Alex Havrilla

alumhavr

Hw 2

1 Confusions

For curve γ , $\frac{d\gamma}{dt}$ is a Vector Field. Gives the vector corresponding to "direction of curve". At a point p

$$\frac{d\gamma}{dt}|_p[f] = \frac{d}{dt}(f \circ \gamma)|_{t=0}$$

Why can T_pM be thought of as a copy of \mathbb{R}^n ?

Meridians and parallels on surface S like longitudes (lines with constant width) and latitudes (geodesics with constant height) on sphere.

Geodesic sphere: Seems to be points of distance r away from point p determined by radiating geodesics of length r from p. Denotes $S_r(p)$.

? How does differential of compositions work? I think trivially: $df(dg) = df \circ g$ since

$$df \circ g[v] = v[f \circ g] = dgv[f] = dfdgv$$

Note here I'm not applying all the way: should really be applying resulting vector to functions $M \to \mathbb{R}$.

?What is the relationship between differential and Affine Connection/Covariant Derivative?

Defining 3 tensors like R' via

$$g(R'(X,Y,W),Z) = \langle X,W\rangle\langle Y,Z\rangle - \langle Y,W\rangle\langle X,Z\rangle$$

ie. an implicit definition. Much like how we can define directional derivatives.

A lot of the formulas for curvatures don't seem to be typechecking for me?

2 Content

Claim: For $X, Y \in \mathbb{X}(\mathcal{M})$ for some manifold \mathcal{M} , we have

$$[X,Y] = L_X Y$$

(Note this means lie derivative produces another vector field)

Proof. Let Φ_t be the flow of X.

Recall this is defined as $\Phi : \mathbb{R} \times \mathcal{M} \to \mathcal{M}$ via $\Phi_t(p) = \gamma(t)$ where γ solves ODE $\gamma'(t) = X(\gamma(t)), \gamma(0) = p$.(A collection of paths over time flowing along vector field X for some initial condition). (So each vector field produces a flow).

 $\forall g \in \mathcal{D}, X|_p[g] = \frac{d\Phi_t(p)}{dt}|_{t=0}[g] = \frac{d}{dt}|_{t=0}g(\phi_t(p))$ which is true by definition of the flow

Let ψ_s be the flow of Y. For $f \in \mathcal{D}$ set $H(t,s) = f(\Phi_{-t}(\psi_s(\Phi_t(p))))$ (flow forward t along X, then s along Y, then back -t along X).

Then $\frac{\partial H}{\partial s}_{(t,0)} = Y|_{\phi_t(p)}[f \circ \phi_{-t}]$ since symbolically this is the same as two lines above(making some substitutions).

Taking a derivative in t yields $\frac{\partial^2 H}{\partial t \partial s}|_{(0,0)} = \frac{d}{dt}|_{t=0}Y|_{\phi_t(p)}[f \circ \phi_{-t}]$

But we know $L_X Y|_{p}[f] = \frac{d}{dt}|_{t=0} d\phi_{-t}(Y|_{\phi_t(p)})[f].$

Recall the lie derivative is defined as

$$L_X Y|_p = \lim_{t \to 0} \frac{d\phi_{-t} Y|_{\phi_t(p)} - Y|_p}{t} = \frac{d}{dt}|_{t=0} d\phi_{-t} (Y_{\phi_t(p)})$$

where we measure the change in Y at a point p against flows forward along X. Ie. the change in Y against X

And $\frac{d}{dt}|_{t=0}d\phi_{-t}(Y|_{\phi_t(p)})[f] = \frac{d}{dt}|_{t=0}Y|_{\phi_t(p)}[f\circ\phi_{-t}]$. So lie derivative is cross term of second derivative of H.

Then define K(r, s, t) to show cross terms of second derivative of H also equal to lie bracket.

Prop 1. Levi-Civita Let (\mathcal{M}, g) be a Riemanian manifold. Then \exists a unique affine connection ∇ which is compatible with g and symmetric. Such connection is called Riemann connection.

Proof. Suppose ∇ compatible and symmetric connection. Then

$$Xg(Y,Z) = g(\nabla_X Y, Z) + g(Y, \nabla_X Z)$$

$$Yg(Z,X) = g(\nabla_Y Z, X) + g(Z, \nabla_Y X)$$

$$-Zg(X,Y) = g(\nabla_Z X, Y) + g(X, \nabla_Z Y)$$

which comes from compatibility, since X acting on function yields s.t. corollary to compatibility. (We may say this pointwise since at any point we have an integral curve γ for X with $\gamma(0) = p$).

Then substituting expression via symmetry of the expression $\nabla_X Z - \nabla_Z X = [X, Z]$ and the like and cancelling terms when adding the above three lines yields

$$g(\nabla_X Y, Z) = \frac{1}{2}(Xg(Y, Z) + Yg(Z, X) - Zg(X, Y) + g(X, [Y, Z]) + g(Y, [X, Z]) - g(Z, [X, Y]))$$

so then we define $\nabla_X Y$ to be the vector s.t. the relation holds (note this is how inner product leads to definition of derivative)

3 Curvature

Recall Curvature $R: X(M) \times X(M) \to X(M)$ is defined as

$$R(X,Y)Z := \nabla_Y \nabla_X Z - \nabla_X \nabla_Y Z + \nabla_{[X,Y]} Z$$
$$(X,Y,Z,W) := g(R(X,Y)Z,W)$$

Curvature tensor example of covariant tensor. Differential forms example of contravariant tensor (measuring the dual?)

4 Jacobi Fields

Jacobi field is vector field along geodisic γ which corresponds to a perturbation of γ iin the space of geodesic.

Also thought of as tangent vectors in space of geodesics.

We study the following:

$$(dexp_p)_{tv}(tw) = \frac{df}{ds}(t,0)$$

along $\gamma(t) = exp_p(tv)$

5 Killing Fields

Killing fields flows preserve orientation of vectors at points. Flow smoothly(diffeomorphism assumption).

6 Jacobi Fields

Remark 1. A jacobi field is a vector field along a geodesic γ which corresponds to a perturbation of γ in the space of geodesics.

Also can be thought of as tanget vectors in space of geodesics (along a geodesic).

Theme 1. Formalizes connection between curvature and geodesics

Def 1.
$$(dexp_p)_{tv}(tw) = \frac{df}{ds}(t,0)$$
 along $\gamma(t) = exp_p(tv)$ where $f(t,s) = exp_ptv(s)$

Remark 2. $(dexp_p)_{tv}$ map from tangent space of tangent space to tangent space of tangent space

Def 2.
$$0 = \frac{D^2 J}{dt^2} + R(\gamma'(t), J(t))\gamma'(t)$$

Remark 3. Curvatue indicates spread of geodesics

Prop 2. Jacobi field is determined by initial conditions $J(0), \frac{DJ}{dt}(0)$.

Proof. Let $e_1(t), ..., e_n(t)$ parallel orthonormal fields along γ . Write

$$J(t) = \sum_{i} f_i(t)e_i(t)$$

with $a_{ij} = g(R(\gamma'(t), e_i(t))\gamma'(t), e_i(t))$

Then
$$\frac{D^2J}{dt^2} = \sum_i f_i''(t)e_i(t)$$
 and $R(\gamma', J)\gamma' = \sum_j g(R(\gamma', J)\gamma', e_j)e_j = \sum_{i,j} f_i a_{i,j} e_j$

since the e_i parallel.

Jacobi equivalent to $f_j''(t) + \sum_i a_{ij}(t) f_i(t) = 0$ which is a linear second order system.

This given initial conditions we have 2n linearly separable independent jacobi fields along γ . \square

Theme 2. A lot of these things connected to DEs on the manifold (I quess point of differentials).

Prop 3. Let M have constant sectional curvature K. $\gamma:[0,l]\to M$ be a geodesic arclength parameterized. Let J jacobi field normal to γ' .

Then $R(\gamma', J)\gamma' = KJ$ ie. curvature of γ', J along γ' is just KJ ie. multiple of J. J describes turning away of γ . In some sense an eigenvalue of the curvature.

Proof. For all T along γ we have

$$g(R(\gamma',J)\gamma',T) = K(g(\gamma',\gamma')g(J,T) - g(\gamma',T)g(J,\gamma'))$$

why??? - I think becaue we have 0 sectional curvature so we have this form for the curvature.

This equals Kg(J,T) as terms cancel via unit norm and parallelism.

Example 1. Set $M = \mathbb{R}^2$ with $\gamma(t) = (t, 0)$. w(t) = (0, 1). Then J(t) = (0, t).

Showing existence of jacobi field satisfying general form(with 0 sectional curvature).

Theme 3. Typically focus on jacobi fields normal to curve.

Prop 4. Can taylor expand $|J(t)|^2$. Involves curvature

$$|J(t)|^2 = t^2 - (1/3)g(R(v, w)v, w)t^4 + \dots$$

Notice involves sectional curvature K(v, w) = g(R(v, w)v, w)

Proof. Know J(0) = 0 with J'(0) = w. So

$$g(J,J)(0) = 0$$

(g(J,J))'(0) = 2g(J,J')(0) = 0 via a product rule likely

$$(g(J,J))''(0) = 2g(J',J')(0) + 2g(J'',J)(0) = 2$$
 since second term cancels(parallelism?)

Last expression also probably comes from DE

Via the DE also get third order term 0 and fourth order term 8g(J', J''')(0)

We have

$$J'''(0) = -\frac{D}{dt}|_{t=0}(R(\gamma'(t), J(t))\gamma'(t))$$

via DE. Substituting this into expression gives us what we want.

Remark 4. Geometric Interpretation:

Geodesics $t \to exp_p(tv(s))$ spread from $t \to exp_p(tv)$ at a rate which differs from that of flat space $by \approx -1/6K(p, \sigma)t^3$.

6.1 Conjugate Points

Remark 5. Conjugate point sinks for tangent geodesics along γ

Example 2. Consdier \mathbb{S}^2 . Antipodes conjugate along $(\cos(t), \sin(t), 0)$ for $t \in [0, \pi]$ with $J(t) = (0, 0, \sin(t))$

Example 3. Cut locus of $p \in S^n$ is $\{-p\}$

Prop 5. A point $q = \gamma(t_0)$ is conjugate to p along $\gamma \iff v_0 := t_0 \gamma'(0)$ is a critical point of exp_p . also $mult = dim(ker((dexp_p)_{v_0}))$

Proof. We say q conjugate \iff we can find a J s.t. $J(0) = J(t_0) = 0$. We set $v = \gamma'(0)$ and w = J'(0).

We know
$$J(t) = (dexp_p)_{tv}(tw)$$
. So $0 = ((dexp_p)_0)(0) = (dexp_p)_{t_0v}(t_0w)$

Prop 6.
$$g(J, \gamma') = g(J'(0), \gamma'(0))t + g(J(0), \gamma'(0))$$

Proof. Compute

 $g(J',\gamma')'=g(J'',\gamma') \text{ Because } \gamma'' parallel J'?=-g(R(\gamma',J)\gamma',\gamma')=0 \text{ because we know curvature is constant multiply and the property of t$

7 Complete Manifolds

Remark 6. Covering map covers each open set with image of disjoint open sets on which f is a diffeomorphism (f locally a diffeomorphism on open sets)

Remark 7. The manifold is extendible if it can be isometrically embedded in larger space(open).

Example 4. Torus geodesically complete, \mathbb{R}^n geodesically complete, B(0,1) not complete since geodesic runs out of manifold.

Prop 7. If M is extendible then it is not geodesically complete.

Proof. Suppose M extendible. Then $M \subseteq M'$. Since $M' \setminus M$ is not open(since M' connected) we can find $p \in \partial M = \overline{M} \setminus M$. Let U be normal neighborhood of p. Let $q \in U \cap M$. Then we can find geodesic γ from p to q. But this is not in M.

Ie. just look at boundary and find normal neighborhood.

Theorem 1. Hopf-Rinow

Proof. Need to show
$$i) \implies *$$
 and $i) \iff ii) \iff iv$

8 Confusions

D: o

n't have a very good understanding of how to convert bewteen derivatives?