Logistic Regression

Objectives

- Describe the motivation for logistic regression
- Understand how to fit a logistic model and interpret its coefficients
- Explain common classification metrics, and how they tie into the ROC curve

Agenda

Afternoon: Logistic Regression

- Logistic regression details
 - Sigmoid (logistic) function
- Interpreting the results
 - Fitted values (probabilities)
 - Coefficients (log odds ratios)
- ▶ Pair Programming: Parts 2, 3, 4, and 5

Logistic Regression - Motivation II

Breakout: Pair Exercise, 5 mins

- Why logistic and not just plain old linear?
 - 1. What shape does the logistic function take?
 - 2. Why is the logistic function a good, logical fit for binary classification?
 - Discuss the problems with using standard linear regression for modeling binary response

Linear Review - Underlying Assumptions

► With linear regression, we assume that our **response is normally distributed**:

$$y_i|X \sim N(X\beta, \sigma^2)$$

With classification, that isn't the case

Classification - Observed Distribution

With binary classification setting, response is binary:

$$Y_i = \begin{cases} 1, & \text{if an event occurs} \\ 0, & \text{if it doesn't} \end{cases}$$

- We are interested in the probability that an event occurs given a subject's profile: $p_i = P(y_i = 1|X)$
 - ▶ Each observation is drawn from a **Bernoulli distribution**: $y_i|X \sim Bernoulli(p)$
- Our standard linear model won't work

A Model for Classification

- We need a model that:
 - ▶ Takes continuous input (e.g., from $-\infty$ to ∞)
 - Produces output between 0 and 1
 - ▶ Transitions between 0 and 1 "without wasting much time"
 - Has interpretable coefficients (like our standard linear regression model)
 - ▶ Takes the mean response of our observations and links it to a linear combination of our inputs (e.g., $X\beta$)
- ▶ Just as with linear regression, the linear predictor is $X\beta = \beta_0 x_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_p x_p$ where X is your design matrix: x_0 is a column vector of 1's and $x_1, ..., x_p$ are the feature column vectors
 - The explanatory variables may be quantitative, categorical, or mixed

Logistic Regression for Classification

Enter logistic regression...

$$p(y) = \frac{1}{1 + e^{-X\beta}}$$

Note: p(y) denotes the probability of success for y. We can think of this as the mean of the response

An Aside: Odds and Probabilities

 Given the probability an event occurring, the odds of that event are

$$odds = \frac{p}{1-p}$$

► Similarly, given the odds, you can calculate the probability

$$p = \frac{odds}{1 + odds}$$

An Aside: Odds and Probabilities

- Odds are commonly used in gambling, especially horse-racing
 - Even odds (1:1): $p = \frac{1}{1+1} = 0.5$
 - ▶ Odds are 3:1 for an event: $p = \frac{3}{1+3} = 0.75$
 - ► Long shot: 20:1 against: $1 p = 1 \frac{20}{1+20} = 0.0476$

Logistic Regression - The Details

Logistic Regression

▶ Logistic regression fits a **logistic function** that we use to obtain the probability that the response of an individual observation (y) is a success (typically denoted as a 1, where a failure is denoted by a 0)

$$p(y) = \frac{1}{1 + e^{-X\beta}}$$

▶ How do we get this function, though?

Logistic Regression - Link Function

- ▶ The **link function** provides the relationship between a linear combination of our inputs $(X\beta)$ and the mean of our response (p)
- ► For logistic regression, we use the following link function

$$\log(\frac{p}{1-p}) = X\beta$$

► The logistic model can be rewritten in terms of odds via the logit function

$$log(\frac{p}{1-p}) = logodds = logit(p)$$

Giving us a nice framework that seems familiar

$$logit(p) = X\beta$$

See the appendix for a derivation of how to move from this to the logistic function that we use to predict the mean of our response

Estimating the Parameters

The parameters of our logistic regression are estimated via maximum likelihood. We know that each individual observation follows a Bernoulli distribution:

$$y_i|X \sim Bernoulli(p)$$

▶ Given this, we can construct the likelihood of our β matrix as:

$$\mathcal{L}(\beta) = \prod_{i=1}^{N} p(y_i)^{y_i} (1 - p(y_i))^{1 - y_i}$$

And from there, our log likelihood:

$$\ell(\beta) = \sum_{i=1}^{N} y_i \log p(y_i) + (1 - y_i) \log(1 - p(y_i))$$

Estimating the Parameters

- ► The regression coefficients can be estimated using maximum likelihood estimation (MLE)
- Unlike linear regression, no closed form solution exists, therefore an iterative method such as Newton-Rhapson or Gradient Descent is needed
- Reasons that the model may not reach convergence
 - A large number of features relative to subjects
 - ▶ rule of thumb is at least 10 cases for each explanatory variable
 - Multicollinearity
 - ▶ Sparseness, specifically low cell counts for categorical predictors

An Aside: Odds Ratio

Given the definition of odds above, the odds ratio is

$$OR = \frac{Odds_1}{Odds_2} = \frac{p_1/(1-p_1)}{p_2/(1-p_2)}$$

For example, say the probability of a disease in individuals with a certain genetic trait is $p_1=0.05$ while in the general population its $p_2=0.001$ the resulting odds ratio would be

$$OR = \frac{0.05/0.95}{0.001/0.999} \approx 53$$

► This represents a measure of relative risk such that an individual with the genetic trait is 53 time more likely to develop the disease than a randomly chosen person

Model Interpretation

- In linear regression, the $\hat{\beta}$ coefficientscients can be interpreted directly as the change in y for a 1-unit increase in the explanatory variable
- In logistic regression, however, this would represent the change in logit value for a 1-unit increase in the explanatory variable, which is not interpretable
- ightharpoonup We can however convert the \hat{eta} coefficient to an estimate of Odds Ratio for a 1-unit increase in the explanatory variable

$$\widehat{\mathit{OR}} = e^{\hat{\beta}}$$

Model Interpretation - Example 1

► Say we fit a logistic regression model with the outcome/response as whether or not a person works (yes/no, which is denoted with a 1/0) and only one predictor, income:

$$ho = rac{1}{1 + e^{-(eta_0 + eta_{income} X_{income})}}$$

- Let's say that β_{income} is 0.00001. This means that a one-unit increase in income (\$1) causes an $e^{0.00001}$ increase in the odds of somebody working
 - $e^{0.00001} = 1.00001$

Model Interpretation - Example 2

- ▶ This ultimately means that for each additional dollar that a person makes, we expect a 0.001% increase in the odds that they are working
 - ► For an additional \$1000 dollars that a person makes, we expect a 1% increase in the odds that they are working

Uses of Logistic Regression

- ➤ To **predict probabilities** that subjects fall into one of 2 categories on a dichotomous response variable
- ► To **classify** subjects into one of 2 categories
 - one of our main focuses
- Lots of other possibilities

Predict Probabilities

Once the $\hat{\beta}$ coefficients have been calculated, we can estimate the probability p of the event occurring with

$$p = \frac{1}{1 + e^{-X\hat{\beta}}}$$

Classification

General Method

- For each unclassified subject, you would calculate the probability the subject falls in a specific class using the fitted model
- You would compare that probability to a predetermined decision rule boundary
 - default is 0.5
- ▶ If the predicted probability is > 0.5, classify as 1
 - Otherwise, classify as 0

Breakout: Pair, 5 mins

Understanding your chances

- State what each of the following terms are:
 - Probability
 - Odds
 - Log-Odds
 - Odds Ratio
- ▶ Give an example to demonstrate what each of the 4 terms are

Breakout: Individual, 5 mins; then pair, 5 mins

Interpret the results from this logistic regression model

- ▶ What are my current chances of getting into grad school?
- ► How would my chances change if I increased my GPA by 100 points?
- ▶ What score would I need on the GRE's to increase my chances to 95%?

Logit	Regression	Results
-------	------------	---------

Dep. Variable	:	а	dmit No.	Observations:	400
Model:		I	ogit Df E	Residuals:	397
Method:			MLE Df N	Model:	2
Date:	Fr	i, 02 Dec	2016 Pset	ıdo R-squ.:	0.03927
Time:		16:4	3:29 Log-	-Likelihood:	-240.17
converged:			True LL-1	Null:	-249.99
			LLR	p-value:	5.456e-05
=========		=======			
	coef	std err	Z	P> z	[95.0% Conf. Int.]
const	-4.9494	1.075	-4.604	0.000	-7.057 -2.842
gre	0.0027	0.001	2.544	0.011	0.001 0.005
gpa	0.7547	0.320	2.361	0.018	0.128 1.381

Breakout: Individual, 5 mins; then pair, 5 mins

Models 1 and 2 are from the same dataset. Explain what you see

Dep. Variable:	Survived	No. Observations:	712
Model:	Logit	Df Residuals:	709
Method:	MLE	Df Model:	2
Date:	Tue, 22 Nov 2016	Pseudo R-squ.:	0.2528
Time:	15:27:35	Log-Likelihood:	-359.02
converged:	True	LL-Null:	-480.45
		LLR p-value:	1.825e-53

	coef	std err	z	P> z	[95.0% Conf. Int.]
Intercept	0.6590	0.167	3.935	0.000	0.331 0.987
Sex[T.male]	-2.3711	0.189	-12.524	0.000	-2.742 -2.000
Fare	0.0121	0.003	4.595	0.000	0.007 0.017

Dep. Variable:	Survived	No. Observations:	712
Model:	Logit	Df Residuals:	708
Method:	MLE	Df Model:	3
Date:	Tue, 06 Dec 2016	Pseudo R-squ.:	0.3013
Time:	08:33:07	Log-Likelihood:	-335.70
converged:	True	LL-Null:	-480.45
		LLR p-value:	1.852e-62

	coef	std err	z	P> z	[95.0% Conf. Int.]
Intercept	3.1335	0.399	7.863	0.000	2.352 3.915
Sex[T.male]	-2.5536	0.204	-12.528	0.000	-2.953 -2.154
Fare	0.0019	0.002	0.850	0.395	-0.002 0.006
Pclass	-0.9283	0.137	-6.788	0.000	-1.196 -0.660

Appendix

Logistic Regression - From link to probability

1.
$$log(\frac{p}{1-p}) = X\beta$$

2.
$$\frac{p(y)}{1-p} = e^{X\beta}$$

3.
$$p = (1 - p)e^{X\beta}$$

4.
$$p = e^{X\beta} - pe^{X\beta}$$

5.
$$p + p(y)e^{X\beta} = e^{X\beta}$$

6.
$$p(1+e^{X\beta})=e^{X\beta}$$

7.
$$p = \frac{e^{X\beta}}{1 + e^{X\beta}}$$

8.
$$p = \frac{\frac{e^{X\beta}}{X\beta}}{\frac{1+e^{X\beta}}{X\beta}}$$
9.
$$p = \frac{1}{1+e^{-X\beta}}$$

9.
$$p = \frac{1}{1 + e^{-X\beta}}$$