Movie Recommendation System On MovieLens Dataset

Tianyou Xiao, Ziyu Song

Table of Contents

Data Preprocessing

Collaborative Filtering

Neural-Network-Based Autoencoder

Evaluation

Conclusion

How to predict a user's preference based on the movie he/she reviewed?

Data Preprocessing

- MovieLens Dataset
- GroupLens Website

Two Categories of Recommendation System

Memory-Based Techniques

- Similarity Measures
 - Cosine Similarity
 - Pearson Correlation
 - Jaccard Coefficient
- Match Similar Users and Items
- Collaborative Filtering

Model-Based Techniques

- Predict based on pre-trained models
- Typical model-based techniques:
 - Bayesian Networks
 - Singular Value Decomposition
 - Probabilistic Latent Semantic
 Analysis
 - Deep learning

Collaborative Filtering

- A Common Memory-Based Strategy
- Collects Information From Many Users (Collebrating)
- Makes Automatic Predictions (Recommendation/Filtering)
- User-User Based and Item-Item Based

Collaborative Filtering

The Collaborative Filtering Process

Collaborative Filtering

User-User Based

Predict with similarities between users

Item-Item Based

 Predict with similarities between items

$$\hat{r}_{ui} = \frac{\sum_{u'} sim(u, u') r_{u'i}}{\sum_{u'} |sim(u, u')|}$$

$$\hat{r}_{ui} = \frac{\sum_{u'_k} sim(u, u'_k) r_{u'_k i}}{\sum_{u'_k} |sim(u, u'_k)|}$$

Theoretically, they are dual methods and should produce similar result.

Similarity

$$cos(\mathbf{u}, \mathbf{v}) = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} = \frac{\sum_{i=1}^{n} u_i v_i}{\sqrt{\sum_{i=1}^{n} u_i^2} \sqrt{\sum_{i=1}^{n} v_i^2}}$$

A common metric to measure the similarity between two users/items

calculate the cosine value of the angle between the two users'/items' vectors

Euclidean Distance
$$d(\mathbf{u}, \mathbf{v}) = \sqrt{(r_{u1} - r_{v1})^2 + (r_{u2} - r_{v2})^2 + \dots + (r_{up} - r_{vp})^2}$$

Euclidean distance can be used to measure how far two points/vectors are from each other.

Here we use reciprocal of Euclidean distance as another similarity metric.

Item-Item Similarity

Sarwar, B., Karypis, G., Konstan, J. & Riedl, J. (2001). Item-based collaborative filtering recommendation algorithms. Proceedings of the 10th international conference on World Wide Web (p./pp. 285--295), New York, NY, USA: ACM. ISBN: 1-58113-348-0

Neural-Network-Based Autoencoder

- Generates a Model To Predict The Missing Ratings
- Learn The Relations Between Values of Inputs By Recreating Ratings of Every User

Autoencoder

$$\phi: \mathcal{X} \to \mathcal{F}$$

$$\psi: \mathcal{F} \to \mathcal{X}$$

$$\phi, \psi = \operatorname*{argmax}_{\phi, \psi} \|X - (\psi \circ \phi)X\|^2$$

the encoder and the decoder, defined as transitions ϕ and ψ ,

 \mathcal{F} is the feature space \mathcal{X} is the input space.

Evaluation

- Rooted Mean Squared Error (RMSE)
- Mean Absolute Error (MAE)

Evaluation Metrics

Rooted Mean Squared Error (RMSE)

A frequently used measure of differences between values predicted by a model or an estimator and the values observed

$$RMSE = \sqrt{\frac{\sum_{i=1}^{m} \sum_{j=1}^{n} (\hat{r_{ij}} - r_{ij})^2}{m * n}}$$

Mean Absolute Error (MAE)

Measures the average magnitude of the errors in a set of predictions, without considering their direction

$$MAE = \frac{\sum_{i=1}^{m} \sum_{j=1}^{n} |r_{ij} - \hat{r_{ij}}|}{m * n}$$

CF: Item-Item MAE and RMSE

CF: User-User MAE and RMSE

Sample Rating Prediction — CF

Sample rating prediction for user 1, top 50 similarity, merged with movie information

0	movield	title	genres	predicted_rating
42	924	2001: A Space Odyssey (1968)	Adventure Drama Sci-Fi	5.000000
8	111	Taxi Driver (1976)	Crime Drama Thriller	4.833511
69	2324	Life Is Beautiful (La Vita è bella) (1997)	Comedy Drama Romance War	4.750258
102	58559	Dark Knight, The (2008)	Action Crime Drama IMAX	4.749980
17	318	Shawshank Redemption, The (1994)	Crime Drama	4.738419
40	904	Rear Window (1954)	Mystery Thriller	4.699766
83	4226	Memento (2000)	Mystery Thriller	4.666927
50	1206	Clockwork Orange, A (1971)	Crime Drama Sci-Fi Thriller	4.625423
110	116797	The Imitation Game (2014)	Drama Thriller War	4.625171
52	1219	Psycho (1960)	Crime Horror	4.624546

Neural-Network-Based Autoencoder

(b) training loss graph over epochs

Our model achieves an MAE loss of 0.0096 with *learning rate* = 0.01, *epochs* = 250, and *batchsize* = 64, running for 417 seconds.

Sample Rating Prediction — Autoencoder

```
tensor([[[3.9682, 3.4754, 3.1795, ..., 3.5001, 3.5000, 4.0001], [3.9682, 3.4753, 3.1785, ..., 3.5000, 3.5000, 4.0000], [3.9682, 3.4754, 3.1795, ..., 3.5001, 3.5000, 4.0001], [3.9682, 3.4754, 3.1795, ..., 3.5001, 3.5000, 4.0001], [3.9682, 3.4753, 3.1795, ..., 3.5000, 3.5000, 4.0000], [3.9682, 3.4754, 3.1795, ..., 3.5001, 3.5000, 4.0000], [3.9682, 3.4754, 3.1795, ..., 3.5001, 3.5000, 4.0001]]], grad_fn=<AddBackward0>)
```

Sample rating prediction from autoencoder strategy

Conclusion

Comparison between memory-based and model-based performance

(a) User MAE and Autoencoder

(c) Item MAE and Autoencoder

(b) User RMSE and Autoencoder

(d) Item RMSE and Autoencoder

Thank You!