# Python Library for Linguistic Typology

Michael Voronov Scientific Advisor: Boris Orekhov

Higher School of Economics

18.06.2019

#### Introduction

#### Problem:

- ▶ No Python tools for online linguistic databases queries.
- No Python tools for linguistic interactive mapping.

#### What exists?

R package lingtypology that does both (Moroz 2017).

### Why Python?

- De-facto standard language among linguists.
- A lot of scientific libraries (Pandas, SciPy etc.)
- Unicode out of the box.
- Relatively high speed.
- Versatile language.

### **Used Tools**

- Python (Python Software Foundation 2019)
- ► Pandas (Augspurger et al. 2019)
- ► Folium (Filipe et al. 2019)
- ► Matplotlib (Caswell et al. 2019)
- PyGlottolog (Forkel 2019)
- SciPy (Jones, Oliphant, Peterson, et al. 2019)

## **Project Description**

### Remote Repository:

► https://github.com/OneAdder/lingtypology

#### Documentation:

https://oneadder.github.io/lingtypology/

#### Modules:

- ► lingtypology.maps
- ► lingtypology.datasets
- ► lingtypology.glottolog

```
\begin{split} & languages = ('Romanian', 'Afrikaans', 'Tlingit', 'Japanese') \\ & m = lingtypology.LingMap(languages) \\ & m.create\_map() \end{split}
```



```
languages =[
    "Adyghe", "Kabardian", "Polish",
    "Russian", "Bulgarian"
]
features =[
    "Agglutinative", "Agglutinative", "Inflected",
    "Inflected", "Analytic"
]
m =lingtypology.LingMap(languages)
m.add_features(features)
m.create_map()
```



```
m =lingtypology.LingMap(data.language)
m.add_minicharts(data.consonants, data.vowels)
m.create_map()
```



### **Databases**

- ► WALS: The World Atlas of Language Structures (Dryer and Haspelmath 2013).
- Autotyp: an international network of typological linguistic databases (Bickel et al. 2017).
- ▶ AfBo: A world-wide survey of affix borrowing (Seifart 2013).
- ➤ SAILS: The South American Indigenous Language Structures (Muysken et al. 2016).
- PHOIBLE: ... is a repository of cross-linguistic phonological inventory data (Moran and McCloy 2019).

### **WALS**

w =lingtypology.datasets.Wals('1a')
w.get\_df().head(10)

|   | wals_code | language         | genus               | family              | coordinates                     | _1A_area  | _1A                 | _1A_num | _1A_desc         |
|---|-----------|------------------|---------------------|---------------------|---------------------------------|-----------|---------------------|---------|------------------|
| 0 | kiw       | Kiwai (Southern) | Kiwaian             | Kiwaian             | (-8.0, 143.5)                   | Phonology | 1. Small            | 1       | Small            |
| 1 | X00       | !Xóō             | Tu                  | Tu                  | (-24.0, 21.5)                   | Phonology | 5. Large            | 5       | Large            |
| 2 | ani       | //Ani            | Khoe-Kwadi          | Khoe-Kwadi          | (-18.9166666667, 21.9166666667) | Phonology | 5. Large            | 5       | Large            |
| 3 | abi       | Abipón           | South Guaicuruan    | Guaicuruan          | (-29.0, -61.0)                  | Phonology | 2. Moderately small | 2       | Moderately small |
| 4 | abk       | Abkhaz           | Northwest Caucasian | Northwest Caucasian | (43.0833333333, 41.0)           | Phonology | 5. Large            | 5       | Large            |
| 5 | acm       | Achumawi         | Palaihnihan         | Hokan               | (41.5, -121.0)                  | Phonology | 2. Moderately small | 2       | Moderately small |
| 6 | ach       | Aché             | Tupi-Guaraní        | Tupian              | (-25.25, -55.1666666667)        | Phonology | 1. Small            | 1       | Small            |
| 7 | aco       | Acoma            | Keresan             | Keresan             | (34.9166666667, -107.583333333) | Phonology | 5. Large            | 5       | Large            |
| 8 | adz       | Adzera           | Oceanic             | Austronesian        | (-6.25, 146.25)                 | Phonology | 2. Moderately small | 2       | Moderately small |
| 9 | agh       | Aghem            | Bantoid             | Niger-Congo         | (6.66666666669999, 10.0)        | Phonology | 3. Average          | 3       | Average          |

### **WALS**

```
w =lingtypology.datasets.Wals('1a', '2a')
w.get_df().head()
```

|   | language         | <br>_1A                 | <br>_2A              |  |
|---|------------------|-------------------------|----------------------|--|
| 0 | Kiwai (Southern) | <br>1. Small            | <br>2. Average (5-6) |  |
| 1 | !Xóõ             | <br>5. Large            | <br>2. Average (5-6) |  |
| 2 | //Ani            | <br>5. Large            | <br>2. Average (5-6) |  |
| 3 | Abipón           | <br>2. Moderately small | <br>2. Average (5-6) |  |
| 4 | Abkhaz           | <br>5. Large            | <br>1. Small (2-4)   |  |

### **Examples: WALS Features**

```
wals_page =lingtypology.datasets.Wals('1a').get_df()
m =lingtypology.LingMap(wals_page.language)
m.add_custom_coordinates(wals_page.coordinates)
m.add_features(
    wals_page._1A,
    colors=lingtypology.gradient(5, 'yellow', 'green')
)
m.legend_title ='Consonant Inventory'
m.create_map()
```

# Examples: WALS Features



### Examples: WALS Heatmap

```
wals =lingtypology.datasets.Wals('1A')
data =wals.get_df()
m =lingtypology.LingMap()
m. add_heatmap(data[data._1A_desc =='Large'].coordinates)
m.create_map()
```

# Examples: WALS Heatmap



### **Examples: PHOIBLE Tones**

```
p =lingtypology.datasets.Phoible(subset='SPA')
df =p.get_df(strip_na=['tones'])
m =lingtypology.LingMap(df.language)
m.add_features(df.tones, numeric=True)
m.colormap_colors =('white', 'red')
m.legend_title ='Tones'
m.legend_position ='bottomleft'
m.create_map()
```

# Examples: PHOIBLE Tones



- Article that demonstrates relationship between presence of ejectives and high elevation based on WALS data (Everett 2013).
- Reproduce on PHOIBLE data.

```
upsid = lingtypology.datasets.Phoible(
   subset='UPSID',
   aggregated = False
).get df()
amount_of_ejectives =upsid[
    upsid.raisedLarynxEjective =='+'
].groupby('Glottocode').size()
languages =
    lingtypology.glottolog.get by glot id(glot id) \
    for glot_id in amount_of_ejectives.index
upsid ejectives =pandas.DataFrame({
    'language': languages,
    'ejectives': amount of ejectives,
    'elevation': lingtypology.get elevations(languages),
})
m = lingtypology.LingMap(upsid ejectives.language)
m.add_features(upsid_ejectives.elevation, numeric=True)
m.create map()
```



#### PHOIBLE datasets:

- ► SAPHON: South American Phonological Inventory Database (Lev, Stark, and Chang 2012).
- ► AA: Alphabets of Africa (Chanard 2006).
- ► GM: 'Christopher Green and Steven Moran extracted phonological inventories from secondary sources including grammars and phonological descriptions with the goal of attaining pan-Africa coverage' (Moran, McCloy, and Wright 2014).

- ▶ PH: 'Christopher Green and Steven Moran extracted phonological inventories from secondary sources including grammars and phonological descriptions with the goal of attaining pan-Africa coverage' (Moran, McCloy, and Wright 2014).
- ▶ RA: Common Linguistic Features in Indian Languages: Phoentics (Ramaswami 1999).
- ▶ SPA: Stanford Phonology Archive (Crothers et al. 1979).
- ▶ UPSID: UCLA Phonological Segment Inventory Database (Maddieson and Precoda 1990).

|   | Dataset | Regression (with ejectives only) | Regression (all languages) | Chi2 Test |
|---|---------|----------------------------------|----------------------------|-----------|
| 0 | UPSID   | 0.95055                          | 0.00004                    | 0.00003   |
| 1 | SPA     | 0.47553                          | 0.00001                    | 0.00018   |
| 2 | PH      | 0.73152                          | 0.39245                    | 0.16019   |
| 3 | GM      | 0.03858                          | 0.0000                     | 0.00000   |
| 4 | SAPHON  | 0.018874                         | 0.00000                    | 0.00038   |





#### Results:

- ► True: share of languages with ejectives is higher if the elevation is more than 1500m (verified on PHOIBLE data).
- Not true: the higher the language, the more ejectives there are.

### PHOIBLE and Elevation

|   | Dataset | short    | long     | delayed Release |  |
|---|---------|----------|----------|-----------------|--|
| 0 | UPSID   | 0.7304   | 0.6205   | 0.6106          |  |
| 1 | SPA     | 0.4974   | 0.8311   | 0.4335          |  |
| 2 | GM      | 0.6587   | 0.0070   | 0.8435          |  |
| 3 | RA      | 0.0826   | 0.1125   | nan             |  |
| 5 | AA      | NaN      | 0.7559   | nan             |  |
| 6 | PH      | NaN      | 0.2549   | 0.9051          |  |
| 7 | SAPHON  | NaN      | 0.0287   | 0.4856          |  |
| 4 | Median  | 0.578074 | 0.254949 | 0.610642        |  |

#### Full Table:

https://github.com/OneAdder/lingtypology\_research/blob/master/PHOIBLE:%20Quantitative%20Research.ipynb

### Autotyp and Elevation

- 'Exponence: number of categories that are expressed in the same marker'.
- 'Rough approximation of the size of the possessum category in terms of the number of semantic classes covered'.
- 'Number of separately marked inflectional categories (including agreement) in position "post" of the verb'.
- 'Number of morpheme types included in a phonologically or grammatically coherent suffix domain'.

# Autotyp and Elevation

| Feature                   | Subfeature                   | P-value    |
|---------------------------|------------------------------|------------|
| Grammatical_markers       | Exponence.n                  | 0.00000000 |
| NP_structure              | NPHeadSemClassSize.n         | 0.01766784 |
| VInfl_counts_per_position | VInflCatAndAgrPost.n         | 0.02895302 |
| Word_domains              | MphmTypesInCohSuffixDomain.n | 0.00196901 |

### Autotyp and Elevation



# WALS: Implicative Universaliae

| feature   | _10A_desc | _25B_desc | _39B_desc | _47A_desc |  |
|-----------|-----------|-----------|-----------|-----------|--|
| _10A_desc | 1.00000   | 0.99444   | nan       | 0.63296   |  |
| _25B_desc | 0.90442   | 1.00000   | nan       | 0.96609   |  |
| _39B_desc | 1.00000   | nan       | 1.00000   | 0.66501   |  |
| _47A_desc | 0.82120   | 0.84267   | 0.66501   | 1.00000   |  |
|           |           |           |           |           |  |

#### Full table:

 $https://github.com/OneAdder/lingtypology\_research/blob/\\master/WALS:\%20Quantitative\%20Research.ipynb$ 

### Conclusion

- LingTypology: a Python tool for linguistic typology
  - ▶ Repository: https://github.com/OneAdder/lingtypology
  - ▶ Documentation: https://oneadder.github.io/lingtypology/
  - PyPI: https://pypi.org/project/lingtypology/
- Demonstrative Studies
  - Simplicity
  - Reproducibility
  - Visualization

### References I



Augspurger, Tom et al. (2019). pandas: powerful Python data analysis toolkit. URL:

http://pandas.pydata.org/pandas-docs/stable.



Bickel, Balthasar et al. (2017). The AUTOTYP typological databases. Version 0.1.0. URL:

https://github.com/autotyp/autotyp-data/tree/0.1.0.



Caswell, Thomas A et al. (May 2019). matplotlib/matplotlib v3.1.0. DOI: 10.5281/zenodo.2893252. URL: https://doi.org/10.5281/zenodo.2893252.



Chanard, C. (2006). Systèmes Alphabétiques Des Langues Africaines. URL: http://sumale.vjf.cnrs.fr/phono/.



Crothers, John H. et al. (1979). "Handbook of Phonological Data From a Sample of the World's Languages: A Report of the Stanford Phonology Archive". In:



Dryer, Matthew S. and Martin Haspelmath, eds. (2013). WALS Online. URL: https://wals.info/.



Everett, Caleb (2013). "Evidence for Direct Geographic Influences on Linguistic Sounds: The Case of Ejectives". In: DOI: 10.1371/journal.pone.0065275. URL: https://doi.org/10.1371/journal.pone.0065275.



Filipe et al. (May 2019). python-visualization/folium: v0.9.1. DOI: 10.5281/zenodo.3229045. URL: https://doi.org/10.5281/zenodo.3229045.



Forkel, Robert (Apr. 2019). clld/pyglottolog: Glottolog API. DOI: 10.5281/zenodo.2620250. URL: https://doi.org/10.5281/zenodo.2620250.



Jones, Eric, Travis Oliphant, Pearu Peterson, et al. (2019). SciPy: Open source scientific tools for Python. URL: http://www.scipy.org/.



Lev, Michael, Tammy Stark, and Will Chang (2012). South American Phonological Inventory Database. URL: http://linguistics.berkeley.edu/%20saphon/en/.

### References II



Maddieson, Ian and Kristin Precoda (1990). "Updating UPSID". In: UCLA Working Papers in Phonetics. Vol. 74.Department of Linguistics, UCLA, pp. 104–111.



Moran, Steven and Daniel McCloy, eds. (2019). PHOIBLE 2.0. URL: https://phoible.org/.



Moran, Steven, Daniel McCloy, and Richard Wright, eds. (2014). PHOIBLE Online. URL: http://phoible.org/.



Moroz, George (2017). lingtypology: easy mapping for Linguistic Typology. DOI: 10.5281/zenodo.1289471. URL: https://CRAN.R-project.org/package=lingtypology.



Muysken, Pieter et al. (2016). South American Indigenous Language Structures (SAILS) Online. URL: http://sails.clld.org.



Python Software Foundation (2019). The Python Language Reference. URL: https://docs.python.org/3.7/reference/.



Ramaswami, N. (1999). Common Linguistic Features in Indian Languages: Phonetics. Central Institute of Indian Languages.



Seifart, Frank, ed. (2013). AfBo: A world-wide survey of affix borrowing. URL: https://afbo.info/.