Discussion Notes

D. Zack Garza

August 26, 2019

Contents

1	Discussion 1	1
	1.1 Uniform Convergence	2

1 Discussion 1

If X is an F_{σ} set, then

$$X = \bigcup_{i=1}^{\infty} F_i$$
 with each F_i closed.

If X is a G_{δ} set, then

$$X = \bigcap_{i=1}^{\infty} G_i$$
 with each G_i open.

A set A is nowhere dense iff $(\overline{A})^{\circ} = \emptyset$ iff for any interval I, there exists a subinterval S such that $S \cap A = \emptyset$. This is a set that is not dense in any nonempty open set. If the closure of a subset of \mathbb{R} contains no open intervals, it will be nowhere dense.

A set A is meager or first category if it can be written as

$$A = \bigcup_{i \in \mathbb{N}} A_i$$
 with each A_i nowhere dense

A set A is null if for any ε , there exists a cover of A by countably many intervals of total length less than ε , i.e. there exists $\{I_k\}_{j\in\mathbb{N}}$ such that $A\subseteq\bigcup_{j\in\mathbb{N}}I_j$ and $\sum_{j\in\mathbb{N}}\mu(I_j)<\varepsilon$. If A is null, we say $\mu(A)=0$.

Some facts:

- If $f_n \to f$ and each f_n is continuous, then D_f is meager.
- If $f \in \mathcal{R}(a,b)$ and f is bounded, then D_f is null.
- If f is monotone, then D_f is countable.
- If f is monotone and differentiable on (a, b), then D_f is null.

We define the oscillation of f as

$$\omega_f(x) \coloneqq \lim_{\delta \to 0^+} \sup_{y,z \in B_\delta(x)} |f(y) - f(z)|$$

1.1 Uniform Convergence

We say that $f_n \to f$ converges uniformly on A if $||f_n - f||_{\infty} = \sup_{x \in A} |f_n(x) - f(x)| \to 0$.