HIMatrix M45

Safety-Related Controller

Manual M-DO 8 01

HIMA Paul Hildebrandt GmbH Industrial Automation

Rev. 1.01 HI 800 665 E

All HIMA products mentioned in this manual are protected by the HIMA trade-mark. Unless noted otherwise, this also applies to other manufacturers and their respective products referred to herein.

HIMax®, HIMatrix®, SILworX®, XMR® and FlexSILon® are registered trademarks of HIMA Paul Hildebrandt GmbH.

All of the instructions and technical specifications in this manual have been written with great care and effective quality assurance measures have been implemented to ensure their validity. For questions, please contact HIMA directly. HIMA appreciates any suggestion on which information should be included in the manual.

Equipment subject to change without notice. HIMA also reserves the right to modify the written material without prior notice.

For further information, refer to the HIMA DVD and our website at http://www.hima.de and http://www.hima.com.

© Copyright 2014, HIMA Paul Hildebrandt GmbH All rights reserved

Contact

HIMA contact details:

HIMA Paul Hildebrandt GmbH

P.O. Box 1261

68777 Brühl, Germany Phone: +49 6202 709-0

Fax: +49 6202 709-107 E-mail: info@hima.com

Revision	Revisions	Type of change	
index		technical	editorial
1.00	First edition of the HIMatrix M45 manual		
1.01	Editorial revisions		Х

M-DO 8 01 Table of Contents

Table of Contents

1	Introduction	5
1.1	Structure and Use of this Manual	5
1.2	Target Audience	5
1.3	Formatting Conventions	6
1.3.1	Safety Notes	6
1.3.2	Operating Tips	7
2	Safety	8
2.1	Intended Use	8
2.1.1 2.1.2	Environmental Requirements ESD Protective Measures	8 8
2.2	Residual Risk	9
2.3	Safety Precautions	9
2.4	Emergency Information	9
3	Product Description	10
3.1	Safety Function	10
3.2	Scope of Delivery	10
3.3	Type Label	11
3.4	Structure	12
3.4.1	Safety-Related Digital Outputs	12
3.4.2 3.4.3	Block Diagram Front View	13 14
3.4.4	LED Indicators	15
3.4.4.1 3.4.4.2	Module Status Indicators I/O Indicators	15 16
3.5	Product Data	17
3.6	Socket	18
3.6.1 3.6.2	Mechanical Coding	18 19
3.6.2.1	Coding the M-DO 8 01 Module and Socket Configuring the Socket Coding	19
3.6.3	Socket M-SO I/O 01	20
3.6.3.1	Terminal Assignment for the Field Terminals	21
3.6.3.2	Field Terminal Properties	21
4	Start-up	22
4.1	Mounting	22
4.1.1	Wiring Outputs not in Use	22
4.2	Mounting Module and Socket	23
4.2.1 4.2.2	Mounting and Removing the Sockets Inserting and Removing the Module	23 25
4.3	Configuration with SILworX	26
4.3.1 4.3.2	Tab Module Tab M-DO 8 01_1: Channels	26 27

HI 800 665 E Rev. 1.01 Page 3 of 40

Table of Contents	M-DO 8 0 ²

4.4	Connection Variants	28
4.4.1	Wiring Actuators	28
4.4.2	Wiring Actuators with M-LS 4 01 Module	29
5	Operation	30
5.1	Handling	30
5.2	Diagnosis	30
6	Maintenance	31
6.1	Errors	31
6.2	Maintenance Measures	31
6.2.1	Loading the Operating System	31
6.2.2	Proof Test	31
7	Decommissioning	32
8	Transport	33
9	Disposal	34
	Appendix	35
	Glossary	35
	Index of Figures	36
	Index of Tables	37
	Index	38

Page 4 of 40 HI 800 665 E Rev. 1.01

M-DO 8 01 1 Introduction

1 Introduction

This manual describes the technical characteristics of the module and its use. It provides information on how to install, start up and configure the module in SILworX.

1.1 Structure and Use of this Manual

The content of this manual is part of the hardware description of the HIMatrix M45 programmable electronic system.

This manual is organized in the following main chapters:

- Introduction
- Safety
- Product Description
- Start-up
- Operation
- Maintenance
- Decommissioning
- Transport
- Disposal

Additionally, the following documents must be taken into account:

Name	Content	Document no.
HIMatrix M45 Safety Manual	Safety functions of the HIMatrix system	HI 800 653 E
HIMatrix M45 System Manual	Hardware description of the HIMatrix M45	HI 800 651 E
SILworX Communication Manual	Description of communication and protocols	HI 801 101 E
SILworX Online Help (OLH)	Instructions on how to use SILworX	-
SILworX First Steps Manual	Introduction to SILworX	HI 801 103 E

Table 1: Additional Relevant Documents

The latest manuals can be downloaded from the HIMA website at www.hima.com. The revision index on the footer can be used to compare the current version of existing manuals with the Internet edition.

1.2 Target Audience

This document addresses system planners, configuration engineers, programmers of automation devices and personnel authorized to implement, operate and maintain the modules and systems. Specialized knowledge of safety-related automation systems is required.

HI 800 665 E Rev. 1.01 Page 5 of 40

1 Introduction M-DO 8 01

1.3 Formatting Conventions

To ensure improved readability and comprehensibility, the following fonts are used in this document:

Bold To highlight important parts.

Names of buttons, menu functions and tabs that can be clicked and used

in the programming tool.

Italics For parameters and system variables.

Courier Literal user inputs.

RUN Operating state are designated by capitals.

Chapter 1.2.3 Cross-references are hyperlinks even if they are not particularly marked.

When the cursor hovers over a hyperlink, it changes its shape. Click the

hyperlink to jump to the corresponding position.

Safety notes and operating tips are particularly marked.

1.3.1 Safety Notes

The safety notes are represented as described below.

These notes must absolutely be observed to reduce the risk to a minimum. The content is structured as follows:

- Signal word: warning, caution, notice
- Type and source of risk
- Consequences arising from non-observance
- Risk prevention

A SIGNAL WORD

Type and source of risk!

Consequences arising from non-observance

Risk prevention

The signal words have the following meanings:

- Warning indicates hazardous situation which, if not avoided, could result in death or serious injury.
- Caution indicates hazardous situation which, if not avoided, could result in minor or modest injury.
- Notice indicates a hazardous situation which, if not avoided, could result in property damage.

NOTE

Type and source of damage! Damage prevention

Page 6 of 40 HI 800 665 E Rev. 1.01

M-DO 8 01 1 Introduction

1.3.2 Operating Tips Additional information is structured as presented in the following example: The text corresponding to the additional information is located here. Useful tips and tricks appear as follows:

TIP

The tip text is located here.

HI 800 665 E Rev. 1.01 Page 7 of 40

2 Safety M-DO 8 01

2 Safety

All safety information, notes and instructions specified in this document must be strictly observed. The product may only be used if all guidelines and safety instructions are adhered to.

The product is operated with SELV or PELV. No imminent risk results from the product itself. The use in Ex-Zone is permitted if additional measures are taken.

2.1 Intended Use

HIMatrix components are designed for assembling safety-related controller systems.

When using the components in the HIMatrix system, comply with the following general requirements.

2.1.1 Environmental Requirements

Requirement type	Range of values
Protection class	Protection class III in accordance with IEC/EN 61131-2
Ambient temperature	0+60 °C
Storage temperature	-40+85 °C
Pollution	Pollution degree II in accordance with IEC/EN 61131-2
Altitude	< 2000 m
Housing	Standard: IP20
Supply voltage	24 VDC

Table 2: Environmental Requirements

Exposing the HIMatrix system to environmental conditions other than those specified in this manual can cause the HIMatrix system to malfunction.

2.1.2 ESD Protective Measures

Only personnel with knowledge of ESD protective measures may modify or extend the system or replace devices.

NOTE

Device damage due to electrostatic discharge!

- When performing the work, make sure that the workspace is free of static, and wear an ESD wrist strap.
- If not used, ensure that the device is protected from electrostatic discharge, e.g., by storing it in its packaging.

Page 8 of 40 HI 800 665 E Rev. 1.01

M-DO 8 01 2 Safety

2.2 Residual Risk

No imminent risk results from a HIMatrix M45 system itself.

Residual risk may result from:

- Faults related to engineering
- Faults related to the user program
- Faults related to the wiring

2.3 Safety Precautions

Observe all local safety requirements and use the protective equipment required on site.

2.4 Emergency Information

A HIMatrix M45 system is a part of the safety equipment of a plant. If a device or a module fails, the system enters the safe state.

In case of emergency, no action that may prevent the HIMatrix M45 systems from operating safely is permitted.

HI 800 665 E Rev. 1.01 Page 9 of 40

3 Product Description M-DO 8 01

3 Product Description

The M-DO 8 01 digital output module is intended for use in the HIMatrix M45 system.

Up to 62 I/O modules can be used in a HIMatrix M45 system, if the structuring conditions as of the system manual HI 800 651 E are met.

The module is equipped with 8 digital outputs that can be loaded with a nominal current of up to 0.5 A per channel. The supply voltage minus internal voltage drop is present on the outputs.

The outputs are suitable for connecting ohmic, inductive and capacitive loads and lamps.

The module has been certified by the TÜV for safety-related applications up to SIL 3 (IEC 61508, IEC 61511, IEC 62061 and EN 50156) as well as PL e (EN ISO 13849-1). Further safety standards, application standards and test standards are specified in the certificates available on the HIMA website.

3.1 Safety Function

The safety function meets the integrity requirements described in the corresponding test standards.

The module is designed in accordance with the de-energize-to-trip principle. If a module fault occurs, all outputs are set to the de-energized state. In this case, the *Err* LED is blinking.

The module can also be used in energized to trip applications. All instructions on how to use the module specified in the safety manual must be observed.

3.2 Scope of Delivery

To be able to operate, the module must be installed on a suitable socket. The socket is not included within the scope of delivery of the module.

The socket is described in Chapter 3.6.

Page 10 of 40 HI 800 665 E Rev. 1.01

3.3 Type Label

The type plate contains the following details:

- Product name
- Mark of conformity
- Bar code (2D code)
- Part number (Part-No.)
- Hardware revision index (HW-Rev.)
- Operating system revision index (OS-Rev.)
- Operating data (Power:)
- Production year (Prod-Year:)

Figure 1: Sample Type Label

HI 800 665 E Rev. 1.01 Page 11 of 40

3.4 Structure

The chapter contains the following sections:

- Safety-Related Digital Outputs
- Block Diagram
- LED Indicators

The module is equipped with a safety-related 1002D processor system and performs the following functions:

- Safe shutdown of the outputs
- Control and monitoring of the I/O level

The process data and states of the module are provided to the processor module (M-CPU) via the system bus.

3.4.1 Safety-Related Digital Outputs

The module is equipped with eight digital outputs. Two testable switches are integrated in series in the safety-related output channels. One of the implemented switches is a safety switch, whose safe shutdown capability is tested. The outputs are monitored cyclically via the processor system. If the states do not correspond to the default values, a module fault has occurred and all outputs are set to the de-energized state.

The outputs are automatically checked for short-circuits (SC). If a short-circuit (SC) is detected at one output, the affected output is switched off for approx. 5 s. The module cyclically check, if a short-circuit is still detected. If no short-circuit is detected, the output is switched on again automatically. If a short-circuit is detected for a period of 12 hours, a module fault has occurred and all channels are set to the de-energized state.

If the total current of the outputs exceeds the permissible value 4 A over a period of approx. 100 ms, the system parameter *Maximum Total Current Exceeded* is set to TRUE. After that, the system parameter is set to FALSE, if the total current falls below the permissible value for the same period.

Page 12 of 40 HI 800 665 E Rev. 1.01

3.4.2 Block Diagram

The following block diagram illustrates the structure of the module.

- 1 System Bus
- 2 Switch
- 3 Watchdog
- Figure 2: Block Diagram

- 4 Safety-Related Processor System
- 5 Interface
- 6 Field Zone

HI 800 665 E Rev. 1.01 Page 13 of 40

3.4.3 Front View

The following figure shows the front view of the module:

Figure 3: Front View

Page 14 of 40 HI 800 665 E Rev. 1.01

3.4.4 LED Indicators

The LEDs indicate the operating state of the module. The LEDs are classified as follows:

- Module status indicators
- I/O indicators

When the supply voltage is switched on, an LED test is performed and all LEDs are briefly lit.

Definition of Blinking Frequencies

The following table defines the blinking frequencies of the LEDs:

Name	Blinking frequencies
Blinking1	Long (approx. 600 ms) on, long (approx. 600 ms) off
Blinking2	Short (approx. 200 ms) on, short (approx. 200 ms) off, short (approx. 200 ms) on, long (approx. 600 ms) off
Blinking-x	Ethernet communication: Blinking synchronously with data transfer

Table 3: Blinking Frequencies of LEDs

3.4.4.1 Module Status Indicators

The LEDs signal the following states:

LED	Color	Status	Description
Run	Green	On	Module in RUN, normal operation
		Blinking1	Module state:
			STOP/OS_DOWNLOAD or
			OPERATE (only with processor modules)
		Off	Module not in RUN,
			observe the other status LEDs.
Err	Red	On	Warning, e.g.:
			No license for additional functions
			(e.g., communication protocols), test mode.
		Blinking1	Fault, e.g.:
			 Internal module fault detected by self-tests,
			e.g., hardware or voltage supply.
			Error while loading the operating system.
		Blinking2	Field fault, but no internal fault
		Off	Normal operation
Stop	Yellow	On	Module state:
			STOP / VALID CONFIGURATION
		Blinking1	Module state:
			STOP / INVALID CONFIGURATION or
			STOP / LOADING OS
		Off	Module not in STOP,
			observe the other status LEDs.
Init	Yellow	On	Module state: INIT
		Blinking1	Module state:
			LOCKED or
			STOP / LOADING OS
		Off	Module state: neither INIT nor LOCKED,
			observe the other status LEDs.

Table 4: Module Status Indicators

HI 800 665 E Rev. 1.01 Page 15 of 40

3.4.4.2 I/O Indicators

Die LEDs of the I/O indicators are labeled DO.

LED	Color	Status	Description	
DO 18	Yellow	On	The corresponding channel is active (energized)	
		Blinking2	Field fault e.g., short-circuit	
		Off	The corresponding channel is not active (de-energized)	

Table 5: I/O Indicators

Page 16 of 40 HI 800 665 E Rev. 1.01

3.5 Product Data

General	
Supply voltage	24 VDC, -15+20 %, r _p ≤ 5 %,
	PELV, SELV
Max. supply voltage	30 VDC
Current input	70 mA at 24 VDC (idle)
	Max. 81 mA (idle)
Continuous load (total current)	max. 4 A at 24 VDC
Max. reaction time of the module 1)	10 ms
Ambient temperature	0+60 °C
Storage temperature	-40+85 °C
Humidity	Max. 95 % relative humidity, non-condensing
Type of protection	IP20
Dimensions without socket	105 x 12.5 x 72
(H x W x D) in mm	
Dimensions with socket up to DIN rail	165 x 12.7 x 90
(H x W x D) in mm	
Weight	
Module	approx. 70 g
Socket	approx. 55 g
1) In case of an internal fault	

Table 6: Product Data

Digital Outputs	Digital Outputs			
Number of outputs (number of channels)	8, non-galvanically separated			
Output voltage	≥ L+ minus internal voltage drop			
Voltage drop (with high level)	0.4 V at 0.5 A output current (channel)			
Nominal rated current (with high level)	0.5 A			
Leakage current (with low level)	< 1 mA at 2 V			
Ohmic load	To nom. rated current 0.5 A			
Inductive load	Max. 2 H			
Lamp load (24 V lamps)	max. 4 W			
Capacitive load	Dependent on ohmic load			
Short-Circuit Monitoring	Yes			
Overload protection of the outputs, transient	33 V (max. 43 V)			
Switching time of the channels (ohmic Load)	≤ 100 µs			
Test Impulse Duration	≤ 250 µs			

Table 7: Technical Data of the Digital Outputs

HI 800 665 E Rev. 1.01 Page 17 of 40

3.6 Socket

Socket and module form together a functional unit. The module is connected to the system bus, the power supply and the field zone via a socket. The field lines are connected to the socket's tension clamp terminals, see Figure 5.

3.6.1 Mechanical Coding

Module and socket are mechanically coded, see Figure 4. The position of the coding pins determines the module's coding and is defined by the manufacturer. Two coding sockets accept the coding pins and must be configured in the selected module, see Chapter 3.6.2. Coding prevents the socket from improper assembling.

Figure 4: Example of Module and Socket Coding

2 Lower Coding Pin

Page 18 of 40 HI 800 665 E Rev. 1.01

4 Lower Coding Socket

3.6.2 Coding the M-DO 8 01 Module and Socket

To attach the module, the coding of the M-SO I/O 01 socket must be set as follows:

Order	Module coding (rear view)	Position	Coding socket
Upper		2	V 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Lower		4	2 3 <

Table 8: Module and Socket Coding

3.6.2.1 Configuring the Socket Coding

Tools and utilities:

Screwdriver, slotted 0.8 x 4.0 mm

Configuring the upper and lower coding socket

- 1. Insert the screwdriver into the opening of the upper coding socket.
- 2. Turn the screwdriver until the required coding is set.
- 3. Repeat these steps for the lower coding socket.
- 4. Insert the module into the socket to check the coding.
- 5. Remove the module

HI 800 665 E Rev. 1.01 Page 19 of 40

3 Product Description

3.6.3 Socket M-SO I/O 01

Universal socket for being equipped with different modules, see system manual HI 800 651 E.

- 1 System Bus with Power Supply
- 2 Latch (Connection to the Left Socket)
- 3 I/O Plug

- 4 Field Terminals (Tension Clamp Terminals)
- 5 Latch (Securing to DIN Rail)

Figure 5: M-SO I/O 01 Socket

The latches are used to secure the socket (2, 5) to the DIN rail and simultaneously to ensure connection to the socket on the left hand-side. Socket and module are connected to the processor module and the power supply via the system bus. The I/O plugs provide the connection between module and socket. The sensors are connected to the field terminals, see Chapter 3.6.3.1 and Chapter 4.4.

Page 20 of 40 HI 800 665 E Rev. 1.01

3.6.3.1 Terminal Assignment for the Field Terminals

Terminal	Signal	Function
1	L-	Ground
2	DO1+	Digital output 1
3	DO2+	Digital output 2
4	L-	Ground
5	DO3+	Digital output 3
6	DO4+	Digital output 4
7	L-	Ground
8	DO5+	Digital output 5
9	DO6+	Digital output 6
10	L-	Ground
11	DO7+	Digital output 7
12	DO8+	Digital output 8

Table 9: Terminal Assignment for Field Terminals

3.6.3.2 Field Terminal Properties

The field terminals are implemented as tension clamp terminals with the following properties:

Connection to the field zone			
Tension clamp terminal	12-pole		
Wire cross-section	0.21.5 mm ² (single-wire) 0.21.5 mm ² (finely stranded) 0.21.5 mm ² (with wire end ferrule) 0.20.75 mm ² (with wire end ferrule with collar)		
Stripping length	8 mm		
Screwdriver	Slotted, 0.6 x 3.5		

Table 10: Tension Clamp Terminal Properties

HI 800 665 E Rev. 1.01 Page 21 of 40

4 Start-up M-DO 8 01

4 Start-up

This chapter describes how to install, configure and connect the module. For more information, refer to HIMatrix M45 system manual (HI 801 651 E).

4.1 Mounting

The module is plugged in to the corresponding socket, which is mounted on a 35 mm DIN rail.

Observe the following points when mounting the module and the socket:

Sockets or modules may only be removed or replaced in the de-energized state.

4.1.1 Wiring Outputs not in Use

Outputs that are not being used may stay open and need not be terminated. To prevent short-circuits and sparks in the field zone, never connect a wire to a socket if it is open on the field side.

Page 22 of 40 HI 800 665 E Rev. 1.01

M-DO 8 01 4 Start-up

4.2 Mounting Module and Socket

This chapter describes how to mount and remove the modules and sockets. When replacing modules, the sockets remain on the DIN rail. This saves additional wiring effort since all field lines are connected to the socket.

4.2.1 Mounting and Removing the Sockets

Tools and utilities:

Screwdriver, slotted 1.0 x 5.5 mm

To insert the socket

- 1. Set the socket onto the DIN rail 1.
- 2. Swivel the socket in 2.
- 3. Move the socket on the DIN rail and connect it to another socket 3.
- 4. Press the socket's latch upwards 4.
 - ☑ The latch is used to attach the socket to the DIN rail, and is secured to the socket located on its left-hand side.
- 5. The socket mounting is completed, the field lines can be connected.

To remove the socket

Prior to removing the socket, the module must be removed and the field lines must be released from the terminals.

- 1. Use a screwdriver to push the blue latch downwards 4.
- 2. Remove the sockets from the adjacent sockets 3.
- 3. Swivel the socket out 2.
- 4. Lift the socket and remove it 1.

HI 800 665 E Rev. 1.01 Page 23 of 40

4 Start-up M-DO 8 01

- 1 Setting and Lifting the Socket
- 2 Swiveling the Socket In and Out

Figure 6: Example of Socket Mounting

- 3 Connecting and Disconnecting Sockets
- 4 Closing and Opening the Latch

Page 24 of 40 HI 800 665 E Rev. 1.01

M-DO 8 01 4 Start-up

4.2.2 Inserting and Removing the Module

This chapter describes how to mount and remove a module in the M45 system.

Coding prevents the module from improper assembling.

To insert the module

1. Plug the module in to the socket, until the locking mechanism is engaged.

To remove the module

- 1. The locking mechanism is released. The locking mechanism is released.
- 2. Remove the module from the socket.

1 Latch for Releasing the Module

Figure 7: Example of Mounting and Removing the Module

HI 800 665 E Rev. 1.01 Page 25 of 40

4 Start-up M-DO 8 01

4.3 Configuration with SILworX

The module is configured in the Hardware Editor of the SILworX programming tool.

Observe the following points when configuring the module:

To evaluate the system parameters from within the user program, they must be connected to global variables. Perform this step in the Hardware Editor using the module's detail view.

The following tables present the statuses and parameters for the module in the same order given in the SILworX Hardware Editor.

4.3.1 Tab Module

The **Module** tab contains the following system parameters:

Name		R/W	Description		
Enter these statuses and parameters directly in the Hardware Editor.					
Name		W	Module name		
Name	Data type	R/W	Description		
The following statuses	and parame	eters car	n be assigned global variables and used in the user program.		
Data valid	BOOL	R	TRUE: Current values are processed.		
			FALSE: Initial values are processed.		
Maximum Total	BOOL	R	TRUE: Maximum total current exceeded		
Current Exceeded			FALSE: Maximum total current not exceeded		
Module OK	BOOL	R	TRUE: No faults detected		
			FALSE: Faults detected on at least one channel or module.		
Power supply state	BYTE	R	Bit-coded state of the power supply units		
			0 = normal		
			Bit0 = 1: Supply voltage (24 V) faulty		
Temperature state	BYTE	R	Bit-coded temperature state of the module		
0 = normal		0 = normal			
Bit0 = 1: Temperature thresho		Bit0 = 1: Temperature threshold 1 has been exceeded			
			Bit1 = 1: Temperature threshold 2 has been exceeded		
		Bit2 = 1: Fault in temperature measurement			
			For further details, refer to chapter <i>Monitoring the Temperature</i> State integrated in the system manual.		

Table 11: System Parameter of the Outputs, Module Tab

Page 26 of 40 HI 800 665 E Rev. 1.01

M-DO 8 01 4 Start-up

4.3.2 Tab M-DO 8 01_1: Channels

The **M-DO 8 01_01: Channels** tab contains the following system parameters for each channel output.

Global variables can be assigned to the statuses and parameters with -> and used in the user program. The value without -> must be directly entered.

Name	Data type	R/W	Description	
Channel no.		R	Channel number, preset and not changeable	
Channel Value	BOOL	W	Output value of the digital output:	
[BOOL] ->			TRUE: Channel energized	
			FALSE: Channel de-energized	
-> Channel OK	BOOL	R	TRUE: Faultless channel.	
			The channel value is valid.	
			FALSE: Faulty channel.	
			Channel de-energized	
			For all channels, the parameter is either TRUE or FALSE!	
-> SC [BOOL]	BOOL	R	TRUE: Short-circuit	
			FALSE: No short-circuit	

Table 12: Tab M-DO 8 01_01: Channels in the Hardware-Editor

HI 800 665 E Rev. 1.01 Page 27 of 40

4 Start-up M-DO 8 01

4.4 **Connection Variants**

This chapter describes the correct wiring of the module in safety-related applications. The connection variants specified here are permitted.

The following points must be taken into account when connecting the loads to the outputs:

- Before wiring actuators stop the system. Otherwise, the module is set to STOP_ERROR state because of improper wiring.
- A diode decoupling is intended for use digital outputs in series.
- Unshielded, twisted pairs of cables may be connected.
- The ground wires of the actuators in the field may not be interconnected.
- When connecting more than 4 actuators, the module M-LS 4 01 must be used for additional L- ports, see Chapter 4.4.2.

4.4.1 Wiring Actuators

Wiring of actuators, e.g., electromechanical control circuit devises.

Figure 8: Wiring of the Module with Actuators

NOTE

Socket M-SO I/O 01

The module outputs must be connected with two poles.

The ground wires of the actuators in the field may not be interconnected. The use of common lines can cause coupling loops. This may result in interferences (e.g., of short-circuit monitoring) up to the module's shutdown or short-circuit monitoring failure.

Page 28 of 40 HI 800 665 E Rev. 1.01 M-DO 8 01 4 Start-up

4.4.2 Wiring Actuators with M-LS 4 01 Module

The M-DO 8 01 module is only equipped with 4 L- ports for 4 actuators. Therefore, when connecting more than 4 actuators, the M-LS 4 01 DI extension module must be used.

2 Actuators

Figure 9: Wiring Actuators with M-LS 4 01 Module

Socket M-SO I/O 01

HI 800 665 E Rev. 1.01 Page 29 of 40

5 Operation M-DO 8 01

5 Operation

The module runs within the HIMatrix M45 system and does not require any specific monitoring. When operating the system, ensure that the air circulation is not obstructed.

5.1 Handling

Handling of the module and the HIMatrix M45 system during operation is not required.

5.2 Diagnosis

The LEDs are used to give a overview of the operating state, see Chapter 3.4.5.

The diagnostic history of the M45 system can also be read using SILworX.

Page 30 of 40 HI 800 665 E Rev. 1.01

M-DO 8 01 6 Maintenance

6 Maintenance

No maintenance measures are required during normal operation.

If a failure occurs, the defective module must be replaced with a module of the same type or with a replacement model approved by HIMA.

Modules may only be replaced in the de-energized state.

Only the manufacturer is authorized to repair the module.

6.1 Errors

Refer to Chapter 3.1, for more information on the fault reaction of the outputs.

If the test harnesses of the module detect safety-critical faults (module faults), the module is rebooted. If the fault is still present, the module is rebooted again. This process is repeated as long as the fault is present. If no fault is detected, the module is restarted (RUN state).

If the restart after a module fault must be prevented, the user program must be configured accordingly. To this end, use the system parameters *Emergency Stop 1...Emergency Stop 4*. If the system parameters *Emergency Stop 1...Emergency Stop 4* are used, the entire M45 system enters the STOP state.

If the test harnesses detect module faults, the module is rebooted. If a further module fault occurs within the first minute after restart, the module enters the STOP_INVALID state and will remain in this state. This means that the input signals are no longer processed by the module and the outputs switch to the de-energized, safe state. The evaluation of diagnostics provides information about the fault cause.

6.2 Maintenance Measures

The following measures are required for the module:

- Load the operating system, if a new version is required
- Perform the proof test

6.2.1 Loading the Operating System

HIMA is continuously improving the operating system of the modules.

HIMA recommends to use system downtimes to load the current version of the operating system into the module.

Refer to the release notes to check the impact of the new operation system version on the system!

The operating system can be loaded into the module using SILworX. To this end, the HIMatrix M45 system must be in STOP. Otherwise, stop the system.

For more information, refer to the system manual (HI 800 651 E).

The current version of the module in use is displayed in the SILworX Control Panel. The type label specifies the version when the module is delivered, see Chapter 3.3.

6.2.2 Proof Test

HIMatrix M45 modules must be subjected to a proof test in intervals of 10 years. For more information, refer to the safety manual (HI 800 653 E).

HI 800 665 E Rev. 1.01 Page 31 of 40

7 Decommissioning M-DO 8 01

7 Decommissioning

The decommissioning of the module is carried out after de-energization. Following steps are necessary:

- 1. Stop the HIMatrix M45 system.
- 2. Disconnect the system from the power supply.
- 3. Remove the module from the socket.

Page 32 of 40 HI 800 665 E Rev. 1.01

M-DO 8 01 8 Transport

8 Transport

To avoid mechanical damage, HIMatrix M45 components must be transported in packaging.

Always store HIMatrix components in their original product packaging. This packaging also provides protection against electrostatic discharge.

HI 800 665 E Rev. 1.01 Page 33 of 40

9 Disposal M-DO 8 01

9 Disposal

Industrial customers are responsible for correctly disposing of decommissioned HIMatrix hardware. Upon request, a disposal agreement can be arranged with HIMA.

All materials must be disposed of in an ecologically sound manner.

Page 34 of 40 HI 800 665 E Rev. 1.01

M-DO 8 01 Appendix

Appendix

Glossary

Term	Description
ARP	Address resolution protocol: Network protocol for assigning the network addresses to
	hardware addresses
Al	Analog input
AO	Analog output
COM	Communication module
CRC	Cyclic redundancy check
DI	Digital input
DO	Digital output
EMC	Electromagnetic compatibility
EN	European norm
ESD	Electrostatic discharge
FB	Fieldbus
FBD	Function block diagrams
FTT	Fault tolerance time
ICMP	Internet control message protocol: Network protocol for status or error messages
IEC	International electrotechnical commission
MAC Address	Media access control address: Hardware address of one network connection
PADT	Programming and debugging tool (in accordance with IEC 61131-3), PC with SILworX
PE	Protective earth
PELV	Protective extra low voltage
PES	Programmable electronic system
R	Read: The system variable or signal provides value, e.g., to the user program
Rack ID	Base plate identification (number)
Interference-free	Supposing that two input circuits are connected to the same source (e.g., a transmitter). An input circuit is termed <i>interference-free</i> if it does not distort the signals of the other input circuit.
R/W	Read/Write (column title for system variable/signal type)
SB	System bus
SELV	Safety extra low voltage
SFF	Safe failure fraction, portion of faults that can be safely controlled
SIL	Safety integrity level (in accordance with IEC 61508)
SILworX	Programming tool for HIMatrix systems
SNTP	Simple network time protocol (RFC 1769)
SRS	System.Rack.Slot addressing of a module
SW	Software
TMO	Timeout
W	Write: System variable is provided with value, e.g., from the user program
r _P	Peak value of a total AC component
Watchdog (WD)	Time monitoring for modules or programs. If the watchdog time is exceeded, the module or program enters the STOP_ERROR state.
WDT	Watchdog time

HI 800 665 E Rev. 1.01 Page 35 of 40

Appendix M-DO 8 01

Index of	Figures	
Figure 1:	Sample Type Label	11
Figure 2:	Block Diagram	13
Figure 3:	Front View	14
Figure 4:	Example of Module and Socket Coding	18
Figure 5:	M-SO I/O 01 Socket	20
Figure 6:	Example of Socket Mounting	24
Figure 7:	Example of Mounting and Removing the Module	25
Figure 8:	Wiring of the Module with Actuators	28
Figure 9:	Wiring Actuators with M-LS 4 01 Module	29

Page 36 of 40 HI 800 665 E Rev. 1.01

M-DO 8 01 Appendix

Index of	Tables	
Table 1:	Additional Relevant Documents	5
Table 2:	Environmental Requirements	8
Table 3:	Blinking Frequencies of LEDs	15
Table 4:	Module Status Indicators	15
Table 5:	I/O Indicators	16
Table 6:	Product Data	17
Table 7:	Technical Data of the Digital Outputs	17
Table 8:	Module and Socket Coding	19
Table 9:	Terminal Assignment for Field Terminals	21
Table 10:	Tension Clamp Terminal Properties	21
Table 11:	System Parameter of the Outputs, Module Tab	26
Table 12:	Tab M-DO 8 01_01: Channels in the Hardware-Editor	27

HI 800 665 E Rev. 1.01 Page 37 of 40

Appendix M-DO 8 01

Index

block diagram	13	safety function	10
diagnosis	30	specifications	17
front view	4.4		

Page 38 of 40 HI 800 665 E Rev. 1.01

HIMA Paul Hildebrandt GmbH P.O. Box 1261 68777 Brühl, Germany Phone: +49 6202 709-0

Fax: +49 6202 709-107