INFORMATIKA

ш

ш

Visszatekintés

- Számítógépek, számábrázolás, kódolás, felépítés, fájlrendszerek
- Alapvető parancsok, folyamatok, szűrők
- Változó, parancs behelyettesítés, aritmetikai, logikai kifejezések
- Script vezérlési szerkezetek, Sed, AWK
- Hálózatok alapvető jellemzői
- Powershell
- RSA alapok

Mi jön ma?

Kis teljesítményű számítógépek

Internet of Things - IoT

Nagy számítógépek

- Nagy számítási kapacitás biztosítása
 - Nagyon sok processzor
 - Sok memória
 - Nagy háttértár (Osztott fájlrendszer)
 - Adatbányászat, szimulációs feladatok
 - https://www.top500.org
 - 2019 június, első: Summit (Kína)
 - Magok száma: 2,414,592

Klasszikus számítógépek

- 1-2 processzoros alaplap
- Processzoronként 2-12 mag.
- Személyi számítógépekben 4-32GB memória, kis szerverekben 8-512GB.
- Háttértár: SSD előretörés, 120GB-1TB SSD, 1-16 TB
- Érintőkijelzők

Mobilizáció

- Mobil telefon okos telefon legújabb számítógép helyettes?
 - Mobil operációs rendszerek
 - 4-8 mag, 2-8 GB RAM, 16-128GB tárhely
 - Ezen mobil magok teljesítménye nem azonos a desktop, notebook társakhoz viszonyítva!
 - Dokkolási lehetőség
 - Jelenleg is létezik!, így klasszikus munkahellyé kezd válni

Miniatürizáció

- 2019 : 5 nanométeres technológia bejelentése!
- Indul a 7 nanométeres tömeggyártás.
 - Viselhető processzor- viselhető ipar (wearable industry)
- SoC System on Chip, mindent bele!
- Jellemzően az alábbiakat tartalmazzák:
 - CPU 4, 8 maggal (Cortex-A53 4 mag)
 - LTE modem, WIFI, Bluetooth, memória (DRAM, NAND)

SoC a valóságban

- Exynos 7270 dual
 - 2 darab CortexA53
 - Kb. 1x1 cm
 - Kb. 1 mm vastag
 - Teljes számítógép!

ш

Internet of things

ш

IoT mögött

- Beágyazott rendszerek
- Valós idejű rendszerek
- Os
 - Nincs OS
 - Real-time OS
 - Ubuntu
 - Egyéb

Mi az IoT?

ш

ш

ш

Szenzorok

ш

Hálózat és internet

- Protokollok
 - MQTT
 - CoAP
 - XMPP
- IoT gateway

MQTT

- MQTT = Message Queueing Telemetry Transport
- Nyílt, ingyenes
- publish/subscribe (one-to-many) modell
- A "publisher" nem tudja ki "subscribed"
- Üzenet orientált
- Kliens + Broker

ш

MQTT

MQTT vs HTTP

	MQTT	НТТР
Design orientation	Data centric	Document centric
Pattern	Publish/subscribe	Request/response
Complexity	Simple	More complex
Message size	Small, with a compact binary header just two bytes in size	Larger, partly because status detail is text-based
Service levels	Three quality of service settings	All messages get the same level of service
Extra libraries	Libraries for C (30 KB) and Java (100 KB)	Depends on the application (JSON, XML), but typically not small
Data distribution	Supports 1 to zero, 1 to 1, and 1 to n	1 to 1 only

Forrás: http://www.tmit.bme.hu/sites/default/files/2017-04-04-IoT.pdf

CoAP

- CoAP = RFC 7252 Constrained Application Protocol
- Mint a HTTP, dokumentum átviteli protokoll
- Csomagok kisebbek
- Multicast
- UDP
- REST modell
 - Szerver <-> Kliens
 - URL
 - GET,POST,PUT,DELETE

XMPP

- XMPP = Extensible Messaging and Presence Protocol
- XML alapú üzenetküldtés
- Request/Response
- Skálázható
- Google Talk

Boards (Vezérlők) - tegnap

Boards, vezérlők - ma

- "Ready to use" vezérlők, kiegészítve bemeneti-kimeneti csatlakozással.
- Talán a két leggyakrabban használt:
 - Arduino család
 - https://en.wikipedia.org/wiki/List_of_Arduino_boards_and_compatible_systems
 - Raspberry PI család
 - https://en.wikipedia.org/wiki/Raspberry_Pi

Arduino Uno

- Főbb jellemzők:
 - Atmega328P vezérlő, 16MHz, 8 bites
 - 6 analog input
 - 14 digital input/output, ebből lehet 6 PWM.
 - Pulse-Width Modulation, analóg output szimulálására!
 - 32kb flash RAM, 1kb EEPROM, 2kb SRAM (static RAM, változóknak)
 - A 32kb tartalmazza a program kódot, ebből kb. 2 kb bootloader
 - A bootloader elsősorban a PC-USB kapcsolatért (upload) felel!
- Mire elég ez?

Arduino programozása

- Jellemző modell: nincs operációs rendszer, csak egy célfeladat kódja kerül a memóriába!
- Programozható C nyelven vagy gépi kódban.
- Program szerkezet:
 - Setup függvény egyszer, induláskor lefut.
 - Loop függvény ez hajtódik végre örökké
- Arduino IDE letölthető, jelenlegi verzió: 1.6.13
 - Arduino.cc/en/Main/Software

Arduino példa

- Ledes "homokóra"
- Setup függvény:
 - pinMode állítás (input,output): pinMode(3,OUTPUT)
- Loop függvény:
 - digitalWrite(led, HIGH); // adott portra 5 volt, LOW 0 volt
 - X=digitalRead(led);
 - T=millis(); // idő millisec-ben

ш

Konkrétan

Raspberry PI

- Bankkártya méretű
- 2012 óta a legnépszerűbb mini PC
- Tanítási módszert kínál
 - Programozás
 - Hardware fejlesztés
- http://hackster.io

Raspberry PI 3 - Hardware

Processzor ARM A53 (64bit)

• RAM 1GB

GPIO 40 pin (analóg + digitális)

Portok HDMI, Jack, micro SD, 4 USB,

Ethernet, Wifi, Bluetooth

OS Linux alapok VS Windows 10 IoT

Raspberry PI 4

Processzor

1.5GHz quad-core ARM

S RAM 2/4GB GPIO

Porto 40 pin (analóg + digitális) 2xmicro-HDMI, Jack, micro SD, Portok USB: 2× USB 3.0 és 2× USB 2.0 portok, Ethernet Wifi, Bluetooth 5.0

Modified: 2021, 11, 16, Page:27

Raspberry PI Raspbian

- Operációs rendszer az SD kártyán
- Linux alapokon (Például Raspbian)
 - Fejlesztés: C / C++ / Python / Node.Js

Raspberry PI (Windows 10 IoT)

- Fejlesztés .NET környezetben
- C#, JavaScript, F#, C++, stb...
- Universal Windows Platform
- Microsoft Azure

Windows 10 IoT

- Nem valós idejű operációs rendszer
 - "közel valós idejű"
- Windows 10 IoT for industry devices
 - Desktop Shell, Win32 apps, Universal apps and drivers, Minimum: 1 GB RAM, 16 GB storage, X86/x64
- Windows 10 IoT for mobile devices
 - Modern Shell, Mobile apps, Universal apps and drivers, Minimum: 512 MB RAM, 4 GB storage, ARM
- Windows 10 IoT Core
 - Universal Apps and Drivers, No shell or MS apps, Minimum: 256MB RAM, 2GB storage, X86/x64 or ARM

Windows? 10? IoT?

- Igen, ez jó (az iparnak)
 - Nem, nem lesz kék halál
 - Biztonság (pl: BitLocker)
 - Folyamatos támogatotság
 - "It just works"
- Mire is jó?
 - Ipari alkalmazások futtatásához (pl: sörfőzés)
 - Vékony kliens appok -> Felhő
 - Bitlocker -> azonosító kulcsokat nem tudják ellopni

LiveBrew – főzés felügyelete

- Raspberry PI 2
 - Tápegység, SD kártya, Board, Wifi modul,
 - One Wire Pi Plus shield + DS18B20 hőmérő szenzorok

Rendszer telepítése SD kártyára

Megvalósítás

- Adatbázis tervezése
- Azure oldali konfiguráció
- IoT készülék rögzítse a hőmérsékletet és azt "felküldje a felhőbe".
- Értesítések megvalósítása
- Refaktorálás
- Felület véglegesítése
- Hibák keresése, javítása

• Élőben a rendszer tesztelése:

fritzing

- USB Modem
- Kiegészítő panel
- Wigi, Ethernet

INFORMATIKA

ш

ш