Chapter 4 Network Layer

A note on the use of these ppt slides:

We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a for of work on our part. In return for use, we only

- Iney doviously represent a or or work on our part. In return tor use, we only ask the followings saidset (e.g., in a class) that you mention their source (after all, we'd the people to use our book).

 I you post any sides on a sww site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR

© All material copyright 1996-2013 J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking: A Top Down Approach

6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012

Network Layer 4-1

Chapter 4: network layer

chapter goals:

- understand principles behind network layer services:
 - network layer service models
 - forwarding versus routing
 - how a router works
 - routing (path selection)
 - broadcast, multicast
- * instantiation, implementation in the Internet

Network Layer 4-2

Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP ■ IPv6

- 4.5 routing algorithms
 - link state
 - distance vector
- hierarchical routing 4.6 routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 broadcast and multicast routing

Network layer

- transport segment from sending to receiving host
- * on sending side encapsulates segments into datagrams
- on receiving side, delivers segments to transport layer
- network layer protocols in every host, router
- * router examines header fields in all IP datagrams passing through it

Network Layer 4-4

Two key network-layer functions

- forwarding: move packets from router's input to appropriate router output
- routing: determine route taken by packets from source to dest.
 - routing algorithms

analogy:

- routing: process of planning trip from source to dest
- forwarding: process of getting through single interchange

Network Layer 4-5

Interplay between routing and forwarding

Connection setup

- * 3rd important function in some network architectures:
 - ATM, frame relay, X.25
- before datagrams flow, two end hosts and intervening routers establish virtual connection
 - routers get involved
- network vs transport layer connection service:
 - network: between two hosts (may also involve intervening routers in case of VCs)
 - transport: between two processes

Network service model

Q: What service model for "channel" transporting datagrams from sender to receiver?

example services for individual datagrams:

- guaranteed delivery
- guaranteed delivery with less than 40 msec delay
- example services for a flow of datagrams:
- in-order datagram delivery
- guaranteed minimum bandwidth to flow
- restrictions on changes in inter-packet spacing

Network Layer 4-7 Network Layer 4-8

Network layer service models:

1	Network nitecture		Guarantees ?				Congestion
Arch			Bandwidth	Loss	Order	Timing	feedback
	Internet	best effort	none	no	no	no	no (inferred via loss)
	ATM	CBR	constant	yes	yes	yes	no
			rate				congestion
	ATM	VBR	guaranteed	yes	yes	yes	no
			rate				congestion
	ATM	ABR	guaranteed	no	yes	no	yes
			minimum				
	ATM	UBR	none	no	yes	no	no

Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

- 4.5 routing algorithms
 - link state
 - distance vector
 - hierarchical routing
- 4.6 routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 broadcast and multicast routing

Network Layer 4-9

Network Layer 4-10

Connection, connection-less service

- datagram network provides network-layer connectionless service
- virtual-circuit network provides network-layer connection service
- analogous to TCP/UDP connection-oriented / connectionless transport-layer services, but:
 - service: host-to-host
 - no choice: network provides one or the other
 - implementation: in network core

Virtual circuits

- "source-to-dest path behaves much like telephone circuit"
 - performance-wise
 - network actions along source-to-dest path
- * call setup, teardown for each call before data can flow
- each packet carries VC identifier (not destination host address)
- every router on source-dest path maintains "state" for each passing connection
- link, router resources (bandwidth, buffers) may be allocated to VC (dedicated resources = predictable service)

Network Layer 4-11 Network Layer 4-12

VC implementation

a VC consists of:

- 1. path from source to destination
- 2. VC numbers, one number for each link along path
- 3. entries in forwarding tables in routers along path
- packet belonging to VC carries VC number (rather than dest address)
- VC number can be changed on each link.
 - new VC number comes from forwarding table

VC forwarding table

forwarding table in northwest router:

ncoming interface	Incoming VC #	Outgoing interface	Outgoing VC #
1	12	3	22
2	63	1	18
3	7	2	17
1	97	3	87

VC routers maintain connection state information!

Network Layer 4-13

Network Layer 4-15

Network Laver 4-1-

Virtual circuits: signaling protocols

- * used to setup, maintain teardown VC
- * used in ATM, frame-relay, X.25
- * not used in today's Internet

application transport network data link physical 5. data flow begins 6. receive data fransport network data link physical 6. receive data fransport network data link physical application transport network data link physical

Datagram networks

- * no call setup at network layer
- $\boldsymbol{\div}$ routers: no state about end-to-end connections
 - no network-level concept of "connection"
- * packets forwarded using destination host address

Datagram forwarding table

Datagram forwarding table

Destination Address Range	Link Interface	
11001000 00010111 00010000 through	00000000	0
11001000 00010111 00010111	11111111	0
11001000 00010111 00011000	00000000	4
through 11001000 00010111 00011000	11111111	1
11001000 00010111 00011001	00000000	2
11001000 00010111 00011111	11111111	
otherwise		3

Q: but what happens if ranges don't divide up so nicely?

Longest prefix matching

longest prefix matching

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

Destination Address Range	Link interface
11001000 00010111 00010*** *******	0
11001000 00010111 00011000 *******	1
11001000 00010111 00011*** *******	2
otherwise	3

examples:

DA: 11001000 00010111 00010110 10100001 which interface? DA: 11001000 00010111 0001000 10101010 which interface?

Network Layer 4-19

Datagram or VC network: why?

Internet (datagram)

- * data exchange among computers
 - "elastic" service, no strict timing req.
- * many link types
 - different characteristics
 - uniform service difficult
- "smart" end systems (computers)
 - can adapt, perform control, error recovery
 - simple inside network, complexity at "edge"

ATM (VC)

- * evolved from telephony
- human conversation:
 - strict timing, reliability requirements
 - need for guaranteed service
 "dumb" end systems
- telephones
- complexity inside network

Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressingICMP

 - IPv6

- 4.5 routing algorithms
 - link state
 - distance vector
 - hierarchical routing
- 4.6 routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 broadcast and multicast routing

Network Layer 4-21

Router architecture overview

two key router functions:

- * run routing algorithms/protocol (RIP, OSPF, BGP)
- * forwarding datagrams from incoming to outgoing link

Network Layer 4-22

Input port functions

data link layer: e.g., Ethernet see chapter 5

- given datagram dest., lookup output port using forwarding table in input port memory ("match plus action")
- goal: complete input port processing at 'line speed'
- queuing: if datagrams arrive faster than forwarding rate into switch fabric

Switching fabrics

- * transfer packet from input buffer to appropriate output buffer
- * switching rate: rate at which packets can be transfer from inputs to outputs
 - often measured as multiple of input/output line rate
 - N inputs: switching rate N times line rate desirable
- three types of switching fabrics

Switching via memory

first generation routers:

- $\ensuremath{\raisebox{.4ex}{\star}}$ traditional computers with switching under direct control of CPU
- * packet copied to system's memory
- speed limited by memory bandwidth (2 bus crossings per datagram)

Network Layer 4-25

Switching via a bus

- datagram from input port memory to output port memory via a shared bus
- bus contention: switching speed limited by bus bandwidth
- 32 Gbps bus, Cisco 5600: sufficient speed for access and enterprise routers

bus

Network Layer 4-26

Switching via interconnection network

- * overcome bus bandwidth limitations
- banyan networks, crossbar, other interconnection nets initially developed to connect processors in multiprocessor
- advanced design: fragmenting datagram into fixed length cells, switch cells through the fabric.
- Cisco 12000: switches 60 Gbps through the interconnection network

Output ports

This slide in HUGELY important!

- buffering required from fabric faster
- Datagram (packets) can be lost due to congestion, lack of buffers
- scheduling datagrams

Priority scheduling – who gets best performance, network neutrality

Network Layer 4-28

Output port queueing

- buffering when arrival rate via switch exceeds output line speed
- queueing (delay) and loss due to output port buffer overflow!

Network Layer 4-29

How much buffering?

- RFC 3439 rule of thumb: average buffering equal to "typical" RTT (say 250 msec) times link capacity C
 - e.g., C = 10 Gpbs link: 2.5 Gbit buffer
- recent recommendation: with N flows, buffering equal to

RTT·C

Network Layer 4-30

Input port queuing

- fabric slower than input ports combined -> queueing may occur at input queues
 - queueing delay and loss due to input buffer overflow!
- Head-of-the-Line (HOL) blocking: queued datagram at front of queue prevents others in queue from moving forward

Network Layer 4-31

Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

- 4.5 routing algorithms
 - link state
 - distance vector
 - hierarchical routing
- 4.6 routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 broadcast and multicast routing

The Internet network layer

host, router network layer functions:

Network Layer 4-33

IP datagram format

Network Layer 4-34

IP fragmentation, reassembly

- network links have MTU (max.transfer size) largest possible link-level
 - different link types, different MTUs
- large IP datagram divided ("fragmented") within net
 - one datagram becomes several datagrams
 - "reassembled" only at final destination
 - IP header bits used to identify, order related fragments

Network Layer 4-35

IP fragmentation, reassembly

Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressingICMP

 - IPv6

- 4.5 routing algorithms
 - link state
 - distance vector
 - hierarchical routing
- 4.6 routing in the Internet
 - RIP
 - OSPF
- BGP
- 4.7 broadcast and multicast routing

IP addressing: introduction

 IP address: 32-bit identifier for host, router interface

 router's typically have multiple interfaces host typically has one or two interfaces (e.g., wired Ethernet, wireless 802.11)

* IP addresses associated with each interface

223

Network Layer 4-38

Network Layer 4-37

IP addressing: introduction

Q: how are interfaces actually connected? A: we'll learn about that 223.1.1. in chapter 5, 6.

A: wired Ethernet interfaces connected by Ethernet switches

For now: don't need to worry about how one interface is connected to another (with no intervening router)

Network Layer 4-39

Subnets

- *IP address:
 - subnet part high order
 - ■host part low order bits
- *what's a subnet?
 - device interfaces with same subnet part of IP address
 - can physically reach each other without intervening router

network consisting of 3 subnets

Subnets

recipe

- to determine the subnets, detach each interface from its host or router, creating islands of isolated networks
- each isolated network is called a subnet

subnet mask: /24

Network Layer 4-41

Subnets

how many?

Network Layer 4-42

IP addressing: CIDR

CIDR: Classless InterDomain Routing

- subnet portion of address of arbitrary length
- address format: a.b.c.d/x, where x is # bits in subnet portion of address

	subnet		host
`	part		part
11001000	00010111	00010000	00000000
	200.23	.16.0/23	

IP addresses: how to get one?

Q: How does a host get IP address?

- * hard-coded by system admin in a file
 - Windows: control-panel->network->configuration->tcp/ip->properties
 - UNIX: /etc/rc.config
- * DHCP: Dynamic Host Configuration Protocol: dynamically get address from as server
 - "plug-and-play"

Network Layer 4-43 Network Layer 4-44

DHCP: Dynamic Host Configuration Protocol

goal: allow host to dynamically obtain its IP address from network server when it joins network

- can renew its lease on address in use
- allows reuse of addresses (only hold address while connected/"on")
- support for mobile users who want to join network (more shortly)

DHCP overview:

- host broadcasts "DHCP discover" msg [optional]
- DHCP server responds with "DHCP offer" msg [optional]
- host requests IP address: "DHCP request" msg
- DHCP server sends address: "DHCP ack" msg

Network Layer 4-45

DHCP client-server scenario

Network Layer 4-46

DHCP client-server scenario

Network Layer 4-47

DHCP: more than IP addresses

DHCP can return more than just allocated IP address on subnet:

- address of first-hop router for client
- name and IP address of DNS sever
- network mask (indicating network versus host portion of address)

DHCP: example

- connecting laptop needs its IP address, addr of first-hop router, addr of DNS server: use DHCP
- * DHCP request encapsulated in UDP, encapsulated in IP, encapsulated in 802.1 Ethernet
- * Ethernet frame broadcast (dest: FFFFFFFFFFF) on LAN, received at router running DHCP server
- Ethernet demuxed to IP demuxed. UDP demuxed to DHCP

Network Layer 4-49

DHCP: example

- DCP server formulates DHCP ACK containing client's IP address, IP address of first-hop router for client, name & IP address of DNS server
- * encapsulation of DHCP server, frame forwarded to client, demuxing up to DHCP at client
- * client now knows its IP address, name and IP address of DSN server, IP address of its first-hop router

Network Layer 4-50

DHCP: Wireshark output (home LAN)

Message type: Boot Reply (2)
Hardware type: Ethernet
Hardware address length: 6
Hope: Oraciton ID: 0x68a311b7
Tomortis ellipsess 0.
Bootp flags: 0x0000 (Unicast)
Client IP address: 102.168.1.101 (192.168.1.101)
Your (client) IP address: 0.0.0.0 (0.0.0.0)
Next server IP address: 102.168.1.101
Server host amen on given
Boot flie name not given
Boott flie name not given
Boott flie name not given

Boot file name not given Magic coole: (C) HS (1982)

Network Layer 4-51

IP addresses: how to get one?

Q: how does network get subnet part of IP addr? A: gets allocated portion of its provider ISP's address

ISP's block	11001000 00010	111 00010000	00000000	200.23.16.0/20
Organization 0	11001000 00010	<u>111 0001000</u> 0	00000000	200.23.16.0/23
Organization 1	11001000 00010	111 0001001 ₀	00000000	200.23.18.0/23
Organization 2	11001000 00010	111 0001010 ₀	00000000	200.23.20.0/23
Organization 7	11001000 00010	<u>111 0001111</u> 0	00000000	200.23.30.0/23

Hierarchical addressing: route aggregation

hierarchical addressing allows efficient advertisement of routing information:

Network Layer 4-53

Hierarchical addressing: more specific routes

ISPs-R-Us has a more specific route to Organization I

Network Layer 4-54

IP addressing: the last word...

Q: how does an ISP get block of addresses?

- A: ICANN: Internet Corporation for Assigned Names and Numbers http://www.icann.org/
 - allocates addresses
 - manages DNS
 - assigns domain names, resolves disputes

NAT: network address translation

Network Layer 4-55 Network Layer 4-56

NAT: network address translation

motivation: local network uses just one IP address as far as outside world is concerned:

- range of addresses not needed from ISP: just one IP address for all devices
- can change addresses of devices in local network without notifying outside world
- can change ISP without changing addresses of devices in local network
- devices inside local net not explicitly addressable, visible by outside world (a security plus)

NAT: network address translation

implementation: NAT router must:

- outgoing datagrams: replace (source IP address, port #) of every outgoing datagram to (NAT IP address, new port #)
 ... remote clients/servers will respond using (NAT IP address, new port #) as destination addr
- remember (in NAT translation table) every (source IP address, port #) to (NAT IP address, new port #) translation pair
- incoming datagrams: replace (NAT IP address, new port #) in dest fields of every incoming datagram with corresponding (source IP address, port #) stored in NAT table

Network Layer 4-57

Network Layer 4-58

NAT: network address translation

Network Layer 4-59

NAT: network address translation

- 4 16-bit port-number field:
 - 60,000 simultaneous connections with a single LAN-side address!
- NAT is controversial:
 - routers should only process up to layer 3
 - violates end-to-end argument
 - NAT possibility must be taken into account by app designers, e.g., P2P applications
 - address shortage should instead be solved by IPv6

NAT traversal problem

- client wants to connect to server with address 10.0.0.1
 - server address 10.0.0.1 local to LAN (client can' t use it as destination addr)
 - only one externally visible NATed address: 138.76.29.7
- solution I: statically configure NAT to forward incoming connection requests at given port to server
 - e.g., (123.76.29.7, port 2500) always forwarded to 10.0.0.1 port 25000

Network Layer 4-61

NAT traversal problem

- solution 2: Universal Plug and Play (UPnP) Internet Gateway Device (IGD) Protocol. Allows NATed host to:
 - learn public IP address (138.76.29.7)
 - add/remove port mappings (with lease times)

i.e., automate static NAT port map configuration

Network Layer 4-62

NAT traversal problem

- solution 3: relaying (used in Skype)
 - NATed client establishes connection to relay
 - external client connects to relay
 - relay bridges packets between to connections

Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram formatIPv4 addressing
 - ICMP
 - ICMI ■ IPv6

- 4.5 routing algorithms
 - link state
 - distance vector
 - hierarchical routing
- 4.6 routing in the Internet
 - RIPOSPF
 - BGP
- 4.7 broadcast and multicast routing

ICMP: internet control message protocol

- used by hosts & routers to communicate networklevel information
 - error reporting: unreachable host, network, port, protocol
 - echo request/reply (used by ping)
- network-layer "above" IP:
 ICMP msgs carried in IP datagrams
- ICMP message: type, code plus first 8 bytes of IP datagram causing error

Type	Code	description
0	0	echo reply (ping)
3	0	dest. network unreachable
3	1	dest host unreachable
3	2	dest protocol unreachable
3	3	dest port unreachable
3	6	dest network unknown
3	7	dest host unknown
4	0	source quench (congestion
		control - not used)
8	0	echo request (ping)
9	0	route advertisement
10	0	router discovery
11	0	TTL expired
12	0	bad IP header

Network Layer 4-65

Traceroute and ICMP

- * source sends series of UDP segments to dest
 - first set has TTL = I
 - second set has TTL=2, etc.
 - unlikely port number
- when nth set of datagrams arrives to nth router:
 - router discards datagrams
 - and sends source ICMP messages (type II, code 0)
 - ICMP messages includes name of router & IP address
- when ICMP messages arrives, source records RTTs

stopping criteria:

- UDP segment eventually arrives at destination host
- destination returns ICMP "port unreachable" message (type 3, code 3)
- source stops

Network Layer 4-66

IPv6: motivation

- initial motivation: 32-bit address space soon to be completely allocated.
- * additional motivation:
 - header format helps speed processing/forwarding
 - header changes to facilitate QoS

IPv6 datagram format:

- fixed-length 40 byte header
- no fragmentation allowed

IPv6 datagram format

priority: identify priority among datagrams in flow flow Label: identify datagrams in same "flow."

(concept of "flow" not well defined).

next header: identify upper layer protocol for data

Network Layer 4-68

Other changes from IPv4

- checksum: removed entirely to reduce processing time at each hop
- options: allowed, but outside of header, indicated by "Next Header" field
- * ICMPv6: new version of ICMP
 - additional message types, e.g. "Packet Too Big"
 - multicast group management functions

Network Layer 4-69

Transition from IPv4 to IPv6

- * not all routers can be upgraded simultaneously
 - no "flag days"
 - how will network operate with mixed IPv4 and IPv6 routers?
- tunneling: IPv6 datagram carried as payload in IPv4 datagram among IPv4 routers

Tunneling

Network Layer 4-71

Tunneling

IPv6: adoption

- * US National Institutes of Standards estimate [2013]:
 - ~3% of industry IP routers
 - ~II% of US gov't routers
- * Long (long!) time for deployment, use
 - 20 years and counting!
 - think of application-level changes in last 20 years: WWW, Facebook, ...
 - Why?