PROJECT

WEB PHISHING DETECTION

DONE BY

TEAM ID: PNT2022TMID10245

M. DHINESH

R. JEFRIL ANGELAN

K.S. GOKULA KRISHNA

R. GUNASEKARAN

Project Report

1. **INTRODUCTION**

- 1.1.Project Overview
- 1.2.Purpose

2. LITERATURE SURVEY

- 2.1.Existing problem
- 2.2.References
- 2.3. Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- 3.1. Empathy Map Canvas
- 3.2. Ideation & Brainstorming
- 3.3. Proposed Solution
- 3.4.Problem Solution fit

4. REQUIREMENT ANALYSIS

- 4.1. Functional requirement
- 4.2. Non-Functional requirements

5. PROJECT DESIGN

- 5.1. Data Flow Diagrams
- 5.2. Solution & Technical Architecture

6. PROJECT PLANNING & SCHEDULING

- 6.1. Sprint Planning & Estimation
- 6.2.Sprint Delivery Schedule
- 6.3.Reports from JIRA

7. CODING & SOLUTIONING

- 7.1. Feature 1
- 7.2. Feature 2
- 7.3. Database Schema (if Applicable)

8. TESTING

- 8.1. Test Cases
- 8.2. User Acceptance Testing

9. RESULTS

9.1. Performance Metrics

10. ADVANTAGES & DISADVANTAGES

11. CONCLUSION

12. FUTURE SCOPE 13. APPENDIX

Source Code

GitHub & Project Demo Link

1. INTRODUCTION

1.1. Project Overview

Phishing can be defined as impersonating a valid site to trick users by stealing their personal data comprising usernames, passwords, accounts numbers, national insurance numbers, etc. Phishing frauds might be the most widespread cybercrime used today. There are countless domains where phishing attack can occur like the online payment sector, webmail, financial institutions, file hosting or cloud storage and many others. The webmail and online payment sector was embattled by phishing more than in any other industry sector. Phishing can be done through email phishing scams and spear phishing hence user should be aware of the consequences and should not give their 100 percent trust on common security application. Machine Learning is one of the efficient techniques to detect phishing as it removes drawback of existing approach.

1.2. Purpose

The objectives which is the most vital thing in proposed project is to verify the validity of the website by capturing blacklisted URLs. To notify the user on blacklisted website through pop-up while they are trying to access and to notify the user on blacklisted website through email while they are trying to access. This proposed project will allow administrator to add blacklisted URL's in order to alert user during their inquiry.

The two scope of project, which is well known as user scope and system scope. User has some responsibility towards the system. The system includes a few standards and policies that requires to be obliged in order to comply the system. The user can be notified if blacklisted website is being accessed. The admin can capture the blacklisted URL's to alert user. The system involves features like capturing blacklisted website, viewing blacklisted website, displaying pop-up notification and also displaying email notification.

LITERATURE SURVEY 2.

2.1. Existing problem

Couple of researchers have analysed the stats of malicious sites in some way. Our method picks up some of the important ideas from previous case studies. Ma, et al. [3,4] compared various batch-based learning algorithms used in classifying phishing sites and stated that a combination of host based and lexicalbased features outcome in the highest accuracy in classification. Besides, they are also compared with the performance of batch-based algorithms with the onlinebased algorithms which when utilizes complete features and noticed that onlinebased algorithms, especially Confidence-Weighted (CW), stand out performing batch-based algorithms. The attributes include the existence of the red flag keywords present in the website, attributes that are based on Google's Page Rank and Google's Web page quality guidelines. One cannot compare directly without access to the same websites and attributes.

2.2. References

- [1] S. Sheng, M. Holbrook, P. Kumaraguru, L. F. Cranor, and J. Downs, "Who falls for phish?: a demographic analysis of phishing susceptibility and effectiveness of interventions," in Proceedings of the 28th international conference on Human factors in computing systems, ser. CHI '10. New York, NY, USA: ACM, 2010, pp. 373-382.
- [2] B. Krebs, "HBGary Federal hacked by Anonymous," http:
- //krebsonsecurity.com/2011/02/hbgary-federal-hacked-by-anonymous/, 2011, accessed December 2011.
- [3] B. Schneier, "Lockheed Martin hack linked to RSA's SecurID breach," http://www.schneier.com/blog/archives/2011/05/lockheed martin.html, 2011, accessed December 2011.
- [4] C. Whittaker, B. Ryner, and M. Nazif, "Large-scale automatic classification of phishing pages," in NDSS '10, 2010.
- [5] X. Dong, J. Clark, and J. Jacob, "Modelling user-phishing interaction," in Human System Interactions, 2008 Conference on, may 2008, pp. 627 –632.
- [6] W. D. Yu, S. Nargundkar, and N. Tiruthani, "A phishing vulnerability analysis of web based systems," in Proceedings of the 13th IEEE Symposium on Computers and Communications (ISCC 2008). Marrakech, Morocco: IEEE, July 2008, pp. 326-331.
- [7] Anti-Phishing Working Group (APWG), "Phishing activity trends report second half 2010," http://apwg.org/reports/apwg report h2 2010. pdf, 2010, accessed December 2011.
- [8] Anti-Phishing Working Group (APWG), "Phishing activity trends report first half 2011," http://apwg.org/reports/apwg trends report h1 2011.pdf, 2011, accessed December 2011.
- [9] Anti-Phishing Working Group (APWG), "Phishing activity trends report second half 2011," http://apwg.org/reports/apwg trends report h2 2011.pdf, 2011, accessed July 2012.
- [10] B. Schneier, "Details of the RSA hack," http://www.schneier.com/blog/ archives/2011/08/details of the.html, 2011, accessed December 2011

2.3. Problem Statement Definition

Phishing detection techniques do suffer low detection accuracy and high false alarm especially when novel phishing approaches are introduced. Besides, the most common technique used, blacklist-based method is inefficient in responding to emanating phishing attacks since registering new domain has become easier, no comprehensive blacklist can ensure a perfect up-to-date database. Furthermore, page content inspection has been used by some strategies to overcome the false negative problems and complement the vulnerabilities of the stale lists.

Moreover, page content inspection algorithms each have different approach to <u>phishing website</u> <u>detection</u> with varying degrees of accuracy. Therefore, ensemble can be seen to be a better solution

as it can combine the similarity in accuracy and different error-detection rate properties in selected algorithms. Therefore, this study will address a couple of research:

- 1. How to process raw dataset for phishing detection?
- 2. How to increase detection rate in phishing websites algorithms?
- 3. How to reduce false negative rate in phishing websites algorithm?
- 4. What are the best compositions of classifiers that can give a good detection rate of phishing website?

IDEATION & PROPOSED SOLUTION 3.

3.1. Empathy Map Canvas

Pain

- · We cannot touch the product physically
- · Service fees and other additional costs
 - · The delivery will not be ontime

Gain

- · The internet has revolutionized the way we shop
- · There should be no sale pressure
- · Privacy for discrete purchases

3.2. Ideation & Brainstorming

3.3. Proposed Solution

S.	Parameter	Description
N		
0.		
1.	Problem Statement (Problem to be solved)	Phishing sites are malicious website that aim to steal user's personal data. Spotting these phishing website is typically a challenging task because phishing is mainly a semantic-based attack that mainly focused on software vulnerability etc.

2.	I d e a / S o l u t i o n description	Our product server as a browser extension and it scrapes the website URL and runs it through our ML model. If the model detects it as a phishing website, the extension notifies the user.
----	--	--

3.	Novelty / Uniqueness	The browser extension factors is not used in any previous works. The user does not have to think twice before using a website, our extention will take care of the classifying work.
4.	SocialImpact/ CustomerSatisfaction	Reduce the amount of information stolen by phishing sites and also increase customer satisfaction as they would be reassured when using legitimate website.
5.	B u s i n e s s M o d e l (Revenue Model)	We propose a two tier system namely a FREE and PREMIUM tire. The FREE tier would include ads and the PREMIUM tier is a recurring subscription either monthly or annually.
6.	Scalability of the Solution	Since this is a browser extension which would be published in Chrome Marketplace, it can be accessed and used by everyone across the world.

3.4. Problem Solution fit

4. REQUIREMENT ANALYSIS

4.1. Functional requirement

FR No.	F u n c t i o n a l Requirement(Epic)	Sub Requirement (Story / Sub-Task)
FR-1	Learning & Detection	The samples and the topological structure of the machine learning TensorFlow is built. The submitted URLs are tested against thesamples in the database to perform classification.

FR-2	Testing & Alert	URLs passed through the system are recorded in a database, thus each URL submitted by the user is tested to check or duplicate. If a phishing website is detected the popup message will alert the user. Give information about the malicious website with accurate result.			
FR-3	Deep Learning	The phishing detection process could be doneusing the Recurrent Neural Network. The website could be detected			
FR-4	Hardware Requirements	2GB RAM(minimum) 100GB HDD(minimum) Intel i3 quad core 1.66GHz processor(minimum) Internet Connectivity			
FR-5	S o f t w a re Requirements	Windows 7 or higher Python 3.6.0 or higher Visual Studio Code Flask(python platform) HTML Dataset consisting of Phishing websites and their features. Required plugins and libraries Jupiter notebook			
FR-6	Other requirements	IBM cloud login Chrome extension features			

4.2. Non-Functional requirements

FR No.	Non-Functional Requirement	Description
NFR- 1	Usability	This system is really used as it can able to detect phishing websites. By detecting malicious websites, our personal and professional data are confidential, secure, and accessible.

NFR-2	Security	Phishers spoof legitimate emails so that the victim trusts them. They send out massive numbers of fraudulent emails in order to catch a smallpercentage of recipients off guard. They create a sense of urgency so that the victim does not think twice before clicking the link or downloading the attachment. Lack of security awareness among employeesis also one of the major reasons for the success of phishing. Organizations should be aware ofhow the benefits and purpose of security awareness training can secure their employees from falling victim to phishing attacks.	
NFR-3	Reliability	The performance of the system wouldbe accurate. Probability of giving false information is verylow. As the system is working based on the deep learning algorithm, it would easily predict and give the perfect information.	
NFR- 4	Performance	The effectiveness of these methods relies on feature collection, training data, and classification algorithms and giving alerts when phished websites are detected. It must be processed and executed within a fraction of a second using the deep learning algorithm	
NFR- 5	Availability	The availability of the solution is effective and it should be helpful in a great way to prevent our personal data to be exposed.	

NFR-	Scalability	This solution is scalable enough to fit
6		theSecurity issues by constructing the best
		website. The cost of establishing the website
		and maintaining all the programs may be high.
		It is acceptable to fit them over any place and
		any resources.

5. PROJECT DESIGN

5.1. Data Flow Diagrams

5.2. Solution & Technical Architecture

TECHNOLOGY ARCHITECTURE

6. PROJECT PLANNING & SCHEDULING

6.1. Sprint Planning & Estimation

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	T e a m Members
Sprint-1	URL detector	USN-1	URL is the first thing to	10	High	M.Dhinesh R.Jefril Angelan
			analyze a website to decide whether it is a			K.S.Gokula Krishna
			phishing or not			R.Gunasekaran

Sprint-1		USN-2	S o m e o f U R L - B a s e d Features are • Digit count in the URL • Total length of URL • Checking whether the URL is typosquatted or not • Checking whether it includes a legitimate brand name or not • N u m b e r o f subdomains in URL • TLD is one of the commonly used one	10	High	M.Dhinesh R.Jefril Angelan K.S.Gokula Krishna R.Gunasekaran
Sprint-2	Domain detection	USN-3	The purpose of Phishing Domain Detection is detecting phishing domain names. Therefore, passive queries related to the domain name, which we want to classify as phishing or not, provide useful information to us.	10	High	M.Dhinesh R.Jefril Angelan K.S.Gokula Krishna R.Gunasekaran

Sprint-2		USN-4	Some useful Domain-Based Features are • Its domain name or its I P a d d r e s s i n blacklists of wellknown reputation services?	10	High	M.Dhinesh R.Jefril Angelan K.S.Gokula Krishna R.Gunasekaran
			 How many days passed since the do main was registered? Is the registrant name hidden? 			
Sprint-3	Page based features and C o n t e n t b a s e d features	USN-5	Page-Based Features are using information aboutpages which arecalculated reputation ranking services. Obtaining these types of features requires active scan to target domain. Page contents are processed for us to detect whether target domain is used for phishing or not	10	High	M.Dhinesh R.Jefril Angelan K.S.Gokula Krishna R.Gunasekaran

Sprint-3			 Global pagerank Country pagerank Position at the Alexa top 1 million site S o m e p r o c e s s e d information about pages are Page titles Meta tags Hidden text ◆ Text in the body ◆ Images etc. 		M.Dhinesh R.Jefril Angelan K.S.Gokula Krishna R.Gunasekaran
Sprint-4	Detection process	USN-6	Detecting Phishing Domains is a classification problem, so it means we need labeled data which has samples as phish domains and legitimate domains in the training phase	20	M.Dhinesh R.Jefril Angelan K.S.Gokula Krishna R.Gunasekaran

Project Tracker, Velocity & Burndown Chart:

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End D a t e (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	2 4 O c t 2022	29 Oct 2022	10	29 Oct 2022
Sprint-2	20	6 Days	3 1 O c t 2022	05 Nov 2022	10	05 Nov 2022
Sprint-3	20	6 Days	0 7 N o v 2022	12 Nov 2022	10	12 Nov 2022
Sprint-4	20	6 Days	1 4 N o v 2022	19 Nov 2022	20	19 Nov 2022

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

Burndown Chart:

A burndown chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such <u>as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.</u>

6.2. Sprint Delivery Schedule

Sprint	Sprint Topic	Start Date	Expected Delivery
Sprint 1	URL detector	24-10-2022	29-10-2022
Sprint 2	Domain detection	31-10-2022	05-11-2022
Sprint 3	Page based features and content based features	07-11-2022	12-11-2022
Sprint 4	Detection process	14-11-2022	19-11-2022

6.3. Reports from JIRA

7. CODING & SOLUTIONING

7.1. Feature 1

This feature is used to import required libraries to load the model from the .pkl file which was builded in the model building phase.

Coding:

from flask import Flask, request, render_template import numpy as np import pandas as pd from sklearn import metrics import warnings import pickle warnings.filterwarnings('ignore') from feature import FeatureExtraction

```
file = open("model.pkl","rb")
     gbc = pickle.load(file)
     file.close()
     app = Flask(\_name\_)
     @app.route("/", methods=["GET",
     "POST"]) def index(): if request.method
     == "POST":
          url = request.form["url"]
     obj = FeatureExtraction(url)
          x = np.array(obj.getFeaturesList()).reshape(1,30)
          y_pred = gbc.predict(x)[0]
          #1 is safe
     #-1 is unsafe
          y_pro_phishing = gbc.predict_proba(x)[0,0]
     y_pro_non_phishing = gbc.predict_proba(x)[0,1]
     # if(y_pred ==1 ):
          pred = "It is {0:.2f} % safe to go ".format(y_pro_phishing*100)
                                           return render_template('index.html',xx
     =round(y_pro_non_phishing,2),url=url
     return render_template("index.html", xx =-1)
     if___name__ == "__main_":
        app.run(debug=True,port=2002)
7.2. Feature 2
     This feature helps in providing easy UI to the user using the web interface.
     Coding:
<!DOCTYPE html>
<html lang="en">
```

```
<head>
  <center> <h1> IBM Project Based Learning </h1> </center>
  <meta charset="UTF-8">
  <meta http-equiv="X-UA-Compatible" content="IE=edge">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta name="description" content="This website is develop for identify the
safety of url.">
  <meta name="keywords" content="phishing url,phishing,cyber</pre>
security, machine learning, classifier, python">
  <meta name="author" content="Balajee A V">
  <!-- BootStrap -->
  k rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/
4.5.0/css/bootstrap.min.css"
    integrity="sha384-
9aIt2nRpC12Uk9gS9baDl411NQApFmC26EwAOH8WgZl5MYYxFfc+NcPb1d
KGj7Sk" crossorigin="anonymous">
  <link href="static/styles.css" rel="stylesheet">
  <title>URL detection</title>
                                  </head>
<body>
<center> <img class="image image-contain" src="https://cdn.activestate.com/</pre>
wp-content/uploads/2021/02/phishing-detection-with-Python.jpg" alt="MDN
logo" /> </center>
<div class=" container">
  <div class="row">
    <div class="form col-md" id="form1">
       <h2>PHISHING URL DETECTION</h2>
       <br>
       <form action="/" method ="post">
         <input type="text" class="form_input" name ='url' id="url"</pre>
placeholder="Enter URL" required="" />
```

```
<label for="url" class="form label">URL</label>
         <button class="button" role="button" >Check here
</form>
  </div>
  <div class="col-md" id="form2">
    <br>
    <h6 class = "right "><a href= {{ url }} target="_blank">{{ url }}</a></h6>
    <br>
    <h3 id="prediction"></h3>
    <button class="button2" id="button2" role="button"
onclick="window.open('{{url}}')" target="_blank" >Still want to
Continue</button>
                       <button class="button1" id="button1" role="button"
onclick="window.open('{{url}}')" target="_blank">Continue</button>
  </div>
</div>
<br>
</div>
  <!-- JavaScript -->
  <script src="https://code.jquery.com/jquery-3.5.1.slim.min.js"</pre>
integrity="sha384-DfXdz2htPH0lsSSs5nCTpuj/zy4C+OGpamo-
FVy38MVBnE+IbbVYUew+OrCXaRkfj"
    crossorigin="anonymous"></script>
  <script
src="https://cdn.jsdelivr.net/npm/popper.js@1.16.0/dist/umd/popper.min.js"
integrity="sha384-
Q6E9RHvbIyZFJoft+2mJbHaEWldlvI9IOYy5n3zV9zzTtmI3UksdQRVvoxMf
ooAo"
    crossorigin="anonymous"></script>
  <script
src="https://stackpath.bootstrapcdn.com/bootstrap/4.5.0/js/bootstrap.min.js"
```

```
integrity="sha384-
OgVRvuATP1z7JjHLkuOU7Xw704+h835Lr+6QL9UvYjZE3Ipu6Tp75j7Bh/kR
0JKI"
     crossorigin="anonymous"></script>
  <script>
       let x = '\{\{xx\}\}';
let num = x*100;
                        if
(0 \le x \&\& x \le 0.50)
         num = 100-num;
       }
       let txtx = num.toString();
if(x \le 1 \&\& x \ge 0.50)
         var label = "Website is "+txtx +"% safe to use...";
document.getElementById("prediction").innerHTML = label;
document.getElementById("button1").style.display="block";
       }
       else if (0 \le x \& x \le 0.50)
         var label = "Website is "+txtx +"% unsafe to use..."
document.getElementById("prediction").innerHTML = label;
document.getElementById("button2").style.display="block";
  </script>
</body>
</html>
```

8. TESTING

8.1. Test Cases

Test case ID		Com pone nt	Test Scenari o	Pre- Req uisit e	Steps T o Exec Ute	Te s t Data	Expe cted Resu lt	Act u a l Res ult	S t a t us	C o m m ents	T for Auto C mati o n (Y/ N)	B U G ID	Executed By
LoginPag e TC_OO1	UI	Hom e Page	Verify the UIelement s i s Respon sive		1. Enter URL and click go 2. Type orcop ypastet h e URL 3. Check whether the button is responsi ve or not 4 Reload and Test Simult aneous ly	https:// www.go ogle.co m/	Shoul d Wait for Respo ns e a n d t h e n gets Ackn owled ge	s e x	P a ss		N		M.Dhinesh

LoginPag e TC_OO2	Functi onal	Hom e page	Verify whether the link i s legitimat e or not	1. Enter URL and click go 2. Type o rcop ypastet h e URL 3 Check th e website is legitim ate or not 4 Observe th e Results	https:// www.y outube. com/	User should observe wheth er the website is legitimate or not.	Working a s expected	P a ss	N	R.Jefril Angelan
LoginPag e TC_OO3	Functional	Hom e Page	Verify user is able to a c c e s s t h e legitimat e website or not	1. Enter U R L and click go 2. Type o r c o p y p a st et h e URL 3 Check t h e website i s legitim ate or not 4 Contin u e i ft h e websit e is legitimat e or be cautious if it is not legitimat e.	http:// ssales cript.i nfo/	Application should show that Safe Webpage or Unsafe.	Working a sexpected d	P a ss	N	K.S.Gokul Krishna

LoginPag e	Functi onal	Hom e	Testing		https:// www.del	U s e r c a n	Wor king	P a	N	R.Gunaseka
_		Page	thewebsitew i		gets.com	able	as	ss		
TC_OO4			t h			t	e x p			
							ecte			
			multiple			0	d			
						identi				
			URLs	1. Enter		fy the				
				URL		websi				
				(https:/		tes				
				/		wheth er it is				
				phishin g -		secur				
				shield.h		e o r				
				erokuap p.com		not				
				/) and		not				
				click go						
				2. Type						
				or copy p a s t e						
				theURL						
				totest						
				3. Check						
				t h e website						
				is						
				legitima						
				te or not						
				Contin u e i f t						
				Comm u e i i t						
				e						
				websit						
				e is						
				secure or b						
				e e						
				cautious if it is n						
				o t						
				secure						

8.2. User Acceptance Testing

1. **Defect Analysis**

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	10	4	2	3	20
Duplicate	1	0	3	0	4
External	2	3	0	1	6
Fixed	10	2	4	20	36
Not Reproduced	0	0	1	0	1
Skipped	0	0	0	0	0

Won't Fix	0	0	2	1	3
Totals	23	9	12	25	60

1. Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	No t Tested	Fail	Pass
Print Engine	10	0	0	10
Client Application	50	0	0	50
Security	5	0	0	4
Outsource Shipping	3	0	0	3
Exception Reporting	10	0	0	9
Final Report Output	10	0	0	10
Version Control	4	0	0	4

9. RESULTS

9.1. Performance Metrics

S.No.	Parameter	Values	Screenshot				
1.	Metrics	Classification Model: Gradient Boosting Classification Accuray Score- 97.4%	In [O] despating the close(formin report of the mobil print(werks classification_report(g_leas, g_tat_glea)) precision recall fi-tone support -1 8.66 8.66 8.77 576 8.6.00 -0.00 class surrows; -0.00 -0.00 class				
2.	Tune the Model	Hyperparameter Tuning - 97% Validation Method – KFOLD & Cross Validation Method	Wiccoun signed-rank ted It (8) entitle of dress selection tests In significant selection selections In significant selections I sele				

1. METRICS:

CLASSIFICATION REPORT:

In [52]: #computing the classification report of the model

print(metrics.classification_report(y_test, y_test_gbc))

	precision	recall	f1-score	support
-1	0.99	0.96	0.97	976
1	0.97	0.99	0.98	1235
accuracy			0.97	2211
macro avg	0.98	0.97	0.97	2211
weighted avg	0.97	0.97	0.97	2211

PERFORMANCE:

Out[83]:		ML Model	Accuracy	f1_score	Recall	Precision
	0	Gradient Boosting Classifier	0.974	0.977	0.994	0.986
	1	CatBoost Classifier	0.972	0.975	0.994	0.989
	2	Random Forest	0.969	0.972	0.992	0.991
	3	Support Vector Machine	0.964	0.968	0.980	0.965
	4	Decision Tree	0.958	0.962	0.991	0.993
	5	K-Nearest Neighbors	0.956	0.961	0.991	0.989
	6	Logistic Regression	0.934	0.941	0.943	0.927
	7	Naive Bayes Classifier	0.605	0.454	0.292	0.997
	8	XGBoost Classifier	0.548	0.548	0.993	0.984
	9	Multi-layer Perceptron	0.543	0.543	0.989	0.983

2. TUNE THE MODEL - HYPERPARAMETER TUNING

VALIDATION METHODS: KFOLD & Cross Folding

Wilcoxon signed-rank test

```
In [78]: #KFOLD and Cross Validation Model
          from scipy.stats import wilcoxon
          from sklearn.datasets import load_iris
          from sklearn.ensemble import GradientBoostingClassifier
          from xgboost import XGBClassifier
          from sklearn.model_selection import cross_val_score, KFold
         # Load the dataset
         X = load_iris().data
          y = load_iris().target
          # Prepare models and select your CV method
         model1 = GradientBoostingClassifier(n_estimators=100)
          model2 = XGBClassifier(n_estimators=100)
          kf = KFold(n_splits=20, random_state=None)
          # Extract results for each model on the same folds
          results_model1 = cross_val_score(model1, X, y, cv=kf)
         results_model2 = cross_val_score(model2, X, y, cv=kf)
stat, p = wilcoxon(results_model1, results_model2, zero_method='zsplit');
          stat
Out[78]: 95.0
```

5x2CV combined F test

10. ADVANTAGES & DISADVANTAGES

Advantages:

- This system can be used by many E-commerce or other websites in order to have good customer relationship.
- User can make online payment securely.
- Data mining algorithm used in this system provides better performance as compared to other traditional classifications algorithms.
- With the help of this system user can also purchase products online without any hesitation.

Disadvantages

- If Internet connection fails, this system won't work.
- All websites related data will be stored in one place.

11. CONCLUSION

It is outstanding that a decent enemy of phishing apparatus ought to anticipate the phishing assaults in a decent timescale. We accept that the accessibility of a decent enemy of phishing device at a decent time scale is additionally imperative to build the extent of anticipating phishing sites. This apparatus ought to be improved continually through consistent retraining. As a matter of fact, the accessibility of crisp and cutting-edge preparing dataset which may gained utilizing our very own device [30, 32] will help us to retrain our model consistently and handle any adjustments in the highlights, which are influential in deciding the site class. Albeit neural system demonstrates its capacity to tackle a wide assortment of classification issues, the procedure of finding the ideal structure is very difficult, and much of the time, this structure is controlled by experimentation. Our model takes care of this issue via computerizing the way toward organizing a neural system conspire; hence, on the off chance that we construct an enemy of phishing model and for any reasons we have to refresh it, at that point our model will encourage this procedure, that is, since our model will mechanize the organizing procedure and will request scarcely any client defined parameters.

12. FUTURE SCOPE

In future if we get structured dataset of phishing we can perform phishing detection much more faster than any other technique. In future we can use a combination of any other two or more classifier to get maximum accuracy. We also plan to explore various phishing techniques that uses Lexical features, Network based features, Content based features, Webpage based features and HTML and JavaScript features of web pages which can improve the performance of the system. In particular, we extract features from URLs and pass it through the various classifiers.

13. APPENDIX

A mechanism to detect phishing websites. Our methodology uses not just traditional URL based or content based rules but rather employs the machine learning technique to identify not so obvious patterns and relations in the data. We have used features from various domain spanning from URL to HTML tags of the webpage, from embedded URLs to favicon, and databases like WHOIS, Alexa, Pagerank, etc. to check the traffic and status of the website. We were able to obtain an accuracy of more than 96%, recall greater than 96% with a False Positive Rate of less than 5%, thus classifying most websites correctly and proving the effectiveness of the machine learning based technique to attack the problem of phishing websites. We provided the output as a user-friendly web platform which can further be extended to a browser extension to provide safe and healthy online space to the users.

Source Code: import ipaddress import re import urllib.request from bs4 import BeautifulSoup import socket import requests from googlesearch import search import whois from datetime import date, datetime import time from dateutil.parser import parse as date_parse from urllib.parse import urlparse

```
class FeatureExtraction:
features = []
__init__(self,url):
self.features = []
                      self.url
          self.domain = ""
= url
self.whois_response = ""
self.urlparse = ""
self.response = ""
self.soup = ""
     try:
       self.response = requests.get(url)
                                                 self.soup =
BeautifulSoup(response.text, 'html.parser')
                                                 except:
pass
     try:
       self.urlparse = urlparse(url)
self.domain = self.urlparse.netloc
except:
               pass
     try:
       self.whois_response = whois.whois(self.domain)
except:
                pass
self.features.append(self.UsingIp())
self.features.append(self.longUrl())
self.features.append(self.shortUrl())
self.features.append(self.symbol())
self.features.append(self.redirecting())
self.features.append(self.prefixSuffix())
```

```
self.features.append(self.SubDomains())
self.features.append(self.Hppts())
self.features.append(self.DomainRegLen())
self.features.append(self.Favicon())
self.features.append(self.NonStdPort())
self.features.append(self.HTTPSDomainURL())
self.features.append(self.RequestURL())
self.features.append(self.AnchorURL())
self.features.append(self.LinksInScriptTags())
self.features.append(self.ServerFormHandler())
self.features.append(self.InfoEmail())
self.features.append(self.AbnormalURL())
self.features.append(self.WebsiteForwarding())
self.features.append(self.StatusBarCust())
self.features.append(self.DisableRightClick())
self.features.append(self.UsingPopupWindow())
self.features.append(self.IframeRedirection())
self.features.append(self.AgeofDomain())
self.features.append(self.DNSRecording())
self.features.append(self.WebsiteTraffic())
self.features.append(self.PageRank())
self.features.append(self.GoogleIndex())
self.features.append(self.LinksPointingToPage())
self.features.append(self.StatsReport())
   # 1.UsingIp
def UsingIp(self):
try:
```

```
ipaddress.ip_address(self.url)
    return -1
                    except:
                                      return
    1
         2.longUrl
                        def
   longUrl(self):
                          if
   len(self.url) < 54:
            return 1 if len(self.url) >= 54 and
   len(self.url) <= 75:
            return 0
    return -1
      # 3.shortUrl
    def shortUrl(self):
    match =
   re.search('bit\.ly|goo
   \. gl|shorte\. st|go2l\. i
   nk|x \cdot co|ow \cdot ly|t \cdot co|
tinyurl|tr\.im|is\.gd|cli\.gs|'
                  'yfrog\.com|migre\.me|ff\.im|tiny\.cc|url4\.eu|twit\.ac|su\.pr|
twurl\.nl|snipurl\.com|'
                  'short\.to|BudURL\.com|ping\.fm|post\.ly|Just\.as|bkite\.com|
snipr\.com|fic\.kr|loopt\.us|'
                  'doiop\.com|short\.ie|kl\.am|wp\.me|rubyurl\.com|om\.ly|to\.ly|
bit\.do|t\.co|lnkd\.in|'
                  'db \cdot tt|qr \cdot ae|adf \cdot ly|goo \cdot gl|bitly \cdot com|cur \cdot lv|tinyurl \cdot com|ow \cdot ly|
bit\.ly|ity\.im|'
```

```
'q .. gs | is \. gd | po \. st | bc \. vc | twitth is \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | j \. mp | buzurl \. com | u \. to | u \
cutt\.us|u\.bb|yourls\.org|'
                                                                  'x\.co|prettylinkpro\.com|scrnch\.me|filoops\.info|vzturl\.com|qr\.net|
1url\.com|tweez\.me|v\.gd|tr\.im|link\.zip\.net',
                self.url)
                                                                             if match:
                                                                                                                                                           return -1
                                                                                                                                                                                                                             return
                 1
                         #4.Symbol@
                                                                                                       def
               symbol(self):
                                                                                                      if
               re.findall("@",self.url):
                                                 return -1
               return 1
                         # 5.Redirecting//
                                                                                                                     def
               redirecting(self):
                                                                                                                     if
               self.url.rfind('//')>6:
               return -1
                                                                                return 1
                         # 6.prefixSuffix
               def prefixSuffix(self):
               try:
                                                 match = re.findall('\-', self.domain)
               if match:
                                                                                                         return -1
                                                                                                                                                                                      return
                 1
                                               except:
                                                                                                                     return -1
                          # 7.SubDomains
                                                                                                                     def
               SubDomains(self):
                                                                                                                               dot_count =
```

```
len(re.findall("\.", self.url))
dot_count == 1:
                        return 1
                                     elif
dot_count == 2:
       return 0
return -1
  # 8.HTTPS
def Hppts(self):
try:
       https = self.urlparse.scheme
if 'https' in https:
         return 1
return -1
except:
return 1
  # 9.DomainRegLen
def DomainRegLen(self):
try:
       expiration_date = self.whois_response.expiration_date
creation_date = self.whois_response.creation_date
                                                           try:
if(len(expiration_date)):
            expiration_date = expiration_date[0]
except:
                  pass
                              try:
if(len(creation_date)):
            creation_date = creation_date[0]
except:
                  pass
```

```
age = (expiration_date.year-creation_date.year)*12+ (expiration_-
date.month-
   creation_date.month)
   if age >=12:
                           return
    1
             return -1
   except:
           return -1
      # 10. Favicon
                       def Favicon(self):
                                                            for
                                                try:
   head in self.soup.find_all('head'):
                                                  for head.link in
   self.soup.find_all('link', href=True):
                dots = [x.start(0) \text{ for } x \text{ in re.finditer('\.', head.link['href'])}]
                                                                                      if
self.url in head.link['href'] or len(dots) == 1 or domain in head.link['href']:
                   return 1
   return -1
                   except:
   return -1
      # 11. NonStdPort
   def NonStdPort(self):
   try:
           port = self.domain.split(":")
   if len(port)>1:
                             return -1
   return 1
                 except:
                                  return
   -1
      # 12. HTTPSDomainURL
   def HTTPSDomainURL(self):
```

```
self.domain:
               return -1
    return 1
                   except:
            return -1
      #13. RequestURL
                               def RequestURL(self):
                 for img in self.soup.find_all('img',
    try:
    src=True):
               dots = [x.start(0) \text{ for } x \text{ in re.finditer('\.', img['src'])}]
                                                                                    if
   self.url in img['src'] or self.domain in img['src'] or len(dots) == 1:
                  success = success + 1
    i = i+1
            for audio in self.soup.find_all('audio', src=True):
               dots = [x.start(0) \text{ for } x \text{ in re.finditer('\.', audio['src'])}]
                                                                                   if self.url
in audio['src'] or self.domain in audio['src'] or len(dots) == 1:
                  success = success + 1
   i = i+1
            for embed in self.soup.find_all('embed', src=True):
               dots = [x.start(0) \text{ for } x \text{ in re.finditer('\.', embed['src'])}]
                                                                                            if
self.url in embed['src'] or self.domain in embed['src'] or len(dots) == 1:
                  success = success + 1
   i = i+1
            for iframe in self.soup.find_all('iframe', src=True):
```

try:

if 'https' in

```
dots = [x.start(0) \text{ for } x \text{ in re.finditer('\.', iframe['src'])}]
self.url in iframe['src'] or self.domain in iframe['src'] or len(dots) == 1:
                 success = success + 1
   i = i+1
           try:
              percentage = success/float(i) * 100
   if percentage < 22.0:
                                     elif((percentage >= 22.0)) and
                 return 1
   (percentage < 61.0)):
                                        return 0
                                                            else:
                 return -1
   except:
   return 0
                  except:
           return -1
      # 14. AnchorURLdef
    AnchorURL(self):try:
           i,unsafe = 0,0
           for a in self.soup.find_all('a', href=True):
              if "#" in a['href'] or "javascript" in a['href'].lower() or "mailto" in
a['href'].lower() or not (url in a['href'] or self.domain in a['href']):
                 unsafe = unsafe + 1
   i = i + 1
           try:
              percentage = unsafe / float(i) * 100
   if percentage < 31.0:
```

if

```
elif ((percentage \geq 31.0) and
                  return 1
    (percentage < 67.0):
                                           return 0
                                                                else:
                  return -1
    except:
               return -1
         except:
    return -1
      # 15. LinksInScriptTags
   def LinksInScriptTags(self):
    try:
            i, success = 0,0
            for link in self.soup.find_all('link', href=True):
               dots = [x.start(0) \text{ for } x \text{ in re.finditer('\.', link['href'])}]
               if self.url in link['href'] or self.domain in link['href'] or len(dots) == 1:
                  success = success + 1
   i = i+1
            for script in self.soup.find_all('script', src=True):
                                                                                    if self.url
               dots = [x.start(0) \text{ for } x \text{ in re.finditer('\.', script['src'])}]
in script['src'] or self.domain in script['src'] or len(dots) == 1:
                  success = success + 1
   i = i+1
            try:
```

```
percentage = success / float(i) * 100
   if percentage < 17.0:
                                   elif((percentage >= 17.0)) and
                return 1
   (percentage < 81.0)):
                                      return 0
                                                         else:
                return -1
   except:
   return 0
                 except:
   return -1
     # 16. ServerFormHandler
   def ServerFormHandler(self):
               if
   try:
   len(self.soup.find_all('form',
   action=True))==0:
   return 1
                   else:
   for form in
   self.soup.find_all('form',
   action=True):
                              if
   form['action'] == "" or
   form['action'] == "about:blank":
   return -1
                elif self.url not in form['action'] and self.domain not in form['ac-
tion']:
                  return 0
   else:
                  return 1
   except:
                   return -
   1
```

```
# 17. InfoEmail
                     def InfoEmail(self):
                                                try:
if re.findall(r"[mail\(\)|mailto:?]", self.soap):
          return -1
else:
          return 1
except:
return -1
  # 18. AbnormalURLdef
AbnormalURL(self):try: if
self.response.text
self.whois_response:
return 1
                else:
          return -1
except:
return -1
  # 19. WebsiteForwarding
                                def
WebsiteForwarding(self):
                                try:
if len(self.response.history) <= 1:</pre>
                elif
return 1
len(self.response.history) <= 4:</pre>
          return 0
else:
          return -1
except:
return -1
```

```
# 20. StatusBarCust def StatusBarCust(self):
                                                       try:
                                                                   if
re.findall("<script>.+onmouseover.+</script>", self.response.text):
                else:
return 1
          return -1
     except:
return -1
  # 21. DisableRightClick
                             def DisableRightClick(self):
           if re.findall(r"event.button ?== ?2",
try:
self.response.text):
          return 1
else:
          return -1
except:
return -1
  # 22. UsingPopupWindow
                                def
UsingPopupWindow(self):
                                            if
                                 try:
re.findall(r"alert\(", self.response.text):
          return 1
else:
          return -1
except:
return -1
  # 23. IframeRedirection
                             def IframeRedirection(self):
                                                                try:
if re.findall(r"[<iframe>|<frameBorder>]", self.response.text):
return 1
                else:
```

```
return -1
   except:
   return -1
     # 24. AgeofDomaindef
   AgeofDomain(self):try:
          creation_date = self.whois_response.creation_date
                 if(len(creation_date)):
   try:
               creation_date = creation_date[0]
   except:
                    pass
          today = date.today()
                                      age = (today.year-
   creation_date.year)*12+(today.month-creation_-
date.month)
                   if
   age >=6:
   return 1
   return -1
   except:
   return -1
     #25. DNSRecording
   def DNSRecording(self):
   try:
          creation_date = self.whois_response.creation_date
                 if(len(creation_date)):
   try:
```

```
creation_date = creation_date[0]
   except:
                    pass
          today = date.today()
                                      age = (today.year-
   creation_date.year)*12+(today.month-creation_-
date.month)
                   if
   age >=6:
   return 1
   return -1
   except:
   return -1
              WebsiteTraffic
     # 26.
         WebsiteTraffic(self):
   def
   try:
          rank = BeautifulSoup(urllib.request.urlopen("http://data.alexa.com/
data?cli=10&dat=s&url=" + url).read(), "xml").find("REACH")['RANK']
   if (int(rank) < 100000):
            return 1
   return 0
   except:
   return -1
     #27. PageRank
   def PageRank(self):
   try:
          prank_checker_response = requests.post("https://www.checkpager-
ank.net/index.php", {"name": self.domain})
```

```
global_rank = int(re.findall(r"Global Rank: ([0-9]+)", rank_checker_re-
                        if global_rank > 0 and
sponse.text)[0])
   global_rank < 100000:
                                     return 1
   return -1
                 except:
          return -1
     # 28. GoogleIndex
   def GoogleIndex(self):
   try:
          site = search(self.url, 5)
   if site:
             return 1
   else:
             return -1
   except:
   return 1
     #29. LinksPointingToPage
     def LinksPointingToPage(self):
   try:
          number_of_links = len(re.findall(r"<a href=", self.response.text))</pre>
   if number_of_links == 0:
                                                        elif
                                        return 1
   number_of_links <= 2:</pre>
                                     return 0
                                                      else:
             return -1
   except:
          return -1
```

```
# 30. StatsReport
   def StatsReport(self):
   try:
           url_match = re.search(
        'at\.ua|usa\.cc|baltazarpresentes\.com\.br|pe\.hu|esy\.es|hol\.es|
sweddy\.com|myjino\.ru|96\.lt|ow\.ly', url)
                                                                       ip address =
socket.gethostbyname(self.domain)
                                                                       ip match =
re.search('146\.112\.61\.108|213\.174\.157\.151|
121\.50\.168\.88|192\.185\.217\.116|78\.46\.211\.158|181\.174\.165\.13|
46\.242\.145\.103|121\.50\.168\.40|83\.125\.22\.219|46\.242\.145\.98|'
                        '107\.151\.148\.44|107\.151\.148\.107|64\.70\.19\.203|
199\.184\.144\.27|107\.151\.148\.108|107\.151\.148\.109|119\.28\.52\.61|
54\.83\.43\.69|52\.69\.166\.231|216\.58\.192\.225|'
                                  '118\.184\.25\.86|67\.208\.74\.71|23\.253\.126\.58|
             104\.239\.157\.210|175\.126\.123\.219|141\.8\.224\.221|10\.10\.10\.10|
43\.229\.108\.32|103\.232\.215\.140|69\.172\.201\.153|'
'216\.218\.185\.162|54\.225\.104\.146|103\.243\.24\.98|
199\.59\.243\.120|31\.170\.160\.61|213\.19\.128\.77|62\.113\.226\.131|
208\.100\.26\.234|195\.16\.127\.102|195\.16\.127\.157|'
                               '34\.196\.13\.28|103\.224\.212\.222|172\.217\.4\.225|
               54\.72\.9\.51|192\.64\.147\.141|198\.200\.56\.183|23\.253\.164\.103|
52\.48\.191\.26|52\.214\.197\.72|87\.98\.255\.18|209\.99\.17\.27|'
                                  '216\.38\.62\.18|104\.130\.124\.96|47\.89\.58\.141|
                78\.46\.211\.158|54\.86\.225\.156|54\.82\.156\.19|37\.157\.192\.102|
204\.11\.56\.48|110\.34\.231\.42',
                       if url match:
   ip address)
   return -1
                    elif ip match:
```

```
return -1 return 1 except:
return 1

def getFeaturesList(self):
return self.features
```

GitHub link https://github.com/IBM-EPBL/IBM-Project-11788-1659345926