Problem Set 8

[Your Full Name Here]

MATH 100 — Introduction to Proof and Problem Solving — Summer 2023

Problem 8.1. Give an example, with an explanation, of functions for the following if you think examples exist. If you think no such example exists, prove why

(a)	An injective but not surjective function	
	Solution.	
(b)	Let $A = \{a, b, c\}$. A surjective function $f : A \to \mathcal{P}(A)$	
	Solution.	
(c)	A function that is neither surjective nor injective	
	Solution.	
(d)	A surjective but not injective injective	
	Solution.	
(e)	Let $A = \{a, b, c\}$. An injective function $f : A \to \mathcal{P}(A)$	
	Solution.	

Problem 8.2. Let A, B be finite sets such that $ A = B = n$. Prove by induction that the	re are n!
bijective functions from A to B.	
Solution.	

Problem 8.3. Let $f: A \to B$ be a function and let $X \subseteq A$ and $Y \subseteq B$. Recall we defined the sets		
	$f(X) = \{ y \in Y : y = f(x) \text{ for some } x \in X \} \subseteq B$ $f^{-1}(Y) = \{ x \in X : f(x) \in Y \} \subseteq A$	
(a)	Prove that $X \subseteq f^{-1}(f(X))$. Give an example to show that this containment can sometimes be strict (ie $X \subsetneq f^{-1}(f(X))$)	
	Solution.	
(b)	Make a similar conjecture and then prove it about the relationship between Y and $f(f^{-1}(Y))$ (is one contained in the other? If so, which one?)	
	Solution.	
(-)	Decree that $f: A \to B$ is injective iff for all ordered $Y \subset A$ we have $Y = f^{-1}(f(Y))$	
(C)	Prove that $f: A \to B$ is injective iff for all subsets $X \subseteq A$ we have $X = f^{-1}(f(X))$	

(d) Make a similar conjecture as in part c and prove it about f being surjective.

Solution.

Solution.

Collaborators:

References:

• [Book(s): Title, Author]

• [Online: Link]

• [Notes: Link]

Fin.