

Microcontroladores

Conceitos Gerais e GPIO

O que são Registradores?

Registrador é um tipo de memória de pequena capacidade, porém muito rápida. Este é
utilizado para armazenamento temporário de dados durante o processamento.

 Para utilizar um microcontrolador, devemos configurar seus registradores. Os mesmos podem ser divididos em registradores de propósito geral ou de função específica (SFR). Os registradores (SFR – Special Function Registers) recebem nomes específicos e têm função bem definida, sejam elas: guardar a configuração e o estado de funcionamento atual do

microcontrolador.

GPIO

General Purpose Input/Output

E209 – Sistemas Microcontrolados e Microprocessados

O que é GPIO?

- General Purpose Input/Output são portas programáveis de entrada e saída de dados, que são utilizadas para prover uma interface entre os periféricos e os microcontroladores. O microcontrolador ATMega 328p é composto de 3 portais de entrada e saídas digitais (B, C e D).
- A partir desses portais, é possível controlar LEDs, Motores, além de verificar estados de botões, etc.

E209 – Sistemas Microcontrolados e Microprocessados

Como configurar?

- Para isso, deve-se configurar três registradores:
 - **DDRX:** Permite determinar a direção de um pino. Dessa forma, pode-se definir um pino como entrada ou saída.
 - BIT "0" em um BIT do registrador: Entrada;
 - BIT "1" em um BIT do registrador: Saída;
 - PORTX: Permite controlar uma saída ou ativar o resistor de Pull-up de uma entrada.
 - Caso o pino seja configurado no DDRX como saída (BIT "1" no registrador DDRX), será possível ligar ou desligar a saída, colocando BIT "0" ou BIT "1" na respectiva posição no PORTX.
 - Caso o pino seja configurado no DDRX como saída (BIT "1" no registrador DDRX), será possível acionar ou desacionar o PULL-UP, colocando BIT "0" ou BIT "1" na respectiva posição no PORTX;
 - PINX: Armazena os estados das entradas do PORTAL X.

• Definindo os pinos PD5 e PD7 como saídas e o PD4 como entrada;

BITS	7	6	5	4	3	2	1	0
DDRD	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
Peso hexadecimal								
Valor binário								
Valor hexadecimal a ser escrito								

Definindo os pinos PD5 e PD7 como saídas e o PD4 como entrada;

BITS	7	6	5	4	ფ	2	1	0
DDRD	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
Peso hexadecimal	8	4	2	1	8	4	2	1
Valor binário	1	0	1	0	0	0	0	0
Valor hexadecimal a ser escrito	A				0			

• Ativando o pino **PD5** e desativando o pino **PD7**;

BITS	7	6	5	4	3	2	1	0
DDRD	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
Peso hexadecimal								
Valor binário	_							
Valor hexadecimal a ser escrito								

• Ativando o pino **PD5** e desativando o pino **PD7**;

BITS	7	6	5	4	З	2	1	0
DDRD	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
Peso hexadecimal	8	4	2	1	8	4	2	1
Valor binário	0	0	1	0	0	0	0	0
Valor hexadecimal a ser escrito	2			0				

Ativando o pino PD7 e desativando o pino PD5;

BITS	7	6	5	4	3	2	1	0
DDRD	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
Peso hexadecimal								
Valor binário	_							
Valor hexadecimal a ser escrito								

Ativando o pino PD7 e desativando o pino PD5;

BITS	7	6	5	4	3	2	1	0
DDRD	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
Peso hexadecimal	8	4	2	1	8	4	2	1
Valor binário	1	0	0	0	0	0	0	0
Valor hexadecimal a ser escrito	8			0				

Obrigado!

