CS3.401 Distributed Systems

Name- Vilal Ali

Roll Number: 2024701027

2024701027_Homework_1

Question 1. Consider a system with four processors and a distributed program with about 15 events.

Question 1 (a) - Draw the time diagram for such a program and mark the scalar time of the events. The set of events should include all possible events.

Answer:

Let's consider a distributed system of four processes (P1, P2, P3, P4) with 15 events. Scalar timestamps are assigned to each event using Lamport's logical clocks, where each event within a process receives a timestamp that increases in a sequential manner.

Figure 1.0 The space-time diagram of a distributed execution.

Scalar Time:

Below is the time space diagram created to represent this. Here we are set the increment d to 1 always.

Figure 1.1: The space-time diagram of a distributed execution.

Question 1 (b) - Identify events that are logically concurrent: Answer:

- e^{x}_{i} : Represents an event x on process P_{i} .
- e^{y}_{i} : Represents an event y on process P_{i} .

Two events e^{x}_{i} and e^{y}_{j} are logically concurrent if there is no path (causal relationship) between them.

Logically Concurrent Events Are:

- $e^{1}_{1} | e^{1}_{2} e^{1}_{1} | e^{1}_{3} e^{1}_{1} | e^{1}_{4}$
- $e^{1}_{2} | | e^{1}_{3} e^{1}_{2} | | e^{1}_{4}$
- $e^{1}_{3} | e^{1}_{4}, e^{2}_{3} | e^{1}_{4}, e^{2}_{3} | e^{4}_{2}, e^{3}_{3} | e^{4}_{2}$

Question 1 (c) - Identify events where strong monotonicity of the scalar time fails.

Answer: Scalar time should preserve the "happens-before" relation (\rightarrow) , meaning that if $e_i \rightarrow e_j$ then $C(e_i) < C(e_j)$.

In the diagram, strong monotonicity of scalar time could fail if there is any sequence where an event e^x_i occurs after another event e^y_i , but $C(e^x_i)$ is less than $C(e^y_j)$. Without actual clock values provided, we can analyze the sequence of events visually:

From Figure (1.1), all the direct causality links (arrows) maintain the order of events without causing any strong monotonicity failures.

Question 2 (a): Draw the time diagram for such a program and mark the vector time of the events. The set of events should include all possible events.

Answer: Vector time ensures that the "happens-before" relation is preserved across all processes with vector clocks:

Figure 2.0: The vector space-time diagram of a distributed execution.

- Initially, the vector clock is set to [0, 0, 0, ..., 0] and d = 1.
- Assign timestamps to all the events shown in the diagram:

For each event, we have the following vector timestamps:

P1	P2	P3	P4
$e^{1}_{1} P_{1}$: [1,0,0,0]	e^{1}_{2} P_{2} : [0,1,0,0]	e ¹ ₃ P ₃ : [0,0,1,0]	e ¹ ₄ P ₄ : [0,0,0,1]
$e^{2}_{1} P_{1}$: [2,0,0,0]	e^{2} P ₂ : [2,2,0,0]	e ² ₃ P ₃ : [2,3,6,5]	e ² ₄ P ₄ : [2,3,0,4]
$e^{3}_{1} P_{1}$: [3,3,7,5]	e^{3}_{2} P ₂ : [2,3,6,5]	$e^{3}_{3} P_{3}$: [3,3,7,5]	e ³ ₄ P ₄ : [2,3,0,5]
e ⁴ ₁ P ₁ : [4,3,7,5]			e ⁴ ₄ P ₄ : [5,3,7,6]

<i>r</i> –		
e^{5} ₁ P ₁ : [5,3,7,5]		

Table: 1.0: Given Events and Vector Timestamps

Question 2 (b): Identify events that are logically concurrent with respect to vector time.

Answer:

To identify logically concurrent events in the second image, we need to determine pairs of events that have no causal relationship. This means there is no direct or indirect "happens-before" relationship between them.

In the context of vector clocks, two events are considered logically concurrent if their vector timestamps are not comparable, meaning that neither event's timestamp is a component-wise greater than or equal to the other event's timestamp.

Identifying Logically Concurrent Events:

Process P1:

- e¹₁ is logically concurrent with:
 - $_{\circ}$ $e^{1}_{2}[0, 1, 0, 0](P_{2})$
 - \circ $e^{1}_{3}[0, 0, 1, 0](P_{3})$
 - \circ $e^{1}_{4}[0, 0, 0, 1](P_{4})$
- e²₁ is logically concurrent with:
 - $\circ \ e^{1}_{2} \, [0, \, 1, \, 0, \, 0] \, (P_{2})$
 - $\circ \ e^{1_{3}}\left[0,0,1,0\right]\left(P_{3}\right)$
 - \circ $e^{1}_{4}[0, 0, 0, 1](P_{4})$
- e³₁ is logically concurrent with:
 - \circ e^{2} [2, 2, 0, 0] (P₂)
 - \circ $e^{2}_{4}[2, 3, 0, 4](P_{4})$

Process P₂:

- e¹₂ is logically concurrent with:
 - \circ $e^{1}_{1}[1, 0, 0, 0](P_{1})$
 - \circ $e^{1}_{3}[0, 0, 1, 0](P_{3})$
 - \circ $e^{1}_{4}[0, 0, 0, 1](P_{4})$
- e²₂ is logically concurrent with:
 - \circ $e^{3}_{1}[3, 0, 0, 0](P_{1})$
 - \circ $e^{2}_{3}[2, 3, 5, 0](P_{3})$
 - \circ $e^{2}_{4}[2, 3, 0, 4](P_{4})$

Process P₃:

- e¹₃ is logically concurrent with:
 - \circ $e^{1}_{1}[1, 0, 0, 0](P_{1})$
 - \circ $e^{1}_{2}[0, 1, 0, 0](P_{2})$
 - \circ $e^{1}_{4}[0, 0, 0, 1](P_{4})$
- e^2_3 is logically concurrent with:
 - \circ e²₄ [2, 3, 0, 4] (P₄)
- e³₃ is logically concurrent with:
 - \circ e⁴₁ [3, 3, 7, 5] (P₁)
 - \circ $e^{3}_{4}[2, 3, 0, 5](P_{4})$

Process P4:

- e¹₄ is logically concurrent with:
 - $\circ \ e^{1}_{1}\left[1,0,0,0\right](P_{1})$
 - \circ $e^{1}_{2}[0, 1, 0, 0](P_{2})$
 - \circ $e^{1}_{3}[0, 0, 1, 0](P_{3})$
- e²₄ is logically concurrent with:
 - \circ $e^{3}_{1}[3, 0, 0, 0](P_{1})$
 - \circ e^{2} [2, 2, 0, 0] (P₂)
 - \circ $e^{2}_{3}[2, 3, 5, 0](P_{3})$

Summary of Logically Concurrent Events:

• e^{1} with e^{1} 2, e^{1} 3, e^{1} 4

- e^{2}_{1} with e^{1}_{2} , e^{1}_{3} , e^{1}_{4}
- e^{3}_{1} with e^{2}_{2} , e^{2}_{4}
- e^{1}_{2} with e^{1}_{1} , e^{1}_{3} , e^{1}_{4}
- e^2_2 with e^3_1 , e^2_3 , e^2_4
- e^{1}_{3} with e^{1}_{1} , e^{1}_{2} , e^{1}_{4}
- e^2 ₃ with e^2 ₄
- e^{3} 3 with e^{4} 1, e^{3} 4
- e^{1}_{4} with e^{1}_{1} , e^{1}_{2} , e^{1}_{3}
- e^{2}_{4} with e^{3}_{1} , e^{2}_{2} , e^{2}_{3}

These events are logically concurrent because they have no causal dependency on each other, as indicated by their vector timestamps.

Question 3: Show that the timestamps assigned by vector time are strongly consistent.

Answer: To demonstrate that the timestamps assigned by vector time are strongly consistent, we need to show that for any two events e_i and e_j in a distributed system:

If $e_i \rightarrow e_j$ (i.e., event ei happens-before event e_j), then the vector timestamp of e_i is less than or equal to the vector timestamp of e_i in every component.

Note: This is the condition of strong consistency in the context of vector clocks.

Analysis of Event Causality: Using the Table 1.0

- 1. Causality within a Process:
 - Within any single process P_i, events are ordered in time by their index. For example:
 - $\bullet \quad e^1_1 \longrightarrow e^2_1 \longrightarrow e^3_1 \longrightarrow e^4_1 \longrightarrow e^5_1$
 - This implies that the vector timestamps must be monotonically nondecreasing:
 - $[1, 0, 0, 0] \le [2, 0, 0, 0] \le [3, 0, 0, 0] \le [3, 3, 7, 5] \le [5, 3, 7, 5]$
 - We see that this holds true for each process.

2. Causality across Processes:

• Consider the causal relationships between events across different processes, as indicated by the arrows in the diagram. For example:

$$_{\circ}$$
 $e^{2}_{1} \rightarrow e^{2}_{2}$

• Vector timestamps:
$$[2, 0, 0, 0] \le [2, 2, 0, 0]$$

$$_{\circ}$$
 e^{2} $\rightarrow e^{2}$ 3

• Vector timestamps:
$$[2, 2, 0, 0] \le [2, 3, 5, 0]$$

$$e^3 \rightarrow e^3 \rightarrow e^3$$

• Vector timestamps:
$$[2, 3, 6, 5] \le [2, 3, 7, 5]$$

$$_{\circ}$$
 $e^{2}_{4} \rightarrow e^{3}_{4}$

• Vector timestamps: $[2, 3, 0, 4] \le [2, 3, 0, 5]$

These relations hold true according to the vector timestamps. This guarantees that vector time is strongly consistent, meaning it correctly captures the causal relationships between events in a distributed system.