

MID-TERM EXAMINATION

Course: COMPUTER SYSTEM PROGRAMMING

Time: **60 minutes** Term: 1 – Academic year: **2021-2022**

Lecturer(s): **Dinh Dien**

Student name: Student ID:

Problem 1. (20 points)

Assume we are running code on a 5-bit binary and 2-digit hexadecimal machine and we can represent a decimal number in 1's complement, 2's complement and bias 10. Fill in the empty boxes. Write number in 2-digit hexadecimal format. If the number can not be represented, please fill " ".

Description	1's complement	2's complement	Bias 10
0			
-10			
12			
-17			
25			

Sh	ort ex	xplanatio	n:						
		-							
-		0 (00	• 4	`					

Problem 2. (20 points)

Assume a 12-bit floating-point representation (1 sign bit, 5 exponent bits, and 6 fraction bits). Use "round to nearest, half to even" (as in IEEE 754).

a. Convert 0 10100 110011 (a 12-bit FP) to its decimal equivalent.
The exponent is:
The value of the fraction (without implicit 1.) is:
Final decimal value:
b. Convert –32.8 to its 12-bit floating-point equivalent.
The base-2 normal notation is:
The 5-bit encoding of the exponent is:
The 6-bit encoding of the fraction is:
c. Using the same 12-bit floating-point format (3 hex digits):
Hex encoding of positive infinity:
Hex encoding of smallest positive, normalized number:
Short explanation:

Problem 3. (20 points)

In the following questions assume the variables a and b are signed integers and that the machine uses two's complement representation. Also assume that MAX_INT is the maximum integer, MIN_INT is the minimum integer, and W is one less than the word length (e.g., W=31 for 32-bit integers).

Match each of the descriptions on the left with a line of code on the right.

1. a&b	a. $\sim (\sim a \mid (b \land (MIN_INT + MAX_INT)))$
2. a	b. ((a^b) & ~b) (~(a^b) & b)
3. a*7	c. $1 + (a << 3) + \sim a$
4. (a<0)?1:-1	d. $(a << 4) + (a << 2) + (a << 1)$
5. !a	e. $a^{MIN_{INT} + MAX_{INT}}$
	f. $\sim ((a \mid (\sim a + 1)) >> W) \& 1$
	g. $\sim ((a >> W) << 1)$
	h. a >> 2

Short explanation:

Problem 4. (20 points)

Address	Value		Register	Value
0x100	0xFF	•	%eax	0x100
0x104	0xAB		%ecx	0x1
0x108	0x09		%edx	0x3
0x10C	0x11			

Fill in the following table the effect of the following instructions, both in term of the register or memory location that will be updated and the resulting value:

Instruction	Destination	Value
addl %edx,%eax		
subl %edx,-1(%eax,edx,2)		

incl %eax	
imull \$2,4(%eax)	
subl (%eax),-4(%eax)	

Short explanation:_

Problem 5. (20 points)

Complete the C code

```
/* a=%rdi, i=%esi, x=%rdx, y=%rcx */
                                        f2:
long f2(long *a, int i,long x, long y)
                                              movl $1, %r8d
                                              mov1 $0, %r10d
                                        .L2:
      long res = 0;
      for (int j = ___;___ ; j++)
                                              cmpl %esi, %r8d
                                              jg .L6
            res = ___ ;
                                              movl %esi, %r9d
            if ( ___ > ___ )
                                              subl %r8d, %r9d
                                              movslq %r9d, %r9
                  return ____;
                                              addq (%rdi,%r9,8), %r10
                                              leaq (%r10,%rcx), %r9
            }
                                              cmpq %rdx, %r9
      }
      return ___;
                                              jg .L5
                                              addl $1, %r8d
}
                                              jmp .L2
                                        .L6:
                                              leaq (%r10,%rdx), %rax
                                              ret
                                        .L5:
                                              movq %rcx, %rax
                                              ret
```

Short explanation:_____