An example of packaging deep learning model "AIGenMols" for MolAICal

Qifeng Bai

Email: molaical@yeah.net
Homepage: https://molaical.github.io
School of Basic Medical Sciences
Lanzhou University
Lanzhou, Gansu 730000, P. R. China

1. Introduction

Sometimes, the "AIGenMols" have not good compatibility in Linux operating system. In this case, it needs to generate the binary "AIGenMols" again. In this tutorial, the ORGAN (https://github.com/gablg1/ORGAN) is chosen for the installation of "AIGenMols". Besides, you can build the "AIGenMols" from your trained deep learning model.

2. Materials

2.1. Software requirement

MolAICal: https://molaical.github.io
 Anaconda: https://www.anaconda.com

2.2. Example files

1) All the necessary tutorial files are downloaded from: https://github.com/MolAICal/specialtopic/tree/master/012-AIGenMols

3. Procedure

1. Install Anconda (https://www.anaconda.com/distribution). Make sure installation completely and environment variables are set rightly.

```
2. Create an independent environment
```

```
#> conda create -n AIGen python=3.6.7
#> conda activate AIGen
```

3. Install the necessary libraries

```
#> conda install tensorflow==1.13.1
```

#> conda install future==0.16.0

#> pip install editdistance==0.3.1

#> conda install tqdm

#> conda install dill

#> conda install pyinstaller==3.4

4. Finally, produce binary "deep learning model".

```
#> pyinstaller --add-data="organ/NP_score.pkl.gz:organ" --add-data="organ/SA_score.pkl.gz:organ" --add-data="organ/data/FDA-H.csv:organ/data" --add-data="organ/checkpoints/FDA-H/FDA-H_99.ckpt.data-00000-of-00001:organ/checkpoints/FDA-H" --add-data="organ/checkpoints/FDA-H/FDA-H_99.ckpt.index:organ/checkpoints/FDA-H" --add-data="organ/checkpoints/FDA-H/FDA-H_99.ckpt.meta:organ/checkpoints/FDA-H" --add-data="organ/data/FDA1884.csv:organ/data" --add-data="organ/checkpoints/FDA1884/FDA1884_119.ckpt.data-00000-of-00001:organ/checkpoints/FDA1884" --add-data="organ/checkpoints/FDA1884" --add-data="organ/checkpoints/FDA1884" --add-data="organ/checkpoints/FDA1884" --add-data="organ/checkpoints/FDA1884" --add-data="organ/checkpoints/FDA1884"
```

```
data="organ/checkpoints/FDA1884/FDA1884_119.ckpt.index:organ/checkpoints/FDA1884" --add-data="organ/checkpoints/FDA1884/FDA1884_119.ckpt.meta:organ/checkpoints/FDA1884" --add-data="organ/data/zinc.csv:organ/data" --add-data="organ/checkpoints/ZINC/ZINC_99.ckpt.data-00000-of-00001:organ/checkpoints/ZINC" --add-data="organ/checkpoints/ZINC/ZINC_99.ckpt.index:organ/checkpoints/ZINC" --add-data="organ/checkpoints/ZINC/ZINC_99.ckpt.meta:organ/checkpoints/ZINC" -F main.py
```

```
Open folder "organ/dist" #> cd dist
```

You will see file named "main", rename it as "AIGenMols"

#> mv main AIGenMols

#> chmod +x AIGenMols

The deep binary deep learning model named "AIGenMols" is produced completely. Put it into MolAICal software folder directly.

Analysis of install process:

--add-data="organ/data/zinc.csv:organ/data" --add-data="organ/checkpoints/ZINC/ZINC_99.ckpt.data-00000-of-00001:organ/checkpoints/ZINC" --add-data="organ/checkpoints/ZINC/ZINC_99.ckpt.index:organ/checkpoints/ZINC" --add-data="organ/checkpoints/ZINC/ZINC 99.ckpt.meta:organ/checkpoints/ZINC" -F main.py

You can replace above data by trained deep learning model.

Notice:

- 1. When you install Anaconda, the install path of Anaconda should have no blank space for packaging "AIGenMols". For example, /home/test install/anaconda. The blank space between the characters "test" and "install" may lead to the failure of the packaging process.
- 2. The command usage of "AIGenMols" should be like as below:

AIGenMols -f test.txt -s FDAFrag -n 100 AIGenMols -f test.txt -s ZINCMol -n 100

- -f: represents file name which contains generated results of molecules with SMILES format
- -s: represents selection of deep learning model
- -n: represents the number of generated molecules

This is just an example for packaging "AIGenMols". You can use the similar way for your training model. We will update deep learning model.