교과목번호	430.322	강좌번호	001	교과목명	컴퓨터조직론 (Computer Organization)	학점	3
-------	---------	------	-----	------	------------------------------------	----	---

성명 : 김장우 (직 : 부교수) Homepage : hpcs.snu.ac.kr/~jangwoo
담당교수 E-mail : jangwoo@snu.ac.kr 전화번호 : 02-880-1868
면담시간/장소 : Any time/301동 902호

수업목표

This course introduces the basic principles of a modern computer system, and hardware and software design techniques and analysis related with computer architecture and organization, which is based on basic concepts of digital system design. This course will discuss how to design the control and datapath for a pipelined RISC processor, memory and storage, and multi/many-core systems. and emerging computer systems. The principles presented in lecture are reinforced in the laboratory through the practical exercises of system-level implementation (e.g., HDL implementation, simulator).

교재 및 참고문헌 Title: "Computer Organization and Design: The Hardware / Software Interface" (5/E)

Author: David A. Patterson & John L. Hennessy

Publisher: Morgan Kaufamann 2014 ISBN: 0124077269 / 9780124077263

	출석	과제	중간	기말	평소학습	기타	합계
평가방법	10%	30%	30%	30%	%	%	100%
	비고						

수강생 참고사항 *** Lab & Q&A Session

There will be weekly lab and Q&A sessions to cover simulator/verilog coding and recitations. Students MUST attend this weekly meeting (Tuesday 5pm-6:30pm)

부정행위자	위자			
에 대한	한			
처리]			

	주(기간)	강의내용
	1주	IntroductionInstruction Set Architecture (ISA), part 1
	2주	Instruction Set Architecture (ISA), part 2Performance Metric
	3주	Single-cycle CPUMulti-cycle CPU
	4주	- Pipelined-CPU (basic) - Pipelined-CPU (data hazard)
	5주	Pipelined-CPU (control hazard)Pipelined-CPU (exception)
	6주	Modern-CPU (superscalar, out-of-order execution)Modern-CPU (multi-threading, multi-core)
	7주	Memory (cache), part 1Memory (cache), part 2
강의 계획	8주	Memory (virtual memory), part 1Memory (virtual memory), part 2
	9주	Multi-core (coherency), part 1Multi-core (coherency), part 2
	10주	- Synchronization - I/O & Bus
	11주	- SRAM/DRAM - Flash/NVM devices
	12주	HDD and storageInterconnection Network
	13주	- Vector and HPC - GPU and CUDA
	14주	Datacenter/Cloud computingBig Data/Distributed
	15주	- Future systems (neuromorphic, quantum)