

Computational challenges unique to aDNA

- The nature of the question: ascertainment bias and other biases affecting our priors
- The nature of the molecule: biases in preservation and endogeneity unique to aDNA
- The nature of the analysis: biases introduced during NGS and downstream bioinformatics analyses

Computational challenges unique to aDNA

 The nature of the question: ascertainment bias and other biases affecting our priors

- The nature of the molecule: biases in preservation and endogeneity unique to aDNA
- The nature of the analysis: biases introduced during NGS and downstream bioinformatics analyses

Ancient DNA

Modern DNA

Computational challenges unique to aDNA

- The nature of the question: ascertainment bias and other biases affecting our priors
- The nature of the molecule: biases in preservation and endogeneity unique to aDNA

 The nature of the analysis: biases introduced during NGS and downstream bioinformatics analyses

Addressing computational challenges unique to aDNA

- The nature of the question: formulate research questions incorporating archaeological and palaeo-population genetic data
- The nature of the molecule: characterize and correct for stereotypical damage patterns
- The nature of the analysis: develop appropriate reference genomic data sets and devise calling and recalibration methods suited to ancient DNA

The Bioinformatic Pipeline

Capturing ancient patterns of genomic variation

The Bioinformatic Pipeline

The Bioinformatic Pipeline

of Anthropology

Damage recalibration

Adjust base quality scores in C>T and G>A transitions according to damage patterns, following an empirical model

Modern sample NA18534

aDNA sample Klei 10

Damage recalibration

Raw

Damage recalibrated

Damage recalibration Average base quality/position/base

Base	Average	Min	Max
T (red)	36.86	32.13	38.33
STD	3.70	1.50	6.43
A (blue)	36.86	31.98	38.24
STD	3.48	1.69	7.31
C (yellow)	36.94	31.28	38.37
STD	3.30	1.99	7.83
G (green)	36.94	31.28	38.37
STD	3.30	1.99	7.83

Base	Average	Min	Max	
T (red)	36.65	30.58	38.09	
STD	4.18	2.12	11.81	—
A (blue)	36.13	27.62	38.17	
STD	5.46	2.86	9.78	—
C (yellow)	36.94	31.58	38.37	
STD	3.31	1.55	7.84	
G (green)	36.94	31.58	38.37	
STD	3.31	1.55	7.84	

Damage recalibration

Modern

Damage recalibrated

Damage correction followed by GATK recalibration

Damage recalibration

GATK recalibration

PALÆOGENETICS

of Anthropology

GROUP

GATK recalibration followed by damage correction

PALÆOGENETICS

GROUP

GATK recal followed by damage recalibration Average Base quality/position/base

Base	Average	Min	Max
T (red)	37.63	31.74	39.37
STD	3.15	1.53	4.08
A (blue)	37.47	31.90	39.39
STD	3.23	1.58	4.21
C (yellow)	37.46	32.07	39.37
STD	3.28	1.46	4.49
G (green)	37.46	32.07	39.37
STD	3.28	1.46	4.49

Base	Average	Min	Max
T (red)	19.29	14.46	21.34
STD	2.87	1.07	4.76
A (blue)	18.98	13.65	21.41
STD	3.27	1.99	4.14
C (yellow)	23.58	17.21	25.84
STD	2.82	1.46	4.05
G (green)	23.58	17.21	25.84
STD	2.82	1.46	4.05

GATK recalibration

Postmortem damage patterns

Position in read relative to 5'

Position in read relative to 3'

Raw data Allele Distribution 4000 2000 AC AG AT CA CG CT GA GC GT TA TC TG Allele

GATK recalibrated

Damage recalibration

GATK recalibrated + damage recalibrated

GATK recalibration followed by damage correction

Modern sample

Damage and GATK recalibrated

Current work

- Developing a maximum-likelihood based based SNP caller that incorporates damage correction and base recalibration into the variant calling framework
- Frees aDNA-based variant calling and genotyping from excessive dependence of modern reference
- Addresses the problem of over-training and overcorrecting by running damage correction and recalibration simultaneously

