7. Categorical data

Karl B Christensen

http://publicifsv.sund.ku.dk/~kach/SPSS

Analysis of categorical data

- Tables (frequency tables)
- Risk ratios (relative risks)
- Odds ratios
- Logistic regression

Table

	Outcome				
Exposure	Yes	No	Total		
Yes	а	Ь	n_1		
No	С	d	n_2		
Total	a+c	b+d	n		

Hypothesis H_0 : the probability of having the outcome is the same in the two exposure groups.

The Guinea-Bissau data set

The data set called bissau.sav comes from rural Guinea-Bissau, West-Africa: 5273 children visited at age < 7 months and followed for approximately six months. Registration of vaccination status and deaths registered during follow-up.

GET FILE='P:\bissau.sav'.

Crosstabs

```
CROSSTABS

/TABLES=bcg BY dead

/FORMAT=AVALUE TABLES

/CELLS=COUNT ROW

/COUNT ROUND CELL.
```

Note that ROW gives us row-percentages

Crosstabs

Note that ROW gives us row-percentages: risk of dying 3.8% and 4.9%, repsectively

bcg * dead Crosstabulation

			d€	dead	
			1	2	Total
bcg	1	Count	124	3176	3300
		% within bcg	3,8%	96,2%	100,0%
	2	Count	97	1876	1973
		% within bcg	4,9%	95,1%	100,0%
Total		Count	221	5052	5273
		% within bcg	4,2%	95,8%	100,0%

Crosstabs

- The risk of dying in the two BCG groups: 3.8% with BCG and 4.9% without BCG.
- We want to know if these probabilities are significantly different.
- We test the null hypothesis

 H_0 : the probability of dying is the same in the two groups.

Observed table

	Outcome				
Exposure	Yes	No	Total		
Yes	а	Ь	n_1		
No	С	d	n_2		
Total	a+c	b+d	n		

Hypothesis

 H_0 : probability of outcome is the same in the two exposure groups. probability of outcome under H_0 is $p = \frac{a+c}{n}$.

Expected table

Under H_0 expected numbers in the four cells are:

	Outcome			
Exposure	Yes	No	Total	
Yes	$E(a) = p \times n_1$	$E(b) = (1 - p) \times n_1$ $E(d) = (1 - p) \times n_2$	n_1	
No	$E(c) = p \times n_2$	$E(d) = (1-p) \times n_2$	n ₂	
Total	a+c	b+d	n	

Chi-square test for testing H_0 (observed - expected):

$$X^{2} = \frac{[a - E(a)]^{2}}{E(a)} + \frac{[b - E(b)]^{2}}{E(b)} + \frac{[c - E(c)]^{2}}{E(c)} + \frac{[d - E(d)]^{2}}{E(d)}$$

 H_0 is rejected if p-value < 0.05 which corresponds to $X^2 > 3.84$.

Expected table

```
CROSSTABS
/TABLES=bcg BY dead
/FORMAT=AVALUE TABLES
/CELLS=COUNT ROW EXPECTED
/COUNT ROUND CELL.
```

bcg * dead Crosstabulation

			dead		
			1	2	Total
bcg	1	Count	124	3176	3300
		Expected Count	138,3	3161,7	3300,0
		% within bcg	3,8%	96,2%	100,0%
	2	Count	97	1876	1973
		Expected Count	82,7	1890,3	1973,0
		% within bcg	4,9%	95,1%	100,0%
Total		Count	221	5052	5273
		Expected Count	221,0	5052,0	5273,0
		% within bcg	4,2%	95,8%	100,0%

Risk of Dying and BCG - Chi-square test

Compute

$$X^{2} = \frac{[a - E(a)]^{2}}{E(a)} + \frac{[b - E(b)]^{2}}{E(b)} + \frac{[c - E(c)]^{2}}{E(c)} + \frac{[d - E(d)]^{2}}{E(d)}$$

i.e.

$$X^{2} = \frac{[124 - 138.3]^{2}}{138.3} + ... + \frac{[1876 - 1890.3]^{2}}{1890.3} = ...$$

or

```
CROSSTABS
/TABLES=bcg BY dead
/FORMAT=AVALUE TABLES
/STATISTICS=CHISQ
/CELLS=COUNT ROW
/COUNT ROUND CELL.
```

Risk of Dying and BCG - Chi-square test

Chi-Square Tests

	Value	df	Asymptotic Significance (2- sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	4,129 ^a	1	,042		
Continuity Correction ^b	3,846	1	,050		
Likelihood Ratio	4,052	1	,044		
Fisher's Exact Test				,047	,026
Linear-by-Linear Association	4,128	1	,042		
N of Valid Cases	5273				

a. 0 cells (0,0%) have expected count less than 5. The minimum expected count is 82,69.

b. Computed only for a 2x2 table

Risk of Dying and BCG - Chi-square test

The risk of dying in the two BCG groups: 3.76% and 4.92%.

- We see from the Chi-square test that the probability of dying differs significantly between the groups.
- How can we quantify this?
 - Risk difference

$$4.92 - 3.76 = 1.16$$

Relative risk

$$\frac{4.92}{3.76} = 1.31$$
 or $\frac{3.76}{4.92} = \frac{1}{1.31}$

- SPSS will not estimate the risk difference.
- If you want SPSS to calculate relative risk

SPSS 'assumes' that the reference group is the first row and the outcome of interest in the first column.

Risk Ratio

	Outcome				
Exposure	Yes	No	Total		
Yes	а	Ь	n_1		
No	С	d	n_2		
Total	a+c	b+d	n		

Risk ratio:

$$\mathsf{RR} = \frac{\mathsf{probability} \ \mathsf{of} \ \mathsf{outcome} \ \mathsf{among} \ \mathsf{exposed}}{\mathsf{probability} \ \mathsf{of} \ \mathsf{outcome} \ \mathsf{among} \ \mathsf{not-exposed}} = \frac{\mathsf{a}/\mathsf{n}_1}{\mathsf{c}/\mathsf{n}_2}.$$

The H_0 corresponds to RR = 1.

	Outcome			
Exposure	Yes	No	Total	
Yes	а	Ь	n_1	
No	С	d	n_2	

Let $p = a/n_1$ be the probability of outcome among exposed. Odds can then be defined as

odds =
$$\frac{p}{1-p} = \frac{a/n_1}{1-a/n_1} = \frac{a/n_1}{b/n_1} = \frac{a}{b}$$

does not contain any other information than the probability. If the probability is higher odds are higher and vice versa.

Odds ratio

	Outcome				
Exposure	Yes	No	Total		
Yes	а	Ь	n_1		
No	С	d	n_2		
Total	a+c	b+d	n		

Odds ratio:

$$\mathsf{OR} = \frac{\mathsf{odds} \; \mathsf{of} \; \mathsf{outcome} \; \mathsf{among} \; \mathsf{exposed}}{\mathsf{odds} \; \mathsf{of} \; \mathsf{outcome} \; \mathsf{among} \; \mathsf{not-exposed}} = \frac{a/b}{c/d} = \frac{a \times d}{b \times c}$$

The H_0 corresponds to OR = 1.

RR and OR in CROSSTABS

```
/TABLES=bcg BY dead
/FORMAT=AVALUE TABLES
/STATISTICS=RISK
/CELLS=COUNT ROW
/COUNT ROUND CELL.
```

output

Risk Estimate

		95% Confidence Interval	
	Value	Lower	Upper
Odds Ratio for bcg (1 / 2)	,755	,575	,991
For cohort dead = 1	,764	,589	,991
For cohort dead = 2	1,012	1,000	1,024
N of Valid Cases	5273		

Exercise using the bissau data 1

- Do DTP-vaccinated children (variable dtp) die more often than DTP-unvaccinated children?
- 2 Calculate the odds ratio (OR) and corresponding 95% confidence interval.

$R \times C$ tables

We can also compare more than two groups

```
/TABLES=region BY dead
/FORMAT=AVALUE TABLES
/STATISTICS=CHISQ
/CELLS=COUNT ROW
/COUNT ROUND CELL.
```

The null hypothesis

 H_0 : the risk of dying is the same in the five groups

Null hypothesis H_0 : risk of dying is the same in the five groups

region * dead Crosstabulation

l			de	ead	
			1	2	Total
region	1	Count	50	1065	1115
		% within region	4,5%	95,5%	100,0%
	2	Count	69	1246	1315
		% within region	5,2%	94,8%	100,0%
	5	Count	44	1041	1085
		% within region	4,1%	95,9%	100,0%
	7	Count	24	771	795
		% within region	3,0%	97,0%	100,0%
	8	Count	34	929	963
		% within region	3,5%	96,5%	100,0%
Total		Count	221	5052	5273
		% within region	4,2%	95,8%	100,0%

Null hypothesis H_0 : risk of dying is the same in the five groups

Chi-Square Tests

	Value	df	Asymptotic Significance (2- sided)
Pearson Chi-Square	7,707 ^a	4	,103
Likelihood Ratio	7,782	4	,100
Linear-by-Linear Association	5,514	1	,019
N of Valid Cases	5273		

a. 0 cells (0,0%) have expected count less than 5. The minimum expected count is 33,32.

Exercise using the bissau data 2

The variable ethnic indicates the ethnic group the child belongs to.

Is mortality associated with this variable?

Logistic regression

Logistic regression is like a linear regression, but here the outcome is discrete with two levels (yes/no, died/survived). Look again at the 2×2 table

	Oute	OIIIC		
Exposure	Yes	No	Total	
Yes	а	Ь	n_1	
No	c	d	n_2	
$odds = \frac{p}{1 - p} =$	$=rac{a/a}{1-a}$		$= \frac{a/n_1}{b/n_1}$	$=\frac{a}{b}$

Outcome

Logistic regression for 2×2 table

What is modeled in a logistic regression is the natural logarithm of the odds of outcome:

$$ln(odds) = ln\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 X,$$

where X is the exposure covariate. We call $\ln(\text{odds})$ the log-odds. Assume that the exposure is coded like

$$X = \begin{cases} 1 & \mathsf{Exposed} \\ 0 & \mathsf{Non-exposed} \end{cases}$$

The log-odds of outcome among exposed (X = 1) is

$$\ln\left(\frac{p_1}{1-p_1}\right) = \beta_0 + \beta_1 \times 1 = \beta_0 + \beta_1.$$

The log-odds of outcome among non-exposed (X = 0) is

$$\ln\left(\frac{p_0}{1-p_0}\right) = \beta_0 + \beta_1 \times 0 = \beta_0.$$

The difference in log-odds between exposed and non-exposed is

$$\ln\left(\frac{p_1}{1-p_1}\right) - \ln\left(\frac{p_0}{1-p_0}\right) = (\beta_0 + \beta_1) - \beta_0 = \beta_1$$

Using the rule of logarithms

$$\ln(a) - \ln(b) = \ln(\frac{a}{b})$$

we get

$$\ln\left(\frac{p_1/(1-p_1)}{p_0/(1-p_0)}\right) = \beta_1$$

and this means that the odds ratio between exposed and non-exposed is

$$OR = exp(\beta_1).$$

Estimation of the regression coefficients is done using maximum likelihood.

Logistic regression

```
LOGISTIC REGRESSION VARIABLES dead

/METHOD=ENTER bcg
/CONTRAST (bcg)=Indicator
/PRINT=CI(95)
/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).
```

request confidence interval for OR

```
http://publicifsv.sund.ku.dk/~kach/SPSS/F7_gif1.gif
```

Logistic regression

For the case of a 2×2 table the logistic regression model is just a more complicated way of getting the OR with a general way of writing the model

$$\ln(\text{odds}) = \ln\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 X,$$

the exposure covariate X was coded

$$X = \begin{cases} 1 & \mathsf{Exposed} \\ 0 & \mathsf{Non-exposed} \end{cases}$$

Logistic regression exercise

Using the Bissau data

- Make a logistic regression where outcome is dead and exposure is dtp.
- ② Interpret the results and compare with the results from the exercise using CROSSTABS.

Logistic regression

For the case of a 2×2 table the logistic regression model is just a more complicated way of getting the OR with a general way of writing the model

$$\ln(\text{odds}) = \ln\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 X,$$

the exposure covariate X was coded

$$X = \begin{cases} 1 & \mathsf{Exposed} \\ 0 & \mathsf{Non-exposed} \end{cases}$$

this general framework also works for linear effect of X (e.g. age).

Linear effect of covariate

- The response or outcome is discrete with two categories.
- Covariates (X_1, X_2, X_3, \cdots) : The effect of the X's can be modelled as a linear effect (comparing risk for X = x to risk for X = x + 1)
- Indicate categorical X's

Multiple logistic regression

The response (or outcome) is discrete with two categories.

$$\ln(\text{odds}) = \ln\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \cdots,$$

The interpretation is still that $\exp(\beta_1)$ is an odds ratios, but now adjusted for the covariates X_2, X_3, \cdots . Same idea as in multiple linear regression.

Logistic regression: coding of the outcome variable

SPSS models the probability

$$P(Y=1)$$

if $Y \in \{0, 1\}$.

But what about dead?

Recode

$$\texttt{dead2} = \left\{ \begin{array}{ll} 1, & \texttt{dead} = 1 \\ 0, & \texttt{dead} = 2 \end{array} \right.$$

Multiple logistic regression

the effect of bcg adjusted for the (linear) effect of age

```
LOGISTIC REGRESSION VARIABLES dead2
/METHOD=ENTER agemm bcg
/CONTRAST (bcg)=Indicator
/CRITERIA=PIN(.05) POUT(.10) ITERATE(20) CUT(.5).
```

output

Variables in the Equation

								95% C.I.for EXP(B)	
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step 1 ^a	bcg(1)	,345	,148	5,433	1	,020	1,412	1,056	1,887
	agemm	-,049	,039	1,530	1	,216	,953	,882	1,029
	Constant	3,051	,128	567,488	1	,000	21,138		

a. Variable(s) entered on step 1: bcg, agemm.

Multiple logistic regression exercise

Using the Bissau data

- Make a logistic regression where outcome is dead and exposure is dtp and agemm. Interpret the parameters.
- Now control for bcg in the logistic regression model. What happened to the effect of dtp?