PHSX 461: HW07

William Jardee

November 3, 2021

3.7

- a) Suppose that f(x) and g(x) are two eigenfunctions of an operator \hat{Q} , with the same eigenvalue q. Show than any linear combination of f and g is itself an eigenfunction of \hat{Q} , with eigenvalue q.
- b) Check that f(x) = exp(x) and g(x) = exp(-x) are eigenfunctions of the operator d^2/dx^2 , with the same eigenvalue. Construct two linear combinations of f and g that are orthogonal eigenfunctions on the interval (-1,1).

- a) Cite a Hamiltonian from Chapter 2 (other than the harmonic oscillator) that has only a discrete spectrum.
- b) Cite a Hamiltonian from Chapter 2 (other than the free particle) that has only a continuous spectrum.
- c) Cite a Hamiltonian from Chapter 2 (other than the finite square well) that has both a discrete and a continuous part to its spectrum.

Show that

$$\langle x \rangle = \int \Phi^* \left(i\hbar \frac{\partial}{\partial p} \right) \Phi \, \mathrm{d}p$$

Notice that $x \exp(ipx/\hbar) = -i\hbar(\partial/\partial p) \exp(ipx/\hbar)$, and use Equation 2.147. In momentum space, then, the position operator is $i\hbar \partial/\partial p$. More generally,

Consider a three-dimensional vector space spanned by an orthonormal basis $|1\rangle$, $|2\rangle$, $|3\rangle$. Kets $|\alpha\rangle$ and $|\beta\rangle$ are given by

$$|\alpha\rangle = i |1\rangle - 2 |2\rangle - i |3\rangle$$
, $|\beta\rangle = i |1\rangle + 2 |3\rangle$

- a) Construct $\langle \alpha |$ and $\langle \beta |$ (in terms of the dual basis $\langle 1 |$, $\langle 2 |$, $\langle 3 |$).
- b) Find $\langle \alpha | \beta \rangle$ and $\langle \beta | \alpha \rangle$, and confirm that $\langle \beta | \alpha \rangle = \langle \alpha | \beta \rangle^*$.
- c) Final all nine matrix elements fo the operator $\hat{A} = |\alpha\rangle\langle\beta|$, in this basis, and construct the matrix A. Is it hermitian?

Question 5.

Prove that the momentum operator, \hat{p} is Hermitian.

Hint: you will need to assume that any functions you use are normalizable. You may also use the results from the previous homework assignment.

An operator \hat{A} , representing observable A, has two (normalized) eigenstates ψ_1 and ψ_2 , with eigenvalues a_1 and a_2 , respectively. Operator \hat{B} , representing observable B, has two (normalized) eigenstates ϕ_1 and ϕ_2 , with eigenvalues b_1 and b_2 . The eigenstates are related by

$$\psi_1 = (3\phi_1 + 4\phi_2)/5, \qquad \psi_2 = (4\phi_1 - 3\phi_2)/5$$

- a) Observable A is measured, and the value a_1 is obtained. What is the state of the system (immediately after this measurement?
- b) If B is now measure, what are the possible results, and what are their probabilities?
- c) Right after the measurement of B, A is measured again. What is the probability of getting a_1 ? (Note that the answer would be quite different if I had told you the outcome of the B measurement.