Indian Institute of Technology Guwahati Probability Theory (MA 683) Problem Set 01

1. Let $\Omega = \{1, 2, 3, 4\}$. Is any of the following families of sets a σ -algebra?

$$\mathcal{F}_1 = \{\phi, \{1, 2\}, \{3, 4\}\},\$$

$$\mathcal{F}_2 = \{\phi, \Omega, \{1\}, \{2, 3, 4\}\{1, 2\}, \{3, 4\}\},\$$

$$\mathcal{F}_3 = \{\phi, \Omega, \{1\}, \{2\}, \{1, 3, 4\}\{2, 3, 4\}\{1, 2\}, \{3, 4\}\}.$$

2. Let $\Omega = (0, 1)$. Is any of the following families of sets a σ -algebra?

$$\mathcal{F}_1 = \{ \phi, \Omega, (0, 1/2), (1/2, 1) \},$$

$$\mathcal{F}_2 = \{ \phi, \Omega, (0, 1/2), [1/2, 1), (0, 2/3), [2/3, 1) \},$$

$$\mathcal{F}_3 = \{ \phi, \Omega, (0, 2/3), [2/3, 1) \}.$$

- 3. Let $\Omega = [0, 1]$. Adding as few sets as possible, complete the family of sets $\{\Omega, [0, 1/2), \{1\}\}$ to obtain a sigma algebra.
- 4. Let $I_0 = \Phi$ and $I_n = \{1, 2, ..., n\}$ for $n \ge 1$. Is $\mathcal{F} = \{I_n : n \ge 0\} \cup \{\mathbb{N} \setminus I_n : n \ge 0\}$ an algebra?
- 5. Let Ω be a finite non-empty set. Let $\mathcal{F} \subset \mathcal{P}(\Omega)$ be an algebra. Show that \mathcal{F} is a σ -algebra.
- 6. Show that the union of two σ -algebras is never a σ -algebra unless one is included into the other.
- 7. Let Ω be a non-empty set and let $\mathcal{A} = \{A_i : i \in \mathbb{N}\}$ be a partition of Ω . Let $\mathcal{F} = \{\bigcup_{i \in J} A_i : J \subset \mathbb{N}\}$, where for $J = \emptyset$, $\bigcup_{i \in J} A_i = \emptyset$. Show that \mathcal{F} is a σ -algebra. Also, show that $\mathcal{F} = \sigma \langle \mathcal{A} \rangle$.
- 8. Let Ω be a non-empty set and let $\mathcal{B} = \{B_i : 1 \leq i \leq k < \infty\} \subset \mathcal{P}(\Omega)$, \mathcal{B} not necessarily a partition. Find $\sigma \langle \mathcal{B} \rangle$.
- 9. Let $\Omega = \mathbb{N}$ and $A_i = \{j : j \in \mathbb{N}, j \geq i\}, i \in \mathbb{N}$. Show that $\sigma \langle A \rangle = \mathcal{P}(\Omega)$, where $A = \{A_i : i \in \mathbb{N}\}$.
- 10. Let Ω be a non-empty set and \mathcal{B} be a σ -algebra on Ω . Let $A \subset \Omega$ and $\mathcal{B}_A = \{B \cap A : B \in \mathcal{B}\}$. Show that \mathcal{B}_A is a σ -algebra on A. The σ -algebra \mathcal{B}_A is called the trace σ -algebra of \mathcal{B} on A.
- 11. Let $\Omega = \mathbb{N}$, $\mathcal{F} = \mathcal{P}(\Omega)$, and $A_n = \{j : j \in \mathbb{N}, j \geq n\}$, $n \in \mathbb{N}$. Let μ be the counting measure on (Ω, \mathcal{F}) . Verify that $\lim_{n \to \infty} \mu(A_n) \neq \mu(\cap_{n \geq 1} A_n)$.
- 12. Let Ω be a non-empty set and let $\mathcal{C} \subset \mathcal{P}(\Omega)$ be a semialgebra. Let

$$\mathcal{A}(\mathcal{C}) = \left\{ A : A = \bigcup_{i=1}^{k} B_i, B_i \in \mathcal{C}, i = 1, 2, ..., k, k \in \mathbb{N} \right\}.$$

Show that $\mathcal{A}(\mathcal{C})$ is the smallest algebra containing \mathcal{C} .

13. Let $\Omega = \mathbb{N}$ and let \mathcal{F} be the family of all subset of Ω . Is

$$\mathbb{P}(A) = \liminf_{n \to \infty} \frac{\#(A \cap \{1, 2, \cdots, n\})}{n}$$

a probability measure on \mathcal{F} ?

14. Let (Ω, \mathcal{F}) be a measurable space and μ be a measure defined on \mathcal{F} . Let A_1, A_2, \ldots be a sequence of sets from \mathcal{F} such that $\mu(A_1) + \mu(A_2) + \ldots < \infty$ and let $B_n = A_n \cup A_{n+1} \cup \ldots$ Then $\mu(B_1 \cap B_2 \cap \ldots) = 0$.