Redes Neurais Artificiais

INF0092 - Inteligência Computacional Universidade Federal de Goiás – Instituto de Informática

> Brunno Aires Silva (202014616) Gianlluca do Carmo Leme (202009490) Lucas Hideki Abe (201900240)

Sumário

1	Dac	Dados				
	1.1	Seleção de Colunas	2			
	1.2	Remoção de Outliers	2			
	1.3	Normalização dos Dados	3			
	1.4	Tratamento de Variáveis Categóricas	4			
2	Mo	delo	4			
	2.1	Definição da Arquitetura da Rede Neural	4			
	2.2	Função de Ativação	5			
	2.3	Inicialização de Pesos	5			
	2.4	Quantidade de Parâmetros	5			
3	Exp	perimentos	6			
	3.1	Comparações de Otimizadores	6			
	3.2	Análise de Hiperparâmetros	6			
	3.3	Resultados Comparativos	8			
1	Cor	nclusões	S			

1 Dados

1.1 Seleção de Colunas

Inicialmente, todas as colunas do conjunto de dados foram consideradas, exceto as colunas Id e SalePrice, sendo esta última o alvo (target).

Posteriormente, colunas com muitos valores ausentes ou baixa relevância foram descartadas, como:

- Alley, PoolQC, Fence, MiscFeature: mais de 80% dos valores estavam ausentes.
- Utilities: apresentava distribuição quase constante, o que a tornava irrelevante.
- Condition2, LowQualFinSF, 3SsnPorch, MiscVal: baixa variabilidade ou pouca relação com o preço.

Além disso, foram criadas novas variáveis derivadas para aumentar o poder preditivo da rede, como:

- TotalSF = soma das áreas construídas (TotalBsmtSF, 1stFlrSF, 2ndFlrSF);
- TotalBath = combinação de todos os banheiros com pesos apropriados;
- Age e RemodAge = idade da casa e tempo desde a última reforma;
- IsRemodeled, HasGarage, HasBasement = flags binárias indicativas.

1.2 Remoção de Outliers

Outliers foram removidos com base em análise empírica e distribuição visual dos dados. As seguintes regras foram aplicadas:

- Casas com GrLivArea acima de 4000 pés² e SalePrice abaixo de R\$ 300.000,00 foram removidas por serem atípicas.
- Também foram eliminadas as 0,5% maiores SalePrice, com base no percentil 99,5, para reduzir o viés gerado por valores extremos.

Essa remoção contribuiu diretamente para a queda do erro logarítmico médio (RMSLE), ao evitar que o modelo superajustasse essas amostras raras e distorcidas.

Figura 1: Histograma demonstrando outliers removidos com base na área construída

Figura 2: Histograma demonstrando outliers na variável SalePrice

1.3 Normalização dos Dados

As variáveis numéricas passaram por um pipeline de pré-processamento contendo dois passos:

• Imputação de valores ausentes com a média (SimpleImputer).

 Normalização utilizando StandardScaler, que transforma os dados para média 0 e desvio padrão 1.

O alvo (SalePrice) foi transformado com np.log1p para suavizar a assimetria e, em seguida, normalizado com o mesmo StandardScaler.

Figura 3: Distribuição de SalePrice antes e depois da transformação

Figura 3: Distribuição de SalePrice antes e depois da transformação

1.4 Tratamento de Variáveis Categóricas

As colunas categóricas foram processadas com o seguinte pipeline:

- Imputação: valores ausentes foram preenchidos com a categoria mais frequente (SimpleImputer com "most_frequent").
- Codificação: as categorias foram transformadas via OneHotEncoder, resultando em colunas binárias para cada categoria.

O parâmetro handle_unknown="ignore" foi ativado no OneHotEncoder para garantir robustez durante a predição, ignorando categorias não vistas no treinamento. Esse préprocessamento permitiu que o modelo lidasse com dados mistos (categóricos e numéricos) de forma unificada e eficaz.

2 Modelo

2.1 Definição da Arquitetura da Rede Neural

O modelo foi desenvolvido utilizando o framework PyTorch, com uma rede neural do tipo **fully connected** (camadas densas). A escolha dessa estrutura se justifica pela

natureza tabular e heterogênea dos dados, onde cada entrada representa um imóvel com atributos mistos (numéricos e categóricos).

A arquitetura da rede é composta por:

- Camada de entrada: número de neurônios igual ao número de variáveis independentes (após o OneHotEncoder e engenharia de atributos).
- 1^a camada oculta: 96 neurônios, ativação ReLU, BatchNorm1d, seguida de Dropout(0.3).
- 2ª camada oculta: 48 neurônios, ativação ReLU, BatchNorm1d, seguida de Dropout(0.2).
- Camada de saída: 1 neurônio com ativação linear (regressão contínua).

2.2 Função de Ativação

Foi utilizada a função ReLU nas camadas ocultas, por sua eficiência computacional e bom desempenho em evitar o problema do *vanishing gradient*, comum em funções como sigmoide ou tanh.

2.3 Inicialização de Pesos

Embora o PyTorch utilize por padrão a inicialização Kaiming (He initialization) em redes com ReLU, essa escolha foi mantida, pois favorece a propagação adequada do gradiente em camadas profundas. Essa decisão se alinha ao uso da função de ativação ReLU, que é compatível com esse tipo de inicialização.

2.4 Quantidade de Parâmetros

O número total de parâmetros treináveis do modelo é a soma dos pesos e vieses de todas as camadas. Seja d_{in} a dimensão de entrada (número de colunas após o OneHotEncoding), temos:

- $d_{in} \times 96 + 96 \ (1^{\underline{a}} \ \text{camada})$
- $96 \times 48 + 48 \ (2^{\underline{a}} \ camada)$
- $\bullet~48\times1+1$ (camada de saída)

O total aproximado de parâmetros treináveis foi de cerca de 7.000 a 10.000, dependendo da dimensionalidade final das variáveis categóricas (via one-hot). Essa quantidade é compatível com o porte do dataset e permitiu o treinamento eficiente com boa capacidade de generalização.

3 Experimentos

3.1 Comparações de Otimizadores

Dois otimizadores foram explorados: **SGD** (Stochastic Gradient Descent) e **Adam** (Adaptive Moment Estimation). A Figura 4 mostra a comparação das curvas de perda de validação durante o treinamento com ambos.

- Com SGD, observou-se uma redução inicial rápida, mas logo o modelo estagnava em torno de val_loss ≈ 0.13--0.14, com grande oscilação mesmo após muitas épocas.
- Com Adam, a perda de validação caiu de forma mais rápida e suave, estabilizandose em um patamar inferior val_loss ≈ 0.05--0.06 já nas primeiras 200 épocas.

Além disso, Adam mostrou menor sensibilidade a hiperparâmetros e convergência mais eficiente. A troca de SGD por Adam representou uma das melhorias mais impactantes, com queda de RMSLE de **0.14807** para **0.13076** mesmo antes de outras otimizações estruturais.

Figura 4: Comparação da curva de perda com SGD e Adam

3.2 Análise de Hiperparâmetros

Diversos hiperparâmetros foram explorados ao longo do desenvolvimento com o objetivo de melhorar a capacidade de generalização do modelo e reduzir os erros de validação.

As principais variações testadas incluíram:

• Número de camadas e neurônios:

- Inicialmente, foi usada uma única camada oculta com 64 neurônios.
- A arquitetura final adotou duas camadas ocultas com 96 e 48 neurônios, além de BatchNorm1d e Dropout, o que resultou em melhor estabilidade e menor erro.

• Taxa de aprendizado:

- A taxa inicial de 0.001 foi reduzida para 0.0005, o que suavizou a curva de perda e reduziu flutuações.
- O uso de ReduceLROnPlateau permitiu ajustar dinamicamente a taxa de aprendizado conforme a validação estagnava.

• Função de perda:

A MSELoss() se mostrou sensível a outliers e foi substituída por SmoothL1Loss(),
 que combina os benefícios da MAE e MSE.

• Regularização (DropOut e Weight Decay):

- Foram utilizados Dropout(0.3) e Dropout(0.2) nas duas camadas ocultas.
- O parâmetro weight_decay = 1e-4 foi adicionado ao otimizador Adam para reduzir overfitting.

• Parada antecipada (Early Stopping):

- O modelo foi configurado com patience = 2000 para interromper o treinamento quando a perda de validação parasse de melhorar.
- Isso evitou overfitting e garantiu que o melhor modelo fosse restaurado ao final do treinamento.

A superioridade da configuração com Adam também se refletiu visualmente nas curvas de perda. A Figura 4 mostra como o modelo com SGD apresentou flutuações contínuas e uma perda final maior, mesmo após 1000 épocas. Em contraste, o modelo com Adam convergiu de maneira suave e eficiente, com perda significativamente menor desde os primeiros ciclos de treinamento. Esse comportamento reforça a importância da escolha do otimizador como um hiperparâmetro crítico para redes profundas.

Essas modificações resultaram em uma redução progressiva do erro RMSLE de **0.14807** para **0.12552**, conforme registrado na Tabela 1 e refletido nas curvas de validação (Figura 4).

3.3 Resultados Comparativos

A Tabela 1 mostra a evolução das principais versões do modelo ao longo do desenvolvimento, indicando claramente o impacto incremental de cada melhoria implementada.

Configuração	MAE (R\$)	RMSE (R\$)	R^2	RMSLE
Sem DropOut / EarlyStop	16.540,00	29.100,00	0.8821	0.14807
+ DropOut, EarlyStop, Adam e exclusão	14.800,00	24.900,00	0.9020	0.13076
$ m de\ Id/SalePrice$				
+ Feature Engineering, log(SalePrice),	13.700,00	21.300,00	0.9180	0.12962
lr=0.0005, weight decay=1e-4				
+ Remoção de Outliers (modelo final)	$12.877,\!70$	$19.038,\!98$	0.9257	0.12552

Tabela 1: Evolução das configurações do modelo e seus resultados

A última versão, com remoção de outliers e refinamento completo da engenharia de atributos, atingiu o melhor resultado: **RMSLE de 0.12552**, encerrando o treino na época 2409 via early stopping.

4 Conclusões

Os experimentos realizados ao longo do projeto permitiram uma análise sistemática da influência dos dados e dos hiperparâmetros no desempenho final da rede neural.

- Colunas mais importantes: A engenharia de atributos revelou que variáveis derivadas como TotalSF (soma das áreas), GrLivArea (área construída) e OverallQual (qualidade geral) têm forte impacto na predição do preço. Essas colunas refletem aspectos estruturais críticos do imóvel, o que explica sua relevância para o modelo.
- Erros mais frequentes: Os exemplos com maior erro geralmente envolvem imóveis muito caros (outliers de SalePrice) ou configurações incomuns de construção e reforma. Mesmo com a transformação logarítmica e remoção de valores extremos, esses pontos ainda tendem a apresentar maior dificuldade de generalização.
- Efeito dos hiperparâmetros: A troca do otimizador de SGD para Adam teve impacto expressivo na qualidade da convergência e na estabilidade do aprendizado, com redução visível da perda de validação (ver Figura 4). Além disso, o uso de Dropout, BatchNorm, e um learning rate menor (0.0005) contribuiu para uma curva de perda mais suave e menor RMSLE.
- Efeito da normalização: A normalização das variáveis numéricas com StandardScaler foi essencial para o bom desempenho do modelo, especialmente em conjunto com atributos derivados. Já a transformação logarítmica da variável alvo (SalePrice)

foi particularmente eficaz em reduzir a assimetria da distribuição e minimizar o erro logarítmico (RMSLE).

A versão final do modelo atingiu uma pontuação de **RMSLE** = **0.12552**, um ganho expressivo frente à versão inicial (**0.14807**). Isso evidencia que decisões relacionadas à engenharia de dados, escolha de hiperparâmetros e estratégias de regularização foram fundamentais para a melhoria progressiva do desempenho preditivo.

Referências

- [1] Paszke, A., et al. (2019). PyTorch: An Imperative Style, High-Performance Deep Learning Library. NeurIPS.
- [2] Kaggle, House Prices Advanced Regression Techniques, https://www.kaggle.com/competitions/house-prices-advanced-regression-techniques/
- [3] Scikit-learn, Scikit-learn: Machine Learning in Python. Disponível em: https://scikit-learn.org/stable/. Acesso em: 5 jun. 2025.