ANOVA

BRSM

DV: Anxiety level

IV: Exercise

People who exercise have lower levels of anxiety

DV: Anxiety level

IV: Exercise

Can you do a t-test on this data?

Factor = Independent variable

2 Independent Variables - 2 levels each

Exercise – exercise vs control

Time of Day – morning vs evening

Two factorial design

Exercise-morning	Control-morning
Exercise-evening	Control-evening

2x2 factorial design

2 Independent Variables – different levels

Exercise – 30mins, 1 hour, 2 hours

Time of Day – morning vs evening

Two factorial design

30 mins-morning	1 hr-morning	2 hrs - morning
30 mins-evening	1 hr-evening	2 hrs - evening

3x2 factorial design

Why not just perform multiple t-tests?

Why not just perform multiple t-tests?

To avoid Type I error – false positive

- For 'k' independent groups there are k(k-1)/2 possible t-tests
 - For 5 groups = 5(5-1)/2 = 10 t-tests
 - For 4 groups = 4(4-1)/2 = 6 t-tests
 - For 3 groups = 3(3-1)/2 = 3 t-tests
- Using too many t-test comparisons increases the chances of finding random significant effects which may be due to chance. In reality there may be no difference between the groups/conditions

Sample Variance

$$s^2 = \frac{\sum_{i=1}^{n} \left(x_i - \overline{x}\right)^2}{n-1}$$

 s^2 = sample variance

 x_i = value of i^{th} element

 \overline{x} = sample mean

n =sample size

ANOVA ANOVA ANalysis Of VAriance

 $t = \frac{\text{obtained difference between two sample means}}{\text{standard error (the difference expected with no treatment effect)}}$

 $F = \frac{\text{variance (differences) between sample means}}{\text{variance (differences)}}$ within sample

Test 1 compares treatment I vs. treatment II.

Test 2 compares treatment I vs. treatment III.

Test 3 compares treatment II vs. treatment III.

Risk of family-wise error – Increase Type I error

$$0.05 (\alpha) = 0.05/3 = 0.0167$$
 (new α value)
No. of comparisons

ANOVA performs all three comparisons simultaneously in one test.

No matter how many different means are being compared, ANOVA uses one test with one alpha level to evaluate the difference in variance

Sample Variance

$$s^{2} = \frac{\sum_{i=1}^{n} \left(x_{i} - \overline{x}\right)^{2}}{n-1}$$

 s^2 = sample variance

 x_i = value of i^{th} element

 \bar{x} = sample mean

n =sample size

One Way ANOVA

Ho - Null hypothesis - anxiety levels are equal across all groups after treatment (no difference between treatments)

H1 - Alternate hypothesis?

$$F = \frac{\text{variance between treatments}}{\text{variance within treatments}}$$

$$\frac{\text{variance between treatments}}{\text{variance within treatments}} = \frac{\text{systematic treatment effects} + \text{random, unsystematic differences}}{\text{random, unsystematic differences}}$$

$$F = \frac{0 + \text{random, unsystematic differences}}{\text{random, unsystematic differences}}$$

Effect of treatment

Random differences/error

Source	SS (SS)	df	s ² (MS)	F
Between treatments	$\sum n_i (\overline{X}_i - \overline{\overline{X}})^2$	k-1	$\frac{SS_b}{df_b} = MS$	F = <u>MSB</u> MSW
Within treatments	$\sum (X_{ij} - \overline{X}_i)^2$	N-k	$\frac{SS_w}{df_w} = MS'$	W
Total	$\sum (X_{ij} - \overline{\overline{X}})^2$	N-1		

 X_{ii} = an individual observation

k =the number of groups

 \overline{X}_i = the mean of the imgroup

 n_i = the number of subjects in the ith group

 $\overline{\overline{X}}$ = the grand mean

N = the number of subjects total

Source	SS	df	S ² (MS)	F
Between treatments	$\sum n_i (\overline{X}_i - \overline{\overline{X}})^2$	k-1	$\frac{SS_b}{df_b}$	$\frac{s_b^2}{s_w^2}$
Within treatments	$\sum (X_{ij} - \overline{X}_i)^2$	N-k	$\frac{SS_{w}}{df_{w}}$	
Total	$\sum (X_{ij} - \overline{\overline{X}})^2$	$N\!-\!1$		

 $X_n =$ an individual observation

k =the number of groups

 \overline{X}_i = the mean of the ith group

 n_i = the number of subjects in the ith group

 $\overline{\overline{X}}=$ the grand mean

N = the number of subjects total

Group/Treatments are less likely to be significantly different

Groups/Treatments are more likely to be significantly different

Within group variance Individual differences \overline{x}_1 \overline{x}_2 \overline{x}_3

Between group variance

Within group variance

Individual differences

Calculating variances

Source	SS	df	s ² (MS)	F
Between treatments	$\sum n_i (\overline{X}_i - \overline{\overline{X}})^2$	k-1	$\frac{SS_b}{df_b}$	F = <u>MSB</u> MSW
Within treatments	$\sum (X_{ij} - \overline{X}_i)^2$	N-k	$\frac{SS_w}{df_w}$	
Total	$\sum (X_{ij} - \overline{\overline{X}})^2$	N-I		•

groups	scores	diff	diff_squared
T1	20	13	169
T1	11	4	16
T1	2	-5	25
T2	6	-1	1
T2	2	-5	25
T2	7	0	0
T3	2	-5	25
Т3	11	4	16
T3	2	-5	25
Sums	63	0	302 SStotal = SSbetween + SSwithin
Means	7	0	33.556

groups	scores	means	diff	diff_squared
T1	20	11	4	16
T1	11	11	4	16
T1	2	11	4	16
T2	6	5	-2	4
T2	2	5	-2	4
T2	7	5	-2	4
T3	2	5	-2	4
T3	11	5	-2	4
T3	2	5	-2	4
Sums	63	63	0	72 SSbet
Means	7	7	0	8

groups	scores	means	diff	diff_squared
T1	20	11	-9	81
T1	11	11	0	0
T1	2	11	9	81
T2	6	5	-1	1
T2	2	5	3	9
T2	7	5	-2	4
T3	2	5	3	9
T3	11	5	-6	36
T3	2	5	3	9
Sums	63	63	0	230 SSwi
Means	7	7	0	25.556

Simulated F-Distribution for Null

Why is F distribution positively skewed?

F distribution has only one tail – can only tell whether there is difference between the groups or not. Does not tell which group is better or worse.

$$F = t^2$$

t distribution (can be one tailed or two-tailed)

F Distribution PDF

Groups	Count	Sum	Average	Variance
T1	3	33	11	81
T2	3	15	5	7
T3	3	15	5	27

F = <u>SSB</u> SSW

	ANOVA						
	Source of Variation	SS	df	MS	F	P-value	F crit
3	Between Groups	72	2	36	0.93913	0.441736	5.143253
/	Within Groups	230	6	38.33333			
	Total	302	8				

F < 1 – no effect F > 1 – there might be an effect

ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	72	2	36	0.93913	0.441736	5.143253
Within Groups	230	6	38.33333			
Total	302	8				

$F = \underline{SSB}$ SSW

of the F Distribution

Table 1 $\alpha = 0.05$

Degrees of Freedom for Numerator

		1	2	3	4	5	6	7	8	9	10	15	20	25	30	40	50
	1	161.4	199.5	215.8	224.8	230.0	233.8	236.5	238.6	240.1	242.1	245.2	248.4	248.9	250.5	250.8	252.6
	2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40	19.43	19.44	19.46	19.47	19.48	19.48
	3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.70	8.00	8.63	8.62	8.59	8.58
	4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.86	5.80	5.77	5.75	5.72	5.70
	5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.62	4.56	4.52	4.50	4.46	4.44
	6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	3.94	3.87	3.83	3.81	3.77	3.75
	7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.51	3.44	3.40	3.38	3.34	3.32
	8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.22	3.15	3.11	3.08	3.04	3.02
	9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.01	2.94	2.89	2.86	2.83	2.80
_	10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.85	2.77	2.73	2.70	2.66	2.64
Denominator	П	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.72	2.65	2.60	2.57	2.53	2.51
j.	12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.62	2.54	2.50	2.47	2.43	2.40
Ē	13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2,77	2.71	2.67	2.53	2.46	2.41	2.38	2.34	2.31
e	14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.46	2.39	2.34	2.31	2.27	2.24
ō	15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.40	2.33	2.28	2.25	2.20	2.18
ρ	16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.35	2.28	2.23	2.19	2.15	2.12
Freedom	17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.31	2.23	2.18	2.15	2.10	2.08
eq	18	4.41	3.55	3.16	2.93	2.77	2,66	2.58	2.51	2.46		2.27	2.19	2.14	2.11	2.06	2.04
Fa	19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.23	2.16	2.11	2.07	2.03	2.00
₽	20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39		2.20	2.12	2.07	2.04	1.99	1.97
ees	22	4.30	3.44	3.05	2,82	2,66	2,55	2,46	2.40	2,34	2.30	2.15	2.07	2.02	1.98	1,94	1,91
e	24	4.36	2.40	2.01	2.76	2.62	2.51	2.42	2.26	2.20	2.25	2.11	2.02	1.07	1.04	1.00	1.04

One way ANOVA showed that type of treatment had no effect on the level of anxiety $F_{(2,6)} = 0.93$, p=0.44

 $F < 1 \rightarrow \text{no effect}$

One way (One factor, One IV) ANOVA

FAKE DATA

	Ex	am perfor	mance
Home		Boarding	Regular Day
school		school	school
	89	85	91
	75	78	88
	49	59	84
	87	77	81
	84	63	91
	68	88	75
	88	71	69
	78	73	93
	77	69	95
	93	80	85
	67	72	87
	79	68	84
	69	66	83
	88	59	80
	91	70	77

Ho – exam performance not affected by type of schooling

H1 – Type of schooling affects exam performance

Groups	Count	Sum	Average	Variance
Home school	15	1182	78.8	141.1714
Boarding school	15	1078	71.86667	73.98095
Regular Day school	15	1263	84.2	50.45714

ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	1146.711	2	573.3556	6.475922	0.003537	3.219942
Within Groups	3718.533	42	88.53651			
Total	4865.244	44				

$$F_{(2,42)} = 6.47, p < 0.01$$

or

$$F_{(2,42)} = 6.47$$
, p=.003

Effect size for ANOVA

Eta-squared

$$\eta^2 = \frac{SS_{Between}}{SS_{Total}}$$
 = $\frac{1146.711}{4865.244}$ = 0.236

Kind of Effect Size	Small	Medium	Large
r	.10	.30	.50
d	0.20	0.50	0.80
$\eta^2_{\ p}$.01	.06	.14
f^2	.02	.15	.35

Source: Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 155–159. doi:10.1037/0033-2909.112.1.155

$$F_{(2,42)} = 6.47$$
, p=.003, $\eta^2 = .24$

Type of schooling explains 24% of variance in exam performance

We know there is difference between the groups, but which groups perform better or worse?

Why not just perform multiple t-tests?

To avoid Type I error – false positive

- For 'k' independent groups there are k(k-1)/2 possible t-tests
 - For 5 groups = 5(5-1)/2 = 10 t-tests
 - For 4 groups = 4(4-1)/2 = 6 t-tests
 - For 3 groups = 3(3-1)/2 = 3 t-tests
- Using too many t-test comparisons increases the chances of finding random significant effects which may be due to chance. In reality there may be no difference between the groups/conditions

SOLUTION?

Hypothesis Driven (like a one-tailed test)

Option 1 (Planned Contrasts): Pre-planned, therefore limited no. of comparisons.

You are not comparing all groups to one another, very specific comparisons (so the risk of Type 1 error is controlled)

Exploratory Option 2 (Post Hoc tests) – All possible comparisons can be using special tests (to avoid Type I error). (like a two-tailed test)

Planned Comparison

But as the no. of planned comparisons increase (>2 comparisons), the alpha level has to adjusted, again to avoid Type I error.

Bonferroni correction

Adjust the α level by the no. of comparisons

For 3 comparisons, $\alpha/3 = 0.05/3 = 0.0167 \approx 0.01$

Conduct 3 t-tests with $\alpha = 0.01$

Groupwise comparisons	T-test	Bonferroni correction corrected p value
Home vs Boarding	0.07780999	0.016666667
Boarding vs Regular	0.00019644	
Regular vs Home	0.14204177	

Good for small no. of comparisons, else risk of Type II error

Post-hoc test (Tukey's)

Tukey's test requires that the sample size, n, be the same for all treatments.

Groups	Count	Sum	Average	Variance
Home school	15	1182	78.8	141.1714
Boarding school	15	1078	71.86667	73.98095
Regular Day school	15	1263	84.2	50.45714

ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	1146.711	2	573.3556	6.475922	0.003537	3.219942
Within Groups	3718.533	42	88.53651			
Total	4865.244	44				

Tukey's
$$HSD = q \sqrt{\frac{MS_{\text{within}}}{n}} = 3.44 \sqrt{(88.53/15)} = 6.95$$

q – studentized range statistic

The mean difference between any two samples must be more than 6.95 (at α =0.05) to be significant.

MHome – MRegular = |78.8 - 84.2| = 5.4 (not significantly different)

MBoarding – MRegular = |71.866 - 84.2| = 12.33 (significantly different)

 $M_{Home} - M_{Boarding} = |78.8 - 71.87| = 6.93$ (not significantly different)

TABLE B.5 The Studentized Range Statistic (a)*

*The critical values for q corresponding to $\alpha = .05$ (lightface type) and $\alpha = .01$ (boldface type).

				k	= Number	r of Treatm	ents				
<i>df</i> for Error Term	2	3	4	5	6	7	8	9	10	11	12
5	3.64	4.60	5.22	5.67	6.03	6.33	6.58	6.80	6.99	7.17	7.32
	5.70	6.98	7.80	8.42	8.91	9.32	9.67	9.97	10.24	10.48	10.70
6	3.46	4.34	4.90	5.30	5.63	5.90	6.12	6.32	6.49	6.65	6.79
	5.24	6.33	7.03	7.56	7.97	8.32	8.61	8.87	9.10	9.30	9.48
7	3.34	4.16	4.68	5.06	5.36	5.61	5.82	6.00	6.16	6.30	6.43
	4.95	5.92	6.54	7.01	7.37	7.68	7.94	8.17	8.37	8. 55	8.71
8	3.26	4.04	4.53	4.89	5.17	5.40	5.60	5.77	5.92	6.05	6.18
	4.75	5.64	6.20	6.62	6.96	7.24	7.4 7	7.68	7.86	8.03	8.18
9	3.20	3.95	4.41	4.76	5.02	5.24	5.43	5.59	5.74	5.87	5.98
	4.60	5.43	5.96	6.35	6.66	6.91	7.13	7.33	7.4 9	7.65	7.78
10	3.15	3.88	4.33	4.65	4.91	5.12	5.30	5.46	5.60	5.72	5.83
	4.48	5.27	5.77	6.14	6.43	6.67	6.87	7.05	7.21	7.36	7.49
11	3.11	3.82	4.26	4.57	4.82	5.03	5.20	5.35	5.49	5.61	5.71
	4.39	5.15	5.62	5.97	6.25	6.48	6.67	6.84	6.99	7.13	7.2 5
12	3.08	3.77	4.20	4.51	4.75	4.95	5.12	5.27	5.39	5.51	5.61
	4.32	5.05	5.50	5.84	6.10	6.32	6.51	6.67	6.81	6.94	7.06
13	3.06	3.73	4.15	4.45	4.69	4.88	5.05	5.19	5.32	5.43	5.53
	4.26	4.96	5.40	5.73	5.98	6.19	6.37	6.53	6.67	6.79	6.90
14	3.03	3.70	4.11	4.41	4.64	4.83	4.99	5.13	5.25	5.36	5.46
	4.21	4.89	5.32	5.63	5.88	6.08	6.26	6.41	6.54	6.66	6.77
15	3.01	3.67	4.08	4.37	4.59	4.78	4.94	5.08	5.20	5.31	5.40
	4.17	4.84	5.25	5.56	5.80	5.99	6.16	6.31	6.44	6.55	6.66
16	3.00	3.65	4.05	4.33	4.56	4.74	4.90	5.03	5.15	5.26	5.35
	4.13	4.79	5.19	5.49	5.72	5.92	6.08	6.22	6.35	6.46	6.56
17	2.98	3.63	4.02	4.30	4.52	4.70	4.86	4.99	5.11	5.21	5.31
	4.10	4.74	5.14	5.43	5.66	5.85	6.01	6.15	6.27	6.38	6.48
18	2.97	3.61	4.00	4.28	4.49	4.67	4.82	4.96	5.07	5.17	5.27
	4.07	4.70	5.09	5.38	5.60	5.79	5.94	6.08	6.20	6.31	6.41
19	2.96	3.59	3.98	4.25	4.47	4.65	4.79	4.92	5.04	5.14	5.23
	4.05	4.67	5.05	5.33	5.55	5.73	5.89	6.02	6.14	6.25	6.34
20	2.95	3.58	3.96	4.23	4.45	4.62	4.77	4.90	5.01	5.11	5.20
	4.02	4.64	5.02	5.29	5.51	5.69	5.84	5.97	6.09	6.19	6.28
24	2.92	3.53	3.90	4.17	4.37	4.54	4.68	4.81	4.92	5.01	5.10
	3.96	4.55	4.91	5.17	5.37	5.54	5.69	5.81	5.92	6.02	6.11
30	2.89	3.49	3.85	4.10	4.30	4.46	4.60	4.72	4.82	4.92	5.00
	3.89	4.45	4.80	5.05	5.24	5.40	5.54	5.65	5.76	5.85	5.93
40	2.86	3.44	3.79	4.04	4.23	4.39	4.52	4.63	4.73	4.82	4.90
	3.82	4.37	4.70	4.93	5.11	5.26	5.39	5.50	5.60	5.69	5.76
60	2.83	3.40	3.74	3.98	4.16	4.31	4.44	4.55	4.65	4.73	4.81
	3.76	4.28	4.59	4.82	4.99	5.13	5.25	5.36	5.45	5.53	5.60
120	2.80	3.36	3.68	3.92	4.10	4.24	4.36	4.47	4.56	4.64	4.71
	3.70	4.20	4.50	4.71	4.87	5.01	5.12	5.21	5.30	5.37	5.44
00	2.77	3.31	3.63	3.86	4.03	4.17	4.28	4.39	4.47	4.55	4.62
	3.64	4.12	4.40	4.60	4.76	4.88	4.99	5.08	5.16	5.23	5.29

Table 29 of E. Pearson and H. O. Hartley, Biometrika Tables for Statisticians, 2nd ed. New York: Cambridge University Press, 1958. Adapted and reprinted with permission of the Biometrika trustees.

Other post-hoc tests

Games-Howell Test

For unequal variance (unequal sample size)

Calculations are the same as Tukey's but df is calculated using the formula used for unequal sample t-test (Slide 1)

For unequal sample size

degrees of freedom, df =
$$\frac{\left(\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}\right)^{2}}{\frac{1}{n_{1} - 1}\left(\frac{s_{1}^{2}}{n_{1}}\right)^{2} + \frac{1}{n_{2} - 1}\left(\frac{s_{2}^{2}}{n_{2}}\right)^{2}}$$

Reporting results

- Using a one way ANOVA we observed that the schooling method has a significant effect on exam performance $F_{(2,42)} = 6.47$, p=.003, $\eta^2 = .24$
- Using Bonferroni post-hoc test, we found that regular school resulted in better exam performance than boarding school (p<.001). There was no significant difference between the other groups.

Error bars denote confidence intervals

ANOVA assumptions

- 1. The populations from which the samples are selected must be normal (parametric vs non-parametric)
- Shapiro-Wilk test / Kolmogorov-Smirnov test

If violated – use Kruskal –Wallis Test

Typically for n>25 in each group, normality can be overlooked in ANOVA

- 2. The populations from which the samples are selected must have equal variances* (homogeneity of variance).
- Levene's or Hartley's F-max test for homogeneity of variance

If violated, solution -

- 1. Collect more samples and equate samples in all groups.
- 2. Data transformations natural log or square root transformations Consequences -- once you transform a variable and conduct your analysis, you can only interpret the transformed variable. You cannot provide an interpretation of the results based on the untransformed variable values.

NORMAL DISTRIBUTIONS WITH SIMILAR MEANS, DIFFERENT VARIANCES.

ANOVA is a robust statistical test, slight violations of assumptions has minor effects on the test outcomes. As long as the largest variance < 4-5 times smallest variance, ANOVA results are valid

Homogeneity of variances (homoscedasticity)

$$F\text{-max} = \frac{s^2(\text{largest})}{s^2(\text{smallest})}$$

F-max $\sim 1.00 \rightarrow$ sample variances are similar and homogenous Look up df=(n-1), k in the Fmax table

If your calculated value table value, the variance is not homogeneous.

TABLE B.3 Critical Values for the F-Max Statistic*

^{*}The critical values for $\alpha = .05$ are in lightface type, and for $\alpha = .01$, they are in boldface type.

					k = Numb	er of Sample	es				
<i>n</i> – 1	2	3	4	5	6	7	8	9	10	11	12
4	9.60	15.5	20.6	25.2	29.5	33.6	37.5	41.4	44.6	48.0	51.4
	23.2	37.	49.	59.	69.	79.	89.	97.	106.	113.	120.
5	7.15	10.8	13.7	16.3	18.7	20.8	22.9	24.7	26.5	28.2	29.9
	14.9	22.	28.	33.	38.	42.	46.	50.	54.	57.	60.
6	5.82	8.38	10.4	12.1	13.7	15.0	16.3	17.5	18.6	19.7	20.7
	11.1	15.5	19.1	22.	25.	27.	30.	32.	34.	36.	37.
7	4.99	6.94	8.44	9.70	10.8	11.8	12.7	13.5	14.3	15.1	15.8
	8.89	12.1	14.5	16.5	18.4	20.	22.	23.	24.	26.	27.
8	4.43	6.00	7.18	8.12	9.03	9.78	10.5	11.1	11.7	12.2	12.7
	7.50	9.9	11.7	13.2	14.5	15.8	16.9	17.9	18.9	19.8	21.
9	4.03	5.34	6.31	7.11	7.80	8.41	8.95	9.45	9.91	10.3	10.7
	6.54	8.5	9.9	11.1	12.1	13.1	13.9	14.7	15.3	16.0	16.6
10	3.72	4.85	5.67	6.34	6.92	7.42	7.87	8.28	8.66	9.01	9.34
	5.85	7.4	8.6	9.6	10.4	11.1	11.8	12.4	12.9	13.4	13.9
12	3.28	4.16	4.79	5.30	5.72	6.09	6.42	6.72	7.00	7.25	7.48
	4.91	6.1	6.9	7.6	8.2	8.7	9.1	9.5	9.9	10.2	10.6
15	2.86	3.54	4.01	4.37	4.68	4.95	5.19	5.40	5.59	5.77	5.93
	4.07	4.9	5.5	6.0	6.4	6.7	7.1	7.3	7.5	7.8	8.0
20	2.46	2.95	3.29	3.54	3.76	3.94	4.10	4.24	4.37	4.49	4.59
	3.32	3.8	4.3	4.6	4.9	5.1	5.3	5.5	5.6	5.8	5.9
30	2.07	2.40	2.61	2.78	2.91	3.02	3.12	3.21	3.29	3.36	3.39
	2.63	3.0	3.3	3.5	3.6	3.7	3.8	3.9	4.0	4.1	4.2
60	1.67	1.85	1.96	2.04	2.11	2.17	2.22	2.26	2.30	2.33	2.36
	1.96	2.2	2.3	2.4	2.4	2.5	2.5	2.6	2.6	2.7	2.7

Table 31 of E. Pearson and H.O. Hartley, Biometrika Tables for Statisticians, 2nd ed. New York: Cambridge University Press, 1958. Adapted and reprinted with permission of the Biometrika trustees.

Levene's Test (more robust)

$$W = rac{(N-k)}{(k-1)} \cdot rac{\sum_{i=1}^k N_i (Z_{i\cdot} - Z_{\cdot\cdot})^2}{\sum_{i=1}^k \sum_{i=1}^{N_i} (Z_{ij} - Z_{i\cdot})^2}$$

where

- k is the number of different groups to which the sampled cases belong,
- N_i is the number of cases in the *i*th group,
- N is the total number of cases in all groups,
- ullet Y_{ij} is the value of the measured variable for the jth case from the ith group,
- $ullet Z_{ij} = |Y_{ij} ar{Y}_{i\cdot}|, \quad ar{Y}_{i\cdot} ext{ is a mean of the i-th group,}$
- $ullet Z_{i\cdot} = rac{1}{N_i} \sum_{j=1}^{N_i} Z_{ij}$ is the mean of the Z_{ij} for group i ,
- $ullet Z_{\cdot \cdot} = rac{1}{N} \sum_{i=1}^k \sum_{j=1}^{N_i} Z_{ij}$ is the mean of all Z_{ij} .

https://www.youtube.com/watch?v=gL7K4vZq0Z4

Steps in ANOVA

- Check for normality (parametric vs non-parametric tests)
- Check homogeneity of variances (spread of the data is equal across groups or not)
- Choose the appropriate test (ANOVA, Kruskal-Wallis, Welch)
- Only if main effect (F) significant, use a post-hoc test
- Report effect size for significant effects
- Plot analyzed data

One way (One factor, One IV) ANOVA

Testing homogeneity

Ho – variance across groups is equal

H1 – variance across groups is unequal

Tests of Homogeneity of Variances

		Levene Statistic	df1	df2	Sig.
exam_performance	Based on Mean	1.675	2	42	.200
	Based on Median	1.648	2	42	.205
	Based on Median and with adjusted df	1.648	2	35.806	.207
	Based on trimmed mean	1.690	2	42	.197

Tests of Normality

	Kolm	ogorov-Smir	nov ^a			
school_code	Statistic	df	Sig.	Statistic	df	Sig.
home school	.155	15	.200*	.905	15	.115
boarding school	.114	15	.200*	.969	15	.847
regular scchool	.100	15	.200*	.975	15	.923
	home school	school_code Statistic home school .155 boarding school .114	school_code Statistic df home school .155 15 boarding school .114 15	home school .155 15 .200* boarding school .114 15 .200*	Kolmogorov-Smirnov ^a S school_code Statistic df Sig. Statistic home school .155 15 .200° .905 boarding school .114 15 .200° .969	school_code Statistic df Sig. Statistic df home school .155 15 .200* .905 15 boarding school .114 15 .200* .969 15

^{*.} This is a lower bound of the true significance.

Exam performance Home Boarding Regular Day school school school

a. Lilliefors Significance Correction

(When normality is violated)

$H=(rac{12}{N(N+1)}\sum\limits_{j=1}^{k}rac{R_{j}^{2}}{n_{j}})-3(N+1)$

Kruskal-Wallis Test

Where, N = Total observation in all groups (total sample size); k = Number of groups; n_j = sample size for jth group, and R_j is the sum of ranks of jth group

(a) Original Numerical Scores

	. ,		
I	II	III	
14	2	26	N = 15
3	14	8	
21	9	14	
5	12	19	
16	5	20	
$n_{1} = 5$	$n_2 = 5$	$n_3 = 5$	
	(b) Ordinal l	Data (Ranks)	
I	II	III	
J 9	II 1	III 15	N = 15
			N = 15
9	1	15	N = 15
9 2	1 9	15 5	N = 15
9 2 14	1 9 6	15 5 9	N = 15
9 2 14 3.5	1 9 6 7 3.5	15 5 9 12 13	N = 15

$$H = \frac{12}{N(N+1)} \left(\sum_{n=0}^{T^2} \frac{1}{n} \right) - 3(N+1)$$

$$H = \frac{12}{15(16)} \left(\frac{39.5^2}{5} + \frac{26.5^2}{5} + \frac{54^2}{5} \right) - 3(16)$$

$$= 0.05(312.05 + 140.45 + 583.2) - 48$$

$$= 0.05(1035.7) - 48$$

$$= 51.785 - 48$$

$$= 3.785$$

Use chi-square distribution

With
$$df = (k-1) = 2$$

Heritical = 5.99 for $\alpha = .05$

H
$$(3.785) < 5.99$$

Accept H_0 .

Since the data were not normally distributed, Kruskal-Wallis test for non-parametric data was used to evaluate differences among the three treatments. The outcome of the test indicated no significant differences among the treatment conditions, H = 3.785 (2, N = 15), p > .05.

Use post-hoc tests to assess individual group differences

(When homogeneity is violated)

Welch ANOVA Test

$$F = \frac{\frac{1}{k-1} \sum_{j=1}^{k} w_j (\bar{x}_j - \bar{x}')^2}{1 + \frac{2(k-2)}{k^2 - 1} \sum_{j=1}^{k} \left(\frac{1}{n_j - 1}\right) \left(1 - \frac{w_j}{w}\right)^2}$$

$$w_j = \frac{n_j}{s_j^2} \qquad w = \sum_{j=1}^k w_j \qquad \bar{x}' = \frac{\sum_{j=1}^k w_j \, \bar{x}_j}{w}$$

$$F \sim F(k-1, df)$$

$$df = \frac{k^2 - 1}{3\sum_{j=1}^k \left(\frac{1}{n_j - 1}\right) \left(1 - \frac{w_j}{w}\right)^2}$$

Welch ANOVA est. $\omega^2 = \frac{df_{bet}(F-1)}{df_{bet}(F-1) + N_T}$

Robust Tests of Equality of Means

exam_performance

	Statistic ^a	df1	df2	Sig.
Welch	8.954	2	26.995	.001

a. Asymptotically F distributed.

The degrees of freedom for Welch's t-test takes into account the difference between the two standard deviations.

df with decimal places → round off to look up in the F table

One way Repeated Measures ANOVA

Advantage?

Disadvantage?

subjects	T1 counseling	T2 Anti-anxiety meds	T3 both
1	20	11	2
2	6	2	7
3	2	11	2

One way Repeated Measures ANOVA

	Dependent variable (DV)						
Participants	Timepoint 1	Timepoint 2	Timepoint 3				
1	20	11	2				
2	6	2	7				
3	2	11	2				

Source of variance	SS	df	MS	F
Between	SSbetween	k-1	MSbetween = <u>SSbetween</u> k-1	F = <u>MSbetween</u> MSerror
Within	SSwithin			
Subjects	SSubjects	n-1		
Error (left-over error)	Sserror = Sswithin - SSsubjects	(k-1)(n-1)	$MSerror = \underline{SSerror} $ $(k-1)(n-1)$	
Total	SStotal	N-1		

subjects	conditions	scores	means	diff	diff_squared
1	А	20 28/3	9.33	2.33	5.4289
2	Α	11	8	1	1
3	Α	2	3.66	-3.34	11.1556
1	В	6	9.33	2.33	5.4289
2	В	2	8	1	1
3	В	7	3.66	-3.34	11.1556
1	С	2	9.33	2.33	5.4289
2	С	11	8	1	1
3	С	2	3.66	-3.34	11.1556
Sums		63	62.97	-0.0299	52.75 SSs t
Means		7	6.997	-0.0033	5.8615

$$SSwithin = SSsubjects + Sserror$$

 $SSerror = 230 - 52.75 = 177.25$

subjects	conditions	scores	diff	diff_squared
1	Α	20	13	169
2	Α	11	4	16
3	Α	2	-5	25
1	В	6	-1	1
2	В	2	-5	25
3	В	7	0	0
1	С	2	-5	25
2	С	11	4	16
3	С	2	-5	25
Sums		63	0	302 SStotal
Means		7	0	33.556

subjects	conditions	scores	means	diff	diff_squared
1	Α	20	11	4	16
2	Α	11	11	4	16
3	Α	2	11	4	16
1	В	6	5	-2	4
2	В	2	5	-2	4
3	В	7	5	-2	4
1	С	2	5	-2	4
2	С	11	5	-2	4
3	С	2	5	-2	4
Sums		63	63	0	72 SSbetween
Means		7	7	0	8

subjects	conditions	scores	means	diff	diff_sq	uared
1	Α	20	11	-9	81	
2	Α	11	11	0	0	
3	Α	2	11	9	81	
1	В	6	5	-1	1	
2	В	2	5	3	9	
3	В	7	5	-2	4	
1	С	2	5	3	9	
2	С	11	5	-6	36	
3	С	2	5	3	9	
Sums		63	63	0	230	SSwithin
Means		7	7	0	25.556	

Measure: MEASURE_1

Source of variance	SS	df	MS	F	p
Between	52.67	2	26.33	0.594	.59
Error (left-over error)	177.33	4	44.33		

Source		Type III Sum of Squares	df	Mean Square	F	Sig.
factor1	Sphericity Assumed	52.667	2	26.333	.594	.594
	Greenhouse-Geisser	52.667	1.814	29.032	.594	.584
	Huynh-Feldt	52.667	2.000	26.333	.594	.594
	Lower-bound	52.667	1.000	52.667	.594	.521
Error(factor1)	Sphericity Assumed	177.333	4	44.333		
	Greenhouse-Geisser	177.333	3.628	48.877		
	Huynh-Feldt	177.333	4.000	44.333		
	Lower-bound	177.333	2.000	88.667		

Tests of Within-Subjects Effects

Using a one way repeated measures ANOVA we observed that there was no difference in scores in the 3 the timepoints $F_{(2,4)} = 0.594$, p=.59.

Mauchly's sphericity test

Sphericity \rightarrow condition where the variances of related groups (levels T1, T2, T3) are equal.

- Analogous to homogeneity of variances
- Used specifically in repeated measures testing

Dfbetween OR
$$df_{time/condition} = (k-1)$$

$$df_{error} = (k-1)(n-1)$$

$$df_{time/condition} = \hat{\varepsilon}(k-1)$$
$$df_{error} = \hat{\varepsilon}(k-1)(n-1)$$

homogenous

Mauchly's Test of Sphericity^a

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to an identity matrix.

- a. Design: Intercept
 Within Subjects Design: factor1
- b. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the Tests of Within-Subjects Effects table.

Steps in ANOVA

- Check for normality
- Check homogeneity of variances (different participants in different groups, Factorial ANOVA)
- Check for sphericity of variances (same participants across groups, repeated measures ANOVA)
- Choose the appropriate test
- Only if main effect (F) significant, use a post-hoc test
- Report effect size for significant effects
- Plot analyzed data

One way (One DV) repeated measures ANOVA

Test/Exam Scores

Mauchly's Test of Sphericity^a

Student	Reread	Answer Prepared Questions	Create and Answer Questions
A	2	5	8
В	3	9	6
C	8	10	12
D	6	13	11
E	5	8	11
F	6	9	12

Measure: test_score							
						Epsilon ^b	
		Approx. Chi-			Greenhouse-		
Within Subjects Effect	Mauchly's W	Square	df	Sig.	Geisser	Huynh-Feldt	
factor1	.372	3.957	2	.138	.614	.712	

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportion to an identity matrix.

- a. Design: Intercept Within Subjects Design: factor1
- b. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the Tests of Within-Subjects Effects table.

Tests of Within-Sub	jects Effects
---------------------	---------------

Measure: tes	t_score						
Source		Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
factor1	Sphericity Assumed	84.000	2	42.000	19.091	<.001	.792
	Greenhouse-Geisser	84.000	1.228	68.380	19.091	.004	.792
	Huynh-Feldt	84.000	1.424	58.991	19.091	.002	.792
	Lower-bound	84.000	1.000	84.000	19.091	.007	.792
Error(factor1)	Sphericity Assumed	22.000	10	2.200			
	Greenhouse-Geisser	22.000	6.142	3.582			
	Huynh-Feldt	22.000	7.120	3.090			
	Lower-bound	22.000	5.000	4.400			

	l ests of Normality			<50 samples		
	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Statistic	df	Sig.	Statistic	df	Sig.
reread	.176	6	.200*	.955	6	.783
answer_questions	.184	6	.200*	.957	6	.799
create_answer_question s	.325	6	.047	.827	6	.101

Tasks of Navesalike

- *. This is a lower bound of the true significance.
- a. Lilliefors Significance Correction

Using a one way repeated measures ANOVA we observed that strategy for studying in preparation for a test had an effect on exam score $F_{(2,10)} = 19.09$, p<.001, $\eta^2 = .79$

Tests of Within-Subjects Contrasts

Measure: test_score

Source	factor1	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
factor1	Linear	75.000	1	75.000	93.750	<.001	.949
	Quadratic	9.000	1	9.000	2.500	.175	.333
Error(factor1)	Linear	4.000	5	.800			
	Quadratic	18.000	5	3.600			

Using a one way repeated measures ANOVA we observed that strategy for studying in preparation for a test had an effect on exam score $F_{(2,10)} = 19.09$, p<.001, $\eta^2 = .79$

Within-subjects contrasts revealed that there was a linear trend $F_{(1,5)} = 93.75$, p<.001, $\eta^2 = .95$

Error bars denote standard deviations

Friedman's Test (non-normal repeated measures)

$$\mathbf{M} = \frac{12}{Nk(k+1)} \sum_{i=1}^{n} R_i^2 - 3N(k+1)$$

Where, k = number of columns (treatments)

n = number of rows (blocks)

 R_i = sum of the ranks

Related-Samples Friedman's Two-Way Analysis of Variance by Ranks Summary

Total N	6
Test Statistic	9.333
Degree Of Freedom	2
Asymptotic Sig.(2-sided test)	.009

Student	Reread	Answer Prepared Questions	Create and Answer Questions
A	2	5	8
В	3	9	6
C	8	10	12
D	6	13	11
E	5	8	11
F	6	9	12

	Rank					
1	2	3				
1	3	2				
1	2	3				
1	3	2				
1	2	3				
1	2	3				
Sum = 6	14	16				

IV – categorical

DV – continuous (interval, ratio)

		Independent factor	Dependent (Related) Samples		
		1 IV	1 DV		
		> 2 groups	> 2 timepoints		
Parametric (normal)	Homogeneous	One way ANOVA	Repeated measures ANOVA		
	Non homogenous	Welch ANOVA	Sphericity correction		
Non-parametric		Kruskal-Wallis ANOVA	Friedman's ANOVA		

In class activity

Exam performance					
Home school	Boarding school	Regular Day			
89	85	91			
75	78	88			
49	59	84			
87	77	81			
84	63	91			
68	88	75			
88	71	69			
78	73	93			
77	69	95			
93	80	85			
67	72	87			
79	68	84			
69	66	83			
88	59	80			
91	. 70	77			

- Check for normality
- Check homogeneity of variances (different participants in different groups, Factorial ANOVA)
- Check for sphericity of variances (same participants across groups, repeated measures ANOVA)
- Choose the appropriate test
- Only if main effect (F) significant, use a post-hoc test
- Report effect size for significant effects
- Plot analyzed data