# Section 11.4 - Braphing in Polar Coordinates

### Symmetry:



$$(-r, -0)$$
 $(r, \pi-0)$ 
 $(r, 0)$ 

Symmetry about the x-axis

symmetry about the y-axis.



symmetry about the origin.

# Slope of a Polar Curve:

$$r = f(\theta)$$
  
 $y = r \sin \theta = f(\theta) \sin \theta$   
 $x = r \cos \theta = f(\theta) \cos \theta$ 

slope = 
$$\frac{dy}{dx} = \frac{dy/do}{dx/do}$$
 > parametric formula for the slope

$$Slope = \frac{f'(o)sino + f(o)coso}{f'(o)coso - f(o)sino}$$

at the origin: 
$$\theta = \theta_0$$
  $r = 0$   $f(\theta) = 0$ .

Slope 
$$(0=0_0) = \frac{f'(0_0) \sin \theta_0}{f'(0_0) \cos \theta_0} = \tan \theta_0 \quad (f'(0_0) \neq 0)$$

= slope of the tangent line at the origin.

Equation of tangent line: 
$$y - y_A = Slope(x - x_A)$$
  
At origin  $A(0,0) \implies y = (tan \theta_0) x$ 

The targent line to the curve at the origin (at  $\theta=\theta_0$ ) is the line through the origin moving an angle  $\theta_0$  with the positive x-axis. (the line  $\theta=\theta_0$ ).

- 2) Symmetry:
  - 1) Replace 0 by -0:
- In the equation r = f(0), if we obtain r = (r = f(-0))
  - => symmetry about the x-axis.
- . If we obtain -r  $\left(-r=f(-e)\right)$   $\Longrightarrow$  symmetry about the y-axis.

Original interval:  $[-\pi_3\pi]$   $\longrightarrow$  Reduce to  $[0,\pi]$ 

- 2) Replace o by (T-0):
- . If we obtain  $r(r=f(\pi-\theta)) \implies symmetry about the y-axis$
- . If we obtain  $-r(-r=f(\pi-o)) \implies$  symmetry about the x-axis.

Original interval: [-T,T] --- Reduce to [=, ]

- 3) Replace or by (T+0):
- . If we get  $r(r=f(\pi+0)) \Rightarrow$  Symmetry about the origin reduce  $(-\pi,\pi)$  to  $[0,\pi)$
- 4) If  $-r = f(0) \implies$  symmetry about the origin

((-r,o) satisfies the equation r = f(o)). Reduce  $[-\pi,\pi]$  to  $[0,\pi]$ 

3 (r=0) => f(0)=0

Solve for the values  $O_0$  for which the curve cuts the origin. The graph passes through the origin, tangent to the lines 0=0.



| 0     |     |
|-------|-----|
| dr/10 |     |
| r     | 1 1 |

## (6) Graph:

- . First, sketch the lines 0=00 tangent to the graph at the origin.
- . Second, sketch the graph.

#### Examples:

$$r = 1 + \cos\theta$$

Step 1:

Interval [-TT, TT]

## Step 2: Symmetry

a) Replace O by - O:

= symmetry about the x-axis  $1 + \omega s(-\theta) = 1 + \omega s\theta = r$ 

Original interval  $[-\pi,\pi]$  --> reduce to  $[0,\pi]$ 

b) Replace & by T-0:

 $1 + \cos(\pi - 0) = 1 - \cos \theta \neq r$  and  $\neq -r \Rightarrow no conclusion.$ 

c) Replace or by T+O:

 $1+\cos(\pi+\theta)=1-\cos\theta+\Gamma$   $\Rightarrow$  no conclusion.

d)  $(-r, \theta)$ :  $-r = -1 - \cos\theta \neq r \implies no$  symmetry w.r.t origin

$$\frac{\text{Step 3:}}{\cos \theta = -1} \quad r = 0 \implies 1 + \cos \theta = 0$$

$$\cos \theta = -1 \implies [\theta = T]$$

 $\Rightarrow$  graph cuts the origin, targent to the line  $\theta=T$  (negative x-axis).

$$\frac{\text{Step 4:}}{\text{do}} = -\sin 0$$

$$-Sin\theta = 0$$
 for  $0 = 0$ ,  $T$ 



Step 5:  $r = 1 + \cos \theta$ 

| 0-1 | 0 | T/6 | π/4 | T1/3 | π/2 | 21/3 | T |
|-----|---|-----|-----|------|-----|------|---|
| (   | 2 | 1.8 | 1.7 | 1.5  | 1   | 1/2  | 0 |

Step 6:



#### Cardioids:

$$*r = a \left( \pm 1 \pm \cos \theta \right) \qquad a>0$$





Check for the values  $\theta=0$ ,  $\theta=\frac{\pi}{2}$ ,  $\theta=\pi$ Symmetry with respect to x-axis.

\* 
$$r = a(\pm 1 \pm sin\theta)$$





Check for the values  $\theta = -\frac{\pi}{2}$ ,  $\theta = 0$ ,  $\theta = \frac{\pi}{2}$ . Symmetry with respect to y-axis.



| 0     | 0 | TT/2 | π |
|-------|---|------|---|
| <br>r | 0 | 1    | 2 |

· r= 2-2000



| 0 | 0 | T/2 | $\tau$ |
|---|---|-----|--------|
| _ | 0 | 2   | 4      |

· r=1-sin0



| 0 | 亚 | 0 | ₩2 |
|---|---|---|----|
| ŗ | 2 | 1 | O  |

•  $r = 2 + 2 \sin \theta$ 



## Limagons with inner loop:

$$r = a + b \cos 0$$

where |a|< 161

Example:  $r = \frac{1}{9} + \cos \theta$ 

- Interval [-TT, TT]
- 2) Symmetry:
  - a) Replace O by 0:

Replace 
$$O$$
 by  $-O$ :  
 $\frac{1}{2} + \cos(-0) = \frac{1}{2} + \cos 0 = r$   $\Longrightarrow$  sym wit  $x$ -axis

original interval  $[-\pi,\pi] \longrightarrow [0,\pi]$ 

b) Replace & by T-O:

$$\frac{1}{2} + \cos(\pi - \theta) = \frac{1}{2} - \cos\theta \neq r \neq -r$$

- → no sym wit y-axis.
- c) Replace O by T+O:

$$\frac{1}{2} + \cos(\pi + \theta) = \frac{1}{2} - \cos\theta \neq r$$

d) (-r,0) does not satisfy the equation = no origin sym.

3) 
$$r=0 \Leftrightarrow \frac{1}{2} + \cos \theta = 0 \Leftrightarrow \cos \theta = -\frac{1}{2}$$

$$\theta = \frac{2\pi}{3}, \frac{4\pi}{3}$$

= The graph cuts the origin, target with the

lines 
$$\theta = \frac{2\pi}{3}$$
 and  $\theta = \frac{4\pi}{3}$ .

| 4) | $\frac{dr}{d\theta} = -\sin\theta$ |  |
|----|------------------------------------|--|
|    | $0 = \theta ni2$                   |  |
|    | A 0 T                              |  |

| 0     | o   | T                |
|-------|-----|------------------|
| 92/90 | _   | - \              |
| ٢     | 3/2 | - Y <sub>2</sub> |

| 5) | 0 | 0   | 17/6 | 11/4 | TT/3 | T/2 | ZTT/3 | TT   |
|----|---|-----|------|------|------|-----|-------|------|
| 3) | ~ | 1.5 | 1.3  | 1.2  | 1    | 1/2 | 0     | -1/2 |





Centered at origin Radius = |a|

Trace completely with an interval of 0 of length 2TT.

$$\rightarrow$$
 center  $\left(\frac{\alpha}{2}, 0\right)$  and radius =  $\frac{|\alpha|}{2}$ 





<u>ex:</u> r= 2000



Traced with an interval of length TT of O.

3) 
$$r=a\sin\theta$$
 — center  $\left(0,\frac{a}{2}\right)$  and radius =  $\frac{|a|}{2}$ 





#### lemniscates:

$$r^2 = b \sin(2\theta)$$
 or  $r^2 = b \cos(2\theta)$   
satisfy origin symmetry 3 types of symmetry





$$\# \int r^2 = b \cos(2\theta)$$



$$\frac{\pi}{4} \leq 0 \leq \frac{3\pi}{4} \quad \text{or} \quad \frac{5\pi}{4} \leq 0 \leq \frac{4\pi}{4}$$



1) Interval: 
$$u\sin(20)>0 \Rightarrow 0 < 20 < T \Rightarrow [0,T]$$

ador innst

2) Symmetry:

$$r^{2} = 4 \sin \left(2(\pi + 0)\right) = 4 \sin \left(2\pi + 20\right) = 4 \sin(20) = r$$

$$\Rightarrow \text{sym wit oxigin}$$

d) 
$$(-r,0)$$
:  $(-r)^2 = 4\sin(20) = r^2 \implies \text{sym with trigin}$   
Work with  $r = + 2\sqrt{\sin(20)}$  and complete the part of  $r = -2\sqrt{\sin(20)}$  by symmetry.

3) 
$$r=0$$
  
 $2(\sin(2\theta)=0) \implies \sin(2\theta)=0$  where  $0 \le 2\theta \le \pi$   
 $2\theta = 0$ ,  $\pi$ 

$$\theta = 0$$
  $\theta = \frac{\pi}{2}$ 

Graph cuts the origin tangent to the lines  $\theta=0$  and  $\theta=\frac{\pi}{2}$ 

$$\frac{dr}{d\theta} = 2 \frac{2\cos(2\theta)}{2\sqrt{\sin(2\theta)}} = \frac{2\cos(2\theta)}{\sqrt{\sin(2\theta)}}$$

$$\cos 2\theta = 0$$

$$2\theta = \frac{\pi}{2} \implies \theta = \frac{\pi}{4}$$

|                 | 0       |   | 11          |   | T    | /2        |
|-----------------|---------|---|-------------|---|------|-----------|
| 20              | 0       |   | T/2         | 7 | ( 7  | ٢         |
| $\frac{dr}{d0}$ | A TO TO | + | / · · · · · |   | V is |           |
| r               | 0 -     |   | 7 2         |   |      | -<br>>> 0 |





#### Roses:

$$r = \omega s(no)$$

or  $r = \sin(n\theta)$ 

n even 
$$\longrightarrow$$
 2n leaves  $(n=2)$ 

which is how the

$$\left( n = 3 \right)$$

$$Ex:$$
  $r = cos(30)$ 

2) Symmetry:

a) 
$$\theta$$
 by  $-\theta$ :  $\cos(-3\theta) = \cos(3\theta) = r$ 

$$\Rightarrow \text{ sym wit } x - axis \Rightarrow \text{ reduce interval to } [0, \pi]$$

b) 
$$\theta$$
 by  $\pi_{-}\theta$ :  $\cos(3(\pi_{-}0)) = \cos(3\pi_{-}3\theta) = \cos(\pi_{-}3\theta)$   
 $= -\cos(3\theta) = -r \implies \text{sym wit } x - axis$   
 $\implies \text{reduce interval to } [0, \frac{\pi}{2}]$ 

c) 
$$\theta$$
 by  $\pi + \theta$ :  $\cos(3\pi + 3\theta) = -\cos(3\theta) \neq r$ 

d) 
$$-r = -\cos(30) \pm r \implies no origin symmetry.$$

3) 
$$r=0$$

$$\cos(3\theta)=0 \implies 3\theta = \frac{\pi}{2}$$

$$0 \le \theta \le \frac{\pi}{2}$$

$$0 \le 3\theta \le \frac{3\pi}{2}$$

$$0 \le 3\theta \le \frac{3\pi}{2}$$

4) 
$$\frac{dr}{do} = -3\sin(3\theta) = 0$$
  
 $\sin(3\theta) = 0$   $\Rightarrow 3\theta = 0$   $\Rightarrow 3\theta = \pi$ 





#### Exercises:

1) 
$$r=1+\cos \alpha$$
 (done in lecture)

$$\frac{\pi}{2} \leq \Theta \leq \pi \qquad \Longrightarrow \left(\pi/_{2}, \pi\right)$$

2) Symmetry:

c) 
$$\Theta$$
 by  $\pi + \Theta$ :  $\Gamma^2 = -\sin(2(\pi + \Theta)) = -\sin 2\Theta = \Gamma^2$   
 $\Longrightarrow$  sym wit origin.

d) 
$$(-r)^2 = r^2$$
  $\Longrightarrow$  sym with origin.  
3)  $r=0$   $\Longrightarrow$  symmetry.

$$\sqrt{-\sin 20} = 0$$

$$\sin 20 = 0 \qquad (\pi \leqslant 20 \leqslant 2\pi)$$

$$2\theta = \pi \qquad 2\theta = 2\pi$$

$$\theta = \frac{\pi}{2} \qquad \theta = \pi$$

4) 
$$\frac{dr}{d\theta} = \frac{-2\cos 2\theta}{2\sqrt{-\sin 2\theta}} = \frac{-\cos 2\theta}{\sqrt{-\sin 2\theta}}$$

$$-\cos 2\theta = 0$$

$$2\theta = \frac{3\pi}{2} \implies \theta = \frac{3\pi}{4}$$

| 0     | T/2 | ı | 37/4  |   | T             |
|-------|-----|---|-------|---|---------------|
| 20    | π   |   | 311/2 |   | 2म            |
| di/10 |     | + | ф     | _ |               |
|       | 0   |   | 7     | 1 | <b>&gt;</b> 0 |



18) 
$$r = -1 + \sin \theta$$
 (Cardioid)

- 1) Interval [-TT, TT]
- 2) Symmetry:

a) 0 by 
$$-0: -1 + \sin(-0) = -1 - \sin 0 \neq r$$
 and  $\neq -r$ 

$$\Rightarrow$$
 reduce interval to  $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ 

C) 
$$\theta$$
 by  $(\pi + \theta)$ :  $-1 + \sin(\pi + \theta) = -1 - \sin\theta + r$ 

$$d) -r = -(-1+\sin\theta) = 1-\sin\theta \neq r$$

3) 
$$r = 0$$

$$-1+\sin\theta = 0$$

$$\sin\theta = 1 \implies \boxed{\theta = \frac{\pi}{2}}$$

4) 
$$\frac{dr}{d\theta} = \cos\theta = 0$$

$$\theta = -\frac{\pi}{2} \qquad \theta = \frac{\pi}{2} \qquad$$

.

Very - - - - -

( m) 1 mm (

| 5) | 8 | -T/2 | 0  | T/2 |   |
|----|---|------|----|-----|---|
|    | r | -2   | -1 | 0   | - |



19) 
$$r = \sin(20)$$
 (Roses)  
 $n = 2$  (even)  $\implies 2 \times 2 = 4$  leaves

2) Symmetry:

a) 
$$\delta$$
 by  $-\delta$ ;  $\sin(-2\delta) = -\sin 2\delta = -F$   
 $\Longrightarrow$  sym with y-axis  $\Longrightarrow$  reduce interval to  $[0,T]$ 

b) o by 
$$\pi_{-0}$$
:  $\sin(2(\pi_{-0})) = \sin(2\pi_{-20}) = -\sin 2\theta = -F$   
 $\implies$  sym about  $x_{-axis} \implies reduce interval to  $[0, \pi_{2}]$$ 

c) 
$$\Theta$$
 by  $\pi + \Theta$ :  $\sin(2(\pi + \Theta)) = \sin(2\pi + 2\Theta) = \sin 2\Theta = r$   
sym wit origin

3) 
$$r=0$$

$$\sin(2\theta)=0$$

$$0 \le 0 \le \frac{\pi}{2}$$
 $0 \le 20 \le \pi$ 

$$2\theta = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 1/2$$

(4) 
$$\frac{dr}{d\theta} = 2\cos(2\theta)$$
  
 $\cos(2\theta) = 0$   
 $2\theta = \frac{\pi}{2}$   $\Rightarrow \boxed{0 = \frac{\pi}{4}}$ 







25) a) 
$$r = \frac{1}{2} + \cos\theta$$
 (Limaçons)

(done in lecture)