Discente: Deivison Venicio Souza

Laboratório Aprendizagem de Máquina

Lab7: Regressão

Considere a base em anexo com os dados de uma usina hidroelétrica, que tem as seguintes características:

- f3) Vazão Turbinada
- f4) Vazão Vertida
- f5) Afluência
- f6) Afluência Soma Montante
- f7) Volume Prévio
- f8) Volume Atual
- f9) Volume Prévio Soma Montante
- f10) Volume Atual Soma Montante
- f11) Volume Prévio Soma Jusante
- f12) Volume Atual Soma Jusante

As características [f5..f12] devem ser utilizadas para fazer a predição das variáveis f3 e f4. Ou seja, você deve treinar dois regressores, um para cada tarefa. Note que nem todas as características precisam ser utilizadas pelo regressor. Dentre os regressores abaixo, reporte aquele que minimiza o erro quadrado médio (MSE).

- · Regressão linear
- SVR
- Redes Neurais (MLP) (+ de uma camada escondida)
- kNN
- Árvore de Decisão
- · Random Forest
- Gradient Boosting

Divida a base em dois subconjuntos (50-50). Utilize o parâmetro **random_state** na função **train_test_split** para poder comparar os resultados. Para encontrar parâmetros dos regressores, você pode utilizar qualquer método de validação. 50% da base deve ser utilizado exclusivamente para testar o modelo. Faça uma análise de resíduos e verifique se 95% dos resíduos estão no intervalo de um desvio padrão.

1) Previsão da Vazão Turbinada (f3)

Foram ajustados vários algoritmos para prever a variável resposta (vazão turbinada = "f3"). Os histogramas das distribuições residuais resultante da aplicação dos modelos ajustados sobre o conjunto de teste estão disponível, bem como os valores de MSE, Erro Médio e Desvio Padrão residual. O modelo ajustado usando o algoritmo "Gradient Boosting Regressor", com as configurações (n_estimators=500, max_depth=4, learning_rate=0.01) foi o que apresentou melhor desempenho (MSE = 256,7481) para estimar a variável "vazão turbinada". As linhas pontilhadas sobre os histogramas indicam a média (cor preta) e o desvio padrão (cor vermelha) residual (1 desvio padrão da média). Assim, para o modelo "Gradient Boosting Regressor" percebe-se que a maior parte dos resíduos está dentro do intervalo de 1 desvio padrão da média residual. Por outro lado, os modelos SVR e Linear Regression tiveram pior desempenho (MSE = 2598, 6244 e MSE = 970, 8887, respectivamente), onde uma grande quantidade de scores residuais estiveram acima de 1 desvio padrão da média.

Modelos	MSE	Erro Médio	Desvio
Linear Regression	970.8887	-0.17946	31.1585
Support Vector Regression	2598.6244	-10.1936	49.9471
K-Neighbors Regressor	565.6713	0.60215	23.7762
Decision Tree Regressor	277.93600	-0.21795	16.6699
Random Forest Regressor	264.9658	0.28927	16.2752
Gradient Boosting Regressor	256.7481	-0.2359	16.0216

2) Previsão da Vazão Vertida (f4)

Foram ajustados vários algoritmos para prever a variável resposta (vazão vertida = "f4"). Os histogramas das distribuições residuais resultante da aplicação dos modelos ajustados sobre o conjunto de teste estão disponível, bem como os valores de MSE, Erro Médio e Desvio Padrão residual. De modo similar ao verificado para a variável "vazão turbinada", o modelo ajustado usando o algoritmo "Gradient Boosting Regressor", com as configurações (n_estimators=500, max_depth=4, learning_rate=0.01) foi o que apresentou melhor desempenho (MSE = 262,1211) para estimar a variável "vazão vertida", seguido do "Random Forest". O "Gradient Boosting Regressor" teve maior parte dos resíduos dentro do intervalo de 1 desvio padrão da média residual. Novamente, os modelos de pior desempenho foram o SVR e Linear Regression.

Modelos	MSE	Erro Médio	Desvio
Linear Regression	970.8889	0.17946	31.1585
Support Vector Regression	2611.6392	10.2395	50.0678
K-Neighbors Regressor	767.1215	4.3131	27.3591
Decision Tree Regressor	298.1125	0.1966	17.2648
Random Forest Regressor	272.7032	-0.3275	16.5105
Gradient Boosting Regressor	262.1211	0.2248	16.1885