F_{ω}^{CAL} TYPE SYSTEM

WILL VEATCH

We define the System F_{ω}^{CAL} . System F_{ω}^{CAL} is system F_{ω}^{AL} extended with a comptime kind, in an attempt to type Zig's notion of comptime. That is, we have have kinds \star for unrestricted types, \bullet for affine types, and \circ for linear types, with the following subkinding relation: $\star \leq \bullet \leq \circ$. We then add kind \mathcal{C} . Values of kind \mathcal{C} are known at compile time. We have the following basic rules: \star, \bullet, \circ : \mathcal{C} . That is, types are values known at compile time. Additionally, an unrestricted type may be considered a comptime type.

$$\kappa ::= \star \mid \bullet \mid \circ \mid \mathcal{C} \mid \kappa \Rightarrow \kappa$$
 kinds

$$\tau ::= \alpha \mid \tau \xrightarrow{\kappa} \tau \mid \forall \alpha : \kappa . \tau \mid \lambda x : A : \mathcal{C} . \tau \mid \tau \tau$$
 types

$$e ::= x \mid \lambda^{\kappa}(x : \tau) . e \mid e \mid e \mid \Lambda(\alpha : \kappa) . v \mid e[\tau]$$
 expressions

$$v ::= \lambda^{\kappa}(x : \tau) . e \mid \Lambda(\alpha : \kappa) . v$$
 values

We have contexts $\Psi; \Gamma; \Delta; \Xi$ in the following rules. Context Ψ consists of variables of kind \mathcal{C} ; Γ consists of variables of kind \star ; Δ consists of variables of kind \bullet , and Ξ consists of variables of kind \circ .

We may introduce a type $B:\star$ dependent on a variable $x:A:\mathcal{C}$. That is, the type B may be dependent on a compile time known value. Typically, when we have $A:\mathcal{C}$, A will be one of \star , \bullet , \circ . In this case B is simply a type dependent on another type x. However, A can vary, and gives compile time dependent types. Suppose we have $\mathbb{N}:\star$. We allow unrestricted types to be lifted, giving $\mathbb{N}:\mathcal{C}$. Then if the above A is \mathbb{N} , B is now a family of types depending on a compile time known natural number.

Date: August 26, 2024.

$$\frac{[\Gamma;\cdot;\cdot],x:\tau_1 \ni \Gamma';\Delta';\Xi' \qquad \Gamma';\Delta';\Xi' \vdash e:\tau_2}{\Gamma \vdash \lambda^{\star}(x:\tau_1).\,e:\tau_1 \stackrel{\star}{\to} \tau_2} \ [\text{U-Lam}]$$

$$\frac{[\Gamma;\Delta;\cdot],x:\tau_1\ni\Gamma';\Delta';\Xi'\qquad\Gamma';\Delta';\Xi'\vdash e:\tau_2}{\Gamma;\Delta\vdash\lambda^{\bullet}(x:\tau_1).\ e:\tau_1\stackrel{\bullet}{\to}\tau_2}\ [\text{A-Lam}]$$

$$\frac{[\Gamma; \Delta; \Xi], x: \tau_1 \ni \Gamma'; \Delta'; \Xi' \qquad \Gamma'; \Delta'; \Xi' \vdash e: \tau_2}{\Gamma; \Delta, \Xi \vdash \lambda^{\circ}(x: \tau_1). \ e: \tau_1 \stackrel{\circ}{\to} \tau_2} \ [\text{L-Lam}]$$

$$\frac{\Gamma; \Delta_1; \Xi_1 \vdash e_1 : \tau_1 \overset{\kappa}{\to} \tau_2 \qquad \Gamma; \Delta_2; \Xi_2 \vdash e_2 : \tau_1 \qquad \Delta_1 \uplus \Delta_2 = \Delta \qquad \Xi_1 \uplus \Xi_2 = \Xi}{\Gamma; \Delta; \Xi \vdash e_1 e_2 : \tau_2} \ [\mathsf{App}]$$

$$\frac{\Gamma, \alpha : \kappa; \Delta; \Xi \vdash v : \tau}{\Gamma; \Delta; \Xi \vdash \Lambda(\alpha : \kappa). \ v : \forall \alpha : \kappa. \ \tau} \ [\mathsf{TLam}]$$

$$\frac{\Gamma; \Delta; \Xi \vdash e : \forall \alpha : \kappa. \, \tau' \qquad \Gamma \vdash \tau : \kappa}{\Gamma; \Delta; \Xi \vdash e[\tau] : \tau'[\tau/\alpha]} \; [\mathsf{TApp}]$$

Evaluation rules:

$$(\lambda^{\kappa}(x:\tau).e)v \mapsto e[v/x] \qquad (\Lambda(\alpha:\kappa).v)[\tau] \mapsto v[\tau/\alpha] \qquad \frac{e_1 \mapsto e_1'}{e_1e_2 \mapsto e_1'e_2}$$

$$\frac{e \mapsto e'}{ve \mapsto ve'} \qquad \frac{e \mapsto e'}{e[\tau] \mapsto e'[\tau]}$$