Mathematical Analysis

Real valued functions

Introduction

A function from a set D to a set R is a **rule** that assigns to every element in D a unique element in R. The set D of all input values is the **domain** of the function, and the set R of all output values is the **range** of the function.

 $f: x \rightarrow y$ $x \in Domain$ $y \in Range$

3

Outline

- Definitions & terminology
 - function, domain, image, range, image of a set, strictly increasing, strictly decreasing, monotonic
- Properties
 - One-to-one (injective). Inverse
 - Increasing and decreasing functions
 - Even and odd functions
- Elementary functions
 - Polynomial, rational, and irrational functions
 - identity, absolute value.
 - Exponential, logarithmic
 - Trigonometric, inverse
- Derivability

Exercise

Obtain the domain of $f(x) = +\sqrt{2 + x - x^2}$

It's necessary that $\frac{2+x-x^2 \ge 0}{x^2-x-2 \le 0}$ The function $y=x^2-x-2$ is a parabola

with solutions $x_1=-1$ and $x_2=2$. Then for $x \in [-1,2]$

$$D(f) = \begin{bmatrix} -1, 2 \end{bmatrix}$$

Exercise

Obtain the domain of
$$f(x) = \frac{1}{\sqrt[4]{(2+x)(2-x)}} = \frac{1}{\sqrt[4]{4-x^2}}$$

$$x \in D(f) \iff \left\{ \begin{array}{l} \frac{4-x^2}{(2+x)(2-x)} \ge 0 \\ \frac{4}{\sqrt{(2+x)(2-x)}} \ne 0 \end{array} \right\} \iff \left\{ \begin{array}{l} x \in [-2,2] \\ x \ne 2, x \ne -2 \end{array} \right\} \iff x \in]-2,2[$$

(rev)

Definition: Injection

• **Definition**: A function f is said to be **one-to-one** or **injective** (or an injection) if

 $\forall x \text{ and } y \text{ in the domain of } f, f(x) = f(y) \Rightarrow x = y$

- A monotonic function is injective
- Intuitively, an injection simply means that each element in the range has at most one preimage (antecedent)
- It is useful to think of the contrapositive of this definition

$$x \neq y \implies f(x) \neq f(y)$$

7

Exercise

Obtain the domain of $f(x) = \sqrt{-x} + \frac{1}{\sqrt{2x-1}}$

It's necessary that $\underbrace{-x \ge 0}_{x \le 0}$ and $\underbrace{2x-1>0}_{x>\frac{1}{2}}$ both simultaneously

$$D(f) =]-\infty, 0] \cap]\frac{1}{2}, +\infty[= \varnothing$$

This function doesn't exist

rev

Inverse Functions (1)

- •**Definition**: Let $f: X \rightarrow Y$ be injective. The **inverse** function of f is the function that assigns to an element $y \in Y$ the unique element $x \in X$ such that f(x)=y
- •The inverse function is denote f^{-1} .
- •When f is **injective**, its inverse exists and

$$f(x)=y \Leftrightarrow f^{-1}(y)=x$$

•If inverse exists then:

$$f: x \to y$$
 and $f^{-1}: y \to x$

Inverse Functions: Representation

A function and its inverse

Domain and range are changed between a function and its inverse

Exercise: $f(x) = \frac{2x+3}{x-1}$ has a inverse and $f^{-1}(x) = \frac{x+3}{x-2}$

$$D(f) = \mathbb{R} - \{1\} = R(f^{-1})$$
; $D(f^{-1}) = \mathbb{R} - \{2\} = R(f)$

$$f$$
 invective and $f^{-1}(y) = \frac{y+3}{y-2}$

$$f^{-1}\left(x\right) = \frac{x+3}{x-2}$$

Graphs of f and f-1 are symmetric to the bisector of the the first-third quadrant.

Inverse Functions (2)

Inverse function:

$$\begin{bmatrix}
f: \mathbb{R} & \longrightarrow \mathbb{R} \\
x & y
\end{bmatrix} \implies \begin{bmatrix}
f^{-1}: \mathbb{R} & \longrightarrow \mathbb{R} \\
y & x
\end{bmatrix}$$

$$f(x) = y \iff x = f^{-1}(y)$$

$$D(f^{-1}) = R(f), R(f^{-1}) = D(f)$$

Domain and range are changed between a function and its inverse

Review of definitions:

- Increasing// decreasing
- Bounded //Unbounded or not bounded
- Even// Odd
- Periodic

More Definitions

- **Definition**: A function *f* is
 - increasing if $f(x) \le f(y)$ whenever x < y and x and y are in the domain of f.
 - strictly increasing if f(x) < f(y) whenever x < y and x and y are in the domain of f.

13

More Definitions

- A function that is increasing or decreasing is said to be **monotonic**.
- Constant functions are increasing and decreasing at the same time.

More Definitions

- **Definition**: A function *f* is
 - **decreasing** if $f(x) \ge f(y)$ whenever x<y and x and y are in the domain of f.
 - **strictly decreasing** if f(x) > f(y) whenever x < y and x and y are in the domain of f.

14

Increasing and Decreasing Functions

16

Boundedness

• A function f is **bounded below** if there is some number L that is less than or equal to every number in the range I of f. Any such number L is called a **lower** bound of f in I.

$$L \Leftrightarrow [f(x) \ge L, \forall x \in I]$$

• A function f is **bounded above** if there is some number **K** that is greater than or equal to every number in the range **II** of f. Any such number **K** is called an **upper** bound of f in **I**

$$K \Leftrightarrow [f(x) \leq K, \forall x \in I]$$

• A function *f* is **bounded** if it is bounded in both above and below. That means:

$$\left[|f(x)| \leq K, \forall x \in I \right] \Leftrightarrow \left[-K \leq f(x) \leq K \right]$$
 17

Symmetry

- With respect to the y-axis
 - -f(x)=f(-x)
 - $-(x, y) \rightarrow (-x, y)$
 - The function is even
- With respect to the origin
 - -f(-x) = -f(x)
 - $-(x, y) \rightarrow (-x, -y)$
 - The function is **odd**

Domain and boundedness

- Upper bounded in [-1,1] and $]-\infty$,-1]
- •Not upper bounded in $[1,+\infty[$
- •Lower bounded in [-1,1] and $[1,+\infty[$
- •No lower bounded in]-∞,-1]
- •Bounded in [-1,1]
- •No bounded in]- ∞ ,-1] and [1,+ ∞ [

18

Symmetry with respect to the *y*-axis

Example:
$$f(x) = x^2$$

Numerically				
f(x)				
9				
4				
1				
1				
4				
9				

Algebraically

For all x in the domain of f,

$$f(-x) = f(x)$$

Functions with this property (for example, x^n , n even) are **even** functions.

Even functions:
$$x^6 - x^2$$
, $\frac{x^3 + x}{x^5 + x}$, $|x|$

Symmetry with respect to the origin

Example: $f(x) = x^3$

Graphically

Numerically

-27

3 27

Algebraically

For all x in the domain of f,

$$f(-x) = -f(x).$$

Functions with this property (for example, x^n , n odd) are **odd** functions.

Odd functions:
$$x$$
, $x^3 - x$, $\frac{x^4 + 1}{x^3 + x}$, $\log\left(1 + \frac{2x}{1 - x}\right)$

21

Periodic functions

Example: $f(x) = \sin x$

Graphically

Numerically

X	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
$y = \sin x$	0	1	0	-1	0

Algebraically

$$f$$
 periodic, T period

$$\Leftrightarrow f(x) = f(x+T)$$

Periodic functions

A periodic function is a function f such that f(x)= f(x + p), for every real number x in the domain where p is a constant.

The smallest positive number p, if there is one, for which f(x + p) = f(x) for all x, is the period of the function.

More about symmetries

A function and its inverse are symmetric respect the bisector y=x

25

Review of elementary functions

• Polynomial:

Elementary functions

A elementary function is a function of one variable built from a finite number of exponentials, logarithms, constants, and nth roots through composition and combinations using the four elementary operations (+ − x ÷).

26

Review of elementary functions

Rational

The domain are all the real numbers except those numbers that cancel out the denominator

Review of elementary functions

• Irrational $f(x) = \sqrt[m]{x}$, $m \in \mathbb{N}$

Domain of
$$f(x) = \sqrt[m]{f(x)}$$
?

29

31

inverses

Review of elementary functions

Logaritmic (inverse of exponential): $f(x) = \log_a(x)$, a > 0

$$(y = \log_a(x) \iff x = a^y)$$

$$f(x) = e^x = \exp(x)$$

$$f(x) = x^{\alpha} \equiv e^{\alpha \log(x)}; \ \alpha \in \mathbb{R}, \ x > 0$$

$$\log_a(1) = 0 \quad , \quad \log(e) = 1$$

$$\log_a(x \cdot y) = \log_a(x) + \log_a(y) \quad , \quad \log_a(x/y) = \log_a(x) - \log_a(y)$$

$$\log_a(x^y) = y \log_a(x) \quad , \quad \log(e^k) = k$$

$$x^{\log_a(y)} = y^{\log_a(x)} \quad , \quad \log_a(x) = \frac{\log_b(x)}{\log_b(a)} = \frac{1}{\log_b(a)} \cdot \log_b(x) = k \cdot \log_b(x)$$

Review of elementary functions

• Exponential $f(x) = a^x$, a > 0

Review of elementary functions

$$\sin\left(x + \frac{\pi}{2}\right) = \cos(x), \cos\left(x + \frac{\pi}{2}\right) = -\sin(x)$$

$$\sin\left(x + \pi\right) = -\sin(x), \cos\left(x + \pi\right) = -\cos(x)$$

Derivative of a function

The derivative of a function f at a point a denoted f '(a) is provided this limit exists when $h \rightarrow 0$ the secant between two

 $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$ points tends to the derivative

f'(a) gives the slope of the curve y = f(x) at the point P(a,f(a))The tangent line to the curve at P is the line through P with this slope

Differentiable functions

- •If f'(a) exits, we say that f is differentiable (has derivative) at a.
- •If f'(x) exits at every point in the domain of f(x), we call f(x) differentiable
- •A function is continuous at every point where it has derivative
- •If f, g are differentiable at a point a, then

$$(f\pm g),\ (fg),\ \left(rac{f}{g}
ight)$$
 and $\left(f\circ g
ight)$ are differentiable at a

$$\begin{array}{l}
(f \pm g)'(a) = f'(a) \pm g'(a) \quad \text{and} \quad (\alpha f)'(a) = \alpha f'(a) , \quad \alpha \in \mathbb{R} \\
(fg)'(a) = f'(a)g(a) + f(a)g'(a) \\
\left(\frac{f}{g}\right)'(a) = \frac{g(a)f'(a) - f(a)g'(a)}{(g(a))^2} \\
\left(f \circ g\right)'(a) = f'(g(a))g'(a) \quad \text{(chain rule)}
\end{array}$$

37

Derivatives

$$f(x) = \log(x) + 3\arctan(x) \implies f'(x) = \frac{1}{x} + \frac{3}{1+x^2}$$

$$g(x) = \frac{x^3 - 5x}{x^2 + 8} \implies g'(x) = \frac{(3x^2 - 5)(x^2 + 8) - (x^3 - 5x)(2x)}{(x^2 + 8)^2}$$

$$h(x) = x^3 \cdot \sqrt{\sin(x)} \implies h'(x) = 3x^2 \cdot \sqrt{\sin(x)} + \frac{x^3}{2\sqrt{\sin(x)}} \cdot \cos(x)$$

Derivatives

f(x) = k	\Rightarrow	f'(x) = 0		
$f(x) = x^n$	\Rightarrow	$f'(x) = n \cdot x^{n-1}$	$f(x) = \sqrt{x}$ \Rightarrow $f'(x) = \frac{1}{2\sqrt{x}}$	-
$f(x) = \log(x)$	\Rightarrow	$f'(x) = \frac{1}{x}$	$f(x) = \log_a(x) \implies f'(x) = \frac{1}{x \cdot \log(x)}$	(a)
$f(x) = e^x$	\Rightarrow	$f'(x) = e^x$	$f(x) = a^x$ \Rightarrow $f'(x) = a^x \log(a^x)$	(a)
$f(x) = \operatorname{sen}(x)$	\Rightarrow	$f'(x) = \cos(x)$	$f(x) = \tan(x)$ \Rightarrow $f'(x) = \frac{1}{\cos^2(x)}$	x)
$f(x) = \cos(x)$	\Rightarrow	$f'(x) = -\sin(x)$		
$f(x) = \arctan(x)$	\Rightarrow	$f'(x) = \frac{1}{1+x^2}$	$f(x) = \arcsin(x) \implies f'(x) = \frac{1}{\sqrt{1-x}}$.2

38

Applications of derivatives

Increasing and decreasing

- •If f'(x) > 0 then f is strictly increasing for all values near enough to x
- •If f'(x) < 0 then f is strictly decreasing for all values near enough to x

Extreme values

•If f has a local maximum or minimum value at an interior point c of its domain, and if f ' is defined at c, then

$$f'(c) = 0$$

Applications of derivatives

The guy gets on a bus and starts threatening everybody: "I'll integrate you! I'll differentiate you!!!"

So everybody gets scared and runs away. Only one person stays.

The guy comes up to him and says: "Aren't you scared, I'll integrate you, I'll differentiate you!!!"

And the other guy says; "No, I am not scared, I am e^{x} ."

41

Concavity and curve sketching

Concave up and down:

The graph of a differentiable function y = f(x) is

•concave up on an open interval I if f is increasing on I; The graph is above the tangent line

•concave down on an open interval I if f' is decreasing on I; the graph is below the tangent line

The second derivative test for concavity:

Let y=f(x) be twice-differentiable on an interval I

•if f''(x) > 0 on I, the graph of f over I is concave up

•if f''(x) < 0 on I, the graph of f over I is concave down

Concavity and curve sketching

Extreme values:

Let y=f(x) be twice-differentiable on an interval I and f'(c)=0

- •if f''(x) > 0 on I, f has a minimum in c
- •if f''(x) < 0 on I, f has maximum in c

Concavity and curve sketching

Points of inflection:

A point where the graph of a function has a tangent line and where the concavity changes there is a point of inflection

At a point of inflection (c, f(c)), either f''(c)=0 or fails to exits.

44

Concavity and curve sketching

rev

Exercise: Is the function $f(x) = 5 + \sqrt{9 - x}$ strictly decreasing in [0,9]?

$$D(f) =]-\infty, 9]$$

$$x_1, x_2 \in D(f), x_1 < x_2 \implies -x_1 > -x_2 \implies 9 - x_1 > 9 - x_2 \implies \sqrt{9 - x_1} > \sqrt{9 - x_2}$$

$$\downarrow \downarrow$$

$$f(x_1) > f(x_2)$$

and f is strictly decreasing in the domain, [0,9]

Example

$$f'(x) = x^3 + 6x^2 + 9x + 3$$

$$f'(x) = 3x^2 + 12x + 9$$

$$f''(x) = 6x + 12$$

$$f'(x) = 6x + 12$$

$$f \text{ increasing in } -\infty, -3[\cup] -1, +\infty[$$

$$f \text{ decreasing in }] -3, -1[$$

$$\text{relative maximum at } (-3, 3)$$

$$\text{relative minimum at } (-1, -1)$$

$$f''(x) = 0 \Leftrightarrow x = -2$$

$$f''(x) < 0 \Leftrightarrow x \in] -\infty, -2[$$

$$f''(x) = 0 \Leftrightarrow x \in] -\infty, -2[$$

$$f''(x) = 0 \Leftrightarrow x \in] -\infty, -2[$$

$$f''(x) = 0 \Leftrightarrow x \in] -\infty, -2[$$

$$f''(x) = 0 \Leftrightarrow x \in [-3, -1]$$

$$f'(x) = 0 \Leftrightarrow x \in [-3,$$

Exercise: Is the function $f(x) = 5 + \sqrt{9 - x}$ strictly decreasing in [0,9]?. Found the inverse function f^{-1} in that interval.

$$x_1 , x_2 \in D(f), x_1 < x_2 \implies -x_1 > -x_2 \implies 9 - x_1 > 9 - x_2 \implies \sqrt{9 - x_1} > \sqrt{9 - x_2}$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$D(f) = \left] -\infty, 9 \right] \qquad \qquad f(x_1) > f(x_2)$$

and f is strictly decreasing in the domain, [0,9]

We can observe:
$$f'(x) = -\frac{1}{2\sqrt{9-x}} < 0$$
, if $x \in]0,9[$

