Chapter 2: Exchange with production

Ch 32 in H. Varian 8th Ed.

Slides by Mariona Segú, CYU Cergy Paris Université Inspired by Michael D. Robinson, Mount Holyoke College

Exchange Economies (revisited)

So far...

- →No production, only endowments, so no description of how resources are converted to consumables.
- → General equilibrium: all markets clear simultaneously.
- → 1st and 2nd Fundamental Theorems of Welfare Economics.

Now

→ Add input markets, output markets, describe firms' technologies, the distributions of firms' outputs and profits ... That's not easy!

Robinson Crusoe's Economy

- → One agent, RC.
- \rightarrow Endowed with a fixed quantity of one resource \rightarrow 24 hours.
- → Use time for labor (production) or leisure (consumption).
- \rightarrow Labor time = L. Leisure time = 24 L.
- → What will RC choose?

Robinson Crusoe's Technology

→ Technology: Labor produces output (coconuts) according to a concave production function.

Robinson Crusoe's Technology

Robinson Crusoe's Technology

Robinson Crusoe's Preferences

- → RC's preferences:
 - coconut is a good
 - leisure is a good

Robinson Crusoe's Preferences

Robinson Crusoe's Preferences

Coconuts

Coconuts

Robinson Crusoe as a Firm

- → Now suppose RC is both a utility-maximizing consumer and a profit-maximizing firm.
- → Use coconuts as the numeraire good; i.e. price of a coconut = \$1.
- \rightarrow RC's wage rate is w.
- → Coconut output level is *C*.

Robinson Crusoe as a Firm

- \rightarrow RC's firm's profit is $\pi = C wL$.
- $\rightarrow \pi$ = C $wL \Leftrightarrow C = \pi + wL$, the equation of an isoprofit line.
- \rightarrow Slope = + w.
- \rightarrow Intercept = π .

Isoprofit Lines

- \rightarrow Now consider RC as a consumer endowed with \$ π^* who can work for \$w per hour.
- → What is RC's most preferred consumption bundle?
- → Budget constraint is

$$C = \pi * + wL$$
.

Coconuts

Utility-Maximization & Profit-Maximization

→ Profit-maximization:

- $w = MP_I$
- quantity of output supplied = C*
- quantity of labor demanded = L^*

→ Utility-maximization:

- -w = MRS
- quantity of output demanded = C*
- quantity of labor supplied = L^*

Utility-Maximization & Profit-Maximization

→ Profit-maximization:

- $-w = MP_L$
- quantity of output supplied = C*
- quantity of labor demanded = L^*

→ Utility-maximization:

- -w = MRS
- quantity of output demanded = C*
- quantity of labor supplied = L^*

Coconut and labor markets both clear.

Utility-Maximization & Profit-Maximization

 \rightarrow Must have MRS = MP_L.

First Fundamental Theorem of Welfare Economics

- → A competitive market equilibrium is Pareto efficient if
 - consumers' preferences are convex
 - there are no externalities in consumption or production.

Second Fundamental Theorem of Welfare Economics

- → Any Pareto efficient economic state can be achieved as a competitive market equilibrium if
 - consumers' preferences are convex
 - firms' technologies are convex
 - there are no externalities in consumption or production.

- → Do the Welfare Theorems hold if firms have non-convex technologies?
- → The 1st Theorem does not rely upon firms' technologies being convex.

- → Do the Welfare Theorems hold if firms have non-convex technologies?
- → The 2nd Theorem does require that firms' technologies be convex.
 - This means that all situations with increasing returns to scale are ruled out.

- → Resource and technological limitations restrict what an economy can produce.
- → The set of all feasible output bundles is the economy's production possibility set.
- → The set's outer boundary is the production possibility frontier.

Fish

Coconuts Ppf's slope is the marginal rate of product transformation. **Fish**

- → If there are no production externalities then a ppf will be concave w.r.t. the origin.
- → Why?

- → If there are no production externalities then a ppf will be concave w.r.t. the origin.
- → Why?
- → Because efficient production requires exploitation of comparative advantages.

- → Two agents, RC and Man Friday (MF).
- → RC can produce at most 20 coconuts or 30 fish.
- → MF can produce at most 50 coconuts or 25 fish.

25

25

Comparative Advantage

Comparative Advantage

More producers with different opp. costs "smooth out" the ppf.

- → The ppf contains many technically efficient output bundles.
- → Which are Pareto efficient for consumers?

- \rightarrow MRS \neq MRPT \Rightarrow inefficient coordination of production and consumption.
- → Hence, MRS = MRPT is necessary for a Pareto optimal economic state.

- → RC and MF jointly run a firm producing coconuts and fish.
- → RC and MF are also consumers who can sell labor.
- \rightarrow Price of coconut = p_c .
- \rightarrow Price of fish = p_F .
- \rightarrow RC's wage rate = w_{RC} .
- \rightarrow MF's wage rate = w_{MF} .

- $\rightarrow L_{RC}$, L_{MF} are amounts of labor purchased from RC and MF.
- \rightarrow F irm's profit-maximization problem is choose C, F, L_{RC} and L_{MF} to

$$\max \pi = p_C C + p_F F - w_{RC} L_{RC} - w_{MF} L_{MF}.$$

$$\max \pi = p_C C + p_F F - w_{RC} L_{RC} - w_{MF} L_{MF}.$$
 Isoprofit line equation is
$$\operatorname{constant} \pi = p_C C + p_F F - w_{RC} L_{RC} - w_{MF} L_{MF}$$

 $\max \pi = p_C C + p_F F - w_{RC} L_{RC} - w_{MF} L_{MF}.$ Isoprofit line equation is

constant $\pi = p_C C + p_F F - w_{RC} L_{RC} - w_{MF} L_{MF}$ which rearranges to

$$C = \frac{\pi + w_{RC}L_{RC} + w_{MF}L_{MF}}{p_C} - \frac{p_F}{p_C}F.$$

 $\max \pi = p_C C + p_F F - w_{RC} L_{RC} - w_{MF} L_{MF}.$ Isoprofit line equation is

constant $\pi = p_C C + p_F F - w_{RC} L_{RC} - w_{MF} L_{MF}$ which rearranges to

$$C = \frac{\pi + w_{RC}L_{RC} + w_{MF}L_{MF}}{p_{C}} - \frac{p_{F}}{p_{C}}F.$$
 Intercept Slope

→ So competitive markets, profit-maximization, and utility maximization all together cause

$$MRPT = -\frac{p_F}{p_C} = MRS,$$

the condition necessary for a Pareto optimal economic state.

