MS-Anchor: Linktexte als Ranking-Features im Zeitalter von Deep Learning

Maximilian Probst

Bachelorarbeit Martin-Luther-Universität Halle-Wittenberg

05.10.2021

| □ ▶ ◀♬ ▶ ◀불 ▶ ◀불 ▶ │ 불 │ 釣요♡

Maximilian Probst 05.10.2021 1/23

Was ist Anchor-Text?

2 / 23

```
Was ist Anchor-Text?
Beispiel:
```

```
Please visit this example page.
```

```
<a href="http://www.example.com">example page</a>
```

《□▶ 《圖▶ 《意》 《意》 「意」 釣@@

2 / 23

"Anchors often provide more accurate descriptions of web pages than the pages themselves."

- Sergey Brin und Lawrence Page, The Anatomy of a Large-Scale Hypertextual Web Search Engine, 1998

(ㅁ▶ ◀畵▶ ◀불▶ ◀불▶ - 불 - 쒸٩연

3 / 23

- Anchor-Text bietet Vorteile für viele traditionelle Retrieval-Modelle
- Retrieval-Modelle entwickeln sich allerdings immer weiter
 - \rightarrow ist Anchor-Text noch immer von Nutzen?

4 / 23

- Anchor-Text bietet Vorteile für viele traditionelle Retrieval-Modelle
- Retrieval-Modelle entwickeln sich allerdings immer weiter
 → ist Anchor-Text noch immer von Nutzen?
- Grundlage f
 ür Anchor-Texte hier: MS Marco-Datensatz

4 / 23

- ullet MS Marco-Datensatz beinhaltet kaum Anchor-Text o Common Crawls nutzen
- genutzt wurden Common Crawls der Jahre 2016-2021
- ca. 2-4 Mrd. Webseiten und 50-80 TiB komprimierte Daten pro Crawl

5 / 23

• parsen der Common Crawl Daten

6 / 23

- parsen der Common Crawl Daten
- Filterschritte Anwenden
 - nur MS Marco-Seiten betrachten
 - seiteninterne Links entfernen
 - Stopwort-Anchor-Text entfernen
 - zu lange Anchor-Texte entfernen

6 / 23

- parsen der Common Crawl Daten
- Filterschritte Anwenden
 - nur MS Marco-Seiten betrachten
 - seiteninterne Links entfernen
 - Stopwort-Anchor-Text entfernen
 - zu lange Anchor-Texte entfernen
- Anchor-Kontext bestimmen

6/23

- parsen der Common Crawl Daten
- Filterschritte Anwenden
 - nur MS Marco-Seiten betrachten
 - seiteninterne Links entfernen
 - Stopwort-Anchor-Text entfernen
 - zu lange Anchor-Texte entfernen
- Anchor-Kontext bestimmen
- Anchor-Text-Daten im JSONL-Format speichern

6/23

Struktur der JSONL Daten:

7 / 23

Struktur der JSONL Daten: AnchorElement

7 / 23

7 / 23

Struktur der JSONL Daten: AnchorElement

□ anchorText

↓ anchorContext

7 / 23

Struktur der JSONL Daten: AnchorElement

□ anchorText

↓ anchorContext

↓ targetUrl

7 / 23

Struktur der JSONL Daten: AnchorElement

- □ anchorText
- □ anchorContext
- ↓ targetUrl
- targetMsMarcoDocIds[]

7 / 23

Struktur der JSONL Daten: AnchorElement

- □ anchorText
- □ anchorContext
- ↓ targetUrl
- targetMsMarcoDocIds[]
- document

7 / 23

```
Struktur der JSONL Daten:
AnchorElement

↓ anchorText

↓ anchorContext

      ↓ targetUrl
      ↓ targetMsMarcoDocIds[]

    document

↓ scrUrl

    recordID

↓ trecID

↓ infoID
```

7 / 23

```
Struktur der JSONL Daten:
AnchorElement

↓ anchorContext

↓ targetUrl

      ↓ targetMsMarcoDocIds[]

    document

↓ scrUrl

    recordID

↓ trecID

↓ infoID

¬ naughtyWords[]
```

7 / 23

Table: Übersicht der Extrahierten Anchor-Text-Daten.

Crawl	Anzahl Seiten	Anchor Texte	\emptyset Anchor Text pro	
			Tgt Seite	Src Seite
2016-07	1,73 Mrd.	1,05 Mrd.	331	3,09
2017 - 04	3,14 Mrd.	0,95 Mrd.	171	2,49
2018-13	3,20 Mrd.	0,83 Mrd.	136	2,10
2019-47	2,55 Mrd.	0,55 Mrd.	148	1,98
2020-05	3,10 Mrd.	0,67 Mrd.	159	1,99
2021-04	3,40 Mrd.	0,52 Mrd.	150	1,87

8 / 23

Table: Übersicht der Extrahierten Anchor-Text-Daten.

Crawl	Anzahl Seiten	Anchor Texte	Ø Anchor Text pro	
			Tgt Seite	Src Seite
2016-07	1,73 Mrd.	1,05 Mrd.	331	3,09
2017-04	3,14 Mrd.	0,95 Mrd.	171	2,49
2018-13	3,20 Mrd.	$0.83 \mathrm{Mrd}$.	136	2,10
2019-47	2,55 Mrd.	0,55 Mrd.	148	1,98
2020-05	3,10 Mrd.	$0.67~\mathrm{Mrd}.$	159	1,99
2021-04	3,40 Mrd.	$0,52~\mathrm{Mrd}.$	150	1,87

Insgesamt:

- 17 Mrd. Webseiten betrachtet
- 4,5 Mrd. Anchor-Texte extrahiert
- 52% der MS Marco-Dokumente abgedeckt

Maximilian Probst 05.10.2021 8 / 23

• Retrieval-Performance mittels Anserini prüfen

9 / 23

- Retrieval-Performance mittels Anserini prüfen
- Samples aus Anchor-Texten entnehmen (Schwellwert=2000 Anchor-Texte)

9 / 23

- Retrieval-Performance mittels Anserini prüfen
- Samples aus Anchor-Texten entnehmen (Schwellwert=2000 Anchor-Texte)

Erste Ergebnisse mittels BM25:

	Content-Baseline	Anchor-Text (CC 19-47)
MAP	0,23	0,08
R@100	0,71	0,24
R@1000	0,88	0,30

Maximilian Probst 05.10.2021 9 / 23

Figure: NDCG@100 je Query für Anchor-Texte der Jahre 2016 bis 2021.

Maximilian Probst 05.10.2021 10 / 23

Figure: NDCG@100 je Query für Anchor-Texte der Jahre 2016 bis 2021.

- Retrieval-Performance Prinzipiell eher Zeitunabhängig
- aber: CC 16-07 schnitt unterdurchschnittlich schlecht ab

Maximilian Probst 05.10.2021 10 / 23

Figure: NDCG@10 je Crawl für Anchor-Texte der Jahre 2016 bis 2021.

11 / 23

Aggregation von Anchor-Texten

Figure: NDCG@100 je Query für Anchor-Texte der Jahre 2016 bis 2018, sowie deren Kombination und die Kombination aller Jahre (2016–2021.)

Maximilian Probst 05.10.2021 12 / 23

Aggregation von Anchor-Texten

Figure: NDCG@10 je Query für Jahr der Jahre 2016 bis 2018, sowie deren Kombination und die Kombination aller Jahre (2016–2021).

Maximilian Probst 05.10.2021 13 / 23

ORCAS-Datensatz

- 18 Mio. Query-URL-Paare aus Bings Query-Logs
- für Forschungszwecke frei verfügbar

Maximilian Probst 05.10.2021 14 / 23

ORCAS-Datensatz

- 18 Mio. Query-URL-Paare aus Bings Query-Logs
- für Forschungszwecke frei verfügbar

Figure: NDCG@100 pro Query für Anchor-Texte und ORCAS-Queries, sowie für auf deren Schnittmenge reduzierter Teildatensätze.

Maximilian Probst 05.10.2021 14 / 23

15 / 23

• Intention von Suchanfragen kann in 3 Arten unterteilt werden

Maximilian Probst 05.10.2021 15/23

- Intention von Suchanfragen kann in 3 Arten unterteilt werden
 - informational Queries
 - navigational Queries
 - transactional Queries

Maximilian Probst 05.10.2021 15/23

- Intention von Suchanfragen kann in 3 Arten unterteilt werden
 - informational Queries
 - navigational Queries
 - transactional Queries
- ullet Bsp. informational Query: "wetter morgen" o breites Ergebnisspektrum möglich
- ullet Bsp. navigational Query: "accuweather" o präzision nötig

Maximilian Probst

15 / 23

- Intention von Suchanfragen kann in 3 Arten unterteilt werden
 - informational Queries
 - navigational Queries
 - transactional Queries
- ullet Bsp. informational Query: "wetter morgen" o breites Ergebnisspektrum möglich
- ullet Bsp. navigational Query: "accuweather" o präzision nötig
- ca. 39% aller Anfragen sind informational
- ca. 25% aller Anfragen sind navigational

◆□▶◆御▶◆恵▶◆恵▶ ・恵・釣९@

15 / 23

16 / 23

 Nick Craswell, David Hawking und Stephen Robertson mit "Effective site finding using link anchor information" erreichten gute Ergebnisse auf navigational Queries

Figure: zufällige entry Pages (Craswell et al. 2001).

Maximilian Probst 05.10.2021 16 / 23

17 / 23

Figure: Yahoo entry Pages (Craswell et al. 2001).

Maximilian Probst 05.10.2021 17 / 23

Experiment wird nachgestellt

- 100 zufällige Query-Paare erstellen
 (z.B. <sigir2001, http://www.sigir2001.org/>)
- 100 zufällige Query-Paare mit Alexa top 500 Seiten von MS Marco erstellen

Maximilian Probst 05.10.2021 18 / 23

19 / 23

Figure: zufällige entry Pages auf MS Marco.

Maximilian Probst 05.10.2021 19/23

20 / 23

Figure: beliebte entry Pages auf MS Marco.

Maximilian Probst 05.10.2021 20 / 23

Begründung:

21 / 23

Begründung:

ullet Seite ist bekannter o über sie wird mehr berichtet

Maximilian Probst 05.10.2021 21/23

Begründung:

- ullet Seite ist bekannter o über sie wird mehr berichtet
- eigener Name wird oft nur selten erwähnt

Maximilian Probst 05.10.2021 21 / 23

Kombination von Anchor-Text mit anderen Features

- Anchor-Text mit anderen Features zu kombinieren Sinnvoll
- genutzt wird LambdaMART in Implementierung von LightGBM

Maximilian Probst 05.10.2021 22 / 23

Kombination von Anchor-Text mit anderen Features

- Anchor-Text mit anderen Features zu kombinieren Sinnvoll
- genutzt wird LambdaMART in Implementierung von LightGBM

Table: Ergebnis des Learning-to-Rank-Verfahrens gegenüber der Anserini Baseline und doc5Tquery (Deep Learning 2020).

		MRR	NDCG@10
Learning-to-Rank	${\sf LambdaMART}$	0,944	0,596
Anserini Baseline	BM25	0,852	0,527
doc5Tquery	BM25	0,937	0,589

Maximilian Probst 05.10.2021 22 / 23

Kombination von Anchor-Text mit anderen Features

- Anchor-Text mit anderen Features zu kombinieren Sinnvoll
- genutzt wird LambdaMART in Implementierung von LightGBM

Table: Ergebnis des Learning-to-Rank-Verfahrens gegenüber der Anserini Baseline und doc5Tquery (Deep Learning 2020).

		MRR	NDCG@10
Learning-to-Rank	${\sf LambdaMART}$	0,944	0,596
Anserini Baseline	BM25	0,852	0,527
doc5Tquery	BM25	0,937	0,589

• Anchortext als siebtwichtigstes Feature von 50

Maximilian Probst 05.10.2021 22 / 23

Fazit

Fazit

• Anchor Texte können bei richtiger Nutzung durchaus hilfreich sein

Maximilian Probst 05.10.2021 23 / 23

Fazit

- Anchor Texte können bei richtiger Nutzung durchaus hilfreich sein
- der Datensatz kann somit zu weiteren Forschungen beitragen

Maximilian Probst 05.10.2021 23 / 23