Math 6337 Real Analysis - HW 2

Caitlin Beecham

1. Cantor sets of positive measure:

The usual Cantor set is obtained by removing "open middle thirds", so that at the nth stage we obtain C_n by removing 2^{n-1} intervals of length $\left(\frac{1}{3}\right)^n$ from C_{n-1} . Now let $\delta \in (0,1)$. Assume that instead at the nth stage, we obtain C_n^{δ} from C_{n-1}^{δ} by removing 2^{n-1} intervals of length $\delta \left(\frac{1}{3}\right)^n$, one each from the middle of each interval in C_{n-1}^{δ} . Let

$$C^{\delta} = \bigcap_{n=1}^{\infty} C_n^{\delta}.$$

Show that

$$\left| C^{\delta} \right| = 1 - \delta.$$

Thus this is a Cantor type set of positive measure.

Plan:

- (a) Let $V_i = \bigcap_{n=1}^i C_n^{\delta}$.
- (b) We show that $V_i = C_i^{\delta}$ for all $i \in \mathbb{N}_{\geq 1}$.
- (c) Note that $V_i \setminus V^{\delta}$.
- (d) Show that V_i measurable for all $i \in \mathbb{N}$.
- (e) Show that $|V_i| < \infty$ for some $i \in \mathbb{N}$.
- (f) Then we know that $\lim_{i\to\infty} |V_i| = |C^{\delta}|$.
- (g) So, show that $\lim_{i\to\infty} |V_i| = 1 \delta$.

First, we show 1b. Well, in particular note that $C_n^{\delta} = C\delta_{n-1} \setminus (\bigcup_{i=1}^{2^{n-1}} I_n^i)$, where $\{I_n^i : i \in [2^{n-1}]\}$ are the set of open intervals we are removing at this stage. Thus, $C_n^{\delta} \subseteq C_{n-1}^{\delta}$ for all $n \in \mathbb{N}_{\geq 1}$. Thus, $V_i = \bigcap_{n=1}^i C_n^{\delta} = C_i^{\delta}$ for all $i \in \mathbb{N}_{\geq 1}$.

We show 1d inductively. Namely, note that $C_0^{\delta} = [0,1]$ which is closed and thus measurable, which finishes the base case. Then, for the inductive step, for all $n \in \mathbb{N}_{\geq 1}$ one has that $C_n^{\delta} = C\delta_{n-1} \setminus (\bigcup_{i=1}^{2^{n-1}} I_n^i)$, where $\{I_n^i : i \in [2^{n-1}]\}$ are the set of open intervals we are removing at this stage. Now, I_n^i is an open set for all $i \in [2^{n-1}]$ which means that I_n^i is measurable. Then $S_n := \bigcup_{i=1}^{2^{n-1}} I_n^i$ is a countable union of measurable

sets and is thus measurable. By our inductive hypothesis C_{n-1}^{δ} is measurable. Now, since the set difference of any two sets is measurable we know that

$$C_n^{\delta} = C_{n-1}^{\delta} \setminus (\bigcup_{i=1}^{2^{n-1}} I_n^i)$$

is measurable.

Now, we show 1e. Note that $|C_0| = |C_0|_e = \inf\{\sigma(S) : S \text{ covers } C_0\}$ (where S is a countable union of intervals). In particular, $C_0 = [0, 1]$ which is itself an interval. We proved consistency of exterior measure, namely that |I| = v(I) for all intervals $I \in \mathbb{R}$. Here $|C_0| = v(C_0) = 1 < \infty$.

Finally, we show 1g. Recall that $V_i = C_i^{\delta}$ for all $i \in \mathbb{N}_{\geq 1}$. Namely, we aim to show that each C_n^{δ} is the disjoint union of some finite number of intervals of certain lengths to be calculated.

First, $C_0^{\delta} = [0, 1]$ and is one interval of length (or volume) 1.

NOTE from now on I have a change of notation! The I_i^j 's are now intervals BELONG-ING to the cantor set C_i^{δ} (not what we are taking out). This is made precise below. I just realized I used the same notation twice for different things so I thought I should make a note.

Then, note that $C_1^{\delta} = I_1^1 \sqcup I_1^2$ where $v(I_1^i) = \frac{1-\delta \frac{1}{3}}{2}$ for $i \in [2]$.

Next, note that $C_2^{\delta} = I_2^1 \sqcup I_2^2 \sqcup I_2^3 \sqcup I_2^4$ where $v(I_2^1) = v(I_2^2) = \frac{v(I_1^1) - \delta(\frac{1}{3})^2}{2}$ and similarly $v(I_2^3) = v(I_2^4) = \frac{v(I_1^2) - \delta(\frac{1}{3})^2}{2}$.

In general, for $n \geq 1$, one has that

$$C_n^{\delta} = \bigsqcup_{k=1}^{2^n} I_n^k$$

where $v(I_n^k) = \frac{v(I_{n-1}^1) - \delta(\frac{1}{3})^n}{2}$.

We denote $a_i = v(I_i^1)$ for $i \in \mathbb{N}_{\geq 1}$ (and note that $v(I_i^k) = v(I_i^j)$ for all $k, j \in [2^i]$). Now, we aim to show that $2^i a_i \to 1 - \delta$ as $i \to \infty$.

Note that after some computation one sees that

$$a_i = \frac{1}{2^i} \left(1 - \delta \left(\sum_{j=0}^{i-1} 2^{i-j-1} \frac{1}{3}^{i-j} \right) \right)$$

and thus,

$$2^{i}a_{i} = 1 - \delta(\sum_{j=0}^{i-1} 2^{i-j-1} \frac{1}{3}^{i-j}).$$

Now, we wish to show that $Q_i := \left(\sum_{j=0}^{i-1} 2^{i-j-1} \frac{1}{3}^{i-j}\right) \to 1$ as $i \to \infty$.

Note that by reindexing to get k = i - j (which means j = i - k) one has

$$Q_{i} = \frac{1}{2} \sum_{j=0}^{i-1} 2^{i-j} \frac{1}{3}^{i-j}$$
$$= \frac{1}{2} \sum_{k=1}^{i} 2^{k-1} \frac{1}{3}^{k}$$
$$= \frac{1}{2} \sum_{k=1}^{i} \frac{2^{k}}{3}.$$

Then, recall that $\sum_{k=1}^{i} \frac{2^k}{3}$ is convergent by the geometric series test and one has that

$$\sum_{k=1}^{\infty} \frac{2^k}{3} = \frac{\frac{2}{3}}{(1 - \frac{2}{3})}$$
$$= \frac{\frac{2}{3}}{(\frac{1}{3})}$$
$$= 2$$

where above I am using the fact that $\sum_{k=1}^{\infty} \frac{2^k}{3} =: x \in \mathbb{R}$ to note that $\frac{2}{3}x = x - \frac{2}{3}$ which implies that $x = \frac{2}{3} \frac{2}{(1-\frac{2}{3})}$.

Thus, $\lim_{i\to\infty} Q_i = \frac{1}{2} \lim_{i\to\infty} \left(\sum_{k=1}^i \frac{2^k}{3^k}\right) = \frac{1}{2} * 2 = 1$. Finally, note that

$$\lim_{i\to\infty} |C_i^{\delta}| = \lim_{i\to\infty} (2^i V(I_i^1))$$

since $C_i^{\delta} = \bigsqcup_{j \in [2^i]} I_i^j$ and we showed that the measure of disjoint measurable sets is the sum of their measure, which means that $|C_i^{\delta}| = \sum_{j \in [2^i]} |I_i^j| = \sum_{j \in [2^i]} v(I_i^j) = \sum_{j \in [2^i]} v(I_i^1) = 2^i a_i$.

Continuing on one has

$$lim_{i\to\infty}|C_i^{\delta}| = lim_{i\to\infty}(2^i a_i)$$

$$= lim_{i\to\infty}(1 - \delta Q_i)$$

$$= 1 - \delta(lim_{i\to\infty}(Q_i))$$

$$= 1 - \delta * 1$$

$$= 1 - \delta,$$

and we are done.

Question 2 Measures of lim sup's and lim inf's of sets

Let $\{E_k\}_{k>1}$ be a sequence of sets in \mathbb{R}^n . Define

$$\liminf_{k \to \infty} E_k = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} E_k;$$

$$\limsup_{k \to \infty} E_k = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k.$$

(a) Show that $\liminf_{k\to\infty} E_k$ is the set of all points that belong to E_k for all large enough k.

We now want to show that $liminf(E_k)$ consists is the set $R := \{x \in R^d : | \{r \in \mathbb{N} : x \notin E_r\} | < \infty \}$. Why is that equivalent to the above statement? Because if $x \in R := \{x \in R^d : | \{r \in \mathbb{N} : x \notin E_r\} | < \infty \}$, then one can take $N = max\{r \in \mathbb{N} : x \notin E_r\}$ and then one notes that $x \in E_m$ for all m > N. Conversely, if there exists $N \in \mathbb{N}$ such that $x \in E_m$ for all m > N, then certainly $\{r \in \mathbb{N} : x \notin E_r\} \subseteq [N]$ which means that $| \{r \in \mathbb{N} : x \notin E_r\} | < \infty$.

First we show that $R \subseteq liminf(E_k) := \bigcup_{n=1}^{\infty} (\bigcap_{k=n}^{\infty}(E_k))$. Take $x \in R$. Consider the set $R(x) := \{k \in \mathbb{N} : x \notin E_k\}$. Let $M := max(k \in R(x))$. Now, note that $x \in E_m$ for all $m \geq M+1$. Thus, $x \in \bigcap_{k=M+1}^{\infty}(E_k)$. Thus, $x \in \bigcup_{n=1}^{\infty} (\bigcap_{k=n}^{\infty}(E_k))$. Finally, we show that $liminf(E_k) \subseteq R$. Take $x \in liminf(E_k)$. We want to show that $x \in R$. Well, $x \in liminf(E_k)$ implies that there exists $n \in \mathbb{N}$ such that $x \in \bigcap_{k=n}^{\infty} E_k$. Then, note that that means that $x \in E_k$ for all $k \geq n$. That implies that $R(x) \subseteq [n-1]$. Thus, $|R(x)| \leq |[n-1]| = n-1 < \infty$. Then, finally recall $R(x) = \{k \in \mathbb{N} : x \notin E_k\}$. Thus, if we denote $S(x) := \{k \in \mathbb{N} : x \in E_k\}$, then one has that $R(x) \sqcup S(x) = \mathbb{N}$ and also that $|R(x)| < \infty$, which was the desired result.

(b) Show that $\limsup_{k\to\infty} E_k$ is the set of all points that belong to E_k for infinitely many k and hence

$$\liminf_{k\to\infty} E_k \subset \limsup_{k\to\infty} E_k.$$

First we want to show that $limsup(E_k)$ consists is the set $S := \{x \in R^d : | \{k : x \in E_k\} | = \infty\}$. First we want to show that $S \subseteq limsup(E_k) := \bigcap_{n=1}^{\infty} (\bigcup_{k=n}^{\infty} (E_k))$. Take $x \in S$. We know that for all $N \in \mathbb{N}$ one has that there exists $m \geq N$ such that $x \in E_m$. Otherwise, if not, then one would have that $\{k : x \in E_k\} \subseteq [N-1]$ implying that $|\{k : x \in E_k\}| \leq N-1 < \infty$. So, taking N = n, one knows there exists $m \in \{n, n+1, n+2, \ldots\}$ such that $x \in E_m$. Thus, for all $n \in \mathbb{N}$ we have that $x \in \bigcup_{k=n}^{\infty} E_k$. Thus, $x \in \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k = limsup(E_k)$. Now, we wish to show that $limsup(E_k) \subseteq S$. Otherwise, assume for contradiction that there exists $x \in limsup(E_k) \setminus S$. Then, $x \in \bigcap_{n=1}^{\infty} (\bigcup_{k=n}^{\infty} (E_k))$. However, $x \notin S$ means that $|\{k \in \mathbb{N} : x \in E_k\}| =: R < \infty$. Now, this means that there exists $N \in \mathbb{N}$ such that $x \notin E_m$ for all $m \geq N$. Why? Take $k_0 = max(k \in \mathbb{N} : x \in E_k)$. Then, take $N := k_0 + 1$. One has that for all $m \geq N$ that $x \notin E_m$. Thus, $x \notin \bigcup_{k=N}^{\infty} E_k$. Thus, $x \notin \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k$.

Finally, note that indeed $x \in liminf_{k\to\infty}E_k$ if and only if $x \in E_m$ for all $m \geq N$ for some $N \in \mathbb{N}$, which means that $\{k \in \mathbb{N} : x \in E_k\} \supseteq \{N, N+1, N+2, \ldots\}$ which means that $|\{k \in \mathbb{N} : x \in E_k\}| = \infty$ which is the characterization we just proved meaning that $x \in limsup_{k\to\infty}E_k$.

(c) Show that

$$\left| \liminf_{n \to \infty} E_n \right|_e \le \liminf_{n \to \infty} |E_n|_e.$$

Define $D_n := \bigcap_{k=n}^{\infty} E_k$. Then, note that $\liminf_{n\to\infty} E_n = \bigcup_{n=1}^{\infty} D_n$. Also, note that $D_i \subseteq D_j$ for $i \leq j$ with $i, j \in \mathbb{N}$. So, by definition $D_m \nearrow liminf_{k\to\infty} E_k$.

Now, by Theorem 3.27, we know that

$$|limin f_{k\to\infty} E_k|_e = lim_{k\to\infty} |D_k|_e.$$

Thus, we wish to show now that

$$\lim_{n\to\infty} |D_n|_e \le \liminf_{n\to\infty} |E_n|_e$$
.

Also, embedded in Theorem 3.27, we have that $\lim_{n\to\infty} |D_n|_e$ exists (though may not be finite), so in particular, that means $\lim_{n\to\infty} |D_n|_e = \lim\inf_{n\to\infty} |D_n|_e = \lim\sup_{n\to\infty} |D_n|_e$. Thus,

$$\lim_{n\to\infty} |D_n|_e = \liminf_{n\to\infty} |D_n|_e,$$

and recall by definition of D_n that $D_n = \bigcap_{k=n}^{\infty} E_k$ which means $D_n \subseteq E_n$ for all $n \in \mathbb{N}$, meaning by monotonicity of exterior measure that

$$\lim_{n\to\infty} |D_n|_e = \liminf_{n\to\infty} |D_n|_e \le \liminf_{n\to\infty} |E_n|_e,$$

which concludes the proof.

(d) Suppose that the $\{E_k\}$ are measurable, and for some n, $\left|\bigcup_{k=n}^{\infty} E_k\right| < \infty$. Then

$$\left|\limsup_{n\to\infty} E_n\right| \ge \limsup_{n\to\infty} |E_n|.$$

Let $F_n := \bigcup_{k=n}^{\infty} E_k$. Now, we have that

$$F_n \searrow \limsup_{k \to \infty} E_k$$
.

Thus, Theorem 3.27 says that

$$|\limsup_{k\to\infty} E_k|_e = \lim_{n\to\infty} |F_n|_e.$$

Once again, existence of limit implies that $\lim_{n\to\infty} |F_n|_e = \limsup_{n\to\infty} |F_n|_e$, so that

$$|\limsup_{k\to\infty} E_k|_e = \lim_{n\to\infty} |F_n|_e$$
$$= \limsup_{n\to\infty} |F_n|_e.$$

Now, we wish to show that $\limsup_{n\to\infty} |F_n|_e \ge \limsup_{n\to\infty} |E_n|_e$. Note that for all $n \in \mathbb{N}$, one has $F_n \supseteq E_k$ for all $k \ge n$. In particular, $F_n \supseteq E_n$. By monotonicity that implies that $|F_n|_e \ge |E_n|_e$ for all $n \in \mathbb{N}$. Thus,

$$\limsup_{n\to\infty}|F_n|_e\geq \limsup_{n\to\infty}|E_n|_e$$

and we are done.

(e) Show that if

$$\sum_{k=1}^{\infty} |E_k|_e < \infty,$$

then

$$\left| \limsup_{k \to \infty} E_k \right|_e = 0.$$

Denote $\sum_{k=1}^{\infty} |E_k|_e =: B \in \mathbb{R}$.

Recall by definition

$$\limsup_{n \to \infty} E_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k.$$

We want to show that for all $\epsilon > 0$, that $|\limsup_{k \to \infty} E_k|_e < \epsilon$.

Note $\limsup_{n\to\infty} E_n \subseteq \bigcup_{k=m}^{\infty} E_k$ for all $m \in \mathbb{N}$.

Claim β : $|E_m|_e \to 0$ as $m \to \infty$.

Proof:

Denote $B_m := \sum_{k=1}^m |E_k|_e$. Now, the fact that $\lim_{m\to\infty} \left(\sum_{k=1}^m |E_k|_e\right)$ converges (to B) means that for all $\epsilon > 0$, there exists $M(\epsilon) \in \mathbb{N}$ such that $|B - B_m| < \epsilon$ for all $m \ge M(\epsilon)$.

it is a Cauchy sequence. Thus, by definition, for all $\epsilon > 0$ there there exists $M(\epsilon) \in \mathbb{N}$ such that $|B_r - B_m| < \epsilon$ for all $m, r \geq M(\epsilon)$. Now, without loss of generality $r \geq m$, meaning that

$$|B_r - B_m| = B_r - B_m = \sum_{k=m+1}^r |E_k|_e < \epsilon.$$

for all such r, m.

In particular, choose arbitrary $\epsilon > 0$ and we are guaranteed $M(\epsilon) \in \mathbb{N}$ such that $|B_r - B_m| < \epsilon$ for all $m, r \geq M(\epsilon)$. So, pick r = m + 1 and we get

$$|B_r - B_m| = B_{m+1} - B_m = |E_{m+1}|_e < \epsilon.$$

for all $m \geq M(\epsilon)$.

Thus, we have shown that $|E_{m+1}|_e \to 0$ as $m \to \infty$ or equivalently $|E_m|_e \to 0$ as $m \to \infty$, concluding proof of Claim β .

Claim α (proved in a couple paragraphs): Now I want to show that for any $\epsilon > 0$ for sufficiently large $M(\epsilon) \in \mathbb{N}$ one has that $T(M(\epsilon)) := \sum_{j=M(\epsilon)}^{\infty} |E_k|_e < \epsilon$.

Then, subadditivity says $|\bigcup_{j=M(\epsilon)}^{\infty} E_j|_e < \epsilon \le \sum_{j=M(\epsilon)}^{\infty} |E_j|_e < \epsilon$ meaning intuitively that $|\bigcup_{j=r}^{\infty} E_j|_e \to 0$ as $r \to \infty$.

Let $U := \limsup_{n \to \infty} E_n$. Now, for all $x \in U$ for any $M \in \mathbb{N}$ there exists $r = r(x) \ge M$ such that $x \in E_r$. Thus, for any $M \in \mathbb{N}$, one has that $U = \limsup_{n \to \infty} E_n \subseteq \bigcup_{k=M}^{\infty} E_k$. By monotonicity one has that

$$|\limsup_{n\to\infty} E_n|_e \le |\bigcup_{k=M}^{\infty} E_k|_e.$$

Then, by subadditivity one has that

$$|\limsup_{n \to \infty} E_n|_e \le |\bigcup_{k=M}^{\infty} E_k|_e$$
$$\le \sum_{k=M}^{\infty} |E_k|_e.$$

Upon proving Claim α , I will have shown that $0 \le |\limsup_{n \to \infty} E_n|_e \le \sum_{k=M}^{\infty} |E_k|_e = : T(M) \to 0$ as $n \to \infty$, which will then imply that for all $\epsilon > 0$

$$0 \le |\limsup_{n \to \infty} E_n|_e \le \sum_{k=M}^{\infty} |E_k|_e < \epsilon$$

for sufficiently large $M \in \mathbb{N}$, which then shows that

$$0 \le |\limsup_{n \to \infty} E_n|_e \le 0$$

or equivalently

$$|\limsup_{n\to\infty} E_n|_e = 0,$$

which was the goal.

So let's prove Claim α .

Proof: Fix $\epsilon > 0$. I have already shown (Claim β) that $|E_k|_e \to 0$ as $k \to \infty$.

Now, note that for any $M \in \mathbb{N}$ one can define

$$c(M) := \sum_{i=1}^{M} |E_i|_e$$

(so c(M)'s are our partial sums)

and

$$d(M) := \sum_{i=M+1}^{\infty} |E_i|_e$$

meaning that c(M) + d(M) = B.

If $\epsilon \geq B$ then we're done.

Otherwise, recall that $c(j) := \sum_{i=1}^{j} |E_i|_e \to B$ as $j \to \infty$ means for all $\gamma > 0$ there exists $Q(\gamma) \in \mathbb{N}$ such that

$$|B - c(r)| = |B - \sum_{i=1}^{r} |E_i|_e| = B - \sum_{i=1}^{r} |E_i|_e < \gamma$$
(1)

for all $r \geq Q(\gamma)$.

Now, to prove Claim α we want $M(\epsilon) \in \mathbb{N}$ such that $d(M(\epsilon) - 1) = B - C(M(\epsilon) - 1) = |B - C(M(\epsilon) - 1)| < \epsilon$.

We are guaranteed (by Equation 1) such $W \in \mathbb{N}$ with $|B-c(W)| = |B-\sum_{i=1}^{W}|E_i|_e| < \epsilon$. Namely take $W = Q(\epsilon)$.

Then, let $M(\epsilon) = Q(\epsilon) + 1$ and by Equation 1 we get that $|B - c(r)| = |B - \sum_{i=1}^{r} |E_i|_e | = B - \sum_{i=1}^{r} |E_i|_e < \epsilon$ for all $r \ge Q(\epsilon)$ including all $r \ge M(\epsilon) = Q(\epsilon) + 1$ and that concludes the proof of Claim α and this problem.

Question 3 Inner Measure

For sets E in \mathbb{R}^n , define its inner measure by

$$|E|_i = \sup\{|F| : F \text{ is closed and } F \subset E\}.$$

(i) Show that

$$|E|_i \leq |E|_e$$
.

First, one has that for all $F \subseteq E$ with F closed and $F \subseteq E$, $|F|_e \le |E|_e$ by monotonicity, and note that since F closed means F measurable we can simply write $|F| = |F|_e$. Then, taking sups over such F gives

$$|E|_i = \sup\{|F| : F \text{ is closed and } F \subset E\} \le |E|_e$$

(ii) Let $|E|_e < \infty$. Show that E is measurable iff

$$|E|_i = |E|_e.$$

(Hint: use Lemma 3.22)

By Lemma 3.22, E is measurable if and only if for all $\epsilon > 0$ one has that there exists a closed set $F \subseteq E$ such that $|E \setminus F|_e < \epsilon$.

We aim to show two things: first that E measurable implies $|E|_i = |E|_e$, then that $|E|_i = |E|_e$ implies E measurable.

So, assume E measurable. That means that for all $\epsilon_1 > 0$ there exists an open set $G \supseteq E$ such that $|G \setminus E|_e < \epsilon$. Also, by Theorem 3.22 it means that for all $\epsilon_2 > 0$ there exists a closed set $F \subseteq E$ such that $|E \setminus F|_e < \epsilon_2$.

Now, note by Theorem 3.6 that $|E|_e = \inf_{G \supseteq E:G \text{ open }} |G|_e$.

Also, by Caratheodory's theorem, E measurable implies that $|G|_e = |G \cap E|_e + |G \setminus E|_e = |E|_e + |G \setminus E|_e$ or we can write more usefully

$$|G|_e = |E|_e + |G \setminus E|_e. \tag{2}$$

Also, since E measurable once again by Caratheodory's theorem we have that $|E|_e = |E \cap F|_e + |E \setminus F|_e = |F|_e + |E \setminus F|_e$ or written more neatly

$$|F|_e = |E|_e - |E \setminus F|_e. \tag{3}$$

In particular, note that

$$|F|_e = |E|_e - |E \setminus F|_e$$

$$\leq |E|_e$$

$$\leq |E|_e + |G \setminus E|_e = |G|_e,$$

for all closed $F \subseteq E$ and all open $G \supseteq E$. Now, taking sups over all such closed $F \subseteq E$ one obtains

$$|E|_i = \sup\{|F|_e\} \le = |G|_e.$$

Then, taking infs over all open sets $G \supseteq E$ one obtains

$$|E|_i \le inf\{|G|_e\} = |E|_e$$

and we are done.

Now, for the converse, we wish to show that if $|E|_i = |E|_e$ then E is measurable.

Well, $|E|_i = |E|_e$ implies by definition that

$$|E|_i = \sup\{|F| : F \text{ closed and } F \subseteq E\}$$
 (4)

$$=|E|_{e} \tag{5}$$

$$= \inf\{|G| : G \text{ open and } G \supseteq E\}. \tag{6}$$

Now, the fact that $|E|_i = \sup\{|F| : F \text{ closed and } F \subseteq E\} = \inf\{|G| : G \text{ open and } G \supseteq E\} = |E|_e$ means that if both sides are finite then for all $\epsilon > 0$ there exist $F, G \subseteq \mathbb{R}^n$ with $F \subseteq E \subseteq G$ and F closed, G open such that $|G| - |F| < \epsilon$. Why?

Otherwise, if there existed $\epsilon_0 > 0$ such that $|G| - |F| \ge \epsilon_0$ for all such G, F, then equivalently $|G| \ge |F| + \epsilon_0$ for all such F, G. Then, taking sups over appropriate F of both sides gives

$$\sup\{|F|\} + \epsilon_0 \le |G|$$

and then taking infs over appropriate G of both sides gives

$$\sup\{|F|\} + \epsilon_0 < \inf\{|G|\}$$

meaning that

$$0 < \epsilon_0 \le \inf\{|G|\} - \sup\{|F|\} = |E|_e - |E|_i,$$

a contradiction.

As we will show in part (iii), the requirement that $|E|_e$, $|E|_i$ finite (which is equivalent to $|E|_e$ finite) does matter.

Now, recall that by Caratheodory's theorem one has that since F measurable

$$|G|_e = |G \cap F|_e + |G \setminus F|_e = |F|_e + |G \setminus F|_e,$$

which means that

$$|G|_e - |F|_e = |G \setminus F|_e.$$

Furthermore, note by monotonicity that

$$|G \setminus E|_e \le |G \setminus F|_e$$

Then, as stated before $|G|_e - |F|_e < \epsilon$ and putting all the above together, we get that

$$|G \setminus E|_e \le |G \setminus F|_e = |G|_e - |F|_e < \epsilon$$

and we are done, as the existence of such G for all $\epsilon > 0$ is the definition of measurability.

(iii) Give an example in 1 dimension, to show that if $|E|_e = \infty$, then the last conclusion can fail, i.e. we can have $|E|_i = |E|_e$, but E is not measurable.

First start with $S = \mathbb{R} \setminus \mathbb{Q}$. Next, use the Vitali set we saw in class (or a Vitali set). Namely, for $r, s \in \mathbb{R}$ define $r \sim s$ if and only if $r - s \in \mathbb{Q}$. Now, look at the equivalence classes of this equivalence relation (which partition \mathbb{R}). By Zermelo's axiom pick exactly one element a from each equivalence class which we then of course denote $E_a = a + \mathbb{Q}$ and call the union of these elements E.

Now, note that there is exactly one equivalence class which contains a rational. Namely, \mathbb{Q} itself. Every other equivalence class consists entirely of irrationals. So, note that $E' := E \setminus \mathbb{Q} = E \setminus \{q\}$ where q is the chosen representative of the equivalence class $E_q = \mathbb{Q}$.

Now, as shown in class E does NOT have exterior measure 0. If it did, it would be measurable. So, likewise $|E'|_e = |E \setminus \{q\}|_e \neq 0$. Why?

Subadditivity says $|E|_e \le |\{q\}|_e + |E\setminus\{q\}|_e = 0 + |E\setminus\{q\}|$. If one had that $|E\setminus\{q\}|_e = 0$, then that would imply $|E|_e \le 0$ meaning $|E|_e = 0$, a contradiction.

Now, let $T = (\mathbb{R} \setminus \mathbb{Q}) \setminus E'$.

Once again subadditivity says that $\infty = |\mathbb{R} \setminus \mathbb{Q}|_e \le |T|_e + |E'|_e$ meaning that $|T|_e = \infty$ or $|E'|_e = \infty$.

In fact, if E is the Vitali set with a nice set of representatives chosen one will have that $|T|_e = \infty$. Namely, note that if $\{C_e : e \in E\}$ is our set of equivalence classes of \mathbb{R} where E is once again our arbitrarily chosen set of representatives, then we also know that for all $e \in E$ there exists $a_e \in C_e$ such that $a_e \in [-1,1]$, namely, if e > 1 let $a_e = e - \lfloor e \rfloor$. Otherwise if e < -1 let $a_e = -((-e) - (\lfloor (-e) \rfloor))$. Thus, there exists a Vitali set E such that $E \subseteq [-1,1]$. Let $E' = E \setminus \{q\}$ where as before q is the unique rational in E.

Now, $E' \in [-1, 1]$ implies $|E'|_e \leq 2$. As before let $T = (\mathbb{R} \setminus \mathbb{Q}) \setminus E'$. We have that $\infty = |\mathbb{R} \setminus \mathbb{Q}|_e \leq |T|_e + |E'|_e \leq |T|_e + 2$ meaning that $|T|_e = \infty$ for this specific Vitali set.

Now, exercise 15 of the book says that for any measurable set $S \subseteq \mathbb{R}$ and any set $T \subseteq S$ one has that

$$|S| = |T|_i + |S \setminus T|_e.$$

Namely, here let $S = \mathbb{R} \setminus \mathbb{Q}$ and let T be the T above.

So,

$$\infty = |S| = |T|_i + |S \setminus T|_e = |T|_i + |E'|_e \le |T|_i + 2$$

which implies that

$$|T|_i = \infty.$$

Thus, $|T|_i = |T|_e = \infty$, pending my proof of exercise 15 in the book.

Furthermore, I claim that T is not measurable.

Why? Well, \mathbb{Q} m'able implies $\mathbb{R} \setminus \mathbb{Q}$ m'able. Then, if one had that T was m'able, that would imply $(R \setminus \mathbb{Q}) \setminus T = E'$ is m'able. However, then $E = E' \cup \{q\}$ would be measurable since $|\{q\}|_e = 0$, which we showed in class is not.

Thus, $|T|_i = |T|_e = \infty$ and T not measurable.

Question 4

Show that for m'ble E_1 and E_2 ,

$$|E_1 \cup E_2| + |E_1 \cap E_2| = |E_1| + |E_2|$$
.

Note that $E_1 \cup E_2 = (E_1 \cap E_2) \sqcup (E_1 \setminus E_2) \sqcup (E_2 \setminus E_1)$.

By Theorem 3.30 one has that

$$|E_2|_e = |E_2 \cap E_1|_e + |E_2 \setminus E_1|_e$$

and also

$$|E_1|_e = |E_1 \cap E_2|_e + |E_1 \setminus E_2|_e.$$

Thus,

$$|E_1|_e + |E_2|_e = |E_1 \cap E_2|_e + |E_1 \setminus E_2|_e + |E_1 \cap E_2|_e + |E_2 \setminus E_1|_e = |E_1 \cup E_2|_e + |E_1 \cap E_2|_e,$$

and we are done.

Question 5

Suppose that $|E|_e$ is finite. Then E is measurable iff given $\varepsilon > 0$, we can write

$$E = (S \cup N_1) \setminus N_2,$$

where S is a finite union of non-overlapping intervals, and $|N_1|_e < \varepsilon, |N_2|_e < \varepsilon$.

Remark

You can assume Theorem 1.11, namely that any open set can be written as a countable union of non-overlapping intervals.

Question 6 α -dimensional Hausdorff outer measure

Let $\alpha > 0$. We can think of Lebesgue measure on \mathbb{R}^n as n-dimensional. In this exercise, you shall develop a small part of the theory of α -dimensional Hausdorff outer measure. A ball B in \mathbb{R}^n center \mathbf{x} , of radius r has the form

$$B = \{ \mathbf{y} \in \mathbb{R}^n : |\mathbf{x} - \mathbf{y}| < r \}.$$

Its diameter is $diam\left(B\right)=2r$. For $E\subset\mathbb{R}^n$, define its α -dimensional Hausdorff outer measure

$$\Lambda_{\alpha}(E) = \inf \left\{ \sum_{k=1}^{\infty} (\operatorname{diam}(B_k))^{\alpha} : E \subset \bigcup_{k=1}^{\infty} B_k \right\},\,$$

where the inf is taken over all sequences of balls $\{B_k\}$ in \mathbb{R}^n covering E.

(a) Prove that Λ_{α} is subadditive: if

$$E = \bigcup_{k=1}^{\infty} E_k,$$

then

$$\Lambda_{\alpha}\left(E\right) \leq \sum_{k=1}^{\infty} \Lambda_{\alpha}\left(E_{k}\right).$$

Plan:

- (a) For each $k \in \mathbb{N}$, take an arbitrary set of balls \mathcal{B}_k covering E_k .
- (b) Then, note that $\mathcal{B} := \bigcup_{k \in \mathbb{N}} \mathcal{B}_k$ covers E.
- (c) (Small point: note that a countable union of countable sets is countable. Thus, we can enumerate $\mathcal{B} = \{B_i : i \in \mathbb{N}\}$).
- (d) Now $\Lambda_{\alpha}(E) \leq \sum_{i \in \mathbb{N}} diam(B_i)^{\alpha}$ since \mathcal{B} is one a member of the set we are taking inf's over.
- (e) Succesively take inf's for each $j \in \mathbb{N}$ over each \mathcal{B}_j covering E_j .
- (f) Indeed in the equation

$$\Lambda_{\alpha}(E) \leq \sum_{i \in \mathbb{N}} diam(B_i)^{\alpha}$$
$$= \sum_{j \in \mathbb{N}} \sum_{i \in \mathbb{N}} diam(\mathcal{B}_j^i)^{\alpha}$$

(where \mathcal{B}_{j}^{i} denotes the ith element of the set \mathcal{B}_{j} covering E_{j}), the left hand side is a fixed number which does NOT depend on any of the specific sets \mathcal{B}_{j} . Thus, we have that (dropping the middle term for clarity)

$$\Lambda_{\alpha}(E) \leq \dots \left(\inf_{\mathcal{B}_{j} \text{ covering } E_{j}} \left(\dots \left(\inf_{\mathcal{B}_{2} \text{ covering } E_{2}} \left(\inf_{\mathcal{B}_{1} \text{ covering } E_{1}} \left(\sum_{j \in \mathbb{N}} \sum_{i \in \mathbb{N}} \operatorname{diam}(\mathcal{B}_{j}^{i})^{\alpha} \right) \right) \right) \right) \\
= \sum_{j \in \mathbb{N}} \inf_{\mathcal{B}_{j} \text{ covering } E_{j}} \sum_{i \in \mathbb{N}} \operatorname{diam}(\mathcal{B}_{j}^{i})^{\alpha} \\
= \sum_{j \in \mathbb{N}} \Lambda_{\alpha}(E_{k})$$

(b) Let $E \subset \mathbb{R}^n$. Prove that for $\alpha > n$,

$$\Lambda_{\alpha}\left(E\right) =0.$$

(Hint: first prove this for bounded sets, and then for unbounded sets.)

(c) Prove that if n=1 and C is the usual usual Cantor set in [0,1], then

$$\Lambda_{\alpha}(C) = 0 \text{ for } \alpha > \frac{\log 2}{\log 3}.$$

(One can show that C has "Hausdorff dimension" $\frac{\log 2}{\log 3}$

Question 7

Let E be a set in \mathbb{R}^n with $0 < |E|_e < \infty$. Let $0 < \theta < 1$. Show that there is a set $E_\theta \subset E$ with

$$\left| E_{\theta} \right|_e = \theta \left| E_e \right|.$$

Hint: for r > 0, let Q(r) denote the open cube centered on 0, with sides of length r parallel to the coordinate axes. Note that Q(r) increases as r does. Use the Q(r) in constructing your set.