Probability

Probability (on a finite sample space)

A probability function P on a finite sample space assigns to each event $A \in \Omega$ a number $P(A) \in [0,1]$ such that

- $P(\Omega) = 1$;
- $P(A \cup B) = P(A) + P(B)$ if A and B are disjoint.

P(A) is called probability that event A occurs.

Probability (on an infinite sample space)

A probability function P on an infinite sample space assigns to each event $A \in \Omega$ a number P(A) such that

- $P(\Omega) = 1;$
- $P(A_1 \cup A_2 \cup A_3 \cup ...) = P(A_1) + P(A_2) + P(A_3) + ...$ if $A_1, A_2, A_3, ...$ are disjoint.

Properties:

- $P(A^c) = 1 P(A)$
- $P(\emptyset) = 0$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- $A \subseteq B \implies P(A) \le P(B)$

Conditional probability

The conditional probability of A given C is given by

$$P(A|C) = \frac{P(A \cap C)}{P(C)}$$

provided P(C) > 0 (it is otherwise undefined).

A consequence of this definition is the **multiplication rule**: $P(A \cap C) = P(A|C) \cdot P(C) = P(C|A) \cdot P(A)$.

Law of total probability

Let C_1, C_2, \ldots, C_n be a partition of Ω (i.e., they are disjoint and their union is Ω). Then, given any event $A \in \Omega$, its probability can be computed as

$$P(A) = P(A|C_1) \cdot P(C_1) + P(A|C_2) \cdot P(C_2) + \dots + P(A|C_n) \cdot P(C_n)$$

1

Bayes' rule

Let C_1, C_2, \ldots, C_n be a partition of Ω and A be an event in Ω . Then, the probability of C_i given A is given by

$$P(C_i|A) = \frac{P(A|C_i) \cdot P(C_i)}{P(A|C_1) \cdot P(C_1) + P(A|C_2) \cdot P(C_2) + \dots + P(A|C_n) \cdot P(C_n)}$$

Two events A and B are **independent** if P(B) = 0, or:

- $P(A \cap B) = P(A) \cdot P(B)$, or, equivalently,
- $\bullet \ P(A|B) = P(A).$

If A and B are independent, also any combination of their complements is independent. In general, events A_1, A_2, \ldots, A_n are independent if for any subset $I \subseteq \{1, 2, \ldots, n\}$:

$$P\left(\bigcap_{i\in I}A_i\right) = \prod_{i\in I}P(A_i)$$

This means that any possible subset of events in the collection is independent (since pairwise independence among individual events is not enough).

Two events A and B are **conditionally independent** given and event C (P(C) > 0) if P(B|C) = 0, or $P(A|B \cap C) = P(A|C)$. Since conditional probability is a probability, the definition is identical to the one above but conditioned on C.

Random variables

A discrete random variable takes a finite number of values, or a countably infinite number of values. Each discrete r.v. is described by a probability mass function and a cumumlative distribution function.

Probability mass function (PMF)

The PMF p of a discrete random variable X is a function $p: \mathbb{R} \to [0,1]$, defined by

$$p(a) = P(X = a)$$
 for $-\infty < a < \infty$

A continuous random variable takes any value in a continuous range (finite or infinite). Each continuous r.v. is described by a probability density function and a cumulative distribution function.

Probability density function (PDF)

A random variable X is countinuous if for some function $f : \mathbb{R} \to \mathbb{R}$ and any numbers a, b, with a < b,

$$P(a \le X \le b) = \int_{a}^{b} f(x)dx$$

where $f(x) \ge 0$ for all x and $\int_{-\infty}^{\infty} f(x)dx = 1$. f is called probability density function (PDF) of X.

Cumulative distribution function (CDF)

The CDF of a discrete random variable X is a function $F: \mathbb{R} \to [0,1]$, defined by

$$F(a) = P(X \le a) = \sum_{x \le a} p(x)$$
 for $-\infty < a < \infty$

The CDF of a continuous random variable X is a function $F: \mathbb{R} \to [0,1]$, defined by

$$F(a) = P(X \le a) = \int_{-\infty}^{a} f(x)dx$$
 for $-\infty < a < \infty$

The **complementary cumulative distribution function** (CCDF) of a random variable is defined as 1 - F(a) = P(X > a).

Given two discrete random variables, we can define their **joint probability mass function** $p : \mathbb{R}^2 \in [0,1]$, defined as

$$p(a,b) = P(X = a, Y = b)$$
 for $-\infty < a, b < \infty$

For continuous random variables, we can similarly define the **joint probability density function** f: $\mathbb{R}^2 \to \mathbb{R}$, defined as

$$P(a_1 \le X \le b_1, a_2 \le Y \le b_2) = \int_{a_1}^{b_1} \int_{a_2}^{b_2} f(x, y) \ dy \ dx$$

The **joint cummulative distribution function** is defined as $F(a,b) = P(X \le a, Y \le b)$. For discrete random variables, this is calculated as

$$F(a,b) = P(X \le a, Y \le b) = \sum_{x \le a} \sum_{y \le b} p(x,y)$$

For continuous random variables, this is calculated as

$$F(a,b) = P(X \le a, Y \le b) = \int_{-\infty}^{a} \int_{-\infty}^{b} f(x,y) \ dy \ dx$$

The marginal PMF of a discrete r.v. X is

$$p_X(a) = P(X = a) = \sum_{y} p(a, y)$$

while the **marginal PDF** of a continuous r.v. X is

$$f_X(a) = \int_{-\infty}^{\infty} f(a, y) \ dy$$

In both cases, the marginal distribution function of X is

$$F_X(a) = P(X \le a) = \lim_{b \to \infty} F_{XY}(a, b)$$

Conditional distribution of random variables

Let X and Y be two random variables, and P_{XY} their joint distribution. The conditional distribution of X given $Y \in B$, where $P(Y \in B) > 0$, is defined as

$$F_{X|Y \in B}(a) = P_{X|Y}(X \le a|Y \in B) = \frac{P_{XY}(X \le A, Y \in B)}{P_{Y}(Y \in B)}$$

Two random variables X and Y are **independent** $(X \perp\!\!\!\perp Y)$ if

- $P_{X|Y}(X \le a | Y \le b) = P_X(X \le a)$ for $a \in \mathbb{R}$, and for all b such that $P_Y(Y \le b) > 0$, or, equivalently,
- $p_{XY}(x,y) = p_X(x) \cdot p_Y(y)$ (if discrete) or $f_{XY}(x,y) = f_X(x) \cdot f_Y(y)$ (if continuous).

Two random variables X and Y are said **identically distributed** $(X \sim Y)$ if $F_X = F_Y$, i.e., $F_X(a) = F_Y(a)$ for $a \in \mathbb{R}$. If two random variables are both independent and identically distributed, they are said to be **independent and identically distributed** (i.i.d.).

Quantiles (percentiles)

Let X be a continuous random variable, and let p be a number in the interval [0,1]. The p^{th} quantile (or $100p^{th}$ percentile) of the distribution of X is the smallest number q_p such that

$$F(q_p) = P(X \le q_p) = p$$

The **median** of a distribution is the 50^{th} percentile. The **interquartile range** (IQR) is the difference between the 75^{th} and the 25^{th} percentiles. A more general definition, which holds also for discrete random variables, is

$$q_p = \inf_{x} \{ P(X \le x) \ge p \}$$

Probability distributions

Discrete distributions

Uniform distribution

 $X \sim U(m, M)$

Models some experiment with M-m+1 outcomes with the same probability of occurring. A random variable has uniform distribution if its PMF is given by

$$p(a) = P(X = a) = \frac{1}{M - m + 1}$$
$$F(a) = \frac{\lfloor a \rfloor - m + 1}{M - m + 1}$$

for
$$a = m, m + 1, ..., M$$

$$F(a) = \frac{\lfloor a \rfloor - m + 1}{M - m + 1}$$

for
$$m \le a \le M$$

$$\mathbb{E}[X] = \frac{m+M}{2}$$

$$Var(X) = \frac{(M - m + 1)^2 - 1}{12}$$

Bernoulli distribution

 $X \sim Ber(p)$

Models an experiment with two outcomes, success and failure, with probability $0 \le p \le 1$ of success. A random variable has the Bernoulli distribution if its PMF is given by

$$p(a) = P(X = a) = p^{a}(1-p)^{1-a}$$

for
$$a = 0, 1$$

$$\mathbb{E}[X] = p$$

$$Var(X) = p(1-p)$$

Binomial distribution

$X \sim Bin(n, p)$

Models the number of successes in a sequence of n independent Bernoulli trials, each with probability $0 \le p \le 1$ of success. A random variable has the Binomial distribution if its PMF is given by

$$p(a) = P(X = a) = \binom{n}{a} p^a (1 - p)^{n-a}$$
 for $a = 0, 1, \dots, n$

The sum of n independent Bernoulli r.v.s with parameter p is a Binomial r.v. with parameters n and p:

$$X = \sum_{i=1}^{n} X_{i} \sim Bin(n, p)$$
 where $X_{1}, X_{2}, \dots, X_{n} \sim Ber(p)$

$$\mathbb{E}[X] = n \cdot p \qquad Var(X) = n \cdot p(1-p)$$

Benford's law

$X \sim Ren$

Models the distribution of the leading digits in many real-life numerical datasets. A random variable has the Benford's law distribution if its PMF is given by

$$p(a) = P(X = a) = \log_{10}(1 + \frac{1}{a}) - \log_{10}(1 + \frac{1}{a+1})$$
 for $a = 1, 2, \dots, 9$

Geometric distribution

$X \sim Geo(p)$

Models the number of attempts needed to get the first success in a sequence of independent Bernoulli trials, each with probability $0 \le p \le 1$ of success. A random variable has the Geometric distribution if its PMF is given by

$$p(a) = P(X = a) = (1 - p)^{a-1}p$$
 for $a = 1, 2, ...$
 $F(a) = 1 - (1 - p)^a$ for $a = 1, 2, ...$

Given an infinite sequence of independent Bernoulli r.v.s with parameter p, the minimum number of trials needed to get a success is a Geometric r.v. with parameter p:

$$X = \min\{i : X_i = 1\} \sim Geo(p)$$
 where $X_1, X_2, \dots \sim Ber(p)$

$$\mathbb{E}[X] = \frac{1}{p} \qquad Var(X) = \frac{1-p}{p^2}$$

Negative binomial (Pascal) distribution

$X \sim NBin(n, p)$

Models the number of failures before the n-th success in a sequence of independent Bernoulli trials, each with probability $0 \le p \le 1$ of success. A random variable has the Negative binomial distribution if its PMF is given by

$$p(a) = P(X = a) = {a+n-1 \choose a} p^n (1-p)^a$$
 for $a = 0, 1, ...$

Given n i.i.d. Geometric r.v.s, we can obtain a Negative binomial r.v. with parameters n and p as follows:

$$X = \sum_{i=1}^{n} X_{i} - n \sim NBin(n, p)$$
 where $X_{1}, X_{2}, \dots, X_{n} \sim Geo(p)$

$$\mathbb{E}[X] = \frac{n \cdot p}{(1-p)} \qquad Var(X) = n \frac{1-p}{p^2}$$

Poisson distribution

$X \sim Poi(\mu)$

Models the number of events occurring within some time interval, knowing the average rate of occurrence in that interval is μ . A random variable has the Poisson distribution if its PMF is given by

$$p(a) = P(X = a) = \frac{\mu^a}{a!} e^{-\mu}$$
 for $a = 0, 1, 2, ...$

The Poisson distribution can be approximated from the Binomial distribution:

$$Bin(n,p) \xrightarrow[n \to \infty]{} Poi(p \cdot n)$$

The approximation works for an experiment with an infinite number of Bernoulli trials, making it so that the mean rate of success is $\mu = p \cdot n$.

$$\mathbb{E}[X] = \mu \qquad \qquad Var(X) = \mu$$

Categorical distribution

$X \sim Cat(\vec{p})$

A generalization of the Bernoulli distribution to 3 or more possible outcomes, each with its own probability of occurring. A random variable has the Categorical distribution if its PMF is given by

$$p(i) = P(X = i) = p_i$$
 $i = 1, 2, ..., n_C - 1$

The parameter \vec{p} is a vector of probabilities, such that $\sum_{i} p_{i} = 1$.

Multinomial distribution

$X \sim Mult(n, \vec{p})$

A generalization of the Binomial distribution to 3 or more possible outcomes, each with its own probability of occurring. A random variable has the Multinomial distribution if its PMF is given by

$$p(i_0, i_1, \dots, i_{n_C-1}) = P(X = (i_0, i_1, \dots, i_{n_C-1})) = \frac{n!}{i_0! \dots i_{n_C-1}!} p_0^{i_0} p_1^{i_1} \dots p_{n_C-1}^{i_{n_C-1}}$$

The sum of n independent Categorical r.v.s with parameter \vec{p} is a Multinomial r.v. with parameters n and \vec{p} :

$$X = \sum_{i=1}^{n} X_{i} \sim Mult(n, \vec{p})$$
 where $X_{1}, X_{2}, \dots, X_{n} \sim Cat(\vec{p})$

Continuous distributions

Uniform distribution

$X \sim U(\alpha, \beta)$

Models some experiment with arbitrary outcomes in the interval $[\alpha, \beta]$. A random variable has the Uniform distribution if its PDF is given by

$$f(x) = \frac{1}{\beta - \alpha}$$
 for $\alpha \le x \le \beta$
$$F(x) = \frac{x - \alpha}{\beta - \alpha}$$
 for $\alpha \le x \le \beta$

$$\mathbb{E}[X] = \frac{\alpha + \beta}{2} \qquad Var(X) = \frac{(\beta - \alpha)^2}{12}$$

8

Exponential distribution

 $X \sim Exp(\lambda)$

Models the time between subsequent events in a Poisson point process, with average rate of occurrence λ . A random variable has the Exponential distribution if its PDF is given by

$$f(x) = \lambda e^{-\lambda x}$$

for
$$x \ge 0$$

$$F(x) = 1 - e^{\lambda x}$$

$$\mathbb{E}[X] = \frac{1}{\lambda}$$

$$Var(X) = \frac{1}{\lambda^2}$$

Normal (Gaussian) distribution

 $X \sim N(\mu, \sigma^2)$

A random variable has a Normal distribution if its PDF is given by

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

for
$$-\infty < x < \infty$$

The standard Normal distribution has $\mu = 0$ and $\sigma = 1$.

The Normal distribution can be approximated from the Binomial distribution:

$$Bin(n,p) \approx N(n \cdot p, n \cdot p(1-p))$$

for
$$n \to \infty$$
 and $0 \ll p \ll 1$

There is no closed form of the CDF of the Normal distribution, but any variable can be turned into a standard Normal variable and its probability can be estimated using the right tail probability table of N(0,1).

$$\mathbb{E}[X] = \mu$$

$$Var(X) = \sigma^2$$

Erlang distribution

$X \sim Erl(n, \lambda)$

Models the time until n events occur in a Poisson point process, with average rate of occurrence λ . A random variable has the Erlang distribution if its PDF is given by

$$f(x) = \frac{\lambda(\lambda x)^{n-1}e^{\lambda x}}{\Gamma(\alpha)}$$
 for $x \ge 0$

 $\Gamma(\alpha) = (\alpha - 1)!$ is called Gamma function, and is a normalization factor ensuring that the integral of the PDF is equal to 1.

$$\mathbb{E}[X] = \frac{n}{\lambda}$$

$$Var(X) = \frac{n}{\lambda^2}$$

Gamma distribution

$X \sim Gam(\alpha, \lambda)$

Models the time until α quantities of something occur in a Poisson point process, with average rate of occurrence λ . It is a generalization of the Erlang distributions that also allows the first parameter to be any postive real number instead of a positive integer. A random variable has the Gamma distribution if its PDF is given by

$$f(x) = \frac{\lambda(\lambda x)^{\alpha - 1} e^{\lambda x}}{\Gamma(\alpha)} \qquad \text{for } x \ge 0$$

The sum of n i.i.d. Exponential r.v.s. with parameter λ is Gamma distributed, with parameters n and λ :

$$X = \sum_{i=1}^{n} X_{i} \sim Gam(n, \lambda)$$
 where $X_{1}, X_{2}, \dots, X_{n} \sim Exp(\lambda)$

$$\mathbb{E}[X] = \frac{n}{\lambda}$$

$$Var(X) = \frac{n}{\lambda^2}$$

Cauchy distribution

$X \sim Cau(\alpha, \beta)$

A random variable has the Cauchy distribution if its PDF is given by

$$f(x) = \frac{\beta}{\pi(\beta^2 + (x - \alpha)^2)}$$
 for $-\infty < x < \infty$

A special case of the Cauchy distribution is the standard Cauchy distribution, with $\alpha=0$ and $\beta=1$. This distribution is also the same as the ratio between two standard Normal r.v.s.

$$\mathbb{E}[X] = \text{undefined}$$

$$Var(X) = undefined$$

Expectation

The expectation (or expected value, mean, center of gravity) of a random variable is a number that summarizes the most central value in that variable's distribution.

Expectation

The expectation of a discrete random variable X is calculated as

$$\mathbb{E}[X] = \sum_{i} x_i \cdot P(X = x_i) = \sum_{i} x_i \cdot p(x_i)$$

The expectation of a continuous random variable X is calculated as

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f(x) dx$$

Expected value may be infinite or not exist for certain distributions. Consider the case of a continuous random variable. Its expected value, which is calculated as an integral I over $(-\infty, \infty)$ can be split into two terms, $I = I^- + I^+$, defined as follows:

$$I^{-} = \int_{-\infty}^{0} x \cdot f(x)$$

$$I^+ = \int_0^\infty x \cdot f(x)$$

Since f(x) cannot take negative values, I^- is negative, and I^+ is positive. If I^- and I^+ are both finite, then the expected value exists and is finite. If one of them is infinite, the expected value is infinite. If both are infinite, the expected value does not exist. This can be generalized to discrete random variables, where the expectation is expressed as a sum instead of an integral (but can still similarly diverge or converge).

An example of distribution for which the expected value does not exist is the Cauchy distribution. An example of distribution for which the expected value is infinite is the Pareto distribution.

Change of variable formula (a.k.a. law of the unconscious/lazy statistician)

Let X be a random variable, and $g: \mathbb{R} \to \mathbb{R}$ be a function. If X is discrete, then

$$\mathbb{E}[g(X)] = \sum_{i} g(x_i) \cdot P(X = x_i)$$

If X is continuous, then

$$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) \cdot f(x) \ dx$$

Change of units theorem (for the expectation)

$$\mathbb{E}[rX + s] = r\mathbb{E}[X] + s$$

The expected value is **linear**. This means that $\mathbb{E}[aX + bY + c] = a\mathbb{E}[X] + b\mathbb{E}[Y] + c$ for any constants a, b, c. More in general, $\mathbb{E}[a_0 + \sum_i^n a_i \cdot X_i] = a_0 + \sum_i^n a_i \mathbb{E}[X_i]$

Jensen's inequality

Let g be a convex function, and let X be a random variable. Then

$$\mathbb{E}[q(X)] \ge q(\mathbb{E}[X])$$

If q is concave, the inequality is reversed. If q is linear, the inequality becomes an equality.

Two-dimensional change of variable formula

Let X and Y be random variables, and let $g: \mathbb{R}^2 \to \mathbb{R}$ be a function. If X and Y are discrete, Then

$$\mathbb{E}[g(X,Y)] = \sum_{i} \sum_{j} g(a_i, b_i) P(X = a_i, Y = b_j)$$

If X and Y are continuous, then

$$\mathbb{E}[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y)f(x,y) \ dxdy$$

where f(x, y) is their joint PDF.

If two variables are independent, then $\mathbb{E}[XY] = \mathbb{E}[X] \cdot \mathbb{E}Y$. This holds for any set of independent random variables. More in general, given X_1, X_2, \dots, X_n independent random variables, and let $h_i : \mathbb{R} \to \mathbb{R}$ be a function; define the random variable $Y = h_i(X_i)$. Then, Y_1, Y_2, \dots, Y_n are also independent.

If we take two random variables, $X \perp \!\!\!\perp Y$ such that Y > 0, we have $\mathbb{E}[X/Y] \geq \mathbb{E}[X]/\mathbb{E}[Y]$. Let $g(y) = \frac{1}{y}$, the inequality follows from Jensen's inequality and the linearity of expectation.

Conditional expectation

$$\mathbb{E}[X|Y=b] = \sum_{i} a_{i} p(a_{i}|b) \qquad \qquad \mathbb{E}[X|Y=y] = \int_{-\infty}^{\infty} x f(x|y) \ dx$$

Also, the following theorem holds.

Law of iterated/total expectation

$$\mathbb{E}_Y[\mathbb{E}[X|Y]] = \mathbb{E}[X]$$

Proof:

$$\mathbb{E}_{Y}[\mathbb{E}[X|Y]] = \sum_{j} \sum_{i} a_{i} p_{X|Y}(a_{i}|b_{j}) \cdot p_{Y}(b_{j}) = \sum_{j} \sum_{i} a_{i} p_{X,Y}(a_{i},b_{j}) = \sum_{i} a_{i} p_{X}(a_{i}) = \mathbb{E}[X]$$

Variance

The variance of a random variable is a measure of how much the values of that variable spread around the mean. A low variance means that most values are close to the mean, while a high variance means that the values are more spread out.

Variance

The variance of a random variable X is defined as

$$Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

Often, the **standard deviation** ($\sigma = \sqrt{Var(X)}$) is used instead. This is because the variance is in squared units, so the standard deviation is on the same scale as the expectation and is easier to interpret.

Just like expectation, variance may be infinite or not exist. Variance does not exist if the expectation does not exist, but there may be distributions where the expectation exists while the variance does not: an example of such distribution are the Power Laws.

Change of units theorem (for the variance)

$$Var(rX + s) = r^2 Var(X)$$

The variance is **not linear**. This means that $Var(aX + bY + c) \neq aVar(X) + bVar(Y) + c$ in general. However, if X and Y are independent, then Var(X + Y) = Var(X) + Var(Y).

Covariance

Covariance

The covariance of two random variables X and Y is the number:

$$Cov(X,Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

Given two random variables X and Y, the variance of their sum is:

$$Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)$$

If the random variables are independent, their covariance is 0 (and so the variance of the sum is the sum of the variances).

Given X and Y two random variables, and $r, s, t, u \in \mathbb{R}$, then

$$Cov(rX + s, tY + u) = rtCov(X, Y)$$

Hence,
$$Var(rX + sY + t) = r^2Var(X) + s^2Var(X) + 2rsCov(X, Y)$$
.

Power laws and Zipf's law

Power laws are a family of "scale free" distributions. Most distributions have a typical size or scale, so they have some value around which measurements are centered. In contrast, power laws vary over a very large range where it's not possible to identify a typical value around which the distribution peaks.

Power law distribution

 $X \sim Pow(x_{min}, \alpha)$

A random variable has the power law distribution if for some $\alpha > 1$ its PDF is given by

$$f(x) = C \cdot x^{-\alpha} \qquad \qquad x \ge x_{min}$$

C is called **intercept**, while α is called **exponent**. If the function is expressed in logarithmic scale, we have

$$\log(f(x)) = -\alpha \cdot \log(x) + \log(C)$$

i.e., there is a linear relationship between $\log(f(x))$ and $\log(x)$. Graphically, this means that the distribution is a straight line in a log-log plot. The reason parameter x_{min} is included is to specify what is the exact lower bound after which a distribution shows a power law behaviour.

Being scale-free, we can identify some constant b such that p(bx) = g(b)p(x), meaning that even if we multiply the variable by this scaling factor, the form of the distribution remains the same. In this case, we write

$$p(bx) = b^{-\alpha}C \cdot x^{-\alpha}$$
.

Notice how the value of the intercept is not specified in the definition above. This is because after fixing x_{min} and α , C is uniquely determined by the condition that the integral of the PDF over the entire range must be 1:

$$1 = \int_{x_{min}}^{\infty} C \cdot x^{-\alpha} \, dx = \frac{C}{-\alpha + 1} [x^{-\alpha + 1}]_{x_{min}}^{\infty} = \frac{C}{\alpha - 1} x_{min}^{-\alpha + 1} \iff \boxed{C = \frac{(\alpha - 1)}{x_{min}^{-\alpha + 1}}}$$

This integral is finite only if $\alpha > 1$. If $\alpha < 1$, then it simply diverges. If $\alpha = 1$, the denominator becomes 0, and the integral is not defined. By substituting this value in the formula of the PDF, we get

$$f(x) = \frac{\alpha - 1}{x_{min}} \left(\frac{x}{x_{min}}\right)^{-\alpha}.$$

Using the same calculations we can find a closed formula for the CCDF:

$$P(X > x) = \int_{x}^{\infty} C \cdot x^{-\alpha} dx = \frac{C}{-\alpha + 1} [x^{-\alpha + 1}]_{x_{min}}^{\infty} = \frac{C}{\alpha - 1} x^{-\alpha + 1}.$$

Since we calculated C we can substitute it back in the formula to get

$$P(X > x) = \left(\frac{x}{x_{min}}\right)^{-\alpha + 1}$$

Both the PDF and the CCDF have the same form, but with a different exponent. The CCDF also looks linear when plotted in a log-log scale. As for the expectation, we have

$$\mathbb{E}[X] = \int_{x_{min}}^{\infty} x \cdot C \cdot x^{-\alpha} \ dx = C \int_{x_{min}}^{\infty} x^{alpha+1} \ dx = \frac{C}{-\alpha+2} \left[x^{-\alpha+2} \right]_{x_{min}}^{\infty} = \frac{C}{\alpha-2} x_{min}^{-\alpha+2}.$$

Similarly to the calculations done to find C, we can observe how this integral is finite only for $\alpha > 2$: if $\alpha < 2$, the integral diverges, while if $\alpha = 2$, the denominator becomes 0 and the integral is not defined. Substituting the value of C back in the formula, we get

$$\mathbb{E}[X] = \frac{\alpha - 1}{\alpha - 2} x_{min}$$

Also for the variance, it is finite only for $\alpha > 3$.

Pareto distribution

 $X \sim Par(x_{min}, \beta)$

A random variable has the Pareto distribution if for some $\beta > 0$ its density function is given by

$$f(x) = C \cdot x^{-(\beta+1)} \qquad x \ge x_{min}$$

A Pareto distribution is actually just a power law, but expressed differently: $Par(x_{min}, \beta) = Pow(x_{min}, \beta + 1).$

Discrete power law distribution

 $X \sim Pow(\alpha, k_{min})$

A random variable has the discrete power law distribution if for some $\alpha>1$ its PMF is given by

$$p(k) = C \cdot k^{-\alpha} \qquad \qquad k = k_{min}, k_{min} + 1, \dots$$

Since the sum of probabilities must be 1, C is determined as

$$C = \frac{1}{sum_{k=k_{min}}^{\infty} k^{-\alpha}} = \frac{1}{\zeta(\alpha, k_{min})}$$

 $\zeta(\alpha, k_{min})$ is the **Hurwitz zeta function**. A special case of it is the **Riemann zeta function**, which is $\zeta(\alpha) = \zeta(\alpha, 1)$

When we are studying a data sample and want to check if it follows a power law, we can plot the frequency of its values in log-log scale and verify if the points are aligned in a straight line. However, since the values in the tail are rarer, the data sample will have few of them. The resulting plot will likely present a lot of noise around the tail of the distribution, and it may not be obvious whether it is a power law or some similar distribution (such as exponential or log-normal). To fix this issue, we can follow two approaches:

- We estimate and plot the CCDF in log-log scale. As mentioned above, the CCDF of a power law also appears linear when plotted this way, with the advantage of being much more stable in the tail.
- We construct an histogram using logarithmic binning. This means that the bins are not equally spaced, but they grow exponentially. For example, the first bin goes from 1 to 10, the second from 10 to 100, the third from 100 to 1000, and so on. Since bins aggregate values, the effect of noise is reduced.

Zipf's law distribution

$X \sim Zipf(\alpha)$

A random variable has the Zipf's law distribution if for some $\alpha > 1$ its PMF is given by

$$p(r) = C \cdot r^{-\alpha} \qquad \qquad r = 1, 2, \dots, N$$

In a Zipf's law distribution, probabilities are assigned to the **ranks** of events; the higher the rank (i.e. closer to 1), the higher the probability. This is different than a power law distribution, where probabilities directly depend on the frequencies. For example: a discrete power law may model the probability of a word with a certain number of accurrences in a text, while Zipf's law may model the probability of a word with a certain rank in a list of words sorted by frequency.

We can try to convert a power-law into a Zipf's law and vice-versa. By comparing the PMF of a Zipf's law and the CCDF of a power law, they have the same form, and are actually representing the same information but with the axes inverted:

The rank r of a word with frequency k is equal to the number of words with frequency larger than k plus 1. In other words, $r = 1 + N \cdot P(X > k)$. If $X \sim Pow(1, \alpha)$, then $r = 1 + N \cdot P(X > k) \propto k^{-(\alpha - 1)}$. By inverting, we get that $k \propto r^{-\frac{1}{\alpha - 1}}$, i.e., the frequencies are Zipf's law distributed with parameter $\frac{1}{\alpha - 1}$.

$$X \sim Pow(1, \alpha) \iff R \sim Zipf\left(\frac{1}{\alpha - 1}\right)$$

(R is a r.v. that models the ranks).

For this distribution, C is calculated as

$$C = \frac{1}{\sum_{r=1}^{N} r^{-\alpha}} = \frac{1}{\zeta(\alpha) - \zeta(\alpha, N+1)}$$

${\bf Correlation}$

Pearson's ρ

Computations with random variables

Consider a random variable X with a given distribution. Let Y = g(X) be another random variable obtained as a function of the first. Then, the following theorems hold:

• If X is a discrete random variable, the PMF of Y = g(X) is

$$P_Y(Y = y) = \sum_{g(x)=y} P_X(X = x) = \sum_{x \in g^{-1}(y)} P_X(X = x)$$

• If X is a continuous random variable, the CDF and PDF of Y = g(X) when g is invertible is

$$F_y(y) = F_X(g^{-1}(y))$$
 $f_Y(y) = f_X(g^{-1}(y)) \left| \frac{dg^{-1}(y)}{dy} \right|$

Change of units transformation

Let X be a continuous random variable. If we change units to Y = rX + s for $r, s \in \mathbb{R}, r > 0$ then

$$F_Y(y) = F_X\left(\frac{y-s}{r}\right)$$
 $f_Y(y) = \frac{1}{r}f_X\left(\frac{y-s}{r}\right)$

Convolution of random variables

Let X and Y be two independent random variables. If they are discrete with PMFs $p_X(x)$ and $p_Y(y)$, then the PMF of Z = X + Y is

$$p_Z(z) = \sum_{y} p_X(c - x) \cdot p_Y(y)$$

If X and Y are continuous with PDFs $f_X(x)$ and $f_Y(y)$, then the PDF of Z = X + Y is

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(c-x) \cdot f_Y(y) \ dx$$

Maximum of random variables

Let X_1, X_2, \dots, X_n be n independent random variables with the same distribution function F, and let $Z = \max\{X_1, X_2, \dots, X_n\}$. Then

$$F_Z(a) = (F(a))^n.$$

This is because $F_Z(a) = P(Z \le a) = \prod_i^n P(X_i \le a) = P(X_1 \le a) \cdot P(X_2 \le a) \cdot \dots \cdot P(X_n \le a) = (F(a))^n$.

Minimum of random variables

Let $X_1, X_2, ..., X_n$ be n independent random variables with the same distribution function F, and let $Z = \min\{X_1, X_2, ..., X_n\}$. Then

$$F_Z(a) = 1 - (1 - F(a))^n$$
.

This is because $F_Z(a) = P(Z \le a) = 1 - \prod_{i=1}^n P(X_i > a) = 1 - (1 - F(a))^n$.

Product of independent random variables

Let X and Y be two independent continuous random variables with PDFs f_X and f_Y . Then the PDF of Z = XY is

$$f_Z(z) = \int_{-\infty}^{\infty} f_Y\left(\frac{z}{x}\right) f_X(x) \frac{1}{|x|} dx$$
 $-\infty < z < \infty$

Quotient of independent random variables

Let X and Y be two independent continuous random variables with PDFs f_X and f_Y . Then the PDF of Z = X/Y is

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(zx) f_Y(x) |x| \ dx \qquad -\infty < z < \infty$$

Propagation of independence

Let X_1, X_2, \ldots, X_n be independent random variables. For each i, let $h_i : \mathbb{R} \to \mathbb{R}$ be a function, and define the r.v.s

$$Y_i = h_i(X_i)$$

Then Y_1, Y_2, \ldots, Y_n are also independent.

Moments

Moment

Let X be a continuous random variable with PDF f(x). The k^{th} moment of X (if it exists) is

$$\mathbb{E}[X^k] = \int_{-\infty}^{\infty} x^k \cdot f(x) \ dx$$

Th expected value of a random variable is its first moment.

Central moment

Let X be a continuous random variable with PDF f(x). The k^{th} central moment of X (if it exists) is

$$\mu_k = \mathbb{E}[(X - \mu)^k] = \int_{-\infty}^{\infty} (x - \mu)^k f(x) \ dx$$

The variance of a random variable is its second central moment.

Another related concept is the k^{th} standardized moment, which is the k^{th} central moment divided by the standard deviation raised to the k^{th} power:

$$\tilde{\mu}_k = \frac{\mu_k}{\sigma^k} = \mathbb{E}\left[\left(\frac{X-\mu}{\sigma}\right)^k\right]$$

- $\tilde{\mu}_1 = 0$ (since $\mathbb{E}[X \mu] = 0$ for any random variable);
- $\tilde{\mu}_2 = 1 \text{ (since } \mathbb{E}[(X \mu)^2] = \sigma^2);$
- $\tilde{\mu}_3$ is called **skewness** and measures the magnitude and direction of the asymmetry of the distribution. If it is 0, the distribution is symmetric, and mean, median, and mode coincide. If it is positive, the distribution is **right-skewed** (the mean is greater than mode and median), while if it is negative, the distribution is **left-skewed** (the mean is less than mode and median).
- $\tilde{\mu}_4$ is called **kurtosis** and measures the dispersion of the random variable around the values $\mu + \sigma$ and $\mu \sigma$. Specifically, the kurtosis of a distribution is compared to that of a Normal distribution, which is always 3. Then, if the kurtosis is equal to 3, the distribution is **mesokurtic** (similar to a Normal); if it is greater than 3, it is **leptokurtic** (the tails are fatter, while the middle is thinner); if it is less than 3, it is **platykurtic** (the tails are thinner, but the middle is larger).

Distances between distributions

Distances and metrics

A distance over a set \mathcal{A} is a function $d: \mathcal{A} \times \mathcal{A} \to \mathbb{R}$ such that:

- $d(x,y) \ge 0$ (non-negativity)
- d(x,y) = 0 iff x = y (identity of indiscernibles)
- d(x,y) = d(y,x) (symmetry)

Also, d is a metric if it also satisfies the triangle inequality: $d(x, z) \le d(x, y) + d(y, z)$.

Distances and metrics over probability distributions are used to measure how far apart two distributions are. Calculating distances is very useful in statistics and machine learning: for example, after a dataset has been split into training and test sets, we can compare the distribution of the two to make sure they are similar (or, alternatively, to make sure they are different and study how well the model generalizes). This section will overview the most common distances used in statistics.

Total Variation (TV) distance

$$d_{TV}(X,Y) = \frac{1}{2} \sum_{i} |p_X(a_i) - p_y(a_i)|$$
 (discrete case)

$$d_{TV}(X,Y) = \frac{1}{2} \int |f_X(x) - f_Y(x)| dx \qquad \text{(continuous case)}$$

Kolmogorov-Smirnof (KS) distance

$$d_{KS}(X,Y) = \sup_{x} |F_X(x) - F_Y(x)|$$

Both are metrics. They have no closed forms, but they can be approximated from samples of the distributions.

Shannon's information entropy (H)

$$H(X) = \mathbb{E}[-\log(p(X))] = -\sum_{i} p(a_i)\log(p(a_i))$$
 (discrete case)

$$H(X) = \mathbb{E}[-\log(f(X))] = -\int_{-\infty}^{\infty} f(x)\log(f(x))dx \qquad \text{(continuous case)}$$

Entropy measures the average level of information (or "surprise", "uncertainty") of a random variable. Information is inversely proportional to probability: the more unlikely an event is, the more information

it carries. So, for example, a random variable that only takes a single value has zero entropy, because there is no uncertainty about its value. In contrast, a random variable that takes many values with equal probability has high entropy, because there is a lot of uncertainty about its value.

Let X be a discrete random variable with a finite domain of n elements. Per corollary of Jensen's inequality, since log(x) is a concave function, we have:

$$H(X) = \mathbb{E}[-\log(p(X))] = \mathbb{E}\left[\log\left(\frac{1}{p(X)}\right)\right] \le \log\left(\mathbb{E}\left[\frac{1}{p(X)}\right]\right)$$

Then, by change of variable:

$$\mathbb{E}\left[\frac{1}{p(X)}\right] = \sum_{i} \frac{p(a_i)}{p(a_i)} = n$$

So we can derive the following bound for the entropy:

$$H(X) \le \log(n)$$

Cross entropy (H)

$$H(X;Y) = \mathbb{E}_X[-\log p_Y(Y)] = -\sum_i p_X(a_i) \log(p_Y(a_i))$$
 (discrete case)

$$H(X;Y) = \mathbb{E}_X[-\log f_Y(Y)] = -\int_{-\infty}^{\infty} f_X(x) \log(f_Y(x)) dx \qquad \text{(continuous case)}$$

Cross entropy measures the number of bits needed to encode values from X using a code based on Y. If the two have exactly the same distribution, the cross entropy is minimal: it is exactly equal to the entropy of X. The more the two are different, the more extra bits will be needed to encode the differences between the two.

$$H(X,Y) = \mathbb{E}[-\log(p(X,Y))] = -\sum_{i,j} p(a_i, a_j) \log(p(a_i, a_j))$$
 (discrete case)

$$H(X,Y) = \mathbb{E}[-\log(f(X,Y))] = -\int_{-\infty}^{\infty} f(x,y)\log(f(x,y))dxdy \qquad \text{(continuous case)}$$

Joint entropy is simply the entropy of the joint distribution of two random variables X and Y. If the two are independent, then $p_{XY}(x,y) = p_X(x) \cdot p_Y(y)$ (and similarly for PDFs), so the above sum/integral can be split, making it so that H(X,Y) = H(X) + H(Y).

Kullback-Leibler (KL) divergence

$$D_{KL}(X||Y) = \sum_{i} P_X(a_i) \log \left(\frac{p_X(a_i)}{p_y(a_i)}\right) = H(X;Y) - H(X)$$
 (discrete case)

$$D_{KL}(X||Y) = \int_{-\infty}^{\infty} f_X(x) \log \left(\frac{f_X(x)}{f_Y(x)}\right) dx = H(X;Y) - H(X) \qquad \text{(continuous case)}$$

KL divergence is also sometimes called relative entropy of X w.r.t. Y; it measures how well the distribution of the model Y can reconstruct the distribution of the data X. Since it can be expressed in terms of cross-entropy and entropy, it is easy to see that

- It is always non-negative, since the cross-entropy between two distributions can only be greater than or equal to the entropy of one of them.
- It is exactly 0 if the two distributions are the same.
- It is asymmetric.

Note that since it is not symmetric, it is not an actual distance.

Mutual information

Discrete case:

$$I(X,Y) = D_{KL}(p_{XY}||p_Xp_Y) = \sum_{i,j} p_{XY}(a_i, a_j) \log \left(\frac{p_{XY}(a_i, a_j)}{p_X(a_i)p_y(a_j)}\right) = H(X) + H(Y) - H(X, Y)$$

Continuous case:

$$I(X,Y) = D_{KL}(f_{XY}||f_Xf_Y) = \int_{-\infty}^{\infty} f_{XY}(x,y) \log\left(\frac{f_{XY}(x,y)}{f_X(x)f_Y(y)}\right) dxdy = H(X) + H(Y) - H(X,Y)$$

Mutual information measures how dependent the two distributions are. It quantifies how much the product of the marginals can reconstruct the joint distribution.

- It is always non-negative, since the sum of the individual entropies is always greater than or equal to the joint entropy.
- It is exactly 0 if $X \perp \!\!\!\perp Y$.
- It is symmetric.

In some cases, it may be useful to have a normalized measure of dependence. The **normalized mutual information** is defined as:

$$NMI(X,Y) = \frac{I(X,Y)}{\min\{H(X),H(Y)\}} \in [0,1]$$

Suppose we have an unknown variable X, and we observe a noisy function of it, called Y. Let Z = f(Y), i.e., a processing of the noisy observations. Intuitively, Z cannot contain more information about X than

Y does. This is known as the **data processing inequality**:

$$I(X,Y) \ge I(X,Z)$$

If they happen to be equal, and Z is a summary of Y, then Z is a sufficient statistic for X: it means that we can reconstruct X from Z with the same accuracy as from Y.

Earth mover's distance (Wasserstein metric)

$$EMD(X,Y) = \frac{\sum_{i,j} F_{i,j} \cdot |a_i - a_j|}{\sum_{i,j} F_{i,j}}$$

Earth's mover distance measures the minimum cost required to transform one distribution into another; the F in the formulas is the **flow** which minimizes the numerator (the cost). In practice, for pairs of univariate random vairables X and Y, is is calculated as follows:

$$EMD(X,Y) = \sum_{i} |F_X(a_i) - F_Y(a_i)|$$
 (discrete case)

$$EMD(X,Y) = \int_{-\infty}^{\infty} |F_X(x) - F_Y(x)| dx$$
 (continuous case)

For empirical distributions, assuming the samples are sorted in increasing order:

$$EMD(X,Y) = \frac{1}{n} \sum_{i} |x_i - y_i|$$

The law of large numbers

For many experiments that concern natural phenomena, different executions of the same experiment will likely yield different results. The variation in the outcome is due to randomness caused by uncontrollable factors. To mitigate the effect of this randomness, the same experiment can be repeated a number of times and the **average** of the results is studied instead. Formally, given X_1, X_2, \ldots, X_n independent random variables, their average is

$$\bar{X}_n = \frac{X_1 + X_2 + \ldots + X_n}{n}$$

Expected value and variance of an average

If \bar{X}_n is the average of n independent random variables with the same expectation μ and variance σ^2 , then

$$\mathbb{E}[\bar{X}_n] = \mu \qquad Var(\bar{X}_n) = \frac{\sigma^2}{n}$$

The random variables do not need to be identically distributed. Note that the variance is inversely proportional to the number of random variables contributing to the average: the more variables we have, the more stable the average becomes.

Markov's inequality

Let $X \ge 0$ be a random variable, and let a > 0. Then

$$P(X \ge a) \le \frac{\mathbb{E}[X]}{a}$$

Corollary: Assume $X \geq 0$, $\mathbb{E}[X] > 0$ and k > 0. Then

$$P(X \ge k\mathbb{E}[X]) \le \frac{1}{k}$$

The proof is as follows: let $\mathbbm{1}_{X \geq \alpha}$ be an indicator variable that is 1 if $X \geq \alpha$ and 0 otherwise. Then

$$\alpha \mathbb{1}_{X \ge \alpha} \le X$$

$$\mathbb{E}[\alpha \mathbb{1}_{X \ge \alpha}] \le \mathbb{E}[X]$$

$$\alpha P(X \ge \alpha) \le \mathbb{E}[X]$$

$$P(X \ge \alpha) \le \frac{\mathbb{E}[X]}{\alpha}$$

Chebyshev's inequality

Let X be a random variable, and a > 0. Then

$$P(|X - \mathbb{E}[X]| \ge a) \le \frac{Var(X)}{a^2}$$

This inequality claims that most of the probability mass of a random variable is within a few standard deviations from the expected value. It is a consequence of Markov's inequality:

$$P(|X - \mathbb{E}[X]| \ge a) = P((X - \mathbb{E}[X])^2 \ge a^2) \le \frac{\mathbb{E}[(X - \mathbb{E}[X])^2]}{a^2} = \frac{Var(X)}{a^2}$$

Now, we can apply Chebyshev's inequality to the average of n independent random variables, obtaining the following result:

The (weak) law of large numbers

Let \bar{X}_n be the average of n independent random variables with the same expectation μ and variance σ^2 . Then, for any $\varepsilon > 0$,

$$\lim_{n \to \infty} P(|\bar{X}_n - \mu| > \varepsilon) = 0$$

This law confirms what we previously observed with the variance of the average. As n goes to infinity, the probability that the value of the average significantly deviates from its expectation (that is also the same of the individual random variables in the average) becomes zero. This also holds if σ^2 is infinite, as long as the individual random variables have finite expectation.

The consequence of the law of large numbers is that by calculating the average of a reasonably large enough set of random variables we can recover not only the mean and the stardard deviation, but pretty much any feature of the distribution of the random variables. Next up are two application examples.

Recovering the probability of an event Assume we want to know the probability that the outcome of some experiment falls within a certain range, i.e., $p = P(a \le X \le b)$. We run n independent measurements of this same experiment, and we model those results with the r.v.s X_1, X_2, \ldots, X_n . Then, we can define an indicator variable for each X_i :

$$Y_i = \mathbb{1}_{a \le X_i \le b} = \begin{cases} 1 & \text{if } a \le X_i \le b \\ 0 & \text{otherwise} \end{cases}$$

The Y_i are also independent (per the propagation of independence seen previously). Since Y_i is an indicator variable, we know that

$$\mathbb{E}[Y_i] = p = P(a \le X_i \le b) \qquad Var(Y_i) = p(1-p)$$

Let \bar{Y}_n be the average of the indicator variables. By the law of large numbers:

$$\lim_{n \to \infty} P(|\bar{Y}_n - p| > \varepsilon) = 0$$

Informally, this means that if we perform the experiment n times, count the amount of times the outcome falls within the range [a, b], and divide by n, we get an estimate of the real probability of that event. The larger n is, the better the estimate becomes.

Estimating conditional probability We want to estimate the conditional probability for two random variables: $p = P(C = c|A = a) = P(A = a, C = c)/P(A = a) = p_{ac}/p_a$. We run n independent measurements of the experiment, modeling each result as a pair (A_i, C_i) . We define indicator variables as the example above:

$$Y_i = \mathbb{1}_{A_i = a \land C_i = c} = \begin{cases} 1 & \text{if } A_i = a \land C_i = c \\ 0 & \text{otherwise} \end{cases}$$
$$Z_i = \mathbb{1}_{A_i = a} = \begin{cases} 1 & \text{if } A_i = a \\ 0 & \text{otherwise} \end{cases}$$

By applying the (strong) law of large numbers, we get that

$$\lim_{n \to \infty} P(\bar{Y}_n = p_{ac}) = 1$$
$$\lim_{n \to \infty} P(\bar{Z}_n = p_a) = 1$$

The two limits can be condensed in a ratio to estimate the conditional probability:

$$\lim_{n \to \infty} P(\frac{\bar{Y}_n}{\bar{Z}_n} = \frac{p_{ac}}{p_a}) = 1$$

Hoeffding bound

If \bar{X}_n is the average of n independent random variables with the same expectation μ and $P(a \le X_i \le b) = 1$, then for any $\varepsilon > 0$:

$$P(|\bar{X}_n - \mu| \ge \varepsilon) \le 2e^{-2n\varepsilon^2/(b-a)^2}$$

This offers a tight bound on the probability that the average deviates from its expectation by an arbitrarily small amount, but requires that the random variables have a bounded support.

The central limit theorem

The central limit theorem

Let X_1, X_2, \ldots, X_n ne any sequence of i.i.d. random variables with the same expectation μ and finite positive vairance σ^2 . For $n \geq 1$, let Z_n be defined by

$$Z_n = \sqrt{n} \frac{\bar{X}_n - \mu}{\sigma}$$

Then, for any number a

$$\lim_{n \to \infty} F_{Z_n}(a) = \Phi(a)$$

where Φ is the distribution function of the N(0,1) distribution.

This theorem states that if we take the average of n random variables, remove its expectation, and divide by its standard deviation, the result is a random variable that converges to a standard normal distribution as n goes to infinity. But, in practice, how large should n be? A famous rule of thumb is to use $n \geq 30$ to get a good approximation, but it is mostly just a myth; the optimal value of n depends on the distribution of the random variables.

Summaries

Summaries are used to represent and describe the information contained in datasets. They can be graphical summaries, which visually represent the data, or numerical summaries, which give a description of the data in terms of numbers.

Graphical summaries

Empirical CDF A random variable is completely characterized by its CDF. We can approximate the CDF with the empirical cumulative distribution function, which is defined as

$$F_n(x) = \frac{|\{i : [1, n] | x_i \le x\}|}{n}$$

where the x_i are the observations in the dataset. The **Glivenko-Cantelli theorem** states that the empirical CDF converges to the true CDF as n goes to infinity:

$$P(\lim_{n\to\infty} \sup_{x} |F(x) - F_n(x)| = 0) = 1$$

This approximation can be plugged into different formulas to estimate other quantities, such as the mean or the variance.

Bar plots and histograms A bar plot is used for discrete data. It provides a frequency count for the values in the dataset, and approximates the PMF (as a consequence of the law of large numbers, as seen in a previous example):

$$P(X=a) \approx \frac{|\{i|x_i=a\}|}{n}$$

A histogram is used for continuous data. It provides frequency counts for ranges of values (instead of individual ones). The support of the random variable is first split into m intervals called **bins** (which can all have the same width or different widths), and the number of occurrences belonging to each bin is counted and normalized:

$$A_i = \frac{|\{j \in [1, n] | x_j \in B_j\}|}{n} \approx P(X \in B_i)$$

The bins can be plotted as rectangles so that their area is proportional to A_i ; after fixing their width b_i , the height is found as $H_i = A_i/b_i$.

Bin width can be chosen in different ways, producing different results. It is common to choose the same width for all bins, such that, for a total number of bins m, the interval corresponding to the i^{th} bin is

$$B_i = (r + (i-1)b, r + i * b)$$

where r is the minimum value taken by the random variable, and b is the bin width. The optimal width can be found using **Mean Integrated Squared Error** (**MISE**):

$$MISE = \mathbb{E}\left[\int (\hat{f}(t) - f(t))^2 dt\right] = \int \int (\hat{f}(t) - f(t))^2 f(x_1) \dots f(x_n) dt dx_1 \dots dx_n$$

where \hat{f} is the density estimation of the real PDF f. The minimum of the MISE for Normal distributions is represented by **Scott's normal reference rule**:

$$b = 3.49 \cdot s \cdot n^{-1/3}$$

wher s is the sample standard deviation. Other options are:

• Freedman-Diaconis' choice:

$$b = 2 \cdot IQR \cdot n^{-1/3}$$

This choice is more robust to outliers than the previous.

- Variable bin width (such as logarithmic binning as seen in power-law distributions).
- Fixing the number of bins, and derivaring the width from it. Some common strategies are:

$$m = \lceil \frac{\max x_i - \min x_i}{b} \rceil$$

$$m = \lceil \sqrt{n} \rceil$$

$$m = \lceil \log_2 n \rceil + 1 \text{ (Sturges' rule)}$$

The latter assumes normal distribution for the true density. This distribution can be approximated by a Bin(n, 0.5) distribution, so the absolute frequency of the i^{th} bin is $\binom{m-1}{i}$. The total frequency is $n = \sum_{i=0}^{m-1} \binom{m-1}{i} = 2^{m-1}$, from which m is derived.

Kernel density estimation A big disadvantage of histograms is that the result strictly depends on the number of bins/bin width chosen to visualize the data. Kernel density estimation is another popular method to summarize distributions which is not as sensitive to the choice of parameters.

The idea behind this method is to mix kernel functions (which can take different forms, see Fig 1) centered in each observation in the dataset. Since data is assumed to be of continuous nature, the presence of a certain value in the dataset also contributes to the density of the values around it. The kernel function models the way this density is distributed around that single observation, and by mixing together all the kernels, the result should be a good approximation of the true density.

Figure 1: Examples of common kernels used in KDE.

Kernel

A kernel is a function $K : \mathbb{R} \to \mathbb{R}$ such that

• K is a probability density: $K(t) \ge 0$ and $\int_{-\infty}^{\infty} K(t) \ dt = 1$

• K is symmetric: K(-t) = K(t)

• K(t) = 0 for |t| > 1 (i.e., support is [-1, 1])

The last requirement is not strictly necessary, actually; for example, the Normal kernel has unbounded support.

Each kernel function is characterized by a center (the observation), and a **bandwidth** h, which is a scaling factor over the support of the kernel from [-1,1] to [-h,h]. In other words, the badwidth determines how tall-thin or short-wide the kernel is around its center. We can then write

$$X \sim K(t) \implies h \cdot X + x_i \sim \frac{1}{h} K\left(\frac{t - x_i}{h}\right)$$

because of the change-of-units transformation formulas. The final kernel density estimate is the result of the **mixture** of all the scaled and shifted kernel densities:

$$f_{n,h}(t) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{t - x_i}{h}\right)$$

The 1/n in the formula is a normalization factor that ensures the density integrates to 1.

The choice of kernel is not critical to the final result; different kernels behave similarly. The key parameter is the bandwidth h. Also for KDE, MISE can be used to find the optimal value. Assuming the true density is Normal, the MISE is minimized for

$$h = \left(\frac{4}{3}\right)^{1/5} \cdot s \cdot n^{-1/5}$$

For other distributions, the optimal bandwidth can be found using plug-in selectors or cross validation selectors.

Another issue that may arise is when the support of the random variable is bounded. If KDE is used as is, the result will present density event corresponding to values that are not possible. To avoid this, boundary correction techniques are used; some examples are

- Kernel truncation and renormalization (forced truncation of the kernel outside the support);
- Linear combination kernel;
- Beta boundary kernels;
- Reflective kernels.

Numerical summaries