$MAC0210 - 3^{2}$ Lista de Exercícios - Data de entrega: 14/06/2024

Instruções: as questões em papel devem ser resolvidas à mão e escaneadas; as demais questões devem ser implementadas em Octave. Use os nomes questaoX[itemY] para facilitar a identificação e entregue um único arquivo (tgz/zip) no edisciplinas até as 23:55 do dia 14/06/2024.

Questão 1 (papel) Dadas as quatro observações $(x_i, y_i) = (-1, 1), (0, 1), (1, 2)$ e (2, 0), determine os coeficientes c_j , j = 0, 1, 2, 3 dos polinômios interpoladores cúbicos $p(x) = \sum_{j=0}^{3} c_j \phi_j(x)$ que satisfazem $p(x_i) = y_i$, i = 0, 1, 2, 3, usando as seguintes bases (substitua os valores numéricos de x_i nas expressões dos polinômios $\phi_j(x)$ abaixo):

- (a) $\{1, x, x^2, x^3\}$;
- $(\mathbf{b}) \ \left\{ \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}, \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)}, \frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}, \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)} \right\}.$
- (c) $\{1, (x-x_0), (x-x_0)(x-x_1), (x-x_0)(x-x_1)(x-x_2)\}.$
- (d) Verifique algebricamente que as expressões dos 3 polinômios são idênticas (o teorema da pg. 301 garante que são, mas aqui você deve reconfirmar isso fazendo as contas).

Questão 2 Na modelagem de um problema aparece a seguinte função

$$u(x) = \gamma_0 e^{\gamma_1 x + \gamma_2 x^2},$$

onde γ_i , i=0,1,2 são coeficientes desconhecidos. Considere dados três pares (x_i,y_i) , i=0,1,2 satisfazendo $y_i=u(x_i)$. Observe que a função $v(x)=\ln(u(x))$ é um polinômio em x.

- (a) (papel) Encontre um polinômio interpolador quadrático v(x) que garanta que $u(x) = e^{v(x)}$ interpole os pontos dados, e escreva uma fórmula para u(x) em função de (x_i, y_i) , i = 0, 1, 2; (dica: os pares (x_i, z_i) , i = 0, 1, 2 para a interpolação de v(x) não são os mesmos (x_i, y_i) dados).
- (b) (código) Escreva um código que encontra u(x) a partir dos pares $(x_i, y_i) = (0, 1), (1, .9), (3, .5)$. Imprima os coeficientes γ_i e plote a função interpoladora u(x) no intervalo [0, 6]. Indique uma característica do gráfico dessa curva que seja qualitativamente diferente do gráfico de uma função quadrática.

Questão 3 (papel) Considere dados uma função f(x) e n+1 observações $(x_0, f(x_0)), \ldots, (x_n, f(x_n))$. Considere agora a função g(x) baseada nas diferenças divididas

$$g(x) = f[x_0, x_1, \dots, x_n, x].$$

Suponha adicionalmente que f(x) é um polinômio de grau m. Mostre formalmente as afirmações a seguir:

- (a) se $m \le n$, então g(x) = 0, $\forall x$;
- (b) se m > n, então q(x) é um polinômio de grau m n 1.

[Dica: considere o polinômio p(x) que interpola as observações $(x_0, f(x_0)), \ldots, (x_n, f(x_n))$ e a forma de Newton para acrescentar uma nova observação (x, f(x)).]

Questão 4 Suponha que queiramos aproximar a função e^x no intervalo [0,1] usando uma interpolação polinomial com $x_0 = 0$, $x_1 = 1/2$ e $x_2 = 1$. Seja p(x) o polinômio interpolador obtido.

(a) (papel) Encontre um limitante superior teórico para a magnitude do erro

$$\max_{0 \le x \le 1} |e^x - p(x)|.$$

[Dica: para encontrar o máximo de $\psi(x)$, considere os zeros de $\psi'(x)$ que ocorrem em $\frac{3\pm\sqrt{3}}{6}$.]

- (b) (código) Construa o polinômio interpolador p(x) com o seu método preferido, e plote em um mesmo gráfico a função original e sua aproximação.
- (c) (código) plote a magnitude do erro $|e^x p(x)|$ no intervalo [0,1] em escala logarítmica (use semilogy), e verifique que esse erro está sempre abaixo do limitante obtido no item (a).