Regression vs. Classification

8 6 4 2 0 -2 2 -1 0 1 2 3 4 5 6

Classification

Classification Terminology

- Goal: Given data points $\{x\} \in R^D$, assign each data to one class Ck (k= 1, . . . , K)
- Decision boundaries: Input space is divided into regions, whose boundaries are called decision boundaries and each region corresponds to a class of data
- Linearly separable: Datapoints whose classes can be separated by linear decision boundaries
 - mean that decision boundaries are linear functions of the input x
 - hence are defined by (D 1)-dimensional hyperplanes within the D-dimensional input space

Classification: Three Different Methods

Discriminant models

- Given training data, assign each data x to one class C_k via a discriminant function
- Do not consider distribution of the training data

Probabilistic discriminant models

- Given training data, model the posterior class distribution $p(C_k|x)$
- Use the distribution $p(G_k|x)$ to perform classification for testing data

Probabilistic generative models

- Given training data, model the joint (data, class) distribution p(x,Q)
- Find class-conditional distribution p(x | G) and class prior distribution p(G)
- Then use Bayes rule to compute $p(G_k|x) \sim p(x|G_k) p(G_k)$

Discriminant Models

Binary Classification

• The simplest representation of a linear discriminant function

$$y(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$$

 \mathbf{w} is called a weight parameter vector, and \mathbf{w}_0 is a bias

- An input data x is classified to
 - Class G if y(x) > 0
 - Class C_2 if y(x) < 0
- The decision boundary is defined by

$$y(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0 = 0$$

Geometry of Linear Discriminant Function

$$y(\mathbf{x}_{A}) = \mathbf{w}^{T} \mathbf{x}_{A} + w_{0} = 0$$

$$y(\mathbf{x}_{B}) = \mathbf{w}^{T} \mathbf{x}_{B} + w_{0} = 0$$

$$\mathbf{w}^{T} (\mathbf{x}_{A} - \mathbf{x}_{B}) = 0$$

$$\mathbf{x} = \mathbf{x}_{*} + r \frac{\mathbf{w}}{\|\mathbf{w}\|_{2}}$$

$$\mathbf{w}^{T} \mathbf{x} + w_{0} = \mathbf{w}^{T} \mathbf{x}_{*} + w_{0} + r \frac{\mathbf{w}^{T} \mathbf{w}}{\|\mathbf{w}\|_{2}}$$

$$= 0 + r \|\mathbf{w}\|_{2}$$

$$\Rightarrow r = \frac{\mathbf{w}^{T} \mathbf{x} + x_{0}}{\|\mathbf{w}\|_{2}}$$

$$= \frac{y(\mathbf{x})}{\|\mathbf{w}\|_{2}}$$

Multi-Class Classification

- Build a K-class discriminant function by combining a number of two-class discriminant functions
 - One-versus-the-rest classifier
 - Introduce K–1 binary discriminant functions, each of which solves a two-class problem of separating points in a particular class C_k from points not in that class
 - One-versus-one classifier
 - Introduce $\frac{K(K-1)}{2}$ binary discriminant functions, each one for every possible pair of classes
 - Data are classified according to a majority vote amongst the discriminant functions
 - The two ways could lead to some issues

Example: Three Classes

One-versus-the-rest classifier

One-versus-one classifier

A Single K-Class Discriminant

Comprise K linear functions, each for a class

$$y_k(\mathbf{x}) = \mathbf{w}_k^T \mathbf{x} + w_{k0}$$

• A data point \mathbf{x} is assigned to class C_k if

$$y_k(\mathbf{x}) > y_j(\mathbf{x}), \forall j \neq k$$

The decision boundary between class Gand class Gis given by

$$y_k(\mathbf{x}) = y_j(\mathbf{x})$$

• Which corresponds to a (D-1)-dimensional hyperplane

$$(\mathbf{w}_k - \mathbf{w}_j)^T \mathbf{x} + (w_{k0} - w_{j0}) = 0$$

Least Square for Classification

Each class G is described by its own linear model so that

$$\tilde{\mathbf{w}}_k = [\mathbf{w}_k; w_{k0}] \quad y_k(\mathbf{x}) = \mathbf{w}_k^T \mathbf{x} + w_{k0}$$

$$\tilde{\mathbf{x}} = [\mathbf{x}; 1] \quad \mathbf{y}(\tilde{\mathbf{x}}) = \tilde{\mathbf{W}}^T \tilde{\mathbf{x}}$$

- Consider a training dataset with N data points $\{x_n, t_n\}$
 - Label t: one-hot encoding (1-of-K binary coding)
 - #Class = 10 (e.g., in digit recognition).
 - One-hot encoding of $t_n = 3$ is $t_n = [0,0,0,1,0,0,0,0,0,0] \in \{0,1\}^{10}$
- Least square loss

$$\min_{ ilde{\mathbf{W}}} \sum_{n=1}^N \left(\mathbf{t}_n - ilde{\mathbf{W}}^T ilde{\mathbf{x}}_n
ight)^2$$
 Normal equation/(Stochastic) Gradient descent

Least Square for Classification

Magenta line is the decision boundary from least squares

Sensitive to outliers, which lead to large changes in the location of the decision boundary

Least Square for Classification

Linear decision boundaries

could separate classes well

Least square has poor performance

Fisher's Linear Discriminant Analysis

Linear classification from the viewpoint of dimensionality reduction

Essentially, not a discriminant

Main Idea (Binary Classification)

- Project high-dimensional data into a low-dimensional space such that
 - Projected data points from different classes in low-dim space are separated
- Project a data point x to 1 dimension with a projection vector w is

$$y = \mathbf{w}^T \mathbf{x}$$

• Goal: maximize the separation of the projected means between classes

$$\mathcal{C}_1 \qquad \mathbf{m}_1 = \frac{1}{N_1} \sum_{n \in \mathcal{C}_1} \mathbf{x}_n \qquad m_1 = \mathbf{w}^T \mathbf{m}_1$$

$$\mathcal{C}_2 \qquad \mathbf{m}_2 = \frac{1}{N_2} \sum_{n \in \mathcal{C}_2} \mathbf{x}_n \qquad m_2 = \mathbf{w}^T \mathbf{m}_2$$

$$\frac{\mathbf{max}}{\mathbf{w}} (m_2 - m_1)^2 = (\mathbf{w}^T (\mathbf{m}_2 - \mathbf{m}_1))^2$$

Issue: Between-Class Overlap

Considerable overlap between classes when projected onto the 1D line

Fisher's Linear Discriminant

 Further minimize within-class variance, thus minimize between-class overlap

$$s_1^2 = \sum_{n \in \mathcal{C}_1} (y_n - m_1)^2$$
 $s_2^2 = \sum_{n \in \mathcal{C}_2} (y_n - m_2)^2$
$$\min_{\mathbf{w}} s_1^2 + s_2^2$$

Fisher's ratio

Fisher's Linear Discriminant

$$m_k = \mathbf{w}^T \mathbf{m}_k$$
 $s_k^2 = \sum_{n \in \mathcal{C}_k} (y_n - m_k)^2$ $y_n = \mathbf{w}^T \mathbf{x}_n$

Between-class covariance matrix
$$\mathbf{S}_B = (\mathbf{m}_2 - \mathbf{m}_1)(\mathbf{m}_2 - \mathbf{m}_1)^T$$
 \Longrightarrow $\max_{\mathbf{w}} (m_2 - m_1)^2 = \max_{\mathbf{w}} \mathbf{w}^T \mathbf{S}_B \mathbf{w}$

Total within-class covariance matrix
$$\mathbf{S}_W = \sum_{k \in \{1,2\}} \sum_{n \in C_k} (\mathbf{x}_n - \mathbf{m}_k) (\mathbf{x}_n - \mathbf{m}_k)^T \quad \Longrightarrow \quad \min_{\mathbf{w}} (s_1^2 + w_2^2) = \min_{\mathbf{w}} \mathbf{w}^T \mathbf{S}_W \mathbf{w}$$

$$\max_{\mathbf{w}} \frac{(m_2 - m_1)^2}{(s_1^2 + w_2^2)} \qquad \qquad \qquad \max_{\mathbf{w}} \frac{\mathbf{w}^T \mathbf{S}_B \mathbf{w}}{\mathbf{v}^T \mathbf{S}_W \mathbf{w}}$$

Differentiate w.r.t w and set it to be 0

$$\mathbf{w}^T \mathbf{S}_W \mathbf{w} = \mathbf{w}^T \mathbf{w} \mathbf{S}_B \mathbf{w}$$

$$\mathbf{S}_{B}\mathbf{w} = (\mathbf{m}_{2} - \mathbf{m}_{1})((\mathbf{m}_{2} - \mathbf{m}_{1})^{T}\mathbf{w}) \propto \mathbf{m}_{2} - \mathbf{m}_{1} \quad \Longrightarrow \quad \mathbf{w} \propto \mathbf{S}_{\mathbf{w}}^{-1}(\mathbf{m}_{2} - \mathbf{m}_{1})$$

Fisher's Linear Discriminant

$$\mathbf{w} \propto \mathbf{S}_{\mathbf{w}}^{-1} (\mathbf{m}_2 - \mathbf{m}_1)$$

Classification
$$y(\mathbf{x}_t) = \mathbf{w}^T \mathbf{x}_t$$
 $= (\mathbf{m}_2 - \mathbf{m}_1)^T \mathbf{S}_{\mathbf{w}}^{-1} \mathbf{x}_t$ \mathcal{C}_1 $\geq y_0$ Need to determine \mathbf{y}_0

It is essentially not a discriminant

A Two-Class Example

Between-class overlap is significantly reduced Within-class data points are close (small variance)

Generalize to Multi-Classes (K<D)

$$\mathbf{w} \in \mathbb{R}^D \quad y_n = \mathbf{w}^T \mathbf{x}_n \qquad \qquad \mathbf{y}_n = \mathbf{W}^T \mathbf{x}_n \quad \mathbf{W} \in \mathbb{R}^{D \times d}$$

$$\text{Per-class mean} \quad \mathbf{m}_k = \frac{1}{N_k} \sum_{n \in \mathcal{C}_k} \mathbf{x}_n \qquad \mathbf{m} = \frac{1}{N} \sum_{n=1}^N \mathbf{x}_n = \frac{1}{N} \sum_{k=1}^K N_k \mathbf{m}_k \quad \text{All-class mean}$$

$$\text{Between-class covariance matrix} \qquad \mathbf{S}_B = (\mathbf{m}_2 - \mathbf{m}_1)(\mathbf{m}_2 - \mathbf{m}_1)^T \qquad \qquad \mathbf{S}_B = \sum_{k=1}^K N_k (\mathbf{m}_k - \mathbf{m})(\mathbf{m}_k - \mathbf{m})^T$$

$$\text{Total within-class covariance matrix} \qquad \mathbf{S}_W = \sum_{k \in \{1,2\}} \sum_{n \in \mathcal{C}_k} (\mathbf{x}_n - \mathbf{m}_k)(\mathbf{x}_n - \mathbf{m}_k)^T \qquad \qquad \mathbf{S}_W = \sum_{k=1}^K \sum_{n \in \mathcal{C}_k} (\mathbf{x}_n - \mathbf{m}_k)(\mathbf{x}_n - \mathbf{m}_k)^T$$

$$\text{Fisher's ratio} \qquad \max_{\mathbf{w}} \frac{\mathbf{w}^T \mathbf{S}_B \mathbf{w}}{\mathbf{w}^T \mathbf{S}_W \mathbf{w}} \qquad \qquad \max_{\mathbf{w}} \text{Tr}\{(\mathbf{W}^T \mathbf{S}_W \mathbf{W})^{-1}(\mathbf{W}^T \mathbf{S}_B \mathbf{W})\}$$

To create a discriminant, we model a Gaussian distribution over the D-dim data x for each class k

10-Classes MNIST Digit Classification

d=2

d=3

Perceptron Algorithm (Only for Binary Classification)

Perceptron Algorithm

- Another example of a linear discriminant function
 - An important place in the history of pattern recognition (Rosenblatt, 1962)
- Data point x is first transformed using a nonlinear transformation ϕ to give a feature vector $\phi(x)$;
- Then apply a nonlinear activation function (step function) f to classify data

$$y = f(\mathbf{w}^T \phi(\mathbf{x})) \qquad f(a) = \begin{cases} +1, & \text{if } a > 0; \\ -1, & \text{if } a < 0. \end{cases}$$

$$\mathbf{w}^T \phi(\mathbf{x}) > 0 \qquad +1$$

$$\mathbf{w}^T \phi(\mathbf{x}) < 0 \qquad -1$$

Perceptron Algorithm

• Binary classification: label $t \in \{-1, +1\}$

$$\mathbf{x}_n \in \mathcal{C}_1: t_n = +1 \quad \Longrightarrow \quad \mathbf{w}^T \phi(\mathbf{x}_n) > 0$$

$$\mathbf{x}_n \in \mathcal{C}_2: t_n = -1 \quad \Longrightarrow \quad \mathbf{w}^T \phi(\mathbf{x}_n) < 0 \quad \Longrightarrow \quad \mathbf{w}^T \phi(\mathbf{x}_n) \cdot t_n > 0$$

The perceptron has zero error with any data point correctly classified

$$t_n = +1(OR - 1)$$
 $y_n = f(\mathbf{w}^T \phi(\mathbf{x}_n)) = +1(OR - 1)$

• Whereas a misclassified data x_n it incurs an error

$$-\mathbf{w}^T\phi(\mathbf{x}_n)t_n$$

The total error of perceptron

$$E_P(\mathbf{w}) = \sum_{n \in \mathcal{M}} -\mathbf{w}^T \phi(\mathbf{x}_n) t_n$$
 M is the set of all misclassified data

Solution: Stochastic Gradient Descent

- Per sample gradient descent
 - For a misclassified data point xn

$$E(\mathbf{w}; \mathbf{x}_n) = -\mathbf{w}^T \phi(\mathbf{x}_n) t_n \implies \nabla_{\mathbf{w}} E(\mathbf{w}; \mathbf{x}_n) = -\phi(\mathbf{x}_n) t_n$$

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \nabla_{\mathbf{w}^{(t)}} E(\mathbf{w}^{(t)}; \mathbf{x}_n) = \mathbf{w}^{(t)} + \phi(\mathbf{x}_n) t_n$$

- Simple interpretation
 - If a data is correctly classified, then the weight vector remains unchanged
 - If it is incorrectly classified, there is a penalty $|\phi(\mathbf{x}_n)|$
- Error from a data point is reduced with a single update

$$-(\mathbf{w}^{(t+1)})^T \phi(\mathbf{x}_n) t_n = -(\mathbf{w}^{(t)})^T \phi(\mathbf{x}_n) t_n - \|\phi(\mathbf{x}_n) t_n\|^2 < -(\mathbf{w}^{(t)})^T \phi(\mathbf{x}_n) t_n$$

Perceptron Convergence & Correctness

Convergence

 If training data is linearly separable, then perceptron learning is guaranteed to find an exact solution in a finite number of iterations

Correctness

Assume the length of all data points is bounded by D, i.e.,

$$\|\mathbf{x}_n\|_2 \leq D, \, \forall n$$

• Assume there exists unit length w and some $\gamma > 0$ such that

$$\mathbf{w}^T \phi(\mathbf{x}_n) \cdot t_n > \gamma, \forall n$$

The total number of mistakes the perceptron algorithm makes is at most

$$(D/\gamma)^2$$

Perceptron: Pros & Cons

- Pros
 - Easy to implement
 - Time/memory efficient
 - Guaranteed performance when data points are linearly separable

- Cons
 - Sensitive to initialized parameter vector
 - Only applicable to binary classification
 - NEVER converge when data points are not linearly separable