

第五章 图的基本概念

无向图及有向图,通路、回路和图的连通性

郝杰

haojie@bupt.edu.cn

北京邮电大学信息安全中心

图论

□ 欧拉与哥尼斯堡城七桥问题(1736年)

□ 欧拉七桥问题问题的研究是图论研究的开始

5.1 无向图及有向图

- 无向图与有向图
- 顶点的度数
- 握手定理
- 简单图
- 完全图
- 子图
- ■补图

无向图

□ 多重集合: 元素可以重复出现的集合.

□ 无序积: $A\&B = \{\{x,y\} \mid x \in A \land y \in B\}$.

定义 无向图 $G = \langle V, E \rangle$, 其中

- (1) 顶点集 V 是非空有穷集合, 其元素称为顶点.
- (2) 边集 E 为 $V \otimes V$ 的多重子集, 其元素称为无向边, 简称边.
- 例如,G=<V,E>,其中 $V=\{v_1, v_2, ..., v_5\},$ $E=\{(v_1,v_1), (v_1,v_2), (v_2,v_3), (v_2,v_3), (v_2,v_3), (v_2,v_5), (v_1,v_5), (v_4,v_5)\}.$

有向图

定义有向图 $D = \langle V, E \rangle$, 其中

- (1) 顶点集 V 是非空有穷集合, 其元素称为顶点.
- (2) 边集 E 为 $V \times V$ 的多重子集, 其元素称为有向边, 简称边.
- □ 基图: 用无向边代替有向边
- **•** 例如 $D = \langle V, E \rangle$, 其中 $V = \{a,b,c,d\}$ $E = \{\langle a,a \rangle, \langle a,b \rangle, \langle a,b \rangle, \langle a,d \rangle, \langle c,b \rangle, \langle d,c \rangle, \langle c,d \rangle\}$

无向图与有向图

- \square 通常用 G 表示无向图, D 表示有向图,
 - 也常用 G 泛指无向图和有向图.
- \square V(G), E(G), V(D), E(D): G和D的顶点集, 边集.
- > n 阶图: n 个顶点的图.
- \triangleright 零图: $E = \emptyset$.
- ▶ 平凡图:1 阶零图.

顶点和边的关联与相邻

- □ 定义 设e = (u, v) 是无向图 $G = \langle V, E \rangle$ 的一条边, 称 u, v 为 e 的端点, e与u(v)关联.
 - > 若u≠v,则称e与u(v)的关联次数为1;
 - ▶ 若u=v,则称e为环,此时称e与u的关联次数为2;
 - > 若w不是e端点,则称e与w的关联次数为0.
 - > 无边关联的顶点称作孤立点.

顶点和边的关联与相邻

定义 设无向图 $G = \langle V, E \rangle$, $u,v \in V$, $e,e' \in E$, 若(u,v) $\in E$, 则称u,v 相邻; 若e,e'至少有一个公共端点,则称e,e'相邻.

对于有向图,设 $e = \langle u, v \rangle$ 是有向图的一条边,又称 u 是 e 的始点, v是 e 的终点, u 邻接到 v, v 邻接于u.

顶点的度数

- □ 设G=<V,E>为无向图, $v\in V$,
- ν 的度数(度) d(v): v 作为边的端点次数之和.
- ▶ 悬挂顶点: 度数为1的顶点.
- 悬挂边:与悬挂顶点关联的边.
- ightharpoonup G 的最大度 $\Delta(G) = \max\{d(v) | v \in V\}$.
- ightharpoonup G 的最小度 $\delta(G) = \min\{d(v) | v \in V\}$.

■ 例如:

$$d(v_5)=3$$
, $d(v_2)=4$, $d(v_1)=4$, $\Delta(G)=4$, $\delta(G)=1$, v_4 是悬挂顶点, e_7 是悬挂边, e_1 是环.

顶点的度数

- □ 设 $D = \langle V, E \rangle$ 为有向图, $v \in V$,
- ▶ v的出度d⁺(v): v作为边的始点次数之和.
- ▶ v的入度d-(v): v作为边的终点次数之和.
- ➤ v的度数(度) d(v): v作为边的端点次数之和,

$$d(v)=d^+(v)+d^-(v)$$

■ 例如

$$d^{+}(a)=4, d^{-}(a)=1, d(a)=5,$$

 $d^{+}(b)=0, d^{-}(b)=3, d(b)=3,$

顶点的度数

- □ 设 $D = \langle V, E \rangle$ 为有向图, $v \in V$,
- \blacktriangleright 最大出度 $\Delta^+(D) = \max\{d^+(v) \mid v \in V\}$.
- ▶ 最小出度 δ^+ (**D**) = min{ d^+ (v) | v∈V}.
- ▶ 最大入度 Δ -(D) = max{d-(v) | v ∈ V}.
- ightharpoonup 最小入度 δ (D) = min{ $d^-(v) \mid v \in V$ }.
- > 最大度 $\Delta(D) = \max\{d(v) \mid v \in V\}$.
- ightharpoonup 最小度 $\delta(D) = \min\{d(v) \mid v \in V\}$.
- 例如:

$$\Delta^{+}(D)=4, \, \delta^{+}(D)=0, \, \Delta^{-}(D)=3,$$

 $\delta^{-}(D)=1, \, \Delta(D)=5, \, \delta(D)=3.$

图论基本定理——握手定理

定理 任意无向图和有向图的所有顶点度数之和都等于 边数的2倍,并且有向图的所有顶点入度之和等于出 度之和等于边数.

- 证明:
- ▶ G中每条边(包括环)均有两个端点,
- \triangleright G 中各顶点度数之和, m条边共提供2m度.
- 有向图的每条边提供一个入度和一个出度,故所有 顶点入度之和等于出度之和等于边数.

推论 任意无向图和有向图的奇度顶点个数必为偶数.

图的度数列

 \Box 设无向图 G 的顶点集

$$V = \{v_1, v_2, ..., v_n\}$$

G的度数列为:

$$d(v_1), d(v_2), ..., d(v_n)$$

- 例如右图度数列: 4,4,2,1,3
- □ 设有向图 *D* 的顶点集

$$V = \{v_1, v_2, ..., v_n\}$$

D的度数列: $d(v_1), d(v_2), ..., d(v_n)$

D的出度列: $d^+(v_1), d^+(v_2), ..., d^+(v_n)$

D的入度列: $d^-(v_1), d^-(v_2), ..., d^-(v_n)$

■ 例如右图度数列: 5,3,3,3

出度列: 4,0,2,1 入度列: 1,3,1,2

握手定理的应用

■ 例: (3,3,3,4), (2,3,4,6,8)能成为图的度数列吗?

解:不可能.它们都有奇数个奇数.

■ 例:已知图G有10条边,4个3度顶点,其余顶点的度数均小于等于2,问G至少有多少个顶点?

解:设G有n个顶点.由握手定理,

$$4\times3+2\times(n-4)\geq2\times10$$

n≥8

握手定理的应用

- 例: 证明不存在具有奇数个面且每个面都具有奇数条棱的多面体.
- ◆ 证明: 用反证法. 假设存在这样的多面体,作无向图 G=<V,E>,其中

 $V=\{v \mid v$ 为多面体的面},

 $E=\{(u,v) \mid u,v \in V \land u = v \in V \land u = v \in V \land u \neq v \}.$ 根据假设, |V|为奇数且 $\forall v \in V, d(v)$ 为奇数. 这与握

手定理的推论矛盾.

多重图与简单图

定义

- □ 在无向图中,如果有2条或2条以上的边关联同一对顶点,则称这些边为平行边,平行边的条数称为重数.
- □ 在有向图中,如果有2条或2条以上的边具有相同的始点和终点,则称这些边为有向平行边,简称平行边,平行边的条数称为重数.
- □ 含平行边的图称为多重图.
- □ 既无平行边也无环的图称为简单图.
- ◆ 注意:简单图是极其重要的概念

实例

- $> e_5$ 和 e_6 是平行边
- ▶ 重数为2
- > 不是简单图

- \triangleright e_2 和 e_3 是平行边,重数为2
- $\ge e_6$ 和 e_7 不是平行边
- > 不是简单图

图的同构

定义 设 $G_1 = \langle V_1, E_1 \rangle$, $G_2 = \langle V_2, E_2 \rangle$ 为两个无向图 (有向图), 若存在双射函数 $f: V_1 \rightarrow V_2$, 使得对于任意的顶点 $v_i, v_i \in V_1$, 有

$$(v_i, v_j) \in E_1 \ (\langle v_i, v_j \rangle \in E_1),$$

当且仅当

$$(f(v_i), f(v_j)) \in E_2 (\langle f(v_i), f(v_j) \rangle \in E_2),$$

并且,

 (v_i, v_j) $(<v_i, v_j>)$ 与 $(f(v_i), f(v_j))$ $(<f(v_i), f(v_j)>)$ 的重数相同,则称 G_1 与 G_2 是同构的,记作 $G_1\cong G_2$.

同构实例

■ 例:证明下述2对图是同构的

彼得森图

同构实例

■ 例: 试画出4阶3条边的所有非同构的无向简单图

■ 例:判断下述每一对图是否同构:

(1)

度数列不同 不同构

同构实例

(2)

不同构 入(出)度列不同

(3)

不同构(左边没有三角形, 右边有三角形)

注意:度数列相同

图的同构

- □ 几点说明:
- > 图之间的同构关系具有自反性、对称性和传递性.
- > 有多条同构的必要条件,但它们都不是充分条件:
 - ① 边数相同,顶点数相同;
 - ② 度数列相同(不计度数的顺序);
 - ③ 对应顶点的关联集及邻域的元素个数相同,等等
- 若不满足必要条件,则两图不同构

至今没有找到判断两个图同构的多项式时间算法

完全图

 \square n 阶无向完全图 K_n

每个顶点都与其余顶点相邻的 n 阶无向简单图.

▶ 简单性质:

边数 m = n(n-1)/2, $\Delta = \delta = n-1$.

□ n 阶有向完全图:

每对顶点之间均有两条向相反的有向边的n 阶方有向简单图.

> 简单性质:

边数 m = n(n-1), $\Delta = \delta = 2(n-1)$, $\Delta^+=\delta^+=\Delta^-=\delta=n-1$.

子图

定义设 $G = \langle V, E \rangle$, $G' = \langle V', E' \rangle$ 是两个图

- (1) 若 $V' \subseteq V$ 且 $E' \subseteq E$, 则称G'为G的子图, G为G'的母图, 记作 $G' \subseteq G$.
- (2) 若G'⊆G且V'=V,则称G'为G的生成子图.
- (3) 若 $V'\subset V$ 或 $E'\subset E$,称G'为G的真子图.
- (4) 设 $V' \subseteq V \perp V' \neq \emptyset$,以V'为顶点集,以两端点都在V'中的所有边为边集的G的子图称作V'的导出子图,记作 G[V'].
- (5) 设 $E' \subseteq E \perp E' \neq \emptyset$, 以E'为边集, 以E'中边关联的所有顶点为顶点集的G的子图称作E'的导出子图, 记作 G[E'].

生成子图

\square K_4 的所有非同构的生成子图

m	0	1	2	3	4	5	6	
	0 0	0 0	· · · · · ·					

导出子图

补图

定义 设 G=<V, E>为 n 阶无向简单图,以 V 为顶点集, 所有使 G 成为完全图 K_n 的添加边组成的集合为边集的图,称为 G 的补图,记作 \overline{G} .

> 若 $G \simeq \overline{G}$, 则称 G 是自补图.

补图

■ 例 对 K_4 的所有非同构子图,指出互为补图的每一对子图, 并指出哪些是自补图.

m	0	1	2	3	4	5	6	
	0 0	o o	· · · · · ·					

5.2 通路、回路和图的连通性

- ■简单通(回)路,初级通(回)路,复杂通(回)路
- ■无向图的连通性 无向连通图,连通分支
- ■有向连通图 弱连通图,单向连通图,强连通图
- ■点割集与割点
- ■边割集与割边(桥)

定义 给定图 $G = \langle V, E \rangle$ (无向或有向的),对于 G 中顶点与边的交替序列 $\Gamma = v_0 e_1 v_1 e_2 \dots e_l v_l$,

- (1) 若 $\forall i$ (1 $\leq i \leq l$), v_{i-1} , v_i 是 e_i 的端点(对于有向图, 要求 v_{i-1} 是始点, v_i 是终点), 则称 Γ 为通路, v_0 是通路的起点, v_l 是通路的终点, l 为通路的长度. 又若 $v_0 = v_l$,则称 Γ 为回路.
- (2) 若通路(回路)中所有顶点(对于回路,除 $v_0=v_i$)各异,则称为初级通路(初级回路).初级通路又称作路径,初级回路又称作圈.
- (3) 若通路(回路)中所有边各异,则称为简单通路(简单回路),否则称为复杂通路(复杂回路).

定理 在 n 阶图 G 中, 若从顶点u到v ($u \neq v$) 存在通路, 则从 u 到 v 存在长度小于等于 n-1 的通路.

证明:

设 $\Gamma = v_0 e_1 v_1 e_2 ... e_l v_l$ 为从 $u = v_0$ 到 $v = v_l$ 的通路. 如果l > n-1,由于图中有n个顶点, $v_0, v_1, ..., v_l$

必有2个相同,设 $v_i = v_j$,则存在 v_i 到 v_j 的回路.

删除这条回路,得到 $v_0e_1v_1e_2...v_ie_{j+1}...e_lv_l$ 仍为从 $u=v_0$ 到 $v=v_l$ 的通路,长度减少 j-i.

重复此过程,得到长度不超过 n-1 的通路.

推论 在 n 阶图 G 中, 若从顶点u到v ($u \neq v$) 存在通路,则从 u 到 v 存在长度小于等于 n-1 的初级通路.

定理 在一个n 阶图G中,若存在v到自身的回路,则一定存在v到自身长度小于等于n的回路.

推论 在一个n 阶图G中,若存在v到自身的简单回路,则存在v到自身长度小于等于n的初级回路.

无向图的连通性

- □ 设无向图*G*=<*V*,*E*>,
- > u 与 v 连通: 若u与v之间有通路. 规定u与自身总连通.
- ightharpoonup 连通关系 $R = \{\langle u,v \rangle \mid u,v \in V \perp u \in V \leq u \in v\}$ 是V上的等价关系.
- > 连通图:任意两点都连通的图.
- ▶ 连通分支: V 关于连通关系 R 的等价类的导出子图
- ◆ 设 $V/R = \{V_1, V_2, ..., V_k\}, G[V_1], G[V_2], ..., G[V_k]$ 是 G 的 连通分支, 其个数记作 p(G) = k.
- G是连通图 ⇔ p(G)=1

点割集

记 G-v: 从 G 中删除 v 及关联的边.

G - V': 从 G 中删除 V'中所有的顶点及关联的边.

G-e:从G中删除e.

G - E': 从 G 中删除 E' 中所有边.

定义 设无向图 $G = \langle V, E \rangle$, $V' \subset V$, 若 p(G - V') > p(G) 且 $\forall V'' \subset V'$, p(G - V'') = p(G), 则称 $V' \to G$ 的点割集. 若 $\{v\}$ 为点割集, 则称v为割点.

点割集

■ 例 $\{v_1,v_4\}$, $\{v_6\}$ 是点割集, v_6 是割点. $\{v_2,v_5\}$ 不是点割集

边割集

定义 设无向图 $G = \langle V, E \rangle$, $E' \subseteq E$, 若p(G-E') > p(G) 且 $\forall E'' \subseteq E'$, p(G-E'') = p(G), 则称 $E' \to G$ 的边割集. 若 $\{e\}$ 为边割集, 则称e为割边或桥.

■ 例 $\{e_1, e_2\}$, $\{e_1, e_3, e_5, e_6\}$, $\{e_8\}$ 等是边割集, e_8 是桥, $\{e_7, e_9, e_5, e_6\}$ 不是边割集

有向图的连通性

- □ 设有向图*D*=<*V*,*E*>
- ▶ u可达v: u 到 v 有通路.
 (可达具有自反性和传递性)
- > D弱连通(连通): 基图为无向连通图.
- ▶ D单向连通: $\forall u, v \in V$, u可达v或v可达u.

强连通 ⇒ 单向连通 ⇒ 弱连通

有向图的连通性

■例

定理(强连通判别法) D强连通当且仅当D中存在经过每个顶点至少一次的回路

定理(单向连通判别法) D单向连通当且仅当D中存在经过每个顶点至少一次的通路

口作业

- **> 5.6**
- **> 5.10**