

Docker Básico

Arturo Silvelo

Try New Roads

¿Qué es una IP?

- Una IP (Protocolo de Internet) es como la dirección de una casa, pero en una red.
- Permite identificar de forma única a cada dispositivo conectado a una red (ordenador, móvil, servidor, etc).
- Sin una IP, los dispositivos no podrían comunicarse entre sí.

Ejemplo de dirección IP

- Una dirección IP típica tiene este aspecto: 192.168.1.10
- Está formada por cuatro números separados por puntos, cada uno entre 0 y 255.
- Ejemplo visual:

Dispositivo	Dirección IP	
Ordenador	192.168.1.10	
Impresora	192.168.1.20	
Móvil	192.168.1.30	

¿Cómo funciona una IP?

- Cuando un dispositivo quiere comunicarse con otro, utiliza la IP de destino.
- Es como enviar una carta: necesitas la dirección del destinatario.
- En redes locales (como en casa o en una oficina), las IP suelen empezar por 192.168.x.x o 10.x.x.x.
- En Internet, las IP pueden ser públicas y únicas en todo el mundo.

¿Por qué es importante la IP en Docker?

- Docker asigna una IP a cada contenedor para que puedan comunicarse entre sí.
- Puedes ver y configurar estas IPs al crear redes personalizadas.
- Entender las IPs ayuda a diagnosticar problemas de conexión entre contenedores.

¿Qué es una máscara de red?

- Una **máscara de red** es un número que define qué parte de una dirección IP corresponde a la red y qué parte a los dispositivos (hosts) dentro de esa red.
- Ayuda a los dispositivos a saber si otro está en su misma red local o si debe comunicarse a través de un router.

Ejemplo de máscara de red

- La máscara más común en redes domésticas es 255.255.25.0 (también se puede ver como /24).
- Ejemplo:
 - IP: 192.168.1.10
 - Máscara: 255.255.25.0
 - Esto significa que todos los dispositivos con IP 192.168.1.x están en la misma red local.
- Si la máscara fuera 255.255.0.0 (/16), entonces todos los dispositivos con IP 192.168.x.x estarían en la misma red.

¿Por qué es importante la máscara de red?

- Permite dividir redes grandes en redes más pequeñas (subredes).
- Ayuda a organizar y aislar dispositivos dentro de una red.
- En Docker, al crear redes personalizadas, puedes definir la máscara de red para controlar cuántos contenedores pueden estar en la misma red.

Redes

Introducción a Redes en Docker

- Las redes en Docker permiten la comunicación entre contenedores.
- Proporcionan aislamiento y control sobre cómo se comunican los contenedores.
- Las redes pueden persistir más allá de la vida de los contenedores.

Tipos de Redes:

bridge (predeterminada):

- Red privada para los contenedores que se ejecutan en el mismo host.
- Ideal para entornos de desarrollo donde los contenedores necesitan comunicarse entre sí.
- Los contenedores pueden acceder al exterior a través del gateway, pero están aislados de otros contenedores.

- El rango de IPs predeterminado para la red bridge es 172.17.0.0/16.
- Docker automáticamente asigna una IP dentro de este rango cuando un contenedor se ejecuta en esta red.
- Modificar el rango por defecto del bridge:
 https://docs.docker.com/engine/network/drivers/bridge

Comandos de Ejemplo:

```
docker network create --subnet 172.20.0.0/16 my_network
docker network create --driver bridge --subnet 172.19.0.0/16 my_network_2
docker network create my_network_3
docker network create --subnet 172.20.0.0/16 my_network_4
docker network inspect NETWORK_NAME|NETWORK_ID
```


host:

- El contenedor comparte la red del host, eliminando la capa de aislamiento.
- Utiliza la red del sistema directamente, mejorando el rendimiento en aplicaciones que requieren baja latencia.
- Sin embargo, esto sacrifica el aislamiento entre contenedores.

Comando de Ejemplo:

docker run --network host -d nginx

13

none:

- No se asigna ninguna red al contenedor, dejándolo completamente aislado.
- Útil para pruebas de seguridad o para aplicaciones que no necesitan comunicación de red.

Comando de Ejemplo:

docker run --network none -d busybox top docker exec -it container_id ping google.com

14

Comparación de Tipos de Redes en Docker

Características	Aislamiento	Acceso a la Red Externa	Usos Comunes
bridge	Aislado entre contenedores y host.	A través de NAT y gateway.	Desarrollo local, múltiples contenedores en un mismo host.
host	No hay aislamiento, comparte la red del host.	Directo, sin NAT.	Contenedores de alto rendimiento, aplicaciones que requieren baja latencia.
none	Totalmente aislado, sin acceso a la red.	No tiene acceso a la red.	Pruebas de seguridad, contenedores que no necesitan conectividad.