

مبانی بینایی کامپیوتر

مدرس: محمدرضا محمدی

تشخیص اشیاء

Object Detection

تطبيق كليشه

• برای خواندن کاراکترهای پلاک، میتوان تطبیق کلیشه هر کاراکتر با تصویر را محاسبه کرد

- برای خواندن کاراکترهای پلاک، میتوان تطبیق کلیشه هر کاراکتر با تصویر را محاسبه کرد
- سپس، مکانهایی که نتیجه تطبیق کلیشه برای آنها بیش از حدی باشد را به عنوان مکان آن کاراکتر در نظر می گیریم

- برای خواندن کاراکترهای پلاک، میتوان تطبیق کلیشه هر کاراکتر با تصویر را محاسبه کرد
- سپس، مکانهایی که نتیجه تطبیق کلیشه برای آنها بیش از حدی باشد را به عنوان مکان آن کاراکتر در نظر می گیریم
 - برای تشخیص کاراکترهای با ابعاد مختلف میتوان از کلیشههای با ابعاد مختلف استفاده نمود

پیادهسازی کانولوشنی پنجره لغزان

حذف مقادير غيربيشينه

- ممکن است یک شیء در چند نقطه تشخیص داده شود
- از میان ناحیههای دارای اشتراک زیاد، یکی انتخاب میشود
 - پاسخهایی که دارای $p_c < 0.5$ هستند حذف میشوند ullet
 - تكرار
 - بیشترین p_c انتخاب میشود -
- پاسخهایی که دارای IoU بیش از ۵.۰ با این پاسخ هستند حذف میشوند

حذف مقادير غيربيشينه

- ممکن است یک شیء در چند نقطه تشخیص داده شود
- از میان ناحیههای دارای اشتراک زیاد، یکی انتخاب میشود
 - پاسخهایی که دارای $p_c < 0.5$ هستند حذف میشوند ullet
 - تكرار
 - بیشترین p_c انتخاب میشود -
- پاسخهایی که دارای IoU بیش از ۵.۰ با این پاسخ هستند حذف میشوند

b_{w} b_h c_1 c_2 c_2 p_c b_{x} b_{y} b_{w} b_h c_1 c_2

Anchor Boxes

- در هر ناحیه تنها یک شیء قابل تشخیص است
- برای اضافه کردن امکان تشخیص چند شیء، می توان در هر ناحیه چند خروجی قرار داد

YOLO: You Only Look Once

• در روش YOLO، تصویر ورودی به تعدادی ناحیه کوچک تقسیم میشود و برای هر ناحیه یک دستهبند و یک تابع رگرسیون طراحی میشود

YOLO

Labels for training for each grid cell:

14

YOLO

YOLO

Real-Time Detectors	Train	mAP	FPS
100Hz DPM [31]	2007	16.0	100
30Hz DPM [31]	2007	26.1	30
Fast YOLO	2007+2012	52.7	155
YOLO	2007+2012	63.4	45
Less Than Real-Time			
Fastest DPM [38]	2007	30.4	15
R-CNN Minus R [20]	2007	53.5	6
Fast R-CNN [14]	2007+2012	70.0	0.5
Faster R-CNN VGG-16[28]	2007+2012	73.2	7
Faster R-CNN ZF [28]	2007+2012	62.1	18
YOLO VGG-16	2007+2012	66.4	21

SSD: Single Shot MultiBox Detector

- روش YOLO یک روش آموزش end-to-end شبکه است که نیازی به تولید ناحیه پیشنهادی و تغییر ابعاد آنها ندارد
- سرعت روش YOLO از روشهایی که از بخش تولید ناحیههای پیشنهادی استفاده میکنند بهتر است اما دقت پائین تری دارد
 - در مقاله SSD بهبودهایی داده شده است که در ضمن افزایش سرعت، دقت نیز افزایش یافته است (به خصوص برای اشیاء کوچک)
 - مهمترین نوآوری SSD آن است که برای تشخیص اشیاء و محل آنها از چند لایه استفاده کرده است تا اشیاء با ابعاد مختلف قابل تشخیص باشند

SSD

SSD vs YOLO

RetinaNet

- یکی از مشکلات آموزش در شبکههای طراحی شده برای تشخیص اشیاء عدم توازن شدید میان نمونههای کلاسها است
- به طور خاص، تعداد ناحیههایی که هیچکدام از اشیاء مورد نظر در آن قرار ندارند به مراتب بیش از ناحیههای مربوط به کلاسهای دیگر است
- ایده اصلی در مقاله RetinaNet پیشنهاد تابع هزینهای است که بهینهسازی آن با استفاده از دادههای نامتوازن منجر به عملکرد مناسبتری شود

Focal Loss

• تابع هزینه متداول در شبکههای عصبی cross entropy است

$$CE(p, y) = -\sum y_i \log(p_i)$$

- حالت دو کلاسه:

$$CE(p, y) = \begin{cases} -\log(p) & \text{if } y = 1\\ -\log(1-p) & \text{otherwise} \end{cases}$$

$$p_t = \begin{cases} p & if \ y = 1 \\ 1 - p & otherwise \end{cases}$$

$$CE(p, y) = CE(p_t) = -\log(p_t)$$

Focal Loss

- تابع هزینه cross entropy تلاش می کند تا تمام نمونهها را با احتمال کامل درست بگوید
- به عبارت دیگر، دستهبندی با احتمال بالا کفایت نمی کند و این مقادیر هزینه کوچک زمانیکه برای تعداد بسیار زیادی نمونه با یکدیگر جمع می شوند عدد قابل توجهی می شود
 - در تابع هزینه focal، مقدار ضرر برای دادههایی که به خوبی شناسایی شدهاند کاهش می یابد

$$FL(p_t) = -(1 - p_t)^{\gamma} \log(p_t)$$

$$p_t = \begin{cases} p & if \ y = 1 \\ 1 - p & otherwise \end{cases}$$

$$CE(p, y) = CE(p_t) = -\log(p_t)$$

RetinaNet

