

CIVE 2081 - Spring 2023

Introduction

Course Goals

- Characterize Water quality
- Calculate solute presence at equilibrium
- Use thermodynamics to understand equilibria and if the reaction is favorable
- Understand reaction kinetics
- Describe air and water pollution
- Characterize atmosphere and its stability

Calendar

	hours	Date
Water properties and measurements	2	08/03
Reaction Equilibrium	4	15-22/03
Reaction Kinetics	2	29/03
MIDTERM 40%	2	12/04
Reaction Energetics	2	19/04
Redox reaction	2	26/04
Atmosphere stability and air pollution	2	10/05
FINAL 40%		24/05

Assignment 20%

Contacts

I am available to answer quick questions and doubts anytime.

Contact me to reserve a time if you require more time

Office: Room 4512B

CIVE 2081 - Spring 2023

Water

Prof. Dr. Chiara Valsecchi

Class Goals

- Review on measurements
- Water composition and distribution
- Water properties
- Concepts of water pollution

Describe presence of particulate/solute in a solution, independent of its phase

1. Percentages:

- wt/wt % = mass of solute / mass of solvent
- wt/v % = mass of solute / volume of solvent (100 mL)

2. Molarity: moles of solute / Volume of solvent (in L)

Exercise: the concentration of Na⁺ in water is 1.06 % What is its molarity ?

Exercise: the concentration of Na⁺ in water is 1.06 % What is its molarity ?

1. Calculate the total grams of Na⁺ in the solution:

$$1.06\% = \frac{1.06 \text{ g Na}^+}{100 \text{ mL}}$$

Exercise: the concentration of Na⁺ in water is 1.06 % What is its molarity ?

1. Calculate the total grams of Na⁺ in the solution:

$$1.06\% = \frac{1.06 \text{ g Na}^{+}}{100 \text{ mL}}$$
 10.6 g in 1 L

Exercise: the concentration of Na⁺ in water is 1.06 % What is its molarity ?

1. Calculate the total grams of Na⁺ in the solution:

$$1.06\% = \frac{1.06 \text{ g Na}^{+}}{100 \text{ mL}}$$
 10.6 g in 1 L

2. Calculate the number of moles of Na⁺:

Exercise: the concentration of Na⁺ in water is 1.06 wt/v % What is its molarity ?

1. Calculate the total grams of Na⁺ in the solution:

$$1.06\% = \frac{1.06 \text{ g Na}^{+}}{100 \text{ mL}}$$
 10.6 g in 1 L

2. Calculate the number of moles of Na⁺:

Moles
$$Na^+ = \frac{10.6 \text{ g}}{23.0 \text{ g/mol}} = 0.46 \text{ mole}$$

3. Calculate Molarity: 0.46 M

Describe presence of particulate/solute in a solution, independent of its phase

1. Percentages:

- wt/wt % = mass of solute / mass of solvent
- wt/v % = mass of solute / volume of solvent (100 mL)
- 2. Molarity: moles of solute / Volume of solvent (in L)
- **3. ppm:** 1 part of solute in 1 million part of solvent. Diluted solutions

$$1 \text{ ppm} = \frac{1 \text{ g of solute}}{1 \text{ million g of water}} \qquad \frac{\text{Water density}}{1 \text{ ppm}} = \frac{1 \text{ mg}}{1 \text{ L}}$$

CAREFUL! We assume here water density of 1.00 g/mL

But sea water density is 1.025 g/mL!

Sometimes is better to just keep ppm as mg/Kg

Describe presence of particulate/solute in a solution, independent of its phase

- 1. Percentages:
 - wt/wt % = mass of solute / mass of solvent
 - wt/v % = mass of solute / volume of solvent (100 mL)
- 2. Molarity: moles of solute / Volume of solvent (in L)
- 3. ppm: 1 part of solute in 1 Million part of solvent. Diluted solutions

$$1 \text{ ppm} = \frac{1 \text{ g of solute}}{1 \text{ million g of water}} \qquad \frac{\text{Water density}}{1 \text{ ppm}} = \frac{1 \text{ mg}}{1 \text{ L}}$$

4. ppb: 1 part of solute in 1 Billion part of solvent. Very diluted solutions

$$1 \text{ ppb} = \frac{1 \mu \text{g}}{1 \text{ L}}$$

ppb: 1 part of solute in 1 Billion part of solvent. Very diluted solutions

$$1 \text{ ppb} = \frac{1 \mu \text{g}}{1 \text{ L}}$$

Exercise: Pb

The U.S. EPA set a limit for the concentration of lead in drinking water at 15 ppb. A laboratory finds the concentration of lead in a sample taken from a water fountain to be $18 \mu g/100$ mL. Is this above or below the EPA limit? By how much?

ppb: 1 part of solute in 1 Billion part of solvent. Very diluted solutions

$$1 \text{ ppb} = \frac{1 \mu \text{g}}{1 \text{ L}}$$

Exercise:

The U.S. EPA set a limit for the concentration of lead in drinking water at 15 ppb. A laboratory finds the concentration of lead in a sample taken from a water fountain to be $18 \mu g/100$ mL. Is this above or below the EPA limit? By how much?

1. Grams of lead in 1L: $18 \mu g \times 10 = 180 \mu g$

ppb: 1 part of solute in 1 Billion part of solvent. Very diluted solutions

$$1 \text{ ppb} = \frac{1 \mu \text{g}}{1 \text{ L}}$$

Exercise:

The U.S. EPA set a limit for the concentration of lead in drinking water at 15 ppb. A laboratory finds the concentration of lead in a sample taken from a water fountain to be 18 μ g/100 mL. Is this above or below the EPA limit? By how much?

1. Grams of lead in 1L: $18\mu g \times 10 = 180 \mu g$

2. Express in ppb: 180 ppb

ppb: 1 part of solute in 1 Billion part of solvent. Very diluted solutions

$$1 \text{ ppb} = \frac{1 \mu \text{g}}{1 \text{ L}}$$

Exercise:

The U.S. EPA set a limit for the concentration of lead in drinking water at 15 ppb. A laboratory finds the concentration of lead in a sample taken from a water fountain to be 18 μ g/100 mL. Is this above or below the EPA limit? By how much?

1. Grams of lead in 1L: $18\mu g \times 10 = 180 \mu g$

2. Express in ppb: 180 ppb

3. Answer: yes, the amount of lead exceed the limit by 165 ppb

Water Distribution

Less than 0.01 % of Earth's total water is drinking water!

Water Composition

Fresh water: water body with less than 1,000 ppm of dissolved solid

Drinking Water: less than 450 ppm of dissolved solid (China), 500 ppm (USA), 300 ppm (WHO)

Water Composition

Fresh water: water body with less than 1,000 ppm of dissolved solid

Drinking Water: less than 450 ppm of dissolved solid (China), 500 ppm (USA), 300 ppm (WHO)

Major ion content (% of the total)

Ion	Freshwater	Seawater
HCO ₃	41.0	0.2
Ca ²⁺	16.0	0.9
Mg^{2+}	14.0	4.9
Na ⁺	11.0	41.0
Cl-	8.5	49.0

Major	Constituents	of	Seawater
-------	--------------	----	----------

Ion	Concentration (ppm)	
Chloride, Cl-	19,000	
Sodium, Na+	10,600	
Sulfate, SO ₄ ²⁻	2,600	
Magnesium, Mg ²⁺	1,300	
Calcium, Ca ²⁺	400	
Potassium, K ⁺	380	
Bicarbonate, HCO ₃ -	140	
Bromide, Br	65	
Other substances	34	
Total	34,519	

Water Composition

Fresh water: water body with less than 1,000 ppm of dissolved solid

Drinking Water: less than 450 ppm of dissolved solid (China), 500 ppm (USA), 300 ppm (WHO)

Major ion content	(% of the total)
-------------------	------------------

Ion	Freshwater	Seawater
HCO ₃ -	41.0	0.2
Ca ²⁺	16.0	0.9
Mg^{2+}	14.0	4.9
Na ⁺	11.0	41.0
Cl-	8.5	49.0

Major Constituents of Seawater

Ion	Concentration (ppm)
Chloride, Cl-	19,000
Sodium, Na+	10,600
Sulfate, SO ₄ ²⁻	2,600
Magnesium, Mg ²⁺	1,300
Calcium, Ca ²⁺	400
Potassium, K ⁺	380
Bicarbonate, HCO ₃ -	140
Bromide, Br	65
Other substances	34
Total	34,519

Hydrogen bond formation is the cause for water special properties:

- 1. Higher fusion and boiling point
- 2. Density: solid is less dense than liquid phase
- 3. Large specific heat: the capacity to raise 1°C for 1g of material
- 4. Capillarity by cohesive forces: transportation in trees
- Elevated surface tension

23

Hydrogen bond formation is the cause for water special properties:

Higher fusion and boiling point (bp):

Inside the same group the **bp** should increase.

The theoretical **bp** of water is -80 C!!!

With water, we need more energy to break **H** bond.

Hydrogen bond formation is the cause for water special properties:

2. Density: solid is less dense than liquid phase

wax

water

The presence of tridimensional Hydrogen bonds expand the ice structure, leading to less density

Hydrogen bond formation is the cause for water special properties:

2. Density: solid is less dense than liquid phase

LIFE is maintained in lakes during winter, because the ice cap insulate the rest of the water body!

Hydrogen bond formation is the cause for water special properties:

3. Large specific heat:

Specific Heat is the quantity of heat that is required to raise the temperature of 1g of substance by 1°C.

It takes 1 calorie of heat to raise the temperature of 1 g of liquid water by 1°C.

The larger the Specific Heat, the less the temperature will rise when it absorbs a given amount of heat.

Specific Heat (J/gC°)			
H_2O (1)	4.184		
H_2O (s)	2.03		
Al (s)	0.89		
C	0.71		
Fe	0.45		

Hydrogen bond formation is the cause for water special properties:

3. Large specific heat:

Specific Heat is the quantity of heat that is required to raise the temperature of 1g of substance by 1°C.

It takes 1 calorie of heat to raise the temperature of 1 g of liquid water by 1°C.

The larger the Specific Heat, the less the temperature will rise when it absorbs a given amount of heat.

Oceans absorbs during the day (summer) and release during the night (winter):

They control the Earth's Climate!!

Hydrogen bond formation is the cause for water special properties:

4. Capillarity by cohesive forces: transportation in trees

Hydrogen bond formation is the cause for water special properties:

4. High Surface Tension

Hydration or Solvation:

Dissolution: the sum of all the charges interaction with the water molecule is enough to break ionic bond.

Properties based on the ION content:

Normally less discussed, but extremely important!

Major ion content (% of the total)

Ion	Freshwater	
HCO ₃ -	41.0	
Ca ²⁺	16.0	
Mg^{2+}	14.0	
Na ⁺	11.0	
Cl-	8.5	

Properties based on the ION content:

Normally less discussed, but extremely important!

Major ion content (% of the total)			
Ion	Seawater		
HCO ₃ -	41.0	0.2	
HCO ₃ ⁻ Ca ²⁺	16.0	0.9	
Mg^{2+}	14.0	4.9	
Na ⁺	11.0	41.0	
Cl-	8.5	49.0	

1. Salinity

Properties based on the ion content:

Normally less discussed, but extremely important!

	Maj	Major ion content (% of the total)		
	Ion	Freshwater	Seawater	
2. Alkalinity	HCO ₃ -	41.0	0.2	
	Ca ²⁺	16.0	0.9	
	Mg^{2+}	14.0	4.9	
	Na ⁺	11.0	41.0	
	Cl-	8.5	49.0	

Properties based on the ion content:

Normally less discussed, but extremely important!

		Major ion content (% of the total)		
	G 15	Ion	Freshwater	Seawater
		HCO ₃ -	41.0	0.2
3. Hardness	(Ca ²⁺	16.0	0.9
		Mg^{2+}	14.0	4.9
	27	Na ⁺	11.0	41.0
		Cl-	8.5	49.0

35

1. SALINITY

Salinity is the total amount of dissolved salts in water; grams of salts per kilogram of water (g/kg) or as parts per thousand (ppt).

Affects other properties of seawater, such as its density and the amount of dissolved oxygen.

Dissolved Oxygen (ppm) vs. Salinity (ppt) At 95°F (35°C)

1. SALINITY

Determines the distribution of plants and animals that live in the ocean.

ource: Adapted from Oz Estuaries – Changes in salinity in an estuary

The average salinity of the world's oceans is 35 ppt.

Freshwater has a salinity of <1 ppt.

1. SALINITY

How to <u>measure</u> salinity:

- <u>hydrometer</u>: addition of salts to pure water causes an increase in density. Salinity can be calculated by measuring the specific gravity of a water sample:

Specific Gravity = <u>density of sample</u> Density of pure water

Tables to convert to salinity

1. SALINITY

How to <u>measure</u> salinity:

- <u>hydrometer</u>: addition of salts to pure water causes an increase in density. Salinity can be calculated by measuring the specific gravity of a water sample:

Specific Gravity = <u>density of sample</u>

Density of pure water

- <u>Silver nitrate titration</u> method: the amount of chloride (chlorinity)

Salinity (ppt) = 1.80655 x Chlorinity (ppt)

Hardness: capacity of water to form the lather of soap

It is the total concentration of calcium and magnesium ions

Temporary – Bicarbonates of Ca²⁺ and Mg²⁺

Permanent – Sulphates and chlorides of Ca²⁺ and Mg²⁺

Temporary
hardness can be
removed by boiling
water

Temporary − Bicarbonates of Ca²⁺ and Mg²⁺ →

Permanent – Sulphates and chlorides of Ca^{2+} and Mg^{2+} \longrightarrow

Soluble Insoluble

Temporary hardness can be removed by boiling water

Forms a white solid

Heat

$$Ca(HCO_3)_2 \rightarrow CaCO_3 \downarrow + H_2O + CO_2 \uparrow$$
(Insoluble)

bicarbonate

carbonate

Temporary − Bicarbonates of Ca²⁺ and Mg²⁺ →

 \longrightarrow Soluble Insoluble

Permanent – Sulphates and chlorides of Ca^{2+} and Mg^{2+} \longrightarrow

Permanent hardness can be removed by more complex techniques:

Ion exchange

Prof. Chiara Valsecchi

- Distillation -----

Occurs naturally in the water-circle:

Reverse Osmosis

Rain water is always soft

42

How it is expressed?

As equivalent of CaCO₃ in ppm

Salt/ion	Molar mass	Multiplication factor for converting into equivalents of CaCO ₃
Ca(HCO ₃) ₂	162	100/162
Mg(HCO ₃) ₂	146	100/146
CaSO ₄	136	100/136
CaCl ₂	111	100/111
MgSO ₄	120	100/120
MgCl ₂	95	100/95
CaCO ₃	100	100/100
MgCO ₃	84	100/84
CO ₂	44	100/44
Ca(NO ₃) ₂	164	100/164
Mg(NO ₃) ₂	148	100/148
HCO ₃	61	100/122
OH.	17	100/34
CO ₃ ² -	60	100/60
NaAlO ₂	82	100/164
Al ₂ (SO ₄) ₃	342	100/114
FeSO ₄ .7H ₂ O	278	100/278
H ⁺	1	100/2
HCl	36.5	100/73

Calculate the temporary and permanent hardness of water sample containing Mg(HCO₃)₂= 7.3mg/L, Ca(HCO₃)₂= 16.2mg/L, MgCl₂= 9.5mg/L, CaSO₄=13.6mg/L).

Calculate the temporary and permanent hardness of water sample containing Mg(HCO₃)₂= 7.3mg/L, Ca(HCO₃)₂= 16.2mg/L, MgCl₂= 9.5mg/L, CaSO₄=13.6mg/L).

Constituent

Multiplication factor

CaCO₃ equivalent

Calculate the temporary and permanent hardness of water sample containing Mg(HCO₃)₂= 7.3mg/L, Ca(HCO₃)₂= 16.2mg/L, MgCl₂= 9.5mg/L, CaSO₄=13.6mg/L).

Constituent

Multiplication factor

CaCO₃ equivalent

 $Mg(HCO_3)_2 = 7.3mg/L$

 $Ca(HCO_3)_2 = 16.2 mg/L$

 $MgCl_2 = 9.5mg/L$

 $CaSO_4=13.6mg/L$

Calculate the temporary and permanent hardness of water sample containing Mg(HCO₃)₂= 7.3mg/L, Ca(HCO₃)₂= 16.2mg/L, MgCl₂= 9.5mg/L, CaSO₄=13.6mg/L).

Constituent	Multiplication factor	CaCO ₃ equivalent
$Mg(HCO_3)_2 = 7.3mg/L$	100/146	
$Ca(HCO_3)_2 = 16.2 mg/L$	100/162	
$MgCl_2 = 9.5mg/L$	100/95	
$CaSO_4=13.6mg/L$	100/136	

Calculate the temporary and permanent hardness of water sample containing Mg(HCO₃)₂= 7.3mg/L, Ca(HCO₃)₂= 16.2mg/L, MgCl₂= 9.5mg/L, CaSO₄=13.6mg/L).

Constituent	Multiplication factor	CaCO ₃ equivalent	
$Mg(HCO_3)_2 = 7.3mg/L$	100/146	7.3X100/146= 5mg/L	
$Ca(HCO_3)_2 = 16.2 mg/L$	100/162	16.2X100/162=10mg/L	
$MgCl_2 = 9.5mg/L$	100/95	9.5X100/95 = 10mg/L	
$CaSO_4=13.6mg/L$	100/136	13.6X100/136= 10mg/L	

Calculate the temporary and permanent hardness of water sample containing Mg(HCO₃)₂= 7.3mg/L, Ca(HCO₃)₂= 16.2mg/L, MgCl₂= 9.5mg/L, CaSO₄=13.6mg/L).

Constituent	Multiplication factor	CaCO ₃ equivalent
$Mg(HCO_3)_2 = 7.3mg/L$	100/146	7.3X100/146= 5mg/L
$Ca(HCO_3)_2 = 16.2 mg/L$	100/162	16.2X100/162=10mg/L
$MgCl_2 = 9.5mg/L$	100/95	9.5X100/95 = 10mg/L
$CaSO_4=13.6mg/L$	100/136	13.6X100/136= 10mg/L

Permanent Hardness: $MgCl_2 + CaSO_4 = 10 + 10 mg/L = 20 mg/L$

Calculate the temporary and permanent hardness of water sample containing Mg(HCO₃)₂= 7.3mg/L, Ca(HCO₃)₂= 16.2mg/L, MgCl₂= 9.5mg/L, CaSO₄=13.6mg/L).

Constituent	Multiplication factor	CaCO ₃ equivalent
$Mg(HCO_3)_2 = 7.3mg/L$	100/146	7.3X100/146= 5mg/L
$Ca(HCO_3)_2 = 16.2 mg/L$	100/162	16.2X100/162=10mg/L
$MgCl_2 = 9.5mg/L$	100/95	9.5X100/95 = 10mg/L
CaSO ₄ =13.6mg/L	100/136	13.6X100/136= 10mg/L

Permanent Hardness: $MgCl_2 + CaSO_4 = 10 + 10 mg/L = 20 mg/L$

Temporary Hardness: $Mg(HCO_3)_2 + Ca(HCO_3)_2 = 5 + 10 mg/L = 15 mg/L$

How to determine the amount of Ca²⁺ e Mg²⁺ from soluble salts?

Titration with EDTA and Eriochrome Black-T (EBT)

Chelating agent:

removes up to 4 cations from solution forming stable complexes

Indicator: red to blue

Capacity to neutralize acid:

Alkalinity =
$$[OH^{-}] + 2[CO_{3}^{2-}] + [HCO_{3}^{-}]$$

Presence of carbonates (CO₃-), bi-carbonates (HCO₃-), and hydroxide (OH-) of Ca, Mg, Na and K.

Alkalinity: the amount of acid needed to lower the pH to 4.5

Units: - milligrams CaCO3 per liter (ppm)

- mmol of H+ per L

Natural waters have alkalinity of 1 mmol/L (1mM)

Capacity to neutralize acid: the amount of acid needed to lower the pH to 4.5

★4.5 is the value where all carbonate species are neutralized.

Parenthesis: **HENRY'S LAW**

Allow to calculate the concentration of a gas in a solution.

"The solubility of a gas in a liquid is proportional to the partial pressure of the gas that is in contact with the liquid"

$$\begin{bmatrix} \text{CO}_2 & (\text{aq}) \end{bmatrix} = K_{\text{CO}_2} P_{\text{CO}_2}$$
Henry's constant:
$$K_{\text{CO}_2} = 3.38 \times 10^{-2} \text{ mol/atm-L},$$

Parenthesis: **HENRY'S LAW**

Exercise 1. In a bottle of soda, the partial pressure of CO_2 is 4 atm. How much of CO_2 is dissolved inside the liquid if the bottle is left open?

<u>Inside the closed bottle:</u>

 $[CO_2] = 0.0338 \text{ mol/(atm L)} * 4 \text{ atm} = 0.135 \text{ M}$

Parenthesis: **HENRY'S LAW**

Exercise 1. In a bottle of soda, the partial pressure of CO_2 is 4 atm. How much of CO_2 is dissolved inside the liquid if the bottle is left open?

Inside the closed bottle:

 $[CO_2] = 0.0338 \text{ mol/(atm L)} * 4 \text{ atm} = 0.135 \text{ M}$

Open bottle:

 $[CO_2] = 0.0338 \text{ mol/(atm L)} * 0.04 \text{ atm}$ = 0.00135 M = 1.35 mM

Parenthesis: **HENRY'S LAW**

- Temperature of 25 °C
- CO₂ concentration in air: 370 ppm
- Water Vapor partial pressure: 0.0313 atm

$$\left[CO_{2} \left(aq \right) \right] = K_{CO_{2}} P_{CO_{2}}$$

$$P_{CO2} =$$

Parenthesis: HENRY'S LAW

Exercise 2. What is the average CO₂ concentration at the surface of the ocean, given the following data:

- Temperature of 25 °C
- CO₂ concentration in air: 370 ppm
- Water Vapor partial pressure: 0.0313 atm

$$\left[CO_{2} \left(aq \right) \right] = K_{CO_{2}} P_{CO_{2}}$$

 P_{CO2} = (air pressure – water vapor) * % of CO_2

Parenthesis: **HENRY'S LAW**

- Temperature of 25 °C
- CO₂ concentration in air: 370 ppm
- Water Vapor partial pressure: 0.0313 atm

$$\left[CO_{2} \left(aq \right) \right] = K_{CO_{2}} P_{CO_{2}}$$

$$P_{CO2}$$
 = (air pressure – water vapor) * % of CO_2

$$\downarrow$$

$$P_{CO2}$$
 = (1 atm – 0.0313 atm)

Parenthesis: **HENRY'S LAW**

- Temperature of 25 °C
- CO₂ concentration in air: 370 ppm
- Water Vapor partial pressure: 0.0313 atm

$$\left[CO_{2} \left(aq \right) \right] = K_{CO_{2}} P_{CO_{2}}$$

$$P_{CO2}$$
 = (air pressure – water vapor) * % of CO_2 ppm = mg/Kg P_{CO2} = (1 atm – 0.0313 atm) $\%$ = g/100g

Parenthesis: **HENRY'S LAW**

- Temperature of 25 °C
- CO₂ concentration in air: 370 ppm
- Water Vapor partial pressure: 0.0313 atm

$$\left[CO_{2} \left(aq \right) \right] = K_{CO_{2}} P_{CO_{2}}$$

$$P_{CO2}$$
 = (air pressure – water vapor) * % of CO_2 ppm = mg/Kg $\%$ = g/100g $\%$ = g/100g $\%$ = 370 ppm = 370 mg/Kg = 0.370 g/kg = 0.037 g/100g 0.037 %

Parenthesis: **HENRY'S LAW**

- Temperature of 25 °C
- CO₂ concentration in air: 370 ppm
- Water Vapor partial pressure: 0.0313 atm

$$\left[CO_{2} \left(aq \right) \right] = K_{CO_{2}} P_{CO_{2}}$$

Parenthesis: **HENRY'S LAW**

- Temperature of 25 °C
- CO₂ concentration in air: 370 ppm
- Water Vapor partial pressure: 0.0313 atm

$$\left[CO_2 \left(aq \right) \right] = K_{CO_2} P_{CO_2}$$

$$[CO_2] = 0.0338 \text{ mol/(atm L)} * 3,5.10^{-4} \text{ atm} = 1,18.10^{-5} \text{ M}$$

Carbonate ions acts as buffer and reservoir for inorganic carbon. Alkalinity is a measure to see if water can support aquatic life.

Alkalinity vs. Hardness

Alkalinity = Hardness

Ca and Mg salts are present

Ca (HCO₃)₂

Alkalinity > Hardness

presence of basic salts, Na, K along with Ca and Mg

[OH-]

Alkalinity < Hardness

neutral salts of Ca & Mg present

CaCl₂

List of type of pollutants in water:

1. Disease-causing agents: coliform bacteria count

- 1. Disease-causing agents: coliform bacteria count
- 2. Oxygen-consuming wastes: decomposition of organic waste by bacteria

List of type of pollutants in water:

- 1. Disease-causing agents: coliform bacteria count
- 2. Oxygen-consuming wastes: decomposition of organic waste
- 3. Plant nutrients: nitrogen (ammonia, nitric acid), phosphorous

eutrophication, dense mats of rooted and floating plants are formed

- 1. Disease-causing agents: coliform bacteria count
- 2. Oxygen-consuming wastes: organic waste that need to decompose
- 3. Plant nutrients: nitrogen (ammonia, nitric acid), phosphorous
- 4. Suspended solids and sediments: clay and soil erosion → affect light penetration

- 1. Disease-causing agents: coliform bacteria count
- 2. Oxygen-consuming wastes: organic waste that need to decompose
- 3. Plant nutrients: nitrogen (ammonia, nitric acid), phosphorous
- 4. Suspended solids and sediments: clay and soil erosion
- 5. Dissolved solids: increase salinity, by irrigation and industrial liquid waste

- 1. Disease-causing agents: coliform bacteria count
- 2. Oxygen-consuming wastes: organic waste that need to decompose
- 3. Plant nutrients: nitrogen (ammonia, nitric acid), phosphorous
- 4. Suspended solids and sediments: clay and soil erosion → affect light penetration
- 5. Dissolved solids: increase salinity, by irrigation
- 6. Thermal pollution (heat): the hotter, the less soluble oxygen

- 1. Disease-causing agents: coliform bacteria count
- 2. Oxygen-consuming wastes: organic waste
- 3. Plant nutrients: nitrogen, phosphorous
- 4. Suspended solids and sediments: block light
- 5. Dissolved solids: increase salinity
- 6. Thermal pollution (heat): less dissolved oxygen
- 7. Toxic materials
- 8. Radioactive substances
- 9. Oil
- 10. Acids