BASIS DATA I ENTITY RELATIONSHIP DIAGRAM (ERD)

Oleh. Masbahah, S.Pd., M.Pd

D3 Teknik Informatika

Sekolah Vokasi UNS

TOPIK

- **OVARIAN ENTITAS**
- **OVARIAN ATRIBUT**
- **OVARIAN RELASI**
- OAGREGASI
- OPROSES LANJUTAN / FINAL DESIGN

VARIAN ENTITAS

STRONG & WEAK ENTITY

- Strong entity merupakan entitas yang mandiri, yang keberadaannya tidak bergantung pada keberadaan entitas yang lainnya.
- Weak entity merupakan entitas yang kemunculannya tergantung pada eksistensinya dalam sebuah relasi terhadap entitas lain (Strong Entity)

SUBTYPE ENTITY

 Entitas yang beranggotakan entitas-entitas yang merupakan bagian dari himpunan entitas yang lebih superior/utama

- 1. Spesialisasi
- 2. Generalisasi

SUBTYPE ENTITY

Spesialisasi (Top – Down)

Hasil dekomposisi himpunan entitas berdasarkan pengelompokan tertentu

SUBTYPE ENTITY

Generalisasi (Bottom – up)

Atribut masing-masing entitas tidak memiliki perbedaan yang jelas/tegas sehingga disatukan

Key Atribut

Atribut yang digunakan untuk menentukan suatu entitas secara unik

Atribut deskriptif

Seluruh atribut yang bbukan merupakan anggota dari key atribut

Atribut Simple/Atomic Attribute

Atribut yang tidak dapat dibagi-bagi lagi menjadi atribut lebih mendasar

Composite Attribute

Atribut yang terdiri dari beberapa atribut yang lebih mendasar.

Contoh: atribut Alamat, terdiri atas atribut Jalan, Kota, Kode_Pos.

Simbol:

Single-Valued Attribute

Atribut yang hanya memiliki satu harga/nilai.

Contoh: atribut Umur, Nomor_Pegawai

Multi-Valued Attribute

Atribut yang memiliki isi lebih dari satu nilai. Contoh:

atribut Pendidikan_Tinggi pada entitas Pegawai, dapat berisi lebih dari satu nilai, yaitu: SMP, SMU, Perguruan Tinggi (Sarjana), Doktor, dll.

Atribut Hobi pada entitas Siswa, dapat memiliki lebih dari satu nilai, yaitu: sepak bola, menyanyi, menari, tenis, dll.

Simbol:

Null Values Attribute

Atribut dari entitas yang tidak memiliki nilai.

Contoh: atribut Pendidika tinggi untuk tamatan SMP

Mandatory atribut

Atribut yang harus memiliki nilai

Contoh: NIM, Nama pada entitas mahasiswa

O Derivated Attribute

Atribut yang nilainya dapat diisi atau diturunkan dari perhitungan atau algoritma tertentu.

Contoh: atribut Umur, dapat dihitung dari atribut Tgl_Lahir

Gambar. Derivated Attribute

- Relasi Tunggal (Unary Relation)
- Relasi Multi-Entitas (N-ary Relation)
- Relasi Ganda (Redudant Relation)

- Relasi Tunggal (Unary Relation)
- O Merupakan relasi yang terjadi dari sebuah himpunan entitas ke himpunan entitas yang sama

- Relasi Multi-Entitas (N-ary Relation)
- Merupakan relasi dari 3 himpunan entitas atau lebih

- Relasi Ganda (Redudant Relation)
- Relasi yang muncul antara dua himpunan entitas tidak hanya 1 relasi, tetapi lebih dari satu.

AGREGASI

- Sebuah himpunan relasi yang secara langsung menghubungkan sebuah Entitas dengan sebuah himpunan relasi dalam Diagram-ER.
- Sebuah relasi terbentuk tidak hanya dari himpunan entitas tetapi juga mengandung unsur dari relasi lain.
- O Sebenarnya kondisi ini tidak tepat bahkan ada yang dengan tegas tidak memperbolehkan.

AGREGASI

Mengikuti
 praktikum
 dilakukan setelah
 (jika ada relasi)
 mempelajari
 kuliah

DIAGRAM ER YANG TIDAK TEPAT

O Diagram E-R semacam ini akan mengaburkan faktor kronologis yang bertentangan dengan fakta sebenarnya

- OAlternate Key
- OPengkodean internal
- ODekomposisi himpunan entitas dan normalisasi
- OFleksibilitas

Alternate Key

- Key himpunan entitas/relasi dipilih dari atribut yang dapat menjamin keunikan entitas
- O Dikategorikan baik jika berukuran kecil dan sekuensial
- Misalnya kode_jadwal pada entitas jadwal. Kode_jadwal bukan merupakan fakta dari dunia nyata. Key semacam itu disebut key alternative

Pengkodean internal

- Pengkodean Merupakan cara untuk menyatakan suatu data (atribut) dalam bentuk lain yang bertujuan untuk efisiensi ruang penyimpanan. Pengkodean dapat dibedakan menjadi 2 yaitu:
 - 1. Pengkodean Eksternal (user-defined coding)
 - Pengkodean yang telah digunakan secara terbuka dan dikenal dengan baik oleh user (end-user). contoh : Atribut NIM dan Kode_kul.

Pengkodean Internal (system coding)
 Pengkodean semacam ini tidak dikenal oleh end-user, melain-kan oleh system (aplikasi maupun DBMS yang digunakan).

Ada 3 bentuk pengkodean yang dapat kita pilih yaitu:

- a. Sekuensial
- b. Mnemonic
- c. Blok

Sekuensial

- Pengkodean yang dilakukan dengan mengasosiasikan data dengan kode terurut (biasanya berupa bilangan asli atau abjad).
- Misalnya data indeks nilai ('Sempurna', 'Baik', 'Cukup', 'Kurang', 'Buruk') dikodekan dengan A, B, C, D, dan E.

Mnemonic

Pengkodean yang dilakuakan dengan membentuk suatu singkatan dari data yang ingin dikodekan misalnya datajanis kelamin (laki - laki dan perempuan) dikodekan dengan 'L', dan 'P'.

Blok

O Pengkodean yang dinyatakan dalam format tertentu misalnya NIM mahasiswa dengan format XXXX.YY.ZZZ yang terbentuk atas XXXX = angka tahun masuk, YY = kode jurusan, dan ZZZ = nomor urut mahasiswa.

Dekomposisi himpunan entitas dan normalisasi

- Sebuah himpunan entitas yang ada dalam sebuah Diagram E-R dapat didekomposisi menjadi beberapa himpunan entitas baru karena:
 - a. pertimbangan efisiensi ruang penyimpanan
 - b. pertimbangan kemudahan/kecepatan pengaksesan data.

- O Upaya dekomposisi ini senantiasa akan menghasilkan:
 - a. satu himpunan entitas kuat (strong entity set)
 - b. satu atau beberapa himpunan entitas lemah atau sub entitas.
- O Ada dua bentuk dekomposisi himpunan entitas, yaitu:
 - a. Dekomposisi Atribut/Vertikal
 - b. Dekomposisi Entitas/Horisontal

Dekomposisi Atribut/Vertikal

O Dekomposisi ini dilakukan dengan cara membagi sebuah himpunan entitas menjadi dua atau lebih dengan pemisahan atribut.

Dekomposisi Entitas/Horisontal (Spesialisasi)

Dekomposisi ini dilakukan dengan cara membagi sebuah himpunan entitas menjadi dua atau lebih dengan pemisahan entitas.

O Dekomposisi Atribut / Vertikal

DekomposisiEntitas /Horisontal

Fleksibilitas

- Fleksibilitas dalam desain basis data dapat direalisasikan dalam bentuk:
 - Penambahan atribut.
 - 2. Pemilihan domain atribut yang lebih luas (direalisasikan pada tahap implementasi).
 - 3. Generalisasi.
 - 4. Perubahan struktur entitas dari yang berorientasi kolom (column-oriented) menjadi berorientasi baris (row-oriented).

REFERENSI

O Fathansyah. 2012. Basis Data. Bandung: Informatika Bandung.

TERIMA KASIH