## Propagación en medios no dispersivos

Los ejercicios con (\*) entrañan una dificultad adicional y puede considerarlos opcionales.

## Propagación en medios no dispersivos

1. Una perturbación se propaga en una cuerda infinita con velocidad v. Las figuras la muestran en t=0 y t=4 s. Determine v y  $\psi(x,t)$ .





Suponga ahora que conoce que  $v = 100 \frac{\text{m}}{\text{s}}$  y vé que la cuerda fue soltada desde el reposo con la deformación vista en t = 0.

- a) Halle las componentes de la perturbación que se propagan a izquierda y derecha que conforman  $\psi(x,t) = \psi_{\text{derecha}}(x-vt) + \psi_{\text{izquierda}}(x+vt)$ .
- b) Comparé esta situación con la anterior.
- 2. (\*) Ambos extremos de una cuerda de densidad  $\mu$  están fijos sometiéndola a una tensión T. A t=0 se la

suelta con 
$$h \ll L$$
 desde  $\psi(x,0) = \begin{cases} 0 & \text{si } 0 < x < a \\ h \frac{x-a}{L/2-a} & \text{si } a < x < L/2 \\ h \frac{L-a-x}{L/2-a} & \text{si } L/2 < x < L-a \\ 0 & \text{si } L-a < x < L. \end{cases}$ 

- a) Hallar  $\psi(x,t)$  y demostrar que siempre es posible escribir esta solución como una superposición de una onda que se propaga hacia la derecha y una que se propaga hacia la izquierda.
- b) Hacer un esquema cualitativo del movimiento de la cuerda para los instantes  $t_n = \frac{n}{8} \frac{L}{v}$ , donde v es la velocidad de propagación de las ondas en la cuerda y n es un número natural.
- 3. (\*) En un gas, a t=0, se produce la perturbación indicada en la figura. Conociendo la  $v_{\rm sonido}$ ,  $\rho_1$ ,  $\rho_0$  tales que  $(\rho_1-\rho_0)/\rho_0\ll 1$  y que en ese momento el gas estaba en reposo, calcule  $\rho(x,t)$ .



4. Dos cuerdas semi-infinitas de distinta densidad lineal de masa,  $\rho_{\rm izq}$  y  $\rho_{\rm der}$ , están unidas en un punto y sometidas a una tensión  $T_0$ . Sobre la primera se propaga hacia la derecha la perturbación que muestra la figura. Se conocen  $\rho_{\rm izq}$ ,  $\rho_{\rm der}$ ,  $T_0$ ,  $\Delta x$  y h, y se considera que los medios son no dispersivos.



- a) Hallar el desplazamiento  $\psi(x,t)$ .
- b) Explique cualitativamente como cambian estos resultados si el medio es dispersivo.

## Velocidad de fase y de grupo

- 5. ¿Cuál de estos métodos determina la velocidad de fase y cuál la de grupo?
  - a) Golpear las manos y determinar el tiempo que transcurre entre el aplauso y el eco de un reflector ubicado a una distancia conocida.
  - b) Medir la longitud de un tubo que resuena a una frecuencia conocida (y corregir por efectos de borde).
  - c) Medir el tiempo en que el pulso de un láser recorre una distancia conocida.
  - d) Encontrar la longitud de una cavidad resonante que oscila a en modo y frecuencia conocidos.

6. Demuestre que la relación de la velocidad de grupo  $\boldsymbol{v}_g$  y de fase  $\boldsymbol{v}_f$  es

$$v_g = v_f - \lambda \frac{\mathrm{d}v_f}{\mathrm{d}\lambda}.$$

¿Cómo es  $\frac{\mathrm{d}v_f}{\mathrm{d}\lambda}$  en un medio no dispersivo? En tal caso, ¿cuál es la relación de  $v_g$  y  $v_f?$