Next-Next-Gen Notes Object-Oriented Maths

JP Guzman

September 28, 2017

 $Format:\ characteristic((subjects), (dependencies)) \iff (conditions(dependencies)) \land (conditions(subjects)) \\ TODO\ should\ really\ define\ union\ intersection\ complement\ etc$

1 Mathematical Analysis

1.0.1 Formal Logic

$statementig(s,()ig) \iff well\text{-}formedStringig(s,()ig)$	(1
$propositionig((p,t),()ig) \iff \Big(statementig(p,()ig)\Big) \land$	
$(t=eval(p)) \wedge$	
$(t = true \stackrel{\lor}{=} t = false)$	(2
$operator\bigg(o,\Big((p)_{n\in\mathbb{N}}\Big)\bigg) \iff proposition\bigg(o\Big((p)_{n\in\mathbb{N}}\Big),()\bigg)$	(5
$operator(\neg,(p_1)) \iff \Big(proposition\big((p_1,true),()\big) \implies \big((\neg p_1,false),()\big)\Big) \land$	
$(proposition((p_1, false), ()) \implies ((\neg p_1, true), ()))$	
# an operator takes in propositions and returns a proposition	(-
The control of the co	
$operator(\neg) \iff \mathbf{NOT} \; ; \; operator(\lor) \iff \mathbf{OR} \; ; \; operator(\land) \iff \mathbf{AND} \; ; \; operator(\veebar) \iff \mathbf{XOR}$	
$operator(\Longrightarrow) \iff \mathbf{IF} \; ; \; operator(\Longleftarrow) \iff \mathbf{OIF} \; ; \; operator(\Longleftrightarrow) \iff \mathbf{IFF}$	(
$proposition \big((false \implies true), true, ()\big) \land proposition \big((false \implies false), true, ()\big)$	
# truths based on a false premise is not false; ex falso quodlibet principle	(
	,
$(THM): (a \Longrightarrow b \Longrightarrow c) \iff (a \Longrightarrow (b \Longrightarrow c)) \iff ((a \land b) \Longrightarrow c)$	('
$predicate(P,(V)) \iff \forall_{v \in V} \left(proposition((P(v),t),()) \right)$	(8
$0thOrderLogicig(P,()ig) \iff propositionig((P,t),()ig)$	
# individual proposition	(9
$1stOrderLogic(P,(V)) \iff \left(\forall_{v \in V} \left(0thOrderLogic(v,()) \right) \right) \land$	

 $\forall v \in V \left(proposition((P(v), t), ())) \right)$ # propositions defined over a set of the lower order logical statements (10) $quantifier(q,(p,V)) \iff (predicate(p,(V))) \land$ $\left(proposition(q(p),t),()\right)$ # a quantifier takes in a predicate and returns a proposition (11) $quantifier(\forall, (p, V)) \iff proposition((\land_{v \in V}(p(v)), t), ())$ # universal quantifier (12) $quantifier(\exists, (p, V)) \iff proposition((\lor_{v \in V}(p(v)), t), ())$ # existential quantifier (13) $quantifier(\exists!,(p,V)) \iff \exists_{x\in V} \left(P(x) \land \neg \left(\exists_{y\in V\setminus \{x\}} \left(P(y)\right)\right)\right)$ # uniqueness quantifier (14) $(THM): \forall_x p(x) \iff \neg \exists_x \neg p(x)$ # De Morgan's law (15) $(\text{THM}): \forall_x \exists_y p(x,y) = \forall_x \neg \forall_y \neg p(x,y) \neq \exists_y \forall_x p(x,y) = \neg \forall_y \neg (\forall_x p(x,y)) = \neg \forall_y \exists_x \neg p(x,y)$ # different quantifiers are not interchangeable (16)===== N O T = U P D A T E D ===(17)proof = truths derived from a finite number of axioms and deductions (18)elementary arithmetics = system with substitutions, and some notion of addition, multiplication, and prime numbers for encoding metamathematics (19)Gödel theorem \implies axiomatic systems equivalent in power to elementary mathematics either has unprovable statements or has contradictions (20)========== N O T = U P D A T E D =========(21)

1.1 Axiomatic Set Theory

ZFC set theory = standard form of axiomatic set theory (23)

$A \subseteq B = \forall_x x \in A \implies x \in B$	(24)
$(A = B) = A \subseteq B \land B \subseteq A$	(25)
\in basis $\implies \{x,y\} = \{y,x\} \land \{x\} = \{x,x\}$	(26)
\in and sets works following the 9 ZFC axioms:	(27)
$\forall_x \forall_y (x \in y \veebar \neg (x \in y)) \# E: \in \text{is only a proposition on sets}$	(28)
$\exists_\emptyset \forall_y \neg y \in \emptyset \ \# \ \text{E: existence of empty set}$	(29)
$\forall_x \forall_y \exists_m \forall_u u \in m \iff u = x \lor u = y \# C$: pair set construction	(30)
$\forall_s \exists_u \forall_x \forall_y (x \in s \land y \in x \implies y \in u) \# C$: union set construction	(31)
$x = \{\{a\}, \{b\}\}$ # from the pair set axiom	(32)
$u = \cup x = \cup \{\{a\}, \{b\}\} = \{a, b\}$	(33)
$orall_{x}\exists !_{y}R(x,y)\ \#\ ext{functional relation}\ R$	(34)
$\exists_i \forall_x \exists !_y R(x,y) \implies y \in i \# C$: image i of set m under a relation R is assumed to be a set $\implies \{y \in m \mid P(y)\} \# \text{ Restricted Comprehension } \implies \{y \mid P(y)\} \# \text{ Universal Comprehension}$	(35)
$\forall_{x \in m} P(x) = \forall_x (x \in m \implies P(x)) \# \text{ ignores out of scope} \neq \forall_x (x \in m \land P(x)) \# \text{ restricts entirety}$	(36)
$\forall_m \forall_n \exists_{\mathcal{P}(m)} (n \subseteq m \implies n \subseteq \mathcal{P}(m)) \# C$: existence of power set	(37)
$\exists_I \Big(\emptyset \in I \land \forall_{x \in I} \big(\{x\} \in I\big)\Big) \ \# \ \text{I: axiom of infinity} \ ; \ I = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \ldots\}; I \cong \mathbb{N} \implies \mathbb{N} \ \text{is a set}$	(38)
$\forall_x \Big(\big(\emptyset \notin x \land x \cap x' = \emptyset \big) \implies \exists_y (\mathbf{set of \ each \ e} \in x) \Big) \ \# \ \mathbf{C} : \ \mathbf{axiom \ of \ choice}$	(39)
$\forall_x x \neq \emptyset \implies x \notin x \# F$: axiom of foundation covers further paradoxes	(40)
======== N O T = U P D A T E D ========	(41)

1.2 Classification of sets

 $space \big((set, structure), () \big) \iff structure (set)$ # a space a set equipped with some structure
various spaces can be studied through structure preserving maps between those spaces (42)

```
map(\phi, (A, B)) \iff (\forall_{a \in A} \exists !_{b \in B} (\phi(a, b))) \lor
                                                                                 (\forall_{a \in A} \exists!_{b \in B} (b = \phi(a)))
                                             # maps elements of a set to elements of another set
                                                                                                                         (43)
                                                    domain(A, (\phi, A, B)) \iff (map(\phi, (A, B)))
                                                                                                                         (44)
                                                  codomain(B, (\phi, A, B)) \iff (map(\phi, (A, B)))
                                                                                                                         (45)
                                   image \big(B, (A, q, M, N)\big) \iff \Big(map \big(q, (M, N)\big) \land A \subseteq M\Big) \land
                                                                    \left(B = \{n \in N \mid \exists_{a \in A} (q(a) = n)\}\right)
                                                                                                                         (46)
                               preimage(A, (B, q, M, N)) \iff (map(q, (M, N)) \land B \subseteq N) \land
                                                                  \left(A = \{m \in M \mid \exists_{b \in B} (b = q(m))\}\right)
                                                                                                                         (47)
                                                  injection(q,(M,N)) \iff (map(q,(M,N))) \land
                                                                     \forall_{u,v \in M} (q(u) = q(v) \implies u = v)
                                                                      \# every m has at most 1 image
                                                                                                                         (48)
                                                 surjection(q,(M,N)) \iff (map(q,(M,N))) \land
                                                                                 \forall_{n \in N} \exists_{m \in M} (n = q(m))
                                                                    \# every n has at least 1 preimage
                                                                                                                         (49)
                                            bijection(q,(M,N)) \iff (injection(q,(M,N))) \land
                                                                               (surjection(q,(M,N)))
                                                      \# every unique m corresponds to a unique n
                                                                                                                         (50)
                                    isomorphicSets((A, B), ()) \iff \exists_{\phi}(bijection(\phi, (A, B)))
                                                                                                                         (51)
                                   infiniteSet(S,()) \iff \exists_{T \subset S} (isomorphicSets((T,S),()))
                                                                                                                         (52)
                                       finiteSet(S, ()) \iff (\neg infiniteSet(S, ())) \lor (|S| \in \mathbb{N})
                                                                                                                         (53)
     countablyInfinite(S, ()) \iff (infiniteSet(S, ())) \land (isomorphicSets((S, \mathbb{N}), ()))
                                                                                                                         (54)
uncountably Infinite(S, ()) \iff \left(infiniteSet(S, ())\right) \land \left(\neg isomorphicSets((S, \mathbb{N}), ())\right)
                                                                                                                         (55)
                                  inverseMap(q^{-1},(q,M,N)) \iff (bijection(q,(M,N))) \land
```

1.3 Construction of number sets

======== N O T = U P D A T E D ========	(63)
	(64)
$\mathbb{N}^{\star} = \mathbb{N} \backslash \{0\}$	(65)
$\mathbf{addition} = \mathbf{successor} \ \mathbf{map:} \ \mathbb{N} \to \mathbb{N} = S(n) = \{n\} \ \# \ \mathrm{adds} \ \mathrm{a \ layer \ of \ brackets}$	(66)
$\mathbf{subtraction} = \mathbf{predecessor\ map:}\ \mathbb{N}^{\star} \to \mathbb{N} = P(n) = m \mid m \in n \ \# \ \mathrm{removes\ a\ layer\ of\ brackets}$	(67)
$S^0 = id \; ; \; n \in \mathbb{N}^{\star} \implies S^n = S \circ S^{P(n)}$	(68)
$\mathbf{addition} = + : \mathbb{N} \times \mathbb{N} \to \mathbb{N} = +(m,n) = m+n = S^n(m)$	(69)
$S^x = id = S^0 \implies x = \text{additive identity} = 0$	(70)
$S^n(x)=0 \implies x=\mathbf{additive\ inverse} \notin \mathbb{N} \ \# \ \mathrm{git\ gud\ smh}$	(71)

 $\mathbb{Z} = \mathbb{N} \times \mathbb{N} / \sim, \text{ s.t.:}$ $(m,n) \sim (p,q) \iff m+q=p+n \; \# \; \text{span} \; \mathbb{Z} \; \text{using differences then group equal differences} \tag{72}$

$$\mathbb{N} \hookrightarrow \mathbb{Z} : \forall_{n \in \mathbb{N}} n \to [(n,0)] \# \mathbb{N} \text{ embedded in } \mathbb{Z}$$
 (73)

$$+_{\mathbb{Z}} = [(m +_{\mathbb{N}} p, n +_{\mathbb{N}} q)] \# \text{ well-defined and consistent}$$
 (74)

 $\mathbf{multiplication} \dots M^x = id \implies x = \mathbf{multiplicative} \ \mathbf{identity} = 1 \dots \mathbf{multiplicative} \ \mathbf{inverse} \notin \mathbb{N}$ (75)

$$\mathbb{Q} = (\mathbb{Z} \times \mathbb{Z}^*) / \sim, \text{ s.t.: } (x, y) \sim (u, v) \iff x \cdot v = u \cdot y$$
 (76)

$$\mathbb{Z} \hookrightarrow \mathbb{Q} \forall_{q \in \mathbb{Q}} q \to [(q, 1)] \; ; \; \dots \{x \mid x^2 = 2\} \notin \mathbb{Q}$$
 (77)

 $\mathbb{R} = \text{almost homomorphisms on } \mathbb{Z}/\sim \text{ } \text{ } \text{http://blog.sigfpe.com/2006/05/defining-reals.html}$ (78)

1.4 Topology

 $topology(\mathcal{O}, (M)) \iff (\mathcal{O} \subseteq \mathcal{P}(M)) \land \\ (\emptyset, M \in \mathcal{O}) \land \\ ((F \in \mathcal{O} \land |F| < |\mathbb{N}|) \implies \cap F \in \mathcal{O}) \land \\ (C \subseteq \mathcal{O} \implies \cup C \in \mathcal{O})$

topology is defined by a set of open sets which provide the characteristics needed to define continuity, etc. # arbitrary unions of open sets always result in an open set

open sets do not contain their boundaries and infinite intersections of open sets may approach and
induce boundaries resulting in a closed set (80)

$$topologicalSpace((M, \mathcal{O}), ()) \iff topology(\mathcal{O}, (M))$$
 (81)

$$open\big(S,(M,\mathcal{O})\big) \iff \Big(topologicalSpace\big((M,\mathcal{O}),()\big)\Big) \land \\ (S\subseteq M) \land (S\in\mathcal{O})$$

an open set do not contains its own boundaries (82)

$$closed(S, (M, \mathcal{O})) \iff \Big(topologicalSpace((M, \mathcal{O}), ())\Big) \land (S \subseteq M) \land (S \in \mathcal{P}(M) \setminus \mathcal{O})$$

a closed set contains the boundaries an open set (83)

$$clopen(S, (M, \mathcal{O})) \iff \left(closed(S, (M, \mathcal{O}))\right) \land \left(open(S, (M, \mathcal{O}))\right)$$
 (84)

 $neighborhood(U,(a,\mathcal{O})) \iff (a \in U \in \mathcal{O})$

another name for open set containing a (85)

```
M = \{a, b, c, d\} \land \mathcal{O} = \{\emptyset, \{c\}, \{a, b\}, \{c, d\}, \{a, b, c\}, M\} \Longrightarrow \left(\operatorname{open}(X, (M, \mathcal{O})) \iff X = \{\emptyset, \{c\}, \{a, b\}, \{c, d\}, \{a, b, c\}, M\}\right) \land \left(\operatorname{closed}(Y, (M, \mathcal{O})) \iff Y = \{\emptyset, \{a, b, d\}, \{c, d\}, \{a, b\}, \{d\}, M\}\right) \land \left(\operatorname{clopen}(Z, (M, \mathcal{O})) \iff Z = \{\emptyset, \{a, b\}, \{c, d\}, M\}\right) (86)
```

 $chaoticTopology(M) = \{0, M\} ; discreteTopology = \mathcal{P}(M)$ (87)

1.5 Induced topology

$$distance(d, (M)) \iff \left(\forall_{x,y \in M} \left(d(x,y) = d(y,x) \in \mathbb{R}_0^+ \right) \right) \land$$

$$\left(\forall_{x,y \in M} \left(d(x,y) = 0 \iff x = y \right) \right) \land$$

$$\left(\forall_{x,y,z} \left(\left(d(x,z) \le d(x,y) + d(y,z) \right) \right) \right)$$
behaves as distances should (88)

$$metricSpace((M,d),()) \iff distance(d,(M))$$
 (89)

$$openBall(B, (r, p, M, d)) \iff \left(metricSpace((M, d), ()) \right) \land$$

$$\left(r \in \mathbb{R}^+, p \in M \right) \land$$

$$\left(B = \left\{ q \in M \mid d(p, q) < r \right\} \right)$$

$$(90)$$

$$\begin{split} & metricTopology \big(\mathcal{O}, (M, d)\big) \iff \Big(metricSpace\big((M, d), ()\big)\Big) \land \\ & \Big(\mathcal{O} = \{U \in \mathcal{P}(M) \mid \forall_{p \in U} \exists_{r \in \mathbb{R}^+} \Big(openBall\big(B, (r, p, M, d)\big) \land B \subseteq U\Big)\}\Big) \end{split}$$

every point in the neighborhood has some open ball that is fully enclosed in the neighborhood (91)

$$metricTopologicalSpace((M, \mathcal{O}, d), ()) \iff metricTopology(\mathcal{O}, (M, d))$$
 (92)

$$limitPoint(p,(S,M,\mathcal{O},d)) \iff \left(metricTopologicalSpace((M,\mathcal{O},d),()) \right) \land (S \subseteq M) \land \\ \forall_{r \in \mathbb{R}^+} \left(openBall(B,(r,p,M,d)) \land B \cap S \neq \emptyset \right)$$

every open ball centered at p contains some intersection with S (93)

$$interiorPoint(p,(S,M,\mathcal{O},d)) \iff \left(metricTopologicalSpace((M,\mathcal{O},d),()) \right) \land (S \subseteq M) \land \left(\exists_{r \in \mathbb{R}^+} \left(openBall(B,(r,p,M,d)) \land B \subseteq S \right) \right)$$

there is an open ball centered at p that is fully enclosed in S (94)

$$closure(\bar{S}, (S, M, \mathcal{O}, d)) \iff \bar{S} = S \cup \{p \in M \mid limitPoint(p, (S, M, \mathcal{O}, d))\}$$
(95)

$$subsetTopology(\mathcal{O}|_{N}, (M, \mathcal{O}, N)) \iff topology(\mathcal{O}, (M)) \land (N \subseteq M) \land (\mathcal{O}|_{N} = \{U \cap N \mid U \in \mathcal{O}\})$$
crops open sets outside N (99)

$$productTopology\Big(\mathcal{O}_{A\times B}, \big((A,\mathcal{O}_A), (B,\mathcal{O}_B)\big)\Big) \iff \Big(topology\big(\mathcal{O}_A, (A)\big)\Big) \wedge \Big(topology\big(\mathcal{O}_B, (B)\big)\Big) \wedge \Big(\mathcal{O}_{A\times B} = \{(a,b) \in A \times B \mid \exists_S (a \in S \in \mathcal{O}_A) \exists_T (b \in T \in \mathcal{O}_B)\}\Big)$$
open in cross iff open in each (101)

1.6 Convergence

$$sequence \big(q,(M)\big) \iff map \big(q,(\mathbb{N},M)\big) \ \, (102)$$

$$sequence Converges To \big((q,a),(M,\mathcal{O})\big) \iff \Big(topological Space \big((M,\mathcal{O}),()\big)\Big) \land \\ \Big(sequence \big(q,(M)\big)\Big) \land (a \in M) \land \Big(\forall_{U \in \mathcal{O} \mid a \in U} \exists_{N \in \mathbb{N}} \forall_{n > N} \big(q(n) \in U\big)\Big)$$
 # each neighborhood of a has a tail-end sequence that does not map to outside points (103)

(THM): convergence generalizes to: the sequence $q: \mathbb{N} \to \mathbb{R}^d$ converges against $a \in \mathbb{R}^d$ in \mathcal{O}_S if: $\forall_{r>0} \exists_{N \in \mathbb{N}} \forall_{n>N} \left(||q(n) - a|| < \epsilon \right) \#$ distance based convergence (104)

1.7 Continuity

$$\begin{array}{c} continuous\Big(\phi,\big((M,\mathcal{O}_{M}),(N,\mathcal{O}_{N})\big)\Big) \iff \Big(topologicalSpace\big((M,\mathcal{O}_{M}),()\big)\Big) \land \\ \Big(topologicalSpace\big((N,\mathcal{O}_{N}),()\big)\Big) \land \Big(map\big(\phi,(M,N)\big)\Big) \land \Big(\forall_{V \in \mathcal{O}_{N}} \Big(preimage\big(A,(V,\phi,M,N)\big) \land A \in \mathcal{O}_{M}\Big)\Big) \\ \qquad \qquad \# \ preimage \ of \ open \ sets \ are \ open \\ \Big(105\big) \\ \\ homeomorphism\Big(\phi,\big((M,\mathcal{O}_{M}),(N,\mathcal{O}_{N})\big)\Big) \iff \Big(inverseMap\big(\phi^{-1},(\phi,M,N)\big)\Big) \\ \Big(continuous\Big(\phi,\big((M,\mathcal{O}_{M}),(N,\mathcal{O}_{N})\big)\Big)\Big) \land \Big(continuous\Big(\phi^{-1},\big((N,\mathcal{O}_{N}),(M,\mathcal{O}_{M})\big)\Big)\Big) \\ \# \ structure \ preserving \ maps \ in \ topology, \ ability \ to \ share \ topological \ properties \\ isomorphicTopologicalSpace\Big(\big((M,\mathcal{O}_{M}),(N,\mathcal{O}_{N})\big),(\big)\Big) \iff \\ \exists_{\phi}\Big(homeomorphism\Big(\phi,\big((M,\mathcal{O}_{M}),(N,\mathcal{O}_{N})\big)\Big)\Big) \ \ (107) \\ \end{array}$$

1.8 Separation

$$T0Separate ((M, \mathcal{O}), ()) \iff \left(topologicalSpace((M, \mathcal{O}), ())\right) \land \\ \left(\forall_{x,y \in M \land x \neq y} \exists_{U \in \mathcal{O}} \left(\left(x \in U \land y \notin U\right) \lor \left(y \in U \land x \notin U\right)\right)\right) \\ \# \text{ each pair of points has a neighborhood s.t. one is inside and the other is outside} \quad (108)$$

$$T1Separate ((M, \mathcal{O}), ()) \iff \left(topologicalSpace((M, \mathcal{O}), ())\right) \land \\ \left(\forall_{x,y \in M \land x \neq y} \exists_{U,V \in \mathcal{O} \land U \neq V} \left(\left(x \in U \land y \notin U\right) \land \left(y \in V \land x \notin V\right)\right)\right) \\ \# \text{ every point has a neighborhood that does not contain another point} \quad (109)$$

$$T2Separate ((M, \mathcal{O}), ()) \iff \left(topologicalSpace((M, \mathcal{O}), ())\right) \land \\ \left(\forall_{x,y \in M \land x \neq y} \exists_{U,V \in \mathcal{O} \land U \neq V} \left(U \cap V = \emptyset\right)\right) \\ \# \text{ every point has a neighborhood that does not intersect with a nhbhd of another point - Hausdorff space} \quad (110)$$

$$(THM): T2Separate \implies T1Separate \implies T0Separate \quad (111)$$

1.9 Compactness

$$openCover(C, (M, \mathcal{O})) \iff \Big(topologicalSpace((M, \mathcal{O}), ())\Big) \land (C \subseteq \mathcal{O}) \land (\cup C = M)$$
collection of open sets whose elements cover the entire space (112)

$$\begin{array}{c} finiteSubcover \Big(\widetilde{C}, (C, M, \mathcal{O}) \Big) \iff \Big(\widetilde{C} \subseteq C \Big) \wedge \Big(openCover \big(C, (M, \mathcal{O}) \big) \Big) \wedge \\ \Big(openCover \Big(\widetilde{C}, (M, \mathcal{O}) \Big) \Big) \wedge \Big(finiteSet \Big(\widetilde{C}, () \Big) \Big) \\ \# \text{ finite subset of a cover that is also a cover} \end{array} \tag{113}$$

$$compact\big((M,\mathcal{O}),()\big) \iff \Big(topologicalSpace\big((M,\mathcal{O}),()\big)\Big) \land$$

$$\Big(\forall_{C\subseteq\mathcal{O}}\Big(openCover\big(C,(M,\mathcal{O})\big) \implies \exists_{\widetilde{C}\subseteq C}\Big(finiteSubcover\big(\widetilde{C},(C,M,\mathcal{O})\big)\Big)\Big)\Big)$$
every covering of the space is represented by a finite number of nhbhds

$$compactSubset(N, (M, \mathcal{O}_d, d)) \iff \left(compact((M, \mathcal{O}), ())\right) \land \left(subsetTopology(\mathcal{O}|_N, (M, \mathcal{O}, N))\right)$$
 (115)

$$bounded(N, (M, d)) \iff \left(metricSpace((M, d), ())\right) \land (N \subseteq M) \land \left(\exists_{r \in \mathbb{R}^+} \forall_{p,q \in n} (d(p, q) < r)\right)$$
(116)

(114)

(THM) HeineBorel:
$$metricTopologicalSpace((M, \mathcal{O}_d, d), ()) \Longrightarrow$$

$$\forall_{S \in \mathcal{P}(M)} \left(\left(closed(S, (M, \mathcal{O}_d)) \wedge bounded(S, (M, \mathcal{O}_d)) \right) \iff compactSubset(S, (M, \mathcal{O}_d)) \right)$$
when metric topologies are involved, compactness is equivalent to being closed and bounded (117)

1.10 Paracompactness

$$openRefinement\Big(\widetilde{C},(C,M,\mathcal{O})\Big) \iff \Big(openCover\big(C,(M,\mathcal{O})\big)\Big) \land \Big(openCover\big(\widetilde{C},(M,\mathcal{O})\big)\Big) \land \Big(\forall_{\widetilde{U} \in \widetilde{C}} \exists_{U \in C} \Big(\widetilde{U} \subseteq U\Big)\Big)$$

a refined cover can be constructed by removing the excess nhbhds and points that lie outside the space (118)

$$(THM): finiteSubcover \implies openRefinement$$
 (119)

$$locallyFinite(C, (M, \mathcal{O})) \iff \left(openCover(C, (M, \mathcal{O}))\right) \land \\ \forall_{p \in M} \exists_{U \in \mathcal{O} | p \in U} \left(finiteSet(\{U_c \in C | U \cap U_c \neq \emptyset\}, ())\right)$$

each point has a neighborhood that intersects with only finitely many sets in the cover (120)

$$paracompact \big((M, \mathcal{O}), () \big) \iff$$

$$\forall_{C} \left(openCover \big(C, (M, \mathcal{O}) \big) \implies \exists_{\widetilde{C}} \left(locallyFinite \Big(openRefinement \Big(\widetilde{C}, (C, M, \mathcal{O}) \Big), (M, \mathcal{O}) \Big) \right) \right)$$

$$\# \text{ every open cover has a locally finite open refinement} \quad (121)$$

$$(THM): metricTopologicalSpace \implies paracompact$$
 (122)

1.11 Connectedness and path-connectedness

$$connected((M, \mathcal{O}), \langle \rangle) \iff \left(topologicalSpace((M, \mathcal{O}), \langle \rangle)\right) \land \left(\neg \exists_{A,B \in \mathcal{O} \backslash \emptyset} (A \cap B \neq \emptyset \land A \cup B = M)\right)$$
if there is some covering of the space that does not intersect (127)

$$(THM) : \neg connected\left(\left(\mathbb{R} \setminus \{0\}, subsetTopology(\mathcal{O}_{standard}|_{\mathbb{R} \setminus \{0\}}, (\mathbb{R}, standardTopology, \mathbb{R} \setminus \{0\})\right)\right), (1)$$

$$\iff \left(A = (-\infty, 0) \in \mathcal{O}_{standard}|_{\mathbb{R} \setminus \{0\}}\right) \land \left(B = (0, \infty) \in \mathcal{O}_{standard}|_{\mathbb{R} \setminus \{0\}}\right) \land \left(A \cap B = \emptyset\right) \land \left(A \cup B = \mathbb{R} \setminus \{0\}\right) \qquad (128)$$

$$(THM) : connected((M, \mathcal{O}), ()) \iff \forall_{S \in \mathcal{O}}\left(clopen(S, (M, \mathcal{O}) \implies (S = \emptyset \lor S = M))\right) \qquad (129)$$

$$pathConnected((M, \mathcal{O}), ()) \iff \left(subsetTopology(\mathcal{O}_{standard}|_{[0,1]}, (\mathbb{R}, standardTopology, [0,1])\right)) \land \left(\forall_{p,q \in M} \exists_{\gamma}\left(continuous(\gamma, \left(\left([0,1], \mathcal{O}_{standard}|_{[0,1]}\right), (M, \mathcal{O})\right)\right) \land \gamma(0) = p \land \gamma(1) = q\right)\right) \qquad (130)$$

$$(THM) : pathConnected \implies connected \qquad (131)$$

1.12 Homotopic curve and the fundamental group

```
homotopic(\sim, (\gamma, \delta, M, \mathcal{O})) \iff (map(\gamma, ([0, 1], M)) \land map(\delta, ([0, 1], M))) \land
                                                                                                               (\gamma(0) = \delta(0) \land \gamma(1) = \delta(1)) \land
(\exists_{H}\forall_{\lambda\in[0,1]}(continuous(H,(([0,1]\times[0,1],\mathcal{O}_{standard^{2}}|_{[0,1]\times[0,1]}),(M,\mathcal{O}))\wedge H(0,\lambda)=\gamma(\lambda)\wedge H(1,\lambda)=\delta(\lambda))))
                                                                     \# H is a continuous deformation of one curve into another (133)
                                                                                         homotopic(\sim) \implies equivalenceRelation(\sim) (134)
                            loopSpace(\mathcal{L}_p, (p, M, \mathcal{O})) \iff \mathcal{L}_p = \{map(\gamma, ([0, 1], M)) | continuous(\gamma) \land \gamma(0) = \gamma(1)\})  (135)
                                                                         concatination(\star, (p, \gamma, \delta)) \iff (\gamma, \delta \in loopSpace(\mathcal{L}_p)) \land
                                                                                   (\forall_{\lambda \in [0,1]} ((\gamma \star \delta)(\lambda)) = \begin{cases} \gamma(2\lambda) & 0 \le \lambda < 0.5 \\ \delta(2\lambda - 1) & 0.5 \le \lambda \le 1 \end{cases})) \quad (136)
                                                                                       group((G, \bullet), ()) \iff (map(\bullet, (G \times G, G))) \wedge
                                                                                                                             (\forall_{a,b\in G}(a\bullet b\in G))
                                                                                                        (\forall_{a,b,c \in G}((a \bullet b) \bullet C = a \bullet (b \bullet c)))
                                                                                                              (\exists_{\boldsymbol{e}} \forall_{a \in G} (\boldsymbol{e} \bullet a = a = a \bullet \boldsymbol{e})) \wedge
                                                                                                       (\forall_{a \in G} \exists_{a^{-1}} (a \bullet a^{-1} = e = a^{-1} \bullet a))
                                                                                          # characterizes symmetry of a set structure (137)
                     isomorphic(\cong, (X, \odot), (Y, \ominus))) \iff \exists_f \forall_{a,b \in X} (bijection(f, (X, Y)) \land f(a \odot b) = f(a) \ominus f(b))  (138)
                                                               fundamentalGroup((\pi_{1,p}, \bullet), (p, M, \mathcal{O})) \iff (\pi_{1,p} = \mathcal{L}_p/\sim) \land
                                                                                                               (map(\bullet,(\pi_{1,p}\times\pi_{1,p},\pi_{1,p})))\wedge
                                                                                                          (\forall_{A,B\in\pi_{1,p}}([A]\bullet[B]=[A\star B]))\wedge
                                                                                                                            (group((\pi_{1,p}, \bullet), ()))
                                  # an equivalence class of all loops induced from the homotopic equivalence relation (139)
                        fundamentalGroup_1 \ncong fundamentalGroup_2 \Longrightarrow topologicalSpace_1 \ncong topologicalSpace_2 (140)
               there exists no known list of topological properties that can imply homeomorphisms (141)
                                                                                            CONTINUE @ Lecture 6: manifolds (142)
```

1.13 Measure theory

 $\sigma\text{-}algebra(\sigma,(M)) \iff (\sigma \subseteq \mathcal{P}(M)) \land$

$$(M \in \sigma) \land (\forall_{A \in \sigma}(M \setminus A \in \sigma)) \land ((A)_{\mathbb{N}} \subseteq \sigma \implies \cup ((A)_{\mathbb{N}}) \in \sigma)$$

$$((A)_{\mathbb{N}} \subseteq \sigma \implies \cup ((A)_{\mathbb{N}}) \in \sigma)$$

$$(145)$$

$$measurableSpace((M, \sigma), ()) \iff \sigma\text{-}algebra(\sigma, (M)$$

$$measure(\mu, (M, \sigma)) \iff (map(\mu, (\sigma, \overline{\mathbb{R}}_{0}^{+}))) \land (\mu(\emptyset) = 0) \land$$

$$((A)_{\mathbb{N}} \subseteq \sigma \land \forall_{i \in \mathbb{N}} \forall_{j \in \mathbb{N}} \{i\} (A_{i} \cap A_{j} = \emptyset) \implies \mu(\cup_{i \in \mathbb{N}} (A_{i})) = \sum_{i \in \mathbb{N}} (\mu(A_{i}))$$

$$measure \Rightarrow (A_{i} \subseteq A_{0} \implies \mu(A) \leq \mu(B))$$

$$(A)_{\mathbb{N}} \subseteq \sigma \implies \mu(A) \leq \mu(B))$$

$$(A)_{\mathbb{N}} \subseteq \sigma \implies \mu(A) \leq \mu(B)$$

$$(A)_{\mathbb{N}} \subseteq \sigma \implies \mu(A) = \mu(B)$$

2 Statistics

2.1 Overview

$$randomExperiment(X,(\Omega)) \iff \forall_{\omega \in \Omega}(outcome(\omega,(X))) \tag{151}$$

$$sampleSpace(\Omega,(X)) \iff \Omega = \{\omega|outcome(\omega,(X))\} \tag{152}$$

$$event(A,(\Omega)) \implies A \subseteq \Omega \ \# \ \text{that is of interest} \tag{153}$$

$$eventOccured(A,(\omega,\Omega)) \iff \omega \in A, \Omega \land event(A,(\Omega)) \tag{154}$$

$$algebra(\mathcal{F}_0,(\Omega)) \iff (\mathcal{F}_0 \subseteq \mathcal{P}(\Omega)) \land (\Omega \in \mathcal{F}_0) \land (\mathcal{F}_0 \subseteq \mathcal{F}_0$$

3 Statistical Learning Theory

3.1 Overview

	(157)
curve-fitting/explaining eq prediction	(158)
$ill-defined problem + solution space constraints \implies well-defined problem$	(159)
$x \ \# \ ext{input} \ ; \ y \ \# \ ext{output}$	(160)
$S_n = \{(x_1, y_1), \dots, (x_n, y_n)\} $ # training set	(161)
$f_S(x) \sim y \; \# \; { m solution}$	(162)
$each(x,y) \in p(x,y) \ \# \ { m training \ data} \ x,y \ { m is \ a \ sample \ from \ an \ unknown \ distribution} \ p$	(163)
$V(f(x),y) = d(f(x),y) \; \# \; ext{loss function}$	(164)
$I[f] = \int_{X \times Y} V(f(x), y) p(x, y) dx dy \; \# \; \text{expected error}$	(165)
$I_n[f] = rac{1}{n} \sum_{i=1}^n V(f(x_i), y_i) \; \# \; ext{empirical error}$	(166)
$probabilisticConvergence(X,()) \iff \forall_{\epsilon>0} \lim_{n\to\infty} Pxn - x \leq \epsilon = 0$	(167)
I-Ingeneralization error	(168)
well-posed := exists, unique, stable; elseill-posed	(169)

3.2 Background maths

$$vectorSpace(V, (+, *)) \iff (u, v, w \in V), (c, d \in \mathbb{R} \in F) \land (u + v, c * u = c(u) = cu \in V) \land (u + v = v + u) \land ((u + v) + w = u + (v + w)) \land (\exists_{\boldsymbol{\theta}} (u + \boldsymbol{\theta} = u)) \land (\exists_{-u} (u + (-u) = \boldsymbol{\theta})) \land ((1)u = u) \land ((cd)u = c(du)) \land ((c + d)u = cu + du) \land \# \text{ linearity} (c(u + v) = cu + cv) \land \# \text{ linearity} \# \text{ behaves similar to vectors}$$

$$(170)$$

```
innerProduct(\langle \cdot, \cdot \rangle, (V)) \iff (u, v, w \in V), (c \in \mathbb{R} \in F) \land
                                                                                                                  (\langle v, w \rangle = \langle w, v \rangle) \wedge
                                                                                                               (\langle cv, w \rangle = c \langle v, w \rangle) \wedge
                                                                              (\langle u+v,w\rangle = \langle u,w\rangle + \langle v,w\rangle) \wedge \# \text{ linearity}
                                                                                    (\langle u, u \rangle \geq 0 \in \mathbb{R}_0^+) \wedge \# \text{ metric inducing}
                                                                                                         (\langle u, u \rangle = 0 \iff u = \mathbf{0})
                                                                                                                                                    (171)
                                                         innerProductNorm(||\cdot||,(V)) \iff (v,w\in V),(r\in R)\land
                                                                                                          (||v|| = \sqrt{\langle v, v \rangle} \in \mathbb{R}_0^+) \wedge
                                                                                                          (||v|| = 0 \iff v = \mathbf{0}) \wedge
                                                                                                                   (||rv|| = |r|||v||) \wedge
                                                                           (||v+w|| \le ||v|| + ||w||) # triangle inequality
                                                                                                                                                    (172)
                                               normConvergences(v, (V, (v_n)_{n \in \mathbb{N}})) \iff (\{v\} \cup (v_n)_{n \in \mathbb{N}} \subseteq V) \land
                                                                                                               \left(\lim_{n\to\infty}||v-v_n||=0\right)
                                                                                                                                                    (173)
                                                                                       cauchySequence((v_n)_{n\in\mathbb{N}},(V)) \iff
                                                                                           (\forall_{\epsilon>0}\exists_{n\in\mathbb{N}}\forall_{x,y>n}(||v_x-v_y||<\epsilon))
                                                                                                                                                    (174)
                           normConvergences \implies cauchySequence \# there might be holes in the space
                                                                                                                                                    (175)
        completeSpace(V,(innerProductNorm)) \iff (cauchySequence \iff normConvergences)
                                                                                                                                                    (176)
                                                                 completion(R, (Q)) \iff R = QUcauchyUs = Qbar
                                                                                                                                                    (177)
                                                     hilbertSpace(H, (+, *, \langle \cdot, \cdot \rangle)) \iff (vectorSpace(H, (+, *))) \land
                                                                                                    (innerProduct(\langle \cdot, \cdot \rangle, (H))) \land
                                                                                completeSpace(H, (innerProductNorm))
                                                                                                                                                    (178)
                      separable(H, ()) \iff \exists_{S \subseteq V}(countable(S, ()) \land Sbar = V) \# \text{ has a countable basis}
                                                                                                                                                    (179)
hilbertSpace \land seperable \iff \exists countable ortho(gonal) normal basis for space, all norm = 1, IP = 0
                                                                                                                                                    (180)
                                                                   x = \sum \langle x, v \rangle v \# countable projection times v
                                                                                                                                                    (181)
                                                                                                                           0000000000
                                                                                                                                                    (182)
                                                                 linearOperator(L, (V)) \iff (u, v \in V), (c, d \in \mathbb{R}) \land
                                                                                                 (L(cu + dv) = cL(u) + dL(v))
                                                                                                                                                    (183)
                                                    adjoint(L^{\dagger}, (L, V)) \iff (\forall_{u,v \in V} < L(u), v > = < u, L^{\dagger}(v) >_{\dagger})
                                                                                                                                                    (184)
                                                                                              selfAdjoint(L,()) \iff L = L^{\dagger}
                                                                                                                                                    (185)
```

$eigenvector(V) \iff Lv = kv$	(186)
30mins	(187)

4 Machine Learning

4.0.1 Overview

$X \ \# \ ext{input} \ ; \ Y \ \# \ ext{output} \ ; \ S(X,Y) \ \# \ ext{dataset}$	(188)
——————————————————————————————————————	
learned parameters = parameters to be fixed by training with the dataset	(189)
$\mathbf{hyperparameters} = \mathbf{parameters} \ \mathbf{that} \ \mathbf{depends} \ \mathbf{on} \ \mathbf{a} \ \mathbf{dataset}$	(190)
	(191)
${\bf cross\text{-}validation = average \ accuracy \ of \ validation \ for \ different \ choices \ of \ testing \ partition}$	(192)
${f L1}={f scales}$ linearly ; ${f L2}={f scales}$ quadratically	(193)
d = distance = quantifies the the similarity between data points	(194)
$d_{L1}(A,B) = \sum_p A_p - B_p \; \# \; ext{Manhattan distance}$	(195)
$d_{L2}(A,B) = \sqrt{\sum_p \left(A_p - B_p ight)^2} \;\#\; ext{Euclidean distance}$	(196)
\mathbf{kNN} classifier = classifier based on k nearest data points	(197)
$s = {f class} \ {f score} = {f quantifies} \ {f bias} \ {f towards} \ {f a} \ {f particular} \ {f class}$	(198)
$s_{linear} = f_{c \times 1}(x_{n \times 1}, W_{c \times n}, b_{c \times 1}) = W_{c \times n}x_{n \times 1} + b_{c \times 1} \# \text{ linear score function}$	(199)
$l = \mathbf{loss} = \mathbf{quantifies}$ the errors by the learned parameters	(200)
$l = rac{1}{ c_i } \sum_{c_i} l_i \; \# \; ext{average loss for all classes}$	(201)
$l_{SVM_i} = \sum_{y_i eq c_i} \max(0, s_{y_i} - s_{c_i} + 1) \; \# \; ext{SVM hinge class loss function:}$	(0.00)
# ignores incorrect classes with lower scores including a non-zero margin	(202)

	$l_{MLR_i} = -\log\!\left(rac{e^{s_{c_i}}}{\sum_{y_i}e^{y_i}} ight) \# ext{ Softmax class loss function}$	(2.22)
	# lower scores correspond to lower exponentiated-normalized probabilities	(203)
_	$R = \mathbf{regularization} = \mathbf{optimizes}$ the choice of learned parameters to minimize test error	(204)
_	$\lambda \ \#$ regularization strength hyperparameter	(205)
	$R_{L1}(W) = \sum_{W_i} W_i \; \# \; ext{L1 regularization}$	(206)
	$R_{L2}(W) = \sum_{W_i} {W_i}^2 \ \# \ \mathrm{L2} \ \mathrm{regularization}$	(207)
	$L' = L + \lambda R(W) \; \# \; ext{weight regularization}$	(208)
	$ abla_W L = \overrightarrow{rac{\partial}{\partial W_i}} L = ext{loss gradient w.r.t. weights}$	(209)
	$\frac{\partial L_E}{\partial W_I} = \frac{\partial L_L}{\partial W_I} \frac{\partial L_E}{\partial L_L} \# $ loss gradient w.r.t. input weight in terms of external and local gradients	(210)
	$s = \mathbf{forward} \ \mathbf{API} \ ; \ \frac{\partial L_L}{\partial W_I} = \mathbf{backward} \ \mathbf{API}$	(211)
_	$W_{t+1} = W_t - \nabla_{W_t} L \ \#$ weight update loss minimization	(212)
	TODO:Research on Activation functions, Weight Initialization, Batch Normalization	(213)
	review 5 mean var discussion/hyperparameter optimization/baby sitting learning	(214)

TODO loss L or l??