

Last two week Review

- 1. Explain what supervised learning is
- 2. Distinguish it from unsupervised learning and reinforcement learning
- 3. Describe in detail an algorithm for decision tree induction
- 4. Demonstrate the application of decision tree induction to a data set
- 5. List related algorithms
- 6. Discuss high-level concepts such as choice of hypothesis language, overfitting, underfitting and noise

This week and following week Learning Objectives

After completing this topic successfully, you will be able to ...

- Explain what instance-based learning is
- Distinguish between lazy and eager learning
- Describe operation of k-Nearest Neighbours for classification and regression
- Discuss implications of the curse of dimensionality
- Discuss implications of selecting different distance metrics
- Identify suitable applications for kNN and explain how it could be applied

Overview of topic

This week:

- 1. Learning objectives and overview
- 2. Problem description
- 3. Distance-based similarity
- 4. The nearest neighbour algorithm
- 5. The k nearest neighbours algorithm

Next week:

- 6. Alternate similarity measures
- 7. Predicting continuous targets
- 8. Feature selection
- 9. Similarity-based learning considerations
- 10. Review of topic

Example dataset for similarity-based learning

College athletes dataset

- Two attributes:
 - **Speed** continuous variable
 - **Agility** continuous variable
- Data on whether or not each college athlete was
 drafted to a professional team. Target: **Draft** yes/no
- 20 examples in dataset
- See college_athletes.xlsx or college_athletes.csv

• Objective:

 Apply similarity-based learning methods to predict whether an athlete who did not feature in the dataset should be drafted

College Athletes					
ID	Speed	Agility	Draft		
1	2.5	6	no		
2	3.75	8 no			
3	2.25	5.5	no		
4	3.25	8.25	no		
5	2.75	7.5	no		
6	4.5	5	no		
7	3.5	5.25	no		
8	3	3.25	no		
9	4	4	no		
10	4.25	3.75	no		
11	2	2	no		
12	5	2.5	no		
13	8.25	8.5	no		
14	5.75	8.75	yes		
15	4.75	6.25	yes		
16	5.5	6.75	yes		
17	5.25	9.5	yes		
18	7	4.25	yes		
19	7.5	8	yes		
20	7.25	5.75	yes		

Feature space plot for the college athletes dataset

College Athletes					
ID	Speed	Agility	Draft		
1	2.5	6	no		
2	3.75	8	no		
3	2.25	5.5	no		
4	3.25	8.25	no		
5	2.75	7.5	no		
6	4.5	5	no		
7	3.5	5.25	no		
8	3	3.25	no		
9	4	4	no		
10	4.25	3.75	no		
11	2	2	no		
12	5	2.5	no		
13	8.25	8.5	no		
14	5.75	8.75	yes		
15	4.75	6.25	yes		
16	5.5	6.75	yes		
17	5.25	9.5	yes		
18	7	4.25	yes		
19	7.5	8	yes		
20	7.25	5.75	yes		

Measuring similarity using distance

- Consider the college athletes dataset from earlier
- How should we measure the similarity between instances in this case? E.g. how similar are datapoints 5 and 12?
- Distance is one option: plot the points in 2D space and draw a straight line between them
- This approach can scale to arbitrarily high dimensions as we will see. We can think of each feature of interest as a dimension in hyperspace

College Athletes					
ID	Speed	Agility Draft			
1	2.5	6	no		
2	3.75	8	no		
3	2.25	5.5	no		
4	3.25	8.25	no		
5	2.75	7.5	no		
6	4.5	5	no		
7	3.5	5.25	no		
8	3	3.25	no		
9	4	4	no		
10	4.25	3.75	no		
11	2	2	no		
12	5	2.5	no		
13	8.25	8.5	no		
14	5.75	8.75	yes		
15	4.75	6.25	yes		
16	5.5	6.75	yes		
17	5.25	9.5	yes		
18	7	4.25	yes		
19	7.5	8 yes			
20	7.25	5.75 yes			

Measuring similarity using distance

- A **metric** or distance function may be used to define the distance between any pair of elements in a set.
- metric(a, b) is a function that returns the distance between two instances a and b in a set
- a and b are vectors containing the values of the attributes we are interested in for the data points we wish to measure between

Properties of a metric

The function $metric(\boldsymbol{a}, \boldsymbol{b})$ should satisfy the following four conditions:

- 1. Non-negativity: $metric(a, b) \ge 0$
- **2.** Identity: $metric(a, b) = 0 \iff a = b$
- 3. Symmetry: metric(a, b) = metric(b, a)
- 4. Triangular Inequality: $metric(a, b) \leq metric(a, c) + metric(b, c)$

Euclidean distance

- Euclidean distance is one of the best-known distance metrics
- Computes the length of a straight line between two points

$$Euclidean(\boldsymbol{a},\boldsymbol{b}) = \sqrt{\sum_{i=1}^{m} (\boldsymbol{a}[i] - \boldsymbol{b}[i])^2}$$

- Here m is the number of features/attributes to be used to calculate the distance (i.e. the dimension of the vectors a and b)
- Square root of the sum of squared differences for each feature

Manhattan distance

- Manhattan distance (also known as "taxicab distance")
- Computes the length of a straight line between two points

$$Manhattan(\boldsymbol{a}, \boldsymbol{b}) = \sum_{i=1}^{m} abs(\boldsymbol{a}[i] - \boldsymbol{b}[i])$$

- As before m is the number of features/attributes to be used to calculate the distance (i.e. the dimension of the vectors a and b)
- *abs*() returns the absolute value
- Sum of the absolute differences for each feature

Example: calculating distance

Calculate distance between

$$d_{12} = [5.00, 2.50]$$
 and $d_{5} = [2.75, 7.50]$

$Euclidean(d_{12}, d_5)$

$$= \sqrt{(5.00 - 2.75)^2 + (2.50 - 7.50)^2}$$

= 5.483

$Manhattan(\boldsymbol{d}_{12}, \boldsymbol{d}_{5})$

$$= abs(5.00 - 2.75) + abs(2.50 - 7.50)$$

= 7.25

Minkowski distance

 The Minkowski distance metric generalises both the Manhattan distance and the Euclidean distance metrics

$$Minkowski(\boldsymbol{a},\boldsymbol{b}) = \left(\sum_{i=1}^{m} abs(\boldsymbol{a}[i] - \boldsymbol{b}[i])^{p}\right)^{\frac{1}{p}}$$

- As before m is the number of features/attributes to be used to calculate the distance (i.e. the dimension of the vectors a and b)
- *abs*() returns the absolute value
- Sum of the absolute differences for each feature

Comparison of distance metrics

- Euclidian and Manhattan distance are most commonly used, although it is possible to define infinitely many distance metrics using the Minkowski distance
- Manhattan is cheaper to compute than Euclidean as it is not necessary to compute the squares of differences and a square root, so may be a good choice for very large datasets if computational resources are limited
- It's worthwhile to try out several different distance metrics to see which is most suitable for the dataset at hand

The Nearest Neighbour algorithm

- 1-Nearest Neighbour algorithm:
 - Simplest similarity-based/instance-based method
 - No real training phase: just store the training cases
 - Given a query case with value to be predicted, compute its distance from all stored instances
 - Choose the nearest one; assign the test case to have the same label (class or regression value) as this one
 - Requires a distance metric
 - Main problem: susceptibility to noise
- To reduce susceptibility to noise, use more than 1 neighbour (more on this later)

Visualising decision boundaries

- By visually inspecting the feature space plot, we can see that 1 NN will predict the target class as "no"
- 1 NN with Euclidean distance is equivalent to partitioning the feature space into a Voronoi tessellation
- Finding the predicted target class is equivalent to finding which Voronoi region it occupies
- Note: all visualisations from here on use Euclidean distance

Voronoi tessellation

1-NN Decision boundary from Voronoi tessellation

Effect of adding more training data

Simple Example of 1-NN

HousePrices-1NN.xlsx

- Very simple & inflexible1-NN implementation
- Cannot handle other datasets directly

	Size (m^2)	# Beds	# Floors	Age (yrs)	Price (k€)
Α	195	5	1	40	450
В	130	3	2	35	220
С	140	3	2	26	310
D	80	2	1	30	170
E	180	5	2	38	400
Query	130	4	2	30	?

How it works:

- Training data scaled using z-normalisation (more on normalisation later)
- Enter a query: it is scaled using same scale factors
- Euclidean/Manhattan distances between query and each instance in the training set are computed
- Minimum distance identified
- Look up corresponding row to get 1-NN price estimate

k Nearest Neighbours Algorithm

- Operation is relatively easy to appreciate
- Key insight:
 - Each example is a point in the feature space
 - If samples are close to each other in feature space,
 they should be close in their target values
- Related to Case-based Reasoning
- How it works:
 - When you want to classify a new query case:
 - Compare it to the stored set and retrieve the *k* most similar one(s)
 - Give the query case a label based on the similar one(s)

k Nearest Neighbours Algorithm

- *k* Nearest Neighbours algorithm:
 - Base prediction on several (k) nearest neighbours
 - Compute distance from query case to all stored cases, and pick the nearest k
 neighbours
 - Simplest way to do this: sort them by distance, pick lowest k
 - More efficient: can identify k nearest in a single pass through the list of distances
- Classification with kNN:
 - Neighbours vote on classification of test case
 - Prediction is the majority class

k Nearest Neighbours: Visualisation of Classification Example

This
visualisation
assumes
Euclidean
distance

3 nearest neighbours vote: Decision is Yes

Choosing a value for *k*

- What value for *k*?
 - At least 3 (if not using 1-NN); often in range 5-21
 - Application dependent: need to experiment to find optimum
 - Can use all cases with distance-weighted kNN (later)
- Increasing *k* has a smoothing effect
 - Too-low: tends to overfit if data is noisy
 - Too-high: tends to underfit
 - In imbalanced datasets, the majority target class tends to dominate for larger k
- Note: k does not affect computational cost much
 - Most cost of computation is in calculating distances from the query to all stored instances (linear in #cases and #attributes)

Effect of increasing *k*

Effect of increasing *k*

Smoothing Effect of *k*

1-Nearest Neighbor Classifier

15-Nearest Neighbor Classifier

Hastie, Tibshirani & Friedman, Figs 2.3 and 2.2. Recall discussion of overfitting in Topic 2.

Aside: Underfitting on Same Data

Linear Regression of 0/1 Response

Hastie, Tibshirani & Friedman, Figs 2.1. Will cover linear regression in a future topic.

Distance-weighted kNN

- Distance-Weighted kNN
 - Give each neighbour weight: inverse of distance from target
 - Use weighted vote or weighted average
 - Reasonable to use k = |a|| training cases

Effect of distance weighting

Recap of todays lecture

Explained what instance-based learning is

Distinguished between lazy and eager learning

 Described operation of k-Nearest Neighbours for classification and regression