Ejercicios

Optimization and Modelization Lab

Optimization:

- I. Jugar con ejemplo dieta, cambiando restricciones (optimization Exmple.ipynb)
- 2. (Pensar y escribir ecuaciones) y resolver con python problema 2.
- 3. Resolver gráficamente Problema 2
- 4. Resolver con python problema 3.

PROGRAMACIÓN LINEAL. Problema 2 (ecuaciones en presentación)

Lineas de producción:

Tenemos 2 líneas de producción y 3 productos. La empresa se ha comprometido a proveer 600 refrescos, 400 zumos y 1000 botellines de agua cada día a una distribuidora.

Línea	Coste hora (€)	Refresco (u.)	Zumo (u.)	Agua (u.)
I	20	60	30	40
2	6	10	10	60

Loss function

- Minimizar coste

Objetivo

- Encontrar número de horas que trabaja cada línia para conseguir minimizar el coste manteniendo los compromisos.

Optimización con ligaduras o restricciones. PROGRAMACIÓN LINEAL. Problema 2

ecuaciones

Variables:

horas que tengo activa cada línia,

$$h_1, h_2$$

Función objetivo:

$$f = 20h_1 + 6h_2$$

Ligaduras:
$$60h_1 + 10h_2 > 600$$
 $30h_1 + 10h_2 > 400$ $40h_1 + 60h_2 > 1000$ $h_1, h_2 <= 24$ $h_1, h_2 >= 0$

PROGRAMACIÓN CUADRÁTICA. Problema 3

minimize
$$z = -2x_1x_2 + x_2^2$$

subject to $-2x_1 + x_2 \le 2$, $-x_1 + x_2 \le 3$
 $x_1 \le 3$
 $x_1, x_2 \ge 0$

Modelization:

Ejercicio I:

- I. Define este polinomio de orden 3 pol = $-x^3+3x^2+2x+10$ usando numpy.poly I d o definiendo la función
- 2. Simula unos datos (~alrededor de 20), siguiendo ejemplo del notebook (ModelisationExample.ipynb)
 - x entre 10 y 10
 - y --> pol(x) + un ruido Gaussiano con un ruido Gaussiano con dispersion=25
- 3. Haz ajuste con polyfit, compara valores que obtienes con los reales.
- 4. Haz plot de los datos y del ajuste (con leyenda)
- 5. Calcular error cuádratico promedio (mse)

Modelization:

Ejercicio 2:

- I. Carga los datos en Data_exp.txt (np.loadtxt())
- 2. Asumiendo que siguen esta función $y = ae^{-b\sin(fx+\phi)}$ hacer ajuste usando curve_fit
- 3. Haz plot de los datos y del ajuste (con leyenda)
- 4. Busca el polinomio de grado mínimo que da un buen ajuste para estos datos. (Calcula mse para cada polinomio ajustado)
- 5. Compara los resultados usando el polinomio y la curva real (apartado 2.)
- 6. Carga los datos extendidos: Data_exp_large.txt y compáralos con los ajustes hechos ya. (Con un ajuste polinómico no se puede generalizar, aunque es muy útil para interpolar)

Optimization Solutions:

Problema 2:

h₁= 6,66 horas, h₂=20 horas, Coste total =253 €

Problema 4:

 $x_1 = 17.7$, $x_2 = 7.6$; Min Func = -210

Modelization Solutions:

Ejercicio I:

mse ~25

Ejercicio 2:

true_params=[3, 2, I, np.pi/4]

PROGRAMACIÓN LINEAL. Problema auxiliar

Interese préstamos bancarios:

- Primera hipoteca 14%
- Segunda hipoteca 20%
- Rehabilitación 20%
- Crédito personal 10%

Políticas del banco:

- No puede prestar más de 250 millones de euros
- Primeras hipotécas tienen que ser al menos un 55% de todas las hipotécas y como mínimo el 25% de todos los préstamos.
- Las segundas hipotecas no pueden exceder el 25% de todos los prestamos.
- El total de los intereses cobrados no superaran el 15% del total prestado.

VectorStock*

VectorStock.com/18000951

Objetivo

- Maximizar ingresos debido a los intereses cobrados teniendo en cuenta las políticas bancarias

PROGRAMACIÓN NO-LINEAL. Problema auxiliar

- 1. Using the minimum function, compute the minimum of the scalar function $f(x, y) = (x 1)^2 + (y 2)^2 3x + 2y + 1$ in two ways: with and without providing the Jacobian.
- 2. Try to maximize the function f(x, y) = xy subject to the equality constraints

$$2x^2 + y^2 = 1$$

$$x^2 + 3y^2 = 1$$