Математическая логика и теория алгоритмов

Посов Илья Александрович

запись конспекта: Блюдин Андрей и Хаматов Вадим

Содержание

1	Ma	гемати	ческая логика	2
	1.1	Исчис	ление высказываний	2
		1.1.1	Основные понятия	2
		1.1.2	Функции от 1 переменной (их определения)	3
		1.1.3	Функции от 2 переменных (их определения)	3
		1.1.4	Приоритеты операций	5
		1.1.5	Алгебраические преобразования логических выра-	
			жений	5
		1.1.6	Таблица эквивалентных логических выражений	6
		1.1.7	Многочлены Жегалкина	8
		1.1.8	Получение многочлена Жегалкина через алгебраи-	
			ческие упрощения	11
		1.1.9	Дизъюнктивно-нормальная форма (ДНФ)	12
		1.1.10	Задача (не) выполнимости	14
		1.1.11	Запись таблиц истинности в виде графика	15
		1.1.12	Задача минимизации ДНФ	15
		1.1.13	Двойственная функция	19
		1.1.14	Конъюнктивно-нормальная форма КНФ	20
		1.1.15	Класс замкнутости	24
		1.1.16	Примеры замкнутых классов	26
		1.1.17	Теорема Поста	31
		1.1.18	Автоматическое доказательство теорем	36
		1.1.19	Логическое следствие	36
		1.1.20	Метод резолюций	39
	1.2	Исчис	ление предикатов	43
		1.2.1	Операции преобразования	44

1.2.2	Нормальные формы	46
1.2.3	Машина Тьюринга	48
1.2.4	Контекстно-свободные языки	51
1.2.5	Регулярные языки	53

1 Математическая логика

1.1 Исчисление высказываний

1.1.1 Основные понятия

Определение. Логическая функция — это множество из 2 элементов. Также, логической функцией называют множество логических значений $B = \{0,1\}$, где 0 — это ложь (false), а 1 — это истина (true)

Определение. Логическая функция от n переменных

$$f:B^n\to B$$

Замечание. Часто логические функции вводят как перечисление возможных аргументов и значений функции при этих аргументах

Пример. Введем функцию f(x, y)

X	У	f(x,y)
0	0	0
0	1	1
1	0	1
1	1	1

Таблица 1: Таблица истинности для f(x,y)

Эту же функцию можно задать функцией f(x,y) = max(x,y)

Утверждение. Функция от п переменных может быть $f(x_1, x_2, x_3, \dots, x_n)$

При этом количество всех возможных наборов аргументов равняется 2^n , а количество всех возможных функций при всех возможных наборах аргументов равняется 2^{2^n}

Следствие. Посчитаем количество таких функий для разных п

$$n=1$$
 $2^2=4$ функций $f(x)$ $n=2$ $2^{2^2}=16$ функций $f(x,y)$

$$n=3$$
 $2^{2^3}=2^8=256$ функций $f(x,y,z)$

x_1	x_2	 x_n	$f(x_1,x_2,\ldots,x_n)$
0	0	 0	0 или 1
		 	0 или 1
1	1	 1	0 или 1

Таблица 2: Таблица истинности для $f(x_1, x_2, \dots, x_n)$

1.1.2 Функции от 1 переменной (их определения)

Пример. Перечислим все возможные функции от 1 переменной

x	$f_1(x)$	$f_2(x)$	$f_3(x)$	$f_4(x)$
0	0	0	1	1
1	0	1	0	1

Данные функции имеют значение:

 $f_1(x) = 0$ — функция 0

 $f_2(x) = x -$ функция x

 $f_3(x) = !x, \bar{x}, \neg x, \text{ not } x - функция отрицания (не <math>x$)

 $f_4(x) = 1 - функция 1$

1.1.3 Функции от 2 переменных (их определения)

Пример. Перечислим все возможные функции от 2 переменных

x	y	$f_1(x)$	$f_2(x)$	$f_3(x)$	$f_4(x)$	$f_5(x)$	$f_6(x)$	$f_7(x)$	$f_8(x)$
0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

Таблица 3: Таблица истинности для f(x,y)

Продолжение:

Перечислим основные значения функций:

 $f_2(x,y)$ — это конъюнкция или "лочическое и"или логическое умножение $(xy, x \& y, x \land y)$

 $f_7(x,y)$ — это исключающее или $(x+y, xXORy, x \oplus y)$, также данную функцию можно ассоциировать как (x+y)mod2

 $f_8(x,y)$ — это логическое или, но ее можно также записать как $max(x,y) \; (x|y,x\vee y)$

$$f_{10}(x,y)$$
 — это эквивалентность $(x \Leftrightarrow y, x \equiv y, x == y)$

x	y	$f_9(x)$	$f_{10}(x)$	$f_{11}(x)$	$f_{12}(x)$	$f_{13}(x)$	$f_{14}(x)$	$f_{15}(x)$	$f_{16}(x)$
0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

Таблица 4: Таблица истинности для f(x,y)

```
f_{14}(x,y) — это импликация (x \Rightarrow y, x \rightarrow y)
Импликация работает так, что истина следует из чего угодно:
лешия не существует \Rightarrow русалок не существует = 1 \ (1 \Rightarrow 1 = 1)
допса скучная \Rightarrow русалок не существует = 1 \ (0 \Rightarrow 1 = 1)
русалки существуют \Rightarrow драконы существуют = 1 \ (0 \Rightarrow 0 = 1)
x \Rightarrow y = 0 только если x = 1, а y = 0
f_{12}(x,y) — это обратная импликация (x \Leftarrow y = y \Rightarrow x)
f_9(x,y) — стрелка Пирса (x \downarrow y = \overline{x \lor y})
f_{15}(x,y) — штрих Шеффера (x|y=\overline{xy})
f_3(x,y) — запрет по у (x>y=\overline{x\Rightarrow y})
f_1(x,y) = 0
f_4(x,y) - x
f_5(x,y) — запрет по х (x < y = \overline{x \leftarrow y})
f_6(x,y) - y
f_{11}(x,y) - \text{He y } (\neg y)
f_{13}(x,y) — не х (\neg x)
f_{16}(x,y) - 1
```

Определение. Логические выражения — способ задания логических функций с помощью переменных, цифр 0 или 1 и операций:

$$\cdot \lor \Rightarrow \Leftrightarrow + \equiv | \downarrow < >$$

Пример. Примеры логических выражений:

$$(x \lor y) = (x \Rightarrow yz) \lor (y \equiv z) (0 \Rightarrow x) \lor (1 \Rightarrow y)$$

Определение. Значения логического выражения можно записать Таблицей истинности

Пример.
$$f(x, y, z) = (x \lor y)z$$

Замечание. Порядок строчек в таблеце истинности может быть любым, но лучше использовать как у двоичных чисел

Утверждение. Таблицы истинности часто считают постепенно

X	У	\mathbf{z}	f(x,y,z)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

X	у	\mathbf{Z}	$x \vee y$	$(x \vee y)z$

1.1.4 Приоритеты операций

.

 \bigvee

+ =

 $\Rightarrow \leftarrow$

| ↓ < >

Пример. Примеры приоритетов операций:

1.1.5 Алгебраические преобразования логических выражений

Определение. Алгебраические преобразования логических выражений — изменяем выражения по правилам, обычно в сторону упрощения

Пример.
$$(0 \Rightarrow x) \lor (1 \Rightarrow y) = 1 \lor (1 \Rightarrow y) = 1$$

Утверждение 1.

$$\overline{\overline{x}} = x$$

Доказательство:

\boldsymbol{x}	\overline{x}	$\overline{\overline{x}}$
0	1	0
1	0	1

Утверждение 2. $\Pi pu \vee :$

$$1 \lor x = 1$$

$$0 \lor x = x$$

$$x \lor y = y \lor x$$

1.1.6 Таблица эквивалентных логических выражений

Утверждение. $x \lor y = y \lor x$ - симметричность

$$x \lor 0 = x$$

$$x \lor 1 = 1$$

$$x \lor x = x$$

$$x \vee \overline{x} = 1$$

Доказательство:

\overline{x}	\overline{x}	$x \vee \overline{x}$
0	1	$0 \lor 1 = 1$
1	0	$1 \lor 0 = 1$

$$xy = yx$$

$$x * 0 = 0$$

$$x * 1 = x$$

$$x * x = x$$

$$x * \overline{x} = 0$$

$$x + y = y + x$$

$$x + 0 = x$$

$$x+1=\overline{x}$$

$$x + x = 0$$

$$x + \overline{x} = 1$$

Утверждение. $x \lor (y \lor z) = (x \lor y) \lor z$ - ассоциативность Ассоциативность означает, что порядок скобок не важен

Пример. $x \Rightarrow y \neq y \Rightarrow x$ - не симметричная функция

Доказательство:

ху	$x \Rightarrow y$	$y \Rightarrow x$
0 0	1	1
0.1	1	0
1 0	0	1
1 1	1	1

Замечание. $x \Rightarrow y \neq y \Rightarrow x$

$$x \Rightarrow 0 = \overline{x}$$

$$0 \Rightarrow x = 1$$

Доказательство:

$$\begin{array}{|c|c|} \hline x & x \Rightarrow 0 \\ \hline 0 & 0 \Rightarrow 0 = 1 \\ \hline 1 & 1 \Rightarrow 0 = 0 \\ \hline \end{array}$$

$$x \Rightarrow 1 = 1$$

$$1 \Rightarrow x = x$$

$$x \Rightarrow x = 1$$

$$x\Rightarrow \overline{x}=\overline{x}$$

$$\overline{x} \Rightarrow x = x$$

$$\overline{x} \Rightarrow y \Rightarrow z$$
 договоримся, что это $x \Rightarrow y(y \Rightarrow z) \neq (x \Rightarrow y) \Rightarrow z$

$$x \Leftrightarrow y = y \Leftrightarrow x$$

$$x \Leftrightarrow 0 = \overline{x}$$

$$x \Leftrightarrow 1 = x$$

$$x \Leftrightarrow x = 1$$

$$x \Leftrightarrow \overline{x} = 0$$

$$x \Leftrightarrow (y \Leftrightarrow z) = (x \Leftrightarrow y) \Leftrightarrow z$$
 - ассоциативно

Утверждение. Дистрибутивность

$$(x \lor y)z = xz \lor yz$$

$$(x+y)z = xz + yz$$
 по таблице истинности

хух	$x \Rightarrow y$	$y \Rightarrow z$	$x \Rightarrow (y \Rightarrow z)$	$(x \Rightarrow y) \Rightarrow z$
0 0 0	1	1	1	0
0 0 1	1	1	1	1
0 1 0	1	0	1	0
0 1 1	1	1	1	1
1 0 0	0	1	1	1
1 0 1	0	1	1	1
1 1 0	1	0	0	0
1 1 1	1	1	1	1

$$(x\&y) \lor z \ (xy \lor z = (x \lor z)(y \lor z)$$
$$(x \lor y)\&z = (x\&z) \lor (y\&z)$$
$$(x\&y) \lor z = (x \lor z)\&(y \lor z)$$

Замечание. $(x_1 \lor x_2 \lor x_3)(y_1 \lor y_2) = (x_1 \lor x_2 \lor x_3)y_1 \lor (x_1 \lor x_2 \lor x_3)y_2 = x_1y_1 \lor x_2y_1 \lor x_3y_1 \lor x_1y_2 \lor x_2y_2 \lor x_3y_2$

$$xy\lor z=(x\lor z)(y\lor z)=xy\lor xz\lor zy\lor zz=xy\lor xz\lor zy\lor z=xy\lor xz\lor zy\lor z*1=xy\lor z(x\lor y\lor 1)=xy\lor z$$
 сошлось

$$x+y=\overline{x} \Longrightarrow y$$
 - смотри Таблицу истинности $(x\Rightarrow y)(y\Rightarrow x)=x\Rightarrow y$

1.1.7 Многочлены Жегалкина

Замечание. Одну и ту же функцию можно записать по разному.

В алгебре:
$$f(x) = 1 + x = x + 1 = x + 5 - 4 = \sin(x - x) + x = \dots$$

В логике: $f(x,y) = x \lor y = x \lor y \lor 0 = (x \lor y)(\overline{y} \lor y = x\overline{y} \lor y \ (= -\partial ucmpu бутивность)$

Многочлены Жегалкина для логической формулы

Определение. $f(x_1....x_n)$ - это многочлен с переменными хі, конспектами 0,1 и со степенями переменных $\leqslant 1$. Это многочлены от хі ${\bf Z_2}$

Пример.
$$f(x, y, z) = 1 + x + yz + xyz$$

 $1 + x$ $xy + xyz$
 $1 + xy$

Не многочлены

$$1 + x + (y \lor z)$$

 $1+x+z^2$ нельзя степень 2

 $\it 3амечание. \ \, {
m B} \,$ общем случае многочлен от 1 переменной $(a_i=0\,$ или 1) a_0+a_1x

```
от 2yx: a_0 + a_1x + a_2y + a_3xy
```

OT 3ex:
$$a_0 + a_1x + a_2y + a_3z + a_4xy + a_5xz + a_6yz + a_7xyz$$

В общем случае $f(x_1, x_n)$ $a_0 + a_1x_1 + ... + a_nx_n + a_1x_2 + a_1x_3$ + ... (все пары переменных) + $ax_1x_2x_3$ + $ax_1x_3x_2$ \leftarrow все тройки $nepмeнныx+ax_1x_2x_3...x_n$

Определение. $\forall f(x_1...x_n)$ - логические функция $\exists !$ многочлен Жегалкина $g(x_1...x_n): f = g$

Замечание. Всего 4 функции от 1ой переменной

$$f(x) = 0 = \overline{x} = 0 + 0x$$

$$f(x) = 1 = 1 = 1 + 0x$$

$$f(x) = x = x = 0 + 1x$$

$$f(x) = \overline{x} = 1 + x = 1 + 1x$$

Доказательство:

Определение. Разные многочлены - это разные логические функции

т.е.
$$f(x_1...x_n = a_0 + ... + a_1x_1...x_n$$

 $g(x_1...x_n) = b_0 + ... + bx_1...x_n$
 $\exists !: a_i \neq b_i$ различающийся

Доказательство:

Возьмем индекс с самым большик количеством переменных

$$f(x, y, z) = 1 + x + xy + xyz = \dots + 1x + Dy + Dz + 1xy$$

$$g(x, y, z) = 1 + y + z + xyz... + Dx + 1y + 1z$$

для переменных этого слагаемого подставим 1 Оху

 ∂ ля остальных переменных : θ

$$\int B \ npumepe \ x = 1, y = 0, z = 0 : f(1,0,0) \ u \ g(1,0,0) \ f(1,0,0)$$

u в f u в g все другие слагаемые равны θ

Tenepь f(...) u g(...)

$$f(...) = a_i x 1 x_2 x_3 \neq b_i x_1 x_2 x_3 \Rightarrow f(x_1 ... x_n) \neq y$$

Доказательство:

Проверим, что многочленов Жегалкина столько, сколько функций: Посчитаем

$$a_0 + a_1 x_1 + \dots + a_1 x_1 x_2 \dots x_n$$

Сколько слагаемых:

1) 1 слагаемых без переменных

п слагаемых с переменной

$$a_1x_1 + \ldots + a_nx_n$$

 C_n^2 - слагаемых с $\mathcal Z$ - мя переменными C_n^3 - слагаемых с $\mathcal S$ - мя переменными

 C_n^n - слагаемых с n переменными

Bceso:
$$C_n^0 + C_n^1 + C_n^2 + ... C_n^n = 2^n((1+1)^2)$$

Пример. $a_0 + a_1 x$ - 2 слагаемых

$$a_0 + a_1 x + a_2 y + a_3 x y - 2^2 = 4$$
 слагаемых

2) Все слагаемых имею вид: $x_1, x_2, x_3...x_n$ (0 или 1) - 2^n слагаемых Итого: многочлен Жегалкина от n переменных

Задача. Сколько разных многочленов?

Это столько же, сколько логический функций Итог:

Следствие: Любая логическая функция может быть представлена в виде многочлена Жегалкина

Пример.
$$f(x,y) = x \vee y$$

f(x,y) = x * y - уже многочлен Жегалкина

Метод неопределенных коэффициентов:

Подберем
$$x \lor y = a_0 + a_1 x + a_2 y + a_3 x y$$

$$f(0,0) = 0$$

$$f(0,0) = a_0 + a_1 * 0 + a_2 * 0 + a_3 \dots$$

$$f(1,0) = 1 \lor 0 = 1$$

$$f(1,0) = a_0 + a_1 = a_1 \ (a_0 = 0, \Rightarrow a_1 = 1)$$

$$f(0,1) =$$
 аналогично $\Rightarrow a_1 = 1$

$$f(x,y) = x + y + a_3 x y$$

$$f(1,1) = 1 \lor 1 = 1$$

$$f(1,1) = 1 + 1 + a_3 = 0 + a_3 = a_3, a_3 = 1$$

Otbet: $x \lor y = x + y + xy$

Многочлены Жегалкина от 1 переменной:

f(x)	Мн Ж
0	0
1	1
x	x
\bar{x}	1+x

Многочлены Жегалкина от 2 переменных:

f(x)	Мн Ж
0	0
1	1
xy	xy
x+y	x + y
$x \vee y$	x + y + xy

Формулы:

1.
$$\overline{xy} = \neg(xy) = \overline{x} \vee \overline{y}$$

2.
$$\overline{x \lor y} = \neg(x \lor y) = \overline{x} \cdot \overline{y} = \overline{x} \overline{y}$$

Замечание. $\overline{xy} \neq \overline{x} \cdot \overline{y} = \overline{x} \, \overline{y}$

Доказательство формул через таблицу истинности:

x	y	$\overline{x \vee y}$	$\overline{x} \cdot \overline{y}$
0	0	1	1
0	1	0	0
1	0	0	0
1	1	0	0

1.1.8 Получение многочлена Жегалкина через алгебраические упрощения

1. Многочлен Жегалкина для ∨

$$x \lor y = (x = \overline{a}, y = \overline{y}) = \overline{ab} = \overline{\overline{x} \cdot \overline{y}} = \overline{(1+x)(1+y)} = 1 + (1+x)(1+y) = 1 + 1 + x + y + xy = \underline{x+y+xy}$$

2. Многочлен Жегалкина для ⇔

$$x \Leftrightarrow y = \overline{x+y} = 1 + x + y$$

3. Многочлен Жегалкина для ⇒

$$x \Rightarrow y = \overline{x} \lor y = (1+x) \lor y = (1+x) + y + (1+x)y = 1+x+y+y+xy = \underline{1+x+xy}$$

Замечание. Если есть логическая формула, то ее можно приветси к форме многочлена Жегалкина двумя способами:

1. метод неопределенных коэффициентов:

$$a_0 + a_1x + a_2y + a_3z + \cdots + axyz$$

2. метод алгебраических преобразований

Пример.
$$x \vee y = \overline{\overline{x} \cdot \overline{y}} = \cdots = x + y + xy$$

$$\Pi$$
ример. $x \Rightarrow y = \overline{x} \lor y = \cdots = 1 + x + xy$

Пример.
$$x \Rightarrow (y \lor \overline{z}) = x \Rightarrow (y + \overline{z} + y \cdot \overline{z}) = x \Rightarrow (y + (1+z) + y \cdot (1+z)) = x \Rightarrow (y + 1 + z + y + yz) = x \Rightarrow (1 + z + yz) = 1 + x + x(1 + z + yz) = 1 + x + x + xz + xyz = 1 + xz + xyz$$

Поймем, что:
$$(x \Leftrightarrow y) \Leftrightarrow z = x \Leftrightarrow (y \Leftrightarrow z)$$
 $x \Leftrightarrow y \Leftrightarrow z = (1+x+y) \Leftrightarrow z = 1+(1+x+y)+z = 1+1+x+y+z = x+y+z$ Вывод:

Заранее не ясно, сложно ли привести логическую формулу к многочлену Жегалкина

1.1.9 Дизъюнктивно-нормальная форма (ДН Φ)

Определение. Литерал — это переменная или отрицание переменной

Пример. $x, \overline{x}, y, \overline{y}, z, \overline{z}$

Определение. Конъюнктор — конъюнкция литералов

Пример. $x\overline{y}, xyz, \overline{x} \overline{y} \overline{z}, \overline{x}z$, ноль (пустой конъюнкт).

Определение. Логическое выражение имеет ДНФ, если она является дизъюнкцией конъюнкторов

Пример.
$$x\overline{y} \vee \overline{x} \overline{z} \vee z \vee \overline{x} \overline{y}$$
 — ДНФ

Пример.
$$xy \vee \overline{x} \overline{y} - ДНФ$$

Пример.
$$x \vee y$$
 — ДНФ

Пример.
$$xy - ДНФ$$

Пример. не ДНФ
$$-\overline{xy} = \overline{x} \vee \overline{y} - ДНФ$$

Пример. не ДНФ
$$-x \Rightarrow yz = \overline{x} \lor yz - ДНФ$$

Построение ДНФ по таблице истинности функции:

алгоритм на примере трех переменных

x	y	z	f(x,y,z)	
0	0	0	0	
0	0	1	0	
0	1	0	1	$\overline{x} y \overline{z}$
0	1	1	1	$\overline{x} yz$
1	0	0	0	
1	0	1	0	
1	1	0	1	$xy \overline{z}$
1	1	1	0	

Берем строки из столбца f(x, y, z), где значения в столбце равны 1

Допустим есть строка: $x=a_1,y=a_2,z=a_3$ (a могут быть как 0, так и 1)

В ответ добавляется конъюнкт xyz (0 \Rightarrow отрицание, 1 \Rightarrow не отрицание)

Otbet: $f(x, y, z) = \overline{x} y \overline{z} \vee \overline{x} yz \vee xy \overline{z}$

Доказательство корректности алгоритма:

Когда полученный ДН $\Phi = 1$?

Когда есть конъюнкт равный 1

- 1. Если первый конъюнкт равняется 1 (в примере \overline{x} у $\overline{z}=1$)
 - ⇒ все литералы конъюнкта равняются 1

$$\Rightarrow$$
 в примере $\overline{x}=1$ $y=1$ $\overline{z}=1$

$$x = 0$$
 $y = 1$ $z = 0$

- 2. Если второй конъюнкт равняется 1
 - \Rightarrow в примере x=0 y=1 z=1 строка из таблицы истинности
- 3. То же самое с третьим конъюнктом

Посмотрим таблицу с этими конъюнктами:

x	y	z	$\overline{x} y \overline{z}$	$\overline{x} yz$	$xy \overline{z}$	f(x,y,z)
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	1	0	0	1
0	1	1	0	1	0	1
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	0	0	1	1
1	1	1	0	0	0	0

Замечание. У одной функции могут быть разные ДНФ

Пример. $\overline{\underline{x}} \ y \ \overline{z} \lor \overline{x} \ yz \lor xy \ \overline{z} = \overline{x} \ y(\overline{z} \lor z) \lor xy \ \overline{z} = \overline{\underline{x}} \ y \lor xy \ \overline{z} -$ подчеркнутые выражения являются ДНФ

Получить ДНФ для логической функции/формулы можно:

1. по таблице истинности

2. с помощью алгебраических преобразований

Пример. 1. $\overline{x} = \overline{x}$

$$2. \ x \lor y = x \lor y$$

3.
$$x \cdot y = x \cdot y$$

4.
$$x \Rightarrow y = \overline{x} \vee y$$

5.
$$x \Leftrightarrow y = (x \Rightarrow y)(y \Rightarrow x) = (\overline{x} \lor y)(\overline{y} \lor x) = \overline{x} \overline{y} \lor \overline{x} x \lor y \overline{y} \lor yx = \overline{x} \overline{y} \lor xy$$

x	y	$x \Leftrightarrow y$
0	0	1
0	1	0
1	0	0
1	1	1

6.
$$x + y = \overline{x \Leftrightarrow y} = \overline{\overline{x} \ \overline{y} \lor xy} \dots$$

= $\overline{\overline{x} \ y} \lor \overline{x \lor \overline{y}} = \overline{\overline{x}} \cdot \overline{y} \lor \overline{x} \cdot \overline{\overline{y}} = x \ \overline{y} \lor \overline{x} \ y$

7.
$$x \Rightarrow (y+z) = \overline{x} \lor (y+z) = \overline{x} \lor \overline{y} z \lor y \overline{z}$$

1.1.10 Задача (не) выполнимости

Дана логическая формала в ДНФ

Проверить, бывает ли она равна 0?

$$\overline{x} \, \overline{y} \lor x \lor y? = 0$$

$$x = 0, y = 0 \Rightarrow \overline{x} \, \overline{y} = 1$$

 \Rightarrow данный ДНФ не может быть равным 0

Эта задача обладает особенностью:

- 1. если знать значения переменных (ответ), то их легко можно быстро проверить
- 2. подобрать значения переменных для 0 нет

Нет известного алгоритма, который "принципиально" быстрее полного перебора

У этой задачи класс NP выполнимости (ответ легко проверить, а найти его простым способом невозможно)

Следствие. То к чему сводится задача (не) выполнимости тоже сложна

- 1. упростить логическое выражение
- 2. поиск минимального ДН Φ

1.1.11 Запись таблиц истинности в виде графика

Формула = f(x, y, z) = x + y

$$f(0,0) = 0$$

$$f(0,1) = 1$$

$$f(1,0) = 1$$

$$f(1,1) = 0$$

1.1.12 Задача минимизации ДНФ

Данная задача тоже является сложной, также как и задача (не) выполнимости

Дана логическая функция (в виде ДН Φ). Необходимо найти самую короткую ДН Φ эквивалентную данной.

Минимальной ДНФ считается та, где меньше количество литералов и дизъюнкций

Пример. $\overline{x} \overline{y} \lor z$ короче, чем $xy \lor yz$

 $3 a {\it Me}$ чание. Далее рассматриваться все будет для функции от 3 переменных f(x,y,z)

 $\it 3a$ мечание. Какова таблица истинности $\it xyz=abc,$ где $\it a=0$ или 1,b=0 и 1,c=0 или 1

 $0 \Rightarrow$ надо поставить отрицание

 $1 \Rightarrow$ нет отрицания

Пример. $f(x, y, z) = \overline{x} y \overline{z}$

Если \overline{x} у $\overline{z} = 1$

$$\Rightarrow \overline{x}=1, y=1, \overline{z}=1$$

$$\Rightarrow x = 0, y = 1, z = 0$$

$$\Rightarrow x=a, y=b, z=c$$

$$\Rightarrow a=0, b=1, c=0$$

Пример. f(x, y, z) = xy

Если xy = 1

$$\Rightarrow x = 1, y = 1$$

$$\Rightarrow x = a, y = b$$

$$\Rightarrow a = 1, b = 1$$

Аналогично, $f(x,y,z) = \overline{y} \; \overline{z}$

ребро: y = 0, z = 0, x = ? — не важно

Последнее — конъюнкт из 1 литерала: $x, \overline{x}, y, \overline{y}, z, \overline{z}$

Пример. $f(x,y,z) = \overline{y}$

Если $\overline{y} = 1$

 $\Rightarrow y = 0, x = ?, z = ?$

Или конъюнкт x, грань x = 1

Итого:

 $xyz\,$ — это вершина x=a,y=b,z=c

 $xy\,$ — это реброx=a,y=b

x — это грань x = a

Попробуем минимизировать ДН Φ

Пример. $\overline{x} \overline{y} \overline{z} \lor x \overline{y} \overline{z} \lor xy \overline{z}$

Найти самый короткий ДНФ для данного выражения

Шаг 1: строим ТИ

$$\overline{x}\,\overline{y}\,\overline{z} = (0,0,0)$$

$$x\,\overline{y}\,\overline{z} = (1,0,0)$$

$$xy \overline{z} = (1, 1, 0)$$

Шаг 2: упрощаем

Чтобы упростить имеет смысл рассмотреть 2 ребра:

$$(0,0,0) - -(1,0,0) = \overline{y}\,\overline{z}$$

$$(1,0,0) - -(1,1,0) = x \overline{z}$$

$$\Rightarrow ДH\Phi = \overline{y} \ \overline{z} \lor x \ \overline{z} = \overline{x} \ \overline{y} \ \overline{z} \lor x \ \overline{z} = xy \ \overline{z} \lor \overline{y} \ \overline{z}$$

 \Rightarrow самое короткое ДН $\Phi = \overline{y}\,\overline{z} \lor x\,\overline{z}$

Пример. $\overline{x} \overline{y} \overline{z} \lor x \overline{y} \lor xy$

$$\Rightarrow Д H \Phi = x \vee \overline{x} \ \overline{y} \ \overline{z} = x \vee \overline{y} \ \overline{z}$$

 $\it Замечание.$ Данный метод позволяет наглядно перебрать все ДНФ и найти минимальный

С помощью алгебраических преобразований мы не сможем понять, что ответ самый оптимальный

Пример. Алгебраические преобразования

$$\overline{x}\ \overline{y}\ \overline{z} \lor x\ \overline{y}\ \overline{z} \lor xy\ \overline{z} = \overline{x}\ \overline{y}\ \overline{z} \lor x\ \overline{y}\ \overline{z} \lor x\ \overline{y}\ \overline{z} \lor xy\ \overline{z} = \overline{y}\ \overline{z} \lor x\ \overline{z}$$

Но тут непонятно, а вдруг можно сделать еще короче

1.1.13 Двойственная функция

Пусть есть логическая функция: $f = B^n \to B = \{0, 1\}$ Двойственная функция: $f^* = B^n \to B = \{0, 1\}$ $f^*(x_1, x_2, \dots, x_n) = \overline{f(\overline{x_1}, \overline{x_2}, \dots, \overline{x_n})}$

Замечание. Мир замены лжи на истину

$$0 \leftrightarrow 1$$

Пример. $f(x,y) = x \vee y$

\boldsymbol{x}	y	f
0	0	0
0	1	1
1	0	1
1	1	1

Новый мир: $1 \to 0, 0 \to 1$

x	y	f^*
1	1	1
1	0	0
0	1	0
0	0	0

Получилось, что $(x \lor y)^* = xy$

Пример.
$$(x \lor y)^* = \overline{\overline{x} \lor \overline{y}} = \overline{\overline{x}} \overline{\overline{y}} = xy$$

Пример. $(x+y)^*=\overline{\overline{x}+\overline{y}}=\overline{1+x+1+y}=1+x+1+y+1=1+x+y=x\Leftrightarrow y$

Замечание.
$$f^{**}(x_1, x_2 \dots x_n) = \overline{f^*(\overline{x_1}, \overline{x_2} \dots \overline{x_n})} = \overline{f(x_1, x_2 \dots x_n)} = f(x_1, x_2 \dots x_n)$$

Следствие.

$$(xy)^* = x \vee y$$

$$(x \Leftrightarrow y)^* = x + y$$

Теорема о композиции:

$$f = f_0(f_1(x_1, \dots x_n), f_2(x_1, \dots x_n), \dots f_m(x_1, \dots x_n))$$
 f_i — это функции от п переменных $(B^n \to B)(i = 1 \dots n)$
 $f_0 = B^m \to B$

Тогда $f^*(x_1, \dots x_n) = f_0^*(f_1^*(x_1, \dots x_n), f_2^*(x_1, \dots x_n), \dots f_m^*(x_1, \dots x_n))$

Доказательство:
$$f^* = \overline{f(\overline{x_1}, \dots \overline{x_n})} = \overline{f_0(f_1(\overline{x_1}, \dots \overline{x_n}), f_2(\overline{x_1}, \dots \overline{x_n}) \dots f_m(\overline{x_1}, \dots \overline{x_n}))} = f_0^*(f_1(\overline{x_1}, \dots \overline{x_n}), \overline{f_2(\overline{x_1}, \dots \overline{x_n})}, \dots \overline{f_m(\overline{x_1}, \dots \overline{x_n})})$$

Следствие. Если есть $f(x_1, ... x_n)$ — записано, как логическое выражение $c \cdot, \vee, \neg, +, \Leftrightarrow$, то f^* — также выражение, но связки заменяются на двойственные узлы

$$\lor \leftrightarrow *$$
 $+ \leftrightarrow \Leftrightarrow$
 $\neg \leftrightarrow \neg$

 $ma\kappa \ \kappa a\kappa \ (\overline{x})^* = \overline{x}$

Пример.

$$f(x, y, z) = \overline{x \vee \overline{y} z} \Leftrightarrow (x + y + z)$$

$$f^*(x, y, z) = (\overline{x \cdot (\overline{y} z)}) + (x \Leftrightarrow y \Leftrightarrow z)$$

Пример.

$$f(x_1, \dots x_n) = 1$$

$$\Rightarrow f^*(x_1, \dots x_n) = \overline{1} = 0$$

$$1^* = 0; 0^* = 1$$

1.1.14 Конъюнктивно-нормальная форма КНФ

Определение. Конъюнктивно-нормальная форма — еще одна нормальная форма, похожая на ДН Φ

Определение. Литерал — это как и раньше, переменные или отрицательные переменные

$$x, y, \overline{x}, \overline{y}$$

Определение. Дизъюнкт — дизъюнкция литералов

$$x \vee y$$
; $x \vee y \vee \overline{z}$; $x \vee \overline{z}$; \overline{x}

$$xy, x \vee yz$$

Определение. $KH\Phi$ — это конъюнкция нескольких дизъюнктов

$$(x \vee y)(y \vee \overline{z});$$

$$(x \vee \overline{y} \vee z)(\overline{y} \vee \overline{z})(\overline{x})$$

 $xy \forall z$

$$x \lor y \lor z$$

— 1 дизъюнкт

xyz

— 3 дизъюнкта

Определение. У любой логической функции есть КНФ, её можно построить по таблице истинности

Доказательство

Заметим,
что если вычислить (КНФ)* (двойственную к КНФ), то получим ДНФ

Пример.
$$[(x \lor y \lor z)(x \lor \bar{y})(\bar{y} \lor \bar{z})]^* = (xyz) \lor (x\bar{y}) \lor (\bar{y}\bar{z})$$
 И наоборот (ДНФ)* = КНФ

Итого, чтобы получить КНФ для функции f, надо построить двойственную функцию к ДНФ это функции. Отсюда следует, что КНФ всегда существует

Пример.
$$f(x,y,z)=xy\Leftrightarrow z$$

Выпишем значения хуz из строчек, где $f^*=1$
 $\bar{x}\bar{y}z$ $x\bar{y}\bar{z}$ $\bar{x}y\bar{z}$ $xy\bar{z}$

x	y	z	xy	f	f^*
0	0	0	0	1	0
0	0	1	0	0	1
0	1	0	0	1	1
0	1	1	0	0	0
1	0	0	0	1	1
1	0	1	0	0	0
1	1	0	1	0	1
1	1	1	1	1	0

Вспомним определение $f^*(x,y,z) = \overline{f(\bar x,\bar y,\bar z)}$

$$f^*(0,0,0) = \overline{f(1,1,1)}$$

Итого: $f^* = \underline{x}\overline{y}z \lor \overline{x}y\overline{z} \lor x\overline{y}\overline{z} \lor xy\overline{z}$

$$f^*(0,0,1) = \overline{f(1,1,0)}$$

$$f^*(0,1,0) = \overline{f(1,0,1)}$$

По теореме о композиции

$$f = (\bar{x} \vee \bar{y} \vee z)(\bar{x} \vee y \vee \bar{z})(x \vee \bar{y} \vee \bar{z})(x \vee y \vee \bar{z})$$

Получение КНФ по таблице истинности без двойственной функции $f(x,\!y,\!z)=xy\Leftrightarrow z$

x	y	z	$f = xy \Leftrightarrow z$
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

При x y z = 1 1 0, f= xy \Leftrightarrow z \leftarrow $\bar{x} \lor \bar{y} \lor z$ для 1 - отрицание, для 0 - нет отрицания Итого: Чтобы построить ДНФ:

- строки с 1, $0 \leftrightarrow \bar{x}\bar{y}\bar{z}$

$$1 \leftrightarrow xyz$$

Чтобы получить КНФ:

- строки с $0, 0 \leftrightarrow xyz$

$$1 \leftrightarrow \bar{x}\bar{y}\bar{z}$$

Пример. f = x+y

x	y	x + y
0	0	0
0	0	1
0	1	1
0	1	0

Нули в:
$$x \lor y$$
 $\bar{x} \lor \bar{y}$ $f = (x \lor y)(\bar{x} \lor \bar{y})$

Замечание. Для функции записанной в форме КНФ, можно поставить задачу "выполнимости".

Вопрос: может ли значение быть = 1

- не известно решений, принципиально эффективней полного перебора значений

Пример.
$$(x \lor y \lor z)(x \lor \bar{y})(y \lor \bar{z})(\bar{x} \lor \bar{z}) = 1$$

x = 1

y = 1 подходит

z = 0

Следовательно эта формула выполнима при таком наборе

Многие задачи, головоломки сводятся к задаче выполнимости

Пример. Прицнцип Дирихле

Если есть n клеток и B них n+1 заяц, то \exists клетка, где зайцев $\geqslant 2$.

при n = 2: i = 1 или 2 (клетка)
$$x_{ij}$$
 - в клетке і сидит заяц ј ј = 1 или 2 или 3 заяц

Попробуем записать, что в каждой клетке ≤ 1 зайца

а) каждый заяц ровно в одной клетке

 $x_{11} \oplus x_{21}$ - заяц 1

 $x_{12}\oplus x_{22}$ - заяц 2

 $x_{13} \oplus x_{23}$ - заяц 3

б) в каждой клетке не больше 1 зайца

кл/з	1	2	3
1	x_{11}	x_{12}	x_{13}
2	x_{21}	x_{22}	x_{23}

если есть 2 зайца, то один из конъюнктов: =1

$$\overline{x_{11}x_{12} \lor x_{11}x_{13} \lor x_{12}x_{13}} \longleftarrow$$
 в кл $1 \leqslant 1$ зайца $\overline{x_{21}x_{22} \lor x_{21}x_{23} \lor x_{22}x_{23}} \longleftarrow$ в кл $2 \leqslant 1$ зайца

Соединяем все утверждения:

 $(x_{11}+x_{21})(x_{12}+x_{22})(x_{13}+x_{23})(\overline{x_{11}x_{12}\vee x_{11}x_{13}\vee x_{12}x_{13}})(\overline{x_{21}x_{22}\vee x_{21}x_{23}\vee x_{22}x_{23}})=0$ всегда из принципа Дерихле

$$(x_{11} \lor x_{21})(\overline{x_{11}} \lor \overline{x_{21}})(x_{12} \lor x_{22})(\overline{x_{12}} \lor \overline{x_{22}})(x_{13} \lor x_{23})(\overline{x_{13}} \lor \overline{x_{23}})(\overline{x_{11}} \lor \overline{x_{12}})(\overline{x_{11}} \lor \overline{x_{12}})(\overline{x_{21}} \lor \overline{x_{22}})(\overline{x_{21}} \lor \overline{x_{23}})(\overline{x_{22}} \lor \overline{x_{23}})$$

 \longleftarrow Берем программу, которая решает КНФ задачу выполнимости. Она скажет - невозможно.

1.1.15 Класс замкнутости

Повторим: Логическая функция: f: $\beta^n \to \beta$ $\beta = \{0,1\}$

Определение. Класс – это множество логических функций.

Пример. $K_1 =$ класс функций: от двух переменных $K_2 =$ класс функций такой, что f(x,y) = f(y,x)

$$f(x,y) = x \lor y \in K_1, \in K_2$$

$$g(x,y) = x \Rightarrow y \in K_1 \notin K_2$$

 K_3 : класс функций $f(x,...) = f(\overline{x},...)$ функции, которые не зависят от первой переменной

$$f(x, y, z) = y \Rightarrow z \in K_3$$

$$f(x, y, z) = (x \Rightarrow y) \lor z \notin K_3$$

$$f(x, y, z) = x\bar{x} \lor y \lor z \in K_3 \quad (x\bar{x})$$

$$K_4 : \{f(x, y) = x \lor y; g(x, y) = x \Rightarrow y\}$$

Определение. Замыкание класса

$$K = \{f_1, f_2, \dots\}$$
 — класс функции

 K^* — замыкание класса - это класс состоящий из всех композиций функций из K

 $[f_1(f_2)(f_1(x,y),y,z),z]$ — композиция

если есть функции, подставляем друг в друга, получаем композицию

Пример. :
$$1)K = \{0, \bar{x}\}$$
 (0 - $f()$ $\bar{x} - g(x)$)
 $K^* = \{f(), g(f()), g(g(f())), g(g(g(f())))\}$

Пример. $K = \{\bar{x}\}$ возьмем класс только из отрицательных

$$K^* = \{\bar{x}, x\}$$

$$K = \{g(x), g((g(x))), g(g(g(x \dots 1, \dots)))\}$$

Пример.
$$K^* = \{\bar{x}, x \vee y, xy\}$$
 $K^* = \{, ..., \forall, \text{ функция } \}$

Определение. Если К - класс:

 $K^* = \alpha$, то \overline{K} - полный, где α — все логические функции

Вывод: $K = \{\bar{x}, x \vee y, xy\}$ — полный

Пример. $K = \{\bar{x}, x \vee y\}$, где $f(x) = \bar{x}, g(x, y) = x \vee y$

$$xy=\overline{\overline{xy}}=\overline{\overline{x}\vee\overline{y}}=f(g(f(x),f(y)))$$

Значит K^* — тоже полный

Определение. Замкнутый класс - К замкнут, если $K^* = K$

Свойства замыкания:

1.
$$K_1 \subset K_2$$
, тогда $K_1^* \subset K_2^*$

Доказательство:

Если есть $\mathbf{f} \in K_1^* \Rightarrow f =$ композиция $f_1 \in K_1 \Rightarrow \mathbf{f}$ - композиция $(f_i \in K_2) \Rightarrow f \in K_2^*$ чтд.

2. Если $K_1\subset K_2$ и K_1 - полный, то K_2 - полный

Доказательство:

$$K_1 \subset K_2 \Rightarrow K_1^* \subset K_2^* \Rightarrow \alpha \subset K_2^* \Rightarrow K_2^* = \alpha$$

3. Пусть K_1, K_2 - замкнутое, тогда $K_1 \cap K_2$ - тоже замкнутые

Доказательство:

Пусть есть $f = (K_1 \cap K_2)^*$ - композиция

$$f_i \in (K_1 \cap K_2)$$

 $(a)\Rightarrow f_i$ - композиция $f_i=K_1\Rightarrow f\in K_1^*$

б) $\Rightarrow f_i$ - композиция $f_i = K_2 \Rightarrow f \in K_2^*$

Из а и б следует, что $f \in K_1^* \cap K_2^* = K_1 \cap K_2$

Итог: $f \in (K_1 \cap K_2)^* \Rightarrow f \in K_1 \cap K_2$

 $\Rightarrow (K_1 \cap K_2)^* \subset K_1 \cap K_2$, no $K_1 \cap K_2 \subset (K_1 \cap K_2)^*$

 $\Rightarrow K_1 \cap K_2 = (K_1 \cap K_2)^*$

 $\Rightarrow K_1 \cap K_2$ - замкнут

 $\mathit{Замечаниe}.\ K_1$ и K_2 - замкнутые $\Rightarrow K_1 \cup K_2$ - замкнутый

4. $K^* = K^{**}$ для любого класса функций

1.1.16 Примеры замкнутых классов

```
1. T_0 - класс функций, "сохраняющих ноль" f \in T_0 \Leftrightarrow \text{если } f(0,....0) = 0
    x * y \in T_0
    x + y \in T_0
    \bar{x} \notin T_0
    x \Rightarrow y \notin T_0
    xy + xz + yz \in T_0
    Утверждение: T_0 - замкнут
    Доказательство:
    \Box f \in T_0^*, проверим, что f \in T_0
    \Rightarrow T_0^* \subset T_0 \\ \Rightarrow T_0^* = T
    f - комп f_i, f_i \in T_0
    f_1(f_2(...)f_3(f_4(...)),...) - композиция
    подставим все 0
    \Rightarrow f(0,....0) = 0 \Rightarrow f \in T_0 чтд
Пример. f_1(x,y) = x * y
                                   f_1 \in T_0 f_2 \in T_0
    f_2(x,y) = x + y f_1(f_2(f_1(x, f_2(y,y)), y)f_1(z,z))
    x(y+y)
    f(x, y, z) = (x(y + y) + y) * z * z
    f(0,0,0) = 0
    2. Класс T_1 - сохраняющие 1
    f \in T_1, если f(1,...1) = 1
    x * y \in T_1
    x + y \notin T_1
    x + y + z \in T_1
    \bar{x} \notin T_1
    x \Rightarrow y \in T_1
    xy + xz + yz \in T_1
Утверждение. T_1 - замкнут
    Доказательство: смотри T_0
    3. Класс ₩
    f \in \mathbb{Z}, если f можно записать как конъюнкцию нескольких перемен-
ных
    f(x, y, z) = yz
    g(x, y, z) = xyz
    h(x, y, z) = xz
    i(x, y, z) = z
```

```
0
1
Все это ∈ &
```

Утверждение. *Класс* 🖾 *замкнут*

Композиция $f_i \in \mathbb{Z}$ $f_1(..., \underline{\hspace{1pt}}, ..., \underline{\hspace{1pt}}) = \operatorname{apr} 2 * \operatorname{apr} 4 = \operatorname{подаргумент} 1^* \operatorname{подаргумент} 2^* ... *$ подаргумент = пер * пер * пер * пер ... (произвольная переременная) пер может быть 0 или 1

Утверждение. $\mathbb{E} = \{\&, 0, 1\}^*$

по определению замыкания

$${f_1(x,y) = x * y f_2() = 0 f_3() = 1}$$

Утверждение. \square - *замкнут*

Доказательство 1:

смотри доказательство 🛭

Доказательство 2:

Доказательство: $\Box f \in K^* \Rightarrow f$ – комп $f_i \Rightarrow f_i \in K^*$ $f = f_1(f_2(...)...) = g_1(g_2(h_1...)) \in k^*$ \uparrow \uparrow комп $g_1 \in K^*$ $g_i \in K \ h_i \in K$ $\Rightarrow f \in K^* \Rightarrow K^* = K^{**}$ Следствие: $\forall K$ - класс K^* - замкнут если класс замкнут он станет замкнутым 5. Класс u (unit) : $0,1,f(x,...x_n)=x_i$ или $\overline{x_i}$ $f(x, y, z) = \bar{z}$ f(x, y, z, t) = x $f(x) = xf(x) = \bar{x}$ Все это $\in u$ 6. Класс $1^{\infty} f(x_1...x_n) \leqslant x_i$ $0^{\infty} f(x...x_n) \geqslant x_i$ $x * y \leqslant x \qquad xy \in 1^{\infty}$ $\leq y$

$$x \lor y \geqslant x$$
 $x \lor y \in 0^{\infty}$ $\geqslant y$ $x \Rightarrow y \geqslant y$ $x \Rightarrow y \in 0^{\infty}$ $x \Rightarrow y \leqslant y$ $x = 0$ $y = 0$ $x \Rightarrow y \notin 1^{\infty}$ 7. L - линейная функция $L = \{0, 1, +\}^*$ Все функции из констант и сложения $x + y \in L$ $x + y + z \in L$ $1 + x \in L$ $\bar{x} \in x * y \in L$ (L - линейные многочлены Жегалкина, степени $x \in L$ Доказательство: $x * y$ имеет многочлены Жега

(L - линейные многочлены Жегалкина, степени ≤ 1)

Доказательство: x * y имеет многочлены Жегалкина x * yон единственный \Rightarrow не существует линейного многочлена Жегалкина

8. S - самодвойствейнные функции

$$f \in S$$
, если $\mathbf{f} = f^*$ (f^* - двойственные)

Если функция равна своей двойственной, то она самодвойтсвенная

Пример.
$$x * y \notin S$$

$$x\lor y\notin S$$
 $x\in S$ $\bar x\in S$ $\bar x\in S$ $x\Rightarrow y\notin S$ т.к. $(x\Rightarrow y)^*=(\bar x\lor y)^*=\bar x*y\neq \bar x\lor y$ $x=1$

Функция честного голосования y=1 от 3 ёх переменных. $0 \neq 1$ vote(x,y,z)=1, если 1 - иц больше $x+y+z\geq z$ 0, если 0 - ей больше $x + y + z \le 1$

vote(x, y, z): Таблица истинности

xyz	vote	$vote^*$
000	0	0
001	0	0
010	0	0
011	1	1
100	0	0
101	1	1
110	1	1
111	1	1

Утверждение.
$$S$$
 - замкнут

$$\exists f \in S^* f = композиция f_i \in S$$

 $f = f_i(f_2(...), f_3(...), f_4(...))$

Определение. Высота композиции

$$f(x,y,z)$$
 - высота 1 (1 ф-ия) $f(g(x,y),y,z)$ - высота 2 $g(x,y)-1$ $f(g(x,y),y,z)-2$

Пример.
$$f(g(h(x), y), h((h(x)), y))$$

 $g(h(x), y) - 2$

$$h(h(x)) = 2$$

$$h(h(x))$$
 - 2

$$f(g(h(x), y), h((h(x)), y)) - 3$$

$$f^*=f_1^*(f_2^*(...),f_n^*(...))$$
 - теория о композиции но $f_i\in S\Rightarrow f_i^*=f_i$ $=f_i(f_2(...),...f_n(...))=f$ т.е $f^*=f\Rightarrow f\in S$ 9. Монотонные функции

$$f(x_1,\ldots,x_n)\in M$$
, если $\forall i\quad x_i\geq y_i$
 $\Rightarrow f(x_1,\ldots,x_n)\geq f(y_1,\ldots,y_n)$

Примеры:

- 1. $f_1(x)=\overline{x}$ $f_1\notin M$, так как $f_1(1)=0, f(0)=1$. 1 в аргументе функции ≥ 0 , но 0<1 в значение функции
- 2. $f_2(x,y)=x\Rightarrow y$ $f_2\notin M$, так как $f_2(1,0)=0, f(0,0)=1$. 1,0 в аргументе функции $\geq 0,0$, но 0<1 в значение функции
- 3. $f_3(x,y)=x+y$ $f_3\notin M$, так как $f_3(1,1)=0, f(1,0)=1$. 1,1 в аргументе функции $\geq 1,0,$ но 0<1 в значение функции
- 4. $f_4(x,y) \in M$
- 5. $f_5(x,y) \in M$
- 6. $f_6(x,y,z) = xy \lor xz \lor yz \in M$ функция голосования

Наглядный способ проверки монотонности

Функция монотонна, когда все стрелки:

- 1. из 0 в 0
- 2. из 0 в 1
- 3. из 1 в 1

Пример. x * y

Данная функция монотонна

Пример. $x \vee y$

Данная функция тоже монотонна

Утверждение. M – $\mathit{замкнуm}$

To есть если f_i – мотонна, то $f(x_1, \ldots x_n) = f_1(f_2(\ldots) \ldots f_m(\ldots))$

 $f(y_1, \dots, y_n) = f_1(f_2(\dots) \dots f_m(\dots))$ $x_1 \dots x_n \ge y_1 \dots y_n$

То где-то в глубине x_i будут $\geq y_i \Rightarrow$ внутри будут получаться значения функции $f_i(x \dots) \geq f_i(y \dots)$

Замечание. Классы из примеров выше все неполные

Пример. $L = L^* \quad x \cdot y$

Всегда были примеры функций не из классов

 $xy \not\in L$

 $xy \notin S$

 $\overline{x} \notin T_0$

 $\overline{x} \notin T_1$

 $\overline{x} \notin M$

1.1.17 Теорема Поста

Теорема. Поста

(Позволяет понять, полный класс или нет)

K – полный тогда и только тогда, когда

 $\exists f_1 \in K : f_1 \notin T_0$

 $\exists f_2 \in K: \quad f_2 \notin T_1$

 $\exists f_3 \in K : f_3 \notin L$

 $\exists f_4 \in K : \quad f_4 \notin M$ $\exists f_5 \in K : \quad f_5 \notin S$

Пример. $K = \{\overline{x}; x + y\}$ $\overline{x} \notin T_0, T_1$

но
$$\overline{x} \in L$$
 и $x+y \in L \Rightarrow$ K – не полный

Пример.
$$K = \{\overline{x}; x \lor y\}$$
 $\overline{x} \notin T_0, T_1, M$

 $\overline{x} \in S, L$ no $x \lor y \notin L, S \Rightarrow$

K – полный по теореме Поста

Доказательство в одну сторону:

 \Rightarrow если K полный, от противного

Пусть все $f \in K$ отличие, что $f \in T_0$

$$\Rightarrow K \subset T_0$$

$$\Rightarrow K^* \subset T_0^*$$

$$\Rightarrow K^* \subset T_0 \nleq \alpha$$
, где α — все функции

$$\Rightarrow < \alpha$$

Доказательство в другую сторону:

Будем выражать через $f_1; f_2; f_3; f_4; f_5$ все другие возможные

Достаточно будет выразить только $\{\overline{x},x\cdot y\}$ (тогда есть $x\vee y=\overline{\overline{x}\cdot \overline{y}}$)

 \Rightarrow есть все ДНФ.

Шаг 1: Давайте выразим $0, 1, \bar{x}$

Берем
$$f_1(x_1 \dots x_n) = \begin{bmatrix} 1, x = 0 (f_1 \notin T_0) \\ 0 \text{ or } 1; x = 1 \end{bmatrix} = 0$$
 или \overline{x} $f_2(x_1, x_2 \dots x_n) \notin T_1 = \begin{bmatrix} 0 \text{ or } 1, x = 0 \\ 0; x = 1 \end{bmatrix} = \overline{x}$ или 0

Пояснение:

$$f(x, y, z) = x \Rightarrow yz \quad f(x, x, x) = 1$$

$$f(0, 0, 0) = 1, f \notin T_0$$

$$f(x, x, x) = 1$$

$$0 = f_2(x_1 \dots x_n), \ 1 = f_1(x_1, \dots x_n)$$

$$0 = f_2(x_1, \dots x_n), \overline{x} = f_1(x_1, \dots x_n), 1 = \overline{0} = f_1(f_2(x_1, \dots x_n), f_2(x_1, \dots x_n), \dots)$$

$$1 = f_2(x_1, \dots x_n), \ \overline{x} = f_1(x_1, \dots x_n), \ f_2(f_1(x_1, \dots x_n), f_1(x_1, \dots x_n), \dots)$$

$$\overline{x} = f_2(x_1, \dots x_n), \ \overline{x} = f_1(x_1, \dots x_n)$$

Берем $f_4 \notin M$, где нарушена монотонность, для примера:

$$f_4(x_1 = y_1, x_2 = y_2, \dots, x_n > y_n) = 0_x \neq 1_y$$

 $f_4(x_1, x_2, \dots x_n)$ переменная X, где >

$$f_4(x, y, z, t) = xy + zt \notin M$$

$$f_4(1,1,1,1) = 0$$
 $f_4(1,0,1,1) = 1$

 $1,1,1,1\geq 1,0,1,1$

$$\Rightarrow f_4(1, x, 1, 1) = \begin{bmatrix} 1, x = 0 \\ 0; x = 1 \end{bmatrix} = \overline{x}$$

выражены
$$f_1(x_1,x_2\dots x_n)=\overline{x}$$
 $f_2(x_1,x_2,\dots x_n)=\overline{x}$ $f_5\notin S$ получим с ней 1 и 0 Найдем нарушение S $f''(x_1\dots x_n)\neq f(x_1\dots x_n)$ $f(\overline{x_1},\overline{x_2},\dots \overline{x_n})\neq f(x_1,\dots x_n)$ $f(\overline{x_1},\overline{x_2},\dots \overline{x_n})\neq f(x_1,\dots x_n)$ $f(\overline{x_1},\overline{x_2},\dots \overline{x_n})=f(x_1,\dots x_n)$ Рассмотрим $f_5(x;\overline{x},x;\dots \overline{x})=$ (если $x_i=0\Rightarrow x$ $x_i=1\Rightarrow \overline{x}$) $=\int f(x_1,x_2\dots x_n)$ when $x=0$ $=\int f(\overline{x_1},\dots \overline{x_n})$ when $x=1$ 1 Пример. $f(x,y,z)=x\vee yz\notin S$ нужно найти $f(1,0,0)=f(0,1,1)$ (нарушение S) Рассмотрим $f(\overline{x},x,x)=\int f(1,0,0)=1$ $x=0$ $=1$ $f(\overline{x},x,x)=\overline{x}\vee xx=\overline{x}\vee x=1$ если получили 0, $= 1$ и наоборот $= 1$ надо $= 1$ и наоборот $= 1$ надо $=$

если $g(x_1, x_2) = 1 + x_1 x_2$

```
g(x_1, x_2) = x_1 x_2 – отрицание уже есть
    если g(x_1, x_2) = 1 + x_1 + x_1 x_2 = 1 + x_2 (1 + x_2)
    тогда g(x_1, \overline{x_2}) = 1 + (1 + x_1(1 + 1 + x_2)) = x_1x_2
    все случаи: g(x_1, x_2) = C_1 + (x_1 + C_2) \cdot (x_2 + C_3)
Пример. f_3(x, y, z) = x + yz
    f_3(0, x, y) = 0 + xy = xy
Пример. f_3(x, y, z) = x \Rightarrow yz = 1 + x + xyz
    f_3(x, y, 1) = 1 + x + xy = 1 + x(1 + y)
    f_3(x,\overline{y},1) = xy
    можно было
    f_3(1, x, y) = 1 + 1 + xy = xy
Пример. f(x, y, z) = x \Rightarrow yz
    g(x,y) = x + y
    \notin T_0, T_1, L, M, S
    Выражаем
    f(x, x, x) = x \Rightarrow xx = 1
    g(x,x) = x + x = 0
    Случай 0, 1, надо \overline{x}
    Выражаем \overline{x}
    g(x,y) \notin M
    g(1,0) = 1
    q(1,1) = 0
    \Rightarrow g(1,x) = \overline{x}
    \Rightarrow \overline{x} = g(f(x, x, x), x)
    Выражаем x \cdot y
    f(x, y, z) = xx \Rightarrow yz = 1 + x + xyz
    Догадаемся, что f(1, x, y) = x \cdot y
    Ответы: \overline{x} = g(f(x, x, x), x) x \cdot y = f(1, x, y)
    Полные наборы из одной функции (от двух переменных)
    \{f(x,y)\}
                 - полный
    По теореме Поста: f(x,y) \notin L,M,S,T_0,T_1
    Таблица истинности для f:
    1 строчка:
    xy f_1 f_2 f_3 f_4
    00\ 1\ 1\ 1\ 1\notin T_0
    4 строчка:
    xy f_1 f_2 f_3 f_4
    11\ 0\ 0\ 0\ 0 \notin T_1
```

xy	f1	f2	f3	f4
00	1	1	1	1
01	0	0	1	1
10	0	1	0	1
11	0	0	0	0

$$f_2(x,y) = \bar{y} \in L$$
 $f_3(x,y) = \bar{x} \in L$
 $\Rightarrow f_2, f_3$ не подходят
 $f_1 = \overline{x \vee y} \ f_4 = \overline{x * y}$
 $f_1^* = f_4 \quad f_1, f_4 \notin S$
 $f_1 = x + y + xy = 1 + x + y + xy \notin L$
 $f_4 = 1 + xy \notin L$
 $f_{1,4}(0,0) = 1 \notin M$
Ответ: $\{\overline{x \vee y}\}$ - полный набор
 $\{x \downarrow y\}$ - стрелка пирса
 $\{x|y\}$ штриф шеффера
 $x|x = \bar{x}$
 $x|y = \overline{x * y} \Rightarrow \overline{x|y} = x * y \Rightarrow (x|y)|(x|y) = x * y$
 $x/y = \overline{xy} = \bar{x} \vee \bar{y} \Rightarrow \bar{x}/\bar{y} = x \vee y$
 $\Rightarrow (x/x)/(y/y) = x \vee y$
 $x \qquad y$
 $x \qquad y$
 $x \qquad y$

1.1.18 Автоматическое доказательство теорем

Задача выполнимости: дана функция в КНФ

$$(x_1 \lor x_2 \lor \bar{x_3})(\bar{x_1} \lor \bar{x_2} \lor x_3)(x_1 \lor x_4)$$

Эффективных алгоритмов для этой задачи нет

...

- -всегда 0
- -бывает 1

1.1.19 Логическое следствие

Определение. $P_1(x_1...x_k)...P_n(x_1...x_k)$

n+1 лог. функций (утверждений)

 $Q(x_1...x_k)$

 ${\bf Q}$ — логическое следствие $P_1...P_n,$ если для всех наборов значений $x_i,$ когда все $P_j(x_i...x_k)=1$

 $Q(x_1...x_k)$ тоже 1

Пример. $P_1(x,y,z)^{k=3}(x+y) \Leftrightarrow 0$

$$P_2(x,y,z) = (y+z) \Leftrightarrow 1$$

$$Q(x, y, z) = (x + z) \Leftrightarrow 1$$

$$0+1 = x + y + y + z = x + zy + z = 1$$

Есть 2 набор (001) и (110), где P_2 - истина

Q должно быть тоже истина.

Замечание. Q - логическое сложение $P_1, P_2...P_n$, по смыслу это теорем

Теорема. Известно $P_1, P_2...P_n, mor \partial a \ Q$

xyz	P_1	P_2	Q
000	1	0	0
001	1	1	1
010	0	1	0
011	0	0	1
100	0	0	1
101	0	1	0
110	1	1	1
111	1	0	0

Определение. Q — логическое следствие $P_1...P_n$ тогда и только тогда, когда $P_1\&P_2\&...\&P_n\Rightarrow Q$ - тождественно 1 эквивалетно $(P_1,P_2...P_n\Rightarrow Q=1)$

Проверим: $((x+y)\Leftrightarrow 0)((y+z)\Leftrightarrow 1)\Rightarrow ((x+z)\Leftrightarrow 1)=\overline{x+y}*(y+z)\Rightarrow (x+z)=(1+x+y)(y+z)\Rightarrow (x+z)=1+(1+x+y)(y+z)+(1+x+y)(y+z)(x+z)=1+y+z+xy+xz+yy+yz+yx+yz+zx+zz+xyx+xyz+xzx+xzz+yyx+yyz+yzx+yzz=1$

Доказательство: по ТИ

xx_k	P_1	P_2		P_n	Q	$P_1P_2P_n \Rightarrow Q$
000						
	1	1	1	1	1	$1 \Rightarrow 1 = 1$
•	0	1	1	0	?	$0 \Rightarrow ? = 1$
111						∕ все 1

⇒ аналогично, по ТИ

x_1x_k	$P_1P_2P_n \Rightarrow Q$	
1	$1,0 \Rightarrow 1$	$\leftarrow P_i$ есть 0
1	$1,1 \Rightarrow 1$	\leftarrow все $P_i,Q=1$
1	$1,0 \Rightarrow 0$	
1	•	
1	$1,0 \Rightarrow 0$	

Следствие: Q - логическое следствие $P_1..P_n$, тогда и только тогда, когда $P_1P_2..P_n\bar{Q}$ тождественно ложь

Замечание. по сути - это доказательство от противного

$$P_1P_2..P_n \Rightarrow = 1$$
 $P_1P_2..P_n \Rightarrow Q = 0$ $P_1...P_n \lor Q = 0$ $\bar{a} \lor b = \bar{a} * \bar{b}$ $P_1...P_n * \bar{Q} = 0$ чтд

Свойства логического следствия:

1. Q = 1 логическое следствие $P_1...P_n$

Доказательство: $P_1...P_n\bar{Q}=P_1P_2...P_n\bar{1}=P_1P_2...P_n*0=0$

2. Q=0 логическое следствие $P_1..P_n$ Тогда $P_1*P_2..P_n=0$

Доказательство: $0 = P_1..P_n\bar{Q} = P_1..P_n\bar{0} = P_1..P_n*1 = P_1..P_n$ чтд

 $2^{'}.~Q=0$ логическое следствие $P_{1}..P_{n}$ тогда \forall набора значений $x_{1},x_{2}..x_{n}$ можно найти $P_{i}=0$

Доказательство: $P_1, P_2..P_n = 0 \Rightarrow$ один из $P_i = 0$ чтд

3. Q_1 - логическое следствие $P_1...P_2$

 Q_2 - логическое следствие $P_1..P_nQ_1$

 $Q_i \;$ - логическое следствие $P_1..P_nQ_1..Q_{i-1}$ тогда Q_i - логическое следствие $P_1..P_n$

Доказательство: $P_1...P_n\bar{Q_1} = 0$ (следует из $Q_1(1)$)

$$P_1..P_nQ_1\bar{Q_2}=0$$
 (следует из Q_2) \Rightarrow

$$P_1..P_n\bar{Q}_2=0$$

$$(1) \Rightarrow P_1 P_2 ... P_n = 0$$

или

$$\bar{Q}_1 = 0 \Leftrightarrow Q = 1$$

$$P_1..P_n\bar{Q}_2=0$$

$$P_1..P_nQ_1ar{Q}_2=0\Rightarrow P_1..P_nQ_2=0$$
 чтд

Определение. D_1 - дизъюнкты $D_1 = \mathbf{V} \vee D_1^{'}$

$$D_2$$
, где $D_2 = \mathbf{V} \vee D_2'$

(дизъюнкты с одним литералом, отличающимся отрицанием)

Тогда, $\operatorname{Res}(D_1, D_2) = D_1' \vee D_2'$ резольвенте

$$\frac{X \vee Y}{Y} \mid X$$

(особый случай) (часть определения)

$$\left. \begin{array}{l} \frac{Y}{Y} \; \middle| \Box = 0 \\ X \vee Y \vee Z \\ Y \vee T \vee \overline{U} \; \middle| \end{array} \right.$$

Определение. $Res(D_1, D_2)$ - это логическое следствие D_1 и D_2

Доказательство:

$$\begin{array}{c|cccc}
D_1 = \mathbf{V} \lor D_1' & D_2' = \mathbf{V} \lor D_2' & D_1' \lor D_2' \\
\hline
1 & 1 &
\end{array}$$

если
$$D_1=1, D_2=1$$
,то $D_1^{'}\vee D_2^{'}$ тоже должно быть 1 если $\mathbf{V}=0$ $1=D_1=0\vee D_1^{'}=D_1^{'}=1\Rightarrow D_1^{'}\vee D_2^{'}=1$ если $\mathbf{V}=1$ $1=D_2=\bar{1}\vee D_1^{'}=D_2^{'}\Rightarrow D_1^{'}\vee D_2^{'}=1$

1.1.20 Метод резолюций

Дано: $P_1P_2...P_n$, Q, доказать, что Q - P: Шаг 0. запишем $P_i\bar{Q}$ в $KH\Phi$ тогда $P_1,P_2...P_n$, \bar{Q} тоже будет иметь $KH\Phi$

Пример.
$$P_1 = x + y \Leftrightarrow 0$$
 $P_2 = y + z \Leftrightarrow 1\bar{Q} = \overline{x + z \Leftrightarrow 1} = (x \vee z)(x \vee \bar{z})$ т.е. $P_1P_2\bar{Q} = (\bar{x} \vee y)(x \vee \bar{y})(\bar{y} \vee \bar{z})(y \vee z)(\bar{x} \vee z)(x \vee \bar{z})$ D_1 D_2 D_3 D_4 D_5 D_6 считаем, что у нас дизъюнктов: $\bar{x} \vee y$ $\bar{x} \vee \bar{y}$ $\bar{y} \vee \bar{z}$ $y \vee z$ $\bar{x} \vee z$ $x \vee \bar{z}$ D_1 D_2 D_3 D_4 D_5 D_6 Шаг 1,2,3... Считаем резольвенты, пока не получим \square

Пример.
$$\begin{array}{cccc}
D_1 &=& \overline{x} \vee y \\
D_2 &=& \overline{y} \vee \overline{z} \\
\end{array} \begin{vmatrix}
\overline{x} \vee \overline{z} &= D_7
\end{vmatrix}$$

$$\begin{array}{cccc}
D_2 &=& x \vee \overline{y} \\
D_4 &=& y \vee z \\
\end{matrix} \begin{vmatrix}
x \vee z &= D_8
\end{vmatrix}$$

$$\begin{array}{cccc}
D_7 &=& \overline{x} \vee \overline{z} \\
D_5 &=& \overline{x} \vee z \\
\end{matrix} \begin{vmatrix}
x &= D_9
\end{vmatrix}$$

$$\begin{array}{cccc}
D_8 &=& x \vee z \\
D_6 &=& y \vee \overline{z} \\
\end{matrix} \begin{vmatrix}
\overline{x} &= D_9
\end{vmatrix}$$

$$\begin{array}{ccccc}
D_8 &=& x \vee z \\
D_6 &=& x \vee \overline{z} \\
\end{matrix} \begin{vmatrix}
x &= D_{10}
\end{vmatrix}$$

$$\begin{array}{cccccc}
D_9 &=& \overline{x} \\
D_{10} &=& x
\end{vmatrix}$$

$$\begin{array}{cccccc}
\Box (\text{пустой лизъюнкт получен})$$

□ (пустой дизъюнкт получен)

Лекция 9:

Утверждение. Метод резолюций корректен (Q – логическое следcmeue $P_1, P_2, \dots P_n$

Eсли вывести $0\Rightarrow Q$ – действительно логическое следствие $P_1,P_2,\dots P_n$

Доказательство:

 $P_1,P_2,\ldots P_n$ – исходные дьзъюнкты $P_1,P_2,\ldots P_n$ $\overline{Q}=D_1\ldots D_N$ каждый следующий $D_i(i>N)$ – логическое следствие двух прошлых дизъ-

Пусть $x_1, \ldots x_m$ — значения переменных, на которых $P_1, P_2, \ldots P_n$ $\overline{Q} =$ $1 \Rightarrow D_1 \dots D_N = 1$ $\Rightarrow D_1 = 1, D_2 = 1 \dots D_N = 1, i > N = 1$ $\Rightarrow 0 = 1$ — невозможно, так как 0 = 0

Утверждение. Полнота метода резолюций. Если $D_1, D_2 \dots D_N = 0$, где D_i – дизънкт, то между резолюций может вывести θ

Замечание. Метод резолюций не всегда позволяет получить 0 быстро, бывает неудачные D_i шагов примерно 2^N

Доказательство:

Индивидуально по количеству переменных $x_1 \dots x_m, 0 \dots m = 1$

Какие дизъюнкты из первой переменной $x, \overline{x}, x \vee \overline{x} = 1$ среди $D_1, D_2 \dots D_N$ есть дизъюнкты x и $\overline{x} \Rightarrow [x, \overline{x}] = 0$

Переход $m-1 \to m$. То есть для m-1 переход можно всегда вывести 0

 D_+ – то есть дизъюнкты, в которых нет $\overline{x_m}$

 D_{-} – то есть дизъюнкт, в которых нет x_{m}

Пример. $(x_1 \lor \overline{x_2}) \cdot (\overline{x_2} \lor x_3) \cdot (x_1 \lor x_2 \lor \overline{x_3}) \cdot (\overline{x_2} \lor \overline{x_3})$ $D_{+} = [(x_1 \vee \overline{x_2}), (x_2 \vee x_3)]$ $D_{-} = [(x_1 \vee \overline{x_2}), (x_1 \vee x_2 \vee \overline{x_3}), (\overline{x_2} \vee \overline{x_3})]$ Теперь пусть $x_m = 0$ рассмотрим $D_+ \cdots \vee x_m = 0$ $D_{-} \cdot \cdot \cdot \vee \overline{x_m} = 1$

То есть все $D_+ \in 0 \Rightarrow D = 1 \Rightarrow D_1$ несовместимы, то есть $D = 0, D \in$ D_{+}

Выведем из $D_+^{{\sf без} x_m}=0$

Тогда, если вернуть x_m, D_+ выводит 0 или x_m . Аналогично, если $x_m =$ $1, D_{-}$ выводит 0 или $\overline{x_{m}}$. Если уже получены 0, то все. Если получены x_m и $\overline{x_m} \Rightarrow$ $[x_m, \overline{x_m}] = 0$

Как доказывать?

Способ 1:

Методом резолюций, как в теореме.

 $D \, D_- \, D_+$ решаем 2 подзадачи — не эффективно

и так далее... Всего их будет 512 штук. Способ 2: насыщение по уровням Каждый с 0

- 1. с каждым слагаемым
- 2. каждый с исходным шагом

1.2 Исчисление предикатов

Определение. Формула исчисления предикатов

- 1. Вводим множество \sum_f множество функций символов
- 2. Вводим множество \sum_{c} множество констант (не обязательно функции от 0 переменных)
- 3. Вводим множество \sum_{p} предикатные символы P(x)
- 4. Вводим множество предикатных переменных \sum_{x}

Термины:

- 1. х переменная
- 2. f символ $(f(t_1, \ldots t_n))$ где $t_1, \ldots t_n$ термины

11 Лекция

Напоминание

Что такое функция исчисления предикатов

$$\forall x(\exists y P(f(x), y) \lor Q(g(x, c)))$$

f, g, c – функции

(f(x),y),(g(x,c)) – атамарные формы

x, f(x), (f(x), y), x, c, g(x, c) – термы

P,Q – предикаты

∀ ∃ – кванторы

Определение. Сигнатура — это множество функциональных символов и предикатов

$$f^1, g^2, e^0, P^2, Q^1$$

Определение. Интерпретация — множество + смысл предикатов и функций

В интерпретации функция — это предикат от несвязных переменных $\forall x (x \geq x)$ — все переменные связаны = 1

$$\forall (x \geq y)$$
 — у не связанная переменная =
$$\begin{cases} 1 & y=1 \\ 0 & y \neq 1 \end{cases}$$
 в $M=\mathbb{N}$

Пример.
$$M=\mathbb{N}=1,2,3,\ldots$$
 функции $=+$ $x>y=\exists k(x=y+k)$ $x\geq y=x>y\lor x=y=\exists k(x=y+k)\lor x=y$ x — четные $=\exists k(x=k+k)$ $x=1$ $=\forall y(y\geq x)=\forall y(\exists k(y=x+k)\lor y=x)$ Добавим в функции \cdot $x\!:\!y=\exists k(x=y\cdot k)$ $x\in\mathbb{P}$ — простое число $=\exists y[(x\!:\!y)\cdot (y>1)\cdot (y< x)](x>1)=$

Определение. Пусть F,G — функции исчисления предикатов F — тождественно равно G(F=G), если их значения совпадают в \forall интерпретации

Пример.
$$\forall x(P(x)\Rightarrow Q(x))=\forall x(\overline{P(x)}\vee Q(x))$$
 $F=G$ Данные функции тоже равны $a\Rightarrow b=\overline{a}\vee b$

 $= \forall y (x : y \Rightarrow y = x \lor y = 1)(x > 1)$

Замечание. Если функции отличаются заменой, верной в логике исчислений высказываний, то они равны

Пример.
$$\overline{\exists x P(x) \lor \exists x Q(x)} = \overline{\exists x P(x)} \cdot \overline{\exists x Q(x)}$$

1.2.1 Операции преобразования

1. Переименование переменной, если P не содержит y

$$\forall x P(x) = \forall y P(y)$$
 $\exists x P(x) = \exists y P(y)$ $\exists k (x=y+k) = \exists l (x=y+l) \neq \exists x (x=y+x) \neq \exists y (x=y+y)$ $\exists x \forall y P(x,y) = \exists x \forall z P(x,z) \neq \exists x \forall x P(x,x)$ – некорректная функция

2.
$$\forall x \forall y P(x, y) = \forall y \forall x P(x, y)$$

 $\exists x \exists y P(x, y) = \exists y \exists x P(x, y)$

Доказательство для ∀

Рассмотрим интерпретацию I

левая функция истанна $\Leftrightarrow P(x,y) = 1 \quad \forall x,y \in M$

Правая функция истинна $\Leftrightarrow P(x,y) = 1 \quad \forall x,y \in M$

Замечание. $\exists x \forall y P(x,y) \neq \forall y \exists x P(x,y)$

$$IM = \mathbb{R}, P(x, y) : x > y$$

$$\forall y \exists x (x > y) = 1$$

$$\exists x \forall y (x > y) = 0$$

$$3. \ \overline{\forall x P(x)} = \exists x \overline{P(x)}$$

$$\overline{\exists x P(x)} = \forall x \overline{P(x)}$$

Доказательство для ∀

$$IM, PM \rightarrow \{0, 1\}$$

Если слева 0

$$\overline{\forall x P(x)} = 0 \Leftrightarrow \forall x P(x) = 1$$

$$\Leftrightarrow P(x) = 1, x \in M$$

$$\Leftrightarrow \overline{P(x)} = 0, x \in M$$

$$\Leftrightarrow \exists x \overline{P(x)} = 0$$

4.
$$\exists x P(x) \lor \exists x Q(x) = \exists x (P(x) \lor Q(x))$$

$$\forall x P(x) \cdot \forall x Q(x) = \forall x (P(x) \cdot Q(x))$$

Доказательство для \exists

Возьмем $IM, P\mathbb{R}$

слева = 0
$$\Leftrightarrow$$
 $\begin{cases} \exists x P(x) = 0 \\ \exists x Q(x) = 0 \end{cases} \Leftrightarrow \begin{cases} P(x) = 0, x \in M \\ Q(x) = 0, x \in M \end{cases} \Leftrightarrow P(x) \lor Q(x) = 0$

$$0, x \in M \Leftrightarrow$$

$$\exists x (P(x) \lor Qx()) = 0$$

аналогично для ∀

Замечание. Для другой связки

$$\forall x P(x) \vee \forall x Q(x) \neq \forall x (P(x) \vee Q(x))$$

Рассмотрим $I: M = \mathbb{N}$

$$P(x)$$
 – х четные

$$Q(x)$$
 – х нечетные

$$\forall x P(x) = 0$$

$$\forall x Q(x) = 0$$

$$\forall x P(x) \lor \forall x Q(x) = 0 \lor 0 = 0$$

$$\forall x (P(x) \lor Q(x)) = 1$$

5. похожа на 4

$$\exists x P(x) \cdot Q = \exists x (P(x) \cdot Q)$$
$$\exists x P(x) \lor Q = \exists x (P(x) \lor Q)$$
$$\forall P(x) \cdot Q = \forall x (P(x) \cdot Q)$$
$$\forall x P(x) \lor Q = \forall x (P(x) \lor Q)$$

Доказательство

 $a \in M$

слева
$$1 \Leftrightarrow \begin{cases} \exists x P(x) = 1 \\ Q = 1 \end{cases} \Rightarrow \begin{cases} P(a) = 1 \\ Q = 1 \end{cases} \Rightarrow P(a) \cdot Q = 1$$

$$\Rightarrow \exists x (P(x) \cdot Q) = 1$$

Если слева 0

если
$$Q = 0 \Rightarrow P(x) \cdot Q = \exists x (P(x) \cdot Q) = 0$$

если
$$Q = 1 \Rightarrow$$

$$\exists x P(x) = 0$$

$$\Rightarrow P(x) = 0, x \in M$$

$$\Rightarrow P(x) \cdot Q = Q, x \in M$$

$$\Rightarrow \exists x (P(x) \cdot Q) = 0$$

6.
$$\exists x P = P$$

$$\forall xP = P$$

Пример.
$$\forall x P(x, f(x)) \Rightarrow Q$$

 $\exists w (\forall x P(x, f(x)) \Rightarrow Q)$

1.2.2 Нормальные формы

Мн Ж, КНФ, ДНФ

Определение. Предваренная нормальная форма Формула исчисления предикатов имеет ПНФ, если

$$Q_1x_1Q_2x_2\dots Q_nx_n(Matrix)$$

 $Q_i = \forall$ или \exists

Простыми словами, $\Pi H \Phi \,$ – это когда все кванторы стоят впереди

Пример. $\forall x \exists y (P(x,y) \Rightarrow Q(y))$

Пример. $\forall x (P(x, y, z) \lor Q(c))$

Пример. $\forall x P(x) \rightarrow \overline{x}Q(x)$

Пример. $\forall x(\exists y P(y) \lor Q(x)) = \forall x \exists y (P(y) \lor Q(x))$

Теорема. Любая формула исчисления предикатов имеет ПНФ

Алгоритм приведения

1. Все связки кроме &, \vee , \neg заменяются на &, \vee , \neg

$$a \Rightarrow b = \overline{x} \vee b$$

$$a \Leftrightarrow b = (a \vee \overline{b})(\overline{a} \vee b)$$

2. Все отрицания внутри кванторов

$$\overline{\forall x P(x)} = \exists x \overline{P(x)}$$

$$\overline{\exists x P(x)} = \forall x \overline{P(x)}$$

3. По свойству 6 вынести все кванторы в начало, возможно, заменной переменных

Пример.
$$\forall x P(x) \lor \forall x Q(x)$$

$$\neq \forall x (P(x) \lor Q(x))$$

$$= \forall x P(x) \lor \forall y Q(y) =$$

$$= \forall x (P(x) \lor \forall y Q(y)) =$$

$$= \forall x \forall y (P(x) \lor Q(y)) - \Pi H \Phi$$

Лекция 13

Пример. Язык $L_{a=b} = \{$ слова, где а и b поровну $\}$

$$abc \in L_{a=b}$$

$$abbbcccc \notin L_{a=b}$$

$$ababa \notin L_{a=b}$$

$$\Lambda \in L_{a=b}$$

Пример.
$$L_{a^nb^n} = \{a^nb^n \mid n \in \mathbb{N} \cup \{0\}\} = \{\Lambda, ab, aabb, aaabb, \dots\}$$
 x^n – повторение n раз $L_{a^nb^n} \subset L_{a=b}$

Пример.
$$A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +, (,), -\}$$
 $L_{tel} = \{$ язык телефонных номеров $\}$ $+7(921)401 - 00 - 00 \in L_{tel}$

Определение. Грамматика (формальная грамматика) — это формальное описание языка

Если есть грамматика языка L \forall слова w можно проверить $w \in L$?

Типы грамматик:

- 0. Грамматику можно описать с помощью машины Тьюринга Грамматика = программа проверяет $w \in L$? Если для языка создать программу проверки — это тип 0
- Контекстно-зависимые грамматики
 Контекстно-зависимые языки описываются через конечно-зависимые грамматики
- 2. Контекстно-свободные грамматики KC языки – те языки, которые можно описать с помощью KC грамматик
- 3. Регулярные выражения или конечные автоматы Регулярные языки задаются регулярными выражениями или конечными автоматами

Замечание. Каждый следующий вид грамматики "проще предыдущего" Но множества его языков сужаются Языки типо 0 ⊃ KЗ-языки ⊃ КС-языки ⊃ Регулярные языки

1.2.3 Машина Тьюринга

Определение. Машина Тьюринга = $(A; \square; Q; R; q_0; Q_F)$ A — алфавит, $\neq \emptyset$, множество конечное $\square \in A$ — специальный символ Q — состояние, $\neq \emptyset$, множество конечное R — правила перехода

$$q_0 \in Q$$
 – начальное состояние

 $q_0 \in Q$ — начальное состояние $Q_F \subset Q$ — подмножество конечных состояний

$$R: A \times Q \to A \times Q \times \{L, R, E$$
 — не двигаться $\}$

Пример.
$$A = \{1, \square\}$$

$$Q = \{q_0, q_1\}$$

$$Q_F = \{q_1\}$$

R/A	1	
q_0	$1, q_1, R$	$1, q_1, S$
q_1	не надо	не надо

Конечное количество символов ленты $\neq \square$

0	1	2	3	 	 	
1	1	1	1			
\uparrow						
q_0						

Сначало головка смотрит на клетку с индексом 0, состояние q_0 Видим символ 1

 $R(1,q_0) = 1, q_0, R$ — сдвинуть головку вправо

0	1	2	3	 	 	
1	1	1	1			
	\uparrow					
	q_0					

Головка на клетке 1

Символ = 1

 $Coctoяниe = q_0$

$$R(1, q_0) = 1, q_0, R$$

потом

0	1	2	3	 	 	
1	1	1	1			
			\uparrow			

потом

0	1	2	3		 	
1	1	1	1			
				\uparrow		

Теперь:

Головка: клетка 4

Символ: \square Состояние: q_0

 $R(0,q_0) = 1, q_1, E$ – стоим на месте

Дано было 1111, результат 11111 Вывод: программа дописывает 1 Работа Машины Тьюринга формально

Определение. Конфигурация: $(w, n \in \mathbb{N} \cup \{0\}, q)$

n – положение головки

 $q \in Q$

w – слово на ленте (без хвоста \square)

Один шаг исполнения программы:

 $(w_1, n_1, q_1) \rightarrow (w_2, n_2, q_2)$

 $w_1[n_1]$ — символ над головкой

 $R(w_1[n_1], q_1) = (a, q_2, L/R/E)$

 $w_2 = w_1$ где $w_1[n] = a$

если $L \rightarrow n_2 = n_1 - 1$

 $R \to n_2 = n_1 + 1$

 $E \rightarrow n_2 = n_1$

Начало работы: (w, O, q_0)

w – дана

О – головка слова

 q_0 — начальное слово

 $ightarrow \cdots
ightarrow \cdots
ightarrow (\overline{\overline{w}}, \overline{q} \in Q_F)$ – конечное состояние

Ответ: $\overline{\overline{w}}$, то есть из слова w получили $\overline{\overline{w}}$

Замечание. (Тезис Чёрге)

Все, что мы интуитивно понимаем как алгоритм, может быть реализовано с помощью машины Тьюринга

Замечание. Модификации машины Тьюринга:

- $1. \infty$ в обе стороны лента
- 2. несколько лент
- 3. недетерминированная машина Тьюринга
- 1, 2, 3 это все эквивалент обычной машины Тьюринга

Замечание. Про проверку, слово в языке? $w \in ?L$

Если результат $1 \Rightarrow w \in L$

Если результат $0 \Rightarrow w \notin L$

или

 $\{q_1, q_2\} = Q_F$

 $q_1: w \in L$

 $q_2: w \notin L$

Все зависит от конечного состояния

1.2.4 Контекстно-свободные языки

Пример. Email @ server

username \rightarrow word

 $server \rightarrow word.word$

 $\operatorname{word} \to \mathbf{a}$

word $\rightarrow \mathbb{D}$

 $\operatorname{word} \to \mathbb{C}$

 $E \to u@S \to w@S \to (\text{используя правило } s \to w.w) \ w@w.w \to (\text{используя правило } w \to ww) \ ww@w.w$

- $\rightarrow xw@w.w \rightarrow xy@w.w$
- $\rightarrow xy@ww.w \rightarrow xy@www.w$
- $\rightarrow xy@www.ww$

Можно ли получить xy@@ru?

нет $\notin L$

то есть слова, которые можно получить, они $\in L$

```
Пример. Еще
```

```
1. S \rightarrow
  2. S \rightarrow aSb
    – это грамматика
   S \to aSb \to aaSbb \to aaaSbbb \to aaabbb
   Какие слова можно вывести?
   \{a^nb^n|n\geq 0\}=\{\Lambda,ab,aabb,aaabb,\dots\}
Определение. КС-грамматика -(A, N, S \in N, R)
   A – алфавит терминальных символов конечен, \neq \emptyset
   N – алфавит нетерминальных символов, конечен, \neq \emptyset
```

S – начальный нетерминальный

R – множество правил

Лекция 14

КС - грамматика

А - Алфавит

N – нетерминальные символы (алф.)

 $S \in N$ – начальное

R — правило вида $N \to (A \lor N)^*$

Определение. Из слова
$$w \in (A \in N)^*$$
 выводится $u \in (A \lor N)^*$ если $w = \ldots x \cdots \to u = \ldots Y \ldots$ где $X \to Y \in R$

Определение. Вывод – это последовательность $w_i: w_{i-1} \to w_i$

$$w_1 o w_2 o w_3 \cdots o w_n = w_1 o^* w_n$$
 вывод w_n из w_1

Определение. Язык, который задает КС - грамматика $L = \{w/\exists \text{ вывод } S^* \to w \}$

 $H \rightarrow$

 $H \to EH$

 $H \to EH \to EEH \to EE$

 $H \to EE \dots E$

 $E \to T$

```
E \to L
    L \to a
    L \to b
    L \to c
    L \to A
    Устройство тэгов:
    T \to O
    _{\rm Tet} - _{\rm Te}
    L - символы
    О – открывание тэга
    С – закрывание тэга
    T - OHC
    T \ -<\cdots>\cdots<\cdots>
    T - \langle \cdots \rangle_{img}
    O \rightarrow < N >
    C \rightarrow < N >
    N \rightarrow
    N \to LN
    N \to LLLL
    Выведем hello,<b>World<h>!
    H \rightarrow EH \rightarrow EEG \rightarrow^* EEEEEEEEEH \rightarrow EEEEEEEEE \rightarrow^*
LLLLLLLTL \rightarrow^* h, T!
    \rightarrow hello, < N > world < \mathbf{N} > !
    \rightarrow^* hello, < b > world < /b >!
    Итого, hello, \langle b \rangle world \langle t \rangle ! \in \alpha
    Что есть в теме?
    – алгоритм разбора
    Дана грамматика, слово, получить вывод слова или понять, что оно
не выводится – специальные виды грамматик с эффектом алг. разбора
```

1.2.5 Регулярные языки

*LL(1)LR(1)LALR(1)...

Задаются регулярными выражениями и конечными автоматами Регулярные языки и выражения

Определение. Регулярные языки 1) $\{a\}$, где $a \in A$ регулярный

```
2) если L_1 и L_2 – регулярные, то L_1L_2 = \{w_1w_2\}, w_1 \in L_1, w_2 \in L_2\} –
регулярный
   L_1L_2 – регулярные
   L_1|L_2 = L_1 \vee L_2 – регулярный
Пример. A = \{a, b, c\}
    \{a\} \qquad \{b\} = \{ad\}
    \{ab\}|\{b\} = \{abc\}
    {a}|{b} = {a,b}
    {a,b}|{b}|{c} = {ab,bc}
    \{ab, b, c\}\{b, bc\} = \{abb, abbc, bb, bbc, cb, cbc\}
    \{a\}^* = \{\Lambda, a, aa, aaa, \dots\}
    \{a,b\}^* = \{\Lambda,a,b,aa,ab,ba,bb,aab,abb,\dots\} — слова из а и b
    \{a, bc\}^* = \{\Lambda, a, bc, abc, bca, aa, bcbc, \dots, aabc, abcbcaa\}
Определение. Регулярные выражения – это выражение над языками.
    1) Определим – конк, 1, итерация
    2)\{a\} – записываются как
Пример. abc^* = \{ab, abc, abcc, abccc, \dots\} \uparrow  конк \downarrow a(bc)^* = \{a, abc, abcbc, abcbcbc, \dots\}
    (0|1|2)(0|1|2|3|...|9):(0|1|2|3|4|5)
   (0|1|2|\dots|9) – время
   A = \{0, 1, 2, \dots 9, :\}
               29:40??
    23:56
   Нормальное время
   [0123456789]
    ((0|1)(0|1...|9)(20|21|22|23):(0|...|5)(0)...(9))
Пример. (a|b)^* = \{\Lambda a, b, ab, aa, bb, ba, ..., abbaab...\}
   (ab)^* = \{\Lambda, ab, abab, ababab, \dots\}
   \{a^4b^4/n \in {\bf N} - {\rm не} \ {\rm perулярный} \ {\rm язык}
Определение. Конечные автоматы это \{Q, S \subset Q, F \subset Q, E \subset QxQxA\lor
\{\epsilon\})\}
   Q - конечное не пустое множество состояний.
   S – начальное состояние
   F - конечные состояние
   А - алфавит
   Е – переходы между состояниями
   q_1 \to^{A,\epsilon} q_2
```

Это состояние:

Начальное состояние:

Конечное состояние:

 ϵ — пустой переход $Q = \{A, B, C, D\}$

Определение. Конфигурация $\in A^*xQ$ — слово и состояние

Пример. (abc,A) (bb,B) (Λ,A)

Определение. Из конфигурации 1 выводится конфигурация 2 $(w_1,q_1) \to (w_2,q_2)$ если $\exists e \in E: q_1 \to^a q_2$ и $W_2=w_1a$

 $\begin{array}{l} \mathbf{\Pi}\mathbf{pимер.}\ (\Lambda,A) \to (a,A) \to^{A\to^a A} (aa,A) \to^{A\to^b B} \\ & \vdots \\ \to^{B\to^b c} (aabb,c) \to^{c\to^b D} (aabbb,D) \to^{D\to^\epsilon C} (aabbb,c) \end{array}$

Определение. Какой язык задает конечный автомат? слово $\mathbf{w} \in \mathbf{L}$, если \exists вывод $(\Lambda,s) \to \cdots \to (w,f)$, где $s \in S, f \in F$

S – начальное f – конечное

если могу прочитать слово w, начав в начальном состоянии, закончив в конечном.

Определение. в прошлом примере

$$aabbb \in L$$

$$aab \in L$$

$$aab \in L$$

$$a \in L$$

$$a \to {}^{\epsilon}D \to {}^{a}C$$

Пример.

 $L = \{a, aba, ababa, \dots\} = a(ba)^*$

Увтерждение

Язык регулярный $\Leftrightarrow \exists$ конечный автомат, который его принимает АВ: $\bigcirc \to^A \bigcirc \to^B$ В

A/B:

 $\mathsf{A}\mathsf{B}\mathsf{T} \to \mathsf{P}\mathsf{e}\mathsf{r}\mathsf{y}\mathsf{л}\mathsf{s}\mathsf{p}\mathsf{h}\mathsf{o}\mathsf{e}$ выражение - убирание вершин

Определение. Детерминированный КА – это КА, у которого

- |S| = 1 ровно 1 нач вершина
- 2) нет ϵ переходов
- 3) () 🔨 нет двух переходов с одинаковыми символами и началом

Дет, язык слов, содержащих abc. Аналогичный подтерм $(a|b|c)^*abc(a|b|c)^*$