Linear Algebra

주재걸 고려대학교 컴퓨터학과

- Example 1: Let $W = \text{Span}\{\mathbf{x}_1, \mathbf{x}_2\}$, where $\mathbf{x}_1 = \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix}$ and $\mathbf{x}_2 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$. Construct an orthogonal basis $\{\mathbf{v}_1, \mathbf{v}_2\}$ for W.
- Solution: Let $\mathbf{v}_1 = \mathbf{x}_1$. Next, Let \mathbf{v}_2 the component of \mathbf{x}_2 orthogonal to \mathbf{x}_1 , i.e.,

$$\mathbf{v}_2 = \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{x}_1}{\mathbf{x}_1 \cdot \mathbf{x}_1} \mathbf{x}_1 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} - \frac{15}{45} \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}.$$

• The set $\{\mathbf{v}_1, \mathbf{v}_2\}$ is an orthogonal basis for W.

Gram-Schmidt Orthogonalization

• Example 2: Let
$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
, $\mathbf{x}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, and $\mathbf{x}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. Then

 $\{x_1, x_2, x_3\}$ is clearly linearly independent and thus is a basis for a subspace W of \mathbb{R}^4 . Construct an orthogonal basis for W.

Gram-Schmidt Orthogonalization

- Solution:
- Step 1. Let $v_1 = x_1$ and $W_1 = \text{Span}\{x_1\} = \text{Span}\{v_1\}$.
- Step 2. Let \mathbf{v}_2 be the vector produced by subtracting from \mathbf{x}_2 its projection onto the subspace W_1 . That is, let

$$\mathbf{v}_{2} = \mathbf{x}_{2} - \text{proj}_{W_{1}} \mathbf{x}_{2} = \mathbf{x}_{2} - \frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} = \begin{bmatrix} -3/4 \\ 1/4 \\ 1/4 \end{bmatrix}$$

• \mathbf{v}_2 is the component of \mathbf{x}_2 orthogonal to \mathbf{x}_1 , and $\{\mathbf{v}_1, \mathbf{v}_2\}$ is an orthogonal basis for the subspace W_2 spanned by \mathbf{x}_1 and \mathbf{x}_2 .

• Step 2' (optional). If appropriate, scale \mathbf{v}_2 to simplify later

computations, e.g.,

$$\mathbf{v}_2 = \begin{bmatrix} -3/4 \\ 1/4 \\ 1/4 \\ 1/4 \end{bmatrix} \longrightarrow \mathbf{v}_2' = \begin{bmatrix} -3 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

• **Step 3.** Let \mathbf{v}_3 be the vector produced by subtracting from \mathbf{x}_3 its projection onto the subspace W_2 . Use the orthogonal basis $\{\mathbf{v}_1, \mathbf{v}_2'\}$ to compute this projection onto W_2 :

$$\operatorname{proj}_{W_2} \mathbf{x}_3 = \frac{\mathbf{x}_3 \cdot \mathbf{v}_1}{\mathbf{v}_3 \cdot \mathbf{v}_1} \mathbf{v}_1 + \frac{\mathbf{x}_3 \cdot \mathbf{v}_2'}{\mathbf{v}_3 \cdot \mathbf{v}_2'} \mathbf{v}_2' = \begin{bmatrix} 0 \\ 2/3 \\ 2/3 \end{bmatrix}$$

• Then \mathbf{v}_3 is the component of \mathbf{x}_3 orthogonal to W_2 , namely,

$$\mathbf{v}_{3} = \mathbf{x}_{3} - \text{proj}_{W_{2}} \mathbf{x}_{3} = \begin{bmatrix} 0 \\ -2/3 \\ 1/3 \\ 1/3 \end{bmatrix}$$

Gram-Schmidt Orthogonalization

FIGURE 2 The construction of v_3 from x_3 and W_2 .

Figure from Lay Ch6.4

QR Factorization

• If A is an $m \times n$ matrix with linearly independent columns, then A can be factored as A = QR, where Q is an $m \times n$ matrix whose columns form an orthonormal basis for $\operatorname{Col} A$ and R is an $n \times n$ upper triangular invertible matrix with positive entries on its diagonal.

Computing QR Factorization

• Step 1 (Construction of Q): The columns of A form a basis for $Col\ A$ since they are linearly independent. Let these columns be $\{\mathbf{x}_1, ..., \mathbf{x}_n\}$. Then, we can construct the orthonormal basis $\{\mathbf{u}_1, ..., \mathbf{u}_n\}$ for $Col\ A$ by the Gram-Schmidt process described by Theorem 11. Using this basis, we can construct Q as $Q = [\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_n]$

Computing QR Factorization

• Step 2 (Construction of R): From (1) in Theorem 11, for k = 1, ..., n, \mathbf{x}_k is in $\mathrm{Span}\{\mathbf{x}_1, ..., \mathbf{x}_k\} = \mathrm{Span}\{\mathbf{u}_1, ..., \mathbf{u}_k\}$. Therefore, there exist constants $r_{1k}, ..., r_{kk}$ such that

$$\mathbf{x}_k = r_{1k}\mathbf{u}_1 + \dots + r_{kk}\mathbf{u}_k + 0 \cdot \mathbf{u}_{k+1} + \dots + 0 \cdot \mathbf{u}_n$$

• We can always make $r_{kk} \ge 0$ because if $r_{kk} < 0$, then we can multiply both r_{kk} and \mathbf{u}_k by -1. Using this linear combination representation, we can construct \mathbf{r}_k , the k-th column of R, as

$$\mathbf{r}_k = egin{bmatrix} r_{1k} \ dots \ r_{kk} \ 0 \ dots \ 0 \end{bmatrix}.$$

Computing QR Factorization

• That is,
$$\mathbf{x}_k = Q\mathbf{r}_k$$
 for $k = 1, ..., n$. Let $R = [\mathbf{r}_1 \quad \cdots \quad \mathbf{r}_n]$. Then, $A = [\mathbf{X}_1 \quad \cdots \quad \mathbf{X}_n] = [Q\mathbf{r}_1 \quad \cdots \quad Q\mathbf{r}_n] = QR$

• The fact that R is invertible follows easily from the fact that the columns of A are linearly independent (Exercise 19). Since R is clearly upper triangular (from the previous slide) and invertible, the diagonal entries r_{kk} 's should be nonzero. By combining this with the fact that $r_{kk} \ge 0$, r_{kk} 's must be positive.

Example: QR Factorization

- **Example 4:** Find a QR factorization of $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$.
- Solution: Let $A = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_3 \\ 1/2 & 1/2 \end{bmatrix}$. We first obtain $\mathbf{v}_1 = \mathbf{x}_1$ and its normalized vector is $\mathbf{u}_1 = \begin{bmatrix} 1/2 \\ 1/2 \\ 1/2 \end{bmatrix}$.
- Thus, $\mathbf{x}_1 = 2\mathbf{u}_1$, which gives us $\mathbf{r}_{11} = 2$, i.e., $\mathbf{r}_1 = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$.

Example: QR Factorization

• Next, we obtain
$$\mathbf{v}_3$$
 as $\mathbf{v}_3 = \mathbf{x}_3 - \text{proj}_{W_2} \mathbf{x}_3 = \mathbf{x}_3 - \frac{\mathbf{x}_3 \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 - \frac{\mathbf{x}_3 \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} - 1 \begin{bmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{bmatrix} - \frac{2}{\sqrt{12}} \begin{bmatrix} -3/\sqrt{12} \\ 1/\sqrt{12} \\ 1/\sqrt{12} \\ 1/\sqrt{12} \end{bmatrix} = \begin{bmatrix} 0 \\ -2/3 \\ 1/3 \\ 1/3 \end{bmatrix} \text{ and its }$
normalized vector \mathbf{u}_2 as $\mathbf{u}_2 = \begin{bmatrix} -3/\sqrt{12} \\ 1/\sqrt{12} \\ 1/\sqrt{6} \\ 1/\sqrt{6} \end{bmatrix}$.

• Thus,
$$\mathbf{x}_3 = 1\mathbf{u}_1 + \frac{2}{\sqrt{12}}\mathbf{u}_2 + \frac{2}{\sqrt{6}}\mathbf{u}_3$$
, i.e., $\mathbf{r}_3 = \begin{bmatrix} 1 \\ 2/\sqrt{12} \\ 2/\sqrt{6} \end{bmatrix}$.

Example: QR Factorization

• In conclusion,
$$Q = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 \end{bmatrix} = \begin{bmatrix} 1/2 & -3/\sqrt{12} & 0 \\ 1/2 & 1/\sqrt{12} & -2/\sqrt{6} \\ 1/2 & 1/\sqrt{12} & 1/\sqrt{6} \\ 1/2 & 1/\sqrt{12} & 1/\sqrt{6} \end{bmatrix}$$

and
$$R = [\mathbf{r}_1 \quad \mathbf{r}_2 \quad \mathbf{r}_3] = \begin{bmatrix} 2 & -3/2 & 1 \\ 0 & -3/\sqrt{12} & 2/\sqrt{12} \\ 0 & 0 & 2/\sqrt{6} \end{bmatrix}$$
.