

Repescagem - 2.º Teste de Introdução à Arquitetura de Computadores

Duração: 60 minutos

IST - LEIC-T 4 fevereiro 2017

1.° Sen	nestre 2016/2017	Duração: 60 minutos		4 fevereiro 2017
NOME			NÚMERO	

1. (1,5 + 1,5 valores) Considere o seguinte programa, que usa rotinas de interrupção para alterar o valor de um display hexadecimal.

PLACE contador:	1000H WORD	6	rot1:		
pilha:	TABLE	100H		MOV	R1, [R2]
fim_pilha:	TTIDEE	10011		SUB	R1, 2; decrementa
IIII_piiia.				MOV	[R2], R1; atualiza contador
PLACE	0		rot3:		
				MOV	R1, [R2]
				ADD	R1, 1 ; incrementa
	MOV	R2, contador		MOV	[R2], R1; atualiza contador
		•			
fim:	JMP	fim			

- a) Complete a zona de dados, o programa principal e as rotinas de interrupção (do lado direito) com o necessário para as interrupções 1 e 3 funcionarem corretamente;
- b) Suponha que os pinos das interrupções 1 e 3 (sensíveis ao flanco ascendente) estão ligadas ao mesmo relógio, cuja frequência é de 1 Hertz. Assumindo que o primeiro pedido de interrupção é feito no instante 0 (quando o programa arranca), indique de seguida a sequência dos 8 primeiros valores que as rotinas de interrupção escrevem no contador, bem como o número da interrupção em que cada valor é escrito e o tempo em segundos (desde que o programa arranca) em que aproximadamente essa escrita ocorre.

- 2. (1,5 + 1,5 valores) Uma transmissão de dados é feita por um barramento série assíncrono, com bit de paridade, 2 stop bits e um ritmo de transmissão de 10.000 bits/seg.
- Indique qual o tempo mínimo necessário para enviar 10.000 bytes de dados. Justifique;

ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
1	

b) Suponha agora que um programa demora T₁ segundos a executar, gastando 60% deste tempo em processamento e no fim transmite os 10.000 bytes da alínea anterior, usando para tal o tempo mínimo possível, o que corresponde a 40% do tempo de execução do programa. Se o ritmo de transmissão de dados duplicar (dos 10.000 bits/seg para 20.000 bits/seg), mantendo-se todas as restantes condições, o tempo total de execução do programa passou a ser T₂. Qual a melhoria M=T₁/T₂ verificada no desempenho? Justifique.

3. (3 valores) Considere o seguinte sistema de descodificação de endereços utilizado por um processador de <u>bus</u> de dados de 8 bits e bus de endereços de 16 bits. <u>Pretende-se que cada saída do descodificador fique ativa em 1 K endereços consecutivos (dimensão da fatia de endereços de cada saída). Preencha a tabela com os bits de endereço a que o descodificador e cada dispositivo devem ligar, a capacidade (decimal) e os endereços de início e de fim (em <u>hexadecimal</u>) em que cada dispositivo está ativo (<u>não considerando endereços de acesso</u> repetido - espelhos).</u>

Dispositivo	Bits de endereço	Capacidade (bytes) (decimal)	Início (hexadecimal)	Fim (hexadecimal)
Descodificador				
RAM1				01FFH
RAM2		1 K		
ROM	A0-A8			
Periférico	A0-A6			

4. (2 valores) Considere a seguinte tabela de verdade, relativa a uma função de quatro entradas e uma saída. Simplifique a respetiva função, preenchendo a tabela de Karnaugh e escrevendo a expressão algébrica simplificada.

Z	D	C	В	A
1	0	0	0	0
1	1	0	0	0
0	0	1	0	0
0	1	1	0	0
1	0	0	1	0
1	1	0	1	0
1	0	1	1	0
1	1	1	1	0
1	0	0	0	1
0	1	0	0	1
0	0	1	0	1
0	1	1	0	1
0	0	0	1	1
1	1	0	1	1
0	0	1	1	1
1	1	1	1	1

		CD				
		00	01	11	10	
	00					
AB	01					
AD	11					
	10					

5. (1 + 2 valores) Suponha que a *cache* do PEPE (processador com 16 bits de endereço, <u>endereçamento de byte</u>) é de mapeamento direto, com uma capacidade de 1024 palavras e blocos de 8 palavras.

a)	Quantos bits são	precisos pa	ara indicar q	ual o bloco em q	ue cada palavra	se situa (campo índio	ce)?
/	£	r	1			(, -

b) Suponha que o tempo de acesso em caso de *hit* e de *miss* é de 5 ns e 40 ns, respetivamente. Se o tempo médio de acesso for de 8,5 ns, qual é a *hit rate* média? <u>Justifique</u>.

6. (2 + 1 valores) Pretende-se construir um circuito microprogramado que implemente o somatório

$$\sum_{i=0}^{P-1} N * (P-i)$$

em que N, P > 1. O diagrama seguinte descreve o circuito. Os registos R1 e R2 recebem N e P, respetivamente. O registo R3 vai acumulando o resultado das somas sucessivas. O sinal DEC_R2 decrementa R2 de uma unidade. O sinal INIT_R3 inicializa R3 a zero. O sinal nZ está ativo (vale 1) quando R2 é diferente de zero e o sinal PRONTO é ativado quando o resultado está pronto.

a) Preencha a tabela seguinte com os valores necessários para implementar a funcionalidade descrita. Indique apenas os sinais relevantes em cada ciclo de relógio e deixe em branco as restantes células.

Endereço na ROM	Microinstruções	PRONTO	LOAD_R1	LOAD_R2	DEC_R2	INIT_R3	LOAD_R3	SEL_MICRO _SALTO	MICRO_ SALTO
_	$R1 \leftarrow N$								
	R2 ← P								
	R3 ← 0								
1	$R3 \leftarrow R3 + R1 * R2$								
2	R2 ← R2 - 1								
3	$(R2 != 0): MPC \leftarrow 1$								
4	PRONTO ← 1								
4	$MPC \leftarrow 4$								

b)	Quantos bits de largura deve ter no mínimo a ROM de microprograma?	

7.	(1,5 + 1,5 valores) Pretende executar um programa que necessita de 12 Mbytes de memória. O computador
	de que dispõe tem apenas 512 KBytes de memória física, mas o seu processador suporta memória virtual
	com páginas virtuais de 4 Kbytes (com endereçamento de byte).

a) Preencha a tabela seguinte com os valores que decorrem desta informação.

N.º mínimo de bits do espaço virtual	
N.º de páginas físicas existentes	

b) Suponha que a TLB é totalmente associativa de 8 entradas e a memória física disponível para o programa está <u>localizada a partir do endereço 30000H</u>. Após reset, o processador acede aos seguintes endereços virtuais:

203B8H 4B35AH 3A1A0H 1E5BEH 4BFFEH 208FCH

Indique, na tabela a seguir, um <u>possível</u> estado do conteúdo da TLB imediatamente após estes acessos. <u>Arbitre o que for necessário</u> (não há solução única) e preencha apenas o que for relevante.

Posição da TLB	Bit validade	N.º página virtual (hexadecimal)	N.º página física (hexadecimal)
0			
1			
2			
3			
4			
5			
6			
7			