Sprawozdanie PSI

Zagadnieniem które wybrałem w celu utworzenia sieci neuronowej i uczenia jej jest rozpoznawanie cyfr pisanych. Cyfry są reprezentowane przez macierze 16 na 16 w której znajdują się zera i jedynki. Dane z macierzy są podawane do sieci neuronowych. Każde pole w macierzy to jeden wjeście do neuronu, więc każdy neuron posiada 16*16 wejść i jedno wyjście. Rozwiązanie tego problemu oparłem w głównej mierze o implementacji wielo jak i jedno warstwowej sieci neuronowej z użyciem różnych technik uczenia.

Rozpatrywane sieci zawsze posiadają 256 wejść i 10 neuronów wyjściowych.

Seci jedno warstwowe:

Uczenie tych sieci jak i testowanie ich zostały oparte o zestaw danych składający się z:

- 1200 rekordów uczących
- 393 rekordów walidujących

Dla lepszego porównywania wyników przyjęto maksymalną liczbę epok w ilości 100.

Model neuronu: perceptron

Metoda uczenia: Wsteczna propagacja

• Tempo uczenia: 0.001

Efektywność rozpoznawania cyfr przez sieć: 66.41%

Cyfra	Poprawnie	Nie poprawnie
0	29.0	6.0
1	25.0	15.0
2	21.0	19.0
3	27.0	13.0
4	22.0	18.0
5	24.0	16.0
6	31.0	9.0
7	25.0	15.0
8	21.0	17.0
9	36.0	4.0

Błąd uczenia:

Metoda uczenia: WTA (Winner takes all)

• Tempo uczenia: 0.001

Efektywność rozpoznawania cyfr przez sieć: 66.92%

Cyfra	Poprawnie	Nie poprawnie
0	31	4
1	25	15
2	26	14
3	23	17
4	24	16
5	22	18
6	32	8
7	25	15
8	21	17
9	34	6

Błąd uczenia:

Metoda uczenia: reguła Hebb'a

• Tempo uczenia: 0.001

Efektywność rozpoznawania cyfr przez sieć: 64.88%

Cyfra	Poprawnie	Nie poprawnie
0	28	7
1	18	22
2	25	15
3	25	15
4	19	21
5	26	14
6	25	15
7	27	13
8	24	14
9	38	2

Błąd uczenia:

Metoda uczenia: reguła Oji

• Tempo uczenia: 0.001

Efektywność rozpoznawania cyfr przez sieć: 62.59%

Cyfra	Poprawnie	Nie poprawnie
0	26	9
1	18	22
2	21	19
3	23	17
4	24	16
5	20	20
6	29	11
7	27	13
8	21	17
9	37	3

Błąd uczenia:

Podsumowanie:

Wszystkie z powyższych metod uczenia dla sieci jednowarstwowej z wykorzystaniem neuronu o modelu perceptronu dają bardzo zbliżone efektywnosci rozpoznawania cyfr.

Model neuronu: McCulloch'a Pitts'a Metoda uczenia: Wsteczna propagacja

• Tempo uczenia: 0.001

Efektywność rozpoznawania cyfr przez sieć: 26.20%

Cyfra	Poprawnie	Nie poprawnie
0	0	35
1	1	39
2	5	35
3	31	9
4	29	11
5	14	26
6	0	40
7	17	23
8	2	36
9	4	36

Błąd uczenia:

Metoda uczenia: WTA (Winner takes all)

• Tempo uczenia: 0.001

Efektywność rozpoznawania cyfr przez sieć: 27.48%

Cyfra	Poprawnie	Nie poprawnie
0	0	35
1	11	29
2	18	22
3	14	26
4	1	39
5	1	39
6	9	31
7	27	13
8	0	38
9	27	13

Błąd uczenia:

Metoda uczenia: reguła Hebb'a

• Tempo uczenia: 0.001

Efektywność rozpoznawania cyfr przez sieć: 27.73%

Cyfra	Poprawnie	Nie poprawnie
0	0	35
1	1	39
2	1	39
3	23	17
4	22	18
5	26	14
6	1	39
7	28	12
8	7	31
9	0	40

Błąd uczenia:

Metoda uczenia: reguła Oji

• Tempo uczenia: 0.001

Efektywność rozpoznawania cyfr przez sieć: 34.35%

Cyfra	Poprawnie	Nie poprawnie
0	19	16
1	10	30
2	7	33
3	17	23
4	9	31
5	4	36
6	27	13
7	22	18
8	0	38
9	20	20

Błąd uczenia:

Podsumowanie:

Niskie efektywności sieci w powyższych metodach uczenia dla sieci jednowarstwowej z wykorzystaniem neuronu o modelu McCulloch'a Pitts'a wynikają z stosunkowo małej ilości epok uczenia. Biorąc to pod uwagę możemy stwierdzić, że większość z tych metod dają bardzo zbliżone efektywności rozpoznawania cyfr. Zauważyć również można, że uczenie z regułą Oji daje znacząco lepsze efekty niż w pszypadku pozostałych metod.

Seci wielo warstwowe:

Uczenie tych sieci jak i testowanie ich zostały oparte o zestaw danych składający się z:

- 1200 rekordów uczących
- 393 rekordów walidujących

Dla lepszego porównywania wyników przyjęto maksymalną liczbę epok w ilości 100.

Sieć składa się z dwóch warstw ukrytych, gdzie w każdej z nich znajduje się po 32 neurony.

Model neuronu: Perceptron

Metoda uczenia: Wsteczna propagacja

• Tempo uczenia: 0.001

Efektywność rozpoznawania cyfr przez sieć: 66.92%

Cyfra	Poprawnie	Nie poprawnie
0	25	10
1	25	15
2	17	23
3	26	14
4	25	15
5	27	13
6	30	10
7	28	12
8	22	16
9	38	2

Błąd uczenia:

Model neuronu: McCulloch'a Pitts'a Metoda uczenia: Wsteczna propagacja

• Tempo uczenia: 0.001

Efektywność rozpoznawania cyfr przez sieć: 82.44%

Cyfra	Poprawnie	Nie poprawnie
0	35	0
1	34	6
2	31	9

3	34	6
4	31	9
5	32	8
6	35	5
7	32	8
8	30	8
9	30	10

Błąd uczenia:

Podsumowanie:

Sieci wielo warstwowe bardzo znacząco dłużej się uczą w porównaniu do sieci jedno warstwowych. Wykorzystanie modelu perceptronu nie jest najbardziej optymalne, ponieważ dla tylu samych epok uczenia co w przypadku sieci jedno warstwowej z modelem perceptronu otrzymujemy zbliżoną sprawność w rozpoznawaniu cyfr oraz dłuższy czas uczenia. Natomiast przy użyciu modelu neuronu McCulloch'a Pitts'a otrzymujemy znaczący przyrost efektywności sieci neuronowej.

Sieć ADALINE z wykorzystaniem biblioteki ENCOG:

Uczenie tej sieci jak i testowanie zostały oparte o zestaw danych składający się z:

- 400 rekordów uczących
- 230 rekordów walidujących

Uczenie tej sieci trwało do momentu uzyskania błędu rzędu 1%, przy tempie uczenia 0.01.

Efektywność rozpoznawania cyfr przez sieć: 100%

Cyfra	Poprawnie	Nie poprawnie
0	23	0
1	23	0
2	23	0
3	23	0
4	23	0
5	23	0
6	23	0
7	23	0
8	23	0
9	23	0

Błąd uczenia:

Podsumowanie:

Sieć tego typu daje bardzo dobre rezultaty dla rozpoznawania cyfr. Nauczenie sieci do takiego stanu zajęło 220 epok.