Tema 14. Transformers

Razonamiento y Representación del Conocimiento

Introducción

- Redes Neuronales → Combinación lineal del vector de entrada por los pesos de la red
- Evolución → deep learning
- Deep learning → Redes neuronales con muchas capas, principalmente convolucionales

Introducción

- Redes neuronales (convolucionales):
 - Capturan muy bien las relaciones entre datos
 - Pueden aprender estas relaciones
 - Cuando los datos están localmente 'cerca'
- Problema: secuencias de datos largas
 - Lenguaje natural
 - Secuencias de video

Introducción

Solución:

Transformers

- Sirven para encontrar relaciones entre secuencias de datos
 - Gran rango
 - Dependientes de la entrada

El gato está sobre la mesa El gato, que es de color negro, está sobre la mesa

Transformers

- Secuencia de datos:
 - 1) Tokenizar
 - 2) Embeber
 - 3) Aprender

Tokenizer

- Separar la secuencia de datos de entrada en unidades discretas: tokens
 - Character Tokenizer: separa la entrada en caracteres
 - Word Tokenizer: separa la entrada en palabras
 - Sub-word Tokenizer: cualquier separación entre los dos anteriores

Tokenizer

Tokenizer

- GPT Tokenizer → Byte-pair encoding
 - Combina tokens de 1 caracter* con tokens de palabras completas
 - Comienza con un conjunto inicial con los caracteres de la entrada: conjunto de 1-caracter n-grams
 - Después, las parejas de caracteres adyacentes más frecuentes son consideradas: 2-caracter n-grams
 - El proceso sigue hasta llegar a un vocabulario del tamaño deseado (GPT-4 100256 n-grams)

Embeddings

- Tokenizer: Sequence → tokens
- Embedding: Tokens → vectors
- El proceso de embedding consiste en asociar un vector de características a cada token
- El proceso se ajusta utilizando una CNN

Embeddings

Self-Attention

- Convolución larga
 - Necesitamos que las convoluciones tengan en cuenta toda la vecindad
 - $g(\cdot)$: attention scoring function

$$\mathbf{h}_i = \sum_{j=1}^n g(i-j)\mathbf{x}_j$$

$$\mathbf{h}_i = \sum_{j=1}^n \mathbf{g}(\mathbf{x}_i, \mathbf{x}_j) \mathbf{x}_j$$

$$g(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_j$$

Self-Attention layer

Definimos 3 matrices 'entrenables'

Key tokens: $\mathbf{k}_i = \mathbf{W}_k \mathbf{x}_i$

Value tokens: $\mathbf{v}_i = \mathbf{W}_{\nu} \mathbf{x}_i$

Query tokens: $\mathbf{q}_i = \mathbf{W}_q \mathbf{x}_i$

 Las combinamos para obtener una capa self-attention

$$\mathbf{h}_i = \sum_{j=1}^n \operatorname{softmax}_j(g(\mathbf{q}_i, \mathbf{k}_j)) \mathbf{v_j}$$

Self-Attention Layer

Multi-head attention

- Queremos encontrar relaciones entre los distintos tokens de una secuencia
- Disponemos de varias instancias de selfattentional layer → diferentes heads con sus 3 conjuntos de parámetros entrenables (W_q, W_k, W_v)

Transformer

- Podríamos construir el modelo a partir de múltiples bloques MHA
- Pero los mejores resultados se obtienen alternando un MHA con un MLP regularizadas con etapas de normalización de los datos

Transformer

- Bloque básico
 - Pre-normalizado
 - Post-normalizado

Transformer

- Modelo básico de transformer
 - 1) Tokenizar y embeber la entrada
 - 2) Añadir absoute positional embeddings
 - 3) Aplicar 1 o más bloques Transformer
 - 4) Aplicar una etapa de salida dependiendo de la aplicación

Transformer - ejemplo

 Ejemplo: traductor entre idiomas

Bibliiografía

 Alice's Adventures in a differentiable wonderland de Simone Scardapane (arXiv)