Лекция №1

Классификация параллельных вычислительных систем

Разделы:

- 1. Организация параллелизма на аппаратном уровне
- 2. Синтаксис библиотеки МРІ
- 3. Методы взаимодействия параллельных распределённых процессов

Способы классификации:

1. Количество потоков команд, одновременно обрабатываемых в системе, и количество потоков данных, обрабатываемых в ВС с использованием этих команд 1.1. ОКОД (SISD)

S – simple

M – multiple

I – instructions

D – data

1.2. MKOД (MISD)

1.3. OKMД (SIMD)

Одинаковая структура хранения данных

Все АЛУ одинаковым образом интерпретируют сигналы от УУ, обрабатывая при этом свои локальные данные.

Память является распределённой.

1.4. MKMД (MIMD)

- 2. Степень связности процессорных элементов друг с другом
 - 2.1. Сильная связность процессорные элемент может обмениваться данными с соседними
 - 2.2. Слабая связность не может обмениваться данными с соседними элементами *ТУТ КАРТИНКА ИЗ КОНСПЕКТА МАШИ*
- 3. Модель взаимодействия процессов (обмена данными) применяется для систем класса МКМД (MIMD)
 - 3.1. Модель обмена данными посредством обращения к общей памяти
 - 3.2. Модель обмена данными посредством передачи сообщений С точки зрения модели взаимодействия классификации МКМД (МІМD)
 - 3.3. SMP системы

Отдельные блоки физической памяти объединяются в единое логически адресуемое адресное пространство. При этом любая ячейка физического блока является логически доступной для каждого процессорного элемента

3.4. МРР - системы

Особенности, определяющие возможность конвееризации:

- 1. Возможность разделения команд на стадии, которые будут выполнятся одновременно но с различными данными
- 2. Возможность разделения программ на некоторых базовые процедуры, каждая из которые интерпретируется на соответствующем функциональном устройстве
- 3. Большие объемы обрабатываемых данных, с которыми выполняются однотипные действия