EXPERIMENT4: BCD Number subtraction.

Devesh Soni Roll no. :21D070025

August 19, 2022

1 Overview of the Experiment

- The main aim of this experiment is to get familiarized with XEN10 board (10M25SAE1448CG) .
- Through this experiment we designed the 4bit Binary coded decimal number subtractor using the previously designed 4 bit ADDER_SUBTRACTOR and some usual logic gates.
- In this report firstly I will explain:
 - 1. Pen and Paper diagram of logic gate design of the function.
 - 2. VHDL code , changes in DUT and testbench files and finally NETLIST view and RTL simulation of the implemented function.
 - 3. PIN mapping , SVF file creation , and finally dumping this SVF file onto the board ,after successfully testing the working of board.

2 Experiment setup / approach to the assignment

2.1 BCD number subtractor using 10's compliment

- follow the given to subtract two numbers using 10's compliment method
 - 1. When subtracting two BCD numbers (A-B), find the 10's complement of the negative decimal number (B).
 - 2. Add A+10's complement of B.
 - 3. If carry is generated, the obtained result is positive. Discard the carry to get the result.
 - 4. If carry is not generated, the obtained result is negative, find the 10's complement to get the final result.

Figure 1: 10's Compliment example

• Created design on paper as shown, marked signals and numbered various gates, optimized the boolean expression using K-map.

Figure 2:

2.2 QUADSUB.vhdl

- 1. Import required libraries
- 2. Created two packages FULLADD and ADD_SUB.

ANDZ: AND_2 port map (compbar,compbar,Y4);

- 3. Construct entity QUADSUB.
- 4. Construct architecture, define signals.
- 5. Component instantiation.
- 6. final code is as follows:

```
library ieee;
use ieee.std_logic_1164.all;
library work;
use work. Gates.all;
use work .FULLADD.all;
use work.ADD_SUB.all;
entity QUADSUB is
 port (A3, A2,A1,A0, B3,B2,B1,B0: in std_logic; Y4, Y3, Y2, Y1, Y0: out std_logic);
end entity QUADSUB;
architecture FFFF of QUADSUB is
  signal o0,o1,o2,o3,andd1 , andd2 , s3b, s2b ,s1b,s0b, C , Cb,compbar, s3,s2,s1,s0, dummy1,dummy2,co
begin
  -- component instances
 SUB1: ADDER_SUBTRACTOR port map ('1','0','1','0', B3,B2,B1,B0,'1',dummy1,o3,o2,o1,o0);
  ADD1: ADDER_SUBTRACTOR port map (03,02,01,00,A3,A2,A1,A0,'0',cb,s3b,s2b,s1b,s0b);
  ANDF1: AND_2 port map (s3b,s2b,andd1);
  ANDF2: AND_2 port map (s3b,s1b,andd2);
  ORF1: OR_2 port map (andd1,andd2,orff1);
  ORF2: OR_2 port map (orff1,cb,comp);
  ADD2: ADDER_SUBTRACTOR port map ('0',comp,comp,'0',s3b,s2b,s1b,s0b,'0', c,s3,s2,s1,s0);
  INV: INVERTER port map(comp,compbar);
```

AS: ADDER_SUBTRACTOR port map (compbar, '0',compbar, '0',s3,s2,s1,s0, compbar, dummy2,Y3,Y2,Y1,Y0);

end FFFF;

- Gates.vhdl(no change), Testbench.vhdl- change the number of outputs and inputs
- In DUT file(important to make it top level entity) change component's name and instance name to QUADSUB, changed input vector to 7 (with A3 as MSB), and output vector to 4 .

2.3 Working with XEN10 board

• Go to assignments —-> pin planning—-> and input the correct pin no.

Switch	FPGA Pin no.	LED	FPGA Pin no.
SW 8	47	LED 8	60
SW 7	46	LED 7	59
SW 6	45	LED 6	58
SW 5	44	LED 5	57
SW 4	43	LED 4	56
SW 3	41	LED 3	54
SW 2	39	LED 2	52
SW 1	38	LED 1	50

Pin Mapping for On-board switches and leds

Figure 4: PIN MAPPING FOR FUNCTION

- Figure 3: Pin Mapping for switches and leds
- after pin planning, in the same window go to processing—-> start I/O assignment analysis—-> and compile again.
- once compilation is complete create a .svf file
 in tools—>go to programmer—-> new file of format SVF and press ok .
 A new .svf file will be created in the same folder as of the project.
- once the svf file is created, connect the board to the laptop through USB cabel provided, open the **jtag.exe** application and write the required code.
- while copying the path of .svf file make sure that the svf must not be stored in the directory which contains spaces in its name .

3 Observations

3.1 NETLIST and RTL viewer

Figure 5: NETLIST VIEWER

Figure 6: RTL VIEWER