$ \begin{array}{ c c c } \hline \textbf{Ex. I} & \textbf{Les dangers d'une atmosphère trop riche en CO}_2 \\ \hline 1. & & & & & & & & & & & & & & & & & & $
1. $K_{S} = \frac{[Ca^{2+}] \times [CO_{3}^{2-}]}{C^{\circ 2}}$ 2. $\Delta_{r}G_{0}^{T} = \Delta_{r}H_{0}^{T} - T \times \Delta_{r}S_{0}^{T}$ $\Delta_{r}S_{298}^{0} = -542.8 - 677.1 + 1207.1 = -12.8 kJ/mol$ $\Delta_{r}S_{298}^{0} = -53.1 - 56.9 - 88.7 = -198.7 J/mol/K$ $\Delta_{r}G_{0}^{T} = -12.8 + 298 \times 198.7 \cdot 10^{-3} = 46.4 kJ/mol$ 3. $K_{S} = e^{\frac{-\Delta_{r}G_{0}^{T}}{RT}} = e^{\frac{-46.4 \cdot 10^{3}}{8.314 \times 298}} = \frac{7.31 \cdot 10^{-9}}{5.314 \times 298} \text{ soit } pK_{S} = 8.14$ 4. écart de 2,5% par rapport à la valeur expérimentale 5. dans ce cas, $s = \sqrt{K_{S}} = 6.67 \cdot 10^{-5} mol/L$ 6. L'équilibre R1 de dissolution de CO ₂ dans l'eau conduit à une libération d'ions H ₃ O ⁺ , donc à u acidification, donc à une diminution de pH. 7. $K_{a1} = \frac{[HCO_{3}^{-}][H_{3}O^{+}]}{[CO_{2}] \cdot C^{\circ}} \qquad K_{a2} = \frac{[Co_{3}^{2-}][H_{3}O^{+}]}{[HCO_{3}^{-}] \cdot C^{\circ}}$ 8. $[AH] > 10 \times [A^{-}] \Leftrightarrow \frac{[A^{-}]}{[AH]} < 0.1 \Leftrightarrow \frac{K_{a} \times C^{\circ}}{[H_{3}O^{+}]} < 0.1 \Leftrightarrow -pK_{a} + pH < -1$ $\Leftrightarrow pH < pK_{a} - 1$ De même : $[A^{-}] > 10 \times [AH] \Leftrightarrow pH > pK_{a} + 1$
Loi de Hess : $ \Delta_r H_{298}^0 = -542, 8 - 677, 1 + 1207, 1 = -12, 8 kJ/mol $ $ \Delta_r S_{298}^0 = -53, 1 - 56, 9 - 88, 7 = -198, 7 J/mol/K $ $ \Delta_r G_1^0 = -12, 8 + 298 \times 198, 7 \cdot 10^{-3} = 46, 4 kJ/mol $ 3. $ K_S = e^{\frac{-4c_1 r_0^0}{RT}} = e^{\frac{-4c_1 + 10^3}{8,314 \times 298}} = 7,31 \cdot 10^{-9} \text{ soit } pK_S = 8,14 $ 4. écart de 2,5% par rapport à la valeur expérimentale 5. dans ce cas, $s = \sqrt{K_S} = 6,67 \cdot 10^{-5} mol/L $ 6. L'équilibre R1 de dissolution de CO_2 dans l'eau conduit à une libération d'ions H_3O^+ , donc à u acidification, donc à une diminution de pH. 7. $ K_{a1} = \frac{[HcO_3^-][H_3O^+]}{[CO_2]\cdot C^\circ} \qquad K_{a2} = \frac{[cO_3^{2-}][H_3O^+]}{[HcO_3^-]\cdot C^\circ} $ 8. $ [AH] > 10 \times [A^-] \Leftrightarrow \frac{[A^-]}{[AH]} < 0,1 \Leftrightarrow \frac{K_a \times C^\circ}{[H_3O^+]} < 0,1 \Leftrightarrow -pK_a + pH < -1 $ $ \Leftrightarrow pH < pK_a - 1 $ De même : $[A^-] > 10 \times [AH] \Leftrightarrow pH > pK_a + 1 $
Loi de Hess : $ \Delta_r H_{298}^0 = -542, 8 - 677, 1 + 1207, 1 = -12, 8 kJ/mol $ $ \Delta_r S_{298}^0 = -53, 1 - 56, 9 - 88, 7 = -198, 7 J/mol/K $ $ \Delta_r G_1^0 = -12, 8 + 298 \times 198, 7 \cdot 10^{-3} = 46, 4 kJ/mol $ 3. $ K_S = e^{\frac{-4c_1 r_0^0}{RT}} = e^{\frac{-4c_1 + 10^3}{8,314 \times 298}} = 7,31 \cdot 10^{-9} \text{ soit } pK_S = 8,14 $ 4. écart de 2,5% par rapport à la valeur expérimentale 5. dans ce cas, $s = \sqrt{K_S} = 6,67 \cdot 10^{-5} mol/L $ 6. L'équilibre R1 de dissolution de CO_2 dans l'eau conduit à une libération d'ions H_3O^+ , donc à u acidification, donc à une diminution de pH. 7. $ K_{a1} = \frac{[HcO_3^-][H_3O^+]}{[CO_2]\cdot C^\circ} \qquad K_{a2} = \frac{[cO_3^{2-}][H_3O^+]}{[HcO_3^-]\cdot C^\circ} $ 8. $ [AH] > 10 \times [A^-] \Leftrightarrow \frac{[A^-]}{[AH]} < 0,1 \Leftrightarrow \frac{K_a \times C^\circ}{[H_3O^+]} < 0,1 \Leftrightarrow -pK_a + pH < -1 $ $ \Leftrightarrow pH < pK_a - 1 $ De même : $[A^-] > 10 \times [AH] \Leftrightarrow pH > pK_a + 1 $
$\Delta_{r}S_{298}^{0} = -53,1 - 56,9 - 88,7 = -198,7 \ J/mol/K$ $\Delta_{r}G_{0}^{0} = -12,8 + 298 \times 198,7 \cdot 10^{-3} = 46,4 \ kJ/mol$ 3. $K_{S} = e^{\frac{-\Delta_{r}G_{T}^{0}}{RT}} = e^{\frac{-46,4 \cdot 10^{3}}{8,314 \times 298}} = 7,31 \cdot 10^{-9} \text{ soit } pK_{S} = 8,14$ 4. écart de 2,5% par rapport à la valeur expérimentale 5. dans ce cas, $s = \sqrt{K_{S}} = 6,67 \cdot 10^{-5} \ mol/L$ 6. L'équilibre R1 de dissolution de CO ₂ dans l'eau conduit à une libération d'ions H ₃ O ⁺ , donc à u acidification, donc à une diminution de pH. 7. $K_{a1} = \frac{[HCO_{3}^{-}][H_{3}O^{+}]}{[CO_{2}] \cdot C^{\circ}} \qquad K_{a2} = \frac{[CO_{3}^{2-}][H_{3}O^{+}]}{[HCO_{3}] \cdot C^{\circ}}$ 8. $[AH] > 10 \times [A^{-}] \Leftrightarrow \frac{[A^{-}]}{[AH]} < 0,1 \Leftrightarrow \frac{K_{a} \times C^{\circ}}{[H_{3}O^{+}]} < 0,1 \Leftrightarrow -pK_{a} + pH < -1 \Leftrightarrow pH < pK_{a} - 1$ De même : $[A^{-}] > 10 \times [AH] \Leftrightarrow pH > pK_{a} + 1$
$ \Delta_{r}G_{T}^{0} = -12.8 + 298 \times 198.7 \cdot 10^{-3} = 46.4 kJ/mol $ 3. $ K_{S} = e^{\frac{-\Delta_{r}G_{T}^{0}}{RT}} = e^{\frac{-46.4 \cdot 10^{3}}{8.314 \times 298}} = 7.31 \cdot 10^{-9} \text{ soit } pK_{S} = 8.14 $ 4. $ \text{écart de 2,5\% par rapport à la valeur expérimentale} $ 5. $ \text{dans ce cas, } s = \sqrt{K_{S}} = 6.67 \cdot 10^{-5} mol/L $ 6. $ L'\text{équilibre R1 de dissolution de CO}_{2} \text{dans l'eau conduit à une libération d'ions H}_{3}O^{+}, \text{donc à uacidification, donc à une diminution de pH.} $ 7. $ K_{a1} = \frac{[HCO_{3}^{-}][H_{3}O^{+}]}{[CO_{2}] \cdot C^{\circ}} \qquad K_{a2} = \frac{[CO_{3}^{2}^{-}][H_{3}O^{+}]}{[HCO_{3}^{-}] \cdot C^{\circ}} $ 8. $ [AH] > 10 \times [A^{-}] \Leftrightarrow \frac{[A^{-}]}{[AH]} < 0.1 \Leftrightarrow \frac{K_{a} \times C^{\circ}}{[H_{3}O^{+}]} < 0.1 \Leftrightarrow -pK_{a} + pH < -1 \\ \Leftrightarrow pH < pK_{a} - 1 $ De même : $ [A^{-}] > 10 \times [AH] \Leftrightarrow pH > pK_{a} + 1 $
4. écart de 2,5% par rapport à la valeur expérimentale 5. dans ce cas, $s = \sqrt{K_S} = 6,67 \cdot 10^{-5} \ mol/L$ 6. L'équilibre R1 de dissolution de CO_2 dans l'eau conduit à une libération d'ions H_3O^+ , donc à u acidification, donc à une diminution de pH. 7. $K_{a1} = \frac{[HCO_3^-][H_3O^+]}{[CO_2] \cdot C^\circ}$ $K_{a2} = \frac{[CO_3^{2-}][H_3O^+]}{[HCO_3] \cdot C^\circ}$ 8. $[AH] > 10 \times [A^-] \Leftrightarrow \frac{[A^-]}{[AH]} < 0,1 \Leftrightarrow \frac{K_a \times C^\circ}{[H_3O^+]} < 0,1 \Leftrightarrow -pK_a + pH < -1 \Leftrightarrow pH < pK_a - 1$ De même : $[A^-] > 10 \times [AH] \Leftrightarrow pH > pK_a + 1$
4. écart de 2,5% par rapport à la valeur expérimentale 5. dans ce cas, $s = \sqrt{K_S} = 6,67 \cdot 10^{-5} \ mol/L$ 6. L'équilibre R1 de dissolution de CO_2 dans l'eau conduit à une libération d'ions H_3O^+ , donc à u acidification, donc à une diminution de pH. 7. $K_{a1} = \frac{[HCO_3^-][H_3O^+]}{[CO_2]\cdot C^\circ}$ $K_{a2} = \frac{[CO_3^{2^-}][H_3O^+]}{[HCO_3]\cdot C^\circ}$ 8. $[AH] > 10 \times [A^-] \Leftrightarrow \frac{[A^-]}{[AH]} < 0,1 \Leftrightarrow \frac{K_a \times C^\circ}{[H_3O^+]} < 0,1 \Leftrightarrow -pK_a + pH < -1 \Leftrightarrow pH < pK_a - 1$ De même : $[A^-] > 10 \times [AH] \Leftrightarrow pH > pK_a + 1$
5. dans ce cas, $s = \sqrt{K_S} = 6,67 \cdot 10^{-5} \ mol/L$ 6. L'équilibre R1 de dissolution de CO ₂ dans l'eau conduit à une libération d'ions H ₃ O ⁺ , donc à u acidification, donc à une diminution de pH. 7. $K_{a1} = \frac{[HCO_3^-][H_3O^+]}{[CO_2] \cdot C^\circ}$ $K_{a2} = \frac{[CO_3^2^-][H_3O^+]}{[HCO_3^-] \cdot C^\circ}$ 8. $[AH] > 10 \times [A^-] \Leftrightarrow \frac{[A^-]}{[AH]} < 0,1 \Leftrightarrow \frac{K_a \times C^\circ}{[H_3O^+]} < 0,1 \Leftrightarrow -pK_a + pH < -1 \Leftrightarrow pH < pK_a - 1$ De même : $[A^-] > 10 \times [AH] \Leftrightarrow pH > pK_a + 1$
6. L'équilibre R1 de dissolution de CO_2 dans l'eau conduit à une libération d'ions H_3O^+ , donc à u acidification, donc à une diminution de pH. 7. $K_{a1} = \frac{[HCO_3^-][H_3O^+]}{[CO_2]\cdot C^\circ}$ $K_{a2} = \frac{[CO_3^{2^-}][H_3O^+]}{[HCO_3^-]\cdot C^\circ}$ 8. $[AH] > 10 \times [A^-] \Leftrightarrow \frac{[A^-]}{[AH]} < 0,1 \Leftrightarrow \frac{K_a \times C^\circ}{[H_3O^+]} < 0,1 \Leftrightarrow -pK_a + pH < -1 \Leftrightarrow pH < pK_a - 1$ De même : $[A^-] > 10 \times [AH] \Leftrightarrow pH > pK_a + 1$
acidification, donc à une diminution de pH.
acidification, donc à une diminution de pH.
8. $[AH] > 10 \times [A^-] \Leftrightarrow \frac{[A^-]}{[AH]} < 0,1 \Leftrightarrow \frac{K_a \times C^\circ}{[H_3O^+]} < 0,1 \Leftrightarrow -pK_a + pH < -1$ $\Leftrightarrow pH < pK_a - 1$ De même : $[A^-] > 10 \times [AH] \Leftrightarrow pH > pK_a + 1$
8. $[AH] > 10 \times [A^-] \Leftrightarrow \frac{[A^-]}{[AH]} < 0,1 \Leftrightarrow \frac{K_a \times C^\circ}{[H_3O^+]} < 0,1 \Leftrightarrow -pK_a + pH < -1$ $\Leftrightarrow pH < pK_a - 1$ De même : $[A^-] > 10 \times [AH] \Leftrightarrow pH > pK_a + 1$
$\Leftrightarrow pH < pK_a - 1$ De même : $[A^-] > 10 \times [AH] \Leftrightarrow pH > pK_a + 1$
De même : $[A^-] > 10 \times [AH] \Leftrightarrow pH > pK_a + 1$
De même : $[A^-] > 10 \times [AH] \Leftrightarrow pH > pK_a + 1$
Un facteur 10 sur les concentrations correspond à un écart de ±1 sur l'échelle des pH, d'où
domaines de prédominance délimités par pK _{a1} ±1 et pK _{a2} ±1 :
$CO_{2(aq)}$ $HCO_{3(aq)}^{-}$ $CO_{3(aq)}^{2-}$
5,35 7,35 9,40 11,4
5,55 7,55 5,40 11,4
9. $s^{2} = [Ca^{2+}]^{2} = [Ca^{2+}] \times [CO_{3(aq)}^{2-}] + [Ca^{2+}] \times [HCO_{3(aq)}^{-}] + [Ca^{2+}] \times [CO_{2(aq)}]$
$= [Ca^{2+}] \frac{[CO_3^{2-}][H_3O^+]^2}{K_{a1} \cdot K_{a2} \cdot C^{\circ 2}} + [Ca^{2+}] \frac{[CO_3^{2-}][H_3O^+]}{K_{a2} \cdot C^{\circ}} + [Ca^{2+}] \cdot [CO_3^{2-}] =$
$= K_{s} \cdot C^{\circ 2} \left(\frac{[H_{3}O^{+}]^{2}}{K_{a1} \cdot K_{a2} \cdot C^{\circ 2}} + \frac{[H_{3}O^{+}]}{K_{a2} \cdot C^{\circ}} + 1 \right)$
$(K_{a1} \cdot K_{a2}, C^2 K_{a2}, C^0)$
10. pH des océans entre 8,1 et 8,3, donc c'est HCO _{3 (aq)} qui est l'espèce prédominante.
Dans ce cas, $s^2 \cong [Ca^{2+}] \times [HCO_{3(aq)}^-] = \frac{K_S \times C^\circ}{K_{a2}} \times [H_3O^+]$
11. A pH = 8,2 : $s'^2 = [Ca^{2+}]^2 \cong [Ca^{2+}] \times [HCO_{3(aq)}^-] = K_s \cdot \frac{[H_3O^+] \cdot C^\circ}{K_{ac}}$
142
D'où: $ps' = -\log\left(\frac{s'}{c^{\circ}}\right) = -\frac{1}{2}\log(s'^2) + \log(C^{\circ}) = \frac{1}{2}pK_s + \frac{1}{2}pH - \frac{1}{2}pK_{a2} + \frac{1}{2}\log(C^{\circ})$
12. A pH = 8,2 : $ps' = \frac{8,35}{2} + \frac{8,2}{2} - \frac{10,4}{2} = 3,075 \text{ soit } s' = 8,41 \cdot 10^{-4} \text{ mol/L}$
13. Si la teneur en CO ₂ augmente, le pH va diminuer (cf question 6), ce qui entraine une
augmentation de ps', et donc une augmentation de s'; les organismes marins calcaires
(coquilles de crustacés) vont donc se dissoudre plus facilement dans l'eau, ce qui risque de
mettre en péril leur survie.

Question	Résultat
Ex. II	Formation de l'hydroxyde de magnésium
1	$MgO_{(s)} + H_2O_{(g)} \rightarrow Mg(OH)_{2 (s)}$
2	V = N - r - r'+ n - φ = 3 - 1 - 0 + 2 - 3 = 1 Un seul paramètre intensif détermine tous les autres qui seraient encore manquant. Ainsi, si T est fixée, P = P _{H2O} est fixée car ces deux paramètres sont liés par la relation : $K_T^0 = \frac{P^0}{P_{H_2O}}$
3	$P_{H2O} = P_E = 1,00 \text{ bar}$ $P_{VS} = 5,06 \text{ bar}$ $P_{H2O} < P_{VS}$ donc toute l'eau est à l'état gazeux
4	$P_{H_2O} = \frac{n_{H_2O}.RT}{V} = \frac{0.222 \times 8.314 \times (273 + 150)}{10.0.10^{-3}} \approx 78000\mathrm{Pa} \approx 0.78\mathrm{bar}$ $P_{H_2O} < P_E$ donc La pression d'équilibre n'est pas atteinte et il ne peut pas se former de Mg(OH) ₂ car Q > K° _{150°C}
5	Pour que Mg(OH) ₂ puisse se former il faut au minimum $n_{H_2O,min}$ moles de vapeur d'eau pour que la pression d'équilibre $P_E = P_{H2O} = 1,00$ bar puisse être atteinte : $n_{H_2O,min} = \frac{P_{H_2O}V}{RT} = \frac{10^5 \times 0,01}{8,314 \times (273+150)} = 0,284 \ mol$
6	$n_{MgO,i} = \frac{n_{MgO,i}}{M_{MgO}} = \frac{49.6}{40.3} = 1,23 \ mol$ Pour consommer tout MgO, il faut au minimum 0,284 + 1,23 = 1,51 moles d'eau
7	Pour $0 \le n < 0.284$ mol les phases en présence sont: MgO (s) et H ₂ O (g) et $0 \le P_{H_2O} < 1$ bar L'équilibre a lieu pour $0.284 \le n < 1.51$ mol Les phases en présence sont: MgO, H ₂ O (g), Mg(OH) ₂ La pression est constante : $P_{H_2O} = P_E = 1.00$ bar Pour $1.51 \le n < 2$ mol les phases en présence sont: Mg(OH) ₂ (s) et H ₂ O (g) Quand $n = 2$ mol, $P_{H_2O} = \frac{(2-1.23).RT}{V} = \frac{0.77 \times 8.314 \times 423}{10.0.10^{-3}} \approx 270800\text{Pa} \approx 2.71\text{bar}$ Pour $P_{VS} = 5.06$

