Завдання 2. Обчислити визначені інтеграли.

Розв'язання завдання 2

ПРИКЛАДИ

① а)
$$\int_{0}^{\sqrt{3}/2} \frac{arccos x - x}{\sqrt{1 - x^2}} dx = \int_{0}^{\sqrt{3}/2} \frac{arccos x}{\sqrt{1 - x^2}} dx + \int_{0}^{\sqrt{3}/2} \frac{-x dx}{\sqrt{1 - x^2}} =$$
 Представимо заданий інтегралів.

$$= -\int_{0}^{\sqrt{3}/2} \arccos x \cdot d(\arccos x) + \frac{1}{2} \cdot \int_{0}^{\sqrt{3}/2} \frac{d(1-x^2)}{\sqrt{1-x^2}} = \text{IIIOMy } d(\arccos x) = \frac{-dx}{\sqrt{1-x^2}},$$

$$= \frac{-\arccos^{2} x}{2} \bigg|_{0}^{\sqrt{3}/2} + \frac{1}{2} \cdot 2\sqrt{1-x^{2}} \bigg|_{0}^{\sqrt{3}/2} =$$

$$= -\frac{1}{2} \left(\left(\frac{\pi}{6} \right)^2 - \left(\frac{\pi}{2} \right)^2 \right) + \sqrt{1 - \frac{3}{4}} - \sqrt{1} =$$

$$= -\frac{1}{2} \cdot \left(-\frac{8\pi^2}{36} \right) + \frac{1}{2} - 1 = \frac{\pi^2}{9} - \frac{1}{2}.$$

Вносимо під знак диференціалу у пер-

$$\text{шому } d(\arccos x) = \frac{-dx}{\sqrt{1-x^2}}$$

у другому $d(1-x^2) = -2xdx$.

Знаходимо первісні, підставляємо у них границі по формулі Ньютона-Лейбниця.

Враховуємо, що $arccos\theta = \frac{\pi}{2}$,

$$arccos \frac{\sqrt{3}}{2} = \frac{\pi}{6}$$
.

$$2 a) \int_{\pi/3}^{\pi} \frac{\cos x - x \cdot \sin x}{(x \cdot \cos x)^3} dx = \{d(x \cdot \cos x) = (\cos x - x \cdot \sin x) dx\} =$$
 Відзначимо, чисельнику

Відзначимо, що у

$$= \int_{\pi/3}^{\pi} \frac{d(x \cos x)}{(x \cos x)^3} = \frac{(x \cos x)^{-2}}{-2} \bigg|_{\pi/3}^{\pi} =$$

$$-\frac{1}{2}\left(\frac{1}{(\pi\cos\pi)^2} - \frac{1}{\left(\frac{\pi}{3}\cos\frac{\pi}{3}\right)^2}\right) =$$

$$= -\frac{1}{2} \left(\frac{1}{\pi^2} - \frac{36}{\pi^2} \right) = \frac{35}{\pi^2}.$$

 $=\int_{\pi/3}^{\pi} \frac{d(x\cos x)}{(x\cos x)^3} = \frac{(x\cos x)^{-2}}{-2} \bigg|_{\pi/3}^{\pi} = \left| \begin{array}{c} \text{підінтегральної функції стоїть похідна знаменника, і} \\ \text{внесемо її під знак диференціалу.} \end{array} \right|_{\pi/3}$

Одержимо степеневий інтеграл, де n = -3.

По формулі Ньютона-Лейбниця підставимо границі $-\frac{1}{2}\left[\frac{1}{(\pi\cos\pi)^2} - \frac{1}{\left(\frac{\pi}{3}\cos\frac{\pi}{3}\right)^2}\right] = \begin{vmatrix} 100 \text{ формаль 1} \\ \text{інтегрування, причому} \end{vmatrix} = \begin{vmatrix} 100 \text{ формаль 1} \\ \text{інтегрування, причому} \end{vmatrix} = \cos\pi - 1,$

$$\sqrt{7} sint = \frac{\sqrt{7}\sqrt{2}}{2}$$
; $sint = \frac{\sqrt{2}}{2}$; $t_2 = \frac{\pi}{4}$;

$$\sqrt{7} \sin t = \frac{\sqrt{7}}{2}$$
; $\sin t = \frac{1}{2}$; $t_1 = \frac{\pi}{6}$.

$$= \int_{\pi/6}^{\pi/4} \frac{7 \sin^2 t \cdot \sqrt{7} \cos t \cdot dt}{(7 \cos^2 t)^{3/2}} = \int_{\pi/6}^{\pi/4} \frac{\sin^2 t \cdot \cos t \cdot dt}{\cos^3 t} =$$

$$= \int_{\pi/6}^{\pi/4} \frac{\sin^2 t}{\cos^2 t} dt = \int_{\pi/6}^{\pi/4} \frac{1 - \cos^2 t}{\cos^2 t} dt = \int_{\pi/6}^{\pi/4} \frac{dt}{\cos^2 t} - \int_{\pi/6}^{\pi/4} dt =$$

$$= (tgt - t)\Big|_{\pi/6} = 1 - \frac{\pi}{4} - \frac{\sqrt{3}}{3} + \frac{\pi}{6} = \frac{3 - \sqrt{3}}{3} - \frac{\pi}{12}.$$
 Підставляємо грані
$$tg\frac{\pi}{4} = 1, tg\frac{\pi}{6} = \frac{\sqrt{3}}{3}.$$

Подібні інтеграли обчислюються методом заміни змінної, а саме — рекомендованою тригонометричною підстановкою (таблиця рекомендованих тригонометричних підстановок).

Т — обов'язково змінити границі інтегрування.

Спрощуємо одержані вирази.

Обчислюємо тригонометричний інтеграл за допомогою відповідних формул. Підставляємо границі, враховуючи,що $tg\frac{\pi}{4} = 1, \ tg\frac{\pi}{6} = \frac{\sqrt{3}}{3}.$

Завдання 3. Обчислити площі фігур, обмежених заданими лініями. Зробити креслення області, площа якої обчислюється.

Розв'язання завдання 3

ПРИКЛАД

①
$$y = (x+1)e^{x+1}$$
; $x = -1$; $y = e^{x+1}$

y y=e \widetilde{S} \widetilde{S}

Побудуємо задану область.

При x=-1 y=0, при x=0 y=e – крайні точки. Взагалі вид лінії подібний виду лінії $y=e^x$.

Усіма <u>трьома</u> заданими лініями обмежена заштрихована область. Складаємо формулу для обчислення її площі:

$$S = \int_{-1}^{0} e \cdot dx - \int_{-1}^{0} (x+1)e^{x+1} dx;$$

Кожний інтеграл обчислимо окремо.

$$\int_{-1}^{0} e \cdot dx = e \cdot x \Big|_{-1}^{0} = e(0+1) = e;$$

$$\int_{-1}^{0} (x+1)e^{x+1} dx = \begin{cases} U = x+1 & dU = dx \\ dV = e^{x+1} dx & V = e^{x+1} \end{cases} =$$

$$= (x+1)e^{x+1} \Big|_{-1}^{0} - \int_{-1}^{0} e^{x+1} dx = ((x+1)e^{x+1} - e^{x+1}) \Big|_{-1}^{0} =$$

$$= e^{x+1}x \Big|_{-1}^{0} = e \cdot 0 - e \cdot (-1) = 1$$

 $S = e - 1 \approx 1.72$ ($\kappa e.o \partial$.)

Площа прямокутника під прямою y = e.

Можна було обчислити без інтегралу.

Площа під кривою

$$y = (x+1)e^{x+1}$$
.

Обчислення інтегралу по частинах.

Спрощуємо первісну і підставляємо границі інтегрування.

Різниця обчислених площ є остаточною відповіддю.

Якби область була задана, наприклад, лініями :

$$y = e^{x+1}(x+1); x \in [-1;0],$$

то слід було б обчислювати $\tilde{S} = \int_{1}^{0} (x+1)e^{x+1} dx = 1$.

Завдання 3. Задачі з економічним змістом.

Розв'язання завдання 3

ПРИКЛАДИ

- 1) Знайти cepedhe значення витрат виробництва (AC), у грошових одиницях, якщо задана функція витрат виробництва C(q) і межі змін об'єму продукції, що випускається (q), від q_1 до q_2 .
 - 2) Указати об'єм продукції (q_c) , при якому витрати приймають середнє значення.

Нехай $C(q)=3q^2+4q+1$, об'єм продукції q змінюється від θ до β одиниць.

нехай
$$C(q)=3q+4q+1$$
, об ем продукції q змінюється від o до 3 одиниць.
$$f(\xi)=\frac{1}{b-a}\int_a^b f(x)dx.$$
 Згідно теоремі про середнє значення функції на відрізку.

$$AC(q) = \frac{1}{3} \int_{0}^{3} (3q^{2} + 4q + 1)dq = \frac{1}{3} \left(3\frac{q^{3}}{3} + \frac{4}{2}q^{2} + q \right) \Big|_{0}^{3} =$$
 У нашому випадку $q_{1} = a = 0$; $q_{2} = b = 3$.

$$=\frac{1}{3}(q^3+2q^2+q)\Big|_0^3=\frac{1}{3}(27+18+3)=16\ .$$

$$C(q_c)=AC;$$

$$3q_c^2+4q+1=16; \qquad 3q_c^2+4q-15=0;$$

$$q_c=\frac{-2+\sqrt{4+45}}{3}=\frac{-2+7}{3}=\frac{5}{3},$$

$$q_c=\frac{5}{3}\approx 1,67 \text{ (гр.од.)}$$

Тобто середнє значення витрат AC=16 гр.од.

Визначимо, при якому об'ємі продукції витрати приймають таке значення.

Враховуючи, що, об'єм продукції не може бути від'ємним, беремо тільки додатній корінь рівняння.

Відповідь. Середнє значення витрат виробництва 16 (гр.од.), причому воно досягається при випуску продукції у 1,67 (гр.од.).

- ▼ Випуск продукції може бути як цілим, так і дробовим числом, тому що не указано, що це за продукція і у яких одиницях вимірюється.
- \bigcirc 1) Визначити об'єм продукції, виробленій робітником за n-y годину робочого дня (наприклад, n=2 означає година роботи від t=1 до t=2), якщо продуктивність праці f(t) задана.
- 2) Визначити середню продуктивність праці за 8 годин робочої зміни і указати годину, у яку ця продуктивність досягається.

Нехай
$$n=4$$
; $f(t) = \frac{2}{3t+4} + 3$.

$$Q_4 = \int_3^4 \left(\frac{2}{3t+4} + 3\right) dt = \left(\frac{2}{3}ln|3t+4|+3t\right)\Big|_3^4 =$$

$$= \frac{2}{3}ln16 + 12 - \frac{2}{3}ln13 - 9) = \frac{2}{3}ln\frac{16}{13} + 3;$$

$$Q_4 \approx 3,14 \text{ ум.од.}$$

(усі наближені значення округлюємо до двох знаків після коми).

$$Af = \frac{1}{8} \int_{0}^{8} \left(\frac{2}{3t+4} + 3 \right) dt = \frac{1}{8} \left(\frac{2}{3} ln |3t+4| + 3t \right) \Big|_{0}^{8} =$$

Знайдемо об'єм продукції, що вироблена робітником за четверту годину робочого дня.

При обчисленні первісної розбиваємо інтеграл на суму двох інтегралів і у першому вносимо під знак диференціалу: d(3t+4) = 3dt.

Середня продуктивність праці за робочу зміну – згідно теоремі про середнє значення функції на відрізку.

$$=\frac{1}{8}\left(\frac{2}{3}ln28+24-\frac{2}{3}ln4\right)=\frac{1}{12}ln7+3;$$

Af ≈ 3,16 (ум.од./год.)

$$f(t_{cp}) = Af$$
; $\frac{2}{3t_{cp}+4} + 3 = 3.16$;

$$2+9t_{cp}+12=3,16(3t_{cp}+4);\ 0,48\cdot t_{cp}=1,36$$
 $t_{cp}\approx 2,83$ (год.)

Округлюємо до двох знаків після коми.

Знайдемо годину, у яку ця продуктивність досягається середня продуктивність праці. Після приведення до загального знаменника і приведення подібних одержуємо розв'язок рівняння.

 $Bi\partial no Bi\partial b$. Об'єм продукції, що виготовлена четверту годину робочої зміни — біля 3,14 ум.од. Середня продуктивність праці за робочу зміну — біля 3,16 ум.од. продукції, вона досягається на третій годині робочої зміни ($t_{cp} \approx 2,83$ год.).

- Якщо обчислене t_{cp} не входить у інтервал [0;8], то середня продуктивність праці не досягається у робочу зміну.
 - Э Нехай продуктивність праці упродовж зміни змінюється наступним чином:

$$f(t) = \begin{cases} 100+10t; & n=1,2\\ const = f(2); & n=\overline{3,6}.\\ f(6)-15t; & n=7,8. \end{cases}$$

- 1) Знайти об'єм продукції, що виготовлена за перші три години робочого дня.
- 2) Знайти середню продуктивність праці за зміну і годину, у яку вона досягається.

$$n=1,2\Rightarrow t\in[0;2]$$
 - перші дві години зміни; $n=\overline{3,6}\Rightarrow t\in[2;6]$ - з третьої по шосту годину; $n=7,8\Rightarrow t\in[6;8]$ - останні дві години. $f(2)=100+10\cdot 2=120; \ f(6)=f(2)=120;$

Розшифруємо задану шматковонеперервну функцію продуктивності праці.

$$Q_{0-3} = \int_{0}^{2} (100+10t)dt + \int_{2}^{3} 120dt =$$
 Знайдемо об'єм продукції, що виготовлена за перші три години робочого дня.

$$= (100t + 5t^{2})\Big|_{0}^{2} + 120t\Big|_{2}^{3} = 200 + 20 + 120 = 340$$

Для контролю побудуємо графік продуктивності праці.

У даному разі обчислення інтегралу може бути елементарно перевірено з геометричних міркувань — треба знайти площу під графіком функції при $t \in [0;3]$. Вона складається з суми площ прямокутної трапеції при $t \in [0;2]$ і прямокутника при $t \in [2;3]$ (перевірте самостійно).

Об'єм продукції, що випущена за зміну: $Q_{0-8} = \int_{0}^{2} (100+10t)dt + \int_{2}^{6} 120dt + \int_{6}^{8} (120-15t)dt =$ $= (100t+5t^{2})|_{0}^{2} + 120t|_{2}^{6} + 120t|_{6}^{8} + \int_{6}^{8} (120-15t)dt =$ $+ 7.5t^{2}|_{6}^{8} = 730$

$$Af = \frac{Q_{0-8}}{8} = \frac{730}{8} = 91.25$$
 Середня продуктивність праці, за теоремою про середнє значення функції на відрізку.

Годину, у якій досягається середня продуктивність праці, можна приблизно визначити по графіку, побудувавши прямую лінію f(t) = 91,25.

У даній задачі вона не перетинає графіка функції продуктивності праці, тому нема такої години за всю зміну, у якій продуктивність праці – середня.

Відповідь. Об'єм продукції, що виготовлена за перші три години робочої зміни — 340 ум.од. Середня продуктивність праці — 91,25 ум.од./год. продукції; немає такої години, на якій робота іде із середньою продуктивністю праці.

Завдання 4. Обчислити невласні інтеграли та дослідити на збіжність за ознакою порівняння.

Розв'язання завдання 4

ПРИКЛАДИ

$$\underbrace{1}_{-\infty} \int_{x^4 + a^2}^{0} \frac{x \cdot dx}{x^4 + a^2} = \frac{1}{2} \int_{-\infty}^{0} \frac{d(x^2)}{(x^2)^2 + a^2} = \begin{vmatrix} \text{Невласний інтеграл 1-го роду. Для обчислення} \\ \text{вносимо під знак диференціалу: } 2x \cdot dx = d(x^2) \,. \end{vmatrix}$$

$$= \lim_{R \to -\infty} \frac{1}{2a} \operatorname{arctg} \frac{x^2}{a} \Big|_{R}^{0} = \frac{1}{2a} \lim_{R \to -\infty} \left(\operatorname{arctg} 0 - \operatorname{arctg} \frac{R^2}{a} \right) = \begin{vmatrix} \text{3a} & \text{визначенням HI-1 обчислюємо} \\ \text{границю.} \end{vmatrix}$$

$$=\frac{1}{2a}\cdot\frac{\pi}{2}$$
 Врахуємо, що $arctg\theta=0$; і $arctg\infty=\frac{\pi}{2}$; тоді одержимо число $(const)$. Значить, HI-1 збігається.

$$f(x) = \frac{x}{x^4 + a^2} \sum_{x \to \infty} \frac{x}{x^4} = \frac{1}{x^3}$$
 Дослідимо інтеграл на збіжність за ознакою порівняння. Для визначення функції, еквівалентній підінтегральній при $x \to \infty$ застосуємо виділення головної частини у нескінченно великих величинах. Порівнюємо із спеціальною функцією для НІ-1. НІ-1 збігається.

Для обчислення виділимо повний квадрат у знаменнику під коренем:

$$x^2 - 6x + 9 - 9 + 8 = (x - 3)^2 - 1$$
,

і врахуємо, що d(x-3) = dx.

$$=\lim_{\beta\to 0}\int\limits_0^{2-\beta}\frac{d(x-3)}{\sqrt{(x-3)^2-1}}=\lim_{\beta\to 0}\left(\ln\left|x-3+\sqrt{(x-3)^2-1}\right|_0^{2-\beta}\right)=\left|\begin{array}{c} 3\text{а визначенням HI-2 обчис-}\\ \text{люємо границі.} \end{array}\right.$$

$$=\lim_{\beta\to 0}(\ln\left|-\beta-1+\sqrt{(-\beta-1)^2-1}\right|-\ln\left|-3+\sqrt{8}\right|)=\left|\begin{array}{c} \Pi\text{ідставимо межі інтегрування і обчислимо границю.} \end{array}$$

$$=\ln\left|-1\right|-\ln\left|(-3-2\sqrt{2})\right|=\ln\left(\frac{1}{3-2\sqrt{2}}\right). \qquad \left|\begin{array}{c} \text{В результаті одержуємо число }(const).\\ 3\text{начить, HI-2 збігається.} \end{array}\right.$$

₹ — Зверніть увагу! Виділення повного квадрату може привести до різних табличних інтегралів. Також часто зустрічається помилка, коли не враховують знак мінус.

Наприклад, правильне виділення повного квадрату:

$$\sqrt{8x - x^2 - 12} = \sqrt{-(x^2 - 8x + 16 - 16 + 12)} = \sqrt{-(x - 4)^2 + 4} = \sqrt{4 - (x - 4)^2}.$$

Знак мінус не можна виносити з-під квадратного кореня!

Дослідимо інтеграл на збіжність за ознакою порівняння. Визначимо функцію, що еквівалентна підінтегральній при $x \rightarrow 2$.

$$f(x) = \frac{1}{\sqrt{x^2 - 6x + 8}} = \frac{1}{\sqrt{(x - 2)(x - 4)}}$$

$$f(x) \underset{x \to 2}{\sim} \frac{1}{\sqrt{(x-2)(-2)}} = \frac{1}{\sqrt{2}(2-x)^{1/2}}$$

$$g(x) = \frac{C}{(b-x)^p} = \frac{C}{(2-x)^p};$$

$$p = \frac{1}{2} < 1 \implies$$

Знайдемо корени знаменника і розкладемо квадратний трьохчлен по кореням.

Застосуємо правило, що дозволяє замінювати множники, що не прагнуть до нуля, відповідними числами.

Порівняємо із спеціальною функцією для НІ-2, для функцій, що мають розрив на верхній границі інтегрування.

 $p = \frac{1}{2} < 1 \implies$ НІ-2 збігається.

Порівняти два інтеграли з однаковими підінтегральними функціями, але різними границями інтегрування.

Для обчислення інтеграли розбиваються на суму інтегралів.

HI-1 HI-2 $\int_{1}^{\infty} \frac{x+3}{\sqrt{x^3}} dx = \int_{1}^{\infty} \frac{dx}{\sqrt{x}} + 3 \int_{1}^{\infty} \frac{dx}{x^{3/2}} =$ $\int_{0}^{1} \frac{x+3}{\sqrt{x^3}} dx = \int_{0}^{1} \frac{dx}{\sqrt{x}} + 3 \int_{0}^{1} \frac{dx}{x^{3/2}} =$ $=\lim_{R\to\infty} 2\sqrt{x}\Big|_{1}^{R} + 3\lim_{R\to\infty} \frac{-1}{2}x^{-1/2}\Big|_{1}^{R} = \infty$ $=\lim_{\alpha\to 0} 2\sqrt{x}\Big|_{\alpha}^{1} + 3\lim_{\alpha\to 0} \frac{-1}{2}x^{-1/2}\Big|_{\alpha}^{1} =$

НІ-1 розбігається, тому що перша

границя:
$$2\sqrt{x} \underset{R \to \infty}{\longrightarrow} \infty$$
, а друга

$$-\frac{3}{2}x^{-1/2} = -\frac{3}{2}\frac{1}{\sqrt{x}} \underset{R \to \infty}{\longrightarrow} 0.$$

У сумі маємо нескінченість.

НІ-2 розбігається, тому що друга гра-

ниця:
$$\frac{1}{\sqrt{x}} \underset{\alpha \to 0}{\longrightarrow} \infty$$
, а перша $2\sqrt{x} \underset{\alpha \to 0}{\longrightarrow} 0$.

У сумі маємо нескінченість.

Тепер застосуємо ознаку порівняння. Зверніть увагу, при дослідженні порівняння проходить з однаковими функціями, але зміст різний.

$$g(x) = \frac{C}{x^p};$$

$$g(x) = \frac{C}{(x-a)^p} = \frac{C}{x^p};$$
 Tomy що точка розриву $a = 0;$
$$p = \frac{1}{2} < 1 \Rightarrow \text{HI-1} \text{ розбігається.}$$

$$p = \frac{3}{2} > 1 \Rightarrow \text{HI-2} \text{ розбігається.}$$