

به نام خدا

دانشکدهٔ فنی – گروه مهندسی کامپیوتر

سؤالات امتحان میان ترم درس معماری کامپیوتر - نیمسال اول ۱۴۰۲–۱۴۰۱

نام و نام خانوادگی: شماره دانشجویی: زمان امتحان : ۸۰ دقیقه

الف) سوالات تستى (فصل اول)- بارم هر تست 4/25 بدون نمرهي منفي

۱- علت سلسله مراتبیبودن حافظه چیست؟

الف) سرعت کم آن در مقایسه با پردازنده به حافظه

ج) وجود نسخههای مختلف داده در حافظهها د) راحتی دسترسی سیستمعامل به برنامهها

۲- کدام جمله در مورد صفحه نمایشگرهای LCD صحیح نیست؟

الف) نوری که از صفحه نمایش عبور میکند، پلاریزه میشود.

ب) در صورت اتصال صفحه نمایش به ولتاژ الکتریکی، مولکولهای ${
m LCD}$ به شکل عمودی درمی آیند.

ج) قطع ولتاژ الكتريكي در صفحه نمايش باعث خاموششدن صفحه نمايش مي گردد.

د) صفحه نمایش از یک مادهی شفاف تشکیل شده که عبور نور را امکانپذیر میکند.

٣- طبق قانون مور هر ١٨ الى ٢۴ ماه ظرفيت مدارهاي مجتمع چندبرابر مي شود؟

الف) ۱/۵ برابر ب) دو برابر ج) سه برابر د) غیرقابل پیشبینی

۴- نقش مودم شبکه در کامپیوترهای شخصی چیست؟

الف) یک واحد ورودی/خروجی است. ب) بخشی از واحد مسیرداده و کنترل است.

ج) یک واحد ورودی است. د) یک بخش جانبی و غیراصلی کامپیوتر است.

ب) سوالات تشریحی (فصل اول بخش کارایی و فصل دوم)

۵- فرکانس پردازنده A برابر IGHz است. تعداد متوسط کلاک برای هر دستور (CPI) در اجرای یک برنامه 2 بهدست آمده است. با فرض وجود n دستور در این برنامه، اگر بخواهیم بهبودی دو برابری در آن ایجاد کنیم که باعث شود میزان فرکانس پردازنده 1.5GHz گردد، مقدار CPI جدید در برنامه مذکور چقدر باید باشد؟(۱)

 9 در یک آرایه به نام array که با دادههای double word پر شده است، تعداد خانههای آرایه به اندازه 9 است. برنامهای به زبان اسمبلی بنویسید که حاصل جمع خانههای آرایه را در ثبات 9 قرار دهد. فرض کنید که حاصل جمع فاقد سرریز بوده و در یک ثبات قابل ذخیرهسازی است. ثباتهای 9 نگهدارنده متغیرهای 9 array و 9 هستند. قطعه کد به زبان 9 بصورت زیر است: 9

sum = 0;
i = 0;
while (i<size)
sum += array[i++];</pre>

۷-. با استفاده از فلیپفلاپهای JK یک مدار شمارنده صعودی-نزولی چهاربیتی طراحی کنید که با یک خط کنترل Count کار کند. در صورت یک بودن Count، شمارش صعودی و درصورت صفر بودن، شمارش نزولی انجام دهد. ($1/\Delta$)

Category I	nstructionExample		Meaning	Comments
	add	ADD X1, X2, X3	X1 - X2 + X3	Three register operands
	subtract	SUB X1, X2, X3	X1 - X2 - X3	Three register operands
	add immediate	ADDI X1, X2, 20	X1 - X2 + 20	Used to add constants
	subtract immediate	SUBI X1, X2, 20	X1 - X2 - 20	Used to subtract constants
	add and set flags	ADDS X1, X2, X3	X1 - X2 + X3	Add, set condition codes
Arithmetic Data transfer	subtract and set flags	SUBS X1, X2, X3	X1 - X2 - X3	Subtract, set condition codes
	add immediate and set flags	ADDIS X1, X2, 20	X1 - X2 + 20	Add constant, set condition
	subtract immediate and set flags	SUBIS X1, X2, 20	X1 - X2 - 20	Subtract constant, set con- codes
	load register	LDUR X1, [X2,40]	X1 - Memory[X2 + 40]	Doubleword from memory t register
	store register	STUR X1, [X2,40]	Memory[X2 + 40] - X1	Doubleword from register to memory
	load signed word	LDURSW X1,[X2,40]	X1 - Memory[X2 + 40]	Word from memory to registe
	store word	STURW X1, [X2,40]	Memory[X2 + 40] - X1	Word from register to mem
	load half	LDURH X1, [X2,40]	X1 - Memory[X2 + 40]	Halfword memory to registe
	store half	STURH X1, [X2,40]	Memory[X2 + 40] - X1	Halfword register to memo
	load byte	LDURB X1, [X2,40]	X1 - Memory[X2 + 40]	Byte from memory to regist
	store byte	STURB X1, [X2,40]	Memory[X2 + 40] - X1	Byte from register to memory
	load exclusive register	LDXR X1, [X2,0]	X1 - Memory[X2]	Load; 1st half of atomic sv
	store exclusive register	STXR X1, X3 [X2]	Memory[X2]-X1;X3-0 or 1	Store; 2nd half of atomic s
	move wide with zero	MOVZ X1,20, LSL 0	$X1 - 20 \text{ or } 20 * 2^{16} \text{ or } 20$ * 2^{32} or $20 * 2^{48}$	Loads 16-bit constant, rest
	move wide with keep	MOVK X1,20, LSL 0	X1 - 20 or 20 * 2 ^{1b} or 20 * 2 ³² or 20 * 2 ⁴⁸	Loads 16-bit constant, rest unchanged

موفق باشید.

احمدىفر