Distributing Deep Neural Networks with Containerized Partitions at the Edge

Li Zhou¹, Hao Wen², Radu Teodorescu¹, David H.C. Du²

Today's Problem: Move ML to the Edge

- ML: DNNs, CNNs
- Tasks: computer vision (image recognition, object detection), natural language processing, etc.
- IoT: edge devices, 5G
- Applications: smart homes, cities, autonomous cars, etc.

> Run ML on IoT devices

Figures are from internet sources

DNNs at the Edge

Cloud computing (model is executed by cloud-only, or edge-cloud collaboration)

- Privacy concerns (GDPR)
- Cloud availability, data transfer latency

DNNs at the Edge

Edge computing (model is stored and executed in edge devices)

- Model compression: smaller model
- Customized accelerator: faster device
- Pipeline: throughput improved
- Parallelization: model 1) partition and 2) parallelization

➤ Goal: Efficient deployment of DNNs inference at the Edge with IoT devices

Model Partition Problem and Contribution

- How to partition the workload efficiently across devices?
- How to account for the higher communication latency in wirelessly connected devices?
- How to optimize execution across heterogeneous devices possessing different compute capabilities?

Design Overview

Model Partition and Hardware Profiling Deployment Parallelization Linear regression Find out the optimal Distribute and models for partition points for a **execute** containerized given model based on partitions across edge DNN layers devices through k8s current computational Network resources and network

Layer-wise Parallelization

- Each layer is parallelized independently
- Each device compute a subset of output
- Partial outputs are aggregated, partitioned before the execution of the next layer

- Substantial comm overhead
- Benefits may be defeated

Fused-layer Parallelization

- Consecutive *conv* layers are first fused as a block
- Partitioning is performed layer-by-layer starting from the last layer in the fused block.
- Input elements are recursively calculated based on output
- Extend conv layer by $\lfloor fi/2 \rfloor$ on height and width

Less comm, more comp

Dynamic Programming based Search

- Run a model G on a list of devices D with parallelization S
 - $\circ \quad G = G^{lw} \cup G^{fl}, S = S^{lw} \cup S^{fl}$
 - O Minimize: $T(G, D, S) = \sum l_i \in \mathcal{G}^{(w)} t_l(i) + \sum l_{(i,j)} \in \mathcal{G}^{(l)} t_l(i,j)$
- We solve the problem with memorized DP, search all the possible combinations, to minimize \mathcal{T}

Deployment

- Docker container + Kubernetes
- Small scheduling unit (flexibility): each partition runs in a pod
- Reduce config complexity: all pods are running based on the same Docker image
- **Pipeline**: partitions belonging to different blocks form a pipeline (one device for each stage in evaluation).
- **Parallel**: partitions belonging to the same block run in parallel

Latency Improvement

Speedup is relative to 1 device at 1GHz/750MHz/500MHz in 100Mbps WIFI

- Limited by network
- Speedup: VGG-16: $1.6x \sim 3.7x$, YOLOv2: $1.3x \sim 1.9x$
- Implication: more improvements are observed under faster network, and less compute capability

Heterogeneity

- The input portion sizes are adjusted to the devices computing capability, e.g., one device runs at 1/2 compute capability of other devices
- Slow devices may be dropped
- We achieve a reduction of 51% and 39% in execution time respectively in *medium* and *fast* network.

Summary

- This work proposes a collaborative convolutional neural network (CNN) acceleration framework for Internet-of-things (IoT)
- The framework leverages spatial partitioning through fusion of the convolution layers
- A dynamic programming-based search algorithm has been proposed to decide the optimal partition and parallelization for a DNN model
- Achieves $1.3x \sim 3.7x$ speedup with 8 edge devices for two popular CNN models

Discussion

- Feedback
 - Granularity for DNN containerizations: *model* vs *partition*
 - Impact of 5G for ML at the edge
- Controversial points
 - Efforts on parallelizing model vs customized accelerator or model compression
- Open issues
 - Efficient resource management and scheduling
 - QoS (Quality of service), Fault-tolerance
- Fall apart
 - Optimal solution falls into using 1 device under *faster* devices, *slower* network
 - Complex model like DenseNet

Thank you!