COMPLEX ANALYSIS: THE GEOMETRIC VIEWPOINT

SECOND EDITION

STEVEN G. KRANTZ

Complex Analysis: The Geometric Viewpoint

Second Edition

©2004 by

Printed in the United States of America

The Mathematical Association of America (Incorporated)

The Carus Mathematical Monographs

Number Twenty-Three

Complex Analysis: The Geometric Viewpoint

Second Edition

Steven G. Krantz
Washington University in St. Louis

Published and Distributed by
THE MATHEMATICAL ASSOCIATION OF AMERICA

THE CARUS MATHEMATICAL MONOGRAPHS

${\it Published~by}$ THE MATHEMATICAL ASSOCIATION OF AMERICA

Committee on Publications Gerald L. Alexanderson, Chair

Editorial Board
Kenneth A. Ross, Chair
Joseph Auslander
Harold P. Boas
Robert E. Greene
Roger Horn
Jeffrey Lagarias
Barbara Osofsky

The following Monographs have been published:

- 1. Calculus of Variations, by G. A. Bliss (out of print)
- 2. *Analytic Functions of a Complex Variable*, by D. R. Curtiss (out of print)
- 3. Mathematical Statistics, by H. L. Rietz (out of print)
- 4. Projective Geometry, by J. W. Young (out of print)
- 5. A History of Mathematics in America before 1900, by D. E. Smith and Jekuthiel Ginsburg (out of print)
- 6. Fourier Series and Orthogonal Polynomials, by Dunham Jackson (out of print)
- 7. Vectors and Matrices, by C. C. MacDuffee (out of print)
- 8. Rings and Ideals, by N. H. McCoy (out of print)
- 9. *The Theory of Algebraic Numbers*, second edition, by Harry Pollard and Harold G. Diamond
- 10. *The Arithmetic Theory of Quadratic Forms*, by B. W. Jones (out of print)
- 11. Irrational Numbers, by Ivan Niven
- 12. Statistical Independence in Probability, Analysis and Number Theory, by Mark Kac
- 13. A Primer of Real Functions, third edition, by Ralph P. Boas, Jr.
- 14. Combinatorial Mathematics, by Herbert J. Ryser
- 15. Noncommutative Rings, by I. N. Herstein (out of print)
- 16. Dedekind Sums, by Hans Rademacher and Emil Grosswald
- 17. The Schwarz Function and Its Applications, by Philip J. Davis
- 18. Celestial Mechanics, by Harry Pollard
- 19. Field Theory and Its Classical Problems, by Charles Robert Hadlock
- 20. The Generalized Riemann Integral, by Robert M. McLeod
- 21. From Error-Correcting Codes through Sphere Packings to Simple Groups,
 - by Thomas M. Thompson
- 22. Random Walks and Electric Networks, by Peter G. Doyle and J. Laurie Snell

- 23. Complex Analysis: The Geometric Viewpoint, second edition, by Steven G. Krantz
- 24. Knot Theory, by Charles Livingston
- 25. Algebra and Tiling: Homomorphisms in the Service of Geometry, by Sherman Stein and Sándor Szabó
- 26. *The Sensual (Quadratic) Form*, by John H. Conway assisted by Francis Y. C. Fung
- 27. A Panorama of Harmonic Analysis, by Steven G. Krantz
- 28. Inequalities from Complex Analysis, by John P. D'Angelo
- 29. Ergodic Theory of Numbers, by Karma Dajani and Cor Kraaikamp

MAA Service Center P. O. Box 91112 Washington, DC 20090-1112

800-331-1MAA FAX: 301-206-9789

Acknowledgments

This book owes its existence to many people. I thank Don Albers, Robert E. Greene, and Paul Halmos for convincing me to write it. I am grateful to Marco Abate, Harold Boas, Ralph Boas, David Drasin, Paul Halmos, Daowei Ma, David Minda, Marco Peloso, John Stapel, and Jim Walker for reading various versions of the manuscript and making valuable comments and suggestions. The Carus monograph committee of the MAA helped me to find the right level and focus for the book.

Ralph Boas, the chairman of the Carus monograph committee, played a special role in the development of this book. In addition to shepherding the project along, he provided necessary prodding and cajoling at crucial stages to keep the project on track. Paul Halmos also provided expert and sure counsel; he has been a good friend and mentor for many years. To both men I express my sincere gratitude.

For the new edition, Ken Ross as Chair of the Carus Monographs Editorial Board provided a strong and sure guiding hand. My friends Harold Boas, Daowei Ma, David Minda, Jeff McNeal, Marco Peloso, and Jim Walker offered valuable suggestions for the form of the new edition. Robert Burckel, Robert E. Greene, and John P. D'Angelo were especially generous in offering detailed commentary which led to decisive improvements. Finally, the Carus Monograph Committee provided yeoman service with many careful readings, sharp but constructive criticisms, and helpful suggestions. Surely a better book has been the result.

X Acknowledgments

I thank Jim Milgram for creating TECPRINT, the world's first technical word processor. This has been a valuable tool to me for many years. I am grateful to Micki Wilderspin for performing the tedious task of converting the manuscript from TECPRINT into TeX. Beverly Joy Ruedi did a splendid job of making my project into a finished book.

A special vote of thanks goes to Robert Burckel for reading most of the manuscript inch by inch and correcting both my mathematics and my writing. His contributions have improved the quality of the book decisively. Responsibility for all remaining errors of course resides entirely with me.

-S.G.K.

Preface to the Second Edition

The warm reception with which the first edition of this book has been received has been a source of both pride and pleasure. It is a special privilege to have created a "for the record" version of Ahlfors's seminal ideas in the subject. And the geometric viewpoint continues to develop.

In the intervening decade, this author has learned a great deal more about geometric analysis, and his view of the subject has developed and broadened. It seems appropriate, therefore, to bring some new life to these pages, and to set forth a fresh enunciation of the role of curvature in basic complex function theory.

In this new edition, we explain how, in a natural and elementary manner, the hyperbolic disc is a model for the non-Euclidean geometry of Bolyai and Lobachevsky. Later on, we explain the Bergman kernel and provide an introduction to the Bergman metric.

I have many friends and colleagues to thank for their incisive remarks and suggestions about the first edition of this book. I hope that I do them justice in my efforts to implement a second edition. As always, the Mathematical Association of America has been an exemplary publisher and has provided all possible support in the publication process. I offer my humble thanks.

Preface to the First Edition

The modern geometric point of view in complex function theory began with Ahlfors's classic paper [AHL]. In that work it was demonstrated that the Schwarz lemma can be viewed as an inequality of certain differential geometric quantities on the disc (we will later learn that they are curvatures). This point of view—that substantive analytic facts can be interpreted in the language of Riemannian geometry—has developed considerably in the last fifty years. It provides new proofs of many classical results in complex analysis, and has led to new insights as well.

In this monograph we intend to introduce the reader with a standard one semester background in complex analysis to the geometric method. All geometric ideas will be developed from first principles, and only to the extent needed here. No background in geometry is assumed or required.

Chapter 0 gives a bird's eye view of classical function theory of one complex variable. We pay special attention to topics which are developed later in the book from a more advanced point of view. In this chapter we also sketch proofs of the main results, with the hope that the reader can thereby get a feeling for classical methodology before embarking on a study of the geometric method.

Chapter 1 begins a systematic treatment of the techniques of Riemannian geometry, specially tailored to the setting of one complex variable. In order that the principal ideas may be brought out most clearly,

we shall concentrate on only a few themes: the Schwarz lemma, the Riemann mapping theorem, normal families, and Picard's theorems. For many readers this will be a first contact with the latter two results. The geometric method provides a particularly cogent explanation of these theorems, and can be contrasted with the more classical proofs which are discussed in Chapter 0. We shall also touch on Fatou-Julia theory, a topic which is rather technical from the analytic standpoint but completely natural from the point of view of geometry.

In Chapter 3 we introduce the Carathéodory and Kobayashi metrics, a device which is virtually unknown in the world of one complex variable. This decision allows us to introduce invariant metrics on arbitrary planar domains without resort to the uniformization theorem. We are then able to give a "differential geometric" interpretation of the Riemann mapping theorem.

The last chapter gives a brief glimpse of several complex variables. Some of the themes which were developed earlier in the book are carried over to two dimensions. Biholomorphic mappings are discussed, and the inequivalence of the ball and bidisc is proved using a geometric argument.

The language of differential geometry is not generally encountered in a first course in complex analysis. It is hoped that this volume will be used as a supplement to such a course, and that it may lead to greater familiarity with the fruitful methodology of geometry.

Contents

	Acki	nowledgments	ix
	Pref	ace to the Second Edition	xi
	Pref	ace to the First Edition	xiii
0	Prin	cipal Ideas of Classical Function Theory	1
	1.	A Glimpse of Complex Analysis	1
	2.	The Maximum Principle, the Schwarz Lemma, and	
		Applications	11
	3.	Normal Families and the Riemann Mapping Theorem	16
	4.	Isolated Singularities and the Theorems of Picard	22
1	Basi	c Notions of Differential Geometry	29
	0.	Introductory Remarks	29
	1.	Riemannian Metrics and the Concept of Length	30
	2.	Calculus in the Complex Domain	38
	3.	Isometries	42
	4.	The Poincaré Metric	45
	5.	The Schwarz Lemma	55
	6.	A Detour into Non-Euclidean Geometry	58

xvi Contents

2	Cur	vature and Applications	67
	1.	Curvature and the Schwarz Lemma Revisited	67
	2.	Liouville's Theorem and Other Applications	73
	3.	Normal Families and the Spherical Metric	79
	4.	A Generalization of Montel's Theorem and the	
		Great Picard Theorem	86
3	Son	ne New Invariant Metrics	89
	0.	Introductory Remarks	89
	1.	The Carathéodory Metric	90
	2.	The Kobayashi Metric	93
	3.	Completeness of the Carathéodory and Kobayashi	
		Metrics	103
	4.	An Application of Completeness: Automorphisms	121
	5.	Hyperbolicity and Curvature	133
4	Intr	oduction to the Bergman Theory	137
	0.	Introductory Remarks	137
	1.	Bergman Basics	138
	2.	Invariance Properties of the Bergman Kernel	140
	3.	Calculation of the Bergman Kernel	143
	4.	About the Bergman Metric	151
	5.	More on the Bergman Metric	155
	6.	Application to Conformal Mapping	156
5	A G	limpse of Several Complex Variables	161
	0.	Functions of Several Complex Variables	161
	1.	Basic Concepts	164
	2.	The Automorphism Groups of the Ball and Bidisc	170
	2	Invariant Metrics and the Inequivalence of the Ball	
	3.	invariant victies and the inequivalence of the Dan	

Contents		xvii
App	endix	191
1.	Introduction	191
2.	Expressing Curvature Intrinsically	191

1.	Introduction	191
2.	Expressing Curvature Intrinsically	191
3.	Curvature Calculations on Planar Domains	200
Sym	nbols	205
Refe	erences	209
Inde	ex	213

Epilogue 189

Epilogue

In complex analysis, geometric methods provide both a natural language for analyzing and recasting classical problems and also a rubric for posing new problems. The interaction between the classical and the modern techniques is both rich and rewarding.

Many facets of this symbiosis have yet to be explored. In particular, very little is known about explicitly calculating and estimating the differential invariants described in the present monograph. It is hoped that this book will spark some new interest in these matters.

Appendix on the Structure Equations and Curvature

1. Introduction

Here we give a brief presentation of the connection between the calculus notion of curvature (see [THO]) and the more abstract notion of curvature which leads to the definition of κ in Chapter 2. It is a pleasure to acknowledge our debt to the clear and compelling exposition in [ONE].

First, a word about notation. We use the language of differential forms consistently in this appendix. On the one hand, classically trained analysts are often uncomfortable with this language. On the other hand, the best way to learn the language is to use it. And the context of curvature calculations on plane domains may in fact be the simplest non-trivial context in which differential forms can be profitably used. In any event, this appendix would be terribly clumsy if we did not use forms, so the decision is essentially automatic. All necessary background on differential forms may be found in [RU1] or in [ONE].

2. Expressing Curvature Intrinsically

First we recall the concept of curvature for a smooth, two-dimensional surface $M \subseteq \mathbb{R}^3$. All of our calculations are local, so it is convenient to think of M as parametrized by two coordinate functions over a connected open set $U \subseteq \mathbb{R}^2$:

$$U \ni (u, v) \xrightarrow{p} (x_1(u, v), x_2(u, v), x_3(u, v)) \in M.$$

We require that the matrix

$$\begin{pmatrix}
\frac{\partial x_1}{\partial u} & \frac{\partial x_2}{\partial u} & \frac{\partial x_3}{\partial u} \\
\frac{\partial x_1}{\partial v} & \frac{\partial x_2}{\partial v} & \frac{\partial x_3}{\partial v}
\end{pmatrix}$$

have rank 2 at each point of U. The vectors given by the rows of this matrix span the tangent plane to M at each point. Applying the Gram-Schmidt orthonormalization procedure to these row vectors, and shrinking U, M if necessary, we may create vector fields

$$E_1: M \longrightarrow \mathbb{R}^3$$

 $E_2: M \longrightarrow \mathbb{R}^3$

such that $E_1(x_1, x_2, x_3)$ and $E_2(x_1, x_2, x_3)$ are orthonormal and tangent to M at each $P = (x_1, x_2, x_3) \in M$. Denote by $T_P(M)$ the collection of linear combinations

$$aE_1(x_1, x_2, x_3) + bE_2(x_1, x_2, x_3), \qquad a, b \in \mathbb{R}.$$

We call $T_P(M)$ the *tangent space* to M at P.

Let $E_3(P)$ be the unit normal to M at P given by the $E_1(P) \times E_2(P)$. The functions E_1, E_2, E_3 are smooth *vector fields* on M: they assign to each $P \in M$ a triple of orthonormal vectors.

Let δ_1 , δ_2 , δ_3 denote the standard basis for vectors in \mathbb{R}^3 :

$$\delta_1 = (1, 0, 0),$$

 $\delta_2 = (0, 1, 0),$

$$\delta_3 = (0, 0, 1).$$

(Many calculus books call these vectors i, j, and k.) Then we may write

$$E_i = \sum_j a_{i,j}(x_1, x_2, x_3)\delta_j, \qquad i = 1, 2, 3.$$

The matrix

$$\mathcal{A} \equiv \left(a_{i,j}\right)_{i,j=1}^3,$$

where the $a_{i,j}$ are *functions* of the space variables, is called the *attitude matrix* of the frame (or basis) E_1 , E_2 , E_3 . Since \mathcal{A} transforms one orthonormal frame to another, \mathcal{A} is an orthogonal matrix. Hence

$$A^{-1} = {}^{t}A.$$

Definition 1. If $P \in M$, $v \in T_P(M)$, and f is a smooth function on M, then define

$$D_v f(P) = \frac{d}{dt} f \circ \phi(t) \bigg|_{t=0},$$

where ϕ is any smooth curve in M such that $\phi(0) = P$ and $\phi'(0) = v$. One checks that this definition is independent of the choice of ϕ .

Definition 2. If

$$\alpha: M \longrightarrow \mathbb{R}^3$$

is a vector field on M,

$$\alpha(P) = \alpha_1(P)\delta_1 + \alpha_2(P)\delta_2 + \alpha_3(P)\delta_3,$$

and $v \in T_P(M)$ then define

$$\nabla_{v}\alpha(P) = (D_{v}\alpha_{1})(P)\delta_{1} + (D_{v}\alpha_{2})(P)\delta_{2} + (D_{v}\alpha_{3})(P)\delta_{3}.$$

The operation ∇_v is called *covariant differentiation* of the vector field α .

Definition 3. If $P \in M$, $v \in T_P(M)$, we define the *shape operator* (or *Weingarten map*) for M at P to be

$$S_P(v) = - \nabla_v E_3(P).$$

Lemma 4. We have that $S_P(v) \in T_P(M)$.

Proof. Now $E_3 \cdot E_3 \equiv 1$, hence

$$0 = D_v(E_3 \cdot E_3) \Big|_P$$
$$= (2 \nabla_v E_3) \cdot E_3 \Big|_P$$
$$= -2S_P(v) \cdot E_3(P).$$

Hence $S_P(v) \perp E_3(P)$ so $S_P(v) \in T_P(M)$.

Notice that the shape operator assigns to each $P \in M$ a linear operator S_P on the 2-dimensional tangent space $T_P(M)$.

We can express this linear operator as a matrix with respect to the basis $E_1(P)$, $E_2(P)$. So S assigns to each $P \in M$ a 2×2 matrix \mathcal{M}_P .

The linear operator S_P measures the rate of change of E_3 in any tangent direction v. It can be shown that \mathcal{M}_P is diagonalizable. The (real) eigenvectors of \mathcal{M}_P correspond to the *principal curvatures* of M at P (these are the directions of greatest and least curvature) and the corresponding eigenvalues measure the amount of curvature in those directions.

The preceding observations about \mathcal{M}_P motivate the following definition.

Definition 5. The *Gaussian curvature* $\kappa(P)$ of M at a point $P \in M$ is the determinant of \mathcal{M}_P —the product of the two eigenvalues.

Our aim is to express $\kappa(P)$ in terms of the intrinsic geometry of M, without reference to E_3 —that is, without reference to the way that M is situated in space.

To this end, we define *covector fields* θ_i which are dual to the vector fields E_i :

$$\theta_i E_j(P) = \delta_{ij}.$$

Then the θ_i may be expressed as linear combinations of the standard basis covectors dx_1 , dx_2 , dx_3 . Indeed, if $\mathcal{A} = (a_{i,j})$ is the attitude matrix then

$$\theta_i = \sum a_{i,j} \, dx_j$$

(remember that $A^{-1} = {}^{t}A$). Thus, for each i, θ_i is a differential form; and the standard calculus of differential forms—including exterior differentiation—applies.

From now on, we restrict attention to 1- and 2-forms acting on tangent vectors to M. Thus any 1-form α may be expressed as

$$\alpha = \alpha(E_1)\theta_1 + \alpha(E_2)\theta_2$$

and any 2-form β may be expressed as

$$\beta = \beta(E_1, E_2)\theta_1 \wedge \theta_2.$$

Now we define covector fields $\omega_{i,j}$, $i, j \in \{1, 2, 3\}$, by the formula

$$\omega_{i,j}(v) = (\nabla_v E_i) \cdot E_j(P).$$

Here "·" is the Euclidean dot product. We think of $\omega_{i,j}$ as a differential 1-form. Notice that, since $E_i \cdot E_j \equiv \delta_{i,j}$, we have for $v \in T_P(M)$ that

$$0 = D_v(E_i \cdot E_j)$$

$$= (\nabla_v E_i) \cdot E_j + E_i \cdot (\nabla_v E_j)$$

$$= \omega_{i,j}(v) + \omega_{i,i}(v).$$

Thus

$$\omega_{i,j} = -\omega_{j,i}$$
.

In particular,

$$\omega_{i,i} = 0.$$

If $v \in T_P(M)$ then it is easy to check, just using linear algebra, that

$$\nabla_v E_i = \sum_j \omega_{i,j}(v) E_j, \qquad 1 \le i \le 3.$$

We call the $\omega_{i,j}$ the *connection forms* for M. We can now express the shape operator in terms of these connection forms.

Proposition 6. Let $P \in M$ and $v \in T_P(M)$. Then

$$S_P(v) = \omega_{1,3}(v)E_1(P) + \omega_{2,3}(v)E_2(P).$$

Proof. We have that

$$S_{P}(v) = -\nabla_{v} E_{3}$$

$$= -\sum_{j=1}^{3} (\nabla_{v} E_{3} \cdot E_{j}) E_{j}$$

$$= -\sum_{j=1}^{3} \omega_{3,j}(v) E_{j}$$

$$= \omega_{1,3}(v) E_{1} + \omega_{2,3}(v) E_{2},$$

since $\omega_{3,3} = 0$.

Now we can express Gaussian curvature in terms of the $\omega_{i,j}$.

Proposition 7. We have that

$$\omega_{1,3} \wedge \omega_{2,3} = \kappa \theta_1 \wedge \theta_2.$$

Proof. We need to calculate \mathcal{M}_P in terms of the $\omega_{i,j}$. Proposition 6 gives that

$$S_P(E_1) = \omega_{1,3}(E_1)E_1 + \omega_{2,3}(E_1)E_2$$

and

$$S_P(E_2) = \omega_{1,3}(E_2)E_1 + \omega_{2,3}(E_2)E_2$$

so the matrix of S_P , in terms of the basis E_1 , E_2 , is

$$\mathcal{M}_P = \begin{pmatrix} \omega_{1,3}(E_1) & \omega_{2,3}(E_1) \\ \omega_{1,3}(E_2) & \omega_{2,3}(E_2) \end{pmatrix}.$$

We know that $\omega_{1,3} \wedge \omega_{2,3}$, being a 2-form, can be written as $\lambda \cdot \theta_1 \wedge \theta_2$. On the other hand,

$$\kappa = \det \mathcal{M}_{P}$$

$$= \omega_{1,3}(E_{1})\omega_{2,3}(E_{2}) - \omega_{1,3}(E_{2})\omega_{2,3}(E_{1})$$

$$= (\omega_{1,3} \wedge \omega_{2,3})(E_{1}, E_{2})$$

$$= \lambda.$$

Therefore

$$\omega_{1,3} \wedge \omega_{2,3} = \lambda \, \theta_1 \wedge \theta_2 = \kappa \, \theta_1 \wedge \theta_2.$$

Our goal now is to express κ using only those $\omega_{i,j}$ with $i \neq 3$, $j \neq 3$. For this we require a technical lemma about the attitude matrix.

Lemma 8. We have that

$$\omega_{i,j} = \sum_{k} a_{j,k} da_{i,k}, \qquad 1 \le i, \ j \le 3.$$

Proof. If $v \in T_P(M)$ then

$$\omega_{i,j}(v) = \nabla_v E_i \cdot E_j(P).$$

But

$$E_i = \sum_k a_{i,k} \delta_k.$$

Therefore

$$\nabla_v E_i = \sum_k (D_v a_{i,k}) \delta_k.$$

Then

$$\begin{aligned} \omega_{i,j}(v) &\equiv \nabla_v E_i \cdot E_j \\ &= \left(\sum_k (D_v a_{i,k}) \delta_k \right) \cdot \left(\sum_k a_{j,k} \delta_k \right) \\ &= \sum_k (D_v a_{i,k}) a_{j,k} \\ &= \sum_k da_{i,k}(v) a_{j,k}. \end{aligned}$$

As a result,

$$\omega_{i,j} = \sum_{k} a_{j,k} \, da_{i,k}.$$

Now we have reached a milestone. We can derive the important *Cartan structural equations*, which are the key to our intrinsic formulas for curvature.

Theorem 9. We have

$$d\theta_i = \sum_j \omega_{i,j} \wedge \theta_j, \tag{1}$$

$$d\omega_{i,j} = \sum_{k} \omega_{i,k} \wedge \omega_{k,j}. \tag{2}$$

Proof. We have that

$$\theta_i = \sum_j a_{i,j} \, dx_j$$

hence

$$d\theta_i = \sum_j da_{i,j} \wedge dx_j.$$

Since the attitude matrix A is orthogonal, we may solve the equations in Lemma 8 for $da_{i,k}$ in terms of $\omega_{i,j}$. Thus

$$da_{i,j} = \sum_{k} \omega_{i,k} a_{k,j}.$$

Substituting this into our last formula gives

$$d\theta_i = \sum_j \left[\left(\sum_k \omega_{i,k} a_{k,j} \right) \wedge dx_j \right]$$
$$= \sum_k \left[\omega_{i,k} \wedge \sum_j a_{k,j} dx_j \right]$$
$$= \sum_k \omega_{i,k} \wedge \theta_k.$$

This is the first structural equation.

For the second equation, notice that the formula

$$\omega_{i,j} = \sum_{k} a_{j,k} \, da_{i,k}$$

implies

$$d\omega_{i,j} = -\sum_{k} da_{i,k} \wedge da_{j,k}.$$

On the other hand,

$$\sum_{k} \omega_{i,k} \wedge \omega_{k,j} = \sum_{k} \left(\sum_{\ell} a_{k,\ell} \, da_{i,\ell} \right) \wedge \left(\sum_{m} a_{j,m} \, da_{k,m} \right)$$

$$= \sum_{k} \left(\sum_{\ell} a_{k,\ell} \, da_{i,\ell} \right) \wedge \left(-\sum_{m} a_{k,m} \, da_{j,m} \right)$$

$$= -\left(\sum_{\ell,m} \left\{ \sum_{k} a_{k,\ell} a_{k,m} \right\} \cdot da_{i,\ell} \wedge da_{j,m} \right)$$

$$= -\sum_{m} da_{i,m} \wedge da_{j,m}$$
$$= d\omega_{i,j}.$$

In the antepenultimate line we have used the fact that $A^{-1} = {}^{t}A$. The result now follows.

The following corollary will prove critical.

Corollary. We have

$$d\omega_{1,2} = -\kappa \theta_1 \wedge \theta_2$$
.

Proof. The second structural equation gives

$$d\omega_{1,2} = \sum_{k} \omega_{1,k} \wedge \omega_{k,2}$$

= $\omega_{1,1} \wedge \omega_{1,2} + \omega_{1,2} \wedge \omega_{2,2} + \omega_{1,3} \wedge \omega_{3,2}$.

Only the third summand doesn't vanish. But we calculated in Proposition 7 that it equals $-\kappa \theta_1 \wedge \theta_2$.

The Corollary has been our main goal in this subsection. It gives an intrinsic way to calculate Gaussian curvature in the classical setting, hence a way to *define* Gaussian curvature in more abstract settings. We now proceed to develop this more abstract point of view.

3. Curvature Calculations on Planar Domains

Let $\Omega \subseteq \mathbb{C}$ be a domain which is equipped with a metric ρ . Assume for simplicity that $\rho(z) > 0$ at all points of Ω . Define functions

$$E_1 \equiv \frac{(1,0)}{\rho}$$
 and $E_2 \equiv \frac{(0,1)}{\rho}$.

Then

$$\theta_1 = \rho \, dx$$
 and $\theta_2 = \rho \, dy$

are the dual covector fields. We define $\omega_{i,j}$ according to the first structure equation:

$$d\theta_1 = \omega_{1,2} \wedge \theta_2,$$

$$d\theta_2 = \omega_{2,1} \wedge \theta_1.$$

We define Gaussian curvature according to the Corollary to Theorem 9 in the previous section:

$$d\omega_{1,2} = -\kappa \theta_1 \wedge \theta_2$$
.

One can check that these definitions are independent of the choice of frame (or basis) E_1 , E_2 , but this is irrelevant for our purposes.

We conclude this Appendix by proving that the definition of curvature which we just elicited from the structural equations coincides with the one given in Section 2.1. First, by the way that we've defined θ_1 and θ_2 , we have

$$d\theta_1 = d\rho \wedge dx$$

$$= (\rho_x dx + \rho_y dy) \wedge dx$$

$$= \rho_y dy \wedge dx$$

$$= -\frac{\rho_y}{\rho} dx \wedge \rho dy$$

$$= -\frac{\rho_y}{\rho} dx \wedge \theta_2.$$

Similarly,

$$d\theta_2 = d\rho \wedge dy$$

= $(\rho_x dx + \rho_y dy) \wedge dy$
= $\rho_x dx \wedge dy$

$$= -\frac{\rho_x}{\rho} \, dy \wedge \rho \, dx$$
$$= -\frac{\rho_x}{\rho} \, dy \wedge \theta_1.$$

Comparison with the first structural equation gives

$$\omega_{1,2} = -\frac{\rho_y}{\rho} dx + \tau dy$$

and

$$\omega_{1,2} = -\omega_{2,1} = -\left(-\frac{\rho_x}{\rho}\,dy\right) + \sigma\,dx,$$

for some unknown functions τ and σ .

The only way these equations can be consistent is if

$$\omega_{1,2} = -\frac{\rho_y}{\rho} dx + \frac{\rho_x}{\rho} dy.$$

Thus

$$d\omega_{1,2} = -\frac{\partial}{\partial y} \left(\frac{\rho_y}{\rho} \right) dy \wedge dx + \frac{\partial}{\partial x} \left(\frac{\rho_x}{\rho} \right) dx \wedge dy$$

$$= \left(-\frac{\rho_{yy}}{\rho} + \frac{\rho_y \rho_y}{\rho^2} \right) dy \wedge dx + \left(\frac{\rho_{xx}}{\rho} - \frac{\rho_x \rho_x}{\rho^2} \right) dx \wedge dy$$

$$= \frac{1}{\rho^2} \left(\rho \Delta \rho - (\rho_y)^2 - (\rho_x)^2 \right) dx \wedge dy$$

$$= \frac{1}{\rho^4} \left(\rho \Delta \rho - (\rho_y)^2 - (\rho_x)^2 \right) \theta_1 \wedge \theta_2.$$

The second structural equation now implies that

$$\kappa = -\frac{1}{\rho^4} (\rho \Delta \rho - |\nabla \rho|^2).$$

On the other hand, in Section 2.1 we defined

$$\kappa = -\frac{\Delta \log \rho}{\rho^2}.$$

We have

$$\frac{\partial}{\partial \bar{z}} \log \rho = \frac{1}{\rho} \frac{\partial \rho}{\partial \bar{z}}$$

and

$$\Delta \log \rho = 4 \frac{\partial^2}{\partial z \partial \bar{z}} \log \rho$$

$$= 4 \left(-\frac{1}{\rho^2} \frac{\partial \rho}{\partial z} \frac{\partial \rho}{\partial \bar{z}} + \frac{1}{\rho} \frac{\partial^2 \rho}{\partial z \partial \bar{z}} \right)$$

$$= -\frac{1}{\rho^2} \cdot |\nabla \rho|^2 + \frac{1}{\rho} \cdot \Delta \rho.$$

It follows that, according to the definition in Section 2.1,

$$\kappa = -\frac{1}{\rho^4} (\rho \Delta \rho - |\nabla \rho|^2).$$

Thus, as claimed, the definition of curvature from Chapter 2 is equal to that which arises from the structural equations.

Table of Symbols

Symbol	Page Number	Meaning
\mathcal{A}	193	the attitude matrix
$A^2(\Omega)$	138	the Bergman space
$A_{r,R}$	122	an annulus
$\operatorname{Aut}(U)$	121, 179	the automorphism group of U
[az+b]/[cz+d]	14	linear fractional transformation
$\mathbf{B}(0,r)$	48	Poincaré metric ball
B(P,R)	128	metric ball
$\mathcal{B}(P,r)$	165	a ball in \mathbb{C}^2
\mathbb{C}	1	complex numbers
\mathbb{C} $\widehat{\mathbb{C}}$	82	the Riemann sphere
C C	62	arc of a circle
\mathcal{C}	168	domain of convergence
$\mathbb{C}_{0,1}$	76	the domain $\mathbb{C} \setminus \{0, 1\}$
C^{1}	3	continuously differentiable
$\mathbb{C}_{0,1}$ C^1 C^2 C^k	105	twice continuously differentiable
C^k	105	k times continuously differentiable
C^{∞}	106	infinitely differentiable
$C_{\Omega}(P,Q)$	37	all piecewise continuously
		differentiable curves connecting P to Q
c(P)	111	center of curvature
C_R	53	points in D having Poincaré
		distance R from 0
$C(z,\zeta)$	140	the Cauchy kernel
D	2	unit disc
d	111	internally tangent disc
Δ	40	the Laplacian
$d_{ ho}$	47	the Poincaré distance
D_v	193	directional derivative
$\delta_1, \delta_2, \delta_3$	192	standard basis vectors
dA	138	area measure
$\det \operatorname{Jac} \phi$	141	the Jacobian determinant
$\underline{D}(P,r)$	2	open disc
$\overline{D}(P,r)$	2	closed disc

Symbol	Page Number	Meaning
$\partial D(P,r)$	2	boundary of disc
$D'(0,\epsilon)$	87	a punctured disc
$D(C(P), r_0)$	110	externally tangent disc
$D(C'(P), r_0)$	110	internally tangent disc
$D^2(P,r)$	165	a bidisc in \mathbb{C}^2
$\overline{D}^2(P,r)$	166	closure of a bidisc
$(D,U)_P$	90, 180	holomorphic functions f from U to D such that $f(P) = 0$
$\operatorname{dist}_C(z, \tau_p)$	120	Carathéodory distance of
		z to τ_p
$d_{\rho}(P, Q)$	37	ρ -metric distance of P to Q
$d_{\rho}(P,Q)$	47	Poincaré distance
$d_{\sigma}(z,w)$	83	spherical distance
$d\omega_{i,j} = \sum_{k} \omega_{i,k} \wedge \omega_{k,j}$	198	Cartan structural equations
$d\theta_i = \sum_j \omega_{i,j} \wedge \theta_j$	120	1
dV	139	volume measure
E_1, E_2	192	a frame (basis) of vector fields
E_3	192	the unit normal vector field
<i>F</i> '	2 2	a holomorphic function
\mathcal{F}	16	complex derivative of F
_		a normal family
$F_C^U(P)$	90, 180	Carathéodory metric on U at P
$F_K^U(P)$	94, 181	Kobayashi metric on U at P
$f_*\gamma$	43, 181	the push-forward of γ
f_{μ}^*	42	the pullback mapping
$f^{\#}(z)$	85	the spherical derivative
f^n	58, 101	nth iterate of f
$ f _{A^2(\Omega)}$	138	the Bergman norm
$\langle f, g \rangle_{A^2(\Omega)}$	139	the Bergman inner product
$\mathcal G$	81	a family of holomorphic functions
γ	3, 30, 31	a curve
$\dot{\gamma}$	30	derivative of γ
$\gamma_{P,Q}(t)$	50	curve of least Poincaré length connecting <i>P</i> to <i>Q</i>
$\Gamma_{\alpha}(P)$	118	Stolz region, non-tangential approach region

Symbol	Page Number	Meaning
$G(z,\zeta)$	148	the Green's function
id	122	the identity mapping
$\mathbf{i}(z)$	127	the identity map
$\mathbf{i}_{P}^{C}(U)$	182	Carathéodory indicatrix
$\mathbf{i}_P^K(U)$	182	Kobayashi indicatrix
I(z)	83	inversion mapping
$\oint_{\mathcal{V}} F(z) dz$	4	complex line integral
∞	86	point at infinity on the Riemann sphere
$\operatorname{Jac}\phi$	141, 172	the Jacobian matrix
K	17, 18	a compact set
$\kappa = \kappa(P)$	67	curvature of the metric ρ
$\kappa_{U,\rho}(z) = \kappa_{\rho}(z)$	67	curvature of the metric ρ
K_{Ω}	139, 140	the Bergman kernel for Ω
λ	30	a metric
ℓ	61, 62	a line in Euclidean geometry
$\ell(\gamma)$	30	length of γ
$\ell_{ ho}(\gamma)$	34	length of curve γ in metric ρ
$\ell_K(\gamma)$	181	Kobayashi length of the curve γ
$\mathcal{M}_{eta}(P)$	119	metric approach region
\mathcal{M}_P^r	194	matrix of the shape operator
$\mu(z)$	76	metric of negative curvature on $\mathbb{C} \setminus \{0, 1\}$
$\nabla_v \alpha(P)$	193	covariant derivative
v_P	108	unit outward normal at P
v_P'	108	unit inward normal at P
$\omega_{i,j}$	195	connection forms
$P^{\prime\prime}$	82	the north pole of the Riemann sphere
P_k	25	kth degree Taylor polynomial
p(x, y)	82	the stereographic projection map
p(z)	9	a polynomial
Ω	8	a domain
(Ω_1, ρ_1)	43	metric pair
$\partial/\partial z, \partial/\partial \overline{z}$	38	complex differential operators
$\phi_a(z_1,z_2)$	177	biholomorphic mapping of B
$\phi_a(\zeta)$	13	a Möbius transformation
$\{\phi_j\}$	145	an orthonormal system for $A^2(\Omega)$
$\psi(z,w)$	155	the pseudohyperbolic metric

Symbol	Page Number	Meaning
Ψ	129	a homotopy
\mathbb{R}	14	the real numbers
r(P)	111	radius of curvature
ho	31	a metric (weight)
ho	70	the Poincaré metric
$\rho(z)$	106	defining function
$ \rho_{\alpha}^{A}(z) $	72	dilated, scaled Poincaré distance metric
$ ho_C^\Omega$	103, 104	Carathéodory metric
$egin{array}{l} ho_C^\Omega \ ho_E^\Omega \ ho_K^\Omega \end{array}$	103, 104	Euclidean metric
$ ho_K^{\Omega}$	103, 104	Kobayashi metric
$ ho_{\Omega}$	152	Bergman metric
$\rho_r(z)$	70	the dilated Poincaré metric
$ ho_ au$	14	a rotation
$\rho(z) dz $	34	a conformal metric
$S_{P}(v)$	193	shape operator or
		Weingarten map
σ	122	the reflection map
$\sigma(z)$	69	the spherical metric
σ_0	20	extremal function
$\sum_{j} a_{j}(z-P)^{j}$	2	power series expansion
$\sum_{j} a_{j}(z - P)^{j}$ $\sum_{j} a_{jk}(z_{1} - P_{1})^{j}(z_{2} - P_{2})^{k}$	166	power series expansion
T	109	tubular coordinate mapping
$T_P(M)$	192	the tangent space to M at P
τ	84	induced Euclidean metric on sphere
$ au_p$	120	inward normal segment at p
θ_i	194	covector fields
U	2, 8	a domain
$(U,D)^P$	93, 180	holomorphic functions f from D to U such that $f(0) = P$
U_0	81	the slit plane
U_w	164	slice of a domain in \mathbb{C}^2
U^{z}	165	slice of a domain in \mathbb{C}^2
W	108	tubular neighborhood
$\ \xi\ _{\rho,z}$	31	metric length of ξ
ξ		

References

- [AHL1] L. Ahlfors, An extension of Schwarz's lemma, *Trans. Amer. Math. Soc.* 43 (1938), 359–364.
- [AHL2] —, Complex Analysis, 3rd. ed. McGraw-Hill, New York, 1979.
- [APF] L. S. Apfel, thesis, Washington University, 2003.
- [BEK] S. R. Bell and S. G. Krantz, Smoothness to the boundary of conformal mappings, *Rocky Mountain J. Math.* 17(1987), 23–40.
- [BEL] S. R. Bell, Biholomorphic mappings and the $\bar{\partial}$ -problem, *Ann. Math.*, 114 (1981), 103–112.
- [BER] S. Bergman, The Kernel Function and Conformal Mapping, 2nd ed., American Mathematical Society, Providence, 1970.
- [BOAS] R. P. Boas, Invitation to Complex Analysis, Random House, New York, 1987.
- [CHM] S. S. Chern and J. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133(1974), 219–271.
- [COH] R. Courant and D. Hilbert, Methods of Mathematica Physics, Interscience Publishers, New York, 1953–1962.
- [DFN] B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov, Modern Geometry— Methods and Applications, Spring-er-Verlag, New York and Berlin, 1984.
- [EAH] C. Earle and R. Hamilton, A fixed point theorem for holomorphic mappings, *Proc. Symp. Pure Math.*, Vol. XVI, 1968, 61–65.
- [EPS] B. Epstein, Orthogonal Families of Analytic Functions, MacMillan, New York, 1965.
- [FK] H. Farkas and I. Kra, Riemann Surfaces, Springer-Verlag, New York and Berlin, 1979.
- [FEF1] C. Fefferman, The Bergman kernel and biholomorphic mappings, Invent. Math., 26 (1974), 1–65.

- [FEF2] C. Fefferman, Parabolic invariant theory in complex analysis, Adv. Math. 31(1979), 131–262.
- [FUK] B. A. Fuks, Introduction to the Theory of Analytic Functions of Several Complex Variables, Translations of Mathematical Monographs, American Mathematical Society, Providence, R.I., 1963.
- [GAR] J. Garnett, *Analytic Capacity and Measure*, Springer Lecture Notes #297 Springer-Verlag, 1972.
- [GRK] R. E. Greene and S. G. Krantz, Function Theory of One Complex Variable, 2nd ed., American Mathematical Society, Providence, R.I., 2002.
- [HAH] K. T. Hahn, Inequality between the Bergman metric and Carathéodory differential metrics, *Proc. Am. Math. Soc.* 68(1978), 193–194.
- [HAL] P. R. Halmos, Introduction to Hilbert Space and the Theory of Spectral Multiplicity, 2nd ed., AMS Chelsea Publishing, Providence, R.I., 1998.
- [HEI] M. Heins, On the number of 1-1 directly conformal maps which a multiply-connected plane region of finite connectivity p(>2) admits onto itself, *Bull. AMS* 52(1946), 454–457.
- [HIL] E. Hille, Analytic Function Theory, 2nd ed., Chelsea Publishing, New York, 1982.
- [KOB1] S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Marcel Dekker, New York, 1970.
- [KOB2] S. Kobayashi, Hyperbolic Complex Spaces, Springer-Verlag, Berlin, 1998.
- [KOK] S. Kobayashi and K.Nomizu, Foundations of Differential Geometry, Vols. I and II, Interscience, New York, 1963, 1969.
- [KR1] S. Krantz, Function Theory of Several Complex Variables, 2nd ed., American Mathematical Society, Providence, R.I., 2000.
- [KR2] —, What is several complex variables?, *Amer. Math. Monthly*, 94 (1987), 236–256.
- [KR3] ——, Functions of one complex variable, *The Encyclopedia of Physical Science and Technology*, Academic Press, New York, 1987.
- [KR4] ——, Functions of several complex variables, The Encyclopedia of Physical Science and Technology, Academic Press, New York, 1987.
- [KR5] ——, The Elements of Advanced Mathematics, 2nd ed., CRC Press, 2002.
- [KRP1] S. Krantz and H. R. Parks, *A Primer of Real Analytic Functions*, 2nd ed., Birkhäuser, Boston, in press.
- [KRP2] S. Krantz and H. R. Parks, *The Geometry of Domains in Space*, Birkhäuser, Boston, 1999.

References 211

[KRP3] S. Krantz and H. R. Parks, The Implicit Function Theorem, Birkhäuser, Boston, 2002.

- [KRP4] S. Krantz and H. R. Parks, Distance to C^k manifolds, Jour. Diff. Equations 40(1981), 116-120.
- [LS] L. Loomis and S. Sternberg, Advanced Calculus, Addison-Wesley, Reading, 1969.
- [MIS] D. Minda and G. Schober, Another elementary approach to the theorems of Landau, Montel, Picard and Schottky, *Complex Variables*, 2 (1983), 157– 164.
- [MUN] J. Munkres, Elementary Differential Topology, Princeton University Press, Princeton, 1963.
- [ONE] B. O'Neill, Elementary Differential Geometry, Academic Press, New York, 1966.
- [PAI] P. Painlevé, Sur les lignes singulières des fonctions analytiques, *Annales de la Faculté des Sciences de Toulouse* (1) 2 (1888), 1–130.
- [PRI] I. Privalov, *Randeigenschaften Analytischer Functionen*, Deutsch Verlag der Wissenschaften, Berlin, 1956.
- [RU1] W. Rudin, Principles of Mathematical Analysis, 3rd ed., McGraw-Hill, New York, 1976.
- [RU2] —, Function Theory in the Unit Ball of Cⁿ, Springer-Verlag, Berlin, 1981.
- [RU3] ——, Real and Complex Analysis, 3rd ed., McGraw-Hill, New York, 1987.
- [TAN] N. Tanaka, On generalized graded Lie algebras and geometric structures, J. Math. Soc. Japan 19(1967), 215–254.
- [THO] G. Thomas, and R. Finney, Calculus and Analytic Geometry, Addison-Wesley, Reading, 1984.
- [WOL] J. Wolf, *Spaces of Constant Curvature*, 4th ed., Publish or Perish Press, Berkeley, 1977.

abateast nation of appropriate 101	Dall Ctayon D 155 107
abstract notion of curvature, 191 Ahlfors, Lars V., 70	Bell, Steven R., 155, 187 Bergman kernel, 138, 139
	2
Ahlfors/Schwarz lemma, 72	constructed with an orthonormal
analytic capacity, 91	expansion, 145
analytic function, 2	constructed with differential
annulus	equations, 147
automorphism group of, 123	four characterizing properties of,
compactness of automorphism	139
group of, 124	positivity of, 152
conformal mappings of, 156	real analyticity of, 157
non-transitivity of, 131	transformation under conformal
approach region, 118	maps, 141
arc length, 30, 34	Bergman metric, 151
area measure, 138	conformal invariance of, 153
argument principle, 1, 10	extremal curves in, 158
Ascoli/Arzelà theorem, 17, 85	for the disc, 153
attitude matrix, 193	geodesics in, 157
automorphism group, 121, 170	orthogonal trajectories in, 158
characterization of compactness of,	real analyticity of, 157
126	Bergman space, 139
compactness of, 123	of annulus, basis for, 156
examples of, 122	Bergman, Stefan, 137
topology on, 123	bidisc, 166
of $\mathcal{B}(0,1)$, 170	in \mathbb{C}^2 , 162
	automorphisms of, 175
ball, 166	biholomorphic mapping, 162, 169
and bidisc, biholomorphic	of the unit ball, 170
inequivalence of, 179	problem, 187
automorphisms of, 178	biholomorphisms of complete circular
in \mathbb{C}^2 , 161	domains, 174
0 , . 0 .	

Bloch's principle, 82	C^k curve, examples, 106
Bolyai, Janos, 58	closed, k times continuously
Brouwer invariance of domain, 123	differentiable curve, 105
	closed, twice continuously
calculus	differentiable curve, 105
in the complex domain, 38	coincidence of different definitions of
notion of curvature, 191	curvature, 201
canonical invariant metric, 138	compactly divergent, 79, 84
Carathéodory, Constantin, 89	compactness, 16, 17
and Kobayashi metrics, comparison	complete circular domain, 168
of, 94	completeness
indicatrix, 182	of a metric, 37
isometries, 93	of the Carathéodory metric, 113,
length, 180	117
length of a curve, 181	of the Kobayashi metric, 113
metric, 89, 90	complex
completeness of, 105	analysis, 29
distance-decreasing	analysis of several variables, 161
property, 90, 91	calculus notation, 41
examples, 91	derivative, 2, 39
for the disc, 93	differentiable, 2
invariance of, 90	differential operators, 38
isometries of, 92	line integral, 4
non-degeneracy of, 95	plane and negative curvature, 134
upper estimate for, 116	polynomials, 6
theorem, 22, 123	conformal map, 45
Cartan structural equations, 198	conformal self-maps of the disc, 13,
Cartan's theorem, 172	14, 45
Casorati-Weierstrass theorem, 23, 78	conformally equivalent domains, 19
Cauchy	connection forms, 196
estimates, 1, 8	continuously differentiable, 2, 3
integral formula, 1, 6	contraction mappings, 57
in \mathbb{C}^2 , 166	convergence of derivatives, 8
theorem, 4	convergent power series, 6
kernel, 140	cotangent vector, 42
Cauchy–Riemann equations, 2, 39	covariant differentiation, 193
center of curvature, 111	covector fields, 194
chain rule for differentiation, 40	cross product, 192
characterization of the disc in terms of	curvature, 30, 67
the Carathéodory and Kobayashi	holomorphic functions, 73
metrics, 97	definition of, 67
Chern, S. S., 187	for a smooth, two-dimensional
circle of curvature, 111	surface, 191
C^k boundary, 105	invariance of, 68
alternative definition, 106	of the Euclidean metric, 69

of the Poincaré metric, 69	omitted values, 75
provenance of, 68	equibounded, 17
curve of least length, 30	equicontinuity, 17
curve of least Poincaré length, 50	equicontinuous, 17
<i>g.</i> ,	essential singularity, 23, 24
defining function, 106	Euclid's axioms, 60
differential	Hilbert's rendition of, 60
equations, 29	Euclidean
forms, 191, 195	dot product, 195
invariants, 187	length, 31, 33, 181
dilations, 14	notion of length, 35
direction	exterior differentiation, 195
of greatest curvature, 194	externally tangent disc, 111
of least curvature, 194	extremal function, 89
directional differentiation, 193	
disc	factorization of polynomials, 9
as complete metric space, 49	Farkas-Ritt theorem, 56
automorphism group of, 122	Fefferman, Charles, 155, 187
automorphism group, transitivity	finitely connected domain,
of, 131	automorphism group of, 125
characterization by	fixed point
non-compactness of	as the limit of iterates, 57
automorphism group, 125	of a holomorphic function, 57
non-compactness of automorphism	function of two complex variables,
group of, 125	continuity of, 164
notation, 1	differentiability of, 164
tautness of, 135	fundamental theorem of algebra, 9, 78
distance in a metric, 37	
distance-decreasing property	Gauss quote about Bolyai's work, 59
of holomorphic mappings, 181	Gaussian curvature, 69, 194, 196, 201
of the Poincaré metric, 72	in terms of $\omega_{i,j}$, 196
of biholomorphic mappings, 182	intrinsic calculation of, 200
domain	generalized Schwarz lemma, 86
of convergence of a power series,	geodesic, 35
169	arc, 51
of holomorphy, 162	in Bergman metric, 157
with C^k boundary, 106	in hyperbolic geometry, 62
with infinitely many holes, 106	Gram-Schmidt orthonormalization
with transitive automorphism	procedure, 192
group, 131	great circular arc, 83
dual covector fields, 201	Green's function, 150
elliptic functions, 156	Hahn's theorem, 157
elliptic modular function, 26	harmonic
entire function, 74	analysis, 29

harmonic (continued)	Jacobian matrix
function, 41	complex, 172
Hartogs	real, 172
domain, 163	
extension phenomenon, 162	k times continuously differentiable
phenomenon, 163	curve, 105
Heine–Borel theorem, 16	Kähler metric, 32, 155
Hermitian metric, 31	Kellogg, Oliver, 155
Hilbert space, 138, 143	Kobayashi, S.
holomorphic function, 2	and Poincaré metrics, comparison
differentiability of, 166	of, 97
distance-decreasing property of, 55	indicatrix, 182
examples of in two variables, 165	of the ball, 183
much like polynomials, 8	of the bidisc, 184
power series expansion of, 166	isometries, 95
of two complex variables, 165	length, 181
holomorphic logarithm, 41	of a curve, 181
Hurwitz's theorem, 10, 84	metric, 90, 94
hyperbolic	completeness of, 105
disc, 58	distance-decreasing property
domain, 133	of, 90, 95
hyperbolicity	extremal property of, 133
in terms of curvature, 134	invariance of, 90
of multi-punctured plane, 134	non-degeneracy of, 95
	Kobayashi/Royden metric, 90, 94
infinitely	distance-decreasing property of,
connected domain with	90
non-compact automorphism	invariance of, 90
group, 132	
differentiable boundary, 106	Laplace operator, 40
differentiable function, 106	Laplacian, 155
inner product, 139	length
internally tangent disc, 111	in a metric, 34
intrinsic geometry, 194	of a continuously differentiable
invariance	curve, 30
of the Carathéodory indicatrix,	of a curve in the Poincaré metric,
183	34
of the Kobayashi indicatrix, 183	of a piecewise continuously
inverse function theorem, 110	differentiable curve, 34
inversion, 14, 156	Levi, E.E., 164
isometries, 42, 43	problem, 164
composition of, 45	Lindelöf principle, 118, 119
properties of, 43	line, 61
rigidity of, 54	linear fractional transformation, 14,
that fix a point, 100	83

linear magazine of complex	outhoograf matrix 102
linear properties of complex derivatives, 40	orthogonal matrix, 193 osculating discs, 111
Liouville's theorem, 1, 9, 74, 81,	Osgood's theorem, 170
162	osgood s dicoroni, 170
Lobachevsky, Nicolai, 58	Painlevé, Paul, 155
Lusin area integral, 140	theorem, 22, 155
	parallel, 60
Marty's criterion, 84	parallel postulate, 61
Marty's theorem, 86	independence of, 64
maximum principle, 1, 11, 123	parametrization of a surface, 191
mean value property, 11	Picard, Emil,
meromorphic functions, 83	great theorem, 25, 87
metric, 30, 31	little theorem, 25, 78
axioms, 37	geometric proof of, 78 proof of, 27
examples of, 32	theorems, 25, 74, 81, 133
geometry, 1	piecewise continuously differentiable
in two complex variables, 180	curve, 3
of negative curvature on	plane and negative curvature, 134
twice-punctured plane, 75	Playfair's formulation of the parallel
metrics, comparability of, 103	postulate, 61
model for geometry, 61	Poincaré, Henri
Möbius transformation, 13, 46,	-Bergman metric, 151
61	distance, 47
Montel theorem, 86	metric, 32, 45, 154
Montel's theorem, 1, 16, 17, 80	balls in, 48
morphisms, 42	characterization of, 52
Moser, Jurgen, 187	completeness of, 49
	conformal invariance of, 45,
nearest boundary point, 110	52
negatively oriented curve, 3	explicit calculation of, 47
neighborhood in two complex	maps which preserve, 53
variables, 165	neighborhood basis for, 48
non-Euclidean, 58	program, 187
non-Euclidean geometry, 61	theorem, 164
example of, 63	points in hyperbolic geometry, 63
nondegeneracy of the Kobayashi	pole, 23, 24
metric, 133	at infinity, 24
nontangential approach, optimality of, 121	positively oriented curve, 3
	potential function, 155 power series
nontangential approach region, 118	coefficients, 7
limit, 118	expansion, 2
normal family, 16, 80, 83, 86, 171	principal
normal family, examples of, 80	curvatures, 194
normally convergent, 79	normal, 111

product rule for differentiation, 40	singularities of a holomorphic
pseudohyperbolic metric, 155	function, 22
pullback, 42	special function space, 138
metric, 83	spherical
of a metric, 42	derivative, 85
of a metric under a conjugate	metric, 69, 82
holomorphic function, 42	Stolz region, 118
punctured disc, 116, 132	structural equations of Cartan, 69
punctured plane	sum rule for differentiation, 40
and negative curvature, 134	
non-tautness of, 135	tangent
	bundle, 31
radial boundary limit, 118	space, 192
removable singularity, 23, 24	vector, 31, 33, 42
at infinity, 24	taut domain, 135
reproducing	tautness and hyperbolicity, 135
kernel, 137	Taylor series, 7
property, 140	topologically trivial curve, 4
Riemann mapping	topology induced by invariant metrics,
function, 89	105
Riemann mapping theorem, 16, 18,	transcendental entire functions, 78
19, 89, 130, 161	transitive group action, 130
outline of proof, 19	translations, 14
Riemann removable singularities	tubular neighborhood, 108
theorem, 7, 23	twice continuously differentiable
Riemann's philosophy, 181	curve, 105
Riemannian metric, 32	
rigid motions of the Euclidean plane,	undefinable terms of geometry, 60
44	uniform continuity, 17
rotation, 156	unit disc, 2
	unit inward normal, 108
scalar multiplication rule for	unit outward normal, 108
differentiation, 40	unitary
Schwarz lemma, 1, 12, 14, 55, 94	biholomorphisms, 178
Ahlfors's version of, 70	unitary matrix, 178
in two complex variables, 172	
uniqueness portion, 102	value distribution theory, 27
Schwarz-Pick lemma, 15, 55	vector
set of uniqueness for a holomorphic	attached to base point, 32
function, 171	field, 192
several complex variables, 164	with position, 33
shape operator, 193	
action of, 194	Warschawski, Stefan, 155
simple closed curve, 3	Weierstrass's theorem, 163

zeros of a function given by a power series, 8 of holomorphic functions, 31

COMPLEX ANALYSIS: THE GEOMETRIC VIEWPOINT SECOND EDITION

STEVEN G. KRANTZ

A first-rate book, which can be used either as a text or reference.

-Choice

In five very nicely written chapters this book gives an introduction to the approach to function theory via Riemannian geometry. Very little function-theoretic background is needed and no knowledge whatsoever of differential geometry is assumed. -Mathematical Reviews

In this second edition of a Carus Monograph Classic, Steven Krantz develops material on classical non-Euclidean geometry. He shows how it can be developed in a natural way from the invariant geometry of the complex disc. He also introduces the Bergman kernel and metric and provides profound applications, some of them never having appeared before in print.

In general, the new edition represents a considerable polishing and re-thinking of the original successful volume. This is the first and only book to describe the context, the background, the details, and the applications of Ahlfors's celebrated ideas about curvature, the Schwarz lemma, and applications in complex analysis.

Beginning from scratch, and requiring only a minimal background in complex variable theory, this book takes the reader up to ideas that are currently active areas of study. Such areas include a) the Caratheodory and Kobayashi metrics, b) the Bergman kernel and metric, and c) boundary continuation of conformal maps. There is also an introduction to the theory of several complex variables. Poincaré's celebrated theorem about the biholomorphic inequivalence of the ball and polydisc is discussed and proved.

