Position-sensitive device

Bodo Kaiser

Ludwig-Maximilians-Universität München

bodo.ka iser@physik.uni-muenchen.de

April 6, 2019

Contents

1 Introduction						
2	Posi	Position-sensitive detector				
3	Preamplifier					
		Gain				
	3.2	Offset				
		3.2.1 Input offset voltage				
		3.2.2 Input bias current				
	3.3	Noise				
	3.4	Stability				

1 Introduction

2 Position-sensitive detector

[1]

D	Symbol	Values		TT *:
Parameter		Typical	Maximum	Unit
Dark current	I_d	0.5	10	nA
Interelectrode resistance	R_e	7	15	$\mathrm{k}\Omega$
Terminal capacitance	C_t	150	300	pF

Table 1: Important parameters of the S5990 extracted from the datasheet [2].

3 Preamplifier

The photocurrents created by our detector are in the range of microampere where they are vulnerable to noise. Using a preamplifier, we can increase the amplitude of the signal for an improved signal-to-noise ratio. The typical photocurrent preamplifier is based on the transimpedance (current-to-voltage) amplifier design using a voltage-feedback operational amplifier. Converting the current to a voltage signal has the benefit that the voltage signal can be easily visualized with an oscilloscope. Furthermore, the voltage-feedback operational amplifier design appears to be more common than the current-feedback operational amplifier, as manufacturers offer much more choice and they are more prominent in the literature. That said, current feedback operational amplifiers are reported to be a viable solution for high-speed and high-bandwidth applications, see Ref. [3, p. 110] for an overview of the benefits of current feedback amplifiers and Ref. [4, Ch. 9] for a comparison.

3.1 **Gain**

Figure 1: Simple transimpedance amplifier circuit.

$$V_{\text{out}} = R_f I_{\text{in}} \tag{1}$$

Figure 2: Equivalence between transimpedance and inverting amplifier using source transformation.

3.2 Offset

3.2.1 Input offset voltage

[3, p. 54]

Figure 3: Input current offset compensation.

3.2.2 Input bias current

(a) Equivalent current sources as reported in the (b) Alternative equivalent current sources. datasheet.

Figure 4: Non-zero input current from the operational amplifier.

$$I_{+} = I_{\text{bias}} + \frac{1}{2}I_{\text{offset}} \qquad I_{\text{offset}} = I_{+} - I_{-} \qquad (2)$$

$$I_{-} = I_{\text{bias}} - \frac{1}{2}I_{\text{offset}} \qquad I_{\text{bias}} = \frac{I_{+} + I_{-}}{2} \qquad (3)$$

Figure 5: Input current offset compensation.

[3, p. 57] [5, p. 25]

$$R_c = \frac{R_{\rm in}R_f}{R_{\rm in} + R_f} \tag{4}$$

3.3 Noise

3.4 Stability

 $[6,\,\mathrm{p.}\ 693]\ [7,\,\mathrm{p.}\ 183]\ [4,\,\mathrm{Ch.}\ 5]\ [5,\,\mathrm{Ch.}\ 3]$

Glossary

\$5990 Hamamatsu two-dimensional PSD. 3

References

- [1] Date Noorlag. "Lateral-photoeffect position-sensitive detectors". PhD thesis. Delft University of Technology, 1974.
- [2] S5990 2D PSD. Hamamatsu. URL: https://www.hamamatsu.com/resources/pdf/ssd/s5990-01_etc_kpsd1010e.pdf (visited on 03/03/2019).
- [3] Walt Jung. Op Amp Applications Handbook. Elsevier, 2005. ISBN: 9780750678445.
- [4] Ron Mancini Bruce Carter. Op Amps for Everyone. Elsevier, 2002. ISBN: 9780750677011.
- [5] Jerald Graeme. *Photodiode Amplifiers. Op Amp Solutions*. McGraw Hill Professional, 1996. ISBN: 9780070242470.
- [6] Philip Hobbs. Building Electro-Optical Systems. Making it all Work. John Wiley & Sons, 2011. ISBN: 9781118211090.
- [7] Art Kay. Operational Amplifier Noise. Techniques and Tips for Analyzing and Reducing Noise. Elsevier, 2012. ISBN: 9780750685252.