

ASTATINE FINAL PROJECT

Diabetes Indicators Classification Model

This project is supervised by:

TEAM 7 - ORION

O1
ISNEN HADI
AL-GHOZALI

as Betelgeuse

02

KHUZIL AFWA

as Alnilam

03

MUHAMMAD ASKAR FATHIN

as RIGEL

04 SHERLLYA REBECCA EZRA

as BELLATRIX

05

TABITA KRISTINA MORA

as MEISSA

+

+ DESCRIPTIVE PURPOSE

DESCRIPTIVE AND PURPOSE

ASTATINE is a data science project to detect prediabetes and diabetes conditions based on Behavioral Risk Factor Surveillance System (BRFSS) indicators. This project uses **diabetes** _ **binary** _ **health** _ **indicators** _ **BRFSS2015.csv** is a clean dataset of **253,680 survey responses** to the CDC's BRFSS2015. The target variable Diabetes _ binary **has 2 classes**. 0 is for no diabetes, and 1 is for prediabetes or diabetes. This dataset has **21 feature variables** and is **not balanced**. This dataset is

https://www.kaggle.com/datasets/alexteboul/diabetes-health-indicators-dataset?resource=download&select=diabetes_binary_health_indicators_BRFSS2015.csv

Before developing a **classification model**, **Exploratory Data Analysis (EDA)** and **Data Preprocessing** are first carried out. The EDA stage is aimed at identifying patterns, finding anomalies, testing hypotheses, and checking assumptions. Data Preprocessing is carried out to eliminate several problems that can interfere with data processing, such as data that is not normally distributed and data imbalance.

The prediction models developed in this project are:

02

BASIC EXPLORATION

Check Data Distributions, The Outlier, Duplicated Data

Check Data Distributions

Shapiro-Wilk Test for BMI: Test Statistic: 0.8717145323753357 p-value: 0.0 Sample does not look Gaussian (reject H0)

Shapiro-Wilk Test for Income: Test Statistic: 0.8491994738578796 p-value: 0.0 Sample does not look Gaussian (reject H0) **Normality Test**: In the Shapiro-Wilk test for BMI and Income, the obtained p-value of 0.0 suggests strong evidence to reject the null hypothesis. This indicates that the **BMI** and **Income data** is **not normally distributed**.

Check The Outliers

There's outlier in column BMI, GenHlth, MenHlth, PhysHlth, but all columns will transpose to categorical value.

Check and Drop Duplicated Data

Transform The Data Into Integer

There were 24,206 duplicate rows in the DataFrame, but after performing the duplicate removal operation, there were no more duplicate rows, resulting in the total number of rows decreasing to 229,474 from the initial 253,680. This step is crucial for data cleaning and ensuring the integrity of the data used in analysis.

As a result, all columns in the DataFrame now have an integer data type, with no missing values.

EDA EXPLORATORY DATA ANALYSIS

Univariate & Bivariate Analysis

Binary Variables Proportion 🛨

individuals percentage smoke/have high blood pressure/high cholesterol is above 40%, whereas the lowest percentage is for individuals who have had a stroke or have not had their cholesterol checked in the last 5 years, which is below 5%.

Categorical Variables Proportion +

The majority of individuals fall within the age range of 55-64 years, while the least percentage is found in the age range of 18-44 years.

The highest frequency of education level is observed in "college student", followed by "some college or technical school", while the lowest frequency is found in "never attended school".

The distribution of general health is highest in the "fair" category. followed by "good".

The highest frequency of income level is in the category "\$75,000 or More", while the lowest frequency is in the category "Less than".

The highest distribution of mental health is observed at the value followed by 2 and 30.

The highest distribution of physical health is observed at the value of 0, followed by 30, 2, 1 etc.

Numerical Variables Proportion +

The majority of individuals in this dataset experience overweight to obesity, with only 25.6% having a normal BMI.

There is a significant relationship between BMI and diabetes.

Heart Disease Correlation Factor 🛨

Most people have a high level of education, and those with higher levels of education tend experience better overall health.

As the age increases, the chances of diabetes also commonly increases.

As the age increases, the chances of diabetes also commonly increases.

Feature Selection

Correlation values with Diabetes binary (sorted): GenH1th 0.276940 HighBP DiffWalk 0.205302 0.205086 HighChol 0.194944 Age 0.177263 HeartDiseaseorAttack 0.168213 PhysH1th 0.156211 Stroke 0.099193 Cho1Check 0.072523 MentH1th 0.054153 Smoker 0.045504 Sex 0.032724 AnvHealthcare 0.025331 NoDocbcCost 0.020048 Fruits -0.024805 -0.041734 Veggies HvyAlcoholConsump -0.065950 PhysActivity -0.100404 Education -0.102686 -0.140659 dtype: float64

Strong Correlation: GenHlth, HighBP, DiffWalk, BMI
Moderate Corellation with positive relation: HighChol, Age,
HeartDiseaseorAttack, PhysHlth, Stroke, CholCheck, MentHlth
Moderate Corellation with negative relation: Income, Education, PhysActivity,
HvyAlcoholConsump

VIF and ANOVA Test 🛨

In the result, the "const" variable has the **highest VIF** value, indicating high multicollinearity with other variables in the dataset. However, most other variables have **VIF** values close to 1, indicating **low multicollinearity**. Nevertheless, the "GenHlth" variable stands out with a relatively **high VIF** value of **1.741**, suggesting multicollinearity with other variables.

const	109.425291
Diabetes binary	1.182154
HighBP	1.315161
HighChol	1.166374
CholCheck	1.035970
BMI	1.141796
Smoker	1.076125
Stroke	1.077944
HeartDiseaseorAttack	1.170400
PhysActivity	1.130550
Fruits	1.097950
Veggies	1.098136
HvyAlcoholConsump	1.027834
AnyHealthcare	1.109935
NoDocbcCost	1.135686
GenH1th	1.741508
MentH1th	1.221789
PhysH1th	1.594308
DiffWalk	1.513943
Sex	1.076736
Age	1.359039
Education	1.272148
Income	1.431806
dtype: float64	

	0	1	2	3	4	5	6	7	8	9
0	1	1	40	0	5	15	1	9	4	3
1	0	0	25	0	3	0	0	7	6	1
2	1	1	28	0	5	30	1	9	4	8

After conducting the ANOVA test, the top 10 features were selected from the data for further modeling. The selected feature matrix has dimensions of 229,474 rows (samples) and 10 columns (selected features).

Chi Square Test +

	Feature	Score
15	PhysHlth	97988.761672
3	ВМІ	15507.736174
14	MentHith	11419.584750
18	Age	8539.906340
0	HighBP	8098.548237
16	DiffWalk	7875.496177
13	GenHlth	7671.732832
6	HeartDiseaseorAttack	5822.145697
1	HighChol	4869.312739
20	Income	3377.099257
5	Stroke	2156.678382
10	HvyAlcoholConsump	937.401148
7	PhysActivity	617.563886
19	Education	479.112939
4	Smoker	253.826098
17	Sex	137.837135
12	NoDocbcCost	83.662830
9	Veggies	82.098846
8	Fruits	54.688897
2	CholCheck	48.904140
11	AnvHealthcare	7.949731

	<pre><class 'pandas.core.frame.dataframe'=""></class></pre>					
	Index: 229474 entries, 0 to 253679					
Data	columns (total 17 col	umns):				
#	Column	Non-Null Count	Dtype			
0	Diabetes_binary	229474 non-null	int64			
1	HighBP	229474 non-null	int64			
2	HighChol	229474 non-null	int64			
3	BMI	229474 non-null	int64			
4	Smoker	229474 non-null	int64			
5	Stroke	229474 non-null	int64			
6	HeartDiseaseorAttack	229474 non-null	int64			
7	PhysActivity	229474 non-null	int64			
8	HvyAlcoholConsump	229474 non-null	int64			
9	GenH1th	229474 non-null	int64			
10	MentH1th	229474 non-null	int64			
11	PhysH1th	229474 non-null	int64			
12	DiffWalk	229474 non-null	int64			
13	Sex	229474 non-null	int64			
14	Age	229474 non-null	int64			
15	Education	229474 non-null	int64			
16	Income	229474 non-null	int64			
dtypes: int64(17)						
memo	ry usage: 39.6 MB					

	count	mean	std	min	25%	50%	75%	max
Diabetes_binary	229474.0	0.152945	0.359936	0.0	0.0	0.0	0.0	1.0
HighBP	229474.0	0.454343	0.497912	0.0	0.0	0.0	1.0	1.0
HighChol	229474.0	0.441640	0.496584	0.0	0.0	0.0	1.0	1.0
вмі	229474.0	28.687507	6.789204	12.0	24.0	27.0	32.0	98.0
Smoker	229474.0	0.465800	0.498830	0.0	0.0	0.0	1.0	1.0
Stroke	229474.0	0.044816	0.206899	0.0	0.0	0.0	0.0	1.0
HeartDiseaseorAttack	229474.0	0.103336	0.304398	0.0	0.0	0.0	0.0	1.0
PhysActivity	229474.0	0.733042	0.442371	0.0	0.0	1.0	1.0	1.0
HvyAlcoholConsump	229474.0	0.060791	0.238947	0.0	0.0	0.0	0.0	1.0
GenHith	229474.0	2.601820	1.064962	1.0	2.0	3.0	3.0	5.0
MentHith	229474.0	3.509866	7.717643	0.0	0.0	0.0	2.0	30.0
PhysHlth	229474.0	4.681219	9.050877	0.0	0.0	0.0	4.0	30.0
DiffWalk	229474.0	0.185751	0.388906	0.0	0.0	0.0	0.0	1.0
Sex	229474.0	0.439087	0.496277	0.0	0.0	0.0	1.0	1.0
Age	229474.0	8.085068	3.094451	1.0	6.0	8.0	10.0	13.0
Education	229474.0	4.979741	0.992989	1.0	4.0	5.0	6.0	6.0
Income	229474.0	5.888615	2.092888	1.0	4.0	6.0	8.0	8.0

The top 10 best features selected from the data based on the chi-square test. These features are chosen for their ability to predict the target variable effectively. After feature selection, several columns are removed from the original dataset, namely ["Fruits", "Veggies", "NoDocbcCost", "CholCheck", "AnyHealthcare"]. Following this removal, information and descriptive statistics about the remaining data are displayed, providing insights into the data types, non-null counts, and summary statistics.

DATA PRE-PROCESSING

Operational Variable & Treatment for Imbalance Data and Data Scaling

OPERATIONAL VARIABLE

	Hi ahRD	HighChol	BMT	Smoker	Stroke	HeartDiseaseorAttack	Phys&ctivity	HayAlcoholConsumn	GenH1+h	MentH1th	PhysH1+h	Diffkalk	Sev	Age	Education	Income
		nightini		Sillotter	SELONE	ilear ebiscascoraceack	Thysactivity	пунтсопотсопашр	ocimiz cii	//circiizeii	· nysmzem	Darringan	Jex	-9-	Luncutzon	THEORE
0	1	1	40	1	0	0	0	0	5	18	15	1	0	9	4	3
1	0	0	25	1	0	0	1	0	3	0	0	0	0	7	6	1
2	1	1	28	0	0	0	0	0	5	30	30	1	0	9	4	8
3	1	0	27	0	0	0	1	0	2	0	0	0	0	11	3	6
4	1	1	24	0	0	0	1	0	2	3	0	0	0	11	5	4
			(111)			State		1886	(1000)					***		
253675	1	1	45	0	0	0	0	0	3	0	5	0	1	5	6	7
253676	1	1	18	0	0	0	0	0	4	0	0	1	0	11	2	4
253677	0	0	28	0	0	0	1	0	1	0	0	0	0	2	5	2
253678	1	0	23	0	0	0	0	0	3	0	0	0	1	7	5	-1
253679	1	1	25	0	0	1	1	0	2	0	0	0	0	9	6	2
229474 rd	ws × 16 a	columns														

In this section, the **independent variables X** are separated by removing the "**Diabetes_binary**" column from the DataFrame df. The dependent variable Y is then defined as the "**Diabetes_binary**" column from the same DataFrame. Finally, the independent variables X are displayed. This process essentially separates the predictor variables from the target variable for further analysis.

TREATMENT OF IMBALANCE DATA AND DATA SCALING

Y.value counts()

Diabetes_binary

0 194377

1 35097

Name: count, dtype: int64

y_sm.value_counts()

Diabetes binary

0 350971 35097

Name: count, dtype: int64

y_sm.shape , x_sm.shape

((70194,), (70194, 16))

In this section:

- Frequency of each class in the target variable Y is counted.
- 2. NearMiss resampling technique is initialized with version 1 and 10 nearest neighbors.
- 3. Resampling is applied to the feature matrix X and the target variable Y, resulting in resampled feature matrix x_sm and resampled target variable y_sm.
- 4. The shapes of the resampled matrices are printed, indicating the number of samples generated.
- 5. Counts of each class in the resampled target variable y_sm are displayed, showing balanced distribution.
- 6. Data is split into training and testing sets with a test size of 0.3 and using random state 37

scalar = StandardScaler() X_train = scalar.fit_transform(X_train) X_test = scalar.fit_transform(X_test)

In this process, the features in the training set (X_train) are standardized using StandardScaler, which calculates the mean and standard deviation of each feature and scales them accordingly. The same scaling parameters are then applied to standardize the testing set (X_test) to maintain consistency in feature scaling between the training and testing data.

SVM

SVM Evaluation

Training set score: 0.8646

Test set score: 0.8637

Mean Squared Error: 0.1362837741583171

	precision	recall	f1-score	support
0	0.81	0.95	0.88	10629
1	0.94	0.77	0.85	10430
accuracy			0.86	21059
macro avg	0.88	0.86	0.86	21059
weighted avg	0.88	0.86	0.86	21059

XGBOOST

XGBoost Evaluation

Training set score: 0.8725

Test set score: 0.7186

Mean Squared Error: 0.28135239090175224

	precision	recall	f1-score	support
Ø	0.84	0.55	0.66	10629
1	0.66	0.89	0.76	10430
accuracy			0.72	21059
macro avg	0.75	0.72	0.71	21059
weighted avg	0.75	0.72	0.71	21059

RANDOM FOREST EVALUATION +

Random Forest Evaluation

Training set score: 0.8689

Test set score: 0.8592

Mean Squared Error : 0.1407949095398642

	precision	recall	f1-score	support
0	0.80	0.95	0.87	10629
1	0.94	0.76	0.84	10430
			0.00	24050
accuracy			0.86	21059
macro avg	0.87	0.86	0.86	21059
weighted avg	0.87	0.86	0.86	21059

NAIVE BAYES

Naive Bayes Evaluation

Training set score: 0.8203

Test set score: 0.8215

Mean Squared Error: 0.178545989838074

	precision	recall	f1-score	support
0	0.75	0.96	0.85	10629
v	0.75	0.90	0.85	10023
1	0.95	0.68	0.79	10430
accuracy			0.82	21059
macro avg	0.85	0.82	0.82	21059
weighted avg	0.85	0.82	0.82	21059

ANN

ANN Evaluation

Training set accuracy: 0.8737

Test set accuracy: 0.8672

659/659 1s 1ms/step

Mean Squared Error: 0.1328

	precision	recall	f1-score	support
0	0.83	0.93	0.88	10629
1	0.91	0.81	0.86	10430
accuracy			0.87	21059
macro avg	0.87	0.87	0.87	21059
weighted avg	0.87	0.87	0.87	21059

TUNING BEST MODEL (ANN)


```
Best: 0.869095 using {'batch_size': 32, 'epochs': 20, 'optimizer': 'adam'}
0.864414 (0.001805) with: {'batch_size': 16, 'epochs': 5, 'optimizer': 'adam'}
0.865045 (0.002918) with: {'batch_size': 16, 'epochs': 5, 'optimizer': 'rmsprop'}
0.867549 (0.002072) with: {'batch_size': 16, 'epochs': 10, 'optimizer': 'adam'}
                          {'batch size': 16, 'epochs': 10, 'optimizer': 'rmsprop'}
0.866714 (0.002635) with: {'batch_size': 16, 'epochs': 15, 'optimizer': 'adam'}
0.864883 (0.002567) with: {'batch size': 16, 'epochs': 15, 'optimizer': 'rmsprop'}
0.867630 (0.001034) with: {'batch size': 16, 'epochs': 20, 'optimizer': 'adam'
0.866083 (0.001016) with: {'batch_size': 16, 'epochs': 20, 'optimizer': 'rmsprop'}
0.864191 (0.002736) with: {'batch_size': 32, 'epochs': 5, 'optimizer': 'adam'}
0.865554 (0.002384) with: {'batch_size': 32, 'epochs': 5, 'optimizer': 'rmsprop'}
0.866531 (0.001015) with: {'batch_size': 32, 'epochs': 10, 'optimizer': 'adam'}
0.867121 (0.003037) with: {'batch_size': 32, 'epochs': 10, 'optimizer': 'rmsprop']
0.867976 (0.001830) with: {'batch_size': 32, 'epochs': 15, 'optimizer': 'adam'}
0.866796 (0.000456) with: {'batch_size': 32, 'epochs': 15, 'optimizer': 'rmsprop'}
0.869095 (0.000868) with: {'batch size': 32, 'epochs': 20, 'optimizer': 'adam'}
0.867284 (0.000350) with: {'batch_size': 32, 'epochs': 20, 'optimizer': 'rmsprop'}
0.863458 (0.001802) with: {'batch_size': 64, 'epochs': 5, 'optimizer': 'adam'}
0.861545 (0.003583) with: {'batch size': 64, 'epochs': 5, 'optimizer':
0.867447 (0.001233) with: {'batch size': 64, 'epochs': 10, 'optimizer': 'adam'
0.866368 (0.002242) with: {'batch_size': 64, 'epochs': 10, 'optimizer': 'rmsprop'}
0.866022 (0.002494) with: {'batch size': 64, 'epochs': 15, 'optimizer': 'adam'}
0.868017 (0.001457) with: {'batch size': 64, 'epochs': 15, 'optimizer': 'rmsprop'}
0.868444 (0.001720) with: {'batch_size': 64, 'epochs': 20, 'optimizer': 'adam'}
0.866877 (0.003579) with: {'batch size': 64, 'epochs': 20, 'optimizer': 'rmsprop'}
0.861789 (0.002680) with: {'batch_size': 128, 'epochs': 5, 'optimizer': 'adam'}
0.861463 (0.001990) with: {'batch_size': 128, 'epochs': 5, 'optimizer': 'rmsprop'}
0.866165 (0.002797) with: {'batch_size': 128, 'epochs': 10, 'optimizer': 'adam'}
0.866246 (0.002539) with: {'batch_size': 128, 'epochs': 10,
0.865371 (0.001472) with: {'batch_size': 128, 'epochs': 15,
0.867549 (0.001570) with: {'batch_size': 128, 'epochs': 15, 'optimizer': 'rmsprop'}
0.868057 (0.001252) with: {'batch size': 128, 'epochs': 20, 'optimizer': 'adam'
0.866816 (0.001847) with: {'batch size': 128, 'epochs': 20, 'optimizer': 'rmsprop'
```

In this section, a grid search cross-validation is performed to optimize the hyperparameters of an Artificial Neural Network (ANN) model. The hyperparameters tested include different optimizers (Adam and RMSprop), batch sizes (16, 32, 64, and 128), and numbers of epochs (5, 10, 15, and 20). The best performing combination of hyperparameters is determined based on the highest accuracy score obtained during cross-validation. The grid search results show the mean test accuracy along with the standard deviation for each combination of hyperparameters tested. The best performing combination is identified as using Adam optimizer with a batch size of 32 and 20 epochs, achieving an accuracy of 86.91%.

+

RUNNING TUNING MODEL ANN +

Epoch 1/10	
1536/1536	ls 2ms/step - accuracy: 0.8170 - loss: 0.3955 - val_accuracy: 0.8559 - val_loss: 0.3294
Epoch 2/10	
1536/1536	s 2ms/step - accuracy: 0.8589 - loss: 0.3266 - val_accuracy: 0.8645 - val_loss: 0.3208
Epoch 3/10	
1536/1536	ls 2ms/step - accuracy: 0.8655 - loss: 0.3157 - val_accuracy: 0.8653 - val_loss: 0.3136
Epoch 4/10	
1536/1536	ls 2ms/step - accuracy: 0.8673 - loss: 0.3129 - val_accuracy: 0.8654 - val_loss: 0.3116
Epoch 5/10	
1536/1536	s 2ms/step - accuracy: 0.8694 - loss: 0.3092 - val_accuracy: 0.8697 - val_loss: 0.3074
Epoch 6/10	
1536/1536	8s 2ms/step - accuracy: 0.8734 - loss: 0.3026 - val_accuracy: 0.8643 - val_loss: 0.3120
Epoch 7/10	
1536/1536	0.3050 3ms/step - accuracy: 0.8704 - loss: 0.3024 - val_accuracy: 0.8687 - val_loss: 0.3050
Epoch 8/10	
1536/1536 —	s 2ms/step - accuracy: 0.8728 - loss: 0.3013 - val_accuracy: 0.8701 - val_loss: 0.3004
Epoch 9/10	
1536/1536	is 2ms/step - accuracy: 0.8747 - loss: 0.2953 - val_accuracy: 0.8707 - val_loss: 0.3000
Epoch 10/10	
1536/1536	s 2ms/step - accuracy: 0.8713 - loss: 0.2981 - val_accuracy: 0.8689 - val_loss: 0.3009

The Artificial Neural Network (ANN) model attained a training accuracy of 87.49% and a test accuracy of 86.89%, suggesting robust predictive capability. However, slight overfitting was observed as the training accuracy surpassed the test accuracy, indicating potential room for model refinement.

Training set a				
Test set accur	acy: 0.8689			
659/659		1s 1m	s/step	
Mean Squared E	rror: 0.131	1		
Root Mean Squa	red Error:	0.3620		
	precision	recall	f1-score	suppor
0	0.82	0.95	0.88	1062
1	0.94	0.79	0.86	1043
accuracy			0.87	2105
macro avg	0.88	0.87	0.87	2105
weighted avg	0.88	0.87	0.87	2105

+ RUNNING TUNING MODEL ANN +

The Area under the Curve (AUC) is a metric used to evaluate the performance of a classification model. It measures the ability of the model to distinguish between positive and negative classes across various thresholds. Here's the interpretation of the AUC scores for each model:

- SVM (Support Vector Machine): The SVM model has an AUC of 0.8628. This indicates that
 the SVM model performs relatively well in distinguishing between positive and negative
 classes, with an overall good discriminatory ability.
- 2. XGBoost: The XGBoost model has an AUC of 0.7203. While this AUC score is lower compared to the SVM model, it still suggests that the XGBoost model has some ability to differentiate between positive and negative classes, although it may not be as strong as the SVM model.
- 3. Random Forest: The Random Forest model achieves an AUC of 0.8583. This indicates that the Random Forest model performs well in terms of discriminatory ability, similar to the SVM model, with a relatively high AUC score.
- 4. Naive Bayes: The Naive Bayes model has an AUC of 0.8201. While this AUC score is lower compared to the SVM and Random Forest models, it still suggests that the Naive Bayes model has a decent ability to distinguish between positive and negative classes.
- 5. ANN (Artificial Neural Network): The ANN model achieves an AUC of 0.8666. This indicates that the ANN model performs relatively well in distinguishing between positive and negative classes, with a high discriminatory ability similar to the SVM and Random Forest models.

In summary, the SVM, Random Forest, and ANN models demonstrate relatively strong discriminatory abilities, as indicated by their higher AUC scores, while the XGBoost and Naive Bayes models also show reasonable performance, albeit with slightly lower AUC scores.

+

RUNNING TUNING MODEL ANN +

```
Enter value for HighBP (0 for No, 1 for Yes): 1
Enter value for HighChol (0 for No, 1 for Yes): 1
Enter value for BMI (Numeric value, based on formula): 25
Enter value for Smoker (0 for No. 1 for Yes): 1
Enter value for Stroke (0 for No, 1 for Yes): 1
Enter value for HeartDiseaseorAttack (0 for No, 1 for Yes): 1
Enter value for PhysActivity (0 for No, 1 for Yes): 0
Enter value for HvyAlcoholConsump (0 for No, 1 for Yes): 0
Enter value for Sex (0 for Female, 1 for Male): 1
Enter value for GenHlth (Range: 1-5): 3
Enter value for MentHlth (Numeric value between 0-30): 2
Enter value for PhysHlth (Numeric value between 0-30): 2
Enter value for DiffWalk (0 for No, 1 for Yes): 1
Enter value for Age (Range: 1-13): 4
Enter value for Education (Range: 1-6): 3
Enter value for Income (Range: 1-8): 3
                      — 0s 309ms/step
   HighBP HighChol BMI Smoker Stroke HeartDiseaseorAttack PhysActivity HvyAlcoholConsump Sex GenHlth MentHlth PhysHlth DiffWalk Age Education Income
                              1.0
                                     1.0
                                                           1.0
                                                                         0.0
                                                                                            0.0 1.0
                                                                                                                                       1.0 40
                                                                                                                                                              3.0
Based on our research model, it is predicted that you have a Prediabetes/Diabetes status. We recommend you see a doctor soon.
```

The code successfully allows for input of health feature values from users, then predicts the likelihood of prediabetes or diabetes based on a previously trained artificial neural network model. The prediction results are displayed to users along with a recommendation to consult a doctor if there is a risk of diabetes detected.

DEPLOYMENT MODEL

+

CONTRIBUTION IN PERCENTAGES

+

JOB LIST

Final Project							
		Keterangan	Kak Isnen	Kak Tabita	Kak Askar	Kak Afwa	Kak Ezra
	Google Colab	19/04/2024					
	EDA	data info, data describe, missing value, visualisasi data		X	X	ľ	1
)]		1
	Data pre-processing	regularisasi data, cek outlier, distribusi data, data anomali, korelasi, feature selection		X	×		
	Deadline	15/04/2024		-		-	
	Model training	ML Traditional :kNN, Decision Tree (C.45), Random Forest ML Deep Learning eksperimen untuk Boosting atau majority voting tambahkan algoritma Apriori untuk menunjukkan gejala/kondisi yg dapat menyebabkan diabetes	х			×	
	Model evaluation	convution metric (recall, precision, accuracy, F-1 Score), ROC. AUC					x
	Streamlit	100, 200		- k	4	- t	
	Modul Inisiasi		X	X	4	-	4
	Modul EDA		X		X		4
	Modul Dara Prepocessing		X		1	X	1
	Deadline	24/04/2023			1		1
	Modul Model Training	4000000	Х		1		Х
	Modul Evaluation Model		X		T)		1
11	Deadline	25/04/2023			1		Ĭ
11	Presentasi	Buat slide untuk project	X		X		
	Deadline	28/04/2024					1

THANK YOU - ORION TEAM