Diagnostic des troubles du spectre de l'autisme grâce à des IRM fonctionnelles « resting-state »

Elodie Cussac – Polytechnique Montréal



## Contexte

#### Troubles du spectre de l'autisme – TSA ou ASD

Troubles **neurodéveloppementaux**, affecte la communication et les interactions sociales

Prévalence : environ 1 enfant sur 54 aux E-U (Yang et al., 2022)

Diagnostic actuel : évaluations comportementales

#### **Utilisation d'IRM fonctionnelles resting-state**

Mesure du **signal BOLD** dans le cerveau - Cartographier la **connectivité fonctionnelle** 

Resting State : état spontané

**Troubles du spectre de l'autisme → Sous-connectivité** dans certains réseaux, circuits d'empathie et de communication moins développés (Yang et al., 2022 et Hull et al., 2017)

## Problématique & Objectifs

Comment l'IRM fonctionnelle « resting state » peut-elle être un outil de diagnostic pour les troubles du spectre de l'autisme?

### Analyse de la connectivité fonctionnelle sur les IRMf

- Comprendre la structure de données des fichiers, explorer les outils
- Identification de premières différences entre les deux groupes

### Classification automatique entre les individus ASD et TD

- Paramètres à définir : Données d'entrée, classifieurs, critères d'évaluation
- Sélectionner la classification optimale

## Données & Outils:



#### Base de données ABIDE

IRM fonctionnelles prétraitées Deux groupes

ASD : Autism Spectrum Disorder

TD : Typically Developped

#### Pour la classification

- → 500 individus
- 242 ASD
- 258 TD

Âge en fonction du diagnostic et du genre







Jupyter Notebook – Python

**Nilearn** pour l'analyse de données d'IRMf





**Scikit Learn** pour l'apprentissage automatique

# Méthodes & Résultats – Analyse de la connectivité fonctionnelle

#### Démarche basée sur l'article de Alaerts et al.

- Seed placée dans le sillon temporal supérieur postérieur
- Observation des corrélations dans le reste du cerveau chez un individu ASD et un individu TD

#### Comment analyser ces résultats ?

#### Superposition des deux images et changement des seuils



Observation des corrélations avec le lobule pariétal inférieur Faible connectivité entre les deux zones → Faible capacité à reconnaître les émotions



Seed-to-voxel correlation - TD subject



## Méthodes – Analyse de la connectivité fonctionnelle

Pour chaque sujet, on peut observer les corrélations entre les différentes zones du cerveau

#### Application d'un atlas aux données

# L R

x=0 z=11

Atlas Harvard Oxford

#### Matrice de corrélation sur les séries temporelles



Exemple de matrice de corrélation avec l'atlas Harvard Oxford

## Méthodes - Classification

Données

#### Base d'entraînement – Base de test

#### Classifieur

#### Evaluation du modèle

#### 500 sujets

- 242 ASD
- 258 TD

#### Matrice de corrélation

**75%** 

Base de d'entraînement

25%

Base de test





Régression logistique (LR) Classification naïve bayésienne (GNB) Machine à vecteurs support (kSVM)

Random Forest (RF)





$$Accuracy = \frac{TP+T}{TP+FP+TN+FN}$$

Sensibilité = 
$$\frac{TP}{TP+FN}$$

$$Sp$$
écificité =  $\frac{TN}{TN+F}$ 





Différents atlas

Harvard Oxford

Destrieux (Plitt et al., 2014)

Basc197 (Yang et al., 2022)

## Résultats - Classification

|                | LR    | GNB   | kSVM  | RF    |
|----------------|-------|-------|-------|-------|
| Harvard Oxford |       |       |       |       |
| Accuracy       | 0.629 | 0.547 | 0.629 | 0.576 |
| Sensitivity    | 0.727 | 0.495 | 0.660 | 0.603 |
| Specificity    | 0.525 | 0.602 | 0.597 | 0.547 |
| Destrieux      |       |       |       |       |
| Accuracy       | 0.680 | 0.549 | 0.677 | 0.611 |
| Sensitivity    | 0.732 | 0.464 | 0.737 | 0.686 |
| Specificity    | 0.624 | 0.641 | 0.613 | 0.530 |
| Basc 197       |       |       |       |       |
| Accuracy       | 0.685 | 0.549 | 0.691 | 0.605 |
| Sensitivity    | 0.701 | 0.443 | 0.691 | 0.655 |
| Specificity    | 0.669 | 0.663 | 0.691 | 0.552 |

**Choix du modèle : Atlas Basc197 et classifieur SVM** 

## Résultats - Classification

#### Choix du modèle : Atlas Basc197 et modèle SVM

## Modèle sur la base d'entraînement – Scores de cross validation

Accuracy: 69,1% Sensitivité: 69,1% Spécificité: 69,1%

#### Généralisation sur la base de test

Accuracy: 68,8% Sensitivité: 71,9% Spécificité: 65,6%

```
# SVM
svm = SVC (kernel = 'poly', C=10, degree = 2)
svm.fit(X_train_basc197, y_train_basc197)
y_pred = svm.predict(X_test_basc197)
```



#### Dans la littérature

#### Yang et al., 2022

- Accuracy de 69,16% avec l'atlas Basc197 et le classifieur kSVM sur 871 sujets du dataset ABIDE (score de CV)
- Ont atteint 69,43% avec
   l'atlas Basc444

## Livrables



#### Fichiers Jupyter Notebook:

- func\_connectivity\_analysis : Analyse de la connectivité fonctionnelle
- machine\_learning : Modèles et résultats de la classification



**README**: Documentation sur la démarche et les résultats obtenus



Regroupé dans un répertoire Github

## Conclusion

Difficulté dans le pré-traitement de

données sur mon sujet initial

Interprétation des résultats de l'analyse
de la connectivité fonctionnelle

Reproductibilité des résultats de

connectivité fonctionnelle

Beaucoup de possibilités pour la

Changement pour une base de

données déjà pré-traitées

Etudier et reproduire ce qui a été fait
dans la littérature

Partir de cas plus simples

Se baser sur les modules du cours et étudier la littérature

## Conclusion

#### Ce que j'ai appris

- Découverte de la neuroscience : Notions de connectivité fonctionnelle et d'analyse d'IRM fonctionnelle
- Utilisation des outils informatiques : Terminal, git et github
- Amélioration de mes compétences de programmation : Apprentissage automatique,
   visualisation de données et manipulation de données

## Merci de votre attention!

## Références

- Alaerts, K., Woolley, D. G., Steyaert, J., Di Martino, A., Swinnen, S. P., & Wenderoth, N. (2014). Underconnectivity of the superior temporal sulcus predicts emotion recognition deficits in autism. *Social Cognitive and Affective Neuroscience*, *9*(10), 1589-1600. <a href="https://doi.org/10.1093/scan/nst156">https://doi.org/10.1093/scan/nst156</a>
- Hull, J. V., Dokovna, L. B., Jacokes, Z. J., Torgerson, C. M., Irimia, A., & Van Horn, J. D. (2017). Resting-State Functional Connectivity in Autism Spectrum Disorders: A Review. *Frontiers in Psychiatry*, 7. <a href="https://doi.org/10.3389/fpsyt.2016.00205">https://doi.org/10.3389/fpsyt.2016.00205</a>
- Plitt, M., Barnes, K. A., & Martin, A. (2014). Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards. *NeuroImage : Clinical*, 7, 359-366. <a href="https://doi.org/10.1016/j.nicl.2014.12.013">https://doi.org/10.1016/j.nicl.2014.12.013</a>
- Yang, X., Zhang, N., & Schrader, P. (2022). A study of brain networks for autism spectrum disorder classification using resting-state functional connectivity. *Machine Learning with Applications*, 8, 100290. https://doi.org/10.1016/j.mlwa.2022.100290