Tutorial 03: Vectors (I)

Formula 1: The distance between points $P = (p_1, p_2, p_3)$ and $Q = (q_1, q_2, q_2)$ is the length of vector PQ.

Def2: A vector-valued function is a fuction of the form $r(t) = \langle f(t), g(t), h(t) \rangle$

Def 3: The positive direction of curve r(t) is the direction this curve forms when t increases.

Formula 4: Let $r(t) = \langle f_1(t), f_2(t), f_3(t) \rangle$. $L = \langle L_1, L_2, L_3 \rangle$ r(t) approaches L as t approaches γ_0 if $|| r(t) - L|| \rightarrow 0 \quad \text{as} \quad t \rightarrow \gamma_0$

04

 $fi(t) \rightarrow Li$ as $t \rightarrow \pi_0$, i=1,2,3

Def 5: $r(t) = \langle f_1(t), f_2(t), f_3(t) \rangle$, fi are differentiable functions. $r'(t) = \langle f_1'(t), f_2'(t), f_3'(t) \rangle$ is the derivative of r(t)

Formula 6: The unit tangent vector of r(t) 13 $\frac{r'(t)}{\|r(t)\|}$

Def 1: Let $r(t) = \langle f_1(t), f_2(t), f_3(t) \rangle$.

Fi(t). $F_2(t)$, $F_3(t)$ are the respective antiderivatives.

The indefinite integral of r is $\int r(t) \, dt = \langle F_1(t), F_2(t), F_3(t) \rangle$

Examples:

Ex | For r(t) and R(s). find a line prependicular to them both which passes through their intersection.

(1)
$$r(t) = (-2+3t, 2t, 3t)$$
, $R(s) = (-6+s, -8+2s, -12+3s)$

- Ex 2 Let $u(0) = \langle 0, 1, 1 \rangle$, $u'(0) = \langle 0, 7, 1 \rangle$, $v(0) = \langle 0, 1, 1 \rangle$, $v'(0) = \langle 1, 1, 2 \rangle$
 - 12) of (oust u(t))
- Ex 3 Find the points t at which r(t) is orthogonal to r(t):

$$(2) r(t) = (at^2 + 1, t)$$

$$(3)$$
 $r(t) = < \omega s t$, $sint$, $t > 0$

Ex4 Calculate $\lim_{t\to 0} r(t)$, $r(t) = \langle \frac{\sin t}{t}, t^2 - 3t + 3, \omega > t \rangle$

Ex | For r(t) and R(s). find a line prependicular to them both which passes through their intersection. 11) r(t) = <-2+3t, 2t, 3t>, R(s) = <-6+s, -8+2s, -12+3s> a) r(t) = (4t, 1+2t, 3t), R(s) = (-1+s, -7+2s, -12+3s) (1) intersection: P = (-2,0,0) direction: r'(t) = (3, 2, 3)R'(5) = (1, 2, 3)d= r'(t) x R'(s) = (0,-6,4) Eq of C: P + 1/2. = (-2,0,0) + (0,-6,4) / 7 FIR

Ex2 Let
$$u(0) = (0,1,1)$$
, $u'(0) = (0,7,1)$, $v(0) = (0,1,1)$, $v'(0) = (1,1,2)$

- (1) at (u·v)
- 12) dt (ast u(t))

9)
$$\frac{d}{dt}(u \cdot v)\Big|_{t=0} = \frac{du}{dt} \cdot v\Big|_{t=0} + \frac{dv}{dt} \cdot u\Big|_{t=0}$$

$$\frac{d}{dt} \left(\cos t \, u(t) \right) \Big|_{t=0} = \left(\frac{d}{dt} \, \cos t \right) \cdot u(t) \Big|_{t=0} + \left(\cos t \cdot \frac{du}{dt} \right) \Big|_{t=0}$$

Ex 3 Find the points t at which r(t) is orthogonal to r'(t):

(1)
$$r(t) = (a\omega st, asint)$$
 $r(t) \cdot r'(t) = 0$

(2)
$$r(t) = (at^2 + 1, t)$$

$$(3)$$
 $r(t) = < cost, sint, t>$

(1)
$$r'(t) = (-a sint, a \omega st).$$

 $r(t) \cdot r'(t) = -a^2 sint \omega st + a^2 \omega st sint = 0$

(2)
$$r'(t) = (2at, 1)$$
.

(3)
$$F'(t) = (-\sin t, \omega st, 1)$$

Ex4 Calculate
$$\lim_{t\to 0} r(t)$$
, $r(t) = \langle \frac{\sin t}{t}, t^2 - 3t + 3, \omega > t \rangle$

$$\frac{1}{t+10} \frac{\sinh t}{t} = \frac{1}{t+10} \frac{(\sinh t)'}{(t+1)'} = \frac{1}{t+10} \omega st = 1$$

$$\frac{1}{t+10} \frac{\sinh t}{t} = \frac{1}{t+10} \frac{(\sinh t)'}{(t+1)'} = \frac{1}{t+10} \omega st = 1$$

$$\frac{1}{t+10} \frac{\sinh t}{t} = \frac{1}{t+10} \frac{(\sinh t)'}{(t+1)'} = \frac{1}{t+10} \omega st = 1$$