DSCI-6011-02 DEEP LEARNING

TERM PROJECT - PROJECT PROPOSAL

by

AMANI KAMBHAM & LAKSHMI SAI KISHORE SAVARAPU

PROJECT TITLE

GENDER CLASSIFICATION AND AGE PREDICTION USING DEEP LEARNING

STATEMENT OF PROJECT OBJECTIVES

- Develop Deep Learning models that can accurately classify Single Object Images based on the gender of an individual in the image and also predict the age of that person.
- Deep Learning Architectures like Convolutional Neural Network, ResNet, VGG, GoogleNet will be used to develop the Deep Learning models.
- The Age prediction task will be treated as a Regression problem.
- Another set of Deep Leaning models will be developed using Preprocessed dataset images to do the same tasks.
- Preprocessing is done to remove noise from dataset images which could reduce the false predictions and improve model accuracy.
- Another important objective of this project is to check if preprocessing of dataset images improves the model accuracy or not.

WHAT'S NEW IN THIS PROJECT?

Preprocessing of Dataset images

- Models built with image processing often face the effect of noise resulting underfitting and low accuracy.
- So, a preprocessing step like noise filtering can be done to reduce the effect of noise which smoothens the feature extraction process and eventually building a model with high accuracy.
- Noise filtering of dataset images can be done with Gaussian, Mean, Median or Weiner filters and then the model building and evaluation process can be carried.
- This is done to check if the preprocessing step helps in building a more accurate model or not.

STATEMENT OF VALUE

- Gender and Age are demographic details which are important in many fields.
- These models can be used for Video Surveillance where it is important to identify the gender and predict the age of an individual for security reasons.
- In the Medical and Health sector, age prediction and gender information helps in early diagnosis and treatment of age-related diseases.
- In the Business and Marketing field, Profile demographical data is needed to categorize users and take decisions targeting specific gender and age group.

REVIEW OF STATE OF THE ART AND RELEVANT WORKS

For the Deep Learning Model building:

Sheoran, V., Joshi, S., Bhayani, T.R. (2021). Age and Gender Prediction Using Deep CNNs and Transfer Learning. In: Singh, S.K., Roy, P., Raman, B., Nagabhushan, P. (eds) Computer Vision and Image Processing. CVIP 2020. Communications in Computer and Information Science, vol 1377. Springer, Singapore. https://doi.org/10.1007/978-981-16-1092-9_25

For Preprocessing of Dataset Images:

https://pesquisa.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resource/en/covidwho-1280209

<u>APPROACH</u>

- ➤ Dataset: 5 V's of Data; Volume, Variety, Velocity, Veracity, Value are checked to ensure right set of data is collected for the problem statement.
- <u>https://susanqq.github.io/UTKFace/</u>
- The dataset consists of 20000 face images with age, gender, ethnicity as the features. It has an age span of 0 to 116 years. It is a structured, labeled dataset.
- ➤ Deep Learning Models: CNN, ResNet, VGG, GoogleNet
- ➤ Tools: Tensorflow, Keras, Numpy, Pandas
- ➤ Techniques: Preprocessing, Exploratory Data Analysis, Normalization, Feature Extraction, Model building and Evaluation.

<u>DELIVERABLES</u>

The deliverables for this project include:

- A fully trained Deep Learning Model capable of Gender classification and Age prediction from the given input images.
- A comprehensive report detailing the development process, methodologies used and performance metrics.
- A Dataset compilation used for training and testing, including preprocessing scripts.
- For future access and replicability, all coding scripts will be provided along with documentation.

EVALUATION METHODOLOGY

For Image Preprocessing:

- Peak Signal to Noise Ratio: For measuring the quality between the original and compressed images.
- Structure Similarity Index: Used for predicting the perceived quality of the dataset images.

For Gender Classification:

- Accuracy: The percentage of total correct predictions out of all predictions made.
- <u>Precision:</u> The ratio of true positive predictions to the total number of positive predictions.
- Recall: The ratio of true positive predictions to the total number of actual positives.
- <u>Confusion Matrix</u>: A table that allows visualization of the performance of the algorithm, including true positives, false positives, true negatives, and false negatives.

For Age Prediction:

- Mean Absolute Error (MAE): This is the average of the absolute differences between the predicted ages and the actual ages.
- Mean Squared Error (MSE): This is the average of the squared differences between the predicted and actual ages.
- R-squared: This metric indicates the proportion of the variance in the dependent variable (age) that is predictable from the independent variables.

