

Introdução

Estudaremos agora alguns Operadores Lineares no IR²:

- Reflexões
- Dilatações e Contrações
- Cisalhamento
- Rotação

REFLEXÕES

Este Operador Linear leva cada ponto (x, y) para sua imagem (x, -y), simétrica em relação ao eixo dos x.

T:
$$IR^2 \rightarrow IR^2$$
, $T(x, y) = (x, -y)$

REFLEXÕES REFLEXÃO EM TORNO DO EIXO DAS ABCISSAS

MATRIZ CANÔNICA

$$\begin{bmatrix} \mathbf{T} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ -y \end{bmatrix} \equiv T(x,y) = (x,-y)$$

Este Operador Linear leva cada ponto (x, y) para sua imagem (-x, y), simétrica em relação ao eixo dos x.

T:
$$IR^2 \rightarrow IR^2$$
, $T(x, y) = (-x, y)$

REFLEXÕES REFLEXÃO EM TORNO DO EIXO DAS ORDENADAS

MATRIZ CANÔNICA

$$\begin{bmatrix} \mathbf{T} \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -x \\ y \end{bmatrix} \equiv T(x,y) = (-x,y)$$

REFLEXÕES REFLEXÃO EM RELAÇÃO À ORIGEM

Este Operador Linear leva cada ponto (x, y) para sua imagem (-x, -y), simétrica em relação ao eixo dos x.

T:
$$IR^2 \rightarrow IR^2$$
, $T(x, y) = (-x, -y)$

REFLEXÕES REFLEXÃO EM RELAÇÃO À ORIGEM

MATRIZ CANÔNICA

$$\begin{bmatrix} \mathbf{T} \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -x \\ -y \end{bmatrix} \equiv T(x,y) = (-x,-y)$$

DILATAÇÕES OU CONTRAÇÕES

DILATAÇÃO OU CONTRAÇÃO NA DIREÇÃO DO VETOR

Este Operador Linear leva cada ponto (x, y) para sua imagem $(\alpha x, \alpha y)$, onde $\alpha \in IR$.

T: $IR^2 \rightarrow IR^2$, $T(x, y) = (\alpha x, \alpha y)$, $\alpha \in IR$.

DILATAÇÃO OU CONTRAÇÃO NA DIREÇÃO DO VETOR

MATRIZ CANÔNICA

$$[T] = \begin{bmatrix} \alpha & 0 \\ 0 & \alpha \end{bmatrix}$$

$$\begin{bmatrix} \alpha & 0 \\ 0 & \alpha \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \alpha x \\ \alpha y \end{bmatrix} \equiv T(x,y) = (\alpha x, \alpha y)$$

DILATAÇÃO OU CONTRAÇÃO NA DIREÇÃO DO VETOR

Observemos que:

- > Se $|\alpha|$ > 1, T dilata o vetor;
- > Se $|\alpha|$ < 1, T contrai o vetor;
- \triangleright Se $\alpha = 1$, T é a identidade I;
- \triangleright Se α < 0, T muda o sentido do vetor.

Ex.: T: IR² \rightarrow IR², definida por T(x,y) = $\frac{1}{2}$ (x,y) = $\left(\frac{x}{2}, \frac{y}{2}\right)$ é um exemplo de contração.

DILATAÇÃO OU CONTRAÇÃO NA DIREÇÃO DO EIXO DAS ABSCISSAS

Este Operador Linear leva cada ponto (x, y) para sua imagem $(\alpha x, y)$, onde $\alpha \ge 0$.

T:
$$IR^2 \rightarrow IR^2$$
, $T(x, y) = (\alpha x, y)$, $\alpha \ge 0$.

DILATAÇÃO OU CONTRAÇÃO NA DIREÇÃO DO EIXO DAS ABCISSAS

MATRIZ CANÔNICA

$$[T] = \begin{bmatrix} \alpha & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} \alpha & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \alpha x \\ y \end{bmatrix} \equiv T(x, y) = (\alpha x, y)$$

DILATAÇÃO OU CONTRAÇÃO NA DIREÇÃO DO EIXO DAS ABCISSAS

Observemos que:

- \triangleright Se $\alpha > 1$, T dilata o vetor;
- \triangleright Se $0 \le \alpha < 1$, T contrai o vetor;

A transformação dada por $T(x, y) = (\alpha x, y)$ é também chamada de dilatação ou contração na direção horizontal de uma fator α .

A figura anterior mostra uma dilatação de fator $\alpha = 2$ e uma contração de fator $\alpha = 1/2$.

DILATAÇÃO OU CONTRAÇÃO NA DIREÇÃO DO EIXO DAS ORDENADAS

Este Operador Linear leva cada ponto (x, y) para sua imagem $(x, \alpha y)$, onde $\alpha \ge 0$.

T: $IR^2 \rightarrow IR^2$, $T(x, y) = (x, \alpha y)$, $\alpha \ge 0$.

DILATAÇÃO OU CONTRAÇÃO NA DIREÇÃO DO EIXO DAS ORDENADAS

MATRIZ CANÔNICA

$$[T] = \begin{bmatrix} 1 & 0 \\ 0 & \alpha \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & \alpha \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ \alpha y \end{bmatrix} \equiv T(x, y) = (x, \alpha y)$$

DILATAÇÃO OU CONTRAÇÃO NA DIREÇÃO DO EIXO DAS ORDENADAS

Observemos que:

- > Se α > 1, T dilata o vetor;
- \triangleright Se $0 \le \alpha < 1$, T contrai o vetor;

A transformação dada por $T(x, y) = (x, \alpha y)$ é também chamada de dilatação ou contração na direção vertical de uma fator α .

A figura anterior mostra uma dilatação de fator $\alpha = 2$ e uma contração de fator $\alpha = 1/2$.

CISALHAMENTO

CISALHAMENTO NA DIREÇÃO DO EIXO DAS ABSCISSAS

Este Operador Linear leva cada ponto (x, y) para sua imagem $(x + \alpha y, y)$.

T:
$$IR^2 \rightarrow IR^2$$
, $T(x, y) = (x + \alpha y, y)$.

CISALHAMENTO NA DIREÇÃO DO EIXO DAS ABSCISSAS

MATRIZ CANÔNICA

$$[T] = \begin{bmatrix} 1 & \alpha \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & \alpha \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x + \alpha y \\ y \end{bmatrix} \equiv T(x, y) = (x + \alpha y, y)$$

CISALHAMENTO NA DIREÇÃO DO EIXO DAS ABSCISSAS

O efeito desse cisalhamento, para um determinado valor de α, é transformar o retângulo OAPB no paralelogramo OAP'B' de mesma base e mesma altura (vide figura).

Por cisalhamento, cada ponto (x, y) se desloca paralelamente ao eixo dos x até chegar em $(x+\alpha y, y)$ com exceção dos pontos do próprio eixo das abscissas , pois para eles y = 0. Assim fica explicado por que o retângulo e o paralelogramo da figura tem a mesma base OA.

Esse cisalhamento é também chamado de *cisalhamento* horizontal de fator α .

CISALHAMENTO NA DIREÇÃO DO EIXO DAS ORDENADAS

Este Operador Linear leva cada ponto (x, y) para sua imagem $(x, \alpha x + y)$.

T:
$$IR^2 \rightarrow IR^2$$
, $T(x, y) = (x, \alpha x + y)$.

CISALHAMENTO NA DIREÇÃO DO EIXO DAS ORDENADAS

MATRIZ CANÔNICA

$$[T] = \begin{bmatrix} 1 & 0 \\ \alpha & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ \alpha & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ \alpha x + y \end{bmatrix} \equiv T(x, y) = (x, \alpha x + y)$$

CISALHAMENTO NA DIREÇÃO DO EIXO DAS ORDENADAS

O efeito desse cisalhamento, para um determinado valor de α, é transformar o retângulo OAPB no paralelogramo OAP'B' de mesma base e mesma altura (vide figura).

Por cisalhamento, cada ponto (x, y) se desloca paralelamente ao eixo dos y até chegar em $(x, \alpha x + y)$ com exceção dos pontos do próprio eixo das ordenadas, pois para eles x = 0. Assim fica explicado por que o retângulo e o paralelogramo da figura tem a mesma base OA.

Esse cisalhamento é também chamado de cisalhamento vertical de fator α .

A rotação do plano de um ângulo θ em torno da origem do sistema de coordenadas, sistema determinado pela base canônica [B = {(1, 0), (0, 1)}] é uma transformação linear T: IR² \rightarrow IR² que a cada vetor v = (x, y) faz corresponder T(v) = (x', y') conforme figura abaixo.

Um vetor v = (x, y) é expresso, na base canônica, por $v = xe_1 + ye_2$ e como T é linear temos:

$$T(v) = xT(e_1) + yT(e_2)$$

Mas conforme a figura acima temos:

$$T(1,0) = (\cos \theta, \, \sin \theta)$$

$$T(0,1) = (-sen\theta, cos\theta)$$

$$T(x,y) = x(\cos\theta, \sin\theta) + y(-\sin\theta, \cos\theta)$$

$$T(x,y) = (x\cos\theta - y\sin\theta, x\sin\theta + y\cos\theta)$$

MATRIZ CANÔNICA

$$[T_{\theta}] = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \cos \theta - y \sin \theta \\ x \sin \theta + y \cos \theta \end{bmatrix}$$

$$\equiv$$

$$T_{\theta}(x,y) = (x\cos\theta - y\sin\theta, x\sin\theta + y\cos\theta)$$

A matriz T_{θ} , chamada matriz de rotação de um ângulo θ , $0 \le 0 \le 2\pi$, é a matriz canônica da transformação $T: IR^2 \to IR^2$ definida no início.

Nada impede que a rotação do plano seja de um ângulo $\theta < 0$; nesse caso, o ângulo será designado por $-\theta$ e a respectiva matriz de rotação, por $T_{-\theta}$:

$$[T_{-\theta}] = \begin{bmatrix} \cos(-\theta) & -\sin(-\theta) \\ \sin(-\theta) & \cos(-\theta) \end{bmatrix}$$

Mas como $\cos(-\theta) = \cos\theta \in \sin(-\theta) = -\sin\theta$, temos :

$$\begin{bmatrix} T_{-\theta} \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

EXERCÍCIOS