Can Attention Explain the Returns of Cryptocurrencies?

Đorđe Dotlić

Ladislaus von Bortkiewicz Chair of Statistics Humboldt-Universität zu Berlin http://lvb.wiwi.hu-berlin.de

Structure

- 1. Motivation
- 2. Methodology
- 3. Data
- 4. Results
- 5. Conclusion
- 6. Literature

Motivation

Theoretical relevance

Practical relevance

Cryptocurrency market analysis

Methodology

- Granger causality
- Regression
 - Contemporaneous
 - Predictive

Granger causality

A variable X Granger-causes Y if Y can be better predicted using the histories of both X and Y than it can using the history of Y alone.

(Sewell, 2001)

$$E(Y|Y_{t-k},X_{t-k})\neq E(Y|Y_{t-k})$$

• Granger's view:

$$\sigma^2(Y|U) < \sigma^2(Y|\overline{U-X})$$

Requires stationarity of time series

Stationarity

Tests:

ADF (Augmented Dickey- Fuller Test)

$$H_0 = non - stationary$$
 ts
 $H_1 = stationary$ ts

KPSS (Kwiatkowski-Phillips-Schmidt-Shin Test)

$$H_0 = stationary ts$$

 $H_1 = non - stationary ts$

Granger causality

Testing for causality

$$Y_t = \sum_{j=1}^m \alpha_j Y_{t-j} + \sum_{i=1}^n \beta_i X_{t-i} + \varepsilon_t$$

$$Y_t = \sum_{j=1}^m \alpha_j Y_{t-j} + \vartheta_t$$

F-test

$$H_0$$
: $\beta_1 = \beta_2 = \cdots = \beta_n = 0$
 H_1 : otherwise

Granger causality

Limitations:

- Humean definition of causality
- Third variable

Extensions:

- Robust to non-normally distributed error term (Hacker, Hatemi, 2006)
- Asymmetric causality testing (Hatemi, 2012)

Source: https://en.wikipedia.org/wiki/Granger_causality

Structural breaks

"Unexpected shift in a time series that can cause huge forecasting problems." (Gujarati, 2007)

- Approaches in testing:
 - Chow test (1960)
 - Bai- Perron (2003)

Regression

Contemporaneous regression

```
\begin{split} &(logreturns)_t = \beta_0 + \beta_1 log(svi)_t + \beta_2 (logs\&p500\ returns)_t \\ &+ \beta_3 \log(vix)_t + \beta_4 \log(btc\ volume)_t + \beta_5 (btc\ volatility)_t \\ &+ \beta_6 \log(epuix\ US)_t \end{split}
```

Predictive regression

```
(logreturns)_{t+1} = \beta_0 + \beta_1 log(svi)_t
+\beta_3 log(vix)_t + \beta_4 log(btc volume)_t + \beta_5(btc volatility)_t
+\beta_6 log(epuix US)_t
```

- Google Search Volume Index (SVI)
 - "Cryptocurrency" term search
 - 17.8.2014 3.6.2017

- Weekly data
- Source: https://trends.google.com/trends/

SVI

SVI "Cryptocurrency" term search, 17.8.2014 - 3.6.2017

- CRIX (Trimborn, Härdle, 2016)
 - Average per week

•
$$lreturns_t = ln(\frac{p_t}{p_{t-1}})$$

Source: http://crix.hu-berlin.de/

CRIX

Average weekly levels of CRIX, 17.8.2014 - 3.6.2017

CRIX

Returns on CRIX, 17.8.2014 - 3.6.2017

- s&p 500 log returns
 - Source: https://fred.stlouisfed.org/
 - Average per week
- log Volatility Index (VIX)
 - Source: www.cboe.com
 - Average per week

- log BitCoin Trade Volume
 - Average per week
 - Source: https://www.quandl.com
- Bitcoin Price Volatility
 - Garman-Klass (1980)
 - Average per week

- log EPUIX US
 - Average per week
 - https://www.bloomberg.com/news/articles/2017-02-23/bitcoin-price-sets-intraday-record-on-trump-policyuncertainties
 - Source: http://www.policyuncertainty.com/index.html

Results

- Granger Causality
 - "Crypto" vs "Cryptocurrency"
 - Breaking Points
 - Results
- Regression
 - Contemporaneous

Predictive

Breaking Points

CRIX breaking points:

- CRIX breaking points:
- 1. 22.5.2016
- 2. 1.1.2017

Breaking Points

SVI breaking points

- "Cryptocurrency" svi breaks:
- 1. 15.5.2016
- 2. 1.1.2017

Granger causality

- Results separated into 3 periods, according to the breaks in svi
- Every table consist of p-values for regressions, across the number of lags
- Every table shows the results for "crypto" and "cryptocurrency" svi
- Note that the periods are different, as the breaking periods are different!
- Statistically significant results marked with green color

Granger causality

- First period (17.8.2014-15.5.2016)
 - No causality
- Second period (15.5.2016- 1.1.2017)
 - Returns "drive" Attention (SVI)
- Third period (1.1.2017-3.6.2017)

Attention "drives" Returns

Regression

Contemporaneous regression

```
\begin{split} &(logreturns)_t = \beta_0 + \beta_1 log(svi)_t + \beta_2 (logs\&p500\ returns)_t \\ &+ \beta_3 \log(vix)_t + \beta_4 \log(btc\ volume)_t + \beta_5 (btc\ volatility)_t \\ &+ \beta_6 \log(epuix\ US)_t \end{split}
```

Predictive regression

```
(logreturns)_{t+1} = \beta_0 + \beta_1 log(svi)_t
+\beta_3 log(vix)_t + \beta_4 log(btc volume)_t + \beta_5(btc volatility)_t
+\beta_6 log(epuix US)_t
```

Regression- Contemporaneous

Coefficients	Estimate	Std. Error	t value	Pr(> t)
Intercept	-0.64389	0.24335	-2.646	0.00972 **
log(svi)	-0.02194	0.02824	-0.777	0.43943
log_sp500_returns	0.39205	0.42530	0.922	0.35926
log(vix)	-0.02979	0.04039	-0.738	0.46284
log(volume)	0.07048	0.02106	3.347	0.00122 **
volatility	-0.01098	0.02228	-0.493	0.62326
log(epuix)	-0.02574	0.03111	-0.827	0.41040
			•	•

First period (17.8.2014-15.5.2016)

Heteroskedasticity!

Adjusted R-squared: 0.09967 F-statistic: 2.661 on 6 and 84 DF, p-value: 0.02061

Coefficients	Estimate	Std. Error	t value	Pr(> t)
Intercept	-3.35625	1.15177	-2.914	2.914 **
log(svi)	0.04135	0.09423	0.439	0.66452
log_sp500_returns	-0.52312	1.25788	-0.416	0.68105
log(vix)	0.07050	0.09171	0.769	0.44928
log(volume)	0.25723	0.09163	2.807	0.00954 **
volatility	-0.13070	0.07989	-1.636	0.11434
log(epuix)	-0.01739	0.03179	-0.547	0.58914

Second period

(15.5.2016 - 1.1.2017)

Heterosked a sticity

Adjusted R-squared: 0.1379 F-statistic: 1.826 on 6 and 25 DF, p-value: 0.1345

Results

Regression- Contemporaneous

Coefficients	Estimate	Std. Error	t value	Pr(> t)
Intercept	0.753203	1.800076	0.418	0.682
log(svi)	0.083039	0.067612	1.228	0.238
log_sp500_returns	0.598569	3.097685	0.193	0.849
log(vix)	-0.215357	0.268251	-0.803	0.435
log(volume)	-0.002835	0.155079	-0.018	0.986
volatility	-0.060274	0.066724	-0.903	0.381
log(epuix)	-0.073831	0.147273	-0.501	0.623

Third period (1.1.2017 - 3.6.2017)

Adjusted R-squared: 0.2978 F-statistic: 2.484 on 6 and 15 DF, p-value: 0.07158

Regression-Predictive

Coefficients	Estimate	Std. Error	t value	Pr(> t)
Intercept	-0.71351	0.24696	-2.889	0.00491 **
log(svi)	-0.01416	0.02866	-0.494	0.62256
log_sp500_returns	0.59778	0.43161	1.385	0.16972
log(vix)	-0.01385	0.04099	-0.338	0.73623
log(volume)	0.05636	0.02137	2.637	0.00996 **
volatility	-0.03235	0.02261	-1.431	0.15610
log(epuix)	0.02166	0.03157	0.686	0.49450
Adjusted Deguards 0.07225 Festistics 2.107 and 0.4 DF in values 0.05200				

Adjusted R-squared: 0.07335 F-statistic: 2.187 on 6 and 84 DF, p-value: 0.05209

Coefficients	Estimate	Std. Error	t value	Pr(> t)
Intercept	-3.60281	1.08565	-3.319	0.00277 **
log(svi)	0.04183	0.08882	0.471	0.64175
log_sp500_returns	1.49674	1.18567	1.262	0.21847
log(vix)	0.03647	0.08645	0.422	0.67669
log(volume)	0.28655	0.08637	3.318	0.00278 **
volatility	-0.16272	0.07530	-2.161	0.04048
log(epuix)	-0.02317	0.02996	-0.773	0.44664

Adjusted R-squared: 0.2478 F-statistic: 2.702 on 6 and 25 DF, p-value: 0.03669

First period (17.8.2014--15.5.2016)

Second period (15.5.2016-1.1.2017)

Regression- Predictive

Coefficients	Estimate	Std. Error	t value	Pr(> t)
Intercept	2.29729	1.42961	1.607	0.13038
log(svi)	0.13074	0.06234	2.097	0.05464 .
log_sp500_returns	-3.31771	2.39116	-1.387	0.18698
log(vix)	-0.56375	0.20712	-2.722	0.01653 *
log(volume)	-0.07469	0.12965	-0.576	0.57371
volatility	-0.18614	0.05155	-3.611	0.00284 **
log(epuix)	-0.03904	0.12097	-0.323	0.75165

Third period (1.1.2017 - 3.6.2017)

Adjusted R-squared: 0.6015 F-statistic: 6.032 on 6 and 14 DF, p-value: 0.002706

Conclusion

 Change in the nature of relationship between attention and returns on cryptocurrencies

More data for more precise conclusions

Literature

- Balcilar M., Bouri E., Gupta R., and Roubaud D., *Can Volume Predict Bitcoin Returns and Volatility? A Quantiles-Based Approach* (January 10, 2017). Economic Modelling, Forthcoming.
- Bai, J. and Perron, P., Computation and analysis of multiple structural change models. (2003) J. Appl. Econ., 18: 1–22.
- Chow G., Tests of Equality Between Sets of Coefficients in Two Linear Regressions (1960), Econometrica, Vol. 28, No. 3, pp. 591-605
- Da, Zhi and Engelberg, Joseph and Gao, Pengjie, *In Search of Attention* (June 4, 2009). AFA 2010 Atlanta Meetings Paper.
- Garmann M., Klass M., On the Estimation of Security Price Volatility from Historical Data (1980), Journal of Business, vol. 53,no. 1, pp. 67-78
- 6. Gujarati, D., Basic Econometrics (2007), McGraw-Hill Education (India) Pvt Limited

Literature

- 7. Kristoufek L., What Are the Main Drivers of the Bitcoin Price? Evidence from Wavelet Coherence Analysis. (2015) PLoS ONE 10(4): e0123923
- 8. Sewell, M., Causality (2001), University College London
- Trimborn S., Härdle W., *CRIX an Index for blockchain based Currencies* (2016), SFB 649 Discussion Paper 2016-021, Humboldt University, Berlin, Germany
- Zhanga J., Härdle W., Chen C., Bommes E., *Distillation of News Flow Into Analysis of Stock Reactions* (2015), Journal of Business & Economic Statistics Vol. 34, Iss. 4, 2016