FISHMOFinal Presentation

Capstone 2015
McMaster University

Who are we?

• Rhett Amin - 4th Year Honours Comp. Sci.

Brandon Da Silva - 4th Year Honours B.I.

Daniel Esteves - 4th Year Honours B.I.

Michael Liut - 4th Year Honours Comp. Sci.

The Problem

- Providing care and monitoring the species inside the aquarium in an effective manner
- Methods for effective care becomes a time consuming, repetitive, and tedious.
- Fish may not receive the best treatment most of the time.

Why FISHMO?

- FISHMO is something that we are passionate about.
- We were all instantly drawn to the idea of FISHMO.
- FISHMO allowed us to integrate our favourite courses and external interests in Computer Science into a final project.

Hardware

- Physical Components
 - o LED's
 - Heater,
 - Air Pump
 - Temperature Sensor
 - Water Flow Metre
 - USB Camera

Hardware - Programming

```
obal tick
global starttime
global speed
global speed1
global counter
global constantOfWater
starttime = time.time()
pulseFreq = 7.5 #sensor frequency in Hz
counter = 0
def my_callback(channel):
   print ("falling edge")
   global counter
   counter += 1
   print ("counter: ", counter)
   global starttime
   print(time.time() - starttime, "seconds")
GPIO.setmode(GPIO.BCM)
GPIO.setup(17, GPIO.IN)
GPIO.setup(17, GPIO.IN, pull up down=GPIO.PUD UP)
GPIO.add_event_detect(17, GPIO.FALLING, callback=my_callback, bouncetime=100)
def signal handler(signal, frame):
   print("Ctrl+C detected...")
   GPIO.cleanup()
   sys.exit(0)
signal.signal(signal.SIGINT, signal_handler)
while 1:
   time.sleep(0.05)
   if ((time.time()-starttime) > 5.00):
       speed = (counter/(10*pulseFreq))
       speedOne = (speed*60)
       print("speed: ", speed, "L/Sec")
       print "or"
       print("speed: ", speedOne, "L/Min")
       # Write Speed Data to File - in Litres per Minute -- seperated by line
       file.write("Speed: " + str(speedOne) + " L/Min" + "\n")
       starttime = time.time()
       counter = 0
```

All of the Raspberry Pi's coding was written in Python.

Installation and utilization of unique libraries for the Pi components and peripherals.

Hardware - Wiring

- All hardware was soldered in ITB IEEE lab
- All peripheral devices moved to standard 4x circuit board form a solderless board after finalization.
- TIP Transistors, Resistors, Switches and low power voltage convertor.
 - (TIP-120 Transistors)
 - \circ (4.7k Ω , 10k Ω)

Frying the Pi

-Using correct regulators

Power Shortages

-Heater(5V), LED's,(12V),Air Pump(5V),Temp-sensor(3.3V), Flow-Sensor(5V)

Converting Values to be displayed

-Signal edge graph

Backend

Backend

- Keeping the server up and running consistently and stable
 - Dealing with errors, timeouts, sleep
- User permissions
- Crashing

Software

- The Web app is the control interface between the user and the Raspberry Pi.
- Provides the user the ability to update the way the Pi controls the tank.
- Built using HTML, CSS, JS, and PHP
 - The Materializecss framework was used to assist with the CSS styling.

Security

- We ensure our servers and the users data is secure by various methods:
 - We redirect users if they try to access any page without logging in.
 - We prevent SQL injection attacks via php script.
 - Encrypted the server via 256bit AES
 - Hash User details as we push to the server

- Design Challenges
 - Layout
 - Colour Scheme
 - Visually Appealing
 - Providing feedback on changes

Integration

 Connecting the back-end to the software (i.e. the website)

Connecting the hardware to the web application

Video

- Integration
 - Connecting Pi and Server
 - SSL Handshake Protocol issues (remote connections)
 - Sending data from Pi to the Server

Registration Process

- There are a set list of tanks in the database for potential users to register.
- The users specify their FISHMO ID from the FISHMO unit when registering.
 - This links their user account with their specific hardware unit.

Web App Changes

- Settings changed on the web application send updates to the database via Ajax, PHP and MySQL and via PHP SSH to the hardware
- Values updated on the FISHMO unit updates the database via HTTP POST

DEMO