

Department of Computer Science and Engineering International Institute of Information Technology, Naya Raipur Design and Analysis of Algorithms (Course Code: CSE201)

Fime: $6:00 \text{ hrs}$	Lab Experiments: Part-I	Maximum Marks: 200
Note: Implement the f	following Algorithms in C and submit the	he same by Lab Record
1. Divide-and-Conqu	UER	
1. Binary Search		
2. Merge Sort		
3. Quick Sort		
	rray of non-repeated integers $A[1n], n$ nich $A[i] = i$. Give an algorithm that ru	
		[3
2. Divide-And-Conqu	UER	
1. Strassen's Matrix	K Multiplication	
3. Greedy Method		[1
1. Knapsack Proble	em	
-	vith deadlines algorithm	
		[2
4. Greedy Method		
1 Prim's Algorithn	n for finding the minimal spanning trees	
	ithm for finding the minimal spanning t	
3. Dijkstra's Algori		
5. SORTING AND SEARC	HING	[2
1. Insertion Sort		
2. Selection Sort		
3. Heap Sort		
6. SORTING AND SEARC	HING	[2
1. Shell Sort		
7. Problems on Sorti	ng and Searching	[1

1. Given an array of n elements. Find whether there are two elements in the array such that

their sum is equal to given element K or not? in O(nlogn) time.

Student's name:

- 2. Given an array of n elements. Find whether there are three elements in the array such that their sum is equal to given element K or not? in $O(n^2)$ time.
- 3. Let A and B be two arrays of n elements. Given a number K, draw an O(nlogn) time algorithm for determining whether there exists $a \in A$, $b \in B$ such that a + b = K or not?.
- 4. Given an array of n elements, give an algorithm for checking whether there are any duplicate elements in the array or not? in O(nlogn) time.
- 5. Given an array of n elements, give an algorithm for finding the element which appears maximum number of times in the array in O(nlogn) time.

8. Dynamic Programming

1. Finding the optimal order of multiplying n matrices

[15]

[50]

9. Dynamic Programming

1. Construction of OBST

[15]

10. SORTING AND SEARCHING

1. Given an array of n elements, derive an algorithm for finding the first element in the array which is repeated.

[10]

Note: Every one has to submit the record (Indentation in the program is must) with detailed solution and it's worst case time complexity.

Student's name: End of Experiments