

COMP2007/2907 - Algorithms

Course page: Blackboard and Piazza (or Ed)

Lecturer: Joachim Gudmundsson

Level 4, Room 416, School of IT

joachim.gudmundsson@sydney.edu.au

Ph. 9351 4494

Tutors: Xavi Holt (TA) Yilun He

Natalie Tridgell Joe Godbehere

Jessica McBroom Patrick Eades

Anton Jurisevic Shumin Kong

Gengxing Wang Hisham Husein

Mingshen Cai

Course book:

J. Kleinberg and E. Tardos Algorithm Design Addison-Wesley

Outline:

12 lectures 5 assignments 10+1 quizzes Exam

Tutorials:

12 tutorials

- This unit provides an introduction to the design and analysis of algorithms. Its main aims are
 - (i) learn how to develop algorithmic solutions to computational problem
 - (ii) develop understanding of algorithm efficiency.
- Assumes basic knowledge of discrete math
 - graphs
 - big O notation
 - proof techniques

Assessment:

Quizzes 20% (average of best 8 out of 10) Each assignment 6% (5 assignments - total 30%) Exam 50% (minimum 40% required to pass)

Assignments submitted via Blackboard. Turnitin will be used to check every submission

Collaboration:

General ideas - Yes!
Formulation and writing - No!
Read <u>Academic Dishonesty and Plagiarism.</u>

- > There will be 5 homework assignments
- The objective of these is to teach problem solving skills
- > Each assignment represents 6% of your final mark. Late submissions will be penalized by 25% of the full marks per day.

```
For example, say you get 80% on your assignment: If submitted on time = 4.8

Late but within 24 hours = 4.8 * 0.75 = 3.6

Between 24 and 48 hours = 4.8 * 0.5 = 2.4

Between 48 and 72 hours = 4.8 * 0.25 = 1.2

More than 72 hours = 4.8 * 0 = 0
```


- The final will be 2.5 hours long. It will consist of 6 problems similar to those seen in the tutorials and assignments
- > The final will test your problem solving skills
- > There is a 40% exam barrier
- > The final exam represents 50% of your final mark
- Our advice is that you work hard on the assignments throughout the semester. It's the best preparation for the final.

- To get the most out of the tutorial, try to solve as many problems as you can *before* the tutorial. Your tutor is there to help you out if you get stuck, not to lecture.
- We will post solutions to tutorials (see Ed).

Preliminary schedule

- > Lecture 1 [Mon 31 July]: Introduction
- Lecture 2 [Mon 7 Aug]: Graphs
- Lecture 3 [Mon 14 Aug]: Greedy algorithms
- Lecture 4 [Mon 21 Aug]: Divide & Conquer algorithms
- > Lecture 5 [Mon 28 Aug]: Sweepline algorithms
- > **Lecture 6** [Mon 4 Sep]: Dynamic programming: basic techniques
- Lecture 7 [Mon 11 Sep]: Dynamic programming: interval scheduling and Bellman-Ford
- Lecture 8 [Mon 18 Sep]: Network flows I: Theory

Mon 25 Sep: University break

Mon 2 Oct: Labour Day

- > Lecture 9 [Mon 9 Oct]: Network flows II: Applications
- > Lecture 10 [Mon 16 Oct]: NP and intractability
- Lecture 11 [Mon 23 Oct]: Coping with hardness
- > Lecture 12 [Mon 30 Oct]: Recap

COMP2007/2907: Algorithms

Algorithms then, and now

What's in an algorithm?

- Algorithms can have huge impact
- For example -

A report to the White House from 2010 includes the following.

- Professor Martin Grotschel
 - A benchmark production planning model solved using linear programming would have taken 82 years to solve in 1988, using the computers and the linear programming algorithms of the day.
 - Fifteen years later, in 2003, this same model could be solved in roughly 1 minute, an improvement by a factor of roughly 43 million! [Extreme case, but even the average factor is very high.]

What's in an algorithm?

- In 2003 there were examples of problems that we can solve 43 million times faster than in 1988
 - This is because of better hardware and better algorithms

What's in an algorithm?

- In 1988
 - Intel 386 and 386SX
 - About 275,000 transistors
 - clock speeds of 16MHz, 20MHz, 25MHz, and 33MHz
 - MSDOS 4.0 and windows 2.0
 - VGA

- In 2003
 - Pentium M
 - About 140 million transistors
 - Up to 2.2 GHz
 - AMD Athlon 64
 - Windows XP

- In a report to the White House from 2010 includes the following.
 - Professor Martin Grotschel:
 - A benchmark production planning model solved using linear programming would have taken 82 years to solve in 1988, using the computers and the linear programming algorithms of the day.
 - Fifteen years later, in 2003, this same model could be solved in roughly 1 minute, an improvement by a factor of roughly 43 millions

Observation:

- Hardware: 1,000 times improvement
- Algorithms: 43,000 times improvement

Efficient algorithms

- Efficient algorithms produce results within available resource limits
- In practice
 - Low polynomial time algorithms behave well
 - Exponential running times are infeasible except for very small instances, or carefully designed algorithms
- Performance depends on many obvious factors
 - Hardware
 - Software
 - Algorithm
 - Implementation of the algorithm
- This unit: Algorithms

Efficient algorithms

- Efficient algorithms "do the job" the way you want them to...
 - Do you need the exact solution?
 - Are you dealing with some special case and not with a general problem?
 - Is it ok if you miss the right solution sometimes?

• Complex, highly sophisticated algorithms can greatly improve performance

But...

 Reasonably good algorithmic solutions that avoid simple, or "lazy" mistakes, can have a much bigger impact! List of topics

Greedy algorithms
Divide and conquer
Sweepline
Dynamic programming
Network flows
Mincut theorems
Approximation
Optimization problems

Introduction: Some Representative Problems

Four Representative Problems: Interval Scheduling

- > Input. Set of jobs with start times and finish times.
- Goal. Find maximum cardinality subset of mutually compatible jobs.

Weighted Interval Scheduling

- > Input. Set of jobs with start times, finish times, and weights.
- Goal. Find maximum weight subset of mutually compatible jobs.

- > Input. Bipartite graph.
- > Goal. Find maximum cardinality matching.

- > Input. Graph.
- > Goal. Find maximum cardinality independent set.

subset of nodes such that no two joined by an edge

Four Representative Problems

- Interval scheduling: n log n greedy algorithm.
- Weighted interval scheduling: n log n dynamic programming algorithm.
- > Bipartite matching: nk maxflow based algorithm.
- Independent set: NP-complete.

Algorithm Analysis & Data Structures

- > Brute force. For many non-trivial problems, there is a natural brute force search algorithm that checks every possible solution.
 - Typically takes 2^N time or worse for inputs of size N.
 - Unacceptable in practice.
- Desirable scaling property. When the input size doubles, the algorithm should only slow down by some constant factor C.

There exists constants c > 0 and d > 0 such that on every input of size N, its running time is bounded by c N^d steps.

> Definition: An algorithm is poly-time if the above scaling property holds.

- Worst case running time. Obtain bound on largest possible running time of algorithm on input of a given size N.
 - Generally captures efficiency in practice.
 - Draconian view, but hard to find effective alternative.

- Average case running time. Obtain bound on running time of algorithm on random input as a function of input size N.
 - Hard (or impossible) to accurately model real instances by random distributions.
 - Algorithm tuned for a certain distribution may perform poorly on other inputs.

Worst-Case Polynomial-Time

- Definition: An algorithm is efficient if its running time is polynomial.
- Justification: It really works in practice!
 - In practice, the poly-time algorithms that people develop almost always have low constants and low exponents.
 - Breaking through the exponential barrier of brute force typically exposes some crucial structure of the problem.
- > Exceptions.
 - Some poly-time algorithms do have high constants and/or exponents, and are useless in practice.
 - Some exponential-time (or worse) algorithms are widely used because the worst-case instances seem to be rare.

Unix grep

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10^{25} years, we simply record the algorithm as taking a very long time.

	п	$n \log_2 n$	n^2	n^3	1.5 ⁿ	2 ⁿ	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10^{25} years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10 ¹⁷ years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Asymptotic Order of Growth

- > Upper bounds. T(n) is O(f(n)) if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$ we have T(n) $\le c \cdot f(n)$.
- > Lower bounds. T(n) is $\Omega(f(n))$ if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$ we have $T(n) \ge c \cdot f(n)$.
- Tight bounds. T(n) is $\Theta(f(n))$ if T(n) is both O(f(n)) and $\Omega(f(n))$.
- Ex: $T(n) = 32n^2 + 17n + 32$.
 - T(n) is O(n²), O(n³), Ω (n²), Ω (n), and Θ (n²).
 - T(n) is not O(n), $\Omega(n^3)$, $\Theta(n)$, or $\Theta(n^3)$.

- > Slight abuse of notation. T(n) = O(f(n)).
 - Asymmetric:
 - $f(n) = 5n^3$; $g(n) = 3n^3$
 - $f(n) = O(n^3) = g(n)$
 - but $f(n) \neq g(n)$.
 - Better notation: $T(n) \in O(f(n))$.
- Meaningless statement. Any comparison-based sorting algorithm requires at least O(n log n) comparisons.
 - Statement doesn't "type-check."
 - Use Ω for lower bounds.

> Transitivity

- If f = O(g) and g = O(h) then f = O(h).
- If $f = \Omega(g)$ and $g = \Omega(h)$ then $f = \Omega(h)$.
- If $f = \Theta(g)$ and $g = \Theta(h)$ then $f = \Theta(h)$.

Additivity

- If f = O(h) and g = O(h) then f + g = O(h).
- If $f = \Omega(h)$ and $g = \Omega(h)$ then $f + g = \Omega(h)$.
- If $f = \Theta(h)$ and g = O(h) then $f + g = \Theta(h)$.

Asymptotic Bounds for Some Common Functions

- > Polynomials. $a_0 + a_1 n + ... + a_d n^d$ is $\Theta(n^d)$ if $a_d > 0$.
- Polynomial time. Running time is O(n^d) for some constant d independent of the input size n.
- > Logarithms. $O(\log_a n) = O(\log_b n)$ for any constants a, b > 0.
- > Logarithms. For every x > 0, $\log n = O(n^x)$.

log grows slower than every polynomial

> Exponentials. For every r > 1 and every d > 0, $n^d = O(r^n)$.

every exponential grows faster than every polynomial

- Linear time. Running time is at most a constant factor times the size of the input.
- > Computing the maximum. Compute maximum of n numbers $a_1, ..., a_n$.

```
    \text{max} \leftarrow a_1 \\
    \text{for } i = 2 \text{ to n} \\
    \{ \\
    \text{if } (a_i > \text{max}) \\
    \text{max} \leftarrow a_i \\
    \}
```


Merge. Combine two sorted lists A = a₁,a₂,...,a_n with B = b₁,b₂,...,b_n into one sorted list.


```
\label{eq:continuous_posterior} \begin{split} &i=1,\;j=1\\ &\text{while (both lists are nonempty) } \{\\ &\quad \text{if } (a_i \leq b_j) \text{ then append } a_i \text{ to output list and increment i}\\ &\quad \text{else append } b_j \text{ to output list and increment j}\\ &\}\\ &\text{append remainder of nonempty list to output list} \end{split}
```


- > O(n log n) time. Arises in divide-and-conquer algorithms.
- Sorting. Mergesort and heapsort are sorting algorithms that perform O(n log n) comparisons.
- > Largest empty interval. Given n time-stamps x_1 , ..., x_n on which copies of a file arrive at a server, what is largest interval of time when no copies of the file arrive?
- O(n log n) solution. Sort the time-stamps. Scan the sorted list in order, identifying the maximum gap between successive time-stamps.

- > Quadratic time. Enumerate all pairs of elements.
- > Closest pair of points. Given a list of n points in the plane $(x_1, y_1), ..., (x_n, y_n)$, find the pair that is closest.
- \rightarrow O(n²) solution. Try all pairs of points.

```
 \begin{aligned} & \min \leftarrow (\mathbf{x}_1 - \mathbf{x}_2)^2 + (\mathbf{y}_1 - \mathbf{y}_2)^2 & \longleftarrow_{\text{don't need to}} \\ & \text{for i = 1 to n } \{ \\ & \text{for j = i+1 to n } \{ \\ & \text{d} \leftarrow (\mathbf{x}_i - \mathbf{x}_j)^2 + (\mathbf{y}_i - \mathbf{y}_j)^2 \\ & \text{if (d < min)} \\ & \text{min} \leftarrow \mathbf{d} \end{aligned}
```


- > Cubic time. Enumerate all triples of elements.
- > Set disjointness. Given n sets S_1 , ..., S_n each of which is a subset of 1, 2, ..., n, is there some pair of these which are disjoint?
- > O(n³) solution. For each pairs of sets, determine if they are disjoint.

```
foreach set S<sub>i</sub> {
   foreach other set S<sub>j</sub> {
     foreach element p of S<sub>i</sub> {
        determine whether p also belongs to S<sub>j</sub>
     }
     if (no element of S<sub>i</sub> belongs to S<sub>j</sub>)
        report that S<sub>i</sub> and S<sub>j</sub> are disjoint
   }
}
```


Polynomial Time: O(nk) Time

- Independent set of size k. Given a graph, are there k nodes such that no two are joined by an edge?
- > O(nk) solution. Enumerate all subsets of k nodes.

```
foreach subset S of k nodes {
   check whether S in an independent set
   if (S is an independent set)
      report S is an independent set
   }
}
```

- Check whether S is an independent set = $O(k^2)$.

- Number of k element subsets = $\binom{n}{k} = \frac{n(n-1)(n-2)\cdots(n-k+1)}{k(k-1)(k-2)\cdots(2)(1)} \le \frac{n^k}{k!}$

- $O(k^2 n^k / k!) = O(n^k)$.

poly-time for k=17, but not practical $\stackrel{k}{=} \frac{n^k}{11}$

- Independent set. Given a graph, what is maximum size of an independent set?
- > O(n² 2ⁿ) solution. Enumerate all subsets.

```
S* ← ф
foreach subset S of nodes {
   check whether S in an independent set
   if (S is largest independent set seen so far)
      update S* ← S
   }
}
```


Summary: Algorithm analysis

- You must learn the asymptotic order of growth. It is fundamental when measuring the performance of an algorithm.
 - O-notation
 - Ω -notation
 - ⊕-notation
- Transitivity and additivity

Basic dynamic data structures

Assumed knowledge:

- Linked lists
- Queues
- Stacks
- Balanced binary trees

- > Programs manipulate data
- > Data should be organized so manipulations will be efficient
 - Search (e.g. Finding a word/file/web page)
- Good programs are powered by good data structures
- > Naïve choices are often much less efficient than clever choices
- Data structures are existing tools that can help you
 - guide your design, and
 - save you time (avoid re-inventing the wheel)

The Queue data structure

- The Queue data structure stores arbitrary objects
- Insertions and deletions follow the first-in first-out (FIFO) scheme
- Insertions are at the rear of the queue and removals are at the front of the queue
- Main queue operations:
 - enqueue(object): inserts an element at the end of the queue
 - object dequeue(): removes and returns the element at the front of the queue

- Auxiliary queue operations:
 - object front(): returns the element at the front without removing it
 - integer size(): returns the number of elements stored
 - boolean isEmpty(): indicates whether no elements are stored

- The Stack data structure stores arbitrary objects
- Insertions and deletions follow the last-in first-out (LIFO) scheme
- Think of a spring-loaded plate dispenser
- Main stack operations:
 - push(object): inserts an element
 - object pop(): removes and returns the last inserted element

- Auxiliary stack operations:
 - object top(): returns the last inserted element without removing it
 - integer size(): returns the number of elements stored
 - boolean isEmpty(): indicates whether no elements are stored

Tree Terminology

- Root: node without parent (A)
- Internal node: node with at least one child (A, B, C, F)
- External node (a.k.a. leaf): node without children (E, I, J, K, G, H, D)
- Ancestors of a node: parent, grandparent, grand-grandparent, etc.
- Depth of a node: number of ancestors
- Height of a tree: maximum depth of any node (3)
- Descendant of a node: child, grandchild, grand-grandchild, etc.

Subtree: tree consisting of a node and its descendants

Notation

n number of nodes

e number of external nodes

i number of internal nodes

h height

Properties:

$$\bullet e = i + 1$$

$$n = 2e - 1$$

■
$$h \leq i$$

■
$$h \le (n-1)/2$$

•
$$e \leq 2^h$$

■
$$h \ge \log_2 e$$

■
$$h \ge \log_2 (n + 1) - 1$$

Running Times for AVL Trees

- find is O(log n)
 - height of tree is O(log n), no restructures needed
- insert is O(log n)
 - initial find is O(log n)
 - Restructuring up the tree, maintaining heights is O(log n)
- remove is O(log n)
 - initial find is O(log n)
 - Restructuring up the tree, maintaining heights is O(log n)

Summary data structures

- > Queues
 - Enqueue, dequeue, first and size operations in O(1) time.
- Stacks
 - Push, pop, top and size operations in O(1) time
- > Balanced binary trees (e.g. AVL trees)
 - Insert, delete and find operations in O(log n) time