Feuille d'exercices n^o9

Espaces de Banach et Hilbert

Exercice 1 : bases hilbertiennes

Soit $(E, \langle ., . \rangle)$ un espace de Hilbert séparable, de dimension infinie.

- 1. Montrer qu'il existe une suite $(e_n)_{n\in\mathbb{N}}$ vérifiant les propriétés suivantes :
 - (i) $\langle e_n, e_m \rangle = 0$ pour tous $n \neq m$;
 - (ii) $||e_n|| = 1$ pour tout n;
- (iii) $\overline{\text{Vect }\{e_n\}_{n\in\mathbb{N}}}=E.$
- 2. Montrer que, pour tout $x \in E$, il existe une unique suite $(\alpha_n(x))_{n \in \mathbb{N}}$, telle que :

$$x = \lim_{N \to +\infty} \sum_{n < N} \alpha_n(x) e_n.$$

Que valent les $\alpha_n(x)$?

3. Montrer que l'application $\phi: x \in E \to (\alpha_n(x))_{n \in \mathbb{N}}$ est un isomorphisme de E vers $l^2(\mathbb{N})$.

Exercice 2 $\mathscr{I}\mathscr{I}$: hyperplan fermé d'orthogonal réduit à $\{0\}$

- 1. Soit $c_{00}(\mathbb{N})$ l'ensemble des suites réelles qui valent zéro à partir d'un certain rang. On munit cet ensemble du produit scalaire $\langle u, v \rangle = \sum_{n \in \mathbb{N}} u_n v_n$.
- a) L'espace $c_{00}(\mathbb{N})$ est-il un espace de Hilbert?
- b) Soit:

$$f: u \in c_{00}(\mathbb{N}) \to \sum_{n \in \mathbb{N}} \frac{u_n}{2^n}.$$

Montrer que Ker (f) est un sous-espace vectoriel fermé de $c_{00}(\mathbb{N})$, tel que $(\text{Ker }(f))^{\perp} = \{0\}$.

2. Soit E un espace pré-hilbertien non-complet que lconque. Montrer que E contient un sous-espace vectoriel fermé F tel que $F \neq E$ et $F^{\perp} = \{0\}$.

Exercice 3 // : opérateurs compacts et propriété d'approximation

Soit E et F des espaces de Banach. On dit qu'un opérateur continu $T: E \to F$ est compact si l'image par T de toute partie bornée est relativement compacte.

- 1. Montrer qu'un opérateur est compact si et seulement si l'image de la boule unité est relativement compacte.
- 2. Si A et B sont deux opérateurs continus, montrer que l'opérateur $A \circ B$ est compact dès que l'un des opérateurs A ou B est compact. (on a évidemment rajouté un troisième Banach)

- 3. Montrer que les opérateurs de rang fini sont compacts.
- 4. Montrer que l'ensemble des opérateurs compacts de E dans F est un sous-espace vectoriel fermé de l'espace des applications linéaires continues.
- 5. On suppose maintenant que E=F=H est un espace de Hilbert. Montrer la réciproque. On dit que H a la propriété d'approximation.

Soit $p \in [1; +\infty]$. Soit $q \in [1; +\infty]$ tel que $\frac{1}{p} + \frac{1}{q} = 1$. Pour tout $v \in l^q$, on définit :

$$L_v: l^p \to \mathbb{R}$$
$$u \to \sum_{n=0}^{+\infty} u_n v_n.$$

- 1. a) Montrer que, pour tout $v \in l^q$, L_v est une forme linéaire bien définie et continue sur l^p . [Indication : on rappelle l'inégalité de Hölder : pour toutes $u \in l^p$, $v \in l^q$, on a $||uv||_1 \le ||u||_p ||v||_q$.]
- b) Montrer que $\phi: v \in l^q \to L_v \in (l^p)'$ réalise une isométrie vers son image.
- 2. Montrer que ϕ est une isométrie (surjective) de l^q vers $(l^p)'$ si $p \neq \infty$.
- 3. a) On suppose maintenant $p = \infty$.

Montrer qu'il existe $L \in (l^{\infty})'$ une forme linéaire continue telle que, pour toute $u \in l^{\infty}$ convergente, on ait :

$$L(u) = \lim_{n \to +\infty} u_n.$$

[Indication : une conséquence du théorème de Hahn-Banach affirme qu'une forme linéaire continue sur un sous-espace d'un espace vectoriel normé peut être prolongée en une forme linéaire continue sur l'espace normé tout entier.]

b) En déduire que ϕ n'est pas surjective si $p = \infty$.

Exercice 5 \mathscr{I} : un peu plus d'espaces de suites

On pose pour s réel $h^s:=\{u\in\mathbb{R}^n\ :\ \sum_1^\infty n^{2s}u_n^2<\infty\}.$

- 1. Montrer que h^s est un espace de Hilbert muni du produit scalaire naturel caché dans sa définition.
- 2. Montrer que l'application $(u,v) \in h^s \times h^{-s} \mapsto \sum u_n v_n$ définit un accouplement entre les espaces de Hilbert au sens où elle est bilinéaire, non dégénérée, et établit des isométries entre l'un et le dual de l'autre.
- 3. Les h^s sont clairement décroissants en s et les injections sont continues. Montrer que l'injection $h^1 \hookrightarrow h^0$ est également compacte. (l'image d'une partie bornée est relativement compacte.)

Exercice 6 ///: topologies faible et faible-étoile

1. Soit (E, ||.||) un espace vectoriel normé. On appelle topologie forte la topologie sur E engendrée par la norme ||.||. On note E' l'ensemble des formes linéaires continues sur E.

On appelle topologie faible sur E la topologie la moins fine pour laquelle tous les éléments de E' sont des fonctions continues de E dans \mathbb{R} .

- a) Montrer qu'une suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de E converge vers x_∞ pour la topologie faible si et seulement si $l(x_n) \stackrel{n\to +\infty}{\longrightarrow} l(x_\infty)$ pour toute $l\in E'$.
- b) Donner un exemple d'une suite d'éléments de $(l^2(\mathbb{N}), ||.||_2)$ qui converge pour la topologie faible mais pas pour la topologie forte.
- c) Montrer que la topologie faible et la topologie forte de E sont égales si et seulement si E est de dimension finie.
- 2. On appelle topologie faible-étoile sur E' la topologie la moins fine rendant continues toutes les applications $\phi_x : f \in E' \to f(x) \in \mathbb{R}$, où x varie dans E.
- a) Montrer que la topologie faible-étoile est moins fine que la topologie de la norme uniforme.
- b) On note B la boule unité fermée de E' pour la norme uniforme.

Montrer que, si on munit B de la topologie faible-étoile et $\mathcal{F}(B_E(0,1),[-1;1])$ de la topologie produit, alors l'application suivante est d'image fermée et réalise un homéomorphisme sur son image :

$$\Gamma: f \in B \longrightarrow f_{|B_E(0,1)} \in \mathcal{F}(B_E(0,1), [-1;1]).$$

c) [Théorème de Banach-Alaoglu-Bourbaki] En déduire que B est compact pour la topologie faible-étoile.

Exercice 7 ###: théorème de Lax-Milgram

Soit H un espace de Hilbert. Soit $a: H \times H \to \mathbb{R}$ une application bilinéaire continue. On suppose que a est coercive, c'est-à-dire qu'il existe c > 0 tel que :

$$\forall x \in H, \quad a(x,x) \ge c||x||^2.$$

On va montrer que, pour toute forme linéaire continue $\phi \in H'$, il existe un unique $u \in H$ tel que :

$$\forall v \in H, \quad a(u, v) = \phi(v).$$

- 1. Montrer que si u existe, il est nécessairement unique.
- 2. a) Montrer qu'il existe une application linéaire et continue $A: H \to H$ telle que, pour tous $u, v \in H$:

$$a(u, v) = \langle A(u), v \rangle.$$

b) Montrer qu'il existe $\gamma > 0$ tel que :

$$\forall u \in H, \quad ||A(u)|| \ge \gamma ||u||.$$

- c) Montrer que l'image de A est fermée dans H.
- d) Montrer que A est surjective et conclure.

Séries de Fourier

Exercice 8 🗖 🎢 : Petites questions de Fourier

- 1. On note \mathcal{S} l'ensemble des suites $(\gamma_n)_{n\in\mathbb{Z}}$ telles que pour tout k $\gamma_n = O(\frac{1}{n^k})$. Montrer que l'application $f \in \mathcal{C}^{\infty}_{2\pi}(\mathbb{R},\mathbb{C}) \mapsto (c_n(f)) \in \mathcal{S}$ définit un isomorphisme d'algèbre.
- 2. Existe-t-il une fonction continue périodique dont les coefficients de Fourier sont $\frac{1}{\sqrt{|n|}}$?
- 3. Soit $a \in]0; \pi[$ et f la fonction 2π -périodique normalisée qui vaut 1 sur]-a; a[et 0 ailleurs. Peut-on la développer en séries de Fourier? Si oui le faire et retrouver la valeur de $\sum \frac{\sin na}{n}$. (voir l'exercice 11 pour savoir si on peut développer en séries de Fourier)
- 4. Montrer que

$$|\sin t| = \frac{8}{\pi} \sum_{1}^{\infty} \frac{\sin^2 nt}{4n^2 - 1}.$$

Exercice 9 VIII: Théorème de Wiener

On va démontrer le théorème de Wiener : si f est une fonction continue qui ne s'annule pas dont la famille des coefficients de Fourier est sommable, alors celle de son inverse aussi.

Soit A l'espace vectoriel des fonctions continues périodiques telles que la famille $(c_n(f))_{n\in\mathbb{Z}}$ soit sommable. On le munit de la norme $||f|| := \sum |c_n(f)|$.

- 1. Montrer que la norme est bien une norme et qu'elle est plus fine que la norme uniforme.
- 2. Montrer que A est une algèbre de Banach isométrique à $l^1(\mathbb{Z})$.
- 3. Montrer que si f est C^1 , alors $f \in A$ et il existe C telle que

$$||f|| \le |c_0(f)| + C\sqrt{\int_0^{2\pi} |f'|^2}.$$

En déduire que

$$||f|| \le ||f||_{\infty} + D||f'||_{\infty}.$$

- 4. Soit $f \in A$ une fonction qui ne s'annule pas, on désire montrer que $\frac{1}{f} \in A$. On peut supposer sans restriction que inf |f| = 1. Montrer alors qu'il existe k tel que si $g = S_k f$, on a $||f g|| \le \frac{1}{3}$, puis que l'on a alors inf $|g| \ge \frac{2}{3}$ et qu'en particulier g est bien inversible dans A.
- 5. En utilisant le fait que A est une algèbre de Banach, vérifier que pour montrer que f est inversible, il suffit de montrer que la suite de terme général $u_n := \|\left(\frac{f-g}{g}\right)^n\|$ converge. Montrer que

$$u_n \le \frac{1}{3^n} \| \frac{1}{q^n} \|.$$

6. Montrer que

$$\|\frac{1}{q^n}\| \leq \|\frac{1}{q^n}\|_{\infty} + nD\|g'\|_{\infty}\|\frac{1}{q^{n+1}}\|_{\infty}$$

et conclure.

Exercice 10 // : divergence des séries de Fourier de fonctions continues

Soit $C_{2\pi}$ l'espace vectoriel des fonctions continues et 2π -périodiques de \mathbb{R} dans \mathbb{R} , muni de la norme uniforme. Pour tout $n \in \mathbb{N}$, soit :

$$S_n: \mathcal{C}_{2\pi} \to \mathcal{C}_{2\pi}$$

$$f \to \left(t \to \sum_{k=-n}^n c_k(f)e^{ikt}\right),$$

où $c_k(f)$ désigne le k-ième coefficient de Fourier de $f: c_k(f) = \frac{1}{2\pi} \int_0^{2\pi} f(t) e^{-ikt} dt$.

1. Soit $t_0 \in \mathbb{R}$. Montrer que :

$$\sup_{f \in \mathcal{C}_{2\pi}} \frac{|S_n(f)(t_0)|}{||f||_{\infty}} \ge \frac{1}{2\pi} \int_0^{2\pi} |D_n(t)| dt,$$

où, pour tous $n \in \mathbb{N}, t \in \mathbb{R}, D_n(t) = \sum_{k=-n}^n e^{ikt}$.

2. \mathscr{M}) En utilisant le théorème de Banach-Steinhaus, montrer qu'il existe un sous-ensemble dense D de $\mathcal{C}_{2\pi}$ tel que, pour toute $f \in D$, la série de Fourier de f ne converge pas vers $f(t_0)$ en t_0 .

Exercice 11 // : théorème de Dirichlet

Soit f une fonction 2π -périodique et \mathcal{C}^1 par morceaux sur \mathbb{R} . Pour tout x réel, on note $f(x^-)$ et $f(x^+)$ les limites à gauche et à droite de f(x), quand t tend vers x. Notons

$$(S_n f)(x) = \sum_{k=-n}^{n} c_k(f)e^{ikx}$$

les séries de Fourier partielles de f. Le but de l'exercice est de montrer que pour tout x, $(S_n f)(x) \to \frac{1}{2}(f(x^-) + f(x^+)) =: \tilde{f}(x)$, quand n tend vers l'infini.

1. Montrer que $(S_n f)(x) = \frac{1}{2\pi} \int_0^{2\pi} f(x-t) D_n(t) dt$, où

$$D_n(t) := \sum_{k=-n}^n e^{ikt} = \frac{\sin(n+\frac{1}{2})t}{\sin\frac{t}{2}}$$

est le noyau de Dirichlet.

2. En considérant le changement de variable t'=-t, montrer que

$$(S_n f)(x) - \tilde{f}(x) = \frac{1}{2\pi} \int_0^{\pi} \left(\sin(n + \frac{1}{2})t \right) \frac{f(x+t) + f(x-t) - f(x^+) - f(x^-)}{\sin \frac{t}{2}} dt.$$

3. Conclure

Exercice 12 // : théorème de Fejér

Soit f une fonction continue et 2π -périodique sur \mathbb{R} . On note

$$(C_n f)(x) := \frac{1}{n+1} \sum_{k=0}^{n} (S_k f)(x)$$

la moyenne de Cesàro des séries de Fourier partielles de f.

1. Montrer que $(C_n f)(x) = \frac{1}{2\pi} \int_0^{2\pi} f(x-t) F_n(t) dt$, où

$$F_n(t) := \frac{1}{n+1} \sum_{k=0}^{n} D_n(t) = \frac{1}{n+1} \frac{1 - \cos(n+1)t}{1 - \cos t}$$

est le noyau de Fejér.

2. Montrer que F_n est positif, de valeur moyenne 1 et que pour tout $\delta>0$,

$$\int_{[-\pi,\pi]\setminus[-\delta,\delta]} F_n(t)dt$$

tend vers 0.

3. Montrer que $C_n f$ converge uniformément vers f sur $[0, 2\pi]$.