Resumo Teórico Aula 02 Data Science Experience

Matheus H. P. Pacheco

May 6, 2025

Contents

1	Introdução à Estatística				
	1.1	População, Amostra e Parâmetros			
	1.2	Estatística Descritiva			
	1.3	Estatística Inferencial			
	1.4	Fluxo de Trabalho em Ciência de Dados			
	1.5	Papel da Probabilidade			
2	Tipos de Variáveis				
	2.1	Escalas de Mensuração			
	2.2	Variáveis Qualitativas			
	2.3	Variáveis Quantitativas			
	2.4	Implicações para Ciência de Dados			
3	Medidas de Tendência Central				
	3.1	3.1 Esperança Matemática e Média Aritmética			
	3.2	3.2 Minimização do Erro Quadrático Médio			
	3.3	3.3 Mediana			
	3.4	3.4 Moda			
	3.5	3.5 Outras Médias			
	3.6	3.6 Relevância em Ciência de Dados			
4	Medidas de Dispersão				
	4.1	Variância			
	4.2	Desvio Padrão			
	4.3	Coeficiente de Variação			
	4.4	Amplitude e Quartis			
	4.5	Relevância em Ciência de Dados			
5	Distribuições de Probabilidade				
	5.1	Variáveis Aleatórias e Suas Funções			
	5.2	Principais Distribuições			
	5.3	Separação Teórica			
	5.4	Noções de Aplicação em Ciência de Dados			

6	Testes de Hipóteses				
	6.1	Elementos Fundamentais	9		
	6.2	Erros em Testes	10		
	6.3	Teste z para Uma Média (Conhecido)	10		
	6.4	Teste t para Uma Média (Desconhecido)	10		
	6.5	Teste Qui–Quadrado para Variância	10		
	6.6	Teste de Proporções	10		
	6.7	p-Valor e Região Crítica	10		
	6.8	Relação com Intervalos de Confiança	11		
	6.9	Exemplo de Dedução	11		
	6.10	Notas de Aplicação em Ciência de Dados	11		
7	Correlação e Regressão Linear				
	7.1	Covariância e Correlação de Pearson	11		
	7.2	Regressão Linear Simples	12		
	7.3	Noções em Ciência de Dados	12		
8	Intervalos de Confiança				
	8.1	Princípio Geral	12		
	8.2	Intervalo para a Média com σ Conhecido	13		
	8.3	Intervalo para a Média com σ Desconhecido			
	8.4	Derivação Intuitiva	13		
	8.5	Tamanho de Amostra e Precisão			
	8.6	Noções para Ciência de Dados	13		

1 Introdução à Estatística

A estatística é a ciência que fornece ferramentas para lidar com a incerteza inerente aos dados. Sua origem remonta ao século XVII, com James Bernoulli e Abraham de Moivre, que estabeleceram fundamentos da teoria da probabilidade. Em um contexto moderno, a estatística se divide em dois grandes ramos:

1.1 População, Amostra e Parâmetros

- População (N): conjunto completo de elementos de interesse (ex.: todos os clientes de uma empresa).
- Amostra (n): subconjunto da população selecionado para análise. Deve ser representativo para inferir sobre a população.
- Parâmetros: características da população, como média μ e variância σ^2 , geralmente desconhecidos.
- Estatísticas: estimativas calculadas na amostra, como média amostral \bar{x} e variância amostral s^2 .

1.2 Estatística Descritiva

Consiste em resumir e visualizar dados brutos para entender sua estrutura:

- Medidas de tendência central: média, mediana, moda.
- Medidas de dispersão: variância, desvio padrão, coeficiente de variação.
- Representações gráficas: histogramas, boxplots, diagramas de dispersão.

Essas ferramentas auxiliam na detecção de *outliers*, assimetrias e padrões iniciais.

1.3 Estatística Inferencial

Baseia-se em modelos probabilísticos e na teoria da amostragem para extrapolar conclusões da amostra para a população:

- Estimativa pontual e intervalar (intervalos de confiança).
- Testes de hipótese para verificar suposições sobre parâmetros (ex.: média, proporção).
- Erro amostral e nível de confiança $(1-\alpha)$.

A inferência utiliza o *Teorema do Limite Central* e a *Lei dos Grandes Números* para garantir a normalidade assintótica de estimadores.

1.4 Fluxo de Trabalho em Ciência de Dados

No pipeline de Data Science, a estatística fundamenta as etapas iniciais:

- 1. Coleta de Dados: definição da amostragem e planos de experimento.
- 2. Limpeza e Pré-processamento: identificação de valores ausentes e anomalias.

- 3. **Análise Exploratória (EDA)**: aplicação de estatística descritiva para formular hipóteses.
- 4. Modelagem: escolha de modelos estatísticos (regressão, séries temporais, classificação).
- 5. Validação e Interpretação: uso de testes de hipótese e intervalos de confiança para avaliar desempenho.

1.5 Papel da Probabilidade

A probabilidade é a base teórica da estatística:

$$P(A) = \frac{\text{casos favoráveis}}{\text{casos possíveis}}, \quad P(A \cup B) = P(A) + P(B) - P(A \cap B),$$

definindo modelos para variáveis aleatórias e distribuindo crenças sobre resultados incertos.

Em seguida, aprofundaremos nos conceitos de variáveis aleatórias, esperança e variância, essenciais para todas as análises estatísticas.

2 Tipos de Variáveis

As variáveis são atributos medidos em cada observação e determinam quais métodos estatísticos e técnicas de modelagem podem ser aplicados.

2.1 Escalas de Mensuração

Nominal: categorias sem ordem intrínseca. Ex.: gênero, cor dos olhos. Não permite operações aritméticas.

Ordinal: categorias com ordem, mas sem distância fixa entre níveis. Ex.: níveis de escolaridade (fundamental, médio, superior).

Intervalar: valores numéricos com diferença significativa, mas sem ponto zero absoluto. Ex.: temperatura em °C.

Razão (Ratio): como intervalar, porém com zero absoluto significativo. Ex.: peso, altura, renda.

Cada escala impõe restrições sobre estatísticas válidas (ex.: média aritmética só faz sentido em escalas intervalar e razão).

2.2 Variáveis Qualitativas

- Nominais: apenas identificação de categoria.
 - Representação em ciência de dados: codificação one-hot, label encoding.
 - Análise: frequências absolutas e relativas, tabelas de contingência, teste qui-quadrado de independência.
- Ordinais: mantêm ordenação, sem garantias de intervalos iguais.
 - Representação: ordinal encoding, escalonamento de scores.
 - Análise: mediana, percentis; testes não paramétricos como Mann-Whitney, Kruskal-Wallis.

2.3 Variáveis Quantitativas

Discretas: assumem valores inteiros contáveis (ex.: número de vendas).

- Modelos frequentes: distribuição Binomial, Poisson.
- \bullet Estatísticas: média, variância, teste z e t (se atendidos pressupostos).

Contínuas: podem assumir qualquer valor em um intervalo (ex.: altura, tempo de resposta).

- Modelos frequentes: Normal, Exponencial, Gamma.
- Estatísticas: média, variância, desvio padrão; testes de normalidade (Shapiro-Wilk, Kolmogorov-Smirnov).

2.4 Implicações para Ciência de Dados

- **Pré-processamento:** transformação de variáveis qualitativas em *features* numéricas, normalização/ padronização de variáveis contínuas.
- Escolha de Modelos: regressão linear requer variáveis numéricas e pressupostos de normalidade e homocedasticidade; árvores de decisão lidam naturalmente com misturas de qualitativas e quantitativas.
- Avaliação de Performance: métricas variam conforme o tipo de variável (RMSE para contínuas, acurácia/F1 para categóricas).

3 Medidas de Tendência Central

As medidas de tendência central buscam representar um valor típico de uma variável, seja em uma amostra ou em uma população.

3.1 3.1 Esperança Matemática e Média Aritmética

Para uma variável aleatória contínua ou discreta, o valor esperado (esperança) define o centro de massa da distribuição:

$$E[X] = \begin{cases} \sum_{i} x_i P(X = x_i), & X \text{ discreta,} \\ \int_{-\infty}^{\infty} x f_X(x) dx, & X \text{ continua,} \end{cases}$$

Em amostras, estima-se E[X] pela média amostral:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

Propriedades:

- Não viesado: $E[\bar{X}] = E[X] = \mu$.
- Variância da média: $Var(\bar{X}) = \frac{\sigma^2}{n}$.
- Linearidade do operador: E[aX + b] = aE[X] + b.

[&]quot;'latex

3.2 3.2 Minimização do Erro Quadrático Médio

A média amostral surge como minimizadora do Erro Quadrático Médio (EQM):

$$EQM(a) = \frac{1}{n} \sum_{i=1}^{n} (x_i - a)^2.$$

Para encontrar o valor a que minimiza este critério, derivamos em relação a a e igualamos a zero:

$$\frac{d}{da} EQM(a) = -\frac{2}{n} \sum_{i=1}^{n} (x_i - a) = 0 \implies a = \bar{x}.$$

3.3 Mediana

A mediana é definida como o valor m que minimiza a soma de desvios absolutos:

$$\min_{m} \sum_{i=1}^{n} |x_i - m|.$$

Para uma amostra ordenada $x_{(1)} \leq \cdots \leq x_{(n)}$,

$$Mediana = \begin{cases} x_{\left(\frac{n+1}{2}\right)}, & n \text{ impar,} \\ \frac{x_{\left(\frac{n}{2}\right)} + x_{\left(\frac{n}{2}+1\right)}}{2}, & n \text{ par.} \end{cases}$$

Robustez: A mediana é menos sensível a outliers que a média.

3.4 3.4 Moda

A moda é o valor que ocorre com maior frequência em um conjunto de dados. Para variáveis contínuas, define-se:

$$\hat{x}_{\text{mode}} = \arg\max_{x} f_X(x),$$

onde $f_X(x)$ é a densidade de probabilidade.

3.5 Outras Médias

• Média Ponderada:

$$\mu_w = \frac{\sum_{i=1}^n w_i x_i}{\sum_{i=1}^n w_i},$$

usada quando diferentes observações têm importâncias distintas.

• Média Geométrica:

$$\left(\prod_{i=1}^n x_i\right)^{1/n},\,$$

adequada para taxas de crescimento e índices.

• Média Harmônica:

$$\frac{n}{\sum_{i=1}^{n} \frac{1}{x_i}},$$

6

usada em médias de velocidades ou razões.

3.6 Relevância em Ciência de Dados

Em Data Science, as medidas de tendência central são fundamentais em:

- Imputação de Dados: média ou mediana para preencher valores ausentes.
- Análise Exploratória (EDA): compreender o centro da distribuição de features.
- Pré-processamento: padronização (subtrair média e dividir por desvio) antes de modelagem.

"

4 Medidas de Dispersão

As medidas de dispersão quantificam o espalhamento dos dados em relação à tendência central.

4.1 Variância

A variância mede o quadrado da distância média entre cada observação e o centro da distribuição.

Variância Populacional:

$$\sigma^2 = E[(X - \mu)^2] = \int_{-\infty}^{\infty} (x - \mu)^2 f_X(x) dx,$$

onde $\mu = E[X]$ e $f_X(x)$ é a densidade de X.

Variância Amostral:

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2},$$

com o denominador n-1 para garantir que $E[s^2] = \sigma^2$ (corrige viés).

4.2 Desvio Padrão

O desvio padrão é a raiz quadrada da variância, retornando à mesma unidade dos dados:

$$\sigma = \sqrt{\sigma^2}, \quad s = \sqrt{s^2}.$$

4.3 Coeficiente de Variação

O coeficiente de variação é uma medida relativa de dispersão:

$$CV = \frac{s}{\bar{x}} \times 100\%,$$

útil para comparar a variabilidade de conjuntos com médias diferentes.

4.4 Amplitude e Quartis

- Amplitude (Range): diferença entre o maior e o menor valor: $R = x_{(n)} x_{(1)}$.
- Intervalo Interquartil (IQR): $IQR = Q_3 Q_1$, onde Q_1 e Q_3 são os quartis primeiro e terceiro.
- Boxplot: representação gráfica do IQR, mediana e potenciais outliers.

4.5 Relevância em Ciência de Dados

- Detecção de Outliers: usar IQR e z-scores ($z_i = (x_i \bar{x})/s$) para identificar observações atípicas.
- Normalização e Padronização: aplicação de z-score para algoritmos sensíveis à escala.
- Análise de Dispersion em Features: avaliar homocedasticidade e variância explicada em PCA.

5 Distribuições de Probabilidade

As distribuições de probabilidade descrevem como a probabilidade se distribui sobre os possíveis valores de uma variável aleatória, fornecendo a base para modelagem e inferência estatística.

5.1 Variáveis Aleatórias e Suas Funções

• Variável Aleatória Discreta: assume valores em um conjunto enumerável.

$$P(X = k), \quad \sum_{k} P(X = k) = 1.$$

• Variável Aleatória Contínua: assume valores em um intervalo contínuo.

$$f_X(x)$$
, $\int_{-\infty}^{\infty} f_X(x) dx = 1$,

onde $f_X(x)$ é a função densidade de probabilidade (FDP).

5.2 Principais Distribuições

Normal (Gaussiana)

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), \quad E[X] = \mu, \text{ Var}(X) = \sigma^2.$$

Usada em erro de medida, ruído em sinais, e como aproximação via Teorema do Limite Central.

Binomial

$$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad E[X] = np, \ Var(X) = np(1-p).$$

Modela número de sucessos em n ensaios independentes com probabilidade p.

Poisson

$$P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}, \quad E[X] = \lambda, \text{ Var}(X) = \lambda.$$

Aproxima binomial para n grande, p pequeno; aplicada em contagem de eventos raros.

Exponencial

$$f(x) = \lambda e^{-\lambda x}, \quad x \ge 0, \quad E[X] = \frac{1}{\lambda}, \text{ Var}(X) = \frac{1}{\lambda^2}.$$

Modela tempos de espera entre eventos de um processo de Poisson.

5.3 Separação Teórica

- Função Massa vs. Densidade: distingue-se soma (discreta) de integral (contínua).
- Momentos: $E[X^r] = \sum_k k^r P(X = k)$ ou $\int x^r f_X(x) dx$.
- Função de Distribuição Acumulada (FDA):

$$F_X(x) = P(X \le x) = \begin{cases} \sum_{k \le x} P(X = k), & \text{discreta,} \\ \int_{-\infty}^x f_X(t) dt, & \text{continua.} \end{cases}$$

5.4 Noções de Aplicação em Ciência de Dados

- Naive Bayes: seleciona a distribuição de cada feature (Bernoulli, Multinomial, Gaussiana) para estimar $P(X \mid Y)$.
- Inferência Bayesiana: combina distribuição *a priori* e verossimilhança para obter a posteriori.
- Modelos de Contagem: Poisson e suas generalizações (Negativa Binomial) para dados de contagem.
- Análise de Sobrevivência: distribuições exponencial e Weibull para modelar tempos até um evento.
- Teste de Aderência: Kolmogorov-Smirnov e QQ-plots para verificar ajuste de dados a uma distribuição teórica.

6 Testes de Hipóteses

Os testes de hipótese são procedimentos formais para avaliar suposições sobre parâmetros populacionais com base em dados amostrais.

6.1 Elementos Fundamentais

- Hipótese Nula (H_0) : afirmação inicial, geralmente de "sem efeito" ou "igualdade".
- Hipótese Alternativa (H_1) : contrária a H_0 , indica "efeito" ou "diferença".
- Nível de Significância (α): probabilidade máxima de rejeitar erroneamente H_0 (erro Tipo I).

- Região Crítica: valores de estatística de teste que levam à rejeição de H_0 .
- Estatística de Teste (T): função dos dados que, sob H_0 , possui distribuição conhecida.
- p-valor: $P(T \ge t_{\text{obs}} \mid H_0)$ (ou duas-faces, $P(|T| \ge |t_{\text{obs}}|)$).
- Decisão: rejeita-se H_0 se p-valor $< \alpha$; caso contrário, não se rejeita.

6.2 Erros em Testes

Tipo I: rejeitar H_0 sendo ela verdadeira. Probabilidade: α .

Tipo II: não rejeitar H_0 sendo H_1 verdadeira. Probabilidade: β .

Potência: $1 - \beta$, chance de detectar H_1 quando verdadeira.

6.3 Teste z para Uma Média (Conhecido)

$$T = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1) \text{ sob } H_0 : \mu = \mu_0.$$

- Região crítica (unilateral à direita): $T>z_{1-\alpha}$.
- p-valor: $1 \Phi(t_{\text{obs}})$, com Φ CDF da normal padrão.

6.4 Teste t para Uma Média (Desconhecido)

$$T = \frac{\bar{X} - \mu_0}{S/\sqrt{n}} \sim t_{n-1}$$
 sob $H_0: \mu = \mu_0$,

onde S^2 é a variância amostral. Usa-se $t_{1-\alpha,\,n-1}$ para definir a região crítica.

6.5 Teste Qui-Quadrado para Variância

$$T = \frac{(n-1) S^2}{\sigma_0^2} \sim \chi_{n-1}^2 \text{ sob } H_0 : \sigma^2 = \sigma_0^2.$$

Rejeita-se H_0 se T estiver nos caudas da χ^2 .

6.6 Teste de Proporções

Para proporção amostral \hat{p} em n observações:

$$T = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} \sim N(0, 1) \quad (n \text{ grande, sob } H_0 : p = p_0).$$

6.7 p-Valor e Região Crítica

$$p\text{-valor} = P(T \ge t_{\text{obs}} \mid H_0) \quad \Longleftrightarrow \quad p\text{-valor} = \int_{t_{\text{obs}}}^{\infty} f_{T|H_0}(t) \, dt.$$

10

A região crítica é $T>t_{1-\alpha}$ (unilateral) ou $|T|>t_{1-\alpha/2}$ (bicaudal).

6.8 Relação com Intervalos de Confiança

Rejeitar $H_0: \theta = \theta_0$ em um teste bilateral ao nível α equivale a θ_0 não pertencer ao intervalo de confiança de $100(1-\alpha)\%$ para θ .

6.9 Exemplo de Dedução

Para o teste z:

$$H_0: \mu = \mu_0, \quad T = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}.$$

Sabemos $E[\bar{X}] = \mu_0$, $Var(\bar{X}) = \sigma^2/n$, logo

$$E[T] = 0, \quad Var(T) = 1.$$

Assim $T \sim N(0,1)$ e podemos determinar $z_{1-\alpha}$ tal que

$$P(T > z_{1-\alpha}) = \alpha.$$

6.10 Notas de Aplicação em Ciência de Dados

- Avaliar diferença de métricas (ex.: acurácia, tempo médio) entre modelos.
- Testar melhora significativa após ajuste de hiperparâmetros.
- Verificar independência de features com teste qui-quadrado antes de usar modelos paramétricos.

7 Correlação e Regressão Linear

A correlação e a regressão linear são ferramentas estatísticas para quantificar e modelar relações entre duas variáveis.

7.1 Covariância e Correlação de Pearson

A covariância entre X e Y mede como as variáveis variam conjuntamente:

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])] = \iint (x - \mu_X)(y - \mu_Y) f_{X,Y}(x,y) dx dy.$$

Na prática, estima-se pela amostra:

$$Cov(X,Y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}).$$

A correlação de Pearson normaliza essa covariância para o intervalo [-1, 1]:

$$r = \frac{\operatorname{Cov}(X, Y)}{s_X s_Y},$$

onde s_X e s_Y são os desvios-padrão amostrais. - r=1: correlação linear positiva perfeita. - r=-1: correlação linear negativa perfeita. - r=0: ausência de relação linear.

7.2 Regressão Linear Simples

O modelo ajusta uma reta

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

minimizando o Erro Quadrático dos resíduos:

$$SSE(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2.$$

Derivando em relação a β_0 e β_1 e igualando a zero, obtemos o sistema

$$\frac{\partial SSE}{\partial \beta_1} = 0, \quad \frac{\partial SSE}{\partial \beta_0} = 0,$$

cuja solução é

$$\hat{\beta}_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}, \quad \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \,\bar{x}.$$

7.3 Noções em Ciência de Dados

- Seleção de Features: usar correlação para identificar multicolinearidade.
- Interpretação de $\hat{\beta}_1$: efeito médio de uma unidade de variação em X sobre Y.
- Análise de Resíduos: checar normalidade e homocedasticidade dos ε_i .
- Qualidade de Ajuste: índice $R^2 = 1 \frac{\text{SSE}}{\text{SST}}$ e teste F.

8 Intervalos de Confiança

Os intervalos de confiança (IC) fornecem um intervalo plausível para um parâmetro populacional com um grau de confiança $1-\alpha$. Em vez de estimar apenas um valor pontual, o IC expressa a incerteza da estimativa.

8.1 Princípio Geral

Seja $\hat{\theta}$ um estimador pontual de θ (ex.: \bar{X} para a média). Suponha que, para amostras grandes, a distribuição amostral de $\hat{\theta}$ seja aproximadamente normal:

$$\hat{\theta} \sim N(\theta, \operatorname{Var}(\hat{\theta})).$$

Então

$$\frac{\hat{\theta} - \theta}{\sqrt{\operatorname{Var}(\hat{\theta})}} \approx N(0, 1).$$

Para um nível de confiança $1 - \alpha$, temos

$$P\left(-z_{\alpha/2} \le \frac{\theta - \theta}{\sigma_{\hat{\theta}}} \le z_{\alpha/2}\right) = 1 - \alpha,$$

onde $z_{\alpha/2}$ é o quantil padrão da normal.

8.2 Intervalo para a Média com σ Conhecido

Neste caso, $Var(\bar{X}) = \sigma^2/n$, daí

$$IC_{1-\alpha}(\mu): \bar{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}} = \left[\bar{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \; \bar{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right].$$

Interpretação: em longas repetições de amostras, $100(1-\alpha)\%$ dos IC construídos conterão o valor verdadeiro μ .

8.3 Intervalo para a Média com σ Desconhecido

Quando σ é desconhecido, usamos a variância amostral S^2 e a distribuição t de Student:

$$IC_{1-\alpha}(\mu): \bar{X} \pm t_{\alpha/2, n-1} \frac{S}{\sqrt{n}} = \left[\bar{X} - t_{\alpha/2, n-1} \frac{S}{\sqrt{n}}, \bar{X} + t_{\alpha/2, n-1} \frac{S}{\sqrt{n}}\right],$$

onde $t_{\alpha/2,\,n-1}$ é o quantil da t-Student com n-1 graus de liberdade.

8.4 Derivação Intuitiva

- 1. A distribuição de \bar{X} tem média μ e desvio padrão σ/\sqrt{n} (ou S/\sqrt{n}).
- 2. Padronizando, obtemos uma variável com distribuição conhecida (N(0,1)) ou t).
- 3. Selecionamos os pontos simétricos $\pm z_{\alpha/2}$ (ou $\pm t_{\alpha/2}$) que deixam área α nas duas caudas.
- 4. Desfazendo a padronização, encontramos os limites do intervalo.

8.5 Tamanho de Amostra e Precisão

Para garantir uma margem de erro E ao nível $1-\alpha$:

$$E = z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \implies n = \left(\frac{z_{\alpha/2} \sigma}{E}\right)^2.$$

Quando σ não é conhecido, usa-se uma estimativa inicial de S.

8.6 Noções para Ciência de Dados

- Validação de Modelos: construão de IC para parâmetros de regressão para avaliar a estabilidade das previsões.
- Comparação de Grupos: usar IC de diferença de médias ou proporções para verificar se a diferença observada é estatisticamente relevante.
- Métricas de Performance: IC para métricas (ex.: acurácia, AUC) via bootstrap para capturar incerteza.