Quantum Math

Brian Rashap

August 2025

Algebra

Algebra Overview

- Functions
- Transformations
- Polynomials
- Rational Functions
- Exponentials and Logarithms

Some text

4 / 42

Cartesian Coordinates

THE IORIGIVATE NUMBER LINE IS OFTEN CALLED THE x-ANS AND THE VERTICAL NUMBER LINE THE y-ANS. THE TWO NUMBERS OF A CONITY SOPPOSE ARE CALLED TO x-COORDINATE, AND THE y-ACCORDINATE, TO FIND A POINT'S x-COORDINATE, FOLLOW A VERTICAL LINE FROM THE POINT TO THE x-ANS, TO FIND ITS y-COORDINATE, SO HORIZONTALLY FROM THE POINT TO THE y-ANS.

IF A CITY WERE LAID OUT LIKE THIS (AND MANY ARE-CHECK OUT A MAP OF NEW YORK CITY'S MANHATTAN), YOU MIGHT SAY THAT THE POINT (x,y) is at the intersection of x avenue

5 / 42

Measuring Distance - Pythagorean Theorem

Pythagorean Theorem:

$$a^2 + b^2 = c^2$$

For example:

$$d^{2} = 3^{2} + 4^{2}$$

$$d^{2} = 9 + 16 = 25$$

$$d = \sqrt{25} = 5$$

More generally for two points $P(x_1, y_1)$ and $Q(x_2, y_2)$

$$d^{2} = (x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}$$

$$d = \sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}$$

Noting that $|a| = (a)^2$:

Midpoints and Intercepts

Midpoint:

$$M=\left(\frac{x_1+x_2}{2},\frac{y_2+y_1}{2}\right)$$

Intercepts:

Two key features of a graph are where the graph intersects the x and y axes, the x-intercept and y-intercept, respectively.

The Circle

A circle is a set of all points that are equidistant from a fixed point called the center (h, k). The distance from any point on the circle to the center is called the radius (r) $r = \sqrt{(x-h)^2 + (y-k)^2}$

Standard form:
$$(x - h)^2 + (y - k)^2 = r^2$$

Expand binomials:

$$x^2 - hx + h^2 + y^2 - ky + k^2 - r^2 = 0$$

$$x^{2} + y^{2} - hx - ky + (h^{2} + k^{2} - r^{2}) = 0$$
or
$$x^{2} + v^{2} + Ax + Bv + C = 0$$

Domain and Range

Domain and Range Domain is all the possible x values of a function. Range is all the possible y values of a function.

A set of ordered pairs (x, y) is called a relation in x and y.

- The set of x-values in the ordered pairs is called the domain of the relations.
- The set of y-values in the ordered pairs is called the range of the relations.

Linear Equations with Two Variables

A linear equation in variables x and y can be written in the standard form:

$$Ax + By = C (1)$$

However, it is more common to see it in slope-intercept form:

$$y = mx + b \tag{2}$$

where, m is the slope and b is the y-intercept

Linear Conversion - Slope and Y-Intercept

y = mx + b where m is slope and b y-intercept.

For example, given two points:

$$(x_1, y_1) = (1, 2)$$

$$(x_2, y_2) = (5, 4)$$

Find slope

•
$$m = \frac{rise}{run} = \frac{4-2}{5-1} = \frac{1}{2}$$

Find y-intercept

•
$$y_1 = m * x_1 + b$$

•
$$b = y_1 - (m * x_1)$$

•
$$b = 2 - (\frac{1}{2} * 1) = 1\frac{1}{2}$$

Use this to find the conversion from Celsius to Fahrenheit.

Parallel and Perpendicular Lines

	Relationship		
	with Slopes (m)		
Parallel Lines	$m_1 = m_2$		
2000 100 100 100 1		Line 2	
"Equal Slopes"	Line 1		
7,	$\frac{1}{3}$	1/3	
	5	5	
*	$-\frac{2}{7}$	$-\frac{2}{7}$	
	,		
Perpendicular Lines	$m_1 = -\frac{1}{m_2}$		
"Opposite Reciprocal Slopes"			
	Line 1	Line 2	
*	$\frac{1}{3}$	$-\frac{3}{1}$	
	5	$-\frac{1}{5}$	
	$-\frac{2}{7}$	$\frac{7}{2}$	
MATHguide.com			

Linear Regression

Consider a set of data: $(x_1, y_1), (x_2, y_2), (x_3, y_3), ..., (x_n, y_n)$

 The least-squares regression line
 ŷ = mx + b, is a unique line that minimizes the sum of the squared vertical deviations from the the observed data points to the line.

Use this to find the conversion from Celsius to Fahrenheit.

Recognizing Functions

An algebraic function provides a "y-value" for every "x-value"

- Linear: y = x + 2
- Quadratic: $y = x^2$
- Periodic: y = sin(x)

12 BASIC FUNCTIONS

Vertical and Horizontal Shifts

Brian Rashap Quantum Math August 2025 14 / 42

Shrink and Expand

X and Y Reflections

Summary - Transformations of Functions

Transformation	Effect on the Graph of f	Changes to Points on f	
Vertical translation (shift)			
y = f(x) + k $y = f(x) - k$	Shift upward k units Shift downward k units	Replace (x, y) by $(x, y + k)$. Replace (x, y) by $(x, y - k)$.	
Horizontal translation (shift)			
y = f(x - h) $y = f(x + h)$	Shift to the right h units Shift to the left h units	Replace (x, y) by $(x + h, y)$. Replace (x, y) by $(x - h, y)$.	
Vertical stretch/shrink	Vertical stretch (if $a > 1$) Vertical shrink (if $0 < a < 1$)		
y = a[f(x)]	Graph is stretched/shrunk vertically by a factor of a.	Replace (x, y) by (x, ay) .	
Horizontal stretch/shrink	Horizontal shrink (if $a > 1$) Horizontal stretch (if $0 < a < 1$)		
$y = f(a \cdot x)$	Graph is shrunk/stretched horizontally by a factor of $\frac{1}{a}$.	Replace (x, y) by $(\frac{x}{a}, y)$.	
Reflection			
y = -f(x) $y = f(-x)$	Reflection across the x-axis Reflection across the y-axis	Replace (x, y) by $(x, -y)$. Replace (x, y) by $(-x, y)$.	

Piece-Wise Functions

$$f(x) = \begin{cases} 2.25x & \text{for } 0 \le x \le 20\\ 45 & \text{for } 20 < x < 80\\ -1.5x + 165 & \text{for } 80 \le x \le 100 \end{cases}$$

Rate of Change

Given points (x_1, y_1) and (x_2, y_2) as points on the graph of a function f(), if f() is defined on the interval $[x_1, x_2]$, then the average rate of change is the slope of the secant¹ line containing $(x_1, f(x_1))$ and $(x_2, f(x_2))$.

Brian Rashap Quantum Math August 2025 19 / 42

¹Secante comes from the latin secare meaning "to cut."

Difference Quotient

Suppose we choose a value x from the domain of f() and a second value x + h, where $h \neq 0$, but very small.

The difference quotient².

$$m = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$$
 (3)

Brian Rashap Quantum Math August 2025 20 / 42

²The difference quotient is important to calculus, where the exact rate of change at a point is given by $\lim_{h\to 0} (m)$

Increaing, Decreaing, Constant

Suppose that I is an interval contained within the domain of a function f.

- f is increasing on I if $f(x_1) < f(x_2)$ for all $x_1 < x_2$ on I.
- f is decreasing on I if $f(x_1) > f(x_2)$ for all $x_1 < x_2$ on I.
- f is constant on I if $f(x_1) = f(x_2)$ for all x_1 and x_2 on I.

For all $x_1 < x_2$ on I, $f(x_1) < f(x_2)$

f is decreasing

$$f\left(x_{1}\right) > f\left(x_{2}\right)$$

For all x_1 and x_2 on I,

$$f(x_1) = f(x_2)$$

Brian Rashap

Local Minima and Maxima

- f(a) is a relative maximum of f if there exists an open interval³ containing a such that $f(a) \ge f(x)$ for all x in the interval.
- f(b) is a relative minimum of f if there exists an open interval⁴ containing a such that $f(b) \le f(x)$ for all x in the interval.

⁴An open interval is an interval in which the endpoints are not included.

Brian Rashap Quantum Math August 2025 22 / 42

³An open interval is an interval in which the endpoints are not included.

Operations on Functions

Exponential Functions

- Linear growth a constant rate of change, that is,a constant number by which the output increased for each unit increase in input.
- Exponential growth increase based on a constant multiplicative rate
 of change over equal increments of time, that is, a percent increase of
 the original amount over time.

x	$f(x) = 2^x$	g(x) = 2x	
0	1	0	
1	2	2	
2	4	4	
3	8	6	
4	16	8	
5	32	10	
6	64	12	

Origami to the Moon

What about Negative Exponents

The general form of an exponential function is $f(x) = ab^x$, where a is any non-zero number and b is an positive number not equal to 1.

- If b > 1 the function grows at a rate proportional to its size.
- If 0 < b < 1 the function decays at a rate proportional to its size.

For example, $f(x) = 2^x$:

x								
$f(x) = 2^x$	$2^{-3} = \frac{1}{8}$	$2^{-2} = \frac{1}{4}$	$2^{-1} = \frac{1}{2}$	$2^0 = 1$	$2^1 = 2$	$2^2 = 4$	$2^3 = 8$	

Brian Rashap Quantum Math August 2025 26 / 42

Scientific (SI) Prefixes

The Metric System Prefixes						
Prefix	Label	Decimal Value	Scientific	Colloquial		
yocto	У	0.000 000 000 000 000 000 000 001	10 ⁻²⁴	septillionth		
zepto	z	0.000 000 000 000 000 000 001	10 ⁻²¹	sextillionth		
atto	а	0.000 000 000 000 000 001	10 ⁻¹⁸	quintillionth		
femto	f	0.000 000 000 000 001	10 ⁻¹⁵	quadrillionth		
pico	р	0.000 000 000 001	10 ⁻¹²	trillionth		
nano	n	0.000 000 001	10 ⁻⁹	billionth		
micro	μ	0.000 001	10 ⁻⁶	millionth		
milli	m	0.001	10 ⁻³	thousandth		
centi	С	0.01	10 ⁻²	hundredth		
deci	d	0.1	10 ⁻¹	tenth		
		1	10°	one		
deka	da	10	10 ¹	ten		
hecto	h	100	10 ²	hundred		
kilo	k	1 000	10 ³	thousand		
mega	M	1 000 000	10 ⁶	million		
giga	G	1 000 000 000	10°	billion		
tera	Т	1 000 000 000 000	10 ¹²	trillion		
peta	Р	1 000 000 000 000 000	10 ¹⁵	quadrillion		
exa	E	1 000 000 000 000 000 000	10 ¹⁸	quintillion		
zetta	Z	1 000 000 000 000 000 000 000	10 ²¹	sextillion		
yotta	Υ	1 000 000 000 000 000 000 000 000	10 ²⁴	septillion		

e - an interesting aside

The letter e represents the irrational number:

$$e = \left(1 + \frac{1}{n}\right)^n \tag{4}$$

as *n* increases without bound.

The number e is used as a base for many real-world exponential models. To work with base e, we use the approximation, $e \approx 2.718282$. The constant was named by the Swiss mathematician Leonhard Euler (1707–1783) who first investigated and discovered many of its properties.

Graphing Exponentials

Shifts:

Stretch:

Flip:

Trigonometry

Algebraic Functions

An algebraic function provides a "y-value" for every "x-value"

- Linear: y = x + 2
- Quadratic: $y = x^2$
- Periodic: y = sin(x)

12 BASIC FUNCTIONS

More Desmos Fun

Pi (π)

Brian Rashap Quantum Math August 2025 33 / 42

Unit Circle and Trigonometric Functions

The Unit Circle is a circle with a radius of 1.

The Unit Circle can be used to map out the trigonometric values of sine, cosine, and tangent.

Brian Rashap Quantum Math August 2025 34 / 42

Unit Circle and the Value of $sin(\theta)$

Trigonometry

- $sin(\theta)$ is the y-value of the point on the Unit Circle at angle θ .
- ullet In our trig functions, heta is measured in radians (rad), not degrees.
- 360 degrees = 2π radians.

Sine Waves

$$y = A * sin(2 * \pi * \nu * t) + B$$

where A = amplitude, B = offset, ν = frequency = $\frac{1}{\textit{period}}$, and t = time in seconds.

Using Desmos (desmos.com/calculator)

Brian Rashap Quantum Math August 2025 37 / 42

Phase Shift

The sine wave can be shifted relative to each other by adding in a phase shift (ϕ) , which will shift the wave to the left or right. Blue lags Red:

Green leads Red:

Brian Rashap Quantum Math August 2025 38 / 42

SOH CAH TOA

- sin = opposite over hypotenuse
- cos = adjacent over hypotenuse
- tan = opposite over adjacent

 $sin(\Theta) = opposite / hypotenuse$ or opposite = hypotenuse * $sin(\Theta)$

Vectors

Scalars and Vectors

Scalars are quantities that are fully described by a magnitude (or numerical value) alone.

Vectors are quantities that are fully described by both a magnitude and a direction.

Pythagorean Theorem in 3 Dimensions

To add orthogonal (at right angles to each other) vectors in 3 Dimensions:

$$C = \sqrt{A_x^2 + A_y^2}$$

$$A_{total} = \sqrt{C^2 + A_z^2}$$

$$\bullet \ A_{total} = \sqrt{A_x^2 + A_y^2 + A_z^2}$$