Lecture 33 Synthesizing under a distribution

Sankha Narayan Guria with slides from Armando Solar-Lezama

Programming by Example

 $[(in_0|out_0),(in_1|out_1),...(in_k|out_k)]$

Problem is hopelessly underspecified

Many semantically distinct programs can satisfy the examples

$$P(f \mid [(in_i \mid out_i)]_i) \approx P_f(f) * P_{io}([(in_i \mid out_i)]_i \mid f)$$

Key elements

Any program that does not match the I/O examples has P=0

All programs that match the I/O examples have the same $P_{io}([(in_i / out_i)]_i | f)$

Length minimization

Shortest programs are better than longer programs

•
$$P(f) = \begin{cases} \frac{1}{z} * e^{-len(f)} & \text{if } f \text{ belongs to the space of programs} \\ 0 & \text{otherwise} \end{cases}$$

Bottom Up Explicit Search

When discarding observationally equivalent programs, keep shortest one.

Naturally finds shortest programs first

Key property:

 All subprograms of the shortest program will themselves be the shortest programs

Top Down Explicit Search

Achieving minimality is trickier and more expensive

- Algorithm keeps a wavefront of partially completed programs
- Need to expand that wavefront in best-first manner

Top Down Explicit Search

expr = var

Symbolic Search

$$\exists \phi. \forall in. Q(\phi, in)$$

$$\exists \phi. (\forall in. Q(\phi, in) \land \forall \phi' P(\phi') \leq P(\phi))$$

$$\exists \phi. \left(\forall in. Q(\phi, in) \land \forall \phi' \ \left(\forall in. Q(\phi', in) \right) \Rightarrow P(\phi') \leq P(\phi) \right)$$

Symbolic Search

 $\exists \phi. \forall in. Q(\phi, in)$

 $\exists \phi. \forall in \in E. Q(\phi, in)$

More permissive, allows all correct ϕ , but also some incorrect ones.

$$\forall \phi' \ (\forall in. Q(\phi', in)) \Rightarrow P(\phi') \leq P(\phi)$$

$$\forall \phi' \in G \ (\forall in. Q(\phi', in)) \Rightarrow P(\phi') \leq P(\phi)$$

$$\forall \phi' \in G \ P(\phi') \leq P(\phi)$$

Works if we can ensure G only contains ϕ' that satisfy $\forall in. Q(\phi', in)$

Symbolic Search

 $\exists \phi. \forall in. Q(\phi, in)$

 $\exists \phi. \forall in \in E. Q(\phi, in)$

More permissive, allows all correct ϕ , but also some incorrect ones.

$$\forall \phi' \ (\forall in. Q(\phi', in)) \Rightarrow P(\phi') \leq P(\phi)$$

$$\forall \phi' \in G \ (\forall in. Q(\phi', in)) \Rightarrow P(\phi') \leq P(\phi)$$

Works if we can ensure G only contains ϕ' that satisfy $\forall in. Q(\phi', in)$

$$\forall \phi' \in G \ P(\phi') \leq P(\phi)$$

$$\left(\max_{\phi'\in G}P(\phi')\right)\leq P(\phi)$$

Probabilistic Grammars

```
expr = expr + expr
| expr - expr
| expr * expr
| var
| num
```

Probabilistic Grammars

Probabilistic Grammars

P(expr)

$$P(exp) = 7.81 \times 10^{-6}$$

$$P(exp) = 7.81 \times 10^{-6}$$

Search with PG

Probability is compositional

Same strategies as length-based metric work

Context sensitive Probabilities

Context sensitive Probabilities

$expr = expr_1 + expr_2$	A
$ expr_3 - expr_4 $	В
$ expr_5*expr_6 $	C
var	D
l num	Ε

	A	В	С	D	E
Root	0.2	0.2	0.2	0.2	0.2
1	0.2	0.2	0.2	0.2	0.2
2	0	0	1/3	1/3	1/3
3	0.2	0.2	0.2	0.2	0.2
4	0	0	1/3	1/3	1/3
5	0.2	0.2	0.2	0.2	0.2
6	0.25	0.25	0	0.25	0.25

Search

Top-down and Constraint-based search are similar

Bottom up search is significantly more challenging

x=5 => out=7

We know they are equivalent Which one do we keep?

$expr = expr_1 + expr_2$	Α
$ expr_3 - expr_4 $	В
$ expr_5*expr_6 $	C
var	D
num	Ε

	Α	В	С	D	E
Root	0.2	0.2	0.2	0.2	0.2
1	0.2	0.2	0.2	0.2	0.2
2	0	0	1/3	1/3	1/3
3	0.2	0.2	0.2	0.2	0.2
4	0	0	1/3	1/3	1/3
5	0.2	0.2	0.2	0.2	0.2
6	0.25	0.25	0	0.25	0.25

Root	0.01
1	0.01
2	0.017
3	0.01
4	0.017
5	0.01
6	0

Root	0.013
1	0.013
2	0
3	0.013
4	0
5	0.013
6	0.0165

Is this exponentially slower?

$$expr = expr_1 + expr_2$$
 A
 $| expr_3 - expr_4 |$ B
 $| expr_5 * expr_6 |$ C
 $| var |$ D
 $| num |$ E

	Α	В	С	D	Е
Root	0.2	0.2	0.2	0.2	0.2
1	0.2	0.2	0.2	0.2	0.2
2	0	0	1/3	1/3	1/3
3	0.2	0.2	0.2	0.2	0.2
4	0	0	1/3	1/3	1/3
5	0.2	0.2	0.2	0.2	0.2
6	0.25	0.25	0	0.25	0.25

$$x=5 => out=7$$

Root	0.01
1	0.01
2	0.017
3	0.01
4	0.017
5	0.01
6	0

Root	0.013
1	0.013
2	0
3	0.013
4	0
5	0.013
6	0.0165

Is this exponentially slower?

No!

Given K contexts, we need at most k representatives for each equivalence class

$$expr = expr_1 + expr_2$$
 $| expr_3 - expr_4 |$ $| expr_5 * expr_6 |$ $| var |$ $| num |$ $| expr_5 |$

	A	В	С	D	E
Root	0.2	0.2	0.2	0.2	0.2
1	0.2	0.2	0.2	0.2	0.2
2	0	0	1/3	1/3	1/3
3	0.2	0.2	0.2	0.2	0.2
4	0	0	1/3	1/3	1/3
5	0.2	0.2	0.2	0.2	0.2
6	0.25	0.25	0	0.25	0.25

Keeping x*2
and x+x
does not
force us to
keep all
programs
generated
from both

Root	0.0005
1	0.0005
2	0.0008
3	0.0005
4	0.0008
5	0.0005
6	0

Root	0.0006
1	0.0006
2	0.001
3	0.0006
4	0.001
5	0.0006
6	0

Is this exponentially slower?

No!

Given K contexts, we need at most k representatives for each equivalence class

 $P_{tree}(t \mid p_{nodes})$

Probability of a tree/string given the probabilities of individual tokens/chars

Usually a simple function that traverses the tree/string and multiplies probabilities (adds their logs)

$$expr = expr_1 + expr_2$$
 A
$$| expr_3 - expr_4 | B$$

$$| expr_5 * expr_6 | C$$

$$| var | D$$

$$| num | E$$

$p_{nodes}^{ heta} =$

	A	В	С	D	Е
Root	$ heta_{0,A}$	$ heta_{0,B}$	$ heta_{0,C}$	$ heta_{0,D}$	$ heta_{0,E}$
1	$ heta_{ exttt{1,A}}$	$ heta_{ exttt{1,B}}$	$ heta_{ exttt{1,C}}$	$ heta_{ exttt{1,}D}$	$ heta_{1,E}$
2	$\theta_{2,A}$	$ heta_{2,B}$	$\theta_{2,C}$	$ heta_{2,D}$	$ heta_{2,E}$
3	$ heta_{3,A}$	$ heta_{3,B}$	$ heta_{3,C}$	$ heta_{3,D}$	$ heta_{3,E}$
4	$ heta_{4,A}$	$ heta_{4,B}$	$ heta_{ ext{4,C}}$	$ heta_{4,D}$	$ heta_{4,E}$
5	$ heta_{5,A}$	$ heta_{5,B}$	$ heta_{5,\mathit{C}}$	$ heta_{5,D}$	$ heta_{5,E}$
6	$\theta_{6,A}$	$\theta_{6,B}$	$\theta_{6,C}$	$\theta_{6,D}$	$\theta_{6,E}$

Given a set of sample trees $T=\{t_i\}_{i< N}$ and a parametric distribution p_{nodes}^{θ} the goal is to find parameters that maximize the probability of the samples.

$$\underset{\theta}{\operatorname{argmax}} \Pi_{i} P_{tree}(t \mid p_{nodes}^{\theta}) = \underset{\theta}{\operatorname{argmax}} \Sigma_{i} \log P_{tree}(t_{i} \mid p_{nodes}^{\theta})$$

$$= \underset{\theta}{\operatorname{argmax}} \Sigma_{i} \Sigma_{j} \log P(n_{j}^{i} \mid C_{j}^{i}, p_{nodes}^{\theta})$$

where n_j^i is node j of tree i in the dataset and C_j^i is the context where node j of tree j appears

$$p_{nodes}^{ heta} =$$

$$expr = expr_1 + expr_2$$
 A
 $| expr_3 - expr_4 |$ B
 $| expr_5 * expr_6 |$ C
 $| var |$ D
 $| num |$ E

	A	В	С	D	E
Root	$ heta_{0,A}$	$ heta_{0,B}$	$ heta_{0,\mathcal{C}}$	$ heta_{0,D}$	$ heta_{0,E}$
1	$ heta_{1,A}$	$ heta_{1,B}$	$ heta_{1,\mathcal{C}}$	$ heta_{1,D}$	$ heta_{1,E}$
2	$\theta_{2,A}$	$\theta_{2,B}$	$\theta_{2,C}$	$\theta_{2,D}$	$\theta_{2,E}$
3	$\theta_{3,A}$	$ heta_{3,B}$	$ heta_{3,\mathcal{C}}$	$\theta_{3,D}$	$\theta_{3,E}$
4	$ heta_{4,A}$	$ heta_{4,B}$	$ heta_{4,\mathcal{C}}$	$ heta_{4,D}$	$ heta_{4,E}$
5	$\theta_{5,A}$	$ heta_{5,B}$	$ heta_{5,C}$	$ heta_{5,D}$	$ heta_{5,E}$
6	$\theta_{6,A}$	$\theta_{6,B}$	$\theta_{6,C}$	$\theta_{6,D}$	$\theta_{6,E}$

$$\log P_{tree}(t_i \mid p_{nodes}^{\theta}) = \frac{\log \theta_{0,C} + \log \theta_{5,C} + \log \theta_{5,D} + \log \theta_{6,E}}{\log \theta_{6,E} + \log \theta_{6,E}}$$

Neural Networks

Standard neural network model:

very general parametric function

DeepCoder

Learn a conditional distribution for a simple probabilistic grammar

Vector representing probabilities for each component in the grammar

Sampling

What if we do not want the best?

• Instead we want to sample from the distribution

Rejection sampling

- Sample according to P(f)
- Reject anything where P(evidence|f) = 0

Very inefficient

If h is measure preserving, sampling uniformly from Φ is equivalent to sampling uniformly from θ and then solving for ϕ s.t. $\theta = h(\phi)$

Approach:

- Partition Θ
- Sample uniformly from the partitions to pick $\overline{\theta_i} \subset \Theta$
- Solve for ϕ s.t. $Q(\phi) \land h(\phi) \in \overline{\theta_i}$

Approach:

- Partition Θ
- Sample uniformly from the partitions to pick $\theta_i \subset \Theta$
- Solve for ϕ s.t. $Q(\phi) \land h(\phi) \in \overline{\theta_i}$

Tradeoff

- Coarse partition efficient but poor quality sampling
- Fine partition expensive but high quality sampling
- Approximates rejection sampling in the limit of very fine partition