Intro

TCP (Transmission Control Protocol) - Transport layer protocol. It is a reliable, byte stream based protocol.

It is connection oriented - it has official "start" (3-way handshake) and "end" (4-way handshake).

It is reliable - has confirmation of data delivery (ACK packets). Data bytes arrive in order they were sent. TCP also has packet retransmission.

It has flow control - TCP adjusts transmission rate (receiver can tell sender to slow down sending data or to speed up)

Sequence and Acknowledgement numbers

In short, sequence numbers (SEQ) track what has been sent and acknowledgement numbers (ACK) track what has been received. Sequence/Acknowledgement numbers are a measure of **bytes** sent/received.

Initially, SEQ numbers are chosen semi-randomly.

$$ACK(n) = SEQ(n) + L(n)$$

 $SEQ(n+1) = ACK(n)$

Here n is the n-th sent packet number. L(n) is the length of n-th sent TCP packet

These rules are true during the data transmission stage, when the connection was successfully established and before connection is terminated.

SEQ number is also a label/number of the first byte in current packet's payload and ACK is a label of the first byte in next packet's payload (Which means ACK - 1 is the label of the last byte inside current payload).

□ tcp.port == 9999					
No.	Time	Source	Destination	Protocol	Length Info
	179 2.728591966	127.0.0.1	127.0.0.1	TCP	74 38988 - 9999 [SYN] Seq=0 Win=65495 Len=0 MSS=65495 SACK_PERM=1 TSval=1893473901 TSecr=0 WS=
	180 2.728603799	127.0.0.1	127.0.0.1	TCP	74 9999 - 38988 [SYN, ACK] Seq=0 Ack=1 Win=65483 Len=0 MSS=65495 SACK_PERM=1 TSval=1893473901
	181 2.728614405	127.0.0.1	127.0.0.1	TCP	66 38988 → 9999 [ACK] Seq=1 Ack=1 Win=65536 Len=0 TSval=1893473901 TSecr=1893473901
	182 2.730092644	127.0.0.1	127.0.0.1	TCP	78 38988 → 9999 [PSH, ACK] Seq=1 Ack=1 Win=65536 Len=12 TSval=1893473902 TSecr=1893473901
	183 2.730099603	127.0.0.1	127.0.0.1		66 9999 → 38988 [ACK] Seq=1 Ack=13 Win=65536 Len=0 TSval=1893473902 TSecr=1893473902
	184 2.733817479	127.0.0.1	127.0.0.1		74 9999 → 38988 [PSH, ACK] Seq=1 Ack=13 Win=65536 Len=8 TSval=1893473906 TSecr=1893473902
	185 2.733825786	127.0.0.1	127.0.0.1		66 38988 → 9999 [ACK] Seq=13 Ack=9 Win=65536 Len=0 TSval=1893473906 TSecr=1893473906
	186 2.734336692	127.0.0.1	127.0.0.1	TCP	66 38988 - 9999 [FIN, ACK] Seq=13 Ack=9 Win=65536 Len=0 TSval=1893473907 TSecr=1893473906
	187 2.734433761	127.0.0.1	127.0.0.1	TCP	66 9999 → 38988 FIN, ACK] Seq=9 Ack=14 Win=65536 Len=0 TSval=1893473907 TSecr=1893473907
	188 2.734446480	127.0.0.1	127.0.0.1	TCP	66 38988 → 9999 [ACK] Seg=14 Ack=10 Win=65536 Len=0 TSval=1893473907 TSecr=1893473907

An example of TCP communication (fig. 1)

In fig.1 There are actual examples of both TCP communication "start" and "end" as well as data transmission (blue lines). Port 38988 is a client that has sent 12 bytes of data and port 9999 is a server that received the 12 bytes and responded with sending 8 bytes of data back to the client.

Q: What's the point of [PSH,ACK]?

Q: Why is ACK always set?

References:

- https://networkengineering.stackexchange.com/questions/29823/why-is-tcp-acknowledging-all-the-time#:~:text=The%20ACK%20bit%20is%20continuously,is%20used%20to%20do%20so.
- https://serverfault.com/questions/928642/all-tcp-packets-have-the-psh-flag-set-who-w https://serverfault.com/questions/928642/all-tcp-packets-have-the-psh-flag-set-who-w https://serverfault.com/questions/928642/all-tcp-packets-have-the-psh-flag-set-who-w
- https://serverfault.com/questions/124517/what-is-the-difference-between-unix-socket-s-and-tcp-ip-sockets?rg=1