Дисциплина электроника

Лабораторный практикум №5

по теме: «Исследование и настройка усилительных и ключевых устройств на биполярных и полевых транзисторах»

Работу выполнил:

студент группы ИУ7-36

Жаворонкова Алина

Цель практикума

Получить навыки в использовании базовых возможностей программы Microcap и знания при исследовании и настройке усилительных и ключевых устройств на биполярных и полевых транзисторах.

Эксперимент 1

Построим схему:

Построим входную ВАХ транзистора:

Построим выходную ВАХ транзистора:

Предельные параметры транзистора 2N3307:

*MAXIMUM RATINGS

Rating	Symbol	Value		11-14
		2N3307	2N3308	Unit
Collector-Base Voltage	v _{:CB}	40	30	Vdc
Collector-Emitter Voltage	VCES	40	30	Vdc
Collector-Emitter Voltage	VCEO	35	25	Vdc
Emitter-Base Voltage	v _{EB}	3.0		Vdc
Collector Current	I _C	. 50		mAdc
Power Dissipation at T _C = 25°C Derate above 25°C	P _D	300 1.71		mW mW/°C
Power Dissipation at T _A = 25°C Derate above 25°C	P _D	200 1.14		mW mW/°C
Junction Temperature	T _{.J}	200		°C
Storage Temperature Range	T _{stg}	-65 to +200		°C

^{*}Indicates JEDEC Registered Data

Построим кривую предельно допустимой мощности. $P_{max}=300m;\ I_{kmax}=50m.$

Проводим нагрузочную прямую так, чтобы она не пересекала кривую предельно допустимой мощности и не превышала максимальный допустимый ток

Определим ток и напряжение на середине нагрузочной прямой:

Получим Ib = 188uA; Ik = 31.437mA. Далее на графике входной BAX откладываем полученный ток Ib, получаем значение Ub = 595.934mV.

Эксперимент 2

Считаем Rb:

Считаем Rk:

Строим схему:

Устанавливаем генератор на амплитуду 0.02В и частоту 6kГц. Вводим вычисленные значения сопротивления базы и коллектора

Transient Analysis Limits

$$M(входной) = -4.246 + 6.152 = 1.906$$
 $M(усиленный) = 20.000 + 19.998 = 39.998$ $K = M(усиленный) / M(входной) = 39.998 / 1.906 = 20,985 =~ 21$

Определяем BF для конкретного значения Ik:

BF = 167.182

Рассчитаем сопротивление делителя:

Ek :=
$$10$$
 BF := 167.182
Ik := $31 \cdot 10^{-3}$ Ub := $595.934 \cdot 10^{-3}$
Ud := Ek Urt := 5

$$Rk := \frac{(Ek - Urt)}{Ik} = 161.29$$

Ib :=
$$\frac{Ik}{BF} = 1.854 \times 10^{-4}$$

$$Rb := \frac{(Ek - Ub)}{Ib} = 5.072 \times 10^4$$

R3 :=
$$\frac{\text{Ud}}{10 \cdot \text{Ib}} = 5.393 \times 10^3$$

Given

$$Rb + Rd = 5.393 \times 10^3$$

$$\frac{Rb}{Rd} = 9$$

$$Minerr(Rd,Rb) = \begin{pmatrix} 539.3 \\ 4.854 \times 10^3 \end{pmatrix}$$

Корректируем значение R3, пока напряжение на коллекторе не будет равно Ek/2:

M(входной) = -4.110 + 6.035 = 1.925M(усиленный) = 20.000 + 19.998 = 39.998K = M(усиленный) / M(входной) = 20.78 =~ 21

Эксперимент 3

Используем схему их эксперимента 1, изменяем температуру от -30 до 30 с шагом 5 градусов Цельсия. Строим зависимость входной и выходной ВАХ от температуры.

Входная ВАХ

Выходная ВАХ

Строим зависимость для схемы с делителем:

Увеличив амплитуду в 5 раз, получим:

Увеличивая амплитуду в 10 раз, получим:

