

FORECASTING SERIES DE TIEMPO

Applied Mathematics and Actuary Training

Lección 5 - Regresión

REGRESIÓN LINEAL EN SERIES DE TIEMPO

ESTIMAR UNA ST

 $\{y_t\}$

Variable Pronóstico o Dependiente

RELACIÓN LINEAL

con otra serie $\{x_t\}$

Variable Predictora o Independiente

MODELO DE REGRESIÓN LINEAL SIMPLE

$$y_t = \beta_0 + \beta_1 x_t + \varepsilon_t$$

 β_0 : Intercepto (valor de **y** cuando $\mathbf{x} = \mathbf{0}$)

 β_1 : Pendiente (cambio en y cuando x aumenta una unidad)

 ε_t : Error aleatorio (desviación del modelo lineal)

MODELO DE REGRESIÓN LINEAL MÚLTIPLE

$$y_t = \beta_0 + \beta_1 x_{1,t} + \beta_2 x_{2,t} + \dots + \beta_k x_{k,t} + \varepsilon_t$$

 x_1, \dots, x_k son las k variables predictoras

SUPOSICIONES:

- > La relación planteada por el modelo es verdadera
- \triangleright Los predictores $\{x_{k,t}\}$ no son variables aleatorias
- \triangleright Los errores $\{\varepsilon_t\}$:
 - > Tienen media 0
 - No están autocorrelacionados
 - No tienen correlación con los predictores

> 20 -

 $y_t = \beta_0 + \beta_1 x_t + \varepsilon_t$

PREDICTORES IMPORTANTES REGRESIÓN DE ST

TENDENCIA

Utilizamos:

 $x_{1,t} = t$ para modelar

Es decir, $y_t = \beta_0 + \beta_1 t + \varepsilon_t$

Es posible utilizar potencias: $y_t = \beta_0 + \beta_1 t + \beta_2 t^2 + \varepsilon_t$

ESTACIONALIDAD

 $\beta_0 + \beta_1 X$

Variable categórica, se crean variables dummy:

Ejemplo trimestral

	$s_{1,t}$	$s_{2,t}$	$s_{3,t}$
Trim1	1	0	0
Trim2	0	1	0
Trim3	0	0	1
Trim4	0	0	0

Y modelamos:

$$y_t = \beta_0 + \beta_1 s_{1,t} + \beta_2 s_{2,t} + \beta_3 s_{3,t} + \varepsilon_t$$

¡Podemos incluir ambas! $y_t = \beta_0 + \beta_1 s_{1,t} + \beta_2 s_{2,t} + \beta_3 s_{3,t} + \beta_4 t + \varepsilon_t$

BONDAD DE AJUSTE

Múltiples Predictores $\{x_{1,t}\}$... $\{x_{k,t}\}$

Seleccionar los mejores

Métricas de precisión predictiva

R^2	R ² Ajustada	AIC	BIC
Coeficiente de Determinación $R^{2} = \frac{\sum (\hat{y}_{t} - \bar{y})^{2}}{\sum (y_{t} - \bar{y})^{2}}$	Coeficiente de Determinación Ajustado $R_a^2 = 1 - \frac{T-1}{T-k-1}(1-R^2)$	Criterio de información de Akaike $AIC = 2(k-1) - 2\ln(L_k)$	Criterio de información Bayesiano $BIC = \ln(L_k)(k-1) - 2\ln(L_k)$
Proporción de variación er variable pronóstico y_t explicada por la regresión	predictores (incluso	Penaliza por el número de parámetros k utilizado para el modelo	Penaliza más fuertemente el número de parámetros k utilizado para el modelo
$0 \le R^2 \le 1$ Entre más grande mejor	$0 \leq R_a^2 \leq 1$ Entre más grande mejor	Con pocos datos tiende a preferir más predictores Entre más pequeño mejor	Es más estricto con el sobreajuste en datasets grandes Entre más pequeño mejor
Applied Mathematics and Actuary Training	T: Número de datos conocidos de la ST x: Número de predictores del modelo L _k : Logverosimilitud maximizada		Nociones Básicas Series de Tiempo Lección 2

ANÁLISIS DE RESIDUALES

REMANENTE TRAS AJUSTAR UN MODELO

$$e_t = y_t - \widehat{y_t}$$

BUSCAMOS VERIFICAMOS Si existen patrones **ALEATORIEDAD** que nos indiquen lo contrario Si oscilan arriba y **MEDIA EN** abajo de 0 (entre más pequeños mejor) Si presentan NO **AUTOCORRELACIÓN** correlación serial

pplied Mathematics and Actuary Training

Son una Serie de Tiempo

Muestra de los errores aleatorios ε_t

PRUEBAS FORMALES

 H_0 : no hay autocorrelación VS H_1 : hay autocorrelación

$$Q = n(n+2) \sum_{k=1}^{h} \frac{\widehat{\rho}_k^2}{n-k}$$

$$Q \sim \mathcal{X}_h^2$$

Breusch-Godfrey $nR^2 \sim \mathcal{X}_p^2$

h: número de lags que se prueban $\hat{\rho}_k^2$: Autocorrelación de la muestra

p: Número de lags de errores (regresión aux)

 R^2 : Coef de determinación (regresión aux)

FORECASTING SERIES DE TIEMPO

Regresión | Lección 5

