Implementation of an EDF Scheduler based on freeRTOS

egFWD Embedded Systems Advanced Track

By:

Mohamed Elsayed

Verifying System implementation

Analytical Method

ID	TASK	Periodicity	Execution Time	Calls in Hyper
				period
1	Button_1_Monitor	50	0.022	2
2	Button_2_Monitor	50	0.022	2
3	Periodic_Transmitter	100	0.028	1
4	Uart_Receiver	20	0.027	5
5	Load_1_Simulation	10	5	10
6	Load_2_Simulation	100	12	1

Calculation of HyperPeriod

HyperPeriod = LCM(Periodicities) = LCM(50,50,100,20,10,100)HyperPeriod = 100

CPU Load Calculations

CPU LOAD =Total Time*100/ HyperPeriod

CPU LOAD =
$$\frac{\text{Total Time}}{\text{HyperPeriod}} *100$$

$$Total \ Time = \sum_{i=1}^{6} Execution Time_i*Num \ of Calls \ In \ HyperPeriod_i$$

$$Total\ Time = 0.022 * 2 + 0.022 * 2 + 0.028 + 0.027 * 5 + 5 * 10 + 12$$

Stimulability Analysis using Rate Monotonic Utilization Bound

(Assuming the given set of tasks are scheduled using a fixed priority rate -monotonic scheduler)

if $\textit{U} \leq \textit{Urm}$ then the system is schedulable

$$Urm = n[2^{1/n} - 1]$$

$$Urm = 6*(2^{1/6}-1) = 0.7347723$$

The system is guaranteed schedulable since U < Urm.

Schedulability Analysis using Time Demand Analysis

$$w_i(t) = e_i + \sum_{k=1}^{i-1} \left\lceil \frac{t}{p_k} \right\rceil e_k \quad \textit{for } 0 < t \leq p_i \quad \text{W = Worst response time} \\ E = \text{Execution time} \\ P = \text{Periodicity} \\ T = \text{Time instance}$$

Tasks are organized by lowest periodicity which is highest priority.

Task 5 -> Task 4 -> Task 1 -> Task 2 -> Task 3 -> Task 6

o Task 5

$$W(4) = 5 + 0 = 5ms$$

Since D = 10 ms and W(10) = 5 ms

W(10) < D

Task 5 is schedulable.

o Task 4

$$W(20) = 0.027 + (20/10)*5 = 10.027ms$$

Since D = 20 ms and W(20) = 10.027ms

W(20) < D

Task 4 is schedulable.

o Task 1

$$W(50) = 0.022 + (50/10)*5 + (50/20)*0.027 = 25.2875ms$$

Since D = 50 ms and W(50) = 25.2875 ms

W(50) < D

Task 1 is schedulable.

Task 2

$$W(50) = 0.022 + (50/10)*5 + (50/20)*0.027 + (50/50)*0.022 = 25.1115ms$$

Since D = 50 ms and W(50) = 25.1115 ms

W(50) < D

Task 2 is schedulable.

o Task 3

W(100) = 0.028 + (100/50)*0.022 + (100/50)*0.022 + (100/10)*5 + (100/20)*0.027 = 50.251 ms

Since D = 100 ms and W(100) = 50.251 ms

W(100) < D

Task 3 is schedulable.

o Task 6

W(100) = 12 + (100/100)*0.028 + (100/50)*0.022 + (100/50)*0.022 + (100/10)*5 + (100/20)*0.027 = 62.251msSince D = 100 ms and W(100) = 62.251ms W(100) < D

Task 6 is schedulable.

Therefore, the system is schedulable.

Simso Simulation Method

CPU Load almost the same as analytical method.

Keil Simulation Method

All CPU load calculations are almost the same which mean EDF scheduler implementation on freeRTOS kernel works as expected.