Final Case Study

Objectives for Final Case Study on Applying Machine Learning:

1. Problem Statement

Clearly define the problem statement that the case study aims to address using machine learning techniques.

2. Data Collection:

Identify and gather relevant data sources required for the case study, ensuring data quality and integrity.

3. Data Preprocessing

Perform necessary data preprocessing steps such as data cleaning, feature selection, and handling missing values to prepare the data for analysis.

4. Exploratory Data Analysis

Conduct exploratory data analysis to gain insights into the dataset, identify patterns, and understand relationships between variables.

5. Model Selection

Evaluate different machine learning algorithms suitable for the problem at hand and select the most appropriate model(s) based on performance metrics and interpretability.

6. Model Training

Train the selected machine learning model(s) using the prepared dataset, optimizing hyperparameters to achieve the best possible performance.

7. Model Evaluation

Assess the performance of the trained model(s) using appropriate evaluation metrics such as accuracy, precision, recall, and F1-score.

8. Model Interpretation

Interpret the trained model(s) to gain insights into the underlying patterns and factors driving the predictions, providing explanations for the model's decision-making process.

9. Model Deployment

Develop a mechanism to deploy the trained model(s) in a real-world setting, ensuring scalability, efficiency, and reliability.

10. Results Analysis

Analyze and interpret the results obtained from deploying the model(s), assessing their impact on solving the initial problem statement.

11. Recommendations

Provide actionable recommendations based on the insights gained from the case study, suggesting potential improvements or future directions for further exploration.

12. Documentation and Presentation

Document the entire case study process, including methodologies, findings, and limitations, and present the results in a clear and concise manner.

Remember to adapt these objectives based on your specific case study requirements and domain knowledge. Good luck with your final case study on applying machine learning!

Documentation for Case Study

1. Statement of the Problem

Define the Problem

2. Structure of the Data

Prepare Data. Describe the structure of the data set used

3. Model Selection

Evaluate Algorithms

- a. Explain the selected machine learning algorithm suitable for the problem at hand based on performance and interpretability
- b. Explain training process of the selected machine learning model using the prepared data set including the percentage of data that will be used for training and validation.
- c. Discuss the performance of the trained model(s) using appropriate evaluation metrics such as accuracy, precision, recall, and F1-score.
- d. Interpret the trained model(s) to gain insights into the underlying patterns and factors driving the predictions, providing explanations for the model's decision-making process.
- e. Provide an example of how to deploy the trained model(s) in a real-world setting, ensuring scalability, efficiency, and reliability. (Model Deployment in a system)

4. Result Analysis

Improve the Results

- a. Make prediction using the validation data set and evaluate the results
- b. Summarize the results obtained
- c. Analyze and interpret the results obtained from deploying the model(s), assessing their impact on solving the initial problem statement.

5. Presentation

- a. Present Results by discussing the program created in Python and its output
- b. Include the Python Program, and its output
- 6. Conclusion and Recommendation
 - a. Discuss your conclusion
 - b. List your Recommendation

Sample Program:

```
#import needed libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as mpl
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.linear_model import LogisticRegression
from sklearn.discriminant analysis import LinearDiscriminantAna
from sklearn, neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import cross_val
```

```
import openpyxl
import os

load dataset
columns = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']
current_directory = os.path.dirname(os.path.abspath(_file__))
filename_path = os.path.join(current_directory, 'iris.csv')
df= pd.read_csv(filename_path,names=columns)
```

```
27 #Summarize the dataset
28 print("DATASET")
29 print()
30 print("DIMENSION: ", df.shape)
31 print()
32 print(df.head(0))
33 print()
34 print("STATISTICS DATA")
35 print(df.describe())
36 print()
37 print("SUMMARY: ")
38 print(df.groupby("class").size())
39
```

```
#Visualization
df.plot(kind="box",subplots=True,sharex=False, sharey=False)

#pl.show()

#pl.show()

#pl.show()

#Evaluate some algorithm

#Split-out validation dataset

#a array = df.values

### X = array[:,0:4]

### X train,X validation, Y train, Y validation= train_test_split(X,y,test_size=0.2,random_sta)

#### X train,X validation, Y train, Y validation= train_test_split(X,y,test_size=0.2,random_sta)
```

```
#evaluate each model in turn
results=[]
names=[]
print()
print(*ALGORITEM: ")
for name, model in models:
    kfold = StratifiedKFold(n_splits=10,random_state=1,shuffle=True)
    cv_results=cross_val_score(model,X_train,Y_train,cv=kfold,scoring='accuracy')
    results.append(cv_results)
    names.append(name)
    print('%s: %f (%f)' % (name, cv_results.mean(),cv_results.std()))

74
```

```
# Make predictions on validation dataset

model= SVC(gamma='auto')

model.fit(X_train, Y_train)

predictions = model.predict(X_validation)

print(X_validation)

print(Y_validation)

# Evaluate predictions

print(accuracy_score(Y_validation, predictions))

print(confusion_matrix(Y_validation, predictions))

print(classification_report(Y_validation, predictions))

# Make Predictions using new dataset

model.fit(X_train, Y_train)

new_value=([[6.2,2.5,4.9,1.5]])

output_class=model.predict(new_value)

print(output_class)
```

Rubric for Assessment

Criteria	20 pts	15pts	10 pts	5 pts
Output Correctness	The output meets	The output meets	The output meets	The output meets
	all the requirements	at least 75% of the	at least 50% of the	at least 25% of the
	specified in the	requirements	requirements	requirements
	project specification	specified in the	specified in the	specified in the
		project specification	project specification	project specification
Principle and	Included mention of	Included mention of	Included mention of	1 principle /
Techniques	at least 2 principles	at least 2 principles	at least 1 principles	techniques
	/ techniques in	/ techniques in	/ techniques in	mentioned and no
	addition to 2	addition to 1	addition to 1	additional non-class
	technique / area of	technique / area of	technique / area of	technique / are of
	study we did NOT	study we did NOT	study we did NOT	study included
	cover in class	cover in class	cover in class	
Analysis	Clear and	The description of	The description of	No evidence of
	scientifically	evidence analysis	evidence analysis	analysis has been
	accurate	for one piece of	for two-or-more	described
	description are	evidence is not	pieces of evidence	
	given for the	detailed	is not detailed or	
	analysis of every		includes	
	piece of evidence		scientifically	
	collected.		inaccurate	
			information	
Concept	Answers the	Answers the	Answers the	Correct
Understanding	questions correct,	questions are	questions are	understanding of
	reasonable and	correct but some	correct but cannot	the problem, but
	reflective of the	justifications	justify a solution	was unable to
	code. The	provided are weak		explain workings of
	justification			code provided
	provided are sound			
Readability	The program	Minor code	Minor code	Minimal internal
	conforms to a	formatting does not	formatting does not	documentation and
	coding standard	exhibit consistency	exhibit consistency	code readability
	that promotes	in coding standards	in coding standards	
	readability. Internal			
	documentation is			
	comprehensive			