National University of Singapore School of Computing

	CS2105		Tutorial 8	Question paper
1.	•	-	e links in the Internet were to very service be redundant?	to provide reliable delivery service Why or why not?
2. [KR, Chapter 5, P5/P6] Consider a 4-bit general checksum R if data D has the following value?				with value 1001 , what is the CRO
	a) 110001110	10		
	b) 011010101	01		
	c) 111110101	01		
	d) 100011000	01		
3.	Consider the following two-dimensional parity matrix.			
	a) Give an exam	ple of a 1-	bit error that can be detecte	ed and corrected.
	b) Give an exam	ple of a 2-	bits error that can be detec	ted but cannot be corrected.
	c) Give an exam	ple of a 4-	bits error that cannot be de	tected.

4. There are many nodes in a shared medium network and most nodes are likely to transmit frequently. Which of the following multiple access protocol(s) is (are) suitable? (1) TDMA; (2) CSMA; (3) Token passing.

Time distributed multiple access: go through all the nodes, see if got stuff to transmit, else pass Carrier sense multiple access: check if anyone is using the channel

5. Nodes A and B are accessing a shared medium using CSMA/CD, with propagation delay of 245 bit times between them (i.e., propagation delay equals to the amount of time to transmit 245 bits). Minimum frame size is 64 bytes. Suppose node A begins transmitting a frame at t=0 bit time. Before A finishes, node B begins transmitting a frame. Assume no other nodes are active.

Write down your answers to the following 2 questions in the unit of **bit time**.

- a) When is the latest time, by which *B* can begin its transmission?
- b) Suppose *B* begin its transmission at the time computed in a), can *A* detects that *B* has transmitted before it finishes transmission?

