Cvičení 7: Tranzistor MOSFET – charakteristiky, pracovní bod

C7.1 Výstupní charakteristika tranzistoru MOSFET

Úplný model tranzistoru MOSFET (PSpice-Level 1) a jeho parametry Vliv parametrů tranzistoru na tvar výstupní V-A charakteristiky (PSpice/Excel)

C7.2 Určení/nastavení pracovního bodu tranzistoru MOSFET

Mezní parametry tranzistoru MOSFET
Analýza obvodu pro nastavení pracovního bodu tranzistoru
MOSFET graficko-početní metodou (Příklad CP7.1/Excel)
Stanovení polohy pracovního bodu MOSFETu analyticky s užitím úplného modelu MOSFETu (Příklady CP7.2-5)

Struktura N-MOSFETu a hlavní parametry ovlivňující jeho V-A charakteristiku

L – délka kanálu

W – šířka kanálu

C_{ox}- kapacita oxidu na jednotku plochy

 ε_0 – permitivita vakua

ε_r – relativní permitivita oxidu

t_{ox} – tloušťka oxidu

MOSFET – statický model PSpice Level 1 (Schichman-Hodges)

bez uvážení zkrácení kanálu (Earlyho jevu)

 $U_{DS} = U_{GS} - U_{T}$

Odporový režim U_{DS}≤U_{GS}-U_T

$$\boldsymbol{I}_{\text{D}} = \boldsymbol{\mu}_{\text{n}} \, \boldsymbol{C}_{\text{ox}} \, \frac{\boldsymbol{W}}{L} \bigg[\big(\boldsymbol{U}_{\text{GS}} - \boldsymbol{U}_{\text{T}} \big) \boldsymbol{U}_{\text{DS}} - \frac{1}{2} \boldsymbol{U}_{\text{DS}}^2 \bigg]$$

L – délka kanálu

W – šířka kanálu

C_{ox}- kapacita oxidu na jednotku plochy

μ_n – pohyblivost elektronů

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} (U_{GS} - U_{T})^{2}$$

MOSFET – statický model PSpice Level 1 (uvážení zkrácení L)

 $I_D[mA]$

$$\boldsymbol{I}_{\text{D}} = \frac{1}{2} \boldsymbol{\mu}_{\text{n}} \, \boldsymbol{C}_{\text{ox}} \, \frac{\boldsymbol{W}}{L} \, \big(\boldsymbol{U}_{\text{GS}} - \boldsymbol{U}_{\text{T}} \big)^{2} \, \big(1 + \, \lambda \boldsymbol{U}_{\text{DS}} \big) = \boldsymbol{I} + \frac{\boldsymbol{U}_{\text{DS}}}{r_{0}}$$

$$I = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left(U_{GS} - U_T \right)^2 - U_A^{-1} - 1/\lambda$$

$$\boldsymbol{r}_{o} = \left[\boldsymbol{\lambda} \; \frac{1}{2} \boldsymbol{\mu}_{n} \; \boldsymbol{C}_{ox} \; \frac{\boldsymbol{W}}{L} \left(\boldsymbol{U}_{GS} - \boldsymbol{U}_{T} \right)^{2} \; \right]^{-1} = \; \frac{\boldsymbol{U}_{A} \; + \boldsymbol{U}_{DSP_{0}}}{\boldsymbol{I}_{DP_{0}}} \label{eq:rooted_rooted_rooted}$$

U_A Earlyho napětí

λ=1/U_A koeficient modulace délky kanálu

Excel – listy NMOS a PMOS

Tabulkový procesor umožňuje vypočítat výstupní charakteristiku tranzistoru NMOS (PMOS) na základě zadaných parametrů tranzistoru (t_{ox} , W, L, UT, λ) a napětí U_{GS} .

LTspice XVII - cv07_MOSFET_VAchar.asc

File Edit Hierarchy View Simulate Tools Window Help

LTSpice vliv teploty na výstupní charakteristiku tranzistoru BS170

cv07_MOSFET_VAchar.asc

+25 degC

+125 degC

MOSFET – katalogový list

SOT23 N-CHANNEL ENHANCEMENT MODE VERTICAL DIMOS FET

BS170F

ISSUE 3-JANUARY 1996

FEATURES

- * 60Volt V_{DS}
- $R_{DS(ON)} = 5\Omega$

PARTMARKING DETAIL - MV

Maximální napětí Drain-Source

Maximální hodnota I_D – trvale – Maximální hodnota I_D – pulzně -

Maximální napětí Gate-Source

Maximální ztrátový výkon

Průrazné napětí Drain-Source

Prahové napětí -

Statický odpor D-S v sepnutém stavu

Strmost —

Vstupní kapacita

Spínací/vypínací zpoždění

ABSOLUTE MAXIMUM RATINGS.

PARAMETER	SYMBOL	VALUE	UNIT
Drain-Source Voltage	V _{DS}	60	V
Continuous Drain Current at T _{amb} =25°C	I _D	0.15	mA
Pulsed Drain Current	I _{DM}	3	А
Gate Source Voltage	V _{GS}	± 20	V
Power Dissipation at T _{amb} =25°C	P _{tot}	330	mW
Operating and Storage Temperature Range	T _j :T _{stg}	-55 to +150	°C

ELECTRICAL CHARACTERISTICS (at T_{amb} = 25°C unless otherwise stated).

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS.
Drain-Source Breakdown Voltage	BV _{DSS}	60	90		V	I _D =1ΟΟμΑ, V _{GS} =OV
Gate-Source Threshold Voltage	V _{GS(th)}	0.8		3	V	I _D =1mA, V _{DS} = V _{GS}
Gate-Body Leakage	I _{GSS}			10	nA	V _{GS} =15V, V _{DS} =OV
Zero Gate Voltage Drain Current	I _{DSS}			0.5	μА	V_{DS} =25V, V_{GS} =OV
Static Drain-Source On-State Resistance (1)	R _{DS(on)}			5	Ω	V _{GS} =10V, I _D =200mA
Forward Transconductance (1)(2)	g _{fs}		200		mS	V _{DS} =10V, I _D =200mA
Input Capacitance (2)	C _{iss}		60		pF	V _{DS} =1OV, V _{GS} =OV, f=1MHz
Turn-On Delay Time (2)(3)	t _{d(on)}			10	ns	457 1 000 1
Turn-Off Delay Time (2)(3)	t _{d(off)}			10	ns	V _{DD} ≈-15V, I _D =600mA

Příklad CP7.1:

Určete polohu pracovní bodu P_0 tranzistoru MOSFET pro hodnoty odporu R_D 1k Ω a 10k Ω . Vlastnosti tranzistoru jsou dány výstupní charakteristikou.

Řešení:

1. Popsat obvod ve shodě s charakteristikou

2. Sestavit obvodové rovnice

$$\mathbf{U}_{DD} = \mathbf{R}_{D} \mathbf{I}_{D} + \mathbf{U}_{DS} \quad (1)$$

$$U_{GS} = 3.2 V \tag{2}$$

 I_{D} [mA]

Pracovní bod tranzistoru P_0 je dán průsečíkem grafu rovnice (1) s vrstevnicí výstupní charakteristiky pro U_{GS0} =3.2V.

$$P_0 = [U_{GS0}, U_{DS0}, I_{D0}]$$

 $P_0 = [3.2V, 7.5V, 7.5mA]$

- 1. Popsat obvod ve shodě s charakteristikou
- 2. Sestavit obvodové rovnice
- 3. Grafické řešení

 U_{GS0}= 3.2V

 vybrat danou vrstevnici charakteristiky pro U_{GS0}

3.6

Pracovní bod tranzistoru P₀ je dán průsečíkem grafu rovnice (1) s vrstevnicí výstupní charakteristiky pro U_{GS0}=3.2V.

pro U_{GS0}=3.∠\

 $P_0 = [U_{GS0}, U_{DS0}, I_{D0}]$ $P_0 = [3.2V, 0.5V, 1.45mA]$

- 1. Popsat obvod ve shodě s charakteristikou
- 2. Sestavit obvodové rovnice
- 3. Grafické řešení

 U_{GS0}= 3.2V

 vybrat danou vrstevnici charakteristiky pro U_{GS0}

 $I_D = (U_{DD} - U_{DS})/R_D$ (1) vynést graf (1) v charakteristice

Excel – list Ponmos

Tabulkový procesor umožňuje určit pracovní bod tranzistoru NMOS z výstupní charakteristiky získané na základě zadaných parametrů tranzistoru (t_{ox}, W, L, UT, λ) a napětí U_{GS} a zatěžovací charakteristiky zdroje U_{DD}-R_D.

Příklad CP7.2:

Navrhněte hodnotu odporu R tak, aby I_D = 80µA. Určete hodnotu napětí U_D . Parametry tranzistoru NMOS jsou: U_T =0.6V, k_n ′= $\mu_n C_{ox}$ = 200µA/V², L= 0.8µm, W = 4 µm. Zanedbejte vliv modulace kanálu (λ =0).

Příklad CP7.2:

Navrhněte hodnotu odporu R tak, aby I_D = 80µA. Určete hodnotu napětí U_D . Parametry tranzistoru NMOS jsou: U_T =0.6V, k_n ′= $\mu_n C_{ox}$ = 200µA/V², L= 0.8µm, W = 4 µm. Zanedbejte vliv modulace kanálu (λ =0).

Postup řešení:

1. Správně popsat obvod

Příklad CP7.2:

Navrhněte hodnotu odporu R tak, aby I_D = 80µA. Určete hodnotu napětí U_D . Parametry tranzistoru NMOS jsou: U_T =0.6V, k_n ′= $\mu_n C_{ox}$ = 200µA/V², L= 0.8µm, W = 4 µm. Zanedbejte vliv modulace kanálu (λ =0).

Postup řešení:

- 1. Správně popsat obvod
- 2. Určit stav tranzistoru

$$U_{GS} = U_{DS}$$

SATURACE

$$\boldsymbol{I}_{D} = \frac{1}{2} \boldsymbol{\mu}_{n} \, \boldsymbol{C}_{ox} \, \frac{\boldsymbol{W}}{L} \, \big(\boldsymbol{U}_{GS} - \boldsymbol{U}_{T} \, \big)^{2}$$

Příklad CP7.2:

Navrhněte hodnotu odporu R tak, aby $I_D = 80\mu A$. Určete hodnotu napětí U_D . Parametry tranzistoru NMOS jsou: $U_T=0.6V$, $k_n'=\mu_nC_{ox}=200\mu\text{A/V}^2$, L= 0.8 μ m, W = 4 μm. Zanedbejte vliv modulace kanálu (λ=0).

$$\mathbf{U_{DS}} = \mathbf{U_T} + \sqrt{\frac{2\mathbf{I_D}}{\mathbf{k_n'(W/L)}}}$$

Postup řešení:

- 1. Správně popsat obvod
- 2. Určit stav tranzistoru
- 3. Výpočet U_{ns} a R

$$\begin{split} \mathbf{U}_{GS} &= \mathbf{U}_{DS} \\ \mathbf{I}_{D} &= \frac{1}{2} \mu_{n} \, \mathbf{C}_{ox} \, \frac{\mathbf{W}}{L} \, \big(\mathbf{U}_{GS} - \mathbf{U}_{T} \big)^{2} \end{split}$$

$$\mathbf{U_{DS}} = \mathbf{U_{T}} + \sqrt{\frac{2\mathbf{I_{D}}}{\mathbf{k_{n}'(W/L)}}} \qquad \qquad \mathbf{U_{DS}} = \mathbf{0.6V} + \sqrt{\frac{2 \times 80}{200 \times \left(4/0.8\right)}} = \mathbf{0.6V} + \mathbf{0.4V} = \mathbf{1V}$$

$$R = \frac{U_{DD} - U_{DS}}{I_{D}} = \frac{3 - 1}{80 \times 10^{-6}} \Omega = 25 \text{ k}\Omega$$

Příklad CP7.3:

Navrhněte hodnotu odporu R tak, aby I = 80μ A. Určete hodnotu napětí U. Parametry tranzistoru NMOS jsou: $U_T=0.6V$, $k_n'=\mu_n C_{ox}=200\mu$ A/V², L= 0.8μ m, W = 4μ m. Zanedbejte vliv modulace kanálu ($\lambda=0$).

Příklad CP7.3:

Navrhněte hodnotu odporu R tak, aby I = 80μ A. Určete hodnotu napětí U. Parametry tranzistoru NMOS jsou: $U_T=0.6V$, $k_n'=\mu_n C_{ox}=200\mu$ A/V², L= 0.8μ m, W = 4μ m. Zanedbejte vliv modulace kanálu ($\lambda=0$).

- 1. Správně popsat obvod
- 2. Určit režim tranzistoru

Mezi Drain a Source je přiloženo záporné napětí. Současně Source je propojen se substrátem (Bulk).

Přechod S-B (N⁺P) je zkratován a přechod B-D (PN⁺) je polarizován propustně.

Tranzistor se chová tak, jako by mezi SD byla zapojena propustně polarizovaná dioda.

Příklad CP7.3:

Navrhněte hodnotu odporu R tak, aby I = 80µA. Určete hodnotu napětí U. Parametry tranzistoru NMOS jsou: $U_T=0.6V$, $k_n'=\mu_nC_{ox}=200\mu\text{A/V}^2$, L= 0.8 μ m, W = 4 μm. Zanedbejte vliv modulace kanálu (λ=0).

- 3. Doplnění odpovídajících modelů a řešení

Mezi S a D je propustně polarizovaná dioda (předpokládáme, že tranzistor je křemíkový) => U_{sp}≈ 0.6 V

$$R = \frac{U_{DD} - U_{SD}}{I} = \frac{3V - 0.6V}{80 \mu A} = 30k\Omega$$

Příklad CP7.4:

Určete hodnotu odporu R, aby napětí U_{DS} =0.2 V. Parametry tranzistoru jsou: U_{T} =0.6V, k_{p} '= $\mu_{p}C_{ox}$ = 200 μ A/V², L= 0.8 μ m, W = 4 μ m. Zanedbejte vliv modulace kanálu (λ =0).

Příklad CP7.4:

Určete hodnotu odporu R, aby napětí U_{DS} =0.2 V. Parametry tranzistoru jsou: U_T =0.6V, k_p ′= $\mu_p C_{ox}$ = 200 μ A/V², L= 0.8 μ m, W = 4 μ m. Zanedbejte vliv modulace kanálu (λ =0).

Postup řešení:

- 1. Správně popsat obvod
- 2. Určit stav tranzistoru

$$U_{GS}-U_{T}>U_{DS}$$

ODPOROVÝ REŽIM

$$I_{D} = \mu_{n} C_{ox} \frac{W}{L} \left[\left(U_{GS} - U_{T} \right) U_{DS} - \frac{1}{2} U_{DS}^{2} \right]$$

Je-li $U_{DS} \ll U_{GS}$ -U_T, lze zanedbat

Příklad CP7.5:

Navrhněte hodnoty odporů R_1 a R_2 tak, aby se napětí U_{DS} tranzistoru BS170 rovnalo polovině nápájecího napětí U_{DD} .

PARAMETRY@podmínky							
U _{GS(th)}	I _D =1mA, U _{DS} =U _{GS} Gate-Source Threshold Voltage 0.8 - 3 V						
I _{GSS}	U _{GS} =15V, U _{DS} =0V	Gate-Body Leakage	10	nA			
g _{fs}	U _{DS} =10V, I _D =200mA	Forward Transconductance	200	mS			

Příklad CP7.5:

Postup řešení: 1. Popsat obvod

PARAMETRY@podmínky							
U _{GS(th)}	I _D =1mA, U _{DS} =U _{GS} Gate-Source Threshold Voltage 0.8 - 3 V						
I _{GSS}	U _{GS} =15V, U _{DS} =0V	Gate-Body Leakage	10	nA			
g _{fs}	U _{DS} =10V, I _D =200mA	Forward Transconductance	200	mS			

Příklad CP7.5:

Postup řešení: 1. Popsat obvod

2. Odhadnout stav, ve kterém se tranzistor nachází

A.
$$I_G < 10 \text{ nA} => I_G \approx 0$$
, $I_1 = I_2$

B.
$$U_{DS} = U_{DD}/2 = 7.5V =>$$
 $I_{D} = (U_{DD} - U_{DS})/R_{D} = 7.5V/1k\Omega = 7.5mA$

PARAMETRY@podmínky							
U _{GS(th)}	U _{GS(th)} I _D =1mA, U _{DS} =U _{GS} Gate-Source Threshold Voltage 0.8 - 3 V						
I _{GSS}	U _{GS} =15V, U _{DS} =0V	Gate-Body Leakage	10	nA			
g _{fs}	U _{DS} =10V, I _D =200mA	Forward Transconductance	200	mS			

Příklad CP7.5:

Postup řešení: 1. Popsat obvod

2. Odhadnout stav, ve kterém se tranzistor nachází

A.
$$I_G < 10 \text{ nA} => I_G \approx 0, I_1 = I_2$$

B.
$$U_{DS} = U_{DD}/2 = 7.5V =>$$
 $I_{D} = (U_{DD} - U_{DS})/R_{D} = 7.5V/1k\Omega = 7.5mA$

$$C. U_{GS} = ??$$

$$U_{GS(th)} = 0.8 \text{ až } 3 \text{ V} => U_T \approx 1.9 \text{ V}$$

$$I_D \sim g_m(U_{GS}-U_T) => U_{GS} \approx U_T + I_D/g_m$$

$$U_{GS} \approx 1.9 + 7.5 \text{mA}/200 \text{mA}/\text{V} = 1.94 \text{V}$$

$$U_{DS} > U_{GS} - U_{T} = > SATURACE$$

PARAMETRY@podmínky						
U _{GS(th)}	I _D =1mA, U _{DS} =U _{GS} Gate-Source Threshold Voltage 0.8 - 3 V					
I _{GSS}	U _{GS} =15V, U _{DS} =0V	Gate-Body Leakage	10	nA		
g _{fs}	U _{DS} =10V, I _D =200mA	Forward Transconductance	200	mS		

Příklad CP7.5:

Postup řešení: 1. Popsat obvod

- 2. Odhadnout stav, ve kterém se tranzistor nachází
- 3. Náhrada tranzistoru jeho modelem pro saturační oblast

PARAMETRY@podmínky							
U _{GS(th)}	I _D =1mA, U _{DS} =U _{GS} Gate-Source Threshold Voltage 0.8 - 3 V						
I _{GSS}	U _{GS} =15V, U _{DS} =0V	Gate-Body Leakage	10	nA			
g _{fs}	U _{DS} =10V, I _D =200mA	Forward Transconductance	200	mS			

Příklad CP7.5:

Postup řešení:

- 1. Popsat obvod
 - 2. Odhadnout stav, ve kterém se tranzistor nachází
 - 3. Náhrada tranzistoru jeho modelem pro saturační oblast
 - 4. Stanovení parametrů modelu

PARAMETRY@podmínky					
U _{GS(th)}	I _D =1mA, U _{DS} =U _{GS}	Gate-Source Threshold Voltage		0.8 - 3	V
I _{GSS}	U _{GS} =15V, U _{DS} =0V	Gate-Body Leakage		10	nA
g _{fs}	U _{DS} =10V, I _D =200mA	Forward Transconductance		200	mS

Příklad CP7.5:

- Postup řešení: 1. Popsat obvod
 - 2. Odhadnout stav, ve kterém se tranzistor nachází
 - 3. Náhrada tranzistoru jeho modelem pro saturační oblast
 - 4. Stanovení parametrů modelu
 - 5. Výpočet U_{GS} a návrh odporového děliče R₁R₂

Příklad CP7.5:

Postup řešení: 1. Popsat obvod

- 2. Odhadnout stav, ve kterém se tranzistor nachází
- 3. Náhrada tranzistoru jeho modelem pro saturační oblast
- 4. Stanovení parametrů modelu
- 5. Výpočet U_{GS} a návrh odporového děliče R₁R₂

Volíme-li $R_2 = 100k$, pak je $R_1 = 560k$ a $I_1 = 23\mu$ A