

Programming Techniques for Supercomputers

(Heterogeneous and Distributed systems)

- Aditya Nitsure (IBM India)

Content

- Performance Engineering
- HPC Benchmarks
- Performance Monitoring Tools
- Gromacs case study

Performance Engineering

Performance Engineering (1)

- Not (only) performance testing!
- Enables -
 - End to end optimization
 - Cross functional team collaboration among all stakeholders
- Performance planning
 - Define performance goal/matrix starting from design phase
- Run performance benchmarks

Performance Engineering (2)

- Performance tuning System, Environment, Application
- Performance monitoring and analysis Tracing, sampling, profiling
- Publish guideline for performance tuning
- Publish performance paper, competitive performance etc.
- Support customer to solve performance issues

HPC Benchmarks

HPC Benchmarks

Micro-benchmarks

- Compute
 - CPU utilization, Frequency variation, CPI
 - Example : Sysbench
- Memory
 - Memory bandwidth, Utilization, Usage, Latency
 - Example : Imbench, unixbench
- IO
 - Throughput (bandwidth), IOPS
 - Example : fio
- Network
 - Throughput (bandwidth), latency
 - Example : iperf

HPC Benchmarks

HP LINPACK

- Used for Top500 supercomputer ranking
- Solves linear equations (dense matrix operations)

Stream

- Measures CPU memory bandwidth
- Copy, Scale, Add, Triad operations on large arrays
- GPU stream available to measure GPU memory bandwidth

HPC Challenge

- Combination of existing benchmarks DGEMM,STREAM,FFT
- NPB (NAS Parallel benchmark)
 - Derived from some of the NASA applications
 - Hybrid programs (MPI + OpenMP)
 - Integer sort, Multigrid, 3D FFT

HPC Benchmarks (CORAL)

Application benchmarks (mini-app)

Scalable

- HACC (Hardware accelerated cosmology code)
 - Simulate the formation of structure in collision less fluids under the influence of gravity in an expanding universe.
 - Compute intensity, random memory access, all-to-all communication
- Nekbone
 - Incompressible Navier- Stokes CFD solver
 - Compute intensity, small messages, allreduce

Data centric

- Graph500
 - Scalable breadth-first search of a large undirected graph.
- SpecInt
 - CPU integer processor benchmark PIFS - Aditiva Nitsure

HPC Benchmarks (CORAL)

Application benchmarks (mini-app)

- Throughput
 - AMG (Algebraic Multi-Grid)
 - Linear system solver for unstructured mesh physics packages
 - memory-access bound, generates many small messages, stresses memory and network latency
 - NAMD
 - Molecular dynamics
 - Compute intensity, random memory access, small messages, allto-all communications
- Data Science and Deep learning
 - BDAS Big data analytic suit
 - DLS Deep Learning suit

Reference:

- https://asc.llnl.gov/coral-benchmarks
- https://asc.llnl.gov/coral-2-benchmarks

Monitoring Tools

top

- Display Linux processes and threads managed by Linux kernel
- User can monitor CPU/memory utilization per process or thread, individual core utilization

top - 07:38:06 up 400 days, 21:49, 2 users, load average: 0.41, 0.53, 0.94
Tasks: **1528** total, **3** running, **768** sleeping, **0** stopped, **0** zombie
%Cpu(s): **0.1** us, **0.4** sy, **0.0** ni, **99.4** id, **0.0** wa, **0.0** hi, **0.2** si, **0.0** st
KiB Mem : **53194912**+total, **49547968**+free, **33711168** used, **2758272** buff/cache
KiB Swap: **0** total, **0** free, **0** used **49519660**+avail Mem

PID	USER	PR	NI	VIRT	RES	SHR	- (%CPU	%MEM	TIME+	COMMAND
71810	root	20	0	980160	9088	3008	R	72.0	0.0	0:07.85	fio
1747	root	20	0	0	Θ	Θ	S	11.8	0.0	117:32.58	kdmwork-253:4
179	root	20	0	0	0	Θ	S	3.9	0.0	1:38.79	ksoftirqd/28
155	root	20	0	0	0	Θ	S	3.0	0.0	1:43.74	ksoftirqd/24
10690	root	0	-20	0	0	Θ	I	2.3	0.0	0:56.88	kworker/28:1H
9968	root	Θ	-20	0	Θ	Θ	I	2.0	0.0		kworker/24:1H
71121	aditya	20	0	121472	10240	4544		1.3	0.0	0:02.80	-
123642	root	20	Θ	8704	6464	3072		1.3	0.0		irqbalance
	root	20	Θ	0	0		S	1.0	0.0		ksoftirqd/25
185	root	20	Θ	0	Θ	Θ	S	1.0	0.0	0:34.65	ksoftirqd/29
7472	root	Θ	-20	0	Θ	Θ	I	0.7	0.0	0:14.98	kworker/25:1H
22672	root	20	0	0	0	Θ	R	0.7	0.0	0:09.01	kworker/24:2
24216	root	20	Θ	Θ	Θ	Θ	I	0.7	0.0		kworker/28:0
130653	root	20	Θ	3106176	141696	84096		0.7	0.0		openshift
	root	20	0	0	Θ	Θ	I	0.3	0.0	452:55.24	
167	root	20	Θ	0	Θ	Θ	S	0.3	0.0		ksoftirqd/26
191	root	20	Θ	0	0	Θ	S	0.3	0.0		ksoftirqd/30
7363	root	20	Θ	1271936	9536	4416	S	0.3	0.0	1807:11	pmsensors
9381	root	Θ	-20	0	Θ	Θ	I	0.3	0.0	0:08.09	kworker/30:1H
9906		0	-20	0	0	Θ	I	0.3	0.0	0:15.07	kworker/29:1H
22547	root	20	Θ	Θ	Θ	Θ	I	0.3	0.0	0:00.56	kworker/30:2
25684	root	20	0	0	Θ	Θ	I	0.3	0.0	0:01.16	kworker/25:1
71807	root	20	Θ	1044928	423680	418112	S	0.3	0.1	0:00.14	
158156	root	20	0	Θ	Θ	Θ	I	0.3	0.0	0:00.86	kworker/29:2
1	root	20	Θ	161856	13440	6720	S	0.0	0.0	1039:19	systemd

mpstat

- Reports processor related statistics
 - Interrupts received per second by CPU(s)
 - User and kernel CPU utilization
 - Percentage of time spent by CPU in IO request or idle
- Fetches system, core and node level details

mpstat -n -P 0,1,2,3 -N 0,8 1 %svs %iowait 08:56:10 AM CDT %usr %nice %ira %soft %steal %quest %gnice %idle 08:56:11 AM CDT 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 08:56:11 AM CDT 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 08:56:11 AM CDT 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 08:56:11 AM CDT 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 %sys %iowait %irq %nice %anice %idle 08:56:10 AM CDT NODE %usr %soft %steal %quest 08:56:11 AM CDT 0.00 94.99 5.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 08:56:11 AM CDT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

free / numastat

free

 Displays the total amount of free and used physical and swap memory in the system, as well as the buffers and caches used by the kernel.

```
[aditya@localhost ~]$ free -h
                                                             buff/cache
              total
                                          free
                                                    shared
                                                                           available
                            used
              1.0Ti
                                        708Gi
                                                     2.8Gi
Mem:
                             33Gi
                                                                  280Gi
                                                                               981Gi
              4.0Gi
                               0B
                                        4.0Gi
Swap:
```

numastat

- Shows numa node memory statistics for processes and OS
- numa hit, numa miss, numa foreign, interleave hit

vmstat

- Reports virtual memory statistics
 - Amount of virtual and free memory
 - Amount of memory used as buffer and cache
- Display CPU statistics
 - Time spent in kernel, user, IO wait, idle etc

iostat

- Provides insight on input/output load on physical disks
- Gives CPU and IO statistics
 - CPU and device utilization
 - Throughput, Read/write bandwidth

26/07/20 11:52:24 avg-cpu: %user 0.25	AM EDT %nice %system 0.00 1.00	%iowait %stea 0.00 0.0		· ·	Write) oughp		(Write	•				ios	stat	-N	kmt		
Device await aqu-sz %u	r) rMB/s		-	rareq-sz	W/S	wMB/s	wrqm/s	%wrqm	w_await w	areq-sz	d/s	dMB/s	drqm/s	%drqm d	_await da	req-sz	f/s f
	0.00	utiliza	ion _{0.00}	0.00 78	86.00	3.07	0.00	0.00	1.23	4.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 0. 00	Device ^{0.0}	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00 0.00 100	0.00	<u>utilization</u>		\	86.00	3.07	0.00	0.00	1.23	4.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00 0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

perf

- Perf stat
 - Gathers performance counter statistics
 - Examples
 - perf stat -C 0 -e cycles sleep 1
 - perf stat -a -e cycles,instructions < executable >
- Perf record
 - Records profile data in perf.data file
 - Example : perf record -a -g -e cycles -o perf.raw < executable >
- Perf report
 - Reads perf.data and display the profile
 - Example : perf report -n --no-children --sort=symbol -i perf.raw

nvidia-smi

```
[aditya@hpcnw4 ompeval]$ nvidia-smi
Sun Apr 21 03:03:12 2019
 NVIDIA-SMI 396.64
                                Driver Version: 396.64
      Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC
                                    Memory-Usage | GPU-Util Compute M.
     Temp Perf Pwr:Usage/Cap|
 Fan
                       On
     42C PU 153W / 300W |
                                1539MiB / 15360MiB |
                                                      100%
                                                               Default
   1 Tesla V100-SXM2... On | 00000004:05:00.0 Off |
       38C P0
                   37W / 300W I
                                                               Default
                                  11MiB / 15360MiB |
   2 Tesla V100-SXM2... On | 00000035:03:00.0 Off |
 N/A 35C
             P0 36W / 300W | 11MiB / 15360MiB |
                                                               Default I
                                                        0%
   3 Tesla V100-SXM2... On | 00000035:04:00.0 Off |
 N/A 41C
             PO 38W / 300W | 11MiB / 15360MiB |
                                                        0%
                                                               Default
                                                            GPU Memory
 Processes:
           PID
                 Type
                                                            Usage
                       Process name
                      ./matmul_gpuoffload_cl
                                                               1528MiB
         54063
```

Also check "nvidia-smi -query-gpu" more monitoring options

nvprof

- The nvprof is command-line profiling tool which enables you to collect and view profiling data
- Using nvprof one can collect
 - kernel execution time
 - Memory transfers
 - Memory set and CUDA API calls
 - Events or metrics for CUDA kernels
- nvprof --print-gpu-trace -u col -o <nvprof-output.nvvp>
 Application binary> <Application parameters>

NVIDIA Visual Profiler (NVVP)

- Visualize profile data collected from nvprof
- The visual profiler displays a timeline of your application activity on both CPU and GPU so that one can identify opportunities for performance improvement

More documentation can be found @ https://docs.nvidia.com/cuda/profiler-users-guide/index.html

NVIDIA Visual Profiler (NVVP)

HPC Case Studies

HPC Workload and Performance

HPC performance usually driven by

- #cores / CPUs /Nodes
- Core frequency
- #GPUs
- CPU/GPU Memory bandwidth
- NVLink bandwidth
- Interconnect bandwidth
- Energy consumption

HPC workload characterization

- Problem size
- #of tasks per Node/GPU
- Amount of data handled by each Node and GPU
- Compute communication ratio
- Amount of data transferred by each task
- Amount of work done by CPU & GPU separately
- Amount of collaboration done by CPU & GPU

GROMACS

GROningen MAchine for Chemical Simulations

- GROMACS is a versatile package to perform molecular dynamics simulation with the Newtonian equations of motion for systems with hundreds to millions of particles.
- GPU acceleration is core part of GROMACS that works in combination with GROMACS' domain decomposition and load balancing code.
- Gromacs team claims
 - GPU accelerated code performances up to 5x better compared to CPU-only processing.

	Gromacs 5.1.4 (8/09/16)	Gromacs 2016.3 (14/03/2017)
C++ standard	C++98	C++11
GPU compute capability	2.0 (Fermi or Kepler)	2.0 (Fermi, Kepler, Maxwell or Pascal)
CUDA version	4.0 onwards	5.0 onwards
FFTW		3.0 or later
cmake		2.8.8 or later
XL compiler		13.1.5 or later

Compiling Gromacs

```
CC=<mpicc|xlc|gcc> CXX=mpicxx cmake ...
```

- -DGMX OPENMP=<ON/OFF>
- -DGMX GPU=<ON/OFF>
- -DGMX MPI=<ON/OFF>
- -DGMX BUILD OWN FFTW=ON
- -DCMAKE BUILD TYPE=Release
- -DGMX SIMD=IBM VSX
- -DGMX CYCLE SUBCOUNTERS=ON
- -DGMX OPENMP MAX THREADS=256
- -DCMAKE_INSTALL_PREFIX="/home/aditya/GROMACS/install/GNU/MPI/CPU"

Simulation Examples

1	ADH cubic RF (Reaction Field) (alcohol dehydrogenase protein)	Atoms: 134,177
2	ADH cubic PME (Particle mesh Ewald) (alcohol dehydrogenase protein)	Atoms: 134,177
3	Water_GMX50 RF (Reaction Field)	1.5 million atoms
4	Water_GMX50 PME (Particle mesh Ewald)	1.5 million atoms

Running Gromacs

Running example: WATER GMX50

Generate *mdout.mdp* file

gmx grompp -f rf.mdp

CPU

gmx mdrun -noconfout -g Water50_rf_c20 -v -ntmpi 10 -ntomp 4 -pin on

GPU

gmx mdrun -noconfout -nsteps 5000 -resethway -g Water50_rf_c20 -v -ntmpi 8 -ntomp 10 -pin on -gpu id "0123"

Running using MPI enabled Gromacs

mpirun -np 20 gmx_mpi mdrun -s lignocellulose-rf.tpr -v -noconfout -resethway -nsteps 5000 -g cellulose_mpi -pin on -ntomp 2

Configurable Parameters

#MPI tasks
#OpenMP threads
#GPUs
#Time steps

Gromacs functions distribution (CPU+GPU)

MEGA-FLOPS ACCOUNTING

Wall time: 15.71 sec

Performance: 27.49 ns/day

M-Number	M-I	Flops 9	% Flops	
ck 28679.2	16704	2582	112.950	0.2
3733618.4	18624	14187	7499.908	98.0
39223.90	03488	21180	090.788	1.5
193.536000	58	80.608	0.0	
193.536000	58	0.608	0.0	
39.945360	719.01	6 0.0)	
39.936000	399	.360	0.0	
769.536000	2077	7.472	0.0	
3925.578069	314	104.625	0.0	
40.810326	979	9.448	0.0	
1308.526023	422653	3.905	0.3	
144731	798.689	100.0	0	
	3733618.4 39223.90 193.536000 193.536000 39.945360 39.936000 769.536000 3925.578069 40.810326 1308.526023	3733618.418624 3733618.418624 39223.903488 193.536000 58 193.536000 58 39.945360 719.01 39.936000 399 769.536000 2077 3925.578069 314 40.810326 979	3733618.418624 14187 39223.903488 21180 193.536000 580.608 193.536000 580.608 39.945360 719.016 0.0 39.936000 399.360 769.536000 20777.472 3925.578069 31404.625 40.810326 979.448 1308.526023 422653.905	3733618.418624 141877499.908 39223.903488 2118090.788 193.536000 580.608 0.0 193.536000 580.608 0.0 39.945360 719.016 0.0 39.936000 399.360 0.0 769.536000 20777.472 0.0 3925.578069 31404.625 0.0 40.810326 979.448 0.0 1308.526023 422653.905 0.3

DOMAIN DECOMPOSITION STATISTICS

av. #atoms communicated per step for force: 2 x 455240.7 av. #atoms communicated per step for LINCS: 2 x 33675.7

Average load imbalance: 2.1 %

Part of the total run time spent waiting due to load imbalance: 0.3 %

REAL CYCLE AND TIME ACCOUNTING

On 8 MPI ranks, each using 10 OpenMP threads

um Num anks Thre			Giga-C total sur	-
8 10 8 10	126 26	3.193 0.001	130.772 0.047	20.3 0.0 20.4
8 10	5002	0.524	21.469	3.3 10.9
8 10 8 10	2501	0.180	7.361 84.324	1.1 13.1
8 10 8 10	2501 2501	0.354 0.020	14.485 0.805	2.2 0.1
8 10 8 10	9752 2501	0.919 1.032	37.636 42.263	5.8 6.6
8 10 8 10	2501 251	2.231 0.012	91.383 0.476	14.2 0.1
		0.281 15.717	11.520 643.787	1.8 100. 0
	8 10 8 10 8 10 8 10 8 10 8 10 8 10 8 10	8 10 126 8 10 26 8 10 126 8 10 5002 8 10 2375 8 10 2501 8 10 2501	8 10 126 3.193 8 10 26 0.001 8 10 126 3.208 8 10 5002 0.524 8 10 2375 1.705 8 10 2501 0.180 8 10 2501 2.059 8 10 2501 0.354 8 10 2501 0.020 8 10 9752 0.919 8 10 2501 1.032 8 10 2501 2.231 8 10 251 0.012 0.281	8 10 126 3.193 130.772 8 10 26 0.001 0.047 8 10 126 3.208 131.390 8 10 5002 0.524 21.469 8 10 2375 1.705 69.856 8 10 2501 0.180 7.361 8 10 2501 2.059 84.324 8 10 2501 0.354 14.485 8 10 2501 0.020 0.805 8 10 9752 0.919 37.636 8 10 2501 1.032 42.263 8 10 2501 2.231 91.383 8 10 251 0.012 0.476 0.281 11.520

PTFS - Adit NOTE: 20% of the run time was spent in domain decomposition, 20% of the run time was spent in pair search

perf report (CPU)

(MPI tasks Vs Invocations & data)

Note: The data represented in below graph is from single GPU (0)

From observations

- Overhead due to MPI tasks
- Assumption: 5% overhead for 1 MPI task run
- Original H2D data transfer size 4GB

Tasks	% overhead	Calculated transfer size (GB)
1	5%	4.2
5	25%	5
11	55%	6.2

The number of invocations are proportional to the overhead or rate of increase in data size.

NVIDIA Visual Profiler (Water 1.5/RF)

NVIDIA Visual Profiler (Water 1.5/RF)

NVIDIA Visual Profiler (Water 1.5/RF)

Gromacs - 1.5M Water Observations

Less amount of data exchange with increased number of GPUs

Large amount of data transfer - Potential NVLink benefit

GPU kernel distribution

Thank You !!!