1	Quelques problèmes sur le programme de Sup		1
	1.1	Dimension d'un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ formé de matri-	
		ces de rangs $\leq r$	1
	1.2	Pseudo-inverse	2
	1.3	Idéaux de $\mathcal{M}_n(K)$	3
	1.4	Décomposition de Bruhat	4
2 Exercices		6	

Partout, K est un sous-corps de $\mathbb C$ $M_B(f)$ ou $Mat_B(f)$ désigne la matrice de f relativement à la base B

1 Quelques problèmes sur le programme de Sup

1.1 Dimension d'un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ formé de matrices de rangs $\leq r$.

On rappelle que si $A \in \mathcal{M}_r(\mathbb{R}), B \in \mathcal{M}_{r,n-r}(\mathbb{R}), C \in \mathcal{M}_{n-r,r}(\mathbb{R}), D \in \mathcal{M}_{n-r}(\mathbb{R}), X \in \mathcal{M}_{r,1}(\mathbb{R}),$

et
$$Y \in \mathcal{M}_{n-r,1}(\mathbb{R})$$
, alors $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} AX + BY \\ CX + DY \end{pmatrix}$. (produit par blocs)

On fera attention aux tailles des matrices. Partout, ${}^{t}AA$ est $({}^{t}A)(A)$ (et non ${}^{t}(AA)$).

Si
$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{R})$$
 et $Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{R})$, on définit le produit scalaire de X et Y par $\langle X, Y \rangle = \sum_{k=1}^n x_i y_i$.

On notera qu'en assimilant les matrices 1×1 aux scalaires, $\langle X, Y \rangle = {}^t XY$. (le vérifier)

On se donne V un sev de $\mathcal{M}_n(\mathbb{R})$ constitué de matrices de rangs $\leq r$ $(r \in [1, n])$, et on se propose de montrer que $\dim(V) \leq nr$, l'inégalité étant optimale.

1. Résultats préliminaires.

- (a) i. Si $X \in \mathcal{M}_{n,1}(\mathbb{R})$, vérifier que $\langle X, X \rangle = 0 \iff X = 0$.
 - ii. Si $A, B \in \mathcal{M}_n(\mathbb{R})$ et $X, Y \in \mathcal{M}_{n,1}(\mathbb{R})$, vérifier que $\langle AX, BY \rangle = \langle X, ^t ABY \rangle$.
 - iii. Soit $M \in \mathcal{M}_n(\mathbb{R})$. Montrer que $\mathcal{K}er(M) = \mathcal{K}er(^tMM)$ et que $rg(M) = rg(^tMM)$. (pour une inclusion des noyaux utiliser $\langle MX, MX \rangle$).
- (b) Soient $B \in \mathcal{M}_{r,n-r}(\mathbb{R}), C \in \mathcal{M}_{n-r,r}(\mathbb{R}), D \in \mathcal{M}_{n-r}(\mathbb{R})$ et $M = \begin{pmatrix} I_r & B \\ C & D \end{pmatrix}$.

On veut montrer que $rg(M) \ge r$ avec égalité ssi D = CB.

- i. Justifier l'inégalité.
- ii. Soient $X \in \mathcal{M}_{r,1}(\mathbb{R}), Y \in \mathcal{M}_{n-r,1}(\mathbb{R})$ et $Z = \begin{pmatrix} X \\ Y \end{pmatrix}$.

Ecrire les relations entre B, C, D, X, Y caractérisant le fait que Z soit dans le noyau de M.

- iii. Vérifier que $f: \left\{ \begin{array}{c} \mathcal{K}er(D-CB) \to \mathcal{M}_{n,1}(\mathbb{R}) \\ Y \mapsto \begin{pmatrix} -BY \\ Y \end{pmatrix} \right.$ est une application linéaire injective et que $Im(f) = \mathcal{K}er(M)$.
- iv. Regardant dim(Ker(D-CB)), montrer que rg(M) = r ssi D = CB.

- 2. On suppose pour l'instant que V contient $J_{n,n,r} = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$.
 - (a) Soit $W = \left\{ \begin{pmatrix} 0 & B \\ {}^{t}B & A \end{pmatrix} \mid A \in \mathcal{M}_{n-r}(\mathbb{R}) \text{ et } B \in \mathcal{M}_{r,n-r}(\mathbb{R}) \right\}.$

Montrer que W est un sev de $\mathcal{M}_n(\mathbb{R})$ de dimension n(n-r).

- (b) Si $\begin{pmatrix} 0 & B \\ {}^tB & A \end{pmatrix} \in W \cap V$, montrer que $\forall \lambda \in \mathbb{R}$, $\lambda A = \lambda^2({}^tBB)$ puis que A = B = 0.
- (c) Que dire de la somme V + W? Montrer que dim $(V) \le nr$.
- 3. On ne suppose plus que $J_{n,n,r} \in V$ mais que V contient une matrice M de rang r. On se donne $P,Q \in GL_n(\mathbb{R})$ tels que $M = PJ_{n,n,r}Q$.

Utilisant
$$\Theta: \left\{ \begin{array}{l} V \to \mathcal{M}_n(\mathbb{R}) \\ N \mapsto P^{-1}NQ^{-1} \end{array} \right.$$
, montrer que $\dim(V) \leq nr$.

- 4. Si V ne contient pas de matrice de rang r, montrer que l'on a toujours $\dim(V) \leq nr$.
- 5. Optimalité de la majoration: trouver un sev (simple) de $\mathcal{M}_n(\mathbb{R})$ formé de matrices de rang $\leq r$ et de dimension nr.

1.2 Pseudo-inverse

 ${\bf E}$ est un K-ev de dimension finie.

Si $f,g\in\mathcal{L}(E)$, on dira que g est un pseudo-inverse de f ssi $f\circ g=g\circ f,\quad f\circ g\circ f=f$ et $g\circ f\circ g=g.$

Le but de l'exercice est de montrer que $f \in \mathcal{L}(E)$ admet un pseudo-inverse ssi $E = \Im m(f) \oplus \mathcal{K}er(f)$ et que dans ce cas le pseudo-inverse est unique.

- 1. Unicité d'un pseudo-inverse: Soient $f, g, h \in \mathcal{L}(E)$ tels que g et h soient des pseudo-inverses de f. En considérant $g^2 \circ f^3 \circ h^2$, montrer que g = h.
- 2. Donner le pseudo-inverse de f dans les deux cas suivants : $f \in GL(E)$, f est une projection.
- 3. Condition nécessaire:

Soient $f, g \in \mathcal{L}(E)$ tels que g soit un pseudo-inverse de f.

- (a) Montrer que $f \circ g$ est une projection.
- (b) Montrer que $\Im m(f) = \Im m(f \circ g)$.
- (c) Montrer que $Ker(f \circ g) = Ker(f)$.
- (d) En déduire que $E = \Im m(f) \oplus \mathcal{K}er(f)$.
- 4. Condition suffisante:

Soit
$$f \in \mathcal{L}(E)$$
 tel que $E = \Im m(f) \oplus \mathcal{K}er(f)$.

On note p la projection sur $\Im m(f)$ parallèlement à $\mathcal{K}er(f)$. Soit $h: \left\{ \begin{array}{l} \Im m(f) \to \Im m(f) \\ x \mapsto f(x) \end{array} \right.$

(a) Justifier que h est un automorphisme de $\Im m(f)$.

Soit
$$g: \left\{ \begin{array}{l} E \to E \\ x \mapsto h^{-1}(p(x)) \end{array} \right.$$

- (b) Justifier la définition de g et sa linéarité.
- (c) Soit B une base de E adaptée à la décomposition $E = \Im m(f) \oplus \mathcal{K}er(f)$. Ecrire les matrices de f et g relativement à B. (écriture par blocs)
- (d) Montrer que g est le pseudo-inverse de f.

1.3 Idéaux de $\mathcal{M}_n(K)$

Une partie I de $\mathcal{M}_n(K)$ est dite :

- idéal à gauche de $\mathcal{M}_n(K)$ si et seulement si I est un sev de $\mathcal{M}_n(K)$ et $\forall A \in \mathcal{M}_n(K), \forall B \in I, AB \in I$.
- idéal à droite de $\mathcal{M}_n(K)$ si et seulement si I est un sev de $\mathcal{M}_n(K)$ et $\forall A \in \mathcal{M}_n(K), \forall B \in I, BA \in I$.
- idéal bilatère de $\mathcal{M}_n(K)$ si et seulement si I est un sev de $\mathcal{M}_n(K)$ et $\forall A \in \mathcal{M}_n(K)$, $\forall B \in I$, $BA \in I$ et $AB \in I$ (ie I idéal à gauche et à droite).

Idéaux bilatères

Soit I un idéal bilatère de $\mathcal{M}_n(K)$. On se propose de montrer que $I = \mathcal{M}_n(K)$ ou $I = \{0\}$. On suppose $I \neq \{0\}$. On veut donc montrer que $I = \mathcal{M}_n(K)$.

- 1. Si I contient une matrice inversible, montrer que $I = \mathcal{M}_n(K)$.
- 2. Rappeler la définition d'équivalence de matrices, et rappeler à quelle CNS deux matrices de $\mathcal{M}_n(K)$ sont équivalentes.
- 3. Soit $A \in I$ de rang r. Montrer que toutes les matrices de rang r sont dans I.
- 4. Montrer que I contient une matrice de rang 1.
- 5. Montrer que $I = \mathcal{M}_n(K)$.

Idéaux à gauches

Si V est un sev de K^n , on pose $K_V = \{M \in \mathcal{M}_n(K) \mid V \subset Ker(M)\}.$

6. Montrer que si V est un sev de K^n , K_V est un idéal à gauche de $\mathcal{M}_n(K)$.

On se propose maintenant de montrer qu'en fait tout idéal à gauche est du type K_V pour un certain V. On se donne maintenant I un idéal à gauche de $\mathcal{M}_n(K)$.

- 7. Justifier l'existence de $d = \min\{\dim(Ker(A)) \mid A \in I\}$. On se fixe $A \in I$ tel que $\dim(Ker(A)) = d$, et on pose V = Ker(A).
- 8. En utilisant le théorème de factorisation, montrer que $K_V \subset I$.
- 9. Soit $B \in I$. Supposons que V n'est pas inclus dans Ker(B). On pose $W = Ker(B) \cap V$.
 - (a) Justifier que $\dim(W) < d$.
 - (b) Justifier qu'il existe $T \in \mathcal{M}_n(K)$ telle que Ker(T) = W. On se fixe T ainsi. On définit la matrice par bloc $M = \begin{pmatrix} A \\ B \end{pmatrix} \in \mathcal{M}_{2n,n}(K)$.
 - (c) Montrer que Ker(M) = W.
 - (d) Montrer qu'il existe $U, V \in \mathcal{M}_n(K)$ telles que UA + VB = T.
 - (e) Trouver une contradiction.
- 10. Conclure

Idéaux à droite Si V est un sev de K^n , on pose $J_V = \{M \in \mathcal{M}_n(K) \mid Im(M) \subset V\}$.

11. Montrer que Si V est un sev de K^n , J_V est un idéal à droite de $\mathcal{M}_n(K)$.

On se propose maintenant de montrer qu'en fait tout idéal à droite est du type J_V pour un certain V.

On se donne I un idéal à droite de $\mathcal{M}_n(K)$.

12. Justifier l'existence de $d = \max\{rg(A) \mid A \in I\}$. On se fixe $A \in I$ tel que rg(A) = d. Soit V = Im(A).

- 13. Montrer que $J_V \subset I$.
- 14. Soit $B \in I$. Supposons Im(B) non inclus dans V. On pose W = Im(B) + V.
 - (a) Justifier que $\dim(W) > d$.
 - (b) Justifier qu'il existe $T \in \mathcal{M}_n(K)$ telle que Im(T) = W. On se fixe une telle matrice T. On définit la matrice par bloc $M = (A|B) \in \mathcal{M}_{n,2n}(K)$.
 - (c) Montrer que Im(M) = W.
 - (d) Montrer qu'il existe $U, V \in \mathcal{M}_n(K)$ telles que AU + BV = T.
 - (e) Trouver une contradiction
- 15. Conclure

1.4 Décomposition de Bruhat

ATTENTION : dans tout le problème, on entend par opérations (dites "autorisées" par la suite) sur les lignes ou les colonnes **uniquement les opérations suivantes**:

$$\begin{split} & \overset{\textstyle C_i}{\textstyle \leftarrow} \lambda C_i \text{ avec } \lambda \in \mathbb{R}^* \\ & L_i \leftarrow \lambda L_i \text{ avec } \lambda \in \mathbb{R}^* \\ & L_i \leftarrow L_i + \lambda L_j \text{ avec } \lambda \in \mathbb{R} \text{ } \underbrace{\text{ et } \mathbf{j} < \mathbf{i}}_{\text{ et } \mathbf{i} < \mathbf{j}} \end{split}$$

On note T_n^+ (resp. T_n^-) l'ensemble des matrices triangulaires supérieures (resp. inférieures) de $\mathcal{M}_n(\mathbb{R})$.

On appelle matrice de permutation toute matrice M de $\mathcal{M}_n(\mathbb{R})$ réalisant par multiplication une permutation de la base canonique de \mathbb{R}^n , ce qui revient à dire que sur chaque ligne et chaque colonne de M, n-1 coefficients sont égaux à 0, et un coefficient vaut 1.

Si $n \in \mathbb{N}$, $n \geq 2$, $\lambda \in \mathbb{R}$, et $i, j \in [1, n]$ sont distincts, on note $T_{n,i,j}(\lambda)$ la matrice de transvection de $\mathcal{M}_n(\mathbb{R})$ dont les coefficients diagonaux valent 1, le coefficient en position (i, j) vaut λ , et les autres coefficients valent 0.

I - Deux exemples

- 1. Expliquer en termes d'opérations élémentaires comment s'obtiennent $T_{n,i,j}(\lambda)M$ et $MT_{n,i,j}(\lambda)$ à partir de $M \in \mathcal{M}_n(\mathbb{R})$. (on demande juste le résultat)
- $2. \ M = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ -1 & 2 & 10 \end{pmatrix}.$

Transformer M par des opérations (autorisées) sur les lignes en une matrice triangulaire supérieure.

En déduire $L \in T_3^-$ et $U \in T_3^+$ telles que M = LU. On explicitera L et U, et on vérifiera la produit.

3.
$$M = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 2 & -1 \\ 2 & 1 & 10 \end{pmatrix}$$
.

Transformer M par des opérations (autorisées) sur les lignes et les colonnes en la matrice de

permutation
$$P = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
.

En déduire l'existence de $L \in T_3^-$ et $U \in T_3^+$ telles que M = LPU. On explicitera L et U, et on vérifiera la produit.

II - Le cas général

On se propose d'établir que, si $M \in GL_n(\mathbb{R})$, alors M peut sécrire : M = LPU où $L \in T_n^-$, $U \in T_n^+$, et P est une matrice de permutation. (décomposition de Bruhat)

4. $M \in GL_n(\mathbb{R})$.

Montrer que l'on peut transformer, par des opérations (autorisées) sur les lignes et les colonnes,

certaine ligne i, et A et B étant des blocs de tailles adéquates : $A \in \mathcal{M}_{i-1,n-1}(\mathbb{R})$, et $B \in \mathcal{M}_{n-i-1,n-1}$, étant entendu que si i = 1, il n'y a pas A, et si i = n, il n'y a pas B.

- 5. En reprenant les notations de la question précédente, montrer que la matrice $\begin{pmatrix} A \\ B \end{pmatrix}$ obtenue en supprimant la ligne i et la colonne 1 de R est inversible.
- 6. Décrire un procédé permettant de transformer, par des opérations (autorisées) sur les lignes et les colonnes, M en une matrice de permutation. En déduire le résultat.
- 7. Unicité de P.

On note S_n l'ensemble des permutations de [1, n], ie des bijections de [1, n] dans lui-même. Soit $(e_1,...,e_n)$ la base canonique de \mathbb{R}^n .

Si $\sigma \in S_n$, on note P_{σ} la matrice de permutation définie par $\forall i, P_{\sigma}e_i = e_{\sigma(i)}$.

- (a) Soient σ et τ dans S_n telles que $\forall i \in [1, n], \tau(i) \geq \sigma(i)$. Montrer que $\sigma = \tau$.
- (b) Soient σ et τ dans S_n , $L \in T_n^-$, $U \in T_n^+$ avec L et U inversibles, vérifiant $LP_{\sigma} = P_{\tau}U$. Justifier que $\forall i, \ LP_{\sigma}e_i \in vect(e_{\sigma(i)}, e_{\sigma(i)+1}, ..., e_n)$.

Pour
$$i$$
 donné, on écrit $P_{\tau}Ue_i = \sum_{k=1}^n \lambda_k e_k$. Montrer que $\lambda_{\tau(i)} \neq 0$.

Montrer que $\sigma = \tau$.

- (c) $P,Q \in \mathcal{M}_n(\mathbb{R})$ sont deux matrices de permutation, $L_1,L_2 \in T_n^-, U_1,U_2 \in T_n^+,$ et L_1, L_2, U_1, U_2 sont inversibles. On suppose que $L_1PU_1 = L_2QU_2$. Montrer que P = Q. On a ainsi unicité de la matrice de permutation dans la décomposition de Bruhat.
- (d) Si $LPU=L_2PU_2$ avec P matrice de permutation, $L,L_2\in T_n^-,\ U,U_2\in T_n^+$ inversibles, existe-t-il nécessairement $\lambda\in {\rm I\!R}^*$ tel que $L_2=\lambda L$ et $U_2=\frac{1}{\lambda}U$? Si oui, le prouver, si non, exhiber un contre-exemple.

III - Le cas générique

On va étudier ici le cas où $P = I_n$, et donc où M se décompose sous fa forme M = LU avec $L \in T_n^-, U \in T_n^+.$

Si
$$M = (m_{i,j}) \in \mathcal{M}_n(\mathbb{R})$$
 et $i \in [\![1,n]\!]$, on notera M_i la matrice
$$\begin{pmatrix} m_{1,1} & m_{1,2} & \dots & m_{1,i} \\ m_{2,1} & m_{2,2} & \dots & m_{2,i} \\ \vdots & & & \vdots \\ m_{i,1} & m_{i,2} & \dots & m_{i,i} \end{pmatrix}$$
. Ainsi $M_i \in \mathcal{M}_i(\mathbb{R})$ est la matrice extraite de M en utilisant les lignes 1 à i et les colonnes 1

Ainsi $M_i \in \mathcal{M}_i(\mathbb{R})$ est la matrice extraite de M en utilisant les lignes 1 à i et les colonnes 1 à i. (on notera que $M_n = M$)

On appelle mineurs principaux de M les déterminants $det(M_i)$, i = 1, ..., n.

- 8. Ici $M \in GL_n(\mathbb{R})$, et M = LU avec $L \in T_n^-$, $U \in T_n^+$. Montrer que pour tout $i \in [1, n]$, M_i est inversible. (c'est à dire que tous les mineurs principaux de M sont non nuls)
- 9. On se donne $M \in \mathcal{M}_n(\mathbb{R})$ dont tous les mineurs principaux sont non nuls.
 - (a) Montrer que si N est obtenue à partir de M par une des opérations autorisées sur les lignes et les colonnes, tous les mineurs principaux de N sont encore non nuls.

- (b) En reprenant le procédé de la question 4 appliqué à M, où va se situer le 1 sur la première colonne de R?
- (c) Montrer qu'existent $L \in T_n^-$, $U \in T_n^+$ telles que M = LU.
- 10. Densité de l'ensemble des matrices "génériques"

Soit $M \in \mathcal{M}_n(\mathbb{R})$.

Montrer qu'hormis pour un nombre fini de réels $t, M-t.I_n$ a tous ses mineurs principaux non nuls, et en déduire qu'existe (M(k)) suite de matrices à mineurs principaux non nuls telle que $M(k) \xrightarrow[k \to +\infty]{} M$. (on notera $M(k)_i$ les matrices extraites de M(k) correspondant aux mineurs principaux)

11. Non densité de l'ensemble des matrices non génériques.

Soit $M \in \mathcal{M}_n(\mathbb{R})$ ayant tous ses mineurs principaux non nuls, et (M(k)) une suite de matrice telle que $M(k) \xrightarrow[k \to +\infty]{} M$.

Montrer que, pour k assez grand, tous les mineurs principaux de M(k) sont non nuls.

2 Exercices

Exercice 1 : E est un K-ev. Quels sont les endomorphismes de E ayant même matrice dans toute base?

Exercice 2:

- 1. E est un \mathbb{R} -ev de dimension finie n, et $f \in \mathcal{L}(E)$ vérifie $f^2 = -id$.
 - (a) Soit $a \in E\{0\}$. Montrer que (a, f(a)) est libre.
 - (b) Supposons $e_1, ..., e_k \in E$ donnés tels que $F = (e_1, f(e_1), ..., e_k, f(e_k))$ soit libre, et $e_{k+1} \in E \setminus vect(F)$.

Que dire de $(e_1, f(e_1), ..., e_k, f(e_k)), e_{k+1})$?

Montrer que $(e_1, f(e_1), ..., e_k, f(e_k)), e_{k+1}, f(e_{k+1})$ est libre.

- (c) Montrer que n est pair et que dans une certaine base B de E, $M_B(f)$ est une matrice diagonale par blocs, les blocs sur la diagonale étant tous égaux à la matrice $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.
- (d) Retrouver le résultat en utilisant une diagonalisation et le fait que deux matrices réelles semblables dans $\mathcal{M}_n(\mathbb{C})$ le sont dans $\mathcal{M}_n(\mathbb{R})$.
- 2. Si E est un \mathbb{C} -ev de dimension finie n et $f \in \mathcal{L}(E)$ vérifie $f^2 = -id$. n est-il nécessairement pair?

Exercice 3:

1. Soit $A \in \mathcal{M}_3(K)$ telle que $A \neq 0$ et $A^2 = 0$.

Montrer que A est semblable à $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

2. Soit $A \in \mathcal{M}_{3n}(K)$ telle que rg(A) = 2n et $A^3 = 0$.

Montrer que A est semblable à $\begin{pmatrix} 0 & 0 & 0 \\ I_n & 0 & 0 \\ 0 & I_n & 0 \end{pmatrix}$.

Exercice 4: E est un K-ev de dimension finie $n \in \mathbb{N}^*$, et $p_1, ..., p_k$ sont des projecteurs de E tels que $p = \sum_{i=1}^k p_i$ soit aussi un projecteur.

1. Montrer que $rg(p) = \sum_{i=1}^{k} rg(p_i)$, puis que $Im(p) = \bigoplus_{i=1}^{n} Im(p_i)$.

- 2. Montrer que $p \circ p_i = p_i$.
- 3. Montrer que $i \neq j \Longrightarrow p_i \circ p_j = 0$

Exercice 5:
$$M = \begin{pmatrix} -9 & -1 & -8 & 1 \\ 21 & 3 & 17 & -2 \\ 7 & 0 & 8 & -1 \\ -14 & -7 & 1 & 0 \end{pmatrix}$$
 et $B = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$.

- 1. Déterminer un polynôme annulateur P de M de degré 2. Calculer M^{-1} .
- 2. Montrer que M est semblable à B.
- 3. Déterminer, si $n \in \mathbb{N}$, le reste de la division de X^n par P.
- 4. Déterminer M^n , $n \in \mathbb{Z}$.

Exercice 6: Résoudre l'équation algébrique matricielle
$$P(A) = \begin{pmatrix} -1 & -1 & -1 \\ 3 & 3 & 1 \\ 3 & 1 & 3 \end{pmatrix}$$
 d'inconnue $A \in \mathcal{M}_3(\mathbb{R})$ avec $P = X^2$ puis $P = X^2 + X$.

Exercice 7:

- 1. Montrer que l'endomorphisme f de $\mathbb{C}_n[X]$ défini par $f(P) = (X^2 1)P''$ est diagonalisable.
- 2. L'endomorphisme f de $\mathbb{C}_{2n}[X]$ défini par f(P) = X(X+1)P'' 2nXP' est-il diagonalisable?

Exercice 8:

1.
$$A = \begin{pmatrix} 7 & 2 & -5 \\ 6 & 2 & -4 \\ 6 & 1 & -3 \end{pmatrix}$$
 est-elle diagonalisable?

2. Trigonaliser
$$A$$
 sous la forme $\begin{pmatrix} a & 0 & 0 \\ 0 & b & 1 \\ 0 & 0 & b \end{pmatrix}$.

3. Déterminer la dimension du commutant de A.

Exercise 9: Si
$$a_0, ..., a_{n-1} \in \mathbb{C}$$
, on pose $M(a_0, ..., a_{n-1}) = \begin{pmatrix} a_0 & a_1 & ... & ... & a_{n-1} \\ a_{n-1} & a_0 & ... & a_{n-3} & a_{n-2} \\ ... & ... & ... & ... & ... \\ a_2 & a_3 & ... & a_0 & a_1 \\ a_1 & a_2 & ... & a_{n-1} & a_0 \end{pmatrix}$.

- 1. Déterminer J telle que $M(a_0,...,a_{n-1}) = a_0I_n + a_1J + ... + a_{n-1}J^{n-1}$.
- 2. Montrer qu'existe $P \in GL_n(\mathbb{C})$ telle que $\forall a_0, ..., a_{n-1} \in \mathbb{C}, P^{-1}M(a_0, ..., a_{n-1})P$ soit diagonale.
- 3. On pose $P = \{M(a_0,...,a_{n-1}) \mid a_0,...,a_{n-1} \in \mathbb{C}\}$. Montrer que P est une sous-algèbre commutative de $\mathcal{M}_n(\mathbb{C})$.
- 4. Calculer $det(M(a_0, ..., a_{n-1}))$.
- 5. Si $A \in P$ est inversible, montrer que $A^{-1} \in P$.

Exercice 10: $A, B \in \mathcal{M}_3(K)$ vérifient $A^3 = B^3 = 0$. Montrer que A et B sont semblables si et seulement si elles ont même rang.

Exercice 11: $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{R})$ est telle que $a_{i,j} = 1$ si i + j = n, 0 sinon.

- 1. Déterminer A^p , $p \in \mathbb{N}$, sans calcul matriciel.
- 2. A est-elle diagonalisable? Déterminer ses éléments propres.

Exercice 12:
$$0 < a_1 < a_2 < \dots < a_n$$
. $A = \begin{pmatrix} 0 & a_2 & a_3 & \dots & a_n \\ a_1 & 0 & a_3 & \dots & a_n \\ \dots & \dots & \dots & \dots & \dots \\ a_1 & \dots & \dots & \dots & \dots \\ a_1 & \dots & \dots & a_{n-1} & 0 \end{pmatrix}$.

- 1. Calculer det(A).
- 2. Montrer que λ est valeur propre de A si et seulement si $\sum_{i=1}^{n} \frac{a_i}{\lambda + a_i} = 1$.
- 3. A est-elle diagonalisable?
- 4. On choisit ici $a_i = i$. Déterminer un équivalent, quand $n \to +\infty$, de la plus grande valeur propre de A.

Exercice 13: $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{R})$ vérifie $a_{i,j} = a$ si i < j, 0 si i = j, b si i > j. Montrer que les valeurs propres complexes de A sont cocycliques (dans le plan complexe). A est-elle diagonalisable?

Exercice 14:
$$A = \begin{pmatrix} 1 & 1 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & \ddots & 1 \\ 0 & \dots & \dots & 0 & 1 \end{pmatrix}$$
 et $B = \begin{pmatrix} a_1 & a_2 & a_3 & \dots & a_n \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & a_3 \\ \vdots & & & \ddots & \ddots & a_2 \\ 0 & \dots & \dots & 0 & a_1 \end{pmatrix}$, avec $\forall i, a_i \in K$.

A quelle condition A et B sont-elles semblables dans $\mathcal{M}_n(K)$

Exercice 15:
$$A = \begin{pmatrix} a & b & c & d \\ 1 & e & f & g \\ 0 & 1 & h & i \\ 0 & 0 & 1 & j \end{pmatrix} \in \mathcal{M}_4(K).$$

Montrer que A est diagonalisable dans $\mathcal{M}_n(K)$ si et seulement si elle possède quatre valeurs propres distinctes dans K.

Exercice 16: E est un K-ev de dimension finie $n \in \mathbb{N}^*$ et L l'endomorphisme de $\mathcal{L}(E)$ défini par $L(f) = f + Tr(f)Id_E$.

- 1. Déterminer Ker(L), Im(L), et L^{-1} s'il existe.
- 2. Déterminer les valeurs propres et les vecteurs propres de L. Est-il diagonalisable?
- 3. Déterminer un polynôme annulateur de L.
- 4. Pour n=2, déterminer la matrice de L dans la base de $\mathcal{L}(E)$ naturellement associée à une base de E (ie les éléments de $\mathcal{L}(E)$ dont les matrices dans cette base de E sont les matrices élémentaires).

Exercice 17:

- 1. Déterminer les éléments propres de $A = \begin{pmatrix} 8 & 0 & 0 \\ 14 & 3 & 0 \\ 5 & 7 & 2 \end{pmatrix}$.
- 2. Trouver les $X \in \mathcal{M}_3(\mathbb{R})$ telles que $X^2 = A$.
- 3. Trouver les $Q \in \mathbb{R}[X]$ tels que $Q(A)^2 = A$.

Exercice 18: Soit $A \in \mathcal{M}_n(\mathbb{C})$ dont les valeurs propres sont les racines n-ièmes de l'unité, et $B = A^2 + A - 6$.

- 1. Montrer que B est inversible.
- 2. Montrer qu'existe un unique $P \in \mathbb{C}_{n-1}(X)$ tel que $B^{-1} = P(A)$.
- 3. Expliciter P.

Exercice 19: Soit $A \in \mathcal{M}_n(\mathbb{C})$ et $M = \begin{pmatrix} I_n & A \\ -A & I_n \end{pmatrix}$.

- 1. Déterminer Sp(M) en fonction de $Sp(A^2)$ et les espaces propres de M.
- 2. CNS pour que M soit diagonalisable?

Exercice 20: E est un K-ev de dimension finie $n \in \mathbb{N}^*$, $f \in \mathcal{L}(E)$ avec $(f - id_E)^2 \circ (f + 2id_E) \neq 0$, et $(f - id_E)^3 \circ (f + 2id_E) = 0$. Montrer que f n'est pas diagonalisable.

Exercice 21 : $A \in \mathcal{M}_n(\mathbb{R})$ vérifie $A^5 = A + I_n$. Montrer que det(A) > 0.

Exercice 22: Réduction par blocs

- 1. Diagonaliser $\begin{pmatrix} 1 & 3 \\ 5 & -1 \end{pmatrix}$.

2. Soit $A \in \mathcal{M}_n(\mathbb{R})$ et $B = \begin{pmatrix} A & 3A \\ 5A & -A \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{R})$.

Montrer que B est semblable à $\begin{pmatrix} 4A & 0 \\ 0 & -4A \end{pmatrix}$, et que, si A est diagonalisable, alors B aussi.

On utilisera un produit par blocs en utilisant la matrice de passage calculée en 1.

Exercice 23: E est un K-ev de dimension finie $n \in \mathbb{N}^*$, $f, g \in \mathcal{L}(E)$ sont tels que $f \circ g - g \circ f = \alpha f$, avec

- 1. Montrer que $f^k \circ g g \circ f^k = k\alpha f^k$.
- 2. Montrer que f est nilpotent.

Exercice 24: E est un K-ev de dimension finie $n \in \mathbb{N}^*$, $f, g \in \mathcal{L}(E)$ sont tels que $f \circ g - g \circ f = \alpha f + \beta g$ avec $\alpha, \beta \in K$.

Montrer que f et g ont un vecteur propre commun.

Exercice 25: Soit $A, B \in \mathcal{M}_n(\mathbb{C})$ telle que AB = 0. Montrer qu'elles ont un vecteur propre commun, puis qu'elles sont simultanément trigonalisables.

Soit $A, B, C \in \mathcal{M}_n(\mathbb{C})$ telle que AC = CA, BC = CB, et AB = BA + C. Montrer qu'elles ont un vecteur propre commun, puis qu'elles sont simultanément trigonalisables.

Exercice 27 : Un critère de nilpotence

Pour $A \in \mathcal{M}_n(\mathbb{C})$, on définit les applications φ_A et f_A sur $\mathcal{M}_n(\mathbb{C})$ par :

$$\forall M \in \mathcal{M}_n(\mathbb{C}), \varphi_A(M) = \text{Tr}(AM) \text{ et } f_A(M) = AM - MA$$

- 1. On note $(E_{i,j})_{1 \leq i,j \leq n}$ la base canonique de $\mathcal{M}_n(\mathbb{C})$. Pour $A = (a_{i,j})_{1 \leq i,j \leq n}$, calculer $\varphi_A(E_{i,j})$. En déduire que $\theta: A \in \mathcal{M}_n(\mathbb{C}) \mapsto \varphi_A$ est un isomorphisme de $\mathcal{M}_n(\mathbb{C})$ sur $\mathcal{M}_n(\mathbb{C})^*$, l'ensemble des formes linéaires sur $\mathcal{M}_n(\mathbb{C})$.
- 2. Vérifier que si A et B sont deux matrices de $\mathcal{M}_n(\mathbb{C})$, alors on a

$$\varphi_B \circ f_A = \varphi_{BA-AB}.$$

3. Soit A une matrice nilpotente de $\mathcal{M}_n(\mathbb{C})$ et M une matrice de $\ker(f_A)$. Montrer que AM est

En déduire que $\ker(f_A) \subset \ker(\varphi_A)$ puis qu'il existe une forme linéaire ψ sur $\mathcal{M}_n(\mathbb{C})$ telle que $\varphi_A = \psi \circ f_A$

4. Montrer que $A \in \mathcal{M}_n(\mathbb{C})$ est nilpotente si et seulement si il existe une matrice $B \in \mathcal{M}_n(\mathbb{C})$ telle que A = BA - AB.

Exercice 28:

Soient (e_1, \ldots, e_n) la base canonique de \mathbb{C}^n et H l'hyperplan défini par

$$H = \{(x_1, \dots, x_n) \in \mathbb{C}^n, x_1 + \dots + x_n = 0\}$$

On note S_n le groupe symétrique d'indice n et pour tout permutation σ de S_n , on définit l'endomorphisme f_{σ} de E par

$$f_{\sigma}(e_i) = e_{\sigma(i)}$$

Enfin, on note P l'endomorphisme canoniquement associé à la matrice dont tous les coefficients sont égaux à $\frac{1}{n}$.

- 1. Montrer que P est un projecteur ; déterminer son noyau et son image.
- 2. Vérifier que $P \in \text{Vect}\{f_{\sigma}, \sigma \in \mathcal{S}_n\}$.
- 3. Soit u un vecteur non nul de H. Montrer que $H = \text{Vect}\{f_{\sigma}(u), \sigma \in \mathcal{S}_n\}$.
- 4. Déterminer les sous-espaces vectoriels de \mathbb{C}^n stables par tous les f_{σ} , c'est-à-dire les sous-espaces E de \mathbb{C}^n tels que

$$\forall \sigma \in \mathcal{S}_n, f_{\sigma}(E) \subset E$$

5. Soit g un endomorphisme de E. Montrer que g commute avec f_{σ} pour tout $\sigma \in \mathcal{S}_n$ si et seulement si $g \in \text{Vect}\{id_{\mathbb{C}^n}, P\}$.

Exercice 29:

- 1. $A \in \mathcal{M}_n(K)$ est diagonalisable.
 - (a) Montrer que $B=\left(\begin{array}{cc}A&A\\A&A\end{array}\right)$ est diagonalisable.
 - (b) A quelle CNS $\begin{pmatrix} A & A \\ 0 & A \end{pmatrix}$ est-elle diagonalisable?
- 2. $A, B \in \mathcal{M}_n(K)$ sont diagonalisables, avec $Sp(A) \cap Sp(B) = \emptyset$. Montrer que $\begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$ est diagonalisable.

Exercice 30 : Soient $A \in GL_n(\mathbb{C})$, $B = \begin{pmatrix} A & A^2 \\ A^{-1} & I_n \end{pmatrix}$. Donner une condition nécessaire et suffisante sur A pour que B soit diagonalisable.

Exercice 31: $A \in \mathcal{M}_n(\mathbb{R})$ vérifie $\forall i, j, a_{i,j} > 0$ et $\forall i, \sum_{j=1}^n a_{i,j} = 1$.

- 1. Montrer que $1 \in Sp(A)$ et $dim(Ker(A I_n)) = 1$.
- 2. Montrer que si $\lambda \in Sp_{\mathbb{C}}(A)$, alors $|\lambda| \leq 1$.
- 3. Montrer qu'existe $a \in \mathbb{C}$ tel que $\forall \lambda \in Sp_{\mathbb{C}}(A), |\lambda a| < 1$.

Exercice 32: Soit $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{C})$. On note $r_i(A) = \sum_{j \neq i} |a_{i,j}|$.

- 1. Montrer que les valeurs propres de A sont dans l'union des disques de centres $a_{i,i}$ et de rayons $r_i(A)$.
- 2. Pour $i \neq j$, on pose $B_{i,j} = \{z \in \mathbb{C} \mid |(z a_{i,i})(z a_{j,j})| \leq r_i(A)r_j(A)\}$. Montrer que $Sp(A) \subset \bigcup_{1 \leq i < j \leq n} B_{i,j}$.

Exercice 33:

- 1. Déterminer les couples $(\lambda, \mu) \in \mathbb{Z}^2$ tels que $X^2 \lambda X + \mu$ ait deux racines de module 1.
- 2. Soit $M \in \mathcal{M}_2(\mathbb{Z})$ dont une puissance non nulle vaut I_2 . Montrer que $M^{12} = I_2$.
- 3. Déterminer une matrice $M \in \mathcal{M}_2(\mathbb{Z})$ telle que $\forall k \in [1, 5], M^k \neq I_2$, et $M^6 = I_2$.

Exercice 34:

Si $x_1,...,x_p \in \mathbb{R}^n$, on notera $V(x_1,...,x_p) = \{\lambda_1 x_1 + ... + \lambda_p x_p \mid \lambda_1,...,\lambda_p \in \mathbb{R}^+\}$

Si $A \in \mathcal{M}_n(\mathbb{R})$, on dira que A a la propriété (P) si et seulement si A est inversible, à coefficients positifs, et A^{-1} est également à coefficients positifs.

- 1. Déterminer les $A \in \mathcal{M}_2(\mathbb{R})$ ayant la propriété (P).
- 2. Si $A \in \mathcal{M}_n(\mathbb{R})$, montrer que les propriétés suivantes sont équivalentes :
 - A a la propriété (P)
 - $\bullet \{AX \mid X \in (\mathbb{R}_+)^n\} = (\mathbb{R}_+)^n$
 - $V(C_1,...,C_n)=(\mathbb{R}_+)^n$, où $C_1,...,C_n$ sont les colonnes de A.
- 3. Montrer que $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{R}^+)$ a la propriété (P) si et seulement si $\forall i \in \{1,...,n\}$, il existe un unique $j \in \{1,...,n\}$ tel que $a_{i,j} \neq 0$ et $\forall i \in \{1,...,n\}$, il existe un unique $j \in \{1,...,n\}$ tel que $a_{j,i} \neq 0$.
- 4. Une matrice de $\mathcal{O}_n(\mathbb{R})$ ayant la propriété (P) est-elle diagonalisable dans $\mathcal{M}_n(\mathbb{R})$, dans $\mathcal{M}_n(\mathbb{C})$?

Exercice 35:

- 1. Si A = diag(1,2) et $B = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$, vérifier que $\forall t \in \mathbb{R}$, A + tB est diagonalisable dans $\mathcal{M}_2(\mathbb{R})$, et que $AB \neq BA$.
- 2. On se donne $A, B \in \mathcal{M}_2(\mathbb{C})$ diagonalisables, $B \neq 0$, telles que $\forall t \in \mathbb{C}$, A + tB est diagonalisable. On veut montrer que AB = BA.
 - (a) On note $\Delta(t)$ le discriminant du polynôme caractéristique de A+tB. Vérifier que $\Delta(t)$ est un polynôme en t de degré ≤ 2 , le coefficient de t^2 dans $\Delta(t)$ étant $(tr(B))^2 - 4\det(B)$.
 - (b) En utilisant des considérations sur $\Delta(t)$, montrer que AB = BA.
- 3. Soient $A, B \in \mathcal{M}_n(\mathbb{C})$ diagonalisables telles que AB = BA. Montrer que $\forall t \in \mathbb{C}$, A + tB est diagonalisable.

Exercice 36 : Soient $A, B \in \mathcal{M}_n(\mathbb{C})$.

- 1. On suppose qu'il existe $C \in GL_n(\mathbb{C})$ telle que AC = CB. Justifier que Sp(A) = Sp(B) et que A est diagonalisable si et seulement si B l'est.
- 2. On suppose qu'il existe $C \in \mathcal{M}_n(K)$, $C \neq 0$, telle que AC = CB. Si $P \in K[X]$, montrer que P(A)C = CP(B). En déduire que A et B ont une valeur propre commune.
- 3. Si A et B ont une valeur propre commune, montrer qu'il existe $C \in \mathcal{M}_n(K)$, $C \neq 0$, telle que AC = CB.

On cherchera C sous la forme $C = X^t Y$ avec $X, Y \in \mathcal{M}_{n,1}(\mathbb{C})$.

4. On suppose qu'il existe $C \in \mathcal{M}_n(K)$ de rang r telle que AC = CB. Montrer que A et B ont r valeurs propres communes, comptées avec multiplicité. On écrira C sous la forme WJ_rT avec W,T inversibles, et on écrira $W^{-1}AW$ et TBT^{-1} par blocs.

Exercice 37:

Une matrice $M \in \mathcal{M}_n(\mathbb{C})$ est dite idempotente si et seulement si il existe $p \in \mathbb{N}^*$ tel que $M^p = I_n$. Si M est idempotente on définit son indice d'idempotence par $ind(M) = min\{p \in \mathbb{N}^* \mid M^p = I_n\}$.

- 1. Soient $A, B \in \mathcal{M}_n(\mathbb{C})$ telles que A + tB soit nilpotente pour n + 1 valeurs distinctes de t dans \mathbb{C} . Montrer que A et B sont nilpotentes.
- 2. Donner deux matrices $A, B \in \mathcal{M}_3(\mathbb{C})$ telles que $\forall t \in \mathbb{C}, A+tB$ est idempotente, et $AB \neq BA$.
- 3. Soient $A, B \in \mathcal{M}_n(\mathbb{C})$ telles que $\forall t \in \mathbb{C}$, A + tB est idempotente. Montrer que A est idempotente et B est nilpotente.
- 4. Soient $A, B \in \mathcal{M}_2(\mathbb{C})$ telles que $\forall t \in \mathbb{C}$, A + tB est idempotente. Montrer que A et B sont simultanément trigonalisables.

Exercice 38: Un théorème de Burnside $n \in \mathbb{N}, n \geq 2.$

G est un sous-groupe de $GL_n(\mathbb{C})$ (ie si $A, B \in G$, alors AB et A^{-1} sont dans G) vérifiant:

$$\exists p \in \mathbb{N}^* \; ; \; \forall A \in G, \; A^p = I_n$$

On se fixe un tel p. On pose V = vect(G) et d = dim(V)

- 1. Justifier que toute matrice de G est diagonalisable. Que dire du spectre d'une telle matrice?
- 2. Si $B \in G$ et $I_n B$ est nilpotent, montrer que $B = I_n$.

3. On note
$$V(a_1, ..., a_n) = \begin{pmatrix} 1 & a_1 & a_1^2 & \dots & a_1^{n-1} \\ 1 & a_2 & a_2^2 & \dots & a_2^{n-1} \\ \vdots & & & & \\ 1 & a_n & a_n^2 & \dots & a_n^{n-1} \end{pmatrix} \text{ et } W(a_1, ..., a_n) = \begin{pmatrix} a_1 & a_1^2 & \dots & a_1^n \\ a_2 & a_2^2 & \dots & a_2^n \\ \vdots & & & & \\ a_n & a_n^2 & \dots & a_n^n \end{pmatrix}.$$
Donner, sans démonstration, la valeur de $\det(V(a_1, ..., a_n))$.

En déduire la valeur du déterminant de $W(a_1,...,a_n)$

4. Soit $M \in \mathcal{M}_n(\mathbb{C})$.

On veut montrer que M est nilpotente si et seulement si $\forall k \in \{1, 2, ..., n\}, tr(M^k) = 0$.

- (a) Pourquoi M est-elle trigonalisable?
- (b) Si M est nilpotente, montrer que $\forall k \in \mathbb{N}^*, tr(M^k) = 0$.
- (c) On suppose $\forall k \in \{1, 2, ..., n\}, tr(M^k) = 0.$ On écrit $M = PTP^{-1}$, T étant triangulaire de coefficients diagonaux distincts $a_1, ..., a_p$, a_i apparaissant q_i fois.

Vérifier que
$$tr(M^k) = \sum_{i=1}^p q_i a_i^k$$
.

En utilisant $W(a_1,...,a_p)$, montrer que $\forall i, a_i = 0$. Conclusion?

On se donne $A_1,...,A_d\in G$ tel que $(A_1,...,A_d)$ soit une base de V.

On pose
$$\Phi: \begin{cases} V \to \mathbb{C}^d \\ B \mapsto (tr(BA_1), ..., tr(BA_d)) \end{cases}$$

5. Soient $B, D \in G$ tels que $\Phi(B) = \Phi(D)$.

Justifier que $\forall M \in V, tr(BM) = tr(DM).$

Montrer par récurrence que pour tout $k \in \mathbb{N}$, $tr((BD^{-1})^k) = n$. On utilisera la propriété usuelle tr(MN) = tr(NM).

6. Soient $B, C \in G$ telles que $\Phi(B) = \Phi(C)$.

En utilisant la question 4, montrer que $I_n - BC^{-1}$ est nilpotente. En déduire que B = C.

7. Montrer que $\Phi(G)$ est fini, puis que G est fini.

Exercice 39 : Polynôme minimal relatif à un vecteur

E est un K-ev de dimension finie. $f \in \mathcal{L}(E)$.

La décomposition en facteur irréductibles du polynôme minimal P de f est $P = P_1^{\alpha_1}...P_n^{\alpha_n}$. On note $E_i = ker(P_i^{\alpha_i}(f))$.

On rappelle que E_i est stable par f.

Si $x \in E$, on pose $I_x = \{Q \in K[X] \mid Q(f)(x) = 0\}$.

1. Vérifier que I_x est un idéal non nul de K[X].

On note A_x l'unique polynôme unitaire tel que $I_x = A_x K[X]$.

Quelle relation existe-t-il entre A_x et P?

- 2. Écrire le théorème des noyaux pour f.
- 3. Si $x \in E_i$, montrer que A_x divise $P_i^{\alpha_i}$.
- 4. Montrer, pour tout i, l'existence de $x_i \in E_i$ tel que $A_{x_i} = P_i^{\alpha_i}$. On se fixe de tels x_i , et on pose $x = x_1 + ... + x_n$.

5. Montrer que pour tout i, $P_i^{\alpha_i}$ divise A_x , puis que $A_x = P$.

Exercice 40: Matrices compagnons et applications

1. Résultats préliminaires :

(a) Si
$$P = X^n + a_{n-1}X^{n-1} + \dots + a_1X + a_0 \in \mathbb{C}[X]$$
, on pose $M_P = \begin{pmatrix} 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & \dots & 0 & -a_1 \\ 0 & 1 & \dots & 0 & -a_2 \\ 0 & 0 & \ddots & 0 & \vdots \\ 0 & \dots & 0 & 1 & -a_{n-1} \end{pmatrix}$.

(matrice compagnon associée au polynôme P)

Montrer que le polynôme caractéristique de M_P est P. Si $\lambda \in Sp(M_P)$, montrer que $dim(E_{\lambda}(M_P)) = 1$, et en donner une base.

(b) Critère d'Hadamard ("diagonale dominante").

Soit
$$M = (m_{i,j}) \in \mathcal{M}_n(\mathbb{C})$$
 telle que $\forall i \in [1, n], |m_{i,i}| > \sum_{k \neq i} |m_{i,k}|$.

Montrer que M est inversible.

ind : on considérera, si
$$X=\left(\begin{array}{c}x_1\\ \vdots\\ x_n\end{array}\right)\in Ker(M),\, i$$
 tel que $|x_i|=\max_{k\in\{1,\dots,n\}}|x_k|.$

- 2. Applications.
 - (a) Localisation des valeurs propres.

$$M = (m_{i,j}) \in \mathcal{M}_n(\mathbb{C})$$
. On pose $r_i = \sum_{k \neq i} |m_{i,k}|$.

$$\text{Montrer que } Sp_{\mathbb{C}}(M) \subset \bigcup_{i=1}^n \overline{D}(m_{i,i},r_i), \text{ où } \overline{D}(a,r) = \{z \in \mathbb{C} \ | \ |z-a| \leq r\}.$$

(b) Localisation de racines.

Soit
$$P = X^n + a_{n-1}X^{n-1} + ... + a_1X + a_0 \in \mathbb{C}[X]$$
 et $\lambda \in \mathbb{C}$ une racine de P . Montrer que $|\lambda| \le \max(|a_0|, 1 + |a_1|, 1 + |a_2|, ..., 1 + |a_{n-1}|)$.

(c) Changement d'inconnue polynomiale dans une équation polynomiale.

Soit
$$a \in \mathbb{C}$$
 une racine de $P = X^3 + 2X^2 + X + 3$ et $b = a^2 + a - 1$.
Montrer que si $M \in \mathcal{M}_n(\mathbb{C})$, $\lambda \in Sp(M)$, et $P \in \mathbb{C}[X]$, $P(\lambda)$ est valeur propre de $P(M)$.
Calculer un polynôme $Q \in \mathbb{C}[X]$ explicite à coefficients entiers non nul dont b est racine.

Exercice 41: Réduction de Jordan des nilpotents

E est un K-ev de dimension n.

$$r \in \mathbb{N}, \ r \geq 2. \ f \in \mathcal{L}(E)$$
 vérifie $f^r = 0$, et $f^{r-1} \neq 0$.

Si $i \in \mathbb{N}^*$, on note J_i la matrice de $\mathcal{M}_i(K)$ dont tous les coefficients valent 0, hormis ceux de la première surdiagonale, qui valent tous 1.

On rappelle que $E^* = \mathcal{L}(E, K)$ est l'espace des formes linéaires sur E.

- 1. Si r = n, montrer l'existence d'une base B de E telle que $Mat_B(f) = J_n$. On suppose désormais r < n.
- 2. Un peu de dualité.

Soit $(\phi_1, ..., \phi_k)$ une famille libre de E^* .

Montrer que dim
$$\left(\bigcap_{i=1}^{k} Ker(\phi_i)\right) = n - k$$
.

Montrer que dim
$$\left(\bigcap_{i=1}^{k} Ker(\phi_i)\right) = n - k$$
.

On suggère de considérer $\left\{E \to \mathbb{K}^k \atop x \mapsto (\phi_1(x), ..., \phi_k(x))\right\}$ et d'introduire une matrice.

3. On se donne $x \in E$ tel que $f^{r-1}(x) \neq 0$.

(a) On pose $B = (f^{r-1}(x), ..., f(x), x)$. Montrer que B est libre.

On pose V = vect(B).

- (b) Montrer que V est stable par f. $Mat_B(f_V) = ?$.
- (c) Justifier l'existence de $\phi \in E^*$ telle que $\phi(f^{r-1}(x)) \neq 0$. On se fixe ϕ ainsi.
- (d) Montrer que $(\phi, \phi \circ f, ... \phi \circ f^{r-1})$ est libre.
- (e) On note $W = \dim \left(\bigcap_{i=0}^{r-1} Ker(\phi \circ f^i)\right)$. $\dim(W) = ?$

Montrer que W est stable par f, et que $V \oplus W = E$.

(f) Montrer qu'il existe $q \geq 2$, $i_1, ..., i_q \in \mathbb{N}^*$, et une base C de E tels que $Mat_C(f) = diag(J_{i_1}, ..., J_{i_q})$.

Remarque: on peut montrer l'unicité de q et des i_j à l'ordre près, en regardant les rangs des f^j .

Exercice 42:

- 1. Soit $A \in \mathcal{M}_n(\mathbb{Z})$ telle que tous les coefficients de $A I_n$ soient pairs, et qu'il existe $k \in \mathbb{N}^*$ tel que $A^k = I_n$.
 - (a) Soit $B = \frac{1}{2}(A I_n)$.

Montrer que toute les valeurs propres complexes de B sont dans le cercle de centre -1/2 et de rayon 1/2.

- (b) Si $P, Q \in \mathbb{Z}[X]$, avec Q unitaire, montrer que quotient et reste de la division euclidienne de P par Q, a priori dans $\mathbb{Q}[X]$, sont dans $\mathbb{Z}[X]$.
- (c) Montrer qu'il existe $P \in \mathbb{Z}[X]$ et $a, b \in \mathbb{N}$ tels que $\chi_B = X^a(X+1)^b P$, P unitaire, et $P(0)P(-1) \neq 0$. $(\chi_B = \det(XI_n B))$
- (d) Montrer que P est constant et $A^2 = I_n$.
- 2. p est un entier ≥ 3 .

Soit $A \in \mathcal{M}_n(\mathbb{Z})$ telle que tous les coefficients de $A - I_n$ soient divisibles par p, et qu'il existe $k \in \mathbb{N}^*$ tel que $A^k = I_n$. Montrer que $A = I_n$.

3. Lemme de Serre. Pour 5/2

Soit G un sous-groupe fini de $GL_n(\mathbb{Z})$. Soit $f: \begin{cases} G \to GL_n(\mathbb{Z}/3\mathbb{Z}) \\ (a_{i,j}) \mapsto (\overline{a_{i,j}}) \end{cases}$.

Montrer que f est un morphisme de groupes.

Montrer f est injective, et majorer card(G).

Exercice 43: Soient $\theta_1,...,\theta_p$ des réels deux à deux distincts modulo 2π et $m_1,...,m_p$ des complexes non tous nuls. Le but de l'exercice est de montrer que $m_1e^{i\theta_1n}+...+m_pe^{i\theta_pn}$ ne tend pas vers 0 quand $n\to +\infty$. On suppose par l'absurde que $m_1e^{i\theta_1n}+...+m_pe^{i\theta_pn}\underset{n\to +\infty}{\longrightarrow} 0$

- $1. \text{ On note } M_n = \begin{pmatrix} e^{i\theta_1 n} & \dots & e^{i\theta_p n} \\ e^{i\theta_1 (n+1)} & \dots & e^{i\theta_p (n+1)} \\ \vdots & & \vdots \\ e^{i\theta_1 (n+p-1)} & \dots & e^{i\theta_p (n+p-1)} \end{pmatrix}. \text{ Montrer que } Y_n := M_n \begin{pmatrix} m_1 \\ \vdots \\ m_p \end{pmatrix} \underset{n \to +\infty}{\longrightarrow} 0.$
- 2. Montrer que $|\det(M_n)|$ est une constante non nulle.
- 3. A l'aide du théorème de Cayley-Hamilton, trouver une contradiction.

Exercice 44: Soient $n \in \mathbb{N}^*$, $A \in GL_n(\mathbb{Z})$. Montrer que soit A a une valeur propre de module strictement supérieur à 1, soit il existe $k \in \mathbb{N}^*$ tel que $A^k - I_n$ est nilpotente.

Exercice 45: Soit E un \mathbb{C} -ev de dimension finie. $f \in \mathcal{L}(E)$ est dit cyclique si et seulement si il existe $x \in E$ tel que $\{P(f)(x) \mid P \in \mathbb{C}[X]\} = E$.

- 1. On suppose que f est cyclique. Montrer que tout endomorphisme induit par f est cyclique et que l'ensemble des sous-espaces de E stables par f est fini.
- 2. On suppose que l'ensemble des sous-espaces de E stables par f est fini. Montrer que f est cyclique.