Goodness-of-fit tests: exercises

1 Gaussian data

We come back to the straight line fitting example used in the context of data combination.

We consider a tracking detector without magnetic field (particle trajectories are straight lines y = a + bx). The detector is made of 2 tracking stations, each with 3 layers, situated at $x_{11} = 10$, $x_{12} = 11$, $x_{13} = 12$; $x_{21} = 20$, $x_{22} = 21$, $x_{23} = 22$ (distances in mm). We want to measure a, the impact parameter of the particle with respect to the origin, while we are not interested in b (it is a "nuisance parameter"). Each layer has a resolution of 1 mm: in other words, each measurement y_i is a random variable with a Gaussian distribution of mean $a + bx_i$ and variance 1.

In the following we assume the true values of a and b to be $a_0 = 3 \,\text{mm}$ and $b_0 = 0.1$. The measured values are $y_{11} = 4.0$, $y_{12} = 3.8$, $y_{13} = 3.6$, $y_{21} = 5.2$, $y_{22} = 4.9$, $y_{23} = 4.8 \,\text{mm}$.

- 1. What is the Gaussian χ^2 corresponding to the measured values? What is the corresponding p-value? Same question replacing a, b by \hat{a}, \hat{b} in the model used in the χ^2 computation. What number of degrees of freedom needs to be used in each case?
- 2. **Toy study**. In this question we want to generate pseudo-data from the true values of a and b, and check the distribution (histogram) of the χ^2 and the corresponding p-value, before and after fitting. We will generate N pseudo-experiments (N=1000) in the following way:
 - (a) Generate values for the y_i with a Gaussian distribution of mean $a_0 + b_0 x_i$ and variance 1.
 - (b) Store the value of the "pre-fit" χ^2 (with a_0 and b_0), as well as the corresponding p-value.
 - (c) Compute the values of \hat{a} and \hat{b} (this can be done analytically).
 - (d) Store the value of the "post-fit" χ^2 (with \hat{a} and \hat{b}), as well as the corresponding p-value.

2 Poisson data

We want to compare the performance of several goodness-of-fit tests: unbinned χ^2 , and several binned χ^2 (Neyman, Pearson, and Baker-Cousins). For this, we will check the distribution of the corresponding test statistics and p-value, using toy experiments. We use a simple model consisting of a Gaussian with unknown mean and sigma, which we will simultaneously estimate using data. We assume the true values of the parameters to be $\mu = 0$ and $\sigma = 1$.

- 1. Write python functions for each of the g.o.f. tests.
- 2. Check and compare the properties of all four g.o.f. tests, and the corresponding p-values, in the following cases:
 - (a) 20 bins between -3 and 3, 1000 events / toy experiment
 - (b) 20 bins between -5 and 5, 100 events / toy experiment
 - (c) 10 bins between -2 and 2, 20 events / toy experiment

Careful: make sure to be generating Poisson data, not multinomial data...