SFWR 4C03 – Assignment 1 Report

Andrew Lutz 0664122 lutza February 7, 2011

DES Implementation in Python

I solved this assignment by breaking up the algorithm into 4 main sections, the first section was the transformation of a user inputted string into a 64-bit representation. I accomplished this by getting the ascii values of each character and using the handy built in bitwise operators of python to form a list of bits, of length 64. The second part consisted of generating the 16 sub-keys used in the plaintext ciphering. This was accomplished by rotating and permuting the key 16 times. The third section was the ciphering of the plaintext. This consisted of a loop that executed 16 times, each time feeding the right 32 bits into f function, permuting the 32 bits into a 48 bit string, xor'ing the result with the respective sub-key and feeding the result into the sbox function, which returned a 32 bit value. The final value was then concatenated with the left 32 bits and permutated once more. Resulting in a 64 bit cipher of the original user input.

***Notes on program. Execute with ./des.py . My program has two modes, normal and info. To run in –info mode, enter the –info flag when executing the program.

This will display data being processed at each stage.

Testing

Test 1:

Contents of hello.txt: 12345678

Andrew-Lutzs-MacBook-Pro:~ Andrew\$ openssl des-ecb -nosalt -nopad -K 3132333435363738 -iv 2011 -in hello.txt | xxd -b

0000006: 10001100 10001001

The above bit string in hex is: 96 d0 02 88 78 d5 8c 89

My program:

Andrew-Lutzs-MacBook-Pro:desktop Andrew\$./des.py Enter 64-bit string (plaintext):12345678 Enter 64-bit string (key):12345678

Your ciphertext in hex is... 96 d0 02 88 78 d5 8c 89

-Results match, therefore correct!

Test 2

Contents of hello.txt: asdfghjk

The above bit string in hex is: 25 1d 83 40 01 89 43 78

My program:

Andrew-Lutzs-MacBook-Pro:desktop Andrew\$./des.py Enter 64-bit string (plaintext):asdfghjk Enter 64-bit string (key):qwertyui

Your ciphertext in hex is...
25 1d 83 40 01 89 43 78

-Results match, therefore correct!

For this assignment I followed tutorials on the following websites:

http://people.eku.edu/styere/Encrypt/JS-DES.html#ffunc

http://www.eventid.net/docs/desexample.asp

http://www.comms.scitech.susx.ac.uk/fft/crypto/des_algorithm_details.txt

I used SBox and permutation tables found in the publicly licensed pyDes implementation.

http://sourceforge.net/projects/pydes/