GSVD Definition

Ji Wang

1 Definition

The generalized singular value decomposition (GSVD) of an m-by-n matrix A and p-by-n matrix B is given as follows:

$$A = UCRQ^T, \quad B = VSRQ^T$$

- U is an m-by-m orthogonal matrix.
- V is a p-by-p orthogonal matrix.
- Q is a n-by-n orthogonal matrix.
- C and S are m-by-r and p-by-r, where $r = \operatorname{rank}\begin{pmatrix} A \\ B \end{pmatrix}$). Both are non-negative and diagonal and $C^TC + S^TS = I$.
- $C^TC = \operatorname{diag}(\alpha_1^2, ..., \alpha_r^2)$, $S^TS = \operatorname{diag}(\beta_1^2, ..., \beta_r^2)$, where α_i , $\beta_i \in [0, 1]$ for i = 1, ..., r. The ratios α_i/β_i are called the generalized singular values of the pair A, B, and are in non-increasing order. The first k values are infinite $(\beta_i = 0)$, the next s values are finite and non-zero and the last r k s values are zero $(\alpha_i = 0)$. Here, $k = \operatorname{rank}(\begin{pmatrix} A \\ B \end{pmatrix}) \operatorname{rank}(B)$ and $s = \operatorname{rank}(A) + \operatorname{rank}(B) \operatorname{rank}(A)$.
- R is a r-by-n matrix of structure $(0, R_0)$ where R_0 is r-by-r, upper triangular and nonsingular.

C and S have the following detailed structure:

(1) $m \ge r$

$$C = \begin{pmatrix} k & l \\ k \begin{pmatrix} I & 0 \\ 0 & \Sigma_1 \\ m - k - l \begin{pmatrix} 0 & \Sigma_1 \\ 0 & 0 \end{pmatrix}, \quad S = \begin{pmatrix} k & l \\ l & 0 & \Sigma_2 \\ 0 & 0 \end{pmatrix}$$

Here, $l = \operatorname{rank}(B)$, Σ_1 and Σ_2 are diagonal matrices and $\Sigma_1^2 + \Sigma_2^2 = I$, and Σ_2 is nonsingular. Also, $\alpha_1 = \cdots = \alpha_k = 1$, $\alpha_{k+i} = (\Sigma_1)_{ii}$ for $i = 1, \cdots, l$, $\beta_1 = \cdots = \beta_k = 0$, $\beta_{k+i} = (\Sigma_2)_{ii}$ for $i = 1, \cdots, l$.

(2) m < r

$$C = \begin{pmatrix} k & m-k & k+l-m \\ k & 0 & 0 \\ 0 & \Sigma_1 & 0 \end{pmatrix}, \quad S = k+l-m \begin{pmatrix} 0 & \Sigma_2 & 0 \\ 0 & 0 & I \\ p-l & 0 & 0 \end{pmatrix}$$

Still, Σ_1 and Σ_2 are diagonal matrices and $\Sigma_1^2 + \Sigma_2^2 = I$, and Σ_2 is nonsingular. Also, $\alpha_1 = \cdots = \alpha_k = 1$, $\alpha_{k+i} = (\Sigma_1)_{ii}$ for $i = 1, \dots, m-k$, $\alpha_{m+1} = \cdots = \alpha_r = 0$, $\beta_1 = \cdots = \beta_k = 0$, $\beta_{k+i} = (\Sigma_2)_{ii}$ for $i = 1, \dots, m-k$, $\beta_{m+1} = \cdots = \beta_r = 1$.

2 Other notable definitions of GSVD

We list four major definitions of GSVD for further discussion, and they are ordered below:

2.1 Definition(1): Van Loan (1976) [1]

Given an m-by-n matrix A and a p-by-n matrix B with $m \ge n$ and $r = \operatorname{rank}\begin{pmatrix} A \\ B \end{pmatrix}$), the generalized singualr value decomposition of A and B is:

$$A = UCX^{-1}, \quad B = VSX^{-1}$$

$$C = egin{array}{cccc} q & r-q & n-r & q & r-q & n-r \ q & I & 0 & 0 \ 0 & \Sigma_1 & 0 \ 0 & 0 & 0 \end{array}
ight), \quad S = egin{array}{cccc} q & 0 & 0 & 0 \ 0 & \Sigma_2 & 0 \ 0 & 0 & 0 \end{array}
ight)$$

- U is an m-by-m orthogonal matrix.
- V is a p-by-p orthogonal matrix.
- \bullet X is an n-by-n nonsingular matrix.
- C and S are m-by-n and p-by-n, and $q = max\{r p, 0\}$. $\alpha_1 = \cdots = \alpha_q = 1$, $\Sigma_1 = \operatorname{diag}(\alpha_{q+1}, \cdots, \alpha_r)$, $\beta_1 = \cdots = \beta_q = 0$, $\Sigma_2 = \operatorname{diag}(\beta_{q+1}, \cdots, \beta_r)$. $\Sigma_1^2 + \Sigma_2^2 = I$.

2.2 Definition(2): Paige (1981) [2]

Given an m-by-n matrix A and a p-by-n matrix B with $r = rank(\begin{pmatrix} A \\ B \end{pmatrix})$, the generalized singular value decomposition of A and B is below:

$$A = UC(W^TR, 0)Q^T, \quad B = VS(W^TR, 0)Q^T$$

$$C = \begin{pmatrix} k & s & r - k - s \\ k & I & 0 & 0 \\ 0 & \Sigma_1 & 0 \\ m - k - s & 0 & 0 \end{pmatrix}, \quad S = \begin{pmatrix} p - r + k & 0 & 0 \\ 0 & \Sigma_2 & 0 \\ r - k - s & 0 & 0 \end{pmatrix}$$

- U is an m-by-m orthogonal matrix.
- V is a p-by-p orthogonal matrix.
- W is an r-by-r orthogonal matrix.
- R is an r-by-r nonsingular matrix, its singular values are equal to the nonzero singular values of $\begin{pmatrix} A \\ B \end{pmatrix}$. $rank(R) = rank(\begin{pmatrix} A \\ B \end{pmatrix}).$
- Q is an n-by-n orthogonal matrix.
- C and S are m-by-r and p-by-r. $k = \operatorname{rank}\begin{pmatrix} A \\ B \end{pmatrix}$)- $\operatorname{rank}(B)$, $s = \operatorname{rank}(A) + \operatorname{rank}(B)$ $\operatorname{rank}(A) + \operatorname{rank}(B)$ $\operatorname{rank}(B) + \operatorname{rank}(B)$

2.3 Definition(3): MATLAB 2019b

The generalized singular value decomposition of an m-by-n matrix A and a p-by-n matrix B is the following:

$$A = UCX^T$$
, $B = VSX^T$

- U is an m-by-m orthogonal matrix.
- V is a p-by-p orthogonal matrix.
- X is an n-by-q matrix where $q = min\{m + p, n\}$.
- C is an m-by-q matrix and S is a p-by-q. Both are nonnegative, diagonal and $C^TC + S^TS = I$.
- $C^TC = \operatorname{diag}(\alpha_1^2, \dots, \alpha_q^2), \ S^TS = \operatorname{diag}(\beta_1^2, \dots, \beta_q^2), \ \text{where } \alpha_i, \ \beta_i \in [0, 1] \ \text{for } i = 1, \dots, q.$ The ratios α_i/β_i are called the generalized singular values of the pair A, B and are in non-decreasing order.

2.4 Definition(4): Edelman (2019) [3]

The generalized singular value decomposition of an m-by-n matrix A and a p-by-n matrix B is the following:

$$A = UCH$$
, $B = VSH$

$$C = \begin{pmatrix} k & s & r - k - s \\ k & I & 0 & 0 \\ 0 & \Sigma_1 & 0 \\ m - k - s & 0 & 0 \end{pmatrix}, \quad S = \begin{pmatrix} p - r + k & 0 & 0 & 0 \\ 0 & \Sigma_2 & 0 & 0 \\ r - k - s & 0 & 0 \end{pmatrix}$$

- U is an m-by-m orthogonal matrix.
- ullet V is a p-by-p orthogonal matrix.
- C is an m-by-r matrix and S is an n-by-r matrix where $r = \operatorname{rank}\begin{pmatrix} A \\ B \end{pmatrix}$). $C^TC + S^TS = I$. $k = \operatorname{rank}\begin{pmatrix} A \\ B \end{pmatrix}$)- $\operatorname{rank}(B)$, $s = \operatorname{rank}(A) + \operatorname{rank}(B)$ $\operatorname{rank}\begin{pmatrix} A \\ B \end{pmatrix}$). $\alpha_1 = \cdots = \alpha_k = 1$, $\Sigma_1 = \operatorname{diag}(\alpha_{k+1}, \cdots, \alpha_{k+s})$, $\alpha_{k+s+1} = \cdots = \alpha_r = 0$, $\beta_1 = \cdots = \beta_k = 0$, $\Sigma_2 = \operatorname{diag}(\beta_{k+1}, \cdots, \beta_{k+s})$, $\beta_{k+s+1} = \cdots = \beta_r = 1$. $\Sigma_1^2 + \Sigma_2^2 = I$.
- H is an r-by-n matrix and has full row rank.

3 Discussion and comments

I. Our formulation always reveals the rank of $\begin{pmatrix} A \\ B \end{pmatrix}$.

From our decomposition, we can immediately know the rank of $\begin{pmatrix} A \\ B \end{pmatrix}$ from the number of columns of C or S.

We can also gain rank($\begin{pmatrix} A \\ B \end{pmatrix}$) from Definition(1), (2) and (4). However, we cannot obtain such information from Definition(3).

II. We can get the common nullspace of A and B from our formulation.

If we rewrite our formulation of GSVD as:

$$A(Q_1, Q_2) = UC(0, R_0), \quad B(Q_1, Q_2) = VS(0, R_0)$$

where Q_1 is n-by-(n-r), Q_2 is n-by-r and R_0 is r-by-r. Then, we have $\operatorname{null}(A) \cap \operatorname{null}(B) = \operatorname{span}\{Q_1\}$. In other words, Q_1 is the orthonormal basis of the common nullspace of A and B.

We can also get the common nullspace of A and B from Definition(2) and (4).

• If we rewrite the GSVD of Definition(2) as:

$$A(Q_1, Q_2) = UC(W^T R, 0), \quad B(Q_1, Q_2) = VS(W^T R, 0)$$

where Q_1 is n-by-r, Q_2 is n-by-(n-r). Then, we have $\operatorname{null}(A) \cap \operatorname{null}(B) = \operatorname{span}\{Q_2\}$.

- In Definition(4), $\text{null}(A) \cap \text{null}(B) = \text{null}(H)$. Alternatively, if we do RQ factorization on H, namely, $H = (0, R_0)Q^T$, where R_0 is an r-by-r upper triangular matrix and Q is an n-by-n orthogonal matrix, then $\text{null}(A) \cap \text{null}(B) = \text{span}\{Q(:, 1:n-r)\}$.
- III. We can solve the generalized eigenvalue problem $(A^TAx = \lambda B^TBx)$ from our formulation.

If we let
$$X=Q$$
 $\begin{pmatrix} n-r & r \\ I & 0 \\ 0 & R_0^{-1} \end{pmatrix}$, then

$$X^T A^T A X = \begin{pmatrix} n-r & r \\ 0 & 0 \\ r & 0 & C^T C \end{pmatrix}, \quad X^T B^T B X = \begin{pmatrix} n-r & r \\ 0 & 0 \\ r & 0 & S^T S \end{pmatrix}$$

Thus, we know the "non-trivial" eigenpairs of the generalized eigenvalue problem:

$$A^T A X_{i+n-r} = \lambda_i B^T B X_{i+n-r}, \quad i = 1, \cdots, r$$

 $\lambda_i = (\alpha_i/\beta_i)^2$ are eigenvalues, where α_i/β_i is the generalized singular value of A and B. X_{i+n-r} denotes the (i+n-r)th column of X and are the corresponding eigenvectors.

We can solve the generalized eigenvalue problem from Definition(1), (2) and (4).

• In Definition(1),

$$\begin{split} \boldsymbol{X}^T \boldsymbol{A}^T \boldsymbol{A} \boldsymbol{X} &= \boldsymbol{X}^T (\boldsymbol{U} \boldsymbol{C} \boldsymbol{X}^{-1})^T (\boldsymbol{U} \boldsymbol{C} \boldsymbol{X}^{-1}) \boldsymbol{X} \\ &= \boldsymbol{X}^T (\boldsymbol{X}^{-1})^T \boldsymbol{C}^T \boldsymbol{U}^T \boldsymbol{U} \boldsymbol{C} \boldsymbol{X}^{-1} \boldsymbol{X} \\ &= \boldsymbol{X}^T (\boldsymbol{X}^T)^{-1} \boldsymbol{C}^T \boldsymbol{C} \\ &= \boldsymbol{C}^T \boldsymbol{C} \end{split}$$

Similarly, $X^TB^TBX = S^TS$. Therefore, the first r quotients of the diagonal entries of C^TC and S^TS are the "non-trivial" eigenvalues of the generalized eigenvalue problem and the first r columns of X are the corresponding eigenvectors.

• In Definition(2),

If we let
$$X = Q \begin{pmatrix} r & n-r \\ R^{-1}W & 0 \\ 0 & I \end{pmatrix}$$
, then

$$X^TA^TAX = \begin{pmatrix} r & n-r & & r & n-r \\ r & C^TC & 0 \\ 0 & 0 \end{pmatrix}, \quad X^TB^TBX = \begin{pmatrix} r & S^TS & 0 \\ 0 & 0 \end{pmatrix}$$

Thus, we know that the "non-trivial" eigenvalues of the generalized eigenvalue problem are the square of the generalized singular values and the first r columns of X are the corresponding eigenvectors.

• In Definition(4),

If we do RQ factorization on H, namely, $H = (0, R_0)Q^T$, and let $X = Q\begin{pmatrix} I & 0 \\ 0 & R_0^{-1} \end{pmatrix}$, then the "non-trivial" eigenvalues of the generalized eigenvalue problem are the square of the generalized singular values and and the last r columns of X are the corresponding eigenvectors.

IV. Two special cases of the generalized singular value decomposition.

- When B is square and nonsingular, the generalized singular value decomposition of A and B is equivalent to the singular value decomposition of AB^-1 , regardless of how the GSVD is defined.
- No matter how we fomulate GSVD, if the columns of $(A^T, B^T)^T$ are orthonormal, then the generalized singular value decomposition of A and B is equivalent to the Cosine-Sine decomposition (CSD) of $(A^T, B^T)^T$, namely:

$$A = UCQ^T, \quad B = VSQ^T$$

where U is m-by-m, V is p-by-p and Q is n-by-n and all of them are orthogonal matrices.

References

- [1] Charles F Van Loan. Generalizing the singular value decomposition. SIAM Journal on Numerical Analysis, 13(1):76–83, 1976.
- [2] Christopher C Paige and Michael A Saunders. Towards a generalized singular value decomposition. SIAM Journal on Numerical Analysis, 18(3):398–405, 1981.
- [3] Alan Edelman and Yuyang Wang. The gsvd: Where are the ellipses?, matrix trigonometry, and more. $arXiv\ preprint\ arXiv:1901.00485$, 2019.