

Genetics = the study of *heredity*

Genes = the "matter" of heredity

Aristotle (384-322 B.C.):

Inheritance = physical substance coming from both parents

Giraffe = hybrid animal, resulting from cross between leopard & camel

Honore Daumier: "Un Nouveau Nez"

"The fittest family"

Eugenics Record Office: "breeding" better humans

Experiments in Plant Hybridization 1865

"differentiating characters"

Friedrich Miescher

1869: nuclein (DNA) from pus

Oswald Avery, Colin Macleod, Maclyn McCarty

1940's

gene = DNA

Watson & Crick, 1953

Genes: Overall F₂ ratio

Traits: Overall F₂ ratio

1AA:2Aa:1aa

3A:1a

DNA bases

PURINES

PYRIMIDINES

Adenine (A)

Thymine (T)

Cytosine (C)

DNA base pairing

DNA polymer (nucleotide polymer)

The Central Dogma

Second letter

	U	С	А	G	
U	UUU Phe UUC Leu UUG Leu	UCU UCC UCA UCG	UAU Tyr UAA Stop UAG Stop	UGU Cys UGA Stop UGG Trp	U C A G
С	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU His CAC GIN CAG GIN	CGU CGC CGA CGG	U C A G
Α	AUU AUC AUA IIIe AUG Met	ACU ACC ACA ACG	AAU ASN AAA AAG Lys	AGU Ser AGA Arg	U C A G
G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU Asp GAC Asp GAA Glu	GGU GGC GGA GGG	U C A G

the Genetic Code

First letter

defective gene: mutant hemoglobin

sickle cell normal rbc rbc

normal DNA GTG CAC CTG ACT CCT GAG GAG AAG TCT sickle cell DNA GTG CAC CTG ACT CCT GTG GAG AAG TCT

normal Hb VAL HIS LEU THR PRO GLU GLU LYS SER sickle cell Hb VAL HIS LEU THR PRO VAL GLU LYS SER

genetic testing (screening) =

the systematic search for individuals who have certain genetic constitutions (genotypes) that (1) are already associated with disease or predisposition to disease or (2) may lead to disease in their descendents

e.g.:

- newborn screening for inherited metobolic diseases
- carrier detection for diseases like Tay-Sachs

genetic tests

- functional/structural assays of proteins [phenylketonuria: phenylalanine hydroxylase]
 - direct analysis of DNA

(meiosis) oogenesis 1st polar body 1st polar body arrested primary oocyte 2nd polar body oogonia mature ovum secondary oocyte 1. Primary oocyte within primary follicle mature follicle with 2. Developing follicle with secondary oocyte primary oocyte 6. Corpus luteum ruptured follicle

released secondary oocyte

oogenesis & fertilization

zygote

preimplantation development

0 through 6 days post fertilization

preimplantation genetic diagnosis (PGD)

in vitro fertilization (IVF) followed by biopsy

- polar body biopsy
 - infer embryo's genetic condition
 - cannot learn about paternal contribution
- cleavage stage biopsy
 - test embryonic cells directly

polar body diagnosis

cleavage stage diagnosis

postimplantation genetic diagnosis

amniocentesis

chorionic villus sampling (CVS)

Where do we go from here?

How will we use the information we can gather about our genetic material?