Travaux dirigés de MACHINE LEARNING

Cycle pluridisciplinaire d'études supérieures Université Paris sciences et lettres

mercredi 18 mai 2022

AG.

On rappelle le théorème qui donne l'existence et l'unicité de la projection orthogonale sur un sous-espace de dimension finie d'un espace préhibertien. Il sera utile dans le premier exercice.

THÉORÈME. — Projection orthogonale. — Soit $(E, \langle \cdot, \cdot \rangle)$ un espace préhilbertien et F un sous-espace de dimension finie. Pour $x \in E$, il existe un unique $x_F \in F$ tel que :

$$x - x_{\mathsf{F}} \in \mathsf{F}^{\perp}$$
.

De plus,

$$||x||^2 = ||x_F||^2 + ||x - x_F||^2$$
.

EXERCICE 1. — *Théorème de représentation*. — Soit \mathscr{X} , \mathscr{Y} deux ensembles quelconques, et $\ell: \mathscr{Y} \times \mathscr{Y} \to \mathbb{R}$ une fonction. Soit également $(\tilde{\mathscr{X}}, \langle \, \cdot \,, \, \cdot \, \rangle)$ un espace préhilbertien, $\| \, \cdot \, \|$ la norme associée, et $\psi: \mathscr{X} \to \tilde{\mathscr{X}}$ une application. Soit $\phi: \mathbb{R} \to \mathscr{Y}$ et on note pour $(w, b) \in \tilde{\mathscr{X}} \times \mathbb{R}$:

$$\forall \tilde{x} \in \tilde{\mathcal{Z}}, \quad f_{w,b}(\tilde{x}) = \phi(\langle w, \tilde{x} \rangle + b).$$

Soit $\lambda>0$, $n\geqslant 1$ un entier et $(x_i,y_i)_{i\in[n]}\in \mathscr{S}(\mathscr{X},\mathscr{Y})$ un échantillon. On considère le problème d'optimisation suivant.

$$\begin{array}{ll} \text{minimiser} & \frac{1}{n}\sum_{i=1}^{n}\ell\left(y_{i},f_{w,b}(\psi(x_{i}))\right)+\frac{\lambda}{2}\left(\left\|w\right\|^{2}+b^{2}\right) \\ \text{sachant} & (w,b)\in\tilde{\mathcal{X}}\times\mathbb{R}. \end{array}$$

Soit (\hat{w}, \hat{b}) une solution du problème d'optimisation (*).

1) Montrer qu'il existe $w_*\in \tilde{\mathcal{X}}$ et $\alpha_1,\ldots,\alpha_n\in\mathbb{R}$ tels que :

$$w_* = \sum_{i=1}^n \alpha_i \psi(x_i) \qquad \text{et} \qquad \forall i \in [n], \ (f_{w_*,\hat{b}} \circ \psi)(x_i) = (f_{\hat{w},\hat{b}} \circ \psi)(x_i).$$

2) En déduire que $\hat{w} = w_*$.

Exercice 2. — Soit $\mathscr X$ un ensemble quelconque. On suppose dans cette question qu'on a $(\widetilde{\mathscr X},\langle\,\cdot\,,\,\cdot\,\rangle)$ espace préhilbertien, $\psi:\mathscr X\to\widetilde{\mathscr X}$, et $K:\mathscr X\times\mathscr X\to\mathbb R$ le noyau associé. Soit $x_1,\ldots,x_m\in\mathscr X$. Montrer que la matrice :

$$G = (K(x_i, x_j))_{1 \leqslant i, j \leqslant m}$$

est symétrique semi-définie positive.

36