HW1 Implementation of AlexNet in SystemC

I. Code Structure

	Structure		
data folder	Include weight, bias, and input image matrix		
run	Executable files for SystemC program		
Doddown b	Declare the internal variable, input/output signal,		
Pattern.h	functions, method.		
	Implement the methods that will provide our AlexNet		
Pattern.cpp	input image. It will read the text file (image) from data		
	folder when rst signal is on. After turning off rst signal,		
	Pattern will output 2 image in 2 following continuous		
	cycles.		
Monitor.h	Declare the input/output signal, functions and method for		
	monitoring our AlexNet. Also, the output layer (Softmax		
	layer and sorting) is implemented here. After getting the		
	last linear layer (fc8), it will trigger the output layer and		
	show the inference result according to the Softmax result		
	and class name list.		
Monitor.cpp	Implement the method for monitoring our AlexNet. Also,		
	the output layer (Softmax layer and sorting) is		
	implemented here. After getting the last linear layer (fc8),		
	it will trigger the output layer and show the inference		
	result according to the Softmax result and class name list.		
Makefile	Makefile script for compile systemC program.		
	Declare the main function, create the module instances,		
main.cpp	mapping the signals. It includes all operation units,		
	pattern module, clockreset modules, and monitor module.		
MAC.h	Implement all operation units.		
clockreset.h	Declare the clock module and reset modules.		
clockreset.cpp	Implement the clock module and reset modules.		

II. Design Architecture and Implementation

A. AlexNet Inference

I separate AlexNet into 11 modules. The following sheet shows the module and their corresponding layer.

My AlexNet Module	AlexNet Layer Name
20my2d 0	Conv2d_1
conv2d_0	ReLU_1
MAX_POOLING_0	MaxPooling_1
20my2d 1	Conv2d_2
conv2d_1	ReLU_2
MAX_POOLING_1	MaxPooling_2
20my2d 2	Conv2d_3
conv2d_2	ReLU_3
24.2	Conv2d_4
conv2d_3	ReLU_4
2.4. 4	Conv2d_5
conv2d_4	ReLU_5
MAX_POOLING_2	MaxPooling_3
No need to Implement	AdaptiveAvgPool2d
No need to Implement	Dropout_1
LINIEADO DELLI	Linear_1
LINEAR0_RELU	ReLU_6
No need to Implement	Dropout_2
LINEAD1 DELL	Linear_2
LINEAR1_RELU	ReLU_7
LINEAR_2	Linear_3

In all of conv2d and linear module, there exists both in_valid and out_valid. The former represents the input signal for this block is valid for now; the later means the output result is valid. This design make my AlexNet inference become a pipelined architecture.

Generally, all of ReLU layer are combined with their last layer because it is just filter the negative result and replace with zero element.

Since both the input feature map and output feature map of AdaptiveAvgPool2d have the same shape, it's no need to implement that layer. Also, dropout is a trick in training stage. In inference stage, we can just skip this kind of layer.

B. Output Layer

Because it is not include in the model architecture shown in problem pdf. I implement it in the monitor. When the monitor get the out_valid signal from LINEAR_2, the last layer, it will apply softmax to the result from LINEAR_2 sort it in descending order and list the top-5 result.

C. Pattern

When rst signal is high, it will read two images (dog.txt, cat.txt) from data folder. Then, pattern will output these two image in sc_vector<sc_out<sc_fixed_fast<46,17>>> image dataformat in the following 2 cycle.

When it outputs images, it will also pull the in_valid_pat signal high, which represents the current image signal is valid.

III. Observations and Optimization

A. sc_fixed_fast

Originally, I use sc_fixed, but it run very slowly. After searching some information in the forum, I found a sc_dt data type called sc_fixed_fast, which implement the fixed point based on C++ double data type. Thus, it will simulate faster and pass the signal to next module quicker.

To the internal calculate in the module, I implement the calculation in C++ double and vector<double>. That will also speed up the operation in the module.

B. Bitwidth

I set all of sc_fixed_fast data type in bit width <46,17>, which means a fixed number will use 46 bits to represent and 17 bits will represent its integer part. Because pyTorch usually use 16 floating point to run the calculation, which is roughly equal to sc_fixed_fast<40,17>. But I still add more bits for higher precision.

C. pipelined architecture

I use in_valid and out_valid signal to make AlexNet become a piplined architecture. Thus, it will just enable the needed part. Unused part will remain the former result and lower the out valid. This will also decrease the calculation for simulation,

and speed up the simulation.

D. Optimization for compile

```
all:

g++ -I . -I $(INC_DIR) -L . -L $(LIB_DIR) -o $(0) $(C) $(LIB) $(RPATH) -03 ./run
```

Because systemC is a C++ library, it still use g++ to compile. Therefore, I try to use -O3 optimization. As I expected, it run faster than before. Before I use this, it takes almost 10 minutes to run 1 image. After applying this, I only use 40 seconds to process 2 images.

IV. Demo Results

dog.txt

*******	**********************	

Val	Possibility	ClassName
6.594305	38.626756%	golden retriever
5.569432	13.860900%	otterhound
5.361640	11.260262%	Sussex spaniel
5.002478	7.862605%	bloodhound
4.593001	5.220751%	cocker spaniel
L	Val 16.594305 15.569432 15.361640 15.002478 14.593001	16.594305 38.626756% 15.569432 13.860900% 15.361640 11.260262% 15.002478 7.862605%

cat.txt

```
Top-5 Results
Index
                  Val
                                                                      ClassName
                                        Possibility
         20.206511
16.136685
15.733710
14.790746
                                                                      Egyptian cat
                                        96.381130%
285
                                                                      tabby
281
                                        1.646226%
282
                                        1.100220%
                                                                      tiger cat
287
728
                                        0.428505%
                                                                      plastic bag
```