

AIX-MARSEILLE UNIVERSITY

DOCTORAL SCHOOL: Physics and Material Science

PARTENAIRES DE RECHERCHE

Laboratoire MADIREL

Submitted with the view of obtaining the degree of doctor

Discipline: Material Science

Specialty: Characterisation of porous materials

Paul A. Iacomi

Titre de la thèse: sous-titre de la thèse

Defended on JJ/MM/AAAA in front of the following jury:

Prénom NOM Affiliation Rapporteur Prénom NOM Affiliation Rapporteur Prénom NOM Affiliation Examinateur Prénom NOM Affiliation Examinateur Prénom NOM Affiliation Examinateur Affiliation Prénom NOM Directeur de thèse

National thesis number: 2017AIXM0001/001ED62

This work falls under the conditions of the Creative Commons Attribution License - No commercial use - No modification 4.0 International.

Abstract

Abstract is here.

Acknowledgements

Acknowledgements go here

cknowledgements				i
.]	Buil	lding a	framework for adsorption data processing	
	1.1.	_	uction	
	1.2.		eal models of adsorption	
		1.2.1.	The Henry model	
		1.2.2.	Langmuir and multi-site Langmuir model	
		1.2.3.	BET model	
		1.2.4.	Toth model	
		1.2.5.	Temkin model	
		1.2.6.	Jensen-Seaton model	
		1.2.7.	Quadratic model	
		1.2.8.	Virial model	
		1.2.9.	Vacancy solution theory models	
	1.3.	Chara	cterisation of materials through adsorption	1
		1.3.1.	Specific surface area and pore volume calculation	1
		1.3.2.	Assessing porosity	1
		1.3.3.	Predicting multicomponent adsorption	1
	1.4.	pyGA	PS overview	2
		1.4.1.	Core structure	2
		1.4.2.		2
		1.4.3.	Units	2
		1.4.4.	Workflow	2
		1.4.5.	Characterisation using pyGAPS	2
	1.5.	Proces	ssing a large adsorption dataset	3
		1.5.1.	The NIST ISODB dataset	3
		1.5.2.	A comparison between surface area calculation methods	3
		1.5.3.	Variability of the dataset	3
	1.6.	Conclu	asion	3
]	Bibli	iograph	y	4

	2.2.	Energe	etics of adsorption	44
		2.2.1.	Forces involved in adsorption	44
		2.2.2.		45
	2.3.	Measu	ring the enthalpy of adsorption	49
		2.3.1.	Isosteric enthalpy of adsorption	49
		2.3.2.	Microcalorimetry	50
		2.3.3.	Experimental apparatus and accuracy	52
	2.4.	Measu	rements and analysis	53
		2.4.1.	Comparison between enthalpies of adsorption measured through	
			the direct and indirect method	53
		2.4.2.	An example dataset on a reference material	54
		2.4.3.	A study on a novel MOF	56
	2.5.	Conclu	ısion	59
	Bibl	iograph	y	61
3.	_	_	the impact of synthesis and defects on adsorption mea-	
		ements		64
			uction	64
	3.2.		efective nature of MOFs	66
			Types of crystal defects and their analogues in MOFs	66
		3.2.2.	i	68
			Defect engineering of MOFs	69
	2.2	3.2.4.		69 71
	<i>ა.ა.</i>		ials and methods	71
		3.3.1.	Materials	
	0.4	3.3.2.	Methods for quantifying defects	
	3.4.		s and discussion	
			Crystalinity of leached samples	
			NMR	
			Thermogravimetry results	
		3.4.4.	of the state of th	
		3.4.5.	Characterisation of trends	77
	0.5	3.4.6.	Carbon dioxide isotherms	83
	3.5.		sion	84
	BIDI	ograpn	y	85
4.	Exp	loring	the impact of material form on adsorption measurements	90
	4.1.	_	uction	90
	4.2.		ng in context	91
	4.3.	-	ials, shaping and characterisation methods	93
		4.3.1.	Materials	93
		4.3.2.	Shaping Procedure	94
		4.3.3.	Characterisation of powders and pellets	95
			Sample activation for adsorption	95

	4.4. Results and discussion	95								
	4.4.1. Thermal stability	95								
	4.4.2. Adsorption isotherms at 77K and room temperature	97								
	4.4.3. Room temperature gas adsorption and microcalorimetry	99								
	4.4.4. Vapour adsorption	105								
	4.5. Conclusion	112								
	Bibliography	113								
5 .	Exploring novel behaviours	115								
	5.1. Introduction	115								
	5.2. Context and scientific approach	116								
	5.3. Materials and characterisation methods									
	5.3.1. Material	118								
	5.4. Results and discussion	118								
	5.5. Conclusion	118								
	Bibliography	119								
Α.	Common characterisation techniques 1									
	A.1. Thermogravimetry	121								
	A.2. Bulk density determination	121								
	A.3. Skeletal density determination	122								
	A.4. Nitrogen physisorption at 77 K	122								
	A.5. Vapour physisorption at 298 K	122								
	A.6. Gravimetric isotherms	123								
	A.7. High throughput isotherm measuremnt	123								
	A.8. Powder X-ray diffraction	123								
	A.9. Nuclear magnetic resonance	123								
	Bibliography	123								
в.	Synthesis method of referenced materials	120								
	B.1. Takeda 5A reference carbon	120								
	B.2. MCM-41 controlled pore glass	120								
	B.3. Zr fumarate MOF	120								
	B.4. UiO-66(Zr) for defect study	121								
	B.5. UiO-66(Zr) for shaping study $\dots \dots \dots \dots \dots \dots \dots$	121								
	B.6. MIL-100(Fe) for shaping study	121								
	B.7. MIL-127(Fe) for shaping study	122								
	Bibliography	122								
C.	Appendix for chapter 4	123								
	C.1. Calorimetry dataset UiO-66(Zr)	123								
	C.2. Calorimetry MIL-100(Fe)	124								
	C.3. Calorimetry MIL-127(Fe)	127								
		127								

D. Appendix for chapter 3	129
D.1. Acid and solvent properties	129
D.2. Powder diffraction patterns	130
D.3. TGA curves	130
D.3.1. DMF leached samples	130
D.3.2. Water leached samples	131
D.3.3. Methanol leached samples	132
D.3.4. DMSO leached samples	133
D.3.5. High resolution curves	134
D.4. Nitrogen sorption isotherms	135
D.4.1. DMF leached samples	135
D.4.2. H_2O leached samples	136
D.4.3. MeOH leached samples	137
D.4.4. DMSO leached samples	138
D.5. Characterisation	139
Bibliography	140

5. Exploring novel behaviours

5.1. Introduction

Until this chapter, it has been assumed that the porous materials are static when adsorbing a gas. Differences in pore size, crystalinity or structure may exist, but these properties did not change as the host fluid enters the pores. In most cases this is a reasonable assumption. However, it is not universally applicable, as as the forces and interactions exerted during adsorption may induce changes in solid itself.

Such effects in classic porous inorganic materials like zeolites, carbons and clays take the form of structural contraction and expansion, swelling or counterion displacement. (1) It is only recently that flexibility was discovered in coordination polymers, such as MOFs. A feature which arises from their comparatively weak coordination bonds or pliant organic components, it allows for a systematic deflection of bonds throughout the entire crystal lattice. As such, the term "soft porous crystals" defines porous solids that are both highly ordered and possess the ability to reversibly transform their structure upon external stimuli. Part of the so-called third generation of crystalline porous compounds, they represent some of the latest developments in the field of MOFs.

The unique properties of flexible materials can result in their application in fields such as sensing, micromechanical devices and highly efficient gas storage. It is these perspectives that make their synthesis and design a key research interest. However, their flexible nature introduces new challenges in their characterisation, as factors such as temperature and thermal history⁽²⁾, crystal size^(3,4), external pressure^(5,6), structural defects⁽⁷⁾ and even adsorption kinetics play a role in their compliance. This type of variability goes beyond what has been insofar discussed in this thesis and it is here where a combined characterisation approach becomes essential in understanding the fundamental physics governing flexibility and potential prediction of adsorption behaviour.

Summary

After a brief introduction of the background of soft porous materials, this chapter will present the characterization of a novel flexible MOF (DUT-49) and its analogues. This material undergoes a sudden collapse of its pore network into a closed form state upon adsorption, resulting in the expulsion of gas from its pores. This phenomena was coined "negative gas adsorption" (NGA). The text will focus on characterisation through calorimetric methods performed by Paul Iacomi, together with references of results obtained

by collaborating groups included in order obtain a complete story of the underlying mechanism behind NGA.

Contribution

The synthesis of all MOFs was performed by Simon Krause (TU Dresden), together with their initial characterization through nitrogen adsorption at 77 K. Ambient and low temperature calorimetry was carried out by Paul Iacomi. Computer simulations of adsorption isotherms are the result of work from Jack Evans and Prof. F.X Coudert. Mechanical compression experiments were performed in the group of Prof. Guillaume Maurin in Montpellier. Prof. Philip Llewellyn and Prof. Stefan Kaskel were instrumental in the analysis of the results obtained.

5.2. Context and scientific approach

Adsorption induced changes in porous media have been known to occur for over 90 years $^{(8)}$, with both clays, coals and polymers undergoing swelling during gas or vapour uptake. $^{(9)}$ In the case of clays, this change in volume is due to cleavage of weak hydrogen bonds leading to separation of layers. The mechanism is similar in the nanopores of bitumen-containing coal and in polymers, with both mechanisms being driven by adsorption induced stress. In-depth studies $^{(10)}$ have revealed that most porous materials posses some small degree of compliance, with *in-situ* dilatometry going so far as to obtain pore size distributions from accurate volume changes. $^{(11)}$ This type of swelling, contraction and expansion usually follows a second order transition.

The discovery of similar types of compliant behaviour upon adsorption in metal organic frameworks has opened new perspectives in the area, as they have been shown to undergo massive and reversible structural deflections, while retaining their crystalinity. Some of the known types of structural flexibility encountered in MOFs is presented in Figure 5.1.

The discovery of the so-called "breathing" type of structural deformation in the MIL-53 family of materials has shown that

Finding a suitable model that would predict such structural changes has remained a challenge. A successful model for $^{(20)}$ Nevertheless a complete theory of adsorption-deformation which can fully predict the changes in the measured enthalpy of adsorption and the mechanistic behaviour of theoretical structures has remained elusive.

The usefulness of such phenomena have been long recognised as potential sensors or actuators, initially by nature itself, with humidity induced swelling acting to open pine cones. (22) More recently similar sensing devices based on adsorption induced strain in mesoporous silica have been developed (23,24) which show promise for use in micromechanical systems. From a gas storage and separation point of view, changes in the adsorbent structure may be crucial for process improvement. Pressure swing adsorption (PSA)

5. Exploring novel behaviours

Figure 5.1.: A visual summary of the types of flexibility which are documented in MOFs, as detailed in (a) Li and Kaneko⁽¹²⁾ (b) Kitaura et al.⁽¹³⁾ (c) Kitaura et al.⁽¹⁴⁾ (d) Kitaura et al.⁽¹³⁾, Kepert et al.⁽¹⁵⁾ (e) Nelson et al.⁽¹⁶⁾ (f) Fairen-Jimenez et al.⁽¹⁷⁾ (g) Bourrelly et al.⁽¹⁸⁾, Serre et al.⁽¹⁹⁾

is heavily dependent on the working capacity of the adsorbent used, or the difference between loading at the operation pressure and at the regeneration pressure. In this case, an S-shaped isotherm, with the vertical part of the slope in the aforementioned pressure range would lead to high process efficiency gains by eliminating material "dead volume adsorbed". In a temperature swing process (TSA), where the regeneration is performed through heating of the adsorbent bed, the key parameter is the integral enthalpy of adsorption, a measure of the energy requirements for the process. As a part of the chemical potential of the adsorbed phase is used by the mechanical contraction of the material, flexible adsorbents have the potential of intrinsic thermal management, reducing the energy cost. Finally, swelling of clays upon gas adsorption is quickly becoming a research interest as extraction of shale deposits is becoming common. In particular, the attractive option of combined carbon capture and methane recovery implemented through pumping of carbon dioxide into reservoirs leads to swelling-induced loss of porosity and well blocking due to the increased strain by CO_2 in comparison to methane.

5. Exploring novel behaviours

However, the most promising perspective for such materials come from

5.3. Materials and characterisation methods

5.3.1. Material

 $\operatorname{DUT-49}$ is a MOF built on the secondary building unit or SBU approach where the metal nodes are substituted by a

5.4. Results and discussion

5.5. Conclusion

BIBLIOGRAPHY

Bibliography

- [1] François-Xavier Coudert and Daniela Kohen. Molecular Insight into CO ₂ "Trapdoor" Adsorption in Zeolite Na-RHO. *Chemistry of Materials*, 29(7):2724–2730, April 2017. ISSN 0897-4756, 1520-5002. doi: 10.1021/acs.chemmater.6b03837.
- [2] Yun Liu, Jae-Hyuk Her, Anne Dailly, Anibal J. Ramirez-Cuesta, Dan A. Neumann, and Craig M. Brown. Reversible Structural Transition in MIL-53 with Large Temperature Hysteresis. *Journal of the American Chemical Society*, 130(35):11813–11818, September 2008. ISSN 0002-7863, 1520-5126. doi: 10.1021/ja803669w.
- [3] Chen Zhang, Jason A. Gee, David S. Sholl, and Ryan P. Lively. Crystal-Size-Dependent Structural Transitions in Nanoporous Crystals: Adsorption-Induced Transitions in ZIF-8. *The Journal of Physical Chemistry C*, 118(35):20727–20733, September 2014. ISSN 1932-7447, 1932-7455. doi: 10.1021/jp5081466.
- [4] Simon Krause, Volodymyr Bon, Irena Senkovska, Daniel M. Többens, Dirk Wallacher, Renjith S. Pillai, Guillaume Maurin, and Stefan Kaskel. The effect of crystallite size on pressure amplification in switchable porous solids. *Nature Communications*, 9(1), December 2018. ISSN 2041-1723. doi: 10.1038/s41467-018-03979-2.
- [5] Masashi Ito, Hirotomo Nishihara, Kentaro Yamamoto, Hiroyuki Itoi, Hideki Tanaka, Akira Maki, Minoru T. Miyahara, Seung Jae Yang, Chong Rae Park, and Takashi Kyotani. Reversible Pore Size Control of Elastic Microporous Material by Mechanical Force. Chemistry A European Journal, 19(39):13009–13016, September 2013. ISSN 09476539. doi: 10.1002/chem.201301806.
- [6] Nicolas Chanut. Using External Factors to Improve Gas Adsorption in Nanoporous Materials: Control of Humidity and Mechanical Pressure. PhD thesis, Aix-Marseille, December 2016.
- [7] Thomas D. Bennett, Anthony K. Cheetham, Alain H. Fuchs, and François-Xavier Coudert. Interplay between defects, disorder and flexibility in metal-organic frameworks. *Nature Chemistry*, 9 (1):11–16, December 2016. ISSN 1755-4330. doi: 10.1038/nchem.2691.
- [8] J. W. McBain and John Ferguson. On the Nature of the Influence of Humidity Changes upon the Composition of Building Materials. *The Journal of Physical Chemistry*, 31(4):564–590, January 1927. ISSN 0092-7325, 1541-5740. doi: 10.1021/j150274a010.
- [9] Gennady Y. Gor, Patrick Huber, and Noam Bernstein. Adsorption-induced deformation of nanoporous materials—A review. Applied Physics Reviews, 4(1):011303, March 2017. ISSN 1931-9401. doi: 10.1063/1.4975001.
- [10] B. P. Bering, O. K. Krasil'nikova, A. I. Sarakhov, V. V. Serpinskii, and M. M. Dubinin. Alteration of zeolite granule dimensions under krypton adsorption. *Bulletin of the Academy of Sciences of the USSR Division of Chemical Science*, 26(11):2258–2261, November 1977. ISSN 0568-5230, 1573-9171. doi: 10.1007/BF00958705.
- [11] G Reichenauer and G.W Scherer. Extracting the pore size distribution of compliant materials from nitrogen adsorption. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 187-188: 41–50, August 2001. ISSN 09277757. doi: 10.1016/S0927-7757(01)00619-7.
- [12] Di Li and Katsumi Kaneko. Hydrogen bond-regulated microporous nature of copper complex-assembled microcrystals. Chemical Physics Letters, 335(1-2):50-56, February 2001. ISSN 00092614. doi: 10.1016/S0009-2614(00)01419-6.
- [13] Ryo Kitaura, Kenji Seki, George Akiyama, and Susumu Kitagawa. Porous Coordination-Polymer Crystals with Gated Channels Specific for Supercritical Gases. *Angewandte Chemie International Edition*, 42(4):428–431, January 2003. ISSN 14337851, 15213773. doi: 10.1002/anie.200390130.
- [14] Ryo Kitaura, Kentaro Fujimoto, Shin-ichiro Noro, Mitsuru Kondo, and Susumu Kitagawa. A Pillared-Layer Coordination Polymer Network Displaying Hysteretic Sorption: [Cu2(pzdc)2(dpyg)]n (pzdc= Pyrazine-2,3-dicarboxylate; dpyg=1,2-Di(4-pyridyl)glycol). Angewandte Chemie, 114(1):141–143, January 2002. ISSN 0044-8249, 1521-3757. doi: 10.1002/1521-3757(20020104)114:1<141::AID-ANGE141>3.0.CO;2-D.

BIBLIOGRAPHY

- [15] C. J. Kepert, T. J. Prior, and M. J. Rosseinsky. A Versatile Family of Interconvertible Microporous Chiral Molecular Frameworks: The First Example of Ligand Control of Network Chirality. *Journal* of the American Chemical Society, 122(21):5158–5168, May 2000. ISSN 0002-7863, 1520-5126. doi: 10.1021/ja993814s.
- [16] Andrew P. Nelson, Omar K. Farha, Karen L. Mulfort, and Joseph T. Hupp. Supercritical Processing as a Route to High Internal Surface Areas and Permanent Microporosity in Metal-Organic Framework Materials. *Journal of the American Chemical Society*, 131(2):458–460, January 2009. ISSN 0002-7863, 1520-5126. doi: 10.1021/ja808853q.
- [17] D. Fairen-Jimenez, S. A. Moggach, M. T. Wharmby, P. A. Wright, S. Parsons, and T. Düren. Opening the Gate: Framework Flexibility in ZIF-8 Explored by Experiments and Simulations. *Journal of the American Chemical Society*, 133(23):8900–8902, June 2011. ISSN 0002-7863, 1520-5126. doi: 10.1021/ja202154j.
- [18] Sandrine Bourrelly, Philip L. Llewellyn, Christian Serre, Franck Millange, Thierry Loiseau, and Gérard Férey. Different Adsorption Behaviors of Methane and Carbon Dioxide in the Isotypic Nanoporous Metal Terephthalates MIL-53 and MIL-47. *Journal of the American Chemical Society*, 127(39):13519–13521, October 2005. ISSN 0002-7863. doi: 10.1021/ja054668v.
- [19] C. Serre, S. Bourrelly, A. Vimont, N. A. Ramsahye, G. Maurin, P. L. Llewellyn, M. Daturi, Y. Filinchuk, O. Leynaud, P. Barnes, and G. Férey. An Explanation for the Very Large Breathing Effect of a Metal-Organic Framework during CO2 Adsorption. *Advanced Materials*, 19(17):2246–2251, September 2007. ISSN 09359648, 15214095. doi: 10.1002/adma.200602645.
- [20] Alexander V. Neimark, François-Xavier Coudert, Anne Boutin, and Alain H. Fuchs. Stress-Based Model for the Breathing of Metal-Organic Frameworks. *The Journal of Physical Chemistry Letters*, 1(1):445–449, January 2010. ISSN 1948-7185. doi: 10.1021/jz9003087.
- [21] Gennady Yu. Gor and Alexander V. Neimark. Adsorption-Induced Deformation of Mesoporous Solids. Langmuir, 26(16):13021-13027, August 2010. ISSN 0743-7463, 1520-5827. doi: 10.1021/11019247.
- [22] Colin Dawson, Julian F. V. Vincent, and Anne-Marie Rocca. How pine cones open. *Nature*, 390: 668, December 1997.
- [23] Mickael Boudot, Hervé Elettro, and David Grosso. Converting Water Adsorption and Capillary Condensation in Usable Forces with Simple Porous Inorganic Thin Films. *ACS Nano*, 10(11): 10031–10040, November 2016. ISSN 1936-0851, 1936-086X. doi: 10.1021/acsnano.6b04648.
- [24] Christian Ganser, Gerhard Fritz-Popovski, Roland Morak, Parvin Sharifi, Benedetta Marmiroli, Barbara Sartori, Heinz Amenitsch, Thomas Griesser, Christian Teichert, and Oskar Paris. Cantilever bending based on humidity-actuated mesoporous silica/silicon bilayers. *Beilstein Journal of Nanotechnology*, 7:637–644, April 2016. ISSN 2190-4286. doi: 10.3762/bjnano.7.56.

A. Common characterisation techniques

pictures

A.1. Thermogravimetry

Thermogravimetry (TGA) is a standard laboratory technique where the weight of a sample is monitored while ambient temperature is controlled. Changes in sample mass can be correlated to physical events, such as adsorption, desorption, sample decomposition or oxidation, depending on temperature and its rate of change.

TGA experiments are carried out on approximately 15 mg of sample with a TA Instruments Q500 up to 800 °C. The sample is placed on a platinum crucible and sealed in a temperature controlled oven, under gas flow of $40\,\mathrm{cm^3\,min^{-1}}$. Experiments can use a blanket of either air or argon. The temperature ramp can be specified directly and should be chosen to ensure that the sample is in equilibrium with the oven temperature and no thermal conductivity effects come into play. Alternatively, a dynamic "Hi-Res" mode can be used which allows for automatic cessation of heating rate while the sample undergoes mass loss.

The main purpose of thermogravimetry as used in this thesis is the determination of sample decomposition temperature, to ensure that thermal activation prior to adsorption is complete and that all guest molecules have been removed without loss of structure. To this end, experiments are performed under an inert atmosphere (argon), and the sample activation temperature is chosen as $50\,^{\circ}\text{C}$ to $100\,^{\circ}\text{C}$ lower than the sample decomposition temperature.

A.2. Bulk density determination

Bulk density is a useful metric for the industrial use of adsorbent materials, as their volume plays a critical role in equipment sizing.

Bulk density is determined by weighing 1.5 ml empty glass vessels and settling the MOFs inside. Powder materials are then added in small increments and settled through vibration between each addition. The full vessel is finally weighed, which allowed the

bulk density to be determined. The same cell is used in all experiments, with cleaning through sonication between each experiment.

A.3. Skeletal density determination

True density or skeletal density is determined through gas pycnometry in a Microtrac-BEL BELSORP-max apparatus. Helium is chosen as the fluid of choice as it is assumed to be non-adsorbing.

The volume of a glass sample cell (V_c) is precisely measured through dosing of the reference volume with helium up to (p_1) , then opening the valve connecting the two and allowing the gas to expand up to (p_2) . Afterwards approximately 50 mg of sample are weighed and inserted in a glass sample cell. After sample activation using the supplied electric heater to ensure no solvent residue is left in the pores, the same procedure is repeated to determine the volume of the cell and the adsorbent. With the volume of the sample determined, the density can be calculated by.

$$V_s = V_c + \frac{V_r}{1 - \frac{p_1}{p_2}} \tag{A.1}$$

A.4. Nitrogen physisorption at 77 K

Nitrogen adsorption experiments are carried out on a Micromeritics Triflex apparatus. Approximately 60 mg of sample are used for each measurement. Empty glass cells are weighed and filled with the samples, which are then activated in a Micromeritics Smart VacPrep up to their respective activation temperature under vacuum and then back-filled with an inert atmosphere. After sample activation, the cells are re-weighed to determine the precise sample mass. The cells are covered with a porous mantle which allows for a constant temperature gradient during measurement by wicking liquid nitrogen around the cell. Finally, the cells are immersed in a liquid nitrogen bath and the adsorption isotherm is recoded using the volumetric method. A separate cell is used to condense the adsorptive throughout the measurement for accurate determination of its saturation pressure.

A.5. Vapour physisorption at 298 K

Vapour adsorption isotherms throughout this work are measured using a MicrotracBEL BELSORP-max apparatus in vapour mode. Glass cells are first weighed and then filled with about 50 mg of sample. The vials are then heated under vacuum up to the activation

BIBLIOGRAPHY

temperature of the material and re-weighed in order to measure the exact sample mass without adsorbed guests. The cells are then immersed in a mineral oil bath kept at 298 K. To ensure that the cold point of the system occurs in the material and to prevent condensation on cell walls, the reference volume, dead space and vapour source are temperature controlled through an insulated enclosure.

A.6. Gravimetric isotherms

The gravimetric isotherms in this thesis are obtained using a commercial Rubotherm GmbH balance. Approximately 1 g of dried sample is used for these experiments. Samples are activated in situ by heating under vacuum. The gas is introduced using a step-by-step method, and equilibrium is assumed to have been reached when the variation of weight remained below 30 µg over a 15 min interval. The volume of the sample is determined from a blank experiment with helium as the non-adsorbing gas and used in combination with the gas density measured by the Rubotherm balance to compensate for buoyancy.

A.7. High throughput isotherm measuremnt

A high-throughput gas adsorption apparatus is presented for the evaluation of adsorbents of interest in gas storage and separation applications. This instrument is capable of measuring complete adsorption isotherms up to 50 bar on six samples in parallel using as little as 60 mg of material. Multiple adsorption cycles can be carried out and four gases can be used sequentially, giving as many as 24 adsorption isotherms in 24 h. (1)

A.8. Powder X-ray diffraction

A.9. Nuclear magnetic resonance

Bibliography

[1] Andrew D. Wiersum, Christophe Giovannangeli, Dominique Vincent, Emily Bloch, Helge Reinsch, Norbert Stock, Ji Sun Lee, Jong-San Chang, and Philip L. Llewellyn. Experimental Screening of Porous Materials for High Pressure Gas Adsorption and Evaluation in Gas Separations: Application to MOFs (MIL-100 and CAU-10). ACS Combinatorial Science, 15(2):111–119, February 2013. ISSN 2156-8952. doi: 10.1021/co300128w.