SEQUENCE LISTING

<110>	Wyeth					
<120>	METHODS AND C	OMPOSITIONS	FOR TREATING	G NEUROLOGI	CAL DISORDER	S
<130>	AM101119	•				
<160>	21					
<170>	PatentIn vers	ion 3.2				
<210><211><211><212><213>	1 7260 DNA Homo sapiė̇̃ns					,
<400> tcactgi	1 tcac tgctä̇aatt	c agagcagatt	agagcctgcg	caatggaata	aagtcctcaa	60
aattgaa	aatg tgacattgc	t ctcaacatct	cccatctctc	tggatttcct	tttgcttcat	120
tattcci	gct aaccaattc	a ttttcagact	ttgtacttca	gaagcaatgg	gaaaaatcag	180
cagtctt	cca acccaatta	t ttaagtgctg	cttttgtgat	ttcttgaagg	tgaagatgca	240
caccat	gtcc tcctcgcat	c tcttctacct	ggcgctgtgc	ctgctcacct	tcaccagctc	300
tgccac	ggct ggaccggag	a cgctctgcgg	ggctgagctg	gtggatgctc	ttcagttcgt	360
gtgtgga	agac aggggcttt	t atttcaacaa	gcccacaggg	tatggctcca	gcagtcggag	420
ggcgcct	cag acaggcatc	g tggatgagtg	ctgcttccgg	agctgtgatc	taaggaggct	480
ggagat	gtat tgcgcaccc	c tcaagcctgc	caagtcagct	cgctctgtcc	gtgcccagcg	540
ccacaco	cgac atgcccaag	a cccagaagga	agtacatttg	aagaacgcaa	gtagagggag	600
tgcagga	aaac aagaactac	a ggatgtagga	agaccctcct	gaggagtgaa	gagtgacatg	660
ccaccgo	cagg atcctttgc	t ctgcacgagt	tacctgttaa	actttggaac	acctaccaaa	720
aaataag	gttt gataacatt	t aaaagatggg	cgtttccccc	aatgaaatac	acaagtaaac	780
attccaa	acat tgtctttag	g agtgatttgc	accttgcaaa	aatggtcctg	gagttggtag	840
attgctg	gttg atcttttat	c aataatgttc	tatagaaaag	aaaaaaaaat	atatatat	900
atatato	ctta gtccctgcc	t ctcaagagcc	acaaatgcat	gggtgttgta	tagatccagt	960
tgcacta	aaat teetetetg	a atcttggctg	ctggagccat	tcattcagca	accttgtcta	1020
agtggtt	tat gaattgttt	c cttatttgca	cttctttcta	cacaactcgg	gctgtttgtt	1080
ttacagt	gtc tgataatct	gttagtctat	acccaccacc	tcccttcata	acctttatat	1140

ttgccgaatt tggcctcctc aaaagcagca gcaagtcgtc aagaagcaca ccaattctaa 1200 1260 cccacaagat tccatctgtg gcatttgtac caaatataag ttggatgcat tttattttag acacaaagct ttatttttcc acatcatgct tacaaaaaag aataatgcaa atagttgcaa 1320 ctttgaggcc aatcattttt aggcatatgt tttaaacata gaaagtttct tcaactcaaa 1380 agagttcctt caaatgatga gttaatgtgc aacctaatta gtaactttcc tctttttatt 1440 ttttccatat agagcactat gtaaatttag catatcaatt atacaggata tatcaaacag 1500 tatgtaaaac tctgtttttt agtataatgg tgctattttg tagtttgtta tatgaaagag 1560 tctggccaaa acggtaatac gtgaaagcaa aacaataggg gaagcctgga gccaaagatg 1620 acacaagggg aagggtactg aaaacaccat ccatttggga aagaaggcaa agtcccccca 1680 gttatgcctt ccaagaggaa cttcagacac aaaagtccac tgatgcaaat tggactggcg 1740 1800 agtccagaga ggaaactgtg gaatggaaaa agcagaaggc taggaatttt agcagtcctg gtttcttttt ctcatggaag aaatgaacat ctgccagctg tgtcatggac tcaccactgt 1860 gtgaccttgg gcaagtcact tcacctctct gtgcctcagt ttcctcatct gcaaaatggg 1920 1980 ggcaatatgt catctaccta cctcaaaggg gtggtataag gtttaaaaag ataaagattc agattttttt accctgggtt gctgtaaggg tgcaacatca gggcgcttga gttgctgaga 2040 tgcaaggaat tctataaata acccattcat agcatagcta gagattggtg aattgaatgc 2100 tectgaeate teagttettg teagtgaage tateeaaata aetggeeaae tagttgttaa 2160 aagctaacag ctcaatctct taaaacactt ttcaaaatat gtgggaagca tttgattttc 2220 aatttgattt tgaattctgc atttggtttt atgaatacaa agataagtga aaagagagaa 2280 aggaaaagaa aaaggagaaa aacaaagaga tttctaccag tgaaagggga attaattact 2340 ctttgttagc actcactgac tcttctatgc agttactaca tatctagtaa aaccttgttt 2400 2460 aatactataa ataatattct attcattttg aaaaacacaa tgattccttc ttttctaggc 2520 aatataagga aagtgatcca aaatttgaaa tattaaaata atatctaata aaaagtcaca 2580 aagttatett etttaacaaa etttaetett attettaget gtatatacat ttttttaaaa agtttgttaa aatatgcttg actagagttt cagttgaaag gcaaaaactt ccatcacaac 2640 2700 aagaaatttc ccatgcctgc tcagaagggt agcccctagc tctctgtgaa tgtgttttat ccattcaact gaaaattggt atcaagaaag tccactggtt agtgtactag tccatcatag 2760

cctagaaaat gatccctatc tgcagatcaa gattttctca ttagaacaat gaattatcca 2820 gcattcagat ctttctagtc accttagaac tttttggtta aaagtaccca ggcttgatta 2880 tttcatgcaa attctatatt ttacattctt ggaaagtcta tatgaaaaac aaaaataaca 2940 tcttcagttt ttctcccact gggtcacctc aaggatcaga ggccaggaaa aaaaaaaaag 3000 actccctgga tctctgaata tatgcaaaaa gaaggcccca tttagtggag ccagcaatcc 3060 tgttcagtca acaagtattt taactctcag tccaacatta tttgaattga gcacctcaag 3120 catgcttagc aatgttctaa tcactatgga cagatgtaaa agaaactata catcattttt 3180 gccctctgcc tgttttccag acatacaggt tctgtggaat aagatactgg actcctcttc 3240 ccaagatggc acttetttt atttettgte eccagtgtgt acettttaaa attatteeet 3300 ctcaacaaaa ctttataggc agtcttctgc agacttaaca tgttttctgt catagttaga 3360 tgtgataatt ctaagagtgt ctatgactta tttccttcac ttaattctat ccacagtcaa 3420 aaatccccca aggaggaaag ctgaaagatg caactgccaa tattatcttt cttaactttt 3480 tccaacacat aatcctctcc aactggatta taaataaatt gaaaataact cattatacca 3540 attcactatt ttattttta atgaattaaa actagaaaac aaattgatgc aaaccctgga 3600 agtcagttga ttactatata ctacagcaga atgactcaga tttcatagaa aggagcaacc 3660 aaaatgtcac aaccaaaact ttacaagctt tgcttcagaa ttagattgct ttataattct 3720 tgaatgaggc aatttcaaga tatttgtaaa agaacagtaa acattggtaa gaatgagctt 3780 tcaactcata ggcttatttc caatttaatt gaccatactg gatacttagg tcaaatttct 3840 3900 gttctctctt gcccaaataa tattaaagta ttatttgaac tttttaagat gaggcagttc ccctgaaaaa gttaatgcag ctctccatca gaatccactc ttctagggat atgaaaatct 3960 4020 cacacattca ccctaaggat ccaatggaat actgaaaaga aatcacttcc ttgaaaattt 4080 tattaaaaaa caaacaaaca aacaaaaagc ctgtccaccc ttgagaatcc ttcctctct 4140 tggaacgtca atgtttgtgt agatgaaacc atctcatgct ctgtggctcc agggtttctg 4200 ttactatttt atgcacttgg gagaaggctt agaataaaag atgtagcaca ttttgctttc 4260 ccatttattg tttggccagc tatgccaatg tggtgctatt gtttctttaa gaaagtactt 4320 gactaaaaaa aaaagaaaaa aagaaaaaaa agaaagcata gacatatttt tttaaagtat 4380 aaaaacaaca attctataga tagatggctt aataaaatag cattaggtct atctagccac 4440

caccaccttt caacttttta tcactcacaa gtagtgtact gttcaccaaa ttgtgaattt 4500 4560 gggggtgcag gggcaggagt tggaaatttt ttaaagttag aaggctccat tgttttgttg gctctcaaac ttagcaaaat tagcaatata ttatccaatc ttctgaactt gatcaagagc 4620 4680 atggagaata aacgcgggaa aaaagatctt ataggcaaat agaagaattt aaaagataag 4740 taagttcctt attgattttt gtgcactctg ctctaaaaca gatattcagc aagtggagaa 4800 aataagaaca aagagaaaaa atacatagat ttacctgcaa aaaatagctt ctgccaaatc ccccttgggt attctttggc atttactggt ttatagaaga cattctccct tcacccagac 4860 4920 atctcaaaga gcagtagctc tcatgaaaag caatcactga tctcatttgg gaaatgttgg 4980 aaagtatttc cttatgagat gggggttatc tactgataaa gaaagaattt atgagaaatt gttgaaagag atggctaaca atctgtgaag attttttgtt tcttggtttt gtttttttt 5040 5100 ttttttttac tttatacagt ctttatgaat ttcttaatgt tcaaaatgac ttggttcttt tcttcttttt tttatatcag aatgaggaat aataagttaa acccacatag actctttaaa 5160 actataggct agatagaaat gtatgtttga cttgttgaag ctataatcag actatttaaa 5220 5280 atgttttgct atttttaatc ttaaaagatt gtgctaattt attagagcag aacctgtttg gctctcctca gaagaaagaa tctttccatt caaatcacat ggctttccac caatattttc 5340 aaaagataaa tctgatttat gcaatggcat catttatttt aaaacagaag aattgtgaaa 5400 5460 gtttatgccc ctcccttgca aagaccataa agtccagatc tggtaggggg gcaacaacaa 5520 aaggaaaatg ttgttgattc ttggttttgg attttgtttt gttttcaatg ctagtgttta atcctgtagt acatatttgc ttattgctat tttaatattt tataagacct tcctgttagg 5580 tattagaaag tgatacatag atatcttttt tgtgtaattt ctatttaaaa aagagagaag 5640 5700 actgtcagaa gctttaagtg catatggtac aggataaaga tatcaattta aataaccaat 5760 tectatetgg aacaatgett ttgtttttta aagaaacete teacagataa gacagaggee 5820 caggggattt ttgaagctgt ctttattctg cccccatccc aacccagccc ttattatttt agtatctgcc tcagaatttt atagagggct gaccaagctg aaactctaga attaaaggaa 5880 cctcactgaa aacatatatt tcacgtgttc cctctctttt ttttcctttt tgtgagatgg 5940 ggtctcgcac tgtcccccag gctggagtgc agtggcatga tctcggctca ctgcaacctc 6000 cacctcctgg gtttaagcga ttctcctgcc tcagcctcct gagtagctgg gattacaggc 6060

acccaccact atgcccggct aattttttgg atttttaata gagacggggt tttaccatgt 6120 tggccaggtt ggactcaaac tcctgacctt gtgatttgcc cgcctcagcc tcccaaattg 6180 ctgggattac aggcatgagc caccacacc tgcccatgtg ttccctctta atgtatgatt 6240 acatggatct taaacatgat ccttctccc tcattcttca actatctttg atggggtctt 6300 tcaaggggaa aaaaatccaa gcttttttaa agtaaaaaaa aaaaaagaga ggacacaaaa 6360 6420 ccaaatgtta ctgctcaact gaaatatgag ttaagatgga gacagagttt ctcctaataa 6480 ccggagctga attacctttc actttcaaaa acatgacctt ccacaatcct tagaatctgc 6540 6600 cactgatgta aagtaggaaa aataaaaaca gagctctaaa atccctttca agccacccat 6660 tgaccccact caccaactca tagcaaagtc acttctgtta atcccttaat ctgattttgt ttggatattt atcttgtacc cgctgctaaa cacactgcag gagggactct gaaacctcaa 6720 gctgtctact tacatctttt atctgtgtct gtgtatcatg aaaatgtcta ttcaaaatat 6780 caaaaccttt caaatatcac gcagcttata ttcagtttac ataaaggccc caaataccat 6840 6900 gtcagatctt tttggtaaaa gagttaatga actatgagaa ttgggattac atcatgtatt ttgcctcatg tatttttatc acacttatag gccaagtgtg ataaataaac ttacagacac 6960 tgaattaatt tcccctgcta ctttgaaacc agaaaataat gactggccat tcgttacatc 7020 tgtcttagtt gaaaagcata ttttttatta aattaattct gattgtattt gaaattatta 7080 ttcaattcac ttatggcaga ggaatatcaa tcctaatgac ttctaaaaaat gtaactaatt 7140 gaatcattat cttacattta ctgtttaata agcatatttt gaaaatgtat ggctagagtg 7200 7260

```
<210> 2
<211> 153
<212> PRT
<213> Homo sapiens
```

<400> 2

Met Gly Lys Ile Ser Ser Leu Pro Thr Gln Leu Phe Lys Cys Phe

Cys Asp Phe Leu Lys Val Lys Met His Thr Met Ser Ser His Leu 20 25 30

Phe Tyr Leu Ala Leu Cys Leu Leu Thr Phe Thr Ser Ser Ala Thr Ala 40 Gly Pro Glu Thr Leu Cys Gly Ala Glu Leu Val Asp Ala Leu Gln Phe Val Cys Gly Asp Arg Gly Phe Tyr Phe Asn Lys Pro Thr Gly Tyr Gly Ser Ser Ser Arg Arg Ala Pro Gln Thr Gly Ile Val Asp Glu Cys Cys 90 Phe Arg Ser Cys Asp Leu Arg Arg Leu Glu Met Tyr Cys Ala Pro Leu 105 Lys Pro Ala Lys Ser Ala Arg Ser Val Arg Ala Gln Arg His Thr Asp 115 120 125 Met Pro Lys Thr Gln Lys Glu Val His Leu Lys Asn Ala Ser Arg Gly 130 135 140 Ser Ala Gly Asn Lys Asn Tyr Arg Met <210> 3 <211> 195 <212> PRT <213> Homo sapiens <400> 3 Met Gly Lys Ile Ser Ser Leu Pro Thr Gln Leu Phe Lys Cys Cys Phe Cys Asp Phe Leu Lys Val Lys Met His Thr Met Ser Ser His Leu 25 Phe Tyr Leu Ala Leu Cys Leu Leu Thr Phe Thr Ser Ser Ala Thr Ala Gly Pro Glu Thr Leu Cys Gly Ala Glu Leu Val Asp Ala Leu Gln Phe 55

Val Cys Gly 65	Asp Arg	Gly Phe 70	Tyr Phe	Asn Lys 75	Pro Thr	Gly	Tyr Gly 80	
Ser Ser Ser	Arg Arg 85	Ala Pro	Gln Thr	Gly Ile 90	Val Asp	Glu	Cys Cys 95	
Phe Arg Ser	Cys Asp 100	Leu Arg	Arg Leu 105		Tyr Cys	Ala 110	Pro Leu	
Lys Pro Ala 115	Lys Ser	Ala Arg	Ser Val 120	Arg Ala	Gln Arg 125	His	Thr Asp	
Met Pro Lys 130	Thr Gln	Lys Tyr 135	Gln Pro	Pro Ser	Thr Asn 140	Lys	Asn Thr	
Lys Ser Gln 145	Arg Arg	Lys Gly 150	Trp Pro	Lys Thr 155	His Pro	Gly	Gly Glu 160	
Gln Lys Glu	Gly Thr 165	Glu Ala	Ser Leu	Gln Ile 170	Arg Gly	Lys	Lys Lys 175	
Glu Gln Arg	Arg Glu 180	Ile Gly	Ser Arg 185	Asn Ala	Glu Cys	Arg 190	Gly Lys	
Lys Gly Lys 195								
<210> 4 <211> 1356 <212> DNA <213> Homo	sapiens							
<400> 4 ttctcccgca a	accttccc	tt cgctc	cctcc cg	tcccccc	agctcct	agc c	tccgactcc:	60
ctcccccct c	cacgcccg	cc ctctc	gcctt cg	ccgaacca	aagtgga	tta a	ıttacacgct	120
ttctgtttct o	ctccgtgc	tg ttctc	tcccg ct	gtgcgcct	gcccgcc	tct c	gctgtcctc	180
tctcccctc g	gecetete	tt cggcc	cccc ct	ttcacgtt	cactctg	tct c	tcccactat	240
ctctgcccc c								300
ccgaaaagta c	caacatct	gg cccgc	cccag cc	cgaagaca	gcccgtc	ctc c	ctggacaat	360

```
cagacgaatt ctccccccc ccccaaaaaa aaaagccatc ccccgctct gccccgtcgc
                                                                     420
acatteggee ecegegacte ggeeagageg gegetggeag aggagtgtee ggeaggaggg
                                                                     480
ccaacgcccg ctgttcggtt tgcgacacgc agcagggagg tgggcggcag cgtcgccggc
                                                                     540
ttccagacac caatgggaat cccaatgggg aagtcgatgc tggtgcttct caccttcttg
                                                                     600
gccttcgcct cgtgctgcat tgctgcttac cgccccagtg agaccctgtg cggcggggag
                                                                     660
ctggtggaca ccctccagtt cgtctgtggg gaccgcggct tctacttcag caggcccgca
                                                                     720
agccgtgtga gccgtcgcag ccgtggcatc gttgaggagt gctgtttccg cagctgtgac
                                                                     780
ctggccctcc tggagacgta ctgtgctacc cccgccaagt ccgagaggga cgtgtcgacc
                                                                     840
cctccgaccg tgcttccgga caacttcccc agataccccg tgggcaagtt cttccaatat
                                                                     900
gacacetgga agcagtecae ecagegeetg egcaggggee tgeetgeeet eetgegtgee
                                                                     960
cgccggggtc acgtgctcgc caaggagctc gaggcgttca gggaggccaa acgtcaccgt
                                                                    1020
cccctgattg ctctacccac ccaagacccc gcccacgggg gcgcccccc agagatggcc
                                                                    1080
agcaatcgga agtgagcaaa actgccgcaa gtctgcagcc cggcgccacc atcctgcagc
                                                                    1140
ctcctcctga ccacggacgt ttccatcagg ttccatcccg aaaatctctc ggttccacgt
                                                                    1200
ccccctgggg cttctcctga cccagtcccc gtgccccgcc tccccgaaac aggctactct
                                                                    1260
cctcggcccc ctccatcggg ctgaggaagc acagcagcat cttcaaacat gtacaaaatc
                                                                    1320
gattggcttt aaacaccctt cacataccct ccccc
                                                                    1356
```

```
<210> 5
```

<400> 5

Met Gly Ile Pro Met Gly Lys Ser Met Leu Val Leu Leu Thr Phe Leu 1 5 10 15

Ala Phe Ala Ser Cys Cys Ile Ala Ala Tyr Arg Pro Ser Glu Thr Leu 20 25 30

Cys Gly Glu Leu Val Asp Thr Leu Gln Phe Val Cys Gly Asp Arg 35 40 45

Gly Phe Tyr Phe Ser Arg Pro Ala Ser Arg Val Ser Arg Arg Ser Arg

<211> 180

<212> PRT

<213> Homo sapiens

Gly 65	Ile	Val	Glu	Glu	Cys 70	Cys	Phe	Arg	Ser	Cys 75	Asp	Leu	Ala	Leu	Leu 80	
Glu	Thr	Tyr	Cys	Ala 85	Thr	Pro	Ala	Lys	Ser 90	Glu	Arg	Asp	Val	Ser 95	Thr	
Pro	Pro	Thr	Val 100	Leu	Pro	Asp	Asn	Phe 105	Pro	Arg	Tyr	Pro	Val 110	Gly	Lys	
Phe	Phe	Gln 115	Tyr	Asp	Thr	Trp	Lys 120	Gln	Ser	Thr	Gln	Arg 125	Leu	Arg	Arg	
Gly	Leu 130	Pro	Ala	Leu	Leu	Arg 135	Ala	Arg	Arg	Gly	His 140	Val	Leu	Ala	Lys	
Glu 145	Leu	Glu	Ala	Phe	Arg 150	Glu	Ala	Lys	Arg	His 155	Arg	Pro	Leu	Ile	Ala 160	
Leu	Pro	Thr	Gln	Asp 165	Pro	Ala	His	Gly	Gly 170	Ala	Pro	Pro	Glu	Met 175	Ala	
Ser	Asn	Arg	Lys 180													
<210 <211 <212 <213	L> 1 2> I	5 L514 DNA Homo	sapi	iens												
<400																60
															cccag	60
agaç	gcact	gg d	ccaco	gcto	cc ac	ccato	actt	gcc	caga	agtt	tggg	gccad	cg o	cccg	cgcca	120
ccaç	gccca	aga g	gagca	atcgo	gc co	ctgt	ctgo	tgc	ctcgc	gcc	tgga	agato	gtc a	agago	gtcccc	180
gtt	gctco	gcg t	ctg	gctgg	gt ac	ctgct	ccts	g ctg	gacto	gtcc	aggt	cggd	gt	gacag	ccggc	240
gcto	cgto	ggc a	agtgo	gcgc	cc ct	gata	cgcc	gag	gaago	ctcg	cgct	ctg	cc ç	gccgc	gtgtcc	300

gcctcgtgct cggaggtcac ccggtccgcc ggctgcggct gttgcccgat gtgcgccctg

cctctgggcg ccgcgtgcgg cgtggcgact gcacgctgcg cccggggact cagttgccgc

gcgctgccgg gggagcagca acctctgcac gccctcaccc gcggccaagg cgcctgcgtg 480 caggagtctg acgcctccgc tccccatgct gcagaggcag ggagccctga aagcccagag 540 agcacggaga taactgagga ggagctcctg gataatttcc atctgatggc cccttctgaa 600 660 gaggatcatt ccatcctttg ggacgccatc agtacctatg atggctcgaa ggctctccat gtcaccaaca tcaaaaaatg gaaggagccc tgccgaatag aactctacag agtcgtagag 720 agtttagcca aggcacagga gacatcagga gaagaaattt ccaaatttta cctgccaaac 780 tgcaacaaga atggatttta tcacagcaga cagtgtgaga catccatgga tggagaggcg 840 ggaetetget ggtgegteta ceettggaat gggaagagga teeetgggte teeagagate 900 aggggagacc ccaactgcca gatatatttt aatgtacaaa actgaaacca gatgaaataa 960 tgttctgtca cgtgaaatat ttaagtatat agtatattta tactctagaa catgcacatt 1020 tatatatat tgtatatgta tatatatat gtaactactt tttatactcc atacataact 1080 tgatatagaa agctgtttat ttattcactg taagtttatt ttttctacac agtaaaaact 1140 tgtactatgt taataacttg tcctatgtca atttgtatat catgaaacac ttctcatcat 1200 attgtatgta agtaattgca tttctgctct tccaaagctc ctgcgtctgt ttttaaagag 1260 catggaaaaa tactgcctag aaaatgcaaa atgaaataag agagagtagt ttttcagcta 1320 gtttgaagga ggacggttaa cttgtatatt ccaccattca catttgatgt acatgtgtag 1380 ggaaagttaa aagtgttgat tacataatca aagctacctg tggtgatgtt gccacctgtt 1440 aaaatgtaca ctggatatgt tgttaaacac gtgtcgataa tggaaacatt tacaataaat 1500 attctgcatg gaaa 1514

```
<210> 7
<211> 259
<212> PRT
<213> Homo sapiens
```

<400> 7

Met Ser Glu Val Pro Val Ala Arg Val Trp Leu Val Leu Leu Leu 1 5 10 15

Thr Val Gln Val Gly Val Thr Ala Gly Ala Pro Trp Gln Cys Ala Pro 20 25 30

Cys Ser Ala Glu Lys Leu Ala Leu Cys Pro Pro Val Ser Ala Ser Cys

40

45

35

250

Gly Ser Pro Glu Ile Arg Gly Asp Pro Asn Cys Gln Ile Tyr Phe Asn

. 245

Val Gln Asn

<210> 8 <211> 1433 <212> DNA <213> Homo sapiens

-

<400> 8 attcggggcg agggaggagg aagaagcgga ggaggcggct cccgctcgca gggccgtgca 60 cctgcccgcc cgcccgctcg ctcgctcgcc cgccgcgccg cgctgccgac cgccagcatg 120 ctgccgagag tgggctgccc cgcgctgccg ctgccgccgc cgccgctgct gccgctgctg 180 ccgctgctgc tgctgctact gggcgcgagt ggcggcggcg gcggggcgcg cgcggaggtg 240 ctgttccgct gcccgcctg cacacccgag cgcctggccg cctgcgggcc cccgccggtt 300 gcgccgcccg ccgcggtggc cgcagtggcc ggaggcgccc gcatgccatg cgcggagctc 360 gtccgggagc cgggctgcgg ctgctgctcg gtgtgcgccc ggctggaggg cgaggcgtgc 420 ggcgtctaca ccccgcgctg cggccagggg ctgcgctgct atccccaccc gggctccgag 480 ctgcccctgc aggcgctggt catgggcgag ggcacttgtg agaagcgccg ggacgccgag 540 tatggcgcca gcccggagca ggttgcagac aatggcgatg accactcaga aggaggcctg 600 gtggagaacc acgtggacag caccatgaac atgttgggcg ggggaggcag tgctggccgg 660 aagcccctca agtcgggtat gaaggagctg gccgtgttcc gggagaaggt cactgagcag 720 caccggcaga tgggcaaggg tggcaagcat caccttggcc tggaggagcc caagaagctg 780 cgaccaccc ctgccaggac tccctgccaa caggaactgg accaggtcct ggagcggatc 840 tccaccatgc gccttccgga tgagcggggc cctctggagc acctctactc cctgcacatc 900 cccaactgtg acaagcatgg cctgtacaac ctcaaacagt gcaagatgtc tctgaacggg 960 cagcgtgggg agtgctggtg tgtgaacccc aacaccggga agctgatcca gggagccccc 1020 accatccggg gggaccccga gtgtcatctc ttctacaatg agcagcagga ggcttgcggg 1080 gtgcacaccc agcggatgca gtagaccgca gccagccggt gcctggcgcc cctgccccc 1140 gcccctctcc aaacaccggc agaaaacgga gagtgcttgg gtggtgggtg ctggaggatt 1200 ttccagttct gacacacgta tttatatttg gaaagagacc agcaccgagc tcggcacctc 1260 1320 cccggcctct ctcttcccag ctgcagatgc cacacctgct ccttcttgct ttccccgggg gaggaagggg gttgtggtcg gggagctggg gtacaggttt ggggaggggg aagagaaatt 1380

- <210> 9 <211> 328 <212> PRT <213>
- Homo sapiens

<400> 9

Met Leu Pro Arg Val Gly Cys Pro Ala Leu Pro Leu Pro Pro Pro Pro

Leu Leu Pro Leu Leu Leu Leu Leu Leu Gly Ala Ser Gly 25

Gly Gly Gly Ala Arg Ala Glu Val Leu Phe Arg Cys Pro Pro Cys 40

Thr Pro Glu Arg Leu Ala Ala Cys Gly Pro Pro Pro Val Ala Pro Pro 50 55

Ala Ala Val Ala Val Ala Gly Gly Ala Arg Met Pro Cys Ala Glu

Leu Val Arg Glu Pro Gly Cys Gly Cys Cys Ser Val Cys Ala Arg Leu

Glu Gly Glu Ala Cys Gly Val Tyr Thr Pro Arg Cys Gly Gln Gly Leu 105

Arg Cys Tyr Pro His Pro Gly Ser Glu Leu Pro Leu Gln Ala Leu Val 115 125

Met Gly Glu Gly Thr Cys Glu Lys Arg Arg Asp Ala Glu Tyr Gly Ala 130 135

Ser Pro Glu Gln Val Ala Asp Asn Gly Asp Asp His Ser Glu Gly Gly 145 150 155 160

Leu Val Glu Asn His Val Asp Ser Thr Met Asn Met Leu Gly Gly Gly 165 170 175

Val	Phe	Arg 195	Glu	Lys	Val	Thr	Glu 200	Gln	His	Arg	Gln	Met 205	Gly	Lys	Gly	
Gly	Lys 210	His	His	Leu	Gly	Leu 215	Glu	Glu	Pro	Lys	Lys 220	Leu	Arg	Pro	Pro	
Pro 225	Ala	Arg	Thr	Pro	Cys 230	Gln	Gln	Glu	Leu	Asp 235	Gln	Val	Leu	Glu	Arg 240	
Ile	Ser	Thr	Met	Arg 245	Leu	Pro	Asp	Glu	Arg 250	Gly	Pro	Leu	Glu	His 255	Leu	
Tyr	Ser	Leu	His 260	Ile	Pro	Asn	Cys	Asp 265	Lys	His	Gly	Leu	Tyr 270	Asn	Leu	
Lys	Gln	Cys 275	Lys	Met	Ser	Leu	Asn 280	Gly	Gln	Arg	Gly	Glu 285	Cys	Trp	Cys	
Val	Asn 290	Pro	Asn	Thr	Gly	Lys 295	Leu	Ile	Gln	Gly	Ala 300	Pro	Thr	Ile	Arg	
Gly 305	Asp	Pro	Glu	Cys	His 310	Leu	Phe	Tyr	Asn	Glu 315	Gln	Gln	Glu	Ala	Cys 320	
Gly	Val	His	Thr	Gln 325	Arg	Met	Gln									
<210 <211 <212 <213	L> 2 2> I	LO 2506 DNA Homo	sapi	lens												
<400		nac e	acago	ettec	ac ac	cata	rtact	. ata	acco	cat	ccct	acac	aac o	cago	ctgcc	60
															ccgct	120
															igctcg	180
gggg	ggctt	gg g	gtccc	gtgg	gt go	gctg	gcgag	g ccc	gtgcg	gacg	cgcg	gtgca	act g	ggccc	agtgc	240
gcgo	cctcc	cgc c	ccgcc	gtgt	ag ag	gegga	agcto	g gto	gegeg	jagc	cggg	gctgc	gg d	ctgct	gcctg	300

Gly Ser Ala Gly Arg Lys Pro Leu Lys Ser Gly Met Lys Glu Leu Ala 180 185 190

acgtgcgcac	tgagcgaggg	ccagccgtgc	ggcatctaca	ccgagcgctg	tggctccggc	360
cttcgctgcc	agccgtcgcc	cgacgaggcg	cgaccgctgc	aggcgctgct	ggacggccgc	420
gggctctgcg	tcaacgctag	tgccgtcagc	cgcctgcgcg	cctacctgct	gccagcgccg	480
ccagctccag	gaaatgctag	tgagtcggag	gaagaccgca	gcgccggcag	tgtggagagc	540
ccgtccgtct	ccagcacgca	ccgggtgtct	gatcccaagt	tccaccccct	ccattcaaag	600
ataatcatca	tcaagaaagg	gcatgctaaa	gacagccagc	gctacaaagt	tgactacgag	660
tctcagagca	cagataccca	gaacttctcc	tccgagtcca	agcgggagac	agaatatggt	720
ccctgccgta	gagaaatgga	agacacactg	aatcacctga	agttcctcaa	tgtgctgagt	780
cccaggggtg	tacacattcc	caactgtgac	aagaagggat	tttataagaa	aaagcagtgt	840
cgcccttcca	aaggcaggaa	gcggggcttc	tgctggtgtg	tggataagta	tgggcagcct	900
ctcccaggct	acaccaccaa	ggggaaggag	gacgtgcact	gctacagcat	gcagagcaag	960
tagacgcctg	ccgcaaggtt	aatgtggagc	tcaaatatgc	cttattttgc	acaaaagact	1020
gccaaggaca	tgaccagcag	ctggctacag	cctcgattta	tatttctgtt	tgtggtgaac	1080
tgatttttt	taaaccaaag	tttagaaaga	ggtttttgaa	atgcctatgg	tttctttgaa	1140
tggtaaactt	gagcatcttt	tcactttcca	gtagtcagca	aagagcagtt	tgaattttct	1200
tgtcgcttcc	tatcaaaata	ttcagagact	cgagcacagc	acccagactt	catgcgcccg	1260
tggaatgctc	accacatgtt	ggtcgaagcg	gccgaccact	gactttgtga	cttaggcggc	1320
tgtgttgcct	atgtagagaa	cacgcttcac	ccccactccc	cgtacagtgc	gcacaggctt	1380
tatcgagaat	aggaaaacct	ttaaaccccg	gtcatccgga	catcccaacg	catgctcctg	1440
gagctcacag	ccttctgtgg	tgtcatttct	gaaacaaggg	cgtggatccc	tcaaccaaga	1500
agaatgttta	tgtcttcaag	tgacctgtac	tgcttgggga	ctattggaga	aaataaggtg	1560
gagtcctact	tgtttaaaaa	atatgtatct	aagaatgttc	tagggcactc	tgggaaccta	1620
taaaggcagg	tatttcgggc	cctcctctc	aggaatcttc	ctgaagacat	ggcccagtcg	1680
aaggcccagg	atggcttttg	ctgcggcccc	gtggggtagg	agggacagag	agacagggag	1740
agtcagcctc	cacattcaga	ggcatcacaa	gtaatgtcac	aattcttcgg	atgactgcag	1800
aaaatagtgt	tttgtagttc	aacaactcaa	gacgaagctt	atttctgagg	ataagctctt	1860
taaaggcaaa	gctttatttt	catctctcat	cttttgtcct	ccttagcaca	atgtaaaaaa	1920

gaatagtaat	atcagaacag	gaaggaggaa	tggcttgctg	gggagcccat	ccaggacact	1980
gggagcacat	agagattcac	ccatgtttgt	tgaacttaga	gtcattctca	tgcttttctt	2040
tataattcac	acatatatgc	agagaagata	tgttcttgtt	aacattgtat	acaacatagc	2100
cccaaatata	gtaagatcta	tactagataa	tcctagatga	aatgttagag	atgctatttg	2160
atacaactgt	ggccatgact	gaggaaagga	gctcacgccc	agagactggg	ctgctctccc	2220
ggaggccaaa	cccaagaagg	tctggcaaag	tcaggctcag	ggagactctg	ccctgctgca	2280
gacctcggtg	tggacacacg	ctgcatagag	ctctccttga	aaacagaggg	gtctcaagac	2340
attctgccta	cctattagct	tttctttatt	tttttaactt	tttgggggga	aaagtatttt	2400
tgagaagttt	gtcttgcaat	gtatttataa	atagtaaata	aagtttttac	cattaaaaaa	2460
ataaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaa		2506

<210> 11 ·

<211> 291

<212> PRT

<213> Homo sapiens

<400> 11

Met Gln Arg Ala Arg Pro Thr Leu Trp Ala Ala Ala Leu Thr Leu Leu 1 5 10 15

Val Leu Leu Arg Gly Pro Pro Val Ala Arg Ala Gly Ala Ser Ser Gly 20 25 30

Gly Leu Gly Pro Val Val Arg Cys Glu Pro Cys Asp Ala Arg Ala Leu $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Ala Gl
n Cys Ala Pro Pro Pro Ala Val Cys Ala Glu Leu Val Arg Glu
 50 55 60

Pro Gly Cys Gly Cys Cys Leu Thr Cys Ala Leu Ser Glu Gly Gln Pro 65 70 75 80

Cys Gly Ile Tyr Thr Glu Arg Cys Gly Ser Gly Leu Arg Cys Gln Pro 85 90 95

Ser Pro Asp Glu Ala Arg Pro Leu Gln Ala Leu Leu Asp Gly Arg Gly 100 105 110

Leu Cys Val Asn Ala Ser Ala Val Ser Arg Leu Arg Ala Tyr Leu Leu 115 120 Pro Ala Pro Pro Ala Pro Gly Asn Ala Ser Glu Ser Glu Glu Asp Arg 135 140 Ser Ala Gly Ser Val Glu Ser Pro Ser Val Ser Ser Thr His Arg Val 155 Ser Asp Pro Lys Phe His Pro Leu His Ser Lys Ile Ile Ile Lys 165 170 Lys Gly His Ala Lys Asp Ser Gln Arg Tyr Lys Val Asp Tyr Glu Ser 185 Gln Ser Thr Asp Thr Gln Asn Phe Ser Ser Glu Ser Lys Arg Glu Thr 205 195 200 Glu Tyr Gly Pro Cys Arg Arg Glu Met Glu Asp Thr Leu Asn His Leu 210 215 Lys Phe Leu Asn Val Leu Ser Pro Arg Gly Val His Ile Pro Asn Cys 225 230 235 Asp Lys Lys Gly Phe Tyr Lys Lys Gln Cys Arg Pro Ser Lys Gly 245 250 Arg Lys Arg Gly Phe Cys Trp Cys Val Asp Lys Tyr Gly Gln Pro Leu 260 265 Pro Gly Tyr Thr Thr Lys Gly Lys Glu Asp Val His Cys Tyr Ser Met 275 280 Gln Ser Lys 290 <210> 12 <211> 2160 <212> DNA <213> Homo sapiens <400> 12

60 agccccctgc ccctcgccgc cccccgccgc ctgcctgggc cgggccgagg atgcggcgca gegeetegge ggeeaggett geteeetee ggeacgeetg etaactteee eegetacgte 120 cccgttcgcc cgccgggccg ccccgtctcc ccgcggcctc cgggtccggg tcctccagga 180 eggecaggee gtgeegeegt gtgeeeteeg eegetegee gegegeegeg egeteeeege 240 ctgcgcccag cgcccgcgc ccgcgccca gtcctcgggc ggtccatgct gccctctgc 300 ctcgtggccg ccctgctgct ggccgccggg cccgggccga gcctgggcga cgaagccatc 360 cactgcccgc cctgctccga ggagaagctg gcgcgctgcc gccccccgt gggctgcgag 420 gagetggtgc gagaggeggg etgeggetgt tgegeeactt gegeeetggg ettggggatg 480 ccctgcgggg tgtacacccc ccgttgcggc tcgggcctgc gctgctaccc gccccgaggg 540 gtggagaage ceetgeacae aetgatgeae gggeaaggeg tgtgeatgga getggeggag 600 atcgaggcca tccaggaaag cctgcagccc tctgacaagg acgagggtga ccaccccaac 660 aacagcttca gcccctgtag cgcccatgac cgcaggtgcc tgcagaagca cttcgccaaa 720 attcgagacc ggagcaccag tgggggcaag atgaaggtca atggggcgcc ccgggaggat 780 gcccggcctg tgccccaggg ctcctgccag agcgagctgc accgggcgct ggagcggctg 840 gccgcttcac agagccgcac ccacgaggac ctctacttca tccccatccc caactgcgac 900 cgcaacggca acttccaccc caagcagtgt cacccagctc tggatgggca gcgtggcaag 960 tgctggtgtg tggaccggaa gacgggggtg aagcttccgg ggggcctgga gccaaagggg 1020 gagctggact gccaccagct ggctgacagc tttcgagagt gaggcctgcc agcaggccag 1080 ggactcagcg tcccctgcta ctcctgtgct ctggaggctg cagagctgac ccagagtgga 1140 gtctgagtct gagtcctgtc tctgcctgcg gcccagaagt ttccctcaaa tgcgcgtgtg 1200 cacgtgtgcg tgtgcgtgcg tgtgtgtgtg tttgtgagca tgggtgtgcc cttggggtaa 1260 gccagagcct ggggtgttct ctttggtgtt acacagccca agaggactga gactggcact 1320 tagcccaaga ggtctgagcc ctggtgtgtt tccagatcga tcctggattc actcactcac 1380 tcattccttc actcatccag ccacctaaaa acatttactg accatgtact acgtgccagc 1440 tctagttttc agccttggga ggttttattc tgacttcctc tgattttggc atgtggagac 1500 actcctataa ggagagttca agcctgtggg agtagaaaaa tctcattccc agagtcagag 1560 gagaagagac atgtaccttg accatcgtcc ttcctctcaa gctagcccag agggtgggag 1620 cctaaggaag cgtggggtag cagatggagt aatggtcacg aggtccagac ccactcccaa 1680

ageteagact tgccaggete cetttetett etteceeagg teetteettt aggtetggtt 1740 gttgcaccat ctgcttggtt ggctggcagc tgagagccct gctgtgggag agcgaagggg 1800 gtcaaaggaa gacttgaagc acagagggct agggaggtgg ggtacatttc tctgagcagt 1860 cagggtggga agaaagaatg caagagtgga ctgaatgtgc ctaatggaga agacccacgt 1920 gctaggggat gaggggcttc ctgggtcctg ttcccctacc ccatttgtgg tcacagccat 1980 gaagtcaccg ggatgaacct atcettccag tggctcgctc cctgtagctc tgcctccctc 2040 tocatatete ettecectae acetecetee ceacacetee etacteceet gggeatette 2100 tggcttgact ggatggaagg agacttagga acctaccagt tggccatgat gtcttttctt 2160

<210> 13

<211> 258

<212> PRT

<213> Homo sapiens

<400> 13

Met Leu Pro Leu Cys Leu Val Ala Ala Leu Leu Leu Ala Ala Gly Pro 1 5 10 15

Gly Pro Ser Leu Gly Asp Glu Ala Ile His Cys Pro Pro Cys Ser Glu 20 25 30

Glu Lys Leu Ala Arg Cys Arg Pro Pro Val Gly Cys Glu Glu Leu Val 35 40 45

Arg Glu Ala Gly Cys Gly Cys Cys Ala Thr Cys Ala Leu Gly Leu Gly 50 55 60

Met Pro Cys Gly Val Tyr Thr Pro Arg Cys Gly Ser Gly Leu Arg Cys 65 70 75 80

Tyr Pro Pro Arg Gly Val Glu Lys Pro Leu His Thr Leu Met His Gly 85 90 95

Gln Gly Val Cys Met Glu Leu Ala Glu Ile Glu Ala Ile Gln Glu Ser 100 105 110

Leu Gln Pro Ser Asp Lys Asp Glu Gly Asp His Pro Asn Asn Ser Phe 115 120 125

Ser	Pro 130	Cys	Ser	Ala	His	Asp 135	Arg	Arg	Cys	Leu	Gln 140	Lys	His	Phe	Ala	
Lys 145	Ile	Arg	Asp	Arg	Ser 150	Thr	Ser	Gly	Gly	Lys 155	Met	Lys	Val	Asn	Gly 160	
Ala	Pro	Arg	Glu	Asp 165	Ala	Arg	Pro	Val	Pro 170	Gln	Gly	Ser	Cys	Gln 175	Ser	
Glu	Leu	His	Arg 180	Ala	Leu	Glu	Arg	Leu 185	Ala	Ala	Ser	Gln	Ser 190	Arg	Thr	
His	Glu	Asp 195	Leu	Tyr	Phe	Ile	Pro 200	Ile	Pro	Asn	Суз	Asp 205	Arg	Asn	Gly	
Asn	Phe 210	His	Pro	Lys	Gln	Cys 215	His	Pro	Ala	Leu	Asp 220	Gly	Gln	Arg	Gly	
Lys 225	Cys	Trp	Cys	Val	Asp 230	Arg	Lys	Thr	Gly	Val 235	Lys	Leu	Pro	Gly	Gly 240	
Leu	Glu	Pro	Lys	Gly 245	Glu	Leu	Asp	Cys	His 250	Gln	Leu	Ala	Asp	Ser 255	Phe	
Arg	Glu															
<210 <211 <212 <213	l> 1 2> I	L4 L722 DNA Homo	sapi	lens												
<400 gggg		.4 aga g	gctag	ggaaa	ag ag	gctgc	caaag	g cag	gtgtg	gggc	tttt	tecc	ctt t	tttt	gctcc	60
ttt	catt	ac c	ccto	cctcc	g tt	ttca	ıccct	tct:	ccgg	gact	tege	gtag	gaa d	cctgo	gaatt	120
tcga	agag	gga g	ggtgg	gcaaa	ag to	ggag	jaaaa	a gaç	gtgt	tag	ggtt	tggg	ıgt t	cttt	tgttt	180
ttgt	tttt	gt t	tttt	aatt	t ct	tgat	ttca	a aca	tttt	ctc	ccac	cctc	ctc g	ggcto	gcagcc	240
aacg	geete	tt a	acctg	gttct	g cg	gege	cgcg	g cac	cgct	ggc	agct	gagg	ggt t	cagaa	agcgg	300
ggtg	gtatt	tt a	agatt	ttaa	ag ca	aaaa	tttt	aaa	igata	aaat	ccat	tttt	ct	ctccc	cacccc	360

```
caacgccatc tccactgcat ccgatctcat tatttcggtg gttgcttggg ggtgaacaat
                                                                    420
tttgtggctt tttttcccct ataattctga cccgctcagg cttgagggtt tctccggcct
                                                                    480
ccgctcactg cgtgcacctg gcgctgccct gcttccccca acctgttgca aggctttaat
                                                                    540
tcttgcaact gggacctgct cgcaggcacc ccagccctcc acctctctct acatttttgc
                                                                    600
aagtgtctgg gggagggcac ctgctctacc tgccagaaat tttaaaacaa aaacaaaaac
                                                                    660
aaaaaaatct ccgggggccc tcttggcccc tttatccctg cactctcgct ctcctgcccc
                                                                    720
accccgaggt aaagggggcg actaagagaa gatggtgttg ctcaccgcgg tcctcctgct
                                                                    780
                                                                    840
gctggccgcc tatgcggggc cggcccagag cctgggctcc ttcgtgcact gcgagccctg
cgacgagaaa gccctctcca tgtgcccccc cagccccctg ggctgcgagc tggtcaagga
                                                                    900
                                                                   960
geegggetge ggetgetgea tgaeetgege eetggeegag gggeagtegt geggegteta
                                                                  1020
caccgagcgc tgcgcccagg ggctgcgctg cctcccccgg caggacgagg agaagccgct
gcacgccctg ctgcacggcc gcggggtttg cctcaacgaa aagagctacc gcgagcaagt
                                                                  1080
caagatcgag agagactccc gtgagcacga ggagcccacc acctctgaga tggccgagga
                                                                  1140
gacctactcc cccaagatct tccggcccaa acacacccgc atctccgagc tgaaggctga
                                                                  1200
agcagtgaag aaggaccgca gaaagaagct gacccagtcc aagtttgtcg ggggagccga
                                                                  1260
gaacactgcc cacccccgga tcatctctgc acctgagatg agacaggagt ctgagcaggg
                                                                  1320
                                                                  1380
cccctgccgc agacacatgg aggcttccct gcaggagetc aaagccagec cacgcatggt
gccccgtgct gtgtacctgc ccaattgtga ccgcaaagga ttctacaaga gaaagcagtg
                                                                  1440
caaaccttcc cgtggccgca agcgtggcat ctgctggtgc gtggacaagt acgggatgaa
                                                                  1500
gctgccaggc atggagtacg ttgacgggga ctttcagtgc cacaccttcg acagcagcaa
                                                                  1560
cgttgagtga tgcgtccccc cccaaccttt ccctcacccc ctcccacccc cagccccgac
                                                                  1620
tccagccagc gcctccctcc accccaggac gccactcatt tcatctcatt taagggaaaa
                                                                  1680
1722
```

<210> 15 <211> 272

<212> PRT

<213> Homo sapiens

<400> 15

Met 1	vaı	Leu	Leu	Thr 5	Ala	Val	Leu	Leu	Leu 10	Leu	Ala	Ala	Tyr	15	GIA
Pro	Ala	Gln	Ser 20	Leu	Gly	Ser	Phe	Val 25	His	Cys	Glu	Pro	Cys 30	Asp	Glu
Lys	Ala	Leu 35	Ser	Met	Cys	Pro	Pro 40	Ser	Pro	Leu	Gly	Cys 45	Glu	Leu	Val
Lys	Glu 50	Pro	Gly	Cys	Gly	Cys 55	Cys	Met	Thr	Суѕ	Ala 60	Leu	Ala	Glu	Gly
Gln 65	Ser	Cys	Gly	Val	Туг 70	Thr	Glu	Arg	Cys	Ala 75	Gln	Gly	Leu	Arg	Cys 80
Leu	Pro	Arg	Gln	Asp 85	Glu	Glu	Lys	Pro	Leu 90	His	Ala	Leu	Leu	His 95	Gly
Arg	Gly	Val	Суs 100	Leu	Asn	Glu	Lys	Ser 105	Tyr	Arg	Glu	Gln	Val 110	Lys	Ile
Glu	Arg	Asp 115	Ser	Arg	Glu	His	Glu 120	Glu	Pro	Thr	Thr	Ser 125	Glu	Met	Ala
Glu	Glu 130	Thr	Tyr	Ser	Pro	Lys 135	Ile	Phe	Arg	Pro	Lys 140	His	Thr	Arg	Ile
Ser 145	Glu	Leu	Lys	Ala	Glu 150	Ala	Val	Lys	Lys	Asp 155	Arg	Arg	Lys	Lys	Leu 160
Thr	Gln	Ser	Lys	Phe 165	Val	Gly	Gly	Ala	Glu 170	Asn	Thr	Ala	His	Pro 175	Arg
Ile	Ile	Ser	Ala 180	Pro	Glu	Met	Arg	Gln 185	Glu	Ser	Glu	Gln	Gly 190	Pro	Cys
Arg	Arg	His 195	Met	Glu	Ala	Ser	Leu 200	Gln	Glu	Leu	Lys	Ala 205	Ser	Pro	Arg
Met	Val 210	Pro	Arg	Ala	Val	Tyr 215	Leu	Pro	Asn	Cys	Asp 220	Arg	Lys	Gly	Phe

Tyr Lys Arg Lys Gln Cys Lys Pro Ser Arg Gly Arg Lys Arg Gly Ile 225 230 235 240

Cys Trp Cys Val Asp Lys Tyr Gly Met Lys Leu Pro Gly Met Glu Tyr 245 250 255

Val Asp Gly Asp Phe Gln Cys His Thr Phe Asp Ser Ser Asn Val Glu 260 265 270

<210> 16

<211> 952

<212> DNA

<213> Homo sapiens

<400> 16

60 gcagctgcgc tgcgactgct ctggaaggag aggacggggc acaaaccctg accatgaccc cccacagget getgecaceg etgetgetge tgetagetet getgeteget gecageceag 120 gaggcgcctt ggcgcggtgc ccaggctgcg ggcaaggggt gcaggcgggt tgtccagggg 180 gctgcgtgga ggaggaggat ggggggtcgc cagccgaggg ctgcgcggaa gctgagggct 240 gtctcaggag ggagggcag gagtgcgggg tctacacccc taactgcgcc ccaggactgc 300 agtgccatcc gcccaaggac gacgaggcgc ctttgcgggc gctgctgctc ggccgaggcc 360 gctgccttcc ggcccgcgcg cctgctgttg cagaggagaa tcctaaggag agtaaacccc 420 480 aagcaggcac tgcccgccca caggatgtga accgcagaga ccaacagagg aatccaggca 540 cctctaccac gccctcccag cccaattctg cgggtgtcca agacactgag atgggcccat gccgtagaca tctggactca gtgctgcagc aactccagac tgaggtctac cgaggggctc 600 aaacactcta cgtgcccaat tgtgaccatc gaggcttcta ccggaagcgg cagtgccgct 660 cctcccaggg gcagcgccga ggtccctgct ggtgtgtgga tcggatgggc aagtccctgc 720 cagggtctcc agatggcaat ggaagctcct cctgccccac tgggagtagc ggctaaagct 780 gggggataga ggggctgcag ggccactgga aggaacatgg agctgtcatc actcaacaaa 840 900 aaaccgaggc cctcaatcca ccttcaggcc ccgccccatg ggcccctcac cgctggttgg aaagagtgtt ggtgttggct ggggtgtcaa taaagctgtg cttggggtca aa 952

<210> 17

<211> 240

<212> PRT

<213> Homo sapiens

<400> 17

Met Thr Pro His Arg Leu Leu Pro Pro Leu Leu Leu Leu Leu Ala Leu 1 5 10 15

Leu Leu Ala Ala Ser Pro Gly Gly Ala Leu Ala Arg Cys Pro Gly Cys
20 25 30

Gly Gln Gly Val Gln Ala Gly Cys Pro Gly Gly Cys Val Glu Glu Glu 35 40 45

Asp Gly Gly Ser Pro Ala Glu Gly Cys Ala Glu Ala Glu Gly Cys Leu 50 55 60

Arg Arg Glu Gly Glu Cys Gly Val Tyr Thr Pro Asn Cys Ala Pro 65 70 75 80

Gly Leu Gln Cys His Pro Pro Lys Asp Asp Glu Ala Pro Leu Arg Ala 85 90 95

Leu Leu Gly Arg Gly Arg Cys Leu Pro Ala Arg Ala Pro Ala Val 100 105 110

Ala Glu Glu Asn Pro Lys Glu Ser Lys Pro Gln Ala Gly Thr Ala Arg 115 120 125

Pro Gln Asp Val Asn Arg Arg Asp Gln Gln Arg Asn Pro Gly Thr Ser 130 135 140

Thr Thr Pro Ser Gln Pro Asn Ser Ala Gly Val Gln Asp Thr Glu Met 145 150 155 160

Gly Pro Cys Arg Arg His Leu Asp Ser Val Leu Gln Gln Leu Gln Thr 165 170 175

Giu Val Tyr Arg Gly Ala Gln Thr Leu Tyr Val Pro Asn Cys Asp His 180 185 190

Arg Gly Phe Tyr Arg Lys Arg Gln Cys Arg Ser Ser Gln Gly Gln Arg 195 200 205

Arg Gly Pro Cys Trp Cys Val Asp Arg Met Gly Lys Ser Leu Pro Gly 210 215

Ser Pro Asp Gly Asn Gly Ser Ser Ser Cys Pro Thr Gly Ser Ser Gly 230 235

<210> 18 <211> 1124 <212> DNA

<213> Homo sapiens

<400> 18

gccgctgcca	ccgcaccccg	ccatggagcg	gccgtcgctg	cgcgccctgc	tcctcggcgc	60
cgctgggctg	ctgctcctgc	tcctgcccct	ctcctcttcc	tcctcttcgg	acacctgcgg	120
cccctgcgag	ccggcctcct	gcccgcccct	gcccccgctg	ggctgcctgc	tgggcgagac	180
ccgcgacgcg	tgcggctgct	gccctatgtg	cgcccgcggc	gagggcgagc	cgtgcggggg	240
tggcggcgcc	ggcagggggt	actgcgcgcc	gggcatggag	tgcgtgaaga	gccycaagag	300
gcggaagggt	aaagccgggg	cagcagccgg	cggtccgggt	gtaagcggcg	tgtgcgtgtg	360
caagagccgc	tacccggtgt	gcggcagcga	cggcaccacc	tacccgagcg	gctgccagct	420
gcgcgccgcc	agccagaggg	ccgagagccg	cggggagaag	gccatcaccc	aggtcagcaa	480
gggcacctgc	gagcaaggtc	cttccatagt	gacgcccccc	aaggacatct	ggaatgtcac	540
tggtgcccag	gtgtacttga	gctgtgaggt	catcggaatc	ccgacacctg	tcctcatctg	6.00
gaacaaggta	aaaaggggtc	actatggagt	tcaaaggaca	gaactcctgc	ctggtgaccg	660
ggacaacctg	gccattcaga	cccggggtgg	cccagaaaag	catgaagtaa	ctggctgggt	720
gctggtatct	cctctaagta	aggaagatgc	tggagaatat	gagtgccatg	catccaattc	780
ccaaggacag	gcttcagcat	cagcaaaaat	tacagtggtt	gatgccttac	atgaaatacc	840
agtgaaaaaa	ggtgaaggtg	ccgagctata	aacctccaga	atattattag	tctgcatggt	900
taaaagtagt	catggataac	tacattacct	gttcttgcct	aataagtttc	ttttaatcca	960
atccactaac	actttagtta	tattcactgg	ttttacacag	agaaatacaa	aataaagatc	1020
acacatcaag	actatctaca	aaaatttatt	atatatttac	agaagaaaag	catgcatatc	1080
attaaacaaa	taaaatactt	tttatcacaa	aaaaaaaaa	aaaa		1124

<210> 19

<211> 282

<212> PRT

<213> Homo sapiens

<400> 19

Met Glu Arg Pro Ser Leu Arg Ala Leu Leu Gly Ala Ala Gly Leu 1 5 10 15

Leu Leu Leu Leu Pro Leu Ser Ser Ser Ser Ser Asp Thr Cys
20 25 30

Gly Pro Cys Glu Pro Ala Ser Cys Pro Pro Leu Pro Pro Leu Gly Cys 35 40 45

Leu Leu Gly Glu Thr Arg Asp Ala Cys Gly Cys Cys Pro Met Cys Ala 50 60

Arg Gly Glu Gly Glu Pro Cys Gly Gly Gly Gly Ala Gly Arg Gly Tyr 65 70 75 80

Cys Ala Pro Gly Met Glu Cys Val Lys Ser Arg Lys Arg Arg Lys Gly
85 90 95

Lys Ala Gly Ala Ala Gly Gly Pro Gly Val Ser Gly Val Cys Val
100 105 110

Cys Lys Ser Arg Tyr Pro Val Cys Gly Ser Asp Gly Thr Thr Tyr Pro 115 120 125

Ser Gly Cys Gln Leu Arg Ala Ala Ser Gln Arg Ala Glu Ser Arg Gly 130 135 140

Glu Lys Ala Ile Thr Gln Val Ser Lys Gly Thr Cys Glu Gln Gly Pro 145 150 155 160

Ser Ile Val Thr Pro Pro Lys Asp Ile Trp Asn Val Thr Gly Ala Gln
165 170 175

Val Tyr Leu Ser Cys Glu Val Ile Gly Ile Pro Thr Pro Val Leu Ile 180 185 190

Trp Asn Lys Val Lys Arg Gly His Tyr Gly Val Gln Arg Thr Glu Leu

195	200	205

Leu Pro Gly Asp Arg Asp Asn Leu Ala Ile Gln Thr Arg Gly Gly Pro 210 215 220

Glu Lys His Glu Val Thr Gly Trp Val Leu Val Ser Pro Leu Ser Lys 225 230 235 240

Glu Asp Ala Gly Glu Tyr Glu Cys His Ala Ser Asn Ser Gln Gly Gln 245 250 255

Ala Ser Ala Ser Ala Lys Ile Thr Val Val Asp Ala Leu His Glu Ile 260 265 270

Pro Val Lys Lys Gly Glu Gly Ala Glu Leu 275 280

<210> 20

<211> 2125

<212> DNA

<213> Homo sapiens

<400> 20

ggcacagcag acgtaccctc cctcgctgcc tgcctgcggc ctgccctgca tgcaggatgg 60 ccctgaggaa aggaggcctg gccctggcgc tgctgctgct gtcctgggtg gcactgggcc 120 cccgcagcct ggagggagca gaccccggaa cgccggggga agccgagggc ccagcgtgcc 180 cygccgcctg tgtctgcagc tacgatgacg acgcggatga gctcagcgtc ttctgcagct 240 ccaggaacct cacgcgcctg cctgacggag tcccgggcgg cacccaagcc ctgtggctgg 300 acggcaacaa cctctcgtcc gtcccccgg cagccttcca gaacctctcc agcctgggct 360 tecteaacet geagggegge cagetgggea geetggagee acaggegetg etgggeetag 420 agaacctgtg ccacctgcac ctggagcgga accagctgcg cagcctggca ctcggcacgt 480 ttgcacacac gcccgcgctg gcctcgctcg gcctcagcaa caaccgtctg agcaggctgg 540 aggacgggct cttcgagggc ctcggcagcc tctgggacct caacctcggc tggaatagcc 600 tggcggtgct ccccgatgcg gcgttccgcg gcctgggcag cctgcgcgag ctggtgctgg 660 cgggcaacag gctggcctac ctgcagcccg cgctcttcag cggcctggcc gagctccggg 720 agctggacct gagcaggaac gcgctgcggg ccatcaaggc aaacgtgttc gtgcagctgc 780

```
cccggctcca gaaactctac ctggaccgca acctcatcgc tgccgtggcc ccgggcgcct
                                                                  840
tectgggeet gaaggegetg egatggetgg acetgteeca caacegegtg getggeetee
                                                                  900
tggaggacac gttccccggt ctgctgggcc tgcgtgtgct gcggctgtcc cacaacgcca
                                                                  960
tegecageet geggeeeege acetteaagg acetgeaett eetggaggag etgeagetgg
                                                                 1020
gccacaaccg catccggcag ctggctgagc gcagctttga gggcctgggg cagcttgagg
                                                                 1080
tgctcacgct agaccacaac cagctccagg aggtcaaggc gggcgctttc ctcggcctca
                                                                 1140
ccaacgtggc ggtcatgaac ctctctggga actgtctccg gaaccttccg gagcaggtgt
                                                                 1200
tccggggcct gggcaagctg cacagcctgc acctggaggg cagctgcctg ggacgcatcc
                                                                 1260
gcccgcacac cttcaccggc ctctcggggc tccgccgact cttcctcaag gacaacggcc
                                                                 1320
tcgtgggcat tgaggagcag agcctgtggg ggctggcgga gctgctggag ctcgacctga
                                                                 1380
cctccaacca gctcacgcac ctgccccacc gcctcttcca gggcctgggc aagctggagt
                                                                 1440
                                                                 1500
acctgctgct ctcccgcaac cgcctggcag agctgccggc ggacgccctg ggcccctgc
agegggeett etggetggae gtetegeaea aeegeetgga ggeattgeee aaeageetet
                                                                 1560
tggcaccact ggggcggctg cgctacctca gcctcaggaa caactcactg cggaccttca
                                                                 1620
cgccgcagcc cccgggcctg gagcgcctgt ggctggaggg taacccctgg gactgtggct
                                                                 1680
gccctctcaa ggcgctgcgg gacttcgccc tgcagaaccc cagtgctgtg ccccgcttcg
                                                                 1740
tccaggccat ctgtgagggg gacgattgcc agccgcccgc gtacacctac aacaacatca
                                                                 1800
cctgtgccag cccgccgag gtcgtggggc tcgacctgcg ggacctcagc gaggcccact
                                                                 1860
ttgctccctg ctgaccaggt ccccggactc aagccccgga ctcaggcccc cacctggctc
                                                                 1920
accttgtgct ggggacaggt cctcagtgtc ctcaggggcc tgcccagtgc acttgctgga
                                                                 1980
agacgcaagg gcctgatggg gtggaaggca tggcggcccc cccagctgtc atcaattaaa
                                                                 2040
2100
aaaaaaaaaa aaaaaaaaa aaaaa
                                                                 2125
```

Met Ala Leu Arg Lys Gly Gly Leu Ala Leu Ala Leu Leu Leu Ser

<210> 21

<211> 605 <212> PRT

<213> Homo sapiens

<400> 21

Trp Val Ala Leu Gly Pro Arg Ser Leu Glu Gly Ala Asp Pro Gly Thr 20 25 30

1

Pro Gly Glu Ala Glu Gly Pro Ala Cys Pro Ala Ala Cys Val Cys Ser 35 40 45

Tyr Asp Asp Asp Ala Asp Glu Leu Ser Val Phe Cys Ser Ser Arg Asn 50 55 60

Leu Thr Arg Leu Pro Asp Gly Val Pro Gly Gly Thr Gln Ala Leu Trp 65 70 75 80

Leu Asp Gly Asn Asn Leu Ser Ser Val Pro Pro Ala Ala Phe Gln Asn 85 90 95

Leu Ser Ser Leu Gly Phe Leu Asn Leu Gln Gly Gln Leu Gly Ser 100 105 110

Leu Glu Pro Gln Ala Leu Leu Gly Leu Glu Asn Leu Cys His Leu His 115 120 125

Leu Glu Arg Asn Gln Leu Arg Ser Leu Ala Leu Gly Thr Phe Ala His 130 135 140

Thr Pro Ala Leu Ala Ser Leu Gly Leu Ser Asn Asn Arg Leu Ser Arg 145 150 155 160

Leu Glu Asp Gly Leu Phe Glu Gly Leu Gly Ser Leu Trp Asp Leu Asn 165 170 175

Leu Gly Trp Asn Ser Leu Ala Val Leu Pro Asp Ala Ala Phe Arg Gly 180 185 190

Leu Gly Ser Leu Arg Glu Leu Val Leu Ala Gly Asn Arg Leu Ala Tyr 195 200 205

Leu Gln Pro Ala Leu Phe Ser Gly Leu Ala Glu Leu Arg Glu Leu Asp 210 215 220

Leu 225	Ser	Arg	Asn	Ala	Leu 230	Arg	Ala	Ile	Lys	Ala 235	Asn	Val	Phe	Val	Gln 240
Leu	Pro	Arg	Leu	Gln 245	Lys	Leu	Tyr	Leu	Asp 250	Arg	Asn	Leu	Ile	Ala 255	Ala
Val	Ala	PMO	Gly 260	Ala	Phe	Leu	Gly	Leu 265	Lys	Ala	Leu	Arg	Trp 270	Leu	Asp
Leu	Ser	His 275	Asn	Arg	Val	Ala	Gly 280	Leu	Leu	Glu	Asp	Thr 285	Phe	Pro	Gly
Leu	Leu 290	Gly	Leu	Arg	Val	Leu 295	Arg	Leu	Ser	His	Asn 300	Ala	Ile	Ala	Ser
Leu 305	Arg	Pro	Arg	Thr	Phe 310	Lys	Asp	Leu	His	Phe 315	Leu	Glu	Glu	Leu	Gln 320
Leu	Gly	His	Asn	Arg 325	Ile	Arg	Gln	Leu	Ala 330	Glu	Arg	Ser	Phe	Glu 335	Gly
Leu	Gly	Gln	Leu 340	Glu	Val	Leu	Thr	Leu 345	Asp	His	Asn	Gln	Leu 350	Gln	Glu
Val	Lys	Ala 355	Gly	Ala	Phe	Leu	Gly 360	Leu	Thr	Asn	Met	Ala 365	Val	Met	Asn
Leu	Ser 370	Gly	Asn	Cys	Leu	Arg 375	Asn	Leu	Pro	Glu	Gln 380	Val	Phe	Arg	Gly
Leu 385	Gly	Lys	Leu	His	Ser 390	Leu	His	Leu	Glu	Gly 395	Ser	Cys	Leu	Gly	Arg 400
Ile	Arg	Pro	His	Thr 405	Phe	Thr	Gly	Leu	Ser 410	Gly	Leu	Arg	Arg	Leu 415	Phe
Leu	Lys	Asp	Asn 420	Gly	Leu	Val	Gly	Ile 425	Glu	Glu	Gln	Ser	Leu 430	Trp	Gly
Leu	Ala	Glu 435	Leu	Leu	Glu	Leu	Asp 440	Leu	Thr	Ser	Asn	Gln 445	Leu	Thr	His

Leu	Pro 450	His	Arg	Leu	Phe	Gln 455	Gly	Leu	Gly	Lys	Leu 460	Glu	Tyr	Leu	Leu
Leu 465	Ser	Arg	Asn	Arg	Leu 470	Ala	Glu	Leu	Pro	Ala 475	Asp	Ala	Leu	Gly	Pro 480
Leu	Gln	Arg	Ala	Phe 485	Trp	Leu	Asp	Val	Ser 490	His	Asn	Arg	Leu	Glu 495	Ala
Leu	Pro	Asn	Ser 500	Leu	Leu	Ala	Pro	Leu 505	Gly	Arg	Leu	Arg	Tyr 510	Leu	Ser
Leu	Arg	Asn 515	Asn	Ser	Leu	Arg	Thr 520	Phe	Thr	Pro	Gln	Pro 525	Pro	Gly	Leu
Glu	Arg 530	Leu	Trp	Leu	Glu	Gly 535	Asn	Pro	Trp	Asp	Cys 540	Gly	Cys	Pro	Leu
Lys 545	Ala	Leu	Arg	Asp	Phe 550	Ala	Leu	Gln	Asn	Pro 555	Ser	Ala	Val	Pro	Arg 560
Phe	Val	Gln	Ala	Ile 565	Cys	Glu	Gly	Asp	Asp 570	Cys	Gln	Pro	Pro	Ala 575	Tyr
Thr	Tyr	Asn	Asn 580	Ile	Thr	Cys	Ala	Ser 585	Pro	Pro	Glu	Val	Val 590	Gly	Leu
Asp	Leu	Arg 595	Asp	Leu	Ser	Glu	Ala 600	His	Phe	Ala	Pro	Cys 605			