CS 189 Spring 2022

Introduction to Machine Learning Jonathan Shewchuk

Exam Prep 1

This exam-prep discussion section covers Bayesian decision theory and maximum likelihood estimation. In order, the questions were taken from the Spring offerings in 2016, 2016, 2017, 2019, 2020, 2019, and 2017.

1 Multiple Choice

\bigcirc the class distributions $P(X Y)$ do not overlap.	\bigcirc	the loss function	L(z,y)	is symmetrical.

 $\bigcirc \ \ \, \text{the Bayes decision rule perfectly classifies the} \\ \bigcirc \ \ \, \text{the training data is linearly separable.} \\$

(g) [3 pts] Let L(z, y) be a loss function (where y is the true class and z is the predicted class). Which of the following loss functions will always lead to the same Bayes decision rule as L?

$$\bigcirc L_1(z,y) = aL(z,y), a > 0$$

(f) [3 pts] The Bayes risk for a decision problem is zero when

$$\bigcap L_3(z,y) = L(z,y) + b, b > 0$$

$$\bigcirc L_2(z,y) = aL(z,y), a < 0$$

$$\bigcirc L_4(z,y) = L(z,y) + b, b < 0$$

(t) [3 pts] Which of the following statements about maximum likelihood estimation are true?

 \bigcirc MLE, applied to estimate the mean parameter μ of a normal distribution $\mathcal{N}(\mu, \Sigma)$ with a known covariance matrix Σ , returns the mean of the sample points

 \bigcirc MLE, applied to estimate the covariance parameter Σ of a normal distribution $\mathcal{N}(\mu, \Sigma)$, returns $\hat{\Sigma} = \frac{1}{n}X^TX$, where X is the design matrix

 \bigcirc For a sample drawn from a normal distribution, the likelihood $\mathcal{L}(\mu, \sigma; X_1, \dots, X_n)$ is equal to the probability of drawing exactly the points X_1, \dots, X_n (in that order) when you draw n random points from $\mathcal{N}(\mu, \sigma)$

 Maximizing the log likelihood is equivalent to maximizing the likelihood

(s) [3 pts] Suppose you have a sample in which each point has d features and comes from class C or class D. The class conditional distributions are $(X_i|y_i=C) \sim N(\mu_C, \sigma_C^2)$ and $(X_i|y_i=D) \sim N(\mu_D, \sigma_D^2)$ for unknown values $\mu_C, \mu_D \in \mathbb{R}^d$ and $\sigma_C^2, \sigma_D^2 \in \mathbb{R}$. The class priors are π_C and π_D . We use 0-1 loss.

 \bigcirc If $\pi_C = \pi_D$ and $\sigma_C = \sigma_D$, then the Bayes decision rule assigns a test point z to the class whose mean is closest to z.

 \bigcirc If $\sigma_C = \sigma_D$, then the Bayes decision boundary is always linear.

O If $\pi_C = \pi_D$, then the Bayes decision rule is $r^*(z) = \operatorname{argmin}_{A \in \{C,D\}} \left(|z - \mu_A|^2 / (2\sigma_A^2) + d \ln \sigma_A \right)$

 \bigcirc If $\sigma_C = \sigma_D$, then QDA will always produce a linear decision boundary when you fit it to your sample.

(j) [4 pts] The following chart depicts the class-conditional distributions P(X|Y) for a classification problem with three classes, A, B, and C. Classes A and B are normally distributed over the domain $(-\infty, \infty)$; Class C is defined only over the finite domain depicted below. All three classes have prior probabilities π_A , π_B , π_C strictly greater than zero; the chart does not show the influence of these priors. We use the 0-1 loss function.

- O A: The Bayes risk is the area of the shaded region in the chart (including the area not depicted off the sides of
- \bigcirc B: Depending on the priors, it is possible that the Bayes rule $r^*(x)$ will classify all inputs as class B
- \bigcirc C: Depending on the priors, it is possible that the Bayes rule $r^*(x)$ will classify all inputs as class C
- O: Depending on the priors, it is possible that the Bayes risk is zero

Free Response

Q3. [10 pts] Quadratic Discriminant Analysis

(a) [4 pts] Consider 12 labeled data points sampled from three distinct classes:

Class 0:
$$\begin{bmatrix} 0 \\ 2 \end{bmatrix}$$
, $\begin{bmatrix} -2 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 5 \\ 3 \end{bmatrix}$, $\begin{bmatrix} -3 \\ -5 \end{bmatrix}$

Class 1:
$$\begin{bmatrix} \sqrt{2} \\ \sqrt{2} \end{bmatrix}$$
, $\begin{bmatrix} -\sqrt{2} \\ \sqrt{2} \end{bmatrix}$, $\begin{bmatrix} 4\sqrt{2} \\ -\sqrt{2} \end{bmatrix}$, $\begin{bmatrix} -4\sqrt{2} \\ -\sqrt{2} \end{bmatrix}$ Class 2: $\begin{bmatrix} 3 \\ 5 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 8 \\ 6 \end{bmatrix}$, $\begin{bmatrix} 0 \\ -2 \end{bmatrix}$

Class 2:
$$\begin{bmatrix} 3 \\ 5 \end{bmatrix}$$
, $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 8 \\ 6 \end{bmatrix}$, $\begin{bmatrix} 0 \\ -2 \end{bmatrix}$

For each class $C \in \{0, 1, 2\}$, compute the class sample mean μ_C , the class sample covariance matrix Σ_C , and the estimate of the prior probability π_C that a point belongs to class C. (Hint: $\mu_1 = \mu_0$ and $\Sigma_2 = \Sigma_0$.)

(b) [4 pts] Sketch one or more isocontours of the QDA-produced normal distribution or quadratic discriminant function (they each have the same contours) for each class. The isovalues are not important; the important aspects are the centers, axis directions, and relative axis lengths of the isocontours. Clearly label the centers of the isocontours and to which class they correspond.

(c) [2 pts] Suppose that we apply LDA to classify the data given in part (a). Why will this give a poor decision boundary?

Q3. [10 pts] Maximum Likelihood Estimation for Reliability Testing

Suppose we are reliability testing n units taken randomly from a population of identical appliances. We want to estimate the mean failure time of the population. We assume the failure times come from an exponential distribution with parameter $\lambda > 0$, whose probability density function is $f(x) = \lambda e^{-\lambda x}$ (on the domain $x \ge 0$) and whose cumulative distribution function is $F(x) = \int_0^x f(x) \, \mathrm{d}x = 1 - e^{-\lambda x}$.

(a) [6 pts] In an ideal (but impractical) scenario, we run the units until they all fail. The failure times are t_1, t_2, \ldots, t_n . Formulate the likelihood function $\mathcal{L}(\lambda; t_1, \ldots, t_n)$ for our data. Then find the maximum likelihood estimate $\hat{\lambda}$ for the distribution's parameter.

(b)	[4 pts] In a more realistic scenario, we run the units for a fixed time T . We observe r unit failures, where $0 \le r \le n$, and there are $n-r$ units that survive the entire time T without failing. The failure times are t_1, t_2, \ldots, t_r .
	Formulate the likelihood function $\mathcal{L}(\lambda; n, r, t_1, \dots, t_r)$ for our data. Then find the maximum likelihood estimate $\hat{\lambda}$ for the distribution's parameter.
	<i>Hint 1:</i> What is the probability that a unit will not fail during time T ? <i>Hint 2:</i> It is okay to define $\mathcal{L}(\lambda)$ in a way that includes contributions (densities and probability masses) that are not commensurate with each other. Then the constant of proportionality of $\mathcal{L}(\lambda)$ is meaningless, but that constant is irrelevant for finding the best-fit parameter $\hat{\lambda}$. <i>Hint 3:</i> If you're confused, for part marks write down the likelihood that r units fail and $n-r$ units survive; then try the full problem. <i>Hint 4:</i> If you do it right, $\hat{\lambda}$ will be the number of observed failures divided by the sum of unit test times.