Let A be a ring with 1.

1. Let M be a completely reducible A-module. Show that for any submodule $N \subseteq M$, we have M/N is completely reducible as well. Moreover, if

$$M \cong \bigoplus_{\lambda \in \Lambda} M_{\lambda}$$
, then $M/N \cong \bigoplus_{\lambda \in \Gamma} M_{\lambda}$,

for some $\Gamma \subseteq \Lambda$.

[Hint: if $M \cong \bigoplus_{\lambda \in \Lambda} M_{\lambda}$ (with M_{λ} simple), then, more simply, $M = \sum_{\lambda \in \Lambda} M_{\lambda}$ (identifying M_{λ} with \hat{M}_{λ}). Show that $M/N = \sum_{\lambda} (M_{\lambda} + N)/N$ (write out the cosets!), and then use the second isomorphism theorem on each piece. Finally, check that, for all $\mu \in \Lambda$, we have

$$(M_{\mu} + N)/N \cap \sum_{\lambda \neq \mu} (M_{\lambda} + N)/N = 0.$$

Proof. Since M is completely reducible, we have that $M \cong \bigoplus_{\lambda \in \Lambda} M_{\lambda}$ where M_{λ} is simple. This is equivalent to $M = \sum_{\lambda \in \Lambda} M_{\lambda}$ with $\left(\sum_{\lambda \in \Lambda - \mu} M_{\lambda}\right) \cap M_{\mu} = 0$. Hence, for any $m \in M$, we have that $m = \sum_{\lambda \in \Lambda} m_{\lambda}$ uniquely.

Let $N \subset M$. Then,

$$M/N = \left(\sum_{\lambda \in \Lambda} M_{\lambda}\right)/N$$
$$= \{m + N \mid m \in \sum_{\lambda \in \Lambda; \text{ finite}} M_{\lambda}\}$$

Thus, for $m + N \in M/N$, we have,

$$\begin{split} m+N &= \sum_{\lambda; \text{ finite}} m_{\lambda} + N \\ &= \sum_{\lambda; \text{ finite}} m_{\lambda} + \sum_{\lambda; m_{\lambda} \neq 0} N \\ &= \{ \sum_{\lambda; m_{\lambda} \neq 0} n_{\lambda} \mid n_{\lambda} \in N \} \\ &= N \\ &= \sum_{\lambda; \text{ finite}} (m_{\lambda} + N) \in (M_{\lambda} + N)/N \end{split}$$

The above derivation thus gives us that $M/N = \sum_{\lambda} (M_{\lambda} + N)/N$. Now, applying the second isomorphism theorem for modules, we have that,

$$M/N = \sum_{\lambda} (M_{\lambda} + N)/N$$
$$= \sum_{\lambda} M_{\lambda}/(M_{\lambda} \cap N)$$

Observe that, since each M_{λ} is simple, we have that $M_{\lambda} \cap N = 0$ if $M_{\lambda} \not\subset N$ and $M_{\lambda} \cap N = M_{\lambda}$ if $M_{\lambda} \subset N$. These are the only two possible values for $M_{\lambda} \cap N$. Thus, for a fixed M_{λ} , we have either that,

$$\begin{aligned} M_{\lambda}/(M_{\lambda} \cap N) &= M_{\lambda}/0 \\ &= \{m_{\lambda} + 0 \mid m_{\lambda} \in M_{\lambda}\} \\ &= M_{\lambda} \end{aligned}$$

or,

$$M_{\lambda}/(M_{\lambda} \cap N) = M_{\lambda}/M_{\lambda}$$
$$= 0$$

Thus, we have that $\sum_{\lambda} M_{\lambda}/(M_{\lambda} \cap N)$ corresponds to some subset $\Gamma \subset \Lambda$, since the terms are either M_{λ} for some λ or 0. This gives us that,

$$\begin{split} M/N &= \sum_{\lambda} (M_{\lambda} + N)/N \\ &= \sum_{\lambda} M_{\lambda}/(M_{\lambda} \cap N) \\ &= \sum_{\lambda \in \Gamma} M_{\lambda} \\ &\cong \bigoplus_{\lambda \in \Gamma} M_{\lambda} \end{split}$$

as required. \Box

- 2. Let $\{z_{\lambda} \mid \lambda \in \Lambda\}$ be the centrally primitive idempotents in a semisimple ring A, and let U_{λ} be the simple A-module corresponding to $\lambda \in \Lambda$. Let M be an A-module (not necessarily the left-regular module. Use Artin-Wedderburn to show that $z_{\lambda}M \cong \bigoplus_{i\in\mathcal{I}} U_{\lambda}$ (i.e. z_{λ} projects onto a (not necessarily finite) direct sum of a bunch of copies of U_{λ} —called the λ -isotypic component of M).
- 3. Let $V = \mathbb{C}^2 = \mathbb{C}\{v_1, v_2\}$. Let $\mathbb{C}D_8$ act on $V^{\otimes 4} = V \otimes V \otimes V \otimes V$ by identifying the copies of V with the vertices of the square, and applying the corresponding factor permutation:

$$r \cdot (v_{i_1} \otimes v_{i_2} \otimes v_{i_3} \otimes v_{i_4}) = v_{i_2} \otimes v_{i_3} \otimes v_{i_4} \otimes v_{i_1}$$
and
$$s \cdot (v_{i_1} \otimes v_{i_2} \otimes v_{i_3} \otimes v_{i_4}) = v_{i_2} \otimes v_{i_1} \otimes v_{i_4} \otimes v_{i_3}$$

(where $i_1, i_2, i_3, i_4 \in \{1, 2\}$). For example, r fixes $v_1 \otimes v_1 \otimes v_1 \otimes v_1$, but $r \cdot v_1 \otimes v_2 \otimes v_1 \otimes v_1 = v_2 \otimes v_1 \otimes v_1 \otimes v_1$.

Use the primitive central idempotents of $\mathbb{C}D_8$ to decompose $V^{\otimes 4}$ into its isotypic components (you computed these idempotents in HW 5; you should also know which corresponds to which simple representations of $\mathbb{C}D_8$). Then make a dimension argument to classify the decomposition of $V^{\otimes 4}$ up to isomorphism—and make a complete decomposition if you can.

[See p. 2 for some help.]

Proof. We have that $M = V \otimes V \otimes V \otimes V = \mathbb{C}\{v_{i_1} \otimes v_{i_2} \otimes v_{i_3} \otimes v_{i_4} \mid v_{i_j} \text{ is a basis vector of } V\}$. We can think about each element of V as a length 4 word with alphabet $\{1,2\}$. For example, we have $v_1 \otimes v_1 \otimes v_2 \otimes v_1 \mapsto 1121$. In addition, we have $\dim(M) = \dim(V)^4 = 16$.

4. Let $S_3 \leq S_4$ in the usual way, and let \mathcal{W} be the reflection representation. Compute the action of $s_1 = (12)$, $s_2 = (23)$, and $s_3 = (34)$ on $\operatorname{Ind}_{\mathbb{C}S_3}^{\mathbb{C}S_4}(\mathcal{W})$. [Hint: Stay organized!]

Proof. We have that $S_3 = \{1, (12), (23), (13), (123), (132)\}$ and $S_4 = \{1, (ab), (abc), (abcd), (ab)(cd) \mid a, b, c, d \in \{1, 2, 3, 4\} \text{ distinct}\}$. By Lagrange's theorem, we have that $|S_4 : S_3| = |S_4|/|S_3| = 4!/3! = 4$. Thus, there should be 4 left costs of S_3 in S_4 . We will compute these cosets using the transpositions: 1, (14), (24), (34). This gives us,

$$1\{1, (12), (23), (13), (123), (132)\} = \{1, (12), (23), (13), (123), (132)\}$$

$$(14)\{1, (12), (23), (13), (123), (132)\} = \{(14), (124), (14)(23), (134), (1234), (1324)\}$$

$$(24)\{1, (12), (23), (13), (123), (132)\} = \{(24), (142), (234), (24)(13), (1423), (1342)\}$$

$$(34)\{1, (12), (23), (13), (123), (132)\} = \{(34), (34)(12), (243), (143), (1243), (1432)\}$$

So $a_1 = 1, a_2 = (14), a_3 = (24), a_4 = (34).$

Observe that S_4 is generated by $\langle (1234), (12) \rangle$, and so for each a_i , we will compute $(1234)a_i = a_j \sigma$ and $(12)a_i = a_k \tau$ for some $j, k \in \{1, 2, 3, 4\}$ and some $\sigma, \tau \in S_3$:

$$(1234)a_1 = (1234) \cdot 1 = 1 \cdot (1234) = a_1 \cdot (1234)$$

$$(1234)a_2 = (1234) \cdot (14) = (234) = a_3 \cdot (23)$$

$$(1234)a_3 = (1234) \cdot (24) = (21)(34) = (34)(12) = a_4 \cdot (12)$$

$$(1234)a_4 = (1234) \cdot (34) = (312) = (123) = a_1 \cdot (123)$$

$$(12)a_1 = (12) \cdot 1 = 1 \cdot (12) = a_1 \cdot (12)$$

$$(12)a_2 = (12) \cdot (14) = (142) = (24) \cdot (12) = a_3 \cdot (12)$$

$$(12)a_3 = (12) \cdot (24) = (241) = (124) = (14) \cdot (12) = a_2 \cdot (12)$$

$$(12)a_4 = (12) \cdot (34) = (12)(34) = (34)(12) = a_4 \cdot (12)$$

Now let us fix any $0 \neq \alpha \in \mathbb{C}$ as our basis. Then $\mathbb{C}S_4 \otimes_{\mathbb{C}S_3}$ has basis,

$$v_1 = a_1 \otimes \alpha$$
, $v_2 = a_2 \otimes \alpha$, $v_3 = a_3 \otimes \alpha$, $v_4 = a_4 \otimes \alpha$

By the previous computations, on this basis we have,

$$(12)v_1 = (12)a_1 \otimes \alpha = a_1 \otimes (12)\alpha$$
$$= a_1 \otimes (-\alpha) = -a_1 \otimes \alpha = -v_1$$

$$(12)v_2 = (12)a_2 \otimes \alpha = a_3 \otimes (12)\alpha$$
$$= a_3 \otimes (-\alpha) = -a_1 \otimes \alpha = -v_3$$

$$(12)v_3 = (12)a_3 \otimes \alpha = a_2 \otimes (12)\alpha$$
$$= a_2 \otimes (-\alpha) = -a_2 \otimes \alpha = -v_2$$

$$(12)v_4 = (12)a_4 \otimes \alpha = a_4 \otimes (12)\alpha$$
$$= a_4 \otimes (-\alpha) = -a_4 \otimes \alpha = -v_4$$

So
$$(12)v_1 = -v_1$$
, $(12)v_2 = -v_3$, $(12)v_3 = -v_2$, and $(12)v_4 = -v_4$. This yields,

$$\rho((12)) = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Now we will compute the action of (1234) on

To receive credit for this assignment, include the following in your solutions [edited appropriately]:

Academic integrity statement: I did not violate the CUNY Academic Integrity Policy in completing this assignment.

Christopher
Hayduk

Help with #3: This is a big computational problem. But with a little bit of care, it won't be too bad. One tip is to encode a basis vector like $v_{i_1} \otimes v_{i_2} \otimes v_{i_3} \otimes v_{i_4}$ as $i_1 i_2 i_3 i_4$. For example, $v_1 \otimes v_2 \otimes v_1 \otimes v_1$ becomes 1211, and $r \cdot 1211 = 2111$. Another trick you have up your sleeve is action graphs; namely, the action of $\mathbb{C}D_8$ on $V^{\otimes 4}$ is a linear extension of the action of D_8 on $\{i_1 i_2 i_3 i_4 \mid i_\ell \in \{1,2\}\}$. For example, one part of your action graph will look like

$$\begin{array}{c|c}
1112 & \xrightarrow{r} & 1121 \\
\downarrow r & & \downarrow r \\
s & & \downarrow r \\
2111 & \xrightarrow{r} & 1211
\end{array}$$

Next, your job is to compute $z_jV^{\otimes 4}$ for each $j=1,\ldots,5$. But since the simple tensors $\{i_1i_2i_3i_4\mid i_\ell\in\{1,2\}\}$ form a spanning set of $V^{\otimes 4}$; the action of z_j on this set, $\{z_j\cdot i_1i_2i_3i_4\mid i_\ell\in\{1,2\}\}$, sill form a spanning set of $z_jV^{\otimes 4}$. To compute $z_jV^{\otimes 4}$, you just need to compute $z_j\cdot i_1i_2i_3i_4$ for each set of $i_\ell\in\{1,2\}$, and taking the span of the result.

Now, recall that the coefficients in z_1 correspond to setting r=1 and s=1; the coefficients in z_2 correspond to setting r=-1 and s=1; and so on...; so the first four of these computations essentially amount to walking around the vertices of this graph, assigning ± 1 coefficients by what edge we walk along, and then summing up the result. So for example, the computation of z_2 acting on 1112 looks like (starting from the upper-left corner, corresponding to the action of 1, and moving out)

Continue computing the actions of the z_j on the basis vectors, organize your computations by orbits. For example, setting

$$b_1 = 1112$$
, $b_2 = 1121$, $b_3 = 1211$, and $b_4 = 2111$,

we have

$$z_{1}b_{i} = \frac{1}{4}(b_{1} + b_{2} + b_{3} + b_{4})$$
 for $i = 1, 2, 3, 4$;

$$z_{2}b_{i} = 0 \text{ and } z_{4}b_{i} = 0$$
 for $i = 1, 2, 3, 4$;

$$z_{3}b_{1} = z_{3}b_{3} = -z_{3}b_{2} = -z_{3}b_{4} = \frac{1}{4}(b_{1} - b_{2} + b_{3} - b_{4});$$

$$z_{5}b_{1} = -z_{5}b_{3} = \frac{1}{2}(b_{1} - b_{3}); \text{ and } z_{5}b_{2} = -z_{5}b_{4} = \frac{1}{2}(b_{2} - b_{4}).$$

So

$$z_1 V^{\otimes 4}$$
 contains $b_1 + b_2 + b_3 + b_4$;
 $z_3 V^{\otimes 4}$ contains $b_1 - b_2 + b_3 - b_4$; and $z_5 V^{\otimes 4}$ contains $b_1 - b_3$ and $b_2 - b_4$.

(We have accounted for 4 of 16 dim'ns in $V^{\otimes 4}$, so we're now 1/4 done with this computation!)