

# Universidade Federal de Campina Grande Centro de Engenharia Elétrica e Informática Unidade Acadêmica de Engenharia Elétrica



Gerenciamento, Planejamento e Controle da Produção.

Prof. Danilo Freire de Souza Santos

Kanban e Controle de Qualidade

Aluno: Tiago de Almeida Santos – 119210836 Rogério Moreira Almeida - 121110599

Campina Grande, Junho de 2023

## 1. INTRODUÇÃO

A empresa escolhida foi a Capacitec, voltada a produção de capacitores utilizados em microcontroladores, com o objetivo de atender as empresas nacionais de eletroeletrônicos situadas nos polos de recife e fortaleza. as indústrias do setor possuem uma demanda crescente por tal componente nas suas linhas de produção, porém devido a distância destas com os principais fornecedores do desse insumo, tem dificultado a logística e implicando diretamente nos seus custos de produção. Surgindo assim uma grande oportunidade.

O sistema adotado na nova planta de produção será o sistema Kanban (puxado) a implantação desse sistema em uma fábrica de produção de equipamentos eletroeletrônicos pode trazer vários benefícios. O sistema Kanban tem uma abordagem de controle de produção baseada na demanda real, visando redução de estoques pois o sistema funciona com base na reposição dos materiais ou componentes somente quando são necessários, eliminando desperdícios, relacionados à produção excessiva, transporte excessivo, espera, processamento desnecessário, estoques excessivos, entre outros. Fortalece o fluxo de trabalho ao estabelecer um sistema visual de controle, sendo este sistema flexível a mudanças de demanda real permitindo uma resposta ágil, pois a produção é ajustada de acordo com o fluxo de demanda.

Outro ponto que vale destacar é a comunicação clara e visual entre as equipes, uma vez que todos podem ver o que está acontecendo e o que precisa ser feito. Isso melhora a colaboração entre diferentes áreas, reduzindo erros e a necessidade de retrabalho.

#### 2. PREVISÃO DE DEMANDA

Tabela1: Previsão de Demanda com o MAD de 9%

| PERÍODOS | DIA       | R.DEMANDA | P.DEMANDA | ERRO     | ERRO ABS | ERRO % |
|----------|-----------|-----------|-----------|----------|----------|--------|
| 1        | 1/1/2023  | 167.444   | 197.8595  | 30.4155  | 30.4155  | 15%    |
| 2        | 1/2/2023  | 255.5812  | 201.709   | -53.8722 | 53.8722  | 27%    |
| 3        | 1/3/2023  | 179.5576  | 205.5585  | 26.0009  | 26.0009  | 13%    |
| 4        | 1/4/2023  | 190.22    | 209.408   | 19.188   | 19.188   | 9%     |
| 5        | 1/5/2023  | 201.9748  | 213.2575  | 11.2827  | 11.2827  | 5%     |
| 6        | 1/6/2023  | 213.5008  | 217.107   | 3.6062   | 3.6062   | 2%     |
| 7        | 1/7/2023  | 215.8532  | 220.9565  | 5.1033   | 5.1033   | 2%     |
| 8        | 1/8/2023  | 262.8404  | 224.806   | -38.0344 | 38.0344  | 17%    |
| 9        | 1/9/2023  | 197.4492  | 228.6555  | 31.2063  | 31.2063  | 14%    |
| 10       | 1/10/2023 | 249.374   | 232.505   | -16.869  | 16.869   | 7%     |
| 11       | 1/11/2023 | 211.5572  | 236.3545  | 24.7973  | 24.7973  | 10%    |
| 12       | 1/12/2023 | 237.61    | 240.204   | 2.594    | 2.594    | 1%     |
| 13       | 1/13/2023 | 271.5556  | 244.0535  | -27.5021 | 27.5021  | 11%    |
| 14       | 1/14/2023 | 228.3032  | 247.903   | 19.5998  | 19.5998  | 8%     |
| 15       | 1/15/2023 | 261.6408  | 251.7525  | -9.8883  | 9.8883   | 4%     |
| 16       | 1/16/2023 | 238.3564  | 255.602   | 17.2456  | 17.2456  | 7%     |
| 17       | 1/17/2023 | 285.93    | 259.4515  | -26.4785 | 26.4785  | 10%    |
| 18       | 1/18/2023 | 275.41    | 263.301   | -12.109  | 12.109   | 5%     |
| 19       | 1/19/2023 | 289.2376  | 267.1505  | -22.0871 | 22.0871  | 8%     |
| 20       | 1/20/2023 | 278.6892  | 271       | -7.6892  | 7.6892   | 3%     |
| 21       | 1/21/2023 | 303.764   | 274.8495  | -28.9145 | 28.9145  | 11%    |

| 22 | 1/22/2023 | 266.9584 | 278.699  | 11.7406  | 11.7406 | 4%  |
|----|-----------|----------|----------|----------|---------|-----|
| 23 | 1/23/2023 | 300.4908 | 282.5485 | -17.9423 | 17.9423 | 6%  |
| 24 | 1/24/2023 | 266.0888 | 286.398  | 20.3092  | 20.3092 | 7%  |
| 25 | 1/25/2023 | 231.4564 | 290.2475 | 58.7911  | 58.7911 | 20% |
| 26 | 1/26/2023 | 312.1612 | 294.097  | -18.0642 | 18.0642 | 6%  |
| 27 | 1/27/2023 | 366.8004 | 297.9465 | -68.8539 | 68.8539 | 23% |
| 28 | 1/28/2023 | 293.1228 | 301.796  | 8.6732   | 8.6732  | 3%  |
| 29 | 1/29/2023 | 281.6364 | 305.6455 | 24.0091  | 24.0091 | 8%  |
| 30 | 1/30/2023 | 324.3708 | 309.495  | -14.8758 | 14.8758 | 5%  |
| 31 | 1/31/2023 | 291.5384 | 313.3445 | 21.8061  | 21.8061 | 7%  |
| 32 | 2/1/2023  | 290.3528 | 317.194  | 26.8412  | 26.8412 | 8%  |

Fonte: Autoria própria.

y = 3.8495x + 194.01 $R^2 = 0.6314$ TENDENCIA DE DEMANDA 400 ( 

Figura1: Gráfico da linha de Tendência da Demanda

Fonte: Autoria própria.

A partir da equação da reta obtida podemos fazer a previsão de demanda para as próximas quatro semanas.



Figura2: Gráfico de demanda para as próximas quatro semanas.

Fonte: Autoria Própria

## 3. PROCESSO E PLANEJAMENTO DE IMPLANTAÇÃO

Apresente um roteiro de como sua equipe pretende implantar um sistema puxado na fábrica. Pesquise trabalhos/artigos que apresentem experiências de implantação de sistemas puxados, e crie uma metodologia (processo) próprio para implantar o sistema. (Palavras chaves: implantação; kanban; indústria; manufatura). Apresente a bibliografia pesquisada.

Apresente uma sequência de atividades a serem realizadas e o seu planejamento utilizando um diagrama GANTT. Aponte o caminho crítico da implantação.

Roteiro para Implantação do Sistema Puxado na Capacitec (Fabricante de Capacitores):

- 1. Pesquisa e Estudo Preliminar
  - Realizar pesquisa bibliográfica sobre a implantação de sistemas puxados na indústria de manufatura.
  - Analisar trabalhos e artigos que descrevem experiências bemsucedidas de implantação do sistema puxado.
  - Estudar a aplicação do kanban como ferramenta para o controle de fluxo e produção.
- 2. Análise do Fluxo de Produção Atual

- Mapear o fluxo de produção da Capacitec, identificando gargalos, tempos de espera e estoques em excesso.
- Coletar dados sobre o desempenho atual do sistema, como lead time, taxa de retrabalho e níveis de estoque.

## 3. Definição dos Objetivos e Escopo da Implantação

- Estabelecer objetivos claros para a implantação do sistema puxado, alinhados com a estratégia da Capacitec.
- Definir o escopo da implantação, considerando as áreas e processos prioritários.

## 4. Treinamento e Capacitação da Equipe

- Realizar treinamentos sobre os princípios do sistema puxado e o uso do kanban.
- Capacitar a equipe nas técnicas de cálculo e dimensionamento dos kanbans.

## 5. Projeto do Sistema Kanban

- Identificar as famílias de produtos e estabelecer as demandas e lead times para cada uma.
- Definir as estações de trabalho e os locais de estoque intermediário.
- Projetar os kanbans, determinando as quantidades e os cartões necessários para cada etapa do fluxo de produção.

## 6. Implementação Piloto

- Selecionar uma área ou célula piloto para a implementação do sistema puxado.
- Instalar os kanbans nas estações de trabalho e estoques intermediários.
- Treinar a equipe para o uso adequado dos kanbans e o controle do fluxo puxado.

## 7. Monitoramento e Ajustes

- Acompanhar o desempenho do sistema puxado na área piloto, coletando dados e avaliando indicadores de eficiência.
- Realizar ajustes nos kanbans e nas regras de reposição com base no aprendizado obtido.
- Expandir gradualmente a implantação do sistema puxado para outras áreas da fábrica.

Figura3: Fluxograma GANTT Análise do Fluxo de Produção Atual Definição dos Objetivos e Escopo da Implantação 7 Implementação Piloto Pesquisa e Estudo 8 Preliminar 5 Treinamento e 10 Capacitação da Projeto do Monitoramento e Ajustes Equipe Sistema Kanban 12

Fonte: Autoria Própria



Figura4: Gráfico de GANTT.

Fonte: Autoria Própria

Pontos críticos são Análise do Fluxo de Produção Atual, e Projeto do Sistema Kanban, pois podemos observar que eles possuem o maior tempo e a redução dos mesmos implica na redução de tempo de execução do projeto.

#### 4. PROJETO DE SISTEMA KANBAN:

Na empresa Capacitec será usado um quadro Kanban com três faixas de cores, considerando as etapas de fabricação de capacitores para o projeto da empresa.

A nossa proposta para o Quadro Kanban de Fabricação de Capacitores é a seguinte:

Faixa de cor verde (FASE INICIAL: MATERIAIS E PREPARAÇÃO):

Nesta faixa, serão colocados os kanbans que representam as tarefas relacionadas à aquisição de materiais, preparação de componentes e configuração inicial do processo de fabricação.

O número de kanbans nesta faixa será com base na quantidade de tarefas necessárias para a preparação inicial de cada lote de capacitores. Contaremos com 5 kanbans nesta fase.

Faixa de cor amarela (FASE INTERMEDIÁRIA: PRODUÇÃO):

Nesta faixa, serão colocados os kanbans que representam as tarefas de produção dos capacitores, incluindo a montagem, teste e inspeção de qualidade.

O número de kanbans nesta faixa será com base na capacidade de produção da empresa e do volume de capacitores fabricados por lote. Contaremos com 10 kanbans nesta fase, mas esse número pode ser ajustado de acordo com a capacidade da equipe e o ritmo de produção.

• Faixa de cor vermelha (FASE FINAL: EMBALAGEM E ENVIO):

Nesta faixa, serão colocados os kanbans que representam as tarefas finais, como a embalagem dos capacitores, preparação para envio e controle de estoque.

O número de kanbans nesta faixa será com base no volume de capacitores fabricados e da capacidade de envio da empresa. Contaremos com 5 kanbans nesta fase, mas esse número pode ser ajustado de acordo com as necessidades da empresa.

Com base na proposta do quadro Kanban com três faixas de cores para a fabricação de capacitores, agora iremos mostrar a nossa proposta para o cartão Kanban e para o contenedor do sistema.

#### Cartão Kanban.

O cartão Kanban é uma representação visual das tarefas ou itens de trabalho em um quadro Kanban. Para a fabricação de capacitores, o cartão Kanban incluirá as seguintes informações:

Número de referência do lote de capacitores.

- Descrição do tipo ou modelo de capacitor a ser fabricado.
- Etapa atual do processo de fabricação (por exemplo, "Materiais e Preparação", "Produção", "Embalagem e Envio").
- Data de início e data de entrega esperada.
- Equipe responsável pela tarefa ou pela etapa atual.
- Observações que achar pertinente.

O cartão Kanban será visualmente distintivo e de tamanho adequado para permitir a fácil identificação e manuseio. Será feito em papel resistente ou em formato de cartão plástico durável. Outro aspecto a ser levantado é que o cartão Kanban seja legível e contenha todas as informações necessárias para rastrear e gerenciar o fluxo de trabalho.

#### **Contenedor Kanban**

O contenedor Kanban é usado para armazenar os itens ou materiais necessários para a fabricação dos capacitores. Cada contenedor deve ter um Kanban associado, que servirá como um sinal de reposição quando o contenedor estiver vazio. Isso permite que a equipe de suprimentos reabasteça o contêiner com os materiais necessários, evitando a interrupção do processo de fabricação.

O contenedor Kanban consistirá em um carrinho de metal com capacidade suficiente para armazenar os materiais em quantidade adequada. Ele será identificado com um número de identificação correspondente ao Kanban associado.

A equipe de suprimentos irá monitorar o fluxo de materiais observando os Kanbans nos contenedores. Quando um Kanban é removido, indicando que o contenedor está vazio, a equipe de suprimentos assumirá esse sinal para reabastecer o contenedor.

## 5. PREVISÃO DE ALTERAÇÕES FUTURAS

Como a previsão de demanda está aumentando gradativamente, ao longo do tempo haverá a necessidade de ajustar a quantidade de quadros Kanban e o número de Kanbans em cada fase do processo de fabricação de capacitores. Esses ajustes devem ser feitos para garantir que a capacidade de produção atenda à demanda crescente.

Será considerado então a proposta inicial de quantidade de Kanbans em cada faixa do quadro Kanban para a fabricação de capacitores, e faremos os ajustes com base no aumento previsto na demanda:

- 1. Faixa de cor verde (FASE INICIAL: MATERIAIS E PREPARAÇÃO):
  - Sugestão inicial: 5 kanbans.
  - Ajuste proposto: Aumentar para 8 kanbans.
  - Justificativa: Com o aumento da demanda, pode ser necessário realizar mais tarefas de aquisição de materiais e preparação inicial para cada lote de capacitores.
- 2. Faixa de cor amarela (FASE INTERMEDIÁRIA: PRODUÇÃO):
  - Sugestão inicial: 10 kanbans.
  - o Ajuste proposto: Aumentar para 15 kanbans.
  - Justificativa: Para lidar com uma demanda crescente, é necessário aumentar a capacidade de produção, adicionando mais kanbans para representar tarefas em andamento e evitar gargalos na produção.
- 3. Faixa de cor vermelha (FASE FINAL: EMBALAGEM E ENVIO):
  - Sugestão inicial: 5 kanbans.
  - o Ajuste proposto: Aumentar para 8 kanbans.
  - Justificativa: Com um aumento na demanda, é provável que haja mais capacitores a serem embalados e enviados, portanto, é necessário aumentar a capacidade nessa fase final.

Esses ajustes propostos só serão implementados quando a produção atingir um aumento de produção de 40% acima do valor médio das vendas das últimas quatro semanas, ou seja, quando ultrapassar 370 unidades diárias, em uma média móvel simples nos últimos 30 dias. No entanto, é importante ressaltar que a Capacitec estará analisando continuamente a capacidade de produção da equipe, o tempo de ciclo de cada etapa e outros fatores relevantes para determinar os ajustes precisos no número de kanbans em cada faixa.

Ademais, a equipe de planejamento de produção, a de marketing e a de vendas estarão fazendo o acompanhamento contínuo da demanda, monitore o desempenho do processo de fabricação e reavaliando periodicamente o número de kanbans em cada faixa, garantindo que eles estejam adequados para atender às necessidades da demanda em constante crescimento.

Vale ressaltar que a empresa tem um limite máximo de operação, no que se refere à produção. Portanto quando atingir a quantidade máxima de produção, caso a demanda continue aumentando, a empresa capacitec não conseguirá suprir os pedidos, podendo abrir uma nova filial com uma proposta semelhante a essa.

## IMPLANTAÇÃO DE UM SISTEMA DE GESTÃO DA QUALIDADE

Utilizando as ferramentas e conceitos apresentados relativos à gestão da

qualidade, execute o roteiro a seguir para aplicar um sistema de gestão da qualidade a sua empresa.

### 1. PROCESSO DE ACOMPANHAMENTO DE ROTINA DA QUALIDADE

O processo de acompanhamento da qualidade dos produtos e serviços da empresa segue o método DMAIC (Definir, Medir, Analisar, Melhorar e Controlar), que é uma abordagem estruturada para melhoria de processos. A seguir, será descrito cada fase do processo e como elas são aplicadas na nossa empresa.

#### Fase 1: Definir

- Nesta fase, definimos o escopo do projeto de melhoria da qualidade e estabelecemos metas claras. Identificamos os principais problemas ou oportunidades de melhoria relacionados à qualidade dos produtos e servicos.
- Realizamos análises de mercado, pesquisas de satisfação do cliente e avaliação de reclamações para compreender as necessidades e expectativas dos clientes.

#### Fase 2: Medir

- Nesta fase, coletamos dados relevantes sobre a qualidade dos produtos e serviços. Utilizamos indicadores-chave de desempenho (KPIs) para medir e monitorar a qualidade.
- Implementamos controles estatísticos de processo para identificar variações e tendências nos dados coletados. Utilizamos ferramentas como cartas de controle, histogramas e gráficos de tendência.

## Fase 3: Analisar

- Nesta fase, analisamos os dados coletados para identificar as causas raiz dos problemas de qualidade. Utilizamos técnicas de análise de causa e efeito, como diagrama de Ishikawa (espinha de peixe) e 5 Porquês.
- Realizamos análises estatísticas para identificar padrões e tendências nos dados. Buscamos entender as relações entre variáveis e identificar os principais fatores que influenciam a qualidade.

### Fase 4: Melhorar

- Nesta fase, desenvolvemos e implementamos planos de ação para melhorar a qualidade dos produtos e serviços. Utilizamos técnicas de brainstorming e metodologias de melhoria contínua, como o ciclo PDCA (Plan, Do, Check, Act).
- Realizamos testes pilotos, experimentos controlados e implementamos mudanças nos processos com o objetivo de reduzir defeitos, eliminar desperdícios e aumentar a satisfação do cliente.

#### Fase 5: Controlar

- Nesta fase, estabelecemos controles para monitorar continuamente a qualidade dos produtos e serviços. Implementamos auditorias internas e revisões periódicas para garantir a conformidade com os padrões de qualidade estabelecidos.
- Mantemos canais de comunicação abertos com os clientes para receber feedback e lidar com reclamações. Realizamos análises de tendências e monitoramento contínuo dos indicadores de qualidade.

Em todas as fases do processo, utilizamos ferramentas e técnicas da gestão da qualidade, como diagramas de pareto, análise de fluxo de valor, análise de causa e efeito, entre outras, de acordo com a necessidade específica de cada projeto de melhoria da qualidade.

O processo de acompanhamento da qualidade é contínuo e visa garantir a melhoria contínua dos produtos e serviços, a satisfação dos clientes e a obtenção de resultados consistentes em termos de qualidade.

#### 2. PROBLEMAS IDENTIFICADOS

O método DMAIC ajudou a identificar os seguintes problemas no ambiente de produção:

- Problema 1: Variação excessiva no tempo de ciclo de produção.
  - O método DMAIC nos permitiu coletar dados sobre o tempo de ciclo de produção e realizar análises estatísticas para identificar a variação excessiva. Utilizamos gráficos de controle para monitorar o tempo de ciclo ao longo do tempo e identificar pontos fora de controle. Isso nos ajudou a identificar a necessidade de melhorar a estabilidade e consistência do processo de produção.
- Problema 2: Alto índice de retrabalho devido a defeitos na produção.
  - Utilizando o método DMAIC, coletamos dados sobre os defeitos na produção e realizamos análises para identificar as principais causas desses defeitos. Utilizamos técnicas como diagrama de Ishikawa e 5 Porquês para investigar as causas raiz. Com base nessas informações, desenvolvemos planos de ação para reduzir os defeitos e implementamos melhorias nos processos de produção.
- Problema 3: Baixa eficiência no processo de montagem de componentes.
  - Este problema pode estar associado a um item de controle como o tempo de ciclo ou a taxa de retrabalho. Pode ser causado por falta de treinamento adequado, falhas de comunicação ou problemas na organização do local de trabalho. O método DMAIC

nos ajudará a identificar as causas e desenvolver soluções para melhorar a eficiência da montagem.

## 3. AVALIAÇÃO DE PROBLEMAS

Diagrama de Ishikawa para o Problema 1:

 Problema: Variação excessiva no tempo de ciclo de produção Causas Potenciais:

## 1. Máquina:

 Justificativa: Possíveis problemas com a calibração das máquinas ou desgaste de peças podem levar a variações no tempo de ciclo.

#### 2. Material:

 Justificativa: Qualidade inconsistente do material pode causar interrupções e atrasos durante o processo de produção.

#### 3. Método:

 Justificativa: Falta de padronização nos métodos de trabalho pode levar a inconsistências no tempo de ciclo.

#### 4. Mão de obra:

 Justificativa: Falta de treinamento adequado ou falta de comunicação eficaz entre os operadores podem causar variações no tempo de ciclo.

#### 5. Medição:

 Justificativa: Erros de medição podem levar a uma interpretação incorreta do tempo de ciclo real.

#### 6. Ambiente:

 Justificativa: Condições ambientais inadequadas, como temperatura ou umidade, podem afetar o desempenho das máquinas e causar variações no tempo de ciclo.

Diagrama de Ishikawa para o Problema 2:

 Problema: Alto índice de retrabalho devido a defeitos na produção Causas Potenciais:

## 1. Matéria-prima:

 Justificativa: Qualidade inconsistente da matéria-prima pode levar a defeitos durante o processo de produção.

#### 2. Processo:

 Justificativa: Falhas nos procedimentos de produção podem causar defeitos nos produtos.

#### 3. Mão de obra:

 Justificativa: Falta de treinamento adequado ou falta de atenção dos operadores podem resultar em erros e defeitos.

## 4. Máquinas/equipamentos:

 Justificativa: Máquinas mal calibradas ou em mau estado de conservação podem causar defeitos nos produtos.

#### 5. Ambiente:

 Justificativa: Condições ambientais inadequadas, como temperatura ou umidade, podem afetar a qualidade dos produtos.

## 6. Métodos de inspeção:

 Justificativa: Falhas nos métodos de inspeção podem resultar na detecção insuficiente de defeitos.

Diagrama de Ishikawa para o Problema 3:

- Problema: Baixa eficiência no processo de montagem de componentes Causas Potenciais:
  - 1. Treinamento:
    - Justificativa: Falta de treinamento adequado para os operadores de montagem pode levar a erros e baixa eficiência.
  - Fluxo de trabalho: Justificativa: Falhas no design do fluxo de trabalho podem causar retrabalho e ineficiências durante a montagem.
  - Layout da área de trabalho: Justificativa: Layout inadequado da área de montagem pode levar a movimentações desnecessárias e atrasos.
  - Ferramentas e equipamentos: Justificativa: Falta de ferramentas adequadas ou equipamentos em mau estado podem afetar a eficiência da montagem.
  - 5. Supervisão: Justificativa: Falta de supervisão adequada pode resultar em baixa motivação e desempenho insatisfatório dos operadores.
  - Processo de controle de qualidade: Justificativa: Falhas no processo de controle de qualidade podem resultar em retrabalho e atrasos na montagem.

Esses são apenas exemplos de possíveis causas para os problemas mencionados. É importante que a equipe da Capacitec adapte e personalize esses diagramas de acordo com a realidade e os problemas específicos enfrentados pela empresa.

## 4. PLANOS DE AÇÃO

Para solucionar os problemas identificados na Capacitec, vamos utilizar a técnica 5W2H para definir um plano de ação. Além disso, vamos priorizar os problemas através da técnica GUT (Gravidade, Urgência e Tendência). Seguem abaixo os planos de ação para os problemas selecionados:

## Problema 1: Variação excessiva no tempo de ciclo de produção GUT:

Gravidade: 8 Urgência: 8

• Tendência de agravar: 4

## Plano de Ação:

- What (O quê): Realizar uma análise detalhada dos tempos de ciclo de produção.
- Who (Quem): Equipe responsável pelo processo de produção.
- When (Quando): Nas próximas duas semanas.
- Where (Onde): No local de produção.
- Why (Por quê): Para identificar as principais fontes de variação e implementar medidas de controle.
- How (Como): Coletar dados de tempo de ciclo, utilizar ferramentas estatísticas para análise, identificar causas raiz, implementar melhorias no processo e monitorar os resultados.
- How much (Quanto): Alocar recursos necessários para a análise, como tempo da equipe, ferramentas de análise estatística e capacitação adicional, se necessário.

## Problema 2: Alto índice de retrabalho devido a defeitos na produção GUT:

Gravidade: 9Urgência: 7

Tendência de agravar: 4

### Plano de Ação:

- What (O quê): Realizar uma análise dos defeitos de produção e implementar medidas corretivas.
- Who (Quem): Equipe responsável pelo processo de produção e equipe de controle de qualidade.
- When (Quando): Nas próximas quatro semanas.
- Where (Onde): No local de produção e área de controle de qualidade.
- Why (Por quê): Para reduzir o retrabalho, melhorar a qualidade do produto e aumentar a satisfação do cliente.
- How (Como): Coletar dados de defeitos, realizar análise de causas utilizando ferramentas como diagrama de Ishikawa, implementar melhorias nos processos, fornecer treinamento adicional aos operadores e monitorar os resultados.
- How much (Quanto): Alocar recursos necessários para a análise de defeitos, como tempo da equipe, ferramentas de análise e treinamento adicional, se necessário.

## Problema 3: Baixa eficiência no processo de montagem de componentes GUT:

Gravidade: 8Urgência: 8

• Tendência de agravar: 6

## Plano de Ação:

- What (O quê): Realizar uma análise do processo de montagem e implementar melhorias para aumentar a eficiência.
- Who (Quem): Equipe responsável pelo processo de montagem.
- When (Quando): Nas próximas quatro semanas.
- Where (Onde): No local de montagem.
- Why (Por quê): Para reduzir o tempo de montagem, otimizar o fluxo de trabalho e aumentar a produtividade.
- How (Como): Mapear o processo de montagem, identificar gargalos e desperdícios, redesenhar o fluxo de trabalho, fornecer treinamento adicional aos operadores e monitor

#### **REFERENCIAS**

- [1] Ceará desponta no mercado brasileiro de eletroeletrônicos, 31 DE Julho de 2019. Disponível em
- <a href="https://diariodonordeste.verdesmares.com.br/negocios/ceara-desponta-no-mercado-brasileiro-de-eletroeletronicos-1.2130121">https://diariodonordeste.verdesmares.com.br/negocios/ceara-desponta-no-mercado-brasileiro-de-eletroeletronicos-1.2130121</a>. Acessado em 18 Jun 2023.
- [2] Womack, J. P., Jones, D. T., & Roos, D. (2007). A Máquina que Mudou o Mundo: O Livro Clássico sobre a Renovação da Indústria Automobilística. Bookman Editora.
- [3] Rother, M., & Harris, R. (2009). Criando Fluxo Contínuo: Um Guia de Ação para Gerentes, Engenheiros e Associados de Produção. Lean Enterprise Institute.
- [4] Leme, R. (2012). Guia Prático do Programa 5S: O passo a passo para a implantação dos 5 sensos. Editora Criação.
- [5] Ballé, F., & Ballé, M. (2005). O Projeto Lean Office: como eliminar desperdícios e criar fluxos contínuos em sua organização. Lean Institute Brasil.
- [6] Ohno, T. (1988). O Sistema Toyota de Produção: além da produção em larga escala. Bookman Editora.