

HCC/HCF4015B

DUAL 4-STAGE STATIC SHIFT REGISTER WITH SERIAL INPUT/PARALLEL OUTPUT

- MEDIUM SPEED OPERATION: 12MHz (typ.) CLOCK RATE AT VDD VSS = 10V
- FULLY STATIC OPERATION
- 8 MASTER-SLAVE FLIP-FLOPS PLUS INPUT AND OUTPUT BUFFERING
- HIGH NOISE IMMUNITY
- QUIESCENT CURRENT SPECIFIED TO 20V FOR HCC DEVICE
- INPUT CURRENT OF 100nA AT 18V AND 25°C FOR HCC DEVICE
- 100% TESTED FOR QUIESCENT CURRENT
- 5V, 10V, AND 15V PARAMETRIC RATINGS
- MEETS ALL REQUIREMENTS OF JEDECTENTATIVE STANDARD NO. 13A, "STANDARD SPECIFICATIONS FOR DESCRIPTION OF "B" SERIES CMOS DEVICES"

DESCRIPTION

The **HCC4015B** (extended temperature range) and **HCF4015B** (intermediate temperature range) are monolithic integrated circuits, available in 16-lead dual in-line plastic or ceramic package and plastic micropackage.

The HCC/HCF4015B consists of two identical, independent, 4-stage serial-input/parallel-output registers. Each register has independent CLOCK and RESET inputs as well as a single serial DATA input. "Q" outputs are available from each of the four stages on both registers. All register stages are D-type, master-slave flip-flops. The logic level present at the DATA input is transferred into the first register stage and shifted over one stage at each positive-going clock transition. Resetting of all stages is accomplished by a high level on the reset line. Register expansion to 8 stages using one HCC/HCF4015B package, or to more than 8 stages using additional HCC/HCF4015B's is possible.

June 1989 1/12

FUNCTIONAL DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DD} *	Supply Voltage : HCC Types HCF Types	- 0.5 to + 20 - 0.5 to + 18	V
Vi	Input Voltage	-0.5 to $V_{DD} + 0.5$	V
I _I	DC Input Current (any one input)	± 10	mA
P _{tot}	Total Power Dissipation (per package) Dissipation per Output Transistor for Top = Full Package-temperature Range	200 100	mW mW
Тор	Operating Temperature : HCC Types HCF Types	- 55 to + 125 - 40 to + 85	°C ℃
T _{stg}	Storasge Temperature	- 65 to + 150	°C

Stresses above those listed under "Absolute Maximum Ratings "may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for external periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage : HCC Types HCF Types	3 to 18 3 to 15	V V
VI	Input Voltage	0 to V _{DD}	V
Top	Operating Temperature : HCC Types HCF Types	- 55 to + 125 - 40 to + 85	°C

^{*} All voltage values are referred to V_{SS} pin voltage.

LOGIC DIAGRAMS AND TRUTH TABLE

STATIC ELECTRICAL CHARACTERISTICS (over recommended operating conditions)

			1	est Con	dition	s				Value				
Symbol	Parame	ter	Vı	Vo	I ₀	V _{DD}	TL	* ow*		25°C		T _{Hi}	iah*	Unit
			(V)	(V)	(μA)	(V)	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
ΙL	Quiescent		0/ 5			5		5		0.04	5		150	
	Current	нсс	0/10			10		10		0.04	10		300	
		Types	0/15			15		20		0.04	20		600	
			0/20			20		100		0.08	100		3000	μΑ
			0/ 5			5		20		0.04	20		150	
		HCF Types	0/10			10		40		0.04	40		300	
		1)	0/15			15		80		0.04	80		600	
V_{OH}	Output High	h	0/ 5		< 1	5	4.95		4.95			4.95		
	Voltage		0/10		< 1	10	9.95		9.95			9.95		V
			0/15		< 1	15	14.95		14.95			14.95		
V_{OL}	Output Low	1	5/0		< 1	5		0.05			0.05		0.05	
	Voltage		10/0		< 1	10		0.05			0.05		0.05	V
			15/0		< 1	15		0.05			0.05		0.05	
V_{IH}	Input High			0.5/4.5	< 1	5	3.5		3.5			3.5		
	Voltage			1/9	< 1	10	7		7			7		V
				1.5/13.5	< 1	15	11		11			11		
V_{IL}	Input Low			4.5/0.5	< 1	5		1.5			1.5		1.5	
	Voltage			9/1	< 1	10		3			3		3	V
				13.5/1.5	< 1	15		4			4		4	
I_{OH}	Output		0/ 5	2.5		5	- 2		- 1.6	- 3.2		- 1.15		
	Drive Current	HCC	0/ 5	4.6		5	- 0.64		- 0.51	- 1		- 0.36		
	Curron	Types	0/10	9.5		10	- 1.6		- 1.3	- 2.6		- 0.9]
			0/15	13.5		15	- 4.2		- 3.4	- 6.8		- 2.4		mA
			0/ 5	2.5		5	- 1.53		- 1.36	- 3.2		- 1.1		
		HCF	0/ 5	4.6		5	- 0.52		- 0.44	- 1		- 0.36		
		Types	0/10	9.5		10	- 1.3		- 1.1	- 2.6		- 0.9		
			0/15	13.5		15	- 3.6		- 3.0	- 6.8		- 2.4		
I_{OL}	Output	ПСС	0/ 5	0.4		5	0.64		0.51	1		0.36		
	Sink Current	Types	0/10	0.5		10	1.6		1.3	2.6		0.9		
			0/15	1.5		15	4.2		3.4	6.8		2.4		mA
		HCF	0/ 5	0.4		5	0.52		0.44	1		0.36		
		Types	0/10	0.5		10	1.3		1.1	2.6		0.9		
			0/15	1.5		15	3.6		3.0	6.8		2.4		
I _{IH} , I _{IL}	Input Leakage	HCC Types	0/18	Any In	nut	18		± 0.1		±10 ⁻⁵	± 0.1		± 1	μΑ
	Current	HCF Types	0/15	,y III	Put	15		± 0.3		±10 ⁻⁵	± 0.3		± 1	μπ
Cı	Input Capa	citance		Any In	put					5	7.5			pF

^{*} T_{Low} = - 55°C for **HCC** device : - 40°C for **HCF** device. * T_{High} = + 125°C for **HCC** device : + 85°C for **HCF** device. The Noise Margin for both "1" and "0" level is : 1V min. with V_{DD} = 5V, 2V min. with V_{DD} = 10V, 2.5 V min. with V_{DD} = 15V.

DYNAMIC ELECTRICAL CHARACTERISTICS (T_{amb} = 25 °C, C_L = 50 pF, R_L = 200 k Ω , typical temperature coefficient for all V_{DD} values is 0.3 %/°C, all input rise and fall times = 20 ns)

Symbol	Parameter	Test Conditions			Value		Unit
Syllibol	Farameter	V _{DD} (V)		Min.	Тур.	Max.	Unit
CLOCKE	D OPERATION						
t _{PLH} , t _{PHL}	Propagation Delay Time		5		160	320	
	(carry out or decoded out lines)		10		80	160	ns
			15		60	120	
t_{THL}, t_{TLH}			5		100	200	
	(carry out or decoded out lines)		10		50	100	ns
			15		40	80	
f _{CL}	Maximum Clock Input Frequency		5	3	6		
			10	6	12		MHz
			15	8.5	17		
tw	Clock Pulse Width		5	180	90		
			10	80	40		ns
			15	50	25		
t _r , t _f *	Clock Input Rise or Fall Time		5			15	
			10			15	μs
			15			15	
t _{setup}	Data Setup Time		5	70	35		
			10	40	20		ns
			15	30	15		
RESET (OPERATION						
t _{PLH} , t _{PHL}	Propagation Delay Time		5		200	400	
			10		100	200	ns
			15		80	160	
t _W	Reset Pulse Width		5	200	100		
			10	80	40		ns
			15	60	30		

 $^{^{\}star}$ If more than unit is cascaded in the parallel clocked application, t_rCL should be made less than or equal to the sum of the fixed propagation delay at 15pF and the transition time of the carry output driving stage for the estimated capacitive load.

Typical Output Low (sink) Current Characteristics.

Typical Output High (source) Current Characteristics.

Typical transition Time vs. Load Capacitance.

Minimum Output Low (sink) Current Characteristics.

Minimum Output High (source) Current Characteristics.

Typical propagation Delay Time vs. Load Capacitance..

Typical Dynamic Power Dissipation vs. Frequency.

TEST CIRCUITS

Quiescent Device Current.

Input current.

Input Voltage.

Power Dissipation.

Plastic DIP16 (0.25) MECHANICAL DATA

DIM.		mm			inch	
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
В	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
E		8.5			0.335	
е		2.54			0.100	
e3		17.78			0.700	
F			7.1			0.280
I			5.1			0.201
L		3.3			0.130	
Z			1.27			0.050

Ceramic DIP16/1 MECHANICAL DATA

DIM.		mm			inch	
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			20			0.787
В			7			0.276
D		3.3			0.130	
Е	0.38			0.015		
e3		17.78			0.700	
F	2.29		2.79	0.090		0.110
G	0.4		0.55	0.016		0.022
Н	1.17		1.52	0.046		0.060
L	0.22		0.31	0.009		0.012
M	0.51		1.27	0.020		0.050
N			10.3			0.406
Р	7.8		8.05	0.307		0.317
Q			5.08			0.200

SO16 (Narrow) MECHANICAL DATA

DIM.		mm			inch	
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			1.75			0.068
a1	0.1		0.2	0.004		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1			45°	(typ.)		
D	9.8		10	0.385		0.393
E	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.62			0.024
S			8° (r	nax.)		

PLCC20 MECHANICAL DATA

DIM.		mm		inch		
J	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	9.78		10.03	0.385		0.395
В	8.89		9.04	0.350		0.356
D	4.2		4.57	0.165		0.180
d1		2.54			0.100	
d2		0.56			0.022	
E	7.37		8.38	0.290		0.330
е		1.27			0.050	
e3		5.08			0.200	
F		0.38			0.015	
G			0.101			0.004
М		1.27			0.050	
M1		1.14			0.045	

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

