Special Cases in Simplex Method

Divyansh Verma

SAU/AM(M)/2014/14

South Asian University

Email: itsmedv91@gmail.com

Contents

- Simplex Method
- Simplex Table
- Special Cases of Simplex Method
 - Degeneracy
 - Alternative Optima
 - Unbounded Solution
 - Infeasible Solution
- References

Simplex Method

Step 1 Determine a starting basic feasible solution.

Step 2 Determine the entering basic variable by selecting the non-basic variable with the most negative value (in case of maximization) or with the most positive (in case of minimization) in the Z-row. Stop if there is no entering variable, the last solution is optimal.

Else, go to Step 3.

Select a leaving variable using the feasibility condition Step 3

: Determine the new basic solution by using the Step 4 appropriate Gauss-Jordan computations.

Repeat Step 2.

Simplex Table

A format of Simplex Table for some given LPP, here X_j are Decision Variables, S_j are Slack Variables, a_{ij} is the coefficient of X_i corresponding to i^{th} constraint.

Right Hand Side Value of Constraints

Special Cases in Simplex

Special Cases that arise in the use of Simplex Method:

- 1. Degeneracy
- 2. Alternative Optima
- 3. Unbounded Solution
- 4. Infeasible Solution

Degeneracy

A solution of the problem is said to be degenerate solution if the value of at least one basic variable becomes zero.

In the simplex table, a tie for the minimum ratio occurs which is broken arbitrarily.

It can cause the solution to cycle indefinitely.

Graphically, it occurs due to **redundant constraint** (i.e. a constraint that can be removed from system without changing the feasible solution).

Degeneracy

For example, consider the problem

Max
$$z = 3x_1 + 9x_2$$
; **Subject to**: $x_1 + 4x_2 \le 8$; $x_1 + 2x_2 \le 4$; $x_1, x_2 \ge 0$

•	Basic	X ₁	X ₂	S ₁	S ₂	Solution	Min	
_	Variable						Ratio	
	Z_0	-3	-9	0	0	0	-	
X ₂ enters	S_1	1	4	1	0	8	2	Tie in Min Ratio
S_1 leaves	S ₂	1	2	0	1	4	2	(Degeneracy)
_	Z_2	-3/4	0	9/4	0	18	-	S ₂ becomes zero
V ontors	X ₂	1/4	1	1/4	0	2	8	in next iteration
X ₁ enters S ₂ leaves	S ₂	1/2	0	-1/2	1	0	0	because of
	Z_3	0	0	3/2	3/2	18	-	degeneracy
	X_2	0	1	1/2	-1/2	2	-	
•	X ₁	1	0	-1	2	0	-	
_	·					·		•

Alternative Optima

If the z-row value for one or more non-basic variable is zero in the optimal tableau, alternate optimal solution exists.

Graphically, it happens when the objective function is parallel to a non-redundant binding constraint (i.e. a constraint that is satisfied as an equation at the optimal solution).

The zero coefficient of non-basic variable x_i indicates that it can be made basic, altering the value of basic variable without changing the value of z.

Alternative Optima

For example, consider the problem

Max
$$z = 2x_1 + 4x_2$$
; Subject to: $x_1 + 2x_2 \le 5$; $x_1 + x_2 \le 4$; $x_1, x_2 \ge 0$

	Basic Variable	X_1	X_2	S ₁	S ₂	Solution	Min Ratio
•	Z_0	-2	-4	0	0	0	
V ontors	S ₁	1	2	1	0	5	5/2
X ₂ enters S ₁ leaves X ₁ enters S ₂ leaves	S ₂	1	1	0	1	4	4/1
	Z_2	0	0	2	0	10	
	X_2	1/2	1	1/2	0	5/2	5
	S ₂	1/2	0	-1/2	1	3/2	3
	Z_3	0	0	2	0	10	
	X_2	0	1	1	-1	1	-
	X_1	1	0	-1	2	3	<u>-</u>

Optimum Solution, but coefficient of non-basic variable X₁ is 0, indicates that it can be made basic.

Alternate Optimum Solution X_1, X_1 are basic variables.

Unbounded Solution

When determining the leaving variable of any tableau, if there is no positive minimum ratio or all entries of pivot column are negative or zero.

For example, consider the problem

Max
$$z = 2x_1 + x_2$$
; **Subject to**: $-x_1 + x_2 \le 10$; $-2x_1 \le 40$; $x_1, x_2 \ge 0$

X1 is the entering variable but all the constraint coefficients under X1 are ≤ 0, meaning that X1 can be increased indefinitely, which gives unbounded solution.

Basic Variable	X ₁	X ₂	S ₁	S ₂	Solution	Min Ratio
Z_0	-2	-1	0	0	0	-
S_1	-1	1	1	0	10	-
S ₂	2	0	0	1	40	-

Infeasible Solution

If at least one artificial variable is positive in the optimum iteration, then the LPP has no feasible solution.

This situation obviously does not occur when all the constraints are type ≤ with non-negative right-hand side because all slack variables provide an obvious feasible solution.

So, this situation occurs in Big-M Method & Two-Phase Method in which artificial variable are used.

Infeasible Solution

For example, consider the problem

Max
$$z = 3x_1 + 2x_2$$
; Subject to: $2x_1 + x_2 \le 2$; $3x_1 + 4x_2 \ge 12$; $x_1, x_2 \ge 0$

Basic Variable	X_1	X_2	S ₁	S ₂	R_1	Solution	Min Ratio
Z_0	-3	-2	0	0	100	0	-
S_1	2	1	1	0	0	2	-
R_1	3	4	0	-1	1	12	-
Z_0	-303	-402	100	0	0	-1200	-
S ₁	2	1	1	0	0	2	2
R_1	3	4	0	-1	1	12	3 /
$\overline{Z_1}$	501	0	402	100	0	-396 —	
X_2	2	1	1	0	0	2	-

-1

4

X₂ enters S₁ leaves Pseudo
Optimum
Solution, but
artificial
variable has a
positive value.

 R_1

-5

References

- Operations Research An introduction (9th edition), Hamdy A. Taha, 2013
- http://www.lokminglui.com/lpch4.pdf
- https://www.utdallas.edu/~metin/Or6201/specialcases.pdf

THANK YOU