# Es05B: Circuiti lineari con Amplificatori Operazionali

Gruppo 1G.BN Massimo Bilancioni, Alessandro Foligno, Giuseppe Zanichelli

8 novembre 2018

## Scopo dell' esperienza

Misurare le caratteristiche di circuiti lineari realizzati con un op-amp TL081 alimentati tra +15 V e -15 V.

## 1 Amplificatore invertente

Si vuole realizzare un amplificatore invertente con un' impedenza di ingresso superiore a 1 k $\Omega$  e con un amplificazione a centro banda di 10.

### 1.a Scelta dei componenti

Si monta il circuito secondo lo schema mostrato in figura, utilizzando la barra di distribuzione verde per la tensione negativa, quella rosso per la tensione positiva, e quella nera per la massa.

Le resistenze selezionate hanno i seguenti valori, misurati con il multimetro digitale, con il corrispondente valore atteso del guadagno in tensione dell' amplificatore.

$$R_1 = (1.466 \pm 0.012) \,\mathrm{k}\Omega, \quad R_2 = (15.24 \pm 0.12) \,\mathrm{k}\Omega, \quad A_{exp} = -(10.39 \pm 0.11)$$

### 1.b Montaggio circuito

Il circuito è stato montato nella basetta come riportato in figura.

#### 1.c Linearità e misura del guadagno

Si fissa la frequenza del segnale ad  $f_{in}=(2.597\pm0.011)$  kHz e si invia all' ingresso dell' amplificatore. L'uscita dell' amplificatore è mostrata qualitativativamente in Fig. 2 per due differenti ampiezze di  $V_{in}$  (circa 1.26 Vpp e 7.20 Vpp). Nel primo caso l' OpAmp si comporta in modo lineare mentre nel secondo caso si osserva clipping. Il datasheet riporta uno Slew rate di  $13V/\mu s$  che è quindi trascurabile a questa frequenza .

Variando l' ampiezza di  $V_{in}$  si misura  $V_{out}$  ed il relativo guadagno  $A_V = V_{out}/V_{in}$  riportando i dati ottenuti in tabella 1 e mostrandone un grafico in Fig. 3.

Tabella 1:  $V_{out}$  in funzione di  $V_{in}$  e relativo rapporto.

| $V_{in}$ (V) | $V_{out}$ (V) | $A_V$ |
|--------------|---------------|-------|
| 土            | 土             | 土     |
| 土            | 土             | 土     |
| 土            | 土             | 土     |
| 土            | 土             | 土     |
| 土            | 土             | 土     |

[Indicare in che modo si fa il fit, se sulla retta  $V_{out}$  vs.  $V_{in}$  oppure sui valori di  $A_V$ ] Si determina il guadagno mediante fit dei dati ottenuti:

$$A_{best} = \pm \chi^2 =$$

[Fino a quale tensione il circuito si comporta linearmente? Provare (facoltativamente) a ridurre la tensione di alimentazione dell' integrato ed a verificarne la correlazione con la tensione di clipping dell' uscita. Commentare quanto osservato ]



Figura 1: screenshot dei segnali con e senza clipping

Figura 2: Ingresso (in alto) ed uscita (in basso) di un amplificatore invertente con OpAmp, in zona lineare (a sinistra) e non (a destra)



# 2 Risposta in frequenza e slew rate

### 2.a Risposta in frequenza del circuito

Non siamo riusciti a vedere la frequenza di taglio inferiore, che tuttavia deve essere < 10Hz visto che per questa frequenza non si ha una sensibile diminuzione del guadagno.

Per la frequenza di taglio superiore abbiamo campionato il guadagno per frequenze tra 1kHz e 1MHz. Abbiamo abbassato  $V_{in}$  per alte frequenze per evitare per evitare possibili Slew Rate.

La frequenza di taglio è stata ricavata come l'intersezione delle due rette fittate rispettivamente a bassa e ad alta frequenza. (Figura 4)

errore su fH e dire pendenza per grandi omega

$$f_H = (167.7 \pm ) \text{ kHz}$$

#### 2.b Misura dello slew-rate

Si misura direttamente lo slew-rate dell'op-amp inviando in ingresso un' onda quadra di frequenza intorno ai  $\sim 0.9$  kHz e di ampiezza 2.08 V. Si ottiene:

$$SR_{\text{misurato}} = (12.5 \pm 0.5) \text{ V/}\mu\text{s}$$
 valore tipico (13) V/ $\mu$ s

Inserire grafico con di  $V_{out}$  e  $V_{in}$ 

Figura 3: Linearità dell' amplificatore invertente

Tabella 2: Guadagno dell' amplificatore invertente in funzione della frequenza.

| $f_{in}$ (kHz)    | $V_{in}$ (V)     | $V_{out}$ (V)   | A (dB)          |
|-------------------|------------------|-----------------|-----------------|
| $0.753 \pm 0.015$ | $1.02 \pm 0.03$  | $10.4 \pm 0.3$  | $20.2 \pm 0.26$ |
| $1.76 \pm 0.04$   | $1.03 \pm 0.03$  | $10.5 \pm 0.3$  | $20.2 \pm 0.26$ |
| $2.90 \pm 0.06$   | $1.03 \pm 0.03$  | $10.5 \pm 0.3$  | $20.2 \pm 0.26$ |
| $6.22 \pm 0.12$   | $1.05 \pm 0.03$  | $10.7 \pm 0.3$  | $20.2 \pm 0.26$ |
| $12.2 \pm 0.2$    | $1.06 \pm 0.03$  | $10.7 \pm 0.3$  | $20.1 \pm 0.26$ |
| $22.5 \pm 0.4$    | $1.05 \pm 0.03$  | $10.6 \pm 0.3$  | $20.1 \pm 0.26$ |
| $44.9 \pm 0.9$    | $1.05 \pm 0.03$  | $10.5 \pm 0.3$  | $20.0 \pm 0.26$ |
| $86.7 \pm 1.7$    | $1.06 \pm 0.03$  | $9.92 \pm 0.3$  | $19.4 \pm 0.26$ |
| $166 \pm 3$       | $1.06 \pm 0.03$  | $8.48 \pm 0.3$  | $18.1 \pm 0.26$ |
| $212 \pm 4$       | $0.688 \pm 0.02$ | $4.96 \pm 0.15$ | $17.2 \pm 0.26$ |
| $251 \pm 5$       | $0.680 \pm 0.02$ | $4.44 \pm 0.14$ | $16.3 \pm 0.26$ |
| $350 \pm 7$       | $0.776 \pm 0.02$ | $4.02 \pm 0.13$ | $14.3 \pm 0.26$ |
| $435 \pm 9$       | $0.688 \pm 0.02$ | $3.00 \pm 0.09$ | $12.8 \pm 0.26$ |
| $555 \pm 10$      | $0.696 \pm 0.02$ | $2.44 \pm 0.08$ | $10.9 \pm 0.26$ |
| $729 \pm 14$      | $0.784 \pm 0.02$ | $2.22 \pm 0.07$ | $9.04 \pm 0.26$ |
| $1220 \pm 24$     | $0.800 \pm 0.03$ | $1.38 \pm 0.05$ | $4.74 \pm 0.26$ |

Abbiamo misurato la pendenza massima del segnale  $V_{out}$ , che si trova proprio in corrispondenza dell' inizio dell'onda quadra, subito dopo la pendenza diminuisce di circa  $0.5 \text{ V}/\mu\text{s}$ 

## 3 Circuito integratore

Si monta il circuito integratore con i seguenti valori dei componenti indicati:

$$R_1 = (0.997 \pm 0.008) \,\mathrm{k}\Omega, \qquad R_2 = (9.92 \pm 0.08) \,\mathrm{k}\Omega, \qquad C = (50.4 \pm 2.3) \,\mathrm{nF}$$

#### 3.a Risposta in frequenza

Si invia un' onda sinusoidale e si misura la risposta in frequenza dell' amplificazione e della fase. I dati sono riportati in tabella 3 e 4.

Si vedano le figure 6 e 7, per i plot di Bode dell'integratore relativi ad ampiezza e fase.

Per la stima del guadagno massimo, si è presa la media dei guadagni delle prime quattro frequenze.

Guardando per quale f il guadagno fosse  $A_M-3{\rm dB}$  si è ottenuta una stima della frequenza di taglio.

Per la pendenza abbiamo preso una media delle pendenze delle rette passanti per coppie di punti ad alte frequenze.



Figura 4: Plot di Bode in ampiezza per l'amplificatore invertente.

Il valore atteso per  $A_M$  è  $20 \log_{10}(R_2/R_1)$ ; la frequenza di taglio attesa è  $f_H = 1/(2\pi R_2 C)$ .

 $A_M = (19.4)\,\mathrm{dB}$  atteso : (20) dB  $f_H = (330)\,\mathrm{Hz}$  atteso : (318) Hz  $\mathrm{d}A_V/\mathrm{d}f = (-20.1)\,\mathrm{dB/decade}$  atteso : (-20) dB/decade

## Risposta ad un' onda quadra

Si invia all' ingresso un' onda quadra di frequenza  $\sim xxx\,kHz$  e ampiezza  $\sim xxx\,V$ . Si riporta in Fig. 8 le forme d' onda acquisite all' oscillografo per l' ingresso e l' uscita.

[Commentare se che il circuito si comporta come un integratore.]

Si misura l'ampiezza dell'onda in uscita e si confronta il valore atteso.

[Indicare brevemente come sono stati ottenuti i valori attesi]

$$V_{out} = ($$
 ) V atteso : ( ) V

[Inserire commento sulla dipendenza dell' uscita dalla frequenza.]

#### 3.b Discussione

[Inserire commenti su quanto osservato ed eventuali deviazioni. In particolare: attenuazione ad alte frequenze, dipendenza della fase dalla frequenza, funzione di  $R_2$ .]

Per i valori teorici attesi abbiamo usato  $V_{out} = -\frac{Z_2}{Z_1}V_{in}$  e quindi implicitamente abbiamo considerato valida anche ad alte frequenze l'approssimazione  $A_d \gg |\frac{Z_2}{Z_1}|$ . Effettivamente per grandi f  $A_d \propto 1/f$  (punto 2.a) ma anche l'impedenza del condensatore decresce come 1/f, di conseguenza l'approssimazione resta valida. In figura 7 la linea arancione rappresenta il comportamento teorico della fase; che è descritto dalla funzione

$$\phi = 360/(2\pi)[\pi - \arctan(\exp(\log f - \log f_t))]$$

Per basse frequenze i dati hanno una evidente deviazione da quanto atteso; questo è sicuramente dovuto a un nostro errore di presa dati.



TDS 1012C-EDU - 16:49:23 08/11/2018

Figura 5: Segnale onda quadra (azzurro) e  $V_{in}$  (arancio)

Tabella 3: Guadagno dell' integratore invertente in funzione della frequenza.

| $f_{in}$ (kHz)                  | $V_{in}(V)$       | $V_{out}$ (V)                   | A (dB)            |
|---------------------------------|-------------------|---------------------------------|-------------------|
| $(1.56 \pm 0.03) \cdot 10^{-2}$ | $0.580 \pm 0.017$ | $5.12 \pm 0.15$                 | $18.9 \pm 0.26$   |
| $(2.57 \pm 0.05) \cdot 10^{-2}$ | $0.580 \pm 0.017$ | $5.44 \pm 0.15$                 | $19.4 \pm 0.26$   |
| $(2.87 \pm 0.06) \cdot 10^{-2}$ | $0.580 \pm 0.017$ | $5.52 \pm 0.15$                 | $19.6 \pm 0.26$   |
| $(4.79 \pm 0.01) \cdot 10^{-2}$ | $1.53 \pm 0.05$   | $14.6 \pm 0.5$                  | $19.6 \pm 0.26$   |
| $(9.20 \pm 0.2) \cdot 10^{-2}$  | $1.54 \pm 0.05$   | $14.3 \pm 0.4$                  | $19.4 \pm 0.26$   |
| $0.172 \pm 0.003$               | $1.54 \pm 0.05$   | $13.2 \pm 0.4$                  | $18.7 \pm 0.26$   |
| $0.306 \pm 0.006$               | $1.53 \pm 0.05$   | $10.9 \pm 0.3$                  | $17.0 \pm 0.26$   |
| $0.460 \pm 0.05$                | $0.704 \pm 0.021$ | $3.92 \pm 0.12$                 | $14.9 \pm 0.26$   |
| $1.14 \pm 0.02$                 | $0.700 \pm 0.021$ | $1.94 \pm 0.08$                 | $8.85 \pm 0.26$   |
| $1.88 \pm 0.04$                 | $0.696 \pm 0.020$ | $1.22 \pm 0.04$                 | $4.87 \pm 0.26$   |
| $3.46 \pm 0.07$                 | $0.704 \pm 0.020$ | $0.656 \pm 0.018$               | $-0.613 \pm 0.26$ |
| $4.57 \pm 0.09$                 | $1.56 \pm 0.05$   | $1.07 \pm 0.3$                  | $-3.27 \pm 0.26$  |
| $9.14 \pm 0.20$                 | $0.712 \pm 0.021$ | $0.255 \pm 0.007$               | $-8.92 \pm 0.26$  |
| $12.9 \pm 0.2$                  | $1.55 \pm 0.05$   | $0.380 \pm 0.012$               | $-12.2 \pm 0.26$  |
| $17.7 \pm 0.3$                  | $3.92 \pm 0.12$   | $0.688 \pm 0.020$               | $-15.1 \pm 0.26$  |
| $33 \pm 0.6$                    | $3.92 \pm 0.12$   | $0.380 \pm 0.012$               | $-20.2 \pm 0.26$  |
| $56 \pm 1$                      | $0.696 \pm 0.020$ | $(4.48 \pm 0.12) \cdot 10^{-2}$ | $-23.8 \pm 0.26$  |
| $66.1 \pm 1.2$                  | $3.86 \pm 0.12$   | $0.212 \pm 0.006$               | $-25.2 \pm 0.26$  |

 ${\it Tabella 4: fase dell' integratore invertente in funzione della frequenza.}$ 

| $f_{in}$ (kHz)                  | $\Delta t(\mu s)$            | φ(°)        |
|---------------------------------|------------------------------|-------------|
| $(1.56 \pm 0.03) \cdot 10^{-2}$ | $(28.4 \pm 1.1) \cdot 10^3$  | $160 \pm 6$ |
| $(2.57 \pm 0.05) \cdot 10^{-2}$ | $(18.2 \pm 0.7) \cdot 10^3$  | $169 \pm 7$ |
| $(2.87 \pm 0.06) \cdot 10^{-2}$ | $(16.4 \pm 0.7) \cdot 10^3$  | $170 \pm 7$ |
| $(4.79 \pm 0.01) \cdot 10^{-2}$ | $(10.4 \pm 0.4) \cdot 10^3$  | $180 \pm 7$ |
| $(9.20 \pm 0.2) \cdot 10^{-2}$  | $(5.1 \pm 0.2) \cdot 10^3$   | $169 \pm 7$ |
| $0.172 \pm 0.003$               | $(2.49 \pm 0.1) \cdot 10^3$  | $154 \pm 6$ |
| $0.306 \pm 0.006$               | $(1.25 \pm 0.05) \cdot 10^3$ | $138 \pm 6$ |
| $0.460 \pm 0.05$                | $785 \pm 30$                 | $130 \pm 5$ |
| $1.14 \pm 0.02$                 | $258 \pm 10$                 | $106 \pm 4$ |
| $1.88 \pm 0.04$                 | $149 \pm 6$                  | $101 \pm 4$ |
| $3.46 \pm 0.07$                 | $76.3 \pm 3$                 | $95 \pm 4$  |
| $4.57 \pm 0.09$                 | $57.1 \pm 2.3$               | $94 \pm 4$  |
| $9.14 \pm 0.20$                 | $28.2 \pm 1.1$               | $93 \pm 4$  |
| $12.9 \pm 0.2$                  | $19.6 \pm 0.8$               | $91 \pm 4$  |
| $17.7 \pm 0.3$                  | $14.4 \pm 0.6$               | $92 \pm 4$  |
| $33 \pm 0.6$                    | $7.58 \pm 0.3$               | $90 \pm 4$  |
| $56 \pm 1$                      | $4.47 \pm 0.18$              | $90 \pm 4$  |
| $66.1 \pm 1.2$                  | $3.76 \pm 0.15$              | $90 \pm 4$  |



Figura 6: Plot di Bode dell' ampiezza per il circuito integratore.



Figura 7: Plot di Bode della fase per il circuito integratore



Figura 8: Ingresso (in alto) ed uscita (in basso) del circuito integratore per un' onda quadra.