Задание по курсу «Теория функций комплексного переменного I»

Автор: Шишкин П.Е.

От: 2 сентября 2021 г.

Содержание

1	I. K	омпл	ек	сн	ые	ч	ис	ла	ι. (Ст	ep	ec	гр	a	фи	и	ec	Ka	R	п	000	eĸ	ци	R										
	1.1	§1: 3((2)																														 	
	1.2	§1: 4((2)																														 	
	1.3	§1: 11	L,																														 	
	1.4	§1: 18	3 .																														 	
	1.5	§2: 3																															 	
	1.6	T.1.																															 	
	1.7	T.2.																															 	
	1.8	T.3.																															 	
	1.9	T.4.																															 	
	1.10	T.5.																																
	1.11	T.6.																																
	1.12	T.7.																															 	
	1.13	T.8.																															 	
	1 14	Т 9*																																

І. Комплексные числа. Стереографическая проекция

$\S1: 3(2)$ 1.1

Условие

3. Найти все корни уравнения:

2)
$$|z| - z = 1 + 2i$$

Решение

Положим z = a + bi

$$\sqrt{a^2 + b^2} - a - bi = 1 + 2i$$

$$a^2 + b^2 = (1 + 2i + a + bi)^2$$

$$a^2 + b^2 = a^2 + 2iab + (2 + 4i)a - b^2 - (4 - 2i)b + (-3 + 4i)$$

$$2(1 + a)(2 + b)i - 3 + 2a - 2b(2 + b) = 0$$

$$\begin{cases} (1 + a)(2 + b) = 0 \\ -3 + 2a - 2b(2 + b) = 0 \end{cases}$$

$$\begin{cases} \begin{bmatrix} a = -1 \\ b = -2 \\ -3 + 2a - 2b(2 + b) = 0 \end{cases}$$

//тупой подстановкой каждого их вариантов получаем ответ//

$$\begin{cases} a = 3/2 \\ b = -2 \end{cases}$$

Ответ:

$$z = a + bi = 3/2 - 2i$$

Вообще говоря можно было сразу заметить что b=-2 просто взглянув на мнимую часть слева и справа, но это слишком интеллектуально для меня

1.2 $\S1: 4(2)$

Условие

4. Решить систему уравнений: 2) $\left\{ \begin{array}{l} |z^2-2i|=4 \\ |z+1+i|=|z-1-i| \end{array} \right.$

2)
$$\begin{cases} |z^2 - 2i| = 4 \\ |z + 1 + i| = |z - 1 - i| \end{cases}$$

Решение

Поскольку геометрическое решение уже было разобрано, было бы скучно переписывать его (а ещё мне лень техать картинки). Заметим что $(1+i)^2 = 2i$ тогда получим:

$$\begin{cases} |z^2 - (1+i)^2| = 4 \\ |z + (1+i)| = |z - (1+i)| \end{cases}$$

$$\begin{cases} |z + (1+i)| = |z - (1+i)| \\ |z + (1+i)| \cdot |z - (1+i)| = 2 \cdot 2 \end{cases}$$

$$\begin{cases} |z + (1+i)| = 2 \\ |z - (1+i)| = 2 \end{cases}$$

Получается точка, удалённая на 2 от 1+i и от -1-i.

Рис. 1: 4(2)

Получается Ответом будут точки $z_1 = -1 + i; z_2 = 1 - i$ это можно проверить также прямой подстановкой

Ответ:

$$z_1 = -1 + i; z_2 = 1 - i$$

1.3 §1: 11

Условие

11. Пусть A и C действительные, а B-комплексная постоянные и пусть $AC < |B|^2$. Доказать, что уравнение $A|z|^2 + \bar{B}z + B\bar{z} + C = 0 \quad (A>0)$ является уравнением окружности, а также найти центр этой окружности и ее радиус.

Решение

Пусть
$$\Re z=x; \Im z=y; \Re B=b_1; \Im B=b_2$$

$$A(x^2+y^2)+(b_1-ib_2)(x+iy)+(b_1+ib_2)(x-iy)+C=0$$

$$A(x^2+y^2)+2b_1x+2b_2y+C=0$$

$$(x^2+2\frac{b_1}{A}x+\frac{b_1^2}{A^2})+(y^2+2\frac{b_2}{A}y+\frac{b_2^2}{A^2})+C/A=\frac{b_1^2+b_2^2}{A^2}$$

$$(x+b_1/A)^2+(y+b_2/A)^2=\frac{|B|^2-AC}{A^2}$$

Ну уже очевидно - окружность с центром в точке $z_{cental}=-B/A,$ радиусом $R=\frac{|B|^2-AC}{A^2}>0$

Ответ:

$$z_{cental} = -B/A, R = \frac{|B|^2 - AC}{A^2} > 0$$

1.4 §1: 18

Условие

18. Доказать, что три попарно различные точки z_1, z_2, z_3 лежат на одной прямой в том и только в том случае, когда величина $\frac{z_3-z_1}{z_2-z_1}$ действительна.

Решение

Упростим данное условие домножив на сопряжённое:

$$\frac{(z_3-z_1)(\bar{z}_2-\bar{z}_1)}{|z_2-z_1|^2}\in\mathbb{R}$$

$$(z_3-z_1)(\bar{z}_2-\bar{z}_1)\in\mathbb{R}$$

$$z_1\bar{z}_2+\bar{z}_1z_3-z_3\bar{z}_2\in\mathbb{R}$$

$$(x_1+iy_1)(x_2-iy_2)+(x_1-iy_1)(x_3+iy_3)-(x_3+iy_3)(x_2-iy_2)\in\mathbb{R}$$

$$(x_3(-y_1+y_2)+x_2(y_1-y_3)+x_1(-y_2+y_3))i-x_2x_3+x_1(x_2+x_3)-y_2y_3+y_1(y_2+y_3)\in\mathbb{R}$$

$$//\text{Что эквивалентно условио}//$$

$$(x_3(-y_1+y_2)+x_2(y_1-y_3)+x_1(-y_2+y_3))=0$$

$$//\text{немного преобразуя получаем}//$$

$$(x_1-x_2)(y_2-y_3)-(y_1-y_2)(x_2-x_3)=0$$

$$//\text{Это в свою очередь является z-компонентной произведения векторов}//$$

$$\left(\begin{pmatrix} x_1\\y_1\\0 \end{pmatrix}-\begin{pmatrix} x_2\\y_2\\0 \end{pmatrix}\right)\times\begin{pmatrix} x_3\\y_3\\0 \end{pmatrix}=\begin{pmatrix} 0\\0\\(x_1-x_2)(y_2-y_3)-(y_1-y_2)(x_2-x_3)\end{pmatrix}=\begin{pmatrix} 0\\0\\0\\0 \end{pmatrix}$$

Что собственно и доказывает требуемое в задаче утверждение. (вектор соединяющий одну пару точек коллинеарен вектору, соединяющему другую пару)

Ответ:

Доказано

1.5 §2: 3

Условие

3. Пусть $\lim_{n\to\infty}z_n=A\neq\infty$. Доказать, что

$$\lim_{n \to \infty} \frac{z_1 + z_2 + \ldots + z_n}{n} = A$$

Решение

Если честно я не понимаю, в чём проблема рассмотреть отдельно действительную часть, отдельно мнимую. А потом сложить. Для действительных чисел уже доказывалось в курсе Математического анализа

Ответ:

Я не понял условия

1.6 T.1.

Условие

Т.1. Найти вещественную и мнимую части комплексных чисел: а) $\left(\frac{1-i}{1+i}\right)^{2021}$ б) $(1+i)^n-(1-i)^n, n\in\mathbb{N}$

Решение

a)
$$\left(\frac{1-i}{1+i}\right)^{2021} = \left(\frac{\sqrt{2} \cdot \exp\left(-\pi i/4\right)}{\sqrt{2} \cdot \exp\left(\pi i/4\right)}\right)^{2021} = \\ = \exp\left(-\pi i/2\right)^{2021} = \exp\left(-\pi i/2 - 505 \cdot 2\pi i\right) = \cos(-\pi/2) - i\sin(\pi/2) = -i$$
 6)
$$(1+i)^n - (1-i)^n = \left(\sqrt{2}\right)^n \left(\exp\left(\pi n i/4\right) - \exp\left(-\pi n i/4\right)\right) = 2i \cdot 2^{n/2} (\sin(\pi n/4))$$

Ответ:

a)
$$-i$$
 b) $2i \cdot 2^{n/2} (\sin(\pi n/4))$

1.7 T.2.

Условие

Т.2. Пусть $z_1, z_2, z_3 \in \mathbb{C}$ не лежат на одной прямой. Найти выражение для центра окружности, проходящей через эти три точки.

Решение

$$\begin{cases} |z_1 - z| = r \\ |z_2 - z| = r \\ |z_3 - z| = r \end{cases}$$

Ответ:

1.8 T.3.

Условие

Т.3. На единичной окружности |z|=1 взяты две точки a и $b,a+b\neq 0$, и через них проведены касательные к окружности. Найти точку, в которой пересекаются эти касательные.

Решение

Ответ:

1.9 T.4.

Условие

Т.4. Покажите, что при стереографической проекции окружности на сфере Римана соответствует в комплексной плоскости окружность или прямая.

Решение

Ответ:

1.10 T.5.

Условие

Т.5. Доказать, что для $z,z'\in\mathbb{C}$ величина

$$d(z, z') = \frac{2|z - z'|}{\sqrt{(1 + |z|^2) (1 + |z'|^2)}}$$

выражает расстояние между прообразами этих точек при стереографической проекции.

Решение

Ответ:

1.11 T.6.

Условие

Т.6. Параметрическое уравнение прямой в комплексной плоскости можно записать в виде $z(t) = a + bt, -\infty < t < \infty$, где $a,b \in \mathbb{C}, b \neq 0$. При этом направление прямой можно идентифицировать с направлением b. Покажите, что неравенство Im $\frac{z-a}{b} < 0$ выделяет правую полуплоскость (относительно прямой), а неравенство Im $\frac{z-a}{b} > 0$ выделяет левую полуплоскость.

Решение

Ответ:

1.12 T.7.

Условие

Т.7. Пусть a, b— ненулевые комплексные числа. Рассматривая их как векторы в комплексной плоскости, покажите, что $\text{Re}\{\bar{a}b\}$ -их скалярное произведение, а $|\text{Im}\{\bar{a}b\}|$ -площадь параллелограмма со сторонами a и b.

Решение

Ответ:

1.13 T.8.

Условие

Т.8. Пусть $\omega_0, \omega_1, \omega_2, \dots, \omega_{n-1},$ — корни n-ой степени из $1, n \geq 2$. Докажите, что выполняются следующие соотношения

$$\sum_{k=0}^{n-1} \omega_k = 0, \quad \prod_{k=0}^{n-1} \omega_k = (-1)^{n-1}$$

Решение

Заметим что множество ω_i совпадает с множеством решений уравнения $\omega^n + \omega^{n-1} \cdot 0 + ... + \omega \cdot 0 - 1 = 0$. Тогда применением теоремы Виета для коэффициентов при ω^{n-1} и при ω^0 получим необходимые соотношения.

$$0 = a_1 = \sum_{k=0}^{n-1} \omega_k$$
$$1 = a_n = (-1)^n \prod_{k=0}^{n-1} \omega_k$$

Что и требовалось доказать

Ответ:

Доказано.

1.14 T.9*.

Условие

 ${f T.9}^*$. Доказать, что точки z_1,z_2,z_3 являются вершинами равностороннего треугольника в том и только том случае, если выполняется условие $z_1^2+z_2^2+z_3^2=z_1z_2+z_2z_3+z_3z_1$

Решение

Двумя преобразованиями (смещение вдоль оси и поворот) можно перенести одновременно z_1, z_2 на ось действительных числел. При этом равносторонний треугольник (если он был таковым) останется равносторонним. Тогда достаточно рассмотреть частный случай когда $z_1, z_2 \in \mathbb{R}$

Ответ: