UID: 119491485 Homework 5

UR10e ROBOTIC MANIPULATOR:

Figure 1 UR10 MANIPULATOR

UPDATED CIRCULAR TRAJECTORY EQUATIONS

```
x_dot = -sp.N(100*sp.pi/100*sp.sin(sp.N((sp.pi*i)/100)+sp.pi/2))
y_dot = 0.0
z_dot = sp.N(100*sp.pi/100*sp.cos(sp.N((sp.pi*i)/100)+sp.pi/2))
```

```
THE UPDATED CIRCULAR TRAJECTORY EQUATIONS:

[-3.14159265358979·cos(0.0314159265358979·θ)]

0

-3.14159265358979·sin(0.0314159265358979·θ)]

0

0

0
```

These is the path the end effector must follow to trace a circle in 200 seconds.

EQUATION OF MOTION

Using Euler-Lagrange equations for dynamics the equations of motion for a manipulator can be proved as:

UID: 119491485 Homework 5

As the robot is assumed to be quasi-static the joint acceleration (\ddot{q}) and joint velocity (\dot{q}) can be taken as zero.

Now, the above equation can be written as:

$$\tau = g(q) - J^{T}(q)F$$

Where,

au is a 6×1 vector that represents joint torques that we are calculating.

g(q) is gravity matrix that is given by $g(q)=\frac{\partial P}{\partial q_k}(P=>$ Total Potential Energy, and q_k is the joint variable.

F is the external force acting on the manipulator.

g(q) GRAVITY MATRIX

$$g(q) = \frac{\partial P}{\partial q_k}$$

 ${\it P}$, total potential energy of the given UR10 manipulator is as follows:

UID: 119491485 Homework 5

```
11 = 128
 a2 = 612.7
  a3 = 571.6
  14 = 163.9
  15 = 115.7
 16 = 192.2
   # Mass of the LINKS
   m1 = 7.1
   m2 = 12.7
   m3 = 4.27
   m4 = 2
   m5 = 2
   m6 = 0.365
   # Height of Centre of Mass of all the LINKS
   h1 = 11/2
   h2 = 11 + (a2*ssin(theta2-sp.pi/2))/2
   h3 = 11 + (a2*ssin(theta2-sp.pi/2)) + (a3*ssin(theta2-sp.pi/2+theta3))/2
   h4 = 11 + (a2*ssin(theta2-sp.pi/2)) + (a3*ssin(theta2-sp.pi/2+theta3))
   h5 = 11 + (a2*ssin(theta2-sp.pi/2)) + (a3*ssin(theta2-sp.pi/2+theta3)) + (15*ssin(theta2-sp.pi/2+theta3+theta4+sp.pi/2))/2 + (a3*ssin(theta2-sp.pi/2+theta3)) + (a3*ssin(theta2-sp.pi/2+theta3+theta4+sp.pi/2)) + (a3*ssin(theta2-sp.pi/2+theta3)) + (a3*ssin(theta2-sp.pi/2+theta3+theta4+sp.pi/2)) + (a3*ssin(theta2-sp.pi/2+theta3)) +
   \label{eq:h6} \begin{tabular}{ll} $h6 = 11 + (a2*ssin(theta2-sp.pi/2)) + (a3*ssin(theta2-sp.pi/2+theta3)) + (15*ssin(theta2-sp.pi/2+theta3+theta4+sp.pi/2)) \\ \end{tabular}
   #Total Potential Energy
   p = 9.8*((m1*h1)+(m2*h2)+(m3*h3)+(m4*h4)+(m5*h5)+(m6*h6))
```

LENGTHS-

I used the lengths of the links as shown above using the figure 1.

MASSES-

I used the mass of links as shown above these were provided in the official universal robots website (https://www.universal-robots.com/articles/ur/application-installation/dh-parameters-for-calculations-of-kinematics-and-dynamics/) as such:

UR10							
Kinematics	theta [rad]	a [m]	d [m]	alpha [rad]	Dynamics	Mass [kg]	Center of Mass [m]
Joint 1	0	0	0.1273	π/2	Link 1	7.1	[0.021, 0.000, 0.027]
Joint 2	0	-0.612	0	0	Link 2	12.7	[0.38, 0.000, 0.158]
Joint 3	0	-0.5723	0	0	Link 3	4.27	[0.24, 0.000, 0.068]
Joint 4	0	0	0.163941	π/2	Link 4	2	[0.000, 0.007, 0.018]
Joint 5	0	0	0.1157	-π/2	Link 5	2	[0.000, 0.007, 0.018]
Joint 6	0	0	0.0922	0	Link 6	0.365	[0, 0, -0.026]

The total potential energy equation was found to be:

```
TOTAL POTENTIAL ENERGY EQUATION:
P = 1547.7189*sin(theta2 + theta3 + theta4) - 89976.8331*cos(theta2) - 36410.92*cos(theta2 + theta3) + 31215.744
```

g(q) the gravity matrix can be found in this way:

Homework 5

$$g(q) = \left[\frac{\partial P}{\partial q_1} \frac{\partial P}{\partial q_2} \frac{\partial P}{\partial q_3} \frac{\partial P}{\partial q_4} \frac{\partial P}{\partial q_5} \frac{\partial P}{\partial q_6} \right]^T$$

The generic gravity matrix for the UR10 robot was found to be:

```
THE GRAVITY MATRIX: \theta 89976.8331 \cdot \sin(\theta_2) + 36410.92 \cdot \sin(\theta_2 + \theta_3) + 1547.7189 \cdot \cos(\theta_2 + \theta_3 + \theta_4) 36410.92 \cdot \sin(\theta_2 + \theta_3) + 1547.7189 \cdot \cos(\theta_2 + \theta_3 + \theta_4) 1547.7189 \cdot \cos(\theta_2 + \theta_3 + \theta_4) \theta
```

F External Force

An external force of 5N is being applied on the end effector in the negative y direction while the manipulator is tracing a circle. Therefore, the force matrix can be taken as:

JOINT TORQUES

Now, using this equation, $\tau = g(q) - J^T(q)F$ we can find out τ which is a 6×1 vector with its entries as joint torques.

UID: 119491485 Homework 5

The joint torques that are required to draw the circle in 200 seconds were plotted.

Circle Obtained:

