

By: HEMANG TAILOR- 2022CHB1048

CONTENT

- TASK DESCRIPTION&VARIABLES
- STEADY STATE IDENTIFICATION
- OPEN LOOP DYNAMIC
- FOPTD MODEL
- STABILITY ANALYSIS
- FEEDBACK CONTROL DESIGN

TASK DESCRIPTION &VARIABLES

- Continuous Stirred Tank Bio-Reactor System (CSTR), also known as a chemostat. Used for the fermentation process of plant cell cultures.
- The concentrations of X (cell concentration) and S (substrate concentration) are timedependent variables.
- D is the dilution rate (Manipulated).
- Growth rate of the cells $(\mu(S))$ depends on the substrate concentration.

DYNAMIC MODEL EQUATIONS:

□ Cell Growth Rate (X):

$$\circ \qquad \qquad dX/dt = \mu(S)X - DX$$

$$\circ \qquad \qquad \mu(S) = (\mu m^*S)/(Ks+S)$$

- μm : Maximum specific growth rate.
- S: Substrate concentration.
- Ks: Saturation constant.
- D: Dilution rate, representing the outflow of cells.

1. Substrate Consumption Rate (S):

- $o dS/dt = -(\mu(S)*X)/Y_xs + D(Sf-S)$
 - Y_xs: Yield coefficient (g of cells per g of substrate).
 - Sf: Feed substrate concentration.

Initial Values

D=0.1 h⁻¹ X=2.25 g/L
S=1.0 g/L Sf=10 g/L.

$$\mu$$
m=0.20 h⁻¹ Ks=1.0 g/L
 Y_x s=0.5 g/g

Manipulated Variable – Dilution Rate (D)

Controlled Variables – Cell Conc.(X) & Substrate Conc.(S)

Disturbance Variable – Substrate Feed Conc.(S f)

STEADY STATE IDENTIFICATION

$$X_s = 4.5g/L$$

$$S_s = 1.0g/L$$

DYNAMIC SIMULATION ALONG WITH NOISE AND STEP CHANGE:

Time Step

FOPTD MODEL

- A First-Order Plus Time Delay (FOPTD) model was identified by optimizing parameters (process gain, time constant, time delay) using empirical methods.
- The optimization minimized the sum of squared errors (SSE) between model predictions and plant data.
- No explicit time delay considered in this specific implementation, as we can see from figures it follows first order model.
- We took the first 3 step changes for data training and validated the trained data on 4th step.

FOPTD MODEL

	Kp1	Kp2	Кр3	Toe1	Toe2	Toe3	Кр	Tœ
X	-7.039	-17.875	-16.544	4.6404	5.846	3.145	-13.569	5.2214
S	18.438	31.484	29.287	2.887	6.585	3.641	26.4035	4.371

• Blue Line: Plant Data

• Red Line: Model Predicted Data

REGRESSION MODEL

Kp-26.403, Tœ-4.307min

FEEDBACK CONTROL

Closed Loop Transfer Function

$$D(s) = 0$$

$$Y = \frac{G_p G_c}{1 + G_p G_c} Y_{sp}$$

$$Y_{sp}=0$$

$$Y = \frac{G_d}{1 + G_n G_c} D(s)$$

STABILITY ANALYSIS

```
u(t) = u_ss + Kc \cdot e(t) \dots Where:
```

- •u(t) = Control output
- Kc = Proportional gain
- e(t) = Error signal (Setpoint Process variable)

Characteristic Equation -(1 + Kp.Kc/(t*s+1))

Necessary Condition – All the coff of characteristics eqn should be positive.

Sufficient Condition – Routh Hurwitz Criteria

ROOT LOCUS

-0.072 < Kc < 0.071

For X.

Kc > -0.037

For S

SERVO PROBLEM

Offset is present.

Cell Concentration

REGULATORY PROBLEM

Offset is present.

Cell Concentration

SERVO PROBLEM

Substrate Concentration Graph

REGULATORY PROBLEM

Substrate Concentration

CONCLUSION

- \rightarrow Steady State, X_ss = 4.5 g/l, S_ss=1.0 g/l.
- The cell and substrate conc. are measured, while giving the noise and changing step inputs.
- The data is trained 3 times to get the good results, and than it is validated.
- \rightarrow For X -> -0.072 < Kc < 0.072
- > For S-> Kc>-0.037
- Proportional Controller is applied in the system, and graphs are plotted.

ACKNOWLEDGEMENT

I would like to express our sincere gratitude to Prof. Jayaram and TAVarsha for their invaluable guidance and support throughout the completion of this project.

Their insightful teachings in the CH303: Process Control course during this semester have provided me with the knowledge and skills necessary to successfully implement this work.

THANK YOU