Университет ИТМО Факультет ПИиКТ

Учебно-исследовательская работа 2 (УИР 2) «Марковские модели систем массового обслуживания» Вариант 21/22

Выполнила:

Батомункуева Виктория Жаргаловна, Р34101

Преподаватель:

Алиев Тауфик Измайлович

Цель работы:

Изучение метода марковских случайных процессов и его применение для исследования простейших моделей – систем массового обслуживания (СМО) с однородным потоком заявок.

Выполнение:

N1 – номер варианта в первой работе (21) N2 – N1 + 1 (22) NG – номер группы (1)

Система 1:

 $\Pi = 3$, EH = 3

- П число обслуживающих Приборов в системе;
- ЕН Емкости Накопителей: X/Y/Z (X перед первым прибором, Y перед вторым прибором и Z перед третьим прибором);

Система 2:

 Π = 1 (H_{1.5}) , EH = 2, критерий эффективности – минимальные потери заявок;

- П (Hv) в одном из Приборов (любом) длительность обслуживания распределена по **гиперэкспоненциальному** закону с коэффициентом вариации, равным v;
- ЕН Емкости Накопителей: X/Y/Z (X перед первым прибором, Y перед вторым прибором и Z перед третьим прибором);
- критерий эффект. –

Параметры нагрузки:

Интенсивность потока - λ =0.9 с⁻¹ Ср. длит. обслуж. – b = 4 с Интенсивность обслуж. – μ = 0.25 с⁻¹ Вероятность занятия прибора Π 1 – 0.55, Π 2 – 0.35, Π 3 – 0.1

Система 1

$$\Pi = 3$$
, EH = 3
Интенсивность потока - λ =0.9 c⁻¹
Ср. длит. обслуж. – b = 4 с

Интенсивность обслуж. $-\mu = 0.25$ с⁻¹ Вероятность занятия прибора $\Pi 1 - 0.55$, $\Pi 2 - 0.35$, $\Pi 3 - 0.1$

Графическое представление СИСТЕМЫ_1

Система 2:

 $\Pi=1~({\rm H}^{}_{1.5})$, EH = 2, критерий эффективности — минимальные потери заявок = 21;

Интенсивность потока - $\lambda = 0.9 \text{ c}^{-1}$

Ср. длит. обслуж. -b = 4 c

Интенсивность обслуж. – $\mu = 0.25 \text{ c}^{-1}$

$$q \le \frac{2}{1+v^2} = \frac{2}{1+1.5^2} = 0$$
, 615. Выберем $q = 0.1$

$$b_{1}^{'} = [1 + \sqrt{\frac{1-q}{2q}(v^{2}-1)}]b = [1 + \sqrt{\frac{1-0,1}{2*0,1}(2,25^{2}-1)}]4 = 21,1$$

$$b_{2}' = [1 - \sqrt{\frac{q}{2(1-q)}(v^{2}-1)}]b = [1 - \sqrt{\frac{0,1}{2*0,9}(2,25^{2}-1)}]4 = 2,1$$

Проверка условия: $qb_1^{'}+(1-q)b_2^{'}=b=>0$, 1 * 21, 1 + 0, 9 * 2, 1 = 4

Графическое представление СИСТЕМЫ_2

Номер состояния	СИСТЕМА_1	СИСТЕМА_2
	П1 / П2 / П3 / Е1	П1 / Е1
E0	0/0/0/0	0/0
E1	1/0/0/0	1 ₁ /0
E2	0/1/0/0	1,/1
E3	0/0/1/0	1,/ 2
E4	1/1/0/0	12/0
E5	1/0/1/0	1 ₂ / 1
E6	0/1/1/0	12/2
E7	1/1/1/0	
E8	1/1/1/1	
E9	1/1/1/2	
E10	1/1/1/3	

Состояния Марковского процесса (СИСТЕМА_1 и СИСТЕМА_2)

Граф переходов Марковского процесса (СИСТЕМА_1)

Граф переходов Марковского процесса (СИСТЕМА_1)

C1	E0	E1	E2	E3	E4	E5	E6	E7	E8	E9	E10
E0	-0,9	0,495	0,315	0,09	0	0	0	0	0	0	0
E1	0,25	-0,655	0	0	0,315	0,09	0	0	0	0	0

E2	0,25	0	-0,835	0	0,495	0	0,09	0	0	0	0
E3	0,25	0	0	-1,060	0	0,495	0,315	0	0	0	0
E4	0	0,5	0,5	0	-1,09	0	0	0,09	0	0	0
E5	0	0,25	0	0,25	0	-0,815	0	0,315	0	0	0
E6	0	0	0,25	0,25	0	0	-0,995	0,495	0	0	0
E7	0	0	0	0	0,5	0,5	0,5	-2,4	0,9	0	0
E8	0	0	0	0	0	0	0	0,5	-1,4	0,9	0
E9	0	0	0	0	0	0	0	0	0,5	-1,4	0,9
E10	0	0	0	0	0	0	0	0	0	0,5	-0,5

Матрица интенсивностей переходов (СИСТЕМА_2)

	0	1	2	3	4	5	6
0	0	0.0900	0.0000	0.0000	0.8100	0.0000	0.0000
1	0.2500	1	0.9000	0.0000	0.0000	0.0000	0.0000
2	0.0000	0.2500	2	0.9000	0.0000	0.0000	0.0000
3	0.0000	0.0000	0.2500	3	0.0000	0.0000	0.0000
4	0.2500	0.0000	0.0000	0.0000	4	0.9000	0.0000
5	0.0000	0.0000	0.0000	0.0000	0.2500	5	0.9000
6	0.0000	0.0000	0.0000	0.0000	0.0000	0.2500	6

C1	E0	E1	E2	E3	E4	E5	E6
E0	-0,9	0,09	0	0	0,81	0	0
E1	0,25	-0,34	0,9	0	0	0	0
E2	0	0,25	-0,34	0,9	0	0	0

E3	0	0	0,25	-0,25	0	0	0
E4	0,25	0	0	0	-1,06	0,9	0
E5	0	0	0	0	0,25	-1,06	0,9
E6	0	0	0	0	0	0,25	-0,25

Рассчитаем значения стационарных вероятностей, используя программу MARK

Номер состояния	СИСТ	EMA_1	СИСТ	EMA_2
	П1 / П2 / П3 / Е1	Вероятность	П1 / Е1	Вероятность
0	0/0/0/0	0,0467	0/0	0,0156
1	1/0/0/0	0,0924	1,/0	0,0056
2	0/1/0/0	0,0588	1,/1	0,0202
3	0/0/1/0	0,0168	1,/2	0,0727
4	1/1/0/0	0,1164	12/0	0,0505
5	1/0/1/0	0,0333	1 ₂ / 1	0,1816
6	0/1/1/0	0,0212	12/2	0,6539
7	1/1/1/0	0,0419		
8	1/1/1/1	0,083		
9	1/1/1/2	0,1643		
10	1/1/1/3	0,3253		

Характеристики СИСТЕМЫ_1 и СИСТЕМЫ_2

Хар-ка Г	Прибор	Расчетная формула	СИСТ.1	СИСТ.2
----------	--------	-------------------	--------	--------

Нагрузка	П1 (С1)	$y_{11} = \frac{\lambda}{\mu} * p_1$	1,98	
	П2 (C1)	$y_{12} = \frac{\lambda}{\mu} * p_2$	1,26	
	П3 (С1)	$y_{13} = \frac{\lambda}{\mu} * p_3$	0,36	
	Сумм (С1)	$y_1 = \frac{\lambda}{\mu}$	3,6	
	П1 (C2)	$y_{21} = \frac{\lambda}{\mu}$		3,6
	Сумм (С2)	$y_2 = \frac{\lambda}{\mu}$		3,6
Загрузка	П1 (С1)	$\rho_{11} = 1 - (p_0 + p_2 + p_3 + p_6)$	0,7013	
	Π2 (C1)	$\rho_{12} = 1 - (p_0 + p_1 + p_3 + p_5)$	<mark>0,6048</mark>	
	П3 (С1)	$\rho_{13} = 1 - (p_0 + p_1 + p_2 + p_4)$	0,7015	
	Сумм (С1)	$\rho_1 = 1 - p_0$	0,8043	
	П1 (С2)	$\rho_{21} = 1 - p_0$		0,9844
	Сумм (С2)	$\rho_1 = \rho_{21}$		0,9844
Коэффициент простоя	П1 (С1)	$\eta_{11} = 1 - \rho_{11}$	0,2987	
	Π2 (C1)	$\eta_{12} = 1 - \rho_{12}$	0,3952	
	П3 (С1)	$ \eta_{13} = 1 - \rho_{13} $	0,285	
	Сумм (С1)	η=1 — ρ	0,0467	
	П1 (С2)	$\eta_{21} = p_0$		0,0156
	Сумм (С2)	$\eta_2 = \eta_{21}$		0,0156
Вероятность потери	П1 (С1)	$\pi_{11} = 0.55 * p_9$	0,1789	
	Π2 (C1)	$\pi_{12} = 0.35 * p_9$	0,1025	
	П3 (С1)	$\pi_{13} = 0.1 * p_9$	0,0325	
	Сумм (С1)	$\pi_1 = p_9$	0,3253	
	П1 (C2)	$\pi_{21} = p_3 + p_6$		0,7266

	Сумм (С2)	$\pi_{2}^{}=\pi_{21}^{}$		0,7266
Производител ьность	П1 (С1)	$\lambda_{11}^{'} = P1 * \lambda(1 - \pi)$	0,3825	
	П2 (C1)	$\lambda_{12}^{'} = P2 * \lambda(1 - \pi)$	0,2434	
	П3 (С1)	$\lambda_{13}^{'} = P3 * \lambda(1 - \pi)$	0,0696	
	Сумм (С1)	$\lambda_1^{'} = \lambda(1 - \pi)$	0,60723	
	П1 (C2)	$\lambda_{21}^{'} = \lambda(1 - \pi)$		0,2461
	Сумм (С2)	$\lambda_{2}^{'}=\lambda_{21}^{'}$		0,2461
Длина очереди	П1 (С1)	$l_{11} = 0.55(p_8 + 2p_9 + 3p_{10})$	0,6993	
о тороди	Π2 (C1)	$l_{12} = 0.35(p_8 + 2p_9 + 3p_{10})$	0,6993	
	П3 (С1)	$l_{13} = 0.1(p_8 + 2p_9 + 3p_{10})$	0,6993	
	Сумм (С1)	$l_1 = p_8 + 2p_9 + 3p_{10}$	1,3875	
	П1 (C2)	$l_{21} = (p_2 + p_5) + 2(p_6 + p_6)$		1,655
	Сумм (С2)	$l_2 = l_{21}$		1,655
Число заявок в системе	П1 (С1)		1,7484	
	П2 (С1)	$m_{12} = p_2 + 2(p_4 + p_5) + 3(p_7 + p_8 + p_9 + p_{10})$	1,6101	
	П3 (С1)	$m_{13} = p_3 + 2(p_5 + p_6) + 3(p_7 + p_8 + p_9 + p_{10})$	1,7874	
	Сумм (С1)	$m_1 = p_1 + p_2 + p_3 + 2(p_4 + p_5 + p_6) + 3(p_7 + p_8 + p_9 + p_{10})$	3,7408	
	П1 (C2)	$m_{21} = l + \rho$		2,6395
	Сумм (С2)	$m_2 = m_{21}$		2,6395
Время ожидания заявок	П1 (С1)	$w_{11} = l_{\backslash 11}/\lambda_{11}$	1,8282	

	П2 (C1)	$w_{12} = l_{12}/\lambda_{12}$	2,8730	
	П3 (С1)	$w_{13} = l_{13}/\lambda_{13}$	10,0474	
	Сумм (С1)	$w_1 = l_1/\lambda_1$	2,2850	
	П1 (C2)	$w_{21} = l/\lambda$		6,7260
	Сумм (С2)	$w_2 = w_{21}$		6,7260
Время пребывания в	П1 (С1)	$u_{11} = m_{11}/\lambda_{11}$	4,5710	
системе	Π2 (C1)	$u_{12} = m_{12} / \lambda_{12}$	6,6150	
	П3 (С1)	$u_{13} = m_{13} / \lambda_{13}$	25,6810	
	Сумм (С1)	$u_1 = m_1 / \lambda_1$	6,1604	
	П1 (C2)	$u_{21} = m/\lambda$		10,7271
	Сумм (С2)	$u_2 = u_{21}$		10,7271

Сравнительная диаграмма рассчитанных характеристик системы

При сравнительном анализе двух систем можно сказать, что система 1 превосходит систему 2, в том числе и по критерию эффективности - минимальной потери заявок.

Выводы:

В процессе выполнения данной работы разработала и рассчитала марковские модели однои многоканальных СМО с однородным потоком заявок, а также сравнила полученные результаты. По итогам сравнения пришла к выводу, что первая система превосходит вторую по всем показателям.