

# Analyse des logs web NASA

Exploration et détection d'anomalies avec Elasticsearch

Jeu de données: Logs web publics NASA

Période: Juillet 1995

Volume: 1.8 millions d'entrées

### **Objectifs du projet**

- Comprendre et parser le format Common Log Format
- Indexer massivement des données dans Elasticsearch
- Réaliser des analyses et détections d'anomalies
- Créer un pipeline ML pour l'analyse prédictive





# Méthodologie & Démarche

Approche structurée en 7 étapes pour l'analyse des logs web NASA

1 Préparation & Parsing des données

Lecture des fichiers compressés, extraction des champs via regex (host, ident, authuser, timestamp, request, status, bytes) et transformation des données brutes.

2 Parsing par lot & Export CSV

Traitement des 1,8 million de lignes par lots pour éviter les surcharges mémoire, avec création d'exports intermédiaires CSV.

- Mapping & Indexation Elasticsearch

  Définition d'un mapping adapté (keyword, date, text, integer) et indexation par lots avec gestion optimisée de la mémoire et monitoring performance.
- Vérification de l'indexation

  Contrôle du volume indexé, tests de requêtes et validation des données avec échantillons pour s'assurer de l'intégrité.
- Requêtes analytiques

  Exploration des logs par IP, URLs, statut HTTP et plage de dates avec création d'agrégations temporelles (histogrammes horaires).
- Détection d'anomalies

  Analyse des pics d'activité par IP/heure, identification des erreurs HTTP récurrentes et modélisation ML pour la détection automatisée de comportements suspects.
- Poparting & Capitalization

Génération de rapports d'analyse avec visualisations, pipeline ML intégré à Elasticsearch pour production et recommandations métiers

💡 L'approche modulaire garantit une gestion des ressources tout en permettant une analyse complète des données volumineuses historiques.



# **Traitement & Parsing des Données**

Transformation des logs bruts en données structurées pour analyse

### Format des logs NASA

Common Log Format (CLF):

199.72.81.55 - - [01/Jul/1995:00:00:01 -0400] "GET /history/apollo/ HTTP/1.0" 200 6245

host

timestamp

request

status

bytes

#### **Défis & Solutions**

#### **▲** Volume massif :

1.8 millions d'entrées à traiter avec contraintes mémoire

#### Parsing en lots:

Découpage par blocs de 10k lignes pour optimiser l'utilisation RAM/CPU

#### **=** Exports intermédiaires :

Stockage CSV pour reprise sur erreur et indexation progressive

### **Extraction avec Regex**

```
pattern = r'^(\S+) (\S+) \[(.*?)\] "(.*?)" (\d+)
(\S+)'

for line in log_lines:
    match = re.match(pattern, line)
    if match:
        host, ident, authuser, time_str, request, status, bytes
= match.groups()
    # Conversion timestamp
    dt = datetime.strptime(time_str, "%d/%b/%Y:%H:%M:%S
%z")
    try:
        # Extraction URL depuis request
        url = request.split()[1]
    except IndexError:
        url = "-"
```

### **Statistiques de traitement**



1.8M

Entrées traitées



~300MB

Empreinte mémoire



~15min

Temps de parsing



99.7%

Taux de réussite



# **Indexation Elasticsearch**

Configuration du mapping et processus d'indexation massive







### **Optimisation de l'indexation**

- Indexation par lots
   Optimisation des performances et réduction de l'overhead réseau
- Parallelisation des requêtes
   Traitement multi-thread pour améliorer le débit
- Monitoring en temps réel Suivi et ajustement des paramètres d'indexation



# **Résultats Analytiques**

Découvertes clés issues de l'analyse des logs NASA

| 器 Top 5 IPs les plus actives |        |
|------------------------------|--------|
| piweba3y.prodigy.com         | 38,689 |
| 163.205.53.28                | 25,337 |
| piweba4y.prodigy.com         | 17,572 |
| rush.internic.net            | 15,131 |
| hella.st.hmc.edu             | 9,121  |

1 Forte activité des serveurs Prodigy et des institutions académiques

| /images/NASA-logosmall.gif                                     | 73,070 |
|----------------------------------------------------------------|--------|
| /images/KSC-logosmall.gif                                      | 41,368 |
| /shuttle/countdown/                                            | 28,824 |
| /                                                              | 26,155 |
| /shuttle/missions/sts-71/images/KSC-95EC-0918.jpg              | 14,062 |
| Forte demande pour les images et informations sur les missions |        |



# **Détection d'Anomalies**

Identification automatique des comportements suspects dans les logs







# **Machine Learning Pipeline**

Automatisation de la détection d'anomalies avec modélisation prédictive

## Pipeline d'analyse prédictive

#### 1. Préparation des données

Agrégation temporelle par IP/heure pour créer le dataset d'entraînement

#### 2. Feature Engineering

Extraction de caractéristiques comportementales à partir des logs agrégés

#### 3. Modélisation & Comparaison

Entraînement et évaluation de plusieurs modèles de classification

#### 4. Déploiement Elasticsearch

Export et intégration du modèle optimal pour analyse en temps réel

#### 5. Monitoring & Alertes

Configuration de notifications automatiques sur détection d'anomalies





# **Applications Pratiques & Impact**

De l'analyse historique à la mise en production opérationnelle



### **Applications Métiers**

#### Sécurité & Détection d'intrusions

Identification en temps réel des comportements suspects (scan massif, tentatives d'exploitation)

#### **Maintenance & Monitoring**

Alertes automatisées sur pics d'erreurs HTTP ou dégradation des performances

#### Analyse d'audience & UX

Identification des contenus populaires et optimisation des ressources fréquemment sollicitées

#### Conformité & Audit

Historisation et traçabilité des accès pour analyses rétrospectives et obligations légales





# **Compétences & Enseignements**

Expertise technique acquise et leçons clés du projet

## </> Compétences Techniques



#### Ingénierie de données Python

Traitement de logs volumineux, optimisation mémoire, parsing régulier et traitement par lot



#### **Elasticsearch & Recherche**

Conception de mappings, indexation massive, optimisation des requêtes et agrégations



#### **Machine Learning & Anomalies**

Feature engineering, entraînement de modèles, évaluation et intégration dans Elasticsearch



#### **Visualisation & Dashboarding**

Création de visualisations avancées, tableaux de bord dynamiques et rapports automatisés





# **Conclusion & Perspectives**

Synthèse du projet d'analyse des logs web NASA et orientations futures

### Bilan du projet

- Traitement massif de données historiques
   1,8 million de logs NASA de juillet 1995 indexés et analysés
- Pipeline analytique complet
   De l'extraction à la modélisation ML en passant par l'indexation
   Elasticsearch
- Détection d'anomalies optimisée Modèle Random Forest déployé avec 96% de F1-score
- Solution reproductible
   Méthodologie applicable à d'autres jeux de données de logs



## Perspectives d'évolution

- Analyse temps réel

  Extension vers le traitement de flux continus (streaming)
- Deep learning avancé
  Modèles temporels (LSTM, CNN) pour la détection de patterns complexes
- AutoML & optimisation

  Recherche automatique d'hyperparamètres et détection continue

## Contact & Ressources

- Contact professionnel emacsah@gmail.com
- Code source github.com/emacsah/nasa-logs-analysis
- Documentation complète github.com/emacsah/nasa-logs-project
- Dashboard interactif
  https://my-elasticsearch-project-d88606.kb.us-east1.aws.elastic.cloud/app/r/s/b7fhA
- Scannez le QR code ci-dessous pour accéder à toutes les ressources du projet

