Homework 13: The Riemann Integral

Directions. Assignments should be **stapled** and written clearly and legibly. Problems 5 and 6 are optional.

- 1. Let $f(x) = x^2 x$ and $P = \{0, \frac{1}{2}, 1, \frac{3}{2}, 2\}$. Find U(f, P) and L(f, P).
- 2. If a < b < c < d and f is integrable on [a, d], prove that f is integrable on [b, c].
- 3. Suppose that $f:[a,b]\to\mathbb{R}$ is continuous, $f(x)\geq 0$ for all $x\in[a,b]$, and f(x)>0 for at least one value $c\in[a,b]$. Using definitions, prove that $\int_a^b f>0$. (You may assume that f is integrable.)