April 3 rd (Morday) Zoad map for the 2nd half of the ITOT (Industrial IDT) Data Validation - FIF.T Fast Fourier Transform) (2) - Power Spectrum Technique 3 Hardware Architecture Aspects IDNSelective Electrode Sensors (Many Applications i'n different Industry Sector. Homework Extension Next Monday with Demo Project: Due the 2nd of the Senester. Implementation (PID.

(1/3) 330/0 TZC Sensor FUM Motor Control Pre-processing CKT. Research Put; PRT Tresentation Technology in the Embedded world. Report (Gruideline) thoposal (pre tame), submit to the CANVAS. for Atoronal By Wednesday Monday Next

Demo & Presentation! By the end of

Working Principle of Battery - Electrical E...

Fig. 3

Observation: Use Battery As An Example to Demonstrate Ion Selective Electrode Sensor. See NH3/NH4+

Sewar in Fig. 1.

Characteristic

Typical NH3 Calibration Curve

Note |. We like to have the Linear Characteristics from the Calibration

Chrue, Snuh as [1,10], [10,100], [100, 1000], etc.

Visit Note 2: For the Now Linear Tart, Let's Perform Linearitation — By using Fiece-wise Linear Lines.

Piece-Mise Line !. Piece-Mise Une Z

Next Stop is to formulate Each Line by using Linear Equation.

$$\frac{x^{2}-x^{1}}{A^{2}-A^{1}}=\frac{x-x^{1}}{A^{2}-A^{1}}\qquad \qquad (1)$$

Solve for y=bx+c (see the trevious Notes).

With Simplification By Removing Very Low Concentration Part, we have

Then, Chargethe Cal-Curve
to the Characteristic Curve
e.g. Hovitontal Axis is
voltage for the Design of
interfere.

Why is 4-20 mA Current Used for Industrial Analog Sensors?

ADS1015 12-Bit ADC - 4 Channel with Programmable Gain Amplifier - STEMMA QT / Qwiic

Product ID: 1083

\$9.95

Fig.3

TEXAS INSTRUMENTS Note: Input Voltage

Range

ADS1013 ADS1014 ADS1015

www.ti.com

SBAS473C -MAY 2009-REVISED OCTOBER 2009

ELECTRICAL CHARACTERISTICS

All specifications at -40 °C to +125 °C, VDD = 2.3V, and Full-Scale (FS) = ± 2.048 V, unless otherwise noted.

Typical values are at +25 °C.

TEST CONDITIONS	ADS1013, ADS1014, ADS1015			
	MIN	TYP	MAX	UNIT
$V_{IN} = (AIN_P) - (AIN_N)$		±4.096/PGA)	V
AIN _P or AIN _N to GND	GND		VDD	V
		See Table 2		
$FS = \pm 6.144V^{(1)}$		10		МΩ
FS = ±4.096V ⁽¹⁾ , ±2.048V		6		МΩ
FS = ±1.024V		3		МΩ
FS = ±0.512V, ±0.256V		100		МΩ
	$V_{IN} = (AIN_P) - (AIN_N)$ $AIN_P \text{ or } AIN_N \text{ to } GND$ $FS = \pm 6.144V^{(1)}$ $FS = \pm 4.096V^{(1)}, \pm 2.048V$ $FS = \pm 1.024V$	TEST CONDITIONS MIN $V_{IN} = (AIN_P) - (AIN_N)$ $AIN_P \text{ or } AIN_N \text{ to } GND$ $FS = \pm 6.144V^{(1)}$ $FS = \pm 4.096V^{(1)}, \pm 2.048V$ $FS = \pm 1.024V$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TEST CONDITIONS MIN TYP MAX $V_{IN} = (AIN_P) - (AIN_N)$ $\pm 4.096/PGA$ $\pm 4.096/PGA$ AIN_P or AIN_N to GND GND VDD See Table 2 FS = $\pm 6.144V^{(1)}$ 10 FS = $\pm 4.096V^{(1)}$, $\pm 2.048V$ 6 FS = $\pm 1.024V$ 3

Zo Design Objective: To Design A tre-process unit to make the Analog Sensor Onlynt match to the AVC input dynamic Range.

Note 1. For more generalized Case, Let

Unin = 65 inv, Vmax = 350 mV.

Fig. 1a then, the Upper Bound after

Offset is

Umax - Umin

Step 2. To magnify the Sensor Owtent Range to Match the Entire Dynamic Range of the ADC.

Concentration

Find the Gain for the Magnification

Where 33 UDC is from 1015 ADC for Example.

Example: Hardware Design for the tre-processing.

1-Olecture 10_Op Amp Circuits.pdf -

Note: Wing Dating for the processing.

OpAmp Device As a Buffering Stage

Both Analog and Digital Circuit

Note Z: Backyround

(1) To protect the previous stage's output signal, which is the input to the next stage, while sampling/connecting the signal to its next stage Voren Copp logic circuit. (2) Unit gain non-inverting OpAmp

Ideal OpAmp Properties: (1) very large gain, A>>M; (2) draws very little current, I ~0, e.g., very Smiler high impedance; (3) $V_0 = A(V_+ - V_-)$ is finite range, which leads to $V_+ = V_-$.

For Example 100 MIS ON

Free for Down Load, Originated from Linear https://www.analog.com > Itspice-simulator A Silison Valley Company

LTspice Information Center

EasyEDA

LTspice® is a powerful, fast, and free SPICE simulator software, schematic capture and waveform viewer with enhancements and models for improving the ...

> https://easyeda.com EasyEDA - Online PCB design & circuit simulator

EasyEDA is a free and easy to use circuit design, circuit simulator and in your web browser.

Requirements: To Be Able to Run SPICE Similator

(Requires the Semester End

Presentation)

Notez. Implementation of AX Noit.

P.O.T. 47Kor 470Korsimilar.

ADC -> Target -> PWM-> Controller

Note3. ADC Data Validation

FFT. Power Speatrum.

Note t. Road Map.

IIOT (Analog Sensors. 4~ ZomA)

Preprocessing

OpAmp (Ou-Line Simulation Tool)

Note: 3. Similation of the

Sensor Ordent

as the input to

the pre-process in a

Girant.

