

Modules 3: Support Vector Machine (SVM) & Kernel Trick

1. SVM Theory (Support Vector Machine)

Concept

SVM is a supervised learning algorithm for classification and regression.

Main goal: find a hyperplane that separates classes with the largest possible margin.

Key concepts

Term	<explanation< th=""></explanation<>
Support Vectors	Points closest to the hyperplane that determine its position.
Hyperplane	A separating plane. In 2D it's a line, in 3D a plane, in nD a hyperplane.
Margin	Distance from the hyperplane to the nearest points of each class. SVM maximizes this.
Linear / Non-linear	Linear data can be split by a line. Non-linear data needs a kernel mapping.

Basic idea

Two classes: +1 and -1.

Find a line (2D) or hyperplane (nD) such that:

- All +1 points are on one side
- All -1 points are on the other side
- The distance to the nearest points of both classes is as large as possible

This is the Maximum Margin Hyperplane (MMH).

♦ Math formulation

Linear SVM model:

$$f(x) = w^ op x + b$$

with \boldsymbol{w} the weight vector and \boldsymbol{b} the bias.

Correct classification condition:

$$y_i\left(w^ op x_i + b
ight) \geq 1 \quad orall i$$

Optimization (hard margin):

$$\min_{w,\,b} \; frac{1}{2} \, \lVert w
Vert^2$$

which maximizes the margin by minimizing ||w||.

2. SVM vs Logistic Regression

Criterion	Logistic Regression	SVM
Nature	Probabilistic	Geometric
Loss	Log loss	Hinge loss
Output	Probability (0–1)	Class label (+1, -1)
Outlier sensitivity	High	Lower
Pros	Interpretability	High performance on complex data

3. SVM cost function (soft margin)

$$ext{Cost} = rac{1}{2} \left\lVert w
ight
Vert^2 + C \, \sum_{i=1}^n \max \left(0, \, 1 - y_i \left(w^ op x_i + b
ight)
ight)$$

Where:

- w: weight vector
- b: bias
- C: regularization parameter
- $y_i \in \{-1, +1\}$: label of sample i

• x_i : feature vector of sample if sample i

Goal: minimize the cost to find the optimal separating hyperplane.

4. Regularization in SVM

- Large C o weak regularization o tight fit on training data o risk of overfitting
- Small $C \to \text{strong regularization} \to \text{allow some errors} \to \text{better generalization}$

5. Non-linear data

Most real datasets are not linearly separable. A linear SVM will fail in the original space.

6. Kernel Trick

Data in R^3 (separable w/ hyperplane)

 $\stackrel{\wedge}{\rightleftharpoons}$

Tóm tắt nhanh: Kernel trick ánh xạ dữ liệu sang không gian đặc trưng cao hơn để tách tuyến tính, làm việc trực tiếp qua hàm kernel $K(x_i,x)$ mà không cần tính $\$ \phi(\cdot) \\$.

♦ Idea

Map data to a higher-dimensional feature space where it becomes linearly separable.

♦ What is a kernel?

A kernel measures similarity:

$$K(x_i,x_j) = \phi(x_i)^ op \phi(x_j)$$

where $\phi(\cdot)$ maps inputs to a feature space and $K(\cdot,\cdot)$ is the inner product there.

♦ Kernel trick

We do not need explicit ϕ . It suffices to define K so that

$$K(x_i,x) = \phi(x_i)^ op \phi(x)$$

and compute directly in input space.

Decision function

$$f(x) = \mathrm{sign}\, \Big(\sum_{i=1}^N lpha_i \, y_i \, K(x_i,x) + b \Big)$$

Trong đó:

- x_i : vector huấn luyện
- $y_i \in \{-1,+1\}$: nhãn lớp
- α_i : hệ số Lagrange (trọng số)
- ullet $K(x_i,x)$: giá trị kernel giữa hai điểm
- b: hệ số điều chỉnh

7. Common kernels

Linear

$$K(x,x') = x^ op x' + c$$

Use when the boundary is close to linear.

Polynomial

$$K(x,x') = (\gamma \, x^ op x' + r)^d$$

Parameters:

- d: polynomial degree
- γ : scale factor
- r: bias term

RBF (Gaussian)

$$K(x,x')=e^{-\gamma\,\|x-x'\|^2}$$

Gần nhau ightarrow K(x,x') pprox 1, xa nhau ightarrow K(x,x') pprox 0.

Sigmoid

$$K(x,x') = anh(\gamma \, x^ op x' + r)$$

8. Kernel comparison

Kernel	Formula	Non-linearity	Pros	Cons	When to use
Linear	$x^ op x'$	Low	Fast, simple	Cannot model non-linear	Clearly linear data
Polynomial	$(\gamma x^ op x' + r)^d$	Medium	Captures higher-order interactions	Can overfit at high \boldsymbol{d}	Polynomial relationships
RBF	$e^{-\gamma\ x-x'\ ^2}$	High	Flexible, strong	Slow on very large data; needs scaling	Complex curved boundaries
Sigmoid	$\tanh(\gamma x^\top x' + \\ r)$	Medium	NN-like	Less stable	Small datasets

9. Important hyperparameters

Quan trọng: Điều chỉnh C và gamma ảnh hưởng trực tiếp biên và độ cong ranh giới. Bắt đầu với C=1, gamma = 1/num_features cho RBF, rồi tinh chỉnh qua GridSearch.

Parameter	Meaning	Effect
C	Misclassification penalty	Large $C o$ small margin, tight fit. Small $C o$
		stronger regularization.

Parameter	Meaning	Effect
γ	Locality of influence (RBF, Poly, Sigmoid)	Large $\gamma \to {\rm curvy}$ boundary. Small $\gamma \to {\rm flatter}$ boundary.
d	Polynomial degree	Higher $d o$ more complex model
coef0	Bias term r in Poly/Sigmoid	Affects boundary curvature

10. Code examples

```
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, classification_report
# Linear toy data
X, y = datasets.make_classification(
  n_samples=200, n_features=2,
  n_redundant=0, n_informative=2,
  random_state=42
X_train, X_test, y_train, y_test = train_test_split(
  X, y, test_size=0.3, random_state=42
clf = SVC(kernel='linear', C=1.0)
# Non-linear moons
from sklearn.datasets import make_moons
X, y = make_moons(n_samples=300, noise=0.2, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(
  X, y, test_size=0.3, random_state=42
svm_rbf = SVC(kernel='rbf', gamma=0.5, C=1.0)
svm_
```

11. SVM ML workflow

- 1. Data prep → collect
- 2. Preprocess → handle missing, scale
- 3. Choose model → Linear or Kernel SVM
- 4. Train \rightarrow .fit()

- 5. Evaluate → accuracy, confusion matrix
- 6. Tune \Rightarrow GridSearchCV for C and γ
- 7. Deploy → save model, serve predictions

12. Pros and cons

Pros

- · Works well for non-linear data
- Flexible via kernels
- Effective in high dimensions

Cons

- Slow on very large datasets
- · Requires scaling
- · Hyperparameter tuning can be tricky
- No native probabilities

13. Applications

- Text classification
- Handwriting recognition
- · Face recognition
- · Fraud detection
- · Anomaly detection
- Bioinformatics

14. Final summary

Tóm tắt then chốt: SVM tìm siêu phẳng tối ưu. Kernel trick giúp xử lý dữ liệu phi tuyến. RBF là lựa chọn mặc định an toàn, tinh chỉnh C và gamma.

Item	Content
Goal	Find an optimal separating hyperplane
Kernel trick	Map to a higher-dimensional feature space
Decision	$f(x) = ext{sign}\left(\sum_i lpha_i y_i K(x_i, x) + b ight)$

Item	Content
Main kernels	Linear, Polynomial, RBF, Sigmoid
Key params	\$C\$, \$gamma\$, \$d\$, coef0
Most common	RBF (Gaussian)