Satz 28

Sei $M = (Q, \Sigma, \delta, q_0, F)$ ein deterministischer endlicher Automat und

$$P := \{q \to aq'; \ \delta(q, a) = q'\} \cup \{q \to a; \ \delta(q, a) \in F\}$$

eine Menge von Produktionen, zu der wir, falls $q_0 \in F$, noch die Produktion $q_0 \to \epsilon$ hinzufügen (und dann, falls nötig, nämlich wenn q_0 auf der rechten Seite einer Produktion vorkommt, die Monotoniebedingung wiederherstellen). Dann ist die Grammatik $G = (Q, \Sigma, P, q_0)$ regulär.

Beweis:

Offensichtlich!

Produktionen:

$$\begin{array}{ccc} q_0 & \rightarrow & aq_1 \rightarrow abq_0 \\ & \rightarrow & abaq_1 \rightarrow abaaq_2 \\ & \rightarrow & abaaa \in L(G) \end{array}$$

Satz 30

Sei $M=(Q,\Sigma,\delta,q_0,F)$ ein endlicher deterministischer Automat. Dann gilt für die soeben konstruierte reguläre Grammatik G

$$L(G) = L(M) .$$

Beweis:

Der Fall $w = \epsilon$ ist klar. Sei nun $w = a_1 a_2 \cdots a_n \in \Sigma^+$. Dann gilt gemäß Konstruktion:

$$w \in L(M)$$

- $\Leftrightarrow \exists q_0, q_1, \dots, q_n \in Q : q_0 \text{ Startzustand von } M,$
- $\forall i = 0, \dots, n-1$: $\delta(q_i, a_{i+1}) = q_{i+1}, q_n \in F$ $\Leftrightarrow \exists q_0, q_1, \dots, q_{n-1} \in V : q_0$ Startsymbol von G
- $q_0 \rightarrow a_1 q_1 \rightarrow a_1 a_2 q_2 \rightarrow \cdots \rightarrow a_1 \cdots a_{n-1} q_{n-1} \rightarrow a_1 a_2 q_2 \rightarrow \cdots \rightarrow a_1 \cdots a_{n-1} q_{n-1} \rightarrow a_1 a_2 q_2 \rightarrow \cdots \rightarrow a_1 \cdots a_{n-1} q_{n-1} \rightarrow a_1 a_2 q_2 \rightarrow \cdots \rightarrow a_1 \cdots a_{n-1} q_{n-1} \rightarrow a_1 a_2 q_2 \rightarrow \cdots \rightarrow a_1 \cdots a_{n-1} q_{n-1} \rightarrow a_1 a_2 q_2 \rightarrow \cdots \rightarrow a_1 \cdots a_{n-1} q_{n-1} \rightarrow a_1 a_2 q_2 \rightarrow \cdots \rightarrow a_1 \cdots a_{n-1} q_{n-1} \rightarrow a_1 a_2 q_2 \rightarrow \cdots \rightarrow a_1 \cdots a_{n-1} q_{n-1} \rightarrow a_1 a_2 q_2 \rightarrow \cdots \rightarrow a_1 \cdots a_{n-1} q_{n-1} \rightarrow a_1 a_2 q_2 \rightarrow \cdots \rightarrow a_1 \cdots a_{n-1} q_{n-1} \rightarrow a_1 a_2 q_2 \rightarrow \cdots \rightarrow a_1 \cdots a_{n-1} q_{n-1} \rightarrow a_1 a_2 q_2 \rightarrow \cdots \rightarrow a_1 \cdots a_{n-1} q_{n-1} \rightarrow a_1 a_2 q_2 \rightarrow \cdots \rightarrow a_1 \cdots a_{n-1} q_{n-1} \rightarrow a_1 a_2 q_2 \rightarrow \cdots \rightarrow a_1 \cdots a_{n-1} q_{n-1} \rightarrow a_1 a_2 q_2 \rightarrow \cdots \rightarrow a_1 \cdots a_{n-1} q_{n-1} \rightarrow a_1 a_2 q_2 \rightarrow \cdots \rightarrow a_1 \cdots a_{n-1} q_{n-1} \rightarrow a_1 a_2 q_2 \rightarrow \cdots \rightarrow a_1 \cdots a_{n-1} q_{n-1} \rightarrow a_1 a_2 q_2 \rightarrow \cdots \rightarrow a_1 \cdots a_{n-1} q_{n-1} \rightarrow a_1 a_2 q_2 \rightarrow \cdots \rightarrow a_1 \cdots a_{n-1} q_{n-1} \rightarrow a_1 a_2 q_2 \rightarrow \cdots \rightarrow a_1 \cdots a_{n-1} q_{n-1} \rightarrow a_1 a_2 q_2 \rightarrow \cdots \rightarrow a_1 \cdots a_{n-1} q_{n-1} \rightarrow a_1 a_2 q_2 \rightarrow \cdots \rightarrow a_1 \cdots a_{n-1} q_{n-1} \rightarrow a_1 a_2 q_2 \rightarrow \cdots \rightarrow a_1 \cdots a_{n-1} q_{n-1} \rightarrow a_1 a_2 q_2 \rightarrow \cdots \rightarrow a_1 \cdots a_{n-1} q_{n-1} \rightarrow a_1 a_2 q_2 \rightarrow \cdots \rightarrow a_1 \cdots a_{n-1} q_{n-1} \rightarrow a_1 a_2 q_2 \rightarrow \cdots \rightarrow a_1 \cdots a_{n-1} q_{n-1} \rightarrow a_1 a_2 q_2 \rightarrow \cdots \rightarrow a_1 \cdots a_{n-1} q_{n-1} \rightarrow a_1 a_2 q_2 \rightarrow \cdots \rightarrow a_1 \cdots a_{n-1} q_{n-1} \rightarrow a_1 a_2 q_2 \rightarrow \cdots \rightarrow a_1 \cdots a_{n-1} q_{n-1} \rightarrow a_1 a_2 q_2 \rightarrow \cdots \rightarrow a_1 \cdots a_{n-1} q_{n-1} \rightarrow a_1 a_2 q_2 \rightarrow \cdots \rightarrow a_1 \cdots a_{n-1} q_{n-1} \rightarrow a_1 a_2 q_2 \rightarrow \cdots \rightarrow a_1 \cdots a_{n-1} q_{n-1} \rightarrow a_1 a_1 a_2 q_2 \rightarrow \cdots \rightarrow a_1 a_2 q_2$
 - $\rightarrow a_1 \cdots a_{n-1} a_n$
- $\Leftrightarrow w \in L(G)$

3.2 Nichtdeterministische endliche Automaten

Definition 31

Ein nichtdeterministischer endlicher Automat (englisch: nondeterministic finite automaton, kurz NFA) wird durch ein 5-Tupel $N = (Q, \Sigma, \delta, S, F)$ beschrieben, das folgende Bedingungen erfüllt:

- **1** *Q* ist eine endliche Menge von Zuständen.
- Σ ist eine endliche Menge, das Eingabealphabet, wobei $Q \cap \Sigma = \emptyset$.
- **3** $S \subseteq Q$ ist die Menge der Startzustände.
- $\bullet F \subseteq Q$ ist die Menge der Endzustände.
- **5** $\delta: Q \times \Sigma \to \mathcal{P}(Q)$ heißt Übergangsrelation.

Die von N akzeptierte Sprache ist

$$L(N) := \{ w \in \Sigma^*; \ \hat{\delta}(S, w) \cap F \neq \emptyset \} \ ,$$

wobei $\hat{\delta}: \mathcal{P}(Q) \times \Sigma^* \to \mathcal{P}(Q)$ wieder induktiv definiert ist durch

$$\begin{array}{lcl} \hat{\delta}(Q',\epsilon) & = & Q' & \forall Q' \subseteq Q \\ \hat{\delta}(Q',ax) & = & \hat{\delta}(\bigcup_{q \in Q'} \delta(q,a),x) & \forall Q' \subseteq Q, \forall a \in \Sigma, \forall x \in \Sigma^* \end{array}$$

NFA für Binärzeichenreihen, deren viertletztes Zeichen 1 ist

3.3 Äquivalenz von NFA und DFA

Satz 33

Für jede von einem nichtdeterministischen endlichen Automaten akzeptierte Sprache L gibt es auch einen deterministischen endlichen Automaten M mit

$$L = L(M)$$
.

Beweis:

Sei $N = (Q, \Sigma, \delta, S, F)$ ein NFA.

Definiere

- **1** $M' := (Q', \Sigma, \delta', q'_0, F')$, mit
- $Q' := \mathcal{P}(Q)$ $(\mathcal{P}(Q) = 2^{\mathcal{Q}})$ Potenzmenge von Q
- $\delta'(Q'',a) := \bigcup_{q' \in Q''} \delta(q',a)$ für alle $Q'' \in Q'$, $a \in \Sigma$
- $q_0' := S$
- **5** $F' := \{Q'' \subseteq Q; \ Q'' \cap F \neq \emptyset\}$

Also

Beweis (Forts.):

Es gilt:

$$w \in L(N) \Leftrightarrow \hat{\delta}(S, w) \cap F \neq \emptyset$$

$$\Leftrightarrow \hat{\delta'}(q'_0, w) \in F'$$

$$\Leftrightarrow w \in L(M').$$

Der zugehörige Algorithmus zur Überführung eines NFA in einen DFA heißt Teilmengenkonstruktion, Potenzmengenkonstruktion oder Myhill-Konstruktion.

3.4 NFA's mit ϵ -Übergängen

Definition 34

Ein (nichtdeterministischer) endlicher Automat A mit ϵ -Übergängen ist ein 5-Tupel analog zur Definition des NFA mit

$$\delta: Q \times (\Sigma \uplus \{\epsilon\}) \to \mathcal{P}(Q)$$
.

Ein ϵ -Übergang wird ausgeführt, ohne dass ein Eingabezeichen gelesen wird. Wir setzen o.B.d.A. voraus, dass A nur einen Anfangszustand hat.

Definiere für alle $a \in \Sigma$

$$\bar{\delta}(q,a) := \hat{\delta}(q,\epsilon^*a\epsilon^*)$$
.

Falls A das leere Wort ϵ mittels ϵ -Übergängen akzeptiert, also $F \cap \hat{\delta}(q_0, \epsilon^*) \neq \emptyset$, dann setze zusätzlich

$$F:=F\cup\{q_0\}\ .$$

Satz 35

$$w \in L(A) \Leftrightarrow \hat{\bar{\delta}}(S, w) \cap F \neq \emptyset$$
.

Beweis:

Hausaufgabe!

3.5 Entfernen von ϵ -Übergängen

Satz 36

Zu jedem nichtdeterministischen endlichen Automaten A mit ϵ -Übergängen gibt es einen nichtdeterministischen endlichen Automaten A' ohne ϵ -Übergänge, so dass gilt:

$$L(A) = L(A')$$

Beweis:

Ersetze δ durch $\bar{\delta}$ und F durch F' mit

$$F' = \begin{cases} F & \epsilon \notin L(A) \\ F \cup \{q_0\} & \epsilon \in L(A) \end{cases}$$

3.6 Endliche Automaten und reguläre Sprachen

Satz 38

Ist $G=(V,\Sigma,P,S)$ eine rechtslineare (also reguläre) Grammatik (o.B.d.A. sind die rechten Seiten aller Produktionen aus $\Sigma \cup \Sigma V$), so ist $N=(V \uplus \{X\},\Sigma,\delta,\{S\},F)$, (wobei X ein neues Nichtterminal-Symbol ist), mit

$$F := \begin{cases} \{S, X\}, & \textit{falls } S \to \epsilon \in P \\ \{X\}, & \textit{sonst} \end{cases}$$

und, für alle $A, B \in V$, $a \in \Sigma \cup \{\epsilon\}$,

$$B \in \delta(A, a) \iff A \to aB \quad \text{und}$$

 $X \in \delta(A, a) \iff A \to a$

ein nichtdeterministischer endlicher Automat, der genau L(G) akzeptiert.

Beweis:

Aus der Konstruktion folgt, dass N ein NFA ist (i.A. mit ϵ -Übergängen). Durch eine einfache Induktion über n zeigt man, dass eine Satzform

$$a_1 a_2 \cdots a_{n-1} A$$
 bzw. $a_1 a_2 \cdots a_n$

in G genau dann ableitbar ist, wenn für die erweiterte Übergangsfunktion $\hat{\delta}$ des zu Näquivalenten NFA ohne ϵ -Übergänge gilt:

$$A \in \hat{\delta}(S, a_1 a_2 \cdots a_{n-1})$$

bzw.

$$X \in \hat{\delta}(S, a_1 a_2 \cdots a_n)$$

(bzw., für
$$n = 0$$
, $F \cap \hat{\delta}(S, \epsilon) \neq \emptyset$).

Zusammenfassend ergibt sich:

Satz 39

Die Klasse der regulären Sprachen (Chomsky-3-Sprachen) ist identisch mit der Klasse der Sprachen, die

- von DFA's akzeptiert/erkannt werden,
- von NFA's akzeptiert werden,
- von NFA's mit ϵ -Übergängen akzeptiert werden.

Beweis:

Wie soeben gezeigt.

3.7 Reguläre Ausdrücke

Reguläre Ausdrücke sollen eine kompakte Notation für spezielle Sprachen sein, wobei endliche Ausdrücke hier auch unendliche Mengen beschreiben können.

Definition 40

Reguläre Ausdrücke sind induktiv definiert durch:

- ∅ ist ein regulärer Ausdruck.
- \bullet ist ein regulärer Ausdruck.
- **3** Für jedes $a \in \Sigma$ ist a ist ein regulärer Ausdruck.
- Wenn α und β reguläre Ausdrücke sind, dann sind auch (α) , $\alpha\beta$, $(\alpha|\beta)$ (hierfür wird oft auch $(\alpha + \beta)$ geschrieben) und $(\alpha)^*$ reguläre Ausdrücke.
- Nichts sonst ist ein regulärer Ausdruck.

Bemerkung: Ist α atomar, so schreiben wir statt $(\alpha)^*$ oft auch nur α^* .

Zu einem regulären Ausdruck γ ist die zugehörige Sprache $L(\gamma)$ induktiv definiert durch:

Definition 41

- Falls $\gamma = \emptyset$, so gilt $L(\gamma) = \emptyset$.
- 2 Falls $\gamma = \epsilon$, so gilt $L(\gamma) = {\epsilon}$.
- **3** Falls $\gamma = a$, so gilt $L(\gamma) = \{a\}$.
- Falls $\gamma = (\alpha)$, so gilt $L(\gamma) = L(\alpha)$.
- Falls $\gamma = \alpha \beta$, so gilt

$$L(\gamma) = L(\alpha)L(\beta) = \{uv; u \in L(\alpha), v \in L(\beta)\}$$
.

 $\bullet \ \, \mathsf{Falls} \,\, \gamma = (\alpha \mid \beta) \mathsf{, \, so \, gilt} \,\,$

$$L(\gamma) = L(\alpha) \cup L(\beta) = \{u; \ u \in L(\alpha) \lor u \in L(\beta)\} \ .$$

• Falls $\gamma = (\alpha)^*$, so gilt

$$L(\gamma) = L(\alpha)^* = \{u_1 u_2 \dots u_n; \ n \in \mathbb{N}_0, u_1, \dots, u_n \in L(\alpha)\}.$$

Sei das zugrunde liegende Alphabet $\Sigma = \{0, 1\}$.

• alle Wörter, die gleich 0 sind oder mit 00 enden:

$$(0 \mid (0 \mid 1)^*00)$$

• alle Wörter, die 0110 enthalten:

$$(0|1)^*0110(0|1)^*$$

• alle Wörter, die eine gerade Anzahl von 1'en enthalten:

$$(0*10*1)*0*$$

alle Wörter, die die Binärdarstellung einer durch 3 teilbaren Zahl darstellen, also

$$0, 11, 110, 1001, 1100, 1111, 10010, \dots$$

Hausaufgabe!