

内容纲要

- 一、能量均分定理
- 二、理想气体的内能及摩尔热容
- 三、麦克斯韦气体分子速率分布律及 三个统计速率
- 四、玻耳兹曼能量分布率

问题:

1.对于双原子分子或多原子分子,分子有一定的内部结构,除平动外还有分子的转动和分子内原子间的相对运动,分子的平均动能和温度关系 $\frac{3}{2} kT$ 是否仍然成立?

五、能量均分定理

1. 空间自由度

决定物体的空间位置至少需要的独立坐标的数目。

● 刚体的一般运动包括:

刚体质心的平动和绕质心的转动。

- 要确定刚体在空间的位置,需要确定:
 - ①质心的位置(x,y,z);
 - ②刚体绕过质心的转轴的方位(θ, φ);
 - ③刚体转轴从起始位置转过的角度ψ。
- ●自由刚体有6个自由度。 3个平动 + 3个转动

五、能量均分定理

- 2. 能量(按自由度)均分定理
 - (1) 分子平动动能按自由度分配

 $\frac{1}{2}m\overline{v_x^2} = \frac{1}{2}m\overline{v_y^2} = \frac{1}{2}m\overline{v_z^2} = \frac{1}{2}kT$ 对于刚性分子 $v_k = 0$

- (2) 分子动能按自由度分配 $\overline{\varepsilon_k} = \frac{1}{2} (t + r + v_k) kT$
- (3) 分子能量按自由度分配——能量均分定理 能量自由度 i=t+r+v $=\frac{-1}{\varepsilon=-(t+r+v)kT=-kT}$

剛性分子 v=0 非剛性分子 $v=2v_k$

对于处在温度为T 的平衡态的经典系统,粒子每个自由度对应的平均能量相等,均为 kT/2

五、能量均分定理

分子 自由度	t 平动	『 转动	ν 振动	i A
单原子分子	3	0	0	3
剛性双原子分子	3	2	0	5
非剛性双原子 分子	3	2	2	7
刚性三原子分子	3	3	0	6
非剛性三原子 分子	3	3	6	12

能量均分定理是经典的Boltzman统计中一个重要定理,只有对于满足经典极限条件的粒子系统才成立。 (高温,低密度)

五、能量均分定理

经典统计和量子统计的研究对象和研究方法相同:

都根据对物质微观结构和相互作用的认识,用概率 统计的方法,研究由大量粒子组成的系统的宏观物理性质 及其微观解释,并揭示其统计规律性。

不同点: 详见《基础物理学教程》(第二版),陆果,高等教育出版社, 655-657

- 经典统计 ●以经典力学为基础,粒子运动状态具有连续性:
 - ●粒子全同可分辨,交换后状态变化;
 - ●例如:玻尔兹曼分布(气体分子速度的最概然分布)

量子统计 ●以量子力学为基础,粒子运动状态不连续:

- ●粒子全同不可分辨,交换后状态不变!
- 例如:玻色分布(光子、π介子等玻色子的最概然分布,不遵 从泡利不相容原理); 费米分布(电子、质子等费米子的最 概然分布,遵从泡利不相容原理)。

五、能量均分定理

- 3. 理想气体的内能和摩尔热容
 - (1) 一般气体的内能:

所有分子无规则运动的能量 + 分子间势能

理想气体的内能:

所有分子无规则运动的能量 E=1

(2) 理想气体的摩尔热容 ——经典热容理论

$$C_{\text{V,m}} = \frac{1}{v} \frac{dQ_{\text{V}}}{dT} = \frac{1}{v} \frac{dE}{dT} = \frac{i}{2} R$$

$$\gamma = \frac{C_{\text{p,m}}}{C_{\text{v,m}}} = \frac{i+2}{i}$$

$$C_{p,m} = C_{V,m} + R = \frac{i+2}{2}R$$

 $C_{p,m} = C_{V,m} + R = \frac{i+2}{2}R$ 仅取决于分子的自由度,与与体种举、温度无关!

万、能量均分定理

- (3) 理论值与实验值的比较
- ●自由度相同的气体, 热容并不完全相同;
- ●单原子分子气体的

Z.		表 5-4	在0°C时	d, 几种气体 C _{V.} , 实验值的比较 (単位, J・mol ⁻¹ ・K ⁻¹)							
原子數		单版	7	双顺子							
作体	复 He	単原子製 N	单原子氧 O	気 H ₂	K O,	X N ₂	一氧化碳 CO	一氧化氮 NO			
Cva	12-477	12.472	13.758	20. 302	21.336	20.800	20. 808	21.663			

热容实验、理论值相符;

头短、 理比值相付;	●气体的热容与温度有关;	
1-3 在20°C和标准大气压下各种气体的	表 5-5 在不同温度下几种双原子气体 Cv 实验值的比较	

气体类型	代体	C		$C_{\tau,n}$		C , , - C , .		y-C,/C+		-			M N.	一氧化碳 CO
	名称	理论	实验	维论	失歡	理论	实验	理论	实验	温度°C 体	気 H;	¶ O₂	Mr 141	- scicar co
	He	5 R = 20.8	20.8	$\frac{3}{2}R = 12.5$	12.5	8.31	8.31	1.67	1.67	0	20. 302	20.959	20.800	20. 808
单原子 作	7.	5 R -20.8	20.0	3					1 47	200	20. 926	22.500	21.156	21. 332
	~	2	-	2	-	-	-	1.48	1.51	400	21. 081	24.443	22. 261	22. 659
東照子 作(株	H ₁	$\frac{7}{2}R - 29.1$	28.7	$\frac{5}{2}R = 20.8$	20.4	8.31	8.30	1.40	1.41	600	21.478	25. 887	23.605	24. 087
	0,	$\frac{7}{2}R = 29.1$	29.4	$\frac{5}{2}R = 20.8$	21.0	8.31	8.40	1.40	1.39	800	22. 157	26.888	24. 786	25. 259
平湖北	NH.	4 R = 33.3	10.0	00/20					1 11	1 000	22. 969	27. 599	25.724	26. 155
										1 200	23. 840	28. 173	26.448	26. 825
	CO,	4 R = 33.3	36.9	8 R -24.9	28.4	8.31	8.50	1.34	1.30	1 400	24. 685	28. 684	27, 005	27, 331

万、能量均分定理

- (3) 理论值与实验值的比较
- 多原子分子气体的热容随温度呈阶梯状增长;

五、能量均分定理

说明: 经典热容理论存在一些缺陷!

原因在于:

(1) 能量均分定理采用理想气体模型,认为分子 为无相互作用的弹性质点;

而实际分子间有相互作用、分子有大小。

(2) 能量均分定理以经典力学为基础建立,认为 原子、分子等微观粒子的能量可以连续变化:

而近代物理学表明: 原子、分子等微观粒子的 运动遵循量子力学规律(能量不连续,只能取 一些分立的值)。

某种理想气体的定压摩尔热容量

$$C_{\text{p·m}} = 29.1 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$$

求该气体分子在T=273K时的平均转动动能。

$$i=5$$
 $r=2$

$$\bar{\varepsilon}_{\rm kt} = \frac{2}{2}kT = 3.77 \times 10^{-21} \,\rm J$$

例 闭合容器 ($V = 5 \times 3 \times 3 \text{ m}^3$, T = 293K) 内有空气 (视为刚性双原子分子理想气体)空气的

M= $29 \times 10^{-3} \text{kg} \cdot \text{mol}^{-1}$, 密度 $\rho = 1.29 \text{ kg} \cdot \text{m}^{-3}$

- 求: (1) 空气的平均平动动能总和;
 - (2) 如果温度升高1.0K,则气体内能变化多大?

(1)
$$\overline{E}_{kt} = \frac{3}{2} \frac{\rho V}{M} RT = 7.31 \times 10^6 \text{ J}$$

(2)
$$\Delta E = \frac{5}{2} \frac{\rho V}{M} R \Delta T = 4.16 \times 10^4 \text{ J}$$

可题

2. 处于平衡态的气体分子具有确定的速度平方平均值(), 反映了大

度平方平均值(= ¾//),反映了力量分子无规则运动的统计规律性。

气体分子的速度遵循怎样的分布规律?

六、麦克斯韦气体分子速率分布律

Law of Maxwell Speed Distribution of Gas Molecules

1. 气体分子速率分布的测定 Theory: Maxwell 1859 Experiment: Stern 1920

(1) 实验装置及原理

六、麦克斯韦气体分子速率分布律

- 1. 气体分子速率分布的测定
 - (2) 实验结果

一定种类的气体在一定温度下,其分子按速率的 分布是确定的,其具有一些共同的特点:

- ① 相对分子数 $\frac{\Delta N}{N}$ 与分子的速率 ν 以及所取速率间隔 $\Delta \nu$ 的大小有关;
- ② 速率特别大或者特别小的分子的相对分子数都很小, 而位于某一速率间隔中的相对分子数最大;
- ③ 速率间隔 $\Delta \nu$ 取得越大,则相对分子数越大。 用 $\frac{\Delta N}{N\Delta \nu}$ 来消除 $\Delta \nu$ 的影响,表示在速率 ν 附近单位速率区间内的相对分子数。
- ④ 若改变气体种类或温度再做实验,分布情况会有差异,但仍然具有上述特点。

六、麦克斯韦气体分子速率分布律

- 1. 气体分子速率分布的测定
 - (2) 实验结果

六、麦克斯韦气体分子速率分布律

1. 气体分子速率分布的测定

六、麦克斯韦气体分子速率分布律

2. 麦克斯韦气体分子速率分布律

麦克斯韦速率分布率 (无外场作用时,近独立经典 全同自由粒子的最概然分布)

$$\frac{dN}{N} = 4\pi (\frac{m}{2\pi kT})^{3/2} e^{-\frac{mv^2}{2kT}} v^2 dv$$

◆ 麦氏速率分布函数 $f(v) = 4\pi \left(\frac{m}{2\pi kT}\right)^{3/2} e^{\frac{mv^2}{2kT}} v^2$

◆ 麦氏速率分布曲线

六、麦克斯韦气体分子速率分布律

3. 三种统计速率

(1) 最概然速率
$$v_p = \sqrt{\frac{2kT}{m}} = \sqrt{\frac{2RT}{M}} \approx 1.41\sqrt{\frac{RT}{M}}$$

(2) 平均速率
$$\overline{v} = \sqrt{\frac{8kT}{\pi m}} \approx 1.60 \sqrt{\frac{RT}{M}}$$

(3) 方均根速率
$$\sqrt{v^2}$$

例: 同一种气体,在不同温度下的速率分布曲线如图 所示。则 T₁_<_T₂,

例: 两种气体(氢气和氧气),在相同温度下的速 率分布曲线如图所示。则 a为 氧气, b为 氢气。

最概然速率两侧概率相等?

$$\frac{N_{\pm}}{N} = \int_0^{v_p} f(v) dv = 42.8\%$$

$$\frac{N_{\pm}}{N} = \int_{v_n}^{\infty} f(v) dv = 57.2\%$$

问题: 你能用所学的知识解释大气中氢气含量比 氧气少吗?

第二宇宙速度(逃逸速度): 使物体脱离地球引 力范围所需的最小速度。

$$v_2 = \sqrt{\frac{2Gm_E}{R_E}} = \sqrt{2gR_E} = 11.2 \times 10^3 \text{ m} \cdot \text{s}^{-1}$$

$$v_{\text{ms H}_2} = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3 \times 8.31 \times 300}{0.002}} = 1.93 \times 10^3 \text{ m} \cdot \text{s}^{-1}$$

$$v_{\text{ms O}_2} = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3 \times 8.31 \times 300}{0.032}} = 483 \text{ m} \cdot \text{s}^{-1}$$

例 已知分子数 N,分子质量 m,分布函数 f(v)

求: 1) 速率在 $v_n \sim \overline{v}$ 间的分子数;

2) 速率在 $v_{\rm p}\sim\infty$ 间所有分子动能之和.

$$\begin{split} N_1 &= N \int_{v_p}^{\overline{v}} f(v) \mathrm{d}v \\ N_2 \overline{\varepsilon}_k &= N \int_{v_p}^{\infty} \frac{1}{2} m v^2 f(v) \mathrm{d}v \end{split}$$

 $\ddot{\mathbf{U}}$ 明: 方均速率 $\overline{v^2}$ 可用于计算分子的平均平动 动能,说明气体的压强、温度、内能等状态量的 微观本质和 统计意义。

例 已知处于平衡态的气体分子分布函数 f(v),求: 速率在 $v_1 \sim v_2$ 间的分子的平均速率。

$$\frac{\int_{v_1}^{v_2} v f(v) dv}{\int_{v_1}^{v_2} f(v) dv}$$

 $\overline{\ddot{U}}$ 明: 平均速率 \overline{U} 用于说明分子间的碰撞、 气体的输运问题。

