Ley de los Grandes Números

Mariela Sued, Jemina García y Ana M. Bianco

03 junio 2020

Un caso especial: muestra aleatoria (m.a.)

- 1. Repetimos un experimento muchas veces en idénticas condiciones y de manera independiente.
- 2. X_i : resultado de la i-ésima repetición.
- 3. $X_i \sim F$: tienen todas la misma distribución porque repetimos en idénticas condiciones.
- 4. X_1, \ldots, X_n son independientes (estadísticamente) por construcción: las repeticiones se realizan de manera independiente (en sentido de la vida).

Un caso especial: muestra aleatoria (m.a.)

- 1. Repetimos un experimento muchas veces en idénticas condiciones y de manera independiente.
- 2. X_i: resultado de la *i*-ésima repetición.
- 3. $X_i \sim F$: tienen todas la misma distribución porque repetimos en idénticas condiciones.
- 4. X_1, \ldots, X_n son independientes (estadísticamente) por construcción: las repeticiones se realizan de manera independiente (en sentido de la vida).

Luego, $X_i \sim F$ para todo i, y por consiguiente:

- $\qquad \qquad \mathbb{P}(X_i \leq t) = \mathbb{P}(X_j \leq t) = \mathbb{P}(X_1 \leq t)$
- $\blacktriangleright \ \mathbb{E}[X_i] = \mathbb{E}[X_j] = \mathbb{E}[X_1]$
- $\blacktriangleright \ \mathbb{V}(X_i) = \mathbb{V}(X_j) = \mathbb{V}(X_1)$
- ▶ Dicho de otra forma: $mongo(X_i)=mongo(X_j)=mongo(X_1)$.

Un caso especial: muestra aleatoria (m.a.)

- 1. Repetimos un experimento muchas veces en idénticas condiciones y de manera independiente.
- 2. X_i: resultado de la *i*-ésima repetición.
- 3. $X_i \sim F$: tienen todas la misma distribución porque repetimos en idénticas condiciones.
- 4. X_1, \ldots, X_n son independientes (estadísticamente) por construcción: las repeticiones se realizan de manera independiente (en sentido de la vida).

Luego, $X_i \sim F$ para todo i, y por consiguiente:

- $\qquad \qquad \mathbb{P}(X_i \leq t) = \mathbb{P}(X_j \leq t) = \mathbb{P}(X_1 \leq t)$
- $\blacktriangleright \ \mathbb{E}[X_i] = \mathbb{E}[X_j] = \mathbb{E}[X_1]$
- $\blacktriangleright \ \mathbb{V}(X_i) = \mathbb{V}(X_j) = \mathbb{V}(X_1)$
- ▶ Dicho de otra forma: $mongo(X_i)=mongo(X_j)=mongo(X_1)$.

Muestra (aleatoria) o variables i.i.d.

 X_1, \ldots, X_n son una muestra aleatoria si son v. a. independientes, idénticamente distribuídas.

$$X_1,\ldots,X_n$$
 , i.i.d.

En tal caso, $X_i \sim F$ para todo i, y por consiguiente,

▶ $mongo(X_i)=mongo(X_j)=mongo(X_1)$.

Muestra (aleatoria) o variables i.i.d.

¿Qué relación guarda la muestra con nuestros datos?

Una noche en el casino: Ruleta

¿Apostamos una fichita?

▶ Si acierto: me devuelven 36 fichas (35+la mía)

Si pierdo: se llevan mi ficha

¿Apostamos una fichita?

- ▶ Si acierto: me devuelven 36 fichas (35+la mía)
- Si pierdo: se llevan mi ficha

Dicho de otro modo:

- ▶ Si acierto: Gano 35
- Si pierdo: Gano -1

Una larga noche ...

estos son los resultados...

...ésta es la historia de lo que pasó

... pensemos...

Podríamos decir que los datos que les doy son

el esultado o lo que observamos en cada jugada:

$$x_1 = -1, x_2 = -1, x_3 = 35, \dots, x_{27} = -1, \dots, x_{28} = 35, x_{29} = -1$$

Estos datos, ¿son los resultados o las observaciones de qué?

... pensemos...

▶ $x_1 = -1$ es el valor observado de la ganancia obtenida en la primera jugada o sea de la v.a. X_1

. . . pensemos. . .

- $x_1 = -1$ es el valor observado de la ganancia obtenida en la primera jugada o sea de la v.a. X_1
- ▶ $x_2 = -1$ es el valor observado de la ganancia obtenida en la segunda jugada o de sea la v.a. X_2

... pensemos...

- ▶ $x_1 = -1$ es el valor observado de la ganancia obtenida en la primera jugada o sea de la v.a. X_1
- $x_2 = -1$ es el valor observado de la ganancia obtenida en la segunda jugada o de sea la v.a. X_2
- ▶ $x_3 = 35$ es el valor observado de la ganancia obtenida en la tercera jugada o de sea la v.a. X_3
- **....**
- $x_i = -1$ es el valor observado de la ganancia obtenida en la i-ésima jugada o sea de la v.a. X_i
- **....**
- X₁, X₂,..., X_i..., X_n son variables aleatorias idénticamente distribuidas

... pensemos...

- ▶ $x_1 = -1$ es el valor observado de la ganancia obtenida en la primera jugada o sea de la v.a. X_1
- ▶ $x_2 = -1$ es el valor observado de la ganancia obtenida en la segunda jugada o de sea la v.a. X_2
- ▶ $x_3 = 35$ es el valor observado de la ganancia obtenida en la tercera jugada o de sea la v.a. X_3
- **....**
- $x_i = -1$ es el valor observado de la ganancia obtenida en la i-ésima jugada o sea de la v.a. X_i
- **....**
- X₁, X₂,..., X_i..., X_n son variables aleatorias idénticamente distribuidas
- ▶ Por las condiciones de este experimento las X_i resultan independientes.

$$X_1, X_2, \ldots, X_i, \ldots, X_n$$
 i.i.d.

Para pensar: ¿Siempre es así?

Supongamos que en una caja tenemos 100 bolitas: 90 blancas y 10 rojas. Consideremos las siguientes dos situaciones:

• extraemos 5 bolitas **con reposición**. Para cada extracción definimos $1 \le i \le 5$:

$$X_i = \begin{cases} 1 & \text{si la i-ésima bolita extraída es roja} \\ 0 & \text{si la i-ésima bolita extraída es blanca} \end{cases}$$
¿Son las X_i v.a. i.i.d.?

Para pensar: ¿Siempre es así?

Supongamos que en una caja tenemos 100 bolitas: 90 blancas y 10 rojas. Consideremos las siguientes dos situaciones:

extraemos 5 bolitas con reposición. Para cada extracción definimos 1 < i < 5:</p>

$$X_i = \begin{cases} 1 & \text{si la i-\'esima bolita extra\'ida es roja} \\ 0 & \text{si la i-\'esima bolita extra\'ida es blanca} \end{cases}$$

• extraemos 5 bolitas **sin reposición**. Para cada extracción definimos $1 \le i \le 5$:

$$Y_i = \left\{ egin{array}{ll} 1 & ext{si la i-\'esima bolita extra\'ida es roja} \\ 0 & ext{si la i-\'esima bolita extra\'ida es blanca} \end{array}
ight.$$

¿Son las Y_i v.a. independientes?

Para seguir pensando...

¿Qué relación guarda todo esto con nuestras simulaciones?

Para seguir pensando...

¿Qué relación guarda todo esto con nuestras simulaciones?

¿Qué estamos haciendo con el comando runif(10,0,1)?

Volviendo a la muestra

$$X_1, \ldots, X_n$$
 i.i.d., con $\mathbb{E}[X_i] = \mu$ y $\mathbb{V}[X_i] = \sigma^2$, para todo i .

•
$$S_n = \sum_{i=1}^n X_i \implies \mathbb{E}[S_n] = n \, \mu \quad \text{y} \quad \mathbb{V}[S_n] = n \, \sigma^2$$

•
$$\overline{X} = \overline{X}_n = \frac{\sum_{i=1}^n X_i}{n} \implies \mathbb{E}[\overline{X}_n] = \mu \quad \text{y} \quad \mathbb{V}[\overline{X}_n] = \frac{\sigma^2}{n}$$

Caso Particular: Suma y Promedio de normales

- $(X_i)_{1 \leq i \leq n}$ i.i.d., $X_i \sim \mathcal{N}(\mu, \sigma^2)$
- ▶ Suma: $S_n = X_1 + ... + X_n \sim$?
- ▶ Pomedio: $\overline{X}_n = \frac{1}{n}(X_1 + \ldots + X_n) \sim ?$

Vayamos a la lista de tareas

Simulemos:

Estudiaremos la distribución de S_n y de \overline{X}_n de variables X_1, \ldots, X_n i.i.d. $\mathcal{N}(\mu, \sigma^2)$.

Para ello, fijado n, generaremos datos correspondientes a una muestra X_1, \ldots, X_n i.i.d. de variables aleatorias distribuidas como X, con una distribución $\mathcal{N}(5,4)$ y luego calcularemos la suma y el promedio de cada conjunto de datos.

Repetimos este procedimiento Nrep=1000 veces. A partir de las Nrep=1000 replicaciones realizaremos un histograma con las sumas y los promedios generados, para obtener una aproximación de la densidad de S_n y de \bar{X}_n .

Para ello, fijado n, generaremos datos correspondientes a una muestra X_1,\ldots,X_n i.i.d. de variables aleatorias distribuidas como $X\sim\mathcal{N}(5,4)$, para n=1,2,5,10,25. Luego, haremos un histograma para luego tratar de responder a qué densidad se parece el histograma obtenido y superponerle una densidad adecuada.

n=1

• Consideramos n=1 en cuyo caso la variable coincide con la suma y el promedio.

Generamos entonces Nrep =1000 datos correspondientes a $X_1 \sim \mathcal{N}(5,4)$ y luego hacemos un histograma.

```
Nrep<- 1000
set.seed(123)
X1<-rnorm(Nrep,mean=5,sd=2) # Genero normales
hist(X1,freq=F)
curve(dnorm(x, mean=5,sd=2), add=T, col="blue")</pre>
```


n=2

• Consideramos n = 2 y las variables

$$S_2 = X_1 + X_2$$
 y $\bar{X}_2 = \frac{X_1 + X_2}{2}$.

Generamos n=2 datos (independientes) correspondientes a variables aleatorias con distribución $\mathcal{N}(5,4)$ y computamos la suma y el promedio. Replicamos Nrep=1000 veces y realizamos los dos histograma con los Nrep=1000 promedios obtenidos.

```
Nrep<- 1000
X1<-rnorm(Nrep,mean=5,sd=2)  # Genero normales
X2<-rnorm(Nrep,mean=5,sd=2)  # Genero normales
suma2<- X1+X2
prom2<- suma2/2</pre>
```

Graficamos

```
hist(suma2,freq=F)
hist(prom2,freq=F)
```


Otra forma

```
ene=2
matriz2<-matrix(rnorm(1000*ene,mean=5,sd=2),nrow=ene, ncol=1000,byrow=T)
suma2<-apply(matriz2,2,sum)
prom2<-apply(matriz2,2,mean)</pre>
```

Grafico

```
hist(suma2,freq=F)
hist(prom2,freq=F)
```


