Control de sistemas

Ing. Andrés Guillermo Molano Jiménez, PhD.

Información general

- Profesor: Ing. Andrés Molano, PhD.
- Correo: amolano@javeriana.edu.co
- Horario:
 - G1 Martes 7 a.m.- 10 a.m.
- Información del curso -> *Brightspace*.
- Laboratorio:
 - Profesor: Ing. David Magín Flórez PhD.
 - d.florez@javeriana.edu.co

Programa del curso

Capítulo 1. Fundamentos de sistemas de control.

Capítulo 2. Diseño de controladores clásicos.

Capítulo 3. Implementación digital de controladores.

Capítulo 4. Control por variables de estado.

Contenido.

Capítulo 1. Fundamentos de sistemas de control.

- Definición y beneficios de la realimentación (lazo abierto vs cerrado).
- Diagramas de bloques.
- Sistemas electromecánicos: Motor D.C.
- Estabilidad externa (BIBO)
- Criterio de Routh-hurwitz.
- Error en estado estacionario.
- Análisis de la respuesta transitoria.
- Aproximación de modelos (curva de reacción).

Contenido

• Capítulo 2. Diseño de controladores clásicos.

- Acciones básicas de control (ON-OFF y PID)
- Métodos de sintonización PID (técnicas heurísticas, criterios óptimos, síntesis por *Dahlin*, ubicación de polos, cancelación polo-cero).
- Implementación de controladores (PID standalone, PLC, DCS).
- Características de los controladores (modo manual o automático, *bumpless transfer*, *reset windup*, acciones directa e inversa, etc.)
- Diseño de compensadores por lugar de las raíces.
- Diseño de compensadores por respuesta en frecuencia.

Contenido

- Capítulo 3. Implementación digital de controladores.
 - Introducción al control digital
 - Acondicionamiento de señal
 - Métodos de discretización
 - Soluciones micro-controladas
 - Manejo de actuadores PWM

Contenido

- Capítulo 4. Control por variables de estado.
 - Representación en variables de estado.
 - Controlabilidad y observabilidad.
 - Transformación de similitud.
 - Formas canónicas.
 - Estabilidad interna.
 - Diseño por ubicación de polos.
 - Linealización.
 - Diseño de observadores de estado.

Competencias disciplinares

- Funcionamiento y especificaciones de desempeño de sistemas de control realimentado
- Diseño de controladores lineales de sistemas de una sola entrada y una sola salida.
- Uso de sistemas micro-controlados para la implementación digital de controladores lineales.
- Implementación de etapas de acondicionamiento de señal en interfaces analógicas y digitales.

Resultados de formación

- Expresar los requerimientos de diseño de controladores lineales a partir de unas especificaciones de desempeño dadas (CDIO 4.3.3) (NUCLEAR A).
- Desarrollar algoritmos de control siguiendo una metodología de diseño en ingeniería (CDIO 4.4.1) (NUCLEAR B).
- Implementar un controlar lineal sobre un sistema micro-controlado (CDIO 4.5.4) (NUCLEAR C).
- Aplicar conceptos de acondicionamiento de señal para el diseño de lazos de control realimentado en tiempo discreto (CDIO 4.4.3) (NUCLEAR D).
- Utilizar tablas, gráficos y diagramas de bloques para reportar el desempeño de un sistema de control mediante documentos técnicos (CDIO 3.2.5) (NUCLEAR A).

Evaluación

• Tareas 10%

• Examen parcial 25% (semana 8)

• Examen final 25% (semana 17 o 18)

Laboratorios y proyecto parte I.
 20% (Semana 13)

Laboratorios y proyecto parte II.
 20% (Semana 18)

Recursos bibliográficos

- Dorf, R. C., Bishop, (2011). Sistemas de control moderno. Pearson Prentice Hall.
- Golnaraghi, F., & Kuo, B. C. (2010). Automatic control systems. Wiley.
- Franklin, G. F., Powell, J. D., & Workman, M. L. (2006). *Digital control of dynamic systems*. Menlo Park: Addison-wesley.
- OGATA Katsuhiko. *INGENIERÍA DE CONTROL MODERNA.* 4ta. Edición. Madrid: Pearson Prentice Hall. 2003.
- CHEN Chi-Tsong. ANALOG AND DIGITAL CONTROL SYSTEM DESIGN: Transfer-Function, State-Space, and Algebraic Methods. Philadelphia: Saunders College, 1993.
- Astrom, K. J., & HÄgglund, T. (2006). Advanced PID control. *IEEE Control Systems*, Vol. 26. https://doi.org/10.1109/MCS.2006.1580160

Clase 1: Introducción

El control está en todas partes....

Amplificadores operacionales Control de ganancia automática

Convertidores de energía Algoritmos de control de turbinas Estimación de los disturbios por *LIDAR*

Control y optimización de una planta de etileno

Control térmico de muchos procesadores de núcleo y multinúcleo

http://ieeecss.org/impact-control-technology-2nd-edition

* https://youtube.com/playlist?list=PLd90-Wkq-9ZFf8XobwPG7HJz0EGogUsqH

El control está en todas partes....

Sistemas de GNC*

Active Safety
Commands

Active

Active

Vehicle

Corrección automática de dirección

Safety Controller

sistemas inteligentes de transporte

Oportunidades para la teoría del control en la bolsa

http://ieeecss.org/impact-control-technology-2nd-edition

El control está en todas partes....

Páncreas artificial

Control de piernas protésicas motorizadas

Control en la Rehabilitación del Accidente Cerebrovascular

Robots de asistencia para subir escaleras

http://ieeecss.org/impact-control-technology-2nd-edition

Pirámide de Automatización

Revolución de la Industria

Smart Factory

Orion Station

Aplicación: HVAC

Ejemplo arquitectura sistema de control

Ejemplos en la vida diaria

• Actualmente los sistemas de control se encuentran en todas partes.

(peso ropa)

- En el hogar:
 - Hornos
 - Lavadoras
 - Neveras
 - •

Monitorear Controlador Ejecutar

Controlar un sistema físico es mantener un conjunto de condiciones deseadas por medio del ajuste de unas variables seleccionadas, a pesar de las perturbaciones causadas por variables desconocidas.

Sistema de Control: Interconexión de componentes que conforman un sistema, el cual puede proveer una respuesta deseada.

Objetivos del control

- 1. Seguridad.
- 2. Protección ambiental.
- 3. Protección del equipo.
- 4. Operación y producción estable.
- 5. Calidad del producto.
- 6. Utilidad.
- 7. Monitoreo y diagnóstico.

Dominios del control

Control en lazo abierto

- Componentes:
 - Controlador
 - Proceso controlado

Control manual

• ¿Qué acciones ejecuta el operario para mantener el flujo?

Control en lazo cerrado (realimentación)

• Problemas de control: seguimiento y regulación

Control en lazo cerrado

• Componentes:

- Sensor o elemento primario.
- Transmisor o elemento secundario.
- Controlador.
- Elemento final de control o Actuador.
- Proceso.

• Operaciones:

- Medición
- Decisión
- Acción

Términos importantes

- Variable manipulada (OP Output o MP manipulated variable)
- Variable controlada (PV process variable)
- Referencia (SP setpoint)
- Error = SP-PV
- Proceso
- Perturbación (disturbios de entrada, disturbios externos, cambios de *setpoint*).

Faceplate de un controlador

Diseño de un sistema de control

Páncreas Artificial

¿Cuál es el objetivo del sistema y cómo lo logra?

Ejemplo Control de Crucero

Considere un vehículo automotor desplazándose en la posición

horizontal:

Principio fundamental:

$$m\frac{dv}{dt} = F - F_d.$$

El modelo de la fuerza del motor

La Fuerza F es generada por el Motor, cuyo torque es proporcional a el combustible inyectado, el cual es proporcional a la señal de control

El torque también depende de la velocidad angular del motor

El modelo que expresa esta relación se presenta a continuación

$$T_m(\omega) = u(t)T_{max}\left(1 - \beta\left(\frac{\omega}{\omega_{max}} - 1\right)^2\right)$$

La velocidad del motor se relaciona con la velocidad del vehículo mediante la siguiente relación $\omega = \frac{n}{r}v := \omega = \alpha_n v$

Por ende, el torque del motor se puede expresar en términos de la velocidad como:

$$T_m(v) = u(t)T_{max}\left(1 - \beta\left(\frac{v}{v_{max}} - 1\right)^2\right) = u(t)T(v)$$

Los valores típicos de α_n para cada marcha son:

Marcha	α_{N}
Primera	40
Segunda	25
Tercera	16
Cuarta	12
Quinta	10

La Fuerza del Motor se puede expresar entonces como

$$F(v,u) = \alpha_n u(t) T_{max} \left(1 - \beta \left(\frac{v}{v_{max}} - 1 \right)^2 \right)$$

Si la velocidad del carro es 50 km/h, y se encuentra en quinta ¿Cuál sería le fuerza instantánea del motor si presiono el acelerador hasta el fondo?

Asuma
$$T_{max}=200~Nm$$
 , $\omega_{max}=4000~RPM~y~eta=0.4$

El modelo de las perturbaciones

El vehículo está sujeto a

- Fuerza de fricción por rodamiento $F_r(v) = mgC_r \operatorname{sgn}(v)$
- Fuerza de tracción aerodinámica $F_a(v) = \frac{1}{2}\rho C_d A v^2$
- Fuerza de Gravedad $F_g(\theta) = mgsin(\theta)$

El modelo Completo

La Ecuación que domina el movimiento del vehículo es

$$m\frac{dv}{dt} = F(v, u) - \frac{1}{2}\rho C_d A v^2 - mgC_r \operatorname{sgn}(v) - mg\sin(\theta)$$

Al sistema de control de crucero se le instala un controlador de la forma

$$\frac{dI}{dt} = e_c, I(0) = I_0 \quad u(t) = k_p e_c + k_i I \quad e_c = v_r - v$$

Para 2 casos

Caso 1
$$k_p = 0.5 \ k_i = 0.1$$

Caso 2
$$k_p = 0.5 \ k_i = 0$$

I ATLAB® SIMULINK®

Resultados Caso 1

Resultados Caso 2

Reflexión

¿Por qué al eliminar la componente Integral La velocidad no regresa a la velocidad de referencia?

Ejercicio de Simulación (Bono 5% Primer Parcial)

- Encuentre el valor de I_0 que permite que la velocidad inicial del vehículo corresponda a los 5x donde x es el último digito de su Documento de Identidad
- Realicé la simulación empleando el archivo compartido por el profesor y analicé sus resultados en un informe

Beneficios de la realimentación

- Atenuación de la sensibilidad de disturbios y perturbaciones en el sistema
- Aumento del ancho de banda
- Reducción en distorsión no lineal
- Facilidad en el control y ajuste de la respuesta transitoria
- Mejoramiento del rechazo a ruido
- Reducción del error en estado estacionario

Costo de la realimentación

- Aumento de los componentes y la complejidad del sistema.
- La medición (sensor) es un elemento clave
 - Costoso
 - Introduce ruido e imprecisiones
- Perdida de ganancia.
- Posibilidad de inestabilidad
- A pesar de lo anterior, en la mayoría de los casos, las ventajas superan las desventajas.

Efectos de la realimentación

- Desempeño del sistema:
 - Estabilidad.
 - Ancho de banda.
 - Ganancia.
 - Impedancia.
 - Sensibilidad.
 - Ruido o disturbio externo.
 - Respuesta transitoria.
 - Respuesta en frecuencia.

Efectos en la Ganancia

¿Cuál es la función de transferencia en lazo cerrado?

¿Qué sucede con la ganancia del sistema en lazo cerrado vs. Lazo abierto?

Sí G>>H tal que GH>>1, ¿Qué se puede afirmar acerca del comportamiento en lazo cerrado? ¿Qué pasa si G es no lineal?

Efectos en la estabilidad

- Si GH=-1, la salida del sistema es infinita, por lo tanto, inestable (No es la única condición). $M=\frac{y}{r}=\frac{G}{1+GH}$
- Estabiliza sistemas inestables. Por ejemplo, seleccionando adecuadamente la ganancia F.

$$M = \frac{y}{r} = \frac{G}{1 + GH + GF}$$

Efectos en la sensibilidad

• La sensibilidad de la ganancia neta del sistema M con respecto a las variaciones en G se define como:

$$S_G^M = \frac{\frac{\partial M}{M}}{\frac{\partial G}{G}}$$
 Porcentaje de cambio en M

• Ejemplo, la sensibilidad en lazo cerrado es:

$$S_G^M = \frac{\partial M}{\partial G} \frac{G}{M} = \frac{1}{1 + GH}$$

• En lazo abierto: $S_G^M = 1$

Efectos en ruido y disturbios externos

• Retroalimentación puede reducir el ruido o los disturbios.

• En lazo abierto: $y = G_2 n$

• En lazo cerrado: $y = \frac{G_2}{1 + G_1 G_2 H} n$

Diagramas de bloques

Forma cascada

Forma paralela

$$\begin{array}{c|c} \hline R(s) \\ \hline & \pm G_1(s) \pm G_2(s) \pm G_3(s) \\ \hline \end{array}$$

Realimentación

Otras equivalencias

Otras equivalencias

Ejemplo

Ejemplo

