評卷參考

本文件專爲閱卷員而設,其內容不應視爲標準答案。考生以及沒有參與評卷工作的教師在詮釋本文件時應小心謹慎。

卷一

甲部

題 號 第 一 部 分	答案	題 號 第 二 部 分	答案
1.	D (71%)	25.	A (69%)
2.	D (54%)	26.	D (88%)
3.	A (78%)	27.	A (60%)
4.	C (71%)	28.	D (47%)
5.	C (82%)	29.	D (79%)
6.	B (74%)	30.	A (71%)
7.	A (56%)	31.	A (81%)
8.	C (94%)	32.	A (66%)
9.	D (81%)	33.	B (65%)
10.	C (88%)	34.	D (58%)
11.	B (61%)	35.	C (60%)
12.	A (84%)	36.	C (62%)
13.	B (60%)		
14.	B (83%)		
15.	D (63%)		
16.	B (64%)		
17.	B (50%)		
18.	C (77%)		
19.	D (59%)		
20.	A (71%)		
21.	A (69%)		
22.	C (84%)		
23.	C (49%)		
24.	B (61%)		

註: 括號內數字爲答對百分率。

乙部

第一部分

		<u>分數</u>
1.	1. (a) 質子數目相同但中子數目不同的原子 / 原子序數相同但質量	數不同的原子 1
	(b) 20 x 0.9048 + 21 x 0.0027 + 22 x 0.0925 = 20.19	1 1
	(c) 填充霓虹管/氖管/彩色的光管招牌/霓虹燈的氣體	. 1
	(d) 氖是單原子的,然而氧是雙原子的。與 Ne 分子相比, O ₂ 分所以 O ₂ 分子間的范德華力 / 分子間作用力較強。	子的體積較大。 1 1
2.	一、一、公、文、作、在门文件,然及所	1
	(ii) 這過程可把巨大的碳氫化合物變成小分子,以達致工業的	7需求。 1
	(b) O $ \begin{array}{c c} H & O & C \\ \hline C & C & \\ H & H & \end{array} $	
	(c) (i) O U CH ₃ CH ₂ -O CH ₃	1
	(ii) 溴的試驗 - 乙酸乙烯酯能立即令橙色的溴溶液褪色,但乙酸化高錳酸鉀溶液的試驗 - 乙酸乙烯酯能令紫色的酸化色,但乙酸乙酯卻不能。	之酸乙酯卻不能。/ 2 比高錳酸鉀溶液褪
3.	. (a) 提供 H ⁺ /離子/作爲化學電池的電解質。	1
	(b) 銅、金屬 Y、金屬 X	1
	(c) (i) $X \to X^{2+} + 2e^{-}$	1
	(ii) $2H^+ + 2e^- \rightarrow H_2$	1
	(d) 不是。金屬條 Y 會是負極。因爲在電化序中銀的位置較銅的類 化序的位置必然較 Y 的爲低。	爲低,因此銀在電 1

1

1

1

1

3

1

1

4.

氟 / F 是電負性極高的元素。 H-F共價鍵的極性極強。 / HF 分子的極性很高。

- 5. (a) 當把鐵棒浸在硫酸銅(II) 溶液時,置換反應發生。/ 一些銅(II) 離子被還原爲銅金屬,並澱積在鐵棒表面上。 $Cu^{2+}(aq) + Fe(s) \rightarrow Cu(s) + Fe^{2+}(aq) / CuSO_4(aq) + Fe(s) \rightarrow Cu(s) + FeSO_4(aq)$
 - (b) (i) 銅在電化序中的位置低於氫。/ 當電流通過時, Cu^{2+} 較 H^{+} 優先放電。 1

(c)

- 6. 把硝酸鉛(II) 固體溶於水。
 - 然後與過量硫酸 / K₂SO₄ / Na₂SO₄ 溶液混合。
 - 過濾混合物以取得固體殘餘物 (PbSO₄) ,用去離子水把它沖洗,然後置於烘箱 內烘乾。
 - 傅意技能分數

		<u>分數</u>
7.	(a) $NH_4^+ + OH^- \rightarrow NH_3 + H_2O$. 1
	(b) KOH 具高腐蝕性。 / NH₄NO₃ 具爆炸性。 / HCl 具腐蝕性。	1
	(c) 由於 NH ₃ (g) 溶解度甚大,故防止它倒吸。	1
	(d) (i) 移液管	1
	(ii) 由紅色變橙色。	1
	(iii) 留在燒杯中 HCl(aq) 的摩爾數 :	3
	(c) 燄色試驗 - 得到淡紫色火燄。	1
8.	(a) 生成的 CO ₂ 氣體令麪包升高 / 鬆軟。	1
	(b) $2KHCO_3 \rightarrow K_2CO_3 + H_2O + CO_2$	1
	(c) (i) $q = 27.5 \times 4.3 \times (25.8 - 20.2) = 662.2 \text{ J}$ $\Delta H = +662.2 \times 10^{-3} \div (3.39 / 100.1) = +19.6 \text{ kJ mol}^{-1}$	2
	(ii) $\Delta H = 19.6 - (-49.1 \text{ k/2})$ = +44.15 kJ mol ⁻¹	2
	(d) (i) $\Delta H = \frac{1}{2} (-1146 - 394 - 286 - (-959x2)) = +46 \text{ kJ mol}^{-1}$	1
	(ii) 該實驗並非在標準狀態下進行。/ 與周圍環境有熱交換。/ 杯子的熱容被忽略了。	1
9. (a) 在生銹的鐵釘附近會呈現藍色。	1
(鐵釘B及鐵釘C均不會生銹。 鐵釘B:在金屬活潑序中,鎂的位置高於鐵。鎂帶藉犧牲性保護作用令鐵釘B不生銹。 鐵釘C:因爲鐵釘C被油脂密封,它不能與空氣(氧)及水接觸,所以不會生銹。 	3

10. (任何以下三項)

3

- 在汽車安裝催化轉化器。
- 使用無鉛汽油。
- 以 LPG / 石油氣代替柴油爲汽車燃料。/ 使用 LPG 作汽車 / 小巴 / 巴士 / 計 程車燃料。
- 在發電廠安裝滌氣器。
- 使用超低硫柴油。
- 使用靜電沉積器 / 靜電除塵器。

第二部分

- 11. (a) 初速 = $60/4 = 15 \text{ cm}^3/\text{min}$
 - (b) HCl 是一元酸,而 H_2SO_4 是二元酸,使用 H_2SO_4 令初速增加。/ 當使用 2.0~M $1~H_2SO_4$, H^+ 濃度上升令初速增加。
 - (c) Zn 的摩爾數 = 2/65.4 = 0.0306 mol 生成 H₂ 的體積 = 0.0306 × 24000 = 734 cm³
- 12. (a) H
 C=C
 H
 C
 H
 - (b) 內桂醛是一非極性的化合物。它能溶於極性甚低的有機溶劑,例如乙酸乙酯。 然而,水是極性溶劑。/ 內桂醛與乙酸乙酯均是極性較低的化合物,它們的分子能以弱的分子間作用互 相吸引著。

12. (d)
$$CH$$
=CHCHO H_2/Ni 或 Pt $CH_2CH_2CH_2OH$ 1 $CH_2CH_2CH_2OH$ 1 $K_2Cr_2O_7/H^+$ 加熱

3

1

1

1

13. (a) 混合後的起始[Fe³⁺ (aq)] = 0.010 × 2 × 1/2 = 0.01 M 混合後的起始[SCN⁻ (aq)] = 0.010 × 1/2 = 0.005 M

> $Fe^{3+}(aq) + SCN^{-}(aq) \rightleftharpoons Fe(SCN)^{2+}(aq)$ 0.01 0.005

型始時: 0.01 0.005 平衡時: 0.01-0.0043 0.005-0.0043

= 0.0057 = 0.0007 $K_c = [Fe(SCN)^{2+} (aq)] / [Fe^{3+} (aq)][SCN^{-} (aq)]$ $= 0.0043 / 0.0057 \times 0.0007$ $= 1078 \text{ mol}^{-1} \text{ dm}^{3}$

(b) 平衡位置向左方 / 反應物方移動。

14. (a) (i) $H_{2}C - O - C - C_{17}H_{33}$ $H_{2}C - O - C - C_{17}H_{35}$ $H_{2}C - O - C - C_{17}H_{35}$ $H_{2}C - O - C - C_{17}H_{35}$ $H_{2}C - O - C - C_{17}H_{35}$

- (ii) 涉及。X 帶有一個手性碳原子,所以具旋光性。然而 Y 卻沒有手性碳原子, 故不具旋光性。因此在這轉化中,旋光性有所改變。
- (b) C₁₇H₃₅COO⁻ 離子帶離子頭部 (COO⁻) 及碳鏈尾部 (C₁₇H₃₅)。 • 碳鏈尾部溶粉油溶 / 目落点 (COO⁻) 及碳鏈尾部 (C₁₇H₃₅)。
 - 碳鏈尾部溶於油滴/具疏水性,而離子頭部溶於水/具親水性。因油滴上的離子頭部互相排斥,遂能把油滴內的污垢去除。便音能力

但在其他共價氧化物中,個別的分子靠弱的范德華力/弱的分子間力/弱的偶

(c) $Al_2O_3 + 2OH^- + 3H_2O \rightarrow 2Al(OH)_4^- / Al_2O_3 + 2NaOH + 3H_2O \rightarrow 2NaAl(OH)_4$

極間相互作用吸引。

1

1

1

				<u>分數</u>
۱.	(a)	(i)	(1) 細碎的鐵/氧化鐵	1
			(2) 它能令反應循另一個活化能較低/較高的歷程而加快/減慢速率。	2
		(ii)	蒸氣-天然氣重整 $CH_4(g) + H_2O(g) \rightleftharpoons 3H_2(g) + CO(g) $	1
		(iii)) 高溫可以令反應速率加快。 考慮機械的設計與安全因而未能使用較高的壓強。	1 1
		(iv)	反應需要很長的時間方可達致平衡以得到最大收獲率的 NH₃(g)。增加每時間單位內產生 NH₃(g) 的數量。	1 1
	(b)	(i)	甲醇是重要的單碳化合物,是用來製造多碳有機化合物的起始物。	1
		(ii)	$CO(g) + 2H_2(g) \Rightarrow CH_3OH(g)$ (b) (1) $\frac{d}{dt} = \frac{d}{dt} = d$	1
			催化劑: Cu / ZnO / Al ₂ O ₃ 溫度: 200 – 300 ℃ 壓強: 50 – 100 atm	2
		(iii)	在大氣壓強及高溫下,使用金屬氧化物作催化劑,把甲烷直接轉化爲甲醇。轉化使用了催化劑。或 利用微生物反應使甲烷氧化爲甲醇。反應的能源效率較高。或 把生物量轉化爲合成氣/沼氣來生產甲醇。轉化過程使用了可再生物料。 或 把煙氣中的二氧化碳轉化爲甲醇。轉化過程可減少釋放到大氣中的二氧化 碳。	2
((c)	(i)	由於已知各反應物的起始濃度,因而使用初速。	1
		(ii)	比較實驗 2 及 3 ,讓 $[H_2]$ 維持不變但 $[NO]$ 減半,速率變爲原來的 $1/4$,故反應對 $[NO]$ 是二級。	1
			比較實驗 1 及 2 ,讓 [NO] 維持不變但 $[H_2]$ 擴大 2 倍,速率亦擴大 2 倍,故反應對 $[H_2]$ 是一級。	1
		(iii)	速率 = k[NO] ² [H ₂]	1
			從實驗 1 的數據: $1.20 \times 10^{-6} = k \times [2.50 \times 10^{-2}]^2 \times [5.00 \times 10^{-3}]$ $\therefore k = 0.384 \text{ dm}^6 \text{ mol}^{-2} \text{ s}^{-1}$	1

1

1

2. (a) (i) (1)

$$H_2N$$
 NH_2 1

(2) 縮合聚合

1

- (ii) (1) HOOC-(CH₂)₄--COOH
 - (2) 反應 (1) 所用的過氧化氫的腐蝕性 / 危險性較反應 (2) 所用的濃硝酸為低。
 - 反應 (1) 的副產物 H_2O 較反應 (2) 的副產物 N_2O 的危害性爲低 / 對環境無害。
 - 在反應(1)使用了催化劑,但反應(2)沒有。
 - (3) 兩個反應所使用的原料均來自不能再生的資源。 1
- (iii) 與尼龍-6,6 相比, 凱庫勒是強度較大的物料, 因爲在凱庫勒分子中的 苯基令它有剛性結構。
 - 相鄰聚合分子苯基間的芳香堆積作用令到凱庫勒有比預期高的機械強度。
- (b) (i) 名稱:硫化

目的:令物料具高強度及具彈性/柔韌。

原理:硫與聚合物鏈上某些 C=C 鍵反應,遂在聚合物鏈間形成 S-S 交鍵。

(ii) 物料中的 C=C 鍵發生加溴反應。 溴化的聚合物分子內的結構較弱,從而使機械性質改變。

(c) (i) (1)

可

或

(2) 原子數目

$$=1+8\times\frac{1}{8}=2$$

- (ii) 碳和鉻/鎳/錳 ● 碳原子的體積與鐵原子的體積並不相同,加入了碳的鐵會變得更硬。
 - 在鐵中加入了鉻後會令鐵變得抗腐蝕性。

				分數
3.	(a)	(i)	羥基 醛基	1
		(ii)	(1) 測試醛基或酮基	1
			(2) 2,4-二硝基苯肼與醛或酮反應生成黃色或紅色沉澱。	1
		(iii)	羥基	1
		(iv)	$m/z = 91$ 表示存在 $C_7H_7^+$ 離子。 $m/z = 108$ 表示存 $C_7H_8O^+$ 離子。	1 1
		(v)	OH 或 CH ₂	1
	(b)	(i)	燃燒含氯的物料	1
		(ii)	二噁英是致癌 / 引致癌症。	1
		(iii)	氣相色層分析-質譜法 與使用重量分析及容量分析相比,該方法更能準確地量度低濃度的二噁 英。	1
	(c)	(i)	AgNO ₃ (aq) 和 NH ₃ (aq)	2
		(ii)	步驟 1:把過量 AgNO ₃ (aq) 加進溶液,生成 AgCl(s) 及 AgI(s)。 步驟 2:將混合物過濾,以去離子水清洗,並弄乾殘餘物。 步驟 3:測定所得 AgCl(s) 和 AgI(s) 的總質量。 步驟 4:利用過量氨水沖洗固體殘餘物以溶解 AgCl(s)。過濾及弄乾殘餘物,測定剩下的 AgI(s) 的質量。	1 1 1 1
		(iii)	 把從步驟 3 所測得的 AgCl(s) 和 AgI(s) 的總質量減去從步驟 4 所測得的 AgI(s) 質量,可求得 AgCl(s) 的質量。 分別把它們的質量除以其摩爾質量,便可求得 AgCl 及 AgI 的摩爾數,從而求得 Cl⁻(aq) 對 Г(aq) 的壓爾比。 	1