Modern mathematics series

Sergey Strukov

1 июня 2025 г.

Copyright © Sergey Strukov. All rights reserved. This is a public document. You can freely distribute and use it, providing the authorship and the copyright note is unchanged.

Пределы.

Исторически, теория пределов возникла как часть анализа. Однако, после появления топологии, она в обобщённой форме стала естественной частью топологии. В этой статье теория пределов излагается в законченной геометрической форме. Кратко говоря, предел — это продолжение функции по непрерывности на специальных топологических пространствах — фильтрах. Подобная конструкция делает большинство свойств пределов наглядно очевидными.

n.1

 $1)^{def}$ Пусть F — топологическое пространство. F называется фильтром, если все точки F, кроме одной, открыты. Такая точка, тавтологически, определена однозначно. Будем обозначать её ∞_F . Следуя общему правилу, положим $F^{\circ} := F \setminus \{\infty_F\}$.

2) Пусть F — фильтр.

Тогда справедливы следующие утверждения:

 F° открыто, но не замкнуто,

 F° дискретно,

$$\overline{F^{\circ}} = F$$
, $F^{\circ} \neq \emptyset$,

 ∞_F замкнута,

F недискретно.

3) def Пусть F — фильтр, X — топологическое пространство, $f: F^{\circ} \to X$ — любое отображение. Тогда f непрерывно (потому что F° дискретно!).

Пусть $x \in X$, g — продолжение f на F, такое, что $g(\infty_F) = x$.

Если g непрерывно, то будем говорить, что $x = \lim_{n \to \infty} f$.

4) Пусть F — фильтр, $p: X \to Y$ — непрерывное отображение топологических пространств, $f: F^{\circ} \to X$ — отображение.

Тогда $x = \lim_{F} f \Rightarrow p(x) = \lim_{F} p \circ f$.

5) Пусть F — фильтр, X — топологическое пространство, $\{Y_i\}_{i\in I}$ — семейство топологических пространств, $\{p_i:X\to Y_i\}_{i\in I}$ — семейство непрерывных отображений. Пусть топология X порождена семейством $\{p_i\}_{i\in I}$. Пусть $f:F^\circ\to X$, $x\in X$.

Тогда, $x = \lim_{F} f \iff \forall i \in I \ p_i(x) = \lim_{F} p_i \circ f$.

6) Пусть F — фильтр, X — топологическое пространство, $f: F^{\circ} \to X$ — отображение.

Пусть $A \subset X$ замкнуто.

Если $f\left(F^{\circ}\right)\subset A$, $x=\lim_{F}f$, то $x\in A$.

Proof.

 $\overline{\Pi}$ усть g — непрерывное продолжение f, такое, что $g(\infty_F) = x$.

Тогда $x \in g(F) = g(\overline{F^\circ}) \subset \overline{g(F^\circ)} = \overline{f(F^\circ)} \subset \overline{A} = A$. Тоже самое по-другому: $F^\circ \subset g^{-1}(A) \Rightarrow \overline{F^\circ} \subset g^{-1}(A) \Rightarrow \infty_F \in g^{-1}(A) \Rightarrow x \in A$.

 $(7)^{!!!}$ Пусть F — фильтр, X — хаусдорфово топологическое пространство, $f: F^{\circ} \to X$. Тогда \exists не более одного предела $x = \lim_{F} f$.

Почему у этого пункта аж три восклицательных знака? Причина в том, что в математике очень часто пределы в хаусдорфовы пространства используются для построения объектов. Например: производная, интеграл, сумма ряда и.т.п. Для этого нужна единственность, обеспеченная этим свой-CTBOM.

Proof.

 $\overline{\text{Пусть}}\ x,y=\lim_F f$. Тогда $(x,y)=\lim_F (f,f)$, но $(f,f):F^\circ\to X\times X$ отображает F° в диагональ $\Delta_X\subset X\times X$, которая, в силу хаусдорфовости, замкнута в $X\times X$. Значит, $(x,y)\in\Delta_X$, т.е. x=y .

 $1)^{def}$ Пусть F и G — два фильтра. $\tau: F \to G$ — морфизм фильтров, если τ — непрерывное отображение и $\tau^{-1}(\infty_G) = \{\infty_F\}$.

Фильтры и их морфизмы образуют категорию.

2) Пусть F и G — два фильтра. Если $\tau: F \to G$ (морфизм фильтров), то:

$$\tau(F^\circ)\subset G^\circ\ ,$$

$$\tau(\infty_F) = \infty_G ,$$

 $au^{\circ}: F^{\circ} \to G^{\circ}$ — отображение, индуцированное au .

- 3) Пусть F и G два фильтра. Пусть $\tau^\circ: F^\circ \to G^\circ$ отображение. Тогда τ° может быть продолжено до морфизма фильтров $\tau: F \to G$ (очевидно, единственным образом) $\Leftrightarrow \infty_G = \lim_F \tau^\circ$.
 - 4) Пусть F и G два фильтра, X топологическое пространство, $\tau:F\to G$, $f:G^\circ\to X$. Тогда если $x=\lim_G f$, то $x=\lim_F f\circ\tau^\circ$.

1) Пусть G — фильтр, F — топологическое пространство, $\tau: F \to G$ — непрерывное **инъективное** отображение.

Тогда F дискретно $\Leftrightarrow \tau^{-1}(\infty_G)$ открыто.

Если F недискретно, то F — фильтр и au — морфизм фильтров.

Proof.

 $\overline{\Pi$ усть $x \in F$. τ инъективно, значит, $\{x\} = \tau^{-1}(\{\tau(x)\})$.

Поэтому если $\tau(x) \neq \infty_G$, то x открыта. Если $\tau(x) = \infty_G$, то $\{x\} = \tau^{-1}(\infty_G)$.

Таким образом, $\tau^{-1}(\infty_G)$ открыто \Rightarrow все точки F открыты $\Rightarrow F$ дискретно.

Если F дискретно, то $\tau^{-1}(\infty_G)$, тавтологически, открыто.

Если F не дискретно, то $\tau^{-1}(\infty_G)$ не открыто. В частности, это множество непусто, значит, состоит из одной точки a. Если $x \neq a$, то x открыта, a не открыта. Т.е. F — фильтр и τ — морфизм фильтров.

2) Пусть G — фильтр, $F \subset G$ — подпространство. Тогда F дискретно $\Leftrightarrow \{\infty_G\} \cap F$ открыто в F. Если F недискретно, то F — фильтр и $F \subset G$ — морфизм фильтров.

Такие F называются подфильтрами.

3) Пусть (F,\mathcal{T}) — фильтр.

Пусть \mathscr{S} — более тонкая топология на F , чем \mathscr{T} .

Тогда \mathscr{S} дискретна $\Leftrightarrow \{\infty_F\} \in \mathscr{S}$.

Если \mathscr{S} недискретна, то (F,\mathscr{S}) — фильтр и $(F,\mathscr{S}) \to (F,\mathscr{T})$ — морфизм фильтров.

Такие (F,\mathcal{S}) называются более тонкими фильтрами.

 $4)^{def}\ F$ — ультрафильтр, если любой более тонкий фильтр F'=F .

Другими словами, любая, более тонкая топология на F или дискретна, или совпадает с исходной.

- 5) Пусть X топологическое пространство, \mathscr{B} база топологии X , $x \in X$. Тогда $\{x\}$ открыто $\Leftrightarrow \{x\} \in \mathscr{B}$.
 - 6)! Пусть F фильтр. Тогда \exists более тонкий <u>ультра</u>фильтр.

Proof.

 $\overline{\Pi}$ усть $F = (F, \mathcal{I})$.

 $\Lambda:=\{\mathcal{S}|\mathcal{S}$ — топология на $F,\mathcal{S}\supset\mathcal{T},\{\infty_F\}\notin\mathcal{S}\}$.

Если $\mathcal{S} \in \Lambda$, то (F,\mathcal{S}) есть более тонкий, чем F фильтр, и все такие фильтры получаются этим способом.

 Λ частично упорядочено включением.

Если $\mathcal{S} \in \Lambda$ — максимальный элемент, то (F,\mathcal{S}) и есть требуемый более тонкий ультрафильтр.

Поэтому достаточно доказать, что Λ индуктивно и воспользоваться леммой Цорна.

Пусть $\Sigma \subset \Lambda$ — цепь. $\mathscr{B} := \bigcup \Sigma$.

Тогда, $F \in \mathcal{B}$, $\{\infty_F\} \notin \mathcal{B}$, $A, B \in \mathcal{B} \Rightarrow A \cap B \in \mathcal{B}$.

Значит, \mathscr{B} — мультипликативный базис топологии \mathscr{S} .

Ясно, что $\mathcal{S} \in \Lambda$ и что \mathcal{S} мажорирует Σ .

$\underline{n.4}$

Пусть
$$F$$
 — фильтр,
$$X$$
 — топологическое пространство,
$$f: F^{\circ} \to X \ .$$

1) Пусть $\Gamma:=\{\ (t,f(t))\mid t\in F^\circ\ \}\subset F\times X$ — график f . Пусть $x\in X$, $\Gamma_x:=\Gamma\cup\{(\infty_F,x)\}\subset F\times X$ — график продолжения f , такого, что $\infty_F\mapsto x$.

2) Рассмотрим следующую диаграмму:

$$\Gamma_x \xrightarrow{pr_X} X$$

$$\downarrow pr_F \text{ биективно}$$
 F

Тогда

 $x = \lim_F f \Leftrightarrow pr_F$ изоморфизм $\Rightarrow \Gamma_x$ недискретно

 $3)^{def}\ x\in X$ называется предельной точкой f относительно F , если Γ_x недискретно. Множество предельных точек f относительно F будем обозначать $\mathop{Lim}_F(f)$.

4)
$$x = \lim_{F} f \Rightarrow x \in Lim_{F}(f)$$
.

5) Следующие утверждения эквивалентны:

- а) Γ_x дискретно,
- b) (∞_F, x) открыто в Γ_x ,
- с) Γ замкнуто в Γ_x ,
- d) $\overline{\Gamma} \cap \Gamma_x = \Gamma$,
- e) $(\infty_F, x) \notin \overline{\Gamma}$,
- f) \exists окрестности $\infty_F \in V, x \in U$, такие, что $V \times U \bigcap \Gamma = \varnothing$,
- g) \exists окрестности $\infty_F \in V, x \in U$, такие, что $V \bigcap f^{-1}(U) = \varnothing$,
- h) \exists окрестности $\infty_F \in V, x \in U$, такие, что $f(V^\circ) \bigcap U = \varnothing$.
- 6) $\overline{\Gamma} \bigcap \infty_F \times X = \infty_F \times \mathop{Lim}_F(f)$. $\mathop{Lim}_F(f)$ замкнуто в X .
- 7) $\underset{F}{lim}(f) = \bigcap_{\infty_F \in V} \overline{f(V^{\circ})}$
- 8) Пусть $\tau:G\to F$ морфизм фильтров. Тогда $\mathop{Lim}_G(f\circ \tau^\circ)\subset \mathop{Lim}_F(f)$. *Proof.*

$$(\tau \times id_X)(\Gamma') \subset \Gamma$$
$$(\tau \times id_X)(\overline{\Gamma'}) \subset \overline{\Gamma}$$

- 9)! Следующие утверждения равносильны:
- a) $x \in Lim_F(f)$,
- b) Γ_x есть фильтр,
- с) $\exists F'$ более тонкий фильтр, чем F , такой, что $x = \lim_{F'} f$,
- d) $\exists F'$ более тонкий фильтр, чем F , такой, что $x \in \mathop{Lim}_{F'}(f)$.
- 10) Пусть F — ультрафильтр. Тогда $\mathop{Lim}_F(f) = \mathop{\lim}_F f$.
- 11) Пусть Xхаусдорфово. Тогда $x = \lim_F f \ \Rightarrow \ Lim(f) = \{x\}$.
- 12) Пусть $p:X\to Y$ — непрерывное отображение. Тогда
 $p(Lim(f))\subset Lim(f\circ p)$.

- $1)^{def}$ Пусть F фильтр. $\mathit{Baso\'u}\ F$ называется базис окрестностей в ∞_F . Т.е. это семейство \mathscr{B} , такое, что $\forall\ V \in \mathscr{B}$ есть окрестность ∞_F и $\forall\ U$, окрестности ∞_F , $\exists\ V \in \mathscr{B}$, такая, что $V \subset U$.
 - 2) Пусть F фильтр, $A \subset F$. Тогда:

A открыто \Leftrightarrow либо $A \subset F^{\circ}$, либо A — окрестность ∞_F ,

если A — окрестность ∞_F , а $A \subset B \subset F$, то B — тоже окрестность ∞_F ,

A замкнуто \Leftrightarrow либо $\infty_F \in A$, либо $\infty_F \notin \overline{A}$,

A не замкнуто $\Leftrightarrow \infty_F \notin A \& \infty_F \in \overline{A}$ (в этом случае $\overline{A} = A \bigcup \{\infty_F\}$).

- 3) База и бесконечная точка фильтра однозначно определяют топологию фильтра.
- 4) Пусть F множество, $\infty \in F$ точка, \mathscr{B} семейство подмножеств F . Тогда \mathscr{B} есть база некоторого фильтра с множеством точек F и $\infty_F = \infty$ тогда и только тогда, когда
 - a) $\forall U \in \mathcal{B}$, $\infty \in U$ u $U \neq \{\infty\}$,
 - b) $\forall \ U,V\in \mathscr{B}$, $\exists \ W\in \mathscr{B}$, такой, что $W\subset U\bigcap V$.
- 5) Пусть F множество, \mathscr{B} есть база некоторого фильтра с множеством точек F . Пусть $\infty \in \bigcap \mathscr{B}$. Тогда \mathscr{B} есть база некоторого фильтра с множеством точек F и $\infty_F = \infty$.
- 6) Пусть F фильтр, X топологическое пространство, $f:F\to X$ функция. Тогда f непрерывна $\Leftrightarrow f$ непрерывна в точке ∞_F .
- 7) Пусть F фильтр, $\mathscr B$ база F , X топологическое пространство, $f:F\to X$ функция, $f(\infty_F)=x$. Тогда f непрерывна $\Leftrightarrow \forall \ x\in U$ окрестности $\exists \ V\in \mathscr B$, такая, что $f(V)\subset U$.
- 8)! Пусть X топологическое пространство, $A\subset X$, $x\in \overline{A}$. Тогда \exists фильтр F и функция $f:F^\circ\to X$, такие, что $x=\lim_{{\mathbb F}} f$.

Proof.

 $\overline{\text{Положим}}\; F = A \bigsqcup \{\infty\}$. Топологию на F зададим следующим базисом:

 $\{a\}$ в точке $a\in A$,

 $\{\ (U\bigcap A)\cup \{\infty\}\mid x\in U$ — окрестность $\ \}$, в точке ∞ .

Тогда F — фильтр, $\infty_F=\infty$, $F^\circ=A$. Определим $f:=id_A$, $g:F\to X$ — продолжение f , такое, что $g(\infty)=x$. Тогда для любой окрестности $x\in U$ будем иметь $g((U\bigcap A)\cup\{\infty\})\subset U$, значит, g непрерывна, поэтому $x=\lim_F f$.

 (Λ, \to) — направленное множество, если:

 Λ — непустое множество,

 \rightarrow — отношение на Λ , удовлетворяющее следующим условиям:

- а) $\lambda \to \lambda$ (рефлексивность),
- b) $\lambda \to \mu \& \mu \to \nu \Rightarrow \lambda \to \nu$ (транзитивность),
- с) $\forall \lambda, \mu \exists \nu$, такое, что $\lambda \rightarrow \nu \& \mu \rightarrow \nu$.

 Λ можно рассматривать как малую категорию, где Λ есть множество объектов,

$$Hom(\lambda,\mu) = egin{cases} \{\varnothing\}, & \text{если } \lambda o \mu \\ \varnothing, & \text{в противном случае} \end{cases}$$

 $(10)^{def}$ Пусть Λ — направленное множество.

$$\Lambda \to \infty := \Lambda \sqcup \{\infty\}$$

Введём на $\Lambda \to \infty$ топологию со следующим базисом:

 $\{\lambda\}$ в точке $\lambda \in \Lambda$,

$$\{\ \{\ \mu\mid\lambda\to\mu\ \}\cup\{\infty\}\mid\lambda\in\Lambda\ \}$$
 , в точке ∞ .

Тогда $\Lambda \to \infty$ есть фильтр, $(\Lambda \to \infty)^\circ = \Lambda$. Самый распространённый пример — $\mathbb{N} \to \infty$.

11) Пусть Λ и Λ' — направленные множества, $\tau:\Lambda\to\Lambda'$ — монотонное отображение. Т.е. $\lambda\to\mu\Rightarrow\tau(\lambda)\to\tau(\mu)$. τ можно рассматривать как функтор, если интерпретировать Λ и Λ' как малые категории. Тогда τ продолжается до морфизма фильтров $(\Lambda\to\infty)\to(\Lambda'\to\infty)$ (всегда однозначно) $\Leftrightarrow\forall\;\lambda'\in\Lambda'\;\exists\;\lambda\in\Lambda\;,\;\lambda'\to\tau(\lambda)$.

Proof.

 $\overline{ au}$ продолжается до морфизма фильтров $\Leftrightarrow \lim_{\Lambda \to \infty} \tau = \infty$. Это значит, что $\forall \lambda' \in \Lambda' \; \exists \; \lambda \in \Lambda \; , \; \lambda \to \mu \Rightarrow \lambda' \to \tau(\mu)$. В частности, $\lambda' \to \tau(\lambda)$. Наоборот, пусть $\lambda' \to \tau(\lambda)$. Тогда $\lambda \to \mu \Rightarrow \tau(\lambda) \to \tau(\mu) \Rightarrow \lambda' \to \tau(\mu)$.

$$f(\lambda_{max}) = \lim_{\Lambda \to \infty} f$$

¹²⁾ Пусть Λ и Λ' — направленные множества. Тогда $\Sigma := \Lambda \times \Lambda'$ со следующим отношением порядка: $(\lambda, \lambda') \to (\mu, \mu') \Leftrightarrow \lambda \to \mu \ \& \ \lambda' \to \mu'$, есть направленное множество. При этом проекции $\Sigma \to \Lambda$ и $\Sigma \to \Lambda'$ монотонны и продолжаются до морфизмов фильтров $(\Sigma \to \infty) \to (\Lambda \to \infty)$ и $(\Sigma \to \infty) \to (\Lambda' \to \infty)$.

¹³⁾ Пусть Λ — направленное множество, λ_{max} — наибольший элемент Λ , т.е. $\forall \lambda \in \Lambda \ \lambda \to \lambda_{max}$. Это равносильно тому, что λ_{max} — максимальный элемент Λ , т.е. $\forall \lambda \in \Lambda \ \lambda_{max} \to \lambda \Rightarrow \lambda \to \lambda_{max}$. Тогда $\forall f: \Lambda \to X$, где X — топологическое пространство,

14) Пусть Λ — направленное множество, F — фильтр, $\tau:\Lambda\to F^\circ$ — отображение. Тогда τ продолжается до морфизма фильтров $(\Lambda\to\infty)\to F$ (всегда однозначно) $\Leftrightarrow\forall \infty_F\in U$ окрестности $\exists \ \lambda\in\Lambda \ \forall \ \lambda\to\mu \ , \ \tau(\mu)\in U$.

n.6

X — топологическое пространство

- 1)! Следующие утверждения равносильны:
- a) X компактно,
- b) $\forall Y \ pr_Y : Y \times X \to Y$ замкнуто,
- с) \forall фильтра F и $f:F^{\circ}\rightarrow X$, $\mathop{Lim}_{F}(f)\neq\varnothing$,
- d) \forall фильтра F и $f:F^{\circ}\to X$ \exists более тонкий фильтрF' , такой, что существует $\lim_{F'}f$,

$$\frac{Proof.}{a) \Rightarrow b)$$

Пусть $A \subset Y \times X$ — замкнуто, тогда $U = Y \times X \setminus A$ открыто.

Положим $B=pr_Y(A)$, $C=Y\setminus B$. Нам надо доказать, что B замкнуто, это равносильно тому, что C открыто.

$$C = \{ y \in Y \mid y \times X \bigcap A = \emptyset \} = \{ y \in Y \mid y \times X \subset U \}$$

Пусть $y \in C$, тогда $y \times X \subset \bigcup_{i \in I} W_i \times V_i$, где W_i — окрестность $y, \, V_i$ — открыто в X и $W_i \times V_i \subset U$.

Но $y \times X$ компактно, следовательно можно считать I конечным (заменяя на конечное подпокрытие). Тогда $W = \bigcap_{i \in I} W_i$ — окрестность y и $X \subset \bigcup_{i \in I} V_i$. Значит, $W \times X = \bigcup_{i \in I} W \times V_i \subset \bigcup_{i \in I} W_i \times V_i \subset U$. Поэтому $W \subset C$. Итак, C открыто.

$$b) \Rightarrow c)$$

Пусть Γ — график f .

Имеем, $pr_F(\overline{\Gamma})$ замкнуто, содержит F° , значит, $\supset \overline{F^\circ} = F$. Тем самым, $\infty_F \in pr_F(\overline{\Gamma}) \Rightarrow \infty_F \times X \bigcap \overline{\Gamma} \neq \varnothing \Rightarrow L_F^{im}(f) \neq \varnothing$.

 $c) \Rightarrow a)$

Пусть $\{U_i\}_{i\in I}$ — открытое покрытие X , из которого нельзя выбрать конечное подпокрытие. $\Lambda:=\{\ J\subset I\mid J\$ конечно $\}$. Упорядочим Λ по включению: $J\to J'$, если $J\subset J'$. Тогда Λ — направленное множество. Для любого $J\in \Lambda$ выберем $f(J)\in X\setminus U_i$.

Пусть $i \in I$, $J = \{i\}$. Пусть $J \to J'$, тогда $i \in J'$, значит, $f(J') \notin U_i$. Т.е. $f(\{J' \mid J \to J'\}) \cap U_i = \varnothing \Rightarrow \underset{\Lambda \to \infty}{Lim}(f) \cap U_i = \varnothing$. Поскольку это верно для любого i, $\underset{\Lambda \to \infty}{Lim}(f) = \varnothing$, противоречие.

Импликации $\underline{c) \Rightarrow d) \Rightarrow e) \Rightarrow c)$ тривиальны.

 $^{2)^{!!!}}$ (Теорема Тихонова о произведениях). Если $\{X_i\}_{i\in I}$ — семейство компактных пространств, то их произведение $\prod_{i\in I} X_i$ тоже компактно.

1) Пусть F — фильтр. Тогда F есть ультрафильтр тогда, и только тогда, когда для любого разбиения $F^{\circ} = A \bigsqcup B$ верно, что $A \bigcup \{\infty_F\}$ или $B \bigcup \{\infty_F\}$ открыто (но не оба вместе). Это также равносильно тому, что A или B замкнуто (но не оба вместе).

Proof.

Пусть $F=(F,\mathcal{T})$. Тогда F — ультрафильтр \Leftrightarrow \forall $\mathcal{T}\subset\mathcal{S}$ топологии $\mathcal{S}\neq\mathcal{T}\Rightarrow\{\infty_F\}\in\mathcal{S}$. Т.е. пусть $A\subset F$, $A\notin\mathcal{T}$, \mathcal{S} — топология с предбазой $\mathcal{T}\bigcup\{A\}$. Тогда $\{\infty_F\}\in\mathcal{S}$. Пусть \mathcal{B} — база, порождённая $\mathcal{T}\bigcup\{A\}$, тогда $\{\infty_F\}\in\mathcal{B}$. Т.е. \exists $U_1,...,U_n\in\mathcal{T}\bigcup\{A\}$, такие, что $\{\infty_F\}=U_1\bigcap...\bigcap U_n$. Из этого вытекает, что \exists $U\in\mathcal{T}$, такое, что $\{\infty_F\}=U$ или $\{\infty_F\}=U\bigcap A$. Первое невозможно, значит верно второе. Мы доказали, что F — ультрафильтр \Leftrightarrow \forall $A\subset F$, $A\notin\mathcal{T}$ \exists $U\in\mathcal{T}$, такое, что $\{\infty_F\}=U\bigcap A$.

Пусть теперь $F^{\circ} = A \bigsqcup B$ — разбиение, причём $A \bigcup \{\infty_F\}$ не открыто. Значит, $\exists \ U \in \mathcal{T}$ такое, что $\{\infty_F\} = U \bigcap (A \bigcup \{\infty_F\})$. Поэтому $(U \setminus \{\infty_F\}) \bigcap A = \varnothing \Rightarrow U \setminus \{\infty_F\} \subset B$. Имеем, $B \bigcup \{\infty_F\} = B \bigcup U$ открыто (потому что B открыто).

Наоборот, пусть выполнено условие про разбиения. Пусть $A \subset F$, такое, что A не открыто. Тогда $\infty_F \in A$. Положим $B = F \setminus A$. Тогда, по условию, $U = B \bigcup \{\infty_F\}$ открыто. Но $U \cap A = \{\infty_F\}$, что и требовалось.

2) Пусть X — топологическое пространство, $A\subset X$, $x\in\overline{A}$. Пусть X обладает счётным базисом окрестностей в точке x . Тогда $\exists \ f:\mathbb{N}\to A$, такая, что $x=\lim_{\mathbb{N}\to\infty}f$.

Proof.

Пусть $\{U_n\}_{n\in\mathbb{N}}$ — убывающий базис окрестностей в точке x . Тогда $\forall~n\in\mathbb{N}~U_n\bigcap A\neq\varnothing$. Выберем для всех $n\in\mathbb{N}$ точку $f(n)\in U_n\bigcap A$. Тогда $f:\mathbb{N}\to A$. Далее, $f(k)\in U_n$, если $k\geqslant n$. Т.е. $f(\{k\in\mathbb{N}\mid k\geqslant n\})\subset U_n$. Значит, $x=\lim_{\mathbb{N}\to\infty}f$.

3) Пусть F — фильтр со счётной базой фильтра. Тогда существует морфизм фильтров ($\mathbb{N} \to \infty$) $\to F$.

 $\frac{Proof.}{\infty_F \in \overline{F^{\circ}}}$

4) Пусть F — фильтр со счётной базой фильтра. Пусть $A\subset F$ не замкнуто. Тогда существует морфизм фильтров $\tau:(\mathbb{N}\to\infty)\to F$, такой, что $\tau^{-1}(A)=\mathbb{N}$.

Proof.

 $\overline{\text{Доста}}$ точно заметить, что $\infty_F \notin A$ и $A \bigcup \{\infty_F\}$ — подфильтр F.

5) Пусть F — фильтр со счётной базой фильтра. Пусть X — топологическое пространство, $f:F^\circ\to X$, $x\in X$. Пусть для любого морфизма фильтров $\tau:(\mathbb{N}\to\infty)\to F$ верно, что $x=\lim_{\mathbb{N}\to\infty}f\circ\tau$. Тогда $x=\lim_{\mathbb{R}}f$.

Proof.

Пусть $g: F \to X$ — продолжение f , такое, что $g(\infty_F) = x$. Докажем, что g непрерывно. Пусть $B \subset X$ замкнуто, а $A = g^{-1}(B)$ не замкнуто. Тогда существует морфизм фильтров $\tau: (\mathbb{N} \to \infty) \to F$, такой, что $\tau^{-1}(A) = \mathbb{N}$. Имеем, $(g \circ \tau)^{-1}(B) = \mathbb{N}$ не замкнуто в $\mathbb{N} \to \infty$, следовательно, $g \circ \tau$ не непрерывно, поэтому неверно, что $x = \lim_{\mathbb{N} \to \infty} f \circ \tau$. Противоречие.