기업 성공 확률 예측 모델 개발 리포트

"실제 기업 투자 판단에 활용 가능한 확률 예측 모델 개발"

프로젝트 개요

항목 내용

프로젝트 명기업 성공 확률 예측 모델

플랫폼	Dacon 해커톤: 기업 성공 확률 예측 AI 경진대회
모델 목적	기업 특성과 투자 데이터를 바탕으로 0~1의 성공확률 예측
사용 모델	LightGBM + XGBoost + CatBoost 앙상블
최종 점수	MAE: 0.21657 / 상위 약 8% 성적

핵심 전략 요약

전략	설명	기대 효과
1. 정교한 전처리	결측/이상치 처리, 기업가치 문자열 변환, 범 주형 인코딩 등 적용	학습 안정성 확보
2. 도메인 기반 파생 변 수 생성	업력, ROI, 투자/직원, 매출/고객 등 실제 경영 지표로부터 파생 설계	설명력 강화
3. 모델 앙상블	LGBM 0.4 + XGB 0.3 + CatBoost 0.3 비중 앙 상블	일반화 성능 개선
4. StratifiedKFold 적용	qcut 기반 구간 분리로 레이블 분포 보존	데이터 편향 감소
5. Feature Importance 선택	LGBM 기준 Top 25개 피처만 사용	과적합 방지 및 경량화

기술 스택

- Python 3.10
- Pandas / NumPy / scikit-learn
- LightGBM / XGBoost / CatBoost
- Stratified K-Fold Validation
- Matplotlib / Seaborn (분석 시각화)

단계별 개발 내역

- ◇ 1단계: 데이터 정제 및 전처리
 - 기업가치(백억원): "2500-3500" → 평균치 변환
 - 결측치: 평균/중앙값 대체
 - 이상치: 상위 1% 클리핑 적용
 - 범주형 변수: LabelEncoder 처리
- ◇ 2단계: 변수 파생 및 피처 엔지니어링
 - 생존연수: 2025 설립연도
 - ROI: 매출 / 투자
 - 투자_직원비: 투자 / 직원 수
 - 가치_투자비: 기업가치 / 투자
 - 매출 고객비: 매출 / 고객
 - 도메인 지식을 기반으로 한 실제 지표 활용

◇ 3단계: 모델링 및 앙상블

- 단일 모델 실험 (LGBM, XGB 등) \rightarrow 성능 한계 존재
- 예측 분산을 줄이기 위한 Soft 앙상블 적용
- 5-Fold Cross Validation 사용

```
Python 복사 편집

val_pred = (
    lgb_model.predict(X_val) * 0.4 +
    xgb_model.predict(X_val) * 0.3 +
    cat_model.predict(X_val) * 0.3
)
```

성능 결과

구분 	MAE (예측 정확도)
최종 검증 점수	0.21657
공식 제출 점수	0.21667
참여 등수	상위 약 8%

기술적으로 배운 점

항목	내용
모델별 장단점 이해	LGBM → 빠르고 안정적, XGB → 튜닝 민감, CatBoost → 범주형 강점
파생 변수 중요성 체감	단순 수치보다 비율, 상호작용 변수들이 성능에 큰 영향
앙상블 효과	분산 구조가 다른 모델 조합이 성능 안정화에 기여
검증 방법론 중요성	단순 train_test_split보다 StratifiedKFold가 훨씬 견고

개선 여지 및 향후 계획

항목	설명
Meta Stacking 실험	예측값을 메타 모델 입력으로 활용하는 고급 앙상블 시도 예정
Optuna 튜닝	자동 파라미터 탐색 도입 필요성 확인
시계열 요소 반영	설립연도나 업력에 따른 흐름 분석 및 적용
외부 데이터 연계	실제 재무제표/산업분류 등 확장 적용 가능성 고려

마무리

이번 **Dacon 해커톤 프로젝트**를 통해 실제 기업 투자 의사결정에 사용할 수 있는 정량적 판단 기반을 마련하는 모델을 설계하였으며,

전체 ML 파이프라인을 구성하는 과정에서 모델링 역량, 피처 엔지니어링, 검증 전략 설계 등의 실무 능력을 크게 향상시킬 수 있었습니다.