Student ID:

Name:

1. Determine whether each of these conditional statements is true or false.

a) If
$$1 + 1 = 2$$
, then $2 + 2 = 5$.

b) If
$$1 + 1 = 3$$
, then $2 + 2 = 4$.

c) If
$$1 + 1 = 3$$
, then $2 + 2 = 5$.

d) If monkeys can fly, then 1 + 1 = 3.

a)False b)True c)True d)True

2. Construct a truth table for each of these compound propositions.

a)
$$p \to \neg q$$

c) $(p \to q) \lor (\neg p \to q)$

b)
$$\neg p \leftrightarrow q$$

d) $(p \rightarrow q) \land (\neg p \rightarrow q)$

e)
$$(p \leftrightarrow q) \lor (\neg p \leftrightarrow q)$$

$$\mathbf{f}) \ (\neg p \leftrightarrow \neg q) \leftrightarrow (p \leftrightarrow q)$$

p	q	p o eg q	$\neg p \leftrightarrow q$	$(p \to q) \lor (\neg p \to q)$		$(p \leftrightarrow q) \lor (\neg p \leftrightarrow q)$	$ \begin{array}{c} (\neg p \leftrightarrow \neg q) \leftrightarrow \\ (p \leftrightarrow q) \end{array} $
T	T	F	F	T	T	T	T
T	F	T	T	T	F	T	T
F	T	T	T	T	T	T	T
F	F	T	F	T	F	T	T

3. Translate these statements into English, where C(x) is "xis a comedian" and F(x) is "x is funny" and the domain consists of all people.

a)
$$\forall x (C(x) \rightarrow F(x))$$

c) $\exists x (C(x) \rightarrow F(x))$

b)
$$\forall x (C(x) \land F(x))$$

a)
$$\forall x(C(x) \rightarrow F(x))$$

b) $\forall x(C(x) \land F(x))$
c) $\exists x(C(x) \rightarrow F(x))$
d) $\exists x(C(x) \land F(x))$

a) Every comedian is funny. b) Every person is a funny comedian. c) There exists a person such that if she or he is a comedian, then she or he is funny. d) Some comedians are funny.

4. Identify the error or errors in this argument that supposedly shows that if $\exists x P(x) \land \exists x Q(x)$ is true then $\exists x (P(x) \land Q(x))$ is true.

1. $\exists x P(x) \lor \exists x Q(x)$ Premise

2. $\exists x P(x)$ Simplification from (1)

3. P(c)Existential instantiation from (2)

4. $\exists x Q(x)$ Simplification from (1)

5. Q(c)6. $P(c) \wedge Q(c)$ Existential instantiation from (4)

Conjunction from (3) and (5)

7. $\exists x (P(x) \land Q(x))$ Existential generalization

The error occurs in step (5),

because we cannot assume, as is

being done here, that the c that

makes P true is the same as the c

that makes Q true.

5. Use resolution to show that the compound proposition $(p \lor q) \land (\neg p \lor q) \land (p \lor \neg q) \land (\neg p \lor \neg q)$ is not satisfiable.

Assume that this proposition is satisfiable. Using resolution on the first two clauses enables us to conclude $q \lor q$; in other words, we know that q has to be true. Using resolution on the last two clauses enables us to conclude $\neg q \lor \neg q$; in other words, we know that $\neg q$ has to be true. This is a contradiction. So this proposition is not satisfiable.