Mathematics Talent Reward Programme

Question Paper for Class XI 17^{th} January, 2016

Total Marks: 150 Allotted Time: 10:00 a.m. to 12:30 p.m.

Multiple Choice Questions

[You should answer these questions in the first page according to the order given in the question paper. Each question has only one correct option. You will be awarded 4 marks for the correct answer, 1 mark if the question is not attempted and 0 marks for wrong answer.]

	meane ej	one question is not accompled	and o marne jor wrong answer.	J	
1.	Sum of roots in the range	$e\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ of the equation $\sin x$	$a \tan x = x^2$ is		
	(A) $\frac{\pi}{2}$,	(B) 0,	(C) 1,	(D) None of these.	
2.	Let f be a function satisfying $f(x+y+z)=f(x)+f(y)+f(z)$ for all integers x,y,z . Suppose $f(1)=1$				
	and $f(2) = 2$. Then $\lim_{n \to \infty} \frac{1}{n^3} \sum_{r=1}^n 4r f(3r)$ equals				
	(A) 4,	(B) 6,	(C) 12,	(D) 24.	
3.	z is a complex number and $ z = 1$ and $z^2 \neq 1$. Then $\frac{z}{1-z^2}$ lies on				
	(A) a line not passing the(C) x-axis,		2	(B) $ z = 2$ (D) y-axis.	
4. There are 168 primes below 1000. Then sum of all primes below 1000 is					
	(A) 11555,	(B) 76127,	(C) 57298 ,	(D) 81722.	
5.	5. ABCD is a quadrilateral on complex plane whose four vertices satisfy $z^4 + z^3 + z^2 + z + 1 = 0$. Then is a				
	(A) Rectangle,	(B) Rhombus,	(C) Isosceles Trapezium,	(D) Square.	
6.	Number of solutions of the equation $3^x + 4^x = 8^x$ in reals is				
	(A) 0,	(B) 1,	(C) 2,	(D) ∞ .	
7.	Let $\{x\}$ denote the fractional part of x . Then $\lim_{n\to\infty} \{(1+\sqrt{2})^{2n}\}$ equals				
	(A) 0,	(B) 0.5,	(C) 1,	(D) does not exist.	
8.	Let p be a prime such that	et p be a prime such that $16p + 1$ is a perfect cube. A possible choice for p is			
	(A) 283,	(B) 307,	(C) 593,	(D) 691.	
9.	f be a function satisfying $2f(x) + 3f(-x) = x^2 + 5x$. Find $f(7)$.				
	$(\mathbf{A}) - \frac{105}{4},$	(B) $-\frac{126}{5}$,	(C) $-\frac{120}{7}$,	(D) $-\frac{132}{7}$.	
10.			er set of A such that any two expressions y some subsets of A). Then the		
	(A) 2^{99} ,	(B) $2^{99} + 1$,	(C) $2^{99} + 2^{98}$,	(D) None of these.	
11.	In rectangle $ABCD$, $AD \triangle BDP$?	$P = 1$, P is on \overline{AB} , and \overline{DB}	and \overline{DP} trisect $\angle ADC$. Wha	t is the perimeter of	
		$A \longrightarrow P$	B		

12. Let f(x) = (x-1)(x-2)(x-3). Consider $g(x) = \min\{f(x), f'(x)\}$. Then the number of points of discontinuity are

(A) 0, (B) 1, (C) 2, (D) more than 2. 13. Let $P(x) = x^2 + bx + c$. Suppose P(P(1)) = P(P(-2)) = 0 and $P(1) \neq P(-2)$. Then P(0) =

(a) $-\frac{3}{2}$, (b) $-\frac{3}{2}$, (c) $-\frac{7}{4}$, (d) $\frac{6}{7}$.

14. Let [x] denotes the greatest integer less than or equal to x. Find x such that x[x[x[x]]] = 88

(A) π ,

(B) 3.14,

(C) $\frac{22}{7}$,

(D) All of these.

15. Suppose 50x is divisible by 100 and kx is not divisible by 100 for all k = 1, 2, ..., 49. Find number of solutions for x when x takes values 1, 2, ..., 100.

(A) 20,

(B) 25,

(C) 15,

(D) 50.

Short Answer Type Questions

[Each question carries a total of 15 marks. Credits will be given to partially correct answers]

- 1. Show that there exist a polynomial P(x) whose one coefficient is $\frac{1}{2016}$ and remaining coefficients are rational numbers, such that P(x) is an integer for any integer x.
- 2. 5 blocks of volume 1 cm³,1 cm³,1 cm³,1 cm³, and 4 cm³ are placed one above another to form the structure as shown in the figure. Suppose the sum of surface areas of **upper face** of each block is 48 cm². Determine the minimum possible height of the whole structure.

- 3. Prove that for any positive integer n there are n consecutive composite numbers all less than 4^{n+2} . [You may use the fact that product of all primes, which are less than k, is less than 4^k and this holds for all positive integers k.]
- 4. For any given k points in a plane, we define the diameter of the points as the maximum distance between any two points among the given points. Suppose n point are there in a plane with diameter d. Show that we can always find a circle with radius $\frac{\sqrt{3}}{2}d$ such that all the points lie inside the circle.
- 5. Let \mathbb{N} be the set of all positive integers. $f, g : \mathbb{N} \to \mathbb{N}$ be functions such that f is onto, g is one-one and $f(n) \geq g(n)$ for all positive integers n. Prove that f = g.
- 6. Consider the set $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$. A partition Π of A is a collection of disjoint sets whose union is A. For example, $\Pi_1 = \{\{1, 2\}, \{3, 4, 5\}, \{6, 7, 8, 9\}\}$ and $\Pi_2 = \{\{1\}, \{2, 5\}, \{3, 7\}, \{4, 6, 8, 9\}\}$ can be considered as partitions of A. For each Π partition, we consider the function π defined on the elements of A. $\pi(x)$ denotes the cardinality of the subset in Π which contains x. For example, in case Π_1 , $\pi_1(1) = \pi_1(2) = 2, \pi_1(3) = \pi_1(4) = \pi_1(5) = 3$, and $\pi_1(6) = \pi_1(7) = \pi_1(8) = \pi_1(9) = 4$. For Π_2 we have, $\pi_2(1) = 1$, $\pi_2(2) = \pi_2(5) = 2, \pi_2(3) = \pi_2(7) = 2$, and $\pi_2(4) = \pi_2(6) = \pi_2(8) = \pi_2(9) = 4$. Given any two partitions Π and Π' , show that there are two numbers x and y in A, such that $\pi(x) = \pi'(x)$ and $\pi(y) = \pi'(y)$. [Hint: Consider the case where there is a block of size greater than or equal to 4 in a partition and the alternative case.]

Use of calculators is not allowed. You may use a ruler and a compass for construction.