Concurrent Stochastic Games with Stateful-discounted and Parity Objectives: Complexity and Algorithms

A. Asadi¹

K. Chatterjee¹

R. Saona¹

J. Svoboda¹

FSTTCS 2024

¹Institute of Science and Technology Austria (ISTA)

Game

Concurrent zero-sum stochastic game

States: s_1, s_2

2 opposite players

Actions: *a*, *b*

Rewards per state and action profile: r(s, a, b)

Stochastic transitions: $\delta(s, a, b)$

Deterministic game

Concurrent zero-sum deterministic game

Objectives and values

- Reachability: Probability of reaching a state
- **Discounted**: Discounted sum of rewards
- **Parity**: ω -regular objective
- Stateful discounted:

State-dependent discounted sum of rewards

$$\mathsf{Disc}_{\Lambda}((s_i, a_i, b_i)_{i \geq 0}) \coloneqq \sum_{i \geq 0} \left(r(s_i, a_i, b_i) \Lambda(s_i) \prod_{j < i} 1 - \Lambda(s_j) \right)$$
 $\mathsf{val}_{\Lambda}(s) \coloneqq \sup_{\sigma \in \Sigma^{S}} \inf_{\tau \in \Gamma^{S}} \mathbb{E}^{\sigma, \tau}_{s}[\mathsf{Disc}_{\Lambda}].$

Limit (Stateful discounted) value:

Vanishing state-dependent discounted sum of rewards

$$\mathsf{val}_\chi(s) \coloneqq \lim_{\lambda_1 \to 0^+} \cdots \lim_{\lambda_d \to 0^+} \mathsf{val}_\Lambda(s) \,.$$

Limit Value approximation.

How hard is to approximate the limit value?

Hint: Parity is a special case of limit value.

Our contribution

Previous.

- Limit value: EXPSPACE upper bound and double exponential time algorithm
- Parity: PSPACE upper bound and exponential time algorithm

Our contribution.

For both values,

- TFNP[NP] upper bound
- Exponential time algorithm, which is polynomial for fixed number of states

Hardness

Why approximation and not exact value computation? Even for reachability objectives,

- Irrational value: exact value is irrational.
- SQRT-SUM hardness: at least as hard as SQRT-SUM, which is not known to be in NP.

What is the problem with guessing ε -optimal strategies? Even for reachability objectives in deterministic games,

• **Double exponential patience**: ε -optimal strategies require very small numbers.

Previous work

Theorem (Kristoffer et. al., 2013)

Approximating the value of concurrent stochastic games with reachability objectives is in TFNP[NP].

Theorem (Attia and Oliu-Barton, 2019)

Approximating the undiscounted value (vanishing discounted value) of concurrent stochastic games can be done in exponential space and time.

Simplification

Theorem (Alfaro et. al. 2003; Gimbert and Zielonka, 2005)

There is a linear reduction from the computational problems of approximating the parity value to the approximation of the limit value of stateful-discounted objectives.

Technical tool

Our technical contribution

Lemma

Consider a nonzero polynomial P in x_1, \dots, x_ℓ of degrees D_1, \dots, D_ℓ with integer coefficients of bit-size B. Let $D := \max(D_1, \dots, D_\ell)$ and $B_1 := 4\ell \operatorname{bit}(D) + B + 1$. Then,

$$\forall x_1 \in (0, \exp(-\mathrm{B}_1)] \quad \cdots \quad \forall x_\ell \in \left(0, (x_{\ell-1})^{D+1}\right]$$

 $|P(x_1, \cdots, x_\ell)| \ge \exp(\mathrm{B}_1 - \ell) \cdot (x_\ell)^{D+1}.$

Root free zone in 2 dimensions

Ideas

Simple model: discounted reachability objective

Consider the reachability objective as the limit of the following discounted reachability objective.

Discounted reachability.

$$\mathsf{Disc}_{\lambda}((s_i)_{i\geq 0}) \coloneqq \sum_{i\geq 0} \mathbb{1}[s_i = \top] \ \lambda (1-\lambda)^{(i-1)_+} \ \mathsf{val}_{\lambda}(s) \coloneqq \sup_{\sigma \in \Sigma^S} \inf_{\tau \in \Gamma^S} \mathbb{E}^{\sigma, au}_s[\mathsf{Disc}_{\Lambda}] \, .$$

Idea: Algorithm

The discounted value is characterized as the unique parameter that makes a parameterized matrix game have value zero.

Bellman fixpoint equation. Fixing stationary strategies σ, τ we obtain a Markov chain with

- payoff: $\nu^{\sigma,\tau}(s) := \mathbb{E}_s^{\sigma,\tau}[\mathsf{Disc}_{\lambda}].$
- transition: $\delta^{\sigma,\tau}(s,s') \coloneqq \sum_{\substack{a \in \mathcal{A} \\ b \in \mathcal{B}}} \sigma(s)(a) \cdot \tau(s)(b) \cdot \delta(s,a,b)(s')$
- reward: $r^{\sigma,\tau}(s) := \sum_{\substack{a \in \mathcal{A} \\ b \in \mathcal{B}}} \sigma(s)(a) \cdot \tau(s)(b) \cdot r(s,a,b)$

In matrix form, the Bellman operator defined by Shapley can be written as a recursive expression:

$$u^{\sigma,\tau} = \lambda \operatorname{Id} \odot r^{\sigma,\tau} + (1-\lambda)\operatorname{Id} \odot (\delta^{\sigma,\tau}\nu^{\sigma,\tau}).$$

Bellman fixpoint equation.

$$u^{\sigma,\tau} = \lambda \operatorname{Id} \odot r^{\sigma,\tau} + (1-\lambda)\operatorname{Id} \odot (\delta^{\sigma,\tau}\nu^{\sigma,\tau}) .$$

By Cramer's rule, we have

$$u^{\sigma,\tau}(s) = \frac{\nabla_{\lambda}^{s}(\sigma,\tau)}{\nabla_{\lambda}(\sigma,\tau)},$$

where $\nabla_{\lambda}(\sigma, \tau)$ and $\nabla_{\lambda}^{s}(\sigma, \tau)$ are determinants of $n \times n$ matrices. Linearizing the equation, we get

$$0 = \nabla_{\lambda}^{s}(\sigma, \tau) - \nu^{\sigma, \tau}(s) \nabla_{\lambda}(\sigma, \tau).$$

Linear equation

$$0 = \nabla_{\lambda}^{s}(\sigma, \tau) - \nu^{\sigma, \tau}(s) \nabla_{\lambda}(\sigma, \tau).$$

Define the parameterized matrix game on pure stationary strategies

$$M_{\lambda}[z](\hat{\sigma},\hat{\tau}) := \nabla_{\lambda}^{s}(\hat{\sigma},\hat{\tau}) - z \nabla_{\lambda}(\hat{\sigma},\hat{\tau}).$$

Lemma (Attia and Oliu-Barton, 2019)

The discounted value $val_{\lambda}(s)$ is the unique parameter such that

val
$$M_{\lambda}[z] = 0$$
.

Moreover, $z \mapsto \text{val } M_{\lambda}[z]$ is strictly decreasing.

Lemma (Attia and Oliu-Barton, 2019)

The discounted value $\operatorname{val}_{\lambda}(s)$ is the unique parameter such that $\operatorname{val} M_{\lambda}[z] = 0$. Moreover, $z \mapsto \operatorname{val} M_{\lambda}[z]$ is strictly decreasing.

As a consequence

$$\lambda \mapsto \mathsf{val}_{\lambda}(s)$$

is a rational function by parts and there is an explicit bound on the degree and coefficients of the polynomials involved.

Theorem (Attia and Oliu-Barton, 2019)

Consider $\varepsilon > 0$. There exists an explicit doubly exponentially small discount factor $\lambda > 0$ such that

$$|\operatorname{\mathsf{val}}_\lambda(s) - \lim_{\lambda \to 0} \operatorname{\mathsf{val}}_\lambda(s)| \le \varepsilon$$
.

Given a concurrent stochastic game with reachability objective,

- Consider the discounted reachability objective that approximates the limit value.
- Construct an (exponentially large) parametric matrix game whose only parameter that makes it zero value is the discounted value.

1 Use **binary search** to approximate the discounted value.

Idea: Complexity

Given a concurrent stochastic game,

- **1** Guess ε -optimal strategies for each player.
- **2** Verify the ε -optimality of the guessed strategy using an **optimal counter strategy**.
- **3** Given " ε -optimal" and optimal counter strategies, **approximate the value** of the corresponding Markov chain.

Theorem (Hansen et. al., 2009)

Even deterministic concurrent games with reachability objectives require playing actions with doubly exponentially small probabilities to get approximately optimal strategies.

Guessing ε -optimal strategies is impossible... using classic representations.

Theorem (Hansen et. al., 2009)

For all stochastic concurrent games with reachability objectives, there exists ε -optimal strategies that all positive probabilities are at least **doubly exponentially big** of the form $\varepsilon^{2^{|A|}}$.

Guessing ε -optimal strategies is possible using floating point numbers.

Theorem (Frederiksen and Miltersen, 2013)

Approximating the value of a Markov chain with reachability objective and floating point probabilities can be done in polynomial time.

Summary

Given a concurrent stochastic game with limit objective,

- Consider the discounted objective that approximates the limit value.
- Construct a reachability objective game with the same value.

- **3** Guess ε -optimal strategies for each player.
- **1** Verify the ε -optimality of the guessed strategy using an **optimal counter strategy**.
- **5** Given " ε -optimal" and optimal counter strategies, **approximate the value** of the corresponding Markov chain.

Given a concurrent stochastic game with limit objective,

- Consider the discounted objective that approximates the limit value.
- Construct an (exponentially large) parametric matrix game whose only parameter that makes it zero value is the discounted value.

1 Use **binary search** to approximate the discounted value.

Thank you!