Solutions: Homework 7

J. Scott

March 27, 2019

- (3.3.2) (a) Since **N** is not bounded, it is not compact.
 - (b) Let $\alpha \in [0,1]$ be an irrational number (say, $1/\sqrt{2}$). Let (a_n) be the sequence of decimal expansions of α truncated after n digits. Then (a_n) is sequence in $\mathbf{Q} \cap [0,1]$ that converges to α . Since $\alpha \notin \mathbf{Q} \cap [0,1]$, $\mathbf{Q} \cap [0,1]$ is not closed and so not compact.
 - (c) As discussed in class, the Cantor set is closed and bounded, therefore compact.
 - (d) This is the set of partial sums of the convergent series $\sum_{n=1}^{\infty}$. If we arrange them in order, they form a sequence that converges to $\pi^2/6$, which is not in the set. Therefore the set is not closed, so not compact.
 - (e) Any sequence in this set will contain a subsequence of ((n-1)/n), which converges to 1, an element of the set. Thus the set is closed. Since the set is also bounded (above by 1, below by 1/2), it is compact.
- (3.3.5) (a) True, because the arbitrary intersection of compact sets is closed and, since contained in any one of the compact sets, bounded.
 - (b) False. Consider the collection $\{[-n, n] : n \in \mathbb{N}\}$. The union is \mathbb{R} , which is not bounded and so not compact.
 - (c) False. For example, A = (0, 1), K = [0, 1]. Then $A \cap K = A$ is not closed and so not compact.
 - (d) False. For example, $F_n = [n, \infty)$. Then each F_n is closed, but $\bigcap_{n=1}^{\infty} F_n = \emptyset$.
- (4.2.5) (a) Given $\varepsilon > 0$, let $\delta = \varepsilon/3$. Then whenever $0 < |x-2| < \delta$, we have

$$|(3x+4)-10| = |3x-6| = 3|x-2| < 3\delta = \varepsilon.$$

Therefore $\lim_{x\to 2} (3x+4) = 10$.

(b) Given $\varepsilon > 0$, let $\delta = \varepsilon^{1/3}$. Then whenever $0 < |x| < \delta$, we have

$$|x^3 - 0| = |x|^3 < \delta^3 = \varepsilon.$$

Therefore $\lim_{x\to 0} x^3 = 0$.

(c) Given $\varepsilon > 0$, let $\delta = \min\{1, \varepsilon/6\}$. Then whenever $0 < |x-2| < \delta$, we have -1 < x - 2 < 1, so adding 5, we get 4 < x + 3 < 6, so |x+3| < 6. Therefore

$$|(x^2 + x - 1) - 5| = |x + 3||x - 2| < 6|x - 2| < 6\delta \le \varepsilon.$$

Therefore $\lim_{x\to 2} (x^2 + x - 1) = 5$.

(d) Given $\varepsilon > 0$, let $\delta = \min\{1, 6\varepsilon\}$. Whenever $0 < |x-3| < \delta$, we have -1 < x-3 < 1, so 2 < x < 4. Taking reciprocals, we get $\frac{1}{2} > \frac{1}{x} > \frac{1}{4}$. In particular, $\frac{1}{|x|} < \frac{1}{2}$, and so

$$\left|\frac{1}{x} - \frac{1}{3}\right| = \frac{|x-3|}{3|x|} < \frac{|x-3|}{6} < \frac{\delta}{6} \le \varepsilon.$$

Therefore $\lim_{x\to 3} \frac{1}{x} = \frac{1}{3}$.

- (4.2.8) (a) The limit does not exist. Consider the sequences $a_n = 2 + \frac{1}{n}$ and $b_n = 2 \frac{1}{n}$. Then $\lim \frac{|a_n 2|}{a_n 2} = 1$ but $\lim \frac{|b_n 2|}{b_n 2} = -1$.
 - (b) Near $x = \frac{7}{4}$, x 2 < 0, so $\lim_{x \to \frac{7}{4}} \frac{|x-2|}{x-2} = -1$.
 - (c) The limit does not exist. For example, if $a_n = \frac{1}{n}$, then $\lim_{n \to \infty} (-1)^{1/a_n} = \lim_{n \to \infty} (-1)^n$ which we have seen does not exist.
 - (d) Since $|\sqrt[3]{x}(-1)^{[[1/x]]}| = |\sqrt[3]{x}|$, the limit exists and equals zero.
- (4.3.1) (a) Given $\varepsilon > 0$, let $\delta = \varepsilon^3$. Then whenever $|x| < \delta$, we have

$$|g(x) - g(0)| = |x^{\frac{1}{3}}| = |x|^{\frac{1}{3}} < \delta^{\frac{1}{3}} = \varepsilon.$$

(b) We will use Example 4.3.8 as a template. Since g is an odd function, we may suppose that c > 0.

$$|x^{\frac{1}{3}} - c^{\frac{1}{3}}| = |x^{\frac{1}{3}} - c^{\frac{1}{3}}| \left(\frac{x^{\frac{2}{3}} + x^{\frac{1}{3}}c^{\frac{1}{3}} + c^{\frac{2}{3}}}{x^{\frac{2}{3}} + x^{\frac{1}{3}}c^{\frac{1}{3}} + c^{\frac{2}{3}}} \right) = \frac{|x - c|}{x^{\frac{2}{3}} + x^{\frac{1}{3}}c^{\frac{1}{3}} + c^{\frac{2}{3}}} \le \frac{|x - c|}{c^{\frac{2}{3}}}.$$

Let $\varepsilon > 0$ be arbitrary and set $\delta = c^{\frac{2}{3}}\varepsilon$. Then $|x - c| < \delta$ implies that

$$|x^{\frac{1}{3}} - c^{\frac{1}{3}}| \le \frac{|x - c|}{c^{\frac{2}{3}}} < \frac{\delta}{c^{\frac{2}{3}}} = \varepsilon.$$

- (4.3.4) (a) Suppose g is zero everywhere except at 0, where g(0) = 1. Let f be the constant function f(x) = 0. Then $\lim_{x\to 0} f(x) = 0$ and $\lim_{y\to 0} g(y) = 0$, but $\lim_{x\to 0} g(f(x)) = 1$.
 - (b) Done in class.
 - (c) In our counterexample above, f is continuous, so (a) does not hold if only f is continuous. It does hold if only g is continuous, since if (x_n) is any sequence that converges to p, with $x_n \neq p$ for all n, then by Theorem 4.2.3, $f(x_n) \to q$. Since g is continuous, $g(f(x_n)) \to r$.