Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 19: Osservabilità e ricostruibilità

Corso di Laurea Magistrale in Ingegneria Meccatronica

A.A. 2020-2021

In questa lezione

- ▶ Osservabilità e ricostruibilità: definizioni generali
- Deservabilità di sistemi lineari a t.d.
- ▶ Ricostruibilità di sistemi lineari a t.d.
- De Osservabilità e ricostruibilità di sistemi lineari a t.c.

Osservabilità e ricostruibilità

sistema con stato x(t), ingresso u(t) e uscita y(t)

Osservabilità = possibilità di determinare lo stato iniziale $x_0 = x(t_0)$ del sistema a partire da misure di ingresso e uscita nell'intervallo $[t_0, t^*]$

Ricostruibilità = possibilità di determinare lo **stato finale** $x^* = x(t^*)$ del sistema a partire da misure di ingresso e uscita nell'intervallo $[t_0, t^*]$

Stati indistinguibili e non osservabili

sistema con stato x(t), ingresso u(t) e uscita y(t)

Definizione: Uno stato x_0' si dice indistinguibile dallo stato x_0'' in $[t_0, t^*]$ se, per ogni ingresso $u(\cdot)$, l'uscita $y'(\cdot)$ corrispondente allo stato iniziale $x(t_0) = x_0'$ e l'uscita $y''(\cdot)$ corrispondente allo stato iniziale $x(t_0) = x_0''$ coincidono su $[t_0, t^*]$.

Definizione: Uno stato x_0 si dice non osservabile nell'intervallo $[t_0, t^*]$ se è indistinguibile dallo stato $x(t_0) = 0$.

G. Baggio

Esempio introduttivo

$$x_1(t) = i_{L_1}(t), \ x_2(t) = i_{L_2}(t)$$
 $y(t) = i_{R}(t) = i_{L_1}(t) + i_{L_2}(t)$
 $t_0 = 0, \ L_1 = L_2 = L$

$$x_0 = \begin{bmatrix} \alpha \\ -\alpha \end{bmatrix}$$
, $\alpha \in \mathbb{R}$, è non osservabile in $[0,t]$, $\forall t > 0$

Osservabilità di sistemi LTI a tempo discreto

$$x(t+1) = Fx(t) + Gu(t)$$

$$y(t) = Hx(t)$$

$$x(0) = x_0 \in \mathbb{R}^n$$

$$u(0), u(1), u(2), \dots \longrightarrow y(0), y(1), y(2), \dots$$

$$y(k) = HF^k x_0 + H\mathcal{R}_k u_k, \quad k = 0, 1, \dots, t-1$$

Insieme di stati iniziali indistinguibili da x_0 in [0, t-1] (= in t passi)?

Quando possiamo determinare univocamente $x_0 \in \mathbb{R}^n$ dalle misure?

G. Baggio Lez. 19: Osservabilità e ricostruibilità

Stati indistinguibili

$$x(0) = x_0: \quad y(k) = HF^k x_0 + H\mathcal{R}_k u_k, \quad k = 0, 1, \dots, t - 1$$

$$x(0) = x_0': \quad y'(k) = HF^k x_0' + H\mathcal{R}_k u_k, \quad k = 0, 1, \dots, t - 1$$

$$y'(k) - y(k) = 0, \quad \forall k \iff \begin{bmatrix} H \\ HF \\ HF^2 \\ \vdots \\ HF^{t-1} \end{bmatrix} (x_0' - x_0) = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \iff x_0' - x_0 \in \ker \mathcal{O}_t$$

 $x_0 + \ker \mathcal{O}_t = \{x_0 + x, x \in \ker \mathcal{O}_t\} = \text{insieme di stati indistinguibili in } t \text{ passi da } x_0$

 $\triangleq \mathcal{O}_t = \text{matrice di osservabilità in } t \text{ passi}$

G. Baggio Lez. 19: Osservabilità e ricostruibilità

Spazio non osservabile

$$X_{NO}(t) = \text{insieme di stati indistinguibili in } t \text{ passi da } x_0 = 0$$

$$= \text{insieme di stati non osservabili in } t \text{ passi}$$

$$= \text{spazio non osservabile in } t \text{ passi} = \text{ker}(\mathcal{O}_t)$$

Teorema: Gli spazi non osservabili soddisfano:

$$X_{NO}(1)\supseteq X_{NO}(2)\supseteq X_{NO}(3)\supseteq\cdots$$

Inoltre, esiste un primo intero i < n tale che

$$X_{NO}(i) = X_{NO}(j), \forall j \geq i.$$

$$X_{NO} \stackrel{\triangle}{=} X_{NO}(i) = \text{(minimo)}$$
 spazio non osservabile

Criterio di osservabilità del rango

Definizione: Un sistema Σ a t.d. si dice (completamente) osservabile se $X_{NO} = \{0\}$. Un sistema Σ a t.d. si dice (completamente) osservabile in t passi se t è il più piccolo intero tale che $X_{NO}(t) = \{0\}$.

$$\mathcal{O} \triangleq \mathcal{O}_n$$
 = matrice di osservabilità del sistema

$$\Sigma$$
 osservabile \iff $\ker(\mathcal{O}) = \{0\}$ \iff $\operatorname{rank}(\mathcal{O}) = n$

$$p = 1$$
: Σ osservabile \iff $\det(\mathcal{O}) \neq 0$

$$p > 1$$
: Σ osservabile \iff $\det(\mathcal{O}^{\top}\mathcal{O}) \neq 0$

Esempi

1.
$$x(t+1) = \begin{bmatrix} \alpha_1 & 1 \\ 0 & \alpha_2 \end{bmatrix} x(t), \quad \alpha_1, \alpha_2 \in \mathbb{R}$$

$$y(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} x(t)$$

 \implies non osservabile

2.
$$x(t+1) = \begin{bmatrix} \alpha_1 & 1 \\ 0 & \alpha_2 \end{bmatrix} x(t), \quad \alpha_1, \alpha_2 \in \mathbb{R}$$

$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(t)$$

 \implies osservabile (in 2 passi)

Ricostruibilità di sistemi LTI a tempo discreto

$$x(t+1) = Fx(t) + Gu(t)$$

$$y(t) = Hx(t)$$

$$u(0), u(1), u(2), \dots \longrightarrow \sum_{x(t)} y(0), y(1), y(2), \dots$$

$$y(k) = HF^{k}x_{0} + H\mathcal{R}_{k}u_{k}, \quad k = 0, 1, \dots, t-1$$

Quando possiamo determinare univocamente $x^* = x(t-1) \in \mathbb{R}^n$ dalle misure?

G. Baggio

Spazio non ricostruibile

$$x^* = x(t-1) = F^{t-1}x_0 + \mathcal{R}_{t-1}u_{t-1}$$
 misure $\{u(k)\}_{k=0}^{t-1}, \{y(k)\}_{k=0}^{t-1}$

- stati iniziali compatibili con le misure: $x_0 + X_{NO}(t)$
- stati finali compatibili con le misure: $F^{t-1}x_0 + F^{t-1}X_{NO}(t) + \mathcal{R}_{t-1}u_{t-1}$ $= x^* + F^{t-1} X_{NO}(t)$

$$X_{NR}(t)=$$
 spazio non ricostruibile in t passi $=F^{t-1}X_{NO}(t)=\{F^{t-1}x,x\in\ker(\mathcal{O}_t)\}$

$$X_{NR} = \text{(minimo) spazio non ricostruibile} = X_{NR}(n+1) = F^n X_{NO}$$

Criterio di non ricostruibilità

Definizione: Un sistema Σ a t.d. si dice (completamente) ricostruibile se $X_{NR} = \{0\}$. Un sistema Σ a t.d. si dice (completamente) ricostruibile in t passi se t è il più piccolo intero tale che $X_{NR}(t) = \{0\}$.

$$\Sigma$$
 ricostruibile \iff ker $(F^n) \supseteq \ker(\mathcal{O}) = X_{NO}$

$$\Sigma$$
 osservabile $(X_{NO} = \{0\}) \Rightarrow \Sigma$ ricostruibile

 Σ ricostruibile $\not\Rightarrow \Sigma$ osservabile !!!

Esempi

1.
$$x(t+1) = \begin{bmatrix} \alpha_1 & 1 \\ 0 & \alpha_2 \end{bmatrix} x(t)$$
, $\alpha_1, \alpha_2 \in \mathbb{R}$ \Rightarrow non osservabile $\alpha_1 = 0$ ma ricostruibile se $\alpha_1 = 0$

2.
$$x(t+1) = \begin{bmatrix} \alpha_1 & 1 \\ 0 & \alpha_2 \end{bmatrix} x(t), \quad \alpha_1, \alpha_2 \in \mathbb{R}$$
 \implies osse $y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(t)$

⇒ osservabile e (quindi) ricostruibile

Osservabilità e ricostruibilità di sistemi LTI a tempo continuo

$$\dot{x}(t) = Fx(t) + Gu(t)$$
 $x(0) = x_0 \in \mathbb{R}^n$ $y(t) = Hx(t)$
$$y(t) \in \mathbb{R}^m \longrightarrow \sum_{x(t)} y(t) \in \mathbb{R}^p$$
 $y(\tau) = He^{F\tau}x_0 + \int_0^t He^{F(t-s)}Gu(s)ds, \ \tau \in [0, t]$

Quando possiamo determinare univocamente $x_0 \in \mathbb{R}^n$ dalle misure?

Quando possiamo determinare univocamente $x^* = x(t) \in \mathbb{R}^n$ dalle misure?

G. Baggio

Criterio di osservabilità del rango

$$X_{NO}(t)=$$
 spazio non osservabile nell'intervallo $[0,t]$ $X_{NO}=$ (minimo) spazio non osservabile

Definizione: Un sistema Σ a t.c. si dice (completamente) osservabile se $X_{NO}=\{0\}.$

$$\mathcal{O} \triangleq \mathcal{O}_n = \begin{bmatrix} H \\ HF \\ \vdots \\ HF^{n-1} \end{bmatrix} = \text{matrice di osservabilità del sistema}$$

$$\Sigma$$
 osservabile \iff $\ker(\mathcal{O}) = \{0\} \iff \operatorname{rank}(\mathcal{O}) = n$

N.B. Se un sistema Σ a t.c. è osservabile allora $X_{NO}(t) = \{0\}$ per ogni t > 0!!

G. Baggio Lez. 19: Osservabilità e ricostruibilità 7 Aprile 2021

Esempio

$$x_1(t) = i_{L_1}(t), x_2(t) = i_{L_2}(t)$$

 $y(t) = i_{R}(t) = i_{L_1}(t) + i_{L_2}(t)$

$$\mathcal{O} = \begin{bmatrix} 1 & 1 \\ -R(\frac{1}{L_1} + \frac{1}{L_2}) & -R(\frac{1}{L_1} + \frac{1}{L_2}) \end{bmatrix}$$

 $rank(\mathcal{O}) = 1 \implies \Sigma$ non osservabile

Ricostruibilità (a t.c.) = osservabilità (a t.c.)

$$x^* = x(t) = e^{Ft}x_0 + \int_0^t e^{F(t-\tau)}Gu(\tau)d\tau$$

misure $u(\tau),\ y(\tau),\ au \in [0,t]$

- stati iniziali compatibili con le misure: $x_0 + X_{NO}(t)$
- stati finali compatibili con le misure: $e^{Ft}X_{0} + e^{Ft}X_{NO}(t) + \int_{0}^{\tau} e^{F(t-\tau)}Gu(\tau)d\tau$ $= x^* + e^{Ft} X_{NO}(t)$

$$X_{NR}(t) = e^{Ft} X_{NO}(t) = \text{spazio non ricostruibile nell'intervallo } [0, t]$$
 $e^{Ft} \text{ invertibile } \Longrightarrow X_{NR}(t) = \{0\} \iff X_{NO}(t) = \{0\}$

ricostruibilità = osservabilità !!