Sunday, October 31, 2021 11:33 PM

(i) $2xy\left(\frac{xs}{r} + y\log s\right)$

(iii) $2xy\left(\frac{ys}{r} + x\log s\right)$

1. If
$$f = x^2 + y^2$$
, $x = r + 3s$, $y = 2r - s$, then $\frac{\partial f}{\partial r}$ is

(i). $4x + 2y$
(ii) $2x + y$
(iii) $2x + y$
(iii) $2x + 4y$
(iv) $x + 4y$ Ans. (iii)

2. If $f = x + 4y$, $x = 2s + t$, $y = s + 2t$, then $\frac{\partial f}{\partial t}$ is

(i) 9
(ii) 8
(iii) 7
(iv) -7
Ans. (i)

3. If $z = xy$, $x = e^r \cos \theta$, $y = e^{\theta} \sin r$, then $\frac{\partial z}{\partial r}$ is

(i) $xy - x = e^{\theta} \cos r$
(ii) $xy + x = e^{\theta} \cos r$
(iii) $xy + x = e^{\theta} \cos r$
(iv) $xy + y = e^{\theta} \cos r$
(iv) $xy + y = e^{\theta} \cos r$
Ans. (ii)

4. If $z = x^2 + y^2$ and $z = r + t$, $z = r^2 + r^2$, then $z = r^2$
(iv) $z = x + y$, $z = e^{r \cos \theta}$, $z = e^{r \sin \theta}$, then $z = r^2$
(ii) $z = x + y$, $z = e^{r \cos \theta} - \sin \theta = e^{r \sin \theta}$
(iii) $z = x + y$, $z = e^{r \cos \theta} - \sin \theta = e^{r \sin \theta}$
(iv) $z = x + y$ and $z = x + z$ (iv) $z = x + z$ (iv) $z = x + z$ (iv) $z = x + z$ Ans. (iv)

5. If $z = x + y$, $z = e^{r \cos \theta} - \sin \theta = e^{r \sin \theta}$ (iii) $z = x + z$ (iv) $z = x +$

(ii) $2 xy (ys + x \log s)$

(iv) $2xy\left(\frac{ys}{r} - x\log s\right)$

Ans. (iii)

13. If $z = x^2 y^2$, x = t and y = 2 t then $\frac{\partial z}{\partial t}$ is equal to

(i)
$$2 xy (2x - y)$$

(iii) $2 xy (x + 2y)$

(ii)
$$xy (2x + y)$$

(iv) $2 xy (2x + y)$

Ans. (it)

14. If $z = x^3y^3$ then $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2}$ is equal to (i) $6xy(x^2 + y^2)$ (ii) 6xy(x + y)

$$\frac{\partial^2 - xy^2}{\partial x^2} \frac{\partial x^2}{\partial x^2} \frac{\partial y^2}{\partial y^2}$$

(iii)
$$6xy(x-y)$$

(iii)
$$6xy(x-y)$$
 (iv) $xy(x^2+y^2)$ Ans. (i)

15. If $z = \sqrt{xy}$ then $\frac{\partial^2 z}{\partial x \partial y}$ is equal to

(i)
$$4z$$
 (ii) $\frac{1}{4z}$ (iii) $\frac{z}{4}$

$$(iv) \frac{4}{}$$
 Ans

16. If $u = x^2 + y^2 + z^2$, $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$ and $z = r \cos \theta$ then $\frac{\partial u}{\partial r}$ is equal to

(i) r (ii) 2r (iii) r^2 (iv) $2r^2$ 17. If $y = e^x + \sin x$, then $\frac{d^2y}{dx^2}$ is equal to .

(i) $e^x + \sin x$ (ii) $e^x - \sin x$ (iii) $e^x - \cos x$ (iv) ?

(i)
$$e^x + \sin x$$

(ii)
$$e^x - \sin x$$

18. If $y = \tan x + \sec x$ then $\frac{d^2y}{dx^2}$ is equal to

(i)
$$\sec x (\tan^2 x + \sec^2 x)$$

(ii)
$$\sec x (\sec x \tan x + \tan^2 x \sec^2 x)$$

(iii)
$$\sec x$$
 (2 $\sec x \tan x + \tan^2 x + \sec^2 x$)

(i)
$$\sec x (\tan^2 x + \sec^2 x)$$
 (ii) $\sec x (\sec x \tan x + \tan^2 x \sec^2 x)$ (iii) $\sec x (2 \sec x \tan x + \tan^2 x + \sec^2 x)$ (iv) $2 \sec x \tan x + \tan^2 x + \sec^2 x$

20. If z = f(x, y) where $x = \phi(t)$, $y = \psi(t)$, then $\frac{dz}{dt}$ is equal to

(i)
$$\frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}$$

(ii)
$$\frac{\partial z}{\partial x} \frac{\partial x}{\partial t} - \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}$$

(iii)
$$\frac{\partial z}{\partial x} + \frac{\partial y}{\partial t} \frac{\partial z}{\partial y}$$

(iv)
$$\frac{dx}{dt} + \frac{\partial z}{\partial t} \frac{dx}{dt}$$

21. If f(x, y) = 0, then $\frac{dy}{dx}$ is equal to

$$(i) \ \frac{\frac{\partial y}{\partial f}}{\frac{\partial x}{\partial f}}$$

$$(ii) - \frac{\frac{\partial f}{\partial y}}{\frac{\partial f}{\partial x}}$$

$$(iii) - \frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}}$$

(iv)
$$\frac{\partial y}{\partial x} \cdot \frac{\partial f}{\partial y}$$
 Ans. (iii)

Differentiation of composite and Implicit functions

Composite function: Let Z=f(x,y) be a function of variables x and y and further x=f(t) and y=h(t).

Then Z is Called a composite function.

Total derivative-

$$\frac{\partial z}{\partial n} = \frac{\partial z}{\partial n} \frac{\partial n}{\partial n} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial y}$$

Total derivative formula.

General true total derivative of
$$z = tan^{2} \left(\frac{\alpha_{y}}{y} \right)$$

$$\frac{\partial z}{\partial x} = \frac{1}{1 + \left(\frac{\alpha_{y}}{y} \right)^{2}} = \frac{\partial}{\partial x} \left(\frac{\alpha_{y}}{y} \right), \quad \frac{\partial z}{\partial y} = \frac{1}{1 + \left(\frac{\alpha_{y}}{y} \right)^{2}} = \frac{\partial}{\partial y} \left(\frac{\alpha_{y}}{y} \right)$$

$$= \frac{y^{2}}{y^{2} + n^{2}} \cdot \left(\frac{1}{y} \right) \qquad = \frac{y^{2}}{y^{2} + n^{2}} \cdot \left(-\frac{\alpha_{y}}{y^{2}} \right)$$

$$= \frac{y}{y^{2} + n^{2}} \cdot \left(\frac{1}{y} \right) \qquad = \frac{y}{n^{2} + y^{2}} \qquad = \frac{y}{n^{2} + y^{2}} \qquad = \frac{y dn - x dy}{n^{2} + y^{2}} + \frac{y}{n^{2} + y^{2}} \qquad = \frac{y dn - x dy}{n^{2} + y^{2}} + \frac{y}{n^{2} + y^{2}} \qquad = \frac{y dn - x dy}{n^{2} + y^{2}} + \frac{y}{n^{2} + y^{2}} \qquad = \frac{y dn - x dy}{n^{2} + y^{2}} + \frac{y}{n^{2} + y^{2}} \qquad = \frac{y dn - x dy}{n^{2} + y^{2}} + \frac{y}{n^{2} + y^{2}} \qquad = \frac{y dn - x dy}{n^{2} + y^{2}} + \frac{y}{n^{2} + y^{2}} \qquad = \frac{y dn - x dy}{n^{2} + y^{2}} + \frac{y}{n^{2} + y^{2}} \qquad = \frac{y dn - x dy}{n^{2} + y^{2}} + \frac{y}{n^{2} + y^{2}} \qquad = \frac{y dn - x dy}{n^{2} + y^{2}} + \frac{y}{n^{2} + y^{2}} \qquad = \frac{y dn - x dy}{n^{2} + y^{2}} + \frac{y}{n^{2} + y^{2}} \qquad = \frac{y dn - x dy}{n^{2} + y^{2}} + \frac{y}{n^{2} + y^{2}} \qquad = \frac{y dn - x dy}{n^{2} + y^{2}} + \frac{y}{n^{2} + y^{2}} \qquad = \frac{y dn - x dy}{n^{2} + y^{2}} + \frac{y}{n^{2} + y^{2}} \qquad = \frac{y dn - x dy}{n^{2} + y^{2}} + \frac{y}{n^{2} + y^{2}} \qquad = \frac{y dn - x dy}{n^{2} + y^{2}} + \frac{y}{n^{2} + y^{2}} \qquad = \frac{y dn - x dy}{n^{2} + y^{2}} + \frac{y}{n^{2} + y^{2}} \qquad = \frac{y dn - x dy}{n^{2} + y^{2}} + \frac{y}{n^{2} + y^{2}} \qquad = \frac{y dn - x dy}{n^{2} + y^{2}} + \frac{y}{n^{2} + y^{2}} \qquad = \frac{y dn - x dy}{n^{2} + y^{2}} + \frac{y}{n^{2} + y^{2}} + \frac$$

$$dz = \frac{\partial z}{\partial n} dn + \frac{\partial z}{\partial y} dy = \frac{y}{n^2 + y^2} dn - \frac{x}{n^2 + y^2} = \frac{y dn - x dy}{n^2 + y^2} fug$$

$$\begin{cases}
7 = n^{2} + y^{2}, & x = \pi \cos \theta, & y = \pi \sin \theta
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial \theta} \\
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial \theta}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial \theta} \\
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial \theta}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial \theta} \\
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial \theta} \\
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial \theta} \\
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} / \frac{\partial z}{\partial x}
\end{cases}$$

$$\begin{cases}
\frac{\partial z}{\partial x} /$$

$$\frac{\partial z}{\partial \theta} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial \theta} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial \theta} = (\lambda_{x})(-r\sin\theta) + (\lambda_{y})(r\cos\theta)$$

$$= \lambda(r\cos\theta)(-r\sin\theta) + \lambda(r\sin\theta)(\cos\theta)$$

$$= \lambda r^{2} \left[-\cos\sin\theta + \sin\theta \cos\theta \right] = 0$$

Implicit function.

A relation of the form f(x,y)=c in which rank

y cannot be separated out. Is called implicit function

Relationship blu derivative and partial derivates.

Tranship to the derivative and partial derivates.

$$(x,y)=C$$

$$y \text{ is treated a function } x.$$

$$dx = \frac{\partial f}{\partial x} \cdot \frac{dx}{dx} + \frac{\partial f}{\partial y} \cdot \frac{dy}{dx}$$

$$0 = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \cdot \frac{dy}{dx}$$

$$-\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} \cdot \frac{dy}{dx}$$

$$\frac{dy}{dn} = -\frac{fn}{fy}$$

$$f(n,y) = c$$

$$f = an^{2} + 2hny + by^{2}$$

$$f_{n} = \frac{2ax + 2hy}{hx + by}$$

$$f_{y} = \frac{2hx + 2by}{hx + 2by}$$

$$f_{y} = \frac{2hx + 2by}{hx + 2by}$$

$$f_{y} = \frac{2hx + 2by}{hx + 2by}$$

$$\oint \text{ find } \frac{dy}{dn} \quad \text{if } n^3 + 3any + y^3 = C$$

$$\frac{dy}{dn} = -\frac{f_{x}}{fy} = -\frac{(3x^{2} + 3ay)}{(3y^{2} + 3ax)}$$

$$= -\frac{3(x^{2} + ay)}{5(y^{2} + ax)}$$

$$= -\frac{(x^{2} + ax)}{y^{2} + ax}$$
And
$$= -\frac{(x^{2} + ax)}{y^{2} + ax}$$

$$\frac{d^{2}y}{dn^{2}} = -\left[\frac{f_{nx}(fy)^{2} - 2f_{ny}f_{n}f_{y}}{(fy)^{3}} + f_{yy}(f_{n})^{2}\right]$$

$$f_{n} = b, \quad f_{y} = e, \quad f_{nn} = \pi, \quad f_{ny} = s, \quad f_{yy} = t$$

$$\frac{d^{2}y}{dn^{2}} = -\left[\frac{\pi e^{2} - 2sbe + tb^{2}}{e^{3}}\right] \frac{Aus}{e^{3}}$$