

17

# **Simple Harmonic Motion**

## **Simple Harmonic Motion**

$$F = -kx$$

General equation of SHM is  $x = A \sin(\omega t + \phi)$ ;  $(\omega \underline{t} + \phi)$  is phase of the motion and  $\phi$  is initial phase of the motion.

$$\omega = \frac{2\pi}{T} = 2\pi f$$

**Time period:**  $T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{m}{k}}$ 



**Speed**:  $v = \omega \sqrt{A^2 - x^2}$ **Acceleration**:  $a = -\omega^2 x$ 

## **Energy in SHM**

**Kinetic Energy:** KE =  $\frac{1}{2}mv^2 = \frac{1}{2}m\omega^2(A^2 - x^2) = \frac{1}{2}k(A^2 - x^2)$ 

**Potential Energy:** PE =  $\frac{1}{2}kx^2$ 

#### **Total Mechanical Energy:**

 $E = KE + PE = \frac{1}{2}k(A^2 - x^2) + \frac{1}{2}Kx^2 = \frac{1}{2}KA^2 = \text{constant}$ 

## **Spring-Mass System**



•  $T = 2\pi \sqrt{\frac{\mu}{k}}$ , where  $\mu = \frac{m_1 m_2}{\left(m_1 + m_2\right)}$  is known as reduced mass.



\* Series combination

$$k_s = \frac{k_1 k_2}{k_1 + k_2}$$

$$T = 2 - \frac{M}{M}$$

 $T = 2\pi \sqrt{\frac{M}{k_s}}$ 

\* Parallel combination,

$$k_p = k_1 + k_2$$

$$T=2\pi\sqrt{\frac{M}{k_p}}$$



## Simple pendulum

$$T = 2\pi \sqrt{\frac{l}{g}}$$

$$= 2\pi \sqrt{\frac{l}{g_{eff.}}}$$
 (in accelerating Reference Frame)

where  $g_{\rm eff}$  is net acceleration due to psuedo force and gravitational force

## **Compound Pendulum/Physical Pendulum**

$$T = 2\pi \sqrt{\frac{I}{mgl}}$$

where,  $I = I_{cm} + ml^2$ ; l is distance between point of suspension and centre of mass.

### **Torsional Pendulum**

$$T = 2\pi \sqrt{\frac{I}{C}}$$
 where,  $C = \text{Torsional constant}$ 

## Superposition of Two SHMs Along the Same Direction

$$x_1 = A_1 \sin \omega t$$
 and  $x_2 = A_2 \sin (\omega t + \theta)$ 

If equation of resultant SHM is taken as  $x = A \sin(\omega t + \phi)$ , then

$$A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos\theta} \text{ and } \tan\phi = \frac{A_2\sin\theta}{A_1 + A_2\cos\theta}$$



#### **Small Oscillations**

$$\omega = \sqrt{\frac{U''(x_0)}{m}}$$

where  $U''(x_0)$  is second derivative of potential at the point  $x_0$  i.e. the point of stable equilibrium

### **Damped Harmonic Oscillations**

If the damping force is given by  $\vec{F}_d = -b\vec{v}$ , where  $\vec{v}$  is the velocity of the oscillator and b is a damping constant, then the displacement of the oscillator is given by

$$x(t) = A_0 e^{-bt/2m} \cos(\omega' t + \phi),$$

where  $\omega'$  is the angular frequency of the damped oscillator, is

given as 
$$\omega' = \sqrt{\frac{k}{m} - \frac{b^2}{4m^2}}$$

If the damping constant is small  $\left(b \ll \sqrt{km}\right)$ , then  $\omega' \approx \omega$ , where

ω is the angular frequency of the undamped oscillator.

For small b, the mechanical energy E of the oscillator is given by

$$E(t) = \frac{1}{2}kA_0^2 e^{-bt/m}$$
.

#### **Forced Oscillations and Resonance**

If an external driving force with angular frequency  $\omega_d$  acts on an oscillating system with natural angular frequency  $\omega_0$ , the system oscillates with angular frequency  $\omega_d$ . The velocity amplitude  $v_m$  of the system is greatest when

$$\omega_d = \omega$$
,

a condition called **resonance**. The amplitude  $A_0$  of the system is (approximately) greatest under this condition.