Санкт-Петербургский Политехнический Университет Петра Великого Физико-механический институт

Высшая школа прикладной математики и вычислительной физики

Лабораторная работа N2

по дисциплине "Математическая статистика"

Обучающаяся: А.Д. Балакшина $(\mbox{группа} \ 5030102/20101)$

Преподаватель: А.Н. Баженов

Санкт-Петербург

2025

Содержание

1	Формулировка задания	3
2	Формализация	4
3	Выполнение работы	4
4	Результаты 4.1 Бокс-плоты	5 5
5	Оценка характера выбросов и вида боксилотов	9

1 Формулировка задания

Для 4 распределений:

- Нормальное распределение N(x, 0, 1)
- ullet Распределение Коши C(x,0,1)
- ullet Распределение Пуассона P(k,10)
- Равномерное распределение $U(x,-\sqrt{3},\sqrt{3})$
- 1. Сгенерировать выборки размером 20, 100 и 1000 элементов.
- 2. Построить бокс-плоты Тьюки
- 3. Определить число выбросов, занести в таблицу
- 4. Оценить вид бокс-плотов и относительное число выбросов при изменении мощности выборки

2 Формализация

В данной работе вычисление числа выбросов основано на межквартильном размахе (IQR). Это значение определялось следующими величинами:

1. Квартили:

 Q_1 (первый квартиль): значение, ниже которого находится 25% данных.

 Q_3 (третий квартиль): значение, ниже которого находится 75% данных.

2. Межквартильный размах: разница между третьим и первым квартилями:

$$IQR = Q_3Q_1$$

3. Границы выбросов:

$$Upper = Q_3 + 1.5 * IQR$$

$$Lower = Q_1 - 1.5 * IQR$$

В итоге, любое значение, которое оказалось меньше нижней границы или больше верхней границы, считалось выбросом.

3 Выполнение работы

Лабораторная работа выполнена на языке программирования Python 3.12 с использованием библиотек numpy, seaborn, pandas, mathplotlib. Были сгенерированны выборки, построены бокс-плоты Тьюки (сохранялись в виде файлов png), определено число выбросов (выводилось в консоль в формате таблиц LATEX). Программа отработала корректно.

4 Результаты

4.1 Бокс-плоты

Normal distribution

Рис. 1: Нормальное распределение.

Cauchy distribution

Рис. 2: Распределение Коши.

Poisson distribution

Рис. 3: Распределение Пуассона.

Uniform distribution

Рис. 4: Равномерное распределение.

4.2 Количество выбросов

Cauchy distribution

Sample size	Outliers
20	3
100	19
1000	170

Normal distribution

Sample size	Outliers
20	0
100	0
1000	9

Poisson distribution

Sample size	Outliers
20	0
100	1
1000	10

Uniform distribution

Sample size	Outliers
20	0
100	0
1000	0

5 Оценка характера выбросов и вида боксплотов

1. Нормальное распределение

 ${\it Boксnлоm}$: При увеличении размера выборки стремится к симметричной форме, с медианой, близкой к 0.

Выбросы: В нормальном распределении выбросы встречаются редко, так как вероятность появления значений, удалённых от среднего, убывает экспоненциально быстро.

2. Распределение Коши

Боксплот: Медиана близка к 0, но из-за тяжёлых хвостов распределения Коши межквартильный размах (IQR) очень широк. Усы на боксплоте длинные, так как распределение Коши имеет бесконечную дисперсию и часто порождает экстремальные выбросы. Выбросы: У распределения Коши "хвосты"убывают медленно (по степенному закону), поэтому выбросы встречаются очень часто. При увеличении выборки количество выбросов будет расти пропорционально объёму данных.

3. Распределение Пуассона

Боксплот: Асимметричный, с медианой около 10 (λ).

Выбросы: В распределении Пуассона выбросы возможны, но не являются такими экстремальными, как в распределении Коши. Выбросы появляются реже, чем у Коши, но чаще, чем у нормального распределения. Математически это следует из асимптотики $P(k) = \frac{10^k * e^{10}}{k!}$, что убывает быстрее, чем степенной закон, но медленнее, чем экспоненциальный. При увеличении выборки количество выбросов растёт, но их доля остаётся небольшой.

4. Равномерное распределение

Боксплот: Медиана, близка к 0. Усы простираются до границ распределения.

Bыбросы: В равномерном распределении выбросы отсутствуют, так как все значения ограничены интервалом [a,b]. При увеличении выброки выбросы не появятся.