

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej

Projekt dyplomowy inżynierski

Aplikacja mobilna optymalizująca zakupy książek w serwisie allegro.pl Mobile application to optimize the process of book shopping at allegro.pl

Autor: *Miłosz Szwedo* Kierunek studiów: *Informatyka*

Opiekun pracy: dr inż. Mirosław Gajer

Uprzedzony o odpowiedzialności karnej na podstawie art. 115 ust. 1 i 2 ustawy z dnia 4 lutego 1994 r. o prawie autorskim i prawach pokrewnych (t.j. Dz.U. z 2006 r. Nr 90, poz. 631 z późn. zm.): "Kto przywłaszcza sobie autorstwo albo wprowadza w błąd co do autorstwa całości lub części cudzego utworu albo artystycznego wykonania, podlega grzywnie, karze ograniczenia wolności albo pozbawienia wolności do lat 3. Tej samej karze podlega, kto rozpowszechnia bez podania nazwiska lub pseudonimu twórcy cudzy utwór w wersji oryginalnej albo w postaci opracowania, artystycznego wykonania albo publicznie zniekształca taki utwór, artystyczne wykonanie, fonogram, wideogram lub nadanie.", a także uprzedzony o odpowiedzialności dyscyplinarnej na podstawie art. 211 ust. 1 ustawy z dnia 27 lipca 2005 r. Prawo o szkolnictwie wyższym (t.j. Dz. U. z 2012 r. poz. 572, z późn. zm.): "Za naruszenie przepisów obowiązujących w uczelni oraz za czyny uchybiające godności studenta student ponosi odpowiedzialność dyscyplinarną przed komisją dyscyplinarną albo przed sądem koleżeńskim samorządu studenckiego, zwanym dalej «sądem koleżeńskim».", oświadczam, że niniejszą pracę dyplomową wykonałem(-am) osobiście i samodzielnie i że nie korzystałem(-am) ze źródeł innych niż wymienione w pracy.

Serdecznie dziękuję ...tu ciąg dalszych podziękowań np. dla promotora, żony, sąsiada itp.

Spis treści

1. Wprowadzenie				7			
	1.1.	Temat	pracy	7			
	1.2.	Cele pracy					
	1.3.	Zawar	tość pracy	7			
2.	Proj	ekt apli	kacji	9			
	2.1.	Archit	ektura	9			
		2.1.1.	Hypertext Transfer Protocol	9			
	2.2.	Auth s	ervice	11			
		2.2.1.	JSON Web Token	11			
		2.2.2.	Autoryzacja, a autentykacja	12			
	2.3.	Gatew	ay	12			
	2.4.	Offers	Fetcher	13			
	2.5.	Zewnę	trzne API	14			
		2.5.1.	REST API	15			
	2.6.	Baza d	lanych	15			
		2.6.1.	Bazy relacyjne	16			
		2.6.2.	Bazy nierelacyjne	16			
		2.6.3.	Porównanie	17			
	2.7.	Aplika	cja mobilna	18			
		2.7.1.	Użyteczność produktu	18			
3.	Imp	lementa	ıcja	21			
	3.1.	Metod	yka pracy	21			
		3.1.1.	Version Control System	21			
		3.1.2.	Organizacja zadań	21			
	3.2.	Wybói	technologii	22			

6 SPIS TREŚCI

	3.3.	Wielowatkowe tworzenie ofert	22
	3.4.	Autoryzacja użytkownika w Allegro API	22
	3.5.	Wdrożenie	24
	3.6.	Elementy konifguracyjne	24
4.	Inter	fejs	25
	4.1.	Logowanie i rejestracja	25
	4.2.	WantedScreen	25
	4.3.	LibraryScreen	25
	4.4.	OffersScreen	25
	4.5.	OptionsScreen	25
5.	Pods	umowanie	27
	5.1.	Wnioski	27
	5.2.	Możliwe rozszerzenia i usprawnienia	27

1. Wprowadzenie

Książki książki szukam ich i w ogóle Allegro to cośtam Ale problemem jest cośtam

1.1. Temat pracy

Tematem pracy jest aplikacja o charakterze mikroserwisowym czy co

1.2. Cele pracy

Celem poniższej pracy jest

1.3. Zawartość pracy

8 1.3. Zawartość pracy

2. Projekt aplikacji

2.1. Architektura

Architektura aplikacji jest złożona z części mobilnej oraz czterech rozproszonych serwisów, z czego każdy występuje jako autonomiczna aplikacja z którą porozumiewanie odbywa się za pomocą protokołu HTTP. Warstwa prezentacyjna, porozumiewając się z pozostałymi serwisami zapewnia użytkownikowi płynną interakcję z systemem w celu osiągnięcia zamierzonych akcji dostępnych w obrębie funkcjonalności.

W ten sposób każda składowa część aplikacji może być niezależnie zarządzana. W momencie w którym pojedynczy element odpowiedzialny za szczególną usługę jest wyłączony, sama aplikacja może dalej działać wyłączając tylko funkcjonalności dostarczane przez niedostępny aktualnie serwis.

Takie podejście można określić mianem zorientowanym na usługi. Oznacza to, że przy tworzeniu systemu, spory nacisk kładziony jest na definiowanie spełniających wymagania użytkownika usług. Są one elementami oprogramowania zdolnymi do niezależnego funkcjonowania, udostępniającymi realizowane funkcje poprzez zdefiniowany interfejs.

2.1.1. Hypertext Transfer Protocol

HTTP, czyli "Protokół Przesyłania Danych Hipertekstowych to protokół warstwy aplikacji, odpowiedzialny za transmisję dokumentów hipermedialnych, jak np. HTML. Został stworzony do komunikacji pomiędzy przeglądarkami, a serwerami webowymi, ale może być używany również w innych celach. HTTP opiera się na klasycznym modelu klient-serwer, gdzie klient inicjuje połączenie poprzez wysłanie żądania, następnie czeka na odpowiedź. HTTP jest protokołem bezstanowym, co oznacza, że serwer nie przechowuje żadnych danych (stanów) pomiędzy obydwoma żądaniami. (...)"[1]

10 2.1. Architektura

Rys. 2.1. Struktura systemu

2.2. Auth service

2.2. Auth service

Auth service dba o zachowanie bezpieczeństwa w całym systemie. Poprzez ekstrakcję funkcjonalności związanej z tworzeniem kont, logowaniem oraz zarządzaniem dostępem do pozostałych sektorów, gwarantuje niezawodną autentykację i autoryzację użytkownika pragnącego korzystać z aplikacji.

Informacje o kontach użytkowników przechowywane są w bazie danych, do której dostęp uzyskać można tylko za pomocą wygenerowanego przez nią, wewnętrznego klucza.

W celu swobodnego poruszania się po aplikacji należy uzyskać JWT(JSON Web Token). Aby pozsykać token należy się zarejestrować lub zalogować na ekranie logowania. Zapytanie utworzone w ten sposób zostanie wysłane do Auth service. W odpowiedzi przesłany zostanie wyżej wymieniony klucz dostępowy.

2.2.1. JSON Web Token

JSON Web Token to otwarty standard, który definiuje kompaktowy i samodzielny sposób na bezpieczny transfer danych. Poszczególna instancja składa się z trzech części oddzielonych kropkami w bezpośrednim formacie xx..x.y..yy.zz..z, gdzie poszczególne człony reprezentują: [2]

- 1. Header nagłówek, zawierający dwie informacje:
 - typ tokenu, w tym przypadku "JWT"
 - algorytm szyfrujący(n.p. HMAC, SHA256 lub RSA)
- Payload lista wyrażeń opisujących szyfrowaną informację, w przypadku użytkownika np jego login, czy email.
- 3. Signature podpis stworzony poprzez zaszyfrowanie podanym w headerze algorytmem szyfrującym ciągu składającego się z
 - zakodowanego za pomocą Base64 (specjalnego kodowania transportowego) nagłówka i listy wyrażeń
 - sekretu, czyli unikalnego dla danych klucza.

2.3. *Gateway*

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9. eyJzdWIiOiIxMjM0NTY30DkwIiwibmFtZSI6IkpvaG4 gRG9lIiwiaXNTb2NpYWwiOnRydWV9. 4pcPyMD09olPSyXnrXCjTwXyr4BsezdI1AVTmud2fU4

Rys. 2.2. Przykładowy token jwt [2]

2.2.2. Autoryzacja, a autentykacja

Warto implicite rozróżnić dwa bardzo ważne pojęcia związane z bezpieczeństwem aplikacji ze względu na częstotliwość z jaką są one mylone.

Autentykacja - często też w dwóch częściach jako identyfikacja i uwierzytelnienie. Polega na potwierdzeniu tożsamości, to znaczy określeniu, czy podmiot procesu jest tym za kogo się podaje. Na przypadku logowania, strona ufająca otrzymuje od użytkownika podstawue stwierdza, czy użytkownik może być pozytywnie zweryfikowany.

Autoryzacja to potwierdzenie, czy dany użytkownik jest uprawniony do skorzystania z konkretnego zasobu. Na tym etapie autentykacja została ewaluowana pozytywnie. Nie oznacza to jednak, że dany podmiot posiada dostęp w żądanym zakresie.

2.3. Gateway

Gateway to serwis zbudowany według podejścia zwanego wzorcem bramy interfejsu API[3]. Jest to element znajdujący się pomiędzy klientem a rozproszonymi usługami. Dzięki temu w prosty sposób można kontrolować wszelkie zapytania skierowane do poszczególnych serwisów.

Jest to więc centralny punkt systemu, który ma na celu uproszczenie komunikacji warstwy prezentacyjnej z poszczególnymi usługami. Każde zapytanie wysłane do bramy zostaje zweryfikowane pod względem bezpieczeństwa. Następnie w zależności od potrzeb, modyfikowane, lub bezpośrednio przesłane dalej.

2.4. OffersFetcher

Rys. 2.3. Gateway - schemat

2.4. OffersFetcher

OffersFetcher to główna jednostka licząca w systemie. Usługa ta otrzymuje żądanie z listą książek oraz token dostępowy do REST API portalu Allegro. (3.5.) Dla każdej książki wykonywane jest odpowiednio zmodyfikowane zapytanie, którego rezultat jest przetwarzany i odkładany do odpowiedniej kolekcji, aby na koniec zostać wkomponowanym w pożądany rezultat. Analizowane są wszystkie obecnie dostępne w czasie rzeczywistym oferty sprzedaży w serwisie Allegro.pl.

Dane otrzymane w ten sposób są przetwarzane i grupowane po unikalnym identyfikatorze sprzedawcy. Serwis zwraca odpowiedź w postaci listy zbiorów przedmiotów, które wpisują się w pozyzcje otrzymane w zapytaniu. W celu optymalizacji czasu w którym przygotowana zostaje odpowiedź, pobieranie danych oraz obliczenia wykonywane są asynchronicznie, co znacznie przyspiesza proces generowania wyników.

14 2.5. Zewnętrzne API

```
{
                                                "seller": {
                                                     "seller_id": "13994849",
"books": [
                                                     "lowestPriceDelivery": 5.9,
         "_id": "0",
"writer": "Kurt Vonnegut",
"title": "Recydywista",
                                                     "total": 17.0
                                                "bookResult": [
         "price": 20
                                                     {
                                                          "auction_id": "8801019370",
    },
                                                          "imageUrl": [
         "_id": "3",
"writer": "Lem",
"title": "Solaris",
                                                                   "url": "https://a.allegroimg.com/(...)"
         "price": 20
    },
                                                          "auctionName": "Lem Stanisław - Solaris",
                                                          "writer": "Lem",
         "_id": "10",
                                                          "bookTitle": "Solaris",
         "writer": "Ernest Hemingway",
"title": "Komu bije dzwon",
                                                          "priceAmount": 10.0
                                                     },
         "price": 15
                                                          "auction_id": "8748248951",
    }
1
                                                          "imageUrl": [
                                                              {
                                                                   "url": "https://a.allegroimg.com/(...)"
                                                          "auctionName": "Kurt Vonnegut - Recydywista",
                                                          "writer": "Kurt Vonnegut",
                                                          "bookTitle": "Recydywista",
                                                          "priceAmount": 7.0
                                                    }
                                                ]
```

Rys. 2.4. Poszukiwane książki i bazująca na nich przykładowa oferta

2.5. Zewnętrzne API

Źródłem danych dla ofert tworzonych w serwisie OffersFetcher (3.4.) jest Allegro REST API udostępnione przez Allegro.pl, czyli platformę transakcyjną on-line przedsiębiorstwa Allegro.pl. Portal ten umożliwa użytkownikom wystawianie na sprzedaż posiadanych przez nich przedmiotów oraz na korzystanie z ofert innych sprzedawców.

Początkowo innym, alternatywnym rozwiązaniem miało być pobieranie całych stron HTML po uprzednim sfabrykowaniu URI, tak aby pasowało do zadanej pozycji. Następnie taki plik tekstowy miałby być przeszukiwany wyrażeniami regularnymi w celu ekstrakcji szukanych informacji. Z racji jednak na dość niestabilny i zasobochłonny chrakter, wybrano korzystanie z wystawionego API.

"Allegro REST API działa w oparciu o protokół HTTP (...) Autoryzacja realizowana jest w standardzie OAuth2."[4]

2.6. Baza danych

2.5.1. REST API

(**RE**presentational **S**tate **T**ransfer) to styl architektury oprogramowania w którym dane i funkcjonalności są odzwierciedlone poprzez Ujednolicone Identyfikatory Zasobów(w skrócie URI). Termin ten został stworzony przez Roy Fielding w 2000 roku[5].Dostęp uzyskiwany jest poprzez proste i jasno zdefiniowane operacje. Istnieje pięc obowiązkowych ograniczeń, które dokładnie definiują charakter tego podejścia:

- bezstanowość każde zapytanie do serwera powinno zawierać wszystkie informacje potrzebne do jego zrozumienia.
- użycie buforownia podręcznego jeżeli dane są lokalnie przechowywane, należy o tym bezpośrednio poinformować.
- system warstwowy istnieje możliwość użycia wielu komponentów do poszczególnych funkcjolności, które razem stanowią jedno API. Klient przeważnie nie jest w stanie określić, czy jego połączenie jest realizowane z serwerem końcowym czy którymś z pośredników.
- rozdział klienta od serwera obie części powinno się być w stanie rozwijać osobno i niezależnie. Klient powinien jedynie znać URI, które może odpytywać.
- ujednolicony interfejs należy deterministycznie zdefiniować i nie zmieniać adresów pod którymi dostępne będą zasoby.

[6]

2.6. Baza danych

Warstwa persystencyjna jako osobny i niezależny serwis ma zadanie przetrzymywać dane z aplikacji. Jest to ogromnie ważny element systemu, którego działanie niezbędne jest np dla Auth service(3.2) ze względu na posiadane informacje o użytkownikach, które używane są w celu autoryzacji i autentykacji. Oprócz danych dostępowych, dla każdego klienta przechowywane są również zbiory książek - posiadanych i poszukiwanych. Złożone bazy danych można podzielić ze wględu na struktury organizacji danych, które przechowują. Są to kolejno relacyjne, obiektowe, relacyjno-obiektowe, strumieniowe, temporalne, nierelacyjne (NoSQL).

16 2.6. Baza danych

2.6.1. Bazy relacyjne

Najczęściej spotykane są nadal bazy relacyjne, gdzie dane występują pod postacią powiązanych wzajemnie ze sobą tabel. Posiadają one wewnętrzne języki programowania, wykorzystujące zwykle SQL, służące do wykonywania zaawansowanych operacji.

Rys. 2.5. Przykład dwóch tabel i relacji pomiędzy nimi

Źródło: code.tutsplus.com

2.6.2. Bazy nierelacyjne

Sporą popularność jednak zyskują ostatnio bazy nierelacyjne, czyli takie, które nie posiadają tabel ani relacji. W związku z tym przeważnie nie wykorzystują również języka SQL i to z stąd wzięła się ich nazwa - NoSQL (Not Only SQL database). Nie jest najczęściej też wymagane, aby struktura danych była jednorodna.

2.6. Baza danych

```
_id: ObjectId("5e0475c53c89d7ceca573698")
 userID: "5de6be0eb33c1c0024070c49"
 v:0
> wanted: Array
library: Array
  v 0: Object
       _id: "0"
       writer: "Kurt Vonnegut"
       title: "Slaughterhouse no 5"
  > 1: Object
  > 2: Object
  v 3: Object
       _id: "3"
       writer: "Jerome K. Jerome"
       title: "Trzech panów w łódce (nie licząc psa)"
  > 4: Object
  > 5: Object
  > 6: Object
  v 7: Object
       id: "7"
       writer: "Franz Kafka"
       title: "Proces"
  v8:Object
       _id: "8"
       writer: "Niccolò Machiavelli"
       title: "Książe"
  > 9: Object
  > 10: Object
  > 11: Object
  > 12: Object
                                                      JSON
  > 13: Object
```

Rys. 2.6. Przykład obiektu json w bazie NoSQL przechowującej dane jako dokumenty

2.6.3. Porównanie

Przewagę relacyjnych baz danych można upatrywać w istotnie ugruntowanym interfejsie, stosunkowo łatwym utrzymaniu i tym, że w związku z wybitną popularnością, zestandaryzowany język zapytań jest tym, czego programiści spodziewają się po bazie danych. Nastepnie jednak, bazy typu NoSQL reprezentuje łatwa skalowalność oraz bardzo szeroki wybór modeli danych. Są one też szybsze, bardziej wydajne a ponadto daleko bardziej elastyczne. Nie wymagają być administrowanymi i obecnie rozwijają się coraz prężniej.[7]

2.7. Aplikacja mobilna

Komponent w którym spotykają się wszystkie części składowe systemu. Podejście mobilne zostało wybrane ponieważ rynek związany z urządzeniami mobilnymi to obecnie najszybciej rozwijająca się gałąź przemysłu IT[8]. Dzięki temu produkt potencjalnie mógłby trafić do szerszego grona odbiorców, zwłaszcza, że nie wymaga od użytkownika skomplikowanych czynności i można z niego korzystać na przykład w komunikacji miejskiej.

2.7.1. Użyteczność produktu

2.7.1.1. Podstawowe cechy przyjaznej użytkownikowi aplikacji

Ze względu na ograniczone medium jakim jest urządzenie mobilne, ważnym jest aby dostarczyć rozwiązanie, którego odbiorca chciałby używać. Warto więc zastanowić się nad określeniem aspektów, które składają się na przyjazną użytkownikowi formę.

"Podstawowe atrybuty opisujące użyteczność aplikacji zostały zidentyfikowane w klasycznej pracy Nielsena[9]:

- efektywność (efficiency) łatwość uzyskania celu,
- satysfakcja (satisfaction) brak dyskomfortu, pozytywne nastawienie do produktu
- przyswajalność (learnability) łatwość nauczenia się zasad działania w celu szybkiego rozpoczęcia pracy,
- zapamiętywalność (memorability) łatwość powrotu do pracy z systemem po przerwie
- bezbłędność (faultlessness) ograniczenie liczby popełnianych błędów oraz zdolność do wznowienia działania po awarii

Najłatwiej zmierzyć efektywność, która w wielu sytuacjach może zostać wyrażona jako czas potrzebny do wykonania określonego zadania. Pozostałe atrybuty są znacznie bardziej abstrakcyjne, a wśród nich największy ładunek subiektywnych emocji z pewnością niesie satysfakcja użytkownika."[8]

2.7.1.2. Funkcjonalności mające na celu spełnienie cech

Tworzenie oprogramowania na urządzenia przenośne wymaga więc dokładnego zaplanowania interfejsu graficznego, który będzie nie tylko przyjazny wizualnie, ale i funkcjonalny. Zakłada się, że zaprezentuje odbiorcy możliwe akcje w sposób oczywisty i jednoznaczny. Powinien on więc płynnie i możliwie szybko odpowiadać na akcje użytkownika. Ze względu na

odpowiednio mniejszą moc obliczeniową, należy zadbać o użycie właściwych elementów sterujących oraz zadbać o wydajne renderowanie. W ten sposób można uniknąć przechowywania niepotrzebnych referencji do użytych wcześniej obiektów oraz zwrócić uwagę na to, aby obliczenia wykonywane przez urządzenie nie były nazbyt skomplikowane. W trosce właśnie o to, zaawansowana logika licząca została wyekstraktowana do osobnego serwisu (3.4). Poprzez przechowywanie informacji w bazie danych, gwarantujemy, że po ponownym włączeniu aplikacji, nawet po wymuszonym zamknięciu - użytkownik nie straci swoich zmian.

3. Implementacja

Ze względu na charakter aplikacji, która składa się z autonomicznych elementów, znaczna część implementacji poszczególnych serwisów mogła odbywać się niezależnie od innych. Tworzone funkcjonalności testowane były przy pomocy narzędzia Postman, za pomocą którego można wysyłać dowolnie skonfigurowane zapytania HTTP na konkretne adresy URI. Kolejne, gotowe usługi były następnie integrowane w sytemie.

3.1. Metodyka pracy

Projekt powstawał iteracyjnie. To znaczy, że podczas pracy zaczynano od małych celów i po ich realizacji - stawiano trochę większe, udoskonalano obecny wówczas stan i przechodzono do kolejnego, bardziej zaawansowanego kroku. W ten sposób, możliwe było dokładne kontrolowanie rozwoju systemu, jego testowanie i w razie problemów, szybka analiza i znalezienie ich przyczyny.

3.1.1. Version Control System

VCS - rozwój usług śledzony był za pomocą systemu kontroli wersji. Pozwala on dokumentować wszystkie, kolejne zmiany, które mają miejsce w odniesieniu do kodu. Dzięki temu wygodniejsze są również potencjalne eksperymenty, ponieważ w każdym momencie, możliwy jest powrót do dowolnego, poprzedniego stanu implementowanych funkcjonalności.[10] W projekcie korzystano z hostingu na platformie GitHub.

3.1.2. Organizacja zadań

Kanban to metodologia, która może być użyta jako narzędzie do zarządania projektem podczas produkcji oprogramowania. Oryginalnie wymyślona w celu optymalizacji produkcji w Japońskiej firmie Toyota. Jej implementacja w procesie rozwijania systemów informatycznych znacząco wzrasta ze względu na przewagę nad tradycyjnymi metodami objawiącej się

elastycznością, wydajnością i zwiększoną produktywnością. Sama nazwa oznacza w wolnym tłumaczeniu "spis widoczny".[11]

Głównym elementem jest utworzenie torów, oznaczających poszczególne etapy w których znajdują się obecnie zadania. W momencie zmiany stanu, dany element jest przemieszczany do nastepnej w kolejności kolumny.

Korzystając z faktu, że w serwisie Github możliwe jest utworzenie takiej kanbanowej tablicy, zdecydowano się na użycie właśnie tej implementacji narzędzia. Poniżej zaprezentowano stan części planszy podczas rozwoju projektu.

Rys. 3.1. Kanbanowa tablica podzielona na 3 sektory

3.2. Wybór technologii

3.3. Wielowatkowe tworzenie ofert

3.4. Autoryzacja użytkownika w Allegro API

Do integracji serwisu z aplikacją potrzebne jest pozyskanie tokenu dostępowego. Allegro udostępnia tzw. "ścieżkę device flow", dzięki której cały proces odbywa się bez konieczności uwzględniania go w interfejsie graficznym. Poniżej zaprezentowany jest diagram prezentujący tę funkcjonalność.

Rys. 3.2. Autoryzacja użytkownika typu Device flow

Źródło: https://developer.allegro.pl/

Podejście w tej pracy zakłada zarejestrowanie jednego, wspólnego dla całego systemu, konta funkcjonalnego za pomocą którego każde zapytanie będzie autentykowane. Stwarza to niestety jedno ograniczenie, a mianowicie, ze względu na obowiązujący główny limit nakładany na Client ID po przekroczeniu liczby 9000 zapytań na minutę, aplikacja zwróci status HTTP 429 i zostanie zabklokowana na kolejne 60 sekund.

W fazie inicjalizacyjnej autoryzacji uzyskane zostaną dwa unikalne tokeny:

- dostępowy ważny przez 12h.
- odświeżający ważny 6 miesięcy.

Zostaną one zachowanie w pamięci, a każde kolejne zapytanie, w przypadku wygaśnięcia tokenu dostępowego, spowoduje jego odnowienie. 3.5. Wdrożenie

```
unction authorizationBeat(url :string = 'https://api.allegro.pl/sale/categories/') {
   requests({
      url: url,
      headers: {'authorization': `Bearer ${properties.get('access_token')}`}
   }, (error, response, body) => {
       if (response.statusCode === 200) {
           console.log("User is authorized.");
           return body;
       console.log("Access token is not valid, user not authorized.");
       if (response.statusCode === 401) {
           let refresh_token_acquired_time = properties.get('refresh_token_time');
           let refresh_token = properties.get('refresh_token');
           console.log(`Refresh token: ${refresh_token}`);
           if (refresh_token === "undefined") {
               console.log("Refresh token has never been acquired.");
               acquireLinkForAuthorization();
           } else if ((Date.now() - refresh_token_acquired_time) > (30 * 24 * 60 * 60 * 1000)) {
               console.log(`Refresh token is outdated: ${refresh_token_acquired_time}`);
               acquireLinkForAuthorization()
               console.log("Refresh token is valid, sending refreshing request.");
               refreshTheToken();
```

Rys. 3.3. Kod odpowiedzialny za utrzymywanie ważnego tokena

Powyższy kod prezentuje przebieg akcji, które maja miejsce za każdym razem, kiedy otrzymywane jest zapytanie do OffersService(2.4). Na początku sprawdzane jest, czy token jest zwyczajnie aktualny, następnie, w przypadku, gdy nie jest, pobierany jest token odświeżający. W zależności od tego, czy jest on ważny, wygaśnięty, czy może w ogóle nigdy nie został uzyskany, odpowiednia logika zostaje uruchomiona.

3.5. Wdrożenie

3.6. Elementy konifguracyjne

4. Interfejs

No będe opisywał interfejs i ten tego

- 4.1. Logowanie i rejestracja
- 4.2. WantedScreen
- 4.3. LibraryScreen
- 4.4. OffersScreen
- 4.5. OptionsScreen

26 4.5. OptionsScreen

5. Podsumowanie

Podsumowańsgo kurde

5.1. Wnioski

5.2. Możliwe rozszerzenia i usprawnienia

Bibliografia

- [1] Autorzy MDN. https://developer.mozilla.org/pl/docs/Web/HTTP.
- [2] Auth0 Inc. https://jwt.io/introduction/.
- [3] Chris Richardson. "Api gateway". W: Microservice architecture (2018).
- [4] Allegro REST API. https://developer.allegro.pl/.
- [5] Roy Thomas Fielding. "Architectural Styles and the Design of Network-based Software Architectures". PhD thesis. University of California, 2000.
- [6] https://restfulapi.net/. Rest API.
- [7] Dikshay Poojary Ameya Nayak Anil Poriya. "Type of NOSQL Databases and its Comparison with Relational Databases". W: *International Journal of Applied Information Systems* 5.4 (2013).
- [8] Zdzisław Sroczyński. "Jakość interakcji człowiek-komputer czynnikiem decydującym o popularności aplikacji mobilnych". W: *Studia Ekonomiczne* 317 (2017), s. 106–117.
- [9] Nielsen J. "Usability Engineering". W: Academic Press (1993).
- [10] John D Blischak, Emily R Davenport i Greg Wilson. "A quick introduction to version control with Git and GitHub". W: *PLoS computational biology* 12.1 (2016), e1004668.
- [11] Magdalena Maneva, Natasa Koceska i Saso Koceski. "Introduction of Kanban methodology and its usage in software development". W: (2016).