SOC Design Lab 4-1 Group 8

Firmware code

1.fir.h

Define the taps numbers and input data

```
1 #ifndef __FIR_H__
2 #define __FIR_H__
3
4 #define N 11
5
6 int taps[N] = {0,-10,-9,23,56,63,56,23,-9,-10,0};
7 int inputbuffer[N];
8 int inputsignal[N] = {1,2,3,4,5,6,7,8,9,10,11};
9 int outputsignal[N];
10 #endif
```

2. fir.c

1) void initfir()

This is to reset the input and output buffers before doing fir conputing.

```
#include "fir.h"

void __attribute__ ( ( section ( ".mprjram" ) ) ) initfir() {
    for (int i = 0; i < N; i++) {
        inputbuffer[i] = inputsignal[i];
    }
    for (int i = 0; i < N; i++) {
        outputsignal[i] = 0;
    }
}</pre>
```

2) Int* fir()

Using a for loop to compute the fir and save the result to "outputsignal". Return the pointer of the "outputsignal".

Interface between BRAM and wishbone

- 1. To make sure the mprjram is selected ,where wbs_adr_i[31:20] is from 12'h380 (12'b0011_1000_0000) to 12'h384 (12'b0011_1000_0100) , we assign a signal Sel as wbs_adr_i[31:23] is 9'h070 (9'b001110000) to determine whether the wishbone address is in the range.
- 2. clock (clk) of the BRAM and reset (rst) are assigned to the ones from wishbone (wb_clk_i and wb_rst_i)
- 3. enble (ENO) of the BRAM is assigned to wbs cyc i && wbs stb i && Sel
- 4. write enable (WE0) is assigned to wbs_sel_i & {4{wbs_we_i}}
- 5. DataIn(write data) is assigned to wbs_dat_i
- 6. Address(A0) is assigned to Sel ? (wbs_adr_i & 32'h003FFFFF) : 32'b0, using a mask to make the bram size smaller.
- 7. We used a simple 4 bits counter and a "ready" signal to control the desired delay time from enable to wbs_ack_o.

```
assign wbs_ack_o = ready;

always @(posedge clk) begin
   if (rst ) begin
      ready <= 0;
   end else if (ENO && !ready) begin
      ready <= 0;
      if (cnt == DELAYS) begin
            cnt <= 4'b0;
            ready <= 1'b1;
      end else cnt <= cnt + 1;
   end else begin
      cnt <= 0;
      ready <= 0;
   end
end</pre>
```

- 8. DataOut(read data) is connected to wbs_data_o for output.
- 9. BRAM size parameter N = 9.

```
parameter N = 9;
(* ram_style = "block" *) reg [31:0] RAM[0:2**N-1];
```

Waveforms

1. The communications between CPU and BRAM is shown below:

2. FIR results can be checked from the checkbits of the testbench.

• Synthesis report RTL Component:

```
Start RTL Component Statistics
Detailed RTL Component Info :
+---Adders :
                                  Adders := 1
       2 Input
                     4 Bit
+---Registers :
                      32 Bit Registers := 1
4 Bit Registers := 1
1 Bit Registers := 1
+---RAMs :
                                                             RAMs := 1
                     16K Bit (512 X 32 bit)
+---Muxes :
       2 Input
                   32 Bit
                                    Muxes := 7
       2 Input 8 Bit
2 Input 4 Bit
2 Input 1 Bit
                                    Muxes := 1
                                   Muxes := 1
                                  Muxes := 3
Finished RTL Component Statistics
```

Slice Logic:

1. Slice Logic										
Site Type	Used	Fixed	Prohibited	Available	Util%					
Slice LUTs* LUT as Logic LUT as Memory Slice Registers Register as Flip Flop Register as Latch F7 Muxes F8 Muxes	34 34 34 0 5 5 0	0 0 0 0 0 0	0 0 0 0 0	53200 53200 17400 106400 106400 26600 13300	0.06 0.06 0.00 <0.01 <0.01 0.00 0.00					

Memory:

2. Memory					
Site Type	Used	Fixed	Prohibited	Available	++ Util%
Block RAM Tile RAMB36/FIFO* RAMB18 RAMB18E1 only	0.5 0 1 1	0 0 0	0 0 0	140 140 280	0.36 0.00 0.36