- 1. Since K is symmetric, there exists U and Λ such that $K = U^T \Lambda U$ where Λ is diagonal and U is orthogonal. Since $\Lambda_{ii} = (U^T e_i)^T K U^T e_i$ and $x^T K x = \sum_i \Lambda_{ii} (e_i^T U x)^2$, K is p.s.d. iff. $\Lambda_{ii} \geq 0$ for all i.
- 2. Since $K_{ij} = e_i^T K e_j$, $d_{ij} = (e_i e_j)^T K (e_i e_j)$. Let $\sqrt{\Lambda} = diag\left(\left(\sqrt{\Lambda_{ii}}\right)_i\right)$. Then, $d_{ij} = \|u_i u_j\|^2$ where $u_i = \sqrt{\Lambda} U e_i$.
- 3. Let $y = H_{\alpha}^T x = x \alpha e^T x$, then $e^T x = 0$.

$$y^T D y = \sum_{i,j} y_i y_j (u_i - u_j)^T (u_i - u_j)$$
$$= 2 \sum_i e^T y y_i u_i^T u_i - 2 \sum_{i,j} y_i y_j u_i^T u_j$$
$$= -2 \left(\sum_i y_i u_i \right)^T \left(\sum_i y_i u_i \right) \le 0$$

4. $x^T(A+B)x = x^TAx + x^TBx \ge 0$. $x^T(A \circ B)x = tr(A\operatorname{diag}(x)B\operatorname{diag}(x)) = tr(CC^T)$ where $C = \sqrt{A}\operatorname{diag}(x)\sqrt{B}$ which is p.s.d.. Thus $x^T(A \circ B)x \ge 0$.

4

- 1. No. Counter example: when d is Euclidean distance, let d(x,y)=1, d(x,z)=2, and d(y,z)=3, d^2 violates the triangle inequality.
- 2. Yes. Identity and symmetry properties are trivial. Also note that $\sqrt{d(x,y)} \le \sqrt{d(x,z) + d(z,y)} \le \sqrt{d(x,z) + d(z,y)} + \sqrt{4d(x,z)d(z,y)} = \sqrt{d(x,z)} + \sqrt{d(z,y)}$.

5

- 1. A^TA admits orthogonal diagonalization $A^TA = V\sqrt{\Lambda}^2 V^T$. $\operatorname{rank}(\sqrt{\Lambda}) \leq \min\{m,n\}$. Thus, we may take $\Sigma = \operatorname{diag}\{\sqrt{\lambda_1},\dots,\sqrt{\lambda_1}\} \in \mathbb{R}^{m\times n}$ and $\Sigma^T\Sigma = \Lambda$. The column vectors of A and ΣV^T have the same Gram matrix. Thus, there is an orthogonal transformation that maps column vectors (in \mathbb{R}^n) of ΣV^T to column vectors (in \mathbb{R}^m) of A. Denote by U the matrix representation of the transformation. Then $A = U\Sigma V^T$.
 - If $A = U\Sigma V^T = \hat{U}\hat{\Sigma}\hat{V}^T$, then $A^TA = V\Sigma^T\Sigma V^T = \hat{V}\hat{\Sigma}^T\hat{\Sigma}\hat{V}^T$. $\Sigma^T\Sigma$ and its tilde version are diagonal and they are similar, thus must be the same and hence $\Sigma = \tilde{\Sigma}$.

- 2. Since $||x|| = 1, x \in \mathbb{R}^n$ iff. $||V^Tx|| = 1, \min_{rank(B) \le k} ||A B|| = \min_{rank(\tilde{B}) \le k} ||\Sigma \tilde{B}||$, where $\tilde{B} = U^T B V$ is $m \times n$. Since $\dim(\ker(\tilde{B})) + k \ge n$, there exists a unit vector $v \in \ker(B) \cap span\{e_1, \ldots, e_{k+1}\}$. Then $||(\Sigma B)v|| \ge \sigma_{k+1}$. On the other hand $||\Sigma \Sigma_k|| = \sigma_{k+1}$.
- 3. Note that $||A||_F^2 = tr(A^TA) = \sum_i \sigma_i^2$. Since $\operatorname{rank}(B (\Sigma B)_{i-1}) \leq k+i-1$, $\sigma_i(\Sigma B) = \sigma_1(\Sigma B (\Sigma B)_{i-1}) = ||\Sigma (B (\Sigma B)_{i-1})|| \geq \sigma_{i+k-1}$. Therefore, $||A B||_F^2 = tr((\Sigma \tilde{B})^T(\Sigma \tilde{B})) = \sum_i \sigma_i(\Sigma B)^2 \geq \sum_{i=k+1}^n \sigma_i^2 = ||A A_k||_F^2$.
- 4. Since $QAZ = QU\Sigma V^TZ$ is an SVD, QAZ and A have the same set of singular values.
- 5. $\|A R\| = \|\Sigma \tilde{R}\|_F$, $\tilde{R} = U^T R V$ also satisfies $\tilde{R}^T \tilde{R} = I$ and $\tilde{R} \tilde{R}^T = I$. $\|\Sigma \tilde{R}\|_F^2 = tr(\Sigma^T \Sigma + I) tr(\Sigma^T R + R^T \Sigma) = tr(\Sigma^T \Sigma + I) 2\sum_i \sigma_i R_{ii} \ge tr(\Sigma^T \Sigma + I) 2\sum_i \sigma_i$ as $R_{ii} \le 1$. On the other hand $\|\Sigma I\|_F = tr(\Sigma^T \Sigma + I) 2\sum_i \sigma_i$.