Lezione 16

Tecnologia

Tecnologia

- Tecnologia: processo attraverso il quale gli input si trasformano in output.
- Es. lavoro, computer, proiettore e elettricità vengono combinati per produrre questa lezione.

Tecnologia

- Di solito diverse tecnologie possono essere impiegate per produrre lo stesso output – una lavagna e un gesso possono sostituire computer e proiettore.
- Qual è la tecnologia migliore?
- Come confrontiamo le tecnologie?

Combinazione di input

- x_i denota la quantità di input i usata
- Una combinazione di input è un vettore (x₁, x₂, ..., x_n).
- Es. $(x_1, x_2, x_3) = (6, 0, 9)$.

Funzione di produzione

- y denota il livello di output.
- La funzione di produzione dà il massimo ammontare di output possibile da una combinazione di input.

$$y = f(x_1, \dots, x_n)$$

Insieme di produzione

- Un piano di produzione è una combinazione di input e un livello di output: (x_1, \ldots, x_n, y) .
- Un piano di produzione è realizzabile se

$$y \le f(x_1, \dots, x_n)$$

 $y \leq f(x_1, \cdots, x_n)$ • L'insieme di tutti i piani di produzione realizzabili è detto insieme di produzione

Insieme di produzione L'insieme di produzione è dunque

$$T = \{(x_1, \dots, x_n, y) | y \le f(x_1, \dots, x_n) \ e$$
$$x_1 \ge 0, \dots, x_n \ge 0\}.$$

Tecnologia con input multipli

- Il caso di due input: livelli di input x_1 e x_2 . Livello di output y.
- Supponiamo che la funzione di produzione

$$y = f(x_1, x_2) = 2x_1^{1/3}x_2^{1/3}$$
.

Tecnologia con input multipli

• Es. il massimo livello di output possibile dalla combinazione di input $(x_1, x_2) =$ (1, 8) è

$$y = 2x_1^{1/3}x_2^{1/3} = 2 \times 1^{1/3} \times 8^{1/3} = 2 \times 1 \times 2 = 4.$$

• Il massimo livello di output possibile da $(x_1,x_2) = (8,8) e$

$$y = 2x_1^{1/3}x_2^{1/3} = 2 \times 8^{1/3} \times 8^{1/3} = 2 \times 2 \times 2 = 8.$$

Tecnologia con input multipli

Tecnologia con input multipli

 L'isoquanto relativo alla quantità di output y è l'insieme di tutte le combinazioni di input che consentono di ottenere al più il livello di output y.

Isoquanti con due input

 Gli isoquanti possono essere rappresentati in un grafico 3D aggiungendo un asse verticale con il livello di output.

Isoquanti con due input

• Più isoquanti abbiamo più sappiamo circa la tecnologia.

Isoquanti con due input

Tecnologie con input multipli

- L'insieme completo degli isoquanti è detto mappa degli isoquanti.
- Questa mappa è equivalente alla funzione di produzione
- Es.

$$y = f(x_1, x_2) = 2x_1^{1/3}x_2^{1/3}$$

Tecnologia Cobb-Douglas

• Una funzione di produzione Cobb-Douglas è

$$y = A x_1^{a_1} x_2^{a_2} \times \cdots \times x_n^{a_n}$$
.

• Es.

$$y = x_1^{1/3} x_2^{1/3}$$

con

$$n = 2$$
, $A = 1$, $a_1 = \frac{1}{3}$ e $a_2 = \frac{1}{3}$.

Tecnologia Cobb-Douglas

Gli isoquanti sono iperboli che si avvicinano asintoticamente agli assi. y'' > y' $y = x_1^{a_1} x_2^{a_2}$

 $x_1^{a_1}x_2^{a_2} = y''$ $x_1^{a_1}x_2^{a_2} = y'$ $x_2^{a_1}x_2^{a_2} = y'$

Tecnologia a proporzioni fisse

 Funzione di produzione a proporzioni fisse:

$$\mathbf{y} = \min\{\mathbf{a}_1 \, \mathbf{x}_1, \mathbf{a}_2 \mathbf{x}_2, \cdots, \mathbf{a}_n \, \mathbf{x}_n\}.$$

• Es.

$$y = \min\{x_1, 2x_2\}$$

con

$$n = 2$$
, $a_1 = 1$ e $a_2 = 2$.

Input perfetti sostituti

• Una funzione di produzione con input perfetti sostituti è:

$$y = a_1 x_1 + a_2 x_2 + \cdots + a_n x_n$$
.

• Es.

$$y = x_1 + 3x_2$$

con

$$n = 2$$
, $a_1 = 1$ e $a_2 = 3$.

Prodotto marginale

$$y = f(x_1, \dots, x_n)$$

- Il prodotto marginale di un input i è il tasso di variazione del livello di output al variare del livello di input i, mantenendo invariati i livelli degli altri input.
- · Cioè:

$$MP_i = \frac{\partial y}{\partial x_i}$$

Prodotto marginale

Es. se

$$y = f(x_1, x_2) = x_1^{1/3} x_2^{2/3}$$

Il prodotto marginale dell'input 1 è

$$\mathsf{MP}_1 = \frac{\partial \mathsf{y}}{\partial \mathsf{x}_1} = \frac{1}{3} \mathsf{x}_1^{-2/3} \mathsf{x}_2^{2/3}$$

E il prodotto marginale dell'input 2 è

$$MP_2 = \frac{\partial y}{\partial x_2} = \frac{2}{3} x_1^{1/3} x_2^{-1/3}.$$

Prodotto marginale

Di solito il prodotto marginale di un input dipende dalla quantità impiegata degli altri input. Es. se

MP₁ =
$$\frac{1}{3}$$
x₁^{-2/3}x₂^{2/3} si ottiene,
se x₂ = 8, MP₁ = $\frac{1}{3}$ x₁^{-2/3}8^{2/3} = $\frac{4}{3}$ x₁^{-2/3}
e se invece x₂ = 27 si ha
MP₁ = $\frac{1}{3}$ x₁^{-2/3}27^{2/3} = 3x₁^{-2/3}.

Prodotto marginale

 Se il prodotto marginale di un input i è decrescente, all'aumentare del livello di input i l'output aumenta sempre meno. Quindi:

$$\frac{\partial MP_i}{\partial x_i} = \frac{\partial}{\partial x_i} \left(\frac{\partial y}{\partial x_i} \right) = \frac{\partial^2 y}{\partial x_i^2} < 0.$$

Legge della produttività marginale decrescente

Prodotto marginale

Es. se
$$y = x_1^{1/3}x_2^{2/3}$$
 \Rightarrow $MP_1 = \frac{1}{3}x_1^{-2/3}x_2^{2/3}$ e $MP_2 = \frac{2}{3}x_1^{1/3}x_2^{-1/3}$ si ha $\frac{\partial MP_1}{\partial x_1} = -\frac{2}{9}x_1^{-5/3}x_2^{2/3} < 0$ e $\frac{\partial MP_2}{\partial x_2} = -\frac{2}{9}x_1^{1/3}x_2^{-4/3} < 0$.

Entrambi i prodotti marginali sono decrescenti

Rendimenti di scala

- Il prodotto marginale rappresenta il cambiamento nel livello di output al variare di un singolo input.
- I rendimenti di scala descrivono come varia il livello di output al variare di tutti gli input nella stessa proporzione (es. tutti gli input raddoppiano, o si dimezzano).

Rendimenti di scala

Se, per ogni combinazione di input $(x_1,...,x_n)$, si ha

$$f(kx_1,kx_2,\cdots,kx_n) = kf(x_1,x_2,\cdots,x_n)$$

la tecnologia rappresentata dalla funzione di produzione f esibisce rendimenti di scala costanti.

Es. (k = 2) raddoppiando il livello di tutti gli input si raddoppia anche l'output.

Rendimenti di scala

Se, per ogni combinazione $(x_1,...,x_n)$, si ha

$$f(kx_1,kx_2,\cdots,kx_n) < kf(x_1,x_2,\cdots,x_n)$$

la tecnologia esibisce rendimenti di scala decrescenti.

Es. (k = 2) raddoppiando tutti gli input, l'output meno che raddoppia.

Rendimenti di scala

Se, per ogni combinazione $(x_1,...,x_n)$, si ha

$$f(kx_1,kx_2,\cdots,kx_n) > kf(x_1,x_2,\cdots,x_n)$$

la tecnologia esibisce rendimenti di scala crescenti.

Es. (k = 2) raddoppiando tutti gli input, l'output più che raddoppia.

Rendimenti di scala

 Una medesima tecnologia può esibire 'localmente' diversi tipi di rendimenti di scala.

Esempi di rendimenti di scala La funzione di produzione con perfetti sostituti è:

$$y = a_1 x_1 + a_2 x_2 + \cdots + a_n x_n$$
.

Aumentando tutti gli input k volte, l'output diventa:

$$a_1(kx_1) + a_2(kx_2) + \dots + a_n(kx_n)$$

= $k(a_1x_1 + a_2x_2 + \dots + a_nx_n)$
= ky .

Esibisce rendimenti di scala costanti.

Esempi di rendimenti di scala La funzione di produzione con perfetti

complementi è: $y = min\{a_1 x_1, a_2 x_2, \dots, a_n x_n\}.$

Aumentando tutti gli input k volte, l'output diventa:

$$\begin{aligned} & \min\{a_1(kx_1), a_2(kx_2), \cdots, a_n(kx_n)\} \\ &= k(\min\{a_1x_1, a_2x_2, \cdots, a_nx_n\}) \\ &= ky. \end{aligned}$$

Esibisce rendimenti di scala costanti.

Esempi di rendimenti di scala Funzione di produzione Cobb-Douglas $y = x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}$.

Aumentando tutti gli input k volte, l'output diventa:

$$(kx_1)^{a_1}(kx_2)^{a_2}\cdots(kx_n)^{a_n}=k^{a_1+\cdots+a_n}y.$$

Quindi la CD presenta rendimenti di scala

```
costanti se a_1 + ... + a_n = 1
crescenti se a_1 + ... + a_n > 1
decrescenti se a_1 + ... + a_n < 1.
```

Rendimenti di scala

- D: Ci possono essere tecnologie con rendimenti di scala crescenti quando tutti i loro prodotti marginali ai singoli fattori sono decrescenti?
- R: Sì.
- Es. $y = x_1^{2/3}x_2^{2/3}$.

Rendimenti di scala
$$y=x_1^{2/3}x_2^{2/3}=x_1^{a_1}x_2^{a_2}$$

$$a_1+a_2=\frac{4}{3}>1 \quad \text{Rendimenti di scala crescenti}$$

$$\text{Ma} \quad \text{MP}_1=\frac{2}{3}x_1^{-1/3}x_2^{2/3} \quad \text{cala all'aumentare di }$$

$$x_1 \quad \text{MP}_2=\frac{2}{3}x_1^{2/3}x_2^{-1/3} \quad \text{cala all'aumentare di }$$

Rendimenti di scala

- Perchè?
- Il prodotto marginale è il tasso di variazione dell'output all'aumentare di un input, tenendo tutti gli altri fissi.
- Il prodotto marginale diminuisce perchè gli altri input sono fissi, quindi unità aggiuntive di un solo input si combinano con sempre meno unità degli altri input.

Rendimenti di scala

· Quando tutti gli input aumentano in proporzione, non c'è necessariamente una diminuzione dei prodotti marginali dal momento che ciascun input ha sempre a disposizione lo stesso ammontare degli altri input per produrre l'output. Quindi la produttività di tutti gli input nel loro insieme non deve necessariamente diminuire e può rimanere costante o aumentare.

Saggio tecnico di sostituzione

• E' il tasso al quale l'impresa deve sostituire un input con un altro per mantenere costante il livello dell'output.

Saggio tecnico di sostituzione

Saggio tecnico di sostituzione

- · Come si calcola il saggio tecnico di sostituzione?
- Funzione di produzione $y = f(x_1, x_2).$
- Un piccolo cambiamento (dx₁, dx₂) nella combinazione di input causa una variazione nel livello di output:

$$dy = \frac{\partial y}{\partial x_1} dx_1 + \frac{\partial y}{\partial x_2} dx_2.$$

Saggio tecnico di sostituzione $dy = \frac{\partial y}{\partial x_1} dx_1 + \frac{\partial y}{\partial x_2} dx_2.$

Ma dy = 0 dal momento che non c'è variazione del livello di output, quindi dx1 e dx₂ devono soddisfare la seguente eq.

$$0 = \frac{\partial y}{\partial x_1} dx_1 + \frac{\partial y}{\partial x_2} dx_2.$$

Saggio tecnico di sostituzione

$$0 = \frac{\partial y}{\partial x_1} dx_1 + \frac{\partial y}{\partial x_2} dx_2$$

che, riscritta

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}_2} \mathbf{dx}_2 = -\frac{\partial \mathbf{y}}{\partial \mathbf{x}_1} \mathbf{dx}_1$$

$$\frac{dx_2}{dx_1} = -\frac{\partial y / \partial x_1}{\partial y / \partial x_2}.$$

Saggio tecnico di sostituzione $\frac{d\mathbf{x}_2}{d\mathbf{x}_1} = -\frac{\partial \mathbf{y} / \partial \mathbf{x}_1}{\partial \mathbf{y} / \partial \mathbf{x}_2}$

è il tasso al quale si deve diminuire l'input 2 all'aumentare dell'input 1 per mantenere il livello di output costante. É la pendenza dell'isoquanto e coincide con il rapporto fra i prodotti marginali. Saggio tecnico di sostituzione: caso della Cobb-Douglas

$$y = f(x_1, x_2) = x_1^a x_2^b$$

$$\frac{\partial y}{\partial x_1} = a x_1^{a-1} x_2^b \quad e \quad \frac{\partial y}{\partial x_2} = b x_1^a x_2^{b-1}.$$

II TRS è:

$$\frac{\text{d} x_2}{\text{d} x_1} = -\frac{\partial y \, / \, \partial x_1}{\partial y \, / \, \partial x_2} = -\frac{a x_1^{a-1} x_2^b}{b x_1^a x_2^{b-1}} = -\frac{a x_2}{b x_1}.$$

Tecnologie Well-Behaved

- Una tecnologia well-behaved è
 - monotona, e
 - convessa.

Tecnologie Well-Behaved: monotonicità

 Monotonicità: Una maggior quantità di qualsiasi input genera più output.

Tecnologie Well-Behaved: convessità

 Convessità: Se le combinazioni di input x' e x" danno entrambe y unità di output allora il mix tx' + (1-t)x" dà almeno y unità di output, per qualsiasi 0 < t < 1.

Lungo periodo e breve periodo

- Il lungo periodo è la circostanza in cui un'impresa non ha restrizioni nella sua scelta di tutti i livelli di input.
- Il breve periodo è una circostanza in cui un'impresa è soggetta a restrizioni di qualche tipo nella sua scelta di almeno un livello di input.

Lungo periodo e breve periodo

- Esempi di restrizioni che creano circostanze di breve periodo:
 - Temporanea impossibilità di installare o rimuovere macchinari
 - Leggi che impediscono licenziamenti
 - Particolari regolamenti o vincoli che si applicano in un Paese.

Lungo periodo e breve periodo

 Si può pensare al lungo periodo come ad una situazione nella quale un'impresa sceglie liberamente in quale circostanza di breve periodo situarsi.

Lungo periodo e breve periodo

 Esempio di restrizione di breve periodo: supponiamo che il livello di input 2 sia fisso nel breve. L'input 1 rimane invece variabile.

Lungo periodo e breve periodo

4 funzioni di produzione di breve periodo

Lungo periodo e breve periodo

 $y = x_1^{1/3}x_2^{1/3}$ è la funzione di produzione di lungo periodo (sia x_1 che x_2 sono variabili).

La funzione di produzione di breve periodo quando $x_2 \equiv 1$ è $y = x_1^{1/3} 1^{1/3} = x_1^{1/3}$.

La funzione di produzione di breve periodo quando x $_2$ = 10 è $y = x_1^{1/3} 10^{1/3} = 2 \cdot 15 x_1^{1/3}$.

Lungo periodo e breve periodo

4 funzioni di produzione di breve periodo