Foundations of Mathematics

Math 300 Sections 902, 905

YOUR NAME

Ninth Homework: Due 11 November 2020

- 1. [16] Do all parts of Problem 17 in the Exercises for Section 6.3 in the Sundstrom book.
- 2. [10] Let A and B be sets. Recall the definitions of the identity functions $I_A: A \to A$ and $I_B: B \to B$: For $a \in A$, $I_A(a) = a$ and for $b \in B$, $I_B(b) = b$.

Let $f: A \to B$ be a function. Prove by a direct computation that $f = f \circ I_A$ and that $f = I_B \circ f$.

- 3. [10] Let A be a set. Prove that the identity function I_A is a bijection.
- 4. [15] For each of the following, either give an example of functions $f: A \to B$ and $g: B \to C$ that satisfy the given properties, or explain why no such example exists.
 - (a) The function g is a surjection, but the function $g \circ f$ is not a surjection.
 - (b) The function g is an injection, but the function $g \circ f$ is not an injection.
 - (c) The function f is not a surjection, but the function $g \circ f$ is a surjection.
 - (d) The function g is not a surjection, but the function $g \circ f$ is a surjection.
 - (e) The function g is not an injection, but the function $g \circ f$ is a surjection.
- 5. [17] Let $f: A \to B$ and $g: B \to A$ be functions. Recall the identity functions $I_A: A \to A$ and $I_B: B \to B$. Preferably using theorems previously proven in the class (state those that you use), show the following.
 - (a) If $g \circ f = I_A$, then f is an injection.
 - (b) If $f \circ g = I_B$, then f is a surjection.
 - (c) If $g \circ f = I_A$ and $f \circ b = I_B$, then f and g are bijections and $g = f^{-1}$.
- 6. [12] Let $f: S \to T$ be a function, A, B be subsets of S and C, D be subsets of T. For $x \in S$ and $y \in T$, carefully explain what is means to say that
 - (a) $y \in f(A \cup B)$.
 - (b) $y \in f(A) \cap f(B)$.
 - (c) $x \in f^{-1}(C \cap D)$.
 - (d) $x \in f^{-1}(C) \cup f^{-1}(D)$.
- 7. [10] Let $f: \mathbb{R} \to \mathbb{R}$ be defined by f(x) = -2x + 1 and let

$$A := [2,5] \qquad B := [-1,3] \qquad C := [-2,3] \qquad D := [1,4]$$

Find each of the following sets:

- (a) f(A)
- (b) $f^{-1}(C)$
- (c) $f^{-1}(C \cap D)$
- (d) $f^{-1}(f(B))$
- (e) $f^{-1}(C) \cup f^{-1}(D)$
- 8. [10] Let $f: A \to B$ be a function and $T \subset B$. Prove that $T \supseteq f(f^{-1}(T))$.