electro optical industries inc.

A PROGRAM
FOR
BLACKBODY RADIATION
CALCULATIONS

Planck's Law Programs for the Hewlett Packard model 65 programmable calculator

8

prepared by Ray Chandos

electro optical industries, inc.

Post Office Box 3770

Santa Barbara, California 93105

INTRODUCTION

This booklet includes 4 programs for the Hewlett Packard Model 65 programmable calculator. These programs transfer the calculation capability of 31 scales of the Electro Optical Industries Inc. blackbody radiation sliderule to the Model 65 but with 5 significant figure accuracy.

A copy of the manual for the blackbody sliderule is included since it defines all terms and equations and provides useful examples of the use of the equations.

PROGRAM TITLE: BLACKBODY RADIATION SLIDERULE

PROGRAM DESCRIPTION, EQUATIONS, VARIABLES:

Planck's expression for hemispherical blackbody flux density radiated in the wavelength interval λ to λ +d λ is

$$H_{\lambda} = \frac{c_1}{\lambda^5} \cdot \frac{1}{e^{c_2/\lambda T} - 1}$$
 [W/cm² - \mu m]

where T = blackbody temperature (°K)

$$c_1 = 37415 \text{ W}-\mu^4/\text{cm}^2$$

$$c_1 = 3/413 \quad \mathbf{w} = \boldsymbol{\mu}^{4}/cm^2$$

$$c_2 = 14388 \ \mu - {}^{\circ}K.$$

The corresponding expression for photon output is

$$Q_{\lambda} = \frac{c_1'}{\lambda^4} \cdot \frac{1}{e^{c_2/\lambda T} - 1}$$
 [photons/sec-cm²-\mu m]

where
$$c_{1'} = 188365 \times 10^{18} \ \mu \text{m}^3/\text{sec-cm}^2$$
.

This program computes

$$H_{\lambda}, Q_{\lambda}, \int_{0}^{\lambda} H_{\lambda} d\lambda, \int_{0}^{\lambda} Q_{\lambda} d\lambda, \int_{\lambda}^{\infty} H_{\lambda} d\lambda,$$

$$\int_{\lambda}^{\infty} Q_{\lambda} d\lambda \text{ given } \lambda \text{ and } T, H_{0-\infty} \equiv \int_{0}^{\infty} H_{\lambda} d\lambda,$$

$$Q_{0-\infty} \equiv \int_{0}^{\infty} Q_{\lambda} d\lambda$$
 given T, as well as

 $T = t_C + 273.15 = 5/9 (t_f - 32) + 273.15$ given either t_C (Celsius temperature) or t_C (Fahrenheit temperature).

In addition, the program computes RMS Johnson noise

$$V_{n} = \sqrt{4RkT\Delta}f$$
 [V]

across resistance R (Ω) at temperature T (°K) in bandwidth Δ f (Hz), given R, T and Δ f, as well as photon energy at the maximum of H_{λ}

$$E_{\lambda m} = 4.96511 \text{ kT}$$
 [ev]

given T, where $k = 8.6171 \times 10^{-5} \text{ ev/}^{\circ}\text{K}$.

SAMPLE PROBLEMS:

1. For a blackbody at 1500°K, find $H_{0-\infty}$, $Q_{0-\infty}$ and $E_{\lambda m}$.

Solution:
$$H_{0-\infty} = 2.8704 \times 10^{1}$$
 W/cm² $Q_{0-\infty} = 5.1314 \times 10^{20}$ photons/sec-cm² $E_{\lambda m} = 6.4177 \times 10^{-1}$ ev

$$2. \ \text{Find} \int_{\text{H}_{\lambda}}^{\text{H}_{\lambda}} d\lambda \ \text{and} \int_{\text{H}_{\lambda}}^{\text{H}_{\lambda}} d\lambda \ \text{for a 1000°K blackbody}.$$

Solution:
$$\int_{2\mu m}^{10\mu m} H_{\lambda} d\lambda = \int_{0}^{10\mu m} H_{\lambda} d\lambda - \int_{0}^{2\mu m} H_{\lambda} d\lambda$$

$$=5.1829 - .37830 = 4.805$$
 W/cm²

$$\int_{25 \,\mu\text{m}}^{30 \,\mu\text{m}} H_{\lambda} \, d\lambda = \int_{25 \,\mu\text{m}}^{\infty} H_{\lambda} \, d\lambda - \int_{30 \,\mu\text{m}}^{\infty} H_{\lambda} \, d\lambda$$

$$= 4.4418 \times 10^{-2} - 2.6698 \times 10^{-2}$$

 $=1.7720 \times 10^{-2} \text{ W/cm}^2$

3. Calculate V_n across a 10 M Ω resistor at 600°C in a 1.5 Hz band.

Solution: $V_n = 8.5044 \times 10^{-7} V_{RMS}$

4. For a 2000°K blackbody, calculate $\int\limits_{5\,\mu\mathrm{m}}^{30\,\mu\mathrm{m}} \mathrm{Q}_{\lambda}\,\mathrm{d}\lambda \ .$

Solution: (refer to diagram)

$$\int\limits_{5\mu m}^{30\mu m}Q_{\lambda}d\lambda=\int\limits_{0}^{\infty}Q_{\lambda}d\lambda \quad - \quad \text{total shaded area}$$

$$= Q_{0-\infty} + \left(\int_{0}^{5\mu m} Q_{\lambda} d\lambda - \int_{30\mu m}^{\infty} Q_{\lambda} d\lambda \right)$$

=
$$1.2163 \times 10^{21} - 8.9964 \times 10^{20} - 1.3419 \times 10^{19}$$

= 3.033×10^{20} photons/sec-cm²

REFERENCES:

H.W. Makowski, "A Sliderule for Radiation Calculations," REVIEW OF SCIENTIFIC INSTRUMENTS, 20, 876 (1949)

M. Pivovonsky and M.R. Nagel, TABLES OF BLACKBODY RADIATION FUNCTIONS, Macmillan Co., N.Y. (1961)

SAMPLE PROBLEM 1 SOLUTION

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA /UNITS
1.	Enter program card I			
2.	Compute H _O - ∞			
	Input T	1500°K	В	
	Read answer			2.8704 x 10 ¹
				W/cm ²
3.	Enter program card III.]
4.	Compute Q _{O -∞}			
	Input T	1500 °K	В	
	Read answer] 5.1314x10 ²⁰
				photons / sec-cm ²
5.	Compute E _{\(\lambda\)m.}			1
	Input T	1500 °K	С	
	Read answer			6.4177 x 10 ⁻¹
				ev
	-			
				1
				i
				i
				i
				1
]
				il
				íl – – –
			<u> </u>	

SAMPLE PROBLEM 2 SOLUTION

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA /UNITS
1.	Enter program card II			
2.	Compute first integral			
	Input λ_1 and	2 μm		
	T	1000 °K	A	.37830 W/cm ²
	Save answer		STO 4	
	Input λ_2 and	10 μm		
	Т	1000 °K	A	5.1829 W/cm ²
	Subtract first answer		RCL 04	
	Read answer			4.8046 W/cm ²
3.	Compute second integral			
	Input λ_1 and	25 μm		
	Т	1000 °K	A	-4.4418x10 ⁻² W/cm ²
	Save answer		STO 4	
	Input λ_2 and	30 μm	1	
	T	1000 °K	A	-2.6698x10 ⁻² W/cm ²
	Subtract first answer		RCL 4]
	Read answer			1.7720 x 10 ⁻² W/cm ²

SAMPLE PROBLEM 3 SOLUTION

	SAMPLE PROBLEM 3 SOLUTION								
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS					
1.	Enter program card I								
2.	Convert t _C to T	600 °C	D	873.15 °K					
3.	Input R	10 ⁷ Ω							
4.	Input Δf , compute V_n , read answer	1.5	С	8.5044 x 10 ⁻⁷ V _{RMS}					
	·								
	•								
		A							

SAMPLE PROBLEM 4 SOLUTION

STEP	INSTRUCTIONS	INPUT DATA/UNITS	К	EYS	OUTPUT DATA/UNITS
1.	Enter program card IV				
	Compute last 2 integrals				
	Input λ_1 and	5 μm	1		
	Т	2000 °K	A		8.9964 x 10 ²⁰
	Save answer		STO	04	photons/ sec-cm ²
	Input λ_2 and	30 μm	1		
	Т	2000 °K	A		-1.3419 x10 ¹⁹
					photons/ sec-cm ²
	Subtract first answer		RCL	04	Sec em
			_		9.1305 x10 ²⁰
	Save answer		STO	04 .	photons/ sec-cm ²
2.	Enter program card III				
	Compute first integral				
	Input T	2000 °K	В		1.2163x10 ²¹
	Add first answer		RCL	04	photons/ sec-cm ²
	Read final answer		+		3.0327x10 ²⁰
					photons/ sec-cm ²
	,				300
	-				
	·				
					·

HEWLETT-PACKARD'S HP65 PROGRAMMABLE POCKET-SIZED CALCULATOR

ELECTRO OPTICAL INDUSTRIES'

MODEL 17 RADIATION SLIDERULE

TITLE BLACKBODY RADIATION SLIDERULE I

SWITCH TO W/PRGM. PRESS f PRGM TO CLEAR MEMORY

KEY ENTRY	CODE	KEY	CODE	KEY ENTRY	CODE SHOWN	REGISTERS
LBL	23	В	12	LBL	23	R ₁
A	11	1	41	70 · D	14	
gx ‡ y	35 07	X	71	2	02	
†	41	1	41	7	07	R ₂
↑	41	X	71	3	03	
gR ↑	35 09	40 1	01		83	
Х	71	7	07	1	01	R ₃
1	01	6	06	5	05	
4	04	3	03	+	61	
10 3	03	7	07	DSP	21	R ₄
8	08	EEX	43		83	
8	08	7	07	80 3	03	
gx +y	35 07	÷	81	RTN	24	R ₅
÷	81	DSP	21	LBL	23	
f -1	32	7	04	Е	. 15	
LN	07	50 RTN	24	3	03	R ₆
1	01	LBL	23	2	02	
_	51	С	13	_	51	
X	71	X	71	5	05	R ₇
20 X	71	X	71	X	71 '	
X	71	f	31	9	09	
X	71	\sqrt{x}	09	90 ÷	81	R ₈
X	71	1	01	D	14	
3	03	3	03	RTN	24	
7	07	4	04			R ₉
4	04	60 5	05			
1	01	6	06			
5	05	9	09			LABELS
gx <mark>→</mark> y	35 07	EEX	43			Α Η λ
30 ÷	81	6	06			B Ho-∞
DSP	21	÷	81			$C \frac{V_n}{t_n}$
4	04	DSP	21	100		$\begin{bmatrix} D & \frac{t_{c} + T}{t_{f} + T} \end{bmatrix}$
RTN	24	4	04			E
LBL	23	RTN	24			

 H_{λ} $H_{0-\infty}$ V_n $t_c \rightarrow T$ $t_f \rightarrow T$

	H_{λ} $H_{0-\infty}$ V_n t_{c}	-1 t _f +1		
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA /UNITS
1.	Enter program			
2.	To calculate H _{\(\lambda\)}			
	input wavelength λ and	λ (μm)	†	
	blackbody temperature T	T(°K)	A	
	read H _{\(\lambda\)}			Нλ
				(W/cm ² - μm)
3.	To calculate H _{0-∞}			
	input blackbody temperature T	T(°K)	В	
	read H _{0-∞}			H _{0-∞}
				(W/cm ²)
4.	To calculate V _n			
	input temperature T	T(°K)	†	
	input resistance R	R(Ω)	†	
	input bandwidth Δf	Δf (Hz)	С	
	read V _n			V _n (V)
5.	To calculate T input either			
	Celsius temperature t _C or	t _c (°C)	D	
	Fahrenheit temperature tf	tf (°F)	E	
	read T			T(°K)
	NOTES			
1.	Memory register R ₁ -R ₉ are unaffected			
	by these programs, and thus may be used to store	·		
	intermediate results.			

TITLE BLACKBODY RADIATION SLIDERULE II

SWITCH TO W/PRGM.	PRESS f	PRGM	TO CLEAR MEMORY
SWITCH TO W/ PRGM.	PHESS []	L LICINI	10 OLL THE MILITOR

KEY ENTRY	CODE	KEY ENTRY	CODE SHOWN	KEY ENTRY	CODE SHOWN	REGISTERS
0	00	X	71	X	71	$R_1 = c_2/\lambda T$
STO 3	33 03	X	71	70 ÷	81	
STO 8	33 08	X	71	STO	33	
+	61	4	04	+	61	R ₂ T
STO 2	33 02	8	08	3	03	
X	71	40 ÷	81	EEX	43	
1	01	GTO	22	6	06	R ₃ \sum
4	04	2	02	X	71	
3	03	LBL	23	RCL 3	34 03	
10 8	08	1	01	gx>y	35 24	R ₄
8	08	g	35	GTO	22.	
gx 🛊 y	35 07	DSZ	83	80 1	01	
÷	81	RCL 8	34 08	LBL	23	R ₅
STO 1	33 01	RCL 1	34 01	2	02	
	83	X	71	CHS	42	-
8	08	50 🛉	41	RCL 2	34 02	R ₆
gx ≤ y	35 22	1	41	4	41	
GTO	22	1	41	X	71	
1	01	3	03	+	41	R ₇
20 RCL 1	34 01	-	51	X	71	
4	41	X	71	X	71	
Х	71	6	06	90 1	01	R ₈
1	01	+	61	1	01	
0	00	X	71	4	04	
5	05	6	06	5	05	R ₉
÷	81	60 –	51	4	04	
-	51	gR↑	35 09	EEX	43	
X	71	f-1	32	8	08	LABELS
6	06	LN	07	÷	81	$A = \int H_{\lambda} d\lambda$
30 –	51	X	71	DSP	21	В
X	71	RCL 8	34 08	4	04] c
1	0.1	†	41	100 R/S	84	D
6	06	X	71			T E
+	61	†	41			

 $\int H_{\lambda} d\lambda$

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Enter program			
2.	Input wavelength λ and	λ(μm)	1	
	blackbody temperature T	T(°K)		
3.	Compute $\int H_{\lambda} d\lambda$. If positive,		A	∫ H _λ dλ
	answer is $\int_0^{\lambda} H_{\lambda} d\lambda$. If negative,			(W/cm ²)
	answer is $-\int_{\lambda}^{\infty} H_{\lambda} d\lambda$.			
	NOTES			
1.	This program automatically chooses which integral to			
	compute so as to provide in all cases		1	
	a 5-significant-figure answer.			
	•			
2.	Since memory registers $R_4 - R_7$ are not affected by this			
	program, they may be used to store intermediate results.			
	=			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA /UNITS
1.	Enter program			
2.	To calculate $\ Q_{\lambda}$			
	input wavelength λ and	λ(μm)	1	
	blackbody temperature T	T(°K)	A]
	read Q $_{\lambda}$			Q_{λ}
				(photons/ sec-cm ² -μm
3.	To calculate Q _{0-∞}			
	input blackbody temperature T	T(°K)	В	
	read Q _{O - ∞}			Q _{0-∞}
				(photons/ sec-cm ²)
4.	To calculate E _{λ m}			see em-
	input blackbody temperature T	T(°K)	С	
	read E $_{\lambda \ m}$			E _{λm} (ev)
5.	To calculate T input either			
	Celsius temperature t _c ' or	t _c (°C)	D	
	Fahrenheit temperature tf	tf (°F)	Е	
	read T			T(°K)
	NOTES	1		
	3			
1.	Memory registers R ₁ -R ₉ are			
	unaffected by these programs, and			
	thus may be used to store intermediate results.			

TITLE BLACKBODY RADIATION SLIDERULE IV

SWITCH TO	W/PRGM. P	RESS f F	PRGM TO C	CLEAR MEMOR	Υ	
KEY ENTRY	CODE SHOWN	KEY ENTRY	CODE SHOWN	KEY ENTRY	CODE SHOWN	REGISTERS
0	00	2	02	÷	81	$R_1 = c_2/\lambda T$
STO 3	33 03	4 .	04	70 STO	33	·
STO 8	33 08	_	51	+	61	
+	61	X	71	3	03	R ₂ T
STO 2	33 02	X	71	EEX	43	
X	71	40 4	04	6	06	
1	01	8	08	X	71	R_3 \sum
4	04	÷	81	RCL 3	34 03	
3	03	GTO	22	gx>y	35 24	
10 8	08	2	02	GTO.	22	R ₄
8	08	LBL	23	1	01	
gx + y	35 07	· 1	01	80 CHS	4,2	
÷	81	g	35	LBL	23	R ₅
STO 1	33 01	DSZ	83	2	02	
	83	RCL 8	34 08	RCL 2	34 02	
8	08	50 RCL 1	34 01	4	41	R ₆
7	07	X	71	4	41	
gx≼y	35 22	4	41	X	71	
GTO	22	A	41	X	71	R ₇
20 1	01	1	01	X	71	
RCL 1	34 01	_	51	6	06	
4	41	†	41	90 .3	03	R ₈ n
4	41	X	71	2	02	
†	41	1	01	4	04	
X	. 71	+	61	2	02	R ₉ used
9	09	60 gx ‡ y	35 07	EEX	43	
0	00	f-1	32	6	06	
÷	81	LN	07	X	71	LABELS
1	01	X	71	DSP	21	$A = \int_{Q_{\lambda} d\lambda} Q_{\lambda} d\lambda$
30 _	51	RCL 8	34 08	4	04	В
X	71	1	41	R/S	84] c
8	08	1	41	100 gNOP	35 01	D
+ .	61	X	71			E
X	71	X	71			

∫Q_λdλ

	JQXux	Y		,
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Enter program			
2.	Input wavelength λ and	λ(μm)	+	
	blackbody temperature T	T(°K)		
3.	Compute $\int Q_{\lambda} d\lambda$. If positive,		A	∫Q _λ dλ
	answer is $\int_0^\lambda Q_\lambda^{} d\lambda$. If negative,			(photons/ sec-cm ²)
	answer is $\int_0^\lambda Q_\lambda d\lambda$. If negative, answer is $-\int_\lambda^\infty Q_\lambda d\lambda$.			
				-
	NOTES			
1.	This program automatically chooses which integral			
	to compute, so as to provide in all cases a 5-significant-			
	figure answer.			
2.	Since memory registers R ₄ - R ₇ are not affected by this			
	program, they may be used to store intermediate results.			

NOTES:

NOTES:

CRYOGENIC VACUUM BLACKBODIES

THERMOELECTRIC DIFFERENTIAL BLACKBODIES

COLLIMATORS
1 inch to 12 inches

SPECTRUM ANALYZER 1Hz to 50kHz

PREAMPLIFIER low impedance

SPECTRORADIOMETERS

8

electro optical industries, inc. 🗆 p.o. box 3770 🗅 santa barbara, california 93105