FIGURA 19 $\lim_{x \to \infty} f(x) = \infty$

Finalmente, observamos que pode ser definido um limite infinito no infinito da forma a seguir. A ilustração geométrica está dada na Figura 19.

9 DEFINIÇÃO Seja f uma função definida em algum intervalo (a, ∞) . Então

$$\lim_{x \to \infty} f(x) = \infty$$

significa que para todo positivo M existe um correspondente número positivo N tal que

se
$$x > N$$
 então $f(x) > M$

Definições análogas podem ser feitas quando o símbolo ∞ é substituído por $-\infty$ (veja o Exercício 70).

(2.6) EXERCÍCIOS

 Explique com suas palavras o significado de cada um dos itens a seguir.

(a) $\lim_{x \to 0} f(x) = 5$

- (b) $\lim_{x \to 0} f(x) = 3$
- 2. (a) O gráfico de y = f(x) pode interceptar uma assíntota vertical? E uma assíntota horizontal? Ilustre com gráficos.
 - (b) Quantas assíntotas horizontais pode ter o gráfico de y = f(x)? Ilustre com gráficos as possibilidades.
- 3. Para a função f, cujo gráfico é dado, diga quem são.

(a) $\lim_{x \to 2} f(x)$

(b) $\lim_{x \to -1^-} f(x)$

(c) $\lim_{x \to 1^+} f(x)$

(d) $\lim_{x \to a} f(x)$

(e) $\lim_{x \to a} f(x)$

(f) As equações das assíntonas

4. Para a função g, cujo gráfico é dado, determine o que se pede.

(a) $\lim g(x)$

(b) $\lim_{x \to a} g(x)$

(c) $\lim_{x \to a} g(x)$

(d) $\lim_{x \to -\infty} g(x)$

(e) $\lim_{x \to 0} g(x)$

(f) As equações das assíntotas

5–10 Esboce o gráfico de um exemplo de uma função f que satisfaça a todas as condições dadas.

5. f(0) = 0, f(1) = 1, $\lim_{x \to \infty} f(x) = 0$, $f \in \text{impar}$

6. $\lim_{x \to 0^+} f(x) = \infty$, $\lim_{x \to 0^-} f(x) = -\infty$, $\lim_{x \to \infty} f(x) = 1$, $\lim_{x \to \infty} f(x) = 1$

 $\lim_{x \to \infty} f(x) = -\infty, \quad \lim_{x \to \infty} f(x) = \infty, \quad \lim_{x \to -\infty} f(x) = 0,$ $\lim_{x \to \infty} f(x) = \infty, \quad \lim_{x \to -\infty} f(x) = -\infty$

8. $\lim_{x \to -2} f(x) = \infty$, $\lim_{x \to -\infty} f(x) = 3$, $\lim_{x \to \infty} f(x) = -3$

 $\oint f(0) = 3, \quad \lim_{x \to 0^{-}} f(x) = 4, \quad \lim_{x \to 0^{+}} f(x) = 2,$ $\lim_{x \to -\infty} f(x) = -\infty, \quad \lim_{x \to 4^{-}} f(x) = -\infty, \quad \lim_{x \to 4^{+}} f(x) = \infty,$ $\lim_{x \to 0^{+}} f(x) = 3$

 $\lim_{x \to \infty} f(x) = -\infty$, $\lim_{x \to \infty} f(x) = 2$, f(0) = 0, $f \in \text{par}$