Name:	
Student ID:	
Signature:	

CITY UNIVERSITY OF HONG KONG

Semester A 2015/2016

EE3210: Signals and Systems

Quiz 7

Time allowed: 15 minutes
Total number of problems: 2

3. Total marks available: 11

4. This paper may not be retained by candidates

Special Instructions

- 5. This is a closed book exam
- 6. Attempt all questions from each problem
- 7. A list of possibly relevant equations is attached at the end of this paper

Problem 1: (6 marks)

Let $x_1(t)$ be a continuous-time periodic signal with fundamental period T and Fourier series coefficients a_k . Consider

$$x_2(t) = x_1(1-t) + x_1(-1-t).$$

Find a relationship between the Fourier series coefficients b_k of $x_2(t)$ and the coefficients a_k of $x_1(t)$.

Problem 2: (5 marks)

Let

$$x[n] = \begin{cases} 1, & 0 \le n \le 7 \\ 0, & 8 \le n \le 9 \end{cases}$$

be a discrete-time periodic signal with fundamental period N=10. Determine the Fourier series coefficients of x[n].

Appendix – A list of possibly relevant equations

- Continuous-time Fourier series:
 - Formulas: Consider x(t) periodic with fundamental period $T_0 = T$.

* Synthesis:
$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t} = \sum_{k=-\infty}^{+\infty} a_k e^{jk(2\pi/T)t}$$

- * Analysis: $a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt = \frac{1}{T} \int_T x(t) e^{-jk(2\pi/T)t} dt$
- Properties: Consider x(t) and y(t) periodic with period $T, x(t) \leftrightarrow a_k, y(t) \leftrightarrow b_k$.
 - * Linearity: $Ax(t) + By(t) \leftrightarrow Aa_k + Bb_k$
 - * Time shift: $x(t-t_0) \leftrightarrow \left[e^{-jk(2\pi/T)t_0}\right] a_k$
 - * Time reversal: $x(-t) \leftrightarrow a_{-k}$
 - * Time scaling: $x(\alpha t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk(\alpha\omega_0)t}$
 - * Multiplication: $x(t)y(t) \leftrightarrow \sum_{l=-\infty}^{+\infty} a_l b_{k-l}$
- Discrete-time Fourier series:
 - Formulas: Consider x[n] periodic with fundamental period $N_0 = N$.

* Synthesis:
$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk\Omega_0 n} = \sum_{k=\langle N \rangle} a_k e^{jk(2\pi/N)n}$$

* Analysis:
$$a_k = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-jk\Omega_0 n} = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-jk(2\pi/N)n}$$

— End of Paper —