Modeling the cumulative incidence function of clustered competing risk data: computational and numerical aspects of a multinomial GLMM approach

Wagner H. Bonat Henrique Ap. Laureano

http://leg.ufpr.br/~henrique | http://leg.ufpr.br/~wagner

Context: clustered competing risk data

Idea: causes competing by the occurence of an event such the

confiability analysis

failure of an industrial or electronic component

survival analysis

failure or progress of a patient or some biological process

Context: clustered competing risk data

Idea: causes competing by the occurence of an event such the

confiability analysis

failure of an industrial or electronic component

survival analysis

failure or progress of a patient or some biological process

A typical data set consists of

Group	ID	Cause 1	Cause 2	Censorship	Time	Feature
1	1	1	0	0	10	Α
1	2	0	0	1	8	Α
2	1	0	0	1	7	В
2	2	0	1	0	5	Α

Survival data designs

Failure time process

Competing risk process

 $Multistate\ process$

Survival data designs

Survival modeling framework

We have to choose which scale we model the **survival experience**. Usually, is the

hazard (failure rate) scale :
$$\lambda(t \mid x) = \lambda_0(t) \times c(x, \beta)$$

In the competing risk setting ...

a more attractive possibility is to work on the probability scale, focusing on the cause-specific

Time

i.e.

 $\mathsf{CIF} = \mathbb{P}[\mathsf{failure}\;\mathsf{time} \leq t,\;\mathsf{a}\;\mathsf{given}\;\mathsf{cause}\;|\;\mathsf{features}\;]$

Main focus application: cancer incidence in twins

Clustered competing risks data

L Clusters? Families

Family studies

Twins data

Main focus application: cancer incidence in twins

Clustered competing risks data

L Clusters? Families

Family studies

Twins data

- » Taking into account the within-family dependence may reflect both disease heritability and the impact of shared environmental effects
- » A complication is that we have little information to track that dependence since each 'family' consists of only a pair of twins

Challenges

Besides the small size groups, the data is very simple . . .

- » we just know if the event occured (1 or 0) and the time
 - » with this, we have to be able to construct the cumulative incidence curves
- » and we have to accommodate the within-family dependency
 - » that can happen in different ways and with different intensities

to accomplish all this a powerful modeling framework is made necessary

... with this,

computational and numerical challenges has also to be overcome

Thank you

http://leg.ufpr.br/~henrique

@hap_laureano

