[数据集] D-vlog: Multimodal Vlog Dataset for Depression Detection

1. Abstract

D-Vlog收集YTB的961个vlog,建立**现实场景**下,**非言语**的抑郁症患者**声学和影像交叉**数据集。开发了**基于交叉注意力机制**的**多模态**DL模型,识别检测抑郁症。填补过去数据集过多在实验室环境下的空白

2. Intro

(抑郁症及其治疗略)非言语的信号(表情、行为、音量)对区分抑郁症患者和普通人相当有用。但目前自动判别存在困难,因为:

- 主要因为隐私问题,公开的数据集很少
- 大部分数据集是在实验室环境下的采访,难以捕捉平常的行为特征

本文作者收集了含相关关键词("抑郁""日常")的vlog,基于严格的规则手工标注得到数据集。此外,还建立了一个多模态DL模型,使用encoder编码声音和影像序列,并用交叉注意力机制产生多模态表示,超越已有的其他模型。

作者提到的主要贡献:

- 数据集公开(去除vlogger个人信息,匿名数据)
- (就他们所知)**第一个**使用交叉注意力进行多模态抑郁检测的尝试。确认了其有效性
- 可泛化,例如对临床访谈情景也有效

3. Related Work

a. 抑郁分析检测数据集

公共数据集很少,主要有:

Dataset	模态(AVT-音视 文)	个体数	样本数	内容	标注方式
DAIC-WOZ	AVT	189	189	模拟重性抑郁、 PTSD的临床访 谈	量表自我报告
Pittsburgh	AV	49	130	临床访谈	临床评估
AViD-Corpus	AV	292	340	歌唱、阅读等的 视频	量表自我报告

b. 使用社交媒体数据的抑郁检测

对社交媒体数据的检测,有助于获取抑郁个体日常生活的常见行为模式 过往工作侧重于文本(ta博客文本,图片,tag等)缺乏对视频数据的分析

c. 多模态融合

以往多模态融合大多和模型无关;深度学习时代之后,融合步骤大多集成在模型内。本文使用 transformer可以有效融合。

模态融合是复杂的内容,需要更深一步研究学习。

4. Dataset

a. vlog收集

收集2020.1.1~2021.1.31抑郁类和非抑郁类各2000个youtube视频,提供了搜索关键词(抑郁类含 depression)。

b. 标注

招募4位大学生并培训,每人分配2类个500个视频,要求他们标注:

- 是否符合vlog格式(单人之间与镜头说话),移除不符合的视频
- 是否包含当前抑郁症状的描述,移除无疑似抑郁表达和已经恢复者

c. 数据统计

	Gender	# Samples	Avg. Duration
Depression	Male	182	583.74s
	Female	373	667.63s
Non-depression	Male	140	438.77s
	Female	266	587.76s

特征:

- 两类vlog都为女性居多,前者与抑郁症患病性别分布符合,后者可能是tag选取的问题
- 视频长度和频道vlog数都有明显长尾效应。视频长度大多小于30min,各频道vlog数大多只有一个 降低了因为特定人物而过拟合的可能性

d. 特征提取

Figure 2: Feature extraction process of (a) acoustic and (b) visual features. We extract 25 acoustic features and 136 visual features for each second.

5. Detection

a. 问题状态

一个二分类问题,给定vlog set $P=\{p_n\}_{n=1}^{|P|}$,每个vlog表示为 $p_n=(X_a^n\in\mathbb{R}^{t imes d_a},X_v^n\in\mathbb{R}^{t imes d_v})$,大X为特征,t为序列长度,d为特征维度,给出是否抑郁的分类

b. 总体架构

c. 单模态Transformer Encoder

允许模型捕捉各个模态的有用特征

注意:此encoder不限于特定模态,可以直接通过增加encoder融入新的模态

流程:

- 下采样
- 1维卷积层,对局部关系处理
- 位置编码
- 按照经典transformer encoder方式处理
- d. 多模态Transformer Encoder 使用交叉注意力机制。有待学习具体内容

e. 抑郁检测层:分别为全局平均池化-Dropout-全连接-SoftMax

$$\hat{Y} = Softmax(\mathcal{F}(Dropout(GAP(Z)))),$$

loss func为交叉熵,前后分别为GT分布和预测概率,0为正常,1为抑郁

$$loss = \sum_{c \in [0,1]} P(c \mid \mathbf{y}) log P(c \mid \hat{\mathbf{y}}),$$

6. Exps

具体参数省略

作者进行了多模态融合方式,使用模型的消融试验,以及对不同模态、不同性别数据集的贡献和特征分析,最后,还使用DAIC-WOZ数据集进行交叉语料库试验。

- Fusion Baseline 多模态融合 使用三种常见方式:矩阵拼接、相加和相乘,代替多模态Encoder 本文的模型表现最优。注意到三种基准模型中、矩阵相乘表现最好。
- 本文的模型表现最优。注意到三种基准模型中,矩阵相乘表现最好

 Model Baseline 使用模型

使用诸如逻辑回归LR,支持向量机SVM,随机森林RF等传统机器学习方法,按照其预期输入,进行矩阵展平、拼接等相应操作。具体细节省略。

实验证明本文模型的性能最高。LR SVM RF等由于不能处理序列信息,劣于设计用于处理序列信息的双向长短期记忆BLSTM和张量融合网络TFN。

• 模态分析

单独使用音频和影像数据训练,移除多模态encoder部分。 测试结果表明:

- 。 音频携带信息量更大,贡献更大
- 。 多模态训练效果优于单模态
- 性别分析

单独使用男性/女性vlogger的数据训练。

结果表明:

- 。 单男性数据训练效果优于单女性(可能因为男性对抑郁表现的特征更多)
- 。 两性数据全部使用效果优于使用单个
- 。 无论训练集单性双性,模型对男性预测效果更佳
- 跨语料验证

使用本文数据集D-vlog(DV)和DAIC-WOZ数据集(DW),分别作为训练集和测试集

Train	Test	Precision	Recall	F1-Score
DW	DV	60.14	60.38	60.24
DV	DV	65.40	65.57	63.50
DW	DW	62.57	52.63	55.45
DV	DW	69.45	55.26	57.73

结果验证了:

- 。 本文的DV数据集特征更有用
- 。 使用生活场景数据的DV训练出的模型,也能泛化到临床访谈场景的数据集DW

7. Conclusion

本文介绍D-vlog,从包括861人的961个vlog提取非言语的声音和影像信号。同时介绍基于此的,使用交叉注意力机制的多模态transformer模型。它可以根据视频的声音和影像判断人是否患有抑郁,能帮助患病早期的患者及时就医。