CS 202, PSET 9

9.1.1

Let A be the set of all quadrangle closed supergraphs of G. We want to find the smallest graph in this set and show it's a unique closure.

The first thing we do is show that set A is non-empty:

A simple proof of this is that, given any graph, we can use this method: connect all the vertices with edges. Such a method ensures the graph becomes quadrangle closed. For example:

And also note that if the graph does not fulfill the criteria for having a quad. closed supergraph (i.e. does not have $a_0a_1a_2a_3$), then it is not considered. Hence we have proved that the set A is not empty.

Now we find the smallest element of A. Let $x_i \in A$. Consider the intersection of all the graphs in A:

 $H = x_1 \cap x_2 \cap x_3 \dots \cap x_n$

H is a supergraph of G because it is an intersection of supergraphs.

H is quadrangle closed:

H contains the path $a_0a_1a_2a_3$, as do all the elements of A

So a_0a_3 is also in H

And $H \subseteq x \in A$

Now we show that H is unique:

Say another quad. closed supergraph of G exists, called H'

So $H' \subseteq x \in A$

This implies $H' \subseteq H$

But because H is quad. closed, $H' \in A$

This implies: $H' \subseteq H$

Therefore H = H' and is unique.

9.1.2

Want to show if G is bipartite, then the quadrangle closure of G is also bipartite. Proof by induction:

Let n represent the next edge added to graph G

Base case: the starting graph $G^0 = G$ is bipartite

Inductive hypothesis: if G^n is bipartite $\to G^{n+1}$ is bipartite

Let $a_0a_1a_2a_3$ be a path in G^n

Without loss of generality, we can start with saying $a_0 \in S$. To maintain a bipartite property, $a_1 \in T$, $a_2 \in S$ and $a_3 \in T$

Now the edge a_0a_3 maintains the bipartite property because the two vertices are separated into S and T

 $\rightarrow G^{n+1}$

9.2

There \exists cycle C such that $C \subseteq G$:

We know that, for any 2 vertices, there are exactly two distinct simple paths that don't share edges between them

Let's say $\exists u, v \in E_G$, there must be another simple path connecting them, which means there is a cycle.

Now we show that $C \supseteq G$

Let V_c be the vertices of $C = \{a_0, a_1, a_2, ... a_n\}$ where $a_0 a_n$ and $a_i a_{i+1}$ are edges Proof:

1) First we show that any vertex in G must be a vertex in C

Suppose $\exists v : v \in V_G \land v \notin V_C$

Then if there exists a simple path from v to a_i , then there must exist another simple path, which contains the same edge. This leads to a contradiction.

2) Now we show every edge in G is an edge in C Suppose \exists edge $a_x a_y \in E_G \land \notin E_C$

But any simple path from a_x to a_y would also imply the existence of other simple paths, which leads to a contradiction

So now we have 3 paths and a contradiction

an, an+1 ... ay is a patu an, an-1 ... ay+1 ay is a patu

As a result of these two cases, G = C and is a cycle.

9.3

To show we can delete the graph if and only if it is acyclic, we consider two sides of the iff

1) We cannot delete a graph if it is cyclic:

A cyclic graph either is a cycle or contains a cycle

If it contains a cycle, we can remove all vertices not in the cycle by the described process to be left with the cycle

In the cycle: $\forall v \in V_c : d(v) \geq 2$ as per the definition of a cycle, so we cannot remove them.

2) If the graph is acyclic, we can delete it:

Showing by induction on |V|

Base case:

|V| = 0 is the empty graph

|V| = 1 is a single vertex, d(v) = 1 and can be removed.

Inductive step:

Assume |V| = n, we can completely delete this graph

Because if the graph with |V| = n + 1 is acyclic, $\exists v : d(v) \leq 1$ and so we can delete at least one vertex and get back to our original graph

As per the notes, acyclic graphs also have the property that $|E| \leq |V| - 1$, so if we were to think that $d(v) \geq 2$, then by the handshake lemma we would arrive at a contradiction to this property:

$$2|E| = \sum_{v \in V} d(v) \ge \sum_{v \in V} 2 = 2|V|$$

 $2|E| \ge 2|V|$

 $E \ge |V|$

Having shown both cases, a graph can be reduced to the empty graph iff it is acyclic.