- 9 脉冲波形的变换与产生
- 9.1 单稳态触发器
- 9.2 施密特触发器
- 9.3 多器谐振荡
- 9.4 555定时器及其应用

1

- 9.1单稳态触发器
- 9.1.1 用门电路组成的微分型单稳态触发器
- 9.1.2 集成单稳态触发器
- 9.1.3 单稳态触发器的应用

9.1单稳态触发器

单稳态触发器的工作特点:

- ① 电路在没有触发信号作用时处于一种稳定状态。
- ② 在外来触发信号作用下, 电路由稳态翻转到暂稳态:
- ③ 由于电路中*RC*延时环节的作用,暂稳态不能长保持, 经过一段时间后,电路会自动返回到稳态。暂稳态的 持续时间仅取与*RC*参数值有关。

3

单稳态触发器的分类

按电路形式不同

一门电路组成的单稳态触发器

MSI集成单稳态触发器

用555定时器组成的单稳态触发器

工作特点划分

• 不可重复触发单稳态触发器

可重复触发单稳态触发器

3、主要参数的计算

$$f(t) = f(\infty) + [f(0_+) - f(\infty)]e^{-\frac{t}{\tau}}$$

(1) 输出脉冲宽度tw

$$t_{\Psi} = RC \ln \frac{\upsilon_{C}(\infty) - \upsilon_{C}(0)}{\upsilon_{C}(\infty) - V_{\text{TH}}}$$

$$\begin{aligned} v_{\mathrm{C}}(0) &= 0; \quad v_{\mathrm{C}}(\infty) = V_{\mathrm{DD}} \\ \tau &= RC, \quad V_{\mathrm{TH}} = V_{\mathrm{DD}} / 2 \\ t_{\mathrm{W}} &= RC \ln \frac{V_{\mathrm{DD}} - 0}{V_{\mathrm{DD}} - V_{\mathrm{TH}}} \\ &= RC \ln 2 \end{aligned}$$

$$t_{\rm w} \approx 0.7RC$$

- (2) 恢复时间 $t_{\rm re}$ $t_{\rm re} \approx 3 \sim 5 \tau$
- (3) 最高工作频率 f_{max}

min w re

4. 讨论

a)在暂稳态结束($t=t_2$)瞬间,门 G_2 的输入电压 υ_{12} 达到 $V_{DD}+V_{TH}$,可能损坏 G_2 门,怎么办?

b)用TTL门电阻R的取值可以是任意的吗?

采用TTL与非门构成单稳电 路时,

电阻R要小于0.7k Ω 电阻Rd要大于2k Ω

逻辑功能表

74121功能表

$\overline{A_1}$	A_2	В	Q	$\overline{\varrho}$
L	×	H	L	H
×	L	H	L	H
×	×	L	L	H
H	H	×	L	H
H	ţ	H	Т	Т.
1	H	H	几	T
ŧ	•	H	Л	T,
L	×	4	T	T)
×	L	1		ТГ

$t_{\rm w} \approx 0.7RC$

不可触发,保持稳态不变

 $B 和 A_1$ 、 A_2 、中有一个或两个为高电平,输入端A1或A2有一个或两个下降沿时电路被触发

 A_1 、 A_2 中有一个或两个为低电平,在B端输入上升沿时电路被触发

13

9.1.3 单稳态触发器的应用

该电路可用于频率计:固定时间内计脉冲个数

.4

9.2 施密特触发器

- 9.2.1 用门电路组成的施密特触发器
- 9.2.2 集成施密特触发器
- 9.2.3 施密特触发器的应用

17

9.2 施密特触发器

- 1、施密特触发器电压传输特性及工作特点:
- ① 施密特触发器属于<mark>电平</mark>触发器件,当输入信号达到一定电压值时,输出电压会发生突变。
- ② 电路有两个阈值电压。 输入信号增加和减少时,电路的阈值电压分别是**正向阈值电压**(\mathbf{V}_{T+})和**负向阈值电压**(\mathbf{V}_{T})。

9.2.1 用门电路组成的施密特触发器

1、电路组成

2、工作原理

假定:
$$V_{\text{TH}} \approx \frac{V_{DD}}{2} \quad R_1 < R_2 \quad \upsilon_1 为 三角波$$
 $v_{\text{II}} = \frac{R_2}{R_1 + R_2} \cdot v_1 + \frac{R_1}{R_1 + R_2} \cdot v_0$

$$v_{II} = \frac{R_2}{R_1 + R_2} \cdot v_1 + \frac{R_1}{R_1 + R_2} \cdot v_0$$
(3) $v_{II} > V_{TH}$ 电路,维持 $v_{O} = V_{OH}$ 不变
(4) 当 v_{IT} 下降, v_{II} 也下降,,只要 $v_{II} > V_{TH}$,则保持 $v_{O} = V_{OH}$
 $v_{O} = V_{OL}$
 $v_{II} = \frac{R_2}{R_1 + R_2} \cdot v_1 + \frac{R_1}{R_1 + R_2} \cdot v_0$
 $v_{II} \approx V_{TH} = \frac{R_2}{R_1 + R_2} \cdot v_1 + \frac{R_1}{R_1 + R_2} \cdot v_0$ (跳变前瞬间, $v_{O} = 1$)。
$$v_{II} = (1 - \frac{R_1}{R_2}) v_{TH}$$

$$\Delta V_{T} = V_{T} - V_{T} \approx 2 \frac{R_1}{R_2} V_{TH} = \frac{R_1}{R_2} V_{DD}$$

9.3 多谐振荡器

概述:上电后就能产生一定频率和一定幅值矩形波的自激振荡器。

多谐振荡器的基本组成:

开关器件:产生高、低电平

反馈延迟环节(*RC*电路):利用*RC*电路的**充放电特性**实现延时,输出电压经延时后,**反馈**到开关器件**输入端**,改变电路的输出状态,以获得所需的脉冲波形输出。

9.3.1 由CMOS门电路组成的多谐振荡器

1. 电路组成

 v_{01} 与 v_{02} 反相,电容接在 v_{0} 与 v_{1} 之间:

 $.v_{o1}=1, v_{o}=0$ 时,电容充电, v_{I} 增加;

 $v_{o1}=0, v_{o}=1$ 时,电容放电, v_{I} 下降;

2. 工作原理

(1) 第一暫稳态(初态)电容充电,电路自动翻转到第二暫稳态 假定 $V_{\text{TH}} = V_{\text{OV}} = V_{\text{OF}} = V_{\text{ND}} / 2$ 电路初态: $v_{\text{O1}} = 1$ $v_{\text{O}} = 0$ $v_{\text{C}} = 0$ V 电容充电 $\longrightarrow v_{\text{C}} \uparrow \longrightarrow v_{\text{I}} \uparrow \longrightarrow \exists v_{\text{I}} = V_{\text{TH}}$ 时, $v_{\text{I}} \uparrow \longrightarrow v_{\text{O1}} \downarrow \longrightarrow v_{\text{O1}} \uparrow \longrightarrow v_{\text{O1}} \downarrow \longrightarrow v_{\text{O1}} \uparrow \longrightarrow v_{\text{O2}} \uparrow \longrightarrow v_{\text{O3}} \downarrow \longrightarrow v_{\text{C}} \uparrow \longrightarrow v_{\text$

3. 振荡周期的计算

$$t_{W} = RC \ln \frac{\upsilon_{C}(\infty) - \upsilon_{C}(0)}{\upsilon_{C}(\infty) - V_{TH}}$$

 $v_{\rm I}(0+) \approx 0$; $v_{\rm C}(\infty) \approx V_{\rm DD} \tau = RC$, $T_{\rm I} = t_2 - t_1$

$$T_1 = RC \ln \frac{V_{\rm DD}}{V_{\rm DD} - V_{\rm TH}}$$

 T_2 : $v_1(0+) \approx V_{DD}$; $v_C(\infty) \approx 0 \ \tau = RC$, $T_2 = t_3 - t_2$

$$T_2 = RC \ln \frac{V_{\rm DD}}{V_{\rm TH}}$$

$$T_2 = RC \ln \frac{V_{\rm DD}}{V_{\rm TH}}$$
 $T = T_1 + T_2 = RC \ln \left[\frac{V_{\rm DD}^2}{(V_{\rm DD} - V_{\rm TH}) \cdot V_{\rm TH}} \right]$

T = RC1n4 \approx 1.4RC

由门电路组成的多谐振荡器的振 荡周期T取决于R、C电路和 V_{TH} , 当电源电压波动时,会使振荡频 率不稳定(由其在V_{TH}≠V_{DD}/2时)。

- 9.4 555定时器及其应用
- 9.4.1 555定时器
- 9.4.2 用555定时器组成施密特触发器
- 9.4.3 用555定时器组成单稳态触发器
- 9.4.4 用555定时器组成多谐振荡器

3、555定时器功能表

输入	输 出			
阈值输入 (V ₁)	触发输入 (V ₁₂)	复位(R _D)	输出 (<i>V</i> o)	放电管 T
X	×	0	0	导通
$<\frac{2}{3}V_{\rm CC}$	$<\frac{1}{3}V_{\rm cc}$	1	1	截止
$<\frac{3}{3}V_{\rm CC}$	$> \frac{1}{3}V_{\rm cc}$	1	不变	不变
$>\frac{2}{3}V_{\rm CC}$	$> \frac{1}{3}V_{\rm cc}$	1	0	导通

4、)工作波形及输出脉宽的计算 $tw = RC \ln \frac{Vcc - 0}{Vcc - \frac{2}{3}Vcc} = RC \ln 3$ 如果R是可变电阻? v_{cc} v_{c

如何改变?减小?

4、用555定时器组成占空比可的调多谐振荡器

$$t_{pH} = R_A C 1 n 2 \approx 0.7 R_A C$$

$$t_{\rm PL} = R_{\rm B}C1n2 \approx 0.7R_{\rm B}C$$

$$f = \frac{1}{t_{\text{pH}} + t_{\text{pL}}} \approx \frac{1.43}{(R_{\text{A}} + R_{B})C}$$

$$q(\%) = \frac{R_{\rm A}}{R_{\rm A} + R_{\rm B}} \times 100 \%$$

练习1 R为何值时,振荡器开始工作?求输出信号Vo的频率,占空比,画出波形Vo1,Q。R1=100K,R2=10K,C=5u.

$$q = \frac{T_{PH} + T_{PL}}{T_{PH} + T_{PL}} \times 100\%$$

$$T_{PH} = (R_1 + R_2)C \ln 2 \approx 0.7(R_1 + R_2)C$$
$$T_{PL} = R_2C \ln 2 \approx 0.7R_2C$$

45

练习2 由555定时器组成的<mark>单稳态</mark>触发器如图,R=100K,C=20u.

画出C上的电压及Vo波形,求出输出脉冲宽度tw=?

 t_{w} =RC1n3 \approx 1.1RC =2.2s

如果R是可变电阻: 50k-100k

第九章作业

- 第9章:
- 9.4 (1, 4 (), 6, 7)

17

9.4.1 说明工作原理, 计算发光二极管点亮时间?

9.4.6 何种电路? 工作原理

49

9.4.7 说明工作原理,S按下后以1.2Khz频率响10s,确定R1、R2值?

