2. Klausur _{07.10.2017}

Dr. Gerhard Baur Erik Hintz

Gesamtpunktzahl: 100 Punkte.

Diese Klausur ist beidseitig bedruckt.

1. Bestimme alle $x \in \mathbb{R}$, welche die Ungleichung

[10]

$$|x - 3| > |2x|$$

erfüllen.

2. Wir betrachten die rekursiv definierte Folge $(a_n)_{n\in\mathbb{N}}$ mit $a_1=2$ und

[8+3+4=15]

$$a_{n+1} := \frac{2}{n+1} a_n$$

für $n \geq 1$.

- (a) Zeige durch vollständige Induktion, dass $a_{n+1} \leq a_n$ für alle $n \in \mathbb{N}$ gilt.
- (b) Zeige, dass $0 \le a_n \le 2$ für alle $n \in \mathbb{N}$ gilt.
- (c) Zeige, dass die Folge $(a_n)_{n\in\mathbb{N}}$ konvergiert und bestimme den Grenzwert.
- 3. Zeige oder widerlege:

 $[4 \times 3 = 12]$

- (a) Das Minimum einer Menge ist, so es existiert, eindeutig.
- (b) Es seien $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ Folgen und es gelte $\lim_{n\to\infty} a_n = 0$. Dann gilt auch $\lim_{n\to\infty} a_n b_n = 0$.
- (c) Es sei $(a_n)_{n\in\mathbb{N}}$ eine reelle Folge mit $a_n>0$ für alle $n\in\mathbb{N}$. Ferner sei $(a_n)_{n\in\mathbb{N}}$ konvergent mit $\lim_{n\to\infty} a_n=a$. Dann ist a>0.
- (d) Jede differenzierbare Funktion besitzt auf einem kompakten Intervall eine Nullstelle.
- 4. (a) Es sei $f: \mathbb{R} \to \mathbb{R}$ an der Stelle $a \in \mathbb{R}$ differenzierbar. [2×5=10] Zeige mit der Definition der Ableitung, dass dann für $c \in \mathbb{R}$ auch die Funktion $c \cdot f$ in a differenzierbar ist mit $(c \cdot f)'(a) = c \cdot f'(a)$.
 - (b) Es sei I=[a,b] ein Intervall und $f:I\to\mathbb{R}$ sei positiv und konkav auf I. Ferner sei f zweimal differenzierbar. Zeige, dass dann $\frac{1}{f}$ konvex auf I ist. Erinnerung: f konvex an der Stelle $a\Leftrightarrow f''(a)\geq 0$ und f konkav an der Stelle $a\Leftrightarrow f''(a)\leq 0$.
- 5. Zeige, dass die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit

[9]

$$f(x) = e^x + x^5 - \sin(2x) + 2x$$

genau eine Nullstelle im Intervall $(-\pi,0)$ hat.

Hinweis: Die Nullstelle braucht nicht berechnet werden.

- 6. Betrachte die Funktion $f: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ mit $f(x) = \tan(x)$. [5+6=11]
 - (a) Zeige unter Verwendung der Tatsache $\tan(x) = \frac{\sin(x)}{\cos(x)}$, dass $f'(x) = \frac{1}{\cos^2(x)} = 1 + \tan^2(x)$.

 Hinweis: Hier braucht nicht die Definition der Ableitung verwendet werden.
 - (b) Zeige, dass für $a,b \in \left[0,\frac{\pi}{2}\right)$ mit b>a gilt, dass

$$\tan(b) - \tan(a) > b - a$$

- 7. Wir betrachten die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = xe^{-2x}$ [3+8+3=14]
 - (a) Begründe ohne Rechnung, warum die Funktion f im Intervall I = [0, 1] ein globales Maximum und ein globales Minimum annimmt.
 - (b) Bestimme das globale Maximum und das globale Minimum aus (a) (also auf dem Intervall I=[0,1]).

Hinweis: $e^{-2} \approx 0.14$ und $e^{-1} \approx 0.37$

- (c) Berechne, falls existent, $\lim_{x\to\infty} f(x)$.
- 8. (a) Bestimme folgende unbestimmten Integrale:

[4+7+8=19]

i.
$$\int x \sin(2x) \ dx$$
 ii.
$$\int \frac{-x+7}{(x-1)(x+2)} \ dx$$

(b) Besitzen die beiden Integrale

$$\int_0^1 \frac{2x}{x^2 + 1} \, dx \text{ und } \int_0^\infty \frac{2x}{x^2 + 1} \, dx$$

jeweils einen endlichen Wert? Begründe jeweils.

Viel Erfolg!