

27.10.2004

日本国特許庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日
Date of Application: 2003年11月 4日

出願番号
Application Number: 特願2003-374066

[ST. 10/C]: [JP2003-374066]

出願人
Applicant(s): 住友化学工業株式会社

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

2004年 9月16日

特許庁長官
Commissioner,
Japan Patent Office

小川洋

【書類名】 特許願
【整理番号】 P156430
【提出日】 平成15年11月 4日
【あて先】 特許庁長官殿
【国際特許分類】 C08F 4/642
【発明者】
【住所又は居所】 大阪市此花区春日出中3丁目1番98号 住友化学工業株式会社
内
【氏名】 今本 有香
【発明者】
【住所又は居所】 大阪市此花区春日出中3丁目1番98号 住友化学工業株式会社
内
【氏名】 花岡 秀典
【特許出願人】
【識別番号】 000002093
【氏名又は名称】 住友化学工業株式会社
【代理人】
【識別番号】 100093285
【弁理士】
【氏名又は名称】 久保山 隆
【電話番号】 06-6220-3405
【選任した代理人】
【識別番号】 100113000
【弁理士】
【氏名又は名称】 中山 亨
【電話番号】 06-6220-3405
【選任した代理人】
【識別番号】 100119471
【弁理士】
【氏名又は名称】 榎本 雅之
【電話番号】 06-6220-3405
【手数料の表示】
【予納台帳番号】 010238
【納付金額】 21,000円
【提出物件の目録】
【物件名】 特許請求の範囲 1
【物件名】 明細書 1
【物件名】 要約書 1
【包括委任状番号】 0212949

【書類名】特許請求の範囲

【請求項 1】

式 (1)

(1)

(式中、Mは元素の周期律表の第4族の元素を示し、Aは元素の周期律表の第15族の元素を示し、R¹、R²、R³、R⁴、R⁵、R⁶、R⁷、R⁸、R⁹およびR¹⁰は、同一または相異なり、水素原子、ハロゲン原子、置換されていてもよい炭素原子数1～10のアルキル基、置換されていてもよい炭素原子数7～20のアラルキル基、置換されていてもよい炭素原子数1～20のアリール基、置換されていてもよい炭素原子数6～20の炭化水素で置換されたシリル基、置換されていてもよい炭素原子数1～10のアルコキシ基、置換されていてもよい炭素原子数7～20のアラルキルオキシ基、置換されていてもよい炭素原子数6～20のアリールオキシ基または炭素原子数1～20の炭化水素で2置換されたアミノ基を示し、R¹¹およびR¹²は、同一または相異なり、水素原子、ハロゲン原子、置換されていてもよい炭素原子数1～10のアルキル基、置換されていてもよい炭素原子数6～20のアリール基、置換されていてもよい炭素原子数1～10のアルコキシ基、置換されていてもよい炭素原子数7～20のアラルキルオキシ基、置換されていてもよい炭素原子数6～20のアリールオキシ基または炭素原子数1～20の炭化水素で2置換されたアミノ基を示す。)で示される遷移金属錯体。

【請求項 2】

Aが、窒素原子である請求項1に記載の遷移金属錯体。

【請求項 3】

R¹¹およびR¹²が、同一または相異なり、置換されていてもよい炭素原子数1～10のアルキル基である請求項1または2に記載の遷移金属錯体。

【請求項 4】

Mがチタン原子またはジルコニウム原子である請求項1から3のいずれかに記載の遷移金属錯体。

【請求項 5】

式 (2)

(2)

(式中、A、R¹、R²、R³、R⁴、R⁵、R⁶、R⁷、R⁸、R⁹、R¹⁰、R¹¹およびR¹²は、同一または相異なり、水素原子、ハロゲン原子、置換されていてもよい炭素原子数1～10のアルキル基、置換されていてもよい炭素原子数7～20のアラルキル基、置換されていてもよい炭素原子数1～20のアリール基、置換されていてもよい炭素原子数6～20の炭化水素で置換されたシリル基、置換されていてもよい炭素原子数1～10のアルコキシ基、置換されていてもよい炭素原子数7～20のアラルキルオキシ基、置換されていてもよい炭素原子数6～20のアリールオキシ基または炭素原子数1～20の炭化水素で2置換されたアミノ基を示す。)出証特2004-3083757

およびR^{1 2}は、前記と同じ意味を表す。)

で示される置換フェノール。

【請求項6】

Aが、窒素原子である請求項5に記載の置換フェノール。

【請求項7】

R^{1 1}およびR^{1 2}が、同一または相異なり、置換されていてもよい炭素原子数1～10のアルキル基である請求項5または6に記載の置換フェノール。

【請求項8】

式(3)

(式中、A、R¹、R²、R³、R⁴、R⁵、R⁶、R⁷、R⁸、R⁹、R¹⁰、R¹¹およびR¹²は、前記と同じ意味を表し、R¹³は、置換されていてもよい炭素原子数1～10のアルキル基、置換されていてもよい炭素原子数7～20のアラルキル基または置換されていてもよい炭素原子数6～20のアリール基を示す。)

で示されるホスフィン化合物。

【請求項9】

Aが、窒素原子である請求項8に記載のホスフィン化合物。

【請求項10】

R^{1 1}およびR^{1 2}が、同一または相異なり、置換されていてもよい炭素原子数1～10のアルキル基である請求項8または9に記載のホスフィン化合物。

【請求項11】

R^{1 3}が、置換されていてもよい炭素原子数1～10のアルキル基である請求項8から10のいずれかに記載のホスフィン化合物。

【請求項12】

請求項5に記載の式(2)で示される置換フェノールと、式(4)

(式中、Mは元素の周期律表の第4族の元素を示し、X¹、X²およびX³は同一または相異なり、水素原子、ハロゲン原子、置換されていてもよい炭素原子数1～10のアルキル基、置換されていてもよい炭素原子数7～20のアラルキル基、置換されていてもよい炭素原子数6～20のアリール基、置換されていてもよい炭素原子数1～10のアルコキシ基、置換されていてもよい炭素原子数7～20のアラルキルオキシ基、置換されていてもよい炭素原子数6～20のアリールオキシ基または炭素原子数2～20の炭化水素で2置換されたアミノ基を示し、Lは中性配位子を示し、1、mおよびnは独立に0～2の整数を示し、かつ1、m、nの和は、3、4または5である。)

で示される遷移金属化合物とを反応させることを特徴とする式(1)で示される遷移金属錯体の製造方法。

【請求項13】

請求項12に記載の製造方法において、塩基の存在下に反応させることを特徴とする式(

1) で示される遷移金属錯体の製造方法。

【請求項14】

請求項8に記載の式(3)で示されるホスフィン化合物と請求項12に記載の式(4)で示される遷移金属化合物とを反応させることを特徴とする請求項1に記載の式(1)で示される遷移金属錯体の製造方法。

【請求項15】

請求項8に記載の式(3)で示されるホスフィン化合物と酸を反応させることを特徴とする請求項5に記載の式(2)で示される置換フェノールの製造方法。

【請求項16】

酸が塩化水素である請求項15に記載の製造方法。

【請求項17】

式(5)

(式中、A、R⁵、R⁶、R⁷、R⁸、R⁹、R¹⁰、R¹¹およびR¹²は、前記と同じ意味を表し、X⁴およびX⁵は同一または相異なり、ハロゲン原子を示す。) で示されるホスフィンジハライドと、式(6)

(式中、R¹、R²、R³、R⁴、およびR¹³は、前記と同じ意味を表し、X⁶は、ハロゲン原子を示し、Dはアルカリ金属またはアルカリ土類金属を示し、n'は0または1である。)

で示される金属アリールとを反応させることを特徴とする請求項8に記載の式(3)で示されるホスフィン化合物の製造方法。

【請求項18】

R⁵が水素原子である請求項17に記載の式(5)で示されるホスフィンジハライド。

【請求項19】

式： P(X')₃

(X'はハロゲン原子を示す。)

で示されるホスフィントリハライドと式(7)

(式中、A、R⁵、R⁶、R⁷、R⁸、R⁹、R¹⁰、R¹¹、R¹²、D、X⁶および出証特2004-3083757

n' は、前記と同じ意味を表す。)

で示される金属アリール化合物とを反応させることを特徴とする請求項 1 7 に記載の式（5）で示されるホスフィンジハライドの製造方法。

【請求項 20】

請求項 1 から 4 のいずれかに記載の遷移金属錯体および下記化合物（A）を組合わせてなることを特徴とするオレフィン重合用触媒。

化合物（A）： 下記化合物（A 1）～（A 3）のいずれか、あるいはそれらの 2 種以上の混合物

（A 1）： 式 $(E1) a A1 (Z) 3-a$ で示される有機アルミニウム化合物、

（A 2）： 式 $\{-A1 (E2) -O-\} b$ で示される構造を有する環状のアルミノキサン、

（A 3）： 式 $(E3) \{-A1 (E3) -O-\} c A1 (E3) 2$ で示される構造を有する線状のアルミノキサン

（式中、E1～E3 は同一または相異なり、炭素原子数 1～8 の炭化水素基であり、Z は同一または相異なり、水素原子またはハロゲン原子を表し、a は 1、2 または 3 を、b は 2 以上の整数を、c は 1 以上の整数を表す。）

【請求項 21】

請求項 1 から 4 のいずれかに記載の遷移金属錯体と上記化合物（A）および下記化合物（B）を組合わせてなることを特徴とするオレフィン重合用触媒。

化合物（B）： 下記化合物（B 1）～（B 3）のいずれか、あるいはそれらの 2 種以上の混合物

（B 1）： 式 $B Q1 Q2 Q3$ で表されるホウ素化合物、

（B 2）： 式 $Z+ (B Q1 Q2 Q3 Q4) -$ で表されるホウ素化合物、

（B 3）： 式 $(L-H) + (B Q1 Q2 Q3 Q4) -$ で表されるホウ素化合物

（式中、B は 3 値の原子価状態のホウ素原子であり、Q1～Q4 は同一または相異なり、ハロゲン原子、炭素原子数 1～20 の炭化水素基、炭素原子数 1～20 のハロゲン化炭化水素基、炭素原子数 1～20 の炭化水素で置換されたシリル基、炭素原子数 1～20 のアルコキシ基または炭素原子数 1～20 の炭化水素で 2 置換されたアミノ基を示す。）

【請求項 22】

請求項 20 または 21 に記載のオレフィン重合用触媒を用いてオレフィンを重合させることを特徴とするオレフィン重合体の製造方法。

【書類名】明細書

【発明の名称】遷移金属錯体、配位子、オレフィン重合用触媒およびオレフィン重合体の製造方法

【技術分野】

【0001】

本発明は遷移金属錯体、配位子、オレフィン重合用触媒およびオレフィン重合体の製造方法に関する。

【背景技術】

【0002】

従来、2個の水酸基とホスフィンを有する有機化合物と遷移金属との反応物（例えば、2',2'-(フェニルホスフィド)ビス(6-tert-ブチル-4-メチルフェノキシ)(テトラヒドロフラン)チタニウムジクロライドなど）をオレフィン重合体の製造方法に用いること（例えば、特許文献1参照。）が報告されている。

【特許文献1】特開平10-218922号公報

【発明の開示】

【発明が解決しようとする課題】

【0003】

本発明は、より優れた重合活性を示し、より高い分子量のオレフィン重合体を製造できる重合用触媒を開発することを目的とする。

【課題を解決するための手段】

【0004】

本発明者らは上記の課題を解決するために、遷移金属錯体およびオレフィン重合用触媒について鋭意研究を続けてきた。その結果、新規な置換フェノール、ホスフィン化合物および遷移金属錯体を見出し、本発明を完成させるに至った。

【0005】

すなわち、本発明は式(1)

(式中、Mは元素の周期律表の第4族の元素を示し、Aは元素の周期律表の第15族の元素を示し、R¹、R²、R³、R⁴、R⁵、R⁶、R⁷、R⁸、R⁹およびR¹⁰は、同一または相異なり、水素原子、ハロゲン原子、置換されていてもよい炭素原子数1～10のアルキル基、置換されていてもよい炭素原子数7～20のアラルキル基、置換されていてもよい炭素原子数6～20のアリール基、置換されていてもよい炭素原子数1～20の炭化水素で置換されたシリル基、置換されていてもよい炭素原子数1～10のアルコキシ基、置換されていてもよい炭素原子数7～20のアラルキルオキシ基、置換されていてもよい炭素原子数6～20のアリールオキシ基または炭素原子数1～20の炭化水素で2置換されたアミノ基を示し、R¹¹およびR¹²は、同一または相異なり、水素原子、ハロゲン原子、置換されていてもよい炭素原子数1～10のアルキル基、置換されていてもよい炭素原子数7～20のアラルキル基、置換されていてもよい炭素原子数6～20のアリール基、置換されていてもよい炭素原子数1～10のアルコキシ基、置換されていてもよい炭素原子数7～20のアラルキルオキシ基、置換されていてもよい炭素原子数6～20のアリールオキシ

基または炭素原子数1～20の炭化水素で2置換されたアミノ基を示す。) で示される遷移金属錯体；式(2)

(式中、A、R¹、R²、R³、R⁴、R⁵、R⁶、R⁷、R⁸、R⁹、R¹⁰、R¹¹ およびR¹²は、前記と同じ意味を表す。) で示される置換フェノール；式(3)

(式中、A、R¹、R²、R³、R⁴、R⁵、R⁶、R⁷、R⁸、R⁹、R¹⁰、R¹¹ およびR¹²は、前記と同じ意味を表し、R¹³は、置換されていてもよい炭素原子数1～10のアルキル基、置換されていてもよい炭素原子数7～20のアラルキル基、置換されていてもよい炭素原子数6～20のアリール基を示す。) で示されるホスフィン化合物；およびこれらの製造方法；該遷移金属錯体と下記化合物(A)を組合させてなるオレフィン重合用触媒；およびさらに下記化合物(B)を組合させてなるオレフィン重合用触媒ならびにオレフィン重合体の製造方法を提供するものである。

化合物(A)：下記化合物(A1)～(A3)のいずれか、あるいはそれらの2種以上の混合物

(A1)：式(E1)a A1(Z)3-aで示される有機アルミニウム化合物、

(A2)：式{-A1(E2)-O-}bで示される構造を有する環状のアルミノキサン、

(A3)：式(E3){-A1(E3)-O-}c A1(E3)2で示される構造を有する線状のアルミノキサン

(式中、E1～E3は同一または相異なり、炭素原子数1～8の炭化水素基であり、Zは同一または相異なり、水素原子またはハロゲン原子を表し、aは1、2または3を、bは2以上の整数を、cは1以上の整数を表す。)

化合物(B)：下記化合物(B1)～(B3)のいずれか、あるいはそれらの2種以上の混合物

(B1)：式BQ1 Q2 Q3で表されるホウ素化合物、

(B2)：式Z+(BQ1 Q2 Q3 Q4)-で表されるホウ素化合物、

(B3)：式(L-H)+(BQ1 Q2 Q3 Q4)-で表されるホウ素化合物

(式中、Bは3価の原子価状態のホウ素原子であり、Q1～Q4は同一または相異なり、ハロゲン原子、炭素原子数1～20の炭化水素基、炭素原子数1～20のハロゲン化炭化水素基、炭素原子数1～20の炭化水素で置換されたシリル基、炭素原子数1～20のアルコキシ基または炭素原子数1～20の炭化水素で2置換されたアミノ基を示す。)

【発明の効果】

【0006】

本発明により得られる遷移金属錯体を、触媒成分として用いることにより、高い触媒活性でポリオレフィンを製造することができる。

【発明を実施するための最良の形態】

【0007】

以下、本発明について詳細に説明する。

本発明の化合物において、Aで示される元素の周期律表の第15族の原子としては、例えば窒素原子、リン原子、砒素原子などが挙げられ、好ましくは窒素原子が挙げられる。

【0008】

R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^6 、 R^7 、 R^8 、 R^9 、 R^{10} 、 R^{11} または R^{12} における、ハロゲン原子の具体例としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられ、好ましくは塩素原子が挙げられる。

【0009】

R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^6 、 R^7 、 R^8 、 R^9 、 R^{10} 、 R^{11} または R^{12} における置換されていてもよい炭素原子数1～10のアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、ネオペンチル基、アミル基、n-ヘキシル基、n-オクチル基、n-デシル基等が例示され、さらにこれらの置換基がハロゲン原子、アルコキシ基、アリールオキシ基、炭化水素で置換されたアミノ基もしくは炭化水素で置換されたシリル基で置換された置換基が例示され、その具体例としては、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、フルオロエチル基、ジフルオロエチル基、トリフルオロエチル基、テトラフルオロエチル基、ペンタフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロベンチル基、パーフルオロヘキシル基、パーフルオロオクチル基、パーブルオロデシル基、トリクロロメチル基、メトキシメチル基、フェノキシメチル基、ジメチルアミノメチル基、トリメチルシリルメチル基などが例示される。

置換されていてもよい炭素原子数1～10のアルキル基のうち、メチル基、エチル基、イソプロピル基、tert-ブチル基、アミル基等が好ましいものとして例示され、さらに好ましくはメチル基、tert-ブチル基等が挙げられる。

【0010】

R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^6 、 R^7 、 R^8 、 R^9 、 R^{10} 、 R^{11} または R^{12} における置換されていてもよい炭素原子数7～20のアラルキル基としては、ベンジル基、ナフチルメチル基、アントラセニルメチル基、ジフェニルメチル基等が例示され、これらの置換基は、例えば、ハロゲン原子、アルキル基、アルコキシ基、アリールオキシ基、炭化水素で置換されたアミノ基もしくは炭化水素で置換されたシリル基で置換されたものが例示され、置換されていてもよい炭素原子数7～20のアラルキル基の具体例としては、例えば、(2-メチルフェニル)メチル基、(3-メチルフェニル)メチル基、(4-メチルフェニル)メチル基、(2, 3-ジメチルフェニル)メチル基、(2, 4-ジメチルフェニル)メチル基、(2, 5-ジメチルフェニル)メチル基、(2, 6-ジメチルフェニル)メチル基、(3, 4-ジメチルフェニル)メチル基、(2, 3, 4-トリメチルフェニル)メチル基、(2, 3, 5-トリメチルフェニル)メチル基、(2, 3, 6-トリメチルフェニル)メチル基、(3, 4, 5-トリメチルフェニル)メチル基、(2, 4, 6-トリメチルフェニル)メチル基、(2, 3, 4, 5-テトラメチルフェニル)メチル基、(2, 3, 4, 6-テトラメチルフェニル)メチル基、(2, 3, 5, 6-テトラメチルフェニル)メチル基、(ペンタメチルフェニル)メチル

基、(エチルフェニル)メチル基、

(n-プロピルフェニル)メチル基、(イソプロピルフェニル)メチル基、(n-ブチルフェニル)メチル基、(sec-ブチルフェニル)メチル基、(tert-ブチルフェニル)メチル基、(n-ペンチルフェニル)メチル基、(ネオペンチルフェニル)メチル基、(n-ヘキシルフェニル)メチル基、(n-オクチルフェニル)メチル基、(n-デシルフェニル)メチル基、(n-ドデシルフェニル)メチル基、(フルオロフェニル)メチル基、(ジフルオロフェニル)メチル基、(ペンタフルオロフェニル)メチル基、(クロロフェニル)メチル基、(メトキシフェニル)メチル基、(フェノキシフェニル)メチル基など基、(ジメチルアミノフェニル)メチル基、(トリメチルシリルフェニル)メチル基などが例示される。置換されていてもよい炭素原子数7~20のアラルキル基の好ましいものとしてはベンジル基が挙げられる。

【0011】

R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^6 、 R^7 、 R^8 、 R^9 、 R^{10} 、 R^{11} または R^{12} における置換されていてもよい炭素原子数6~20のアリール基としては、フェニル基、ナフチル基、アントラセニル基等が挙げられる。

これらの置換基は、例えば、ハロゲン原子、アルキル基、アルコキシ基、アリールオキシ基、炭化水素で置換されたアミノ基もしくは炭化水素で置換されたシリル基等で置換されたものが例示され、その具体例としては、2-トリル基、3-トリル基、4-トリル基、2, 3-キシリル基、2, 4-キシリル基、2, 5-キシリル基、2, 6-キシリル基、3, 4-キシリル基、3, 5-キシリル基、2, 3, 4-トリメチルフェニル基、2, 3, 5-トリメチルフェニル基、2, 3, 6-トリメチルフェニル基、2, 4, 6-トリメチルフェニル基、3, 4, 5-トリメチルフェニル基、2, 3, 4, 5-テトラメチルフェニル基、2, 3, 4, 6-テトラメチルフェニル基、2, 3, 5, 6-テトラメチルフェニル基、n-プロピルフェニル基、イソプロピルフェニル基、n-ブチルフェニル基、sec-ブチルフェニル基、tert-ブチルフェニル基、n-ペンチルフェニル基、ネオペンチルフェニル基、n-ヘキシルフェニル基、n-オクチルフェニル基、n-デシルフェニル基、n-ドデシルフェニル基、n-テトラデシルフェニル基、2-フルオロフェニル基、3-フルオロフェニル基、n-フルオロフェニル基、3, 5-ジフルオロフェニル基、ペンタフルオロフェニル基、4-フルオロフェニル基、3, 5-メトキシフェニル基、3-メトキシフェニル基、4-メトキシフェニル基、4-フェノキシフェニル基、4-ジメチルアミノフェニル基、4-トリメチルシリルフェニル基などが例示される。置換されていてもよい炭素原子数6~20のアリール基の好ましいものとしては、フェニル基が挙げられる。

【0012】

R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^6 、 R^7 、 R^8 、 R^9 または R^{10} における炭素原子数1~10のアルコキシル基の具体例としては、メトキシ基、エトキシ基、n-ブロポキシ基、イソブロポキシ基、n-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ヘキシルオキシ基、n-オクチルオキシ基、n-ペンチルオキシ基、ネオペンチルオキシ基、n-ヘキシルオキシ基、n-オクチル、n-ペンチルオキシ基、n-ノニルオキシ基、n-デシルオキシ基が例示される。これらはさらに置換されていてもよく、例えば、ハロゲン原子、アルコキシ基、アリールオキシ基、炭化水素で置換されたアミノ基、炭化水素で置換されたシリル基で置換されたものが例示される。置換されたアルコキシル基の具体例としては、フルオロメトキシ基、ジフルオロメトキシ基、トリフルオロメトキシ基、フルオロエトキシ基、ジフルオロエトキシ基、トリフルオロエトキシ基、テトラフルオロエトキシ基、ペンタフルオロエトキシ基、パーフルオロブロエトキシ基、パーフルオロペンチルオキシ基、パーフルオロヘキシルオキシ基、パーフルオロオクチルオキシ基、パーフルオロデシルオキシ基、トリフルオロメチルオキシ基、メトキシメトキシ基、フェノキシメトキシ基、ジメチルアミノメトキシ基、トリメチルシリルメトキシ基などが例示される。置換されていてもよい炭素原子数1~10のアルコキシ基の好ましいものとしては、メトキシ基、エトキシ基、tert-ブトキシ基等が挙げられる。

【0013】

R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^6 、 R^7 、 R^8 、 R^9 または R^{10} における置換されてもよい炭素原子数1～20の炭化水素で置換されたシリル基の炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、ネオペンチル基、アミル基、n-ヘキシル基、シクロヘキシル基、n-オクチル基、n-デシル基などの炭素原子数1～10のアルキル基、フェニル基、トリル基、キシリル基、ナフチル基、アントラセニル基などの炭素原子数6～20のアリール基等が挙げられる。かかる炭素数1～20の炭化水素で置換されたシリル基としては、例えば、メチルシリル基、エチルシリル基、フェニルシリル基などの1置換シリル基、ジメチルシリル基、ジエチルシリル基、ジフェニルシリル基などの2置換シリル基、トリメチルシリル基、トリエチルシリル基、トリ-n-プロピルシリル基、トリ-イソプロピルシリル基、トリ-n-ブチルシリル基、トリ-sec-ブチルシリル基、トリ-tert-ブチルシリル基、トリ-イソブチルシリル基、tert-ブチルジメチルシリル基、トリ-n-ペンチルシリル基、トリ-n-ヘキシルシリル基、トリシクロヘキシルシリル基、トリフェニルシリル基などの3置換シリル基等が挙げられ、置換されていてもよい炭素原子数1～20の炭化水素で置換されたシリル基の好みなものとしてはトリメチルシリル基、tert-ブチルジメチルシリル基、トリフェニルシリル基等が挙げられる。これらの炭化水素で置換されたシリル基はいずれもがその炭化水素基がハロゲン原子、例えば、フッ素原子で置換されたものも例示される。

【0014】

R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^6 、 R^7 、 R^8 、 R^9 または R^{10} における置換されてもよい炭素原子数7～20のアラルキルオキシ基としては、ベンジルオキシ基、ナフチルメトキシ基、アントラセニルメトキシ基、ジフェニルメトキシ基が例示され、これらはさらに置換されていてもよく、例えば、ハロゲン原子、アルキル基、アルコキシ基、アリールオキシ基、炭化水素で置換されたアミノ基、炭化水素で置換されたシリル基で置換されたものが例示され、その具体例としては、(2-メチルフェニル)メトキシ基、(3-メチルフェニル)メトキシ基、(4-メチルフェニル)メトキシ基、(2, 3-ジメチルフェニル)メトキシ基、(2, 4-ジメチルフェニル)メトキシ基、(2, 5-ジメチルフェニル)メトキシ基、(2, 6-ジメチルフェニル)メトキシ基、(3, 4-ジメチルフェニル)メトキシ基、(2, 3, 4-トリメチルフェニル)メトキシ基、(2, 3, 5-トリメチルフェニル)メトキシ基、(2, 3, 6-トリメチルフェニル)メトキシ基、(3, 4, 5-トリメチルフェニル)メトキシ基、(2, 4, 6-トリメチルフェニル)メトキシ基、(2, 3, 4, 5-テトラメチルフェニル)メトキシ基、(2, 3, 5, 6-テトラメチルフェニル)メトキシ基、(ペンタメチルフェニル)メトキシ基、(エチルフェニル)メトキシ基、(n-プロピルフェニル)メトキシ基、(イソプロピルフェニル)メトキシ基、(n-ブチルフェニル)メトキシ基、(sec-ブチルフェニル)メトキシ基、(tert-ブチルフェニル)メトキシ基、(n-ペンチルフェニル)メトキシ基、(ネオペンチルフェニル)メトキシ基、(n-ヘキシルフェニル)メトキシ基、(n-オクチルフェニル)メトキシ基、(n-デシルフェニル)メトキシ基、(n-ドデシルフェニル)メトキシ基、(フルオロフェニル)メチル基、(ジフルオロフェニル)メチル基、(ペンタフルオロフェニル)メチル基、(クロロフェニル)メチル基、(メトキシフェニル)メチル基、(フェノキシフェニル)メチル基、(ジメチルアミノフェニル)メチル基、(トリメチルシリルフェニル)メチル基などが例示される。置換されていてもよい炭素原子数7～20のアラルキルオキシ基の好みのものとしてはベンジルオキシ基等が例示される。

【0015】

R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^6 、 R^7 、 R^8 、 R^9 または R^{10} における置換されてもよい炭素原子数6～20のアリールオキシ基としては、フェノキシ基、ナフトキシ基、アントラセノキシ基が挙げられる。

これらはさらに置換されていてもよく、例えば、ハロゲン原子、アルキル基、アルコキシ

基、アリールオキシ基、炭化水素で置換されたアミノ基もしくは炭化水素で置換されたシリル基で置換されたものが例示され、その具体例としては、
 2-メチルフェノキシ基、3-メチルフェノキシ基、4-メチルフェノキシ基、2, 3-ジメチルフェノキシ基、2, 4-ジメチルフェノキシ基、2, 5-ジメチルフェノキシ基、2, 6-ジメチルフェノキシ基、3, 4-ジメチルフェノキシ基、3, 5-ジメチルフェノキシ基、2, 3, 4-トリメチルフェノキシ基、2, 3, 5-トリメチルフェノキシ基、2, 3, 6-トリメチルフェノキシ基、2, 4, 5-トリメチルフェノキシ基、2, 4, 6-トリメチルフェノキシ基、3, 4, 5-トリメチルフェノキシ基、2, 3, 4, 5-テトラメチルフェノキシ基、2, 3, 4, 6-テトラメチルフェノキシ基、2, 3, 5, 6-テトラメチルフェノキシ基、ペンタメチルフェノキシ基、エチルフェノキシ基、n-プロピルフェノキシ基、イソプロピルフェノキシ基、n-ブチルフェノキシ基、sec-ブチルフェノキシ基、tert-ブチルフェノキシ基、n-ヘキシルフェノキシ基、n-オクチルフェノキシ基、n-デシルフェノキシ基、n-テトラデシルフェノキシ基、2-フルオロフェノキシ基、3-フルオロフェノキシ基、4-フルオロフェノキシ基、3, 5-ジフルオロフェノキシ基、ペンタフルオロフェノキシ基、4-クロロフェノキシ基、2-メトキシフェノキシ基、3-メトキシフェノキシ基、4-メトキシフェノキシ基、4-フェノキシフェノキシ基、4-ジメチルアミノフェノキシ基、4-トリメチルシリルフェノキシ基などが例示される。置換されていてもよい炭素原子数7～20のアリールオキシ基の好ましいものとしては、フェノキシ基等が例示される。

【0016】

R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^6 、 R^7 、 R^8 、 R^9 または R^{10} における置換されていてもよい炭素原子数1～20の炭化水素で2置換されたアミノ基としては、2つの炭化水素基で置換されたアミノ基であって、ここでの炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、ネオペンチル基、アミル基、n-ヘキシル基、シクロヘキシル基、n-オクチル基、n-デシル基などの炭素原子数1～10のアルキル基、フェニル基、トリル基、キシリル基、ナフチル基、アントラセニル基などの炭素原子数6～20のアリール基等が挙げられる。かかる炭素数1～20の炭化水素で置換されたアミノ基としては、例えば、ジメチルアミノ基、ジエチルアミノ基、ジ-n-プロピルアミノ基、ジイソプロピルアミノ基、ジ-n-ブチルアミノ基、ジ-sec-ブチルアミノ基、ジ-tert-ブチルアミノ基、ジ-イソブチルアミノ基、tert-ブチルイソブロピルアミノ基、ジ-n-ヘキシルアミノ基、ジ-n-オクチルアミノ基、ジ-n-デシルアミノ基、ジフェニルアミノ基等が挙げられ、好ましくはジメチルアミノ基、ジエチルアミノ基等が挙げられる。

【0017】

式(1)で示される遷移金属錯体のMは元素周期律表の第4族の元素を示し、具体的にはチタン原子、ジルコニウム原子、ハフニウム原子等が挙げられ、好ましくは、チタン原子、ジルコニウム原子等が挙げられる。

【0018】

式(1)で示される遷移金属錯体のX¹ または X² における、ハロゲン原子の具体例としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられ、好ましくは塩素原子が挙げられる。

【0019】

X¹ または X² における置換されていてもよい炭素原子数1～10のアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、ネオペンチル基、アミル基、n-ヘキシル基、n-オクチル基、n-デシル基が例示され、さらにこれらの置換基がハロゲン原子、アルコキシ基、アリールオキシ基、炭化水素で置換されたアミノ基もしくは炭化水素で置換されたシリル基で置換された置換基が例示され、その具体例としては、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、フルオロエチル基、ジフル

オロエチル基、トリフルオロエチル基、テトラフルオロエチル基、ペンタフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロベンチル基、パーフルオロヘキシル基、パーフルオロオクチル基、パーフルオロデシル基、トリクロロメチル基、メトキシメチル基、フェノキシメチル基、ジメチルアミノメチル基、トリメチルシリルメチル基などが例示される。

置換されていてもよい炭素原子数1～10のアルキル基のうち、メチル基、エチル基、イソプロピル基、*tert*-ブチル基、アミル基等が好ましいものとして例示され、さらに好ましくはメチル基が挙げられる。

【0020】

X¹またはX²における置換されていてもよい炭素原子数7～20のアラルキル基としては、ベンジル基、ナフチルメチル基、アントラセニルメチル基、ジフェニルメチル基等が例示され、これらの置換基は、例えば、ハロゲン原子、アルキル基、アルコキシ基、アリールオキシ基、炭化水素で置換されたアミノ基、炭化水素で置換されたシリル基で置換されたものが例示され、その具体例としては、

(2-メチルフェニル)メチル基、(3-メチルフェニル)メチル基、(4-メチルフェニル)メチル基、(2, 3-ジメチルフェニル)メチル基、(2, 4-ジメチルフェニル)メチル基、(2, 5-ジメチルフェニル)メチル基、(2, 6-ジメチルフェニル)メチル基、(3, 4-ジメチルフェニル)メチル基、

(2, 3, 4-トリメチルフェニル)メチル基、(2, 3, 5-トリメチルフェニル)メチル基、(2, 3, 6-トリメチルフェニル)メチル基、(3, 4, 5-トリメチルフェニル)メチル基、(2, 4, 6-トリメチルフェニル)メチル基、(2, 3, 4, 5-テトラメチルフェニル)メチル基、(2, 3, 4, 6-テトラメチルフェニル)メチル基、(2, 3, 5, 6-テトラメチルフェニル)メチル基、(ペンタメチルフェニル)メチル基、(エチルフェニル)メチル基、

(n-プロピルフェニル)メチル基、(イソプロピルフェニル)メチル基、(n-ブチルフェニル)メチル基、(sec-ブチルフェニル)メチル基、(*tert*-ブチルフェニル)メチル基、(n-ペンチルフェニル)メチル基、(ネオペンチルフェニル)メチル基、(n-ヘキシルフェニル)メチル基、(n-オクチルフェニル)メチル基、(n-デシルフェニル)メチル基、(n-ドデシルフェニル)メチル基、(フルオロフェニル)メチル基、(ジフルオロフェニル)メチル基、(ペンタフルオロフェニル)メチル基、(クロロフェニル)メチル基、(メトキシフェニル)メチル基、(フェノキシフェニル)メチル基、(ジメチルアミノフェニル)メチル基、(トリメチルシリルフェニル)メチル基などが例示される。

置換されていてもよい炭素原子数7～20のアラルキル基の特に好ましいものとしてはベンジル基が例示される。

【0021】

X¹またはX²における置換されていてもよい炭素原子数6～20のアリール基としては、フェニル基、ナフチル基、アントラセニル基等が挙げられる。

これらの置換基は、例えば、ハロゲン原子、アルキル基、アルコキシ基、アリールオキシ基、炭化水素で置換されたアミノ基、炭化水素で置換されたシリル基で置換されたものが例示され、その具体例としては、2-トリル基、3-トリル基、4-トリル基、2, 3-キシリル基、2, 4-キシリル基、2, 5-キシリル基、2, 6-キシリル基、3, 4-キシリル基、3, 5-キシリル基、2, 3, 4-トリメチルフェニル基、2, 3, 5-トリメチルフェニル基、2, 3, 6-トリメチルフェニル基、2, 4, 6-トリメチルフェニル基、3, 4, 5-トリメチルフェニル基、2, 3, 4, 5-テトラメチルフェニル基、2, 3, 5, 6-テトラメチルフェニル基、n-ブロピルフェニル基、イソプロピルフェニル基、n-ブチルフェニル基、sec-ブチルフェニル基、*tert*-ブチルフェニル基、n-ペンチルフェニル基、ネオペンチルフェニル基、n-ヘキシルフェニル基、n-オクチルフェニル基、n-デシルフェニル基、n-ドデシルフェニル基、n-

一テトラデシルフェニル基、2-フルオロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基、3,5-ジフルオロフェニル基、ペンタフルオロフェニル基、4-クロロフェニル基、2-メトキシフェニル基、3-メトキシフェニル基、4-メトキシフェニル基、4-フェノキシフェニル基、4-ジメチルアミノフェニル基、4-トリメチルシリルフェニル基などが例示される。

アルキル基などと併用される。置換されていてもよい炭素原子数6～20のアリール基の特に好ましいものとしては、フェニル基が例示される。

[0 0 2 2]

X^1 または X^2 における置換されていてもよい炭素原子数 1 ~ 10 のアルコキシル基の具体例としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブロトキシ基、sec-ブロトキシ基、tert-ブロトキシ基、n-ペンチルオキシ基、ネオペンチルオキシ基、n-ヘキシルオキシ基、n-オクチルオキシ基、n-ノニルオキシ基、n-デシルオキシ基が例示される。これらはさらに置換されていてもよく、例えば、ハロゲン原子、アルコキシ基、アリールオキシ基、炭化水素で置換されたアミノ基もしくは炭化水素で置換されたシリル基で置換されたものが例示される。

置換されたアルコキシル基の具体例としては、フルオロメトキシ基、ジフルオロメトキシ基、トリフルオロエトキシ基、フルオロエトキシ基、ジフルオロエトキシ基、トリフルオロエトキシ基、テトラフルオロエトキシ基、ペンタフルオロエトキシ基、パーフルオロブロポキシ基、パーフルオロブチルオキシ基、パーフルオロベンチルオキシ基、パーフルオロヘキシルオキシ基、パーフルオロオクチルオキシ基、パーフルオロデシルオキシ基、トリクロロメチルオキシ基、メトキシメトキシ基、フェノキシメトキシ基、ジメチルアミノメトキシ基、トリメチルシリルメトキシ基などが例示される。

置換されていてもよい炭素原子数1～10のアルコキシル基の好ましいものとしてメトキシ基、エトキシ基、tert-ブロキシ基等が挙げられ、特に好ましいものとしては、メトキシ基が挙げられる。

[0 0 2 3]

X^1 または X^2 における置換されていてもよい炭素原子数 7 ~ 20 のアラルキルオキシ基としては、ベンジルオキシ基、ナフチルメトキシ基、アントラセニルメトキシ基、ジフェニルメトキシ基が例示され、

これらはさらに置換されていてもよく、例えば、ハロゲン原子、アルキル基、アルコキシ基、アリールオキシ基、炭化水素で置換されたアミノ基、炭化水素で置換されたシリル基で置換されたものが例示され、その具体例としては、(2-メチルフェニル)メトキシ基、(3-メチルフェニル)メトキシ基、(4-メチルフェニル)メトキシ基、(2,3-ジメチルフェニル)メトキシ基、(2,4-ジメチルフェニル)メトキシ基、(2,5-ジメチルフェニル)メトキシ基、(2,6-ジメチルフェニル)メトキシ基、(3,4-ジメチルフェニル)メトキシ基、(2,3,4-トリメチルフェニル)メトキシ基、(2,3,5-トリメチルフェニル)メトキシ基、(2,3,6-トリメチルフェニル)メトキシ基、(3,4,5-トリメチルフェニル)メトキシ基、(2,4,6-トリメチルフェニル)メトキシ基、(2,3,4,5-テトラメチルフェニル)メトキシ基、(2,3,5,6-テトラメチルフェニル)メトキシ基、(ペンタメチルフェニル)メトキシ基、(エチルフェニル)メトキシ基、(n-ブロピルフェニル)メトキシ基、(イソブロピルフェニル)メトキシ基、(n-ブチルフェニル)メトキシ基、(sec-ブチルフェニル)メトキシ基、(tert-ブチルフェニル)メトキシ基、(n-ペンチルフェニル)メトキシ基、(ネオペンチルフェニル)メトキシ基、(n-ヘキシルフェニル)メトキシ基、(n-オクチルフェニル)メトキシ基、(n-デシルフェニル)メトキシ基、(n-ドデシルフェニル)メトキシ基、(フルオロフェニル)メチル基、(ジフルオロフェニル)メチル基、(ペンタフルオロフェニル)メチル基、(クロロフェニル)メチル基、(メトキシフェニル)メチル基、(フェノキシフェニル)メチル基、(ジメチルアミノフェニル)メチル基、(トリメチルシリルフェニル)メチル基などが例示される。

置換されていてもよい炭素原子数7～20のアラルキルオキシ基の特に好ましいものとしてはペンジルオキシ基が例示される。

[0 0 2 4]

X^1 または X^2 における置換されていてもよい炭素原子数 6 ~ 20 のアリールオキシ基としては、フェノキシ基、ナフトキシ基、アントラセノキシ基が挙げられる。これらはさらに置換されていてもよく、例えば、ハロゲン原子、アルキル基、アルコキシ基、アリールオキシ基、炭化水素で置換されたアミノ基、炭化水素で置換されたシリル基で置換されたものが例示され、その具体例としては、

置換されたものが例示され、テトラメチルエノキシ基、2,3-ジメチルエノキシ基、2,4-ジメチルエノキシ基、2,5-ジメチルエノキシ基、2,6-ジメチルエノキシ基、3,4-ジメチルエノキシ基、3,5-ジメチルエノキシ基、2,3,4-トリメチルエノキシ基、2,3,5-トリメチルエノキシ基、2,3,6-トリメチルエノキシ基、2,4,5-トリメチルエノキシ基、2,4,6-トリメチルエノキシ基、3,4,5-トリメチルエノキシ基、2,3,4,5-テトラメチルエノキシ基、2,3,4,6-テトラメチルエノキシ基、エチルエノキシ基、n-プロピルエノキシ基、イソプロピルエノキシ基、n-ブチルエノキシ基、s e c-ブチルエノキシ基、tert-ブチルエノキシ基、n-ヘキシリルエノキシ基、n-オクチルエノキシ基、n-デシルエノキシ基、n-テトラデシルエノキシ基2-フルオロエノキシ基、3-フルオロエノキシ基、4-フルオロエノキシ基、3,5-ジフルオロエノキシ基、ペンタフルオロエノキシ基、4-クロロエノキシ基、4-メトキシフェノキシ基、3-メトキシフェノキシ基、4-メトキシフェノキシ基、4-フルオロフェノキシ基、4-ジメチルアミノフェノキシ基、4-トリメチルシリルフェノキシ基などが例示される。置換されていてもよい炭素原子数7~20のアリールオキシ基の特に好ましいものとしては、フェノキシ基が例示される。

[0025]

X¹ または X² における置換されていてもよい炭素原子数 1 ~ 20 の炭化水素で 2 置換されたアミノ基としては、2 つの炭化水素基で置換されたアミノ基であって、ここでの炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、ネオペンチル基、アミル基、n-ヘキシル基、シクロヘキシル基、n-オクチル基、n-デシル基などの炭素原子数 1 ~ 10 のアルキル基、フェニル基、トリル基、キシリル基、ナフチル基、アントラセニル基などの炭素原子数 6 ~ 20 のアリール基等が挙げられる。かかる炭素数 1 ~ 20 の炭化水素で置換されたアミノ基としては、例えば、ジメチルアミノ基、ジエチルアミノ基、ジ-n-プロピルアミノ基、ジイソプロピルアミノ基、ジ-n-ブチルアミノ基、ジ-sec-ブチルアミノ基、ジ-tert-ブチルアミノ基、ジ-イソブチルアミノ基、ジ-n-ノ基、tert-ブチルイソプロピルアミノ基、ジ-n-ヘキシルアミノ基、ジ-n-オクチルアミノ基、ジ-n-デシルアミノ基、ジフェニルアミノ基等が挙げられ、置換されていてもよい炭素原子数 1 ~ 20 の炭化水素で 2 置換されたアミノ基の好ましいものとしてはジメチルアミノ基、ジエチルアミノ基等が挙げられる。

[0026]

式(3)で示されるホスフィン化合物のR¹⁻³における置換されていてもよい炭素原子数1~10のアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソブロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、ネオペンチル基、アミル基、n-ヘキシル基、n-オクチル基、n-デシル基が例示され、さらにこれらの置換基がハロゲン原子、アルコキシ基、アリールオキシ基、炭化水素で置換されたアミノ基もしくは炭化水素で置換されたシリル基で置換された置換基が例示され、その具体例としては、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、フルオロエチル基、ジフルオロエチル基、トリフルオロエチル基、テトラフルオロエチル基、ペンタフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パ

ーフルオロペンチル基、パーアフルオロヘキシル基、パーアフルオロオクチル基、パーアフルオロデシル基、トリクロロメチル基、メトキシメチル基、フェノキシメチル基、ジメチルアミノメチル基、トリメチルシリルメチル基などが例示される。これらのうち、メチル基、エチル基、イソプロピル基、メトキシメチル基等が好ましいものとして例示され、さらに好ましくはメトキシメチル基が挙げられる。

【0027】

$R^{1\sim 3}$ における置換されていてもよい炭素原子数7～20のアラルキル基としては、ベンジル基、ナフチルメチル基、アントラセニルメチル基、ジフェニルメチル基等が例示され、これらの置換基は、例えば、ハロゲン原子、アルキル基、アルコキシ基、アリールオキシ基、炭化水素で置換されたアミノ基もしくは炭化水素で置換されたシリル基で置換されたものが例示され、その具体例としては、

(2-メチルフェニル)メチル基、(3-メチルフェニル)メチル基、(4-メチルフェニル)メチル基、(2, 3-ジメチルフェニル)メチル基、(2, 4-ジメチルフェニル)メチル基、(2, 5-ジメチルフェニル)メチル基、(2, 6-ジメチルフェニル)メチル基、(3, 4-ジメチルフェニル)メチル基、

(2, 3, 4-トリメチルフェニル)メチル基、(2, 3, 5-トリメチルフェニル)メチル基、(2, 3, 6-トリメチルフェニル)メチル基、(3, 4, 5-トリメチルフェニル)メチル基、(2, 4, 6-トリメチルフェニル)メチル基、(2, 3, 4, 5-テトラメチルフェニル)メチル基、(2, 3, 4, 6-テトラメチルフェニル)メチル基、(2, 3, 5, 6-テトラメチルフェニル)メチル基、(ペンタメチルフェニル)メチル基、(エチルフェニル)メチル基、

(n-プロピルフェニル)メチル基、(イソプロピルフェニル)メチル基、(n-ブチルフェニル)メチル基、(sec-ブチルフェニル)メチル基、(tert-ブチルフェニル)メチル基、(n-ペンチルフェニル)メチル基、(ネオペンチルフェニル)メチル基、(n-ヘキシルフェニル)メチル基、(n-オクチルフェニル)メチル基、(n-デシルフェニル)メチル基、(n-ドデシルフェニル)メチル基、(フルオロフェニル)メチル基、(ジフルオロフェニル)メチル基、(ペンタフルオロフェニル)メチル基、(クロロフェニル)メチル基、(メトキシフェニル)メチル基、(フェノキシフェニル)メチル基、(ジメチルアミノフェニル)メチル基、(トリメチルシリルフェニル)メチル基などが例示される。

置換されていてもよい炭素原子数7～20のアラルキル基の特に好ましいものとしてはベンジル基等が挙げられる。

【0028】

$R^{1\sim 3}$ における置換されていてもよい炭素原子数6～20のアリール基としては、フェニル基、ナフチル基、アントラセニル基等が挙げられる。

これらの置換基は、例えば、ハロゲン原子、アルキル基、アルコキシ基、アリールオキシ基、炭化水素で置換されたアミノ基もしくは炭化水素で置換されたシリル基で置換されたものが例示され、その具体例としては、2-トリル基、3-トリル基、4-トリル基、2, 3, 3-キシリル基、2, 4-キシリル基、2, 5-キシリル基、2, 6-キシリル基、3, 4-キシリル基、3, 5-キシリル基、2, 3, 4-トリメチルフェニル基、2, 3, 5-トリメチルフェニル基、2, 3, 6-トリメチルフェニル基、2, 4, 6-トリメチルフェニル基、3, 4, 5-トリメチルフェニル基、2, 3, 4, 5-テトラメチルフェニル基、2, 3, 4, 6-テトラメチルフェニル基、2, 3, 5, 6-テトラメチルフェニル基、n-ブロピルフェニル基、イソブロピルフェニル基、n-ブチルフェニル基、sec-ブチルフェニル基、tert-ブチルフェニル基、n-ペンチルフェニル基、ネオペンチルフェニル基、n-ヘキシルフェニル基、n-オクチルフェニル基、n-デシルフェニル基、n-ドデシルフェニル基、n-テトラデシルフェニル基、2-フルオロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基、3, 5-ジフルオロフェニル基、ペンタフルオロフェニル基、4-クロロフェニル基、2-メトキシフェニル基、3-メトキシフェニル基、4-メト

キシフェニル基、4-フェノキシフェニル基、4-ジメチルアミノフェニル基、4-トリメチルシリルフェニル基などが例示される。置換されていてもよい炭素原子数6～20のアリール基の特に好ましいものとしては、フェニル基が挙げられる。

【0029】

式(1)で示される遷移金属錯体としては、例えば、以下に示す化合物が挙げられる。

【0030】

【0031】

【0032】

【0033】

【0034】

【0035】

【0036】

【0037】

【0038】

【0039】

【0040】

【0041】

【0045】

【0046】

【0047】

【0048】

【0049】

【0050】

【0051】

【0052】

【0053】

【0054】

【0055】

【0056】

さらに、上記化合物において、チタン原子をジルコニウム原子またはハフニウム原子に変換した化合物などが挙げられる。

【0057】

式(2)で示される置換フェノールの具体例としては、例えば、以下に挙げる化合物が挙げられる。

【0058】

【0059】

【0060】

【0061】

【0062】

【0063】

【0064】

【0065】

【0066】

【0067】

【0068】

【0069】

【0070】

【0071】

【0072】

【0073】

【0074】

【0075】

【0076】

【0077】

【0078】

【0079】

【0080】

【0081】

【0082】

【0083】

【0084】

【0085】

式(3)で示されるホスフィン化合物の具体例としては、例えば、以下に示す化合物が挙げられる。

【0086】

【0086】

【0087】

【0088】

【0090】

【0091】

【0092】

【0093】

【0094】

【0095】

【0096】

【0097】

【0098】

【0099】

【0100】

【0101】

【0102】

【0103】

【0104】

【0105】

【0106】

【0107】

【0108】

【0109】

【0110】

【0111】

【0112】

【0113】

【0114】

【0115】

【0116】

【0117】

【0 1 2 2】

【0 1 2 3】

【0 1 2 4】

【0125】

【0126】

【0127】

【0128】

【0129】

【0130】

【0131】

【0132】

【0133】

【0134】

【0 1 3 5】

[0136]

【0137】

【0138】

【0139】

【0140】

【0141】

【0142】

【0143】

【0144】
式(1)で示される遷移金属錯体は、置換フェノール(2)と式(4)

(式中、Mは元素の周期律表の第4族の元素を示し、X¹、X²およびX³は同一または相異なり、水素原子、ハロゲン原子、置換されていてもよい炭素原子数1～10のアルキル基、置換されていてもよい炭素原子数7～20のアラルキル基、置換されていてもよい炭素原子数6～20のアリール基、置換されていてもよい炭素原子数1～10のアルコキシ基、置換されていてもよい炭素原子数7～20のアラルキルオキシ基、置換されていてもよい炭素原子数6～20のアリールオキシ基または炭素原子数2～20の炭化水素で2置換されたアミノ基を示し、Lは中性配位子を示し、1、mおよびnは独立に0～2の整数を示し、1、m、nの和は、3、4、または5である。)

で示される遷移金属化合物とを反応させることにより製造することができる。

【0145】

式(2)で示される置換フェノールと式(4)で示される遷移金属化合物の反応モル比は特に限定されないが、1:1から1:10の範囲が好ましく、さらに好ましくは1:1から1:2の範囲である。

【0146】

反応に際しては、必要により塩基が用いられる。かかる塩基としては、例えばメチルリチウム、エチルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、リチウムトリメチルシリルアセチリド、リチウムアセチリド、トリメチルシリルメチルリチウム、ビニルリチウム、フェニルリチウム、アリルリチウムなどの有機リチウム化合物といった有機アルカリ金属化合物などが挙げられ、その使用量は式(2)で示される置換フェノールに対して通常0.5～5モル倍の範囲である。

【0147】

上記反応は通常、反応に対して不活性な溶媒中で行われる。かかる溶媒としては、例えばベンゼン、トルエンなどの芳香族炭化水素系溶媒、ヘキサン、ヘプタンなどの脂肪族炭化水素系溶媒、ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサンなどのエーテル系溶媒、ヘキサメチルホスホリックアミド、ジメチルホルムアミドなどのアミド系溶媒、アセトニトリル、プロピオニトリル、アセトン、ジエチルケトン、メチルイソブチルケトン、シクロヘキサンなどの極性溶媒、ジクロロメタン、ジクロロエタン、クロロベンゼン、ジクロロベンゼンなどのハロゲン系溶媒といった非プロトン性溶媒などが挙げられる。かかる溶媒はそれぞれ単独もしくは2種以上を混合して用いられ、その使用量は式(

2) で示される置換フェノールに対して通常 1~200 重量倍、好ましくは 3~50 重量倍の範囲である。

【0148】

上記反応は通常、溶媒に式 (2) で示される置換フェノールに必要に応じて塩基を加えたのち式 (4) で示される遷移金属化合物を加えることによって行うことができる。反応温度は通常、-100℃以上溶媒の沸点以下、好ましくは-80~100℃程度の範囲である。

【0149】

得られた反応混合物から通常の方法、例えば生成した沈殿を濾別後、濾液を濃縮して固体物を析出させるなどの手法により、式 (1) で示される遷移金属錯体を取得することができる。

【0150】

また、(式1) で示される遷移金属錯体は、前記(式3) で示されるホスフィン化合物と(式4) で示される遷移金属化合物とを反応させることにより製造することもできる。式(3) で示されるホスフィン化合物と式(4) で示される遷移金属化合物の反応モル比は特に限定されないが、1:1 から 1:10 の範囲が好ましく、さらに好ましくは 1:1 から 1:5 の範囲である。

【0151】

上記反応は通常、反応に対して不活性な溶媒中で行われる。かかる溶媒としては、例えばベンゼン、トルエンなどの芳香族炭化水素系溶媒、ヘキサン、ヘプタンなどの脂肪族炭化水素系溶媒、ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサンなどのエーテル系溶媒、ヘキサメチルホスホリックアミド、ジメチルホルムアミドなどのアミド系溶媒、アセトニトリル、プロピオニトリル、アセトン、ジエチルケトン、メチルイソブチルケトン、シクロヘキサンなどの極性溶媒、ジクロロメタン、ジクロロエタン、クロロベンゼン、ジクロロベンゼンなどのハロゲン系溶媒といった非プロトン性溶媒などが挙げられる。かかる溶媒はそれぞれ単独もしくは 2 種以上を混合して用いられ、その使用量は式(3) で示されるホスフィン化合物に対して通常、1~200 重量倍、好ましくは 3~50 重量倍の範囲である。

【0152】

上記反応は通常、溶媒に式(3) で示されるホスフィン化合物を加えたのち、式(4) で示される遷移金属化合物を加えることによって行うことができる。反応温度は通常、-100℃以上溶媒の沸点以下、好ましくは-80~100℃程度の範囲である。

【0153】

得られた反応混合物から通常の方法、例えば生成した沈殿を濾別後、濾液を濃縮して固体物を析出させるなどの手法により、式(1) で示される遷移金属錯体を取得することができる。

【0154】

式(4) で示される遷移金属化合物の X^1 、 X^2 または X^3 における各基の具体例は、前記式(1) で示される遷移金属錯体における X^1 または X^2 で挙げたものと同様の基を挙げることができる。

【0155】

L で示される中性配位子とは、例えば、エーテル、スルフィド、アミン、ホスフィン、オレフィンなどの中性官能基を有する分子を示し、分子内に複数箇所の配位官能基を有していてもよい。

【0156】

かかる中性配位子としては、例えば、ジメチルエーテル、ジエチルエーテル、メチルtert-ブチルエーテル、フラン、テトラヒドロフラン、ジメトキシエタン、ジメトキシエタン、ジメチルスルフィド、ジエチルスルフィド、メチルtert-ブチルスルフィド、チオフェン、テトラヒドロチオフェン、エチレンジチオール、ジメチルスルフィド、エチレンジチオール、ジエチルスルフィド、トリメチルアミン、トリエチルアミン、トリ

フェニルアミン、トリシクロヘキシルアミン、ピリジン、2, 2' -ビピリジン、テトラメチルエチレンジアミン、テトラエチルエチレンジアミン、トリフェニルホスフィン、トリシクロヘキシルホスフィン、トリー-tert-ブチルホスフィン、ビス(ジフェニルホスフィノ)メタン、ビス(ジフェニルホスフィノ)エタン、ビス(ジフェニルホスフィノ)プロパン、ビス(ジフェニルホスフィノ)ビナフチル、エチレン、プロピレン、ブテン、ブタジエン、オクテン、オクタジエン、シクロヘキセン、シクロヘキサジエン、ノルボルネン、ノルボルナジエン等が挙げられる。

【0157】

式(4)で示される遷移金属化合物としては、例えばテトラベンジルチタン、テトラネオペンチルチタン、四塩化チタン、テトライソプロポキシチタン、ジイソプロポキシチタニウム ジクロライド、テトラキス(ジメチルアミノ)チタン、テトラキス(ジエチルアミノ)チタン、ビス(ジメチルアミノ)チタニウム ジクロライド、ビス(ジエチルアミノ)チタニウム ジクロライド、テトラキス(トリフルオロアセトキシ)チタニウム、ビス(トリフルオロアセトキシ)チタニウム ジクロライド、三塩化チタン-3テトラヒドロフラン錯体、四塩化チタン-2テトラヒドロフラン錯体

【0158】

テトラベンジルジルコニウム、テトラネオペンチルジルコニウム、四塩化ジルコニウム、テトライソプロポキシジルコニウム、ジイソプロポキシジルコニウム ジクロライド、テトラキス(ジメチルアミノ)ジルコニウム、テトラキス(ジエチルアミノ)ジルコニウム、ビス(ジメチルアミノ)ジルコニウム ジクロライド、ビス(ジエチルアミノ)ジルコニウム ジクロライド、テトラキス(トリフルオロアセトキシ)ジルコニウム、ビス(トリフルオロアセトキシ)ジルコニウム ジクロライド、三塩化ジルコニウム-3テトラヒドロフラン錯体、四塩化ジルコニウム-2テトラヒドロフラン錯体

【0159】

テトラベンジルハフニウム、テトラネオペンチルハフニウム、四塩化ハフニウム、テトライソプロポキシハフニウム、ジイソプロポキシハフニウム ジクロライド、テトラキス(ジメチルアミノ)ハフニウム、テトラキス(ジエチルアミノ)ハフニウム、ビス(ジメチルアミノ)ハフニウム ジクロライド、ビス(ジエチルアミノ)ハフニウム ジクロライド、テトラキス(トリフルオロアセトキシ)ハフニウム、ビス(トリフルオロアセトキシ)ハフニウム ジクロライド、三塩化ハフニウム-3テトラヒドロフラン錯体、四塩化ハフニウム-2テトラヒドロフラン錯体

などが挙げられる。好ましくは四塩化チタン、四塩化チタン-2テトラヒドロフラン錯体、四塩化ジルコニウム、四塩化ジルコニウム-2テトラヒドロフラン錯体等が挙げられる。

【0160】

(式2)で示される置換フェノールは、式(3)で示されるホスフィン化合物と酸を反応させることにより製造することができる。式(3)で示されるホスフィン化合物、酸の反応モル比は特に限定されないが、1:1から1:10の範囲が好ましく、さらに好ましくは1:1から1:5の範囲である。

【0161】

上記反応における酸とは、塩化水素、臭化水素、ヨウ化水素、硫酸、硝酸などのプレンステッド酸などが挙げられ、好ましくは塩化水素が挙げられる。

【0162】

上記反応で用いられる酸は、例えば、塩化水素の場合、塩化水素ガスを用いてもよいし、酸クロライドとアルコールから系中で塩化水素を発生させててもよい。

【0163】

上記反応は通常、反応に対して不活性な溶媒中で行われる。かかる溶媒としては、例えばベンゼン、トルエンなどの芳香族炭化水素系溶媒、ヘキサン、ヘプタンなどの脂肪族炭化水素系溶媒、ジエチルエーテル、テトラヒドロフラン、1, 4-ジオキサンなどのエーテル系溶媒、アセトニトリル、プロピオニトリル、アセトン、ジエチルケトン、メチルイソ

ブチルケトン、シクロヘキサノン、酢酸エチルなどの極性溶媒、ジクロロメタン、ジクロロエタン、クロロベンゼン、ジクロロベンゼンなどのハロゲン系溶媒といった非プロトン性溶媒などが挙げられる。かかる溶媒はそれぞれ単独もしくは2種以上を混合して用いられ、その使用量は式(3)で示されるホスフィン化合物に対して通常1～200重量倍、好ましくは3～50重量倍の範囲である。

【0164】

上記反応の温度は通常、-100℃以上溶媒の沸点以下、好ましくは-80～100℃程度の範囲である。

【0165】

得られた反応混合物から通常の方法、例えば溶媒を留去するなどの手法により、式(2)で示される置換フェノールを取得することができる。

【0166】

式(3)で示されるホスフィン化合物は、式(5)

(A、R⁵、R⁶、R⁷、R⁸、R⁹、R¹⁰、R¹¹およびR¹²はそれぞれ前記と同じ意味を表し、X⁴およびX⁵は同一または相異なり、ハロゲン原子を示す。)

で示されるホスフィンジハライドと式(6)

(式中、R¹、R²、R³、R⁴、およびR¹³は、前記と同じ意味を表し、X⁶は、ハロゲン原子を示し、Dはアルカリ金属またはアルカリ土類金属を示し、n'は0または1である。)

で示される金属アリールとを反応させることにより製造することができる。

式(5)で示されるホスフィンジハライドと式(6)で示される金属アリールの反応モル比は、特に限定されないが、1:2から1:5の範囲が好ましく、さらに好ましくは1:2から1:2.5の範囲である。

【0167】

式(5)または(6)で示されるX⁴、X⁵またはX⁶におけるハロゲン原子の具体例としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられ、好ましくは塩素原子が挙げられる。

【0168】

式(6)で示されるDにおけるアルカリ金属、アルカリ土類金属の具体例としては、リチウム原子、ナトリウム原子、カリウム原子、マグネシウム原子、カルシウム原子等が挙げられ、好ましくはリチウム原子、マグネシウム原子が挙げられる。

【0169】

反応は通常、反応に対して不活性な溶媒中で行われる。かかる溶媒としては、例えばベンゼン、トルエンなどの芳香族炭化水素系溶媒、ヘキサン、ヘプタンなどの脂肪族炭化水素系溶媒、ジエチルエーテル、テトラヒドロフランなどのエーテル系溶媒などが挙げられる

かかる溶媒はそれぞれ単独もしくは2種以上を混合して用いられ、その使用量は式(6)で示される金属アリールに対して通常1～200重量倍、好ましくは3～50重量倍の範囲である。

【0170】

本反応は通常、式(6)で示される金属アリールに式(5)で示されるホスフィンジハライドを加えることによって行うことができる。反応温度は、通常、-100℃以上溶媒の沸点以下、好ましくは、-80℃～100℃の範囲である。

【0171】

得られた反応混合物から通常の方法、例えば不溶物を濾過することで除去し、溶媒を留去するなどの方法により、式(3)で示されるホスフィン化合物を得ることができる。また必要に応じてシリカゲルカラムクロマトグラフィーなどの方法により精製される。

【0172】

式(5)で示されるホスフィンジハライドは、式： $P(X')_3$
(X' はハロゲン原子を示す。)

で示されるホスフィントリハライドと金属アリール化合物との反応により製造される。
例えば、式(7)

(式中、A、R⁵、R⁶、R⁷、R⁸、R⁹、R¹⁰、R¹¹、R¹²、D、X⁶およびn'は、前記と同じ意味を表す。)

で示される金属アリール化合物とホスフィントリハライドとを反応させることにより製造することができる。

式(7)で示される金属アリール化合物とホスフィントリハライドの反応モル比は、特に限定されないが、1：1から1：5の範囲が好ましく、さらに好ましくは1：1から1：2.5の範囲である。

【0173】

反応は通常、反応に対して不活性な溶媒中で行われる。かかる溶媒としては、例えばベンゼン、トルエンなどの芳香族炭化水素系溶媒、ヘキサン、ヘプタンなどの脂肪族炭化水素系溶媒、ジエチルエーテル、テトラヒドロフランなどのエーテル系溶媒などが挙げられる。かかる溶媒はそれぞれ単独もしくは2種以上を混合して用いられ、その使用量は式(7)で示される金属アリール化合物に対して通常1～200重量倍、好ましくは3～50重量倍の範囲である。

【0174】

本反応は通常、式(7)で示される金属アリール化合物にホスフィントリハライドを加えることによって行うことができる。反応温度は、通常-100℃以上溶媒の沸点以下、好ましくは-80℃～100℃の範囲である。

【0175】

得られた反応混合物から通常の方法、例えば不溶物を濾過することで除去し、溶媒を留去するなどの方法により、式(5)で示されるホスフィンジハライドを得ることができる。また必要により蒸留などの方法により精製することができる。

【0176】

式(6)で示される金属アリールは、式(8)

(式中、R¹、R²、R³、R⁴およびR¹³はそれぞれ前記と同じ意味を表し、Xは、水素原子またはハロゲン原子を示す。)

で示される有機化合物と例えば、リチウム化剤、マグネシウム金属等を反応させることにより製造することができる。式(8)で示される有機化合物とリチウム化剤、マグネシウム金属等の反応モル比は、特に限定されないが、1:1から1:5の範囲が好ましく、さらに好ましくは1:1から1:2.5の範囲である。かかるリチウム化剤としては、メチルリチウム、n-ブチルリチウム、s-ブチルリチウム、t-ブチルリチウム、フェニルリチウムなどが挙げられ、好ましくはn-ブチルリチウムが挙げられる。

【0177】

反応は通常、反応に対して不活性な溶媒中で行われる。かかる溶媒としては、例えばベンゼン、トルエンなどの芳香族炭化水素系溶媒、ヘキサン、ヘプタンなどの脂肪族炭化水素系溶媒、ジエチルエーテル、テトラヒドロフランなどのエーテル系溶媒などが挙げられる。かかる溶媒はそれぞれ単独もしくは2種以上を混合して用いられ、その使用量は式(8)で示される有機化合物に対して通常1~200重量倍、好ましくは3~50重量倍の範囲である。

【0178】

本反応は通常、式(8)で示される有機化合物に例えればリチウム化剤を加えることによって行うことができる。反応温度は、通常-100℃以上溶媒の沸点以下、好ましくは-80℃~100℃の範囲である。

【0179】

式(5)で示されるホスフィンジハライドの具体例として、例えれば、以下に示す化合物が挙げられる。

【0180】

【0181】

【0182】

【0183】

などが挙げられ、塩素原子を臭素原子、ヨウ素原子に置換した化合物も挙げられる。

【0184】

式(6)で示される金属アリールの具体例として、例えば、以下に示す化合物が挙げられる。

【0185】

【0186】

【0187】

【0188】

【0189】

【0190】

【0191】

【0192】

式(7)で示される金属アリール化合物の具体例として、例えば、以下に示す化合物が挙げられる。

【0193】

【0194】

【0195】

【0196】

【0197】

【0198】

【0199】

【0200】

【0201】

式(8)で示される有機化合物の具体例としては、例えば、以下に示す化合物が挙げられる。

【0202】

【0205】

【0206】

【0207】

【0208】

【0209】

かくして製造される式(1)で示される遷移金属錯体は、化合物(A)、あるいはさらに化合物(B)を、重合時に任意の順序で仕込み使用することができるが、またそれらの任意の化合物の組合せを予め接触させて得られた反応物を用いることもできる。

【0210】

〔化合物(A)〕

本発明において用いられる化合物(A)としては、公知の有機アルミニウム化合物が使用できる。好ましくは、化合物(A)としては、公知の有機アルミニウム化合物が使用でき、好ましくは、前記化合物(A1)～(A3)のいずれか、あるいはそれらの2種以上の混合物が挙げられる。

(A1)：式 E1 a A1 (Z) 3-a で示される有機アルミニウム化合物(A2)：
式 $\{ -A_1 (E2) -O - \}^b$ で示される構造を有する環状のアルミノキサン

(A3)：式 E3 $\{ -A_1 (E3) -O - \}^c A_1 (E3) 2$ で示される構造を有する線状のアルミノキサン

(式中、E1～E3は同一または相異なり、炭素原子数1～8の炭化水素基であり、Zは同一または相異なり、水素原子またはハロゲン原子を表し、aは1、2または3で、bは2以上の整数を、cは1以上の整数を表す。)

【0211】

式 E1 a A1 Z 3-a で示される有機アルミニウム化合物(A1)の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリプロピルアルミニウム、トリイソブチルアルミニウム、トリヘキシルアルミニウム等のトリアルキルアルミニウム；ジメチルアルミニウムクロライド、ジエチルアルミニウムクロライド、ジプロピルアルミニウムクロライド、ジイソブチルアルミニウムクロライド、ジヘキシルアルミニウムクロライド；メチルアルミニウムジクロライド、エチルアルミニウムジクロライド、プロピルアルミニウムジクロライド、イソブチルアルミニウムジクロライド、ヘキシルアルミニウムジクロライド等のアルキルアルミニウムジクロライド；ジメチルアルミニウムハイドライド、ジエチルアルミニウムハイドライド、ジプロピルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライド、ジヘキシルアルミニウムハイドライド。

ニウムハイドライド等のジアルキルアルミニウムハイドライド等を例示することができる。好ましくは、トリアルキルアルミニウムであり、より好ましくは、トリエチルアルミニウム、トリイソブチルアルミニウムが挙げられる。

【0212】

式 $|-\text{A}_1(\text{E}_2)-\text{O}-|^{\text{b}}$ で示される構造を有する環状のアルミノキサン (A2) または、式 $\text{E}_3|-\text{A}_1(\text{E}_3)-\text{O}-|^{\text{c}} \text{A}_1\text{E}_3$ で示される構造を有する線状のアルミノキサン (A3) における、E2、E3 の具体例としては、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、イソブチル基、ノルマルベンチル基、ネオペンチル基等のアルキル基を例示することができる。b は 2 以上の整数であり、c は 1 以上の整数である。好ましくは、E2 または E3 はメチル基、イソブチル基であり、b は 2 ~ 40、c は 1 ~ 40 である。これらの具体例としてはメチルアルミノキサン (MAO)、修飾メチルアルミノキサン (MMAO)、ブチルアルミノキサン (BAO) などが挙げられる。

【0213】

上記のアルミノキサンは各種の方法で造られる。その方法については特に制限はなく、公知の方法に準じて造ればよい。例えば、トリアルキルアルミニウム（例えば、トリメチルアルミニウムなど）を適当な有機溶剤（ベンゼン、脂肪族炭化水素など）に溶かした溶液を水と接触させて造る。また、トリアルキルアルミニウム（例えば、トリメチルアルミニウムなど）を結晶水を含んでいる金属塩（例えば、硫酸銅水和物など）に接触させて造る方法が例示できる。

【0214】

[化合物B]

本発明において化合物 (B) としては、(B1) 式 $\text{B Q}_1 \text{Q}_2 \text{Q}_3$ で表されるホウ素化合物、(B2) 式 $\text{Z}^+ (\text{B Q}_1 \text{Q}_2 \text{Q}_3 \text{Q}_4) -$ で表されるホウ素化合物、(B3) 式 $(\text{L} - \text{H})^+ (\text{B Q}_1 \text{Q}_2 \text{Q}_3 \text{Q}_4) -$ で表されるホウ素化合物のいずれか、あるいはそれらの 2 種以上の混合物が挙げられる。

【0215】

式 $\text{B Q}_1 \text{Q}_2 \text{Q}_3$ で表されるホウ素化合物 (B1) において、B は 3 価の原子価状態のホウ素原子であり、Q1 ~ Q3 はハロゲン原子、炭素数 1 ~ 20 個の炭化水素基、炭素数 1 ~ 20 個のハロゲン化炭化水素基、炭素数 1 ~ 20 個の炭化水素で置換されたシリル基、炭素数 1 ~ 20 個のアルコキシ基または炭素数 1 ~ 20 個の炭化水素で 2 置換されたアミノ基であり、それらは同じであっても異なっていても良い。好ましい Q1 ~ Q3 はハロゲン原子、炭素数 1 ~ 20 個の炭化水素基、炭素数 1 ~ 20 個のハロゲン化炭化水素基が挙げられる。

【0216】

(B1) の具体例としては、トリス (ペンタフルオロフェニル) ボラン、トリス (2, 3, 5, 6-テトラフルオロフェニル) ボラン、トリス (2, 3, 4, 5-テトラフルオロフェニル) ボラン、トリス (3, 4, 5-トリフルオロフェニル) ボラン、トリス (2, 3, 4-トリフルオロフェニル) ボラン、フェニルビス (ペンタフルオロフェニル) ボラン等が挙げられるが、好ましくは、トリス (ペンタフルオロフェニル) ボランが挙げられる。

【0217】

式 $\text{Z}^+ (\text{B Q}_1 \text{Q}_2 \text{Q}_3 \text{Q}_4) -$ で表されるホウ素化合物 (B2) において、Z+ は無機または有機のカチオンであり、B は 3 価の原子価状態のホウ素原子であり、Q1 ~ Q4 は上記の (B1) における Q1 ~ Q3 と同様のものが挙げられる。

【0218】

式 $\text{Z}^+ (\text{B Q}_1 \text{Q}_2 \text{Q}_3 \text{Q}_4) -$ で表される化合物の具体例としては、無機のカチオンである Z+ には、フェロセニウムカチオン、アルキル置換フェロセニウムカチオン、銀陽イオンなどが、有機のカチオンである Z+ には、トリフェニルメチルカチオンなどが挙げられる。(B Q1 Q2 Q3 Q4) - には、テトラキス (ペンタフルオロフェニル) ボレー

ト、テトラキス（2, 3, 5, 6-テトラフルオロフェニル）ボレート、テトラキス（2, 3, 4, 5-テトラフルオロフェニル）ボレート、テトラキス（3, 4, 5-トリフルオロフェニル）ボレート、テトラキス（2, 2, 4-トリフルオロフェニル）ボレート、テトラキス（3, 5-ビストリフルフェニルビス（ペンタフルオロフェニル）ボレート、テトラキス（3, 5-ビストリフルオロメチルフェニル）ボレートなどが挙げられる。

【0219】

これらの具体的な組み合わせとしては、フェロセニウムテトラキス（ペンタフルオロフェニル）ボレート、1, 1'-ジメチルフェロセニウムテトラキス（ペンタフルオロフェニル）ボレート、銀テトラキス（ペンタフルオロフェニル）ボレート、トリフェニルメチルテトラキス（ペンタフルオロフェニル）ボレート、トリフェニルメチルテトラキス（3, 5-ビストリフルオロメチルフェニル）ボレートなどを挙げることができるが、好ましくは、トリフェニルメチルテトラキス（ペンタフルオロフェニル）ボレートが挙げられる。

【0220】

また、式 $(L-H) + (B Q_1 Q_2 Q_3 Q_4) -$ で表されるホウ素化合物（B3）においては、Lは中性ルイス塩基であり、 $(L-H) +$ はブレンステッド酸であり、Bは3価の原子価状態のホウ素原子であり、Q1～Q4は上記の（B1）におけるQ1～Q3と同様のものが挙げられる。

【0221】

式 $(L-H) + (B Q_1 Q_2 Q_3 Q_4) -$ で表される化合物の具体例としては、ブレンステッド酸である $(L-H) +$ には、トリアルキル置換アンモニウム、N, N-ジアルキルアンリニウム、ジアルキルアンモニウム、トリアリールホスホニウムなどが挙げられ、（B Q1 Q2 Q3 Q4）-には、前記と同様のものが挙げられる。

【0222】

これらの具体的な組み合わせとしては、トリエチルアンモニウムテトラキス（ペンタフルオロフェニル）ボレート、トリプロピルアンモニウムテトラキス（ペンタフルオロフェニル）ボレート、トリ（ノルマルプチル）アンモニウムテトラキス（ペンタフルオロフェニル）ボレート、トリ（ノルマルプチル）アンモニウムテトラキス（3, 5-ビストリフルオロメチルフェニル）ボレート、N, N-ジメチルアニリニウムテトラキス（ペンタフルオロフェニル）ボレート、N, N-ジエチルアニリニウムテトラキス（ペンタフルオロフェニル）ボレート、N, N-2, 4, 6-ペンタメチルアニリニウムテトラキス（ペンタフルオロフェニル）ボレート、N, N-ジメチルアニリニウムテトラキス（3, 5-ビストリフルオロメチルフェニル）ボレート、ジイソプロピルアンモニウムテトラキス（ペンタフルオロフェニル）ボレート、ジシクロヘキシルアンモニウムテトラキス（ペンタフルオロフェニル）ボレート、トリフェニルホスホニウムテトラキス（ペンタフルオロフェニル）ボレート、トリ（メチルフェニル）ホスホニウムテトラキス（ペンタフルオロフェニル）ボレート、トリ（ジメチルフェニル）ホスホニウムテトラキス（ペンタフルオロフェニル）ボレートなどを挙げができるが、好ましくは、トリ（ノルマルプチル）アンモニウムテトラキス（ペンタフルオロフェニル）ボレート、N, N-ジメチルアニリニウムテトラキス（ペンタフルオロフェニル）ボレート等が挙げられる。

【0223】

各触媒成分の使用量は、化合物（A）／遷移金属錯体（1）のモル比が0. 1～1000で、好ましくは5～2000、化合物（B）／遷移金属錯体（1）のモル比が0. 01～100で、好ましくは0. 5～10の範囲にあるように、各成分を用いることが望ましい。

各触媒成分を溶液状態で使う場合の濃度については、遷移金属錯体（1）が、0. 000 1～5ミリモル／リットルで、好ましくは、0. 001～1ミリモル／リットル、化合物（A）が、A1原子換算で、0. 01～500ミリモル／リットルで、好ましくは、0. 1～100ミリモル／リットル、化合物（B）は、0. 0001～5ミリモル／リットルで、好ましくは、0. 001～1ミリモル／リットルの範囲にあるように、各成分を用いることが望ましい。

【0224】

本発明において、重合に使用するモノマーは、炭素原子数2～20個からなるオレフィン、ジオレフィン等のいずれをも用いることができ、同時に2種類以上のモノマーを用いることもできる。かかるモノマーを以下に例示するが、本発明は下記化合物に限定されるものではない。かかるオレフィンの具体例としては、エチレン、プロピレン、ブテンー1、ペンテンー1、ヘキセンー1、ヘプテンー1、オクテンー1、ノネンー1、デセンー1、5-メチル-2-ペンテンー1、ビニルシクロヘキセン等が例示される。ジオレフィン化合物としては、炭化水素化合物の共役ジエン、非共役ジエンが挙げられ、かかる化合物の具体例としては、非共役ジエン化合物の具体例として、1, 5-ヘキサジエン、1, 4-ヘキサジエン、1, 4-ペントジエン、1, 7-オクタジエン、1, 8-ノナジエン、1, 9-デカジエン、4-メチル-1, 4-ヘキサジエン、5-メチル-1, 4-ヘキサジエン、7-メチル-1, 6-オクタジエン、5-エチリデン-2-ノルボルネン、ジシクロペントジエン、5-ビニル-2-ノルボルネン、5-メチル-2-ノルボルネン、ノルボルナジエン、5-メチレン-2-ノルボルネン、1, 5-シクロオクタジエン、5, 8-エンドメチレンヘキサヒドロナフタレン等が例示され、共役ジエン化合物の具体例としては、1, 3-ブタジエン、イソプレン、1, 3-ヘキサジエン、1, 3-オクタジエン、1, 3-シクロオクタジエン、1, 3-シクロヘキサジエン等を例示することができる。

共重合体を構成するモノマーの具体例としては、エチレンとプロピレン、エチレンとブテンー1、エチレンとヘキセンー1、プロピレンとブテンー1等、およびそれらにさらに5-エチリデン-2-ノルボルネンを使用する組み合わせ等が例示されるが、本発明は、上記化合物に限定されるものではない。

【0225】

本発明では、モノマーとして芳香族ビニル化合物も用いることができる。芳香族ビニル化合物の具体例としては、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、o, p-ジメチルスチレン、o-エチルスチレン、m-エチルスチレン、p-エチルスチレン、o-クロロスチレン、p-クロロスチレン、 α -メチルスチレン、ジビニルベンゼン等が挙げられる。

【0226】

重合方法も、特に限定されるものではないが、例えば、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素、ベンゼン、トルエン等の芳香族炭化水素、又はメチレンジクロライド等のハロゲン化炭化水素を溶媒として用いる溶媒重合、又はスラリー重合、ガス状のモノマー中の気相重合等が可能であり、また、連続重合、回分式重合などちらでも可能である。

【0227】

重合温度は、-50℃～200℃の範囲をとり得るが、特に、-20℃～100℃程度の範囲が好ましく、重合圧力は、常圧～6 MPa (60 kg/cm²) G) が好ましい。重合時間は、一般的に、目的とするポリマーの種類、反応装置により適宜選定されるが、1分間～20時間の範囲をとることができる。また、本発明は共重合体の分子量を調節するために水素等の連鎖移動剤を添加することもできる。

【実施例】

【0228】

以下、実施例を挙げて、本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。また、実施例におけるポリマーの性質は、下記の方法により測定した。

【0229】

[分子量および分子量分布]

Rapid GPC (Symyx社製) を用いて以下の条件により測定した。

送液装置：(LCポンプ) Gilson社製

Model 305 (ポンプヘッド25.S.C)

カラム : Polymer Laboratories (PL)社製
 PL gel Mixed-B 10 μm
 7.5mm $\phi \times 300\text{mm}$
 移動相 : o-ジクロロベンゼン
 溶解溶媒 : 1,2,4-トリクロロベンゼン
 流量 : 2 mL/分
 カラム温度 : 160°C
 検量線 : PL社標準品 ポリスチレン(PS) 8試料
 (標準PS分子量) 5,000、10,050、28,500、65,500
 185,400、483,000、1,013,000、3,390,000

【0230】

[融点]

SAMMS (Sensor Array Modular System) (Symyx社製) を用いて以下の条件により測定した。
 測定モード : 热容量スペクトロスコピーによる融解温度測定
 雾囲気ガス : 真空条件(3.0×10^{-4} Torr以下)
 温度プログラム : (スタート) 室温
 (昇温速度) 約 50°C/分
 (ホールド) 200°C (0分)

【0231】

[IR分岐]

IR (Bruker社製EQUINOX 55) を用いて以下の条件により測定した。
 測定モード : 反射透過法 (鏡面にフィルム作成)
 ブランク : 鏡面 (Air)
 測定条件 : (分解能) 2 cm^{-1} 、(積算回数) 128回、
 (波長) $400 \sim 4000\text{ cm}^{-1}$

【0232】

合成

[実施例1]

[化合物[1]の合成]

1

N,N-ジメチルベンジルアミン (2.70 g, 20.0 mmol) のエーテル溶液 (57.0 mL) に 0°C で n-ブチルリチウム 1.56 M ヘキサン溶液 (14.1 mL) を滴下し、室温まで昇温し 24 時間攪拌した。-78°C に冷却し、三塩化リン (5.49 g, 40.0 mmol) のエーテル溶液 (77.0 mL) を加え、室温まで昇温し 2 時間攪拌した。不溶物を濾別した濾液を減圧留去することにより化合物 [1] を定量的に得た。

^1H NMR (CD_2Cl_2) δ 2.46 (6H), 4.02 (2H), 7.29-8.53 (5H)

^{31}P NMR (CD_2Cl_2) 115.6

【0233】

[実施例2]

[化合物[2]の合成]

2-tert-butyl-1-methoxy-4-methylbenzen (8.33 g, 40 mmol) のテトラヒドロフラン溶液 (131.4 mL) に、-78°Cで *n*-ブチルリチウム 1.56 M ヘキサン溶液 (28.2 mL) を滴下し、室温まで昇温し1時間攪拌した。反応混合液を-78°Cに冷却し、化合物 [1] (4.72 g, 20.0 mmol) のテトラヒドロフラン溶液 (56.3 mL) を滴下し、室温まで昇温し10時間攪拌した。脱イオン水 (100.0 mL) とトルエン (100 mL) を加え反応を停止し、有機層を飽和食塩水 (100 mL) で洗浄した後、溶媒を留去し、淡黄色油状の目的生成物を得た。シリカゲルカラムクロマトグラフィー (ヘキサン/酢酸エチル=10/1) により精製を行い、白色固体として化合物 [2] を 4.35 g (収率 37.5%) 得た。

^1H NMR (CDCl_3) δ 1.40 (18 H)、2.09 (6 H)、2.10 (6 H)、3.50 (6 H)、3.55 (2 H)、5.16-5.19 (4 H)、6.35 (2 H)、6.86-7.47 (6 H)

MS 536 ($M+1$)

【0234】

[実施例3]

[化合物 [3] の合成]

化合物 [2] (0.95 g, 1.64 mmol) の酢酸エチル/メタノール=1/1 溶液 (57.0 mL) に室温でアセチルクロライド (0.79 g, 10.0 mmol) を加え室温で15時間攪拌した。溶媒を減圧留去することにより、白色固体として化合物 3 を 0.35 mg (49.8%) で得た。

^1H NMR (CDCl_3) δ 1.41 (18 H)、2.05 (6 H)、2.10 (6 H)、3.01 (6 H)、4.63 (2 H)、6.31 (2 H)、7.06-8.81 (6 H)

^{31}P NMR (C_6D_6) δ -26.9

【0235】

[実施例4]

[錯体 [4] の合成]

化合物 [2] (0.58 g, 1.00 mmol) のトルエン溶液 (6.70 mL) に、-78°Cで四塩化チタン (0.40 g, 2.10 mmol) のトルエン溶液 (6.70 mL) を滴下し、室温にて10時間攪拌した。溶媒を留去しペンタン (2 mL) で洗浄する

ことで、赤茶色固体として錯体4を定量的に得た。

¹H NMR(C₆D₆) δ 1.59(18H)、2.05(6H)、2.41(6H)
、3.77(2H)、6.84(2H)、6.99-7.89(6H)

³¹P NMR(C₆D₆) δ 28.3

EI-MS 607(M-1)

【0236】

[実施例5]

[錯体[5]の合成]

5

化合物[3](0.42g、0.80mmol)のテトラヒドロフラン溶液(7.14mL)に、-78℃でn-ブチルリチウム1.56Mヘキサン溶液(1.53mL)を滴下し、室温まで昇温し1時間攪拌した。反応混合液を-78℃にて四塩化ジルコニウム-2(テトラヒドロフラン錯体(0.30g、0.80mmol)のテトラヒドロフラン溶液(7.14mL)に滴下した。室温で10時間攪拌し溶媒を減圧留去後、トルエン(10.0mL)を加え、不溶物を濾別した濾液を減圧留去することにより、錯体[5]を白色固体として270mg(50%)得た。

EI-MS 649(M-1)

【0237】

重合

[実施例6]

オートクレープに窒素下で、トルエン5.0mLを仕込み、40℃で安定させた後、エチレンを0.60MPaまで加圧し安定させた。ここに、メチルアルミニノキサン(100μmol)、錯体[4](0.10μmol)を加え、5分間重合した。重合の結果、ポリマーをチタニウム1mol当たり、1時間当たり、3.62×10⁷g製造した。

【0238】

[実施例7]

メチルアルミニノキサンの代わりに、トリイソブチルアルミニウムのヘキサン溶液(40μL、1.0M、関東化学)、ペンタフルオロフェニルボラン(0.30μmol)を用いた以外は実施例6と同様に20分間重合を行った。重合の結果、ポリマーをチタニウム1mol当たり、1時間当たり、6.00×10⁵g製造した。

【0239】

[実施例8]

メチルアルミニノキサンの代わりに、トリイソブチルアルミニウムのヘキサン溶液(40μL、1.0M、関東化学)、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート(0.30μmol)を用いた以外は実施例6と同様に18分間重合を行った。重合の結果、ポリマーをチタニウム1mol当たり、1時間当たり、6.90×10⁶g製造した。

【0240】

[実施例9]

メチルアルミニノキサンの代わりに、トリイソブチルアルミニウムのヘキサン溶液(40μL、1.0M、関東化学)、トリフェニルメチルテトラキス(ペンタフルオロフェニル)ボレート(0.30μmol)を用いた以外は実施例6と同様に14分間重合を行った。重合の結果、ポリマーをチタニウム1mol当たり、1時間当たり、8.80×10⁶g

【0248】

[実施例17]

メチルアルミノキサンの代わりに、トリイソブチルアルミニウムのヘキサン溶液（ $40\ \mu L$ 、1. 0 M、関東化学）、トリフェニルメチルテトラキス（ペンタフルオロフェニル）ボレート（ $0.30\ \mu mol$ ）を用いた以外は実施例14と同様に17分間重合を行った。重合の結果、ポリマーをジルコニウム $1\ mol$ 当たり、1時間当たり、 $7.30 \times 10^6\ g$ 製造した。

【0249】

[実施例18]

オートクレーブに窒素下で、トルエン $5.0\ mL$ 、1-ヘキセン（ $60\ \mu L$ ）を仕込み、 $40\ ^\circ C$ で安定させた後、エチレンを $0.60\ MPa$ まで加圧し安定させた。ここに、メチルアルミノキサン（ $100\ \mu mol$ ）、錯体[5]（ $0.10\ \mu mol$ ）を加え、20分間重合した。重合の結果、分子量（ M_w ）= 2.40×10^5 、分子量分布（ M_w/M_n ）=31.2、融点（ T_m ）= $130.6\ ^\circ C$ であるポリマーをジルコニウム $1\ mol$ 当たり、1時間当たり、 $4.60 \times 10^6\ g$ 製造した。

【0250】

[実施例19]

メチルアルミノキサンの代わりに、トリイソブチルアルミニウムのヘキサン溶液（ $40\ \mu L$ 、1. 0 M、関東化学）、ペンタフルオロフェニルボラン（ $0.30\ \mu mol$ ）を用いた以外は実施例18と同様に20分間重合を行った。重合の結果、ポリマーをジルコニウム $1\ mol$ 当たり、1時間当たり、 $4.00 \times 10^5\ g$ 製造した。

【0251】

[実施例20]

メチルアルミノキサンの代わりに、トリイソブチルアルミニウムのヘキサン溶液（ $40\ \mu L$ 、1. 0 M、関東化学）、ジメチルアニリニウムテトラキス（ペンタフルオロフェニル）ボレート（ $0.30\ \mu mol$ ）を用いた以外は実施例18と同様に20分間重合を行った。重合の結果、分子量（ M_w ）= 4.00×10^3 、分子量分布（ M_w/M_n ）=1.4、融点（ T_m ）= $127.6\ ^\circ C$ 、M_e分岐が1000炭素あたり13であるポリマーをジルコニウム $1\ mol$ 当たり、1時間当たり、 $5.10 \times 10^6\ g$ 製造した。

【0252】

[実施例21]

メチルアルミノキサンの代わりに、トリイソブチルアルミニウムのヘキサン溶液（ $40\ \mu L$ 、1. 0 M、関東化学）、トリフェニルメチルテトラキス（ペンタフルオロフェニル）ボレート（ $0.30\ \mu mol$ ）を用いた以外は実施例18と同様に11分間重合を行った。重合の結果、分子量（ M_w ）= 4.50×10^3 、分子量分布（ M_w/M_n ）=1.5、融点（ T_m ）= $129.3\ ^\circ C$ 、M_e分岐が1000炭素あたり20であるポリマーをジルコニウム $1\ mol$ 当たり、1時間当たり、 $1.03 \times 10^7\ g$ 製造した。

【0253】

[比較例1]

オートクレーブに窒素下で、トルエン $5.0\ mL$ を仕込み、 $40\ ^\circ C$ で安定させた後、エチレンを $0.60\ MPa$ まで加圧し安定させた。ここに、メチルアルミノキサン（ $100\ \mu mol$ ）、 $2,2'-$ （フェニルホスфин）ビス（ $6-tert-ブチル-4-メチルフェノキシ）$ （テトラヒドロフラン）チタニウムジクロライド（ $0.10\ \mu mol$ ）を加え、30分間重合した。重合の結果、ポリマーをチタニウム $1\ mol$ 当たり、1時間当たり、 $1.00 \times 10^6\ g$ 製造した。

【0254】

[比較例2]

メチルアルミノキサンの代わりに、トリイソブチルアルミニウムのヘキサン溶液（ $40\ \mu L$ 、1. 0 M、関東化学）、ペンタフルオロフェニルボラン（ $0.30\ \mu mol$ ）を用いた以外は比較例1と同様に重合を行った。重合の結果、ポリマーをチタニウム $1\ mol$ 当

製造した。

【0241】

[実施例10]

オートクレーブに窒素下で、トルエン 5. 0 mL、1-ヘキセン ($60 \mu\text{L}$) を仕込み、40 °Cで安定させた後、エチレンを 0. 60 MPaまで加圧し安定させた。ここに、メチルアルミノキサン ($100 \mu\text{mol}$)、錯体 [4] ($0.10 \mu\text{mol}$) を加え、9分間重合した。重合の結果、分子量 (M_w) = 2.97×10^6 、分子量分布 (M_w/M_n) = 8.6、融点 (T_m) = 130.7 °Cであるポリマーをチタニウム 1 mol当たり、1時間当たり、 $2.01 \times 10^7 \text{ g}$ 製造した。

【0242】

[実施例11]

メチルアルミノキサンの代わりに、トリイソブチルアルミニウムのヘキサン溶液 ($40 \mu\text{L}$ 、1.0 M、関東化学)、ペンタフルオロフェニルボラン ($0.30 \mu\text{mol}$) を用いた以外は実施例10と同様に20分間重合を行った。重合の結果、ポリマーをチタニウム 1 mol当たり、1時間当たり、 $5.00 \times 10^5 \text{ g}$ 製造した。

【0243】

[実施例12]

メチルアルミノキサンの代わりに、トリイソブチルアルミニウムのヘキサン溶液 ($40 \mu\text{L}$ 、1.0 M、関東化学)、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート ($0.30 \mu\text{mol}$) を用いた以外は実施例10と同様に20分間重合を行った。重合の結果、分子量 (M_w) = 1.97×10^6 、分子量分布 (M_w/M_n) = 1.6、融点 (T_m) = 117.9 °Cであるポリマーをチタニウム 1 mol当たり、1時間当たり、 $5.50 \times 10^6 \text{ g}$ 製造した。

【0244】

[実施例13]

メチルアルミノキサンの代わりに、トリイソブチルアルミニウムのヘキサン溶液 ($40 \mu\text{L}$ 、1.0 M、関東化学)、トリフェニルメチルテトラキス(ペンタフルオロフェニル)ボレート ($0.30 \mu\text{mol}$) を用いた以外は実施例10と同様に14分間重合を行った。重合の結果、分子量 (M_w) = 7.61×10^5 、分子量分布 (M_w/M_n) = 1.6、融点 (T_m) = 113.1 °Cであるポリマーをチタニウム 1 mol当たり、1時間当たり、 $1.04 \times 10^7 \text{ g}$ 製造した。

【0245】

[実施例14]

オートクレーブに窒素下で、トルエン 5.0 mL を仕込み、40 °Cで安定させた後、エチレンを 0.60 MPaまで加圧し安定させた。ここに、メチルアルミノキサン ($100 \mu\text{mol}$)、錯体 [5] ($0.10 \mu\text{mol}$) を加え、20分間重合した。重合の結果、ポリマーをジルコニウム 1 mol当たり、1時間当たり、 $4.90 \times 10^6 \text{ g}$ 製造した。

【0246】

[実施例15]

メチルアルミノキサンの代わりに、トリイソブチルアルミニウムのヘキサン溶液 ($40 \mu\text{L}$ 、1.0 M、関東化学)、ペンタフルオロフェニルボラン ($0.30 \mu\text{mol}$) を用いた以外は実施例14と同様に重合を行った。重合の結果、ポリマーをジルコニウム 1 mol当たり、1時間当たり、 $3.00 \times 10^5 \text{ g}$ 製造した。

【0247】

[実施例16]

メチルアルミノキサンの代わりに、トリイソブチルアルミニウムのヘキサン溶液 ($40 \mu\text{L}$ 、1.0 M、関東化学)、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート ($0.30 \mu\text{mol}$) を用いた以外は実施例14と同様に20分間重合を行った。重合の結果、ポリマーをジルコニウム 1 mol当たり、1時間当たり、 $5.50 \times 10^6 \text{ g}$ 製造した。

たり、1時間当たり、 3.00×10^5 g 製造した。

【0255】

[比較例3]

メチルアルミノキサンの代わりに、トリイソブチルアルミニウムのヘキサン溶液 ($40\ \mu L$ 、1. 0 M、関東化学)、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート ($0.30\ \mu mol$) を用いた以外は比較例1と同様に重合を行った。重合の結果、ポリマーをチタニウム 1 mol 当たり、1時間当たり、 1.20×10^6 g 製造した。

【0256】

[比較例4]

メチルアルミノキサンの代わりに、トリイソブチルアルミニウムのヘキサン溶液 ($40\ \mu L$ 、1. 0 M、関東化学)、トリフェニルメチルテトラキス(ペンタフルオロフェニル)ボレート ($0.30\ \mu mol$) を用いた以外は比較例1と同様に重合を行った。重合の結果、ポリマーをチタニウム 1 mol 当たり、1時間当たり、 1.30×10^6 g 製造した。

【0257】

[比較例5]

オートクレーブに窒素下で、トルエン 5. 0 mL、1-ヘキセン ($50\ \mu L$) を仕込み、40 °Cで安定させた後、エチレンを 0. 60 MPa まで加圧し安定させた。ここに、メチルアルミノキサン ($100\ \mu mol$)、2, 2'-（フェニルホスфин）ビス(*6-tert-ブチル-4-メチルフェノキシ*)（テトラヒドロフラン）チタニウムジクロライド ($0.10\ \mu mol$) を加え、30分間重合した。重合の結果、ポリマーをチタニウム 1 mol 当たり、1時間当たり、 5.00×10^5 g 製造した。

【0258】

[比較例6]

メチルアルミノキサンの代わりに、トリイソブチルアルミニウムのヘキサン溶液 ($40\ \mu L$ 、1. 0 M、関東化学)、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート ($0.30\ \mu mol$) を用いた以外は比較例5と同様に重合を行った。重合の結果、ポリマーをチタニウム 1 mol 当たり、1時間当たり、 6.00×10^5 g 製造した。

【0259】

[比較例7]

メチルアルミノキサンの代わりに、トリイソブチルアルミニウムのヘキサン溶液 ($40\ \mu L$ 、1. 0 M、関東化学)、トリフェニルメチルテトラキス(ペンタフルオロフェニル)ボレート ($0.30\ \mu mol$) を用いた以外は比較例5と同様に重合を行った。重合の結果、ポリマーをチタニウム 1 mol 当たり、1時間当たり、 7.00×10^5 g 製造した。

【書類名】要約書

【要約】

【課題】 遷移金属錯体、これを触媒成分とする重合触媒およびオレフィンの製造方法を提供すること。

【解決手段】 式(1)

(1)

(式中、Mは元素の周期律表の第4族の元素を示し、Aは元素の周期律表の第15族の元素を示し、R¹、R²、R³、R⁴、R⁵、R⁶、R⁷、R⁸、R⁹、R¹⁰、R¹¹、R¹²、X¹およびX²は、同一または相異なり、水素原子、ハロゲン原子、置換されてもよい炭素原子数1～10のアルキル基等)で示される遷移金属錯体、これを触媒成分とする重合触媒およびオレフィンの製造方法。

【選択図】 なし

特願 2003-374066

出願人履歴情報

識別番号 [000002093]

1. 変更年月日 1990年 8月28日

[変更理由] 新規登録

住所 大阪府大阪市中央区北浜4丁目5番33号
氏名 住友化学工業株式会社