Step detection via deep learning

 $A.\,B.\,\,\Phi$ илиппов $a^1,\,\,T.\,\,\Gamma a\partial aes^1,\,\,B.\,B.\,\,Cm$ рижов 1 Московский физико-технический институт

В данной работе рассматривается задача предсказания траектории человека по показаниям аксселрометра и гироскопа, которые установлены в телефоне. Так как система отсчета, связанная с устройством, постоянно вращается и движется ускоренно относительно мировой системы, поставленная задача не является тривиальной. Существует много различных необучаемых алгоритмов для описания траектории человека. Минус этих алгоритмов в том, что модель не может подстраиваться под конкретную постановку задачи и учитывать детали (пол, возраст, особенность походки объекта). В данной работе предлагается нейросетевой подход для решения задачи, а также описываются полезные эвристики.

Наше исследование можно разделить на три логические части: проектирование устойчивых к ошибкам гироскопов кватернионов, прогнозирование изменения положения на фиксированном периоде с помощью различных нейронных сетей и применение идеи детекции шагов с целью улучшения показаний модели и уменьшения дрифта.

Ключевые слова: аксселерометр и гироскоп; детекция шагов ;кватернионы; дрифт; нейросетевой подход; предсказание траектории

1 Введение

Задача точного определения положения смартфона в пространстве,и, как следствие, оценка местоположения объекта решается с высокой точностью на открытых площадках с использованием GPS [1]. Современные технологии демонстрируют отличные результаты при отклонении менее чем на несколько метров [2]. Однако у системы есть недостаток: она требует открытого пространства между устройством и спутником для передачи радиосигналов. В реальном мире нас часто окружают деревья, неровности ландшафта, высокие здания. Качество геолокации снижается из-за отражения радиоволн. Например, использование GPS для отслеживания траекторий внутри зданий практически бесполезно |3|. В этом случае используются методы, основанные на данных других датчиков. Наиболее распространенными датчиками IMU смартфона являются гироскоп, магнитометр и акселерометр. 11 Основной проблемой такого подхода является накопление ошибок позиционирования из-за 12 дрейфа, вызванного несовершенствами и шумом в датчиках (тут будет ссылка на статью 13 моего куратора, которая пока не была опубликована). В данной работе предлагается по мимо методов, описанных в статье (тут будет ссылка на статью моего куратора, которая 15 пока не была опубликована) использовать детекцию шагов с целью улучшения показаний 16 модели и уменьшения дрифта. 17

18 2 Данные

19

20

21

22

24

25

В эксперементе мы использовали набор данных RuDaCop [4]. Данные состоят из 1200 измерений траекторий для разных положений смартфона (в руке, в сумке, в кармане брюк). Для каждого объекта сняты показания аксселерометра, гироскопа, координаты человека в мировой системе отсчета, состояние правой и левой ног (0 - поднята, 1 - на земле). При сборке данных соблюдены следующие требования:

1. Траектории находятся на плоских горизонтальных поверхностях - нет лестниц или значительных изменений высоты ландшафта.

26

27

28

29

30

31

34

35

36

37

38

39

40

41

42

43

44

45

46

48

49

- 2. Все траектории замкнуты. Это означает, что точка начала равна точке финиша. Участников попросили использовать маркер для отметки положения старта, что позволяет утверждать, что разница в исходном и финишном положениях не более 5 см для каждой ноги.
- 3. Участники только ходили, другого движения (прыжков/бега) не было.
- 4. Участники не были ограничены в скорости движения. Пример показаний аксселерометра представлен на изображении 1. 32

Рис. 1 Пример показаний аксселерометра

Постановка задачи

Задача состоит в том, чтобы найти суперпозицию функций, которые мы обозначим как $F_{
m tr+st}$, которая преобразует данные датчиков в оценку траектории, , которая будет близка к истиной, а также дает оценку вероятности совершения шага вдоль траетории в каждый момент времени.

$$\underset{F_{\text{tr+st}}}{\arg\min} \mathcal{L}\left(F_{\text{tr+st}}\left(\mathcal{A}, \mathcal{W}\right), \mathcal{T}, \mathcal{S}\right) \tag{1}$$

В качестве функции потерь предлагается использовать комбинированную функцию $\mathcal{L}\left(F_{\mathrm{tr}}\left(\mathcal{A},\mathcal{W}\right),\mathcal{T},\mathcal{S}\right) = \mathbf{MSE}\left(F_{\mathrm{tr}}\left(\mathcal{A},\mathcal{W}\right),\mathcal{T}\right) + \mathbf{BCElogloss}\left(F_{\mathrm{st}}\left(\mathcal{A},\mathcal{W}\right),\mathcal{S}\right).$

Данная функция потерь позволяет обучить модель таким образом, чтобы для вещественных выходов модели решалась задача регрессии, для категориальных - классификации.

3.1Предобработка данных

Показания аксселерометра и гироскопа нарезаются на перекрывающиеся окошки фиксированной длины. Искомое отображение F_{tr+st} по окошку выдается двумерный вектор смещение за количество временных отсчетов равных длине окна (скорость человека в данном временном интервале).

 $(\mathcal{A}, \mathcal{W}) \subset \mathbb{R}^{\mathcal{T} \times /}$ где T - количество отсчетов (временной показатель), $(a_t, w_t)^T \in \mathbb{R}^6, \ t \in$ [1..T] - вектор, составленный из показаний аксселерометра и гироскопа в момент времени t. Для того чтобы получить обучающую выборку, используем скользящее окно шириной w и размером шага s_w . Разобьем ряд $(\mathcal{A}, \mathcal{W}) = \mathcal{X}$ на подпоследовательности $Y_j = \{\mathbf{x_i}, \dots, \mathbf{x_{i+w-1}}\}$, где $\mathbf{x_i} = (a_x^{(i)}, a_y^{(i)}, a_z^{(i)}, w_x^{(i)}, w_y^{(i)}, w_z^{(i)})$ - одно измерение. Получим множество $Y = \{Y_j, j \in [1..m]\}$, где $y = \frac{T-w}{s_w}$ - количество подпоследовательностий, $y = \{\mathbf{x_{w(j-1)+1}}, \dots, \mathbf{x_{wj}}\}$ длины $y = \{\mathbf{x_{w(j-1)+1}}, \dots, \mathbf{x_{wj}}\}$ длины $y = \{\mathbf{x_{w(j-1)+1}}, \dots, \mathbf{x_{wj}}\}$ длины $y = \{\mathbf{x_{w(j-1)+1}}, \dots, \mathbf{x_{wj}}\}$ положения ноги человека $y = \{\mathbf{x_{w(j-1)+1}}, \dots, \mathbf{x_{wj}}\}$ длины $y = \{\mathbf{x_{w(j-1)+1}}, \dots, \mathbf{x_{wj}}\}$ положения ноги человека $y = \{\mathbf{x_{w(j-1)+1}}, \dots, \mathbf{x_{wj}}\}$ длины $y = \{\mathbf{x_{w(j-1)+1}}, \dots, \mathbf{x_{wj}}\}$ положения ноги человека $y = \{\mathbf{x_{w(j-1)+1}}, \dots, \mathbf{x_{wj}}\}$ длины $y = \{\mathbf{x_{w(j-1)+1}}, \dots, \mathbf{x_{wj}}\}$ есть задачу можно сформулировать следующим образом: необходимо обучить нейронную сеть по подпоследовательности длиной $y = \{\mathbf{x_{w(j-1)+1}}, \dots, \mathbf{x_{wj}}\}$ сеть по подпоследовательности длиной $y = \{\mathbf{x_{w(j-1)+1}}, \dots, \mathbf{x_{wj}}\}$ необходимо обучить нейронную сеть по подпоследовательности длиной $y = \{\mathbf{x_{w(j-1)+1}}, \dots, \mathbf{x_{wj}}\}$ необходимо обучить нейронную сеть по подпоследовательности длиной $y = \{\mathbf{x_{w(j-1)+1}}, \dots, \mathbf{x_{wj}}\}$

61 3.2 Используемые эвристики

62

64

66

70

71

72

73

74

75

76

Так как система (смартфорн) относительно мировой глобальной системы отсчета постоянно движется и вращается, удобно перейти в некую стабилизированную систему отсчета S, в которой вектор гравитации всегда сонаправлен с осью Oz. Авторы статьи [5] используют данную идею с целью уменьшения углов крена и тангажа. Мы считаем, что это хорошая практика и применяем данный подход для решения поставленной задачи. Ориентация системы отсчета представлена на изображении 2.

Рис. 2 Ориентация стабилизированной системы отсчета

s 4 Эксперимент

4.1 Архитектура

Известно, что сверточные сети умеют хорошо выявлять локальную информацию в объектах благодаря обучаемуму скрытому представлению (детекция изображений, сегментация изображений). Рекуррентные нейронные сети хорошо подходят для задач регрессии временных рядов, так как имеют способность "хранить" информацию. В данной статье предлагается использовать некоторую модификацию известной архитектуры ResNet [6], состоящей из чередования сверточных слоев, пулингов и residual block - техника позволяющая решать проблему "утекающего градиента". Наша архитектура ResNetLSTM - сетка, в которой последовательно соеденены ResNet и двухслойная LSTM. Архитектура сетки представлена на изображении 3.

Рис. 3 Схема нейронной сети

4.2 Обучение

79

80

81

82

83

84

85

Нейронная сеть обучается таким образом, чтобы по окошку определять перемещение человека и положение ноги. Как уже было сказано в разделе 3, для обучения используется комбинированная функция ошибки с целью уменьшения дрифта.

Также мы попробовали использовать немного иную стратегию и вместо последнего вектора из выхода LSTM в нейронной сети, брать все векторы как последовательные предсказания скорости. Обе стратегии иллюстрированы на изображениях 4(a) и 4(b) соответственно.

Рис. 4

На изображение 3 представлен график зависимости значения функции ошибки вовремя обучения и валидации от номера эпохи.

Рис. 5 График зависимости значения функции ошибки вовремя обучения и валидации.

Как видно из графика, оптимизируемая функция достаточно быстро сходится к своему минимуму, поэтому при обучении достаточно около 8-10. Продолжительность каждой эпохи около 5 минут.

2 4.3 Результаты

Рис. 6 Пример предсказанной траектории.

А.В. Филиппова и др.

Model	GAP	MIE	RMSE	RTE		
$\begin{array}{c} \operatorname{Model} \\ \operatorname{Steps} \end{array}$		'		'		·
	$\mathcal{G}_{ ext{tr}}$	$\mathcal{D}_{\mathbf{tr}}$	$\mathcal{L}_{\mathbf{tr}}$	$\mathcal{R}_{\mathbf{tr},\;w=10}$	$\mathcal{R}_{\mathbf{tr},\;w=30}$	$\mathcal{R}_{\mathbf{tr},\;w=60}$
RL	14.54	6.91	8.71	7.09	7.41	7.91
$RL_0.01_BCE$	11.20	6.42	7.71	6.42	6.70	7.14
RL_pc_tc	11.22	6.80	8.07	6.76	7.04	7.45
RL_tc	15.62	8.74	10.39	8.79	9.18	9.77
RL_trend	13.70	7.61	9.09	7.66	7.99	8.55
RL_trend_pc	11.26	6.62	7.90	6.61	6.88	7.32
$RL_trend_pc_tc$	11.66	6.93	8.24	6.91	7.19	7.63
RL_trend_tc	16.94	9.16	10.97	9.28	9.69	10.38
R	14.41	7.54	9.25	7.65	8.02	8.60
R_pc	11.20	6.40	7.75	6.40	6.68	7.11
R_pc_tc	11.03	6.50	7.81	6.48	6.76	7.18
R_{tc}	15.50	8.32	10.06	8.41	8.83	9.41
R_{trend}	13.75	7.15	8.75	7.29	7.63	8.20
R_trend_pc	11.15	6.29	7.65	6.31	6.60	7.04
$R_trend_pc_tc$	11.96	6.71	8.10	6.74	7.04	7.52
R_trend_tc	15.6	8.21	9.92	8.36	8.76	9.36

Таблица 1 Results of the experiments of various features with different architectures. Here R — ResNet-18, L — LSTM, RL — sequential model of ResNet-18 and LSTM, pc — bias reduction on inference, tc — bias reduction for training set, trend — adding trend of gyroscope signal to the network input. Experiment was conducted using KFold technique with 3 folds. The best result for each metric is bold.

я Литература

- 94 [1] AH Mohamed and KP Schwarz. Adaptive kalman filtering for ins/gps. *Journal of geodesy*, 73(4):193– 95 203, 1999.
- [2] Wan Rahiman and Zafariq Zainal. An overview of development gps navigation for autonomous car.
 In 2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA), pages 1112–1118.
 IEEE, 2013.
- [3] George Dedes and Andrew G Dempster. Indoor gps positioning-challenges and opportunities. In
 VTC-2005-Fall. 2005 IEEE 62nd Vehicular Technology Conference, 2005., volume 1, pages 412–415.
 Citeseer, 2005.
- [4] Andrey Bayev, Ivan Chistyakov, Alexey Derevyankin, Ilya Gartseev, Alexey Nikulin, and Mikhail
 Pikhletsky. Rudacop: The dataset for smartphone-based intellectual pedestrian navigation. In 2019
 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pages 1–8. IEEE,
 2019.
- 106 [5] Hang Yan, Sachini Herath, and Yasutaka Furukawa. Ronin: Robust neural inertial navigation in the wild: Benchmark, evaluations, and new methods. *CoRR*, abs/1905.12853, 2019.
- 108 [6] Shaoqing Ren Kaiming He, Xiangyu Zhang. Deep residual learning for image recognition. 2015.

Поступила в редакцию