

World Quant University Proficiency Test

Quantitative Proficiency Test (WorldQuant University)

If $f:(0,\infty)\to\mathbb{R}$ is defined by $f(x)=rac{x}{\ln(2x)}$ for every $x\in(0,\infty)$, then f'(e/2) is Select one:

o 1/eo e/2

Let $x_0\in(0,\infty)$ be the value of $x\in(0,\infty)$ that maximizes the function $f:(0,\infty)\to\mathbb{R}$ defined by $f(x):=\ln x/x$ for every $x\in(0,\infty)$, and $y_0:=f(x_0)$ be the value of this maximum. Then the product x_0y_0 is Select one: e

If $f:\mathbb{R} \Rightarrow \mathbb{R}$ is defined by $f(x) = e^{-\cos x} \sin(x)$ for every $x \in \mathbb{R}$ then f'(0) is Select one: $\begin{array}{c} 0 & 1 \\ \hline & e \end{array}$

Not yet answered

Marked out of I

♥ Flag question

The value of the integral
$$\int_0^{\pi/2} \cos(x) e^{-\sin x} \, dx$$
 is

Select one:

- O cos 1
- \circ $e^{-\sin 1}$
- $\bigcirc \quad e^{-1}$

Question 5

Not yet answered

Marked out of I

♥ Flag question

Evaluate

$$\int_0^{\pi/2} x \cos x \, dx.$$

- 0 1
- O -1
- \bullet $\pi/2-1$
- Ο π

Not yet answered

Marked out of 1

♥ Flag
question

Let A, B and C be square invertible matrices of the same size. If $B^TB=I=BB^T(X^T$ is the transpose of the matrix X) and C has no eigenvalue equal to -1, then $(AB^T+AB^TC)^{-1}$

is equal to

Select one:

- \bigcirc AB(I+C)
- $O A^{-1}B^{T}(I+C)^{-1}$
- $(I+C)^{-1}BA^{-1}$
- $O A^{-1}B(I+C)^{-1}$

Question 7

Not yet answered

Marked out of I

Flag question Let A, B and C be square invertible matrices of the same size. If $B^TB=I=BB^T(X^T)$ is the transpose of the matrix X), then $(AB^TC)^{-1}$

is equal to

- $O A^{-1}BC^{-1}$
- O CBA-1
- $\bigcirc A^{-1}B^TC^{-1}$
- $O C^{-1}BA^{-1}$

Not yet answered

Marked out of 1

Flag question Let $f:\mathbb{R} o\mathbb{R}$ and $g:\mathbb{R} o\mathbb{R}$ be defined by

 $f(x) := \sin x$ for every $x \in \mathbb{R}$

and

 $g(x) := e^x$ for every $x \in \mathbb{R}$

Consider the following statements:

[i.] f is one-to-one

[ii.] f is onto

[iii.] g is one-to-one

[iv.] g is onto

Which of the statements are true?

Select one:

- None of the statements
- O ii
- O All of the statements
- O ii. and iii.

Question 9

Not yet answered

Marked out of 1

♥ Flag
question

The solution to the following differential equation

$$y'' + 2y' + y = 0, \ y(0) = 2, y'(0) = 10$$

$$\bigcirc y(t) = 2e^{-t}$$

$$\bigcirc \quad y(t) = e^{-t}$$

$$\bigcirc$$
 $y(t)=2$

Not yet answered

Marked out of 1

Flag question

The complex number $z=2e^{i\frac{\pi}{4}}$ can also be written as

Select one:

- $\bigcirc \quad z = \sqrt{2}i.$
- 0 z = 2 + 2i.
- $\bigcirc \quad z = \sqrt{2}.$

Question 11

Not yet answered

Marked out of 1

♥ Flag
question

The following series $\sum_{n=1}^{\infty} \frac{\left(-1\right)^n}{n^2}$

Select one:

- converges absolutely
- O diverges to $-\infty$
- converges conditionally
- diverges to ∞

Question 12

Not yet answered

Marked out of 1

The value of $\lim_{n\to\infty} \frac{2^n}{n!}$ is

- O 1.
- O 2.
- O ∞.
- 0.

Not yet answered

Marked out of 1

Flag question Consider the following statements concerning a positive integer n:

[i.] if n is a multiple of 9, then n^2 is a multiple of 3

[ii.] if n^2 is a multiple of 7, then n is a multiple of 7

[iii.] if n^2 is a multiple of 14, then n is a multiple of 7

Which of the statements are true?

Select one:

- O i. and ii.
- O i. and iii.
- O All the statements
- None of the statements

Question 14

Not yet answered

Marked out of 1

Flag question

An island consists of four kinds of people: Tetas, Jekas, Frekas and Hekas. The following information is known:

All Frekas are both Jekas and Tetas

No Hekas are Jekas

No Hekas are Tetas

Consider the following statements:

[i.] Some Hekas are Frekas

[ii.] No Frekas are Hekas

[iii.] All Tetas are Frekas

Which of these statements are <u>necessarily</u> true based only on the information above?

- O None of the statements
- All the statements
- ii. and iii.
- Only ii.

Not yet answered

Marked out of 1

Flag question Let $f:\mathbb{R}^2 o\mathbb{R}$ be defined by

 $f((x,y)) := \sin(xy)$, for every $(x,y) \in \mathbb{R}^2$.

The value of $f_x((1,0)) + f_y((1,0)) + f_{xx}((1,0))$ is:

Select one:

- Undefined
- 0
- ()
- O -1

Question 16

Not yet answered

Marked out of 1

♥ Flag question Let

 $I := \iint_D 2 \, dA$,

where \tilde{D} is the interior of the region bounded by the curves $y=x^2\$$ and $y=x^3$ with $x\geq 0$ and $y\geq 0$.

The value of I is

- 0 2/3
- 3/4
- 0 1/3
- 0 1/6

Not yet answered

Marked out of 1

₹ Flag question

 $\int_0^1 \int_x^1 \sin(y^2) \ dy dx$ by changing the order of the integral. The answer is

Select one:

- cannot be determined
- \bigcirc 1 sin 1
- O cos 1

Question 18

Not yet answered

Marked out of 1

₩ Flag question

Let $f:\mathbb{R}^2 o\mathbb{R}$ be defined by $f((x,y)) := x^2 + 2y^2 - 3xy$, for every $x,y) \in \mathbb{R}^2$.

The value of $f_x((0,0)) + f_y((0,0)) + f_{xy}((0,0))$ is:

- -3
- 0 0
- Undefined
- 0 3

Answer saved Marked out of 1

♥ Flag question

For each
$$n=1,2,3,\ldots$$
 , define $f_n(x) := rac{n^2 x^3}{1+2n^2 x^2},$ for every $x \in \mathbb{R}.$

Then the function f defined by

$$f(x) := \lim_{n o \infty} f_n(x)$$

exists for each $x \in \mathbb{R}$ and is equal to

Select one:

$$\bigcirc \quad f(x) = x^2$$

$$\bigcirc f(x) = x$$

$$\bigcirc f(x) = 0$$

Question 20

Answer saved Marked out of 1

Flag question Consider the following partial differential equation (PDE):

$$\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} = 0$$

where u = u(x, y) is the unknown function.

Define the following functions:

$$u_1(x,y) := \cos(2xy), \ u_2(x,y) = \sin(x^2y) \ ext{and} \ \ u_3(x,y) = e^{-(x^2+y^2)}.$$

Which of these functions are solutions to the above PDE?

- Only u3.
- \bigcirc u_1 and u_3
- All the functions.
- None of the functions.

Information

♥ Flag
question

This section will test your statistical proficiency.

Question 21

Answer saved Marked out of 1

♥ Flag question A class has 25 students of which 10 are boys (you may assume that the other 15 are girls). The class average (mean) height is \bar{x} metres and the mean height for boys is \bar{x}_B metres. The mean height for girls \bar{x}_G is

Select one:

- $\bigcirc \quad \frac{15\bar{x}-10\bar{x}_B}{25}$
- $\bigcirc \quad \frac{25\bar{x}+10\bar{x}_B}{15}$
- $\bigcirc \quad \frac{15\bar{x}-10\bar{x}_B}{10}$

Question 22

Not yet answered

Marked out of 1

♥ Flag
question

A group of 10 students received the following marks for a test: 58, 89,65, 78, 55,26,93,46,43,59.

The standard deviation of their marks is (to two decimal places)

- 0 20.91
- O 437.29
- 0 61.20
- O 3745.44

Not yet answered

Marked out of 1

♥ Flag
question

A jar contains 6 red balls and 5 blue balls. Two balls are drawn at random from the hat without replacement. What is the probability that both the balls drawn are blue?

Select one:

- $\begin{array}{c}
 \bullet & \frac{\binom{5}{2}}{\binom{11}{2}}
 \end{array}$
- 0 10/11
- 0 5/11

Question 24

Not yet answered

Marked out of 1

♥ Flag
question

Let A, B and C be the following sets:

 $A := \{\text{prime numbers}\}, B := \{\text{positive odd numbers}\}$

 $C := \{ positive integers less than or equal to 10 \}.$

The set $D:=(A\cap B)\cap C$ is

- (3,5,7)
- (1,3,4,5,6,7,8,9,10)
- O {2,3,4,5,6,7,8,10}
- (2,3,4,5,6,7,8,9,10)

Not yet answered

Marked out of 1

Flag question Let A, B and C be the following sets:

 $A := \{\text{composite numbers}\} = \{2,3,4,5,6,7,8,...\} \setminus \{\text{prime numbers}\} = \{4,6,8,9,10,...\}$

 $B := \{ positive odd numbers \}$

and

 $C := \{\text{positive integers less than or equal to 10}\}.$

The set $D:=(A\cup B)\cap C$ is

Select one:

- (2,3,4,5,6,7,8,9,10)
- (1,3,4,5,6,7,8,9,10)
- (2,3,4,5,6,7,8,10)
- O {1,3,5,7,9, ...}

Question 26

Not yet answered

Marked out of 1

▼ Flag question

A magician has a collection of 52 cards, with 26 red and 26 black cards. Four of these cards are classified as 'special', and two of the special cards are red. If a card is chosen at random from the 52 cards, what is the probability that the card is special or red?

- 0 26/52
- 28/52
- 0 2/52
- 0 4/52