Data Communication

TRANSMISSION MEDIA

Sakarya Üniversitesi Bilgisayar Mühendisliği Bölüm

Overview

- guided wire / optical fibre
- unguided wireless
- characteristics and quality determined by medium and signal
 - o in unguided media bandwidth produced by the antenna is more important
 - o in guided media medium is more important
- key concerns are data rate and distance

Design Factors

- bandwidth
 - o higher bandwidth gives higher data rate
- transmission impairments
 - o eg. attenuation
- interference
- number of receivers in guided media
 - o more receivers introduces more attenuation

Transmission Characteristics of Guided Media

	Frequency Range	Typical Attenuation	Typical Delay	Repeater Spacing
Twisted pair (with loading)	0 to 3.5 kHz	0.2 dB/km @ 1 kHz	50 μs/km	2 km
Twisted pairs (multi-pair cables)	0 to 1 MHz	0.7 dB/km @ 1 kHz	5 μs/km	2 km
Coaxial cable	0 to 500 MHz	7 dB/km @ 10 MHz	4 μs/km	1 to 9 km
Optical fiber	186 to 370 THz	0.2 to 0.5 dB/km	5 μs/km	40 km

Twisted Pair - Transmission Characteristics

- analog
 - o needs amplifiers every 5km to 6km
- digital
 - o can use either analog or digital signals
 - o needs a repeater every 2-3km
- limited distance
- limited bandwidth (1MHz)
- limited data rate (100MHz)
- susceptible to interference and noise

Sakarya Üniversitesi Bilgisayar Mühendisliği Bölümü

Unshielded vs Shielded TP

- unshielded Twisted Pair (UTP)
 - o ordinary telephone wire
 - o cheapest
 - o easiest to install
 - o suffers from external EM interference
- shielded Twisted Pair (STP)
 - o metal braid or sheathing that reduces interference
 - o more expensive
 - o harder to handle (thick, heavy)
- in a variety of categories see EIA-568

UTP Categories

	Category 3 Class C	Category 5 Class D	Category 5E	Category 6 Class E	Category 7 Class F
Bandwidth	16 MHz	100 MHz	100 MHz	200 MHz	600 MHz
Cable Type	UTP	UTP/FTP	UTP/FTP	UTP/FTP	SSTP
Link Cost (Cat 5 =1)	0.7	1	1.2	1.5	2.2

Sakarya Üniversitesi Bilgisayar Mühendisliği Bölümi

Comparison of Shielded and Unshielded Twisted Pair

	Attenuation (dB per 100 m)			Near-end Crosstalk (dB)		
Frequency (MHz)	Category 3 UTP	Category 5 UTP	150-ohm STP	Category 3 UTP	Category 5 UTP	150-ohm STP
1	2.6	2.0	1.1	41	62	58
4	5.6	4.1	2.2	32	53	58
16	13.1	8.2	4.4	23	44	50.4
25	_	10.4	6.2	_	41	47.5
100	_	22.0	12.3	_	32	38.5
300	_	_	21.4	_	_	31.3

Near End Crosstalk

- coupling of signal from one pair to another
- occurs when transmit signal entering the link couples back to receiving pair
- ie. near transmitted signal is picked up by near receiving pair

Coaxial Cable - Transmission Characteristics

- superior frequency characteristics to TP
- performance limited by attenuation & noise
- analog signals
 - o amplifiers every few km
 - o closer if higher frequency
 - o up to 500MHz
- digital signals
 - o repeater every 1km
 - o closer for higher data rates

Optical Fiber - Benefits

- greater capacity
 - o data rates of hundreds of Gbps
- smaller size & weight
- lower attenuation
- electromagnetic isolation
- greater repeater spacing
 - o 10s of km at least

Sakarya Üniversitesi Bilgisayar Mühendisliği Bölümü

Optical Fiber - Transmission Characteristics

- uses total internal reflection to transmit light
 - o effectively acts as wave guide for 10¹⁴ to 10¹⁵ Hz
- can use several different light sources
 - Light Emitting Diode (LED)
 - x cheaper, wider operating temp range, lasts longer
 - o Injection Laser Diode (ILD)
 - x more efficient, has greater data rate
- relation of wavelength, type & data rate

Wireless Transmission Frequencies • 2GHz to 4oGHz • microwave • highly directional • point to point • satellite • 30MHz to 1GHz • omnidirectional • broadcast radio • 3 x 10¹¹ to 2 x 10¹⁴ • infrared • local

Antennas

- electrical conductor used to radiate or collect electromagnetic energy
- transmission antenna
 - o radio frequency energy from transmitter
 - o converted to electromagnetic energy byy antenna
 - o radiated into surrounding environment
- reception antenna
 - o electromagnetic energy impinging on antenna
 - o converted to radio frequency electrical energy
 - o fed to receiver
- same antenna is often used for both purposes

Sakarya Üniversitesi Bilgisayar Mühendisliği Bölümü

Radiation Pattern

- power radiated in all directions
- not same performance in all directions
 - o as seen in a radiation pattern diagram
- an isotropic antenna is a (theoretical) point in space
 - o radiates in all directions equally
 - o with a spherical radiation pattern

Terrestrial Microwave

- used for long haul telecommunications
- and short point-to-point links
- requires fewer repeaters but line of sight
- use a parabolic dish to focus a narrow beam onto a receiver antenna
- 1-40GHz frequencies
- higher frequencies give higher data rates
- main source of loss is attenuation
 - o distance, rainfall
- also interference

Satellite Microwave

- satellite is relay station
- receives on one frequency, amplifies or repeats signal and transmits on another frequency
 - o eg. uplink 5.925-6.425 GHz & downlink 3.7-4.2 GHz
- typically requires geo-stationary orbit
 - o height of 35,784km
 - o spaced at least 3-4° apart
- typical uses
 - o television
 - o long distance telephone
 - o private business networks
 - o global positioning

Broadcast Radio

- radio is 3kHz to 300GHz
- use broadcast radio, 30MHz 1GHz, for:
 - o FM radio
 - O UHF and VHF television
- is omnidirectional
- still need line of sight
- suffers from multipath interference
 - o reflections from land, water, other objects

Infrared

- end line of sight (or reflection)
- are blocked by walls
- no licenses required
- typical uses
 - TV remote control
 - o IRD port

