FPGAを用いた OFDM復調器の製作

T5-36 山口雄大 指導教員 髙﨑和之 流星によって作られる電離気体柱を 反射体として利用する見通し外通信

時間の経過で反射率が低下

パケットの後半で連続した誤り

パケット全体が破棄

多数の直交した搬送波を用いるマルチキャリア方式

変調に逆離散フーリエ変換(IDFT)復調に離散フーリエ変換(DFT)

● 三角関数の直交性を利用

シングルキャリア

マルチキャリア

DFTの式
$$X_k = \sum_{n=0}^{N-1} x_n \exp[-j\frac{2\pi}{N}nk] = \sum_{n=0}^{N-1} x_n W^{nk}$$

x_n を奇数と偶数で分解

 $W\equiv e^{-j\frac{2\pi}{N}}$ Wは回転因子

$$X_k = \sum_{n=0}^{N/2-1} x_{2n-1} W^{2nk} + W^k \sum_{n=0}^{N/2-1} x_{2n} W^{2nk}$$

$$X_{k+N/2} = \sum_{n=0}^{N/2-1} x_{2n-1} W^{2nk} - W^k \sum_{n=0}^{N/2-1} x_{2n} W^{2nk}$$

分割統治法

DFTの計算量: $O(N^2)$

FFTの計算量:O(NlogN)

N=1024のとき、

演算回数に約100倍の差

先行研究

本研究

	PC(SBC)	マイコン	FPGA
消費電力	高	低	低
クロック周波数	高	低	低
リアルタイム処理	苦手	普通	得意
開発難易度	低	中	高
処理方式	逐次処理	逐次処理	並列処理
価格	高	低	中

条件は先行研究をもとに決定

変調方式	BPSK/OFDM
帯域幅	984.375Hz~5671.875Hz
サブキャリア間隔	46.875Hz
サブキャリア数	101(パイロット信号含む)
1シンボルの時間	21.3ms
データ量	12バイト
	最初と最後は0x55

復調器の仕様

FPGA	GW1NR-9(Gowin)
評価ボード	Tang Nano 9K(Sipeed)
10ビットADC	MCP3002(Microchip)
FPGAの動作周波数	24MHz
サンプリング周波数	48kHz
FFTのサンプル数	1024

信号処理の流れ

OFDM信号 — 加算回路 ADC MCP3002 SPI FPGA GW1NR-9 出力 出力

FPGAの動作

- OFDMシンボルを9回送信、1回休止を1セットとし、 10セット繰り返した。
- 受信したシンボルの最初と最後が0x55なら成功と判断

- 正しいビット列が出力
- パイロット信号と サブキャリアの比が2:1

シンボル時間の約3~14%で演算可能

- 評価はシミュレータ(Icarus Verilog)上で実施
- シンボル長21.3msの信号を634μs~3.17msで復調

処理	時間
RAM_ADCからRAM_FFTにデータ転送	42.8μs
FFT	$587\mu s$
BPSK及び符号判定	4.46μ s
合計	634μs

● FPGAのリソースには余裕があり、機能追加が可能

リソース	使用率
Register	834 / 6480 (12.9%)
LUT4	2095 / 8640 (24.2%)
16Kbit BSRAM	8 / 26 (30.8%)
MULT18X18	8 / 20 (40%)

目標 FPGAを用いたOFDMのリアルタイム復調器の製作

- OFDM信号の復調に成功
- シンボル時間の約3~14%で演算可能
- 機能追加を行うリソースが余っている

→目標を達成できたといえる。

信号を途中から受信したときに対応できない →相関を用いた信号の同期

伝送路特性の補正を行えていない →パイロット信号を用いた補正

実際の流星バースト通信環境での検証

ご清聴ありがとうございました