Supervised learning

Aprendizaje Automático para la Robótica Máster Universitario en Ingeniería Industrial

Departamento de Automática

Objectives

- 1. Extend supervised learning algorithms
- 2. Apply supervised learning to real-world problems

Bibliography

• Müller, Andreas C., Guido, Sarah. Introduction to Machine Learning with Python. O'Reilly. 2016

All figures have been taken from https://github.com/amueller/introduction_to_ml_with_ python/blob/master/02-supervised-learning.ipynb

Table of Contents

- Generalization, overfitting and underfitting
- 2. k-Nearest Neighbors
 - k-NN classification
 - Scikit-Learn
 - kNN regression
 - Scikit-Learn
 - Summary
- 3. Linear models
 - Ordinary least squares
 - Linear regression
 - Regularized linear models
 - Ridge regression
 - Lasso regression
 - ElasticNet
 - Regularized linear models comparison
 - Scikit-Learn
 - Linear models for classification
 - Scikit-Learn
 - Summary

- 4. Decision Trees
 - Building decision trees
 - Controlling complexity of decision trees
 - Analyzing decision trees
 - Feature importance in trees
 - Decision trees in regression
 - Scikit-Learn
 - Summary
- 5. Ensembles of Decision Trees
 - Scikit-Learn
 - Summary
- 6. Support Vector Machines
 - Kernelized Support Vector Machines
 - Support Vector Machines
 - Summary
- 7. A
 - b
 - A: Scikit-Learn
 - A: Summary
 - = ARTMA

Generalization, overfitting and underfitting

Generalization: accurate predictions on unseen data

- i.e. there is no overfitting neither underfitting
- Depends on model complexity and data variability

k-Nearest Neighbors Linear models Decision Trees Ensembles of Decision Trees Support Vector Machines

k-Nearest Neighbors

k-NN classification (I)

k-NN (k-Nearest Neighbors): Likely, the simplest classifier

- Given a data point, it takes its k closests neighbors
- Same prediction than its neighbors

k-NN does not generate a model

The whole dataset must be stored

k uses to be an odd number (1-NN, 3-NN, 5-NN, ...)

k-Nearest Neighbors

k-Nearest Neighbors

k-NN classification (II)

k determines the model complexity

- Smoother boundaries in larger k values
- Model complexity decreases with k
- If k equals the number of samples, k-NN always predicts the most frequent class

How to figure out the best k?

k-Nearest Neighbors

k-Nearest Neighbors

k-NN classification (III)

k-Nearest Neighbors classifier

Scikit-learn

sklearn.neighbors.KNeighborsClassifier

Constructor arguments:

- n_neighbors: int, default=5
- metric: string, default='minkowski'
- p: int, default=2 (p = 1 Manhatan distance, p = 2 euclidean distance)

Methods: fit(), predict()

Attributes:

classes_: ndarray (n_samples)

(Scikit-Learn reference)

k-Nearest Neighbors

kNN regression (I)

k-NN regression

Given a data point

- I. Take the k closest data points
- 2. Predict same target value (1-NN) or averate target value (k-NN)

Performace is measured with a regression metric, by default, R²

inear models Decision Trees Ensembles of Decision Trees Support Vector Machines

k-Nearest Neighbors

k-Nearest Neighbors

kNN regression (II)

k determines boundary smoothness

- I. With k = 1, prediction visits all data points
- 2. With large k values, fit is worse

k-Nearest Neighbors regressor

Scikit-learn

sklearn.neighbors.KNeighborsRegressor

Constructor arguments:

Attributes:

- n_neighbors: int, default=5
- metric: string, default='minkowski'
- p: int, default=2 (p = 1 Manhatan distance, p = 2 euclidean distance)

Methods:fit(),predict()

(Scikit-Learn reference)

k-Nearest Neighbors

k-Nearest Neighbors

Summary

Hyperparameters	Advantages	Disadvantages
k	Simple	Slow with large datasets
Distance	Baseline	Bad performance with
		hundreds or more attri-
		butes
		No model
		Dataset must be stored
		in memory

Linear model (I)

Linear model

$$\mathbf{y} = \beta_0 + \beta_1 \mathbf{x}_1 + \beta_2 \mathbf{x}_2 + \dots + \beta_n \mathbf{x}_n$$

for a single feature $y = \beta_0 + \beta_1 x_1$, where

- β_0 is the intercept
- β_1 is the slope
- Intepretable model

Lineal models assume a linear relationship among variables

- This limitation can be easely overcomed
- Surprisingly good results in high dimensional spaces

Linear regression

Different linear models for regression

• The difference lies in how β_i parameters are learned

Ordinary Least Squares (OLS): Minimizes mean squared error

- OLS does not have any hyperparameter
- No complexity control

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (x_i - y_i)^2$$

Linear regression can be used to fit non-linear models

• Just adding new attributes

Regularized linear models

Regularization: Term that penalizes complexity

- Added to the cost function
- Lineal models remain the same
- Train to minimize cost function and coefficients
- Intercepts are not part of regularization

Three regularizations

LI (Lasso regression), L2 (Ridge regression) and ElasticNet (LI and L2)

Lasso (L1)

 $\alpha \sum_{i=1}^{n} |\beta_{i}|$

Ridge (L2)

 $\frac{\alpha}{2} \sum_{i}^{n} \beta_{i}^{2}$

ElasticNet

 $\alpha \left(\frac{\lambda}{2} \sum_{i}^{n} \beta_{i}^{2} + (1 - \lambda) \sum_{i}^{n} |\beta_{i}| \right)$

Ridge regression

Ridge regression (or L2 regularization) adds a new term to cost function

$$MSE + \alpha \sum_{i=1}^{n} \beta_i^2$$

 α controls the model complexity

- If $\alpha = 0$ Ridge becomes a regular linear regression
- Optimal α depends on the problem

Ridge by default

Lasso regression (I)

Lasso regression (or L1 regularization) adds a new term to cost function

$$MSE + \alpha \frac{1}{2} \sum_{i=1}^{n} |\beta_i|$$

 α controls the model complexity

- If $\alpha = 0$ Ridge becomes a regular linear regression
- Optimal α depends on the problem

Some coefficiets may be exactly zero

- Implicit feature selection
- Easier interpretation
- Better with large number of attributes

Linear models

Lasso regression (II)

(Source)

 $\beta_1^2 + \beta_2^2 \le c$

ElasticNet

Lasso and Ridge can be combined

$$\text{MSE} + \alpha \left(\lambda \frac{1}{2} \sum_{i=1}^{n} |\beta_i| + (1 - \lambda) \sum_{i=1}^{n} \beta_i^2 \right)$$

Two hyperparameters

- \bullet α controls the model complexity
- λ balances between L1 and L2

-Nearest Neighbors Linear models Decision Trees Ensembles of Decision Trees Support Vector Machines

Linear models

Regularized linear models comparison

Scikit-learn (I)

Constructor arguments:

• fit_intercept: boolean, default=True

Methods:fit(),predict()

- coef_: ndarray (n_features,)
- intercept_: ndarray (n_targets,)
- n_features_in_:int

Scikit-learn (II)

Linear models

Constructor arguments:

- fit_intercept: boolean, default=True
- alpha: float, default=1.0

Methods:fit(),predict()

- coef_: ndarray (n_features,)
- intercept_: ndarray (n_targets,)
- n features in :int

Scikit-learn (IV)

Linear models

Constructor arguments:

- fit_intercept: boolean, default=True
- alpha: float, default=1.0
- 11_ratio: float, default=0.5

Methods:fit(),predict()

- coef_: ndarray (n_features,)
- intercept_: ndarray (n_targets,)
- n features in :int

Scikit-learn (III)

Constructor arguments:

- fit_intercept: boolean, default=True
- alpha: float, default=1.0

Methods:fit(),predict()

- coef_: ndarray (n_features,)
- intercept_: ndarray (n_targets,)
- n features in :int

Linear models for classification (I)

A linear regression can be used as classifier

- Just compare the prediction with a threshold (o, for instance)
 - If $\hat{y} > 0$, assign class 1
 - If $\hat{\mathbf{y}} <= 0$, assign class -1
- The decision boundary for any binary linal classifier is a line, plane or hyperplane

A logistic regression is a generalization of a linear regression

- It is a binary classifier
- Its output is a probability

$$p = \sigma \left(\beta_0 + \sum_{i=1}^n \beta_i x_i \right), \stackrel{\mid \frac{1}{2} \quad 0.6}{\underset{0.2}{\stackrel{\circ}{=}} \quad 0.4}{\underset{0.2}{\stackrel{\circ}{=}} \quad 0.6}{}$$

where $\sigma(t)$ is the logistic function, defined as $\sigma(t) = \frac{1}{1+e^t}$

Linear models for classification (II)

Linear models for classification (III)

The model can be regularized with L1, L2 and ElasticNet

- In Scikit-Learn, regularization strength is given by C
- Lower values of C correspond to smaller regularization strength

Linear models Decision Trees Ensembles of Decision Trees Support Vector Machines

Linear models

Scikit-learn

sklearn.linear model.ElasticNet

Constructor arguments:

- penalty: 'lr', 'l2', 'elasticnet', 'none', default='l2'
- fit_intercept: boolean, default=True
- alpha: float, default=1.0
- 11_ratio: float, default=0.5

Methods:fit(),predict()

- coef_: ndarray (n_features,)
- intercept_: ndarray (n_targets,)
- n_features_in_:int

Summary

Hyperparameters	Advantages	Disadvantages
-	Fast train and predict	No complexity tuning
lpha (L1, L2, ElasticNet)	Scales well to large data-	Limited in low dimen-
	sets	sional spaces
l1_ratio (ElasticNet)	Better in high dimen-	_
	sional spaces	
	Few hyperparameters	
	Interpretable	

Better when the number of features is large compared to the number of samples

Decision trees are a family of algorithms for classification and regression

- They learn a tree data strucure
- Hierarchy of if/else questions (test, or node)
- Decision (terminal node or leaf)

Usually, datasets does not contain binary attributes

- Continous features
- Is feature i larger than value a?

Building decision trees (I)

Tree learning algorithm

- 1. Begin with the root node
- 2. Searches all possible tests (according to a purity measure)
- 3. The most informative test is taken
- 4. Repeat recursively

Prediction of a new data point

- Classification: Majority class in the partition
- Regression: Average value of target values in the partition

Building decision trees (II)

Building decision trees (III)

Let \mathfrak{p}_{mk} be the propotion of class k in node m, and Q_m the data in node m

Gini

Log Loss or Entropy

$$G(Q_m) = \sum_l p_{mk} (1-p_{ml})$$

$$H(Q_{m}) = -\sum_{l.} p_{mk}log(p_{ml})$$

Controlling complexity of decision trees

Trees tend to grow until all leaves are pure

- Very big trees in real problems
- Big trees use to be overfitted models

Two strategies to prevent overfitting

- Pre-prunning: Stop the creation of the tree early accorgind to some criteria
 - Maximum depth, number of leaves, minimum number of points in a node, ...
 - Implemented in Sciki-Learn
- Post-prunning: Build the tree and then remove nodes with little information

Analyzing decision trees

Decision trees is easily explained to nonexperts

- Interpretable models
- Deep trees are overwhelming
- Trick: Observe the path with most data

k-Nearest Neighbors Linear models **Decision Trees** Ensembles of Decision Trees Support Vector Machines

Decision Trees

Analyzing decision trees

Feature importace is a metric that summarizes features

- Number between o (not used at all) and I (perfect prediction)
- Feature importances sum to one
- Useful for feature selection and model interpretation

Some considerations

- It does not inform about the relationship between attribute and target
- It quantifies the importance in the tree
 - Correlated attributes may score low importance

Decision Trees

Decision trees in regression

Decision trees are not able to extrapolate

- i. e. to predict outside of the range of the training data
- It is specially important in regression problems

est Neighbors Linear models Decision Trees Ensembles of Decision Trees Support Vector Machines

Decision Trees

Scikit-learn (I)

sklearn.tree.DecisionTreeClassifier

Constructor arguments:

- criterion: 'gini', 'entropy', 'log_loss', default='gini'
- max_depth: int, default=None
- max_leaf_nodes: int, default=None
- min_samples_leaf: int or float, default=r

Attributes:

- classes_: ndarray (n_classes,)
- feature_importances_: ndarray(n_features,)
- tree_: Tree instance

Methods:fit(),predict(),decision_path(),get_depth(),
get_n_leaves()

(Scikit-Learn reference)

Decision Trees

Scikit-learn (II)

sklearn.tree.DecisionTreeRegressor

Constructor arguments:

- criterion: "squared_error",
 "absolute_error",
 default="squared_error"
- max_depth: int, default=None
- max_leaf_nodes: int, default=None
- min_samples_leaf: int or float, default=r

Methods:fit(),predict(),decision_path(),get_depth(),
get_n_leaves()

Attributes:

- feature_importances_: ndarray (n_features,)
- tree_: Tree instance

Decision Trees

Summary

Hyperparameters	Advantages	Disadvantages
max_depth	Visualization	Tend to overfit
max_leaf_nodes	Interpretable by non- experts	Poor generalization
min_samples_leaf 'criterion'	Invariant to scale Mix of categorial and numerical data	

Ensembles of Decision Trees

Ensembles of Decision Trees

Ensembles of Decision Trees: Scikit-learn

sklearn.cluster.AgglomerativeClustering

Constructor arguments:

 linkage: 'ward', 'complete', 'average', 'single'

Methods:fit(),fit_predict()

Attributes:

- n_clusters: int
- labels_: ndarray (n_samples)

(Scikit-Learn reference)

Ensembles of Decision Trees

Summary

Hyperparameters Advantages Disadvantages

Support Vector Machines

Support Vector Machines Kernelized Support Vector Machines

Scikit-Learn

Support Vector Machines

Scikit-learn

sklearn.cluster.AgglomerativeClustering

Constructor arguments:

• linkage: 'ward', 'complete', 'average', 'single'

Methods:fit(),fit_predict()

Attributes:

- n_clusters: int
- labels_: ndarray (n_samples)

(Scikit-Learn reference)

Support Vector Machines Summary

Hyperparameters Advantages Disadvantages

etor Machines A

sklearn.cluster.AgglomerativeClustering

Constructor arguments:

• linkage: 'ward', 'complete', 'average', 'single'

Methods:fit(),fit_predict()

Attributes:

- n_clusters: int
- labels_: ndarray (n_samples)

(Scikit-Learn reference)

0000

apport Vector Machines A OOO OO

B: Summary

Hyperparameters Advantages Disadvantages

Algorithms

ARIMA (I)

AR: Autoregressive model

- Current observation depends on the last p observations
- Long term memory

MA: Moving Average model

- Current observation linearly depends on the last q innovations
- Short term memory

ARMA model = AR + MA

• ARMA(p, q): Two hyperparameters, p and q

AR(p)

$$X_t = c + \sum_{i=1}^p \phi_i X_{t-1} + \epsilon_t$$

MA(q)

$$X_t = \mu + \epsilon_t + \theta_1 \epsilon_{t-1} + ... + \theta_q \epsilon_{t-q}$$

Algorithms

ARIMA (II)

ARIMA = AR + i + MA (AR integrated MA)

- ARIMA(p, d, q)
- Three integer parameters: p, q and d (in practice, low order models)

autoarima: search over p, q and d

A 00000