Московский Физико-Технический Институт

Кафедра радиоэлектроники и прикладной информатики

ПРАКТИЧЕСКАЯ РАБОТА 206М

МОП транзисторы

Работу выполнил Ринат Валиев, 711 гр.

Под руководством Д.Н. Щелкунова

Оборудование

В работе используется набор МОП транзисторов №2.

n-канальный	р-канальный
транзистор	транзистор
IRF121	IRF9131

Таблица 1: МОП транзисторы из используемого набора

Схемы

Приведем используемые в работе схемы.

Рис. 1: Схемы моделирования вольт-амперных характеристик МОП транзисторов

Рис. 2: Схемы моделирования емкости затворов МОП транзисторов

Рис. 3: Схемы моделирования переходных процессов МОП транзисторов

Выполнение

1.n: Составим схему (рис. 1) для n-канального МОП транзистора. Получим зависимость ID(M1) от напряжения V1 для трех значений температуры: -40°C, 27°C, 85°C. По полученной зависимости определим $U_0(M1) \approx 3.96 = U_0$.

1.р: Составим схему (рис. 1) для р-канального МОП транзистора. Получим зависимость ID(M2) от напряжения V3 для трех значений температуры: -40°C, 27°C, 85°C. По полученной зависимости определим $U_0(M2) \approx$ -3.96 = - U_0 .

2.n: Установим напряжение V2=5V. Получим зависимость тока стока ID(M1) от напряжения на источнике V1 в диапазоне от $U_0(M1)$ до 5V для трех значений температуры: $-40^{\circ}C, 27^{\circ}C, 85^{\circ}C$.

2.р: Установим напряжение V4=-5V. Получим зависимость тока стока ID(M2) от напряжения на источнике V3 в диапазоне от -5V до $U_0(M2)$ для трех значений температуры: $-40^{\circ}C, 27^{\circ}C, 85^{\circ}C$.

3.п.1: Получим зависимость тока стока ID(M1) от напряжения источника V2 для некоторых значений напряжения V1 от U_0 до 5V.

3.п.2: Повторим предыдущий пункт для трех значений напряжения V1 на затворе: 4.9V, 5V, 5.1V. Определим по полученным результатам $g_m(M1)$, $g_i(M1)$, $U_A(M1)$, $M(M1) = g_m(M1)/g_i(M1)$.

Рис. 4: $g_m(M1) \approx 4.3$; $g_i(M1) \approx 3.1$; $U_A(M1) \approx 1.4$; $M(M1) \approx 1.39$

3.п.3: Установим напряжение источника V1=5V получим зависимость тока стока ID(M1) от напряжения на источнике V2 для трех значений температуры: -40°C, 27°C, 85°C.

3.п.4: При V1 = V2 = 5V получим зависимость тока стока ID(M1) от температуры.

3.р.1: Получим зависимость тока стока ID(M2) от напряжения источника V4 для некоторых значений напряжения V3 от -5V до $-U_0$.

3.р.2: Повторим предыдущий пункт для трех значений напряжения V3 на затворе: -5.1V, -5V, -4.9V. Определим по полученным результатам $g_m(M2)$, $g_i(M2)$, $U_A(M2)$, $M(M2) = g_m(M2)/g_i(M2)$.

Рис. 5: $g_m(M2) \approx 4.8$; $g_i(M2) \approx 3.4$; $U_A(M2) \approx -1.4$; $M(M2) \approx 1.41$

3.р.3: Установим напряжение источника V3 = -5V получим зависимость тока стока ID(M2) от напряжения на источнике V4 для трех значений температуры: $-40^{\circ}C$, $27^{\circ}C$, $85^{\circ}C$.

3.р.4: При V3 = V4 = -5V получим зависимость тока стока ID(M2) от температуры.

4.1: Составим схему (рис. 2) моделирования емкости затворов МОП транзисторов. Получим временные диаграммы токов затворов IG(M1), IG(M2) для двух значений сопротивления резисторов нагрузки R1, R2: 0.1, 100.

Рис. 6: R1 = R2 = 0.1

Рис. 7: R1 = R2 = 100

4.2: При тех же значениях R1 и R2 получим временные диаграммы напряжений на стоках $UG(M1),\ UG(M2).$

Рис. 8: R1 = R2 = 0.1

Рис. 9: R1 = R2 = 100

5: Составим схему (рис. 3) моделирования процессов МОП транзисторов. Получим временные диаграммы токов стоков ID(M1), ID(M2) при трех значениях R1, R2: 1, 100, 1000.

Рис. 10: R1 = R2 = 1

Рис. 11: R1 = R2 = 100

Рис. 12: R1 = R2 = 1000