Discrete Optimization

Assignments: Vehicle Routing

The Vehicle Routing Problem (VRP)

- Many variants
 - This is the Capacitated VRP CVRP
- Like the Traveling Salesman Problem
 - on steroids...

Vehicle Routing

$$x_{2},y_{2} = -10,10$$
 $x_{1},y_{1} = 0,10$ $d_{2} = 3$ $d_{1} = 3$ warehouse $x_{0},y_{0} = 0,0$ vehicles = 4 capacity = 10

$$x_3, y_3 = 0,-10$$
 $x_4, y_4 = 10,-10$
 $d_3 = 3$ $d_4 = 3$

Vehicle Routing

Vehicle Routing

- ► n Locations, v Vehicles
- For each location,
 - -demand d_i and location x_i, y_i
- ► The capacity of the vehicles c
- ▶ The sequence of deliveries of vehicle i, T_i

minimize:
$$\sum_{i \in V} \left(dist(0, T_{i,0}) + \sum_{\langle j, k \rangle \in T_i} dist(j, k) + dist(T_{i,|T_i|-1}, 0) \right)$$

subject to:

$$\sum_{j \in T_i} d_j \le c \quad (i \in V)$$

$$\sum_{j \in V} (j \in T_i) = 1 \quad (j \in N \setminus \{0\})$$

Vehicle Routing Data Format

minimize:
$$\sum_{i \in V} \left(dist(0, T_{i,0}) + \sum_{\langle j, k \rangle \in T_i} dist(j, k) + dist(T_{i, |T_i| - 1}, 0) \right)$$

subject to:

$$\sum_{\substack{j \in T_i \\ \sum_{i \in V}}} d_j \le c \quad (i \in V)$$

Input

Output

```
obj opt
0 t_0_1 t_0_2 ... 0
0 t_1_1 t_1_2 ... 0
...
0 t_|V|-1_1 t_|V|-1_2 ... 0
```

Vehicle Routing Example

Getting Started

- ► This assignment is really hard.
 - Very close to a real world application.
- ► Three Models
 - -CP
 - -MIP
 - Local Search
- All connected to the TSP
 - Multi-Colored TSP

A CP Model

One Big *Circuit* Constraint

A MIP Model

► Go with the *Flow* (recall MIP TSP Model)

A MIP Model

► Go with the *Flow* (recall MIP TSP Model)

Insert Customers

► Insert Customers

A Two-Stage Decomposition

- All of these methods consider the routing and customer assignment simultaneously
 - -but we could break these into two steps
- 1. Assign the customers to vehicles
 - and ensure the capacity is satisfied
- 2. Solve a TSP for each vehicle (by any method)
 - -CP
 - Local Search
 - -MIP
- Decouples capacity constraint and routing objective

Packing isn't Easy

- Even with all these tips, its still tricky
- ► Consider
 - -4 customers of size 30
 - -vehicles of capacity 40
- How many vehicles do we need to server these customers?
 - -4*30 = 120 is the total demand
 - -total demand / vehicle capacity = 120 / 40 = 3
 - -Looks like 3 vehicles will do!
 - Let us try it.

Packing isn't Easy

30

Houston, we have a problem.

Packing isn't Easy

- Luckily for you, the number of trucks in the assignment is fixed
 - However, you still need to find out how to pack them...
- ► This is a well known feasibility problem
 - -called multi-knapsack
- Capacitated VRP is multi-knapsack and TSP combined

Assignment Tips

- Many approaches can work
 - -Start off with the methods you like
- Reusing your TSP solver may be helpful
- Symmetries between vehicles
- ► FAST neighborhood computation

Have Fun!

