# Глубокое обучение и вообще

Ульянкин Филипп и Соловей Влад

26 марта 2020 г.

**Посиделка 13:** Быстрое введение в SOTA

# Agenda

- Быстрая история
- seq2seq
- Attention
- Self-attention
- BERT
- ELMO
- Сломанный мозг.....

# Быстренькая история взятая из старых лекций

# задача seq2seq

# спойлер

После этой лекции могут возникнуть огромное количество вопросов - но в современных архитектурах слишком много инженерных хаков, которые лучше осозновать постепенно сами.

Я буду оставлять некоторые ключевые слова того, чтобы вы могли сами залезть поглубже, если такое погружение потребуется.

Задача seq2seq - задача, когда мы хотим предсказать по одной последовательности другую Самая стандартная подобная задача - машинный перевод. Нейронные сети ворвались в эту сферу человеческого прогресса в 2014 году

# Метрика

Модели в машинном переводе сравнивают по BLEU score - если в кратце, то эта метрика сравнения полученного машиной перевода и человеческого, насколько мы вообще бъемся. Из проблем данной метрики - если машина перевела правильно, но альтернативно, то BLEU будет низкий....

of the words preceding it.

view of the sentence already produced and some context

NMT Encoder

French sentence (input)

# Greedy decoding

При декодировании может быть следующие проблемы - мы декодируем какое-то конкретное слово. Но что делать если это слово некоректное?

# Greedy decoding/beam search

Самый простой подход - селектить несколько наиболее вероятных слов, а не одно. Мы получим множество предложений, а потом по какой-то эвристике выбирать лучшее из них. Подход хорош всем, кроме скорости. Ему есть альтернатива - называется beam-search.

Какие проблемы мы видим в таком подходе (спойлер, из коробки он не полетел)?

А вот бы использовать не один вектор, а все. Информация то течет и кодируется во всех векторах.....

И да - это классная и разумная идея. Нам на встречу приходит концепция внимания.



#### Sequence-to-sequence with attention



#### ссылочка на оригинал

#### Sequence-to-sequence with attention



#### Sequence-to-sequence with attention







Идейно - внимание просто выбирает то из эмбедингов, которое действительно нужно для декодирования. Это просто матричное произведение(а можно взвешивать и без весов) и softmax. У нас все остается дифферинцируемым - берем градиентны, накапливаем инфу в весах сетки.

# google



# google

В целом глобальное решение было найдено, осталось закидать проблему железом.

#### Выводы:

- 1. 8 слоев LSTM (8 Карл!)
- 2. в attention 2 слоя dense.
- 3. Собираем слова из морфем пытаемся победить out-of-vacabular.
- 4. Модель стала иногда сексистом и фашистом требуются слишком большие дата сеты, чтобы учить эту большую прелесть.

# Attention is all you need!

# attention is all you need

Развитие идеи внимания. Статья вышла в 2017 году и стала мамой всех текущих SOTA моделей. А зачем нам вообще что-то, кроме внимания? Давайте напихаем в энкодер и декодер как можно больше внимания и будем такой штукой его учить.

# attention is all you need



# Encoder



#### Что мы хотим?

Есть предложение: "The animal didn't cross the street because it was too tired"



# Абстракции!



#### А теперь тоже самое, но словами:

- 1. Query,key ищем связи между словами. Ходим по всем со всеми смотрим насколько они связаны. Query мое текущее слово, key мое слово с которым я сравниваю себя.
- 2. Value то, что мы знаем об этом слове





31/57





### multi head attention



# Соединяем!

1) Concatenate all the attention heads



2) Multiply with a weight matrix W° that was trained jointly with the model

Х



3) The result would be the  $\mathbb Z$  matrix that captures information from all the attention heads. We can send this forward to the FFNN

Z

#### Итого





Выходом всего этого дела будут вектора key и value, которые позволят декодеру смотреть на нужные нам кусочки. И бежим смотреть гифки декодера!

Объяснение взято отсюда английский оригинал и отсюда лекции мфти

- 1. У нас нет никаких слоев, кроме dense
- 2. Учится очень классно, находит множество взаимосвязей
- 3. позицион энкодинг позволяет учитывать позицию в тексте



**И понеслась!!!** (развитие дальше - инженерные хаки и закидывание железом)

# SOTA (ну или история соты)

Крутой обзорчик с техническими деталями - живут в тех же лекция физтеха. При желании можно вкурить. И да, в целом курс достаточно крутой - и крут он тем, что считается, что слушатель не лаптем щи хлебает, а считает градиент на лету, но пока не придумал зачем.

#### Обзор

## **BERT**

Шел 2018 год и гугл сказал - наши комьютеры самые мощные, а данные самые большие!

BERT - Bidirectional Encoder Representations from Transformers Почему круго - придумали как предобучать без учителя (да, вот оно, вот он наш космос). И потом переиспользовать веса!

## BERT

1 - Semi-supervised training on large amounts of text (books, wikipedia..etc).

The model is trained on a certain task that enables it to grasp patterns in language. By the end of the training process. BERT has language-processing abilities capable of empowering many models we later need to build and train in a supervised way.

#### Semi-supervised Learning Step



2 - Supervised training on a specific task with a labeled dataset.

#### **Supervised Learning Step**



## **BERT**



## Лежащие внутри идеи и почему он популярный

- 1. Предобучаем по двум задачам берем корпус текстов и маскируем часть предложений, заставляем учить и предсказывать маску.
- 2. И вторая идея предсказываем следующее слово в предложении
- 3. Он из коробки знает язык, ему 1-2 эпохи надо подсказать, что с этим знанием делать
- 4. В готовых либах лежат много готовых под задачи бертов классификация, вопросно ответные системы и тому подобное.
- 5. Опять же подаем слова кусочками, чтобы как-то решать проблему oov.

Все мы всех победили - нам не нужно размечать данные для обучения, мы счастливы!

#### Обзорчик на забугорном

## предобучение



## Как используем?



Figure 1: (**left**) Transformer architecture and training objectives used in this work. (**right**) Input transformations for fine-tuning on different tasks. We convert all structured inputs into token sequences to be processed by our pre-trained model, followed by a linear+softmax layer.

# Почему заработало?

| Model Type                | Vocab Size | Hidden Dim | # Params    | Model Size (MB) | FLOPS ratio |
|---------------------------|------------|------------|-------------|-----------------|-------------|
| BERT <sub>DISTILLED</sub> | 4928       | 48         | 1,775,910   | 6.8             | 1.3%        |
|                           |            | 96         | 5,665,926   | 22              | 1.32%       |
|                           |            | 192        | 19,169,094  | 73              | 4.49%       |
| $BERT_{BASE}$             | 30522      | 768        | 110,106,428 | 420             | 100%        |

## Серия вопросов в зал

Как работают разные эмбединги? В чем, по вашему мнению, их главная проблема?

## Картиночка про решение проблемы



Захватываем контекст предложения через biderictional LSTM. Таким образом мы захватываем и контекст предложения (да, надо очень очень много данных, не обучайте это дома)



Учится понимать язык ЕLMO следующим образом - оно берет большой дата сет и пытается предсказать следующее слово в предложении.



#### Применяем



#### Применяем



Почему это все стало круто и популярно?

- 1. Идея с вниманием стала ключевой таким образом мы можем тянуть информацию через всю последовательность
- 2. Внимание можно параллелизовать, LSTM намного сложнее
- 3. Придумали как сделать так, чтобы не размечать данные
- 4. Купили много GPU
- 5. Посадили кучу инженеров, которые заставили это все учиться!

Ну и маленькая мысль в конце - за курс мы разобрали кубики нейронных сетей и посмотрели какой лютый треш можно из этих кубиков делать. Современный моделист в нейронных сетях - скорее инженер, нежели аналитик