

Wave Function (ψ)

Dr Rajeshkumar Mohanraman

Assistant Professor Grade 1 School of Advanced Sciences VIT Vellore

What is Wave Function?

In quantum physics, a wave function is a mathematical description of a quantum state of a particle as a function of momentum, time, position, and spin. The symbol used for a wave function is a Greek letter called psi, Ψ .

By using a wave function, the probability of finding an electron within the matter-wave can be explained. This can be obtained by including an imaginary number that is squared to get a real number solution resulting in the position of an electron.

Wave function: $\psi(x,t)$

Wave function: $\psi(x,t)$

- Probability is maximum at x₂ since the amplitude of the wavefunction maximum.
- Provides all the information about the particle like position, energy and momentum at a given time.

Wave function: $\psi(x,t)$

· Maximum probability=Highest amplitude

Properties of Wave function

• $\Psi(x,t)$ is complex. It can be written in the form

$$\Psi(x,t) = A(x,t) + i B(x,t)$$

where A and B are real functions.

• Complex conjugate of Ψ is defined as

$$\Psi^* = A - iB$$

• $|\Psi|^2 = \Psi * \Psi = A^2 + B^2$

Therefore $|\Psi|^2 = \Psi * \Psi$ is always positive and real.

- While Ψ itself has no physical interpretation, $|\Psi|^2$ evaluated at a particular place at a particular time equals to the probability of finding the body there at that time.
- Normalization: $\int_{-\infty}^{+\infty} |\Psi|^2 dV = 1$, If a wavefunction is not normalized, we can make it by dividing it with a normalization constant.

Properties of Wave function: $\psi(x,t)$

- Ψ describes the possibility of finding the particle at (x,y,z) at time t.
- Ψ is a complex quantity. Probability is always positive real quantity.

- Ψ must be Finite everywhere
- Ψ must be Single-valued
- Ψ must be Continuous
- $\int_{0}^{+\infty} |\psi|^{2} dV = 1$ Ψ must be Normalizable
- By itself Ψ has no physical significance. Square of absolute magnitude give probability density.

Wave function

$$\Psi = A + iB$$

where A and B are real functions. The complex conjugate Ψ^* of Ψ is

Complex conjugate

$$\Psi^* = A - iB$$

and so

$$|\Psi|^2 = \Psi^*\Psi = A^2 - i^2B^2 = A^2 + B^2$$

since $i^2 = -1$. Hence $|\Psi|^2 = \Psi^*\Psi$ is always a positive real quantity, as required.

Normalization

Even before we consider the actual calculation of Ψ , we can establish certain requirements it must always fulfill. For one thing, since $|\Psi|^2$ is proportional to the probability density P of finding the body described by Ψ , the integral of $|\Psi|^2$ over all space must be finite—the body is somewhere, after all. If

$$\int_{-\infty}^{\infty} |\Psi|^2 \ dV = 0$$

the particle does not exist, and the integral obviously cannot be ∞ and still mean anything. Furthermore, $|\Psi|^2$ cannot be negative or complex because of the way it is defined. The only possibility left is that the integral be a finite quantity if Ψ is to describe properly a real body.

It is usually convenient to have $|\Psi|^2$ be equal to the probability density P of finding the particle described by Ψ , rather than merely be proportional to P. If $|\Psi|^2$ is to

Normalization
$$\int_{-\infty}^{\infty} |\Psi|^2 dV = 1$$
 (5.1)

since if the particle exists somewhere at all times,

$$\int_{-\infty}^{\infty} P \ dV = 1$$

A wave function that obeys Eq. (5.1) is said to be normalized. Every acceptable wave function can be normalized by multiplying it by an appropriate constant; we shall shortly see how this is done.

The Wavefunction

- ${\color{blue} \circ} \left| \psi \right|^2 dx$ corresponds to a physically meaningful quantity -
- the probability of finding the particle near \boldsymbol{x} $\left|\psi^*\frac{d\psi}{dx}\right|dx \text{ is related to the momentum probability density - the probability of finding a particle with a particular momentum - the probability of finding a particle with a particular momentum - the probability of finding a particle with a particular momentum - the probability of finding a particle with a particular momentum - the probability of finding a particle with a particular momentum - the probability of finding a particle with a particular momentum - the probability of finding a particle with a particular momentum - the probability of finding a particle with a particular momentum - the probability of finding a particle with a particular momentum - the probability of finding a particle with a particular momentum - the probability of finding a particle with a particular momentum - the probability of finding a particle with a particular momentum - the probability of finding a particle with a particular momentum - the probability of finding a particle with a particular momentum - the probability of finding a particle with a particular momentum - the probability of finding a particle with a particular momentum - the probability of finding a particle with a particular momentum - the probability of finding a particle with a particular momentum - the probability of finding a particle with a particular momentum - the probability of finding a particle with a particular momentum - the probability of finding a particle with a particular momentum - the probability of finding a particle with a particular momentum - the probability of finding a particle with a particular momentum - the probability of finding a particle with a particle with a particular momentum - the probability of finding a particle with a particular momentum - the probability of finding a particle with a particular momentum - the probability of finding a particle with a particular momentum - the probability of finding a particular momentum - the probability of finding a particular momentum - the probability of finding a particular moment$

PHYSICALLY MEANINGFUL STATES MUST HAVE THE FOLLOWING PROPERTIES:

 $\psi(x)$ must be single-valued, and finite

(finite to avoid infinite probability density)

 $\psi(x)$ must be continuous, with finite $d\psi/dx$

(because dψ/dx is related to the momentum density)

In regions with finite potential, dw/dx must be continuous (with finite d²ψ/dx², to avoid infinite energies)

There is usually no significance to the overall sign of $\psi(x)$ (it goes away when we take the absolute square)

(In fact, $\psi(x,t)$ is usually complex!)