

INDEXATIONS AUTOMATIQUES D'IMAGES

Projet 7

Azim Makboulhoussen 09 Juillet 2018

Sommaire

- Introduction
- Les données
- Préparation pour modélisation
- Apprentissage avec approche classique de machine learning
- Apprentissage avec approche basée sur réseaux de neurones
- Outil de prédiction
- Conclusion

Introduction

Objectif du projet

- Aider une association de protection d'animaux dans son travail de référencement de photos
- Réaliser un programme de reconnaissance automatique de la race d'un chien à partir de sa photo
- Solution basée sur les approches classiques de classification
- Solution basée sur l'utilisation de CNN

Les données

Standford Dog Dataset

- □ Données qui seront utilisées pour l'apprentissage
- □ Un peu plus de 20 000 photos de chiens
- □ 120 races de chiens

En moyenne **180 photos** par **race** de chiens

Description des données

- 1 dossier par race de chien
- □ Chaque dossier contient les photos de chiens

- □ 1 fichier *Annotations* par photo
- □ Contient descriptions image:
 - Largeur
 - Hauteur
 - Nom de la race de chien
 - Rectangle de délimitation centré sur le chien

- Liste des images à utiliser pour l'entrainement
- Liste des images à utiliser pour les tests

Les photos

- □ Photos en couleur
- ☐ Taille des images variables
- → Majorité avec hauteur/largeur inférieures à 500 pixels

- □ Entre 150 et 250 images par race
- □ Essentiellement 150 images par race

Préparation pour modélisation

Notre démarche

- ☐ Sélection de 4 races de chiens en raison de la limitation des ressources matérielles
 - 'Siberian_husky', 'Chihuahua', 'Maltese_dog', 'Scotch_terrier'

- ☐ Utilisation des fichiers **TrainList** et **TestList** pour se constituer les jeux de données d'entrainement et de test
- ☐ 2 approches pour l'apprentissage :
 - Technique de Bag of Visual Words puis application d'un algorithme de classification
 - Réseaux de neurones à convolution

Configuration des données – Data Augmentation

Augmentation du nombre d'images pour l'apprentissage

Entrainement:

- ☐ Image d'origine
- ☐ Image centrée sur le chien (délimiteurs du fichier annotation)
- ☐ Image pivotée
- ☐ Image pivotée centrée sur le chien
- ☐ Rotation aléatoire de l'image

Test:

☐ Image centrée sur le chien (délimiteurs du fichier annotation)

Train

X 5 (2000 photos)

Test

Apprentissage avec méthodes supervisées

Décrire une image

- ☐ Calculer la similarité entre images est complexe pour une machine.
- □ Notre système de visualisation se base sur des points intéressants d'une image
- ☐ Capacité à reconnaître la même image même si elle a changé
- ☐ La machine va utiliser le même principe et extraire les points intéressants d'une image

Bag of Visual Words

- ☐ Concept similaire au Bag Of Word appliqué aux documents textuels
- ☐ A la place de mots clés nous avons des blocs/morceau d'images (features)
- ☐ On construit un vocabulaire de « mots visuels » appelé codebook
- ☐ On peut alors représenter une image par un histogramme de « mots visuels » appelé Bag of Visual Words

Bag of Visual Words

codewords dictionary

Extraction des points d'intérêts (keypoints) d'une image - utilisation de l'algorithme SIFT

Descriptors

2. Construction d'un dictionnaire avec k-means en regroupant les

3. Pour une image, on détermine dans quelle partition se trouve chacun de ses keypoints et on construit un histogramme

Clustering

Classification des images

- Utilisation des algorithmes supervisés de classification sur la matrice Bag of Visual Words pour apprentissage :
 - SVM
 - Logistic Regression
 - Decision Tree
 - Random Forest
 - Gradient Boosting
 - AdaBoost

	Cluster 1	Cluster 2	 Cluster k
Image 1			
Image N			

- ☐ Choix de l'algorithme qui a donné les meilleurs résultats en terme de prédiction
- ☐ Validation croisée pour évaluer les algorithmes
- ☐ Utilisation des scores : accuracy, rappel et précision et affichage de la matrice de confusion

Résultats –Score prédiction jeu de test

	SVM	Logistic Regression	Decision Tree	Random Forest	Gradient Boosting	AdaBoost
accuracy	63,56%	58,19%	43,79%	61,02%	48,59%	55,37%
f1-score	62%	58%	45%	62%	49%	55%

- ☐ Le Support Vector Machine est celui qui donne le meilleur résultat
- ☐ C'est l'algorithme que nous sélectionnons et que nous allons essayer d'optimiser.

SVM – Prétraitement images

- ☐ Tests de pré-traitement des images avant extraction des features : Egalisation histogramme, Filtre Gaussien et Suppression de l'arrière plan
- ☐ Le Filtre gaussien améliore légèrement la prédiction
- La suppression de l'arrière plan a été abandonné en raison du temps de calcul
- ☐ Réduction de dimension avec tSNE pour visualiser les features extraites

Tuning SVM

- ☐ Nombre de clusters K-Means donnant la meilleure performance : 100, 300, 500 et 1000
- ☐ On obtient le meilleur résultat sur les données de test avec 100 clusters
- ☐ Tuning de l'hyper-paramètre de pénalité
- ☐ Recherche sur grille pour évaluation
- ☐ Performance reste à 63%

Réseaux de neurones à convolution

CNN – Réseau neuronal convolutif

- ☐ Méthode d'apprentissage profond (Deep Learning)
- ☐ Sous catégorie des Réseaux de Neurones spécialement conçu pour l'apprentissage d'image.
- Réseau de Neurones est composé d'unités d'apprentissage appelées neurones.
- □ Les neurones apprennent à convertir un signal d'entrée (exemple : image) en un signal de sortie (exemple chien).
- ☐ Une fonction d'activation est utilisée pour déterminer le résultat de sortie du neurone.
- ☐ Plus le réseau est confronté à des données pour l'apprentissage meilleure il sera dans la prédiction mais plus long seront les calculs.

CNN – Réseau neuronal convolutif

- Convolution
 - Couches en charge de l'extraction des features
 - Calcul dans toute l'image si une caractéristique est présente en faisant un filtrage (convolution)
- □ Pooling:
 - Couche permettant de réduire la taille de l'image tout en préservant les informations les plus importantes
- Activation
 - Contrôle comment est passé d'une couche à l'autre
- ☐ Fully Connected :
 - Couche de classification
 - En sortie il va donner autant d'éléments qu'il y a de classes

Le Transfer Learning

- ☐ Le Deep Learning est gourmand en données et temps de calcul.
- ☐ Une solution est de réutiliser un modèle existant et l'adapter à notre tâche
- Dans notre cas, on va utiliser les premières couches pour extraire les features de nos images
- □ Nous allons remplacer la dernière couche (Fully Connected) par notre propre modèle que nous allons entrainer sur nos données.

Entrainement de nos modèles

Nous avons utilisé Keras une bibliothèque très intuitive de Deep Learning en python ☐ Nous nous sommes basés sur les réseaux pré-entrainés : VGG16, ResNet50 et Inception_V3. ■ Utilisation de Google Colaboratory et GPU ☐ Création d'un nouveau modèle pour la dernière couche et la classification ☐ Prédiction des 4 races de chiens ☐ Séparation des données en jeu d'entrainement, validation et test Tuning des hyper-paramètres avec recherche sur grilles

Flatten Dense / ReLU Dropout Dense / ReLu Dropout Dense / Softmax

Résultats

	VGG-16	ResNet50	Inception_V3
accuracy	96,33%	98,87%	99,15%
f1-score	96%	98%	99%

- ☐ Les résultats sur les données de tests sont très bons pour les 3 modèles
- ☐ Calculs particulièrement rapides sur Google Colaboratory
- ☐ Inception_V3 donne le meilleur score
- ☐ Meilleurs hyper-paramètres pour Inception_V3 :
 - dropout_rate': 0.5
 - 'optimizer': 'Ada

Implémentation

Outil de prédiction

- Mise en place d'un programme de prédiction en Python
- Il se base sur notre modèle basé sur le CNN Inception_V3
- Il prend en entrée une image de chien et retourne la prédiction de la race.
- Pourra être utilisé par l'association pour faciliter le travail d'indexation des photos

Conclusion

Conclusion

- Le projet a permis de tester 2 approches de catégorisation d'image : Bag of Visual Words et CNN
- La méthode basée sur les réseaux de neurones a donné des résultats impressionnants et elle est plutôt simple à mettre en œuvre
- Le traitement des images est assez gourmands en ressources et Google Colaboratory a facilité le projet
- Axes d'amélioration :
 - Mettre en place une solution sur l'ensemble des 120 races
 - Faire des tests supplémentaires de prétraitement des images et voir l'impact au niveau des performances
 - Techniques d'optimisation du CNN: couche de normalisation, ajout de données augmentés, ...
 - Comparer avec Google Cloud AutoML: construction de modèle de reconnaissance d'images

Merci à mon mentor Amine Abdaoui pour sa disponibilité, ses explications et ses précieux conseils