Prof. Daniel Russo

Homework Assignment 6: Due Monday March 23

Approximate Fixed Point Operators.

Let $\mathcal{J} \subset \mathbb{R}^n$ and let $T : \mathcal{J} \to \mathcal{J}$ be a contraction operator with modulus α is some norm $\|\cdot\|$. That is, $\|TJ - TJ'\| \le \alpha \|J - J'\|$ for all $J, J' \in \mathcal{J}$. Let J^* denote its unique fixed point. Let $\hat{T} : \mathcal{J} \to \mathcal{J}$ represent an approximation to T. Define the induced norm

$$\|\hat{T} - T\| = \sup_{J \in \mathcal{J}} \|\hat{T}J - TJ\|.$$

Part (a) Suppose $\hat{J} = \hat{T}\hat{J}$ is a fixed point of \hat{T} . Show

$$\|\hat{J} - J^*\| \le \frac{\|\hat{T} - T\|}{1 - \alpha}$$

Part (b) No longer assume \hat{T} has a fixed point. Consider the iteration $\hat{J}_{k+1} = \hat{T}\hat{J}_k$ for $k = 0, 1, 2, \cdots$. Show

$$\limsup_{k \to \infty} \|\hat{J}_k - J^*\| \le \frac{\|\hat{T} - T\|}{1 - \alpha}$$

Remark: For concreteness, one can have in mind for this problem that $\mathcal{J} = \{J \in \mathbb{R}^n : ||J||_{\infty} \leq \frac{M}{1-\alpha}\}$ denotes a bounded subset of cost-to-go functions, T is the Bellman optimality operator and \hat{T} is an approximation to T that is consistent with the apriori bounds on J_{μ} . For example, $\hat{T}J(i) = \min_{u} \hat{g}(i,u) + \sum_{j} \hat{P}_{ij}(u)J(j)$ could be a Bellman operator for an MDP whose transition probabilities were estimated from data.

Asynchronous value iteration

Consider the iteration

$$J_{k+1}(x) \leftarrow \begin{cases} TJ_k(x) & \text{if } x = x_k \\ J_k(x) & \text{if } x \neq x_k \end{cases}$$

for some sequence of states $(x_i : i = 0, 1, 2, \cdots)$. Suppose the state space is finite and each state is updated infinitely often. Show that $||J_k - J^*||_{\infty} \to 0$.

Hint: We know that

$$J^* - ||J_0 - J^*||_{\infty} e \leq J_0 \leq J^* - ||J_0 - J^*||_{\infty} e$$

where e denotes a vector of all ones. Show that if a state x has been updated at least once by time k, then

$$J^*(x) - \alpha ||J^* - J_0||_{\infty} \le J_k(x) \le J^*(x) + \alpha ||J_0 - J^*||_{\infty}.$$