Math 220 Section 108 Lecture 20

17th November 2022

Source: https://personal.math.ubc.ca/~PLP/auxiliary.html

Old Final question

- 3. Suppose that $f: A \to B$ is a function and let C be a subset of A.
 - Prove that $f(A) f(C) \subseteq f(A C)$.
 - Find a counterexample for $f(A-C) \subseteq f(A)-f(C)$.

Hint: Think about for which type of functions part (b) fails.

(a) Let
$$y \in f(A) - f(C)$$
. So, $y \in f(A)$ and $y \notin f(C)$
 $\exists n \in A \text{ s.t. } f(n) = y \text{ & there is not } z \in C \text{ s.t.}$
 $f(z) = y \text{ so, we must have } n \in A - C$

so, $f(n) \in f(A - C)$
 $y \in f(A - C)$

(Continued) 3. Suppose that $f: A \to B$ is a function and let C be a subset of A.

- Prove that $f(A) f(C) \subseteq f(A C)$.
- Find a counterexample for $f(A-C) \subseteq f(A)-f(C)$.

(b)
$$A = \{1,2,33\}$$
, $B = \{4,5,6,7\}$
 $C = \{33\}$ $f(A) = \{6,7\}$
 $A - C = \{1,2\}$ $f(C) = \{7\}$
 $f(A - C) = \{6,7\}$
 $f(A) - f(C) = \{6\}$
 $f(A - C) \notin f(A) - f(C)$

Image and preimage

TF
$$f(n)=n^2$$
 < $a\rightarrow f(a)$ How $f(a)$ 89 and the 9 mage of a 23 suspectively. (b, 54 , 53 $\rightarrow 59$) 53

Definition (Definition 10.3.1 of PLP)

Image and preimage. Let $f: A \to B$ be a function, and let $C \subseteq A$ and let $D \subseteq B$.

- The set $f(C) = \{f(x) \mid x \in C\}$ is the **image** of C in B.
- The set $f^{-1}(D) = \{x \in A \mid f(x) \in D\}$ is the **preimage** of D in A or f-inverse of D.

Warning: f^{-1} does not necessarily represent the inverse function!

Example

For the function f represented by $y=x^2$, what is the preimage of $f^{-1}(\{1,2,3\})$? $\{-\sqrt{3},-\sqrt{2},-1,1,\sqrt{2},\sqrt{3}\}$

Injective and Surjective

Definition (Definition 10.4.1 of PLP)

Let $a_1, a_2 \in A$ and let $f: A \to B$ be a function. We say that f is **injective** (or one-to-one) when

$$a_1 \neq a_2 \quad \Rightarrow \quad f(a_1) \neq f(a_2).$$

It is helpful to also write the contrapositive of this condition. We say that is **injective** (or one-to-one) when

$$f(a_1) = f(a_2) \quad \Rightarrow \quad a_1 = a_2.$$

Definition (Definition 10.4.5 of PLP)

Let $f: A \to B$ be a function. We say that f is **surjective** (or onto), when for every $b \in B$ there is some $a \in A$ such that f(a) = b.

This simply means that every element in B is mapped to by some element of A.

Functions

- 4.(a) Find a function $f: \mathbb{Z} \to \mathbb{Z}$ which is injective but not surjective.
- (b) Find a function $g: \mathbb{Z} \to \mathbb{Z}$ which is surjective but not injective.
- (c) Discuss what would happen if we replaced $\ensuremath{\mathbb{Z}}$ with a finite set.

(a)
$$F(x)z x^2 \circ [h(x)] \circ z x$$

- 4.(a) Find a function $f: \mathbb{Z} \to \mathbb{Z}$ which is injective but not surjective.
- (b) Find a function $g: \mathbb{Z} \to \mathbb{Z}$ which is surjective but not injective.
- (c) Discuss what would happen if we replaced $\mathbb Z$ with a finite set.

Injective

5. Suppose that $f: A \to B$ and C_1, C_2 are subsets of A. Show that if f is injective, then $f(C_1 \cap C_2) = f(C_1) \cap f(C_2)$.

(Continued) 5. Suppose that $f: A \to B$ and C_1, C_2 are subsets of A. Show that if f is injective, then $f(C_1 \cap C_2) = f(C_1) \cap f(C_2)$.

Bijections

Definition (Definition 10.4.10 of PLP)

Let $f: A \to B$ be a function. If f is both injective and surjective then we say that f is **bijective**, or a one-to-one correspondence.

Example

The function $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3$ is bijective.

The function $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^4$ is <u>not</u> bijective, since it is not injective (nor surjective).

Bijections

6. Prove that the function $f: \mathbb{R} - \{1\} \to \mathbb{R} - \{2\}$ given by $f(x) = \frac{2x}{x-1}$ is bijective.

(Continued) 6. Prove that $f: \mathbb{R} - \{1\} \to \mathbb{R} - \{2\}$, $f(x) = \frac{2x}{x-1}$ is bijective.

Bijections (If time)

7. Let A, B be nonempty sets. Prove that if there is a bijection $f : A \to B$, then there is a bijection from $\mathcal{P}(A)$ to $\mathcal{P}(B)$.

Hint: How can you send a subset of A to a subset of B, given that you know how to send each element of A to an element of B?

(Continued) 7. Let A, B be nonempty sets. Prove that if there is a bijection $f: A \to B$, then there is a bijection from $\mathcal{P}(A)$ to $\mathcal{P}(B)$.