$11a_{84} (K11a_{84})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{50} + u^{49} + \dots - u + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 50 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{50} + u^{49} + \dots - u + 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{6} + u^{4} + 2u^{2} + 1 \\ u^{6} + u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{13} + 2u^{11} + 5u^{9} + 6u^{7} + 6u^{5} + 4u^{3} + u \\ u^{13} + u^{11} + 3u^{9} + 2u^{7} + 2u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{8} + u^{6} + 3u^{4} + 2u^{2} + 1 \\ u^{10} + 2u^{8} + 3u^{6} + 4u^{4} + u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{24} - 3u^{22} + \dots + 2u^{2} + 1 \\ -u^{26} - 4u^{24} + \dots - 3u^{6} + u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{47} + 6u^{45} + \dots + 4u^{3} + 2u \\ u^{49} + 7u^{47} + \dots + 2u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{47} + 6u^{45} + \dots + 4u^{3} + 2u \\ u^{49} + 7u^{47} + \dots + 2u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^{48} + 4u^{47} + \cdots 20u^3 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^{50} + u^{49} + \dots - u + 1$
c_2	$u^{50} + 23u^{49} + \dots - u + 1$
c_{3}, c_{8}	$u^{50} - u^{49} + \dots + u + 1$
c_4, c_6	$u^{50} - u^{49} + \dots - 165u + 25$
c_7, c_9, c_{10}	$u^{50} - 13u^{49} + \dots - u + 1$
c_{11}	$u^{50} + 3u^{49} + \dots + u + 3$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^{50} - 23y^{49} + \dots + y + 1$
c_2	$y^{50} + 9y^{49} + \dots + y + 1$
c_{3}, c_{8}	$y^{50} + 13y^{49} + \dots + y + 1$
c_4, c_6	$y^{50} - 31y^{49} + \dots - 16275y + 625$
c_7, c_9, c_{10}	$y^{50} + 49y^{49} + \dots - 7y + 1$
c_{11}	$y^{50} + 5y^{49} + \dots + 521y + 9$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.219529 + 0.986047I	3.94354 + 3.43046I	5.76669 - 1.67529I
u = 0.219529 - 0.986047I	3.94354 - 3.43046I	5.76669 + 1.67529I
u = -0.246085 + 0.982711I	5.58031 + 1.62349I	8.34360 - 3.64621I
u = -0.246085 - 0.982711I	5.58031 - 1.62349I	8.34360 + 3.64621I
u = 0.308256 + 0.923731I	0.40552 - 2.46934I	0.87793 + 4.65157I
u = 0.308256 - 0.923731I	0.40552 + 2.46934I	0.87793 - 4.65157I
u = -0.298826 + 0.987833I	5.26972 + 4.23270I	7.37704 - 4.53289I
u = -0.298826 - 0.987833I	5.26972 - 4.23270I	7.37704 + 4.53289I
u = 0.318075 + 0.994530I	3.36572 - 9.34553I	4.11417 + 9.06753I
u = 0.318075 - 0.994530I	3.36572 + 9.34553I	4.11417 - 9.06753I
u = -0.775854 + 0.801832I	-2.39389 + 4.71062I	-0.14636 - 5.46565I
u = -0.775854 - 0.801832I	-2.39389 - 4.71062I	-0.14636 + 5.46565I
u = -0.483537 + 0.734912I	-1.95260 + 5.09579I	-2.40884 - 8.50757I
u = -0.483537 - 0.734912I	-1.95260 - 5.09579I	-2.40884 + 8.50757I
u = 0.811513 + 0.797475I	-1.169710 + 0.163979I	1.95677 - 0.52892I
u = 0.811513 - 0.797475I	-1.169710 - 0.163979I	1.95677 + 0.52892I
u = 0.852019 + 0.801997I	-2.15185 + 2.58590I	0.827994 - 0.674583I
u = 0.852019 - 0.801997I	-2.15185 - 2.58590I	0.827994 + 0.674583I
u = 0.085415 + 0.824761I	1.16249 - 1.82384I	6.57065 + 4.44419I
u = 0.085415 - 0.824761I	1.16249 + 1.82384I	6.57065 - 4.44419I
u = -0.863831 + 0.802647I	-4.29327 - 7.68607I	-2.29729 + 4.73536I
u = -0.863831 - 0.802647I	-4.29327 + 7.68607I	-2.29729 - 4.73536I
u = -0.850278 + 0.827510I	-6.91480 - 0.19952I	-5.59281 + 0.I
u = -0.850278 - 0.827510I	-6.91480 + 0.19952I	-5.59281 + 0.I
u = -0.757117 + 0.952106I	-1.93934 + 1.09281I	0
u = -0.757117 - 0.952106I	-1.93934 - 1.09281I	0
u = -0.825284 + 0.899193I	-6.17694 + 3.07827I	0 2.72625I
u = -0.825284 - 0.899193I	-6.17694 - 3.07827I	0. + 2.72625I
u = 0.845830 + 0.890740I	-9.32972 + 0.72052I	-6.40734 + 0.I
u = 0.845830 - 0.890740I	-9.32972 - 0.72052I	-6.40734 + 0.I

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.771222 + 0.962943I	-0.66571 - 6.10737I	0. + 5.65000I
u = 0.771222 - 0.962943I	-0.66571 + 6.10737I	05.65000I
u = 0.836263 + 0.917270I	-9.24690 - 6.97433I	-6.10425 + 6.45667I
u = 0.836263 - 0.917270I	-9.24690 + 6.97433I	-6.10425 - 6.45667I
u = 0.332618 + 0.672808I	0.174284 - 1.327380I	1.54374 + 5.34383I
u = 0.332618 - 0.672808I	0.174284 + 1.327380I	1.54374 - 5.34383I
u = -0.802884 + 0.962136I	-6.49492 + 6.35925I	0
u = -0.802884 - 0.962136I	-6.49492 - 6.35925I	0
u = 0.792536 + 0.977055I	-1.60913 - 8.71493I	0
u = 0.792536 - 0.977055I	-1.60913 + 8.71493I	0
u = -0.798650 + 0.982182I	-3.7340 + 13.8696I	0 9.53503I
u = -0.798650 - 0.982182I	-3.7340 - 13.8696I	0. + 9.53503I
u = -0.488576 + 0.512324I	-2.60376 - 1.44363I	-5.78396 + 0.53575I
u = -0.488576 - 0.512324I	-2.60376 + 1.44363I	-5.78396 - 0.53575I
u = 0.630218 + 0.101743I	0.59402 + 6.02058I	-1.82523 - 5.20463I
u = 0.630218 - 0.101743I	0.59402 - 6.02058I	-1.82523 + 5.20463I
u = -0.605378 + 0.059120I	2.43882 - 1.09952I	1.50149 + 0.50378I
u = -0.605378 - 0.059120I	2.43882 + 1.09952I	1.50149 - 0.50378I
u = 0.492805 + 0.206145I	-1.73630 - 0.52214I	-5.82516 + 0.81274I
u = 0.492805 - 0.206145I	-1.73630 + 0.52214I	-5.82516 - 0.81274I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^{50} + u^{49} + \dots - u + 1$
c_2	$u^{50} + 23u^{49} + \dots - u + 1$
c_3,c_8	$u^{50} - u^{49} + \dots + u + 1$
c_4, c_6	$u^{50} - u^{49} + \dots - 165u + 25$
c_7, c_9, c_{10}	$u^{50} - 13u^{49} + \dots - u + 1$
c_{11}	$u^{50} + 3u^{49} + \dots + u + 3$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^{50} - 23y^{49} + \dots + y + 1$
c_2	$y^{50} + 9y^{49} + \dots + y + 1$
c_3, c_8	$y^{50} + 13y^{49} + \dots + y + 1$
c_4, c_6	$y^{50} - 31y^{49} + \dots - 16275y + 625$
c_7, c_9, c_{10}	$y^{50} + 49y^{49} + \dots - 7y + 1$
c_{11}	$y^{50} + 5y^{49} + \dots + 521y + 9$