Chi Square

- The **Chi-Square test** is a statistical test used to determine whether there is a significant association between two **categorical variables**.
- It compares observed frequencies with expected frequencies to check if any differences are due to chance.

Types of Chi-Square Tests

1. Chi-Square Goodness-of-Fit Test

- Checks if a sample follows a specific distribution.
- Tests if observed frequencies match expected frequencies for a single categorical variable.
- Example: Does the distribution of colors in a bag of candies match the expected distribution?
- Example: Checking if a die is fair.

Formula

The Chi-Square statistic is calculated as:

$$\chi^2 = \sum rac{(O_i - E_i)^2}{E_i}$$

Where:

- O_i : Observed frequency for category i.
- E_i : Expected frequency for category i.

Degrees of Freedom

$$df = k-1$$

Where:

• k: Number of categories.

2. Chi-Square Test for Independence

- · Checks if two categorical variables are related.
- To test if there's a relationship between two categorical variables
- Example: Examining if gender and voting preference are related.

Hypotheses

- Null Hypothesis (H_0): The variables are independent (no association).
- Alternative Hypothesis (H_1): The variables are dependent (there is an association).

Formula:

Formula

The Chi-Square statistic is calculated as:

$$\chi^2 = \sum rac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

Where:

- O_{ij} : Observed frequency in cell (i, j).
- E_{ij} : Expected frequency in cell (i,j), calculated as:

$$E_{ij} = rac{ ext{(Row Total)} imes ext{(Column Total)}}{ ext{Grand Total}}$$

Degrees of Freedom

$$df = (r-1) \times (c-1)$$

Where:

- r: Number of rows.
- c: Number of columns.

If the **Chi-Square statistic is large**, it suggests that observed values significantly deviate from expected values, implying a relationship between variables.

Degrees of Freedom (DOF):

$DOF = (Number of Rows - 1) \times (Number of Columns - 1)$

- It claims about population proportions.
- **Non-parametric test**: A **non-parametric test** is a type of statistical test that does not assume the data follows a specific distribution, like the normal distribution
 - When you are given any proportion, you use this.
- Performed on categorical variables (nominal or ordinal) data.
 - Categorical variables are types of data that represent categories or groups.
 - no meaningful order or numeric value
 - Nominal Data (Names or Labels): Categories with no order or ranking.
 - Ex. color, gender, animal type
 - Ordinal Data (Ordered Categories): meaningful order or ranking
 - Ex. Education Level: High School, Bachelor's, Master's, PhD
 - Rating Scale: Poor, Fair, Good, Excellent

The exact difference between the categories is not clearly defined.

Q. In 2000 Indian census, the ages of the individuals in a small town were found to be:

In 2010, n=500 individuals were sampled:

18-35 → 288

>35 → 91

Using alpha is equal to 0.05, would you conclude the population distribution of ages has changed in the last 10 years?

Potential Year-2000 expected

<18	18-35	>35
20%	30%	50%

n=500, observed

<18	18-35	>35
121	288	91

Expected 2000 census data with n=500

<18	18-35	>35
500*0.2= 100	500*0.3= 150	500*0.5= 250

By only seeing this data, we can tell there is a difference. But we have to take the 95% CI in account.

121	288	91	Observed
100	150	250	Expected

 H_0 = Data meets the distribution of 2000 census.

 H_1 = Data does not meet the distribution of 2000 census.

 $\alpha = 0.05$

Degree of freedom= n-1 = 3-3=2

n is number of categories (<18,18-35,>35)

Check in chi square table

df	$\chi^{2}_{.995}$	$\chi^{2}_{.990}$	$\chi^{2}_{.975}$	$\chi^{2}_{.950}$	$\chi^{2}_{.900}$	$\chi^{2}_{.100}$	$\chi^2_{.050}$	$\chi^{2}_{.025}$	$\chi^{2}_{.010}$	$\chi^{2}_{.005}$
1	0.000	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086	16.750
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	23.589
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188

 χ 2 = 5.991 (Chi Square)

If Chi square is more than 5.991, we reject the null hypothesis.

Calculate Test Statistics:

$$\chi^2 = \sum \frac{(f_O - f_E)^2}{f_E}$$

 $f_{\underline{O}}$ = observed frequencies $f_{\underline{E}}$ = expected frequencies

(121-100)^2/100 + (288-150)^2/150+(91-250)^2/250

= 232.494

232.494>5.99

Therefore, we will reject the H0.

Hence, population distribution of ages has changed in the last 10 years?

Python Code: Test of Independence

Q. A company surveys 200 employees to determine if job satisfaction is related to the department. The observed data is:

Department	Satisfied	Not Satisfied	Total
IT	40	30	70
HR	25	15	40
Sales	50	40	90
Total	115	85	200

We want to test:

- **Null Hypothesis** (H_0): Job satisfaction and department are independent.
- Alternative Hypothesis (H_1): Job satisfaction depends on the department.

Output:

```
Chi-Square Statistic: 0.5521
P-Value: 0.7588
Degrees of Freedom: 2
Expected Frequencies:
[[40.25 29.75]
[23. 17. ]
[51.75 38.25]
```

If p<0.05, job satisfaction depends on the department.

If p>0.05, job satisfaction and department are independent.

Python: Goodness-of-Fit Test

```
from scipy.stats import chisquare

# Observed frequencies
observed = [30, 20, 25, 35]

# Expected frequencies (hypothesized distribution)
expected = [25, 25, 25, 25]

# Perform Chi-Square test
chi2_stat, p_value = chisquare(observed, f_exp=expected)

print(f"Chi-Square Statistic: {chi2_stat:.4f}")
print(f"P-value: {p_value:.4f}")

# Interpret the result
alpha = 0.05
if p_value < alpha:
    print("Reject Ho: The observed frequencies do not match the expected frequencies.")
else:
```

print("Fail to reject H_o: The observed frequencies match the expected frequencies.")

Output:

Chi-Square Statistic: 6.0000

P-value: 0.1116

Fail to reject H_o: The observed frequencies match the expected frequencies.

Another example:

A **restaurant owner** claims that customers order different dishes in the following proportions:

• Pizza: 40%

• **Burger:** 35%

• Pasta: 25%

We surveyed 200 customers and recorded their actual orders:

• Pizza: 85

• **Burger:** 70

• Pasta: 45

We test if the observed data follows the expected proportions.

Step 1: Define Observed and Expected Counts

• Observed counts: Actual number of customer orders.

• Expected counts: Compute using total sample size and claimed proportions.

For **Pizza**:

$$E = 200 \times 0.4 = 80$$

Similarly, calculate for **Burger** and **Pasta**.

Step 2: Compute Chi-Square Statistic

Formula:

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

Where:

- O = Observed count
- E = Expected count

Step 3: Compute P-Value and Compare with Alpha

- If **p-value** < 0.05, reject H_0 (data does not follow expected proportions).
- If **p-value > 0.05**, fail to reject H_0 (data matches expected proportions).

Python Code:

import numpy as np import scipy.stats as stats

Observed frequencies (actual customer orders) observed = np.array([85, 70, 45])

Expected frequencies based on claimed proportions expected_proportions = np.array([0.4, 0.35, 0.25]) # Given proportions sample_size = np.sum(observed) # Total customers surveyed

```
expected = expected_proportions * sample_size # Compute expected counts

# Perform Chi-Square Goodness-of-Fit Test
chi2_stat, p_value = stats.chisquare(f_obs=observed, f_exp=expected)

# Print results
print(f"Chi-Square Statistic: {chi2_stat:.4f}")
print(f"P-Value: {p_value:.4f}")

# Interpretation
alpha = 0.05 # Significance level
if p_value < alpha:
    print("Reject the null hypothesis: The data does not follow the expected dist ribution.")
else:
    print("Fail to reject the null hypothesis: The data follows the expected distribution.")</pre>
```

Output:

Chi-Square Statistic: 0.8125

P-Value: 0.6661

Fail to reject the null hypothesis: The data follows the expected distribution.