Übung 8

Ausgabe: 03.06.2014, Abgabe: 17.06.2014, Besprechung: 19./20.06.2014

8.1 Eigenvektoren in einer Orthonormalbasis

Die Vektoren $\{\vec{\eta}_1, \vec{\eta}_2\}$ seien eine Orthonormalbasis eines zweidimensionalen Vektorraumes. In dieser Basis sei die Matrixdarstellung $\sigma_{\mathbf{y}}$ eines Operators $\hat{\sigma}_y$ gegeben als:

$$\sigma_{\mathbf{y}} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} .$$

- 1. Ist $\hat{\sigma}_y$ selbstadjungiert (hermitesch)? Berechnen Sie die Eigenwerte und Eigenvektoren $\vec{\phi}_i$ (i=1,2) bezüglich der angegebenen Basis. *Hinweis*: Die Eigenvektoren $\vec{\phi}_i$ und Eigenwerte λ_i einer Matrix **A** sind die Lösungen der Eigenwertgleichung $\mathbf{A}\vec{\phi}=\lambda\vec{\phi}$; eine hermitesche $N\times N$ Matrix hat N Eigenvektoren und N (eventuell entartete) reelle Eigenwerte.
- 2. Prüfen Sie die Orthogonalität und Vollständigkeit der Eigenvektoren in der Darstellung der Orthonormalbasis.
- 3. Definieren Sie die Operatoren $\mathbf{P}_i = \vec{\phi}_i \vec{\phi}_i^{\dagger}$, und berechnen Sie die Produkte $\mathbf{P}_i \vec{\phi}_j \ \forall i, j \in \{1, 2\}$. Hinweis: Während $\vec{\phi}_i^{\dagger} \vec{\phi}_i$ eine " (1×1) -Matrix", d.h. eine Zahl, ist, ergibt das hier zu berechnende Produkt eine $(N \times N)$ Matrix für N-dimensionale Vektoren $\vec{\phi}_i$; in unserem Fall ist natürlich N = 2.
- 4. Zeigen Sie durch explizite Rechnung, dass die \mathbf{P}_i Projektoren sind, die die folgenden Eigenschaften erfüllen: (i) $\mathbf{P}_i\mathbf{P}_j = \delta_{ij}\mathbf{P}_i$, i, j = 1, 2; (ii) $\sum_i \mathbf{P}_i = \mathbf{1}$. Bemerkung: Die Summe $\sum_i \vec{\phi}_i \vec{\phi}_i^{\dagger}$ ist die Matrix-Darstellung der in der Vorlesung besprochenen Summe $\sum_i |\phi_i\rangle\langle\phi_i|$, wobei die $|\phi_i\rangle$ die Basiszustände eines Hilbertraumes sind

8.2 Vollständiger Satz von Operatoren

Ein dreidimensionaler Raum werde durch die Basis $\{\vec{\eta}_1, \vec{\eta}_2, \vec{\eta}_3\}$ aufgespannt. In dieser Basis seien zwei Operatoren durch folgende Matrixdarstellungen definiert:

$$\mathbf{H} = \hbar\omega \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{und} \quad \mathbf{B} = b \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

- 1. Sind **H** und **B** hermitesch?
- 2. Zeigen Sie, dass **H** und **B** vertauschen.
- 3. Bestimmen Sie drei Vektoren $\vec{\phi}_i$, die Eigenvektoren von sowohl **H** als auch **B** sind. Wie lauten die zugehörigen Eigenwerte $\lambda_{H,i}$ und $\lambda_{B,i}$?
- 4. Reichen die Eigenwerte $\lambda_{H,i}$ aus, um den Zustand i eindeutig zu bestimmen? Wenn nicht, reichen die Paare von Eigenwerten $(\lambda_{H,i}, \lambda_{B,i})$ um den Zustand i eindeutig zu bestimmen? Bemerkung: Eine Menge von m Operatoren $\{\hat{O}_{\ell}\}$ heisst vollständig, falls das m-Tupel von Eigenwerten $\lambda_{O_{\ell},i}, \ \ell = 1, \ldots, m$ ausreicht, um den Eigenzustand i eindeutig zu bestimmen. Ein einzelner Operator bildet somit bereits eine vollständige Menge, falls er keine entarteten Eigenwerte hat.
- 5. Zusätzlich sei

$$\mathbf{B}' = b \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

definiert. Ist $\{H, B'\}$ ein vollständiger Satz von Operatoren?

8.3 Heisenbergdarstellung von Operatoren

Wir betrachten ein Teilchen mit Masse m und Ladung q, das einem konstanten elektrischen Feld E ausgesetzt ist, das in x-Richtung zeigt. Dieses System wird beschrieben durch den Hamiltonoperator

$$\hat{H} = \frac{\hat{p}^2}{2m} - qE\hat{x} \tag{1}$$

wobei $\hat{\vec{p}}$ und \hat{x} zeit-unabhängige Operatoren sind, d.h. sie sind im Schrödinger-Bild gegeben.

In der Vorlesung wurde gezeigt, dass der Impulsopertor im Heisenberg-Bild errechnet werden kann als

$$\hat{p}_H(t) = e^{i\hat{H}t/\hbar}\hat{p}\,e^{-i\hat{H}t/\hbar}\,.$$
(2)

Zeigen Sie durch explizite Rechnung, dass

$$\hat{\vec{p}}_H(t) = \hat{\vec{p}}_H(0) + qEt\vec{e}_x, \tag{3}$$

wobei $\hat{\vec{p}}_H(0)$ offensichtlich gleich dem Operator $\hat{\vec{p}}$ im Schrödinger-Bild ist, und \vec{e}_x der Einheitsvektor in x-Richtung. Hinweis: Zeigen Sie durch Induktion folgende Identität:

$$\left[\hat{A}^n, \hat{B}\right] = n\hat{A}^{n-1} \left[\hat{A}, \hat{B}\right]$$

für den Fall, dass $[\hat{A}, \hat{B}]$ eine (komplexe) Zahl ist, d.h. selber mit \hat{A} kommutiert. Zeigen Sie, dass dies für $\hat{A} = \hat{H}, \ \hat{B} = \hat{p}_x$ zutrifft, und benutzen Sie diese Identität und die Reihendarstellung der e-Funktion um Gl.(3) zu beweisen.

Bemerkung: In der Vorlesung wurde eq.(2) für die Matrix-Darstellung der Operatoren gezeigt, aber mittlerweile sollten Sie mit der Äquivalenz der Matrizen und Operatoren vertraut sein.

8.4 Zeitentwicklung der Matrix-Darstellung von Operatoren im Wechselwirkungsbild

Zeigen Sie, dass, wie in der Vorlesung behauptet, die zeitliche Ableitung der Matrixdarstellung \mathbf{q}_I eines Operators \hat{q} im Wechselwirkungsbild gegen ist durch

$$i\hbar \frac{d}{dt}\mathbf{q}_{I} = i\hbar \frac{\partial}{\partial t}\mathbf{q}_{I} + [\mathbf{H}_{0}, \mathbf{q}_{I}] .$$
 (4)

Hinweis: Im Wechselwirkungsbild ist $\hat{H} = \hat{H}_0 + \hat{H}_1$, und die Basisfuntkionen $u_k(\vec{x}, t)$ erfüllen $\hat{H}_0 u_k = i\hbar \partial u_k / \partial t$.