조인의 원리

중첩 루프 조인 (NLJ, Nested Loop Join)

중첩 for 문과 같은 원리로, 조건에 맞는 조인을 하는 방법 랜덤 접근에 대한 비용이 많이 증가하므로 대용량의 테이블에서는 사용하지 않음

ex) t1, t2 테이블을 조인하는 경우

첫번째 테이블에서 행을 하나씩 읽고 그 다음 테이블에서도 행을 하나씩 읽어 조건에 맞는 레코드를 찾아 결과값을 반환함

```
for each row in t1 matching reference key {
  for each row in t2 matching reference key {
    if row satisfies join conditions, send to client
  }
}
```

중첩 루트 조인에서 발전한 조인할 테이블을 작은 블록으로 나눠서 블록 하나 씩 조인하는 블록 중첩 루프 조인(BNL, Block Nested Loop) 라는 방식도 존재함

정렬 병합 조인

각각의 테이블을 조인할 필드 기준으로 정렬하고 정렬이 끝난 후에 조인 작업을 수행하는 조 인

조인 시 쓸 적절한 인덱스가 없고 대용량의 테이블들을 조인하고 조인 조건으로 <. > 등 범위비교 연산자가 있을 때 사용

해시 조인

해시 테이블을 기반으로 조인하는 방법

조인의 원리 1

두 개의 테이블을 조인하는 경우 하나의 테이블이 메모리에 온전히 들어간다면, 보통 중첩 루프 조인보다 더 효율적임 (메모리에 올릴 수 없을 정도로 큰 경우, 디스크 사용 비용이 발 생함)

동등 조인에서만 사용할 수 있음

MySQL의 경우 8.0.18 이후 사용할 수 있게 되었으며, 빌드 단계, 프로브 단계로 나뉨

빌드 단계

입력 테이블 중 하나를 기반으로 메모리 내 해시 테이블을 빌드하는 단계 ex) persons와 countries 라는 테이블을 조인하는 경우 둘 중에 바이트가 더 작은 테이블을 기반으로 해서 테이블을 빌드함

조인에 사용되는 필드가 해시 테이블의 키로 사용됨

프로브 단계

조인의 원리

인데모리 해시 테이블 persons idshGersons.countries idshGersons.countries

이 단계 동안 레코드 읽기를 시작하며, 각 레코드에서 persons.country_id 에 일치하는 레코드를 찾아서 결과값으로 반환함

이를 통해 각 테이블은 한번씩만 읽게 되어 중첩해서 두개의 테이블을 읽는 중첩 루프 조인 보다 보통은 성능이 좋음

사용 가능한 메모리 양은 시스템 변수 join_buffer_size 에 의해 제어됨. 런타임 시 조정 가능

조인의 원리 3