Machine Learning HW01

Ben Zhang, bz957 February 4, 2018

2.1 Feature Normalization

```
\begin{array}{lll} \textbf{def} & \texttt{dataset\_minmax}(\texttt{train} \;,\; \texttt{test}) \colon \\ & \texttt{train} \; = \; \texttt{train} \; [:\;, \texttt{np.any}( \, \, \texttt{np.isnan} \, (\, \texttt{train} \,) \;, \texttt{axis} \, = \! 0)] \\ & \texttt{test} \; = \; \texttt{test} \; [:\;, \texttt{np.any}( \, \, \, \texttt{np.isnan} \, (\, \texttt{test} \,) \;, \texttt{axis} \, = \! 0)] \\ & \texttt{train\_normalized} \; = \; (\, \texttt{train} \; - \; \texttt{train} \, . \, \\ & \texttt{min}(\, \texttt{axis} \, = \! 0)) \; / \\ & \texttt{test\_normalized} \; = \; (\, \texttt{test} \; - \; \texttt{test} \, . \, \\ & \texttt{min}(\, \texttt{axis} \, = \! 0)) \; / \\ & \texttt{test\_normalized} \; = \; (\, \texttt{test} \; - \; \texttt{test} \, . \, \\ & \texttt{min}(\, \texttt{axis} \, = \! 0)) \; / \\ & \texttt{return} \; \; \texttt{train\_normalized} \; , \; \; \texttt{test\_normalized} \end{array}
```

2.2 Gradient Descent Setup

2.2.1

 $2.2.1 \quad J(0) = \frac{1}{m} || \times 0 - 9 ||_{2}^{2}, \quad \chi \in \mathbb{R}^{m \times d}, \quad 0, y \in \mathbb{R}^{m}$

2.2.2 \(\nabla \)(0) = \frac{2}{m} \(\times^T \)(\(\times 0 - \frac{1}{2}\)), \(\times \in \times^{mxd}\), \(\times \in \times^m\)

$$2.2.3. \ J(o+gh)-J(o)$$

$$= \frac{1}{m} Ig \left(2o^{T}X^{T}X-2y^{T}X\right)h+g^{2}h^{T}X^{T}X\cdot hJ$$

$$= \frac{1}{m} Ig \left(10+gh\right) \cdot \nabla J(o)$$

$$2.2.40 \leftarrow 0.-y.27(0)$$

 $0 \leftarrow 0-y.\frac{2}{m}.X^{T}(X0-y)$

```
\label{eq:def-def-def-def} \begin{split} \textbf{def-compute\_square\_loss}(X,\ y,\ theta)\colon \\ \mathrm{SL} &= \mathrm{np.dot}\left(\left(\mathrm{np.dot}\left(X, theta\left[:\,,\ \mathrm{np.newaxis}\right]\right) - y\left[:\,,\ \mathrm{np.newaxis}\right]\right).T, \\ &= \mathrm{np.dot}\left(X, theta\left[:\,,\ \mathrm{np.newaxis}\right]\right) - y\left[:\,,\ \mathrm{np.newaxis}\right]\right) \ / \ X. \ shape\left[0\right] \\ \textbf{return-} \mathrm{SL}\left[0\right] \end{split}
```

2.3 (OPTIONAL) Gradient Checker

```
def grad checker (X, y, \text{ theta}, \text{ epsilon} = 0.01, \text{ tolerance} = 1e - 4):
    true\_gradient = compute\_square\_loss\_gradient(X, y, theta) \# the true gradient
    num features = theta.shape[0]
    approx\_grad = np.zeros(num\_features) \ \#Initialize \ the \ gradient \ we \ approximate
    e = np.identity(num features, dtype = int)
    for i in range(num features):
        theta add = theta + epsilon * e[i]
        theta minus = theta - epsilon * e[i]
        approx_grad[i] = (np.dot((np.dot(X, theta_add[:, np.newaxis])
                          -y[:, np.newaxis]).T
                          np.dot(X, theta_add[:, np.newaxis])-y[:, np.newaxis]) -
                          np.dot((np.dot(X, theta_minus[:, np.newaxis])
                          -y[:, np.newaxis]).T,
                          np.dot(X, theta_minus[:, np.newaxis])
                          -y[:, np.newaxis]))/X.shape[0]*2*epsilon
    dist = np.sqrt(np.sum(np.square(true gradient - approx grad)))
    return dist <= tolerance
```

2.4 Batch Gradient Descent3

2.4.1

```
def batch_grad_descent(X, y, alpha=0.1, num_iter=1000, check_gradient=False):
    num_instances, num_features = X.shape[0], X.shape[1]
    theta_hist = np.zeros((num_iter+1, num_features)) #Initialize theta_hist
    loss_hist = np.zeros(num_iter+1) #initialize loss_hist
    theta = np.zeros(num_features) #initialize theta

loss_hist[0] = compute_square_loss(X, y, theta)

for i in range(num_iter):
    theta = theta - alpha*compute_square_loss_gradient(X, y, theta)
    loss_hist[i+1] = compute_square_loss(X, y, theta_hist[i])
    theta_hist[i+1,:] = theta
    return theta_hist, loss_hist
```

2.4.2

```
df = pd.read csv('data.csv', delimiter=',')
X = df.values[:,:-1]
y = df.values[:, -1]
print('Split_into_Train_and_Test')
X_{train}, X_{test}, y_{train}, y_{test} = train_{test_split}(X, y, test_{size} = 100,
                                   random state=10)
print("Scaling_all_to_[0, _1]")
X_{train}, X_{test} = dataset_{minmax}(X_{train}, X_{test})
X_{train} = np.hstack((X_{train}, np.ones((X_{train}.shape[0], 1)))) \# Add bias term
X_{test} = np.hstack((X_{test}, np.ones((X_{test}.shape[0], 1)))) # Add bias term
X train.shape, X test, y train.shape, y test
list alpha = [0.05, 0.03, 0.01, 0.005]
for alpha in list alpha:
    theta hist, loss hist = batch grad descent(X train, y train, alpha,
                              num_iter=1000, check_gradient=False)
    plt.plot(loss_hist, label="Stepsize: "+ str(alpha))
plt.legend()
plt.xlabel('Steps')
plt.ylabel('Loss')
plt.show()
```


Findings: Among the stepsizes which don't lead to diverge(here is less than 0.1), the larger stepsize is, the faster the loss decrease.

2.5 Ridge Regression (i.e. Linear Regression with '2 regularization)

2.5.1
$$J(0) = (IIX0-yI)^2 + \lambda(IDII^2) \cdot \frac{1}{m}$$

 $VJ(0) = \frac{1}{m} I \times^T (X0-y) + \lambda D$
 $0 \leftarrow 0 - y \cdot \nabla J(0)$
 $0 - y \cdot \frac{1}{m} \cdot [X^T (X0-y) + \lambda D]$

```
\label{eq:compute_regularized_square_loss} \begin{array}{lll} \textbf{def} & compute\_regularized\_square\_loss(X, y, theta, lambda\_reg): \\ & loss = np.dot(X, theta) - y \\ & \textbf{return} & (np.\textbf{sum}(loss ** 2) + lambda\_reg*np.\textbf{sum}(np.dot(theta, theta))) / & (X.shape[0]) \end{array}
```

2.5.4. J(0) = = = [= 11\vi-y;112+ 200). In
(O o) d+1
$\hat{\chi} = \begin{pmatrix} \chi_0 \\ \chi_1 \end{pmatrix} = \begin{pmatrix} \chi_1 \\ \chi_1 \end{pmatrix}, \hat{\phi} = \begin{pmatrix} \phi_1 \\ \phi_1 \\ \phi_1 \end{pmatrix}, \hat{\chi}, \hat{\phi} \in \mathbb{R}^{d+1}$
y= ô+ x= ooxo+ o, x,++onxn.
we want to minimize $J(Q)$, $Q_0X_0 = Q_0B = 2yi7$, $Q_0 = \frac{2yi7}{B}$
but we don't want to squeeze to, we wanne to be small.
2-8. Dreig. X xxxxx
2-1. 10 e.g. X X X X X X X X X X X X X X X X X X
(U) Carperal Maria
and keep over fitting, we will in crease h.
and keep over titting, we will in crease 1.
avoid 0
in and a trade off the aftertion of I we can include
Brancater than 1) then N.Do will the same almost some
B(greater than 1) then N.Do will the same almost some decrease, I(0) will be small.
The state of the s
let 5 89 87 (817, 0. «1.
0, 0, 0, 0,

```
def regularized grad descent (X, y, alpha=0.1, lambda reg=1, num iter=1000):
    (num instances, num features) = X. shape
    theta = np.zeros(num\_features) \#Initialize theta
    theta\_hist = np.zeros((num\_iter+1, num\_features)) \#Initialize theta\_hist
    loss\ \overline{hist} = np.zeros(num\_iter+1)\ \#Initialize\ loss\_hist
    loss hist [0] = compute regularized square loss (X, y, theta.T, lambda reg)
    for i in range(num iter):
        grad = compute regularized square loss gradient(X, y, theta.T, lambda reg)
        theta = theta - alpha * grad.T
        loss\_hist[i+1] = compute\_regularized\_square\_loss(X, y, theta.T, lambda\_reg)
        theta hist [i+1,:] = theta
    return theta hist, loss hist
list lambda = [1e-7, 1e-5, 1e-3, 1e-1, 1, 10, 100]
llist_train = []
losslist\_train = []
llist\_test = []
losslist\_test = []
for l in list lambda:
    theta hist, loss hist = regularized grad descent(X train, y train, lambda reg=1,
                           alpha=0.02, num iter=1000)
    theta train=theta hist [-1]
    train_loss = compute_square_loss(X_train, y_train, theta_train)
    test_loss = compute_square_loss(X_test, y_test, theta_train)
    llist\_train.append(math.log10(l))
    losslist train.append(train loss)
    llist test.append(math.log10(1))
    losslist_test.append(test_loss)
    print(train_loss, test_loss)
plt.plot(llist_train, losslist_train, label="train")
plt.plot(llist_test , losslist_test , label="test")
plt.legend()
plt.xlabel('Log(Lambda)')
plt.ylabel('Loss')
plt.show()
```

```
7 - train test
6 - 3 - 4 - 2 0 2
Log(Lambda)
```

```
list lambda = [10**x \text{ for } x \text{ in } np.linspace(-0.2,0.5,10)]
llist_train = []
losslist_train = []
llist\_test = []
losslist\_test = []
for l in list_lambda:
                  theta\_hist\;,\;\;loss\_hist\;=\;regularized\_grad\_descent\left(X\_train\;,\;\;y\_train\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;lambda\_reg=l\;,\;\;la
                                                                                                                      alpha=0.02, num_iter=1000)
                  theta\_train=theta\_hist[-1]
                  train\_loss = compute\_square\_loss(X\_train, y\_train, theta\_train)
                  test_loss = compute_square_loss(X_test, y_test, theta train)
                  llist_train.append(math.log10(l))
                  losslist_train.append(train_loss)
                  llist\_test.append(math.log10(1))
                  losslist_test.append(test_loss)
                  print(train_loss, test_loss)
plt.plot(llist_train, losslist_train, label="train")
plt.plot(llist_test, losslist_test, label="test")
plt.legend()
plt.xlabel('Log(Lambda)')
plt.ylabel('Loss')
plt.show()
```



```
theta hist train, loss hist train = regularized grad descent(X train, y train,
                                  lambda reg=2, alpha=0.02, num iter=1000)
(num instances, num features) = X test.shape
theta hist train=theta hist train[1:]
num iter=1000
test\ losshist = np.zeros(num\ iter)\ \#Initialize\ loss\ hist
for i in range(num_iter):
    test_losshist[i] = compute_regularized_square_loss(X_test, y_test,
                     theta_hist_train[i].T, lambda_reg=2)
x theta=range(1000)
plt.plot(x theta, test losshist)
plt.legend()
plt.xlabel('theta hist')
plt.ylabel('test_losshist')
plt.show()
print ("Lowest_loss_is",np.ndarray.min(test_losshist),'\n',
       "Best_theta_which_gives_the_lowest_loss_is",
            theta_hist[np.argmin(test_losshist)])
   5.00
   4.75
```


Lowest loss is 3.11793016157, Best theta which gives the lowest loss is [-9.00402125e-013.85685744e-011.08183750e+001.39942161e+00-9.01466487e-01-6.28496325e-01-5.68473284e-01-5.68473284e-01-1.08412967e+001.44352293e+00-1.19457981e-01-1.34616559e+00-2.52978755e+001.08157548e+001.61254062e+001.17188746e+002.71238695e-01-7.87481984e-02-7.87481984e-02-7.87481984e-02-6.36017399e-03-6.36017399e-03-6.36017399e-032.18325496e-022.18325496e-022.18325496e-023.53277417e-023.53277417e-024.29522384e-024.29522384e-02-9.60892835e-04-9.60892835e-04-9.60892835e-041.09965622e-011.09965622e-018.95927569e-028.95927569e-028.95927569e-028.02491636e-028.02491636e-027.50896218e-027.50896218e-02-1.13514056e+00]

Best theta which gives the lowest loss is It isn't the last theta of the from the $theta_hist$ generated from train dataset. Because after we find the best theta, and we continue to calculate, we will make over fit problem in training set. So when we use test set to validate the theta list, we will find the loss goes down first, when reach the minimum, it starts to increase because of the over fit.

2.6 Stochastic Gradient Descent

2.6.1
$$\frac{1}{m} \stackrel{\text{M}}{\neq} 1; (8) = \frac{1}{m} \stackrel{\text{M}}{\neq} 1; (h_{0}(x_{i}) - y_{i})^{2} + \lambda e^{T} \alpha D$$

$$= \frac{1}{m} \stackrel{\text{M}}{\neq} (h_{0}(x_{i}) - y_{i})^{2} + \frac{1}{m} \cdot m - \lambda e^{T} \alpha$$

$$= \frac{1}{m} \stackrel{\text{M}}{\neq} (h_{0}(x_{i}) - y_{i})^{2}$$

$$= \frac{1}{m} \stackrel{\text{M}}{\neq} (h_{0}(x_{i}) - y_{i})^{2}$$

2.6.2 E	(+(0))= m = +(0) = 1 = +(0+h) +i(0) - m = 1
	- In the file file
	= 1 = ti (0+h) + - 1 = tico)
	= 2 (0+h) - 2 (0)
	= ×1(0).

2.6.3.
$$f: (0) = (1/x_1 0 - y_1 | ^2 + n (|0||^2)$$

 $z + i (0) = 2x_1^T (x_1 (0) - y_1) + 2n0$
 $0 < 0 - y_1 = t_1(0)$
 $0 - y_1 = t_2(0)$

```
def stochastic_grad_descent(X, y, alpha=0.1, lambda_reg=1, num_iter=1000):
    num instances, num features = X. shape [0], X. shape [1]
    theta = np.ones(num features) #Initialize theta
    theta_hist = np.zeros((num_iter, num_instances, num_features))
    loss hist = np.zeros((num iter, num instances))
    l=list (range(num instances))
    for i in range(num_iter):
        np.random.shuffle(1)
        for j in 1:
            if alpha == '1/t':
                 alpha = 1/(i+2000)
            elif alpha=='1/sqrt(t)':
                 alpha = 1/np.sqrt(i+5000)
            elif alpha = 'eta/1+t eta':
                 alpha = 0.1/(1+0.1*lambda reg*(i+5000))
            grad\_theta = 2*np.dot(X[a].T, np.dot(X[a], theta.T) - y[a])
                          + 2 * lambda_reg*theta
            theta = theta - alpha*grad\_theta
            loss hist [i,j]=compute square loss (X,y,theta)
            theta\_hist[i,j] = theta
    {\bf return} \ \ {\bf theta\_hist} \ , \ \ {\bf loss\_hist}
```


3.1 Square Loss

3.1.1

3.1.1 $E[(a-y)^2] = E(a^2-2ay+y^2)$
$= q^2 - \lambda \alpha \mathcal{E}(y) + \mathcal{E}(y^2)$
= 62-20E(D)+E(D) = E(D) + E(D) + E(D)
$= Ia - E(y)J^2 + Var(y)$
= Var (y).
(B) The transfer of the contract of the contra
a* zargming E (a-y)2 => 0*= Ey.

3.1.2

3.1.2.0).	$\alpha^* = \frac{7(y)}{n}$ $\alpha^* = \underset{n}{\text{argmin}} \in ((\alpha - y)^2)$
1	0x 2 7 (8 /7)
(=)	A* = 7 (8/X) + (8/X)

3.1.3

