b-sq b implies q sif b then q sq (whenever) b

Conditional Statements <

We will discuss several other important ways in which propositions can be combined.

DEFINITION 5

Let \underline{p} and \underline{q} be propositions. The conditional statement $\underline{p} \to \underline{q}$ is the proposition "if \underline{p} , then \underline{q} ." The conditional statement $\underline{p} \to \underline{q}$ is false when \underline{p} is true and \underline{q} is false, and true otherwise. In the conditional statement $\underline{p} \to \underline{q}$ \underline{p} is called the <u>hypothesis</u> (or <u>antecedent</u> or <u>premise</u>) and \underline{q} is called the <u>conclusion</u> (or <u>consequence</u>).

EXAMPLE 8 What is the value of the variable x after the statement

if 2 + 2 = 4 then x := x + 1

if x = 0 before this statement is encountered? (The symbol := stands for assignment. The statement x := x + 1 means the assignment of the value of x + 1 to x.)

Solution: Because 2 + 2 = 4 is true, the assignment statement x := x + 1 is executed. Hence, x has the value 0 + 1 = 1 after this statement is encountered.

CONVERSE, CONTRAPOSITIVE, AND INVERSE We can form some new conditional statements starting with a conditional statement $p \to q$. In particular, there are three related conditional statements that occur so often that they have special names. The proposition $q \to p$ is called the converse of $p \to q$. The contrapositive of $p \to q$ is the proposition $\neg q \to \neg p$. The proposition $\neg p \rightarrow \neg q$ is called the inverse of $p \rightarrow q$. We will see that of these three conditional statements formed from $p \to q$, only the contrapositive always has the same truth value as $p \to q$.

We first show that the contrapositive, $\neg q \rightarrow \neg p$, of a conditional statement $p \rightarrow q$ always has the same truth value as $p \to q$. To see this, note that the contrapositive is false only when $\neg p$ is false and $\neg q$ is true, that is, only when p is true and q is false. We now show that neither the converse, $q \to p$, nor the inverse, $\neg p \to \neg q$, has the same truth value as $p \to q$ for all possible truth values of p and q. Note that when p is true and q is false, the original conditional statement is false, but the converse and the inverse are both true.

Contrapositive

" \underline{q} whenever \underline{p} "

EXAMPLE 9 What are the contrapositive, the converse, and the inverse of the conditional statement

"The home team wins whenever it is raining?"

b: It is raining

Q: The Home team wins

[9,3b: If the home team wins, then It is raining

Converse: 9 sp: If the home team wins, then It is raining

Inverse ~p>~P: If It is not raining, then the home team doesn't win.

Enverse ~p > ~ P: If It is not raining, then the home team does not win then it is not raining

[ontrapositive ~ P > ~ P: If the home team does not win then it is not raining

| P | Q | ~ P | ~ P | P | P | ~ P

BICONDITIONALS We now introduce another way to combine propositions that expresses that two propositions have the same truth value.

DEFINITION 6

Let p and q be propositions. The *biconditional statement* $p \leftrightarrow q$ is the proposition "p if and only if q." The biconditional statement $p \leftrightarrow q$ is true when p and q have the same truth values, and is false otherwise. Biconditional statements are also called *bi-implications*.

TABLE 6 The Truth Table for the Biconditional $p \leftrightarrow q$.				
p	q	$p \leftrightarrow q$		
Т	T	Т		
T	F	F		
F	T	F		
F	F	Т		

EXAMPLE 10 Let p be the statement "You can take the flight," and let q be the statement "You buy a ticket." Then $p \leftrightarrow q$ is the statement

"You can take the flight if and only if you buy a ticket."

DEFINITION 1	1 1 1 1 7 /	
	tional variables that occur in it, is called a <i>tautology</i> . A compound proposition that is always false is called a <i>contradiction</i> . A compound proposition that is neither a tautology nor a	
	contradiction is called a <i>contingency</i> .	
	71 1 1 1	
EXAMPLE 1 W	We can construct examples of tautologies and contradictions using just one propositional vari-	
able. Consider the truth tables of $p \lor \neg p$ and $p \land \neg p$, shown in Table 1. Because $p \lor \neg p$ is always true, it is a tautology. Because $p \land \neg p$ is always false, it is a contradiction.		
aiv	ways true, it is a tautology. Because $p \land \neg p$ is always false, it is a contradiction.	
	EXAMPLE 11 Construct the truth table of the compound proposition	
	$(p \lor \neg q) \to (p \land q).$	

