

Lecture 2: HPC hardware

"Foundation of HPC" course

DATA SCIENCE & SCIENTIFIC COMPUTING

2022-2023 Stefano Cozzini

Agenda

Why HPC is parallel?

Serial Computers

Moore law/Dennard Scaling

Parallel computers

HPC infrastructure

Parallel components in a cluster

Let us focus on High Performance problem

picture from http://www.f1nutter.co.uk/tech/pitstop.php

Analysis of the parallel solution

DOMAIN DECOMPOSITION

different people are solving the same global task but on smaller subset

HPC

PARALLEL COMPUTING

HPC

PARALLEL COMPUTERS

Agenda

Why HPC is parallel?

Serial Computers

Moore law/Dennard Scaling

Parallel computers

HPC infrastructure

Parallel components in a cluster

What is a serial computer?

Von Neumann architecture (the fundamental model)

Von Neumann architecture:

 There is only one process unit (CPU)

Control Unit: processes instructions

ALU: math and logic operations

Register: store data

Von Neumann architecture:

- 1 instructions is executed at a time
- memory is "flat":
 - access on any location has always the same cost
 - access to memory has the same cost than op execution

Von Neumann architecture:

5 step WORKFLOW:

- 1. instruction fetch
- 2. Instruction decode: determine operation and operands
- 3. Memory fetch: Get operands from memory
- 4. Perform operation
- 5. Write results back

Continue with next instruction

Instruction set architecture (ISA)

- The deeper level accessible to the programmers
- It is the boundary between SW and HW
- The interface between the programmer and the microarchitecture
- Different microarchitectures can have the same ISA (binary Compatible)
- Different generation of microarchitectures can be backward compatible
- For us: x86 instruction set

A very simple operation..

```
void store(double *a, double *b, double *c) {
*c = *a + *b;
[exact@master ~]$ gcc -O2 -S -o - frammento.c
.file "frammento.c"
.text
.p2align 4,,15
.globl store
.type store, @function
store:
.LFBo:
.cfi startproc
         (%rdi), %xmmo #load *a to mmxo
movsd
         (%rsi), %xmmo # load b and add to *a
addsd
         %xmmo, (%rdx) # store to C
movsd
ret
.cfi endproc
.I FFo:
.size store, .-store
.ident "GCC: (GNU) 4.4.7 20120313 (Red Hat 4.4.7-4)"
.section .note.GNU-stack,"",@progbits
```

Agenda

Why HPC is parallel? Serial Computers Moore law/Dennard Scaling Parallel computers HPC infrastructure Parallel components in a cluster

Moore Law

- Typically stated as: "Performance doubles every X months"
- Actually, closer to: "Number of transistors per unit cost doubles every X months"

The original Moore Law

The complexity for minimum component costs has increased at a rate of roughly a factor of two per year. [...]

Over the longer term, the rate of increase is a bit more uncertain, although there is no reason to believe it will not remain nearly constant for at least 10 years.

-- Gordon Moore, Electronics, 1965

Fig. 2 Number of components per Integrated function for minimum cost per component extrapolated vs time.

Why is Moore's Law connected with processor performance?

Dennard Scaling: From Moore's Law to performance

 "Power density stays constant as transistors get smaller"

Robert H. Dennard, 1974

• Intuitively:

Smaller transistors → shorter propagation delay → faster frequency

Smaller transistors → smaller capacitance → lower voltage

 $Power \propto Capacitance \times Voltage^2 \times Frequency$

Moore's law → Faster performance @ Constant power!

Single-core performance scaling

a little bit more accurate processor power consumption

Power =

Active Transistors

 $Capacitance \times$

 $Voltage^2 \times$

Frequency

D(Dynamic power)

+Voltage × Leakage

(Static power)

Active Power vs Vdd at Constant Frequency

Both Capacitance and voltage do not scale anymore..

Capacitance: Gate-oxide technology

Voltage: leakage

<u>Picture taken from: Integrated Power Management, Leakage Control and Process</u> Compensation Technology for Advanced Processes (design-reuse.com)

End of Dennard Scaling

• Even with smaller transistors, we cannot continue reducing power..

- And now ?
- 2 options:
 - Increase power (when increase frequency)
 - Stop frequency scaling...

(original) Moore law still valid...

CPU are multicore processor

- Because of power, heat dissipation, etc increasing tendency to actually lower clock frequency but pack more computing cores onto a chip.
- These cores will share some resources, e.g. memory, network, disk, etc but are still capable of independent calculations

No more "free lunch" from 2006...

- Single core performance scaling ended.
 - Performance no longer depend on hardware scaling (i.e increase in frequency)
- Solution 1: the software solution
 - Write efficient software to make the efficient use of hardware resources
 - "Performance engineering" software, using hardware knowledge

An old picture from Intel..

No more "free lunch" from 2006...

- Solution 2: specialized architectural solution
 - Chip space is now cheap, but power is expensive
 - Stop depending on more complex general-purpose cores
 - Use space to build heterogeneous systems, with compute engines well-suited for each application

Hardware accelerators

Images: https://www.microsoft.com/en-us/research/video/inside-microsoft-fpga-based-

configurable-cloud/

Numbers: https://h2rc.cse.sc.edu/2015/burger_keynote.pdf

Does still exist serial computer?

Agenda

PARALLELISM IS EVERYHERE even in your laptop..

Parallel Computers

- Flynn Taxonomy (1966): may help us in classifying them:
 - Data Stream
 - Instruction Stream

Comments

- Flynn taxonomy does not help too much nowadays with modern HPC infrastructure
 - CPU and computers are changed too much in the last 50 years
- However, SIMD and MIMD concepts are still used HPC hardware

What about memory?

- In the old time the simplest and most useful way to classify modern parallel computers was by their memory model:
 - SHARED MEMORY
 - DISTRIBUTED MEMORY

Shared memory: UMA

Uniform memory access
(UMA): Each processor has
uniform access to memory.
Also known as symmetric
multiprocessors (SMP)

Shared memory: NUMA

Non-uniform memory access (NUMA): Time for memory access depends on location of data. Local access is faster than non-local access.

Distributed memory

- Distributed memory
 - each processor has its
 own local memory. Must
 do message passing to
 exchange data between
 processors

ARE THESE MACHINES STILL AVAILABLE?

Hybrid approach

The shared memory component is shared memory The distributed memory component is the networking of multiple shared memory which know only about their own memory - not the memory on another machine.

Agenda

Modern HPC infrastructures

Cluster of nodes (shared memory)

 Hybrid distributed/shared approach from memory point of view

Essential component of a cluster

- Several computers (nodes)
 - often in special cases (1U) for easy mounting in a rack
- One or more networks (interconnects) to hook the nodes together
- Some kind of storage
- A login/access node..

Even supercomputers are clusters!

And cluster speaks the same language: LINUX

Modern 1U computing nodes

What does one node contain exactly?

standard modern architecture

- All data communication from one CPU to another must travel over the same bus used to communicate with the Northbridge.
- All communication with RAM must pass through the Northbridge.
- Communication between a CPU and a device attached to the Southbridge is routed through the Northbridge.

standard multisocket architecture

- Characteristics:
- more than one CPU!
- 64 bit address space

Memory wall problem

From SMP to NUMA

- FSB became rapidly a bottleneck: all the CPUs accessing memory through it
- SMP (UMA) approach no longer possible
- First NUMA architecture:
 - Hypertransport technology by AMD (2005)
- Intel came much later
 - Quick Path Interconnect (2009)
 - Fast Path Interconnect (2016)

How is it logically organized?

CPU architecture (Intel Sandy Bridge)

CPU level: Intel core 17

• CPU is multicore!

CPU are multicore processor

- Because of power, heat dissipation, etc increasing tendency to actually lower clock frequency but pack more computing cores onto a chip.
- These cores will share some resources, e.g. memory, network, disk, etc but are still capable of independent calculations

Core: definition

 A core is the smallest unit of computing, having one or more (hardware/software) threads and is responsible for executing instructions.

Hyper threading (HT)

- Intel® Hyper-Threading Technology uses processor resources more efficiently, enabling multiple threads to run on each core.
- O.S. "sees" two cores and transparently try to execute two program on two different "cores"
- Generally bad for HPC?

Challenges for multicore

- Relies on effective exploitation of multiplethread parallelism
 - Need for parallel computing model and parallel programming model
- Aggravates memory wall problem
 - Memory bandwidth
 - Way to get data out of memory banks
 - Way to get data into multi-core processor array
 - Memory latency
 - Cache sharing

a little bit of jargon..

- Multiprocessor = server with more than 1 CPU
- Multicore = a CPU with more than 1 core
- Processor = CPU = socket

BUT SOMETIME:

- Processor = core
- a process for each processor (i.e. each core)

The building blocks of a HPC infrastructure (cluster)

Parallellism within a HPC node

- Parallel resources
 - ILP/SIMD units (1)
 - Cores (2)
 - Inner cache levels (3)
 - Socket/ccNuma domains (4)
 - Multiple accelerator (5)

Core Level (1)

 Core can schedule instruction to more than one port at the same time

Figure 4 Challeton some black discussion

Core Level (2)

Some port are/have SIMD devices...

Figure 4. Challeton some black discuss

Parallellism within a HPC node

- Shared resources
 - Outer cache level per socket (6)
 - Memory bus per socket(7)
 - Intersocket link (8)
 - PCI-bus(es) (9)
 - Other I/O resources (10)

Agenda

A sophisticated Linux Cluster: ORFEO

ORFEO HPC nodes...

TYPE OF NODE	RAM x nodo	CORES x nodo	GPU x nodo	Peak performance (Tflops)
10 THIN intel nodes	768 GB	24	-	1,997
2 FAT intel nodes	1536 GB	36	-	3,456
4 GPU intel nodes	256 GB	24	2 V100 (32GB)	2,073 +2x 7
8 EPYC Amd nodes (EPYC 7H12 64-Core Processor)	512 GB	128	-	?
2 DGX Nvidia Station	2048GB	128 (EPYC)	8 A100	?
TOTALE 16	~ 15 Terabyte	1688	24	~ }

Network cluster classification

- HIGH SPEED NETWORK
 - parallel computation
 - low latency /high bandwidth
 - Usual choices: Infiniband...
- I/O NETWORK
 - I/O requests (NFS and/or parallel FS)
 - latency not fundamental/ good bandwidth
 - GIGABIT could be ok/10Gb and/or Infiniband better
- In band Management network
 - management traffic of all services (LRMS/NFS/software etc..)
- Out of band Management network:
 - Remote control of nodes and any other device

Orfeo network

HIGH SPEED NETWORK

100

• I/O NETWORK Sbit HDR Infiniband

 In band Management network 25Gbit Ethernet

 Out of band Management network:

ORFEO storage: hardware

	FAST storage (NVMe)	FAST storage (SSD)	Standard storage (HDD)	Long term preservation
# of server	4		6	1
RAM	6 x 16GB		6 x 16GB	6 x 16GB
Disk per node	2x 1.6TB NVMe PCIe card	20 x 3.84TB	15 x 12TB	84 x 12TB + 42 x 12TB
Storage provider	CEPH parallel FS	CEPH parallel FS	CEPH parallel FS	Network FS (NFS)
RAW storage	12 TB	320 TB	1080 TB	1,512 TB

I/O subsystem on ORFEO:

Home

- once logged in, each user will land in its home in `/u/[name_of_group]/[name_of_user]
- e.g. the home of user area is in /u/area/[name_of_users]
- it's physically located on ceph large FS, and exported via infiniband to all the computational nodes
- quotas are enforced with a default limit of 2TB for each users
- soft link are available there for the other areas

I/O subsystem on ORFEO:

/Scratch

- it is large area intended to be used to store data that need to be elaborated
- it is also physically located on ceph large FS, and exported via infiniband to all the computational nodes

```
[cozzini@login ~]$ df -h /scratch
Filesystem
Size Used Avail Use% Mounted on
10.128.6.211:6789,10.128.6.213:6789,..:/ 598T 95T 503T 16% /large
```

- is a fast space available for each user, on all the computing nodes
- is intended to be a **fast scratch area** for data intensive application

```
[cozzini@login ~] df -h /fast
Filesystem
Size Used Avail Use% Mounted on
10.128.6.211:6789,10.128.6.212:6789,..:/ 88T 4.3T 83T 5% /fast
```

I/O subsystem on ORFEO:

Long term storage:

- it is NFS mounted via 50bit ethernet link
- it is intended for long-term storage of final processed dataset

```
[cozzini@login ~]$ df -h | grep 231
10.128.6.231:/illumina run
                                     128T
                                             58T
                                                   70T 46% /illumina run
10.128.2.231:/storage
                                      37T
                                            27T
                                                  9.9T
                                                       74% /storage
10.128.6.231:/long_term_storage
                                     128T
                                           112T
                                                  17T
                                                       88% /long_term_storage
10.128.6.231:/analisi da consegnare
                                     100T
                                            33T
                                                   68T
                                                        33%
/analisi_da_consegnare
10.128.6.231:/onp run 1
                                     117T
                                             2.7T
                                                   91T 23% /onp run
10.128.2.231:/lage archive
                                     128T
                                             68T
                                                   60T
                                                        54% /lage archive
```

Completed!

