EXAMEN FINAL

Modélisation Charge Sinistre—2020-2021 Pierre-O Goffard

Instructions: On éteint et on range son téléphone.

- La calculatrice et les appareils éléctroniques ne sont pas autorisés.
- Vous devez justifier vos réponses de manière claire et concise.
- Vous devez écrire de la manière la plus lisible possible. Souligner ou encadrer votre réponse finale.
- <u>Document autorisé:</u> Une feuille manuscrite recto-verso

Question:	1	2	3	4	Total
Points:	6	2	2	10	20
Score:					

N'hésitez pas à utiliser le résultat des questions précédentes pour répondre à la question courante.

1. Etude de la loi Inverse Gaussienne

Le montant des sinistres est distribué comme une variable aléatoire continue et positive de loi Inverse Gaussienne $U \sim \mathrm{IG}(\mu, \tau)$ de densité par rapport à la mesure de Lebesgue donnée par

$$f_U(x) = \begin{cases} \sqrt{\frac{\tau}{2\pi x^3}} \exp\left(-\frac{\tau(x-\mu)^2}{2\mu^2 x}\right), & \text{pour } x > 0, \\ 0, & \text{sinon.} \end{cases}$$

La fonction de répartition de U est donnée par

$$F_U(x) = \mathbb{P}(U \leqslant x) = \overline{\phi} \left[\sqrt{\frac{\tau}{x}} \left(1 - \frac{x}{\mu} \right) \right] + e^{2\tau/\mu} \overline{\phi} \left[\sqrt{\frac{\tau}{x}} \left(1 + \frac{x}{\mu} \right) \right],$$

où $\overline{\phi}$ désigne la fonction de survie de la loi normal $\mathcal{N}(0,1)$. On pourra se référer au travail de Shuster [1] pour la preuve.

(a) (2 points) Montrer que la fonction génératrice des moments de $U \sim IG(\mu,\mu^2)$ est donnée par

$$M_U(s) = \mathbb{E}(e^{sU}) = \exp\left[\mu\left(1 - \sqrt{1 - 2s}\right)\right], \ s \geqslant 0.$$

Indication: Faire apparaître dans l'intégrale une densité inverse Gaussienne (dont l'intégrale sur \mathbb{R}_+ vaut 1).

Solution: Par définition de la fonction génératrice des moments

$$M_{U}(s) = \int_{0}^{+\infty} e^{sx} \frac{\mu}{\sqrt{2\pi x^{3}}} \exp\left[-\frac{(x-\mu)^{2}}{2x}\right] dx$$
$$= \exp\left[\mu \left(1 - \sqrt{1 - 2s}\right)\right] \int_{0}^{+\infty} \frac{\mu}{\sqrt{2\pi x^{3}}} \exp\left[-\frac{1 - 2s}{2x} \left(x - \frac{\mu}{\sqrt{1 - 2s}}\right)^{2}\right] dx$$

On reconnait dans l'intégrale la densité de la loi IG $\left(\frac{\mu}{\sqrt{1-2s}}, \mu^2\right)$

(b) (2 points) En déduire l'espérance et la variance de U.

Solution: On évalue $M_U'(0) = \mathbb{E}(U) = \mu$, $M_U''(0) = \mathbb{E}(U^2) = \mu^2 + \mu$ puis $\mathbb{V}(U) = \mu$.

(c) (1 point) Soit U_1, \ldots, U_n une suite de variables aléatoire i.i.d. de loi $\mathrm{IG}(\mu, \mu^2)$. Donner, en justifiant la loi de $Z = \sum_{i=1}^n U_i$

Solution: La fonction génératrice des moments de Z est donnée par

$$M_Z(s) = \mathbb{E}(e^{sZ}) = M_U(s)^n = \exp\{n\mu (1 - \sqrt{1 - 2s})\},\,$$

et correspond à la FGM d'une loi $IG(n\mu, n^2\mu^2)$.

(d) (1 point) Donner, en justifiant, la loi de V = tU, pour t > 0, où $U \sim \mathrm{IG}(\mu, \mu^2)$

Solution: La densité de V est donnée par

$$f_V(v) = \frac{\mu\sqrt{t}}{\sqrt{2\pi v^3}} \exp\left[-\frac{(v-t\mu)^2}{2vt}\right]$$

et correspond à la densité d'une loi $\mathrm{IG}(t\mu,t\mu^2)$

2. (2 points) Estimation paramétrique des paramètres de la loi inverse gaussienne

On souhaite calibrer un modèle Inverse gaussienne $\mathrm{IG}(\mu,\mu^2)$ à notre historique de données

$$(u_1,\ldots,u_n).$$

Donner l'expression et la loi de probabilité de l'estimateur $\hat{\mu}$ de μ par la méthode des moments (en supposant que le modèle soit bien spécifié, c'est à dire que l'échantillon (u_1, \ldots, u_n) est un échantillon iid de loi $\mathrm{IG}(\mu, \mu^2)$).

Solution:

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} u_i \sim \text{IG}(\mu, n\mu^2)$$
 (en exploitant les question 1.c et 1.d)

3. (2 points) Pros and cons de la distribution inverse gaussienne

Quels sont selon vous les inconvénients/avantages de cette loi inverse Gaussienne pour modéliser des montants de sinistres?

Solution: Avantage

- Stabilité par convolution, une somme de variables aléatoires de loi inverse gaussienne suit une loi inverse gaussienne
- Estimation simple via la méthode des moments, de plus la loi de l'estimateur est connu ce qui est pratique pour la construction d'intervalle de confiance.

Inconvénient

• La loi inverse gaussienne est une distribution à queue légère, ce qui peut être génant pour la modélisation des sinistres de forte intensité.

4. Modèle individuel avec des montants de sinistres de loi inverse gaussienne

Soit un portefeuille de contrats contenant n polices d'assurance. On suppose qu'au cours d'une période d'exercice, l'assuré $i \in \{1, ..., n\}$ a une probabilité $p_i \in (0, 1)$ de subir un sinistre (pas plus de un sinistre par période d'exercice). Le montant de l'indemnisation pour un sinistre est modélisé via une loi Inverse Gaussienne $\mathrm{IG}(\mu, \mu^2)$ (même distribution indépendamment du contrat sinistré).

(a) (1 point) Spécifier l'expression de la charge totale du portefeuille X_{ind} suivant un modèle individuel pour le portefeuille considéré sur une période d'exercice (Ecrire la variable aléatoire en fonction de variables aléatoires auxiliaires et rappeler les hypothèses sous-jacentes)

Solution: Voir le cours

(b) (1 point) Calculer, en justifiant le raisonnement, la probabilité $\mathbb{P}(X_{\text{ind}} = 0)$ en fonction des p_i .

Solution:

$$\mathbb{P}(X_{\text{ind}} = 0) = \prod_{i=1}^{n} (1 - p_i)$$

(c) (2 points) Donner l'expression de la fonction génératrice des moments de X_{ind} dans la situation décrite dans l'énoncé.

Solution: Voir le cours.

(d) (1 point) On suppose maintenant que $p_i = p$ pour tout $i \in \{1, ..., n\}$. Le modèle individuel devient alors un modèle collectif X_{col} . Donner les caractéristiques de ce modèle collectif en termes de distribution de la fréquence et du montant des sinistres.

Solution: On obtient un modèle collectif, avec

$$X_{\text{col}} = \sum_{k=1}^{N} U_k$$

où $N \sim \text{Bin}(n, p)$ et $U_k \overset{i.i.d.}{\sim} \text{IG}(\mu, \mu^2)$

(e) (2 points) Donner la moyenne et la variance de $X_{\rm col}$, en fonction de n, p et μ .

Solution: On applique les formules du cours

$$\mathbb{E}(X_{\text{col}}) = \mathbb{E}(N)\mathbb{E}(U) = np\mu,$$

et

$$\mathbb{V}(X_{\text{col}}) = \mathbb{E}(N)\mathbb{V}(U) + \mathbb{V}(N)\mathbb{E}(U)^2 = np\mu + np(1-p)\mu^2$$

(f) (1 point) Détailler une méthode d'approximation numérique pour évaluer la fonction de répartition de X_{col} .

Solution: Voir le cours.

(g) (2 points) Donner l'expression de la fonction de répartition de $X_{\rm col}$ en fonction de n, p, μ et $\overline{\phi}$ (fonction de survie de la loi normal $\mathcal{N}(0,1)$).

Solution: La loi de proba de X_{col} s'écrit

$$\mathbb{P}_X(A) = (1-p)^n \delta_0(A) + \int_A f_X^+(x) d\lambda(x)$$

avec $A \in \mathcal{B}_{\mathbb{R}}$, et

$$\begin{split} f_X^+(x) &=& \sum_{k=1}^n f_{\sum_{i=1}^k U_i}(x) \mathbb{P}(N=k) \\ &=& \sum_{k=1}^n \binom{n}{k} p^k (1-p)^{n-k} f_{\sum_{i=1}^k U_i}(x) \end{split}$$

Comme $U_i \stackrel{i.i.d.}{\sim} \mathrm{IG}(\mu,\mu^2)$ alors $\sum_{i=1}^k U_i \sim \mathrm{IG}(k\mu,k^2\mu^2)$, puis en intégrant sur A = [0,x], il vient

$$F_X(x) = (1-p)^n + \sum_{k=1}^n \binom{n}{k} p^k (1-p)^{n-k} \left\{ \overline{\phi} \left[\sqrt{\frac{k^2 \mu^2}{x}} \left(1 - \frac{x}{k\mu} \right) \right] + e^{2k\mu} \overline{\phi} \left[\sqrt{\frac{k^2 \mu^2}{x}} \left(1 + \frac{x}{k\mu} \right) \right] \right\}$$

FORMULAIRE

Nom	abbrev.	Loi	$\mathbb{E}(X)$	$\operatorname{Var}(X)$	FGM	
Binomial	Bin(n,p)	$\binom{n}{k} p^k (1-p)^{n-k}$	np	np(1-p)	$[(1-p)+pe^t]^n$	
Poisson	$\mathrm{Pois}(\lambda)$	$e^{-\lambda} \frac{\lambda^k}{k!}$	λ	λ	$\exp(\lambda(e^t - 1))$	
Geometric	$\operatorname{Geom}(p)$	$(1-p)^{k-1}p$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pe^t}{1-(1-p)e^t} \text{ pour } t < -\ln(1-p)$	
Uniform	$\mathrm{Unif}(a,b)$	$\begin{cases} \frac{1}{b-a} & a \leqslant t \leqslant b \\ 0 & \text{sinon} \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{tb} - e^{ta}}{t(b-a)}$	
Exponential	$\operatorname{Exp}(\lambda)$	$\begin{cases} \lambda e^{-\lambda t} & t \geqslant 0\\ 0 & t < 0 \end{cases}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\frac{\lambda}{\lambda - t}$ pour $t < \lambda$	
Normal	$N(\mu, \sigma^2)$	$\left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)\exp\left(\frac{-(t-\mu)^2}{2\sigma^2}\right)$	μ	σ^2	$e^{\mu t}e^{\sigma^2t^2/2}$	

References

[1] Jonathan Shuster. On the inverse gaussian distribution function. *Journal of the American Statistical Association*, 63(324):1514–1516, dec 1968.