1

Visual-based Model-free Control of Soft Continuum Robot for Effective Endoscopic Navigation

Author 1, Author 2

Abstract

The abstract goes here.

Index Terms

IEEEtran, journal, LATEX, paper, template.

I. INTRODUCTION

- Why do we use soft robot for endoscopy
 - Endoscope is an tubular instrument for intra-cavitary or intra-luminal inspection in minimal invasive surgical procedure.
 - In conventional design, an endoscope comprises of a long and flexible body and a cable-driven steerable tip mounted with a camera.
 - This slender body is pliant to the surrounding objects, which facilitates versatile operations within the confined surgical environments.
 - The orientation of the tip can be manipulated by antagonistically adjusting the tensions and positions of the embedded cables.
 - This allows directing the camera and delivering interventional instruments such as biopsy forceps at particular regions of interest.
 - However, the cable tensions are difficult to control [ref] for stable interventional procedures.
 - The rigidity of tip may also cause damage to the soft tissue or even perforation [ref] when the endoscope is forced to pass through narrow corners against interior luminal surfaces.
 - These drawbacks motivate the development of totally soft, fluid-driven continuum robotic systems for endoscopic interventions.
 - Soft continuum structure can be readily fabricated from hyperelastic materials such as silicone (e.g. Ecoflex) using advanced 3D-printed technologies [ref: pnet].
 - This enables production of low-cost and disposable soft endoscopes to facilitate sterilization process, where the risk of cross infection would be minimized [ref].
 - Briefly introduce achievements of soft continuum robots for surgical applications
 - * Endotics [ref]
 - · for colonoscopy
 - * Aer-O-space [ref]
 - · for colonoscopy
 - * STIFFLOP [ref]
 - · controllable stiffness
 - * other examples [ref]
 - Yet the kinematic and dynamic behavior of the deformable structure is usually highly nonlinear and is easily complicated by external disturbances.
 - Consequently the responses upon actuation can be dramatically unalike at different robot configurations.
 - This pose difficulties in deriving control methods for precise manipulation of such soft continuum structure.
- Various close-loop control methods have been proposed for soft continuum robots.
 - Model-based approaches relies on obtaining close-formed solutions [ref] from analytical models of the robot's kinematics or dynamics [ref].
 - * Several modeling methods have been proposed to approximate the hyperelastic behavior
 - * piecewise contant curvature models [refs],
 - · infintie degree-of-freedom systems [ref],
 - · interconnected spring-mass systems [refs],
 - · geometrically exact formulations based on Cosserat theory [ref].

- * Model-based controllers could be applied to regulate either cable-driven [ref] or fluid-driven continuum robots [ref], and even generate bio-mimicking sterotyped motions [ref].
- * However, the assumptions made could be invalid in the presence of disturbances such as payload and external interactions.
- * Complicated procedures are also required to determine proper analytical models and system parameters beforehand [ref].
- * Such system identification process inevitably have to be started from scratch, if the structural properties that govern the robot's mechanical behavior have been significantly modified.
- * These drawbacks hinder model-based methods from applications to robot manipulation the confined surgical environments involving substantial contacts.
- Model-free approaches
 - * NN
 - * Yips
 - * advantages of model-free approach
- However, most of the literature assume feedback of absolute robot position is available
- The visual servoing camera-in-hand problem and control in constrained environment
 - Endoscopic images are the primary source to provide positional feedback of robot in real time
 - provide immediate positional displacement in the image domain caused by the robot motion.
 - The minautrized camera at the distal tip can offer high resolutions images, which can be streamed to computing units for pattern recognition [ref]
 - because installation of additional positional sensors may be infeasible due to limited size or clinical constraints.
 - explain briefly the camera-in-hand problem visual-servoing
 - this problem have been extensively studied in the case of rigid-link manipulators [refs]
 - only one example could be found in the case of continuum robots and its methods
 - * wang's model-based cable-driven visual servo [ref]
 - no existing example of visual-based control for soft fluid-driven continuum robot
- propose our model-free visual servo approach
 - why nonparametric methods?
 - Contributions:
 - * first attempt the camera-in-hand visual servoing for fluid-driven continuum robots for intra-luminal endoscopy
 - * Novel model-free visual servoing control method (section II)
 - * demonstrated enhanced manipulation in tele-mainpulation tasks (section III)

II. MATERIALS AND METHODS

A. Overall control architecture for tele-manipulation

- Explanation of the tele-manipulation in endoscopic navigation
 - Fig.1 : Schematic diagram of the overall control architecture
 - Components: the user input, the controller, the robot, the endoscopic camera
- Definition of the control problem
 - redundantly actuated soft robot
 - * Fig. 2: sketch of the soft robot
 - we consider operational space control

*

B. Real-time image processing

- what is the output of the image processing
 - the displacement in the endoscopic view
 - use filter technique to smooth the output
 - is the smoothing technique specific for the endoscopic environment?

C. Model-free Kinematic control

- 1) Kinematic transition of soft continuum robot:
- general nonlinear function to describe the kinematic relation
 - why quasi-static?
 - * robot tip motion should be gentle for smooth output in the endoscopic view
 - * large pressure change must be prohibited
 - quasi-static transition model [ref]
 - * the robot is in stationary condition at time step k with static chamber pressure u_k
 - * the robot state is represented x_k
 - when the chamber pressure is changed by Δu_k , the state at the next time step is:
 - $\boldsymbol{x}_{k+1} = f(\boldsymbol{x}_k, \Delta \boldsymbol{u}_k, \boldsymbol{\eta}_k)$ or $\boldsymbol{x}_{k+1} = f(\boldsymbol{x}_k, \Delta \boldsymbol{u}_k) + \boldsymbol{\eta}_k$
 - where $bm\eta_k$ is unknown external disturbance
 - * e.g. ???
 - kinematics relative to a base frame
 - * indicate in Fig. 2
 - In endoscopic procedure, image feedback is the only available feedback to close the robotic control loop
 - The tip orientation y_k , and the corresponding image output z are
 - $* \boldsymbol{y}_k = g_e(\boldsymbol{x}_k)$
 - * $\boldsymbol{z}_k = g_c(\boldsymbol{y}_k) + \tilde{\boldsymbol{\epsilon}}_k$
 - * where ϵ_k is the measurement noise
- During the tele-manipulation process, the desired target z_{k+1}^* is given by the operator via the user input.
- Therefore, the controller needs to compute the required change of chamber pressure Δu_k , which can be represented as the inverse kinematic model below:
 - $-\Delta u = \tilde{\pi}(\boldsymbol{x}, \boldsymbol{\eta}, \boldsymbol{z}_k, \boldsymbol{z}_{k+1}^*) + \boldsymbol{\epsilon}$
 - ϵ is the noise resulting from the measurement inaccuracy
- however, x and η are unknown.
- Under the quasi-static transition behavior, we hypothesize that the pressure u_k can provide information of the state x_k .
- Besides, the controller have to adapt the external disturbance η_k , which inherently affects the robot transition.
- Therefore, we propose to adopt online learning technique to acquire the following approximated inverse model from measurement data:
- $\Delta \boldsymbol{u} = \pi(\boldsymbol{u}, \boldsymbol{z}_k, \boldsymbol{z}_{k+1}^*) + \boldsymbol{\epsilon}$
- 2) Estimation of the absolute position from real-time visual feedback:
- use image displacement and the chamber pressure at the last time step to estimate the absolute orientation
- $\hat{\boldsymbol{s}}_k = h(\Delta \boldsymbol{z}_k, \boldsymbol{u}_{k-1})$
- this estimation will be employed in the model-free controller described below.
- 3) Learning the inverse model for operational space control:
- brief introduction of online nonparametric method
 - advantages of directly learning the inverse
 - * low gain feedback controller
 - difficulty in directly learning the inverse
 - * redundancy problem in the control space
- proposed our method
 - how to resolve the redundancy problem
- · discuss the difference from related works regarding the learning/control methods

III. RESULTS AND DISCUSSION

- (Validation by simulation)
- · experimental setup
- - Description of the endoscope prototype
 - st dimension, bending angle, basic endoscopic functions: e.g. insulflation, irrigation, \dots
 - * Fig. 3

- Description of the experimental platform
 - * The base of the robot is fixed
 - * to simulate the colonoscopy procedure, in which the operator searches for specific features such as polyps.
 - * Fig. 4a, b
 - · a: overall setting, with EM tracker at the tip
 - · b: endoscopic view with feature markers
- To quantitatively evaluate the benefits to the navigation procedure, we measures the performance of the tele-manipulation task in terms of
 - * completion time
 - * the discrepancy between the desired and the actual image displacement
- #xx subjects were divided into 3 groups, in each of which the subjects performed the task using
 - * open-loop control
 - * EM-based feedback
 - * Visual-based feedback

• Results

- Table I. performance indexes of the 3 cases
- Fig. 3D trajectories of the 3 cases
- overlayed on a virtual colon model

IV. CONCLUSION