ГУАП

КАФЕДРА № 44

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ ПРЕПОДАВАТЕЛЬ							
доцент, канд. техн. наук		Т.Н. Соловьева					
лжность, уч. степень, звание	подпись, дата	инициалы, фамилия					
ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ №6							
РАЗРАБОТКА МИКРОПРОЦЕССОРНОЙ СИСТЕМЫ С ИСПОЛЬЗОВАНИЕМ ТАЙМЕРОВ							
по курсу: МИКРОПРОЦЕССОРНЫЕ СИСТЕМЫ							
РАБОТУ ВЫПОЛНИЛ							
ДЕНТ ГР. № 4842	полнись пата	М.В.Климов					

Санкт-Петербург 2020

1. Цель работы:

Изучение принципов работы таймеров и системы прерываний микроконтроллера; приобретение навыков разработки микропроцессорных систем, использующих таймеры.

2. Задание по работе

Требуется разработать микропроцессорную систему, включающую в себя микроконтроллер SAB 80C515, ЖКИ, две кнопки и светодиод.

При включении системы на ЖКИ появляется бегущая строка, содержащая информацию об авторе системы в формате «Фамилия Имя Отчество, группа».

Нажатие кнопки «Пуск» запускает мигание светодиода с заданным периодом.

Нажатие кнопки «Стоп» останавливает процесс мигания.

В разделе «Варианты заданий» указан таймер, который необходимо использовать для организации мигания светодиода, период мигания и вывод микроконтроллера, к которому необходимо подключить светодиод. Выводы, через которые к МК требуется подключить ЖКИ, определяются вариантом подключения, указанным в работе 3. Работу системы необходимо проверить с помощью симулятора.

Вариант 4

Номер варианта	Шина управления ЖКИ			Шина данных ЖКИ
	RS	RW	E	AKKH
1	P1.0	P1.1	P1.2	P2
2	P1.4	P1.5	P1.6	P2
3	P2.1	P2.2	P2.3	P1
4	P1.5	P1.6	P1.7	P2

Номер варианта	Таймер	Период, мс	Светодиод
1	0	6	P0.0
2	1	8	P0.1
3	0	1	P0.2
4	1	6	P0.3

3. Разработка программы

bte equ 10h ;выдаваемый на ЖКИ байт

RS equ P1.5

```
RW equ P1.6
E equ P1.7
D equ P2
org 0h; processor reset vector
ajmp start; go to beginning of program
; Interrupt Vector
org 0003h; processor interrupt vector
ajmp int_0; go to int1 interrupt service routine
org 0013h; processor interrupt vector
ajmp int_1
org 001bh; processor interrupt vector
ajmp T_1
; MAIN PROGRAM
org 100h
start:
setb IT1
setb EX1
setb EX0
SetB ET1
setb EA
CLR RS
clr RW
;настройки
mov bte, #00111000b
lcall nas
mov bte, #00001111b
lcall nas
mov bte, #00000110b
lcall nas
mov bte, #83h
lcall nas
;ввод
setb RS
```

mov bte, #4Bh;K

lcall nas

mov bte, #6ch;1

lcall nas

mov bte, #69h;i

lcall nas

mov bte, #6dh;m

lcall nas

mov bte, #6fh;o

lcall nas

mov bte, #76h;v

lcall nas

mov bte, #00h;_

lcall nas

mov bte, #4Dh;M

lcall nas

mov bte, #69h;i

lcall nas

mov bte, #78h;x

lcall nas

mov bte, #61h;a

lcall nas

mov bte, #69h;i

lcall nas

mov bte, #6ch;1

lcall nas

mov bte, #00h;_

lcall nas

mov bte, #00h;_

lcall nas

mov bte, #56h;V

lcall nas

mov bte, #61h;a

lcall nas

mov bte, #6ch;1

lcall nas

mov bte, #65h;e

lcall nas

mov bte, #72h;r

lcall nas

mov bte, #65h;e

lcall nas

mov bte, #76h;v

lcall nas

mov bte, #69h;i

lcall nas

mov bte, #68h;h

lcall nas

mov bte, #00h;_

lcall nas

mov bte, #00h;_

lcall nas

mov bte, #01h;Γ

lcall nas

mov bte, #02h;p

lcall nas

mov bte, #03h;y

lcall nas

mov bte, #04h;π

lcall nas

mov bte, #04h;π

lcall nas

mov bte, #05h;a

lcall nas

mov bte, #00h;_

lcall nas

mov bte, #34h;4

lcall nas

mov bte, #38h;8

lcall nas

mov bte, #34h;4

lcall nas

mov bte, #32h;2

lcall nas

mov bte, #00h;_

lcall nas

```
CLR RS
mov bte, #00001100b
lcall nas
loop:
mov bte, #00011100b
lcall nas
setb P1.2 ;Ожидание выхода
jnb P1.2, finish
sjmp loop
nas:
setb E
mov D, bte
clr E
nop
ret
;Обработчик прерывания INT1
int_0:
clr ET1
clr TR1
clr EX0
reti
int_1:
clr EX1
mov tmod, #00010000b
mov TH1, #0E8h
mov TL1, #90h
setb TR1
reti
T_1:
clr TR1
clr P0.3
nop
nop
nop
nop
nop
```

nop

clr TF1

mov TH1, #0E8h

mov TL1, #90h

setb P0.3

Setb TR1

reti

finish:

end

4. Результаты симуляции

Рисунок 1 – Бегущая строка в начале

Рисунок 2 – Бегущая строка ближе к концу

Рисунок 3 — Результаты симуляции во время прерывания таймера в конце программы

Рисунок 4 — Результаты симуляции сразу после прерывания таймера в конце программы

5. Вывод

В результате были освоены принципы работы таймеров и системы прерываний микроконтроллера, а также приобретены навыки разработки микропроцессорных систем, использующих таймеры.