Classification

Tiphaine Viard

Tiphaine Viard 1 / 32

What is classification?

Wikipedia definition

Classification is the problem of identifying to which of a set of categories (sub-populations) a new observation belongs, on the basis of a training set of data containing observations (or instances) whose category membership is known.

Tiphaine Viard 2 / 32

Generalize known structures to apply to new data.

An e-mail program might attempt to classify an e-mail as "legitimate" or as "spam".

Tiphaine Viard 3 / 32

Spam example

Data set that describes e-mail features for deciding if it is spam.

Example				
Contains	Domain	Has	Time	
"Money"	type	attach.	received	spam
yes	com	yes	night	yes
yes	edu	no	night	yes
no	com	yes	night	yes
no	edu	no	day	no
no	com	no	day	no
yes	cat	no	day	yes

Tiphaine Viard 4 / 3

Spam example

Data set that describes e-mail features for deciding if it is spam.

	Example Contains	Domain	Has	Time	
	"Money"	type	attach.	received	spam
	yes	com	yes	night	yes
	yes	edu	no	night	yes
	no	com	yes	night	yes
	no	edu	no	day	no
	no	com	no	day	no
	yes	cat	no	day	yes

Assume we have to classify the following new instance:

Contains	Domain	Has	Time	
"Money"	type	attach.	received	spam
yes	edu	yes	day	?

Tiphaine Viard 4 / 32

Definition

Definition

Given a set of classes $C_1...C_N$, a classifier algorithm builds a model that predicts for every unlabelled instance I the class C_i to which it belongs with accuracy.

Example Spam filter

Example

Twitter Sentiment analysis: analyze tweets with positive or negative feelings

Example Cat or Dog?

Tiphaine Viard 5 / 32

A note about classification

Finding a defining feature for classification can cause unjust consequences; **redlining** can be exacerbated by machine learning models.

Dutch welfare ordered to stop using SyRI (2020)

Find the balance between technical and social aspects

Privacy Discrimination Opacity Symbolic AI Baked-in fairness "White-box" models

...

Tiphaine Viard 6 / 32

Basic Classifiers

Majority vote

Training

Compute the majority class in the dataset

Prediction

Output the majority class

Tiphaine Viard 7 / 3

k-Nearest Neighbors (k-NN)

Training

Store all instance (+ eventual index)

Prediction

Find the *k* closest point in the input and output the majority over those *k* points.

Tiphaine Viard 8 / 32

k-Nearest Neighbors (k-NN)

Training

Store all instance (+ eventual index)

Prediction

Find the *k* closest point in the input and output the majority over those *k* points.

Closest according to what metric?

 L_1 vs L_2 vs L_∞ vs COS

Tiphaine Viard 8 / 32

k-Nearest Neighbors (k-NN)

Training

Store all instance (+ eventual index)

Prediction

Find the *k* closest point in the input and output the majority over those *k* points.

Closest according to what metric?

 L_1

VS

 L_2

VS

 L_{∞}

VS

COS

Rule of thumb: $k = \sqrt{n}$

Tiphaine Viard 8 / 32

Better k-NN

Problem. Finding distance from all points to all others is costly: $\mathcal{O}(n^2)$ time

We only care about close data points

Tiphaine Viard 9 / 32

Better k-NN

Problem. Finding distance from all points to all others is costly: $\mathcal{O}(n^2)$ time

We only care about close data points

Solution: use locality-sensitive hashing (LSH)

- · Close points in the same bucket with high probability,
- Distant points are in different buckets with high probability.

Tiphaine Viard 9 / 32

Random hyperplanes for LSH

```
1 Generate K hyperplanes h_1, \ldots, h_K;
 2 \mathcal{H}_{i,k} \leftarrow -1, \forall i, \forall k;
 3 for every datapoint x_i do
         if x_i \cdot h_b > 0 then
               \mathcal{H}_{i,k} \leftarrow 0;
 5
          end
 6
          else
 7
                \mathcal{H}_{i,k} \leftarrow 1;
 8
          end
 9
10 end
```

Repeat multiple times → more robust

Tiphaine Viard 10 / 32

LSH : an example

Hash	Data points
000	А, В
001	
010	С
011	
100	D
101	
110	
111	E, F, G

Tiphaine Viard 11 / 32

LSH : an example

Hash	Data points
000	A, B, C
001	
010	
011	
100	D
101	
110	
111	FFG

Tiphaine Viard 11 / 32

Formula

$$\frac{P(A) \times P(B|A)}{P(B)} = P(A|B)$$

Tiphaine Viard 12 / 32

Proof.

$$P(A \cap B) = P(A) \times P(B|A)$$

Tiphaine Viard 13 / 3:

Proof.

$$P(A \cap B) = P(A) \times P(B|A)$$

$$P(A \cap B) = P(B) \times P(A|B)$$

Tiphaine Viard 13 / 3

Proof.

$$P(A \cap B) = P(A) \times P(B|A)$$

$$P(A \cap B) = P(B) \times P(A|B)$$

$$P(A) \times P(B|A) = P(B) \times P(A|B)$$

Tiphaine Viard 13 / 32

Proof.

$$P(A \cap B) = P(A) \times P(B|A)$$

$$P(A \cap B) = P(B) \times P(A|B)$$

$$P(A) \times P(B|A) = P(B) \times P(A|B)$$

$$\frac{P(A) \times P(B|A)}{P(B)} = P(A|B)$$

Tiphaine Viard 13 / 32

Formula

$$\frac{P(A) \times P(B|A)}{P(B)} = P(A|B)$$

Interpretation

$$prior \times \frac{likelihood}{evidence} = posterior$$

Tiphaine Viard 14 / 32

Naive Bayes Classifier

Grouping attributes

$$P(C_i) \times \frac{P(\bar{x}|C_i)}{P(\bar{x})} = P(C_i|\bar{x})$$

Multiple attributes

$$P(C_i) \times \frac{\prod_j P(x_j|C_i)}{P(\bar{x})} = P(C_i|\bar{x})$$

Tiphaine Viard 15 / 32

Naive Bayes Classifier

Grouping attributes

$$P(C_i) \times \frac{P(\bar{x}|C_i)}{P(\bar{x})} = P(C_i|\bar{x})$$

Multiple attributes

$$P(C_i) \times \frac{\prod_j P(x_j|C_i)}{P(\bar{x})} = P(C_i|\bar{x})$$

With independence hypothesis!

Tiphaine Viard 15 / 32

Naive Bayes Classifier

Grouping attributes

$$P(C_i) \times \frac{P(\bar{x}|C_i)}{P(\bar{x})} = P(C_i|\bar{x})$$

Multiple attributes

$$P(C_i) \times \frac{\prod_j P(x_j|C_i)}{P(\bar{x})} = P(C_i|\bar{x})$$

With independence hypothesis! $P(\bar{x})$ does not change with the class

Tiphaine Viard 15 / 32

Tree Methods

Classification

Data set that describes e-mail features for deciding if it is spam.

Example Contains "Money"	Domain type	Has attach.	Time received	spam
yes	com	yes	night	yes
yes	edu	no	night	yes
no	com	yes	night	yes
no	edu	no	day	no
no	com	no	day	no
yes	cat	no	day	yes

Tiphaine Viard 16 / 32

Classification

Assume we have to classify the following new instance:

Contains	Domain	Has	Time		
"Money"	type	attach.	received	spam	
yes	edu	yes	day	?	

Tiphaine Viard 16 / 32

Decision Trees

Recursive construction technique

- A \leftarrow the best decision attribute for next node
- · Assign A as decision attribute for node
- · For each value of A, create new descendant of node
- · Sort training examples to leaf nodes
- If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes

Tiphaine Viard 17 / 32

Decision Trees

- · Interpretable: the DT is easy to understand
- Training is fast (greedy algorithm)
- Expressive: can approximate complex non-linear functions
- Complex function = large tree
- Large tree = more variance = overfitting

In practice, decision trees underperform compared with other methods

Tiphaine Viard 18 / 32

Bagging (Breiman, 1996)

Example

Dataset of 4 Instances : A, B, C, D

Classifier 1: B, A, C, B

Classifier 2: D, B, A, D

Classifier 3: B, A, C, B

Classifier 4: B, C, B, B

Classifier 5: D, C, A, C

Bagging:

 Bootstrap: generate multiple samples of data, train decision tree

2. Aggregate: output the average output of all models

Tiphaine Viard 19 / 32

Bagging

Bagging builds a set of M base models, with a bootstrap sample created by drawing random samples with replacement.

- Highly expressive: each model can estimate complex functions/boundaries
- a low-variance method: averaging the prediction of all models reduces variance (if M large enough)

Tiphaine Viard 20 / 32

Evaluating bagging: out-of-bag error

Bagging implies multiple models, running on different, overlapping datasets

How can we evaluate its performance?

Tiphaine Viard 21 / 32

Evaluating bagging: out-of-bag error

Bagging implies multiple models, running on different, overlapping datasets

How can we evaluate its performance?

The out-of-bag error

- for each data point x, average predicted output over models that do not contain x in bootstrap ⇒ point-wise out-of-bag error;
- 2. Average point-wise out-of-bag error over training set.

Tiphaine Viard 21 / 32

Problems with bagging

In practice, trees are strongly correlated.

- Suppose that x_i is a strong predictor. Then most models will split on x_i;
- Then, each tree is essentially the same, and the averaged output is irrelevant.

For F identically, dependently distributed variables with pairwise correlation ρ and variance σ^2 , variance of mean:

$$\rho\sigma^2 + \frac{1-\rho}{F}\sigma^2$$

Variance reduction of bagging is limited.

Tiphaine Viard 22 / 32

Random Forests

- Bagging
- Random Trees: trees that in each node only uses a random subset of k of the attributes

⇒ one of the most popular methods in machine learning.

Feature importance with random forests

- Record prediction accuracy on the oob samples for each tree;
- Randomly permute the data for column j in the oob samples;
- · Record the accuracy again;
- Average the decrease in accuracy over all trees, and use as a measure of the importance of variable *j*.

Tiphaine Viard 24 / 32

Final thoughts on Random Forest

- Ensemble methods: not easily interpretable
- One of the best "off-the-shelf" methods, near to 0 tuning necessary
- Averaging and randomization offer fine control of the bias-variance trade-off
- Reasonably efficient: $\Omega(mk\hat{n}log^2\hat{n})$, with $\hat{n}\approx 0.63n$
- use n_jobs to make parallel
- **sklearn** implementation (Python + Cython) is by far the fastest available

Tiphaine Viard 25 / 32

Gradient Boosting

Train each of the M trees on the error of the precedent trees

$$\phi(x) = \sum_{m=0}^{M} \phi_m(x)$$

with each step being staged:

$$\phi_m(x) = \phi_{m-1}(x) + \hat{\phi}_m(x)$$

and $\hat{\phi}_m$ is a tree that approximates the gradient step.

Tiphaine Viard 26 / 32

Last thoughts on gradient boosting

- Usually more accurate than Random Forests
- · Can adapt to most loss functions
- Under- and overfitting are adressed through regularization (learning rate, subsampling, term in loss function...)
- · Tuning is harder than for random forests
- · Slow to train (no parallelism!), fast predictions
- Still, blazing-fast implementation (Python and C++):
 XGBoost

· Easy to get feature importance

Tiphaine Viard 27 / 32

Gradient-based Methods

Logistic Regression

Training

Learn an hyperplan ${\cal P}$ separating well the two classes.

Prediction

What side of the hyperplan \mathcal{P} is the point?

Based on the gradient of the logit function.

Tiphaine Viard 28 / 32

Logistic Regression

Training

Learn an hyperplan ${\cal P}$ separating well the two classes.

Prediction

What side of the hyperplan \mathcal{P} is the point?

Based on the gradient of the logit function.

Tiphaine Viard 28 / 32

Logistic Regression

Training

Learn an hyperplan ${\cal P}$ separating well the two classes.

Prediction

What side of the hyperplan \mathcal{P} is the point?

Based on the gradient of the logit function.

Tiphaine Viard 28 / 32

Support-Vector Machines (SVM)

Similarly to logistic regression, we want to find the **best** separating hyperplane

Tiphaine Viard 29 / 32

Suppose a linear separation exists

$$w^{T}x + b = 1, w^{T}x + b = -1$$

 x_i near the margin determine the solution \rightarrow support vectors

Suppose a linear separation exists

$$w^{T}x_{i} + b \ge 1$$
, if $y_{i} = 1$, $w^{T}x_{i} + b \le -1$, if $y_{i} = -1$

 x_i near the margin determine the solution \rightarrow support vectors

Suppose a linear separation exists

$$w^T x_i + b \ge 1$$
, if $y_i = 1$, $w^T x_i + b \le -1$, if $y_i = -1$
$$y_i(w^T x + y) \ge 1$$

 x_i near the margin determine the solution \rightarrow support vectors

Suppose a linear separation exists

minimize ||w|| subject to $y_i(w^Tx_i + b) \ge 1$, for i = 1..n

 x_i near the margin determine the solution \rightarrow support vectors

Solving SVM

minimize ||w|| subject to $y_i(w^Tx_i + b) \ge 1$, for i = 1..n

||w|| is the L_1 norm

The gradient of ||w|| is $\frac{w}{||w||}$

Let's switch instead to L_2 norm

The gradient of $||w||^2$ is 2w

minimize $\frac{1}{2}||w||^2$ subject to $y_i(w^Tx_i+b) \ge 1$, for i=1..n

This is a quadratic optimization problem.

Final thoughts on SVM

- What about non linearly separable data?
 Add misclassification term (number or distance)
- Use hinge function as regularization: $\min ||w||^2 + \lambda \left[\frac{1}{n} \sum_{i}^{n} \max(0, 1 - y_i(w^T x - b)) \right]$
- λ trade-off between increasing margin and ensuring x_i outside of margin
- · Only adapted to binary classification
- · But you can do "one-versus-all" classification