lasers e óptica biomédica

- optical imaging in biomedical sciences -

Carla Carmelo Rosa

ccrosa@fc.up.pt

mestrado em física médica

introduction

- optical imaging goal
 - contrast enhancement
 - tissue identification (structure, composition)
- scale
 - sub-micrometric (virus, bacteria)
 - micrometric (biological species)
- light
 - reflection
 - transmission
 - fluorescence

- microscope
- scanning microscope
 - confocal
 - laser
- OCT
 - optical coherence tomography
- NSOM
 - near field scanning optical
- TIRF
 - total internal reflection fluorescence

introduction

- optical imaging goal
 - contrast enhancement
 - tissue identification (structure, composition)
- scale
 - sub-micrometric (virus, bacteria)
 - micrometric (biological species)
- light
 - reflection
 - transmission
 - fluorescence

- microscope
- scanning microscope
 - confocal
 - laser
- OCT
 - optical coherence tomography
- NSOM
 - near field scanning optical
- TIRF
 - total internal reflection fluorescence

introduction

- optical imaging goal
 - contrast enhancement
 - tissue identification (structure, composition)
- scale
 - sub-micrometric (virus, bacteria)
 - micrometric (biological species)
- light
 - reflection
 - transmission
 - fluorescence

- microscope
- scanning microscope
 - confocal
 - laser
- OCT
 - optical coherence tomography
- NSOM
 - near field scanning optical
 - TIRF
 - total internal reflection fluorescence

light transmission imaging

- balistic photons
 - structural information
- diffuse light
 - media information
 - to be avoided in optical imaging
 - spatial filtering
 (pin-hole)
 - polarization window
 - time gating
 - spectral techniques

light transmission imaging

- balistic photons
 - structural information
- diffuse light
 - media information
 - to be avoided in optical imaging
 - spatial filtering (pin-hole)
 - polarization window
 - time gating
 - spectral techniques

light reflection imaging

- backreflected light from sample
 - coherence (preserves strutural information)
 - diffuse
 - information from the media
 - degrades constrast and SNR
 - optimizing contrast
 - confocal imaging
 - interferometry
 - multiphotonic processes

microscópio composto

- magnification:
 - objective: 4 100×
 - eye piece (ocular): 8-12x
- focal spot
 - finite tube
 - sample placed outside objective focal spot
 - infinite corrected objective
 - sample over the focal plane
 - additional elements may be positioned inside the microscope tube without disturbing the image

kohler illumination

- aperture diafragm
 - collection of light from sample
- field diafragm
 - (uniform) background illumination and luminosity

primer@micro.magnet.fsu.edu

kohler illumination

- aperture diafragm
 - collection of light from sample
- field diafragm
 - (uniform) background illumination and luminosity

primer@micro.magnet.fsu.edu

transverse resolution

- distinguishing adjacent sample points
 - disco de Airy
 - high NA advantage ($NA = n \sin \theta$)

$$\Delta r = 1.22 \frac{\lambda}{NA}$$

- objectives
 - immersion
 - very short working distances
 - image quality (aberrations)
 - chromatic
 - geometrical

confocal

http://www.olympusfluoview.com/theory/confocalintro.html

phase constrast microscopy

- http://www.microscopyu.com/articles/phasecontrast/phasemicroscopy.html
- thin samples
- light wave phase changes translated into amplitude changes3
- living organisms

fluorescence microscopy

- samples
 - auto-fluorescence
 - optical labels (fluorophores)
- high SNR
- low concentration sensitivity (specificity)
- common configurations: fluorescência + confocal
- http://www.microscopyu.com/articles/fluorescence/fluorescenceintro.html

2-photons microscopy

- two-photon laser scanning miscroscopy
 - http://www.microscopyu.com/articles/fluorescence/multiphoton/multiphotonintro.
- lacktriangle transition probabilty (excitation) $\propto I^2$
- ultra short pulses, low power
- lacksquare resolution $\propto \lambda$
 - UV rad for better results, but $\lambda_{fluores} \sim IR!$

TIRF microscopy

■ total internal reflection + evanescent field

$$E_z = E_0 e^{-\frac{\ell}{d_p}}$$

$$d_p = \frac{\lambda}{2\pi n_1 \sqrt{\sin^2 \theta - \left(\frac{n_2}{n_1}\right)^2}}$$

- low backgroung light
- fluorescence only in focal volume
- http://micro.magnet.fsu.edu/primer/java/tirf/reflect/index.html

Raman effect

- sensitivity to chemical species without labels
 - Raman spectrum

http://bernstein.harvard.edu/research/cars-why.htm

Raman microscopy

- Raman effect: excitation of molecular vibrational states
 - Stokes (reduces frequency, red shift)
 - Stimulated Raman Spectroscopy
 - pumping contains excitation + Stokes frequencies
 - CARS: coherent, anti-stokes, Raman Spectroscopy

Raman microscopy

- Raman effect: excitation of molecular vibrational states
 - Stokes (reduces frequency, red shift)
 - Stimulated Raman Spectroscopy
 - pumping contains excitation + Stokes frequencies
 - CARS: coherent, anti-stokes, Raman Spectroscopy

Raman microscopy

- Raman effect: excitation of molecular vibrational states
 - Stokes (reduces frequency, red shift)
 - Stimulated Raman Spectroscopy
 - pumping contains excitation + Stokes frequencies
 - CARS: coherent, anti-stokes, Raman Spectroscopy

example: CH2 Raman imaging on fresh mouse skin:Raman Imaging