Lecture 3 Simple Linear Regression

Learning Objectives

- ☐ How to load data from a text file
- ☐ How to visualize data via a scatter plot
- Describe a linear model for data
 - Identify the target variable and predictor
- □ Compute optimal parameters for the model using the regression formula
- ☐ Fit parameters for related models by minimizing the residual sum of squares
- \square Compute the R^2 measure of fit
- □ Visually determine goodness of fit and identify different causes for poor fit

Outline

Bad Fit?

Let us create an example where linear regression would not be the best method to predict future values.

```
from scipy import stats

x = [5,7,8,7,2,17,2,9,4,11,12,9,6]
y = [99,86,87,88,111,86,103,87,94,78,77,85,86]

slope, intercept, r, p, std_err = stats.linregress(x, y)

def myfunc(x):
   return slope * x + intercept

speed = myfunc(10)

print(speed)
```


R-Squared

- □ It is important to know how well the relationship between the values of the x- and y-axis is, if there are no relationship the polynomial regression can not be used to predict anything.
- ☐ The relationship is measured with a value called the r-squared.
- ☐ The r-squared value ranges from 0 to 1, where 0 means no relationship, and 1 means 100% related.

Polynomial Regression

☐ If your data points clearly will not fit a linear regression (a straight line through all data points), it might be ideal for polynomial regression.

☐ Polynomial regression, like linear regression, uses the relationship between the variables x and y to find the best way to draw a line through the data points.

$$x = [1,2,3,4,5]$$

$$y = [5,7,9,11,13]$$

$$y = 2x + 3$$

area = [2600,3000,3200,3600,4000]

price = [550k, 565k, 610k, 680k, 725k]

area = [2600,3000,3200,3600,4000]

price = [550k, 565k, 610k, 680k, 725k]

price = 135.78 * area + 180616.43

Mean Squared Error

$$ms\varepsilon = \frac{1}{n} \sum_{i=1}^{n} (y_i - y_{predicted})^2$$

Mean Squared Error

$$ms\varepsilon = \frac{1}{n} \sum_{i=1}^{n} (y_i - (mx_i + b))^2$$

Cost Function

Gradient descent is an algorithm that finds best fit line for given training data set

https://www.mathsisfun.com/equation_of_line.html

https://www.mathsisfun.com/calculus/derivatives-introduction.html

https://www.mathsisfun.com/calculus/derivatives-partial.html

Slope =
$$\frac{\text{Change in Y}}{\text{Change in X}}$$

We can find an **average** slope between two points.

average slope =
$$\frac{24}{15}$$

$$ms\varepsilon = \frac{1}{n} \sum_{i=1}^{n} (y_i - (mx_i + b))^2$$

$$\partial/\partial m = \frac{2}{n} \sum_{i=1}^{n} -x_i \left(y_i - (mx_i + b) \right)$$

$$\partial/\partial b = \frac{2}{n}\sum_{i=1}^{n} -(y_i - (mx_i + b))$$

 $m = m - learning rate * \frac{\partial}{\partial m}$

 $b = b - learning rate * \frac{\partial}{\partial b}$

Outline

- ☐ Motivating Example1: Predicting the prices of a house
- **■ Motivating Example2: Predicting the mpg of a car**
- ☐ ☐ Linear Model
 - ☐ Least Squares Fit Problem
 - ☐ Sample Mean and Variance
 - ☐ LS Fit Solution
 - ☐ Assessing Goodness of Fit

Exercise: Postulate a Model

- ☐ Break into small groups
- ☐ Try to find a mathematical model to predict mpg from displacement, horsepower or acceleration
 - Make a reasonable / eyeball guess. No need for program now.
- □What does your model predict when displacement = 200?

Data

- $\Box y$ = variable you are trying to predict.
 - Called many names: Dependent variable, response variable, target, regressand, ...
- $\Box x$ = what you are using to predict:
 - Predictor, attribute, covariate, regressor, ...
- □ Data: Set of points, (x_i, y_i) , i = 1, ..., n
 - Each data point is called a sample.
- ☐Scatter plot

x = horsepower

Linear Model

☐ Assume a linear relation

$$y \approx \beta_0 + \beta_1 x$$

-20

- $\beta_0 = \text{intercept}$
- \circ β_1 = slope
- $\Box \beta = (\beta_0, \beta_1)$ are the parameters of the model
- \square What are the units of β_0 , β_1 ?
- ■When is this model good?

Why Use a Linear Model?

- ☐ Many natural phenomena have linear relationship
- ☐ Predictor has small variation
 - Suppose y = f(x)
 - If variation of x is small around some value x_0 , then

$$y \approx f(x_0) + f'(x_0)(x - x_0) = \beta_0 + \beta_1 x$$

$$\beta_0 = f(x_0) - f'(x_0)x_0, \qquad \beta_1 = f'(x_0)$$

- ☐ Simple to compute
- ☐ Easy to interpret relation
- $lue{}$ Gaussian random variables: If x and y were Gaussian, optimal estimator of y is linear in x

Outline

- ☐ Motivating Example: Predicting the mpg of a car
- ☐Linear Model
- ☐ Least Squares Fit Problem
- Sample Mean and Variance
- ☐ LS Fit Solution
- ☐ Assessing Goodness of Fit

Linear Model Residual

- \square Knowing x does not exactly predict y
 - \circ Variation in y due to factors other than x
- ☐ Add a residual term

$$y = \beta_0 + \beta_1 x + \epsilon$$

- ☐ Residual = component the model does not explain
 - Predicted value: $\hat{y}_i = \beta_1 x_i + \beta_0$
 - Residual: $\epsilon_i = y_i \hat{y}_i$
- □ Vertical deviation from the regression line

Least Squares Model Fitting

- \square How do we select parameters $\beta = (\beta_0, \beta_1)$?
- $\Box \text{ Define } \hat{y}_i = \beta_1 x_i + \beta_0$
 - Predicted value on sample *i* for parameters $\beta = (\beta_0, \beta_1)$
- ☐ Define average residual sum of squares:

RSS
$$(\beta_0, \beta_1)$$
: = $\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$

- \circ Note that \hat{y}_i is implicitly a function of $eta=(eta_0,eta_1)$
- Also called the sum of squared residuals (SSR) and sum of squared errors (SSE)
- Least squares solution: Find (β_0, β_1) to minimize RSS.
 - Geometrically, minimizes squared distances of samples to regression line

Finding Parameters via Optimization A general ML recipe

General ML problem

☐ Find a model with parameters

☐Get data

☐ Pick a loss function

- Measures goodness of fit model to data
- Function of the parameters

Simple linear regression

Linear model: $\hat{y} = \beta_0 + \beta_1 x$

 \rightarrow Data: $(x_i, y_i), i = 1, 2, ..., N$

Loss function:

 $RSS(\beta_0, \beta_1) \coloneqq \sum (y_i - \beta_0 + \beta_1 x_i)^2$

 \square Find parameters that minimizes loss \longrightarrow Select β_0, β_1 to minimize $RSS(\beta_0, \beta_1)$

Outline

- ☐ Motivating Example: Predicting the mpg of a car
- ☐ Linear Model
- ☐ Least Squares Fit Problem
- Sample Mean and Variance
 - ☐LS Fit Solution
 - ☐ Assessing Goodness of Fit

Sample Mean and Standard Deviations

- \square Given data $(x_i, y_i), i = 1, ..., N$
- Sample mean $\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$, $\bar{y} = \frac{1}{N} \sum_{i=1}^{N} y_i$
- ☐ Sample variances

$$s_x^2 = \frac{1}{N} \sum_{i=1}^N (x_i - \bar{x})^2$$
, $s_y^2 = \frac{1}{N} \sum_{i=1}^N (y_i - \bar{y})^2$

- Some formulae have a N-1 on denominator
- For technical reasons, above formulae are called the biased variances.
- ■Sample standard deviation
 - \circ S_{χ}, S_{γ}
 - Square root of variances

Visualizing Mean and SD on Scatter Plot Question

Using the picture only (no calculators), estimate the following (roughly):

 \Box The sample mean mpg and horsepower: \bar{x} , \bar{y}

 \Box The sample std deviations: s_x , s_y

Visualizing Mean and SD on Scatter Plot Approximate answer

- lacktriangle Means: $ar{x}$ and $ar{y}$
 - Weighted center of the points in each axis
- \square Standard deviations: s_x and s_y
 - Represents "variation" in each axis from mean
 - With Gaussian distributions:0.27% of points are 3 SDs from mean

Computing Means and SD in Python

☐ Exact answer can be computed in python

```
xm = np.mean(x)
ym = np.mean(y)
syy = np.mean((y-ym)**2)
syx = np.mean((y-ym)*(x-xm))
sxx = np.mean((x-xm)**2)
beta1 = syx/sxx
beta0 = ym - beta1*xm
```

```
xbar = 104.47, ybar= 23.4
sqrt(sxx)= 38.44, sqrt(syy)= 7.8
```


Sample Covariance

☐ Sample covariance:

$$s_{xy} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})$$

- ☐ Will interpret this momentarily
- \square Cauchy-Schartz Law: $|s_{\chi y}| < s_{\chi} s_{\gamma}$
- ☐ Sample correlation coefficient

$$r_{\chi y} = \frac{S_{\chi y}}{S_{\chi} S_{\nu}} \in [-1,1]$$

Statistics

- □Often need to compute averages of other functions of data
- \square Definition: The sample mean of a function g(x, y) is:

$$\langle g(x_i, y_i) \rangle \coloneqq \frac{1}{N} \sum_{i=1}^{N} g(x_i, y_i)$$

- Represents the average of g(x, y) on the data
- Function g(x, y) is called a statistic
- ■With this notation:
 - $\bar{x} = \langle x_i \rangle, \ \bar{y} = \langle y_i \rangle$
 - $\circ \ s_{xx} = \langle (x_i \bar{x})^2 \rangle, \ s_{yy} = \langle (y_i \bar{y})^2 \rangle$

Alternate Equation for Variance

- □Alternate equations for variance and sample co-variance:
 - Sample variances $s_{xx} = \langle x_i^2 \rangle \langle x_i \rangle^2$, $s_{yy} = \langle y_i^2 \rangle \langle y_i \rangle^2$
 - Sample co-variance $s_{xy} = \langle x_i y_i \rangle \langle x_i \rangle \langle y_i \rangle$

Proof:

$$s_{xx} = \frac{1}{N} \sum (x_i - \bar{x})^2 = \frac{1}{N} \sum (x_i^2 - 2x_i \bar{x} + \bar{x}^2) = \langle x_i^2 \rangle - 2\bar{x} \langle x_i \rangle + \bar{x}^2$$

- Recall $\bar{x} = \langle x_i \rangle$
- Therefore, $s_{xx} = \langle x_i^2 \rangle \langle x_i \rangle^2$
- Other relations $s_{yy}=\langle y_i^2\rangle-\langle y_i\rangle^2$ and $s_{xy}=\langle x_iy_i\rangle-\langle x_i\rangle\langle y_i\rangle$ proved similarly

Notation

- ☐ This class will use the following notation
- ☐ We will try to be consistent
- Note: Other texts use different notations

Statistic	Notation	Formula	Python
Sample mean	\bar{x}	$\frac{1}{n}\sum_{i=1}^{n}x_{i}$	xm
Sample variance	$s_x^2 = s_{xx}$	$\frac{1}{n}\sum_{i=1}^n(x_i-\bar{x})^2$	SXX
Sample standard deviation	$s_x = \sqrt{s_{xx}}$	$s_x = \sqrt{s_{xx}}$	SX
Sample covariance	$S_{\chi y}$	$\frac{1}{n}\sum_{i=1}^{n}(x_i-\bar{x})(y_i-\bar{y})$	sxy

Outline

- ☐ Motivating Example: Predicting the mpg of a car
- ☐Linear Model
- ☐ Least Squares Fit Problem
- ☐ Sample Mean and Variance
- LS Fit Solution
 - ☐ Assessing Goodness of Fit

Minimizing RSS

 \square To minimize RSS(β_0 , β_1) take partial derivatives:

$$\frac{\partial RSS}{\partial \beta_0} = 0, \qquad \frac{\partial RSS}{\partial \beta_1} = 0$$

☐ Taking derivatives we get two conditions (proof on board):

$$\sum_{i=1}^{N} \epsilon_i = 0, \qquad \sum_{i=1}^{N} x_i \epsilon_i = 0 \quad \text{where } \epsilon_i = y_i - \beta_0 - \beta_1 x_i$$

- ☐ Regression equation:
 - After some manipulation, (proof on board), solution to optimal slope and intercept:

$$\beta_1 = \frac{s_{xy}}{s_x^2} = \frac{r_{xy}s_y}{s_x}, \qquad \beta_0 = \bar{y} - \beta_1 \bar{x}$$

Simple Example

☐From:

http://stattrek.com/regression/regressio
n-example.aspx?Tutorial=AP

- Very nice simple problems
- ☐ Predict aptitude on one test from an earlier test
- ☐ Draw a scatter plot and regression line

How to Find the Regression Equation

In the table below, the x_i column shows scores on the aptitude test. Similarly, the y_i column shows statistics grades. The last two rows show sums and mean scores that we will use to conduct the regression analysis.

	Student	xi	y _i	(x _i - x)	(y _i - y)	$(x_i - \bar{x})^2$	$(y_i - \bar{y})^2$	$(x_i - x)(y_i - y)$
	1	95	85	17	8	289	64	136
	2	85	95	7	18	49	324	126
	3	80	70	2	-7	4	49	-14
	4	70	65	-8	-12	64	144	96
	5	60	70	-18	-7	324	49	126
Sum		390	385			730	630	470
Mean		78	77					

The regression equation is a linear equation of the form: $\hat{y} = b_0 + b_1 x$. To conduct a regression analysis, we need to solve for b_0 and b_1 . Computations are shown below.

$$b_1 = \sum [(x_i - \overline{x})(y_i - \overline{y})] / \sum [(x_i - \overline{x})^2]$$

$$b_1 = 470/730 = 0.644$$

$$b_0 = \overline{y} - b_1 * \overline{x}$$

$$b_0 = 77 - (0.644)(78) = 26.768$$

Auto Example

☐ Python code


```
xm = np.mean(x)
ym = np.mean(y)
syy = np.mean((y-ym)**2)
syx = np.mean((y-ym)*(x-xm))
sxx = np.mean((x-xm)**2)
beta1 = syx/sxx
beta0 = ym - beta1*xm
```

Regression line:

$$mpg = \beta_0 + \beta_1 horsepower$$

Outline

- ☐ Motivating Example: Predicting the mpg of a car
- ☐ Linear Model
- ☐ Least Squares Fit Problem
- ☐ Sample Mean and Variance
- ☐ LS Fit Solution

Assessing Goodness of Fit

Minimum RSS

☐ Minimum RSS (Proof on board)

$$\min_{\beta_0, \beta_1} RSS(\beta_0, \beta_1) = N(1 - r_{xy}^2) s_y^2$$

- \square Coefficient of Determination: $R^2 = r_{xy}^2$
 - \circ Explains portion of variance in y explained by x
 - s_{ν}^2 =variance in target y
 - $(1 R^2)s_y^2$ = residual sum of squares after accounting for x

Visually seeing correlation

- $\square R^2 = r_{xy}^2 \approx 1$: Linear model is a very good fit
- $\square R^2 = r_{xy}^2 \approx 0$: Linear model is a poor fit.

$$\Box \beta_1 = \frac{r_{xy}s_y}{s_x} \Rightarrow \operatorname{Sign}(\beta_1) = \operatorname{Sign}(r_{xy})$$

When the Error is Large...

- ☐ Many sources of error for a linear model
- □Always good to visually inspect the scatter plot
 - Look for trends
- ☐ Example to the left
 - All four data sets have same regression line
 - But, errors and their reasons are different
- ☐ How would you describe these errors?

A Better Model for the Auto Example

- □ Fit the inverse: $\frac{1}{\text{mpg}} = \beta_0 + \beta_1 \text{horsepower}$
- ☐ Uses a nonlinear transformation
- Will cover this idea later

