Robotics Project Navigation and Localization

F. Jampy¹ C. Prabhu Kumar² P. Sai Krishna³

Supervisors: S.Ralph¹, D.Cedric², D.Fofi³

¹Department of Computer Vision, Le2i
University of Burgundy

Masters in Computer Vision, 2014

Outline

- Motivation
 - Goals
- 2 Methodology
 - Navigation in a blank map
 - Navigation in a known map
 - Navigation with obstacle avoidance
 - Target Detection
- Results
- Conclusion and Future work

Outline

- Motivation
 - Goals
- 2 Methodology
 - Navigation in a blank map
 - Navigation in a known map
 - Navigation with obstacle avoidance
 - Target Detection
- Results
- 4 Conclusion and Future work

Navigation in a blank map

 Navigation with one input coordinate with starting pose A and Target pose B.

Navigation in a known map

Map built with Teleoperation.

Navigation in a blank map

 Navigation with one input coordinate with starting pose A and Target pose B.

Navigation in a known map

• Map built with Teleoperation.

Navigation in a map with Obstacle avoidance

Navigation with known map and unknown obstacles.

Target Detection

Navigation in a map with Obstacle avoidance

Navigation with known map and unknown obstacles.

Target Detection

Navigation in a map with Obstacle avoidance

• Navigation with known map and unknown obstacles.

Target Detection

Navigation in a map with Obstacle avoidance

• Navigation with known map and unknown obstacles.

Target Detection

Outline

- Motivation
 - Goals
- 2 Methodology
 - Navigation in a blank map
 - Navigation in a known map
 - Navigation with obstacle avoidance
 - Target Detection
- Results
- 4 Conclusion and Future work

Navigation in a blank map Navigation in a known map Navigation with obstacle avoidance Target Detection

Goal 1: Navigation in a blank map

Goal 1: Navigation in a blank map

• Start pose and Goal pose should be same.

Path Planne

- Move_base (Global and Local Planner) and AMCL (Adaptive Monto Carlo Localization) are used.
- AMCL Laser information and map of the environment are needed

Goal 1: Navigation in a blank map

• Start pose and Goal pose should be same.

Path Planners

- Move_base (Global and Local Planner) and AMCL (Adaptive Monto Carlo Localization) are used.
- AMCL Laser information and map of the environment are needed.

RVIZ Results using Move_base path planning

RVIZ Results using AMCL

Outline

- Motivation
 - Goals
- Methodology
 - Navigation in a blank map
 - Navigation in a known map
 - Navigation with obstacle avoidance
 - Target Detection
- Results
- Conclusion and Future work

Build the Map.

Available Packages in ROS

- Keyboard Teleopertation or joystick
- Exploration package.
- Interaction marker

Build the Map.

Available Packages in ROS

- Keyboard Teleopertation or joystick.
- Exploration package.
- Interaction marker.

Goal 2: Navigation in a known map. Map built by Teleoperation keys or keyboard teleoperation

- In order to navigate in a map,
 - AMCL and Move_base packages are used.
 - Localize the turtlebot in a map.

Move_base Path P

- Based on both global and local planner.
 - First draws the global planner to reach goal
 - 2 Local planner will follow global path.

AMC

- Implements the adaptive monte carlo localization approach.
 - which uses a particle filter to track the pose of the robot against the known map.

- In order to navigate in a map,
 - AMCL and Move_base packages are used.
 - 2 Localize the turtlebot in a map.

Move_base Path Planner

- Based on both global and local planner.
 - First draws the global planner to reach goal.
 - Local planner will follow global path. .

AMCL

- Implements the adaptive monte carlo localization approach
 - which uses a particle filter to track the pose of the robot against the known map.

- In order to navigate in a map,
 - AMCL and Move_base packages are used.
 - 2 Localize the turtlebot in a map.

Move_base Path Planner

- Based on both global and local planner.
 - First draws the global planner to reach goal.
 - Local planner will follow global path. .

AMCL

- Implements the adaptive monte carlo localization approach
 - which uses a particle filter to track the pose of the robot against the known map.

Navigation in a known Map

Move_base without obstacles in a known map in rviz

Amcl navigation without obstacles in a known map in rviz.

Outline

- Motivation
 - Goals
- Methodology
 - Navigation in a blank map
 - Navigation in a known map
 - Navigation with obstacle avoidance
 - Target Detection
- Results
- 4 Conclusion and Future work

Goal 3: Navigation with obstacle avoidance

Goal 3: Navigation with obstacle avoidance

Goal 3: Navigation with obstacle avoidance.

- Turtlebot avoids the obstacles while seen on its way(while reaching) the target using any of the path planning packages available in ROS.
- Move base and amcl are good in avoiding obstacles.
- These overlays are created using the Pause style.

Goal 3: Navigation with obstacle avoidance.

- Turtlebot avoids the obstacles while seen on its way(while reaching) the target using any of the path planning packages available in ROS.
- Move base and amcl are good in avoiding obstacles.
- These overlays are created using the Pause style.

Goal 3: Navigation with obstacle avoidance.

- Turtlebot avoids the obstacles while seen on its way(while reaching) the target using any of the path planning packages available in ROS.
- Move base and amcl are good in avoiding obstacles.
- These overlays are created using the Pause style.

Demonstration of Move_base.

- Move base is combined with global and local path planner.
- When goal is given, it plans global path.
- When finds the obstacle, local planner will avoid the obstacles and reach the goal.

Demonstration of Amcl.

- Localize the turtlebot in a map. Once the target is given for the turtlebot.
- Amcl is a probabilistic localization system for a robot moving in 2D.
- It implements the adaptive Monte Carlo localization approach, which uses a particle filter to track the pose of a robot against a known map.

Outline

- Motivation
 - Goals
- 2 Methodology
 - Navigation in a blank map
 - Navigation in a known map
 - Navigation with obstacle avoidance
 - Target Detection
- Results
- 4 Conclusion and Future work

Navigation in a blank map Navigation in a known map Navigation with obstacle avoidance Target Detection

Goal 4: Target Detection.

Goal 4: Target Detection.

Goal 4: Target Detection.

Algorithm

- Step 1: Go from Starting Pose A to Target pose, B.
- Step 2: Rotate 360^o.
- Step 3: While rotating, if you see the QR code, stop and then goto step6.
- Step 4: If QR code is not seen, move to the position 'C'.
- Step 5: Start moving in a square (C,D,E,F). While moving in a square, if QR code seen, then stop.
- Step 6: Get the position and the orientation values of QR code.
- Step 7: Give these values to the robot an dit will go and stand infront of the QR code.

Goal 4: Target Detection. VISP(Visual Servoing Platform)

- To detect the target we tried with different packages like Visp, cmvision & ar_recog.
- First we tried with Visp package for detecting the target and to move towards the target.
- The good thing in visp is we will get the image coordinate i.e. position and orientation with reference to world.

Drawback of VISP

- But the detection is limited. If the distance between turtlebot and target is greater than 20cm we cannot detect the target.
- With this drawback visp is not much helpful in accomplishing the task.

Goal 4: Target Detection. VISP(Visual Servoing Platform)

- To detect the target we tried with different packages like Visp, cmvision & ar_recog.
- First we tried with Visp package for detecting the target and to move towards the target.
- The good thing in visp is we will get the image coordinate i.e. position and orientation with reference to world.

Drawback of VISP

- But the detection is limited. If the distance between turtlebot and target is greater than 20cm we cannot detect the target.
- With this drawback visp is not much helpful in accomplishing the task.

Blob Finder.

 We tried with blob finder which is available in cmvision package. This could be helpful but too much false positives.

Drawback

- This is package is very sensitive to light conditions in the environment.
- Blob finder image.

Blob Finder.

 We tried with blob finder which is available in cmvision package. This could be helpful but too much false positives.

Drawback

- This is package is very sensitive to light conditions in the environment.
- Blob finder image.

Goal 4: Target Detection AR Recognition

- To do robust detection of the target we use ar_recog packagevery robust to detect the QR code.
- With this we can able to detect the target from long distance which is up to 2.5m. Not only the distance it also give position and corners of the image.
- With this we are able to detect the target and make the turtlebot to move towards the target.

Goal 4: Target Detection AR Recognition

- To do robust detection of the target we use ar_recog packagevery robust to detect the QR code.
- With this we can able to detect the target from long distance which is up to 2.5m. Not only the distance it also give position and corners of the image.
- With this we are able to detect the target and make the turtlebot to move towards the target.

Goal 4: Target Detection AR Recognition

- To do robust detection of the target we use ar_recog packagevery robust to detect the QR code.
- With this we can able to detect the target from long distance which is up to 2.5m. Not only the distance it also give position and corners of the image.
- With this we are able to detect the target and make the turtlebot to move towards the target.

Goal 4: AR_Recognition.

- ar_recog idea ?
- First we obtain the markers of the image from online source.

Goal 4: AR_Recognition.

- ar recog idea ?
- First we obtain the markers of the image from online source.

Goal 4: AR_Recognition.

Goal 4: Working of AR_Recognition.

- To achieve the final goal, moving from zone 1 to zone 2 and to identify the target we take advantage of state machine.
- ② For this we gave altogether 6 states for turtlebot to detect the target and move towards the goal.
- Seach state represent operation in each step to achieve the target.

State Machine Execution Picture/ Flow chart

References

- R.Patrick Gabriel ROS by examples.
 - volume 1.
- http://wiki.ros.org/gmapping. Wikipedia.
- http://wiki.ros.org/visp. Wikipedia.
- http://wiki.ros.org/cmvision. Wikipedia.
- http://wiki.ros.org/ar_recog. Wikipedia.