1	Roll No. :				
l i	Invigilator's Signature :				
	CS/B.Tech(N)/SEM-1/M-101/2012-13				
			20)12	
			MATHE	MATICS	·Ĭ
	Time Allo	tted :	3 Hours		Full Marks: 70
	The figures in the margin indicate full marks.				
	Candidates are required to give their answers in their own to as far as practicable				ers in their own words
					ble
	20		GRO	UP – A	
			(Multiple Choice	Type Qu	estions }
	. Choo	ose tl	ne correct alternat	ives for an	y ten of the following: $10 \times 1 = 10$
	i)	The	sequence $\Big\{$ (- 1) †	$\frac{n}{n}\frac{1}{n}$ is	
40,		a)	Convergent	b)	Oscillatory
(Z) ¹		c)	Divergent	d)	none of these.
	ii)	The	matrix	$\cos \theta$ is	
		a)	Symmetric	b)	Skew-symmetric
▼		c)	Singular	d)	Orthogonal.
	1151 (N)				[Tam over

Name:.....

iii) The value of t for which

 $\vec{f} = (x + 3y)^{\hat{1}} + (y - 2z)^{\hat{1}} + (x + tz)^{\hat{1}}$ is solenoidal is

a) 2

b) - 2

c) 0

- d) 1
- iv) The series $\sum \frac{1}{n^p}$ is convergent if
 - a) $p \ge 1$

b) $p \le 1$

c) p > 1

- d) p < 1.
- v) The two eigenvalues of the matrix

 $A = \begin{bmatrix} 2 & -2 & 2 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix} \text{ are 2 and - 2. The third}$

eigenvalue is

a) 1

p) (

c) 3

- d) 2
- vi) If Rolles theorem is applicable to $f(x) = x(x^2 1)$ in [0, 1], then $c = x(x^2 1)$

2

a) 1

b)

c) $-\frac{1}{\sqrt{3}}$

d) $\frac{1}{\sqrt{3}}$

- vii) If $u = \frac{x^3 + y^3}{\sqrt{x^2 + y^2}}$. find the value of 'n' so that $xu_x + yu_y = nu$.
 - a) O

b) 2

c) $\frac{1}{2}$

- d) none of these.
- viii) n-th derivative of $\sin (5x + 3)$ is
 - a) $5^n \cos(5x + 3)$
 - b) $5^n \sin\left(\frac{n\pi}{2} + 5x + 3\right)$
 - c) $5^n \cos\left(\frac{n\pi}{2} + 5x + 3\right)$
 - d) none of these.
- ix) The value of $\int_{C} (xdx dy)$ where C is a line joining
 - (0,1) to (1,0) is
 -) 0

b) $\frac{3}{2}$

c) $\frac{1}{2}$

- d) $\frac{2}{3}$
- x) The value of $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^{7} \theta \ d\theta \text{ is}$
 - a) O

 $\frac{6.4.2}{7.5.3.1}$

c) $\frac{6!}{7!}$

d) none of these.

(xi) The characteristic equation of a matrix A is $X^3 + 3X^2 + 5X + 9 = 0$, then determinant of the matrix

is

a) 7

b) :

c) 6

d) 9

xii) Let A and B be two square matrices and
$$A^{-1}$$
, B^{-1} , exists. Then $\{AB\}^{-1}$ is

- a) $A^{-1}B^{-1}$
- b) $B^{-1}A^{-1}$

c) AB

d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

$$3 \times 5 = 15$$

Verify Rolles theorem for the function

$$f(x) = |x|, -1 \le x \le 1.$$

- 3. A and B are orthogonal matrix and |A| + |B| = 0. Prove that A + B is singular.
- 4. Find the nth derivative of (x-1)(x-2)(x-3)
- 5. let

$$f(x, y) = \frac{xy}{x + y^2}, (x, y) \neq (0, 0)$$

$$= (0, \{x, y\} = \{0, 0\})$$

Evaluate f_{xy} (0,0), and f_{yx} (0,0).

6. Find div \overrightarrow{F} and curl \overrightarrow{F} where

$$\vec{F} = grad \left(x^3 + y^3 + z^3 - 3xyz \right).$$

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

7. a) If
$$u = x^2 - 2y$$
, $v = x + y + z$, $w = x + 2y + 3z$, find $\frac{\partial (u, v, w)}{\partial (x, y, z)}$.

b) Prove that
$$\begin{vmatrix} 1 & \alpha & \alpha^2 - \beta \gamma \\ 1 & \beta & \beta^2 - \gamma \alpha \\ 1 & \gamma & \gamma^2 - \alpha \beta \end{vmatrix} = 0.$$

c) If
$$v = f(x^2 + 2yz, y^2 + 2zx)$$
, prove that

$$(y^2 - zx)\frac{\partial v}{\partial x} + (x^2 - yz)\frac{\partial v}{\partial y} + (z^2 - xy)\frac{\partial v}{\partial z} = 0.$$

$$5 + 5 + 5$$

8. a) If
$$\theta = t^n e^{-\frac{r^2}{4t}}$$
, find what value of n will make
$$\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \theta}{\partial r} \right) = \frac{\partial \theta}{\partial t}.$$

b) Using mean value theorem prove that

$$0 < \frac{1}{x} \log \left(\frac{e^{x} - 1}{x} \right) < x.$$

c) If
$$I_n = \int_0^{\frac{\pi}{2}} x^n \sin x \, dx$$
 ($n > 1$), then show that $I_n + n(n-1)I_{n-2} = n\left(\frac{\pi}{2}\right)^{n-1}$. $5 + 5 + 5$

- 9. a) State D'Alembert's ratio test for convergence of an infinite series. Examine the convergence or divergence of the series $\left(\frac{1}{3}\right)^2 + \left(\frac{1.2}{3.5}\right)^2 + \left(\frac{1.2.3}{3.5.7}\right)^2 + \dots$
 - b) If $y = e^{\tan^{-1}x}$, then show that $(1 + x^2)y_{n+2} + (2nx + 2x 1)y_{n+1} + n(n+1)y_n = 0$.
 - c) Find the extreme value of the function

$$f(x, y) = x^3 + y^3 - 3x - 12y + 20.$$
 5 + 5 + 5

10. a) If $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$, then verify that A satisfies its

own characteristic equation. Hence find A^{-1} and A^{9} .

- b) If $u = \tan^{-1}\left(\frac{x^3 + y^3}{x y}\right)$ then show that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = (1 4 \sin^2 u) \sin^2 2u.$
- c) Given the system of equation

$$x_1 + 4x_2 + 2x_3 = 1$$
, $2x_1 + 7x_2 + 5x_3 = k$, $4x_1 + mx_2 + 10x_3 = 2k + 1$. Find for what values of k and m , the system has (i) an unique solution. (ii) no solution (iii) many solution.

11. a) Show that $\vec{V} r^n = nr^{n-2} \vec{r}$.

where
$$\overrightarrow{r} = \overrightarrow{i}x + \overrightarrow{j}y + \overrightarrow{k}z$$
.

- b) Evaluate $\int \sqrt{4x^2 y^2} \, dxdy$ over the triangle formed by the straight lines y = 0, x = 1 and y = x.
- c) Verify Stokes theorem for

 $\vec{F} = \{2x - y\}$ $\hat{i} - yz^2\hat{j} - y^2z\hat{k}$, where S is the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ and C is its boundary. 5 + 5 + 5