Ox and Oy are bisector to 2 adjacent acute angles, \widehat{AOB} and \widehat{BOC} where the difference is 36° and $\widehat{AOC} = 90^{\circ}$. Oz is the bisector of the angle \widehat{xOy} . Determine the angle \widehat{BOz}

Solution

$$\widehat{BOC} - \widehat{AOB} = 36^{\circ}$$

$$\widehat{BOC} + \widehat{AOB} = 90^{\circ}$$

$$2\widehat{BOC} = 126^{\circ}$$

$$\widehat{BOC} = 63^{\circ}$$

$$\widehat{AOB} = 27^{\circ}$$

$$\widehat{xOB} = \frac{1}{2}\widehat{AOB}$$
$$= \frac{27}{2}^{\circ}$$

$$\widehat{BOy} = \frac{63}{2}^{\circ}$$

$$\widehat{xOy} = \widehat{xOB} + \widehat{BOy}$$
$$= \frac{1}{2} (63^{\circ} + 27^{\circ})$$
$$= 45^{\circ} \mid$$

$$\widehat{xOz} = \frac{45}{2}^{\circ}$$

$$\widehat{BOZ} = \widehat{xOz} - \widehat{xOB}$$

$$= \frac{1}{2} (45^{\circ} - 27^{\circ})$$

$$= 9^{\circ}$$

Ox and Oy are bisector to 2 adjacent acute angles, \widehat{AOB} and \widehat{BOC} where the difference is 36° . Oz is the bisector of the angle \widehat{xOy} . Determine the angle \widehat{BOz}

Solution

- Ox is the bisector \widehat{AOB} (1)
- OB is the bisector \widehat{AOD} (2)
- *OM* is the bisector \widehat{AOC} (3)
- Oz is the bisector \widehat{xOy} (4)
- Oy is the bisector \widehat{BOC} (5)

$$\widehat{BOC} - \widehat{AOB} = 36^{\circ}$$

$$\widehat{BOC} - \widehat{BOD} = 36^{\circ}$$

$$\widehat{DOC} = 36^{\circ}$$

$$(3) \rightarrow \widehat{AOM} = \frac{1}{2} \widehat{AOC}$$

$$= \frac{1}{2} \left(2\widehat{AOB} + \widehat{DOC} \right)$$

$$= \frac{1}{2} \left(2\widehat{AOB} + 36^{\circ} \right)$$

$$= \widehat{AOB} + 18^{\circ}$$

$$\widehat{BOM} = \widehat{AOM} - \widehat{AOB}$$

$$= \widehat{AOB} + 18^{\circ} - \widehat{AOB}$$

$$= 18^{\circ} \mid$$

$$(1) \rightarrow \widehat{BOx} = \frac{1}{2}\widehat{AOB}$$

$$(4) \rightarrow \widehat{BOy} = \frac{1}{2}\widehat{BOC}$$

$$(1)+(4) \rightarrow \widehat{xOy} = \frac{1}{2}\widehat{AOC}$$

$$(3) \rightarrow \widehat{AOM} = \frac{1}{2} \widehat{AOC} = \widehat{xOy}$$

$$\widehat{BOz} = \widehat{xOz} - \widehat{xOB}$$

$$= \frac{1}{2} \left(\widehat{xOy} - \widehat{AOB} \right)$$

$$= \frac{1}{2} \left(\widehat{AOM} - \widehat{AOB} \right)$$

$$= \frac{1}{2} \widehat{BOM}$$

$$= 9^{\circ} \mid$$

Four consecutive half-lines (segments): OA, OB, OC, and OD formed angles such as

$$\widehat{DOA} = \widehat{COB} = 2\widehat{AOB}$$
 and $\widehat{COD} = 3\widehat{AOB}$

Calculate the angles to demonstrate that the bisectors of \widehat{AOB} and \widehat{COD} are in a straight line.

Solution

$$\widehat{AOB} + \widehat{BOC} + \widehat{COD} + \widehat{DOA} = 360^{\circ}$$

$$\widehat{AOB} + 2\widehat{AOB} + 3\widehat{AOB} + 2\widehat{AOB} = 360^{\circ}$$

$$8\widehat{AOB} = 360^{\circ}$$

$$\widehat{AOB} = 45^{\circ}$$

$$\widehat{DOA} = \widehat{COB} = 90^{\circ}$$

$$\widehat{COD} = 135^{\circ}$$

Let:

Ox is the bisector \widehat{AOB}

Oy is the bisector \widehat{COD}

$$\widehat{xOy} = \widehat{xOB} + \widehat{BOC} + \widehat{COy}$$

$$= \frac{1}{2}\widehat{AOB} + 90^{\circ} + \frac{1}{2}\widehat{COD}$$

$$= \frac{1}{2}(45^{\circ} + 135^{\circ}) + 90^{\circ}$$

$$= 180^{\circ}$$

Therefore; the bisectors of \widehat{AOB} and \widehat{COD} are in a straight line

The segments OA and OB formed with OX the angles α and β .

- a) Demonstrate that the bisector OC of the angle \widehat{AOB} made with OX an angle $\frac{\alpha + \beta}{2}$.
- b) Examine the cases where

i.
$$\alpha + \beta = 90^{\circ}$$

ii.
$$\alpha + \beta = 180^{\circ}$$

Solution

Given:

$$\widehat{AOA} = \alpha \quad \& \quad \widehat{XOB} = \beta$$

$$\widehat{AOC} = \frac{1}{2}\widehat{AOB}$$

$$= \frac{\beta - \alpha}{2}$$

a)
$$\widehat{XOC} = \widehat{XOA} + \widehat{AOC}$$

$$= \alpha + \frac{\beta - \alpha}{2}$$

$$= \frac{\alpha + \beta}{2}$$

b) i. If $\alpha + \beta = 90^{\circ}$, then

$$\widehat{XOC} = 45^{\circ}$$

Let: $\widehat{XOD} = 90^{\circ}$ that implies OC is the bisector of \widehat{XOD} Since OC is the bisector of \widehat{AOB} , then

$$\widehat{BOD} = 90^{\circ} - \beta$$

$$= 90^{\circ} - 90^{\circ} + \alpha$$

$$= \alpha$$

ii. If $\alpha + \beta = 180^{\circ}$, then

$$\widehat{XOC} = 90^{\circ}$$

Let: $\widehat{XOD} = 180^{\circ}$ that implies OC is the bisector of \widehat{XOD} . Since OC is the bisector of \widehat{AOB} , then

$$\widehat{BOD} = 180^{\circ} - \beta$$

$$= 180^{\circ} - 180^{\circ} + \alpha$$

$$= \alpha \mid$$

A point O takes on an infinite right x'Ox be conducted the same side half-lines OA and OB, as well as the bisectors of angles \widehat{xOA} , \widehat{AOB} , and $\widehat{BOx'}$.

Calculate the angles of the figure such that the bisector of the angle \widehat{AOB} is perpendicular to x'Ox and the bisectors of the extreme angles formed an angle of 100° .

Solution

Given:
$$\widehat{zOz'} = 100^{\circ}$$

 $\widehat{xOC} = 90^{\circ}$

$$OC$$
 is the bisector \widehat{AOB}
 $\widehat{AOC} = \widehat{COB}$

$$Oz$$
 is the bisector \widehat{xOA}
 $\widehat{xOz} = \widehat{zOA}$

$$Oz'$$
 is the bisector $\widehat{x'OB}$

$$\widehat{x'Oz'} = \widehat{z'OB}$$

$$\widehat{xOz} = \frac{180^{\circ} - 100^{\circ}}{2}$$

$$\widehat{AOB} = 2\widehat{AOC}$$

$$= 2(90^{\circ} - 2\widehat{xOz})$$

$$= 2(90^{\circ} - 80^{\circ})$$

$$= 20^{\circ}$$

Four consecutive half-lines *OA*, *OB*, *OC*, and *OD* formed four adjacent consecutive angles which are between them like 1, 2, 3, 4.

Calculate the angles and the adjacent consecutive angles formed by their bisectors.

Solution

$$\widehat{AOB} + \widehat{BOC} + \widehat{COD} + \widehat{DOA} = 360^{\circ}$$

$$\widehat{AOB} + 2\widehat{AOB} + 3\widehat{AOB} + 4\widehat{AOB} = 360^{\circ}$$

$$10\widehat{AOB} = 360^{\circ}$$

$$\widehat{AOB} = 36^{\circ}$$

$$\widehat{BOC} = 72^{\circ}$$

$$\widehat{COD} = 108^{\circ}$$

$$\widehat{DOA} = 144^{\circ}$$

$$\widehat{xOy} = \frac{1}{2}\widehat{AOB} + \frac{1}{2}\widehat{BOC}$$

$$= \frac{1}{2}36^{\circ} + \frac{1}{2}72^{\circ}$$

$$= 18^{\circ} + 36^{\circ}$$

$$= 54^{\circ}$$

$$\widehat{yOz} = \frac{1}{2}\widehat{BOC} + \frac{1}{2}\widehat{COD}$$

$$= \frac{1}{2}72^{\circ} + \frac{1}{2}108^{\circ}$$

$$= 36^{\circ} + 54^{\circ}$$

$$= 90^{\circ}$$

$$\widehat{zOw} = \frac{1}{2}\widehat{COD} + \frac{1}{2}\widehat{DOA}$$

$$= \frac{1}{2}108^{\circ} + \frac{1}{2}144^{\circ}$$

$$= 54^{\circ} + 72^{\circ}$$

$$= 126^{\circ} \mid$$

$$\widehat{wOx} = \frac{1}{2}\widehat{DOA} + \frac{1}{2}\widehat{AOB}$$

$$= \frac{1}{2}144^{\circ} + \frac{1}{2}36^{\circ}$$

$$= 72^{\circ} + 18^{\circ}$$

$$= 90^{\circ}$$

A point P is on the base BC of an isosceles triangle ABC. The two points M and N are the middle points of the segments PB and PC, respectively, which lead the perpendicular to the base BC; these perpendiculars meet AB in E, AC in F.

Demonstrate that the angle EPF is equal to A.

Solution

$$\widehat{BAC} = 180^{\circ} - \widehat{ABC} - \widehat{ACB}$$

M is the middle of the segment BP and $EM \perp$ to BP, therefore

$$EB = EP$$
 & $\widehat{EBP} = \widehat{EPB}$

N is the middle of the segment CP and $FN \perp$ to CP, therefore

$$FP = FP$$
 & $\widehat{FPC} = \widehat{FCP}$

$$\widehat{EPF} = 180^{\circ} - \widehat{CPF} - \widehat{BPE}$$

$$= 180^{\circ} - \widehat{PFC} - \widehat{PBE}$$

$$= 180^{\circ} - \widehat{ABC} - \widehat{ACB}$$

$$= \widehat{A} \qquad \sqrt{}$$

Given the triangle *ABC* and the bisectors *BO* and *CO* of the angles of the base, where the point *O* is the intersection of the 2 bisectors. A line *DOE* passes through the point *O* parallel to base *BC*.

Prove that DE = DB + CE

Solution

CO is the bisector of
$$\widehat{BCE} \Rightarrow \widehat{BCO} = \widehat{OCE}$$

$$OE \parallel BC \Rightarrow \widehat{COE} = \widehat{BOC}$$

$$\therefore \widehat{EOC} = \widehat{OCE} \rightarrow OE = EC$$
Similar; BO is the bisector of $\widehat{DBC} \Rightarrow \widehat{DBO} = \widehat{OBC}$

$$DO \parallel BC \Rightarrow \widehat{DOB} = \widehat{OBC}$$

$$\therefore \widehat{DOB} = \widehat{OBC} \rightarrow DO = DB$$

$$DE = DO + OE$$

$$= DB + CE$$

A right triangle *ABC* at *A* with a height *AH*. We drop perpendiculars *HE* and *HD* from *H* to sides *AB* and *AC* respectively.

- a) Prove that DE = AH
- b) Prove that AM is perpendicular to DE, where M is the middle point of BC.
- c) Prove that MN (N is the middle point of AB) and the segment Bx (parallel to DE) are intersect on AH.
- d) Prove that AM and HD are intersect on Bx.

Solution

a) The triangles AEH and ADH are right triangles and angle A is right angle.

Then AEHD is a rectangle.

Therefore, DE = AH

b) A middle point of a hypotenuse of a right triangle is the center of the circle of that triangle.

Therefore, MC = MA = MB

That implies to: $\widehat{MAC} = \widehat{MCA}$

From the rectangle *ADHE*: $\widehat{EAH} = \widehat{EDH}$

$$\widehat{EAH} + \widehat{HAM} + \widehat{MAC} = 90^{\circ}$$

$$\widehat{HAM} + \widehat{MAC} = \widehat{HAC}$$

$$\widehat{EAH} + \widehat{HAC} = 90^{\circ}$$

$$\widehat{EAH} + 90^{\circ} - \widehat{MCA} = 90^{\circ}$$

$$\widehat{EAH} = \widehat{MCA} = \widehat{EDH} = \widehat{MAC}$$

$$\widehat{ADE} + \widehat{EDH} = 90^{\circ}$$

$$\widehat{ADE} + \widehat{MAD} = 90^{\circ}$$

Therefore, AM is perpendicular to DE.

c) N is the middle point of $AB \Rightarrow NA = NB$

Bx parallel to $DE \Rightarrow \widehat{ABx} = \widehat{AED} = \widehat{EDH} = \widehat{EAH}$

Let point *P* the intersection of B*x* and *AH*. Since $\widehat{ABP} = \widehat{BAP}$, then the triangle *BPA* is an isosceles. *PN* is the perpendicular to *AB* as well *MN*. Which gives us that points *M*, *P*, *N* are on the same line.

Therefore, segment MN and AH intersect at point P.

d) Let Point Q be the intersection of AM and Bx.

$$\widehat{ABQ} = \widehat{BAH}$$
 & $\widehat{BAQ} = \widehat{ABH}$

Then, the triangles *BHA* and *BQA* are equivalent, therefore $AQ \perp BQ$ with hypotenuse *AB*.

9

 $HQ \parallel AB$, line HQ has to be perpendicular to AC.

AM and HD are intersecting on Bx at Q.

Given an isosceles triangle ABC with a peak at A. Extend base BC the length CD = AB, then extend AB of a length $BE = \frac{1}{2}BC$, at the end draw a line EHF, H is the middle point of BC and F is located on AD.

- a) Prove that $\widehat{ADB} = \frac{1}{2} \widehat{ABC}$
- b) Prove that EA = HD
- c) Prove that FA = FD = FH
- d) Calculate the value of the angles \widehat{AFH} and \widehat{ADB} where $\widehat{BAC} = 58^{\circ}$.

Solution

a) Triangle ABC is isosceles, then $\widehat{ABC} = \widehat{ACB}$ Since, CD = AB = AC, then $\widehat{CAD} = \widehat{ADC}$

$$2\widehat{ADC} = 180^{\circ} - \widehat{ACD}$$

$$2\widehat{ADC} = 180^{\circ} - \left(180^{\circ} - \widehat{ACB}\right)$$

$$2\widehat{ADC} = \widehat{ACB}$$

$$\widehat{ADB} = \frac{1}{2}\widehat{ACB}$$
$$= \frac{1}{2}\widehat{ABC}$$

$$CD = AB$$

 $HC + CD = BE + AB$

$$EA = HD \quad \checkmark$$

c) $\widehat{ADH} = \frac{1}{2} \widehat{ABD}$ $= \frac{1}{2} \left(180^{\circ} - \widehat{HBE} \right)$ $= \frac{1}{2} \left(180^{\circ} - 180^{\circ} + 2\widehat{BHE} \right)$ $= \widehat{BHE}$

$$\Rightarrow FD = FH$$

$$\widehat{AHF} = 90^{\circ} - \widehat{FHD}$$

$$= 90^{\circ} - \widehat{ADH} \qquad (\triangle HDA)$$

$$= 90^{\circ} - (90^{\circ} - \widehat{HAF})$$

$$= \widehat{HAF}$$

$$\Rightarrow \underline{FA = FH}$$

$$FA = FD = FH \quad \checkmark$$

$$FA = FD = FH \quad \checkmark$$

$$d) \quad \widehat{BAC} = 58^{\circ}$$

$$\widehat{ADB} = \frac{1}{2}\widehat{ACB}$$

$$= \frac{1}{2} \left(\frac{1}{2} \left(180^{\circ} - \widehat{BAC} \right) \right)$$

$$= \frac{1}{4} \left(180^{\circ} - 58^{\circ} \right)$$

$$= \frac{122^{\circ}}{4}$$

$$= \frac{61}{2} \qquad = 30.5^{\circ}$$

Triangle AFH is isosceles then,

$$\widehat{AFH} = 180^{\circ} - \widehat{HFD}$$

$$= 180^{\circ} - \left(180^{\circ} - 2\widehat{FDH}\right)$$

$$= 2\widehat{FDH}$$

$$= 2\frac{61^{\circ}}{2}$$

$$= 61^{\circ}$$

Demonstrate that the heights of a triangle share the angles of triangle that equal to each other.

Solution

Consider the 2 right triangles APB and ANC, which they have the same angle A.

Therefore, $\widehat{ABP} = \widehat{ACN}$.

Similar, consider the 2 right triangles *BPC* and *AMC*, which they have the same angle *C*.

Therefore, $\widehat{MAC} = \widehat{CBP}$.

Similar, consider the 2 right triangles *BNC* and *AMB*, which they have the same angle *B*.

Therefore, $\widehat{BCN} = \widehat{BAM}$.

A right triangle ABC at A where AB < AC, drop a perpendicular AH from A to the hypotenuse BC where HN = HB. From C drops a perpendicular CM at AN. Demonstrate that BC is the bisector of the angle \widehat{ACM} .

Solution

Consider the 2 right triangles ABC and ABH with a common angle B, then

$$\widehat{BAH} = \widehat{ACB}$$

Given: HN = HB, then $\widehat{HAN} = \widehat{BAH} = \widehat{ACB}$

$$\widehat{NAC} = 90^{\circ} - \widehat{HAB} - \widehat{HAN}$$
$$= 90^{\circ} - 2\widehat{HCA}$$

Consider the 2 right triangles AHN and CMC, where $\widehat{HNA} = \widehat{MNC}$

Therefore, $\widehat{HAN} = \widehat{NCM}$

Since $\widehat{HAN} = \widehat{ACB}$

Then $\widehat{ACB} = \widehat{MCB}$

Therefore, BC is the bisector of the angle \widehat{ACM}

On the sides of an angle that it takes the length OA and OB, so that $OA + OB = \ell$ (is given) and construct a parallelogram OABC. What is the place of the summit C of parallelogram?

Solution

Let segment OE extension of segment OA such that $OE = \ell$ Let segment OF extension of segment OB such that $OF = \ell$

Then, the triangle *OEF* is an isosceles.

$$\widehat{OEF} = \widehat{OFE} = 90^{\circ} - \frac{1}{2} \widehat{EOF}$$

$$OA + OB = \ell$$

$$\begin{cases} OA + AC = \ell \\ OA + AE = \ell \end{cases} \Rightarrow AC = AE$$

$$\begin{cases} OB + BC = \ell \\ OB + BF = \ell \end{cases} \Rightarrow BC = BF$$

$$\widehat{OEF} = \widehat{OFE} = \widehat{FCB} = \widehat{ACE}$$

Therefore, the point C, E, and F are aligned.

Demonstrate that the sum of distances from a point M on the base BC of an isosceles triangle ABC to the sides equal a constant.

Solution

The shortest distance from a point to a line is the perpendicular from that point to the line.

Therefore, let:

$$MP \perp AB \\ MQ \perp AC$$

Let $BH \perp AC$ (Shortest distance from B to side AC.)

Let D be the point of intersection ME and BH.

Let
$$ME /\!\!/ AC$$

Where the point E is the intersection of the lines MD and AB.

Since
$$MD \parallel AC$$
 then $\widehat{DMB} = \widehat{ACB}$

Since triangle *ABC* is an isosceles

$$\widehat{DMB} = \widehat{ACB} = \widehat{PBM}$$

$$\Rightarrow |MP| = |BD|$$

$$MD \parallel HQ$$
 and $DH \& MQ \perp HQ$

$$\Rightarrow |MQ| = |DH|$$

$$|MP| + |MQ| = |BD| + |DH|$$
$$= |BH|$$
$$= constant$$

Therefore; the sum of distances from a point M on the base BC of an isosceles triangle ABC to the sides equal a constant.

Demonstrate that the difference of distances from a point M taken on the extension of the base BC of an isosceles triangle ABC to the sides equal a constant.

Solution

The shortest distance from a point to a line is the perpendicular from that point to the line.

Therefore, let:

$$MP \perp AB \\ MQ \perp AC$$

Let $BH \perp AC$ (Shortest distance from B to side AC.)

Let D be the point of intersection ME and BH.

Where the point E is the intersection of the extensions of the lines MD and AB.

Since
$$MD \# AC$$
 then $\widehat{DMB} = \widehat{ACB}$

Since triangle ABC is an isosceles

$$\widehat{DMB} = \widehat{ACB} = \widehat{PBM}$$

The right triangles BPM and BDM at P & D and have the same hypotenuse, then

$$\Rightarrow |MP| = |BD|$$

$$MD \parallel HQ$$
 and $DH \& MQ \perp HQ$

$$\Rightarrow |MQ| = |DH|$$

$$|MP| - |MQ| = |BD| - |DH|$$
$$= |BH|$$
$$= constant$$

Therefore; the difference of distances from a point M taken on the extension of the base BC of an isosceles triangle ABC to the sides equal a constant.

Consider a parallelogram ABCD in which CD = 2AD. In the joint A and B the middle M of BC. Prove that the angle \widehat{AMB} is a right angle.

Solution

Since the point *M* is the middle of side *BC*, then

$$MD = MC = \frac{1}{2}CD$$

$$\Rightarrow MD = AD = BC$$

Therefore; the triangles *ADM* and *BCM* are isosceles at *D* and *C* respectively.

Which implies that MA = MB

Let O be the middle point of the side AB, and OA = OB = AD

O and M are middle of the parallelogram ABCD, that implies

$$OM = BC = AD$$

$$\Rightarrow$$
 $OA = OB = OM$

The triangle MAB inscribed in a circle with center at O and diameter AB, that will imply that is a right triangle at the point M.

Or

$$\widehat{AMD} = \frac{1}{2} \Big(180^{\circ} - \widehat{MDA} \Big)$$

$$\widehat{BMC} = \frac{1}{2} \Big(180^{\circ} - \widehat{MCB} \Big)$$

$$\widehat{ADM} + \widehat{MCB} = 180^{\circ}$$

$$\widehat{DMA} + \widehat{AMB} + \widehat{BMC} = 180^{\circ}$$

$$\widehat{AMB} = 180^{\circ} - \Big(\widehat{BMC} + \widehat{DMA} \Big)$$

$$= 180^{\circ} - \Big(90^{\circ} - \frac{1}{2} \widehat{MDA} + 90^{\circ} - \frac{1}{2} \widehat{MCB} \Big)$$

$$= \frac{1}{2} \Big(\widehat{MDA} + \widehat{MCB} \Big)$$

$$= \frac{1}{2} \Big(180^{\circ} \Big)$$

$$= 90^{\circ} \Big|$$

From the sides AB and AC of a right triangle ABC at A, draw two squares ABDE and ACFG. Then lead DN and FM perpendicular to the line BC.

- a) Prove that DN + FM = BC
- b) Prove that the points D, A, F on a straight line.
- c) Prove that the lines DE and FG contribute on the extension of the height AH.

Solution

a) Let consider the 2 right triangles DNB & BHA at points N & H respectively, with DB = AB. Then

$$\widehat{HAB} = 90^{\circ} - \widehat{ABH}$$

$$= 90^{\circ} - \left(90^{\circ} - \widehat{NBD}\right)$$

$$= \widehat{NBD}$$

$$\Rightarrow \widehat{BDN} = \widehat{ABH}$$

 \therefore The 2 triangles are equals, which implies that DN = BH

Similar, for the 2 right triangles CMF & AHC at points M & H respectively, with AC = CF. Then

$$\widehat{HAC} = 90^{\circ} - \widehat{ACH}$$

$$= 90^{\circ} - \left(90^{\circ} - \widehat{MCF}\right)$$

$$= \widehat{MCF}$$

$$\Rightarrow \widehat{ACH} = \widehat{CFM}$$

∴ The 2 triangles are equals, which implies that FM = HC

$$DN + FM = BH + HC$$

$$= BC \quad \checkmark$$

b) Since ABDE is a square, then $\widehat{BAD} = 45^{\circ}$ And ACFG is a square, then $\widehat{CAF} = 45^{\circ}$

$$\widehat{DAF} = \widehat{DAB} + \widehat{BAC} + \widehat{CAF}$$
$$= 45^{\circ} + 90^{\circ} + 45^{\circ}$$
$$= 180^{\circ} \mid$$

 \therefore The points D, A, & F are on a straight line.

c) Let the point K be the intersection of the extension of the sides DE and FG. Which will result of GKEA is a rectangle with AE = GK & EK = AG

Consider the 2 right triangles BAC & KGA at points A & G respectively with AE = AB = GK

$$\widehat{ACB} = \widehat{GAK} = \widehat{ACH}$$

From the right triangle *AHC*:

$$\widehat{HAC} + \widehat{ACH} = 90^{\circ}$$

$$\rightarrow \widehat{HAC} + \widehat{KAG} = 90^{\circ}$$

$$\widehat{HAC} + \widehat{CAG} + \widehat{KAG} = \left(\widehat{HAC} + \widehat{KAG}\right) + \widehat{CAG}$$

$$= 90^{\circ} + 90^{\circ}$$

$$= 180^{\circ} \mid$$

 \therefore The points K, A, & H are on a straight line.

Given a diamond ABCD; the peak B and D, the same the perpendiculars BM, BN, DP, DQ on opposite sides. These perpendiculars are intersected at E and F.

Demonstrate that the angles of the quadrilateral *BFDE* are equals to the diamond and which is a diamond itself.

Solution

From the right triangles *BPD* & *BMD*, that implies $\widehat{MBD} = \widehat{PDB}$

$$\Rightarrow \widehat{EBD} = \widehat{EDB}$$

Similar, from the right triangles BND & BQD, that implies $\widehat{NBD} = \widehat{QDB}$

$$\Rightarrow \widehat{FBD} = \widehat{FDB}$$

$$\widehat{EBD} + \widehat{DBF} = \widehat{EDB} + \widehat{BDF}$$

$$\widehat{EBF} = \widehat{EDF}$$

Since, $AC \perp BD$, then $EF \perp BD$

The 2 triangles *EBF* & *EDF* have *EF* as a common side and $\widehat{EBF} = \widehat{EDF}$, then

$$\widehat{BEF} = \widehat{DEF} = \widehat{BFE} = \widehat{DFE}$$

$$\widehat{BED} = \widehat{BFD}$$

Therefore; the angles of the quadrilateral *BFDE* are equals to the diamond and which is a diamond itself.

In a triangle ABC, we trace the median AM and BN and from N a parallel to BC, from C a parallel to BN; that the two sides intersect at a point P. Let D be the middle point of the segment PN.

Prove that *CD* is parallel to *MN*.

Solution

Since the points M & N are middle of the sides BC & AC of the triangle ABC, then MN # AB

Given: NP // MC BN // CP

Since M & D are the middle points of the segments BC and NP respectively, then $BN \parallel CP \parallel MD$

Therefore, BNPC is a parallelogram, and MC = ND.

Since MC = ND & MN = CD

Therefore; MCDC is a parallelogram which implies to CD parallel to MN

The median AD of a given triangle ABC to the side BC. The same the median BE to the side AD which intersect AC at a point F.

Prove that where $AF = \frac{1}{3}AC$

Solution

Let *DG* be parallel to segment *BEF*.

Given: E is the middle point of the segment $AD \implies AE = ED$

D is the middle point of the segment $BC \Rightarrow BD = DC$

Since $EF \parallel DG$, and AE = ED, that implies AF = FG

Consider the triangles CDG and CBF:

 $EF \parallel DG$, and CD = DB, that implies GC = FG

That will imply to: AF = FG = GC

AC = AF + FG + GC= 3AF

Therefore; $AF = \frac{1}{3}AC$

In a parallelogram *ABCD*, from the points peak *A* and *C* joint the middle of opposite sides at *M* and *N* respectively.

Prove that the diagonal BD is divided in three equal parts.

Solution

M is the middle point of the segment BC, then BM = CM N is the middle point of the segment AD, then NA = ND

From these, implies that AM // CN.

From the triangles BEM & BCF, and since $ME \parallel CF$ It will give us that BE = EF

From the triangles DFN & DEA, and since $AE \parallel FN$ It will give us that $\Rightarrow DF = EF$

Therefore, BE = EF = DF

$$BD = BE + EF + FD$$
$$= 3BE \mid$$

Therefore; the diagonal BD is divided in three equal parts

In a parallelogram *ABCD*, from the point peak *A*, extend to the middle of sides *BC* and *DC* at *M* and *N* respectively.

Prove that the diagonal *BD* is divided in three equal parts.

Solution

Let a point E be the intersection of the segments AM & BD. Let a point F be the intersection of the segments AN & BD.

Le O be the intersection of the both diagonal AC & BD. From the triangles BEM & BCF, and since $ME \parallel CF$

$$\Rightarrow BE = EF$$

Similar,
$$\Rightarrow DF = EF$$

$$BO = OF \rightarrow OE = OF$$

$$BO = BE + EO$$

$$=BE+\frac{1}{2}BE$$

$$=\frac{3}{2}BE$$

$$BE = \frac{2}{3}BO$$

$$=\frac{2}{3}\left(\frac{1}{2}BD\right)$$

$$=\frac{1}{3}BD$$

$$DF = \frac{2}{3}DO$$

$$=\frac{2}{3}\left(\frac{1}{2}BD\right)$$

$$=\frac{1}{3}BD$$

Therefore; the diagonal BD is divided in three equal parts

Consider a triangle ABC with a bisector AF of the angle A. by F, we lead FE parallel to AB, and by E we lead ED parallel to BC.

Prove that AE = BD

Solution

Given:
$$\widehat{EAF} = \widehat{FAB}$$

Since $FE /\!\!/ AB$, then

$$\widehat{FEC} = \widehat{BAE} = \widehat{2EAF}$$

$$\widehat{AEF} = 180^{\circ} - \widehat{FEC}$$
$$= 180^{\circ} - 2\widehat{EAF}$$

Consider the triangle *AEF*:

$$\widehat{EAF} + \widehat{EFA} + \widehat{AEF} = 180^{\circ}$$

$$\widehat{EAF} + \widehat{EFA} + 180^{\circ} - 2\widehat{EAF} = 180^{\circ}$$

$$\widehat{EFA} - \widehat{EAF} = 0^{\circ}$$

$$\widehat{EFA} = \widehat{EAF}$$

 \therefore Triangle *AEF* is isosceles

$$\Rightarrow AE = EF$$

Given $DE \parallel BF$ & $FE \parallel DB$

FEDB is a parallelogram;

Then, EF = DB = AE

Given an isosceles trapezoid ABCD (AD = BC) with diagonals AC and BD. The bisector of angles \widehat{DAB} and \widehat{DBA} intersect in F, and the bisector of angles \widehat{CBA} and \widehat{CAB} intersect in G. Demonstrate that FG is parallel to AB

Solution

Consider the 2 triangles ABD & ABC:

- Both has the *AB* as common
- AD = BC

That implies to:
$$\widehat{ABD} = \widehat{CAB}$$

Since BF is the bisector of the angle \widehat{ABD}

$$\widehat{ABF} = \widehat{FBD}$$

$$\Rightarrow \widehat{ABF} = \frac{1}{2}\widehat{ABD}$$

$$= \frac{1}{2}\widehat{CAB}$$

$$= \frac{1}{2}(2\widehat{BAG})$$

$$= \widehat{BAG}$$

$$\widehat{ABF} = \widehat{BAG}$$

From the 2 triangles AFB & AGB

- Both has the AB as common
- $\bullet \quad \widehat{ABF} = \widehat{BAG}$

FG // AB

Let *M* and *N* be the middle points of the bases *AB* and *CD* of a trapezoid *ABCD*. Let *P* and *Q* be the middle points of the diagonals *AC* and *BD* respectively.

Demonstrate that the angles \widehat{M} and \widehat{N} of quadrilateral MNPQ are equals to the angle formed by extending the sides not parallel to BC and AD, where intersect at point E.

Solution

Since N is the mid-point of the side DC, and P is the mid-point of the side AC, then

$$\Rightarrow$$
 NP // AD

Since M is the mid-point of the side AB, and Q is the mid-point of the side DB, then

$$\Rightarrow QM \# AD$$

$$\therefore$$
 NP // QM // AE

Since N is the mid-point of the side DC, and Q is the mid-point of the side DB, then

$$\Rightarrow NQ /\!\!/ CB$$

Since M is the mid-point of the side AB, and P is the mid-point of the side AC, then

$$\Rightarrow MP /\!\!/ CB$$

$$\rightarrow \begin{cases} NP // QM \\ NQ // PM \end{cases}$$

$$\therefore \widehat{PMQ} = \widehat{PNQ}$$

In a triangle *ABC*, the medians segment *BM* and *CN* intersect in right angles and the measurement are 3 and 6 units respectively.

- **1.** Construct a geometrical to the triangle *ABC*.
- 2. In the trace of third median AP which leads MN extension such the distance MD = MN, which lead to the segments AD and PD. Calculate AD and DP.
- **3.** What is the natural of the triangle *APD*?

Solution

1. Since M and N are the middle point of the sides AC & AB, then

$$BG = \frac{2}{3}BM$$

$$= \frac{2}{3}(3)$$

$$= 2 \quad units$$

Similar,

$$CG = \frac{2}{3}CN$$

$$= \frac{2}{3}(6)$$

$$= 4 \quad units$$

Wish, we lead to: GM = 1 & GN = 2

We can construct 2 perpendicular lines intersect at a point G, then we use to measure the distance from the point G to get the points B, C, M, & N.

By extending the segment BN and CM with equal distance and which it will intersect at point A.

2. Since ND // BC & MD = MN

The parallelogram BPDM, BP = MD = MN

Then
$$PD = MB = 3$$
 units

AD // CN and M is the intersection of the diagonals of the parallelogram ADCN, then

$$AD = CN = 6$$
 units

3. $PD \parallel BN$ & $MB \perp CN$, then $PD \perp CN$

$$AD \parallel CN$$
 & $PD \perp CN$, then $AD \perp PD$

Therefore; the triangle ADP is right triangle at point D.

Inside the triangle ABC, the median AD, BE, and CF intersect at a point O. We take M the middle point of the segment OA, N the middle point of segment OB.

Show that *DEMN* is a parallelogram.

Solution

DE & MN are parallel to *AB* and equals to $\frac{1}{2}|AB|$

That implies to $ME \parallel DN$.

Therefore; *DEMN* is a parallelogram

Inside the triangle ABC, the median AD, BE, and CF intersect at a point O. From the point F, draw FG parallel to AD and are equals, then joint A to G.

Show that CG = BE.

Solution

Given: $FG \parallel AD$ & FG = AD

Then, the quadrilateral AFGD is a parallelogram which it results to $DG \parallel AF - \& DG = AF$.

$$\rightarrow$$
 DG $/\!\!/$ BF

Since F is the mid-point of the side AB, then AF = DG = FB.

Then, the quadrilateral *BFDG* is a parallelogram which it results to $FD \parallel BG - \& DF = GB$.

So,
$$FD \parallel BG \parallel CE$$

Given that D & F are midpoints, then $DF = \frac{1}{2}AC = CE$

And $CE \parallel BG \& DF = CE$, then BGCE is a parallelogram.

Therefore, CG = BE

The height of a triangle *ABC* (each of the three lines passing through a vertex of the triangle and perpendicular to the opposite side to this vertex) are *AN*, *BP*, *CM*.

From P, let PH perpendicular to BC, same from N, let NG perpendicular to AC. Show that GH is parallel to AB.

Solution

Let the point *O* be the middle of the segment *AB*. Then *O* is the center of the 2 triangles *ANB* & *APB*.

The triangle *OBN* is isosceles, implies to $\widehat{ONB} = \widehat{OBN}$ The triangle *OPA* is isosceles, implies to $\widehat{OPA} = \widehat{OAP}$

$$\widehat{PON} = 180^{\circ} - \left(\widehat{NOB} + \widehat{POA}\right)$$
$$= 180^{\circ} - \left(180^{\circ} - 2\widehat{NBO} + 180^{\circ} - 2\widehat{OAP}\right)$$
$$= 2\widehat{B} + 2\widehat{A} - 180^{\circ}$$

Consider the triangle PON with OP = ON, then

$$\widehat{OPN} = \widehat{ONP}$$

$$\widehat{OPN} = \frac{1}{2} \Big(180^{\circ} - \widehat{PON} \Big)$$

$$= \frac{1}{2} \Big(180^{\circ} - 2\widehat{B} - 2\widehat{A} + 180^{\circ} \Big)$$

$$= 180^{\circ} - \widehat{B} - \widehat{A}$$

$$\widehat{APN} = \widehat{APO} + \widehat{OPN}$$

$$= \widehat{A} + 180^{\circ} - \widehat{B} - \widehat{A}$$

$$= 180^{\circ} - \widehat{B}$$

$$\widehat{CPN} = 180^{\circ} - \widehat{APN}$$

$$= 180^{\circ} - 180^{\circ} + \widehat{B}$$

$$=\hat{B}$$

From the 2 right triangles CHP & CGN

$$\widehat{HPC} = \widehat{GNC}$$

$$\widehat{GHN} = 180^{\circ} - \widehat{HGN} - \widehat{HNG}$$

$$= 180^{\circ} - \widehat{HGN} - \widehat{CPH}$$

$$180^{\circ} - \widehat{GHC} = 180^{\circ} - \widehat{HGN} - \widehat{CPH}$$

$$\widehat{GHC} = \widehat{HGN} + \widehat{CPH}$$

Let Q be the middle point of the segment PN.

Since *PGN* & *PHN* are right triangle with the same hypothesis.

Then, the triangles HQN & GQN are isosceles.

Then, the triangles
$$HQN & GQN$$
 are iso
$$\widehat{H} = \widehat{N} & & \widehat{G} = \widehat{P}$$

$$\widehat{GQH} = 180^{\circ} - \left(180^{\circ} - 2\widehat{P} + 180^{\circ} - 2\widehat{N}\right)$$

$$= 2\widehat{P} + 2\widehat{N} - 180^{\circ}$$
Since $QG = QH \implies \widehat{QGH} = \widehat{QHG}$

$$\widehat{QGH} = \frac{1}{2}\left(180^{\circ} - \widehat{GQH}\right)$$

$$= \frac{1}{2}\left(180^{\circ} - 2\widehat{P} - 2\widehat{N} + 180^{\circ}\right)$$

$$= 180^{\circ} - \widehat{P} - \widehat{N}$$

$$\widehat{HGN} = \widehat{QGH} - \widehat{QGN}$$

$$= 180^{\circ} - \widehat{P} - \widehat{N} - 90^{\circ} + \widehat{QGP}$$

$$= 90^{\circ} - \widehat{P} - \widehat{N} + \widehat{P}$$

$$= 90^{\circ} - \widehat{N}$$

$$= \widehat{NPH}$$

$$\widehat{CHG} = \widehat{HGN} + \widehat{CPH}$$

$$= \widehat{NPGC}$$

$$= \widehat{B} \mid$$

From the top of a triangle, we lead the external bisectors of angles such that formed an outside triangle such that the top of the first are the feet of the second heights.

Solution

Let the triangle *DEF* where *DA*, *BE*, and *FC* are heights (perpendicular to sides).

Let the point M be the middle points of the same hypothenuse of the 2 right triangles FAD & FCD. Then, the 2 triangles inscribed the same circle with the center at point M.

$$MF = MA = MC = MD$$

$$\widehat{MFA} = \widehat{MAF}$$
 & $\widehat{MCD} = \widehat{MDC}$

Therefore, the triangle *AMC* is isosceles.

$$MA = MC$$
 & $\widehat{MAC} = \widehat{ACM}$

$$\widehat{AMC} = 180^{\circ} - \left(\widehat{FMA} + \widehat{CMD}\right)$$
$$= 180^{\circ} - \left(180^{\circ} - 2\widehat{F} + 180^{\circ} - 2\widehat{D}\right)$$
$$= 2\widehat{F} + 2\widehat{D} - 180^{\circ}$$

$$\widehat{ACM} = \frac{1}{2} \left(180^{\circ} - \widehat{AMC} \right)$$
$$= \frac{1}{2} \left(180^{\circ} + 180^{\circ} - 2\widehat{F} - 2\widehat{D} \right)$$
$$= 180^{\circ} - \widehat{F} - \widehat{D}$$

$$\widehat{DCA} = \widehat{DCM} + \widehat{MCA}$$
$$= \widehat{D} + 180^{\circ} - \widehat{F} - \widehat{D}$$

$$180^{\circ} - \widehat{ACE} = 180^{\circ} - \widehat{F}$$

$$\widehat{ACE} = \widehat{F}$$

Let the point N be the middle points of the same hypothenuse of the 2 right triangles FCE & FBE.

Then, the 2 triangles inscribed the same circle with the center at point *N*.

$$NF = NB = NC = NE$$

$$\widehat{NBF} = \widehat{BFN}$$
 & $\widehat{NEC} = \widehat{NCE}$

Therefore, the triangle *NBC* is isosceles.

$$MA = MC$$
 & $\widehat{MAC} = \widehat{ACM}$

$$\widehat{BNC} = 180^{\circ} - \left(\widehat{FNB} + \widehat{CNE}\right)$$
$$= 180^{\circ} - \left(180^{\circ} - 2\widehat{F} + 180^{\circ} - 2\widehat{E}\right)$$
$$= 2\widehat{F} + 2\widehat{E} - 180^{\circ}$$

$$\widehat{BCN} = \frac{1}{2} \left(180^{\circ} - \widehat{BNC} \right)$$
$$= \frac{1}{2} \left(180^{\circ} + 180^{\circ} - 2\widehat{F} - 2\widehat{E} \right)$$
$$= 180^{\circ} - \widehat{F} - \widehat{E}$$

$$\widehat{BCE} = \widehat{BCN} + \widehat{NCE}$$
$$= \widehat{E} + 180^{\circ} - \widehat{F} - \widehat{E}$$

$$180^{\circ} - \widehat{BCD} = 180^{\circ} - \widehat{F}$$

$$\widehat{BCD} = \widehat{F}$$

Then,
$$\widehat{ACE} = \widehat{F} = \widehat{BCD}$$

$$\widehat{MAC} = \frac{1}{2} \left(180^{\circ} - \widehat{AMC} \right)$$
$$= \frac{1}{2} \left(180^{\circ} + 180^{\circ} - 2\widehat{F} - 2\widehat{D} \right)$$
$$= 180^{\circ} - \widehat{F} - \widehat{D}$$

$$\widehat{FAC} = \widehat{FAM} + \widehat{MAC}$$
$$= \widehat{F} + 180 - \widehat{F} - \widehat{D}$$
$$180^{\circ} - \widehat{CAE} = 180^{\circ} - \widehat{D}$$

$$\widehat{CAE} = \widehat{D}$$

Let the point *P* be the middle points of the same hypothenuse of the 2 right triangles *DAE* & *BDE*. Then, the 2 triangles inscribed the same circle with the center at point *P*.

$$PE = PA = PB = PD$$

 $\widehat{PAE} = \widehat{PAE}$ & $\widehat{PBD} = \widehat{PDB}$

Therefore, the triangle *APB* is isosceles.

$$PA = PB$$
 & $\widehat{PAB} = \widehat{PBA}$

$$\widehat{APB} = 180^{\circ} - \left(\widehat{DPB} + \widehat{APE}\right)$$
$$= 180^{\circ} - \left(180^{\circ} - 2\widehat{D} + 180^{\circ} - 2\widehat{E}\right)$$
$$= 2\widehat{D} + 2\widehat{E} - 180^{\circ} \mid$$

$$\widehat{PAB} = \frac{1}{2} \left(180^{\circ} - \widehat{APB} \right)$$
$$= \frac{1}{2} \left(180^{\circ} + 180^{\circ} - 2\widehat{D} - 2\widehat{E} \right)$$
$$= 180^{\circ} - \widehat{D} - \widehat{E}$$

$$\widehat{BAE} = \widehat{PAE} + \widehat{PAB}$$
$$= \widehat{E} + 180^{\circ} - \widehat{D} - \widehat{E}$$
$$180^{\circ} - \widehat{FAB} = 180^{\circ} - \widehat{D}$$

$$\widehat{FAB} = \widehat{D}$$

Then, $\widehat{FAB} = \widehat{D} = \widehat{CAE}$

$$\widehat{NBC} = \frac{1}{2} \left(180^{\circ} - \widehat{BNC} \right)$$
$$= \frac{1}{2} \left(180^{\circ} + 180^{\circ} - 2\widehat{F} - 2\widehat{E} \right)$$
$$= 180^{\circ} - \widehat{F} - \widehat{E}$$

$$\widehat{CBF} = \widehat{CBN} + \widehat{NBF}$$

$$= 180^{\circ} - \widehat{F} - \widehat{E} + \widehat{F}$$

$$180^{\circ} - \widehat{CBD} = 180^{\circ} - \widehat{E}$$

$$\widehat{CBD} = \widehat{E}$$

$$\widehat{PBA} = \frac{1}{2} \left(180^{\circ} - \widehat{APB} \right)$$
$$= \frac{1}{2} \left(180^{\circ} + 180^{\circ} - 2\widehat{D} - 2\widehat{E} \right)$$
$$= 180^{\circ} - \widehat{D} - \widehat{E} \mid$$

$$\widehat{ABD} = \widehat{DBP} + \widehat{PBA}$$
$$= \widehat{D} + 180^{\circ} - \widehat{D} - \widehat{E}$$

$$180^{\circ} - \widehat{ABF} = 180^{\circ} - \widehat{E}$$

$$\widehat{ABF} = \widehat{E}$$

Then,
$$\widehat{CBD} = \widehat{E} = \widehat{ABF}$$

Therefore; BE is the interior bisector of \widehat{ABC} and DBF is the exterior bisector.

Consider a point O on a vertical line ℓ , a point M outside the line ℓ . We take the symmetries M_1 and M_2 from M across the line ℓ and the point O, respectively.

Demonstrate that the points M_1 and M_2 are symmetries with regard to a line perpendicular to the line ℓ_1 passing through the point O.

Solution

Since M_1 is the symmetry of M across the line ℓ , let B the middle point of the segment MM_1 .

That implies to: $BM = BM_1$.

Similarly, the point O is the middle point of the segment MM_2 .

That implies to: $OM = OM_2$.

Let A be the point intersection of the segment M_1M_2 and line ℓ_1 .

Since $MM_1 \perp \ell$ and $\ell \perp \ell_1 \Rightarrow MM_1 // \ell_1$

From the right triangle MM_1M_2 Since O is the middle of MM_2 and $OA \perp MM_1$.

Therefore, the point A the middle point of the segment M_1M_2

In a quadrilateral ABCD (Kite), the sides AB = AD, $\angle A = 135^{\circ}$ and $\angle B = \angle D = 90^{\circ}$.

- 1. Prove the symmetry in the figure and prove that the middles of the sides are the top of rectangle.
- **2.** Prove there exists an interior of the given quadrilateral a point equidistant of 4 sides; determine these points.
- **3.** On the same exterior bisector of angles A, B, C, D; they formed a quadrilateral

Solution