StuDocu.com

Đề mới MAE101 FE B2 FA15

Discrete Mathematics (FPT University)

FPT University

Source: Exported from FU-EOS Subject: Mathematics for Engineering Generated Time: 12/1/2015 2:04:27 PM

MULTIPLE CHOICES QUESTIONS:

MULTIPLE CHOIC									
QN=1 (9472)	(See picture)								
	[file:9472.jpg]								
	Which of the following are <u>even</u> functions?								
	which of the following the even functions;								
	(i) $f(x) = x^3 - 1010$								
	(-) -()								
	(ii) $f(x) = \sin(2x^4)$								
	(II) I(X) SIII(2X)								
	(iii) $f(x) = \sin(x-10x^5)$								
	(III) I(X) = SIII(X-10X)								
	5								
	(iv) $f(x) = x + \frac{5}{x} + 2$								
	$(\mathbf{IV}) \mathbf{I} (\mathbf{X}) = \mathbf{X}^{\top} - \mathbf{I} \mathbf{Z}$								
	Λ								
	$(v) f(x) = \sin x \cdot \cos x$								
	(V) I(X) SHIX.COSX								
a.	(i)								
b.	(ii)								
c.	(iii)								
d.	(iv)								
e.	(v)								
f.	None of the other choices is correct								
ANSWER:	B								
MARK:	1								
UNIT:	1.1								
-									
MIX CHOICES:	Yes								

QN=2 (9493)	From the graph of $y = f(x-3)+4$, how do we obtain the graph of $y = f(x)$?.					
a.	Shift down by 4, and then shift to the right 3					
b.	Shift up by 4, and then shift to the right 3					
c.	Shift down by 4, and then shift to the left 3					
d.	Shift up by 4, and then shift to the left 3					

e.	None of the other choices is correct
ANSWER:	C
MARK:	1
UNIT:	1.2
MIX CHOICES:	Yes

QN=3 (9503)	(See picture) [file:9503.jpg]
	$\text{If} 1 \le f(x) \le x^2 + 8x + 8 \text{ for all } x \text{, find } \lim_{x \to -1} f(x).$
a.	5
b.	-1
c.	0
d.	1
e.	8
f.	None of the other choices is correct
ANSWER:	D
MARK:	1
UNIT:	1.4
MIX CHOICES:	Yes

QN=4 (9543)	(See picture) [file:9543.jpg]
	Find the constant c that makes g continuous on $(-\infty;\infty)$
	$g(x) = \begin{cases} x^2 + c^2 & \text{if } x < 5 \\ cx + 21 & \text{if } x \ge 5 \end{cases}$
	$g(x) = \begin{cases} cx + 21 & \text{if} & x \ge 5 \end{cases}$
a.	1 and 4
b.	0 and 4
c.	0 and 1
d.	1 and;5
e.	5 and 4
f.	None of the other choices is correct
ANSWER:	A
MARK:	1
UNIT:	1.5
MIX CHOICES:	Yes

QN=5 (9545)	(See picture) [file:9545.jpg]						
	Find the limit						
	$\lim_{x \to \infty} \left[\sqrt{x+4} - \sqrt{x} \right]$						
a.	0						
b.	2						
c.	infinity						
d.	1						
e.	4						
f.	None of the other choices is correct						
ANSWER:	A						
MARK:	1						
UNIT:	1.6						
MIX CHOICES:	Yes						

QN=6 (9571)	(See picture)
	[file:9571.jpg]

	Simplify the quotient $\frac{f(x+h) - f(x)}{h}$ for $f(x) = -\frac{1}{x}$ (i) $\frac{-1}{(x+h)x}$ (ii) $\frac{1}{x^2}$ (iii) $\frac{1}{(x+h)x}$ (iv) $\frac{-1}{x^2}$
a.	(i)
b.	(ii)
c.	(iii)
d.	(iv)
e.	None of the other choices is correct
ANSWER:	C
MARK: UNIT:	2.2
MIX CHOICES:	Yes

QN=7 (9584)	(See picture) [file:9584.jpg] A particle moves along a straight line with displacement given by $s(t)=t^2-8t+18$. What is the instantaneous velocity when $t=4$?
a.	All of the other choices are correct
b.	2
C.	0
d.	4
e.	8

ANSWER:	С
MARK:	1
UNIT:	2.3
MIX CHOICES:	Yes

QN=8 (9626)	(See picture) [file:9626.jpg]
	Find $y'(1)$ for $y = \frac{x^2 + 2x - 8}{3x + 9}$
a.	61/144
b.	33/72
c.	63/144
d.	31/72
e.	None of the other choices is correct
ANSWER:	C
MARK:	1
UNIT:	2.4
MIX CHOICES:	Yes

QN=9 (9656)	(See pictur [file:9656.						
	-			SEASON SEEDINGS	is given	1	
	X	f(x)	g(x)	f'(x)	g'(x)	-	
	0	1	1	2	-2	4	
	1	0	2	3	-1	1	
	2	4	0	5	6	1	
	5000000	d h'(2) if	<i>n(x)</i> –	J (9(2)).			
a.	-2						
b.	0						
C.	-5						
d.	12						
e.	-6						
f.	None of th	e other ch	oices is co	rrect			
ANSWER:	D						
MARK:	1						

UNIT:	2.5
MIX CHOICES:	Yes

[Tues 0
QN=10 (9678)	(17236)
	[file:9678.jpg]
	51 63
	Differentiate implicitly to find the slope of the curve at the given point
	$y^3 + yx^2 + x^2 - 3y^2 = 0, (-1, 1)$
a.	-1/2
b.	-2
c.	None of the other choices is correct
d.	3/2
e.	-1
ANSWER:	В
MARK:	1
UNIT:	2.6
MIX CHOICES:	Yes

QN=11 (9722)	(See picture)
	[file:9722.jpg]
	Let $y = ax + b$ be the linear approximation for $f(x) = x^{2/3}$ at $x = 1$.
	Find b.
	T MG 0.
a.	1/3
b.	-1/3
c.	2/3
d.	- 2/3
e.	None of the other choices is correct
ANSWER:	A
MARK:	1
UNIT:	2.8
MIX CHOICES:	Yes

QN=12	(See picture)
(9733)	[file:9733.jpg]
	Find the absolute maximum and absolute minimum values of
	$f(x) = x^4 - 32x^2 + 2$
	on [-5,5].
a.	None of the other choices is correct
b.	Absolute maximum: 2; absolute minimum: -254
c.	Absolute maximum: 2; absolute minimum: -173
d.	Absolute maximum: 2; absolute minimum: 0
ANSWER:	В
MARK:	1
UNIT:	3.1
MIX	Yes
CHOICES:	

QN=13 (9774)	(See picture) [file:9774.jpg]
	Determine where the function
	$f(x) = (x+3)^{2/3}$
	is concave up and where it is concave down.
	(i) Concave down on $(-\infty, -3)$ and concave up on $(-3, \infty)$
	(ii) Concave down on $(-\infty, -3)$ and $(-3, \infty)$
	(iii) Concave up on $(-\infty, -3)$ and $(-3, \infty)$
	(iv) Concave up on $(-\infty, -3)$ and concave down on $(-3, \infty)$
a. b.	

c.	(iii)
d.	(iv)
e.	None of the other choices is correct
ANSWER:	В
MARK:	1
UNIT:	3.3
MIX CHOICES:	Yes

QN=14 (9841)	Find the minimum value of the product of two numbers in which one number is
	2 more than three times the other.
a.	-1/3
b.	None of the other choices is correct
c.	1
d.	1/3
e.	1/2
ANSWER:	A
MARK:	1
UNIT:	3.5
MIX CHOICES:	Yes

QN=15	(See picture)
(9848)	[file:9848.jpg]
	Use Newton's method with the specified initial approximation x_1 to find x_3 , the third approximation to the root of the given equation: $x^5 + 2 = 0, \qquad x_1 = -1$
a.	-1.1529
b.	-1.3229
c.	None of the other choices is correct
d.	-2.3058
e.	-2.0027
ANSWER:	A
MARK:	1
UNIT:	3.6
MIX	Yes
CHOICES:	

$ON_{-1}(00064)$	(See misture)
QN=16 (9864)	(See picture)
	Ifile:9864 ing
	[file:9864.jpg]

	Let $f(x)$ be such that $f(0) = 2$ and $f'(x) = 5x^2 - 7x + 4$ Find $f(1)$.
a.	None of the other choices is correct
b.	25/3
c.	5
d.	4
e.	25/6
ANSWER:	E
MARK:	1
UNIT:	3.7
MIX CHOICES:	Yes

QN=17 (9884)	(See picture)
	[file:9884.jpg]
	Approximate the area under the graph of $f(x)=x^2+2$ over the interval $[0,5]$ using 5 subintervals and left endpoints.
a.	40
b.	65
c.	73
d.	66
e.	None of the other choices is correct
ANSWER:	A
MARK:	1
UNIT:	4.1
MIX CHOICES:	Yes

QN=18 (9905)	(See picture)
	[file:9905.jpg]

	Let $f(x)$ be a positive continuous function that satisfies
	$\int_{2}^{b} f(z)dz = \int_{2}^{8} f(z)dz + \int_{8}^{11} f(z)dz$
	Find b .
a.	8
b.	19
c.	13
d.	11
e.	None of the other choices is correct
ANSWER:	D
MARK:	1
UNIT:	4.2
MIX CHOICES:	Yes

QN=19 (9941)	(See picture) [file:9941.jpg]
	Find the derivative of the function
	$g(x) = \int_{x}^{x^{3}} \sin t dt$
	(i) $3x^2\sin x^3 - \sin x$
	(ii) $3x^2\sin x^3 + \sin x$
	(iii) $\sin x^3 - \sin x$
	(iv) $3x^2\cos x^3 - \cos x$
a.	(i)
b.	(ii)

c.	(iii)
d.	(iv)
e.	None of the other choices is correct
ANSWER:	A
MARK:	1
UNIT:	4.4
MIX CHOICES:	Yes

QN=20 (9992)	(See picture) [file:9992.jpg]			
	Evaluate the integral			
	$\int e^{-x}(x^2+1)dx$			
	(i) $-e^{-x}(x^2-2x+3)+C$			
	(ii) $e^{-x}(x^2+2x+3)+C$			
	(iii) $-e^{-x}(x^2+2x+3)+C$			
	(iv) $e^{-x}(x^2-2x+3)+C$			
a.	(i)			
b.	(ii)			
C.	(iii)			
d.	(iv)			
e.	None of the other choices is correct			
ANSWER:	C			
MARK:				
UNIT:	6.1			
MIX CHOICES:	Yes			

QN=21	(See picture)
(10002)	[file:10002.jpg]

	Use the Rig integral	ght – en	ā.	rule wi $\int_1^3 f(x)$		4 to es	stimate	the val	ue of the
		x	1	1.5	2	2.5	3		
		f(x)	0.31	0.54	0.36	1.35	2.04	\;.	
a.	2.145	27						oes.	
b.	4.290								
c.	None of the of	her choice	es is corr	rect					
d.	3.240								
e.	1.620								
ANSWER:	A								
MARK:	1								
UNIT:	6.5								
MIX	Yes								
CHOICES:									

ONI 22 (10016)	(0 : 4)
QN=22 (10016)	(See picture)
()	
	[file:10016 ine]
	[file:10016.jpg]

	Which of the following integrals is divergent? (i) $\int_{1}^{\infty} \frac{2010}{5x^2} dx$ (ii) $\int_{1}^{\infty} \frac{1}{\sqrt{x^3}} dx$ (iii) $\int_{1}^{\infty} \frac{1+xe^{-2x}}{x} dx$
a.	(i)
b.	(ii)
C.	(iii)
d.	None of the other choices is correct
ANSWER:	С
MARK:	1
UNIT:	6.6
MIX CHOICES:	Yes

QN=23 (10087)	(See picture) [file:10087.jpg]
	A sequence {a _n } is defined by
	$a_1=0$, $a_{n+1}=2/(a_n+1)$ for $n>0$.
	Assuming that {a _n } is convergent, find its limit.
a.	1
b.	-2

c.	1 and -2
d.	0
e.	None of the others.
ANSWER:	A
MARK:	1
UNIT:	8.1
MIX	Yes
CHOICES:	

QN=24 (10105)	[See picture) [file:10105.jpg] Investigate the convergence of the series (i) $\sum_{n=0}^{\infty} \left(\frac{n}{n+1}\right)^2$ (ii) $\sum_{n=0}^{\infty} \frac{(-3)^n}{e^{n+2}}$
a.	Both diverge
b.	(i) diverges, (ii) converges
c.	(i) converges, (ii) diverges
d.	Both converge
ANSWER:	A
MARK:	1
UNIT:	8.2
MIX CHOICES:	Yes

QN=25	(See picture)
(10167)	[file:10167.jpg]
	Determine if the series converges conditionally, absolutely or diverges $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^6 + 1}$
a.	converges conditionally
b.	converges absolutely

c.	diverges
ANSWER:	В
MARK:	1
UNIT:	8.4
MIX	Yes
CHOICES:	

QN=26 (10183)	(See picture) [file:10183.jpg]
	Find the radius of convergence of the series
	$\sum_{n=1}^{\infty} \frac{n^2 x^n}{3^n}$
	D 2
a.	R =3
b.	R =2
c.	R = 1/3
d.	R = 1/2
e.	None of the other choices is correct
ANSWER:	A
MARK:	1
UNIT:	8.5
MIX CHOICES:	Yes

QN=27 (10195)	(See picture)
	[file:10195.jpg]

	Find the Taylor polynomial T_2 centered at $a = 0$ for the function
	$f(x) = \cos(e^x)$
	(i) $\sin(1) - \cos(1)x - \frac{\sin(1) + \cos(1)}{2}x^2$
	(ii) $\cos(1) - \sin(1)x - \frac{\cos(1) + \sin(1)}{2}x^2$
	(iii) $\cos(1) + \sin(1)x + \frac{\cos(1) + \sin(1)}{2}x^2$
	(iv) $\cos(1) + \sin(1)x - \frac{\cos(1) + \sin(1)}{2}x^2$
a.	(i)
b.	(ii)
c.	(iii)
d.	(iv)
ANSWER:	В
MARK:	1
UNIT:	8.7
MIX CHOICES:	Yes

QN=28 (10203)	(See picture)
	[file:10203.jpg]

	Which of the following matrices is in reduced row-echelon form? (i) $\begin{bmatrix} 1 & 0 & 0 & 0 & -3 \\ 0 & 0 & 1 & 0 & 4 \\ 0 & 0 & 0 & 1 & 2 \end{bmatrix}$
	(ii) $ \begin{bmatrix} 0 & 1 & 0 & 0 & 5 \\ 0 & 0 & 1 & 0 & -4 \\ 0 & 0 & 0 & -1 & 3 \end{bmatrix} $
	(iii) $ \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & -2 \end{bmatrix} $
a.	(iii) only
b.	(i) and (ii) only
C.	(ii) and (iii) only
d.	(i) only
e.	None of the other choices is correct
ANSWER:	D
MARK:	1
UNIT:	LA1.1 - Echelon
MIX CHOICES:	Yes

QN=29	(See picture)
(10219)	[file:10219.jpg]
	Find all solutions of the following system of linear equations $ \begin{cases} x - y - z = 3 \\ -x - y + z = -1 \end{cases} $
a.	x = t - 2, y = -1, z = t
b.	x = t, y = -1, z = t - 2
c.	None of the other choices is correct

d.	x = 8, y = 4, z = 1
ANSWER:	В
MARK:	1
UNIT:	LA1.1
MIX	Yes
CHOICES:	

QN=30 (10248)	(See picture) [file:10248.jpg] Solve for z from the system $\begin{cases} x - y + 2z + 3w = 2 \\ x - y + 3z + 2w = 5 \\ 2x - 2y + 4z + 7w = 5 \end{cases}$
a.	4
b.	0
c.	All of the other choices are incorrect
d.	2
e.	1
ANSWER:	A
MARK:	1
UNIT:	LA1.2 - Solve
MIX CHOICES:	Yes

QN=31 (10273)	(See picture) [file:10273.jpg]
	Find all values of a for which the following homogeneous system
	$\begin{cases} x + 2y - z = 0 \\ x + 3y + 3z = 0 \\ 2x + 5y + az = 0 \end{cases}$
	has only the trivial solution?
a.	All numbers different from -2

b.	
c.	None of the other choices is correct
d.	All numbers different from 2
e.	-2
ANSWER:	D
MARK:	1
UNIT:	LA1.3
MIX CHOICES:	Yes

QN=32 (10291)	How many solutions would a HOMOGENEOUS system of linear equations of 4 equations and in 4 variables have?
a.	No solution
b.	Unique solution
c.	Infinitely many solutions
d.	There is not enough information
ANSWER:	D
MARK:	1
UNIT:	LA1 - Theory
MIX CHOICES:	Yes

QN=33 (10300)	Let A be a square matrix. Which of the following statements are true?
	(i) If A is symmetric then 2A+3I is also symmetric.
	(ii) If 2A+3I is symmetric then A is also symmetric.
a.	Both (i) and (ii)
b.	Only (i)
c.	Only (ii)
d.	Neither (i) or (ii)
ANSWER:	A
MARK:	1
UNIT:	LA2.1
MIX CHOICES:	Yes

QN=34 (10320)	(See picture) [file:10320.jpg]
	Let A be an arbitrary square matrix. Which of the following matrices are symmetric:
	(i) $A + A^T$
	(ii) $A + 2A^T$

a.	(i)
b.	(ii)
c.	(i) and (ii)
d.	None of the other choices is correct
ANSWER:	A
MARK:	
UNIT:	LA2.2 - Theory
MIX CHOICES:	Yes

QN=35 (10337)	(See picture) [file:10337.jpg]
	Find the (2, 3)-entry of the product
	$\begin{bmatrix} -1\\2\\5 \end{bmatrix} \begin{bmatrix} 5 & 3 & -4 \end{bmatrix}$
a.	-8
b.	-15
c.	15
d.	8
e.	-19
f.	None of the other choices is correct
ANSWER:	A
MARK:	1
UNIT:	LA2.2 - Computation
MIX CHOICES:	Yes

QN=36 (10354)	(See picture)
	[file:10354.jpg]

	Let A be an n x n matrix that satisfies $A^3-3A^2+I=0.$
	Choose correct statement:
	(i) $A^{-1} = 3I - A^2$
	(ii) $A^{-1} = A^2 - 3I$
	(iii) $A^{-1} = 3A - A^2$
	(iv) $A^{-1} = A^2 - 3A$
	(v) A is not invertible
_	
a. b.	(i) (ii)
c.	(iii)
d.	(iv)
e.	None of the other choices is correct
f.	(v)
ANSWER:	Ċ
MARK:	1
UNIT:	LA2.3 - Theory

QN=37 (10374)	(See picture) [file:10374.jpg]
	If $A = \begin{bmatrix} 1 & -1 \\ 2 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix}$, then the $(2, 1)$ -entry of the matrix $AB^T - A^{-1}B$ is:
a.	13/2
b.	-5/2
c.	3/2
d.	-11/2

MIX CHOICES:

Yes

e.	None of the other choices is correct
ANSWER:	A
MARK:	1
UNIT:	LA2.3 - Computation
MIX CHOICES:	Yes

QN=38 (10380)	(See picture) [file:10380.jpg]
	Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation such that
	$T\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -3 \\ 6 \end{bmatrix}, \ T\begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ -6 \end{bmatrix}.$
	Compute $T\begin{bmatrix} 7 \\ 3 \end{bmatrix}$.
	(i) $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ (ii) $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$ (iii) $\begin{bmatrix} 4 \\ -9 \end{bmatrix}$ (iv) $\begin{bmatrix} -1 \\ 7 \end{bmatrix}$
a.	(i)
b.	(ii)
c.	(iii)
d.	(iv)
e.	None of the other choices is correct
ANSWER:	B
MARK:	1
UNIT:	LA2.5 - Linear trans
MIX CHOICES:	Yes

QN=39 (10416)	Suppose that a 5 x 5 matrix A can be carried to the identity matrix by using exactly three row operations, in the following order:
	(1) Add a multiple of 3 of the first row to the second row
	(2) Interchange the second and the third row
	(3) Dividing the third row by 4.
	Find the determinant of A.
a.	-4

b.	1024
c.	4
d.	All of the other choices are incorrect
e.	-1/4
ANSWER:	A
MARK:	1
UNIT:	LA3.1 - Theory
MIX CHOICES:	Yes

QN=40 (10426)	(See picture) [file:10426.jpg]
	Let $\begin{vmatrix} a & m & d \\ b & n & e \\ c & p & f \end{vmatrix} = 10$. Find $\begin{vmatrix} 2a+3d & d & -m \\ 2b+3e & e & -n \\ 2c+3f & f & -p \end{vmatrix}$.
	$\begin{vmatrix} c & p & f \end{vmatrix}$ $\begin{vmatrix} 2c+3f & f & -p \end{vmatrix}$
a.	-20
b.	-60
c.	20
d.	60
e.	None of the other choices is correct
ANSWER:	C
MARK:	1
UNIT:	LA3.1 - Computation
MIX CHOICES:	Yes

QN=41 (10450)	If A is a 3 x 3 matrix and $det(A) = 2$, find $det(adj(A))$.
a.	4
b.	3
c.	2
d.	8
e.	None of the others.
ANSWER:	A
MARK:	1
UNIT:	LA3.2 - Theory
MIX CHOICES:	Yes

QN=42 (10463)	(See picture)
	[file:10463.jpg]

	Let $A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$. Find the (3,1)-entry of the adjugate of A.
a.	dh-eg
b.	eg-dh
c.	bf-ce
d.	cd-bf
ANSWER:	A
MARK:	1
UNIT:	LA3.2 - Computation
MIX CHOICES:	Yes

QN=43 (10469)	(See picture) [file:10469.jpg] Find the eigenvalues of the matrix \[\begin{bmatrix} 2 & 0 & 1 \\ 1 & 1 & 1 \\ -12 & 11 & 4 \end{bmatrix} \]
a.	3; 3; -1
b.	3; 3; 1
C.	3; -1; -1
d.	3; -1; 1
e.	None of the other choices is correct
ANSWER:	В
MARK:	1
UNIT:	LA3.3 - Eigenvalues
MIX CHOICES:	Yes

ONI = 44 (10405)	(152) (Cap mintum)
QN=44 (10485)	(153) (See picture)
	[file:10485.jpg]

	Given that -3 is an eigenvalue for the matrix $\begin{bmatrix} 3 & -6 \\ 8 & -11 \end{bmatrix}$ Find all eigenvectors corresponding to this eigenvalue $\lambda=-3$.
a.	t(1,-1), t is nonzero
b.	t(1,-2), t is nonzero
c.	t(2,1), t is nonzero
d.	t(1,1), t is nonzero
e.	None of the other choices is correct
ANSWER:	D
MARK:	1
UNIT:	LA3.3 - Eigenvectors
MIX CHOICES:	Yes

QN=45 (10518)	Let $U = \text{span}\{(1, 1, 2, 1), (0, 1, 1, -2)\}$. Find all values of t such that $(1, t, 3, 4)$ is
	in U.
a.	There is no such t
b.	-2
c.	All nonzero numbers
d.	None of the other chocies is correct
e.	All number different from -1
ANSWER:	A
MARK:	1
UNIT:	LA5.1 - Spanning
MIX CHOICES:	Yes

QN=46	(See picture)
(10537)	[file:10537.jpg]

	Which of the following subsets are independent in \mathbb{R}^4 ? (i) {[1 2 3 4] ^T , [2 0 1 -1] ^T , [1 -1 0 3] ^T } (ii) {[2 0 1 -1] ^T , [1 2 -1 1] ^T , [3 2 0 0] ^T }
a.	(i)
b.	(ii)
c.	(i) and (ii)
d.	None of the other choices is correct
ANSWER:	A
MARK:	1
UNIT:	LA5.2 - Independence
MIX	Yes
CHOICES:	

QN=47 (10558)	Let u, v be linearly independent vectors in R^5. Let
	$U = span\{u, v, 2u + 3v, u - v\}.$
	Find dim U.
a.	There is not enough information
b.	3
c.	None of the other choices is correct
d.	5
e.	2
ANSWER:	E
MARK:	1
UNIT:	LA5.2 - Dimension
MIX CHOICES:	Yes

QN=48 (10572)	(See picture)
	[file:10572.jpg]

	Let X and Y be vectors in R ⁿ . Which of the following statement are true? (i) If {X+Y, X-Y} is an orthogonal set then X = Y (ii) If {X+Y, X-Y} is an orthogonal set then X = -Y (iii) If {X+Y, X-Y} is an orthogonal set then X = Y
	(iii) only
a. b.	(i) and (ii) only
c.	All of (i), (ii) and (iii)
d.	None of the other choices is correct.
ANSWER:	A
MARK:	1
UNIT:	LA5.3
MIX CHOICES:	Yes

QN=49 (10596)	[file:10596.jpg] Find the dimension of the column space of $\begin{bmatrix} -1 & 7 & 0 & 3 & 1 \\ 1 & -1 & 0 & -1 & -1 \\ 0 & -3 & 0 & -1 & -1 \\ 0 & 5 & 3 & 4 & -3 \end{bmatrix}$
a.	3
b.	1
c.	2
d.	5
e.	4
ANSWER:	E
MARK:	1
UNIT:	LA5.4 - Computation
MIX CHOICES:	Yes

QN=50 (9912)	(See picture) [file:9912.jpg]
	[IIIC.9912.jpg]
	Evaluate $\int_1^4 \frac{t^7 - t^3}{t^5} dt$
a.	259/12
b.	79/4
c.	275/12
d.	81/4
e.	None of the other choices is correct
ANSWER:	D
MARK:	1
UNIT:	4.3
MIX CHOICES:	Yes

READING QUESTIONS: FILL BLANK QUESTIONS: MATCH QUESTIONS: