Machine Learning HW5 Report

學號:R07942115 系級:電信碩一 姓名:謝硯澤

1. (1%) 試說明 hw5_best.sh 攻擊的方法,包括使用的 proxy model、方法、參數等。此方法和 FGSM 的差異為何?如何影響你的結果?請完整討論。(依內容完整度給分)

proxy model	Resnet50
method	Iterative LEAST-LIKELY CLASS Method
Eps(可以決定 L-infinity 的大小)	18
Alpha(更新 image 的 step size)	1
Number of Iteration	22

我使用的方法是 ICLR2017 年提出的一篇 paper "ADVERSARIAL EXAMPLES IN THE PHYSICAL WORLD"其中的 Iterative LEAST-LIKELY CLASS Method。其實這個演算法 跟 FGSM 蠻像的,差別在於,我針對 gradient 更新了 input image 很多次,不只更新一次而已。並去計算 proxy model predict 出來 confidence 最低的那個 class 和 model 的 output 之間的 loss,再去做 back propagation 算出梯度值,根據梯度的方向去更新 image。希望最後生成的攻擊影像可以讓 model 辨識為原本 confidence 最低的 class。 (FGSM 則是希望更新完的影像可以讓 ground truth 那個 class confidence 越低越好)

詳細的公式列在下方:

$$y_{LL} = \underset{y}{\operatorname{arg\,min}} \{ p(y|\boldsymbol{X}) \}.$$

$$\boldsymbol{X}_{0}^{adv} = \boldsymbol{X}, \quad \boldsymbol{X}_{N+1}^{adv} = Clip_{X,\epsilon} \left\{ \boldsymbol{X}_{N}^{adv} - \alpha \operatorname{sign} \left(\nabla_{X} J(\boldsymbol{X}_{N}^{adv}, y_{LL}) \right) \right\}$$

2. (1%) 請列出 hw5_fgsm.sh 和 hw5_best.sh 的結果 (使用的 proxy model、success rate、L-inf. norm)。

	FGSM	Iterative LEAST-LIKELY
	(hw5_fgsm)	CLASS Method
		(hw5_best)
Proxy model	Resnet 50	Resnet 50
Success rate	0.32	0.99
L-inf. norm	23	5

3. (1%) 請嘗試不同的 proxy model,依照你的實作的結果來看,背後的 black box 最有可能為哪一個模型?請說明你的觀察和理由。

Proxy model	Success rate	L-inf. norm
vgg16	0.060	5
vgg19	0.070	5
resnet50	0.99	5
resnet101	0.060	5
densenet121	0.090	5
densenet169	0.055	5

根據上表,推測背後的模型為 resnet50,因為 success rate 明顯好非常多!

4. (1%) 請以 hw5_best.sh 的方法,visualize 任意三張圖片攻擊前後的機率圖 (分別取前三高的機率)。

5. (1%) 請將你產生出來的 adversarial img,以任一種 smoothing 的方式實作被動防禦 (passive defense),觀察是否有效降低模型的誤判的比例。請說明你的方法,附上你 防禦前後的 success rate,並簡要說明你的觀察。另外也請討論此防禦對原始圖片會 有什麼影響。

我使用的防禦方法是 3x3 Median filter,此方法非常適合拿來解決 salt and pepper 的雜訊問題。此方法是以一個 n*n 的 mask 遮罩原始影像,並排序 mask 遮罩中的所有 pixel 值,並取中間值當作該點 pixel 的輸出。防禦前及防禦後的 success rate 如下表所示:

	Success rate	L-inf.
Before smoothing	0.99	5
After smoothing	0.295	131.8450

Before smoothing

After smoothing

可以發現做完 smoothing(3x3 median filter)以後,success rate 確實降低很多,但同樣的卻使得原始影像變得更模糊,L-inf.大幅上升。