${\it Wintersemester} \ 2016/17 \\ {\it Modulpr\"ufung} \ "Automaten und Formale Sprachen" \\ 29.03.2017 \ 11:00 \ Uhr \\$

Nam	e:							
Matı	rikelnum	mer:						
Stud	iengang,	Abschlu	uss:					
Name	en zu verse	ehen und		nal einen beidseitig beschriebenen Bogen DIN A4, der mit dem ogen eindeutig zu kennzeichnen ist. Keine elektronischen Hilfsechner).				
Bear	beitungs	zeit: 60 1	Minuten					
Hinw	veise:							
•] • . • . •]	 60 Punkte erreichen. Bei 30 oder mehr Punkten ist die Prüfung bestanden. Beschriften Sie alle abzugebenden Blätter mit Ihrem Namen und Ihrer Matrikelnummer. Bei fest zusammengehefteten Blättern genügt es das oberste zu beschriften. Alle in der Vorlesung oder Übung bewiesenen Aussagen dürfen verwendet werden, außer dies ist bei einer Aufgabe ausdrücklich ausgeschlossen. Die Menge der natürlichen Zahlen enthält die Null. Nur vom Korrektor auszufüllen:							
	Aufgabe	Punkte	erreicht	Note:				
}	1	13						
	2	10		Bemerkungen:				
	3	14						
	4	15						
	5	8						
	Summe	60						
l		1						

Aufgabe 1	(13 Punkte)
Auigabe i	(10 I unive

Sei $M=(Q,\Sigma,\delta,q_0,F)$ ein vollständiger deterministischer endlicher Automat. Wir nennen ein Wort w synchronisierend für M, falls

$$\exists p \in Q \ \forall q \in Q : \ \hat{\delta}(q, w) = p.$$

a) Gegeben sei der folgende deterministische endliche Automat M_1 : (3 P)

Bestimmen Sie für M_1 ein synchronisierendes Wort der Länge drei.

b) Wir definieren die Menge der synchronisierenden Wörter als

(10 P)

$$S(M) = \{ w \in \Sigma^* \mid w \text{ ist synchronisierend für } M \}.$$

Zeigen Sie: Die Menge S(M) ist regulär.

ıfgabe 2 Ein korrektes Passwor	t über dem Alphabet $\Sigma = \{a, t\}$	(10 Punkte $[0,c]$ hat die folgenden Eigenschaften:					
	 Es enthält mindestens zwei verschiedene Buchstaben. Es enthält keine Buchstabenwiederholung als Faktor (d.h. kein aa, bb, cc als Faktor). 						
		Vortes $w \in \Sigma^*$, falls Wörter $x, y \in \Sigma^*$ existieren					
Beispiele: Korrekte Pa	sswörter sind:						
• <i>ab</i>	• <i>bac</i>	• cacbc					
Keine korrekten Pass	wörter sind:						
• aabc	• <i>b</i>	• aa					
I hozoichno die Care el	no der korrekten Dagawänten üb	for dom Alphabet $\Sigma = \{a, b, a\}$					
		per dem Alphabet $\Sigma = \{a, b, c\}.$					
		nen endlichen Automaten M mit					
T(M) = L an. Den Fa	ngzustand müssen Sie dabei <i>ni</i>	echt einzeichnen.					

Aufgabe 3	(14 Punkte)
a) Sei L_1 die Sprache	
$L_1 = \{a^n \mid n \text{ ist keine Primzahl}\}$	
über dem Alphabet $\Sigma_1 = \{a\}$. i. Ist L_1 kontextfrei? \square Ja \square Nein	(1 D)
ii. Beweisen Sie Ihre Antwort.	(1 P) (6 P)
b) Sei L_2 die Sprache	
$L_2 = \{a^n b^m \mid n \text{ ist keine Primzahl und } m \in \mathbb{N}\}$	
über dem Alphabet $\Sigma_2 = \{a, b\}.$	
i. Ist L_2 kontextfrei? \square Ja \square Nein	(1 P)
ii. Beweisen Sie Ihre Antwort.	(6 P)

Aufgabe 4 (15 Punkte)

Sei $M = (Q, \Sigma, \delta, q_0, F)$ der folgende deterministische endliche Automat.

a) Er soll minimiert werden.

(6 P)

Anstatt bei nicht äquivalenten Zuständen ein Kreuz einzutragen, soll ein Zeuge eingetragen werden, der die Inäquivalenz der Zustände belegt. Formal ist ein Wort $w \in \Sigma^*$ ein Zeuge für das Feld $\{p,q\}$, falls

$$\hat{\delta}(p, w) \in F \iff \hat{\delta}(q, w) \notin F.$$

Tragen Sie in jedes Feld einen Zeugen ein oder streichen Sie das Feld durch, wenn die Zustände äquivalent sind.

Beispiel: Für die Zustände $\{q_5,q_6\}$ ist $w=\varepsilon$ ein Zeuge, da $\hat{\delta}(q_5,\varepsilon)=q_5\in F$ aber $\hat{\delta}(q_6,\varepsilon)=q_6\not\in F$.

Außerdem ist a ein Zeuge für $\{q_4,q_6\}$, da $\hat{\delta}(q_4,a)=q_5\in F$ aber $\hat{\delta}(q_6,a)=q_6\not\in F$, und auch für $\{q_3,q_6\}$.

Ferner ist ba ein Zeuge für $\{q_2, q_6\}$, da $\hat{\delta}(q_2, ba) = \hat{\delta}(q_4, a) = q_5 \in F$ aber $\hat{\delta}(q_6, ba) = \hat{\delta}(q_6, a) = q_6 \notin F$.

	q_0	q_1	q_2	q_3	q_4	q_5
q_6			ba	a	a	ε
q_5	arepsilon	arepsilon	arepsilon	arepsilon	arepsilon	
q_4						
q_3						
q_2						
$ \qquad \qquad$						

Geben Sie den Minimalautomaten von M an.	(6 F
Geben Sie die von M akzeptierte Sprache durch einen regulären Ausdr	ruck an. (3 l

Aufgabe 5	(8 Punkte)
-----------	------------

Kreuzen Sie jeweils die **kleinste** (bezüglich Inklusion) Sprachklasse an, in der die jeweilige Sprache enthalten ist. Nicht angekreuzt oder mehr als ein Kreuz zählt als falsches Kreuz.

Für diese Aufgabe ist $L_a = \{a^n \mid n \in \mathbb{N}\}, L_b = \{b^n \mid n \in \mathbb{N}\}$ sowie $L_c = \{c^n \mid n \in \mathbb{N}\}$ und w^R bezeichnet die Spiegelung von w. Für $w = a_1 a_2 \dots a_n$ ist also $w^R = a_n a_{n-1} \dots a_1$, wobei $n \in \{0, 1, \dots\}$ und $a_1, a_2, \dots, a_n \in \Sigma$.

Sprache	regulär	det. kontextfrei	kontextfrei	kontext- sensitiv	Typ-0
$L_a L_b L_c$					
$\{a,b,c\}^* \setminus (L_a L_b \cup L_b L_c)$					
$\{ww^R\mid w\in\{a,b,c\}^*\}$					
$\left\{ww^Rw\mid w\in\{a,b,c\}^*\right\}$					
$\{a^nb^{n^2}\mid n\in\mathbb{N}\}$					
$\{a^nb^m\mid n,m\in\mathbb{N} \text{ mit } n\leq m\}$					
$\{a^n(bb)^m \mid n, m \in \mathbb{N} \text{ mit } n = m\}$					
$\{a^n(bb)^mc^l\mid n,m,l\in\mathbb{N} \text{ mit } n=m\vee n=l\}$					