Computer Vision

Connect camera

Run take_picture.py

Press the spacebar to take pictures of the chessboard at different distances and angles from the camera. Take at least 50 images.

Run calibration.py

If the code does not work, run take_picture.py again and take more images. You may need up to 100 images. This code will create an save a file called **calib.npz**. This file contains all of the camera distortion matrices needed to correct for intrinsic and extrinsic distortion.

Open aruco_reader.py

If you are using a new aruco marker, measure the width of the marker in meters with a caliper, and change the **marker_size** value. Time, x, y, and z positions will be written into **datafile.csv**, and the rotation vectors for roll, pitch, and yaw, will be written in the **rvec.csv** file. The video will be written as an mp4 in **output.mov**.

Run aruco_reader.py

Press the 0 key to end the program.

Post-Processing

Run velocity.py

This plots the position and velocity of the data from **datafile.csv**. This data is noisy.

Run **Kalman.py**

Implements a 1-D constant velocity Kalman filter to remove sensor noise.