## **Data Professionals Survey Analysis**

Power bi and Sql Project Report

#### select \* from data\_professionals\_survey;

| _           |                          |                      |               |         |         |                     |                   |                      |               |                      |                  |
|-------------|--------------------------|----------------------|---------------|---------|---------|---------------------|-------------------|----------------------|---------------|----------------------|------------------|
|             | Unique_ID                | Job_Profile          | Career_Switch | Min_sal | Max_sal | Avg_Salary<br>(USD) | Industry          | Programming_Language | Rating_salary | Rating_work_life_bal | Rating_Coworkers |
| <b>&gt;</b> | 62a33b3db4da29969c62df3d | data analyst         | Yes           | 106     | 125     | 116                 | healthcare        | Python               | 9             | 9                    | 7                |
|             | 62a33ba1bae91e4b8b82e35c | data analyst         | No            | 41      | 65      | 53                  | finance           | R                    | 1             | 2                    | 5                |
|             | 62a33c2cbc6861bf3176bec1 | data engineer        | No            | 0       | 40      | 20                  | dean energy       | Python               | 0             | 8                    | 7                |
|             | 62a33c8624a26260273822f9 | analytics consultant | Yes           | 150     | 225     | 188                 | finance           | R                    | 10            | 6                    | 7                |
|             | 62a33c91f3072dd892621e03 | data analyst         | Yes           | 41      | 65      | 53                  | healthcare        | R                    | 1             | 4                    | 4                |
|             | 62a33cb6cf25554317300177 | data analyst         | Yes           | 0       | 40      | 20                  | coworking space   | Python               | 2             | 3                    | 3                |
|             | 62a33cb72e54c9003e531c65 | data scientist       | Yes           | 0       | 40      | 20                  | finance           | Python               | 0             | 6                    | 6                |
|             | 62a33cd30f8c8599d5af0f8f | data engineer        | Yes           | 125     | 150     | 138                 | retail            | Other:SQL            | 10            | 5                    | 5                |
|             | 62a33cd3cf255543173001d9 | data analyst         | Yes           | 86      | 105     | 96                  | healthcare        | R                    | 4             | 4                    | 4                |
|             | 62a33cd8bc6861bf3176c05f | data analyst         | Yes           | 41      | 65      | 53                  | telecommunication | Python               | 2             | 0                    | 3                |
|             | 62a33ce918134ddc75ce8c30 | data analyst         | Yes           | 66      | 85      | 76                  | logistics         | Python               | 10            | 10                   | 8                |

#### 1) No. and Percentage of Career Switches by job profile

select Job\_Profile, count(Career\_Switch) as Switched\_Career from data\_professionals\_survey where Career\_Switch = 'Yes' group by Job\_Profile order by count(Career\_Switch) desc;

|   | Job_Profile                            | Switched_Career |
|---|----------------------------------------|-----------------|
| • | data analyst                           | 240             |
|   | student/looking/none                   | 40              |
|   | data engineer                          | 22              |
|   | data scientist                         | 19              |
|   | database developer                     | 5               |
|   | business analyst                       | 5               |
|   | analytics engineer                     | 2               |
|   | data architect                         | 2               |
|   | analytics consultant                   | 1               |
|   | manager, business intelligence develop | 1               |
|   | business intelligence consultant       | 1               |
|   | research analyst                       | 1               |
|   | incidhte analyet                       | 1               |

select Job\_Profile, count(Job\_Profile) as num\_of\_people , sum(case when Career\_Switch = 'Yes' then 1 else 0 end) as switched, 100 \* sum(case when Career\_Switch = 'Yes' then 1 else 0 end) / count(\*) as percent\_switched from data\_professionals\_survey group by Job\_Profile ;

| Job_Profile                            | num_of_people | switched | percent_switched |
|----------------------------------------|---------------|----------|------------------|
| data analyst                           | 370           | 240      | 64.8649          |
| data engineer                          | 38            | 22       | 57.8947          |
| analytics consultant                   | 1             | 1        | 100.0000         |
| data scientist                         | 25            | 19       | 76.0000          |
| student/looking/none                   | 84            | 40       | 47.6190          |
| fp&a analyst                           | 1             | 0        | 0.0000           |
| bi developer                           | 1             | 0        | 0.0000           |
| manager, business intelligence develop | 1             | 1        | 100.0000         |
| business analyst                       | 9             | 5        | 55.5556          |
| business intelligence consultant       | 1             | 1        | 100.0000         |
| sr. supply chain analyst               | 1             | 0        | 0.0000           |
| director of data analytics             | 1             | 0        | 0.0000           |
| learning management enerialist         | 1             | 0        | 0.0000           |

## 2) Most Common factors for career switch

select Switch\_factor, count(Switch\_factor) as count from data\_professionals\_survey group by Switch\_factor order by count desc;

|   | Switch_factor                                     | count |
|---|---------------------------------------------------|-------|
| • | Better Salary                                     | 293   |
|   | Remote Work                                       | 121   |
|   | Good Work/Life Balance                            | 112   |
|   | Good Culture                                      | 53    |
|   | Responsibilities                                  | 1     |
|   | Development                                       | 1     |
|   | Strong organizational data strategy, high-perfo   | 1     |
|   | Currently very happy with where I am.             | 1     |
|   | My passion is to become a Data analyst            | 1     |
|   | Different job title, either product owner or cons | 1     |
|   | Opportunity for advancement                       | 1     |
|   | Want to move from Australia to Canada, so pos     | 1     |
|   | All of the notions are important to me when look  | 1     |

# 3) Sum of Salary by Job profile (it is affected by the no. of records per category)

select Job\_Profile, sum(`Avg\_Salary (USD)`) as salary from data\_professionals\_survey group by Job\_Profile order by salary desc;

|   | Job_Profile                            | salary |
|---|----------------------------------------|--------|
| ١ | data analyst                           | 20576  |
|   | data engineer                          | 2481   |
|   | data scientist                         | 2351   |
|   | student/looking/none                   | 2218   |
|   | business analyst                       | 444    |
|   | analytics manager                      | 326    |
|   | analytics engineer                     | 318    |
|   | data architect                         | 192    |
|   | analytics consultant                   | 188    |
|   | manager, business intelligence develop | 188    |
|   | director                               | 188    |
|   | manager                                | 188    |
|   | datahasa dayalonar                     | 166    |

### 4) Average salary by job profile

select Job\_Profile, avg(`Avg\_Salary (USD)`) as avg\_salary from data\_professionals\_survey group by Job\_Profile order by avg\_salary desc;

|   | Job_Profile                            | avg_salary |
|---|----------------------------------------|------------|
| • | analytics consultant                   | 188.0000   |
|   | manager, business intelligence develop | 188.0000   |
|   | manager                                | 188.0000   |
|   | director                               | 188.0000   |
|   | analytics manager                      | 163.0000   |
|   | manager of a team of data analysts     | 138.0000   |
|   | bi manager                             | 116.0000   |
|   | sr. supply chain analyst               | 96.0000    |
|   | director of data analytics             | 96.0000    |
|   | jr. data scientist                     | 96.0000    |
|   | does a social media analyst count?     | 96.0000    |
|   | software engineer                      | 96.0000    |
|   | software engineer ai                   | ae uuuu    |

# 5) Showing average salary by job profile with the proportion of each job profile in the data

```
SELECT
Job_Profile,
COUNT(*) AS Num_Records,
AVG(`Avg_Salary (USD)`) AS Avg_Salary,
COUNT(*) / (SELECT COUNT(*) FROM data_professionals_survey) AS
Proportion
FROM
data_professionals_survey
GROUP BY
Job_Profile
ORDER BY
Proportion DESC;
```

|   | I                      |             |            |            |
|---|------------------------|-------------|------------|------------|
|   | Job_Profile            | Num_Records | Avg_Salary | Proportion |
| • | data analyst           | 370         | 55.6108    | 0.6046     |
|   | student/looking/none   | 84          | 26.4048    | 0.1373     |
|   | data engineer          | 38          | 65.2895    | 0.0621     |
|   | data scientist         | 25          | 94.0400    | 0.0408     |
|   | business analyst       | 9           | 49.3333    | 0.0147     |
|   | database developer     | 5           | 33.2000    | 0.0082     |
|   | analytics engineer     | 4           | 79.5000    | 0.0065     |
|   | data architect         | 3           | 64.0000    | 0.0049     |
|   | other (please specify) | 2           | 68.0000    | 0.0033     |
|   | analytics manager      | 2           | 163.0000   | 0.0033     |
|   | data manager           | 2           | 64.5000    | 0.0033     |
|   | fp&a analyst           | 1           | 53.0000    | 0.0016     |
|   | hi davalonar           | 1           | 20 0000    | 0.0016     |
|   |                        |             |            |            |

# 6) Salary by country of residence and no. of records of that country in the data select Country\_of\_residence, avg(`Avg\_Salary (USD)`) as avg\_sal, count(\*) from data\_professionals\_survey

group by Country\_of\_residence order by count(\*) desc;

|   |                      | _       |          |
|---|----------------------|---------|----------|
|   | Country_of_residence | avg_sal | count(*) |
| • | United States        | 78.9419 | 258      |
|   | India                | 30.0435 | 69       |
|   | United Kingdom       | 45.8684 | 38       |
|   | Canada               | 68.0313 | 32       |
|   | Nigeria              | 22.0741 | 27       |
|   | Germany              | 48.2857 | 14       |
|   | Spain                | 23.6667 | 9        |
|   | Australia            | 65.2500 | 8        |
|   | Costa Rica           | 20.0000 | 8        |
|   | Egypt                | 24.7143 | 7        |
|   | Kenya                | 24.7143 | 7        |
|   | Argentina            | 20.0000 | 6        |
|   | Doland               | 25 5000 | 6        |

# 7) Average salary by industrycount of each industry

update data\_professionals\_survey set Industry = 'other' where Industry in ( select Industry from (

```
select Industry, count(*) from data_professionals_survey group by Industry having count(*) < 5 ) as subquery );
```

select distinct Industry, count(\*) from data\_professionals\_survey group by Industry order by count(\*) desc;

|   | Industry          | count(*) |
|---|-------------------|----------|
| • | tech              | 145      |
|   | other             | 144      |
|   | finance           | 93       |
|   | healthcare        | 82       |
|   | education         | 38       |
|   | telecommunication | 22       |
|   | retail            | 15       |
|   | construction      | 14       |
|   | real estate       | 13       |
|   | automotive        | 8        |
|   | consulting        | 8        |
|   | manufacturing     | 7        |
|   |                   |          |

select Industry, avg(`Avg\_Salary (USD)`) as avg\_sal , count(\*) as no\_of\_records\_per\_industry from data\_professionals\_survey group by Industry order by avg\_sal desc;

|   | Industry    | avg_sal | no_of_records_per_industry |
|---|-------------|---------|----------------------------|
| ١ | retail      | 86.9333 | 15                         |
|   | energy      | 76.2000 | 5                          |
|   | healthcare  | 64.4146 | 82                         |
|   | automotive  | 63.3750 | 8                          |
|   | marketing   | 60.6667 | 6                          |
|   | finance     | 57.7097 | 93                         |
|   | consulting  | 55.8750 | 8                          |
|   | real estate | 55.7692 | 13                         |
|   | insurance   | 55.6000 | 5                          |
|   | education   | 55.2105 | 38                         |
|   | agriculture | 53.0000 | 7                          |
|   | other       | 50.8681 | 144                        |
|   |             |         |                            |

#### 8) average salary by programming language

group by cleaned\_Prog\_lang order by count(\*) desc;

```
- cleaning prog lang column
update data_professionals_survey
set cleaned_Prog_lang =
case
when lower(Programming_Language) like "%python%" then 'Python'
when lower(Programming_Language) like "%sql%" then 'SQL'
when lower(Programming_Language) like "%excel%" then 'Excel'
when lower(Programming_Language) like "%javascript%" then 'Javascript'
when lower(Programming_Language) like "%c/c++%" then 'c/c++'
when lower(Programming Language) like "%dax%" then 'DAX'
when lower(Programming_Language) like "%r" then 'DAX'
when lower(Programming_Language) like "%dont%" or lower(Programming_language)
like "%don't%" or lower(Programming language)
like "%don't know%" or lower(Programming language)
like "%do not%" or lower(Programming language)
like "%know any%" or lower(Programming language)
like "%none%" or lower(Programming_language)
like "%na%" then 'None'
else 'other'
end:
select cleaned_Prog_lang, count(*)
from data professionals survey
```



select cleaned\_Prog\_lang, count(\*), avg(`Avg\_Salary (USD)`) as avg\_salary from data\_professionals\_survey group by cleaned\_Prog\_lang order by avg\_salary desc;

|   | deaned_Prog_lang | count(*) | avg_salary |
|---|------------------|----------|------------|
| • | other            | 14       | 78.7857    |
|   | DAX              | 5        | 74.2000    |
|   | SQL              | 49       | 71.6122    |
|   | None             | 13       | 64.1538    |
|   | R                | 106      | 55.9434    |
|   | Python           | 409      | 51.0073    |
|   | Javascript       | 6        | 49.1667    |
|   | Excel            | 3        | 42.0000    |
|   | c/c++            | 7        | 38.8571    |

select Job\_Profile, cleaned\_Prog\_lang, avg(`Avg\_Salary (USD)`) as avg\_salary, count(\*) from data\_professionals\_survey group by Job\_Profile, cleaned\_Prog\_lang order by avg\_salary desc;

| deaned_Prog_lang | avg_salary                              | count(*)                                                                                                                 |
|------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| R                | 188.0000                                | 1                                                                                                                        |
| Python           | 188.0000                                | 1                                                                                                                        |
| R                | 188.0000                                | 1                                                                                                                        |
| Python           | 188.0000                                | 1                                                                                                                        |
| None             | 188.0000                                | 1                                                                                                                        |
| SQL              | 142.6000                                | 5                                                                                                                        |
| SQL              | 138.0000                                | 1                                                                                                                        |
| Python           | 138.0000                                | 1                                                                                                                        |
| R                | 121.5000                                | 4                                                                                                                        |
| other            | 116.0000                                | 1                                                                                                                        |
|                  | R Python R Python None SQL SQL Python R | R 188.0000 Python 188.0000 R 188.0000 Python 188.0000 None 188.0000 SQL 142.6000 SQL 138.0000 Python 138.0000 R 121.5000 |

#### // Popular languages among different job profiles

select Job\_Profile, cleaned\_Prog\_lang, avg(`Avg\_Salary (USD)`) as avg\_salary, count(\*) from data\_professionals\_survey group by Job\_Profile, cleaned\_Prog\_lang order by Job\_Profile, cleaned\_Prog\_lang;

| Job_Profile                      | cleaned_Prog_lang | avg_salary | count(*) |
|----------------------------------|-------------------|------------|----------|
| consultant                       | Python            | 20.0000    | 1        |
| continuous quality improvement s | DAX               | 53.0000    | 1        |
| data analyst                     | c/c++             | 33.2000    | 5        |
| data analyst                     | DAX               | 88.3333    | 3        |
| data analyst                     | Excel             | 36.5000    | 2        |
| data analyst                     | None              | 50.4444    | 9        |
| data analyst                     | other             | 81.8000    | 10       |
| data analyst                     | Python            | 52.3065    | 248      |
| data analyst                     | R                 | 58.9688    | 64       |
| data analyst                     | SQL               | 70.8276    | 29       |

| Job_Profile           | cleaned_Prog_lang | avg_salary | count(*) |
|-----------------------|-------------------|------------|----------|
| data engineer         | Javascript        | 74.5000    | 2        |
| data engineer         | Python            | 51.8276    | 29       |
| data engineer         | R                 | 58.0000    | 2        |
| data engineer         | SQL               | 142.6000   | 5        |
| data integrity        | R                 | 20.0000    | 1        |
| data manager          | R                 | 64.5000    | 2        |
| data scientist        | Python            | 87.4500    | 20       |
| data scientist        | R                 | 121.5000   | 4        |
| data scientist        | SQL               | 116.0000   | 1        |
| data scientist intern | R                 | 20.0000    | 1        |

#### 9) comparisons of ratings on various factors

#### on salary

select Rating\_salary,

100 \* count(\*)/(select count(\*) from data\_professionals\_survey) as percentage\_votes, sum(100 \* count(\*)/(select count(\*) from data\_professionals\_survey)) over (order by percentage\_votes desc, Rating\_salary desc) as cumulative\_votes from data\_professionals\_survey

group by Rating\_salary

order by count(\*) desc , Rating\_salary desc;

|   | Rating_salary | percentage_votes | cumulative_votes |
|---|---------------|------------------|------------------|
| ١ | 3             | 14.0523          | 14.0523          |
|   | 4             | 12.0915          | 26.1438          |
|   | 5             | 11.6013          | 37.7451          |
|   | 0             | 11.6013          | 49.3464          |
|   | 7             | 10.2941          | 59.6405          |
|   | 8             | 8.9869           | 68.6275          |
|   | 2             | 8.9869           | 77.6144          |
|   | 6             | 8.8235           | 86.4379          |
|   | 1             | 7.3529           | 93.7908          |
|   | 10            | 3.2680           | 97.0588          |

#### - on work - life balance

select Rating\_work\_life\_bal,

100 \* count(\*)/(select count(\*) from data\_professionals\_survey) as percentage\_votes, sum(100 \* count(\*)/(select count(\*) from data\_professionals\_survey))

over (order by count(\*) desc, Rating\_work\_life\_bal desc) as cumulative\_votes

 $from\ data\_professionals\_survey$ 

group by Rating\_work\_life\_bal

order by count(\*) desc , Rating work life bal desc;

|   | Rating_work_life_bal | percentage_votes | cumulative_votes |
|---|----------------------|------------------|------------------|
| ١ | 6                    | 14.3791          | 14.3791          |
|   | 5                    | 13.5621          | 27.9412          |
|   | 7                    | 11.6013          | 39.5425          |
|   | 8                    | 11.4379          | 50.9804          |
|   | 10                   | 10.6209          | 61.6013          |
|   | 4                    | 8.9869           | 70.5882          |
|   | 9                    | 7.6797           | 78.2680          |

#### - on upward mobility

select Rating\_Upward\_mobility,

100 \* count(\*)/(select count(\*) from data\_professionals\_survey) as percentage\_votes,
sum(100 \* count(\*)/(select count(\*) from data\_professionals\_survey))
over (order by count(\*) desc, Rating\_Upward\_mobility desc) as cumulative\_votes
from data\_professionals\_survey
group by Rating\_Upward\_mobility
order by count(\*) desc, Rating\_Upward\_mobility desc;

|   | Rating_Upward_mobility | percentage_votes | cumulative_votes |
|---|------------------------|------------------|------------------|
| • | 5                      | 14.8693          | 14.8693          |
|   | 4                      | 12.2549          | 27.1242          |
|   | 7                      | 11.2745          | 38.3987          |
|   | 0                      | 11.2745          | 49.6732          |
|   | 6                      | 10.7843          | 60.4575          |
|   | 3                      | 9.6405           | 70.0980          |

#### - on coworkers

select Rating\_Coworkers,

100 \* count(\*)/(select count(\*) from data\_professionals\_survey) as percentage\_votes, sum(100 \* count(\*)/(select count(\*) from data\_professionals\_survey)) over (order by count(\*) desc, Rating\_Coworkers desc) as cumulative\_votes from data\_professionals\_survey group by Rating\_Coworkers order by count(\*) desc , Rating\_Coworkers desc;

|   | Rating_Coworkers | percentage_votes | cumulative_votes |
|---|------------------|------------------|------------------|
| • | 5                | 15.0327          | 15.0327          |
|   | 7                | 12.5817          | 27.6144          |
|   | 6                | 12.2549          | 39.8693          |
|   | 8                | 11.7647          | 51.6340          |
|   | 10               | 10.4575          | 62.0915          |
|   | 4                | 9.9673           | 72.0588          |
|   | 9                | 8.4967           | 80.5556          |
|   | 3                | 7.3529           | 87.9085          |

#### - on management

select Rating\_Management,

100 \* count(\*)/(select count(\*) from data\_professionals\_survey) as percentage\_votes, sum(100 \* count(\*)/(select count(\*) from data\_professionals\_survey))

**over** (order by count(\*) desc, Rating\_Management desc) as cumulative\_votes from data\_professionals\_survey group by Rating\_Management

order by count(\*) desc , Rating\_Management desc;

|   | Rating_Management | percentage_votes | cumulative_votes |
|---|-------------------|------------------|------------------|
| ٠ | 5                 | 17.4837          | 17.4837          |
|   | 6                 | 13.0719          | 30.5556          |
|   | 7                 | 12.7451          | 43.3007          |
|   | 4                 | 9.3137           | 52.6144          |
|   | 8                 | 9.1503           | 61.7647          |
|   | 3                 | 7.6797           | 69.4444          |
|   | 10                | 7.3529           | 76.7974          |

#### - on skill growth

select Rating\_skill\_growth,

100 \* count(\*)/(select count(\*) from data\_professionals\_survey) as percentage\_votes, sum(100 \* count(\*)/(select count(\*) from data\_professionals\_survey)) over (order by count(\*) desc, Rating\_skill\_growth desc) as cumulative\_votes from data\_professionals\_survey group by Rating\_skill\_growth order by count(\*) desc, Rating\_skill\_growth desc;

|   | Rating_skill_growth | percentage_votes | cumulative_votes |
|---|---------------------|------------------|------------------|
| • | 10                  | 13.2353          | 13.2353          |
|   | 6                   | 12.9085          | 26.1438          |
|   | 7                   | 10.9477          | 37.0915          |
|   | 4                   | 10.7843          | 47.8758          |
|   | 8                   | 8.8235           | 56.6993          |
|   | 5                   | 8.6601           | 65.3595          |
|   | 3                   | 8.6601           | 74.0196          |
|   | 9                   | 8.0065           | 82.0261          |
|   | -                   |                  |                  |

#### side by side percentage of each rating comparison on various factors (pivoting the info)

```
select Rating,
```

```
sum(case when factor = 'coworkers' then percentage else 0 end) as coworkers,
```

sum(case when factor = 'salary' then percentage else 0 end) as salary,

sum(case when factor = 'management' then percentage else 0 end) as management,

sum(case when factor = 'Skills\_Growth' then percentage else 0 end) as skills\_growth,

sum(case when factor = 'upward-mobility' then percentage else 0 end) as upward\_mobility,

sum(case when factor = 'work-life-balance' then percentage else 0 end) as

work\_life\_balance

from

(

select 'coworkers' as factor,

Rating\_Coworkers as Rating, count(\*)/(select count(\*) from data\_professionals\_survey) as percentage

```
from data_professionals_survey
group by Rating
union
select 'salary' as factor,
Rating salary as Rating, count(*)/(select count(*) from data professionals survey)
as percentage
from data_professionals_survey
group by Rating
union
select 'work-life-balance' as factor,
Rating_work_life_bal as Rating, count(*)/(select count(*) from data_professionals_survey)
as percentage
from data_professionals_survey
group by Rating
union
select 'management' as factor,
Rating_Management as Rating, count(*)/(select count(*) from data_professionals_survey)
as percentage
from data_professionals_survey
group by Rating
union
select 'Skills Growth' as factor,
Rating_skill_growth as Rating, count(*)/(select count(*) from data_professionals_survey)
as percentage
from data professionals survey
group by Rating
union
select 'upward-mobility' as factor,
Rating_Upward_mobility as Rating, count(*)/(select count(*) from
data professionals survey)
as percentage
from data_professionals_survey
```

group by Rating

group by Rating order by Rating desc;

) ratings

|             | Rating | coworkers | salary | management | skills_growth | upward_mobility | work_life_balance |
|-------------|--------|-----------|--------|------------|---------------|-----------------|-------------------|
| <b>&gt;</b> | 10     | 0.1046    | 0.0327 | 0.0735     | 0.1324        | 0.0507          | 0.1062            |
|             | 9      | 0.0850    | 0.0294 | 0.0605     | 0.0801        | 0.0425          | 0.0768            |
|             | 8      | 0.1176    | 0.0899 | 0.0915     | 0.0882        | 0.0882          | 0.1144            |
|             | 7      | 0.1258    | 0.1029 | 0.1275     | 0.1095        | 0.1127          | 0.1160            |
|             | 6      | 0.1225    | 0.0882 | 0.1307     | 0.1291        | 0.1078          | 0.1438            |
|             | 5      | 0.1503    | 0.1160 | 0.1748     | 0.0866        | 0.1487          | 0.1356            |
|             | 4      | 0.0997    | 0.1209 | 0.0931     | 0.1078        | 0.1225          | 0.0899            |
|             | 3      | 0.0735    | 0.1405 | 0.0768     | 0.0866        | 0.0964          | 0.0735            |
|             | 2      | 0.0425    | 0.0899 | 0.0539     | 0.0654        | 0.0719          | 0.0556            |
|             | 1      | 0.0359    | 0.0735 | 0.0539     | 0.0490        | 0.0458          | 0.0425            |
|             | 0      | 0.0425    | 0.1160 | 0.0637     | 0.0654        | 0.1127          | 0.0458            |

## Viewing the max and min rating for each of the factors in tha dataset Along with the proportion with which the rating was achieved

with ratings as (

select 'coworkers' as factor,

Rating\_Coworkers as Rating, count(\*)/(select count(\*) from data\_professionals\_survey)

as percentage

from data\_professionals\_survey

group by Rating

#### union

select 'salary' as factor,

Rating\_salary as Rating, count(\*)/(select count(\*) from data\_professionals\_survey)

as percentage

from data professionals survey

group by Rating

#### union

select 'work-life-balance' as factor,

 $Rating\_work\_life\_bal\ as\ Rating,\ count(*)/(select\ count(*)\ from\ data\_professionals\_survey)$ 

as percentage

from data\_professionals\_survey

group by Rating

#### union

select 'management' as factor,

Rating\_Management as Rating, count(\*)/(select count(\*) from data\_professionals\_survey)

as percentage

from data\_professionals\_survey

group by Rating

#### union

select 'Skills Growth' as factor,

Rating\_skill\_growth as Rating, count(\*)/(select count(\*) from data\_professionals\_survey)

as percentage from data\_professionals\_survey group by Rating

union

select 'upward-mobility' as factor,

Rating\_Upward\_mobility as Rating, count(\*)/(select count(\*) from

data\_professionals\_survey)

as percentage

from data\_professionals\_survey

group by Rating

) select factor, Rating, percentage from ratings

**where** percentage = (select max(percentage) from ratings r2 where

r2.factor = ratings.factor) or

percentage = (select min(percentage) from ratings r2 where

r2.factor = ratings.factor)

#### order by factor, percentage desc;

| factor            | Rating                                                                                                                                           | percentage                                                                                                                                                                |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| coworkers         | 5                                                                                                                                                | 0.1503                                                                                                                                                                    |
| coworkers         | 1                                                                                                                                                | 0.0359                                                                                                                                                                    |
| management        | 5                                                                                                                                                | 0.1748                                                                                                                                                                    |
| management        | 2                                                                                                                                                | 0.0539                                                                                                                                                                    |
| management        | 1                                                                                                                                                | 0.0539                                                                                                                                                                    |
| salary            | 3                                                                                                                                                | 0.1405                                                                                                                                                                    |
| salary            | 9                                                                                                                                                | 0.0294                                                                                                                                                                    |
| Skills_Growth     | 10                                                                                                                                               | 0.1324                                                                                                                                                                    |
| Skills_Growth     | 1                                                                                                                                                | 0.0490                                                                                                                                                                    |
| upward-mobility   | 5                                                                                                                                                | 0.1487                                                                                                                                                                    |
| upward-mobility   | 9                                                                                                                                                | 0.0425                                                                                                                                                                    |
| work-life-balance | 6                                                                                                                                                | 0.1438                                                                                                                                                                    |
| work-life-balance | 1                                                                                                                                                | 0.0425                                                                                                                                                                    |
|                   | coworkers coworkers management management management salary salary Skills_Growth Skills_Growth upward-mobility upward-mobility work-life-balance | coworkers 5 coworkers 1 management 5 management 2 management 1 salary 3 salary 9 Skills_Growth 10 Skills_Growth 1 upward-mobility 5 upward-mobility 9 work-life-balance 6 |

- What are the top-rated and lowest-rated factors (e.g., salary, work-life balance)? Taken out according to its percentage in the data

with ratings as (

select 'coworkers' as factor,

Rating\_Coworkers as Rating, count(\*)/(select count(\*) from data\_professionals\_survey)

as percentage

from data\_professionals\_survey

group by Rating

union

select 'salary' as factor,

Rating\_salary as Rating, count(\*)/(select count(\*) from data\_professionals\_survey)

as percentage

from data\_professionals\_survey

```
group by Rating
union
select 'work-life-balance' as factor,
Rating_work_life_bal as Rating, count(*)/(select count(*) from data_professionals_survey)
as percentage
from data professionals survey
group by Rating
union
select 'management' as factor,
Rating Management as Rating, count(*)/(select count(*) from data professionals survey)
as percentage
from data professionals survey
group by Rating
union
select 'Skills Growth' as factor,
Rating_skill_growth as Rating, count(*)/(select count(*) from data_professionals_survey)
as percentage
from data professionals survey
group by Rating
union
select 'upward-mobility' as factor,
Rating_Upward_mobility as Rating, count(*)/(select count(*) from
data_professionals_survey)
as percentage
from data_professionals_survey
group by Rating
)
select factor, max(Rating)from ratings
percentage = (select max(percentage) from ratings r2 where
r2.factor = ratings.factor)
group by factor
order by max(Rating) desc;
```

|   | factor            | max(Rating) |
|---|-------------------|-------------|
| • | Skills_Growth     | 10          |
|   | work-life-balance | 6           |
|   | coworkers         | 5           |
|   | management        | 5           |
|   | upward-mobility   | 5           |
|   | salary            | 3           |

#### 10) Which job profiles report the highest satisfaction levels?

select Job\_Profile, round(avg(Rating\_salary), 2) as avg\_sal\_rating, round(avg(Rating\_Management), 2) as avg\_rating\_management, round(avg(Rating\_skill\_growth), 2) as avg\_rating\_skill\_growth, round(avg(Rating\_work\_life\_bal), 2) as avg\_rating\_work\_life\_bal, round(avg(Rating\_Upward\_mobility), 2) as avg\_rating\_upward\_mobility,

round(avg(Rating\_Coworkers), 2) as avg\_rating\_coworkers from data\_professionals\_survey group by Job\_Profile;

|   | Job_Profile                            | avg_sal_rating | avg_rating_management | avg_rating_skill_growth | avg_rating_work_life_bal | avg_rating_upward_mobility | avg_rating_coworkers |
|---|----------------------------------------|----------------|-----------------------|-------------------------|--------------------------|----------------------------|----------------------|
| • | data analyst                           | 4.53           | 5.60                  | 5.89                    | 6.02                     | 5.01                       | 6.09                 |
|   | data engineer                          | 4.34           | 5.24                  | 6.45                    | 5.92                     | 5.16                       | 5.92                 |
|   | analytics consultant                   | 10.00          | 10.00                 | 10.00                   | 6.00                     | 7.00                       | 7.00                 |
|   | data scientist                         | 5.68           | 6.12                  | 6.84                    | 6.12                     | 5.56                       | 6.76                 |
|   | student/looking/none                   | 2.54           | 3.64                  | 3.95                    | 4.12                     | 3.11                       | 4.29                 |
|   | fp&a analyst                           | 5.00           | 8.00                  | 7.00                    | 10.00                    | 8.00                       | 8.00                 |
|   | bi developer                           | 2.00           | 7.00                  | 6.00                    | 9.00                     | 5.00                       | 7.00                 |
|   | manager, business intelligence develop | 10.00          | 8.00                  | 10.00                   | 8.00                     | 8.00                       | 9.00                 |
|   | business analyst                       | 4.56           | 6.89                  | 5.67                    | 6.44                     | 5.67                       | 6.89                 |
|   | business intelligence consultant       | 6.00           | 3.00                  | 8.00                    | 7.00                     | 9.00                       | 4.00                 |
|   | sr. supply chain analyst               | 4.00           | 5.00                  | 5.00                    | 3.00                     | 5.00                       | 3.00                 |
|   | director of data analytics             | 9.00           | 10.00                 | 10.00                   | 10.00                    | 10.00                      | 10.00                |

## 11) What is the demographic distribution (gender, ethnicity, age) across industries and roles?

select Job\_Profile, round(avg(age),2) as avg\_age from data\_professionals\_survey group by Job\_Profile order by avg(age) desc;

|   | Job_Profile                        | avg_age |
|---|------------------------------------|---------|
| ٠ | business analys                    | 60.00   |
|   | director                           | 58.00   |
|   | manager of a team of data analysts | 52.00   |
|   | learning management specialist     | 51.00   |
|   | sales & marketing                  | 48.00   |
|   | manager                            | 43.00   |
|   | pmo                                | 43.00   |
|   | does a social media analyst count? | 42.00   |
|   | educator                           | 42.00   |
|   | driver                             | 42.00   |
|   | teacher                            | 42.00   |
|   | software engineer, ai              | 40.00   |
|   |                                    |         |

select Gender, count(\*)/(select count(\*) from data\_professionals\_survey) as percentage\_share\_in\_data from data\_professionals\_survey group by Gender;

|   | Gender | percentage_share_in_data |
|---|--------|--------------------------|
| ٠ | Male   | 0.7435                   |
|   | Female | 0.2565                   |

select Job\_Profile, Gender, count(\*) as count from data\_professionals\_survey group by Job\_Profile, Gender order by Job\_Profile, count desc;

| Job_Profile                      | Gender | count |
|----------------------------------|--------|-------|
| business intelligence analyst    | Male   | 1     |
| business intelligence consultant | Male   | 1     |
| business intelligence developer  | Male   | 1     |
| business intelligence engineer   | Male   | 1     |
| consultant                       | Male   | 1     |
| continuous quality improvement s | Male   | 1     |
| data analyst                     | Male   | 271   |
| data analyst                     | Female | 99    |
| data architect                   | Male   | 2     |
| data architect                   | Female | 1     |
| data coordinator                 | Female | 1     |
| data engineer                    | Male   | 34    |

select Rating\_skill\_growth , avg(Age) from data\_professionals\_survey group by Rating\_skill\_growth order by Rating\_skill\_growth desc;

|   | Rating_skill_growth | avg(Age) |
|---|---------------------|----------|
| • | 10                  | 29.0988  |
|   | 9                   | 29.7551  |
|   | 8                   | 29.2222  |
|   | 7                   | 30.4627  |
|   | 6                   | 30.4937  |
|   | 5                   | 29.2264  |
|   | 4                   | 31.2576  |
|   | 3                   | 30.0755  |
|   | 2                   | 29.5250  |
|   | 1                   | 28.6000  |
|   | 0                   | 29.6500  |

#### 12) Which factors contribute to finding a job being "Very Easy" or "Very Difficult"?

select Difficulty\_getting\_job , count(\*)/(select count(\*) from data\_professionals\_survey) as percentage\_share\_in\_data from data\_professionals\_survey group by Difficulty\_getting\_job order by percentage\_share\_in\_data desc;

|   | Difficulty_getting_job     | percentage_share_in_data |
|---|----------------------------|--------------------------|
| ٠ | Neither easy nor difficult | 0.4314                   |
|   | Difficult                  | 0.2484                   |
|   | Easy                       | 0.2108                   |
|   | Very Difficult             | 0.0703                   |
|   | Very Easy                  | 0.0392                   |

select Job\_Profile, Difficulty\_getting\_job , count(\*)/(select count(\*) from data\_professionals\_survey) as percentage\_share\_in\_data from data\_professionals\_survey group by Job\_Profile, Difficulty\_getting\_job order by Job\_Profile, percentage\_share\_in\_data desc;

| Job_Profile      | Difficulty_getting_job     | percentage_share_in_data |
|------------------|----------------------------|--------------------------|
| data analyst     | Neither easy nor difficult | 0.2631                   |
| data analyst     | Easy                       | 0.1422                   |
| data analyst     | Difficult                  | 0.1389                   |
| data analyst     | Very Difficult             | 0.0376                   |
| data analyst     | Very Easy                  | 0.0229                   |
| data architect   | Neither easy nor difficult | 0.0016                   |
| data architect   | Difficult                  | 0.0016                   |
| data architect   | Very Difficult             | 0.0016                   |
| data coordinator | Easy                       | 0.0016                   |
| data engineer    | Neither easy nor difficult | 0.0327                   |
| data engineer    | Easy                       | 0.0147                   |
| data engineer    | Difficult                  | 0.0114                   |

| Job_Profile           | Difficulty_getting_job     | percentage_share_in_data |
|-----------------------|----------------------------|--------------------------|
| data integrity        | Neither easy nor difficult | 0.0016                   |
| data manager          | Easy                       | 0.0033                   |
| data scientist        | Difficult                  | 0.0163                   |
| data scientist        | Neither easy nor difficult | 0.0147                   |
| data scientist        | Easy                       | 0.0082                   |
| data scientist        | Very Easy                  | 0.0016                   |
| data scientist intern | Difficult                  | 0.0016                   |
| data steward          | Neither easy nor difficult | 0.0016                   |
| database developer    | Difficult                  | 0.0049                   |
| database developer    | Easy                       | 0.0033                   |
| database manager      | Easy                       | 0.0016                   |
| dba                   | Neither easy nor difficult | 0.0016                   |
|                       |                            |                          |

## Insights from the above analysis

 People holding managing posts are getting better salaries than other profiles including analysts and scientists



Females are getting salary as per the males - no bias trend shown in the data



Most people found it neither easy nor difficult to land their job.



 People not using any programming language may be using some analysis tools, and DAX, SQL are getting more salary than Python users from the data.
 Still a strong conclusion on this fact can't be made because the no. of python users is much more than the two categories in the data



 Average rating to all the factors is found to be around 5 i.e. 50 percent satisfaction level overall, with the least satisfying factor being salary



We can say mostly people switched in search of better salary



• Mostly people are from the 20-40 age group.



• Most common profile being Data Analyst.



• Most popular language of choice in the data is Python.



People who did Phd and masters are the most well paid off.

