Лабораторная работа № 2 по курсу «Численные методы» «Интерполирование функций» 1

Общая постановка задачи интерполированяи

Рассматривается функция, заданная таблично в *п*-узлах интерполяции.

Функция y = f(x) задана на отрезке $x \in [a, b]$ значениям в n-узлах $a = x_0 < x_1 < x_2 < \cdots < x_n$. Необходимо построить интерполяционный многочлен, с помощью которого можно вычислить приближенное значение функции в точках, не являющихся узлами интерполяции.

Интерполяционный многочлен Лагранжа

Чтобы получить приближение табличной функции необходимо построить некоторый алгебраический многочлен:

$$P_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n.$$

Интерполяционный многочлен Лагранжа имеет вид:

$$L_n(x) = \sum_{i=0}^n y_i \prod_{j=0, j \neq i}^n \frac{x - x_j}{x_i - x_j},$$
(1)

причём: $L_n(x_i) = y_i, i = 0, 1, 2, \dots, n.$

Оценка погрешности интерполяционного многочлена Лагранжа:

Величина $R_n(x) = f(x) - L_n(x)$ называется погрешностью интерполяции или остаточным членом интерполяции. Очевидно, что $R_n(x_i) \equiv 0$. Если функция f(x) имеет n-раз непрерывно дифференцируема, то оценку остаточного члена в точке x^* можно провести, используя следующую формулу:

$$||R_n(x^*)|| \le \frac{\max_{x \in [a,b]} |f^{(n)}(x)|}{n!} \cdot |\omega(x^*)|,$$

где

$$\omega(x) = \prod_{k=1}^{n} (x - x_k).$$

¹Разработано А. М. Филимоновой, каф. ВМиМФ ИММиКН ЮФУ

Интерполяционный многочлен Ньютона

Рассматривается случай равноотстоящих узлов, т. е. $x_i - x_{i-1} = h, h = const, i = 1, 2, ..., n.$ $x_0 = a, x_n = b.$

Для построения интерполяционного многочлена Ньютона необходимо построить таблицу κo нечных разностей. Пусть нам известны y_i — значения функции в узлах интерполяции. Тогда:

$$\Delta y_0 = y_1 - y_0 = f(x_0 + h) - f(x_0); \quad \Delta y_1 = y_2 - y_1 = f(x_0 + 2h) - f(x_0 + h);$$
...

$$\Delta y_{n-1} = y_n - y_{n-1} = f(x_0 + n \cdot h) - f(x_0 + (n-1) \cdot h);$$

Эти значения называются конечными разностями первого порядка.

Вторые конечные разности строятся по следующей схеме:

$$\Delta^2 y_0 = \Delta y_1 - \Delta y_0, \quad \Delta^2 y_1 = \Delta y_2 - \Delta y_1, \quad \dots \Delta^2 y_{n-2} = \Delta y_{n-1} - \Delta y_{n-2}.$$

По такой же схеме строятся конечные разности k-порядка:

$$\Delta^k y_i = \Delta^{k-1} y_{i+1} - \Delta^{k-1} y_i, \quad i = 0, 1, \dots, n-1.$$

Формула интерполяционного многочлена Ньютона **вперёд** (*первый интерполяционный многочлен*):

$$N(x) = y_0 + \frac{\Delta y_0}{h}(x - x_0) + \frac{\Delta^2 y_0}{2!h^2}(x - x_0)(x - x_1) + \dots + \frac{\Delta^n y_0}{n!h^n}(x - x_0)(x - x_1) \dots (x - x_{n-1}).$$

или:

$$N(t) = N(x_0 + th) = y_0 + \Delta y_0 \cdot t + \Delta^2 y_0 \cdot \frac{t(t-1)}{2!} + \dots + \Delta^n y_0 \cdot \frac{t(t-1)\dots(t-n+1)}{n!},$$

где
$$t = \frac{x - x_0}{h}, \ t > 0.$$

Формула интерполяционного многочлена Ньютона **наза**д (*второй интерполяционный многочлен*):

$$N(t) = N(x_n + th) = y_n + \Delta y_{n-1} \cdot t + \Delta^2 y_{n-2} \cdot \frac{t(t+1)}{2!} + \dots + \Delta^n y_0 \cdot \frac{t(t+1) \dots (t+n-1)}{n!},$$

где
$$t = \frac{x - x_n}{h}, \ t < 0.$$

Первый интерполяционный многочлен строится, если искомое значение функции расположено в точках левой половины отрезка. Второй интерполяционный многочлен строится, если иско-

мое значение функции расположено в точках правой половины отрезка. Правильный выбор направления построения интерполяционного многочлена Ньютона обеспечивает более высокую точность интерполяции.

Интерполяционный многочлен Эрмита

Пусть известна некоторая таблица значений функции и её *п*-производных:

x_1	x_2	 x_n
y_1	y_2	 y_n
y_1'	y_2'	 y'_n
$y_1^{(n)}$	$y_2^{(n)}$	 $y_n^{(n)}$

Для построения многочлена этим способом необходимо добавить в таблицу значений еще один узел $x_0^{\varepsilon} = x_0 + \varepsilon$ и построить интерполяционный многочлен Ньютона для таблицы, содержащей уже (n+1) узла следующего вида:

$$N_n(x) = f(x_0^{\varepsilon}) + f(x_0^{\varepsilon}, x_1)(x - x_0^{\varepsilon}) + \dots + f(x_0^{\varepsilon}, x_1, \dots, x_n)(x - x_0^{\varepsilon})(x - x_1)\dots(x - x_{n-1}). \tag{2}$$

Коэффициенты многочлена (2) вычисляются по таблице разделённых разностей:

x_0^{ε}	$f(x_0^{\varepsilon})$	$f(x_0^{\varepsilon}, x_1)$	$f(x_0^{\varepsilon}, x_1, x_2)$	$f(x_0^{\varepsilon}, x_1, x_2, x_3)$
x_1	$f(x_1)$	$f(x_1, x_2)$	$f(x_1, x_2, x_3)$	
x_2	$f(x_2)$	$f(x_2, x_3)$		
x_3	$f(x_3)$	• • •	• • •	

Причём,

$$f(x_0^{\varepsilon}) = f(x_1 + \varepsilon) \quad \Rightarrow \quad f(x_0^{\varepsilon}, x_1) = \frac{f(x_1) - f(x_0^{\varepsilon})}{x_1 - x_0^{\varepsilon}} = \frac{f(x_1) - f(x_1 - (x_1 + \varepsilon))}{x_1 - (x_1 + \varepsilon)} = df_1, \varepsilon \to 0.$$

Порядок выполнения лабораторной работы

Лабораторная работа 2 состоит из пяти заданий. Задания 1, 2, 3, 5 выполняются на компьютере. Задание 4 выполняется письменно в тетради.

Задание 1.

Построить интерполяционный многочлен Лагранжа для табличной функции. Задание выполняется сначала для тестового примера, потом для индивидуального. Построение интерполяционного многочлена должно быть оформлено в виде функции, для хранения табличных данных использовать массивы.

Задание 2.

Оценить погрешность интерполяции многочленом Лагранжа функции f(x) в точке x^* для трёх узлов интерполирования. Вычисление функции $\omega(x,y)$ оформить в виде функции.

Задание 3.

По табличным данным построить интерполяционный многочлен Ньютона. Вычислить значение функции в указанной точке x^* . Построить в одной координатной плоскости исходные данные из таблицы (точками) и полученный многочлен Ньютона (линией). Отметить на графике указанную точку. В зависимости от величины искомой точки необходимо выбрать интерполирование вперед или назад. Для хранения таблицы конечных разностей использовать матрицу.

Задание 4.

По заданной таблице для трёх узлов построить интерполяционный многочлен Эрмита:

- в случае, когда кратный узел является первым добавить дополнительный узел x_0^{ε} слева;
- в случае, когда кратный узел является последним, «перевернуть таблицу» справа налево и добавить дополнительный узел x_3^{ε} слева;
- в случае, когда кратный узел является средним добавить дополнительный узел x_2^{ε} после узла x_2 .

Задание 5.

Построить интерполяционный многочлен Эрмита. Порядок построения интерполяционного многочлена Эрмита:

- 1. Используя интерполяционный многочлен Ньютона из **Задания 3**, заполнить таблицу первых производных в исходных точках x_i ;
- 2. Выбрать из полученной таблицы значений 3 узла x_1 , x_2 , x_3 . Построить по этим точкам интерполяционный многочлен Эрмита. Для хранения таблицы разделённых разностей использовать матрицу.
- 3. Сравнить графики интерполяционных многочленов Ньютона и Эрмита на отрезке $[x_1, x_3]$ (построить в одной системе координат).