An Operator–Algebraic Perspective on Entropy Flow in Spin Networks

Matthew Sandoz & Collaborators

August 2, 2025

1 Introduction

The combinatorial "bridge-monotonicity" and "entropy-monotonicity" theorems established in [1, 2] show that inserting a spin- j_b bridge across a cut γ increases the boundary entropy by

$$\Delta S = \ln(2j_b + 1).$$

We recast those results in the language of finite von Neumann algebras. The reformulation exposes links to Jones index theory and modular flows, hinting at a uniqueness theorem for the emergent large-scale operator algebra of the universe.

Relation to earlier subfactor constructions. Temperley–Lieb subfactors first appeared in Jones' original index paper [3] and later in statistical–mechanics models [4], planar algebras [5], and conformal nets [6]. Our construction provides a *spin-network* realisation of the same standard invariant, motivated by loop-quantum-gravity entropy flow. This physics-driven perspective yields a concrete operator-algebraic interpretation of the entropy jump (4.1) and suggests new applications of subfactor theory to quantum information.

2 Boundary von Neumann Algebras

Definition 2.1 (Edge algebra). For a cut γ whose intersected edges carry spins $\{j_e\}_{e \in \gamma}$, define the edge algebra

$$\mathcal{A}_{\gamma} := \bigotimes_{e \in \gamma} \operatorname{End}(V_{j_e}).$$

It is a finite-dimensional C*-algebra with the normalised trace tr.

Definition 2.2 (Gauge-invariant algebra). The diagonal SU(2) action u^{\otimes} on \mathcal{A}_{γ} yields the boundary algebra

$$\mathcal{N}_{\gamma} := \mathcal{A}_{\gamma}^{\mathrm{SU}(2)} = \{ X \in \mathcal{A}_{\gamma} \mid u^{\otimes} X u^{\otimes *} = X \ \forall u \in \mathrm{SU}(2) \}.$$

3 Relational Entropy and Modular Hamiltonian

Definition 3.1 (Relational state and modular generator). Let $P_{\gamma} \in \mathcal{N}_{\gamma}$ project onto the singlet subspace and set

$$\rho_{\gamma} := \frac{P_{\gamma}}{\operatorname{tr} P_{\gamma}}, \qquad K_{\gamma} := -\ln \rho_{\gamma}.$$

Then $S_{\gamma} = \ln \operatorname{tr} P_{\gamma}$ reproduces the combinatorial count, and K_{γ} generates the Tomita-Takesaki flow on $(\mathcal{N}_{\gamma}, \rho_{\gamma})$.

Remark 3.1 (Parity obstruction). If the cut has odd total spin, $\operatorname{tr} P_{\gamma} = 0$ and ρ_{γ} is undefined. The operator-algebraic framework below therefore assumes $d_0 := \operatorname{tr} P_{\gamma} > 0$. Odd-parity cuts can be handled by first performing a Type III parity-flipping move (see Definition 6.1) and then applying the analysis of Sections 6.1-A.

4 Bridge Insertion as an Algebra Inclusion

Proposition 4.1 (Jones index of a bridge). Inserting a vertex-disjoint bridge of spin j_b yields

$$\iota_{j_b}: \mathcal{N}_{\gamma} \hookrightarrow \mathcal{N}_{\gamma'} \quad with \quad [\mathcal{N}_{\gamma'}: \mathcal{N}_{\gamma}] = 2j_b + 1.$$

Sketch. Write $V_{j_b}: V_{j_b} \otimes V_{j_b} \to \bigoplus_{\ell=0}^{2j_b} V_{\ell}$ and define

$$P_{\gamma'} = (P_{\gamma} \otimes \mathbf{1}_{j_b}^{\otimes 2}) V_{j_b}^* \prod V_{j_b},$$

where Π projects onto the $\ell = 0$ singlet component of $\bigoplus_{\ell=0}^{2j_b} V_{\ell}$. Tracing gives $\operatorname{tr} P_{\gamma'} = (2j_b+1)\operatorname{tr} P_{\gamma}$, so $\Delta S = \ln(2j_b+1)$, which equals the Jones index of the inclusion.

Theorem 4.1 (Bridge-monotonicity \Leftrightarrow index additivity). For any sequence $\{j_b^{(i)}\}_{i=1}^n$ of disjoint bridges,

$$S_{\gamma_n} - S_{\gamma_0} = \sum_{i=1}^n \ln(2j_b^{(i)} + 1) = \sum_{i=1}^n \ln[\mathcal{N}_i : \mathcal{N}_{i-1}]$$
(4.1)

Remark 4.1 (Entropy vs. index additivity). Equation (4.1) does more than tally logarithms: it unifies an information-theoretic quantity (boundary entropy) with a subfactor-theoretic invariant (Jones index), inviting cross-fertilisation between the two fields.

5 Quantum-Group Extension

Replacing Rep SU(2) by Rep SU(2)_k truncates the index to

$$[\mathcal{N}_{\gamma'}: \mathcal{N}_{\gamma}]_k = \min(2j_b + 1, k - 2j_b + 1),$$

saturating at $S_{\text{max}} = \ln(k+2)$, as in [2].

6 Admissible Local Moves

Definition 6.1 (Admissible moves). The rewrite system consists of the four local moves of [2]:

- I. Bridge insertion add a vertex-disjoint edge of spin j_b across the cut.
- II. Bridge removal inverse of I.
- III. Parity-flipping contraction contract an odd-spin boundary edge, flipping total parity.
- IV. Parity-flipping expansion inverse of III.

Proposition 6.1 (Finite depth under bounded spin). Fix a constant $\delta_{\max} > 1$. Suppose every bridge inserted by moves I-II satisfies $[\mathcal{N}_{\gamma'}:\mathcal{N}_{\gamma}] \leq \delta_{\max}$. Then the Jones tower generated from any seed cut is of finite depth; equivalently, the relative commutants $N'_k \cap N_{k+n}$ stabilise for $n \geq 2$.

Proof. Because each inclusion is obtained via the basic construction with index $\leq \delta_{\text{max}}$, the sequence of higher relative commutants forms a Temperley–Lieb planar algebra $\text{TL}_{\delta_{\text{max}}}$ (cf. Appendix A). Temperley–Lieb algebras are known to be finite depth for $\delta_{\text{max}} < \infty$ [7, Prop. 2.2]. Hence the tower has finite depth.

Theorem 6.1 (Uniqueness under bounded index). Assume the bounded-index condition of Proposition 6.1. Then the inductive-limit algebra \mathcal{N}_{∞} is *-isomorphic to the hyperfinite type Π_1 factor \mathcal{R} .

Proof. Proposition 6.1 shows the tower has finite depth with standard invariant $\mathrm{TL}_{\delta_{\mathrm{max}}}$. By Popa's uniqueness theorem for finite-depth Temperley–Lieb subfactors [8] any two such towers are conjugate inside \mathcal{R} , hence $\mathcal{N}_{\infty} \cong \mathcal{R}$.

7 Uniqueness Conjecture

Conjecture 7.1 (Uniqueness of the inductive-limit factor). Let $\{N_{\gamma}\}$ be the directed system generated from a finite seed cut by all moves in Definition 6.1. Assume (i) the move graph is acyclic and (ii) indices of successive inclusions stay bounded. Then the inductive-limit algebra

$$\mathcal{N}_{\infty} := \varinjlim \mathcal{N}_{\gamma}$$

is *-isomorphic to the hyperfinite type II_1 factor \mathcal{R} .

8 Outlook

The operator-algebraic frame opens the door to modular theory, planar algebras and quantum-information monotones. A key next step is to recast the Type III/IV moves as *Morita equiva-lences*—bimodules between boundary algebras—so that parity changes integrate seamlessly into subfactor bimodule formalism. Other directions: (i) a full 9j analysis of linked bridges; (ii) categorical extensions to arbitrary fusion categories; (iii) numerical tests of modular-flow locality.

A Temperley-Lieb relations for bridge idempotents

Let $e_i \in \mathcal{N}_{\gamma_{i+1}}$ denote the Jones projection implementing the *i*-th bridge inclusion $\mathcal{N}_{\gamma_i} \subset \mathcal{N}_{\gamma_{i+1}}$.

Lemma A.1. For fixed loop parameter $\delta := 2j_b + 1$ the projections $\{e_i\}$ satisfy the Temperley–Lieb relations

$$e_i^2 = \delta^{-1}e_i, \qquad e_i e_{i\pm 1}e_i = e_i, \qquad e_i e_j = e_j e_i \ (|i-j| \ge 2).$$

Proof. Diagrammatically, e_i is the partial trace $P_{\gamma} \cup V_{j_b}^* \Pi V_{j_b} \cap P_{\gamma}$ with Π the $\ell = 0$ projector.

Idempotency. Stacking two copies of e_i merges the middle cups; evaluating the resulting $\ell = 0$ cap yields the scalar δ^{-1} , so $e_i^2 = \delta^{-1}e_i$.

Reidemeister III. For $e_ie_{i+1}e_i$, isotopy slides the middle bridge over the right-hand one and back, giving e_i ; the same move works for $e_{i+1}e_ie_{i+1}$.

Commutation. If $|i-j| \ge 2$ the corresponding bridges live on disjoint strands, so their projections commute.

Algebraic versions of these calculations follow from the Wigner–Eckart theorem and the recoupling identity $V_{j_b}^* \Pi V_{j_b} V_{j_b}^* \Pi V_{j_b} = \delta^{-1} V_{j_b}^* \Pi V_{j_b}$.

Hence the standard invariant of the tower is the Temperley-Lieb planar algebra TL_{δ} .

References

- [1] M. Sandoz, Bridge-Monotonicity in Spin Networks, 2025.
- [2] M. Sandoz, Entropy Flow in Spin Networks, 2025.
- [3] V. F. R. Jones. Index for subfactors. Invent. Math., 72:1–25, 1983.
- [4] L. H. Kauffman and S. L. Lins. Temperley–Lieb Recoupling Theory and Invariants of 3–Manifolds. Princeton UP, 1994.
- [5] V. F. R. Jones. Planar algebras, I. arXiv:math/9909027, 1999.
- [6] Y. Kawahigashi and R. Longo. Classification of local conformal nets. Case c < 1. Ann. Math., 160:493-522, 2004.
- [7] V. F. R. Jones. The Temperley–Lieb algebra and the Jones polynomial. In *Proceedings of Symposia in Pure Mathematics*, 45 (1986), 335–354.
- [8] S. Popa. Classification of Subfactors and Their Endomorphisms. CBMS 93, AMS, 1995.