

Week 9 – Manipulator Dynamics

ELEC0129 Introduction to Robotics

Dr. Chow Yin Lai

Email: uceecyl@ucl.ac.uk

Recorded, uploaded I previous week
(Scenario Week)
Los Intro Costial dos

Lec & Tut: Jacobians

Lec & Tut: Dynamics

Lec & Tut: Control

Lec: Trajectory Planning

A: MPEB 6th Floor Lab B: PC Lab

C: 11am-1pm D: 11.30am-1pm

Legend:

Week

5

6

9

10

RW

by Friday of

F2F Workshop, Mondays 11am-1pm and/or Wednesdays 9am-11am

A: Workshop: Offline programming Lec: Intro; Spatial description

Lec & Tut: Spatial description

Lec & Tut: Forward kinematics

(Scenario Week)

(Reading Week)

Lec & Tut: Inverse kinematics

A: Workshop: Build robot

Legend:

A: Workshop: Forward kinematics B: Workshop: Offline programming

A: Workshop: Trajectory planning

A: Workshop: Trajectory planning

A: Workshop: Pick-and-place demo

A: Workshop: Inverse kinematics

C: Workshop: Offline programming D: Workshop: Build robot

Virtual Workshop, Mondays (C/D)

and Wednesdays 9am-11am

D: Workshop: Forward kinematics C: Workshop: Offline programming

D: Workshop: Inverse kinematics D: Workshop: Trajectory planning

C: Workshop: Trajectory planning

C: Workshop: Pick-and-place demo

Content

- Introduction
- Newton-Euler Formulation
- Inclusion of Friction Force
- Manipulator Dynamics in Cartesian Space
- Derivation of Inertia Tensor
- Matlab Simulation
- Tutorial Questions

Content

- Introduction
- Newton-Euler Formulation
- Inclusion of Friction Force
- Manipulator Dynamics in Cartesian Space
- Derivation of Inertia Tensor
- Matlab Simulation
- Tutorial Questions

Introduction

- Manipulator Dynamics:
 - How much torque is needed to accelerate the manipulator from rest to constant velocity, and then back to stop?
 - Dynamics also provide us a model (equations of motions) for simulation and control design purpose.

Manipulator's Dynamic Equations (1)

 Before we go into details of how to derive the manipulator's joint space dynamic equations, let's first have a glimpse of how the equations look like:

$$M(q)\ddot{q} + V(q,\dot{q}) + G(q) = \tau$$

 A comparison with the well-known mass-spring-damper system:

$$m\ddot{x} + b\dot{x} + kx = F$$

There are some similarities.

Manipulator's Dynamic Equations (2)

- M(q) is the $n \times n$ mass matrix of the manipulator, which depends on the generalized joint coordinates q (angles / displacement).
 - For e.g. two link robot:

- The "perceived inertia" at joint 1 of the right configuration is larger than that of the left configuration.
- The "perceived inertia" also depends on the mass contribution and length of the links.

Manipulator's Dynamic Equations (3)

- $V(q,\dot{q})$ is an $n \times 1$ vector consisting of:
 - Centrifugal force: A 'fictitious' force acting away from axis of rotation. E.g. whirling a stone on a string.
 - Coriolis force: A 'fictitious' force that acts on objects that are in motion within a frame of reference that rotates with respect to an inertial frame.
 - (In inertial frame: a body with zero net force acting upon it does not accelerate).

By Hubi - German Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.or g/w/index.php?curid=1008114

Manipulator's Dynamic Equations (4)

- $V(q,\dot{q})$ depends on the generalized joint coordinates q as well as the joint velocities \dot{q} .
 - It is zero if velocities = 0.

- Also, $V(q, \dot{q})$ can be derived from M(q).
 - It is also zero if M(q) is a constant matrix

Manipulator's Dynamic Equations (5)

- G(q) is the $n \times 1$ vector of gravity terms
 - It is dependent on the joint coordinates / configuration of the robot.

• In the left figure, the joint torque is nonzero, and in the right figure, the joint torque is zero.

Manipulator's Dynamic Equations (6)

- Finally, τ is the generalized forces (force or torque) at each joints.
 - E.g. for 3R robots, τ means torque torque torque.
 - For RRP robots, τ means torque torque force.

Content

- Introduction
- Newton-Euler Formulation
- Inclusion of Non-Rigid Body Effects
- Manipulator Dynamics in Cartesian Space
- Derivation of Inertia Tensor
- Matlab Simulation
- Tutorial Questions

Basic Idea – Newton's Second Law

- In an inertial frame of reference,
- The vector sum (F) of the forces (f_i) on an object...
- is equal to the mass (m) of that object multiplied by the acceleration (a) of the object:

$$F = \sum_{i} f_i = ma$$

Basic Idea – Euler's Equation

- There is also a similar equation for rotary motions:
- A rigid body is rotating with angular velocity ω and with angular acceleration $\dot{\omega}$.
- The moment *N* which must be acting on the body to cause this motion is given by:

$$N = {}^{c}I\dot{\omega} + \omega \times {}^{c}I\omega$$

- where cI is the inertia tensor of the body written in frame $\{C\}$ whose origin is located at the centre of mass.
- The first two terms are very similar to F = ma. You may think of cI as the "mass" but for rotary motion.

Basic Idea – Newton Euler Formula (1)

• Firstly, similar to velocity propagation which you learnt last week, acceleration can also be propagated from lower frame to upper frame.

Basic Idea – Newton Euler Formula (2)

• Next, the acceleration at frame i + 1 can be propagated to the centre of mass.

Basic Idea – Newton Euler Formula (3)

 Once the acceleration at centre of mass is known, then we also know the force acting on the centre of mass

since F = ma.

Basic Idea – Newton Euler Formula (4)

• But what "creates" F? The forces / torques caused by the motors at both ends of the link, and contact force at the

end-effector.

Summary – Newton Euler Formula (1)

- The Newton-Euler iterative formula is:
- Outward iteration:
 - Start with $^0\omega_0=0$, $^0\dot{\omega}_0=0$, $^0\dot{v}_0=$ depends
 - Calculate velocities and accelerations of frames:

$$\begin{split} ^{i+1}\omega_{i+1} &= \binom{i+1}{i}R \cdot \ ^{i}\omega_{i} + (\dot{\theta}_{i+1} \cdot ^{i+1}\hat{Z}_{i+1}) \\ ^{i+1}\dot{\omega}_{i+1} &= \binom{i+1}{i}R \cdot \ ^{i}\dot{\omega}_{i} + (\binom{i+1}{i}R \cdot \ ^{i}\omega_{i}) \times (\dot{\theta}_{i+1} \cdot ^{i+1}\hat{Z}_{i+1}) + (\ddot{\theta}_{i+1} \cdot ^{i+1}\hat{Z}_{i+1}) \\ ^{i+1}\dot{v}_{i+1} &= \binom{i+1}{i}R \cdot \ ^{i}\dot{v}_{i} + (2^{i+1}\omega_{i+1} \times (\dot{d}_{i+1} \cdot ^{i+1}\hat{Z}_{i+1})) + (\ddot{d}_{i+1} \cdot ^{i+1}\hat{Z}_{i+1}) \\ &+ \binom{i+1}{i}R \left((\ ^{i}\dot{\omega}_{i} \times \ ^{i}P_{i+1}) + (\ ^{i}\omega_{i} \times (\ ^{i}\omega_{i} \times \ ^{i}P_{i+1}) \right) \right) \end{split}$$

Summary – Newton Euler Formula (2)

Propagate accelerations from frames to centre of mass:

$$^{i+1}\dot{v}_{ci+1} = \left(^{i+1}\dot{v}_{i+1}\right) + \left(^{i+1}\dot{\omega}_{i+1} \times ^{i+1}P_{ci+1}\right) + \left(^{i+1}\omega_{i+1} \times \left(^{i+1}\omega_{i+1} \times ^{i+1}P_{ci+1}\right)\right)$$

Calculate the force and moment at the centre of mass:

$${}^{i+1}F_{i+1} = m_{i+1}{}^{i+1}\dot{v}_{ci+1}$$

$${}^{i+1}N_{i+1} = \left({}^{ci+1}I_{i+1} \cdot {}^{i+1}\dot{\omega}_{i+1}\right) + \left({}^{i+1}\omega_{i+1} \times \left({}^{ci+1}I_{i+1} \cdot {}^{i+1}\omega_{i+1}\right)\right)$$

Do until the nth link.

Summary – Newton Euler Formula (3)

- Inward iteration:
 - Start with force and torque at robot tip nf_n , nn_n .
 - Calculate force and torque at the starting end of each link:

$${}^{i}f_{i} = {}_{(i+1}{}^{i}R \cdot {}^{i+1}f_{i+1}) + {}^{i}F_{i}$$

$${}^{i}n_{i} = {}_{(i+1}{}^{i}R \cdot {}^{i+1}n_{i+1}) + {}^{i}P_{ci} \times {}^{i}F_{i}) + {}^{i}P_{i+1} \times {}^{i}P_{i+1} \times {}^{i+1}f_{i+1}) + {}^{i}N_{i}$$

- Do until i=1.
- Finally, extract the joint (motor) torques or forces:

$$au_i = {}^i n_i^T \cdot {}^i \hat{Z}_i$$
 if revolute $au_i = {}^i f_i^T \cdot {}^i \hat{Z}_i$ if prismatic

Inclusion of Gravity Force

The effect of gravity forces can be included by setting:

$$^0\dot{v}_0 = G$$

- where *G* has the magnitude of gravity vector but points in the opposite direction.
- This can be interpreted as the base moving upwards with 1g acceleration.

Example – Outward Iteration (1)

- Two link robot, where the mass of each link is a point mass at the end of the link:
- The vectors that locate the center of mass for each link are:

$$^{1}P_{c1} = L_{1}\hat{X}_{1}, \ ^{2}P_{c2} = L_{2}\hat{X}_{2}$$

 Because the mass of each link is point mass, the inertia tensor at the center of mass is zero:

$$^{c1}I_1 = 0, ^{c2}I_2 = 0$$

Example – Outward Iteration (2)

 Furthermore, the rotation matrices between successive links are:

$$\begin{vmatrix} i_{i+1}R = \begin{bmatrix} c_{i+1} & -s_{i+1} & 0 \\ s_{i+1} & c_{i+1} & 0 \\ 0 & 0 & 1 \end{bmatrix}, i = \begin{bmatrix} c_{i+1} & s_{i+1} & 0 \\ -s_{i+1} & c_{i+1} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Example – Outward Iteration (3)

- Now we use the Iterative Newton-Euler algorithm.
- First, we start with:

$$^{0}\omega_{0}=0$$
, $^{0}\dot{\omega}_{0}=0$, $^{0}\dot{v}_{0}=g\hat{Y}_{0}$

 Then, the outward iterations for link 1 give the following frame velocities and accelerations:

$${}^{1}\omega_{1} = \begin{pmatrix} {}^{1}_{0}R \cdot \underbrace{{}^{0}\omega_{0}}_{0} \end{pmatrix} + \begin{pmatrix} \dot{\theta}_{1} \cdot {}^{1}\hat{Z}_{1} \end{pmatrix} = \begin{pmatrix} \dot{\theta}_{1} \cdot {}^{1}\hat{Z}_{1} \end{pmatrix} = \begin{bmatrix} 0 \\ 0 \\ \dot{\theta}_{1} \end{bmatrix}$$

Example – Outward Iteration (4)

$${}^{1}\dot{\omega}_{1} = \left({}^{1}_{0}R \cdot \underbrace{{}^{0}\dot{\omega}_{0}}_{0}\right) + \left(\left({}^{1}_{0}R \cdot \underbrace{{}^{0}\omega_{0}}_{0}\right) \times \left(\dot{\theta}_{1} \cdot {}^{1}\hat{Z}_{1}\right)\right) + \left(\ddot{\theta}_{1} \cdot {}^{1}\hat{Z}_{1}\right) = \begin{bmatrix}0\\0\\\ddot{\theta}_{1}\end{bmatrix}$$

Example – Outward Iteration (5)

 We then propagate the frame acceleration to the centre of mass:

Example – Outward Iteration (6)

 With velocity and acceleration of centre of mass, total force and moment of the link can be calculated:

$${}^{1}F_{1} = m_{1} {}^{1}\dot{v}_{c1} = m_{1} \begin{bmatrix} gs_{1} - L_{1}\dot{\theta}_{1}^{2} \\ gc_{1} + L_{1}\ddot{\theta}_{1} \\ 0 \end{bmatrix} = \begin{bmatrix} m_{1}gs_{1} - m_{1}L_{1}\dot{\theta}_{1}^{2} \\ m_{1}gc_{1} + m_{1}L_{1}\ddot{\theta}_{1} \\ 0 \end{bmatrix}$$

$${}^{1}N_{1} = \left(\underbrace{{}^{c_{1}}I_{1}}_{0} \cdot {}^{1}\dot{\omega}_{1}\right) + \left({}^{1}\omega_{1} \times \left(\underbrace{{}^{c_{1}}I_{1}}_{0} \cdot {}^{1}\omega_{1}\right)\right) = \begin{bmatrix}0\\0\\0\end{bmatrix}$$

Example – Outward Iteration (7)

 We now continue with the outward iteration for the second link. First we calculate the velocities and accelerations of frame {2}.

$${}^{2}\omega_{2} = \begin{pmatrix} {}^{2}R \cdot {}^{1}\omega_{1} \end{pmatrix} + \begin{pmatrix} \dot{\theta}_{2} \cdot {}^{2}\hat{Z}_{2} \end{pmatrix}$$

$$= \begin{bmatrix} c_{2} & s_{2} & 0 \\ -s_{2} & c_{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \dot{\theta}_{1} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \dot{\theta}_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \dot{\theta}_{1} + \dot{\theta}_{2} \end{bmatrix}$$

29

Example – Outward Iteration (8)

Example – Outward Iteration (9)

 We then propagate the acceleration from frame {2} to centre of mass of link 2.

Example – Outward Iteration (10)

• Finally, we can calculate the total force and moment acting on link 2:

$${}^{2}F_{2} = m_{2} {}^{2}\dot{v}_{c2} = \begin{bmatrix} -m_{2}L_{1}c_{2}\dot{\theta}_{1}^{2} + m_{2}L_{1}s_{2}\ddot{\theta}_{1} + m_{2}gs_{12} - m_{2}L_{2}(\dot{\theta}_{1} + \dot{\theta}_{2})^{2} \\ m_{2}L_{1}s_{2}\dot{\theta}_{1}^{2} + m_{2}L_{1}c_{2}\ddot{\theta}_{1} + m_{2}gc_{12} + m_{2}L_{2}(\ddot{\theta}_{1} + \ddot{\theta}_{2}) \\ 0 \end{bmatrix}$$

$${}^{2}N_{2} = \left(\underbrace{{}^{c2}I_{2}}_{0} \cdot {}^{2}\dot{\omega}_{2}\right) + \left({}^{2}\omega_{2} \times \left(\underbrace{{}^{c2}I_{2}}_{0} \cdot {}^{2}\omega_{2}\right)\right) = \begin{bmatrix}0\\0\\0\end{bmatrix}$$

The outward iteration is complete now.

Example – Inward Iteration (1)

- Now let's do the inward iteration to calculate forces and torques at the joints.
- Because the end-effector is not in contact with the environment, we start with:

$$^{3}f_{3} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \ ^{3}n_{3} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Example – Inward Iteration (2)

Using the inward iteration formula,

$${}^{2}f_{2} = {}^{2}R \cdot \underbrace{{}^{3}f_{3}}_{0} + {}^{2}F_{2} = \begin{bmatrix} {}^{2}F_{2x} \\ {}^{2}F_{2y} \\ {}^{2}F_{2z} \end{bmatrix} = \begin{bmatrix} {}^{2}F_{2x} \\ {}^{2}F_{2y} \\ 0 \end{bmatrix}$$

- Hint: Rather than writing the long expression for 2F_2 , we just use the symbols ${}^2F_{2x}$ etc. and substitute back at the end.
- This makes the subsequent calculations simpler.

Example – Inward Iteration (3)

$${}^{2}n_{2} = {2 \choose 3}R \cdot {3 \choose 1} + {2 \choose 2}C_{2} \times {2 \choose 2}F_{2} + {2 \choose 2}F_{2} \times {3 \choose 3}F_{3} + {2 \choose 3}C_{2} \times {3 \choose 3}C_{2} + {3 \choose 2}C_{2} \times {3 \choose 2}C_{2} \times {3 \choose 2}C_{2} \times {3 \choose 3}C_{2} \times {3 \choose 2}C_{2} \times {3 \choose 3}C_{2} \times$$

$${}^{1}f_{1} = \begin{pmatrix} {}^{1}_{2}R \cdot {}^{2}f_{2} \end{pmatrix} + {}^{1}F_{1} = \begin{bmatrix} c_{2} & -s_{2} & 0 \\ s_{2} & c_{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} {}^{2}F_{2x} \\ {}^{2}F_{2y} \\ 0 \end{bmatrix} + \begin{bmatrix} {}^{1}F_{1x} \\ {}^{1}F_{1y} \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} c_{2} {}^{2}F_{2x} - s_{2} {}^{2}F_{2y} + {}^{1}F_{1x} \\ s_{2} {}^{2}F_{2x} + c_{2} {}^{2}F_{2y} + {}^{1}F_{1y} \\ 0 \end{bmatrix}$$

Example – Inward Iteration (4)

Example – Inward Iteration (5)

- The inward iteration is now complete.
- We can finally extract the joint torque / forces.
- Since both joints are revolute, we use $\tau_i = {}^i n_i^T \cdot {}^i \hat{Z}_i$ which means the third row of ${}^i n_i$.

$$\tau_{2} = 3 \operatorname{rd} \operatorname{row} \operatorname{of}^{2} n_{2}$$

$$= L_{2}^{2} F_{2y}$$

$$= L_{2} \left(m_{2} L_{1} s_{2} \dot{\theta}_{1}^{2} + m_{2} L_{1} c_{2} \ddot{\theta}_{1} + m_{2} g c_{12} + m_{2} L_{2} (\ddot{\theta}_{1} + \ddot{\theta}_{2}) \right)$$

$$= m_{2} L_{1} L_{2} s_{2} \dot{\theta}_{1}^{2} + m_{2} L_{1} L_{2} c_{2} \ddot{\theta}_{1} + m_{2} g L_{2} c_{12} + m_{2} L_{2}^{2} (\ddot{\theta}_{1} + \ddot{\theta}_{2})$$

Example – Inward Iteration (6)

```
\tau_{1} = 3 \operatorname{rd} \operatorname{row} \operatorname{of}^{-1} n_{1}
= L_{2}^{-2} F_{2y} + L_{1}^{-1} F_{1y} + L_{1} \left( s_{2}^{-2} F_{2x} + c_{2}^{-2} F_{2y} \right)
= \cdots
= m_{2} L_{2}^{2} \left( \ddot{\theta}_{1} + \ddot{\theta}_{2} \right) + m_{2} L_{1} L_{2} c_{2} \left( 2 \ddot{\theta}_{1} + \ddot{\theta}_{2} \right) + \left( m_{1} + m_{2} \right) L_{1}^{2} \ddot{\theta}_{1} - m_{2} L_{1} L_{2} s_{2} \dot{\theta}_{2}^{2}
-2 m_{2} L_{1} L_{2} s_{2} \dot{\theta}_{1} \dot{\theta}_{2} + m_{2} g L_{2} c_{12} + \left( m_{1} + m_{2} \right) g L_{1} c_{1}
```

Structure of Dynamics Equations (1)

As a summary:

$$\tau_1 = m_2 L_2^2 (\ddot{\theta}_1 + \ddot{\theta}_2) + m_2 L_1 L_2 c_2 (2\ddot{\theta}_1 + \ddot{\theta}_2) + (m_1 + m_2) L_1^2 \ddot{\theta}_1 - m_2 L_1 L_2 s_2 \dot{\theta}_2^2 -2m_2 L_1 L_2 s_2 \dot{\theta}_1 \dot{\theta}_2 + m_2 g L_2 c_{12} + (m_1 + m_2) g L_1 c_1$$

$$\tau_2 = m_2 L_1 L_2 s_2 \dot{\theta}_1^2 + m_2 L_1 L_2 c_2 \ddot{\theta}_1 + m_2 g L_2 c_{12} + m_2 L_2^2 (\ddot{\theta}_1 + \ddot{\theta}_2)$$

 Recall that manipulator's dynamic equations have the following structure:

$$M(q)\ddot{q} + V(q,\dot{q}) + G(q) = \tau$$

Structure of Dynamics Equations (2)

• The τ_1 and τ_2 equations can thus be rewritten as:

$$\underbrace{ \begin{bmatrix} m_2 L_2^2 + 2 m_2 L_1 L_2 c_2 + (m_1 + m_2) L_1^2 & m_2 L_2^2 + m_2 L_1 L_2 c_2 \\ m_2 L_2^2 + m_2 L_1 L_2 c_2 & m_2 L_2^2 \end{bmatrix} \begin{bmatrix} \ddot{\theta}_1 \\ \ddot{\theta}_2 \end{bmatrix} }_{M(q)} \\ + \underbrace{ \begin{bmatrix} -m_2 L_1 L_2 s_2 \dot{\theta}_2^2 \\ m_2 L_1 L_2 s_2 \dot{\theta}_1^2 \end{bmatrix}}_{Centrifugal} + \underbrace{ \begin{bmatrix} -2 m_2 L_1 L_2 s_2 \dot{\theta}_1 \dot{\theta}_2 \\ 0 \end{bmatrix}}_{V(q,\dot{q})} + \underbrace{ \begin{bmatrix} m_2 g L_2 c_{12} + (m_1 + m_2) g L_1 c_1 \\ m_2 g L_2 c_{12} \end{bmatrix}}_{G(q)} = \begin{bmatrix} \tau_1 \\ \tau_2 \end{bmatrix} }_{G(q)}$$

This form will be useful for simulation later.

Content

- Introduction
- Newton-Euler Formulation
- Inclusion of Friction Force
- Manipulator Dynamics in Cartesian Space
- Derivation of Inertia Tensor
- Matlab Simulation
- Tutorial Questions

Friction (1)

- All mechanisms are affected by friction.
- The effect of friction to the manipulator's dynamic can be included in the dynamic equation:

$$M(q)\ddot{q} + V(q,\dot{q}) + G(q) = \tau - \tau_{\text{friction}}$$

• It appears on the right hand side with a minus sign, because intuitively it slows down the robot.

 There are several models for friction, which will be discussed in this section.

Friction (2)

• The viscous friction assumes that the friction is proportional to the velocity:

$$\tau_{\text{friction}} = k\dot{q}$$

 The Coulomb friction assumes that the friction is constant, but the sign depends on the sign of velocity.

$$\tau_{\text{friction}} = c \cdot \text{sgn}(\dot{q})$$

Friction (3)

 The viscous and Coulomb friction can be combined to give a more accurate representation of friction:

$$\tau_{\text{friction}} = c \cdot \text{sgn}(\dot{q}) + k\dot{q}$$

- There are even more accurate models, such as those which include the Stribeck friction.
 - Will not be discussed here.

Content

- Introduction
- Newton-Euler Formulation
- Inclusion of Friction Force
- Manipulator Dynamics in Cartesian Space
- Derivation of Inertia Tensor
- Matlab Simulation
- Tutorial Questions

Why Cartesian Space?

- Rather than looking at how the joint torques provide acceleration to the links in joint space,
- we can also look at how a force acting on the end-effector affects the acceleration of the robot in Cartesian space.
 - This is useful for controlling the robot in force-control operations such as polishing.

Dynamics in Cartesian Space (1)

The dynamics in Cartesian space is:

$$M_{\chi}(q)\ddot{\chi} + V_{\chi}(q,\dot{q}) + G_{\chi}(q) = F$$

- This can be derived from our joint-space dynamic equation as follows:
 - The joint-space dynamic equation is $M(q)\ddot{q} + V(q,\dot{q}) + G(q) = \tau$
 - We know that the relationship between forces on the end-effector (F) and the joint torques (τ) is: $\tau = J^T(q)F$ or $J^{-T}(q)\tau = F$
 - We also know that the joint velocities and the end-effector velocity are related as: $\dot{x} = J(q)\dot{q}$

Dynamics in Cartesian Space (2)

• Premultiply the joint-space dynamic equation with $J^{-T}(q)$ gives:

$$J^{-T}(q)M(q)\ddot{q} + J^{-T}(q)V(q,\dot{q}) + J^{-T}(q)G(q) = J^{-T}(q)\tau = F$$

• From $\dot{x} = J(q)\dot{q}$, we can obtain through differentiation:

$$\ddot{x} = \dot{J}(q)\dot{q} + J(q)\ddot{q} \rightarrow \ddot{q} = J^{-1}(q)\ddot{x} - J^{-1}(q)\dot{J}(q)\dot{q}$$

Substitute the 2nd equation into the first gives:

$$J^{-T}(q)M(q)(J^{-1}(q)\ddot{x} - J^{-1}(q)\dot{J}(q)\dot{q}) + J^{-T}(q)V(q,\dot{q}) + J^{-T}(q)G(q)$$

$$= \underbrace{J^{-T}M(q)J^{-1}}_{M_X}\ddot{x} + \underbrace{J^{-T}(V(q,\dot{q}) - M(q)J^{-1}\dot{J}\dot{q})}_{V_X} + \underbrace{J^{-T}G(q)}_{G_X} = F$$

Dynamics in Cartesian Space (3)

• Note: Rather than using 0J_v , it is advantageous to use the Jacobian wrt. end-effector frame eJ_v instead.

 This is because we often want the force to be along certain endeffector axis (e.g. z-axis), regardless of position and orientation of the end-effector.

• ${}^{e}J_{v}$ can be calculated from ${}^{0}J_{v}$ as:

$$^{e}J_{v}={}^{e}_{0}R\cdot {}^{0}J_{v}$$

Example: Cartesian Dynamics (1)

 For the two link robot example just now, the Jacobian matrix wrt. base frame was:

$${}^{0}J_{v} = \begin{bmatrix} -L_{1}s_{1} - L_{2}s_{12} & -L_{2}s_{12} \\ L_{1}c_{1} + L_{2}c_{12} & L_{2}c_{12} \end{bmatrix}$$

The Jacobian wrt. end-effector frame is therefore:

Example: Cartesian Dynamics (2)

• This gives:

$${}^{e}J_{v}^{-1} = \frac{1}{L_{1}L_{2}S_{2}} \begin{bmatrix} L_{2} & 0\\ -L_{1}c_{2} - L_{2} & L_{1}S_{2} \end{bmatrix}$$

$${}^{e}\dot{J}_{v} = \begin{bmatrix} L_{1}c_{2}\dot{\theta}_{2} & 0\\ -L_{1}s_{2}\dot{\theta}_{2} & 0 \end{bmatrix}$$

Example: Cartesian Dynamics (3)

Substituting these into:

$$\underbrace{J^{-T}M(q)J^{-1}}_{M_{\chi}}\ddot{x} + \underbrace{J^{-T}(V(q,\dot{q}) - M(q)J^{-1}\dot{j}\dot{q})}_{V_{\chi}} + \underbrace{J^{-T}G(q)}_{G_{\chi}} = F$$

• gives:

$$M_{x}(q) = \begin{bmatrix} m_{2} + \frac{m_{1}}{s_{2}^{2}} & 0\\ 0 & m_{2} \end{bmatrix}$$

Example: Cartesian Dynamics (4)

$$= \begin{bmatrix} V_{\chi}(q,\dot{q}) \\ -(m_{2}L_{1}c_{2} + m_{2}L_{2})\dot{\theta}_{1}^{2} - m_{2}L_{2}\dot{\theta}_{2}^{2} - \left(2m_{2}L_{2} + m_{2}L_{1}c_{2} + m_{1}L_{1}\frac{c_{2}}{s_{2}^{2}}\right)\dot{\theta}_{1}\dot{\theta}_{2} \\ m_{2}L_{1}s_{2}\dot{\theta}_{1}^{2} + m_{2}L_{1}s_{2}\dot{\theta}_{1}\dot{\theta}_{2} \end{bmatrix}$$

$$G_{x}(q) = \begin{bmatrix} m_{1}g \frac{c_{1}}{s_{2}} + m_{2}gs_{12} \\ m_{2}gc_{12} \end{bmatrix}$$

Content

- Introduction
- Newton-Euler Formulation
- Inclusion of Friction Force
- Manipulator Dynamics in Cartesian Space
- Derivation of Inertia Tensor
- Matlab Simulation
- Tutorial Questions

Inertia Tensor (1)

- We have so far calculated the manipulator's dynamics assuming that the inertia tensor ciI_i is known or given.
- What is it and how can we calculate it if not given?

- Analogy to linear motion: F = ma
 - If mass is small, then the acceleration is huge.
 - And if the mass is large, then the acceleration is small.
 - The mass presents a "resistance" to the linear motion.

Inertia Tensor (2)

• For the case of rotational motion about a single axis, the moment of inertia also represents a resistance to motion.

 The resistance is different depending on the shape and mass distribution of the object, as well as the axis of

rotation.

Inertia Tensor (3)

- For the case of a rigid body which is free to move in 3D space, there are infinitely many possible rotation axis.
- The inertia tensor is the generalization of the moment of inertia.
- For one object, if we place a frame {A} at a particular

location, the inertia tensor is:

$${}^{A}I = \begin{bmatrix} I_{\chi\chi} & -I_{\chi y} & -I_{\chi z} \\ -I_{\chi y} & I_{yy} & -I_{yz} \\ -I_{\chi z} & -I_{yz} & I_{zz} \end{bmatrix}$$

Inertia Tensor (4)

- The elements of the inertia tensor are:
- Mass moment of inertia.

$$I_{xx}=\iiint\limits_V(y^2+z^2)
ho dV$$
 , $I_{yy}=\iiint\limits_V(x^2+z^2)
ho dV$, $I_{zz}=\iiint\limits_V(x^2+y^2)
ho dV$

Mass product of inertia:

$$I_{xy} = \iiint\limits_V xy
ho dV$$
 , $I_{xz} = \iiint\limits_V xz
ho dV$, $I_{yz} = \iiint\limits_V yz
ho dV$

Inertia Tensor (5)

- The elements depend on the position and orientation of the frame.
 - If the frame is at a 'special' orientation, the products of inertia can be zero.
 - In this case, the axes of the frame are called "principal axes", and the moments of inertia are called "principal moments of inertia".

• For manipulator dynamics, we put the frame at the centre of mass of each link, hence ${}^{ci}I_i$.

Example – Inertia Tensor (1)

- A rectangular block with length l, width w, and height h.
- The frame is in the centre of the block.

$$I_{xx} = \iiint_{V} (y^{2} + z^{2})\rho dV = \int_{-h/2}^{h/2} \int_{-l/2}^{l/2} \int_{-w/2}^{w/2} (y^{2} + z^{2})\rho dx \cdot dy \cdot dz$$

$$= \int_{-h/2}^{h/2} \int_{-l/2}^{l/2} (y^{2} + z^{2})w \rho \cdot dy \cdot dz = \int_{-\frac{h}{2}}^{\frac{h}{2}} \left(\frac{l^{3}}{12} + z^{2}l\right)w\rho \cdot dz$$

$$= \left(\frac{l^{3}h}{12} + \frac{h^{3}l}{12}\right)w\rho = \left(\frac{l^{2}}{12} + \frac{h^{2}}{12}\right)\underbrace{hlw}_{W} \rho = \frac{m}{12}(l^{2} + h^{2})$$

Example – Inertia Tensor (2)

By symmetry,

$$I_{yy} = \frac{m}{12}(w^2 + h^2)$$
$$I_{zz} = \frac{m}{12}(w^2 + l^2)$$

Example – Inertia Tensor (3)

• Next,

$$I_{xy} = \iiint_{V} xy\rho dV = \int_{-h/2}^{h/2} \int_{-l/2}^{l/2} \int_{-w/2}^{w/2} xy\rho dx \cdot dy \cdot dz$$

$$= \int_{-h/2}^{h/2} \int_{-l/2}^{l/2} \frac{x^2}{2} \Big|_{x=-w/2}^{w/2} y\rho \cdot dy \cdot dz$$

$$= \int_{-h/2}^{h/2} \int_{-l/2}^{l/2} 0 \cdot y\rho \cdot dy \cdot dz = 0$$

Example – Inertia Tensor (4)

By symmetry,

$$I_{xz} = 0$$

$$I_{yz} = 0$$

• Therefore, the inertia tensor for the rectangular block with respect to a frame in its centre is:

$${}^{C}I = \begin{bmatrix} \frac{m}{12}(l^{2} + h^{2}) & 0 & 0\\ 0 & \frac{m}{12}(w^{2} + h^{2}) & 0\\ 0 & 0 & \frac{m}{12}(w^{2} + l^{2}) \end{bmatrix}$$

Content

- Introduction
- Newton-Euler Formulation
- Inclusion of Friction Force
- Manipulator Dynamics in Cartesian Space
- Derivation of Inertia Tensor
- Matlab Simulation
- Tutorial Questions

Simulation (1)

- As mentioned in the introduction, the dynamics provide us a model (equations of motions) for simulation and control design purpose.
 - The control design will be taught in later weeks.
 - Here, we will see how to simulate a robot Given joint torques, how will the robot move.

Simulation (2)

- The idea of the simulation is as follows:
- From the manipulator dynamics:

$$M(q)\ddot{q} + V(q, \dot{q}) + G(q) = \tau$$

We leave the highest derivative on the left hand side.

$$\ddot{q} = M^{-1}(q) \left(\tau - V(q, \dot{q}) - G(q)\right)$$

• This is an important equation for our simulation.

Simulation (3)

- Given the initial joint parameters q_{T0} , \dot{q}_{T0} , we first calculate $M(q_{T0})$, $V(q_{T0},\dot{q}_{T0})$, $G(q_{T0})$.
- Then, given the value of τ_{T0} at the initial instant, we can calculate the joint acceleration.

$$\ddot{q}_{T0} = M^{-1}(q_{T0}) \left(\tau_{T0} - V(q_{T0}, \dot{q}_{T0}) - G(q_{T0}) \right)$$

Simulation (4)

- The acceleration will give rise to change in velocity and position.
- If we assume that the acceleration is constant for a duration of T, the new velocity and position at the end of T will be:

$$\dot{q}_{T1} = \dot{q}_{T0} + \ddot{q}_{T0}T$$

$$q_{T1} = q_{T0} + \dot{q}_{T0}T + \frac{1}{2}\ddot{q}_{T0}T^{2}$$

Simulation (5)

• Next, using the newly calculated q_{T1} , \dot{q}_{T1} , we first calculate $M(q_{T1})$, $V(q_{T1}, \dot{q}_{T1})$, $G(q_{T1})$.

• Then, given the value of τ_{T1} at the next instant, we can calculate the joint acceleration.

$$\ddot{q}_{T1} = M^{-1}(q_{T1}) \left(\tau_{T1} - V(q_{T1}, \dot{q}_{T1}) - G(q_{T1}) \right)$$

Simulation (6)

• The new velocity and position at the end of next T will be:

$$\dot{q}_{T2} = \dot{q}_{T1} + \ddot{q}_{T1}T$$

$$q_{T2} = q_{T1} + \dot{q}_{T1}T + \frac{1}{2}\ddot{q}_{T1}T^{2}$$

 This process can be implemented in programming language using a FOR loop.

Example – Simulation (1)

We will use the same 2 link robot in our example:

$$\begin{bmatrix} m_{2}L_{2}^{2} + 2m_{2}L_{1}L_{2}c_{2} + (m_{1} + m_{2})L_{1}^{2} & m_{2}L_{2}^{2} + m_{2}L_{1}L_{2}c_{2} \\ m_{2}L_{2}^{2} + m_{2}L_{1}L_{2}c_{2} & m_{2}L_{2}^{2} \end{bmatrix} \begin{bmatrix} \ddot{\theta}_{1} \\ \ddot{\theta}_{2} \end{bmatrix}$$

$$+ \underbrace{\begin{bmatrix} -m_{2}L_{1}L_{2}s_{2}\dot{\theta}_{2}^{2} \\ m_{2}L_{1}L_{2}s_{2}\dot{\theta}_{1}^{2} \end{bmatrix}}_{Centrifugal} + \underbrace{\begin{bmatrix} -2m_{2}L_{1}L_{2}s_{2}\dot{\theta}_{1}\dot{\theta}_{2} \\ 0 \end{bmatrix}}_{Coriolis} + \underbrace{\begin{bmatrix} m_{2}gL_{2}c_{12} + (m_{1} + m_{2})gL_{1}c_{1} \\ m_{2}gL_{2}c_{12} \end{bmatrix}}_{G(q)} = \begin{bmatrix} \tau_{1} \\ \tau_{2} \end{bmatrix}$$

And we will do the simulation in Matlab.

Example – Simulation (2)

First we provide parameter values and torque values.

```
$$$$$$$$$$$$$$$$$$$$$$$$
% Robot Parameters %
88888888888888888888888
m1 = 3; % kg
m2 = 2; % m
L1 = 3; % kq
L2 = 2; % m
q = 9.8; % m/s^2
% Torque Arrays and Time Interval %
Tau1 = ones(10000,1)*0.1; % constant torque with value = multiplier
                      % constant torque with value = multiplier
Tau2 = ones(10000, 1)*0.1;
                      % time interval for integration
T = 1e-3:
```

Example – Simulation (3)

 We also provide initial conditions, and declare variables to record results.

```
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
% Initial Conditions %
8888888888888888888888888
q1 = 0; % joint 1 angle
q1Dot = 0; % joint 1 angular velocity
q2 = 0; % joint 2 angle
q2Dot = 0; % joint 2 angular velocity
% Calculate Acceleration and Update Positions %
q1DoubleDotRecord = [];
q2DoubleDotRecord = [];
q1DotRecord = [];
g2DotRecord = [];
glRecord = [];
g2Record = [];
```

Example – Simulation (4)

• For each time step, calculate $M(q), V(q, \dot{q}), G(q)$.

```
for i=1:length(Tau1)
    8888888888888888888888888
    % Calculate M, V, G %
    9999999999999999999999
    m11 = m2*L2^2 + 2*m2*L1*L2*cos(q2) + (m1+m2)*L1^2;
    m12 = m2*L2^2 + m2*L1*L2*cos(q2);
    m21 = m12:
    m22 = m2*L2^2;
    M = [m11, m12; m21, m22];
    v1 = -m2*L1*L2*sin(q2)*q2Dot^2 - 2*m2*L1*L2*sin(q2)*q1Dot*q2Dot;
    v2 = m2*L1*L2*sin(q2)*q1Dot^2;
    V = [v1; v2];
    q1 = m2*q*L2*cos(q1+q2) + (m1+m2)*q*L1*cos(q1);
    q2 = m2*q*L2*cos(q1+q2);
    G = [q1;q2];
```

Example – Simulation (5)

Calculate acceleration.

```
% Calculate Acceleration %
qDoubleDot = inv(M)*([Tau1(i);Tau2(i)]-V-G);
q1DoubleDot = qDoubleDot(1);
q2DoubleDot = qDoubleDot(2);
q1DoubleDotRecord = [q1DoubleDotRecord;q1DoubleDot];
q2DoubleDotRecord = [q2DoubleDotRecord;q2DoubleDot];
```

Example – Simulation (6)

- Use the acceleration to update velocity and position.
- End of FOR loop.

```
$$$$$$$$$$$$$$$$$$$$$$$$$$$
% Calculate Velocity %
$$$$$$$$$$$$$$$$$$$$$$$$$$
q1Dot = q1Dot + q1DoubleDot*T;
g2Dot = g2Dot + g2DoubleDot*T;
q1DotRecord = [q1DotRecord;q1Dot];
q2DotRecord = [q2DotRecord;q2Dot];
88888888888888888888888888
% Calculate Position %
88888888888888888888888888
q1 = q1 + q1Dot*T + 1/2*q1DoubleDot*T^2;
q2 = q2 + q2Dot*T + 1/2*q2DoubleDot*T^2;
q1Record = [q1Record;q1];
q2Record = [q2Record;q2];
```

Example – Simulation (7)

Animate the robot motion using forward kinematics.

```
222222
 % Show Robot Motion %
 8888888888888888888888888
                       % These are kinematic
 x1 = L1*cos(q1Record);
                       % equation of the
 v1 = L1*sin(q1Record);
 x2 = x1 + L2*cos(g1Record+g2Record); % 2 link robot
 y2 = y1 + L2*sin(q1Record+q2Record);
\Box for i = 1:100:length(x1) % Plot every 100th data
     clf; % Clear figure before new plot
     plot([0 x1(i)],[0 y1(i)]);
     axis([-(L1+L2+0.2) (L1+L2+0.2) -(L1+L2+0.2) (L1+L2+0.2)]);
     hold on, plot([x1(i) x2(i)], [y1(i) y2(i)]);
     pause (0.1);
 end
```

Example – Simulation (8)

Run the code and an animation will run.

 You may try changing the robot parameters and the torque array (e.g. change to sinusoid) and see the robot response.

Content

- Introduction
- Newton-Euler Formulation
- Inclusion of Friction Force
- Manipulator Dynamics in Cartesian Space
- Derivation of Inertia Tensor
- Matlab Simulation
- Tutorial Questions

Question 1

• Find the inertia tensor of a right cylinder of homogenous density, with respect to a frame with origin at the center of mass of the body.

Question 2

Consider the following robot, with:

$$c^{1}I_{1} = \begin{bmatrix} I_{xx1} & 0 & 0 \\ 0 & I_{yy1} & 0 \\ 0 & 0 & I_{zz1} \end{bmatrix}$$
$$c^{2}I_{2} = \begin{bmatrix} I_{xx2} & 0 & 0 \\ 0 & I_{yy2} & 0 \\ 0 & 0 & I_{zz2} \end{bmatrix}$$

Derive its dynamic equations.

Thank you for your attention!

Any questions?