Trabajo Práctico: Control en sistema de cultivo fed batch y continuo

Ejercicio 1:

Considerando el proceso de respiración de *S. cerevisiae* con sistema de cultivo fed-batch:

$$\begin{cases} \dot{x} = \mu x - Dx \\ \dot{s} = -k\mu x + D(s_{in} - s) \\ \dot{V} = F_{in} \end{cases}$$
 (1)

donde:

$$\mu(s) = \mu_{max} \frac{s}{s + K_s} \tag{2}$$

- (a) Controlar el sistema con una ley exponencial a lazo abierto, para que el sistema opere a $\mu(s)=\mu_r$ (por ejemplo $\mu_r=0.23\,h^{-1}$. Recuerde que puede ser de utilidad contar con la ecuación de la masa de microorganismos $X=x\cdot V$
- (b) Simular el sistema controlado para los siguientes casos:
 - (I) Modelo sin incertidumbre y condiciones iniciales perfectamente conocidas.
- (II) incertidumbre en x(0) de $\pm 20\%$
- (III) incertidumbre en k de $\pm 20\%$
- (IV) incertidumbre en K_s de $\pm 20\%$

Parámetros del modelo para las simulaciones:

$k_s = 1/0.48$	[g/g]
$s_{in} = 50$	[g/l]
$x_0 = 5$	[g/l]
$s_0 = 0.1$	[g/l]
$\mu_{max} = 0.46$	[1/h]
$K_s = 1,2$	[g/l]

Ejercicio 2:

- (a) Controlar el sistema con una ley de control exponencial a lazo cerrado, con un término proporcional al error de μ , para que el sistema opere a $\mu(s) = \mu_r$.
- (b) Repetir las simulaciones del ejercicio anterior con esta nueva ley de control. Comparar resultados. Para esto, compare el resultado de obtener μ de su modelo con parámetros nominales (estimación a lazo abierto) o a partir del observador diseñado en la práctica anterior. Analice las diferencias.

Ejercicio 3: Repetir los diseños anteiores considerando un modelo cinético del tipo Haldane, dado por:

$$\mu(s) = \mu_{max} \frac{s}{K_s + s + \frac{s^2}{K_{is}}}$$
(3)

con $K_{is} = 16,728g/l$.

¿Qué valor de s_r se debe utilizar? Pruebe utilizar distintas condiciones iniciales de sustrato, cubriendo puntos de interés en la curva $\mu(s)$.

Ejercicio 4:

Para el proceso del ejercicio 1, considerando medidos o obtenidos por un observador tanto a la concentración de sustrato como la de biomasa:

- (a) Diseñar un controlador linealizante que permita regular la concentración de sustrato en un valor de referencia. Simule considerando el caso nominal y casos con incertidumbre en los parámetros del modelo cinético y en los rendimientos. Por ejemplo, diseñe el controlador usando el modelo Monod (2) pero simule el proceso con el modelo (3).
- **(b)** Considere como parámetro desconocido a la tasa de consumo de sustrato $q_s = k \cdot \mu$. Diseñe y simule una ley de adaptación para utilizar con el control linealizante del inciso anterior.