LIST OF TODOS

add refs	3
expand here, say stuff about creating my own definition of creativity to measure against, my own set of critearia for evaluation against the defintion	3
expand here	5
this conflicts with the idea of using pataphysics really over randomness	5
put pointers from intro to the various chapters	5
add section refs of answers to each question	6
add more questions	6
answer research questions in conclusion	6
update and describe each section briefly	9
is this my opinion or theirs?	11
place footnote text on correct page on final runthrough	14
explain why these things are inspirational to my project in specific	16
expand intro	18
finish	19
finish	19
create figure - subjective vs objective spectrum	21

finish section on practice based research here	22
create my own tmpr figure here	24
double check numbering	28
redraw figure	37

Institute of Creative Technologies De Montfort University

FANIA RACZINSKI

ALGORITHMIC META-CREATIVITY

Creative Computing for Computational Creativity

pata.physics.wtf

Supervisors:

Prof. Hongji YANG
Prof. Andrew HUGILL
Dr. Sophy SMITH
Prof. Jim HENDLER

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy

Created: 25th March 2015 — Last Saved: 22nd December 2015

Wordcount: 8912

PRE ®

of bath of the bat

TL;DR

Algorithmic Meta-Creativity Fania Raczinski

ABSTRACT¹

A pataphysical methodology for applying creativity to exploratory search

Creativity, Pataphysics and Computers

Absurd Obscure French Pseudo Philosophy

Creative Computing

Art

Practice-Based Research

Exploratory Search

pata.physics.wtf

Interpretation/Evaluation

¹"Too long; didn't read"

DEDICATION

abcdefghijklmnopgrstuvwxyz αβεδεφγηιμκήπης? Υιβθυυшχνς [ˌεkspləˈneɪʃən]

I dedicate the 'Ph' of my 'PhD' to my partner Dave. I will be henceforth be known as Doctor Fania and he shall be called Dave of Philosophy.

物の哀れ

"It has never been known for the gardeners of the isle of Her to allow the jet of a fountain to fall again into the basin, for this would dull the surface; the bouquets of spray hover at a little height in horizontal sheets like clouds; and the two parallel mirrors of the earth and sky preserve their reciprocal epmtiness like two magnets eternally face to face." (Jarry 1996, p.49)

CONTENTS

To	odo li	st	1
PI	REFA	CE	i
TI	L;DR		ii
De	edica	tion .	iii
C	onten	ts	iv
Li	st of	Figures	vi
Li	st of	Tables	vii
Li	st of	Code Snippets	viii
Li	st of	Acronyms	ix
H	ELLC) WORLD	1
1	Intr	roduction	2
	1.1	Motivations	4
	1.2	Questions	6
	1.3	Process-ions	6
	1.4	Product-ions	7
	1.5	Contributions	7
	1.6	Publications	8
	1.7	The Hitchhiker's Guide to this Thesis	8
2	Insp	pirations	10
	2.1	The Syzygy Surfer	11
	2.2	Faustroll's Library of Equivalent Books	12
	2.3	100.000.000.000.000 Poems	14
	2.4	Celestial Emporium of Benevolent Knowledge	14

	2.5	Metaphorical Search Engine Yossarian	15
	2.6	The Library of Babel	16
3	Me	thodology	17
	3.1	Intradisciplinary	18
		3.1.1 Computer Science	18
		3.1.2 Humanities	19
		3.1.3 Arts	19
	3.2	Transdisciplinary	19
	3.3	Practice Based	22
T	OOL	S OF THE TRADE	25
TI	HE C	CORE: TECHNO-LOGIC	26
4	Fot	undations	27
	4.1	Exploring Creativity	28
		4.1.1 General Models	28
		4.1.2 Creative Process	29
		4.1.3 Creative Disciplines	30
	4.2	Relating Pataphysics	30
		4.2.1 Pataphysics and Creativity	30
		4.2.2 Pataphysics and Computers	34
	4.3	Explaining Concepts	36
		4.3.1 Patalgorithms	36
		4.3.2 Pataphylicalisation	37
		4.3.3 Patadata	39
		4.3.4 Pranking	39
M	ETA	-LOGICALYSIS	41
H	APP	LY EVER AFTER	42
P	OST	FACE	43
Bi	bliog	raphy	44

LIST OF FIGURES

2.1	Toulouse-Lautrec's 'Jane Avril'	13
2.2	Bonnard's 'Revue Blanche'	13
2.3	Beardsley's 'Docteur Faustroll'	13
2.4	Oberthuer's 'Saint Cado'	13
2.5	Queneau's 'Cent Mille Milliards de Poèmes'	14
3.1	Nicolescu Transdisciplinarity	21
3.2	Trajectory Model	23
4.1	Pata central	37
4.2	Pata central	37
4.3	Pataphysicalisation	38

LIST OF TABLES

3.1	Elements, Activities and Outcomes of the Trajectory Model of Practice	
	and Research (TMPR)	23
4.1	4 C vs. P and H vs. Subject and Object	29
	4 Step Model vs 4 P Model vs Problem Solving	
4.3	Creative Computing vs Digital Humanities vs Computational Creativity	30
4.4	Creativity vs Pataphysics	34

LIST OF SOURCE CODE

ACRONYMS

```
AI Artificial Intelligence. 5

CC Creative Computing. 21, 22

DMU

De Montfort University. 4

IOCT

Institute of Creative Technologies. 4

TMPR

Trajectory Model of Practice and Research. vii, 22, 24
```

Part I

бълсш съъзд

INTRODUCTION

Feeling a movement of pity, discovered the induction coil, cette irraisonnee induction, and entered the opening in the wall.

Only by some recherche movement, apres coup et sous forme d'introduction, opening his seized manuscript, the enemy made within the enclosure of the vineyard.

Which he had thrown off at the beginning of his labor, in opening so exactly at the, than the thirst of my paternity.

We can then start at once, and whose informing voice had consigned me to the hangman, as any person at all conversant with authorship may satisfy himself at.

1.1	Motivations .	•	•							•	•			•							4
1.2	Questions	•																			6
1.3	Process-ions																				6
1.4	Product-ions	•																			7
1.5	Contributions																				7
1.6	Publications.																				8
1 7	The Hitchhike	r's	C	- 111i	de	to	s f	his	T s	'ne	si	S									8

This thesis describes *Algorithmic Meta-Creativity*. More precisely it is about using creative computing to achieve computer creativity.

- § 3 The project is transdisciplinary; it is heavily inspired by the absurd french pseudo-philosophy pataphysics and draws from a wide range of subject areas such as computer science, psychology, linguistics, literature, art and poetry, languages and mathematics.
- § 4 The preparatory research included exploring what it means to be creative as a human, how this translates to machines and how pataphysics relates to creativity.
- § ?? The outcome is presented as a website -pata.physics.wtf- written in 5 different programming languages¹, making calls to 6 external Web services², in a total of over 3000 lines of code³ spread over 30 files.

It's main purpose is to demonstrate three creative *patalgorithms* in the context of exploratory information retrieval that show creative computing in action. A browsing rather than a search engine, it presents results in various formats such as sonnets and golden spirals. Immediate inspirations come from fictional character 'Doctor Faustroll' created by french absurdist and father of pataphysics Alfred Jarry, the fantastic taxonomy of the 'Celestial Emporium of Benevolent Knowledge' by magical realist Jorge Luis Borges and 'A Hundred Thousand Billion Poems' by pataphysician and Oulipo co-founder Raymond Queneau amongst others.

add refs

§ 2

In a sense the system partially automates the creative process, generating results on demand, which allows users to focus on their own personal artistic evaluation rather than production.

expand here, say stuff about creating my own definition of creativity to measure against, my own set of critearia for evaluation against the defintion

Following on from the development stage of this project, I looked at the problem of objective evaulation and interpretation of subjective creativity specifically in regards to computers. I argue that the most appropriate way to approach this is by looking at five subjective constraints (person, process, product, place, purpose) holistically and by understanding that humour and art "lie in the ear and

¹Python, HTML, CSS, Jinja, JavaScript

²Microsoft Translate, WordNet, Bing Image Search, Getty, Flickr, YouTube

³2864 lines of code, 489 lines of comments - as of 08 Dec 2015

1.1 Motivations

My personal interest in this project comes from a background in computer science and a life-long fascination with art. Most recently I managed to successfully combine my technical skills with my creative side for a Master of Science degree in Creative Technologies at De Montfort University (DMU)⁴. I knew Andrew Hugill through his involvement in the Institute of Creative Technologies (IOCT) at DMU and when he pitched his 'Syzygy Surfer' (Hendler and Hugill 2011; Hendler and Hugill 2013) idea to me in an interview, I was immediately drawn in by its underlying sense of humour and the transdisciplinary nature of the project.

- § ?? Computers are binary machines; the world is black and white to them (0 and 1, on and off). Programmers can run abstract high-level commands which are executed in sequence (fast speed gives the illusion of multitasking). They are precise, structured, logical and generally abide by strict standards. Computers can only be creative if they are given clear instructions as to how. Information retrieval is generally focused on relevance of results in regards to the query.
- § ?? Pataphysics came about during the 'Belle Époque'⁵ in France and has directly or indirectly influenced various artistic movements such as Dada, Symbolism, Surrealism, Oulipo and Absurdist Theatre. Pataphysics is highly subjective and particular, values expections, the imaginary and the mutually incompatible.
- § ?? Creativity is often studied at various levels (neurological, cognitive, and holistic/systemic), from different perspectives (subjective and objective) and characteristics (combinational, exploratory and transformative). It is usually defined in terms of value, originality and skill.

Combining computing with pataphysics seems impossible.

- Polymorphism (generalisations) oppose particularity.
- Precision (bugs) opposes exceptions and contradictions.
- Logic and structure oppose the imaginary and paradox.
- Cross-compatibility opposes the mutually exclusive.
- Responsiveness opposes the specific.
- Relevance opposes the creative.

⁴A passive interactive installation, augmenting a live video stream of users with interactive elements using motion tracking algorithms. See msc.fania.eu.

⁵1871—1914

EM 4.4 Combining pataphysics with creativity is easier. The ideas of combinatorial, exploratory and transformative creativity map quite nicely onto some pataphysical concepts such as clinamen, syzygy, antinomy and anomaly.

The apparent dichotomy of computing and pataphysics is alluring. Christian Boek argued that pataphysics "sets the parameters for the contemporary relationship between science and poetry." (Boek 2002) Pataphysics suddenly seems like the perfect choice infusing computers (šcience) with creativity (poetry).

expand here

"Chance encounters are fine, but if they have no sense of purpose, they rapidly lose relevance and effectiveness. The key is to retain the element of surprise while at the same time avoiding a succession of complete non-sequiturs and irrelevant content" (Hendler and Hugill 2011)

Why not just use randomness⁶ you ask? Because there has to be an injection of meaning at some point. Randomness is easy. Andrew Hugill originally suggested that the project should be "purposive without purpose".

"(...) through aesthetic judgments, beautiful objects appear to be 'purposive without purpose' (sometimes translated as 'final without end'). An object's purpose is the concept according to which it was made (the concept of a vegetable soup in the mind of the cook, for example); an object is purposive if it appears to have such a purpose; if, in other words, it appears to have been made or designed. But it is part of the experience of beautiful objects, Kant argues, that they should affect us as if they had a purpose, although no particular purpose can be found." (Burnham 2015, ch.2a)

pata is purposeless but i use it to give structure im giving structure to something purposeless

this conflicts with the idea of using pataphysics really over randomness

put pointers from intro to the various chapters

Another motivating factor for this project was the lack of research in the particular area of creative computing in general. The discipline of computational creativity has emerged fairly recently⁷ from a background in Artificial Intelligence (AI). It appears to focus a lot more on the outcome of a product that would

⁶randonmess

⁷The first International Conferences on Computational Creativity ran in 2010 for example.

be judged creative rather than the actual process. Creative computing focuses on producing creative algorithms which may or may not have creative outputs. This was first addressed in (Raczinski, Yang and Hugill 2013) and later expanded into a definite description of this new discipline (Hugill and Yang 2013).

1.2 Questions

Research dealing with subjective ideas and concepts like creativity throws up a lot of questions. My intention is to adress them all throughout this thesis, although some of them will not have definite binary answers.

add section refs of answers to each question

add more questions

- Can computers or algorithms be considered creative?
- Can pataphysics facilitate creativity?
- Can a creative process be automated or emulated by a computer?
- Can human and computer creativity be objectively measured?
- Can information retrieval be creative?
- Can search results be creative rather than relevant?

answer research questions in conclusion

1.3 Process-ions

§ 3 This project combines research in science and art making it transdisciplinary.

Pataphysics

Literature, Philosophy

Creativity

Cognitive Science, Artificial Intelligence

Computing

Software Engineering, Linguistics

This is practice-based research, meaning that a part of my submission for the degree of Doctor of Philosophy is an artefact demonstrating my original contribution to knowledge. The thesis provides the context of this artefact and critically analyses and discusses the experiemntal process and outcome.

Epistemology

Subjective, Exploratory, Experimental

Methodology

Practice-Based

Methods

Creative computing, Web Development, Literature Review

- § ?? The general process of my project was as follows.
 - 1. Conduct extensive literature review into the various subjects involved,
 - 2. develop pataphysical algorithms,
 - 3. develop an evaluation framework,
 - 4. design a system to demonstrate algorithms,
 - 5. develop a website for the tool,
 - 6. evaluate website using framework and redevelop as needed and
 - 7. write up findings.

1.4 Product-ions

The deliverables of this PhD research is as follows.

- Three pataphysical search algorithms (clinamen, syzygy and antinomy).
- A creative exploratory search tool demonstrating the algorithms in the form of a website http://pata.physics.wtf.
- A framework for evaluating and interpreting creative computing artefacts.

1.5 Contributions

The key contributions to knowledge described in this thesis are:

Theory

Three pataphysical search algorithms

Evaluation framework for creative computing

Practice

Creative information retrieval system — pata.physics.wtf

1.6 Publications

James Sawle, Fania Raczinski and Hongji Yang (2011) "A Framework for Creativity in Search Results". The 3rd International Conference on Creative Content Technologies, CONTENT'11. Rome, Italy. Pages 54–57.

Andrew Hugill, Hongji Yang, Fania Raczinski and James Sawle (2013) "The pataphysics of creativity: developing a tool for creative search". Routledge: Digital Creativity, Volume 24, Issue 3. Pages 237–251.

Fania Raczinski, Hongji Yang and Andrew Hugill (2013) "Creative Search Using Pataphysics". Proceedings of the 9th ACM Conference on Creativity and Cognition, CC'13. Sydney, Australia. Pages 274–280.

Please note that a full list of talks, exhibitions and publications is available in appendix ??.

1.7 The Hitchhiker's Guide to this Thesis

PREFACE

Part I

IN THE BEGINNING...

Chapter 1

Introduction

Chapter 2

Inspirations

Chapter 3

Methodology

Part II

IN A GALAXY FAR FAR AWAY...

Chapter 4

Pataphysics

Chapter 5

Creativity

Chapter 6

Technology

Part III

THE CORE: TECHNO-LOGIC

Chapter 7

Foundations

Chapter 8

Implementation

Chapter 9

 $Applications - Case\ Study$

Part IV

INTECHNOIL-LOGICALYSIS

Chapter 10

Interpretation / Evaluation

Chapter 11

Patacritical Analysis

Part V

HAPPY END

Chapter 12

Aspirations

Chapter 13

Observations

POSTFACE

.

update and describe each section briefly

INSPIRATIONS

Thought she would die of mortification, pues jamas tuve la idea de falsificar billetes de banco, engenders God by interior intuition, affinant la curiosite en intuition qu'existe de.

The pale motor vessel withdrew its blue breath toward the island's horizon, the work is a hasty and unrevised production of its author, il eut l'intuition d'une sorte d'impuissance divine, how Gargantua was carried eleven months in his mother's belly.

And thought himself in honor bound, pale rayon ... – La source pleure au loin dans, the greatest source of the Icelanders' wealth.

I will pull down my barns, nor breath nor motion, but the old man was at his last gasp.

2.1	The Syzygy Surfer
2.2	Faustroll's Library of Equivalent Books
2.3	100.000.000.000.000 Poems
2.4	Celestial Emporium of Benevolent Knowledge
2.5	Metaphorical Search Engine Yossarian
2.6	The Library of Babel

This research was influenced by a few major inspirations and this chapter introduces them all.

2.1 The Syzygy Surfer

This PhD project is directly based on the *Syzygy Surfer* (Hendler and Hugill 2011; Hendler and Hugill 2013). Hendler and Hugill suggest the use of three pataphysical principles, namely clinamen, syzygy and anomaly, to create a new type of Web search engine reminiscent of the experience of surfing the Web using Semantic Web technologies. This is in contrast to current Web search engines which value relevant results over creative ones.

is this my opinion or theirs?

'Surfing' used to be a creative interaction between a user and the web of information on the Internet, but the regular use of modern search engines has changed our expectations of this sort of knowledge acquisition. It has drifted away from a learning process by exploring the Web to a straightforward process of information retrieval similar to looking up a word in a dictionary.

"The ambiguity of experience is the hallmark of creativity, that is captured in the essence of pataphysics. Traversing the representations of this ambiguity using algorithms inspired by the syzygy, clinamen and anomaly of pataphysics, using a panalogical mechanism applied to metadata, should be able to humanize and even poeticize the experience of searching the Web." (Hendler and Hugill 2013)

Their inspirations come from Borges (Borges 2000) (for the underlying poetic sense of unity), Jarry's pataphysical principles (Jarry 1996) and Singh's panalogies (parallel analogies – to introduce ambiguity, since it allows various descriptions of the same object) (Singh 2005).

My project has since moved on from the idea of using the Semantic Web to create the search tool and uses the concept of antinomy rather than anomaly as one of its three algorithms. One of my original ideas based on the *Syzygy Surfer* was to create an standard ontology of creativity using Semantic Web technologies. I quickly ran into the following problem though: the idea of standards is totally opposed to that of surprise - which plays a role in creativity. Pataphysics in particular is fond of breaking standards (e.g. exceptions, contradictions, etc.). But standards are a key building block of the Semantic Web. A common ontology of creativity might be useful in some cases but nevertheless contradicts the use of pataphysics.

2.2 Faustroll's Library of Equivalent Books

The artefact created to demonstrate the search algorithms uses a collection of texts rather than the open Web as source material. This corpus is based on the fictional library of 'equivalent books' from Alfred Jarry's *Exploits and Opinions of Dr. Faustroll, 'Pataphysician* (1996, p.10-12)¹. The library contains the following books.

- 1. BAUDELAIRE, a volume of E.A. POE translations.
- 2. BERGERAC, Works, volume II, containing the History of the States and Empires of the Sun, and the History of Birds.
- 3. The Gospel according to SAINT LUKE, in Greek.
- 4. BLOY, The Ungrateful Beggar.
- 5. COLERIDGE, The Rime of the ancient Mariner.
- 6. DARIEN, The Thief.
- 7. DESBORDES-VALMORE, The Oath of the Little Men.
- 8. ELSKAMP, Illuminated Designs.
- 9. An odd volume of the *Plays* of FLORIAN.
- 10. An odd volume of *The Thousand and One Nights*, in the GALLAND translation
- 11. GRABBE, Scherz, Satire, Ironie und tiefere Bedeutung, comedy in three acts.
- 12. KAHN, The Tale of Gold and of Silence.
- 13. LAUTREAMONT, The Lays of Maldoror.
- 14. MAETERLINCK, Aglavaine and Selysette.
- 15. MALLARME, Verse and Prose.
- 16. MENDES, Gog.
- 17. The Odyssey, Teubner's edition.
- 18. PELADAN, Babylon.
- 19. RABELAIS.
- 20. JEAN DE CHILRA, The Sexual Hour.
- 21. HENRI DE REGNIER, The Jasper Cane.
- 22. RIMBAUD, The Illuminations.
- 23. SCHWOB, The Childrens' Crusade.
- 24. Ubu Roi.
- 25. VERLAINE, Wisdom.
- 26. VERHAEREN, The Hallucinated Landscapes.
- 27. VERNE, Voyage to the Center of the Earth.

¹"In addition, three prints hanging on the walls, a poster by TOULOUSE-LAUTREC, *Jane Avril*; one by BONNARD, advertising the *Revue Blanche*; a portrait of Doctor Faustroll, by AUBREY BEARDSLEY; and an old picture, which appeared to us to be valueless, *Saint Cado*, issued by the Oberthuer printing house of Rennes."(Jarry 1996, p.12)

Figure 2.1: Toulouse-Lautrec's 'Jane Avril'

Figure 2.3: Beardsley's 'Docteur Faustroll'

Figure 2.2: Bonnard's 'Revue Blanche'

Figure 2.4: Oberthuer's 'Saint Cado'

2.3 100.000.000.000 Poems

§ ?? The interface design of some of my search results is directly inspired by Raymond Queneau's 'Cent Mille Milliards de Poèmes', a prime example of Oulipian art (Queneau 1961). The book is essentially made up of 10 pages containing one sonnet each. Each page however is split into 14 thin strips, one for each line. This means that mathematically there are 10¹⁴ possible poems to be read by combining different lines every time.

Figure 2.5: Raymond Queneau's 'Cent Mille Milliards de Poèmes'²

place footnote text on correct page on final runthrough

2.4 Celestial Emporium of Benevolent Knowledge

Jorge Luis Borges mentiones a 'Chinese Encyclopaedia' called the *Celestial Emporium of Benevolent Knowledge* in the short story "The Analytical Language of John Wilkins" (Borges 2000). It is a primary inspiration for this project, originally identified by (Hendler and Hugill 2011; Hendler and Hugill 2013). It lists the following results under the category of 'animal'.

- 1. those that belong to the Emperor,
- 2. embalmed ones,
- 3. those that are trained,
- 4. suckling pigs,

²Images of Queneau's book in the Gallimard 2006 edition by Martin Pyper http://www.mestudio.info/2010/02/28/one-hundred-thousand-billion-poems/

- 5. mermaids,
- 6. fabulous ones,
- 7. stray dogs,
- 8. those included in the present classification,
- 9. those that tremble as if they were mad,
- 10. innumerable ones,
- 11. those drawn with a very fine camelhair brush,
- 12. others,
- 13. those that have just broken a flower vase,
- 14. those that from a long way off look like flies.

Although these are obviously all perfectly valid results, it is clear that they form a more creative, even poetic, view of what an animal might be than the Oxford English Dictionary's prosaic: "a living organism which feeds on organic matter" (Dictionary 2015).

2.5 Metaphorical Search Engine Yossarian

Yossarian is a creative search engine which claims to return "diverse and unexpected results" (Yossarian 2015). It is porobably the closest thing to 'related work' that exists for this project. Being a commercial product it is hard to find reliable details on precisely how their search engine works. The site seems well marketed but its functionality is shrouded in mystery. However, they argue that

"Yossarian makes the process of generating new ideas faster, while also improving its quality. This creative search engine helps people discover new perspectives, conceptual directions, creative insights, and allowing collaboration and feedback from a creative global community." (Yossarian 2015)

They also claim to be inspired by metaphors and that generating lateral connections can diversify users ideas and help understand conceptual relationships between things through a 'creative graph'.

The site started in a public alpha release in 2012. At the time it consisted of simple image search. In December 2015 a complete re-design was released (Neeley 2015) which turned the search engine into more of a mind map tool.

"Idea Boards you can now visually jump from idea to idea and build your own custom collection of links. Its a powerful new kind of mind map powered by search, and a radical departure from traditional search engine interfaces." (Neeley 2015)

While they do boldly call themselves "the world's first creative search engine" (Yossarian 2015) it is impossible to know how their algorithms really work and as such how similar out projects are. The recently released mind map functionality brings up those 'lateral connections' in a relationship graph form, in fact there is a slider that lets users adjust how creative they want their results to be - from literal to lateral.

explain why these things are inspirational to my project in specific

2.6 The Library of Babel

The *Library of Babel* is a short story by Jorge Luis Borges (Borges 1964). It envisions a universe, called 'the Library', which is composed of "an indefinite and perhaps infinite number of hexagonal galleries" containing every possible book every conceived and not yet conceived.

The specific artefact of inspiration for my project is a website implementing a miniature form of this library³ created by Jonathan Basile (Basile 2015). Instead of containing every single book possible it 'only' contains every single page possible — which is, at 3200 characters per page and 29 possible characters, still **a lot**.

Basile claims to use a "pseudo-random number generating algorithm" (combining modular arithmetic and bit-shifting operations) to produce all 29^{3200} pages without needing to store anything on disk.

"The pages of rational text which this algorithm can locate are rarer than a single grain of sand in that collection, yet intrinsically no more meaningful. (...) One can find only text one has already written, and any attempt to find it in among other meaningful prose is certain to fail. The tantalizing promise of the universal library is the potential to discover what hasn't been written, or what once was written and now is lost. But there is still no way for us to find what we don't know how to look for. (...) Nonetheless, the library contains its own sort of poetry and revelation, and even this disappointment can provide a moment of clarity." (Basile 2015)

³https://libraryofbabel.info/

METHODOLOGY

Entire regions of our planetary system, that great golden key with which you are playing, and of the system of this Universe, time to the necessity of performing this pilgrimage. 3

Would arrive at the correct solution,

face shews not the least wrinkle,

through his rash opinion of the improbability of performing a so strange and impossible,

faire ici le compte rendu technique de ma decouverte.

Acting upon this hint,

acted violently on my nervous system,

this was caused by intense heat acting on the organic matter of the earth.

The sum total of good playing,

and the Machine playing its large Wings,

that I would try it on myself acting forthwith on this decision.

3.1	Intrac	disciplinary .	•		•	•	•	•		•		•				•	18
	3.1.1	Computer S	Scie	nce													18
	3.1.2	Humanities	.														19
	3.1.3	Arts															19
3.2	Trans	disciplinary															19
3.3	Practi	ice Based															22

"Only those who attempt the absurd achieve the impossible." (attributed to M.C. Escher)

"Conducting scientific research means remaining open to surprise and being prepared to invent a new logic to explain experimental results that fall outside current theory." (Jarry 2006)

Choosing the right approach for this project was very important.

expand intro

3.1 Intradisciplinary

Different disciplines prefer different research methodologies. It makes sense that research in medicine, chemistry, literature or mathematics all use different methods. What could a mathematician achieve in a white laboratory coat and test tubes in his hand, and similarly, what could a chemist achieve with pen, paper and a calculator?

3.1.1 Computer Science

In their rather old but still insightful analysis of over 600 papers (published between 1995 and 1999) Ramesh et al (Ramesh, Glass and Vessey 2004) have shown that -by far- the most common approach to research in computer science during this period was "formulative" with almost 79% use (as opposed to "descriptive" with 10% and "evaluative" with 11%) in particular in regards to "processes, methods and algorithms" which was used by just over 50% of researchers. Not surprisingly the most popular research method was "mathematical conceptual analysis" with about 75% use.

Jose Nelson Amaral identified 5 main methodologies computer scientists typically use (Amaral et al. n.d.) as shown below.

- **Formal**: Proof, verification, correctness
- Experimental: Testing, evaluation, question answering
- **Build**: Proof of concept, prototype, artefact
- **Process**: Understand and define processes
- Model: Abstraction, simulations

Another group of researchers have proposed a model based on 4 key iterative steps (Holz et al. 2006).

What do we want to achieve?

Find out what is happening. Develop something that works. Evaluate an existing system/technology. Compare existing systems. Change human behaviour.

Where does the data come from?

How to collect? (Read, observe, ask, measure, experiment, model) Where to collect? (Field, laboratory, conceptual)

What do we do with the data?

Identify themes/patterns/quotes. Calculate numbers. Identify trends. Express via multimedia. Create frameworks/taxonomies.

Have we achieved our goal?

Draw conclusions. Evaluate results. Identify limitations.

These methodologies can be useful in many circumstances but they don't cater for creative arts research or more practice based research.

3.1.2 Humanities

finish

3.1.3 Arts

finish

3.2 Transdisciplinary

Basarab Nicolescu distinguished between three different kinds of research "without stable boundaries between the disciplines". (Nicolescu 2010).

Multidisciplinarity

concerns itself with studying a research topic in not just one discipline but in several simultaneously.

Interdisciplinarity

concerns the transfer of methods from one discipline to another.

Transdisciplinarity

concerns that which is at once between the disciplines, across the different disciplines, and beyond all disciplines.

¹Nicolescu cites Jean Piaget here, who first coined the term 'transdisciplinarity' in 1972.

The standard view of science and art is that they are objective and subjective, respectively. So, what does that mean for research conducted between, across and beyond science and art, i.e. research that is transdisciplinary?

Nicolescu criticises the view that science must be objective. He even claims that any non-scientific knowledge is "cast into the inferno of subjectivity, tolerated at most as a meaningless embellishment or rejected with contempt as a fantasy, an illusion, a regression, or a product of the imagination" (Nicolescu 2010). Objectivity, he says, becomes the "supreme criterion of Truth"²

§ ??

"The death of the Subject is the price we pay for objective knowledge." (Nicolescu 2010)

He goes on to quote Werner Heisenberg on the concepts of objective and subjective reality: "we would make a very crude simplification if we want to divide the world in[to] one objective reality and one subjective reality. Many rigidities of the philosophy of the last centuries are born by this black and white view of the world." (Heisenberg, cited in Nicolescu 2010)

"The too strong insistence on the difference between scientific knowledge and artistic knowledge comes from the wrong idea that concepts describe perfectly the 'real things'. (...) All true philosophy is situated on the threshold between science and poetry." (Heisenberg, cited in Nicolescu 2010, p.22) ³

In transdisciplinarity traditional disciplinary boundaries have no meaning. Objectivity is a myth.

²As we shall see later, pataphysics does the opposite: it reveres the Subject.

³The full paragraph is worth quoting: "The overly forceful insistence on the difference between scientific and artistic cognition quite likely derives from the incorrect notion that concepts are firmly attached to 'real objects', as if words had a completely clear and definite meaning in their relationship to reality and as if an accurate sentence, constructed from those words, could deliver an intended 'objective' factual situation to a more or less absolute degree. But we know, after all, that language too only grasps and shapes reality by turning it into ideas, by idealizing it. Language, too, approaches reality with specific mental forms about which we do not know right away which part of reality they can comprehend and shape. The question about 'right' or 'wrong' may indeed be rigorously posed and settled within an idealization, but not in relation to reality. That is why the last measure available for scientific knowledge as well is only the degree to which that knowledge is able to illuminate reality or, better, how that illumination allows us 'to find our way' better. And who could question that the spiritual content of a work of art too illumines reality for us and makes it translucent? One must come to terms with the fact that only through the process of cognition itself can we determine what we are to understand by 'cognition'. That is why any genuine philosophy, too, stands on the threshold between science and poetry." (Heisenberg 1942, Section 2, Chapter 6b)

S = subject, O = object, HT = Hidden Third

Figure 3.1: Nicolescu Transdisciplinarity

Subject — Object subjective — objective

create figure - subjective vs objective spectrum

Working across discpiplines requires a new unique methodology. Nicolescu proposes a methodology of transdisciplinarity as a non-hierarchical ternary partition of 'Subject, Object and Hidden Third' rather than the traditional binary partition of 'Subject versus Object'. (Nicolescu 2010).

"The old principle `unity in diversity and diversity from unity' is embodied in transdisciplinarity." (Nicolescu 2010)

Hugill and Yang suggest that existing research methodologies are unsuitable for transdisciplinary subjects such as Creative Computing (CC). The following is an example of a possible CC research methodology they propose as a starting point (Hugill and Yang 2013, p.17):

- 1. Review literature across disciplines
- 2. Identify key creative activities
- 3. Analyse the processes of creation

- 4. Propose approaches to support these activities and processes
- 5. Design and implement software following this approach
- 6. Experiment with the resulting system and propose framework

They go on to propose four standards for CC (Hugill and Yang 2013, p.17) namely, resist standardisation, perpetual novelty, continuous user interaction and combinational, exploratory and or transformational.

3.3 Practice Based

Linda Candy defines practice based research as follows.

"Practice-based Research is an original investigation undertaken in order to gain new knowledge partly by means of practice and the outcomes of that practice." (Linda Candy 2006)

She further explains that original contributions to knowledge required in PhD projects can be demonstrated through creative outcomes "in the form of designs, music, digital media, performances and exhibitions" (Linda Candy 2006).

finish section on practice based research here

Figure 3.2 shows the TMPR developed by Ernest Edmonds and Linda Candy as a framework to "influence practice, inform theory and, in particular, shape evaluation" (Edmonds and L. Candy 2010). The model allows for different trajectories between practice, theory and evaluation. Table 3.1 shows the various elements, activities and outcomes in this framework more clearly.

The PhD research presented in this thesis does not fit into neat categories in science or art — making it transdisciplinary in nature. Subjects like literature, philosophy, cogitive science, artificial intelligence, software enginnering and linguistics frame the three core areas of research for this project, namely pataphysics, creativity and computing.

To address the transdisciplinary nature of the project I employed a practice-based research methodology, meaning that part of my submission for the degree of Doctor of Philosophy is an artefact demonstrating my original contribution to

Figure 3.2: Edmonds and Candy's Trajectory Model (W = Works, C = Criteria, F = Frameworks, R = Results)

Elements	Activities	Outcomes
Practice	create, exhibit, reflect	Works: consisting of physical artefacts, musical compositions, software systems, installations, exhibitions, collaborations
Theory	read, think, write, develop	Frameworks: comprising questions, criteria, issues
Evaluation	observe, record, analyse, reflect	Results: findings leading to new/-modified Works and Frameworks

Table 3.1: Elements, Activities and Outcomes of each Trajectory in the TMPR

knowledge. The thesis provides the context of this artefact and critically analyses and discusses the experiemntal process and outcome.

Epistemology

Transdisciplinary, Subjective, Exploratory, Experimental

Methodology

Practice-Based

Methods

Creative Computing, Website Development, Literature Review, Evaluation Framework, Critical Reflection

The general workflow of my project was as follows.

- 1. Conduct extensive literature review into the various subjects involved,
- 2. develop pataphysical algorithms,
- 3. develop an evaluation framework,
- 4. design a system to demonstrate algorithms,
- 5. develop a website for the tool,
- 6. evaluate website using framework and redevelop as needed and
- 7. write up findings.

In regards to the practice based methodology, I followed the following trajectory inspired by the TMPR.

create my own tmpr figure here

Practice

国 3.2

(Works): Implementation of Algorithms, Development of Website

Theory

(Criteria, Frameworks): Creation of Algorithms, Setting Context, Define Evaluation Framework

Evaluation

(Results): Interpretation of Work

Part II

TeeLSef THE TRUE

to brave matin, agrava, constitution of the tide. How the tide of the tide of the tide of the tide. How the tide of the tide of the tide of the tide. How the tide of the tide of the tide of the tide. How the tide of the tide of the tide of the tide. How the tide of the tide of the tide of the tide. How the tide of the tide of the tide of the tide of the tide. How the tide of the tide of

Part III

THE CORE: TECHNOLLOGIC

The sum of the state of the sta

FOUNDATIONS

My soul with the bare supposition of their possibility, if you will go to bed at once, and that I begg'd the charity of them, noir corset velu des mouches éclatantes.

4

We can then start at once, and charity and why, and by faith formed in charity to cleave unto him, or in any of those unmentionable graces which are now.

J'ai été en relation avec des hommes qui ont été vertueux, which is the basis of our holy religion, j'invoque dans le commencement de cet ouvrage.

Removed her girdle, vous a laissé voir la couleur de son corset, start from the goal.

4.1	Explo	ring Creativity
	4.1.1	General Models
	4.1.2	Creative Process
	4.1.3	Creative Disciplines
4.2	Relati	ng Pataphysics
	4.2.1	Pataphysics and Creativity
	4.2.2	Pataphysics and Computers
4.3	Expla	ining Concepts
	4.3.1	Patalgorithms
	4.3.2	Pataphylicalisation

4.3.3	Patadata	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	39
4.3.4	Pranking																										39

This chapter discusses some of the ideas introduced in chapters **??** to **??** and relates them to each other. The insights gained from these comparisons form an essential part of my argumentation in this thesis.¹

4.1 Exploring Creativity

- subjective/P/little-c
- objective/H/Big-C
- Associative and bisociative thinking
- Creative triptych (humour, discovery, art)

4.1.1 General Models

The **??** chapter introduced various models of creativity. Here, I want to discuss some of their similarities and differences.

- (a) Mel Rhodes identified four common themes of creativity (Person, Process, Press, Products), which he termed the "4 P's" of creativity (Rhodes 1961).
- (b) Ross Mooney independentely identified four aspects of creativity in 1963 which he called Environment, Person, Process and Product (as cited in Sternberg 1999).
- (c) Margaret Boden defined three types of creativity: combinational, exploratory and transformational and two different 'levels' P and H creativity (Boden 2003).
- (d) James Kaufman and Ronald Beghetto defined the "4 C Model" of creativity. They are Big-C, Pro-c, Little-c and Mini-c (Kaufman and Beghetto 2009).

double check numbering

¹More specific details about the **??** chapter can be found later on in chapter **??** (Interpretation).

Rhodes '4 P' model (a) and Mooney's '4 aspects' (b) are essentially one and the same. They were published in 1961 and 1963 respectively. Literally the only difference is in the name; Rhodes calls the environment 'press'.

Boden and Kaufman overlap in a less obvious way. Boden's book on "the creative mind" was first published in 1990 (c), while Kaufman and Beghetto published their paper "Beyond Big and Little" in 2009 (d). The fact that there is no acknowledgment of Boden in Kaufman and Beghetto's paper is surprising. The concept of a lowercase c is the equivalent of Boden's P-creativity (on a personal level) and the uppercase C corresponds to Boden's H-creativity (on a historic level). This also ties in very neatly with the idea of subjectivity and objectivity as table 4.1 shows.

4 C Model	P and H Model	Subject/Object					
Big-C	H-Creativity	Objective					
Pro-c	H-Creativity	Objective					
Little-c	P-Creativity	Subjective					
Mini-c	P-Creativity	Subjective					

Table 4.1: Comparison of the 4 C Model vs. P and H Creativity vs. Subjectivity and Objectivity

Arguably, Pro-c should perhaps be Pro-C instead, as it takes a certain amount of external validation and accreditaion becoming a professional at anything — which goes beyond the personal and private lowercase c in my opinion. Other than that the uppercase C corresponds directly to H-creativity and objectivity, while the lowercase c generally corresponds to P-creativity and subjectivity.

4.1.2 Creative Process

(a)

4.1

Henri Poincaré, Graham Wallas (Poincare 2001) (Wallas 1926) George Pólya problem solving (Polya 1957)

4.1.3 Creative Disciplines

We had previously differentiated between creative computing and computational creativity:

4 step model	4 P Model	Problem Solving						
Preparation	Person	Understand						
Incubation	Press/Context	Plan						
Illumination	Process	Carry Out						
Verification	Product	Look back						

Table 4.2: Comparison of 4 Step Model vs 4 P Model vs Problem Solving

Intuitively the former is about doing computations in a creative way, while the latter is about achieving creativity through computation. You can think of the latter falling into the artificial intelligence category (using formal computational methods to mimic creativity as a human trait, see also (18)) and the former being a more poetic endeavour of how the computing itself is done, no matter what the actual purpose of the program is. (Hugill 2013)

The differences are subtle but clear.

Creative Computing	Digital Humanities	Computational Creativity						
Motivation	Design	Intentionality						
Ideation	Curation, Analysis, Edit-	Framing						
	ing, Modeling and Net-							
	works, Infrastructure							
Implementation	Computation, Processing	Process						
Operation	Versioning, Prototyping,	Product						
	Failures							

Table 4.3: Comparison of Creative Computing vs Digital Humanities vs Computational Creativity

How does ethics fit into this?

4.2 Relating Pataphysics

4.2.1 Pataphysics and Creativity

The creative process normally involves a move from the known to the unknown and sometimes from the named to the unnamed. In bringing something new into existence, the human qualities of openness and tolerance of ambiguity are generally regarded as highly desirable. We may define creativity as **the ability to use original ideas to create something new and surprising of value**. We generally speak of creative 'ideas' rather than 'products', which merely provide

evidence of a creative process that has already taken place. Both the originality and the value of an idea are evaluated using subjective criteria. **Pataphysics**, which represents an extreme form of subjectivity, is therefore a highly appropriate framework within which to encourage and enable creative thinking and operations.

Both the originality and the value of a creative idea are always evaluated using purely subjective criteria. Pataphysics, which represents an extreme form of subjectivity, is therefore a highly appropriate framework within which to encourage and enable creative thinking and operations.

The ambiguity of experience is the hallmark of creativity, that is captured in the essence of pataphysics. Traversing the representations of this ambiguity using algorithms inspired by the syzygy, clinamen and anomaly of pataphysics, using a panalogical mechanism applied to metadata, should be able to humanize and even poeticize the experience of searching the Web. (Hendler and Hugill 2013)

Pataphysics is highly subjective and particular and is as such very suitable for this kind of transformation from relevant to creative.

(Pataphysics) can only be defined in a new undiscovered language because too obvious: tautology. (Baudrillard 2007)

It is instructive to overlay these ideas on existing theories of creativity. Margaret see sec-Boden (Boden 2003), for example, has defined **P-creativity** (short for psycholotion gical creativity) as the personal kind of creativity that is novel in respect to the individual mind and **H-creativity** (short for historical creativity) as fundamentally novel in respect to the whole of human history. This allows for subjective evaluation of any idea.

Using Boden's definition we can call an idea 'new' if it is new to the individual who came up with it, making the idea P-creative. We can say that a creative idea can be seen from two perspectives: the subjective (P-creative) and the objective (H-creative) view. She argues that constraints support creativity, and are even essential for it to happen. "Constraints map out a territory of structural possibilities which can then be explored, and perhaps transformed to give another one" (Boden 2003, p.82).

This echoes the ideas of groups such as the **Oulipo** (which began as a Sub-Commission of the Collège de 'Pataphysique), who investigate 'potential literat-

ure' by creating constraints that frequently have a ludic element. Various other groups, the Ou-x-Pos, perform similar operations in fields as diverse as cinema, politics, music and cooking (Motte 2007).

Boden's conceptual space is the "territory of structural possibilities". So, the conceptual space of a teacup might be that it is meant to carry a certain amount of tea without breaking or burning fingers. It wouldn't be wise to create a teacup made out of paper. But whether we make a cup out of glass or porcelain, or how we shape the cup or the handle is pretty much up the individual's creativity. Being able to move around in this conceptual space, experiment (in thought or in reality) and play with different ideas while still following a given set of constraints is a good starting point for creativity to happen. Boden defines three sub-types of creativity.

The Oulipo similarly classifies its conceptual space under two broad headings: the synthetic and the analytic:

(...) In the research which the Oulipo proposes to undertake, one may distinguish two principal tendencies, oriented respectively towards Analysis and Synthesis. The analytic tendency investigates works from the past in order to find possibilities that often exceed those their authors had anticipated. (...) The synthetic tendency is more ambitious: it constitutes the essential vocation of the Oulipo. It's a question of developing new possibilities unknown to our predecessors. This is the case, for example, of (Raymond Queneau's) 100,000,000,000,000 Poems or the Boolean haikus. (Motte 2007, p.27)

Later writings develop these ideas in more detail. La Littérature Potentielle **Oulipo1973**, is divided into several sections, dealing with clusters of methods, that include: anoulipisms (analytical oulipisms, such as combinatorial literature); use of preexisting structures such as lipograms (omitting a letter or letters), palindromes and snowballs (in which each successive word adds or subtracts a letter), homophonic translation, tautogram, and definitional literature; lexical, syntactic, or prosodic manipulations (such as the celebrated S+7, in which each substantive is replaced by the seventh word after it in a standard dictionary); lexicographical or prosodic synthoulipisms (early algorithmic methods); and perimathematical synthoulipisms (such as the Boolean poetry and combinatorial works already mentioned).

Boden links her three aspects of creativity to three sorts of surprise. She says that creative ideas are surprising because they go against our expectations. "The more expectations are disappointed, the more difficult it is to see the link

between old and new." (Boden 2003, p.84) This suggests that fewer **expectations** (an open mind) allow creativity to happen more easily. Empirical experiences form expectations, which hinder our ability to accept creative ideas when they happen. In order to be able to recognise creative ideas we need to be able to see what they all have in common and in what way they differ and not reject unusual, unexpected ones.

"Unless someone realizes the structure which old and new spaces have in common, the new idea cannot be seen as the solution to the old problem. Without some appreciation of shared constraints, it cannot even be seen as the solution to a new problem intelligibly connected with the previous one." (Boden 2003, p.84)

It is clear that the Oulipo has a similar approach in its theorising of potential literature. Releasing creativity through constraint is its essential raison d'être.

This is not to say that experience and knowledge are necessarily bad for creativity. To appreciate creativity we need to be knowledgeable in the relevant domain to be able to recognise old and new connections and transformations. But we also need a certain level of openness and tolerance for ambiguity to overcome our expectations. Perhaps it is for this reason that 'creative people' are often assumed to have particular personality traits. Sternberg (Sternberg 1999; Sternberg 1999), for example, proposes that these comprise: independence of judgement, self-confidence, and attraction to complexity, aesthetic orientation, and tolerance for ambiguity, openness to experience, psychoticism, risk taking, androgyny, perfectionism, persistence, resilience, and self-efficacy. More empirically, Heilman, Nadeau and Beversdorf (Heilman, Nadeau and Beversdorf 2003) have investigated the possible brain mechanisms involved in creative innovation. While a certain level of domain specific knowledge and special skills are necessary components of creativity, they point out that "co-activation and communication between regions of the brain that ordinarily are not strongly connected" might be equally important.

Newell, Shaw and Simon add to the above with their report on the creative thinking process (Newell, Shaw and Simon 1963). They identify three main conditions for creativity: the use of imagery in problem solving; the relation of unconventionality to creativity; and the role of hindsight in the discovery of new heuristics. Other issues they point out are abstraction and generalisation. So, for example, poets transform the grammar of their conceptual space (in this case, language) to create new sentence structures in a poetic form. By doing so, they go against the expectations, the possibilities of the language and cause surprise. Some people

might not understand the transformations and therefore the jokes or beauty of a poem simply because they are either not able to recognise connections between the old and newly transformed elements (maybe due to a lack of knowledge in the poems topic or in that particular language) or because they do not want to accept unconventional methods.

Consider the following table, which compares some of the key ideas of creativity (Boden 2003; Indurkhya 1997; Koestler 1964) with the main pataphysical operations. It will be seen that pataphysics succeeds in bringing into sharp relief the more generalised scientific ideas. The pataphysical terms are taken from the natural sciences or philosophy, but always with an ironic twist, betraying their underlying humour. They connect quite strongly with the primary descriptors of creativity, while adding a certain layer of jouissance. Pataphysics is self-avowedly useless, but its principles may prove surprisingly useful within this context.

CREATIVITY	PATAPHYSICS
Combinational : Juxtaposition of dissimilar, bisociation, deconceptualisation	Antinomy: Symmetry, duality, mutually incompatible, contradicting, simultaneous existence of mutually exclusive opposites Syzygy: Alignment of three celestial bodies in a straight line, pun, conjunction of things, something unexpected and surprising
Exploratory : Noticing new things in old places	Anomaly : Exceptions, equality
Transformative : Making new thoughts possible by transforming old conceptual space, altering its own rules	Clinamen : Unpredictable swerve, the smallest possible aberration that can make the greatest possible difference

Table 4.4: Creativity vs Pataphysics

4.2.2 Pataphysics and Computers

ANDREW:

Since our solutions will be imaginary, our aim is not so much to have the computer generate creative artefacts as to engage in a creative dialogue with the

user. Therefore, we do not intend to move as close to artificial intelligence as Colton's framework seems to suggest. In the pataphysical universe, ideas such as 'human skill', 'human imagination' and 'human appreciation' are too generalised to be useful. One may very well ask: which human? And when, where and even why? Rather, our project will aim to produce an exceptional computational entity that consistently generates surprising and novel provocations to the users, who in turn may navigate and modify these by deploying their own skills, appreciation and imagination. The relationship between the two will develop quite rapidly into one of mutual subversion since, however apparent the 'rules of the game' may become, the outcomes will always be particular or exceptional.

We are not the first people to attempt to apply pataphysical ideas in computer science. Johanna Drucker focused specifically on the cleft between formal logic and subjective judgement. She introduced the discipline of 'Speculative Computing' as a solution to that problem (Drucker and Nowviskie 2007). The concept can be understood as a criticism of mechanistic, logical approaches that distinguish between subject and object.

Speculative computing takes seriously the destabilization of all categories of entity, identity, object, subject, interactivity, process, or instrument. In short, it rejects mechanistic, instrumental, and formally logical approaches, replacing them with concepts of autopoiesis (contingent interdependency), quantum poetics and emergent systems, heteroglossia, indeterminacy and potentiality, intersubjectivity, and deformance. Digital Humanities is focused on texts, images, meanings, and means. Speculative Computing engages with interpretation and aesthetic provocation. (Drucker 2009, p.29)

For Drucker, aesthesis (ambiguous and subjective knowledge) is fundamentally opposed to mathesis (formal objective logic) and subjectivity is always in opposition to objectivity. Knowledge is a matter of interpretation of information, which can be represented digitally as data and metadata. She introduces what she calls a 'patacritical' method of including exceptions as rules, even if repeatability and reliability are compromised. Bugs and glitches are privileged over functionality, and are "valuable to speculation in a substantive, not trivial, sense." As she says: "Pataphysics inverts the scientific method, proceeding from and sustaining exceptions and unique cases" (Drucker and Nowviskie 2007).

In order to break out of the formal logic and defined parameters of computer science, she asserts, we need speculative capabilities and pataphysics. "The goal of pataphysical and speculative computing is to keep digital humanities from falling into mere technical application of standard practices." She links interface

design with other speculative computing principles, and refers to Kant's idea of art as 'purposiveness without purpose'. She says that the appreciation of design as a thing in itself (regardless of utility) is a goal of speculative aesthetics.

The projects Johanna Drucker describes in her book SpecLab (Drucker 2009) could certainly be considered related work. Not only in their theoretical foundations but also in some aspects of their implementation. One project in particular is worth mentioning here: the 'Patacritical Demon, an "interactive tool for exposing the structures that underlie our interpretations of text", although it remained a purely conceptual piece of work and was never implemented. Her idea if the "patacritical" method is quite interesting. Pataphysical exceptions and anomalies can thus be justified in a computational system. But it is not just this concept that deserves mention here. Her ideas on structured data, metadata and knowledge representation link very nicely into my project. How can we represent and structure data so that it does not lose its subjectivity, context and meaning? Her reference to graphical analogies is inspiring in that regard as well. I am certain I will refer back to her concepts throughout my thesis.

4.3 Explaining Concepts

4.3.1 Patalgorithms

The proposed concept for a pataphysical algorithm requires precise data structures to represent the transformations that have taken place during the pataphysicalisation, such as the patadata. The system's index has to be adapted to accommodate this new type of data structure. It also needs to be flexible enough to allow algorithms to fit in at different stages or locations of the system, for example the inverted-index, ranking functions or query itself. Whilst this new style of algorithm has been proposed, current architectures are not capable of supporting them. As such a new flexible component-based software architecture has been proposed which will allow for a range of different style systems to be developed with little overhead. As such improving the chance of creative outcomes occurring in a different way.

Linking back to some of the creative, pataphysical concepts we have discussed earlier, let us put some of the ideas for our tool into perspective. The constraints for our conceptual space are the pataphysical rules that we want to apply to our data. We use those rules to explore, combine and transform our space; giving us the flexibility and freedom we need to find interesting results.

We developed the idea of pataphysicalising data as the process of applying such pataphysical rules in order to produce creative search results. This pataphysicalisation process forms a central component of our system (see Figure 4.1) and influences all areas of the search tool.

redraw figure

Figure 4.1: Pata central

Figure 4.2: Pata central

4.3.2 Pataphylicalisation

The conceptual space for our project is 'pataphysical Web searching'. There are some very simple rules or constraints that form an initial definition of the project. For example it is clear that we want to search the World Wide Web (rather than a library database), that we want to return a list of search results (and not a pile of books) and that we want the search process and its results to be creative/pataphysical (rather than relevant). In a more technical sense, we have the query term (s), the index (of all web pages that we have crawled) and some pataphysical rules in our conceptual space. How we structure our search

system, how we format the index or how we go about finding our results, is not in our conceptual space however. We can explore the space to its limits and we can transform it if we want to or feel like we need to. Our pataphysical rule set will include methods for transforming the space. By applying pataphysical rules to find results to our query we are pataphysicalising the query.

Definitions:

To pataphysicalise

(verb) – applying pataphysical transformations

Pataphysicalisation

(noun) - the process of pataphysicalising

Patadata

(noun) - any data which has been pataphysicalised

But what exactly does the process of pataphysicalisation include? The kinds of transformations we are thinking of could be for example replacing or adding to the query term (s) with synonyms, antonyms, opposites, syzygies, clinamens etc. This can be done with the help of thesauri or dictionaries and ontologies. Whether we pataphysicalise our query term (s), the index or the results does not matter at this point. They are all possible and will maybe be done all at the same time (see figure 4.2 below). We can consider the possibility of a 'patametric index', rather than a parametric index or a 'patasaurus' (pataphysical thesaurus/ontology).

Figure 4.3: Pataphysicalisation

Arguably, few other textual forms will have greater impact on the way we read, receive, search, access, use and engage with the primary materials of humanities studies than the metadata structures that organize and present that knowledge in digital form. (Drucker 2009, p.9)

4.3.3 Patadata

The idea of patadata is derived from the idea below: Physics \rightarrow Metaphysics \rightarrow Pataphysics Data \rightarrow Metadata \rightarrow Patadata

Patadata will allow us to engage with digital knowledge in a more creative way even. If metadata helps us organise information semantically then patadata is for organising information pataphysically. If metadata is objective then patadata is subjective. Drucker also points out that "many information structures have graphical analogies and can be understood as diagrams that organise the relations of elements within the whole." (Drucker 2009, p.16) So maybe patadata could allow us to represent these graphical analogies in some way? An alphabetical list is a typical model for representing text data sets for example. Or an otherwise ranked list, a tree structure, a matrix, a one-to-many relationship, etc. But is a ranked list really the best way to represent search results? Ranking itself seems unpataphysical. It contradicts the philosophy of pataphysics, although we can argue that this contradiction makes it pataphysical again. Maybe this dilemma can be solved simply by adopting another type of graphical analogy to structure the results such as a tree structure instead of a ranked list.

Example: Let's say our patadata is represented by a list of keywords that each stands for a pataphysicalisation of the original query term. This list is added to each item in the index.

```
Query = 'Tree'
Patadata = [Tree (equivalent), Car (opposite), Paper (antinomy),
Narwhal (anomaly), Book (syzygy), Venus Fly Trap (clinamen)]
```

Query = 'Sun God Ra'

Patadata = [Sun God Ra (equivalent), Slave (opposite), Holiday (antinomy),
Blue Balloon (anomaly), Pyramid (syzygy), Sphinx (clinamen)]

4.3.4 Pranking

In traditional Web search, ranking signals contribute to the improvement of the ranking process. These can be content signals or structural signals. Content signals are referring to anything that is concerned with the text and content of a page. This could be simple word counts or the format of text such as headings and font weights. The structural signals are more concerned about the linked structure of pages. They look at incoming and outgoing links on pages. There are also Web usage signals that can contribute to ranking algorithms such as the clickstream. This also includes ideas such as the Facebook 'like' button or

the Google '+1' button which could be seen as direct user relevance feedback.

Ranking can be done at different stages of the search process. Depending on how the index is formatted and what information can be pre-computed at that stage, the ranking algorithm evaluates every Web page for relevance and returns them in order. There exist lots of different approaches on ranking, including PageRank (Brin and Page 1998) and HITS (Kleinberg 1999), which both analyse the link structure of the World Wide Web. They analyse the incoming and outgoing links on pages. PageRank for example assigns a numerical weight to each document, where each link counts as a vote of support in a sense. It is executed at indexing time, so the ranks are stored with each page directly in the index. HITS stands for 'Hyperlink Induced Topic Search' and its basic features are the use of so called hubs and authority pages. It is executed at query time. Pages that have many incoming links are called authorities and pages with many outgoing links are called hubs.

Given a query term X, what is considered a relevant match though? Do we simply return a list of Web pages where X appears in the heading of each page? It is obviously not that easy. Several ranking signals are combined together; Google states that they use over 200 signals including PageRank and they personalise results using signals such as the web history and location (Google n.d.). What kinds of ranking signals do we need for our pataphysical Web search tool? We could say that a page Y is relevant if it matches the patadata for query X. So, for example, Y would be a relevant result if it is a clinamen or syzygy to X. The more patadata matches there are the higher the ranking maybe. We don't necessarily have to assign a numerical ranking value to each page. Depending on how we structure our results page that might not be necessary. Shuffling the results list or the results tree could be an option.

Part IV

LeGICELYSIS

Part V

HPPILY SVER FTER?

Part VI

POST®

BIBLIOGRAPHY

Amaral, Jose Nelson et al. 'About Computing Science Research Methodology'. In: (cit. on p. 18).

Basile, Jonathan (2015). *The Library of Babel*. URL: https://libraryofbabel.info/ (visited on 10/12/2015) (cit. on p. 16).

Baudrillard, Jean (2007). Pataphysics (cit. on p. 31).

Beghetto, Ronald A. and James C. Kaufman (2007). 'Toward a broader conception of creativity: A case for 'mini-c' creativity.' In: *Psychology of Aesthetics*, *Creativity, and the Arts* 1.2, pp. 73–79.

Boden, Margaret (2003). *The Creative Mind: Myths and Mechanisms*. London: Routledge (cit. on pp. 28, 31–34).

Boek, Christian (2002). 'Pataphysics: The Poetics of an Imaginary Science. Evanston, Illinois: Northwestern University Press (cit. on p. 5).

Borges, Jorge Luis (1964). *Labyrinths - Selected Stories and Other Writings*. New York: New Directions (cit. on p. 16).

(2000). 'The Analytical Language of John Wilkins'. In: Selected Non-Fictions.
 Ed. by Eliot Weinberger. London: Penguin Books, pp. 229–232 (cit. on pp. 11, 14).

Brin, Sergey and Larry Page (1998). 'The PageRank Citation Ranking: Bringing Order to the Web'. In: *World Wide Web Internet And Web Information Systems*, pp. 1–17 (cit. on p. 40).

Burdick, Anne et al. (2012). *Digital Humanities*. Cambridge, Massachusetts: MIT Press.

Burnham, Douglas (2015). 'Immanuel Kant: Aesthetics'. In: *Internet Encyclopedia of Philosophy* (cit. on p. 5).

Candy, Linda (2006). Practice Based Research: A Guide. Tech. rep. (cit. on p. 22).

 (2012). 'Evaluating Creativity'. In: Creativity and Rationale: Enhancing Human Experience by Design. Ed. by J.M. Carroll. Springer.

Colton, Simon (2008a). 'Computational Creativity'. In: AISB Quarterly, pp. 6-7.

- Colton, Simon (2008b). 'Creativity versus the perception of creativity in computational systems'. In: *In Proceedings of the AAAI Spring Symp. on Creative Intelligent Systems*.
- Colton, Simon and Geraint A Wiggins (2012). 'Computational Creativity: The Final Frontier?' In: *Proceedings of the 20th European Conference on Artificial Intelligence*. Montpellier, France: IOS Press, pp. 21–26.
- Dictionary, Oxford English (2015). animal, n. URL: http://www.oed.com/view/Entry/273779 (visited on 10/12/2015) (cit. on p. 15).
- Drucker, Johanna (2009). SpecLab: Digital Aesthetics and Projects in Speculative Computing. University of Chicago Press (cit. on pp. 35, 36, 38, 39).
- Drucker, Johanna and B Nowviskie (2007). 'Speculative Computing: Aesthetic Provocations in Humanities Computing'. In: *A Companion to Digitial Humanities*. Ed. by Susan Schreibman, John Unsworth and Ray Siemens. Oxford: Blackwell Publishing. Chap. 29 (cit. on p. 35).
- Eden, Amnon H. (2007). 'Three Paradigms of Computer Science'. In: *Minds and Machines* 17.2, pp. 135–167.
- Edmonds, E. and L. Candy (2010). 'Relating Theory, Practice and Evaluation in Practitioner Research'. In: *Leonardo* 43.5, pp. 470–476 (cit. on p. 22).
- Elton, Matthew (1995). 'Artificial Creativity: Enculturing Computers'. In: *Leonardo* 28.3, pp. 207–213.
- Gelernter, David (1994). *The Muse in the Machine*. London: Fourth Estate Limited.
- Heilman, Kenneth M, Stephen E Nadeau and David O Beversdorf (2003). 'Creative innovation: possible brain mechanisms.' In: *Neurocase* 9.5, pp. 369–79 (cit. on p. 33).
- Heisenberg, Werner (1942). *Ordnung der Wirklichkeit*. Trans. by M.B. Rumscheidt and N. Lukens (cit. on p. 20).
- Hendler, Jim and Andrew Hugill (2011). 'The Syzygy Surfer: Creative Technology for the World Wide Web'. In: *ACM WebSci 11* (cit. on pp. 4, 5, 11, 14).
- (2013). 'The syzygy surfer: (Ab)using the semantic web to inspire creativity'. In: *International journal of Creative Computing* 1.1, pp. 20–34 (cit. on pp. 4, 11, 14, 31).
- Holz, Hilary J et al. (2006). 'Research Methods in Computing : What are they , and how should we teach them ?' In: *ITiCSE Innovation and technology in computer science education*, pp. 96–114 (cit. on p. 18).
- Hugill, Andrew (2013). 'Introduction: transdisciplinary learning for digital creative practice'. In: *Digital Creativity* 24.3, pp. 165–167 (cit. on p. 30).
- Hugill, Andrew and Hongji Yang (2013). 'The creative turn: new challenges for computing'. In: *International journal of Creative Computing* 1.1, pp. 4–19 (cit. on pp. 6, 21, 22).

- Indurkhya, Bipin (1997). 'Computers and creativity'. Unpublished manuscript. Based on the keynote speech 'On Modeling Mechanisms of Creativity' delivered at Mind II: Computational Models of Creative Cognition (cit. on p. 34).
- Jarry, Alfred (1996). Exploits and Opinions of Dr Faustroll, Pataphysician. Cambridge, MA: Exact Change (cit. on pp. iii, 11, 12).
- (2006). *Collected Works II Three Early Novels*. Ed. by Alastair Brotchie and Paul Edwards. London: Atlas Press (cit. on p. 18).
- Jordanous, Anna Katerina and Bill Keller (2012). 'Weaving creativity into the Semantic Web: a language-processing approach'. In: *Proceedings of the 3rd International Conference on Computational Creativity*, pp. 216–220.
- Kaufman, James C. and Ronald A. Beghetto (2009). 'Beyond big and little: The four c model of creativity'. In: *Review of General Psychology* 13.1, pp. 1–12 (cit. on p. 28).
- Kleinberg, Jon M (1999). 'Authoritative sources in a hyperlinked environment'. In: *journal of the ACM* 46.5, pp. 604–632 (cit. on p. 40).
- Koestler, Arthur (1964). *The Act of Creation*. London: Hutchinson and Co (cit. on p. 34).
- Mayer, Richard E (1999). 'Fifty Years of Creativity Research'. In: *Handbook of Creativity*. Ed. by Robert J Sternberg. New York: Cambridge University Press. Chap. 22, pp. 449–460.
- McBride, Neil (2013). Robot Ethics: The Boundaries of Machine Ethics. Leicester.
- Minsky, Marvin (1980). 'K-Lines: A Theory of Memory'. In: Cognitive Science 33.4, pp. 117–133.
- (1988). The Society of Mind. Simon and Schuster, p. 336.
- Motte, Warren (2007). *Oulipo, A primer of potential literature*. London: Dalkey Archive Press (cit. on p. 32).
- Neeley, J. Paul (2015). *Introducing the NEW Yossarian*. email communication (cit. on p. 15).
- Newell, A, J. G. Shaw and H. A. Simon (1963). *The Process Of Creative Thinking*. New York: Atherton (cit. on p. 33).
- Nicolescu, Basarab (2010). 'Methodology of Transdisciplinarity Levels of Reality, Logic of the Included'. In: *Transcdisciplinary journal of Engineering and Science* 1.1, pp. 19–38 (cit. on pp. 19–21).
- Partridge, Derek and Jon Rowe (1994). *Computers and Creativity*. Oxford: Intellect.
- Pease, Alison, Daniel Winterstein and Simon Colton (2001). 'Evaluating Machine Creativity'. In: *Proceedings of ICCBR Workshop on Approaches to Creativity*, pp. 129–137.
- Poincare, Henri (2001). *The Value of Science*. Ed. by Stephen Jay Gould. New York (cit. on p. 29).

- Polya, George (1957). *How To Solve It.* 2nd. Princeton, New Jersey: Princeton University Press (cit. on p. 29).
- Queneau, Raymond (1961). One Hundred Thousand Billion Poems. Gallimard (cit. on p. 14).
- Raczinski, Fania, Hongji Yang and Andrew Hugill (2013). 'Creative Search Using Pataphysics'. In: *Proceedings of the 9th International Conference on Creativity and Cognition*. Sydney, Australia: ACM New York, NY, USA, pp. 274–280 (cit. on p. 6).
- Ramesh, V., Robert L. Glass and Iris Vessey (2004). 'Research in computer science: an empirical study'. In: *journaltitle of Systems and Software* 70.1-2, pp. 165–176 (cit. on p. 18).
- Rhodes, Mel (1961). 'An analysis of creativity'. In: *The Phi Delta Kappan* 42.7, pp. 305–310 (cit. on p. 28).
- Ritchie, Graeme (2001). 'Assessing creativity'. In: AISB '01 Symposium on Artificial Intelligence and Creativity in Arts and Science. Proceedings of the AISB'01 Symposium on Artificial Intelligence, Creativity in Arts and Science, pp. 3–11.
- (2007). 'Some Empirical Criteria for Attributing Creativity to a Computer Program'. In: *Minds and Machines* 17.1, pp. 67–99.
- Singh, Push (2005). 'EM-ONE: An Architecture for Reflective Commonsense Thinking'. PhD thesis. Massachusetts Institute of Technology (cit. on p. 11).
- Sternberg, Robert J (1999). *Handbook of creativity*. Cambridge University Press, p. 490 (cit. on pp. 28, 33).
- (2006). 'The Nature of Creativity'. In: *Creativity Research journal* 18.1, pp. 87–98.
- Thomas, Sue et al. (2007). 'Transliteracy: Crossing divides'. In: First Monday 12.12.
- Ventura, Dan (2008). 'A Reductio Ad Absurdum Experiment in Sufficiency for Evaluating (Computational) Creative Systems'. In: 5th International Joint Workshop on Computational Creativty. Madrid, Spain.
- Wallas, Graham (1926). The Art of Thought. Jonathan Cape (cit. on p. 29).
- Wiggins, Geraint A (2006). 'A preliminary framework for description, analysis and comparison of creative systems'. In: *Knowledge Based Systems* 19.7, pp. 449–458.
- Yang, Hongji (2013). 'Editorial'. In: *International journal of Creative Computing* 1.1, pp. 1–3.
- Yossarian (2015). Yossarian (cit. on pp. 15, 16).