SISTEMAS OPERACIONAIS

Aula 2
Fundamentos do SO
Arquitetura de Computadores
Estruturas de dados

Prof. Dr. Aldo Díaz Instituto de Informática Universidade Federal de Goiás aldo.diaz@ufg.br

Objetivos

- 1. Descrever a arquitetura básica de sistemas de computador.
- 2. Revise os principais componentes de um sistema operacional.

Sistemas operacionais - Definições

Estrutura do sistema de computador

- Os sistemas computacionais podem ser divididos em quatro componentes:
 - Usuários
 - Programas Aplicativos
 - Sistema operacional
 - Hardware

Figure 1.1 Abstract view of the components of a computer system.

O que é um sistema operacional (SO)?

- Definição: Um sistema operacional é um software ou programa que:
- A. Gerencia o hardware de um computador
- B. Atua como intermediário entre usuários e o hardware do computador
- C. Fornece o ambiente dentro quais programas são executados

• Q: Quais dispositivos e aplicativos podem ter um sistema operacional?

Figure 1.1 Abstract view of the components of a computer system.

Objetivos do sistema operacional

- 1. Executar programas de usuários e facilitar a resolução de problemas do usuário.
- 2. Tornar o sistema de computador conveniente para uso.
- 3. Utilizar o hardware do computador de maneira eficiente.

SO da perspectiva do usuário: Requisitos em laptop, celular, incorporado, sistemas autônomos.

Sistema operacional da perspectiva do sistema

Definição: SO é o único programa que roda o tempo todo no computador, geralmente chamado núcleo [kernel].

- O SO é um alocador de recursos: tempo de CPU, espaço de memória, espaço de armazenamento, dispositivos de E/S
 - Gerencia recursos para resolver uma solicitação do usuário
 - Organiza solicitações para uso eficiente de recursos
- SO é um programa de controle
 - Controla a execução de programas para evitar erros e uso indevido do computador

Sistemas de Computador

Organização de Sistemas de Computadores

- Operação do sistema de computador: Vários dispositivos (CPUs, controladores de dispositivos) trocar dados através de um barramento comum usando uma memória compartilhada [shared memory].
 - Execução simultânea de CPUs e dispositivos
- 3 aspectos principais da operação do sistema de computador
 - Interrupções
 - Estrutura de armazenamento
 - Estrutura de E/S

Figure 1.2 A typical PC computer system.

Interrupções

- Um sistema operacional é acionado por interrupções: interrupções de HW ou SW
 - O sistema operacional preserva o estado da CPU armazenando registros e o contador do programa
 - A interrupção transfere o controle para a rotina de serviço de interrupção geralmente, através do comando de interrupção vetor, que contém os endereços de todas as rotinas de serviço
 - Segmentos separados de código determinam que ação deve ser tomada para cada tipo de interromper
- Uma armadilha ou exceção é uma interrupção gerada por software causada por um usuário solicitação a um serviço do sistema operacional por meio de uma chamada de sistema [system call] ou por um erro (por exemplo, divisão por zero ou acesso à memória inválido)

Estrutura de armazenamento

- Memória principal: mídia de armazenamento que a CPU pode acessar diretamente
 - Acesso aleatório ([Random access]/memória RAM), normalmente volátil
- Armazenamento secundário extensão da memória principal que fornece grandes volumes não voláteis capacidade de armazenamento
 - Discos rígidos pratos rígidos de metal ou vidro cobertos com gravação magnética material
 - A superfície do disco é logicamente dividida em trilhas [tracks/faixas], que são subdivididas em setores [sectors]
 - Discos-de-estado sólido mais rápidos que os discos rígidos, não voláteis, tornando-se mais populares

Estrutura de E/S

 Uma grande parte do código do sistema operacional é dedicada ao gerenciamento de E/S para satisfazer:

- Confiabilidade e desempenho
- A natureza variada dos dispositivos
- Interromper E/S orientado por E/S é adequado para pequenos detalhes de dados
 - Uma interrupção por byte (baixa -E/S de dispositivos de velocidade)
- O acesso direto à memória (DMA) é usado para dados em massa (por exemplo, armazenamento NVS)
 - Uma interrupção por bloco (E/S de dispositivos de alta velocidade)

Arquitetura de Sistema de Computadores

Arquitetura de Sistema de Computadores

- Sistemas de processador único com um único núcleo
- Sistemas multiprocessadores crescendo em uso e importância
 - Dois ou mais processadores, cada um com uma CPU de núcleo único
 - Também conhecidos como sistemas paralelos
 - Os processadores compartilham o barramento e, eventualmente, a memória, o relógio e os periféricos
 - As vantagens incluem:
 - 1. Maior rendimento mais computação em menos tempo
 - 2. Maior confiabilidade degradação elegante ou tolerância a falhas

Arquiteturas de Multiprocessamento

Núcleo Único [single-core]

Multinúcleo [multicore]

Figure 1.9 A dual-core design with two cores on the same chip.

Estrutura do Sistema Operacional

Estrutura do Sistema Operacional

- Multiprogramação: Um único programa não pode manter a CPU e os dispositivos de E/S ocupados o tempo todo
 - O SO organiza muitos processos na memória simultaneamente e escolhe um para executar
 - Aumenta a utilização da CPU executando muitos programas ou processos
- Multitarefa: extensão lógica da multiprogramação
 - A CPU alterna processos frequentemente, proporcionando aos usuários um tempo de resposta rápido (interativo)
 - Muitos processos na memória ao mesmo tempo exigem gerenciamento de memória
 - Se vários processos estiverem prontos para serem executados ao mesmo tempo, precisamos de escalonamento de CPU
 - Se os processos não cabem na memória, a troca os move para dentro e para fora para execução
 - A memória virtual permite a execução de processos maiores que a memória física real

Operação de Modo Duplo e Multimodo

- A operação em modo-duplo permite que o sistema operacional proteja a si mesmo e a outros componentes do sistema
 - Modo de usuário e modo kernel
 - Bit de modo fornecido ao hardware
 - Indica o modo atual: kernel (0) ou usuário (1)
 - Algumas instruções designadas como privilegiadas são executáveis apenas no modo kernel para proteção
 - MS Windows, Unix e Linux usam o recurso de modo duplo para maior proteção do sistema operacional
- As chamadas do sistema permitem que o usuário execute tarefas reservadas para o sistema operacional

Transição de Modo Duplo Via Chamada de Sistema (trap)

Tópicos do seminário

Ambientes de Computação Modernos

- Móvel/Incorporado
- SO com integração GPT
- Virtualização
- Nuvem
- IoT (AWS, Domótica,...)

Estruturas de Dados do Kernel

Estruturas de Dados do Kernel - Listas

Muitos semelhantes às estruturas de dados de programação padrão

Lista vinculada individualmente

Lista duplamente vinculada

Lista vinculada circular

```
data
                                   data
                                                                    null
data
data null
                                                                      null
                                                            data
data
                data
                                 data
                                                            data
```

Estruturas de Dados do Kernel - Pilhas e Filas

- Uma stack ("pilha") é uma estrutura de dados ordenada sequencialmente que usa o princípio LIFO (último a entrar, primeiro a sair) para adicionar e remover itens, o que significa que o último item colocado em uma pilha é o primeiro item removido.
 - Exemplo: chamadas de função empurram os parâmetros da pilha, variáveis locais e endereço de retorno; retornar da chamada de função retira esses itens da pilha
- Uma queue ("fila") é uma estrutura de dados ordenada sequencialmente que utiliza o princípio FIFO (primeiro a entrar, primeiro a sair): os itens são removidos de uma fila na ordem em que foram inseridos.
 - Exemplo: as tarefas que aguardam execução em uma CPU disponível são frequentemente organizadas em filas ou os trabalhos enviados para uma impressora são normalmente impressos na ordem em que foram enviados

Estruturas de Dados do Kernel - Árvores

• Árvore de pesquisa binária

esquerda <= direita

- O desempenho da pesquisa é O(n)
- Árvore de pesquisa binária balanceadaO (log n)

Estruturas de Dados do Kernel – Função Hash e Bitmap

 A função hash recebe dados como entrada, executa uma operação numérica nos dados e retorna um valor numérico. Este valor numérico pode então ser usado como um índice para recuperar rapidamente os dados

- Bitmap sequência de n dígitos binários representando o status de n itens
 - Função: Representar a disponibilidade de um grande número de recursos

Estruturas do Sistema Operacional

Uma Visão dos Serviços do Sistema Operacional

Serviços do Sistema Operacional

- Os sistemas operacionais fornecem um ambiente para execução de programas e serviços para programas e usuários
- Um conjunto de serviços do sistema operacional fornece funções úteis ao usuário:
 - Interface de usuário Quase todos os sistemas operacionais possuem uma interface de usuário (UI).
 - Varia entre Linha de Comando (CLI), Interface Gráfica do Usuário (GUI), ote ("Batch")
 - Execução do programa O sistema deve ser capaz de carregar um programa na memória e executá-lo, finalizando a execução, normalmente ou anormalmente (indicando erro)
 - Operações de E/S Um programa em execução pode exigir E/S, o que pode envolver um arquivo ou um dispositivo de E/S

Serviços do Sistema Operacional (Cont.)

- Manipulação do sistema de arquivos O sistema de arquivos é de particular interesse. Os programas precisam ler e gravar arquivos e diretórios, criá-los e excluí-los, pesquisá-los, listar informações de arquivos e gerenciar permissões.
- Comunicações Os processos podem trocar informações, no mesmo computador ou entre computadores em uma rede
 - As comunicações podem ser via memória compartilhada ou através de passagem de mensagens (pacotes movidos pelo sistema operacional)
- Detecção de erros o sistema operacional precisa estar constantemente ciente de possíveis erros
 - Pode ocorrer no hardware da CPU e da memória, em dispositivos de E/S, no programa do usuário
 - Para cada tipo de erro, o SO deve tomar as medidas apropriadas para garantir uma computação correta e consistente
 - Os recursos de depuração podem melhorar muito as habilidades do usuário e do programador para usar o sistema com eficiência

Serviços do Sistema Operacional (Cont.)

- Existe outro conjunto de funções do sistema operacional para garantir a operação eficiente do próprio sistema por meio do compartilhamento de recursos
 - Alocação de recursos Quando vários usuários ou vários trabalhos são executados simultaneamente, os recursos devem ser alocados para cada um deles
 - Muitos tipos de recursos ciclos de CPU, memória principal, armazenamento de arquivos, dispositivos de E/S.
 - Contabilidade Para acompanhar quais usuários usam, quanto e quais tipos de recursos do computador
 - Proteção e segurança Os proprietários de informações armazenadas em um sistema de computador multiusuário ou em rede podem querer controlar o uso dessas informações; processos simultâneos não devem interferir uns nos outros
 - A proteção envolve garantir que todo o acesso aos recursos do sistema seja controlado
 - A segurança do sistema contra pessoas de fora requer autenticação do usuário, estendendo-se à defesa de dispositivos de E/S externos contra tentativas de acesso inválidas

API – Chamada do Sistema – Relacionamento do SO

Estrutura do Sistema Operacional

1. Arquitetura Monolítica

Tudo na implementação do Kernel (ex.: Linux, UNIX, Windows):

- Agendamento, sistema de arquivos, rede, drivers de dispositivos, gerenciamento de memória e muito mais.
- Enorme quantidade de funcionalidades a serem combinadas em um único espaço de endereço
- Descrição:
 - Programa principal que invoca o procedimento de serviço solicitado.
 - Um conjunto de procedimentos de serviço que realizam as chamadas do sistema.
 - Um conjunto de procedimentos utilitários que auxiliam os procedimentos de serviço.

Estrutura do Sistema Operacional – UNIX e Windows

system-call interface to the kernel					
socket	plain file	cooked block interface	raw block interface	raw tty Interface	cooked TTY
protocols	file system				line discipline
network Interface	block-device driver			character-device driver	
the hardware					

Figure C.11 4.3 BSD kernel I/O structure.

Figure B.1 Windows block diagram.

Estrutura do Sistema Operacional

2. Arquitetura Microkernel:

- Apenas algumas funções essenciais para o kernel: espaços de endereço, comunicação entre processos (IPC) e escalonamento básico.
- Outros serviços do sistema operacional são fornecidos por processos executados em modo de usuário em um espaço de endereço separado
- Simplifica a implementação e proporciona flexibilidade.

Figure 2.15 Architecture of a typical microkernel.

Estrutura do Sistema Operacional – Android OS

- API Android para desenvolvimento Java
 - .class bytecode
- Aplicativos Java são compilados para rodar em uma máquina virtual chamada Android RunTime ART
 - Os arquivos .dec são executáveis
- Android permite desenvolvimento em interface nativa Java (JNI)
 - Ignora a máquina virtual Android
 - Permite acesso a recursos específicos de HW, como frameworks para desenvolvimento de navegadores web (webkit), suporte a banco de dados (SQLite) e suporte a rede (sockets)
- O HW físico é abstraído na HAL (camada de abstração de hardware)
 - Abstrai hardware, como sensores (câmera, chip GPS, etc.).
- Bionic é a biblioteca C padrão para Android (ocupa menos espaço que a glibc)

Figure 2.18 Architecture of Google's Android.

SO – Gerenciamento de Recursos

Gerenciamento de Processos

- Um processo é um programa em execução
- O sistema operacional fornece os recursos que um programa precisa para realizar sua tarefa
 - CPU, memória, E/S, arquivos
 - Dados de inicialização (por exemplo, fornecer o URL para um navegador)
 - O encerramento do processo exige a recuperação de quaisquer recursos reutilizáveis
- Processo de única thread tem um contador de programa que especifica a localização da próxima instrução a ser executada.
 - O processo executa instruções sequencialmente, uma de cada vez, até a conclusão
- O processo multithread possui um contador de programa por processo
- Normalmente, o sistema tem muitos processos (processos do usuário e do sistema operacional) em execução simultaneamente nas CPUs
 - Simultaneidade através da multiplexação das CPUs entre os processos/threads

Atividades de Gerenciamento de Processos

O sistema operacional é responsável pelas seguintes atividades relacionadas ao gerenciamento de processos:

- Criação e exclusão de processos de usuário e de sistema
- Agendamento de processos e threads nas CPUs
- Suspender e retomar processos
- Fornecer mecanismos para sincronização de processos
- Fornecer mecanismos para comunicação de processos

Gerenciamento de Memória

- Para executar um programa suas instruções devem estar na memória
- Os dados necessários ao programa devem estar na memória
- O gerenciamento de memória determina o que está na memória e quando
 - Otimizando a utilização da CPU e a resposta do computador aos usuários
- Atividades de gerenciamento de memória
 - Acompanhar quais partes da memória estão sendo usadas atualmente e qual processo as está utilizando
 - Alocação e desalocação de espaço de memória conforme necessário
 - Decidir quais processos e dados mover para dentro e para fora da memória

Gerenciamento do Sistema de Arquivos

- O sistema operacional fornece visão lógica e uniforme do armazenamento de informações
 - Abstrai propriedades físicas para unidade de armazenamento lógico arquivo ("file")
 - Cada mídia é controlada por dispositivo (ou seja, unidade de disco, unidade de fita)
 - Propriedades variáveis incluem velocidade de acesso, capacidade, taxa de transferência de dados, método de acesso (sequencial ou aleatório)
- Gerenciamento do sistema de arquivos
 - Arquivos organizados em <u>diretórios</u>
 - Controle de acesso de usuários para determinar quem pode acessar o quê
 - As atividades do SO incluem
 - Suporta manipulação de arquivos e diretórios (criação, exclusão)
 - Mapeamento de arquivos para armazenamento em massa
 - Tarefas de backup: salve arquivos em mídia de armazenamento estável (não volátil)

Gerenciamento de Armazenamento em Massa

- Geralmente discos usados para armazenar dados que não cabem na memória principal ou dados que devem ser mantidos por um "longo" período de tempo
- Atividades do SI (sistema operacional)
 - Gerenciamento de espaço livre
 - Alocação de armazenamento
- Algum armazenamento n\u00e3o precisa ser r\u00e1pido
 - Armazenamento óptico, fita magnética
 - Ainda deve ser gerenciado por sistema operacional ou aplicativos

Gerenciamento de Subsistema de E/S

- Objetivo: ocultar peculiaridades dos dispositivos de hardware do usuário
- Subsistema de E/S responsável por:
- Interface geral de driver de dispositivo
- Drivers para dispositivos de hardware específicos
- Gerenciamento de memória de E/S, incluindo bufer/buffering (armazenamento temporário de dados enquanto eles estão sendo transferidos), cache/caching (armazenamento de partes de dados em armazenamento mais rápido para desempenho), spooling (a sobreposição da saída de um processo com a entrada de outro processo)

Resumo

Resumo

Definição: SO é o único programa que roda o tempo todo no computador, geralmente chamado núcleo [kernel].

- Os sistemas operacionais (SO) estão presentes em todos os tipos de computação moderna sistemas
- Foram introduzidos os conceitos fundamentais do SO:
 - Características principais
 - Tipos e estrutura
- O sistema operacional é fundamental para o gerenciamento eficiente de recursos da computação recursos de hardware