Číslo cvičení: 3 Jméno: Marek Bryša

UČO: 323771 Login: xbrysa1

1. (a)
$$x^6 - 1 = (1 - x + x^2)(1 + x + x^3 + x^4) \implies h(x) = x^2 - x + 1$$

(b)

- 2. (a) Not linear \implies not cyclic, not equivalent to a cyclic code.
 - (b) Not a cyclic code, not equivalent to a cyclic code.
 - (c) Is a cyclic code.
 - (d) Not a cyclic code, not equivalent to a cyclic code.

3.

4. MDS \iff $M=q^{n-d+1}$. Ham(r,2) has a $(r\times(2^r-1))=((n-k)\times n)$ parity check matrix \implies $n=2^r-1, n-k=r, d=3$. $M=q^k=2^{n-r}$.

$$2^{2^{r}-1-3+1} = 2^{2^{r}-1-r}$$
$$2^{r} - 3 = 2^{r} - 1 - r$$
$$r = 2$$

5.
$$(x^7 - 1)/(x^3 + x + 1) = x^4 + x^2 + x + 1 = h(x)$$
.

$$H = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 \end{pmatrix}, \bar{h}(x) = x^4 + x^3 + x^2 + 1$$

 $6. \ \ x^6-1=(x-1)(x+1)(x^2-x+1)(x^2+x+1). \ \ \text{There are } 2^4=16 \ \text{such codes. Their generator polynomials are: } 1,(x-1),(x+1),(x^2-x+1),(x^2+x+1),(x^2-1),(x^3-2x^2+2x-1),(x^3-1),(x^3+1),(x^3+2x^2+2x+1),(x^4+x^2+1),(x^4+x^3-x+1),(x^4-x^3+x-1),(x^5-x^4+x^3-x^2+x-1),(x^5+x^4+x^3+x^2+x+1),(x^6-1)=0$

Polynomial	Matrix						
1		I_6					
x+1		1	1	0	0	0	0
		0	1	1	0	0	0
		0	0	1	1	0	0
		0	0	0	1	1	0
		0	0	0	0	1	1
$x^2 + 1$	ĪĪ	1	0	1	0	0	0
		0	1	0	1	0	0
		0	0	1	0	1	0
		0	0	0	1	0	1
$x^{3} + 1$	ĪĪ	1	0	0	1	0	0
		0	1	0	0	1	0
		0	0	1	0	0	1
$x^4 + x^2 + 1$		1	0	1	0	1	0
		0	1	0	1	0	1
$(x^5 + x^4 + x^3 + x^2 + x + 1)$		1	1	1	1	1	1

- 7. (a) Let C_1 be a repetition code of length n, C_2 a no-parity code of length $n \implies \neg C_1 = C_1, C_1 \cap C_2 = C_1 = C_3$.
 - (b) C_3 does not exist. There must be at least one non-zero codeword in C_1 . If C_3 were to be cyclic, that non-zero bit would have to be shifted to all positions including the last one.
 - (c) Let C_1 and C_2 be the same as in (a) $\implies C_1 \cup C_2 = C_2 = C_3$.