Math 110BH Homework 4

Topic(s): polynomial rings

Due: Wednesday, February 8th at 11:59pm

For all of this assignment R denotes a commutative ring.

Problem 1

Consider the following ideals in the polynomial ring $\mathbb{Z}[x,y]$. For each ideal determine if it is prime and then determine if it is maximal:

$$I_1 = (x, y), \quad I_2 = (5, x, y), \quad I_3 = (6, x).$$

Problem 2*

Prove that a polynomial ring in more than one variable over R is not a principal ideal domain.

Problem 3*

Prove that the rings $F[x,y]/(y^2-x)$ and $F[x,y]/(y^2-x^2)$ are not isomorphic for any field F.

Problem 4

Let $f(t) \in R[t]$ be a polynomial of degree $n \ge 1$ whose leading term is a unit in R. For a polynomial $g(t) \in R[t]$ let g(t) denote the image of g(t) in the quotient ring R[t]/(f(t)). Prove that for any g(t) there exists a polynomial $g_0(t)$ of degree less than or equal to n-1 such that $g(t) = g_0(t)$.

Problem 5*

Let F be a finite field of order q and f(t) be a polynomial of degree $n \ge 1$. Prove that F[t]/(f(t)) is a ring with q^n elements.