Universidade Federal de Santa Catarina - UFSC Departamento de Engenharia Elétrica e Eletrônica

Gabriel Martins dos Santos Cunico

Embaralhador de Voz

Sumário

1. Introdução	3
1.1 Sistema de Embaralhamento	3
1.2 Amostragem	3
2. Metodologia	4
2.1 Importação	4
2.2 Upscaling	4
2.3 Embaralhamento - Modulação	4
2.4 Desembaralhamento - Demodulação	6
2.5 Visualizações	6
3. Chirp	7
4. 19 William Tell Overture	8
5. Megalovania	9
6. Ta Vendo Aquela Lua	10
7. Conclusão	11

1. Introdução

Este relatório apresenta o desenvolvimento e aplicação de um sistema de embaralhamento de voz. Serão descritos os métodos utilizados, a ferramenta desenvolvida e seu uso, os testes realizados e os resultados obtidos.

1.1 Sistema de Embaralhamento

O sistema de embaralhamento de voz utilizado baseia-se no deslocamento do sinal por frequências específicas, acompanhado da aplicação de filtros segundo o seguinte diagrama:

Onde, considerando m(t) um sinal em banda base com largura 5kHz:

- m(t) é deslocado até 20kHz;
- A cópia do sinal m(t) vinda das frequências negativas é removida por um filtro passa altas em 20kHz:
- O sinal é deslocado em 25kHz, trazendo o espelho de x2(t) das frequências negativas até o intervalo 0-5kHz;
- Um filtro passa baixas elimina as altas frequências resultantes do deslocamento de 25kHz aplicado à parte do sinal em torno de 20kHz;
- Por fim, obtém-se a faixa entre 0-5kHz de m(t), espelhada em relação ao eixo da amplitude.

1.2 Amostragem

O sistema descrito para embaralhamento de sinais conta com multiplicações de sinais em torno de 25kHz. Entretanto, arquivos de áudio costumam ser salvos com amostragem na faixa de 44,1kHz, o que, pelo *Teorema da Amostragem*, pode gerar perdas de informação na aplicação do sistema (frequências acima de 22,05kHz são geradas durante as transformações). Portanto, é necessário empregar o processo de *upsampling* para contornar o problema.

Realizar *upsampling* consiste em gerar amostras sintéticas entre os pontos conhecidos, de modo a aumentar a taxa de amostragem do sinal. Para isso, os seguintes passos são realizados sobre o sinal:

- 1. Calcula-se a razão L entre a frequência atual e a desejada, arredondando para o inteiro imediamente superior;
 - 2. Inserem-se L 1 zeros entre cada amostra do sinal original;
- 3. Um filtro passa baixas é aplicado para suavizar as descontínuidades. Conhecido como filtro de interpolação, ele substitui os zeros com base em amostras vizinhas.

2. Metodologia

Para aplicar as devidas transformações nos sinais de áudio, foi desenvolvida a ferramenta Audio Scrambler, que é distribuída junto a este relatório.

Para utilizar a ferramenta, basta adicionar os arquivos de áudio de interesse no diretório "./samples" e executar o script "run.py". Após a execução, imagens e áudios dos sinais serão gerados na pasta "./output", organizados por arquivo de áudio de referência.

Os arquivos gerados serão espectograma, representação no tempo e áudios em formato ".wav". Cada arquivo terá informações referentes ao sinal original após *upsampling* (m(t)), sinal embaralhado (y(t)) e sinal desembaralhado (m_rec(t)). Ainda, este relatório será atualizado após o processamento, incluindo seções referentes a cada arquivo de entrada.

Atente-se que algumas etapas de processamento exigem filtros de ordem elevada, o que, combinado com a alta taxa de amostragem, pode levar a um processamento lento - proporcional a quantidade de áudios a serem processados.

2.1 Importação

A importação dos áudios é realizada com auxílio da ferramenta *ffmpeg*, de modo que formatos de áudio diversos são aceitos. Caso haja algum problema com os arquivos de entrada, por favor converta o arquivo para um dos formatos testados durante o desenvolvimento: MP3 ou WAV.

2.2 Upscaling

Para realizar o *upscaling* do áudio de entrada, o filtro de interpolação utilizado foi uma arquitetura Butterworth passa baixas de quinta ordem, projetado para a frequência de Nyquist do sinal de entrada. Como a banda efetiva para aplicação do embaralhamento (0-5kHz) ocorre distante da frequência de corte do filtro (geralmente 22kHz), sua seletividade é reduzida e sua ordem pode ser pequena.

A ferramenta desenvolvida é configurada por padrão para realizar o *upscaling* para 96kHz, mas também pode trabalhar com outras taxas de amostragem. A configuração desta taxa pode ser realizada no arquivo "run.py".

2.3 Embaralhamento - Modulação

Para aplicar o sistema de embaralhamento, foram gerados cossenos de 20kHz e 25kHz a partir de um vetor de tempo. O deslocamento de frequências foi obtido pela multiplicação direta dos sinais com esses cossenos.

Quanto aos filtros projetados, a arquitetura utilizada foi Butterworth com frequência de corte 20kHz tanto para o filtro passa baixas quanto passa altas. Entretanto, diferente do filtro de interpolação, a seletividade deste filtro é alta, devendo atenuar frequências imediamente após a frequência de corte.

Diferentes configurações foram testadas e, a partir da observação de espectogramas dos sinais gerados pelo sistema a partir de uma função chirp, resultados aceitáveis foram obtidos

da ordem 100 em diante. Foi escolhido um filtro Butterworth de ordem 150 para reduzir ainda mais a banda de transição.

A partir dos sinais e filtros descritos, as etapas do sistema de embaralhamento foram aplicadas:

0. Utilizando uma função *chirp* de 20 a 5kHz como sinal de entrada m(t):

1. Multiplicação do sinal m(t) pelo cosseno de 20kHz, obtendo o sinal x1(t):

2. Filtragem de x1(t) pelo filtro passa altas com frequência de corte 20kHz, obtendo o sinal x2(t):

3. Multiplicação do sinal m(t) pelo cosseno de 25kHz, obtendo o sinal x3(t):

4. Filtragem de x3(t) pelo filtro passa baixas com frequência de corte 20kHz, obtendo o sinal y(t):

2.4 Desembaralhamento - Demodulação

A demodulação dos sinais embaralhados é realizada de forma análoga à modulação, dado que o sistema é auto inversor. Assim, os mesmos cossenos e filtros são utilizados para deslocar as frequências de volta à banda original e reconstruir o sinal, aplicados na mesma ordem.

2.5 Visualizações

Os sinais de áudio utilizados internamente são gerados diretamente dos sinais processados em 96kHz. Contudo, a plotagem do sinal ao longo do tempo e espectogramas demandam muito processamento e memória, de modo que a geração destas visualizações, bem como a escrita dos arquivos de áudio de saída, ocorrem após realizar *downsampling* do sinal processado para 44,1kHz.

3. Chirp Visualizações referentes ao arquivo Chirp.

Os áudios podem ser ouvidos clicando nos links abaixo:

Áudio Original

Áudio Embaralhado

4. 19 William Tell Overture

Visualizações referentes ao arquivo 19 William Tell Overture.

Os áudios podem ser ouvidos clicando nos links abaixo:

Áudio Original

Áudio Embaralhado

5. Megalovania

Visualizações referentes ao arquivo Megalovania.

Os áudios podem ser ouvidos clicando nos links abaixo:

Áudio Original

Áudio Embaralhado

6. Ta Vendo Aquela Lua

Visualizações referentes ao arquivo Ta Vendo Aquela Lua.

Os áudios podem ser ouvidos clicando nos links abaixo:

Áudio Original

Áudio Embaralhado

7. Conclusão

O sistema de embaralhamento e desembaralhamento de sinais de áudio foi implementado com sucesso. Através da utilização de técnicas de processamento de sinais, foi possível atingir os objetivos propostos no início do projeto. Entretanto, dada a banda estreita em que o sistema opera, a qualidade do áudio processado é afetada, principalmente a parte instrumental ou eletrônica dos sinais de áudio. Assim, embora funcione corretamente (principalmente com vozes humanas), as frequências mais agudas do espectro não são preservadas e um ruído perceptível é introduzido.

Enquanto os espectros dos sinais exibem diferenças notáveis após aplicação do embaralhamento e desembaralhamento, a representação de cada sinal no domínio do tempo permanece visualmente similar.

Ainda, os algoritmos de *upsampling* e *downsampling* implementados foram efetivos e possibilitaram, com áuxilio de ferramentas de codificação e decodificação de áudio, o tratamento local dos arquivos e seus sinais.