Relaxation lagrangienne en programmation par contraintes appliquée au problème du commis voyageur

Raphaël Boudreault et Claude-Guy Quimper

12 mars 2021

Université Laval

Le problème du commis voyageur

Définition

- · Problème du commis voyageur
- · Problème du voyageur de commerce
- Traveling salesman problem (TSP)

Définition

- Problème du commis voyageur
- · Problème du voyageur de commerce
- Traveling salesman problem (TSP)

Définition

Étant donné une liste de villes et les distances entre chacune d'elles, déterminer le chemin le plus court visitant chaque ville une seule fois et retournant à son point de départ.

1

Définition

- · Problème du commis voyageur
- · Problème du voyageur de commerce
- Traveling salesman problem (TSP)

Définition

Étant donné une liste de villes et les distances entre chacune d'elles, déterminer le chemin le plus court visitant chaque ville une seule fois et retournant à son point de départ.

Définition (graphe)

Étant donné un graphe pondéré G, trouver un cycle hamiltonien dans G de poids minimal.

1

Note : Problème symétrique (graphe non dirigé)

Explosion combinatoire

Pour n villes, il existe $\frac{1}{2}(n-1)!$ chemins candidats...

Explosion combinatoire

Pour n villes, il existe $\frac{1}{2}(n-1)!$ chemins candidats...

n	# chemins
4	3
6	60
10	181 440
15	43589145600
20	6.1×10^{16}
49	6.2×10^{60}
61	4.2×10^{81}

Explosion combinatoire

Pour n villes, il existe $\frac{1}{2}(n-1)!$ chemins candidats...

n	# chemins
4	3
6	60
10	181 440
15	43589145600
20	6.1×10^{16}
49	$6,2 \times 10^{60}$
61	4.2×10^{81}

En général, c'est un problème NP-difficile

Bref historique

- Origines incertaines... 1800?
- · 1930 : Première formulation mathématique

Bref historique

- Origines incertaines... 1800?
- · 1930 : Première formulation mathématique
- 1954 : Dantzig, Fulkerson et Johnson résolvent un TSP à 49 villes (à la main!)

^{1.} http://www.math.uwaterloo.ca/tsp/history/pictorial/dfj.html

Bref historique

- Origines incertaines... 1800?
- · 1930 : Première formulation mathématique
- 1954 : Dantzig, Fulkerson et Johnson résolvent un TSP à 49 villes (à la main!)

- Années 90 : Applegate, Bixby, Chvátal et Cook développent le solveur exact Concorde
- 2000 à aujourd'hui : Concorde résout des problèmes difficiles allant jusqu'à 109 399 villes

1. http://www.math.uwaterloo.ca/tsp/history/pictorial/dfj.html

Formulation linéaire

V: ensemble des sommets (villes), $V \coloneqq \{1, \dots, n\}$

E : ensemble des arêtes (routes)

w(e): poids de l'arête $e \in E$ (longueur de la route e)

$$\begin{array}{ll} \min & Z = \sum_{e \in E} w(e) x_e \\ \text{s. à} & \sum_{e \in \delta(i)} x_e = 2 & \forall i \in V & \text{(1)} \\ & \sum_{i,j \in S, i < j} x_{\{i,j\}} \leq |S| - 1 & \forall S \subset V, |S| \geq 3 & \text{(2)} \\ & x_e \in \{0,1\} & \forall e \in E & \text{(3)} \end{array}$$

$$x_e \in \{0, 1\} \qquad \forall e \in E \qquad (3)$$

Formulation linéaire

Formulation linéaire

· Problème d'optimisation linéaire en nombres entiers

- · Problème d'optimisation linéaire en nombres entiers
- · Approche : deux séquences monotones de bornes
 - · Bornes supérieures : solutions admissibles
 - Bornes inférieures : relaxations

- · Problème d'optimisation linéaire en nombres entiers
- · Approche : deux séquences monotones de bornes
 - · Bornes supérieures : solutions admissibles
 - Bornes inférieures : relaxations

- · Problème d'optimisation linéaire en nombres entiers
- · Approche : deux séquences monotones de bornes
 - · Bornes supérieures : solutions admissibles
 - Bornes inférieures : relaxations

· Plans sécants, branch-and-bound...

Relaxation 1-tree du TSP

- · Introduite par Held et Karp en 1970
- · Obtenue en relaxant les contraintes de degré

Relaxation 1-tree du TSP

- · Introduite par Held et Karp en 1970
- · Obtenue en relaxant les contraintes de degré

$$\min \quad Z = \sum_{e \in E} w(e)x_e$$
s. à
$$\sum_{e \in \delta(1)} x_e = 2$$

$$\sum_{e \in E} x_e = n$$

$$\sum_{i,j \in S, i < j} x_{\{i,j\}} \le |S| - 1 \quad \forall S \subset V \backslash \{1\}, |S| \ge 3$$

$$x_e \in \{0,1\}$$

$$\forall e \in E \quad (3)$$

Relaxation 1-tree du TSP

- · Introduite par Held et Karp en 1970
- · Obtenue en relaxant les contraintes de degré

$$\min \quad Z = \sum_{e \in E} w(e) x_e$$
 s. à
$$\sum_{e \in \delta(1)} x_e = 2$$

$$\sum_{e \in E} x_e = n$$
 (N)
$$\sum_{i,j \in S, i < j} x_{\{i,j\}} \le |S| - 1 \quad \forall S \subset V \backslash \{1\}, |S| \ge 3$$
 (2)

Contraintes (1), (N), (2): structure d'un 1-tree

 $x_e \in \{0, 1\}$

 $\forall e \in E$ (3)

Borne : 24

Optimale: 28

Intégration des contraintes de degré dans la fonction objectif en ajoutant des multiplicateurs de Lagrange

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \in \mathbb{R}^n, \lambda_1 = 0$$

Intégration des contraintes de degré dans la fonction objectif en ajoutant des multiplicateurs de Lagrange

$$m{\lambda}=(\lambda_1,\lambda_2,\dots,\lambda_n)\in\mathbb{R}^n, \lambda_1=0$$

$$\min \quad Z_{RL}(m{\lambda})=\sum_{e\in E}w(e)x_e+\sum_{i\in V}\lambda_i(\deg_T(i)-2)$$
 s. à $T=\{e:x_e=1\}$ est un 1-tree

Intégration des contraintes de degré dans la fonction objectif en ajoutant des multiplicateurs de Lagrange

$$m{\lambda}=(\lambda_1,\lambda_2,\dots,\lambda_n)\in\mathbb{R}^n, \lambda_1=0$$

$$\min \quad Z_{RL}(m{\lambda})=\sum_{e\in E}w(e)x_e+\sum_{i\in V}\lambda_i(\deg_T(i)-2)$$
 s. à $T=\{e:x_e=1\}$ est un 1-tree

Pour tout λ , $Z_{RL}(\lambda)$ est une borne inférieure valide!

Étant donné λ ...

Étant donné \(\lambda_\)...

$$Z_{RL}(\boldsymbol{\lambda}) = \sum_{\{i,j\} \in E} (w(i,j) + \lambda_i + \lambda_j) x_{\{i,j\}} - 2 \sum_{i \in V} \lambda_i$$

Étant donné \(\lambda\)...

$$Z_{RL}(\lambda) = \sum_{\{i,j\} \in E} (\underbrace{w(i,j) + \lambda_i + \lambda_j}_{\tilde{w}(i,j)}) x_{\{i,j\}} - 2 \sum_{i \in V} \lambda_i$$

Étant donné \(\lambda\)...

$$Z_{RL}(\lambda) = \sum_{\{i,j\}\in E} (\underbrace{w(i,j) + \lambda_i + \lambda_j}_{\tilde{w}(i,j)}) x_{\{i,j\}} - 2 \sum_{i\in V} \lambda_i$$

Amélioration de la borne (problème des multiplicateurs) :

$$\max_{\lambda} Z_{RL}(\lambda)$$

→ Méthodes itératives (sous-gradients)

Et Concorde dans tout ça?

- Utilise les techniques mentionnées précédemment (1-tree, plans sécants, branch-and-bound...)
- · Résout rapidement des instances de grande taille (1000+)
- · Est l'état de l'art

Mais...

Et Concorde dans tout ça?

- Utilise les techniques mentionnées précédemment (1-tree, plans sécants, branch-and-bound...)
- · Résout rapidement des instances de grande taille (1000+)
- · Est l'état de l'art

Mais...

Il ne peut résoudre que le TSP *pur*, sans contraintes additionnelles (fenêtres de temps, capacités, trafic, etc.)

La programmation par contraintes

- Paradigme de programmation qui permet de résoudre des problèmes combinatoires
- · Sépare la partie modélisation de la partie résolution

- Paradigme de programmation qui permet de résoudre des problèmes combinatoires
- · Sépare la partie modélisation de la partie résolution

Modélisation

- Variables de décision
 - · Type : Entier, booléen
 - · Domaine : Énuméré ou intervalle

- Paradigme de programmation qui permet de résoudre des problèmes combinatoires
- · Sépare la partie modélisation de la partie résolution

Modélisation

- · Variables de décision
 - · Type : Entier, booléen
 - · Domaine : Énuméré ou intervalle
- Contraintes
 - Arithmétiques ($x \le 8, x \ne y, z > 0$)
 - Logiques $(x \lor y, y \Rightarrow z, \neg x \land w)$
 - Globales (ALLDIFFERENT (x_1, \ldots, x_n))

- Paradigme de programmation qui permet de résoudre des problèmes combinatoires
- · Sépare la partie modélisation de la partie résolution

Modélisation

- Variables de décision
 - · Type : Entier, booléen
 - · Domaine : Énuméré ou intervalle
- Contraintes
 - Arithmétiques $(x \le 8, x \ne y, z > 0)$
 - Logiques $(x \lor y, y \Rightarrow z, \neg x \land w)$
 - Globales (ALLDIFFERENT (x_1, \ldots, x_n))
- Fonction objectif (si problème d'optimisation)

Variables : $x \in \{4,5\}$, $y \in \{5,6\}$ et $z \in \{4,25\}$ Contraintes : x > z et $x \neq y$

Pour le choix des variables et des valeurs : heuristique

Filtrage

- · Couper des branches de l'arbre
- Chaque contrainte (arithmétique, logique ou globale) nécessite son propre algorithme de filtrage
- Prend en entrée les domaines des variables concernées et fait le ménage
- · Généralement appelés à chaque nœud de l'arbre

Variables : $x \in \{4, 5\}$, $y \in \{5, 6\}$ et $z \in \{4, 25\}$ Contraintes : x > z et $\mathbf{x} \neq \mathbf{y}$

La contrainte WeightedCircuit (Benchimol et al., 2012)

Étant donné G=(V,E) et w...

- $oldsymbol{\cdot}$ Variables binaires $oldsymbol{x} = \left(x_{e_1}, \dots, x_{e_{|E|}}
 ight)$
- Variable entière $z \in [0, U]$

La contrainte WEIGHTEDCIRCUIT (Benchimol et al., 2012)

Étant donné G=(V,E) et w...

- · Variables binaires $oldsymbol{x} = \left(x_{e_1}, \dots, x_{e_{|E|}}\right)$
- Variable entière $z \in [0, U]$

WEIGHTEDCIRCUIT(x, z) est satisfaite ssi

- $T = \{e : x_e = 1\}$ est un cycle hamiltonien de G
- $\cdot \sum_{e \in E} w(e) x_e \le z$

La contrainte WEIGHTEDCIRCUIT (Benchimol et al., 2012)

Étant donné G=(V,E) et $w\dots$

- \cdot Variables binaires $oldsymbol{x} = \left(x_{e_1}, \dots, x_{e_{|E|}}
 ight)$
- Variable entière $z \in [0, U]$

WEIGHTEDCIRCUIT(x,z) est satisfaite ssi

- $T = \{e : x_e = 1\}$ est un cycle hamiltonien de G
- $\cdot \sum_{e \in E} w(e) x_e \le z$

Reformulation du TSP

 $\min z$

s. à WeightedCircuit $({m x},z)$

Le filtrage de WeightedCircuit

- Filtrage basé sur les coûts (Focacci et al., 1999)
 - · Relaxation L et borne supérieure U
 - Si L>U, échec

- · Filtrage basé sur les coûts (Focacci et al., 1999)
 - · Relaxation L et borne supérieure U
 - Si L > U, échec
 - · Sinon, si $L[x=\mu] > U$, μ est retirée du domaine de x

- · Filtrage basé sur les coûts (Focacci et al., 1999)
 - · Relaxation L et borne supérieure U
 - Si L > U, échec
 - Sinon, si $L[x = \mu] > U$, μ est retirée du domaine de x
- · Utilise les coûts de la relaxation 1-tree
 - · Identification d'arêtes interdites
 - · Identification d'arêtes obligatoires

- · Filtrage basé sur les coûts (Focacci et al., 1999)
 - · Relaxation L et borne supérieure U
 - Si L > U, échec
 - Sinon, si $L[x = \mu] > U$, μ est retirée du domaine de x
- · Utilise les coûts de la relaxation 1-tree
 - · Identification d'arêtes interdites
 - · Identification d'arêtes obligatoires
- · Intégré au processus itératif de la RL
 - · CP-based Lagrangian relaxation, CP-LR (Sellmann, 2004)

Soit $e \in E$ pas dans le 1-tree T $(x_e = 0)$...

Soit $e \in E$ pas dans le 1-tree T $(x_e = 0)$...

- À enlever : arête de support $s \in T$
- Coût réduit : $\bar{c}(e) = \tilde{w}(e) \tilde{w}(s)$
- e est interdite si $Z_{RL}(\lambda)[x_e=1]=Z_{RL}(\lambda)+\bar{c}(e)>U$

$$Z_{RL}(\lambda) = 24 - 2(0) = 24$$

 $U = 28$

$$Z_{RL}(\lambda) = 24 - 2(0) = 24$$

 $U = 28$

$$Z_{RL}(\lambda) = 24 - 2(0) = 24$$

 $U = 28$

$$Z_{RL}(\lambda) = 24 - 2(0) = 24$$

 $U = 28$

$$Z_{RL}(\lambda) = 24 - 2(0) = 24$$
 $U = 28$
 $\bar{c}(\{4,6\}) = \underbrace{\tilde{w}(4,6)}_{9} - \underbrace{\tilde{w}(5,6)}_{4} = 5$

$$Z_{RL}(\lambda) = 24 - 2(0) = 24$$

 $U = 28$

Arêtes interdites

$$Z_{RL}(\lambda) = 24 - 2(0) = 24$$

 $U = 28$

Arêtes interdites

$$Z_{RL}(\lambda) = 24 - 2(0) = 24$$
 $U = 28$
 $\bar{c}(\{1,6\}) = \underbrace{\tilde{w}(1,6)}_{10} - \underbrace{\tilde{w}(1,2)}_{6} = 4$

Soit $e \in E$ dans le 1-tree T $(x_e = 1)...$

Soit $e \in E$ dans le 1-tree T $(x_e = 1)...$

- À ajouter : arête de remplacement $r \in T$
- Coût de remplacement : $\hat{c}(e) = \tilde{w}(r) \tilde{w}(e)$
- e est obligatoire si $Z_{RL}(\pmb{\lambda})[x_e=0]=Z_{RL}(\pmb{\lambda})+\hat{c}(e)>U$

$$Z_{RL}(\lambda) = 24 - 2(0) = 24$$

 $U = 28$

$$Z_{RL}(\lambda) = 24 - 2(0) = 24$$

 $U = 28$

$$Z_{RL}(\lambda) = 24 - 2(0) = 24$$

 $U = 28$

$$Z_{RL}(\lambda) = 24 - 2(0) = 24$$

 $U = 28$

$$Z_{RL}(\lambda) = 24 - 2(0) = 24$$
 $U = 28$
 $\hat{c}(\{2,4\}) = \underbrace{\tilde{w}(3,5)}_{8} - \underbrace{\tilde{w}(2,4)}_{3} = 5$

$$Z_{RL}(\lambda) = 24 - 2(0) = 24$$

 $U = 28$

$$Z_{RL}(\lambda) = 24 - 2(0) = 24$$

 $U = 28$

$$Z_{RL}(\lambda) = 24 - 2(0) = 24$$
 $U = 28$
 $\hat{c}(\{1,3\}) = \underbrace{\tilde{w}(1,6)}_{10} - \underbrace{\tilde{w}(1,3)}_{2} = 8$

Approche CP-LR améliorée

Principe

Question

Étant donné une variable x et une valeur μ de son domaine, est-il possible de modifier temporairement les multiplicateurs de Lagrange λ pour que cette valeur soit filtrée grâce aux coûts?

Principe

Question

Étant donné une variable x et une valeur μ de son domaine, est-il possible de modifier temporairement les multiplicateurs de Lagrange λ pour que cette valeur soit filtrée grâce aux coûts?

Objectif: Trouver λ' tel que $Z_{RL}(\lambda')[x = \mu] > U$

Principe

Question

Étant donné une variable x et une valeur μ de son domaine, est-il possible de modifier temporairement les multiplicateurs de Lagrange λ pour que cette valeur soit filtrée grâce aux coûts?

Objectif: Trouver λ' tel que $Z_{RL}(\lambda')[x=\mu] > U$

Lemme magique

Soit $e \in E$ et T le 1-tree minimal sous λ . En modifiant λ_i , si T reste inchangé et e garde la même arête de support (remplacement), $Z_{RL}(\lambda')[x_e=b]$ est donné par un calcul arithmétique simple.

Soit
$$\{i,j\} \in E$$
...

Soit $\{i,j\} \in E$...

- · Considère des cas particuliers du lemme magique
- Modifie simultanément λ_i et λ_j selon les conditions
- · Ne peut qu'augmenter $Z_{RL}(\pmb{\lambda})[x_{\{i,j\}}=b]$

$$Z_{RL}(\lambda) = 19 - 2(0) = 19$$

 $U = 23$

$$Z_{RL}(\lambda) = 19 - 2(0) = 19$$
 $U = 23$

$$\bar{c}(\{b,c\}) = \underbrace{\tilde{w}(b,c)}_{8} - \underbrace{\tilde{w}(a,b)}_{7} = 1$$

$$Z_{RL}(\lambda) = 19 - 2(0) = 19$$

$$U = 23$$

$$\bar{c}(\{b,c\}) = \underbrace{\tilde{w}(b,c)}_{8} - \underbrace{\tilde{w}(a,b)}_{7} = 1$$

$$Z_{RL}(\lambda) = 22 - 2(1) = 20$$

$$U = 23$$

$$\bar{c}(\{b,c\}) = \underbrace{\tilde{w}(b,c)}_{9} - \underbrace{\tilde{w}(a,b)}_{7} = 2$$

- · Si possible, on modifie deux nœuds sans recalcul
- \cdot Technique analogue pour les arêtes dans T

- · Si possible, on modifie deux nœuds sans recalcul
- \cdot Technique analogue pour les arêtes dans T
- 2 versions : Relaxed et Complete

- · Si possible, on modifie deux nœuds sans recalcul
- \cdot Technique analogue pour les arêtes dans T
- 2 versions : Relaxed et Complete
- Complexité en temps (pire cas) : O(|V|)

Soit $\{i,j\} \in E$. On peut formuler les contraintes sur λ' ...

$$\lambda_a' + \lambda_b' - \lambda_c' - \lambda_d' \le w(c, d) - w(a, b)$$

Soit $\{i,j\} \in E$. On peut formuler les contraintes sur λ' ...

$$\lambda_a' + \lambda_b' - \lambda_c' - \lambda_d' \le w(c, d) - w(a, b)$$

Soit $\{i, j\} \in E$. On peut formuler les contraintes sur λ' ...

$$\lambda_a' + \lambda_b' - \lambda_c' - \lambda_d' \le w(c, d) - w(a, b)$$

- \cdot Considère un ensemble incrémental de contraintes Ω
- · Cherche un ensemble de nœuds A et $\alpha \geq 0$ tels que $\lambda_u' = \lambda_u + \sigma_u \cdot \alpha$ avec $\sigma_u \in \{+1, -1\}$, pour tout $u \in A$

Soit $\{i, j\} \in E$. On peut formuler les contraintes sur λ' ...

$$\lambda_a' + \lambda_b' - \lambda_c' - \lambda_d' \le w(c, d) - w(a, b)$$

- \cdot Considère un ensemble incrémental de contraintes Ω
- Cherche un ensemble de nœuds A et $\alpha \geq 0$ tels que $\lambda'_u = \lambda_u + \sigma_u \cdot \alpha$ avec $\sigma_u \in \{+1, -1\}$, pour tout $u \in A$
- · Chaque contrainte $\omega \in \Omega$ s'écrit sous la forme $c_\omega \cdot \alpha \leq m_\omega$
- En maximisant α , on trouve $\alpha^* \geq 0$:

Soit $\{i, j\} \in E$. On peut formuler les contraintes sur λ' ...

$$\lambda_a' + \lambda_b' - \lambda_c' - \lambda_d' \le w(c, d) - w(a, b)$$

- \cdot Considère un ensemble incrémental de contraintes Ω
- Cherche un ensemble de nœuds A et $\alpha \geq 0$ tels que $\lambda'_u = \lambda_u + \sigma_u \cdot \alpha$ avec $\sigma_u \in \{+1, -1\}$, pour tout $u \in A$
- · Chaque contrainte $\omega \in \Omega$ s'écrit sous la forme $c_\omega \cdot \alpha \leq m_\omega$
- En maximisant α , on trouve $\alpha^* \geq 0$:
 - · Si $lpha^* > 0$, on augmente $Z_{RL}(\pmb{\lambda})[x_{\{i,j\}} = b]$

Soit $\{i, j\} \in E$. On peut formuler les contraintes sur λ' ...

$$\lambda_a' + \lambda_b' - \lambda_c' - \lambda_d' \le w(c, d) - w(a, b)$$

- · Considère un ensemble incrémental de contraintes Ω
- Cherche un ensemble de nœuds A et $\alpha \geq 0$ tels que $\lambda_u' = \lambda_u + \sigma_u \cdot \alpha$ avec $\sigma_u \in \{+1, -1\}$, pour tout $u \in A$
- · Chaque contrainte $\omega \in \Omega$ s'écrit sous la forme $c_\omega \cdot \alpha \leq m_\omega$
- En maximisant α , on trouve $\alpha^* \geq 0$:
 - · Si $\alpha^* > 0$, on augmente $Z_{RL}(\lambda)[x_{\{i,j\}} = b]$
 - Si $\alpha^* = 0$, faire un choix de nœud pour débloquer!

Algorithme $\alpha ext{-Sets}$

$$Z_{RL}(\lambda) = 22 - 2(1) = 20$$

 $U = 23$

Algorithme $\alpha ext{-Sets}$

$$Z_{RL}(\lambda) = 22 - 2(1) = 20$$

$$U = 23$$

$$\bar{c}(\{b,c\}) = \underbrace{\tilde{w}(b,c)}_{9} - \underbrace{\tilde{w}(a,b)}_{7} = 2$$

$$Z_{RL}(\lambda) = 22 - 2(1) = 20$$

$$U = 23$$

$$\bar{c}(\{b,c\}) = \underbrace{\tilde{w}(b,c)}_{0} - \underbrace{\tilde{w}(a,b)}_{7} = 2$$

Contraintes

$$\begin{split} &\alpha \leq \tilde{w}(a,b) - \tilde{w}(a,c) = 1 \\ &\alpha \leq \tilde{w}(b,d) - \tilde{w}(a,c) = 3 \\ &\alpha \leq \tilde{w}(b,d) - \tilde{w}(c,d) = 5 \\ &\alpha \leq \tilde{w}(d,e) - \tilde{w}(c,d) = \mathbf{0} \\ &\alpha \leq \tilde{w}(d,e) - \tilde{w}(c,e) = 1 \end{split}$$

Algorithme $\alpha ext{-Sets}$

$$Z_{RL}(\lambda) = 22 - 2(1) = 20$$

$$U = 23$$

$$\bar{c}(\{b,c\}) = \underbrace{\tilde{w}(b,c)}_{0} - \underbrace{\tilde{w}(a,b)}_{7} = 2$$

Contraintes

$$\alpha \leq \tilde{w}(a,b) - \tilde{w}(a,c) = \mathbf{1}$$

$$\alpha \leq \tilde{w}(b,d) - \tilde{w}(a,c) = 3$$

$$\alpha \leq \tilde{w}(b,d) - \tilde{w}(c,d) = 5$$

$$\alpha \leq \tilde{w}(d,e) - \tilde{w}(c,d) = 0$$

$$\alpha \leq \tilde{w}(d,e) - \tilde{w}(c,e) = \mathbf{1}$$

Algorithme $\alpha ext{-Sets}$

$$\begin{split} Z_{RL}(\boldsymbol{\lambda}) &= \mathbf{27} - 2(\mathbf{3}) = \mathbf{21} \\ U &= 23 \\ \bar{c}(\{b,c\}) &= \underbrace{\tilde{w}(b,c)}_{\mathbf{10}} - \underbrace{\tilde{w}(a,b)}_{7} = \mathbf{3} \ \odot \end{split}$$

- Itératif : Tant qu'un ensemble A valide existe
- Pour limiter le nombre de contraintes considérées : cardinalité maximale C_m
- · Implémentation : Recherche en profondeur itérative

- Itératif : Tant qu'un ensemble A valide existe
- Pour limiter le nombre de contraintes considérées : cardinalité maximale ${\cal C}_m$
- · Implémentation : Recherche en profondeur itérative
- · Complexité en temps (pire cas) : $O(C_m|V||E|4^{C_m})$

- Itératif : Tant qu'un ensemble A valide existe
- Pour limiter le nombre de contraintes considérées : cardinalité maximale ${\cal C}_m$
- · Implémentation : Recherche en profondeur itérative
- · Complexité en temps (pire cas) : $O(C_m|V||E|4^{C_m})$
- · Algorithme Hybrid : SIMPLE Complete d'abord

Résultats et conclusion

Méthodologie

- · Implémentés dans Choco / Choco Graph
- Banc d'essai : TSPLIB (28 instances, taille 96 à 431)
- Comparaison de SIMPLE (2 versions) et HYBRID VS Choco (état de l'art pour l'implémentation de WEIGHTEDCIRCUIT)
- · Appelés à la dernière itération du sous-gradient
- α -SETS :
 - · Nombre maximal d'itérations : 10
 - $\cdot C_m = 2$
 - Condition d'appel : $|E| \le 2|V|$

Résultats (en bref)

Mesure	Choco		SIMPLE Relaxed		SIMPLE Complete		Hybrid	
	Nœuds	Temps	Nœuds	Temps	Nœuds	Temps	Nœuds	Temps
Moy. arithmétique	89031	1779.8	65906	1393.3	63276	1339.5	50592	1130.8
Moy. géométrique	4084	53.1	3293	41.8	3150	43.3	2484	35.6
Écart-type	242149	4878	176157	3955.5	176451	3760.8	138628	3317.6

Résultats (en bref)

Mesure	Choco		SIMPLE Relaxed		SIMPLE Complete		HYBRID	
	Nœuds	Temps	Nœuds	Temps	Nœuds	Temps	Nœuds	Temps
Moy. arithmétique Moy. géométrique Écart-type	89031 4084 242149	1779.8 53.1 4878	65906 3293 176157	1393.3 41.8 3955.5	63276 3150 176451	1339.5 43.3 3760.8	50592 2484 138628	1130.8 35.6 3317.6

Conclusion

Contributions

- Introduction d'une approche améliorée pour les problèmes de type CP-LR
- Application de cette approche sur le filtrage de la contrainte WEIGHTEDCIRCUIT
 - 1. Algorithme SIMPLE
 - 2. Algorithme α -SETS
- Amélioration significative du temps de résolution comparativement à l'état de l'art implémenté dans Choco

Conclusion

Contributions

- Introduction d'une approche améliorée pour les problèmes de type CP-LR
- Application de cette approche sur le filtrage de la contrainte WEIGHTEDCIRCUIT
 - 1. Algorithme SIMPLE
 - 2. Algorithme lpha-SETS
- Amélioration significative du temps de résolution comparativement à l'état de l'art implémenté dans Choco

Suite des choses

- · Intégration avec les travaux d'Isoart et Régin (2019, 2020)
- · Expérimentations sur d'autres problèmes de type CP-LR

