Unit - 2 Principles of Ecology

Principles of Ecology

- Segments of the Environment
 - Atmosphere, Lithosphere, Hydrosphere, Biosphere
- Ecosystem: Biotic and Abiotic Factors
- Organization of the Ecosystem
- Types of Ecosystems
- Structure of the Ecosystem
 - Ecological Pyramids
- Functions of Ecosystems
 - Productivity
 - Food Production

- Energy Flow
 - Food Chain and Food Web
- Nutrient Recycling
 - Biogeochemical Cycles Water Cycle, C, N, P, S Cycles
- Development and Stabilization
 - Community Associations
 - Community Adaptations
 - Ecological Succession
- Ecosystems Services
- Economical values of Ecosystem Services
- Threats to Ecosystems
- Ecosystems Conservation

Ecology - *Ikos*—dwelling; *Logos*—study

Study of the inter-relationships among living beings and their interactions with the physical environment [ref].

Autoecology - study of an individual species including behavior, adaptation and interaction with environment [ref]

Synecology - study of communities and their interactions with the environment [ref]

The Physical and biological habitat surrounding us is the in Environment, it has a four segments [ref]

Atmosphere: small reservoir, efficient transporter.

Lithosphere: Earth's Crust, rocks, minerals. Huge reservoir, less transport (conveyer), Pedosphere: soil

Hydrosphere: oceans and water, huge <u>reservoir</u> and <u>transporter</u>

Biosphere: small <u>reservoir</u>, moderate <u>transporter</u>; huge impact on the environment.

Atmosphere

Exosphere: 500 – 1000 km up to 10,000 km,

<u>Thermosphere</u>: from 80 – 85 km to 640+ km temperature increasing with height. **Ionosphere**: auroras, long distance radiowave propagation.

Mesosphere: 50 km to 80 to 85 km temperature decreasing with height. Meteors burn up when entering the atmosphere.

Stratosphere: 7 to 17 km range to about 50 km Temperature increases with height. Ozone—few ppm (Mainly 15 to 35 km)

Troposphere: Surface to between 7 km at the poles and 17 km at equator. Weather variations, vertical mixing

http://www.theozonehole.com/atmosphere.htm

The Atmosphere (12.53min)

Water Resources (11.38min)

Inside the Earth (5.05min)

Credit:MT Paul, Bozeman Science, The Atmosphere. Source https://youtu.be/6LkmD6B2nc Credit:MT Paul, Bozeman Science, Water Resources. Source https://youtu.be/IDAj5T1ST70 Credit:Mexus Education Pvt.Ltd, Inside the Earth. Source https://youtu.be/N9ncfAsmiSg

Ecosystem

Ecosystem is a functional unit consisting of living and non-living components [ref].

Abiotic factors [ref]:

- Climatic: temperature, rainfall, snow, light levels, wind, humidity
- Edaphic (Soil) Factors: pH, mineral and organic matter, texture

Biotic Factors[ref]:

- Producers (Autotrophs): green plants; chlorophyll
- Consumers (Heterotrophs) pri., sec., ter. consumers
- Decomposers (Saprotrophs): Bacteria, fungi

Ecosystems: Biotic and Abiotic Factors (21.35min)

Organization of the Ecosystem ref

Individual, Species, Organism: An individual living

thing, genetically similar enough to breed and produce

live, fertile offspring in nature ref

Population: All members of a individual that live in the

same area at the same time ref

Biological Community: All populations living and

interacting in an area ref

Ecosystem: A biological community and its physical

environment ref

Biome: is a set of ecosystems sharing similar

characteristics with their abiotic factors adapted to their

environments ref

Biosphere: A biosphere is the sum of all the ecosystems

established on planet Earth. It is the living (and

decaying) component of the earth system ref

Types of Ecosystems ref

Natural, Artificial

Aquatic Ecosystem: An ecosystem which exists in a body of water is known as an aquatic ecosystem. Majorly two types,

Freshwater ecosystems and Marine ecosystems ref

Terrestrial Ecosystem: The ecosystem which is found only on landforms is known as the terrestrial ecosystem. The main types of terrestrial ecosystems are forest ecosystems, desert ecosystems, grassland ecosystems and mountain ecosystems.

Structure of the Ecosystem - Ecological Pyramids or Trophic Pyramids

https://en.wikipedia.org/wiki/Food_web

Types of Ecological Pyramids or Trophic Pyramids: Terrestrial Vs Aquatic Ecosystem

http://scienceaid.co.uk/biology/ecology/food.html

Variations in Ecological Pyramid

https://en.wikipedia.org/wiki/Food_web

Ecosystem Functions[ref], [ref]

Productivity - Food Production

Energy Flow - Food Chain, Food Web

Nutrient recycling - Biogeochemical Cycles

Development and Stabilization - Associations, Adaptations, Succession

Productivity - Food Production

Photosynthesis

https://upload.wikimedia.org/wikipedia/commons/a/a2/Phot osynthesis Block diag.gif

https://en.wikipedia.org/wiki/Photosynthesis

Energy Flow Sun .01% Lost As .1% Producers **Secondary Consumers** Energy lost as **Primary Consumers** metabolic heat Physical **Primary Producers** environment NUTRIENT Energy CYCLING Recycled transferred Energy Nutrients Energ to consumers **Pyramid**

Decomposers break down the bodies of dead organisms, thereby returning nutrients to the physical environment.

https://upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Ecological_Pyramid.svg/2000px-Ecological_Pyramid.svg.pnq

https://encrypted-tbn1.gstatic.com/images?q=tbn:ANd9GcRzjOz_0Z0hjtz-ioqM43GrS3M9qDzOnXmtwQPp0BA6TFDfDpFC7q

ONE-WAY FLOW OF ENERGY THROUGH THE ECOSYSTEM

Consumers

(herbivores, predators, parasites,

decomposers)

Figure 37-1 Discover Biology 3/e © 2006 W. W. Norton & Company, Inc.

Energy lost as metabolic heat

Food Chain (just 1 path of energy) Quaternary 5th trophic level consumers Carnivore Tertiary 4th trophic level consumers Carnivore Secondary 3rd trophic level consumers Carnivore Primary 2nd trophic level consumers

Primary

producers

Herbivore

Plant

Food Web (all possible energy paths)

The *arrow* points to the eater and shows the transfer of energy.

https://encrypted-tbn1.gstatic.com/images?q=tbn:ANd9GcTsDoYoxXGLYH2SGytHwsD2fyUZEuA232wDRu4pn9AfnbGF-xRh8w

1st trophic level

Flow of Chemical and Pollutants through Food Chain

Bioaccumulation

Detritus Food Chain

- Less dependent on direct sunlight
- Depends on influx of organic matter from another system
- Generally small
- E.g. Mangrove leaves(detritus)—microorganisms—crabs
- E.g. Caves: bat colonies—guano—organisms (salamanders)
- •E.g. Ocean floor—dead carcasses—organisms feeding on it.

Relationships between soil food web, plants, organic matter, and birds and mammals Image courtesy of USDA Natural Resources Conservation Service http://soils.usda.gov/sqi/soil quality/soil biology/soil food web.html.

Nutrient recycling - Biogeochemical Cycles

http://1.bp.blogspot.com/-sSscHv8Kmtw/VUQHMBL1rSI/AAAAAAAAB18/YKOplqNSdTM/s1600/1A%2B-%2BBiog eochemical%2BCycle%2BComponents.jpg

Biogeochemical Cycles

(22.23min)

Biogeochemical Cycling (10.04min)

Jane Poynter: Life in Biosphere 2

(15.50min)

Credit:Sam Holloway Knowles Science Teaching Foundation, Biogeochemical Cycles. Source https://youtu.be/dJazhP4cnR8

 $Credit: MT\ Paul,\ Bozeman\ Science,\ Biogeochemical\ Cycling.\ Source\ \underline{https://youtu.be/09\ \underline{sWPxQymA}}$

Credit:TED, Jane Poynter: Life in Biosphere 2. Source https://youtu.be/a7B39MLVelc

Hydrological Cycle

Hydrological Cycle & Earth's Albedo

- Evaporation—cloud formation
- Increased albedo or reflection coefficient is a measure of the 'whiteness' of the earth when viewed through space.
- Greater the albedo→lower is the solar radiation absorbed by the earth→lower is the temperature of the globe (Greater cooling).

Albedo and Tree Cover

- Trees tend to have a low albedo
 - Deciduous trees: 0.15-0.18 (15-18%)
 - Coniferous trees 0.09-0.15 (9-15%)
- Hence, removing forests → increases albedo →localized climate cooling.
- However, trees also provide local evaporative cooling and carbon sequestration; loss of trees reduces these cooling effects.
- Cloud feedbacks and snow cover further complicate the issue.
- Studies of new forests indicate:
 - A net cooling effect in tropical and mid-latitude areas
 - A net neutral or slightly warming effect in high latitudes (e.g. Siberia)

Phytoplankton, Clouds, Albedo

- Phytoplankton produce dimethylsulfoniopropionate (DMSP)
- Converted to Dimethyl sulfide (DMS) in ocean
- Escapes to atmosphere, oxidizes to SO₂ and nucleates clouds.
- This is an example of how the biosphere (plankton) regulates the hydrosphere (global precipitation), earth's albedo and global temperature.
- CLAW Hypothesis: negative feedback; regulation of global temperature.
- Anti-CLAW Hypothesis: positive feedback; escalation of global warming.

Mild warming due to CO_2 emissions \rightarrow warmer oceans \rightarrow more phytoplankton \rightarrow more DMS \rightarrow More clouds \rightarrow cooling (negative feedback; regulation)

https://upload.wikimedia.org/wikipedia/en/thumb/f/f5/CLAW_hypothesis_graphic_1_AYool.png/598px-CLAW_hypothesis_graphic_1_AYool.png

Global Conveyer Belt

Thermohaline Circulation

https://upload.wikimedia.org/wikipedia/commons/4/4c/Thermohaline_Circulation_2.pn

38

Video: The Gulf Stream Explained (5 min)

Excessive warming due to massive CO_2 emissions \rightarrow melting of ice caps \rightarrow Meltwater pouring into the oceans \rightarrow stalling of thermohaline ocean currents \rightarrow ocean stratification \rightarrow less transport of nutrients from ocean bottom to euphotic zone \rightarrow less phytoplankton \rightarrow less DMS \rightarrow less clouds \rightarrow more heating (positive feedback; escalation)

https://upload.wikimedia.org/wikipedia/en/c/cc/CLAW_hypothesis_graphic_2_AYool.png

Plants: Significance in Water Cycle

- Taproots go upto 100x deeper than canopy
- Short-circuit pathways for soil water redistribution
- In dry spells, water from below brought to surface, to increase nutrient extraction, photosysnthesis and transpiration.
- In wet spells, promote percolation

Plants: Significance in Water Cycle

- Plants pump huge quantities of water from soil to air.
 - 100s to 1000s L/day
 - Regulate T and humidity. In a clearing in Nigeria, soil T upto 5°C higher; humidity reduced by 50% compared to adjacent forest.
- Evapo-transpiration of trees—nature's pump and cooler
- Drop in Amazon's temperature in June/July is due to transpiration.
- Transpiration: 40% of Amazonian rain is from transpiration
- Afforestation efforts: appropriate types and density.

Importance of Rainforests

- 25% of rain never reaches the ground.; wets canopy and evaporates
- 25% of total—runoff
- 50% of total pumped up and transpired by plants.
- 75% of rainwater is returned to the atmosphere; new clouds, new rain,
- Colossal heat pump—energy of six million atom bombs/day; redistributes energy to higher latitudes
- Up to 80% incident solar energy carried by hot, humid air;
 - rises rapidly and develops into thunder clouds that simultaneously
 - ater areas further downwind
 - releases latent heat

Importance of Rainforests

- Absorb 2 billion tonnes of CO₂/yr; about 20-30% of fossil C emissions
- Destruction of the Amazon:
 - May stall the heat pump
 - Accelerate drought and desertification (positive feedback)
 - Loss of CO₂ sink; accelerate global warming.
 - Reforestation cannot replace natural stands. Loss of soil carbon.

Sources:

Prof. Eneas Salati from the University of São Paulo, Piracicaba – Brasil

http://www.fgaia.org.br/texts/e-rainforests.html

http://www.hydrogen.co.uk/h2_now/journal/articles/1_global_warming.htm

http://www.hydrogen.co.uk/h2_now/journal/articles/2_global_warming.htm

http://www.greendiary.com/entry/increasing-global-warming-decreases-forests-co2-absorption-capacity

http://www.i-sis.org.uk/LOG4.php

Human impacts on hydrologic cycle

- Damming rivers increases evaporation and infiltration
- Altering the surface and vegetation increases runoff and erosion
- Spreading water on agricultural fields depletes rivers, lakes and streams
- Removing forests and vegetation reduces transpiration and lowers water tables
- Emitting pollutants changes the nature of precipitation
- The most threatening impact is overdrawing groundwater for drinking, irrigation, and industrial use

Availability of Carbon

- Earth's C content = 0.19% (0.032% in lithosphere)
- Atmospheric CO₂ is the main utilizable reservoir
- 18% in biomass
- Main reservoirs air, rocks (carbonates), oceans.

http://image.slidesharecdn.com/biogeochemicalcycles-120914165417-phpapp01/95/biogeochemical-cycles-6-728.jpg?cb=1347641775

Potential contributors to climate change

- Complex interactions in the climate puzzle
- Feedback mechanisms
- Some interesting twists
 - Increasing temp. reduces CO₂ solubility (reduced C-sink capacity of the ocean)
 - Ocean Acidification reduces C-sequestration in the form of CaCO₃
 - $_{\circ}$ 740ppm CO $_{2}$ in water by 2100. Reduction in population of mussels by 25% and oysters by 10%
 - At 1800ppm, shells will dissolve

Human Impacts on Carbon Cycle

- Burning of Fossil fuels
- Deforestation and Poor Agricultural practices
- Increase in atmospheric greenhouse gasses
- such as CO_2 , methane, SO_X , NO_X , etc. leads to Greenhouse effect, global warming and climate change.

Nitrogen Reservoir

- N is an essential component of proteins, nucleic acids and other cellular constituents.
- Reservoirs 79% of the atmosphere is N₂ gas.
- The N=N triple bond is relatively difficult to break, requires special conditions. As a result most ecosystems are N-limited.
- N₂ dissolves in water, cycles through air, water and living tissue.

Nitrogen Fixation

- Abiotic: lightning (very high T and P) 10⁷ metric tons $yr^{-1} \sim 5-8\%$ of total annual N fixation. (weathering of rocks is insignificant)
- Biotic: Nitrogen fixation by microbes, 1.75 x10⁸ metric tons yr⁻¹ (symbiotic bacteria: azobacter or rhizobium- legumes
- Industrial: The Haber-Bosch process (1909) 5x10⁷ metric tons yr⁻¹ – high P & T, Fe catalyst to convert N₂ to NH₃,& NH₄NO₃
 Combustion Side Effect: 2x10⁷ metric tons yr⁻¹.
- High T and P oxidizes N₂ to NO₃

Nitrification-Denitrification

- Nitrification by chemoautotrophs
 - Bacteria of the genus Nitrosomonas oxidize

$$NH_3$$
 to NO_2

- Bacteria of the genus Nitrobacter oxidize the
 nitrites to NO₃
- Denitrication Anaerobic respiration of NO₃ to dinitrogen gas by several species of Pseudomonas, Alkaligenes, and Bacillus

Human Impacts on Nitrogen Cycle

- Burning of Fossil fuels add Nitrogen Oxides
 (NO₂) and Nitric Acid vapor (HNO₃).
- Nitrous Oxide (N₂O) released by the action of anaerobic bacteria on Livestock waste.
- Nitrogen stored in Soil and Plants released by destruction of forestlands, grassland and wetlands.
- Upset the nitrogen cycle in aquatic ecosystem by adding excess of nitrates to the body
- Harvest nitrogen-rich crops, irrigate crops, wash out nitrogen from topsoils

Fate of N

- Sources of anthropogenic N loads: Fertilizers, Legume Crops, Combustion and forest burning, livestock.
- In most terrestrial and freshwater ecosystems N is a limiting nutrient, gets cycled efficiently.
- What happens when plants have enough N (i.e. greater 16:1 N:P ratio)?
- When N saturation of ecosystem occurs, excess N tends to leave the system in the form of nitrate.
- Flushing/erosion dissolved and particulate matter in streamwater, (DIN, DON, TN, Org N)
- Leaching to groundwater NO₃ poor sorption to clays, highly water soluble.

Effects of Increased N loading

Since 1940s amount of N available for uptake has more than doubled. Anthropogenic N inputs are now equal to biological fixation.

 Eutrophication in aquatic systems, coastal algal blooms and "Dead Zone", fish kills, increased turbidity

Eutrophication (1.54mm)

- Selective pressures in terrestrial systems favoring species-poor grasslands and forests
- Nitrate MCL 10 mg/L …
- Nitric oxide precursor of acid rain and smog
- Nitrous oxide long lived greenhouse gas that can

trap 200 times as much heat as CO₂

Phosphorus Cycle

- One of the longest cycles
- Essential nutrient; DNA, ATP, ADP, fat, cell membranes

Human Impacts on Phosphorus Cycle

- P-containing detergents
- Mining phosphate rock
- P-containing fertilizer use
- •P in water leads to eutrophication

Sulphur Cycle

© 2007 Thomson Higher Education

Human Impacts on Sulfur Cycle

- SO₂ from industry and combustion (e.g. coal, petrol).
- SO₂ from Refine industry convert the Petroleum

to Gasoline Products

- SO₂ from Metallic ore Industries.
 SO₂ from Mining industries Acid mine drainage

Gaia Theory

- By James Lovelock; Greek Earth Goddess
- Earth with all intricate and interacting systems is like a Super-Organism

Gaia Hypothesis James Lovelock
(4.29mm)

- Self regulation: chemistry of oceans, atmosphere, temperature, living beings
- Earth behaves as if it had a purpose
- Purpose is to nurture life and maintain life-friendly conditions.
- This perspective brings a new awareness that can be the foundation of all future development
- It will enable the further evolution of mankind

Development and Stabilization

Associations

Populations (11.12mm)

Succession

Biology 2-01 Ecological Succession (21.05mm)

Adaptation

Animal and plant adaptations (4.00mm)

Credit: Bozeman Science Source https://youtu.be/KFViSog6ZJw Credit: MsBrewerFlipped Source https://youtu.be/5WECs5-jNlc

Credit:Holloway Science Source https://youtu.be/WygCQg6SZKQ

Ecosystem Services ref

- Ecosystem 'services' are provided free-of-charge as a gift of nature.
- purification of air and water
- regulation of rainwater run-off and drought
- waste assimilation and detoxification
- soil formation and maintenance
- control of pests and disease
- plant pollination, seed dispersal and nutrient cycling

- maintaining biodiversity for agriculture,
 pharmaceutical research and development
 and other industrial processes
- protection from harmful ultraviolet radiation
- climate stabilization (for example, though carbon sequestration)
- moderating extremes of temperature, wind, and waves.

Major Ecosystem Types and Services ref

Ecosystem service	Ecosystem									
	Cultivated	Dryland	Forest	Urban	Inland Water	Coastal	Marine	Polar	Mountain	Island
Freshwater			•		•	•		•	•	
Food	8.6	•				1.60			•	•
Timber, fuel, and fiber						•				
Novel products	5 .	5*	•				•			
Biodiversity regulation	•	•	٠	•	•	•	•	•	•	
Nutrient cycling	•	1).	•		•	•	•			
Air quality and climate	•				•	•		•		•
Human health			•	•						
Detoxification		:.•.		•	•	•	•			
Natural hazard regulation			•		•	٠			•	
Cultural and amenity	20.00			1.		•	1.		•	

Source: https://www.cbd.int/doc/case-studies/inc/cs-inc-iucn-nc-wb-en.pdf

Economic Value of Ecosystem Services ref Economists typically classify ecosystem goods and services according to how they are used

Source: https://www.cbd.int/doc/case-studies/inc/cs-inc-iucn-nc-wb-en.pdf

Direct use values:

Consumptive uses ref

harvesting of food products
timber for fuel or construction
medicinal products
hunting of animals for consumption

non-consumptive uses ref

enjoyment of recreational and cultural activities that do not require harvesting of products

- Indirect use values ref: from ecosystem services

 Natural water filtration which often benefits

 people far downstream
- Storm protection function of mangrove forests which benefits coastal properties and infrastructure
- Carbon sequestration which benefits the entire global community by abating climate change.

Option values: preserving the option to use in the future ecosystem goods and services (provisioning, regulating, and cultural services) that may not be used at present <u>ref</u>.

Non-use values: refer to the enjoyment people may experience simply by knowing that a resource exists This kind of value is usually known as existence value (or, sometimes, passive use value) <u>ref</u>.

Benefits from forests in Mediterranean countries

Source: https://www.cbd.int/doc/case-studies/inc/cs-inc-iucn-nc-wb-en.pdf

Human System vs Ecosystem

<u>Anthroposystem</u>

- Very simple ecosystem; max. 3 trophic levels
- Open system; minimal recycling
- High efficiency of transfer of biomass to higher trophic level
- Monoculture; high density
- Few favored species encouraged; weeds destroyed
- Static, highly unstable
- Few people feed the rest-agriculture

Ecosystem

- Often highly complex food webs
- Often closed systems with significant recycling
- Low efficiency of transfer of biomass to higher trophic level
- High biodiversity
- Natural balance in species populations achieved adapted to conditions
- Robust, stable, dynamic, adaptable, evolving

Problems with Human Systems

- Dependent on very few species
 - 80% of world food from 15 species.
 - Human consume only 150 out of the estimated 50,000 edibles.
 - Out of 10,000 cereals, not one new has been cultivated in the past 2000 yrs.
- Inherently unstable
 - Irish Great potato famine (1845-47) wind-borne potato blight fungus; near total crop failure
 - 1 million dead due to starvation, typhoid and cholera
- Require constant inputs; pesticides, fertilizers, etc.
- Prone to pest attacks and failures
- Pollute soil, air, water
- Soil degradation and topsoil loss

ref

- **Habitat Destruction**
- **Pollution**
- Eutrophication
- Invasive species
- Overharvesting
- UV Radiation

Threats to Ecosystems Ecosystems Conservation

<u>ref</u>

- Establishment of protected areas
- Rules that prohibit farming on sloping land or the use of pesticides
- Adopt more environmentally friendly land uses
- Discouraging them from adopting more harmful

Thank You

Extra Slides

Gaia Theory

- By James Lovelock; Greek Earth Goddess
- Earth with all intricate and interacting systems is like a Super-Organism

Gaia Hypothesis -James Lovelock (28.46mm)

