6.15 (a) Since \vec{E} must be proportional to \vec{J} , and \vec{E} and \vec{J} over both odd under spatial inversion, white magnetic field is even where spatial inversion, combination with magnetic field is allowed. To seconder order we must have $\vec{E} = \beta \cdot \vec{J} + \vec{F}(\vec{H} \times \vec{J}) + \vec{F}(\vec{H} \cdot \vec{H}) \vec{J} + \vec{F}_{1}(\vec{H} \cdot \vec{J}) \vec{I}^{-1},$

(b) Sine \(\vec{E} \) is even under time reversal and \(\vec{H} \) and \(\vec{J} \) odd, then \(\rho_0, \rho_0, \rho_0, \rho_0 \) are odd where tome reversal, i.e., pseudoscalar, while \(\kappa \) is a scalar.