RobertNLP at the IWPT 2020 Shared Task: Surprisingly Simple Enhanced UD Parsing for English

Stefan Grünewald^{1,2}

Annemarie Friedrich²

¹Institut für Maschinelle Sprachverarbeitung, University of Stuttgart ²Bosch Center for Artificial Intelligence, Renningen, Germany

https://github.com/boschresearch/robertnlp-enhanced-ud-parser

IWPT 2020 @ ACL

Overview

End-to-End Enhanced Graph Parsing for English

▶ Our submission:

- ► 1st place on English test data
- ► As of now, English only

Submission	ELAS F1
RobertNLP	88.94
TurkuNLP	87.15
median	83.41
UDify + converter	85.67

Official results for English (IWPT test)

Overview

End-to-End Enhanced Graph Parsing for English

▶ Our submission:

- ► 1st place on English test data
- ► As of now, English only

Submission	ELAS F1
RobertNLP	88.94
TurkuNLP	87.15
median	83.41
UDify + converter	85.67

Official results for English (IWPT test)

▶ Our approach:

- 1. Predict the whole dependency graph directly
- 2. Ensure graph validity
- 3. Lexicalize labels

System Overview

Dependency Classification

- ► Predict the dependency relation for every **pair** of tokens [Dozat & Manning, 2018]
 - ightharpoonup Treat non-existence of a dependency as simply another label (\varnothing)

	[root]	Use	cinnamon	instead	J 0	sugar	or	sweetener
[root]	Ø	root	Ø	Ø	Ø	Ø	Ø	Ø
Use	Ø	Ø	obj	Ø	Ø	obl:[case]	Ø	obl:[case]
cinnamon	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
instead	Ø	Ø	Ø	Ø	fixed	Ø	Ø	Ø
of	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
sugar	Ø	Ø	Ø	case	Ø	Ø	Ø	conj:[cc]
or	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
sweetener	Ø	Ø	Ø	Ø	Ø	Ø	cc	Ø

StanfordNLP for tokenization and sentence segmentation

Input tokens

Use

cinnamon

instead

Embeddings r_i (Scalar mixture of layers)

RoBERTa

Input tokens

Contextualized embeddings from a weighted sum of **RoBERTa** layers [Kondratyuk & Straka, 2019]

► [root] → learned embedding

StanfordNLP for tokenization and sentence segmentation

hi^{head}, hi^{dep}

Embeddings r_i (Scalar mixture of layers)

RoBERTa

Input tokens

Each token receives a **head** and a **dependent** representation

Contextualized embeddings from a weighted sum of **RoBERTa** layers [Kondratyuk & Straka, 2019]

► [root] → learned embedding

StanfordNLP for tokenization and sentence segmentation

System Overview

Dependency Classification

Biaffine classifier: Probabilities for the different dependency labels for each head/dependent pair in the sentence [Dozat & Manning, 2017]

Each token receives a **head** and a **dependent** representation

Contextualized embeddings from a weighted sum of **RoBERTa** layers [Kondratyuk & Straka, 2019]

► [root] → learned embedding

StanfordNLP for tokenization and sentence segmentation

System Overview Ensuring Graph Validity

- ► The union of all predicted edges forms a dependency graph
- ▶ 99% of graphs are structurally valid
 - ▶ All nodes are reachable from the root

System Overview Ensuring Graph Validity

- ► The union of all predicted edges forms a dependency graph
- ▶ 99% of graphs are structurally valid
 - ▶ All nodes are reachable from the root
- ► For the remaining 1% invalid graphs:
 - 1. For tokens lacking a head, assign to them the highest-scoring incoming non-Ø dependency

System Overview Ensuring Graph Validity

- ► The union of all predicted edges forms a dependency graph
- ▶ 99% of graphs are structurally valid
 - ► All nodes are reachable from the root
- ► For the remaining 1% invalid graphs:
 - For tokens lacking a head, assign to them the highest-scoring incoming non-Ø dependency
 - 2. If there are still unreachable nodes, heuristically add edges from a basic dependency tree (produced by the external UDify parser) until the graph is connected

System Overview

Label lexicalization

- ▶ Problem: Lexicalized labels (e.g. *obl:to*) → data sparsity
- ► Solution: Predict placeholder labels first, then re-lexicalize based on a set of rules (e.g. obl:[case])

System Overview

Label lexicalization

- ▶ Problem: Lexicalized labels (e.g. *obl:to*) → data sparsity
- ► Solution: Predict placeholder labels first, then re-lexicalize based on a set of rules (e.g. obl:[case])

- ► Slightly more complex rules for multiword expressions, coordination, and enumerations → Paper
- ▶ If base relation was predicted correctly, we find the correct lexical material in 98.4% of cases

Experiments

Setup

- ▶ Model implemented using PyTorch [Paske et al., 2019] and HuggingFace Transformers [Wolf et al., 2019]
- ► Training and validation on the EWT corpus
- ► Around 9 hours of training on a single nVidia Tesla V100 GPU
- ► Hyperparameters: → Paper
- ► Code: https://github.com/boschresearch/robertnlp-enhanced-ud-parser

Official IWPT 2020 result (English): ELAS F1 = 88.94%

- ▶ 90.80% F1 when using gold tokenization/segmentation
- ► Recall is considerably lower on relations exclusive to the enhanced layer as opposed to relations also present in the basic layer (83.64% vs. 91.60%)
- ► Certain label types (e.g. punct, flat, compound) remain problematic → Paper

Official IWPT 2020 result (English): ELAS F1 = 88.94%

- ▶ 90.80% F1 when using gold tokenization/segmentation
- ► Recall is considerably lower on relations exclusive to the enhanced layer as opposed to relations also present in the basic layer (83.64% vs. 91.60%)
- ► Certain label types (e.g. punct, flat, compound) remain problematic → Paper

Additional research questions:

Official IWPT 2020 result (English): ELAS F1 = 88.94%

- ▶ 90.80% F1 when using gold tokenization/segmentation
- ► Recall is considerably lower on relations exclusive to the enhanced layer as opposed to relations also present in the basic layer (83.64% vs. 91.60%)
- ► Certain label types (e.g. punct, flat, compound) remain problematic → Paper

Additional research questions:

▶ Which pre-trained LM works best?

Embeddings	Train	ELAS F1
BERT-base	EWT	87.49
RoBERTa-base	EWT	88.17
BERT-large	EWT	88.18
RoBERTa-large	EWT	88.94

Official IWPT 2020 result (English): ELAS F1 = 88.94%

- ▶ 90.80% F1 when using gold tokenization/segmentation
- ► Recall is considerably lower on relations exclusive to the enhanced layer as opposed to relations also present in the basic layer (83.64% vs. 91.60%)
- ► Certain label types (e.g. punct, flat, compound) remain problematic → Paper

Additional research questions:

- ► Which pre-trained LM works best?
- Does incorporating additional English UD corpora as training data help?

Embeddings	Train	ELAS F1
BERT-base	EWT	87.49
RoBERTa-base	EWT	88.17
BERT-large	EWT	88.18
RoBERTa-large	EWT	88.94
RoBERTa-large	UD2.5	87.85

Conclusion & Future Work

https://github.com/boschresearch/robertnlp-enhanced-ud-parser

► RobertNLP: A simple yet effective method to parse English text into Enhanced Universal Dependencies

	[root]	Use	cinnamon	instead	Jo	sugar	or	sweetener
[root]	Ø	root	Ø	Ø	Ø	Ø	Ø	Ø
Use	Ø	Ø	obj	Ø	Ø	obl:[case]	Ø	obl:[case]
cinnamon	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
instead	Ø	Ø	Ø	Ø	fixed	Ø	Ø	Ø
of	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
sugar	Ø	Ø	Ø	case	Ø	Ø	Ø	conj:[cc]
or	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
sweetener	Ø	Ø	Ø	Ø	Ø	Ø	cc	Ø

Predict the best relation for each pair of tokens

Future work:

- ► Adapt our model to other languages
 - ► Requires some manual work due to label lexicalization
- ► Assess cross-domain performance

Rule-based lexicalization strategy

References

- ► Timothy Dozat and Christopher D. Manning (2017): **Deep biaffine attention for neural dependency parsing.** In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings.
- ► Timothy Dozat and Christopher D. Manning (2018): **Simpler but more accurate semantic dependency parsing.** In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 484–490.
- ▶ Dan Kondratyuk and Milan Straka (2019): **75 languages, 1 model: Parsing universal dependencies universally.** In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2779–2795.
- Adam Paszke et al. (2019): **PyTorch: An imperative style, high-performance deep learning library.** In: Advances in Neural Information Processing Systems 32, pages 8024–8035.
- ► Thomas Wolf et al. (2019): **Transformers: State-of-the-art Natural Language Processing.** arXiv preprint arXiv:1910.03771.

