11. előadás

TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMÍTÁSA 3.

Az inverzfüggvény-tétel

A valós-valós függvények inverzére vonatkozó deriválási szabály azt mondja ki, hogy ha az I nyílt intervallumon értelmezett, és ott szigorúan monoton és folytonos f függvény egy $a \in I$ pontban differenciálható, és $f'(a) \neq 0$, akkor a létező f^{-1} függvény differenciálható a b = f(a)pontban, és

$$(f^{-1})'(b) = \frac{1}{f'(a)} = \frac{1}{f'(f^{-1}(b))}.$$

A fenti állítás kiterjeszthető az a pont egyik környezetére, ha $f:I\to\mathbb{R}$ folytonosan deriválható az I nyílt intervallumon, és $f'(a) \neq 0$. Ti. a folytonosság miatt $\exists U := K(a)$ környezet, hogy f'(u) > 0 (vagy f'(u) < 0) minden $u \in U$ esetén, ezért f szigorúan monoton és folytonos U-n, továbbá a V := f[U] képhalmaz olyan nyílt intervallum, amely tartalmazza az f(a) pontot, és

- 1. f lokálisan invertálható, azaz $f|_U:U\to V$ függvény bijekció,
- 2. az f^{-1} inverz függvény folytonosan deriválható $V\text{-}\mathrm{n}$ és

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$$
 $(y \in V).$

Többváltozós esetben hasonló állítás érvényes. A tételt nem bizonyítjuk.

- 1. Tétel (Inverzfüggvény-tétel). Legyen $\Omega \subset \mathbb{R}^n$ nyílt halmaz és $f: \Omega \to \mathbb{R}^n$. Tegyük fel, hogy,

 - a) f folytonosan deriválható Ω -n, b) az $a \in \Omega$ pontban $\det f'(a) \neq 0$.

Ekkor

- 1. f lokálisan invertálható az a pontban, azaz vannak olyan $a \in U$ és $f(a) \in V$ nyílt halmazok, hogy az $f|_U: U \to V$ függvény bijekció (következésképpen invertálható),
- 2. $az f^{-1}$ inverz függvény folytonosan deriválható V-n és

(*)
$$(f^{-1})'(y) = [f'(f^{-1}(y))]^{-1} (y \in V).$$

Megjegyzések.

1. Az inverz függyény létezése a többváltozós esetben minőségileg bonyolultabb az egyváltozós esetnél. Ez tehát egy olyan pont, ahol az egyváltozós analógia létezik ugyan, az immár nem elegendő.

2. Az f függvény explicit alakjának az ismeretében f^{-1} helyettesítési értékeire általában nincs explicit képlet, viszont (*) alapján a derivált helyettesítési értékei az f' helyettesítési értékeinek felhasználásával már kiszámíthatók.

Példa. Legyen

$$f(x,y) := (e^x \cos y, e^x \sin y)$$
 $((x,y) \in \mathbb{R}^2).$

Nem nehéz igazolni, hogy $\mathcal{R}_f = \mathbb{R}^2 \setminus \{(0,0)\}$. Valóban $(0,0) \notin \mathcal{R}_f$, hiszen a sin és a cos függvény zérushelyei különbözőek. Másrészt, minden $(u,v) \neq (0,0)$ pont egyértelműen felírható

$$(u, v) = (r \cos \alpha, r \sin \alpha)$$
 $(r > 0, \alpha \in [0, 2\pi))$

alakban, az ún **polárkoordinátákkal**, az ábrán szereplő jelölésekkel. Ekkor $x = \ln r$, azaz $e^x = r$, és $y = \alpha$ esetén f(x, y) = (u, v).

A sin és a cos függvény periodicitása miatt f globálisan nem invertálható. Például

$$f(0, \frac{\pi}{2}) = (0, 1) = f(0, \frac{5\pi}{2}).$$

Azonban f lokálisan invertálható az \mathbb{R}^2 minden pontjában. Ez utóbbi állítást az inverzfüggvénytétellel tudjuk a legegyszerűbben igazolni. Világos, hogy $f \in C^1(\mathbb{R}^2)$. Az $f : \mathbb{R}^2 \to \mathbb{R}^2$ függvény Jacobi-mátrixa egy tetszőleges $(x, y) \in \mathbb{R}^2$ pontban

(#)
$$f'(x,y) = \begin{pmatrix} e^x \cos y & -e^x \sin y \\ e^x \sin y & e^x \cos y \end{pmatrix}.$$

Mivel

$$\det f'(x,y) = e^{2x}\cos^2 y + e^{2x}\sin^2 y = e^{2x}(\cos^2 y + \sin^2 y) = e^{2x} \neq 0 \qquad ((x,y) \in \mathbb{R}^2),$$

ezért az inverzfüggvény-tétel feltételei teljesülnek minden $(x,y) \in \mathbb{R}^2$ pontban. Tehát f lokálisan invertálható.

Legyen $a := (0, \pi/3)$ és $b := f(a) = f(0, \pi/3) = (1/2, \sqrt{3}/2)$. Tetszőleges $x_1 < 0 < x_2$ és $0 < y_1 < \pi/3 < y_2 < \pi/2$ valós számok esetén

$$U := \{(x, y) \in \mathbb{R}^2 \mid x_1 < x < x_2, \ y_1 < y < y_2\} \ni a$$

nyílt halmaz, és $V := f[U] \ni b$ olyan nyílt halmaz, amelynek minden pontja pozitív koordinátákkal rendelkezik.

Ezért, ha $(x, y) \in U$, akkor

$$\begin{cases} e^x \cos y = u > 0 \\ e^x \sin y = v > 0 \end{cases} \implies \begin{cases} e^{2x} = u^2 + v^2 \\ \operatorname{tg} y = \frac{v}{u} \end{cases} \implies \begin{cases} x = \frac{1}{2} \ln(u^2 + v^2) \\ y = \operatorname{arctg} \frac{v}{u} \end{cases}.$$

Ekkor minden $(u, v) \in V$ esetén

$$f^{-1}(u,v) = \left(\frac{1}{2}\ln(u^2 + v^2), \ \operatorname{arctg}\frac{v}{u}\right) \quad \Longrightarrow \quad \left(f^{-1}\right)'(u,v) = \begin{pmatrix} \frac{u}{u^2 + v^2} & \frac{v}{u^2 + v^2} \\ -\frac{v}{u^2 + v^2} & \frac{u}{u^2 + v^2} \end{pmatrix}.$$

Így

$$(f^{-1})'(b) = (f^{-1})'(\frac{1}{2}, \frac{\sqrt{3}}{2}) = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}.$$

Az előző eredmény az inverzfüggvény-tételben szereplő

$$(f^{-1})'(b) = [f'(f^{-1}(b))]^{-1} = [f'(a)]^{-1}$$

összefüggéssel is megkaphatjuk. Valóban (#)-ból

$$f'(a) = f'(0, \frac{\pi}{3}) = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \implies (f^{-1})'(b) = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}^{-1} = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}.$$

Megjegyzés. Érdemes megjegyezni a (2×2) -es mátrixok inverzére vonatkozó alábbi képletet: ha $ad - bc \neq 0$, akkor

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - cb} \cdot \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

Az inverzfüggvény-tételnek egyenletrendszerek megoldásával kapcsolatos értelmezés is adható. Legyen $x=(x_1,x_2,\ldots,x_n)\in\mathbb{R}^n$ és $y=(y_1,y_2,\ldots,y_n)\in\mathbb{R}^n$. Jelölje

$$f_i \in \mathbb{R}^n \to \mathbb{R}$$
 $(i = 1, 2, \dots, n)$

az f függvény koordinátafüggvényeit: $f=(f_1,f_2,\ldots,f_n)\in\mathbb{R}^n\to\mathbb{R}^n$. Tekintsük az

$$f(x) = y$$

egyenletet. A komponensekre bontott alakba írva kapjuk az n egyenletből álló

$$f_1(x_1, x_2, \dots, x_n) = y_1,$$

 $f_2(x_1, x_2, \dots, x_n) = y_2,$
 \vdots
 $f_n(x_1, x_2, \dots, x_n) = y_n$

egyenletrendszert, ahol az y_1, y_2, \ldots, y_n számokat paramétereknek tekintjük, és x_1, x_2, \ldots, x_n az ismeretlenek.

Legyen $a=(a_1,a_2,\ldots,a_n)\in\mathcal{D}_f$ és $b=(b_1,b_2,\ldots,b_n):=f(a)$. Tegyük fel, hogy f folytonosan deriválható az a pont egyik Ω környezetében, továbbá teljesül a det $f'(a)\neq 0$ feltétel. Ekkor az inverzfüggvény-tétel szerint megadható olyan $b\in V$ paramétertartomány, hogy az egyenletrendszer egyértelműen megoldható az a pont egy U környezetében.

Implicit függvények (egyenletek megoldása)

Legyen $f \in \mathbb{R}^2 \to \mathbb{R}$ olyan függvény, amelyre

$$H := \left\{ (x, y) \in \mathbb{R}^2 \mid f(x, y) = 0 \right\} \neq \emptyset$$

teljesül. Az lenne a kérdés, hogy ki tudjuk-e fejezni az y változót az x változó függvényeként, azaz van-e olyan $\varphi \in \mathbb{R} \to \mathbb{R}$ függvény, hogy $y = \varphi(x)$ ekvivalens legyen az f(x,y) = 0 egyenlettel.

Tudjuk, hogy az $x^2+y^2-1=0$ egyenlet megoldásai az origó középpontú egység sugarú kör pontjai, és nincs olyan valós-valós függvény, amelynek grafikonja kört alkot. Ezért az eredeti kérdésnek egy "lokális" változatával foglalkozunk, nevezetesen olyan $\varphi:I\to\mathbb{R}$ nyílt intervallum értelmezett függvényt keresünk, amire

$$f(x, \varphi(x)) = 0$$
 $(x \in I)$

teljesül. Ekkor azt mondjuk, hogy φ az f(x,y) egyenletnek egy $implicit\ megoldása$. Nézzük újra az

$$f(x,y) := x^2 + y^2 - 1$$
 $((x,y) \in \mathbb{R}^2)$

függvényből származó $x^2+y^2-1=0$ egyenletet! Ha C(a,b) olyan pont, hogy f(a,b)=0 és b>0, akkor $\exists I\ni a$ nyílt halmaz, hogy

$$\varphi(x) = \sqrt{1 - x^2} \qquad (x \in I)$$

implicit megoldása lesz az egyenletnek, illetve hab<0,akkor

$$\varphi(x) = -\sqrt{1 - x^2} \qquad (x \in I)$$

implicit megoldása lesz az egyenletnek. Azonban nincs olyan implicit megoldás, amely az A(-1,0) vagy a B(1,0) ponton menne át, azaz ha b=0.

Vegyük észre, hogy $\partial_2 f(x,y) = 2y \implies \partial_2 f(A) = \partial_2 f(B) = 0$, de a többi C pontban (ahol $\exists \varphi$) igaz, hogy $\partial_2 f(C) \neq 0$.

- **2. Tétel (Egyváltozós implicitfüggvény-tétel).** Legyen $\Omega \subset \mathbb{R}^2$ nyílt halmaz és $f: \Omega \to \mathbb{R}$. Tegyük fel, hogy
 - a) f folytonosan deriválható Ω -n,
 - b) $az(a,b) \in \Omega$ pointban f(a,b) = 0 és $\partial_2 f(a,b) \neq 0$.

Ekkor

- 1. van olyan U := K(a) környezet és $b \in V$ nyîlt halmaz \mathbb{R} -ben, hogy minden $x \in U$ ponthoz létezik egyetlen $\varphi(x) \in V$, amelyre $f(x, \varphi(x)) = 0$ teljesül,
- 2. az így definiált $\varphi: U \to V$ függvény folytonosan deriválható U-n és

(**)
$$\varphi'(x) = -\frac{\partial_1 f(x, \varphi(x))}{\partial_2 f(x, \varphi(x))} \qquad (x \in U).$$

Bizonyítás. A tétel igazolható az inverzfüggvény-tétel segítségével. Legyen

$$F: \Omega \to \mathbb{R}^2, \qquad F(x,y) := (x, f(x,y)).$$

Ekkor F folytonosan deriválható Ω -n, és

$$F'(x,y) = \begin{pmatrix} 1 & 0 \\ \partial_1 f(x,y) & \partial_2 f(x,y) \end{pmatrix} \implies \det F'(a,b) = \partial_2 f(a,b) \neq 0.$$

Így F kielégíti az inverzfüggvény-tétel feltételeit az (a,b) pontban, ahol F(a,b)=(a,0). A létező folytonosan differenciálható $F^{-1}:V^*\to U^*$ inverz függvény F_1^{-1} és F_2^{-1} koordinátafüggvényei szintén folytonosan differenciálhatók, és minden $(x,y)\in V^*$ esetén:

$$(x,y) = F\left(F^{-1}(x,y)\right) = F\left(F_1^{-1}(x,y), F_2^{-1}(x,y)\right) = \left(F_1^{-1}(x,y), f\left(F_1^{-1}(x,y), F_2^{-1}(x,y)\right)\right).$$

Ebből

$$x = F_1^{-1}(x, y)$$
 és $y = f(F_1^{-1}(x, y), F_2^{-1}(x, y)) = f(x, F_2^{-1}(x, y)).$

Mivel $(a,0) \in V^*$ nyílt halmaz, ezért $\exists K(a), \ \forall x \in K(a) \colon (x,0) \in V^*$. Ekkor

$$f\left(x,F_2^{-1}(x,0)\right)=0\quad \left(x\in K(a)\right) \qquad \Longrightarrow \qquad \varphi(x):=F_2^{-1}(x,0)\quad \left(x\in K(a)\right)$$

a keresett implicit függvény, amiről nem nehéz igazolni, hogy ez az egyedüli ilyen függvény, ami értelmezett a K(a) környezetben.

A (**) összefüggésből abból következik, hogy

$$h(x) := f(x, \varphi(x)) = 0 \qquad (x \in K(a)),$$

és így az összetett függvényre vonatkozó deriválási szabály alapján

$$0 = h'(x) = \partial_1 f(x, \varphi(x)) \cdot 1 + \partial_2 f(x, \varphi(x)) \cdot \varphi'(x) \qquad (x \in K(a)).$$

Megjegyzés. Világos, hogy $\varphi(a) = b$. A φ függvényt az $f(x, \varphi(x)) = 0$ $(x \in U)$ egyenlőség "implicit" (= nem kifejtett, burkolt, rejtett) módon definiálja. Innen származik a tétel neve.

- 3. Tétel (Implicitfüggvény-tétel az általános esetben). Legyenek $\Omega_1 \subset \mathbb{R}^{n_1}$ és $\Omega_2 \subset \mathbb{R}^{n_2}$ nyílt halmazok $(n_1, n_2 \in \mathbb{N}^+)$, illetve $f: \Omega_1 \times \Omega_2 \to \mathbb{R}^{n_2}$. Tegyük fel, hogy,
 - a) f folytonosan deriválható az $\Omega_1 \times \Omega_2$ halmazon,
 - b) $az(a,b) \in \Omega_1 \times \Omega_2 \ pontban \ f(a,b) = 0 \ és \ \det \partial_2 f(a,b) \neq 0.$

Ekkor

- 1. létezik a-nak olyan $U := K(a) \subset \Omega_1$ környezet és $b \in V \subset \Omega_2$ nyílt halmaz, hogy minden $x \in U$ ponthoz létezik egyetlen $\varphi(x) \in V$, amelyre $f(x, \varphi(x)) = 0 \in \mathbb{R}^{n_2}$,
- 2. az így definiált $\varphi: U \to V$ függvény folytonosan deriválható U-n és

$$\varphi'(x) = -\left[\partial_2 f(x, \varphi(x))\right]^{-1} \cdot \partial_1 f(x, \varphi(x)) \qquad (x \in U).$$

Megjegyzések.

1. A tételben $\partial_2 f(a,b)$ jelöli az f függvény második változócsoport szerinti parciális deriváltját az (a,b) pontban. Ez az alábbi módon definiált $n_2 \times n_2$ -típusú mátrix:

$$\partial_2 f(a,b) := (\mathbb{R}^{n_2} \supset \Omega_2 \ni y \mapsto f(a,y) \in \mathbb{R}^{n_2})'_{y=b} \in \mathbb{R}^{n_2 \times n_2}.$$

A $\partial_1 f(a,b)$ derivált definíciója hasonló.

2. A tételnek egyenletrendszerek *megoldhatóságával* kapcsolatos értelmezés is adható.

Tegyük fel, hogy
$$n_1, n_2 \in \mathbb{N}$$
, $x = (x_1, x_2, \dots, x_{n_1}) \in \mathbb{R}^{n_1}$, $y = (y_1, y_2, \dots, y_{n_2}) \in \mathbb{R}^{n_2}$ és $f = (f_1, f_2, \dots, f_{n_2}) \in \mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \to \mathbb{R}^{n_2}$.

Tekintsük az f(x,y) = 0 egyenletrendszert, amelyet komponensekre bontott alakban így írhatunk fel:

$$f_1(x_1, x_2, \dots, x_{n_1}; y_1, y_2, \dots, y_{n_2}) = 0,$$

$$f_2(x_1, x_2, \dots, x_{n_1}; y_1, y_2, \dots, y_{n_2}) = 0,$$

$$\vdots$$

$$f_{n_2}(x_1, x_2, \dots, x_{n_1}; y_1, y_2, \dots, y_{n_2}) = 0.$$

Itt az $y_1, y_2, \ldots, y_{n_2}$ számok az ismeretlenek és $x_1, x_2, \ldots, x_{n_1}$ a paraméterek. Feltesszük, hogy ismerjük ennek egy megoldását, azaz tudjuk, hogy az $a = (a_1, a_2, \ldots, a_{n_1})$ paraméter esetén $b = (b_1, b_2, \ldots, b_{n_2})$ egy megoldás, vagyis f(a, b) = 0. A fenti egyenletrendszerből szeretnénk kifejezni az $y_1, y_2, \ldots, y_{n_2}$ ismeretleneket az $x_1, x_2, \ldots, x_{n_1}$ paraméterek függvényében. A 2. Tétel szerint ez minden a-hoz közeli x esetén megtehető, ha f folytonosan deriválható és $\partial_2 f(a, b) \neq 0$; a megoldások egyértelműek és x-nek folytonosan deriválható függvényei.

$\mathbb{R}^2 \to \mathbb{R}$ típusú függvények feltételes szélsőértékei

Vannak olyan problémák, ahol egy $f \in \mathbb{R}^2 \to \mathbb{R}$ függvény szélsőértékét kell keresni, de csak bizonyos egyenletet kielégítő pontok jöhetnek számításba.

1. Példa: Keressük meg az x + 2y - 4 = 0 egyenletű egyenesnek azt a pontját, amely legközelebb van az origótól!

A probléma a következő módon modellezhető:

Keressük meg az

$$f(x,y) := x^2 + y^2$$
 $((x,y) \in \mathbb{R}^2)$

függvény minimumát a

$$H_g := \left\{ (x,y) \in \mathbb{R}^2 \mid g(x,y) = 0 \right\} \quad \text{halmazon, ahol} \quad g(x,y) := x + 2y - 4 \quad \left((x,y) \in \mathbb{R}^2 \right).$$

2. Példa: Határozzuk meg az egységsugarú körbe írt téglalapok között a maximális területű téglalapot!

A probléma a következő módon modellezhető:

Keressük meg az

$$f(x,y) := 4xy$$
 $((x,y) \in \mathbb{R}^2)$

függvény maximumát a

$$H_g := \left\{ (x, y) \in \mathbb{R}^2 \mid g(x, y) = 0 \right\}$$

halmazon, ahol

$$g(x,y) := x^2 + y^2 - 1$$
 $((x,y) \in \mathbb{R}^2).$

z = f(x, y) A g(x, y) = 0

g(x,y) = 0

Általános feladat: Adott

- $U \subset \mathbb{R}^2$ nyílt halmaz,
- $f: U \to \mathbb{R}$ (célfüggvény) és
- $g: U \to \mathbb{R}$ (feltételfüggvény).

Keressük az f függvény szélsőértékeit a

$$H_g := \{(x, y) \in U \mid g(x, y) = 0\}$$

halmazon, azaz határozzuk meg az $f|_{H_g}$ függvény szélsőértékeit!

A problémát az ábrákon szemléltetjük:

1. Definíció. Legyen $U \subset \mathbb{R}^2$ nyílt halmaz. Tegyük fel, hogy $f,g:U \to \mathbb{R}$ adott függvények és

$$a \in H_g := \{(x, y) \in U \mid g(x, y) = 0\} \neq \emptyset.$$

Azt mondjuk, hogy az f függvénynek a g = 0 feltétel mellett az a pontban

• feltételes abszolút maximuma van, ha

$$\forall x \in H_g \colon f(x) \le f(a),$$

• feltételes lokális maximuma van, ha

$$\exists K(a) \subset U, \ \forall x \in K(a) \cap H_q \colon f(x) \le f(a).$$

A minimummal kapcsolatban hasonló fogalmakat kapunk, ha a fentiekben a \leq egyenlőtlenség helyett \geq -t írunk. A korábbiakkal összhangban használjuk f(a)-ra a feltételes abszolút (lokális) maximum (minimum), illetve szélsőérték, továbbá a-ra a feltételes abszolút (lokális) maximumhely (minimumhely), illetve szélsőértékhely elnevezést is.

Megjegyzés. Az $f|_{H_g} \in \mathbb{R}^2 \to \mathbb{R}$ függvény lokális szélsőértékeire nem alkalmazhatók az előző előadáson megfogalmazott tételek, hiszen a $H_g \subset \mathbb{R}^2$ halmaznak nincsenek belső pontjai. Ezért úgy értelmeztük a feltételes lokális szélsőértékhelyeket, hogy minden feltételes abszolút szélsőértékhely egyben lokális szélsőértékhely is legyen az f függvénynek.

7

- 4. Tétel (Szükséges feltétel a feltételes lokális szélsőértékre). Tegyük fel, hogy
 - a) $U \subset \mathbb{R}^2$ nyílt halmaz és az $f, g: U \to \mathbb{R}$ függvényeknek léteznek a parciális deriváltjaik, és ezek folytonosak az U halmazon $(f, g \in C^1(U))$,
 - b) $az(x_0, y_0) \in U$ pontban az f függvénynek a g = 0 feltételre vonatkozóan feltételes lokális szélsőértéke van,
 - c) $g'(x_0, y_0) = (\partial_1 g(x_0, y_0) \ \partial_2 g(x_0, y_0)) \neq (0 \ 0).$

Ekkor van olyan $\lambda \in \mathbb{R}$ valós szám (ezt **Lagrange-szorzónak** szokás nevezni), hogy az

$$\mathcal{L}(x,y) := f(x,y) + \lambda g(x,y) \qquad ((x,y) \in U)$$

Lagrange-függvénynek (x_0, y_0) stacionárius pontja, azaz

$$\mathcal{L}'(x_0, y_0) = (\partial_x \mathcal{L}(x_0, y_0) \quad \partial_y \mathcal{L}(x_0, y_0)) = (0 \quad 0).$$

Bizonyítás. A c) feltétel alapján feltételezhető, hogy $\partial_2 g(x_0, y_0) \neq 0$, ellenkező esetben $\partial_1 g(x_0, y_0) \neq 0$, és így a bizonyítás további részében x és y szerepe felcserélhető. Ha $\partial_2 g(x_0, y_0) \neq 0$, akkor a g függvény az (x_0, y_0) pontra vonatkozóan teljesíti az implicitfüggvény-tétel feltételeit, hiszen $g(x_0, y_0) = 0$ és az a) feltétel alapján g folytonosan deriválható U-n. Ezért van olyan $\varphi : U^* := K(x_0) \to V$ folytonosan deriválható függvény, amire $g(x, \varphi(x)) = 0$ $(x \in U^*)$ teljesül, és

(*)
$$\varphi'(x) = -\frac{\partial_1 g(x, \varphi(x))}{\partial_2 g(x, \varphi(x))} \qquad (x \in U^*).$$

Legyen

$$h(x) := f(x, \varphi(x))$$
 $(x \in U^*).$

A $g(x,\varphi(x))=0$ $(x\in U^*)$ feltételből következik, hogy $\{(x,\varphi(x))\in U\mid x\in U^*\}\subset H_g$ így a b) feltétel alapján igaz, hogy a h függvénynek lokális szélsőértéke van az x_0 pontban. Ezért az összetett függvényre vonatkozó deriválási szabály szerint

$$0 = h'(x_0) = \partial_1 f(x_0, \varphi(x_0)) + \partial_2 f(x_0, \varphi(x_0)) \varphi'(x_0) = \partial_1 f(x_0, y_0) + \partial_2 f(x_0, y_0) \varphi'(x_0),$$

hiszen $\varphi(x_0) = y_0$. De (*) miatt $\varphi'(x_0) = -\partial_1 g(x_0, y_0)/\partial_2 g(x_0, y_0)$. Ha ezt behelyettesítjük a fenti egyenletbe, akkor átrendezés után azt kapjuk, hogy

$$\partial_1 f(x_0, y_0) \partial_2 g(x_0, y_0) - \partial_2 f(x_0, y_0) \partial_1 g(x_0, y_0) = 0.$$

Legyen $\lambda := -\partial_2 f(x_0, y_0)/\partial_2 g(x_0, y_0)$. Ekkor

$$\partial_{y}\mathcal{L}(x_0, y_0) = \partial_2 f(x_0, y_0) + \lambda \partial_2 g(x_0, y_0) = 0.$$

Másrészt, (**) miatt

$$\partial_2 f(x_0, y_0) = -\lambda \partial_2 g(x_0, y_0) \implies \partial_1 f(x_0, y_0) \partial_2 g(x_0, y_0) - \left(-\lambda \partial_2 g(x_0, y_0)\right) \partial_1 g(x_0, y_0) = 0.$$

 $\partial_2 g(x_0, y_0)$ -vel való egyszerűsítés után

$$\partial_x \mathcal{L}(x_0, y_0) = \partial_1 f(x_0, y_0) + \lambda \partial_1 g(x_0, y_0) = 0.$$

Megjegyzés. A feltételes szélsőértékek vizsgálatára alkalmazható módszer kitalálója Joseph Louis Lagrange (1736–1813) francia matematikus. Ezért a szóban forgó módszert Lagrangeszorzók (vagy Lagrange-féle multiplikátorok) módszerének nevezzük.

 $\mathcal{L}'(x_0, y_0) = \begin{pmatrix} 0 & 0 \end{pmatrix}$ csak szükséges, de nem elégséges feltétel a feltételes lokális szélsőértékre.

5. Tétel (A feltételes lokális szélsőértékre vonatkozó másodrendű elégséges feltétel). $Tegy\"{u}k~fel,~hogy$

- a) $U \subset \mathbb{R}^2$ nyílt halmaz és az $f, g: U \to \mathbb{R}$ függvényeknek léteznek a másodrendű parciális deriváltjaik és ezek folytonosak az U halmazon $(f, g \in C^2(U))$,
- b) $az(x_0, y_0) \in U$ pontban a $\lambda_0 \in \mathbb{R}$ számmal teljesül a szükséges feltétel.

Tekintsük ezzel a λ_0 számmal az

$$\mathcal{L}(x,y) := f(x,y) + \lambda_0 g(x,y) \qquad ((x,y) \in U)$$

Lagrange-függvényt. Legyen

$$D(x_0, y_0; \lambda_0) := \det \begin{pmatrix} 0 & \partial_1 g(x_0, y_0) & \partial_2 g(x_0, y_0) \\ \partial_1 g(x_0, y_0) & \partial_{11} \mathcal{L}(x_0, y_0) & \partial_{12} \mathcal{L}(x_0, y_0) \\ \partial_2 g(x_0, y_0) & \partial_{21} \mathcal{L}(x_0, y_0) & \partial_{22} \mathcal{L}(x_0, y_0) \end{pmatrix}.$$

Ekkor,

- $D(x_0, y_0; \lambda_0) > 0 \implies (x_0, y_0)$ feltételes lokális **maximumhely**,
- $D(x_0, y_0; \lambda_0) < 0 \implies (x_0, y_0)$ feltételes lokális **minimumhely**.

Bizonyítás. Tekintsük az előző tételben definiált

$$h(x) := f(x, \varphi(x))$$
 $(x \in U^*).$

függvényt! Feladatunk megállapítani, milyen típusú szélsőértéke van h-nak az x_0 pontban. Mivel $f,g\in C^2(U)$, ezért $h\in C^2(U^*)$. Így a valós-valós függvényeknél tanult, a lokális szélsőértékre vonatkozó másodrendű elégséges feltétel alkalmazható. A szélsőérték típusa $h''(x_0)$ előjelétől függ.

Az áttekinthetőség kedvért a parciális deriváltakat indexel fogjuk jelölni (pl. $f_1' = \partial_1 f$). Először

$$h' = f_1' + f_2' \varphi'$$
 és $\varphi' = -\frac{g_1'}{g_2'}$ \Longrightarrow $h' = f_1' - f_2' \frac{g_1'}{g_2'}$

minden $(x, \varphi(x))$ pontban. Ha még egyszer deriválunk, akkor

$$h'' = f_{11}'' + f_{12}''\varphi' - (f_{21}'' + f_{22}''\varphi')\frac{g_1'}{g_2'} - f_2'\frac{(g_{11}'' + g_{12}''\varphi')g_2' - g_1'(g_{21}'' + g_{22}''\varphi')}{(g_2')^2} =$$

$$= \frac{1}{(g_2')^2} \left[f_{11}''(g_2')^2 - f_{12}''g_1'g_2' - f_{21}''g_1'g_2' + f_{22}''(g_1')^2 - f_2'\left(g_{11}''g_2' - g_{12}''g_1' - g_{21}''g_1' + \frac{g_{22}''(g_1')^2}{g_2'}\right) \right]$$

minden $(x, \varphi(x))$ pontban, következésképpen az $(x_0, \varphi(x_0)) = (x_0, y_0)$ pontban is igaz. Ebben a pontban a szükséges feltételből tudjuk, hogy

$$\partial_x \mathcal{L} = f_1' + \lambda_0 g_1' = 0$$
 és $\partial_y \mathcal{L} = f_2' + \lambda_0 g_2' = 0.$

Ezért itt f_2' kiküszöbölhető a $-f_2' = \lambda_0 g_2'$ helyettesítéssel. Így

$$h''(x_0) =$$

$$=\frac{1}{(g_2')^2}\bigg[f_{11}''(g_2')^2-f_{12}''g_1'g_2'-f_{21}''g_1'g_2'+f_{22}''(g_1')^2+\lambda_0\Big(g_{11}''(g_2')^2-g_{12}''g_1'g_2'-g_{21}''g_1'g_2'+g_{22}''(g_1')^2\Big)\bigg]$$

a (x_0, y_0) pontban. $f_{12}'' = f_{21}''$ és $g_{12}'' = g_{21}''$ miatt ebben a pontban

$$h''(x_0) = \frac{1}{(g_2')^2} \Big[f_{11}''(g_2')^2 - 2f_{12}''g_1'g_2' + f_{22}''(g_1')^2 + \lambda_0 \Big(g_{11}''(g_2')^2 - 2g_{12}''g_1'g_2' + g_{22}''(g_1')^2 \Big) \Big] =$$

$$= \frac{1}{(g_2')^2} \Big[\Big(f_{11}'' + \lambda_0 g_{11}'' \Big) (g_2')^2 - 2\Big(f_{12}'' + \lambda_0 g_{12}'' \Big) g_1'g_2' + \Big(f_{22}'' + \lambda_0 g_{22}'' \Big) (g_1')^2 \Big] =$$

$$= \frac{1}{(\partial_2 g)^2} \Big(\partial_{11} \mathcal{L} \cdot (\partial_2 g)^2 - 2 \cdot \partial_{12} \mathcal{L} \cdot \partial_1 g \cdot \partial_2 g + \partial_{22} \mathcal{L} \cdot (\partial_1 g)^2 \Big).$$

Elemi számolásokkal könnyen ellenőrizhető, hogy a tételben szereplő determináns értéke a zárójelben szereplő kifejezés —1-szerese. Ezért

$$h''(x_0) = -\frac{1}{\left(\partial_2 g(x_0, y_0)\right)^2} D(x_0, y_0; \lambda_0),$$

amiből az állítás már következik.

A módszer alkalmazása:

- 1. Ellenőrizzük az $f,g\in C^1(U)$ feltételt, és nézzük meg melyik $(x,y)\in H_g$ pontok esetén teljesül a g'(x,y)=0 egyenlőség! Ezekre a pontokra a módszer nem alkalmazható.
- 2. Képezzük az

$$\mathcal{L}(x,y) := f(x,y) + \lambda g(x,y) \qquad ((x,y) \in U)$$

Lagrange függvényt!

3. Az x, y, λ ismeretlenekre megoldjuk az alábbi egyenletrendszert:

$$\partial_x \mathcal{L}(x,y) = \partial_x f(x,y) + \lambda \partial_x g(x,y) = 0,$$

$$\partial_y \mathcal{L}(x,y) = \partial_y f(x,y) + \lambda \partial_y g(x,y) = 0,$$

$$g(x,y) = 0.$$

Csak az így kapott (x_0, y_0) stacionárius pontok lehetnek feltételes lokális szélsőértékhelyek.

4. Ha $f, g \in C^2(U)$, akkor minden lehetséges (x_0, y_0) stacionárius pontban a hozzájuk tartozó λ_0 -val képezzük a $D(x_0, y_0; \lambda_0)$ determinánst, és az így kapott érték előjele alapján (ha nem nulla) eldöntjük, hogy az (x_0, y_0) pont feltételes lokális maximum- vagy minimumhely.

Megjegyzések.

1. A fentiekben két változó és egy egyenlőségi feltétel mellett vizsgáltuk a feltételes szélsőérték-problémát. Az eredmények kiterjeszthetők arra az esetre is, amikor az f célfüggvény n-változós $(2 < n \in \mathbb{N})$, és ekkor az egyetlen g = 0 feltétel helyett akár több $g_1 = 0$, $g_2 = 0, \ldots, g_m = 0$ egyenlőségi feltételt is előírhatunk, ahol $1 \le m < n$. Ekkor a Lagrangefüggvény

$$\mathcal{L}(x,y) := f(x,y) + \sum_{k=1}^{m} \lambda_k g_k(x,y) \qquad ((x,y) \in U).$$

Ham>1,akkor több λ szorzó szerepel a Lagrange-függvényben, ami igazolja a "Lagrange-szorzók" elnevezésben szereplő többes számot.

- 2. A gyakorlat felvet számos olyan szélsőérték-problémát, amelyekben a változókra tett korlátozó feltételek nem egyenlőségekkel, hanem egyenlőtlenségekkel adottak. Az ilyen típusú problémákat (lineáris) programozási feladatoknak hívják. Vizsgálatukhoz nem csak az analízis, hanem a lineáris algebra eszköztárát is fel kell használni.
- 3. Ha a szükséges feltétel bizonyításában szereplő $\varphi:U^*\to\mathbb{R}$ implicit függvényt meg tudjuk határozni, és a teljes H_g halmaz pontjaiban az f függvény értékei kifejezhetők a

$$h(x) := f(x, \varphi(x)) \qquad (x \in U^*)$$

valós-valós függvénnyel, akkor a kétváltozós függvényekre vonatkozó feltételes szélsőérték-probléma visszavezethető a h egyváltozós függvény szélsőérték-problémájára.

4. A *feltételes abszolút szélsőértékhelyek* megkeresése egy "egyszerűbb" feladathoz vezethet, ha a

$$H_g := \{(x, y) \in U \mid g(x, y) = 0\}$$

halmaz korlátos és zárt. Ebben az esetben a Weierstrass-tétel garantálja a feltételes abszolút szélsőértékhelyek létezését, amelyek a Lagrange-függvény stacionárius pontjai lesznek. Így "kevés számú" stacionárius pont esetében elegendő a függvényértékük összehasonlításával eldönteni, hogy közülük melyik a feltételes abszolút maximum és minimum.

Példa: Tekintsük az

$$f(x,y) := xy, \quad g(x,y) := \frac{x^2}{8} + \frac{y^2}{2} - 1 \qquad ((x,y) \in \mathbb{R}^2)$$

függvényeket, és határozzuk meg az f feltételes lokális szélsőértékeit a g=0 feltétel mellett!

A szükséges feltételre vonatkozó tétel feltételei teljesülnek, mert $f,g\in C^1(\mathbb{R}^2)$ és

$$g'(x,y) = (\partial_1 g(x,y) \quad \partial_2 g(x,y)) = \begin{pmatrix} \frac{x}{4} & y \end{pmatrix} \neq \begin{pmatrix} 0 & 0 \end{pmatrix}$$

minden $H_g:=\left\{(x,y)\in\mathbb{R}^2\;\middle|\;g(x,y)=0\right\}$ -beli pontban, hiszen ha $\left(\frac{x}{4}\;\;y\right)=\left(0\;\;0\right)$, akkor x=0 és y=0, de ekkor $g(x,y)=-1\neq 0$.

A feladat Lagrange-függvénye:

$$\mathcal{L}(x,y) := f(x,y) + \lambda g(x,y) = xy + \lambda \left(\frac{x^2}{8} + \frac{y^2}{2} - 1\right) \qquad \left((x,y) \in \mathbb{R}^2\right).$$

A feltételes lokális szélsőértékre vonatkozó szükséges feltétel az x, y, λ ismeretlenekre az alábbi egyenletrendszert adja:

$$\partial_1 \mathcal{L}(x, y) = y + \lambda \frac{x}{4} = 0,$$

$$\partial_2 \mathcal{L}(x, y) = x + \lambda y = 0,$$

$$g(x, y) = \frac{x^2}{8} + \frac{y^2}{2} - 1 = 0.$$

A második egyenletből $x=-\lambda y$ adódik. Ezt beírjuk az első egyenletbe:

$$0 = y + \lambda \frac{-\lambda y}{4} \implies 0 = y \left(1 - \frac{\lambda^2}{4}\right) \implies \lambda^2 = 4 \implies \lambda = \pm 2,$$

hiszen $y \neq 0$ (ha y = 0, akkor x = 0 és így $g(x, y) = g(0, 0) = -1 \neq 0$).

i) Ha $\lambda = 2$, akkor x = -2y. Ekkor a harmadik egyenletből:

$$\frac{(-2y)^2}{8} + \frac{y^2}{2} - 1 = 0 \implies y^2 = 1 \implies y = 1, \ x = -2, \quad P_1(-2, 1), \\ y = -1, \ x = 2, \quad P_2(2, -1).$$

ii) Ha $\lambda = -2$, akkor x = 2y. Ekkor a harmadik egyenletből:

$$\frac{(2y)^2}{8} + \frac{y^2}{2} - 1 = 0 \implies y^2 = 1 \implies y = 1, x = 2, P_3(2, 1), y = -1, x = -2, P_4(-2, -1).$$

Az elégséges feltétel: minden $(x,y) \in \mathbb{R}^2$ pontban

$$\partial_1 g(x,y) = \frac{x}{4}, \qquad \partial_2 g(x,y) = y;$$

$$\partial_{11} \mathcal{L}(x,y) = \frac{\lambda}{4}, \qquad \partial_{12} \mathcal{L}(x,y) = 1 = \partial_{21} \mathcal{L}(x,y), \qquad \partial_{22} \mathcal{L}(x,y) = \lambda.$$

Mivel $x = -\lambda y$, így

$$D(x, y; \lambda) = \det \begin{pmatrix} 0 & x/4 & y \\ x/4 & \lambda/4 & 1 \\ y & 1 & \lambda \end{pmatrix} = \det \begin{pmatrix} 0 & -\lambda y/4 & y \\ -\lambda y/4 & \lambda/4 & 1 \\ y & 1 & \lambda \end{pmatrix} = \frac{1}{16} \cdot \det \begin{pmatrix} 0 & -\lambda y & 4y \\ -\lambda y & \lambda & 4 \\ y & 1 & \lambda \end{pmatrix} = \frac{1}{16} \cdot \det \begin{pmatrix} 0 & -\lambda y & 4y \\ -\lambda y & \lambda & 4 \\ y & 1 & \lambda \end{pmatrix} = \frac{y^2}{16} \cdot \det \begin{pmatrix} 0 & -\lambda & 4 \\ -\lambda & \lambda & 4 \\ 1 & 1 & \lambda \end{pmatrix} = \frac{y^2}{16} \cdot \det \begin{pmatrix} 0 & -\lambda & 4 \\ 0 & 2\lambda & 4 + \lambda^2 \\ 1 & 1 & \lambda \end{pmatrix} = \frac{y^2}{16} \cdot \det \begin{pmatrix} -\lambda & 4 \\ 2\lambda & 4 + \lambda^2 \end{pmatrix} = \frac{\lambda y^2}{16} \cdot \left(-(4 + \lambda^2) - 2 \cdot 4 \right) = -\lambda \cdot \frac{y^2(\lambda^2 + 12)}{16}.$$

 $\underline{P_1(-2,1), \lambda = 2}: D(-2,1;-2) < 0, \text{ ezért a } P_1(-2,1) \text{ pont } \text{feltételes lokális minimumhely.}$ $\underline{P_2(2,-1), \lambda = 2}: D(2,-1;-2) < 0, \text{ ezért a } P_2(2,-1) \text{ pont } \text{feltételes lokális minimumhely.}$ $\underline{P_3(2,1), \lambda = -2}: D(2,1;-2) > 0, \text{ ezért a } P_3(2,1) \text{ pont } \text{feltételes lokális maximumhely.}$ $\underline{P_4(-2,-1), \lambda = -2}: D(-2,-1;-2) > 0, \text{ ezért a } P_4(-2,-1) \text{ pont } \text{feltételes lokális maximumhely.}$ $\underline{P_4(-2,-1), \lambda = -2}: D(-2,-1;-2) > 0, \text{ ezért a } P_4(-2,-1) \text{ pont } \text{feltételes lokális maximumhely.}$

Megjegyzés. Az

$$\frac{x^2}{8} + \frac{y^2}{2} = 1$$

egyenletű görbe pontjai az ábrán látható ellipszist alkotják. Ezekből a pontokból álló H_g halmaz korlátos és zárt az \mathbb{R}^2 térben. Mivel f folytonos, így a Weierstrass-tétel szerint felveszi a maximumát és a minimumát ezen a halmazon. A feltételes abszolút

maximum- és minimumhely csak a fenti négy pontból kerülhet ki, továbbá

$$f(P_1) = f(P_2) = -2$$
 és $f(P_3) = f(P_4) = 2$.

Ezért

 $\underline{P_1(-2,1)}$, és $\underline{P_2(2,-1)}$: feltételes abszolút minimumhely.

 $\underline{P_3(2,1)}$, és $P_4(-2,-1)$: feltételes abszolút maximumhely.