1 Группы

Определение 1.1:

Группа - моноид, в котором все элементы обратимы

Определение 1.2:

Тривиальная группа - группа, состоящая из одного элемента

Теорема 1.1. Если M - моноид и $G \subseteq M$ - подмножество обратимых элементов, то G - группа

 \mathcal{A} оказательно $G\subseteq M$ следовательно G ассоциативна, e - обратимый следовательно G имеет нейтральный элемент. Надо доказать замкнутость: $x*y\in G$

x', y' - обратные к x и y элементы, тогда

$$(x * y) * (y' * x') = x * (y * y') * x' = x * e * x' = x * x' = e$$

$$(y'*x')*(x'*y') = y'*(x'*x)*y = y*e*y' = y*y' = e$$

x * y обратим $\Rightarrow xy \in G$

если $x \in G$, то x' * x = x * x' = e, тогда x' имеет обратный элемент, тогда $x' \in G$. Любой элемент G имеет обратный.

G - группа. Теорема доказана.

Теорема 1.2 (Теорема Гротендика). *Каждый коммутативный моноид*, в котором все элементы сократимы можно вложить в группу

Доказательство. Пусть M - коммутативный моноид, $G' = M \times M = (a,b)$, где $a,b \in M$, $(a_1,b_1)(a_2,b_2) = (a_1a_2,b_1b_2)$, (e_1,e_2) - нейтральный элемент.

Пусть $(a,b) \equiv (c,d) \Leftrightarrow ad = bc$. Является ли \equiv конгруэнтностью?

- 1. $(a,b) \equiv (a,b), ab = ba$
- 2. $(a,b) \equiv (c,d), ad = bc \Rightarrow cb = da \Rightarrow (c,d) \equiv (a,b)$
- 3. $(a,b) \equiv (c,d) \equiv (u,v) \Rightarrow (a,b) \equiv (u,v)$

Надо доказать:

$$(a_1, b_1) \equiv (a_2, b_2), (c_1, d_1) \equiv (c_2, d_2) \Rightarrow (a_1c_1, b_1d_1) \equiv (a_2c_2, b_2d_2)$$

$$(a_1, b_1) \equiv (a_2, b_2), (c_1, d_1) \equiv (c_2, d_2) \Rightarrow$$

$$a_1b_2 = b_1a_2, c_1d_2 = d_1c_2 \Rightarrow a_1b_2c_1d_2 = b_1a_2d_1c_2 \Rightarrow$$

$$(a_1c_1)(b_2d_2) = (b_1d_1)(a_2c_2) \Rightarrow$$

$$(a_1c_1, b_1d_1) \equiv (a_2c_2, b_2d_2)$$

$$(a,b) \equiv (c,d) \Leftrightarrow ad = bc$$
 - конгруэнтность

Пусть $G=G'/_{\textstyle\equiv}$ надо доказать что G - группа и M вкладывается в G

$$ab = ba \Rightarrow abe = ab = ba = bae \Rightarrow (ab, ba) \equiv (e, e)$$

$$\widehat{(a, b)} * \widehat{(b, a)} = \widehat{(ab, ba)} = \widehat{(e, e)}$$

 \Rightarrow каждый элемент G имеет обратный $\Rightarrow G$ - группа Пусть $h:M\to G$ и $h(a)=\widehat{(a,e)}$, тогда

$$h(ab) = \widehat{(ab, e)} = \widehat{(a, e)}\widehat{(b, e)} = h(a)h(b)$$
$$h(e) = \widehat{(e, e)}$$

h - гомоморфизм Пусть h(a) = h(b)

$$\widehat{(a,e)} = \widehat{(b,e)} \Rightarrow (a,e) \equiv (b,e) \Rightarrow ae = eb \Rightarrow a = b$$

следовательно h - инъекция, следовательно h - вложение

Пример 1.1:

Пример на теорему Гротендика:

Теорема 1.3. G - группа тогда и только тогда, когда

1.
$$(xy)z = x(yz)$$

2. xe = x

3. $xx^{-1} = e$

Доказательство. 1. \Rightarrow по определению группы

$$2. \Leftarrow$$

$$(xy)z = x(yz) \Rightarrow G$$
 ассоциативна

$$xx^{-1} = e \Rightarrow x^{-1}x = e$$

Надо доказать: ex = x для любого x

$$x^{-1}x = x^{-1}xe = x^{-1}x(x^{-1}x)(x^{-1}x)^{-1} = x^{-1}(xx^{-1})x(x^{-1}x)^{-1} = x^{-1}ex(x^{-1}x)^{-1} = (x^{-1}x)(x^{-1}x)^{-1} = e$$
(1)

$$ex = (xx^{-1})x = x(x^{-1}x) = xe = x$$

G - группа

Следствие. Группы образуют многообразие в сигнатуре $(*, e, ^{-1})$

Определение 1.3:

Аддитивная группа - группа со сложением

Пример 1.2:

Примеры аддитивных групп: $(\mathbb{Z}; +)$

Определение 1.4:

Мультипликативная группа - группа с умножением

Пример 1.3:

Примеры мультипликативных групп: $(\mathbb{Q};\cdot)$

Определение 1.5:

Множество вычетов -

Пример 1.4:

Определение 1.6:

Матричные группы: носитель группы - $M_n^*(R)$ и $det \neq 0$

Пример 1.5:

Примеры матричных групп:

- 1. $(M_n^*, \cdot, E, ^{-1})$ группа, не коммутативная
- 2. $det = \pm 1$ группа

3. O_n - ортогональные, $(O_n, \cdot, E, ^{-1})$ - группа

Определение 1.7:

Группа перестановок - группа перестановок множества S называется группа всех биекций $f:S\to S.$ $(F,\circ,e,^{-1})$

Пример 1.6:

Определение 1.8:

Симметрическая группа порядка n: S - конечно и состоит из n элементов. $(A, \circ, e, ^{-1}), A$ - множество автоморфизмов $h: S \to S$

Пример 1.7:

Пример симметрической группы:

 $A = \{e, r_1, r_2, s_1, s_2, s_3\}$

- е тождественное преобразование
- r_1, r_2 поворот на 120° и 240° соответственно
- \bullet s_1, s_2, s_3 оборот вокруг высоты, идущей из первой, второй и третьей вершины соответственно

$$\mathbf{D}_3 = (A, \circ)$$

Таблица умножения о

	e	r_1	r_2	s_1	s_2	s_3
e	e	x	e	x	e	x
r_1	e	x	e	x	e	x
r_2	e	x	e	x	e	x
s_1	e	x	e	x	e	x
s_2	e	x	e	x	e	x
s_3	x	x	e	x	e	x

Определение 1.9:

Группа кос -

потом соображу как длиннее сделать

Теорема 1.4. Если G - полугруппа, то G является группой тогда и только тогда, когда любое уравнение вида ax = b или xa = b, $(a, b \in G)$ имеет в G решение

Доказательство. 1. \Rightarrow

$$ax = b$$

$$a^{-1}ax = a^{-1}b$$

$$x = a^{-1}b$$

$$x = ba^{-1}$$

$$x = ba^{-1}$$

любое уравнение вида ax=b или $xa=b,\,(a,b\in G)$ имеет в G решение

- $2. \Leftarrow$ по теореме 1.3
 - (а) по определению полугруппы
 - (b) $ax = a \Rightarrow x = e \ ya = b$, имеет решение y = d, da = b

$$be = dae = da = b \Rightarrow be = b$$

(c) для любых ax=e существует решение $x=a^{-1}$ - обратное к a

Теорема 1.5. 1. $(ab)^{-1} = b^{-1}a^{-1}$

2.
$$(a^{-1})^{-1} = a$$

Определение 1.10:

Абелева группа - группа, в которой xy=yx