His some

CENTRE NATIONAL DE TÉLÉ-ENSEIGNEMENT DE MADAGASCAR (CNTEMAD)

EXAMEN - DEUXIÈME SESSION

Année Universitaire : 2019-2020

Mention Niveau

: I : M1

Date (demi-journée) : MERCREDI (MATIN)

Durée

: 03:00

Mathématiques appliquées à la communication et à l'informatique

Exercice I

Application des processus de naissance et de mort ; cas d'un processus de naissance pure. C'est un processus pour lequel la probabilité conditionnelle de naissance entre t et t+dt vaut λdt . Soit K la variable aléatoire correspondant au nombre de naissances entre 0 et t:

$$P[K(t+dt) = k+1/K(t) = k] = \lambda dt$$

1- Ecrire les équations différentielles permettant d'étudier la famille de fonctions (P_k) , où :

$$P_k(t) = P[K(t) = k]$$

2- Démontrer que l'on obtient

$$P_k(t) = \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$

3- Calculer E[K(t)] et E[K(t)(K(t)-1)]. En déduire Var[K(t)].

4- Calculer la fonction de répartition du temps séparant deux arrivées. En déduire sa densité de probabilité. Donner son espérance mathématique.

Exercice II

On considère la fonction f de \mathbb{R} dans \mathbb{R} donnée par : $f(x) = \frac{3x-1}{x-3}$.

- a) Montrer qu'il existe un réel et un seul, noté a, n'ayant pas d'image par f.
- b) Montrer qu'il existe un réel et un seul, noté b, n'ayant pas d'antécédent par f.
- c) Montrer que la restriction g de f à $\mathbb{R}\setminus\{a\}$ au départ et à $\mathbb{R}\setminus\{b\}$ à l'arrivée est bijective, et préciser l'application réciproque g^{-1} de g.

M1 !