Московский государственный технический университет им. Н.Э. Баумана Факультет «Специальное машиностроение»

Кафедра «Автономные информационные и управляющие системы»

Лабораторная работа №2

по дисциплине

«ОСНОВЫ ТЕОРИИ ЦЕПЕЙ»

Проверка теорем об эквивалентных источниках и взаимности

Вариант №5

Выполнил ст. группы РЛ6-31 Филимонов С.В.

Фамилия И.О.

Проверил Рассадкин Н.Ю.

Оценка в баллах_____

Цель работы:

- применить методы наложения и эквивалентного источника для анализа исследуемой цепи.

Исследуемая цепь: Вариант №5

Рис. 1

Подготовительное задание:

Для схемы, вариант 5, рассчитать напряжение и ток на сопротивлении R₃:

- 1) методом наложения;
- 2) методом эквивалентного источника;

Полученные значения тока I3, полученные методом наложения поместим в таблицу 1, методом эквивалентного источника поместим в таблицу 2, в столбец «Вычислено».

Практическая часть:

1. Соберём модель схемы электрической цепи Рис. 1 в среде Місгосар

Рис. 2 Схема модели электрической цепи в среде Місгосар

Таблица 1

Экспериментальные и расчётные данные исследования метода

наложения

Источник	Измерено					Вычислено
питания	I _{1,} мА	I ₂ , MA	І3, мА	I4, MA,	I ₅ , мА	I ₃ , MA
E = 11B	-1.014	0.659	0.354	-0.189	-0.165	0.354
J=0						
E = 0	1.257	0.698	1.045	1.043	0.912	1.043
J = 0.003A						
E=11B	0.243	1.357	1.399	0.853	0.746	1.397
J = 0.003A						

- 1. Исследование метода наложения
 - 1.1. Оставим в модели цепи рис.2 только источник ЭДС. Определим частичные токи I1',I2', I3',I4', I5'. Данные занесём в первую строку табл. 1.

Рис. 3 Схема модели электрической цепи в среде Microcap, только с источником ЕДС

1.2. Оставим в цепи только источник тока. Определим частичные токи I1", I2", I3", I4", I5" Данные занесём во вторую строку табл. 1.

Рис. 4 Схема модели электрической цепи в среде Microcap, только с источником тока

1.3. Ещё раз соберём полную модель цепи рис.2. Определим по ней полные токи

Рис. 5 Схема модели электрической цепи в среде Microcap с токами в ветвях Вычисления на I3 приведены в тетради.

2. Исследование метода эквивалентного источника

2.1. В исходной модели цепи произведём обрыв ветви на участке с R_3 . Измерим напряжение U_0 в точках разрыва. Величину U_0 занести в табл. 2.

Рис. 6 Схема модели электрической цепи в среде Microcap с обрыв ветви на участке с R₃ и обозначенными потенциалами точек.

3.2 Отключим источники питания, и в разрыв ветви с R_3 подключим источник ЭДС значением $E=U_0$, определённое в п. 3.1, Измерим ток I_3 , поместим в табл. 2

Рис. 7 Схема модели электрической цепи в среде Місгосар (отключены источники питания, возвращён R_3 параллельно подключён источник ЭДС значением $E=U_0$) и обозначенными токами в ветвях.

Таблица 2 Экспериментальные данные исследования методом эквивалентного источника ЭДС

Изм	ерено	Вычислено
U_{0} , B	ІЗ, мА	I3, мA
27.914	1.399	1.39

- 3. Проверить теоремы взаимности
 - 3.1. Соберем схему в МісгоСар по варианту 5. Отключим источник тока

Рис. 8 Схема модели электрической цепи в среде Місгосар (отключён источник тока) и обозначенными токами в ветвях.

3.2. Замеряем значение тока I₃. Данные заносим в табл. 3.

Таблица 3

Собственные измерения методом эквивалентного генератора приведены выше в среде ElectonicWorkbench

Экспериментальные данные проверки теоремы взаимности

E, B	І2, мА	I1, мА
11	0.659	0.659

3.3. Отключим источник ЭДС. Произведём обрыв на участке ветви с R3, подключим источник ЭДС в обрыв ветви. Установим

значение E, равное величине в п. 4.1, замерим значение тока I1. Данные занесем в табл. 3. (Рис. 9).

Рис. 9 Схема модели электрической цепи в среде Microcap **Ответы на Контрольные Вопросы:**

1. Объяснить сущность метода наложения.

<u>Метод наложения</u> — метод расчёта электрических цепей, основанный на предположении, что электрический ток в каждой из ветвей электрической цепи при всех включённых генераторах равен сумме токов в этой же ветви, полученных при включении каждого из генераторов по очереди и отключении остальных генераторов.

- 2. <u>Какие двухполюсники называются активными и пассивными.</u> Двухполюсник, не содержащий источников энергии или содержащий скомпенсированные источники, называется <u>пассивным</u>. Если в схеме двухполюсника имеются нескомпенсированные источники, он называется активным.
- 3. <u>Объяснить сущность теоремы об эквивалентном источнике.</u> Теорема утверждение о том, что любой источник может быть эквивалентно заменён на последовательно соединённые идеальный источник напряжения и внутреннее сопротивление

4. Объяснить сущность теоремы взаимности.

Пусть имеется электрическая схема произвольной конфигурации с единственным источником Э.Д.С. E_m , который действует в m-ветви в направлении от точки a к точке b и создаёт в b-ветви с сопротивлением b ток b, направленный от точки b к точке b. Такой же источник Э.Д.С. b е b включенный в b-ветвь и действующий от точки b к точке b и создаёт в b почки b и равный току b

Выводы по работе:

Применив методы наложения и эквивалентного источника для анализа исследуемой цепи, можно сказать что оба метода точны, но не равно эффективны. В методе наложения, необходимо было делать две новые схемы и относительно них все считать, а в методе эквивалентного источника мы собирали только одну новую схему, и изменяли изначальную, тем самым проводя меньше действий.