THE AI REPORT

2024년 노벨상이

조명한 AI : 경제학상편

2024

한국지능정보사회진흥원

「The Al Report」는 인공지능 기술·산업·정책의 글로벌 이슈와 동향, 시사점을 적시에 분석, 인공지능 현안에 빠르게 대응하고 관련 정책을 지원하기 위해 한국지능정보사회진흥원(NIA)에서 기획·발간하고 있습니다.

- 1. 본 보고서는 방송통신발전기금으로 수행하는 정보통신·방송 연구개발 사업의 결과물이므로, 보고서 내용을 발표할 때는 반드시 과학기술정보통신부 정보통신·방송 연구개발 사업의 연구 결과임을 밝혀야 합니다.
- 2. 한국지능정보사회진흥원(NIA)의 승인 없이 본 보고서의 무단전재를 금하며, 가공·인용할 때는 반드시 출처를 「한국지능정보사회진흥원(NIA)」이라고 밝혀 주시기 바랍니다.
- 3. 본 보고서의 내용은 한국지능정보사회진흥원(NIA)의 공식 견해와 다를 수 있습니다.

▶ 발행인 : 황 종 성

▶ 작성

- 한국지능정보사회진흥원 인공지능정책본부 책임형기술지원센터준비반 오연주 수석연구원(oyeonj@nia.or.kr)

2024년 노벨상이 조명한 AI: 경제학상편

- 혁신, 불평등, 지속가능성에 관한 정책적 탐색 -

NIA 책임형기술지원센터준비반 오연주 수석연구원(oyeoni@nia.or.kr)

☑ AI 연구의 선구자들, 2024 노벨상을 수상하다

- 2024년 노벨 물리학상은 존 홉필드(John J. Hopfield)와 제프리 힌튼(Geoffrey E. Hinton), 화학상은 데미스 허사비스(Demis Hassabis)와 존 점퍼(John Jumper) 등 AI 분야의 선구자들에게 수상됨
- 홉필드와 힌튼은 물리학적 방법론, 특히 열역학 및 통계 물리학의 원리를 활용하여 오늘날 기계학습의 기반이되는 인공신경망 기술을 개발한 업적을 인정받음¹⁾
- 허사비스와 점퍼는 노벨 화학상을 공동 수상한 데이비드 베이커의 계산 기반 단백질 설계 연구를 발전시켜, AI를 활용한 단백질 구조 예측 모델인 알파폴드2를 개발²⁾
- 이들의 노벨상 수상을 두고 물리학 및 화학의 전통적 학문 경계를 넘어선다는 논란이 있었으나, 동시에 AI가 현대 과학에 미치는 혁신적 영향력을 공식적으로 인정하고 학제 간 연구의 가치를 조명하는 계기 마련³⁾
 ※ AI 선구자들의 2024년 노벨 물리학상 및 화학상 수상에 관한 상세 논의는 THE AI REPORT 2024-13호 참조
- 2024년 노벨상과 AI를 연결 짓는 다양한 논의들 속에서 크게 주목받지 못했으나, 경제학상 공동 수상자 중 대런 아제모을루(Daron Acemoglu)는 경제학 분야에서 AI 연구의 선구적 역할 수행
- 특히, 아제모을루와 사이먼 존슨(Simon Johnson)은 2023년 발간된 대중서 「권력과 진보」를 통해 노벨상 수상 연구의 핵심 주제였던 제도와 경제발전의 관계를 AI 시대의 제도적 역할과 도전과제로 확장하여 논의
- 아울러, 아제모을루는 제도경제학적 관점에서 AI가 경제, 사회, 정치에 미치는 영향을 분석한 다수의 논문을 발표하며, AI 발전의 바람직한 방향을 위한 정책적 해결 방안을 모색
- 아제모을루의 연구는 AI가 경제적 효율성, 생산성, 노동 시장에 미치는 다면적 영향을 분석하는 데서 나아가 구체적인 정책적 해결책을 제안한다는 점에서 근거 기반 정책 수립을 위한 토대 제공
- 본 보고서에서는 AI 정책 연구의 선구자인 대런 아제모을루의 AI 관련 연구를 다음과 같이 중점적으로 탐색
- (기본 가정) 대표 저서인 「국가는 왜 실패하는가」와 「권력과 진보」의 핵심 내용을 살펴보고, 제도와 기술 간의 관계에 대한 아제모을루의 기본 가정을 확인
- (정책 연구) 최근 5년간 발표된 AI의 경제·사회·정치적 영향에 관한 정책 연구를 검토하고, AI가 초래할 수 있는 부정적 영향을 완화하기 위한 구체적인 정책 방안 확인
- (정책 시사점) 기존 연구 분석을 통해 도출된 근거를 바탕으로 AI 정책 방향 설정을 위한 시사점 제시

☑ 국가는 왜 (번영을 이루는데) 실패하는가⁴⁺

- (저서 개요) 「국가는 왜 실패하는가」는 아제모을루를 비롯한 2024년 노벨 경제학상 수상자들이 2000년대초반 수행한 연구를 종합한 저서로, 국가의 경제적 번영과 제도 간의 관계를 대중적으로 설명
- 이 책에서 저자인 아제모을루와 제임스 로빈슨(James A. Robinson)은 지리적 위치 가설, 문화적 요인 가설, 무지(無知) 가설 등 국가의 번영과 빈곤을 설명하는 기존 가설에 도전하며 제도가 가장 큰 영향 요인임을 주장

l 국가의 번영과 빈곤	'에 관한 가?	설 및 저자	- 반론
--------------	----------	--------	------

구분	기본 가정	반론
지리적 위치 가설	■ 기후, 자연환경, 천연자원, 질병 환경 등 지리적 조건이 국가 경제 발전을 결정	 역사적으로 볼 때 경제적 성패와 기후나 지리적 위치 사이에 일관된 상관관계 부재 같은 지역 내에서도 시대에 따라 부의 불평등이 크게 변화
문화적 요인 ■ 종교, 가치관, 사회적인 규범과 같은 가설 문화적 요인이 경제 발전을 좌우		■ 문화적 측면은 경제적 차이의 원인이 아닌 제도로 인해 생긴 현상 ■ 남한 vs. 북한, 미국과 멕시코 국경을 따라 갈라진 도시인 노갈레스 市의 차이는 서로 다른 제도로 인해 발생한 결과
무지 가설	■ 정책 입안자들의 지식과 정보의 부족이 국가의 경제 발전을 제약	 빈곤한 국가의 지도자들은 경제 발전 방법을 모르는 것이 아니라, 의도적으로 착취적 제도를 유지 이는 기득권의 권력과 이익을 지키기 위한 선택

- 저자들은 위의 가설들 대신 한 국가의 제도를 크게 포용적 제도(inclusive institutions)와 추출적 제도 (extractive institutions)로 나누며, 이러한 제도적 차이의 중요성을 강조
- **(포용적 제도)** 사회 구성원 모두에게 경제적·정치적 참여의 권리와 기회를 보장하는 제도적 체계를 의미
- 경제적 측면: 재산권 보호와 공정한 시장 경쟁이 이루어지며 개인의 재능을 활용할 기회가 보장되어 혁신과 창조적 파괴(creative destruction)를 장려하는 구조
- 정치적 측면: 권력의 분산과 다원주의를 기반으로 하며, 법치주의가 확립되어 시민들의 정치 참여가 보장되고 권력자에 대한 견제와 균형이 작동
- 제도의 효과 : 포용적 제도 하에서는 혁신과 창조적 파괴가 자연스럽게 발생하여 지속 가능한 경제 성장의 원동력이 되는 한편 사회적 형평성 증진
- **(추출적 제도)** 소수 엘리트 집단이 경제적·정치적 권력을 독점하고 다수로부터 부를 추출하는 제도적 구조
- 경제적 측면: 엘리트 계층이 대중으로부터 부를 추출하는 데 집중하고, 재산권이 보장되지 않으며, 기득권의 이익을 보호하기 위해 혁신을 억제하고 경제적 기회를 제한
- 정치적 측면 : 소수 엘리트에게 권력이 집중되어 견제 없는 절대적 권력 행사가 가능하며, 대중의 정치 참여가 제한되고 권력자의 자의적 지배가 이루어짐
- 제도의 효과 : 추출적 제도 하에서는 단기적 경제 성장은 가능하나, 혁신과 생산성 향상이 제한되어 장기적인 성장이 저해되고 사회적 불평등과 정치적 불안정성 심화

⁺ 본문에서 별도의 참고문헌을 표기하지 않은 내용은 각 장(章)과 절의 제목 옆에 표시된 참고문헌을 기반으로 함

○ (자기강화적 특성) 제도는 쉽게 바뀌지 않는 자기강화적 특성을 가지고 있어, 포용적 제도는 더 많은 참여와 혁신을 촉진하는 반면, 추출적 제도는 기득권층의 이해관계를 보호하여 불평등 현상을 유지

| 포용적 제도와 추출적 제도의 비교 |

구분	포용적 제도	추출적 제도		
경제적 측면	 사유재산권의 확실한 보장 법치주의 기반 공정한 시장 체제 공공 서비스와 교육 기회의 평등한 제공 자유로운 시장 진입과 계약의 공정성 기술혁신과 창조적 파괴 촉진 	 재산권 보호 부재 또는 차별적 적용 소수 엘리트의 경제적 기회 독점 자원과 부의 불공정한 분배 진입 장벽과 규제로 시장 통제 기술혁신과 창조적 파괴 억제 		
정치적 측면	 권력의 다원화 및 견제와 균형 광범위한 정치 참여 보장 법 앞의 평등 언론의 자유와 정보 투명성 권력 남용 제한 장치 존재 	 소수 엘리트의 권력 독점 정치 참여의 제한 법적 차별과 특권 존재 언론 통제와 정보의 비대칭 권력 견제 장치 부재 		
참여와 혁신을 통한 선순환 제도적 특성 지속가능한 경제 성장 촉진 사회적 형평성 증진 제도의 자기강화적 발전 변화 가능성 점진적 개선과 혁신 가능 다양한 이해관계자 참여		■ 기득권 보호를 유지·강화하는 악순환 ■ 단기적 성장은 가능하나 지속 불가 ■ 불평등 심화		
		 기득권층의 강한 저항 경로의존성으로 변화 어려움 중대한 전환점에서만 변화 기회 		

- (제도와 기술) 「국가는 왜 실패하는가」에서 기술은 핵심적 주제는 아니지만, 역사적으로 중요한 의미를 가진 기술의 사례들을 통해 제도와 기술 발전의 관계를 설명
- 포용적 제도는 공정한 경쟁 환경의 마련과 개인의 재산권 보호를 통해 기술 개발의 동기를 부여하고, 새로운 기술이 기존 기술을 대체하는 창조적 파괴 과정을 허용함으로써 경제 전반의 발전 촉진
- 반면 추출적 제도 하에서는 기존 엘리트들이 자신들의 이익을 위협할 수 있는 새로운 기술을 의도적으로 차단 하거나 억제함으로써 창조적 파괴를 저해하며, 이는 장기적으로 경제 성장을 제약

| 제도별 기술 혁신·저해 사례 |

제도	사례	주요 내용		
포용적	영국 산업혁명	■ 특허법을 통한 발명가의 재산권 보호는 제임스 와트의 증기기관을 비롯한 기술혁신 촉진 ■ 방직 기술 도입 과정에서 러다이트 운동이 일어났으나, 제도적 보호를 통해 기술혁신 지속		
제도	미국 기술혁신	■ 19세기 포용적 특허제도는 일반 시민의 접근성을 보장하여 발명가들의 혁신 활동 촉진 ■ 운하 이권 세력 반발에도 불구하고, 새로운 운송 체계로의 전환을 위해 철도산업 도입		
추출적	오스만 제국 인쇄기 사용 금지	■ 1485년 술탄 바예지트 2세는 인쇄기 사용을 금지했고, 300년 넘게 금지령 지속 ■ 종교 지도자와 서기관 계층의 기득권 보호를 위해 기술적·문화적 발전 억제		
제도	합스부르크 제국 철도건설 제한	■ 사회변동과 혁명에 대한 우려로 제국 내 철도건설을 의도적으로 제한하고 낙후성 유지 ■ 전통적 엘리트 계층의 이권을 보호하기 위해 봉건 질서와 농노제도를 의도적으로 유지		

☑ 기술은 왜 (공유된 번영을 이루는데) 실패하는가

- (저서 개요) 아제모을루와 존슨은 2023년에 발표한 저서 「권력과 진보」에서 기술 발전의 문제를 전면에 내세 우며 경제·사회·정치적 선택이 기술 발전의 방향과 사회적 영향을 결정짓는 방식을 분석
- 기술 및 '지향적 기술 변화(directed technological change)'는 아제모을루가 제도와 국가의 번영 간의 관계와 연계하여 경력 초기부터 20여 년간 이어 온 연구 주제

Ⅰ 제도와 기술 변화의 상호연관성에 관한 아제모을루의 인터뷰⁶⁾Ⅰ

"경제 성장의 정치경제학, 즉 어떻게 성장을 이룰 것인지, 성장을 뒷받침하기 위해 어떤 제도가 필요한지, 누가 성장의 혜택을 받는지, 어떻게 성장을 규제할 것인지, 그리고 기술, AI, 자동화, 기술 변화의 방향성, 이 모든 것들이 서로 긴밀하게 연결되어 있다고 생각합니다."

- 지향적 기술 변화는 기술이 정해진 경로를 따르는 과학적 과정이 아니라, 어떤 기술을 추구할지, 누가 혜택을 받을지, 어떤 도전을 할지에 대한 선택의 결과임을 가정
- 최근에는 AI와 자동화 기술이 기존의 불평등을 심화시키고 민주주의를 위협할 수 있다는 우려를 제기하며, 보다 포용적인 방향으로의 기술 발전 필요성 강조
- (공유된 번영) 「국가는 왜 실패하는가」가 국가 차원의 경제적 번영에 주목했다면, 「권력과 진보」는 기술 발전의 혜택이 사회 구성원에게 골고루 분배되어 공유된 번영(shared prosperity)으로 이어지는지를 핵심적으로 다툼
- 계몽시대의 제러미 벤담부터 오늘날 빅테크 리더에 이르기까지 테크노-낙관주의자들에게 진보란 새로운 기술이 인간의 역량을 확장하고 경제 전반에 적용되어, 생산성과 효율성을 증가시키는 과정으로 이해됨
- 이에 반해 아제모을루와 존슨은 단순한 생산성 향상과 기술혁신이 불평등을 심화할 수 있다고 경고하며, 진정한 진보란 기술 발전의 혜택이 소수에게 독점되지 않고 사회 구성원 모두에게 공유되는 과정임을 강조
- 이들은 생산성 향상과 임금 상승의 선순환, 노동자의 협상력 제고, 포용적 성장, 민주적 의사결정 등의 메커 니즘이 제대로 작동할 때 기술 발전이 사회 전반의 불평등을 완화하고 진정한 진보에 기여할 것임을 주장
- (생산성 밴드왜건과 그 한계) 아제모을루와 존슨은 새로운 기계와 생산 방법이 모든 사회 구성원의 부를 증진할 것이라는 가정을 "생산성 밴드왜건"이라 명명하고, 이 가정의 허구성을 비판
- 새로운 기술이 공유된 번영으로 이어지는 것은 자동적인 과정이 아니며, 번영으로 이어지느냐 아니냐는 사회가 내리는 경제적·사회적·정치적 "선택"의 결과
- 근대 초기 농업 기술의 발전, 중세 말 유럽의 항해 기술, 산업혁명기의 방적 기술, 면화 재배 기술, 화학 비료의 발명에 이르는 기술 발전의 역사는 대부분 부의 집중과 불평등 심화를 입증
- 최근의 사례로, 1970년대 중반 이후 생산성 향상이 실질임금 상승으로 이어지지 않은 현상은 기술 발전의 혜택 공유가 기술 자체가 아닌 사회적 규범과 제도에 의해 결정됨을 시사

- (디지털 전환과 불평등 심화) 컴퓨터 혁명 초기, 공유된 번영의 시기가 도래할 것이라고 낙관했던 것과 달리 1980년 이후로 실질임금 상승률 및 부의 집중도 등 불평등 지표가 급격히 악화
- 저자들은 미국의 디지털 전환 과정에서 심화된 불평등은 노동운동의 약화, 제도적 변화 요구, 프리드먼 독트린 및 디지털 유토피아 비전의 확산 등에 따른 의도적 선택의 결과로 나타난 것으로 분석
- 노동운동 약화 : 기업의 조직적 대응, 제조업 고용 감소, 노조의 조직 범위 제한 등으로 노조 가입률이 급감 하면서 노동자들의 발언권과 협상력이 현저히 약화
- 제도적 변화 : 1970년대 이후 규제 완화, 반독점법 약화, 법인세 감면 등 기업 권력을 강화하는 방향으로 제도가 변화하면서 기업의 시장지배력과 정치적 영향력이 크게 증가
- 프리드먼 독트린 : 기업의 유일한 사회적 책임은 이윤 극대화이며 주주 가치 제고가 곧 공공선이라는 논리로, 노동자를 비용으로 보고 임금 억제와 고용 축소를 정당화하는 경영 이념 정착
- 디지털 유토피아 비전 : 소수의 뛰어난 프로그래머와 엔지니어가 설계한 자동화 기술이 인간의 노동을 대체 하면 더 나은 세상이 될 것이라는 엘리트주의적이고 기술결정론적인 사고방식 확산

|디지털 전환기 불평등 심화 원인 |

- (AI 환상) 저자들은 디지털 유토피아 비전이 AI 시대에 접어들어 AI가 모든 사회 구성원에게 궁극적으로 혜택을 가져다줄 것이라는 허구적 낙관론, 즉 "AI 환상"으로 이어지고 있음을 비판
 - "AI 환상" 속에서 AI의 위험성이 과소평가되고, AI의 부정적 영향에 대한 적절한 보호 장치 없이 사회 전반에 AI를 급진적으로 도입하려는 시도가 소수의 의해 추진되는 상황
 - 저자들은 특히 AI가 감시, 여론 조작, 정보 통제에 활용되어 민주주의를 위협하고, 약화된 민주주의가 AI 기술 독점과 디지털 권위주의를 강화하는 악순환을 초래할 수 있다는 우려를 제기
- (대안적 기술 발전 경로) 아제모을루와 존슨은 사회적·정치적 권력이 기술 발전의 방향을 선택해 온 역사를 추적하여 현재의 AI 발전 궤적이 유일한 선택지가 아니며 더 나은 방향으로의 전환 가능성이 있음을 강조
 - 이들은 기술의 방향 전환을 위한 세 가지 실천 과제로서 ① 기술의 방향에 대한 내러티브와 규범의 변화, ② 길항 권력의 구축, ③ 구체적인 정책 대안의 마련을 제안함
- (정책 대안 검토) 이하에서는 대안적 기술 발전 경로를 향한 세 가지 실천 과제 중에서도 특히 AI 시대의 불평등 심화와 사회적·정치적 위험을 방지하기 위한 구체적 정책 대안들을 중점적으로 검토

☑ AI로 인한 피해의 세 가지 차원⁷⁾

- (AI로 인한 피해) 아제모을루는 AI가 적절한 규제 없이 현재의 개발·활용 궤도를 유지할 경우 발생할 수 있는 피해를 경제적, 사회적, 정치적 차원에서 분석
- 이러한 피해는 AI 기술 자체의 문제가 아니라, 기업과 정부가 노동자와 시민을 상대로 권한을 강화하기 위해 AI 기술을 개발하고 활용하는 방식에서 비롯됨을 강조

| AI로 인한 피해의 세 가지 차원 |

○ (경제적 피해) AI 기술의 무분별한 도입은 비용 절감을 위한 과도한 자동화와 노동자 감시를 야기하여 노동자의 자율성과 학습 기회를 침해할 뿐만 아니라, 노동 시장의 불균형과 생산성 저하를 초래할 수 있음

| 경제적 피해의 유형 | 유형 주요 |

유형	주요 내용		
과도한 자동화	 AI에 기반한 자동화는 생산성 향상의 긍정적 효과와 노동력 대체의 부정적 효과를 동시에 수반 대부분의 AI 자동화가 생산성 향상이 미미한 '그저 그런 기술'에 그치고 있음 노동자들의 실질임금 하락, 일자리 감소, 노동분배율의 전반적 하락을 초래 		
기술 편향성	■ AI 기술 발전의 현재 궤도는 지나치게 자동화에 편중되어 있음 ■ 대부분의 투자와 연구가 노동 대체에 집중되면서 노동 시장의 불균형 심화		
인간 판단 약화	AI가 단순 업무를 대체하여 인간이 창의적인 일에 집중할 것이라는 전망은 지나친 낙관일 수 있음 다양한 업무 경험을 통한 학습과 판단력 향상의 기회가 줄면서 문제 해결 능력이 저하될 가능성 장기적으로 노동생산성 저하로 이어질 수 있는 심각한 문제		
과도한 감시	AI 기반 작업장 감시는 노동자의 자율성을 침해하고 작업장 내 신뢰 관계를 훼손 노동자에서 사용자로의 부의 이전 수단으로 작용하며, 노사 간 권력 불균형 심화 장기적으로는 노동자의 동기부여와 창의성 저해		

- 사회적 피해 : AI 기반의 데이터 수집과 활용이 초래하는 프라이버시 침해와 데이터 외부 효과는 소수 기업의 시장지배력 강화로 이어지고, 시장 왜곡과 소비자 행동 조작으로 확대

| 사회적 피해의 유형 |

유형	주요 내용		
■ 데이터가 AI의 핵심 자원이 되면서 기업의 무분별한 데이터 수집이 프라이버시 침해 문제를 데이터 과잉 수집 ■ 한 개인의 데이터가 타인의 행동을 예측하는 데 활용되면서 데이터 공유로 인한 외부 효과 ■ 개인의 데이터 보호 노력을 무력화하고 데이터의 사회적 가치를 왜곡			
불공정 경쟁	■ AI 기업의 데이터 독점은 더 나은 서비스 제공과 추가 데이터 확보라는 자기강화적 순환구조 형성 ■ 이 과정에서 신규 진입자들의 효과적 경쟁이 불가능해지면서 소수 기업의 시장지배력 강화		
행동 조작	■ 소비자의 취약점을 파악하여 충동구매를 유도하거나 단기적인 만족감을 충족시키는 제품 판매 ■ 행동 조작은 소비자 후생을 저해할 뿐만 아니라, 시장에서 제공되는 제품의 구성을 왜곡		

- 정치적 피해 : AI가 조장하는 반향실 효과*와 감정적 소통은 정치적 담론의 질을 저하시키는 한편, 광범위한 감시와 노동자 권한 약화는 시민의 자유와 정치적 영향력을 약화시킴으로써 민주주의를 위협
 - * 특정한 의견이 고립된 또는 한정된 공간에서 반복적으로 공유되어 해당 의견이 증폭 또는 강화되는 현상

| 정치적 피해의 유형 |

유형	주요 내용	
반향실 효과 및 양극화 - 레 알고리즘은 기존 신념과 일치하는 정보를 우선하여 노출함으로써 반향실 효과를 만듦 - 플랫폼의 참여도 최대화 전략과 맞물려 사회 구성원 간 의견 양극화를 가속화 - 민주적 합의 도출을 저해하는 구조적 문제 야기		
온라인 소통 위험	■ AI 기반 소셜미디어는 즉각적이고 감정적인 반응을 우선시하면서, 복잡한 사회적 이슈를 단순화 ■ 민주주의가 요구하는 깊이 있는 토론 및 숙의, 이성적 논의와 합의 형성을 근본적으로 위협	
빅브라더 효과	■ AI 기술은 기업과 정부가 전례 없는 수준으로 대중을 감시하고 통제할 수 있는 도구 제공 ■ 시민의 자유와 프라이버시를 침해하고, 자기검열과 순응을 강요함으로써 민주사회 기반 약화	
민주주의 약화	■ 자동화는 노동자의 협상력을 약화시키며, 이는 더 넓은 사회적·정치적 영향력 감소로 이어짐 ■ 권력 불균형의 심회는 정치적 평등을 위협하며, 소수 엘리트 중심의 의사결정 구조를 강화	

☑ 아제모을루의 AI 정책 연구 검토

- AI의 경제·사회·정책적 영향에 관한 아제모을루의 최근 연구(2020년~2024년) 중 9개의 논문 및 단행본의 장(章)을 선정하여 주요 문제 인식과 정책 제안을 검토
 - 각 연구를 대표하는 정책 질문을 제시하여 핵심 문제의식을 명확히 드러내는 한편 문제 상황, 실증 분석, 정책 제안을 정리하여 연구의 맥락과 함의를 파악
 - 9개 중 2개 연구는 AI 기술이 경제 성장 및 소비자 행동 조작에 미치는 직접적인 효과를 분석하며, 나머지 연구는 AI 발전으로 인한 노동 시장, 데이터 경제, 플랫폼 환경 변화 등 간접적 영향을 조명
 - AI의 경제적 영향에 관한 연구는 주로 미국의 데이터에 기반하여 다른 국가나 지역에 적용 시 주의가 필요하며, 사회·정치적 영향 연구는 AI 환경에서의 보편적인 메커니즘을 다루고 있어 국가별 맥락을 고려하여 적용 가능

1. 경제적 영향

○ 정책 질문 1 : 자동화는 노동 수요에 어떠한 영향을 미치는가?⁸⁾⁺⁺

- (문제 상황) 1980년대 중반 이후 노동 수요 증가세가 감소하고, 2000년대 들어서는 정체 상태에 접어들면서 노동에 지급된 임금 총액(economy-wide wage bill)의 증가율도 급격히 감소
- 이전의 기술혁신과 유사하게 자동화가 궁극적으로 노동 수요를 창출하여 고용과 임금을 증가시킬 것이라는 낙관적 전망과 달리, 노동 수요와 임금의 증가율은 지속적으로 둔화되는 추세를 보임
- 전후 약 40년간 자동화와 새로운 과업 창출이 균형을 이루며 노동 수요 증가와 임금 상승을 견인하였으나, 최근에는 생산성 향상이 정체되고 과업 내용이 노동에 불리한 방향으로 변화하면서 이러한 불균형을 완화할 정책적 개입이 필요한 상황
- (시기별 비교) '1947~1987년'(이하 시기 1)과 '1987~2017년'(이하 시기 2)의 노동 수요 추이를 살펴봄 으로써, 지속가능한 성장을 위해 필요한 정책적 지원과 기술혁신의 방향을 도출
 - 산업별 노동 비중: 시기 1에는 제조업과 건설업의 노동 비중이 안정적으로 유지되며 서비스업에서는 점진적 상승세를 보임. 시기 2에는 제조업과 건설업의 노동 비중이 급격히 감소했는데, 이는 해당 산업에서 자동화로 인해 노동이 대체되었음을 의미

| 1947~1987년, 산업별 노동 비중 |

| 1987~2017년, 산업별 노동 비중 |

• 임금 총액: 시기 1에는 임금 총액이 생산성과 유사한 수준인 연 2.5% 증가했으나, 시기 2에는 연 1.33%로 감소하였으며 2000년 이후 실질임금 정체

| 1947~1987년, 임금 총액 변화 |

| 1987~2017년, 임금 총액 변화 |

⁺⁺ 정책 질문 1~3을 다루는 논문에서 자동화란 AI를 적용한 자동화뿐만 아니라 로봇, 장비, 소프트웨어 등의 도입에 따른 일반적인 자동화를 의미하며, AI의 핵심 기능인 자동화가 가져올 수 있는 잠재적 영향을 파악하고자 분석 대상으로 포함

• 전 분야 과업 내용 변화 : 시기 1에는 노동 대체 효과(-0.48%)와 노동 창출 효과(+0.47%)가 균형을 이룬 반면, 시기 2에는 노동 대체 효과(-0.7%)가 노동 창출 효과(+0.35%)를 크게 압도하며 노동 수요 감소

| 1947~1987년, 전 분야 과업 내용 변화 |

I 1987~2017년, 전 분야 과업 내용 변화 I

• 제조업 과업 내용 변화 : 시기 2 동안 제조업에서는 연 1.1%의 노동 수요 감소가 발생하였는데, 이는 30년간 누적 약 30%의 일자리가 감소한 것을 의미하며 전 산업 평균의 두 배에 달하는 자동화 영향이 확인됨

| 1947~1987년, 제조업 과업 내용 변화 |

| 1987~2017년, 제조업 과업 내용 변화 |

- (정책 제안) 생산성 향상이 미미한 자동화를 억제하고, 자동화와 새로운 직무 창출 간의 균형을 위해 ① 자본에 대한 조세 제도 개선, ② 장기 혁신 투자 확대, ③ 적극적 노동 시장 정책 추진을 제안
- 조세 제도 개선 : 비용 절감만을 목적으로 하는 자동화에 대한 세제 혜택을 축소하고, 생산성 향상과 새로운 직무 창출로 이어지는 자동화 기술에 대한 세제지원을 강화하여 기업의 투자 방향 유도
- 장기 혁신 투자 : 대형 기술 기업 중심의 단기적 자동화 추구 경향을 개선하기 위해 장기적 관점의 R&D 지원을 확대하고, 새로운 직무 창출과 연계된 기술 개발 프로젝트를 우선 지원
- 노동 시장 정책: 자동화로 인한 직무 대체가 예상되는 분야의 노동자들을 위한 재교육 프로그램을 강화하고,
 새로운 직무에 필요한 기술훈련을 제공하여 원활한 노동 시장 전환을 지원

○ 정책 질문 2 : 자동화 기술은 임금 불평등에 어떠한 영향을 미치는가?⁹⁾

- (문제 상황) 자동화 기술의 도입은 생산성을 증가시키는 반면, 특정 노동 계층의 상대적 임금 하락과 실업률 증가를 초래하여 사회적 불평등을 심화할 수 있음
- 지난 40년간 자동화 기술의 도입으로 인해 미국의 임금 불평등이 심화되었으며, 특히 저학력 노동자들의 실질임금이 감소하거나 정체된 상태를 유지

• 남성 고등학교 중퇴자의 실질임금은 1980년 대비 15% 하락했으며, 자동화 기술이 이들의 기존 업무를 대체하면서 노동 수요 감소

I 성별 및 교육 수준에 따른 시간당 실질임금 누적 증가율 I

- (임금 변화 분석) 경제분석국(Bureau of Economic Analysis)의 1987~2016년 데이터를 활용하여 자동화 기술 도입, 산업별 노동 비중 변화, 임금 변화 간의 관계를 분석
- 노동 비중 변화 측정 : 자동화 기술 지표로 전용 기계 서비스, 전문 소프트웨어 서비스, 로봇 도입륨 등 세 가지를 활용하여 산업별 노동 비중 감소를 측정
- 임금 변화 측정 : 인구통계학적 특성(성별, 교육, 연령, 인종, 출생지)에 따라 500개 그룹으로 나누어 그룹 별로 1980~2016년 동안의 시간당 실질임금 변화를 추적
- (자동화로 인한 노동 비중 감소) 자동화 기술은 분석 기간의 전 산업 노동 비중 감소의 약 45%를 설명
- 영향 산업 분야 : 광업, 화학제품, 석유, 1차 금속, 자동차, 컴퓨터·전자제품, 컴퓨터 서비스, 법률 서비스 등에서 노동 비중이 크게 감소한 것으로 나타남

| 1987~2016년 산업별 노동 비중 감소 |

- 로봇 도입 영향: 자동차, 금속, 전자제품과 같은 제조업 중심 산업이 노동 비중 감소와 밀접한 연관이 있으며, 특히 산업용 로봇의 활용도가 가장 높은 자동차 제조업에서 노동 대체 효과가 가장 큼
- 소프트웨어 및 전용 기계 도입 영향 : 컴퓨터 서비스, 플라스틱·고무 제품, 금속 산업 등에서는 전문 소프트웨어와 전용 기계 도입이 노동 비중 감소에 더 큰 영향을 미쳤으며, 서비스 산업의 업무도 대체됨
 - I 자동화 기술과 산업별 노동 비중 변화 간의 관계 (A.로봇, B.소프트웨어 및 전용 기계, C.자동화 기술 통합)I

- (자동화로 인한 임금 감소) 자동화 기술의 도입은 특정 그룹의 임금 변화에 큰 영향을 미쳤으며, 자동화로 인한 과업 대체 정도에 따라 임금 변화가 달라짐
- 자동화 영향의 불균형 : 자동화로 인한 과업 대체가 가장 심각했던 그룹*은 실질임금이 12% 감소한 반면, 영향을 가장 적게 받은 그룹**은 26% 증가
 - * 고등학교 졸업자·중퇴자, 반복 업무 수행자, 제조업 종사자 / **대학원 학위 소지자, 여성 대졸자, 非반복 업무 수행자
- 학력 간 임금 격차 : 전체 임금 구조 변화의 50~70%가 자동화로 인해 발생했으며, 특히 대학 졸업자와 고등학교 졸업자 간 임금 격차(대학 프리미엄) 증가의 80%를 자동화가 설명
- 저학력층 임금 감소 : 자동화의 영향은 특히 저학력 계층에서 두드러졌는데, 고등학교를 중퇴한 남성의 경우 실질임금이 8.8% 감소했으며, 같은 학력의 여성은 2.3% 감소

l 학력별 과업 대체에 따른 임금 변화 l

○ 정책 질문 3 : 세금 제도는 자동화와 고용 유지에 어떻게 영향을 미치는가?¹⁰⁾

- (문제 상황) 미국의 실질 노동세율은 25.5~33.3% 범위에 이르는 반면, 장비 및 소프트웨어에 대한 유효 자본세율은 2000년에 약 20%, 2010년대에 약 10%, 2017년 세제 개혁 이후 5%로 낮아지는 상황
- 세금 체계가 노동에 불리하고 자본에 유리하게 편향된 경우, 즉 노동에 대한 세금이 높고 자본에 대한 세금이 낮은 경우, 고용보다는 장비 및 소프트웨어 도입을 통한 생산방식의 자동화에 투자하게 됨
- 아래의 그래프는 미국 국세청(IRS Revenue Services; IRS)이 허용하는 세무상 감가상각(파란색선)과 실제 경제적 감가상각(주황색선)을 비교한 것으로 세금 제도가 장비 및 소프트웨어 투자에 대해 실제 경제적 감가 상각보다 유리한 세금 처리를 허용하고 있음을 보여줌

|시간에 따른 장비 및 소프트웨어에 대한 감가상각 허용치 |

- 아래의 좌측 그래프는 자본소득, 법인소득, 개인소득에 대한 평균 세율로 2010년 중반에 이르러 장비 및 소프트웨어 등을 포함하는 자본에 대한 세율이 낮아졌음을 보여줌
- 아래의 우측 그래프는 노동, 건축·구조물, 소프트웨어, 장비에 대한 실효세율로, 노동에 대한 실효세율은 25% 수준을 유지되는 반면, 자본에 대한 실효세율(건축·구조물, 소프트웨어, 장비)은 감소하는 추세를 보임
- 자본에 대한 세율 인하는 자본 투자에 대한 인센티브를 증가시켜, 실제로 생산성 향상이 크지 않은 경우에도 세금 혜택 때문에 자동화를 선택할 수 있음

I 자본소득, 법인소득, 개인소득에 대한 평균 세율 I

I 노동, 건축·구조물, 소프트웨어, 장비에 대한 실효세율 I

- (정책 제안) 노동과 자본에 대한 최적의 과세를 부과하거나 자동화세를 통해 최적의 자동화 상태를 유지함 으로써 고용을 늘리고 소득 분배를 개선하여 후생을 증진할 수 있음
- 최적과세 적용: 노동세를 18.22%로 인하하고 자본세를 26.65%로 인상할 경우 자동화 범위 4.1% 감소, 고용 4.02% 증가, 노동 비중 0.78% 증가, 후생 0.38% 증가 효과 발생
 - ※ 2010년대 말 기준 노동에 대한 실효세율은 약 25%, 자본에 대한 실효세율은 약 5~10% (12페이지 그래프 참조)
- 자동화세 적용 : 노동을 자본으로 대체할 때 비용 절감이 10.15% 미만인 경우 비용 절감 효과를 상쇄하는 자동화세를 적용하면, 고용 1.14% 증가, 노동소득 비중 1.93% 포인트 증가 효과 발생
- 자동화세의 적용은 생산성 향상 효과가 크지 않은 '그저 그런 자동화(so-so automation)'*의 경제적 유인을 제한함으로써 지나치게 자동화로 치우친 경제적 구조를 완화하고 고용 및 노동 비중을 증가시키는 데 기여 * 생산성 및 경제적 효율성을 크게 향상시키지 못하는 자동화를 의미하며, 셀프 계산대를 대표적인 사례로 제시

○ 정책 질문 4 : AI는 향후 10년간 거시경제에 어떠한 영향을 미칠 것인가?¹¹⁾

- (문제 상황) 기존 연구들은 AI가 GDP 및 생산성 향상에 미치는 영향을 긍정적으로 평가하고 있으나 AI에 대한 기본 가정 및 방법론상의 한계에 따라 과대평가되었을 가능성이 있음
- 이와 같은 긍정적 평가는 과도한 AI 투자를 발생시켜 AI 기술 주식의 붕괴, 무분별한 인력 대체, 불필요한 예산 낭비, 투자 대비 수익 불확실성을 야기할 수 있음
- AI의 잠재력 자체를 부정할 수는 없으나, 현재의 낙관적 전망과 이에 기반한 투자가 경제에 악영향을 미칠수 있음을 인지하고 보다 현실적으로 접근할 필요
- (접근 방식) AI가 경제에 미치는 영향에 대한 보다 현실적인 추정을 위해 다음과 같이 기존 방식 보완 I 기존 연구의 접근 방식과 아제모을루 연구의 접근 방식 비교 I

구분	기존 연구의 접근 방식	아제모을루 연구의 접근 방식
분석단위	■ 산업 또는 경제 수준	■ 과업(task) 수준
기술효과 추정 • 기술의 대체 효과를 중심으로 기술 도입의 • 전반적인 평균 효과 추정		■ 과업별로 기술의 자동화(automation) 효과와 보완 (complementarity) 효과를 분리하여 분석
이질적 효과 반영	■ 모든 산업과 과업에서 균일한 영향을 가정	■ 과업별 이질성(쉽게 학습가능한 과업 vs 어려운 과업)을 반영하여 기술 도입 효과를 예측
불평등 효과 분석	■ 기술이 노동 시장에 미치는 영향을 추상적 이고 일반적인 수준에서 분석	■ 특정 작업에서 노동 대체와 생산성 보완 효과를 측정 하여 소득 분배 및 불평등에 미치는 영향 정밀 분석
부정적 사회적 가치	■ 기술 도입의 부정적 외부 효과 고려 부족	■ 부정적 사회적 가치(예: 정보 조작, 중독 유발 콘텐츠, 악성 보안 공격)까지 포함한 경제적 효과 분석
모델링 방법론		■ 직업 단위의 생산성 증대 효과를 GDP와 총요소생산성 (TFP) 변화로 연결
		■ 시간이 지남에 따라 기술 위험성을 학습하고 적응할 수 있는 효과를 모델에 포함

- (분석 결과) AI가 경제에 미치는 영향에 관한 연구 결과, 기존 예측*보다 훨씬 제한적인 경제적 효과가 예상 되며. 부정적 영향도 고려해야 하는 것으로 나타남
 - * 골드만 삭스는 AI가 향후 10년간 전세계 GDP를 7%, 미국 노동생산성을 연간 1.5% 증가시킬 것으로 예측('23)¹²⁾ 맥킨지 글로벌 연구소는 생성형 AI가 2040년까지 연간 노동생산성을 0.1~0.6% 증가시키며, 다른 자동화 기술과 결합 시 연간 생산성 증가율이 0.5~3.4%포인트 높아질 것으로 전망('23)¹³⁾
- 총요소생산성(TFP) : 향후 10년간 AI로 인한 증가율이 0.53~0.66%로 예측되며, 이는 현재 선진국의 총요소 생산성 연평균 성장률 대비 약 10~20% 추가 증가를 의미
- GDP: 생산성 향상은 GDP 성장으로 이어져, 향후 10년간 0.93%에서 1.56%의 GDP 증가가 예상되며, 이는 글로벌 컨설팅 기업이 예상한 수치와 비교하여 낮은 수준임
- 노동 시장 : AI 도입은 노동 시장의 불평등을 심화시킬 수 있으며, 특히 중간 숙련 및 반복적인 직업에 종사하는 비율이 높은 저학력 여성 근로자들이 가장 큰 타격을 받을 것으로 예상

한지 출생 백인 남성 한지 출생 백인 여성 기타 출신 남성 기타 출신 여성 0.025-0.020-0.015-0.010-0.005-0.000--0.005-0.000--0.005-0.010-0.005-0.010-0.005-0.010-0.005-0.010-0.005-0.010-0.005-0.010-0.005-0.010-0.010-0.005-0.010-0.0

| 성별 및 학력에 따른 임금 효과 |

- 사회적 후생 : AI로 인한 2%의 GDP 증가가 오히려 사회적 후생을 0.72% 감소시킬 수 있는 것으로 나타나, AI가 창출하는 새로운 경제활동이 실제 삶의 질을 저하시킬 수 있음을 시사
- (정책 제안) AI 기술 도입이 경제적 포용성을 증진하도록 ① AI의 작업 보완 능력 강화, ② 부정적 외부 효과 대응, ③ 투자 및 혁신 방향 재조정, ④ 노동자 재교육 및 적응 지원 등 포괄적이고 지속가능한 접근 필요
- Al의 작업 보완 능력 강화 : Al 기술이 노동을 대체하기보다 보완하고, 노동자들이 Al와 협력해 생산성을 높일 수 있는 방향으로 연구개발 및 민관협력 촉진
- 부정적 외부 효과 대응 : AI 도입으로 발생할 수 있는 조작적 광고, 허위 정보, 보안 위협, 에너지 및 환경 비용 등 부정적 외부 효과에 대응하여 사회적 비용을 최소화
- Al 관련 투자 및 혁신 방향 재조정 : 현재는 자동화나 개인정보 수익화에 초점이 맞춰져 있으나, 노동자의 생산성 향상과 새로운 가치 창출 투자 및 혁신 방향 전환
- 노동자 재교육 및 적응 지원 : AI로 인한 작업환경 변화에 노동자들이 대응할 수 있도록 충분한 시간과 자원을 제공하며, 특히 저숙련 노동자와 취약계층에 대한 집중 지원 시행

2. 사회적 영향

- 정책 질문 5 : 개인정보 보호와 데이터 활용 사이의 균형은 어떻게 달성할 수 있는가? 14)
- (문제 상황) 수십억 명의 개인 데이터가 맞춤형 광고나 온라인 서비스에 사용되고 있으며, AI 등 데이터 중심 기술의 발전으로 데이터 수집과 거래는 더 늘어날 것으로 전망됨
- 사용자들의 개인정보 침해 우려에도 불구하고 대부분의 경제 분석에서는 데이터 시장이 사회적 이익과 개인 정보를 균형 있게 처리하고, 자원 배분 개선과 혁신 증진에 기여한다고 강조
- 그러나, 데이터 거래 시 개인정보 외부성*(privacy externality)으로 인해 데이터의 실제 가치가 과소평가되고, 개인정보 침해 증가. 데이터 가치 하락. 과도한 데이터 공유로 이어질 수 있음
 - * 한 개인이 자신의 개인정보를 공개하거나 공유할 때, 그 정보가 다른 사람의 개인정보에 영향을 미칠 수 있다는 개념 예 : 소셜 미디어에서 자신의 활동 정보를 공개하는 것만으로 해당 인물과 관련된 사람들의 정보까지 유출될 수 있음
- (데이터 시장의 외부성 메커니즘) 다음과 같은 과정으로 데이터 시장에서 외부성 메커니즘이 작동하여, 개별 사용자가 개인정보에 두는 가치와 무관하게 데이터 공유가 증가하는 동시에 가치는 줄어듦

| 데이터 시장의 외부성 메커니즘 |

기본 상황

■ 사용자 A : 개인정보에 무관심

■ 사용자 B : 개인정보 중시

■ 사용자 A와 B는 친구 관계

개인정보 외부성 효과

- 사용자 A : 플랫폼상에서 데이터 공유
- 플랫폼: 사용자 A의 데이터 수집, 사용자 A의 데이터를 토대로 사용자 B의 행동 양식 추측

개인 행동 및 데이터 시장 변화

- 사용자 B: 데이터의 공유 없이도 개인정보 침해, 데이터 가치 하락
- 플랫폼 : 사용자 B에 추가 지불을 하지 않고도 보유 데이터 증가
- (정책 제안) 데이터 거래의 외부성을 완화하고 데이터 공유의 최적성을 달성하기 위해 ① 데이터 거래 과세, ② 데이터 중개 시스템 도입. ③ 고위험 부문 특별 규제와 같은 정책적 개입 필요
- 데이터 거래 과세 : 개인 데이터 거래에 외부성을 반영한 세금을 부과하고, 모든 사용자에게 균일한 세율을 적용하여 관리의 복잡성을 줄이면서 전반적인 데이터 거래 감소 유도
- 데이터 중개 시스템 도입: 사용자가 데이터를 플랫폼에 공개하기 전에 신뢰할 수 있는 중개자를 통해 데이터 연관성을 제거하는 변환 작업을 함으로써 개인정보를 보호하고 데이터 외부성 문제를 완화
- 고위험 부문 특별 규제 : 데이터 거래의 외부성이 큰 고위험 부문에서는 엄격한 규제를 적용하며, 일정 기간 데이터 거래를 중단하거나 구체적인 조건 아래에서만 거래를 허용하는 강화된 통제 방안 마련
- 정책 질문 6 : 디지털 광고가 사용자 복지에 미치는 부정적인 영향을 어떻게 완화할 수 있는가?15
- (문제 상황) 디지털 광고 기반 비즈니스 모델은 사용자가 비합리적인 소비를 하도록 행동을 조작하고 제품 가격을 상승시킴으로써 소비자 복지에 부정적 영향을 미침
- 광고 정보를 과대평가하는 순진한(náive) 사용자가 낮은 품질의 제품을 과소비하게 되고, 이에 따라 기업이 제품 가격을 높게 책정하면서 광고를 비판적으로 보는 정교한(sophisticated) 사용자에게도 피해가 돌아감

l 사용자	유형벽	트성	민	디지턱	과고	효과	ı

구분	순진한 사용자	정교한 사용자	
		 광고가 제품의 품질을 과장하여 묘사한다는 점을 인식 광고가 자신의 선호도에 맞춰 조작될 수 있음을 인지 광고의 정보를 객관적으로 평가 	
디지털 광고 효과	■ 광고를 통해 제품의 품질 과대평가 ■ 낮은 품질의 제품을 필요 이상으로 구매 ■ 높은 가격 지불 의향으로 기업의 가격 인상 유도	 광고를 비판적으로 평가하여 필요 정보만 선별적 수용 순진한 사용자들의 과다 구매로 인한 가격 상승 피해 과도한 광고 회피를 위해 플랫폼 이용 기피, 구독 선택 	

• 한편, 플랫폼이 사용자 유치를 위해 구독 모델 대신 디지털 광고에 의존하고, 디지털 광고의 맞춤형 특성이 제품 가격 경쟁을 약화시킴에 따라 소비자 후생이 전반적으로 감소하는 문제 발생

| 디지털 광고와 시장 경쟁의 관계 |

- (정책 제안) 디지털 광고로 인한 시장 실패를 교정하고 소비자 후생을 증진하기 위해 ① 디지털 광고세 도입, ② 사용자 선택권 확대, ③ 플랫폼 보조금 도입, ④ 광고 규제 체계 수립 추진을 제안
 - 디지털 광고세 도입 : 디지털 광고가 정보 제공의 역할과 함께 조작적 측면을 갖는 점을 고려하여, 광고 수익에 대한 세금을 도입함으로써 사용자를 대상으로 한 과도한 광고와 시장 왜곡 완화
- 사용자 선택권 확대 : 플랫폼이 사용자에게 광고 기반 서비스와 구독 기반 서비스 간의 명확한 선택권을 제공하도록 규제함으로써 사용자가 자신에게 적합한 모델을 선택할 수 있는 환경 제공
- 플랫폼 보조금 도입 : 광고 수익 감소에 따른 플랫폼의 경제적 부담을 줄이기 위해 구독 기반 모델을 선택하는 플랫폼에 보조금을 제공함으로써, 광고 의존도를 줄이고 사용자 복지를 증진하는 비즈니스 모델 개발을 장려
- 광고 규제 체계 수립 : 광고가 사용자 행동을 과도하게 조작하지 않도록 개인정보 보호 규정을 강화하고, 광고의 목적 및 타깃팅 기준에 대해 사용자에게 투명하게 공개하도록 개입

○ 정책 질문 7 : AI와 빅데이터를 활용한 행동 조작으로부터 소비자를 어떻게 보호할 수 있는가?¹⁶⁾

- (문제 상황) 플랫폼 기업은 AI 도구와 사용자 데이터를 활용하여 소비자 행동을 조작하고 후생을 저하시킴
- 행동 조작은 특정 상황에서는 사용자와 사회에 혜택을 제공할 수 있으나, 플랫폼이 소비자 행동의 편향성을 악용할 경우 소비자 후생에 부정적 영향을 초래
- 데이터와 AI 기술의 발전으로 인해 플랫폼의 제품 제공 및 유도 방식이 더욱 정교화되고 있으며, 표면적 매력도(glossiness)*와 같은 특성이 행동 조작의 핵심 메커니즘으로 작동
 - * 제품이 실제 품질보다 더 매력적으로 보이게 만드는 속성으로, 초기 사용 단계에서는 높은 가치를 지닌 것처럼 보이나 시간이 경과하면서 실제 가치가 감소하는 특성을 의미
- (행동 조작 메커니즘) 플랫폼과 소비자 간의 정보 비대칭은 행동 조작을 가능하게 하는 원인으로, 플랫폼은 제품의 표면적 매력도를 사전에 파악할 수 있으나 소비자는 사용경험을 통해서만 제품의 실제 품질 확인 가능
 - 정보 비대칭을 기반으로 한 행동 조작은 단계적으로 이루어지는데, 초기에는 제품의 높은 표면적 매력도를 통해 소비자의 관심을 유도하고, 이어서 소비자의 신뢰를 형성하여 지속적인 구매 행동을 유발
- 상당한 수준의 구매와 사용이 이루어진 후에야 제품의 실제 품질이 드러나면서 소비자의 효용이 감소함
- (AI 환경과 정보 비대칭) 플랫폼의 정보 우위와 행동 조작 가능성은 AI 도입을 기점으로 다른 양상을 보임

구분 Al 도입 이전 (Pre-Al Environment) Al 도입 이후 (Post-Al Environment) 정보 비대칭 ■ 플랫폼과 소비자가 유사한 수준의 정보 보유 ■ 플랫폼이 소비자 대비 현저한 정보 우위 확보 학습 방식 ■ 직접적인 사용 결과를 통한 점진적 학습 ■ 빅데이터 분석과 AI를 통한 사전 예측 소비자 정보 획득 ■ 개별 제품에 대한 직접적 경험 필요 ■ 유사 소비자 행동 데이터 분석으로 예측 가능 소비자 의사결정 속도 ■ 상당한 시간 소요 ■ 신속한 의사결정 가능 소비자 영향(단기) ■ 제한적 영향 ■ 고품질 제품의 추천으로 긍정적 영향 가능 ■ 제한적 영향 소비자 영향(장기) ■ 저품질 제품의 전략적 추천으로 부정적 영향 플랫폼 전략 ■ 제품 품질 기반 추천 ■ 표면적 매력도를 활용한 전략적 추천 행동 조작 가능성 ■ 제한적 ■ 높음

| A| 도입 전후 정보 환경 비교 분석 |

- (정책 제안) 플랫폼의 데이터 활용을 공정하고 투명하게 조정하며 경쟁 환경을 강화하기 위해 ① 데이터 최소화, ② 투명성 증대, ③ 경쟁 촉진을 제안
- 데이터 최소화 : 플랫폼이 최소한의 필요한 범위로 데이터를 수집하도록 규제하고, 명확한 목적 외의 데이터 활용을 금지하거나 사용자 동의를 필수화하여 데이터 오남용을 방지
- 투명성 증대 : 플랫폼의 데이터 활용 방식에 대한 상세 정보를 사용자에게 제공하고, 사용자 교육 프로그램을 통해 데이터 보호 및 플랫폼 전략에 대한 이해도를 향상시켜 소비자의 권한을 강화
- 경쟁 촉진 : 신규 플랫폼의 진입을 지원하며, 차별화된 데이터 및 가격 정책을 제시하는 사업 모델을 장려하여 플랫폼 시장의 공정 경쟁 유도

3. 정치적 영향

○ 정책 질문 8 : 온라인상의 허위 정보 확산을 어떻게 효과적으로 규제할 수 있는가?¹⁷⁾

- (문제 상황) 소셜 미디어가 전통적인 언론을 대체하여 주요 뉴스 플랫폼으로 부상하면서 검증되지 않은 허위 정보의 확산이 급증하고 있으며, 이로 인한 여론 왜곡과 사회적 의사결정과정의 훼손이 중대한 문제로 대두
- 2019년 기준 미국인의 70% 이상이 최소한 일부 뉴스를 소셜미디어를 통해 접한 것으로 집계되었으며, 소셜미디어의 허위 정보가 코로나19 백신 접종과 같은 중요한 결정에 영향을 미친 것으로 나타남¹⁸⁾¹⁹⁾
- 플랫폼의 참여도 최대화 전략이 사용자 간 상호작용을 증대시키는 가운데, 알고리즘을 통한 반향실 효과와 필터 버블 현상*의 강화로 허위 정보 확산이 가속화됨
 - * 자신의 관심사나 성향에 맞는 정보에만 선택적으로 노출되어 다양한 관점과 정보를 접하지 못하게 되는 현상
- 특히 사회의 정치적 양극화가 심화할수록 반향실 효과가 강화되고, 논란이 많은 콘텐츠일수록 같은 성향의 사용자 사이에서 공유되는 경향이 증가
- (허위 정보 확산 메커니즘) 소셜 미디어에서의 허위 정보 확산은 사용자 행동 전략과 플랫폼 사업 전략 등 크게 두 가지 요인이 상호작용하며 발생

| 허위 정보 확산의 주요 요인 |

시용자 행동 전략	플랫폼 사업 전략
 이념적 편향: 자신의 신념과 일치하는 내용은 신뢰도가	■ 동질성 강화 : 비슷한 성향을 가진 사용자들을 연결하여
낮아도 공유하려는 경향	콘텐츠 도달 범위 확대
■ 사회적 보상 : 다른 사람들의 '좋아요'나 '공유'와 같은	■ 참여도 중심 : 콘텐츠의 신뢰도보다 '좋아요'나 '공유'와 같은
반응을 통한 심리적 만족감 추구	사용자 반응을 우선시
■ 평판 우려 : 허위 정보 공유에 대한 비판과 그로 인한 평판 손실을 고려한 신중한 판단	■ 필터 버블 형성 : 다른 의견을 가진 사용자들 간 교류 제한

- (정책 제안) 허위 정보 확산 메커니즘에 대한 분석을 토대로 ① 검열 정책, ② 출처 공개, ③ 성과 목표제, ④ 알고리즘 규제 등 네 가지 규제 방안을 특정 상황에 따라 단계적으로 적용하는 접근 방식 필요

I 허위 정보 규제 방안 비교 I

구분	주요 내용	장점	단점
		■ 허위 정보의 즉각적 차단 ■ 잔존 게시물의 신뢰도 향상	■ 검열 회피성 게시물*의 신뢰도 상승 * 검열 기준을 우회하는 간접적이고 모호한 게시물 ■ 표현의 자유 침해 우려
출처 공개	■ 게시물의 출처와 맥락 정보를 함께 제공	■ 사용자의 자율적 판단 지원 ■ 표현의 자유 제약 최소화	■ 타 사용자의 검증에 과도한 의존 ■ 허위 정보 판별에 장시간 소요
성과 목표제	■ 플랫폼 내 허위 정보 비율의 상한선 설정	■ 플랫폼의 자율적 관리 유도 ■ 규제 이행 모니터링 용이	■ 엄격한 기준 설정 시 규제 우회 ■ 허위 정보 측정의 기술적 한계
알고리즘 규제	■ 이념적 편향성이 큰 사용자 간 연결 제한	다양한 관점의 교류 촉진허위 정보 확산 구조 개선	■ 연결 제한 수준 설정의 어려움 ■ 플랫폼 수익성 저하 우려

4. AI의 점진적 도입

○ 정책 질문 9 : AI와 같은 혁신적 기술은 어느 정도의 속도로 도입되어야 하는가?²⁰⁾

- (문제 상황) 혁신적 기술이 초래할 수 있는 위험 영역을 식별하고 적절한 규제를 고안하기 위해 일시적인 개발 중단이나 속도 조절이 필요하다는 주장이 제기되고 있으나, 적정 속도에 대한 객관적 근거는 부재
- 혁신적 기술의 도입이 기업 중심으로 이루어질 경우, 기술 도입에 따른 사회적 위험이 충분히 고려되지 않아 사회적으로 최적인 수준을 초과하는 과도한 도입이 발생할 위험 존재
- 기술의 생산성과 성장률이 높을수록 잠재적 피해의 규모와 확산 속도도 빨라져 신중한 도입이 필요하나, 현재는 사회적 학습과 대응 역량 확보 이전에 도입이 가속화되는 상황
- (최적 도입 속도) 다음과 같은 절차를 거쳐 사회적 최적 속도 및 기업 주도의 신기술 도입 경로를 도출함

| 신기술 도입 속도 도출 절차 |

기본 가정 및 변수 설정	최적 모델 핵심 요소 설정	결과 도출
■ 기존 기술 성장률: 2% ※ 선진국의 장기적인 평균 GDP 성장률 ■ 신기술 성장률: 2.6% 또는 3.8% ※ 기존 기술 성장률에 맥킨지 보고서의 시로 인한 성장률을 보수적으로 적용 ■ 재앙 발생 확률: 20% ※ 시 전문가 설문조사에서 나온 실존적 위험 추정치에 다른 위험 가능성 추가 ■ 비가역성 확률: 50% ※ 신기술 도입 후 이전 상태로 복귀 불가능한 상황의 비율을 50%로 가정	■ 시간 요소 : 학습 효과*, 비가역성** * 신기술 사용 사례 축적을 통한 위험성 이해 증진 ** 신기술 도입 후 해당 기술을 철회하거나 이전 기술로 되돌아갈 수 없는 상황 ■ 잠재적 위험 : 피해 발생 확률·규모 ■ 생산성 이득 : 기술별 성장률 차이 및 부문별 생산성	■ 사회적으로 최적화된 수준 - 2.6% 성장률 : 40년에 걸친 도입 - 3.8% 성장률 : 60년에 걸친 도입 ■ 기업 주도의 실제 도입 - 2.6% 성장률 : 30년에 걸친 도입 - 3.8% 성장률 : 40년에 걸친 도입

- 아래의 좌측 그래프는 사회적으로 최적화된 경로를 보여주며, 신기술의 성장률이 높을수록 잠재적 피해 규모도 증가하므로 충분한 학습 시간을 확보하기 위한 점진적 도입이 요구됨
- 아래의 우측 그래프는 사회적으로 최적화된 경로(실선)와 기업 주도의 도입 경로(점선)를 비교한 것으로, 기업은 생산성 이익을 우선시하여 사회적 피해를 완전히 고려하지 않아 더 급속하게 도입이 이루어짐

| 사회적으로 최적화된 경로 |

| 사회적으로 최적화된 경로 vs. 기업 주도 경로 |

※ 그래프 축 설명 : Y축은 도입 비율(1=100%), X축은 도입 기간(년), 곡선 옆 백분율은 신기술 성장률을 의미

- (정책 제안) 사회적으로 최적화된 도입 경로와 기업 주도의 도입 경로 간 격차를 줄이기 위해 ① 사용세 부과, ② 규제 샌드박스 추진, ③ 고위험 분야에서의 엄격한 규제 적용 추진
- 사용세 부과 : 신기술 도입 시 발생하는 사회적 피해를 내재화하기 위해 부문별 차등 과세가 가장 효과적이나, 위험 산정 및 세제 관리의 복잡성을 고려하여 일반 과세 방식 적용 검토
- 규제 샌드박스 : 사회적 피해의 수준에 따라 일정 기간 신기술 사용을 제한함으로써 신기술의 안정성과 효과를 검증할 시간을 확보하고, 도입 순서를 사회적 최적화 관점에서 조정
- 고위험 분야 규제 : 피해 가능성이 높은 부문에서 일정 기간 신기술 사용을 제한하거나, 엄격한 사용 허가 요건을 설정하는 등 강화된 관리체계 적용

☑ 정책적 시사점

- (AI 정책의 문제점) 아제모을루의 연구는 빠른 기술 혁신 및 활용 확산, 사회적 문제에 대한 미온적 태도, 자국 중심주의에 기반한 공동의 발전 기반 약화 등의 특징을 갖는 오늘날의 AI 정책의 근본적 한계를 지적
- 정책 방향성 부재: "우리는 생산성을 높이고 광범위한 번영을 가져올 수 있는 가장 큰 잠재력을 가진 '올바른' 유형의 AI에 투자하고 있는가?"라는 중요한 질문이 간과되는 경향이 있으며, 이는 다음과 같은 세 가지 정책 환경에서 비롯됨²¹⁾
- 정부 역할 축소 : 미국의 맥락에서 정부는 시장 실패를 바로잡기 위해 사회적으로 유익한 연구를 지원해 왔으나, 최근 들어 이와 같은 연구 지원에 더 인색해지고 기술 변화의 방향을 주도하려는 의지도 소극적으로 변한 상황
- 민간 주도 의제 설정 : 첨단 기술 분야의 의제를 설정하는 데 있어 민간 부문의 역할이 점점 더 커지면서 즉각적인 수익성에는 반영되지 않지만 사회적 가치가 높은 기술 투자를 저해
- 시장 중심 패러다임 : 경제학계의 시장 효율성에 대한 과도한 신뢰로 인해 AI 발전의 외부 효과나 대안적 발전 경로에 대한 고려가 부족한 실정
- (아제모을루 연구의 한계) AI 정책의 방향성에 대한 근본적 질문을 제기하고 실증적 데이터를 기반으로 정책 과제를 도출한다는 점에서 의의가 있으나, 다음과 같은 한계를 보임
- 방법론적 한계 : 경제학적 모델링에 기반하여 AI의 복잡한 사회적 영향을 지나치게 단순화하는 경향이 있어, 사회학, 윤리학, 정치학 등 다학제적 연구를 통한 보완이 필요
- 정책적 실행력 : 이론적·실증적 분석을 통해 정책 방향을 제시하고 있으나, 각국의 제도적 맥락과 경제적· 정치적 현실을 고려한 현실적이고 구체적인 이행 방안 미흡
- 관점의 제한성 : AI의 부정적 영향을 중점적으로 다루고 있어 사회적 선을 위한 AI 활용 등 긍정적 과제에 대한 논의는 상대적으로 부족하여, 노동 시장 외의 다른 분야에서도 AI의 긍정적 활용 방안 도출 필요

- (정책 개선 방향) AI 정책의 실효성을 제고하기 위해 실증적 근거에 기반한 정책 수립, 공공 가치를 중심으로 한 기술 발전 방향 설정, 전 사회적 의견수렴 체계 구축 필요
- 근거 기반 정책 : 실증적 증거에 기반한 정책 수립 체계 구축
- 최근 AI 정책은 실증적 근거가 부족한 상태에서 정책 의제가 먼저 설정되고, 이를 정당화하기 위한 일화성 사례들이 사후적으로 수집되는 경향을 보임
- AI가 데이터에 기반한 과학적 정책 결정을 가능하게 할 것이라는 기대와 달리, 정작 AI 정책 자체는 충분한 증거 기반 없이 수립되는 모순적 상황 발생
- Al 정책의 타당성과 실효성을 담보하기 위해 체계적인 데이터 수집 및 분석 체계 구축, 정책 효과에 대한 실증연구, 장기적 영향 평가 등 증거 기반 정책 수립을 위한 정부 차원의 투자 확대 필요
- (기술 발전 방향의 재설정) 공공의 가치를 중심으로 AI 기술 발전 정책 개발
- 단순한 윤리적 가이드라인이나 자율 규제를 넘어, AI 기술의 연구개발 단계부터 방향성을 논의할 수 있는 체계를 만듦으로써 AI 발전의 방향성이 공공의 이익과 부합하도록 유도하는 정책적 개입 필요
- 기업의 자발적 협력과 사회적 책임에만 의존해서는 AI 기술의 영향력 관리와 공공 이익 증진이 충분히 달성되기 어려우며, AI 개발과 활용이 공공의 가치와 조화를 이룰 수 있도록 인센티브 체계와 규제 간 균형 필요
- 기술혁신 생태계를 구성하는 기업 지배구조, 투자 환경, 시장 구조 등을 종합적으로 검토하여, 공공의 가치 창출이 기업의 지속가능한 성장으로 이어질 수 있는 제도적 기반 마련이 요구됨
- (전 사회적 의견수렴) AI 영향의 직접적 이해당사자의 정책 논의 참여 확대
- 아제모을루의 연구가 보여주듯 AI의 부정적 영향을 많이 받는 이들은 경제·사회적 소외 계층과 사용자이나 이들의 목소리를 충분히 반영할 수 있는 메커니즘 부재
- 단순한 의견수렴을 넘어 전문가-시민 간 양방향 학습과 토론이 가능한 구조를 만듦으로써, 다양한 이해관계 자의 실질적 참여를 보장할 수 있는 조직의 구성 필요
- 전통적인 여론 수렴 방식을 넘어 '시민 과학' 접근법을 채택하여, AI 기술의 사회적 영향에 대한 시민들의 체계적인 관찰과 기록을 정책 수립의 주요 근거로 활용하는 구조 확립

〈참고 자료〉

- The Nobel Prize in physics 2024. (2024.10.8). The Nobel Prize. https://www.nobelprize.org/prizes/physics/2024/press-release/
- 2. The Nobel Prize in chemistry 2024. (2024.10.9). The Nobel Prize. https://www.nobelprize.org/prizes/chemistry/2024/press-release/
- 3. Li, B., & Gilbert, S. (2024). Artificial intelligence awarded two Nobel Prizes for innovations that will shape the future of medicine. *NPJ Digital Medicine*, *7*. https://doi.org/10.1038/s41746-024-01345-9
- 4. 대런 아세모글루, 제임스 A. 로빈슨. (2012). 「국가는 왜 실패하는가」. 최완규(역). 시공사.
- 5. 대런 아세모글루, 사이먼 존슨. (2023). 「권력과 진보」. 김승진(역). 생각의 힘.
- Chui, M., & Bernasek, A. (2024). Forward thinking on technology and political economy with Daron Acemoglu. McKinsey
 & Company. https://www.mckinsey.com/featured-insights/future-of-work/forward-thinking-on-technology-and-political-economy-with-daron-acemoglu#
- 7. Acemoglu, D. (2024). Harms of Al. In J. B. Bullock, et al. (Eds.), In *The Oxford Handbook of Al governance*. Oxford University Press.
- 8. Acemoglu, D., & Restrepo, P. (2019). Automation and new tasks: How technology displaces and reinstates labor. *Journal of Economic Perspectives*, 33(2), 3–30.
- 9. Acemoglu, D., & Restrepo, P. (2022). Tasks, automation, and the rise in U.S. wage inequality. *Econometrica*, *90*(5), 1973–2016.
- 10. Acemoglu, D., Manera, A., & Restrepo, P. (2020). Does the US Tax Code favor automation?. *Brookings Papers on Economic Activity, 2020*(Spring), 231–285.
- 11. Acemoglu, D. (2024). The simple macroeconomics of Al. Economic Policy. https://doi.org/10.1093/epolic/eiae042
- 12. https://www.goldmansachs.com/insights/articles/generative-ai-could-raise-global-gdp-by-7-percent
- 13. Chui, M., Hazan, E., Roberts, R., Singla, A., Smaje, K., Sukharevsky, A., Yee, L., & Zemmel, R. (2023). The economic potential of generative Al: The next productivity frontier. McKinsey & Company. https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-economic-potential-of-generative-ai-the-next-productivity-frontier#introduction
- 14. Acemoglu, D., Makhdoumi, A., Malekian, A., & Oxdaglar, A. (2022). Too much data: Prices and inefficiencies in data markets. *American Economic Journal: Microeconomics, 14*(4), 218–256.
- 15. Acemoglu, D., Huttenlocher, D., Ozdaglar, A., & Siderius, J. (2024). Online business models, digital ads, and user welfare. NBER Working Paper No. w33107. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4978696
- 16. Acemoglu, D., Makhdoumi, A., Malekian, A., & Ozdaglar, A. (2024). *American Economic Review: Insights*. https://www.aeaweb.org/articles?id=10.1257/aeri.20230589
- 17. Acemoglu, D., Ozdaglar, A., & Siderius, J. (2024). A model of online misinformation. The Review of Economic Studies, 91(6), 3117–3150.
- 18. Levy, R. (2021). Social media, news consumption, and polarization: Evidence from a field experiment. *The American Economic Review, 111*(3), 831–870.
- 19. Pennycook, G., McPhetres, J., Zhang, Y., Lu, J. G., & Rand, D. G. (2020). Fighting COVID-19 misinformation on social media: Experimental evidence for a scalable accuracy-nudge intervention. *Psychological Science*, *31*(7), 770-780.
- 20. Acemoglu, D., & Lensman, T. (2023). Regulating transformative technologies. NBER Working Paper No. w31461. https://papers.csm.com/sol3/papers.cfm?abstract_id=4512495
- 21. Acemoglu, D., & Restrepo, P. (2020). The wrong kind of AI?: Artificial intelligence and the future of labour demand. Cambridge Journal of Regions, Economy and Society, 13(1), 25–35.

THE AI REPORT 2024

NIA 한국지능정보사회진흥원