Corrente eléctrica- Resumo

- 1. Corrente eléctrica e densidade de corrente
- 2. Resistência e Resistividade
- 3. Energia em circuitos eléctricos
- 1. Lei de Ohm

Corrente e "fem"

$$f.e.m. \equiv \Delta V_{bateria} \equiv V_{bateria} \equiv \varepsilon$$

Corrente eléctrica

A **corrente eléctrica (i)** através de uma dada secção, é a quantidade de carga que atravessa essa secção por unidade de tempo.

Conservação da Carga. Densidade de corrente (\vec{J})

$$i_a = i_b$$
 mas: $J_a > J_b$

A densidade de corrente () num dado elemento condutor é um vector que...

$$J = \frac{i}{A} \qquad (A \cdot m^{-2})$$

Resistência e resistividade

Resistividade eléctrica

Material	ρ (Ω.m)
Platina	10.6×10 ⁻⁸
Prata	$1,59 \times 10^{-8}$
Cobre	1,7×10 ⁻⁸
Ouro	2,44×10 ⁻⁸
Alumínio	2,82×10 ⁻⁸
Ferro	10×10 ⁻⁸
Silicio puro*	2500
Silício dopado (tipo n)*	9×10 ⁻⁴
Silício dopado (tipo p)*	3×10 ⁻³
Vidro	$10^{10} - 10^{14}$
Borracha dura	~ 10 ¹³

$$R = \frac{L}{A}\rho$$

^{*}valores indicativos

Resistividade e temperatura (metais)

Lei de Ohm

Resistência de 1000Ω :

Diferença de potencial (V)

Díodo semicondutor:

Corrente eléctrica

$$i = n \times q \times A \times v$$
Número de portadores /unidade de volume velocidade "média"

Carga de cada portador

Potência e energia

Condutores ohmicos

A variação de energia por unidade de tempo, será: $P=rac{\Delta U}{\Delta t}=V_{ab} imes i$

Se o condutor for ohmico: $P = R \times i \times i$

