Trabalho pratico 2

•••

Artur TURATTI - 00304740 Denis ROSA - 00252875 Izadora BERTI - 00275606 Lucas KRÜGER - 00287688 Maria JACINTHO- 00262505 Mateus SANTOS - 00243714 Vitor FERRARI - 00299932

Tarefa 1 - compressão JPEG

Tarefa 1 - compressão JPEG

Matriz de quantização default da compressão JPEG

Q =	T16	11	10	16	24	40	51	61	
	12	12	14	19	26	58	60	55	
	14	13	16	24	40	57	69	56	
	14	17	22	29	51	87	80	62	
	18	22	37	56	68	109	103	77	
	24	35	55	64	81	104	113	92	
	49	64	78	87	103	121	120	101	
	72	92	95	98	112	100	103	99	

Quantização -> dividir bloco e arredondar

Q: 10 PSNR = +19.79 dB / SNR = 10.89 dB

Taxa de compressão: 1.34

Q: 2 PSNR = +14.38 dB / SNR = 5.12 dB

Taxa de compressão: 6.56

Q: 25 PSNR = +20.30 dB / SNR = 10.02 dB

Taxa de compressão: 1.52

Q: 5 PSNR = +18.71 dB / SNR = 7.82 dB

Taxa de compressão: 3,24

Tarefa 2 - Compressão por Quantização Vetorial

Imagem 1 - Original

Imagem 1 - Bloco 2x2, Dicionário de 256 palavras

Imagem 1 - Bloco 3x3, Dicionário de 256 palavras

Imagem 1 - Bloco 2x2 e Bloco 3x3 (FOCO)

2x2

3x3

Imagem 2 - Original

Imagem 2 - Bloco 2x2, Dicionário de 256 palavras

Imagem 2 - Bloco 3x3, Dicionário de 256 palavras

Imagem 1 - Bloco 2x2 e Bloco 3x3 (FOCO)

3x3

Imagem 1 - Bloco 2x2 e Bloco 3x3 (FOCO)

3x3 (Dicio 256)

3x3 (Dicio. 512)

Resultados - Imagem 1

- 2x2
 - Taxa de Compressão:
 - **3.88:1**
 - o PSNR:
 - 30.20 (dB)

- \bullet 3x3
 - Taxa de Compressão:
 - **7.76:1**
 - o PSNR:
 - 26.37 (dB)

Resultados - Imagem 2

- 2x2
 - Taxa de Compressão:
 - **3.94:1**
 - o PSNR:
 - 35.63 (dB)

- \bullet 3x3
 - Taxa de Compressão:
 - **8.34:1**
 - o PSNR:
 - 32.73 (dB)

Resultados - Imagem 2 (Dicionários de tam. diferentes)

- 3x3 (Dicio. 256)
 - Taxa de Compressão:
 - **8.34:1**
 - o PSNR:
 - 32.73 (dB)
 - Tamanho da Imagem:
 - **31204 bytes**

- 3x3 (Dicio. 512)
 - Taxa de Compressão:
 - **7.76:1**
 - o PSNR:
 - 34.62 (dB)
 - Tamanho da Imagem:
 - **33508** bytes

Tarefa 3.a - Segmentação por Thresholding

Separação dos canais de cor.

Levando em consideração o valor min e max de cada canal de cor e um valor previamente decidido, o número que servirá de threshold é gerado.

Se em uma determinada posição algum canal de cor atingir o seu respectivo threshold ele é marcado como 1 na matriz de saída e 0 caso contrário.

Resultado Thresholding

Thresholding Dog

Tarefa 3.a - Segmentação por Clustering (K-Means)

- Recebe o número de clusters a serem formados e o número de iterações que o algoritmo deve ser executado.
- Calcula para cada ponto o cluster mais próximo, guardado a distância e a label desse cluster. Na la execução a posição dos centros dos cluster são geradas randomicamente.
- A posição de cada centro de cluster é recalculada, via média simples, de todos os pixels associados ele..
- Esse processo é repetido um número de vezes previamente definido.

Resultado Clustering K-Means

K-means Cluster Segmentation Peppers

K-means Cluster Segmentation Pears

