Universidade Federal do Rio Grande do Norte Departamento de Informática e Matemática Aplicada

Disciplina: DIM0406 — Algoritmos Avançados Docente: Sílvia Maria Diniz Monteiro Maia

Discente: Felipe Cortez de Sá

GRASP-VNS aplicado ao problema de Steiner com rotulação mínima

1 Introdução

Neste relatório são apresentados os algoritmos Greedy Randomized Adaptative Search Procedure e Variable Neighbourhood Search para solução do problema da árvore de Steiner com rotulação mínima. Os princípios de cada técnica são descritos, assim como a maneira em que foram utilizados para resolver especificamente o problema. É realizada uma análise de complexidade em tempo para as implementações, identificando os gargalos. Explica-se como foram gerados os casos de teste e os seus parâmetros e são apresentados resultados comparando o resultado das execuções para cada técnica, incluindo o algoritmo exato desenvolvido na segunda unidade. Além disso, é feito um adendo para o relatório do primeiro trabalho, apresentando os resultados e conclusão previamente faltantes.

2 Metaheurísticas utilizadas

2.1 GRASP

O Greedy Randomized Adaptative Search Procedure é comumente utilizado em problemas de otimização combinatória. A cada iteração, é realizada uma fase de construção, em que se gera uma solução para o problema e posteriormente uma fase de busca local, procurando um mínimo local na vizinhança da solução gerada. Se a melhor solução global é encontrada na iteração, atualiza-se a variável que contém a melhor solução. É um algoritmo de inicialização múltipla, ou seja, as duas fases são repetidas até o critério de parada ser satisfeito, podendo ser o número de iterações ou o tempo de execução, por exemplo. Na fase de construção, é criada uma lista de candidatos restritos, possuindo os candidatos cujos elementos adicionados minimizam os custos incrementais. O elemento é selecionado aleatoriamente da RCL.

2.2 VNS

O Variable Neighbourhood Search faz uso de múltiplas estruturas de vizinhança, explorando comumente espaços cada vez mais distantes e maiores, portanto mais custosos. Para fugir de mínimos locais, o algoritmo possui uma fase de agitação, em que a solução encontrada pode ser trocada por uma pior a fim de diversificar a busca, explotando melhor o espaço.

3 Metaheurística aplicada ao problema

3.1 GRASP

No problema, a fase de construção gera uma lista de candidatos restritos calculando $\operatorname{argmin}(\operatorname{comp}(c))$ para cada cor não utilizada, onde $\operatorname{comp}(c)$ é o número de componentes conexos do grafo com a coloração c que incluem pelo menos um nó básico. Após a segunda repetição, o primeiro rótulo a ser adicionado é totalmente aleatório, ou seja, a lista de candidatos é inicializada como 1, 1, ..., 1, explotando melhor o espaço de busca em vez de escolher sempre rótulos que minimizam $\operatorname{comp}(c)$.

Após a fase de construção, é feita uma busca local, que consiste em tentar remover cores da solução e verificar se ainda obtém-se um grafo conexo, configurando outra solução válida.

```
grasp(limite) {
    col* = \{\}
    int no_improv = 0
    while(no_improv < limite) {</pre>
        col = {}
        construct(col)
        local(col)
        if(card(col) < card(col*)) {</pre>
            col* = col
            no_improv = 0
        } else {
            ++no_improv
        }
    }
}
construct() {
   if(iteration > 2) {
        rcl = {1, 1, ..., 1}
        col[random()] = 1
    while(comp(c) > 1) {
        rcl = argmin comp(c)
        col = col \cup rcl[random()]
    }
}
```

Listing 1: Pseudocódigo para GRASP

3.2 VNS

Quando o algoritmo é executado independentemente, a configuração das cores inicial é totalmente aleatória, e a fase de agitação remove e adiciona cores dependendo da vizinhança.

```
vns(col, kmax)
col2 = col
k = 1
while(k <= kmax) {
    shaking(col2, k)
    local(col2)</pre>
```

```
if(card(col2) < card(col)) {
        col = col2
        k = 1
    } else {
        ++k
    }
}
shaking(col, k) {
    col2 = col
    for(i in 1..k) {
        if(i \le card(col)) {
            col[random(cores utilizadas em col)] = 0
        } else {
            col[random(cores nao utilizadas em col)] = 1
    while(comp(c) > 1) {
        melhores = argmin comp(c)
        col2[random(melhores)] = 1
    }
}
```

Listing 2: Pseudocódigo para VNS

4 Complexidade

5 Casos teste utilizados

Os casos teste utilizados são gerados automaticamente por um programa generate.c de acordo com parâmetros de entrada. Os parâmetros são SIZE, a quantidade de nós do grafo, COLORS, o número de rótulos, DENSITY, a proporção de arestas para cada nó, e BASIC, a quantidade de nós básicos. DENSITY funciona percorrendo a matriz de adjacência que representa o grafo e de acordo com a probabilidade definida (sendo 0 e 100 equivalentes a 0% e 100%, respectivamente) adicionando ou não uma aresta de rotulação aleatória ligando dois nós. O arquivo gerado é então passado para o programa principal.

A fim de comparar os resultados com o trabalho realizado por Cerulli, [4], os parâmetros dos testes são os mesmos, isto é, tem-se uma combinação entre $\mathtt{SIZE} \in \{50, 100\}$, $\mathtt{COLORS} \in \{0.25n, 0.5n, n, 1.25n\}$, $\mathtt{DENSITY} \in \{0.2, 0.5, 0.8\}$ e $\mathtt{BASIC} \in \{0.2n, 0.4n\}$. Cada caso teste é executado dez vezes diferentes e são apresentadas a média, melhor e pior casos e mediana.

O código que gera os arquivos de caso teste para os parâmetros desejados está em generate.py.

6 Resultados

7 Experimentos comparativos

8 Conclusões

9 Correções do primeiro trabalho

9.1 Técnica utilizada

O branch-and-bound é um algoritmo de otimização que explora o espaço de busca de maneira mais eficiente que uma enumeração total de soluções possíveis por força-bruta. Atualizando o limite inferior continuamente, é possível eliminar a exploração de regiões não-promissoras do espaço de busca.

9.2 Resultados

Opa.

9.3 Conclusão

9.4 Considerações adicionais

O código referente ao algoritmo exato foi modificado para aceitar entradas de um caso de teste, foi comentado mais extensivamente e agora é cronometrado para possibilitar a análise de resultados.

Referências

[1] S. Consoli, K. Darby-Dowman, N. Mladenovic, J.A. Moreno-Perez. Variable neighbourhood search for the minimum labelling Steiner tree problem. Annals of Operations Research, 2009.

https://www.researchgate.net/publication/225327721_Variable_neighbourhood_search_for_the_minimum_labelling_Steiner_tree_problem

- [2] Graphviz Graph Visualization Software.
- [3] Glover, F., Kochenberger, G. A. et al. *Handbook of Metaheuristics*. Kluwer Academic Publishers
- [4] R. Cerulli, A. Fink, M. Gentili e S. Voß. *Extensions of the minimum labelling spanning tree problem*. Journal of Telecommunications and Information Technology, 2006.

 $https://www.researchgate.net/publication/228668519_Extensions_of_the_minimum_labelling_spanning_tree_problem$

 $[5] \ \textit{Stack Overflow} \ -- \ \textit{Execution time of a C program}.$

http://stackoverflow.com/questions/5248915/execution-time-of-c-program

n	ı	l	d	b	Exato	GRASP	VNS
50	0	12	20	10	2.79	2.79	3.11
50	\mathbf{C}	12	20	20	3.79	3.79	1.18
50	0	12	50	10	2.14	2.14	0.74
50	\mathbf{C}	12	50	20	2.15	2.15	1.02
50	0	12	80	10	0.62	0.62	0.26
50	\mathbf{C}	12	80	20	0.99	0.99	0.22
50	\mathbf{C}	25	20	10	2.83	2.83	6.97
50	0	25	20	20	5.81	5.81	6.17
50	\mathbf{C}	25	50	10	3.79	3.79	3.22
50	0	25	50	20	5.70	5.70	4.83
50	0	25	80	10	1.35	1.35	1.14
50	0	25	80	20	3.37	3.37	0.99
50	0	50	20	10	7.13	7.13	12.03
50	0	50	20	20	17.33	17.33	24.27
50	0	50	50	10	9.62	9.62	9.23
50	0	50	50	20	14.04	14.04	8.75
50	0	50	80	10	3.49	3.49	1.66
50	0	50	80	20	5.63	5.63	3.03
50	0	62	20	10	9.90	9.90	19.35
50	0	62	20	20	29.64	29.64	28.15
50	0	62	50	10	6.64	6.64	14.36
50	\mathbf{C}	62	50	20	10.53	10.53	16.71
50	0	62	80	10	7.70	7.70	6.64
50	0	62	80	20	8.15	8.15	7.57
10	0	25	20	20	16.60	16.60	21.70
10	0	25	20	40	19.53	19.53	15.79
10	0	25	50	20	16.91	16.91	5.51
10	0	25	50	40	16.77	16.77	5.20
10	0	25	80	20	7.94	7.94	1.26
10	0	25	80	40	9.59	9.59	4.28
10	0	50	20	20	32.87	32.87	48.95
10	0	50	20	40	48.67	48.67	108.81
10	0	50	50	20	29.56	29.56	28.43
10	0	50	50	40	37.94	37.94	37.15
10	0	50	80	20	21.23	21.23	6.22
10	0	50	80	40	22.80	22.80	7.70
10	0	100	20	20	75.55	75.55	268.45
10	0	100	20	40	145.81	145.81	399.00
10	0	100	50	20	113.30	113.30	145.98
10	0	100	50	40	111.12	111.12	184.37
10	0	100	80	20	60.98	60.98	58.55
10	0	100	80	40	61.79	61.79	56.35
10	0	125	20	20	170.28	170.28	226.11
10	0	125	20	40	166.12	166.12	342.48
10	0	125	50	20	105.08	105.08	154.44
10	0	125	50	40	155.19	155.19	184.92
10	0	125	80	20	89.28	89.28	89.35
10	0	125	80	40	111.02	111.02	74.04

Tabela 1: Opa