

Algebra

Alessandro D'Andrea

4. Gruppi

Richiami

- $ightharpoonup \mathbb{Z}/n$ è un anello
- ▶ \overline{a} è invertibile in \mathbb{Z}/n se e solo se MCD(a, n) = 1
- Alcune proprietà degli elementi invertibili di \mathbb{Z}/n si comprendono meglio in un contesto più generale
- ▶ Oggi: Concetto di gruppo e prime proprietà dei gruppi

Definizione di gruppo

Un gruppo è un insieme G dotato di un'operazione associativa

$$G \times G \ni (a,b) \mapsto a \circ b \in G$$

che deve possedere un elemento neutro $e \in G$:

$$e \circ a = a \circ e = a$$
 per ogni $a \in G$;

e rispetto alla quale ogni elemento $a \in G$ possieda un inverso $a^* \in G$

$$a \circ a^* = a^* \circ a = e$$
.

Si dovrebbe scrivere (G, \circ) , ma scriveremo G ogni volta che si sia implicitamente d'accordo sull'operazione di gruppo.

Il gruppo si dice abeliano se l'operazione di gruppo è commutativa.

Gruppi additivi

Se A è un anello, possiamo ignorare l'operazione di moltiplicazione, e considerare solo quella di somma. Allora (A, +) è un gruppo.

La somma è associativa, l'elemento neutro è e=0, e l'inverso di a è $a^*=-a$.

$$(a+b)+c=a+(b+c),$$

 $a+0=0+a=a;$
 $a+(-a)=(-a)+a=0.$

L'operazione di somma è anche commutativa, e quindi (A, +) è un gruppo abeliano.

Attenzione: quando si usa la notazione additiva per un'operazione di gruppo, si indica l'elemento neutro sempre con 0, l'inverso di a sempre con -a e, a meno di esplicito riferimento contrario, si dà per scontato che il gruppo sia abeliano.

Esempi di gruppi additivi

Sono gruppi (abeliani):

- ▶ il gruppo additivo (\mathbb{Z} , +) dei numeri interi;
- ▶ il gruppo additivo $(\mathbb{Q}, +)$ dei numeri razionali;
- ▶ il gruppo additivo $(\mathbb{R}, +)$ dei numeri reali;
- ▶ il gruppo additivo (\mathbb{C} , +) dei numeri complessi;
- ▶ il gruppo additivo (\mathbb{Z}/n , +) delle classi di congruenza mod n;

Non è un gruppo l'insieme $(\mathbb{N}, +)$ dei numeri naturali.

Gruppi moltiplicativi - I

Se A è un anello, possiamo ignorare l'operazione di somma, e considerare solo quella di moltiplicazione. Allora (A, \cdot) non è un gruppo. In effetti, l'elemento neutro dell'operazione non può che essere 1, ma allora 0 non possiede un inverso, poiché $0 \cdot a = 0 \neq 1$ comunque sia scelto a.

Tuttavia, se indichiamo con A^{\times} gli elementi di A che possiedono un inverso moltiplicativo, allora (A^{\times}, \cdot) è un gruppo.

Attenzione: quando si usa la notazione moltiplicativa per un'operazione di gruppo, si indica l'elemento neutro sempre con 1, e l'inverso di a sempre con a^{-1} . Spesso si scrive ab invece che $a \cdot b$.

Gruppi moltiplicativi - II

 (A^{\times}, \cdot) è un gruppo. La moltiplicazione è associativa, l'elemento neutro è e = 1, e l'inverso di a è $a^* = a^{-1}$.

$$(a \cdot b) \cdot c = a \cdot (b \cdot c),$$

$$a \cdot 1 = 1 \cdot a = a;$$

$$a \cdot a^{-1} = a^{-1} \cdot a = 1.$$

L'operazione di prodotto non è necessariamente commutativa.

L'unità moltiplicativa 1 è invertibile, e il suo inverso è 1, in quanto $1 \cdot 1 = 1$. Pertanto $1 \in A^{\times}$. Inoltre $(a^{-1})^{-1} = a$.

Se a, b sono invertibili e i loro inversi sono a^{-1}, b^{-1} allora

$$(ab)(b^{-1}a^{-1}) = a(bb^{-1})a^{-1} = aa^{-1} = 1.$$

Pertanto, se $a, b \in A^{\times}$, allora $ab \in A^{\times}$, e $(ab)^{-1} = b^{-1}a^{-1}$.

Esempi di gruppi moltiplicativi

Sono gruppi (abeliani):

- ▶ il gruppo moltiplicativo ($\mathbb{Z}^{\times} = \{\pm 1\}$, ·) dei numeri interi;
- ▶ il gruppo moltiplicativo ($\mathbb{Q}^{\times} = \mathbb{Q} \setminus \{0\}$, ·) dei numeri razionali;
- ▶ il gruppo moltiplicativo ($\mathbb{R}^{\times} = \mathbb{R} \setminus \{0\}, \cdot$) dei numeri reali;
- ▶ il gruppo moltiplicativo ($\mathbb{C}^{\times} = \mathbb{C} \setminus \{0\}, \cdot$) dei numeri complessi;
- ▶ il gruppo moltiplicativo $((\mathbb{Z}/n)^{\times},\cdot)$ delle classi di congruenza mod n;
 - ▶ Se p è un numero primo, allora $(\mathbb{Z}/p)^{\times} = \mathbb{Z}/p \setminus \{\overline{0}\};$
 - $(\mathbb{Z}/6)^{\times} = \{\overline{1}, \overline{5}\};$
 - $(\mathbb{Z}/8)^{\times} = \{\overline{1}, \overline{3}, \overline{5}, \overline{7}\};$
 - $(\mathbb{Z}/12)^{\times} = \{\overline{1}, \overline{5}, \overline{7}, \overline{11}\}.$

Più in là, vedremo degli anelli non commutativi, che hanno gruppo moltiplicativo non abeliano.

Gruppo delle permutazioni

Se X è un insieme, un'applicazione $f: X \to X$ si dice invertibile se esiste $f^*: X \to X$ tale che $f \circ f^* = f^* \circ f = \operatorname{Id}_X$. L'applicazione f si dice allora una permutazione di X.

L'operazione di composizione tra applicazioni è associativa e l'identità ne è l'elemento neutro:

$$(f \circ g) \circ h = f \circ (g \circ h);$$

 $f \circ \operatorname{Id}_X = \operatorname{Id}_X \circ f = f,$

per ogni scelta di $f, g, h: X \rightarrow X$.

Se $f, g: X \to X$ sono invertibili, allora anche $f \circ g$ è invertibile. In effetti,

$$(f \circ g) \circ (g^* \circ f^*) = f \circ (g \circ g^*) \circ f^* = f \circ \operatorname{Id}_X \circ f^* = f \circ f^* = \operatorname{Id}_X.$$

L'insieme S(X) di tutte le permutazioni di X, con l'operazione di composizione, è un gruppo.

Gruppo simmetrico S_n

Il gruppo delle permutazioni dell'insieme $\{1, 2, 3, ..., n\}$ con n elementi si indica con S_n .

Contiene esattamente n! elementi.

Se n > 2, S_n non è abeliano: ad esempio, se

$$f: egin{cases} 1\mapsto 2 \ 2\mapsto 1 \ 3\mapsto 3 \end{cases} , \qquad g: egin{cases} 1\mapsto 2 \ 2\mapsto 3 \ 3\mapsto 1 \end{cases}$$

allora

$$f\circ g: egin{cases} 1\mapsto 1 \ 2\mapsto 3 \ 3\mapsto 2 \end{cases}, \qquad g\circ f: egin{cases} 1\mapsto 3 \ 2\mapsto 2 \ 3\mapsto 1 \end{cases}$$

Proprietà immediate dei gruppi

Se (G, \circ) è un gruppo, allora può esserci solo un elemento neutro dell'operazione:

$$e = e \circ e' = e' \circ e = e'$$
.

Ogni elemento possiede un unico inverso: se \overline{a} e a^* sono entrambi inversi di a, allora

$$a^* = a^* \circ (a \circ \overline{a}) = (a^* \circ a) \circ \overline{a} = \overline{a}.$$

L'inverso di *ab* è *b** *a**. Lo abbiamo già dimostrato più volte.

Inoltre, se gx = g, allora x = e: basta moltiplicare a sinistra per l'inverso di g. Se un elemento si comporta come l'identità rispetto ad anche solo un elemento $x \in G$, allora è l'identità.

Nei gruppi, useremo sempre una notazione moltiplicativa: l'inverso di $a \grave{e} a^{-1}$ e 1 indica l'elemento neutro a meno che non abbia un nome più appropriato.

Sottogruppi

Se G è un gruppo, un sottoinsieme $H \subset G$ si dice sottogruppo se è un gruppo rispetto all'operazione di G. Equivalentemente:

- **▶** 1 ∈ *H*;
- $h \in H \implies h^{-1} \in H$;
- $h_1, h_2 \in H \implies h_1 h_2 \in H.$

H è un sottogruppo di G si scrive H < G.

 $G \in \{1\}$ sono sempre sottogruppi di G. In genere, ce ne sono molti altri.

Se $g \in G$, indichiamo con g^n il prodotto di n copie di g, e con g^{-n} il suo inverso. Ad esempio $g^3 = g \cdot g \cdot g$. Si ha $g^m \cdot g^n = g^{m+n}$.

L'insieme $(g) = \{g^n, n \in \mathbb{Z}\}$ di tutte le potenze di g è un sottogruppo di G. E' il sottogruppo ciclico generato da g.

Sottogruppi di $(\mathbb{Z},+)$ - I

Come sono fatti i sottogruppi di Z?

Se $H < \mathbb{Z}$, allora H contiene sicuramente l'elemento neutro 0. Se non contiene altri elementi, allora $H = \{0\}$.

Se contiene altri elementi, allora contiene sicuramente sia elementi positivi che negativi.

In effetti, se $h \in H$, allora $-h \in H$. Indichiamo con d il minimo elemento positivo di H.

Sottogruppi di $(\mathbb{Z},+)$ - II

$\{0\} \neq H < \mathbb{Z}$. Il minimo elemento positivo di $H \ge d$.

Se $d \in H$, allora $2d = d + d \in H$; ma allora $3d = 2d + d \in H$. Insomma, tutti i multipli di d sono elementi di H.

Se $h \in H$, allora possiamo eseguire la divisione euclidea tra h e d:

$$h = qd + r$$
.

Ora, r = h + (-qd). Ma se $h \in H, -qd \in H$, allora $r \in H$. Tuttavia $0 \le r < d$. Ricordando che d è il minimo elemento positivo di H, si ottiene r = 0 e quindi h = qd.

In conclusione, ogni elemento di H è multiplo di d: H è l'insieme di tutti e soli i multipli di d. Si scrive anche H = (d) oppure $H = d\mathbb{Z}$.

Omomorfismi di gruppi

Se G, H sono gruppi, un'applicazione $f : G \rightarrow H$ si dice omomorfismo di gruppi se

$$f(a \circ b) = f(a) \circ f(b)$$

per ogni scelta di $a, b \in G$.

Conseguenze: $f(e_G) = e_H$, $f(a^*) = f(a)^*$. Meglio scrivere:

 $f(1) = 1, f(a^{-1}) = f(a)^{-1}$ in notazione moltiplicativa, oppure

f(0) = 0, f(-a) = -f(a) in notazione additiva.

Attenzione: sono possibili anche situazioni miste. Ad esempio

$$\mathsf{exp}: (\mathbb{R}, +) o (\mathbb{R}^{\times}, \cdot)$$

è un omomorfismo di gruppi, poiché $\exp(x + y) = \exp(x) \exp(y)$. In effetti, $\exp(0) = 1$, $\exp(-a) = \exp(a)^{-1}$.

Esempi di omomorfismi

- L'identità $Id_G: G \rightarrow G$ è ovviamente un omomorfismo.
 - ▶ Poiché $Id_G(g) = g$ per ogni $g \in G$, allora $Id_G(ab) = ab = Id_G(a) Id_G(b)$.
- Se f : G → H manda ogni elemento di G nell'elemento neutro di H, allora f è un omomorfismo.
 - ▶ Poiché f(g) = 1 per ogni $g \in G$, allora $f(ab) = 1 = 1 \cdot 1 = f(a)f(b)$.
- ▶ Una volta scelto $g \in G$, l'applicazione $\phi : n \mapsto g^n$ è un omomorfismo $\mathbb{Z} \to G$.
 - Abbiamo già visto che $g^{m+n} = g^m g^n$, quindi $\phi(m+n) = \phi(m)\phi(n)$.

Nucleo e immagine

Se $\phi: G \rightarrow H$ è un omomorfismo di gruppi, allora

- ▶ $\ker \phi = \{g \in G | \phi(g) = 1\}$ è il nucleo di ϕ ;
- ▶ im $\phi = \{\phi(g) \in H \mid g \in G\}$ è l'immagine di ϕ .

Allora

- \triangleright ker ϕ < G.
 - $\phi(1) = 1;$
 - se $\phi(a) = \phi(b) = 1$, allora $\phi(ab) = \phi(a)\phi(b) = 1 \cdot 1 = 1$;
 - se $\phi(a) = 1$, allora $\phi(a^{-1}) = \phi(a)^{-1} = 1^{-1} = 1$.
- ightharpoonup im $\phi < H$.
 - $1 = \phi(1);$
 - se $h = \phi(a), k = \phi(b)$, allora $hk = \phi(a)\phi(b) = \phi(ab)$;
 - se $h = \phi(a)$, allora $h^{-1} = \phi(a)^{-1} = \phi(a^{-1})$.
- ϕ è iniettiva se e solo se ker $\phi = \{1\}$.
 - Se $\phi(a) = \phi(b)$, allora $\phi(ab^{-1}) = \phi(a)\phi(b)^{-1} = 1$. Poiché $\ker \phi = \{1\}$, deve essere $ab^{-1} = 1$ e quindi a = b.

Ordine di un elemento

Prendiamo $g \in G$. Se $\phi : (\mathbb{Z}, +) \to G$ è l'omomorfismo $\phi(n) = g^n$, allora

- ▶ im $\phi = (g)$ è il sottogruppo generato da g.
- ▶ ker ϕ è un sottogruppo di \mathbb{Z} , ed è quindi della forma (d) = $d\mathbb{Z}$ con $d \ge 0$.

Si ha $g^m = g^n$ se e solo se $m - n \in \ker \phi = (d)$.

Se d > 0, allora d è il più piccolo esponente positivo da dare a g per ottenere 1 come risultato. L'intero d è detto ordine di g. Si ha $g^m = g^n$ se e solo se $m \equiv n \mod d$, quindi g possiede esattamente d potenze distinte.

Se d = 0, allora $g^m = g^n$ se e solo se m = n. In questo caso, tutte le potenze di g sono distinte, e g ha ordine infinito.

Sottogruppi normali

Un'ultima osservazione: se $f: G \to H$ è un omomorfismo di gruppi, il sottogruppo ker f < G ha una proprietà aggiuntiva.

- ▶ Se $x \in \ker f$, allora $gxg^{-1} \in \ker f$ per ogni $g \in G$.
 - Infatti $f(gxg^{-1}) = f(g)f(x)f(g^{-1}) = f(g) \cdot 1 \cdot f(g)^{-1} = f(g)f(g)^{-1} = 1.$

I sottogruppi con questa proprietà si chiamano sottogruppi normali.

In un gruppo abeliano, ogni sottogruppo è normale, poiché $gxg^{-1} = xgg^{-1} = x$.