Schiefe Ebene

Auf horizontaler Ebene F_N g * mHangantriebskraft $F_{G,P} =$ $F_G * sin(\alpha)$ Normalkraft $F_{G,S} = F_N = \cos \alpha * F_G$ Reibungskraft $F_R = F_N * \mu$ Steigung % - Grad $\alpha =$ arctan(m) Ab wann rutscht der Körper von selbst? $\alpha = \arctan(\mu)$

(Bsp: $\mu = 0.51, \alpha =$ $\arctan(\mu) = 27^{\circ}$

Kreisbewegung Gleichförmige Kreisbewe-

gung $T = \Delta t$

 $v = \frac{\Delta s}{\Delta t}$

Drehfrequenz

 $f = \frac{n}{t}$ (n = Umdrehun-

$$[f] = \frac{{}_{1}Hz}{{}_{1}s}$$

 $v = 2\pi * r * f$

Kreisfrequenz Winkelgeschw.

 $w = \frac{2\pi}{T}$ auch $w = 2\pi f$

Zentripetalbeschleunigung / Radialbeschleunigung $\vec{a_z}$

$$\vec{\Delta v} = \vec{v_2} - \vec{v_1}$$

 $a_z=rac{\Delta v}{\Delta t}$ u. $a_z=rac{v^2}{r}$ u. $a_z=F_{res}=F_Z$ und $F_{res}=F_N+F_G$

Klötze auf Drehscheibe

Klotz bleibt auf Scheibe solange F_Z \leq F_R also $\frac{m*v^2}{r} \le \mu_H *, *g$

$$v \le \sqrt{\mu_H * r * g}$$

$$m * w^2 * r \le \mu_H * m * g \Rightarrow w \sqrt{\frac{\mu_H * r * g}{r}}$$

Überhöhte Kurohne Reibung

$$\vec{F_Z} = \vec{F_G} + \vec{F_N}$$

 $an \alpha = rac{F_Z}{F_G} = rac{m*rac{v^2}{r}}{m*g}$ also $\alpha = arctan(rac{v^2}{r}*g)$

Bsp. Schaukel

$$F_{Res} = F_Z = F_N - F_G$$

also $F_N - F_G + F_Z = m * g +$

Looping

Funktioniert wenn $F_Z > g$ also $v \geq \sqrt{r * g}$

$$F_{res} = F_Z \text{ und } F_{res} = F_N + F_G$$

also $F_N = F_Z - F_G = m(\frac{v^2}{r} * Hydrostatik Grundformel$

Gravitation Konstanten G Gravitationskonstante:

 $G = 6.67408 * 10^{-11} \frac{m^3}{k_{a**}}$

Kraft $F = G^{\frac{m_1 m_2}{2}}$

Daraus ableitend:

$$a_1 = \frac{F_1}{m_1} = G \frac{m_2}{r^2}$$

 $a_1 + a_2 = G \frac{m_1 + m_2}{r^2}$

Luftwiderstand Konstanten & andere Werte ρ : Dichte

Luftwiderstandsko c_w : effizient **Basisformel** $\frac{1}{2}c_wA\rho v^2$ Maxi- F_w malgeschwindigkeit $v_{max} =$

 $\sqrt{\frac{2mg}{Ac_w\rho}}$ In diesem Fall ist $F_w =$

Masseinheiten jeweils nach

Name	Bez.	SI
Leistung	P	W
Energie	E	J
Kraft	F	N

Andere Einheiten 1PS = 735,49875W

Leistung Grundformel

 $P = \frac{\Delta E}{\Delta t} = \frac{\Delta W}{\Delta t}$ und $P = \vec{F} * \vec{v}$

Wirkungsgrad

Grundformel

 $\eta = \frac{\Delta E_{ab}}{\Delta E_{xy}} = \frac{P_{ab} \cdot \Delta t}{P_{xy} \cdot \Delta t} \Rightarrow \eta =$

Regel: $\eta \leq 1$ Energie Bewegungsenergie

 $E_{kin} = \frac{1}{2}mv^2$

Potenzielle Energie

 $E_{pot} = m * g * h$ Beispiel: Im freien Fall ist $E_{pot} = E_{kin}$

Energieerhaltungssatz Grundformel

 $E = E_1 + E_2 + E_3 + \ldots + E_n$ und immer $\Delta E = 0$

• g: Erdbeschleunigung

- $\rho_{Fluessigkeit}$: Dichte der Flüssigkeit in kg
- Höhe der Flüssigkeitssäule

 $\rho = \rho_{Fluessigkeit} * g * h$ Abstrakt:

 $Druck = \frac{Kraft}{Flaeche}$; $\rho = \frac{F}{A}$

Der hydrostatische Druck am Boden ist trotz unterschiedlicher Füllmengen in allen drei Gefäßen gleich groß.

Wärmelehre 0K $-273.15C^{\circ}$ (allgemein $0K = 273^{\circ}C$

Wärme-ausdehnung Lin-

 $\Delta l = \alpha * l_0 * \Delta \vartheta$ also $l = l_0 * (1 + \alpha * \Delta \vartheta)$

 $\alpha = \frac{\Delta l}{l_0 * \Delta \vartheta}$

Volumen

Initialzustand:

 $V_0 = l_0 * b_0 * h_0$

In erwärmten Zustand

 $V = l * b * h = l_0(1 + \alpha * \Delta \vartheta) *$ $b_0(1+\alpha*\Delta\vartheta)*h_0(1+\alpha*\Delta\vartheta)$

Vereinfacht:

 $V \approx V_0(1+3*\alpha*\Delta\vartheta)$

 $\gamma = 3 * \alpha$

Volumenzunahme ΔV : $\Delta V = V_0 * \gamma * \Delta \vartheta$

Wärmeenergie

Wärmeenergie:

Joule(J)[Q]Newtonmeter(Nm)

Wärmekapazität: $[c] = \frac{kJ}{kaK}$

Beispiele für c

Wasser	4.19
Alkohol	2.43
Wasserstoff	14.3

Berechnung:

$$\Delta Q = c * m * \Delta \vartheta$$

Wärmeinhalt
$$Q = m * c * \vartheta$$

Wärmekapazität $[C]$

$$[C] = \frac{J}{K}$$

Berechnung

$$C = \frac{\Delta Q}{\Delta \vartheta}$$

Oder

$$C = m * c$$

Wärmemischung

$$|\Delta Q_{ab}| = |\Delta Q_{auf}|$$
 oder

$$c_1 * m_1 * (\vartheta_1 - \vartheta_m) = c_2 * m_2 * (\vartheta_m - \vartheta_2)$$

 $(\vartheta_m - \vartheta_2)$ (Wenn abs wert, ist reihenfolge v. $\vartheta_{1,2}$ und ϑ_m egal)

Verbrennungsenergie

Heizwert: $H = \frac{Q}{m}$; $[H] = \frac{J}{kg}$ Aggregats-zustände

Schmelzwärme

$$L_F = \frac{Q_s}{m}$$

$$Q_v = \frac{Q_v}{m}$$

