# Matlab Homework 7: Microarray Gene Expression



- In genetics, gene expression (genotype) gives rise to the phenotype, i.e. observable trait.
- Mistakes in gene expression result in diseases in human

### Differential gene expression (DGE)

- Spatio-temporal gene expression of 20,000 genes
- Which genes are differentially expressed in the two different tissue types
- Which genes are differentially expressed in normal tissue and disease tissue



### Quantify the gene expression

Mixed mRNA in 20,000 genes



Sort them and Measure the individual gene expression



# Ways to quantify the gene expression

- Northern/Western blotting
- Fluorescent in situ hybridization (FISH)
- Reverse transcription polymerase-chain-reaction (RT-PCR)
- Serial Analysis of Gene Expression (SAGE)
- DNA microarray (high throughput)
- RNA Sequencing (high throughput)

# DNA microarray (high throughput) is based on the principle of DNA/RNA hybridization

**Double-stranded DNA** 

Positive/forward strand Reverse/complementary strand







Attach green fluorophores to the mRNA molecules

gene expression: which gene is expressed and how much (fluorescence intensity)

# **DNA** microarray Fabrication



http://learn.genetics.utah.edu



# A typical comparative microarray experiment

**Extract RNA** 

Convert RNA to cDNA and label them with green/red color dye dUPT-cy3

Mix and hybridize on the array



Analyze the data

Scan and image

# Gene expression data analysis

- Data normalization
- Clustering and Classification
- Databases and software

# Gene expression data example

### Data on *m* genes for *n* samples

| ID_REF    | GSM136326  | GSM136327  | GSM136328  | GSM136329   | GSM136330  | GSM136331   |
|-----------|------------|------------|------------|-------------|------------|-------------|
| 1007_s_at | 10.4502763 | 9.3995422  | 9.42479936 | 9.472922422 | 9.27878032 | 9.434427931 |
| 1053_at   | 5.71946574 | 4.84929333 | 4.73208086 | 4.728854347 | 5.32639216 | 5.230320408 |
| 117_at    | 5.93866366 | 6.08327317 | 6.44797814 | 6.17694869  | 6.54458475 | 6.07779478  |
| 121_at    | 8.0230524  | 7.8946588  | 8.34498775 | 8.163203547 | 8.23375629 | 7.595105829 |
| 1255_g_at | 3.95480312 | 3.96324647 | 3.96410203 | 4.087835849 | 3.99889298 | 3.839704814 |
| 1294_at   | 7.9090045  | 8.36397325 | 8.27191179 | 8.358196216 | 7.69999823 | 8.274305066 |
| 1316_at   | 6.50101269 | 7.06478465 | 6.84193046 | 7.16941856  | 6.47412502 | 6.182111503 |
| 1320_at   | 4.46782927 | 4.44699592 | 4.55541274 | 4.660870385 | 4.74765838 | 4.484930349 |
| 1405_i_at | 6.98704598 | 6.91061747 | 6.70850464 | 7.777802579 | 7.74606814 | 7.576616437 |
| 1431_at   | 3.78442846 | 3.84921957 | 3.86910251 | 4.06116236  | 3.90178173 | 3.669844515 |
| 1438_at   | 6.33719475 | 6.35968637 | 6.26322624 | 6.571037625 | 6.41512718 | 5.992213616 |
| 1487_at   | 7.6496267  | 7.16653011 | 7.25328005 | 7.228355117 | 7.14035537 | 7.626439717 |

## Gene expression data analysis-analyze each gene

| ID_REF    | GSM136326  | GSM136327  | GSM136328  | GSM136329   | GSM136330  | GSM136331   |
|-----------|------------|------------|------------|-------------|------------|-------------|
| 1007_s_at | 10.4502763 | 9.3995422  | 9.42479936 | 9.472922422 | 9.27878032 | 9.434427931 |
| 1053_at   | 5.71946574 | 4.84929333 | 4.73208086 | 4.728854347 | 5.32639216 | 5.230320408 |

Group the patients into difference groups and see if there is a difference between them for each gene

Group 1

| ID_REF    | GSM136326  | GSM136327  |
|-----------|------------|------------|
| 1007_s_at | 10.4502763 | 9.3995422  |
| 1053_at   | 5.71946574 | 4.84929333 |

Group 2

| ID_REF    | GSM136328  | GSM136329   | GSM136330  | GSM136331   |
|-----------|------------|-------------|------------|-------------|
| 1007_s_at | 9.42479936 | 9.472922422 | 9.27878032 | 9.434427931 |
| 1053_at   | 4.73208086 | 4.728854347 | 5.32639216 | 5.230320408 |

Perform ttest for 1007\_s\_at p=0.0001 Perform ttest for 1007\_s\_at p=0.0002

Find the fold change.

Average gene expression of 1007\_s\_at (group 1)/ Average geneexpression of 1007\_s\_at (group 2)

### Gene Clustering



### Databases and software

### Deposit data in the public database(<a href="http://www.ncbi.nlm.nih.gov/geo/">http://www.ncbi.nlm.nih.gov/geo/</a>)

| ALGORITHMS                    | SOFTWARE/TOOLS              |
|-------------------------------|-----------------------------|
| K-means                       | KMC <sup>91</sup>           |
|                               | MATLAB <sup>92</sup>        |
|                               | PYTHON93-95                 |
|                               | APACHE SPARK <sup>103</sup> |
|                               | JAVA (WEKA)104,105          |
|                               | R <sup>98–102</sup>         |
| K-medoids                     | MATLAB <sup>108</sup>       |
| Gaussian Mixture Model (GMM)  | APACHE SPARK <sup>103</sup> |
|                               | PYTHON93,94,107             |
| Self-Organizing Maps (SOM)    | R <sup>108</sup>            |
|                               | MATLAB <sup>109,110</sup>   |
| Hierarchical Clustering       | XLSTAT111                   |
|                               | PYTHON <sup>93,94,112</sup> |
|                               | R/PYTHON <sup>113–115</sup> |
| Expectation Maximization (EM) | MATLAB <sup>116</sup>       |

| ALGORITHMS                                        | SOFTWARE/TOOLS                                      |
|---------------------------------------------------|-----------------------------------------------------|
| Fuzzy K-means                                     | MAHOUT APACHE <sup>117</sup>                        |
| Affinity Propagation (AP)                         | PYTHON <sup>93,94,118</sup>                         |
|                                                   | AFFINITY PROPAGATION WEB APPLICATION <sup>119</sup> |
| PAM                                               | R <sup>120</sup>                                    |
|                                                   | STAT <sup>121</sup>                                 |
| CLARANS                                           | R <sup>120</sup>                                    |
|                                                   | MATLAB <sup>122</sup>                               |
| OPTICS                                            | MATLAB <sup>122</sup>                               |
| Hierarchical Dirichlet Process (HDP)<br>Algorithm | PYTHON <sup>123,124</sup>                           |
| Binary Matrix Factorization (BMF)                 | PYTHON <sup>125,126</sup>                           |
| Multi-Objective Clustering (MOCK)                 | C++/JAVA <sup>127</sup>                             |
| DBSCAN                                            | R128                                                |
|                                                   | PYTHON <sup>93,94,129</sup>                         |

Oyelade, J. et al. (2016) Clustering algorithms: their application to gene expression data. Bioinformatics and Biology insights, 10, BBI. S38316.

IBC vs. non-IBC Stromal vs. epithelial Int. J. Cancer: 122, 1324-1332 (2008)

© 2007 Wiley-Liss, Inc.

#### A stromal gene signature associated with inflammatory breast cancer

Brenda J. Boersma<sup>1</sup>, Mark Reimers<sup>2</sup>, Ming Yi<sup>3</sup>, Joseph A. Ludwig<sup>2,4</sup>, Brian T. Luke<sup>3</sup>, Robert M. Stephens<sup>3</sup>, Harry G. Yfantis<sup>5</sup>, Dong H. Lee<sup>5</sup>, John N. Weinstein<sup>2</sup> and Stefan Ambs<sup>1\*</sup>

The factors that determine whether a breast carcinoma will develop into inflammatory breast cancer (IBC) remain poorly understood. Recent evidence indicates that the tumor stroma influences cancer phenotypes. We tested the hypotheses that the gene expression signature of the tumor stroma is a distinctive feature of IBC. We used laser capture microdissection to obtain enriched populations of tumor epithelial cells and adjacent stromal cells from 15 patients with IBC and 35 patients with invasive, noninflammatory breast cancer (non-IBC). Their mRNA expression profiles were assessed using Affymetrix GeneChips TM. In addition, a previously established classifier for IBC was evaluated for the resulting data sets. The gene expression profile of the tumor stroma distinguished IBC from non-IBC, and a previously established IBC prediction signature performed better in classifying IBC using the gene expression profile of the tumor stroma than it did using the profile of the tumor epithelium. In a pathway analysis, the genes differentially expressed between IBC and non-IBC tumors clustered in distinct pathways. We identified multiple pathways related to the endoplasmic stress response that could be functionally significant in IBC. Our findings suggest that the gene expression in the tumor stroma may play a role in determining the IBC phenotype.

© 2007 Wiley-Liss, Inc.

Key words: inflammatory breast cancer; stroma; gene signature; prediction

from relatives of patients with familial breast cancer more frequently show an abnormal migratory behavior and a tumor-like phenotype than do fibroblasts from donors without such a family history.<sup>13</sup> Others have found evidence that allelic diversity in the host genetic background is a determinant of tumor metastasis in mice.<sup>14</sup> Thus, the intrinsic gene expression profile of the tumor stroma may strongly influence a cancer's phenotype, aggressiveness and outcome.

In the present study, the hypothesis was pursued that the gene expression signature of the tumor stroma is a distinctive feature of IBC. We also investigated whether a previously established classifier for IBC can distinguish between IBC and non-IBC tumors with gene signatures obtained from microdissected samples, e.g., tumor epithelium and tumor stroma. We used laser capture microdissection (LCM) to obtain samples enriched in tumor epithelium and tumor stroma from 15 IBC and 35 invasive, noninflammatory breast cancer (non-IBC) cases to study the relative contribution of each component to the IBC phenotype. All previous studies of IBC have used bulk tumor samples. Downsides of this approach include dilution of gene expression signatures from any one tissue subcompartment and the inability to distinguish the separate roles of the different subcompartments. In particular, the significance of the stromal gene signature in IBC is obscured by this approach.

<sup>&</sup>lt;sup>1</sup>Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD

<sup>&</sup>lt;sup>2</sup>Genomics and Bioinformatics Group, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD

<sup>3</sup>Advanced Biomedical Computing Center, NCI-Frederick/SAIC-Frederick Inc., Frederick, MD

<sup>&</sup>lt;sup>4</sup>Department of Sarcoma Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX

<sup>&</sup>lt;sup>5</sup>Pathology and Laboratory Medicine, Baltimore Veterans Affairs Medical Center, Baltimore, MD

# Deposit data in the public database

(http://www.ncbi.nlm.nih.gov/geo/)

### Data description: (<a href="http://www.ncbi.nlm.nih.gov/geo/">http://www.ncbi.nlm.nih.gov/geo/</a>)



### **GEO** data types

- •GSM: An individual microarray sample (e.g., patient, or tissue).
- •GSE: A Series, representing an experimental study. A GSE contains one or more GSM entries.

Probe-GSM-data(intensity ratio)

•GPL: Platform data, containing information about microarray probes. Each GSM sample is associated with a GPL. E.g., to find out the gene symbols for a GSM, you would need to consult with the GPL used in that study.

Probe-Gene

### Data description: (<a href="http://www.ncbi.nlm.nih.gov/geo/">http://www.ncbi.nlm.nih.gov/geo/</a>)



### GSE:

#### Two sections: Header and data

- Header.Series structure
- Header.Samples structure
- !series\_matrix\_table

You can download the file GSE5847\_series\_matrix which is already in your folder

#### !series\_matrix\_table

- sample names (column names)
- probe information (row names)
- No gene information (GPL)

Status Public on Sep 30, 2007

Title Tumor and stroma from breast by LCM

Organism Homo sapiens

Experiment type Expression profiling by array

Summary Tumor epithelium and surrounding stromal cells were isolated using laser

capture microdissection of human breast cancer to examine differences in gene expression based on tissue types from inflammatory and non-inflammatory

breast cancer Keywords: LCM

Overall design We applied LCM to obtain samples enriched in tumor epithelium and stroma

from 15 IBC and 35 non-IBC cases to study the relative contribution of each

component to the IBC phenotype and to patient survival.

Contributor(s) Ambs S, Boersma B, Reimers M

Citation(s) Boersma BJ, Reimers M, Yi M, Ludwig JA et al. A stromal gene signature

associated with inflammatory breast cancer, Int J Cancer 2008 Mar

15;122(6):1324-32. PMID: 17999412

Martin DN, Boersma BJ, Yi M, Reimers M et al. Differences in the tumor microenvironment between African-American and European-American breast

cancer patients. PLoS One 2009;4(2):e4531. PMID: 19225562

Submission date Sep 15, 2006 Last update date Aug 10, 2018 Contact name Stefan Ambs

Organization name NCI Lab LHC

Street address 37 Convent Dr Bldg 37 Room 3050

City Bethesda
State/province MD
ZIP/Postal code 20892
Country USA

Platforms (1) GPL96 [HG-U133A] Affymetrix Human Genome U133A Array

Samples (95) GSM136326 LCM stroma sample from patient #37

GSM136327 LCM stroma sample from patient #38

GSM136328 LCM stroma sample from patient #40

Relations

BioProject PRJNA97251

#### Analyze with GEO2R

| Download family                 | Format   |
|---------------------------------|----------|
| SOFT formatted family file(s)   | SOFT 2   |
| MINIML formatted family file(s) | MINIML 2 |
| Series Matrix File(s)           | TXT ?    |

### GPL:

# Related to the type of arrays. Define the probes for genes

#### Three sections:

^PLATFORM = GPL96

!platform\_table\_begin

We are only interested in the platform\_table

Column: probes used

Row: probe name





OME | SEARCH | SITE MA GEO Publications FAQ MIAME Email GEO NCBI > GEO > Accession Display 2 Not logged in | Login 2 GEO help: Mouse over screen elements for information Scope: Self ▼ Format: HTML ▼ Amount: Quick ▼ GEO accession: GPL96 GO Platform GPL96 Query DataSets for GPL96 Status Public on Mar 11, 2002 Title [HG-U133A] Affymetrix Human Genome U133A Array Technology type in situ oligonucleotide commercial Distribution Organism Homo sapiens Manufacturer Affymetrix Manufacture protocol see manufacturer's web site The U133 set includes 2 arrays with a total of 44928 entries and was indexed 29-Jan-2002. The set includes over 1,000,000 unique oligonucleotide features covering more than 39,000 transcript variants, which in turn represent greater than 33,000 of the best characterized human genes. Sequences were selected from GenBank, dbEST, and RefSeq. Sequence clusters were created from Build 133 of UniGene (April 20, 2001) and refined by analysis and comparison with a number of other publicly available databases including the Washington University EST trace repository and the University of California, Santa Cruz golden-path human genome database (April 2001 release). In addition, ESTs were analyzed for untrimmed lowquality sequence information, correct orientation, false priming, false clustering, alternative splicing and alternative polyadenylation. Description Affymetrix submissions are typically submitted to GEO using the GEOarchive described at http://www.ncbi.nlm.nih.gov/projects/geo/info/geo\_affy.html June 03, 2009; annotation table updated with netaffx build 28 June 08, 2012: annotation table updated with netaffx build 32 June 24, 2016: annotation table updated with netaffx build 35 Web link http://www.affymetrix.com/support/technical/byproduct.affx? product=hau133 http://www.affymetrix.com/analysis/index.affx Submission date Feb 19, 2002 Last update date Aug 10, 2018 Organization Affymetrix, Inc. geo@ncbi.nlm.nih.gov, support@affymetrix.com E-mail Phone 888-362-2447 URL http://www.affymetrix.com/index.affx Street address

### bmes\_downloadandparsegse5

```
url = sprintf('ftp://ftp.ncbi.nih.gov/pub/geo/DATA/SeriesMatrix/%s/%s_series_matrix.txt.gz','GSE5847');
gzfile = [tempdir '/' sprintf('%s.txt.gz','GSE5847')];
fprintf('Downloading %s ...\n',url);
urlwrite(url, gzfile);
files = gunzip( gzfile );
file = files{1};
fprintf('Reading %s ...\n',file);
gsedata = geoseriesread( file );
```

#### Geoseriesread bioinformatics toolbox

Read Gene Expression Omnibus (GEO) Series (GSE) format data

https://www.mathworks.com/help/bioinfo/ref/geoseriesread.html

#### **Syntax**

GEOData = geoseriesread(File)

#### **Output Arguments**

| GEOData | <ul> <li>MATLAB structure containing the following fields:</li> <li>Header — Header text from the GEO Series (GSE) format file, typically containing a description of the data or experiment information.</li> </ul>                               |  |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|         | <ul> <li>Data — DataMatrix object containing the data from a GEO Series (GSE) format file. The columns and rows of the DataMatrix object correspond to the sample IDs and Ref IDs, respectively, from the GEO Series (GSE) format file.</li> </ul> |  |

### bmes\_downloadandparsegpl7

```
url = sprintf('https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?form=text&acc=%s&view=full',gplid);
file = [tempdir '/' 'GPL96' '.txt'];
urlwrite(url, file);
gpldata = geosoftread( file );
```

#### geosoftread

Read Gene Expression Omnibus (GEO) SOFT format data

https://www.mathworks.com/help/bioinfo/ref/geosoftread.html

#### **Syntax**

GEOSOFTData = geosoftread(File)

**GEOSOFTData** 

MATLAB structure containing information from a GEO SOFT format file.

| Fields                      | Description                                                |
|-----------------------------|------------------------------------------------------------|
| Scope                       | Type of file read (SAMPLE, DATASET, or PLATFORM)           |
| Accession                   | Accession number for record in GEO database.               |
| Header                      | Microarray experiment information.                         |
| ColumnDescriptions          | Cell array containing descriptions of columns in the data. |
| ColumnNames                 | Cell array containing names of columns in the data.        |
| Data                        | Array containing microarray data.                          |
| Identifier (GDS files only) | Cell array containing probe IDs.                           |
| IDRef (GDS files only)      | Cell array containing indices to probes.                   |

### **GSE: Data Structures After Downloading**

gse = struct with fields:
 Header: [1×1 struct]

Data: [22283×95 bioma.data.DataMatrix]

#### gse.Header

```
ans = struct with fields:
    Series: [1x1 struct]
    Samples: [1x1 struct]
```

Gse.data. DataMatrix object, similar to a Matlab table but with row and column names You need to follow the rules of DataMatrix object

```
log2
d= get(gse.Data)
                                                                GSM136326
                                                                              GSM136327
                                                                                           GSM136328
                                                                                                        GSM136329
                                                                                                                     GSM136330
                 Name: ''
                                                                 10.45
                                                                                           9.4248
                                                                                                                     9.2788
                                                   1007 s at
                                                                              9.3995
                                                                                                        9.4729
             RowNames: {22283×1 cell}
                                                   1053_at
                                                                5.7195
                                                                              4.8493
                                                                                           4.7321
                                                                                                        4.7289
                                                                                                                     5.3264
             ColNames: {1×95 cell}
                                                                5.9387
                                                                              6.0833
                                                                                            6.448
                                                                                                        6.1769
                                                                                                                     6.5446
                                                   117_at
                NRows: 22283
                                                   121 at
                                                                8.0231
                                                                              7.8947
                                                                                           8.345
                                                                                                        8.1632
                                                                                                                     8.2338
               NCols: 95
                                                                              3.9632
                                                                                           3.9641
                                                                                                        4.0878
                                                                                                                     3.9989
                                                   1255 g at
                                                                3.9548
                NDims: 2
                                                                 7.909
                                                                                           8.2719
                                                                                                                        7.7
                                                   1294 at
                                                                              8.364
                                                                                                        8.3582
         ElementClass: 'double'
```

```
gse.Header.Samples.characteristics_ch1(1,:)

ans = 1×95 cell array
   {'diagnosis: IBC'}   {'diagnosis: IBC'}   {'diagnosis: IBC'}   {'diagnosis: IBC'}   {'diagnosis: IBC'}

samplesources = gse.Header.Samples.source_name_ch1

samplesources = 1×95 cell array
   {'human breast cancer stroma'}   {'human breast cancer stroma'}   {'human breast cancer stroma'}   {'human breast cancer stroma'}
```

### d: after changing column and row names

|                                         | sIBC   | eIBC   | e~IBC  | e~IBC  | e~IBC  |
|-----------------------------------------|--------|--------|--------|--------|--------|
| KHDC1L                                  | 4.2445 | 4.5627 | 4.4812 | 5.0107 | 4.4735 |
| TRIP6                                   | 7.6314 | 8.6576 | 7.8621 | 8.7339 | 8.4194 |
| DUSP11                                  | 7.3099 | 8.594  | 7.9741 | 7.8295 | 9.1832 |
| C16orf62                                | 6.5605 | 6.9315 | 7.5977 | 7.3335 | 7.417  |
| ANKHD1 /// ANKHD1-EIF4EBP3 /// EIF4EBP3 | 7.2541 | 7.1856 | 7.6391 | 7.6074 | 7.1339 |
| FGFR2                                   | 5.1045 | 5.6938 | 5.0625 | 4.1863 | 4.9144 |
|                                         |        |        |        |        |        |

# Gene expression statistical analysis

- Hierarchical Clustering
- K-means Clustering
- Principal component analysis (PCA)

| ID_REF    | GSM136326  | GSM136327  | GSM136328  | GSM136329   | GSM136330  | GSM136331   |
|-----------|------------|------------|------------|-------------|------------|-------------|
| 1007_s_at | 10.4502763 | 9.3995422  | 9.42479936 | 9.472922422 | 9.27878032 | 9.434427931 |
| 1053_at   | 5.71946574 | 4.84929333 | 4.73208086 | 4.728854347 | 5.32639216 | 5.230320408 |
| 117_at    | 5.93866366 | 6.08327317 | 6.44797814 | 6.17694869  | 6.54458475 | 6.07779478  |
| 121_at    | 8.0230524  | 7.8946588  | 8.34498775 | 8.163203547 | 8.23375629 | 7.595105829 |
| 1255_g_at | 3.95480312 | 3.96324647 | 3.96410203 | 4.087835849 | 3.99889298 | 3.839704814 |
| 1294_at   | 7.9090045  | 8.36397325 | 8.27191179 | 8.358196216 | 7.69999823 | 8.274305066 |
| 1316_at   | 6.50101269 | 7.06478465 | 6.84193046 | 7.16941856  | 6.47412502 | 6.182111503 |
| 1320_at   | 4.46782927 | 4.44699592 | 4.55541274 | 4.660870385 | 4.74765838 | 4.484930349 |
| 1405_i_at | 6.98704598 | 6.91061747 | 6.70850464 | 7.777802579 | 7.74606814 | 7.576616437 |
| 1431_at   | 3.78442846 | 3.84921957 | 3.86910251 | 4.06116236  | 3.90178173 | 3.669844515 |
| 1438_at   | 6.33719475 | 6.35968637 | 6.26322624 | 6.571037625 | 6.41512718 | 5.992213616 |
| 1487_at   | 7.6496267  | 7.16653011 | 7.25328005 | 7.228355117 | 7.14035537 | 7.626439717 |



# **Hierarchical Clustering**



# An Example of Agglomerative Clustering

- 1. Start by assigning each item to its own cluster, so that if you have N items, you now have N clusters, each containing just one item. Let the distances (similarities) between the clusters equal the distances (similarities) between the items they contain.
- 2. Find the closest (most similar) pair of clusters and merge them into a single cluster, so that now you have one less cluster.
- 3. Compute distances (similarities) between the new cluster and each of the old clusters.
- 4. Repeat steps 2 and 3 until all items are clustered into a single cluster of size N.

Step 1. Start by assigning each item to its own cluster

|     | BOS  | NY   | DC   | MIA  | CHI  | SEA  | SF   | LA   | DEN  |
|-----|------|------|------|------|------|------|------|------|------|
| BOS | 0    | 206  | 429  | 1504 | 963  | 2976 | 3095 | 2979 | 1949 |
| NY  | 206  | 0    | 233  | 1308 | 802  | 2815 | 2934 | 2786 | 1771 |
| DC  | 429  | 233  | 0    | 1075 | 671  | 2684 | 2799 | 2631 | 1616 |
| MIA | 1504 | 1308 | 1075 | 0    | 1329 | 3273 | 3053 | 2687 | 2037 |
| CHI | 963  | 802  | 671  | 1329 | 0    | 2013 | 2142 | 2054 | 996  |
| SEA | 2976 | 2815 | 2684 | 3273 | 2013 | 0    | 808  | 1131 | 1307 |
| SF  | 3095 | 2934 | 2799 | 3053 | 2142 | 808  | 0    | 379  | 1235 |
| LA  | 2979 | 2786 | 2631 | 2687 | 2054 | 1131 | 379  | 0    | 1059 |
| DEN | 1949 | 1771 | 1616 | 2037 | 996  | 1307 | 1235 | 1059 | 0    |

Step 2. Find the closest (most similar) pair of clusters and merge them into a single cluster, so that now you have one less cluster. **BOS merged with NY** 

|        | BOS/NY | DC   | MIA  | CHI  | SEA  | SF   | LA   | DEN  |
|--------|--------|------|------|------|------|------|------|------|
| DOGAIL | 0      | 222  | 1200 | 000  | 2015 | 2024 | 2707 | 1551 |
| BOS/NY | 0      | 223  | 1308 | 802  | 2815 | 2934 | 2786 | 1771 |
| DC     | 223    | 0    | 1075 | 671  | 2684 | 2799 | 2631 | 1616 |
| MIA    | 1308   | 1075 | 0    | 1329 | 3273 | 3053 | 2687 | 2037 |
| CHI    | 802    | 671  | 1329 | 0    | 2013 | 2142 | 2054 | 996  |
| SEA    | 2815   | 2684 | 3273 | 2013 | 0    | 808  | 1131 | 1307 |
| SF     | 2934   | 2799 | 3053 | 2142 | 808  | 0    | 379  | 1235 |
| LA     | 2786   | 2631 | 2687 | 2054 | 1131 | 379  | 0    | 1059 |
| DEN    | 1771   | 1616 | 2037 | 996  | 1307 | 1235 | 1059 | 0    |

Step 3. Find the closest (most similar) pair of clusters and merge them into a single cluster, so that now you have one less cluster. BOS/NY merged with DC

|           | BOS/NY/DC | MIA  | CHI  | SEA  | SF   | LA   | DEN  |
|-----------|-----------|------|------|------|------|------|------|
| BOS/NY/DC | 0         | 1308 | 802  | 2815 | 2934 | 2786 | 1771 |
| MIA       | 1308      | 0    | 1329 | 3273 | 3053 | 2687 | 2037 |
| CHI       | 802       | 1329 | 0    | 2013 | 2142 | 2054 | 996  |
| SEA       | 2815      | 3273 | 2013 | 0    | 808  | 1131 | 1307 |
| SF        | 2934      | 3053 | 2142 | 808  | 0    | 379  | 1235 |
| LA        | 2786      | 2687 | 2054 | 1131 | 379  | 0    | 1059 |
| DEN       | 1771      | 2037 | 996  | 1307 | 1235 | 1059 | 0    |

LA and SF become the closet, they will merge and for a new cluster

Step 3. Compute distances (similarities) between the new cluster and each of the old clusters. Then LA merged with SF

|           | BOS/NY/DC | MIA  | CHI  | SEA  | SF/LA | DEN  |
|-----------|-----------|------|------|------|-------|------|
| BOS/NY/DC | 0         | 1075 | 671  | 2684 | 2631  | 1616 |
| MIA       | 1075      | 0    | 1329 | 3273 | 2687  | 2037 |
| CHI       | 671       | 1329 | 0    | 2013 | 2054  | 996  |
| SEA       | 2684      | 3273 | 2013 | 0    | 808   | 1307 |
| SF/LA     | 2631      | 2687 | 2054 | 808  | 0     | 1059 |
| DEN       | 1616      | 2037 | 996  | 1307 | 1059  | 0    |

The cluster of BOS/NYC/DC is the closest to CHI

### Repeat Step 2 and 3

### LA/SF merged with SEA

|               | BOS/NY/DC/CHI | MIA  | SEA  | SF/LA | DEN  |
|---------------|---------------|------|------|-------|------|
| BOS/NY/DC/CHI | 0             | 1075 | 2013 | 2054  | 996  |
| MIA           | 1075          | 0    | 3273 | 2687  | 2037 |
| SEA           | 2013          | 3273 | 0    | 808   | 1307 |
| SF/LA         | 2054          | 2687 | 808  | 0     | 1059 |
| DEN           | 996           | 2037 | 1307 | 1059  | 0    |

### **BOS/NY/DC/CHI/** merged with **DEN**

|               | BOS/NY/DC/CHI | MIA  | SF/LA/SEA | DEN  |
|---------------|---------------|------|-----------|------|
| BOS/NY/DC/CHI | 0             | 1075 | 2013      | 996  |
| MIA           | 1075          | 0    | 2687      | 2037 |
| SF/LA/SEA     | 2054          | 2687 | 0         | 1059 |
| DEN           | 996           | 2037 | 1059      | 0    |

### **BOS/NY/DC/CHI/DEN** merged with **SF/LA/SEA**

|                   | BOS/NY/DC/CHI/DEN | MIA  | SF/LA/SEA |
|-------------------|-------------------|------|-----------|
| BOS/NY/DC/CHI/DEN | 0                 | 1075 | 1059      |
| MIA               | 1075              | 0    | 2687      |
| SF/LA/SEA         | 1059              | 2687 | 0         |

### BOS/NY/DC/CHI/DEN/SF/LA/SEA merged with MIA

|                             | BOS/NY/DC/CHI/DEN/SF/LA/SEA | MIA  |
|-----------------------------|-----------------------------|------|
| BOS/NY/DC/CHI/DEN/SF/LA/SEA | 0                           | 1075 |
| MIA                         | 1075                        | 0    |

# Now trace back to the clustering process plot the dendrogram

- 1. BOS merged with NY
- 2. BOS/NY merged with DC
- 3. LA merged with SF and LA/SF merged with SEA
- 4. BOS/NY/DC/CHI/ merged with DEN
- 5. BOS/NY/DC/CHI/DEN merged with SF/LA/SEA
- 6. BOS/NY/DC/CHI/DEN/SF/LA/SEA merged with MIA



### What is k-Means Cluster Analysis?

k-means cluster analysis is an algorithm that groups similar objects into groups called clusters.

K-means clustering is one of the simplest and popular unsupervised machine learning algorithms.

The K-means algorithm identifies *k* number of centroids (a centroid is the imaginary or real location representing the center of the cluster), and then allocates every data point to the nearest cluster, while keeping the centroids as small as possible.

How *k*-means cluster analysis works

Step 1: Specify the number of clusters (k). The first step in k-means is to specify the number of clusters, which is referred to as k. Traditionally researchers will conduct k-means multiple times, exploring different numbers of clusters (e.g., from 2 through 10).

Step 2: Allocate objects to clusters. The most straightforward approach is to randomly assign objects to clusters, but there are many other approaches (e.g., using hierarchical clustering).

In the diagram, the 18 objects have been represented by dots on a *scatterplot*, where  $\mathbf{x}$  is shown by the horizontal position of each object and  $\mathbf{y}$  by the vertical. The objects have been randomly assigned to the two clusters (k = 2), where one cluster is shown with filled dots and the other with unfilled dots.

| ×    | У    |
|------|------|
| 1.0  | 8.7  |
| 3.0  | 9.8  |
| 5.0  | 11.8 |
| 6.0  | 15.8 |
| 6.0  | 9.7  |
| 6.0  | 7.8  |
| 7.0  | 12.8 |
| 8.9  | 11.8 |
| 10.0 | 11.8 |
| 27.8 | 13.8 |
| 29.9 | 4.8  |
| 29.9 | 15.8 |
| 29.9 | 14.7 |
| 29.9 | 13.7 |
| 31.8 | 24.8 |
| 32.8 | 23.8 |
| 31.9 | 12.7 |
| 31.8 | 9.8  |
|      |      |



**Step 3: Compute cluster means**. For each cluster, the average value is computed for each of the variables. In the plot below, the average value of the filled dots for the variable represented by the horizontal position (x) of the dots is around 15; for the variable on the vertical dimension it is around twelve. These two means are represented by the filled cross. Or, stated slightly differently: the filled cross is in the middle of the black dots. Similarly, the white cross is in the middle of the white dots. These crosses are variously referred to as the *cluster centers*, *cluster means*, and *cluster medoids*.



**Step 4: Allocate each observation to the closest cluster center.** In the plot above, some of the filled dots are closer to the white cross and some of the white dots are closer to the black cross. When we reallocate the observations to the closest clusters we get the plot below.



**Step 5: Repeat steps 3 and 4 until the solution converges**. Looking at the plot above, we can see that the crosses (the cluster means) are no longer accurate. In the following plot they have been recomputed using step 3. In this example the cluster analysis has *converged* (i.e., reallocating observations and updating means cannot improve the solution). In examples with more data a few more iterations are typically required (i.e., steps 3 and 4 are repeated until no respondents change clusters).



#### The outputs from *k*-means cluster analysis

The main output from *k*-means cluster analysis is a table showing the mean values of each cluster on the clustering variables. The *table of means* for the data examined in this article is shown below.

|         | Means |      |  |  |
|---------|-------|------|--|--|
| Cluster | х     | у    |  |  |
| 1       | 5.9   | 11.1 |  |  |
| 2       | 30.6  | 14.9 |  |  |

| х    | у    | Cluster |
|------|------|---------|
| 1.0  | 8.7  | 1       |
| 3.0  | 9.8  | 1       |
| 5.0  | 11.8 | 1       |
| 6.0  | 15.8 | 1       |
| 6.0  | 9.7  | 1       |
| 6.0  | 7.8  | 1       |
| 7.0  | 12.8 | 1       |
| 8.9  | 11.8 | 1       |
| 10.0 | 11.8 | 1       |
| 27.8 | 13.8 | 2       |
| 29.9 | 4.8  | 2       |
| 29.9 | 15.8 | 2       |
| 29.9 | 14.7 | 2       |
| 29.9 | 13.7 | 2       |
| 31.8 | 24.8 | 2       |
| 32.8 | 23.8 | 2       |
| 31.9 | 12.7 | 2       |
| 31.8 | 9.8  | 2       |

### Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a simple yet powerful technique used for dimensionality reduction. Through it, we can directly decrease the number of feature variables, thereby narrowing down the important features and saving on computations.

Principal component analysis is a technique for *feature extraction* — so it combines our input variables in a specific way, then we can drop the "least important" variables while still retaining the most valuable parts of all of the variables! *As an added benefit, each of the "new" variables after PCA are all independent of one another.* 

### Among four food items described by four variables (nutrients)



Four kinds of food with four variables (4 dimensions) based on their nutrition: Fat, Protein, Fiber and VC

We can use Fat/Protein variables to differentiate meat and vegetable. But not enough differentiate the Lamb and pork

We decide to combine the original variables (fat, protein, fiber and vc) create new independent variables to separate these four food. (PCA analysis)

### PCA analysis combine correlated(or not) variables and reduce variables

|           | PC1   | PC2  | PC3   | PC4   |
|-----------|-------|------|-------|-------|
| Fat       | -0.45 | 0.66 | 0.58  | 0.18  |
| Protein   | -0.55 | 0.21 | -0.46 | -0.67 |
| Fiber     | 0.55  | 0.19 | 0.43  | -0.69 |
| Vitamin C | 0.44  | 0.70 | -0.52 | 0.22  |

In PC1, fat and protein are correlated, while fiber and vc are correlated PC1(pork) =-0.45\*Fat-0.55\*Protein+0.55\*Fiber+0.44\*Vc

In PC2, fat and vc are correlated, while fiber and protein are correlated PC2 (pork)=0.66\*Fat+0.21\*Protein+0.19\*Fiber+0.70\*Vc

We can calculate PC1(Lamb), PC1(parsley)............
Plot PC1 against PC2



1st Principal Component

|                    | England | N Ireland | Scotland | Wales |
|--------------------|---------|-----------|----------|-------|
| Alcoholic drinks   | 375     | 135       | 458      | 475   |
| Beverages          | 57      | 47        | 53       | 73    |
| Carcase meat       | 245     | 267       | 242      | 227   |
| Cereals            | 1472    | 1494      | 1462     | 1582  |
| Cheese             | 105     | 66        | 103      | 103   |
| Confectionery      | 54      | 41        | 62       | 64    |
| Fats and oils      | 193     | 209       | 184      | 235   |
| Fish               | 147     | 93        | 122      | 160   |
| Fresh fruit        | 1102    | 674       | 957      | 1137  |
| Fresh potatoes     | 720     | 1033      | 566      | 874   |
| Fresh Veg          | 253     | 143       | 171      | 265   |
| Other meat         | 685     | 586       | 750      | 803   |
| Other Veg          | 488     | 355       | 418      | 570   |
| Processed potatoes | 198     | 187       | 220      | 203   |
| Processed Veg      | 360     | 334       | 337      | 365   |
| Soft drinks        | 1374    | 1506      | 1572     | 1256  |
| Sugars             | 156     | 139       | 147      | 175   |



- 1.Do you want to reduce the number of variables, but aren't able to identify variables to completely remove from consideration?
- 2.Do you want to ensure your variables are independent of one another?
- 3.Are you comfortable making your independent variables less interpretable?