$$|21|$$

$$|x^{2}+y^{2}+k(x^{2}+y^{2})=2020$$

$$|x^{2}+y^{2}+k(x^{2}+y^{2})=2020$$

$$|x^{2}+k^{2}|+(y^{2}+ky^{2})=2020$$

$$|x^{2}+k^{2}|+(y^{2}+ky^{2})=2020$$

$$|x^{2}+k^{2}|+(y^{2}+ky^{2})=2020$$

$$|x^{2}+k^{2}|+(y^{2}+ky^{2})=2020$$

$$|x^{2}+k^{2}+k^{2}|+(y^{2}+ky^{2})=2020$$

$$|x^{2}+k^{2}+k^{2}+k^{2}|+(y^{2}+ky^{2})=2020$$

$$|x^{2}+k^{2$$

5012 元3+y3+ K(x+y)=y+7+K(y+2) (一) パーカマーデー (メルト)ととこの プナタナナアントKナトKモーの 7 + 4 + 7 + K = C (-1) K=- (x+y+Z) ターケーナー (x+y+上)(yx+) (=) (xy + y 7+72 = 0 2+4)=2020+(U+y)2+(U+y)

$$t =) -2000 = 2(x+y) + xy(x+y)$$

$$= x^{2}(y+z) + y^{2}(x+z)$$

$$= x(xy+xz) + y(xy+yz)$$

$$= -xyz - xyz$$

$$= -2xyz$$

$$= -2xyz$$

$$= -2xyz$$

[72] $2^{9} \cdot 3^{6} + 9 = 6$ Sil clearly, 3/c We may write C=3C1 ah d [v h 72] $9^{2^{\frac{1}{3}}-2}(C_{1}-1)(C_{1}+1)$ $gal(C_1 - 1, C_1 + 1) = 2$ Since 9+1>9-1, we have 3 rares:

$$\frac{Ca(41:}{C_{1}-1=2, C_{1}+1=2:3}$$

$$=\frac{a-1}{3}$$

$$=\frac{1}{3}$$

$$=\frac{1$$

$$|x| = 2.$$

$$|x| = 3.$$

Case 202: 6-27

Now,
$$(mrd 3) \Rightarrow a-2$$
 even

$$3^{h-2} = (2^{\frac{q-h}{2}} - 1)(2^{\frac{q-h}{2}} + 1)$$

$$y cd(x, x) = 1$$

$$2^{\frac{q-2}{2}} + (-3)$$

$$(a, b, c) = (4, 3, 21)$$

$$Cales: C_{1}-1=2^{a-1}, C_{1}+1=3\cdot 2$$

$$2^{a-2}+1=3^{b-2}$$

$$2^{a-1}+1=3^{b-2}$$

L(enrly,
$$a-2>0$$

 $1 \cdot b \cdot ca(e + 1 : a-2 = 1)$
 $1 \cdot (a_1b_1c_1) = (3,3), (5)$ (3)
 $1 \cdot (a_1b_1c_1) = (3,3), (5)$ (4)
 $1 \cdot (a_1b_1c_1) = (3,3), (5)$ (4)

(NFC) tot (BFE) Forthocenre of DANG af=GH.GA 3GE-GB(=)GC-GD O=) GF tengont to (BFE) O = GF tangent to (DFC)

Pannyimal Hof nonattacking Knights in a 6x6

Sol Ans: 18

Example:

and place 19 Knighti at the white 19 unes.

Vow: Consider the numberity

	17	18			3	14		15	
	10		17		5	16		13	
	18	7	3	9		12		14	
		10	12	6		5		9	
1	7	8		2		7		4	
1		2	3	4		G		5	

for this pairing, Rivery

2 squires Raving the same #

can attack each other.

The can't place more than

18 knights

Sol By Canachy:
$$L|+S = \sum \frac{\alpha}{2a+abc} > \frac{(a+b+c)^2}{2(a+b+c)} > \frac{(a+b+c)^2}{2(a+b+c)^2} > 1$$

Call
$$S = a + b + c$$
 $3 \leqslant S \leqslant 6$

and it is enough to

Verify $+b \Rightarrow f$

$$\frac{S}{2 + \frac{1}{9} s^{2}} > f$$
 $(S - 3)(S - 6)$

(=1) $a = b = c = 1$ or

 $a = b = c = 2$