Test 2 du 27 Novembre 2018

Durée: 1h50, Polycopié autorisé.

Exercice 1. A) On considère les fonctions f et h définies sur \mathbb{R} par

$$\begin{cases} f(t) = t \exp(-t^2) \text{ pour } t \in \mathbb{R}, \\ h(t) = 1 \text{ pour } t \in]-1, 1[\text{ et } h(t) = 0 \text{ pour } |t| \ge 1. \end{cases}$$
 (1)

- A1) Ces fonctions sont-elles paires? impaires?
- A2) Représenter l'allure des graphes des fonctions f et h.
- A3) Vérifier que h et f appartiennent à $L^1(\mathbb{R})$ et à $L^{\infty}(\mathbb{R})$.
- A4) Calculer les normes de h et f dans $L^1(\mathbb{R})$ et $L^{\infty}(\mathbb{R})$.
- B1) Justifier le fait que le produit de convolution $w = h \star f$ est bien défini.
- B2)Déterminer w explicitement.
- B3) La fonction w est-elle continue sur \mathbb{R} ? de classe C^1 sur \mathbb{R} ?
- B4) Calculer l'intégrale $\int_{\mathbb{R}} h \star f(t) dt$.
- C) On considère la fonction g définie sur \mathbb{R} par $g(t) = |t| \exp(-t^2)$, pour $t \in \mathbb{R}$. Déterminer la fonction $w_2 = h \star g$.

Exercice 2. On considère les fonctions f et g de $\mathbb{R} \to \mathbb{R}$ définie par

$$\begin{cases}
f(t) = \sup\{\sin t, 0\}, \text{ pour } t \in \mathbb{R} \\
g(t) = \sup\{\sin^3 t, 0\}, \text{ pour } t \in \mathbb{R}
\end{cases} \tag{2}$$

- A1)Vérifier que f et g sont positives, et 2π -périodiques.
- A2)Tracer l'allure des graphes de f et g. Préciser les sous-ensembles de $\mathbb R$ sur lesquelles ces fonctions s'annulent.
- A3) Les fonctions f et g sont-elles continues? de classe C^1 ? De classe C^2 ?
- B1) Calculer les coefficients de Fourier $\hat{f}(k)$, pour $k \in \mathbb{Z}$. Préciser $\hat{f}(1)$.
- B2)Vérifier que $\widehat{f}(k) = \widehat{f}(-k)$, pour tout $k \in \mathbb{Z}$.
- B3) Vérifier que si k est impair, alors $\hat{f}(k) = 0$.
- B4) Vérifier que $|\widehat{f}(k)| \le \frac{1}{\pi |k^2 1|}$ pour tout $k \notin \{-1, 1\}$. B5) En déduire que $\sum_{k \in \mathbb{Z}} |\widehat{f}(k)| < +\infty$.
- C1) Montrer que la série de Fourier $S_N(f)$ converge uniformément sur $\mathbb R$ vers florsque $N \to +\infty$.

- C2) Montrer que $\|f S_N(f)\|_{\infty} \le \frac{1}{\pi} \sum_{n \ge N+1} \frac{1}{n^2 1} \le \frac{1}{\pi} \sum_{n \ge N} \frac{1}{n^2}.$ C3) En déduire que $\|f S_N(f)\|_{\infty} \le \frac{1}{\pi (N-1)}$, pour $N \ge 2$.
- C4) Trouver un nombre N_0 tel que pour tout $N \ge N_0$, on ait $||f S_N(f)||_{\infty} \le 10^{-6}$.
- D1) En utilisant le théorème de convergence de Dirichlet ou la question C1), calculer la somme $\mathcal{S}_1 = \sum_{k \in \mathbb{Z} \ n \neq 1} \frac{1 + (-1)^k}{k^2 - 1}$.
- D2) En déduire la valeur de la somme $\Sigma_1 = \sum_{n=0}^{\infty} \frac{1}{4n^2 1}$.
- D3) Calculer de même, en utilisant le Théorème de Dirichlet la somme $\Sigma_2 = \sum_{n=1}^{\infty} \frac{(-1)^n}{4n^2-1}$.
- D4) Calculer, en utilisant le théorème de Parseval, la somme $\Sigma_3 = \sum_{n=1}^{\infty} \frac{1}{(4n^2-1)^2}$.
- D5) Majorer la différence $||f S_N(f)||_2$ en fonction de N.
- D6) Trouver un nombre N_1 tel que pour tout $N \ge N_1$, on ait $||f S_N(f)||_2 \le 10^{-6}$.
- E1) Calculer les coefficients de Fourier $\widehat{g}(k)$, pour $k \in \mathbb{Z}$.
- E2) Vérifier que $|\widehat{g}(k)| \le \frac{6}{\pi |k^2 9| |k^2 1|}$ pour tout $k \notin \{-3, -1, 1, 3\}$.
- E3) Montrer que la série de Fourier $S_N\left(\frac{\mathrm{d}^2g}{\mathrm{d}t^2}\right)$ converge uniformément sur $\mathbb R$ vers $\frac{\mathrm{d}^2 g}{\mathrm{d} t^2}$ lorsque $N \to +\infty$.
- E4) Calculer $\widehat{f_{\text{per}}}g(k)$, pour tout $k \in \mathbb{Z}$.
- E5) Montrer que $f \underset{\text{per}}{\star} g \in C^4_{2\pi}(\mathbb{R})$.