

Visualizing Dynamic Programming On Tree Decompositions

Martin Röbke

International Center for Computational Logic Technische Universität Dresden Germany

- WHAT is this about?
- WHO benefits from visualization?

About me

Martin Röbke

- studying Bachelor CS
 - started studying physics at the TU Dresden
 - did like logic and visualization more, so switched the faculty

How did I get to work with my supervisor Johannes Fichte?

Motivation

- ▶ SAT-Problem is NP-complete #SAT is #P-complete
 - Problem with huge instances
- ► Customized algorithms, data-structures, hardware

Why visualization?

→ trace and document the customization

Outlook:

- Improve and streamline the visualization process
- Implement debug-output in existing solvers
- Even more dynamic possibilities

Figure: Example of a #SAT run with DP

Background

Example: Vertex-Cover problem

For the graph G = (V, E) we want to compute a set $C \subseteq V(G)$ such that <u>from every edge</u> $\{u, v\}$ there is at least one of u or v in C.

Figure: Example undirected graph G

Figure: Minimal VC of G

$$\exists S: \forall \{u, v\} \in E: (u \in S \lor v \in S)$$

for a given $k \in \mathbb{N}$:

Deciding whether the graph has a vertex cover of size k is NP-complete.

Courcelle's theorem

Every graph property definable in monadic second-order logic (MSO) is decidable in linear time on graphs of bounded treewidth.

Courcelle, Bruno (1990)¹

For all $k \in \mathbb{N}$ and MSO-sentences F is the decision problem for a given graph G, whether $G \models F$ is true, in time $2^{p(tw(G))} \cdot |G|$ with a polynom p decidable.

- <u>drawback:</u> still expensive (2^{p(twG)}, 2^{2(#Q)}, large constants)
- usage:

Figure: Implementation of the theorem

¹Courcelle, Bruno "The monadic second-order logic of graphs. I. Recognizable sets of finite graphs", Information and Computation. 85 (1990) no. 1: 12-75

(Weighted) Model-Counting

The #SAT Problem

Input: boolean formula F

Output: the number of satisfying assignments for **F**

The Weighted Model Counting Problem

- $w(lit) \in [0,1], \quad w(\neg lit) = 1 w(lit)$
- $ightharpoonup w(assignment) = \prod_{lit} w(lit)$
- \blacktriangleright WMC(formula) = $\sum_{\text{satisfying assignments}} w(\text{assignment})$

```
w 665 0.934636
w 666 0.227086
w 667 0.715311
w 668 0.287284
w 669 0.718119
w 670 0.00521478
w 671 0.687858
w 672 0.585033
c clauses added for node v 1 2
1 -2 0
c clauses added for node v 1 3
-2 -3 0
2 3 0
c clauses added for node v 1 4
-3 -149 4 0
-3 149 -4 9
3 -150 4 0
3 150 -4 0
c clauses added for node v 1 5
-A -151 5 A
-4 151 -5 9
4 -152 5 0
4 152 -5 0
c clauses added for node v 1 6
-5 -153 6 0
-5 153 -6 8
5 -154 6 0
5 154 -6 0
c clauses added for node v 1 7
-6 -7 A
```

679

Example for WMC

► Example set of CNF-clauses:

```
{c1 = {v1, v3, \negv4}, c2 = {\negv1, v6}, c3 = {\negv2, \negv3, \negv4}, c4 = {\negv2, v6}, c5 = {\negv3, \negv4}, c6 = {\negv3, v5}, c7 = {\negv5, \negv6}, c8 = {v5, v7}}
```

Example weights:

```
w(v1) = 0.8, \ w(v2) = 0.2, \ w(v3) = 0.1, \ w(v4) = 0.7, \ w(v5) = 0.4, \ w(v6) = 0.5, \ w(v7) = 0.5
```

► Corresponding CNF
(v1 ∨ v3 ∨ ¬v4) ∧ (¬v1 ∨ v6) ∧ (¬v2

 $(v1 \lor v3 \lor \neg v4) \land (\neg v1 \lor v6) \land (\neg v2 \lor \neg v3 \lor \neg v4) \land (\neg v2 \lor v6) \land (\neg v3 \lor \neg v4) \land (\neg v3 \lor v5) \land (\neg v5 \lor \neg v6) \land (v5 \lor v7)$

► Satisfying assignments:

v1	v2	v3	v4	v5	v6	v7
1	1	0	1	0	1	1
1	1	0	0	0	1	1
1	0	0	1	0	1	1
1	0	0	0	0	1	1
0	1	0	0	0	1	1
0	0	1	0	1	0	1
0	0	1	0	1	0	0
0	0	0	0	1	0	1
0	0	0	0	1	0	0
0	0	0	0	0	1	1
n	Λ	Λ	Λ	n	Λ	1

Resulting weighted model count:

0.13218

Graphs for Boolean Formulas

Example set of CNF-clauses:

{c1 = {v1, v3,
$$\neg$$
v4}, c2 = { \neg v1, v6}, c3 = { \neg v2, \neg v3, \neg v4}, c4 = { \neg v2, v6}, c5 = { \neg v3, \neg v4}, c6 = { \neg v3, v5}, c7 = { \neg v6}, c8 = {v5, v7}}

Figure: The primal (left), incidence (middle) and dual (right) graph

Tree Decompositions

Parameterized Complexity and its Applications in Practice
From Foundations to Implementations
Johannes K. Fichte
TU Dresden, Germany
Jakarta, Indonesia
Summer 2019 (May 6th - May 16th) pages 162-174

Backup: VC tree vs graph - example p69, 128

gpuSAT1

Figure: DP algorithm on the GPU

- OpenCL
- ► Two operations between bags

Figure: Example output format from gpuSAT

github: https://github.com/daajoe/GPUSAT

gpuSAT2 - Improving Upon Previous Ideas

Figure 1: Architecture of our DP-based solver for parallel execution, Yellow colored boxes indicate tasks that are required as initial step for the DP-run or to finally read the model count from the computed results. The parts framed by a dashed box illustrate the DP-part. Boxes colored in red indicate computations that run on the CPU. Boxes colored in blue indicate computations that are executed on the GPU (with waiting CPU).

- only primal graph (simpler solving DP)
- customized tree decompositions
- adapted memory-management
- improved precision handling

dpdb

Using databases for intermediate results

- ► SAT
- ▶ #SAT
- #o-Coloring
- Vertex cover

```
- #\inTab#: SELECT 1 AS cnt

- #intrTab#: SELECT 1 AS vnt UNION ALL 0

- #localProbFilter#: (l_{1,1} OR ... OR l_{1,k_1}) AND ... AND (l_{n,1} OR ... OR l_{n,k_n})

- #aggExp#: 514(cnt) AS cnt

- #extProi#: 71, cnt AS cnt
```

- (a) Problem #SAT
- #aggrExp#: SUM(cnt) AS cnt - #extProj#: τ_1 .cnt * ... * τ_r .cnt AS cnt
 - (b) Problem #o-Col
 - #=fab#: SELECT 0 AS card
 #mtrTab#: SELECT 1 AS val WILLION ALL 0
 #bcaProbeFite#: [[n] 08 [n]] AND ... AND ([[n] 08 [n])
 #ggEfp#: #MIXCard 3 AS card
 #estPoj#: 71, card + ... + 77, card CE_n1[\(\(\triangle (n) \)] + 11 + 77, \(\triangle (n) \)] 10 |
 \(\triangle (n) \)]
 - (c) Problem MinVC

github: https://github.com/hmarkus/dp_on_dbs

dpdb - Benchmark

Performance of all three programs on #SAT instances:

Existing Visualization

Figure: Handcrafted #SAT example-run from Markus Zisser²

²"Solving #SAT on the GPU with Dynamic Programming and OpenCL", Diploma Markus Zisser 2018 Technische Universität Wien, p.33

Existing Visualization

Figure: Handcrafted #SAT example-run from dpdb3

^{3&}quot;Exploiting Database Management Systems and Treewidth for Counting", Fichte. Hecher. Thier. Woltran

Creating Visualization for:

Improving

- examples for students
- debugging and improving interaction of complex data-structures
- hotspots

Outlook

What can I do?

Visualization

- customizable output and interactive visualization
- possibility of generalizing the underlying graph structure (Hypergraphs)
- reference impl. in CUDA of gpuSAT2