5 2025-09-05 | Week 02 | Lecture 05

The nexus question of this lecture: What is a matrix, and what are the fundamental algebraic operations we can do with it?

This lecture is based on section 1.2 in the textbook.

5.1 Matrices and matrix notation

A *matrix* is a rectangular array of objects, usually numbers, which are called *entries*. If the number of rows and the number of columns are equal, the matrix is said to be a *square matrix*.

For example,

$$\begin{bmatrix} 1 & 0 & 3 \\ 2 & 5 & -3 \end{bmatrix} \quad \text{or} \quad \underbrace{\begin{bmatrix} 1 & 0 & -7 & 5 \end{bmatrix}}_{\text{arow vector}} \quad \text{or} \quad \begin{bmatrix} 1 \\ 4 \\ 0 \end{bmatrix} \qquad \text{or} \quad \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

A matrix with m rows and n columns takes the form

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}.$$

Such a matrix is said to be an $m \times n$ matrix. The pair (m, n) is called the **dimensions** of the matrix (i.e., the number of rows and number of columns). If m = n, then the matrix is said to be a **square matrix**.

The set of all $m \times n$ matrices with real entries is denoted

$$M_{m\times n}(\mathbb{R})$$

For example, in set notation

$$M_{2\times 3}(\mathbb{R}) = \left\{ \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} : a_{11}, a_{12}, a_{13}, a_{21}, a_{22}, a_{23} \in \mathbb{R} \right\}$$

Notation 14. It is common to denote a matrix compactly using the notation

$$A = [a_{ij}]$$
 or $A = (a_{ij})$

To denote the entry at row i, column j, we write either

$$\operatorname{ent}_{ii}(A)$$
 or more simply, a_{ii}

For example, if

$$A = (a_{ij}) = \begin{bmatrix} -1 & 2 & 1\\ 5 & 4 & -9\\ 3 & -4 & 7 \end{bmatrix}$$

then $a_{23} = \text{ent}_{23}(A) = -9$, and $a_{21} = \text{ent}_{21} = 5$.

Vectors are a special case of matrices. An n-dimensional vector is an $n \times 1$ matrices (a column matrix, typically).

5.2 Matrix operations: scaling, addition and multiplication

We can **multiply matrices by a scalar**, in the obvious way: $10 \times \begin{bmatrix} 3 & 4 \\ -2 & 0 \end{bmatrix} = \begin{bmatrix} 30 & 40 \\ -20 & 0 \end{bmatrix}$. We can **add matrices**, also in the obvious way:

$$\begin{bmatrix} 3 & 4 \\ -2 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 5 \\ 2 & 10 \end{bmatrix} = \begin{bmatrix} 4 & 9 \\ 0 & 10 \end{bmatrix}.$$

But note that we can only add two matrices if they have the same dimensons:

$$\begin{bmatrix} 5 & 2 \\ -2 & -1 \end{bmatrix} + \begin{bmatrix} -1 & 10 \\ 4 & 7 \\ 2 & 5 \end{bmatrix} = \text{ undefined.}$$

We can also **multiply** matrices, but before defining matrix multiplication, it will be helpful to recall the notion of dot product. Suppose we have two vectors of the same length:

$$X = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}$$
 and $Y = \begin{bmatrix} y_1 & y_2 & \cdots & y_n \end{bmatrix}$,

then the **dot product** of X and Y, denoted $X \cdot Y$, is

$$X \cdot Y = x_1 y_1 + x_2 y_2 + \ldots + x_n y_n = \sum_{i=1}^n x_i y_i.$$

Matrix multiplication is defined in the following way:

Matrix Multiplication

If $A = (a_{ij})$ is a $p \times n$ matrix and $B = (b_{ij})$ is an $n \times q$ matrix, then we can can think of A and B as

$$A = \begin{bmatrix} -A_1 - \\ -A_2 - \\ \vdots \\ -A_p - \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} | & | & & | \\ B_1 & B_2 & \dots & B_q \\ | & | & & | \end{bmatrix}$$

where A_1, \ldots, A_p are the $1 \times n$ row vectors

$$A_i = \begin{bmatrix} a_{i1} & a_{i2} & \cdots & a_{in} \end{bmatrix} \quad (i = 1, \dots, p)$$

and B_1, \ldots, B_q are $n \times 1$ column vectors:

$$B_j = \begin{bmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{nj} \end{bmatrix} \quad (j = 1, 2, \dots, q)$$

Then the product P = AB is a $p \times q$ matrix $P = (p_{ij})$, whose entries are

$$p_{ij} = A_i \cdot B_j$$
$$= \sum_{k=1}^n a_{ik} b_{kj}.$$

For example,

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} 1 \cdot 5 + 2 \cdot 7 & 1 \cdot 6 + 2 \cdot 8 \\ 3 \cdot 5 + 4 \cdot 7 & 3 \cdot 6 + 4 \cdot 8 \end{bmatrix} = \begin{bmatrix} 19 & 22 \\ 43 & 50 \end{bmatrix}$$

Dimensionality requirement for matrix multiplication: we can only multiply two matrices if their dimensions match in the right way. If A is a $p \times n$ matrix, and B is an $\tilde{n} \times q$ matrix, then the product AB is defined if and only if $n = \tilde{n}$. That is,

$$AB \text{ is } \left\{ \begin{array}{ll} \text{a } p \times q \text{ matrix} & \text{if } \quad n = \tilde{n} \\ \text{undefined} & \text{if } \quad n \neq \tilde{n} \end{array} \right.$$

Properties of matrix multiplication: Perhaps surprisingly, despite matrix multiplication's complicated definition, it nonetheless behaves sort of like regular multiplication in that the **associative property** and **distributed property** both hold. That is,

$$ABC = (AB)C = A(BC)$$
 (associative property)

and

$$A(B+C) = AB + BC$$
 (left distributive property)
 $(B+C)A = BA + CA$ (right distributive property)

It's not obvious why the properties always hold; they require proof. For now, we will take them as a given.

5.3 Special classes of matrices

5.3.1 Diagonal matrices

If $A = (a_{ij})$ is a square (i.e., $n \times n$) matrix, then the entries $a_{11}, a_{22}, a_{33}, \ldots, a_{nn}$ are called the **diagonal** entries. A square matrix of the form

$$A = \begin{bmatrix} a_{11} & 0 & 0 & \dots & 0 \\ 0 & a_{22} & 0 & \dots & 0 \\ 0 & 0 & a_{33} & \dots & 0 \\ \vdots & \vdots & & \ddots & \\ 0 & 0 & 0 & \dots & a_{nn} \end{bmatrix}.$$

is called a **diagonal** matrix, and the notation used for such matrices is $A = \text{diag}(a_{11}, \dots, a_{nn})$.

5.3.2 Identity matrix

An *identity matrix* is a diagonal matrix with 1's on its diagonal (and 0's everywhere else). For example,

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{et cetera}$$

Identity matrices are always square. The notation for an $n \times n$ identity matrix is I_n , or more simply I.

An identity matrix has the property that when you multiply it by another matrix, it doesn't change the other matrix. For example,

$$\begin{bmatrix} 5 & 6 \\ 2 & 7 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 2 & 7 \end{bmatrix}$$

It's like multiplying a number by 1.

5.3.3 Zero matrices

A matrix whose entries are all zeros is called a zero matrix, like

$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \text{et cetera}$$

The book uses the notation $\mathbf{O}_{m \times n}$ to denote an $m \times n$ zero matrix, or sometimes even just \mathbf{O} .