

Habib University

Electrical Engineering Department

Dhanani School of Science & Engineering

Course	EE – 211 – Basic Electronics	
Semester	Fall 2022	
Section	Section L2	
Exam	Midterm Exam – 2	
Instructor	Dr. Ahmad Usman	
Total Marks	25	

Name:SOLUTIONStudent ID:	
--------------------------	--

Note:

- i. Attempt all questions.
- ii. No cheat sheets or formula sheets are allowed.
- iii. You can use your own calculators.
- iv. There are seven printed pages in this exam booklet. Don't open staple of the booklet.

Questions	Points
Q1 (CLO – 2)	/8
Q2 (CLO – 3)	/7
Q3 (CLO – 1)	/4
Q4 (CLO – 1)	/6
Total Obtained	/25

Question #1 (CLO -2 – Points: 8, 3 + 5)

Draw the small-signal model for the circuit shown below. Also, calculate the voltage gain

Vout / Vin. The specifications of the circuit are as follows:

$$\begin{split} I_S = 8 \times 10^{-16} \ A, \ V_{CC} = 2.5 V, \ V_A = \infty, \ \beta = 100, \ R_C = 10 \ k\Omega, \ R_E = 500 \ \Omega, \ R_1 = 14 \ k\Omega, \ R_2 = 11 \ k\Omega, \ R_S = 1 \ k\Omega, \ R_L = 100 \ k\Omega \end{split}$$

Assume extremely high value capacitors.

$$V_1 = \frac{(R, //R_2)}{R_s + (R, //R_2)} V_{an}$$

$$V_{1} = \left(\frac{6016 \, K}{1K + 6016 K}\right) V_{in}^{2}$$

$$\frac{V_{i}}{V_{in}^{2}} = 0.86033$$

$$I_{c} = I_{s} \exp\left(\frac{V_{BE}}{V_{T}}\right)$$
Let $V_{BE} = 0.7V$

$$V_{T} = 26mV$$

$$I_{c} = 394.124\mu A$$

$$g_{m} = I_{c}$$

$$V_{T}$$

2

Input Resistance @ Emitter

$$R_{in} = \frac{r_{\pi}}{\beta} + R_{E} + \frac{R_{TH}}{\beta + 1}$$

$$R_{in} = \frac{1}{g_{m}} + R_{E} + \frac{R_{TH}}{\beta + 1}$$

$$R_{in} = \frac{1}{15.1586m} + 500 + \frac{0.8603K}{101}$$

$$Gam = A_{V} = -\left(\frac{R_{1}/IR_{2}}{R_{S} + R_{1}/IR_{2}}\right) \left(\frac{R_{C}/IR_{L}}{I_{gm}' + R_{E} + \frac{R_{TH}}{B+1}}\right)$$

$$A_{V} = -\left(0.86033\right) \left(\frac{9.0909 \, K}{574.49}\right)$$

$$A_{v} = -13.614$$

Question #2 (CLO - 3 - Points: 7)

Design a self-bias (collector feedback bias) BJT configuration with the following specifications:

$$I_{C,Q} = 5 \text{ mA}$$
, $V_{CC} = 10 \text{V}$, $V_{CE,Q} = 5 \text{V}$, $V_{BE} = 0.7 \text{V}$, and $\beta = 100$.

Draw the circuit diagram. Determine R_C, R_E, and R_B. Assume V_E as 10% of V_{CC}.

$$V_{E} = 10\% \text{ of } V_{CC}$$

$$V_{E} = \frac{10}{100} \times 10 = 1V$$

$$V_{E} = I_{E}R_{E}$$

$$V_{E} = I_{C} + I_{B}$$

$$I_{C} = \beta I_{B}$$

$$V_{E} = \frac{1}{5.05 \text{ m}} = \frac{1}{198.0198 \Omega}$$

$$R_{E} = \frac{1}{5.05 \text{ m}} = \frac{1}{198.025}$$

$$R_{E} =$$

 $R_c = \frac{4}{505m}$

Rc = 792.079.52

@ mode A
$$V_{A} = V_{CE} + V_{E} - 0$$

$$V_{A} = I_{B}R_{B} + V_{BE} + I_{E}R_{E} - 0$$

$$I_{B}R_{B} + V_{BE} + I_{E}R_{E} = V_{CE} + V_{E}$$

$$R_{B} = \frac{5 - 0.7}{(5/100)^{M}} = \frac{86 \text{ K}\Omega}{\sqrt{5/100}}$$

Question #3 (CLO -1 – Points: 4)

A CE stage exhibits a voltage gain of 20 and an output resistance of 1 k Ω . Determine the voltage gain of the CE amplifier if the stage drives an $8-\Omega$ speaker directly. Explain in your own words what happened to the gain?

$$1 k\Omega = R_{c}$$

$$V_{in} = R_{sp}$$

$$V_{in} = R_{s$$

Vin =
$$V_{\pi}$$
 $=$ V_{π} $=$

$$A_{2} = 0.1587$$

-> The gain decreases when the speaker was added as a load.

Question # 4 (CLO -1 – Points: 6, 3 + 3)

(a) Determine the voltage gain of the stage shown in the figure below.

Vin
$$R_{E}$$
 R_{E}
 R_{E}

(b) Determine the voltage gain of the stage shown in the figure below.

