OPTIMIZATION OF PIPE SYSTEMS

- > The problem is the determination of most economical pipe diameters
- > If the reservoir pool level is known, the energy loss should not exceed the head difference between nodes.
- Upstream elevation is also variable for pumped cases.

OPTIMIZATION OF PIPE SYSTEMS Known pool level

Variables: X_i, length of different diameter pipes

Constraints: Pipe lengths for each link

Head loss in each link

Objective : Cost Minimization

OPTIMIZATION OF PIPE SYSTEMS BY LINEAR PROGRAMMING

Charles A. Calhoun

- The basic problem is the determination of optimal pipe diameters.
- > For the gravity case,
 - → The head at the source is known
- For the pumped case
 - →The head at the source is not known

OPTIMIZATION OF PIPE SYSTEMS GRAVITY CASE

MIN
$$Z = c_1 X_1 + c_2 X_2 + c_3 X_3 + \dots + c_n X_n$$
SUBJECT TO
$$a_{11} X_1 + a_{12} X_2 + \dots + a_{1j} X_j (\le, =, \ge) b_1$$

$$a_{21} X_1 + a_{22} X_2 + \dots + a_{2j} X_j (\le, =, \ge) b_2$$

$$\vdots$$

$$a_{ij} X_1 + a_{i2} X_2 + \dots + a_{ij} X_j (\le, =, \ge) b_j$$

$$X_1 \ge 0, X_2 \ge 0, \dots, X_j \ge 0.$$

- $\succ x_i$, the unknown lengths of various sizes of pipe
- >c, , costs per foot of pipe installed
- >aij, constants evaluating the friction slopes and/or lengths
- > bj, constants evaluating the head losses and/or lengths

OPTIMIZATION OF PIPE SYSTEMS : GRAVITY CASE

Scobey's Friction Formula is used.

$$H_{loss} = \frac{V^2}{c^2 d^{1.25}}$$

- > H, head loss in feet per 1000 feet of pipe
- > V, velocity in feet per second
- c, Scobey's coefficient of friction for concrete pipe
 c = 0.345 for pipe sizes 4 to 21 inches
 c = 0.370 for pipe sizes larger than 21 inches
- > d, inside diameter of pipe in inches

Other common pipe friction formulas are Darcy-Weisbach, Mannings, and Hazen-Williams.

Example

Figure 1. Profile view - single line pipe system.

TABLE 1. DATA FOR EXAMPLE 1

Reach	Length	Discharge	Delivery	Elevation Required	Delivery Discharge
:1	2000'	16 cfs	1	90	4 cfs
2	15001	12 cfs	2	80	6 cfs
3	1000	6 cfs	3	70	4 cfs
4	2200'	2 cfs	4	70	2 cfs

TABLE 2. SLOPE COMPUTATIONS FOR EXAMPLE 1

Delivery	Available Head (100-Del. Elev. Req'd)	Distance (from Source)	Slope
1	10'	2000' -	.005
2	20'	3500'	.00571
3	301	4500	.00667
4	301	6700'	.00448
			5

EXAMPLE FOR THE GRAVITY CASE

TABLE 3. POSSIBLE PIPE CHOICES FOR EXAMPLE 1

Reach	Control Slope (ft/ft)	Unknown Longth	Pipe Dismoter	Friction Slope	Cost (\$/ft)
1	00448	X	24**	.00357	12.30
		x ₂	21"	.00527	10.35
2		x ₃	24"	.00201	12.50
	ļ	¥. 4	21"	.00465	10.35
3		x ₅	18"	.00261	8.48
	, .	x ₆	15"	.00680	6.68
4		× ₇	12"	.00244	5.00
	•	x' ₃	10"	.00635	3.92

EXAMPLE FOR THE GRAVITY CASE

MIN $z = 12.3 \text{ X}_1 + 10.35 \text{ X}_2 + 12.3 \text{ X}_3 + 10.35 \text{ X}_4 + 8.48 \text{ X}_5 + 6.68 \text{ K}_6 + 5. \text{ X}_7 + 3.92 \text{ X}_8$ SUBJECT TO

X₁ + X₂ = 2000

X3 + X4 = 1500

X5 + X6 = 1000

X₇ • X₈ · ∞ 2200.

100. - .00357 X₁ - .00827 X₂ ≥ 90.

100. - .00357 x_1 - .00827 x_2 - .00201 x_3 - .00465 x_4 \ge 80

100. - .00357 x_1 - .00827 x_2 - .00201 x_3 - .00465 x_4 - .00261 x_5 - .0068 $x_6 \ge 70$.

100. - .00357 x_1 - .00827 x_2 - .00201 x_3 - .00465 x_4 - .00261 x_5 - .0068 x_6 - .00244 x_7 - .00635 $x_8 \ge 70$.

EXAMPLE FOR THE GRAVITY CASE

TABLE 4. SOLUTION TO EXAMPLE 1

Reach	Variable	Pipe Dismeter	Solution length
1	x ₁	24"	1391'
	x ₂	21"	6091
2	x ₃	24"	0 ^v
_	x ₄	21"	1500°
3	x ₅	18"	0,
	x ₆	15"	1000'
4	x ₇	12"	1981
	x ₈	10"	219'

OPTIMIZATION OF PIPE SYSTEMS : PUMPED CASE

MIN
$$2 = c_1 X_1 + c_2 X_2 + c_3 X_3 + \dots + c_n X_n$$

SUBJECT TO
$$a_{11} X_1 + a_{12} X_2 + \dots + a_{1j} X_j (\le, =, \ge) b_1$$

$$a_{21} X_1 + a_{22} X_2 + \dots + a_{2j} X_j (\le, =, \ge) b_2$$

$$\vdots$$

$$a_{ij} X_1 + a_{ij} X_2 + \dots + a_{ij} X_j (\le, =, \ge) b_j$$

$$X_1 \ge 0, X_2 \ge 0, \dots, X_j \ge 0.$$

- $\succ x_1$, the unknown pump head
- $\succ x_2,...,x_n$, the unknown lengths of various sizes of pipe
- \succ c_1 , cost per incremental foot of head
- \succ c₂,...,c_n ,costs per foot of pipe installed
- \triangleright a_{i1}, constants evaluating the unknown pump head 0-1 variable.
- > aii, constants evaluating the friction slopes and/or lengths
- > bi, constants evaluating the head losses and/or lengths

OPTIMIZATION OF PIPE SYSTEMS : PUMPED CASE

Example: A pipe system which has the following given data is to be sized and optimized.

EXAMPLE FOR THE PUMPED CASE

			TABLE 5. DA	TA	9 :
Section	Q. in cubic feet per second	Length, in feet	Diameters, in inches	Cost, in dollars per foot installed	Head loss, in fact per foot
1	25	4,500	36, 33, 30	19.48, 17.32, 15.23	.00104, .00164, .0027
2	9	4,500	27, 24, 21	13.22, 11.28, 9.42	.00061, .00113, .00262
3	4.5	3,660	24, 21, 18	11.28, 9.42, 7.65	.00028, .00065, .00147
A .	3	1,200	21, 18, 15	9.42, 7.65, 5.98	.00029, .00065, .0017
. 5	1.5	1,200	18, 15, 12	7.65, 5.98, 4.43	.00016, .00043, .00137
6	1.5	1,200	15, 12, 10	5.98, 4.43, 3.45	.00043, .00137, .00359
7	3	1,200	18, 15, 12	7.65, 5.98, 4.43	.00065, .0017, .00549
8	4.5	1,160	21, 18, 15	9.42, 7.65, 5.98	.00065, .00147, .00381
9	16	1,200	24, 21, 18	11.28, 9.42, 7.65	.00357, .00827, .01856
-	2	360	12, 10, 8	4.43, 3.45, 2.63	.00244 .00635, .0205
10 11	4	540	15, 12, 10	5.98, 4.43, 3.45	.00302, .00976, .02541
12	6	360	18, 15, 12	7.65, 5.98, 4.43	.00261, .0068, .02195
	8	450	21, 18, 15	9.42, 7.65, 5.98	.00207, .00464, .0121
13	8	450	21, 18, 15	9.42, 7.65, 5.98	.00207, .00464, .0121
14		360	18, 15, 12	7.65, 5.98, 4.43	.00261, .0068, .0219
15	4	540	. 15, 12, 10	5.98, 4.43, 3.45	.00302, .00976, .0254
16 17	2	360	15, 12, 10	5.98, 4.43, 3.45	.000/6, .00244, .0003

EXAMPLE FOR THE PUMPED CASE

MIN $z = 2,400 X_1 + 19.48 X_2 + 17.32 X_4 + 13.22 X_5 + ... + 3.48 X_{32}$ SUBJECT TO $x_1 + x_2 + x_3 = 4500.$ $x_4 + x_5 + x_6 = 4500.$ $x_4 + x_5 + x_6 = 4500.$ $x_4 - .00104 X_2 - .00164 X_3 - .0027 X_4 - .00061 X_5 - .00118 X_6$ $- .00262 X_7 - .00028 X_8 - .00065 X_9 - .00147 X_{10} - .00029 X_{32}$ $- .00065 X_{12} - .0017 X_{13} - .00016 X_{14} - .00043 X_{15}$ $- .00137 X_{16} \ge 151.$

EXAMPLE FOR THE PUMPED CASE

	Pump Head = 17	2.53 ft	
Section No.	Diameters in inches	Length in feet	Cost in dollars
1	33	4,500	77,940
2	24	4,500	50,760
3 .	18	3,660	27,999
4 ,	15	1,200	7,176
5	12	1,200	5,316
6	12 10	774 426	3,429 1,470
7	15	1,200	7,176
8 1	15	1,160	6,937
9 1	24 21	473 727	5,335 6,848
10	10	360	1,242
11	12	540	2,392
12	15	360	2,153
13	15	450	2,691
14	18	450	3,442
15	15	360	2,153
16	15 12	170 370	1,017 1,639
17	10	360	1,242

CONCLUSION

The optimal design of pipe networks can be achived through the use of linear programming. This paper illustrated the use of linear programming to optimize several types of pipe networks. The several types are broken into two general cases which are the gravity case and the pumped case.