ORACLE®

experience INNOVATION

November 11–15, 2007

ORACLE

DBA's New Best Friend: Advanced SQL Tuning Features of Oracle Database 11g

Peter Belknap, Sergey Koltakov, Jack Raitto

The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle's products remains at the sole discretion of Oracle.

Agenda

- SQL Tuning Challenges
- Oracle Database 11g Solutions
 - Automatic SQL Tuning
 - Real-time SQL Monitoring
 - Partition Advisor
- Q & A

SQL Tuning Challenges

- Oracle Database 10g introduced SQL advisors to simplify application and SQL tuning
- Remaining challenges
 - SQL Tuning still reactive
 - Painful to find and investigate long-running SQL
 - Partitioning excluded from schema optimization advice
- Oracle Database 11g solutions
 - Automatic SQL Tuning
 - Real-time SQL Monitoring
 - Partition Advisor component of SQL Access Advisor

Automatic SQL Tuning

The Self-Managing Database

Challenges of Manual SQL Tuning

- Requires expertise in several domains
 - SQL optimization: adjust the execution plan
 - Access design: provide fast data access
 - SQL design: use appropriate SQL constructs
- Time consuming
 - Plans are complicated
 - Each SQL statement is unique and each execution can be different
 - Potentially large number of statements to tune
 - Testing proposed changes is labor-intensive
 - Many possible ways to a solution
- Never ending task
 - SQL workload always evolving
 - Plan regressions

Simplifying SQL Tuning

SQL Tuning Advisor, since Oracle Database 10g

Improvements in Oracle Database 11g

Better SQL Profiling

Testing SQL Profiles (1)

Measuring actual benefit with test-execution

Testing SQL Profiles (2)

Measuring actual benefit with test-execution

Solution: Tournament Execution

Your winner, with a knockout in the second round, P2!

SQL Tuning in Oracle Database 10g

End-to-end Workflow

Automatic SQL Tuning in Oracle 11g

The Self-Managing Database

Picking Candidate SQL (1)

Picking Candidate SQL (2)

- Eventually we need one list to tune from: merge the buckets.
- All buckets are not created equal: focus on the week, but don't forget about the others.
- Focus on the SQLs we have not seen recently:
 Don't re-tune SQLs if nothing has changed!

Tuning Flow

Tuning activities per SQL

Focus on SQL Profiles

First step in automating SQL tuning

Auto-testing/implementing is limited to profiles because:

- No lengthy, expensive set-up process (building an index takes time)
- Private to the current compilation
- No change to user SQL (does not change semantics)
- SQL-level recommendation, can be effectively tested
- Easily reversed by the DBA

Testing is done for regular SQL Tuning Advisor tasks as well!

Automatic SQL Tuning Defaults

Sensible defaults with flexible configurations

- Out-of-the-box defaults:
 - Runs in each maintenance window (MAINTENANCE_WINDOW_GROUP)
 - SQL profiles are tested but not implemented
- DBA can configure using EM:
 - Whether / When / How long it runs
 - Resources it uses
 - Whether it implements profiles
 - How many profiles it implements

Automatic SQL Tuning Task

Automatic SQL Tuning Configuration

Automated Maintenance Tasks Configuration Global Status © Enabled ODisabled Task Sottings

Automatic SQL Tuning Result Summary

Automatic SQL Tuning Result Recommendations

Automatically Tuned SQL Details Drilldown

Conclusions

- Manual SQL tuning is painful even for the experts
- Oracle 10g SQL Tuning Advisor quickly gives DBA good choices
- Oracle 11g Automatic SQL Tuning automates the process by making the easy decisions
- DBA can control as much of the process as he wants

Just when you thought it was safe to run your SQLs...

There's a lot more to SQL performance than bad plans!

- Potential run-time issues
- Finding high response-time SQL is no piece of cake
- Keeping tabs on Parallel SQL is even harder

Real-Time SQL Monitoring

Shining new light on SQL Performance

Problem: Managing High Response-Time SQLs

- Monitoring: tracking high response-time SQL
 - What is that expensive SQL (ETL, DDL, batch, report, ...) I started up to?
 - Do I have any high response-time SQL running on my OLTP system?
 - Any SQL executing parallel?
- Investigating: why is this execution so expensive?
 - Plan has hundreds of operations -- where is the time being spent?
 - Why is a particular operation so expensive?
 - SQL runs parallel, is DOP appropriate? is there a skew?
 - → What is going on inside a SQL execution???

Solution: Real-time SQL Monitoring

Looking inside the SQL

- Enabled out-of-the-box with no performance impact
- Automatically monitors SQL executions that:
 - consume more than 5 seconds of CPU or I/O time
 - are running parallel: PQ, PDML, PDDL
- Monitors each execution independently
- Exposes monitoring statistics at multiple levels
 - Global execution level
 - Plan operation level (Plan Tuning)
 - Parallel Execution level (PX Tuning)
- Guides your tuning efforts

How does it work?

- Exposes monitoring statistics in:
 - V\$SQL_MONITOR
 - Cumulative DB time breakdown (CPU, IO, Application, etc)
 - PL/SQL, Java Exec Times
 - V\$SQL_PLAN_MONITOR
 - #rows, #executions, memory, temp space per plan operation
 - Plan operation begin and end times
 - V\$ACTIVE_SESSION_HISTORY (ASH)
 - Each execution of each SQL identifiable in ASH execution key: (SQL_ID, SQL_EXEC_START, SQL_EXEC_ID)
 - Parallel Execution Servers share an execution key with QC, but use a separate Session ID
- Separate entries for each Parallel Execution Server
- Refreshes statistics every second, during query execution
- Statistics available for at least 5 minutes, even with cursor age-outs

How do I use it?

- 11g Enterprise Manager Grid Control
- Additional reporting (available today):
 DBMS_SQLTUNE.REPORT_SQL_MONITOR

Enterprise Manager Flow (1)

SQL Details

Monitoring Details

Enterprise Manager Flow (2)

Monitoring List

Monitoring Details

SQL Monitoring List

SQL Monitoring Details

SQL Monitoring Details (Parallelism)

Conclusion

- Real-Time SQL Monitoring is
 - Monitoring and tuning for high response-time SQLs
 - New, fine-grained SQL statistics
 - tracked automatically
 - updated while the SQL runs
 - highly visible and accessible
 - at no cost to your production system
 - The only way to know what's happening inside single SQL execution
 - The quickest way to the root cause of a performance problem:
 If you can find the problem, you can fix it!

Problem

- SQLs on large tables run too long or timeout
- High I/O counts
- Too much pressure on buffer pool
- Disgruntled users
- Low transaction rates

Solution

- Get new 11g partition advice along with other advice from the new 11g SQL Access Advisor
 - Recommendations targeted at partition elimination in query processing
 - Recommendations to aid certain join processing

Interval Partitioning

CREATE TABLE emp
(empno NUMBER(6),
first_name VARCHAR(20),
last_name VARCHAR(20),
deptno NUMBER(6))
PARTITION BY RANGE (deptno) INTERVAL 100
PARTITION p1 VALUES LESS THAN 100

< 100

< 200

< 300

< 400

< 500

< 600

Interval Partitioning

CREATE TABLE emp
(empno NUMBER(6),
first_name VARCHAR(20),
last_name VARCHAR(20),
deptno NUMBER(6))
PARTITION BY RANGE (deptno) INTERVAL 100
PARTITION p1 VALUES LESS THAN 100

< 100

< 200

< 300

< 400

< 500

< 600

Interval partition is a new, automated form of range partitioning.

Partition Elimination

CREATE TABLE emp
(empno NUMBER(6),
first_name VARCHAR(20),
last_name VARCHAR(20),
deptno NUMBER(6))
PARTITION BY RANGE (deptno) INTERVAL 100
PARTITION p1 VALUES LESS THAN 100

< 100

< 200

< 300

< 500

< 600

< 400

SELECT empno, last_name, first_name FROM emp WHERE deptno = 123

Partition Elimination

Partition-wise Join

When joining two tables that are partitioned on the joinkey, Oracle may choose to join on a per-partition basis.

How does SAA work?

Partition Advisor Problem Space

- Fact: If I partition table T1, all Qs referencing T1 are affected (+ or -)
- Fact: If I also partition table T2, the same applies
- Fact: Lots of Qs reference multiple tables forming a network of inter-relationships
- Therefore: A potential partitioning scheme on each different table affects each potential partitioning scheme on other tables in that network

Recommends:

Partitioning

Recommends:

Supported
Partitioning Types:
Interval
Hash

Recommends:

Supported
Partitioning Types:
Interval
Hash

Partitioning Table
Materialized Views
Indexes

Supported Partition Key Types: Date Number

Recommends:

Creating

Choosing Partition Advice

Recommendation summary

Partition recommendations

Partition Recommendation

Conclusions

- SAA now covers your data access problems with all possible access solutions
- New for 11g:
 - Partition advice, including hash and new interval on date and number
 - Incremental advice
- Partition recommendations are holistically generated, simultaneously considering all possible access solutions across an entire SQL workload
- SAA is easy to use as ever partition advice is yours for click of a checkbox!

ORACLE®

Navigating to SQL Access Advisor

EM Home Page

SQL Advisor Page

Advisor Central Page

Using SQL Access Advisor

Running advisor job

