# Algorithms for NLP



### Parsing III

Maria Ryskina - CMU

Slides adapted from: Dan Klein - UC Berkeley

Taylor Berg-Kirkpatrick, Yulia Tsvetkov - CMU

# Learning PCFGs



## Treebank PCFGs

[Charniak 96]

- Use PCFGs for broad coverage parsing
- Can take a grammar right off the trees (doesn't work well):



| Model    | F1   |
|----------|------|
| Baseline | 72.0 |



## Conditional Independence?



- Not every NP expansion can fill every NP slot
  - A grammar with symbols like "NP" won't be context-free
  - Statistically, conditional independence too strong



## Non-Independence

Independence assumptions are often too strong.



- Example: the expansion of an NP is highly dependent on the parent of the NP (i.e., subjects vs. objects).
- Also: the subject and object expansions are correlated!

Example: PP attachment

They

raised

a point of order























Structural Annotation [Johnson '98, Klein&Manning '03]





- Structural Annotation [Johnson '98, Klein&Manning '03]
- Lexicalization [Collins '99, Charniak '00]





- Structural Annotation [Johnson '98, Klein&Manning '03]
- Lexicalization [Collins '99, Charniak '00]
- Latent Variables [Matsuzaki et al. '05, Petrov et al. '06]

## Structural Annotation



- Annotation refines base treebank symbols to improve statistical fit of the grammar
  - Structural annotation



## Typical Experimental Setup

Corpus: Penn Treebank, WSJ



- Accuracy F1: harmonic mean of per-node labeled precision and recall.
- Here: also size number of symbols in grammar.



#### Vertical Markovization

 Vertical Markov order: rewrites depend on past k ancestor nodes.
 (cf. parent annotation)









### Horizontal Markovization















NP





















































## **Unary Splits**

 Problem: unary rewrites used to transmute categories so a high-probability rule can be used.



| Annotation | F1   | Size |
|------------|------|------|
| Base       | 77.8 | 7.5K |
| UNARY      | 78.3 | 8.0K |



## **Unary Splits**

 Problem: unary rewrites used to transmute categories so a high-probability rule can be used.



 Solution: Mark unary rewrite sites with -U

| Annotation | F1   | Size |
|------------|------|------|
| Base       | 77.8 | 7.5K |
| UNARY      | 78.3 | 8.0K |



## **Unary Splits**

 Problem: unary rewrites used to transmute categories so a high-probability rule can be used.

ROOT NP VP NNVBD NP NP PΡ Revenue was VBG NP QP \$ 444.9 million including net interest

 Solution: Mark unary rewrite sites with -U

| Annotation | F1   | Size |
|------------|------|------|
| Base       | 77.8 | 7.5K |
| UNARY      | 78.3 | 8.0K |



## Tag Splits

 Problem: Treebank tags are too coarse.

Example: Sentential,
 PP, and other
 prepositions are all
 marked IN.



- Partial Solution:
  - Subdivide the IN tag.

| Annotation | F1   | Size |
|------------|------|------|
| Previous   | 78.3 | 8.0K |
| SPLIT-IN   | 80.3 | 8.1K |



### Tag Splits

 Problem: Treebank tags are too coarse.

Example: Sentential,
 PP, and other
 prepositions are all
 marked IN.



- Partial Solution:
  - Subdivide the IN tag.

| Annotation | F1   | Size |
|------------|------|------|
| Previous   | 78.3 | 8.0K |
| SPLIT-IN   | 80.3 | 8.1K |



### Tag Splits

 Problem: Treebank tags are too coarse.

Example: Sentential,
 PP, and other
 prepositions are all
 marked IN.



- Partial Solution:
  - Subdivide the IN tag.

| Annotation | F1   | Size |
|------------|------|------|
| Previous   | 78.3 | 8.0K |
| SPLIT-IN   | 80.3 | 8.1K |



# A Fully Annotated (Unlex) Tree





#### Some Test Set Results

| Parser        | LP   | LR   | F1   | СВ   | 0 CB |
|---------------|------|------|------|------|------|
| Magerman 95   | 84.9 | 84.6 | 84.7 | 1.26 | 56.6 |
| Collins 96    | 86.3 | 85.8 | 86.0 | 1.14 | 59.9 |
| Unlexicalized | 86.9 | 85.7 | 86.3 | 1.10 | 60.3 |
| Charniak 97   | 87.4 | 87.5 | 87.4 | 1.00 | 62.1 |
| Collins 99    | 88.7 | 88.6 | 88.6 | 0.90 | 67.1 |

- Beats "first generation" lexicalized parsers.
- Lots of room to improve more complex models next.

# Efficient Parsing for Structural Annotation



#### **Coarse Grammar**



#### **Fine Grammar**





#### **Coarse Grammar**



NP → DT @NP

#### Fine Grammar





#### Coarse Grammar



NP → DT @NP

#### Fine Grammar



NP^VP → DT^NP @NP^VP[DT]



#### Coarse Grammar



#### Fine Grammar



Note: X-Bar Grammars are projections with rules like  $XP \rightarrow Y @X$  or  $XP \rightarrow @X Y$  or  $@X \rightarrow X$ 

Coarse Symbols

NP

@NP

DT

Fine Symbols

```
NP^VP
NP^S
@NP^VP[DT]
@NP^S[DT]
@NP^VP[...,JJ]
@NP^S[...,JJ]
DT^NP
```

For each coarse chart item X[i,j], compute posterior probability:

$$\frac{\mathrm{P}_{\scriptscriptstyle{\mathrm{IN}}}(X,i,j)\cdot\mathrm{P}_{\scriptscriptstyle{\mathrm{OUT}}}(X,i,j)}{\mathrm{P}_{\scriptscriptstyle{\mathrm{IN}}}(root,0,n)}$$

E.g. consider the span 5 to 12:

coarse: ... QP NP VP ..

For each coarse chart item X[i,j], compute posterior probability:

$$\frac{\mathrm{P}_{\mathrm{IN}}(X,i,j)\cdot\mathrm{P}_{\mathrm{OUT}}(X,i,j)}{\mathrm{P}_{\mathrm{IN}}(root,0,n)} \quad < \quad \textit{threshold}$$

E.g. consider the span 5 to 12:

coarse: ... QP NP VP ...

For each coarse chart item X[i,j], compute posterior probability:

$$\frac{\mathrm{P}_{\mathrm{IN}}(X,i,j)\cdot\mathrm{P}_{\mathrm{OUT}}(X,i,j)}{\mathrm{P}_{\mathrm{IN}}(root,0,n)} \quad < \quad \textit{threshold}$$

E.g. consider the span 5 to 12:

coarse: ... QP NP VP ...

fine:

For each coarse chart item X[i,j], compute posterior probability:

$$\frac{\mathbf{P}_{\text{IN}}(X, i, j) \cdot \mathbf{P}_{\text{OUT}}(X, i, j)}{\mathbf{P}_{\text{IN}}(root, 0, n)} \quad < \quad \textit{threshold}$$

E.g. consider the span 5 to 12:



For each coarse chart item X[i,j], compute posterior probability:

$$\frac{\mathbf{P}_{\text{IN}}(X, i, j) \cdot \mathbf{P}_{\text{OUT}}(X, i, j)}{\mathbf{P}_{\text{IN}}(root, 0, n)} \quad < \quad \textit{threshold}$$

E.g. consider the span 5 to 12:





# Inside probability: example

| NP→DET N | 8.0 | NP→N     | 0.2 |
|----------|-----|----------|-----|
| DET→a    | 0.6 | DET→the  | 0.4 |
| N→apple  | 8.0 | N→orange | 0.2 |



$$\beta_{DET}(1,1) = P(the \mid DET_{11}, G) = P(DET \rightarrow the \mid G) = 0.4$$

$$\beta_{N}(2,2) = P(N \rightarrow orange \mid G) = 0.2$$

$$\beta_{NP}(1,2) = P(NP \rightarrow DET \cdot N)\beta_{DET}(1,1)\beta_{N}(2,2)$$

$$= 0.8 \qquad \times 0.4 \qquad \times 0.2$$

$$\beta_S(1,m) = P(S \to w_1, \dots, w_m | G)$$

# Calculating outside probability

The joint probability corresponding to the yellow, red and blue areas, assuming  $N^j$  was the L child of some non-terminal:



The joint probability corresponding to the yellow, red and blue areas, assuming  $N^j$  was the R child of some non-terminal:



# Calculating outside probability

The joint final joint probability (the sum over the L and R cases):



# Lexicalization

# The Game of Designing a Grammar



- Annotation refines base treebank symbols to improve statistical fit of the grammar
  - Structural annotation [Johnson '98, Klein and Manning 03]
  - Head lexicalization [Collins '99, Charniak '00]

#### Problems with PCFGs





- If we do no annotation, these trees differ only in one rule:
  - VP → VP PP
  - NP → NP PP
- Parse will go one way or the other, regardless of words
- We addressed this in one way with unlexicalized grammars (how?)
- Lexicalization allows us to be sensitive to specific words



#### Problems with PCFGs





- What's different between basic PCFG scores here?
- What (lexical) correlations need to be scored?



#### Lexicalized Trees

- Add "head words" to each phrasal node
  - Syntactic vs. semantic heads
  - Headship not in (most) treebanks
  - Usually use head rules, e.g.:
    - NP:
      - Take leftmost NP
      - Take rightmost N\*
      - Take rightmost JJ
      - Take right child
    - VP:
      - Take leftmost VB\*
      - Take leftmost VP
      - Take left child



#### Lexicalized PCFGs?

Problem: we now have to estimate probabilities like

- Never going to get these atomically off of a treebank
- Solution: break up derivation into smaller steps



# Lexical Derivation Steps

#### A derivation of a local tree [Collins 99]



Choose a head tag and word



Choose a complement bag



Generate children (incl. adjuncts)



Recursively derive children



#### Lexicalized CKY

```
(VP->VBD...NP •) [saw]
                                                            X[h]
               (VP->VBD •) [saw]
                                 NP[her]
                                                         Y[h]
                                                              Z[h]
bestScore(X,i,j,h)
  if (j = i+1)
                                                      h
                                                             k
                                                                   h'
     return tagScore(X,s[i])
  else
     return
       max max score(X[h] \rightarrow Y[h] Z[h']) *
          k,h',X->YZ<br/>bestScore(Y,i,k,h) *
                 bestScore(Z,k,j,h')
            max score (X[h] \rightarrow Y[h'] Z[h]) *
          k,h',X->YZbestScore(Y,i,k,h') *
                 bestScore(Z,k,j,h)
```

# Efficient Parsing for Lexical Grammars



### **Quartic Parsing**

Turns out, you can do (a little) better [Eisner 99]



- Gives an O(n<sup>4</sup>) algorithm
- Still prohibitive in practice if not pruned



### Pruning with Beams

- The Collins parser prunes with per-cell beams [Collins 99]
  - Essentially, run the O(n<sup>5</sup>) CKY
  - Remember only a few hypotheses for each span <i,j>.
  - If we keep K hypotheses at each span, then we do at most O(nK²) work per span (why?)
  - Keeps things more or less cubic (and in practice is more like linear!)



 Also: certain spans are forbidden entirely on the basis of punctuation (crucial for speed)



### Pruning with a PCFG

- The Charniak parser prunes using a two-pass, coarse-to-fine approach [Charniak 97+]
  - First, parse with the base grammar
  - For each X:[i,j] calculate P(X|i,j,s)
    - This isn't trivial, and there are clever speed ups
  - Second, do the full O(n<sup>5</sup>) CKY
    - Skip any X:[i,j] which had low (say, < 0.0001) posterior</p>
  - Avoids almost all work in the second phase!
- Charniak et al 06: can use more passes
- Petrov et al 07: can use many more passes



#### Results

#### Some results

- Collins 99 88.6 F1 (generative lexical)
- Charniak and Johnson 05 89.7 / 91.3 F1 (generative lexical / reranked)
- Petrov et al 06 90.7 F1 (generative unlexical)
- McClosky et al 06 92.1 F1 (gen + rerank + self-train)

#### However

- Bilexical counts rarely make a difference (why?)
- Gildea 01 Removing bilexical counts costs < 0.5 F1</li>

# Latent Variable PCFGs



- Annotation refines base treebank symbols to improve statistical fit of the grammar
  - Parent annotation [Johnson '98]
  - Head lexicalization [Collins '99, Charniak '00]
  - Automatic clustering?



#### Latent Variable Grammars



Parse Tree TSentence w



#### Latent Variable Grammars



Parse Tree TSentence w

Derivations t:T



#### Latent Variable Grammars



Parse Tree TSentence w

Derivations t:T

Parameters  $\theta$ 

#### EM algorithm:



#### EM algorithm:

- Brackets are known
- Base categories are known
- Only induce subcategories





#### EM algorithm:

- Brackets are known
- Base categories are known
- Only induce subcategories







#### EM algorithm:

- Brackets are known
- Base categories are known
- Only induce subcategories



Just like Forward-Backward for HMMs.





# Refinement of the DT tag

#### DT

the (0.50)

a (0.24)

The (0.08)



## Refinement of the DT tag



#### Hierarchical refinement

the (0.50)

a (0.24)

The (0.08)

#### Hierarchical refinement



#### Hierarchical refinement





# Hierarchical Estimation Results





# Refinement of the, tag

Splitting all categories equally is wasteful:

# Refinement of the, tag

Splitting all categories equally is wasteful:





## Adaptive Splitting

- Want to split complex categories more
- Idea: split everything, roll back splits which were least useful





# Adaptive Splitting Results





# Adaptive Splitting Results





# Adaptive Splitting Results





# Number of Phrasal Subcategories





# Number of Lexical Subcategories





# Learned Splits

Proper Nouns (NNP):

| NNP-14 | Oct.       | Nov.      | Sept.  |
|--------|------------|-----------|--------|
| NNP-12 | John       | Robert    | James  |
| NNP-2  | J.         | E.        | L.     |
| NNP-1  | Bush       | Noriega   | Peters |
| NNP-15 | New        | San       | Wall   |
| NNP-3  | York (DDD) | Francisco | Street |

Personal pronouns (PRP):

| PRP-0 | It | Не   | 1    |
|-------|----|------|------|
| PRP-1 | it | he   | they |
| PRP-2 | it | them | him  |

## Learned Splits

Relative adverbs (RBR):

| RBR-0 | further | lower   | higher |
|-------|---------|---------|--------|
| RBR-1 | more    | less    | More   |
| RBR-2 | earlier | Earlier | later  |

Cardinal Numbers (CD):

| CD-7  | one     | two     | Three    |
|-------|---------|---------|----------|
| CD-4  | 1989    | 1990    | 1988     |
| CD-11 | million | billion | trillion |
| CD-0  | 1       | 50      | 100      |
| CD-3  | 1       | 30      | 31       |
| CD-9  | 78      | 58      | 34       |



## Final Results (Accuracy)

|        |                                   | ≤ 40 words<br>F1 | all<br>F1 |
|--------|-----------------------------------|------------------|-----------|
| _      | Charniak&Johnson '05 (generative) | 90.1             | 89.6      |
| G      | Split / Merge                     | 90.6             | 90.1      |
| G      | Dubey '05                         | 76.3             | _         |
| ER     | Split / Merge                     | 80.8             | 80.1      |
| С      | Chiang et al. '02                 | 80.0             | 76.6      |
| H<br>N | Split / Merge                     | 86.3             | 83.4      |

Still higher numbers from reranking / self-training methods

# Efficient Parsing for Hierarchical Grammars

#### Coarse-to-Fine Inference

#### Example: PP attachment







coarse: ... QP NP VP ...



coarse: ... QP NP VP ...

























































1621 min 111 min 35 min 15 min (no search error)