(A) Cu will precipitate out

(A) increasing

(C) Cu and Fe will precipitate

1.

2.

(B) iron will precipitate

(B) decreasing

(D) no reaction will take place

SELECT THE CORRECT ALTERNATIVE (ONLY ONE CORRECT ANSWER)

If a spoon of copper metal is placed in a solution of ferrous sulphate :-

During discharge of a lead storage cell the density of sulphuric acid in the cell :-

	(C) remains unchanged (D) initially increases but decreases subsequen								
3.	Which of the followi	ng represents the reduction p	tential of silver wire dipped into $0.1~\mathrm{M}~\mathrm{AgNO_3}$ solution at						
	25 C :-			Ç					
	(A) E _{red}	(B) $(E_{red} + 0.059)$	(C) $(E_{ox} - 0.059)$	(D) $(E_{red} - 0.059)$					
4.		e CuSO ₄ in which copper roc	l is immersed is diluted to	o 10 times, the electrode reduction					
	potential. (T = 298								
	(A) increases by 0.0	30 volt	(B) decreases by 0.0	(B) decreases by 0.030 volt					
	(C) increases by 0.0	59 volt	(D) decreases by 0.0	0059 volt					
5.	The oxidation poten	tial of a hydrogen electrode a	at $pH = 1$ is $(T = 298 \text{ K})$:-					
	(A) 0.059 volt	(B) 0 volt	(C) -0.059 volt	(D) 0.59 volt					
6.	The electrode poten	tial becomes equal to standar	rd electrode potential who	en reactants and products concen-					
	tration ratio is :-								
	(A) equal to 1	(B) greater than 1	(C) less than 1	(D) none of the above					
7.	The reduction poter	ntial values are given below							
	$Al^{3+} / Al = -1.67$	volt, $Mg^{2+} / Mg = -2.34$ volt	$Cu^{2+} / Cu = + 0.34$	· volt					
	$I_2 / 2l^- = + 0.53 \text{ vc}$	olt. Which one is the best red	ucing agent ?						
	(A) Al	(B) Mg	(C) Cu	(D) I ₂					
8.	When iron is rusted,	it is :-							
	(A) reduced	(B) oxidised	(C) evaporated	(D) decomposed					
9.	The reference electr	The reference electrode is made from which of the following :-							
	(A) ZnCl ₂	(B) CuSO ₄	(C) Hg_2Cl_2	(D) HgCl ₂					
10.	Given standard elec	trode potentials :							
	$Fe^{3+} + 3e^{-} \longrightarrow Fe$; $E = -0.036 \text{ volt}$							
	$Fe^{2+} + 2e^{-} \longrightarrow Fe$; $E = -0.440 \text{ volt}$							
	The standard electro	ode potential E for							
	$Fe^{3+} + e^{-} \longrightarrow Fe^{2+}$	$Fe^{3+} + e^{-} \longrightarrow Fe^{2+}$ is :-							
	(A) -0.476 volt	(B) -0.404 volt	(C) 0.440 volt	(D) 0.772 volt					
11.	The reduction poten	itial of a hydrogen electrode a	at pH 10 at 298 K is : (p = 1 atm)					
	(A) 0.51 volt	(B) 0 volt	(C) -0.591 volt	(D) 0.059 volt					
12.	The emf of the cell,	$N_i N_i^{2+} (1.0 \text{ M}) Ag^+ (1.0 \text{ M})$	$ Ag[E \text{ for } Ni^{2+}/Ni = -0.2]$	25 volt, E for $Ag^+/Ag = 0.80$ volt]					
	is given by : [E for	$Ag^+ / Ag = 0.80 \text{ volt}$							
	(A) $-0.25 + 0.80 =$	0.55 volt	(B) -0.25 - (+0.80)	= -1.05 volt					
	(C) $0 + 0.80 - (-0.80)$	25) = + 1.05 volt	(D) -0.80 - (+0.25)	= -0.55 volt					
13.	The position of som	ne metals in the electrochemi	cal series in decreasing e	lectropositive character is given as					
	Mg > Al > Zn > Cu	> Ag. What will happen if a	copper spoon is used to s	stir a solution of aluminium nitrate?					
	(A) The spoon will g	get coated with aluminium	(B) An alloy of alum	ninium and copper nitrate					
	(C) The solution bed			(D) There is no reaction					
14.	E $(Ni^{2+} / Ni) = -0.5$ M) Au is :-	25 volt, E $(Au^{3+} / Au) = 1.50$	O volt. The emf of the vol	taic cell $Ni Ni^{2+}$ (1.0 M) Au ³⁺ (1.0					
	(A) 1.25 volt	(B) -1.75 volt	(C) 1.75 volt	(D) 4.0 volt					

(A) $C_1 = C_2$	(B) $C_1 > C_2$	(C) $C_2 > C_1$	(D) None
$\operatorname{Pt} \begin{vmatrix} H_2 \\ (p_1) \end{vmatrix} \begin{vmatrix} H^+ \\ (1M) \end{vmatrix}$	$\left. egin{array}{c c} H^+ & H_2 \\ H_2 & P_1 \end{array} \right P_1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	p_2 are pressure) cell reaction	will be spontaneous if :-
	(B) $p_1 > p_2$		(D) $p_1 = 1$ atm
$Pt \begin{vmatrix} (H_2) \\ 1 \text{ atm} \end{vmatrix} pH =$	$2 \mid \mid pH = 3 \mid (H_2)Pt 1 atm$. The cell	l reaction for the given cell is	s :-
(A) spontaneou	, ,		• •
	→ M. 0.275 g of metal M is atomic weight of the metal M		ue to passage of 1A of current for
(A) 27.5	(B) 55.0	(C) 110.0	(D) 13.75
	nemical cell that function as a		· · · · · ·
	nove from the cathode to the		
	nove through a salt-bridge		
	an move either from the cath	ode to the anode or from th	ne anode to the cathode
	occurs at the cathode		
` '			
A certain meta metal deposited			-
A certain meta			ometer. The weight of silver and the metal if its atomic weight is nearl (D) 4
A certain metal deposited that of silver. (A) .1	d are 0.5094 g and 0.2653 g (B) 2	g. Calculate the valency of th (C) 3	e metal if its atomic weight is nearl (D) 4
A certain metal deposited that of silver. (A) .1 The cell Pt (H ₂	d are 0.5094 g and 0.2653 g (B) 2	g. Calculate the valency of th (C) 3 $=$ 1) AgI(s), Ag has emf, E_{298}	e metal if its atomic weight is nearl (D) 4
A certain metal deposited that of silver. (A) .1 The cell Pt (H ₂	d are 0.5094 g and 0.2653 g (B) 2 g) (1 atm) $ H^+ $ (pH = ?), Γ (a =	g. Calculate the valency of th (C) 3 $=$ 1) AgI(s), Ag has emf, E_{298}	the metal if its atomic weight is nearly (D) 4 $_{ m K}$ = 0. The electrode potential for the
A certain metal metal deposited that of silver. (A) .1 The cell Pt (H ₂ reaction AgI + (A) 3.37	d are 0.5094 g and 0.2653 g (B) 2 (I) (1 atm) $ H^+ (pH = ?)$, $ T (a = e^- \rightarrow Ag + I^\Theta)$ is -0.151 volume (B) 5.26	g. Calculate the valency of the (C) 3 (C) AgI(s), Ag has emf, E_{298} (C) 2.56	the metal if its atomic weight is near (D) 4 (D) 4 (D) The electrode potential for the
A certain metal deposited that of silver. (A) .1 The cell Pt (H ₂ reaction AgI + (A) 3.37	d are 0.5094 g and 0.2653 g (B) 2 (I) (1 atm) $ H^+ $ (pH = ?), Γ (a = $e^- \rightarrow Ag + I^\Theta$ is -0.151 volt (B) 5.26 rmation in the preceding probable Γ	(C) 3 1) AgI(s), Ag has emf, E ₂₉₈ 2. Calculate the pH value :- (C) 2.56 blem, calculate the solubility	te metal if its atomic weight is nearly (D) 4 $_{ m K}$ = 0. The electrode potential for the (D) 4.62 $_{ m C}$ product of AgI in water at 25 C
A certain meta metal deposited that of silver. (A) .1 The cell Pt (H ₂ reaction AgI + (A) 3.37 Using the info	d are 0.5094 g and 0.2653 g (B) 2 (I) (1 atm) $ H^+ $ (pH = ?), Γ (a = $e^- \rightarrow Ag + I^\Theta$ is -0.151 volt (B) 5.26 rmation in the preceding probable Γ	g. Calculate the valency of th (C) 3 = 1) AgI(s), Ag has emf, E_{298} t. Calculate the pH value :- (C) 2.56	the metal if its atomic weight is nearly (D) 4 $_{ m K}$ = 0. The electrode potential for the (D) 4.62 $_{ m C}$ product of AgI in water at 25 C
A certain metal metal deposited that of silver. (A) .1 The cell Pt (H_2) reaction AgI + (A) 3.37 Using the inform $[E_{(Ag^+,Ag)} = +0.0]$ (A) 1.97	d are 0.5094 g and 0.2653 g (B) 2 (I) (1 atm) $ H^+ $ (pH = ?), Γ (a = $e^- \rightarrow Ag + I^\Theta$ is -0.151 volting (B) 5.26 (The entropy of the preceding probability of electricity is passed through the probability of the probability of electricity is passed through the probability of the	(C) 3 1) Agl(s), Ag has emf, E ₂₉₈ 2. Calculate the pH value :- (C) 2.56 blem, calculate the solubility (C) 1.79 10 ⁻¹⁷	the metal if its atomic weight is nearly (D) 4 $_{\rm K}$ = 0. The electrode potential for the (D) 4.62 $_{\rm C}$ product of AgI in water at 25 C (D) 9.17 $_{\rm C}$ 10 ⁻¹⁷
A certain metal metal deposited that of silver. (A) .1 The cell Pt (H_2) reaction AgI + (A) 3.37 Using the info [$E_{(Ag^+,Ag)} = +0.6$ (A) 1.97 107 If same quantity	d are 0.5094 g and 0.2653 g (B) 2 (I) (1 atm) $ H^+ $ (pH = ?), Γ (a = $e^- \rightarrow Ag + I^\Theta$ is -0.151 volting (B) 5.26 (The entropy of the preceding probability of electricity is passed through the probability of the probability of electricity is passed through the probability of the	(C) 3 1) Agl(s), Ag has emf, E ₂₉₈ 2. Calculate the pH value :- (C) 2.56 blem, calculate the solubility (C) 1.79 10 ⁻¹⁷	(D) 4 (D) 4 (E) 4 (D) 4.62 (D) 4.62 (D) 4.62 (D) 9.17 10^{-17}
A certain metal metal deposited that of silver. (A) .1 The cell Pt (H_2) reaction AgI + (A) 3.37 Using the info [$E_{(Ag^+,Ag)} = +0.0$] (A) 1.97 10 ⁻¹ If same quantification CuSO ₄ at (A) 2 : 1	d are 0.5094 g and 0.2653 g (B) 2 (C) (1 atm) $ H^+ (pH = ?)$, Γ (a = $e^- \rightarrow Ag + I^\Theta$ is -0.151 volume (B) 5.26 (B) $formation in the preceding probability of the probability of electricity is passed through the probability of electricity is passed through the condition of the condition of the probability of electricity is passed through the condition of the cond$	g. Calculate the valency of the (C) 3 (C) AgI(s), Ag has emf, E_{298} t. Calculate the pH value :- (C) 2.56 (C) 1.79 10^{-17} (C) 1.79 10^{-17} (C) 1.79 10^{-17} (C) 1 1	the metal if its atomic weight is near (D) 4 (D) 4.62 (D) 4.62 product of AgI in water at 25 C (D) 9.17 10^{-17} ratio of the weights of Cu deposite (D) 4:1
A certain metal metal deposited that of silver. (A) .1 The cell Pt (H_2 reaction AgI + (A) 3.37 Using the info [$E_{(Ag^+,Ag)} = +0.0$ (A) 1.97 10 If same quantiform CuSO ₄ at (A) 2 : 1 For Zn ²⁺ / Zn,	d are 0.5094 g and 0.2653 g (B) 2 (C) (1 atm) $ H^+ $ (pH = ?), Γ (a = $e^- \rightarrow Ag + I^\Theta$ is -0.151 volume (B) 5.26 (B) 7.91 cm 10^{-17} (B) 7.91 10^{-17} (B) 7.91 10^{-17} (B) 7.91 10^{-17} (B) 1 1 1 1 1 1 1 1 1 1	g. Calculate the valency of the (C) 3 (C) Ag has emf, E_{298} ; t. Calculate the pH value :- (C) 2.56 (C) 1.79 10^{-17} (C) 1.79 10^{-17} (C) 1.79 10^{-17} (C) 1 : 1 (C) 1 : 1	(D) 4 (D) 4 (E) 4 (D) 4.62 (D) 4.62 (D) 9.17 10^{-17} (D) 9.17 10^{-17} (D) 4:1
A certain metal metal deposited that of silver. (A) .1 The cell Pt (H_2) reaction AgI + (A) 3.37 Using the info [$E_{(Ag^+,Ag)} = +0.0$ (A) 1.97 10 ⁻¹ If same quantification CuSO ₄ at (A) 2 : 1 For Zn ²⁺ / Zn, (A) the reaction	d are 0.5094 g and 0.2653 g (B) 2 (C) (1 atm) $ H^+ (pH = ?)$, Γ (a = $e^- \rightarrow Ag + I^\Theta$ is -0.151 volume (B) 5.26 (B) 5.26 (B) 7.91 10^{-17} (B) 7.91 10^{-17} (B) 7.91 10^{-17} (B) 7.91 10^{-17} (B) 1.2 (B) 1.2 E = -0.76 V, for Ag^+/Ag ,	g. Calculate the valency of the (C) 3 (C) 3 (E) AgI(s), Ag has emf, E_{298} (E) Calculate the pH value (C) 2.56 (E) blem, calculate the solubility (C) 1.79 10^{-17} (C) 1.79 10^{-17} (C) 1 : 1 (C) 1 : 1 (E) = 0.799 V. The correcting oxidized is spontaneous	(D) 4 (D) 4 (E) 4 (D) 4.62 (D) 4.62 (D) 9.17 10^{-17} (D) 9.17 10^{-17} (D) 4:1
A certain metal metal deposited that of silver. (A) .1 The cell Pt (H_2 reaction AgI + (A) 3.37 Using the info $[E_{(Ag^+,Ag)} = +0.0]$ (A) 1.97 10 If same quantiform $CuSO_4$ at (A) 2 : 1 For Zn^{2+}/Zn , (A) the reaction (B) Zn undergo	(B) 2 (B) 2 (C) (1 atm) $ H^+ $ (pH = ?), Γ (a = $e^- \rightarrow Ag + I^\Theta$ is -0.151 volume (B) 5.26 (B) 7.91 10^{-17} (B) 7.91 10^{-17} (B) 7.91 10^{-17} (B) 1: 2 E = -0.76 V, for Ag^+/Ag , in Zn getting reduced Ag getting 1 (B) 1 (C) 1	g. Calculate the valency of the (C) 3 (C) 3 (E) AgI(s), Ag has emf, E_{298} (E) Calculate the pH value (C) 2.56 (E) blem, calculate the solubility (C) 1.79 10^{-17} (C) 1.79 10^{-17} (C) 1 : 1 (C) 1 : 1 (C) 1 : 1 (C) 1 : 1 (C) 3 (C) 4 (C) 4 (C) 5 (C) 6 (C) 6 (C) 7 (C) 8 (C)	the metal if its atomic weight is near (D) 4 (D) 4.62 (D) 4.62 product of AgI in water at 25 C (D) 9.17 10^{-17} ratio of the weights of Cu deposite (D) 4:1
A certain metal metal deposited that of silver. (A) .1 The cell Pt (H_2 reaction AgI + (A) 3.37 Using the info $[E_{(Ag^+,Ag)} = +0.1]$ If same quantifrom CuSO ₄ at (A) 2 : 1 For Zn^{2+}/Zn , (A) the reaction (B) Zn undergo	(B) 2 (B) 2 (C) (1 atm) $ H^+ $ (pH = ?), Γ (a = $e^- \rightarrow Ag + I^\Theta$ is -0.151 volume (B) 5.26 (B) 7.91 10^{-17} (B) 7.91 10^{-17} (B) 7.91 10^{-17} (B) 1: 2 (B) 1: 2 (B) 2 (C) E = -0.76 V, for Ag^+ / Ag , an Zn getting reduced Ag getting reduced Ag getting reduced Ag is oxidation and Ag^+ gets reduction and Ag^+ gets Ag^+	g. Calculate the valency of the (C) 3 (C) 3 (E) AgI(s), Ag has emf, E_{298} (E) Calculate the pH value (C) 2.56 (E) blem, calculate the solubility (C) 1.79 10^{-17} (C) 1.79 10^{-17} (C) 1 : 1 (C) 1 : 1 (C) 1 : 1 (C) 1 : 1 (C) 3 (C) 4 (C) 4 (C) 5 (C) 6 (C) 6 (C) 7 (C) 8 (C)	(D) 4 (D) 4 (E) 4 (D) 4.62 (D) 4.62 (D) 9.17 10^{-17} (D) 9.17 10^{-17} (D) 4:1
A certain metal metal deposited that of silver. (A) .1 The cell Pt (H_2 reaction AgI + (A) 3.37 Using the info $[E_{(Ag^+,Ag)} = +0.0]$ If same quantifrom CuSO ₄ at (A) 2 : 1 For Zn^{2+}/Zn , (A) the reactio (B) Zn undergo (C) Zn undergo (D) No suitable	(B) 2 (B) 2 (C) (1 atm) $ H^+ $ (pH = ?), Γ (a = $e^- \rightarrow Ag + I^\Theta$ is -0.151 volume (B) 5.26 (B) 7.91 10^{-17} (B) 7.91 10^{-17} (B) 7.91 10^{-17} (B) 1: 2 (B) 1: 2 (B) 2 (C) E = -0.76 V, for Ag^+ / Ag , an Zn getting reduced Ag getting reduced Ag getting reduced Ag is oxidation and Ag^+ gets reduction and Ag^+ gets Ag^+	(C) 3 1 AgI(s), Ag has emf, E ₂₉₈ 2 Calculate the pH value: (C) 2.56 blem, calculate the solubility (C) 1.79 10 ⁻¹⁷ bugh CuCl and CuSO ₄ , the many continuous continuou	the metal if its atomic weight is nearly (D) 4 (D) 4 (E) The electrode potential for the (D) 4.62 (E) product of AgI in water at 25 C (E) 9.17 10^{-17} (E) ratio of the weights of Cu deposite (D) 4:1 (D) 4:1

CHECK YOUR GRASP ANSWER KEY							KEY	EXERCISE -1							
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	D	В	D	В	Α	Α	В	В	С	D	С	С	D	С	D
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	В	С	С	В	В	Α	D	Α	В	D	D	D	С	В	В
Que.	31	32	33	34	35	36	37	38							
Ans.	В	D	В	С	В	В	С	С							

EXERCISE-02 BRAIN TEASERS

SELECT THE CORRECT ALTERNATIVES (ONE OR MORE THEN ONE CORRECT ANSWERS)

What a lead storage is discharged :-

1.

	(A) PbSO ₄ is formed	(B) Pb is formed	(C) SO_2 is consumed	(D) H_2SO_4 is consumed
2.		$2 \text{ Ag (s)} + \text{Cd}^{+2} (\text{aq}) + 2\text{Cl}^{-} ($		which the cell reaction is, 0.6753 V at 25 C. The ΔH
	(A) -176 kJ	(B) -234.7 kJ	(C) +123.5 kJ	(D) -167.26 kJ
3.	A current of 2.68 A is pa		an aqueous solution of Cu	SO ₄ using copper electrodes.
	(A) increase in mass of ca			
	(B) decrease in mass of a			
	(C) no change in masses			
	(D) the ratio between the	change of masses of catho	de and anode is 1 : 2	
4.		occur spontaneously, if :-		
	(A) the free energy chang		(B) the (ΔG) is positive	
	(C) the cell e.m.f. (E) is r	negative	(D) the cell e.m.f. is posit	ive
5.	Fe is reacted with 1.0 M is $/$ are :-	HCl. E for Fe/Fe ²⁺ = $+0.34$	4 volt. The correct observat	ion (s) regarding this reaction
	(A) Fe will be oxidised to	Fe^{2+}		
	(B) Fe^{2+} will be reduced to	Fe		
	(C) since e.m.f. is positive	e, the reaction shall occur		
	(D) since e.m.f. is positive	e, the reaction shall not occ	eur	
6.				f zinc and iron (II) ions was I for sometime, the product
	(A) Fe	(B) Zn	(C) H ₂	(D) Alloy of Zn and Fe
7.		e is passed through the aqu med during electrolysis is		uitable electrodes for 1000 s.
	(A) 2.0 g	(B) 4.0 g	(C) 6.0 g	(D) 8.0 g
8.	The potential of the Dan	ZnSO ₄ CuSC	D ₄ Cu was reported by Bu	ckbee, Surdzial and Metz as
	E = 1.1028 - 0.641 10 cell reaction at 25 C :-	$^{-3}$ T + 0.72 10^{-5} T ² , where	here T is the celsius tempe	erature. Calculate ΔS for the
	(A) -45.32 EU	(B) -34.52 EU	(C) -25.43 EU	(D) -54.23 EU
9.	Using the data in the pre	eceding problem, calculate	the equilibrium constant of	the reaction at 25 C.
	Zn + Cu ⁺⁺ \times Zn	$^{++}$ + Cu, K = $\frac{[Zn^{2+}]}{[Cu^{2+}]}$		
	(A) 8.314 10 ²⁴	(B) 4.831 10 ³¹	(C) 8.314 10 ³⁶	(D) 4.831 10 ⁴⁴
10.	The standard electrode problem solution containing $10^{-3} \mathrm{M}$		⁺ Ag is 0.800 V at 25 C.	Its electrode potential in a
	(A) 0.623 V	(B) -0.977 V	(C) 0.892 V	(D) 1.246 V

- 22. Four moles of electrons were transferred from anode to cathode in an experiment on electrolysis of water. The total volume of the two gases (dry and at STP) produced will be approximately (in litres) :-
 - (A) 22.4
- (B) 44.8
- (C) 67.2
- Equivalent conductance of $BaCl_2$, H_2SO_4 & HCl at infinite dilution are A_{∞}^1 , A_{∞}^2 & A_{∞}^3 respectively. Equivalent 23. conductance of BaSO₄ solution is :
 - (A) $A_{\infty}^1 + A_{\infty}^2 2 A_{\infty}^3$

(B) $A_{\infty}^{1} + A_{\infty}^{2} + A_{\infty}^{3}$

(C) $A_1^1 + A_2^2 - A_3^3$

- (D) $A^1 A^2 + A^3$
- 24. Salts of A (atomic weight = 7), B (atomic weight = 27) and C (atomic weight = 48) were electrolysed under identical conditions using the same quantity of electricity. It was found that when 2.1 g of A was deposited, the weights of B and C deposited were 2.7g and 7.2 g. The valencies of A, B and C respectively are :-
 - (A) 3, 1 and 2
- (B) 1, 3 and 2
- (C) 3, 1 and 3
- (D) 2, 3 and 2
- 25. During electrolysis of an aqueous solution of CuSO₄ using copper electrodes, if 2.5 g of Cu is deposited at cathod, then at anode :-
 - (A) 890 mL of Cl₂ at STP is liberated
 - (B) 445 mL of O_2 at STP is liberated
 - (C) 2.5 g of copper is deposited
 - (D) a decrease of 2.5 g of mass takes place
- 26. The cost at 5 paise/KWH of operating an electric motor for 8 hours which takes 15 amp at 110 V is :-
 - (A) Rs. 66
- (B) 66 paise
- (C) 37 paise
- (D) Rs. 6.60
- 27. When an aqueous solution of lithium chloride is electrolysed using graphite electrodes :-
 - (A) Cl₂ is liberated at the anode

- (B) Li is deposited at the cathode
- (C) as the current flows, pH of the solution around the cathode remains constant
- (D) as the current flows, pH of the solution around the cathode decreases
- 28. A silver wire dipped in $0.1\ M$ HCl solution saturated with AgCl develops a potential of $-0.25\ V$. If $E_{A\sigma/A\sigma^{+}} = -0.799$ V, the K_{sp} of AgCl in pure water will be :-
 - (A) 2.95 10⁻¹¹
- (B) 5.1 10⁻¹¹
- (C) $3.95 10^{-11}$
- 10^{-11} (D) 1.95

29. Consider the reaction of extraction of gold from its ore

$$\label{eq:au_def} \text{Au} \ + \ 2\text{CN}^- \ (\text{aq.}) \ + \ \frac{1}{4} \, \text{O}_2 \ (\text{g}) \ + \ \frac{1}{2} \, \text{H}_2 \text{O} \ \longrightarrow \ \text{Au}(\text{CN})_2^- \ + \ \text{OH}^-$$

Use the following data to calculate ΔG for the reaction

$$K_f \{Au(CN)_2^-\} = X$$

 $O_2 + 2H_2O + 4e^- \longrightarrow 4OH^-$: E = + 0.41 volt

 $Au^{3+} + 3e^{-} \longrightarrow Au$

E = + 1.5 volt

 $Au^{3+} + 2e^{-} \longrightarrow Au^{+}$

: E = + 1.4 volt

(A) $-RT \ln X + 1.29 F$

(B) $-RT \ln X - 2.11 F$

(C) -RT ln $\frac{1}{x}$ + 2.11 F

(D) $-RT \ln X - 1.29 F$

30. Consider the following Galvanic cell :-

By what value the cell voltage when concentration of ions in anodic and cathodic compartments both increased by factor of 10 at 298 K.

- (A) +0.0591
- (B) -0.0591
- (C) -0.1182
- (D) 0
- $\textbf{31.} \qquad \text{For the fuel cell reaction } 2H_2(g) \ + \ O_2(g) \ \longrightarrow \ 2H_2O(\ell) \ ; \ \Delta_t H_{298}(H_2O, \ \ell) \ = \ \ 285.5 \ \ \text{kJ/mol}$

What is ΔS_{298} for the given fuel cell reaction ?

Given : $O_2(g) + 4H^+(aq) + 4e^- \longrightarrow 2H_2O(\ell)$

E = 1.23 V

- (A) -0.322 J/K
- (B) -0.635 kJ/K
- (C) 3.51 kJ/K
- (D) -0.322 kJ/K
- 32. The resistance of 0.5 M solution of an electrolyte in a cell was found to be 50 Ω . If the electrodes in the cell are 2.2 cm apart and have an area of 4.4 cm² then the molar conductivity (in S m² mol⁻¹) of the solution is :-
 - (A) 0.2

- (B) 0.02
- (C) 0.002
- (D) none of these
- 33. The dissociation constant of n-butyric acid is $1.6 10^{-5}$ and the molar conductivity at infinite dilution is $380 10^{-4} \, \text{Sm}^2 \text{mol}^{-1}$. The specific conductance of the $0.01 \, \text{M}$ acid solution is :-
 - (A) 1.52
- $10^{-5}\; Sm^{-1}$
- (B) 1.52
- $10^{-2} \, \text{Sm}^{-1}$
- (C) 1.52
- $10^{-3} \, \text{Sm}^{-1}$ (D) none

BRAIN TEASERS ANSWER KEY EXERCISE -2									E -2						
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	A,D	D	A,B	A,D	A,C	С	В	D	С	Α	С	D	Α	В	В
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	D	Α	Α	Α	С	Α	С	С	В	D	В	Α	В	Α	С
Que.	31	32	33												
Ans.	D	С	В												

TRUE / FALSE

- 1. Compounds of active metals (Zn, Na, Mg) are reducible by H_2 whereas those of noble metals (Cu, Ag, Au) are not reducible.
- 2. The mass of a substance deposited on the cathode or anode during electrolysis is given by $w = \frac{EIt}{F}$.
- 3. Faraday's second law of electrolysis is related to the equivalent mass of the electrolyte.
- **4.** Equivalent conductance at infinite dilution of salt AB is equal to the sum of equivalent conductances of ions, A^{+} and B^{-} at infinite dilution.
- 5. The standard reaction potential of $Cl^-|AgCl|Ag$ half-cell is related to that of $Ag^+|Ag$ half-cell through the expression $E_{Ag^+|Ag} = E_{Cl^-|AgCl|Ag} + \frac{RT}{F} InK_{SP}(AgCl)$.
- **6.** The cell potential is given by $E_{cell} = E_{RP(cathode)} E_{RP(anode)}$
- 7. In a galvanic cell, the half-cell with higher reduction potential acts as a reducing agent.
- 8. In an electrode concentration cell, the cell reaction $Zn(c_1) \longrightarrow Zn(c_2)$ will be spontaneous if $c_1 > c_2$.
- 9. The redox reaction involved in galvanic cell is a non-spontaneous process.

FILL IN THE BLANKS

- 1. A dilute solution of sulphuric acid during electrolysis liberate gas at anode.
- 2. Among metals is the strongest reducing agents in aqueous solutions.
- 3. Lead is able to displace silver from ${\rm AgNO_3}$ solution because its standard oxidation potential is than that of silver.
- 4. Coulomb refers to of electricity while ampere refers to at which it flows.
- 5. During electrolysis of aqueous solution of $CuSO_4$ using Pt electrodes the product at anode is
- 7. λ_{eq} normality =
- **8.** The presence of electrolytes the rate of corrosion.
- 9. The more negative the standard potential, the is its ability to displace hydrogen from acids.

MATCH THE COLUMN

Match the items of column I to those of column I:

1.		Column-I	Column-II				
	(A)	Cell constant	(p)	$E^0_{cathode} + E^0_{anode}$			
	(B) Anode		(q)	ℓ/A			
	(C) Conductance		(r)	Mass of product deposited by 1 coulomb of			
				electricity.			
	(D)	Electrochemical equivalent	(s)	(Resistance) ⁻¹			
	(E)	E ⁰ _{cell}	(u)	Involve oxidation			

2.	Column-I			Column-II
	(A)	Cathode	(p)	Primary cell
	(B) 1 Coulomb		(q)	Secondary cell
	(C)	Dry cell	(r)	6.24 10 ¹⁸ electrones
	(D) Lead strong cell		(s)	Concentration cell
	(E)	$Zn Zn^{2+}(0.01M) Zn^{2+}(0.1M) Zn$	(u)	Positive terminal of electrochemical cell

3.		Column-I	Column-II				
	(A)	Electrolytic cell	(p) -ΔG				
	(B)	nFE ⁰ _{Cell}	(q)	Concentration cell			
	(C) $E_{cell} = \frac{0.059}{n} \log \frac{C_{cathode}}{C_{anode}}$		(r) 96500 Coulombs				
	(D)	Diffusion of ions	(s)	Device converting electrical energy into			
				chemical energy			
	(E)	1 Faradav	(u)	Salt bridge			

4.		Column-I	Column-II				
	(A)	Conductance	(p)	Cm ⁻¹			
	(B)	Specific conductance	(q)	Ohm ⁻¹ cm ² mol ⁻¹			
	(C)	Cell constant	(r)	Ohm ⁻¹			
	(D)	Equivalent conductance	(s)	Ohm ⁻¹ cm ⁻¹			
	(E)	Molar conductance	(u)	Ohm ⁻¹ cm ² equivalent ⁻¹			

ASSERTION & REASON

These questions contains, Statement I (assertion) and Statement II (reason).

- (A) Statement-I is true, Statement-II is true; Statement-II is correct explanation for Statement-I.
- (B) Statement-I is true, Statement-II is true; Statement-II is NOT a correct explanation for statement-I
- (C) Statement-I is true, Statement-II is false
- (D) Statement-I is false, Statement-II is true
- 1. **Statement-I**: In electrolysis, the quantity of electricity needed for depositing 1 mole of silver is different from that required for 1 mole of copper.

Because

Statement-II: The molecular weights of silver and copper are different.

2. Statement-I: Equivalent conductance of all electrolytes decreases with increasing concentration.

Because

Statement-II: Lesser number of ions are available per gram equivalent at higher concentration.

3. Statement-I: If an aqueous solution of NaCl is electrolysed, the product obtained at the cathode is H_2 gas and not Na.

Because

Statement-II: Gases are liberated faster than the metals.

Statement-I: Molar conductivity of a weak electrolyte at infinite dilution cannot be determined experimentally.

Because

Statement-II: Kohlrausch law help to find the molar conductivity of a weak electrolyte at infinite dilution.

Statement-I: Gold chloride (AuCl₃) solution cannot be stored in a vessel made of copper, iron, nickel, chromium, zinc or tin.

Because

Statement-II : Gold is very precious metal.

Statement-I: In the Daniel cell, if concentration of Cu^{2+} and Zn^{2+} ions are doubled, the emf of the cell will not change.

Because

Statement-II: If the concentration of ions in contact with the metals is doubled, the electrode potential is doubled.

7. Statement-I: $H_2 + O_2$ fuel cell gives a constant voltage throughout its life.

Because

Statement-II: In this fuel cell, H₂ reacts with OH⁻ ions, yet the overall concentration of OH⁻ ions does not change.

8. Statement-I: Blocks of magnesium are often stapped to steel hulls of ocean going ships.

Because

Statement-II: Magnesium causes cathodic protection of iron.

9. Statement-I: Absolute value of E_{red}^0 of an electrode cannot be determined.

Because

Statement-II: Neither oxidation nor reduction can take place alone.

COMPREHENSION BASED QUESTIONS

Comprehension # 1

Copper reduces NO_3^- into NO and NO_2 depending upon conc. of HNO_3 in solution. Assuming $[Cu^{2^+}] = 0.1$ M, and $P_{NO_2} = P_{NO_2}^- = 10^{-3}$ atm and using given data answer the following questions :

$$E_{Cu^{2+}/Cu} = +0.34 \text{ volt}$$
;

$$E_{NO_3^-/NO}^{\circ} = +0.96 \text{ volt}$$

$$E_{NO_3^-/NO_2}^{\circ} = +0.79 \text{ volt}$$
 ;

at 298 K
$$\frac{RT}{F}$$
 (2.303) = 0.06 volt

- 1. E_{Cell} for reduction of $NO_3^- \longrightarrow NO$ by Cu(s), when $[HNO_3] = 1$ M is [At T = 298]
 - (A) $^{\sim} 0.61$
- (B) ~0.71
- (C) $^{\sim}0.51$
- (D) $^{\sim} 0.81$
- 2. At what HNO_3 concentration thermodynamic tendency for reduction of NO_3^- into NO and NO_2 by copper is same ?
 - (A) $10^{1.23}$ M
- (B) $10^{0.56}$ M
- (C) $10^{0.66}$ M
- (D) 10^{0.12} M

Comprehension # 2

Accidentally chewing on a stray fragment of aluminium foil can causes a sharp tooth pain if the aluminium comes in contact with an amalgam filling. The filling, an alloy of silver, tin and mercury, acts as the cathode of a tiny galvanic cell, the aluminium behaves as the anode, and saliva serves as the electrolyte. When the aluminium and the filling come in contact, an electric current passage from the aluminium to the filling which is sensed by a nerve in the tooth. Aluminium is oxidized at the anode, and O_2 gas is reduced to water at the cathode.

$$E_{AI^{3+}/AI}^{\circ} = -1.66 \ V, \ E_{O_2,H^{+}/H_2O}^{\circ} = 1.23 \ V$$

- 1. Net reaction taking place when amalgam is in contact with aluminium foil :
 - (A) Al + O $_2$ + OH $^ \rightarrow$ Al(OH $^-$) + $\mathrm{H_{2}O}$
 - (B) $4Al + 3O_9 + 12H^+ \rightarrow 4Al^{3+} + 6H_9O$
 - (C) $4Al + 3O_2 \rightarrow 4Al_2O_3$
 - (D) $2H_2 + O_2 \rightarrow 2H_2O$
- **2.** Standard E.M.F. experienced by the person with dental filling is:
 - (A) +2.89 V
- (B) -2.89 V
- (C) -0.93 V
- (D) +0.43 V

3. The standard reduction potential of the reaction,

$$H_2O + e^- \rightarrow \frac{1}{2}H_2 + OH^- \text{ at } 298 \text{ K is } :$$

(A)
$$E = \frac{RT}{2F} \ln K_w$$

(B)
$$E = \frac{RT}{F} ln [P_{H_2}]^{1/2} [OH^-]$$

(C)
$$E = \frac{RT}{F} ln \frac{\left[P_{H_2}\right]^{1/2}}{[H^+]}$$

(D)
$$E = \frac{RT}{F} \ln K_w$$

MISCELLANEOUS TYPE QUESTION

ANSWER KEY

EXERCISE -3

True / False

- **1**. F
- **2**. T
- **3.** T
- **4.** T
- **6**. T
- **7.** F

- **8.** T
- **9**. F

Fill in the Blanks

- **1**. O₂
- **2.** Lithium
- 3. Higher
- 4. Amount, rate

- 5. Oxygen
- **6.** 2.5 96500 C
 - 7. $\kappa 10^3$
- 8. Increases

- 9. Greater
- 10. $Hg_2Cl_2(s) + 2e^- \rightarrow 2Hg(\ell) + 2Cl^-(aq)$

Match the Column

1. A - (q), B - (u), C - (s), D - (r), E - (p)

- 2. A (u), B (r), C (p), D (q), E (s)
- 3. A (s), B (p), C (q), D (u), E (r)
 4. A (r), B (s), C (p), D (u), E (r)

5. F

Assertion - Reason Questions

- **1**. B **7**. A
- **2**. C **8.** A
- **3**. C **9**. A
- **4**. B
- **5.** B
- **6**. C

Comprehension Based Questions

Comprehension # 1:

- **1**. (B)
- **2**. (C)

Comprehension # 2:

- **1**. (A) **2**. (C)
- **3**. (A)

Comprehension # 3:

- **1**. (B)
- **2**. (A)
- **3**. (D)

- 1. The resistance of a N/10 KCl solution is 245 ohms. Calculate the specific conductance and the equivalent conductance of the solution if the electrodes in the cell are 4 cm apart and each having an area of 7.0 sq. cm.
- 2. The resistance of a solution 'A' is 50 ohms and that of solution 'B' is 100 ohms, both solutions being taken in the same conductivity cell. If equal volumes of solution A and B are mixed, what will be the resistance of the mixture using the same cell. (Assume that there is no increase in the degree of dissociation of A and B on mixing.)
- 3. In a conductivity cell the two platinum electrodes, each of area 10 sq. cm. are fixed 1.5 cm apart. The cell contained 0.05 N solution of a salt. If the two electrodes are just half dipped into the solution which has a resistance of 50 ohms, find equivalent conductance of the salt solution.
- A big irregular shaped vessel contained water, the sp. conductance of which was $2.56 10^{-5}$ mho cm⁻¹. 500g of NaCl was then added to the water and the specific conductance after the addition of NaCl, was found to be $3.10 10^{-5}$ mho cm⁻¹. Find the capacity of the vessel if it is fulfilled with water. $(\lambda_{\infty} \text{NaCl} = 149.9)$
- 5. The equivalent conductance of 0.10~N solution of $MgCl_2$ is $97.1~mho~cm^2~eq^{-1}$. A cell with electrodes that are $1.50~cm^2$ in surface are and 0.50~cm apart is filled with $0.1N~MgCl_2$ solution. How much current will flow when the potential difference between the electrodes is 5~volts?
- 6. At 18 C the mobilities of NH_4^+ and ClO_4^- ions are 6.6 10^{-4} and 5.7 10^{-4} cm² volt⁻¹ sec⁻¹ at infinite dilution. Calculate equivalent conductance of ammonium chlorate solution.
- 7. For $H^{^+}$ and $Na^{^+}$ the values of $\lambda^{^\infty}$ are 349.8 and 50.11. Calculate the mobilities of these ions and their velocities if they are in a cell in which the electrodes are 5 cm apart and to which a potential of 2 volts is applied.
- 8. The equivalent conductance of an infinitely dilute solution NH_4Cl is 150 and the ionic conductances of OH^- and Cl^- ions are 198 and 76 respectively. What will be the equivalent conductance of the solution of NH_4OH at infinite dilution. If the equivalent conductance of a 0.01 N solution NH_4OH is 9.6, what will be its degree of dissociation?
- 9. Calculate the dissociation constant of water at 25 C from the following data. Specific conductance of $H_2O = 5.8 ext{ } 10^{-8} ext{ mho cm}^{-1}, \ \lambda_{H^+}^{\infty} = 350.0 ext{ and } \lambda_{OH^-}^{\infty} = 198.0 ext{ mho cm}^2$
- 10. Calculate K_a of acetic acid if its 0.05 N solution has equivalent conductance of 7.36 mho cm² at 25 C. ($\lambda_{CH_2COOH}^{\infty} = 390.70$)
- 11. The sp. cond. of a saturated solution of AgCl at 25 C after substracting the sp. conductance of conductivity of water is $2.28 10^{-6}$ mho cm⁻¹. Find the solubility product of AgCl at 25 C. ($\lambda_{AgCl}^{\infty} = 138.3$ mho cm²)
- 12. The specific conductance of a N/10 KCl solution at 18 C is $1.12 \quad 10^{-2} \text{ mho cm}^{-1}$. The resistance of the solution contained in the cell is found to be 65 ohms. Calculate the cell constant.
- When a solution of conductance 1.342 mho m⁻¹ was placed in a conductivity cell with parallel electrodes, the resistance was found to be 170.5 ohm. The area of the electrodes is $1.86 10^{-4}$ sq.meter. Calculate the distance between the two electrodes in meter.

- 14. The resistance of two electrolytes X and Y were found to be 45 and 100 respectively when equal volumes of both the solutions were taken in the same cell in two different experiments. If equal volumes of these solutions are mixed in the same cell, what will be the conductance of the mixture?
- The resistance of an aqueous solution containing 0.624~g of $CuSO_4$. $5H_2O$ per $100~cm^3$ of the solution in a conductance cell of cell constant 153.7 per meter is 520 ohms at 298 K. Calculate the molar conductivity. $(CuSO_4 . 5H_2O = 249.5)$
- 16. Given the equivalent conductance of sodium butyrate, sodium chloride and hydrogen chloride as 83, 127 and 426 mho cm² at 25 C respectively. Calculate the equivalent conductance of butyric acid at infinite dilution.
- 17. For 0.0128 N solution of acetic acid at 25 C, equivalent conductance of the solution is 1.4 mho cm³ eq⁻¹ and $\lambda^{\infty} = 391$ mho cm² eq⁻¹. Calculate dissociation constant (K₃) of acetic acid.
- 18. The specific conductance at 25 C of a saturated solution of $SrSO_4$ is $1.482 10^{-4} \, ohm^{-1} \, cm^{-1}$ while that of water used is $1.5 10^{-6} \, mho \, cm^{-1}$. Determine at 25 C the solubility in g per litre of $SrSO_4$ in water. Molar ionic conductance of Sr^{2+} and SO_4^{-2-} ions at infinite dilution are 59.46 and 79.8 $ohm^{-1} \, cm^2 \, mole^{-1}$ respectively. [$Sr = 87.6, \, S = 32, \, O = 16$]
- 19. Specific conductance of pure water at 25 C is $0.58 10^{-7}$ mho cm⁻¹. Calculate ionic product of water (K_w) if ionic conductances of H^+ and OH^- ions at infinite dilution are 350 and 198 mho cm² respectively at 25 C.
- 20. How long a current of 3A has to be passed through a solution of $AgNO_3$, to coat a metal surface of 80 cm^2 with $5\mu\text{m}$ thick layer? Density of silver = 10.8 g/cm^3 .
- **21.** 3A current was passed through an aqueous solution of an unknown salt of Pd for 1 hr. 2.977 g of Pd⁺ⁿ was deposited at cathode. Find n.
- 22. 50 mL of 0.1 M CuSO_4 solution is electrolysed with a current of 0.965 A for a period of 200 sec. The reactions at electrodes are :

Cathode :
$$Cu^{2^+} + 2e^- \rightarrow Cu(s)$$
 Anode : $2H_2O \rightarrow O_2 + 4H^+ + 4e$.

Assuming no change in volume during electrolysis, calculate the molar concentration of Cu^{2+} , H^{+} and SO_{4}^{2-} at the end of electrolysis.

- A metal is known to form fluoride MF_2 . When 10 A of electricity is passed through a molten salt for 330 sec., 1.95 g of metal is deposited. Find the atomic weight of M. What will be the quantity electricity required to deposit the same mass of Cu form $CuSO_4$?
- An electric current is passed through electrolytic cells in series one containing $Ag(NO_3)$ (aq.) and other H_2SO_4 (aq.) What volume of O_2 measured at 25 C and 750 mm Hg pressure would be liberated from H_2SO_4 if (a) one mole of Ag^+ is deposited from $AgNO_3$ solution
 - (b) 8 10^{22} ions of Ag^+ are deposited from $AgNO_3$ solution.
- 25. Cd amalgam is prepared by electrolysis of a solution $CdCl_2$ using a mercury cathode. How long should a current of 5A be passed in order to prepare 12 % Cd-Hg amalgam on a cathode of 2g, Hg (atomic weight of Cd = 112.4)
- 26. After electrolysis of NaCl solution with inert electrodes for a certain period of time, 600 mL of the solution was left. Which was found to be 1N in NaOH. During the same time, 31.75 g of Cu deposited in the copper voltameter in series with the electrolytic cell. Calculate the percentage yield of NaOH obtained.
- During the discharge of a lead storage battery, the density of sulphuric acid fell from 1.294 to $1.139~\mathrm{g.mL^{-1}}$. $\mathrm{H_2SO_4}$ of density 1.294 $\mathrm{gmL^{-1}}$ is 39% and that of density 1.139 $\mathrm{g.mL^{-1}}$ is 20% by weight.

The battery holds 3.5 L of acid and the volume practically remains constant during discharge. Calculate the number of ampere hours for which the battery must have been used. The discharging and charging reactions are.

$$Pb + SO_4^{2-} \rightarrow PbSO_4 + 2e^-$$
 (charging)

$$PbO_2 + 4H^+ + SO_4^{2-} + 2e^- \rightarrow PbSO_4 + 2H_2O$$
 (discharging)

- 28. The e.m.f. of the cell obtained by combining Zn and Cu electrode of a Daniel cell with N calomel electrode in two different arrangements are 1.083 V and 0.018 V respectively at 25 C. If the standard reduction potential of N calomel electrode is 0.28 V find the emf of Daniel cell.
- 29. Same quantity of electricity is being used to liberate iodine (at anode) and a metal x (at cathode). The mass of x liberated is 0.617 g and the iodine liberated is completely reduced by 46.3 cc of 0.124 M sodium thiosulphate. Find the equivalent mass of metal x.
- 30. 100 mL ${\rm CuSO_4}$ (aq) was electrolyzed using inert electrodes by passing 0.965 A till the pH of the resulting solution was 1. The solution after electrolysis was neutralized, treated with excess KI and titrated with 0.04 M ${\rm Na_2S_2O_3}$. Volume of ${\rm Na_2S_2O_3}$ required was 35 mL. Assuming no volume change during electrolysis, calculate :
 - (a) duration of electrolysis if current efficiency is 80 %
 - (b) initial concentration (M) of $CuSO_4$.
- 31. A current of 3.7 A is passed for 6 hrs between Pt electrodes in 0.5 L of 2M solution of $Ni(NO_3)_2$. What will be the molarity of solution at the end of electrolysis?
- 32. Calculate the EMF of a Daniel cell when the concentration of $ZnSO_4$ and $CuSO_4$ are 0.001 M and 0.1 M respectively. The standard potential of the cell is 1.1 V.
- 33. EMF of the cell $Zn|ZnSO_4(a=0.2)||ZnSO_4(a_2)||Zn$ is -0.0088 V at 25 C. Calculate the value of a_2 .
- 34. The EMF of the cell $M|M^{n^+}(0.02 M)||H^+(1 M)|H_2(g)$ (1 atm), Pt at 25 C is 0.81 V. Calculate the valency of the metal if the standard oxidation potential of the metal is 0.76 V.
- 35. Equinormal solution of two weak acids, HA (pK $_a$ = 3) and HB (pK $_a$ = 5) are each placed in contact with standard hydrogen electrode at 25 C. When a cell is constructed by interconnecting them through a salt bridge find the e.m.f. of the cell.
- 36. In two vessels each containing 500 mL water, 0.5 m mol of aniline ($K_b = 10^{-9}$) and 25 m mol of HCl are added separately. Two hydrogen electrodes are constructed using these solutions. Calculate the emf of cell made by connecting them appropriately.
- 37. The emf of the cell Ag|Ag|KI (0.05 M)|AgNO₃(0.05 M)|Ag is 0.788 V. Calculate the solubility product of AgI.
- 38. The cell Pt, H_2 (1 atm)| H^+ (pH = x)|| Normal calomel Electrode has an EMF of 0.67 V at 25 C. Calculate the pH of the solution. The oxidation potential of the calomel electrode on hydrogen scale is -0.28 V.
- Estimate the cell potential of a Daniel cell having 1.0 M Zn^{++} and originally having 1.0 M Cu^{++} after sufficient NH_3 has been added to the cathode compartment to make NH_3 concentration 2.0 M. Given K_f for $[Cu(NH_3)_4]^{2^+} = 1 \quad 10^{12}$, E for the reaction, $Zn + Cu^{2^+} \longrightarrow Zn^{2^+} + Cu$ is 1.1 V.
- 40. Consider the cell $Ag|AgBr(s)|Br^-||AgCl(s)|Cl^-|Ag$ at 25 C. The solubility product constants of AgBr & AgCl are respectively 5 $10^{-13} \& 1 \quad 10^{-10}$. For what ratio of the concentration of $Br^- \& Cl^-$ ions would the em.f. of the cell be zero?
- 41. The pK_{sp} of AgI is 16.07. If the E value for Ag⁺/Ag is 0.7991 V, find the E for the half cell reaction AgI (s) + $e^- \longrightarrow Ag + I^-$

42. Voltage of the cell Pt, H_2 (1 atm)|HOCN (1.3 10^{-3} M)||Ag*(0.8 M)|Ag(s) is 0.982 V. Calculate the K_a for HOCN. Neglect [H*] because of oxidation of H_2 (g).

$$Ag^+ + e^- \longrightarrow Ag (s) = 0.8 V$$

- 43. The standard oxidation potential of Zn referred to SHE is 0.76 V and that of Cu is -0.34 V at 25 C. When excess of Zn is added to $CuSO_4$, Zn displaces Cu^{2^+} till equilibrium is reached. What is the ratio of Zn^{2^+} to Cu^{2^+} ions at equilibrium?
- 44. The standard reduction potential values, E (Bi^{3+}/Bi) and E (Cu^{2+}/Cu) are 0.226 V and 0.344 V respectively. A mixture of salts of bismuth and copper at unit concentration each is electrolysed at 25 C. To what value can $[Cu^{2+}]$ be brought down before bismuth starts to deposit, in electrolysis.
- 45. Calculate the potential of an indicator electrode versus the standard hydrogen electrode, which originally contained $0.1~M~MnO_4^-$ and $0.8~M~H^+$ and which was treated with Fe^{2^+} necessary to reduce 90% of the MnO_4^- to Mn^{2^+} .

$$MnO_4^- + 8H^+ + 5e \longrightarrow Mn^{2+} + H_2O, E = 1.51 V,$$

46. K_a for dissociation of $[Ag(NH_a)_o]^+$ into Ag^+ and NH_a is 6 10^{-8} . Calculate E for the following half reaction;

$$Ag (NH_3)_2^+ + e^- \longrightarrow Ag + 2NH_3$$

Given
$$Ag^+ + e^- \longrightarrow Ag$$
, E = 0.799 V

47. The overall formation constant for the reaction of 6 mole of CN^- with cobalt (II) is $1 ext{ } 10^{19}$. The standard reduction potential for the reaction $[Co(CN)_6]^{3^-} + e^- \longrightarrow Co(CN)_6^{4^-}$ is -0.83 V. Calculate the formation constant of $[Co(CN)_6]^{3^-}$.

Given
$$Co^{3+} + e^{-} \longrightarrow Co^{2+}$$
; E = 1.82 V

48. Calculate the e.m.f. of the cell

- An external current source giving a current of 5.0 A was joined with Daniel cell arrangement opposing the normal current flow and was removed after 10 hrs. Before passing the current the LHE and RHE contained 1L each of 1M $\rm Zn^{2^+}$ and $\rm Cu^{2^+}$ respectively. Find the EMF supplied by the Daniel cell after removal of the external current source. E of $\rm Zn^{2^+}/\rm Zn$ and $\rm Cu^{2^+}/\rm Cu$ at 25 C is -0.76 and +0.34 V respectively.
- **50.** Calculate the equilibrium constant for the reaction :

3Sn (s) +
$$2Cr_2O_7^{2-}$$
 + 28 H⁺ \longrightarrow 3 Sn⁺⁴ + $4Cr^{3+}$ + $14H_2O$
E for Sn/Sn²⁺ = 0.136 V E for Sn²⁺/Sn⁴⁺ = -0.154 V
E for $Cr_2O_7^{2-}/Cr^{3+}$ = 1.33 V

51. Calculate the voltage E, of the cell at 25 C

$$Mn(s) \mid Mn(OH_2)(s) \mid Mn^{2^+}(x \ M), \ OH^- \ (1.00 \ 10^{-4} \ M) \mid \mid Cu^{2^+} \ (0.675 \ M) \mid Cu(s)$$
 given that $K_{sn} = 1.9 \ 10^{-13}$ for $Mn(OH)_2$ (s) E $(Mn^{2^+}/Mn) = -1.18$ V, E $(Cu^{+2}/Cu) = +0.34$ V

52. Calculate the voltage E, of the cell

$$Ag(s) AgIO_{3}(s) | Ag^{+}(x M), HIO_{3}(0.300 M) | | Zn^{2+}(0.175 M) | Zn (s)$$

if $K_{SP} = 3.02 10^{-8}$ for $AgIO_3$ (s) and $K_a = 0.162$ for HIO_3 , $E(Zn^{+2}/Zn) = -0.76$ V, $E(Ag/Ag^+) = -0.8$ V)

53. The voltage of the cell

$$\begin{split} & Pb(s) \, | \, PbSO_4(s) \, | \, NaHSO_4 \, \, (0.600 \, \, M) \, | \, | \, Pb^{2^+}(2.50 \, - \, 10^{-5} \, \, M) \, | \, Pb \, \, (s) \\ & \text{is E = } +0.061 \, \text{ V. Calculates K}_2 = [\text{H}^+] \, [\text{SO}_4^{\, 2^-}] / [\text{HSO}_4^{\, -}], \, \, \text{the dissociation constant for HSO}_4^{\, -}. \\ & \text{Given Pb(s) } + \, SO_4^{\, 2^-} \rightarrow PbSO_4^{\, +} \, 2e^- \, (E = 0.356 \, \, V), \, E \, \, \, (Pb^{2^+} \, / \, Pb) = -0.126 \, \, V. \end{split}$$

54. The voltage of the cell

 $Zn(s) \, | \, Zn(CN)_4^{\ 2^-} \ (0.450 \ M), \ CN^- \ (2.65 \ 10^{-3} \ M) \, | \ | \, Zn^{2^+} (3.84 \ 10^{-4} \ M) \, | \, Zn(s) \ is \ E = +0.099 \ V.$ Calculate the constant K_f for $Zn^{2^+} + 4CN^- \rightarrow Zn(CN)_4^{\ 2^-},$ the only $Zn^{2^+} + CN^-$ complex reaction of importance.

CONCE	PTUAL SUBJECTIVE EXERCISE	ANSWER	KEY		EXERCISE-4(A)
1.	2.332 10 ⁻³ mho cm ⁻¹ , 23.32 mho c	$cm^{2}eq^{-1}$ 2.	R = 66.67 ohms	3.	$120 \text{ mho cm}^2 \text{ eq}^{-1}$
4.	$V = 2.34 10^8 cc$	5.	0.1456 amp	6.	$118.67 \; \mathrm{mho} \; \mathrm{cm}^2 \; \mathrm{eq}^{-1}$
7.	$\mu H^{+} = 3.62 10^{-3} \text{ cm}^{2} \text{ volt}^{-1} \text{ sec}^{-1},$	$\mu_{Na} = 5.20$	$10^{-4} \text{ cm}^2 \text{ volt}^{-1} \text{ sec}^{-1}$		
	velocity of $H^{+} = 1.45 10^{-3} \text{ cm sec}^{-1}$, velocity of N	$Na^{+} = 2.08 10^{-4} \text{ cm sec}^{-1}$		
8.	272, 0.0353	9.	$1.8 10^{^{-16}} \mathrm{mole/litre}$	10.	$1.76~10^{-5}~\text{mole/litre}$
11.	$2.70 10^{-10} (\text{mole/litre})^2$	12.	0.728 cm^{-1}	13.	$4.25~10^{-2}$ metres
14.	0.016 mho	15.	$118.2 \; \mathrm{mhocm}^{2} \mathrm{mol}^{-1}$	16.	382 mho cm² eq ⁻¹
17.	$1.6 10^{-7}$	18.	0.1934 g/L	19.	$1 10^{-14} \text{(mole/litre)}^2$
20.	t = 128.66 sec	21.	n = 4		
22.	$Cu^{2+} = 0.08M, H^{+} = 0.04M, SO_{4}^{2-} = 0.04M$	0.1M 23 .	A=114, Q=5926.8C		
24.	(a) $V(O_2)=6.2 L$, (b) $V(O_2)=0.824$	L 25 .	t = 93.65 sec	26.	$\eta = 60\%$
27.	265 Amp. hr.	28.	E = 1.1 V	29.	Eq.wt = 107.468
30.	1250 S, 0.064 M	31.	1.172 M	32.	E = 1.159 V
33.	$a_2 = 0.1006 \text{ M}$	34.	n = 2	35.	E = 0.059 V
36.	E = 0.395 V	37.	$K_{SP} = 1.16 10^{-16}$	38.	pH = 6.61
39.	E = 0.71 V	40.	$[Br^{-}] : [Cl^{-}] = 1 : 200$	41.	E = -0.149 V
42.	$K_a = 6.74 10^{-4}$	43.	$[Zn^{2+}]/[Cu^{2+}]=1.941\ 10^{37}$	44.	$[Cu^{2+}] = 10^{-4} M$
45.	1.39 V	46.	0.373 V	4 7.	$K_f = 8.28 10^{63}$
48.	-0.46 V	49.	1.143 V	50.	$K = 10^{268}$
51.	1.66 V	52.	-1.188 V	53.	$1.06 10^{-2}$
54.	5.4 10 ¹⁶				

- 1. The e.m.f. of cell: $H_2(g)|Buffer||Normal calomal electrode is 0.6885 V at 40 C when the barometric pressure is 725 mm of Hg. What is the pH of the solution. <math>E_{calomal} = 0.28$.
- 2. A direct current of 1.25 A was passed through 200 mL of 0.25 M $Fe_2(SO_4)_3$ solution for a period of 1.1 hour. The resulting solution in cathode chamber was analyzed by titrating against acidic $KMnO_4$ solution. 25 mL permaganate solution was required to reach the end point. Determine molarity of $KMnO_4$ solution.
- 3. An electrochemical cell is constructed with an open switch as shown below:

When the switch is closed, mass of tin-electrode increases. If E $(Sn^{2^+}/Sn) = -0.14$ V and for E $(X^{n^+}/X) = -0.78$ V and initial emf of the cell is 0.65 V, determine n and indicate the direction of electron flow in the external circuit.

- 4. 10 g fairly concentrated solution of $CuSO_4$ is electrolyzed using 0.01 F of electricity. Calculate :
 - (a) The weight of resulting solution
 - (b) Equivalents of acid or alkali in the solution.
- One of the methods of preparation of per disulphuric acid, $H_2S_2O_8$, involve electrolytic oxidation of H_2SO_4 at anode $(2H_2SO_4 \longrightarrow H_2S_2O_8 + 2H^+ + 2e^-)$ with oxygen and hydrogen as by products. In such an electrolysis, 9.722 L of H_2 and 2.35 L of O_2 were generated at STP. What is the weight of $H_2S_2O_8$ formed?
- 6. Assume that impure copper contains only iron, silver and a gold as impurities. After passage of 140 A, for 482.5 sec, of the mass of the anode decreased by 22.260 g and the cathode increased in mass by 22.011 g. Estimate the % iron and % copper originally present.
- 7. For the galvanic cell : Ag|AgCl(s)|KCl(0.2 M)||KBr(0.001 M)|AgBr(s)|Ag,

Calculate the EMF generated and assign correct polarity to each electrode for a spontaneous process after taking into account the cell reaction at 25 C.

$$[K_{_{sp(AgCl)}} = \, 2.8 \, - \, 10^{-10} \; ; \; K_{_{sp(AgBr)}} = \, 3.3 \, - \, 10^{-13}]$$

8. An aqueous solution of NaCl on electrolysis gives $H_{2(q)}$, $Cl_{2(q)}$ and NaOH according to the reaction :

$$2Cl_{(aq)}^{\scriptscriptstyle -} + \ 2H_{2}O \ \Longleftrightarrow \ \ 2OH_{(aq)}^{\scriptscriptstyle -} + \ H_{2(g)}^{\scriptscriptstyle -} + \ Cl_{2(g)}^{\scriptscriptstyle -}$$

A direct current of 25 amperes with a current efficiency of 62% is passed through 20 liters of NaCl solution (20% by weight). Write down the reactions taking place at the anode and the cathode. How long will it take to produce 1 kg of Cl_2 ? What will be the molarity of the solution with respect to hydroxide ion? (Assume no loss due to evaporation).

- 9. An acidic solution of Cu^{2+} salt containing 0.4 of Cu^{2+} is electrolyzed until all the copper is deposited. The electrolysis is continued for seven more minutes with the volume of solution kept at 100 mL and the current at 1.2 amp. Calculate the volume of gases evolved at NTP during the entire electrolysis.
- 10. In the refining of silver by electrolytic method what will be the weight of 100 g Ag anode if 5 ampere current is passed for 2 hours? Purity of silver is 95% by weight.
- 11. Hydrogen peroxide can be prepared by successive reactions :

$$2NH_4HSO_4 \rightarrow H_2 + (NH_4)_2S_2O_8$$

 $(NH_4)_2S_2O_8 + 2H_2O \rightarrow 2NH_4HSO_4 + H_2O_2$

The first reaction is an electrolytic reaction the second is steam distillation. What amount of current would have to be used in first reaction to produce enough intermediate to yield 100 g pure H_2O_2 per hour? Assume 50% anode current efficiency.

- 12. Dal lake has water $8.2 10^{12}$ litre approximately. A power reactor produces electricity at the rate of $1.5 10^6$ coulomb per second at an appropriate voltage. How many years would it take to electrolyse the lake?
- 13. Determine the degree of hydrolysis and hydrolysis constant of aniline hydrochloride in M/32 solution of salt at 298 K from the following cell data at 298 K.

$$Pt|H_{2}(1 \text{ atm})|H^{+}(1 \text{ M})|| M/32 C_{6}H_{5}NH_{3}Cl|H_{2}(1 \text{ atm})|Pt ; E_{cell} = -0.188 \text{ V}.$$

- 14. The emf of the cell, $Pt|H_2(1 \text{ atm})|H^+(0.1 \text{ M}, 30 \text{ mL})||Ag^+(0.8 \text{ M})$ Ag is 0.9 V. Calculate the emf when 40 mL of 0.05 M NaOH is added.
- 15. A dilute aqueous solution of KCl was placed between two electrodes 10 cm apart, across which a potential of 6 volt was applied. How far would the K^+ ion move in 2 hours at 25 C? Ionic conductance of K^+ ion at infinite dilution at 25 C is 73.52 ohm⁻¹ cm² mole⁻¹?
- 16. 100 mL $CuSO_4$ (aq) was electrolyzed using inert electrodes by passing 0.965 A till the pH of the resulting solution was 1. The solution after electrolysis was neutralized, treated with excess KI and titrated with 0.04 M $Na_2S_2O_3$. Volume of $Na_2S_2O_3$ required was 35 mL. Assuming no volume change during electrolysis, calculate:
 - (a) duration of electrolysis if current efficiency is 80%
 - (b) initial concentration (M) of CuSO₄
- 17. Calculate the equilibrium concentration of all ions in an ideal solution prepared by mixing 25.00 mL of 0.100 M Tl $^{+}$ with 25.00 mL of 0.200 M Co $^{3+}$.

E
$$(Tl^+/Tl^{3+}) = -1.25 \text{ V}$$
, E $(Co^{3+}/Co^{2+}) = 1.84 \text{ V}$

18. Determine at 298 for cell:

$$Pt | Q, QH_a, H^+ | 1M KCl | Hg_aCl_a | Hg(l) | Pt$$

- (a) it's emf when pH = 5.0
- (b) the pH when $E_{cell} = 0$
- (c) the positive electrode when pH = 7.5

given
$$E_{RP(RHS)} = 0.28$$
, $E_{RP(LHS)} = 0.699$

19. At 25 C, $\Delta H_1(H_2O, I) = -56700$ J/mol and energy of ionization of $H_2O(I) = 19050$ J/mol. What will be the reversible EMF at 25 C of the cell,

 $Pt|H_2(g)(1 \text{ atm})|H^+||OH^-|O_2(g)(1 \text{ atm})|Pt$, if at 26 C the emf increase by 0.001158 V.

20. Calculate the cell potential of a cell having reaction $Ag_2S + 2e^- \rightleftharpoons 2 Ag + S^{2-}$ in a solution buffered at pH = 3 and which is also saturated with 0.1 M H_2S .

For $H_2S : K_1 = 10^{-8}$ and $K_2 = 1.1 10^{-13}$, $K_{sp}(Ag_2S) = 2 10^{-49}$, $E_{Aq^+/Aq} = 0.8$.

- Calculate the solubility and solubility product of $\mathrm{Co_2[Fe(CN)_6]}$ in water at 25 C from the following data: Conductivity of a saturated solution of $\mathrm{Co_2[Fe(CN)_6]}$ is 2.06 $10^{-6}\Omega^{-1}\mathrm{cm^{-1}}$ and that of water used 4.1 $10^{-7}~\Omega^{-1}\mathrm{cm^{-1}}$. The ionic molar conductivities of $\mathrm{Co^{2^+}}$ and $\mathrm{Fe(CN)_6^{4^-}}$ are 86.0 $\Omega^{-1}\mathrm{cm^2mol^{-1}}$ and 444.0 $\Omega^{-1}\mathrm{cm^{-1}mol^{-1}}$.
- 22. A sample of water from a large swimming pool has a resistance of 9200 Ω at 25 C when placed in a certain conductance cell. When filled with 0.02 M KCl solution, the cell has a resistance of 85 Ω at 25 C. 500 g of NaCl were dissolved in the pool, which was throughly stirred. A sample of this solution gave a resistance of 7600 Ω . Calculate the volume of water in the pool.

Given : Molar conductance of NaCl at that concentrations is $126.5~\Omega^{-1} \text{cm}^2 \text{mol}^{-1}$ and molar conductivity of KCl at 0.02~M is $138~\Omega^{-1} \text{cm}^2 \text{mol}^{-1}$.

BRAIN	STORMING SUBJECTIVE EXERCISE ANS	WER KE	Y EXERCISE-4(B)
1.	6.6	2.	0.41 M
3.	n = 3 & X-electrode to Sn-electrode	4.	final weight = 9.6 g, 0.01 eq. of acid
5.	43.45 g	6.	Cu = 98.88%, Fe = $0.85%$
7.	- 0.037 V	8.	$48.71 \text{ hour, } [OH^{-}] = 1.41 \text{ M}$
9.	$V(O_2) = 99.68 \text{ mL}, V(H_2) = 58.46 \text{ mL}, Total}$	vol. = 158.1	mL
10.	57.5894 g	11.	315.36 A
12.	1.9 million year	13.	$h = 2.12 10^{-2}, K_h = 1.43 10^{-5} M$
14.	0.95 V	15.	3.29 cm
16.	1250 s, 0.064 M	17.	$Tl^{+} = 10^{-8}$, $Co^{+3} = 2 10^{-8}$
18.	(a) -0.124V (b) 7.1 (c) calomel elec	trode	
19.	0.4414 V	20.	-0.167 V
21.	$K_{\rm sp} = 7.682 10^{-17}$	22.	$2 10^5 dm^3$

(A) Fe

1.	For a cell reaction involving a two-electron change, the standard e.m.f. of the cell is found to be 0.295V at 25 °C. The equilibrium constant of the reaction at 25 °C will be : [AIEEE-2003]										
	(A) 10	(B) 1 10 ¹⁰	(C) $1 10^{-10}$	(D) 29.5 10 ⁻²							
2.	- 3.0V and -1.2 V. Th	ne reducing powers of these	e metals are :	C are respectively + 0.5V, [AIEEE-2003] (D) $A > B > C$							
3.		For the redox reaction : $Zn(s) + Cu^{2+} (0.1M) \rightarrow Zn^{2+} (1M) + Cu(s)$ taking place in a cell,									
	E $_{\text{Cell}}$ is 1.10 volt. E $_{\text{Cell}}$ for	or the cell will be $\left(2.303^{-1}\right)$	$\frac{RT}{F} = 0.0591$	[AIEEE-2003]							
	(A) 1.07 volt	(B) 0.82 volt	(C) 2.14 volt	(D) 1.80 volt							
4.		When during electrolysis of a solution of $AgNO_3$ 9650 coulombs of charge pass through the electroplatin bath, the mass of silver deposited on the cathode will be: [AIEEE-2003]									
	(A) 21.6g	(B) 108g	(C) 1.08g	(D) 10.8g							
5.	Consider the following E^0 values [AIEEE-2004										
	$E_{Fe^{3+}/Fe^{2+}}^{0} = + 0.77V$	$E_{Sn^{2+}\!/\!Sn}^{0} \ = \ - \ 0.14V$									
	Under standard conditions the potential for the reaction $Sn(s) + 2Fe^{3+}$ (aq) $\longrightarrow 2Fe^{2+}$ (aq) + Sn^{2+} (aq) is										
	(A) 0.91V	(B) 1.40V	(C) 1.68V	(D) 0.63V							
6.		The standard e.m.f. of a cell, involving one electron change is found to be 0.591 V at 25 C. The equilibrium constant of the reaction is $(F = 96,500 \text{ C mol}^{-1}; R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1})$ [AIEEE-2004]									
	(A) 1.0 10 ¹⁰	(B) 1.0 10 ⁵	(C) 1.0 10 ¹	(D) 1.0 10 ³⁰							
7.	The limiting molar cond $ \label{eq:theta_0} $ The Λ^0 for NaBr is :	The limiting molar conductivities Λ^0 for NaCl, KBr and KCl are 126,152 and 150Scm ² mol ⁻¹ respectively The Λ^0 for NaBr is :									
	(A) 278 S cm ² mol ⁻¹	(B) 176 S cm ² mol ⁻¹	(C) 128 S cm ² mol ⁻¹	(D) $302 \text{ S cm}^2 \text{ mol}^{-1}$							
8.	In a cell that utilises the	e reaction									
			H ₂ SO ₄ to cathode compar								
		shift equilibrium to the righ ft equilibrium to the left		ft equilibrium to the right shift equilibrium to the left							
9.	The E^0 values for	or Cr. Mn. Fe and Co. are -	-041 + 157 +077 and +	1.97V respectively. For which							
			from $+2$ to $+3$ is easiest?	[AIEEE-2004]							

(C) Cr

(D) Co

(B) Mn

18. Given: [AIEEE-2009]

$$E_{Fe^{3*}/Fe}^{0} = -0.036V, E_{Fe^{2*}/Fe}^{0} = -0.439V,$$

The value of standard electrode potential for the change, $Fe_{(aq)}^{3+} + e^{-} \rightarrow Fe^{2+}(aq)$ will be :-

- (A) 0.770 V
- (B) -0.270 V
- (C) -0.072 V
- (D) 0.385 V

19. The Gibbs energy for the decomposition of Al_2O_3 at 500 C is as follows:

[AIEEE-2010]

$$\frac{2}{3}$$
 Al₂O₃ $\longrightarrow \frac{4}{3}$ Al + O₂, $\Delta_{\rm r}$ G = +966 KJ mol⁻¹

The potential difference needed for electrolytic reduction of Al_2O_3 at $500\,$ C is at least :-

- (A) 5.0 V
- (B) 4.5 V
- (C) 3.0 V
- (D) 2.5 V

20. The correct order of $E_{M^{2+}/M}^{\circ}$ values with negative sign for the four successive elements Cr, Mn, Fe and Co

is :- [AIEEE-2010]

(A) Cr > Mn > Fe > Co

(B) Mn > Cr > Fe > Co

(C) Cr > Fe > Mn > Co

- (D) Fe > Mn > Cr > Co
- 21. The reduction potential of hydrogen half-cell will be negative if :-

[AIEEE-2011]

[AIEEE-2011]

(A) $p(H_2) = 2$ atm $[H^+] = 1.0$ M

- (B) $p(H_2) = 2$ atm and $[H^+] = 2.0$ M
- (C) $p(H_2) = 1$ atm and $[H^+] = 2.0 \text{ M}$
- (D) $p(H_2) = 1$ atm and $[H^+] = 1.0 \text{ M}$
- 22. Resistance of 0.2 M solution of an electrolyte is 50 Ω . The specific conductance of the solution is 1.3 S m⁻¹. If resistance of the 0.4M solution of the same electrolyte is 260 Ω , its molar conductivity is :-
 - (A) 6250 S m² mol⁻¹

(B) 6.25 10⁻⁴ S m² mol⁻¹

(C) 625 10⁻⁴ S m² mol⁻¹

- (D) 62.5 S m² mol⁻¹
- 23. The standard reduction potentials for Zn^{2+} / Zn, Ni^{2+} / Ni and Fe^{2+} / Fe are 0.76, 0.23 and 0.44 V respectively. The reaction $X + Y^{+2} \rightarrow X^{2+} + Y$ will be spontaneous when [AIEEE-2012]
 - (A) X = Zn, Y = Ni

(B) X = Ni, Y = Fe

(C) X = Ni, Y = Zn

(D) X = Fe, Y = Zn

JEE-[MAIN] : PREVIOUS YEAR QUESTIONS							ANSWER KEY			EXERCISE -5[A]					
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans	В	С	Α	D	Α	Α	С	Α	С	С	С	В	Α	D	Α
Que.	16	17	18	19	20	21	22	23							
Ans	С	А	Α	D	В	Α	В	Α							

EXERCISE - 05 [B]

JEE-[ADVANCED] : PREVIOUS YEAR QUESTIONS

10.	In the electrolytic cell,	flow of electrons is from	1 :-	[JEE 2003]									
	(A) Cathode to anode in	n solution											
	(B) Cathode to anode to	through external supply											
	(C) Cathode to anode t	hrough internal supply											
	(D) Anode to cathode t	hrough internal supply											
11.	$Zn Zn^{2+}(a = 0.1 M) F$	e^{2+} (a = 0.01 M) Fe. Th	e emf of the above cell is	0.2905 V. Equilibrium constant									
	for the cell reaction is			[JEE 2004]									
	(A) 10 ^{0.32/0.591}	(B) 10 ^{0.32/0.0295}	(C) $10^{0.26/0.0295}$	(D) e ^{0.32/0.295}									
12.	The half cell reactions	for rusting of iron are :		[JEE 2000]									
	$2H^{+} + \frac{1}{2}O_{2} + 2e^{-} \longrightarrow H_{2}O$; E = + 1.23 V, Fe ²⁺ + 2e ⁻ \longrightarrow Fe; E = - 0.44 V												
	ΔG (in kJ) for the reaction is :												
	(A) -76	(B) -322	(C) -122	(D) -176									
	Question No. 13 to	15 (3 question)											
	Tollen's reagent is used NH ₄ OH then gluconic		dehyde when a solution of	${\rm AgNO_3}$ is added to glucose with									
	$Ag^+ + e^- \longrightarrow Ag$;	$E_{red} = 0.8 \text{ V}$											
	$C_6H_{12}O_6 + H_2O \longrightarrow$	$C_6H_{12}O_7$ (Gluconic acid)	$+ 2H^{+} + 2e^{-}; E_{red} = -0.0$	5 V									
	$Ag(NH_3)_2^+ + e^- \longrightarrow Ag(s) + 2NH_3; E = -0.337 V$												
	[Use 2.303 $\frac{RT}{F} = 0$	[JEE 2006]											
13.	$2Ag^{+} + C_{6}H_{12}O_{6} + H_{2}O_{6}$	$0 \longrightarrow 2Ag(s) + C_6H_{12}C$	O ₇ + 2H ⁺										
	Find ℓ n K of this react		,										
	(A) 66.13	(B) 58.38	(C) 28.30	(D) 46.29									
14.		ed to the solution, pH is	raised to 11. Which half-c	ell reaction is affected by pH and									
	by how much?	fastou of 0 65 fuors 1	-										
		a factor of 0.65 from E											
		y a factor of 0.65 from											
		a factor of 0.65 from E											
15.		y a factor of 0.65 from 1		at he incompat?									
13.		Ag ⁺ to form a complex	Which of the following mus	st de incorrect:									
		er oxidising reagent than	$\Delta \sigma^{\dagger}$										
		silver salt of gluconic acid		in anid alactuada									
1.0	_		tential of glucose / glucon										
16.	_	on of MnSO ₄ in aqueous $_{1}^{4} + 2H_{2}O \rightarrow MnO_{2}$ (s) +		d for the preparation of MnO_2 as									
	Passing a current of 2	7 A for 24 hours gives	one kg of MnO What is	the value of current efficiency?									

Write the reaction taking place at the cathode and at the anode.

[JEE 1997]

- How many grams of silver could be plated out on a serving tray by electrolysis of a solution containing silver in +1 oxidation state for a period of 8.0 hours at a current of 8.46 Amperes? What is the area of the tray if the thickness of the silver plating is 0.00254 cm? Density of silver is 10.5 g/cm³:- [JEE 1997]
- 18. Calculate the equilibrium constant for the reaction

$$Fe^{2^{+}} + Ce^{4^{+}} \rightleftharpoons Fe^{3^{+}} + Ce^{3^{+}}, [given : E^{0}_{Ce^{4^{+}}/Ce^{3^{+}}} = 1.44 \text{ V} ; E^{0}_{Fe^{3^{+}}/Fe^{2^{+}}} = 0.68 \text{ V}]$$
 [JEE 1997]

- Calculate the equilibrium constant for the reaction, $2Fe^{3^+} + 3I^- \rightleftharpoons 2Fe^{2^+} + I_3^-$. The standard reduction potentials in acidic condition are 0.77 and 0.54 V respectively for Fe^{3^+}/Fe^{2^+} and I_3^-/I^- couples :- [JEE 1998]
- 20. Find the solubility product of a saturated solution of Ag_2CrO_4 in water at 298 K if the emf of the cell $Ag|Ag^+$ (satd. Ag_2CrO_4 soln) $||Ag^+(0.1 \text{ M})||Ag$ is 0.164 V at 298 K:- [JEE 1998]
- 21. Copper sulphate solution (250 mL) was electrolysed using a platinum anode and a copper cathode. A constant current of 2 mA was passed for 16 minute it was found that after electrolysis, the concentration of the solution was reduced to 50% of its original value. Calculate the concentration of copper sulphate in the solution to begin with.
 [JEE 2000]
- 22. The following electrochemical cell has been set up :-

$$Pt_{(I)}|Fe^{3+}$$
, Fe^{2+} (a = 1)|| Ce^{4+} , Ce^{3+} (a = 1)| $Pt_{(II)}$
 $E_{E_0^{3+}/E_0^{2+}} = 0.77 \text{ V}$ and $E_{C_0^{4+}/C_0^{3+}} = 1.61 \text{ V}$

If an ammeter is connected between the two platinum electrodes. Predict the direction of flow of current. Will the current increase or decrease with time?

- 23. The standard potential of the following cell is 0.23 V at 15 C C & 0.21 V at 35 C.
 - $Pt|H_{2}(g)|HCl(aq)|AgCl(s)|Ag(s)$
 - (i) Write the cell reaction.
 - (ii) Calculate ΔH^0 , ΔS^0 for the cell reaction by assuming that these quantities remain unchanged in the range 15 C to 35 C.
 - (iii) Calculate the solubility of AgCl in water at 25 C. Given standard reduction potential of the Ag⁺/Ag couples is 0.80 V at 25 C. [JEE 2001
- Two students use same stock solution of $ZnSO_4$ and a solution of $CuSO_4$. The e.m.f of one cell is 0.03 V higher than the other. The conc. of $CuSO_4$ in the cell with higher e.m.f value is 0.5 M. Find out the

conc. of
$$CuSO_4$$
 in the other cell $\left(\frac{2.303RT}{F} = 0.06\right)$:- [JEE 2003]

25. Find the equilibrium constant at 298 K for the reaction,

$$Cu^{2+}(aq) + In^{2+}(aq) \longrightarrow Cu^{+}(aq) + In^{3+}(aq) c$$

Given that:

$$E_{Cu^{2+}|Cu^{+}}^{\circ} = 0.15 \text{ V}, E_{In^{3+}|In^{+}}^{\circ} = -0.42 \text{ V}, E_{In^{2+}|In^{+}}^{\circ} = -0.40 \text{ V}$$
 [JEE 2000]

26. (a) Calculate ΔG_f^0 of the following reaction

$$Ag^{+}(aq) + Cl^{-}(aq) \longrightarrow AgCl (s)$$

Given :
$$\Delta G_f^0(AgCl) = -109 \text{ kJ/mole}, \ \Delta G_f^0(Cl^-) = -129 \text{ kJ/mole}, \ \Delta G_f^0(Ag^+) = 77 \text{ kJ/mole}$$

Represent the above reaction in form of a cell

Calculate E^0 of the cell. Find $log_{10}K_{SP}$ of AgCl

(b) $6.593 10^{-2}$ g of metallic Zn (amu = 65.39) was added to 100 mL of saturated solution of AgCl.

Calculate
$$log_{10} \frac{\left[Zn^{2+}\right]}{\left[Ag^{+}\right]^{2}}$$
, given that $Ag^{+} + e^{-} \longrightarrow Ag \qquad E^{0} = 0.80 \text{ V}$ $Zn^{2+} + 2e^{-} \longrightarrow Zn \qquad E^{0} = -0.76 \text{ V}$

Also find how many moles of Ag will be formed?

[JEE 2005]

We have taken a saturated solution of AgBr, K_{sp} of AgBr is 12 10^{-14} . If 10^{-7} mole of AgNO₃ are added to 1 litre of this solution find conductivity (specific conductance) of this solution in terms of 10^{-7} S m⁻¹ mol⁻¹. Given: $\lambda_{(Ac^{+})}^{0} = 6$ 10^{-3} S m² mol⁻¹; $\lambda_{(Bc^{-})}^{0} = 8$ 10^{-3} S m² mol⁻¹; $\lambda_{(NO_{2})}^{0} = 7$ 10^{-3} S m² mol⁻¹:-[JEE 2006]

Question No. 28 to 30 (3 questions)

Tollen's reagent is used for the detection of aldehyde when a solution of $AgNO_3$ is added to glucose with NH_4OH then gluconic acid is formed

$$Ag^+ + e^- \longrightarrow Ag$$
 ; $E_{red}^0 = 0.8 \text{ V}$

$$C_6H_{12}O_6 \ + \ H_2O \longrightarrow C_6H_{12}O_7 \ (Gluconic \ acid) \ + \ 2H^+ \ + \ 2e^- \ ; \quad E_{red}^0 = - \ 0.05 \ V$$

$$Ag(NH_3)_2^+ + e^- \longrightarrow Ag(s) + 2NH_3$$
 ; $E^0 = -0.337 \text{ V}$

[Use 2.303
$$\frac{RT}{F}$$
 = 0.0592 and $\frac{F}{RT}$ = 38.92 at 298 K] [JEE 2006]

28. $2Ag^{+} + C_{6}H_{12}O_{6} + H_{2}O \longrightarrow 2Ag(s) + C_{6}H_{12}O_{7} + 2H^{+}$

Find In K of this reaction

- When ammonia is added to the solution, pH is raised to 11. Which half-cell reaction is affected by pH and by how much?
 - (A) $E_{\rm oxd}$ will increase by a factor of 0.65 from $E_{\rm oxd}^0$
 - (B) \boldsymbol{E}_{oxd} will decrease by a factor of 0.65 from \boldsymbol{E}_{oxd}^{0}
 - (C) $\mathbf{E}_{\mathrm{red}}$ will increase by a factor of 0.65 from $\,\mathbf{E}_{\mathrm{red}}^{0}$
 - (D) \boldsymbol{E}_{red} will decrease by a factor of 0.65 from $\,\boldsymbol{E}_{red}^{0}$
- 30. Ammonia is always is added in this reaction. Which of the following must be incorrect?
 - (A) $\mathrm{NH_3}$ combines with $\mathrm{Ag^{\scriptscriptstyle +}}$ to form a complex.
 - (B) $Ag(NH_3)_2^+$ is a weaker oxidising reagent than Ag^+ .
 - (C) In absence of NH3 silver salt of gluconic acid is formed.
 - (D) NH_3 has affected the standard reduction potential of glucose/gluconic acid electrode.

Paragraph for Question Nos. 31 to 33 (3 questions)

Chemical reactions involve interaction of atoms and molecules. A large number of atoms/molecules (approximately $6.023 ext{ } 10^{23}$) are present in a few grams of any chemical compound varying with their atomic/molecular masses. To handle such large numbers conveniently, the mole concept was introduced. This concept has implications in diverse areas such as analytical chemistry, biochemistry, electrochemistry and radiochemistry. The following example illustrates a typical case, involving chemical/ electrochemical reaction, which requires a clear understanding of the mole concept.

A 4.0 molar aqueous solution of NaCl is prepared and 500 mL of this solution is electrolysed. This leads to the evolution of chlorine gas at one of the electrodes (atomic mass : Na = 23, Hg = 200; 1 Faraday = 96500 coulombs) [JEE 2007]

31. The total number of moles of chlorine gas evolved is

(A) 0.5

(B) 1.0

(C) 2.0

(D) 3.0

32. If the cathode is a Hg electrode, the maximum weight (g) of amalgam formed from this solution is

(A) 200

(B) 225

(C) 400

(D) 446

33. The total charge (coulombs) required for complete electrolysis is

(A) 24125

(B) 48250

(C) 96500

(D) 193000

Paragraph for Question Nos. 34 & 35 (2 questions)

Redox reactions play a pivoted role in chemistry and biology. The values of standard redox potential (E) of two half-cell reactions decide which way the reaction is expected to proceed. A simple example is a Daniel cell in which zinc goes into solution and copper gets deposited. Given below are a set of half-cell reactions (acidic medium) along with their E (V with respect to normal hydrogen electrode) values. Using this data obtain the correct explanations to Questions 14-16.

$$I_2 + 2e^- \rightarrow 2I^-$$
 E = 0.54

$$Cl_2 + 2e^- \rightarrow 2Cl^-$$
 E = 1.36

$$Mn^{3+} + e^{-} \rightarrow Mn^{2+}$$
 E = 1.50

$$Fe^{3+} + e^{-} \rightarrow Fe^{2+}$$
 E = 0.77

$$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$$
 E = 1.23

[JEE 2007]

34. Among the following, identify the correct statement.

(A) Chloride ion is oxidised by ${\rm O_2}$

(B) Fe^{2+} is oxidised by iodine

(C) Iodine ion is oxidised by chlorine

(D) Mn²⁺ is oxidised by chlorine

35. While Fe^{3+} is stable, Mn^{3+} is not stable in acid solution because

(A) O_2 oxidises Mn^{2+} to Mn^{3+}

(B) $\rm O_2$ oxidises both $\rm Mn^{2+}$ to $\rm Mn^{3+}$ and $\rm Fe^{2+}$ to $\rm Fe^{3+}$

(C) Fe^{3+} oxidises H_2O to O_2

(D) Mn^{3+} oxidises H_2O to O_2

36. Electrolysis of dilute aqueous NaCl solution was carried out by passing 10 milli ampere current. The time required to liberate 0.01 mol of H_2 gas at the cathode is (1 Faraday = 96500 C mol⁻¹)

(A) $9.65 10^4 sec$

(B) $19.3 10^4 sec$

(C) $28.95 10^4 sec$

(D) $38.6 10^4 sec$

[JEE 2008]

37. For the reaction of NO_3 ion in an aqueous solution, E is ± 0.96 V. Values of E for some metal ions are given below

$$V^{2+}$$
 (aq) + 2e $\rightarrow V$

E = -1.19 V

$$Fe^{3+}$$
 (ag) + 3e \rightarrow Fe

E = -0.04 V

$$Au^{3+}$$
 (aq) + 3e \rightarrow Au

$$E = + 1.40 \text{ V}$$

$$Hg^{2+}$$
 (aq) + 2e \rightarrow Hg

$$E = + 0.86 \text{ V}$$

The pair(s) of metal that is(are) oxidised by NO_3 in aqueous solution is(are)

[JEE 2009]

Paragraph for Questions 38 to 39

The concentration of potassium ions inside a biological cell is at least twenty times higher than the outside. The resulting potential difference across the cell is important in several processes such as transmission of nerve impulses and maintaining the ion balance. A simple model for such a concentration cell involving a metal M is: [JEE 2010]

$$M(s) \mid M^{\dagger}(aq ; 0.05 \text{ molar}) \parallel M^{\dagger}(aq ; 1 \text{ molar}) \mid M(s)$$

For the above electrolytic cell the magnitude of the cell potential $|E_{cell}| = 70$ mV.

38. For the above cell :-

(A)
$$E_{cell} < 0$$
; $\Delta G > 0$

(B)
$$E_{cell} > 0 ; \Delta G < 0$$

(C)
$$E_{cell} < 0 ; \Delta G^0 > 0$$

(D)
$$E_{cell} > 0 ; \Delta G^0 < 0$$

39. If the 0.05 molar solution of M is replaced by a 0.0025 molar M solution, then the magnitude of the cell potential would be :-

 ${\rm AgNO_3}$ (aq.) was added to an aqueous KCl solution gradually and the conductivity of the solution was 40. measured. the plot of conductance (Λ) versus the volume of AgNO $_3$ is -[JEE 2011]

(A) (P)

(B) (Q)

(C) (R)

(D) (S)

41. Consider the following cell reaction:

[JEE 2011]

$$2Fe_{(s)}^{+}+O_{2(g)}^{-}+4H_{(aq)}^{+} \rightarrow 2Fe_{(aq.)}^{2+}+2H_{2}O(\ell)$$
 E = 1.67 V

$$At[Fe^{2+}] = 10^{-3} M$$
, $P(O_2) = 0.1$ atm and pH = 3, the cell potential at 25 C is -

(A) 1.47 V

(B) 1.77 V

(C) 1.87 V

(D) 1.57 V

Paragraph for Question 42 & 43

The electrochemical cell shown below is a concentration cell.

[JEE 2012]

M | M^{2+} (saturated solution of a sparingly soluble salt, MX_2) | M^{2+} (0.001 mol dm⁻³) | M

The emf of the cell depends on the difference in concentrations of M^{2+} ions at the two electrodes. The emf of the cell at 298 K is 0.059V.

42. The value of ΔG (kJ mol⁻¹) for the given cell is (take If = 96500 C mol⁻¹)

(A) -5.7

(B) 5.7

(C) 11.4

(D) -11.4.

43. The solubility product $(K_{sp}; mol^3 dm^{-9})$ of MX_2 at 298 K based on the information available for the given concentration cell is (take 2.303 R 298/F = 0.059 V)

(A) $1 \quad 10^{-15}$

(B) $4 10^{-15}$

(C) $1 10^{-12}$

(D) 1 10⁻¹²

JEE-[M	IAIN] :	.NSW	WER KEY				I	EXERCISE -5[B]							
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	С	В	Α	Α	В	С	В	С	А	С	В	В	В	Α	D
16. $\eta = 94.8\%$; Cathode: $2H^+ + 2e^- \rightarrow H_2$, Anode: $Mn^{2+} \rightarrow Mn^{4+} + 2e^-$															
17. $W_{Ag} = 272.2 \text{ g}$, area = 1.02 10^4 cm^2 18. $K_c = 7.6 10^{12}$ 19. $K_C = 6.26 10^7$										7					
20. $K_{sp} = 2.287 10^{-12} M^{-3}$							21.	7.95	7.95 10 ⁻⁵ M 22. decrease w					with ti	me
23. $\Delta H^0 = -49987 \text{ J mol}^{-1}, \ \Delta S^0 = -96.5 \text{ J mol}^{-1} \text{ K}^{-1}, \ \text{s} = 1.47 \ 10^{-5} \text{ M}$ 24. 0.05															
$25. K_C = 10^{10}$															
26. (a) $E^0 = 0.59 \text{ V}$, $\log_{10} K_{SP} = -10$							27.	55 S	m^{-1}						
(b) 52.8, 10 ⁻⁶ moles															
28.	A	29.	A	30). I)	31.	В	32.	D					
33.	D	34.	C	35	5. I)	36.	В	37.	A,I	3,D 3 8	3. E	3		
39.	C	40.	D	41	l. I)	42.	D	43.	В					