

BIO

⑯ BUNDESREPUBLIK

DEUTSCHLAND

DEUTSCHES
PATENTAMT

⑯ Offenlegungsschrift
⑯ DE 196 44 501 A 1

⑯ Int. Cl.⁶:

C 07 K 14/705

// C12N 15/70

DE 196 44 501 A 1

⑯ Aktenzeichen: 196 44 501.9
⑯ Anmeldetag: 25. 10. 96
⑯ Offenlegungstag: 30. 4. 98

⑯ Anmelder:

Deutsches Krebsforschungszentrum Stiftung des
öffentlichen Rechts, 69120 Heidelberg, DE

⑯ Vertreter:

Patentanwälte Dr. Bernard Huber, Dr. Andrea
Schüßler, 81825 München

⑯ Erfinder:

Poustka, Annemarie, Dr., 69120 Heidelberg, DE;
Bilke, Klaus, 69118 Heidelberg, DE; Gaul, Renate,
76189 Karlsruhe, DE; Kioschis, Petra, 68542
Heddesheim, DE

⑯ Entgegenhaltungen:

WO 96 06 862 A1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

⑯ GABA_A-Rezeptoruntereinheit epsilon-verwandtes Protein

⑯ Die vorliegende Erfindung betrifft eine GABA_A-Rezeptoruntereinheit epsilon-verwandtes Protein, eine ein solches kodierende DNA und ein Verfahren zur Herstellung eines solchen. Ferner betrifft die Erfindung die Verwendung der DNA und des Proteins sowie gegen das Protein gerichtete Antikörper.

DE 196 44 501 A 1

Beschreibung

Die vorliegende Erfindung betrifft ein GABA_A-Rezeptoruntereinheit epsilonverwandtes Protein, eine ein solches kodierende DNA und ein Verfahren zur Herstellung eines solchen. Ferner betrifft die Erfindung die Verwendung der DNA und des Proteins sowie gegen das Protein gerichtete Antikörper.

Die Signal-Transmission an Synapsen im Gehirn verläuft unter Mithilfe von GABA_A-Rezeptoren. Dies sind Membranproteine, die den Neurotransmitter γ -Aminobuttersäure (GABA) binden. Durch diese Bindung wird eine synaptische Inhibition ausgelöst, wobei Chlorid-Kanäle geöffnet werden. GABA_A-Rezeptoren bestehen aus Untereinheiten, insbesondere solche der Klassen alpha, beta, gamma, delta, epsilon und rho.

Es wird angedacht, gezielt in die Signal-Transmission im Gehirn einzutreten. Hierzu ist es allerdings notwendig, die einzelnen Faktoren und Vorgänge der Signal-Transmission zu kennen und verstanden zu haben. Beides ist bisher nur unzureichend erfolgt.

Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, ein Mittel bereitzustellen, mit dem die Signal-Transmission im Gehirn untersucht und gegebenenfalls beeinflußt werden kann.

Erfindungsgemäß wird dies durch die Gegenstände in den Patentansprüchen erreicht.

Gegenstand der vorliegenden Erfindung ist somit ein GABA_A-Rezeptoruntereinheit epsilon-verwandtes Protein, wobei das Protein die Aminosäuresequenz von Fig. 1 oder eine hiervon durch eine oder mehrere Aminosäuren unterschiedliche Aminosäuresequenz umfaßt.

Die vorliegende Erfindung beruht auf der Erkenntnis des Anmelders, daß in Tieren, besonders Säugetieren, ganz besonders dem Menschen, ein Protein existiert, das Homologien zu einer GABA_A-Rezeptoruntereinheit epsilon, gegebenenfalls eine GABA_A-Rezeptoruntereinheit epsilon-Aktivität aufweist, sich aber von einer bekannten GABA_A-Rezeptoruntereinheit epsilon auf dem DNA-Level durch Hybridisierung unter üblichen Bedingungen unterscheidet. Ein solches Protein weist die Aminosäuresequenz von Fig. 1 oder eine hiervon durch eine oder mehrere Aminosäuren unterschiedliche Aminosäuresequenz auf. Letztere Aminosäuresequenz wird z. B. durch jene von Fig. 2 dargestellt.

In der vorliegenden Erfindung wird ein vorstehendes Protein mit "GABA_A-Rezeptoruntereinheit epsilon-verwandtes Protein" (GVP) bezeichnet.

Ein weiterer Gegenstand der vorliegenden Erfindung ist eine für ein (GVP) kodierende Nukleinsäure. Dies kann eine RNA oder eine DNA sein. Letztere kann z. B. eine genomische DNA oder eine cDNA sein. Bevorzugt ist eine DNA, die folgendes umfaßt:

- (a) die DNA von Fig. 3 oder eine hiervon durch ein oder mehrere Basenpaare unterschiedliche DNA,
- (b) eine mit der DNA von (a) hybridisierende DNA, oder
- (c) eine mit der DNA von (a) oder (b) über den degenerierten genetischen Code verwandte DNA.

Der Ausdruck "hybridisierende DNA" weist auf eine DNA hin, die unter üblichen Bedingungen, insbesondere bei 20°C unter dem Schmelzpunkt der DNA, mit einer DNA von (a) hybridisiert.

Die DNA von Fig. 3 wurde bei der DSM (Deutsche Sammlung von Mikroorganismen und Zellkulturen) als Qc11C8 unter DSM 11196 am 2. Oktober 1996 hinterlegt.

Weiterhin bevorzugt ist die DNA von Fig. 1 und Fig. 2.

Die DNA von Fig. 2 unterscheidet sich von jener von Fig. 1 darin, daß 96 bp zwischen den Positionen 378–474 fehlen. Die von beiden DNAs kodierten (GVPs) unterscheiden sich entsprechend, d. h. (GVP) von Fig. 2 ist um 32 Aminosäuren kürzer als jenes von Fig. 1.

Nachstehend wird eine erfindungsgemäß DNA in Form einer cDNA beschrieben. Diese steht beispielhaft für jede unter die vorliegende Erfindung fallende DNA.

Zur Herstellung einer erfindungsgemäß cDNA ist es günstig, von einer cDNA-Bibliothek aus adulter, menschlicher cerebraler Cortex, z. B. von einer der Bestell-Nr. HL1162a (Clontech) auszugeben. Diese Bibliothek wird mit einem DNA-Fragment, z. B. 58g2B18, hybridisiert, das aus dem Cosmid-Klon Qc11C8 mittels direkter cDNA Selektion isoliert wird (vgl. Korn, B. et al., Hum. Mol. Genet. 4, (1992), 235–242). Der Cosmid-Klon Qc11C8 wird aus einer Xq28 spezifischen Cosmid-Bibliothek erhalten (vgl. Rogner, U.C. et al., Human Molecular Genetics, Band 3, Nr. 12 (1994), 2137–2146).

Eine erfindungsgemäß cDNA kann in einem Vektor bzw. Expressionsvektor vorliegen. Beispiele solcher sind dem Fachmann bekannt. Im Falle eines Expressionsvektors für E. coli sind dies z. B. pGEMEX, pUC-Derivate, pGEX-2T, pET3b und pQE-8, wobei letzterer bevorzugt ist. Für die Expression in Hefe sind z. B. pY100 und Ycpad1 zu nennen, während für die Expression in tierischen Zellen z. B. pKCR, pEFBOS, cDM8 und pCEV4, anzugeben sind. Für die Expression in Insektenzellen eignet sich besonders der Baculovirus-Expressionsvektor pAcSGHisNT-A.

Der Fachmann kennt geeignete Zellen, um eine erfindungsgemäß cDNA in einem Expressionsvektor vorliegende cDNA zu exprimieren. Beispiele solcher Zellen umfassen die E. coli-Stämme HB101, DH1, x1776, JM101, JM109, BL21 und SG 13009, wobei letzterer bevorzugt ist, den Hefe-Stamm Saccharomyces cerevisiae und die tierischen Zellen Ltk, 3T3, FM3A, CHO, COS, Vero und HeLa sowie die Insektenzellen sf9.

Der Fachmann weiß, in welcher Weise eine erfindungsgemäß cDNA in einen Expressionsvektor inseriert werden muß. Ihm ist auch bekannt, daß diese DNA in Verbindung mit einer für ein anderes Protein bzw. Peptid kodierenden DNA inseriert werden kann, so daß die erfindungsgemäß cDNA in Form eines Fusionsproteins exprimiert werden kann.

Des weiteren kennt der Fachmann Bedingungen, transformierte bzw. transizierte Zellen zu kultivieren. Auch sind ihm Verfahren bekannt, das durch die erfindungsgemäß cDNA exprimierte Protein zu isolieren und zu reinigen. Ein solches Protein, das auch ein Fusionsprotein sein kann, ist somit ebenfalls Gegenstand der vorliegenden Erfindung.

Ein weiterer Gegenstand der vorliegenden Erfindung ist ein gegen ein vorstehendes Protein bzw. Fusionsprotein gerichteter Antikörper. Ein solcher Antikörper kann durch übliche Verfahren hergestellt werden. Er kann polyklonal bzw. monoklonal sein. Zu seiner Herstellung ist es günstig, Tiere, insbesondere Kaninchen oder Hühner für einen polyklonalen und Mäuse für einen monoklonalen Antikörper, mit einem vorstehenden (Fusions)protein oder Fragmenten davon zu immunisieren. Weitere "Booster" der Tiere können mit dem gleichen (Fusions)protein oder Fragmenten davon erfolgen. Der polyklonale Antikörper kann dann aus dem Serum bzw. Eigelb der Tiere erhalten werden. Für den monoklonalen Antikörper werden Milzzellen der Tiere mit Myelomzellen fusioniert.

Die vorliegende Erfindung ermöglicht es, die Signal-Transmission im Gehirn zu untersuchen. Mit einem erfindungsgemäß Antikörper kann (GVP) in Gehirnzellen von Personen nachgewiesen werden. Es kann eine Beziehung

von (GVP) zur Transmission von Signalen hergestellt werden. Ferner kann mit einem erfindungsgemäßen (GVP) ein gegen dieses Protein gerichteter Autoantikörper nachgewiesen werden. Beide Nachweise können durch übliche Verfahren, insbesondere einen Western Blot, einen ELISA, eine Immunpräzipitation oder durch Immunfluoreszenz, erfolgen. Des Weiteren kann mit einer erfindungsgemäßen Nukleinsäure, insbesondere einer DNA und hiervon abgeleiteten Primern, die Expression des für (GVP) kodierenden Gens nachgewiesen werden. Dieser Nachweis kann in üblicher Weise, insbesondere in einem Southern Blot, erfolgen.

Darüberhinaus eignet sich die vorliegende Erfindung, regulierend in die Transmission von Signalen im Gehirn von Personen einzugreifen. Mit einem erfindungsgemäßen Antikörper kann (GVP) in Personen inhibiert werden. Ferner kann dies durch eine erfindungsgemäße Nukleinsäure, insbesondere DNA erreicht werden. Hierzu wird die Nukleinsäure, z. B. als Basis für die Erstellung von Anti-Sinn-Oligonukleotiden zur Expressions-Inhibition des für (GVP) kodierenden Gens verwendet.

Des Weiteren eignet sich die vorliegende Erfindung, Substanzen zu finden, die spezifisch an (GVP) binden und es beeinflussen. Hierzu kann es günstig sein, eine Zelllinie zu etablieren, die neben (GVP) auch weitere GABA_A-Rezeptorunterschiede exprimiert. Ferner kann eine solche Expression in Xenopus Oocyten erfolgen. Als Substanzen, die einen Einfluß auf (GVP) haben könnten, sind insbesondere Benzodiazepine, Barbiturate, beta-Carboline und Neurosteroids denkbar. Der Einfluß von Substanzen kann durch übliche Verfahren, insbesondere pharmakologische und elektrophysiologische Verfahren, untersucht werden. Beispielhaft wird auf Radioliganden-Bindungstests und die Anwendung der Patch Clamp Technik an ganzen Zellen (vgl. Pritchett et al., Nature 338, (1989), 582-585) verwiesen.

Ergänzend wird darauf hingewiesen, daß (GVP) auch in einem GABA_A-Rezeptor vorliegen kann. Ein solcher ist ebenfalls Gegenstand der vorliegenden Erfindung. Die genannten Anwendungen von (GVP), insbesondere die Anwendung zur Suche nach es beeinflussenden Substanzen, betrifft somit auch einen (GVP) enthaltenden GABA_A-Rezeptor.

Die vorliegende Erfindung stellt somit einen großen Beitrag zum Verständnis der Signal-Transmission im Gehirn und zu einem möglichen regulierenden Eingreifen dar.

Kurze Beschreibung der Zeichnungen

Fig. 1 zeigt die Basensequenz einer erfindungsgemäßen cDNA sowie die davon abgeleitete Aminosäuresequenz eines erfindungsgemäßen (GVP).

Fig. 2 zeigt die Basensequenz einer erfindungsgemäßen cDNA sowie die davon abgeleitete Aminosäuresequenz eines erfindungsgemäßen (GVP) und

Fig. 3 zeigt die Basensequenz einer für ein erfindungsgemäßen (GVP) kodierenden, genomischen DNA. Die Angabe --- weist auf einen nicht-sequenzierten DNA-Bereich hin. Ferner weist die Unterstreichung auf jene Sequenzen hin, die sich in der DNA von Fig. 1 wiederfinden.

Die vorliegende Erfindung wird durch die nachstehenden Beispiele erläutert.

Beispiel 1

Herstellung und Reinigung eines erfindungsgemäßen (GVP)

Zur Herstellung eines erfindungsgemäßen (GVP) wurde die DNA von Fig. 1 als Template verwendet. Es wurde ein PCR-Verfahren durchgeführt. Bezüglich der DNA von Fig.

1 wurde als Primer-Paar verwendet:

5' -TATTATAGGATCCAGAGCGTGAGCCGCGACCT-3'
5' -TTAATTGGATCCAGGTTGCCACAGGGTAC-3'

Der PCR-Ansatz bzw. die PCR-Bedingungen waren jeweils wie folgt:

PCR-Ansatz

Template DNA (Fig. 1): 1 μ l = 1 ng
Pfu-Polymerase 10x-Puffer: 10 μ l = 1 x
DMSO: 10 μ l = 10%
dNTP's: 1 μ l = je 200 μ M
Oligonukleotide, je 1,5 μ l: 3 μ l = je 150 ng
H₂O-bidest: ad 99 μ l

PCR-Bedingungen

- 20 - 92°C -5 min
- Zugabe von 1 μ l Pfu-Polymerase (Stratagene) = 2,5 Einheiten
- Zugabe von Paraffin

PCR

92°C 1 min
60°C 1 min 1 Zyklus
72°C 10 min
92°C 1 min
60°C 1 min 39 Zyklen
72°C 2 min
72°C 10 min 1 Zyklus

Die amplifizierte DNA wurde jeweils mit BamHI gespalten und in den mit BamHI gespaltenen Expressionsvektoren pQE-8 (Diagen) inseriert. Es wurde das Expressionsplasmid pQ/GVP-1 erhalten. Ein solches kodiert für ein Fusionsprotein aus 6 Histidin-Resten (N-Terminuspartner) und dem erfindungsgemäßen (GVP) von Fig. 1 (C-Terminuspartner). pQ/GVP-G-1 wurde zur Transformation von E.coli SG 13009 (vgl. Gottesman, S. et al., J. Bacteriol. 148, (1981), 265-273) verwendet. Die Bakterien wurden in einem LB-Medium mit 100 mg/ml Ampicillin und 25 μ g/ml Kanamycin kultiviert und 4 h mit 60 μ M Isopropyl- β -D-Thiogalactopyranosid (IPTG) induziert. Durch Zugabe von 6 M Guanidinhydrochlorid wurde eine Lyse der Bakterien erreicht, anschließend wurde mit dem Lysat eine Chromatographie (Ni-NTA-Resin) in Gegenwart von 8 M Harnstoff entsprechend der Angaben des Herstellers (Diagen) des Chromatographie-Materials durchgeführt. Das gebundene Fusionsprotein wurde in einem Puffer mit pH 3,5 eluiert. Nach seiner Neutralisierung wurde das Fusionsprotein einer 18% SDS-Polyacrylamid-Gelelektrophorese unterworfen und mit Coomasie-Blau angefärbt (vgl. Thomas, J.O. und Kornberg, R.D., J.Mol.Biol. 149 (1975), 709-733).

Es zeigte sich, daß ein erfindungsgemäßen (Fusions)protein in hochreiner Form hergestellt werden kann.

Beispiel 2

Herstellung und Nachweis eines erfindungsgemäßen Antikörpers

Ein erfindungsgemäßen Fusionsprotein von Beispiel 1 wurde einer 18% SDS-Polyacrylamid-Gelelektrophorese unterzogen. Nach Anfärbung des Gels mit 4 M Natriumace-

tat wurde eine ca. 54 kD Bande aus dem Gel herausgeschnitten und in Phosphat gepufferter Kochsalzlösung inkubiert. Gel-Stücke wurden sedimentiert, bevor die Proteinkonzentration des Überstandes durch eine SDS-Polyacrylamid-Gelelektrophorese, der eine Coomassie-Blau-Färbung folgte, bestimmt wurde. Mit dem Gel-gereinigten Fusionsprotein wurden Tiere wie folgt immunisiert:

Immunisierungsprotokoll für polyklonale Antikörper im Kaninchen

10

Pro Immunisierung wurden 35 µg Gel-gereinigtes Fusionsprotein in 0,7 ml PBS und 0,7 ml komplettem bzw. inkomplettem Freund's Adjuvans eingesetzt.

Tag 0: 1. Immunisierung (komplettes Freund's Adjuvans)

15

Tag 14: 2. Immunisierung (inkomplettes Freund's Adjuvans; icFA)

Tag 28: 3. Immunisierung (icFA)

Tag 56: 4. Immunisierung (icFA)

Tag 80: Ausbluten

20

Das Serum des Kaninchens wurde im Immunoblot getestet. Hierzu wurde ein erfundungsgemäßes Fusionsprotein von Beispiel 1 einer SDS-Polyacrylamid-Gelelektrophorese unterzogen und auf ein Nitrocellulosefilter übertragen (vgl. Khyse-Andersen, J., J. Biochem. Biophys. Meth. 10, (1984), 203-209). Die Western Blot-Analyse wurde wie in Bock, C.-T. et al., Virus Genes 8, (1994), 21 5-229, beschrieben, durchgeführt. Hierzu wurde das Nitrocellulosefilter eine Stunde bei 37°C mit einem ersten Antikörper inkubiert. Dieser Antikörper war das Serum des Kaninchens (1 : 10000 in PBS). Nach mehreren Waschschritten mit PBS wurde das Nitrocellulosefilter mit einem zweiten Antikörper inkubiert. Dieser Antikörper war ein mit alkalischer Phosphatase gekoppelter monoklonaler Ziege Anti-Kaninchen-IgG-Antikörper (Dianova) (1 : 5000) in PBS. Nach 30minütiger Inkubation bei 37°C folgten mehrere Waschschritte mit PBS und anschließend die alkalische Phosphatase-Nachweisreaktion mit Entwicklerlösung (36 µM 5, Bromo-4-chloro-3-indolylphosphat, 400 µM Nitroblau-tetrazolium, 100 mM Tris-HCl, pH 9,5, 100 mM NaCl, 5 mM MgCl₂) bei Raumtemperatur, bis Bänder sichtbar waren.

Es zeigte sich, daß erfundungsgemäße, polyklonale Antikörper hergestellt werden können.

Immunisierungsprotokoll für polyklonale Antikörper im Huhn

45

Pro Immunisierung wurden 40 µg Gel-gereinigtes Fusionsprotein in 0,8 ml PBS und 0,8 ml komplettem bzw. inkomplettem Freund's Adjuvans eingesetzt.

Tag 0: 1. Immunisierung (komplettes Freund's Adjuvans)

50

Tag 28: 2. Immunisierung (inkomplettes Freund's Adjuvans; icFA)

Tag 50: 3. Immunisierung (icFA)

Aus Eigelb wurden Antikörper extrahiert und im Western Blot getestet. Es wurden erfundungsgemäße, polyklonale Antikörper nachgewiesen.

Immunisierungsprotokoll für monoklonale Antikörper der Maus

60

Pro Immunisierung wurden 12 µg Gel-gereinigtes Fusionsprotein in 0,25 ml PBS und 0,25 ml komplettem bzw. inkomplettem Freund's Adjuvans eingesetzt; bei der 4. Immunisierung war das Fusionsprotein in 0,5 ml (ohne Adjuvans) gelöst.

Tag 0: 1. Immunisierung (komplettes Freund's Adjuvans)

Tag 28: 2. Immunisierung (inkomplettes Freund's Adjuvans;

icFA)

Tag 56: 3. Immunisierung (icFA)

Tag 84: 4. Immunisierung (PBS)

Tag 87: Fusion

Überstände von Hybridomen wurden im Western Blot getestet. Erfundungsgemäß, monoklonale Antikörper wurden nachgewiesen.

Patentansprüche

1. GABA_A-Rezeptoruntereinheit epsilon-verwandtes Protein, wobei das Protein die Aminosäuresequenz von Fig. 1 oder eine hieron durch eine oder mehrere Aminosäuren unterschiedliche Aminosäuresequenz umfaßt.
2. Protein nach Anspruch 1, dadurch gekennzeichnet, daß es die Aminosäuresequenz von Fig. 2 umfaßt.
3. Protein nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß es von einem GABA_A-Rezeptors umfaßt ist.
4. DNA nach Anspruch 1, wobei die DNA umfaßt:
 - (a) die DNA von Fig. 1 oder eine hieron durch ein oder mehrere Basenpaare unterschiedliche DNA,
 - (b) eine mit der DNA von (a) hybridisierende DNA oder
 - (c) eine mit der DNA von (a) oder (b) über den degenerierten genetischen Code verwandte DNA.
5. DNA nach Anspruch 4, nämlich die DNA von Fig. 3.
6. DNA nach Anspruch 4, nämlich die DNA von Fig. 2.
7. Expressionsplasmid, umfassend die DNA nach einem der Ansprüche 4 bis 6.
8. Transformante, enthaltend das Expressionsplasmid nach Anspruch 7.
9. Verfahren zur Herstellung des Proteins nach einem der Ansprüche 1 oder 2, umfassend die Kultivierung der Transformante nach Anspruch 8 unter geeigneten Bedingungen.
10. Antikörper, gerichtet gegen das Protein nach einem der Ansprüche 1 bis 3.
11. Verwendung des Proteins nach einem der Ansprüche 1 bis 3 als Reagens zur Diagnose und/oder Therapie.
12. Verwendung der DNA nach einem der Ansprüche 4 bis 6 als Reagens zur Diagnose und/oder Therapie.
13. Verwendung nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß die Therapie das Auffinden von das Protein nach einem der Ansprüche 1 bis 3 beeinflussenden Substanzen umfaßt.
14. Verwendung des Antikörpers nach Anspruch 10 als Reagens zur Diagnose und/oder Therapie.

Hierzu 8 Seite(n) Zeichnungen

Fig. 1

5' Ende

-54 GCCAGAGCGTGAGCCGCGACCTCCGCGCAGGTGGTCCGCCGGTCTCCGCGGAA

1 ATGTTGTCCAAAGTTCTTCAGTCCTCCTAGGCATCTTATTGATCCTCAGTCGAGGGTC
1 M L S K V L P V L L G I L L I L Q S R V

61 GAGGGACCTCAGACTGAATCAAAGAATGAAGCCTCTCCCGTGTGTTGTCTATGCC
21 E G P Q T E S K N E A S S R D V V Y G P

121 CAGCCCCAGCCTCTGGAAAATCAGCTCCTCTGAGGAAACAAAGTCAACTGAGACTGAG
41 Q P Q P L E N Q L L S E E T K S T E T E

181 ACTGGGAGCAGAGTTGGCAAACCTGCCAGAAGCCTCTCGCATCCTGAACACTATCCTGAGT
61 T G S R V G K L P E A S R I L N T I L S

241 AATTATGACCACAAACTGCCCTGGCATTGGAGAGAAGCCACTGTGGTCACTGTTGAG
81 N Y D H K L R P G I G E K P T V V T V E

301 ATCTCCGTCAACAGCCTGGTCTCTCTATCCTAGACATGGAATACACCATTGACATC
101 I S V N S L G P L S I L D M E Y T I D I

361 ATCTTCTCCAGACCTGGTACGACGAACGCCCTGTTACAACGACACCTTGAGTCTCTT
121 I F S Q T W Y D E R L C Y N D T F E S L

421 GTTCTGAATGGCAATGTGGTGAGCCAGCTATGGATCCGGACACCTTTTAGGAATTCT
141 V L N G N V V S Q L W I P D T F F R N S

481 AAGAGGACCCACGAGCATGAGATCACCATGCCAACCAACAGATGGTCCGCATCTACAAGGAT
161 K R T H E H E I T M P N Q M V R I Y K D

541 GGCAAGGTGTTGTACACAATTAGGATGACCATTGATGCCGGATGCTCACTCCACATGCTC
181 G K V L Y T I R M T I D A G C S L H M L

601 AGATTTCCAATGGATTCTCACTCTGCCCTCTATCTTCTCTAGCTTTCCATCCTGAG
201 R F P M D S H S C P L S F S S F S Y P E

661 AATGAGATGATCTACAAGTGGAAAATTCAAGCTTGAAATCAATGAGAAGAACTCCTGG
221 N E M I Y K W E N F K L E I N E K N S W

721 AAGCTCTCCAGTTGATTTACAGGAGTGAGCAACAAACTGAAATAATCACACACCCCA
241 K L F Q F D F T G V S N K T E I I T T P

781 GTTGGTGACTTCATGGTACGATTTCTCAATGTGAGCAGGCGTTGGCTATGTT
261 V G D F M V M T I F F N V S R R F G Y V

841 GCCTTCAAAACTATGTCCTCTCCGTGACCACGATGCTCCTGGGTTCTTGG
281 A F Q N Y V P S S V T T M L S W V S F W

901 ATCAAGACAGAGTCTGCTCCAGCCGGACCTCTAGGGATCACCTCTGTTCTGACCATG
301 I K T E S A P A R T S L G I T S V L T M

961 ACCACGTTGGGCACCTTTCTCGTAAGAATTCCCGGTGTCTCCTATATCACAGCCTTG
321 T T L G T F S R K N F P R V S Y I T A L

Fig. 1 Fortsetzung

1021 GATTCTATATGCCATCTGCTCGTCTGCTCTGCCTGTTGGAGTTGCTGTG
 341 D F Y I A I C F V F C F C A L L E F A V

 1081 CTCAACTCCTGATCTACAACCAGACAAAAGCCATGCTCTCCTAAACTCCGCCATCCT
 361 L N F L I Y N Q T K A H A S P K L R H P

 1141 CGTATCAATAGCCGTGCCCATGCCCGTACCCGTGCACGTTCCGAGCCTGTGCCGCCAA
 381 R I N S R A H A R T R A R S R A C A R Q

 1201 CATCAGGAAGCTTTGTGTGCCAGATTGTCACCACTGAGGGAAAGTGTGGAGAGGAGCGC
 401 H Q E A F V C Q I V T T E G S D G E E R

 1261 CCGTCTTGCTCAGCCAGCAGCCCCCTAGCCCAGGTAGCCCTGAGGGTCCCCGCAGCCTC
 421 P S C S A Q Q P P S P G S P E G P R S L

 1321 TGCTCCAAGCTGGCTGCTGTGAGTGGTCAAGCGTTTAAGAAGTACTTCTGCATGGTC
 441 C S K L A C C E W C K R F K K Y F C M V

 1381 CCCGATTGTGAGGGCAGTACCTGGCAGCAGGGCCGCCCTGCATCCATGCTACCGCCTG
 461 P D C E G S T W Q Q G R L C I H V Y R L

 1441 GATAACTACTCGAGAGTTCTTCCAGTGACTTTCTTCTTCAATGTGCTCTACTGG
 481 D N Y S R V V F P V T F F F N V L Y W

 1501 CTTGTTGCCCTTAACCTGTAGGTACCAAGCTGGTACCCGTGGGGCAACCTCTCCAGTTCC
 501 L V C L N L

 1561 CCAGGAGGTCCAAGCCCCCTGCCAAGGGAGTGGGGAAAGCAGCAGCAGCAGCAGGAGC
 1621 GACTAGAGTTTCTGCCCTACCTCCCTACCTGAGTTCTCAGCAGACCATTCAAATTATT
 1681 GCCCCTCTCCCTACCTGGCCCTACTGAGTTCTCAGCAGACCATTCAAATTATT
 1741 AATAAATGGGCCACCTCCCTCTCAAGGAGCATCCGTATGCTCAGTGTCAAACCC
 1801 ACAGCCACTTAGTGTACAGCTCCCTAAACCATGCCTAAAGTACAGGGGATTAGCTATCT
 1861 TCCAACAATGCTGACCACCAAGACAATTACTGCATTTCAGAAGCCCACATTGCCCTT
 1921 GCAGTGCTTCCGGCCAGTTCTGGCCTCAGCCTCAAAGTGCACCGACTAGTTGCTTGCCT
 1981 ATACCTGGCACCTCATTAAGATGCTGGCAGCAGTATAACAGGAGGAAGAGATCCCTCTC
 2041 CTTTGGTCAGATTATATGTTCTCAGTTCTCTCCCTGCTACCCCTTCTGCAGATA
 2101 GATAGACACTGGCATTATCCCTTAGGAAGAGGGGGGGCAGCAAGAGAGGCATTGGG
 2161 ACAGCATTCTCTGTGCTGGCTCCATTTCTGACTACCAATTCAATGCCCTCA
 2221 TCCAATGGTATCTATTTGTGTGATTATAGTAACACTCCCTGCTTATATGCCAC
 2281 CCTCTCCTCTTGTGACCCCTGTGACTCTTCTGTAACTTCCAGTGACTTCCCTA
 2341 GCCCTGACCAGGCACTAGGCCTGGTGACTCCTGGGCAAGAAACTAAGGAAACTCGG
 2401 CTTTGCAACAGGCATTACTGCCATTGATTGGTGCCACCCAGGGCACACTGTCGGAGTT
 2461 CTATCACTGCTTGACCCCTGGACCCATAAACAGTCCACTGTTATACCGGGGCACTCT
 2521 AACCATCACAAATCAATCAAATCCCTAAATTGTATGGCACTGGAACCTGGCAA
 2581 AGCACTTTGACAAGTTGTGTGATTGGAGCTTCATGATAGCCTGTGACATCTTAGG
 2641 GCAGGATTCTTATCCCCATTTCAGATGAAAACCCCTGAGTCACAGATTCTGTGGACT
 2701 GTGGATCTCACTGGAAGCTATCCAAGAGGCCACTGTCACCTCTAGACCAACATGATAGGG
 2761 CTAGACAGCTCAGTTCACCATGATTCTCTGTCACCTCTGCTGGCACACCAGTGGCAA
 2821 GGCCCAGAATGGCGACCTCTTTAGCTCAATTCTGGGCTGAGGTGCTCAGACTGCC
 2881 CCAAGATCAAATCTCCTGGCTGTAGTAACCCAGTGGAAATGAATTGGACATGCCCAA
 2941 TGCTTCTATATGCTAAGTGAATCTGTGTGAAATTGTTGGGGGTGGATAGGGTGGG
 3001 GTCTCCATCTACTTTGTCAACCATCATGAAATGGGAAATATGAAATAAATATATC
 3061 AGCAAAGC

3' Ende

Fig. 2

5' Ende

-54 GCCAGAGCGTGAGCCCGACCTCCGCGCAGGTGGTGGCGCCGGCTCCGGAA

1 ATGTTGTCAAAGTTCTCCAGTCCTCTAGGCATCTTATTGATCCTCCAGTCGAGGGTC
 1 M L S K V L P V L L G I L L I L Q S R V

61 GAGGGACCTCAGACTGAATCAAAGAATGAAGCCTCTCCCGTATGTTGTCTATGGCCCC
 21 E G P Q T E S K N E A S S R D V V Y G P

121 CAGCCCCAGCCTCTGGAAAATCAGCTCCCTCTGAGGAAACAAAGTCAACTGAGACTGAG
 41 Q P Q P L E N Q L L S E E T K S T E T E

181 ACTGGGAGCAGAGTGGCAAATGCCAGAAGCCTCTGCATCCTGAACACTATCCTGAGT
 61 T G S R V G K L P E A S R I L N T I L S

241 AATTATGACCACAAACTGCGCCCTGGCATTGGAGAGAAGCCCAGTGTGGTCACTGTTGAG
 81 N Y D H K L R P G I G E K P T V V T V E

301 ATCTCCGTCAACAGCCTGGTCCTCTCTATCCTAGACATGGAATACACCATTGACATC
 101 I S V N S L G P L S I L D M E Y T I D I

361 ATCTTCTCCCAGACCTG 377

121 I F S Q T W 126

378 GAATTCT
 127 N S

385 AAGAGGACCCACGAGCATGAGATCACCAGCCAAACAGATGGTCCGATCTACAAGGAT
 129 K R T H E H E I T M P N Q M V R I Y K D

445 GGCAAGGTGTTGTACACAATTAGGATGACCATTGATGCCGGATGCTCACTCCACATGCTC
 149 G K V L Y T I R M T I D A G C S L H M L

505 AGATTTCCAATGGATTCTCACTCTGGCCCTATCTTAGCTTTCTATCCTGAG
 169 R F P M D S H S C P L S F S S F S Y P E

565 AATGAGATGATCTACAAGTGGAAAATTCAAGCTTGAAATCAATGAGAAGAACTCCTGG
 189 N E M I Y K W E N F K L E I N E K N S W

625 AAGCTCTCCAGTTGATTTACAGGAGTGAGCAACAAACTGAAATAATCACACCCCA
 209 K L F Q F D F T G V S N K T E I I T T P

685 GTGGTGACTTCATGGTCATGACGATTTCTCAATGTGAGCAGGCGTTGGCTATGTT
 229 V G D F M V M T I F F N V S R R F G Y V

745 GCCTTCAAAACTATGTCCTCTCGTGACCAAGATGCTCTCCTGGTTTCCTTTGG
 249 A F Q N Y V P S S V T T M L S W V S F W

805 ATCAAGACAGAGTCTGCTCCAGCCGGACCTCTAGGGATCACCTCTGTTCTGACCATG
 269 I K T E S A P A R T S L G I T S V L T M

865 ACCACGTTGGGCACCTTTCTCGTAAGAATTCCCGGTGTCTCCTATATCACAGCCTTG
 289 T T L G T F S R K N F P R V S Y I T A L

Fig. 2 Fortsetzung

925 GATTTCATATGCCATCTGCTCGTCTGCTCTGCGCTCTGTTGGAGTTGCTGTG
 309 D F Y I A I C F V F C F C A L L E F A V

 985 CTCAACTTCCTGATCTACAACCAGACAAAAGCCATGCTCTCCTAAACTCCGCCATCCT
 329 L N F L I Y N Q T K A H A S P K L R H P

 1045 CGTATCAATAGCCGTGCCCATGCCCGTACCCGTGCACGTTCCCGAGCCTGTGCCCGCAA
 349 R I N S R A H A R T R A R S R A C A R Q

 1105 CATCAGGAAGCTTTGTGTGCCAGATTGTCACCACTGAGGGAAGTGTGGAGAGGAGCGC
 369 H Q E A F V C Q I V T T E G S D G E E R

 1165 CCGTCTTGCTCAGCCAGCAGCCCCCTAGCCCAGGTAGCCCTGAGGGTCCCCGCAGCCTC
 389 P S C S A Q Q P P S P G S P E G P R S L

 1225 TGCTCCAAGCTGGCCTGCTGTGAGTGGTGCAAGCGTTAAGAAGTACTTCTGCATGGTC
 409 C S K L A C C E W C K R F K K Y F C M V

 1285 CCCGATTGTGAGGGCAGTACCTGGCAGCAGGGCCGCCTCTGCATCCATGTCTACCGCCTG
 429 P D C E G S T W Q Q G R L C I H V Y R L

 1345 GATAACTACTCGAGAGTTGTTTCCCAGTGACTTCTTCTTCAATGTGCTCTACTGG
 449 D N Y S R V V F P V T F F F F N V L Y W

 1409 CTTGTTGCCCTAACCTGTAGGTACCAGCTGGTACCCGTGGGCAACCTCTCCAGTTCC
 469 L V C L N L

 1465 CCAGGAGGTCCAAGCCCCCTGCCAAGGGAGTTGGGGAAACGAGCAGCAGCAGCAGGAGC
 1525 GACTAGAGTTTCTGCCATTCCCCAAACAGAAGCTTGAGAGGGTTGTCTTGT
 1585 GCCCCTCTCCCCTACCTGGCCATTCACTGAGTTCTCAGCAGACCATTCAAATTATT
 1645 AATAAAATGGGCCACCTCCCTCTCAAGGAGCATCCGTGATGTCAGTGTCAAACC
 1705 ACAGCCACTTAGTGTACGCTCCCTAAAACCATGCCTAAGTACAGGGGATTAGCTATCT
 1765 TCCAACAATGCTGACCACCAGACAATTACTGCATTTCAGAAGGCCACTATTGCCTT
 1825 GCAGTGCTTCGGCCCAGTCTGGCCTCAGCCTCAAAGTGCACCGACTAGTTGCTTGCCT
 1885 ATACCTGGCACCTCATTAAGATGCTGGCAGCAGTATAACAGGAGGAAGAGATCCCTCTC
 1945 CTTGGTCAGATTATTATGTTCTCAGTCTCTCCCTGCTACCCCTTCTTGAGATA
 2005 GATAGACACTGGCATTATCCCTTAGGAAGAGGGGGGGCAGCAAGAGAGCCTATTGGG
 2065 ACAGCATTCCCTCTTGTGGCTCCATCTTCGTCGACTACCAATTCAATGCCCTCA
 2125 TCCAATGGGTATCTATTTGTGTGATTATAGTAACACTCCCTGCTTATATGCCAC
 2185 CCTCTTCCCTCTTTGACCCCTGTGACTCTTGTAACCTTCCCAGTGACTTCCCTA
 2245 GCCCTGACCAGGCAGTGGCCTGGTGAATTCTGGGCCAAGAAACTAAGGAAACTCGG
 2305 CTTTGCAACAGGCATTACTGCCATTGATTGGTGGCCACCCAGGGCACACTGTGGAGTT
 2365 CTATCACTGCTTGACCCCTGGACCCATAAACAGTCCACTGTTATACCCGGGGCACTCT
 2425 AACCATCACAAATCAATCAAATTCCCTAAATTGTATGGCACTGGAACCTTGGCAA
 2485 AGCACTTTGACAAGTTGTGCTGATTGGAGCTTCATGATAGCCTTGACATCTTAGG
 2545 GCAGGATTCTTATCCCCATTGCAAGATGAAAACCCCTGAGTCACAGATTCTGTGGGACT
 2605 GTGGATCTCACTGGAAGCTATCCAAGAGGCCACTGTCACCTCTAGACCACATGATAGGG
 2665 CTAGACAGCTCAGTCACCATGATTCTCTGTCACCTCTGTCAGGTCAGACTGCC
 2725 GGGCCAGAATGGCGACCTCTTTAGCTCAATTCTGGGCCAGGTGCTCAGACTGCC
 2785 CCAAGATCAAATCTCCTGGCTGTAGTAACCCAGTGGAAATGAATTGGACATGCCCAA
 2845 TGCTTCTATATGCTAACTGAAATCTGTGTGTAATTGTTGGGGGTGGATAGGGTGGG
 2905 GTCTCCATCTACTTTGTCAACCATCATGAAATGGGGAAATATGTAATGAAATATATC
 2965 AGCAAAGC

3' Ende

Fig. 3

5' Ende

GCCAGAGCGTGAGCCGCGACCTCCGCGCAGGTGGTCGCGCCGGTCTCCGCGGAAATGTTG
 TCCAAAGTTCTTCCAGTCCTCTAGGCATCTTATTGATCCTCCAGTCGAGGTGAGTCTCC
 ATCCCGGGACCGGGAGCCCTTCGCGCCAGCTCCCTCCTCCCCGGAGCCGGACGGCTCC
 CGGGACCCCAGCGGCCCCCGCTTCTCGAGCCCCGCGCCCCGCTTGT-----
 GCTTTAAATAAAATAAGATCCAGATATTAGCAAGTGGGGCATTGATTTAAACAA
 CTTTTATGAAATTAGAACATGTATAACAGAGAAGTGTCAAATCATAAGTGTACAGCTGA
 TGAGTTGTCAAATATGACCACAGCGGTGAAAGAAAGCCAATCAAGGACCGAATGTG
 AGCAGGACCTCAGAACGCCCCCTTGTCACTGCCTCCAGCAAAGGCAGCACTATCCGGAC
 TTCTAACACCATCGGTGAGTTCATACCTGGCAGATGGCTTTAACATTGTTAAAT
 TCAATTATTCTTACTAACTTCTTTCTGGCTGTGGTCATGGCTGTGGAGCTCA
 GGGTGGACTCTGTTGGGAGCCAGTTCCTGGATGGCTGTCTGGGGTGGAGGACTCTG
 CCTTCCCTGTTAGACACCCACAAAGGCTGCTTTAGCCTCCTCCATCCCCTTC
 CCCGCCAGTCAACAGTATTACACAACAAACAAACCGCAAATATCCCACAAAT
 TTTCTGGTCTCTGGAGAGGGCCTGGCTTCGCAAGCATTCTCAGCCCTGG
 CCCCTGCCTGCTCTCACTCTGGTGGTCTGGCTAGAGCTAGAGGCCAAGGCTA
 GTCACAGTGGGCCAGCGCTCAGACATAAATGCCCTCTCATTTCACGTGTAACATTCTT
 TAAATCTAGGTCTTGGTTTGTGATTTCTAAATAAAAGACTGATCATAAAAGAG
 GGACAGCATAGAAAGTCCCCAAAGAGCAGCAAGGTTAAAGAAATTCAAAGCTAAATC
 TGTCACTGTCTTATAATTGCTATTACAGTCACAATTAAACTAGGTTTGTGTTGAAA
 CTTGTTGGTTGCTCTGCTCCAGAGGCACTAGCTGGGGCCCTACAGAGTGCAGGG
 CAGAGCTTCATTTCTGTTGAATGTTCTAGGGTCAAGGGACCTCAGACTGAATCAAAGA
 ATGAAGCCTCTCCGTGATGTTCTATGCCCTCAGGTTTGTGAAATCAGC
 TCCCTCTGAGGAAACAAAGTCAACTGAGACTGAGACTGGGAGCAGACTGGCAAATG
 CAGAACGCTCTGCATCCTGAAACACTATCCCTGAGTAATTATGACCACAAACTGCCCTG
 GCATTGGAGGTGAGGAGCAGAACGACGTTCTCCCTCTAGAGGGTCCAGGGGTTGAGG
 GCATAGGCATGGAGAATGCACCTGGCAGTAACAGAGGGGCCATGCTCATGGACAGGAA
 CATCTGCTATTGACCTGTCAGGTAAGAGATATTAACTCTATTCTCAGCAGTGTCAATTGAC
 CTTGATCAAGACTTTCCCTCTCGCCCTCAGTTTCCAGTGGTAAATGAGAGGAC
 TAAACTAGATTGTTGATCTCAAGATGTGTCCTAAACAGTCCGTGAGCTTGGT
 TTTGCCATGAAAGAATAAAATAAAAGAAATAGGATTAGATGCTGAAACTGTGTTGAGG
 CAAACTTGTACTCCCTCTGACCACCTCTCCCCGTCCTGAGGAAAGCCACTGTGTC
 TGACACTTACCCCTGCTCCGCCCCCTGCCATTAGAGAGAACGCAACTGTGTC
 GAGATCTCCGTCAACAGCCTGGCTCTCTATCTTAGACATGGAATAACACCATTGAC
 ATCATCTTCTCCAGACCTGGTACGACGAACGCCCTGTTACAACGACACCTTGAGTCT
 CTTGTTCTGAATGGCAATGTGGTGGCCAGCTATGGATCCGGACACCTTTAGGAAT
 TCTAAGAGGACCCAGGACATGAGATCACCAGGCCAACAGATGGTCCGATCTACAAG
 GATGGCAAGGTGTTGACACAATTAGGTATGTCAGCCTCTGGAGTCTCATTCTGGAA
 TTCTCTCCCTCTGATAATTAGCTAAAGATCCATGGGAGAGATCTCATCCTGAA
 TGATACCTCTAAGGGCTGTCCAGCTTCTAGACATGAGCTCAGCCCCCTATGTAAC
 AGATATAGAGGCCTAAAATAGAAAGATATTGCTAAAGCCACACACCAAGTTGTGGCA
 GAGCTGGAACCTGGTACTCAGTTACTGGCTCCAGTCCAGAGCTCCCTCAACTAGGATGT
 GCCAGTATGACTGCATTATCTAGACAAATTCCATCCTAAGTGGGACTCGATACAAAGATA
 CGTCCACAGTGGTGGAAATTGTTCAAGGCAGAGCAGCAGCACGGTAGTGGCAAAGGTACCTA
 AGATCGAGTTGGATACTTGAATTCCAGCAGGGGAAGGGTGTGTTGGGGATAGCAGGG
 AGGATGTTGGCAGGTCTGGAAACTAGGCTGGCGAGAAAACAAAAGCCGATCGAAGTTG
 CTCCATACGTTCTCTAATGATGGAGCCAAAGTAACCGACATACTCTAAGCTGTTGTT
 TGTTTGTTGTTGTTGTTGTTGTTGTTCTCTTCTCTGTTATCTCTCCT
 TTGAGCTTTGTCTTAAATTCTAGCGAGGTCCAGGCACGGTGGCTCACGCCCTGTGATCC
 CAGCACTTGTGAGGCTGAGGCAAGGAGTCACTGAGGTGAGGAGTCCAGGAGACCAGCCT
 GGCCATCATGGGAAAACCTGTCTCCACTAAAATGCAAATAGCAGGGTGTGCTGGC
 ACTAATTCCAGCTACTCGGGAGGCTAGGGCATGAGAATTGCTTGAGCCTGGGAGGCAAGA
 GGCTGCAGTGAGCTGACGTACGCCACTGCCCTCCAGCCTGGGTGACAGAGTGAGACTCT
 GTCTCAAACAAACAAAGAAAAATTGACTCTGCCATTGGTAGTCCCTAGAC

Fig. 3 Fortsetzung

CAAAGCTGGGTGGATACGGAAGTGCCTAGGCCAGCTGATGAGGCCTCTTCTCCCTC
CAGGATGACCATTGATGCCGATGCTCACTCCACATGCTCAGATTCCAATGGATTCTCA
CTCTTGCCTCTATCTTCTAGCTGTGAGTACCTCTTAAGTTCTGGGGCCCAAGAA
ACATGCTGGCTCTTCTTCTCATCTTGCACATTTACATTTCCTGCCTCTGCTTT
CTTCTAAAATGCTGCCAAGGGTGTGCAGGACTTCCATCTCACCCCTATTCCCT
GCCAACAAACTGTGTTGCTCATCCCTCCACGTGCCTCTGAAGCGTATCTCAAGTATGT
CTGCTCTCTCCACTCCACTGGCACTACCTGGTTAGGCCTTGTATCTCACCTG
GACTTTGCCACATCTTCACTTGAACACTGCACATGCCAAATGAATTCAATTGCTCC
TCCAAACCTCTACCACCAAAACAAGTGTGTTCTGGGTCCTCATGCTCAGTGA
GAGGACCATCACTCACCCAGCTGCCAATCAAGAACCTTGTGTTCTCCAGTCTCAT
TCCTGCATCTAACATCACGACATCTGTGGTTCTCCAGTCTCATGATGCT
GTCTATTCTGCACCTGTACAGCTTGACTTCCACCTGCCCTAATTAAATTCTGCCT
GGATTACTACACTGGCTCCTTGACAAACATGTTGCTCCTCACAGAAGGACCAAGTGACCT
ACCTGAAGGTACCTAGGTTGGTCACTTCTAGTCTCGAACATGCCGTTAACCTCAT
GGATCAATTGAATTCTTAGAATGAACCTCAAGGCCATTCAACTGGACCTGCCA
CCCAATTCTGTGCACCTCATCTGTGAGCTAGCCATCCTGAACCTTGTCTTCCAC
AATACACCAGGTGTTCACCTTCTATACTGCCCTTAACCCCTAACCTCATCTTAT
TGAGAATATTACTTGAGTTCAAGATTAATGGAATATCACCTGCTTATGAAGTCTT
TTTGAGTATGTCCCCAAGTGCACCTTATCTACTTGTGTTCCCCGCTGTTCTGGACT
TAGGTTTCAGAGCTCCTCCAAAATCACAGTAGTATACTCACTGCTTATAAAATTAA
ATGTGATTGCTTGAGGGTAGGGTCACTGCCCTGCTCATCTGTATTCTGGCTAGGGC
CTGATACTGAGGAATGCTCAGTAAACGCCACTCATGAATGAGCTTCAACATGAGGTAAG
AGAGGCAAGGTCCACAGCTGGTAGGCCAGAGACAGGACTCCAAGGCATTGTGCAGGCT
GACTTCATGCTATTGGAGACCTCAGGGCTTCAAGTCTCATAAGACCTTCTTCTCA
CATTCTTCCAGTTCTCATCCTGAGAATGAGATGATCTACAAGTGGAAAATTCAAG
CTTGAATCAATGAGAAACTCCTGGAAGCTTCAAGTGGATTTCACAGGAGTGAGC
AAACAAACTGAAAATATTCAACACCCAGTTGGTAGCCTGAATGAGGAGCCAAGGGACCTC
CCCAGGGTAGCTCCAGAGCAACCTGGAAACACTCTCACACATCCTGACCAAGTTCAG
GGCAGTGAAGGCACCTGCCCTCATGTTCCAGAATGTTGAGGCCAGTCACCCAAACCA
GCCATTGTCGTGAGAGGCATCTGTTCTGCTACCATGTGACTAGGCAGAAAATCTGCTT
TTGTTTCTTATTGAGTCAGTCTCTGGATGAGGAAAGCTCATGCTCATGTCAGGCTAGAG
CTTGTGCTTCAGTATTAGGCAGGGCAGAGGGCTGGCTACCTAAAAAATACTTGCCTT
TTTTCTGGGACTCTGGGAAGCGGTTTACTACCTTGACTTGGGAGCCTGCTCTT
CTGCCAGCTAACCATGGGCCCTGCCTCTGGTTCTGCACCTCAGCTTCCGGATAGG
TGGGGACCCATCATCAAAGTGCAGAGAGAAAGATAAGGCCAGGGCTTCAAGTCACTAG
TGGTTCCGTTAGTAGATGATTGTCATTGTTCAAAATGGTGCCTAGTGAATCAAAG
CCCCAGAGCCAGCATCATCAAAGCAATGACAGTAGGTAAGCAGACACTCCTTGGG
AGTGAGGAGGATTCTTGAGGGAGAAAAGAGGTCTTCTTCTCTGCTGGAGACTAGTTG
ATCTGGAGACGTGGCTCTTCAATGTCAGAGTTATCTTGGACTGGCTCAAACACTTC
CAGTGGGCCCTGGGCAGGTCTCTCCATCTGGAGCATACTTACGTGCTCGGCATTAAG
GGTTCAGAATGCACTGGTAGGCCTGCTACTCTGGCCATCTGGACCTGATCAGAGAATC
TCTGCTCAGGAGCTTCAAGAGAGTCCAGCCCTGCCAGAGAGAGGCTGGCCCTCA
CTGATGGCTGTGGAGCCTGATGGAATTATTGCTGGTCAGGAATCACTGCTTACA
AGGAGGTTCTTCTCTAGACAGTTCTGTCATCAAAAAACTCTCCCTGTTCTG
AAATTGGAGTCTCTGGAAAGTCCACACATTAAGCTTAGTTCTTCTGGAAACTGTCC
AGGTTACATTAGTCCAGCCACTGTTACAGGACCGAGATAAACGATCAACATCAT
TCCCGGCATGGATCATAGTCTGTTGAGTCTACATAGCCCTAGTTATTCTCCCTT
ATTCTTCAAAAGTGGGGTCCATTCTTCTAGTCCCAGTCTCTGGACATGGCTAT
TTAATTGTGTCCTCTGACACTGCAATGACCAACCATGATCTGGTAAAGAGGATAAGAG
TTTGAGCAGAAAACCATCTTAGCATATATTCTTGTGTTGGTCTCATGCCCCAGATA
TATTGTTTCTTACCCGTGCTTCTCACTCTCAAGAAGAAGAAAGTGTGTTAGCA
TCTTCTCTGCTTCAAGACAAATTGGCATCTTGCAGGAGCGGAGAAGGTTCTTTT
TGGCCAGAATAAAATAAAATAGAATCATCCAACAGAATAATAATCTCGTCAA
CAAGAATATATTATATAACCCAGCAATTGCAAGGGCCTGGGTATAACTAATTAGAAGT
GTCTTAAATTGCAAGATCCCACGGCAAGAGGACTTTGATAAAATACATTCTGGCCA
GTAGGCAAGTGCAGGGTGGTCCGTGCAAGCAGCTGGAGGAGTTCTATCCCAAAGCTAT

Fig. 3 Fortsetzung II

ACTCAACACACAGGTTCCCCTGACAAACAGGTGCTCCCTGCCCTTCCAGAAGAAT
 CTGAGAACGCTTGCTCCCTGAGTTCACTGCTGCCAAGGTGAGTACGAAAGGCTGCTCTT
 CTCATTCACTGCTCCAGCCCACCCAGACCTGCTGGGAGTTGATCCACTTCCAAATAGGA
 GGACACACGGACAGGTTAGTGTCTGGTCTGCTTACAAAGCTGTTGCCTGACAGGAGCA
 AGAGTTGCTGAGTGTCTGGTCCAGGCTGTTCTGAGCTTGATGGCAGGGCTAA
 GCCACAGGGCCTGCATGAGCCCTGCTGAGGGACTAAAAGACGACCTAATTATAGGC
 CTAGGAATTTCAGTATTGCAACTGCAATGTGATGCTGAAAGTGGAAAATGATGTCCTG
 GGCTCAGAGAAAAGCCCACCCAGCCTGGGAGTCATGATAGCAGCAGAGTGTCTGGGAG
 GGTGTGTCAGGACATAAAGCAGCATGAATGCTACAAAGAAGATGCCAACTAGAGATATA
 GGTGTGTCATCAGGTCAGGCCCCAGGAGCCATGACCGTCTAGCTGAGGCCATGACCAAGGACA
 CAATGTCCAAGTGAATGCTGAGGACCTCAGTGTGCCCCGTGAGGATGTGATGCCACAGACCT
 GACTTCTGGAGGGCTGACTGAAATGTTAAGCTTTCTCTCTTCCCTGAAAC
 ACTCAGTTGGGTTAGGGGTCTAGACTAAAGACCAAAGAGTCCAGGGTTAGAATCTTGGT
 GTAAAATTGCAAGGCCATCTCAGGAAATCTGTGAGCAGATGGGAATGGCTTGGGTAAGGT
 GCGTGTGAAATGTCAGTGGGAGCCGGTCTAGGTGGCCTTTAGCATCAGATTCCAGA
 ATGCAGATAGTCTGTATAGCTCATGTGAAACAGGGAGCCACCAAAACTTGGGAGCAGG
 CTAGTGCCGGTCTGACCACCTGAGCAGTGTCACTCACGAAGGCATTGGCATCA
 CATGAATGTGCAAGAAGGAGCCAAAGCATTCTGTGCTTCTCCACCACAGCACAGACTT
 CCCTAGTCTCATTGCTGAGAGTAGACATTCTGAGGGCCAGCAGTGCAGGTGTGATGTG
 CTCAGAGGGTATGAAGCCCTAGTCAGGCATCTGGATATCAGCTGCGTGGCAGTATAC
 TAGAAGGCTAATTGATTTCACTTCACCTGACTCTGCTTGCACACTGCAAGAGACAGA
 CATTGGGTGAGGACAGTGAACGTGAGAAGGAGCTATTAAAGATTCTGGCCTTGGCTTAGC
 TCTCAACTGGCCATTGGCTTGCACTAAGTCTTTCTGGCTCTTCTGGCTCTATT
 GTATGTATTGCAATTGTCACATCATGCCCTATCCTAGGAAATACTGTGAGCTGAAAATG
 AGACCCCTACTGTTCACGTCTGCTAAGGGGACCGTCGTGTCAGCACTGTAATGCAGTG
 ATGTTTTTGTCAGGTGACTTCATGGTCATGACGATTCTTCAATGTGAGCAG
 GCGGTTGGCTATGTCAGTGGCTTCAAAACTATGTCCTCTCCGTGACCACGATGCTCTC
 CTGGGTTCCCTTGGATCAAGACAGAGTCTGCTCCAGCCGGACCTCTAGGTAAGAG
 GAGAACAGGTATACGCATAGGCACATGGCTGGAGTTGGCTGGCAGGGCAGAGTTGC
 CTTGTCATGGAGCTTTAACCAATGTCGACATAGGTCAAGGAGCTGAGCCCATCACTCT
 TGTGCTCTGCAAGGATCACCTCTGTCGACATGACCGTGGCACCTTTCTCGT
 AAGAATTCCCGCTGTCCTATATCACAGCCTGGATTCTATATGCCATCTGCTC
 GTCTCTGCTCTGCGCTGTCAGGAGTTGCTGCTCAACTCCTGATCTACAACCAG
 ACAAAAGCCATGCTCCTAAACTCCGCATGATGAGCTGGTATGGGAGTGGTGGC
 AAGGCTTGGAGTGTAGAGACATGCTAGCAAGGGTACTGGGATATGGCACATGGGTGG
 CAGCTGCTGACTGATGGAATGTTACCCAGGGTGGCGGGGTTGAATCAACTCCTGA
 TGTAATGGTGAGAAGTGGAGGAGAGAAGCCAAGATATGGTGCCAAAGACAGTTCCA
 GAAAATCCGGAGGCAGCACTTAGACTGGTTATCTTCCCTGACTTTCCCCACTTCTT
 TCCCTGTCCTTAACTTAGCCTCGTATCAATAGCCGTGCCCATGCCGTACCGTGCACGTT
 CCGAGCCTGPGCCCGCCAACATCAGGAAGCTTTGTCGCCCCAGATTGTCAACACTGAGGG
 AAGTGATGGAGAGGGAGCGCCGCTTGCTCAGCCAGCAGCCCCCTAGCCCAGGTAGCCC
 TGAGGGTCCCGCAGCCTGCTCCAAGCTGGCTGCTGTGAGTGGTCAAGCGTTAA
 GAAGTACTCTGCACTGGCTCCGATTGAGGGCAGTACCTGGCAGCAGGCCGCTCTG
 CATCCATGTCACCGCTGGATAACTACTCGAGAGTTGTTCTCCAGTGAATTCTTCTT
 CTTCAATGTGCTCTACTGGCTTTTGCTTAACTTGTAGGTACAGCTGGTACCCCTGTG
 GGGCAACCTCTCAGTCCAGGAGGTCCAAGGCCCTGCCAAGGGAGTTGGGAAAG
 CAGCAGCAGCAGCAGGAGCGACTAGAGTTCTGCCCCATTCCCCAACAGAACGCTG
 CAGAGGGTTGTCCTGGCTGCCCTCTCCCTACCTGCCCATTCAGTGAATTCTCAG
 CAGACCATTCAAATTATAAAATGGGCCACCTCCCTCTCAAGGAGCATCCGTG
 ATGCTCAGTGTCAAAACCACAGCCACTTAGTGTACGCTCCCTAAACCATGCTAAGT
 ACAGGCGGATTAGCTATCTTCAACAATGCTGACCAAGACAAATTACTGCAATTCTCA
 GAAGCCCACATTGCTTGCAGTGTCTGGCCAGTTCTGGCTCAGCCTCAAAGTGC
 ACCGACTAGTTGCTTGCCTATACCTGGCACCTCATTAAGATGCTGGCAGCAGTATAACA
 GGAGGAAGAGATCCCTCCTTGGTCAGATTATTATGTTCTCAGTTCTCTCCCTGCT
 ACCCTTCTGCAAGATAGATAGACACTGGCATTATCCCTTGGAAAGAGGGGGGCA
 GCAAGAGAGCCTATTGGACAGCATTCTCTCTGCTGCTGTGACATCTCCCTCTC

Fig. 3 Fortsetzung III.

CTTGCTGGCTCCATCTTCGTCTGCACATACCAATTCGAATGCCGTTATCCAATGGGTATC
TATTTTTGTGTGTGATTATAGTAACTACTCCCTGCTTATATGCCACCCCTTCCCTCTC
TTTGACCCCTGTGACTCTTCTGTAACTTTCCCAGTGACTTCCCTAGCCCTGACCAGGC
ACTAGGGCTTGGTGACTTCCTGGGCCAAGAAACTAAGGAAACTCGGCTTGCAACAGGC
ATTACTGCCATTGATTGGTGCCCACCCAGGGCACACTGTCGGAGTTCTATCACTGCTT
GACCCCTGGACCCATAAAACCAGTCCACTGTTATACCCGGGGACTCTAACCATCACAATC
AATCAATCAAATTCCCTTAAATTTTGTATGGCACTGGAACTTTGGCAAAGCACTTTGACA
AGTTGTGTCTGATTGGAGCTTCATGATAGCCTTGTGACATCTTAGGGCAGGATTCTTAT
CCCCATTTTGCAGATGAAAACCTGAGTCACAGATTCTGTGGACTGTGGATCTCACTG
GAAGCTATCCAAGAGCCCACTGTCACCTCTAGACCACATGATAGGGCTAGACAGCTCAG
TTCACCATGATTCTCTGTCACCTCTGCTGGCACACCAGTGGCAAGGCCCAGAATGGC
GACCTCTTTAGCTCAATTCTGGGCTGAGGTGCTCAGACTGCCCCAAGATCAAATC
TCTCCTGGCTGTAGTAACCCAGTGGAATGAATTGGACATGCCCAATGCTTCTATATGC
TAAGTGAAATCTGTGTCTGTAATTGTTGGGGGTGGATAGGGTGGGGTCTCCATCTACT
TTTGTCACCATCATGAAATGGGAAATATGTAAAATAATATCAGCAAAGC

3' Ende

No English title available.

Patent Number: DE19644501

Publication date: 1998-04-30

Inventor(s): BILKE KLAUS (DE); GAUL RENATE (DE); KIOSCHIS PETRA (DE); POUTSKA ANNEMARIE DR (DE)

Applicant(s): DEUTSCHES KREBSFORSCH (DE)

Requested Patent: DE19644501

Application Number: DE19961044501 19961025

Priority Number(s): DE19961044501 19961025

IPC Classification: C07K14/705; C12N15/70

EC Classification: C07K14/705K

Equivalents: EP0938558 (WO9818919), A3, JP2001503618T, WO9818919

Abstract

The present invention relates to a GABAA receptor subunit epsilon-related protein, a DNA coding such a protein and a method of producing the same. The invention also relates to the use of DNA and the protein as well as antibodies directed against the protein.

Data supplied from the **esp@cenet** database - I2