..::Ôn tập Phương pháp tính::..

Dùng phương pháp xác định nghiệm gần đúng của phương trình để đưa ra các thuật toán tính gần đúng giá trị của $\sqrt[n]{a}$ $(a>0, n\in\mathbb{N}, n\geq 2)$.

- 1. Dưa vào phương pháp chia đôi
- 2. Dựa vào phương pháp xấp xỉ Newton
- 3. Dựa vào phương pháp xấp xỉ liên tiếp

Gọi x là giá trị của
$$\sqrt[n]{a_0}$$
, ta có: $x = \sqrt[n]{a_0} \Leftrightarrow x^n = a_0 \Leftrightarrow x^n - a_0 = 0(*)$

Đặt
$$f(x) = x^n - a_0$$
 thì (*) tương đương với phương trình $f(x) = 0$

Ta cần tìm giá trị gần đúng của $\sqrt[n]{a_0}$, tức là tìm gtgđ của nghiệm pt (*).

❖ Nếu a₀> 1:

$$f(1) = 1^n - a_0 < 0$$

$$f(a_0) = a_0^n - a_0 > 0$$

Do đó pt f(x)=0 có nghiệm $\overline{x} \in (1, a_0)$

• Nếu $a_0 < 1$.

$$f(1) = 1^n - a_0 > 0$$

$$f(a_0) = a_0^n - a_0 < 0$$

Do đó pt f(x)=0 có nghiệm $\overline{x} \in (a_0,1)$

• Nếu $a_0 = 1$ thì $\sqrt[n]{a_0} = 1$

♣ Dựa vào phương pháp chia đôi:

- 1. Thuật toán:
- \bullet Input: a_0 , n, k.

 $\{c \hat{a}n \ tính \ giá \ trị \ gần đúng của \sqrt[n]{a_0} \ với sai số không quá <math>10^{-k}$, kết quả ghi ở dạng biểu diễn thập phân, có k chữ số sau dấu phẩy}

- $\{\overline{x} \mid \text{à gtgđ của } \sqrt[n]{a_0} \text{ thỏa điều kiện trên}\}$ \bullet Output: \overline{x}
- ❖ Giải thuật:

B1:

Nếu
$$a_0 < 1$$
 thì gán $b = 1$, $a = a_0$ và sang B2
Nếu $a_0 = 1$ thì gán $\overline{x} = 1$ và dừng
B2: Nếu $f(\frac{a+b}{2}) = 0$ thì gán $x^* = \frac{a+b}{2}$ và sang B5

Nếu $a_0 > 1$ thì gán $b = a_0$, a = 1 và sang B2

Neur
$$f(\frac{1}{2}) = 0$$
 thi gail $x = \frac{1}{2}$ va sang B.

Ngược lại sang B3

B3: Nếu
$$\frac{b-a}{2} \le \frac{10^{-k}}{2}$$
 thì gán $x^* = \frac{a+b}{2}$ và sang B5

Ngược lại sang B4

B4: Nếu
$$f(\frac{a+b}{2})f(a) > 0$$
 thì gán $a = \frac{a+b}{2}$ và trở lại B2

Nếu
$$f(\frac{a+b}{2})f(a) < 0$$
 thì gán $b = \frac{a+b}{2}$ và trở lại B2

B5: Đặt
$$\bar{x}$$
 là làm tròn của x^* đến chữ số hàng thứ (-k). Dừng

2. *Ví dụ*:

Tính $\sqrt[3]{2}$, sai số không quá 10^{-2} $a_0 = 2$, n = 3, k = 2

$$a_{0}=2, n=3, k=2$$

$$B1: a_{0}>1, b=2, a=1.$$

$$B2: f\left(\frac{1+2}{2}\right) \neq 0$$

$$B3: \frac{2-1}{2}=0.5>\frac{10^{-2}}{2}$$

$$B4: f\left(\frac{1+2}{2}\right).f(1)<0$$

$$B3: \frac{1.5-1}{2}=1.25$$

$$(lāp)$$

$$B3: \frac{1.5-1}{2}=0.25>\frac{10^{-2}}{2}$$

$$B4: f\left(\frac{1+1.5}{2}\right).f(1)>0$$

$$Gán = \frac{1+2}{2}=1.5$$

$$(lāp)$$

$$B2: f\left(\frac{1.25+1.5}{2}\right).f(1)>0$$

$$B3: \frac{1.5-1.25}{2}=0.125>\frac{10^{-2}}{2}$$

$$B4: f\left(\frac{1.25+1.375}{2}\right).f(1.25)<0$$

$$B3: \frac{1.375-1.25}{2}=0.0625>\frac{10^{-2}}{2}$$

$$B4: f\left(\frac{1.25+1.375}{2}\right).f(1.25)<0$$

$$Gán = \frac{1.25+1.5}{2}=1.375$$

$$(lāp)$$

$$B2: f\left(\frac{1.25+1.375}{2}\right).f(1.25)<0$$

$$Gán = \frac{1.25+1.325}{2}=0.03125>\frac{10^{-2}}{2}$$

$$B3: \frac{1.3125-1.25}{2}=0.03125>\frac{10^{-2}}{2}$$

$$B4: f\left(\frac{1.25+1.3125}{2}\right) \neq 0$$

$$B3: \frac{1.28125-1.25}{2}=0.015625>\frac{10^{-2}}{2}$$

$$B4: f\left(\frac{1.25+1.28125}{2}\right) = 0.015625>\frac{10^{-2}}{2}$$

$$B4: f\left(\frac{1.25+1.28125}{2}\right) = 0.015625>\frac{10^{-2}}{2}$$

$$B4: f\left(\frac{1.25+1.28125}{2}\right) = 0.015625>\frac{10^{-2}}{2}$$

$$B4: f\left(\frac{1.25+1.28125}{2}\right) = 0$$

B3:
$$\frac{81}{64} - 1,25$$

2 = 7,8125.10⁻³ > $\frac{10^{-2}}{2}$

B3:
$$\frac{\frac{34}{64} - 1,25}{2} = 7,8125.10^{-3} > \frac{10^{-2}}{2}$$
B4: $f\left(\frac{1,25 + \frac{81}{64}}{2}\right).f(1,25) > 0$ gán $a = \frac{1,25 + \frac{81}{64}}{2} = \frac{126}{128}$

$$\mathbf{Vav} \quad x = 1,26 \pm 10^{-2}$$

Vây
$$x = 1,26 \pm 10^{-2}$$

B3:
$$\frac{\frac{81}{64} - \frac{161}{128}}{2} = 3,90625.10^{-3} < \frac{10^{-2}}{2}$$

$$\frac{\frac{161}{128} + \frac{81}{64}}{64} = 323$$

$$x^* = \frac{\overline{128} + \overline{64}}{2} = \frac{323}{256}$$

B5:
$$\bar{x} = 1,26$$

♣ Dựa vào phương pháp xấp xỉ Newton

$$f'(x) = nx^{n-1}, f'(x) > 0, \forall x \in (1, a_0) \text{ (hoặc } (a_0, 1))$$

$$f''(x) = n(n-1)x^{n-2}, f''(x) > 0, \forall x \in (1, a_0) \text{ (hoặc } (a_0, 1))$$

- 1. Thuật toán:
- **❖** *Input: a₀, n, k*
- Output: \overline{x} { \overline{x} là 1 gtgđ của $\sqrt[n]{a_0}$, với sai số không quá 10^{-k} , \overline{x} được ghi ở dạng biểu diễn thập phân có k chữ số sau dấu phẩy}
- ❖ Giải thuật:

B1: Nếu
$$a_0 > 1$$
 thì gán $b = a_0$, $a = 1$ và sang B2
Nếu $a_0 < 1$ thì gán $b = 1$, $a = a_0$ và sang B2

Nếu
$$a_0 = 1$$
 thì gán $\overline{x} = 1$ và dừng

B2: Gán
$$x_0 = b$$
, $M = \frac{(n-1)b^{n-2}}{a^{n-1}}$

B3: Gán
$$x_1 = x_0 - \frac{x_0^n - a_0}{n \cdot x_0^{n-1}}$$

Đặt \bar{x}_1 là làm tròn của x_1 , làm tròn đến chữ số hàng thứ -(k+1) và sang B4

{Lưu í: có một số trường hợp nếu ta chỉ làm tròn x_1 đến chữ số hàng thứ (-k-1) thì $x_0 = \overline{x_1}$.

Khi đó ta lấy $\overline{x_1}$ là làm tròn của x_1 đến chữ số hàng thứ (-m) (m>k) nào đó, để $\overline{x_1} \neq x_0$ }

B4: Nếu
$$M.(|\overline{x_1} - x_0| + |x_1 - \overline{x_1}|)^2 < \frac{10^{-k}}{4}$$
 thì sang B5

Ngược lại gán
$$x_0 = \overline{x_1}$$
 và quay lại bước 3

B5: Lấy \bar{x} là làm tròn của \bar{x}_1 , làm tròn đến chữ số hàng thứ -k (và dừng)

2. <u>Ví du:</u> Tính $\sqrt[3]{2}$, sai số không quá 10^{-2} ... $a_0 = 2$, n = 3, k = 2

B1:
$$a_0 = 2 > 1$$
, $b = 2$, $a = 1$

B2:
$$x_0 = 2$$
, $\mu = \frac{(3-1) \cdot 2^{3-2}}{1^{3-1}} = 4$

B3:
$$x_1 = 2 - \frac{2^3 - 2}{1^{3-1}} = 1,5$$

 $\overline{x_1} = 1,5; x_1 = 1,5$

B4:
$$4[|\overline{x_1} - x_0| + |x_1 - \overline{x_1}|]^2 = 4|\overline{x_1} - x_0|^2 = 1 > \frac{10^{-2}}{4}$$

Gán
$$x_0 = 1,5$$

B3:
$$x_1 = 1, 5 - \frac{1,5^3 - 2}{3.1,5^2}$$

$$\frac{-}{x_1} = 1,296$$

$$x_1 = \overline{x_1} \pm \frac{1}{2} 10^{-3}$$

$$4[|\overline{x_1} - x_0| + |x_1 - \overline{x_1}|]^2$$

$$\leq 4[0,204+\frac{1}{2}.10^{-3}]^2 < 0,2$$

Gán
$$x_0 = 1,296$$

(lặp)
B3:
$$x_1 = 1,296 - \frac{1,296^3 - 2}{3.1,296^2}$$

$$\overline{x_1} = 1,261$$

$$x_1 = \overline{x_1} \pm \frac{1}{2}.10^{-3}$$
B4: $4[|\overline{x_1} - x_0| + |x_1 - \overline{x_1}|]^2$

$$\leq 4.[0,035 + \frac{1}{2}.10^{-3}]^2 = 5,041.10^{-3}$$

(lặp)

B3:
$$x_1 = 1,261 - \frac{1,261^3 - 2}{3.1,261^2}$$

$$\overline{x_1} = 1,260$$

$$x_1 = \overline{x_1} \pm \frac{1}{2} 10^{-3}$$

B4: $4[|\overline{x_1} - x_0| + |x_1 - \overline{x_1}|]^2$

$$\leq 4[10^{-3} + \frac{1}{2} 10^{-3}]^2 = 9.10^{-6} < \frac{10^{-2}}{4}$$

B5: $\overline{x} = 1,26$

$$\mathbf{V\hat{a}y} \ \mathbf{x} = 1,26 \pm 10^{-2}$$

♣ Dựa vào phương pháp xấp xỉ liên tiếp

$$D\tilde{a}t \ g(x) = \frac{1}{n} [(n-1)x + \frac{a_0}{x^{n-1}}] \ thi \ pt \ (*) \iff g(x) = x$$

 $V\acute{o}i\ b=max\{\ a_0,\ 1\}$

Gán $x_0 = 1,261$

$$X\acute{e}t \ d\tilde{a}y \ (x_k)_k \ d\tilde{i}nh \ b\acute{o}i \qquad \begin{cases} x_0 = b \\ x_k = g \ (x_{k-1}) = \frac{1}{n} \ \left[(n-1)x_{k-1} + \frac{a_0}{x_{k-1}^{n-1}} \right], k = 1, 2, \dots \end{cases}$$

thì:

$$i.x_i \geq 0; i = 0,1,\dots$$

$$ii. x_{i+1} = \frac{1}{n} [(n-1)x_i + \frac{a_0}{x_i^{n-1}}] \stackrel{(Cauchy)}{\geq} \sqrt[n]{a_0}, \forall i \in \mathbb{N}$$

$$iii. x_{k+1} - x_k = \frac{1}{n} [(n-1)x_k + \frac{a_0}{x_k^{n-1}}] - x_k = \frac{a_0 - x_k^n}{n.x_k^{n-1}} \le 0 \ (do \ ii) \), k = 0, 1, \dots$$

Vây dãy $(x_k)_k$ là dãy giảm, bị chặn dưới bởi $\sqrt[n]{a}$. Do đó $(x_k)_k$ là dãy hội tụ

$$iv. \lim_{k \to +\infty} x_k = \sqrt[n]{a_0}$$

Vây dãy $(x_k)_k$ hội tụ về nghiệm của phương trình g(x) = x

Do đó, với một số k đủ lớn nào đó, ta có thể lấy x_k làm gtgđ cho $\sqrt[n]{a_0}$ với sai số không quá ϵ cho trước.

1. Thuật toán:

- \bullet Input: a_0 , n, k
- Output: \overline{x} { \overline{x} là gtg \overline{d} của $\sqrt[n]{a_0}$, với sai số không quá 10^{-k} , \overline{x} ghi ở dạng biểu diễn thập phân có k chứ số sau dấu phẩy}

❖ Giải thuật:

B1:
$$Gán b = max\{a_0, 1\}$$

B2:
$$x_0 = b$$
;

B3: Gán
$$x_1 = \frac{1}{n} \left[(n-1)x_0 + \frac{a_0}{x_0^{n-1}} \right]$$

Đặt \bar{x}_1 là làm tròn của x_1 , làm tròn đến chữ số hàng thứ -(k+1) và sang B4:

{Lưu í: có một số trường hợp nếu ta chỉ làm tròn x_1 đến chữ số hàng thứ -(k+1) thì $x_0 = \overline{x_1}$.

Khi đó ta lấy $\overline{x_1}$ là làm tròn của x_1 đến chữ số hàng thứ (-m) (m>k) nào đó, để $\overline{x_1} \neq x_0$ }

$$+/a_0 > 1$$

Nếu
$$|\overline{x_1}^n - a_0| < 10^{-k-1} \cdot \frac{n}{2}$$
 thì sang B5.

$$\{\text{Vì n\'eu } \mid \overline{x_1}^n - a_0 \mid <10^{-k-1} \cdot \frac{n}{2} \text{ thì } \mid \overline{x_1}^n - \sqrt[n]{a_0} \mid < \frac{10^{-k-1} \cdot \frac{n}{2}}{\overline{x_1}^{n-1} \cdot \sqrt[n]{a_0} + \ldots + \overline{x_1} \cdot (\sqrt[n]{a_0})^{n-1}} < \frac{10^{-k-1} \cdot \frac{n}{2}}{n} = \frac{10^{-k-1}}{2} \}$$

Ngược lại, gán $x_0 = \overline{x_1}$, quay lại B3

$$+/a_0 < 1$$

Nếu
$$|\overline{x_1}^n - a_0| < a_0 10^{-k-1} \cdot \frac{n}{2}$$
 thì sang B5.

{ Vì nếu
$$|\overline{x_1}^n - a_0| < a_0 10^{-k-1} \cdot \frac{n}{2} \text{ thì } |\overline{x_1}^n - \sqrt[n]{a_0}| < \frac{10^{-k-1} \cdot \frac{a_0 n}{2}}{a_0 n} = \frac{10^{-k-1}}{2}$$
}

Ngược lại, gán $x_0 = \overline{x_1}$, quay lại B3

Lấy \overline{x} là làm tròn của $\overline{x_1}$, làm tròn đến chữ số hàng thứ -k

2. Ví dụ: Tính $\sqrt[3]{2}$, sai số không quá 10^{-2} ... $a_0 = 2$, n = 3, k = 2

B2:
$$x_0 = 2$$

B3:
$$x_1 = \frac{1}{3} \left[2, 2 + \frac{2}{2^2} \right] = 1,5$$

 $\overline{x_1} = 1, 5, x_1 = \overline{x_1}$

B4:
$$|\overline{x_1}^3 - 2| = |1,5^3 - 2| = 1,375 > \frac{3}{2}.10^{-3} = 0,0015$$

Gán
$$x_0 = 1,5$$

B3:
$$x_1 = \frac{1}{3} \left[2.1,296 + \frac{2}{1,296^2} \right]$$

$$\overline{x_1} = 1,261; \ x_1 = \overline{x_1} \pm \frac{1}{2} 10^{-3}$$

B4:
$$|\overline{x_1}|^3 - 2 = |1,261|^3 - 2 > 0,0015$$

Gán $x_0 = 1,261$

Vậy
$$x = 1,26 \pm 10^{-2}$$

B3:
$$x_1 = \frac{1}{3} \left[2,15 + \frac{2}{2^2} \right] = 1,5$$

$$\overline{x_1} = 1,296; \ x_1 = \overline{x_1} \pm \frac{1}{2} 10^{-3}$$

B4:
$$|\overline{x_1}|^3 - 2 = |1,296|^3 - 2| > 0,0015$$

Gán
$$x_0 = 1,296$$

B3:
$$x_1 = \frac{1}{3} \left[2.1, 261 + \frac{2}{1,261^2} \right]$$

$$\overline{x_1} = 1,260; \ x_1 = \overline{x_1} \pm \frac{1}{2} 10^{-3}$$

B4:

$$|\overline{x_1}|^3 - 2 = 1.260^3 - 2 = 3,76.10^{-4} < 0,0015 = \frac{3}{2}10^{-3}$$

Gán
$$\overline{x} = 1,26$$

..::Try your best n Have fun! 🖭 :...