

NETWORK PROTOCOLS AND SECURITY

Dr. G. Omprakash

Assistant Professor, ECE, KLEF

Aim of the session

To discuss error correction methods used in networks

Learning Outcomes

At the end of this session, you should be able to:

- Understand the concept of error correction
- Able to apply error Correction methods

Error Correction

1 Error Correction

Error Correction

- A frame consists of k data (i.e., message) bits and r redundant (i.e., check) bits
- The number of bit positions in which two codewords differ is called the **Hamming distance**
- The Hamming distance can easily be found if we apply the XOR operation on the two words and count the number of 1s in the result
- The Hamming distance d(000,011) is 2
- The Hamming distance d(10101, 11110) is 3

Min Hamming Distance for error detection

Datawords	Codewords	Datawords	Codewords
00	000	10	101
01	011	11	110

- Observe: The Hamming distance between any two codewords in the table is 2
- Sender encodes the dataword 01 as 011 and sends it to the receiver
 - Receiver receives 011 ⇒ valid codeword. Extract 01

 - 000 (two-bits are corrupted) is received, valid codeword
 ⇒ extract 00
 - Hamming distance 2 ⇒ upto 1 error can only be detected !!

Error Correction

To guarantee the **detection** of up to s errors in all cases, the minimum Hamming distance in a block code must be $d_{min} = s + 1$.

To guarantee the **correction** of up to s errors in all cases, the minimum Hamming distance in a block code must be $d_{min}=2s+1.$

Question: Given k, what is the lower limit on the number of check bits (r) needed to correct single errors?

$$(k+r+1)\leq 2^r$$

Number of data bits (m)	Number of redundancy bits (r)	Total bits (m+r)
1	2	3
2	3	5
3	3	6
4	3	7
5	4	9
6	4	10
7	4	11

Hamming code:

• Check bit positions: 1,2,4,8,16...

• Data bit positions: 3,5,6,7,9,...

Out of three binary bits we select positions with 1 in Least significant bit for computing r_1 i.e 1,3,5,7 7(11<u>1</u>) 1(001)6(110)5(10<u>1</u>)4(100) 3(011) 2(010) D D D r4 D r2 r1 0

r1----1,3,5,7

_, 1, 0, 1----- \Rightarrow must satisfy even parity as per the assumption. As the count of 3,5,7 position is giving even number of 1's the r1=0

r2----2,3,6,7

_, 1, 1, 1---- \rightarrow must satisfy even parity as per the assumption. As the count of 3,6,7 position is not satisfying even number of 1's therefore r2=1

Error Correction

r3----4,5,6,7

_, 0, 1, 1-----> must satisfy even parity as per the assumption. As the count of 5,6,7 position is satisfying even number of 1's therefore r4=0

Therefore, final codeword is ----- 1100110 and sender will send the final code word to receiver.


```
765 432 1

1100110

913 912 911

010 2

011 3

100 4

101 5

110 6

912 \Rightarrow 2,3,6,7

913 \Rightarrow 4,5,6,7
```

Ferror in M2
Received 765 432 1
Code 1100100

 $C_1 \Rightarrow 0$ | Entrem $C_2 \Rightarrow 1$ | 010=2 $C_4 \Rightarrow 0$

Correction

Envoy in position 5

Rx Code = 1110110

Envor in position 3 765 432 1 Rx Code = 1100010 $C_1 \rightarrow 1, 3, 5, 7$ Every = 1 $C_2 \rightarrow 2, 3, 6, 7$ = 0 $C_{4} \rightarrow 4, 5, 6, 7$ = 1

101=5

 $C_1 = 1$ $C_2 = 1$ $C_4 = 0$ Eavron at hosn of $C_1 = 3$

Correction

Griven data

11110011

Encode using every porty Hamming code

A+31+1 < 291

R=8 => 8+4+1 = 24=16.

Total bits = 12

91, -> 1,3,5,7,9,11

912-> 2,3,6,7,10,11

9/4->4,5,6,7,12

91 -> 8,9,10,11,12

1011

-11 1100 12

Acknowledge various sources for the images. Thankyou