Let \mathcal{D} be a definable set. Let n be the minimal integer such that $\mathcal{D}=\varphi(\mathcal{U};a)$ for some $\varphi(x;z)\in L$ and $a\in\mathcal{U}^n$. We claim that, if c is any other tuple such that $\mathcal{D}=\varphi(\mathcal{U};c)$, then $\operatorname{rng} a=\operatorname{rng} c$.

Given *a* and *c* as above, assume for a contradiction that rng $a \neq \text{rng } c$.

Let
$$c = \langle c_0, \dots, c_{n-1} \rangle$$
 and $a = \langle a_0, \dots, a_{n-1} \rangle$.

Let $I \subseteq n$ be the set of those i < n such that $a_i \in \operatorname{rng} c$.

Let $J \subseteq n$ be the set of those j < n such that $c_j \in \operatorname{rng} a$.

Clearly
$$k := |J| = |I| < n$$
 and $b := a_{\uparrow I} = c_{\uparrow J}$.

Let u and v be two distinct tuples of variables of length k. Write (au) and (cv) for tuples of length n comprising parameters and variables such that $u = (au)_{\restriction I}$ and $v = (cv)_{\restriction J}$ and $a_{\restriction n \sim I} = (au)_{\restriction n \sim I}$ and $c_{\restriction n \sim J} = (cv)_{\restriction n \sim J}$.

$$\forall u,v \; \forall x \; [\varphi(x;au) \leftrightarrow \varphi(x;cv)]$$

Let y be a tuple of length k