

ACM The Web Conference 2023 User Modeling and Personalization Track

Fine-tuning Partition-aware Item Similarities for Efficient and Scalable Recommendation

Tianjun Wei, Jianghong Ma, Tommy W.S. Chow

May 4, 2023 Austin, TX, USA

Collaborative Filtering

Matrix Completion

• Completing the elements of the useritem interaction matrix that are not 1

Link Prediction

 Predicting unconnected edges in user-item bipartite graphs

Nature of Recommendation Tasks

- Focus more on ranking of scores
- Focus more on top positions

Collaborative Filtering as a Matrix Completion Problem

Collaborative Filtering as a Link Prediction Problem

Traditional Matrix Factorization

- Representing users and items with fixed-length vectors
- Both a trainable parameters ($N \propto |U| + |I|$)

Asymmetric Matrix Factorization

- Training only item vectors
- Representing users with the aggregation of item vectors
- No need to train when new users are added

Linear Autoencoder

- Full-rank Extension of asymmetric matrix factorization
- Adding sparse constraint to low the cost of storage and inference
- SLIM (ICDM 2011), EDLAE (Netflix, NIPS 2020)

Type of Methods

Linear Autoencoder

Problem Formulation

$$\underset{C}{\text{arg min}} \|R - RC\|_F^2 + \frac{\theta_2}{2} \|C\|_F^2 + \theta_1 \|C\|_1, \quad s.t. diag(C) = 0$$

• C

Weight matrix

 $\bullet ||R - RC||_F^2$

Linear autoencoder with hidden layer removed

 $\bullet \frac{\theta_2}{2} \|C\|_F^2$

L2 Regularization

• $\theta_1 \| C \|_1$

- L1 Regularization
- diag(C) = 0 Diagonal-zero constraint (Avoid C = I)

Efficiency and Scalability Problem

• Computational complexity $O(|I|^2)$

Motivation - Start from GCN

LightGCN

- Graph convolutional layers with linear activation
- Increasing layers low efficiency and over-smooth problem

$$E^{(l+1)} = (\tilde{D}^{-\frac{1}{2}} A \tilde{D}^{-\frac{1}{2}}) E^{(l)}$$

$$E = \frac{1}{L+1} \sum_{l=0}^{L} E^{(l)}$$

UltraGCN

- Approximation of infinite layers of LightGCN
- Convergence status $(E^{(l+1)} \approx E^{(l)})$
- Convert graph convolution to the problem of maximizing the weighted inner product of vectors
 - User Item interaction graph $(\tilde{R} = D_U^{-\frac{1}{2}} R D_I^{\frac{1}{2}})$
 - Item Item adjacency graph $(\tilde{Q} = \tilde{R}^T \tilde{R}/R^T R)$

$$e_{u} = \frac{1}{d_{u} + 1} e_{u} + \sum_{i \in \mathcal{N}_{u}} \frac{1}{\sqrt{d_{u} + 1} \sqrt{d_{i} + 1}} e_{i}$$

$$\beta_{u,i} = \frac{1}{d_{u}} \sqrt{\frac{d_{u} + 1}{d_{i} + 1}}$$

$$\omega_{i,j} = \frac{Q_{ij}}{\sum_{k} Q_{ik}} \cdot \frac{\sum_{k} Q_{jk}}{\sum_{k} Q_{ik} - Q_{ii}}$$

Sampling in UltraGCN

- I I adjacency graph is the 2-hop relations of U I graph
- Much more denser than U I graph

Graph Sampling

Select Top-k neighbors in I - I graph

$$\underset{j \in I}{\operatorname{arg\,max}} \ \omega_{i,j}$$

Graph Partitioning

- Modularity maximization
- Graph sampling in UltraGCN can be considered as a local graph partitioning process

$$M(\mathcal{G}) = \frac{1}{2w} \sum_{i,j}^{\mathcal{E}} \left[A_{ij} - \frac{d_i d_j}{2w} \right] \mathbf{1}_{c_i = c_j}$$

$$M(\mathcal{G}) = \frac{1}{2w} \sum_{i,j}^{\mathcal{E}} \left[A_{ij} - \frac{d_i d_j}{2w} \right] \mathbf{1}_{c_i = c_j}$$

$$M(\mathcal{G}_i) = \frac{1}{2d_i} \sum_{i,j} \left[\omega_{ij} - \frac{d_j}{2} \right] \mathbf{1}_{c_i = c_j} = \frac{1}{4d_i} \sum_{i,j} \omega_{ij} \mathbf{1}_{c_i = c_j}$$

Community Structure in UltraGCN

Algebraic Connectivity (Fielder value) in the sampled I - I graph in UltraGCN

Our motivation

- Using global graph partitioning strategy to replace local one in UltraGCN
 - Neither real-world samples nor partitioning results are ideal
- Proposing new training strategy to alleviate information loss brought by partitioning

FPSR May 4 2023

FPSR: Recursive Graph Partitioning

- Constructing full I I graph requires high cost
- Using spectral partitioning without constructing the graph

Fielder Vector

- Eigenvector corresponded to the second smallest eigenvectors in Laplacian matrix
- Equal to right singular vector corresponded to the second largest singular values in \tilde{R}
- Performing Truncated SVD on highly sparse \tilde{R}

Recursive Partitioning

- Expecting the ratio between partition size and item size to be small
- Recursively performing partitioning process when partition size is not small enough

 $i \in \begin{cases} I_1, & sign(\mathbf{v}_i) = +1, \\ I_2, & sign(\mathbf{v}_i) = -1. \end{cases}$

Fielder Vector

 v_4 v v_3 0 v_2 v_1

- Implied item similarity information
- Adding to the learning of autoencoder through inner product
- Extending to Top-k singular vectors $V \in \mathbb{R}^{|I| \times k}$

Partition-aware Autoencoder

• *V* is the solution of the constraint optimization problem:

$$\underset{U,V}{\operatorname{arg\,min}} \|\tilde{R} - UV^T\|_F^2, \ s.t. \ V^TV = I$$

Aggregating global-level information

$$C = \lambda D_I^{-\frac{1}{2}} V V^T D_I^{\frac{1}{2}} + S$$

Data Augmentation

Item Similarity

FPSR: Local Prior Knowledge of Partitions

- Items in the same partition can be considered having potential similarity
- Adding prior knowledge by inserting virtual users in R

$$1_{n,i} = \begin{cases} 1, & \text{if } i \in I_n, \\ 0, & \text{otherwise.} \end{cases}$$

FPSR

$$\begin{aligned} & \underset{S}{\operatorname{argmin}} \ \frac{1}{2} \|R - R(\lambda W + S)\|_F^2 + \frac{\theta_2}{2} \|D_I^{\frac{1}{2}}(\lambda W + S)\|_F^2 \\ & + \theta_1 \|S\|_1 + \sum_n \frac{\eta}{2} \|\mathbf{1}_n^T - \mathbf{1}_n^T(\lambda W + S)\|_F^2 \\ & s.t. \ diag(S) = 0, \ S \geq 0, \ S_{ij|\mathscr{G}(i) \neq \mathscr{G}(j)} = 0, \end{aligned}$$

Optimization

Alternating Direction Method of Multipliers (ADMM)

$$\underset{Z_{n},S_{n}}{\operatorname{argmin}} \frac{1}{2} tr(Z_{n}^{T} \hat{Q} Z_{n}) - tr((I - \lambda W_{n}^{T}) \hat{Q} Z_{n}) + \theta_{1} ||S_{n}||_{1}$$

$$s.t. diag(Z_{n}) = 0, S_{n} \ge 0, Z_{n} = S_{n},$$

Virtual users are not really inserted to R, but inserted by adding η

$$\hat{Q} = R_n^T R_n + \theta_2 D_I + \eta$$

Updating Rules

$$\begin{split} Z_n^{(t+1)} &= (\hat{Q} + \rho I)^{-1} (\hat{Q} (I - \lambda W_n) + \rho (S_n^{(t)} - \Phi_n^{(t)}) - diagMat(\mu)), \\ S_n^{(t+1)} &= (Z_n^{(t+1)} + \Phi_n^{(t)} - \frac{\theta_1}{\rho})_+, \\ \Phi_n^{(t+1)} &= \Phi_n^{(t)} + Z_n^{(t+1)} - S_n^{(t+1)}. \end{split} \qquad \textbf{Lagrange Multiplier}$$

$$\mu = diag((\hat{Q} + \rho I)^{-1}(\hat{Q}(I - \lambda W_n) + \rho(S_n^{(k)} - \Phi_n^{(k)}))) \oslash diag((\hat{Q} + \rho I)^{-1})$$

Experiments

- Yelp2018 Dataset
 - 31,668 Users
 - 38,048 Items
 - 1,561,406
 Interactions
- Douban Dataset
 - 13,024 Users
 - 22,347 Items
 - 792,062Interactions

Dataset	Metric	GF-CF	LightGCN	SimGCL	UltraGCN	EASE	BISM	FPSR
Yelp2018	Recall@20	<u>0.0697</u>	0.0653	0.0681	0.0683	0.0657	0.0662	0.0703
	NDCG@20	<u>0.0571</u>	0.0532	0.0556	0.0561	0.0552	0.0559	0.0584
	#Params	_	4.46M	4.46M	4.46M	1448M	191M	3.27M
	Time (s)	23	~74000	~2900	617	22	783	35
Douban	Recall@20	0.1719	0.1571	0.1699	0.1925	0.2038	0.2158	<u>0.2095</u>
	NDCG@20	0.1365	0.1206	0.1346	0.1556	0.1786	<u>0.1889</u>	0.1950
	#Params	_	5.04M	5.04M	5.04M	499M	158M	2.14M
	Time (s)	19	~22000	~2700	~5900	16	410	33

Performance Comparison (Partial)

Fine-tuned item similarity

Weighted sum

13

Visualization of item similarity matrix learned in Yelp2018 dataset

Yelp2018 **Dataset Amazon-cds** Douban Gowalla R@20 N@20 N@20 R@20 N@20 N@20 **Metrics** R@20 R@20 w/o global-level 0.1540 0.0873 0.2046 0.1909 0.1566 <u>0.0702</u> <u>0.1883</u> <u>0.0582</u> information w/o local <u>0.1542</u> <u>0.0887</u> <u>0.2085</u> <u>0.1945</u> 0.1785 0.1486 0.0662 0.0556 prior knowledge w/o 0.1832 0.2084 0.1943 0.0574 0.1539 0.0870 <u>0.1501</u> 0.0692 regularization **FPSR** 0.0584 0.1576 0.0896 0.2095 0.1950 0.1566 0.0703 0.1884

Ablation analysis

Detailed Analysis

FPSR May 4 2023

Thanks!

GitHub: Joinn99/FPSR

Presenter: Tianjun Wei

City University of Hong Kong

tjwei2-c@my.cityu.edu.hk

14

FPSR May 4 2023