CTL Model Checking

Wishnu Prasetya

wishnu@cs.uu.nl www.cs.uu.nl/docs/vakken/pv

Background

 Example: verification of web applications → e.g. to prove existence of a path from page A to page B.

Use of CTL is popular → another variant of "temporal logic" → different way of model checking.

- Model checker for verifying CTL: SMV. Also uses a technique called "symbolic" model checking.
 - In contrast, SPIN model checking is called "explicit state".
 - We'll show you how this symbolic MC works, but first we'll take a look at CTL, and the web application case study.

Overview

- CTL
 - CTL
 - Model checking
- Symbolic model checking
- BDD
 - Definition
 - Reducing BDD
 - Operations on BDD
- Acknowledgement: some slides are taken and adapted from various presentations by Randal Bryant (CMU), Marsha Chechik (Toronto)

CTL

- Stands for Computation Tree Logic
- Consider this Kripke structure (labeling omitted) :

In LTL, an "execution" is defined as a sequence:

CTL

Informally, CTL is interpreted over computation trees.

- We have path quantifiers:
 - A ... : holds for all path (starting at the tree's root)
 - E ... : holds for some path
- Temporal operators :
 - X ...: holds next time
 - F ... : holds in the future
 - G ... : always hold
 - U : until

Intuition of CTL operators

Intuition of CTL operators

Syntax

```
\phi ::= p \qquad \text{// atomic (state) proposition} | \neg \phi | \phi_1 \wedge \phi_2 | EX \phi | AX \phi | E[\phi_1 \cup \phi_2] | A[\phi_1 \cup \phi_2]
```

Derived operators

- $\psi \lor \phi = \neg (\neg \phi \land \neg \psi)$
- $\psi \rightarrow \phi = \neg \psi \lor \phi$
- EF φ = E[true U φ]
- AF φ = A[true U φ]
- EG $\varphi = \neg AF \neg \varphi$
- AG $\varphi = \neg EF \neg \varphi$

Semantics

 $R: S \rightarrow \{S\}$: transition relation

 $V: S \rightarrow \{Prop\} : observations$

- Let $M = (S, s_0, R, V)$ be a Kripke structure \odot
- $M,t \mid == \phi \phi$ holds on the comp. tree t
- $M \mid == \varphi$ is defined as M, **tree**(s_0) $\mid == \varphi$
- $M,t \mid == p = p \in V(root(t))$
- $M,t \mid == \neg \phi = \text{not} (M,t \mid == \phi)$
- M,t |== $\phi \wedge \psi$ = M,t |== ϕ and M,t |== ψ

Semantic of "X"

- $M,t \mid == EX\phi = (\exists v \in R(root(t)) :: M, tree(v) \mid == \phi)$
- $M,t \mid == AX\phi = (\forall v \in R(root(t)) :: M, tree(v) \mid == \phi)$

This definition of the A-quantifier is a bit problematic if you have a terminal state t (state with no successor), because then you get $t \models AX \varphi$ for free, for any φ (the above \forall -quantification would quantify over an empty domain). This can be patched; but we'll just assume that your M contains no terminal state (all executions are infinite).

Semantic of "U"

• $M,t \mid - E[\psi \cup \phi] =$

There is a path σ in M, starting in **root**(t) such that:

- For some ≥ 0 , M, tree $(\sigma_i) = \varphi$
- For all previous j, $0 \le j < i$, M, tree $(\sigma_j) \mid == \psi$
- $M,s \mid -A[\psi \cup \phi] =$

For <u>all</u> path σ in M, starting in **root**(t), these hold:

LTL vs CTL

- They are not the same.
- Some properties can be expressed in both:

AG
$$(x=0) = [] (x=0)$$

AF $(x=0) = <>(x=0)$
A[$x=0$ U $y=0$] = $x=0$ U $y=0$

Some CTL properties can't be expressed in LTL, e.g.

EF (
$$x = 0$$
)

 $\{x=0\}$
 $\{x=0\}$

LTL vs CTL

 Some LTL properties cannot be expressed in CTL, e.g.

E.g. AF AG *p* does not express the property; the above Kripke does not satisfy it.

LTL vs CTL

Another example, fairness restriction:

$$([] <> p \rightarrow <> q) \rightarrow <> q$$
$$= [] <> p \lor <> q$$

e.g. AGAF $p \lor AF q$ does not hold on the tree.

CTL*

- Allows more combinations of path and temporal quantifiers.
- A CTL* formula is a "state formula", syntax:

(State formula)

```
\phi :: p // p is atomic proposition | \neg \phi | \phi_1 \lor \phi_2 | E f | A f // f is a path formula
```

(Path formula)

$$f :: \varphi$$

 $|\neg f | f \lor g | Xf | Ff | Gf | f_1 U f_2$

We can express all CTL formulas in CTL*, but e.g. this is also possible in CTL*:

AFG(x=0)

Example: web application

Based on:

A Model Checking-based Method for Verifying Web Application Design, Donini et al, in Int. Workshop on Web Lang. and Formal Methods (WLFM), 2005.

- In their approach, models are obtained from UML design of the web application.
- Other possibilities:
 - By crawling a web site
 - By analyzing log

WAG

Model web application as a graph (N,C), where

C: $N\rightarrow 2^N$ defines the arrows in the graph, and such that:

- A window can only be connected to pages
- A page can only be connected to links or actions
- A link or an action can only be connected to windows

Called "Web Application Graph" (WAG)

WAG as Kripke

 See a WAG as a Kripke structure, e.g. each node in the WAG is a state in the Kripke structure.

 Label each state with propositions w,p,l,a to express whether it is a window, or a page etc.

Introduce other propositions of interest, e.g.

login, logout

private

error

To mark a login/logout action

To mark states considered "private"

To mark "error page".

Label the states with these propositions.

- frame/window
- page
- action
- link

Now properties like these are well defined...

A (¬private W ¬private ∧ loginSuccess)

You cannot get to the private part without logging in....

AG (loginSucess → EF private)

Once logged in, it should be possible to get to the private part

Model checking CTL formulas

- Kripke M = (S, s₀, R, V)
- We want to verify M |== φ
- Assume φ is expressed in CTL's (chosen) basic operators.
- The verification algorithm works by systematically labeling M's states with subformulas of φ.

Whenever we conclude root(s) = f, we label s with f.

After the labeling:

 $M/= \varphi$ iff s_0 is labeled with φ

Example, checking **EX**(p/\q)

 $Prop = \{p,q\}$

Initial state is <u>not</u> labeled with the target formula; so the formula is not valid.

Example, checking A[pU(p/\q)]

At the end, initial state is <u>not</u> labeled with the target formula; so the formula is not valid

Example, checking: E[p U (p/\q)]

Can we apply this to LTL?

Consider <>[] p = <>¬<>¬p

Applying labeling :

When you cant label a state with φ , for LTL this does <u>not</u> imply that $\neg \varphi$ is valid on all executions starting from that state. It worked in CTL because $\neg AF \neg p = EG p \dots$ where as what we want is []p, which corresponds to AG p.

Symbolic representation

You need the full statespace to do the labeling!

• Idea:

- Use formulas to encode sets of states (e.g. to express the set of states labeled by something)
- A small formula can express a large set of states → suggest a potential of space reduction.

4 states, can be encoded by 2 boolean variables x and y.

St-0
$$\neg x \neg y$$

St-1 $\neg xy$
St-2 $x \neg y$
St-3 xy

E.g. the set of states where q holds is encoded by the formula:

Similarly, the set of states where p holds : {0,1,2}, can be encoded by formula:

$$\neg(xy)$$

States encoding:

We can also describe this more program-like:

if state∈
$$\{0,2\}$$
 → goto $\{0,1\}$
[] state∈ $\{1,3\}$ → goto 2
[] state=3 → goto $\{2,3\}$
fi

N.D.

which can be encoded with this boolean formula:

$$\neg y \neg x' \quad \forall \quad yx' \neg y' \quad \forall \quad xyx'$$

byte x; // unspecified initial value

if $x\neq 255 \rightarrow x=0$;

The automaton has 256 states, with 256 arrows.

• Bit matrix: 8.3 Kbyte

• List of arrows: 512 bytes

With boolean formula:

$$\neg (x_0..x_7) \land \neg x'_0... \neg x'_7$$
 \lor
 $x_0...x_7 \land x'_0... x'_7$

Model checking

- When we label states with a formula f, we are basically calculating the set of states (of M) that satisfy f.
- Introduce this notation:

```
W_f = the set of states (whose comp. trees) satisfy f = { s \mid s \in S, M, tree(s) |== f }
```

We now encode W_f as as a boolean formula

M = f if and only if W_f evaluated on s_0 returns true

Labeling

If p is an atomic formula:

 W_p = boolean formula representing the set of states where p holds.

- For conjunction:
- Negation:

- $W_{f \land g} = W_f \land W_g$
- $W_{\neg_f} = \neg W_f$

For EX:

$$W_{EXf} = \exists x', y' :: R \land W_{f}[x', y'/x, y]$$

• AX f = $\neg EX \neg f$

On filtering arrows...

States encoding:

Suppose we have these arrows,
$$R = \{1,3\} \rightarrow \{2\}$$

 $\{3\} \rightarrow \{1,3\}$
 $\{3\} \rightarrow \{1,3\}$

To filter arrows over destinations, conjunct it with a formula f over primed vars, e.g to get arrows that end up in state 1:

$$(y x' \neg y' \lor xyy') \land \neg x'y'$$

To get only the source-states, quantify over primed vars, e.g. :

$$\exists x',y' :: (y x' \neg y' \lor xyy') \land \neg x'y'$$

Filtering 2

$$(\forall x',y' :: R(x,y,x',y') \Rightarrow W(x',y'))$$

Would give the set of source-states whose outgoing arrows all go to W.

Note:

- this would include all terminal states in M ... weird, but we discussed this before. We assumed M does not contain terminals.
- this would include all invalid encodings (those states that were not actually in your M) as well → add a constraint that filters your result to drop those states.

Example, **EX**p

States encoding: St-0 ¬x¬y St-1 ¬xy St-2 x¬y St-3 xy

```
W_{p} = \neg(xy)
W_{EXp} = \exists x', y' ::: R \land \neg(x'y')
= \exists x', y' ::: ((\neg y \neg x' \lor yx' \neg y' \lor xyx') \land \neg(x'y'))
= true
```

Labeling

- E.g. the states satisfying E[f U g] can be computed by:
 - Let $K_0 = W_g$
 - Iteratively compute K_i

$$K_{i+1} = K_i \lor (\exists x', y' :: R \land W_f \land K_i[x', y'/x, y])$$

• Stop when $K_{i+1} = K_i$; then $W_{E[p \ U \ q]} = K_i$

Example, EX[p U q]

States encoding:

$$K_0 = W_q = x \neg y$$

$$\bullet K_2 = \dots$$

Till fix point.

But how to check fix point?

 To make this works, we need a way to efficiently check the equivalence of two boolean formulas:

$$f \leftrightarrow g$$

So, we can decide when to we have reached a fixpoint

- In general this is an NP-hard problem.
- Use a SAT-solver to check if \neg (f \leftrightarrow g) is unsatisfiable.
- We'll discuss BDD approach

Canonical representation

- = simplest/standard form.
- Here, a canonical representation C_f of a formula f is a representation such that:

$$f \leftrightarrow g$$
 iff $C_f = C_g$

- Gives us a way to check equivalence.
- Only useful if the cost of constructing C_f, C_g + checking C_f
 = C_q is cheaper than directly checking f ↔ g.
- Some possibilities:
 - Truth table → exponentially large.
 - DNF/CNF → can also be exponentially large.

BDD

- Binary Decision Diagram; a compact, and canonical representation of a boolean formula.
- Can be constructed and combined efficiently.
- Invented by Bryant:

"Graph-Based Algorithms for Boolean Function Manipulation". Bryant, in IEEE Transactions on Computers, C-35(8),1986.

Decision Tree

$$\neg x_1 x_2 x_3 \quad V \quad x_1 \neg x_2 x_3 \quad V \quad x_1 x_2 x_3$$

with truth table:

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

TT is canonical if we fix the order of the columns.

Or representing the table with a (binary decision) tree:

- Each node x_i represents a decision:
 - □ Blue out-edge from $x_i \rightarrow$ assigning 1 to x_i
 - \blacksquare Red out-edge from $x_i \rightarrow$ assigning 0 to x_i
- Function value is determined by leaf value.

But we can compact the tree...

E.g. by merging the duplicate leaves:

We can compact this further by merging duplicate subgraphs ...

Results

Word Size	Gates	Patterns	CPU Minutes	A=B Graph		
4	52	1.6×10^4	1.1	197		
8	123	4.2×10^{6}	2.3	377		
16	227	2.7×10^{11}	6.3	737		
32	473	1.2×10^{21}	22.8	1457		
64	927	2.2×10^{40}	95.8	2897		
Table 2.ALU Verification Examples						

Note: this is from Bryant's paper in 1986. They use their version of MC at that time, running it on an DEC VAX 11/780, with about 1 MIP speed ©

Boolean formula

 A boolean formula (proposition logic formula) e.g. x.y V z can be seen as a function :

$$f(x,y,z) = x.y \lor z$$

- In Bryant's paper this is called a: boolean function.
- E.g. 'composing' functions as in

"
$$f(x, y, g(x,y,z))$$
"

is the same as the corresponding substitution.

Binary Decision Diagram

- A <u>BDD</u> is a directed acyclic graph, with
 - a single root
 - two 'leaves' → 0/1
 - non-leaf node
 - labeled with 'varname'
 - has 2 children

 Along every path, no var appears more than 1x

- We'll keep the arrow-heads implicit
 - always from top to bottom

func(G)

x = val(v)

• func(v) = $\neg x$. func(low(v)) $\lor x$. f(high(v))

func(G) = func(root)

func(0) = 0, func(1) = 1

otherwise G can be reduced!

Reduced BDD

 Two BDDS F ang G are isomorphic if you can obtain G from F by renaming F's nodes, vice versa.

But you are not allowed to rename var(v) nor val(v)!

then: func(F) = func(G)

- A BDD G is reduced if:
 - for any non-leaf node v, low(v) ≠ high(v).
 - for any distinct nodes u and v, the sub-BDDs rooted at them are not isomorphic.

Ordered BDD

- OBDD → fix an ordering on the variables
 - let index(v) → the order of v in this ordering ☺
 - index(v) < index(low(v)
 - same with high(v)

satisfies ordering [y,z,x] but not [x,y,z]

Reduced OBDD

Reduced OBDD is canonical:

If we fix the variable ordering, every boolean function is uniquely represented by a reduced OBDD (up to isomorphism).

- Same idea as in truth tables: canonical if you fix the order of the columns.
- However, the chosen ordering may influence the size of the OBDD.

Effect of ordering

Consider:

Order: x,y,z

Order: y,z,x

The difference can be huge...

consider: $a_1b_1 \lor a_2b_2 \lor a_3b_3$

Here: "red" for value 1, "green" for 0.

Reducing BDD

By sharing leaves...

Reducing BDD

The reduction algorithm

Introduce id, function Node → Node

Use it to keep track which nodes actually represent the same formula.

Iterate/recurse and maintain this invariant:

$$func(u) = func(id(u))$$

- So, we can remove u from the graph, and re-route arrows to it, to go to id(u) instead.
- Work bottom up, and such that a node decorated with x is processed after all nodes whose decorations come later in the var-ordering are processed first.

The reduction algorithm

We'll do the relabeling recursively, bottom-up.

Now suppose we have done the id re-labeling for all non-leaves w with index(w)>i. Suppose index(v)=i

Case-1, id(low(v)) = id(high(v)); suppose var(v) = "x"

The reduction algorithm

 Case-2: there is another non-leaf u∈dom(id) (u has been processed) such that:

- 1. var(u) = var(v); suppose this is "x"
- 2. id(low(u)) = id(low(v))
- 3. id(high(u)) = id(high(v))


```
\begin{array}{lll} func(v) &=& \neg x \ func(low(v)) \ \lor & x \ func(high(v)) \\ &=& \neg x \ func(low(u)) \ \lor & x \ func(high(u)) \ // \ by \ inv \\ &=& func(u) \\ &=& func(id(u)) \end{array}
```

So, update: id(v) := id(u)

Building a BDD

- So far: we can reduce a BDD.
- Recall in CTL model checking, e.g. to the set of states satisfying EX p is calculated by constructing this formula:

$$\exists x',y':: R \land W_p[x',y'/x,y]$$

Since formulas are now represented as BDDs, this implies the need to combine BDDs.

The combinators should be efficient!

Basic operations to combine BDDs

$$f_1 < op > f_2$$

$$f|_{x=b}$$

// b is constant

Compose

$$f_1 \mid_{x=f_2}$$

// f2 is another function

Satisfy-one

Return a single combination of the variables of f that would make it true, else return nothing.

Quantification

With restriction we can encodes boolean quantifications:

$$(\exists y :: f(x,y)) = f(x,y)|_{y=0} \lor f(x,y)|_{y=1}$$

 $(\forall y :: f(x,y)) = \neg (\exists y :: \neg f(x,y))$

(Recall that we need this in the MC algorithm).

Restriction

 $f(x,y,z) \mid_{y=c}$ how to construct the BDD of the new function??

$$f(x,y,z) \mid_{y=0}$$
 \rightarrow replace all y nodes by low-sub-tree

$$f(x,y,z) \mid_{y=1}$$
 \rightarrow replace all y nodes by high-sub-tree

Example:

$$f(x,y.z) = xz \lor \neg x \neg yz$$

So, $f(x,y,z)|_{y=0} = z$

After replacing "y"

Reduced

Apply

 "Apply", denoted by f <op> g, means the boolean function obtained by applying op to f and g.

E.g. assuming they take x,y as parameters, f <and> g means the function that maps x,y to $f(x,y) \land g(x,y)$.

- A single algorithm to implement ∧, ∨, xor
- We can even implement ¬f , namely as f <xor> 1

Apply

- So, given the BDDs of f and g, how to construct the BDD of f <op> g?
- There is this 'Shannon expansion':

```
f < op > g
= \neg x \cdot (f|_{x=0} < op > g|_{x=0}) \quad \forall \quad x \cdot (f|_{x=1} < op > g|_{x=1})
```

This tells us how to implement "apply" recursively!

Detail, see LN.

Apply

But this is exponential. Solution: keep track of those sub-expressions you have combined.

Example

We'll do this by hand.

We name the nodes, just so that we can refer to them.

$$f < and > g$$

$$=$$

$$\neg x . (f |_{x=0} < and > g |_{x=0}) \quad \forall \quad x . (f |_{x=1} < and > g |_{x=1})$$

Example

Repeated call in recursion! To avoid this, maintain a table to keep track of already computed results.

Satisfy and Compose

Compose, constructed through:

$$f1|_{x=f2} = f_2 \cdot f_1|_{x=1} \vee \neg f_2 \cdot f_1|_{x=0}$$

 In a reduced graph of a satisfiable formula, every non-terminal node must have both leaf-0 and leaf-1 as decendants.

It follows that satisfy-one can be implemented in O(n) time.

And substitution...

 Recall in CTL model checking, e.g. to the set of states satisfying EX p is calculated by constructing this formula:

$$\exists x',y':: R \land W_p[x',y'/x,y]$$

So, how to we construct the BDD representing e.g. f[x',y'/x,y]?

 Just replace x,y in the BDD with x',y', assuming this does not violate the BDD's ordering constraint (e.g. if x<y but x'>y'). Else use compose.

The cost of various operations

• Reduce f $O(|G| \log |G|)$

where G is the graph of f's BDD.

- Apply $f_1 < op > f_2$ O(|G1| |G2|)
- Restrict $f|_{x=b}$ $O(|G| \log |G|)$
- Compose $f_1|_{x=f_2}$ $O(|G1|^2 |G2|)$
- Satisfy-one O(n)

n is the number of parameters in the target boolean function.