Linear Regression Models

Xi Tan (tan19@purdue.edu)

December 30, 2012

Contents

1	Intr	oduction	3
2	Sim	ple Linear Regression	4
	2.1	Model	4
	2.2	Estimators	4
	2.3	Properties of Residuals	4
	2.4	Properties of b_1 and b_0	4
	2.5	Confidence Interval of b_1 and b_0	5

Preface

TBD

1 Introduction

Generalized linear models include as special cases, linear regression and analysis-of-variance models, logit and probit models for quantal responses, log linear models and multinomial response models for counts and some commonly used models for survival data.

The second-order properties of the parameter estimates are insensitive to the assumed distributional form: the second-order properties depend mainly on the assumed variance-to-mean relationship and on uncorrelatedness or independence.

Data types:

2 Simple Linear Regression

2.1 Model

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i \tag{1}$$

where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$

2.2 Estimators

$$b_1 = \frac{1}{\sum_{i=1}^n (X_i - \bar{X})^2} \sum_{i=1}^n (X_i - \bar{X}) Y_i$$
 (2)

$$b_0 = \bar{Y} - b_1 \bar{X} \tag{3}$$

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^n (Y_i - \hat{Y}_i)^2}{n-2} \tag{4}$$

Notice, $\sum (X_i - \bar{X})^2 = \sum X_i^2 - n\bar{X}^2$, and $b_1 = \rho \cdot \frac{s_Y}{s_X}$, where ρ is the correlation between X and Y and s_Y, s_X are standard error of Y and X, respectively.

2.3 Properties of Residuals

$$e_i = Y_i - \hat{Y}_i \tag{5}$$

$$\sum e_i = 0 \tag{6}$$

$$\sum X_i e_i = 0 (7)$$

$$\sum \hat{Y}_i e_i = 0 \tag{8}$$

2.4 Properties of b_1 and b_0

$$b_1 \sim \mathcal{N}\left(\beta_1, \frac{\sigma^2}{\sum (X_i - \bar{X})^2}\right)$$
 (9)

$$b_0 \sim \mathcal{N}\left(\beta_0, \frac{\sigma^2}{n} + \frac{\sigma^2 \bar{X}^2}{\sum (X_i - \bar{X})^2}\right)$$
 (10)

where σ^2 can be estimated by the MSE, i.e., $\hat{\sigma}^2 = \frac{\sum_{i=1}^n (Y_i - \hat{Y}_i)^2}{n-2}$

Now, since

$$b_1 = \frac{1}{\sum_{i=1}^n (X_i - \bar{X})^2} \sum_{i=1}^n (X_i - \bar{X}) Y_i$$
 (11)

$$= \sum_{i=1}^{n} k_i Y_i \tag{12}$$

where $k_i = \frac{X_i - \bar{X}}{\sum_{i=1}^n (X_i - \bar{X})^2}$, we have

$$\sum k_i = 0 \tag{13}$$

$$\sum X_i k_i = 1 \tag{14}$$

$$\sum k_i^2 = \frac{1}{\sum_{i=1}^n (X_i - \bar{X})^2}$$
 (15)

The first two identity hold as a requirement for the unbiasness, since

$$E(b_1) = E\left(\sum k_i Y_i\right) = E\left(\sum k_i (\beta_0 + \beta_1 X_i)\right) = E\left(\beta_0 \sum k_i \beta_0 + \beta_1 \sum k_i X_i\right) = \beta_1$$

requires $\sum k_i = 0$ and $\sum X_i k_i = 1$. The third identity ensures the attainment of the minimum variance.

2.5 Confidence Interval of b_1 and b_0

Since $SSE/\sigma^2 \sim \chi^2_{n-2}$, and $\frac{s^2\{b_1\}}{\sigma^2\{b_1\}} \sim \frac{\chi^2_{n-2}}{n-2}$

$$\frac{b_1 - \beta_1}{s\{b_1\}} = \frac{b_1 - \beta_1}{\sigma\{b_1\}} / \frac{s\{b_1\}}{\sigma\{b_1\}} \sim \frac{z}{\sqrt{\frac{\chi_{n-2}^2}{n-2}}} = t_{n-2}$$
 (16)

so the confidence interval for b_1 , with confidence level α is

$$b_1 \pm t(1 - \alpha/2; n - 2)s\{b_1\} \tag{17}$$

or

$$b_1 \mp t(\alpha/2; n-2)s\{b_1\} \tag{18}$$

Similarly, the confidence interval for b_0 , with confidence level α is

$$b_0 \pm t(1 - \alpha/2; n - 2)s\{b_0\} \tag{19}$$

or

$$b_0 \mp t(\alpha/2; n-2)s\{b_0\} \tag{20}$$

The power of testing $\beta_1 = \beta^{H_0}$ is $Power = P\{|t^*| > t(1 - \alpha/2; n - 2)|\delta\}$, where $\delta = \frac{|\beta_1 - \beta^{H_0}|}{\sigma\{b_1\}}$. Similar for β_0 .

	Estimate	Expectation	Variance
Y_i	\hat{Y}_i	$\beta_0 + \beta_1 X_i$	σ^2
b_1	$\frac{\sum (X_i - \bar{X})Y_i}{\sum (X_i - \bar{X})^2}$	eta_1	$\sigma^2 \cdot \frac{1}{\sum (X_i - \bar{X})^2}$
b_0	$\bar{Y} - b_1 \bar{X}$	eta_0	$\sigma^2 \cdot \left[\frac{1}{n} + \frac{\bar{X}^2}{\sum (X_i - \bar{X})^2} \right]$
\hat{Y}_i	$\bar{Y} + b_1(X_i - \bar{X})$	$\beta_0 + \beta_1 X_i$	$\sigma^2 \cdot \left[\frac{1}{n} + \frac{(X_i - \bar{X})^2}{\sum (X_i - \bar{X})^2} \right]$
e_i	$Y_i - \hat{Y}_i$	0	TBD

Table 1: Simple Linear Regression