Introduction to Mobile Robotics and Robot Operating System (ROS)

Lecture 3. Kinematics models of wheeled robots.

Probabilistic motion models

Oleg Shipitko,

March 2021

Outline

- Kinematic models of wheeled robots
 - a. Differential drive
 - b. Tricycle
 - c. Ackermann principle
 - d. Omni- and mecanum-wheels
- 2. Probabilistic motion models
 - a. Odometry-based model
 - b. Speed control based model

RECURSIVE BAYESIAN POSE ESTIMATION

$$p(\mathbf{x_t}|map, \mathbf{z_t}, \mathbf{u_t}) = C \cdot p(\mathbf{z_t}|\mathbf{x_t}, map) \int_{S} p(\mathbf{x_t}|\mathbf{u_t}, \mathbf{x_{t-1}}) p(\mathbf{x_{t-1}}|map, \mathbf{z_{t-1}}, \mathbf{u_{t-1}}) d\mathbf{x_{t-1}}$$

$$S$$
 — the probabilistic space of robot poses

$$p(\mathbf{z_t}|\mathbf{x_t}, map)$$
 — observation (measurement) model

$$p(\mathbf{x_t}|\mathbf{u_t},\mathbf{x_{t-1}})$$
 — motion model

$$p(\mathbf{x_{t-1}}|map, \mathbf{z_{t-1}}, \mathbf{u_{t-1}})$$
 — previous system state (robot pose)

KALMAN FILTER

Prediction:

$$\hat{\mathbf{x}}_t = \mathbf{F}_t \hat{\mathbf{x}}_{t-1} + \mathbf{B}_k \vec{\mathbf{u}}_t$$

$$\hat{\mathbf{\Sigma}}_t = \mathbf{F}_t \mathbf{\Sigma}_{t-1} \mathbf{F}_t^T + \mathbf{Q}_t$$

Correction:

$$\mathbf{K}' = \hat{\mathbf{\Sigma}}_t \mathbf{H}_t^T (\mathbf{H}_t \hat{\mathbf{\Sigma}}_t \mathbf{H}_t^T + \mathbf{R}_t)^{-1}$$

$$\mathbf{x'}_t = \mathbf{H}_t \hat{\mathbf{x}}_t + \mathbf{K'} (\mathbf{z}_t - \mathbf{H}_t \hat{\mathbf{x}}_t)$$

$$\mathbf{\Sigma'}_t = \hat{\mathbf{\Sigma}}_t - \mathbf{K'}\mathbf{H}_t\hat{\mathbf{\Sigma}}_t$$

Kalman Filter Information Flow

PARTICLE FILTER

Algorithm 1 Generic Monte-Carlo localization algorithm

1: procedure $MCL(\mathbf{x_{t-1}}, m, \mathbf{u_t}, \mathbf{z_t})$

2:
$$\{\mathbf{x_t^n}\} = \{\mathbf{x_t^n}\} = \emptyset$$

3: for n = 1 to N do

4: sample $x_t^n \sim p(\mathbf{x_t}|\mathbf{u_t}, \mathbf{x_{t-1}^n})$ Motion model

5:
$$w_t^n = p(\mathbf{z_t}|\mathbf{x_t^n}, map)$$

6:
$$\{\mathbf{x_t^n}\} = \{\mathbf{x_t^n}\} + \langle x_t^n, w_t^n \rangle$$

Observation model

7: end for

8: for
$$n = 1$$
 to N do

9: draw i with probability $\propto w_t^i$

10:
$$\{\mathbf{x_t^n}\} = \{\mathbf{x_t^n}\} + \langle x_t^i, w_t^i \rangle$$

11: end for

12: return $\{\mathbf{x_t^n}\}$

13: end procedure

Resampling

RECURSIVE BAYESIAN POSE ESTIMATION

$$p(\mathbf{x_t}|map, \mathbf{z_t}, \mathbf{u_t}) = C \cdot \frac{p(\mathbf{z_t}|\mathbf{x_t}, map)}{p(\mathbf{x_t}|\mathbf{u_t}, \mathbf{x_{t-1}})} p(\mathbf{x_{t-1}}|map, \mathbf{z_{t-1}}, \mathbf{u_{t-1}}) d\mathbf{x_{t-1}}$$

$$S$$
 — the probabilistic space of robot poses

$$p(\mathbf{z_t}|\mathbf{x_t}, map)$$
 — observation (measurement) model

$$p(\mathbf{x_t}|\mathbf{u_t},\mathbf{x_{t-1}})$$
 — motion model

$$p(\mathbf{x_{t-1}}|map, \mathbf{z_{t-1}}, \mathbf{u_{t-1}})$$
 — previous system state (robot pose)

RECURSIVE BAYESIAN POSE ESTIMATION

$$p(\mathbf{x_t}|map, \mathbf{z_t}, \mathbf{u_t}) = C \cdot p(\mathbf{z_t}|\mathbf{x_t}, map) \int_S p(\mathbf{x_t}|\mathbf{u_t}, \mathbf{x_{t-1}}) p(\mathbf{x_{t-1}}|map, \mathbf{z_{t-1}}, \mathbf{u_{t-1}}) d\mathbf{x_{t-1}}$$

$$S$$
 — the probabilistic space of robot poses

$$p(\mathbf{z_t}|\mathbf{x_t}, map)$$
 — observation (measurement) model

$$p(\mathbf{x_t}|\mathbf{u_t},\mathbf{x_{t-1}})$$
 — motion model

$$p(\mathbf{x_{t-1}}|map, \mathbf{z_{t-1}}, \mathbf{u_{t-1}})$$
 — previous system state (robot pose)

Kinematic models of wheeled robots

girafe ai

(some) TYPES OF WHEELED KINEMATICS

HOLONOMIC SYSTEMS

A robot is called **holonomic** if the number of **controlled** degrees of freedom = the **total** number of degrees of freedom.

- A **nonholonomic system** is a mechanical system on which, in addition to geometric ones, kinematic constraints are also superimposed.
- ☐ Mathematically, nonholonomic constraints are expressed by non-integrable equations.

HOLONOMIC SYSTEMS

- ☐ Holonomic constraints limit the allowed state space (geometry).
- For instance, if there is a truck and a trailer, not all angles between them are possible. This is a holonomic constraint.

- Nonholonomic constraints
 limit the control space relative
 to the current state.
- For instance, a car can not move sideway.

DIRECT AND INVERSE KINEMATICS PROBLEMS

- ☐ The direct kinematics

 problem having control

 parameters (for example, wheel

 speeds) and motion time, find

 the position into which the

 robot has moved.
- problem is to find the control parameters that move the robot into a given position in a given time.

ICC – Instantaneous Center of Curvature

 (x, y, θ) – wheel axle center coordinates

 V_r

the speed of the right and left wheels.
 Controlled parameters.

14

ICC – Instantaneous Center of Curvature (x, y, θ) – wheel axle center coordinates

$$w(R + \frac{l}{2}) = V_r$$
$$w(R - \frac{l}{2}) = V_l$$

$$w = \frac{V_r - V_l}{l} \quad V = \frac{V_l + V_r}{2}$$
$$R = \frac{l}{2} \frac{V_r + V_l}{V_r - V_l}$$

15

3 types of motion:

 $V_l = V_r$ — linear motion. The radius of rotation is **infinity**. The angular velocity is **zero**.

 $V_l = -V_r$ — rotation around the center. The radius of rotation is zero.

 $V_l = 0 \ (V_r = 0)$ — rotation around the left (right) wheel. The radius of rotation is l/2.

DIFFERENTIAL DRIVE FORWARD

KINEMATICS

$$ICC = [x - R\sin(\theta), y + R\cos(\theta)]$$

At the time moment $t+\delta t$ the robot pose is defined as:

$$\begin{bmatrix} x' \\ y' \\ \theta' \end{bmatrix} = \begin{bmatrix} \cos(\omega\delta t) & -\sin(\omega\delta t) & 0 \\ \sin(\omega\delta t) & \cos(\omega\delta t) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x - ICC_x \\ y - ICC_y \\ \theta \end{bmatrix} + \begin{bmatrix} ICC_x \\ ICC_y \\ \omega\delta t \end{bmatrix}$$

DIFFERENTIAL DRIVE FORWARD

KINEMATICS

$$x(t) = \int_0^t V(t)cos[\theta(t)]dt$$

$$y(t) = \int_0^t V(t)sin[\theta(t)]dt$$

$$\Theta(t) = \int_0^t \omega(t)dt$$

$$x(t) = \frac{1}{2} \int_0^t [v_r(t) + v_l(t)] \cos[\theta(t)] dt$$

$$y(t) = \frac{1}{2} \int_0^t [v_r(t) + v_l(t)] \sin[\theta(t)] dt$$

$$\Theta(t) = \frac{1}{l} \int_0^t [v_r(t) - v_l(t)] dt$$

TRICYCLE

$$ICC = [x - R\sin(\theta), y + R\cos(\theta)]$$

$$R = \frac{d}{\tan \varphi}$$

At the time moment $\mathbf{t}+\delta\mathbf{t}$ the robot pose is

$$\begin{bmatrix} defined as: \\ y' \\ \theta' \end{bmatrix} = \begin{bmatrix} cos(\omega\delta t) & -sin(\omega\delta t) & 0 \\ sin(\omega\delta t) & cos(\omega\delta t) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x - ICC_x \\ y - ICC_y \\ \theta \end{bmatrix} + \begin{bmatrix} ICC_x \\ ICC_y \\ \omega\delta t \end{bmatrix}$$

$$\begin{bmatrix} x - ICC_x \\ y - ICC_y \\ \theta \end{bmatrix} + \begin{bmatrix} ICC_x \\ ICC_y \\ \omega \delta t \end{bmatrix}$$

TRICYCLE

Features:

- Can not rotate in place
- When using 4 wheels, a differential for the rear wheels and an Ackermann steering geometry for the steering wheels are required

ACKERMANN STEERING PRINCIPLE

Steering geometry principle designed to allow steering wheels to go around circles of different radii and to avoid wheel slip.

ACKERMANN STEERING PRINCIPLE

$$tan(\phi) = \frac{l}{r}$$

$$tan(\phi_i) = \frac{\iota}{r - \frac{w}{2}}$$

$$tan(\phi_o) = \frac{l}{r + \frac{w}{2}}$$

OMNIDIRECTIONAL WHEELS

MECANUM WHEELS (ILON WHEEL, SWEDISH WHEEL)

MECANUM WHEELS (ILON WHEEL, SWEDISH WHEEL)

$$\begin{bmatrix} v_x \\ v_z \\ \omega_0 \end{bmatrix} = \frac{r}{4} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & -1 & 1 \\ -\frac{1}{L_1 + L_2} & \frac{1}{L_1 + L_2} & -\frac{1}{L_1 + L_2} & \frac{1}{L_1 + L_2} \end{bmatrix} \begin{bmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \\ \omega_4 \end{bmatrix}$$

Motion type	ω_{1}	ω_2	ω_3	ω_4
Straight	ω	ω	ω	ω
Perpendicular	ω	-ω	-ω	ω
45° motion	0	ω	ω	0
In place rotation	ω	-ω	ω	-ω

Probabilistic motion models

girafe ai

RECURSIVE BAYESIAN POSE ESTIMATION

$$p(\mathbf{x_t}|map, \mathbf{z_t}, \mathbf{u_t}) = C \cdot p(\mathbf{z_t}|\mathbf{x_t}, map) \int_S p(\mathbf{x_t}|\mathbf{u_t}, \mathbf{x_{t-1}}) p(\mathbf{x_{t-1}}|map, \mathbf{z_{t-1}}, \mathbf{u_{t-1}}) d\mathbf{x_{t-1}}$$

$$C$$
 — normalization coefficient

$$S$$
 — the probabilistic space of robot poses

$$p(\mathbf{z_t}|\mathbf{x_t}, map)$$
 — observation (measurement) model

$$p(\mathbf{x_t}|\mathbf{u_t},\mathbf{x_{t-1}})$$
 — motion model

$$p(\mathbf{x_{t-1}}|map, \mathbf{z_{t-1}}, \mathbf{u_{t-1}})$$
 — previous system state (robot pose)

WHY DO WE NEED PROBABILISTIC MOTION MODELS?

- Actuators, like sensors, are not absolutely accurate.
- External factors also affect the precision of motion.

Difference in wheel diameters

Obstacles

Slippage on various surfaces

PROBABILISTIC MOTION MODELS

In practice, there are 2 types of motion models:

- Odometry-based
- □ Speed control based (dead reckoning)-

Historically was used in ships navigation

- Odometry-based models are used when the robot is equipped with wheels encoders.
- Speed-based models are used when there are no encoders.

 They are based on calculating the traveled distance given the speed and travel time.

ODOMETRY-BASED MODEL

- The robot is moving from (x, y, θ) to (x', y', θ')
- \Box Encoders provide the following information: $u_t = (\Delta_{trans}, \Delta_{rot1}, \Delta_{rot2})$

$$\Delta_{trans} = \sqrt{(x - x')^2 + (y - y')^2}$$

$$\Delta_{rot1} = atan2(y'-y, x'-x) - \theta$$

$$\Delta_{rot2} = \theta' - \theta - \Delta_{rot1}$$

NOISE MODEL

Real motion is prone to error (noise):

$$\hat{\Delta}_{trans} = \Delta_{trans} + \eta_1$$

$$\hat{\Delta}_{rot1} = \Delta_{rot1} + \eta_2$$

$$\hat{\Delta}_{rot2} = \Delta_{rot2} + \eta_3$$

NOISE MODEL

$$\varepsilon_{\sigma^2}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\frac{x^2}{\sigma^2}}$$

$$\varepsilon_{\sigma^2}(x) = \begin{cases} 0 \text{ if } |x| > \sqrt{6\sigma^2} \\ \frac{\sqrt{6\sigma^2 - |x|}}{6\sigma^2} \end{cases}$$

NOISE MODELING

- 1. Algorithm **prob_normal_distribution**(*a*,*b*):
- 2. return $\frac{1}{\sqrt{2\pi b^2}} \exp\left\{-\frac{1}{2}\frac{a^2}{b^2}\right\}$

- 1. Algorithm **prob_triangular_distribution**(*a*,*b*):
- 2. return $\max \left\{ 0, \frac{1}{\sqrt{6} \ b} \frac{|a|}{6 \ b^2} \right\}$

SAMPLING FROM NOISE MODEL

- Algorithm sample_normal_distribution(b):
- 2. return $\frac{1}{2}\sum_{i=1}^{12} rand(-b,b)$

- 1. Algorithm **sample_triangular_distribution**(*b*):
- 2. return $\frac{\sqrt{6}}{2} \left[\operatorname{rand}(-b, b) + \operatorname{rand}(-b, b) \right]$

SAMPLING FROM NOISE MODEL

10³ samples

10⁵ samples

10⁴ samples

10⁶ samples

POSE POSTERIOR DISTRIBUTION ESTIMATION

hypotheses odometry

- 1. Algorithm motion_model_odometry (x, x') $[\bar{x}, \bar{x}']$
- 2. $\delta_{trans} = \sqrt{(\overline{x}' \overline{x})^2 + (\overline{y}' \overline{y})^2}$
- 3. $\delta_{rot1} = atan2(\bar{y}' \bar{y}, \bar{x}' \bar{x}) \bar{\theta}$ odometry params (**u**)
- 4. $\delta_{rot2} = \overline{\theta}' \overline{\theta} \delta_{rot1}$
- 5. $\hat{\delta}_{trans} = \sqrt{(x'-x)^2 + (y'-y)^2}$
- 6. $\hat{\delta}_{rot1} = atan2(y'-y, x'-x) \theta$ values of interest (**x**,**x**')
- 7. $\hat{\delta}_{rot2} = \theta' \theta \hat{\delta}_{rot1}$
- 8. $p_1 = \operatorname{prob}(\delta_{\text{rot1}} \hat{\delta}_{\text{rot1}}, \alpha_1 \mid \delta_{\text{rot1}} \mid +\alpha_2 \delta_{\text{trans}})$
- 9. $p_2 = \text{prob}(\delta_{\text{trans}} \hat{\delta}_{\text{trans}}, \alpha_3 \delta_{\text{trans}} + \alpha_4 (|\delta_{\text{rot1}}| + |\delta_{\text{rot2}}|))$

- girafe 10. $p_3 = \text{prob}(\delta_{\text{rot}2} \hat{\delta}_{\text{rot}2}, \alpha_1 | \delta_{\text{rot}2} | + \alpha_2 \delta_{\text{trans}})$
 - 11. return $p_1 \cdot p_2 \cdot p_3$

SAMPLING FROM MOTION MODEL

Algorithm sample_motion_model(u, x):

$$u = \langle \delta_{rot1}, \delta_{rot2}, \delta_{trans} \rangle, x = \langle x, y, \theta \rangle$$

- 1. $\hat{\delta}_{rot1} = \delta_{rot1} + \text{sample}(\alpha_1 | \delta_{rot1} | + \alpha_2 \delta_{trans})$
- 2. $\hat{\delta}_{trans} = \delta_{trans} + \text{sample}(\alpha_3 \delta_{trans} + \alpha_4 (|\delta_{rot1}| + |\delta_{rot2}|))$
- 3. $\hat{\delta}_{rot2} = \delta_{rot2} + \text{sample}(\alpha_1 | \delta_{rot2} | + \alpha_2 | \delta_{trans})$
- 4. $x' = x + \hat{\delta}_{trans} \cos(\theta + \hat{\delta}_{rot1})$
- 5. $y' = y + \hat{\delta}_{trans} \sin(\theta + \hat{\delta}_{rot1})$

sample_normal_distribution

$$\mathbf{6.} \quad \theta' = \theta + \hat{\delta}_{rot1} + \hat{\delta}_{rot2}$$

7. Return $\langle x', y', \theta' \rangle$

EXAMPLE OF ODOMETRY-BASED MOTION MODEL

SPEED-BASED MOTION MODEL

- Such a model assumes that we control the parameters of the robot's motion linear and angular velocity
- ☐ The robot moves along a circular arc
- Control signals (speeds) are subject to noise

$$\hat{v} = v + \mathcal{E}_{\alpha_1 |v| + \alpha_2 |\omega|}$$

$$\hat{\omega} = \omega + \varepsilon_{\alpha_3|\nu| + \alpha_4|\omega|}$$

SPEED-BASED MOTION MODEL

☐ To allow the final turn, a third motion parameter is introduced

$$\hat{v} = v + \mathcal{E}_{\alpha_1 |v| + \alpha_2 |\omega|}$$

$$\hat{\omega} = \omega + \varepsilon_{\alpha_3|\nu| + \alpha_4|\omega|}$$

$$\hat{\gamma} = \mathcal{E}_{\alpha_{5}|v| + \alpha_{6}|\omega|}$$

SPEED-BASED MOTION MODEL

$$x' = x - \frac{\hat{v}}{\hat{\omega}}\sin\theta + \frac{\hat{v}}{\hat{\omega}}\sin(\theta + \hat{\omega}\Delta t)$$

$$y' = y + \frac{\hat{v}}{\hat{\omega}}\cos\theta - \frac{\hat{v}}{\hat{\omega}}\cos(\theta + \hat{\omega}\Delta t)$$

$$\theta' = \theta + \hat{\omega}\Delta t + \hat{\gamma}\Delta t$$

SAMPLING FROM SPEED-BASED MOTION MODEL

1: Algorithm sample_motion_model_velocity(u_t, x_{t-1}):

2:
$$\hat{v} = v + \mathbf{sample}(\alpha_1 v^2 + \alpha_2 \omega^2)$$

3:
$$\hat{\omega} = \omega + \mathbf{sample}(\alpha_3 v^2 + \alpha_4 \omega^2)$$

4:
$$\hat{\gamma} = \mathbf{sample}(\alpha_5 v^2 + \alpha_6 \omega^2)$$

5:
$$x' = x - \frac{\hat{v}}{\hat{\omega}}\sin\theta + \frac{\hat{v}}{\hat{\omega}}\sin(\theta + \hat{\omega}\Delta t)$$

6:
$$y' = y + \frac{\hat{v}}{\hat{\omega}} \cos \theta - \frac{\hat{v}}{\hat{\omega}} \cos(\theta + \hat{\omega}\Delta t)$$

7:
$$\theta' = \theta + \hat{\omega}\Delta t + \hat{\gamma}\Delta t$$

8: return
$$x_t = (x', y', \theta')^T$$

EXAMPLE OF SPEED-BASED MOTION MODEL

ODOMETRY-BASED MODEL

SPEED-BASED MODEL

MOTION MODELS ACCOUNTING FOR ENVIRONMENT

Approximation: $p(x'|u,x,m) = \eta \ p(x'|m) \ p(x'|u,x)$

ADDITIONAL RESOURCES

- Probabilistic Robotics (in Notion). Chapter 5.
- 3. Mobility: wheels and wheas

Thanks for attention!

Questions? Additions? Welcome!

girafe

