Linear Regression – Numerical Solution

Iterative solution

Linear regression – an example that uses gradient descent

We want to fit a straight line (in 2D case). The sample we are given with is $\{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}.$

We believe the relation between x and y:

$$y = \theta_0 + \theta_1 x = h(x)$$

We want to find (θ_0, θ_1) .

In the space (θ_0, θ_1) . We want to find the best solution.

Sum of Squared Error = J(
$$\theta_0$$
 , θ_1)
J(θ_0 , θ_1) = $\sum_{i=1}^{n} (y_i - (\theta_0 + \theta_1 x_i))^2$

$$\nabla_{\begin{pmatrix} \theta_0 \\ \theta_1 \end{pmatrix}} J = \begin{bmatrix} \frac{\partial J}{\partial \theta_0} \\ \frac{\partial J}{\partial \theta_1} \end{bmatrix}$$

$$\frac{\partial J}{\partial \theta_0} = 2 \sum_{i=1}^n -(y_i - (\theta_0 + \theta_1 x_i))$$

$$\frac{\partial J}{\partial \theta_1} = 2 \sum_{i=1}^n -x_i (y_i - (\theta_0 + \theta_1 x_i))$$

Gradient Descent Method:

Begin with random $\Theta = \begin{pmatrix} \theta_0 \\ \theta_1 \end{pmatrix}$, we call this Θ_0 $\Theta_1 = \Theta_0 - \eta \nabla J$

In general $\Theta_{k+1} = \Theta_k - \eta \nabla J$

$$ullet$$
 $\Theta_0 = inom{ heta_0 = 0}{ heta_1 = 1}$, $\eta = 0.01$

In 1D problem, often we call, $\theta_0=$ y-intercept = b $\theta_1=$ slope = m. Line equation is y=mx+b

When to stop

- Ideally when $\nabla J = 0$
- In practice, often when $\|\nabla J\| < \epsilon$ where ϵ is a small real number like 0.01 is chosen as the stopping condition.

Example

• Given $D = \{(1,1), (2,2), (3,2)\}$

- Let us begin with $\Theta_0 = \begin{pmatrix} \theta_0 = 0 \\ \theta_1 = 1 \end{pmatrix}$,
- Let $\eta = 0.1$

Can you do this?

• Solution is, $y = \frac{2}{3} + \frac{x}{2}$

GENERALIZING TO MULTIVARIATE DATA

Notation

- Let the given data is $D = \{(X_1, y_1), ..., (X_n, y_n)\}.$
- Let $X_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$
- Further, $X_i = [x_{i1} \quad ... \quad x_{id}]^t$
- We augment each X_i with 1 in order to simplify.
- The augmented vector we call Z_i

•
$$Z_i = \begin{bmatrix} 1 & x_{i1} & \cdots & x_{id} \end{bmatrix}^t = \begin{bmatrix} 1 \\ x_{i1} \\ \vdots \\ x_{id} \end{bmatrix}$$

We like to solve

•
$$\theta_0 + \theta_1 x_{11} + \dots + \theta_d x_{1d} = y_1$$

 $\theta_0 + \theta_1 x_{21} + \dots + \theta_d x_{2d} = y_2$
 \vdots
 $\theta_0 + \theta_1 x_{n1} + \dots + \theta_d x_{nd} = y_n$

In matrix form $\mathbf{Z}\Theta = Y$

•
$$\mathbf{Z} = \begin{bmatrix} 1 & x_{11} & \dots & x_{1d} \\ 1 & x_{21} & \dots & x_{2d} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n1} & \dots & x_{nd} \end{bmatrix} = \begin{bmatrix} -Z_1 - \\ \vdots \\ -Z_n - \end{bmatrix} = \begin{bmatrix} Z_1^t \\ \vdots \\ Z_n^t \end{bmatrix}$$

$$Z\Theta = Y$$

$$\bullet \quad \mathbf{Z} = \begin{bmatrix} -Z_1 - \\ \vdots \\ -Z_n - \end{bmatrix} = \begin{bmatrix} Z_1^t \\ \vdots \\ Z_n^t \end{bmatrix}$$

$$\bullet \ \Theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_d \end{bmatrix}$$

$$\bullet \ Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

Criterion J

•
$$J(\Theta) = \|\mathbf{Z}\Theta - Y\|^2 = (\mathbf{Z}\Theta - Y)^t(\mathbf{Z}\Theta - Y)$$

$$J(\Theta) = \Theta^t \mathbf{Z}^t \mathbf{Z} \Theta - 2(\mathbf{Z} \Theta)^t Y - Y^t Y$$

$$J(\Theta) = \Theta^t \mathbf{Z}^t \mathbf{Z} \Theta - 2(\mathbf{Z} \Theta)^t Y - Y^t Y$$

 $\nabla_{\Theta}(I) = 2(\mathbf{Z}^t \mathbf{Z})\Theta - 2\mathbf{Z}^t Y$

Recall by equating the above to 0, we got the closed form solution which is,

$$\Theta = (\mathbf{Z}^t \mathbf{Z})^{-1} \mathbf{Z}^t Y$$

Iterative solution

- $\bullet \ \Theta_{k+1} = \Theta_k \eta \nabla(J)$
- Note, this Gradient is at Θ_k

Batch Learning

 In each iteration entire training set is considered.

•
$$\Theta_{k+1} = \Theta_k - \eta(2(\mathbf{Z}^t\mathbf{Z})\Theta_k - 2\mathbf{Z}^tY)$$

= $\Theta_k - 2\eta\mathbf{Z}^t(\mathbf{Z}\Theta_k - Y)$

• Each element of Θ can be updated as below.

•
$$\theta_j = \theta_j - 2\eta \sum_{i=1}^n (h(Z_i) - y_i) x_j$$

Stochastic Gradient Descent

- This is single sample correction method
- Consider one example, viz., (X_i, y_i)
- For X_i , its augmented vector is Z_i

•
$$Z_i = \begin{bmatrix} 1 \\ X_i \end{bmatrix}$$

•
$$\Theta_{k+1} = \Theta_k - \eta(2(Z_iZ_i^t)\Theta_k - 2y_iZ_i)$$

Stochastic Gradient Descent

$$\Theta_{k+1} = \Theta_k - \eta (2(Z_i Z_i^t) \Theta_k - 2y_i Z_i)$$

$$= \Theta_k - 2\eta (Z_i^t \Theta_k - y_i) Z_i$$

- Each element of Θ can be updated as below.
- $\theta_j = \theta_j 2\eta(h(Z_i) y_i)x_j$

Batch Vs Stochastic Convergence

Stochastic is also known as random / single sample correction.

- Batch method smoothly converges
- Stochastic method strays away often from the optimal path.

Blue: batch steps,

Red: stochastic steps,

Stopping Condition

- It is better to have a validation set (VS) and
 - keep track of error on the VS,
 - stop when the error on the VS is not decreasing considerably
- In practice we fix number of iterations.