简单DP模拟赛

(请选手务必仔细阅读本页内容)

一、题目概况

中文题目名称	中国象棋	序列	无向图	围棋
英文题目名称	chess	array	graph	go
可执行文件名	chess	array	graph	go
输入文件名	chess.in	array.in	graph.in	go.in
输出文件名	chess.out	array.out	graph.out	go.out
提交文件名	chess.cpp	array.cpp	graph.cpp	go.cpp
每个测试点时限	1秒	1秒	1秒	2秒
测试点数目	20	20	20	20
每个测试点分值	5	5	5	5
内存限制	512MB	512MB	512MB	512MB
题目类型	传统题	传统题	传统题	传统题

二、编译命令

题目 名称	chess	array	graph	go
对于 C++语 言	-o chess chess.cpp - lm -std=c++14 -O2 - Wl, stack=2147483647	-o array array.cpp - lm -std=c++14 -O2 - Wl, stack=2147483647	-o graph graph.cpp - lm -std=c++14 -O2 - Wl, stack=2147483647	-o go go.cpp -lm - std=c++14 -O2 - Wl, stack=2147483647

三、注意事项

- 1. 文件夹名、文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C/C++中函数main()的返回值类型必须是int,程序正常结束时的返回值必须是0。
- 3. 统一评测时采用的机器配置为: windows下lemon评测。
- 4. 请尽力优化,会收获更多的部分得分。

中国象棋(chess)

题目描述

这次小可可想解决的难题和中国象棋有关,在一个 n 行 m 列的棋盘上,让你放若干个炮(可以是 0 个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法。大家肯定很清楚,在中国象棋中炮的行走方式是:一个炮攻击到另一个炮,当且仅当它们在同一行或同一列中,且它们之间恰好 有一个棋子。你也来和小可可一起锻炼一下思维吧!

输入格式

一行包含两个整数 n, m,之间由一个空格隔开。

输出格式

总共的方案数,由于该值可能很大,只需给出方案数模 9999973 的结果。

样例

样例1输入

1 3

样例1输出

7

样例1解释

除了3个格子里都塞满了炮以外,其它方案都是可行的,所以一共有 $2 \times 2 \times 2 - 1 = 7$ 种方案。

数据范围

对于所有数据,满足: $1 \le n, m \le 100$ 。

测试点编号	特殊性质
$1\sim 4$	$n,m \leq 4$
$5\sim7$	$n,m \leq 8$
$8\sim 10$	$n \leq 8$
$11\sim 20$	无特殊约束

序列(array)

题目描述

我们定义一个数组 b_1,b_2,\ldots,b_n (n>1) 的美丽值为 $\min_{1\leq i< j\leq n}|b_i-b_j|$ 。

现在给定一个数组 a_1, a_2, \ldots, a_n 和一个整数 k,请计算该数组所有长度恰好为 k 的子序列的美丽值之和。由于答案可能非常大,请输出其对 998244353 取模的结果。

一个序列 a 是数组 b 的子序列,当且仅当 a 可以通过从 b 中删除若干(可能为零或全部)元素得到。

输入格式

第一行包含两个整数 n, k。

第二行包含 n 个整数 a_1, a_2, \ldots, a_n 。

输出格式

输出一个整数,表示所有长度恰好为 k 的子序列的美丽值之和。由于答案可能非常大,请输出其对 998244353 取模的结果。

样例

样例1输入

4 3 1 7 3 5

样例1输出

8

样例1解释

在第一个样例中,共有 4 个长度为 3 的子序列——[1,7,3]、[1,3,5]、[7,3,5]、[1,7,5],每个子序列的美丽值均为 2,因此答案为 8。

样例2输入

5 5

1 10 100 1000 10000

样例2输出

9

样例2解释

在第二个样例中,只有一个长度为 5 的子序列,即整个数组,其美丽值为 |10-1|=9。

数据范围

对于所有数据,满足 $2 \le k \le n \le 1000$, $0 \le a_i \le 10^5$ 。

测试点编号	约束
$1\sim 5$	$n \leq 20$
$6\sim 8$	$a_i \leq 100$
$9\sim 10$	$k \leq 3$
$11\sim14$	$n \leq 100$
$15\sim 20$	无额外约束

无向图(graph)

题目描述

在无向连通图中, 若一条边被删除后, 图会分成不连通的两部分, 则称该边为割边。

求满足如下条件的无向连通图的数量:

- 1. 由 n 个结点构成,结点有标号。
- 2. 割边不超过 m 条。
- 3. 没有重边和自环。

答案对 $10^9 + 7$ 取模。

输入格式

仅一行,两个整数n和m。

输出格式

一个整数,表示答案。

样例

样例1输入

3 3

样例1输出

4

样例2输入

5 1

样例2输出

453

数据范围

对于所有测试数据: $1 \le n \le 50, 0 \le m \le \frac{n(n-1)}{2}$ 。

每个测试点的具体限制见下表:

测试点编号	\$n\le \$	$m \leq$
$1\sim 4$	6	无特殊限制
$5\sim 8$	10	无特殊限制
$9\sim12$	20	无特殊限制
$13\sim15$	30	无特殊限制
16	无特殊限制	0
$17\sim 20$	无特殊限制	无特殊限制

围棋 (go)

题目描述

近日,谷歌研发的围棋 AI——AlphaGo 以 4:1 的比分战胜了曾经的世界冠军李世石,这是人工智能领域的又一里程碑。

与传统的搜索式 AI 不同,AlphaGo 使用了最近十分流行的卷积神经网络模型。在卷积神经网络模型中,棋盘上每一块特定大小的区域都被当做一个窗口。例如棋盘的大小为 5×6 ,窗口大小为 2×4 ,那么棋盘中共有 12 个窗口。此外,模型中预先设定了一些模板,模板的大小与窗口的大小是一样的。

下图展现了一个 5×6 的棋盘和两个 2×4 的模板:

对于一个模板,只要棋盘中有某个窗口与其完全匹配,我们称这个模板是被激活的,否则称这个模板没有被激活。

例如图中第一个模板就是被激活的,而第二个模板就是没有被激活的。我们要研究的问题是:对于给定的模板,有多少个棋盘可以激活它。

为了简化问题,我们抛开所有围棋的基本规则,只考虑一个 $n\times m$ 的棋盘,每个位置只能是黑子、白子或无子三种情况,换句话说,这样的棋盘共有 $3^{n\times m}$ 种。此外,我们会给出 q 个 $2\times c$ 的模板。

我们希望知道,对于每个模板,有多少种棋盘可以激活它。强调:模板一定是两行的。

输入格式

输入数据的第一行包含四个正整数 n,m,c 和 q,分别表示棋盘的行数、列数、模板的列数和模板的数量。

随后 $2 \times q$ 行,每连续两行描述一个模板。其中,每行包含 c 个字符,字符一定是 w,B 或 x 中的一个,表示白子、黑子或无子三种情况的一种。

输出格式

输出应包含 q 行,每行一个整数,表示符合要求的棋盘数量。由于答案可能很大,你只需要输出答案对 10^9+7 取模后的结果即可。

样例

样例1输入

```
3 1 1 2
B
W
B
```

样例1输出

```
6
5
```

数据范围

对于所有测试点: $1 \le n \le 100$, $1 \le m \le 12$, $1 \le c \le 6$, $1 \le q \le 5$.

测试点编号	特殊性质
$1\sim 4$	$n \leq 4$, $m \leq 3$
$5\sim 8$	$n \leq 2$
$9\sim12$	$n \leq 10$, $m \leq 8$
$13\sim16$	$n \leq 100$, $m \leq 10$
$17\sim 20$	$n \leq 100$, $m \leq 12$