1. Use the given graph of f to find a number δ such that

if
$$|x-1| < \delta$$
 then $|f(x)-1| < 0.2$

2. Use the given graph of f to find a number δ such that

if
$$0 < |x - 3| < \delta$$
 then $|f(x) - 2| < 0.5$

3. Use the given graph of $f(x) = \sqrt{x}$ to find a number δ such that

if
$$|x - 4| < \delta$$
 then $|\sqrt{x} - 2| < 0.4$

4. Use the given graph of $f(x) = x^2$ to find a number δ such that

if
$$|x-1| < \delta$$
 then $|x^2-1| < \frac{1}{2}$

5. Use a graph to find a number δ such that

if
$$|x-2| < \delta$$
 then $|\sqrt{x^2+5}-3| < 0.3$

6. Use a graph to find a number δ such that
if $\left| x - \frac{\pi}{6} \right| < \delta$ then $\left| \cos^2 x - \frac{3}{4} \right| < 0.1$

if
$$\left| x - \frac{\pi}{6} \right| < \delta$$
 then $\left| \cos^2 x - \frac{\pi}{4} \right| < 0.1$

 $\lim_{x \to 0} (x^3 - 3x + 4) = 6$

7. For the limit

illustrate Definition 2 by finding values of δ that correspond to $\varepsilon=0.2$ and $\varepsilon=0.1$.

8. For the limit $\lim_{x \to 2} \frac{4x+1}{3x-4} = 4.5$

illustrate Definition 2 by finding values of δ that correspond to $\epsilon=0.5$ and $\epsilon=0.1.$

- **9.** (a) Use a graph to find a number δ such that if $4 < x < 4 + \delta$ then $\frac{x^2 + 4}{\sqrt{x 4}} > 100$
 - (b) What limit does part (a) suggest is true?

- \longrightarrow 10. Given that $\lim_{x\to\pi} \csc^2 x = \infty$, illustrate Definition 6 by finding values of δ that correspond to (a) M = 500 and (b) M = 1000.
 - 11. A machinist is required to manufacture a circular metal disk with area 1000 cm².
 - (a) What radius produces such a disk?
 - (b) If the machinist is allowed an error tolerance of $\pm 5 \text{ cm}^2$ in the area of the disk, how close to the ideal radius in part (a) must the machinist control the radius?
 - (c) In terms of the ε , δ definition of $\lim_{x\to a} f(x) = L$, what is x? What is f(x)? What is a? What is L? What value of ε is given? What is the corresponding value of δ ?
- 12. Crystal growth furnaces are used in research to determine how best to manufacture crystals used in electronic components. For proper growth of a crystal, the temperature must be controlled accurately by adjusting the input power. Suppose the relationship is given by

$$T(w) = 0.1w^2 + 2.155w + 20$$

where T is the temperature in degrees Celsius and w is the power input in watts.

- (a) How much power is needed to maintain the temperature at 200°C?
- (b) If the temperature is allowed to vary from 200°C by up to $\pm 1^{\circ}$ C, what range of wattage is allowed for the input power?
- (c) In terms of the ε , δ definition of $\lim_{x\to a} f(x) = L$, what is x? What is f(x)? What is a? What is L? What value of ε is given? What is the corresponding value of δ ?
- **13.** (a) Find a number δ such that if $|x-2| < \delta$, then $|4x - 8| < \varepsilon$, where $\varepsilon = 0.1$.
 - (b) Repeat part (a) with $\varepsilon = 0.01$.
- **14.** Given that $\lim_{x\to 2} (5x 7) = 3$, illustrate Definition 2 by finding values of δ that correspond to $\varepsilon = 0.1$, $\varepsilon = 0.05$, and $\varepsilon = 0.01$.

15–18 Prove the statement using the ε , δ definition of a limit and illustrate with a diagram like Figure 9.

15.
$$\lim_{x \to 4} \left(\frac{1}{2}x - 1 \right) = 1$$

16.
$$\lim_{x \to 2} (2 - 3x) = -4$$

15.
$$\lim_{x \to 4} \left(\frac{1}{2}x - 1 \right) = 1$$
 16. $\lim_{x \to 2} (2 - 3x) = -4$ **17.** $\lim_{x \to -2} (-2x + 1) = 5$ **18.** $\lim_{x \to 1} (2x - 5) = -3$

18.
$$\lim_{x \to 1} (2x - 5) = -3$$

19–32 Prove the statement using the ε , δ definition of a limit.

19.
$$\lim_{x\to 0} \left(1 - \frac{1}{3}x\right) = -2$$

19.
$$\lim_{x \to 9} \left(1 - \frac{1}{3}x \right) = -2$$
 20. $\lim_{x \to 5} \left(\frac{3}{2}x - \frac{1}{2} \right) = 7$

21.
$$\lim_{x \to 4} \frac{x^2 - 2x - 8}{x - 4} = 6$$
 22. $\lim_{x \to -1.5} \frac{9 - 4x^2}{3 + 2x} = 6$

22.
$$\lim_{x \to -1.5} \frac{9 - 4x^2}{3 + 2x} = 6$$

23.
$$\lim_{x \to a} x = a$$

24.
$$\lim_{r \to a} c = c$$

25.
$$\lim_{x \to 0} x^2 = 0$$

26.
$$\lim_{x\to 0} x^3 = 0$$

27.
$$\lim_{x \to 0} |x| = 0$$

28.
$$\lim_{x \to -6^+} \sqrt[8]{6+x} = 0$$

29.
$$\lim (x^2 - 4x + 5) = 1$$

29.
$$\lim_{x \to 2} (x^2 - 4x + 5) = 1$$
 30. $\lim_{x \to 2} (x^2 + 2x - 7) = 1$

31.
$$\lim_{x \to 2} (x^2 - 1) = 3$$
 32. $\lim_{x \to 2} x^3 = 8$

32.
$$\lim_{x \to 2} x^3 = 8$$

- **33.** Verify that another possible choice of δ for showing that $\lim_{x\to 3} x^2 = 9$ in Example 3 is $\delta = \min\{2, \varepsilon/8\}$.
- **34.** Verify, by a geometric argument, that the largest possible choice of δ for showing that $\lim_{x\to 3} x^2 = 9$ is $\delta = \sqrt{9 + \varepsilon} - 3$.
- **T** 35. (a) For the limit $\lim_{x\to 1} (x^3 + x + 1) = 3$, use a graph to find a value of δ that corresponds to $\varepsilon = 0.4$.
 - (b) By solving the cubic equation $x^3 + x + 1 = 3 + \varepsilon$, find the largest possible value of δ that works for any given $\varepsilon > 0$.
 - (c) Put $\varepsilon = 0.4$ in your answer to part (b) and compare with your answer to part (a).
 - **36.** Prove that $\lim_{r \to 2} \frac{1}{r} = \frac{1}{2}$.
 - **37.** Prove that $\lim_{x \to a} \sqrt{x} = \sqrt{a}$ if a > 0.

Hint: Use
$$\left| \sqrt{x} - \sqrt{a} \right| = \frac{|x - a|}{\sqrt{x} + \sqrt{a}}$$
.

- **38.** If H is the Heaviside function defined in Section 1.5, prove, using Definition 2, that $\lim_{t\to 0} H(t)$ does not exist. [Hint: Use an indirect proof as follows. Suppose that the limit is L. Take $\varepsilon = \frac{1}{2}$ in the definition of a limit and try to arrive at a contradiction.]
- **39.** If the function f is defined by

$$f(x) = \begin{cases} 0 & \text{if } x \text{ is rational} \\ 1 & \text{if } x \text{ is irrational} \end{cases}$$

prove that $\lim_{x\to 0} f(x)$ does not exist.

- **40.** By comparing Definitions 2, 3, and 4, prove Theorem 1.6.1: $\lim_{x \to 0^+} f(x) = L$ if and only if $\lim_{x \to 0^+} f(x) = L = \lim_{x \to 0^+} f(x)$
- **41.** How close to -3 do we have to take x so that

$$\frac{1}{(x+3)^4} > 10,000$$

- **42.** Prove, using Definition 6, that $\lim_{x \to -3} \frac{1}{(x+3)^4} = \infty$.
- **43.** Prove that $\lim_{x \to -1^-} \frac{5}{(x+1)^3} = -\infty$.
- **44.** Suppose that $\lim_{x\to a} f(x) = \infty$ and $\lim_{x\to a} g(x) = c$, where c is a real number. Prove each statement.
 - (a) $\lim [f(x) + g(x)] = \infty$

(b)
$$\lim_{x \to c} [f(x)g(x)] = \infty$$
 if $c > 0$

(c)
$$\lim_{x \to a} [f(x)g(x)] = -\infty$$
 if $c < 0$