

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

(11) International Publication Number:

WO 00/20435

C07H 21/04, C12Q 1/68, A61K 48/00

A1 (43) International Publication Date:

13 April 2000 (13.04.00)

(21) International Application Number:

PCT/US99/23171

(22) International Filing Date:

5 October 1999 (05.10.99)

(30) Priority Data:

09/167,109

6 October 1998 (06.10.98)

(74) Agents: LICATA, Jane, Massey et al.; Law Offices of Jane Massey Licata, 66 E. Main Street, Marlton, NJ 00853 (US).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,

BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB,

GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG,

US

(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Application

LIS Filed on

09/167,109 (CIP) 6 October 1998 (06.10.98)

(71) Applicant (for all designated States except US): ISIS PHAR-MACEUTICALS, INC. [US/US]; 2292 Faraday Avenue, Carlsbad, CA 92008 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BAKER, Brenda, F. [US/US]; 2147 Avenida Toronja, Carlsbad, CA 92009 (US). COWSERT, Lex, M. [US/US]; 3008 Newshire Street, Carlsbad, CA 92008 (US). MONIA, Brett, P. [US/US]; 7605 Nueva Castilla Way, La Costa, CA 92009 (US). XU, Xiaoxing, S. [CN/US]; 18 Main Street, #3, Madison, NJ 07940 (US).

SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML,

MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of

(54) Title: ANTISENSE MODULATION OF EXPRESSION OF TUMOR NECROSIS FACTOR RECEPTOR-ASSOCIATED FACTORS (TRAFs)

(57) Abstract

Compositions and methods are provided for modulating the expression of tumor necrosis factor receptor-associated factor (TRAF). Antisense compounds, particularly antisense oligonucleotides, targeted to nucleic acids encoding TRAF are preferred. Methods of using these compounds for modulation of TRAF expression and for treatment of diseases associated with expression of TRAF are provided.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	ТЈ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JР	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	Li	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

ANTISENSE MODULATION OF EXPRESSION OF TUMOR NECROSIS FACTOR RECEPTOR-ASSOCIATED FACTORS (TRAFS)

FIELD OF THE INVENTION

The present invention provides compositions and methods for modulating the expression of tumor necrosis factor receptor-associated factors (TRAFs). In particular, this invention relates to antisense compounds, particularly oligonucleotides, specifically hybridizable with nucleic acids encoding human TRAFs. Such oligonucleotides have been shown to modulate the expression of TRAFs.

BACKGROUND OF THE INVENTION

Tumor necrosis factor (TNF) receptor superfamily members regulate cellular proliferation, differentiation and apoptosis in inflammatory and immune responses. 15 receptor superfamily comprises a group of related cellsurface receptors including, but not limited to, types 1 and 2 TNF receptors (TNFR1 and TNFR2), Fas, CD27, 4-1BB, CD40 and CD30. Signaling through TNF receptor superfamily 20 members is initiated by oligomerization of the receptors with trimeric ligands, bringing intracellular domains in close proximity (Pullen et al., Biochemistry 1998, 37, 11836-11845). Two families of adaptor proteins that associate with TNF receptor superfamily members have been 25 identified: the TNF receptor-associated factor (TRAF) family, and the death domain-containing protein family.

Members of the TRAF family of proteins share an aminoterminal RING finger motif and a homologous carboxyterminal region, referred to in the art as the TRAF domain (Yuan, J., Curr. Opin. Cell Biol. 1997, 9, 247-251. This conserved carboxy-terminal region binds to receptor cytoplasmic domains and mediates interactions with the signaling proteins NF-KB inducing kinase (NIK) and I-TRAFT/TANK (Cheng et al., Science 1995, 267, 1494-1498;

 $N^{\frac{1}{2}}$

2

13

10

Cheng, G. and Baltimore, D., Genes Dev. 1996, 10, 963-973; Rothe et al., Proc. Natl Acad. Sci. USA 1996, 93, 8241-8246; Malinin et al., Nature 1997, 385, 540-544). A predicted coiled-coil region mediating TRAF homo- and hetero-oligomerization is in a less conserved region N-terminal to the TRAF domain (Cao et al., Nature 1996, 383, 443-446; Cheng et al., Science 1995, 267, 1494-1498; Rothe al., Cell 1994, 78, 681-692; Sato et al., FEBS Lett 1995, 358, 113-118; and Takeuchi et al., J. Biol. Chem 1996, 271, 19935-19942).

The mammalian TRAF family currently includes six members, TRAF-1, TRAF-2, TRAF-3, TRAF-4, TRAF-5 and TRAF-6. These proteins have generally been found within the cytosols of cells, either in association with cytosolic vesicles or at the plasma membrane after addition of selected TNF family cytokines to the cells. Members of the TRAF family mediate signals for various different receptors. Subsets of TRAF family members have been shown to interact with the TNF receptor family members (TNFR2, 20 CD40, CD30, LTβR, ATAR, OX40 and 4-1BB).

For example, TRAF-1 and TRAF-2 were identified by their ability to interact with the cytoplasmic domains of TNFR2 (Rothe et al., Cell 1994, 78, 681-691). TNFR2 has been associated with TNF's ability to stimulate cell proliferation and activation of NFkB (Tartaglia et al., 25 Proc. Natl Acad. Sci. USA 1991, 88, 9292-9296). TRAF-1 is believed to be involved in the regulation of apoptosis (Speiser et al., J. Exp. Med. 1997, 185, 1777-1783). Depletion of TRAF-2 and its co-associated proteins has also 30 been shown to increase the sensitivity of the cell to undergo apoptosis during activation of death inducing receptors such as TNFR1 (Duckett, C.S. and Thompson, C.B., Genes & Development 1997, 11, 2810-2821; Yeh et al., Immunity 1997, 7, 715-725). Accordingly, the rate of

Ť

receptor-mediated TRAF-2 consumption and TRAF-2 translation has been suggested to play a dynamic role in the regulation of cell survival (Duckett, C.S. and Thompson, C.B., Genes & Development 1997, 11, 2810-2821). Targeted disruption of the TRAF-2 gene in mice has also been shown to generate severe defects in c-Jun N-terminal kinase (JNK) activation through TNFR1 (Yeh et al., Immunity 1997, 7, 715-725).

TRAF-2 (Rothe et al., Science 1995, 269, 1424-1427), TRAF-3 (Cheng et al., Science 1995, 267, 1494-1498), TRAF-5 10 (Ishida et al., Proc. Natl Acad. Sci USA 1996, 93, 9437-9442) and TRAF-6 (Pullen et al., Biochemistry 1998, 37, 11836-11845) have also been shown to interact with the B lymphocyte receptor CD40. CD40 is a TNF receptor superfamily member that provides activation signals in 15 antigen presenting cells such as B cells, macrophages and dendritic cells. Activation of CD40 leads to B-cell survival, growth and differentiation. In 293T cells, expression of TRAF-3 suppressed constitutive activity of NFKB, whereas expression of TRAF-5 induced NFKB activity. Targeted disruption of the TRAF-3 gene in mice causes 20 impaired immune responses to T-dependent antigens and results in early postnatal lethality (Xu et al., Immunity

25 TRAF-4 is expressed in breast cancers. In *in vitro* binding assays, TRAF-4 has been shown to interact with the cytosolic domain of the lymphotoxin-β receptor (LTβR) and weakly with the p75 nerve growth factor receptor but not with TNFR1, TNFR2, Fas or CD40 (Karjewska et al., Am. J. of Pathol. 1998, 152, 6, 1549-1561).

in mammalian cells also induces JNK activation.

1996, 5, 407-415). TRAF-2, TRAF-5 or TRAF-6 overexpression

TRAF-6 has also been reported to mediate the signal transduction pathway induced by IL-1 to activate NF κ B by recruiting IL-1 receptor associated kinase (IRAK), a serine/threonine kinase (Cao et al., Nature 1996 93:9437-

15

20

25

30

35

9442). Thus, the role of TRAFs extends beyond being signal transducers for the TNF-receptor superfamily.

The TRAF-5 protein and DNA encoding TRAF-5 are disclosed in WO97/38099. Also disclosed in WO97/38099 is an antisense oligonucleotide against the DNA, an anti-TRAF-5 antibody, a vector containing the DNA, transformants containing this vector and methods of producing TRAF-5 with this vector. In addition, this PCT application discloses methods of screening substances binding to TRAF-5 and substances regulating the activity and expression of this protein.

A TRAF family molecule, a polynucleotide coding for this molecule, an antibody against the molecule and an antisense polynucleotide of the molecule are also disclosed in WO97/31110. Disclosed in this PCT application are the -base sequence of the gene and the amino acid of this "unknown" TRAF family molecule, which in addition to the antibody, are suggested to provide means for elucidating the functions of the proteins and the signal transducer system of a TNF-R family in which this molecule participates, to provide probes for research and diagnosis, and to indicate applications for therapeutic agents.

Currently, however, there are no known therapeutic agents which effectively inhibit the synthesis of one or more selected TRAF family members. Consequently, there is a long-felt need for agents capable of effectively inhibiting TRAF explession. Antisense oligonucleotides against one or more TRAFs may therefore prove to be uniquely useful in a number of therapeutic, diagnostic and research applications.

SUMMARY OF THE INVENTION

The present invention is directed to antisense compounds, particularly oligonucleotides, which are targeted to a nucleic acid encoding a selected tumor necrosis factor receptor-associated factor (TRAF), and

1

which modulate the expression of the selected TRAF. Pharmaceutical and other compositions comprising the antisense compounds of the invention are also provided. Further provided are methods of modulating the expression of TRAFs in cells or tissues comprising contacting said cells or tissues with one or more of the antisense compounds or compositions of the invention. Further provided are methods of treating an animal, particularly a human, suspected of having or being prone to a disease or condition associated with expression of a selected TRAF by administering a therapeutically or prophylactically effective amount of one or more of the antisense compounds or compositions of the invention.

DETAILED DESCRIPTION OF THE INVENTION

The present invention employs oligomeric antisense 15 compounds, particularly oligonucleotides, for use in modulating the function of nucleic acid molecules encoding selected tumor necrosis factor receptor-associated factors (TRAFs), ultimately modulating the amount of the selected TRAF produced. This is accomplished by providing antisense 20 compounds which specifically hybridize with one or more nucleic acids encoding the selected TRAF. By "selected TRAF" it is meant any member of the TRAF family of proteins, most preferably TRAF-1, TRAF-2, TRAF-3, TRAF-4, 25 TRAF-5 or TRAF-6. As used herein, the terms "target nucleic acid" and "nucleic acid encoding TRAF" encompass DNA encoding a TRAF family member, RNA (including pre-mRNA and mRNA) transcribed from such DNA, and also cDNA derived The specific hybridization of an oligomeric from such RNA. compound with its target nucleic acid interferes with the 30 normal function of the nucleic acid. This modulation of function of a target nucleic acid by compounds which specifically hybridize to it is generally referred to as "antisense". The functions of DNA to be interfered with include replication and transcription. The functions of 35

W.

15

20

25

30

35

RNA to be interfered with include all vital functions such as, for example, translocation of the RNA to the site of protein translation, translation of protein from the RNA, splicing of the RNA to yield one or more mRNA species, and catalytic activity which may be engaged in or facilitated by the RNA. The overall effect of such interference with target nucleic acid function is modulation of the expression of the selected TRAF. In the context of the present invention, "modu'ation" means either an increase (stimulation) or a decrease (inhibition) in the expression of a gene. In the context of the present invention, inhibition is the preferred form of modulation of gene expression and mRNA is a preferred target.

It is preferred to target specific nucleic acids for antisense. "Targeting" an antisense compound to a particular nucleic acid, in the context of this invention, is a multi-step process. The process usually begins with the identification of a nucleic acid sequence whose function is to be modulated. This may be, for example, a cellular gene (or mRNA transcribed from the gene) whose expression is associated with a particular disorder or disease state, or a nucleic acid molecule from an infectious agent. In the present invention, the target is one or more nucleic acid molecules encoding one or more selected TRAFs. The targeting process also includes determination of a site or sites within this gene for the antisense interaction to occur such that the desired effect, e.g., detection or modulation of expression of the protein, will result. Within the context of the present invention, a preferred intragenic site is the region encompassing the translation initiation or termination codon of the open reading frame (ORF) of the gene. as is known in the art, the translation initiation codon is typically 5'-AUG (in transcribed mRNA molecules; 5'-ATG in the corresponding DNA molecule), the translation initiation Y.

codon is also referred to as the "AUG codon," the "start codon" or the "AUG start codon". A minority of genes have a translation initiation codon having the RNA sequence 5'-GUG, 5'-UUG or 5'-CUG, and 5'-AUA, 5'-ACG and 5'-CUG have been shown to function in vivo. Thus, the terms "translation initiation codon" and "start codon" can encompass many codon sequences, even though the initiator amino acid in each instance is typically methionine (in cukaryotes) or formylmethionine (in prokaryotes). 10 also known in the art that eukaryotic and prokaryotic genes may have two or more alternative start codons, any one of which may be preferentially utilized for translation initiation in a particular cell type or tissue, or under a particular set of conditions. In the context of the 15 invention, "start codon" and "translation initiation codon" refer to the codon or codons that are used in vivo to initiate translation of an mRNA molecule transcribed from a gene encoding a TRAF, regardless of the sequence(s) of such codons.

20 It is also known in the art that a translation termination codon (or "stop codon") of a gene may have one of three sequences, i.e., 5'-UAA, 5'-UAG and 5'-UGA (the corresponding DNA sequences are 5'-TAA, 5'-TAG and 5'-TGA, respectively). The terms "start codon region" and 25 "translation initiation codon region" refer to a portion of such an mRNA or gene that encompasses from about 25 to about 50 contiguous nucleotides in either direction (i.e., 5' or 3') from a translation initiation codon. Similarly, the terms "stop codon region" and "translation termination 30 codon region" refer to a portion of such an mRNA or gene that encompasses from about 25 to about 50 contiguous nucleotides in either direction (i.e., 5' or 3') from a translation termination codon.

The open reading frame (ORF) or "coding region," which is known in the art to refer to the region between the

translation initiation codon and the translation termination codon, is also a region which may be targeted effectively. Other target regions include the 5' untranslated region (5'UTR), known in the art to refer to the portion of an mRNA in the 5' direction from the translation initiation codon, and thus including nucleotides between the 5' cap site and the translation initiation codon of an mRNA or corresponding nucleotides on the gene, and the 3' untranslated region (3'UTR), known in the art to refer to the portion of an mRNA in the 3' direction from the translation termination codon, and thus including nucleotides between the translation termination codon and 3' end of an mRNA or corresponding nucleotides on the gene. The 5' cap of an mRNA comprises an N7-methylated guanosine residue joined to the 5'-most residue of the mRNA via a 5'-5' triphosphate linkage. The 5' cap region of an mRNA is considered to include the 5' cap structure itself as well as the first 50 nucleotides adjacent to the cap. The 5' cap region may also be a preferred target region.

Although some eukaryotic mRNA transcripts are directly translated, many contain one or more regions, known as "introns", which are excised from a transcript before it is translated. The remaining (and therefore translated) regions are known as "exons" and are spliced together to form a continuous mRNA sequence. mRNA splice sites, i.e., intron-exon junctions, may also be preferred target regions, and are particularly useful in situations where aberrant splicing is implicated in disease, or where an overproduction of a particular mRNA splice product is implicated in disease. Aberrant fusion junctions due to rearrangements or deletions are also preferred targets. It has also been found that introns can also be effective, and therefore preferred, target regions for antisense compounds targeted, for example, to DNA or pre-mRNA.

35 Once one or more target sites have been identified,

15

20

25

30

ď,

33

oligonucleotides are chosen which are sufficiently complementary to the target, i.e., hybridize sufficiently well and with sufficient specificity, to give the desired effect.

In the context of this invention, "hybridization"
means hydrogen bonding, which may be Watson-Crick,
Hoogsteen or reversed Hoogsteen hydrogen bonding, between
complementary nucleoside or nucleotide bases. For example,
adenine and thymine are complementary nucleobases which
pair through the formation of hydrogen bonds.

"Complementary," as used herein, refers to the capacity for precise pairing between two nucleotides. For example, if a nucleotide at a certain position of an oligonucleotide is capable of hydrogen bonding with a nucleotide at the same

position of a DNA or RNA molecule, then the oligonucleotide and the DNA or RNA are considered to be complementary to each other at that position. The oligonucleotide and the DNA or RNA are complementary to each other when a sufficient number of corresponding positions in each

20 molecule are occupied by nucleotides which can hydrogen bond with each other. Thus, "specifically hybridizable" and "complementary" are terms which are used to indicate a sufficient degree of complementarity or precise pairing such that stable and specific binding occurs between the

oligonucleotide and the DNA or RNA target. It is understood in the art that the sequence of an antisense compound need not be 100% complementary to that of its target nucleic acid to be specifically hybridizable. An antisense compound is specifically hybridizable when

binding of the compound to the target DNA or RNA molecule interferes with the normal function of the target DNA or RNA to cause a loss of utility, and there is a sufficient degree of complementarity to avoid non-specific binding of the antisense compound to non-target sequences under

35 conditions in which specific binding is desired, 1.e.,

15

20

25

30

35

under physiological conditions in the case of *in vivo* assays or therapeutic treatment, or in the case of *in vitro* assays, under conditions in which the assays are performed.

Antisense compounds are commonly used as research reagents and diagnostics. For example, antisense oligonucleotides, which are able to inhibit gene expression with exquisite specificity, are often used by those of ordinary skill to elucidate the function of particular genes. Antisense compounds are also used, for example, to distinguish between functions of various members of a biological pathway. Antisense modulation has, therefore, been harnessed for research use.

The specificity and sensitivity of antisense is also harnessed by those of skill in the art for therapeutic uses. Antisense oligonucleotides have been employed as therapeutic moieties in the treatment of disease states in animals and man. Antisense oligonucleotides have been safely and effectively administered to humans and numerous clinical trials are presently underway. It is thus established that oligonucleotides can be useful therapeutic modalities that can be configured to be useful in treatment regimens in cells, tissues and animals, especially humans.

In the context of this invention, the term "oligonucleotide refers to an oligomer or polymer of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA) or mimetics thereof. This term includes oligonucleotides composed of naturally-occurring nucleobases, sugars and covalent internucleoside (backbone) linkages as well as oligonucleotides having non-naturally-occurring portions which function similarly. Such modified or substituted oligonucleotides are often preferred over native forms because of desirable properties such as, for example, enhanced cellular uptake, enhanced affinity for nucleic acid target and increased stability in the presence of nucleases.

3.7

13

 $i^{\frac{1}{2}}$

2

While antisense oligonucleotides are a preferred form of antisense compound, the present invention comprehends other oligomeric antisense compounds, including but not limited to oligonucleotide mimetics such as are described The antisense compounds in accordance with this invention preferably comprise from about 8 to about 30 nucleobases. Particularly preferred are antisense oligonucleotides comprising from about 8 to about 30 nucleobases (i.e., from about 8 to about 30 linked 10 nucleosides). As is known in the art, a nucleoside is a base-sugar combination. The base portion of the nucleoside is normally a heterocyclic base. The two most common classes of such heterocyclic bases are the purines and the pyrimidines. Nucleotides are nucleosides that further 15 include a phosphate group covalently linked to the sugar portion of the nucleoside. For those nucleosides that include a pentofuranosyl sugar, the phosphate group can be linked to either the 2', 3' or 5' hydroxyl moiety of the In forming oligonucleotides, the phosphate groups 20 covalently link adjacent nucleosides to one another to form a linear polymeric compound. In turn the respective ends of this linear polymeric structure can be further joined to form a circular structure, however, open linear structures are generally preferred. Within the oligonucleotide 25 structure, the phosphate groups are commonly referred to as forming the internucleoside backbone of the oligonucleotide. The normal linkage or backbone of RNA and DNA is a 3' to 5' phosphodiester linkage.

Specific examples of preferred antisense compounds

useful in this invention include oligonucleotides
containing modified backbones or non-natural
internucleoside linkages. As defined in this
specification, oligonucleotides having modified backbones
include those that retain a phosphorus atom in the backbone
and those that do not have a phosphorus atom in the

backbone. For the purposes of this specification, and as sometimes referenced in the art, modified oligonucleotides that do not have a phosphorus atom in their internucleoside backbone can also be considered to be oligonucleosides.

Preferred modified oligonucleotide backbones include, for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkyl-phosphotriesters, methyl and other alkyl phosphonates including 3'-alkylene phosphorates and chiral phosphonates, phosphinates, phosphoramidates including 3'-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphorates, thionoalkylphosphotriesters, and boranophosphates having normal 3'-5' linkages, 2'-5' linked analogs of these, and those having inverted polarity wherein the adjacent pairs of nucleoside units are linked 3'-5' to 5'-3' or 2'-5' to 5'-2'. Various salts, mixed salts and free acid forms are also included.

Representative United States patents that teach the preparation of the above phosphorus-containing linkages include, but are not limited to, U.S.: 3,687,808; 4,469,863; 4,476,301; 5,023,243; 5,177,196; 5,188,897; 5,264,423; 5,276,019; 5,278,302; 5,286,717; 5,321,131; 5,399,676; 5,405,939; 5,453,496; 5,455,233; 5,466,677; 5,476,925; 5,519,126; 5,536,821; 5,541,306; 5,550,111; 5,563,253; 5,571,799; 5,587,361; and 5,625,050, each of which is herein incorporated by reference.

Preferred modified oligonucleotide backbones that do not include a phosphorus atom therein have backbones that are formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatom and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages. These include those having morpholino linkages (formed in part from the sugar portion of a nucleoside);

30

35

5

10

*

siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones; methylene formacetyl and thioformacetyl backbones; alkene containing backbones; sulfamate backbones; methyleneimino and methylenehydrazino backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, O, S and CH₂ component parts.

Representative United States patents that teach the preparation of the above oligonucleosides include, but are not limited to, U.S.: 5,034,506; 5,166,315; 5,185,444; 5,214,134; 5,216,141; 5,235,033; 5,264,562; 5,264,564; 5,405,938; 5,434,257; 5,466,677; 5,470,967; 5,489,677; 5,541,307; 5,561,225; 5,596,086; 5,602,240; 5,610,289; 5,602,240; 5,608,046; 5,610,289; 5,618,704; 5,623,070; 15 5,663,312; 5,633,360; 5,677,437; and 5,677,439, each of which is herein incorporated by reference.

In other preferred oligonucleotide mimetics, both the sugar and the internucleoside linkage, i.e., the backbone, of the nucleotide units are replaced with novel groups.

- The base units are maintained for hybridization with an appropriate nucleic acid target compound. One such oligomeric compound, an oligonucleotide mimetic that has been shown to have excellent hybridization properties, is referred to as a peptide nucleic acid (PNA). In PNA
- compounds, the sugar-backbone of an oligonucleotide is replaced with an amide containing backbone, in particular an aminoethylglycine backbone. The nucleobases are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone.
- Representative United States patents that teach the preparation of PNA compounds include, but are not limited to, U.S.: 5,539,082; 5,714,331; and 5,719,262, each of which is herein incorporated by reference. Further teaching

123

1

. .

of PNA compounds can be found in Nielsen et al., Science, 1991, 254, 1497-1500.

Most preferred embodiments of the invention are oligonucleotides with phosphorothicate backbones and oligonucleosides with heteroatom backbones, and in particular -CH₂-NH-O-CH₂-, -CH₂-N(CH₃)-O-CH₂- [known as a methylene (methylimino) or MMI backbone], -CH₂-O-N(CH₃)-CH₂-, -CH₂-N(CH₃)-N(CH₃)-CH₂- and -O-N(CH₃)-CH₂-CH₂- [wherein the native phosphodiester backbone is represented as -O-P-O-CH₂-] of the above referenced U.S. Patent 5,489,677, and the amide backbones of the above referenced U.S. Patent 5,602,240. Also preferred are oligonucleotides having morpholino backbone structures of the above-referenced U.S. Patent 5,034,506.

Modified oligonucleotides may also contain one or more 15 substituted sugar moieties. Preferred oligonucleotides comprise one of the following at the 2' position: OH; F; O-, S-, or N-alkyl; O-, S-, or N-alkenyl; O-, S- or Nalkynyl; or O-alkyl-O-alkyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted C_1 to C_{10} alkyl 20 or C_2 to C_{10} alkenyl and alkynyl. Particularly preferred are $O[(CH_2)_nO]_mCH_3$, $O(CH_2)_nOCH_3$, $O(CH_2)_nNH_2$, $O(CH_2)_nCH_3$, $O(CH_2)_nONH_2$, and $O(CH_2)_nON[(CH_2)_nCH_3)]_2$, where n and m are from 1 to about 10. Other preferred oligonucleotides comprise one of the following at the 2' position: C_1 to C_{10} lower alkyl, substituted lower alkyl, alkaryl, aralkyl, O-alkaryl or Oaralkyl, SH, SCH3, OCN, Cl, Br, CN, CF3, OCF3, SOCH3, SO2CH3, ONO_2 , NO_2 , N_3 , NH_2 , heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, an RNA cleaving group, a reporter group, an intercalator, a group 30 for improving the pharmacokinetic properties of an oligonucleotide, or a group for improving the pharmacodynamic properties of an oligonucleotide, and other substituents having similar properties. A preferred modification includes 2'-methoxyethoxy (2'-O-CH2CH2OCH3, also 35

 \mathcal{H}^{j}

8

17

:35

known as 2'-O-(2-methoxyethyl) or 2'-MOE) (Martin et al., Helv. Chim. Acta, 1995, 78, 486-504) i.e., an alkoxyalkoxy group. A further preferred modification includes 2'-dimethylaminooxyethoxy, i.e., a O(CH₂)₂ON(CH₃)₂ group, also known as 2'-DMAOE, as described in United States patent application Serial Number 09/016,520, filed on January 30, 1998, which is commonly owned with the instant application and the contents of which are herein incorporated by reference.

10 Other preferred modifications include 2'-methoxy (2'-O-CH₃), 2'-aminopropoxy (2'-OCH₂CH₂CH₂NH₂) and 2'-fluoro (2'-F). Similar modifications may also be made at other positions on the oligonucleotide, particularly the 3' position of the sugar on the 3' terminal nucleotide or in 2'-5' linked oligonucleotides and the 5' position of 5' 15 terminal nucleotides. Oligonucleotides may also have sugar mimetics such as cyclobutyl moieties in place of the pentofuranosyl sugar. Representative United States patents that teach the preparation of such modified sugar structures include, but are not limited to, U.S.: 20 4,981,957; 5,118,800; 5,319,080; 5,359,044; 5,393,878; 5,446,137; 5,466,786; 5,514,785; 5,519,134; 5,567,811; 5,576,427; 5,591,722; 5,597,909; 5,610,300; 5,627,053; 5,639,873; 5,646,465; 5,658,873; 5,670,633; and 5,700,920, each of which is incorporated herein by reference. 25

Oligonucleotides may also include nucleobase (often referred to in the art simply as "base") modifications or substitutions. As used herein, "unmodified" or "natural" nucleobases include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U). Modified nucleobases include other synthetic and natural nucleobases such as 5-methylcytosine (5-Me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives

3

30

of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl and other 8-substituted adenines and guanines, 5-halo particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine and 7-methyladenine, 8-azaguanine and 8-azaguanine, 7-deazaguanine and 7-deazaguanine and 3-

deazaguanine and 3-deazaadenine. Further nucleobases include those disclosed in U.S. Patent 3,687,808, those disclosed in The Concise Encyclopedia Of Polymer Science And Engineering, pages 858-859, Kroschwitz, J.I., ed. John Wiley & Sons, 1990, those disclosed by Englisch et al.,

Angewandte Chemie, International Edition, 1991, 30, 613, and those disclosed by Sanghvi, Y.S., Crooke, S.T. and Lebleu, B. eds., Antisense Research and Applications, CRC Press, Boca Raton, 1993, pp. 289-302. Certain of these nucleobases are particularly useful for increasing the

binding affinity of the oligomeric compounds of the invention. These include 5-substituted pyrimidines, 6azapyrimidines and N-2, N-6 and O-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5propynylcytosine. 5-methylcytosine substitutions have been

shown to increase nucleic acid duplex stability by 0.6-1.2°C (Sanghvi, Y.S., Crooke, S.T. and Lebleu, B., eds.,

Antisense Research and Applications, CRC Press, Boca Raton,
1993, pp. 276-278) and are presently preferred base substitutions, even more particularly when combined with
30 2'-O-methoxyethyl sugar modifications.

Representative United States patents that teach the preparation of certain of the above noted modified nucleobases as well as other modified nucleobases include, but are not limited to, U.S.: 3,687,808; 4,845,205;

Ý

Ż

智

5,130,302; 5,134,066; 5,175,273; 5,367,066; 5,432,272; 5,457,187; 5,459,255; 5,484,908; 5,502,177; 5,525,711; 5,552,540; 5,587,469; 5,594,121; 5,596,091; 5,614,617; 5,681,941; and 5,750,692, each of which is herein incorporated by reference.

Another modification of the oligonucleotides of the invention involves chemically linking to the oligonucleotide one or more moieties or conjugates which enhance the activity, cellular distribution or cellular uptake of the oligonucleotide. Such moieties include but 10 are not limited to lipid moieties such as a cholesterol moiety (Letsinger et al., Proc. Natl. Acad. Sci. USA, 1989, 86, 6553-6556), cholic acid (Manoharan et al., Bioorg. Med. Chem. Let., 1994, 4, 1053-1060), a thioether, e.g., hexyl-S-tritylthiol (Manoharan et al., Ann. N.Y. Acad. Sci., 15 1992, 660, 306-309; Manoharan et al., Bioorg. Med. Chem. Let., 1993, 3, 2765-2770), a thiocholesterol (Oberhauser et al., Nucl. Acids Res., 1992, 20, 533-538), an aliphatic chain, e.g., dodecandiol or undecyl residues (Saison-Behmoaras et al., EMBO J., 1991, 10, 1111-1118; Kabanov et 20 al., FEBS Lett., 1990, 259, 327-330; Svinarchuk et al., Biochimie, 1993, 75, 49-54), a phospholipid, e.g., dihexadecyl-rac-glycerol or triethylammonium 1,2-di-Ohexadecyl-rac-glycero-3-H-phosphonate (Manoharan et al., Tetrahedron Lett., 1995, 36, 3651-3654; Shea et al., Nucl. 25 Acids Res., 1990, 18, 3777-3783), a polyamine or a polyethylene glycol chain (Manoharan et al., Nucleosides & Nucleotides, 1995, 14, 969-973), or adamantane acetic acid (Manoharan et al., Tetrahedron Lett., 1995, 36, 3651-3654), a palmityl moiety (Mishra et al., Biochim. Biophys. Acta, 30 1995, 1264, 229-237), or an octadecylamine or hexylaminocarbonyl-oxycholesterol moiety (Crooke et al., J. Pharmacol. Exp. Ther., 1996, 277, 923-937.

Representative United States patents that teach the preparation of such oligonucleotide conjugates include, but are not limited to, U.S.: 4,828,979; 4,948,882; 5,218,105; 5,525,465; 5,541,313; 5,545,730; 5,552,538; 5,578,717, 5,580,731; 5,580,731; 5,591,584; 5,109,124; 5,118,802; 5,138,045; 5,414,077; 5,486,603; 5,512,439; 5,578,718; 5,608,046; 4,587,044; 4,605,735; 4,667,025; 4,762,779; 4,789,737; 4,824,941; 4,835,263; 4,876,335; 4,904,582; 4 058,013; 5,082,830; 5,112,963; 5,214,136; 5,082,830; 5,112,963; 5,214,136; 5,245,022; 5,254,469; 5,258,506; 10 5,262,536; 5,272,250; 5,292,873; 5,317,098; 5,371,241, 5,391,723; 5,416,203, 5,451,463; 5,510,475; 5,512,667; 5,514,785; 5,565,552; 5,567,810; 5,574,142; 5,585,481; 5,587,371; 5,595,726; 5,597,696; 5,599,923; 5,599,928 and 5,688,941, each of which is herein incorporated by 15 reference.

It is not necessary for all positions in a given compound to be uniformly modified, and in fact more than one of the aforementioned modifications may be incorporated in a single compound or even at a single nucleoside within 20 an oligonucleotide. The present invention also includes antisense compounds which are chimeric compounds. "Chimeric" antisense compounds or "chimeras," in the context of this invention, are antisense compounds, particularly oligonucleotides, which contain two or more 25 chemically distinct regions, each made up of at least one monomer unit i.e., a nucleotide in the case of an oligonucleotide compound. These oligonucleotides typically contain at least one region wherein the oligonucleotide is modified so as to confer upon the oligonucleotide increased 30 resistance to nuclease degradation, increased cellular uptake, and/or increased binding affinity for the target nucleic acid. An additional region of the oligonucleotide may serve as a substrate for enzymes capable of cleaving RNA: DNA or RNA: RNA hybrids. By way of example, RNase H is 35

1.0

25

30

500

a cellular endonuclease which cleaves the RNA strand of an RNA:DNA duplex. Activation of RNase H, therefore, results in cleavage of the RNA target, thereby greatly enhancing the efficiency of oligonucleotide inhibition of gene expression. Consequently, comparable results can often be obtained with shorter oligonucleotides when chimeric oligonucleotides are used, compared to phosphorothicate deoxyoligonucleotides hybridizing to the same target region. Cleavage of the RNA target can be routinely detected by gel electrophoresis and, if necessary, associated nucleic acid hybridization techniques known in the art.

Chimeric antisense compounds of the invention may be formed as composite structures of two or more oligonucleotides, modified oligonucleotides, oligonucleosides and/or oligonucleotide mimetics as described above. Such compounds have also been referred to in the art as hybrids or gapmers. Representative United States patents that teach the preparation of such hybrid structures include, but are not limited to, U.S.: 5,013,830; 5,149,797; 5,220,007; 5,256,775; 5,366,878; 5,403,711; 5,491,133; 5,565,350; 5,623,065; 5,652,355; 5,652,356; and 5,700,922, each of which is herein incorporated by reference.

The antisense compounds used in accordance with this invention may be conveniently and routinely made through the well-known technique of solid phase synthesis.

Equipment for such synthesis is sold by several vendors including, for example, Applied Biosystems (Foster City, CA). Any other means for such synthesis known in the art may additionally or alternatively be employed. It is well known to use similar techniques to prepare oligonucleotides such as the phosphorothioates and alkylated derivatives.

The antisense compounds of the invention are synthesized *in vitro* and do not include antisense

compositions of biological origin, or genetic vector constructs designed to direct the *in vivo* synthesis of antisense molecules.

The compounds of the invention may also be admixed, encapsulated, conjugated or otherwise associated with other molecules, molecule structures or mixtures of compounds, as for example, liposomes, receptor targeted molecules, oral, rectal, topical or other formulations, for assisting in uptake, distribution and/or absorption. Representative United States patents that teach the preparation of such 10 uptake, distribution and/or absorption assisting formulations include, but are not limited to, U.S.: 5,108,921; 5,354,844; 5,416,016; 5,459,127; 5,521,291; 5,543,158; 5,547,932; 5,583,020; 5,591,721; 4,426,330; 4,534,899; 5,013,556; 5,108,921; 5,213,804; 5,227,170; 15 5,264,221; 5,356,633; 5,395,619; 5,416,016; 5,417,978; 5,462,854; 5,469,854; 5,512,295; 5,527,528; 5,534,259; 5,543,152; 5,556,948; 5,580,575; and 5,595,756, each of which is herein incorporated by reference.

The antisense compounds of the invention encompass any pharmaceutically acceptable salts, esters, or salts of such esters, or any other compound which, upon administration to an animal including a human, is capable of providing (directly or indirectly) the biologically active metabolite or residue thereof. Accordingly, for example, the disclosure is also drawn to prodrugs and pharmaceutically acceptable salts of the compounds of the invention, pharmaceutically acceptable salts of such prodrugs, and other bioequivalents.

The term "prodrug" indicates a therapeutic agent that is prepared in an inactive form that is converted to an active form (i.e., drug) within the body or cells thereof by the action of endogenous enzymes or other chemicals and/or conditions. In particular, prodrug versions of the oligonucleotides of the invention are prepared as SATE

20

25

30

35

[(S-acetyl-2-thioethyl) phosphate] derivatives according to the methods disclosed in WO 93/24510 or in WO 94/26764.

The term "pharmaceutically acceptable salts" refers to physiologically and pharmaceutically acceptable salts of the compounds of the invention: i.e., salts that retain the desired biological activity of the parent compound and do not impart undesired toxicological effects thereto (see, for example, Berge et al., "Pharmaceutical Salts," J. of Pharma Sci., 1977, 66, 1-19).

10 For oligonucleotides, preferred examples of pharmaceutically acceptable salts include but are not limited to (a) salts formed with cations such as sodium, potassium, ammonium, magnesium, calcium, polyamines such as spermine and spermidine, etc.; (b) acid addition salts formed with inorganic acids, for example hydrochloric acid, 15 hydrobromic acid, sulfuric acid, phosphoric acid, nitric acid and the like; (c) salts formed with organic acids such as, for example, acetic acid, oxalic acid, tartaric acid, succinic acid, maleic acid, fumaric acid, gluconic 20 acid, citric acid, malic acid, ascorbic acid, benzoic acid, tannic acid, palmitic acid, alginic acid, polyglutamic acid, naphthalenesulfonic acid, methanesulfonic acid, p-toluenesulfonic acid, naphthalenedisulfonic acid, polygalacturonic acid, and the like; and (d) salts formed ,25 from elemental anions such as chlorine, bromine, and iodine.

The antisense compounds of the present invention can be utilized for diagnostics, therapeutics, prophylaxis and as research reagents and kits. For therapeutics, an animal, preferably a human, suspected of having a disease or disorder which can be treated by modulating the expression of one or more members of the TRAF family is treated by administering antisense compounds in accordance with this invention. The compounds of the invention can be utilized in pharmaceutical compositions by adding an

30

35

Ý

effective amount of an antisense compound to a suitable pharmaceutically acceptable diluent or carrier. Use of the antisense compounds and methods of the invention may also be useful prophylactically, e.g., to prevent or delay infection, inflammation or tumor formation, for example.

The antisense compounds of the invention are useful for research and diagnostics, because these compounds hybridize to nucleic acids encoding one or more selected TRAFs, enabling sandwich and other assays to easily be constructed to exploit this fact. Hybridization of the antisense oligonucleotides of the invention with a nucleic acid encoding one or more TRAFs can be detected by means known in the art. Such means may include conjugation of an enzyme to the oligonucleotide, radiolabelling of the oligonucleotide or any other suitable detection means. Kits using such detection means for detecting the level of TRAF in a sample may also be prepared.

The present invention also includes pharmaceutical compositions and formulations which include the antisense compounds of the invention. The pharmaceutical compositions of the present invention may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical (including ophthalmic and to mucous membranes including vaginal and rectal delivery), pulmonary, e.g., by inhalation or insufflation of powders or aerosols, including by nebulizer; (intratracheal, intranasal, epidermal and transdermal), oral or parenteral. administration includes intravenous, intraarterial, 30 subcutaneous, intraperitoneal or intramuscular injection or infusion; or intracranial, e.g., intrathecal or intraventricular, administration. Oligonucleotides with at least one 2'-O-methoxyethyl modification are believed to be particularly useful for oral administration. 35

4

5,44

10

15

20

Pharmaceutical compositions and formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable. Coated condoms, gloves and the like may also be useful.

Compositions and formulations for oral administration include powders or granules, suspensions or solutions in water or non-aqueous media, capsules, sachets or tablets. Thickeners, flavoring agents, diluents, emulsifiers, dispersing aids or binders may be desirable.

Compositions and formulations for parenteral, intrathecal or intraventricular administration may include sterile aqueous solutions which may also contain buffers, diluents and other suitable additives such as, but not limited to, penetration enhancers, carrier compounds and other pharmaceutically acceptable carriers or excipients.

for example, pharmaceutical compositions and/or
formulations comprising the oligonucleotides of the present
invention may include penetration enhancers in order to
enhance the alimentary delivery of the oligonucleotides.
Penetration enhancers may be classified as belonging to one
of five broad categories, i.e., fatty acids, bile salts,
chelating agents, surfactants and non-surfactants (Lee et
al., Critical Reviews in Therapeutic Drug Carrier Systems,
1991, 8, 91 192; Muranishi, Critical Reviews in Therapeutic
Drug Carrier Systems, 1990, 7, 1-33). One or more
penetration enhancers from one or more of these broad
categories may be included.

Various fatty acids and their derivatives which act as penetration enhancers include, for example, oleic acid, lauric acid, capric acid, myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, recinleate, monoolein (a.k.a. 1-monooleoyl-rac-

35

10

e.

glycerol), dilaurin, caprylic acid, arachidonic acid, glyceryl 1-monocaprate, 1-dodecylazacycloheptan-2-one, acylcarnitines, acylcholines, mono- and di-glycerides and physiologically acceptable salts thereof (i.e., oleate,

- 1 laurate, caprate, myristate, palmitate, stearate,
 1 linoleate, etc.) (Lee et al., Critical Reviews in
 1 Therapeutic Drug Carrier Systems, 1991, 8, 2, 91-192;
 1 Muranishi, Critical Reviews in Therapeutic Drug Carrier
 1 Systems, 1990, 7, 1, 1-33; El-Hariri et al., J. Pharm.
- 10 Pharmacol., 1992, 44, 651-654). Examples of some presently preferred fatty acids are sodium caprate and sodium laurate, used singly or in combination at concentrations of 0.5 to 5%.
- The physiological roles of bile include the

 15 facilitation of dispersion and absorption of lipids and
 fat-soluble vitamins (Brunton, Chapter 38 In: Goodman &
 Gilman's The Pharmacological Basis of Therapeutics, 9th
 Ed., Hardman et al., eds., McGraw-Hill, New York, NY, 1996,
 pages 934-935). Various natural bile salts, and their
- synthetic derivatives, act as penetration enhancers. Thus the term "bile salt" includes any of the naturally occurring components of bile as well as any of their synthetic derivatives.
- Regardless of the method by which the antisense

 25 compounds of the invention are introduced into a patient,
 colloidal dispersion systems may be used as delivery
 vehicles to enhance the *in vivo* stability of the compounds
 and/or to target the compounds to a particular organ,
 tissue or cell type. Colloidal dispersion systems include,
- but are not limited to, macromolecule complexes, nanocapsules, microspheres, beads and lipid-based systems including oil-in-water emulsions, micelles, mixed micelles, liposomes and lipid:oligonucleotide complexes of uncharacterized structure. A preferred colloidal

15

20

25

30

35

·sif

1

dispersion system is a plurality of liposomes. Liposomes are microscopic spheres having an aqueous core surrounded by one or more outer layer(s) made up of lipids arranged in a bilayer configuration (see, generally, Chonn et al., Current Op. Biotech., 1995, 6, 698-708).

Liposome preparation is described in pending United States patent application 08/961,469, filed on October 31, 1997, which is commonly owned with the instant application and which is herein incorporated by reference.

Certain embodiments of the invention provide for liposomes and other compositions containing (a) one or more antisense compounds and (b) one or more other chemotherapeutic agents which function by a non-antisense mechanism. Other non-antisense chemotherapeutic agents are also within the scope of this invention. Two or more combined compounds may be used together or sequentially.

In another related embodiment, compositions of the invention may contain one or more antisense compounds, particularly oligonucleotides, targeted to a first nucleic acid and one or more additional antisense compounds targeted to a second nucleic acid target. Two or more combined compounds may be used together or sequentially.

The formulation of therapeutic compositions and their subsequent administration is believed to be within the skill of those in the art. Dosing is dependent on severity and responsiveness of the disease state to be treated, with the course of treatment lasting from several days to several months, or until a cure is effected or a diminution of the disease state is achieved. Optimal dosing schedules can be calculated from measurements of drug accumulation in the body of the patient. Persons of ordinary skill can easily determine optimum dosages, dosing methodologies and repetition rates. Optimum dosages may vary depending on the relative potency of individual oligonucleotides, and can generally be estimated based on EC_{50} s found to be

effective in in vitro and in vivo animal models. In general, dosage is from 0.01 μg to 100 g per kg of body weight, and may be given once or more daily, weekly, monthly or yearly, or even once every 2 to 20 years.

Persons of ordinary skill in the art can easily estimate repetition rates for dosing based on measured residence times and concentrations of the drug in bodily fluids or tissues. Following successful treatment, it may be desirable to have the patient undergo maintenance therapy to prevent the recurrence of the disease state, wherein the oligonucleotide is administered in maintenance doses, ranging from 0.01 μg to 100 g per kg of body weight, once or more daily, to once every 20 years.

While the present invention has been described with

specificity in accordance with certain of its preferred

embodiments, the following examples serve only to

illustrate the invention and are not intended to limit the

same.

EXAMPLES

20 Example 1

25

30

1

32

Nucleoside Phosphoramidites for Oligonucleotide Synthesis Deoxy and 2'-alkoxy amidites

2'-Deoxy and 2'-methoxy beta-cyanoethyldiisopropyl phosphoramidites are purchased from commercial sources (e.g., Chemgenes, Needham, MA or Glen Research, Inc. Sterling VA). Other 2'-O-alkoxy substituted nucleoside amidites are prepared as described in U.S. Patent 5,506,351, herein incorporated by reference. For oligonucleotides synthesized using 2'-alkoxy amidites, the standard cycle for unmodified oligonucleotides is utilized, except the wait step after pulse delivery of tetrazole and base is increased to 360 seconds.

Oligonucleotides containing 5-methyl-2'-deoxycytidine (5-Me-C) nucleotides were synthesized according to

published methods (Sanghvi, et. al., *Nucleic Acids Research*, 1993, 21, 3197-3203] using commercially available phosphoramidites (Glen Resperch, Sterling VA or ChemGenes, Needham, MA).

5 2'-Fluoro amidites

2'-Fluorodeoxyadenosine amidites

2'-fluoro oligonucleotides are synthesized as described previously by Kawasaki, et. al., J. Med. Chem., 1993, 36, 831-841 and U.S. Patent 5,670,633, herein incorporated by reference. Briefly, the protected 10 nucleoside N6-benzoyl-2'-deoxy-2'-fluoroadenosine are synthesized utilizing commercially available 9-beta-Darabinofuranosyladenine as starting material and by modifying literature procedures whereby the 2'-alpha-fluoro atom is introduced by a S_N2 -displacement of a 2'-beta-trityl 15 Thus N6-benzoyl-9-beta-D-arabinofuranosyladenine is selectively protected in moderate yield as the 3',5'ditetrahydropyranyl (THP) intermediate. Deprotection of the THP and N6-benzoyl groups is accomplished using standard methodologies and standard methods are used to 20 obtain the 5'-dimethoxytrityl-(DMT) and 5'-DMT-3'phosphoramidite intermediates.

2'-Fluorodeoxyguanosine

The synthesis of 2'-deoxy-2'-fluoroguanosine is accomplished using tetraisopropyldisiloxanyl (TPDS) protected 9-beta-D-arabinofuranosylguanine as starting material, and conversion to the intermediate diisoputyryl-arabinofuranosylguanosine. Deprotection of the TPDS group is followed by protection of the hydroxyl group with THP to give diisobutyryl di-THP protected arabinofuranosylguanine. Selective O-deacylation and triflation is followed by treatment of the crude product with fluoride, then deprotection of the THP groups. Standard methodologies are used to obtain the 5'-DMT- and 5'-DMT-3'-phosphoramidites.

25

3.0

χô

2'-Fluorouridine

Synthesis of 2'-deoxy-2'-fluorouridine is accomplished by the modification of a literature procedure in which 2,2'-anhydro-1-beta-D-arabinofuranosyluracil is treated with 70% hydrogen fluoride-pyridine. Standard procedures are used to obtain the 5'-DMT and 5'-DMT-3'phosphoramidites.

2'-Fluorodeoxycytidine

2'-deoxy-2'-fluorocytidine is synthesized via amination of 2'-deoxy-2'-fluorouridine, followed by selective protection to give N4-benzoyl-2'-deoxy-2'fluorocytidine. Standard procedures are used to obtain the 5'-DMT and 5'-DMT-3'phosphoramidites.

2'-0-(2-Methoxyethyl) modified amidites

2'-O-Methoxyethyl-substituted nucleoside amidites were prepared as follows, or alternatively, as per the methods of Martin, P., Helvetica Chimica Acta, 1995, 78, 486-504.

2,2'-Anhydro[1-(beta-D-arabinofuranosyl)-5-

20 methyluridine]

15

25

30

5-Methyluridine (ribosylthymine, commercially available through Yamasa, Choshi, Japan) (72.0 g, 0.279 M), diphenylcarbonate (90.0 g, 0.420 M) and sodium bicarbonate (2.0 g, 0.024 M) were added to DMF (300 mL). The mixture was heated to reflux, with stirring, allowing the evolved carbon dioxide gas to be released in a controlled manner. After 1 hour, the slightly darkened solution was concentrated under reduced pressure. The resulting syrup was poured into diethylether (2.5 L), with stirring. The product formed a gum. The ether was decanted and the residue was dissolved in a minimum amount of methanol (ca. 400 mL). The solution was poured into fresh ether (2.5 L) to yield a stiff gum. The ether was decanted and the gum dried in a vacuum oven (60°C at 1 mm Hg for 24 hours) to

-55

15

20

25

30

35

の語の方式

give a solid that was crushed to a light tan powder (57 g, 85% crude yield). The NMR spectrum was consistent with the structure, contaminated with phenol as its sodium salt (ca. 5%). The material was used as is for further reactions (or purified further by column chromatography using a gradient of methanol in ethyl acetate (10-25%) to give a white solid, mp 222-4°C).

2'-O-Methoxyethyl-5-methyluridine

2,2'-Anhydro-5-methyluridine (195 g, 0.81 M), tris(2methoxyethyl)borate (231 g, 0.98 M) and 2-methoxyethanol (1.2 L) were added to a 2 L stainless steel pressure vessel and placed in a pre-heated oil bath at 160°C. After heating for 48 hours at 155-160°C, the vessel was opened and the solution evaporated to dryness and triturated with MeOH The residue was suspended in hot acetone (1 L). The insoluble salts were filtered, washed with acetone (150 mL) and the filtrate evaporated. The residue (280 q) was dissolved in CH,CN (600 mL) and evaporated. A silica gel column (3 kg) was packed in CH₂Cl₂/Acetone/MeOH (20:5:3) containing 0.5% Et₃NH. The residue was dissolved in CH₂Cl₂ (250 mL) and adsorbed onto silica (150 g) prior to loading onto the column. The product was eluted with the parking solvent to give 160 g (63%) of product. Additional material was obtained by reworking impure fractions.

2'-O-Methoxyethyl-5'-O-dimethoxytrityl-5-methyluridine
2'-O-Methoxyethyl-5-methyluridine (160 g, 0.506 M) was
co-evaporated with pyridine (250 mL) and the dried residue
dissolved in pyridine (1.3 L). A first aliquot of
dimethoxytrityl chloride (94.3 g, 0.278 M) was added and
the mixture stirred at room temperature for one hour. A
second aliquot of dimethoxytrityl chloride (94.3 g, 0.278
M) was added and the reaction stirred for an additional one
hour. Methanol (170 mL) was then added to stop the
reaction. HPLC showed the presence of approximately 70%
product. The solvent was evaporated and triturated with

CH₃CN (200 mL). The residue was dissolved in CHCl₃ (1.5 L) and extracted with 2x500 mL of saturated NaHCO₃ and 2x500 mL of saturated NaCl. The organic phase was dried over Na_2SO_4 , filtered and evaporated. The residue was purified on a 3.5 kg silica gel column, packed and eluted with EtOAc/Hexane/Acetone (5:5:1) containing 0.5% Et₃NH. The pure fractions were evaporated to give 164 g of product. Approximately 20 g additional was obtained from the impure fractions to give a total yield of 183 g (57%).

3'-O-Acetyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methyluridine

2'-O-Methoxyethyl-5'-O-dimethoxytrityl-5-methyluridine (106 g, 0.167 M), DMF/pyridine (750 mL of a 3:1 mixture prepared from 562 mL of DMF and 188 mL of pyridine) and acetic anhydride (24.38 mL, 0.258 M) were combined and 15 stirred at room temperature for 24 hours. The reaction was monitored by tlc by first quenching the tlc sample with the addition of MeOH. Upon completion of the reaction, as judged by tlc, MeOH (50 mL) was added and the mixture 20 evaporated at 35°C. The residue was dissolved in CHCl3 (800 mL) and extracted with 2x200 mL of saturated sodium bicarbonate and 2x200 mL of saturated NaCl. The water layers were back extracted with 200 mL of CHCl₃. combined organics were dried with sodium sulfate and evaporated to give 122 g of residue (approx. 90% product). 25 The residue was purified on a 3.5 kg silica gel column and eluted using EtOAc/Hexane(4:1). Pure product fractions were evaporated to yield 96 g (84%). An additional 1.5 g was recovered from later fractions.

3'-O-Acetyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methyl-4-triazoleuridine

A first solution was prepared by dissolving 3'-O-acetyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methyluridine (96 g, 0.144 M) in CH₃CN (700 mL) and set aside. Triethylamine (189 mL, 1.44 M) was added to a

30

35

15

20

25

30

solution of triazole (90 g, 1.3 M) in CH₃CN (1 L), cooled to -5°C and stirred for 0.5 hours using an overhead stirrer. POCl₃ was added dropwise, over a 30 minute period, to the stirred solution maintained at 0-10°C, and the resulting mixture stirred for an additional 2 hours. The first solution was added dropwise, over a 45 minute period, to the latter solution. The resulting reaction mixture was stored overnight in a cold room. Salts were filtered from the reaction mixture and the solution evaporated. The residue was dissolved in EtOAc (1 L) and the insoluble solids removed by filtration. The filtrate was washed with 1x300 mL of NaHCO₃ and 2x300 mL of saturated NaCl, dried over sodium sulfate and evaporated. The residue was triturated with EtOAc to give the title compound.

2'-O-Methoxyethyl-5'-O-dimethoxytrityl-5-methylcytidine

A solution of 3'-O-acetyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methyl-4-triazoleuridine (103 g, 0.141 M) in dioxane (500 mL) and NH₄OH (30 mL) was stirred at room temperature for 2 hours. The dioxane solution was evaporated and the residue azeotroped with MeOH (2x200 mL). The residue was dissolved in MeOH (300 mL) and transferred to a 2 liter stainless steel pressure vessel. MeOH (400 mL) saturated with NH₃ gas was added and the vessel heated to 100°C for 2 hours (tlc showed complete conversion). The vessel contents were evaporated to dryness and the residue was dissolved in EtOAc (500 mL) and washed once with saturated NaCl (200 mL). The organics were dried over sodium sulfate and the solvent evaporated to give 85 g (95%) of the title compound.

N4-Benzoyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methylcytidine

2'-O-Methoxyethyl-5'-O-dimethoxytrityl-5-methylcytidine (85 g, 0.134 M) was dissolved in DMF (800 mL) and benzoic anhydride (37.2 g, 0.165 M) is added with stirring. The mixture was stirred for 3 hours (tlc showing the reaction to be approximately 95% complete). The solvent was evaporated and the residue azeotroped with MeOH (200 The residue was then dissolved in $CHCl_3$ (700 mL) and extracted with saturated $NaHCO_3$ (2x300 mL) and saturated NaCl (2x300 mL), dried over MgSO4 and evaporated to give a residue (96 g). The residue was chromatographed on a 1.5 kg silica column using EtOAc/Hexane (1:1) containing 0.5% $\mathrm{Et_3NH}$ as the eluting solvent. The pure product fractions were evaporated to give 90 g (90%) of the title compound.

N4-Benzoyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5methylcytidine-3'-amidite

N4-Benzoyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5methylcytidine (74 g, 0.10 M) was dissolved in CH_2Cl_2 (1 L). Tetrazole diisopropylamine (7.1 g) and 2-cyanoethoxy-tetra-(isopropyl)phosphite (40.5 mL, 0.123 M) were added with stirring, under a nitrogen atmosphere. The resulting mixture was stirred for 20 hours at room temperature (tlc showing the reaction to be 95% complete). The reaction mixture was extracted with saturated NaHCO3 (1x300 mL) and saturated NaCl (3x300 mL). The aqueous washes were backextracted with CH_2Cl_2 (300 mL), and the extracts were combined, dried over MgSO4 and concentrated. The residue obtained was chromatographed on a 1.5 kg silica column using EtOAc/Hexane (3:1) as the eluting solvent. fractions were combined to give 90.6 g (87%) of the title compound.

2'-(Aminooxyethyl) nucleoside amidites and 2'-(dimethylaminooxyethyl) nucleoside amidites

Aminooxyethyl and dimethylaminooxyethyl amidites are prepared as per the methods described in United States patent applications serial number 10/037,143, filed February 14, 1998, and serial number 09/016,520, filed January 30, 1998, each of which is herein incorporated by reference. 35

44

10

15

20

25

Example 2

10

15

20

25

30

35

Oligonucleotide synthesis

Unsubstituted and substituted phosphodiester (P=O) oligonucleotides are synthesized on an automated DNA synthesizer (Applied Biosystems model 380B) using standard phosphoramidite chemistry with oxidation by iodine.

Phosphorothioates (P=S) were synthesized as for the phosphodiester oligonucleotides except the standard oxidation bottle was replaced by 0.2 M solution of 3H-1,2-benzodithiole-3-one 1,1-dioxide in acetonitrile for the stepwise thiation of the phosphite linkages. The thiation wait step was increased to 68 seconds and was followed by the capping step. After cleavage from the CPG column and deblocking in concentrated ammonium hydroxide at 55°C (18 hours), the oligonucleotides were purified by precipitating twice with 2.5 volumes of ethanol from a 0.5 M NaCl solution.

Phosphinate oligonucleotides are prepared as described in U.S. Patent 5,508,270, herein incorporated by reference.

Alkyl phosphonate oligonucleotides are prepared as described in U.S. Patent 4,469,863, herein incorporated by reference.

3'-Deoxy-3'-methylene phosphonate oligonucleotides are prepared as described in U.S. Patents 5,610,289 or 5,625,050, herein incorporated by reference.

Phosphoramidite oligonucleotides are prepared as described in U.S. Patent, 5,256,775 or U.S. Patent 5,366,878, herein incorporated by reference.

Alkylphosphonothioate oligonucleotides are prepared as described in published PCT applications PCT/US94/00902 and PCT/US93/06976 (published as WO 94/17093 and WO 94/02499, respectively), herein incorporated by reference.

3'-Deoxy-3'-amino phosphoramidate oligonucleotides are prepared as described in U.S. Patent 5,476,925, herein incorporated by reference.

Phosphotriester oligonucleotides are prepared as described in U.S. Patent 5,023,243, herein incorporated by reference.

Borano phosphate oligonucleotides are prepared as described in U.S. Patents 5,130,302 and 5,177,198, herein incorporated by reference.

Example 3

Oligonucleoside Synthesis

Methylenemethylimino linked oligonucleosides, also
identified as MMI linked oligonucleosides, methylenedimethylhydrazo linked oligonucleosides, also identified as
MDH linked oligonucleosides, methylenecarbonylamino linked
oligonucleosides, also identified as amide-3 linked
oligonucleosides, and methyleneaminocarbonyl linked oligonucleosides, also identified as amide-4 linked oligonucleosides, as well as mixed backbone compounds having, for
instance, alternating MMI and P=O or P=S linkages are
prepared as described in U.S. Patents 5,378,825, 5,386,023,
5,489,677, 5,602,240 and 5,610,289, all of which are
herein incorporated by reference.

Formacetal and thioformacetal linked oligonucleosides are prepared as described in U.S. Patents 5,264,562 and 5,264,564, herein incorporated by reference.

Ethylene oxide linked oligonucleosides are prepared as described in U.S. Patent 5,223,618, herein incorporated by reference.

Example 4

PNA Synthesis

Peptide nucleic acids (PNAs) are prepared in

accordance with any of the various procedures referred to
in Peptide Nucleic Acids (PNA): Synthesis, Properties and
Potential Applications, Bioorganic & Medicinal Chemistry,
1996, 4, 5-23. They may also be prepared in accordance

with U.S. Patents 5,539,082, 5,700,922, and 5,719,262, herein incorporated by reference.

Example 5

5

10

15

美 沙海

Synthesis of Chimeric Oligonucleotides

Chimeric oligonucleotides, oligonucleosides or mixed oligonucleotides/oligonucleosides of the invention can be of several different types. These include a first type wherein the "gap" segment of linked nucleosides is positioned between 5' and 3' "wing" segments of linked nucleosides and a second "open end" type wherein the "gap" segment is located at either the 3' or the 5' terminus of the oligomeric compound. Oligonucleotides of the first type are also known in the art as "gapmers" or gapped oligonucleotides. Oligonucleotides of the second type are also known in the art as "hemimers" or "wingmers".

[2'-O-Me]--[2'-deoxy]--[2'-O-Me] Chimeric Phosphorothioate Oligonucleotides

Chimeric oligonucleotides having 2'-O-alkyl phosphorothioate and 2'-deoxy phosphorothioate oligo-20 nucleotide segments are synthesized using an Applied Biosystems automated DNA synthesizer Model 380B, as above. Oligonucleotides are synthesized using the automated synthesizer and 2'-deoxy-5'-dimethoxytrityl-3'-O-phosphoramidite for the DNA portion and 5'-dimethoxytrityl-2'-O-25 methyl-3'-O-phosphoramidite for 5' and 3' wings. standard synthesis cycle is modified by increasing the wait step after the delivery of tetrazole and base to 600 seconds repeated four times for RNA and twice for 2'-O-The fully protected oligonucleotide is cleaved from the support and the phosphate group is deprotected in 30 3:1 Ammonia/Ethanol at room temperature overnight then lyophilized to dryness. Treatment in methanolic ammonia for 24 hours at room temperature is then done to deprotect all bases and sample was again lyophilized to dryness. pellet is resuspended in 1M TBAF in THF for 24 hours at 35

room temperature to deprotect the 2' positions. The reaction is then quenched with 1M TEAA and the sample is then reduced to 1/2 volume by rotovac before being desalted on a G25 size exclusion column. The oligo recovered is then analyzed spectrophotometrically for yield and for purity by capillary electrophoresis and by mass spectrometry.

[2'-O-(2-Methoxyethyl)]--[2'-deoxy]--[2'-O-(Methoxyethyl)] Chimeric Phosphorothioate Oligonucleotides

[2'-0-(2-methoxyethyl)]--[2'-deoxy]--[-2'-O-(methoxyethyl)] chimeric phosphorothioate oligonucleotides were prepared as per the procedure above for the 2'-O-methyl chimeric oligonucleotide, with the substitution of 2'-O-(methoxyethyl) amidites for the 2'-O-methyl amidites.

[2'-0-(2-Methoxyethyl)Phosphodiester]--[2'-deoxyPhosphorothioate]--[2'-0-(2-Methoxyethyl)Phosphodiester]Chimeric Oligonucleotides

phorothicate]--[2'-O-(methoxyethyl) phosphodiester]
chimeric oligonucleotides were prepared as per the above
procedure for the 2'-O-methyl chimeric oligonucleotide with
the substitution of 2'-O-(methoxyethyl) amidites for the
2'-O-methyl amidites, oxidization with iodine to generate
the phosphodiester internucleotide linkages within the
wing portions of the chimeric structures and sulfurization
utilizing 3,H-1,2 benzodithiole-3-one 1,1 dioxide (Deaucage
Reagent) to generate the phosphorothicate internucleotide
linkages for the center gap.

Other chimeric oligonucleotides, chimeric oligonucleosides and mixed chimeric oligonucleotides/oligonucleosides are synthesized according to United States patent 5,623,065, herein incorporated by reference.

30

10

15

2

3

NAS.

Example 6

Oligonucleotide Isolation

After cleavage from the controlled pore glass column (Applied Biosystems) and deblocking in concentrated ammonium hydroxide at 55°C for 18 hours, the oligonucleotides or oligonucleosides were purified by precipitation twice out of 0.5 M NaCl with 2.5 volumes ethanol. Synthesized oligonucleotides were analyzed by polyacrylamide gel electrophoresis on denaturing gels and judged to be at least 85% full length material. The relative amounts of phosphorothioate and phosphodiester linkages obtained in synthesis were periodically checked by ³¹P nuclear magnetic resonance spectroscopy, and for some studies oligonucleotides are purified by HPLC, as described by Chiang et al., J. Biol. Chem. 1991, 266, 18162-18171. Results obtained with HPLC-purified material are similar to those obtained with non-HPLC purified material.

Example 7

10

15

Oligonucleotide Synthesis - 96 Well Plate Format

Oligonucleotides were synthesized via solid phase 20 P(III) phosphoramidite chemistry on an automated synthesizer capable of assembling 96 sequences simultaneously in a standard 96 well format. Phosphodiester internucleotide linkages were afforded by oxidation with aqueous iodine. Phosphorothioate 25 internucleotide linkages were generated by sulfurization utilizing 3,H-1,2 benzodithiole-3-one 1,1 dioxide (Beaucage Reagent) in anhydrous acetonitrile. Standard baseprotected beta-cyanoethyldiisopropyl phosphoramidites were purchased from commercial vendors (e.g. PE-Applied 30 Biosystems, Foster City, CA, or Pharmacia, Piscataway, NJ). Non-standard nucleosides were synthesized as per known literature or patented methods. They were utilized as base protected beta-cyanoethyldiisopropyl phosphoramidites.

BNSDOCID: <WO___0020435A1_1_>

Oligonucleotides were cleaved from support and deprotected with concentrated NH_4OH at elevated temperature (55-60°C) for 12-16 hours and the released product then dried in vacuo. The dried product was then re-suspended in sterile water to afford a master plate from which all analytical and test plate samples were then diluted utilizing robotic pipettors.

Example 8

10

15

20

25

30

13

Oligonucleotide Analysis - 96 Well Plate Format

The concentration of oligonucleotide in each well was assessed by dilution of samples and UV absorption spectroscopy. The full-length integrity of the individual products was evaluated by capillary electrophoresis (CE) in either the 96 well format (Beckman P/ACE™ MDQ) or, for individually prepared samples, on a commercial CE apparatus (e.g., Beckman P/ACE™ 5000, ABI 270). Base and backbone composition was confirmed by mass analysis of the compounds utilizing electrospray-mass spectroscopy. All assay test plates were diluted from the master plate using single and multi-channel robotic pipettors. Plates were judged to be acceptable if at least 85% of the compounds on the plate were at least 85% full length.

Example 9

Cell culture and oligonucleotide treatment

The effect of antisense compounds on target nucleic acid expression can be tested in any of a variety of cell types provided that the target nucleic acid is present at measurable levels. This can be routinely determined using, for example, PCR, RNAse protection assay (RPA) or Northern blot analysis. The following four cell types are provided for illustrative purposes, but other cell types can be routinely used.

WO 00/20435 PCT/US99/23171

-39-

T-24 cells:

is obtained from the American Type Culture Collection
(ATCC) (Manassas, VA). T-24 cells are routinely cultured
in complete McCoy's 5A basal media (Gibco/Life
Technologies, Gaithersburg, MD) supplemented with 10% fetal
calf serum (Gibco/Life Technologies, Gaithersburg, MD),
penicillin 100 units per mL, and streptomycin 100
micrograms per mL (Gibco/Life Technologies, Gaithersburg,
MD). Cells are routinely passaged by trypsinization and
dilution when they reached 90% confluence. Cells are
seeded into 96-well plates (Falcon-Primaria #3872) at a
density of 7000 cells/well for use in RT-PCR analysis.

For Northern blotting or other analysis, cells may be seeded onto 100 mm or other standard tissue culture plates and treated similarly, using appropriate volumes of medium and oligonucleotide.

A549 cells:

15

The human lung carcinoma cell line A549 is obtained from the American Type Culture Collection (ATCC) (Manassas, VA). A549 cells are routinely cultured in DMEM basal media (Gibco/Life Technologies, Gaithersburg, MD) supplemented with 10% fetal calf serum (Gibco/Life Technologies, Gaithersburg, MD), penicillin 100 units per mL, and streptomycin 100 micrograms per mL (Gibco/Life Technologies, Gaithersburg, MD). Cells are routinely passaged by trypsinization and dilution when they reach 90% confluence.

NHDF cells:

Human neonatal dermal fibroblast (NHDF) are obtained from the Clonetics Corporation (Walkersville MD). NHDFs are routinely maintained in Fibroblast Growth Medium (Clonetics Corporation, Walkersville, MD) supplemented as

30

PCT/US99/23171 WO 00/20435

-40-

recommended by the supplier. Cells are maintained for up to 10 passages as recommended by the supplier.

HEK cells:

10

A

Human embryonic keratinocytes (HEK) are obtained from 5 the Clonetics Corporation (Walkersville, MD). HEKs are routinely maintained in Keratinocyte Growth Medium (Clonetics Corporation, Walkersville, MD) formulated as recommended by the supplier. Cells are routinely maintained for up to 10 passages as recommended by the supplier.

Treatment with antisense compounds:

When cells reach 80% confluency, they are treated with oligonucleotide. For cells grown in 96-well plates, wells 15 are washed once with 200 μL OPTI-MEM m -1 reduced-serum medium (Gibco BRL) and then treated with 130 μ L of OPTI-MEM[™]-1 containing 3.75 μ g/mL LIPOFECTIN[™] (Gibco BRL) and the desired oligonucleotide at a final concentration of 150 After 4 hours of treatment, the medium is replaced 20 with fresh medium. Cells are harvested 16 hours after oligonucleotide treatment.

Example 10

Analysis of oligonucleotide inhibition of TRAF expression

Antisense modulation of TRAF expression can be assayed 25 in a variety of ways known in the art. For example, TRAF mRNA levels can be quantitated by, e.g., Northern bloc analysis, RNAse protection assay (RPA), competitive polymerase chain reaction (PCR), or real-time PCR (RT-PCR). RNA analysis can be performed on total cellular RNA or 30 poly(A) + mRNA. Methods of RNA isolation are taught in, for example, Ausubel, et al., Current Protocols in Molecular Biology, Volume 1, John Wiley & Sons, Inc., 1993, pp. 4.1.1-4.2.9 and 4.5.1-4.5.3. Northern blot analysis is routine in the art and is taught in, for example, Ausubel, 35

et al., Current Protocols in Molecular Biology, Volume 1, John Wiley & Sons, Inc., 1996, pp. 4.2.1-4.2.9. Real-time quantitative (PCR) can be conveniently accomplished using the commercially available ABI PRISM™ 7700 Sequence Detection System, available from PE-Applied Biosystems, Foster City, CA and used according to manufacturer's instructions. Other methods of PCR are also known in the art.

TRAF protein levels can be quantitated in a variety of ways well known in the art, such as immunoprecipitation, 10 Western blot analysis (immunoblotting), ELISA or fluorescence-activated cell sorting (FACS). Antibodies directed to TRAF can be identified and obtained from a variety of sources, such as the MSRS catalog of antibodies (Aerie Corporation, Birmingham, MI), or can be prepared via 15 conventional antibody generation methods. Methods for preparation of polyclonal antisera are taught in, for example, Ausubel, et al., Current Protocols in Molecular Biology, Volume 2, John Wiley & Sons, Inc., 1997, pp. 11.12.1-11.12.9. Preparation of monoclonal antibodies is 20 taught in, for example, Ausubel, et al., Current Protocols in Molecular Biology, Volume 2, John Wiley & Sons, Inc., 1997, pp. 11.4.1-11.11.5.

Immunoprecipitation methods are standard in the art and can be found at, for example, Ausubel, et al., Current Protocols in Molecular Biology, Volume 2, John Wiley & Sons, Inc., 1998, pp. 11.4.1-11.11.5. Western blot (immunoblot) analysis is standard in the art and can be found at, for example, Ausubel, et al., Current Protocols in Molecular Biology, Volume 2, John Wiley & Sons, Inc., 1997, pp. 10.8.1-10.8.21. Enzyme-linked immunosorbent assays (ELISA) are standard in the art and can be found at, for example, Ausubel, et al., Current Protocols in

25

30

014

Molecular Biology, Volume 2, John Wiley & Sons, Inc., 1991, pp. 11.2.1-11.2.22.

Example 11

金额形器

Poly(A) + mRNA isolation

Poly(A) + mRNA is isolated according to Miura et al., Clin. Chem., 1996, 42, 1758-1764. Other methods for poly(A) + mRNA isolation are taught in, for example, Ausubel, et al., Current Protocols in Molecular Biology, Volume 1, John Wiley & Sons, Inc., 1993, pp. 4.5.1-4.5.3. Briefly, for cells grown on 96-well plates, growth medium 10 is removed from the cells and each well is washed with 200 $\mu extsf{L}$ cold PBS. 60 $\mu extsf{L}$ lysis buffer (10 mM Tris-HCl, pH 7.6, 1 mM EDTA, 0.5 M NaCl, 0.5% NP-40, 20 mM vanadylribonucleoside complex) is added to each well, the plate is gently agitated and then incubated at room temperature for 15 5 minutes. 55 μ L of lysate is transferred to Oligo d(T) coated 96-well plates (AGCT Inc., Irvine, CA). Plates are incubated for 60 minutes at room temperature, washed 3 times with 200 μL of wash buffer (10 mM Tris-HCl pH 7.6, 1 mM EDTA, 0.3 M NaCl). After the final wash, the plate is 20 blotted on paper towels to remove excess wash buffer and then air-dried for 5 minutes. 60 μL of elution buffer (5 mM Tris-HCl pH 7.6), preheated to 70°C is added to each well, the plate is incubated on a 90°C hot plate for 5 minutes, and the eluate is then transferred to a fresh 96-well 25

Celis grown on 100 mm or other standard plates may be treated similarly, using appropriate volumes of all solutions.

30 Example 12

plate.

Total RNA Isolation

Total mRNA was isolated using an RNEASY 96™ kit and buffers purchased from Qiagen Inc. (Valencia, CA) following the manufacturer's recommended procedures. Briefly, for

ř

13

cells grown on 96-well plates, growth medium was removed from the cells and each well was washed with 200 μL cold PBS. 100 μ L Buffer RLT was added to each well and the plate vigorously agitated for 20 seconds. 100 μ L of 70% ethanol was then added to each well and the contents mixed by pipetting three times up and down. The samples were then transferred to the RNEASY 96™ well place attached to a QIAVAC™ manifold fitted with a waste collection tray and attached to a vacuum source. Vacuum was applied for 15 seconds. 1 mL of Buffer RW1 was added to each well of the 10 RNEASY 96™ plate and the vacuum again applied for 15 seconds. 1 mL of Buffer RPE was then added to each well of the RNEASY 96™ plate and the vacuum applied for a period of 15 seconds. The Buffer RPE wash was then repeated and the vacuum was applied for an additional 10 minutes. 15 was then removed from the QIAVAC™ manifold and blotted dry on paper towels. The plate was then re-attached to the QIAVAC™ manifold fitted with a collection tube rack containing 1.2 mL collection tubes. RNA was then eluted by pipetting 60 μ L water into each well, incubating 1 minute, 20 and then applying the vacuum for 30 seconds. The elution step was repeated with an additional 60 μL water. Example 13

Real-time Quantitative PCR Analysis of TRAF mRNA Levels

Quantitation of TRAF mRNA levels is determined by real-time quantitative PCR using the ABI PRISM™ 7700 Sequence Detection System (PE-Applied Biosystems, Foster City, CA) according to manufacturer's instructions. This is a closed-tube, non-gel-based, fluorescence detection system which allows high-throughput quantitation of polymerase chain reaction (PCR) products in real-time. As opposed to standard PCR, in which amplification products are quantitated after the PCR is completed, products in real-time quantitative PCR are quantitated as they accumulate. This is accomplished by including in the PCR

47

25

30

reaction an oligonucleotide probe that anneals specifically between the forward and reverse PCR primers, and contains two fluorescent dyes. A reporter dye (e.g., JOE or FAM, obtained from either Operon Technologies Inc., Alameda, CA or PE-Applied Biosystems, Foster City, CA) is attached to the 5' end of the probe and a quencher dye (e.g., TAMRA, obtained from either Operon Technologies Inc., Alameda, CA or PE-Applied Biosystems, Foster City, CA) is attached to the 3' end of the probe. When the probe and dyes are intact, reporter dye emission is quenched by the proximity of the 3' quencher dye. During amplification, annealing of the probe to the target sequence creates a substrate that can be cleaved by the 5'-exonuclease activity of Taq polymerase. During the extension phase of the PCR amplification cycle, cleavage of the probe by Taq 15 polymerase releases the reporter dye from the remainder of the probe (and hence from the quencher moiety) and a sequence-specific fluorescent signal is generated. With each cycle, additional reporter dye molecules are cleaved from their respective probes, and the fluorescence 20 intensity is monitored at regular intervals by laser optics built into the ABI PRISM™ 7700 Sequence Detection System. In each assay, a series of parallel reactions containing serial dilutions of mRNA from untreated control samples generates a standard curve that is used to quantitate the 25 percent inhibition after antisense oligonucleotide treatment of test samples.

PCR reagents are obtained from PE-Applied Biosystems, Foster City, CA. RT-PCR reactions are carried out by adding 25 µL PCR cocktail (1x TAQMAN™ buffer A, 5.5 mM MgCl₂, 300 µM each of dATP, dCTP and dGTP, 600 µM of dUTP, 100 nM each of forward primer, reverse primer, and probe, 20 Units RNAse inhibitor, 1.25 Units AMPLITAQ GOLD™, and 12.5 Units MuLV reverse transcriptase) to 96 well plates containing 25 µL poly(A) mRNA solution. The RT reaction is

carried out by incubation for 30 minutes at 48°C. Following a 10 minute incubation at 95°C to activate the AMPLITAQ GOLD™, 40 cycles of a two-step PCR protocol are carried out: 95°C for 15 seconds (denaturation) followed by 60°C for 1.5 minutes (annealing/extension). TRAF probes and primers are designed to hybridize to the human TRAF sequence, using published sequence information. For example, GenBank Accession No. U19261, Locus name "HSU 19261" SEQ ID NO: 1; GenBank Accession No. U12597, Locus name "HSU12597" SEQ ID NO. 2; GenBank Accession No U21092, Locus name "HSU21092 SEQ ID NO: 3; GenBank Accession No. X80200, Locus name "HSMLN62" SEQ ID NO. 4; GenBank Accession No. AB000509, Locus name "AB000509 SEQ ID NO. 5; GenBank Accession No. U78798, Locus name "HSU78798" SEQ ID NO. 6.

15 Example 14

Antisense inhibition of TRAF-1 expression- phosphorothicate oligodeoxynucleotides

In accordance with the present invention, a series of oligonucleotides were designed to target different regions of the human TRAF-1 RNA, using published sequences (GenBank accession number U19261, incorporated herein as SEQ ID NO:

1). The oligonucleotides are shown in Table 1. Target sites are indicated by nucleotide numbers, as given in the sequence source reference (GenBank accession no. U19261), to which the oligonucleotide binds. All compounds in Table 1 are oligodeoxynucleotides with phosphorothioate backbones (internucleoside linkages) throughout.

TABLE 1
Nucleotide Sequences of Human TRAF-1 Phosphorothioate
Oligonucleotides

5			SEQ	TARGET GENE	GENE
		NUCLEOTIDE SEQUENCE1	ID	NUCLEOTIDE	TARGET
		(5' -> 3')	NO:	COORDINATES ²	REGION
	26698	TTTAAGTTGCTCCAGGGC	7	0028-0045	5'-UTR
	26699	GCCGGCCGAGGACTGCTG	8	0093-0110	coding
	26700	GCAGACGGTGGGAGGCA	9	0139-0156	coding
	26701	CTGGGCTCCTTTGGGTCC	10	0159-0176	coding
10	26702	CACAGCAGAGAGCCCTGG	11	0173-0190	coding
	26703	ATTCCTCGGGTTCTCAGA	12	0202-0219	coding
	26704	CCATTCCTCGGGTTCTCA	13	0204-0221	coding
	26705	CCTCGCCATTCCTCGGGT	14	0209-0226	coding
	26706	GATCCTCGCCATTCCTCG	15	0212-0229	coding
15	26707	AGACGGCTTCCTGGGCTT	16	0270-0287	coding
	26708	TTGAAGGAGCAGCCGACA	17	0351-0368	coding
	26709	GGCCTTCCACTGTTTCAT	18	0442-0459	coding
	26710	CCACTTCCACGGCTGCCT	19	0527-0544	coding
	26711	CGCCTGGTGACATTGGTG	20	0894-0911	coding
20	26712	CGCATCATACTCCCCTCT	21	1063-1080	coding
	26713	AGGCGTCAATGGCGTGCT	22	1142-1159	coding
	26714	GGAAGGCGTCAATGGCG1	23	1145-1162	coding
	26715	GGAAGAAGAGTGGGCATC	24	1223-1240	coding
	26716	CGTAGGCGTGCTTGGGTG	25	1259-1276	coding
25	26717	GCCCGCCCACCCTAAGT	26	1321-1338	stop
	26718	GGAGCCCCGCCCACCCTA	27	1324-1341	stop
	26719	CTCAGGAGCCCCGCCCAC	28	1328-1345	3'-UTR
	26720	AAGGGCAGGGCATCACAG	29	1380-1397	3'-UTR
	26721	TTTGTGCCCTGAGGTCTT	30	1405-1422	3'-UTR

rit.

			-47-		
	26722	CACCCATCTTTGTGCCCT	31	1413-1430	3'-UTR
	26723	GGCCTCCCAGTGTCGCAT	32	1570-1587	3'-UTR
	26724	CCCGGTCCTGTTTCTGAC	33	1756-1773	3'-UTR
	26725	GCACCCCATCCCTTCCAC	34	1773-1790	3'-UTR
5	26726	TGGAGCCGTCTGGGTTTG	35	1837-1854	3'-UTR
	26727	GTCTTCAAATCCAACCCC	36	1871-1888	3'-UTR
	26728	TTCTGGGCTGGAAGGAAA	37	1896-1913	3'-UTR
	26729	ACTTTCTGGGCTGGAAGG	38	1899-1916	3'-UTR
	26730	AGAGACTTTCTGGGCTGG	39	1903-1920	3'-UTR
10	26731	TTTCCAGAACCCCTGTAG	40	1955-1972	3'-UTR
	26732	ATGTTTCCAGAACCCCTG	41	1958-1975	3'-UTR
	26733	GGGCTGGGTGTGCTCCTG	42	2090-2107	3'-UTR
	26734	TTTATGCCCCTCTTCTTC	43	2204-2221	3'-UTR
	26735	GGAAAGTTTATGCCCCTC	44	2210-2227	3'-UTR
15	26736	TACGGGATTCTGGAAAGC	45	2257-2274	3'-UTR
	26737	AGGTGTTACGGGATTCTG	46	2263-2280	3'-UTR

 $^{^{1}}$ All cytidines are 5-methyl-cytidines; all linkages are phosphorothioate linkages.

² Coordinates from GenBank Accession No. U19261, locus name "HSU19261" SEQ ID NO.1.

Example 15:

25 Antisense inhibition of TRAF-1 expression- phosphorothioate 2'-MOE gapmer oligonucleotides

In accordance with the present invention, a second series of oligonucleotides targeted to human TRAF-1 were synthesized. The oligonucleotide sequences are shown in Table 2. Target sites are indicated by nucleotide numbers, as given in the sequence source reference (GenBank accession no. U19261), to which the oligonucleotide binds.

-48-

All compounds in Table 2 are chimeric oligonucleotides ("gapmers") 18 nucleotides in length, composed of a central "gap" region consisting of ten 2'-deoxynucleotides, which is flanked on both sides (5' and 3' directions) by four-nucleotide "wings". The wings are composed of 2'-methoxyethyl (2'-MOE)nucleotides. The internucleoside (backbone) linkages are phosphorothioate (P=S) throughout the oligonucleotide. All cytidine residues are 5-methylcytidines.

TABLE 2

Nucleotide Sequences of Human TRAF-1 Gapmer

Oligonucleotides

			SEQ	TARGET GENE	GENE
	ISIS	NUCLEOTIDE SEQUENCE1	ID	NUCLEOTIDE	TARGET -
15	NO.	(5' -> 3')	NO:	COORDINATES ²	REGION
	26738	TTTAAGTTGCTCCAGGGC	7	0028-0045	5'-UTR
	26739	GCCGGGCGAGGACTGCTG	8	0093-0110	coding
	26740	GCAGACGGTGGGAGGGCA	9	0139-0156	coding
	26741	CTGGGCTCCTTTGGGTCC	10	0159-0176	coding
20	26742	CACAGCAGAGAGCCCTGG	11	0173-0190	coding
	26743	ATTCCTCGGGTTCTCAGA	12	0202-0219	coding
	26744	CCATTCCTCGGGTTCTCA	13	0204-0221	coding
	26745	CCTCGCCATTCCTCGGGT	14	0209-0226	coding
	26746	GATCCTCGCCATTCCTCG	15	0212-0229	coding
25	26747	AGACGGCTTCCTGGGCTT	16	0270-0287	coding
	26748	TTGAAGGAGCAGCCGACA	17	0351-0368	coding
	26749	GGCCTTCCACTGTTTCAT	18	0442-0459	coding
	26750	CCACTTCCACGGCTGCCT	19	0527-0544	coding
	26751	CGCCTGGTGACATTGGTG	20	0894-0911	coding
30	26752	CGCATCATACTCCCCTCT	21	1063-1080	coding
	26753	AGGC GTCAATGGCG TGCT	22	1142-1159	coding

Š.

	26754	GGAA GGCGTCAATG GCGT	23	1145-1162	coding
	26755	GGAA GAAGAGTGGG CATC	24	1223-1240	coding
	26756	CGTAGGCGTGCTTGGGTG	25	1259-1276	coding
	26757	GCCCCGCCCACCCTAAGT	26	1321-1338	stop
5	26758	GGAGCCCCGCCCACCCTA	27	1324-1341	stop
	26759	CTCAGGAGCCCCGCCCAC	28	1328-1345	3'-UTR
	26760	AAGGGCAGGGCATCACAG	29	1380-1397	3'-UTR
	26761	TTTGTGCCCTGAGGTCTT	30	1405-1422	3'-UTR
	26762	CACCCATCTTTGTGCCCT	31	1413-1430	3'-UTR
10	26763	GGCCTCCCAGTGTCGCAT	32	1570-1587	3'-UTR
	26764	CCCGGTCCTGTTTCTGAC	33	1756-1773	3'-UTR
	26765	GCACCCCATCCCTTCCAC	34	1773-1790	3'-UTR
	26766	TGGAGCCGTCTGGGTTTG	35	1837-1854	3'-UTR
	26767	GTCTTCAAATCCAACCCC	36	1871-1888	3'-UTR
15	26768	TTCTGGGCTGGAAGGAAA	37	1896-1913	3'-UTR
	26769	ACTTTCTGGGCTGGAAGG	38	1899-1916	3'-UTR
	26770	AGAG ACTTTCTGGG CTGG	39	1903-1920	3'-UTR
	26771	TTTCCAGAACCCCTGTAG	40	1955-1972	3'-UTR
	26772	ATGTTTCCAGAACCCCTG	41	1958-1975	3'-UTR
20	26773	GGGCTGGGTGTGCTCCTG	42	2090-2107	3'-UTR
	26774	TTTATGCCCCTCTTCTTC	43	2204-2221	3'-UTR
	26775	GGAAAGTTTATGCCCCTC	44	2210-2227	3'-UTR
	26776	TACGGGATTCTGGAAAGC	45	2257-2274	3'-UTR
	26777	AGGTGTTACGGGATTCTG	46	2263-2280	3'-UTR

¹ Emboldened residues are 2'-methoxyethoxy residues (others are 2'-deoxy-). All 2'-methoxyethoxy cytidines and 2'-deoxycytidines are 5-methyl-cytidines; all linkages are phosphorothicate linkages.

WO 00/20435 PCT/US99/23171

-50-

² Coordinates from GenBank Accession No. 19261, locus name "HSU19261" SEQ ID NO. 1.

Example 16:

10

15

20

Antisense inhibition of TRAF-2 expression- phosphorothicate
2'-MOE gapmer oligonucleotides

In accordance with the present invention, a series of oligonucleotides targeted to human TRAF-2 were synthesized. The oligonucleotide sequences are shown in Table 3. Target sites are indicated by nucleotide numbers, as given in the sequence source reference (GenBank accession no. U12597), to which the oligonucleotide binds.

All compounds in Table 3 are chimeric oligonucleotides ("gapmers") 20 nucleotides in length, composed of a central "gap" region consisting of eight 2'-deoxynucleotides, which is flanked on both sides (5' and 3' directions) by sixnucleotide "wings". The wings are composed of 2'-methoxyethyl (2'-MOE)nucleotides. The internucleoside (backbone) linkages are phosphorothioate (P=S) in the central "deoxy gap" and phosphodiester (P=O) in the wings. Cytidine residues in the 2'-MOE wings are 5-methylcytidines.

BNSDOCID: <WO__0020435A1_I_>

ليأيد

· 有限的期间

TABLE 3: Nucleotide Sequences of TRAF-2 Gapmer Oligonucleotides

S

		OES	TARGET GENE	GENE
SISI	NUCLEOTIDE SEQUENCE ¹	f	NUCLEOTIDE	TARGET
NO.	(5' -> 3')	NO:	COORDINATES ²	REGION
16827	GOTOCOGOCOASGSCSGSCSGSCSGSGOAOAOTOTOC	47	0001-0020	5'-UTR
16828	CoCoAoAoCoGsGsTsCsGsCsAsGsCsGoCoGoCoCoG	48	0007-0026	5'-UTR
16829	COAOGOCOCOASTSGSASGSASGSCSTSGOTOGOAOCOC	49	0042-0061	AUG
16830	AoCoGoCoToAs 3sCsTsGsCsAsGsCsCoAoToGoAoG	50	0052-0071	AUG
16831	GoCoCoAoCoAsCsTsGsCsGsCsCsTsGoGoAoAoGoG	51	0185-0204	coding
16832	CoCoGoGoCoAsGsGsCsTsCsTsCsCsAoCoCoToCoC	52	0348-0367	coding
16833	GoCoAoGoCoGsGsCsCsTsTsCsGsTsGoGoCoAoGoC	53	0422-0441	coding
16834	CoCoToCoGoTsGsGsTsGsCsGsCsCsToToCoAoCoG	54	0576-0595	coding
16835	CoToCoGoAoCsAsCsTsTsGsCsCsAsCoAoAoGoToC	55	0675-0694	coding
16836	COAOCOTOGOCSASCSCSTSCSGSTSGSCOTOCOCOTOG	56	0751-0770	coding
16837	CoCotoCotoGsCsAsGsGsAsGsCsTsCotoGoAoCoC	57	0848-0867	coding
16838	CoAoGoCoCoGsGsTsGsCsTsGsCsCsGoGoCoToGoC	58	0962-0981	coding
16839	CoCoGoGoToGsCsCsGsTsCsGsCsCsGoToToCoAoG	59	1240-1259	coding
16840	AoCoGoToCoGsGsGsCsCsTsGsAsAsGoGoCoGoToC	09	1387-1406	coding

W.

を開発を開発

夢ぶ

100 m

ix

16841	COTOGOTOCOASGSGSTSCSCSASAOTOGOGOCOC	61	1533-1552	coding
16842	GoCoCoCoCoTsGsTsGsCsCsTsGsGoCoToGoCoC	62	1590-1609	3'-UTR
16843	COTOTOGOGOCSTSGSCSASGSGSCSCSGOAOCOAOCOC	63	1685-1704	3'-UTR
16844	CoGOGOCOCOASASTSGSCSCSASCSCSAOCOAOGOCOC	64	1789-1808	3'-UTR
16845	AoCoToGoToGsCsTsCsCsTsGsCsTsAoCoAoToGoG	65	1916-1935	3'-UTR
16846	GoCoToCoToGsGsCsCsAsGsCsAsGsGoAoGoCoC	99	1994-2013	3'-UTR
16847	CoCoAoCoAoGSCSCSASGSCSCSTSGSGOCOCOAoAoG	29	2117-2136	3'-UTR
16848	COTOCOTOGOTSCSTSCSGSASGOCOTOGOGOA	68	2221-2240	3'-UTR
26264	CoCoToCoGoTsGsCsTsGsCsGsGsCsToToCoAoCoG	69	mismatch	
26266	CoCoToGoGoTsGsCsTsCsGsGsGsCsToToCoAoCoG	70	mismatch	
27693	CoCoToCoGsTsGsGsTsGsCsGsCsTsToCoAoCoG	54	0576-0595	coding
27694	CSCSTSCSGSTSGSCSTSGSCSCSCSTSTSCSASCSG	54	0576-0595	coding

വ

10

cytidines; "s" linkages are phosphorothioate linkages, "o" linkages are phosphodiester 5-methyl-cytidines, underlined " $\underline{\mathbf{C}}$ " residues are 5-methyl-¹ Emboldened residues are 2'-methoxyethoxy residues (others are 2'-deoxy). All 2'methoxyethoxy cytidines are linkages. 15

2 Coordinates from GenBank Accession No. U12597, locus name "HSU12597" SEQ ID NO.2.

Ž.

7/

1

HMVEC (human dermal microvascular) cells were purchased from Clonetics (San Diego CA) and cultivated in endothelial basal medium (EBM) supplemented with 10% fetal bovine serum (HyClone, Logan UT). Cells were grown in 100 mm petri dishes until 70-80% confluent and then treated with oligonucleotide in the presence of cationic lipid. Briefly, cells were washed with PBS and OPTI-MEM®. OPTI-MEM $^{\odot}$ containing 10 μ g/mL LIPOFECTIN $^{\odot}$ was added to the cells, followed by addition of oligonucleotide. The cells were incubated for 3-4 hours at 37°C, washed once with 10 EBM/1% FBS, and allowed to recover. For determination of mRNA levels by Northern blot, total RNA was prepared from cells by the guanidinium isothiocyanate procedure or by the Qiagen RNEASY™ method (Qiagen, Valencia, CA). Northern blot analysis was performed by standard methods (for 15 example, Ausubel, et al. Current Protocols in Molecular Biology, Vol. 1, John Wiley and Sons, Inc., 1996, pp.4.2.1-4.2.9). The probe was a PCR-labeled 1-kb fragment of TRAF-2 amplified by RT-PCR according to the method of Bednarczuk et al., Biotechniques, 1991, 10,478. RNA was quantified and 20 normalized to G3PDH mRNA levels using a Molecular Dynamics (Sunnyvale, CA) PhosphorImager in accordance with manufacturer's instructions.

Results are shown in Table 4. Reduction of TRAF-2 mRNA levels with oligonucleotide 16834 (SEQ ID NO. 54) was determined to be dose-dependent in the range of 1 to 100 nM. The IC_{50} was approximately 10 nM. A TRAF-6 antisense oligonucleotide did not affect TRAF-2 mRNA expression.

The effect of oligonucleotide 16834 (SEQ ID NO. 54) on TRAF-2 protein levels was also examined. Cells were treated with oligonucleotide and allowed to recover for 48 to 72 hours before being harvested. Protein levels were determined by western blot analysis. Dose-dependent reduction of TRAF-2 protein expression was detectable 48 hours after treatment and maximal reduction of TRAF-2

25

30

-54-

protein levels was achieved 72 hours after treatment with 100 nM oligonucleotide.

TABLE 4
Activities of TRAF-2 Gapmer Oligonucleotides

	ISIS	SEQ ID	GENE TARGET	% mRNA	% mrna
	No:	NO:	REGION	EXPRESSION	INHIBITION
10	LIPOFECTIN			100%	0%
	only				
	16827	47	5'-UTR	43%	57%
	16828	48	5'-UTR	23%	77%
	16829	49	AUG	48%	52%
15	16830	50	AUG	18%	82%
	16831	51	coding	49%	51%
	16832	52	coding	42%	58%
	16833	53	coding	60%	40%
	16834	54	coding	3%	97%
20	16835	55	coding	43%	57%
	16836	56	coding	91%	9%
	16837	57	coding	60%	40%
	16838	58	coding	66%	34%
	16839	59	coding	47%	53%
25	16840	60	coding	45%	55%
	16841	61	coding	8%	92%
	16842	62	3'-UTR	36%	64%
	16843	63	3'-UTR	46%	54%
	16844	64	3'-UTR	82%	18%
30	16845	65	3'-UTR	59%	41%
	16846	66	3'-UTR	13%	87%
	16847	67	3'-UTR	74%	26%
	16848	68	3'-UTR	57%	43%

-55~

ISIS 27693 (SEQ ID NO: 54) was also shown to decrease TRAF-2 mRNA levels in primary human fibroblast-like synoviocytes (obtained from surgical/biopsy specimens). LIPOFECTIN® was included at 3 μ g/ml. A dose-response effect was obtained with an IC₅₀ of approximately 25 nM and nearly 90% reduction of TRAF-2 mRNA at an oligonucleotide concentration of 100 nM.

Example 17:

15

Antisense inhibition of TRAF-3 expression- phosphorothioate oligodeoxynucleotides

In accordance with the present invention, a series of oligonucleotides were designed to target human TRAF-3 RNA using published sequences (GenBank accession number HSU21092, SEQ ID NO: 3. Oligodeoxynucleotides are shown in Table 5. Target sites are indicated as nucleotide numbers on the TRAF-3 mRNA target (SEQ ID NO: 3).

TABLE 5

Nucleotide Sequences of Human TRAF-3 Phosphorothioate
Oligonucleotides

20			SEQ	TARGET GENE	GENE
	ISIS	NUCLEOTIDE SEQUENCE1	ID	NUCLEOTIDE	TARGET
	NO.	(5' -> 3')	NO:	COORDINATES ²	REGION
	26778	AGAGCCGACGACCGCCGC	71	0078-0095	5'-UTR
	26779	GGAAGAGCCGACGACCGC	72	0081-0098	5'-UTR
25	26780	CGCGCAGGAGAGTCCAT	73	0236-0253	coding
	26781	TTAGCGGCGGGTTAGTCT	74	0258-0275	coding
	26782	AGCTTTAGCGGCGGGTTA	75	0262-0279	coding
	26783	CTCGGTCTGCTTCGGGCT	76	0401-0418	coding
	26784	TGCCCACACTCGGTCTGC	77	0409-0426	coding
30	26785	CGGTGCCCACACTCGGTC	78	0412-0429	coding
	26786	GAAGCGGTGCCCACACTC	79	0416-0433	coding
	26787	TTACACGCCTTCTCCACG	80	0712-0729	coding

-56-

	26788	GTATTTACACGCCTTCTC	81	0716-0733	coding
	26789	CCGGTATTTACACGCCTT	82	0719-0736	coding
	26790	GAGGCAGGACACCACCA	83	0816-0833	coding
	26791	TGTGAGGGCAGGACACCA	84	0819-0836	coding
5	26792	CACTTGTGAGGGCAGGAC	85	0823-0840	coding
	26793	GCTGGTTTGTCCCCTGAA	86	0939-0956	coding
	26794	ATCTGCTGGTTTGTCCCC	87	0943-0960	coding
	26795	CGCGGTTCTGGAGGGACT	88	1281-1298	coding
	26796	CCCCGCACTCTTGTCCAC	89	1316-1333	coding
10	26797	TTGCCCCGCACTCTTGTC	90	1319-1336	coding
	26798	CCACTTGCCCCGCACTCT	91	1323-1340	coding
	26799	GAGCCACTTGCCCCGCAC	92	1326-1343	coding
	26800	TTCCGAGCCACTTGCCCC	93	1330-1347	coding
	26801	TCCGCCGCTTGTAGTCGC	94	1485-1502	coding
15	26802	TGCTTCCGCCGCTTGTAG	95	1489-1506	coding
	26803	TCCTGCTTCCGCCGCTTG	96	1492-1509	coding
	26804	GTCCCCGTTCAGGTAGAC	97	1589-1606	coding
	26805	TCCCGTCCCCGTTCAGGT	98	1593-1610	coding
	26806	CCATCCCGTCCCCGTTCA	99	1596-1613	coding
20	26807	TCCCCATCCCGTCCCCGT	100	1599-1616	coding
	26808	CCCTTCCCCATCCCGTCC	101	1603-1620	coding
	26809	TGCGTCCCCTTCCCCATC	102	1609-1626	coding
	26810	AAGTGCGTCCCCTTCCCC	103	1612-1629	coding
	26811	CGACAAGTGCGTCCCCTT	104	1616-1633	coding
25	26812	AAGGAAGCAGGGCATCAT	105	1662-1679	coding
	26813	CTCTCCAGTGGGCTTCTT	106	1781-1798	coding
	26814	TCATCTCTCCAGTGGGCT	107	1785-1802	coding
	26815	GCTAAATCCACCTCCCCA	108	1933-1950	3'-UTR
	26816	TCTGCCGCTTCCTCCGTC	109	2027-2044	3'-UTR
30	26817	CCGCCTTCTGCCGCTTCC	110	2033-2050	3 '-UTR

WO 00/20435 PCT/US99/23171

-57-

¹ All cytidines are 5-methyl-cytidines; all linkages are phosphorothicate linkages.

² Coordinates from GenBank Accession No.U21092, locus name "HSU21092" SEO ID NO.3.

5 Example 18:

10

15

20

25

Antisense inhibition of TRAF-3 expression- phosphorothioate 2'-MOE gapmer oligonucleotides

In accordance with the present invention, a second series of oligonucleotides targeted to human TRAF-3 were synthesized. The oligonucleotide sequences are shown in Table 6. Target sites are indicated by nucleotide numbers, as given in the sequence source reference (GenBank accession no. U21092), to which the oligonucleotide binds.

All compounds in Table 6 are chimeric oligonucleotides ("gapmers") 18 nucleotides in length, composed of a central "gap" region consisting of ten 2'-deoxynucleotides, which is flanked on both sides (5' and 3' directions) by four-nucleotide "wings". The wings are composed of 2'-methoxyethyl (2'-MOE)nucleotides. The internucleoside (backbone) linkages are phosphorothicate (P=S) throughout the oligonucleotide. All cytidine residues are 5-methylcytidines.

TABLE 6

Nucleotide Sequences of Human TRAF-3 Gapmer

Oligonucleotides

			SEQ	TARGET GENE	GENE
	ISIS	NUCLEOTIDE SEQUENCE1	ID	NUCLEOTIDE	TARGET
	NO.	(5' -> 3')	NO:	COORDINATES ²	REGION
	26818	AGAGCCGACGACCGCCCC	71	0078-0095	5'-UTR
30	26819	GGAAGAGCCGACGACCGC	72	0081-0098	5'-UTR
	26820	CGCGCCAGGAGAGTCCAT	73	0236-0253	coding
	26821	TTAGCGGCGGGTTAGTCT	74	0258-0275	coding
	26822	AGCT TTAGCGGCGG GTTA	75	0262-0279	coding

			-58-		
	26823	CTCGGTCTGCTTCGGGCT	76	0401-0418	coding
	26824	TGCCCACACTCGGTCTGC	77	0409-0426	coding
	26825	CGGTGCCCACACTCGGTC	78	0412-0429	coding
	26826	GAAGCGGTGCCCACACTC	79	0416-0433	coding
5	26827	TTACACGCCTTCTCCACG	80	0712-0729	coding
	26828	GTATTTACACGCCTTCTC	81	0716-0733	coding
	26829	CCGGTATTTACACGCCTT	82	0719-0736	coding
	26830	GAGGCAGGACACCACCA	83	0816-0833	coding
	26831	TGTG AGGGCAGGAC ACCA	84	0819-0836	coding
10	26832	CACTTGTGAGGGCAGGAC	85	0823-0840	coding
	26833	GCTGGTTTGTCCCCTGAA	86	0939-0956	coding
	26834	ATCTGCTGGTTTGTCCCC	87	0943-0960	coding
	26835	CGCGGTTCTGGAGGGACT	88	1281-1298	coding
	26836	CCCCGCACTCTTGTCCAC	89	1316-1333	coding
15	26837	TTGCCCCGCACTCTTGTC	90	1319-1336	coding
	26838	CCACTTGCCCCGCACTCT	91	1323-1340	coding
	26839	GAGCCACTTGCCCCGCAC	92	1326-1343	coding
	26840	TTCCGAGCCACTTGCCCC	93	1330-1347	coding
	26841	TCCGCCGCTTGTAGTCGC	94	1485-1502	coding
20	26842	TGCTTCCGCCGCTTGTAG	95	1489-1506	coding
	26843	TCCTGCTTCCGCCGCTTG	96	1492-1509	coding
	26844	GTCCCCGTTCAGGTAGAC	97	1589-1606	coding
	26845	TCCCGTCCCCGTTCAGGT	98	1593-1610	coding
	26846	CCATCCCGTCCCCGTTCA	99	1596-1613	coding
25	26847	TCCCCATCCCGTCCCCGT	100	1599-1616	coding
	26848	CCCTTCCCCATCCCGTCC	101	1603-1620	coding
	26849	TGCGTCCCCTTCCCCATC	102	1609-1626	coding
	26850	AAGTGCGTCCCCTTCCCC	103	1612-1629	coding
	26851	CGACAAGTGCGTCCCCTT	104	1616-1633	coding

	_	\sim	
-	כ	9	-

	26852	AAGGAAGCAGGGCATCAT	à.	105	1662-1679	coding
	26853	CTCTCCAGTGGGCTTCTT		106	1781-1798	coding
	26854	TCATCTCTCCAGTGGGCT		107	1785-1802	coding
	26855	GCTAAATCCACCTCCCCA		108	1933-1950	3'-UTR
5	26856	TCTGCCGCTTCCTCCGTC		109	2027-2044	3'-UTR
	26857	CCGCCTTCTGCCGCTTCC		110	2033-2050	3'-UTR .

¹ Emboldened residues are 2'-methoxyethoxy residues (others are 2'-deoxy-). All 2'-methoxyethoxy cytidines and 2'-10 deoxycytidines are 5-methyl-cytidines; all linkages are phosphorothicate linkages.

一大の大学

Example 19

Antisense inhibition of TRAF-4 expression- phosphorothioate oligodeoxynucleotides

In accordance with the present invention, a series of oligonucleotides were designed to target different regions of the human TRAF-4 RNA, using published sequences (GenBank accession number X80200, incorporated herein as SEQ ID NO: 4). The oligonucleotides are shown in Table 7. Target sites are indicated by nucleotide numbers, as given in the sequence source reference (GenBank accession no. X80200), to which the oligonucleotide binds. All compounds in Table 7 are oligodeoxynucleotides with phosphorothicate backbones (internucleoside linkages) throughout. The compounds are analyzed for effect on TRAF mRNA levels by quantitative real-time PCR as described in other examples herein.

² Coordinates from GenBank Accession No. U21092, locus name "HSU21092" SEQ ID NO.3.

-60-

TABLE 7

Nucleotide Sequences of Human TRAF-4 Phosphorothioate

Oligonucleotides

			SEQ	TARGET GENE	GENE
5	ISIS	NUCLEOTIDE SEQUENCE1	ID	NUCLEOTIDE	TARGET
	NO.	(5' -> 3')	NO:	COORDINATES ²	REGION
	26860	GCATGGCGGGCGAGCGGC	111	0072-0089	AUG
	26861	CCGTCGCTTGGGCTTCTC	112	0113-0130	coding
	26862	GGGCACTTGAAGACTCCT	113	0232-0249	coding
10	26863	CTCAGGGCACTTGAAGAC	114	0236-0253	coding
	26864	TGGTCCTCAGGGCACTTG	115	0241-0258	coding
	26865	AAGCTGGTCCTCAGGGCA	116	0245-0262	coding
	26866	GCGGCAGCCCTCCTCACT	117	0341-0358	coding
	26867	CTCCAGCGGCAGCCCTCC	118	0346-0363	coding
15	26868	TAGGGCAGGGAATGACAT	119	0411-0428	coding
	26869	CGATTAGGGCAGGGAATG	120	0415-0432	coding
	26870	GGGCAGCGATTAGGGCAG	121	0421-0438	coding
	26871	GCCTCCCCACTGAAGTCA	122	0523-0540	coding
	26872	ATGCGGGCACCACACTTA	123	0592-0609	coding
20	26873	GGGCAGGCAACAGGCAGC	124	0733-0750	coding
	26874	CCACAGTGCCCACACCAC	125	0759-0776	coding
	26875	CGAGCCACAGTGCCCACA	126	0763-0780	coding
	26876	TCCTCCCGAGCCACAGTG	127	0769-0786	coding
	26877	CAGGTCCTCCCGAGCCAC	128	0773-0790	coding
25	26878	GGCAGAGCACCAGGGCGG	129	0819-0836	coding
	26879	CTTTGAATGGGCAGAGCA	130	0828-0845	coding
	26880	GGAGTCTTTGAATGGGCA	131	0833-0850	coding
	26881	ATGCCGTGCCATTGCCAG	132	0875-0892	coding
	26882	CTCACCAGGGCACACATC	133	0925-0942	coding
30	26883	CAGCTCCTGCCGTTGCCG	134	0944-0961	coding
	26884	ATGAGCACGCCATCACTG	135	1000-1017	coding

űP.	26885	TGTAGCCGCCGTCCATAG	136	1033-1050	coding
	26886	GCCTCCTGTAGCCGCCGT	137	1039-1056	coding
	26887	TAGAAGGCTGGGCTGAAG	138	1081-1098	coding
	26888	GTGTGTAGAAGGCTGGGC	139	1086-1103	coding
5	26889	GTGTGCCCTCACCACTGC	140	1152-1169	coding
	26890	GACACGGCGGGCAAAGGG	141	1226-1243	coding
	26891	GAAGGTGACACGGCGGGC	142	1232-1249	coding
	26892	GCCCAGGGTCGCTCTGAT	143	1260-1277	coding
	26893	CTTCCAGTTTGGGTCGGG	144	1313-1330	coding
10	26894	GATAACCAAAGCCCAGAG	145	1377-1394	coding
	26895	CATCGTCCTTTCCCCTCG	146	1513-1530	3'-UTR
	26896	GGCCAGGGCTGAAGCACC	147	1660-1677	3'-UTR
	26897	TTGTTTCCAGCCCTTCAT	148	1703-1720	3'-UTR
	26898	CATGTCTGCCCTACCCAA	149	1746-1763	3'-UTR
15	26899	GCTCCCCTGCTGTGCCCT	150	1948-1965	3'-UTR

¹ All cytidines are 5-methyl-cytidines; all linkages are phosphorothioate linkages.

20 ² Coordinates from GenBank Accession No. X80200, locus name "HSMLN62" SEQ ID NO. 4.

Example 20:

Antisense inhibition of TRAF-4 expression- phosphorothioate 2'-MOE gapmer oligonucleotides

In accordance with the present invention, a second series of oligonucleotides targeted to human TRAF-4 were synthesized. The oligonucleotide sequences are shown in Table 8. Target sites are indicated by nucleotide numbers, as given in the sequence source reference (GenBank accession no. X80200), to which the oligonucleotide binds.

All compounds in Table 8 are chimeric oligonucleotides ("gapmers") 18 nucleotides in length, composed of a central

25

"gap" region consisting of ten 2'-deoxynucleotides, which is flanked on both sides (5' and 3' directions) by four-nucleotide "wings". The wings are composed of 2'-methoxyethyl (2'-MOE)nucleotides. The internucleoside (backbone) linkages are phosphorothioate (P=S) throughout the oligonucleotide. All cytidine residues are 5-methylcytidines.

Data are obtained by real-time quantitative PCR as described in other examples herein.

TABLE 8

Nucleotide Sequences of Human TRAF-4 Gapmer

Oligonucleotides

			SEQ	TARGET GENE	GENE
	ISIS	NUCLEOTIDE SEQUENCE1	ID	NUCLEOTIDE	TARGET
15	NO.	(5' -> 3')	NO:	COORDINATES ²	REGION
	26900	GCAT GGCGGGCGAG CGGC	111	0072-0089	AUG
	26901	CCGTCGCTTGGGCTTCTC	112	0113-0130	coding
	26902	GGGC ACTTGAAGAC TCCT	113	0232-0249	coding
	26903	CTCAGGGCACTTGAAGAC	114	0236-0253	coding
20	26904	"GGTCCTCAGGGCACTTG	115	0241-0258	coding
	26905	AAGCTGGTCCTCAGGGCA	116	0245-0262	coding
	26906	GCGGCAGCCCTCCTCACT	117	0341-0358	coding
	26907	CTCCAGCGGCAGCCCTCC	118	0346-0363	coding
	26908	TAGGCAGGGAATGACAT	119	0411-0428	coding
25	26909	CGATTAGGGCAGGGAATG	120	0415-0432	coding
	26910	GGGCAGCGATTAGGGCAG	121	0421-0438	coding
	26911	GCCTCCCCACTGAAGTCA	122	0523-0540	coding
	26912	ATGC GGGCACCACACTTA	123	0592-0609	coding
	26913	GGGCAGGCAACAGGCAGC	124	0733-0750	coding
30	26914	CCACAGTGCCCACACCAC	125	0759-0776	coding
	26915	CGAGCCACAGTGCCCACA	126	0763-0780	coding

	26916	TCCTCCCGAGCCACAGTG	127	0769-0786	coding
	26917	CAGGTCCTCCCGAGCCAC	128	0773-0790	coding
	26918	GGCA GAGCACCAGG GCGG	129	0819-0836	coding
	26919	CTTTGAATGGGCAGAGCA	130	0828-0845	coding
5	26920	GGAG TCTTTGAATG GGCA	131	0833-0850	coding
	26921	ATGC CGTGCCATTG CCAG	132	0875-0892	coding
	26922	CTCACCAGGGCACACATC	133	0925-0942	coding
	26923	CAGCTCCTGCCGTTGCCG	134	0944-0961	coding
	26924	ATGAGCACGCCATCACTG	135	1000-1017	coding
10	26925	TGTAGCCGCCGTCCATAG	136	1033-1050	coding
	26926	GCCT CCTGTAGCCG CCGT	137	1039-1056	coding
	26927	TAGAAGGCTGGGCTGAAG	138	1081-1098	coding
	26928	GTGTGTAGAAGGCTGGGC	139	1086-1103	coding
	26929	GTGTGCCCTCACCACTGC	140	1152-1169	coding
15	26930	GACACGGCGGGCAAAGGG	141	1226-1243	coding
	26931	GAAGGTGACACGGCGGC	142	1232-1249	coding
	26932	GCCCAGGGTCGCTCTGAT	143	1260-1277	coding
	26933	CTTCCAGTTTGGGTCGGG	144	1313-1330	coding
	26934	GATAACCAAAGCCCAGAG	145	1377-1394	coding
20	26935	CATCGTCC FTTCCCCTCG	146	1513-1530	3'-UTR
	26936	GGCCAGGGCTGAAGCACC	147	1660-1677	3'-UTR
	26937	TTGTTTCCAGCCCTTCAT	148	1703-1720	3'-UTR
	26938	CATGTCTGCCCTACCCAA	149	1746-1763	3'-UTR
	26939	GCTCCCCTGCTGTGCCCT	150	1948-1965	3 ' -UTR

¹ Emboldened residues are 2'-methoxyethoxy residues (others are 2'-deoxy-). All 2'-methoxyethoxy cytidines and 2'-deoxycytidines are 5-methyl-cytidines; all linkages are phosphorothioate linkages.

-64-

² Coordinates from GenBank Accession No. X80200, locus name "HSMLN62" SEO ID NO. 4.

Example 21

10

15

Antisense inhibition of TRAF-5 expression- phosphorothicate oligodeoxynucleotides

In accordance with the present invention, a series of oligonucleotides were designed to target different regions of the human TRAF-5 RNA, using published sequences (GenBank accession number AB000509, incorporated herein as SEQ ID NO: 5). The oligonucleotides are shown in Table 9. Target sites are indicated by nucleotide numbers, as given in the sequence source reference (GenBank accession no. AB000509), to which the oligonucleotide binds. All compounds in Table 9 are oligodeoxynucleotides with phosphorothicate backbones (internucleoside linkages) throughout.

BNSDCCID: <WO__ 0020435A1_I_>

TABLE 9

3g

- 65 -

		Nucleotide Sequences	s of Human TRAF.	Nucleotide Sequences of Human TRAF-5 Phosphorothioate Oligonucleotides	nucleotides
			SEQ	TARGET GENE	GENE TARGET
	SISI	NUCLEOTIDE SEQUENCE1	OI OI	NUCLEOTIDE	REGION
Ŋ	NO.	(5' -> 3')	NO:	COORDINATES ²	
	26940	TGAATAAGCCATTGTGGG	151	0049-0066	AUG
	26941	CTTTATGCTCTTCTGAAT	152	0062-0079	coding
	26942	GGATGAAACCACAGGGCA	153	0083-0100	coding
	26943	TCAAAGTCCAAGGAAATG	154	0120-0137	coding
10	26944	TGAAGCACCGAGTGGCAG	155	0195-0212	coding
	26945	GGGCAGATTGGCACTGTG	156	0282-0299	coding
	26946	CTCCTGAGATTTGATGAC	157	0313-0330	coding
	26947	CTTTCCGTAGGACTGGCT	158	0491-0508	coding
	26948	GATTCTGTAGATTGATGA	159	0584-0601	coding
15	26949	TTCATCTACCTCAGTTTT	160	0667-0684	coding
	26950	TCCGTTACAGCACAGCCA	161	0735-0752	coding
	26951	GCATGTGCTCCCGTAAGG	162	0788-0805	coding
	26952	CTTTTCAAGTTTCTTTAT	163	0907-0924	coding
	26953	CTTCCATCAAAGGTCTCA	164	1079-1096	codina

	i C				
	26954	TCTAAAACGGCTAATCTT	165	1146-1163	coding
0	6955	TCATCTTGTAATCTGTCA	166	1283-1300	coding
7	9269	GGACTGGCTGAAGATGGA	167	1333-1350	coding
(3	6957	CCCTCCCTGACCCNTCCC	168	1403-1420	coding
7	6958	GAATGAGCCACAAAGCGG	169	1620-1637	coding
2	6969	CAAGAACAGAGTGTCATC	170	1672-1689	coding
7	26960	GTCTAAATCCAGGTCAAT	171	1799-1816	3'-UTR
2	26961	AAACTTACCATCTTTCAA	172	1964-1981	3'-UTR
7	26962	CTCTGTGTCCTCCATAAC	173	2053-2070	3'-UTR
6	26963	CTTAACTGGAACAGCCTA	174	2167-2184	3'-UTR
7	6964	GCAGGAAGAATGAAAATG	175	2352-2369	3'-UTR
0	6965	TATTTGGTTGAATCTTAT	176	2501-2518	3'-UTR
C	26966	AAATTCTATCCATCCTCA	177	2611-2628	3'-UTR
2	26967	AAATTGTAAAGGTTTTCT	178	2683-2700	3'-UTR
~	26968	ACAATGAAACTCTGTCTC	179	2779-2796	3'-UTR
7	6969	GCAAAACTCCGTCTCTAC	180	2940-2957	3'-UTR
7	26970	CAATAGTTGTCAGAGGCT	181	3055-3072	3'-UTR
(1)	26971	AAGGACTCATCTCAGTTT	182	3209-3226	3'-UTR
7	26972	TAACAACGCAGAAGGGCT	183	3280-3297	3'-UTR

1

SERVICE STATES

13

υ. •

| 3'-UTR |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| | | | | | | |
| 3295-3312 | 3377-3394 | 3553-3570 | 3656-3673 | 3724-3741 | 3873-3890 | 3889-3906 |
| 184 | 185 | 186 | 187 | 188 | 189 | 190 |
| | | • • | | | | |
| 26973 AGTAGGGAAGTGGCATAA | 26974 CATCACCAGGTAAGCAGC | 26975 TCCTGTTGTGAACCTATT | 26976 GGACTTGTGGGCTAAAGA | 26977 GCTCAGGAAGACAGAGTG | 26978 TGAACTCCTAAGCAAACC | 26979 GATGATGAAGGAACTCTG |
| 26973 | 26974 | 26975 | 26976 | 26977 | 26978 | 26979 |

Ŋ

 1 All cytidines are 5-methyl-cytidines; all linkages are phosphorothioate linkages.

² Coordinates from GenBank Accession No. AB000509, locus name "AB000509" SEQ ID NO.

Example 22:

Antisense inhibition of TRAF-5 expression- phosphorothioate 2'-MOE gapmer oligonucleotides

In accordance with the present invention, a second series of oligonucleotides targeted to human TRAF-5 were synthesized. The oligonucleotide sequences are shown in Table 10. Target sites are indicated by nucleotide numbers, as given in the sequence source reference (GenBank accession no. AB000509), to which the oligonucleotide binds.

All compounds in Table 10 are chimeric oligonucleotides ("gapmers") 18 nucleotides in length, composed of a central "gap" region consisting of ten 2'-deoxynucleotides, which is flanked on both sides (5' and 3' directions) by four-nucleotide "wings". The wings are composed of 2'-methoxyethyl (2'-MOE) nucleotides. The internucleoside (backbone) linkages are phosphorothioate (P=S) throughout the oligonucleotide. All cytidine residues are 5-methylcytidines.

BNSDCCID: <WO__0020435A1_I_>

Νv

1. 1

TABLE 10 Nucleotide Sequences of Human TRAF-5 Gapmer Oligonucleotides

			SEQ	TARGET GENE	GENE TARGET REGION
Ŋ	ISIS	NUCLEOTIDE SEQUENCE1	a	NUCLEOTIDE	
	NO.	(5' -> 3')	NO:	COORDINATES2	
	26980	TGAATAAGCCATTGTGGG	151	0049-0066	AUG
	26981	CTTTAIGCICTICIGAAT	152	0062-0079	coding
	26982	GGATGAAACCACAGGGCA	153	0083-0100	coding
10	26983	TCAAAGTCCAAGGAAATG	154	0120-0137	coding
	26984	TGAAGCACCGAGTGGCAG	155	0195-0212	coding
	26985	GGGCAGATTGGCACTGTG	156	0282-0299	coding
	26986	CTCCTGAGATTTGATGAC	157	0313-0330	coding
	26987	CITICCGIAGGACTGGCT	158	0491-0508	coding
15	26988	GATTCTGTAGATTGATGA	159	0584-0601	coding
	26989	TTCATCTACCTCAGTTTT	160	0667-0684	coding
	26990	TCCGTTACAGCACAGCCA	161	0735-0752	coding
	26991	GCATGTGCTCCGTAAGG	162	0788-0805	coding
	26992	CTTTTCAAGTTTCTTTAT	163	0907-0924	coding

	26993	CTTCCATCAAGGTCTCA	164	1079-1096	coding
	26994	TCTAAAACGGCTAATCTT	165	1146-1163	coding
	26995	TCATCTTGTAATCTGTCA	166	1283-1300	coding
	26996	GGACTGGCTGAAGATGGA	167	1333-1350	coding
Ŋ	26997	CCCTCCCTGACCCATCCC	168	1403-1420	coding
	26998	GAATGAGCCACAAAGCGG	169	1620-1637	coding
	26999	CAAGAACAGAGTGTCATC	170	1672-1689	coding
	27000	GTCTAAATCCAGGTCAAT	171	1799-1816	3'-UTR
	27001	AAACTTACCATCTTTCAA	172	1964-1981	3'-UTR
0	27002	CTCTGTCCTCCATAAC	173	2053-2070	3'-UTR
	27003	CTTAACTGGAACAGCCTA	174	2167-2184	3'-UTR
	27004	GCAGGAAGAATGAAATG	175	2352-2369	3'-JIR
	27005	TATTTGGTTGAATCTTAT	176	2501-2518	3'-UTR
	27006	AAATTCTATCCATCCTCA	177	2611-2628	3'-UTR
τύ	27007	AAATTGTAAAGGTTTTCT	178	2683-2700	3'-UTR
	27008	ACAATGAAACTCTGTCTC	179	2779-2796	3'-UTR
	27009	GCAAAACTCCG; CTCTAC	180	2940-2957	3'-UTR
	27010	CAATAGTTGTCAGAGGCT	181	3055-3072	3'-UTR

1

のないので

	27011	aaggactcatctca gtt	182	3209-3226	3'-UTR
	27012	TAACAACGCAGAAGGGCT	183	3280-3297	3'-UTR
	27013	AGTAGGGAAGTGGCATAA	184	3295-3312	3'-UTR
	27014	CATCACCAGGT? AGCAGC	185	3377-3394	3'-UTR
ഗ	27015	TCCTGTTGTGAACCTATT	186	3553-3570	3'-UTR
	27016	GGACTTGTGGGCTAAAGA	187	3656-3673	3'-UTR
	27017	GCTCAGGAAGACAGAGTG	188	3724-3741	3'-UTR
	27018	TGAACTCCTAAGCAAACC	189	3873-3890	3'-UTR
	27019	GATGATGAAGGAACTCTG	190	3889-3906	3'-UTR

methoxyethoxy cytiding and 2'-deoxycytidines are 5-methyl-cytidines; all linkages are 1 Emboldened residues are 2'-methoxyethoxy residues (others are 2'-deoxy-). All 2'phosphorothioate linkages.

ъ. ² Coordinates from GenBank Accession No. AB000509, locus name "AB000509" SEQ ID NO.

Example 23:

Antisense inhibition of TRAF-6 expression- phosphorothioate 2'-MOE gapmer oligonucleotides

In accordance with the present invention, a series of oligonucleotides targeted to human TRAF-6 were synthesized. The oligonucleotide sequences are shown in Table 11.

Target sites are indicated by nucleotide numbers, as given in the sequence source reference (GenBank accession no. U78798), to which the oligonucleotide binds.

All compounds in Table 11 are chimeric oligonucleotides ("gapmers") 20 nucleotides in length, composed of a central "gap" region consisting of eight 2'-deoxynucleotides, which is flanked on both sides (5' and 3' directions) by six-nucleotide "wings". The wings are composed of 2'-methoxyethyl (2'-MOE) nucleotides. The internucleoside (backbone) linkages are phosphorothicate (P=S) in the "deoxy gap" and phosphodiester (P=O) in the wings. Cytidine residues in the 2'-MOE wings are 5-methylcytidines.

20

10

- 73 -

TABLE 11: Nucleotide Sequences of TRAF-6 Gapmer Oligonucleotides

1.3

1. Sec. 3.

			SEQ	TARGET GENE	GENE
	ISIS	NUCLEOTIDE SEQUENCE1	fi	NUCLEOTIDE	TARGET
ហ	NO.	(5' -> 3')	NO:	COORDINATES2	REGION
	15779	AogogococoAsAsGsCsCsCsAsGsCoToGoCoGoG	191	0001-0020	5'-UTR
	15880	CoGoCoCoAoCsCsTsTsCsGsCsTsGsGoCoCoGoCoC	192	0024-0043	5'-UTR
	15881	GOAOGOAOCOGSASGSGSCSTSGSCSTSTOGOGOAOCOG	193	0071-0090	5'-UTR
	15882	GogoAoCoAoCsAsGsAsCsAsCsTsGsCoGoCoGoCoC	194	0091-0110	5'-UTR
10	15883	CoCoAoAoGoGsCsGsCsTsGsGsTsAsGoAoGoGoAoC	195	0111-0130	5'-UTR
	15884	ToToGoCoToCsGsTsTsCsTsAsGsTsGoCoGoCoGoG	196	0185-0204	5'-UTR
	15885	COAOTOAOGOTSASASCSTSTSGSASTSTOAOTOCOAOC	197	0205-0224	AUG
	15886	AoGoCoAoGoAsCsTsCsAsTsAsGsTsAoAoCoToToG	198	0213-0232	AUG
	15887	AoCoAoGoToTsTsAsGsCsAsGsAsCsToCoAoToAoG	199	0220-0239	AUG
15	15888	AoCoAoGoCoGsCsTsAsCsAsGsBasGoCoToGoGoC	200	0291-0310	coding
	15889	AoToToGoAoTsTsTsTsAsTsGsAsTsGoCoAoGoGoC	201	0495-0514	coding
	15890	GOTOGOAOCOCSTSGSCSASTSCSCSCSTOTOAOTOTOG	202	0511-0530	coding
	15891	GOTOCOTOCOASGSTSTSCSTSTSTOTOGOTOGOC	203	0641-0660	coding
	15892	AoGoAoGoCoAsAsAsCsTsCsAsCsAsAoToGoToGoC	204	0678-0697	coding

\$

Section .

	15893	TotoToGoGsAsAsGsGsGsAsCsGsCoToGoGoCoA	205	0714-0733	coding
	15894	AoAoAoToGoCsCsAsTsTsGsAsTsGsCoAoGoCoAoC	206	0796-0815	coding
	15895	AOTOTOCOAOCSASGSASTSGSASCSASTOTOGOCOC	207	0851-0870	coding
	15896	CoGoToGoCoCsAsAsGsTsGsAsTsTsCoCoToCoToG	208	0981-1000	coding
Ю	15897	GOGOTOTSCSTSCSTSTSGSTSASGOGOTOGOGOC	209	1000-1019	coding
	15898	GOGOCOCOAOASCSASTSTSCSTSCSASTOGOTOG	210	1024-1043	coding
	15899	CoGoCOTOCOASASASCSTSASTSGSASAOCOAOGOCOC	211	1046-1065	coding
	15900	AoGoGoCoGoAs('sCsCsTsCsTsAsAsCoToGoGoToG	212	1119-1138	coding
	15901	CoCoAoToToTsTsAsGsCsAsGsTsCsAoGoCoToCoC	213	1163-1182	coding
0	15902	CoGOAOAOTOGSGSTSTSCSGSTSTSGOAOGOCOTOC	214	1206-1225	coding
	15903	CoCoAoToToGsCsAsCsTsGsCsTsGsToGoCoToToC	215	1254-1273	coding
	15904	GoCoaoGoToCsGsGsTsAsAsCsTsGsAoAoGoGoToG	216	1401-1420	coding
	15905	GoCoCoToToAsCsAsGsGsTsGsCsTsToCoAoGoAoC	217	1532-1551	coding
	15906	AoGoCoAoAoGsCsAsGsCsTsCsTsGsGoToToToGoG	218	1576-1595	coding
ហ	15907	GOGOCOTOAOCSCSASASTSGSTSCSASAOAOGOCOGOG	219	1724-1743	coding
	15908	ToToGoToToTsTsTsGsAsGsCsAsAsGoToGoAoGoG	220	1796-1815	3'-UTR
	15909	GOGOCOAOCOTSGSTSTSTSTSCSCOAOGOGOTOA	221	1817-1836	3'-UTR
	15910	AncoantoantsTsTsTsCsCsGsTsGsGoCoToToGoT	222	1871-1890	3'-UTR

State ...

V.

= ໝ = methoxyethoxy cytidines are 5-methyl-cytidines, underlined "C" are 5-methyl-cytidine; 1 Emboldened residues are 2'-methoxyethoxy residues (others are 2'-deoxy). All 2'linkages are phosphorothioate linkages, "o" linkages are phosphodiester linkayes. 10

9 ² Coordinates from GenBank Accession No. U78798, locus name "HSU78798" SEQ ID NO.

-76-

HMVEC cells were grown in 100 mm petri dishes until 70-80% confluent and then treated with oligonucleotide in the presence of cationic lipid. Briefly, cells were washed with PBS and OPTI-MEM®. OPTI-MEM® containing 10 $\mu g/mL$ LIPOFECTIN® (Life Technologies, Rockville MD) was added to the cells, followed by addition of oligonucleotide. The cells were incubated for 3-4 hours at 37°C, washed once with EBM/1% FBS, and allowed to recover. For determination of mRNA levels by Northern blot, total RNA was prepared from cells by the guanidinium isothiocyanate procedure or 10 by the Qiagen RNEASY™ method (Qiagen, Valencia, CA). Northern blot analysis was performed by standard methods (for example, Ausubel, et al. Current Protocols in Molecular Biology, Vol. 1, John Wiley and Sons, Inc., 1996, pp.4.2.1-4.2.9). The probe was a PCR-labeled 1-kb fragment 15 of TRAF-6 amplified by RT-PCR according to the method of Bednarczuk et al., 1991, Biotechniques 10,478. RNA was quantified and normalized to G3PDH mRNA levels using a Molecular Dynamics (Sunnyvale, CA) PhosphorImager in accordance with manufacturer's instructions. 20

Results are shown in Table 12. Reduction of TRAF-6 mRNA levels with oligonucleotide 15910 (SEQ ID NO. 224) was determined to be dose-dependent in the range of 1 to 100 nM. The $\rm IC_{50}$ was approximately 2.5 nM. A TRAF-2 antisense oligonucleotide did not affect TRAF-6 mRNA expression.

TABLE 12
Activities of TRAF-6 Gapmer Oligonucleotides

	ISIS	SEQ	GENE	% mrna	% mRNA
	No:	ID	TARGET	EXPRESSION	INHIBITION
		NO:	REGION		
30	LIPOFECTIN®		~ ~ ~	100%	0%
	only				
	15779	191	5'-UTR	62%	38%

25

1/10

at*					
	15880	192	5'-UTR	73%	27%
	15881	193	5'-UTR	28%	72%
	15882	194	5'-UTR	96%	4%
	15883	195	5'-UTR	57%	43%
5	15884	196	5'-UTR	73%	27%
	15885	197	AUG	61%	39%
	15886	198	AUG	37%	63%
	15887	199	AUG	23%	77%
	15888	200	coding	31%	69%
10	15889	201	coding	42%	58%
	15890	202	coding	49%	51%
	15891	203	coding	50%	50%
	15892	204	coding	32%	68%
	15893	205	coding	18%	82%
15	15894	206	coding	43%	57%
	15895	207	coding	41%	59%
	15896	208	coding	20%	80%
	15897	209	coding	60%	40%
	15898	210	coding	23%	77%
20	15899	211	coding	66%	34%
	15900	212	coding	54%	46%
	15901	213	coding	60%	40%
	15902	214	coding	76%	24%
	15903	215	coding	58%	42%
25	15904	216	coding	77%	23%
	15905	217	coding	108%	
	15906	218	coding	90%	10%
	15907	219	coding	62%	38%
	15908	220	3'-UTR	82%	18%
30	15909	221	3'-UTR	28%	72%

	WO 00/20435				PCT/US99/23171
			-78-		
	15910	222	3'-UTR	13%	87%
	15911	223	3'-UTR	103%	
	15912	224	3'-UTR	20%	80%
	15913	225	3'-UTR	97%	3%
5	15914	226	scrambled	70%	30%
			control		

Example 24

Effect of inhibiting TRAF Gene Expression on the Induction of E-selectin

The effect of TRAF antisense oligonucleotides on the 10 induction of E-selectin by TNF α or IL-1 β was examined. HMVEC cells were treated with either ISIS 16834 or ISIS 15910 under dose-response conditions followed by stimulation of E-selectin expression by TNF α or IL-1 β for 5 hours. The cell surface expression of E-selectin was 15 determined by flow cytometry analysis. Dose-dependent inhibition of E-selectin cell surface induction by $\text{TNF}\alpha$ was observed in cells treated with the TRAF-2 antisense oligonucleotide ISIS 16834, as expected. Surprisingly, the TRAF-6 antisense compound, ISIS 15910, was able to inhibit 20 $ext{TNF}\alpha$ mediated E-selectin surface expression as well, especially at higher dose. At low doses (20-50nM), ISIS 16834 was a more effective inhibitor of ${\tt TNF}\alpha{\tt -mediated}$ Eselectin induction than ISIS 15910. Maximal inhibition of E-selectin induction for both antisense compounds was 25 approximately 70% at 100 nM. Control oligonucleotides exhibited little to no effect on E-selectin induction. When IL-1 β was used as the stimulator, however, ISIS 15910 appeared to be a more specific and potent inhibitor of Eselectin induction than ISIS 16834, especially at 30 relatively low doses.

Example 25

Effect of TRAF Antisense Oligonucleotide on Ikb α Phosphorylation and Degradation

Multiple transcription factors are activated by cytokines to facilitate the induction of E-selectin. most important and best studied transcription factors involved in the regulation of E-selectin activation include NF-κB, c-Jun and ATF-2. To clarify the roles of TRAF proteins in the activation of NF-kB by cytokines, IkBa phosphorylation and degradation assays were performed with 10 antisense oligonucleotide treated cells. Cells were treated with either ISIS 16834 or ISIS 15910 and allowed to recover for 48-72 hours. Tumor necrosis factor- α (TNF- α) or interleukin-1- β (IL-1 β) was added for 5 to 30 minutes 15 before cells were harvested. Western blot analysis with antibody specific for phospho-IkB α was performed to study the phosphorylation of $I \kappa B \alpha$. The blots were then stripped and reblotted with antibody against IkBa to study the degradation of $I\kappa B\alpha$. $I\kappa B\alpha$ was heavily phosphorylated 5 minutes after addition of either cytokine. 20 By 30 minutes, $I\kappa B\alpha$ was reduced, probably as a result of $I\kappa B\alpha$ degradation. In TNF α -stimulated cells, the majority of the IkB α had been degraded after minutes of stimulation. By 30 minutes, IkBa was almost completely gone. In contrast, the degradation of IkB α in IL-1 β stimulated cells was slower 25 with the majority of IkBu degraded by 30 minutes. Neither ISIS 16834 nor ISIS 15910 affected ΙκΒα phosphorylation and degradation induced by $TNF\alpha$. ISIS 15910 has little effect on IL-1 β mediated IkB α phosphorylation and degradation 30 either. Hyperphosphorylation of $I \kappa B \alpha$ was observed in ISIS 16834 treated, IL-1β induced cells. In summary, the antisense oligonucleotides do not inhibit the phosphorylation and degradation of IκBα.

BNSDOCID: <WO___0020435A1_I_>

Example 26

Effect of TRAF Antisense Oligonucleotides on JNK Activities

MAP kinases play central roles in the activation of specific transcription factors crucial to the induction of cell adhesion molecules. To examine the effect of TRAF antisense oligonucleotides on JNK activities, in vitro kinase assays were performed on extracts derived from cells treated with TRAF antisense oligonucleotides. Cells were treated with TRAF-2 or TRAF-6 antisense compounds, (ISIS 16834 or ISIS 15910, respectively) allowed to recover for 10 48-72 hours, at which time TNF was added for 15 minutes prior to the cell lysis and the initiation of the kinase assays. Specific c-Jun conjugated agarose beads were used to precipitate JNK. ATP was added to the immunoprecipitated kinase complexes and the reaction mixes were analyzed on SDS-PAGE. Western blotting with antibodies specific for phosphorylated c-Jun was carried out to determine relative kinase activity. JNK was activated by $TNF\alpha$ after a 15 minute incubation, as indicated by the heavy phosphorylation of c-Jun. ISIS 20 16834 reduced JNK activity in $TNF\alpha$ -treated cells but not in IL-1 β treated cells. Some hyperphosphorylation of c-Jun induced by IL-1 β in ISIS 16834 treated cells was observed. ISIS 15919 reduced the c-Jun phosphorylation mediated by both IL-1 β and TNF α . Some inhibitory effect of ISIS 15910 25 on JNK activity was also observed in $\text{TNF}\alpha\text{-induced}$ cells. This result is consistent with the inhibitory effects of TRAF antisense oligonucleotides on the surface expression of E-selectin.

30 Example 27

Inhibition of cell proliferation by antisense oligonucleotide targeted to TRAF-2

HeLa cells were treated with ISIS 16834 (200 nM) and counted 48 hours later. Cells were trypsinized, stained

with trypan blue and counted (floating cells included). Cell number in ISIS 16834-treated cultures was reduced by 61% compared to untreated control cultures.

Example 28

Induction of apoptosis by antisense oligonucleotide targeted to TRAF-2

HeLa cells were treated with ISIS 16834 (200 nM) and the number of dead cells was measured by trypan blue exclusion 48 hours later. In cultures untreated with oligonucleotide, only 5% of cells were dead. In cultures treated with ISIS 16834, 44% of cells were dead.

Example 29

10

Dose response of apoptosis in response to ISIS 16834 targeted to TRAF-2

HeLa cells were treated with ISIS 16834 at various 15 doses and the number of sub-G1 apoptotic cells was counted using propidium iodide and FACS 48 hours after treatment with ISIS 16834 at 100, 200 and 300 nM. Culture supernatant and floating cells were transferred to FACS tubes. Cells were washed with PBS, trypsinized and washed in PBS, then 20 fixed in ice-cold 70% ethanol for 12-15 hours in the freezer. Cells were centrifuged and resuspended in propidium iodide (PI) mix (50 μ g/ml PI, 5 μ g/ml RNAse cocktail, Cat. # 2286, Ambion, Austin TX) in the dark for 1 hour at room temperature before FACS analysis. Percent 25 apoptocic cells after treatment at 100, 200 and 300 nM doses was approximately 29%, 46% and 58%, respectively, compared to 5% for untreated control cells.

Example 30

30 Time course of apoptosis in response to ISIS 16834 targeted to TRAF-2

The number of sub-G1 apoptotic HeLa cells was counted 1, 2 and 3 days after treatment with ISIS 16834 at 200 nM using methods described in the previous example. Percent

i46

-82-

apoptotic cells after treatment at these time points was approximately 10%, 46% and 53%, respectively, compared to 5% after 3 days for untreated control cells.

Example 31

5 Antisense inhibition of TRAF-3 expression

The antisense oligonucleotides shown in Tables 5 and 6 were screened in T-24 cells for ability to inhibit human TRAF-3 expression. Results are shown in Tables 13 and 14, respectively.

BNSDOCID: <WO___0020435A1_I_>

-83-

Table 13
Inhibition of TRAF-3 mRNA levels by phosphorothicate oligodeoxynucleotides

	ISIS#	TARGET REGION	SITE1	SEQUENCE 5'> 3'	%Inhib	SEQ ID
5	26778	5'UTR	78	AGAGCCGACGACCGCCGC	0	71
	26779	5'UTR	81	GGAAGAGCCGACGACCGC	0	72
	26780	CDS	236	CGCGCCAGGAGAGTCCAT	0	73
	26781	CDS	258	TTAGCGGCGGGTTAGTCT	22	74
	26782	CDS	262	AGCTTTAGCGGCGGGTTA	9	75
10	26783	CDS	401	CTCGGTCTGCTTCGGGCT	30	76
	26784	CDS	409	TGCCCACACTCGGTCTGC	67	77
	26785	CDS	412	CGGTGCCCACACTCGGTC	70	78
	26786	CDS	416	GAAGCGGTGCCCACACTC	66	79
	26787	CDS	712	TTACACGCCTTCTCCACG	77	80
15	26788	CDS	716	GTATTTACACGCCTTCTC	25	81
	26789	CDS	719	CCGGTATTTACACGCCTT	35	82
	26790	CDS	816	GAGGGCAGGACACCACCA	81	83
	26791	CDS	819	TGTGAGGGCAGGACACCA	70	84
	26792	CDS	823	CACTTGTGAGGGCAGGAC	69	85
20	26793	CDS	939	GCTGGTTTGTCCCCTGAA	42	86
	26794	CDS	943	ATCTGCTGGTTTGTCCCC	73	87
	26795	CDS	1281	CGCGGTTCTGGAGGGACT	39	88
	26796	CDS	1316	CCCCGCACTCTTGTCCAC	36	89
	26797	CDS	1319	TTGCCCCGCACTCTTGTC	19	90
25	26798	CDS	1323	CCACTTGCCCCGCACTCT	70	91
	26799	CDS	1326	GAGCCACTTGCCCCGCAC	53	92
	26800	CDS	1330	TTCCGAGCCACTTGCCCC	22	93
	26801	CDS	1485	TCCGCCGCTTGTAGTCGC	70	94
	26802	CDS	1489	TGCTTCCGCCGCTTGTAG	42	95
30	26803	CDS	1492	TCCTGCTTCCGCCGCTTG	73	96
	26804	CDS	1589	GTCCCCGTTCAGGTAGAC	43	97
	26805	CDS	1593	TCCCGTCCCCGTTCAGGT	78	98

	WO 00/2	0435				PCT/US99/23171
				-84-		
	26806	CDS	1596	CCATCCCGTCCCCGTTCA	81	99
	26807	CDS	1599	TCCCCATCCCGTCCCCGT	86	100
	26808	CDS	1603	CCCTTCCCCATCCCGTCC	40	101
	26809	CDS	1609	TGCGTCCCCTTCCCCATC	45	102
5	26810	CDS	1612	AAGTGCGTCCCCTTCCCC	32	103
	26811	CDS	1616	CGACAAGTGCGTCCCCTT	71	104
	26812	CDS	1662	AAGGAAGCAGGGCATCAT	44	105 -
	26813	CDS	1781	CTCTCCAGTGGGCTTCTT	70	106
	26814	CDS	1785	TCATCTCTCCAGTGGGCT	48	107
10	26815	3'UTR	1933	GCTAAATCCACCTCCCCA	0	108
	26816	3'UTR	2027	TCTGCCGCTTCCTCCGTC	41	109

¹Position of first nucleotide of the target site on GenBank 15 accession number HSU21092, incorporated herein as SEQ ID NO: 3.

2033

26817 3'UTR

CCGCCTTCTGCCGCTTCC

110

-85-

Table 14

Inhibition of TRAF-3 mRNA levels by chimeric

phosphorothicate oligonucleotides having 2'-MOE wings and a

deoxy gap

5						
	ISIS#	TARGET REGION	SITE1	SEQUENCE 5'> 3'	%Inhib	SEQ ID
	26818	5'UTR	78	AGAGCCGACGACCGCCGC	2	71
	26819	5'UTR	81	GGAAGAGCCGACGACCGC	0	72
	26820	CDS	236	CGCGCCAGGAGAGTCCAT	87	73
10	26821	CDS	258	TTAGCGGCGGGTTAGTCT	32	74
	26822	CDS	262	AGCTTTAGCGGCGGGTTA	33	75
	26823	CDS	401	CTCGGTCTGCTTCGGGCT	58	76
	26824	CDS	409	TGCCCACACTCGGTCTGC	71	77
	26825	CDS	412	CGGTGCCCACACTCGGTC	69	78
15	26826	CDS	416	GAAGCGGTGCCCACACTC	54	79
	26827	CDS	712	TTACACGCCTTCTCCACG	65	80
	26828	CDS	716	GTATTTACACGCCTTCTC	40	81
	26829	CDS	719	CCGGTATTTACACGCCTT	77	82
	26830	CDS	816	GAGGGCAGGACACCACCA	76	83
20	26831	CDS	819	TGTGAGGGCAGGACACCA	78	84
	26832	CDS	823	CACTTGTGAGGGCAGGAC	88	85
	26833	CDS	939	GCTGGTTTGTCCCCTGAA	79	86
	26834	CDS	943	ATCTGCTGGTTTGTCCCC	74	87

				- 00 -		
	26835	CDS	1281	CGCGGTTCTGGAGGGACT	57	88
	26836	CDS	1316	CCCCGCACTCTTGTCCAC	0	89
	26837	CDS	1319	TTGCCCCGCACTCTTGTC	34	90
	26838	CDS	1323	CCACTTGCCCCGCACTCT	33	91
5	26839	CDS	1326	GAGCCACTTGCCCCGCAC	39	92
	26840	CDS	1330	TTCCGAGCCACTTGCCCC	0	93
	26841	CDS	1485	TCCGCCGCTTGTAGTCGC	71	94
	26842	CDS	1489	TGCTTCCGCCGCTTGTAG	39	95
	26843	CDS	1492	TCCTGCTTCCGCCGCTTG	47	96
10	26844	CDS	1589	GTCCCCGTTCAGGTAGAC	7	97
	26845	CDS	1593	TCCCGTCCCCGTTCAGGT	56	98
	26846	CDS	1596	CCATCCCGTCCCCGTTCA	54	99
	26847	CDS	1599	TCCCCATCCCGTCCCCGT	41	100
	26848	CDS	1603	CCCTTCCCCATCCCGTCC	79	101
15	26849	CDS	1609	TGCGTCCCCTTCCCCATC	63	102
	26850	CDS	1612	AAGTGCGTCCCCTTCCCC	77	103
	26851	CDS	1616	CGACAAGTGCGTCCCCTT	80	104
	26852	CDS	1662	AAGGAAGCAGGGCATCAT	4	105
	26853	CDS	1781	CTCTCCAGTGGGCTTCTT	64	106
20	26854	CDS	1785	TCATCTCTCCAGTGGGCT	55	107
	26855	3'UTR	1933	GCTAAATCCACCTCCCCA	48	108
	26856	3'UTR	2027	TCTGCCGCTTCCTCCGTC	39	109

-87-

26857 3'UTR 2033 CCGCCTTCTGCCGCTTCC 65 110

¹Position of first nucleotide of the target site on GenBank accession number HSU21092, incorporated herein as SEQ ID NO: 3.

Example 32

10 Antisense inhibition of TRAF-4 expression

The antisense oligonucleotides shown in Tables 7 and 8 were screened in T-24 cells for ability to inhibit human TRAF-4 expression. Results are shown in Tables 15 and 16, respectively.

-88-

Table 15
Inhibition of TRAF-4 mRNA levels by phosphorothicate oligodeoxynucleotides

	ISIS#	TARGET	SITE1	SEQUENCE	%Inhib	SEQ ID
5	26860	Start	72	GCATGGCGGGCGAGCGGC	0	111
	26861	CDS	113	CCGTCGCTTGGGCTTCTC	16	112
	26862	CDS	232	GGGCACTTGAAGACTCCT	0	113
	26863	CDS	236	CTCAGGGCACTTGAAGAC	0	114
	26864	CDS	241	TGGTCCTCAGGGCACTTG	47	115
10	26865	CDS	245	AAGCTGGTCCTCAGGGCA	0	116
	26866	CDS	341	GCGGCAGCCCTCCTCACT	6	117
	26867	CDS	346	CTCCAGCGGCAGCCCTCC	61	118
	26868	CDS	411	TAGGGCAGGGAATGACAT	0	119
	26869	CDS	415	CGATTAGGGCAGGGAATG	20	120
15	26870	CDS	421	GGGCAGCGATTAGGGCAG	54	121
	26871	CDS	523	GCCTCCCCACTGAAGTCA	38	122
	26872	CDS	592	ATGCGGGCACCACACTTA	56	123
	26873	CDS	733	GGGCAGGCAACAGGCAGC	53	124
	26874	CDS	759	CCACAGTGCCCACACCAC	34	125
20	26875	CDS	763	CGAGCCACAGTGCCCACA	43	126
	26876	CDS	769	TCCTCCCGAGCCACAGTG	66	127
	26877	CDS	773	CAGGTCCTCCCGAGCCAC	35	128
	26878	CDS	819	GGCAGAGCACCAGGGCGG	54	129

-89-

	26879	CDS	828	CTTTGAATGGGCAGAGCA	48	130
	26880	CDS	833	GGAGTCTTTGAATGGGCA	0	131
	26881	CDS	875	ATGCCGTGCCATTGCCAG	44	132
	26882	CDS	925	CTCACCAGGGCACACATC	69	133
5	26883	CDS	944	CAGCTCCTGCCGTTGCCG	71	134
	26884	CDS	1000	ATGAGCACGCCATCACTG	0	135
	26885	CDS	1033	TGTAGCCGCCGTCCATAG	74	136
	26886	CDS	1039	GCCTCCTGTAGCCGCCGT	53	137
	26887	CDS	1081	TAGAAGGCTGGGCTGAAG	48	138
10	26888	CDS	1086	GTGTGTAGAAGGCTGGGC	23	139
	26889	CDS	1152	GTGTGCCCTCACCACTGC	32	140
	26890	CDS	1226	GACACGGCGGGCAAAGGG	52	141
	26891	CDS	1232	GAAGGTGACACGGCGGGC	73	142
	26892	CDS	1260	GCCCAGGGTCGCTCTGAT	80	143
15	26893	CDS	1313	CTTCCAGTTTGGGTCGGG	0	144
	26894	CDS	1377	GATAACCAAAGCCCAGAG	45	145
	26895	3 'UTR	1513	CATCGTCCTTTCCCCTCG	51	146
	26896	3 'UTR	1660	GGCCAGGGCTGAAGCACC	53	147
	26897	3'UTR	1703	TTGTTTCCAGCCCTTCAT	67	148
20	26898	3'UTR	1746	CATGTCTGCCCTACCCAA	0	149
	26899	3'UTR	1948	GCTCCCCTGCTGTGCCCT	49	150

13

-90-

¹Position of first nucleotide of the target site on GenBank Accession No. X80200, locus name "HSMLN62" SEQ ID NO. 4.

BNSDOCID: <WO___0020435A1_i_>

Table 16

Inhibition of TPAF-4 mRNA levels by chimeric phosphorothicate oligonucleotides having 2'-MOE wings and a decay gap

5						
	ISIS#	TARGET	SITE1	SEQUENCE	%Inhib	SEQ ID
	26901	CDS	113	CCTCGCTTGGGCTTCTC	25	112
	26902	CDS	232	GGGCACTTGAAGACTCCT	57	113
	26903	CDS	236	CTCAGGGCACTTGAAGAC	49	114
10	26904	CDS	241	TGGTCCTCAGGGCACTTG	0	115
	26905	CDS	245	AAGCTGGTCCTCAGGGCA	0	116 _
	26906	CDS	341	GCGGCAGCCCTCCTCACT	0	117
	26907	CDS	346	CTCCAGCGGCAGCCCTCC	68	118
	26908	CDS	411	TAGGGCAGGGAATGACAT	0	119
15	26909	CDS	415	CGATTAGGGCAGGGAATG	0	120
	26910	CDS	421	GGGCAGCGATTAGGGCAG	39	121
	26911	CDS	523	GCCTCCCCACTGAAGTCA	30	122
	26912	CDS	592	ATGCGGGCACCACACTTA	44	123
	26913	CDS	733	GGGCAGGCAACAGGCAGC	66	124
20	26914	CDS	759	CCACAGTGCCCACACCAC	43	125
	26915	CDS	763	CGAGCCACAGTGCCCACA	6	126
	26916	CDS	769	TCCTCCCGAGCCACAGTG	46	127
	26917	CDS	773	CAGGTCCTCCCGAGCCAC	75	128

	isis#	TARGET	SITE1	SEQUENCE	%Inhib	SEQ ID
	26918	CDS	819	GGCAGAGCACCAGGGCGG	74	129
	26919	CDS	828	CTTTGAATGGGCAGAGCA	34	130
	26920	CDS	833	GGAGTCTTTGAATGGGCA	11	131
	26921	CDS	875	ATGCCGTGCCATTGCCAG	32	132
5	26922	CDS	925	CTCACCAGGGCACACATC	30	133
	26923	CDS	944	CAGCTCCTGCCGTTGCCG	79	134
	26924	CDS	1000	ATGAGCACGCCATCACTG	39	135
	26925	CDS	1033	TGTAGCCGCCGTCCATAG	24	136
	26926	CDS	1039	GCCTCCTGTAGCCGCCGT	61	137
10	26927	CDS	1081	TAGAAGGCTGGGCTGAAG	51	138
	26928	CDS	1086	GTGTGTAGAAGGCTGGGC	75	139
	26929	CDS	1152	GTGTGCCCTCACCACTGC	23	140
	26930	CDS	1226	GACACGGCGGGCAAAGGG	27	141
	26931	CDS	1232	GAAGGTGACACGGCGGGC	65	142
15	26932	CDS	1260	GCCCAGGGTCGCTCTGAT	76	143
	26933	CDS	1313	CTTCCAGTTTGGGTCGGG	0	144
	26934	CDS	1377	GATAACCAAAGCCCAGAG	0	145
	26935	3'UTR	1513	CATCGTCCTTTCCCCTCG	11	146
	26936	3'UTR	1660	GGCCAGGGCTGAAGCACC	79	147
20	26937	3'UTR	1703	TTGTTTCCAGCCCTTCAT	7	148

-93-

ISIS#	TARGET	SITE	SEQUENCE	%Inhib	SEQ ID
26938	3'UTR	1746	CATGTCTGCCCTACCCAA	26	149
26939	3'UTR	1948	GCTCCCCTGCTGTGCCCT	14	150

¹Position of first nucleotide of the target site on GenBank 5 Accession No. X80200, locus name "HSMLN62" SEQ ID NO. 4.

Example 32

*

THE PARTY OF

1

Antisense inhibition of TRAF-5 expression

The antisense oligonucleotides shown in Tables 9 and 10

10 were screened in T-24 cells for ability to inhibit human

TRAF-5 expression. Results are shown in Tables 17 and 18,
respectively.

BNSDOCID: <WO___0020435A1_I_>

-94-

oligodeoxynucleotides

Table 17
Inhibition of TRAF-5 mRNA levels by phosphorothicate

	isis#	TARGET	SITE1	SEQUENCE	%Inhib	SEQ ID
5	26940	Start	49	TGAATAAGCCATTGTGGG	33	151
	26941	CDS	62	CTTTATGCTCTTCTGAAT	0	152
	26942	CDS	83	GGATGAAACCACAGGGCA	14	153
	26943	CDS	120	TCAAAGTCCAAGGAAATG	37	154
	26944	CDS	195	TGAAGCACCGAGTGGCAG	37	155
10	26945	CDS	282	GGGCAGATTGGCACTGTG	79	156
	26946	CDS	313	CTCCTGAGATTTGATGAC	0	157
	26947	CDS	491	CTTTCCGTAGGACTGGCT	60	158
	26948	CDS	584	GATTCTGTAGATTGATGA	2	159
	26949	CDS	667	TTCATCTACCTCAGTTTT	55	160
15	26950	CDS	735	TCCGTTACAGCACAGCCA	59	161
	26951	CDS	788	GCATGTGCTCCCGTAAGG	77	162
	26952	CDS	907	CTTTTCAAGTTTCTTTAT	4	163
	26953	CDS	1079	CTTCCATCAAAGGTCTCA	35	164
	26954	CDS	1146	TCTAAAACGGCTAATCTT	0	165
20	26955	CDS	1283	TCATCTTGTAATCTGTCA	9	166
	26956	CDS	1333	GGACTGGCTGAAGATGGA	7	167
	26957	CDS	1403	CCCTCCCTGACCCATCCC	71	168

-95-

	ISIS#	TARGET	SITE1	SEQUENCE	%Inhib	SEQ ID
	26958	CDS	1620	GAATGAGCCACAAAGCGG	68	169
	26959	CDS	1672	CAAGAACAGAGTGTCATC	13	170
	26960	3'UTR	1799	GTCTAAATCCAGGTCAAT	26	171
	26961	3'UTR	1964	AAACTTACCATCTTTCAA	48	172
5	26962	3'UTR	2053	CTCTGTGTCCTCCATAAC	54	173
	26963	3'UTR	2167	CTTAACTGGAACAGCCTA	35	174
	26964	3'UTR	2352	GCAGGAAGAATGAAAATG	0	175
	26965	3'UTR	2501	TATTTGGTTGAATCTTAT	8	176
	26966	3'UTR	2611	AAATTCTATCCATCCTCA	32	177
10	26967	3'UTR	2683	AAATTGTAAAGGTTTTCT	22	178
	26968	3'UTR	2779	ACAATGAAACTCTGTCTC	14	179
	26969	3'UTR	2940	GCAAAACTCCGTCTCTAC	51	180
	26970	3'UTR	³^55	CAATAGTTGTCAGAGGCT	39	181
	26971	3'UTR	3209	AAGGACTCATCTCAGTTT	0	182
15	26972	3'UTR	3280	TAACAACGCAGAAGGGCT	74	183
	26973	3 'UTR	3295	AGTAGGGAAGTGGCATAA	29	184
	26974	3 'UTR	3377	CATCACCAGGTAAGCAGC	60	185
	26975	3'UTR	3553	TCCTGTTGTGAACCTATT	40	186
	26976	3'UTR	3656	GGACTTGTGGGCTAAAGA	60	187
20	26977	3'UTR	3724	GCTCAGGAAGACAGAGTG	6	188

-96-

ISIS#	TARGET	SITE1	SEQUENCE	%Inhib	SEQ ID
26978	3'UTR	3873	TGAACTCCTAAGCAAACC	23	189
26979	3'UTR	3889	GATGATGAAGGAACTCTG	20	190

¹Position of first nucleotide of the target site on GenBank GenBank Accession No. AB000509, locus name "AB000509" SEQ ID NO. 5

-97-

Table 18

Inhibition of TRAF-5 mRNA levels by chimeric phosphorothicate oligonucleotides having 2'-MOE wings and a deoxy gap

5							
	ISIS#	TARGET	SITE	SEQUENCE	%Inhib	SEQ ID	
	26980	Start	49	TGAAT: \GCCATTGTGGG	27	151	
	26981	CDS	62	CTTTATGCTCTTCTGAAT	43	152	
	26982	CDS	83	GGATGAAACCACAGGGCA	71	153	
10	26983	CDS	120	TCAAAGTCCAAGGAAATG	48	154	
	26984	CDS	195	TGAAGCACCGAGTGGCAG	66	155	
	26985	CDS	282	GGGCAGATTGGCACTGTG	37	156	
	26986	CDS	313	CTCCTGAGATTTGATGAC	64	157	
	26987	CDS	491	CTTTCCGTAGGACTGGCT	71	158	
15	26988	CDS	584	GATTCTGTAGATTGATGA	18	159	
	26989	CDS	667 ·	TTCATCTACCTCAGTTTT	50	160	
	26990	CDS	735	TCCGTTACAGCACAGCCA	66	161	
	26991	CDS	788	GCATGTGCTCCCGTAAGG	83	162	
	26992	CDS	907	CTTTTCAAGTTTCTTTAT	39	163	
20	26993	CDS	1079	CTTCCATCAAAGGTCTCA	82	164	
	26994	CDS	1146	TCTAAAACGGCTAATCTT	38	165	
	26995	CDS	1283	TCATCTTGTAATCTGTCA	61	166	
	26996	CDS	1333	GGACTGGCTGAAGATGGA	35	167	

	isis#	TARGET	SITE1	SEQUENCE	%Inhib	SEQ ID
	26997	CDS	1403	CCCTCCCTGACCCATCCC	40	168
	26998	CDS	1620	GAATGAGCCACAAAGCGG	76	169
	26999	CDS	1672	CAAGAACAGAGTGTCATC	25	170
	27000	3'UTR	1799	GTCTAAATCCAGGTCAAT	30	171
5	27001	3'UTR	1964	AAACTTACCATCTTTCAA	66	172
	27002	3'UTR	2053	CTCTGTGTCCTCCATAAC	68	173
	27003	3'UTR	2167	CTTAACTGGAACAGCCTA	68	174
	27004	3'UTR	2352	GCAGGAAGAATGAAAATG	20	175
	27005	3'UTR	2501	TATTTGGTTGAATCTTAT	38	176
10	27006	3'UTR	2611	AAATTCTATCCATCCTCA	0	177
	27007	3'UTR	2683	AAATTGTAAAGGTTTTCT	8	178
	27008	3'UTR	2779	ACAATGAAACTCTGTCTC	66	179
	27009	3'UTR	2940	GCAAAACTCCGTCTCTAC	51	180
	27010	3'UTR	3055	CAATAGTTGTCAGAGGCT	32	181
15	27011	מידשי 3	3209	AAGGACTCATCTCAG ITT	20	182
	27012	3'UTR	3280	TAACAACGCAGAAGGGCT	64	183
	27013	3 ' UTR	3295	AGTAGGGAAGTGGCATAA	58	184
	27014	3'UTR	3377	CATCACCAGGTAAGCAGC	59	185
	27015	3'UTR	3553	TCCTGTTGTGAACCTATT	79	186
20	27016	3'UTR	3656	GGACTTGTGGGCTAAAGA	67	187

-99-

ISIS#	TARGET	SITE1	SEQUENCE	%Inhib	SEQ ID
27017	3'UTR	3724	GCTCAGGAAGACAGAGTG	62	188
27018	3'UTR	3873	TGAACTCCTAAGCAAACC	16	189
27019	3'UTR	3889	GATGATGAAGGAACTCTG	52	190

¹Position of first nucleotide of the target site on GenBank Accession No. AB000509, locus name "AB000509" SEQ ID NO. 5.

Example 33 Additional oligonucleotides targeted to TRAF-1

Additional antisense oligonucleotides targeted to TRAF-1 were designed and synthesized. All compounds are 2'-MOE gapmers with 2'-MOE nucleotides shown in bold. Backbones are phosphorothioates throughout. All C are 5-methyl C. Compounds were tested as described in Example 13 above. Compounds and results are shown in Table 19.

Table 19
Antisense inhibition of TRAF-1 expression

	ISIS #	SEQUENCE	GENE	START	8	SEQ ID
			TARGET	POS1	INHIB	NO:
			REGION			
20	101869	GGACC AGCCTTGTGG AGTCC	5' UTR	5		229
	101870	TCAGGGTTCCAGGCTGGCCA	5' UTR	55		230
	101871	TCTCAGGGTTCCAGGCTGGC	Start	57	51	231
	101872	CATCTCAGGGTTCCAGGCTG	Start	59	50	232
	101873	GCCATCTCAGGGTTCCAGGC	Start	61	5	233
25	101874	AGGCC ATCTCAGGGT TCCAG	Start	63		234
	101875	GGAGG CCATCTCAGG GTTCC	Start	65		235
	101876	CTGGA GGCCATCTCA GGGTT	Start	67	7	236
	101877	AGCTG GAGGCCATCT CAGGG	Start	69		237

-100-

	isis #	SEQUENCE	GENE	START	8	SEQ ID
			TARGET	POS1	INHIB	NO:
			REGION			
	101878	TGAGCTGGAGGCCATCTCAG	Start	71		238
	101879	CCTGAGCTGGAGGCCATCTC	Start	73	28	239
	101880	TGCCTGAGCTGGAGGCCATC	Start	75		240
	101881	GCTGCCTGAGCTGGAGGCCA	Start	77		241
5	101882	gggcgaggactgctgcctga	Coding	88	60	242
	101883	TCTCAGAGAGACAGCCTGCA	Coding	189	43	243
	101884	TCCTGGGCTTATAGACTGGA	Coding	260	78	244
	101885	GGGCTTCCCTTGAAGGAGCA	Coding	358		245
	101886	CAACA GCAGGTTTAG GTGGG	Coding	416		246
10	101887	CAGGCCCATGGGCCCAGACT	Coding	479		247
	101888	CCCGCTAGCAATCGACCTCC	Coding	555	31	248 -
	101889	CTCAGCCAGAAGCTTCTCCT	Coding	623	53	249
	101890	GGCCA GGGCCAGGTG GGAGG	Coding	704		250
	101891	TGCTGAAGCTCCACCACCCT	Coding	778	11	251
15	101892	GTGATCTTCCACAGGAAAGT	Coding	877	8	252
	101893	TTGGCAGTGTAGAAGGCTGG	Coding	955	27	253
	101894	AAGAG CGACAGATGG GTTCT	Coding	1030	61	254
	101895	GCAGCATGAAGGTGACCTTG	Coding	1104		255
	101896	TCTGGAAGGACGCTGAGCTT	Coding	1173		256
20	101897	CTCCACAATGCACTTGAGGA	Coding	1295	35	257
	101898	TGCCCTGAGGTCTTGGGTGC	3' UTR	1399	31	258
	101899	ATCCT AACCAGATGG CCAGC	3' UTR	1473	/0	259
	101900	ACTGG CCTCCCAGTG TCGCA	3' UTR	1571	9	260
	101901	GCTTG GGTCCTACGG TTCCA	3' UTR	1656	22	261
25	101902	TCCTGTTTCTGACCCTGGAG	3' UTR	1749	81	262
	101903	CTGGGTTTGCTTGTTCACCT	3' UTR	1826	85	263
	101904	CCAGGAGGCTAGAATGAGAG	3' UTR	1917		264
	101905	TGAGGAGCTGGGAGGACAGG	3' UTR	1986		265
	101906	TTGGGAAGCTGAGCTGCCAG	3' UTR	2066		266

-101-

isis #	SEQUENCE	GENE	START	8	SEQ ID
		TARGET	POS1	INHIB	NO:
		REGION			
101907	ACAGTGACTGGGTTTCACCT	3' UTR	2153	35	267
101908	TTACGGGATTCTGGAAAGCA	3' UTR	2256	78	268

¹Position of first nucleotide of the target site on GenBank 5 Accession No.U19261, locus name "HSU19261," SEQ ID NO: 1.

0.0462

PCT/US99/23171

10

"我们是"

長 温泉

What is claimed is:

- 1. An antisense compound 8 to 30 nucleotides in length targeted to a nucleic acid molecule encoding a human tumor necrosis factor receptor-associated factor, wherein said antisense compound inhibits the expression of human tumor necrosis factor receptor-associated factor.
- 2. The antisense compound of claim 1 which is an 10 antisense oligonucleotide.
 - 3. The antisense oligonucleotide of claim 2 which comprises at least one modified internucleoside linkage.
- 4. The antisense oligonucleotide of claim 3 wherein the modified internucleoside linkage is a phosphorothioate linkage.
- 5. The antisense oligonucleotide of claim 2 which comprises at least one modified sugar moiety.
 - 6. The antisense oligonucleotide of claim 5 wherein the modified sugar moiety is a 2'-O-methoxyethyl sugar moiety.
- 7. The antisense oligonucleotide of claim 2 which comprises at least one modified nucleobase.
 - 8. The antisense oligonucleotide of claim 7 wherein the modified nucleobase is a 5-methylcytosine.
 - 9. The antisense compound of claim 2 which is a chimeric oligonucleotide.

(g)

4

- 10. The antisense compound of claim 1 wherein the human TRAF is TRAF-2 or TRAF-6.
- 11. A composition comprising the antisense compound of claim 1 and a pharmaceutically acceptable carrier or diluent.
 - 12. The composition of claim 11 comprising a colloidal dispersion system.
- 10 13. The composition of claim 11 wherein the antisense compound is an antisense oligonucleotide.
- 14. A method of inhibiting the expression of tumor necrosis factor receptor-associated factor in human cells or tissues comprising contacting said cells or tissues with the antisense compound of claim 1 so that expression of tumor necrosis factor receptor-associated factor is inhibited.
- 15. A method of treating a human having a disease or condition associated with tumor necrosis factor receptor-associated factor comprising administering to said animal a therapeutically or prophylactically effective amount of the antisense compound of claim 1 so that expression of tumor necrosis factor receptor-associated factor is inhibited.
- 16. The method of claim 15 wherein the disease or condition is a hyperproliferative or inflammatory disease or condition.
- 17. A method of reducing jun kinase activation in cells or tissues by tumor necrosis factor- α comprising contacting said cells or tissues with an antisense compound targeted to TRAF-2.
- 35 18. A method of reducing jun kinase activation in cells

-104-

or tissues comprising contacting said cells or tissues with an antisense compound targeted to TRAF-6.

19. A method of reducing E-selectin expression in cells or tissues comprising contacting said cells or tissues with an antisense compound targeted to TRAF-2 or TRAF-6.

SEQUENCE LISTING

<110> Baker, Brenda F.
Cowsert, Lex M.
Monia, Brett P.
Xu, Xiaoxing S.
Isis Pharmaceuticals, Inc.

<120> ANTISENSE MODULATION OF EXPRESSION OF TUMOR NECROSIS FACTOR
RECEPTOR-ASSOCIATED FACTOR (TRAFs)

<130> ISPH-0411

4

-3

2

<140> 09/167,109 1998-10-06 <141> <160> 268 <210> <211> 2380 <212> DNA <213> Homo saplans <220> <221> CDS <222> (76)..(1326)<300> <308> U19261 Genbank <309> 1995-02-21 <400>

gccaggactc cacaaggctg gtcccctgcc ctggagcaac ttaaacaggc cctctqqcca 60

gcctggaacc ctgag atg gcc tcc agc tca ggc agc agt cct cgc ccg gcc 111

Met Ala Ser Ser Ser Gly Ser Ser Pro Arg Pro Ala

1 5 10

cct gal gag aat gag ttt ccc ttt ggg tgc cct ccc acc gtc tgc cag 159 Pro Asp Glu Asn Glu Phe Pro Phe Gly Cys Pro Pro Thr Val Cys Gln 15 20 25

gac cca aag gag ccc agg gct ctc tgc tgt gca ggc tgt ctc tct gag 207 Asp Pro Lys Glu Pro Arg Ala Leu Cys Cys Ala Gly Cys Leu Ser Glu 30

aac ccg agg aat gge gag gat cag atc tgc ccc aaa tgc aga ggg gaa 255 Asn Pro Arg Asn Gly Glu Asp Gln Ile Cys Pro Lys Cys Arg Gly Glu 45 50 55 60

gac ctc cag tct ata agc cca gga agc cgt ctt cga act cag gag aag 303 Asp Leu Gln Ser Ile Ser Pro Gly Ser Arg Leu Arg Thr Gln Glu Lys

get cac eee gag gtg get gag get gga att ggg tge eee ttt gea ggt 351

Ala His Pro Glu Val Ala Glu Ala Gly Ile Gly Cys Pro Phe Ala Gly 80 85 90

gtc ggc tgc tcc ttc aag gga agc cca cag tct gtg caa gag cat gag 399 Val Gly Cys Ser Phe Lys Gly Ser Pro Gln Ser Val Gln Glu His Glu 95 100 105

WO 00/20435	PCT/US99/23171
-------------	----------------

gtc Val	acc Thr 110	tcc Ser	cag Gln	acc Thr	tcc Ser	cac His 115	cta Leu	aac Asn	ctg Leu	ctg Leu	ttg Leu 120	gjà aaa	ttc Phe	atg Met	aaa Lys	447
cag Gln 125	tgg Trp	aag Lys	gcc Ala	cgg Arg	ctg Leu 130	ggc Gly	tgt Cys	ggc Gly	ctg Leu	gag Glu 135	tct Ser	Gly aaa	ccc Pro	atg Met	gcc Ala 140	495
ctg Leu	gag Glu	cag Gln	aac Asn	ctg Leu 145	tca Ser	gac Asp	ctg Leu	cag Gln	ctg Leu 150	cag Gln	gca Ala	gcc Ala	gtg Val	gaa Glu 155	gtg Val	543
gcg Ala	gly aaa	gac Asp	ctg Leu 160	gag Glu	gtc Val	gat Asp	tgc Cys	tac Tyr 165	cgg Arg	gca Ala	ccc Pro	tgc Cys	tcc Ser 170	gag Glu	agc Ser	59 1
cag Gln	gag Glu	gag Glu 175	ctg Leu	gcc Ala	ctg Leu	cag Gln	cac His 180	ttc Phe	atg Met	aag Lys	gag Glu	aag Lys 185	ctt Leu	ctg Leu	gct Ala	639
gag Glu	ctg Leu 190	gag Glu	Gly 999	aag Lys	ctg Leu	cgt Arg 195	gtg Val	ttt Phe	gag Glu	aac Asn	att Ile 200	gtt Val	gct Ala	gtc Val	ctc Leu	687
aac Asn 205	aag Lys	gag Glu	gtg Val	gag Glu	gcc Ala 210	tcc Ser	cac His	ctg Leu	gcc Ala	ctg Leu 215	gcc Ala	acc Thr	tct Ser	atc Ile	cac His 220	735
cag Gln	agc Ser	cag Gln	ctg Leu	gac Asp 225	cgt Arg	gag Glu	cgc Arg	atc Ile	ctg Leu 230	agc Ser	ttg Leu	gag Glu	cag Gln	agg Arg 235	gtg Val	783
gtg Val	gag Glu	ctt Leu	cag Gln 240	cag Gln	acc Thr	ctg Leu	gcc Ala	cag Gln 245	aaa Lys	gac Asp	cag Gln	gcc Ala	ctg Leu 250	ggc Gly	aag Lys	831
ctg Leu	gag Glu	cag Gln 255	agc Ser	ttg Leu	cgc Arg	ctc Leu	atg Met 260	gag Glu	gag Glu	gcc Ala	tcc Ser	ttc Phe 265	gat Asp	ggc Gly	act Thr	879
ttc Phe	ctg Leu 270	tgg Trp	aag Lys	atc Ile	acc Thr	aat Asn 275	gtc Val	acc Thr	agg Arg	cgg Arg	tgc Cys 280	cat His	gag Glu	tcg Ser	gcc Ala	927
tgt Cys 285	ggc Gly	agg Arg	acc Thr	gtc Val	agc Ser 290	ctc Leu	ttc Phe	tcc Ser	cca Pro	gcc Ala 295	ttc Phe	tac Tyr	act Thr	gcc Ala	aag Lys 300	975
tat Tyr	ggc Gly	tac Tyr	aag Lys	ttg Leu 305	tgc Cys	ctg Leu	cgg Arg	ctg Leu	tac Tyr 310	ctg Leu	aat Asn	gga Gly	gat Asp	ggc Gly 315	act Thr	1023
gga Gly	aag Lys	aga Arg	acc Thr 320	cat His	ctg Leu	tcg Ser	ctc Leu	ttc Phe 325	atc Ile	gtg Val	atc Ile	atg Met	aga Arg 330	Gly 999	gag Glu	1071
tat Tyr	gat Asp	gcg Ala 335	ctg Leu	ctg Leu	acg Pro	tgg Trp	ccc Pro 340	ttc Phe	cgg Arg	aac Asn	aag Lys	gtc Val 345	acc Thr	ttc Phe	atg Met	1119
ctg Leu	ctg Leu 350	gac Asp	cag Gln	aac Asn	aac Asn	cgt Arg 355	gag Glu	cac His	gcc Ala	att Ile	gac Asp 360	gcc Ala	ttc Phe	cgg Arg	cct Pro	1167

	go toa gog too tt er Ser Ala Ser Ph 370				
	ga tgc cca ctc tt y Cys Pro Leu £n 385				Pro
aag cac go Lys His Al	cc tac gtg aag ga .a Tyr Val Lys As 400	c gac aca p Asp Thr 405	atg ttc ctc Met Phe Le	c aag tgc att u Lys Cys Ile 410	gtg 1311 Val
gag acc ag Glu Thr Se 41		eggg gete	otgagg gage!	tocaac toagaa	ggga 1366
getagecaga	ggactgtgat gccc	igadat tg	gcacccaa gad	cctcaggg caca	aagatg 1426
ggtgaaggct	ggcatgatec aagea	aagact gaq	ggggtega ett	togggotg goda	tctggt 1486
taggatggca	ggacgtgggc tggg	ccaca aaq	ggcaaagg gt:	ccagaagg agac	aggcag 1546
agctgctccc	ctctgcacgg accat	gogac act	gggagge cag	gtgageca etec	ggadac 1606
gaatgttgag	gtggactete accas	atgag aag	gaaaatgg aac	ccaggett ggaad	ccgtag 1666
gacccaagca	gagaagetet eggge	tagga aga	atctctgc agg	ggccgcca gggag	gacetg 1726
gacacaggco	tgetetettt ttete	caggg tca	igaaacag gac	cgggtgg aaggg	gatggg 1786
gtgccagttt	gaatgcagtc tgtco	agget egt:	cattgga ggt	gaacaag caaa	cccaga 1846
eggetecact	aggacttcaa attgg	ıgggtt gga	itttgaag act	tttaagt ttcct	tccag 1906
cccagaaagt	ctctcattct agcct	cctgg ccc	aggtgag tcc	tagaget acage	ggttc 1966
tggaaacatt	caggagette etgte	cteed ago	tecteac tea	cetteag taaco	cccac 2026
tggactgacc	tggtccacag ggcac	ctgec acc	etgggee tgg	geagetea gette	ccaac 2086
acgcaggagc	acacccagec eccac	atcct gtg	cctccat cag	ctaaaca ccac	gtcact 2146
tcatgcaggt	gaaacccagt cactg	tgage tee	caggtgc agc	cagagge accto	caagaa 2206
gaagagggc	ataaactttc ctctt	cctgc cta	gaggeee cae	etttggt gettt	ccaga 2266
atcccgtaac	acctgattaa ctgag	gcate cac	ttottto ago	agactga tcago	gacete 2326
caagccactg	agcaatgtat aacco	caaag gga	attcaaa aaa	aaaaaaa c na	2380
<210><211><211><212><213>	2 2262 DNA Homo sapiens				
<220> <221> <222>	CDS (55)(1560)				
<300> <308> <309>	U12597 Genbank 1996-02-16				

<400> 2

			_													
gaa	attco	egge	gcg	ctge	gac (egtte	gggg	et tt	gtto	egeg	3 339	gtcac	cagc	tct	atg Met 1	57
			a Se						ser Ser					ı Glr	g ccc n Pro	105
			Lys					Thr					Lys		ctg Leu	153
		Ala					Leu			g dad		Gln				201
	His					Phe				agc Ser 60	Ile					249
cct Pro	cag Gln	aac Asn	tgt Cys	gct Ala 70	gcc Ala	tgt Cys	gtt Val	cac His	gag Glu 75	ggc Gly	ata Ile	tat Tyr	gaa Glu	gaa Glu 80	ggc Gly	297
				Glu						cca Pro						345
										ccc Pro						393
										tgc Cys						441
										aaa Lys 140						489
										tgc Cys						537
-	-			-				~	_	gga Gly		_		_	_	585
										act Thr						633
										gac Asp						681
										gcc Ala 220						729
acg	gta	gag	ggt	gag	aaa	cag	cag	gag	cac	gag	gtg	cag	tgg	ctg	cgg	777

Thr	Val	Glu	Gly	Glu 230	-	Gln	Gln	Glu	His 235		ı Val	. Gln	Trp	Leu 240	_	
				Met					Val			g gca Ala		Pro		825
			Gln									cag Gln 270	Arg			873
												gtc Val				921
												gcc Ala				969
_			_	_		_	_		-	-	_	agt Ser	-	_		1017
												gcg Ala				1065
-								100	_	1,00	4.5	ggc Gly 350		~ ~		1113
_				_		_				_		cag Gln	_			1161
												tac Tyr				1209
												ggc Gly				1257
												atg Met				1305
						Trp						gtg Val 430				1353
												gcc Ala				1401
_							-			_		gac Asp	-			1449
												atg Met				1497

aat too tac gtg cgg gac gat gcc atc ttc atc aag gcc att gtg gac Asn Ser Tyr Val Arg Asp Asp Ala Ile Phe Ile Lys Ala Ile Val Asp 485 490 495	1545
ctg aca ggg ctc taa ctgcccccta ctggtgtctg ggggttgggg gcagccaggc Leu Thr Gly Leu 500	1600
acagccggct cacggagggg ccaccacgct gggccagggt ctcactgtac aagtgggcag	1660
gggccccgct tgggcgcttg ggagggtgtc ggcctgcagc caagttcact gtcacggggg	1720
aaggagecae cagecagtee teagatttea gagaetgegg aggggettgg cagaeggtet	1780
tagccaaggg ctgtggtggc attggccgag ggtcttcggg tgcttcccag cacaagctgc	1840
ccttgctgtc ctgtgcagtg aagggagagg ccctgggtgg gggacactca gagtgggagc	1900
acatcccage agtgcccatg tagcaggage acagtggatg gccttgtgtc cctcgggcat	1960
gacaggcaga aacgagggct gctccaggag aagggcctcc tgctggccag agcaaggaag	2020
getgageage ttggttetee eetetggeee etggagagaa gggageatte etagaeeeet	2080
gggtgcttgt ctgcacagag ctctggtctg tgccaccttg gccaggctgg ctgtgggagg	2140
gtetggtece acgeegeete tgeteagaea etgtgtggga gggeacagea cagetgeggg	2200
taaagtgtga gagettgeea teeageteae gaagaeagag ttattaaaee attacaaate	2260
tc	2262
<210> 3 <211> 2455 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (218)(1924)	
<300> <308> U21092 <309> 1995-03-23	
<400> 3	
cgggggagcg cggcgcggcc gccgcgtgcg cgagccgggg ttgcagccca gccgggactt	
tecageegge ggeageegeg geggtegteg getetteeee geeeeegte atggggeage	120
ceggggagea gaacgetgeg gacegeggeg gaggaegege eeggegeeee tgageeggee	180
gagoggogao ggacogogag aactootott tootaaa atg gag tog agt aaa aag Met Glu Ser Ser Lys Lys 1 5	235
atg gac tot oot ggo gog otg oag act aac oog oog ota aag otg oac Met Asp Ser Pro Gly Ala Leu Gln Thr Asn Pro Pro Leu Lys Leu His 10 20	283
act gac cgt agt gct ggg acg cca gtt ttt gtc cct gaa caa gga ggt Thr Asp Arg Ser Ala Gly Thr Pro Val Phe Val Pro Glu Gln Gly Gly	331

**

SAME SAME

		25					30					35				
tac Tyr	aag Lys 40	gaa Glu	aag Lys	ttt Phe	gtg Val	aag Lys 45	acc Thr	gtg Val	gag Glu	gac Asp	aag Lys 50	tac Tyr	aag Lys	tgt Cys	gag Glu	379
aag Lys 55	Cys	cac His	ctg Leu	gtg Val	ctg Leu 60	tgc Cys	agc Ser	ccg Pro	aag Lys	cag Gln 65	acc Thr	gag Glu	tgt Cys	Gly aaa	cac His 70	427
cgc Arg	ttc Phe	tgc Cys	gag Glu	agc Ser 75	tgc Cys	atg Met	gcg Ala	gcc Ala	ctg Leu 80	ctg Leu	agc Ser	tct Ser	tca Ser	agt Ser 85	cca Pro	475
aaa Lys	tgt Cys	aca Thr	gcg Ala 90	tgt Cys	caa Gln	gag Glu	agc Ser	atc Ile 95	gtt Val	aaa Lys	gat Asp	aag Lys	gtg Val 100	ttt Phe	aag Lys	523-
gat Asp	aat Asn	tgc Cys 105	tgc Cys	aag Lys	aga Arg	gaa Glu	att Ile 110	ctg Leu	gct Ala	ctt Leu	cag Gln	atc Ile 115	tat Tyr	tgt Cys	cgg Arg	571
aat Asn	gaa Glu 120	agc Ser	aga Arg	ggt Gly	tgt Cys	gca Ala 125	gag Glu	cag Gln	tta Leu	acg Thr	ctg Leu 130	gga Gly	cat His	ctg Leu	ctg Leu	619
gtg Val 135	cat His	tta Leu	aaa Lys	aat Asn	gat Asp 140	tgc Cys	cat His	ttt Phe	gaa Glu	gaa Glu 145	ctt Leu	cca Pro	tgt Cys	gtg Val	cgt Arg 150	667
cct Pro	gac Asp	tgc Cys	aaa Lys	gaa Glu 155	aag Lys	gtc Val	ttg Leu	agg Arg	aaa Lys 160	gac Asp	ctg Leu	cga Arg	gac Asp	cac His 165	gtg Val	715
gag Glu	aag Lys	gcg Ala	tgt Cys 170	aaa Lys	tac Tyr	cgg Arg	gaa Glu	gcc Ala 175	aca Thr	tgc Cys	agc Ser	cac His	tgc Cys 180	aag Lys	agt Ser	763
cag Gln	gtt Val	ccg Pro 185	atg Met	atc Ile	gcg Ala	ctg Leu	cag Gln 190	aaa Lys	cac His	gaa Glu	gac Asp	acc Thr 195	gac Asp	tgt Cys	ccc Pro	811
tgc Cys	gtg Val 200	gtg Val	gta Val	tcc ser	tgc Cys	cct Pro 205	cac His	aag Lys	tgc Cys	agc Ser	gtc Val 210	cag Gln	act Thr	ctc Leu	ctg Leu	859
agg Arg 215	agc Ser	gag Glu	ttg Leu	agt Ser	gca Ala 220	cac His	ttg Leu	tca Ser	gag Glu	tgt Cys 225	gtc Val	aat Asn	gcc Ala	ccc Proʻ	agc Ser 230	907
acc Thr	tgt Cys	agt Ser	ttt Phe	aag Lys 235	cgc Arg	tat Tyr	ggc Gly	tgc Cys	gtt Val 240	ttt Phe	cag Gln	Gly 999	aca Thr	aac Asn 245	cag Gln	955
cag Gln	atc Ile	aag Lys	gcc Ala 250	cac His	gag Glu	gcc Ala	agc Ser	tcc Ser 255	gcc Ala	gtg Val	cag Gln	cac His	gtc Val 260	aac Asn	ctg Leu	1003
ctg Leu	aag Lys	gag Glu 265	tgg Trp	agc Ser	aac Asn	tcg Ser	ctc Leu 270	gaa Glu	aag Lys	aag Lys	gtt Val	tcc Ser 275	ttg Leu	ttg Leu	cag Gln	1051
aat	gaa	agt	gta	gaa	aaa	aac	aag	agc	ata	caa	agt	ttg	cac	aat	cag	1099

Asr	Glu 280		Val	Glu	Lys	Asn 285	-	s Ser	lle	Glr	Ser 290		His	Asn	Gln	
	Cys					Glu					Lys			ctt Leu		1147
		_			Ile				-	Arg			_	agc Ser 325	Gln	1195
														cgg Arg		1243
								Lys						ctc Leu		1291
														caa Gln		1339
														gac Asp		1387
														cgc Arg 405		1435
_	_	_			-	_								aag Lys		1483
														acc Thr		1531
														aag Lys	_	1579
-								-				-		acg Thr		1627
														ctg Leu 485		1675
		Pro												cag Gln		1723
														aac Asn		1771
														ggc Gly		1819

第

1

, Ç

cca gtc ttt gtg gcc caa act gtt cta gaa aat ggg aca tat att aaaPro Val Phe Val Ala Gln Thr Val Leu Glu Asn Gly Thr Tyr Ile Lys535540	1867
gat gat aca att ttt att aaa gtc ata gtg gat act tcg gat ctg ccc Asp Asp Thr Ile Phe Ile Lys Val Ile Val Asp Thr Ser Asp Leu Pro 555 560 565	1915
gat ccc tga taagtagctg gggaggtgga tttagcagaa ggcaactcct Asp Pro	1964
ctgggggatt tgaaccggtc tgtcttcact gaggtcctcg cgctcagaaa aggaccttg	2024
gagacggagg aagcggcaga aggcggacgc gtgccggcgg gaggagccac gcgtgagca	2084
acctgacacg tittataata gactageens acticactet gaagaattat tiatcette	2144
acaagataaa tattgetgte agagaaggtt tteattttea tttttaaaga tetagttaa	2204
taaggtggaa aacatatatg ctaaacaaaa gaaacatgat ttttcttcct taaacttga	2264
caccaaaaaa acacacacac acacacacgt ggggatagct ggacatgtca gcatgttaa	2324
taaaaggaga atttatgaaa tagtaatgca attotgatat ottotttota aaattoaag	
gtgcaatttt gtttcaaata cagtatattg tctattttta aggcctccaa aaaaaaaaa	
aattooggoo g	2455
<210> 4	2.2_0
<211> 1999	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS <222> (86)(1498)	
<300>	
<300> <308> X80200	
<309> 1998-04-15	
< 400 > 4	
geegggageg eegeteeage gaggegeggg etgtggggee geegegtgee tggeeeeget	60
egecegtgee ggeegetege degee atg eet gge tte gae tae aag tte etg	112
Met Pro Gly Phe Asp Tyr Lys Phe Leu	
1 5	
gag aag ccc aag cga cgg ctg ctg tgc cca ctg tgc ggg aag ccc atg	160
Glu Lys Pro Lys Arg Arg Leu Leu Cys Pro Leu Cys Gly Lys Pro Met 10 15 20 25	
and and art ata and att too and too ago and ath had ant ago	208
ege gag eet gtg eag gtt tee ace tge gge eac egt tte tge gat ace Arg Glu Pro Val Gln Val Ser Thr Cys Gly His Arg Phe Cys Asp Thr	200
30 35 40	
tge ctg cag gag ttc ctc agt gaa gga gtc ttc aag tgc cct gag gac	256
Cys Leu Gln Glu Phe Leu Ser Glu Gly Val Phe Lys Cys Pro Glu Asp 45 50 55	
cag ett eet etg gae tat gee aag ate tae eea gae eeg gag etg gaa	304

Gln	Leu	Pro 60	Leu	Asp	Tyr	Ala	Lys 65	Ile	Tyr	Pro	Asp	Pro 70	Glu	Leu	Glu	
gta Val	caa Gln 75	gta Val	ttg Leu	ggc Gly	ctg Leu	cct Pro 80	atc Ile	cgc Arg	tgc Cys	atc Ile	cac His 85	agt Ser	gag Glu	gag Glu	ggc Gly	352
tgc Cys 90	cgc Arg	tgg Trp	agt Ser	Gly 999	cca Pro 95	cta Leu	cgt Arg	cat His	cta Leu	cag Gln 100	ggc Gly	cac His	ctg Leu	aat Asn	acc Thr 105	400
tgc Cys	agc Ser	ttc Phe	aat Asn	gtc Val 110	att Ile	ccc Pro	tgc Cys	cct Pro	aat Asn 115	cgc Arg	tgc Cys	ccc Pro	atg Met	aag Lys 120	ctg Leu	448
agc Ser	cgc Arg	cgt Arg	gat Asp 125	cta Leu	cct Pro	gca Ala	cac His	ttg Leu 130	cag Gln	cat His	gac Asp	tgc Cys	ccc Pro 135	aag Lys	cgg Arg	496
egc Arg	ctc Leu	aag Lys 140	tgc Cys	gag Glu	ttt Phe	tgt Cys	ggc Gly 145	tgt Cys	gac Asp	ttc Phe	agt Ser	999 Gly 150	gag Glu	gcc Ala	tat Tyr	544
gag Glu	agc Ser 155	cat His	gag Glu	ggt Gly	atg Met	tgc Cys 160	ccc Pro	cag Gln	gag Glu	agt Ser	gtc Val 165	tac Tyr	tgt Cys	gag Glu	aat Asn	592
aag Lys 170	tgt Cys	ggt Gly	gcc Ala	cgc Arg	atg Met 175	atg Met	cgg Arg	Gly 999	ctg Leu	ctg Leu 180	gcc Ala	cag Gln	cat His	gcc Ala	acc Thr 185	640
tct Ser	gag Glu	tgc Cys	ccc Pro	aag Lys 190	cgc Arg	act Thr	cag Gln	ccc Pro	tgc Cys 195	acc Thr	tac Tyr	tgc Cys	act Thr	aag Lys 200	gag Glu	688
ttc Phe	gtc Val	ttt Phe	gac Asp 205	acc Thr	atc Ile	cag Gln	agc Ser	cac His 210	cag Gln	tac Tyr	cag Gln	tgc Cys	cca Pro 215	agg Arg	ctg Leu	736
cct Pro	gtt Val	gcc Ala 220	tgc Cys	ccc Pro	aac Asn	caa Gln	tgt Cys 225	ggt Gly	gtg Val	ggc Gly	act Thr	gtg Val 230	gct Ala	cgg Arg	gag Glu	784
gac Asp	ctg Leu 235	cca Pro	ggc	cat His	ctg Leu	aag Lys 240	gac Asp	agc Ser	tgt Cys	aac Asn	acc Thr 245	gcc Ala	ctg Leu	gtg Val	ctc Leu	832
tgc Cys 250	cca Pro	ttc Pha	aaa Lys	gac Asp	tcc Ser 255	ggc Gly	tgc Cys	aag Lys	cac His	:gg Arg 260	tgc Cys	cct Pro	aag Lys	ctg Leu	gca Ala 265	880
atg Met	gca Ala	egg Arg	cat His	gtg Val 270	gag Glu	gag Glu	agt Ser	gtg Val	aag Lys 275	cca Pro	cat His	ctg Leu	gcc Ala	atg Met 280	atg Met	928
tgt Cys	gcc Ala	ctg Leu	gtg Val 285	agc Ser	cgg Arg	caa Gln	cgg Arg	cag Gln 290	gag Glu	ctg Leu	cag Gln	gag Glu	ctt Leu 295	cgg Arg	cga Arg	976
gag Glu	ctg Leu	gag Glu 300	gag Glu	cta Leu	tca Ser	gtg Val	ggc Gly 305	agt Ser	gat Asp	ggc Gly	gtg Val	ctc Leu 310	atc Ile	tgg Trp	aag Lys	1024

*

	ggc Gly 315															1072
	gag Glu															1120
	cag Gln															1168
	ctc Leu															1216
	gag Glu															1264
	gac Asp 395															1312
	gac Asp				•••			_								1360
	ctg Leu															1408
	cag Gln															1456
	cgt Arg												tga			1498
gtgc	aggt	gg g	gtto	gagg	g ga	aagg	acga	tgg	iggca	tga	cctc	agto	ag g	gcact	ggctg	1558
aact	tgga	ga g	9999	ccgg	ja cc	cccg	tcag	ctg	cttc	tgc	tgcc	tagg	itt c	tgtt	acccc	1618
atco	taac	tc c	ccca	gcca	c ca	ccct	cagg	tgo	ctcc	aat	tggt	gctt	ca g	geect	ggccc	1678
ctgt	.gggg	aa c	aggt	cttg	ia aa	tcat	gaag	ggc	tgga	aac	aagt	gacc	cc a	gggc	ctgtc	1738
tece	ttrt	tg g	gtag	ggca	g ac	atgo	cttg	gtg	ccgg	tca	cact	ctac	ac g	gact	gaggt	1798
gcct	gata	ag g	tgct	atgt	c cc	aaga	gcca	taa	9999	gtg	ggaa	ttgg	igg a	ıggga	.gaaag	1858
ggta	gttc	aa a	gagt	ctgt	c tt	gaga	tctg	att	tttt	ccc	cctt	tacc	ta g	ctgt	gcccc	1918
ctct	ggtt	at t	tatt	tcct	t ag	tgcc	agga	999	caca	gca	9999	agco	ct g	attt	ttaat	1978
aaat	ccgg	aa t	tgta	ttta	tt											1999
<210 <211 <212 <213	>		5 3993 DNA Homo	sap	iens											

. 7.

, eş

WO 00/20435		PCT/US99/23171
<220> <221> <222>	CDS (55)(1728)	
<300> <308> <309>	AB000509 1998-03-25	
<400>	5	
gcagcagccg	cgootgoaga ooggootogo ggagooogog	cgccgagccc caca atg 57 Met 1
gct tat tca Ala Tyr Ser	gaa gag cat aaa ggt atg ccc tgt Glu Glu His Lys Gly Met Pro Cys 5	ggt ttc atc cgc cag 105 - Gly Phe Ile Arg Gln 15
aat tee gge Asn Ser Gly 20	aac too att too ttg gac ttt gag Asn Ser Ile Ser Leu Asp Phe Glu 25	ccc agt ata gag tac 153 Pro Ser Ile Glu Tyr 30
cag ttt gtg Gln Phe Val 35	gag cgg ttg gaa gag cgc tac aaa Glu Arg Leu Glu Glu Arg Tyr Lys 40	tgt gcc ttc tgc cac 201 Cys Ala Phe Cys His 45
tcg gtg ctt Ser Val Leu 50	cac aac ccc cac cag aca gga tgt His Asn Pro His Gln Thr Gly Cys 55 60	ggg cac cgc ttc tgc 249 Gly His Arg Phe Cys 65
cag cac tgc Gln His Cys	atc ctg tcc ctg aga gaa tta aac Ile Leu Ser Leu Arg Glu Leu Asn 70 75	aca gtg cca atc tgc 297 Thr Val Pro Ile Cys 80
cct gta gat Pro Val Asp	aaa gag gtc atc aaa tct cag gag Lys Glu Val Ile Lys Ser Gln Glu 85 90	gtt ttt aaa gac aat 345 Val Phe Lys Asp Asn 95
tgt tgc aaa Cys Cys Lys 100	aga gaa gtc ctc aac tta tat gta Arg Glu Val Leu Asn Leu Tyr Val 105	tat tgc agc aat gct 393 Tyr Cys Ser Asn Ala 110
cct gga tgt Pro Gly Cys 115	aat gcc aag gtt att ctg ggc cgg Asn Ala Lys Val Ile Leu Gly Arg 120	tac cag gat cac ctt 441 Tyr Gln Asp His Leu 125
cag cag tgc Gln Gln Cys 130	tta ttt caa cct gtg cag tgt tct Leu Phe Gln Pro Val Gln Cys Ser 135	aat gag aag tgc cgg 489 Asn Glu Lys Cys Arg 145
gag cca gtc Glu Pro Val	cta cgg aaa gac ctg aaa gag cat Leu Arg Lys Asp Leu Lys Glu His 150 155	ttg agt gca tcc tgt 537 Leu Ser Ala Ser Cys 160
cag ttt cga Gln Phe Arg	aag gaa aaa tgc ctt tat tgc aaa Lys Glu Lys Cys Leu Tyr Cys Lys 165	aag gat gtg gta gtc 585 Lys Asp Val Val Val 175
atc aat cta Ile Asn Leu 180	cag aat cat gag gaa aac ttg tgt Gln Asn His Glu Glu Asn Leu Cys 185	cct gaa tac cca gta 633 Pro Glu Tyr Pro Val 190

ttt tgt ccc aac aat tgt gcg aag att att cta aaa act gag gta gat 681

Phe	Cys 195	Pro	Asn	Asn	Cys	Ala 200	Lys	Ile	Ile	Leu	Lys 205		Glu	Val	Asp	
gaa Glu 210	cac His	ctg Leu	gct Ala	gta Val	tgt Cys 215	cct Pro	gaa Glu	gct Ala	gag Glu	caa Gln 220	gac Asp	tgt Cys	cct Pro	ttt Phe	aag Lys 225	729
cac His	tat Tyr	ggc Gly	tgt Cys	gct Ala 230	gta Val	acg Thr	gat Asp	aaa Lys	cgg Arg 235	agg Arg	aac Asn	ctg Leu	cag Gln	caa Gln 240	cat His	7 77
	cat His															825
gtc Val	caa Gln	tta Leu 260	gaa Glu	gaa Glu	cag Gln	att Ile	tct Ser 265	gac Asp	tta Leu	cac His	aag Lys	agc Ser 270	cta Leu	gaa Glu	cag Gln	873
	gaa Glu 275															921
aag Lys 290	gag Glu	ttc Phe	aag Lys	cag Gln	ttt Phe 295	gca Ala	cag Gln	ttg Leu	ttt Phe	Gly 300	aaa Lys	aat Asn	gga Gly	agc Ser	ttc Phe 305	969
ctc Leu	cca Pro	aac Asn	atc Ile	cag Gln 310	gtt Val	ttt Phe	gcc Ala	agt Ser	cac His 315	att Ile	gac Asp	aag Lys	tca Ser	gct Ala 320	tgg Trp	1017
cta Leu	gaa Glu	gct Ala	caa Gln 325	gtg Val	cat His	caa Gln	tta Leu	tta Leu 330	caa Gln	atg Met	gtt Val	aac Asn	cag Gln 335	caa Gln	caa Gln	1065
aat Asn	aaa Lys	ttt Phe 340	gac Asp	ctg Leu	aga Arg	cct Pro	ttg Leu 345	atg Met	gaa Glu	gca Ala	gtt Val	gat Asp 350	aca Thr	gtg Val	aaa Lys	1113
cag Gln	aaa Lys 355	att Ile	acc Thr	ctg Leu	cta Leu	gaa Glu 360	aac Asn	aat Asn	gat Asp	caa Gln	aga Arg 365	tta Leu	gcc Ala	gtt Val	tta Leu	1161
gaa Glu 370	gag Glu	gaa Glu	act Thr	aac Asn	aaa Lys 375	cat His	gat Asp	acc Thr	cac His	att Ile 380	aat Asn	att Ile	cat His	aaa Lys	gca Ala 385	1209
cag Gln	ctg Leu	agt Ser	aaa Lys	aat Asn 390	gaa Glu	gag Glu	cga Arg	ttt Phe	aaa Lys 395	ctg Leu	ctg Leu	gag Glu	ggt Gly	act Thr 400	tgc Cys	1257
tat Tyr	aat Asn	gga Gly	aag Lys 405	ctc Leu	att Ile	tgg Trp	aag Lys	gtg Val 410	aca Thr	gat Asp	tac Tyr	aag Lys	atg Met 415	aag Lys	aag Lys	1305
aga Arg	gag Glu	gcg Ala 420	gtg Val	gat Asp	Gly 999	cac His	aca Thr 425	gtg Val	tcc Ser	atc Ile	ttc Phe	agc Ser 430	cag Gln	tcc Ser	ttc Phe	1353
tac Tyr	acc Thr 435	agc Ser	cgc Arg	tgt Cys	Gly	tac Tyr 440	cgg Arg	ctc Leu	tgt Cys	gct Ala	aga Arg 445	gca Ala	tac Tyr	ctg Leu	aat Asn	1401

State Pro

ggg gat ggg Gly Asp Gly 450	Ser Gly	agg ggg Arg Gly 455	tca Ser	cac His	ctg Leu	tcc Ser 460	cta Leu	tac Tyr	ttt Phe	gtg Val	gtc Val 465	1449
atg cga gga Met Arg Gly	gag ttt g Glu Phe 2 470	gac tca Asp Se.	ctg Leu	ttg Leu	cag Gln 475	tgg Trp	cca Pro	ttc Phe	agg Arg	cag Gln 480	agg Arg	1497
gtg acc ctg Val Thr Leu	atg ctt Met Leu : 485	ctg gac Leu Asp	cag Gln	agt Ser 490	ggc Gly	aaa Lys	aag Lys	aac Asn	att Ile 495	Met	gag Glu	1545
acc ttc aaa Thr Phe Lys 500	Pro Asp											1593
gag atg aac Glu Met Asn 515	att gca Ile Ala	ect gg Ser Gly 520	tgt Cys	ccc Pro	cgc Arg	ttt Phe	gtg Val 525	gct Ala	cat His	tct Ser	gtt Val	1641
ttg gag aat Leu Glu Asn 530	Ala Lys A	aac gcc Asn Ala 535	tac Tyr	att Ile	aaa Lys	gat Asp 540	gac Asp	act Thr	ctg Leu	ttc Phe	ttg Leu 545	1689
aaa gtg gcc Lys Val Ala	gtg gac t Val Asp I 550	ta act Leu Thr	gac Asp	ctg Leu	gag Glu 555	gat Asp	ctc Leu	tag	tca	ctgtt	at	1738
ggggtgataa	gaggacttct	tgggg	caga	act	gtgg	gagg	agag	gcaca	tt 1	tgatt	atcat	1798
attgacctgg	atttagacto	aaagca	catt	tgt	attt	gcc	tttt	tcct	ta a	acgtt	tgaag:	1858
tcagtttaaa	acttctgaaq	g tgctgt	cttt	tta	catt	tta	ctct	gtcc	ca g	gtttg	gaaact	1918
taaaactctt	agaatattct	cttatt	attt	ata	tttt	tat	attt	cttg	jaa a	agato	gtaag	1978
tttcttgaag	tttttgggg	gtttct	cttt	tac	tggt	gct	tago	gcag	rtg t	catag	ggcac	2038
tctaaatatt	gagtgttato	g gaggad	acag	agg	tago	aga	atco	cagt	tg a	aaaat	gtttt	2098
gatattttat	tgtttggcct	attgat	tcta	gac	ctgg	gcct	taag	tctg	ca a	aaago	catct	2158
ttataaggta	ggatgttaca	gttaag	naagt	999	tgat	gta	gtta	caaa	.ga t	taata	itgete	2218
agtttggacc	tttttttcag	, ttaaat	gcta	aat	atat	gaa	aatt	acta	ta d	cctct	aagta	2278
ttttcatgaa	attcaccago	agtttg	caag	cac	agtt	ttg	caag	gctg	rca t	caaga	actgg	2338
tgaatggggt	aagcatttto	attett	cctg	ctg	aagt	aaa	gcag	aaag	ta d	ctqca	itagta	2398
tatgagatat	agccagctag	g ctaaag	ıttca	gat	tttg	rtta	ggtt	caac	ecc t	atga	aaaaa	2458
actattttca	taggtcaaaa	atggta	aaaa	att	agca	gtt	tcat	aaga	tt d	caacc	aaata	2518
aatatatata	tacacacaca	cataca	tata	cac	ctat	ata.	tgtg	tgta	ta d	caaac	agttc	2578
gaatgtattt	tggtgacagt	aataaa	itcaa	tgt	.gagg	atg	gata	gaat	tt a	agtat	atgat	2638
agagaaaatg	tcataaatgg	ataaaa	ıggaa	ttt	acaa	ctt	gagg	agaa	aa o	ecttt	acaat	2698
ttcctatggg	tgtcagaagt	actcto	agcg	aaa	act9	atg	gcta	aaac	ag t	tatct	actat	2758
tctctgataa	cttttttt	gagaca	ıgagt	ttc	attg	ıtca	ccca	ggct	gg a	agtac	agtgg	2818

```
catquictea qeteactqca aactetqcet ecegaattea agtgattete etgeeteage 2878
ctcctgagta gctgggatta caggcgcccg tcaccacacc caggtaattt ttgtattttt 2938
agtagagaeg gagttttgee atgttggeea agetgatete aaaeteetga eeteaagtga 2998
totgooogoo toggootooo aaagtgotga gattacaggo atgacccaco gogtcaagoo 3058
tetgacaact attgaatttg taagetgeta tgeaaatggg catttatata aaettgtgat 3118
gtttcttgtc agaattctga gtactctgtg aagaacagaa atgatcatat tcttatgcat 3178
ctatctgtat gggtctgaag gtgtatatac aaactgagat gagtccttat gactcttgat 3238
aageetgagt ttaacaacaa caaaaatgee aagttgteet gageeettet gegttgttat 3298
gecactices tastgeteat atgeacgetg geteceetgg geacgeaagg atgagtatgg 3358
qccatqqqcc cctqtaqaqc tqcttacctq qtqatqacca tqcaccttac aatttctqaa 3418
cagttaaccc tatagaagca tgctttatat gagtgtcttc tgggaagagg aaccttctta 3478
attetettetg tgggatttte aaaatgetaa agaeteaeae tgeageaate ateeeagatg 3538
attaaattca aagaaatagg ttcacaacag gaatatactg aagaactaga gtgtcactgc 3598
tqqtqaactq tqqcacqqtt qctcaacaca tcacctcgga caaattcagg aagcatttct 3658
ttagcccaca agtccagacc caggtgctct gtatgtttgt ttttaatatt catcatatcc 3718
aagttcactc tgtcttcctg agcagtggaa gatcatattg ctgtaacttc ttttaagtag 3778
ttgatgtgga aaacatttta aagtgaattt gtcaaaatgc tggttttgtg ttttatccaa 3838
cttttgtgca tatatataaa gtatgtcatg gcatggtttg cttaggagtt cagagttcct 3898
tcatcatcga aatagtgatt aagtgatccc agaacaagga atactagagt aaaaagcacc 3958
                                                                  3993
tctttttcag aaaaaaaaa aaaaaaaaa aaaaa
<210>
            2264
<211>
<212>
            DNA
<213>
           Homo sapiens
<220>
           CDS
<221>
<222>
            (222)..(1790)
<300>
<308>
           U78798
           1996-12-12
<309>
<400>
ccgcagctgg ggettggeet gcggggggcc agcgaaggtg gcgaaggctc ccactggatc 60
cagagittige egiccaagea geetegicte ggegegeagt gietgigtee gicetetaee 120
```

Met Ser Leu Leu Asn

agegeetigg eigageggag tegigeggit ggigggggag eeelgeeete eiggitegge 180 eteceegege aelagaaega geaagigata alcaagitae i alg agit eig eta aac 236

Ŷ,

13

PCT/US99/23171

												1				5	
tgt Cys	gaa Glu	aac Asn	agc Ser	tgt Cys 10	gga Gly	tcc Ser	agc Ser	cag Gln	tct Ser 15	gaa Glu	agt Ser	gac Asp	tgc Cys	tgt Cys 20	gtg Val		284
gcc Ala	atg Met	gcc Ala	agc Ser 25	tcc Ser	tgt Cys	agc Ser	gct Ala	gta Val 30	aca Thr	aaa Lys	gat Asp	gat Asp	agt Ser 35	gtg Val	ggt Gly		332
gga Gly	act Thr	gcc Ala 40	agc Ser	acg Thr	Gjå aaa	aac Asn	ctc Leu 45	tcc Ser	agc Ser	tca Ser	ttt Phe	atg Met 50	gag Glu	gag Glu	atc Ile		380
cag Gln	gga Gly 55	tat Tyr	gat Asp	gta Val	gag Glu	ttt Phe 60	gac Asp	cca Pro	ccc Pro	ctg Leu	gaa Glu 65	agc Ser	aag Lys	tat Tyr	gaa Glu		428-
tgc Cys 70	ccc Pro	atc Ile	tgc Cys	ttg Leu	atg Met 75	gca Ala	tta Leu	cga Arg	gaa Glu	gca Ala 80	gtg Val	caa Gln	acg Thr	cca Pro	tgc Cys 85		476
ggc Gly	cat His	agg Arg	ttc Phe	tgc Cys 90	aaa Lys	gcc Ala	tgc Cys	atc Ile	ata Ile 95	aaa Lys	tca Ser	ata Ile	agg Arg	gat Asp 100	gca Ala		524
ggt Gly	cac His	aaa Lys	tgt Cys 105	cca Pro	gtt Val	gac Asp	aat Asn	gaa Glu 110	ata Ile	ctg Leu	ctg Leu	gaa Glu	aat Asn 115	caa Gln	cta Leu		5 72 -
ttt Phe	cca Pro	gac Asp 120	aat Asn	ttt Phe	gca Ala	aaa Lys	cgt Arg 125	gag Glu	att Ile	ctt Leu	tct Ser	ctg Leu 130	atg Met	gtg Val	aaa Lys		620
tgt Cys	cca Pro 135	aat Asn	gaa Glu	ggt Gly	tgt Cys	ttg Leu 140	cac His	aag Lys	atg Met	gaa Glu	ctg Leu 145	aga Arg	cat His	ctt Leu	gag Glu		668
gat Asp 150	cat His	caa Gln	gca Ala	cat His	tgt Cys 155	gag Glu	ttt Phe	gct Ala	ctt Leu	atg Met 160	gat Asp	tgt Cys	ccc Pro	caa Gln	tgc Cys 165		716
cag Gln	cgt Arg	ccc Pro	ttc Phe	caa Gln 170	aaa Lys	ttc Phe	cat His	att Ile	aat Asn 175	att Ile	cac His	att Ile	ctg Leu	aag Lys 180	gat Asp		764
tgt Cys	cca Pro	agg Arg	aga Arg 185	cag Gln	gtt Val	tct Ser	tgt Cys	gac Asp 190	aac Asn	tgt Cys	gct Ala	gca Ala	tca Ser 195	atg Met	gca Ala		812
ttt Phe	gaa Glu	gat Asp 200	aaa Lys	gag Glu	atc Ile	cat His	gac Asp 205	cag Gln	aac Asn	tgt Cys	cct Pro	ttg Leu 210	gca Ala	aat Asn	gtc Val		860
atc Ile	tgt Cys 215	gaa Glu	tac Tyr	tgc Cys	aat Asn	act Thr 220	ata Ile	ctc Leu	atc Ile	aga Arg	gaa Glu 225	cag Gln	atg Met	cct Pro	aat Asn		908
cat His 230	tat Tyr	gat Asp	cta Leu	gac Asp	tgc Cys 235	cct Pro	aca Thr	gcc Ala	cca Pro	att Ile 240	cca Pro	tgc Cys	aca Thr	ttc Phe	agt Ser 245		956
act	ttt	ggt	tgc	cat	gaa	aag	atg	cag	agg	aat	cac	ttg	gca	cgc	cac		1004

Thr	Phe	Gly	Cys	His 250	Glu	Lys	Met	Gln	Arg 255		His	Leu	Ala	Arg 260		
					cag Gln											1052
cat His	agt Ser	ttg Leu 280	agc Ser	gtt Val	ata Ile	ccc Pro	gac Asp 285	tct Ser	ggy ggg	tat Tyr	atc Ile	tca Ser 290	gag Glu	gtc Val	cgg Arg	1100
					att Ile											1148
					gag Glu 315											1196
					aaa Lys											1244
					cag Gln											1292
ggc Gly	aac Asn	ttt Phe 360	gga Gly	atg Met	cat His	ttg Leu	aaa Lys 365	tgt Cys	caa Gln	gaa Glu	gag Glu	gag Glu 370	aaa Lys	cct Pro	gtt Val	1340
gtg Val	att Ile 375	cat His	agc Ser	cct Pro	gga Gly	ttc Phe 380	tac Tyr	act Thr	ggc Gly	aaa Lys	ccc Pro 385	Gly aaa	tac Tyr	aaa Lys	ctg Leu	1388
tgc Cys 390	atg Met	cgc Arg	ttg Leu	cac His	ctt Leu 395	cag Gln	tta Leu	ccg Pro	act Thr	gct Ala 400	cag Gln	cgc Arg	tgt Cys	gca Ala	aac Asn 405	1436
tat Tyr	ata Ile	t.cc Ser	ctt Leu	ttt Phe 410	gtc Val	cac His	aca Thr	atg Met	caa Gln 415	gga Gly	gaa Glu	tat Tyr	gac Asp	agc Ser 420	cac His	1484
					cag Gln											1532
					agg Arg											1580
					ttc Phe											1628
ggt Gly 470	ttt Phe	ggc Gly	tat Tyr	gta Val	act Thr 475	ttt Phe	atg Met	cat His	ctg Leu	gaa Glu 480	gcc Ala	cta Leu	aga Arg	caa Gln	aga Arg 485	1676
act Thr	ttc Phe	att Ile	aag Lys	gat Asp 490	gac Asp	aca Thr	tta Leu	tta Leu	gtg Val 495	cgc Arg	tgt Cys	gag Glu	gtc Val	tcc Ser 500	acc Thr	1724

1

Ä

WO 00/20433	PCT/US99/23171
	ro Arg Ser 15
act gat gca ggg gta tag ettgeeetea ettgeteaaa aacaaet Thr Asp Ala Gly Val 520	acc 1820
tggagaaaac agtgeettte ettgeeetgt teteaataac atgcaaacaa	a acaagccacg 1880
ggaaatatgt aatatetaet agtgagtgtt gttagagagg teaettaeta	
ttacaaatga totgaggoag ttttttootg ggaatocaca ogttocatgo	
atgttaggee tgaagtgeet gtggeatgtt geageageta ttttgeeagt	
ctttgttgta ctttcttggg cttttgctct ggtgtatttt attgtcagaa	
caagagtact aaacttttaa taataatgga ttttccttaa aacttcagtc	
attatatgta atatattaaa agtgaaaatc actaccgcct tgaaaaaaaa	
ctcgaggggg gcccgtaccc aatg	2264
<210> 7 <211> 18 <212> DNA <213> Artificial Sequence <220>	-
<223> antisense sequence	
<400> 7 tttaagttgc tccagggc	18
<210> 8 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> antisense seguenco	
and to end a sequence	
<400> 8 gccgggcgag gactgetg	18
<210> 9 <211> 18 <212> DNA <213> Artificial Sequence	
<220>	
<223> antisense sequence	
<400> 9 gcagacggtg ggagggca	18
<210> 10 <211> 18 <212> DNA <213> Artificial Sequence	10
<220>	

WO 00/20435

3

SERVICE ...

WO 00/20435		PCT/US99/23171
<223>	antisense sequence	
<400> ctgggctcct	10 * ttgggtcc	18
<210> <211> <212>	11 18 DNA	
<213>	Artificial Sequence	
<220> <223>	antisense sequence	
<400>	11	
cacagcagag	agccctgg	18 -
0.00		
<210>	12	
<211>	18 DNA	
<212> <213>		
	Artificial Sequence	
<220>		
<223>	antisense sequence	
< 400>	12	
attcctcggg	ttctcaga	18
<210>	13	
<211>	18	-
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	antisense sequence	
<400>	13	
ccattcctcg	ggttctca	18
<210>	14	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	antisense sequence	
<400>	14	
cctcgccatt		18
<210>	15	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
<220>	antigones gogyongs	
<223>	antisense sequence	
<400> gatectegee	15 attcctcg	18
<210>	16	
<211>	18	
<212>	DNA	

WO 00/20435		PCT/US99/23171
<213>	Artificial Sequence	
<220> <223>	antisense sequence	
<400> agacggcttc	16 ctgggctt	18
<210> <211> <212> <213>	17 18 DNA Artificial Sequence	
<220> <223>	antisense sequence	-
<400> ttgaaggagc	17 agccgaca	18
<210><211><211><212><213>	18 18 DNA Artificial Sequence	
<220> <223>	antisense sequence	
<400> ggccttccac	18 tgtttcat	18 -
<210> <211> <212> <213>	19 18 DNA Artificial Sequence	
<220> <223>	antisense sequence	
<400> ccacttccac	19 ggctgcct	18
<210> <211> <212> <213>	20 18 DNA Artificial Sequence	
<220> <223>	antisense sequence	
<400> cgcctggtga	20 cattggtg	18
<210><211><211><212><213>	21 18 DNA Artificial Sequence	
<220> <223>	antisense sequence	
<400> cgcatcatac	21 teeectet	18

深語 第

WO 00/20435		PCT/US99/23171
<210> <211> <212> <213>	22 18 DNA Artificial Sequence	
<220> <223>	antisense sequence	
<400> aggcgtcaat	22 ggcgtgct	18
<210> <211> <212> <213>	23 18 DNA Artificial Sequence	-
<220> <223>	antisense sequence	
<400> ggaaggcgtc	23 aatggcgt	18
<210><211><212><213>	24 18 DNA Artificial Sequence	
<220> <223>	antisense sequence	-
<400> ggaagaagag	24 tgggcatc	18
<210> <211> <212> <213>	25 18 DNA Artificial Sequence	
<220> <223>	antisense sequence	
<400> cgtaggcgtg	25 cttgggtg	18
<210> <211> <212> <213>	26 18 DNA Artificial Sequence	
<220> <223>	antisense sequence	
<400> gccccgccca	26 ccctaagt	18
<210> <211> <212> <213>	27 18 DNA Artificial Sequence	
<220> <223>	antisense sequence	

WO 00/20435			PCT/US99/23171
<400> ggageccege	27 ccacecta		18
<210> <211> <212> <213>	28 18 DNA Artificial Sequence		
<220> <223>	antisense sequence		
<400> ctcaggagcc	28 ccgcccac		18
<210> <211> <212> <213>	29 18 DNA Artificial Sequence		
<220> <223>	antisense sequence		
<400> aagggcaggg	29 catcacag		18
<210> <211> <212> <213>	30 18 DNA Artificial Sequence		-
<220> <223>	antisense sequence		
<400> tttgtgccct	30 gaggtett	왕	18
<210> <211> <212> <213>	31 18 DNA Artificial Sequence		
<220> <223>	antisense sequence		
<400> cacccatctt	31 tgtgccct		18
<210> <211> <212> <213>	32 18 DNA Artificial Sequence		
<220> <223>	antisense sequence		
<400> ggcctcccag	32 tgtcgcat		18
<210> <211> <212> <213>	33 18 DNA Artificial Sequence		

*

WO 00/20435		PCT/US99	/23171
<220 > <223 >	antisense sequence		
<400> cccggtcctg	33 tttctgac		18
<210>	34		
<211>	18		
	DNA		
<213>	Artificial Sequence		
<220>			
<223>	antisense sequence		
< 400 >	34		
gcaccccatc	ccttccac		18
.210	35		
<210> <211>	18		
<212>	DNA		
<213>	Artificial Sequence		
<220>			
<223>	antisense sequence		
	2.5		
<400> tggagccgtc	35 tagattta		18
tggagttgtt	c333ccc3		_
<210>	36		
<211>	18 DNA		
<212> <213>	Artificial Sequence		
<220> <223>	antisense sequence		
< 400 >	36		18
gtcttcaaat	CCAACCCC		
<210>	37		
<211>	18		
<212>	DNA Artificial Sequence		
<213>	Artificial Sequence		
<220>			
<223>	antisense sequence		
<400>	37		1.0
ttctgggctg	gaaggaaa		18
<210>	38		
<211>	18		
<212>	DNA		
<213>	Artificial Sequence		
<220>			
<223>	antisense sequence		
-400-	38		
<400> actttctggg			18
<210> <211>	39 18		
~~~			

WO 00/20435		PCT/US99/2	3171
<212> <213>	DNA Artificial Sequence		
<220> <223>	antisense sequence		
<400> agagactttc	39 tgggctgg	נ	18
<210><211><211><212><213>	40 18 DNA Artificial Sequence		
<220> <223>	antisense sequence		•
<400> tttccagaac	40 ecctgtag	ı	18
<210><211><211><212><213>	41 18 DNA Artificial Sequence		
<220> <223>	antisense sequence		
<400> atgtttccag	41 aacccctg	1	- L8
<210> <211> <212> <213>	42 18 DNA Artificial Sequence		
<220> <223>	antisense sequence		
<400> gggctgggtg	42 tgctcctg	3	18
<210> <211> <212> <213>	43 18 DNA Artificial Sequence		
<220> <223>	antisense sequence		
<400> tttatgcccc	43 tottotto	:	18
<210> <211> <212> <213>	44 18 DNA Artificial Sequence		
<220> <223>	antisense sequence		
<400> ggaaagtttä	44 tgcccctc		18

WO 00/20435	PCT/US99/23171
<210> 45 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> antisense sequence	
<400> 45 tacgggattc tggaaagc	18
<210> 46 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> antisense sequence	
<400> 46 aggtgttacg ggattctg	18
<210> 47 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> antisense sequence	-
<400> 47 gtegeagege geeggaatte	20
<pre>&lt;210&gt;     48 &lt;211&gt;     20 &lt;212&gt;     DNA &lt;213&gt;     Artificial Sequence</pre>	
<220> <223> antisense sequence	
<400> 48 ccaacggteg cagegegeg	20
<pre>&lt;210&gt;     49 &lt;211&gt;     20 &lt;212&gt;     DNA &lt;213&gt;     Artificial Sequence</pre>	
<220> <223> antisense sequence	
<400> 49 cagccatgag agctgtgacc	20
<210> 50 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> antisense sequence	

WO 00/20435		PCT/US9	9/23171
400	50		
<400> acgctagctg	50 cagccatgag		20
<210>	51		
<211>	20		
<212>	DNA		
<213>	Artificial Sequence		
<220>			
<223>	antisense sequence		
<400>	51		
gccacactgc	gcctggaagg		20
<210>	52		-
<211>	20		
<212>	DNA		
<213>	Artificial Sequence		
(213)	metricular objective		
<220>			
<223>	antisense sequence		
<400>	52		
	ctccacctcc		20
<210>	53		
<211>	20		
<212>	DNA		
<213>	Artificial Sequence		-
<220>			
<223>	antisense sequence		
<400>	53		
gcagcggcct	tegtggcage		20
<210>	54		
<211>	20		
<212>	DNA		
<213>	Artificial Sequence		
222			
<220> <223>	antisense sequence		
<223>	ancisense sequence		
<400>	54		20
cctcgtggtg	cgccttcacg		20
<210>	55		
<211>	20		
<212>	DNA		
<213>	Artificial Sequence		
<220>			
<223>	antisense sequence		
<400>	55		
	gccacaagtc		20
<210>	56		
<211>	20		
<212>	DNA		
<213>	Artificial Sequence		

WO 00/20435		PCT/US99/2317
<220> <223>	antisense sequence	
<400>	56 egtgeteetg	20
_		
<210> <211>	57 20	
<212> <213>	DNA Artificial Sequence	
<220> <223>	antisense sequence	
		-
<400> cctctgcagg	57 agctctgacc	20
<210>	58	
<211> <212>	20 DNA	
<213>	Artificial Sequence	
<220> <223>	antisense sequence	
<400> cagccggtgc	58 tgccggctgc	20
<210>	59	
<211> <212>	20 DNA	
<213>	Artificial Sequence	
<220> <223>	antisense sequence	
<400>	59	20
	cgccgttcag	20
<210> <211>	60 20	
<212>	DNA	
<213>	Artificial Sequence	
<220> <223>	antisense sequence	
<400> acgtcgggcc	60 tgaaggcgtc	20
<210>	61	
<211>	20	
<212> <213>	DNA Artificial Sequence	
<220>		
<223>	antisense sequence	
<400> ctgtcaggtc	61 cacaatggcc	20
<210>	62	

PCT/US99/23171

WO 00/20435		PCT/US99/2317
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	antisense sequence	
<400>	62	
geeggetgtg	cetggetgee	20
<210>	63	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>	auticours commons	
<223>	antisense sequence	
<400>	63	
cttggctgca	ggccgacacc	20
<210>	64	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	antisense sequence	
<400>	64	
cggccaatgc	caccacagcc	20
<210>	65	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	antisense sequence	
< 400>	65	
actgtgctcc	tgctacatgg	20
<210>	66	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	antisense sequence	
<400>	66	
gctctggcca	gcaggaggcc	20
<210>	67	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>	•	
<223>	antisense sequence	
<400>	67	
ccacagccag		20
	-	

WO 00/20435		1	PCT/US99/23171
423.0s	68		
<210> <211>	20		
<212>	DNA		
<213>	Artificial Sequence		
<220>			
<223>	antisense sequence		
<400>	68		
ctctgtcttc	gtgagctgga		20
<210>	69		
<211>	20		
<212>	DNA		
<213>	Artificial Sequence		-
<220> <223>	control sequence		
<400>	69		
	eggetteacg		20
<210>	70		
<211>	20		
<212>	DNA		
<213>	Artificial Sequence		
<220>			-
<223>	control sequence		
<400>	70		
cctggtgctc	cggcttcacg		20
<210>	71		
<211>	18		
<212>	DNA		
<213>	Artificial Sequence		
<220>			
<223>	antisense seguence		
<400>	71		
agagccgacg	accgccgc		18
<210>	72		
<211>	18		
<212>	DNA		
<213>	Artificial Sequence		
<220>			
<223>	antisense sequence		
<400>	72		
ggaagagccg	acgaccgc		18
<210>	73		
<211>	18		
<212>	DNA		
<213>	Artificial Sequence		
<220>			
<223>	antisense sequence		

WO 00/20435		PCT/US99/23171
<400> cgcgccagga	73 gagtccat	18
<210><211><211><212><213>	74 18 DNA Artificial Sequence	
<220> <223>	antisense sequence	
<400> ttagcggcgg	74 gttagtct	18
<210> <211> <212> <213>	75 18 DNA Artificial Sequence	-
<220> <223>	antisense sequence	
<400> agctttagcg	75 gcgggtta	18
<210> <211> <212> <213>	76 18 DNA Artificial Sequence	-
<220> <223>	antisense sequence	
<400> ctcggtctgc	76 ttcgggct	18
<210> <211> <212> <213>	77 18 DNA Artificial Sequence	
<220> <223>	antisense sequence	
<400> tgcccacact	77 eggtetge	18
<210> <211> <212> <213>	78 18 DNA Artificial Sequence	
<220> <223>	antisense sequence	
<400> cggtgcccac	78 actoggto	18
<210> <211> <212> <213>	79 18 DNA Artificial Sequence	

WO 00/20435		PCT/US9	9/23171
<220> <223>	antisense sequence		
<400> gaageggtge	79 ccacactc		18
<210> <211> <212> <213>	80 18 DNA Artificial Sequence		
<220> <223>	antisense sequence		
<400> ttacacgeet	80 tc.ccacg		18
<210> <211> <212> <213>	81 18 DNA Artificial Sequence		
<220> <223>	antisense sequence		
<400> gtatttacac	81 geettete		18
<210> <211> <212> <213>	82 18 DNA Artificial Sequence		-
<220> <223>	antisense sequence		
<400> ccggtattta	82 cacgcctt		18
<210> <211> <212> <213>	83 18 DNA Artificial Sequence		
<220> <223>	antisense sequence		
<400> gagggcagga	83 caccacca		18
<210> <211> <212> <213>	84 18 DNA Artificial Sequence		
<220> <223>	antisense sequence		
<400> tgtgagggca	84 ggacacca		18
<210> <211>	85 18		

WO 00/20435		PCT/US99/231	171
<212>	DNA		
<213>	Artificial Sequence		
<220>	higanga daguanda		
<223>	antisense sequence		
<400> cacttgtgag	85 ggcaggac	18	:
<210> <211>	86 18		
<212>	DNA		
<213>	Artificial Sequence		
<220>			-
<223>	antisense sequence		
<400>	86	1.0	
gctggtttgt	ccctgaa	18	5
<210>	87		
<211>	18		
<212>	DNA		
<213>	Artificial Sequence		
<220>			
<223>	antisense sequence		
<400>	87	•	
atctgctggt	ttgtcccc	18	\$
<210>	88		
<211>	18		
<212>	DNA Artificial Sequence		
<213>	Artificial Sequence		
<220>			
<223>	antisense sequence		
<400>	88	18	1
cgcggttctg	gagggact		,
<210>	89		
<211>	18		
<212>	DNA		
<213>	Artificial Sequence		
<220>	and annual goomenge		
<223>	antisense sequence		
<400>	89	18	3
ccccgcactc	ttgtccac		-
<210>	90		
<211>	18 DNA		
<212> <213>	Artificial Sequence		
<220>			
<223>	antisense sequence		
<400>	90	13	8
ttgccccgca	ctcttgtc	1,	_

WO 00/20435		PCT/US99/23171
<210> <211> <212> <213>	91 18 DNA Artificial Sequence	
<220> <223>	antisense sequence	
<400> ccacttgccc	91 cgcactct	18
<210> <211> <212> <213>	92 18 DNA Artificial Sequence	
<220> <223>	antisense sequence	
<400> gagccacttg	92 cccgcac	18
<210> <211> <212> <213>	93 18 DNA Artificial Sequence	
<220> <223>	antisense sequence	-
<400> ttccgagcca	93 cttgcccc	18
<210> <211> <212> <213> <220> <223>	94 18 DNA Artificial Sequence antisense sequence	
<400> tccgccgctt	94 gragicgo	18
<210> <211> <212> <213>	95 18 DNA Artificial Sequence	
<220> <223>	antisense sequence	
<400> tgcttccgcc	95 gettgtag	18
<210> <211> <212> <213>	96 18 DNA Artificial Sequence	
<220> <223>	antisense sequence	
< 400>	96	

WO 00/20435		PCT/US99/23171
tcctgcttcc	c gccgcttg	18
<210>	97	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
	-	
<220>		
<223>	antisense sequence	
<400>	97	
gtccccgttc		18
<b>J</b> J		10
<210>	98	
<211>	18	-
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	antisense sequence	
12252	anersense sequence	
<400>	98	
teeegteeee	gttcaggt	18
<210>	99	
<211>	18	
<212> <213>	DNA	
(213)	Artificial Sequence	
<220>		
<223>	antisense sequence	
400	00	
<400> ccatcccgtc	99 accept to 2	1.0
ceaccegee	cccgccca	18
<210>	100	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	antisense sequence	
1000	and Delibe Dequence	
< 400>	100	
tccccatccc	gtccccgt	18
<210>	101	
<211>	101 18	
<212>	DNA	
<213>	Artificial Sequence	
10207	merrical bequence	
<220>		
<223>	antisense sequence	
400	2.03	
<400>	101	10
cccttcccca		18
<210>	102	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
220		
<220>		

WO 00/20435		PCT/US99/23171
<223>	antisense sequence	
<400> tgegteecet	102 * tececate	18
<210> <211> <212>	103 18 DNA	
<213>	Artificial Sequence	
<220> <223>	antisense sequence	
<400> aagtgcgtcc	103 ccttcccc 18	-
<210> <211>	104	
<212> <213>	DNA Artificial Sequence	
<220>	•	
<223>	antisense sequence	
<400> cgacaagtgc	104	18
<210>	105	10
<211>	18	-
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	antisense sequence	
<400>	105	
aaggaagcag	ggcatcat	18
<210>	106	
<211>	18	
<212> <213>	DNA Artificial Sequence	
<220>	Artificial Sequence	
<223>	antisense sequence	
<400> ctctccagtg	106 ggcttctt	18
<210>	107	
<211>	18	
<212> <213>	DNA Artificial Sequence	
<220> <223>	antisense sequence	
<400> tcatctctcc	107 agtgggct	18
<210>	108	
<211>	18	
<212>	DNA	

J

をある

 $\mathcal{Z}_{\mathcal{Y}}^{2}$ 

WO 00/20435		PCT/US99/23171
<213>	Artificial Sequence	
<220> <223>	antisense sequence	
<400> gc <b>taa</b> atcca	108 cctcccca	18
<210 > <211 > <212 > <213 >	109 18 D <b>NA</b> Artificial Sequence	
<220> <223>	antisense sequence	-
<400> tctgccgctt	109 cctccgtc	18
<210 > <211 > <212 > <213 >	110 18 DNA Artificial Sequence	
<220> <223>	antisense sequence	
<400> ccgccttctg	110 ccgcttcc	18 -
<210><211><211><212><213>	111 18 DNA Artificial Sequence	
<220> <223>	antisense sequence	
<400> gcatggcggg	111 egagegge	18
<210> <211> <212> <213>	112 18 DNA Artificial Sequence	
<220> <223>	antisense sequence	
<400> ccgtcgcttg	112 ggettete	18
<210> <211> <212> <213>	113 18 DNA Artificial Sequence	
<220> <223>	antisense sequence	
<400> gggcacttga	113 agactect	18

Ü

· 新新 6000

W O 00/20433		PC1/0399/231/
<210>	114	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	antisense sequence	
<400>	114	
ctcagggcac	ttgaagac	18
<210>	115	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	-
<220>		
<223>	antisense sequence	
< 400>	115	
tggtcctcag	ggcacttg	18
<210>	116	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	antisense sequence	·
< 400>	116	
aagctggtcc	tcagggca	18
<210>	117	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
< 220>		
<223>	antisense sequence	
< 400>	117	
gcggcagccc	teeteact	18
<210>	118	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	antisense sequence	
< 400>	118	
ctccagcggc	agecetee	18
<210>	119	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	antisense sequence	

PCT/US99/23171

WO 00/20435

WO 00/20435		PCT/US99/23171
<400> tagggcaggg	119 aatgacat	18
<210><211><212><213>	120 18 DNA Artificial Sequence	
<220> <223>	antisense sequence	
<400> cgattagggc	120 agggaatg	18
<210> <211> <212> <213>	121 18 DNA Artificial Sequence	-
<220> <223>	antisense sequence	
<400> gggcagcgat	121 tagggcag	18
<210> <211> <212> <213>	122 18 DNA Artificial Sequence	-
<220> <223>	antisense sequence	
<400> gcctccccac	122 tgaagtca	18
<210> <211> <212> <213>	123 18 DNA Artificial Sequence	
<220> <223>	antisense sequence	
<400> atgcgggcac	123 cacactta	18
<210> <211> <212> <213>	124 18 DNA Artificial Sequence	
<220> <223>	antisense sequence	
<400> gggcaggcaa	124 caggcagc	18
<210 > <211 > <212 > <213 >	125 18 DNA Artificial Sequence	

WO 00/20435		PCT/US99/23171
<220>		
<223>	antisense sequence	
<400>	125	
ccacagtgcc	c cacaccac	18
<210>	126	
<211>	18	
<212>	DNA Potri 5 ( o ( o ) o O	
<213>	Artificial Sequence	
<220>		
<223>	antisense sequence	
<400>	126	
cgagccacag	-	18
<210>	127	
<211> <212>	18 DNA	
<212>	DNA Artificial Sequence	
	Altificial Sequence	
<220>	antigones comunas	
<223>	antisense sequence	
<400>	127	7.0
tcctcccgag		18
<210> <211>	128	
<211>	18 DNA	
<213>	Artificial Sequence	
<220>		
<223>	antisense sequence	
<400>	128	
caggtcctcc		18
<210>	129	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	antisense sequence	
<400>	129	
ggcagagcac	cagggcgg	18
<210>	130	
<211>	18	
<212>	DNA Punificial Common	
<213>	Artificial Sequence	
<220>	and the second second	
<223>	antisense sequence	
<400>	130	
ctttgaatgg	gcagagca	18
<210>	131	
<211>	18	

WO 00/20435		PCT/US	99/23171
<212> <213>	DNA Artificial Sequence		
<220> <223>	antisense sequence		
<400> ggagtetttg	131 g aatgggca		18
<210><211><212><213>	132 18 DNA Artificial Sequence		
<220> <223>	antisense sequence		-
<400> atgccgtgcc	132 attgccag		18
<210> <211> <212> <213>	133 18 DNA Artificial Sequence		
<220> <223>	antisense sequence		
<400> ctcaccaggg	133 cacacatc		18
<210> <211> <212>	134 18 DNA		
<213> <220> <223>	Artificial Sequence antisense sequence		
<400> cagctcctgc	134 cgttgeeg		18
<210> <211> <212> <213>	135 18 DNA Artificial Sequence		
<220> <223>	antisense sequence		
<400> atgagcacgc	135 catcactg		18
<210 > <211 > <212 > <213 >	136 18 DNA Artificial Sequence		
<220><223>	antisense sequence		
<400> tgtagccgcc	136 gtccatag		18

 $S_{i}$ 

Ś

WO 00/20435	PCT/US99/23171
<210> 137 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> antisense sequence	
<400> 137 gcctcctgta gccgccgt	18
<210> 138 <211> 18 <212> DNA <213> Artificial Sequence	-
<220> <223> antisense sequence	
<400> 138 tagaaggctg ggctgaag	18
<210> 139 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> antisense sequence	-
<400> 139 gtgtgtagaa ggctgggc	18
<210> 140 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> antisense sequence	
<400> 140 gtgtgccctc accactgc	18
<210> 141 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> antisense sequence	
<400> 141 gacacggcgg gcaaaggg	18
<210> 142 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> antisense sequence	

なるを

Ä

WO 00/20435		PCT/US99/23171
<400>	142	
gaaggtgaca		18
<210>	143	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
<220>	antigongo comuendo	
<223>	antisense sequence	
<400>	143	2.0
gcccagggt	e getetgat	18
<210>	144	
<211>	18	
<112>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	antisense sequence	
<400>	144	•
cttccagttt	gggteggg	18
<210>	145	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	-
<220>		
<223>	antisense sequence	
<400>	145	•
gataaccaaa	gcccagag	18
<210>	146	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	ancisense sequence	
<400>	146	20
categteett	teecteg	18
<210>	147	
<211>	18	
<212>	DITA	
<213>	Artificial Sequence	
<220>		
<223>	antisense sequence	
<400>	147	18
ggccagggct	gaagcacc	18
<210>	148	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	

WO 00/20435		PCT	/US99/2317
<220> <223>	antisense sequence		
<400> ttgtttccag	148 cccttcat		18
<210><211><211>	149 18 DNA		
<213> <220> <223>	Artificial Sequence antisense sequence		
<400> catgtctgcc	149		18
<210> <211> <212> <213>	150 18 DNA Artificial Sequence		
<220> <223>	antisense sequence		
<400> gctcccctgc	150 tgtgeeet		18
<210> <211> <212> <213>	151 18 DNA Artificial Sequence		-
<220> <223>	antisense sequence		
<400> tgaataagcc	151 attgtggg		18
<210><211><212><213>	152 18 DNA Artificial Sequence		
<220> <223>	antisense sequence		
<400> ctttatgctc	152 ttctgaat		18
<210><211><212><213>	153 18 DNA Artificial Sequence		
<220> <223>	antisense sequence		
<400> ggatgaaacc	153 acagggca		18
<210> <211>	154 18		

WO 00/20435		PCT/US99/23171
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	antisense sequence	
<400>	154	
tcaaagtcca		18
<210>	155	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	antisense sequence	
<400>	155	
tgaagcaccg	agtggcag	18
<210>	156	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	antisense sequence	
<400>	156	
gggcagattg	gcactgtg	18
<210>	157	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	antisense sequence	
< 400>	157	
ctcctgagat	ttgatgac	18
<210>	158	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	antisense sequence	
<400>	158	
ctttccgtag	gactggct	18
<210>	159	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	antisense sequence	
< 400>	159	

WO 00/20435		PCT/US99/23171
gattetgtag	g attgatga	18
<210>	160	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	antisense sequence	
<400>	160	
ttcatctacc	: tcagtttt	18
<210>	161	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	antisense sequence	
<400>	161	
tccgttacag		18
<210>	162	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
	niciliciai bequence	-
<220>		
<223>	antisense sequence	
<400>	162	
gcatgtgctc	ccgtaagg	18
<210>	163	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	antisense sequence	
	-	
<400>	163	1.0
cttttcaagt	ttettat	18
<210>	164	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	antisense sequence	
<400>	164	
cttccatcaa		18
<210> <211>	165	
<211> <212>	18	
<213>	DNA Artificial Seguence	
	Artificial Sequence	
<220>		

WO 00/20435		PCT/US99/23171
<223>	antisense sequence	
<400>	165	
tctaaaacgg		18
<210>	166	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	antisense sequence	
<400>	166	
tcatcttgta		18 -
coaccegea	40005004	
<210>	167	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
<220>	-	
<223>	antisense sequence	
<400>	167	
ggactggctg		18
33		
<210>	168	
<211>	18	
<212>	DNA	•
<213>	Artificial Sequence	
<220>		
<223>	antisense sequence	
<400>	168	
ccctccctga		18
<210>	169	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	antisense sequence	
<400>	169	10
gaatgagcca	caaagcgg	18
<210>	170	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
(213)		
<220>		
<223>	antisense sequence	
<400>	170	
caagaacaga		18
cauguacaga	3030000	
<210>	171	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	

WO 00/20435		PCT/US99/23171
<220>		
<223>	antisense sequence	
<400>	171	
gtctaaatcc	aggtcaat	18
<210>	172	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	antisense sequence	
<400>	172	•
aaacttacca	tctttcaa	18
<210>	173	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
<220> <223>	antisense sequence	
<400>	173	
ctctgtgtcc		18
<210>	174	-
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
<220> <223>	anticonco coguenco	
<2237	antisense sequence	
<400>	174	
cttaactgga	acagccta	18
<210>	175	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	antisense sequence	
<400> gcaggaagaa	175 tgaaaatg	18
<210>	176	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	antisense sequence	
< 400>	176	
tatttggttg	aatcttat	18
<210>	177	
<211>	18	

WO 00/20435		PCT/US99/2317	71
.212.	TANT A		
<212> <213>	DNA Artificial Sequence		
<220>			
<223>	antisense sequence		
< 400>	177		
aaattctatc	catcetea	18	
<210>	178		
<211>	18		
<212>	DNA		
<213>	Artificial Sequence		
<220>			-
<223>	antisense sequence		
< 400>	178		
aaattgtaaa	ggttttct	18	
<210>	179		
<211>	18		
<212>	DNA		
<213>	Artificial Sequence		
<220>			
<223>	antisense sequence		
<400>	179	-	-
acaatgaaac	tctgtctc	18	
<210>	180		
<211>	18		
<212> <213>	DNA Artificial Sequence		
<220> <223>	antisense sequence		
<400> gcaaaactcc	180	18	
geadadeeee	geetetae	***	
<210>	181		
<211>	18		
<212> <213>	DNA Artificial Sequence		
(215)	Altificial Sequence		
<220>			
<223>	antisense sequence		
<400>	181	18	
caatagttgt	Cagagget	10	
<210>	182		
<211>	18		
<212>	DNA		
<213>	Artificial Sequence		
<220>			
<223>	antisense sequence		
< 400>	182		
aaggactcat		18	

WO 00/20435		PCT/US99/23171
<210> <211> <212> <213>	183 18 DNA Artificial Sequence	
<220> <223>	antisense sequence	
<400> taacaacgca	183 gaaggget	18
<210><211><211><212><213>	184 18 DNA Artificial Sequence	
<220> <223>	antisense sequence	
<400> agtagggaag	184 tggcataa	18
<210> <211> <212> <213>	185 18 DNA Artificial Sequênce	
<220> <223>	antisense sequence	-
<400> catcaccagg	185 taagcagc	18
<210><211><212><213>	186 18 DNA Artificial Sequence	
<220> <223>	antisense sequence	
<400> tcctgttgtg	186 aacctatt	18
<210> <211> <212> <213>	187 18 DNA Artificial Sequence	
<220> <223>	antisense sequence	
<400> ggacttgtgg	187 gctaaaga	18
<210><211><211><212><212><213>	188 18 DNA Artificial Sequence	
<220><223>	antisense sequence	

 $\mathcal{Z}_{q}$ 

WO 00/20435		P	PCT/US99/23171
<400> gctcaggaa	188 g acagagtg		18
<210> <211> <212> <213>	189 18 DNA Artificial Sequence		
<220> <223>	antisense sequence		
<400> tgaactccta	189 a agcaaacc		18
<210><211><211><212><213>	190 18 DNA Artificial Sequence		-
<220> <223>	antisense sequence		
<400> gatgatgaag	190 gaactotg		18
<210> <211> <212> <213>	191 20 DNA Artificial Sequence		-
<220> <223>	antisense sequence		
<400> aggccaagcc	191 ccagctgcgg		20
<210> <211> <212> <213>	192 20 DNA Artificial Sequence		
<220> <223>	antisense sequence		
<400> cgccaccctc	192 getggeegee		20
<210><211><212><212><213>	193 20 DNA Artificial Sequence		
<220> <223>	antisense sequence		
<400> gagacgaggc	193 tgettggaeg		20
<210> <211> <212> <213> <220>	194 20 DNA Artificial Sequence		

A. S.

WO 00/20435		PCT/US99/231	71
<223> antis	ense sequence		
<400> 194 ggacacagac actgcgo	ogac	20	
<210> 195 <211> 20 <212> DNA <213> Artif:	icial Sequence		
<220>	ense sequence		
<400> 195 ccaaggeget ggtagag	ggac	20	-
<210> 196 <211> 20 <212> DNA <213> Artifi	cial Sequence		
<220> <223> antise	nse sequence		
<400> 196 ttgctcgttc tagtgcg	cgg	20	
<210> 197 <211> 20 <212> DNA <213> Artifi	cial Sequence		-
<220> <223> antise	nse sequence		
<400> 197 catagtaact tgattat	cac	20	
<pre>&lt;210&gt;    198 &lt;211&gt;    20 &lt;212&gt;    DNA &lt;213&gt;    Artification</pre>	cial Sequence		
<220> <223> antise	nse sequence		
<400> 198 agcagactca tagtaac	itg	20	
<pre>&lt;210&gt; 199 &lt;211&gt; 20 &lt;212&gt; DNA &lt;213&gt; Artifice</pre>	cial Sequence		
<220> <223> antiser	nse sequence		
<400> 199 acagtttagc agactcat	ag	20	
<210> 200 <211> 20 <212> DNA			

G.

WO 00/20435		PCT/US99/	/23171
<213>	Artificial Sequence		
<220> <223>	antisense sequence		
<400> acagcgctac	200 aggagetgge		20
<210> <211> <212> <213>	201 20 DNA Artificial Sequence		
<220> <223>	antisense sequence		-
<400> attgatttta	201 tgatgcaggc		20
<210> <211> <212> <213>	202 20 DNA Artificial Sequence		
<220> <223>	antisense sequence		
<400> gtgacctgca	202 tcccttattg		20 -
<210><211><212><213>	203 20 DNA Artificial Sequence		
<220> <223>	antisense sequence		
<400> gtctcagttc	203 catcttgtgc		20
<210><211><211><212><213>	204 20 DNA Artificial Sequence		
<220> <223>	antisense sequence		
<400> agagcaaact	204 cacaatgtgc		20
<210> <211> <212> <213>	205 20 DNA Artificial Sequence		
<220> <223>	antisense sequence		
<400> ttttggaagg	205 gacgetggca		20

WO 00/20435		1	PCT/US99/23171
<210><211><211><212><213>	206 20 DNA Artificial Sequence		
<220> <223>	antisense sequence		
<400> aaatgccatt	206 gatgcagcac		20
<210><211><212><213>	207 20 DNA Artificial Sequence		-
<220> <223>	antisense sequence		
<400> attcacagat	207 gacatttgcc		20
<210> <211> <212> <213>	208 20 DNA Artifícial Sequence		
<220> <223>	antisense sequence		-
<400> cgtgccaagt	208 gattectetg		20
<210> <211> <212> <213>	209 20 DNA Artificial Sequence		
<220> <223>	antisense sequence		
<400> ggtgttatat	209 tgtaggtggc		20
<210><211><211><212><213>	210 20 DNA Artificial Sequence		
<220> <223>	antisense sequence		
<400> ggccaacatt	210 ctcatgtgtg		20
<210> <211> <212> <213>	211 20 DNA Artificial Sequence		
<220> <223>	antisense sequence		

Š

WO 00/20435		PCT/US99/23171
<400> cgctcaaact	211 atgaacagcc	20
<210> <211> <212> <213>	212 20 DNA Artificial Sequence	
<220> <223>	antisense sequence	
<400> aggcgaccct	212 ctaactggtg	20
<210> <211> <212> <213>	213 20 DNA Artificial Sequence	
<220> <223>	antisense sequence	
<400> ccattttagc	213 agtcagctcc	20
<210> <211> <212> <213>	214 20 DNA Artificial Sequence	-
<220> <223>	antisense sequence	
<400> cgaatggttc	214 gtttgagctc	20
<210><211><211><212><213>	215 20 DNA Artificial Sequence	
<220> <223>	antisense sequence	
<400> ccattgcact	215 getgtgette	20
<210><211><212><212><213>	216 20 DNA Artificial Sequence	
<220> <223>	antisense sequence	
<400> gcagtcggta	216 actgaaggtg	20
<210> <211> <212> <213>	217 20 DNA Artificial Sequence	

· / / / /

WO 00/20435		PCT/US99/2317
<220> <223>	antisense sequence	
<400> gccttacago	217 g tgetteagae	20
<210> <211> <212> <213>	218 20 DNA Artificial Sequence	
<220> <223>	antisense sequence	
<400> agcaagcagc	218 : tetggtttgg	20
<210><211><211><212><213>	219 20 DNA Artificial Sequence	
<220> <223>	antisense sequence	
<400> ggctacccat	219 gtcaaagcgg	20
<210><211><211><212><213>	220 20 DNA Artificial Sequence	-
<220> <223>	antisense sequence	
<400> ttgtttttga	220 gcaagtgagg	20
<210><211><211><212><213>	221 20 DNA Artificial Sequence	
<220> <223>	antisense sequence	
<400> ggcactgttt	221 tctccaggta	20
<210><211><212><213>	222 20 D <b>NA</b> Artificial Sequence	
<220> <223>	antisense sequence	
<400> acatatttcc	222 cgtggcttgt	20
<210> <211>	223 20	

The Carlo

WO 00/2043	5	PCT/US99/231
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	antisense sequence	
<400>	223	
ggaacgtgt	g gatteceagg	20
<210>	224	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	antisense sequence	
<400>	224	
tgctgcaaca	a tgccacaggc	20
<210>	225	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	antisense sequence	
<400>	225	-
atacaccaga	gcaaaagccc	20
<210>	226	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	control sequence	
< 400>	226	
aaaagactga	acttttaagg	20
<210>	227	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	control sequence	
< 400>	227	
acttaattac	catgactagt	20
<210>	228	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	control sequence	
< 400>	228	
ccacgaggag	caccatcaag	20

		101/05/	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
<210>	229		
<211>	20		
<212>	DNA		
<213>	Artificial Sequence		
<220>			
<223>	antisense sequence		
<400>	229		
ggaccagcct	tgtggagtcc		20
<210>	230		
<211>	20		
<212>	DNA		
<213>	Artificial Sequence		
<220> <223>	antidondo domiendo		
<223>	antisense sequence		
<400>	230		
tcagggttcc			20
<210> <211>	231 20		
<211>	DNA		
<213>	Artificial Sequence		
<220>			
<223>	antisense sequence		
<400>	231		
tctcagggtt	ccaggctggc		20
<210>	232		
<211>	20		
<212>	DNA		
<213>	Artificial Sequence		
<220>			
<223>	antisense sequence		
<400>	232		
catctcaggg	ttccaggctg		20
<210>	233		
<211>	20		
<212>	DNA		
<213>	Artificial Sequence		
<220>			
<223>	antisense sequence		
<400>	233		
gccatctcag	ggttecagge		20
<210>	234		
<211>	20		
<212>	DNA	•	
<213>	Artificial Sequence		
<220>			
<223>	antisense sequence		

PCT/US99/23171

WO 00/20435

WO 00/20435		PCT/US99/23171
<400> aggccatete	234 agggttccag	20
<210> <211> <212> <213>	235 20 DNA Artificial Sequence	
<220> <223>	antisense sequence	
<400> ggaggccatc	235 tcagggttcc	20
<210><211><211><212><213>	236 20 DNA Artificial Sequence	-
<220> <223>	antisense sequence	
<400> ctggaggcca	236 tctcagggtt	20
<210><211><212><213>	237 20 DNA Artificial Sequence	-
<220> <223>	antisense sequence	
<400> agctggaggc	237 catctcaggg	20
<210> <211> <212> <213>	238 20 DNA Artificial Sequence	
<220> <223>	antisense sequence	
<400> tgagctggag	238 gccatctcag	20
<210> <211> <212> <213>	239 20 DNA Artificial Sequence	
<220> <223>	antisense sequence	
<400> cctgagctgg	239 aggccatctc	20
<210><211><211><212><213>	240 20 DNA Artificial Sequence	

N. Section Section 1

WO 00/2043	5	PCT/US99/	/23171
<220> <223>	antisense sequence		
<400> tgcctgagc	240 t ggaggccatc	2	20
<210><211><211><212><213>	241 20 DNA Artificial Sequence		
<220> <223>	antisense sequence		
<400> gctgcctgag	241 g ctggaggcca	2	0
<210> <211> <212> <213>	242 20 DNA Artificial Sequence		
<220> <223>	antisense sequence		
<400> gggcgaggac	242 tgctgcctga	24	0
<210><211><211><212><213>	243 20 DNA Artificial Sequence		an.
<220> <223>	antisense sequence		
<400> tctcagagag	243 acageetgea	20	)
<210><211><212><213>	244 20 DNA Artificial Sequence		
<220> <223>	antisense sequence		
<400> tcctgggctt	244 atagactgga	20	
<210><211><212><212><213>	245 20 DNA Artificial Sequence		
<220> <223>	antisense sequence		
<400> gggetteeet	245 tgaaggagca	20	
<210> <211>	246 20		

WO 00/20435		PCT/US	S99/23171
<212> <213>	DNA Artificial Sequence		
<220> <223>	antisense sequence		
<400> caacagcagg	246 tttaggtggg		20
<210> <211> <212> <213>	247 20 DNA Artificial Sequence		
<220><223>	antisense sequence		-
<400> cagggccatg	247 ggcccagact		) 20
<210><211><211><212><213>	248 20 DNA Artificial Sequence		
<220> <223>	antisense sequence		
<400> cccggtagca	248 ategaeetee		- 20
<210> <211> <212>	249 20 DNA		
<213>	Artificial Sequence		
<223> <400>	antisense sequence 249		
ctcagccaga <210>	agetteteet 250		20
<211><212><213>	20 DNA Artificial Sequence		
<220> <223>	antisense sequence		
<400> ggccagggcc	250 aggtgggagg		20
<210 > <211 > <212 > <213 >	251 20 DNA Artificial Sequence		
<220> <223>	antisense sequence		
<400> tgctgaagct	251 ccaccaccct		20

*

WO 00/20435	5	PCT/US99/23171
01.0		
<210>	252	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220> <223>	antisense sequence	
<400> gtgatcttcc	252 c acaggaaagt	20
<210>	253	
<211>	20	
<212>	DNA	
:213>	Artificial Sequence	
<220>	•	
<223>	antisense sequence	
<400>	253	
	agaaggctgg	20
<210>	254	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		-
<223>	antisense sequence	
<400>	254	
aagagcgaca	gatgggttct	20
<210>	255	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	antisense sequence	
< 400>	255	
gcagcatgaa	ggtgaccttg	20
<210>	256	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	antisense sequence	
<400>	256	
tctggaagga	cgctgagctt	20
<210>	257	
<211>	20	
<212>	DNA .	
<213>	Artificial Sequence	
<220>		
<223>	antisense sequence	

WO 00/20435		PCT/	US99/23171
<400>	257		
ctccacaatg	cacttgagga		20
<210>	258		
<211>	20		
<212>	DNA		
<213>	Artificial Sequence		
<220>			
<223>	antisense sequence		
<400>	258		
tgccctgagg	tcttgggtgc		20
<210>	259		-
<211>	20		
<212> <213>	DNA Artificial Sequence		
(213)	Artificial Sequence		
<220>			
<223>	antisense sequence		
<400>	259		
atcctaacca	gatggccagc		20
<210>	260		
<211>	20		
<212> <213>	DNA Artificial Sequence		-
(213)	Altificial bequence		
<220>			
<223>	antisense sequence		
<400>	260		
actggcctcc	cagtgtcgca		20
<210>	261		
<211>	20		
<212> <213>	DNA Artificial Sequence		
<220> <223>	antisense sequence		
<223>	· ancisense sequence		
<400>	261		20
gcttgggtcc	tacggttcca		20
<210>	262		
<211> <212>	20 DNA		
<213>	Artificial Sequence		
<220>			
<223>	antisense sequence		
<400>	262		
tcctgtttct			20
_			
<210> <211>	263 20		
<211> <212>	DNA		
<213>	Artificial Sequence		

<220> <223> antisense sequence  <400> 263 ctgggtttgc ttgttcacct 20  <210> 264 <211> 20 <212> DNA <213> Artificial Sequence
ctgggtttgc ttgttcacct 20 <210> 264 <211> 20 <212> DNA <213> Artificial Sequence <220>
<211> 20 <212> DNA <213> Artificial Sequence
<212> DNA <213> Artificial Sequence <220>
<223> antisense sequence
<400> 264 ccaggaggct agaatgagag 20
<210> 265
<211> 20
<212> DNA
<213> Artificial Sequence
<220> <223> antisense sequence
<400> 265
tgaggagctg ggaggacagg 20
<210> 266 <211> 20
<211> 20 <212> DNA
<213> Artificial Sequence
•
<220> <223> antisense sequence
<400> 266
ttgggaaget gagetgeeag 20
<210> 267
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> antisense sequence
<400> 267
acagtgactg ggtttcacct 20
<210> 268
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> antisense sequence
<400> 268 20
ttacgggatt ctggaaagca

## INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/23171

A. CLASSIFICATION OF SUBJECT MATTER  IPC(6): C07H 21/04; C12Q 1/68; A61K 48/00  US CL: 435/6; 514/44; 536/23.1, 24.5  According to International Patent Classification (IPC) or to both national classification and IPC				
B. FIELDS SEARCHED				
Minimum documentation searched (classification system followed by classification symbols)				
U.S. : 435/6; 514/44; 536/23.1, 24.5				
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched NONE				
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) WEST, SCISEARCH, CAPLUS, BIOSIS, MEDLINE, EMBASE				
C. DOCUMENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where a	appropriate, of the relevant passages	Relevant to claim No.	
X - Y	XU et al. A Role for TRAF 2 and TRAF 6 in Cytokine-Mediated Induction of E-selectin. Immunity. 1996. vol. 5, pages 407-415, see entire document.		1-7, 9-14, and 17- 19  8	
Y	SANGHVI et al. HETEROCYCLIC I NUECLEIC ACIDS AND THI ANTISENSE OLIGONUCLEOTIDE Applications, pages 273-288, see entir	8		
A	BRANCH, A good antisense molec February 1998. vol. 23, pages 45-50,		1-19	
Further documents are listed in the continuation of Box C. See patent family annex.				
* Special categories of cited documents:  "T" later document published after the international filing date or priority				
"A" document defining the general state of the art which is not considered		date and not in conflict with the appli the principle or theory underlying the	cation but cited to understand	
	be of particular relevance lier document published on or after the international filing date	*X* document of particular relevance; the	claimed invention cannot be	
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)		considered novel or cannot be considered to involve an inventive step when the document is taken alone  "Y"  document of particular relevance; the claimed invention cannot be		
*O* document referring to an oral disolosure, use, exhibition or other means		considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art		
Po document published prior to the international filing date but later than the priority date claimed		& document member of the same patent family		
	actual completion of the international search  MBER 1999	Dete of mailing of the international search report  0 4 FEB 2000		
Commission Box PCT	nailing address of the ISA/US ner of Patents and Trademarks a, D.C. 20231	Authorized officer ANDREW WANG	MILLICATION	
Facsimile N	o. (703) 305-3230	Telephone No. (703) 308-0196	/	