15:07:55	2021-06-28 05:53:11	1601.6167	2	3
621798	c15b7dd6-6345-4b80-a7c4- 6b23191aa607	2	paid	190.3000	2021-05-28 04:22:58	2021-06-07 14:53:46	190.3000	2	3
627839	cbcf8159-3052-4fd3-93f0-97c7bc74f0b3	2	paid	285.1559	2021-05-28 17:01:30	2021-04-16 06:30:12	285.1559	2	3
630677	7ae09b85-7d7d-4d1b-b2a3- e85574c05d27	2	paid	874.4458	2021-05-28 21:26:07	2021-07-09 08:10:35	874.4458	2	3
637709	bbfc96e7-0af0-4a3c-b357-acf93c9b1af3	2	paid	115.0450	2021-05-29 14:15:37	2021-05-27 09:27:43	115.0450	2	3
641127	d4ad6f61-9253-4051-a78c-aa35800cd4a0	2	paid	547.8218	2021-05-29 18:54:50	2021-06-28 00:19:22	547.8218	2	3
642613	baba263e-1255-4f54-ad2b-fb394f8cb04a	2	paid	547.8218	2021-05-29 21:13:10	2021-05-27 16:24:31	547.8218	2	3
647836	7762b914-c479-4bab-b030-2f6c1e172df3	2	paid	193.9676	2021-05-30 09:48:55	2021-05-28 06:55:05	193.9676	2	3
653387	4cf39110-29e6-450b-8958-a63608dc47a2	2	paid	134.9400	2021-05-30 19:43:10	2021-05-15 16:56:18	134.9400	2	3
654654	afb4067b-0d46-4ae4-86f4-ac66fed036e5	2	paid	646.0858	2021-05-30 21:48:42	2021-05-08 06:35:45	646.0858	2	3

What are the top reasons for orders being declined, and what would you suggest to Tamara to reduce the decline rate?

- -Blacklisted -customer dues
- -item name violated
- -Poor credit score
- •

	reason	count	ratio
0	Number is in the blacklist	30478	0.218775
1	Customer has pending dues on another tamara ac	24863	0.178470
2	item name violated	19542	0.140275
3	poor credit score	17158	0.123162
4	The customer hasn't paid the first transaction	10978	0.078802
5	User credit reached eligibility down payment t	9732	0.069858
6	Customer has not paid overdue	9148	0.065666

In addition to the to the reason count that we calculated from the payload, once we dig more into the data we notice that we have two important reasons that also have a major effect on the declined items.

Steps implemented to achieve this result:

- 2- filter by event_name equals to 'orderwasdeclined'
- 1- transform 'payload' field from json to a DF
- 3- aggregate and count the frequency of each reason
- 4- deep dive into the resulting df thoroughly to get more insights.
- 5- presenting the results

To reduce the declined amount, we need to start by looking at the key reason to figure out the way that will contribute in increasing the successful orders and not compromising on the safety of scams and fraud from the data i would suggest the following:

- -Raise the threshold to the credit score.
- -Revise the list of items were the names are mentioned as violated.
- -increase the down payment threshold.

Question 5

In order to increase our bottomline by looking at the data we to to the following:

1- Increase the number of successful orders by identifying the challenges and implement the right solutions. As seen in the below image the failure ratio now is 3:1 which seems to be a serious issue that we need to look at.

By plotting the merchant_category against the status of the order we can notice that entertainment category has the lion share followed by the pets and the luggage. it seems that there is a huge potential to increase the number of orders from different industries which seems to be untapped yet.

We can also notice that pets category is generating many refund orders, which absolutely effects the bottomlines in a direct way. "this issue to be investigated.

status	authorised	canceled	declined	expired	fully_captured	fully_refunded	partially_captured	partially_refunded	updated
merchant_category									
Entertainment	68	2639	49246	279514	87505	848	49	904	12
Pets	35	981	16555	65799	31465	1218	11	1924	15
Luggage	106	793	30010	96431	24250	455	7	166	18
Pharma	18	267	6741	44259	18476	228	8	103	2
Gym	8	1058	13442	36891	17697	292	151	224	35
Gift Cards	0	389	11555	34398	14913	294	2	186	4
Children Products	4	529	6399	25361	13423	21	151	7	23
Misc. Apparel	6	135	1988	10308	4541	75	1	50	3
Other categories	10	110	2066	5929	2461	47	2	54	6
Tools	4	6	307	2111	738	5	0	4	0
Furniture	3	22	327	930	630	2	0	4	0
XL Luggage	2	6	136	3058	616	9	0	2	0
Insurance	1	9	261	1482	554	4	0	1	0
Theater & Live Shows	0	10	90	484	300	5	0	1	0
Dietary Supplements	1	3	161	547	217	6	0	27	0
Outdoor Tools	0	1	18	86	41	2	0	0	0

- Decrease the number of defaulters This is the main reason that effects the bottom line in a direct way. looking at the chart below (expired orders were removed) we can a defaulters rate of 1.2% which is considered a big rate for the type of business we are in. we can do that by applying higher restrictions of the approval process, by decreasing the threshold of tolerance in the credit score and create a bigger black listed customers. In addition to restricting the access of a defaulter as we can see that same client has defaulted on different orders in different dates.

late_payment	count	ratio
non_late	541867.0	0.940027
paid	27429.0	0.047584
unpaid	7142.0	0.012390
total	576438.0	1.000000

orders	cust
1	5422
2	546
3	121
4	36
5	12
6	4
7	3
8	2

In the above table we can see that we have many clients who defaulted on many orders not only one.

applying these steps will help the company to decreasing the delinquency rate and increasing the recovery rate. which in its terms will boost the bottom lines

paid_date	due_date	late_fee_amount	order_id	customer_id	created_at	
NaN	2021-02-04 21:42:15	0.00000	89b170e8-ac90-4e03-acad- 1ec122a6dfed	b1f2723e-dd4e-4d0a-a6ac- f9f28cc126b9	2020-12-05 21:42:35	39770
2020-12-05 21:42:33	2020-12-05 21:42:15	0.00000	89b170e8-ac90-4e03-acad- 1ec122a6dfed	b1f2723e-dd4e-4d0a-a6ac- f9f28cc126b9	2020-12-05 21:42:15	39771
NaN	2021-01-04 21:42:15	0.00000	89b170e8-ac90-4e03-acad- 1ec122a6dfed	b1f2723e-dd4e-4d0a-a6ac- f9f28cc126b9	2020-12-05 21:42:35	39772
2020-12-11 02:48:42	2020-12-11 02:48:36	0.00000	b7581b45-4010-4968-b1fd- 76538de328d8	b1f2723e-dd4e-4d0a-a6ac- f9f28cc126b9	2020-12-11 02:48:36	63940
2021-01-06 19:23:41	2021-01-10 02:48:36	0.00000	b7581b45-4010-4968-b1fd- 76538de328d8	b1f2723e-dd4e-4d0a-a6ac- f9f28cc126b9	2020-12-11 02:48:44	63941
2021-03-04 12:55:18	2021-02-10 02:48:36	86.50000	b7581b45-4010-4968-b1fd- 76538de328d8	b1f2723e-dd4e-4d0a-a6ac- f9f28cc126b9	2020-12-11 02:48:44	63942
NaN	2021-04-03 13:19:03	194.30495	8e217950-72b2-4f0a-a811- 9df9b06a32dc	b1f2723e-dd4e-4d0a-a6ac- f9f28cc126b9	2021-03-04 13:19:03	462967
NaN	2021-04-03 13:33:18	201.89100	cc106109-05d7-44b8-ac7e- 3f6bed6f107b	b1f2723e-dd4e-4d0a-a6ac- f9f28cc126b9	2021-03-04 13:33:18	463048
2021-05-03 16:02:12	2021-04-03 14:13:16	0.00000	9e4e6669-0088-4680-bfa3- 044c1097c62c	b1f2723e-dd4e-4d0a-a6ac- f9f28cc126b9	2021-03-04 14:13:16	463255
NaN	2021-04-06 19:12:40	75.07335	57f5460b-f9c4-4a85-ac8c- a4ee81261519	b1f2723e-dd4e-4d0a-a6ac- f9f28cc126b9	2021-03-07 19:12:40	482440
NaN	2021-04-09 22:05:01	79.83950	ece9de02-dcc3-49b3-83bd- 60df18143a30	b1f2723e-dd4e-4d0a-a6ac- f9f28cc126b9	2021-03-10 22:05:01	505520
NaN	2021-04-17 17:35:13	94.28500	6d760cdf-9d92-43ad-ab55- 8619532fd2e7	b1f2723e-dd4e-4d0a-a6ac- f9f28cc126b9	2021-03-18 17:35:13	548426
NaN	2021-04-24 00:43:42	109.54360	e4b55dbf-96a0-40cb-b2bb- 79fd0f6bbf82	b1f2723e-dd4e-4d0a-a6ac- f9f28cc126b9	2021-03-25 00:43:42	575143
NaN	2021-04-24 22:19:23	71.03380	ba2b3e93-8578-44df-8a0a- c4a996bb75db	b1f2723e-dd4e-4d0a-a6ac- f9f28cc126b9	2021-03-25 22:19:23	581347
NaN	2021-04-26 16:22:32	133.97120	2728792b-2763-4a74-995a- ab57006750cf	b1f2723e-dd4e-4d0a-a6ac- f9f28cc126b9	2021-03-27 16:22:32	602012

In the above table we are showing an example of the same client who has defaulted on different orders in different dates

Thank you