SEQUENCE LISTING

<110> Kudoh, Masatake Yamamoto, Hiroaki

<120> (R)-2-OCTANOL DEHYDROGENASES, METHODS FOR PRODUCING THE ENZYMES, DNA ENCODING THE ENZYMES, AND METHODS FOR PRODUCING ALCOHOLS USING THE ENZYMES

<130> 06501-090001 <140> 09/978,758 <141> 2001-10-16 <150> PCT/JP01/01082 <151> 2001-02-15 <150> JP 2000-374593 <151> 2000-12-08 <150> JP 2000-43506 <151> 2000-02-16 <160> 20 <170> FastSEQ for Windows Version 4.0 <210> 1 <211> 765 <212> DNA <213> Pichia finlandica <220> <221> CDS <222> (1)...(762) <400> 1 atg tot tat aac tto cat aac aag gtt gca gtt gtt act gga gct cta 48 Met Ser Tyr Asn Phe His Asn Lys Val Ala Val Val Thr Gly Ala Leu tca gga atc ggc tta agc gtc gca aaa aag ttc ctt cag ctc ggc gcc 96 Ser Gly Ile Gly Leu Ser Val Ala Lys Lys Phe Leu Gln Leu Gly Ala 20 aaa gta acg atc tct gat gtc agt gga gag aaa aaa tat cac gag act 144 Lys Val Thr Ile Ser Asp Val Ser Gly Glu Lys Lys Tyr His Glu Thr 35 40 gtt gtt gct ctg aaa gcc caa aat ctc aac act gac aac ctc cat tat 192

BEST AVAILABLE COPY

Val Val Ala Leu Lys Ala Gln Asn Leu Asn Thr Asp Asn Leu His Tyr

gta cag gca gat tcc agc aaa gaa gat aac aag aaa ttg att tcg

240

			Ala	Asp	Ser			Glu	ı Glu	Asp) Asn	Lys	Lys	Leu	Ile	Ser			
	65					70					75					80.			
	gaa Glu	Thr	Leu	gca	Thr 85	Phe	: Gly	. GJ?	c ctg / Leu	Asp 90	Ile	gtt Val	tgt Cys	gct Ala	aat Asn 95	gca Ala	•	288	
	gga Gly	att	gga Gly	aag Lys 100	Phe	gct Ala	ccc Pro	acc Thr	cat His 105	Glu	aca Thr	ccc Pro	ttc Phe	gac Asp 110	gta Val	tgg Trp		336	
	aag Lys	aag Lys	gtg Val 115	att Ile	gct Ala	gtg Val	aat Asn	ttg Leu 120	aat Asn	gga Gly	gta Val	ttc Phe	tta Leu 125	ctg Leu	gat Asp	aag Lys		384	
	Leu	Ala 130	Ile	Asn	Tyr	Trp	Leu 135	Glu	aaa Lys	Ser	Lys	Pro 140	Gly	Val	Ile	Val	. ·	432	•
	Asn 145	Met	Gly	Ser	Val	His 150	Ser	Phe	gta Val	Ala	Ala 155	Pro	Gly	Leu	Ala	His 160		480	
	Tyr	Gly	Ala	Ala	Lys 165	Gly	Gly	Val	aaa Lys	Leu 170	Leu	Thr	Gln	Thr	Leu 175	Ala		528	
•	Leu	Glú	Tyr	Ala 180	Ser	His	Gly	Ile	aga Arg 185	Val	Asn	Ser	Val	Asn 190	Pro	Gly		576	
	tac Tyr	att Ile	ser 195	act Thr	cct Pro	ttg Leu	ata Ile	gat Asp 200	gag Glu	gtt Val	ccg Pro	aaa Lys	gag Glu 205	cgg Arg	ttg Leu	gat Asp		624	
	aaa Lys	ctt Leu 210	gta Val	agc Ser	ttg Leu	cac His	cct Pro 215	att Ile	G] À	aga Arg	cta Leu	ggt Gly 220	cgt Arg	cca Pro	gag Glu	gaa Glu		672	
	gtt Val 225	gct Ala	gat Asp	gca Ala	gtc Val	gca Ala 230	ttt Phe	ctg Leu	tgt Cys	tcc Ser	cag Gln 235	gag Glu	gcc Ala	act Thr	ttc Phe	atc Ile 240	e e	720	
	aac Asn	ggc	gtt Val	Ser	ttg Leu 245	ccg Pro	gtt Val	gac Asp	Gly 999	999 Gly 250	tac Tyr	aca Thr	gcc Ala	cag Gln	taa			765	
	<210 <211 <212	> 25 > PR	T						. •										
			chia	fin	land	ica						• .	-						
	<400 Met 1		Tyr .	Asn :	Phe 5	His	Asn	Lys	Val		Val	Val	Thr	Gly		Leu			
		Gly	Ile	Gly 1	-	Ser	Val .	Ala	Lys	10 Lys	Phe	Leu	Gln	Leu	15 Gly	Ala			

BEST AVAILABLE COPY

```
20
Lys Val Thr Ile Ser Asp Val Ser Gly Glu Lys Lys Tyr His Glu Thr
Val Val Ala Leu Lys Ala Gln Asn Leu Asn Thr Asp Asn Leu His Tyr
                         55
Val Gln Ala Asp Ser Ser Lys Glu Glu Asp Asn Lys Lys Leu Ile Ser
                     70.
Glu Thr Leu Ala Thr Phe Gly Gly Leu Asp Ile Val Cys Ala Asn Ala
                                     90
Gly Ile Gly Lys Phe Ala Pro Thr His Glu Thr Pro Phe Asp Val Trp
            100
                                 105
Lys Lys Val Ile Ala Val Asn Leu Asn Gly Val Phe Leu Leu Asp Lys
                             120
Leu Ala Ile Asn Tyr Trp Leu Glu Lys Ser Lys Pro Gly Val Ile Val
Asn Met Gly Ser Val His Ser Phe Val Ala Ala Pro Gly Leu Ala His
145
                    150
                                         155
Tyr Gly Ala Ala Lys Gly Gly Val Lys Leu Leu Thr Gln Thr Leu Ala
                                    170
Leu Glu Tyr Ala Ser His Gly Ile Arg Val Asn Ser Val Asn Pro Gly
            180
                                 185
Tyr Ile Ser Thr Pro Leu Ile Asp Glu Val Pro Lys Glu Arg Leu Asp
        195
                            200
                                                 205
Lys Leu Val Ser Leu His Pro Ile Gly Arg Leu Gly Arg Pro Glu Glu
                        215
                                             220
Val Ala Asp Ala Val Ala Phe Leu Cys Ser Gln Glu Ala Thr Phe Ile
                    230
                                         235
Asn Gly Val Ser Leu Pro Val Asp Gly Gly Tyr Thr Ala Gln
<210> 3
<211> 10
<212> PRT
<213> Pichia finlandica
<400> 3
Val Ala Val Val Thr Gly Ala Leu Ser Gly
<210> 4
<211> 12
<212> PRT
<213> Pichia finlandica
<400> 4
Leu Ile Ser Glu Thr Leu Ala Thr Phe Gly Gly Leu
<210> 5
<211> 10
<212> PRT
<213> Pichia finlandica
<400> 5
Leu Gly Arg Pro Glu Glu Val Ala Asp Ala
```

```
<210> 6
<211> 29.
<212> DNA
<213> Artificial Sequence
<220>
<223> Artificially synthesized primer sequence
<221> misc_feature
<222> (1)...(9)
<223> BamHI site
<400> 6
gtcggatccg tbgchgtbgt bachgghgc
                                                                         29
<210> 7
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<223> Artificially synthesized primer sequence
<221> misc_feature
<222> (1)...(9)
<223> BamHI site
<221> misc_feature
<222> 15, 18, 27
<223> n = a, c, t or g
<400> 7
gtcggatccg crtcngcnac ytcytcngg
                                                                         29
<210> 8
<211> 623
<212> DNA
<213> Pichia finlandica
<400> 8
gctctatcag gaatcggctt aagcgtcgca aaaaagttcc ttcagctcgg cgccaaagta
                                                                         60
acgatetetg atgteagtgg agagaaaaaa tateacgaga etgttgttge tetgaaagee
                                                                        120
caaaatctca acactgacaa cctccattat gtacaggcag attccagcaa agaagaagat
                                                                        180
aacaagaaat tgatttcgga aactctggca acctttgggg gcctggatat tgtttgtgct
                                                                        240
aatgcaggaa ttggaaagtt cgctcccacc catgaaacac ccttcgacgt atggaagaag
                                                                        300
gtgattgctg tgaatttgaa tggagtattc ttactggata agctagccat caattactgg
                                                                        360
ctagagaaaa gcaaacccgg cgtaattgtc aacatgggat cagtccactc ttttgtagca
                                                                        420
gctcctggcc ttgcgcatta tggagctgca aaaggcggtg tcaaactgtt aacacaaaca
                                                                        480
ttggctctag agtacgcatc tcatggtatt agagtaaatt ctgtcaatcc ggggtacatt
                                                                        540
tcgactcctt tgatagatga ggttccgaaa gagcggttgg ataaacttgt aagcttgcac
                                                                        600
cctattggga gactaggtcg tcc
                                                                        623
<210> 9
<211> 29
<212> DNA
<213> Artificial Sequence
```

```
<220>
 <223> Artificially synthesized primer sequence
 <221> misc_feature
 <222> (1)...(9)
 <223> BamHI site
 <400> 9
 gtcggatcct cagagatcgt tactttggc
                                                                         29
 <210> 10
 <211> 29
 <212> DNA
 <213> Artificial Sequence
<220>
<223> Artificially synthesized primer sequence
<221> misc feature
<222> (1)...(9)
<223> BamHI site
<400> 10
gtcggatccc gactcctttg atagatgag
<210> 11
<211> 599
<212> DNA
<213> Pichia finlandica
<400> 11 -
tgggctgaac ctggctgtgc tactgggcag agcaaaatca gatagaagag cttgtgtttt
                                                                         60
tgtagcaccc ctctttttt ttgaaattct ctacagctca attacctgtt cacattcaat
                                                                        120
acagagtact atcttttcga tttcttatca gataagcaat tgacaatatt agtagcacct
                                                                        180
gatgcacttt tcgagaacac acctgagtac aaaacaatat atatcattat attagaacag
                                                                        240
tgacattgag aacaattttc cagcatataa tgtaattagg tgcatcaaca accaggaaaa
                                                                        300
acacctgatt aaaaaatccg gatattaaga atcatgaaac aaaattcaat gttaccctac
                                                                        360
ccattccttc tcggaacctc ctgatgactt attaatagtg aggttgttcc gataaaaatc
                                                                        420
gcgaatttct ccattccata aattctccta taacttggct tactatacac acacactatt
                                                                        480
atcgatatgt cttataactt ccataacaag gttgcagttg ttactggagc tctatcagga
                                                                        540
atcggcttaa gcgtcgcaaa aaagttcctt cagctcggcg ccaaagtaac gatctctga
                                                                        599
<210> 12
<211> 581
<212> DNA
<213> Pichia finlandica
<400> 12
cgactccttt gatagatgag gttccgaaag agcggttgga taaacttgta agcttgcacc
                                                                         60
ctattgggag actaggtcgt ccagaggaag ttgctgatgc agtcgcattt ctgtgttccc
                                                                        120
aggaggccac tttcatcaac ggcgtttctt tgccggttga cggggggtac acagcccagt
                                                                        180
aaattggaca ctttttgctc tttattatct tccccgcgtt tcaccaatta tccggtgtac
                                                                        240
gtaggttgca gtgactttct ggtttctgca cttgaatgaa actctctttt accccacaaa
                                                                        300
atcageteag taaattatet tgtgtatata taaataagae agaaaceetg tggaeteeta
                                                                        360
gtatggtgtt ctactttcat taaggcagtc acaaaagcaa tggcgaaatc aactgatgga
                                                                        420
aagatagtta cactggagga gcaggcctac aatggcccac ccgcacggat cataggagaa
                                                                        480
gctatcgcca ttaaagcgaa gctggctgcc aatcggacac tcccagttaa gtttgaaaga
                                                                       540
```

aagcgtggtc ttcaaccacc accagggatg tctagacaag a .	581
<210> 13	•
<211> 29	
<212> DNA	•
<213> Artificial Sequence	
<220>	
<223> Artificially synthesized primer sequence	
below interretarily synthesized primer sequence	·
<400> 13	
tcgacatgtc ttataatttc cataacaag	29
<210> 14	
<211> 34	
<212> DNA	,
<213> Artificial Sequence	
<220>	
<pre><223> Artificially synthesized primer sequence</pre>	
version and interest and primer sequence	
<400> 14	
gcagaattcc tctagattac tgggctgtgt accc	34
	24,
<210> 15	
<211> 37	
<212> DNA	•
<213> Artificial Sequence	

<220>	
<223> Artificially synthesized primer sequence	
<400> 15	
cacgaattct aaaatgtctt ataatttcca taacaag	
	37
<210> 16	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Artificially synthesized primer sequence	
Z4005 1.C	
<400> 16	
agtactagta ttactgggct gtgtaccc	28
<210> 17	
<211> 36	
<212> DNA	
<213> Artificial Sequence	
	•
<220>	•
<223> Artificially synthesized primer sequence	
<400> 17	
agaccatgga tccaatgtat ccagatttaa aaggaa	36

<210>	18		
<211>	27		,
<212>	DNA		
<213>	Artificial Sequence	·	
<220>	\cdot		
<223>	Artificially synthesized primer sequence		
<400>	18		
gaatct	tagat taaccgcggc ctgcctg		27
<210>	19	•	
<211>	42		
<212>	DNA		
<213>	Artificial Sequence		
<220>			•
<223>	Artificially synthesized primer sequence		
<400>	19		
ctttct	agag gaattcaacc atggcaaaag ttctgtgtgt tc	•	42
<210>			
<211>		•	
<212>	·		
<213>	Artificial Sequence	•	
<220>			
<223>	Artificially synthesized primer sequence	•	
<400>	20		
cagtct	agat tagaccgctt ttttgaattt ggcg		34