Cálculo Numérico Computacional

Unidade IV

Lista de Atividades 4

(1) Use a **Regra dos Trapézios Simples** para calcular a o valor aproximado da Integral:

$$\int_{1}^{2} (sen(x) + x) dx$$

e calcule também uma estimativa para o erro (Teorema 1, slides 6 e 7).

Mantenha as aproximações com 4 casas decimais por arredondamento.

Dicas para Solução:

Passo 1: Calcule a amplitude do intervalo para a Regra dos Trapézios Simples:

$$h = (b - a) = 2 - 1 = 1$$

Passo 2: Faça uma tabela com o intervalo de integração para f(x) = sen(x) + x (você preciso de dois pontos tabelados na Regra dos Trapézios Simples: x_0 e x_1)

(obs: configure a calculadora para o modo ângulos em radianos.)

Х	1	2		
$f(x_i)$	1.8415	2.9093		

Passo 3: Use a Regra dos Trapézios Simples para calcular o valor aproximado da Integral.

$$\int_{1}^{2} (sen(x) + x) dx \cong \frac{h}{2} [f(x_0) + f(x_1)]$$

Passo 4: Calcule o erro da Regra dos Trapézios Simples (Teorema 1, slides 6 e 7)

$$||E_t|| \le \frac{h^3}{12} \cdot \max |f''(x)| \quad x \in [a, b]$$

h = b - a (amplitude do intervalo)

(2) Use a **Regra dos Trapézios Composta** por **8** subintervalos para calcular o valor aproximado da Integral:

$$\int_{1}^{2} (sen(x) + x) dx$$

e calcule também uma estimativa para o erro (Teorema 2, slides 13 e 14).

Mantenha as aproximações com 4 casas decimais por arredondamento.

Dicas para Solução:

Passo 1: Calcule a amplitude do intervalo para a Regra dos Trapézios Composta (N = 8 subintervalos):

$$h = \frac{b - a}{N} = \frac{2 - 1}{8} = 0.125$$

Passo 2: Faça uma tabela com 8 subintervalos de integração (você precisa de nove pontos tabelados: x_0 , x_1 , x_2 , x_3 , x_4 , x_5 , x_6 , x_7 , x_8) para f(x) = sen(x) + x

(obs: configure a calculadora para o modo ângulos em radianos.)

Х	1	1.125	1.250	1.375	1.500	1.625	1.750	1.875	2
$f(x_i)$	1.8415								2.9093

Passo 3: Use a Regra dos Trapézios Composta para calcular o valor aproximado da Integral

Passo 4: Calcule o erro da Regra dos Trapézios Composta (Teorema 2, slides 13 e 14)

(3) Use a **Regra 1/3 de Simpson Simples** para calcular o valor aproximado da Integral:

$$\int_{1}^{2} (sen(x) + x) dx$$

e calcule também uma estimativa para o erro (Teorema 3, slides 19 e 20).

Mantenha as aproximações com 4 casas decimais por arredondamento.

Dicas para Solução:

Passo 1: Calcule a amplitude do intervalo para a Regra 1/3 de Simpson Simples:

$$(b - a) = 2h$$

Passo 2: Faça uma tabela com os intervalos de integração (você precisa de 3 pontos tabelados na Regra 1/3 de Simpson Simples: x_0 , x_1 , x_2) para f(x) = sen(x) + x:

(obs: configure a calculadora para o modo ângulos em radianos.)

Х	1	(a+b)/2	2	
$f(x_i)$	1.8415		2.9093	

Passo 3: Use a Regra 1/3 de Simpson Simples para calcular o valor aproximado da Integral.

Passo 4: Calcule o erro da Regra 1/3 de Simpson Simples (Teorema 3, slides 19 e 28).

(4) Use a **Regra 1/3 de Simpson Composta** por **8** subintervalos para calcular o valor aproximado da Integral:

$$\int_{1}^{2} (sen(x) + x) dx$$

e calcule também uma estimativa para o erro (Teorema 4, slides 26 e 27).

Mantenha as aproximações com 4 casas decimais por arredondamento.

Dicas para Solução:

Passo 1: Calcule a amplitude do intervalo para a Regra 1/3 de Simpson Composta (N = 8 subintervalos)::

$$h = \frac{b - a}{N} = \frac{2 - 1}{8} = 0.125$$

Passo 2: Faça uma tabela com 8 subintervalos de integração (você precisa de nove pontos tabelados: x_0 , x_1 , x_2 , x_3 , x_4 , x_5 , x_6 , x_7 , x_8) para f(x) = sen(x) + x:

(obs: configure a calculadora para o modo ângulos em radianos.)

Х	1	1.125	1.250	1.375	1.500	1.625	1.750	1.875	2
$f(x_i)$	1.8415								2.9093

Passo 3: Use a Regra 1/3 de Simpson Composta para calcular o valor aproximado da Integral.

Passo 4: Calcule o erro da Regra 1/3 de Simpson Composta (Teorema 4, slides 26 e 27):

IMPORTANTE: faça as resoluções em modo manuscrito e então digitalize no formato "pdf" para envio pelo AVA.