Лекция 9

Ilya Yaroshevskiy

21 апреля 2021 г.

Содержание

 $q_1,q_2,\ldots,q_n,\ldots$ — программы

- 1. $q_i(j)$ не зависает
- 2. \forall разрешимого $A, A = \{j | q_i(j) = 1\}$ для некоторогоi
- 3. $(i,j)\mapsto q_i(j)$ вычислимая функция

$$L(p) = \{x | p(x) = 1\}$$

- \bullet A перечислимый язык
- p_A полуразрешитель A
- $L(p_A) = A$
 - $-\ L: Prog \rightarrow 2^{\Sigma^*}$
 - $-L: Prog \rightarrow RE$ (Recursively Enumerable)
- X- свойство языков $X\subset RE$
- Конечные языки $Finite \subset RE$
- Языки, содержащие ε X_{ε} \subset EE $A \in X_{\varepsilon} \Leftrightarrow \varepsilon \in A$ $\text{lang} \Leftrightarrow \text{string} \in A$

Посмторим на их типы

- * string
- \bullet lang set<string>
- prop set<lang>

Определение. X- свойство перечислимых языков.

Язык свойства $L: prop \rightarrow lang \ L(X) = \{p | L(p) \in X\}$

Пример.
$$L(RE) = \{p | L(p) \in RE\} = Prog$$

```
fn q(p: Prop) -> bool { return 1; } \Pi pumep. \ L(\emptyset_p) = \{p \big| L(p) \in \emptyset_p\} = \emptyset_e
```

```
fn q(p: Prop) -> bool {
   return 0;
}
```

Теорема 0.1 (Rice, Успенский-Райс).

- $\bullet \ \, X \subset RE$
- $X \neq \emptyset$
- $\bullet \ \, X \neq RE$

 ${\underline{\hbox{Тогда}}}\ L(X)$ не разрешим

Доделать