IL2239 - Course Project Design of a SAR ADC

J. Altayó B. Sunedahl

March of 2019

Outline

Comparator Project Description Digital-to-Analog Converter Roles and Responsibilities Layout Design Flow Comparator System-level Design Digital-to-Analog Converter Problem Statement Simulations **Proposed Solution** Sinusoidal Stimulus Behavioral Modeling Ramp Stimulus Comparator Spectrum Digital-to-Analog Converter Figures of Merit Successive Approximation Register Conclusions Transistor-level Design References

Project Description

Design of a single-ended SAR ADC with the following specifications.

- Comparator clock frequency: 100 MHz
- ► SNDR > 28 dB and SFDR > 37 dB
- ► Technology: 150 nm CMOS
- Supply voltage: 1.8 V
- ▶ Input amplitude (V_{in}) : $0.5 V_{pp}$
- ▶ Input common-mode voltage: $0 \le V_{\rm in,cm} \le 1.8 \text{ V}$
- ▶ Voltage reference: $V_{\rm ref} \le 1.8 \text{ V}$
- ightharpoonup Switching enegy below 30 pJ for $V_{
 m in}=300$ mV

Roles and Responsibilities

Jordi:

- Comparator
- Successive Approximation Register
- Comparator Layout

Björn:

- Digital-to-Analog Converter
- ► Sample & Hold
- DAC Layout

Design Flow

We used a top-down design approach:

- 1. System-level design
- 2. Behavioral modeling using Verilog-AMS
- 3. Transistor level modeling
- 4. Layout

Design Flow

We used a top-down design approach:

- 1. System-level design
- 2. Behavioral modeling using Verilog-AMS
- 3. Transistor level modeling
- 4. Layout

Co-simulations where also used to test individual blocks functionality

Outline

System-level Design Problem Statement **Proposed Solution** Behavioral Modeling Comparator Digital-to-Analog Converter Successive Approximation Register

Problem Statement

The basic block diagram of a SAR ADC looks as follows

Proposed Solution

The following topology was used:

- ► Comparator: Strong ARM Latch
 - Reduced power consumption
 - Fast operation
 - Small area

Proposed Solution

The following topology was used:

- ► Comparator: Strong ARM Latch
 - Reduced power consumption
 - Fast operation
 - Small area
- ► DAC: Charge redistribution weighted capacitors
 - Suitable for CMOS technology
 - Integrates the Sample & Hold

Proposed Solution

The following topology was used:

- Comparator: Strong ARM Latch
 - Reduced power consumption
 - Fast operation
 - Small area
- ► DAC: Charge redistribution weighted capacitors
 - Suitable for CMOS technology
 - Integrates the Sample & Hold
- SAR: Successive Approximation Register
 - Integrates controls for Sample & Hold
 - Implemented as 7 state FSM
 - Verilog model

Behavioral Modeling I

Comparator modeling:

```
always @(posedge CLK) begin
1
        #5
2
        outn = 0; outp = 0;
3
    end
    always @(negedge CLK) begin
5
      if(V(inp) > V(inn)) begin
6
        #50
        outp = 1; outn = 0;
8
      end else begin
9
        #50
10
        outp = 0; outn = 1;
11
12
      end
13
    end
```

Some delay was added to the behavioral model.

Behavioral Modeling II

Digital-to-Analog Converter modeling:

```
analog begin
always @(posedge CLK) begin
for(i=0, i < 5, i++) begin
result += input[5-i] * Vref/(1<<i);
end
V(out) <+ transition(result, 1ns, 0.1ns, 0.1ns)
end
end
end</pre>
```

Behavioral Modeling III

Assume $V_{\mathrm{in}} = 0.7\,\mathrm{V},~V_{\mathrm{ref}} = 1\,\mathrm{V}$ and 4 bits

Behavioral Modeling III

Assume $V_{
m in} =$ 0.7 V, $V_{
m ref} =$ 1 V and 4 bits

1.
$$V_{\rm in} \stackrel{?}{\geq} \frac{V_{\rm ref}}{2}$$
 \checkmark

Behavioral Modeling III

Assume $V_{
m in}=$ 0.7 V, $V_{
m ref}=$ 1 V and 4 bits

1.
$$V_{\rm in} \stackrel{?}{\geq} \frac{V_{\rm ref}}{2} \checkmark$$

2.
$$V_{\rm in} \stackrel{?}{\geq} \frac{3V_{\rm ref}}{4} X$$

Behavioral Modeling III

Assume $V_{\mathrm{in}} = 0.7\,\mathrm{V},~V_{\mathrm{ref}} = 1\,\mathrm{V}$ and 4 bits

1.
$$V_{\rm in} \stackrel{?}{\geq} \frac{V_{\rm ref}}{2} \checkmark$$

2.
$$V_{\rm in} \stackrel{?}{\geq} \frac{3V_{\rm ref}}{4} X$$

3.
$$V_{\rm in} \stackrel{?}{\geq} \frac{5V_{\rm ref}}{8} \checkmark$$

Behavioral Modeling III

Assume $V_{\mathrm{in}} = 0.7\,\mathrm{V},~V_{\mathrm{ref}} = 1\,\mathrm{V}$ and 4 bits

1.
$$V_{\rm in} \stackrel{?}{\geq} \frac{V_{\rm ref}}{2}$$
 \checkmark

2.
$$V_{\rm in} \stackrel{?}{\geq} \frac{3V_{\rm ref}}{4} \ X$$

3.
$$V_{\rm in} \stackrel{?}{\geq} \frac{5V_{\rm ref}}{8} \checkmark$$

4.
$$V_{\rm in} \stackrel{?}{\geq} \frac{11V_{\rm ref}}{16}$$
 \checkmark

Behavioral Modeling III

SAR algorithm: binary search

Assume $V_{
m in}=$ 0.7 V, $V_{
m ref}=$ 1 V and 4 bits

1.
$$V_{\rm in} \stackrel{?}{\geq} \frac{V_{\rm ref}}{2}$$
 \checkmark

2.
$$V_{\rm in} \stackrel{?}{\geq} \frac{3V_{\rm ref}}{4} \ X$$

3.
$$V_{\rm in} \stackrel{?}{\geq} \frac{5V_{\rm ref}}{8} \checkmark$$

4.
$$V_{\rm in} \stackrel{?}{\geq} \frac{11V_{\rm ref}}{16} \checkmark$$

Out = 0b1011
$$(\frac{11V_{\mathrm{ref}}}{16})$$

Outline

Project Description	Comparator
Roles and Responsibilities	Digital-to-Analog Converter
Design Flow	Layout Comparator
System-level Design Problem Statement Proposed Solution Behavioral Modeling Comparator Digital-to-Analog Converter Successive Approximation Register	Digital-to-Analog Converter Simulations Sinusoidal Stimulus Ramp Stimulus Spectrum Figures of Merit Conclusions
Transistor-level Design	References

Comparator

Strong ARM Latch topology

Digital-to-Analog Converter I

Digital-to-Analog Converter II

Sample phase:

Digital-to-Analog Converter II

Cycling phase:

Digital-to-Analog Converter II

Equivalent circuit:

Digital-to-Analog Converter II

Cycling phase:

Digital-to-Analog Converter II

Equivalent circuit:

Outline

Layout Comparator Digital-to-Analog Converter

Comparator

 Common centroid for the differential input pair

Comparator

 Common centroid for the differential input pair

 Guard ring around sensitive high impedance nodes

Digital-to-Analog Converter I

To ensure good matching we used:

Common centroid technique

Digital-to-Analog Converter I

To ensure good matching we used:

- Common centroid technique
- ► Base unit of half the minmum capacitance

Digital-to-Analog Converter I

To ensure good matching we used:

- Common centroid technique
- Base unit of half the minmum capacitance
- Dummy capacitors at the edges

Digital-to-Analog Converter II

Outline

Project Description Roles and Responsibilities Design Flow	Comparator Digital-to-Analog Converter Layout
System-level Design	Comparator
Problem Statement	Digital-to-Analog Converter Simulations
Proposed Solution	Sinusoidal Stimulus
Behavioral Modeling	Ramp Stimulus
Comparator Digital-to-Analog Converter	Spectrum
Successive Approximation	Figures of Merit
Register	Conclusions
Transistor-level Design	References

Simulations I

Sinusoidal Stimulus

Simulations II

Ramp Stimulus

Simulations III

Spectrum

Input frequency: $1.3\,\mathrm{MHz}$

Figures of Merit

Sample rate	14.29 MHz
ENOB	4.78
SNDR	30.55 dB
SFDR	38.16 dB
THD	1.44%
Energy per cycle	4.02 pJ

We were able to

► Work on a state-of-the-art ADC topology

We were able to

- ► Work on a state-of-the-art ADC topology
- ► Learn behavioral modeling techniques

We were able to

- ► Work on a state-of-the-art ADC topology
- Learn behavioral modeling techniques
- ► Hands-on experience with charge redistribution circuits

We were able to

- Work on a state-of-the-art ADC topology
- Learn behavioral modeling techniques
- ► Hands-on experience with charge redistribution circuits
- Gained knowledge about mixed-signal design and simulations

References

- T.C. Carusone, D. Johns, and K. Martin, *Analog integrated circuit design*, Analog Integrated Circuit Design, Wiley, 2011.
- S. Rodriguez, J. Katic, N. Ivanisevic, P. Chaourani, M. Wakar, and T. Chen, *Course tutorials*, 2011-2018.
- A. Rusu, II2238 & IL2239 Lecture Slides, 2011-2018.
- C. Saint and J. Saint, *Ic mask design: Essential layout techniques*, McGraw-Hill professional engineering, McGraw-Hill, 2002.