

Lecture

Clustering

CONTENTS

- A. What is Clustering?
- **B.** Clustering techniques
- C. Evaluation of clustering
- D. Use Case: Mall Customer Clustering

1

What is Clustering?

❖ What is Clustering?

- The process of partitioning a set of data objects into subsets
 - A subset is called cluster

• Clustering data objects that are similar to each other

❖ Clustering example

Difference

Classification: KNN, Decision Tree

Regression: Linear and Logistic regression

■ Clustering: K-Means, Agglomerative Filtering, DBSCAN

Applications

- Segmenting customers into groups with similar demographics or buying patterns for targeted marketing campaigns
- Detecting anomalous behavior
 - Unauthorized network intrusions, by identifying patterns of use falling outside the known clusters
- Simplifying extremely large datasets

• Group features with similar values into a smaller number of homogeneous categories

B

Clustering Techniques

❖ K-Means

- K is number of clusters
- A centroid-based technique
 - Centroid is the average of objects belonging to each cluster
- Groups each object with the closest centroid

❖ K-Means Procedure

- 1. Step 1: Determine parameter k (k > 0)
- 2. Step 2: Randomly choose k points for starting centroids.
- 3. Step 3: Form k clusters by assigning all points to the closest centroid
- 4. Step 4: Recompute the centroid of each cluster (Calculate the mean of each cluster)
- 5. Step 5: repeat Step 3 until the centroid don't change

k-means example

- Step 1: Determine parameter k (k > 0)
- Step 2: Randomly choose k points for starting centroids.

		Point	10 A8 A8
C1	A1	(2, 10)	9 8
	A2	(2, 5)	7
	A3	(8, 4)	6
C2	A4	(5, 8)	5 A A A A A A A A A A A A A A A A A A A
	A5	(7, 5)	4 3
	A6	(6, 4)	2 A
C3	A7	(1, 2)	1
	A8	(4, 9)	0 1 2 3 4 5 6 7 8 9 10

* k-means example

Step 3: Form k clusters by assigning all points to the closest centroid

	Point	C1(2, 10)	C2(5, 8)	C3(1, 2)	Cluster
A1	(2, 10)	0	3.60	8.06	C1
A2	(2, 5)	5	4.24	3.16	C3
A3	(8, 4)	8.48	5	7.28	C2
A4	(5, 8)	3.60	0	7.21	C2
A5	(7, 5)	7.07	3.60	6.70	C2
A6	(6, 4)	7.21	4.12	5.38	C2
A7	(1, 2)	8.06	7.21	0	C3
A8	(4, 9)	2.23	1.41	7.61	C2

k-means example

Step 3: Form k clusters by assigning all points to the closest centroid

k-means example

 Step 4: Recompute the centroid of each cluster (Calculate the mean of each cluster)

	Point	Cluster	Mean of C#
A1	(2, 10)	C1	(2, 10)
A3	(8, 4)	C2	
A4	(5, 8)	C2	
A5	(7, 5)	C2	(6, 6)
A6	(6, 4)	C2	
A8	(4, 9)	C2	
A7	(1, 2)	C3	(1 5 2 5)
A2	(2, 5)	C3	(1.5, 3.5)

k-means example

 Step 4: Recompute the centroid of each cluster (Calculate the mean of each cluster)

k-means example

- Step 5: repeat Step 3 until the centroid don't change
- Step 3: Form k clusters by assigning all points to the closest centroid

	Point	C1(2, 10)	C2(6, 6)	C3(1.5, 3.5)	Cluster
A1	(2, 10)	0	5.65	6.51	C1
A2	(2, 5)	5	4.12	1.58	C3
А3	(8, 4)	8.48	2.82	6.51	C2
A4	(5, 8)	3.60	2.23	5.70	C2
A5	(7, 5)	7.07	1.41	5.70	C2
A6	(6, 4)	7.21	2	4.52	C2
A7	(1, 2)	8.06	6.40	1.58	C3
A8	(4, 9)	2.23	3.60	6.04	C1

k-means example

- Step 5: repeat Step 3 until the centroid don't change
- Step 3: Form k clusters by assigning all points to the closest centroid

k-means example

 Step 4: Recompute the centroid of each cluster (Calculate the mean of each cluster)

	Point	Cluster	Mean of C#	
A1	(2, 10)	C1	(2, 0, 5)	
A8	(4, 9)	C1	(3, 9.5)	
A3	(8, 4)	C2		
A4	(5, 8)	C2	(C F F 2F)	
A5	(7, 5)	C2	(6.5, 5.25)	
A6	(6, 4)	C2		
A7	(1, 2)	C3	(1 5 2 5)	
A2	(2, 5)	C3	(1.5, 3.5)	

k-means example

 Step 4: Recompute the centroid of each cluster (Calculate the mean of each cluster)

k-means example

- Step 5: repeat Step 3 until the centroid don't change
- Step 3: Form k clusters by assigning all points to the closest centroid

	Point	C1(3, 9.5)	C2(6.5, 5.25)	C3(1.5, 3.5)	Cluster
A1	(2, 10)	1.11	6.54	6.51	<u>C1</u>
A2	(2, 5)	4.60	4.5	1.58	C3
A3	(8, 4)	7.43	1.95	6.51	C2
A4	(5, 8)	2.5	3.13	5.70	C1
A5	(7, 5)	6.02	0.55	5.70	C2
A6	(6, 4)	6.26	1.34	4.52	C2
A7	(1, 2)	7.76	6.38	1.58	C3
A8	(4, 9)	1.11	4.5	6.04	C1

k-means example

- Step 5: repeat Step 3 until the centroid don't change
- Step 3: Form k clusters by assigning all points to the closest centroid

k-means example

 Step 4: Recompute the centroid of each cluster (Calculate the mean of each cluster)

	Point	Cluster	Mean of C#	
A1	(2, 10)	C1		
A8	(4, 9)	C1	(3.66, 9)	
A4	(5, 8)	C1		
A3	(8, 4)	C2		
A5	(7, 5)	C2	(7, 4.33)	
A6	(6, 4)	C2		
A7	(1, 2)	C3	(1.5, 3.5)	
A2	(2, 5)	C3		

- * k-means example
 - Final cluster result

❖ K-Means in Python

```
from sklearn.cluster import KMeans
import numpy as np

X = np.array([[2, 10], [2, 5], [8, 4],[5, 8], [7, 5], [6, 4], [1, 2], [4, 9]])

kmeans = KMeans(n_clusters=3).fit(X)

print("Labels: ", kmeans.labels_)

print("Cluster Centers: ", kmeans.cluster_centers_)

print("Predict Values: ", kmeans.predict([[1, 1]]))
```

```
Labels: [2 1 0 2 0 0 1 2]

Cluster Centers: [[7. 4.33333333]

[1.5 3.5 ]

[3.66666667 9. ]]

Predict Values: [1]
```

❖ K-Means visualization in Python

```
from sklearn.cluster import KMeans
import numpy as np
import matplotlib.pyplot as plt
X = \text{np.array}([[2, 10], [2, 5], [8, 4], [5, 8], [7, 5], [6, 4], [1, 2], [4, 9]])
kmeans = KMeans(n_clusters=3).fit(X)
plt.scatter(X[:,0], X[:,1], c=kmeans.labels_, cmap='rainbow')
plt.scatter(kmeans.cluster_centers_[:,0] ,kmeans.cluster_centers_[:,1], color='black',
                     marker="+", s=200)
plt.show()
```

❖ K-Means visualization in Python

❖ K-Means visualization in Python

r15 dataset (r15.csv) -> n_clusters=15

```
from sklearn.cluster import KMeans
import pandas as pd
import matplotlib.pyplot as plt
sample df = pd.read csv("D:/r15.csv")
training_points = sample_df[["col1", "col2"]]
training_labels = sample_df["target"]
kmeans = KMeans(n_clusters=15).fit(training_points)
plt.scatter(training points["col1"], training points["col2"], c=kmeans.labels,
                    cmap='rainbow')
plt.show()
```

- **❖** K-Means visualization in Python
 - r15 dataset (r15.csv) -> n_clusters=15

- **❖** K-Means visualization in Python
 - spiral dataset (spiral.csv) -> n_clusters=3

❖ Agglomerative clustering

- Grouping data objects into a hierarchy or "tree" of clusters
- Dendrogram is used to represent the process of hierarchical clustering

❖ Agglomerative clustering

- Bottom-up strategy
- Starts by letting each object form its own cluster
- Iteratively merges clusters into larger and larger clusters
 - Until all the objects are in a single cluster

❖ Agglomerative hierarchical clustering : Procedure

- 1. Each object forms one cluster
- Merges the two closest (similar) clusters at the lowest level int o one cluster
- 3. Repeat step 2 until it becomes a single cluster

❖ Agglomerative clustering example

Agglomerative clustering of data (tree)

❖ Agglomerative clustering example

Data set

Agglomerative clustering of data (tree)

❖ Agglomerative clustering in Python

r15 dataset (r15.csv) -> n_clusters=15

```
from sklearn.cluster import AgglomerativeClustering
import pandas as pd
import matplotlib.pyplot as plt
sample df = pd.read csv("D:/r15.csv")
training_points = sample_df[["col1", "col2"]]
training_labels = sample_df["target"]
agglo = AgglomerativeClustering(n clusters=15).fit(training points)
plt.scatter(training_points["col1"], training_points["col2"], c=agglo.labels_,
                    cmap='rainbow')
plt.show()
```

- **❖** Agglomerative clustering in Python
 - r15 dataset (r15.csv) -> n_clusters=15

- **❖** Agglomerative clustering in Python
 - spiral dataset (spiral.csv) -> n_clusters=3

❖ What is DBSCAN?

- Clustering based on density-connected points
- Continues growing a given cluster as long as the density in the "neighborhood" exceeds some threshold

❖ DBSCAN parameters

- Epsilon (ε)
 - Maximum radius of the neighborhood
- minPts
 - Minimum number of points in an Eps-neighborhood of that point

❖ DBSCAN parameters

- ullet A Core object is an object that meets the minimum number of points in the arepsilon-neighborhood
- The object *q* is a core object

DBSCAN in Python

r15 dataset (r15.csv)

```
from sklearn.cluster import DBSCAN
import pandas as pd
import matplotlib.pyplot as plt
sample df = pd.read csv("D:/r15.csv")
training points = sample df[["col1", "col2"]]
training_labels = sample_df["target"]
dbscan = DBSCAN(eps=0.6, min samples=10).fit(training points)
plt.scatter(training points["col1"], training points["col2"], c=dbscan.labels ,
          cmap='rainbow')
plt.show()
```

❖ DBSCAN in Python

❖ DBSCAN in Python

Evaluation of Clustering

Evaluation of Clustering

❖ Why evaluate?

Comparison on r15

Comparison on spiral

Evaluation of Clustering

- **❖** Adjusted Rand Index
 - Computes a similarity measure between two clustering
- **❖** Calculated used the following formula:

$$Adjusted RI = (RI - Expected_RI) / (max(RI) - Expected_RI)$$

- ❖ It has two parameters
 - labels_true
 - Ground truth class labels
 - labels_pred
 - Clusters label to evaluate

- **❖** Adjusted Rand Index for K-Means
 - r15 dataset (r15.csv)

```
from sklearn.cluster import KMeans
import pandas as pd
from sklearn.metrics.cluster import adjusted_rand_score
sample df = pd.read csv("D:/r15.csv")
training_points = sample_df[["col1", "col2"]]
training_labels = sample_df["target"]
kmeans = KMeans(n_clusters=15).fit(training_points)
arc = adjusted rand score(training labels, kmeans.labels)
print(arc)
```

❖ Adjusted Rand Index for DBSCAN

spiral dataset (spiral.csv)

```
from sklearn.cluster import DBSCAN
import pandas as pd
from sklearn.metrics.cluster import adjusted_rand_score
sample df = pd.read csv("D:/spiral.csv")
training_points = sample_df[["col1", "col2"]]
training_labels = sample_df["target"]
dbscan = DBSCAN(eps=3, min samples=2).fit(training points)
arc = adjusted rand score(training labels, dbscan.labels)
print(arc)
```


Use Case

Useful

- Customer Segmentation
 - https://www.kaggle.com/karnikakapoor/customer-segmentation-clustering
- **❖** SaaS Data Analysis
 - https://medium.com/@sygong/k-means-clustering-for-customer-segmentation s-a-practical-real-world-example-196a10323b9f
- ❖ Anime recommendation based on user clustering
 - https://www.kaggle.com/karnikakapoor/customer-segmentation-clustering
- ❖ Segmenting and Clustering Airbnb Listings in Zurich, Switzerland
 - https://www.linkedin.com/pulse/segmenting-clustering-airbnb-listings-zu rich-georgios-chatzis/

Final Task

- **❖** Submit your source code for the following task:
 - 1. Try all source code in the lecture
- Submission: source code, result screenshots and result expla nation

ZF사람니다!