Digital systems

Lab 5, DSP

Objective

Students should check basic properties of digital systems for easy systems implemented in Matlab

Theoretical aspects

The following aspects shall be explained.

- 1. Functions in Matlab
 - define in a dedicated file
 - input and output arguments
- 2. Functions as discrete systems
 - one input vector, one output vector
 - implements some mathematical transformation of the input vector
- 3. Functions as arguments to another function
 - a function can have an input argument another function
 - example at board
- 4. Properties of discrete systems:
 - linearity:

$$H\{a \cdot x_1[n] + b \cdot x_2[n]\} = a \cdot H\{x_1[n]\} + b \cdot H\{x_2[n]\}$$

• time invariance:

$$H\{x[n-k]\} = y[n-k], \text{ where } y[n] = H\{x[n]\}$$

Exercises

1. Create a function mysys1() that implements the following system H_1 :

$$y[n] = H_1\{x[n]\} = \frac{1}{4}x[n] - \frac{1}{2}x[n-1] + \frac{1}{4}x[n-2]$$

- the function takes 1 input argument x and outputs 1 result vector y
- 2. Create a function to test linearity of a system, test_linear(), by checking if the linearity equation holds
 - the function shall take one input argument, a **function handle** of the system function, e.g. the function will be called as **test_linear(@mysys1)**
 - inside, the function shall generate two random vectors \mathbf{x} and \mathbf{y} and two random constants \mathbf{a} and \mathbf{b}
 - the function shall apply the system (the argument function) to a*x, b*y, and a*x + b*y, and shall check if the results verify the linearity equation
 - the check shall be repeated for 5 times, with 5 different randomly generated data
 - if the linearity equation holds every time, the function shall return 1; otherwise the return value shall be 0
- 3. Create functions to implement other two systems, and check their linearity also

$$y[n] = H_1\{x[n]\} = n \cdot x[n] + 5$$
$$y[n] = x[n] + 0.5x[n-1] + 1$$
$$y[n] = (x[n])^2 + 4$$

- 4. Implement a similar function to test time invariance of a system
 - the system will be applied to a vector \mathbf{x} , and to \mathbf{x} prepended with a variable number of zeros (i.e. time delayed)
 - the outputs shall be checked if they verify the time invariance equation

Final questions

1. TBD