

CardioRenal Syndromes

By

Mostafa Anis M. Mahmoud

Ass. Lecturer of Internal Medicine
Faculty of Medicine. Mansoura University

Cardio-Renal Syndromes

Classic view: CRS means that a normal kidney may be dysfunctional because of a diseased heart.

In the presence of a healthy heart, the same kidney would perform normally.

New concept: The CRS includes a variety of acute or chronic conditions, where the primary failing organ can be either the heart or the kidney.

Cardio-Renal Syndromes

Definition

CRS is defined as a pathophysiologic disorder of the heart and kidneys whereby acute or chronic dysfunction of one organ may induce acute or chronic dysfunction of the other.

Cardio-Renal Syndromes

Classification

CRS Type I (Acute Cardiorenal Syndrome)

Abrupt worsening of cardiac function (e.g. acute cardiogenic shock or acutely decompensated congestive heart failure) leading to acute kidney injury

CRS Type II (Chronic Cardiorenal Syndrome)

Chronic abnormalities in cardiac function (e.g. chronic congestive heart failure) causing progressive and potentially permanent chronic kidney disease

CRS Type III (Acute Renocardiac Syndrome)

Abrupt worsening of renal function (e.g. acute kidney ischaemia or glomerulonephritis) causing acute cardiac disorder (e.g. heart failure, arrhythmia, ischemia)

CRS Type IV (Chronic Renocardiac Syndrome)

Chronic kidney disease (e.g. chronic glomerular or interstitial disease) contributing to decreased cardiac function, cardiac hypertrophy and/or increased risk of adverse cardiovascular events

CRS Type V (Secondary Cardiorenal Syndrome)

Systemic condition (e.g. diabetes mellitus, sepsis) causing both cardiac and renal dysfunction

Cardio-Renal Syndromes

Pathophysiology

A) Low flow hypothesis

Cardio-Renal Syndromes

B)
Activated
RAAS

Cardio-Renal Syndromes

C) Activated SNS

Activated SNS in HF aims at maintaining COP by +ve inotropic and chronotropic effect.

SNS activation results in:

- Vasoconstriction → increase afterload
- LVH
- Release of NPY → more atherosclerosis
- Decreased renal blood flow
- Cardiomyocyte and Renal tubular cell apoptosis

Cardio-Renal Syndromes

D) Systemic congestion

↑ Renal venous pressure → ↓ Glomerular filtration

ESCAPE (Evaluation Study of Congestive Heart Failure and Pulmonary Castheterization Effectiveness) : The only hemodynamic measurement correlated with rising S. cr was Rt. Atrial pressure.

Cardio-Renal Syndromes

E) CardioRenal Anemia

- Iron Deficiency
- Erythropoietin and ESAs

Cardio-Renal Syndromes

CRS Type 1

- Pathogenesis: Hemodynamics
Exogenous agents (contrast, diuretics, ACEI)
- Prognostic Factors: EF
Pre-existing renal disease
- Effect of AKI on the heart: SNS
RAAS
Na/H₂O retension
Inflammation
- Management: Diuretics/ ACEI/BB
- Markers

CRS Type 1

Hemodynamically mediated damage

Acute heart disease or procedures

Acute decompensation
Ischemic insult
Coronary angiography
Cardiac surgery

Humorally mediated damage

RAA activation,
 $\text{Na} + \text{H}_2\text{O}$ retention,
vasoconstriction

BNP

Hormonal factors

Humoral signaling
Caspase activation
Apoptosis

Immune mediated damage

Monocyte activation

Endothelial activation

Acute renal injury

Acute hypoperfusion
Reduced oxygen delivery
Necrosis/apoptosis
Decreased GFR
Resistance to ANP/BNP

Biomarkers

KIM-1
Cystatin-C
N-GAL
Creatinine

Cytokine secretion
Caspase activation
Apoptosis

Cardio-Renal Syndromes

Table 1

Protein Biomarkers for the Early Detection of Acute Kidney Injury

Biomarker	Associated Injury
Cystatin C	Proximal tubule injury
KIM-1	Ischemia and nephrotoxins
NGAL (lipocalin)	Ischemia and nephrotoxins
NHE3	Ischemia, pre-renal, post-renal AKI
Cytokines (IL-6, IL-8, IL-18)	Toxic, delayed graft function
Actin-actin depolymerizing F	Ischemia and delayed graft function
α -GST	Proximal T injury, acute rejection
π -GST	Distal tubule injury, acute rejection
L-FABP	Ischemia and nephrotoxins
Netrin-1	Ischemia and nephrotoxins, sepsis
Keratin-derived chemokine	Ischemia and delayed graft function

GST = glutathione S-transferase; IL = interleukin; KIM = kidney injury molecule; L-FABP = L-type fatty acid binding protein; NGAL = neutrophil gelatinase-associated lipocalin; NHE = sodium-hydrogen exchanger.

Cardio-Renal Syndromes

CRS Type 2

Prevalence : very common 25%

Pathogenesis:

- Risk Factors
- LCOP or Systemic congestion (ESCAPE)
- Drugs

Effect of CKI: Anemia / RAAS / Na-H₂O / HTN / Uremia

Prognostic Factors: GFR/Age/HTN/DM/ACS

Management:

- Diuretics
- VD drugs
- Management of anemia

CRS Type 2

Cardio-Renal Syndromes

CRS Type 3

Pathogenesis:

- SNS RAAS
- Fluid overload
- Electrolytes (hyperkalemia)
- Acidemia
- Uremia
- Bilateral RA stenosis

Biomarkers:

- Troponins
- MPO
- BNP

Management:

- Diuretics
- ACEI
- Renal replacement therapy

CRS Type 3

Cardio-Renal Syndromes

CRS Type 4

Importance: > 50% of CKD V deaths are cardiovascular

Pathogenesis: Risk Factors

Anemia

Uremia

Ch. Inflammation

Lack of appropriate CV risk modification treatment

Biomarkers: Troponins

Ischemia modified albumin & Hb

Plasminogen activator inhibitor

BNP, CRP, homocysteine

Management: Antiplatelets, ACEIs, BBs, statins

Endothelin, Adenosine and Vasopressin antagonists

CRS Type 5

THANK YOU

Annual Meeting of Nephrology Unit : Kidney in Systemic Diseases