Calculus with Applications (MATH 11A-02F)

Question of the Day

If you had to swap your legs with the legs of any other animal, which animal would you choose?

On the Docket

Check in.

 ${\sf Concept}\ {\sf Review-Approximation}\ {\sf and}\ {\sf Optimization}$

Function Shapes

Harmonic Constiuents?

Chain rule practice.

Approximation

First Order Approximation

$$f(x + dx) \approx f(x) + f'(x) \cdot dx$$

Second Order Approximation

$$f(x + dx) \approx f(x) + f'(x) \cdot dx + \frac{1}{2}f''(x) \cdot (dx)^2$$

- What is *f*?
- What is \approx ?

- What is x?
- What is *dx*?

Approximation

First Order Approximation

$$f(x + dx) \approx f(x) + f'(x) \cdot dx$$

Second Order Approximation

$$f(x + dx) \approx f(x) + f'(x) \cdot dx + \frac{1}{2}f''(x) \cdot (dx)^2$$

- What is f?
- What is \approx ?

- What is *x*?
- What is dx?

To approximate $\sqrt[3]{127}$

- What is *f*?
- What is f'?
- What is f''?

- What is *x*?
- What is *dx*?

Optimization

Goal and Constraint

An optimization problem consists of a goal and a restriction

$$g(x,y) r(x,y) = C$$

Using the restriction, rewrite the goal in terms of one variable. With the derivative, optimize the goal (e.g. maximize, minimize).

Optimization

Goal and Constraint

An optimization problem consists of a goal and a restriction

$$g(x,y)$$
 $r(x,y) = C$

Using the restriction, rewrite the goal in terms of one variable. With the derivative, optimize the goal (e.g. maximize, minimize).

Exercise

If 1200 cm² of material is available to make a box with a square base and an open top, find the largest possible volume of the box.

- What is the goal function? What is the constraint?
- What is the restriction?

VVIIat is the constraints

jhi3.github.io

Function Shapes

At the points $x \in \{-3, -2, -1, 0, 1, 2, 3\}$ below

What can you say about the functions red, green and blue? (Think slope, first derivative, second derivative, etc.)

jhi3.github.io

Harmonic Constituents

Harmonic Constituents

Chain Rule Practice

Differentiate the following functions:

$$f(x) = (6x^2 + 7x)^4$$

$$g(t) = (4t^2 - 3t + 2)^{-2}$$

$$H(z) = 2^{1-6z}$$

$$h(z) = \sin(z^6) + \sin^6(z)$$

$$f(x) = \ln(\sin(x)) - (x^4 - 3x)^{10}$$

$$f(x) = (\sqrt[3]{12x} + \sin^2(3x))^{-1}$$