활동지 정답 및 해설

실수와 그 계산

실수와 근호를 포함한 식의 계산

159쪽

- **1.** $(1) \times (2) \bigcirc (3) \bigcirc (4) \times (5) \bigcirc (6) \bigcirc (7) \bigcirc (8) \bigcirc$
- **2.** (1) $\sqrt{2} \times \sqrt{7} = \sqrt{14}$

(2)
$$\sqrt{3} \times \sqrt{6} = \sqrt{18} = 3\sqrt{2}$$

$$(3)\sqrt{\frac{3}{2}} \times \sqrt{\frac{2}{27}} = \sqrt{\frac{3}{2} \times \frac{2}{27}} = \sqrt{\frac{1}{9}} = \frac{1}{3}$$

$$(4) \frac{\sqrt{80}}{\sqrt{5}} = \sqrt{\frac{80}{5}} = \sqrt{16} = 4$$

(5)
$$\sqrt{54} \div \sqrt{3} = \frac{\sqrt{54}}{\sqrt{3}} = \sqrt{\frac{54}{3}} = \sqrt{18} = 3\sqrt{2}$$

(6)
$$(-4\sqrt{6}) \div (-\sqrt{2}) = \frac{-4\sqrt{6}}{-\sqrt{2}} = 4\sqrt{\frac{6}{2}} = 4\sqrt{3}$$

- (7) $5\sqrt{2} + 2\sqrt{2} = 7\sqrt{2}$
- (8) $6\sqrt{3} 3\sqrt{3} = 3\sqrt{3}$
- (9) $-\sqrt{7}-2\sqrt{7}+5\sqrt{7}=2\sqrt{7}$
- (10) $4\sqrt{6}+3\sqrt{6}-\sqrt{6}=6\sqrt{6}$
- (11) $2\sqrt{3} + \sqrt{27} = 2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}$
- $(12)\sqrt{12}+\sqrt{48}-\sqrt{75}=2\sqrt{3}+4\sqrt{3}-5\sqrt{3}=\sqrt{3}$

$$(13)\sqrt{2}(\sqrt{18}-\sqrt{6}) = \sqrt{2}(3\sqrt{2}-\sqrt{6}) = 6-\sqrt{12} = 6-2\sqrt{3}$$

 $(4) \sqrt{3}(\sqrt{2}+2\sqrt{5}) = \sqrt{6}+2\sqrt{15}$

(15)
$$3\sqrt{2}-\sqrt{45}+5\sqrt{8}+2\sqrt{5}=3\sqrt{2}-3\sqrt{5}+10\sqrt{2}+2\sqrt{5}\\=13\sqrt{2}-\sqrt{5}$$

3. (1)
$$\frac{1}{\sqrt{3}} = \frac{1 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}} = \frac{\sqrt{3}}{3}$$

$$(2) \frac{12}{\sqrt{6}} = \frac{12 \times \sqrt{6}}{\sqrt{6} \times \sqrt{6}} = \frac{12\sqrt{6}}{6} = 2\sqrt{6}$$

(3)
$$\frac{\sqrt{3}}{\sqrt{5}} = \frac{\sqrt{3} \times \sqrt{5}}{\sqrt{5} \times \sqrt{5}} = \frac{\sqrt{15}}{5}$$

(3)
$$\frac{\sqrt{3}}{\sqrt{5}} = \frac{\sqrt{3} \times \sqrt{5}}{\sqrt{5} \times \sqrt{5}} = \frac{\sqrt{15}}{5}$$

(4) $\frac{15}{2\sqrt{5}} = \frac{15 \times \sqrt{5}}{2\sqrt{5} \times \sqrt{5}} = \frac{15\sqrt{5}}{10} = \frac{3\sqrt{5}}{2}$

제곱근 구하기

160쪽

- $(1)\sqrt{3+5}=2.8284\cdots$ 이므로 약 2.828이다.
- $(2)\sqrt{3}+\sqrt{5}=3.9681\cdots$ 이므로 약 3.968이다.
- (3) $2 \div \sqrt{2} = 1.4142 \cdots$ 이므로 약 1.414이다.
- $(4)(3-\sqrt{3})\times(3+\sqrt{3})=6$ 이다.
- (5) $\frac{\sqrt{24}-2\sqrt{3}}{\sqrt{3}}$ =0.8284···이므로 약 0.828이다.
- (6) $\frac{2\sqrt{7}+\sqrt{14}}{\sqrt{2}}$ =6.3874…이므로 약 6.387이다.

수직선 위에서 제곱근 찾기

- 1. $\triangle ABP$ 는 $\angle A=90^\circ$, $\overline{AB}=3$, $\overline{BP}=4$ 인 직각삼각형이다. 피타고라스 정리에 의하여 $\overline{AP}^2 = \overline{BP}^2 - \overline{AB}^2 = 16 - 9 = 7$ 이 므로 $\overline{AP} = \sqrt{7}$ 이다.
- **2.** (1) 중심이 점 $(\frac{9}{2}, 0)$ 이고 반지름의 길이가 $\frac{9}{2}$ 인 원을 이용하 여 y축 위에서 좌표가 $(0, \sqrt{8})$ 인 점을 찾는다.
 - (2) 중심이 점 $\left(\frac{11}{2}, 0\right)$ 이고 반지름의 길이가 $\frac{11}{2}$ 인 원을 이용 하여 y축 위에서 좌표가 $(0, \sqrt{10})$ 인 점을 찾는다.
 - (3) 중심이 점 (9, 0)이고 반지름의 길이가 9인 원을 이용하여 y축 위에서 좌표가 $(0, \sqrt{17})$ 인 점을 찾는다.
 - (4) 중심이 점 (10, 0)이고 반지름의 길이가 10인 원을 이용 하여 y축 위에서 좌표가 $(0, \sqrt{19})$ 인 점을 찾는다.

- (1) 1.4142는 유한소수이므로 유리수, √2는 무리수이다. ■
- $(2) 2-\sqrt{3}=\sqrt{4}-\sqrt{3}>0$ 이므로 $2>\sqrt{3}$ 이다.
- (3) 3.14는 순환소수이므로 유리수, π 는 무리수이다.
- (4) 1.5−(√5−1)=2.5−√5=√6.25−√5>0이므로 1.5>√5−1이다. →
- (5) $2\sqrt{2} \times \sqrt{3} \div \sqrt{6} = 2\sqrt{6} \div \sqrt{6} = 2$ 이므로 유리수이고, $\sqrt{5} \times \sqrt{6} \div \sqrt{2} = \sqrt{30} \div \sqrt{2} = \sqrt{15}$ 이므로 무리수이다.
- (6) $(4-\sqrt{11})-(\sqrt{15}-\sqrt{11})=4-\sqrt{15}=\sqrt{16}-\sqrt{15}>0$ 이므로 $4-\sqrt{11}>\sqrt{15}-\sqrt{11}$ 이다. \blacksquare
- (7) $\sqrt{\left(-\frac{2}{3}\right)^2} = \frac{2}{3}$ 으로 유리수, $\sqrt{6}$ 은 무리수이다.
- (8) $(3-\sqrt{3})-1=2-\sqrt{3}=\sqrt{4}-\sqrt{3}>0$ 이므로 $3-\sqrt{3}>1$ 이고, $(2-\sqrt{2})-1=1-\sqrt{2}<0$ 이므로 $2-\sqrt{2}<1$ 이다.
- (9) $2\sqrt{18}-4\sqrt{6}=6\sqrt{2}-4\sqrt{6}$ 이므로 무리수, $(\sqrt{12}-\sqrt{3})\div\sqrt{3}=(2\sqrt{3}-\sqrt{3})\div\sqrt{3}=\sqrt{3}\div\sqrt{3}=1$ 이므로 유리수이다. ▶

따라서 탈출 경로는 (1) **↓** (4) **⇒** (5) **⇒** (6) **↓** (9) **⇒ D**이다.

숨은 글자 찾기

163쪽

주어진 식을 계산하면 다음과 같다.

- (1) $\sqrt{2} + 2\sqrt{2} = 3\sqrt{2}$
- ② $3\sqrt{5} 2\sqrt{5} = \sqrt{5}$
- $3\sqrt{32}-\sqrt{50}=4\sqrt{2}-5\sqrt{2}=-\sqrt{2}$
- $43\sqrt{2}+\sqrt{6}-2\sqrt{2}-3\sqrt{6}=\sqrt{2}-2\sqrt{6}$
- $(5)\sqrt{3}+\sqrt{12}+\sqrt{27}=\sqrt{3}+2\sqrt{3}+3\sqrt{3}=6\sqrt{3}$

6
$$\frac{28}{\sqrt{14}} - \frac{42}{\sqrt{56}} = 2\sqrt{14} - \frac{3}{2}\sqrt{14} = \frac{1}{2}\sqrt{14}$$

$$\sqrt[3]{\sqrt{45}} - \frac{2}{\sqrt{5}} = 3\sqrt{5} - \frac{2}{5}\sqrt{5} = \frac{13}{5}\sqrt{5}$$

$$8\sqrt{63}-\sqrt{28}+\sqrt{7}=3\sqrt{7}-2\sqrt{7}+\sqrt{7}=2\sqrt{7}$$

$$9\sqrt{8}+3\div\sqrt{2}\times6=2\sqrt{2}+9\sqrt{2}=11\sqrt{2}$$

$$(3\sqrt{12}+\sqrt{75})\div\sqrt{3}=6+5=11$$

$$3 2\sqrt{11} \div \sqrt{2} + 3\sqrt{2} \times \sqrt{11} = \sqrt{22} + 3\sqrt{22} = 4\sqrt{22}$$

$$\textcircled{4}\sqrt{2}\times\sqrt{27}-\sqrt{48}\div\sqrt{2}=3\sqrt{6}-2\sqrt{6}=\sqrt{6}$$

①~®의 식을 번호 순서대로 계산하여 결과에 대응하는 점을 차례로 선부으로 연결하면 다음과 같다.

따라서 풀밭에 숨겨진 글자는 '실수'이다.

인수분해와 이차방정식

방정식 속 수학자

231쪽

① x가 1, 2, 3일 때, $2x^2-x-6=0$ 의 해는 x=2이다.

\boldsymbol{x}	좌변	우변	참/거짓
1	$2 \times 1^2 - 1 - 6 = -5$	0	거짓
2	$2 \times 2^2 - 2 - 6 = 0$	0	참
3	$2 \times 3^2 - 3 - 6 = 9$	0	거짓

따라서 대응하는 글자는 '콰'이다.

- ② $9x^2-25=0$ 에서 $9x^2=25$, $x^2=\frac{25}{9}$, $x=\pm\frac{5}{3}$ 따라서 대응하는 글자는 '카'이다.
- ③ $2x^2+7x+6=0$ 에서 (x+2)(2x+3)=0 x+2=0 또는 2x+3=0, x=-2 또는 $x=-\frac{3}{2}$ 따라서 대응하는 글자는 '르'이다.

따라서 대응하는 글자는 '페'이다.

따라서 대응하는 글자는 '아'이다.

- ⑤ $2x^2+3x-1=0$ 에서 $x=\frac{-3\pm\sqrt{3^2-4\times2\times(-1)}}{2\times2}=\frac{-3\pm\sqrt{9+8}}{4}=\frac{-3\pm\sqrt{17}}{4}$ 이 이차방정식의 음의 해는 $x=\frac{-3-\sqrt{17}}{4}$
- 이차방정식의 해를 찾아 표를 완성하면 다음과 같다.

방정식	관련된 수학자
이차방정식의 근의 공식 최초 발견	알 콰 리즈미
삼차방정식의 근의 공식 발견	카르다노와 타르탈리아
사차방정식의 근의 공식 발견	페라리
오차 이상 방정식의 근의 공식은 존재하지 않음을 증명	아벨과 갈루아

인수 찾기 232쪽

다항식 카드를 인수분해하면 다음과 같다.

- ① $x^2y xy^2 = xy(x-y)$
- $(2) x^2 y^2 = (x+y)(x-y)$
- $3x^2+3x+2=(x+1)(x+2)$
- (4) ax 2ay + az = a(x 2y + z)
- $5a^2+6ab+3a=3a(a+2b+1)$

- $82x^2+5x+2=(2x+1)(x+2)$

문장 완성하기

233쪽

용어 찾기

이차식을 인수분해한 결과와 그에 해당하는 글자를 찾으면 다음 과 같다.

436 각론

인수분해한 결과	그에 해당하는 글자
① $2x^2 - 18x + 28 = 2(x^2 - 9x + 14)$	두
=2(x-2)(x-7)	エ
	떤
$34x^2-19x-5=(x-5)(4x+1)$	다
$\textcircled{4} 2x^2 + 7x + 5 = (x+1)(2x+5)$	은
\bigcirc	서
© $6x^2-17x+5=(3x-1)(2x-5)$	하
$\bigcirc x^2 + 2x - 15 = (x - 3)(x + 5)$	망
$89a^2-1=(3a)^2-1^2=(3a+1)(3a-1)$	필
$ 96x^2 + 3x - 3 = 3(2x^2 + x - 1) $	황
=3(x+1)(2x-1)	8
	요
① $x^2 + 3x - 4 = (x-1)(x+4)$	어
	<u></u>
=(2x+5y)(2x-5y)	의
$ 3a^2 - 6a = 3a(a-2) $	상
$\textcircled{4} 2a^2 - 11a + 15 = (2a - 5)(a - 3)$	에

 희망은
 어떤
 상황에서도
 필요하다

2. 하나의 다항식을 두 개 이상의 다항식의 곱으로 나타낼 때, 각 각의 식을 처음 다항식의 (인)(수)라고 한다.

- 3. 하나의 다항식을 두 개 이상의 인수의 곱으로 나타내는 것을 그 다항식을 인(수)(분)(해)한다고 한다.
- 4. 다항식의 제곱으로 된 식이나 다항식의 제곱에 상수를 곱한 식을 (환) 전 제 곱 식 이라고 한다.
- 5. 등식의 모든 항을 좌변으로 이항하여 정리하였을 때, (x에 대한 이차식)=0의 꼴로 나타낼 수 있는 방정식을 x에 대한 이 (차) (방) (정) (식) 이라고 한다.
- 6. 이차방정식의 두 해가 중복되어 있을 때, 이 해를 주어진 이차 방정식의 (중)(근)이라고 한다.
- 7. 이차방정식 $ax^2+bx+c=0$ 에서 근 의 공식을 이용하여 해를 구하면 $x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$ (단, $b^2-4ac\ge 0$)이다.

234쪽

원형 마방진

235쪽

- ① $x^2+2x-8=0$ 에서 (x+4)(x-2)=0, x=-4 또는 x=2 따라서 두 근의 합은 -4+2=-2이다.
- ② $2x^2-6x=0$ 에서 2x(x-3)=0, x=0 또는 x=3 따라서 두 근의 합은 0+3=3이다.
- ③ $3x^2-6x+3=0$ 에서 $3(x^2-2x+1)=0$ $3(x-1)^2=0, x=1$ 따라서 두 근의 합은 1+1=2이다.
- ④ $x^2 5x + 2 = 0$ 에서

$$x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \times 1 \times 2}}{2 \times 1} = \frac{5 \pm \sqrt{25 - 8}}{2}$$
$$= \frac{5 \pm \sqrt{17}}{2}$$

따라서 두 근의 합은 $\frac{5+\sqrt{17}}{2}+\frac{5-\sqrt{17}}{2}=\frac{10}{2}=5$ 이다.

- ⑤ $x^2-x-20=0$ 에서 (x-5)(x+4)=0, x=5 또는 x=-4 따라서 두 근의 합은 5+(-4)=1이다.
- ⑥ $x^2+x-2=0$ 에서 (x+2)(x-1)=0, x=-2 또는 x=1 따라서 두 근의 합은 -2+1=-1이다.

원형 마방진을 완성하면 다음 그림과 같다.

이차함수

이차함수 찾기

280쪽

- 1. $\overline{AQ} = x \operatorname{cm}$ 이므로 $\overline{BQ} = (6-x) \operatorname{cm}$ 이다. $\triangle BPQ$ 와 $\triangle BCA$ 에서 $\angle B$ 는 공통, $\angle BQP = \angle BAC = 90^\circ$ 이므로 $\triangle BPQ \triangle \triangle BCA$ $\overline{BQ} : \overline{BA} = \overline{PQ} : \overline{CA}$ 에서 $(6-x) : 6 = \overline{PQ} : 4, 6\overline{PQ} = 4(6-x),$ $\overline{PQ} = \frac{2}{3}(6-x), \overline{PQ} = -\frac{2}{3}x + 4$
- 2. 직사각형 AQPR의 넓이를 $y \text{ cm}^2$ 라 하면 $\overline{AQ} = x \text{ cm}, \ \overline{PQ} = \left(-\frac{2}{3}x + 4\right) \text{cm}$ 이므로

$$y = x\left(-\frac{2}{3}x+4\right) = -\frac{2}{3}x^2+4x$$
$$= -\frac{2}{3}(x^2-6x+9-9)$$
$$= -\frac{2}{3}(x-3)^2+6$$

따라서 축의 방정식은 x=3, 꼭짓점의 좌표는 (3, 6)이므로 그래프는 다음과 같다.

3. 직사각형의 넓이가 4이므로 $y = -\frac{2}{3}x^2 + 4x$ 에 y = 4를 대입하면

$$4=-\frac{2}{3}x^2+4x$$
, $2x^2-12x+12=0$, $x^2-6x+6=0$ $x=3\pm\sqrt{3}$ 따라서 \overline{AQ} 의 걸이는 $(3+\sqrt{3})$ cm 또는 $(3-\sqrt{3})$ cm이다.

문장 완성하기

281쪽

(1) y=-x²-3
 꼭짓점의 좌표: (0, -3) → 가

- (2) $y=x^2-4x+2$ = $(x-2)^2-2$
 - 꼭짓점의 좌표: (2, −2) → 장
- (3) $y=x^2+2x+3$ = $(x+1)^2+2$
 - 꼭짓점의 좌표: (-1, 2) → 훌
- (4) $y=x^2-2x+2$ = $(x-1)^2+1$
 - 꼭짓점의 좌표: (1, 1) → 륭
- (5) $y=x^2-3x+\frac{1}{2}$ = $\left(x-\frac{3}{2}\right)^2-\frac{7}{4}$
 - 꼭짓점의 좌표: $\left(\frac{3}{2}, -\frac{7}{4}\right)$ 한
- (6) $y=x^2-4x+9$ = $(x-2)^2+5$
 - 꼭짓점의 좌표: (2, 5) → 벗
- (7) $y=x^2-6x+10$ = $(x-3)^2+1$
 - 꼭짓점의 좌표: (3, 1) → 은
- (8) $y = -6x^2 3$
 - 꼭짓점의 좌표: (0, -3) → 가
- $(9) \ \ y = \frac{1}{2}x^2 2x$
 - $=\frac{1}{2}(x-2)^2-2$
 - 꼭짓점의 좌표: (2, -2) → 장
- (10) $y = \frac{1}{2}x^2 + x \frac{3}{2}$ = $\frac{1}{2}(x+1)^2 - 2$
 - 꼭짓점의 좌표: (-1, -2) → 좋
- (11) $y = \frac{2}{3}x^2 4x + 7$
 - $=\frac{2}{3}(x-3)^2+1$
 - 꼭짓점의 좌표: (3, 1) → 은
- (12) $y = x^2 + 3$
 - 꼭짓점의 좌표: (0, 3) → 책
- (13) $y = (x-4)^2$
 - 꼭짓점의 좌표: (4, 0) → 이

438 각론

$$(4) \ y = -3(x-2)^2 + \frac{2}{5}$$

꼭짓점의 좌표: $\left(2, \frac{2}{5}\right) \rightarrow$ 다

따라서 구하는 꼭짓점의 좌표를 순서대로 나열하면 다음과 같다.

숨은 그림 찾기

282쪽

- ① 이차함수 $y = -3x^2$ 의 그래프는 위로 볼록한 포물선이다.
- ② $y=2x^2-4x+9$ =2 $(x^2-2x+1-1)+9$ =2 $(x-1)^2+7$
 - 이므로 꼭짓점의 좌표는 (1, 7)이므로 참이다.
- ③ 이차함수 $y = \frac{3}{5}x^2 + 2$ 의 그래프에서 y축과의 교점의 좌표는 (0, 2)이므로 참이다.
- ④ 이차함수 $y = -\frac{1}{6}(x+3)^2 + 4$ 의 그래프에서 축의 방정식은 x = -3이다.
- ⑤ 이차함수 $y=2(x-3)^2$ 의 그래프는 꼭짓점의 좌표가 (3, 0)이고 제1, 2사분면을 지나므로 참이다.
- ⑥ 이차함수 $y=(x+5)^2-3$ 의 그래프는 아래로 볼록한 포물선 이다.

따라서 꼭짓점의 좌표는 (3, 2)이므로 참이다. 따라서 설명 중 옳은 것은 ②, ③, ⑤, ⑦이므로 색칠하면 다음과 같다.

1	1	4	4	2	6	4	1	1	1
4	6	6	7	2	6	6	6	1	4
6	3	3	7	3	1	1	1	4	4
4	4	2	2	3	1	6	6	1	4
6	4	1	⑤	(5)	4	4	1	1	4
1	4	1	1	⑤	6	6	1	6	6
2	2	7	7	7	2	7	3	⑤	⑤
6	1	3	3	2	2	7	3	1	4
4	6	1	3	3	⑤	⑤	1	6	6
4	6	1	4	7	7	4	1	6	4

위에서 숨은 그림은 돛단배이다.

사자성어 완성하기

283쪽

1. $\forall (E)$ $y = -x^2 - 2x + 2 = -(x+1)^2 + 3$

축의 방정식: x=-1 안(安)

꼭짓점의 좌표: (-1.3) 사(思)

y축과의 교점: (0, 2) 위(危)

→ 거안사위(居安思危): 편안히 살 때 위태로움을 생각함.

2. $\partial(\mathbb{E}) y = x^2 - 2x + 1 = (x - 1)^2$

축의 방정식: x=1 인(忍)

꼭짓점의 좌표: (1,0) 불(不)

y축과의 교점: (0, 1) 발(拔)

- → 견인불발(堅忍不拔): 굳게 참고 견디어 마음이 흔들리지 않음.
- 3. 号(鵬) $y=2x^2-8x+7$ = $2(x^2-4x+4-4)+7$ = $2(x-2)^2-1$

축의 방정식: x=2 몽(夢)

꼭짓점의 좌표: (2, -1) 의(蟻)

y축과의 교점: (0,7) 생(生)

- → 붕몽의생(鵬夢蟻生): 꿈은 크게 가지지만, 개미처럼 부지 런히 생활해야 함.
- 4. Q(-) $y=3x^2+12x+11$ = $3(x^2+4x+4-4)+11$ = $3(x+2)^2-1$

축의 방정식: x=-2 심(心)

꼭짓점의 좌표: (-2, -1) 만(萬)

*y*축과의 교점: (0, 11) 능(能)

- ➡ 일심만능(一心萬能): 한마음으로 하면 무슨 일이든지 할수 있음.
- 5. $\sqrt[3]{(1)} \ y = -\frac{1}{3}x^2 + 2x 1$ $= -\frac{1}{3}(x^2 6x + 9 9) 1$ $= -\frac{1}{3}(x 3)^2 + 2$

축의 방정식: *x*=3 산(産)

꼭짓점의 좌표: (3, 2) 항(恒)

*y*축과의 교점: (0, −1) 심(心)

➡ 항산항심(恒産恒心): 일정한 생산이 있으면 마음이 변치 않음.

삼각비

암호 풀기

335쪽

삼각비의 값은 다음과 같다.

(1) $\frac{\sqrt{2}}{2}$ (2) $\sqrt{2}$ (3) 1 (4) $\frac{5}{13}$ (5) $\frac{12}{13}$ (6) $\frac{5}{12}$ (7) $\frac{1}{2}$ (8) $\frac{\sqrt{3}}{2}$ (9) $\frac{\sqrt{3}}{3}$ (10) $\frac{1}{3}$ (11) $\frac{2\sqrt{2}}{3}$ (12) $\frac{\sqrt{2}}{4}$

따라서 암호문은 다음과 같다.

함 께 배 우 고 성 장 하 는 우 리 !

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) < 암호문>

폭포의 높이 구하기

336쪽

D

 $h \, \mathrm{m}$

 $(1)\cos 34^\circ = \frac{1.6+h}{10}$ 이므로

h=10 cos 34°-1.6=10×0.829-1.6=6.69 (m) 소수점 둘째 자리에서 반올림하면 6.7 m이다.

(2) 오른쪽 직각삼각형 ABD에서

$$\sin 35^{\circ} = \frac{\overline{AD}}{10} \circ | \underline{\Box} \underline{\exists}$$

 $\overline{\mathrm{AD}} = 10 \sin 35^{\circ}$

 $=10\times0.5736=5.736$ (m) B

또, 직각삼각형 BCD에서

$$\sin 42^{\circ} = \frac{\overline{\text{CD}}}{11} \circ | \Box \exists$$

 $\overline{\text{CD}} = 11 \sin 42^{\circ}$

 $=11\times0.6691=7.3601 (m)$

이다.

h=ĀD+CD=5.736+7.3601=13.0961 (m)이므로 소수점 아래 둘째 자리에서 반올림하면 13.1 m이다.

(3) 오른쪽 직각삼각형 ACD에서

$$\sin 30^{\circ} = \frac{\overline{CD}}{12} \circ | \underline{\Box} \underline{\Xi}$$

 $\overline{\text{CD}} = 12 \sin 30^{\circ} = 12 \times \frac{1}{2} = 6 \text{ (m)}$

또 직각삼각형 ABD에서

$$\sin 60^\circ = \frac{\overline{BD}}{12\sqrt{3}}$$
이므로

 $\overline{\mathrm{BD}} = 12\sqrt{3}\sin 60^{\circ}$

$$=12\sqrt{3}\times\frac{\sqrt{3}}{2}=18 \text{ (m)}$$

따라서 $h = \overline{BD} - \overline{CD} = 12$ (m)이다.

 $12\sqrt{3}$ m h m

10 m

11 m

두 별 사이의 거리 구하기

337쪽

- 1. (1) 직각삼각형 ABM에서 $\sin \alpha = \frac{\overline{AM}}{\overline{AB}} = \overline{AM}$ 이다.
 - (2) $\overline{AC} = 2\overline{AM} = 2 \sin \alpha$ 이다.
- 2. 1에서 구한 식을 이용하면 두 별 사이의 거리는 $2 \sin 32^{\circ} = 2 \times 0.5299 = 1.0598$ 이다.

원의 성질

원과 직선에 대한 성질

388쪽

- **1.** (1) 현에 수직인 지름은 현을 이등분하므로 x=6이다. (2) 원의 중심으로부터 같은 거리에 있는 현의 길이는 같으므 로 $x=2\times7=14$ 이다.
- 2. $\overline{PA} = \overline{PB}$ 이므로 2x + 10 = 3x + 7, x = 3이다.
- 3. 원에 외접하는 사각형의 두 대변의 길이의 합은 같으므로 x+22=18+12, x=8이다.
- 4. 점 O에서 \overline{AB} 에 내린 수선의 발을 H라고 하면 반지름은 접 선과 수직이므로 점 H는 작은 원의 접점이다. $\overline{OA} = 7 \text{ cm}$. $\overline{OH} = 5 \text{ cm}$ 이므로 $\overline{AH} = \sqrt{7^2 - 5^2} = \sqrt{24} = 2\sqrt{6} \text{ (cm)}$ 이다. 따라서 $\overline{AB} = 2\overline{AH} = 4\sqrt{6}$ (cm)이다.

원주각의 성질

389쪽

- 1. 중심각의 크기는 원주각의 크기의 2배이므로 $\angle x = 2 \times 68^{\circ} = 136^{\circ}$ 이다.
- 2. 원주각의 크기는 중심각의 크기의 $\frac{1}{2}$ 이므로 $\angle x = \frac{1}{2} \times 225^{\circ} = 112.5^{\circ}$ 이다.
- 3. 같은 호에 대한 원주각의 크기는 같으므로 $\angle x = \angle C = 52$ °이 고. $\angle y = \angle A + \angle B = 50^{\circ} + 52^{\circ} = 102^{\circ}$ 이다.
- 4. 같은 호에 대한 원주각의 크기는 같으므로 $\angle C = \angle B = 42^\circ$ 이고, $\angle x = \angle C = 42^{\circ}$ (엇각)이다.
- **5.** 두 점 A, D를 연결하면 ∠CAD=∠CBD=42°이다. ∠BAD=90°이므로 ∠x=90°-∠CAD=90°-42°=48° 이다.

440 각론

- 6. $\angle D = 90^{\circ}$ 이므로 $\angle x = 90^{\circ} 54^{\circ} = 36^{\circ}$ 이다. 같은 호에 대한 원주각의 크기는 같으므로 $\angle y = \angle \text{CBD} = 55^{\circ}$ 이고 $\angle z = \angle x = 36$ °이다.
- 7. 원에 내접하는 사각형의 마주 보는 두 각의 합은 180°이므로 ∠A+120°=180°, ∠A=60°이다. △ABD에서 $\angle x = 180^{\circ} - (70^{\circ} + 60^{\circ}) = 50^{\circ}$ 이다.
- 8. 원에 내접하는 사각형의 마주 보는 두 각의 합은 180°이므로 120°+∠ABD=180°, ∠ABD=60°이다. 따라서 $\angle x = 180^{\circ} - 60^{\circ} = 120^{\circ}$ 이다.
- 9. 원의 현과 접선이 이루는 각은 그 현에 대한 원주각의 크기와 같으므로 $\angle x = 50$ °이다.

원의 접선과 작도

390쪽

1. ∠OAP, ∠OBP는 반원의 원주각이며, 그 크기는 90°이다. 따라서 $\overline{OA} \perp \overline{PA}$. $\overline{OB} \perp \overline{PB}$ 이므로 \overline{PA} . \overline{PB} 는 원 O의 접선 이다.

아벨로스

391쪽

- **1.** 작은 두 반원의 지름의 길이를 각각 d_1 , d_2 라고 하면 $d_1+d_2=D$ 이다.
 - 아벨로스의 둘레의 길이는

$$\begin{split} \frac{1}{2}D\pi + &\frac{1}{2}d_1\pi + \frac{1}{2}d_2\pi = \frac{1}{2}\pi(D + d_1 + d_2) \\ &= \frac{1}{2}\pi(D + D) = D\pi \end{split}$$

- 2. ∠AQR. ∠BSR는 각각 두 작은 반원의 원주각이므로 ∠AQR=∠BSR=90°이고, ∠APB는 큰 반원의 원주각이 므로 ∠APB=90°이다.
 - 따라서 □PQRS의 세 내각의 크기가 90°이므로 □PQRS는 직사각형이다.

통계

대푯값 구하기

431쪽

조건 (가)에서

(선수 13명 나이의 평균)

 $= \frac{1}{13}(29+22+30+25+32+28+30+28+31+28+30+20+31)$

$$=\frac{364}{13}$$
 $=28(세)$

이다.

선수 13명의 평균 나이인 28세보다 많 선수는 A, C, E, G, I, K, M이다.

조건 (나)에서

선수 13명의 키를 작은 값부터 크기순으로 나열하면

174, 175, 175, 178, 179, 180, 183, 183, 185, 185, 185, 186, 188이다. 이때 자료의 개수가 홀수이므로 구하는 중앙값은 가운데 위치한 183 cm이다.

선수 A, C, E, G, I, K, M 중 선수 13명의 키의 중앙값인 183 cm보다 작은 선수는 E, G, I이다.

조건 (다)에서

포지션에서 외야수의 도수는 5, 내야수의 도수는 6, 포수의 도수는 2이므로 최빈값은 내야수이다.

선수 E, G, I 중 내야수는 E이다.

따라서 (7), (4), (4)의 조건을 모두 만족시키는 선수는 E이고 홈런 수는 33개이다.

산포도 구하기

132

1. 계산기 또는 이지통계 프로그램을 사용하여 평균, 분산, 표준 편차를 구하면 다음 표와 같다.

계절	봄	여름	가을	겨울
평균 (mm)	238.7	649.1	247.7	92.3
분산	2731.8	31331.1	7378.0	954.8
표준편차 (mm)	52,3	177.0	85.9	30.9

2. 강수량의 가장 고른 계절은 표준편차가 가장 작은 겨울이다.

상관관계 말하기

433쪽

1. 기온을 x °C, 이산화 탄소 농도를 y ppm이라 하고 이들을 좌표로 하는 점 (x, y)를 좌표평면에 나타내면 다음과 같은 산점도가 된다.

2. 1의 산점도에서 연평균 기온이 높아짐에 따라 이산화 탄소 농 도가 커지므로, 연평균 기온과 이산화 탄소 농도 사이에는 양 의 상관관계가 있음을 알 수 있다.

제곱근표 (1)

수	0	1	2	3	4	5	6	7	8	9
1.0	1.000	1.005	1.010	1.015	1.020	1.025	1.030	1.034	1.039	1.044
1.1	1.049	1.054	1.058	1.063	1.068	1.072	1.077	1.082	1.086	1.091
1.2	1.095	1.100	1.105	1.109	1.114	1.118	1.122	1.127	1.131	1.136
1.3	1.140	1.145	1.149	1,153	1,158	1.162	1.166	1.170	1.175	1.179
1.4	1.183	1.187	1.192	1.196	1.200	1.204	1.208	1.212	1.217	1,221
1.5	1,225	1,229	1,233	1,237	1,241	1,245	1.249	1,253	1,257	1,261
1.6	1.265	1.269	1.273	1.277	1.281	1.285	1.288	1.292	1.296	1.300
1.7	1.304	1.308	1,311	1.315	1.319	1,323	1,327	1,330	1.334	1,338
1.8	1.342	1.345	1.349	1.353	1.356	1.360	1.364	1.367	1.371	1.375
1.9	1.378	1.382	1.386	1.389	1.393	1.396	1.400	1.404	1.407	1.411
2.0	1.414	1.418	1.421	1.425	1.428	1,432	1,435	1.439	1.442	1.446
2.1	1.449	1.453	1.456	1.459	1.463	1.466	1.470	1.473	1.476	1.480
2.2	1.483	1.487	1.490	1.493	1.497	1.500	1.503	1.507	1.510	1.513
2.3	1.517	1.520	1.523	1.526	1.530	1,533	1.536	1.539	1.543	1.546
2.4	1.549	1,552	1.556	1.559	1.562	1.565	1.568	1.572	1,575	1.578
2.5	1.581	1.584	1.587	1.591	1.594	1.597	1.600	1,603	1.606	1.609
2.6	1.612	1.616	1.619	1.622	1.625	1.628	1,631	1.634	1.637	1.640
2.7	1.643	1.646	1.649	1.652	1.655	1.658	1.661	1.664	1.667	1.670
2.8	1.673	1.676	1.679	1.682	1.685	1.688	1.691	1.694	1.697	1.700
2.9	1,703	1.706	1.709	1.712	1.715	1.718	1.720	1.723	1.726	1.729
3.0	1,732	1,735	1.738	1.741	1.744	1.746	1.749	1,752	1,755	1.758
3.1	1.761	1.764	1.766	1.769	1.772	1.775	1.778	1.780	1.783	1.786
3.2	1.789	1.792	1.794	1.797	1.800	1.803	1.806	1.808	1.811	1.814
3.3	1.817	1.819	1.822	1.825	1.828	1,830	1,833	1.836	1,838	1.841
3.4	1.844	1.847	1.849	1.852	1.855	1.857	1.860	1.863	1.865	1.868
3.5	1.871	1.873	1.876	1.879	1.881	1.884	1.887	1.889	1.892	1.895
3.6	1.897	1.900	1.903	1.905	1.908	1.910	1.913	1.916	1.918	1.921
3.7	1.924	1.926	1.929	1.931	1.934	1.936	1.939	1.942	1.944	1.947
3.8	1.949	1.952	1.954	1.957	1.960	1.962	1.965	1.967	1.970	1.972
3.9	1.975	1.977	1.980	1.982	1.985	1.987	1.990	1.992	1.995	1.997
4.0	2,000	2.002	2.005	2.007	2.010	2.012	2.015	2.017	2.020	2.022
4.1	2.025	2.027	2.030	2.032	2.035	2.037	2.040	2.042	2.045	2.047
4.2	2.049	2.052	2.054	2.057	2.059	2.062	2.064	2.066	2.069	2.071
4.3	2.074	2.076	2.078	2.081	2.083	2.086	2.088	2.090	2.093	2.095
4.4	2.098	2.100	2.102	2.105	2.107	2.110	2.112	2.114	2.117	2.119
4.5	2.121	2.124	2.126	2.128	2,131	2,133	2,135	2.138	2.140	2.142
4.6	2.145	2.147	2.149	2.152	2.154	2.156	2.159	2.161	2.163	2.166
4.7	2.168	2.170	2.173	2.175	2.177	2.179	2.182	2.184	2.186	2.189
4.8	2.191	2.193	2.195	2.198	2,200	2,202	2,205	2,207	2,209	2,211
4.9	2,214	2,216	2,218	2,220	2,223	2,225	2,227	2,229	2,232	2,234
5.0	2,236	2,238	2.241	2,243	2,245	2.247	2.249	2,252	2,254	2,256
5.1	2,258	2,261	2,263	2,265	2,267	2,269	2,272	2.274	2,276	2,278
5.2	2,280	2,283	2,285	2,287	2,289	2.291	2,293	2,296	2,298	2,300
5.3	2,302	2.304	2.307	2,309	2.311	2,313	2,315	2.317	2.319	2,322
5.4	2,324	2,326	2,328	2,330	2,332	2,335	2,337	2,339	2,341	2,343

442 각론

제곱근표 (2)

수	0	1	2	3	4	5	6	7	8	9
5.5	2,345	2.347	2.349	2,352	2,354	2,356	2,358	2,360	2,362	2,364
5.6	2.366	2.369	2.371	2.373	2,375	2.377	2.379	2.381	2,383	2,385
5.7	2.387	2.390	2.392	2.394	2,396	2.398	2.400	2.402	2.404	2.406
5.8	2.408	2.410	2.412	2,415	2.417	2.419	2.421	2,423	2,425	2,427
5.9	2.429	2,431	2,433	2,435	2.437	2.439	2.441	2.443	2,445	2.447
6.0	2.449	2,452	2.454	2.456	2,458	2.460	2,462	2.464	2.466	2,468
6.1	2.470	2.472	2.474	2.476	2.478	2.480	2.482	2.484	2,486	2,488
6.2	2.490	2.492	2.494	2.496	2.498	2,500	2,502	2,504	2,506	2,508
6.3	2.510	2.512	2.514	2.516	2,518	2,520	2,522	2.524	2,526	2,528
6.4	2.530	2,532	2,534	2,536	2,538	2.540	2.542	2.544	2,546	2.548
6.5	2,550	2,551	2,553	2,555	2,557	2,559	2.561	2,563	2,565	2,567
6.6	2.569	2.571	2.573	2.575	2,577	2.579	2.581	2,583	2,585	2,587
6.7	2.588	2.590	2.592	2.594	2,596	2.598	2.600	2.602	2.604	2.606
6.8	2.608	2.610	2.612	2.613	2.615	2.617	2.619	2.621	2.623	2,625
6.9	2.627	2,629	2,631	2,632	2.634	2,636	2,638	2.640	2.642	2.644
7.0	2.646	2.648	2,650	2,651	2,653	2,655	2.657	2,659	2,661	2,663
7.1	2.665	2,666	2,668	2.670	2.672	2.674	2.676	2.678	2.680	2.681
7.2	2.683	2,685	2.687	2.689	2.691	2.693	2.694	2.696	2.698	2.700
7.3	2.702	2.704	2.706	2.707	2.709	2.711	2.713	2.715	2.717	2.718
7.4	2.720	2,722	2,724	2,726	2,728	2,729	2.731	2,733	2,735	2,737
7.5	2.739	2.740	2.742	2.744	2.746	2.748	2,750	2.751	2,753	2,755
7.6	2.757	2,759	2,760	2,762	2.764	2.766	2.768	2.769	2.771	2,773
7.7	2.775	2,777	2.778	2.780	2.782	2.784	2.786	2.787	2.789	2.791
7.8	2.793	2,795	2,796	2.798	2.800	2.802	2.804	2,805	2.807	2.809
7.9	2.811	2.812	2.814	2.816	2.818	2.820	2.821	2,823	2,825	2,827
8.0	2,828	2,830	2,832	2.834	2,835	2,837	2.839	2.841	2,843	2.844
8.1	2.846	2.848	2.850	2.851	2,853	2.855	2.857	2.858	2.860	2.862
8.2	2.864	2.865	2.867	2.869	2.871	2.872	2.874	2.876	2.877	2.879
8.3	2.881	2.883	2.884	2.886	2,888	2.890	2.891	2.893	2.895	2.897
8.4	2,898	2,900	2.902	2,903	2,905	2.907	2,909	2.910	2.912	2.914
8.5	2.915	2.917	2.919	2.921	2,922	2.924	2,926	2.927	2.929	2,931
8.6	2,933	2,934	2,936	2,938	2,939	2.941	2.943	2.944	2,946	2.948
8.7	2.950	2,951	2,953	2,955	2,956	2,958	2,960	2,961	2,963	2,965
8.8	2.966	2,968	2.970	2,972	2,973	2,975	2.977	2.978	2,980	2,982
8.9	2.983	2.985	2.987	2.988	2.990	2.992	2.993	2.995	2.997	2.998
9.0	3,000	3,002	3,003	3,005	3.007	3,008	3,010	3.012	3,013	3,015
9.1	3.017	3.018	3.020	3.022	3.023	3.025	3.027	3.028	3.030	3.032
9.2	3.033	3.035	3.036	3.038	3.040	3.041	3.043	3.045	3.046	3.048
9.3	3.050	3.051	3.053	3.055	3.056	3.058	3.059	3.061	3.063	3.064
9.4	3.066	3,068	3,069	3,071	3.072	3.074	3.076	3.077	3,079	3,081
9.5	3.082	3.084	3,085	3.087	3.089	3.090	3.092	3.094	3,095	3.097
9.6	3.098	3.100	3.102	3,103	3.105	3.106	3.108	3.110	3,111	3,113
9.7	3.114	3,116	3,118	3.119	3.121	3.122	3.124	3.126	3.127	3.129
9.8	3.130	3,132	3,134	3,135	3,137	3,138	3.140	3.142	3,143	3.145
9.9	3,146	3,148	3,150	3,151	3,153	3,154	3,156	3,158	3,159	3,161

제곱근표 443

제곱근표 (3)

수	0	1	2	3	4	5	6	7	8	9
10	3,162	3.178	3.194	3,209	3,225	3,240	3,256	3,271	3,286	3,302
11	3.317	3,332	3.347	3,362	3.376	3,391	3.406	3.421	3,435	3.450
12	3.464	3.479	3.493	3.507	3.521	3,536	3,550	3.564	3.578	3,592
13	3,606	3.619	3,633	3.647	3.661	3.674	3.688	3.701	3.715	3.728
14	3.742	3,755	3.768	3,782	3.795	3,808	3.821	3.834	3.847	3,860
15	3,873	3,886	3,899	3,912	3,924	3,937	3,950	3,962	3,975	3,987
16	4.000	4.012	4.025	4.037	4.050	4.062	4.074	4.087	4.099	4.111
17	4.123	4.135	4.147	4.159	4.171	4.183	4.195	4.207	4.219	4.231
18	4.243	4.254	4.266	4.278	4.290	4.301	4.313	4.324	4.336	4.347
19	4.359	4.370	4.382	4.393	4.405	4.416	4.427	4.438	4.450	4.461
20	4.472	4.483	4.494	4.506	4.517	4.528	4.539	4.550	4.561	4.572
21	4.583	4.593	4.604	4.615	4.626	4.637	4.648	4.658	4.669	4.680
22	4.690	4.701	4.712	4.722	4.733	4.743	4.754	4.764	4.775	4.785
23	4.796	4.806	4.817	4.827	4.837	4.848	4.858	4.868	4.879	4.889
24	4.899	4.909	4.919	4.930	4.940	4.950	4.960	4.970	4.980	4.990
25	5,000	5.010	5.020	5.030	5.040	5.050	5.060	5.070	5.079	5.089
26	5.099	5.109	5.119	5,128	5,138	5.148	5.158	5.167	5.177	5.187
27	5.196	5.206	5.215	5,225	5,235	5.244	5.254	5.263	5.273	5,282
28	5,292	5.301	5.310	5.320	5.329	5,339	5.348	5.357	5.367	5.376
29	5,385	5.394	5.404	5.413	5.422	5,431	5.441	5.450	5.459	5,468
30	5.477	5.486	5,495	5,505	5,514	5,523	5,532	5,541	5,550	5.559
31	5,568	5.577	5.586	5.595	5.604	5.612	5.621	5.630	5.639	5.648
32	5.657	5,666	5,675	5,683	5,692	5.701	5.710	5.718	5,727	5.736
33	5.745	5,753	5.762	5.771	5,779	5.788	5.797	5,805	5.814	5,822
34	5,831	5.840	5.848	5.857	5.865	5.874	5.882	5.891	5.899	5.908
35	5.916	5.925	5.933	5.941	5.950	5.958	5.967	5.975	5,983	5.992
36	6.000	6.008	6.017	6.025	6.033	6.042	6.050	6.058	6.066	6.075
37	6.083	6.091	6.099	6.107	6.116	6.124	6.132	6.140	6.148	6.156
38	6.164	6.173	6.181	6.189	6.197	6,205	6.213	6.221	6.229	6.237
39	6.245	6,253	6.261	6269	6.277	6.285	6.293	6.301	6,309	6.317
40	6,325	6.332	6.340	6.348	6.356	6.364	6.372	6.380	6.387	6.395
41	6.403	6.411	6.419	6.427	6.434	6.442	6.450	6.458	6.465	6.473
42	6.481	6.488	6.496	6.504	6.512	6.519	6.527	6.535	6.542	6.550
43	6.557	6,565	6,573	6,580	6,588	6,595	6,603	6.611	6.618	6,626
44	6,633	6.641	6,648	6,656	6,663	6,671	6,678	6,686	6,693	6.701
45	6.708	6.716	6,723	6,731	6,738	6.745	6,753	6.760	6.768	6,775
46	6.782	6.790	6.797	6.804	6.812	6.819	6.826	6.834	6.841	6.848
47	6.856	6.863	6.870	6.877	6.885	6.892	6.899	6.907	6.914	6.921
48	6.928	6.935	6.943	6.950	6.957	6.964	6.971	6.979	6.986	6.993
49	7.000	7.007	7.014	7.021	7.029	7.036	7.043	7.050	7.057	7.064
50	7.071	7.078	7.085	7.092	7.099	7.106	7.113	7.120	7.127	7.134
51	7.141	7.148	7.155	7.162	7.169	7.176	7.183	7.190	7.197	7.204
52	7.211	7.218	7.225	7.232	7.239	7.246	7.253	7.259	7.266	7,273
53	7.280	7.287	7.294	7.301	7.308	7.314	7.321	7.328	7,335	7.342
54	7.348	7.355	7,362	7.369	7.376	7.382	7.389	7.396	7.403	7.409

444 각론

제곱근표 (4)

수	0	1	2	3	4	5	6	7	8	9
55	7.416	7,423	7.430	7.436	7.443	7.450	7.457	7.463	7.470	7.477
56	7.483	7.490	7.497	7.503	7.510	7.517	7.523	7.530	7.537	7.543
57	7.550	7.556	7.563	7.570	7.576	7.583	7.589	7.596	7.603	7.609
58	7.616	7.622	7.629	7.635	7.642	7.649	7.655	7.662	7.668	7.675
59	7.681	7.688	7.694	7.701	7.707	7.714	7.720	7.727	7,733	7.740
60	7.746	7,752	7.759	7.765	7,772	7,778	7.785	7.791	7.797	7.804
61	7.810	7.817	7,823	7.829	7.836	7.842	7.849	7.855	7.861	7.868
62	7.874	7.880	7.887	7.893	7.899	7.906	7.912	7.918	7.925	7.931
63	7.937	7.944	7.950	7.956	7.962	7.969	7.975	7.981	7.987	7.994
64	8.000	8.006	8.012	8.019	8.025	8.031	8.037	8.044	8,050	8.056
65	8.062	8,068	8,075	8.081	8,087	8,093	8.099	8,106	8,112	8,118
66	8.124	8.130	8.136	8.142	8.149	8.155	8.161	8.167	8.173	8.179
67	8.185	8.191	8.198	8.204	8.210	8.216	8,222	8.228	8.234	8.240
68	8.246	8.252	8.258	8.264	8.270	8.276	8,283	8.289	8,295	8.301
69	8.307	8,313	8.319	8,325	8.331	8.337	8.343	8.349	8,355	8.361
70	8,367	8,373	8,379	8,385	8,390	8,396	8.402	8,408	8.414	8,420
71	8.426	8.432	8.438	8.444	8.450	8.456	8.462	8.468	8.473	8.479
72	8.485	8.491	8.497	8.503	8.509	8.515	8.521	8.526	8.532	8,538
73	8.544	8.550	8,556	8.562	8.567	8 . 573	8.579	8,585	8.591	8.597
74	8,602	8,608	8,614	8,620	8,626	8,631	8,637	8,643	8.649	8,654
75	8,660	8,666	8.672	8.678	8.683	8.689	8.695	8.701	8,706	8.712
76	8.718	8.724	8,729	8,735	8.741	8.746	8.752	8.758	8.764	8.769
77	8.775	8,781	8.786	8,792	8.798	8,803	8,809	8,815	8,820	8,826
78	8,832	8,837	8,843	8,849	8,854	8,860	8,866	8.871	8,877	8,883
79	8.888	8.894	8.899	8.905	8.911	8.916	8.922	8.927	8,933	8.939
80	8.944	8.950	8,955	8.961	8.967	8,972	8.978	8,983	8,989	8.994
81	9.000	9.006	9.011	9.017	9.022	9.028	9.033	9.039	9.044	9.050
82	9.055	9.061	9.066	9.072	9.077	9.083	9.088	9.094	9.099	9.105
83	9.110	9.116	9.121	9.127	9.132	9.138	9.143	9.149	9.154	9.160
84	9.165	9.171	9.176	9.182	9.187	9.192	9.198	9.203	9.209	9.214
85	9,220	9,225	9,230	9,236	9,241	9,247	9,252	9,257	9,263	9,268
86	9.274	9,279	9.284	9,290	9,295	9.301	9,306	9.311	9.317	9,322
87	9.327	9,333	9,338	9.343	9.349	9.354	9.359	9.365	9.370	9.375
88	9.381	9,386	9.391	9.397	9,402	9.407	9.413	9.418	9,423	9.429
89	9.434	9.439	9.445	9.450	9,455	9.460	9.466	9.471	9,476	9.482
90	9.487	9.492	9.497	9,503	9.508	9.513	9.518	9.524	9,529	9.534
91	9,539	9,545	9,550	9,555	9,560	9,566	9.571	9.576	9,581	9,586
92	9.592	9.597	9.602	9,607	9.612	9.618	9,623	9.628	9,633	9,638
93	9.644	9.649	9.654	9,659	9.664	9.670	9.675	9.680	9,685	9.690
94	9.695	9.701	9.706	9.711	9.716	9.721	9.726	9.731	9.737	9.742
95	9.747	9.752	9.757	9.762	9.767	9.772	9.778	9.783	9.788	9.793
96	9.798	9,803	9.808	9.813	9.818	9.823	9.829	9.834	9,839	9.844
97	9.849	9.854	9.859	9.864	9.869	9.874	9.879	9.884	9.889	9.894
98	9.899	9,905	9.910	9.915	9.920	9.925	9.930	9,935	9.940	9.945
99	9.950	9.955	9.960	9,965	9.970	9.975	9.980	9.985	9,990	9.995

제곱근표 445

삼각비의 표

각도	사인(sin)	코사인(cos)	탄젠트(tan)
0°	0.0000	1.0000	0.0000
1°	0.0175	0.9998	0.0175
2°	0.0349	0.9994	0.0349
3°	0.0523	0.9986	0.0524
4°	0.0698	0.9976	0.0699
5°	0.0872	0.9962	0.0875
6°	0.1045	0.9945	0.1051
7°	0.1219	0.9925	0.1228
8°	0.1392	0.9903	0.1405
9°	0.1564	0.9877	0.1584
10°	0.1736	0.9848	0.1763
11°	0.1908	0.9816	0.1944
12°	0.2079	0.9781	0.2126
13°	0.2250	0.9744	0.2309
14°	0.2419	0.9703	0.2493
15°	0.2588	0.9659	0.2679
16°	0.2756	0.9613	0.2867
17°	0.2924	0.9563	0.3057
18°	0.3090	0.9511	0.3249
19°	0.3256	0.9455	0.3443
20°	0.3420	0.9397	0.3640
21°	0.3584	0.9336	0.3839
22°	0.3746	0.9272	0.4040
23°	0.3907	0.9205	0.4245
24°	0.4067	0.9135	0.4452
25°	0.4226	0.9063	0.4663
26°	0.4384	0,8988	0.4877
27°	0.4540	0.8910	0.5095
28°	0.4695	0.8829	0.5317
29°	0.4848	0.8746	0.5543
30°	0,5000	0.8660	0.5774
31°	0.5150	0.8572	0.6009
32°	0.5299	0.8480	0.6249
33°	0.5446	0.8387	0.6494
34°	0.5592	0.8290	0.6745
35°	0,5736	0.8192	0.7002
36°	0.5878	0.8090	0.7265
37°	0.6018	0.7986	0.7536
38°	0.6157	0.7880	0.7813
39° 40°	0.6293 0.6428	0.7771 0.7660	0.8098 0.8391
41°	0.6561	0.7547	0.8693
42°	0.6691	0.7431	0.9004
43°	0.6820	0.7314	0.9325
44°	0.6947	0.7193	0.9657
45°	0.7071	0.7071	1.0000

각도	사인(sin)	코사인(cos)	탄젠트(tan)
45°	0.7071	0.7071	1.0000
46°	0.7193	0.6947	1,0355
47°	0.7314	0.6820	1.0724
48°	0.7431	0.6691	1.1106
49°	0.7547	0.6561	1.1504
50°	0.7660	0.6428	1.1918
51°	0.7771	0.6293	1,2349
52°	0.7880	0.6157	1,2799
53°	0.7986	0.6018	1.3270
54°	0.8090	0.5878	1.3764
55°	0.8192	0.5736	1.4281
56°	0.8290	0.5592	1.4826
57°	0.8387	0.5446	1.5399
58°	0.8480	0.5299 0.5150	1,6003
59° 60°	0.8572 0.8660	0.5150	1.6643 1.7321
	•	•	·
61°	0.8746	0.4848	1.8040
62°	0.8829	0.4695	1.8807
63°	0.8910	0.4540	1.9626
64°	0.8988	0.4384	2,0503
65°	0.9063	0.4226	2.1445
66°	0.9135	0.4067	2,2460
67°	0.9205	0.3907	2,3559
68°	0.9272	0.3746	2,4751
69°	0,9336 0,9397	0.3584	2.6051
70°		0.3420	2.7475
71°	0.9455	0.3256	2.9042
72°	0.9511	0.3090	3.0777
73°	0.9563	0.2924	3,2709
74°	0.9613	0.2756	3,4874
75°	0.9659	0,2588	3,7321
76°	0.9703	0.2419	4,0108
77°	0.9744	0.2250	4,3315
78°	0.9781	0.2079	4.7046
79°	0.9816	0.1908	5.1446
80°	0.9848	0.1736	5,6713
81°	0.9877	0.1564	6,3138
82°	0.9903	0.1392	7.1154
83°	0.9925	0.1219	8,1443
84°	0.9945	0.1045	9,5144
85°	0.9962	0.0872	11.4301
86°	0.9976	0.0698	14.3007
87°	0.9986	0.0523	19.0811
88°	0.9994	0.0349	28,6363
89°	0.9998	0.0175	57.2900
90°	1.0000	0.0000	

446 각론

🍇 찾아보기 및 출처

근의 공식	213
근호(√)	
꼭짓점	250
내 차의 안전거리는?	268
대푯값	401
	120
무리수	
미제 단지	411
H	
반각의 사인값을 구하는 방법	301
방정식 해법에 얽힌 인물들	
분모의 유리화	
분산	
사인	294
sin A	294
산점도	
산포도	
삼각비	
상관관계	415
상관관계와 인과 관계	
세 점을 지나는 이차함수의 그래프	
실수	
실수의 조밀성	130
알콰리즈미	226
완전제곱식	184
원뿔곡선과 아폴로니오스	256
원주각	
이차방정식	201

이차함수	
인수	
인수분해	
인수와 인수분해	182
일차함수 $y=ax$ 의 그래프와 이차함수 $y=ax^2$ 의	그래프
	250
자와 실을 이용하여 포물선 그리기	252
제곱근	
제곱근과 제곱근 기호의 유래	
중근	
ㅎㄴ 중앙값	
중앙띲	402
최빈값	
축	250
코사인	294
cos A	
탄젠트	
tan A	
탄젠트와 시컨트	294
ш	
π는 무리수인가? ····································	129
편차	409
평균, 분산, 표준편차의 성질	408
평균, 중앙값, 최빈값의 특징	403
평행이동	259
포물선	250
표준편차	409
5	
헤론의 공식	319

찾아보기 및 출처 447

사진 자료 출처

○ 셔터스톡

5쪽, 7쪽, 147쪽, 275쪽, 291쪽, 348쪽, 351쪽, 369쪽, 376쪽

○ 픽사베이

3쪽, 6쪽, 8쪽

○ 환경부

218쪽

※ 출처 표시를 안 한 사진 및 삽화 등은 저작자 및 발행사에서 저작권을 가지고 있는 경우임.

참고 문헌 출처

- 🔾 122~123쪽, Joseph, G. G., 『The changing shape of geometry』, U. K. Cambridge University Press, 2003, 100~114쪽
- 🔾 129쪽, Berggren, L., Borwein, J., Borwein, P., 『Pi, a source book』, New York Springer-Verlag, 2004, 129~140쪽
- 158쪽, 패트리샤 반스 스바니, 토머스 E. 스바니(오혜정 역), 『한 권으로 끝내는 수학』, 지브레인, 2013, 394~405쪽
- 🔾 171쪽, KISTI의 과학향기, http://scent.ndsl.kr, 발밑에 숨겨 둔 수학 꺼내보기, 2018
- 173쪽, 『한겨레신문』, 2012, 3, 9.
- 180쪽, EBS 문명과 수학 제작팀, EBS MEDIA, 김형준, 『문명과 수학』, 민음인, 2014, 186쪽
- 213쪽, 장혜원, 『청소년을 위한 동양수학사』, 두리미디어, 2006, 283~284쪽
- 216쪽, HORIZON, https://horizon.kias.re.kr, 고차방정식 해법의 역사, 2018
- 226쪽, Eves, H.(허민, 오혜영 역), 『수학의 위대한 순간들』, 경문사, 1997, 186~187쪽, 540쪽
- 🔾 243쪽, 268쪽, 도로교통공단, https://www.koroad.or.kr, 법정 속도와 안전거리, 2018
- 256쪽, 『조선일보』, 2011, 6. 7.
- 279쪽, 『인저리타임』, 2018, 8. 22.
- 284쪽, Eves, H.(이우영, 신항균 역), 『수학사』, 경문사, 2005, 161~162쪽
- 294쪽, Eves, H.(이우영, 신항균 역), 『수학사』, 경문사, 2005, 217~218쪽
- 294쪽, 『수학동아 6월호』, 동아사이언스, 2014. 6., 77쪽
- 313쪽, 『수학동아 7월호』, 동아사이언스, 2015. 7., 58~65쪽
- 334쪽, 칼 B. 보이어, 유타 C. 메르츠바흐(양영오, 조윤동 역), 『수학의 역사·상』, 경문사, 2002, 260~261쪽
- 345쪽, EBS, http://www.ebs.co.kr, 베스파시아누스는 왜 콜로세움을 세웠을까?, 2018
- 347쪽, Halliday, D., Resnick, R., Walker, J.(경상대학교 물리학과, 고려대학교 물리학과, 부산대학교 물리학과 역), 『일반물리학』, 범한서적, 2011, 154~155쪽
- 365쪽, 『수학동아 6월호』, 동아사이언스, 2018. 6., 22~33쪽
- 387쪽, 『수학동아 12월호』, 동아사이언스, 2011. 12., 96~101쪽
- 399쪽, 『경향신문』, 2016. 11. 24.
- 🔾 404쪽, Soong, T. T., "Fundamentals of Probability and Statistics for Engineers, John Wiley & Sons, 2004, 96쪽
- 411쪽, 한국환경공단 에어코리아, http://www.airkorea.or.kr, 대기오염 물질, 2018
- 414쪽, 구자흥, 김진경, 박헌진, 이재준, 전홍석, 황진수, 『통계학』, 자유아카데미, 2005, 103쪽
- 🗘 416쪽, 한국환경공단 에어코리아, http://www.airkorea.or.kr, 실시간 자료조회, 우리동네 대기 정보, 2018
- 430쪽, 사이언스레벨업, https://sciencelevelup.kofac.re.kr, 1800도 회전을 노린다! 스노보드 하프파이프, 교사활용방, 수업지 도안, 2018
- 432쪽, e-나라지표, www.index.go.kr, 강수량 추이, 2018
- 433쪽, e-나라지표, www.index.go.kr, 이산화 탄소 연평균 농도 변화 추이, 2018
- ※ 집필진의 직접 집필인 경우 출처를 밝히지 않았음.

448 각론