CPS (Cyber Physical System)

- 1. <u>Current Trends of Computer Science</u>
- 2. Cyber-Physical System (CPS)
- 3. Advanced Cyber-Physical System

Trends (1)

Where is Computer Science Research Going?

Trends (2)

Where is Computer Science Research Going?

CPS (Cyber Physical System)

- 1. Current Trends of Computer Science
- 2. Cyber-Physical System (CPS)
- 3. Advanced Cyber-Physical System

Cyber Systems

© Cyber is

- More than just software
- More than just networking
- More than just embedded computing

© Cyber implies the integration of

- Computation
- Communication
- Control

Physical Systems

Physical Systems means

 Natural and human-made systems governed by the laws of physics and operating in continuous time

Three definitions for CPS

- System in which the cyber world and physical world are tightly integrated at all scales and levels (Wikipedia)
- System that integrates computation and communication capabilities with monitoring and/or control entities in the physical world (S. Shankar Sastry, UC Berkeley)
- CPS will transform how people interact with the cyber world just like the Internet transformed how we interact with one another. (NSF CPS Workshop)

© Examples for the 1'st definitions

 System in which the cyber and physical systems are tightly integrated at all scales and levels (Wikipedia)

© Examples for the 2'nd definitions

 System that integrates computation and communication capabilities with monitoring and/or control entities in the physical world

(S. Shankar Sastry, UC Berkeley)

Monitoring

여유 공간, 앞차/뒺차/옆차 거리, 블록 및 벽까지 거리

Communication Media:

Embedded System Integrated (bus)

Computation:

핸들 각도, 전진, 후진, 속도 등

Control:

핸들, 액셀, 브레이크

© Examples for the 3'rd definitions

 CPS will transform how we interact with the cyber world just like the Internet transformed how we interact with one another. (NSF CPS Workshop)

Physical world

Golf Game

CPS world

- © Common applications of CPS typically fall under sensor-based systems and autonomous systems.
 - Example
 - Intervention (e.g., collision avoidance)
 - Precision (e.g., robotic surgery and nano-level manufacturing)
 - Operation in dangerous or inaccessible environments (e.g., search and rescue, firefighting, and deep-sea exploration)
 - Coordination (e.g., air traffic control, war fighting)
 - Efficiency (e.g., zero-net energy buildings)
 - Augmentation of human capabilities (e.g., healthcare monitoring and delivery).

Other CPS Examples

- Home care: monitoring and control
 - Pulse oximeters, blood glucose monitors, infusion pumps (insulin), accelerometers (falling, immobility), wearable networks (gait analysis), prosthetics...
- Operating Room of the Future (Goldman)
 - Closed loop monitoring and control; multiple treatment stations, plug and play devices; robotic microsurgery (remotely guided?)
 - System coordination challenge

Remote Robotic surgery

Other CPS Examples

- Aviation Industry
 - Air traffic control systems
 - Systems to prevent collisions, organize and expedite the flow of traffic, and provide information and other support for pilots when able
 - Automatic pilot avionics
 - Control key systems of the plane and its flight by using electronics for communications, navigation, collision avoidance and weather
 - Many aircraft also have collision avoidance systems, which provide additional safety by warning pilots when other planes get too close

Automatic pilot avionics

Other CPS Examples

- Intelligent Transportation Systems (ITSs)
- Safety: vehicles broadcast their physical state information over a wireless network to allow their neighbors to track them and predict possible collisions, trigger speed-limit reminder, accident warning
- Traffic information: share information on the traffic onroad for traffic congestion alarm, get map updates
- Entertainment: search for places of interest via the Internet

Safety information

Other CPS Examples

- Smart Power Grid
 - 스마트그리드는 송전망과 배전망에 정보기술을 접목하여 양방향 데 이터통신이 가능하도록 함으로써 전력 사용 효율성을 높이고 나아가 전력사용을 줄여 온실가스배출을 억제하는 것을 목표로 삼고 있다.
 - Current picture
 - Reactive equipment protection
 - Power outage over the world
 - ⊙ 25 july 2010, washingtol D.C. backout
 - o 22 March 2010, Malta, national-wide blackout

CPS (Cyber Physical System)

- 1. Current Trends of Computer Science
- 2. Cyber-Physical System (CPS)
- 3. Advanced Cyber-Physical System

- What is the Advanced CPS
 - Co working with many WSNs
 - Big data processing
 - More accurate decision
 - Controlling actuator with a distributed real-time manner

Source: "Cyber-Physical Systems: A confluence of Cutting Edge Technology Streams", ICACC'11, 2011.

Cf.) 일반적인 CPS의 예: 로봇

Big Picture of Advanced CPS

Source: VincenzoLiberatore, "Networked Cyber-Physical

Systems: An Introduction", 2007

Big Picture of Advanced CPS

Advance CPS Vs. CPS

System with sensor, computer and actuator (ex. Robot)

- A more holistic/interdisciplinary approach
- More distribution
- Less structure
- Interactions between multiple autonomous domains
- Increasingly open systems

Generally the term of "CPS" means advance CPS.

◎ 예) 살인 예측 시스템

⊙ 드라마: Person of Interest

Force #3: Biological Evolution

- It's too slow!
 - The exponential proliferation of data sources (afforded by Moore's Law) is not matched by
 - a corresponding increase in human ability to consume information!
 - → Increasing autonomy (human out of the loop), direct world access

A New Research Area

- · Artificial intelligence
 - Can machines think?
 - By A. Turing in "Computing Machinery and Intelligence", 1950
- Ubiquitous Computing
 - Computers everywhere
 - By Mark Weiser, XEROX PARC, 1990
- Pervasive Computing
 - 6As Model, The "authorized access to anytime-anywhere-any device-any network-any data"
 - Industry vision (1999, IBM, etc.)
- Cyber-Physical Systems
 - Computation and networking integrated with physical processes

Research Challenges

- Build the interface between the cyber world and the physical world?
- Why this is hard:
 - No clear boundaries between cyber and physical worlds.
 - Boundaries are always changing.
 - No perfect digitization of the continuous world
 - Inpredicable complex systems
 - Essentially multi-disciplinary

Multi-disciplinary

- Sensing technologies
- Distribute computing and networking
- Real-time computing
- Control theory
- Signal processing
- Embedded systems

Current Research Issue

- 1. Sensing
 - Context from multiple sensors
 - Social sensing (even better, social + sensor)
 - Distributed group sensing
 - Crowdsourcing / citizen science
- 2. Output
 - Precision augmented reality
 - Unique uses of augmented reality beyond geolocation
 - Real-time control
- 3. Network
 - Power efficiency
 - Interoperability between the heterogeneous networks
 - Network QoS & Comm. Middleware
- 4. Big Data Processing
- 5. Validation & Verification (e.g. simulation, formal models, etc.)

cf.) BigData

◎ BigData 기술은 advanced CPS의 정확도와 신뢰성을 향상시켜주는데이터 처리/저 장/분석 측면의 기반기술이다.

cf) M2M 또는 D2D

M2M 또는 D2D는 디바이스끼리의 통신기술에 초점을 둔 기술로써, advanced CPS
를 구현하기 위한 네트워크 측면의 기반기술임

cf) IoT (Internet of Things)

IoT는 advacend CPS와거의 같은 의미로 통용됨.

cf) USN

◎ USN은 advanced CPS 의 데이터 수집부분에 해당된다.

36

cf) WSN ← 본 과목의 주된 관심사

◎ WSN은 USN의 다양한 종류의 센서들 중 무선으로 연결된 저가의 소형센서들로 이

루어진 네트워크를 말한다.

WSN in CPS

© CPS -> human

- USN -> sensory organ, Knowledge, experience,
 - ⊙ 그 중 WSN은 neural network 의 역할 (각 센서는 neuron의 역할)
- Actuator -> muscular organ, personal coach
- Cloud computing with big-data -> brain
- Network infra -> neural network / muscle-control nerves

참고) IoT 통신 기술

사물인터넷의 범위 및 요소 기술

구분	저전력 IoT 전용망 기술			기존 데이터망 기술
	로라(LoRa)	NB-IoT	SigFox	LTE-M (Cat.1)
주파수 대역	■비 면허 대역 (920MHz)	• LTE 대역 내	■ 비 면허 대역 (920MHz)	• LTE 대역 내
통신 규격 표준화	• LoRa Alliance 표준	■ 3GPP LTE 표준화 진행 중 (Rel.13, ~'16.2Q)	• ETSI (유럽 표준)	■ 3GPP LTE ■ 기존 LTE 통신 중 가장 속도가 낮 은 규격
셀 커버리지	■ ~10km	■ ~10km	■ ~10km	• ~5km
전송 속도	■ ~5.4kbps	■ ~수백kbps	■ 100~600bps	■ 10Mbps 이하
Global 상용 현황	■기상용화	■ '17년 예상	■ 기상용화	■ 기상용화
Eco-system	■ Open ■ Global 다수 업 체 참여	■ Open ■ Global 다수 업 체 참여	■ <u>SigFox</u> 社 독점	Open Global 다수 업체 참여
모뎀 가격	• 약 5\$	• 5~10\$		• 약 20\$

◎ IoT 플랫폼

- ⊙ HW 플랫폼
 - 인탤의 애디슨보드와 라즈베리파이, 아두이노 우노, 삼성의 아틱, TI의 블릭 등 여러 하드웨어 오픈소스 프랫폼
- ⊙ SW플랫폼 : OS + 통신
 - 오픈소스 OS로는 아두이노 스캐치, MS의 윈10 IOT Core, 삼성의 타이젠, 구 글의 브릴로(안드로이드 개선)
 - ⊙ 크로스 통신 플랫폼 (다양한 주변 제품들끼리 상호작용)
 - ⊙ 구글 위브, 퀄컴 올조인 등
 - wifi, Thread 등 다양한 통신 프로토콜을 안정적이고 작은 크기로 지원.