Случайные процессы. Прикладной поток.

Теоретическое задание 7.

Временные ряды. Модели типа ARIMA.

- 1. Пусть временной ряд $(y_t, t \in \mathbb{Z})$ с нулевым средним подчиняется модели авторегрессии $AR(2): y_t = \varphi_1 y_{t-1} + \varphi_2 y_{t-2} + \varepsilon_t$, где белый шум ε_t не зависит от $y_{t-i}, i \geqslant 1$. Докажите, что необходимыми условиями того, чтобы ряд y_t являлся стационарным в широком смысле, являются $|\varphi_2| < 1, \varphi_1 + \varphi_2 < 1, \varphi_2 \varphi_1 < 1$.
- 2. Пусть временной ряд $(y_t, t \in \mathbb{Z})$ задан выражением

a)
$$y_t = 1 - y_{t-1}/3 + \varepsilon_t - 2\varepsilon_{t-1}$$
;

b)
$$y_t = y_{t-1} + \varepsilon_t - 1.2\epsilon_{t-1} + 0.2\epsilon_{t-2}$$
,

где $(\varepsilon_t, t \in \mathbb{Z})$ — гауссовский белый шум со средним 0 и дисперсией σ^2 . Являются ли ряды стационарными в широком смысле? Определите тип процесса в терминах ARIMA(p,d,q).

3. Для временного ряда $y_t = 1 - y_{t-1}/3 + \varepsilon_t - 2\varepsilon_{t-1}$, где $(\varepsilon_n, n \in \mathbb{Z})$ — гауссовский белый шум со средним 0 и дисперсией σ^2 , вычислите математическое ожидание и дисперсию y_t , а так же ковариации $cov(y_t, y_{t+\tau}), \tau \in \{1, 2, 3, 4\}$.