Trabajo Práctico Nº 7

Ejercicio 1.

La base de datos "firmas.dta" contiene información financiera referida a dos tipos de firmas: 12 firmas consideradas de buena performance y 12 firmas no tan buenas en ese sentido. En la base, se podrán observar dos características relevadas en la totalidad de las firmas: EBITASS (ganancias después de impuestos e intereses sobre activos) y ROTC (retorno sobre el capital).

(a) Realizar un gráfico de las variables relevadas. Interpretar.

(b) Realizar un test de medias multivariado.

Estadístico= 34,31241761346325. P-value= 3,54122225462e-08.

Por lo tanto, con un nivel de significancia del 1%, estos datos aportan evidencia suficiente para indicar que los grupos no tienen medias iguales.

(c) Realizar un análisis discriminante.

Linear discriminant analysis
Resubstitution classification summary

++			
Key			
Number Percent ++			
	Classif	ied	
True group	0	1	Total
0	12 100.00	0.00	12
1	1 8.33	11 91.67	12 100.00
Total	13 54.17	11 45.83	24
Priors	0.5000	0.5000	

Por lo tanto, todas las observaciones clasificadas en el grupo 0 están correctamente clasificadas, mientras que una de las observaciones clasificada en el grupo 1 está incorrectamente clasificada.

+	 Classif	 ication	 Probabi	+ lities
 Obs	 True 	Class.	 0	1
1 2 3 4 5	0 0 0 0	0 0 0 0	0.9962 0.9999 0.9998 1.0000 0.9997	0.0038 0.0001 0.0002 0.0000 0.0003
6 7 8 9 10	0 0 0 0	0 0 0 0	0.9999 0.9950 1.0000 0.5373 0.9788	0.0001 0.0050 0.0000 0.4627 0.0212
11 12 13 14 15	0 0 1 1	0 0 1 1 1	0.9993 0.9994 0.0001 0.0112 0.0086	0.0007 0.0006 0.9999 0.9888 0.9914
16 17 18 19 20	1 1 1 1	1 1 1 1 0 *	0.0000 0.0000 0.0004 0.0013 0.5727	1.0000 1.0000 0.9996 0.9987 0.4273
21 22 23 24	1 1 1 1	1 1 1 1	0.0000 0.0239 0.0001 0.0019	1.0000 0.9761 0.9999 0.9981

^{*} indicates misclassified observations

Classification functions

	group	
1	0	1
ebitass rotc _cons	61.23745 21.02689 -7.7876	2.55117 -1.404444 0033742
Priors	.5	.5

(d) Obtener predicciones para toda la muestra y comparar con la información observada.

(e) Considerar una firma con un EBITASS y un ROTC de 0,1. ¿En qué grupo se la clasificaría?

Por lo tanto, considerando una firma con un EBITASS y un ROTC de 0,1, se la clasificaría en el grupo 0 ("Good performing companies").

Ejercicio 2.

La base de datos "muestra_engh.dta" contiene información proveniente de la Encuesta Nacional de Gastos de los Hogares para tres regiones: Metropolitana, Noreste (NEA) y Sur. Considerar responder a las siguientes consignas con las variables desagregadas por capítulo de gasto.

Variable	Descripción
Region	1 = Metropolitana; 4 = NEA; 6 = Sur
cap1	Capitulo 1 - Alimentos y bebidas
cap2	Capitulo 2 - Indumenta ria y calzado
cap3	Capitulo 3 - Vivienda
cap4	Capitulo 4 - Equipamiento y funcionamiento del hogar
cap5	Capitulo 5 - Atención medica y gastos para la salud
cap6	Capitulo 6 - Transporte y comunicaciones
cap7	Capitulo 7 - Esparcimiento
cap8	Capitulo 8 - Educación
cap9	Capitulo 9 - Bienes y servicios varios
gctotal	Gasto total en consumo
intotal	Ingreso neto del hogar

(a) Realizar un test de igualdad de medias entre regiones.

Estadístico= 72,80066506848998. P-value= 1,50900286966e-08.

Por lo tanto, con un nivel de significancia del 1%, estos datos aportan evidencia suficiente para indicar que los grupos no tienen medias iguales.

- **(b)** Realizar un análisis discriminante.
- (c) Obtener las predicciones a partir de la/s estimción/es de la función/es discriminate/s.
- (d) Obtener las predicciones a partir de las distancias de Mahalanobis.

		1	pre 2	edict2 3	Total
	-+-				
predict1					
1		86			86
2			233		233
3				102	102
Total	1	86	233	102	421

(e) Completar una tabla de predicción-realización.

table1[3,3]

	predict_1	predict_2	predict_3
id 1	44	60	16
id 2	20	96	19
id 3	22	77	67

Correct= 207. Incorrect= 214.

Por lo tanto, 207 y 214 observaciones fueron clasificadas correcta e incorrectamente, respectivamente.

Linear discriminant analysis Resubstitution classification summary

++ Key Number Percent				
	Classif	ied		
True id	1	2	3	Total
1	44 36.67	60 50.00	16 13.33	120
2	20	96 71.11	19 14.07	135
3	23 13.86	75 45.18		166 100.00
Total	87 20.67	231 54.87	103 24.47	421 100.00
Priors	0.3333	0.3333	0.3333	ĺ

(f) ¿Cómo se realizaría el análisis en caso de no poder suponer que las matrices de varianzas y covarianzas son iguales entre grupos? ¿Cuántos parámetros se deberían estimar?

table2[3,3]					
	predict_1	predict_2	predict_3		
id 1	36	72	12		
id 2	12	113	10		
id 3	22	100	44		

Correct= 193. Incorrect= 228.

Por lo tanto, 193 y 228 observaciones fueron clasificadas correcta e incorrectamente, respectivamente.

Quadratic discriminant analysis Resubstitution classification summary

++ Key				
Number Percent				
	Classif	ied		
True id	1	2	3	Total
1	36 30.00	72 60.00	12	120
2	12 12 8.89	113 83.70	10 7.41	135
3	22 13.25	100 60.24	44 26.51	166
Total	70 16.63	285 67.70	66 15.68	421
Priors	0.3333	0.3333	0.3333	