Automatizační cvičení

A4	309. Dynast2 – Modelování regulačního obvodu			
Tomsová Nela			1/11	Známka:
16.3.2022		23.3.2022		Odevzdáno:

Zadání:

Vytvořte model regulačního obvodu z bloků pro PID regulátor a zpoždění 1. řádu a statický systém 2. řádu s koeficienty podle zadaných rovnic. Odsimulujte přechodové charakteristiky bloků a odečtěte z nich koeficienty (k₀, k₋₁, k₁, Tu, Tn, s₀). Odsimulujte FCHVKR otevřeného regulačního obvodu a vyhodnoť te stabilitu. Propojte obvod do uzavřené regulační smyčky a odsimulujte Z-N metodou (zjistěte k_{KRIT}, T_{KRIT}, vypočtěte k₀, k-1 a k₁). Odsimulujte optimální regulační pochod. Porovnejte kvalitu před a po optimalizaci integrálním kritériem kvality.

a)
$$1.5 \cdot u' + u = 2.5 \cdot e + 0.5$$
 fe dt $+ 1.3 \cdot e'$ b) $0.02 \cdot y'' + 0.2 \cdot y' + 0.5 \cdot y = u$

b)
$$0.02 \cdot y'' + 0.2 \cdot y' + 0.5 \cdot y = u$$

Postup:

- 1. Seznámení se s pracovištěm.
- 2. Upravení diferenciálních rovnic a vypočítání koeficientů.

$$1.5 \cdot u' + u = 2.5 \cdot e$$

 $1.5 \cdot u' = 2.5 \cdot e - u$ /:1.5 => $u' = 1.67e - 0.67u$

$$1.5 \cdot u' + u = 0.5 \cdot fe dt$$

 $1.5 \cdot u' = 0.5 \cdot fe dt - u$ /:1.5

$$=> u' = 0.33$$
 fe dt $-0.67u$

D:

$$1.5 \cdot u' + u = 1.3 \cdot e'$$

 $1.5 \cdot u' = 1.3 \cdot e' - u$

$$=> u' = 0.87e' - 0.67u$$

b) Systém:

$$\begin{array}{lll} 0.02 \cdot y\text{``+} 0.2 \cdot y\text{`+} 0.5 \cdot y = u \\ 0.02 \cdot y\text{``=} u - 0.2 \cdot y\text{`-} 0.5 \cdot y & /:0.02 & => \underline{y\text{``=} 50u - 10y\text{`} - 25y} \end{array}$$

c) Zjednodušený PID (P a I složky jsou ideální):

$$0 \cdot u' + 0 \cdot u = 2.5 \cdot e + 0.5 \int e \, dt + 1.3 \cdot e'$$

 $0 = 2.5 \cdot e + 0.5 \int e \, dt + 1.3 \cdot e'$

- 3. Schémata daných rovnic vypracujeme v grafickém editoru (výběrem potřebných prvků z knihovny a následným propojením) a nadefinujeme jejich parametry.
- 4. Uzavřený regulační obvod uděláme tak, že propojíme zjednodušený PID regulátor se systémem do série + propojíme zpětnou vazbu.
- 5. Pro optimalizovaný systém použijeme místo PID nezjednodušený P regulátor (v předchozím zapojení) a pomocí Z-N metody měníme koeficienty až do trvalých kmitů.
- 6. Poté pomocí těchto koeficientů vypočítáme optimální koeficienty a nastavíme na modelu (*výpočty v závěru).
- 7. Pro otevřený regulační obvod jen rozpojíme zpětnou vazbu
- 8. Spouštíme analýzu daných schémat a zobrazujeme grafy pro potřebné charakteristiky.
- 9. Ukládáme si snímky obrazovky.

Schéma řešení:

a) P regulátor:

D regulátor:

PI regulátor:

PD regulátor:

b) Systém:

Střední průmyslová škola a Vyšší odborná škola, Chomutov, Školní 50, příspěvková organizace

Stře

d) Optimalizace (Z-N metoda):

e) Optimalizace (vypočítané hodnoty):

f) Otevřená regulační smyčka:

Graf:

a) P regulátor:

Přechodová charakteristika:

$$k_0 = 2,5$$
 $T = 2,5 s$

I regulátor:

Přechodová charakteristika:

$$k_{-1} = 1,4$$

D regulátor:

Přechodová charakteristika:

$$k_1 = T_D = 1,7$$

PI regulátor:

Přechodová charakteristika:

 $k_{-1} = 1,4$

PD regulátor:

Přechodová charakteristika:

$$k_0 = 2,5$$

$$T = 2$$

PID regulátor:

Přechodová charakteristika:

b) Systém:

FCHVKR:

FCHVLS:

c) Uzavřená regulační smyčka:

d) Optimalizace (Z-N metoda):

e) Optimalizace (vypočítané hodnoty):

f) Otevřená regulační smyčka:

Přechodová charakteristika:

FCHVKR:

Závěr:

Úlohu jsem stihla udělat celou a bez větších obtíží. Regulační pochod uzavřeného regulačního systému nešel ustálit – po překmitech stále stoupal (viz obrázek).

Po použití Z-N metody u optimalizace jsem si určila $k_{KRIT} = 7,45$ a T_{KRIT} (periodu) = 1,66-0,60 = 1,06. Z toho jsem si vypočítala:

- 1. Proporcionální zesílení $k_0 = 0.59 \cdot k_{KRIT} = 4.3955$
- 2. Integrační konstanta $k_{-1} = 0.5 / T_{KRIT} = 0.472$
- 3. Derivační konstantu $k_1 = 0.12 \cdot T_{KRIT} = 0.1272$

Nakonec jsem vyhodnotila stabilitu regulačního obvodu a určila amplitudovou a fázovou bezpečnost.

$$1/m = 0.5$$
 $\alpha = 15^{\circ}$

V porovnání regulace před a po optimalizaci je vidět, že se sice zvýšil počet překmitů, ale zato se průběh by schopný ustálit