EPITA / Info

Janvier 2012

GROUPE:....

NOM:

Partiel 1 Electronique

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif. Réponses exclusivement sur le sujet

Exercice 1. Théorèmes de Millman et de superposition (6 points)

Soit le circuit suivant :

1. Les générateurs et les résistances sont supposés connus. En utilisant le théorème de Millman, déterminer l'expression de $\it U$ et la simplifier. (On pourra choisir le point B comme référence des potentiels).

<i>د.</i>	Déterminer maintenant l'expression de $\it U$ en utilisant le théorème de superposition comparer le résultat avec l'expression obtenue à la question précédente.

Exercice 2. Théorèmes de Thévenin et de Norton (6 p	points)
Soit le circuit suivant :	$\begin{bmatrix} D & A & I \\ R_1 & R_3 & A \end{bmatrix}$
Le but de l'exercice est de déterminer les grandeurs suivantes : I , U_{AB} et la tension mesurée entre les points D et B , U_{DB} .	E_1 R_2 U_{AB} R_4
1. Déterminer le générateur de Thévenin équivalent à la pa	artie encadrée du circuit.
2. Donner alors le circuit de Norton équivalent.	

	3.	Donner alors l'expression de I , U_{AB} et U_{DB} .	
]			
	4.	Application Numérique : Calculer I, U_{AB} et U_{DB} en prenant $E_1=40V$, $E_4=24V$ R_1 :	= 1.0
	4.	Application Numérique : Calculer I , U_{AB} et U_{DB} en prenant $E_1=40V$, $E_4=24V$ $R_1=20$ et $R_2=9\Omega$, $R_3=2$, 1Ω et $R_4=2\Omega$	= 1Ω,
	4.	Application Numérique : Calculer I , U_{AB} et U_{DB} en prenant $E_1=40V$, $E_4=24V$ $R_1=20$ $R_2=9\Omega$, $R_3=2$, 1Ω et $R_4=2\Omega$	= 1Ω,
	4.	Application Numérique : Calculer I , U_{AB} et U_{DB} en prenant $E_1=40V$, $E_4=24V$ $R_1=20$ $R_2=9\Omega$, $R_3=2$, 10 et $R_4=2\Omega$	= 1Ω,
	4.	Application Numérique : Calculer I , U_{AB} et U_{DB} en prenant $E_1=40V$, $E_4=24V$ $R_1=20$ $R_2=9\Omega$, $R_3=2$, 1Ω et $R_4=2\Omega$	= 1Ω,
	4.	Application Numérique : Calculer I , U_{AB} et U_{DB} en prenant $E_1=40V$, $E_4=24V$ $R_1=20$ $R_2=9\Omega$, $R_3=2$, 1Ω et $R_4=2\Omega$	= 1Ω,
	4.	Application Numérique : Calculer I , U_{AB} et U_{DB} en prenant $E_1=40V$, $E_4=24V$ $R_1=20$ $R_2=9\Omega$, $R_3=2$, 1Ω et $R_4=2\Omega$	= 1Ω,
	4.	Application Numérique : Calculer I, U_{AB} et U_{DB} en prenant $E_1=40V$, $E_4=24V$ $R_1=20$ et $R_2=9\Omega$, $R_3=2.1\Omega$ et $R_4=2\Omega$	$=1\Omega$,
	4.	Application Numérique : Calculer I, U_{AB} et U_{DB} en prenant $E_1=40V$, $E_4=24V$ $R_1=R_2=9\Omega$, $R_3=2$, 1Ω et $R_4=2\Omega$	$=1\Omega$,
	4.	Application Numérique : Calculer I, U_{AB} et U_{DB} en prenant $E_1=40V$, $E_4=24V$ $R_1=R_2=9\Omega$, $R_3=2,1\Omega$ et $R_4=2\Omega$	$=1\Omega$,
	4.	Application Numérique : Calculer I, U_{AB} et U_{DB} en prenant $E_1=40V$, $E_4=24V$ $R_1=R_2=9\Omega$, $R_3=2$, 1Ω et $R_4=2\Omega$	$=1\Omega$,
	4.	Application Numérique : Calculer I, U_{AB} et U_{DB} en prenant $E_1=40V$, $E_4=24V$ $R_1=20$ $R_2=9\Omega$, $R_3=2$, 1Ω et $R_4=2\Omega$	$=1\Omega$,

Exercice 3. Lois de Kirchoff (6,5 points)

Soit le circuit suivant :

Remarque préalable : les réponses attendues dépendent des positions des interrupteurs et sont indépendantes les unes des autres : ce n'est donc pas un "grand" exercice mais 4 "petits" à partir du même schéma.

Commencez donc par les cas qui vous paraissent les plus simples!

La tension E et les 3 résistances sont supposées connues.

On demande de déterminer les équations des courants DANS les 3 résistances (les indices des courants dans le tableau ci-dessous correspondent évidemment aux résistances correspondantes).

Remplir le tableau suivant (résultat seul, pas le détail des calculs). Les courants demandés ne devront dépendre QUE de E et/ou des résistances R_1 , R_2 ou R_3 (sauf s'ils sont nuls!) et PAS les uns des autres (donc PAS de loi des nœuds pour exprimer un courant en fonction d'un autre).

Posez-vous les bonnes questions ... vous aurez les bonnes réponses !!

K_1	K ₂	R _{eq} "vue" par E	I_1	I_2	I_3
0	0				
0	F				4 + 1 + 0
F	0				
F	F				

Rq : O = Ouvert F = Fermé

<u>txercice 4.</u>	Valeur Moyenne d'un signal sinusoïdal (1,5 points)
Soit un signal s($t) = S. \sin(\omega t + \varphi).$
	valeur moyenne de ce signal est nulle.
5i vous manquez	de place, vous pouvez utiliser le cadre ci-dessous.