PSALTer results panel

 $\iiint (\mathcal{A}^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + f^{\alpha\beta} \ \tau (\Delta + \mathcal{K})_{\alpha\beta} - \frac{1}{2} \alpha_{0} (\mathcal{A}_{\alpha\chi\beta} \ \mathcal{A}^{\alpha\beta\chi} + \mathcal{A}^{\alpha\beta} \ \partial_{\beta}\mathcal{A}^{\chi}_{\alpha} - 2 \ \partial_{\beta}\mathcal{A}^{\alpha\beta}_{\alpha} - 2 \ f^{\alpha\beta} \ \partial_{\chi}\mathcal{A}^{\chi}_{\beta} + 2 \ f^{\alpha}_{\alpha} \ \partial_{\chi}\mathcal{A}^{\beta\chi}_{\beta}) + \beta_{1} (2 \ \mathcal{A}^{\alpha\beta}_{\alpha} \ \mathcal{A}^{\chi}_{\beta}) + \beta_{1} (2 \ \mathcal{A}^{\alpha\beta}_{\alpha} \ \mathcal{A}^{\chi}_{\beta}) + \beta_{1} (2 \ \mathcal{A}^{\alpha\beta}_{\alpha} \ \mathcal{A}^{\chi}_{\beta}) + \beta_{2} (2 \ \mathcal{A}^{\alpha\beta}_{\alpha} \ \mathcal{A}^{\chi}_{\beta}) + \beta_{2} (2 \ \mathcal{A}^{\alpha\beta}_{\alpha} \ \mathcal{A}^{\chi}_{\beta}) + \beta_{3} (2 \ \mathcal{A}^{\alpha\beta}_{\alpha}) + \beta_{3$ $\partial^{\chi}f^{\alpha\beta} + \partial_{\chi}f_{\beta\alpha}\partial^{\chi}f^{\alpha\beta} + 2\,\,\mathcal{A}_{\alpha\chi\beta}\,\left(\,\mathcal{A}^{\alpha\beta\chi} + 2\,\partial^{\chi}f^{\alpha\beta}\right)\right) + \frac{1}{3}\,\,\alpha_{.3}\,(4\,\partial_{\beta}\mathcal{A}_{\alpha\chi\delta} - 2\,\partial_{\beta}\mathcal{A}_{\alpha\delta\chi} + 2\,\partial_{\beta}\mathcal{A}_{\chi\delta\alpha} - \partial_{\chi}\mathcal{A}_{\alpha\beta\delta} + \partial_{\delta}\mathcal{A}_{\alpha\beta\chi} - 2\,\partial_{\delta}\mathcal{A}_{\alpha\chi\beta})\,\partial^{\delta}\mathcal{A}^{\alpha\beta\chi})[t,\,\chi,\,y,\,z]\,dz\,dy\,d\chi\,dt$

Wave operator

Saturated propagator

	$^{0^+}\sigma^\parallel$	$0.^+ \tau^{\parallel}$	$0.^+\tau^{\perp}$	$0^{-}\sigma^{\parallel}$										
^{0,+} σ [∥] †	$\frac{8\beta_1}{\alpha_0^2 - 4\alpha_0\beta_1}$	$-\frac{i\sqrt{2}}{\alpha \cdot k}$	0	0										
o. ⁺ τ [∥] †	$\frac{i \sqrt{2}}{a.k}$	$-\frac{1}{\alpha_0 k^2}$	0	0										
$0.^+ au^{\perp} \dagger$	0	0	0	0										
o⁻σ †	0	0	0	$\frac{2}{\alpha4\beta.+2\alpha.k^{2}\atop 0}$	$\dot{\sigma}_{\alpha\beta}^{\dagger}$	$\overset{1^{+}}{\cdot}\sigma^{{}^{\bot}}{}_{\alpha\beta}$	$1.^{+}\tau^{\parallel}{}_{\alpha\beta}$	$^{1}\sigma^{\parallel}{}_{\alpha}$	$\frac{1}{2}\sigma^{\perp}_{\alpha}$	1. τ α	1. τ. α			
				$\overset{1}{\cdot}\overset{+}{\sigma}^{\parallel}\overset{+}{\tau}^{lphaeta}$	0	$\frac{2\sqrt{2}}{(\alpha4\beta.)(1+k^2)}$	$\frac{2i\sqrt{2}k}{(\alpha4\beta.)(1+k^2)}$	0	0	0	0			
				$\overset{1^+}{\cdot}\sigma^{\scriptscriptstyle \perp} \dagger^{lphaeta}$		$-\frac{2}{(\alpha4\beta.)(1+k^2)^2}$		0	0	0	0			
				$1.^{+}\tau^{\parallel}$ $+^{\alpha\beta}$	$-\frac{2 i \sqrt{2} k}{(\alpha4 \beta.) (1+k^2)}$	$\frac{2 i k}{(\alpha4 \beta.) (1+k^2)^2}$	$-\frac{2 k^2}{(\alpha4 \beta.) (1+k^2)^2}$	0	0	0	0			
				$\frac{1}{2}\sigma^{\parallel} + \alpha$	0	0	0	0	$-\frac{2\sqrt{2}}{(\alpha4\beta.)(1+2k^2)}$	0	$-\frac{4 i k}{(\alpha4 \beta.) (1+2 k^2)}$			
				$\frac{1}{2}\sigma^{\perp}$	0	0	0	$-\frac{2\sqrt{2}}{(\alpha4\beta.)(1+2k^2)}$	$-\frac{2}{\binom{\alpha4\beta.}{0}(1+2k^2)^2}$	0	$-\frac{2 i \sqrt{2} k}{(\alpha4 \beta.) (1+2 k^2)^2}$			
				$1^{-}\tau^{\parallel} \uparrow^{\alpha}$	0	0	0	0	0	0	0			
				$\frac{1}{r} \tau^{\perp} \uparrow^{\alpha}$	0	0	0	$\frac{4ik}{(\alpha4\beta.)(1+2k^2)}$	$\frac{2 i \sqrt{2} k}{(\alpha4 \beta.) (1+2 k^2)^2}$	0	$-\frac{4 k^2}{(\alpha4 \beta.) (1+2 k^2)^2}$	$^{2^{+}}\sigma^{\parallel}{}_{lphaeta}$	2. ⁺ τ αβ	2 ⁻ σ αβχ
				·							$^{2,^{+}}\sigma^{\parallel}\uparrow^{\alpha\beta}$		$\frac{2i\sqrt{2}}{a.k\atop 0}$	0
											$\overset{2^+}{\cdot} \tau^{\parallel} \uparrow^{\alpha\beta}$	_	$\frac{2}{\alpha_0 k^2}$	0
											$2 \sigma^{\parallel} + \alpha^{\alpha\beta\chi}$	0	0	$\frac{1}{-\frac{0}{4}+\beta_{1}}$
C	rco co										'			

Source constraints

Spin-parity form	Covariant form	Multiplicities	
0^+ $\tau^\perp == 0$	$\partial_{\beta}\partial_{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}==0$	1	
$2ik 1 \sigma^{\perp \alpha} + 1 \tau^{\perp \alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3	
$\frac{1}{\tau} \ ^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3	
$\overline{i} k 1^+_{\cdot} \sigma^{\perp}^{\alpha\beta} + 1^+_{\cdot} \tau^{\parallel}^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta} = \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} = \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} = \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + $	3	
Total expected gauge generators:			

Massive spectrum

Massive particle

Pole residue:	$-\frac{1}{\alpha_{\cdot 3}} > 0$
Square mass:	$-\frac{\alpha4\beta.}{\frac{0}{2\alpha.}} > 0$
Spin:	0
Parity:	Odd

Massless spectrum

Massless particle

Pole residue:	$\frac{p^2}{\alpha_0^2} > 0$
Polarisations:	2

Unitarity conditions

 $\alpha_0 > 0 \&\& \alpha_1 < 0 \&\& \beta_1 < \frac{\alpha_0}{4}$