Co^{2+} (15-crown-5) Magnetic Supramolecular Cation in [Ni(dmit)₂]⁻ π -Spin System

Tomoyuki Akutagawa,*†,‡,§ Sadafumi Nishihara,‡ Nobuhiro Takamatsu,‡ Tatsuo Hasegawa,†,‡ Takayoshi Nakamura,*†,‡ and Tamotsu Inabe||

Research Institute for Electronic Science, Hokkaido University, Sapporo 060-0812, Japan, Graduate School of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan, PRESTO, Japan Science and Technology Corporation (JST), Japan, and Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan

Received: March 23, 2000; In Final Form: May 4, 2000

Magnetic cation of Co^{2+} was incorporated in a monovalent $[Ni(dmit)_2]^-$ (2-thioxo-1,3-dithiole-4,5-dithiolate) salt by using the supramolecular framework of 15-crown-5. The π -spins of $[Ni(dmit)_2]^-$ formed a one-dimensional Heisenberg antiferromagnetic linear chain, while the d-spin of Co^{2+} behaved as a free S=3/2 spin within the crystal.

The partially oxidized [metal(dithiolate)₂]^{$-\delta$} (δ < 1) salts show high electrical conductivity and have been widely examined. Although the monovalent [metal(dithiolate)₂] anions such as [Ni(mnt)₂]⁻ and [Ni(dmit)₂]⁻ (mnt and dmit are maleonitriledithiolate and 2-thioxo-1,3-dithiole-4,5-dithiolate, respectively) form insulating salts, each anion bears S = 1/2spin and a potential to form molecular magnets through intermolecular interactions in the crystal.² The ferromagnetic order of the spins has been observed in the NH₄⁺[Ni(mnt)₂]⁻(H₂O),³ and the spin-ladder chains have been constructed in [Ni(mnt)₂] or [Ni(dmit)₂] - salts.⁴ For the long range magnetic ordering, appropriate molecular arrangements in the crystals are indispensable. We have reported that the supramolecular cations (SC) such as M⁺(crown ether) can control the molecular arrangements of [Ni(dmit)₂] within the crystal.⁵ For example, one-dimensional antiferromagnetic [Ni(dmit)₂]⁻ chain has been obtained in the M⁺(crown ethers)[Ni(dmit)₂]⁻ (M⁺ = K⁺ and Rb⁺) salts.⁶ To decrease the Coulombic repulsive energy, the planar M⁺(crown ether) and [Ni(dmit)₂]⁻ anion stack alternately in the crystal. The M⁺(crown ether) prevents the face-to-face π – π overlap of the [Ni(dmit)₂] anions that form one-dimensional chain through side-by-side sulfur-sulfur contacts.

The crystal structure should be largely modified by replacing the monovalent M^+ to divalent M^{2+} within the SC unit due to the change in Madelung energy. 7 In addition, the magnetic ions can be introduced into the crystal utilizing the SC structure through the design of coordination environment. We show here an unusual arrangement of $[Ni(dmit)_2]^-$ anions in the divalent SC^{2+} salts and the incorporation of d-spin species into the SC structure.

The cation exchange of $(n\text{-Bu}_4\text{N})[\text{Ni}(\text{dmit})_2]^-$ with $\text{Ca}^{2+}/\text{DA}18$ -crown-6 and $\text{Co}^{2+}/15$ -crown-5 gave the SC salts of the $\text{Ca}^{2+}(\text{DA}18\text{-crown-6})[\text{Ni}(\text{dmit})_2]_2(\text{CH}_3\text{CN})_2$ (1) and $\text{Co}^{2+}(15\text{-crown-5})[\text{Ni}(\text{dmit})_2]_2(\text{CH}_3\text{CN})_2$ (2), respectively (Scheme 1).

SCHEME 1

 $(n-Bu_4N)[Ni(dmit)_2]$

The M^{2+} (crown ether) and $[Ni(dmit)_2]^-$ self-assembled to the isostructural crystals (tetragonal $P4_2/mnm$) as expected,⁸ although the SC unit of Co^{2+} (15-corwn-5) has a magnetic spin of S = 3/2.

Since the divalent Co²⁺ and Ca²⁺ ions are stoichiometrically incorporated into the crystals, the [Ni(dmit)₂]⁻ is in a completely ionized electronic state with S = 1/2 spin. Figure 1a shows the unit cell of the salt 1 viewed along the c-axis. The molecular plane of [Ni(dmit)₂]⁻ anions is orthogonal to the ab-plane, and the [Ni(dmit)₂]⁻ anions form a parallel cross lattice. The long axes of [Ni(dmit)₂]⁻ anions within the same plane is parallel to each other and are orthogonal to that of the next layer. Figure 1b shows the $\pi - \pi$ overlap mode of the [Ni(dmit)₂]⁻ anions viewed along the a-b axis. The $\pi-\pi$ overlap ($t_1=3.71$ and 4.03×10^{-2} eV for salts 1 and 2, respectively⁹) was found between the [Ni(dmit)₂]⁻ anions around the terminal sulfur atoms forming a uniform zigzag chain along the a + b and a - bb axes. No interchain contacts were observed within the abplane. However, these chains were further connected through the weak side-by-side interactions ($t_2 = 0.79$ and 0.83×10^{-2} eV for salt 1 and 2, respectively) along the c-axis. From the magnitude of t_1 and t_2 , the intermolecular interaction is dominant in the one-dimensional zigzag chain of [Ni(dmit)₂] anions.

Figure 1c shows the SC structures of $Ca^{2+}(DA18$ -crown-6)(CH_3CN)₂ and $Co^{2+}(15$ -crown-5)(CH_3CN)₂ viewed along the normal and parallel to the crown ether plane. Since the ion radius of $Co^{2+}(0.72 \text{ Å})$ and $Ca^{2+}(0.99 \text{ Å})$ fits well to the cavity radius of 15-crown-5 (0.85–1.1 Å) and DA18-crown-6 (1.3–1.6 Å),

^{*} Correspondence to: Dr. T. Akutagawa and Prof. T. Nakamura, Research Institute for Electronic Science, Hokkaido University, Sapporo 060-0812, Japan. Phone: +81-11-706-2884. Fax: +81-11-706-4972. E-mail: takuta@imd.es.hokudai.ac.jp.

[†] Research Institute for Electronic Science, Hokkaido University.

[‡] Graduate School of Environmental Earth Science, Hokkaido University.

[§] PRESTO, JST.

II Graduate School of Science, Hokkaido University.

Figure 1. Crystal structure of salt **1**. (a) Unit cell viewed along the *c*-axis. (b) $\pi - \pi$ Overlap mode and the zigzag chain of [Ni(dmit)₂]⁻ anions viewed along the a -b axis. (c) Ca²⁺(DA18-crown-6)(CH₃CN)₂ and Co²⁺(15-crown-5)(CH₃CN)₂ structures viewed normal (upper figures) and parallel (lower figures) to the crown ether plane, respectively. The 15-crown-5 molecule has an orientational disorder. One of the orientations is indicated in the figure.

respectively, the divalent ions are tightly included into the crown ether cavities. The average $M^{2+}-$ O (or N) distances are 0.15 Å shorter than the corresponding van der Waals contacts. 10 The disk-shaped $M^{2+}(\text{crown ether})$ units are further coordinated axially by the nitrogen atoms of two CH_3CN molecules. The $M^{2+}(\text{crown ethers})(\text{CH}_3\text{CN})_2$ SC units are located at the residual space of the parallel cross lattice of $[\text{Ni}(\text{dmit})_2]^-$.

Figure 2 shows the temperature dependence of magnetic susceptibility of salts **1** and **2**. Salt **1** has a broad $\chi_{\rm m}$ maximum at around 20 K. The temperature dependence of $\chi_{\rm m}$ is fitted well by the one-dimensional Heisenberg antiferromagnetic linear chain model, ¹¹ which is consistent with the arrangement of the [Ni(dmit)₂]⁻ anions in the crystal. The intrachain exchange energy ($|J/k_{\rm B}| \sim 12.2$ K) on the [Ni(dmit)₂]⁻ chain of salt **1** is small due to the weak $\pi-\pi$ overlap of [Ni(dmit)₂]⁻ anions. The $\chi_{\rm m}T$ vs T plot of salt **1** (Figure 2b) is constant above 40 K (C = 0.76 emu K mol⁻¹) and the magnetic moment corresponds to S = 1/2 spin on every [Ni(dmit)₂]⁻ anion. On the other hand,

Figure 2. Magnetic properties of salts 1 and 2. (a) Temperature (T/K) dependence of molar magnetic susceptibilities $(\chi_m/\text{emu mol}^{-1})$. (b) $\chi_m T$ vs T plots of salts 1 and 2. Line 2–1 is obtained by subtracting $\chi_m T$ values of salt 1 from that of salt 2 $(\chi_m T(2) - \chi_m T(1))$.

the absolute χ_m value of the **2** is much larger than that of salt **1** due to the contribution from the Co^{2+} spin (S = 3/2). Since the $\chi_m T$ vs T plot of the **2** shows a constant (C = 2.20 emu K mol^{-1}) above 40 K, the magnetic susceptibility is explained by the sum of two S = 1/2 spins of $[Ni(dmit)_2]^-$ anions and one S = 3/2 spin of Co^{2+} ion. By assuming that the $[Ni(dmit)_2]^-$ lattice shows the same magnetic behavior in salts **1** and **2**, we can estimate the magnetic behavior of Co^{2+} in salt **2** by subtracting $\chi_m T$ value of salt **1** from that of salt **2**. The residual magnetic moment is almost constant (C = 1.47 emu K mol^{-1}) in the measuring temperature range (**2**–**1** in Figure 2b), showing that the d-spin of Co^{2+} behaves as a free S = 3/2 spin within the crystal.

We have shown the incorporation of magnetic d-spin into divalent $M^{2+}(crown\ ether)$ supramolecular cation structure, which coexisted with the $[Ni(dmit)_2]^-\pi$ -spin. The $M^{2+}(crown\ ether)(CH_3CN)_2$ cation $(M^{2+}=Ca^{2+}\ or\ Co^{2+})$ afforded the isostructural crystals in which $[Ni(dmit)_2]^-$ formed a parallel cross lattice and the supramolecular cations were located at the residual space. By introducing the d- and π -spins within the crystal simultaneously, it should be possible to construct $d-\pi$ molecular magnets whose magnetic structures are dominated by the supramolecular cation structures.

Acknowledgment. This work was partly supported by a Grant-in-Aid for Science Research from the Ministry of Education, Science, Sports and Culture of Japan and by the Proposal-Based New Industry Creative Type Technology R&D Promotion Program from the New Energy and Industrial Technology Development Organization (NEDO) in Japan. The authors thank

Dr. M. Wakeshima and Prof. Y. Hinatsu for the use of SQUID magnetometer.

Supporting Information Available: Listing of crystal preparation and crystallographic data and tables listing atomic parameters and bond lengths and angles. This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

- (1) (a) Handbook of Organic Conductive Molecules and Polymers; Nalwa, H. S., Ed.; John Wiley & Sons: New York, 1997; Vol. 1. (b) Pullen, A. E.; Olk, R.-M. Coord. Chem. Rev. 1999, 188, 211.
- (2) (a) Heuer, W. B.; True, A. E.; Swepston, P. N.; Hoffman, B. M. *Inorg. Chem.* **1988**, *27*, 1474. (b) Heuer, W. B.; Squattrito, P. J.; Hoffman, B. M.; Ibers, J. A. *J. Am. Chem. Soc.* **1988**, *110*, 792.
- (3) (a) Coomber, A. T.; Beljonne, D.; Friend, R. H.; Brédas, J. J.; Charlton, A.; Robertson, N.; Underhill, A. E.; Kurmoo, M.; Day, P. *Nature* **1996**, *380*, 144. (b) Ribera, E.; Rovira, C.; Veciana, J.; Tarrés, J.; Canadell, E.; Rousseau, R.; Molins, E.; Mas, M.; Schoeffel, J.-P.; Pouget, J.-P.; Morgado, J.; Henriques, R. T.; Almeida, M. *Chem. Eur. J.* **1999**, *5*, 2025.
- (4) (a) Broderick, W. E.; Thompson, J. A.; Godfrey, M. R.; Sabat, M.; Hoffman, B. M.; Day, E. P. *J. Am. Chem. Soc.* **1989**, *111*, 7653. (b) Imai, H.; Inabe, T.; Otsuka, T.; Okuno, T.; Awaga, K. *Phys. Rev. B.* **1996**, *54*, 6838.
- (5) (a) Akutagawa, T.; Nakamura, T.; Underhill, A. E.; Inabe, T. *J. Mater. Chem.* **1996**, *7*, 135. (b) Akutagawa, T.; Nakamura, T.; Inabe, T.; Underhill, A. E. *Thin Solid Films* **1998**, *331*, 264. (c) Akutagawa, T.; Nezu, Y.; Hasegawa, T.; Nakamura, T.; Sugiura, K.; Sakata, Y.; Inabe, T.;

- Underhill, A. E. *Chem. Commun.* **1998**, 2599. (d) Nakamura, T.; Akutagawa, T.; Honda, K.; Underhill, A. E.; Coomber, A. T.; Friend, R. H. *Nature* **1998**, *394*, 159.
- (6) Takamatsu, N.; Akutagawa, T.; Hasegawa, T.; Nakamura, T.; Inabe, T.; Fujita, W.; Awaga, K. *Inorg. Chem.* **2000**, *39*, 870.
- (7) West, A. R. Basic Solid State Chemistry; John Wiley & Sons: New York, 1988.
- (8) Crystal data for salt 1: $C_{22}H_{32}O_4N_4S_{20}Ni_2Ca$, M = 1215.2, crystal dimensions $0.80 \times 0.20 \times 0.20 \text{ mm}^3$, Rigaku-AFC7R diffractometer, Mo-Kα radiation ($\lambda = 0.71069 \text{ Å}$), tetragonal, space group $P4_2/mnm$ (no. 136), $a = 15.562(1), c = 10.218(2) \text{ Å}, U = 2474.8(5) \text{ Å}^3, T = 298 \text{ K}, Z = 2, D_c$ = 1.631 gcm⁻³, F(000) = 1240.0, $\mu(\text{Mo-K}\alpha)$ 17.41 cm⁻¹, Lorentz polarization and absorption corrections applied, 1581 reflections measured, 1581 independent reflections, 1046 reflections with $I > 3.00\sigma(I)$. $(\Delta \rho)_{\text{max}}$ = 0.88e Å⁻³, $(\Delta \rho)_{\text{min}}$ = -1.32e Å⁻³, R = 0.046, R' = 0.038. For salt 2: $C_{36}H_{26}O_5N_2S_{20}CoNi_2$, M = 1384.2, crystal dimensions $0.30 \times 0.30 \times 0.02$ mm³, Rigaku RAXIS-RAPID diffractometer, Mo-K α radiation (λ = 0.71069 Å), tetragonal, space group $P4_2/mnm$ (no. 136), a=15.3048(4), c=10.0251(3) Å, U=2348.2(1) ų, T=298 K, Z=2, $D_c=1.957$ g cm^{-3} , F(000) = 1398.0, $\mu(Mo-K\alpha) 20.80 cm^{-1}$, Lorentz polarization and absorption corrections applied, 21443 reflections measured, 1495 independent reflections, 906 reflections with $I > 3.00\sigma(I)$. $(\Delta\rho)_{max} = 0.41e$ Å⁻³, $(\Delta\rho)_{min} = -0.34e$ Å⁻³, R = 0.030, R' = 0.042. Calculations were performed using teXsan crystallographic software packages with refinements based F. Solution by direct method: non-hydrogen atoms refined anisotropically and no refinement of hydrogen atoms.
- (9) Mori, T.; Kobayashi, A.; Sasaki, Y.; Kobayashi, H.; Saito, G.; Inokuchi, H. Bull. Chem. Soc. Jpn. 1984, 57, 627.
 - (10) Bondi, A. J. Phys. Chem. 1964, 68, 441.
 - (11) Bonner, J. C.; Fisher, M. E. Phys. Rev. A 1964, 3, 640.