

Relatório

Queda Livre

Ricardo Mochila 37762 Inês Veríssimo 40102 Pedro Amaro 40216 Manuel Pedrosa 40018

Objectivos

Este trabalho tem como objetivo determinar o módulo da aceleração da gravidade através de medições do tempo de queda de objetos de massas diferentes, de modo a equipará-los com o valor tabelado.

Material

- 2 Esferas de diferentes tamanhos e diferentes pesos;
- 1 Fita métrica
- 2 Photogates de movimento
- 1 Cronómetro
- 1 Eletroíman
- 1 Nivelador (uma pedra presa por um fio)

Procedimento experimental

Neste trabalho experimental, foi medido o tempo de queda de dois corpos de massas diferentes com a finalidade de calcular a aceleração gravítica.

Os corpos foram largados de uma posição de repouso, desprezando-se a resistência do ar, estando apenas sujeitos à atração gravítica. Como esta é constante, os corpos apresentam um movimento retilíneo uniformemente acelerado.

O movimento de queda livre de corpos próximos da superfície da Terra pode ser descrito pela equação para um movimento uniformemente acelerado dada por:

$$h(t) = h_0 + v_0 + \frac{1}{2}gt^2$$

Aqui, h_0 e v_0 são a posição e velocidade iniciais do movimento, respetivamente e escrevemos h(t) tomando um referencial vertical com sentido positivo para baixo. Assim, a aceleração g tem sentido positivo, o que resulta no sinal positivo no termo quadrático em t.

Se o corpo começar do repouso, $v_0 = 0$. Se ainda tomarmos a posição inicial do corpo como $h_0 = 0$, temos que:

$$h(t) = \frac{1}{2}gt^2$$

- 1) Montou-se todo o material.
- 2) Deixou-se cair a esfera de menor diâmetro imediatamente acima da célula cuja posição é a mais elevada.
- 4) Anotou-se o tempo que a esfera demora de uma célula à outra.
- 6) Repetiu-se 5 vezes cada um dos processos com ambas as bolas.
- 7) Foram feitas medições para 10 posições diferentes.

Recolha de Dados

Distância (cm)	Tempo (s) Bola Grande	Tempo (s) Bola pequena	Distância (cm)	Tempo (s) Bola Grande	Tempo (s) Bola pequena
	0,119	0,116		0,213	0,211
	0,120	0,118		0,213	0,211
20	0,119	0,116	45	0,213	0,211
	0,119	0,114		0,213	0,211
	0,118	0,115		0,213	0,211
	0,141	0,138		0,231	0,228
	0,140	0,137		0,231	0,228
25	0,140	0,137	50	0,230	0,225
	0,140	0,138		0,230	0,225
	0,140	0,138		0,230	0,227
	0,160	0,157		0,240	0,237
	0,159	0,158		0,240	0,239
30	0,161	0,159	55	0,240	0,239
	0,161	0,159		0,240	0,236
	0,160	0,159		0,242	0,237
	0,177	0,174		0,255	0,253
	0,177	0,174		0,256	0,253
35	0,177	0,173	60	0,256	0,253
	0,177	0,174		0,255	0,256
	0,176	0,174		0,255	0,252
	0,194	0,190		0,268	0,263
	0,194	0,193		0,267	0,263
40	0,193	0,191	65	0,268	0,264
	0,194	0,190		0,268	0,264
	0,195	0,190		0,267	0,264

Apresentação de Resultados

Velocidades

Aceleração

Bola Grande

Pelos gráficos, sabendo que o declive é metade da aceleração, temos que:

√ Aceleração da bola pequena:

$$a = 4,877 \times 2 = 9.75 m/s^2$$

√ Aceleração da bola grande:

$$a = 5.051 \times 2 = 10.102 m/s^2$$

Conclusão

Com este trabalho, cumpriu-se o objetivo inicial da experiência laboratorial.

Inicialmente desenharam-se os gráficos de $\underline{\Delta}$ y (eixo Y) em função de t (eixo X), observando que este faz uma curva quadrática.

Verificou-se, a partir da representação gráfica de $\underline{\Delta}$ y/t (eixo Y) em função de t (eixo X), que a relação entre estas grandezas é linear, ajustando uma reta de tendência adequada.

Pelas retas e declives dos gráficos, tem-se:

- ✓ Aceleração da bola pequena: $a = 4,877 \times 2 = 9.75 m/s^2$
- ✓ Aceleração da bola grande: $a = 5.051 \text{ x } 2 = 10.102 \text{m/s}^2$

Conclui-se que os valores das acelerações das equações das retas são próximos da aceleração gravítica tabelada.