```
In [18]: all <- read.table("hw9t3v0.txt")
  colnames(all) <- c('y', 'x1', 'x2', 'x3', 'x4', 'x5')
  all[1:10,]</pre>
```

у	x1	x2	х3	x4	x5
1.894	1.059	5.074	0.172	2.134	44.277
1.996	1.123	15.074	0.188	2.389	63.779
1.805	2.016	7.695	0.203	3.337	63.008
1.998	1.390	1.316	0.133	3.255	42.985
1.996	1.111	12.508	0.180	2.464	58.507
1.768	1.300	10.594	0.133	2.208	56.031
2.000	1.299	8.195	0.117	2.910	52.984
1.856	1.750	15.555	0.148	2.645	71.427
1.593	1.122	2.348	0.195	3.916	41.664
1.336	1.376	0.961	0.141	3.449	40.332

```
In [31]: n <- 400
q <- 100
train <- all[1:n,]
test <- all[400:500,]
```

После считывания данных и приведения их более-менее приемлимый вид, проведём отбор признаков

```
In [20]: model <- lm(y \sim x1 + x2 + x3 + x4 + x5, data = train) summary(model)
```

```
Call: lm(formula = y \sim x1 + x2 + x3 + x4 + x5, data = train)
```

Residuals:

```
Min 1Q Median 3Q Max
-1.4923 -0.1956 0.1431 0.2785 0.6240
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
                      0.123226 13.217 < 2e-16 ***
(Intercept) 1.628636
                                 -4.863 1.67e-06 ***
           -0.367433
                       0.075554
x1
                                 -2.835 0.00482 **
x2
           -0.021002
                       0.007408
            0.648054
                       0.587072
                                 1.104 0.27032
xЗ
x4
           -0.066484
                       0.020512
                                 -3.241 0.00129 **
                                 4.422 1.27e-05 ***
            0.014326
                       0.003240
x5
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 0.3962 on 394 degrees of freedom

Multiple R-squared: 0.07473, Adjusted R-squared: 0.06299 F-statistic: 6.364 on 5 and 394 DF, p-value: 1.065e-05

Третий признак не является значимым для регресии, исключим его из модели

1 of 3 20.04.2017 02:22

```
In [21]: perfect_model <- lm(y ~ model$coefficients[2]x1 + x2 + x4 + x5, data = train</pre>
         summary(perfect_model)
         Call:
         lm(formula = y \sim x1 + x2 + x4 + x5, data = train)
         Residuals:
                      10 Median
                                       30
                                              Max
             Min
         -1.4724 -0.2133 0.1414 0.2821 0.6241
         Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
                                           21.264 < 2e-16 ***
         (Intercept)
                      1.730785
                                 0.081395
                                           -5.000 8.64e-07 ***
         x1
                     -0.375911
                                 0.075183
                                 0.007396 -2.909 0.003833 **
         x2
                     -0.021512
         x4
                     -0.068178
                                  0.020460 -3.332 0.000943 ***
                                            4.561 6.80e-06 ***
         x5
                      0.014700
                                  0.003223
         Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
         Residual standard error: 0.3964 on 395 degrees of freedom
         Multiple R-squared: 0.07187, Adjusted R-squared: 0.06247
         F-statistic: 7.646 on 4 and 395 DF, p-value: 6.091e-06
In [32]:
         prediction <- predict(perfect_model, newdata=test)</pre>
         dev <- prediction - test$y
         summary(dev)
               Min.
                                   Median
                                                         3rd Qu.
                       1st Qu.
                                                 Mean
                                                                        Max.
```

Остатки маленькие, что показывает, что наша модел выбрана хорошо. посмотрим на них

-0.6176000 -0.2539000 -0.1455000 -0.0008259 0.2190000 1.2500000

2 of 3 20.04.2017 02:22

In [33]: hist(dev)

Histogram of dev

3 of 3 20.04.2017 02:22