Exercises in the Locale of Reals

March 16, 2022

Considering set

$$U = \{ y \in \mathbb{Q} \mid 0 < y < 1 \}$$

and supposing some experiment t is deemed a success if it falls within U. If additionally there is some uncertainty of the accuracy of the measurement of t that can be defined by a tolerance factor $\varepsilon > 0$ such that

$$t - \varepsilon < T < t + \varepsilon$$

describes the experiment being accepted as successful. Given the set U what value of ε guarantees our experiment t as being successful? For this to be the case $T \in U$, and so 0 < T < 1. From here we can see that

$$t - \varepsilon = 0$$
 and $t + \varepsilon = 1$

and so either $\varepsilon=t$ or $\varepsilon=1-t$ depending on which is more relevant to our experiment.

$$\varepsilon = min\{t, 1-t\}$$

Definition 1. Let $a, r \in \mathbb{Q}$ with r > 0. The open interval of radius r and center a is the set

$$B_r(a) = \{ x \in \mathbb{Q} \mid a - r < x < a + r \}$$

Proposition 2. Let $a, r \in \mathbb{Q}$ with r > 0. If $t \in B_r(a)$, then there exists $\varepsilon > 0$ such that

$$B_{\varepsilon}(t) \subseteq B_r(a)$$

Proof. Generically we write

$$B_{\varepsilon}(t) = \{ x \in \mathbb{Q} \mid t - \varepsilon < x < t + \varepsilon \}$$

and given $t \in B_r(a)$ then

$$a - r + \varepsilon < x < a + r - \varepsilon$$

if we chose $\varepsilon = r/2$

$$a - r/2 < x < a + r/2$$

as

$$B_r(a) = \{ x \in \mathbb{Q} \mid a - r < x < a + r \}$$

and so

$$B_{\varepsilon}(t) \subseteq B_r(a)$$

The above tells us that for any experimental result $t \in B_r(a)$ we can define an accuracy $\varepsilon > 0$ that ensures the experiment was a success. It is key that the sets we are talking about are open. If we defined our experiment with closed intervals $0 \le T \le 1$ then this results in a different situation. We can see this by letting t = 0 and noticing that there exists no $\varepsilon > 0$ that satisfies $t - \varepsilon \ge 0$ and similarly for t = 1 there is no $\varepsilon > 0$ such that $t + \varepsilon \le 1$.

Definition 3. A subset $U \subseteq \mathbb{Q}$ of rational numbers is *open* if for all $t \in U$ there exists an $\varepsilon > 0$ such that

$$B_{\varepsilon}(t) \subseteq U$$

The value of the *open* set of U is that we can say with confidence that a rational value lies within it given some error $\varepsilon > 0$. This is not necessarily so with *non-open* sets, as there are situations (as expressed previously) where we cannot say this for certain.

Theorem 4. The set \mathbb{Q} is open, as is the empty set \emptyset . The intersection of any two open subsets of \mathbb{Q} is also open. In fact, the intersection of any finite number of open sets in \mathbb{Q} is open (with the case of zero open sets yeilding \mathbb{Q}). The union of any collection of open subsets is open (with the emption collection yeilding \emptyset).

Proof. Let $\{O_i\}_{i\in I}$ be a collection of open subsets with I index set and

$$\bigcup_{i\in I} O_i$$

be the union. If

$$x \in \bigcup_{i \in I} O_i$$

then we note that $\exists O \in \bigcup_{i \in I} O_i; x \in O$, namely x is in some specific *open* subset.

Let $\varepsilon > 0$.

As O is open, then

$$B_{\varepsilon}(x) \subseteq O$$

is open, and it follows that

$$B_{\varepsilon}(x) \subseteq \bigcup_{i \in I} O_i$$

is also open. This holds for all $O \in \{O_i\}_{i \in I}$ and so, $\bigcup_{i \in I} O_i$ is open.

Proof. The *empty set* \emptyset is *open* as $\forall t \in \emptyset$ results in no elements, and so is vacuously true.

$$\bigcup_{i \in \emptyset} O_i = \emptyset$$

Proof. For finite intersections of open subsets

$$x \in \bigcap_{i \in I}^n O_i \implies x \in O_{min}$$

where O_{min} represents the smallest open subset of the intersection, then

$$\forall x \in \bigcap_{i \in I}^{n} O_i \exists \varepsilon > 0 : B_{\varepsilon}(x) \subseteq O_{min}$$

and

$$B_{\varepsilon}(x) \subseteq O_{min} \subseteq \bigcap_{i \in I}^{n} O_{i} \implies B_{\varepsilon}(x) \subseteq \bigcap_{i \in I}^{n} O_{i}$$

, which proves the intersection of any finite number of open sets in $\mathbb Q$ is open. \square

Proof. If we have no open sets $\{\}_{i\in I}$, then

$$\bigcap_{i\in\emptyset}O_i=\mathbb{Q}$$

These properties of open sets come from Definition 3 of subsets of rational numbers, as we can always provide a smaller ε as needed.

Now if we write $\Omega(\mathbb{Q})$ for the collection of all open subsets of \mathbb{Q} , ordered by inclusion we get a poset $(\Omega(\mathbb{Q}), \leq)$. This has arbitrary joins and finite meets, as per the above definition, and so forms a lattice.

Theorem 5. A subset of \mathbb{Q} is open if, and only if, it is a union of open intervals.

Proof. Let $U \subseteq \mathbb{Q}$ be open. Then by definition for each $t \in U$ there exists a positive rational $\varepsilon_t > 0$ (that depends on t) such that

$$B_{\varepsilon}(t) \subseteq U$$

and

$$\bigcup_{t \in U} B_{\varepsilon}(t) = U$$

. This result seems counter-intuitive, as it seems to suggest the union all $t \in U$ with the addition of some $ball\ B_{\varepsilon}(t) = \{x \in \mathbb{Q} \mid t - \varepsilon < x < t + \varepsilon\}$, still results in U. But at the very heart of this seeming contradiction, is the core feature of an *open set*: there is always room to contain some $\varepsilon > 0$ within the set.

Now if we start with a collection of open intervals $\{B_{r_i}(x_i)\}_{i\in I}$, then the union

$$\bigcup_{i\in I} B_{r_i}(x_i)$$

is also an open set. This is easier to digest, as each $B_{r_i}(x_i)$ is open, and the union is just the largest set that represents all of them in which the interval bounds are the minimum and maximum of all intervals in $B_{r_i}(x_i)$.

** If I can form a poset from this collection then I would write:

If we write $\Omega(U)$ to be the collection of open subsets in U, and if we order this by inclusion \subseteq , then we have a powerset $\mathcal{P} = (\Omega(U), \subseteq)$. The union of all open balls is then equivalent to the join of \mathcal{P}

$$\bigcup_{i \in I} B_{r_i}(x_i) = \bigvee \mathcal{P}$$

. From here I'd like to say the join is somehow open. **

Let's write $\Omega(\mathbb{Q})$ to be the *collection of all open subsets* of \mathbb{Q} ordered by inclusion.

Simultaneously we note that each open interval $B_r(a)$ is completely determined by its end-points a-r and a+r. If we take two rational numbers $b, c \in \mathbb{Q}$, such that b < c, the set $\{x \in \mathbb{Q} \mid b < x < c\}$ is the open interval $B_{c-b/2}(b+c/2)$, which we donte by I(b,c).

Now the set $\mathcal{I} = \{(b,c) \in \mathbb{Q} \times \mathbb{Q} \mid b < c\}$ is the set of all names of all open intervals. Any subset $S \subseteq \mathcal{I}$ thus serves as an instruction on building an open set:

$$\Psi: \mathcal{P}(\mathcal{I}) \to \Omega(\mathbb{Q})$$

given by

$$\Psi(S) = \bigcup_{(b,c) \in S} I(b,c)$$

Theorem 6. The function Ψ is onto.

Proof.
$$image(\Psi)=\{\Psi((a,b)):(a,b)\in S\}=\bigcup_{(a,b)\in S}I(a,b)=\Omega((a,b))=codomain(\Psi).$$
 This is onto. \Box

Note however that Ψ is not *one-to-one* as the domain and codomain to not have the same cardinality,

$$\mid \mathcal{P}(\mathcal{I}) \mid = 2^{|(a,b)|}$$

$$\mid \Omega(\mathbb{Q}) \mid = 2^{|(a,b)|} - 2^{|closed\mathbb{Q}|}$$

$\mid \mathcal{P}(\mathcal{I}) \mid \neq \mid \Omega(\mathbb{Q}) \mid$

** Also in the category of ${\bf Set}$ a morphism is epic if and only if it is onto (surjective). Can we use this? ***