ACCIDENTALLY_LATE

J. KIRK, S. MCNAIR, N. FOSTER, K. HOLMBERG, M. ONEAL

SELECTED TOPIC

- Traffic accidents 2016-2022
- Impact of Covid: increase in accidents in Covid years vs. Pre-Covid years
- Impact of weather: various feature available in data set

QUESTIONS EXPECTED TO BE ANSWERED

What impact has Covid had on the severity of car accidents in the US?

Has weather played a role in the information?

Top 5 Weather Conditions with the most accident occurrences

	Accidents updated	PreCOVID accidents	COVID accidents
Fair	1044151	115198	927250
Cloudy	335487	41604	293072
Mostly Cloudy	288935	32253	253466
Partly Cloudy	196112	31529	163688
Light Rain	121335	18454	89987

REASON TOPIC SELECTED

We were curious to see the effect Covid had on traffic accidents across the country

TECHNOLOGIES

DESCRIPTION OF DATA SOURCE

- <u>US-Accidents: A Countrywide Traffic Accident Dataset Sobhan Moosavi</u> (<u>smoosavi.org</u>)
 - Dataset has 47 columns of information; we included the following columns for the purpose of the project: severity, start time, state, temperature, visibility, wind speed, precipitation, weather condition, sunrise vs sunset, year, and date
- cphalpert/census-regions: US Census Bureau Regions and Divisions by State (qithub.com)
 - US Census Bureau Regions and Divisions by State; 4 regions, 7 divisions

DATA EXPLORATION PHASE INFORMATION

DATA EXPLORATION PHASE CON'T

```
1 # Get count of unique values in the 'year' column from 'accidents_updated'
 2 print(accidents updated['year'].value counts())
2021
       1419863
2020
        575031
        198861
2019
       21139
2018
         19517
2017
2016
         11009
Name: year, dtype: int64
1 # Get count of unique values in the 'year' column from 'PreCOVID accidents'
 2 print(PreCOVID accidents['year'].value counts())
2019
       198861
        65722
2020
2018
        12458
Name: year, dtype: int64
 1 # Get count of unique values in the 'year' column from 'COVID accidents'
 2 print(COVID accidents['year'].value counts())
2021
       1419863
2020
         508568
Name: year, dtype: int64
```

DATA EXPLORATION PHASE CON'T

Severity Count

Accidents updated	PreCOVID accidents	COVID accidents
2 (2,084,426)	2 (228,702)	2 (1,828,676)
3 (71,340)	3 (27,134)	4 (39,448)
4 (66,076)	4 (21,055)	3 (36,885)
1 (23,578)	1 (150)	1 (23,422)

Machine Learning Diagram

Question: Were U.S. car accidents less severe during Covid year 2020-2021 compared to years prior?

Machine Learning Optional (X) -Target (y) Features (X) Method Not included Location -Results -Weather -Supervised Car Accident Division or by State Models -Conclusion/ Continuous Severity Classes Feedback Loop Variables I. Resampling Discreet Variables I. 1-2 "short delay" II. Ensemble II. 3-4 "long delay" Additional Night/Day -Traffic Related Questions /Infractions -Feature Discreet Variables Engineering Discreet Variables Location -Split - Training Region & Testing Tuning -Discreet Variables Refining

TOP MODEL CONFUSION MATRICES

- Low F1 score and high false positives and false negatives is not good at predicting severity
- However, the question is if these features affect severity. Because of this, we did feature importance on the RFC model.

Random Forest Classifier

	Predicted long_delay	Predicted short_delay
Actual long_delay	4068	9079
Actual short_delay	3363	108490

Naive Random Oversampling

	Predicted long_delay	Predicted short_delay
Actual long_delay	8032	5367
Actual short_delay	14957	96644

Smote Oversampling

	Predicted long_delay	Predicted short_delay
Actual long_delay	7983	5416
Actual short_delay	14552	97049

MACHINE LEARNING CONCLUSION

RFC tells us temperature is the top ranked feature

RESULTS-LINK TO VISUALS IN TABLEAU

https://public.tableau.com/app/profile/kurt.holmberg/viz/ProjectBook2_1659220780 2480/Story1?publish=yes

RECOMMENDATIONS FOR FUTURE ANALYSES

• Why is there > 1 million difference between PreCovid and Covid accidents?

• What impact did the COVID lockdown/quarantine have on the number and severity of car accidents in each state in the US?

• Impact of severity of individual states with lockdown vs. states without lockdown during Covid years.

WHAT TO DO DIFFERENTLY NEXT TIME

• Change Github file structure at the beginning

• Save more frequently in Tableau and other programs

• Meet more frequently at the start of the project

• Do Anova study vs Pandas

QUESTIONS

