Introduction to Transformers

Transformers

These slides are adapted from the course materials of "Speech and Language Processing (3rd Edition, Draft)" by Dan Jurafsky and James H. Martin, available at: https://web.stanford.edu/~jurafsky/slp3/.

I deeply appreciate the authors for making these materials accessible to the academic community. All rights to the original content remain with the authors.

LLMs are built out of transformers

Transformer: a specific kind of network architecture, like a fancier feedforward network, but based on attention

Attention Is All You Need

Ashish Vaswani*

Google Brain avaswani@google.com

Noam Shazeer*

Google Brain noam@google.com

Niki Parmar*

Google Research nikip@google.com

Jakob Uszkoreit*

Google Research usz@google.com

Llion Jones*

Google Research llion@google.com

Aidan N. Gomez* †

University of Toronto aidan@cs.toronto.edu

Łukasz Kaiser*

Google Brain lukaszkaiser@google.com

Illia Polosukhin* ‡

illia.polosukhin@gmail.com

A very approximate timeline

1990 Static Word Embeddings

2003 Neural Language Model

2008 Multi-Task Learning

2015 Attention

2017 Transformer

2018 Contextual Word Embeddings and Pretraining

2019 Prompting

Attention

Transformers

Problem with static embeddings (word2vec)

They are static! The embedding for a word doesn't reflect how its meaning changes in context.

The chicken didn't cross the road because it was too tired

What is the meaning represented in the static embedding for "it"?

Contextual Embeddings

- Intuition: a representation of meaning of a word should be different in different contexts!
- Contextual Embedding: each word has a different vector that expresses different meanings depending on the surrounding words
- How to compute contextual embeddings?
 - Attention

Contextual Embeddings

The chicken didn't cross the road because it

What should be the properties of "it"?

The chicken didn't cross the road because it was too **tired**The chicken didn't cross the road because it was too **wide**

At this point in the sentence, it's probably referring to either the chicken or the street

Intuition of attention

Build up the contextual embedding from a word by selectively integrating information from all the neighboring words

We say that a word "attends to" some neighboring words more than others

Intuition of attention:

columns corresponding to input tokens

Attention definition

A mechanism for helping compute the embedding for a token by selectively attending to and integrating information from surrounding tokens (at the previous layer).

More formally: a method for doing a weighted sum of vectors.

Attention is left-to-right

Simplified version of attention: a sum of prior words weighted by their similarity with the current word

Given a sequence of token embeddings:

$$\mathbf{X}_1$$
 \mathbf{X}_2 \mathbf{X}_3 \mathbf{X}_4 \mathbf{X}_5 \mathbf{X}_6 \mathbf{X}_7 \mathbf{X}_1

Produce: \mathbf{a}_i = a weighted sum of \mathbf{x}_1 through \mathbf{x}_7 (and \mathbf{x}_i) Weighted by their similarity to \mathbf{x}_i

$$score(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i \cdot \mathbf{x}_j$$

$$\alpha_{ij} = softmax(score(\mathbf{x}_i, \mathbf{x}_j)) \ \forall j \leq i$$

$$\mathbf{a}_i = \sum \alpha_{ij} \mathbf{x}_j$$

Intuition of attention:

columns corresponding to input tokens

An Actual Attention Head: slightly more complicated

High-level idea: instead of using vectors (like x_i and x_4) directly, we'll represent 3 separate roles each vector \mathbf{x}_i plays:

- query: As the current element being compared to the preceding inputs.
- **key**: as *a preceding input* that is being compared to the current element to determine a similarity
- value: a value of a preceding element that gets weighted and summed

Attention intuition

Intuition of attention:

An Actual Attention Head: slightly more complicated

We'll use matrices to project each vector \mathbf{x}_i into a representation of its role as query, key, value:

- query: W^Q
- key: W^K
- value: W^V

$$\mathbf{q}_i = \mathbf{x}_i \mathbf{W}^{\mathbf{Q}}; \quad \mathbf{k}_i = \mathbf{x}_i \mathbf{W}^{\mathbf{K}}; \quad \mathbf{v}_i = \mathbf{x}_i \mathbf{W}^{\mathbf{V}}$$

An Actual Attention Head: slightly more complicated

Given these 3 representation of x_i

$$\mathbf{q}_i = \mathbf{x}_i \mathbf{W}^{\mathbf{Q}}; \quad \mathbf{k}_i = \mathbf{x}_i \mathbf{W}^{\mathbf{K}}; \quad \mathbf{v}_i = \mathbf{x}_i \mathbf{W}^{\mathbf{V}}$$

To compute similarity of current element \mathbf{x}_i with some prior element \mathbf{x}_i

We'll use dot product between \mathbf{q}_i and \mathbf{k}_j .

And instead of summing up \mathbf{x}_j , we'll sum up \mathbf{v}_j

Final equations for one attention head

$$\mathbf{q}_{i} = \mathbf{x}_{i} \mathbf{W}^{\mathbf{Q}}; \quad \mathbf{k}_{j} = \mathbf{x}_{j} \mathbf{W}^{\mathbf{K}}; \quad \mathbf{v}_{j} = \mathbf{x}_{j} \mathbf{W}^{\mathbf{V}}$$

$$\operatorname{score}(\mathbf{x}_{i}, \mathbf{x}_{j}) = \frac{\mathbf{q}_{i} \cdot \mathbf{k}_{j}}{\sqrt{d_{k}}}$$

$$\alpha_{ij} = \operatorname{softmax}(\operatorname{score}(\mathbf{x}_{i}, \mathbf{x}_{j})) \quad \forall j \leq i$$

$$\mathbf{a}_{i} = \sum_{j \leq i} \alpha_{ij} \mathbf{v}_{j}$$

Calculating the value of a3

Actual Attention: slightly more complicated

- Instead of one attention head, we'll have lots of them!
- Intuition: each head might be attending to the context for different purposes
 - Different linguistic relationships or patterns in the context

$$\mathbf{q}_{i}^{c} = \mathbf{x}_{i} \mathbf{W}^{\mathbf{Qc}}; \quad \mathbf{k}_{j}^{c} = \mathbf{x}_{j} \mathbf{W}^{\mathbf{Kc}}; \quad \mathbf{v}_{j}^{c} = \mathbf{x}_{j} \mathbf{W}^{\mathbf{Vc}}; \quad \forall c \quad 1 \leq c \leq h$$

$$\operatorname{score}^{c}(\mathbf{x}_{i}, \mathbf{x}_{j}) = \frac{\mathbf{q}_{i}^{c} \cdot \mathbf{k}_{j}^{c}}{\sqrt{d_{k}}}$$

$$\alpha_{ij}^{c} = \operatorname{softmax}(\operatorname{score}^{c}(\mathbf{x}_{i}, \mathbf{x}_{j})) \quad \forall j \leq i$$

$$\operatorname{head}_{i}^{c} = \sum_{j \leq i} \alpha_{ij}^{c} \mathbf{v}_{j}^{c}$$

$$\mathbf{a}_{i} = (\operatorname{head}^{1} \oplus \operatorname{head}^{2} ... \oplus \operatorname{head}^{h}) \mathbf{W}^{O}$$

$$\operatorname{MultiHeadAttention}(\mathbf{x}_{i}, [\mathbf{x}_{1}, \cdots, \mathbf{x}_{N}]) = \mathbf{a}_{i}$$

Multi-head attention

Project down to d

Concatenate Outputs

Each head attends differently to context

$$X_{i-3}$$
 X_{i-2} X_{i-1}

Summary

Attention is a method for enriching the representation of a token by incorporating contextual information

The result: the embedding for each word will be different in different contexts!

Contextual embeddings: a representation of word meaning in its context.

We'll see in the next lecture that attention can also be viewed as a way to move information from one token to another.

The residual stream: each token gets passed up and modified

We'll need nonlinearities, so a feedforward layer

$$FFN(\mathbf{x}_i) = ReLU(\mathbf{x}_i\mathbf{W}_1 + b_1)\mathbf{W}_2 + b_2$$

Layer norm: the vector \mathbf{x}_i is normalized twice

Layer Norm

Layer norm is a variation of the z-score from statistics, applied to a single vec- tor in a hidden layer

$$\mu = \frac{1}{d} \sum_{i=1}^{d} x_i$$

$$\sigma = \sqrt{\frac{1}{d} \sum_{i=1}^{d} (x_i - \mu)^2}$$

$$\hat{\mathbf{x}} = \frac{(\mathbf{x} - \mu)}{\sigma}$$
LayerNorm(\mathbf{x}) = $\gamma \frac{(\mathbf{x} - \mu)}{\sigma} + \beta$

Putting together a single transformer block

A transformer is a stack of these blocks so all the vectors are of the same dimensionality d

Residual streams and attention

Notice that all parts of the transformer block apply to 1 residual stream (1 token).

Except attention, which takes information from other tokens

Elhage et al. (2021) show that we can view attention heads as literally moving information from the residual stream of a neighboring token into the current stream.

Transformers

Input and output: Position embeddings and the Language Model Head

Token and Position Embeddings

The matrix X (of shape $[N \times d]$) has an embedding for each word in the context.

This embedding is created by adding two distinct embedding for each input

- token embedding
- positional embedding

Token Embeddings

Embedding matrix E has shape $[|V| \times d]$.

- One row for each of the |V| tokens in the vocabulary.
- Each word is a row vector of d dimensions

Given: string "Thanks for all the"

- 1. Tokenize with BPE and convert into vocab indices
- w = [5,4000,10532,2224]
- 2. Select the corresponding rows from E, each row an embedding
- (row 5, row 4000, row 10532, row 2224).

Position Embeddings

There are many methods, but we'll just describe the simplest: absolute position.

Goal: learn a position embedding matrix Epos of shape $[1 \times N]$.

Start with randomly initialized embeddings

- one for each integer up to some maximum length.
- i.e., just as we have an embedding for token *fish*, we'll have an embedding for position 3 and position 17.
- As with word embeddings, these position embeddings are learned along with other parameters during training.

Each x is just the sum of word and position embeddings

Language modeling head

Language modeling head

Unembedding layer: linear layer projects from h_N^L (shape $[1 \times d]$) to logit vector

 W_N

Why "unembedding"? **Tied** to **E**^T

Weight tying, we use the same weights for two different matrices

Unembedding layer maps from an embedding to a 1x|V| vector of logits

Language modeling head

Logits, the score vector u

One score for each of the |V| possible words in the vocabulary V. Shape $1 \times |V|$.

Softmax turns the logits into probabilities over vocabulary. Shape $1 \times |V|$.

$$\mathbf{u} = \mathbf{h}_{N}^{L} \mathbf{E}^{T}$$
 $\mathbf{y} = \operatorname{softmax}(\mathbf{u})$

(y1)(y2) Token probabilities w_{i+1} The final transformer Sample token to generate at position i+1 Language model Modeling <u>u1</u> <u>u2</u> logits u|V|Head Token probabilities Sample token to softmax generate at position i+1 Language Modeling logits u2) |u|V|u1 Head Input Encoding

Input token