

MMBT3903

NPN Silicon Epitaxial Planar Transistor

for switching and amplifier applications.

As complementary types the PNP transistors MMBT3905 are recommended.

On special request, these transistors can be manufactured in different pin configurations.

3. COLLECTOR

Absolute Maximum Ratings (T_a = 25 °C)

Parameter	Symbol	Value	Unit
Collector Base Voltage	V _{CBO}	60	V
Collector Emitter Voltage	V _{CEO}	40	V
Emitter Base Voltage	V _{EBO}	6	V
Collector Current	I _C	200	mA
Power Dissipation	P _{tot}	350	mW
Junction Temperature	T _j	150	°C
Storage Temperature Range	T _{stg}	- 55 to + 150	°C

Page 1 of 4 12/23/2014

MMBT3903

Characteristics at T_a = 25 °C

Characteristics at T _a = 25 °C				
Parameter	Symbol	Min.	Max.	Unit
DC Current Gain at $V_{CE} = 1 \text{ V}, I_C = 0.1 \text{ mA}$ MMBT390	3 h _{FE}	20	-	-
at $V_{CE} = 1 \text{ V}, I_C = 1 \text{ mA}$ MMBT390	3 h _{FE}	35	-	-
at $V_{CE} = 1 \text{ V}, I_{C} = 10 \text{ mA}$ MMBT390	3 h _{FE}	50	150	-
at $V_{CE} = 1 \text{ V}, I_{C} = 50 \text{ mA}$ MMBT390	3 h _{FE}	30	-	-
at $V_{CE} = 1 \text{ V}, I_{C} = 100 \text{ mA}$ MMBT390	3 h _{FE}	15	-	-
Collector Base Cutoff Current at V _{CB} = 30 V	I _{CBO}	-	50	nA
Emitter Base Cutoff Current at V _{EB} = 6 V	I _{EBO}	-	50	nA
Collector Base Breakdown Voltage at I _C = 10 µA	V _{(BR)CBO}	60	-	V
Collector Emitter Breakdown Voltage at I _C = 1 mA	V _{(BR)CEO}	40	-	V
Emitter Base Breakdown Voltage at I _E = 10 μA	$V_{(BR)EBO}$	6	-	V
Collector Emitter Saturation Voltage at $I_C = 10$ mA, $I_B = 1$ mA at $I_C = 50$ mA, $I_B = 5$ mA	V _{CE(sat)}	-	0.2 0.3	>
Base Emitter Saturation Voltage at $I_C = 10$ mA, $I_B = 1$ mA at $I_C = 50$ mA, $I_B = 5$ mA	$V_{BE(sat)} \ V_{BE(sat)}$	-	0.85 0.95	V
Gain Bandwidth Product at $V_{CE} = 20 \text{ V}$, $I_C = 10 \text{ mA}$, $f = 100 \text{ MHz}$ MMBT390	03 f _T	250	-	MHz
Collector Base Capacitance at V _{CB} = 5 V, f = 100 KHz	C _{ob}	-	4	pF
Delay Time at $V_{CC} = 3 \text{ V}$, $V_{BE} = 0.5 \text{ V}$, $I_C = 10 \text{ mA}$, $I_{B1} = 1 \text{ mA}$	t _d	-	35	ns
Rise Time at $V_{CC} = 3 \text{ V}$, $V_{BE} = 0.5 \text{ V}$, $I_C = 10 \text{ mA}$, $I_{B1} = 1 \text{ mA}$	t _r	-	35	ns
Storage Time at $V_{CC} = 3 \text{ V}$, $I_C = 10 \text{ mA}$, $I_{B1} = -I_{B2} = 1 \text{ mA}$	ts	-	200	ns
Fall Time at $V_{CC} = 3 \text{ V}$, $I_C = 10 \text{ mA}$, $I_{B1} = -I_{B2} = 1 \text{ mA}$	t _f	-	50	ns

Page 2 of 4 12/23/2014

MMBT3903

Page 3 of 4 12/23/2014

PACKAGE OUTLINE

Plastic surface mounted package; 3 leads

SOT-23

Page 4 of 4 12/23/2014