nature medicine

nature > nature medicine > comment > article > table

Table 1 The MI-CLAIM checklist

From: Minimum information about clinical artificial intelligence modeling: the MI-CLAIM checklist

Before paper submission					
Study design (Part 1)	Completed: page number		Notes if not completed		
The clinical problem in which the model will be employed is clearly detailed in the paper.		1			
The research question is clearly stated.		1			
The characteristics of the cohorts (training and test sets) are detailed in the text.		1			
The cohorts (training and test sets) are shown to be representative of real-world clinical settings.	-	1			

Before paper submission **Notes if not** Study design (Part 1) **Completed:** page number completed The state-of-the-art solution used as a baseline for 3 \Box comparison has been identified and detailed. **Completed:** Notes if not Data and optimization (Parts 2, 3) page number completed The origin of the data is described and the original \Box 2 format is detailed in the paper. Transformations of the data before it is applied to the \Box 2 proposed model are described. The independence between training and test sets has N/A been proven in the paper. Details on the models that were evaluated and the code \Box 2, 3 developed to select the best model are provided. □ Structured □ Unstructured Is the input data type structured or unstructured? **Notes if not Completed: Model performance (Part 4)** page number completed

Before paper submission **Notes if not** Study design (Part 1) **Completed:** page number completed The primary metric selected to evaluate algorithm performance (e.g., AUC, F-score, etc.), including the \Box 2,3,4 justification for selection, has been clearly stated. The primary metric selected to evaluate the clinical utility of the model (e.g., PPV, NNT, etc.), including the Unsure/NA justification for selection, has been clearly stated. The performance comparison between baseline and proposed model is presented with the appropriate \Box 2,3,4 statistical significance. Completed: **Notes if not Model examination (Part 5)** page number completed Examination technique 1^a \Box 2.3 Examination technique 2^a 2,3 A discussion of the relevance of the examination results with respect to model/algorithm performance is \Box 4 presented.

Before paper submission					
Study design (Part 1)	Completed: page number		Notes if not completed		
A discussion of the feasibility and significance of model interpretability at the case level if examination methods are uninterpretable is presented.	-				
A discussion of the reliability and robustness of the model as the underlying data distribution shifts is included.					
Reproducibility (Part 6): choose appropriate tier of tra	Notes				
Tier 1: complete sharing of the code					
Tier 2: allow a third party to evaluate the code for accuracy/fairness; share the results of this evaluation					
Tier 3: release of a virtual machine (binary) for running the code on new data without sharing its details					
Tier 4: no sharing					

PPV, positive predictive value; NNT, numbers needed to treat.

^aCommon examination approaches based on study type: for studies involving exclusively structured data, coefficients and sensitivity analysis are often appropriate; for studies involving unstructured data in the domains of image

analysis or natural language processing, saliency maps (or equivalents) and sensitivity analyses are often appropriate.

Back to article page >

Nature Medicine (Nat Med) | ISSN 1546-170X (online) | ISSN 1078-8956 (print)