CAP 6635 Artificial Intelligence Homework 3 | Matthew Acs

1. Question 1 [2 pts]: Figure 1 shows a portion of an imperfect tic-tac-toe game tree using evaluation function. Assume X is the Max player and O is the Min player. Assume a heuristic function is defined as the number of X's winning position subtract the number

of O's winning position. For example, for board layout , X has 6 winning positions, and O has 5 winning positions. Therefore, the heuristic value of this board layout is 6-5=1.

- Using defined heuristic function, list the heuristic values for all leaf nodes. [0.5 pt]
- Assume X is the root player, applying α - β pruning to the game tree in Figure 1, determine α value for Max node, and β value for Min nodes. [0.5]
- Determine nodes which are pruned by α - β pruning [0.5],
- Specify the best move for X. [0.5 pt]

Heuristic Values for Leaf Nodes

Leaf Node	Heuristic Value
f	4-2=2
g	3-2=1
h	5-2=3
i	3-2=1
j	4-2=2
k	4-2=2
1	4 - 3 = 1
m	3 - 3 = 0
n	5-3=2
0	3 - 3 = 0
р	4 - 3 = 1
q	4 - 3 = 1
r	4-2=2
S	4-2=2
t	5-2=3
u	3-2=1
V	4-2=2
W	4-2=2
X	4 - 3 = 1
у	4 - 3 = 1
Z	3 - 3 = 0

<u>α-β Values</u>

Node	α-β Values
a (MAX)	$\alpha = 1$
b (MIN)	$\beta = 1$
c (MIN)	$\beta = 1$
d (MIN)	$\beta = 1$
e (MIN)	$\beta = 1$

Nodes Pruned

m, n, o, p, q, v, w, y, z

Best Move

The best move for x would be (b), which is to place an X in the upper left corner. This maximizes the score for X based on optimal play from O and the given heuristic.

Graphical Representation

Question 2 [2 pts]: Variable $W_{a,b}$ defines that a Wumpus is located as location [a,b], and $S_{x,y}$ denotes that a stench is sensed at location [x,y].

- Explain the semantic (meaning) of the following sentence? [1 pt]
- Show detailed steps to decompose sentence into CNF format [1 pt]

$$W_{1,3} \Leftrightarrow (S_{1,2} \vee S_{1,4} \vee S_{2,3})$$

Semantic meaning

The propositional logic sentence means that a Wumpus on location [1,3] implies that there is a stench on location [1,2], [1,4], or [2,3] and stench on location [1,2], [1,4], or [2,3] implies that there is a Wumpus on location [1,3].

Thus, the semantic meaning is -

A Wumpus in location [1,3] causes stench in one or more of the adjacent squares [1, 2], [1, 4], or [2, 3].

CNF format

- 1. Original Sentence $W_{1.3} \Leftrightarrow (S_{1.2} \vee S_{1.4} \vee S_{2.3})$
- 2. Eliminate \Leftrightarrow , replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$. $(W_{1,3} \Rightarrow (S_{1,2} \lor S_{1,4} \lor S_{2,3})) \land ((S_{1,2} \lor S_{1,4} \lor S_{2,3}) \Rightarrow W_{1,3})$
- 3. Eliminate \Rightarrow , replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$. $(\neg W_{1,3} \lor (S_{1,2} \lor S_{1,4} \lor S_{2,3})) \land (\neg (S_{1,2} \lor S_{1,4} \lor S_{2,3}) \lor W_{1,3})$
- 4. Move ¬ inwards using de Morgan's rules and doublenegation:

$$(\neg W_{1,3} \lor (S_{1,2} \lor S_{1,4} \lor S_{2,3})) \land ((\neg S_{1,2} \land \neg S_{1,4} \land \neg S_{2,3}) \lor W_{1,3})$$

5. Apply distributivity law (\land over \lor) and flatten:

$$(\neg\ W_{1,3} \lor S_{1,2} \lor S_{1,4} \lor S_{2,3}) \land (\neg\ S_{1,2} \lor W_{1,3}) \land (\neg\ S_{1,4} \lor W_{1,3}) \land (\neg\ S_{2,3} \lor W_{1,3})$$

6. CNF format (conjunction of disjunctions of literals clauses):

$$(\neg\ W_{1,3} \lor S_{1,2} \lor S_{1,4} \lor S_{2,3}) \land (\neg\ S_{1,2} \lor W_{1,3}) \land (\neg\ S_{1,4} \lor W_{1,3}) \land (\neg\ S_{2,3} \lor W_{1,3})$$

Question 3 [1 pt]: Given knowledge base KB which consists of following four rules:

- R1: $P \Rightarrow Q$
- R2: $Q \Rightarrow R$
- R3: $R \Rightarrow T$
- R4: ¬T

Prove that KB $\models \neg P$ (show detailed proof).

Proof using Modus Tollens

- 1. $R \Rightarrow T$,
 - $\neg T$
- R4, R3, Modus Tollens

- $\div \neg R$
- 2. $Q \Rightarrow R$,
- $\neg R$
- 1, R2, Modus Tollens

- $\therefore \neg Q$
- 3. $P \Rightarrow Q$, $\neg Q$
- 2, R1, Modus Tollens

- $\mathrel{\raisebox{.3ex}{$\stackrel{.}{\sim}$}} \neg P$
- ∴ KB | ¬ P

Question 4 [4 pts] Figure 2 shows the Wumpus world game, where the agent starts from location [1,1], and does not sense breeze or stench. After that, the agent moves to location [1,2] and sense a Breeze (B). Then the agent moved back to [1,1], and further moved to location [2,1] and senses a Stench (S). Based on the above observations and the Wumpus world game rules, please use resolution algorithm to prove following entailment.

- $KB \models W_{3,1}$ (There is a Wumpus at location [3,1]) [1 pt]
- $KB \models P_{1,3}$ (There is a Pit at location [1,3]) [1 pt]
- $KB \models \neg P_{2,2}$ (There is no Pit at location [2,2]) [1 pt]
- $KB \models \neg W_{2,2}$ (There is a no Wumpus at location [2,2]) [1 pt]

Figure 2

1. KB =
$$(S_{1,2} \Leftrightarrow (W_{1,3} \vee W_{2,2})) \wedge \neg S_{1,2}$$

2. KB $\models \neg W_{1,3}$ 1
3. KB $\models \neg W_{2,2}$ 1
4. KB = $(S_{2,1} \Leftrightarrow (W_{3,1} \vee W_{2,2})) \wedge S_{2,1}$
5. KB $\models W_{3,1} \vee W_{2,2}$ 4
 $\therefore W_{3,1}, \neg W_{2,2}$

7. KB = (B_{1,2}
$$\Leftrightarrow$$
 (P_{1,3} \vee P_{2,2})) \wedge B_{1,2}
8. KB \models P_{1,3} \vee P_{2,2} 7

9. KB = (B_{2,1} \Leftrightarrow (P_{3,1} \vee P_{2,2})) \wedge ¬ B_{2,1}

10. KB \models ¬P_{3,1} 9

11. KB \models ¬P_{2,2} 9

 $\stackrel{.}{\sim}$ P_{1,3} ¬ P_{2,2}

Question 5 [2 pts] The following table lists defined predicates.

A(x)	x is an apple
B(x)	x is blue
T(x)	x is tasty
G(x)	x is green
R(x)	x is red
P(x)	x is people
F(x)	x is fruit
L(x,y)	x like y

Using first order logic to express following sentences

- Apples are fruit [0.25 pt]
- Some apples are red [0.25 pt]
- No apple is blue [0.25 pt]
- Green apples are tasty [0.25 pt]
- Some people do not like apple [0.25 pt]
- Not all apples are green [0.25 pt]
- Some people like fruit, except apples [0.25 pt]
- No fruit is liked by every people [0.25]

Apples are fruit

 $\forall x (A(x) \rightarrow F(x))$

Some apples are red

 $\exists x (A(x) \land R(x))$

No apple is blue

 $\forall x (A(x) \rightarrow \neg B(x))$

Green apples are tasty

 $\forall x (A(x) \land G(x) \rightarrow T(x))$

Some people do not like apples

 $\exists x \ \forall y \ (P(x) \land A(y) \land \neg L(x,y))$

Not all apples are green

 $\exists x (A(x) \land \neg G(x))$

Some people like fruit, except apples

 $\exists x \ \forall y \ (P(x) \land F(y) \land L(x,y) \land \neg A(y))$

No fruit is liked by every person

 $\neg \exists x \ \forall y \ (P(y) \land F(x) \land L(y,x))$

Question 6 [3 pts] Figure 2 shows the Wumpus world game, where the agent starts from location [1,1], and does not sense breeze or stench. After that, the agent moves to location [1,2] and sense a Breeze (B). Then the agent moves back to [1,1], and further moves to location [2,1] and senses a Stench (S).

$W_{a,b}$	Wumpus is located at located [a,b]
$S_{x,y}$	A stench is sensed at location [x,y]
Pa,b	A pit is located at located [a,b]
$B_{x,y}$	A breeze is sensed at location [x,y]
Adjacent([a,b], [c,d])	Cell located at [c,d] is adjacent to the cell located at [a,b]

Using first order logic (FOL) to express following sentences and/or derive respective conclusion.

- Write an FOL sentence to express that "all cells next to the cell of Wumpus will sense a stench" [0.5 pt].
- Write an FOL sentence to express that "all cells next to the cell of a pit will sense a breeze" [0.5 pt].
- Write an FOL sentence to express that "if there is no breeze sensed at a cell, there is no pit in adjacent cells" [0.5 pt].
- Write an FOL sentence to express that "if there is no stench sensed at a cell, there is no Wumpus in adjacent cells" [0.5 pt].
- Based on the above settings, derive a conclusion that there is no Wumpus at [1,3] [0.5 pt]
- Based on the above settings, derive a conclusion that there is no pit at [2,2] [0.5 pt]

All cells next to the cell of Wumpus will sense a stench

 $\forall a,b,c,d \ (W_{a,b} \land Adjacent([a,b],[c,d]) \rightarrow S_{c,d})$

All cells next to the cell of a pit will sense a breeze

 $\forall a,b,c,d \ (P_{a,b} \land Adjacent([a,b],[c,d]) \rightarrow B_{c,d})$

If there is no breeze sensed at a cell, there is no pit in adjacent cells

 $\forall a,b,c,d (\neg B_{a,b} \land Adjacent([a,b],[c,d]) \rightarrow \neg P_{c,d})$

If there is no stench sensed at a cell, there is no Wumpus in adjacent cells

 $\forall a,b,c,d (\neg S_{a,b} \land Adjacent([a,b],[c,d]) \rightarrow \neg W_{c,d})$

No Wumpus at [1,3]

$$\forall a,b,c,d \ (W_{a,b} \land Adjacent([a,b],[c,d]) \rightarrow S_{c,d})$$
 $\forall a,b,c,d \ (\neg S_{a,b} \land Adjacent([a,b],[c,d]) \rightarrow \neg W_{c,d})$
 $KB = \{S_{2,1}; \neg S_{1,2}; W_{a,b} \land Adjacent([a,b],[c,d]) \rightarrow S_{c,d} \}$
 $\neg S_{1,2} \land Adjacent([1,2],[1,3])$
 $\neg S_{1,2} \rightarrow \neg (W_{1,3} \land Adjacent([1,3],[1,2]))$
 $\neg S_{1,2} \rightarrow \neg (W_{1,3} \land Adjacent([1,3],[1,2])), \neg S_{1,2}$
 $\cdots (W_{1,3} \land Adjacent([1,3],[1,2]))$
 $\neg W_{1,3} \lor \neg Adjacent([1,3],[1,2]))$
 $\neg W_{1,3} \lor \neg Adjacent([1,3],[1,2])), Adjacent([1,3],[1,2])$
 $\cdots \lor \neg W_{1,3}$

Since there is no stench sensed at cell [1, 2] and cell [1, 2] is adjacent to cell [1, 3], there is no Wumpus at [1, 3].

No pit at [2,2]

```
\forall a,b,c,d \ (P_{a,b} \land Adjacent([a,b], [c,d]) \rightarrow B_{c,d})
\forall a,b,c,d \ (\neg B_{a,b} \land Adjacent([a,b], [c,d]) \rightarrow \neg P_{c,d})
KB = \{B_{1,2}; \neg B_{2,1}; P_{a,b} \land Adjacent([a,b], [c,d]) \rightarrow B_{c,d} \}
\neg B_{2,1} \land Adjacent([2,1], [2,2])
\neg B_{2,1} \rightarrow \neg (P_{2,2} \land Adjacent([2,2], [2,1]))
\neg B_{2,1} \rightarrow \neg (P_{2,2} \land Adjacent([2,2], [2,1])), \neg B_{2,1}
\therefore \neg (P_{2,2} \land Adjacent([2,2], [2,1]))
\neg P_{2,2} \lor \neg Adjacent([2,2], [2,1])), Adjacent([2,2], [2,1])
\neg P_{2,2} \lor \neg Adjacent([2,2], [2,1])), Adjacent([2,2], [2,1])
\therefore \neg P_{2,2}
```

Since there is no breeze sensed at cell [2, 1] and cell [2, 1] is adjacent to cell [2, 2], there is no pit at [2, 2].

Question 7 [2 pts] The following sentences describe interesting behaviors of a Hoffer club members.

- Tony, Shi-Kuo and Ellen belong to the Hoofers Club.
- Every member of the Hoofers Club is either a skier or a mountain climber or both.
- No mountain climber likes rain, and all skiers like snow.
- Ellen dislikes whatever Tony likes and likes whatever Tony dislikes.
- Tony likes rain and snow.

Ouery: Does Hoffer club have a member who is a mountain climber but not a skier?

- (1) Define predicates and relations of the Hoffer using first order logic [0.5 pt]
- (2) Using first order logic to express each sentence (including query) [0.5 pt]
- (3) Converting each sentence to clause format [0.5 pt]
- (4) Using Unification to answer the query [0.5]

Predicates S(x): Skier, M(x): mountain climber Relations L(x,y): x likes y

Every member of the Hoofers Club is either a skier or a mountain climber or both

 $\forall x (S(x) \lor M(x))$

1. Clause Format: $S(x1) \vee M(x1)$

No mountain climber likes rain, and all skiers like snow

 $\neg \exists x (M(x) \land L(x, Rain))$

2. Clause Format: $\neg M(x2) \lor \neg L(x2, Rain)$

 $\forall x (S(x) \rightarrow L(x, Snow))$

3. Clause Format: $\neg S(x3) \lor L(x3, Snow)$

Ellen dislikes whatever Tonty likes and likes whatever Tony dislikes

 $\forall x (L(Ellen, x) \leftarrow \rightarrow \neg L(Tony, x))$ 4. Clause Format: $\neg L(Ellen, x4) \lor \neg L(Tony, x4)$

5. Clause Format: $L(Ellen, x5) \lor L(Tony, x5)$

Tony likes rain and snow

L(Tony, Rain) L(Tony, Snow) 6. Clause Format: L(Tony, Rain)

7. Clause Format: L(Tony, Snow)

Does Hoofer Club have a member who is a mountain climber but not a skier?

 $\exists x (M(x) \land \neg S(x))?$

Negation Query: $\neg \exists x (M(x) \land \neg S(x))$? 8. Clause Format: $\neg M(x6) \lor S(x6)$?

Clause 1	Clause 2	Resolvent	MGU
$(8) \neg M(x6) \lor S(x6)$	$(1) S(x1) \vee M(x1)$	(9) S(x1)	{x6/x1}
(9) S(x1)	$(3) \neg S(x3) \lor L(x3, Snow)$	(10) L(x1, Snow)	${x3/x1}$
(10) L(x1, Snow)	$(4) \neg L(Ellen, x4) \lor \neg L(Tony, x4)$	$(11) \neg L(Tony, Snow)$	{x4/Snow, x1/Ellen}
$(11) \neg L(Tony, Snow)$	(7) L(Tony, Snow)	False	{}

 $\therefore \exists x (M(x) \land \neg S(x))$

 $\{x6/x1\} \rightarrow \{x3, x1\} \rightarrow \{x4/Snow, x1/Ellen\} \rightarrow M(Ellen) \lor \neg S(Ellen)$

Ellen is a mountain climber but not a skier.

Question 8 [2 pts]: Table 1 shows probability values of different events. Using the table to calculate following values and show proof:

- The probability that a persona has no cavity [0.25 pt]
- The probability of no toothache [0.25 pt]
- The joint probability of cavity and no toothache [0.25 pt]
- Calculate conditional probability of no cavity, given the patient has toothache [0.25 pt]
- Calculate conditional probability of no cavity, given the patient does not have toothache [0.25 pt]
- Determine whether cavity and toothache are independent or not, why [0.25 pt]
- Given a patient has cavity, determine whether the tooth probe catch is conditionally independent of toothache or not, why [0.25 pt]
- Given a patient does not have cavity, determine whether the tooth probe catch is conditionally independent of toothache or not, why [0.25 pt]

,				
	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

Table 1

Probability that a person has no cavity

0.016 + 0.064 + 0.144 + 0.576 =**0.80**

Probability of no toothache

0.072 + 0.008 + 0.144 + 0.576 =**0.80**

The joint probability of cavity and no toothache

0.072 + 0.008 =**0.08**

Conditional probability of no cavity, given toothache P(no cavity | toothache)

 $P(\text{no cavity} \land \text{toothache}) / P(\text{toothache}) = (0.016 + 0.064)/(0.20) = 0.40$

Conditional probability of no cavity, given no toothache P(no cavity | no toothache)

 $P(\text{no cavity} \land \text{no toothache}) / P(\text{no toothache}) = (0.144 + 0.576)/(0.80) =$ **0.90**

Are cavity and toothache independent

If cavity and toothache are independent, then $P(\text{cavity} \mid \text{toothache}) = P(\text{cavity})$ (0.12) / (0.20) = (0.20)?

0.6 = 0.20? FALSE

Cavity and toothache are not independent because $P(cavity \mid toothache)$ is not equal to P(cavity), and $P(cavity \mid toothache) = P(cavity)$ if cavity and toothache are independent.

Given a patient has cavity is the tooth probe catch conditionally independent of toothache $P(\text{catch} \mid \text{toothache}, \text{cavity}) = P(\text{catch} \mid \text{cavity})$?

 $P(catch \mid toothache, cavity) = P(catch \land toothache \land cavity) / P(toothache \land cavity) = 0.108 / 0.12 = 0.90$

 $P(\text{catch} \mid \text{cavity}) = 0.18 / 0.20 = 0.90$

Given a patient has a cavity, the tooth probe catch is conditionally independent of toothache because $P(\text{catch} \mid \text{toothache}, \text{cavity}) = P(\text{catch} \mid \text{cavity})$, which is a criterion of conditional independence.

Given a patient does not have cavity is the tooth probe catch conditionally independent of toothache

P(catch | toothache, no cavity) = P(catch | no cavity)?

 $P(catch \mid toothache, no \ cavity) = P(catch \land toothache \land no \ cavity) \ / \ P(toothache \land no \ cavity) = 0.016 \ / \ 0.08 = 0.20$

 $P(\text{catch} \mid \text{no cavity}) = 0.16 / 0.80 = 0.20$

Given a patient has no cavity, the tooth probe catch is conditionally independent of toothache because $P(\text{catch} \mid \text{toothache}, \text{no cavity}) = P(\text{catch} \mid \text{no cavity})$, which is a criterion of conditional independence.

Question 9: [2 pts]: Figure 3 shows a Bayesian network, using first letter to denote each named variable, e.g, using T to denote tampering, and complete following questions. Assume $x \perp y$ denotes that x are independent of y, $x \perp y \mid z$ denotes that x and y are conditionally independent, given z. Complete Table 2, and use \sqrt{t} to mark correct answers. [2 pts]

	True	False
T⊥F		
A⊥S		
T⊥S		
$R \perp A$		
$R \perp A L$		
$L \perp S$		
$L \perp S F$		
$S \perp A F$		
$R \perp S L$		

Table 2

Question does not need to be answered according to lecture on 7/27/23