Organización de Computadoras 66.20

Dr. Ing. José Luis Hamkalo

Facultad de Ingeniería Universidad de Buenos Aires 2011

Fundamentos de Diseño de Computadoras

Tendencias Tecnológicas

- Planear pensando en futuros cambios de tecnología
- Tecnologías de implementación cruciales
 - Tecnología de lógica de circuitos integrados
 - Densidad +35% por año (se duplica cada 2 años)
 - DRAM semiconductora
 - Densidad +50% por año (se cuadruplica cada 3 años)
 - Tecnología de discos magnéticos
 - Densidad +100% por año (se cuadruplica cada 2 años)
 - Tecnología de redes
 - 10 Mb/seg a 100 Mb/seg → 10 años
 - a 100 Mb/seg a 1 Gb/seg → 5 años

Tendencias Tecnológicas

Year	Technology	Relative performance/cost
1951	Vacuum tube	1
1965	Transistor	35
1975	Integrated circuit (IC)	900
1995	Very large scale IC (VLSI)	2,400,000
2005	Ultra large scale IC	6,200,000,000

Proceso de fabricación de un circuito integrado

Wafer de 8 pulgadas con 564 MIPS64 R20K

Introducción

- 60 años de Evolución tecnológica
- u\$s 1000 (2006) >> u\$s 17.000.000 (1980)
- Mejoras
 - Avances tecnológicos
 - Decada 1970, microprocesadores
 - Lenguajes de alto nivel (C)
 - Sistemas operativos estandar (UNIX)
 - Innovaciones en el diseño
 - Decada 1980, RISC
 - Paralelismo entre instrucciones
 - Pipeline
 - Múltiple emisión
 - Caches
- Ultimos 20 años mejorando al 50% anual!

Desempeño de Uniprocesadores

Limitado por: disipación de calor (potencia), ILP, latencia de memoria.

La Brecha CPU-Memoria

Introducción (2)

- Reinado del Microprocesador
 - PCs
 - Workstations
- Minicomputadoras → Servers
- Mainframes → Multiprocesadores
- Supercomputadoras → Multiprocesadores masivos
- Centro de la revolución
 - Arquitectura
 - Compilador
 - Enfoque cuantitativo

Introducción (3)

- Enfoque cuantitativo
 - Observación empírica
 - Experimentación
 - Simulación

Introducción (4). Mercados de Computadoras

- Computadoras de escritorio
 - PCs y workstations
 - Precio-desempeño óptimo
- Servidores
 - Web
 - Disponibilad
 - Escalabilidad
- Procesadores embarcados
 - Desempeño a precio mínimo
 - Mínimo conumo de potencia

Mouse Óptico

LED ilumina el escritorio

Cámara de baja resol.

Procesador básico de

Imágenes detecta mov.

Botones y rueda.

Supera al mouse mecánico de bolita.

La tarea del diseñador de computadoras

Functional requirements	Typical features required or supported Target of computer	
Application area		
General-purpose desktop	Balanced performance for a range of tasks, including interactive performance for graphics, video, and audio (Ch. 2, 3, 4, 5)	
Scientific desktops and servers	High-performance floating point and graphics (App. G, H)	
Commercial servers	Support for databases and transaction processing; enhancements for reliability and availability; support for scalability (Ch. 2, 6, 8)	
Embedded computing	Often requires special support for graphics or video (or other application-specific extension); power limitations and power control may be required (Ch. 2, 3, 4, 5)	
Level of software compatibility	Determines amount of existing software for machine	
At programming language	Most flexible for designer; need new compiler (Ch. 2, 6)	
Object code or binary compatible	Instruction set architecture is completely defined—little flexibility—but no investment needed in software or porting programs	
Operating system requirements	Necessary features to support chosen OS (Ch. 5, 8)	
Size of address space	Very important feature (Ch. 5); may limit applications	
Memory management	Required for modern OS; may be paged or segmented (Ch. 5)	
Protection	Different OS and application needs: page vs. segment protection (Ch. 5)	
Standards	Certain standards may be required by marketplace	
Floating point	Format and arithmetic: IEEE 754 standard (App. H), special arithmetic for graphics or signal processing	
I/O bus	For I/O devices: Ultra ATA, Ultra SCSI, PCI (Ch. 7, 8)	
Operating systems	UNIX, PalmOS, Windows, Windows NT, Windows CE, CISCO IOS	
Networks	Support required for different networks: Ethernet, Infiniband (Ch. 8)	
Programming languages	Languages (ANSI C, C++, Java, FORTRAN) affect instruction set (Ch. 2)	

Medición y reporte de desempeño

Parámetro para medir desempeño: tiempo de ejecución

Comparación entre dos máquinas: x es n veces más rápida que y:

$$n = \frac{\text{Execution time}_{Y}}{\text{Execution time}_{X}} = \frac{\frac{1}{\text{Performance}_{Y}}}{\frac{1}{\text{Performance}_{X}}} = \frac{\text{Performance}_{X}}{\text{Performance}_{Y}}$$

Tiempo de reloj de pared ≠ Tiempo de CPU

Elección de programas para evaluar el desempeño

- Aplicaciones reales
- Aplicaciones modificadas
- Kernels
- Benchmarks de jugete
- Benchmarks sintéticos

Suites de Benchmarks

- Benchmarks de escritorio
 - SPEC CPU
- Benchmarks de Servers
 - TPC
- Benchmarks de embarcados
 - EDN

FIN 16/05/2011 19