2. Konsep mol

Kimid Dasar IA

Dr. Rukman Hertadi

Materi yang dipelajari

- · Penggunaan mol dan bilangan Avogadro sebagai alat konversi jumlah zat skala molekul ke skala laboratorium.
- Melakukan perhitungan melibatkan mol
- · Menghitung persen komposisi
- · Menentukan rumus empiris dan rumus molekul
- · Melakukan perhitungan melibatkan mol reaktan dan produk dalan suatu reaksi
- · Menentukan reaktan pembatas dan jumlah zat yang tidak bereaksi
- · Menentukan persen hasil untuk reaksi

Definisi mol

- Mol = Suatu nilai yang sama dengan jumlah atom dalam tepat 12 gram isotop $^{12}_{6}C$
- Berdasarkan eksperimen 1 mol isotop ${}^{12}_{6}$ C = 6.022 x 10²³ atom ${}^{12}_{6}$ C.
- Bilangan Avogardro (N_A) = jumlah atom/molekul/partikel dalam 1 mol
- 1 mol X = 6.022×10^{23} satuan dari X, contoh:
 - 1 mol Xe = 6.022×10^{23} atom Xe
 - 1 mol NO_2 = 6.022 x 10^{23} molekul NO_2
 - 1 mol NaCl = 6.022 x 10²³ satuan rumus NaCl

Mol dan massa molar

- Mol merupakan jembatan penghubung kuantitas skala atom/molekul yang massanya sangat kecil ke skala laboratorium.
- Untuk digunakan sebagai penguhubung skala mikroskopik dan makroskopik digunakan massa molar (MM) suatu zat, yaitu massa untuk 1 mol zat
- MM atom $x = massa (gram) dari 6.02 x 10^{23} atom X$
 - Contoh: 1 mol atom C = massa (gram) dari 6.02 x 10²³ atom C = 12 gram
- MM molekul XY = massa (gram) dari 6.02 x 10²³ molekul XY
 - Contoh: 1 mol CO_2 = massa (gram) dari 6.02 x 10^{23} molekul CO_2 = 44 gram
- Bila tidak bekerja dalam skala mol, akan sulit untuk bekerja di laboratorium karena massa 1 atom/molekul sangat kecil. Contoh:

massa 1 atom
12
C = $\frac{12 \text{ g-atom C}}{4 \text{mol atom C}} \times \frac{4 \text{ mol atom C}}{6.022 \times 10^{23} \text{ atom C}} = 1.99 \times 10^{-23} \text{ g}$

Contoh penggunaan massa molar

Bila diperlukan 0.168 mol $\operatorname{Ca_3(PO_4)_2}$ berapa gram zat tersebut harus ditimbang?

Solusi:

Hitung MM dari $Ca_3(PO_4)_2$:

1 mol $Ca_3(PO_4)_2$ = 310.18 g

Hitung massa yang setara dengan 0.168 mol $\operatorname{Ca_3(PO_4)_2}$:

$$0.168 \ \text{mol Ca}_{3}(PO_{4})_{2} \times \left(\frac{310.18 \text{ g Ca}_{3}(PO_{4})_{2}}{1 \ \text{mol Ca}_{3}(PO_{4})_{2}}\right) = 52.11 \text{ g Ca}_{3}(PO_{4})_{2}$$

Kuantitas makroskopik ke mikroskopik

Berapa jumlah atom yang ada dalam 85.0 g perak?

Solusi:

- MM Ag = 107.87 g/mol
- 1 mol Ag = 6.022×10^{23} atom

$$\sum \text{atom Ag} = 85.0 \text{ gAg} \times \left(\frac{1 \text{ mol-Ag}}{107.87 \text{ gAg}}\right) \times \left(\frac{6.022 \times 10^{23} \text{ atom Ag}}{1 \text{ mol-Ag}}\right)$$
$$= 4.75 \times 10^{23} \text{ atom Ag}$$

Kuantitas mikroskopik ke makroskopik

Hitung massa dalam gram dari 1.53 x 10^{23} satuan rumus $FeCl_3$.

Solusi:

MM
$$FeCl_3$$
 = 162.204 g/mol

m FeCl₃ =
$$1.53 \times 10^{23}$$
 saturan FeCl₃ $\times \left(\frac{1 \text{ mol FeCl}_3}{6.022 \times 10^{23} \text{ saturan FeCl}_3}\right) \times \left(\frac{162.2 \text{ g FeCl}_3}{1 \text{ mol FeCl}_3}\right)$

$$= 41.2 \text{ g FeCl}_3$$

Konversi mol ke mol

- · Rumus molekul dapat digunakan untuk menentukan jumlah atom dalam setiap senyawa
- \cdot Dalam $\mathrm{N}_2\mathrm{O}_5$ ada tiga hubungan yang dapat disimpulkan
 - $2 \mod N \iff 1 \mod N_2O_5$
 - $5 \mod O \iff 1 \mod N_2O_5$
 - $-2 \mod N \iff 5 \mod O$
- · Hubungan di atas dapat digunakan dalam stoikiometri ekivalensi

EKIVALENSI			PERBANDINGAN MOL	PERBANDINGAN MOL
2 mol N	\iff	1 mol N ₂ O ₅	$\frac{2 \text{ mol N}}{1 \text{ mol N}_2 O_5}$	$\frac{1 \text{ mol } N_2O_5}{2 \text{ mol } N}$
5 mol O	\iff	$1 \text{ mol } N_2O_5$	5 mol O 1 mol N ₂ O ₅	$\frac{1 \text{ mol } N_2O_5}{5 \text{ mol } O}$
2 mol N	\iff	5 mol O	2 mol N 5 mol O	5 mol O 2 mol N

Aplikasi hubungan mol ke mol

Suatu sampel diketahui mengandung 0.864 mol fosfor. Hitung jumlah ${\rm Ca_3(PO_4)_2}$ dalam sampel tersebut.

Solusi:

Dari rumus $Ca_3(PO_4)_2$ diperoleh hubungan:

$$2 \operatorname{mol} P \iff 1 \operatorname{mol} \operatorname{Ca}_3(PO_4)_2$$

dengan menggunakan hubungan ekivalensi di atas

jumlah
$$Ca_3(PO_4)_2 = 0.864 \text{ mol P} \times \frac{1 \text{ mol } Ca_3(PO_4)_2}{2 \text{ mol P}} = 0.432 \text{ mol } Ca_3(PO_4)_2$$

Perhitungan dari massa ke massa

- · Di laboratorium seringkali dilakukan perhitungan massa zat B yang diperlukan untuk bereaksi sempurna dengan massa tertentu zat A untuk membentuk senyawa.
- · Langkah perhitungannya:

 $massa A \longrightarrow mol A \longrightarrow mol B \longrightarrow massa B$

Contoh perhitungan dari massa ke massa

Klorofil, pigmen hijau daun, memiliki rumus $C_{55}H_{72}MgN_4O_5$. Bila 0.0011 g Mg tersedia untuk sintesis klorofil di tanaman, berapa gram karbon yang akan diperlukan untuk menghabiskan seluruh magnesium menjadi klorofil?

Solusi:

Langkah perhitungan:

$$0.0011 \text{ g Mg} \longrightarrow \text{mol Mg} \longrightarrow \text{mol C} \longrightarrow \text{massa C}$$

Konversi mol Mg ke mol C memerlukan hubungan ekivalensi dari rumus klorofil

$$1 \text{ mol Mg} \iff 55 \text{ mol C}$$

$$\text{massa C} = 0.0011 \text{ g Mg} \times \frac{1 \text{ mol Mg}}{24.3 \text{ g Mg}} \times \frac{55 \text{ mol C}}{1 \text{ mol Mg}} \times \frac{12.01 \text{ g C}}{1 \text{ mol C}}$$

$$= 0.030 \text{ g C}$$

Latihan

Perak ditemukan di alam dalam bentuk mineral argentit (Ag_2S). Berapa gram perak murni yang dapat diperoleh dari 836 g argentit?

- A. 7.75 g
- B. 728 g
- C. 364 g
- D. 775 g
- E. 418 g

Submit Show Hint Show Answer Clear

Persen Komposisi

Persen massa adalah cara untuk menyatakan massa relatif setiap unsur dalam senyawa.

$$%$$
massa unsur $X = \frac{\text{massa unsur}}{\text{massa sampel}} \times 100\%$

Persen massa menyatakan massa setiap unsur dalam 100 g senyawa

Contoh

Suatu sampel cairan dengan massa 8.657 g didekomposisi menjadi unsur-unsurnya dan memberikan 5.217 g karbon, 0.9620 g hidrogen, dan 2.478 g oksigen. Tentukan persen komposisi dari senyawa ini.

Solusi:

$$%\mathbf{C} = \frac{5.217 \text{ g C}}{8.657 \text{ g}} \times 100\% = 60.26\%$$

$$%\mathbf{H} = \frac{0.9620 \text{ g C}}{8.657 \text{ g}} \times 100\% = 11.11\%$$

$$%\mathbf{O} = \frac{2.478 \text{ g C}}{8.657 \text{ g}} \times 100\% = 28.62\%$$

Dalam 100 g senyawa terdapat 60.26 g C, 11.11 g H, dan 28.62 g C.

Latihan

Persen massa oksigen dalam $NiSO_4 \cdot 7 H_2O$ adalah ...

- A. 14.846 %
- B. 39.875 %
- C. 43.273 %
- O D. 49.531 %
- E. 62.661 %

Submit Show Hint Show Answer Clear

Menentukan rumus empiris

- · Rumus empiris adalah komposisi paling sederhana unsur-unsur dalam senyawa.
- · Rumus molekul adalah komposisi eksak unsur-unsur dalam senyawa
 - Contoh: glukosa memiliki rumus empiris ${\rm CH_2O}$ dan rumus molekul ${\rm C_6H_{12}O_6}$
- · Langkah penentuan rumus empiris
 - 1. Tentukan massa dalam gram setiap unsur
 - 2. Konversi massa ke mol
 - 3. Tentukan mol unsur paling kecil dan gunakan untuk perhitungan perbandingan mol antar unsur.
 - 4. Bulatkan perbandingan mol

Rumus empiris dari data massa

Ketika 0.1156 g sampel senyawa dianalisis, ditemukan senyawa tersebut mengandung 0.04470 g C, 0.01875 g H dan 0.05215 g N. Tentukan rumus empiris senyawa ini.

Solusi:

1. Tentukan mol setiap zat

$$\mathbf{n_C} = 0.04470 \text{ gC} \times \frac{1 \text{ mol C}}{12.011 \text{ gC}} = 3.722 \times 10^{-3} \text{ mol}$$

$$\mathbf{n_H} = 0.01875 \text{ gH} \times \frac{1 \text{ mol H}}{1.008 \text{ gH}} = 1.860 \times 10^{-2} \text{ mol}$$

$$\mathbf{n_N} = 0.05215 \text{ gN} \times \frac{1 \text{ mol N}}{14.0567 \text{ gN}} = 3.723 \times 10^{-3} \text{ mol}$$

2. Tentukan mol unsur paling kecil dan gunakan untuk perhitungan perbandingan mol antar unsur

mol Unsur C adalah yang terkecil: 3.722 x 10⁻³ mol

$$\mathbf{C} = \frac{3.722 \times 10^{-3} \text{ mol}}{3.722 \times 10^{-3} \text{ mol}} = 1$$

$$\mathbf{H} = \frac{1.860 \times 10^{-2} \text{ mol}}{3.722 \times 10^{-3} \text{ mol}} = 4.997 \approx 5$$

$$\mathbf{N} = \frac{3.723 \times 10^{-3} \text{ mol}}{3.722 \times 10^{-3} \text{ mol}} = 1$$

3. Rumus empiris: CH_5N

Rumus empiris dari data persen komposisi

Tentukan rumus empiris suatu senyawa yang mengandung 43.64% P dan 56.36% O. Bila massa molar senyawa adalah 283.9 g/mol tentukan rumus molekul senyawa tersebut.

Solusi:

1. Hitung mol masing-masing unsur

Diasumsikan massa sampel = 100 g, maka massa P = 43.64 g dan massa O = 56.36 g.

$$\mathbf{n_P} = 43.64 \text{ gP} \times \frac{1 \text{ mol P}}{30.97 \text{ gP}} = 1.409 \text{ mol}$$

$$\mathbf{n_0} = 56.36 \text{ gO} \times \frac{1 \text{ mol O}}{16.00 \text{ gO}} = 3.523 \text{ mol}$$

2. Tentukan perbandingan mol tiap unsur

$$\mathbf{P} = \frac{1.409 \text{ mol}}{1.409 \text{ mol}} = 1 \times 2 = 2$$

$$\mathbf{O} = \frac{3.523 \text{ mol}}{1.409 \text{ mol}} = 2.5 \times 2 = 5$$

- 3. Rumus Empiris senyawa: P_2O_5
- 4. Tentukan rumus molekul

 ${\rm MM}\ {\rm P_2O_5}$ = 283.9 g/mol = MM senyawa, sehingga rumus empiris = rumus molekul

Rumus empiris dari analisis tak langsung

Pembakaran 5.217 g sampel yang mengandung unsur C, H, dan O dengan oksigen murni menghasilkan 7.406 g CO_2 dan 4.512 g $\mathrm{H}_2\mathrm{O}$. Tentukan rumus empiris senyawa tersebut.

Solusi:

1. Tentukan massa C dan massa H

Seluruh C dari ${\rm CO_2}$ dan H dari ${\rm H_2O}$ seluruhnya berasal dari sampel, sehingga massa C dan massa H dapat dihitung dari senyawa hasil pembakaran sampel.

$$\mathbf{m_C} = 7.406 \text{ g GO}_2 \times \frac{1 \text{ mol CO}_2}{44.01 \text{ g GO}_2} \times \frac{1 \text{ mol C}}{1 \text{ mol CO}_2} \times \frac{12.011 \text{ g C}}{1 \text{ mol C}} = 2.021 \text{ g C}$$

$$\mathbf{m_H} = 4.512 \text{ g H}_2\text{O} \times \frac{1 \text{ mol H}_2\text{O}}{18.015 \text{ g H}_2\text{O}} \times \frac{2 \text{ mol H}}{1 \text{ mol H}_2\text{O}} \times \frac{1.008 \text{ g H}}{1 \text{ mol H}} = 0.5049 \text{ g H}$$

2. Hitung massa O

$$\mathbf{m_O} = m_{\text{sampel}} - m_{\text{C}} - m_{\text{H}}$$

= $(5.217 \text{ g sample}) - (2.021 \text{ g C}) - (0.5049 \text{ g H}) = 2.691 \text{ g O}$

3. Tentukan mol masing-masing unsur

$$\mathbf{n_C} = 2.021 \text{ gC} \times \frac{1 \text{ mol C}}{12.011 \text{ gC}} = 0.1683 \text{ mol C}$$

$$\mathbf{n_H} = 0.5049 \text{ gH} \times \frac{1 \text{ mol H}}{1.008 \text{ gH}} = 0.5009 \text{ mol H}$$

$$\mathbf{n_0} = 2.691 \text{ gO} \times \frac{1 \text{ mol O}}{16.0 \text{ gO}} = 0.1682 \text{ mol O}$$

4. Tentukan perbandingan mol

$$\mathbf{n_C} : \mathbf{n_H} : \mathbf{n_O} = \frac{01.1682}{0.1682} : \frac{0.5009}{0.1682} : \frac{0.1682}{0.1682}$$

$$= 1 : 2.97 : 1$$

$$\approx 1 : 3 : 1$$

5. Rumus empiris: CH_3O

Latihan

Pembakaran 13.660 g sampel yang mengandung unsur C, H, dan S dengan oksigen murni menghasilkan 19.352 g $\rm CO_2$ dan 11.882 g $\rm H_2O$. Temtukan rumus empiris senyawa tersebut.

- \circ A. $C_4H_{12}S$
- $_{\odot}$ B. CH₃S
- \circ C. C_2H_6S
- \circ D. $C_2H_6S_3$
- \circ E. CH_3S_2

Submit Show Hint Show Answer Clear

Stoikiometri

Stoikiometri adalah hubungan kuantitas relatif zat-zat yang terlibat dalam reaksi kimia.

Contoh:

Untuk reaksi $N_2+2\,H_2\longrightarrow 2\,NH_3$, berapa mol N_2 yang diperlukan untuk membuat 2.3 mol NH_3 dalam keadaan H_2 berlebih?

Solusi:

Berdasarkan reaksi $N_2 + 2\,H_2 \longrightarrow 2\,NH_3$ diperoleh hubungan kuantitas N_2 dan NH_3 :

$$2 \operatorname{mol} NH_3 \iff 1 \operatorname{mol} N_2$$

$$\mathbf{n_{N_2}} = 2.3 \text{ anol NH}_3 \times \frac{1 \text{ mol N}_2}{2 \text{ anol NH}_3} = 1.2 \text{ mol N}_2$$

Latihan

Dekomposisi termal $KClO_3(s)$ menghasilkan KCl(s) dan $O_2(g)$. Bila 4.289 g $KClO_3$ mengalami reaksi ini, tentukan banyaknya oksigen yang dihasilkan.

- A. 1.120 gram
- B. 0.5601 gram
- C. 2.240 gram
- D. 1.680 gram
- E. 4.288 gram

Submit Show Hint Show Answer Clear

· Soal solusi-a solusi-b

Dolomit merupakan mineral yang terdiri dari kalsium karbonat dan magnesium karbonat. Ketika dolomit dipanaskan, karbonatnya terdekomposisi menjadi oksidanya (CaO dan MgO) dan karbon dikosida.

- (a) Tuliskan persamaan reaksi dekomposisi masing-masing garam karbonat.
- (b) Ketika sampel dolomit dengan massa 5.78 g dipanaskan dengan kuat, residunya memiliki massa 3.02 g. Hitung massa dalam gram dan persen kalsium karbonat dan magnesium karbonat dalam sampel dolomit.

Reaktan pembatas

Reaktan pembatas adalah reaktan yang habis bereaksi atau reaktan dengan jumlah mol terkecil.

Contoh:

Berapa gram ${
m NO}$ yang terbentuk bila 30.0 g ${
m NH}_3$ dan 40.0 g ${
m O}_2$ bereaksi dengan persamaan:

$$4 \text{ NH}_3 + 5 \text{ O}_2 \longrightarrow 4 \text{ NO} + 6 \text{ H}_2 \text{O}$$

Solusi:

1. Hitung mol masing-masing reaktan

$$\mathbf{n(NH_3)} = \frac{30.0 \text{ g NH}_3}{17.0 \text{ g/mol NH}_3} = 1.77 \text{ mol NH}_3$$
$$\mathbf{n(O_2)} = \frac{40.0 \text{ g O}_2}{32.0 \text{ g/mol O}_2} = 1.25 \text{ mol O}_2$$

Reaksi:

$$4 \text{ NH}_3 + 5 \text{ O}_2 \longrightarrow 4 \text{ NO} + 6 \text{ H}_2 \text{O}$$

2. Bandingkan mol reaktan

Dari persamaan reaksi:

$$4 \operatorname{mol} NH_3 \iff 5 \operatorname{mol} O_2$$

Untuk membandingkan bagi setiap mol reaktan dengan koefisiennya:

$$(\frac{1.77 \text{ mol NH}_3}{4} = 0.4425 \text{ mol NH}_3) > (\frac{1.25 \text{ mol O}_2}{5} = 0.25 \text{ mol O}_2)$$

Oleh karena itu O_2 adalah reaktan yang akan habis bereaksi (reagen pembatas)

3. Hitung massa ${ m NO}$ maksimum yang terbentuk dari 30 g ${ m O}_2$

$$\mathbf{m_{NO}} = 1.25 \text{ mol O}_2 \times \frac{4 \text{ mol NO}}{5 \text{ mol O}_2} \times \frac{30.01 \text{ g NO}}{1 \text{ mol NO}} = 30.0 \text{ g NO}$$

Latihan

Bagian reaktan dari suatu persamaan reaksi yang setara diberikan di bawah ini:

$$K_2Cr_2O_7 + 4H_2SO_4 + 3SeO_2 \longrightarrow$$

Bila 0.6 mol $m K_2Cr_2O_7$, 2.8 mol $m H_2SO_4$ dan 1.5 mol $m SeO_2$ dicampurkan dan bereaksi, maka

- $_{\odot}$ A. $H_{2}SO_{4}$ adalah reagen pembatas
- $_{\odot}$ B. $K_{2}Cr_{2}O_{7}$ adalah reagen pembatas
- $_{\odot}$ C. ada 1.300 mol $m K_{2}Cr_{2}O_{7}$ tersisa
- $\, \odot \,$ D. ada 0.800 mol H_2SO_4 tersisa
- \circ E. ada 0.300 mol ${
 m SeO}_2$ tersisa

Submit Show Hint Show Answer Clear

Hasil reaksi

- · Dalam banyak eksperimen, seringkali jumlah produk yang diperoleh lebih sedikit dibanding hasil perhitungan teoritis.
- · Berkurangnya hasil disebabkan oleh beberapa faktor, antara lain:
 - isu mekanis, misalkan melekatnya produk pada peralatan
 - proses penguapan, khususnya bila titik didih produk rendah
 - sebagian padatan masih tertinggal dalam larutan
 - adanya kompetisi pembentukan produk dengan reaksi samping
- · Persen hasil:

$$%$$
 hasil = $\frac{\text{hasil aktual}}{\text{hasil teoritis}} \times 100\%$

Contoh

Seorang kimiawan mensintesis fosfor triklorida di laboratorium dengan mencampurkan 12.0 g padatan fosfor dengan 35.0 g klor, dan memperoleh 42.4 g padatan fosfor triklorida. Tentukan persen hasil dari percobaan ini.

Solusi:

1. Tuliskan persamaan reaksi yang disetarakan

$$2 P(s) + 3 Cl_2(g) \longrightarrow 2 PCl_3(s)$$

2. Tentukan mol setiap reaktan

$$\mathbf{n_P} = 12.0 \text{ gP} \times \frac{1 \text{ mol P}}{30.97 \text{ gP}} = 0.3874 \text{ mol P}$$

$$\mathbf{n_{Cl_2}} = 35.0 \text{ gCl}_2 \times \frac{1 \text{ mol Cl}_2}{70.90 \text{ gCl}_2} = 0.4936 \text{ mol Cl}_2$$

3. Tentukan reagen pembatas

Berdasarkan reaksi: $2 \text{ mol } P \iff 3 \text{ mol } Cl_2$ Untuk menentukan reagen pembatas, bagi setiap mol reaktan dengan koefisien reaksi:

$$\left(\frac{0.3874 \text{ mol P}}{2} = 0.1937 \text{ mol P}\right) > \left(\frac{0.4936 \text{ mol Cl}_2}{3} = 0.1645 \text{ mol Cl}_2\right)$$

Jadi, Cl_2 merupakan reagen pembatas

4. Hitung hasil teoritis berdasarkan kuantitas reagen pembatas

$$\mathbf{m_{PCl_3}} = 35.0 \text{ gCl}_2 \times \frac{1 \text{ mol Cl}_2}{70.90 \text{ gCl}_2} \times \frac{2 \text{ mol PCl}_3}{3 \text{ mol Cl}_2} \times \frac{137.32 \text{ g PCl}_3}{1 \text{ mol PCl}_3} = 45.2 \text{ g PCl}_3$$

5. Hitung persen hasil

Hasil aktual = 42.4 g

% hasil =
$$\frac{42.2 \text{ g PCl}_3}{45.2 \text{ g PCl}_3} \times 100\% = 93.8\%$$

Latihan

Fosfor tribromida (MM PBr_3 = 270.69 g/mol) dan air (MM H_2O = 18.015 g/mol) bereaksi menghasilkan asam fosfit (MM H_3PO_3 = 81.996 g/mol) dan hidrogen bromida (MM HBr = 80.912 g/mol). Bila 0.5 mol fosfor tribromida bereaksi dengan 2.0 mol air diperoleh 98.048 g hidrogen bromida, tentukan persen hasil dari reaksi ini.

- A. 72.16 %
- OB. 97.22 %
- C. 78.62 %
- OD. 85.93 %
- E. 80.79 %

Submit Show Hint Show Answer Clear