عليرضا اسلامي خواه 99521064

سوال 3 الف:

Fuzzy control (cont'd)

□ Objective:
 control complex processes by means of human experience.
□ difference between FLC and expert systems:
 Used for controlling technical processes (unlike expert systems which try to exploit uncertain knowledge acquired from an expert)
□ some interesting points of FLCs:
 □ cheap, easy to design, robust, capable of outperforming conventional control systems
□ the compositional rule of inference can be considered as the spine of all FLC models
□ uses rules to model the process
□ such rules links input variables with the control variables by terms of linguistic variables:

Fuzzy control (cont'd)

A general FLC consists of 4 modules:

(fuzzification, rules, inference engine, defuzzification)

for a rule such as

if the tempreture is slightly too high, increase a bit the heating power

"increasing a bit" is translated to a crisp control action by the **defuzzifier**

Fuzzy control (cont'd)

Design of fuzzy controllers

-step 1:

after identifying relevant input output variables of the controller, we have to select meaningful *linguistic terms* for each variable and express them by appropriate fuzzy sets (usually fuzzy numbers)

-step2:

introducing a *fuzzification function* for each input variable to express the associated measurement uncertainty

-step3:

formulating the knowledge pertaining to the given control problem in terms of a set of *fuzzy inference rules* (either by eliciting from experienced human operators or by obtaining from empirical data)

-step4:

designing an *inference engine* which must properly combine measurements of input variables with relevant fuzzy information rules

-step5:

selecting a suitable *defuzzification method* to convert each conclusion obtained in terms of a fuzzy set, to a single real number

1

کنترلکننده فازی یک نوع سیستم کنترلی است که از مفاهیم منطق فازی برای مدلسازی و کنترل سیستمها استفاده میکند. این نوع کنترلکننده به جای استفاده از منطق دقیق و مقادیر دقیق، از مفاهیم فازی و مقادیر فازی برای تصمیمگیری و کنترل استفاده میکند. در زیر، مراحل عمومی ساخت یک کنترلکننده فازی را شرح میدهم:

1. **تعریف سیستم: **

- تعریف و شناخت سیستمی که قصد کنترل آن را دارید.
- مشخص کردن ورودی ها (inputs) و خروجی ها (outputs) مورد نظر.
 - مشخص کردن نواحی عملکردی مختلف سیستم.

2. **فازىسازى ورودى ها و خروجى ها: **

- تعیین مقادیر فازی برای ورودی ها و خروجی ها به جای مقادیر دقیق.
 - تعیین توابع عضویت برای توصیف ارتباط بین متغیرهای فازی.

**تعيين قوانين فازى: **

- تعریف قوانین کنترلی که مشخص میکنند چگونه ورودی ها باید به خروجی ها تبدیل شوند.
 - این قوانین با استفاده از مفاهیم فازی و اصطلاحاتی مانند "اگر ... آنگاه" تعریف میشوند.

4 **فاز ىساز ى خروجى كنترلر **

- تعیین مقادیر فازی برای خروجی کنتر لر بر اساس قوانین فازی و ورودی های فازی.
 - این مقادیر فازی باید به مقادیر دقیق تبدیل شوند تا بتوانند به سیستم اعمال شوند.

- **تركيب قوانين فازى: **
- ترکیب قوانین فازی برای تصمیمگیری نهایی و تعیین خروجی نهایی کنترلر.
 - 6. **دفع انحراف **
 - محاسبه انحراف بین خروجی ورودی مطلوب.
 - انجام عملیاتهای کنترلی بر اساس این انحراف با استفاده از قوانین فازی.

7. **بازخورد: **

- ممکن است از یک سیستم باز خورد استفاده شود تا عملکرد کنترلی بهبود یابد.
 - اطلاعات بازخور د می توانند به عنوان ورودی فازی در نظر گرفته شوند.

8 **تنظیم پارامترها **

- بهینهسازی یار امترهای مدل فازی بر اساس عملکرد و بازخورد.

9. **پیادهسازی و آزمایش: **

- بیادهسازی مدل فازی و اجرای آزمایشهای عملی برای ارزیابی عملکرد کنترلکننده.

10 **تنظیم نهایی **

- انجام تنظیمات نهایی بر اساس نتایج آزمایش و بازخورد.

مراحل فوق تا یک مرتبه ی عمومی از فرایند ساخت یک کنترلکننده فازی هستند و بسته به نوع سیستم و نیاز های خاص، جزئیات و ویژگیهای بیشتری ممکن است وارد شوند.

سوال 4:

مرحله Defuzzification یکی از مراحل نهایی در فرآیند کنترلکننده فازی است که مقادیر فازی خروجی را به یک مقدار واقعی و غیرفازی تبدیل میکند. مهمترین روشهای defuzzification عبارتند از:

مرکز ثقل (Centroid یا Center of Gravity)

- **مزایا: **
- به دلیل در نظر گرفتن تمام قسمتهای تابع عضویت، معمولاً نتیجه منطقی و متعادلی ار ائه میدهد.
 - بسیار محبوب و گسترده استفاده شده در بسیاری از کاربردهای فازی.
 - **معايب: **
- ممکن است محاسباتی سنگین و زمانبر باشد، به خصوص اگر تابع عضویت پیچیده باشد.
 - نسبت به تغییر ات کوچک در تابع عضویت حساس است.

بیشترین حداکثر (Bisector)

- **مزایا: **
- عادلانه بین دو طرف تابع عضویت تقسیم میکند و میتواند خروجی متعادلی فراهم کند.
 - **معابب: **
 - ممكن است مانند مركز ثقل محاسبات زيادي را مستلزم شود.

(Mean of Maximum) ### میانگین ماکزیممها

- **مز ابا: **

- ساده برای محاسبه و کاربردی در سیستمهایی با توابع عضویت ساده.
- وقتی ماکزیممهای واضح و مشخصی وجود دارد، بسیار کار آمد است.
 - **معایب: **
- اگر چندین ماکزیمم مساوی وجود داشته باشند، نتیجه ممکن است اندکی بی ربط به نظر برسد.

مركز سطوح (Center of Sums یا Center of Area)

- **مز ایا: **
- می تواند برای توابع عضویت بسیار ناهموار یا نامتقارن که در آنها مرکز ثقل کارایی بهتری ندارد، مناسب باشد.
 - **معایب: **
 - مشابه مركز ثقل، ممكن است محاسبه آن پيچيده و زمان بر باشد.

کوچکترین حداقل (Smallest of Maximum)

- **مزایا: **
- ساده و سریع در محاسبه.
 - **معايب: **
- ممکن است نتایج خیلی محافظه کارانه باشد و در بعضی موارد به خوبی نمایانگر توابع عضویت و قوانین فازی نباشد.

بزرگترین حداقل (Largest of Maximum)

- **مزایا: **
- ساده و سریع در محاسبه.
 - **معايب: **

- ممکن است نتایج تهاجمی داشته باشد و بازتاب کننده ی خوبی برای توابع عضویت و قوانین فازی نباشد.

انتخاب روش defuzzification مناسب به تابع عضویت، تعداد قوانین فازی و البته کاربرد نهایی سیستمهای کنترلی بستگی دارد. هر روش مزایا و معایب خاص خود را دارد و بهینه سازی انتخاب بر اساس یک سری تجربیات، آزمایشها و تحقیق و توسعه ی دقیق انجام می گیرد.

میانگین وزندار ماکزیممها (Weighted Average of Maximums):

- **مز ابا**:

- نتایج دقیق تری نسبت به میانگین معمولی ماکزیممها ارائه میدهد، زیرا وزنها می توانند اهمیت نسبی هر ماکزیمم را در نظر بگیرند.

- **معابب** -

- نیاز به تعیین وزنهای دقیق برای هر ماکزیمم دارد، که ممکن است به صورت دقیق قابل تعیین نباشند و نتیجه را تحت تأثیر قرار دهند.

قطعبندی نقطهای (Sugeno-style Defuzzification):

- **مزایا**:

- برای سیستمهایی با نقاط اوج معین و قوانین ترکیبی که توسط تکنیکهای سوگنو پیادهسازی شدهاند، مؤثر است.

- **معايب**:

- تنها در صورتی کاربردی است که سیستم فازی بر اساس روش سوگنو طراحی شده باشد و نمیتوان آن را بر روی تمام سیستمهای فازی به کار برد.

میانگین وزندار/سنتر ثقل وزندار (Weighted Centroid):

- **مزایا**:
- در نظر گرفتن وزنها میتواند نتایج را به نحوی تنظیم کند تا بازتابدهندهی اولویتها و اهمیتهای نسبی مختلف توابع عضویت باشد.
 - **معابب
 - محاسبه ی وزنها و تعیین درست آنها میتواند پیچیده باشد و نیازمند تنظیمات و تجزیه و تحلیلهای دقیق است.
 - **کوچکترین مربعها (Least Squares)**:
 - **مز ایا**:
 - وقتی مجموعه های داده های بزرگی وجود دارد که لازم است در defuzzification در نظر گرفته شوند، روش بسیار مفیدی است.
 - **معابب**
- محاسبات مرتبط ممکن است پیچیده و محاسباتی سنگین باشند، به ویژه با داده های بزرگ و متغیر های فراوان.

انتخاب روش defuzzification در نهایت باید مبتنی بر تطابق با موقعیت خاص، تناسب با حافظه و قدرت پردازشی در دسترس، و مهمتر از همه، دقت موردنظر خروجی سیستم کنترلکننده فازی باشد. در بعضی موارد، ممکن است انجام آزمایشهای مقدماتی با چندین روش defuzzification برای یافتن بهترین گزینه مورد نیاز باشد.