Mnemonic	IIII	xWWW	R/D RR	DDDD	xRRd/W		Comments	
Bit positions	23:2 0	19:16	R 15:12	11:8	x7:4	3:0		
$LD D_N, R_M$	0001	0000	0mmm	nnnn	0100	XXXX	Load data register N with contents of register M	
$LD R_N, D_M$	0001	xnnn	0000	mmm m	0110	XXXX	Load register N with contents of data address M	
ADD R_N , R_M	0010	xnnn	1mmm	0000	0110	XXXX	$R_{N} = R_{M} + R_{N}$	
SUB R_N, R_M	0011	xnnn	1mmm	0000	0110	XXXX	$R_N = R_M - R_N$	
INC R _N ,	0100	xnnn	1nnnn	0000	0110	XXXX	$R_{N} = R_{N} + 1 (INC R_{N}, R_{M})$	
DEC R _N	0101	xnnn	1nnnn	0000	0110	XXXX	$R_{N} = R_{N} - 1$	
$COPR_N,R_M$	0110	xnnn	1mmm	0000	0110	XXXX	$R_N = R_M$	
$MULR_N,R_M$	0111	xnnn	1mmm	0000	0110	xxxx	$R_{N} = R_{N} * R_{M}$	
AND $R_N R_M$	1000	xnnn	1mmm	0000	0110	xxxx	$R_N = R_N$ bit And R_M	
$XOR R_N R_M$	1001	xnnn	1mmm	0000	0110	xxxx	$R_{N} = R_{N}$ bit XOR R_{M}	
JP	1010	QQQQ	QQQQ	0000	0010		Jump relative to current location to Q where Q is a 2'c ompliment number + 127 forward, -128 back. Bits in t his field are ignored for jumps	
JZ	1011	QQQQ	QQQQ	0000	0010	XXXX	Jump if Zero flag set to relative Q location	
J G	1100	QQQQ	QQQQ	0000	0010	xxxx	Jump if Greater than flag set to relative Q location	
JL	1101	QQQQ	QQQQ	0000	0010	XXXX	Jump if less flag set to relative Q location	

M and N are register numbers with legal values 0-7 and m and n are the bit representations of M and N. N is the destination register address, M is the source address. The xWWW column is the destination register and RRR is the source register for both register to register and data transfers. Bit 15 is his high for a register transfer and low for a data transferFor the load instruction Data to register D is source and xWWW is the destination. For load register to data RRR is the source register and D is the destination register. The column labelled DDDD is the data register address. The next column consists of 4bits, R is set for any register operation, Rd/W is a single bit field for the data register that is 1 when read and 0 when written. X are unused bits and their default value should be set to 0