1. DESCRIPTION

MT5727H is a SoC based wireless power receiver which is designed for application withs up to 20W power delivery and can be configured as a wireless charging transmitter to provide power to other receiver. It is fully compliant with WPC Qi Specification (Version 1.2.4).

The AC input can be converted to fully programmable DC output voltage due to the magnetic induction charging technology.

Designed with ARM Cortex M0 processor, integrated with optimized and adaptive full synchronous rectifier control and special LDO, the chip achieves high efficiency, ultra-low bias current and very small power MOSFET R_{DSON}.

MT5727H is embedded with various protection features, such as FOD, over-voltage, over-current and over-temperature protection which guarantee the system reliability.

2. APPLICATIONS

- Smartphones and wearable devices
- TRx function for phones or power banks
- Other wireless power applications

3. FEATURES

- Power delivery: up to 20W
- Fully programmable output voltage and current limit
- Embedded with ARM Cortex M0 processor with 8KB SRAM and 16KB MTP
- AC input to DC output efficiency: up to 97%
- Reverse charging mode with integrated dual channel T_X demodulation
- Fully integrated bi-directional current sensing
- Embedded with various protection features: over-voltage, over-current, overtemperature protection, FOD
- Innovative output LDO with output clamping and fast response to line and load transient
- Qi 1.2.4 compliant and proprietary communication protocols support with hardware ASK and FSK modulation and demodulation
- Independent I²C slave interface with additional configurable GPIOs
- Halogen free and RoHS compliant
- 2.82mm x 3.98mm 52-WLCSP

4. TYPICAL APPLICATION CIRCUIT

Figure 1 Typical Application Circuit

Content

1.		DESCI	RIPTION	1
2.		APPLI	CATIONS	1
3.			JRES	
4.		٠.	application circuit	
5.			ONFIGURATIONS AND FUNCTIONS	
	5.1.	Pin	Configurations	6
	5.2.		Functions	
	5.3.	I/O	Pin Default Configurations	8
6.		SPECI	FICATIONS	9
	6.1.		solute Maximum Ratings	
	6.2.	ESI	D Ratings	9
	6.3.	Red	commended Operating Conditions	10
	6.4.	Pad	ckage Thermal Information	10
	6.5.	Ele	ctrical Characteristics	10
	6.6.	Тур	oical Operating Characteristics	12
7.		DETAI	LED DESCRIPTIONS	14
	7.1.	Fur	nctional Block Diagram	14
	7.2.	The	eory of Operation	15
		7.2.1.	Bridge Rectifier	15
		7.2.2.	LDO Regulator	15
		7.2.3.	ADC Converter	15
		7.2.4.	Digital Unit	15
		7.2.5.	Others	16
		7.2.6.	Foreign Object Detection	16
8.		APPLI	CATIONS AND IMPLEMENTATIONS	17
	8.1.	Ref	ference Schematic	17
	8.2.	BIL	L OF MATERIAL (BOM)	18
	8.3.	PC	B Layout Guidelines	19
9.		Registe	er Map	20
	9.1.	Sys	stem Control	20
	9.2.	Sys	stem Setting	22
	9.3.	ASI	Κ	23
	9.4.	FSI	Κ	25

MT5727H

A High Efficiency Wireless Power Receiver

	9.5.	FOD	. 26
10.		DETAILED PACKAGING INFORMATION	. 27
11.		Ordering Information	. 28
12		Revision History	29

List of Figures

Figure 1	Typical Application Circuit	1
Figure 2	Bottom View (pin/ball side)	6
Figure 3	Top View (marking side)	6
Figure 4	Efficiency vs. Output Load: V _{OUT} =5V	12
Figure 5	Load Reg. vs. Output Load: V _{OUT} =5V	12
Figure 6	Efficiency vs. Output Load: V _{OUT} =9V	12
Figure 7	Load Reg. vs. Output Load: V _{OUT} =9V	12
Figure 8	Efficiency vs. Output Load: V _{OUT} =12V	12
Figure 9	Load Reg. vs. Output Load: V _{OUT} =12V	12
Figure 10	Enable Startup: Vout=5V; Iout=0.6A	13
Figure 11	Transient Resp: V _{OUT} =5V; IOUT=0 to 1.25A	13
Figure 12	Transient Resp: V _{OUT} =5V; IOUT=1.25 to 0A	13
Figure 13	Transient Resp: V _{OUT} =12V; I _{OUT} =0 to 1.25A	13
Figure 14	Transient Resp: V _{OUT} =12V; I _{OUT} =1.25 to 0A	13
Figure 15	Functional Block Diagram	14
Figure 16	Reference Schematic	17
Figure 17	PCB Layout Guidelines	19
Figure 18	Detailed Packaging Information	27

List of Tables

Table 1	Pin Functions	7
Table 2	GPOD Default Configurations	8
Table 3	GPIO Default Configurations	8
Table 4	Absolute Maximum Ratings	9
Table 5	ESD Ratings	9
Table 6	Recommended Operating Conditions	10
Table 7	Package Thermal Information	10
Table 8	Electrical Characteristics	10
Table 9	Bill of Material	18
Table 10	System Control	20
Table 11	System Setting	22
Table 12	ASK2	23
Table 13	FSK2	25
Table 14	FOD	26
Table 15	Ordering information	28
Table 16	Revision History	29

5. PIN CONFIGURATIONS AND FUNCTIONS

5.1. Pin Configurations

Figure 2 Bottom View (pin/ball side)

Figure 3 Top View (marking side)

5.2. Pin Functions

Table 1 Pin Functions

Pin Name	Pin No.	Description			
ACN	G5,H5,H6	AC negative input.			
ACP	G2,H1,H2	AC positive input.			
GND	J1,J2,J3,J4,J5,J6, C1,C6	Power Ground.			
VRECT F2,F3,F4,F5, E1,E2,E5,E6		Output of Synchronous Rectifier. Recommend to connect three parallel 10µF capacitors between this pin and GND.			
VOUT	D1,D2,D3,D4,D5, D6	Output of LDO. Connect a 10µF capacitor between this pin and GND.			
SINK	C2	Providing sinking current. Recommend to connect a 50Ω resistor between this pin and VRECT.			
BSTP	G1	Boost Capacitor for internal driver for synchronous bridge rectifier at ACP. Recommend to connect a 22nF capacitor between this pin and ACP.			
BSTN G6		Boost Capacitor for internal driver for synchronous bridge rectifier at ACN. Recommend to connect a 22nF capacitor between this pin and ACN.			
ZTP0 A1		ASK Modulation FET at ACP. Recommend to connect a 22nF capacitor between this pin and ACP.			
ZTN0	A6	ASK Modulation FET at ACN. Recommend to connect a 22nF capacitor between this pin and ACN.			
ZTP1	B1	ASK Modulation FET at ACP. Recommend to connect a 22nF capacitor between this pin and ACP.			
ZTN1	B6	ASK Modulation FET at ACN. Recommend to connect a 22nF capacitor between this pin and ACN.			
NTC	H4	Input of ADC, users can connect external thermistor as temperature sensor.			
EN_B	B5	Disable Pin. Connect this pin to logic HIGH can disable whole chip, while to logic LOW or floating can enable the chip.			
VSNS	G4	Coil's voltage sense for Tx demodulation.			
VDD50V	F1	Internal 5V power supply for internal analog circuit. Recommend to connect a 10µF capacitor between this pin and GND.			
VDD18V F6		Internal 1.8V power supply for internal digital circuit. Recommend to connect a 4.7µF capacitor between this pin and GND.			
SCL A3		I ² C slave SCL.			
SDA	B3	I ² C slave SDA.			
GPOD2~4,7	B2,A2, B4,C3	General Purpose I/O. Type: Open Drain. For more details, see Section 5.3.			
GPIO1~4 A4,C4, A5,C5		General Purpose I/O. Type: Push/Pull. For more details, see Section 5.3.			

5.3. I/O Pin Default Configurations

Table 2 GPOD Default Configurations

GPOD2~4, 7				
GPOD2	GPOD2 General GPIO, ADC.			
GPOD3 General GPIO, ADC.				
GPOD4 General GPIO, ADC.				
GPOD7 General GPIO, ADC.				
Note: GPOD2~4, 7 can be reconfigured upon customers' request.				

Table 3 GPIO Default Configurations

GPIO1~4			
GPIO1	General GPIO, ADC.		
GPIO2 General GPIO, ADC.			
GPIO3	General GPIO, ADC.		
GPIO4 General GPIO, ADC.			
Note: GPIO1~4 can be reconfigured upon customers' request.			

6. SPECIFICATIONS

6.1. Absolute Maximum Ratings

Table 4 Absolute Maximum Ratings

Pin Name	Absolute Maximum Ratings
ACN, ACP, ZTP0, ZTN0, ZTP1, ZTN1	-0.3V to 30V
BSTP with respect to ACP	-0.3V to 6V
BSTN with respect to ACN	-0.3V to 6V
VRECT, SINK	-0.3V to 30V
VOUT	-0.3V to 22V
VDD50V	-0.3V to 6V
GPOD2~4,7, GPIO1~4	-0.3V to 6V
EN_B, VSNS, NTC	-0.3V to 6V
SCL, SDA	-0.3V to 6V
VDD18V	-0.3V to 2V
Storage Temperature (T _{STG})	-55°C to 150°C
Maximum Soldering Temperature (Reflow, Pb-Free)	260°C

Note:

- Stresses greater than those listed as Absolute Maximum Ratings could cause permanent damage to the device.
 These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods might affect reliability.
- All voltages are referred to ground unless otherwise stated.

6.2. ESD Ratings

Table 5 ESD Ratings

Test Model	Pins	Ratings
НВМ	All pins	2000V
CDM	All pins	1000V
LU	All pins	250mA

Note:

Design target for now.

6.3. Recommended Operating Conditions

Table 6 Recommended Operating Conditions

Operating Temperature (Environment)	-40°C ~ 85°C
Operating Current (I _{OUT})	0A ~ 1.25A
Operating Voltage (V _{OUT})	3V ~ 16V

6.4. Package Thermal Information

Table 7 Package Thermal Information

Junction to Ambient (R _{eJA})	50°C/W
(100A)	00 0,11

6.5. Electrical Characteristics

Test conditions: V_{RECT}=12V, T_A=25°C, unless otherwise stated.

Table 8 Electrical Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Startup (VDD pin)						
V _{UVLO}	Under voltage lockout	V _{RECT} rising from 0V		2.95		V
V _{UVLO_HYS}	Under voltage lockout hysteresis	V _{RECT} falling		200		mV
Supply Curren	•					
lα	Quiescent Current in normal operation mode			6		mA
ENB Pin		<u> </u>				
V _{IH} [®]	Input threshold for logic HIGH		1.4			٧
V _{IL} [®]	Input threshold for logic LOW				0.4	V
I _{ENB}	Quiescent current when ENB is logic HIGH				200	μA
Bridge Rectifie						
R _{DSON}	R _{DSON} of power MOSFETs			40		mΩ
Over-Voltage F	Protection	1	1	1	l	
V _{OVP-DC}	DC over-voltage protection (programmable)	Rising voltage			20	V
V _{LSB_OVP} ^②	Least significant Bit at OVP			550		mV
LDO						
V _{OUT}	Output voltage regulation	V _{RECT} = 8V I _{OUT} = 0A		5		V
V _{LSB_VOUT} ®	Least Significant Bit when programming output voltage			25		mV

MT5727H

A High Efficiency Wireless Power Receiver

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{PRO} [®]	Output programmable voltage			3~16		V
I _{LIMIT_MAX}	Output current limit				1.3	Α
	Least Significant Bit when					
I _{LSB_ILIMIT} [©]	programming output current			25		mA
	limit					
ADC						
N	Resolution			12		Bit
f _{SAMPLE} [®]	Sampling rate			100		kS/s
Channel	Number of channels			8		
Miscellaneous						
VDD50V	VDD50V output voltage			5		V
VDD18V	VDD18V output voltage			1.8		V
Digital I/O Pins						
	high level input voltage V _{IH} [®]		1.26			V
GPOD2~4, 7 SCL, SDA	low level input voltage V _{IL} ®				0.54	V
	Low level output voltage V _{OL}	I _{SOURCE} =4mA		0		V
	Low level output current I _{OL} ®		2/8 ^①			mA
	Analog input range [®]			0~5		V
	High level input voltage V _{IH} ®		1.26			V
	Low level input voltage V _{IL} ®				0.54	V
	High level output voltage V _{OH}	I _{SINK} =0.5mA		1.8		V
GPIO2~4	Low level output voltage V _{OL}	I _{SOURCE} =4mA		0		V
	High level output current IOH®		2/8 ^①			mA
	Low level output current IoL®		2/8 ^①			mA
	Analog input range [®]			0~5		V
	High level input voltage V _{IH} ®		1.26			V
	Low level input voltage V _{IL} ®				0.54	V
	High level output voltage V _{OH}	I _{SINK} =0.5mA		5		V
GPIO1	Low level output voltage V _{OL}	I _{SOURCE} =4mA		0		V
	High level output current IOH®		2/8 ^①			mA
	Low level output current I _{OL} [®]		2/8 ^①			mA
	Analog input range ²			0~5		V

Note

① : Digital I/O pin output current can be programmed.

② Guaranteed by design.

6.6. Typical Operating Characteristics

The following performance characteristics were taken using MT5815 wireless power transmitter at $T_A=25^{\circ}C$, unless otherwise noted.

Figure 4 Efficiency vs. Output Load: Vout=5V

Figure 5 Load Reg. vs. Output Load: Vout=5V

Figure 6 Efficiency vs. Output Load: Vout=9V

Figure 7 Load Reg. vs. Output Load: Vout=9V

Figure 8 Efficiency vs. Output Load: Vout=12V

Figure 9 Load Reg. vs. Output Load: Vout=12V

Figure 10 Enable Startup: $V_{OUT}=5V$; $I_{OUT}=0.6A$

Figure 11 Transient Resp: V_{OUT}=5V; I_{OUT}=0 to 1.25A

Figure 12 Transient Resp: V_{OUT}=5V; I_{OUT}=1.25 to 0A

Figure 13 Transient Resp: V_{OUT}=12V; I_{OUT}=0 to 1.25A

Figure 14 Transient Resp: V_{OUT} =12V; I_{OUT} =1.25 to 0A

7. DETAILED DESCRIPTIONS

7.1. Functional Block Diagram

Figure 15 Functional Block Diagram

7.2. Theory of Operation

MT5727H is a SoC based wireless power receiver which is designed for application with up to 20W power delivery. It only requires several passive components like power receiving coils, resonant tank capacitors, decoupling capacitors and pull-up/down resistors to build a complete wireless power receiver system. When coupled with a wireless power transmitter, this system can provide all the functions for wireless power transfer, including power receiving and rectification, output regulation, communication for power control and data exchange, and protections from abnormal conditions (FOD, over-voltage over-current, over-temperature, etc.).

MT5727H is by default programmed to be fully compliant with WPC Qi Specification (Version 1.2.4) with support of both BPP and EPP. It can also be programmed to be compliant with major smartphone vendors' proprietary fast wireless charging protocols.

7.2.1. Bridge Rectifier

MT5727H integrates a high-efficiency full-wave synchronous bridge rectifier to convert AC signal from the resonant tank to DC signal on the VRECT pin. VRECT Detection block is used to monitor the VRECT pin voltage. During startup, the bridge rectifier operates as a passive diode bridge, and it goes into bridge rectifier mode as VRECT pin voltage, detected by VRECT Detection block, exceeds Vuvlo. If VRECT pin voltage is too high, over-voltage protection is triggered.

7.2.2. LDO Regulator

MT5727H integrates three LDO regulators,

- The main regulator function as a load switch (connecting and disconnecting the external load),
 output voltage and current regulation and output clamping when fast load/line transient happens.
- VDD50V LDO and VDD18V LDO, provide necessary regulated power supplies from rectifier output for the operation of the chip.

7.2.3. ADC Converter

ADC Converter is one of the key blocks converts various measured analog variables (voltages, currents, temperature, external analog inputs, etc.) to digital domain such that the embedded microcontroller can use the information for follow-up actions.

7.2.4. Digital Unit

This block contains all the digital circuits, which include embedded microcontroller, volatile and non-volatile memories, I²C interface, peripherals, Direct Memory Access (DMA), internal buses, and other digital functional blocks. This block is the brain of whole chip which dynamically configures chip for different functions in different state, communicate with the outside world (power transmitter and receiver side external host), and perform necessary data processing for proper operation (like FOD calculation, target VRECT and VOUT calculation, etc.).

7.2.5. Others

- ZTC and CLK Detector. These blocks are for the bi-directional communication for power control
 and data exchange.
- OSC and REF. These blocks provide the timing reference and voltage reference for the whole chip.

7.2.6. Foreign Object Detection

In the selection phase (Qi V1.2.4), MT5727H tries to figure out the load property, which can be achieved by measuring the damping voltage of coil. If there is foreign object on the surface of the Tx coil, eddy currents generated, causing significant unexplained power dissipation, then the damping voltage drops dramatically. Under this condition, the transmitter stops power delivery because a foreign object may exist. With Pre-FOD circuit, MT5727H can identify whether foreign object (FO) exists.

During power transfer phase, the receiver periodically communicates with the transmitter for the amount of power received, the transmitter compares this power with the power transmitted at the same time. By comparing the power difference, the chip can confirm whether foreign object exists.

8. APPLICATIONS AND IMPLEMENTATIONS

8.1. Reference Schematic

Figure 16 Reference Schematic

8.2. BILL OF MATERIAL (BOM)

Table 9 Bill of Material

#	Reference	Value	Description	Footprint	Quantity
1	R1	50R	RES SMD 50R 5% 1/8W	0805	1
2	R2	5.1K	RES SMD 5.1K 5% 1/20W	0201	1
3	R3	220K	RES SMD 220K 5% 1/20W	0201	1
4	R4	10K	RES SMD 10K 5% 1/20W	0201	1
5	C2,C3, C4,C6	10yF	CAP CER 10 ₄ F 25V X7R	0603	4
6	C1,C5,	100nF	CAP CER 100nF 25V X7R	0603	2
7	C7,C8,C9,C10	100nF	CAP CER 0.1 ₄ F 50V X7R	0603	4
8	C11	3.3nF	CAP CER 3.3nF 50V X7R	0402	1
9	C12,C13,C14,	22nF	CAP CER 22nF 50V X7R	0402	6
9	C15,C16,C17	22115	CAF CER ZZIIF 30V X/R	0402	0
10	C18	5nF	CAP CER 5nF 50V X7R	0201	1
11	C19	680pF	CAP CER 680pF 50V X7R	0201	1
12	C20	22nF	CAP CER 22nF 6.3V X7R	0201	1
13	C21	10yF	CAP CER 10 ₄ F 6.3V X7R	0201	1
14	C22	4.7qF	CAP CER 4.7 ₄ F 6.3V X7R	0201	1
15	D1	MBR0540	Diode	SOD-323	1
16	U1	MT5727H	Wireless power receiver IC	CSP52	1
			Notes		27

8.3. PCB Layout Guidelines

- The heat management of the MT5727H design is critical to performance, and from the thermal perspective. The copper shape with more than 10 thermal vias is an important connection and layout improvement because it assists with current conduction and dramatically improves the MT5727H thermal performance.
- ACN, ACP, GND, VRECT, Crect and Cs must form a minimum AC current loop as shown in the figure below

Figure 17 PCB Layout Guidelines

The VRECT capacitors and OUT bypass capacitors should be placed as close as possible to associated pins. It is important to keep the area of the current loop that conducts the AC current from the synchronous bridge rectifier to the VRECT capacitors and GND to minimum to avoid noise. The copper planes should be as wide as possible for the connections for VRECT from MT5727H to the capacitors and back to GND.

- The VDD50V and VDD18V pin capacitors are used to stabilize the internal linear regulators. The capacitors must be close to MT5727H.
- ZTP and ZTN capacitors should be placed as close as possible to MT5727H.
- C1 and C6 are connected to analog ground, which should be connected to the power ground with symmetric traces on the PCB.
- J1, J2, J3, J4, J5 and J6 are connected to power ground. More via holes are needed around these pins. Ground should be completely laid on at least one floor, it's better to have no other traces.

9. REGISTER MAP

The default I^2C slave address is 0101011X, where the X indicates read and write privileges, can be configured as:

• 0: read, equals to 0x56 in HEX.

1: write, equals to 0x57 in HEX.

Unless otherwise stated, the parameter values are got under the condition of:

base address: 0x0000byte order: little endian

9.1. System Control

Table 10 System Control

Name	R/W	Offset			Bit Field			
Oh: ID	DO	00000	Bit	Label	Description			
Chip ID	RO	0x0000	15:0	ID	Chip ID Register			
Cust Code	RO	0x0002	Bit	Label	Description			
Cust Code	KO	0x0002	7:0	Code	Customer code			
			Bit	Label	Description			
					Whether the system can detect missing			
			0	ACMICOING	AC signal.			
SYSMODE	RO	0x0005	3	ACMISSING	● 0: Yes			
					● 1: No			
			2	TX	MT572x work in transmitter mode			
			0	RX	MT572x work in receiver mode			
		V 0x0006	Bit	Label	Description			
			10	VOUT_CHANGE	VOUT change cmd			
			0x0006	0x0006		9	OCP_CHANGE	OCP change cmd
CMD	RW				8	OVP_CHANGE	OVP change cmd	
			7	FAST_CHARGE	Fast charge cmd			
			5	CLEAR_INT	Clear the interrupt flag bits			
			0	SEND_PPP	Send Proprietary Packet cmd			
			Bit	Label	Description			
			15	INT POWER ON	Rx power on interrupt enable			
			11	INT FSK SUCCESS	When the FSK is successfully received,			
INTEN	RW	0x0010	- 11	INT TOR GOODEGO	this bit will be set up			
					After sending a private ASK message,			
		_	10	INT FSK TIMEOUT	this bit will be set up after a period of time			
					when no FSK is received.			
			7	INT LDO OFF	LDO off interrupt enable.			

MT5727H

A High Efficiency Wireless Power Receiver

Name	R/W	Offset	Bit Field						
			6	INT LDO_ON	LDO on interrupt enable.				
			4	INT FSK RECV	Any FSK message from the transmitter that is successfully received and is not 0x1E 0xFF data, will set up this bit.				
			3	INT RX READY	Receiver ready interrupt enable.				
			1	INT OVP FLAG	OVP interrupt enable.				
			0	INT OCP FLAG	OCP interrupt enable.				
			Bit	Label	Description				
			15	INT POWER ON	Rx power on interrupt flag				
			11	INT FSK SUCCESS	When the FSK is successfully received, this bit will be set up				
			10	INT FSK TIMEOUT	After sending a private ASK message, this bit will be set up after a period of time when no FSK is received.				
INTFLAG	RO	0x0014	7	INT LDO OFF	LDO off interrupt flag				
			6	INT LDO_ON	LDO on interrupt flag				
						4	INT FSK RECV	Any FSK message from the transmitter that is successfully received and is not 0x1E 0xFF data, will set up this bit.	
			3	INT RX READY	Receiver ready interrupt flag				
			1	INT OVP FLAG	OVP interrupt flag				
			0	INT OCP FLAG	OCP interrupt flag				
			Bit	Label	Description				
			15	INT POWER ON	Clear Rx power on interrupt flag				
			11	INT FSK SUCCESS	Clear INT FSK SUCCESS interrupt flag				
			10	INT FSK TIMEOUT	Clear INT FSK TIMEOUT interrupt flag				
INTCLR R	RW	0x0018	7	INT LDO OFF	Clear LDO off interrupt flag				
III. OLIK		3,0010	6	INT LDO_ON	Clear LDO on interrupt flag				
			4	INT FSK RECV	Clear INT FSK RECV interrupt flag				
			3	INT RX READY	Clear Receiver ready interrupt flag				
			1	INT OVP FLAG	Clear OVP interrupt flag				
			0	INT OCP FLAG	Clear OCP interrupt flag				

9.2. System Setting

Table 11 System Setting

Name	R/W	Offset			Bit Field
_	D0	0.0000	Bit	Label	Description
Frequency	RO	0x0020	15:0	KHz	Operating Frequency
Enina	ПО	0,0000	Bit	Label	Description
Fping	RO	0x0022	15:0	KHz	Ping Frequency
Prx	RO	0x0024	Bit	Label	Description
FIX	NO	0X0024	15:0	value	RPP values in the WPC protocol
Vdiff	RO	0x0026	Bit	Label	Description
Valir	110	0,0020	15:0	mV	Threshold for fast-charge
IOUT	RO	0x0028	Bit	Label	Description
1001	1.0	0,0020	15:0	mA	LDO output current
VOUT	RO	0x002a	Bit	Label	Description
		000024	15:0	mV	LDO Output voltage
VRECT	RO	0x002c	Bit	Label	Description
		0,0020	15:0	mV	Rectifier output voltage
VOUTSET	RW	0x002e	Bit	Label	Description
		0.0020	15:0	mV	LDO output voltage
VRECTADJ	RW	0x0030	Bit	Label	Description
			15:0	mV	VRECT adjust
VFC	RW	0x0032	Bit	Label	Description
			15:0	mV	fast charge voltage
ILIM	RW	0x0034	Bit	Label	Description
		0,0007	15:0	mA	I _{OUT} limit
Vlim	RW	0x0036	Bit	Label	Description
			15:0	mV	VRECT limit
PLDO	RW	0x0038	Bit	Label	Description
			15:0	mW	LDO power protection threshold
DEC Hartana's	D)A/	0.000	Bit	Label	Description
REC_Hysteresis	RW	0x003a	15:0	mA	Hysteresis for switching bridge rectifier mode
			Bit	Label	Description
REC_Ihalf	RW	0x003c	15:0	mA	Threshold for switching bridge between
			10.0	111/3	diode mode and half mode
			Bit	Label	Description
REC_Ifull	RW	0x003e	15:0	mA	Threshold for switching bridge between
			15.0		diode mode and half mode
VrectX1			Bit	Label	Description

Name	R/W	Offset			Bit Field
	RW	0x0040	15:0	value	Target VRECT curve parameter
VrectX2	RW	0x0042	Bit	Label	Description
VIECTAZ	KVV	0X0042	15:0	value	Target VRECT curve parameter
VrectY1	RW	0x0044	Bit	Label	Description
VIECTI	IXVV	00044	15:0	value	Target VRECT curve parameter
VrectY2	RW	0x0046	Bit	Label	Description
VIECUIZ	IXVV	UXUU46	15:0	value	Target VRECT curve parameter
Manufacturer	RW	0x0048	Bit	Label	Description
Code	KVV		15:0	value	Manufacturer Code
			Bit	Label	Description
					Bridge Rectifier mode
RECMode	RO	0x0071	7:0	value	0xF0: diode mode
			7.0	value	0x50: half-bridge mode
					0x00: full-bridge mode
SS	RO	0x0070	Bit	Label	Description
	RU	0,0070	7:0	value	Signal Strength value
CEPCNT	RW	0×0000	Bit	Label	Description
CEPCINI	LVA	0x00C0	31:0	value	CEP counter

9.3. ASK

Table 12 ASK

Name	R/W	Offset	Bit Field				
ASKHEADER	RW	0x0050	Bit	Label	Description		
ASKHEADEK	KVV	UXUUSU	7:0	value	Proprietary packet header		
ASKMSG0	RW	0x0051	Bit	Label	Description		
ASKIVISGU	KVV	000001	7:0	value	Proprietary packet msg[0]		
ASKMSG1	RW	0x0052	Bit	Label	Description		
ASKIVISGI	KVV	0x0052	7:0	value	Proprietary packet msg[1]		
ASKMSG2	RW	0,0053	Bit	Label	Description		
ASKIVISG2	KVV	0x0053	7:0	value	Proprietary packet msg[2]		
ASKMSG3	RW	0x0054	Bit	Label	Description		
ASKIVISUS	KVV	000004	7:0	value	Proprietary packet msg[3]		
ASKMSG4	RW	0x0055	Bit	Label	Description		
ASKIVISU4	KVV	0x0055	7:0	value	Proprietary packet msg[4]		
ASKMSG5	RW	0,0056	Bit	Label	Description		
ASNIVISGS	I IT VV	0x0056	7:0	value	Proprietary packet msg[5]		
ASKMSG6	RW	0x0057	Bit	Label	Description		

Name	R/W	Offset			Bit Field
			7:0	value	Proprietary packet msg[6]
A CIVINGO 7	DW	0,,0050	Bit	Label	Description
ASKMSG7	RW	0x0058	7:0	value	Proprietary packet msg[7]
ACKMCCO	RW	00050	Bit	Label	Description
ASKMSG8	KVV	0x0059	7:0	value	Proprietary packet msg[8]
ASKMSG9	RW	0x005A	Bit	Label	Description
ASKWISGS	IXVV	0,000	7:0	value	Proprietary packet msg[9]
ASKMSG10	RW	0x005B	Bit	Label	Description
ASKWISSTO	IXVV	0,0000	7:0	value	Proprietary packet msg[10]
ASKMSG11	RW	0x005C	Bit	Label	Description
AORIMOOTT	1000	0,0000	7:0	value	Proprietary packet msg[11]
ASKMSG12	RW	0x005D	Bit	Label	Description
AORIMOOTE	1000	OXOGOD	7:0	value	Proprietary packet msg[12]
ASKMSG13	RW	0x005E	Bit	Label	Description
7.0110010		0.0002	7:0	value	Proprietary packet msg[13]
ASKMSG14	RW	0x005F	Bit	Label	Description
7.01			7:0	value	Proprietary packet msg[14]
ASKMSG15	RW	0x0060	Bit	Label	Description
7.01	1200	OXIO GO	7:0	value	Proprietary packet msg[15]
ASKMSG16	RW	0x0061	Bit	Label	Description
710111110010		0,0001	7:0	value	Proprietary packet msg[16]
ASKMSG17	RW	0x0062	Bit	Label	Description
			7:0	value	Proprietary packet msg[17]
ASKMSG18	RW	0x0063	Bit	Label	Description
			7:0	value	Proprietary packet msg[18]
ASKMSG19	RW	0x0064	Bit	Label	Description
			7:0	value	Proprietary packet msg[19]
ASKMSG20	RW	0x0065	Bit	Label	Description
			7:0	value	Proprietary packet msg[20]
ASKMSG21	RW	0x0066	Bit	Label	Description
			7:0	value	Proprietary packet msg[21]
ASKMSG22	RW	0x0067	Bit	Label	Description
			7:0	value	Proprietary packet msg[22]
ASKMSG23	RW	0x0068	Bit	Label	Description
			7:0	value	Proprietary packet msg[23]
ASKMSG24	RW	0x0069	Bit	Label	Description Particular (2.4)
			7:0	value	Proprietary packet msg[24]
ASKMSG25	RW	0x006A	Bit	Label	Description
		-	7:0	value	Proprietary packet msg[25]

Name	R/W	Offset	Bit Field			
ASKMSG26	RW	0x006B	Bit	Label	Description	
ASKWISG20	KVV	UXUUOD	7:0	value	Proprietary packet msg[26]	
ASKMSG27	RW	0x006C	Bit	Label	Description	
ASKWISG21	KVV	UXUU6C	7:0	value	Proprietary packet msg[27]	
A CVMCC20	RW	0x006D	Bit	Label	Description	
ASKMSG28	KVV	UXUUOD	7:0	value	Proprietary packet msg[28]	
A SVMSC20	RW	0x006E	Bit	Label	Description	
ASKMSG29	KVV	UXUUGE	7:0	value	Proprietary packet msg[29]	
ASKMSG30	RW	0x006F	Bit	Label	Description	
ASKWSG30	KVV	UXUUUF	7:0	value	Proprietary packet msg[30]	
ASKMSG31	RW	0x0070	Bit	Label	Description	
ASKIVISUST	IT VV		7:0	value	Proprietary packet msg[31]	

9.4. FSK

Table 13 FSK

Name	R/W	Offset			Bit Field
FSK Header	RO	0,,0066	Bit	Label	Description
rsk neader	RO	0x0066	7:0	value	FSK Proprietary packet header
FSKMSG0	RO	0x0067	Bit	Label	Description
FSNWSGU	R	000007	7:0	value	FSK Proprietary packet msg[0]
FSKMSG1	RO	0x0068	Bit	Label	Description
FORMOGI	R	000000	7:0	value	FSK Proprietary packet msg[1]
FSKMSG2	RO	0x0069	Bit	Label	Description
raniiag2	R	0x0069	7:0	value	FSK Proprietary packet msg[2]
iFSKMSG3	RO	0x006A	Bit	Label	Description
IFSKIVISUS	_K O	UXUUUA	7:0	value	FSK Proprietary packet msg[3]
FSKMSG4	RO	0x006B	Bit	Label	Description
F3KW3G4	20	UXUUUB	7:0	value	FSK Proprietary packet msg[4]
FSKMSG5	RO	0x006C	Bit	Label	Description
r3KW3G3	20	UXUUUC	7:0	value	FSK Proprietary packet msg[5]
FSKMSG6	RO	0x006D	Bit	Label	Description
Fariviado	KO	UXUUUD	7:0	value	FSK Proprietary packet msg[6]
FSKMSG7	RO	0x006E	Bit	Label	Description
raniilau/	Z	0X000E	7:0	value	FSK Proprietary packet msg[7]

9.5. FOD

Table 14 FOD

Name	R/W	Offset			Bit Field
			Bit	Label	Description
FOD0	RW	0x0078	15:8	Offset	FOD section 0 offset
			7:0	Gain	FOD section 0 gain
			Bit	Label	Description
FOD1	RW	0x007A	15:8	Offset	FOD section 1 offset
			7:0	Gain	FOD section 1 gain
			Bit	Label	Description
FOD2	RW	0x007C	15:8	Offset	FOD section 2 offset
			7:0	Gain	FOD section 2 gain
			Bit	Label	Description
FOD3	RW	0x007E	15:8	Offset	FOD section 3 offset
			7:0	Gain	FOD section 3 gain
			Bit	Label	Description
FOD4	RW	0x0080	15:8	Offset	FOD section 4 offset
			7:0	Gain	FOD section 4 gain
			Bit	Label	Description
FOD5	RW	0x0082	15:8	Offset	FOD section 5 offset
			7:0	Gain	FOD section 5 gain
			Bit	Label	Description
FOD6	RW	0x0084	15:8	Offset	FOD section 6 offset
			7:0	Gain	FOD section 6 gain
			Bit	Label	Description
FOD7	RW	0x0086	15:8	Offset	FOD section 7 offset
			7:0	Gain	FOD section 7 gain

10.DETAILED PACKAGING INFORMATION

NOTES:

- 1. ALL DIMENSIONS AND TOLERANCES ARE PER ASME Y14.5M-1994. 2. ALL DIMENSIONS ARE IN MILLIMETERS.

Detailed Packaging Information Figure 18

11.ORDERING INFORMATION

Table 15 Ordering information

Part No.	No. Package Information		Moisture Sensitivity Level	Chip Mark
				POWER27
	2.82mmx 3.98mm	2000/Topo 9		ZZZZZ
MT5727H		3000/Tape & Reel	MSL I	YWWZZ
	52-WLCSP			ZZZZ
				ZZZZ
				POWER27 [©]
	2.00mm v.2.00mm	2000/Tana 9		ZZZZZ
MT5727H-XXXXXX ^①	2.82mm x 3.98mm	3000/Tape &	MSL I	YWWZZ
	52-WLCSP	Reel		ZZZZ
				ZZZZ

12. REVISION HISTORY

Table 16 Revision History

Revision	Date	Description
0.1	2019-12-13	Preliminary version.
0.2	2020-04-14	Add Register Map.
0.3	2020-06-06	Add Halogen and RoHS test results.
0.4	2020-08-17	Update POD diagram.
0.5	2020-09-24	Change the chip mark and POD diagram.
0.6	2021-05-11	Update the chip mark.
1.00	2021-08-06	Update the register map and upgrade the file for formal release.
1.10	2022-04-19	Upgrade the MSL.
1.20	2022-11-30	Update in operating temperature (Environment).