User: ALGhomework7_results

Copyright 1985-2019 StataCorp LLC

StataCorp

4905 Lakeway Drive

College Station, Texas 77845 USA

800-STATA-PC

https://www.stata.com

979-696-4600

stata@stata.com

979-696-4601 (fax)

Stata license: Single-user , expiring 14 Oct 2021 Serial number: 301609640779

Licensed to: Anthony Land-Gonzales

Notes:

1. Unicode is supported; see help-unicode_advice.

1 . cd "C:\Users\antho\Documents\UCI Spring 2021\Econ 129\Data" C:\Users\antho\Documents\UCI Spring 2021\Econ 129\Data

2 . log using "C:\Users\antho\Documents\UCI Spring 2021\Econ 129\Homework\Homework Results\ALGhomework7.log"

name: <unnamed>

log: C:\Users\antho\Documents\UCI Spring 2021\Econ 129\Homework\Homework Results\ALGhomework7.log

text log type:

opened on: 24 May 2021, 16:20:00

3 . *******************

4 . ** Q1

5 . use aed_kneereplace

(Data for A. Colin Cameron (2015): Analysis of Economics Data, W.W. Norton)

- 6 . * a) Regress medcharge against medcost.
- 7 . reg medcharge medcost

Source	SS	df	MS	Number	of obs	=	167
				F(1, 1	.65)	=	199.49
Model	5.2104e+10	1	5.2104e+10	Prob >	· F	=	0.0000
Residual	4.3096e+10	165	261185437	' R-squa	red	=	0.5473
				- Adj R-	squared	=	0.5446
Total	9.5199e+10	166	573489520	Root N	1SE	=	16161
medcharge	Coef.	Std. Err.	t	P> t	[95% Con	ıf.	Interval]
medcost _cons	1.79391 9046.648	.1270109 2651.66	14.12 3.41	0.000 0.001	1.543134 3811.088	-	2.044686 14282.21

8 . * b) Is the coefficient for medcost statistically significant at significance level 0.05? Explain.

- 9 . * Yes, the coefficient of medcost is statistically significant at level 0.05 because the critical value for the test : > at. significant.
- 10 . * c) Test the hypothesis that the coefficient for medcost equals one against the alternative that it does not equal on
- 11 . display "t-test = " (1.79391-1) / .1270109
 t-test = 6.2507234
- 12 . display invttail(165, 0.025)
 1.9744456
- 13 . * From the results, we reject the null and accept the alternative of the coefficient for medcost does not equal one.
- 14 . * d) Test the claim that a one dollar increase in cost is associated with a more than one dollar increase in the charge
- 15 . display invttail(165, 0.05)
- 1.654141
- 16 . * Because the t-stat = 6.25 > 1.65, we can conclude with evidence that a dollar increase in cost is associated with a
- 17 . * e) Which of assumptions 1-4 in the notes are necessary for this analysis to be valid?
- 18 . * Assumption 2 must be assumed because it allows for easier calculations by assuming the expected value of Ui in the
- 19 . ******************
- 20 . ** Q2
- 21 . clear *
- 22 . regress hexp_gdp gdp_pc
 no variables defined
 r(111);
- 23 . use oecdhealth2008
- 24 . regress hexp_gdp gdp_pc

SS	df	MS	Number of obs	=	34
			F(1, 32)	=	3.84
14.7013391	1	14.7013391	Prob > F	=	0.0588
122.548369	32	3.82963652	R-squared	=	0.1071
			Adj R-squared	=	0.0792
137.249708	33	4.15908205	Root MSE	=	1.9569
	14.7013391 122.548369	14.7013391 1 122.548369 32	14.7013391 1 14.7013391 122.548369 32 3.82963652	14.7013391	14.7013391

hexp_gdp	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
gdp_pc	.0000473	.0000242	1.96	0.059	-1.88e-06	.0000965
_cons	7.273534	.894013	8.14	0.000	5.45249	9.094579

25 . * a) If per capita GDP rises by \$1,000, by how much does the % of GDP spent on health c
> hange?

- 26 . display "change of hexp_gdp = "1000*0.0000473
 change of hexp_gdp = .0473
- 27 . * % of GDP spend on health change by a \$1000 increase in per capita GDP is equal to 4.7 $\,>\,3\%$
- 28 . * b) If the slope coefficient equals zero what is the implied income elasticity of heal
 > th expenditures? Explain
- 29 . * If the slope coefficient were to equal zero, the implied income elasticity of health
 > expenditures would become inelastic as there would be no changes in y or hexp_gdp. Gdp_
 > pc is a factor into hexp_gdp and without it, there would only be the constant of 7.27 f
 > or hexp_gdp.
- 30 . * c) Test at 5% whether or not there is a relationship between healthgdp and gdppc.
- 31 . pwcorr hexp_gdp gdp_pc, sig star(0.05)

	hexp_gdp	gdp_pc
hexp_gdp	1.0000	
gdp_pc	0.3273 0.0588	1.0000

- 32 . * Because the p-value above is 0.0588 and is greater than alpha of 0.05, we conclude th > at we can't reject the null and accept that there is a relationship between healthgdp a > nd gdppc.
- 33 . * d) Are there any outliers?
- 34 . graph twoway (scatter hexp_gdp gdp_pc) (lfit hexp_gdp gdp_pc)
- 35 . * Yes, there appears to be about two outliers that are far out of range of the fitted v > alues.
- 36 . * e) Which countries are outliers?
- 37 . predict uhat, resid
- 38 . list country uhat if abs(uhat) > 3

	country_name	uhat
20.	Luxembourg	-4.68882
34.	United States	7.113192

- 39 . * The countries that are outliers are Luxembourg and the United States.
- 40 . *****************

- 41 . ** Q3
- 42 . clear *
- 43 . use advertising
- 44 . * a) Regress sales on tv
- 45 . reg sales tv

Source	SS	df	MS		er of obs	=	200
Model Residual	3.3146e+09 2.1025e+09	1 198	3.3146e+09 10618841.6	Prob R-sq	uared	=	0.0000 0.6119
Total	5.4171e+09	199	27221853		R-squared MSE	=	0.6099 3258.7
sales	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
tv _cons	47.53664 7032.594	2.690607 457.8429		0.000 0.000	42.2307 6129.71		52.84256 7935.468

46 . * b) Predict population conditional mean sales for TV advertising expenditure of \$100,0 > 00.

47 . describe

Contains data from advertising.dta

obs: 200 vars: 8

17 May 2016 17:46

variable name	storage type	display format	value label	variable label
tv	float	%9.0g		TV advertising in \$ thousands
radio	float	%9.0g		Radio advertising in \$ thousands
newspaper	float	%9.0g		Newspaper advertising in \$ thousands
sales	float	%9.0g		Number of units sold
lnsales	float	%9.0g		Natural logarithm of sales
lntv	float	%9.0g		Natural logarithm of tv
lnradio	float	%9.0g		Natural logarithm of radio
lnnews	float	%9.0g		Natural logarithm of newspaper

Sorted by:

48 . sum tv

tv	200	147.0425	85.85424	.7	296.4
Variable	Obs	Mean	Std. Dev.	Min	Max

49 . scalar xbar = r(mean)

- 50 . scalar n=r(N)
- 51 . scalar sumxminusxbarsq = (n-1)*r(Var)
- 52 . reg sales tv

Source	SS	df	MS	Number of o		200
Model Residual	3.3146e+09 2.1025e+09	1 198	3.3146e+09 10618841.6	R-squared	= = =	0.0000 0.6119
Total	5.4171e+09	199	27221853	Adj R-squar Root MSE	red = =	0.6099 3258.7
sales	Coef.	Std. Err.	t	P> t [95%	Conf.	Interval]
tv _cons	47.53664 7032.594	2.690607 457.8429			23072 9.719	52.84256 7935.468

- 53 . scalar $b1 = b[_cons]$
- 54 . scalar b2=_b[tv]
- 55 . scalar s_e=e(rmse)
- 56 . scalar y_cm=b1+100*b2
- 57 . scalar $y_f = b1+100*b2$
- 58 . scalar s_y_cm=s_e*sqrt(1/n+(100-xbar)^2/sumxminusxbarsq)
- 59 . $scalar s_y_f=s_e*sqrt(1+1/n+(100-xbar)^2/sumxminusxbarsq)$
- 60 . display "The population conditional mean sales for TV advertsing expenditure of \$100,00 > 0 is y_cm

The population conditional mean sales for TV advertsing expenditure of \$100,000 is11786.2 > 58

61 . display "The population conditional mean sales for TV advertsing expenditure of \$100,00 > 0 is " y_cm

The population conditional mean sales for TV advertsing expenditure of \$100,000 is 11786. > 258

- 62 . *c) Provide a 95% confidence interval for this population conditional mean with TV adv > ertising expenditure of \$100,000.
- 63 . scalar tcrit=invttail(n-2, 0.025)
- 64 . display "95% CI for conditional mean : (" y_cm-tcrit*s_y_cm "," y_cm+tcrit*s_y_cm ")" 95% CI for conditional mean : (10893.222,12679.293)
- 65 . *d) Provide a 95% condence interval for actual sales with TV advertising expenditure of > \$100,000.

- 66 . display "95% CI for actual value: (" y_f-tcrit*s_y_f "," y_f+tcrit*s_y_f ")"
 95% CI for actual value: (5221.2845,18351.231)
- 67 . * e) What do you learn from the combined graph?
- 68 . twoway (lfitci sales tv) (scatter sales tv), saving(graph1, replace)
 (file graph1.gph saved)
- 69 . twoway (lfitci sales tv, stdf) (scatter sales tv), saving(graph2,replace)
 (file graph2.gph saved)
- 70 . graph combine graph1.gph graph2.gph, iscale(1.2) ysize(2.5) xsize(6) rows(1) ycommon
- 71 . * The confidence interval of the forecast is accurate and includes a majority of its da > ta within the interval. This ensures that the data fits our specifications
- 72 . ******************
- 73 . ** Q4
- 74 . * a)
- 75 . twoway (scatter sales tv) (lfit sales tv)
- 76 . * b) Given your graph in (a), do the errors appear to be homoskedastic or heteroskedast
 > ic?
- 77 . * This graph appears to be heteroskedastic.
- 78 . regress sales tv

Source	SS	df	MS		of obs	=	200
Model Residual	3.3146e+09 2.1025e+09	1 198	3.3146e+09 10618841.6	F(1, : Prob R-squ	> F [°] ared	= = =	312.14 0.0000 0.6119
Total	5.4171e+09	199	27221853	-	Adj R-squared Root MSE		0.6099 3258.7
sales	Coef.	Std. Err.	t	P> t	[95% Cor	ıf.	Interval]
tv _cons	47.53664 7032.594	2.690607 457.8429		0.000 0.000	42.23072 6129.719	_	52.84256 7935.468

- 79 . estimates store DEFAULT
- 80 . regress sales tv, vce(robust)

Number of obs	=	200
F(1, 198)	=	275.81
Prob > F	=	0.0000
R-squared	=	0.6119
Root MSE	=	3258.7
	F(1, 198) Prob > F R-squared	F(1, 198) = Prob > F = R-squared =

sales	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
tv	47.53664	2.862378	16.61	0.000	41.89198	53.1813
_cons	7032.594	333.2578	21.10	0.000	6375.403	7689.784

Monday May 24 16:31:47 2021 Page 7

81 . estimates store ROBUST

82 . estimates table DEFAULT ROBUST, b se t

Variable	DEFAULT	ROBUST
tv	47.53664 2.6906072	47.53664 2.8623782
_cons	17.67 7032.5936	16.61 7032.5936
	457.84294 15.36	333.25782 21.10

legend: b/se/t

83 . * c)

84 . * The results changed using heteroskedastic-robust se rather than default se were that > for the "tv", it increased to 2.862 while the constant's se decreased to 333.258. As a > result of this, the t-statistic for statistical significance for tv and the constant ch > anged. They are still high in value and still result in being significant.

85 . log close

name: <unnamed>

log: C:\Users\antho\Documents\UCI Spring 2021\Econ 129\Homework\Homework Results\

> ALGhomework7.log log type: text

closed on: 24 May 2021, 16:31:23