

Trine Nyholm Kragh & Laura Nyrup Mogensen Mathematical Engineering, MATTEK

Master's Thesis

Mathematical Engineering
Aalborg University
http://www.aau.dk

STUDENT REPORT

Title:

Bayesian Dictionary Learning for EEG Source Identification

Abstract:

Here is the abstract

Theme:

Project Period:

Fall Semester 2019

Project Group:

Mattek9

Participant(s):

Trine Nyholm Kragh Laura Nyrup Mogensen

Supervisor(s):

Jan Østergaard

Copies: 1

Page Numbers: 11

Date of Completion: September 17, 2019

The content of this report is freely available, but publication (with reference) may only be pursued due to agreement with the author.

Matematik-Teknologi Aalborg Universitet

http://www.aau.dk

AALBORG UNIVERSITET STUDENTERRAPPORT

Titel:	Abstract:
Bayesian Bibliotek Læring for EEG Kilde	
Identifikation	Her er resuméet

Tema:

Projektperiode: Efterårssemestret 2019

Projektgruppe: Mattek9

Deltager(e): Trine Nyholm Kragh Laura Nyrup Mogensen

Vejleder(e):Jan Østergaard

Oplagstal: 1

Sidetal: 11

Afleveringsdato: 17. september 2019

Rapportens indhold er frit tilgængeligt, men offentliggørelse (med kildeangivelse) må kun ske efter aftale med forfatterne.

Preface

Here is the preface. You should put your signatures at the end of the preface.				
	Aalborg University, September 17, 2019			
Trine Nyholm Kragh <trijen15@student.aau.dk></trijen15@student.aau.dk>	Laura Nyrup Mogensen <lmogen15@student.aau.dk></lmogen15@student.aau.dk>			
	vii			

Danish Summary

Dansk resume?

Contents

Pr	eface	vii
Dá	anish Summary	ix
In	troduction	3
1	Problem Analysis	5
2	Problem Statement	7
3	Theory 3.1 Compressive Sensing	9 9
A	Appendix A	11

Introduction

Introduktion til hele projektet, skal kunne læses som en appetitvækker til resten af rapporten, det vi skriver her skal så uddybes senere. Brug dog stadigvæk kilder.

- kort intro a EEG og den brede anveldelse, anvendelse indenfor høreapperat.
- intro af model, problem med overbestemt system
- Seneste forslag til at løse dette
- vi vil efterviser dette og udvide til realtime tracking
- opbygningen af rapporten

Chapter 1

Problem Analysis

This chapter examines existing literature concerning source localisation from EEG measurements. At first a motivation for the problem is given, considering especially the application within the hearing aid industry. Further, the state of the art methods are presented follow by a description of the desired contribution.

1.1 Motivation

EEG recordings or measurements are used within medicine as an imaging technique measuring electric signals on the scalp, caused by brain activity.

The brain consist of a enormous amounts of cells, called neurons. These neurons are mutually connected in neural nets and when a neuron is activated, for instance by some physical stimuli, local current flows are produced[\IeC {\textbullet }]. As such the neurons are some how communicating(?).

Chapter 2

Problem Statement

problem statement

Chapter 3

Theory

3.1 Compressive Sensing

Appendix A

Appendix A