Problem 5.1. Let $\{W_t\}$ be an SBM, and denote the first hitting time of state $a \in \mathbb{R}$ by T_a . Calculate the following:

- (a) $\mathbb{P}(W_3 \geq 2)$.
- (b) $\mathbb{P}(W_3 \ge 2|W_1 = 1.5)$.
- (c) $\mathbb{E}[W_{17}|W_5=3]$.

a)
$$P(w_3 > 2) = 1 - \phi_{0,3}(2) = 0.2524925$$
 by R
B) $P(W_3 > 2 \mid W, = 1.5) = P(w_3 - w_1 > 2 - 1.5 \mid W, -w_0 = 1.5 - 0)$

$$= \frac{P(w_2 > 0.5) P(w_1 = 1.5)}{P(w_1 = 1.5)} = P(W_2 > 0.5)$$

$$= 1 - \phi_{0,2}(\frac{1}{2}) = 0.40129$$

C)
$$E[W_{17} - W_{5} + 3 | W_{5} = 3] = E[W_{17} - W_{5}] + 3 = 0 + 3 = 3$$
 drifted SRM and indep increment

Problem 5.2. Fix $\alpha > 0$ and let $\{W_t\}$ be an SBM. Define the process $\{\hat{W}_t\}$ by $\hat{W}_t \doteq \frac{1}{\sqrt{\alpha}} W_{\alpha t}$.

Show that $\{\hat{W}_t\}$ is an SBM.

Show Scaled SBM is also a SBM.

it can be done by Showin into ind in SBM

Note that $\frac{1}{\sqrt{a}}$ Wat $\sim N(0, at)$ Since $\hat{W}t = \frac{1}{\sqrt{a}}$ Wat $\hat{W}t \sim N(ut, at)$ $\Rightarrow \sim N(0, t)$ Prop 427 (3)

which is iid w/SBM

Problem 5.3. Let $\{W_t^1\}, \ldots, \{W_t^d\}$ be independent SBMs. The \mathbb{R}^d -valued process $\{W_t\}$ defined

$$\mathbf{W}_t \doteq \begin{pmatrix} W_t^1 & \dots & W_t^d \end{pmatrix}$$

What is the probability distribution of W_t ? Note that, for each $t \geq 0$, W_t is an \mathbb{R}^d -valued random

Gravesian process Multivariate Normal distribution, if $\alpha_i = \frac{d}{di}$

$$(w_t' - w_t^d) = \sum_{j=1}^d Q_j w_t^j \sim (Q_j, \sum_{j=1}^d a_j^2 t)$$
 (Scaling)

Problem 5.4. Let X, X_1, X_2, \ldots, X_d be a collection of iid $\mathcal{N}(\mu, \sigma^2)$ random variables.

- (a) Let $\mathbb{X} = (X \ X \ \dots \ X) \in \mathbb{R}^d$. Determine the probability distribution of \mathbb{X} .
- (b) Let $\mathbb{Y} = \begin{pmatrix} X_1 & X_2 & \dots & X_d \end{pmatrix} \in \mathbb{R}^d$. Determine the probability distribution of \mathbb{Y} .
- a). Some with single term × ~N (M, 52)
- b) (X1X2 ... Xd) => Multivariate Normal => CoV(X1...Xd)=0

$$Y \sim N(M, \Sigma)$$

$$\mathcal{M} = \begin{pmatrix} \mathcal{M} \\ \vdots \\ \mathcal{M} \end{pmatrix}$$

where
$$M = \begin{pmatrix} M \\ \vdots \\ M \end{pmatrix} = \begin{pmatrix} G_{x_1} & O \\ \vdots & G_{x_n} \end{pmatrix}$$

Problem 5.5. Let $\{W_t\}$ be an SBM. For s < t, what is the probability distribution of the \mathbb{R}^2 -valued random variable (W_s, W_t) ?

$$\begin{cases} W_{t} \end{cases} = [W, \dots W_{s} \dots W_{t}]^{T}$$

$$Q = (Q, \dots Q_{s} \dots Q_{t})^{T}$$

For
$$(ws.Wt)$$
 \Rightarrow $asWs+atWt$
 \Rightarrow $asWs+at(Wt-Ws+Ws)$
 \Rightarrow $asWs+atWt-atWs+atWs$
 \Rightarrow $(as+at)Ws+at(Wt-Ws)$
Above is of form BM w/ drift & Souling
B/C there is no tors exist in above formula
 \Rightarrow $M=0$
Both $(as+at)$, at are Scaling terms
 \Rightarrow $ws \sim N(0, (as+at)^2t)$
 $wt \sim N(0, (as+at)^2t)$
Thus
 $(ws, wt) \sim N(0, (as+at)^2t+at(t-s))$

Problem 5.6. Let $\{W_t\}$ be an SBM. Define the process $\{B_t\}$ on the time interval [0,1] by $B_t \doteq W_t - tW_1$.

- (a) What is the probability distribution of B_t ?
- (b) Briefly explain why $\mathbb{P}(B_1 = 0) = 1$.
- (c) At what time is the variance of the process maximized?

a) Multivorlate normal.
$$\sim N(M, 6^2)$$

Problem 5.7. Let $\{X_n\}$ be a sequence of iid random variables such that

$$\mathbb{P}(X_n \ge 0) = 1, \quad \mathbb{E}(X_n) = 1.$$

Let $M_n \doteq \prod_{i=1}^n X_i$. Show that $\{M_n\}$ is a martingale with respect to $\{X_n\}$.

Let
$$M_n = \prod_{i=1}^n X_i$$
, $M_{n-i} = \prod_{i=1}^{n-1} X_i$

$$\mathbb{E}[M_{\mathsf{N}}] = \mathbb{E}\left[\frac{1}{N}X_{\mathsf{I}}\right] = \mathbb{E}(X_{\mathsf{I}})\mathbb{E}(X_{\mathsf{L}}) \cdots \mathbb{E}(X_{\mathsf{N}}) = |\cdot|\cdot|\cdot|\cdot|\cdot|\cdot|$$

$$P[M_{n-1}] = P(\frac{n-1}{i!!} \times i) = P(X_1) \cdots P(X_{n-1}) = 1-1-1-1-1$$

Problem 5.8. Let $\{W_t\}$ be an SBM.

(a) Using Itô's lemma, show that

$$\int_{0}^{t} W_{s} dW_{s} = \frac{W_{t}^{2}}{2} - \frac{t}{2}.$$

(b) Using Itô's lemma, show that

$$\int_0^t W_s^2 dW_s = \frac{W_t^3}{3} - \int_0^t W_s ds.$$

a) From Example 67

Let
$$X_t = \int_0^t W_s dw_s$$
, two then $dx_t = W_t dw_t$

From Corollary 6.6.
$$af(w_t) = f'(w_t)dw_t + \frac{1}{2}f''(w_t)dt$$

=> $f'(w_t)dw_t = df(w_t) - \frac{1}{2}f''(w_t)dt$
if $f(w) = \frac{w^2}{2}$ $f'(w) = w$, $f''(w) = 1$
> then, $w_t dw_t = d(\frac{w_t^2}{2}) - \frac{1}{2}dt$

Then, Wedwe =
$$d\left(\frac{W_{2}^{2}}{2}\right) - \frac{1}{2}dt$$

 $Xt = \int_{0}^{t} d\left(\frac{W_{2}^{2}}{2}\right) - \int_{0}^{t} dt$

$$\chi_t = \frac{W_t^2}{2} - \frac{1}{2}t$$

(b) Using Itô's lemma, show that

$$\int_{0}^{t} W_{s}^{2} dW_{s} = \frac{W_{t}^{3}}{3} - \int_{0}^{t} W_{s} ds.$$

Let
$$X_t = \int_0^t W_s dw_s$$
, t)0
— then $dX_t = W_t dw_t$

From Corollary 6,6.
$$\frac{df(w_t^2) = f'(w_t^2)dw_t + \frac{1}{2}f''(w_t^2)dt}$$

$$= > f'(w_t)dw_t = df(w_t) - \frac{1}{2}f''(w_t)dt}$$

$$= f'(w_t^2) = \frac{w^3}{3} + f'(w_t^2) = w^2, \quad f''(w_t^2) = 2w$$

Then,
$$W \neq dw = d(\frac{w + 3}{3}) - 2 lw dt$$

 $x \neq = \int_0^t d(\frac{w + 3}{3}) - \int_0^t w dt$

$$\chi_t = \frac{W_t^3}{3} - \int_0^t W_s ds$$

Problem 5.9. Let $\{W_t\}$ be an SBM. Consider a process $\{X_t\}$ satisfying the SDE

$$dX_t = \alpha dW_t + \beta dt$$

$$X_0 = x_0.$$

where $\alpha, \beta, x_0 > 0$. Let $Y_t \doteq \exp(\gamma X_t)$, where $\gamma > 0$. By applying Itô's formula, find the SDE solved by $\{Y_t\}$. That is, "calculate" dY_t .

$$f'(x) = \chi e^{\chi x}$$
 $f''(x) = \chi \cdot \chi e^{\chi x} = \chi^{5} e^{\chi x}$

$$\frac{dYt}{dYt} = \frac{f'(x)dXt}{f'(x)dXt} + \frac{1}{2}f''(x)dXt$$

$$= \frac{f'(x)dXt}{f'(x)dXt} + \frac{1}{2}f''(x)dXt$$

Problem 5.10. Let $\{W_t\}$ be an SBM. Solve the SDE

$$dX_{t} = 3X_{t}^{\frac{2}{3}}dW_{t} + 3X_{t}^{\frac{1}{3}}dt$$

$$X_{0} = 0. \text{ diffusion} \qquad GBM$$

$$it o' \leq \text{formula}$$

$$df(X_{t}) = f'(X_{t}) dX_{t} + \frac{1}{2}f''(X_{t}) G^{2}(X_{t}) dt$$

$$= f'(X_{t}) b(X_{t}) dt + \frac{1}{2}f''(X_{t}) G^{2}(X_{t}) dt$$

where
$$dX_t = b(x_t)dt + \sigma(x_t)dw_t$$

GBM formula
$$dX_t = \mu x_t dt + \sigma X_t dw_t, X_s = x_s$$

$$\delta = 3 \qquad \mu = 3$$

$$=) df(x_t) = f'(x_t) 3x_t^{\frac{3}{2}} dw_t + \frac{1}{2}f''(x_t) 9(x_t^{\frac{1}{2}}) dt$$
Let $f'(x_t) 3x_t^{\frac{3}{2}} = 1$

$$f'(x_t) = \frac{1}{3x_t^{\frac{3}{2}}}$$

$$f''(x_t) = \frac{1}{3x_t^{\frac{3}{2}}}$$

$$f''(x_t) = \frac{1}{3x_t^{\frac{3}{2}}}$$

$$f(x_t) = \frac{1}{3x_t^{\frac{3}{2}}}$$

 $= 0 + \int_{0}^{t} \frac{1}{3x^{2}} \frac{1}{3} \frac{1}{3x^{2}} \frac{1}{3} \frac{1}{3x^{2}} \frac{1}{3} \frac{1}{3x^{2}} \frac{1}{3} \frac{1}{3}$