CS538 Spring 2023 HW 1 Solutions

1. Consider a mobile company that wants to connect wireless clients to base stations. Further suppose that each base station has a capacity of C clients. A client can connect to a base station only if the base station set is less than or equal to distance r away. Given a collection of base stations, wireless clients and the geographic location of base stations and wireless clients, design a method to determine an assignment of clients to base stations such that the number of clients serviced is maximized.

We can formulate this as a max-flow problem in a bipartite graph. Create a bipartite graph G(U, V, E) where U represents the set of clients We let u_i be the node corresponding to client i, v_j corresponding to the jth base station. $E = (u_i, v_j \text{ represent an edge directed from client } u_i \text{ to base station } v_j \text{ iff } u_i$ is within distance r from v_j . Create a super source and connect to $u_i, \forall i$ and connect $v_j, \forall j$ to t. Let all edges have capacity 1 and let the edge from v_j to t have capacity C. This capacity will ensure that no base station will get more than C client. Finding the maximum flow in this graph will give an optimum assignment.

2. There are n doctors that need to be scheduled for duty in a hospital during holiday periods. There are m vacation periods (Thanksgiving, Christmas etc.) each of period p_i . However, there must be at least one doctor on call at the hospital every day during the vacation period. Each doctor D_i specifies the set of vacation days W_i that he can work. How will you determine a schedule such that each doctor is not working more than c days in any vacation period.

Again construct a flow network using a variation of a bipartite graph G = (V, U, E) where U represents the doctors, V the holiday days and an edge between u_i and v_j if the doctor u_i can work on holiday v_j . Each edge has capacity 1. However we need to make sure that no more than c days are scheduled for every doctor. So we add a third layer of nodes in between U and V such that for every holiday period h and for every doctor there is a node h_i and now every node corresponding to a doctor u_i is connected to h_i with capacity c and every node h_i is then connected to all the nodes corresponding

to the days in the holiday period h with capacity 1. Add a super source s with edges to each doctor and of unbounded capacity and a super sink t with edges from v_j to t with capacity lower bound of 1 and upper bound of 1.

3. Describe the proof of Hall's theorem discussed in class for a bipartite graph G = (U, V, E). In particular, in the induction step show that if there is a subset $S \subseteq U$ with neighbor set N(S), where |N(S)| = |S| then S and T satisfy the hypothesis of the theorem, i.e., for every subset in S(or T) the neighborhood set is of size greater than or equal to S (or T).

When |A|=1, then an A-perfect matching is trivial. When |A|>1, we can consider $x\in A$ and $y\in B$

Next, for any vertex $x \in A$ it must have at least one neighbor $y \in B$. We can try to pair x and y and find a matching of size |A|-1 in the graph induced by $A-\{x\}, B-\{y\}$. Such a matching will not be possible if there is some set S in the induced graph where S < N(S) (Observe that the total neighborhood size of A has only decreased by 1, invalidating Hall's condition.) Therefore, S has exactly |S| neighbors in B.

Let T denote the neighborhood of any such S in B, i.e., |S| = |T|. Extract S and T and Let B' be the induced graph (B is the original graph.) B' is definitely smaller in size than B, and therefore, there exists a matching for each vertex of S to a vertex in B. For any set $S' = A \setminus S$. Since S has |T| neighbors in B, S' must have at least |S'| neighbors in $B \setminus T$.

 $Ref:\ https://homes.cs.washington.edu/\~anuprao/pubs/CSE599sExtremal/lecture 6.pdf$

4. Show that $y(\theta) = \theta x + (1 - \theta)y$, $0 \le \theta \le 1$ represents all the points on the line segment defined by two endpoints x and y. This is true in \mathbb{R}^d for any dimension d.

All points on the line segment can be expressed in terms of the vector x + t(y - x) where $0 \le t \le 1$. Manipulating the expression in the question, we have $y(\theta) = y + \theta(x - y), 0 \le \theta \le 1$, which matches the definition.

- 5. Show that the following sets are convex:
 - (i) Lines and Line segments in \mathbb{R}^d .

Using parametric definition of a line: A line is defined by a point p, a vector v and is the set $\{y = p + \alpha v\}$, for any α . Given $y_1 = p + \alpha_1 v$ and $y_2 = p + \alpha_2 v$ on the line consider $z = \theta y_1 + (1 - \theta)y_2$.

$$z = p + (\alpha_1 v)(\theta) + (\alpha_2)v(1 - \theta)$$

or $z = p + (\alpha')v$ where $\alpha' = (\alpha_1\theta + \alpha_2(1-\theta))$

(ii) Ellipsoids in \mathbb{R}^d .

Ellipsoids in d dimensions are defined by

$$(x-c)^T B(x-c) \le 1$$

Note that B can be expressed as A^TA and thus the above is equivalent to $||(x-c)^tA||_2 \le 1$. Then checking for $z = \theta x + (1-\theta)y$ gives

$$(z-c)^T B(z-c) = \theta^2 (x-c)^T B(x-c) + 2\theta (1-\theta)(x-c)^T B(y-c) + (1-\theta)^2 (y-c)^T B(y-c)$$
$$< \theta^2 + (1-\theta)^2 + 2\theta (1-\theta)((x-c)A)^T (A(y-c))$$

Using Cauchy Schwartz's inequality ($x^t y \leq ||x|| ||y||$) we get $((x-c)A)^T (y-c) \leq 1$

(iii) Halfspaces defined by the hyperplane $a^T x = b$.

This is easy to see because of the linearity.

6. Let $C \subseteq \mathbb{R}^n$ be a convex set, with $x_1 \dots x_k \in \mathbb{C}$. Show that $\theta_1 x_1 + \dots + \theta_k x_k \in \mathbb{C}$ where $\theta_1, \dots \theta_k \in \mathbb{R}$ satisfy $\theta_i \geq 0, \theta_1 + \dots + \theta_k = 1$.

Use induction and the fact that $\theta_1 x_1 + \ldots + \theta_k x_k = \theta_1 + (1 - \theta_1)y$ where $y = \sum_{i=2}^k \frac{\theta_i x_i}{\sum_{j=2}^k \theta_j}$

7. Show that if C is a convex set then C' = T(C) is a convex set, where $T(C) = Ax + b, x \in C$.

For two points $z_1 = Ax_1 + b$, $z_2 = Ax_2 + b$ we get

$$\theta(Ax_1 + b) + (1 - \theta)(Ax_2 + b) = A(\theta x_1 + (1 - \theta)x_2) + b$$