Molecular Shape, Polarity, and Properties

Chemistry, Life, the Universe & Everything – Cooper & Klymkowsky

Do molecules interact?

- A. Yes
- B. No
- C. DK

How do molecules interact?

Types of intermolecular forces

- London dispersion forces
 - Temporary fluctuating dipoles
 - Depends on size, surface area, and shape of the molecule
 - For non-polar molecules this is the only force present
 - Present in ALL substances
 - Examples?
 - CH₄, CO₂, Hydrocarbons (only CH), Br₂

What do you think the BP trend would be for?

CH₄, NH₃, H₂O, HF, Ne

Compound	Molar mass g/mole
CH ₄	16
NH₃	17
H ₂ O	18
HF	20
Ne	20

Bond type	bond length (pm)	atomic radius (pm)
C-H (in CH ₄)	109	C - 70
N-H in (NH ₃)	101	N - 65
O-H (in H ₂ O)	96	O - 60
F-H in (HF)	92	F - 50
not applicable	not applicable	Ne - 38

Types of intermolecular forces

- Dipole-dipole
 - Present in polar substances (along with LDF)
 - Typically stronger than LDF
 - Examples?
 - HCl, CH $_3$ F, CH $_2$ O, CH $_3$ OCH $_3$

What effect would polarity have on:

- The strength of the intermolecular force?
 - A. Increase
 - B. Decrease
 - C. Same
 - D. DK
- The mp and bp of the substances?

Effect of polarity of molecule

- Polar molecules have stronger intermolecular interactions (than similar non-polar molecules)
- Therefore they stick together more strongly and have higher mp and bp (and other properties)

Types of intermolecular forces

- Hydrogen Bonding
 - Present in compounds with H covalently bonded to O, N or F
 - The bond is highly polarized (charge separated)
 - The interactions with other molecules are stronger
 - Compounds with H-bonding also have dipoledipole and LDF
 - Examples?
 - H₂O, CH₃OH, CH₃CH₂OH

What type of IMF present in?

- He
- H₂
- CH₄
- NH₃
- H₂O
- CO₂

- 4K
- 20K
- 112K
- 240K
- 373K
- 217K

Class Activity

- 1. Draw out 4 molecules of HF showing how they interact with each other
- 2. Draw out 4 molecules of H₂O showing how they interact with each other
- 3. Draw out 4 molecules of CH₃CH₂OH showing how they interact with each other
- 4. Draw out 4 molecules of CH₃OCH₃ showing how they interact with each other

Water

- Properties of water are anomalous (compared to other similar materials)
- High mp, bp, specific heat,
- Low vapor pressure
- Density of ice < liquid water
- Huge consequences for life!

Questions

- Why are the interactions between H₂O molecules stronger than those between HF molecules, even though the polarity of the HF bond is larger than the polarity of the OH bond.
- Why don't more than four water molecules interact with a central water molecule?
- What would you predict would be the relative boiling points of methanol (CH₃OH) and ethane (CH₃CH₃) - which have similar molecular weights? Explain your answer
- What would you predict would be the relative boiling points of methanol (CH₃OH) and ethanol (CH₃CH₂OH)? Explain your answer
- What kind of compound (or what structural feature) would you expect might be attracted to the $\,\delta$ + located on the carbon of methanol?

