IN 406 – Théorie des Langages Cours 4 : Expression régulière

Franck Quessette - Franck.Quessette@uvsq.fr

Université de Versailles - Saint-Quentin

V4 2020-2021

Rappel 1

Notions déjà vues :

- ▶ lettre, alphabet **fini** ;
- ▶ mot, langage | fini | ou | infini |;
- langage rationnel (opérations ensemblistes);
- ▶ automate **fini** non-déterminsite (AFN), automate **fini** déterministe ;
- langage reconnaissable par automate fini .

Expression régulière

Expression régulière

Une **expression régulière** (e.r. ou regexp) est une chaîne de caractère qui définit un langage. Pour tout alphabet Σ , $\mathcal{L}(e)$ est le langage défini par l'expression régulière e:

- ightharpoonup est une ightharpoonup et $\mathcal{L}(\mathbf{e}) = \emptyset$;
- ightharpoonup e = ε est une $\boxed{\mathrm{e.r.}}$ et $\mathcal{L}(\mathrm{e}) = \boxed{\{\varepsilon\}}$;
- ▶ e = a pour tout $a \in \Sigma$ est une e.r. et $\mathcal{L}(e) = |\{a\}|$;

Soient **x** et **y** deux **e.r.** :

- e = (x) est une e.r. et $\mathcal{L}(e) = \mathcal{L}(x)$;
- $e = |x^*|$ est une e.r. et $\mathcal{L}(e) = \mathcal{L}(x)^*$;
- ightharpoonup e = x+y est une e.r. et $\mathcal{L}(e) = \mathcal{L}(x) \cup \mathcal{L}(y)$;
- $ightharpoonup e = xy = x\cdot y$ est une e.r. et $\mathcal{L}(e) = \mathcal{L}(x)\cdot \mathcal{L}(y)$.

Expression régulière

Pour simplifier la notation on utilise la priorité des opérateurs :

Expression régulière

Soit $\Sigma = \{a, b, c\}$ un alphabet et les e.r. suivantes :

•
$$e_1 = (b+ab*aa)*ab* = ((b+((a\cdot(b*))\cdot a\cdot a))*)\cdot a\cdot(b*)$$
;

- $e_2 = |(a+b+c)^*|$: tous les mots sur Σ , $\mathcal{L}(e_2) = \Sigma^*$;
- $e_3 = |ab(a+b+c)*|$: tous les mots qui commencent par ab;
- $e_4 = |(a+b+c)*ac|$: tous les mots qui se terminent par ac;
- ▶ $e_5 = ((a+b+c)(a+b+c))^*$: tous les mots avec un nombre pair de lettres;

Équivalence des représentations

Définition

L est un langage régulier s'il existe une expression régulière e telle que $\mathcal{L}(e) = L$.

Définition

Pour tout alphabet Σ , on note :

- ▶ $Rat(\Sigma^*)$ l'ensemble des langages rationnels;
- Rec(Σ^*) l'ensemble des langages reconnaissables par automate fini ;
- Reg(Σ*) l'ensemble des langages réguliers.

Théorème de Kleene

$$\mathsf{Rat}(\Sigma^*) = \mathsf{Reg}(\Sigma^*) = \mathsf{Rec}(\Sigma^*)$$

Équivalence des représentations

Preuve de
$$\mathsf{Rat}(\Sigma^*) = \mathsf{Reg}(\Sigma^*)$$

Par définition des expression régulières.

Preuve de
$$\mathsf{Rat}(\Sigma^*) \subseteq \mathsf{Rec}(\Sigma^*)$$

Par construction d'automates, preuve en TD.

Preuve de $Rec(\Sigma^*) \subseteq Reg(\Sigma^*)$

À partir d'un automate $\mathcal{A} = (\Sigma, Q, q_0, F, T)$, on va construire une expression régulière \mathbf{e} , telle que $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathbf{e})$.

Initialisation

- modifier la syntaxe de l'automate en transformant chaque caractère sur les transitions en e.r.;
- ▶ ajouter un état initial α et une transition $(\alpha, \varepsilon, q_0)$;
- ▶ ajouter un état final ω et une transition (q, ε, ω) pour tout état final $q \in F$;
- ▶ $F = \{\omega\}.$

Preuve de $Rec(\Sigma^*) \subseteq Reg(\Sigma^*)$

Fusion: Algo de suppression d'une transition Soient x et y des e.r.,

Cet algo supprime une transition de l'automate. S'il y a plusieurs transitions entre les états p et q, on peut, bien sûr, les fusionner en une seule étape.

Preuve de $Rec(\Sigma^*) \subseteq Reg(\Sigma^*)$

Contraction : Algo de suppression d'état

Soient x, y et z des e.r.,

Cet algo supprime un état mais peut rajouter des transitions. Si q n'a pas de boucle et a n prédécesseurs et m successeurs, l'algo supprime n+m transitions et en ajoute $n \times m$.

Preuve de $Rec(\Sigma^*) \subseteq Reg(\Sigma^*)$

Répéter les algos **Fusion** et **Contraction** tant qu'un des deux est applicable.

Comme Contraction supprime des états (en ajoutant éventuellement des transitions) et que Fusion supprime des transitions, à la fin il ne reste que deux états et une transition.

Fin II ne reste plus que les états α et ω avec l'e.r e sur la transition entre α et ω : $(\alpha, \mathbf{e}, \omega)$.

Alors
$$\mathcal{L}(\mathbf{e}) = \mathcal{L}(\mathcal{A})$$
.

Initialisation: AFD complet avec **a** et **b** qui sont des e.r.

Initialisation : ajout de α et ω

Contraction : Suppression de l'état q_1

Contraction : Suppression de l'état q_0

$$A: \rightarrow \alpha$$
 $\varepsilon(b+ab*a)*ab*$

$$e = (b+ab*a)*ab*$$
 et $L(A) = L(e)$.