МАРШРУТЫ ЦИКЛЫ И РАЗРЕЗЫ

Маршрутом в графе G называется чередующаяся последовательность вершин и ребер

$$v_0, e_1, v_1, \ldots, v_{t-1}, e_t, v_t,$$

в которой $e_i = v_{i-1}v_i$ ($1 \le i \le t$).

Такой маршрут кратко называют (v_0 , v_t)-маршрутом и говорят, что он соединяет v_0 с v_t ;

 v_0, v_t — концевые вершины маршрута.

Часто маршрут изображают в виде:

$$e_1$$
 e_2 e_{i-1} $v_0 \rightarrow v_1 \rightarrow ... \rightarrow v_t$.

Стрелки здесь указывают лишь порядок следования вершин в маршруте.

Длиной маршрута называют количество содержащихся в нем ребер. Случай, когда длина маршрута равна нулю, не исключается; в этом случае маршрут сводится к одной вершине.

Заметим, что в обыкновенном графе маршрут полностью определяется последовательностью v_0, v_1, \ldots, v_t своих вершин. Если $v_0 = v_t$, то маршрут называется **замкнутым**.

Цепь — это маршрут, в котором не повторяются ребра.

Цепь называется *простой цепью*, если в ней нет повторяющихся вершин кроме, быть может, совпадающих концевых вершин.

Замкнутая простая цепь называется *циклом*. Заметим, что цикл полностью определяется множеством своих ребер, поэтому под циклом более правильно понимать множество его ребер.

Петля — это цикл длины 1, пара кратных ребер образует цикл длины 2. Циклы длины 3 называют обычно *теугольниками*.

Лемма 1. Если для некоторых вершин u, v в графе существует (u, v)-маршрут, то существует и простая (u, v)-цепь.

Доказательство. Рассмотрим в графе (u, v)-маршрут наименьшей длины. Покажем, что этот маршрут является простой цепью. Если в нем имеется повторяющаяся вершина w, то, заменяя часть маршрута от первого вхождения вершины w до ее второго вхождения на одну вершину w, мы получим более короткий (u, v)-маршрут.

Граф G называется $censuremath{sasta}$, если для любых двух различных вершин u, v существует (u, v)-маршрут.

На множестве вершин VG произвольного графа G определим **отношение связности** \sim , полагая

 $u \sim v \Leftrightarrow$ существует (u, v)-маршрут.

Отношение является отношением эквивалентности. Обозначим через V_1, V_2, \ldots, V_k классы этого отношения.

Пусть $G_i = G(V_i)$ — подграф, порожденный множеством вершин V_i ($1 \le i \le k$). Графы G_1, G_2, \ldots, G_k называются компонентами связности графа G.

Каждая компонента связности является связным подграфом. Очевидно, каждый связный подграф графа *G* является подграфом некоторой его компоненты связности. Поэтому множество компонент связности — это множество всех максимальных связных подграфов данного графа, и любое ребро принадлежит некоторой компоненте связности.

Поэтому справедливо следующее утверждение: Каждый граф является дизъюнктным объединением своих компонент связности.

Граф, имеющий n вершин, m ребер и k компонент связности будем называть (n, m, k)-графом.

Граф, изображенный на рис., является (13, 14, 5)-графом.

Разрезающим множеством ребер графа называется множество ребер, удаление которого из графа приводит к увеличению числа компонент связности.

Минимальное по включению разрезающее множество ребер графа называется разрезом.

Мост графа — это ребро, составляющее одноэлементный разрез. Иными словами, при удалении моста число компонент связности возрастает.

На рис. показаны примеры разрезов в графах, причем на правом рис. показан мост.

Лемма 2. При удалении из графа ребер разреза число компонент связности увеличивается точно на единицу.

Доказательство. 1) Пусть из графа удаляется мост e = uv. Ясно, что $u \neq v$. В графе G - e вершины u и v нельзя соединить простой цепью, иначе сохранится отношение связности и, следовательно, сохранится число компонент связности.

Таким образом, u и v лежат в разных компонентах связности графа G - e.

Пусть x — произвольная вершина графа G, для которой существует простая (x, v)цепь (конечно, она лежит в той же компоненте связности графа G, что и вершина v).

Если в этой простой цепи не встречается ребро e, то вершины x и v лежат в одной компоненте связности графа G-e.

e

то цепь обязательно имеет вид $x \to \ldots \to u \to v$. Поэтому вершины x и u лежат в одной компоненте связности графа G - e.

Поэтому при удалении моста e точно одна компонента связности графа G, а именно, компонента, содержащая v, распадается на две компоненты связности графа G - e.

2) Пусть удаляется разрез $\{e_1, \ldots, e_t\}$, где t > 1. После удаления ребер e_1, \ldots, e_{t-1} число компонент связности не изменится и ребро e_t станет мостом. В силу 1) после удаления e_t число компонент связности увеличится на 1, **лемма доказана.**

Лемма 3. Ребро графа является мостом iff, когда оно не содержится ни в одном цикле.

Доказательство. Пусть e = uv — мост.

Если e содержится в некотором цикле, то существует простая (u, v)-цепь, не содержащая e. Следовательно, после удаления ребра e из графа отношение связности не изменится, что невозможно.

Обратно, пусть e = uv не является мостом. После удаления e из графа G вершины u и v будут лежать в одной компоненте связности графа G-e. В силу леммы 1 в графе G-e имеется простая (u, v)-цепь. Добавляя к этой цепи ребро e, получим цикл графа G, содержащий ребро e и **лемма доказана**.

Таким образом, множество ребер графа разбиваются на два типа:

- 1) ииклические ребра ребра, лежащие в циклах;
- 2) ациклические ребра или мосты ребра, не лежащие в циклах.

Теорема 1. Пусть G — (n, m, k)-граф. Тогда $m \geqslant n - k$.

Доказательство. Применим индукцию по числу ребер. Если m=0, то n=k, и требуемое неравенство очевидно.

Пусть m > 0. Предположим, что для всех графов с числом ребер, меньшим m, оценка имеет место.

Рассмотрим (n, m, k)-граф G. Пусть $G_1 = G - e$, где e — некоторое ребро графа G. Тогда G_1 является $(n, m-1, k_1)$ -графом, где $k_1 \le k+1$ в силу леммы 2. Следовательно, $m-1 \ge n-k_1 \ge n-k-1$,

T.e. $m \ge n - k$.

Теорема доказана.

Число r(G) = n - k называется *рангом* графа G, а

число $r^*(G) = m - n + k$ называется его *цикломатическим числом* или **корангом.**

Теорема 2 (Д. Кёниг). Ненулевой граф является двудольным графом iff, когда он не имеет циклов нечетной длины.

Доказательство. В двудольном графе, очевидно, нет петель и любой замкнутый маршрут имеет четную длину.

Обратное утверждение теоремы достаточно доказать для связного графа G. Пусть ненулевой граф G связен и не имеет циклов нечетной длины. Зафиксируем некоторую его вершину v_0 . Разобьем множество всех вершин V на два непустых непересекающихся подмножества V_0 и V_1 следующим образом.

В V_0 и V_1 поместим, соответственно, все вершины u графа G, для которых кратчайшая (v_0, u) -цепь имеет четную, соответственно нечетную, длину. Ясно, что $v_0 \in V_0$ и $V = V_0 \cup V_1$.

Покажем, что в графе G нет ребер e = ab таких, что вершины a и b лежат одновременно в V_0 или в V_1 . Пусть, от противного, для ребра e = ab выполняется $a, b \in V_0$ (случай $a, b \in V_1$ рассматривается аналогично).

Пусть P_0 — кратчайшая (v_0 , a)-цепь, а P_1 — кратчайшая (v_0 , b)-цепь. Обе эти цепи имеют четную длину. Обозначим через u последнюю вершину цепи P_0 , принадлежащую цепи P_1 .

Тогда подцепи от v_0 до u в цепях P_0 и P_1 имеют одинаковую длину. Иначе, пробежав по более короткой подцепи от v_0 до u мы смогли бы найти более короткую цепь от v_0 до a или от v_0 до b, чем цепь P_0 или цепь P_1 . Очевидно, подцепи от u до a и от u до b в цепях P_0 и P_1 имеют одинаковую четность.

Тогда они вместе с ребром e образуют цикл нечетной длины, что невозможно. **Теорема доказана**.