MATHEW HU

mathewhu@utexas.edu | (646)-393-7803 | www.linkedin.com/in/mathew-hu/

EDUCATION

The University of Texas at Austin, *Oden Institute for Computational Engineering & Sciences*Austin, TX, USA Ph.D., Computational Science, Engineering, and Mathematics, *GPA*: 4.0/4.0

Aug. 2019 - May 2025 (Expected)

Dissertation: Fast approximations of high-rank Hessians: Applications to seismic inversion and uncertainty quantification

New York University, Courant Institute of Mathematical Sciences

New York, NY, USA Aug. 2017 - May 2019

Master of Science, Mathematics, GPA: 4.0/4.0

Aug. 2017 - May 2019

Fudan University, School of Mathematical Sciences

Shanghai, China

Bachelor of Science, Mathematics and Applied Mathematics, GPA: 3.77/4.0

Sept. 2013 - June 2017

INDUSTRY RESEARCH EXPERIENCE

TotalEnergies E&P USA, Inc. Research Geophysicist Intern

Houston, TX, USA

May 2023 - Aug. 2023

- Developed explainable deep learning models to accelerate seismic inversion and seismic data processing.
- Designed and implemented a **neural network architecture** in **PyTorch** to approximate the second derivative (Hessian) for seismic inversion, overcoming traditional challenges in approximating this complex operator.
- Implemented large-scale preconditioned quasi-Newton methods, reducing seismic inversion time by 40%.
- Collaborated with a multidisciplinary team to interpret computational results using geoscience knowledge.
- Presented research findings to diverse audiences, clearly communicating complex concepts and fostering collaboration.

ACADEMIA RESEARCH EXPERIENCE

The University of Texas at Austin, Oden Institute, OPTIMUS Lab

Austin, TX, USA

Preconditioning, Optimization, and Uncertainty Quantification in Seismic Imaging

Dec. 2019 - Present

- Developed innovative **preconditioning algorithms** for seismic inversions, enhancing computational efficiency.
- Improved large-scale **optimization algorithms** (L-BFGS and inexact Newton-CG) by integrating novel preconditioners, reducing computation time by 50% and greatly enhancing imaging fidelity.
- Enhanced MCMC methods for UQ in seismic imaging within a Bayesian inference framework, generating 10x more effective samples and enabling more reliable data interpretation with deeper insights into subsurface structures.
- Executed large-scale acoustic wavefield **simulations** on the Frontera supercomputer using **HPC** tools.
- Developed and maintained **Python** and **Julia** codebases, ensuring robust and efficient computational tools.

New York University, Courant Institute, Magneto-Fluid Dynamics Division

New York, NY, USA

High-Order Computational Method for Magnetic Surfaces of Toroidal Fusion Devices

Feb. 2018 - May 2019

- Developed an efficient grid-based method in MATLAB to compute magnetic flux surfaces from discrete field data.
- Theoretically demonstrated spectral convergence for integrable magnetic fields.

COMPUTING SKILLS

Programming Languages: Python, Julia, MATLAB, R, SQL, C++, PHP

Packages & Tools: PyTorch, TensorFlow, Keras, AutoKeras, scikit-learn, SciPy, Pandas, OpenMP, MPI

AWARDS AND HONORS

- First Prize, National College Mathematics Contest (Shanghai Division), Nov. 2014, Nov. 2013
- First Prize, Chinese Mathematical Olympiad in Senior (Top 40 in Zhejiang, population 54.6 million), Oct. 2011
- First Prize, Chinese Southeast Mathematical Olympiad (Only Perfect Score, competing among students from southeast-ern China, population 370 million), Aug. 2011

RECENT CONFERENCE TALKS

- "Fast approximations of high-rank Hessians: Applications to seismic inversion and uncertainty quantification", *The International Meeting for Applied Geoscience & Energy (IMAGE)*. Houston, Texas, USA. Aug. 30, 2024.
- "Fast approximation of high-rank Hessians to accelerate MCMC for Bayesian seismic inversion", SIAM Conference on Uncertainty Quantification. Atlanta, Georgia, USA. April 12, 2022.