第四章 二元关系和函数

4.1 集合的笛卡尔积与二元关系

一、集合的笛卡儿积

1、有序对(序偶),记作 $\langle x,y\rangle$ 。

特点: (1)
$$x \neq y$$
时, $\langle x, y \rangle \neq \langle y, x \rangle$,
(2) $\langle x, y \rangle = \langle u, v \rangle \Leftrightarrow x = u, y = v$ 。
有序 n 元组 $(n \geq 3)$,记 $\langle x_1, x_2, \dots x_n \rangle$ 。

2、笛卡儿积

定义:设A、B为两集合,用A中元素为第一元素,B中元素为第二元素,构成有序对,所有这样的有序对构成的集合称为A和B的笛卡尔积,记作 $A \times B$,即

$$A \times B = \{ \langle x, y \rangle \mid x \in A \land y \in B \}$$

例1、
$$A = \{0,1\}, B = \{a,b,c\}$$

求 $A \times B, B \times A, A \times A, A \times \phi, \phi \times B_{\circ}$
解: $A \times B = \{\langle 0, a \rangle, \langle 0, b \rangle, \langle 0, c \rangle, \langle 1, a \rangle, \langle 1, b \rangle, \langle 1, c \rangle\}$
 $B \times A = \{\langle a, 0 \rangle, \langle a, 1 \rangle, \langle b, 0 \rangle, \langle b, 1 \rangle, \langle c, 0 \rangle, \langle c, 1 \rangle\}$
 $A \times A = \{\langle 0, 0 \rangle, \langle 0, 1 \rangle, \langle 1, 0 \rangle, \langle 1, 1 \rangle\}$
 $A \times \phi = \phi$
 $\phi \times B = \phi$

例2、设
$$A = \{a,b\}$$
,求 $A \times P(A)$ 。

解:
$$P(A) = \{\phi, \{a\}, \{b\}, A\}$$

$$A \times P(A) = \left\{ \langle a, \phi \rangle, \langle a, \{a\} \rangle, \langle a, \{b\} \rangle, \langle a, A \rangle, \langle b, \phi \rangle, \langle b, \{a\} \rangle, \langle b, \{b\} \rangle, \langle b, A \rangle \right\}$$

注意: (1) 若 A 是 m元集, B 是 n 元集, 则 $A \times B$ 为 mn 元集。

- (2) 笛卡儿积是集合,有关集合的运算都适合。
- (3) 一般, $A \times B \neq B \times A$ 。

3、笛卡儿积运算对U或∩满足分配律

(1)
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

(2)
$$(B \cup C) \times A = (B \times A) \cup (C \times A)$$

(3)
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

(4)
$$(B \cap C) \times A = (B \times A) \cap (C \times A)$$

例3、证明:
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

证明: 对任意
$$\langle x, y \rangle$$
, $\langle x, y \rangle \in A \times (B \cap C)$

$$\Leftrightarrow x \in A \land y \in (B \cap C)$$

$$\Leftrightarrow x \in A \land y \in B \land y \in C$$

$$\Leftrightarrow$$
 $(x \in A \land y \in B) \land (x \in A \land y \in C)$

$$\Leftrightarrow \langle x, y \rangle \in (A \times B) \land \langle x, y \rangle \in (A \times C)$$

$$\Leftrightarrow \langle x, y \rangle \in (A \times B) \cap (A \times C)$$

故
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$
。

4、n阶 (n≥3) 笛卡儿积

$$A_1 \times A_2 \times \cdots \times A_n =$$

$$\left\{ \left\langle x_1, x_2, \cdots, x_n \right\rangle | x_1 \in A_1 \wedge x_2 \in A_2 \wedge \cdots \wedge x_n \in A_n \right\}$$
特别,当 $A_1 = A_2 = \cdots = A_n = A$ 时,记为 A^n 。
$$A = \left\{ \left\langle a, a \right\rangle, \left\langle a, b \right\rangle, \left\langle b, a \right\rangle, \left\langle b, b \right\rangle \right\}$$

二、二元关系。

1、定义:

(1) 若集合R为空集或它的元素都是有序对,则称R为二元关系。 若 $\langle x,y \rangle \in R$,则记作 xRy,

否则,记作 x x y。

(2) $A \times B$ 的任何一个子集都称作从A到B的一个二元关系。 特别地,当A = B时,称作 A上的二元关系。

例、 $A = \{a,b\}$, $B = \{0,1,2\}$ 设 $R_1 = \{\langle a,0\rangle,\langle b,0\rangle,\langle b,2\rangle\}$ $R_2 = \phi$ $R_3 = A \times B$ $R_4 = \{\langle b,1\rangle\}$ 都是从A到B的关系。 $R_5 = \{\langle a,b\rangle,\langle b,b\rangle\}$ 是A上的一个二元关系。

例1、

设A表示学生的集合,B是课程的集合。另R是由有序对 $\langle a,b \rangle$ 构成的关系,其中a是选修课程b的学生。

例如,如果学生董鸿声和朱帅选修了CS518课程,那么有序对〈董鸿声,CS518〉和〈朱帅,CS518〉就属于R,如果董鸿声也选修了CS610,那么有序对〈董鸿声,CS610〉也属于R,但是如果朱帅没有选修CS610,那么有序对〈朱帅,CS610〉就不属于R。

如果一个学生目前没有选修任何课程,那么R中就没有以他为第一元素的任何有序对,

如果一门课程目前没有开设,那么R中就没有以这门课为第二元素的任何有序对。

2、特殊的关系。

对任意集合A,

空关系 ϕ ,

全域关系
$$E_A = \{\langle x, y \rangle \mid x \in A \land y \in A\} = A \times A,$$

恒等关系
$$I_A = \{\langle x, x \rangle \mid x \in A\}$$
。

- 3、常用关系。
 - (1) 设 $A \subseteq R$,A 上小于等于关系: $L_A = \{\langle x, y \rangle | x, y \in A \land x \leq y \}$
 - (2) 设 $B \subseteq Z^+$, B上整除关系: $D_B = \{\langle x, y \rangle | x, y \in B \land x \mid y \}$
 - (3) 幂集P(A)上的包含关系R: $R = \{\langle x, y \rangle | x, y \in P(A) \land x \subseteq y \}$

例2、
$$A = \{2,3,6,8\}$$
, 求 L_A , D_A 。

解:
$$L_A = \{\langle 2, 2 \rangle, \langle 2, 3 \rangle, \langle 2, 6 \rangle, \langle 2, 8 \rangle, \langle 3, 3 \rangle, \langle 3, 6 \rangle, \langle 3, 8 \rangle, \langle 6, 6 \rangle, \langle 6, 8 \rangle, \langle 8, 8 \rangle\}$$

$$D_{A} = \{\langle 2, 2 \rangle, \langle 2, 6 \rangle, \langle 2, 8 \rangle, \langle 3, 3 \rangle, \langle 3, 6 \rangle, \langle 6, 6 \rangle, \langle 8, 8 \rangle\}$$

例3、
$$A = \{a,b\}$$
,求 $\rho(A)$ 上的包含关系 R 。
解: $\rho(A) = \{\phi, \{a\}, \{b\}, A\}$,
 $R = \{\langle \phi, \phi \rangle, \langle \phi, \{a\} \rangle, \langle \phi, \{b\} \rangle,$
 $\langle \phi, A \rangle, \langle \{a\}, \{a\} \rangle, \langle \{a\}, A \rangle,$
 $\langle \{b\}, \{b\} \rangle, \langle \{b\}, A \rangle, \langle A, A \rangle\}$

4、A上二元关系的表示法。

集合表示法

有三种

〈 矩阵表示法

图形表示法

一般: 设 $A = \{x_1, x_2, \dots, x_n\}$

关系R的关系矩阵
$$M_R = (r_{ij})_{n \times n}$$
, 其中 $r_{ij} = \begin{cases} 1 & x_i R x_j \\ 0 & x_i R x_j \end{cases}$

例4、已知
$$A = \{1,2,3,4\}$$
 , A 上关系
$$R = \{\langle 1,2 \rangle, \langle 1,3 \rangle, \langle 2,1 \rangle, \langle 2,2 \rangle, \langle 3,3 \rangle, \langle 4,3 \rangle\},$$

求R的关系矩阵 M_R 和关系图。 1 2 3 4

解:
$$1\begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$
 关系图: $M_R = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 4 & 0 & 0 & 1 & 0 \end{bmatrix}$

二、关系的五种性质

由下表给出(R为A上的关系)

	自反性	反自反性
定义	$\forall x \in A$, 都有 $\langle x, x \rangle \in R$	$\forall x \in A$, 都有 $\langle x, x \rangle \notin R$
的特点阵	主对角线元素 全为1	主对角线元素 全为0
的特系	图中每个结点 都有自回路	图中每个结点 都无自回路

	对称性	反对称性
定义		若 $\langle x, y \rangle \in R$ 且 $x \neq y$,
<u> </u>	则 $\langle y, x \rangle \in R$	则 $\langle y, x \rangle \notin R$
的特点阵	对称矩阵	若 $r_{ij} = 1$ 且 $i \neq j$,则 $r_{ji} = 0$
的特系	若两结点间有 弧,必是一对 方向相反的弧	若两顶点间有弧, 必是一条有向弧

	传递性
定义	若 $\langle x, y \rangle \in R$ 且 $\langle y, z \rangle \in R$,则 $\langle x, z \rangle \in R$
的特点阵	
的关系	若顶点 x_i 到 x_j 有弧, x_j 到 x_k 有弧,则 x_i 到 x_k 必有弧

例5、 $A = \{1,2,3\}$,A 上关系 R_1, R_2, R_3, R_4

如下所示, 判断 R_1, R_2, R_3, R_4 各有哪些性质。

(1)
$$R_1 = \{\langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 1 \rangle\}$$

解: *R*₁ 既不是自反又不是反自反, 是对称的, 不是传递的。

(2)
$$R_2 = \{\langle 1, 2 \rangle, \langle 2, 3 \rangle, \langle 1, 3 \rangle\}$$

解: R, 是反自反的,反对称的,传递的。

例5、 $A = \{1, 2, 3\}$,A 上关系 R_1, R_2, R_3, R_4

如下所示,判断 R_1, R_2, R_3, R_4 各有哪些性质。

$$(3) R3 = \{\langle 1, 1 \rangle, \langle 3, 3 \rangle\}$$

解: *R*₃ 既不是自反又不是反自反的, 既是对称又是反对称的,传递的。

(4)
$$R_4 = \{\langle 1,1 \rangle, \langle 2,2 \rangle, \langle 3,3 \rangle, \langle 1,2 \rangle, \langle 1,3 \rangle, \langle 2,1 \rangle\}$$

解: *R*₄ 是自反的,既不是对称又不是反对称的,不是传递的。

解: R_1 是反自反,反对称,不是传递的。

1

解: *R*₂是空关系,是反自反, 既是对称又是反对称的,传递的。

解: *R*₃是恒等关系,是自反的, 既是对称又是反对称的,传递的。

解: *R*₄是全域关系,是自反的,对称的, 传递的。

解: *R*₅ 既不是自反也不是反自反的, 反对称的, 传递的。

解: *R*₆是反自反的,既不是对称 又不是反对称,不是传递的。 例7:设 R_1, R_2 为A上的对称关系, 证明 $R_1 \cap R_2$,也是A上的对称关系。 证明:对任意 $\langle x, y \rangle$ $\langle x, y \rangle \in R_1 \cap R_2$ $\Leftrightarrow \langle x, y \rangle \in R_1 \land \langle x, y \rangle \in R_2$ $\Leftrightarrow \langle y, x \rangle \in R_1 \land \langle y, x \rangle \in R_2$ $\Leftrightarrow \langle y, x \rangle \in R_1 \cap R_2$ 所以 $R_1 \cap R_2$,在A上是对称的。

例8:设 R_1, R_2 为A上反对称关系,证明 $R_1 \cup R_2$ 不一定是A上的反对称关系。

反例: $A = \{1, 2\}, R_1 = \{\langle 1, 2 \rangle\}, R_2 = \{\langle 2, 1 \rangle\}$ 都是 A 上的反对称关系,

但 $R_1 \cup R_2 = \{\langle 1, 2 \rangle, \langle 2, 1 \rangle\}$ 不是A上的反对称关系。