A Comparison of Current Graph Database Models

Renzo Angles Universidad de Talca (Chile)

3rd Int. Workshop on Graph Data Management: Techniques and applications (GDM 2012)

5 April, Washington DC, USA

1. Introduction

2. Current graph databases

3. Comparison of graph database models

1. Introduction

2. Current graph databases

3. Comparison of graph database models

Database models

- A data model is a collection of conceptual tools used to model real-world entities and the relationships among them [Silberschatz et al. 1996].
- A DB model consists of 3 components [Codd 1980]:

Graph database model

1 Graph data structures

- Simple graphs (nodes + edges + labels + direction)
- Generalizations: nested graphs (hypernodes), hypergraphs (hyperedges), attributed graphs

2 Graph-oriented operations

- Simple functions (e.g., shortest-path)
- Graph query language (operators)
- Domain-specific queries: graph pattern mining

3 Graph integrity constraints

- Schema-instance consistency
- Identification of nodes, atributes and relations
- Path constraints
- •

Graph databases (before 2003)

1975	R&M
•••	
1984	LDM
1987	G-Base
1988	02
1989	Tompa
1990	GOOD W&X Hypernode
1991	GROOVI
1992	GMOD Gram Simatic-XT
1993	PaMal GOAL Hy+
1994	GraphDB DGV Hypernode2
1995	G-Log GGL Hypernode3
1996	GRAS
1999	GOQL R. Angles and C. Gutierrez.
•••	"Survey of Graph Database Models".
2002	GDM ACM Comp. Surveys, 2008.

Graph databases (after 2003)

Motivation

- 1. What is the most suitable graph database?
 - Empirical comparison: desirable but hard
 - Benchmark: there is not a standard one
 - The application domain is also important
- 2. Objective: comparison of graph data models
 - Independent of implementation
 - Easier to evaluate (vs empirical evaluation)
 - Shows (in advance) the expressive power for data modeling

1. Introduction

2. Current graph databases

3. Comparison of graph database models

Current graph databases

Graph database systems

- •AllegroGraph (2005): SW-oriented databases
- •DEX (2007): bitmaps-based graph database
- •Neo4J (2007): disk-based transactional graph database
- •HyperGraphDB (2010): hypergraph-based database
- •InfiniteGraph (2010): distributed-oriented system
- •Sones (2010): object-oriented database

Current graph databases

Graph stores

- •VertexDB (2009): key-value disk store (TokyoCabinet)
- •Filament (2010): graph library on PostgreSQL
- •G-Store (2010): prototype
- •Redis_graph (2010): implemented on python

Work in progress

- •Pregel (Google, 2009): vertex-based intrastructure for graphs
- •Horton (Microsoft, 2010): transactional graph processing
- •CloudGraph (2010): use MySQL as backed
- •Trinity (Microsoft, 2011): RAM-based key value store

Current graph databases

Related DB technologies

- •Web-oriented DBs: InfoGrid, FlockDB
- •Document-oriented DBs: OrientDB
- •Triple stores (RDF DBs): 4Store, Virtuoso, Bigdata
- •Distributed graph processing: Angrapa, Apache Hama, Giraph, GoldenOrb, Phoebus, KDT, Signal Collect, HipG

1. Introduction

2. Current graph databases

3. Comparison of graph database models

Data storing features

Graph	Main	External	Backend	Indexes
Database	memory	memory	Storage	
AllegroGraph	•	•		•
DEX	•	•		•
Filament	•		•	
G-Store		•		
HyperGraphDB	•	•	•	•
InfiniteGraph		•		•
Neo4j	•	•		•
Sones	•			•
vertexDB		•	•	

- Backed: RDB (filament), BerkeleyDB (HypergraphDB), TokyoCabinet (vertexDB)
- Indexing: nodes, relations, atributes, triples
- Data formats: GraphML, graphViz, N-Triples, RDF-XML,
- ACID (partial support): Allegro, HypergraphDB, Infinite, Neo4j

Operation and manipulation features

	Data	Data	Query	API	GUI
Graph	Definition	Manipulat.	Language		
Database	Language	Language			
AllegroGraph	•	•	•	•	•
DEX				•	
Filament				•	
G-Store	•		•	•	
HyperGraphDB				•	
InfiniteGraph				•	
Neo4j				•	
Sones	•	•	•	•	•
vertexDB				•	

- Languages: SPARQL 1.0(.1), GraphQL, (Sones)
- Why is an API the main approach? does it facilities the development of applications?

Graph data structures

		Graphs			No	des		Edges	
Graph Database	Simple graphs	Hypergraphs	Nested graphs	Attributed graphs	Node labeled	Node attribution	Directed	Edge labeled	Edge attribution
AllegroGraph	•				•		•	•	
DEX				•	•	•	•	•	•
Filament	•				•		•	•	
G-Store	•				•		•	•	
HyperGraphDB		•			•		•	•	
InfiniteGraph				•	•	•	•	•	•
Neo4j				•	•	•	•	•	•
Sones		•		•	•	•	•	•	•
vertexDB	•				•		•	•	

- Node/edge atribution: implementation considerations

Schema and instance representation

	Schema					Inst	ance		
Graph Database	Node types	Property types	Relation types	Object nodes	Value nodes	Complex nodes	Object relations	Simple relations	Complex relations
AllegroGraph					•	1 (C)		•	
DEX	•		•	•	•		•	•	
Filament					•			•	
G-Store					•		, ,	•	
HyperGraphDB	•		•		•		3	•	•
InfiniteGraph	•		•	•	•		•	•	
Neo4j				•	•		•	•	
Sones					•		\$1 12	•	•
vertexDB					•			•	

- Node/edge identification: ObjectsI-Ds vs Values
- Support for complex relations (hyperedges = n-ary relations)

Query features

		Type		Use			
Graph Database	Query Lang.	API	Graphical Q. L.	Retrieval	Reasoning	Analysis	
AllegroGraph	0	•	•	•	•	•	
DEX		•		•		•	
Filament		•		•			
G-Store	•		100	•			
HyperGraphDB		•		•			
InfiniteGraph		•		•			
Neo4j	0	•		•			
Sones	•		•	•		•	
vertexDB		•		•			

- Declarative QL: SPARQL, Prolog, Lisp, GraphQL
- Reasoning: RDF(S), OWL
- Analysis: Social Networking, graph statistics

Integrity constraints

Graph Database	Types checking	Node/edge identity	Referential integrity	Cardinality checking	Functional dependency	Graph pattern constrains
DEX	•	•	•			
HyperGraphDB	•	•				
InfiniteGraph	•	•				
Sones		•	-	•		

- Most oriented to be schema-less
- Graph integrity constraints: theoretical interest

Support for essential graph queries

	Adjacency		Rea	achabi	lity		
Graph Database	Node/edge adjacency	k-neighborhood	Fixed-length paths	Regular simple paths	Shortest path	Pattern matching	Summarization
Allegro	•		•	3		•	
DEX	•		•	•	•	•	
Filament	•		•			•	
G-Store	•		•	•	•	•	
HyperGraph	•					•	
Infinite	•		•	•	•	•	
Neo4j	•		•	•	•	•	
Sones	•			.5		•	
vertexDB	•		•	•		•	

1. Introduction

2. Current graph databases

3. Comparison of graph database models

Conclusions

General balance of graph database models

•Data structures:

- Several types of graph structures
- Good expressive power for data modeling

•Query features:

- Restricted to provide APIs
- Good support for essential graph queries
- Lack of graph query languages

•Integrity constraints:

- Basic notions of restrictions
- Oriented to be schema-less

Future work

- Empirical evaluation of graph databases
- Development of a Benchmark for GDBs
- Comparison with other database technologies (in particular RDF databases)

Thanks for your attention!

Questions?