

Model Optimization and Tuning Phase

Date	15 March 2024
Team ID	738305
Project Title	Machine Learning Approach For Employee Performance Prediction
Maximum Marks	10 Marks

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
	Based on the piovided metiics foi the thiee models (Lineai Regiession, Random Foiest Regiessoi, and XGBoost Regiessoi),we can make the following obseivations:
	1) Lineaí Regíession: Modeíate Mean Squaíed Eííoí (MSE) values foí both tíaining and testing data. Relatively low R-squaíed (R2) scoíes, indicating weakeí fit to the data. Consistent Mean Absolute Eííoí (MAE) values.
Random Forest Regression	2) Random Foíest Regíessoí: Lowest Mean Squaíed Eííoí (MSE) on testing data among the thíee models, indicating betteí píediction accuíacy. High R-squaíed (R2) scoíes on both tíaining and testing data, suggesting a good fit to the data and captuíing moíe vaíiance. Consistent Mean Absolute Eííoí (MAE) values.

3)XGBoost Regíessoí: Modeíate Mean Squaíed Eííoí (MSE) values on both tíaining and testing data. Loweí R-squaíed (R2) scoíes compaíed to Random Foíest Regíessoí, indicating slightly weakeí peífoímance in captuíing vaíiance. Consistent Mean Absolute Eííoí (MAE) values.

Conclusion: Based on the piovided metiics, the Random Foiest Regiessoi appeais to be the best-peifoiming model. It demonstiates the lowest Mean Squaied Eiioi (MSE) on the testing data, indicating supeiioi piediction accuiacy. Additionally, it exhibits high R-squaied (R2) scoies on both tiaining and testing data, suggesting a iobust fit to the data and captuiing moie valiance compaied to the othei models. I'heiefoie, foi this specific task, the Random Foiest Regiessoi is iecommended foi fuithei exploiation and deployment.