Machine Learning

Pawel Wocjan

University of Central Florida

Spring 2019

Validation set

- ► We introduced previously the partitioning a data set into a training set and a test set.
- ► This partitioning enabled you to train on one set of examples and then to test the model against a different set of examples.
- ▶ With two partitions, the workflow would look as follows:

Validation set

- Dividing the data set into two sets is a good idea, but it is not enough.
- You can greatly reduce the chances of overfitting by partitioning the data into three subsets shown below:

- ▶ Use the validation set to evaluate results from the training set.
- ► Then, use the test set to double-check your evaluation after the model has "passed" the validation set.

Validation set

With three partitions, the workflow looks as follows:

- In this improved workflow:
 - ▶ Pick the model that does best on validation set.
 - Double-check that model against the test set.
- ► This is a better workflow because it creates fewer exposures to the data set.

Validation methods

- ► Splitting your data into
 - training set
 - validation set
 - ► test set

may seem straightforward, but there are a few advanced ways to do it.

▶ This is especially important when there is little data available.

Simple hold-out validation

- ▶ Set apart some fraction of your data as your test set.
- ► Train on the remaining data, and evaluate at the end on the test set.
- To prevent information leaks, you shouldn't tune your model based on the test set, and therefore you should also reserve a validation set.
- ► Schematically, hold-out validation look as follows:

+ 	Training set	 Held-out validation
 +	Training set	validation set
•		

Simple hold-out validation

```
training_data = data[num_validation_samples:]
validation_data = data[:num_validation_samples]
model = get_model()
model.train(training_data)
validation_score = model.evaluate(validation_data)
# At this point you can tune your model,
# retrain it, evaluate it, tune it again ...
model = get_model()
model.train(data)
# Train from scratch on all non-test data
test_score = model.evaluate(test_data)
```

Simple hold-out validation

- ➤ This is the simplest evaluation protocol, and it suffers from one flaw: if little data is available, then your validation and test set may contain few samples to be statistically representative of the entire data at hand.
- ► This is easy to recognize: if different shuffling rounds of the data before splitting end up yielding very different measures of model performance, then you are having this issue.
- K-fold validation and iterated K-fold validation are two ways to address this issue.

K-fold validation

Iterated K-fold validation