Nachrichtentechnik Übung 3

Puls-Amplituden-Modulation / Pulse-Code-Modulation	
1	Kurzfragen
Q	uantisierung und Rauschen
В	eim Quantisieren eines beliebigen rauschfreien Signals gilt folgende Aussage:
	 Es entsteht zusätzliches Rauschen alleine durch die Verwendung von nicht-idealen Bauelementen. Es entsteht keinerlei zusätzliches Rauschen. Es entsteht zusätzliches Rauschen durch den Unterschied von abgetasteten und quantisierten Werten und durch die Verwendung nicht-idealer Bauelemente. Das Quantisierungsrauschen ist nicht von der Auflösung der Quantisierung abhängig. Es entsteht zusätzliches Rauschen durch den Unterschied von quantisierten und codierten Werten.
	btastrate
Γl	ür vollständige Rekonstruierbarkeit muss die die Abtastrate eines Signals
	☐ mindestens doppelt so groß sein wie der höchste im Signal vorkommende Frequenzanteil im Basisband.
	□ mindestens so groß sein wie die Bandbreite des Signals.
	□ mindestens doppelt so groß sein wie die Bandbreite des Signals.
	\Box die doppelte Frequenz des höchsten im Signal vorkommenden Frequenzanteils nicht überschreiten.
	$\ \square$ mindestens so groß sein wie der höchste im Signal vorkommende Frequenzanteil.
Q	uantisierung
U:	m das zeit- und wertkontinuierliche Signal in Abbildung 1.1 verlustfrei zu quantisieren
	□ ist eine Auflösung von mindestens 8 bit nötig.
	□ ist eine Auflösung von mindestens 16,5 bit nötig.
	 □ sind unendlich viele Quantisierungsstufen nötig. □ muss ein passender Komprimierungsalgorithmus gefunden werden, um mit 32 Bit auszu-

kommen.

Abbildung 1.1: Signal im Zeitbereich

2 Abtastung / PAM-System

Bei der Pulsamplitudenmodulation (PAM) wird ein Signal *s* durch eine Folge von Rechteckimpulsen übertragen, deren Amplitude proportional zum Abtastwert des modulierenden Signals ist. Das Blockschaltbild eines PAM-Modulators ist in Abbildung 2.1 dargestellt.

Abbildung 2.1: Blockschaltbild PAM-Modulator

Das Signal aus Abbildung 2.2 soll mit Hilfe der PAM übertragen werden.

Abbildung 2.2: Signal s(t) im Zeitbereich und im Frequenzbereich. Hinweis: Die Signalform im Frequenzbereich entspricht nicht dem links dargestellten Signalausschnitt, sondern repräsentiert die idealisierten Eigenschaften des Signals für einen größeren Zeitraum.

- a) Welche Abtastrate f_A muss mindestens gewählt werden, damit das Signal später wieder rekonstruiert werden kann?
- b) Welche Grenzfrequenz B_{TP} sollte der Tiefpass haben?
- c) Zeichnen Sie das abgetastete Signal $s_A(t)$ im Zeitbereich, wenn Sie mit der kleinstmöglichen Abtastrate abtasten.
- d) Zeichnen Sie das pulsamplitudenmodulierte Signal $s_{PAM}(t)$ im Zeitbereich, wenn Sie mit der kleinstmöglichen Abtastrate abtasten.
- e) Zeichnen Sie das abgetastete Signal im Frequenzbereich (Spektrum) mit der kleinstmöglichen Abtastrate, sowie bei der doppelten und 75% der kleinstmöglichen Abtastrate. Zeichnen Sie ebenfalls das Filter zur Rekonstruktion des ursprünglichen Signals aus dem PAM-Signal ein und bewerten Sie das Ergebnis.

3 PCM-System

Das in Abbildung 3.1 dargestellte Signal soll mit Hilfe der PCM übertragen werden. Dazu wird das Signal mit einer Abtastrate von 2 kHz abgetastet.

Abbildung 3.1: Signal im Zeitbereich

- a) Zeichnen Sie das Blockschaltbild eines PCM-Modulators
- b) Wie unterscheidet sich das Blockschaltbild von einem PAM-Modulator? Worin unterscheiden sich PAM und PCM?
- c) Zeichnen Sie das abgetastete Signal im Zeitbereich.

Das abgetastete Signal soll in acht gleichmäßige Intervalle von $-2\,V$ bis $2\,V$ quantisiert werden, wobei jeweils der Mittelwert eines jeden Quantisierungsintervalles ausgegeben werden soll.

- d) Zeichnen Sie die Quantisierungskennlinie.
- e) Wie viele Bits sind zur binären Codierung der quantisierten Zustände nötig? Weisen Sie jedem Intervall einen binären Code zu.
- f) Zeichnen Sie das abgetastete und quantisierte Signal.
- g) Zeichnen Sie die Bitfolge nach der Codierung als unipolares und als bipolares Non-Return-Zero (NRZ) Signal mit einer Amplitude von 1 V.
- h) Welche Bitrate ergibt sich für die Übertragung des NRZ-Signals? Welche Bandbreite wird benötigt?
- i) Wie groß ist das Signal-zu-Quantisierungsrauschverhältnis? Gehen Sie bei der Berechnung von einem voll ausgesteuertem sinusförmigen Signal aus.
- j) Wie groß ist das Signal-zu-Quantisierungsrauschverhältnis, wenn 16 statt 8 Quantisierungsintervalle verwendet werden? Wie groß wird dann die benötigte Bandbreite?

4 Digitales Telefonsystem

Ein Sprachsignal soll mit Hilfe der PCM über ein digitales Telefonnetz übertragen werden. Das Sprachsignal hat eine Signalbandbreite von $B_S = 3,4\,\mathrm{kHz}$ ($f = 0\,\mathrm{kHz}$ bis 3,4 kHz) und eine maximale Amplitude $U_{\mathrm{max}} = \pm 1\,\mathrm{V}$.

- a) Zeichnen Sie das Blockschaltbild eines PCM-Modulators.
- b) Welche Bandbreite muss das Eingangsfilter mindestens haben, damit das Signal unverfälscht übertragen werden kann?
- c) Das Signal wird mit $f_A = 8 \, \text{kHz}$ abgetastet. Wie groß ist der zeitliche Abstand T_A zwischen zwei Abtastzeitpunkten? Wie groß darf die Bandbreite des Eingangsfilters maximal sein, ohne dass Aliasing auftritt?¹
- d) Das Signal soll mit einem linearen Quantisierer bei einer Auflösung von 8 bit quantisiert werden. Welche Spannungsauflösung wird dabei erreicht? Wie groß ist das Signal-zu-Quantisierungsrauschverhältnis?
- e) Leiten Sie die bekannte Schätzformel für das Signal-zu-Quantisierungsrauschverhältnis her. Geben Sie Einschränkungen, die durch die Näherung entstehen, an.
- f) Wie kann das Signal-zu-Quantisierungsrauschverhältnis verbessert werden? Nennen Sie Vor- und Nachteile der Verfahren.
- g) Wie groß ist die Bitrate des zu übertragenden Signals? Welche Bandbreite wird zur Übertragung des digitalen Signals mindestens benötigt?
- h) Vergleichen Sie die benötigten Bandbreiten des digitalen Signals sowie des analogen Sprachsignals. Warum werden digitale Telefonnetze eingesetzt?

Im sogenannten PCM30/32-System werden 30 Sprach- und 2 Steuerkanäle (Bitrate je 64 kbit/s) zu einem Rahmen zusammengefasst und auf einer Leitung übertragen.

- i) Welche Bitrate ist zur Übertragung des Rahmens erforderlich?
- j) Welche Bandbreite muss zur Übertragung des Rahmens mindestens vorgesehen werden?
- k) Hat die Übertragung mehrerer Telefonsignale über einen PCM30/32 Kanal (also ein gemeinsames Kabel) Auswirkungen auf die Qualität der einzelnen Telefonsignale?

Das Eingangsfilter (der erste Block, Tiefpass im PCM-System) darf auch eine höhere Grenzfrequenz und damit Bandbreite haben, als das Eingangssignal, sofern die Nyquist-Bedingung weiterhin erfüllt ist.

5 PCM Audioübertragungssystem

Betrachtet wird ein PCM-System zur Übertragung von Audiosignalen (siehe Abb. 5.1). Für die Quantisierung wird ein linearer Quantisierer mit dem Eingangsbereich $\pm 1\,\mathrm{V}$ verwendet. Wird der Quantisierer mit einem sinusförmigen Testsignal der Amplitude $U_0=1\,\mathrm{V}$ voll ausgesteuert, so soll der Signal-zu-Quantisierungsrauschabstand SNR $_Q$ mindestens 20 dB betragen.

Abbildung 5.1: PCM System zur Übertragung von Audiosignalen

- a) Welche Auflösung Δs ist für den gegebenen Signal-zu-Quantisierungsrauschabstand notwendig?
- b) Welche Bitanzahl *n* ist für die Codierung der Abtastwerte nötig?
- c) Welche Auflösung Δs_2 kann mit der berechneten Bitanzahl tatsächlich erreicht werden? Wie groß ist dann der Signal-zu-Quantisierungsrauschabstand?
- d) Berechnen Sie den Dynamikbereich.
- e) Welche maximale Abtastfrequenz f_p ist möglich, wenn eine Übertragungsbandbreite von B = 100 kHz für das digitale Signal zur Verfügung steht?
- f) Welche maximale Grenzfrequenz f_b darf demnach der Tiefpass TP besitzen, damit eine unverzerrte Übertragung des Audiosignals möglich ist?

Ein Signal mit der maximalen Amplitude $U_{\text{max}} = \pm 1\,\text{V}$ soll digitalisiert werden und mit Hilfe einer Puls-Code-Modulation übertragen werden. Die Bandbreite B_S des Signals beträgt 1 MHz $(f=0\,\text{MHz}\ bis\ 1\,\text{MHz})$.

Abbildung 6.1: Puls-Code-Modulation

- a) Zeichnen Sie das Blockschaltbild eines Puls-Code-Modulators.
- b) Welche Bandbreite B_F muss das Eingangsfilter mindestens haben, damit das Signal unverfälscht übertragen werden kann.
- c) Mit welcher Frequenz f_A muss das Signal mindestens abgetastet werden, um es eindeutig rekonstruieren zu können? Wie groß ist dabei der zeitliche Abstand T_A in ms zwischen den Abtastzeitpunkten?
- d) Welche Bitrate R_b ergibt sich bei einer Quantisierung mit 4 bit? Wie viele Amplitudenstufen können damit abgebildet werden?

Im folgenden wird eine ungleichförmige Quantisierung verwendet. Abbildung 6.1a zeigt den positiven Ast der Kennlinie.

- e) Wann hat die Verwendung einer ungleichförmigen Quantisierung Vorteile gegenüber einer linearen? Benennen Sie kurz mindestens zwei Vorteile.
- f) Zeichnen Sie die vollständige Quantisierungskennline (mit negativem Ast), so dass der gesamte Aussteuerbereich von $-U_{\text{max}}$ bis $+U_{\text{max}}$ dargestellt ist.
- g) Wie viele Segmente umfasst die Quantisierungs-Kennlinie für den gesamten Aussteuerbereich?
- h) Bestimmen Sie für den in Abbildung 6.1b dargestellten Spannungsverlauf die entstehende Bitfolge für die Zeitpunkte $t = [0 \cdots 4] \cdot T_A$.
- i) Nehmen Sie an, es werde nun den gesamten Aussteuerbereich gleichförmig mit einer Auflösung von 6 bit quantisiert. Wie groß ist dabei der Signal-zu-Quantisierungsrausch-Abstand?