EMC TEST REPORT

Report No.: 14021051-FCC-E Supersede Report No.: N/A

Applicant	Watchdata Technologies Pte. Ltd.			
Product Name	WatchKey ProX USB Token			
Main Model	K8			
Test Standard	FCC Part 15	Subpart B Class B:2014, ANSI C63.4: 2009		
Test Date	February 06,	2015		
Issue Date	February 06,	2015		
Test Result	Pass Fail			
Equipment complied	d with the spe	cification		
Equipment did not o	comply with th	e specification		
Deon	Dai'	Alex. Lin		
Deon Dai Test Engineer		Alex Liu Checked By		
This test report may be reproduced in full only				
Test resu	Test result presented in this test report is applicable to the tested sample only			

Issued by: SIEMIC (Nanjing-China) Laboratories

2-1 Longcang Avenue Yuhua Economic and Technology Development Park, Nanjing, China Tel:+86(25)86730128/86730129 Fax:+86(25)86730127 Email: China@siemic.com.cn

Test Report No.	14021051-FCC-E
Page	2 of 28

Laboratories Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for Conformity Assessment

According for Commenting Assessment			
Country/Region	Scope		
USA	EMC, RF/Wireless, SAR, Telecom		
Canada	EMC, RF/Wireless, SAR, Telecom		
Taiwan	EMC, RF, Telecom, SAR, Safety		
Hong Kong	RF/Wireless, SAR, Telecom		
Australia	EMC, RF, Telecom, SAR, Safety		
Korea	EMI, EMS, RF, SAR, Telecom, Safety		
Japan	EMI, RF/Wireless, SAR, Telecom		
Singapore	EMC, RF, SAR, Telecom		
Europe EMC, RF, SAR, Telecom, Safety			

Test Report No.	14021051-FCC-E
Page	3 of 28

This page has been left blank intentionally.

Test Report No.	14021051-FCC-E
Page	4 of 28

CONTENTS

1	REPORT REVISION HISTORY	5
2.	CUSTOMER INFORMATION	5
3.	TEST SITE INFORMATION	5
4.	EQUIPMENT UNDER TEST (EUT) INFORMATION	6
5.	TEST SUMMARY	7
6.	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	8
6.1 A	C POWER LINE CONDUCTED EMISSIONS	8
6.2 R	ADIATED EMISSIONS	12
	EX A. TEST INSTRUMENT	
	EX B. EUT AND TEST SETUP PHOTOGRAPHS	
	EX C. TEST SETUP AND SUPPORTING EQUIPMENT	
	EX D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PARTLIST	
	EX E. DECLARATION OF SIMILARITY	
HIVIN	EA E. DEGLAKATION OF SIMILAKITY	∠ð

Test Report No.	14021051-FCC-E
Page	5 of 28

1. Report Revision History

Report No.	Report Version	Description	Issue Date
14021051-FCC-E	NONE	Original	February 06, 2015

2. <u>Customer information</u>

Applicant Name	Watchdata Technologies Pte. Ltd.	
Applicant Add	84 Genting Lane, #02-01 Cityneon Design Centre, Singapore	
Manufacturer	Watchdata Technologies Pte. Ltd.	
Manufacturer Add	84 Genting Lane, #02-01 Cityneon Design Centre, Singapore	

3. Test site information

Lab performing tests	SIEMIC (Nanjing-China) Laboratories	
Lab Address 2-1 Longcang Avenue Yuhua Economic and Technology Development Park, Nanjing, China		
FCC Test Site No.	986914	
IC Test Site No.	4842B-1	
Test Software	Labview of SIEMIC version 1.0	

Test Report No.	14021051-FCC-E
Page	6 of 28

4. Equipment under Test (EUT) Information

Descri	ption of EUT:	WatchKey ProX USB Token

Main Model: K8

Serial Model: N/A

Date EUT received: January 30, 2015

Test Date(s): February 06, 2015

Input Power: Power Supply By USB

Trade Name : N/A

Port USB Port

FCC ID: Y97-PROXKEY001

Test Report No.	14021051-FCC-E
Page	7 of 28

5. <u>Test Summary</u>

The product was tested in accordance with the following specifications. All testing has been performed according to below product classification:

FCC Rules	Description of Test Result		
§15.107; ANSI C63.4: 2009	AC Power Line Conducted Emissions	Compliance	
§15.109; ANSI C63.4: 2009	Radiated Emissions Compliance		

Measurement Uncertainty

Test Item	Description	Uncertainty
Radiated Emissions	Confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2 (for EUTs < 0.5m X 0.5m X 0.5m)	3.952dB

Test Report No.	14021051-FCC-E
Page	8 of 28

6. Measurements, Examination And Derived Results

<u>6.1 AC Power Line Conducted Emissions</u>

Temperature	20°C
Relative Humidity	50%
Atmospheric Pressure	1019mbar
Test date :	February 06, 2015
Tested By:	Deon Dai

Requirement(s):

Spec	Item	Requirement	Applicable
47CFR§15.10 7	a)	1. For Low-power radio-frequency devices that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 [mu]H/50 ohms line impedance stabilization network (LISN). The lower limit applies at the boundary between the frequencies ranges. Frequency ranges Limit (dBµV) QP Average	>
Test Setup		Vertical Ground Reference Plane Horizontal Ground Reference Plane Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80cm from EUT and at least 80cm from other units and other metal planes support units.	
Procedure	3. The filte co. 5. All 6. Th 7. As the 8. High tur ba	The EUT and supporting equipment were set up in accordance with the require standard on top of a 1.5m x 1m x 0.8m high, non-metallic table. The power supply for the EUT was fed through a 50W/50mH EUT LISN, consered mains. The EUT LISN was connected to the EMI test receiver via a leaxial cable. The supporting equipment were powered separately from another main the EUT was switched on and allowed to warm up to its normal operating consecutive on the NEUTRAL line (for AC mains) or Earth line (for DC experience) are frequency range using an EMI test received the selected frequencies and the necessary measurements made with modern of the selected for the LIVE line (for AC mains) or DC line (for DC per selected).	nected to ow-loss supply. ondition. power) over er was then vith a receiver

Test Report No.	14021051-FCC-E
Page	9 of 28

Remark		
Result	Pass	Fail
Test Data	Yes	□ _{N/A}
Test Plot	Yes	□ _{N/A}

Data sample

Frequency (MHz)	Quasi-Peak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Factors (dB)
XXX	56.21	66.00	-9.79	39.20	56.00	-16.80	12.22

Frequency (MHz) = Emission frequency in MHz

Quais-Peak/Average (dB μ V/m)=Receiver Reading(dB μ V/m)+ Factor(dB)

 $Limit(dB\mu V/m)=Limit$ stated in standard

Factor (dB)= cable loss+ Insertion loss of LISN+ Insertion loss of transient limiter (The transient limiter included 10dB attenuation)

Calculation Formula:

Margin (dB)=Quasi Peak / Average (dB μ V/m) – limit (dB μ V/m)

Test Report No.	14021051-FCC-E
Page	10 of 28

Test Mode: Normal Working

Test Data

Phase Line Plot 120V

	1 Haso Ellio I lot 120 V						
Frequency (MHz)	Quasi Peak (dBµV)	Limit (dBµV)	Margin (dB)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Factors (dB)
0.15	52.30	65.78	-13.48	33.19	55.78	-22.59	12.16
0.27	40.45	61.12	-20.67	27.85	51.12	-23.27	11.42
3.91	34.75	56.00	-21.25	21.30	46.00	-24.70	10.89
4.07	30.42	56.00	-25.58	20.41	46.00	-25.59	10.89
4.10	33.80	56.00	-22.20	22.66	46.00	-23.34	10.89
4.31	30.33	56.00	-25.67	19.66	46.00	-26.34	10.89

Test Report No.	14021051-FCC-E
Page	11 of 28

Test Mode: Normal Working

Test Data

Phase Neutral Plot 120V

Frequency (MHz)	Quasi Peak (dBµV)	Limit (dBµV)	Margin (dB)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Factors (dB)
0.15	52.16	66.00	-13.84	33.12	56.00	-22.88	12.21
0.71	33.51	56.00	-22.49	26.22	46.00	-19.78	10.91
0.27	37.99	61.24	-23.25	25.31	51.24	-25.93	11.43
4.39	31.83	56.00	-24.17	20.04	46.00	-25.96	10.94
2.07	28.48	56.00	-27.52	22.08	46.00	-23.92	10.92
4.54	29.16	56.00	-26.84	17.71	46.00	-28.29	10.95

Test Report No.	14021051-FCC-E
Page	12 of 28

6.2 Radiated Emissions

Temperature	20°C
Relative Humidity	50%
Atmospheric Pressure	1019mbar
Test date :	February 06, 2015
Tested By:	Deon Dai

Requirement(s):

Requirement(s): Spec	Item	Requirement		Applicable			
47CFR§15.10	a)	Except higher limit as specified elsewhere the low-power radio-frequency devices sha specified in the following table and the level exceed the level of the fundamental emissi band edges	V				
7(d)		Frequency range (MHz) 30 – 88	Field Strength (µV/m) 100				
		88 – 216	150				
		216 960	200				
		Above 960	500				
Test Setup		Support Units Turn Table	Ant. Tower 1-4m Variable	_			
	Ground Plane						
	Test Receiver						
Procedure	2. I	rotation of the EUT) was chosen. b. The EUT was then rotated to the company to t	nuency points obtained from the EUT of out by rotating the EUT, changing the ability that the following manner: whichever gave the higher emission led direction that gave the maximum emission light that gave the maximum and above 1GHz, set the spectrum and for each frequency measured.	naracterisation. antenna vel over a full ion. mum emission. ılyzer on a 100kH:			
Remark							
Result	Pass	□ Fail					
Test Data	Yes	□ _{N/A}					
Test Plot	es (See be	elow) N/A					

Test Report No.	14021051-FCC-E
Page	13 of 28

Data sample

Frequency (MHz)	Quasi Peak (dBµV/m)	Azimuth	Polarity (H/V)	Height (cm)	Factors (dB)	Limit (dBµV/m)	Margin (dB)
XXX	32.23	181.00	Н	350.00	-38.23	40.00	-7.77

Frequency (MHz) = Emission frequency in MHz

Quais-Peak ($dB\mu V/m$)= Receiver Reading($dB\mu V/m$)+ Factor(dB)

Azimuth=Position of turn table

Polarity=Polarity of Receiver antenna

Height(cm)= Height of Receiver antenna

Factor (dB)=Antenna factor + cable loss- antenna gain

Limit (dB μ V/m)=Limit stated in standard

Calculation Formula:

Margin (dB)=Quasi Peak (dB μ V/m) – limit (dB μ V/m)

Test Report No.	14021051-FCC-E
Page	14 of 28

Test Mode:	Normal Working
------------	----------------

(Below 1GHz)

Test Data

Vertical Polarity Plot @3m

Tortion Form							
Frequency (MHz)	Quasi Peak (dBµV/m)	Azimuth	Polarity (H/V)	Height (cm)	Factors (dB)	Limit (dBµV/m)	Margin (dB)
48.00	30.11	44.00	V	106.00	-33.43	40.00	-9.89
216.43	34.89	21.00	V	140.00	-31.16	46.00	-11.11
240.00	35.62	220.00	V	191.00	-29.90	46.00	-10.38
33.26	26.66	167.00	V	106.00	-25.86	40.00	-13.34
793.55	32.36	16.00	V	104.00	-17.66	46.00	-13.64
820.59	24.17	143.00	V	150.00	-17.55	46.00	-21.83

Test Report No.	14021051-FCC-E
Page	15 of 28

Test Mode:

(Below 1GHz)

Test Data

Horizontal Polarity Plot @3m

Tierizeritari etarity i let e em							
Frequency (MHz)	Quasi Peak (dBµV/m)	Azimuth	Polarity (H/V)	Height (cm)	Factors (dB)	Limit (dBµV/m)	Margin (dB)
216.42	41.40	274.00	Н	155.00	-30.30	46.00	-4.60
240.00	42.70	285.00	Н	122.00	-28.50	46.00	-3.30
905.02	21.23	285.00	Н	258.00	-19.04	46.00	-24.77
336.00	33.67	318.00	Н	100.00	-29.96	46.00	-12.33
233.19	31.76	275.00	Н	128.00	-29.02	46.00	-14.24
900.15	21.31	282.00	Н	354.00	-19.36	46.00	-24.69

Note: The highest frequency of the internal sources of the EUT is less than 108MHz, so the measurement shall only be made up to 1GHz.

Test Report No.	14021051-FCC-E
Page	16 of 28

Annex A. TEST INSTRUMENT

Instrument	Model	Serial #	Cal Date	Cal Due	In use
AC Line Conducted Emission	ns				
R&S EMI Test Receiver	ESPI3	101216	11/04/2014	11/03/2015	>
V-LISN	ESH3-Z5	838979/005	09/27/2014	09/26/2015	>
SIEMIC Labview Conducted Emissions software	V1.0	N/A	N/A	N/A	(
Radiated Emissions	Radiated Emissions				
Hp Spectrum Analyzer	8563E	3821A09023	10/09/2014	10/08/2015	~
R&S EMI Receiver	ESPI3	101216	11/04/2014	11/03/2015	<
Antenna (30MHz~6GHz)	JB6	A121411	04/15/2014	04/14/2015	<
Hp Agilent Pre-Amplifier	8447F	1937A01160	10/27/2014	10/26/2015	~
SIEMIC Labview Radiated Emissions software	V1.0	N/A	N/A	N/A	>

Test Report No.	14021051-FCC-E
Page	17 of 28

Annex B. EUT And Test Setup Photographs

Annex B.i. Photograph EUT Internal Photo

Front View of EUT

Rear View of EUT

Test Report No.	14021051-FCC-E
Page	18 of 28

Top View of EUT

Bottom View of EUT

Test Report No.	14021051-FCC-E
Page	19 of 28

Left View of EUT

Right View of EUT

Test Report No.	14021051-FCC-E
Page	20 of 28

Annex B.ii. Photograph EUT Internal Photo

Uncover- Front View

EUT PCBA – Front View

Test Report No.	14021051-FCC-E
Page	21 of 28

EUT PCBA – Rear View

Test Report No.	14021051-FCC-E
Page	22 of 28

Annex B.iii. Photograph: Test Setup Photo

Conducted Emissions Setup Front View

Conducted Emissions Setup Side View

Test Report No.	14021051-FCC-E
Page	23 of 28

Radiated Emissions Setup Below 1GHz Front View

Test Report No.	14021051-FCC-E
Page	24 of 28

Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

Annex C.i. TEST SET UP BLOCK

Block Configuration Diagram for Conducted Emissions

Test Report No.	14021051-FCC-E
Page	25 of 28

Block Configuration Diagram for Radiated Emissions

Test Report No.	14021051-FCC-E
Page	26 of 28

Annex C. il. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Manufacturer	Equipment Description	Model	Calibration Date
Gateway	Gateway Laptop	MS2288 & LXWHF02013951C3CA92200	N/A

Test Report No.	14021051-FCC-E
Page	27 of 28

Annex D. User Manual / Block Diagram / Schematics / Partlist

Please see Attachment

Test Report No.	14021051-FCC-E
Page	28 of 28

Annex E. DECLARATION OF SIMILARITY

N/A