CS 162 Programming languages

Lecture 7: Operational Semantics II

Yu Feng Winter 2021

What we have by far

- Given a program as an input string
- First, we separate a string into words (Lexer)
- Second, we understand sentence structure by diagramming the string (Parser)
- Finally, we assign meanings to the structure sentence (Operational semantics)

Operational Semantics

$$\overline{\mathbb{E} \vdash \mathsf{lambda}\, x.\ e \Downarrow \mathsf{lambda}\, x.\ e} \ ^{\mathsf{LAMBDA}}$$

Lambda abstractions just evaluate to themselves

$$\frac{\mathbb{E} \vdash e_1 \Downarrow \mathsf{lambda}\, x. \ e_1' \qquad \mathbb{E} \vdash [x \mapsto e_2] e_1' \Downarrow v}{\mathbb{E} \vdash (e_1 \ e_2) \Downarrow v} \ \mathsf{App}$$

To evaluate the application $(e_1 \ e_2)$, we first evaluate the expression e_1 . The operational semantics "get stuck" if e_1 is not a lambda abstraction. This notion of "getting stuck" in the operational semantics corresponds to a runtime error. Assuming the expression e_1 evaluates to a lambda expression, we evaluate the application expression by binding e_2 to x and then evaluating the expression $[x \rightarrow e_2]e'_1$ as in β -reduction in lambda calculus.

The Lambda rule

• Question: What would change if we write the hypothesis as

$$\frac{\mathbb{E} \vdash e_1 \not \mathbb{E} | \mathsf{lambda} \, x. \, e_1' \qquad \mathbb{E} \vdash [x \mapsto e_2] e_1' \Downarrow v}{\mathbb{E} \vdash (e_1 \, e_2) \Downarrow v} \; \mathsf{APP}$$

• Answer: This would still give semantics to (lambda x.x 3), but no longer to let y=lambda x.x in (y 3)

The Lambda rule

Question: What would change if we write the hypothesis as

- Answer: This is also correct: you will eagerly evaluate e2 before passing it to the lambda abstraction (call-by-value)
- You need to implement this semantics for HW3

Call-by-name v.s. call-by-value

- Not evaluating the argument before substitution is known as call-by name, evaluating the argument before substitution as call-by-value.
- Languages with call-by-name: classic lambda calculus, ALGOL 60
- Languages with call-by-value: C, C++, Java, Python, FORTRAN, . .
- Advantage of call-by-name: If argument is not used, it will not be evaluated
- Disadvantage: If argument is uses k times, it will be evaluated k times!

Operational Semantics

$$\frac{\mathbb{E}(x) = v}{\mathbb{E} \vdash x \Downarrow v} \text{ VAR}$$

If variable x is bound to some value v in the environment E, then x evaluates to its bound value.

$$\frac{\mathbb{E} \vdash e_1 \Downarrow v_1 \qquad \mathbb{E}[x \mapsto v_1] \vdash e_2 \Downarrow v_2}{\mathbb{E} \vdash \mathsf{let}\, x = e_1 \mathsf{in}\, e_2 \Downarrow v_2} \mathsf{LET}$$

First evaluate the initial expression e_1 in environment E, which yields value v_1 . Then we obtain a new environment E' by binding identifier x to value v_1 , i.e., $E' = E[x \leftarrow v_1]$. Next, we evaluate the body e_2 in this new environment E', which yields value v_2 , which is also the result of evaluating the entire let expression.

Environments example

$$\frac{\mathbb{E} \vdash e_1 \Downarrow v_1 \qquad \mathbb{E}[x \mapsto v_1] \vdash e_2 \Downarrow v_2}{\mathbb{E} \vdash \mathsf{let} \ x = e_1 \mathsf{in} \ e_2 \Downarrow v_2} \ \mathsf{Let} \qquad \frac{\mathbb{E}(x) = v}{\mathbb{E} \vdash x \Downarrow v} \ \mathsf{VAR}$$

- Consider the λ^+ program: let x = 3 in x
- Here is the proof that this program evaluates to 3:

$$E \vdash 3:3 \qquad \frac{E[x \leftarrow 3](\mathsf{x}) = 3}{E[x \leftarrow 3] \vdash \mathsf{x}:3}$$
$$E \vdash \mathsf{let} \ x = 3 \ \mathsf{in} \ x:3$$

Operational Semantics

$$\frac{}{\mathbb{E} \vdash \mathsf{Nil} \Downarrow \mathsf{Nil}} \ ^{\mathrm{NIL}}$$

$$\frac{\mathbb{E} \vdash e_1 \Downarrow v_1 \qquad \mathbb{E} \vdash e_2 \Downarrow v_2}{\mathbb{E} \vdash e_1 @ e_2 \Downarrow v_1 @ v_2} \text{ Cons}$$

a list is either the empty list Nil, or it is a cons cell($e_1@e_2$)where e₁ is the head of the list and e₂ is the tail of the list.

$$\frac{\mathbb{E} \vdash e \Downarrow \mathsf{Nil}}{\mathbb{E} \vdash \mathsf{isnil} \, e \Downarrow 1} \, \mathsf{ISNILTRUE}$$

$$\frac{\mathbb{E} \vdash e \Downarrow \mathsf{Nil}}{\mathbb{E} \vdash \mathsf{isnil} \, e \Downarrow 1} \, \mathsf{ISNILTRUE} \qquad \frac{\mathbb{E} \vdash e \Downarrow v_1 @ v_2}{\mathbb{E} \vdash \mathsf{isnil} \, e \Downarrow 0} \, \mathsf{ISNILFALSE}$$

Since any list value can either be Nil or a cons cell, we have two cases which rule matches triggered will depend on whether e evaluates to Nil or not. If e is not a list, then the evaluation will get stuck.

$$\frac{\mathbb{E} \vdash e \Downarrow v_1 \circledcirc v_2}{\mathbb{E} \vdash ! e \Downarrow v_1} \text{ HEAD}$$

$$\frac{\mathbb{E} \vdash e \Downarrow v_1 @ v_2}{\mathbb{E} \vdash \# e \Downarrow v_2} \text{ TAIL}$$

We define similar rules for head and tail

Congratulations!

- You can now understand every page in the λ^+ reference manual
- For HW3, you will need to refer to the operational semantics of λ^+ in the manual to implement your interpreter
- The manual is the official source for the semantics of λ^+

Operational semantics

- The rules we have written are known as big-step operational semantics
- They are called big step because each rule completely evaluates an expression, taking as many steps as necessary.
- Example: The plus rule $\frac{\mathbb{E} \vdash e_1 \Downarrow i_1 \quad \mathbb{E} \vdash e_2 \Downarrow i_2}{\mathbb{E} \vdash e_1 + e_2 \Downarrow i_1 + i_2} \text{ Add}$
- Here, we evaluate both e₁ and e₂ to compute the final value in one (*big*) step
- Alternate formalism for giving semantics: small-step operational semantics

Small step operational semantics

- Small step operational semantics (denoted as "→")
 perform only one step of computation per rule invocation
- You can think of SSOS as "decomposing" all operations that happen in one rule in LSOS into individual steps
- This means: Each rule in SSOS has at most one precondition

$$t \rightarrow^* v \text{ iff } t \psi v$$

Small step operational semantics

- Consider the plus rule in λ+ written in SSOS
- Rule 1: Adding two integers

$$\overline{\langle c_1 + c_2, E \rangle \rightarrow \langle c_1 + c_2, E \rangle}$$

Rule 2: Reducing first expression to an integer

$$\frac{\langle e_1, E \rangle \to \langle c, E' \rangle}{\langle e_1 + e_2, E \rangle \to \langle c + e_2, E' \rangle}$$

Rule 3: Reducing second expression to an integer

$$\frac{\langle e, E \rangle \to \langle c_2, E' \rangle}{\langle c_1 + e, E \rangle \to \langle c_1 + c_2, E' \rangle}$$

SSOS in action

- Let's use these rules to prove what the value of (2+4)+(6-1) is:
- $\langle (2+4)+(6-1), E \rangle \rightarrow \langle 6+(6-1), E \rangle \rightarrow \langle 6+5, E \rangle \rightarrow \langle 11, E \rangle$

One atomic step at a time!

Small-step v.s. Big-step

- In big-step semantics, any rule may invoke any number of other rules in the hypothesis
- This means any derivation is a tree.
- In small-step semantics, each rule only performs one step of computation
- This means any derivation is a line

TODOs by next lecture

- HW3 is out. Please start ASAP!
- Will switch to type checking next week