## 4.2.1 Uniaxial stress

In uniaxial stress state, only the axial stress is non-zero while all other stress components are zero.

Under axial loading condition, the isotropic linear elastic material law gives

$$\epsilon_{axial} = \frac{1}{E} (\sigma_{axial} - 2\nu \ \sigma_{lateral})$$

$$\epsilon_{lateral} = \frac{1}{E} [(1 - \nu)\sigma_{lateral} - \nu\sigma_{axial}]$$
(4.1)

For uniaxial stress, i.e.  $\sigma_{lateral} = 0$ , Eq. 4.1 gives

$$\sigma_{axial} = E \ \epsilon_{axial}$$

$$\epsilon_{lateral} = -\nu \ \epsilon_{axial}$$
(4.2)

## Analytical solution

Consider the axial loading condition.



Axial strain and stress at a given time, t can be computed as

$$\epsilon_{yy} = V \times \frac{(t - t_0)}{L}$$

$$\sigma_{yy} = E \epsilon_{yy} = E \times V \times \frac{(t - t_0)}{L}$$
(4.3)

Lateral strains are

$$\epsilon_{xx} = \epsilon_{zz} = -\nu \times \epsilon_{yy} \tag{4.4}$$

## MPM analysis



| Mesh                |                                      |  |
|---------------------|--------------------------------------|--|
| x-spacing           | 1m                                   |  |
| y-spacing           | $1 \mathrm{m}$                       |  |
| z-spacing           | $1 \mathrm{m}$                       |  |
| Particles           |                                      |  |
| x-spacing           | $0.5 { m m}$                         |  |
| y-spacing           | $0.5 \mathrm{m}$                     |  |
| z-spacing           | $0.5 \mathrm{m}$                     |  |
| Time                |                                      |  |
| total analysis time | 0.1s                                 |  |
| $\mathrm{dt}$       | $1 \times 10^{-5} \text{ s}$         |  |
| Material            |                                      |  |
| material model      | ILE                                  |  |
| density             | $1 \times 10^{-6} \text{ kg/m}^{-3}$ |  |
| E                   | $1000 \text{ N/m}^{-2}$              |  |
| u                   | 0.2                                  |  |
| gravity             | 0.0                                  |  |

| Solution at $0.1 \mathrm{s}$    | Analytical solution      | MPM solution                 |
|---------------------------------|--------------------------|------------------------------|
| $\epsilon_{yy}$                 | -0.001                   | -0.001                       |
| $\epsilon_{xx},\ \epsilon_{zz}$ | 0.0002                   | 0.000199892                  |
| $\sigma_{yy}$                   | $-1.00 \text{ N/m}^{-2}$ | $-1.00006 \text{ N/m}^{-2}$  |
| $\sigma_{xx},\sigma_{zz}$       | $0.00 \ { m N/m^{-2}}$   | $-0.000149 \text{ N/m}^{-2}$ |