MEAM 520 Lecture 6: DH Parameters

Cynthia Sung, Ph.D.

Mechanical Engineering & Applied Mechanics

University of Pennsylvania

Last Time

The **Denavit-Hartenberg transform** results from successive rotations and translations via the four DH parameters

The transform from i to i-1 is

Three DH parameters will be **constant** for each joint's transformation, and one will **vary**.

Plug DH parameters into the above formula to find each joint's transformation matrix.

The final transformation matrix from tip to base is

$$\mathbf{T}_n^0 = A_1(q_1) \cdots A_n(q_n)$$

There have been some questions about the lab report

This rubric was posted online with Lab 1

Completeness: Did the report address	5 pts
all assigned tasks?	
Method: Was the approach technically	5 pts
sound and reproducible?	
Evaluation : Were all relevant results	5 pts
reported? Are the test cases sufficient?	
Analysis: Was the analysis complete	5 pts
and free of error?	
Clarity: Was the report clear and	5 pts
organized?	

Methods:

5: Sound method that **identifies assumptions and limitations**; Methods described in sufficient detail to be **reproducible** by a classmate

Evaluation:

5: Test cases clearly designed to **demonstrate methods and limitations**; All relevant quantitative **data** and qualitative observations reported

Analysis:

5: Analysis is logical and **supported by data**; Relation between the reported results and the conclusions is clear

There is no requirement on how you accomplish this. Use tables, plots, screenshots of the simulation, textual description, depending on what works best for what you are trying to convey.

Today: DH parameter examples

Chapter 3: Forward and Inverse Kinematics

• Read Sec. 3.2

Lab 1: Kinematic Characterization of the Lynx

MEAM 520, University of Pennsylvania

September 9, 2020

This lab consists of two portions, with a pre-lab due on Wednesday, September 16, by midnight, 11:59 p.m.) and a lab (code+report) due on Wednesday, September 23, by midnight (11:59 p.m.). Late submissions will be accepted until midnight on Saturday following the deadline, but they will be penalized by 25% for each partial or full day late. After the late deadline, no thriften assignments may be submitted; post a private message on Piazza to request an extension if you need one due to a special situation. This assignment is worth 50 points.

You may talk with other students about this assignment, ask the teaching team questions, use a calculator and other tools, and consult outside sources such as the Internet. To help you actually learn the material, what you submit must be your own work, not copied from any other individual or team. Any submissions suspected of violating Penn's Code of Academic Integrity will be reported to the Office of Student Conduct. When you get stuck, post a question on Piazza or go to office hours.

Individual vs. Pair Programming

Work closely with your partner throughout the lab, following these guidelines, which were adapted from "All I really needed to know about pair programming I learned in kindergarten," by Williams and Kessler, Communications of the ACM, May 2000. This article is available on Canvas under Files / Resources.

- Start with a good attitude, setting aside any skepticism, and expect to jell with your partner.
- · Don't start alone. Arrange a meeting with your partner as soon as you can.
- Use just one setup, and sit side by side. For a programming component, a desktop computer with a large monitor is better than a laptop. Make sure both partners can see the screen.
- At each instant, one partner should be driving (writing, using the mouse/keyboard, moving the robot)
 while the other is continuously reviewing the work (thinking and making suggestions).
- Change driving/reviewing roles at least every 30 minutes, even if one partner is much more experienced than the other. You may want to set a timer to help you remember to switch.
- If you notice an error in the equation or code that your partner is writing, wait until they finish the line to correct them.
- · Stay focused and on-task the whole time you are working together.
- Take a break periodically to refresh your perspective.
- Share responsibility for your project; avoid blaming either partner for challenges you run into
- Recognize that working in pairs usually takes more time than working alone, but it produces better work, deeper learning, and a more positive experience for the participants.

1

Lab 1 due 9/23, 11:59 p.m.

Today: DH parameter examples

• When is $a_i \neq 0$?

Help! My DH parameters don't include all of my robot dimensions!

Shown at
$$\theta_1^* = 0, \theta_2^* = 0$$
, and $d_3^* = d$

The diagram should show revolute joints at zero.

Prismatic joints are usually shown at a positive displacement instead of zero.

Step 1: Locate and label the joint axes z_0, \ldots, z_{n-1} .

SCARA

SCARA

Step 2: Establish the base frame. Set the origin anywhere on the z_0 -axis. The x_0 and y_0 axes are chosen conveniently to form a right-handed frame.

SCARA

For
$$i = 1, ..., n - 1$$
,

- **Step 3:** Locate the origin o_i where the common normal to z_i and z_{i-1} intersects z_i . If z_i intersects z_{i-1} locate o_i at this intersection. If z_i and z_{i-1} are parallel, locate o_i in any convenient position along z_i .
- **Step 4:** Establish x_i along the common normal between z_{i-1} and z_i through o_i , or in the direction normal to the $z_{i-1} z_i$ plane if z_{i-1} and z_i intersect.
- **Step 5:** Establish y_i to complete a right-handed frame.

SCARA

For i = 1, ..., n - 1,

- **Step 3:** Locate the origin o_i where the common normal to z_i and z_{i-1} intersects z_i . If z_i intersects z_{i-1} locate o_i at this intersection. If z_i and z_{i-1} are parallel, locate o_i in any convenient position along z_i .
- **Step 4:** Establish x_i along the common normal between z_{i-1} and z_i through o_i , or in the direction normal to the $z_{i-1} z_i$ plane if z_{i-1} and z_i intersect.
- **Step 5:** Establish y_i to complete a right-handed frame.

SCARA

Step 6: Establish the end-effector frame $o_n x_n y_n z_n$. Assuming the n-th joint is revolute, set $z_n = a$ along the direction z_{n-1} . Establish the origin o_n conveniently along z_n , preferably at the center of the gripper or at the tip of any tool that the manipulator may be carrying. Set $y_n = s$ in the direction of the gripper closure and set $x_n = n$ as $s \times a$. If the tool is not a simple gripper set x_n and y_n conveniently to form a right-handed frame.

Step 7: Create a table of link parameters a_i , d_i , α_i , θ_i .

 $a_i = \text{distance along } x_i \text{ from the intersection of the } x_i \text{ and } z_{i-1} \text{ axes to } o_i$.

 d_i = distance along z_{i-1} from o_{i-1} to the intersection of the x_i and z_{i-1} axes. d_i is variable if joint i is prismatic.

 α_i = the angle between z_{i-1} and z_i measured about x_i .

 θ_i = the angle between x_{i-1} and x_i measured about z_{i-1} . θ_i is variable if joint i is revolute.

SCARA

Step 7: Create a table of link parameters a_i , d_i , α_i , θ_i .

 $a_i = \text{distance along } x_i \text{ from the intersection of the } x_i \text{ and } z_{i-1} \text{ axes to } o_i$.

 d_i = distance along z_{i-1} from o_{i-1} to the intersection of the x_i and z_{i-1} axes. d_i is variable if joint i is prismatic.

 α_i = the angle between z_{i-1} and z_i measured about x_i .

 θ_i = the angle between x_{i-1} and x_i measured about z_{i-1} . θ_i is variable if joint i is revolute.

SCARA

Step 8: Form the homogeneous transformation matrices A_i by substituting the above parameters into (3.10).

$$A_{i} = \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}}c_{\alpha_{i}} & s_{\theta_{i}}s_{\alpha_{i}} & a_{i}c_{\theta_{i}} \\ s_{\theta_{i}} & c_{\theta_{i}}c_{\alpha_{i}} & -c_{\theta_{i}}s_{\alpha_{i}} & a_{i}s_{\theta_{i}} \\ 0 & s_{\alpha_{i}} & c_{\alpha_{i}} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

SCARA

$$A_{1} = \begin{bmatrix} c_{1} & -s_{1} & 0 & a_{1}c_{1} \\ s_{1} & c_{1} & 0 & a_{1}s_{1} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_2 = \begin{bmatrix} c_2 & s_2 & 0 & a_2c_2 \\ s_2 & -c_2 & 0 & a_2s_2 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Step 9: Form $T_n^0 = A_1 \cdots A_n$. This then gives the position and orientation of the tool frame expressed in base coordinates.

$$T_3^0 = A_1 A_2 A_3 = \begin{bmatrix} c_{12}^* & s_{12}^* & 0 \\ s_{12}^* & -c_{12}^* & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_1 c_1^* + a_2 c_{12}^* \\ a_1 s_1^* + a_2 s_{12}^* \\ -d_3^* \\ 0 & 1 \end{bmatrix}$$

SCARA

$$A_{1} = \begin{bmatrix} c_{1} & -s_{1} & 0 & a_{1}c_{1} \\ s_{1} & c_{1} & 0 & a_{1}s_{1} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} c_{2} & s_{2} & 0 & a_{2}c_{2} \end{bmatrix}$$

$$A_2 = \begin{bmatrix} c_2 & s_2 & 0 & a_2c_2 \\ s_2 & -c_2 & 0 & a_2s_2 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

\mathcal{Z}_2 z_1 Q: Are these z-axis locations correct?

cylindrical

cylindrical

Q: Are these z-axis locations correct?

Yes – Each z axis defines the positive axial direction for the following joint variable.

Final z axis is parallel to the previous one for convenience. Could have chosen other.

\mathcal{Z}_2 z_1 Q: Is the zero frame correct?

 x_0

cylindrical

cylindrical

 x_0

Q: Is the zero frame correct?

Yes – you can pick any x and y axes for the base frame as long as the frame is right-handed.

\mathcal{Z}_2 z_1 Q: Is frame 1 correct? Q: Are there other options? y_1

 x_0

cylindrical

cylindrical

Q: Is frame 1 correct?

Q: Are there other options?

Yes $-x_1$ is perpendicular to and intersecting both z_0 and z_1 .

Any vector perpendicular to z_1 would work fine, but the parameters would differ.

 z_1

\mathcal{Z}_2 z_1 Q: Is frame 2 correct? d_2 y_1

 x_0

cylindrical

 y_1

 z_1

 x_0

Q: Is frame 2 correct?

No $-x_2$ is perpendicular to and intersecting both z_1 and z_2 , but the resulting frame is left-handed.

cylindrical

Q: Is frame 2 correct?

No $-x_2$ is perpendicular to and intersecting both z_1 and z_2 , but the resulting frame is left-handed.

 z_1

\mathcal{Z}_2 x_2 Q: Are there other options? y_1

 x_0

cylindrical

cylindrical

 y_1

Q: Are there other options?

Yes – negative of what is shown is also correct

\mathcal{Z}_2 \mathcal{Z}_3 x_2 x_3 z_1 Q: Is frame 3 correct? y_1

 x_0

cylindrical

\mathcal{Z}_2 x_2 y_1

 x_0

Example 2

cylindrical

Q: Is frame 3 correct?

 \mathcal{Z}_3

Yes – the frame is right-handed

\mathcal{Z}_2 \mathcal{Z}_3 x_2 x_3 Q: Are there other options? y_1

 x_0

cylindrical

cylindrical

 y_1

 x_0

Q: Are there other options?

Yes – Any other right-handed option is fine.

spherical

Step 1: Locate and label the joint axes z_0, \ldots, z_{n-1} .

spherical

Step 2: Establish the base frame. Set the origin anywhere on the z_0 -axis. The x_0 and y_0 axes are chosen conveniently to form a right-handed frame.

spherical

Step 3: Locate the origin o_i where the common normal to z_i and z_{i-1} intersects z_i . If z_i intersects z_{i-1} locate o_i at this intersection. If z_i and z_{i-1} are parallel, locate o_i in any convenient position along z_i .

Step 4: Establish x_i along the common normal between z_{i-1} and z_i through

with o₁!

 o_2 is coincident | Step 3: Locate the origin o_i where the common normal to z_i and z_{i-1} intersects z_i . If z_i intersects z_{i-1} locate o_i at this intersection. If z_i and z_{i-1} are parallel, locate o_i in any convenient position along z_i .

spherical

Step 4: Establish x_i along the common normal between z_{i-1} and z_i through o_i , or in the direction normal to the $z_{i-1}-z_i$ plane if z_{i-1} and z_i intersect.

Link

 a_i

Step 3: Locate the origin o_i where the common normal to z_i and z_{i-1} intersects z_i . If z_i intersects z_{i-1} locate o_i at this intersection. If z_i and z_{i-1} are parallel, locate o_i in any convenient position along z_i .

spherical

Step 4: Establish x_i along the common normal between z_{i-1} and z_i through o_i , or in the direction normal to the $z_{i-1}-z_i$ plane if z_{i-1} and z_i intersect.

Step 5: Establish y_i to complete a right-handed frame.

 a_i

 α_{r}

 d_i

 θ_i

Step 6: Establish the end-effector frame $o_n x_n y_n z_n$.

spherical

Your coordinate frame may not lie on the joint?!?!

What goes wrong if we force frames onto joints?

What goes wrong if we change orientations?

spherical

Step 7: Create a table of link parameters a_i , d_i , α_i , θ_i .

 $a_i = \text{distance along } x_i \text{ from the intersection of the } x_i \text{ and } z_{i-1} \text{ axes to } o_i$.

 d_i = distance along z_{i-1} from o_{i-1} to the intersection of the x_i and z_{i-1} axes. d_i is variable if joint i is prismatic.

 α_i = the angle between z_{i-1} and z_i measured about x_i .

 θ_i = the angle between x_{i-1} and x_i measured about z_{i-1} . θ_i is variable if joint i is revolute.

Link	a_i	$lpha_i$	d_{i}	$ heta_i$
1	0	$\pi/2$	d_1	$\theta_1^* - \pi/2$
2	l_2	0	0	$\theta_2^* + \pi$
3	0	0	0	0
	41			

Devanit-Hartenberg convention allows you to describe transformations using **only four parameters**.

General transformations represent 6 degrees of freedom.

In order to **ignore the extra two parameters** in a general transformation, you must follow the rules for frame assignment:

- 1. z_{i-1} is the direction of motion for joint i
- 2. x_i is both perpendicular to and intersects z_{i-1}

Practice for you

https://www.youtube.com/watch?v=3zhTopWv2oI

Figure 3.31: PUMA 260 manipulator.

Next time: Inverse Position Kinematics

Chapter 3: Forward and Inverse Kinematics

• Read 3.3 - 3.4

