(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 20 February 2003 (20.02.2003)

PCT

(10) International Publication Number WO 03/013227 A2

(51) International Patent Classification7:

(21) International Application Number: PCT/US02/25805

(22) International Filing Date: 9 August 2002 (09.08.2002)

(25) Filing Language:

English

A01H

(26) Publication Language:

English

(30) Priority Data:

 60/310,847
 9 August 2001 (09.08.2001)
 US

 60/336,049
 19 November 2001 (19.11.2001)
 US

 60/338,692
 11 December 2001 (11.12.2001)
 US

 10/171,468
 14 June 2002 (14.06.2002)
 US

(71) Applicant (for all designated States except US): MENDEL BIOTECHNOLOGY, INC. [US/US]; 21375 Cabot Boulevard, Hayward, CA 94945 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): RATCLIFFE, Oliver [GB/US]; 814 East 21st Street, Oakland, CA 94606 (US). RIECHMANN, Jose, Luis [ES/US]; 518 S. El Molino Avenue, #308, Pasadena, CA 91101 (US). ADAM, Luc, J. [CA/US]; 25800 Industrial Boulevard, Apt. L403, Hayward, CA 94545 (US). DUBELL, Arnold, T. [US/US]; 14857 Wake Avenue, San Leandro, CA 94578 (US). HEARD, Jacqueline, E. [US/US]; 810 Guilford Avenue, San Mateo, CA 94402 (US). PILGRIM, Marsha, L. [US/US]; 1368 Patrick Henry Drive, Phoenixville, PA 19460 (US). JIANG, Cai-Zhong [US/US]; 34495 Heathrow Terrace, Fremont, CA 94555 (US). REUBER, T., Lynne [US/US]; 1115 S. Grant Street, San Mateo, CA

94402 (US). CREELMAN, Robert, A. [US/US]; 2801 Jennifer Drive, Castro Valley, CA 94546 (US). PINEDA, Omaira [CO/US]; 4060 9th Place, Vero Beach, FL 32960 (US). YU, Guo-Liang [US/US]; 242 Gravett Drive, Berkeley, CA 94705-1531 (US). BROUN, Pierre, E. [FR/US]; 921 Sunnybrae Boulevard, San Mateo, CA 94402 (US).

(74) Agents: WARD, Michael, R. et al.; Morrison & Foerster LLP, 425 Market Street, San Francisco, CA 94105-2482 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: YIELD-RELATED POLYNUCLEOTIDES AND POLYPEPTIDES IN PLANTS

(57) Abstract: The invention relates to plant transcription factor polypeptides, polynucleotides that encode them, homologs from a variety of plant species, and methods of using the polynucleotides and polypeptides to produce transgenic plants having advantageous properties compared to a reference plant. Sequence information related to these polynucleotides and polypeptides can also be used in bioinformatic search methods and is also disclosed.

YIELD-RELATED POLYNUCLEOTIDES AND POLYPEPTIDES IN PLANTS

This application claims the benefit of US Provisional Application No. 60/310,847, filed August 9, 2001, US Provisional Application No. 60/336,049, filed December 5, 2001, US Provisional Application No. 60/338,692, filed December 11, 2001, and US Non-provisional Application No. 10/171,468, filed June 14, 2002, the entire contents of which are hereby incorporated by reference.

FIELD OF THE INVENTION

This invention relates to the field of plant biology. More particularly, the present invention pertains to compositions and methods for phenotypically modifying a plant.

INTRODUCTION

A plant's traits, such as its biochemical, developmental, or phenotypic characteristics, may be controlled through a number of cellular processes. One important way to manipulate that control is through transcription factors - proteins that influence the expression of a particular gene or sets of genes. Transformed and transgenic plants that comprise cells having altered levels of at least one selected transcription factor, for example, possess advantageous or desirable traits. Strategies for manipulating traits by altering a plant cell's transcription factor content can therefore result in plants and crops with commercially valuable properties. Applicants have identified polynucleotides encoding transcription factors, developed numerous transgenic plants using these polynucleotides, and have analyzed the plants for a variety of important traits. In so doing, applicants have identified important polynucleotide and polypeptide sequences for producing commercially valuable plants and crops as well as the methods for making them and using them. Other aspects and embodiments of the invention are described below and can be derived from the teachings of this disclosure as a whole.

BACKGROUND OF THE INVENTION

Transcription factors (TFs) can modulate gene expression, either increasing or decreasing (inducing or repressing) the rate of transcription. This modulation results in differential levels of gene expression at various developmental stages, in different

tissues and cell types, and in response to different exogenous (e.g., environmental) and endogenous stimuli throughout the life cycle of the organism.

Because transcription factors are key controlling elements of biological pathways, altering the expression levels of one or more transcription factors can change entire biological pathways in an organism. For example, manipulation of the levels of selected transcription factors may result in increased expression of economically useful proteins or metabolic chemicals in plants or to improve other agriculturally relevant characteristics. Conversely, blocked or reduced expression of a transcription factor may reduce biosynthesis of unwanted compounds or remove an undesirable trait. Therefore, manipulating transcription factor levels in a plant offers tremendous potential in agricultural biotechnology for modifying a plant's traits.

The present invention provides novel transcription factors useful for modifying a plant's phenotype in desirable ways.

SUMMARY OF THE INVENTION

In a first aspect, the invention relates to a recombinant polynucleotide comprising a nucleotide sequence selected from the group consisting of: (a) a nucleotide sequence encoding a polypeptide comprising a polypeptide sequence selected from those of the Sequence Listing, SEQ ID NOs:2 to 2N, where N = 2-561, or those listed in Table 4, or a complementary nucleotide sequence thereof; (b) a nucleotide sequence encoding a polypeptide comprising a variant of a polypeptide of (a) having one or more, or between 1 and about 5, or between 1 and about 10, or between 1 and about 30, conservative amino acid substitutions; (c) a nucleotide sequence comprising a sequence selected from those of SEQ ID NOs:1 to (2N - 1), where N = 2-561, or those included in Table 4, or a complementary nucleotide sequence thereof; (d) a nucleotide sequence comprising silent substitutions in a nucleotide sequence of (c); (e) a nucleotide sequence which hybridizes under stringent conditions over substantially the entire length of a nucleotide sequence of one or more of: (a), (b), (c), or (d); (f) a nucleotide sequence comprising at least 10 or 15, or at least about 20, or at least about 30 consecutive nucleotides of a sequence of any of (a)-(e), or at least 10 or 15, or at least about 20, or at least about 30 consecutive nucleotides outside of a region encoding a conserved domain of any of (a)-(e); (g) a

nucleotide sequence comprising a subsequence or fragment of any of (a)-(f), which subsequence or fragment encodes a polypeptide having a biological activity that modifies a plant's characteristic, functions as a transcription factor, or alters the level of transcription of a gene or transgene in a cell; (h) a nucleotide sequence having at least 31% sequence identity to a nucleotide sequence of any of (a)-(g); (i) a nucleotide sequence having at least 60%, or at least 70 %, or at least 80 %, or at least 90 %, or at least 95 % sequence identity to a nucleotide sequence of any of (a)-(g) or a 10 or 15 nucleotide, or at least about 20, or at least about 30 nucleotide region of a sequence of (a)-(g) that is outside of a region encoding a conserved domain; (j) a nucleotide sequence that encodes a polypeptide having at least 31% sequence identity to a polypeptide listed in Table 4, or the Sequence Listing; (k) a nucleotide sequence which encodes a polypeptide having at least 60%, or at least 70 %, or at least 80%, or at least 90 %, or at least 95 % sequence identity to a polypeptide listed in Table 4, or the Sequence Listing; and (1) a nucleotide sequence that encodes a conserved domain of a polypeptide having at least 85%, or at least 90%, or at least 95%, or at least 98% sequence identity to a conserved domain of a polypeptide listed in Table 4, or the Sequence Listing. The recombinant polynucleotide may further comprise a constitutive, inducible, or tissue-specific promoter operably linked to the nucleotide sequence. The invention also relates to compositions comprising at least two of the above-described polynucleotides.

In a second aspect, the invention comprises an isolated or recombinant polypeptide comprising a subsequence of at least about 10, or at least about 15, or at least about 20, or at least about 30 contiguous amino acids encoded by the recombinant or isolated polynucleotide described above, or comprising a subsequence of at least about 8, or at least about 12, or at least about 15, or at least about 20, or at least about 30 contiguous amino acids outside a conserved domain.

In a third aspect, the invention comprises an isolated or recombinant polynucleotide that encodes a polypeptide that is a paralog of the isolated polypeptide described above. In one aspect, the invention is an paralog which, when expressed in *Arabidopsis*, modifies a trait of the *Arabidopsis* plant.

In a fourth aspect, the invention comprises an isolated or recombinant polynucleotide that encodes a polypeptide that is an ortholog of the isolated polypeptide described above. In one aspect, the invention is an ortholog which, when expressed in *Arabidopsis*, modifies a trait of the *Arabidopsis* plant.

In a fifth aspect, the invention comprises an isolated polypeptide that is a paralog of the isolated polypeptide described above. In one aspect, the invention is an paralog which, when expressed in *Arabidopsis*, modifies a trait of the *Arabidopsis* plant.

In a sixth aspect, the invention comprises an isolated polypeptide that is an ortholog of the isolated polypeptide described above. In one aspect, the invention is an ortholog which, when expressed in *Arabidopsis*, modifies a trait of the *Arabidopsis* plant.

The present invention also encompasses transcription factor variants. A preferred transcription factor variant is one having at least 40% amino acid sequence identity, a more preferred transcription factor variant is one having at least 50% amino acid sequence identity and a most preferred transcription factor variant is one having at least 65% amino acid sequence identity to the transcription factor amino acid sequence SEQ ID NOs:2 to 2N, where N = 2-561, and which contains at least one functional or structural characteristic of the transcription factor amino acid sequence. Sequences having lesser degrees of identity but comparable biological activity are considered to be equivalents.

In another aspect, the invention is a transgenic plant comprising one or more of the above-described isolated or recombinant polynucleotides. In yet another aspect, the invention is a plant with altered expression levels of a polynucleotide described above or a plant with altered expression or activity levels of an above-described polypeptide. Further, the invention is a plant lacking a nucleotide sequence encoding a polypeptide described above or substantially lacking a polypeptide described above. The plant may be any plant, including, but not limited to, Arabidopsis, mustard, soybean, wheat, corn, potato, cotton, rice, oilseed rape, sunflower, alfalfa, sugarcane, turf, banana, blackberry, blueberry, strawberry,

raspberry, cantaloupe, carrot, cauliflower, coffee, cucumber, eggplant, grapes, honeydew, lettuce, mango, melon, onion, papaya, peas, peppers, pineapple, pumpkin, spinach, squash, sweet corn, tobacco, tomato, watermelon, rosaceous fruits, vegetable brassicas, and mint or other labiates. In yet another aspect, the inventions is an isolated plant material of a plant, including, but not limited to, plant tissue, fruit, seed, plant cell, embryo, protoplast, pollen, and the like. In yet another aspect, the invention is a transgenic plant tissue culture of regenerable cells, including, but not limited to, embryos, meristematic cells, microspores, protoplast, pollen, and the like.

In yet another aspect the invention is a transgenic plant comprising one or more of the above described polynucleotides wherein the encoded polypeptide is expressed and regulates transcription of a gene.

In a further aspect the invention provides a method of using the polynucleotide composition to breed a progeny plant from a transgenic plant including crossing plants, producing seeds from transgenic plants, and methods of breeding using transgenic plants, the method comprising transforming a plant with the polynucleotide composition to create a transgenic plant, crossing the transgenic plant with another plant, selecting seed, and growing the progeny plant from the seed.

In a further aspect, the invention provides a progeny plant derived from a parental plant wherein said progeny plant exhibits at least three fold greater messenger RNA levels than said parental plant, wherein the messenger RNA encodes a DNA-binding protein which is capable of binding to a DNA regulatory sequence and inducing expression of a plant trait gene, wherein the progeny plant is characterized by a change in the plant trait compared to said parental plant. In yet a further aspect, the progeny plant exhibits at least ten fold greater messenger RNA levels compared to said parental plant. In yet a further aspect, the progeny plant exhibits at least fifty fold greater messenger RNA levels compared to said parental plant.

In a further aspect, the invention relates to a cloning or expression vector comprising the isolated or recombinant polynucleotide described above or cells comprising the cloning or expression vector.

In yet a further aspect, the invention relates to a composition produced by incubating a polynucleotide of the invention with a nuclease, a restriction enzyme, a polymerase; a polymerase and a primer; a cloning vector, or with a cell.

Furthermore, the invention relates to a method for producing a plant having a modified trait. The method comprises altering the expression of an isolated or recombinant polynucleotide of the invention or altering the expression or activity of a polypeptide of the invention in a plant to produce a modified plant, and selecting the modified plant for a modified trait. In one aspect, the plant is a monocot plant. In another aspect, the plant is a dicot plant. In another aspect the recombinant polynucleotide is from a dicot plant and the plant is a monocot plant. In yet another aspect the recombinant polynucleotide is from a monocot plant and the plant is a dicot plant. In yet another aspect the recombinant polynucleotide is from a monocot plant and the plant is a monocot plant and the plant is a monocot plant. In yet another aspect the recombinant polynucleotide is from a dicot plant and the plant is a dicot plant.

In another aspect, the invention is a transgenic plant comprising an isolated or recombinant polynucleotide encoding a polypeptide wherein the polypeptide is selected from the group consisting of SEQ ID NOs: 2 - 2N, where N = 2-561. In yet another aspect, the invention is a plant with altered expression levels of a polypeptide described above or a plant with altered expression or activity levels of an abovedescribed polypeptide. Further, the invention is a plant lacking a polynucleotide sequence encoding a polypeptide described above or substantially lacking a polypeptide described above. The plant may be any plant, including, but not limited to, Arabidopsis, mustard, soybean, wheat, corn, potato, cotton, rice, oilseed rape, sunflower, alfalfa, sugarcane, turf, banana, blackberry, blueberry, strawberry, raspberry, cantaloupe, carrot, cauliflower, coffee, cucumber, eggplant, grapes, honeydew, lettuce, mango, melon, onion, papaya, peas, peppers, pineapple, pumpkin, spinach, squash, sweet corn, tobacco, tomato, watermelon, rosaceous fruits, vegetable brassicas, and mint or other labiates. In yet another aspect, the inventions is an isolated plant material of a plant, including, but not limited to, plant tissue, fruit, seed, plant cell, embryo, protoplast, pollen, and the like. In yet another aspect, the

invention is a transgenic plant tissue culture of regenerable cells, including, but not limited to, embryos, meristematic cells, microspores, protoplast, pollen, and the like.

In another aspect, the invention relates to a method of identifying a factor that is modulated by or interacts with a polypeptide encoded by a polynucleotide of the invention. The method comprises expressing a polypeptide encoded by the polynucleotide in a plant; and identifying at least one factor that is modulated by or interacts with the polypeptide. In one embodiment the method for identifying modulating or interacting factors is by detecting binding by the polypeptide to a promoter sequence, or by detecting interactions between an additional protein and the polypeptide in a yeast two hybrid system, or by detecting expression of a factor by hybridization to a microarray, subtractive hybridization, or differential display.

In yet another aspect, the invention is a method of identifying a molecule that modulates activity or expression of a polynucleotide or polypeptide of interest. The method comprises placing the molecule in contact with a plant comprising the polynucleotide or polypeptide encoded by the polynucleotide of the invention and monitoring one or more of the expression level of the polynucleotide in the plant, the expression level of the polypeptide in the plant, and modulation of an activity of the polypeptide in the plant.

In yet another aspect, the invention relates to an integrated system, computer or computer readable medium comprising one or more character strings corresponding to a polynucleotide of the invention, or to a polypeptide encoded by the polynucleotide. The integrated system, computer or computer readable medium may comprise a link between one or more sequence strings to a modified plant trait.

In yet another aspect, the invention is a method for identifying a sequence similar or homologous to one or more polynucleotides of the invention, or one or more polypeptides encoded by the polynucleotides. The method comprises providing a sequence database, and querying the sequence database with one or more target sequences corresponding to the one or more polynucleotides or to the one or more polypeptides to identify one or more sequence members of the database that display sequence similarity or homology to one or more of the one or more target sequences.

The method may further comprise of linking the one or more of the polynucleotides of the invention, or encoded polypeptides, to a modified plant phenotype.

BRIEF DESCRIPTION OF THE SEQUENCE LISTING, TABLES, AND FIGURE

The Sequence Listing provides exemplary polynucleotide and polypeptide sequences of the invention. The traits associated with the use of the sequences are included in the Examples.

Diskette1 is a read-only memory computer-readable diskette and contains a copy of the Sequence Listing in ASCII text format. The Sequence Listing is named "SEQLIST514442002041" and is 929 kilobytes in size. The copy of the Sequence Listing on the diskette is hereby incorporated by reference in its entirety.

Table 4 shows the polynucleotides and polypeptides identified by SEQ ID NO; Mendel Gene ID No.; conserved domain of the polypeptide; and if the polynucleotide was tested in a transgenic assay. The first column shows the polynucleotide SEQ ID NO; the second column shows the Mendel Gene ID No., GID; the third column shows the trait(s) resulting from the knock out or overexpression of the polynucleotide in the transgenic plant; the fourth column shows the category of the trait; the fifth column shows the transcription factor family to which the polynucleotide belongs; the sixth column ("Comment"), includes specific effects and utilities conferred by the polynucleotide of the first column; the seventh column shows the SEQ ID NO of the polypeptide encoded by the polynucleotide; and the eighth column shows the amino acid residue positions of the conserved domain in amino acid (AA) co-ordinates.

Table 5 lists a summary of orthologous and homologous sequences identified using BLAST (tblastx program). The first column shows the polynucleotide sequence identifier (SEQ ID NO), the second column shows the corresponding cDNA identifier (Gene ID), the third column shows the orthologous or homologous polynucleotide GenBank Accession Number (Test Sequence ID), the fourth column shows the

calculated probability value that the sequence identity is due to chance (Smallest Sum Probability), the fifth column shows the plant species from which the test sequence was isolated (Test Sequence Species), and the sixth column shows the orthologous or homologous test sequence GenBank annotation (Test Sequence GenBank Annotation).

Figure 1 shows a phylogenic tree of related plant families adapted from Daly et al. (2001 *Plant Physiology* 127:1328-1333).

Detailed Description of Exemplary Embodiments

In an important aspect, the present invention relates to polynucleotides and polypeptides, e.g. for modifying phenotypes of plants. Throughout this disclosure, various information sources are referred to and/or are specifically incorporated. The information sources include scientific journal articles, patent documents, textbooks, and World Wide Web browser-inactive page addresses, for example. While the reference to these information sources clearly indicates that they can be used by one of skill in the art, applicants specifically incorporate each and every one of the information sources cited herein, in their entirety, whether or not a specific mention of "incorporation by reference" is noted. The contents and teachings of each and every one of the information sources can be relied on and used to make and use embodiments of the invention.

It must be noted that as used herein and in the appended claims, the singular forms "a," "an," and "the" include plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to "a plant" includes a plurality of such plants, and a reference to "a stress" is a reference to one or more stresses and equivalents thereof known to those skilled in the art, and so forth.

The polynucleotide sequences of the invention encode polypeptides that are members of well-known transcription factor families, including plant transcription factor families, as disclosed in Table 4. Generally, the transcription factors encoded by the present sequences are involved in cell differentiation and proliferation and the regulation of growth. Accordingly, one skilled in the art would recognize that by expressing the present sequences in a plant, one may change the expression of

autologous genes or induce the expression of introduced genes. By affecting the expression of similar autologous sequences in a plant that have the biological activity of the present sequences, or by introducing the present sequences into a plant, one may alter a plant's phenotype to one with improved traits. The sequences of the invention may also be used to transform a plant and introduce desirable traits not found in the wild-type cultivar or strain. Plants may then be selected for those that produce the most desirable degree of over- or underexpression of target genes of interest and coincident trait improvement.

The sequences of the present invention may be from any species, particularly plant species, in a naturally occurring form or from any source whether natural, synthetic, semi-synthetic or recombinant. The sequences of the invention may also include fragments of the present amino acid sequences. In this context, a "fragment" refers to a fragment of a polypeptide sequence which is at least 5 to about 15 amino acids in length, most preferably at least 14 amino acids, and which retain some biological activity of a transcription factor. Where "amino acid sequence" is recited to refer to an amino acid sequence of a naturally occurring protein molecule, "amino acid sequence" and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.

As one of ordinary skill in the art recognizes, transcription factors can be identified by the presence of a region or domain of structural similarity or identity to a specific consensus sequence or the presence of a specific consensus DNA-binding site or DNA-binding site motif (see, for example, Riechmann et al., (2000) Science 290: 2105-2110). The plant transcription factors may belong to one of the following transcription factor families: the AP2 (APETALA2) domain transcription factor family (Riechmann and Meyerowitz (1998) Biol. Chem. 379:633-646); the MYB transcription factor family (Martin and Paz-Ares, (1997) Trends Genet. 13:67-73); the MADS domain transcription factor family (Riechmann and Meyerowitz (1997) Biol. Chem. 378:1079-1101); the WRKY protein family (Ishiguro and Nakamura (1994) Mol. Gen. Genet. 244:563-571); the ankyrin-repeat protein family (Zhang et al. (1992) Plant Cell 4:1575-1588); the zinc finger protein (Z) family (Klug and Schwabe (1995) FASEB J. 9: 597-604); the homeobox (HB) protein family (Buerglin in Guidebook to the Homeobox Genes, Duboule (ed.) (1994) Oxford University Press);

the CAAT-element binding proteins (Forsburg and Guarente (1989) Genes Dev. 3:1166-1178); the squamosa promoter binding proteins (SPB) (Klein et al. (1996) Mol. Gen. Genet. 1996 250:7-16); the NAM protein family (Souer et al. (1996) Cell 85:159-170); the IAA/AUX proteins (Rouse et al. (1998) Science 279:1371-1373); the HLH/MYC protein family (Littlewood et al. (1994) Prot. Profile 1:639-709); the DNA-binding protein (DBP) family (Tucker et al. (1994) EMBO J. 13:2994-3002); the bZIP family of transcription factors (Foster et al. (1994) FASEB J. 8:192-200); the Box P-binding protein (the BPF-1) family (da Costa e Silva et al. (1993) Plant J. 4:125-135); the high mobility group (HMG) family (Bustin and Reeves (1996) Prog. Nucl. Acids Res. Mol. Biol. 54:35-100); the scarecrow (SCR) family (Di Laurenzio et al. (1996) Cell 86:423-433); the GF14 family (Wu et al. (1997) Plant Physiol. 114:1421-1431); the polycomb (PCOMB) family (Kennison (1995) Annu. Rev. Genet. 29:289-303); the teosinte branched (TEO) family (Luo et al. (1996) Nature 383:794-799; the ABI3 family (Giraudat et al. (1992) Plant Cell 4:1251-1261); the triple helix (TH) family (Dehesh et al. (1990) Science 250:1397-1399); the EIL family (Chao et al. (1997) Cell 89:1133-44); the AT-HOOK family (Reeves and Nissen (1990) J. Biol. Chem. 265:8573-8582); the S1FA family (Zhou et al. (1995) Nucleic Acids Res. 23:1165-1169); the bZIPT2 family (Lu and Ferl (1995) Plant Physiol. 109:723); the YABBY family (Bowman et al. (1999) Development 126:2387-96); the PAZ family (Bohmert et al. (1998) EMBO J. 17:170-80); a family of miscellaneous (MISC) transcription factors including the DPBF family (Kim et al. (1997) Plant J. 11:1237-1251) and the SPF1 family (Ishiguro and Nakamura (1994) Mol. Gen. Genet. 244:563-571); the golden (GLD) family (Hall et al. (1998) *Plant Cell* 10:925-936), the TUBBY family (Boggin et al., (1999) Science 286:2119-2125), the heat shock family (Wu C (1995) Annu Rev Cell Dev Biol 11:441-469), the ENBP family (Christiansen et al (1996) Plant Mol Biol 32:809-821), the RING-zinc family (Jensen et al. (1998) FEBS letters 436:283-287), the PDBP family (Janik et al Virology. (1989) 168:320-329), the PCF family (Cubas P, et al. Plant J. (1999) 18:215-22), the SRS (SHI-related) family (Fridborg et al Plant Cell (1999) 11:1019-1032), the CPP (cysteine-rich polycomb-like) family (Cvitanich et al Proc. Natl. Acad. Sci. U S A. (2000) 97:8163-8168), the ARF (auxin response factor) family (Ulmasov, et al. (1999) Proc. Natl. Acad. Sci. USA 96: 5844-5849), the SWI/SNF family (Collingwood et al J. Mol. End. 23:255-275), the ACBF family (Seguin et al (1997) Plant Mol Biol. 35:281-291), PCGL (CG-1 like) family (da Costa e Silva et al.

(1994) Plant Mol Biol. 25:921-924) the ARID family (Vazquez et al. (1999) Development. 126: 733-42), the Jumonji family, Balciunas et al (2000, Trends Biochem Sci. 25: 274-276), the bZIP-NIN family (Schauser et al (1999) Nature 402: 191-195), the E2F family Kaelin et al (1992) Cell 70: 351-364) and the GRF-like family (Knaap et al (2000) Plant Physiol. 122: 695-704). As indicated by any part of the list above and as known in the art, transcription factors have been sometimes categorized by class, family, and sub-family according to their structural content and consensus DNA-binding site motif, for example. Many of the classes and many of the families and sub-families are listed here. However, the inclusion of one sub-family and not another, or the inclusion of one family and not another, does not mean that the invention does not encompass polynucleotides or polypeptides of a certain family or sub-family. The list provided here is merely an example of the types of transcription factors and the knowledge available concerning the consensus sequences and consensus DNA-binding site motifs that help define them as known to those of skill in the art (each of the references noted above are specifically incorporated herein by reference). A transcription factor may include, but is not limited to, any polypeptide that can activate or repress transcription of a single gene or a number of genes. This polypeptide group includes, but is not limited to, DNA-binding proteins, DNAbinding protein binding proteins, protein kinases, protein phosphatases, GTP-binding proteins, and receptors, and the like.

In addition to methods for modifying a plant phenotype by employing one or more polynucleotides and polypeptides of the invention described herein, the polynucleotides and polypeptides of the invention have a variety of additional uses. These uses include their use in the recombinant production (i.e., expression) of proteins; as regulators of plant gene expression, as diagnostic probes for the presence of complementary or partially complementary nucleic acids (including for detection of natural coding nucleic acids); as substrates for further reactions, e.g., mutation reactions, PCR reactions, or the like; as substrates for cloning e.g., including digestion or ligation reactions; and for identifying exogenous or endogenous modulators of the transcription factors. A "polynucleotide" is a nucleic acid sequence comprising a plurality of polymerized nucleotides, e.g., at least about 15 consecutive polymerized nucleotides, optionally at least about 30 consecutive nucleotide comprises a nucleotide

sequence encoding a polypeptide (or protein) or a domain or fragment thereof. Additionally, the polynucleotide may comprise a promoter, an intron, an enhancer region, a polyadenylation site, a translation initiation site, 5' or 3' untranslated regions, a reporter gene, a selectable marker, or the like. The polynucleotide can be single stranded or double stranded DNA or RNA. The polynucleotide optionally comprises modified bases or a modified backbone. The polynucleotide can be, e.g., genomic DNA or RNA, a transcript (such as an mRNA), a cDNA, a PCR product, a cloned DNA, a synthetic DNA or RNA, or the like. The polynucleotide can comprise a sequence in either sense or antisense orientations.

A "recombinant polynucleotide" is a polynucleotide that is not in its native state, e.g., the polynucleotide comprises a nucleotide sequence not found in nature, or the polynucleotide is in a context other than that in which it is naturally found, e.g., separated from nucleotide sequences with which it typically is in proximity in nature, or adjacent (or contiguous with) nucleotide sequences with which it typically is not in proximity. For example, the sequence at issue can be cloned into a vector, or otherwise recombined with one or more additional nucleic acid.

An "isolated polynucleotide" is a polynucleotide whether naturally occurring or recombinant, that is present outside the cell in which it is typically found in nature, whether purified or not. Optionally, an isolated polynucleotide is subject to one or more enrichment or purification procedures, e.g., cell lysis, extraction, centrifugation, precipitation, or the like.

A "polypeptide" is an amino acid sequence comprising a plurality of consecutive polymerized amino acid residues e.g., at least about 15 consecutive polymerized amino acid residues, optionally at least about 30 consecutive polymerized amino acid residues, at least about 50 consecutive polymerized amino acid residues. In many instances, a polypeptide comprises a polymerized amino acid residue sequence that is a transcription factor or a domain or portion or fragment thereof. Additionally, the polypeptide may comprise a localization domain, 2) an activation domain, 3) a repression domain, 4) an oligomerization domain or 5) a DNA-binding domain, or the like. The polypeptide optionally comprises modified

amino acid residues, naturally occurring amino acid residues not encoded by a codon, non-naturally occurring amino acid residues.

A "recombinant polypeptide" is a polypeptide produced by translation of a recombinant polynucleotide. A "synthetic polypeptide" is a polypeptide created by consecutive polymerization of isolated amino acid residues using methods well known in the art. An "isolated polypeptide," whether a naturally occurring or a recombinant polypeptide, is more enriched in (or out of) a cell than the polypeptide in its natural state in a wild type cell, e.g., more than about 5% enriched, more than about 10% enriched, or more than about 20%, or more than about 50%, or more, enriched, i.e., alternatively denoted: 105%, 110%, 120%, 150% or more, enriched relative to wild type standardized at 100%. Such an enrichment is not the result of a natural response of a wild type plant. Alternatively, or additionally, the isolated polypeptide is separated from other cellular components with which it is typically associated, e.g., by any of the various protein purification methods herein.

"Identity" or "similarity" refers to sequence similarity between two polynucleotide sequences or between two polypeptide sequences, with identity being a more strict comparison. The phrases "percent identity" and "% identity" refer to the percentage of sequence similarity found in a comparison of two or more polynucleotide sequences or two or more polypeptide sequences. Identity or similarity can be determined by comparing a position in each sequence that may be aligned for purposes of comparison. When a position in the compared sequence is occupied by the same nucleotide base or amino acid, then the molecules are identical at that position. A degree of similarity or identity between polynucleotide sequences is a function of the number of identical or matching nucleotides at positions shared by the polynucleotide sequences. A degree of identity of polypeptide sequences is a function of the number of identical amino acids at positions shared by the polypeptide sequences. A degree of homology or similarity of polypeptide sequences is a function of the number of amino acids, i.e., structurally related, at positions shared by the polypeptide sequences.

"Altered" nucleic acid sequences encoding polypeptide include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting

in a polynucleotide encoding a polypeptide with at least one functional characteristic of the polypeptide. Included within this definition are polymorphisms that may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding polypeptide, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding polypeptide. The encoded polypeptide protein may also be "altered", and may contain deletions, insertions, or substitutions of amino acid residues that produce a silent change and result in a functionally equivalent polypeptide. Deliberate amino acid substitutions may be made on the basis of similarity in residue side chain chemistry, including, but not limited to, polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological activity of polypeptide is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid, positively charged amino acids may include lysine and arginine, and amino acids with uncharged polar head groups having similar hydrophilicity values may include leucine, isoleucine, and valine; glycine and alanine; asparagine and glutamine; serine and threonine; and phenylalanine and tyrosine. Alignments between different polypeptide sequences may be used to calculate "percentage sequence similarity".

The term "plant" includes whole plants, shoot vegetative organs/structures (e.g., leaves, stems and tubers), roots, flowers and floral organs/structures (e.g., bracts, sepals, petals, stamens, carpels, anthers and ovules), seed (including embryo, endosperm, and seed coat) and fruit (the mature ovary), plant tissue (e.g., vascular tissue, ground tissue, and the like) and cells (e.g., guard cells, egg cells, and the like), and progeny of same. The class of plants that can be used in the method of the invention is generally as broad as the class of higher and lower plants amenable to transformation techniques, including angiosperms (monocotyledonous and dicotyledonous plants), gymnosperms, ferns, horsetails, psilophytes, lycophytes, bryophytes, and multicellular algae. (See for example, Figure 1, adapted from Daly et al. 2001 Plant Physiology 127:1328-1333; and see also Tudge, C., The Variety of Life, Oxford University Press, New York, 2000, pp. 547-606.)

A "transgenic plant" refers to a plant that contains genetic material not found in a wild type plant of the same species, variety or cultivar. The genetic material may

include a transgene, an insertional mutagenesis event (such as by transposon or T-DNA insertional mutagenesis), an activation tagging sequence, a mutated sequence, a homologous recombination event or a sequence modified by chimeraplasty.

Typically, the foreign genetic material has been introduced into the plant by human manipulation, but any method can be used as one of skill in the art recognizes.

A transgenic plant may contain an expression vector or cassette. The expression cassette typically comprises a polypeptide-encoding sequence operably linked (i.e., under regulatory control of) to appropriate inducible or constitutive regulatory sequences that allow for the expression of polypeptide. The expression cassette can be introduced into a plant by transformation or by breeding after transformation of a parent plant. A plant refers to a whole plant as well as to a plant part, such as seed, fruit, leaf, or root, plant tissue, plant cells or any other plant material, e.g., a plant explant, as well as to progeny thereof, and to *in vitro* systems that mimic biochemical or cellular components or processes in a cell.

"Ectopic expression or altered expression" in reference to a polynucleotide indicates that the pattern of expression in, e.g., a transgenic plant or plant tissue, is different from the expression pattern in a wild type plant or a reference plant of the same species. The pattern of expression may also be compared with a reference expression pattern in a wild type plant of the same species. For example, the polynucleotide or polypeptide is expressed in a cell or tissue type other than a cell or tissue type in which the sequence is expressed in the wild type plant, or by expression at a time other than at the time the sequence is expressed in the wild type plant, or by a response to different inducible agents, such as hormones or environmental signals, or at different expression levels (either higher or lower) compared with those found in a wild type plant. The term also refers to altered expression patterns that are produced by lowering the levels of expression to below the detection level or completely abolishing expression. The resulting expression pattern can be transient or stable, constitutive or inducible. In reference to a polypeptide, the term "ectopic expression or altered expression" further may relate to altered activity levels resulting from the interactions of the polypeptides with exogenous or endogenous modulators or from interactions with factors or as a result of the chemical modification of the polypeptides.

A "fragment" or "domain," with respect to a polypeptide, refers to a subsequence of the polypeptide. In some cases, the fragment or domain, is a subsequence of the polypeptide which performs at least one biological function of the intact polypeptide in substantially the same manner, or to a similar extent, as does the intact polypeptide. For example, a polypeptide fragment can comprise a recognizable structural motif or functional domain such as a DNA-binding site or domain that binds to a DNA promoter region, an activation domain, or a domain for protein-protein interactions. Fragments can vary in size from as few as 6 amino acids to the full length of the intact polypeptide, but are preferably at least about 30 amino acids in length and more preferably at least about 60 amino acids in length. In reference to a polynucleotide sequence, "a fragment" refers to any subsequence of a polynucleotide, typically, of at least about 15 consecutive nucleotides, preferably at least about 30 nucleotides, more preferably at least about 50 nucleotides, of any of the sequences provided herein.

The invention also encompasses production of DNA sequences that encode transcription factors and transcription factor derivatives, or fragments thereof, entirely by synthetic chemistry. After production, the synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents well known in the art. Moreover, synthetic chemistry may be used to introduce mutations into a sequence encoding transcription factors or any fragment thereof.

A "conserved domain", with respect to a polypeptide, refers to a domain within a transcription factor family which exhibits a higher degree of sequence homology, such as at least 65% sequence identity including conservative substitutions, and preferably at least 80% sequence identity, and more preferably at least 85%, or at least about 86%, or at least about 87%, or at least about 88%, or at least about 90%, or at least about 95%, or at least about 98% amino acid residue sequence identity of a polypeptide of consecutive amino acid residues. A fragment or domain can be referred to as outside a consensus sequence or outside a consensus DNA-binding site that is known to exist or that exists for a particular transcription factor class, family, or sub-family. In this case, the fragment or domain will not include the exact amino acids of a consensus sequence or consensus DNA-binding

site of a transcription factor class, family or sub-family, or the exact amino acids of a particular transcription factor consensus sequence or consensus DNA-binding site. Furthermore, a particular fragment, region, or domain of a polypeptide, or a polynucleotide encoding a polypeptide, can be "outside a conserved domain" if all the amino acids of the fragment, region, or domain fall outside of a defined conserved domain(s) for a polypeptide or protein. The conserved domains for each of polypeptides of SEQ ID NOs:2 - 2N, where N = 2-561, are listed in Table 4 as described in Example VII. Also, many of the polypeptides of Table 4 have conserved domains specifically indicated by start and stop sites. A comparison of the regions of the polypeptides in SEQ ID NOs:2 - 2N, where N = 2-561, or of those in Table 4, allows one of skill in the art to identify conserved domain(s) for any of the polypeptides listed or referred to in this disclosure, including those in Table 4.

A "trait" refers to a physiological, morphological, biochemical, or physical characteristic of a plant or particular plant material or cell. In some instances, this characteristic is visible to the human eye, such as seed or plant size, or can be measured by biochemical techniques, such as detecting the protein, starch, or oil content of seed or leaves, or by observation of a metabolic or physiological process, e.g. by measuring uptake of carbon dioxide, or by the observation of the expression level of a gene or genes, e.g., by employing Northern analysis, RT-PCR, microarray gene expression assays, or reporter gene expression systems, or by agricultural observations such as stress tolerance, yield, or pathogen tolerance. Any technique can be used to measure the amount of, comparative level of, or difference in any selected chemical compound or macromolecule in the transgenic plants, however.

"Trait modification" refers to a detectable difference in a characteristic in a plant ectopically expressing a polynucleotide or polypeptide of the present invention relative to a plant not doing so, such as a wild type plant. In some cases, the trait modification can be evaluated quantitatively. For example, the trait modification can entail at least about a 2% increase or decrease in an observed trait (difference), at least a 5% difference, at least about a 10% difference, at least about a 20% difference, at least about a 30%, at least about a 50%, at least about a 70%, or at least about a 100%, or an even greater difference compared with a wild type plant. It is known that there can be a natural variation in the modified trait. Therefore, the trait modification

observed entails a change of the normal distribution of the trait in the plants compared with the distribution observed in wild type plant.

I. Traits Which May Be Modified

Trait modifications of particular interest include those to seed (such as embryo or endosperm), fruit, root, flower, leaf, stem, shoot, seedling or the like, including: enhanced tolerance to environmental conditions including freezing, chilling, heat, drought, water saturation, radiation and ozone; improved tolerance to microbial, fungal or viral diseases; improved tolerance to pest infestations, including nematodes, mollicutes, parasitic higher plants or the like; decreased herbicide sensitivity; improved tolerance of heavy metals or enhanced ability to take up heavy metals; improved growth under poor photoconditions (e.g., low light and/or short day length), or changes in expression levels of genes of interest. Other phenotype that can be modified relate to the production of plant metabolites, such as variations in the production of taxol, tocopherol, tocotrienol, sterols, phytosterols, vitamins, wax monomers, anti-oxidants, amino acids, lignins, cellulose, tannins, prenyllipids (such as chlorophylls and carotenoids), glucosinolates, and terpenoids, enhanced or compositionally altered protein or oil production (especially in seeds), or modified sugar (insoluble or soluble) and/or starch composition. Physical plant characteristics that can be modified include cell development (such as the number of trichomes), fruit and seed size and number, yields of plant parts such as stems, leaves, inflorescences, and roots, the stability of the seeds during storage, characteristics of the seed pod (e.g., susceptibility to shattering), root hair length and quantity, internode distances, or the quality of seed coat. Plant growth characteristics that can be modified include growth rate, germination rate of seeds, vigor of plants and seedlings, leaf and flower senescence, male sterility, apomixis, flowering time, flower abscission, rate of nitrogen uptake, osmotic sensitivity to soluble sugar concentrations, biomass or transpiration characteristics, as well as plant architecture characteristics such as apical dominance, branching patterns, number of organs, organ identity, organ shape or size.

II. Transcription Factors Modify Expression Of Endogenous Genes

Expression of genes which encode transcription factors that modify expression of endogenous genes, polynucleotides, and proteins are well known in the art. In addition, transgenic plants comprising isolated polynucleotides encoding transcription

factors may also modify expression of endogenous genes, polynucleotides, and proteins. Examples include Peng et al. (1997, Genes and Development 11:3194-3205) and Peng et al. (1999, Nature, 400:256-261). In addition, many others have demonstrated that an *Arabidopsis* transcription factor expressed in an exogenous plant species elicits the same or very similar phenotypic response. See, for example, Fu et al. (2001, Plant Cell 13:1791-1802); Nandi et al. (2000, Curr. Biol. 10:215-218); Coupland (1995, Nature 377:482-483); and Weigel and Nilsson (1995, Nature 377:482-500).

In another example, Mandel et al. (1992, Cell 71-133-143) and Suzuki et al. (2001, Plant J. 28:409-418) teach that a transcription factor expressed in another plant species elicits the same or very similar phenotypic response of the endogenous sequence, as often predicted in earlier studies of *Arabidopsis* transcription factors in *Arabidopsis* (see Mandel et al., 1992, *supra*; Suzuki et al., 2001, *supra*).

Other examples include Müller et al. (2001, Plant J. 28:169-179); Kim et al. (2001, Plant J. 25:247-259); Kyozuka and Shimamoto (2002, Plant Cell Physiol. 43:130-135); Boss and Thomas (2002, Nature, 416:847-850); He et al. (2000, Transgenic Res., 9:223-227); and Robson et al. (2001, Plant J. 28:619-631).

In yet another example, Gilmour et al. (1998, Plant J. 16:433-442) teach an Arabidopsis AP2 transcription factor, CBF1, which, when overexpressed in transgenic plants, increases plant freezing tolerance. Jaglo et al (2001, Plant Physiol. 127:910-917) further identified sequences in Brassica napus which encode CBF-like genes and that transcripts for these genes accumulated rapidly in response to low temperature. Transcripts encoding CBF-like proteins were also found to accumulate rapidly in response to low temperature in wheat, as well as in tomato. An alignment of the CBF proteins from Arabidopsis, B. napus, wheat, rye, and tomato revealed the presence of conserved amino acid sequences, PKK/RPAGRxKFxETRHP and DSAWR, that bracket the AP2/EREBP DNA binding domains of the proteins and distinguish them from other members of the AP2/EREBP protein family. (See Jaglo et al., supra.)

III. Polypeptides and Polynucleotides of the Invention

The present invention provides, among other things, transcription factors (TFs), and transcription factor homologue polypeptides, and isolated or recombinant polynucleotides encoding the polypeptides, or novel variant polypeptides or polynucleotides encoding novel variants of transcription factors derived from the specific sequences provided here. These polypeptides and polynucleotides may be employed to modify a plant's characteristic.

Exemplary polynucleotides encoding the polypeptides of the invention were identified in the *Arabidopsis thaliana* GenBank database using publicly available sequence analysis programs and parameters. Sequences initially identified were then further characterized to identify sequences comprising specified sequence strings corresponding to sequence motifs present in families of known transcription factors. In addition, further exemplary polynucleotides encoding the polypeptides of the invention were identified in the plant GenBank database using publicly available sequence analysis programs and parameters. Sequences initially identified were then further characterized to identify sequences comprising specified sequence strings corresponding to sequence motifs present in families of known transcription factors. Polynucleotide sequences meeting such criteria were confirmed as transcription factors.

Additional polynucleotides of the invention were identified by screening Arabidopsis thaliana and/or other plant cDNA libraries with probes corresponding to known transcription factors under low stringency hybridization conditions. Additional sequences, including full length coding sequences were subsequently recovered by the rapid amplification of cDNA ends (RACE) procedure, using a commercially available kit according to the manufacturer's instructions. Where necessary, multiple rounds of RACE are performed to isolate 5' and 3' ends. The full length cDNA was then recovered by a routine end-to-end polymerase chain reaction (PCR) using primers specific to the isolated 5' and 3' ends. Exemplary sequences are provided in the Sequence Listing.

The polynucleotides of the invention can be or were ectopically expressed in overexpressor or knockout plants and the changes in the characteristic(s) or trait(s) of

the plants observed. Therefore, the polynucleotides and polypeptides can be employed to improve the characteristics of plants.

The polynucleotides of the invention can be or were ectopically expressed in overexpressor plant cells and the changes in the expression levels of a number of genes, polynucleotides, and/or proteins of the plant cells observed. Therefore, the polynucleotides and polypeptides can be employed to change expression levels of a genes, polynucleotides, and/or proteins of plants.

IV. Producing Polypeptides

The polynucleotides of the invention include sequences that encode transcription factors and transcription factor homologue polypeptides and sequences complementary thereto, as well as unique fragments of coding sequence, or sequence complementary thereto. Such polynucleotides can be, e.g., DNA or RNA, e.g., mRNA, cRNA, synthetic RNA, genomic DNA, cDNA synthetic DNA, oligonucleotides, etc. The polynucleotides are either double-stranded or single-stranded, and include either, or both sense (i.e., coding) sequences and antisense (i.e., non-coding, complementary) sequences. The polynucleotides include the coding sequence of a transcription factor, or transcription factor homologue polypeptide, in isolation, in combination with additional coding sequences (e.g., a purification tag, a localization signal, as a fusion-protein, as a pre-protein, or the like), in combination with non-coding sequences (e.g., introns or inteins, regulatory elements such as promoters, enhancers, terminators, and the like), and/or in a vector or host environment in which the polynucleotide encoding a transcription factor or transcription factor homologue polypeptide is an endogenous or exogenous gene.

A variety of methods exist for producing the polynucleotides of the invention. Procedures for identifying and isolating DNA clones are well known to those of skill in the art, and are described in, e.g., Berger and Kimmel, <u>Guide to Molecular Cloning Techniques</u>, <u>Methods in Enzymology</u> volume 152 Academic Press, Inc., San Diego, CA ("Berger"); Sambrook et al., <u>Molecular Cloning - A Laboratory Manual</u> (2nd Ed.), Vol. 1-3, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1989 ("Sambrook") and <u>Current Protocols in Molecular Biology</u>, F. M. Ausubel et al., eds.,

Current Protocols, a joint venture between Greene Publishing Associates, Inc. and John Wiley & Sons, Inc., (supplemented through 2000) ("Ausubel").

Alternatively, polynucleotides of the invention, can be produced by a variety of in vitro amplification methods adapted to the present invention by appropriate selection of specific or degenerate primers. Examples of protocols sufficient to direct persons of skill through in vitro amplification methods, including the polymerase chain reaction (PCR) the ligase chain reaction (LCR), Qbeta-replicase amplification and other RNA polymerase mediated techniques (e.g., NASBA), e.g., for the production of the homologous nucleic acids of the invention are found in Berger (supra), Sambrook (supra), and Ausubel (supra), as well as Mullis et al., (1987) PCR Protocols A Guide to Methods and Applications (Innis et al. eds) Academic Press Inc. San Diego, CA (1990) (Innis). Improved methods for cloning in vitro amplified nucleic acids are described in Wallace et al., U.S. Pat. No. 5,426,039. Improved methods for amplifying large nucleic acids by PCR are summarized in Cheng et al. (1994) Nature 369: 684-685 and the references cited therein, in which PCR amplicons of up to 40kb are generated. One of skill will appreciate that essentially any RNA can be converted into a double stranded DNA suitable for restriction digestion, PCR expansion and sequencing using reverse transcriptase and a polymerase. See, e.g., Ausubel, Sambrook and Berger, all supra.

Alternatively, polynucleotides and oligonucleotides of the invention can be assembled from fragments produced by solid-phase synthesis methods. Typically, fragments of up to approximately 100 bases are individually synthesized and then enzymatically or chemically ligated to produce a desired sequence, e.g., a polynucleotide encoding all or part of a transcription factor. For example, chemical synthesis using the phosphoramidite method is described, e.g., by Beaucage et al. (1981) Tetrahedron Letters 22:1859-1869; and Matthes et al. (1984) EMBO J. 3:801-805. According to such methods, oligonucleotides are synthesized, purified, annealed to their complementary strand, ligated and then optionally cloned into suitable vectors. And if so desired, the polynucleotides and polypeptides of the invention can be custom ordered from any of a number of commercial suppliers.

V. Homologous Sequences

Sequences homologous, i.e., that share significant sequence identity or similarity, to those provided in the Sequence Listing, derived from Arabidopsis thaliana or from other plants of choice are also an aspect of the invention. Homologous sequences can be derived from any plant including monocots and dicots and in particular agriculturally important plant species, including but not limited to, crops such as soybean, wheat, corn, potato, cotton, rice, rape, oilseed rape (including canola), sunflower, alfalfa, sugarcane and turf; or fruits and vegetables, such as banana, blackberry, blueberry, strawberry, and raspberry, cantaloupe, carrot, cauliflower, coffee, cucumber, eggplant, grapes, honeydew, lettuce, mango, melon, onion, papaya, peas, peppers, pineapple, pumpkin, spinach, squash, sweet corn, tobacco, tomato, watermelon, rosaceous fruits (such as apple, peach, pear, cherry and plum) and vegetable brassicas (such as broccoli, cabbage, cauliflower, Brussels sprouts, and kohlrabi). Other crops, fruits and vegetables whose phenotype can be changed include barley, rye, millet, sorghum, currant, avocado, citrus fruits such as oranges, lemons, grapefruit and tangerines, artichoke, cherries, nuts such as the walnut and peanut, endive, leek, roots, such as arrowroot, beet, cassava, turnip, radish, yam, and sweet potato, and beans. The homologous sequences may also be derived from woody species, such pine, poplar and eucalyptus, or mint or other labiates.

Orthologs And Paralogs

Several different methods are known by those of skill in the art for identifying and defining these functionally homologous sequences. Three general methods for defining paralogs and orthologs are described; a paralog or ortholog or homolog may be identified by one or more of the methods described below.

Orthologs and paralogs are evolutionarily related genes that have similar sequence and similar functions. Orthologs are structurally related genes in different species that are derived from a speciation event. Paralogs are structurally related genes within a single species that are derived by a duplication event.

Within a single plant species, gene duplication may cause two copies of a particular gene, giving rise to two or more genes with similar sequence and similar function known as paralogs. A paralog is therefore a similar gene with a similar function within the same species. Paralogs typically cluster together or in the same

clade (a group of similar genes) when a gene family phylogeny is analyzed using programs such as CLUSTAL (Thompson et al. (1994) Nucleic Acids Res. 22:4673-4680; Higgins et al. (1996) Methods Enzymol. 266 383-402). Groups of similar genes can also be identified with pair-wise BLAST analysis (Feng and Doolittle (1987) J. Mol. Evol. 25:351-360). For example, a clade of very similar MADS domain transcription factors from Arabidopsis all share a common function in flowering time (Ratcliffe et al. (2001) Plant Physiol. 126:122-132), and a group of very similar AP2 domain transcription factors from Arabidopsis are involved in tolerance of plants to freezing (Gilmour et al. (1998) Plant J. 16:433-442). Analysis of groups of similar genes with similar function that fall within one clade can yield sub-sequences that are particular to the clade. These sub-sequences, known as consensus sequences, can not only be used to define the sequences within each clade, but define the functions of these genes; genes within a clade may contain paralogous or orthologous sequences that share the same function. (See also, for example, Mount, D.W. (2001) Bioinformatics: Sequence and Genome Analysis Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York page 543.)

Speciation, the production of new species from a parental species, can also give rise to two or more genes with similar sequence and similar function. These genes, termed orthologs, often have an identical function within their host plants and are often interchangeable between species without losing function. Because plants have common ancestors, many genes in any plant species will have a corresponding orthologous gene in another plant species. Once a phylogenic tree for a gene family of one species has been constructed using a program such as CLUSTAL (Thompson et al. (1994) Nucleic Acids Res. 22:4673-4680; Higgins et al. (1996) Methods Enzymol. 266:383-402), potential orthologous sequences can placed into the phylogenetic tree and its relationship to genes from the species of interest can be determined. Once the ortholog pair has been identified, the function of the test ortholog can be determined by determining the function of the reference ortholog.

Transcription factors that are homologous to the listed sequences will typically share at least about 30% amino acid sequence identity, or at least about 30% amino acid sequence identity outside of a known consensus sequence or consensus DNA-binding site. More closely related transcription factors can share at least about 50%,

about 60%, about 65%, about 70%, about 75% or about 80% or about 90% or about 95% or about 98% or more sequence identity with the listed sequences, or with the listed sequences but excluding or outside a known consensus sequence or consensus DNA-binding site, or with the listed sequences excluding one or all conserved domain. Factors that are most closely related to the listed sequences share, e.g., at least about 85%, about 90% or about 95% or more % sequence identity to the listed sequences, or to the listed sequences but excluding or outside a known consensus sequence or consensus DNA-binding site or outside one or all conserved domain. At the nucleotide level, the sequences will typically share at least about 40% nucleotide sequence identity, preferably at least about 50%, about 60%, about 70% or about 80% sequence identity, and more preferably about 85%, about 90%, about 95% or about 97% or more sequence identity to one or more of the listed sequences, or to a listed sequence but excluding or outside a known consensus sequence or consensus DNAbinding site, or outside one or all conserved domain. The degeneracy of the genetic code enables major variations in the nucleotide sequence of a polynucleotide while maintaining the amino acid sequence of the encoded protein. Conserved domains within a transcription factor family may exhibit a higher degree of sequence homology, such as at least 65% sequence identity including conservative substitutions, and preferably at least 80% sequence identity, and more preferably at least 85%, or at least about 86%, or at least about 87%, or at least about 88%, or at least about 90%, or at least about 95%, or at least about 98% sequence identity. Transcription factors that are homologous to the listed sequences should share at least 30%, or at least about 60%, or at least about 75%, or at least about 80%, or at least about 90%, or at least about 95% amino acid sequence identity over the entire length of the polypeptide or the homolog. In addition, transcription factors that are homologous to the listed sequences should share at least 30%, or at least about 60%, or at least about 75%, or at least about 80%, or at least about 90%, or at least about 95% amino acid sequence similarity over the entire length of the polypeptide or the homolog.

Percent identity can be determined electronically, e.g., by using the MEGALIGN program (DNASTAR, Inc. Madison, Wis.). The MEGALIGN program can create alignments between two or more sequences according to different methods, e.g., the clustal method. (See, e.g., Higgins, D. G. and P. M. Sharp (1988) Gene

73:237-244.) The clustal algorithm groups sequences into clusters by examining the distances between all pairs. The clusters are aligned pairwise and then in groups. Other alignment algorithms or programs may be used, including FASTA, BLAST, or ENTREZ, FASTA and BLAST. These are available as a part of the GCG sequence analysis package (University of Wisconsin, Madison, Wis.), and can be used with or without default settings. ENTREZ is available through the National Center for Biotechnology Information. In one embodiment, the percent identity of two sequences can be determined by the GCG program with a gap weight of 1, e.g., each amino acid gap is weighted as if it were a single amino acid or nucleotide mismatch between the two sequences (see USPN 6,262,333).

Other techniques for alignment are described in Methods in Enzymology, vol. 266: Computer Methods for Macromolecular Sequence Analysis (1996), ed. Doolittle, Academic Press, Inc., San Diego, Calif., USA. Preferably, an alignment program that permits gaps in the sequence is utilized to align the sequences. The Smith-Waterman is one type of algorithm that permits gaps in sequence alignments. See Methods Mol. Biol. 70: 173-187 (1997). Also, the GAP program using the Needleman and Wunsch alignment method can be utilized to align sequences. An alternative search strategy uses MPSRCH software, which runs on a MASPAR computer. MPSRCH uses a Smith-Waterman algorithm to score sequences on a massively parallel computer. This approach improves ability to pick up distantly related matches, and is especially tolerant of small gaps and nucleotide sequence errors. Nucleic acid-encoded amino acid sequences can be used to search both protein and DNA databases.

The percentage similarity between two polypeptide sequences, e.g., sequence A and sequence B, is calculated by dividing the length of sequence A, minus the number of gap residues in sequence B, into the sum of the residue matches between sequence A and sequence B, times one hundred. Gaps of low or of no similarity between the two amino acid sequences are not included in determining percentage similarity. Percent identity between polynucleotide sequences can also be counted or calculated by other methods known in the art, e.g., the Jotun Hein method. (See, e.g., Hein, J. (1990) Methods Enzymol. 183:626-645.) Identity between sequences can also be determined by other methods

known in the art, e.g., by varying hybridization conditions (see US Patent Application No. 20010010913).

Thus, the invention provides methods for identifying a sequence similar or paralogous or orthologous or homologous to one or more polynucleotides as noted herein, or one or more target polypeptides encoded by the polynucleotides, or otherwise noted herein and may include linking or associating a given plant phenotype or gene function with a sequence. In the methods, a sequence database is provided (locally or across an inter or intra net) and a query is made against the sequence database using the relevant sequences herein and associated plant phenotypes or gene functions.

In addition, one or more polynucleotide sequences or one or more polypeptides encoded by the polynucleotide sequences may be used to search against a BLOCKS (Bairoch et al. (1997) Nucleic Acids Res. 25:217-221), PFAM, and other databases which contain previously identified and annotated motifs, sequences and gene functions. Methods that search for primary sequence patterns with secondary structure gap penalties (Smith et al. (1992) Protein Engineering 5:35-51) as well as algorithms such as Basic Local Alignment Search Tool (BLAST; Altschul, S. F. (1993) J. Mol. Evol. 36:290-300; Altschul et al. (1990) supra), BLOCKS (Henikoff, S. and Henikoff, G. J. (1991) Nucleic Acids Research 19:6565-6572), Hidden Markov Models (HMM; Eddy, S. R. (1996) Cur. Opin. Str. Biol. 6:361-365; Sonnhammer et al. (1997) Proteins 28:405-420), and the like, can be used to manipulate and analyze polynucleotide and polypeptide sequences encoded by polynucleotides. These databases, algorithms and other methods are well known in the art and are described in Ausubel et al. (1997; Short Protocols in Molecular Biology, John Wiley & Sons, New York N.Y., unit 7.7) and in Meyers, R. A. (1995; Molecular Biology and Biotechnology, Wiley VCH, New York N.Y., p 856-853).

Furthermore, methods using manual alignment of sequences similar or homologous to one or more polynucleotide sequences or one or more polypeptides encoded by the polynucleotide sequences may be used to identify regions of similarity and conserved domains. Such manual methods are well-known of those of skill in the art and can include, for example, comparisons of tertiary structure between a

polypeptide sequence encoded by a polynucleotide which comprises a known function with a polypeptide sequence encoded by a polynucleotide sequence which has a function not yet determined. Such examples of tertiary structure may comprise predicted alpha helices, beta-sheets, amphipathic helices, leucine zipper motifs, zinc finger motifs, proline-rich regions, cysteine repeat motifs, and the like.

VI. Identifying Polynucleotides or Nucleic Acids by Hybridization

Polynucleotides homologous to the sequences illustrated in the Sequence Listing and tables can be identified, e.g., by hybridization to each other under stringent or under highly stringent conditions. Single stranded polynucleotides hybridize when they associate based on a variety of well characterized physicalchemical forces, such as hydrogen bonding, solvent exclusion, base stacking and the like. The stringency of a hybridization reflects the degree of sequence identity of the nucleic acids involved, such that the higher the stringency, the more similar are the two polynucleotide strands. Stringency is influenced by a variety of factors, including temperature, salt concentration and composition, organic and non-organic additives, solvents, etc. present in both the hybridization and wash solutions and incubations (and number thereof), as described in more detail in the references cited above. Encompassed by the invention are polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ ID NOs: 860; 802; 240; 274; 558; 24; 1120; 44; 460; 286; 120; 130; 134; 698; 832; 580; 612; 48, and fragments thereof under various conditions of stringency. (See, e.g., Wahl, G. M. and S. L. Berger (1987) Methods Enzymol. 152:399-407; Kimmel, A. R. (1987) Methods Enzymol. 152:507-511.) Estimates of homology are provided by either DNA-DNA or DNA-RNA hybridization under conditions of stringency as is well understood by those skilled in the art (Hames and Higgins, Eds. (1985) Nucleic Acid Hybridisation, IRL Press, Oxford, U.K.). Stringency conditions can be adjusted to screen for moderately similar fragments, such as homologous sequences from distantly related organisms, to highly similar fragments, such as genes that duplicate functional enzymes from closely related organisms. Post-hybridization washes determine stringency conditions.

In addition to the nucleotide sequences listed in Tables 4 and 5, full length cDNA, orthologs, paralogs and homologs of the present nucleotide sequences may be

identified and isolated using well known methods. The cDNA libraries orthologs, paralogs and homologs of the present nucleotide sequences may be screened using hybridization methods to determine their utility as hybridization target or amplification probes.

An example of stringent hybridization conditions for hybridization of complementary nucleic acids which have more than 100 complementary residues on a filter in a Southern or northern blot is about 5°C to 20°C lower than the thermal melting point (T_m) for the specific sequence at a defined ionic strength and pH. The T_m is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. Nucleic acid molecules that hybridize under stringent conditions will typically hybridize to a probe based on either the entire cDNA or selected portions, e.g., to a unique subsequence, of the cDNA under wash conditions of 0.2x SSC to 2.0 x SSC, 0.1% SDS at 50-65° C. For example, high stringency is about 0.2 x SSC, 0.1% SDS at 65° C. Ultra-high stringency will be the same conditions except the wash temperature is raised about 3 to about 5° C, and ultra-ultra-high stringency will be the same conditions except the wash temperature is raised about 6 to about 9° C. For identification of less closely related homologues washes can be performed at a lower temperature, e.g., 50° C. In general, stringency is increased by raising the wash temperature and/or decreasing the concentration of SSC, as known in the art.

In another example, stringent salt concentration will ordinarily be less than about 750 mM NaCl and 75 mM trisodium citrate, preferably less than about 500 mM NaCl and 50 mM trisodium citrate, and most preferably less than about 250 mM NaCl and 25 mM trisodium citrate. Low stringency hybridization can be obtained in the absence of organic solvent, e.g., formamide, while high stringency hybridization can be obtained in the presence of at least about 35% formamide, and most preferably at least about 50% formamide. Stringent temperature conditions will ordinarily include temperatures of at least about 30° C, more preferably of at least about 37° C, and most preferably of at least about 42° C. Varying additional parameters, such as hybridization time, the concentration of detergent, e.g., sodium dodecyl sulfate (SDS), and the inclusion or exclusion of carrier DNA, are well known to those skilled in the

art. Various levels of stringency are accomplished by combining these various conditions as needed. In a preferred embodiment, hybridization will occur at 30° C in 750 mM NaCl, 75 mM trisodium citrate, and 1% SDS. In a more preferred embodiment, hybridization will occur at 37° C in 500 mM NaCl, 50 mM trisodium citrate, 1% SDS, 35% formamide, and 100 µg/ml denatured salmon sperm DNA (ssDNA). In a most preferred embodiment, hybridization will occur at 42° C in 250 mM NaCl, 25 mM trisodium citrate, 1% SDS, 50% formamide, and 200 µg/ml ssDNA. Useful variations on these conditions will be readily apparent to those skilled in the art.

The washing steps that follow hybridization can also vary in stringency. Wash stringency conditions can be defined by salt concentration and by temperature. As above, wash stringency can be increased by decreasing salt concentration or by increasing temperature. For example, stringent salt concentration for the wash steps will preferably be less than about 30 mM NaCl and 3 mM trisodium citrate, and most preferably less than about 15 mM NaCl and 1.5 mM trisodium citrate. Stringent temperature conditions for the wash steps will ordinarily include temperature of at least about 25° C, more preferably of at least about 42° C. Another preferred set of highly stringent conditions uses two final washes in 0.1X SSC, 0.1% SDS at 65° C. The most preferred high stringency washes are of at least about 68° C. For example, in a preferred embodiment, wash steps will occur at 25° C in 30 mM NaCl, 3 mM trisodium citrate, and 0.1% SDS. In a more preferred embodiment, wash steps will occur at 42° C in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. In a most preferred embodiment, the wash steps will occur at 68° C in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. Additional variations on these conditions will be readily apparent to those skilled in the art (see U.S. Patent Application No. 20010010913).

As another example, stringent conditions can be selected such that an oligonucleotide that is perfectly complementary to the coding oligonucleotide hybridizes to the coding oligonucleotide with at least about a 5-10x higher signal to noise ratio than the ratio for hybridization of the perfectly complementary oligonucleotide to a nucleic acid encoding a transcription factor known as of the filing

date of the application. Conditions can be selected such that a higher signal to noise ratio is observed in the particular assay which is used, e.g., about 15x, 25x, 35x, 50x or more. Accordingly, the subject nucleic acid hybridizes to the unique coding oligonucleotide with at least a 2x higher signal to noise ratio as compared to hybridization of the coding oligonucleotide to a nucleic acid encoding known polypeptide. Again, higher signal to noise ratios can be selected, e.g., about 5x, 10x, 25x, 35x, 50x or more. The particular signal will depend on the label used in the relevant assay, e.g., a fluorescent label, a colorimetric label, a radioactive label, or the like.

Alternatively, transcription factor homolog polypeptides can be obtained by screening an expression library using antibodies specific for one or more transcription factors. With the provision herein of the disclosed transcription factor, and transcription factor homologue nucleic acid sequences, the encoded polypeptide(s) can be expressed and purified in a heterologous expression system (e.g., *E. coli*) and used to raise antibodies (monoclonal or polyclonal) specific for the polypeptide(s) in question. Antibodies can also be raised against synthetic peptides derived from transcription factor, or transcription factor homologue, amino acid sequences. Methods of raising antibodies are well known in the art and are described in Harlow and Lane (1988) Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, New York. Such antibodies can then be used to screen an expression library produced from the plant from which it is desired to clone additional transcription factor homologues, using the methods described above. The selected cDNAs can be confirmed by sequencing and enzymatic activity.

VII. Sequence Variations

It will readily be appreciated by those of skill in the art, that any of a variety of polynucleotide sequences are capable of encoding the transcription factors and transcription factor homologue polypeptides of the invention. Due to the degeneracy of the genetic code, many different polynucleotides can encode identical and/or substantially similar polypeptides in addition to those sequences illustrated in the Sequence Listing. Nucleic acids having a sequence that differs from the sequences shown in the Sequence Listing, or complementary sequences, that encode functionally equivalent peptides (i.e., peptides having some degree of equivalent or similar

biological activity) but differ in sequence from the sequence shown in the sequence listing due to degeneracy in the genetic code, are also within the scope of the invention.

Altered polynucleotide sequences encoding polypeptides include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polynucleotide encoding a polypeptide with at least one functional characteristic of the instant polypeptides. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding the instant polypeptides, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding the instant polypeptides.

Allelic variant refers to any of two or more alternative forms of a gene occupying the same chromosomal locus. Allelic variation arises naturally through mutation, and may result in phenotypic polymorphism within populations. Gene mutations can be silent (i.e., no change in the encoded polypeptide) or may encode polypeptides having altered amino acid sequence. The term allelic variant is also used herein to denote a protein encoded by an allelic variant of a gene. Splice variant refers to alternative forms of RNA transcribed from a gene. Splice variation arises naturally through use of alternative splicing sites within a transcribed RNA molecule, or less commonly between separately transcribed RNA molecules, and may result in several mRNAs transcribed from the same gene. Splice variants may encode polypeptides having altered amino acid sequence. The term splice variant is also used herein to denote a protein encoded by a splice variant of an mRNA transcribed from a gene.

Those skilled in the art would recognize that the polypeptide sequence G681, SEQ ID NO: 580, represents a single transcription factor; allelic variation and alternative splicing may be expected to occur. Allelic variants of the polypeptide sequence of SEQ ID NO: 579 can be cloned by probing cDNA or genomic libraries from different individual organisms according to standard procedures. Allelic variants of the DNA sequence shown in SEQ ID NO: 579, including those containing silent mutations and those in which mutations result in amino acid sequence changes, are within the scope of the present invention, as are proteins which are allelic variants

of SEQ ID NO: 580. cDNAs generated from alternatively spliced mRNAs, which retain the properties of the transcription factor are included within the scope of the present invention, as are polypeptides encoded by such cDNAs and mRNAs. Allelic variants and splice variants of these sequences can be cloned by probing cDNA or genomic libraries from different individual organisms or tissues according to standard procedures known in the art (see USPN 6,388,064).

For example, Table 1 illustrates, e.g., that the codons AGC, AGT, TCA, TCC, TCG, and TCT all encode the same amino acid: serine. Accordingly, at each position in the sequence where there is a codon encoding serine, any of the above trinucleotide sequences can be used without altering the encoded polypeptide.

Table 1

Amino acid			Possible Codons					
Alanine	Ala	A	GCA	GCC	GCG	GCU		
Cysteine	Cys	C	TGC	TGT				
Aspartic acid	Asp	D	GAC	GAT				
Glutamic acid	Glu	E	GAA	GAG				
Phenylalanine	Phe	F	TTC	TTT				
Glycine	Gly	G	GGA	GGC	GGG	GGT		
Histidine	His	H	CAC	CAT				
Isoleucine	Πe	I	ATA	ATC	ATT			
Lysine	Lys	K	AAA	AAG				
Leucine	Leu	L	TTA	TTG	CTA	CTC	CTG	CTT
Methionine	Met	M	ATG					
Asparagine	Asn	N	AAC	AAT				
Proline	Pro	P	CCA	CCC	CCG	CCT		
Glutamine	Gln	Q	CAA	CAG				
Arginine	Arg	R	AGA	AGG	CGA	CGC	CGG	CGT
Serine	Ser	S	AGC	AGT	TCA	TCC	TCG	TCT
Threonine	Thr	T	ACA	ACC	ACG	ACT		
Valine	Val	v	GTA	GTC	GTG	GTT		
Tryptophan	Trp	W	TGG					
Tyrosine	Tyr	Y	TAC	TAT				

Sequence alterations that do not change the amino acid sequence encoded by the polynucleotide are termed "silent" variations. With the exception of the codons ATG and TGG, encoding methionine and tryptophan, respectively, any of the possible codons for the same amino acid can be substituted by a variety of techniques, e.g., site-directed mutagenesis, available in the art. Accordingly, any and all such variations of a sequence selected from the above table are a feature of the invention.

In addition to silent variations, other conservative variations that alter one, or a few amino acids in the encoded polypeptide, can be made without altering the function of the polypeptide, these conservative variants are, likewise, a feature of the invention.

For example, substitutions, deletions and insertions introduced into the sequences provided in the Sequence Listing are also envisioned by the invention. Such sequence modifications can be engineered into a sequence by site-directed mutagenesis (Wu (ed.) Meth. Enzymol. (1993) vol. 217, Academic Press) or the other methods noted below. Amino acid substitutions are typically of single residues; insertions usually will be on the order of about from 1 to 10 amino acid residues; and deletions will range about from 1 to 30 residues. In preferred embodiments, deletions or insertions are made in adjacent pairs, e.g., a deletion of two residues or insertion of two residues. Substitutions, deletions, insertions or any combination thereof can be combined to arrive at a sequence. The mutations that are made in the polynucleotide encoding the transcription factor should not place the sequence out of reading frame and should not create complementary regions that could produce secondary mRNA structure. Preferably, the polypeptide encoded by the DNA performs the desired function.

Conservative substitutions are those in which at least one residue in the amino acid sequence has been removed and a different residue inserted in its place. Such substitutions generally are made in accordance with the Table 2 when it is desired to maintain the activity of the protein. Table 2 shows amino acids which can be substituted for an amino acid in a protein and which are typically regarded as conservative substitutions.

Table 2

Residue	Conservative
	Substitutions
Ala	Ser
Arg	Lys
Asn	Gln; His
Asp	Glu
Gln	Asn
Cys	Ser
Glu	Asp .
Gly	Pro
His	Asn; Gln
Ile	Leu, Val
Leu	Ile; Val
Lys	Arg; Gln
Met	Leu; Ile
Phe	Met; Leu; Tyr
Ser	Thr; Gly
Thr	Ser; Val
Trp	Туг
Tyr	Trp; Phe
Val	Ile; Leu

Similar substitutions are those in which at least one residue in the amino acid sequence has been removed and a different residue inserted in its place. Such substitutions generally are made in accordance with the Table 3 when it is desired to maintain the activity of the protein. Table 3 shows amino acids which can be substituted for an amino acid in a protein and which are typically regarded as structural and functional substitutions. For example, a residue in column 1 of Table 3

may be substituted with residue in column 2; in addition, a residue in column 2 of Table 3 may be substituted with the residue of column 1.

Table 3

Residue	Similar Substitutions
Ala	Ser; Thr; Gly; Val; Leu; Ile
Arg	Lys; His; Gly
Asn	Gln; His; Gly; Ser; Thr
Asp	Glu, Ser; Thr
Gln	Asn; Ala
Cys	Ser; Gly
Glu	Asp
Gly	Pro; Arg
His	Asn; Gln; Tyr; Phe; Lys; Arg
Пе	Ala; Leu; Val; Gly; Met
Leu	Ala; Ile; Val; Gly; Met
Lys	Arg; His; Gln; Gly; Pro
Met	Leu; Ile; Phe
Phe	Met; Leu; Tyr; Trp; His; Val;
	Ala
Ser	Thr; Gly; Asp; Ala; Val; Ile; His
Thr	Ser; Val; Ala; Gly
Trp	Tyr; Phe; His
Tyr	Trp; Phe; His
Val	Ala; Ile; Leu; Gly; Thr; Ser; Glu

Substitutions that are less conservative than those in Table 2 can be selected by picking residues that differ more significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. The substitutions which in general are

expected to produce the greatest changes in protein properties will be those in which (a) a hydrophilic residue, e.g., seryl or threonyl, is substituted for (or by) a hydrophobic residue, e.g., leucyl, isoleucyl, phenylalanyl, valyl or alanyl; (b) a cysteine or proline is substituted for (or by) any other residue; (c) a residue having an electropositive side chain, e.g., lysyl, arginyl, or histidyl, is substituted for (or by) an electronegative residue, e.g., glutamyl or aspartyl; or (d) a residue having a bulky side chain, e.g., phenylalanine, is substituted for (or by) one not having a side chain, e.g., glycine.

VIII. Further Modifying Sequences of the Invention – Mutation/Forced Evolution

In addition to generating silent or conservative substitutions as noted, above, the present invention optionally includes methods of modifying the sequences of the Sequence Listing. In the methods, nucleic acid or protein modification methods are used to alter the given sequences to produce new sequences and/or to chemically or enzymatically modify given sequences to change the properties of the nucleic acids or proteins.

Thus, in one embodiment, given nucleic acid sequences are modified, e.g., according to standard mutagenesis or artificial evolution methods to produce modified sequences. The modified sequences may be created using purified natural polynucleotides isolated from any organism or may be synthesized from purified compositions and chemicals using chemical means well know to those of skill in the art. For example, Ausubel, *supra*, provides additional details on mutagenesis methods. Artificial forced evolution methods are described, for example, by Stemmer (1994) Nature 370:389-391, Stemmer (1994) Proc. Natl. Acad. Sci. USA 91:10747-10751, and U.S. Patents 5,811,238, 5,837,500, and 6,242,568. Methods for engineering synthetic transcription factors and other polypeptides are described, for example, by Zhang et al. (2000) J. Biol. Chem. 275:33850-33860, Liu et al. (2001) J. Biol. Chem. 276:11323-11334, and Isalan et al. (2001) Nature Biotechnol. 19:656-660. Many other mutation and evolution methods are also available and expected to be within the skill of the practitioner.

Similarly, chemical or enzymatic alteration of expressed nucleic acids and polypeptides can be performed by standard methods. For example, sequence can be modified by addition of lipids, sugars, peptides, organic or inorganic compounds, by the inclusion of modified nucleotides or amino acids, or the like. For example, protein modification techniques are illustrated in Ausubel, *supra*. Further details on chemical and enzymatic modifications can be found herein. These modification methods can be used to modify any given sequence, or to modify any sequence produced by the various mutation and artificial evolution modification methods noted herein.

Accordingly, the invention provides for modification of any given nucleic acid by mutation, evolution, chemical or enzymatic modification, or other available methods, as well as for the products produced by practicing such methods, e.g., using the sequences herein as a starting substrate for the various modification approaches.

For example, optimized coding sequence containing codons preferred by a particular prokaryotic or eukaryotic host can be used e.g., to increase the rate of translation or to produce recombinant RNA transcripts having desirable properties, such as a longer half-life, as compared with transcripts produced using a non-optimized sequence. Translation stop codons can also be modified to reflect host preference. For example, preferred stop codons for *Saccharomyces cerevisiae* and mammals are TAA and TGA, respectively. The preferred stop codon for monocotyledonous plants is TGA, whereas insects and *E. coli* prefer to use TAA as the stop codon.

The polynucleotide sequences of the present invention can also be engineered in order to alter a coding sequence for a variety of reasons, including but not limited to, alterations which modify the sequence to facilitate cloning, processing and/or expression of the gene product. For example, alterations are optionally introduced using techniques which are well known in the art, e.g., site-directed mutagenesis, to insert new restriction sites, to alter glycosylation patterns, to change codon preference, to introduce splice sites, etc.

Furthermore, a fragment or domain derived from any of the polypeptides of the invention can be combined with domains derived from other transcription factors or synthetic domains to modify the biological activity of a transcription factor. For instance, a DNA-binding domain derived from a transcription factor of the invention can be combined with the activation domain of another transcription factor or with a synthetic activation domain. A transcription activation domain assists in initiating transcription from a DNA-binding site. Examples include the transcription activation region of VP16 or GAL4 (Moore et al. (1998) Proc. Natl. Acad. Sci. USA 95: 376-381; and Aoyama et al. (1995) Plant Cell 7:1773-1785), peptides derived from bacterial sequences (Ma and Ptashne (1987) Cell 51; 113-119) and synthetic peptides (Giniger and Ptashne, (1987) Nature 330:670-672).

IX. Expression and Modification of Polypeptides

Typically, polynucleotide sequences of the invention are incorporated into recombinant DNA (or RNA) molecules that direct expression of polypeptides of the invention in appropriate host cells, transgenic plants, in vitro translation systems, or the like. Due to the inherent degeneracy of the genetic code, nucleic acid sequences which encode substantially the same or a functionally equivalent amino acid sequence can be substituted for any listed sequence to provide for cloning and expressing the relevant homologue.

X. Vectors, Promoters, and Expression Systems

The present invention includes recombinant constructs comprising one or more of the nucleic acid sequences herein. The constructs typically comprise a vector, such as a plasmid, a cosmid, a phage, a virus (e.g., a plant virus), a bacterial artificial chromosome (BAC), a yeast artificial chromosome (YAC), or the like, into which a nucleic acid sequence of the invention has been inserted, in a forward or reverse orientation. In a preferred aspect of this embodiment, the construct further comprises regulatory sequences, including, for example, a promoter, operably linked to the sequence. Large numbers of suitable vectors and promoters are known to those of skill in the art, and are commercially available.

General texts that describe molecular biological techniques useful herein, including the use and production of vectors, promoters and many other relevant

topics, include Berger, Sambrook and Ausubel, *supra*. Any of the identified sequences can be incorporated into a cassette or vector, e.g., for expression in plants. A number of expression vectors suitable for stable transformation of plant cells or for the establishment of transgenic plants have been described including those described in Weissbach and Weissbach, (1989) Methods for Plant Molecular Biology, Academic Press, and Gelvin et al., (1990) Plant Molecular Biology Manual, Kluwer Academic Publishers. Specific examples include those derived from a Ti plasmid of Agrobacterium tumefaciens, as well as those disclosed by Herrera-Estrella et al. (1983) Nature 303: 209, Bevan (1984) Nucl Acid Res. 12: 8711-8721, Klee (1985) Bio/Technology 3: 637-642, for dicotyledonous plants.

Alternatively, non-Ti vectors can be used to transfer the DNA into monocotyledonous plants and cells by using free DNA delivery techniques. Such methods can involve, for example, the use of liposomes, electroporation, microprojectile bombardment, silicon carbide whiskers, and viruses. By using these methods transgenic plants such as wheat, rice (Christou (1991) Bio/Technology 9: 957-962) and corn (Gordon-Kamm (1990) Plant Cell 2: 603-618) can be produced. An immature embryo can also be a good target tissue for monocots for direct DNA delivery techniques by using the particle gun (Weeks et al. (1993) Plant Physiol 102: 1077-1084; Vasil (1993) Bio/Technology 10: 667-674; Wan and Lemeaux (1994) Plant Physiol 104: 37-48, and for Agrobacterium-mediated DNA transfer (Ishida et al. (1996) Nature Biotech 14: 745-750).

Typically, plant transformation vectors include one or more cloned plant coding sequence (genomic or cDNA) under the transcriptional control of 5' and 3' regulatory sequences and a dominant selectable marker. Such plant transformation vectors typically also contain a promoter (e.g., a regulatory region controlling inducible or constitutive, environmentally-or developmentally-regulated, or cell- or tissue-specific expression), a transcription initiation start site, an RNA processing signal (such as intron splice sites), a transcription termination site, and/or a polyadenylation signal.

Examples of constitutive plant promoters which can be useful for expressing the TF sequence include: the cauliflower mosaic virus (CaMV) 35S promoter, which

confers constitutive, high-level expression in most plant tissues (see, e.g., Odell et al. (1985) Nature 313:810-812); the nopaline synthase promoter (An et al. (1988) Plant Physiol 88:547-552); and the octopine synthase promoter (Fromm et al. (1989) Plant Cell 1: 977-984).

A variety of plant gene promoters that regulate gene expression in response to environmental, hormonal, chemical, developmental signals, and in a tissue-active manner can be used for expression of a TF sequence in plants. Choice of a promoter is based largely on the phenotype of interest and is determined by such factors as tissue (e.g., seed, fruit, root, pollen, vascular tissue, flower, carpel, etc.), inducibility (e.g., in response to wounding, heat, cold, drought, light, pathogens, etc.), timing, developmental stage, and the like. Numerous known promoters have been characterized and can favorably be employed to promote expression of a polynucleotide of the invention in a transgenic plant or cell of interest. For example, tissue specific promoters include: seed-specific promoters (such as the napin, phaseolin or DC3 promoter described in US Pat. No. 5,773,697), fruit-specific promoters that are active during fruit ripening (such as the dru 1 promoter (US Pat. No. 5,783,393), or the 2A11 promoter (US Pat. No. 4,943,674) and the tomato polygalacturonase promoter (Bird et al. (1988) Plant Mol Biol 11:651), root-specific promoters, such as those disclosed in US Patent Nos. 5,618,988, 5,837,848 and 5,905,186, pollen-active promoters such as PTA29, PTA26 and PTA13 (US Pat. No. 5,792,929), promoters active in vascular tissue (Ringli and Keller (1998) Plant Mol Biol 37:977-988), flower-specific (Kaiser et al, (1995) Plant Mol Biol 28:231-243), pollen (Baerson et al. (1994) Plant Mol Biol 26:1947-1959), carpels (Ohl et al. (1990) Plant Cell 2:837-848), pollen and ovules (Baerson et al. (1993) Plant Mol Biol 22:255-267), auxin-inducible promoters (such as that described in van der Kop et al. (1999) Plant Mol Biol 39:979-990 or Baumann et al. (1999) Plant Cell 11:323-334), cytokinin-inducible promoter (Guevara-Garcia (1998) Plant Mol Biol 38:743-753), promoters responsive to gibberellin (Shi et al. (1998) Plant Mol Biol 38:1053-1060, Willmott et al. (1998) 38:817-825) and the like. Additional promoters are those that elicit expression in response to heat (Ainley et al. (1993) Plant Mol Biol 22: 13-23), light (e.g., the pea rbcS-3A promoter, Kuhlemeier et al. (1989) Plant Cell 1:471, and the maize rbcS promoter, Schaffner and Sheen (1991) Plant Cell 3: 997); wounding (e.g., wunI, Siebertz et al. (1989) Plant Cell 1: 961); pathogens (such as the PR-1

promoter described in Buchel et al. (1999) <u>Plant Mol. Biol.</u> 40:387-396, and the PDF1.2 promoter described in Manners et al. (1998) <u>Plant Mol. Biol.</u> 38:1071-80), and chemicals such as methyl jasmonate or salicylic acid (Gatz et al. (1997) <u>Plant Mol Biol</u> 48: 89-108). In addition, the timing of the expression can be controlled by using promoters such as those acting at senescence (An and Amazon (1995) <u>Science</u> 270: 1986-1988); or late seed development (Odell et al. (1994) <u>Plant Physiol</u> 106:447-458).

Plant expression vectors can also include RNA processing signals that can be positioned within, upstream or downstream of the coding sequence. In addition, the expression vectors can include additional regulatory sequences from the 3'-untranslated region of plant genes, e.g., a 3' terminator region to increase mRNA stability of the mRNA, such as the PI-II terminator region of potato or the octopine or nopaline synthase 3' terminator regions.

Additional Expression Elements

Specific initiation signals can aid in efficient translation of coding sequences. These signals can include, e.g., the ATG initiation codon and adjacent sequences. In cases where a coding sequence, its initiation codon and upstream sequences are inserted into the appropriate expression vector, no additional translational control signals may be needed. However, in cases where only coding sequence (e.g., a mature protein coding sequence), or a portion thereof, is inserted, exogenous transcriptional control signals including the ATG initiation codon can be separately provided. The initiation codon is provided in the correct reading frame to facilitate transcription. Exogenous transcriptional elements and initiation codons can be of various origins, both natural and synthetic. The efficiency of expression can be enhanced by the inclusion of enhancers appropriate to the cell system in use.

Expression Hosts

The present invention also relates to host cells which are transduced with vectors of the invention, and the production of polypeptides of the invention (including fragments thereof) by recombinant techniques. Host cells are genetically engineered (i.e., nucleic acids are introduced, e.g., transduced, transformed or transfected) with the vectors of this invention, which may be, for example, a cloning vector or an expression vector comprising the relevant nucleic acids herein. The

vector is optionally a plasmid, a viral particle, a phage, a naked nucleic acid, etc. The engineered host cells can be cultured in conventional nutrient media modified as appropriate for activating promoters, selecting transformants, or amplifying the relevant gene. The culture conditions, such as temperature, pH and the like, are those previously used with the host cell selected for expression, and will be apparent to those skilled in the art and in the references cited herein, including, Sambrook and Ausubel.

The host cell can be a eukaryotic cell, such as a yeast cell, or a plant cell, or the host cell can be a prokaryotic cell, such as a bacterial cell. Plant protoplasts are also suitable for some applications. For example, the DNA fragments are introduced into plant tissues, cultured plant cells or plant protoplasts by standard methods including electroporation (Fromm et al., (1985) Proc. Natl. Acad. Sci. USA 82, 5824, infection by viral vectors such as cauliflower mosaic virus (CaMV) (Hohn et al., (1982) Molecular Biology of Plant Tumors, (Academic Press, New York) pp. 549-560; US 4,407,956), high velocity ballistic penetration by small particles with the nucleic acid either within the matrix of small beads or particles, or on the surface (Klein et al., (1987) Nature 327, 70-73), use of pollen as vector (WO 85/01856), or use of Agrobacterium tumefaciens or A. rhizogenes carrying a T-DNA plasmid in which DNA fragments are cloned. The T-DNA plasmid is transmitted to plant cells upon infection by Agrobacterium tumefaciens, and a portion is stably integrated into the plant genome (Horsch et al. (1984) Science 233:496-498; Fraley et al. (1983) Proc. Natl. Acad. Sci. USA 80, 4803).

The cell can include a nucleic acid of the invention which encodes a polypeptide, wherein the cells expresses a polypeptide of the invention. The cell can also include vector sequences, or the like. Furthermore, cells and transgenic plants that include any polypeptide or nucleic acid above or throughout this specification, e.g., produced by transduction of a vector of the invention, are an additional feature of the invention.

For long-term, high-yield production of recombinant proteins, stable expression can be used. Host cells transformed with a nucleotide sequence encoding a polypeptide of the invention are optionally cultured under conditions suitable for the

expression and recovery of the encoded protein from cell culture. The protein or fragment thereof produced by a recombinant cell may be secreted, membrane-bound, or contained intracellularly, depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides encoding mature proteins of the invention can be designed with signal sequences which direct secretion of the mature polypeptides through a prokaryotic or eukaryotic cell membrane.

XI. Modified Amino Acid Residues

Polypeptides of the invention may contain one or more modified amino acid residues. The presence of modified amino acids may be advantageous in, for example, increasing polypeptide half-life, reducing polypeptide antigenicity or toxicity, increasing polypeptide storage stability, or the like. Amino acid residue(s) are modified, for example, co-translationally or post-translationally during recombinant production or modified by synthetic or chemical means.

Non-limiting examples of a modified amino acid residue include incorporation or other use of acetylated amino acids, glycosylated amino acids, sulfated amino acids, prenylated (e.g., farnesylated, geranylgeranylated) amino acids, PEG modified (e.g., "PEGylated") amino acids, biotinylated amino acids, carboxylated amino acids, phosphorylated amino acids, etc. References adequate to guide one of skill in the modification of amino acid residues are replete throughout the literature.

The modified amino acid residues may prevent or increase affinity of the polypeptide for another molecule, including, but not limited to, polynucleotide, proteins, carbohydrates, lipids and lipid derivatives, and other organic or synthetic compounds.

XII. Identification of Additional Factors

A transcription factor provided by the present invention can also be used to identify additional endogenous or exogenous molecules that can affect a phentoype or trait of interest. On the one hand, such molecules include organic (small or large molecules) and/or inorganic compounds that affect expression of (i.e., regulate) a particular transcription factor. Alternatively, such molecules include endogenous

molecules that are acted upon either at a transcriptional level by a transcription factor of the invention to modify a phenotype as desired. For example, the transcription factors can be employed to identify one or more downstream gene with which is subject to a regulatory effect of the transcription factor. In one approach, a transcription factor or transcription factor homologue of the invention is expressed in a host cell, e.g., a transgenic plant cell, tissue or explant, and expression products, either RNA or protein, of likely or random targets are monitored, e.g., by hybridization to a microarray of nucleic acid probes corresponding to genes expressed in a tissue or cell type of interest, by two-dimensional gel electrophoresis of protein products, or by any other method known in the art for assessing expression of gene products at the level of RNA or protein. Alternatively, a transcription factor of the invention can be used to identify promoter sequences (i.e., binding sites) involved in the regulation of a downstream target. After identifying a promoter sequence, interactions between the transcription factor and the promoter sequence can be modified by changing specific nucleotides in the promoter sequence or specific amino acids in the transcription factor that interact with the promoter sequence to alter a plant trait. Typically, transcription factor DNA-binding sites are identified by gel shift assays. After identifying the promoter regions, the promoter region sequences can be employed in double-stranded DNA arrays to identify molecules that affect the interactions of the transcription factors with their promoters (Bulyk et al. (1999) Nature Biotechnology 17:573-577).

The identified transcription factors are also useful to identify proteins that modify the activity of the transcription factor. Such modification can occur by covalent modification, such as by phosphorylation, or by protein-protein (homo orheteropolymer) interactions. Any method suitable for detecting protein-protein interactions can be employed. Among the methods that can be employed are co-immunoprecipitation, cross-linking and co-purification through gradients or chromatographic columns, and the two-hybrid yeast system.

The two-hybrid system detects protein interactions in vivo and is described in Chien et al. ((1991), <u>Proc. Natl. Acad. Sci. USA</u> 88:9578-9582) and is commercially available from Clontech (Palo Alto, Calif.). In such a system, plasmids are constructed that encode two hybrid proteins: one consists of the DNA-binding domain

of a transcription activator protein fused to the TF polypeptide and the other consists of the transcription activator protein's activation domain fused to an unknown protein that is encoded by a cDNA that has been recombined into the plasmid as part of a cDNA library. The DNA-binding domain fusion plasmid and the cDNA library are transformed into a strain of the yeast *Saccharomyces cerevisiae* that contains a reporter gene (e.g., lacZ) whose regulatory region contains the transcription activator's binding site. Either hybrid protein alone cannot activate transcription of the reporter gene. Interaction of the two hybrid proteins reconstitutes the functional activator protein and results in expression of the reporter gene, which is detected by an assay for the reporter gene product. Then, the library plasmids responsible for reporter gene expression are isolated and sequenced to identify the proteins encoded by the library plasmids. After identifying proteins that interact with the transcription factors, assays for compounds that interfere with the TF protein-protein interactions can be preformed.

XIII. Identification of Modulators

In addition to the intracellular molecules described above, extracellular molecules that alter activity or expression of a transcription factor, either directly or indirectly, can be identified. For example, the methods can entail first placing a candidate molecule in contact with a plant or plant cell. The molecule can be introduced by topical administration, such as spraying or soaking of a plant, and then the molecule's effect on the expression or activity of the TF polypeptide or the expression of the polynucleotide monitored. Changes in the expression of the TF polypeptide can be monitored by use of polyclonal or monoclonal antibodies, gel electrophoresis or the like. Changes in the expression of the corresponding polynucleotide sequence can be detected by use of microarrays, Northerns, quantitative PCR, or any other technique for monitoring changes in mRNA expression. These techniques are exemplified in Ausubel et al. (eds) Current Protocols in Molecular Biology, John Wiley & Sons (1998, and supplements through 2001). Such changes in the expression levels can be correlated with modified plant traits and thus identified molecules can be useful for soaking or spraying on fruit, vegetable and grain crops to modify traits in plants.

Essentially any available composition can be tested for modulatory activity of expression or activity of any nucleic acid or polypeptide herein. Thus, available libraries of compounds such as chemicals, polypeptides, nucleic acids and the like can be tested for modulatory activity. Often, potential modulator compounds can be dissolved in aqueous or organic (e.g., DMSO-based) solutions for easy delivery to the cell or plant of interest in which the activity of the modulator is to be tested. Optionally, the assays are designed to screen large modulator composition libraries by automating the assay steps and providing compounds from any convenient source to assays, which are typically run in parallel (e.g., in microtiter formats on microtiter plates in robotic assays).

In one embodiment, high throughput screening methods involve providing a combinatorial library containing a large number of potential compounds (potential modulator compounds). Such "combinatorial chemical libraries" are then screened in one or more assays, as described herein, to identify those library members (particular chemical species or subclasses) that display a desired characteristic activity. The compounds thus identified can serve as target compounds.

A combinatorial chemical library can be, e.g., a collection of diverse chemical compounds generated by chemical synthesis or biological synthesis. For example, a combinatorial chemical library such as a polypeptide library is formed by combining a set of chemical building blocks (e.g., in one example, amino acids) in every possible way for a given compound length (i.e., the number of amino acids in a polypeptide compound of a set length). Exemplary libraries include peptide libraries, nucleic acid libraries, antibody libraries (see, e.g., Vaughn et al. (1996) Nature Biotechnology, 14(3):309-314 and PCT/US96/10287), carbohydrate libraries (see, e.g., Liang et al. Science (1996) 274:1520-1522 and U.S. Patent 5,593,853), peptide nucleic acid libraries (see, e.g., U.S. Patent 5,539,083), and small organic molecule libraries (see, e.g., benzodiazepines, Baum C&EN Jan 18, page 33 (1993); isoprenoids, U.S. Patent 5,569,588; thiazolidinones and metathiazanones, U.S. Patent 5,549,974; pyrrolidines, U.S. Patents 5,525,735 and 5,519,134; morpholino compounds, U.S. Patent 5,506,337) and the like.

Preparation and screening of combinatorial or other libraries is well known to those of skill in the art. Such combinatorial chemical libraries include, but are not limited to, peptide libraries (see, e.g., U.S. Patent 5,010,175; Furka, (1991) Int. J. Pept. Prot. Res. 37:487-493; and Houghton et al. (1991) Nature 354:84-88). Other chemistries for generating chemical diversity libraries can also be used.

In addition, as noted, compound screening equipment for high-throughput screening is generally available, e.g., using any of a number of well known robotic systems that have also been developed for solution phase chemistries useful in assay systems. These systems include automated workstations including an automated synthesis apparatus and robotic systems utilizing robotic arms. Any of the above devices are suitable for use with the present invention, e.g., for high-throughput screening of potential modulators. The nature and implementation of modifications to these devices (if any) so that they can operate as discussed herein will be apparent to persons skilled in the relevant art.

Indeed, entire high throughput screening systems are commercially available. These systems typically automate entire procedures including all sample and reagent pipetting, liquid dispensing, timed incubations, and final readings of the microplate in detector(s) appropriate for the assay. These configurable systems provide high throughput and rapid start up as well as a high degree of flexibility and customization. Similarly, microfluidic implementations of screening are also commercially available.

The manufacturers of such systems provide detailed protocols the various high throughput. Thus, for example, Zymark Corp. provides technical bulletins describing screening systems for detecting the modulation of gene transcription, ligand binding, and the like. The integrated systems herein, in addition to providing for sequence alignment and, optionally, synthesis of relevant nucleic acids, can include such screening apparatus to identify modulators that have an effect on one or more polynucleotides or polypeptides according to the present invention.

In some assays it is desirable to have positive controls to ensure that the components of the assays are working properly. At least two types of positive controls are appropriate. That is, known transcriptional activators or inhibitors can be

incubated with cells/plants/ etc. in one sample of the assay, and the resulting increase/decrease in transcription can be detected by measuring the resulting increase in RNA/ protein expression, etc., according to the methods herein. It will be appreciated that modulators can also be combined with transcriptional activators or inhibitors to find modulators that inhibit transcriptional activation or transcriptional repression. Either expression of the nucleic acids and proteins herein or any additional nucleic acids or proteins activated by the nucleic acids or proteins herein, or both, can be monitored.

In an embodiment, the invention provides a method for identifying compositions that modulate the activity or expression of a polynucleotide or polypeptide of the invention. For example, a test compound, whether a small or large molecule, is placed in contact with a cell, plant (or plant tissue or explant), or composition comprising the polynucleotide or polypeptide of interest and a resulting effect on the cell, plant, (or tissue or explant) or composition is evaluated by monitoring, either directly or indirectly, one or more of: expression level of the polynucleotide or polypeptide, activity (or modulation of the activity) of the polynucleotide or polypeptide. In some cases, an alteration in a plant phenotype can be detected following contact of a plant (or plant cell, or tissue or explant) with the putative modulator, e.g., by modulation of expression or activity of a polynucleotide or polypeptide of the invention. Modulation of expression or activity of a polynucleotide or polypeptide of the invention may also be caused by molecular elements in a signal transduction second messenger pathway and such modulation can affect similar elements in the same or another signal transduction second messenger pathway.

XIV. Subsequences

Also contemplated are uses of polynucleotides, also referred to herein as oligonucleotides, typically having at least 12 bases, preferably at least 15, more preferably at least 20, 30, or 50 bases, which hybridize under at least highly stringent (or ultra-high stringent or ultra-ultra-high stringent conditions) conditions to a polynucleotide sequence described above. The polynucleotides may be used as probes, primers, sense and antisense agents, and the like, according to methods as noted *supra*.

Subsequences of the polynucleotides of the invention, including polynucleotide fragments and oligonucleotides are useful as nucleic acid probes and primers. An oligonucleotide suitable for use as a probe or primer is at least about 15 nucleotides in length, more often at least about 18 nucleotides, often at least about 21 nucleotides, frequently at least about 30 nucleotides, or about 40 nucleotides, or more in length. A nucleic acid probe is useful in hybridization protocols, e.g., to identify additional polypeptide homologues of the invention, including protocols for microarray experiments. Primers can be annealed to a complementary target DNA strand by nucleic acid hybridization to form a hybrid between the primer and the target DNA strand, and then extended along the target DNA strand by a DNA polymerase enzyme. Primer pairs can be used for amplification of a nucleic acid sequence, e.g., by the polymerase chain reaction (PCR) or other nucleic-acid amplification methods. See Sambrook and Ausubel, *supra*.

In addition, the invention includes an isolated or recombinant polypeptide including a subsequence of at least about 15 contiguous amino acids encoded by the recombinant or isolated polynucleotides of the invention. For example, such polypeptides, or domains or fragments thereof, can be used as immunogens, e.g., to produce antibodies specific for the polypeptide sequence, or as probes for detecting a sequence of interest. A subsequence can range in size from about 15 amino acids in length up to and including the full length of the polypeptide.

To be encompassed by the present invention, an expressed polypeptide which comprises such a polypeptide subsequence performs at least one biological function of the intact polypeptide in substantially the same manner, or to a similar extent, as does the intact polypeptide. For example, a polypeptide fragment can comprise a recognizable structural motif or functional domain such as a DNA binding domain that binds to a specific DNA promoter region, an activation domain or a domain for protein-protein interactions.

XV. Production of Transgenic Plants

Modification of Traits

The polynucleotides of the invention are favorably employed to produce transgenic plants with various traits, or characteristics, that have been modified in a desirable manner, e.g., to improve the seed characteristics of a plant. For example, alteration of expression levels or patterns (e.g., spatial or temporal expression patterns) of one or more of the transcription factors (or transcription factor homologues) of the invention, as compared with the levels of the same protein found in a wild type plant, can be used to modify a plant's traits. An illustrative example of trait modification, improved characteristics, by altering expression levels of a particular transcription factor is described further in the Examples and the Sequence Listing.

Arabidopsis as a model system

Arabidopsis thaliana is the object of rapidly growing attention as a model for genetics and metabolism in plants. Arabidopsis has a small genome, and well documented studies are available. It is easy to grow in large numbers and mutants defining important genetically controlled mechanisms are either available, or can readily be obtained. Various methods to introduce and express isolated homologous genes are available (see Koncz, et al., eds. Methods in Arabidopsis Research. et al. (1992), World Scientific, New Jersey, New Jersey, in "Preface"). Because of its small size, short life cycle, obligate autogamy and high fertility, Arabidopsis is also a choice organism for the isolation of mutants and studies in morphogenetic and development pathways, and control of these pathways by transcription factors (Koncz, supra, p. 72). A number of studies introducing transcription factors into A. thaliana have demonstrated the utility of this plant for understanding the mechanisms of gene regulation and trait alteration in plants. See, for example, Koncz, supra, and U.S. Patent Number 6,417,428).

Arabidopsis genes in transgenic plants.

Expression of genes which encode transcription factors modify expression of endogenous genes, polynucleotides, and proteins are well known in the art. In addition, transgenic plants comprising isolated polynucleotides encoding transcription factors may also modify expression of endogenous genes, polynucleotides, and

proteins. Examples include Peng et al. (1997, Genes and Development 11:3194-3205) and Peng et al. (1999, Nature, 400:256-261). In addition, many others have demonstrated that an *Arabidopsis* transcription factor expressed in an exogenous plant species elicits the same or very similar phenotypic response. See, for example, Fu et al. (2001, Plant Cell 13:1791-1802); Nandi et al. (2000, Curr. Biol. 10:215-218); Coupland (1995, Nature 377:482-483); and Weigel and Nilsson (1995, Nature 377:482-500).

Homologous genes introduced into transgenic plants.

Homologous genes that may be derived from any plant, or from any source whether natural, synthetic, semi-synthetic or recombinant, and that share significant sequence identity or similarity to those provided by the present invention, may be introduced into plants, for example, crop plants, to confer desirable or improved traits. Consequently, transgenic plants may be produced that comprise a recombinant expression vector or cassette with a promoter operably linked to one or more sequences homologous to presently disclosed sequences. The promoter may be, for example, a plant or viral promoter.

The invention thus provides for methods for preparing transgenic plants, and for modifying plant traits. These methods include introducing into a plant a recombinant expression vector or cassette comprising a functional promoter operably linked to one or more sequences homologous to presently disclosed sequences. Plants and kits for producing these plants that result from the application of these methods are also encompassed by the present invention.

The complete descriptions of the traits associated with each polynucleotide of the invention is fully disclosed in Table 4, Table 5, and Table 6.

mains																												
Conserved domains	(113-169)	(87-154)	(224, 248)	(25.1-270)		(118-181)			(135-195)		(44-104)			(182-248)		(118-184)	(18-85)		í	(IBD)	(07 040)	(517-13)		(80,156)	(40 94)	(18-81)	(52-62)	(22-85)
Polypeptide SEQ:ID:NO:	- 2	4	ď			80			10		12			14		16	18		6	70	ç	777		76	17	97	87	30
Comment	Reduced apical dominance; small plant	Loss of apical dominance	Reduced apical dominance, shorter stems; constitutive photomorphogenesis; reduced size; altered seed protein	content		Altered plant architecture; altered floral organ idenury and development; dark green color		Altered plant architecture; altered carpel shape; dark	green color; decreased seed oil		Reduced apical dominance; pale green, smaller plants, reduced fertility		Altered plant architecture; constitutive	photomorphogenesis; altered seed oil and protein	VOIRGIN	Altered plant architecture: reduced size	Altered inflorescence structure			Altered plant architecture; late flowering		Reduced apical dominance; pale green color	dictions from the second secon	Reduced apical dominance, altered seed on and protein	content	Altered shoot development	Altered shoot development.	Reduced branching; reduced lignin
Family	WRKY	AP2		GAIAZN		HLH/MYC			HB		MYB-related			60.0	AFC	AP2	AP2			AP2		nd morph MYB-related		Ç.	APZ	里	里	HB
Category	Dev and morph WRKY	Dev and morph AP2	Dev and morph; seed	Diocnemistry		Dev and morph HLH/MYC		Dev and morph; seed	blochemistry		Dev and morph MYB-related		Dev and	morph; seed	Diocileilisuy	Dev and mornh AP2	Dev and morph	Dev and		flowering time		Dev and morph	Dev and	morph; seed	biocnemistry	Dev and morph HB	Dev and morph HB	Dev and morph HB
Trait		itecture		Ĕ	Architecture; flower;	morphology: other	Architecture;	flower; morphology:	=	Architecture;	morphology: other; fertility	Architecture:	light response;	seed oll and	protein content	Architecture;	itecture			flowering time					protein content	Architecture	Architecture	Architecture; stem
GID No.	G1275	1		61488		G1499			G1543		G1635	Т			46/15	61830	┰	Т		G2291		G2452			5		G391	G438
Polynucleotide SEQ ID NO:	_	8		ဂ		7			6		=======================================			Ş	2	ñ				19		21				25		29

			Dev and				
		Architecture;	morph;				
		stem; flowering	flowering time;		Altered architecture and inflorescence development,		
-		time; altered	pees		structure of vascular tissues; late flowering; altered seed		
31	G47	seed oil content biochemistry	biochemistry	AP2	oil content	32	(11-80)
	-	Architecture;	-		41114.	7	000
33	6225		Dev and morph bzlP		Loss of apical dominance; reduced leruilly	ţ,	(203-204)
			Dev and			-	i
35	G568	Ф	morph;	PZIP	Altered branching; late flowering	36	(215-265)
		Architecture;					
37	G280	flower	Dey and morph bZIP		Altered inflorescences; altered flower development	38	(162-218)
		Architecture;			Altered plant architecture; little or no pollen production,		
36	G615	fertility	Dev and morph TEO		poor filament elongation	40	(88-147)
		cture;	Dev and				
		flower; seed oil	morph; seed		Reduced apical dominance; abnormal flowers; altered		
41	G732	and protein	biochemistry	bZIP	seed oil and protein content	42	(31-91)
		Architecture;					
		fertility; flower;			Reduced lateral branching; reduced fertility; enlarged		
		stem; seed oil	Dev and		floral organs, short pedicels; thicker stem, altered		
		and protein	morph; seed		distribution of vacular bundles; altered seed oil and		
43	6988	content		SCR	protein content	44	(178-195)
45	G1519	lethal	Dev and morph	Г	Embryo lethal	46	(327-364)
47	G374		Dev and morph	Γ	Embryo lethai	48	(35-67, 245-277)
40	G877		Dev and mornh WRKY	WRKY	Embryo lethal	50	(272-328, 487-603)
2	100		מוס מווס מוס	MININ			,
22	G1000	Fertility; size; flower: stem	Dev and morph	Dev and morph MYB-(R1)R2R3	Reduced fertility; small plant; reduced or absent petals and sepals; reduced inflorescence, stem elongation	52	(14-117)
		Fertility: leaf:					
23	G1067	size	Dev and morph	d morph AT-hook	Reduced fertility; aftered leaf shape; small plant	54	(86-93)
	L	Fertility; flower;			Reduced fertility; reduced or absent petals, sepals and		
22	G1075	leaf; size	Dev and morph AT-hook	AT-hook	stamens; altered leaf shape; small plant	56	(78-85)
57	G1266	Fertility; size	Dev and morph	AP2	Reduced fertility; small plant	58	(79-147)
59	G1311	Fertility: size	Dev and morph	MYB-(R1)R2R3	Reduced fertility; small plant	90	(11-112)
61	G1321	Fertility; flower	Dev and morph	MYB-(R1)R2R3	Dev and morph MYB-(R1)R2R3 Poor fertility; altered flower morphology	62	(4-106)
		Fertility; flower;			Reduced fertility; petals and sepals are smaller; small		
63	G1326	size	Dev and morph	Dev and morph MYB-(R1)R2R3	plant	64	(18-121)
							(179-201, 262-285,
65	G1367		Dev and morph AT-hook	AT-hook	Reduced fertility; reduced size	99	298-319, 335-357)
			Dev and				
67	G1386	seed oil and	morph; seed	AP2	Reduced Terulity; reduced size; altered seed on and protein content	89	(TBD)
>	3		200000000000000000000000000000000000000				

-			200 000	•			
69	G1421	Fertility; size; morph; seed seed oil content biochemistry	morph; seed biochemistry	AP2	Reduced fertility; small plant; altered seed oil content	22	(74-151)
		Fertility; morphology:					
71	G1453	other	Dev and morph NAC	NAC ·	Reduced fertility; altered inflorescence development	72	(13-160)
73	G1560	Fertility; flower;	Dev and morph HS		Reduced fertility; altered flower development; reduced size	74	(62-151)
	1	Fertility; leaf;			Reduced fertility; altered leaf shape and development;		
75	G1594		Dev and morph HB	里	large pale seed	92	(343-308)
	C1750	Fertility; size;	Dev and morph; seed	AD2	Reduced fertility; reduced size; increased seed oil	82	(407-473)
	T	Fertility; flower; Dev and	Dev and	1		2	(2112)
		seed protein	morph; seed		Reduced fertility; extended period of flowering; altered	5	
29	G1947		biochemistry	HS	seed protein content	80	(37-120)
		Fertility; size;	Dev and		Reduced fertility: reduced size: altered seed oil and		
84	G2011	Ħ	biochemistry	HS	protein content	82	(56-147)
		lity; leaf;				ļ	
83	G2094	size	Dev and morph GATA/Zn	GATA/Zn	Reduced fertility; altered leaf development; reduced size	84	(43-68)
		Fertility; leaf;	Dev and		Beduced fortility: long natioles altered orientation:		
85	G2113	content	blochemistry	AP2	altered seed protein content	98	(TBD)
	G2115	Fertility; size	Dev and morph AP2	AP2	Reduced fertility; reduced size	88	(46-115)
		Fertility; size;					
	G2130	senescence	Dev and morph	AP2	Reduced fertility; reduced size; early senescence	06	(93-160)
91	G2147	Fertility; size	Dev and morph HLH/MYC	HLH/MYC	Reduced fertility; reduced size	92	(160-234)
		Fertility; size;	Dev and				
		seed protein	morph; seed		Reduced fertility; reduced size; altered seed protein	(
	G2156	content	biochemistry	AT-hook	content	94	(98-99)
92 (G2294	Fertility; size	Dev and morph AP2	AP2	Reduced fertility; reduced size	96	(32-102)
	G2510	Fertility; size	Dev and morph AP2	AP2	Reduced fertility; reduced size	86	(41-108)
		Fertility; flower;			Reduced fertility; altered flower development; reduced	ç	
		\neg	Dev and morph MYB-(R1)R2R3	31)R2R3	SIZE	001	(19-120)
	G340		Dev and morph Z-C3H	Z-C3H	Reduced fertility, size	102	(37-154)
	G 39		Dev and morph	AP2	Reduced fertility, small plant	104	(24-90)
105	G439	Fertility; size	Dev and morph AP2	AP2	Reduced fertility; small plant	106	(110-177)
107	G470	Eortility.	Down and manh	אסע	Short stamon filaments	2	/64_202\

109	G652	Fertility; seed; Dev and flower; size; morph; seed seed oil content biochemistry		Z-CLDSH	Reduced fertility; irregular shaped seed; altered flower development; reduced size, slow growth; altered seed oil content	110	(28-49, 137-151, 182- 196)
111	.G671	Fertility; flower; leaf: size: stem	Dev and morph	Dev and morph MYB-(R1)R2R3	Reduced fertility; reduced petal abscission; altered leaf shape; small plant; altered inflorescence stem structure	112	(15-115)
113	1	Fertility; flower	Dev and morph HLH/MYC		Reduced fertility, homeotic transformations	114	(126-182)
115			Dev and morph NAC		Reduced fertility; small plant	116	(53-175)
		Fertility; leaf; morphology:			Reduced fertility; altered leaf shape; dark green; small		
117	G977	other; size	Dev and morph AP2		plant	118	(5-72)
		Flower; leaf;			Altered flower development, ectopic carpel tissue;		
		seed oil and	morph: seed		inflorescence development; altered seed oil and protein	*****	
119	G1063	ent	biochemistry	HLH/MYC	content	120	(131-182)
121	G1140	Flower	Dev and morph MADS		Altered flower development		(2-57)
123	G1425		Dev and morph NAC		Altered flower and Inflorescence development	124	(20-173)
125	G1449		Dev and morph IAA		Altered flower structure	126	(48-53,74-107,122- 152)
		leaf;	Dev and				
		seed protein	morph; seed		Altered flower development; altered leaf development;		
127	G1897	content	biochemistry	Z-Dof	altered seed protein content	128	(34-62)
		Flower; leaf;			Altered flower development, ectopic carpel tissue; altered leaf shape, dark green color; altered		
129	G2143	inflorescence	Dev and morph HLH/MYC		inflorescence development	130	(128-179)
			Dev and				
131	G2535	Flower; seed protein content	morph; seed biochemistry	NAC.	Altered flower development; altered seed protein content	132	(11-114)
					Altered flower development, ectopic carpel tissue;		
133	G2557	Flower; leaf	Dev and morph HLH/MYC	-I/MYC	altered leaf shape, dark green color		(278-328)
135	G259	Flower; leaf	Dev and morph HS		Altered flower development; altered leaf development	136	(27-131)
		af;	Dev and		feel herele counting solutions browning of colors to de		
137	G353	orotein content	biochemistry	Z-C2H2	development; reduced size; altered seed protein content	138	(41-61, 84-104)
139	G354	Flower; light	Dev and momb 7-C2H2		Short pedicels, downward pointing siliques; constitutive morphoenesis: reduced size	140	(42-62, 88-109)
		Flower; morphology:			Altered flower development; multiple developmental		
141	G638	other	Dev and morph TH		defects	142	(119-206)

(109-177)	(90-210)	(198-247)		(33-42, 78-175)	(886-896)	(70-127)	(27-83)		(30-177)		(261-311)	(17-77)	(28-350)	(21-81)		(TBD)		(47 05)	(17-63)		(124-149)	(17-59)			(205-263, 344-404)		(184.054)	107-101	(100-153)		(46-106)
144	146	148		150	152	154	156		158		160	162	164	166		168		120	0/1		172	174		į	176		178	0/1	180		182
Abnormal anther development; small and spindly plant; altered seed fatty acids	Altered inflorescence structure; altered leaf development	Altered leaf shape	Dev and Serrated leaves: Increased plant size: flowering appears	to be slightly delayed	Altered leaf development	Dark green shiny leaves; small plant	Long petioles, upturned leaves	Alfered leaf shane, dark green color; reduced trichome	density; late flowering	Pale green leaves, altered leaf shape; reduced size; long	hypocotyls; large, pale seeds	Altered leaf development	Altered leaf development	Narrow leaves; small plants	Dark green, small leaves with short petioles;	photomorphogensis in the dark; small plant		Dark green, shiny leaves; altered seed oil and protein	content		Altered lear development; altered seed oil and protein content	Chlorotic patches in leaves; reduced size		Altered leat development; reduced size; altered seed	profein content	•	traction of characters to be a second to the	Smaller, curred leaves, altered seed oil, protein content	Alterations in leaf surface; large, pale seeds	Small dark green leaves: aftered seed oil and protein	content
. AP2	MYB-(R1)R2R3	GARP		AT-hook	PAZ	WRKY	MYB-related		NAC		HLH/MYC	里	SWI/SNF	HB		Dev and morph MYB-(R1)R2R3			AP2		GRF-like	Z-Dof			WRKY			APZ	TH		bZIP
Dev and morph; seed blochemistry	Dev and morph	Dev and morph	Dev and	flowering time	Dev and morph PAZ	Dev and morph WRKY	Dev and morph MYB-related	Dev and	a time	1	Dev and morph HLH/MYC	Dev and morph HB	Dev and morph SWI/SNF	Dev and morph HB		Dev and morph	Dev and	morph; seed	biochemistry	Dev and	morph; seed blochemistry	Dev and morph	Dev an	morph; seed	biochemistry	Dev and	morph; seed	biochemistry	Dev and morph TH	Dev and	biochemistry
Flower; morphology: other; seed oil			ci7e.	ime		size	Leaf	l oof: trichome:		Leaf: size; light	response; seed	Leaf	Leaf	Leaf; size	Leaf; light	response; size	Leaf; seed oil	tein	ı	<u>:</u>	and protein	Leaf; size		_	protein content	Leaf; seed oil	and protein	content	Leaf; seed	Leaf; seed oil	content
6985	G1645	1		G1073	Т	G1267	1		G1452	1	G1494	G1548	\top	†		G1786			G1792		G1865	1			G1933				G2105		G2117
143	145	147		149	151	153	155		157		159	161	163	165		167		ļ	169		171	173			175			177	179		181

Table 4

(75-132)	(167-242)	(203-283)	(38-88)	(219-269)		(4-71)	(7-113)	(85-128)	(229-292)		(22-356)	(20-28, 71-82, 126- 142, 187-224)	(90-150)	(TBD)	(20-120)		(54-111)	(68-92)		(2-57)	(146-203)	(225-242)	(12-118)	(187-219, 264-300)	(54-117)
184	186	188	190	192		194	196	198	200		202	204	206	208	210		212	214		216	218	220	222	224	226
Altered leaf development; altered seed protein content	Altered leaf development; short roots	Pale green leaves, altered leaf shape; long hypocotyls; reduced size; altered seed oil content	Dark green leaves; reduced size	Slowed development; altered leaf color and shape		Glossy, shiny leaves; altered seed oil and protein content	Dev and morph MYB-(R1)R2R3 Dark green leaves	Altered leaf development; slow growth	Altered leaf shape	Dark green leaves; altered cotyledon shape; reduced	size	Altered leaf shape	Dark green color; small plant	Reduced size, increased anthocyanins	Dev and morph MYB-(R1)R2R3 Dark green leaves, upwardly oriented; reduced size		Altered leaf shape; later flowering	Altered leaf morphology	Altered leef development: aftered seed oil and protein	content	Serrated leaves	Altered development, dark green color; reduced size	Altered development, dark green color; reduced size	Altered leaf shape; small plant	Altered leaf shape, small plant
TEO	HLH/MYC	HLH/MYC	GARP	GARP		AP2	MYB-(R1)R2R3	RING/C3H2C3	田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田		ARF	Ι¥Α	bZIP	BZIPT2	MYB-(R1)R2R3		Z-Dof	Z-C2H2		MADS	WRKY	SCR	MYB-(R1)R2R3	Dev and morph DBP	PCF
Dev and morph; seed biochemistry	Dev and morph HLH/MYC	Dev and morph; seed biochemistry		Dev and morph	Dev and	biochemistry	Dev and morph	Dev and morph	Dev and morph HB		Dev and morph ARF	Dev and morph IAA	Dev and morph bZIP	Dev and morph BZIPT2	Dev and morph	Dev and	morpn; flowering time	Dev and morph Z-C2H2	Dev and	hiochemistry	Dev and morph WRKY	Dev and morph	Dev and morph	Dev and morph	Dev and morph PCF
Leaf; seed protein content	1	Leaf, light response; size; seed oil content	Leaf	Morphology: other; leaf	oil (Leaf; morphology; other	Leaf	Leaf; morphology:	other; size	Leaf	Leaf; size	Leaf	Leaf; size	1	Lear, nowering time	Leaf	Leaf; seed oil	and protein		size		Leaf; size	Leaf; size
G2124	T	G2144	1-		1	G2583		G377			G447	G464	Π	G577	G674		G736	T		G917	Τ		G932	G599	G804
183	185	187	189	191		193	195	197	199		201	203	205	207	209		211	213		215	217	219	221	223	225

		Light response; morphology;			Constitutive photomorphogenesis; slow growth; altered	Č	
227	G1062	other; seed	Dev and morph	morph HLH/MYC	seed shape	228	(308-359)
229	G1322	Light response; size	Dev and morph	morph MYB-(R1)R2R3 F	Photomorphogenesis in the dark; reduced size	230	(26-130)
		Light response; morphology: other; seed oil	Dev and		Constitutive photomorphogenesis; multiple		
231	G1331	and protein content	morpn; seed biochemistry	3	developmental area attorney, area od seed on aria provent	232	(8-109)
233	G1521	Light response	Dev and morph	morph RING/C3HC4	Constitutive photomorphogenesis	234	(39-80)
		Light response; Dev and seed protein morph; s	pee		Constitutive photomorphogenesis; altered seed protein	938	(307-383)
235	G183	content	biochemistry WKKY		Content Constitutive photomorphogenesis	238	(175-245)
237	G2255	Light response	Dev and morph Z-Dof		Upward pointing leaves	240	(75-103)
244	24007	Morphology:			Muttine developmental alterations	242	(TBD)
243	31010	Morphology:	Dev and morph	WP-1	Multiple developmental alterations	244	(33-122)
245	G1014	Morphology: other: trichome	Dev and morph		Multiple developmental defects; reduced trichomes	246	(90-172)
		Morphology:				970	(30.04)
247	G1035	other	Dev and morph bZIP		Multiple developmental alterations	047	(16-60)
249	G1046	Morphology: other	Dev and morph bZIP	bZIP	Multiple developmental alterations	250	(79-138)
251	G1049	Morphology: other; seed protein content	Dev and morph; seed biochemistry	bZIP	Multiple developmental alterations; altered seed protein content	252	(77-132)
		logy: eed oil	Dev and morph; seed		Multiple developmental alterations; altered seed oil	25.4	(67.74)
253	G1069		biochemistry	AT-hook	content	107	(1)-101
. 255	G1070	Morphology: other	Dev and morph	morph AT-hook	Several developmental defects	256	(98-120)
257	G1076	Morphology: other	Dev and morph	morph AT-hook	Lethal when overexpressed	258	(82-89)
259	G1089	Morphology: other	Dev and morph	morph BZIPT2	Developmental defects at seedling stage	260	(425-500)
261	G1093	Morphology: other	Dev and morph	RING/C3H2C3	morph RING/C3H2C3 Multiple morphological alterations	262	(105-148)

(103-110, 155-162)	(173-220)	(227-270)	(102-160)	(36)	36)	118)	(23)	(80	134)	(108-129,167-188)	(((18-174)	(29-120)	35)	(0	93)
				2 (27-139)	4 (18-56)	5 (13-118)	8 (20-123)	0 (5-108)	2 (28-134)		6 (ТВD)			2 (18-85)	4 (TBD)	(86-93)
264	266	268	270	272	274	276	278	280	282	284	286	288	290	292	294	296
Multiple developmental alterations	Multiple developmental alterations; altered seed protein content	Multiple developmental alterations; reduced seed size, altered seed shape; altered seed oil and protein content	Several developmental defects; altered seed oil and protein content	Multiple developmental alterations; altered seed protein content	Reduced apical dominance; increased seed size	morph MYB-(R1)R2R3 Lethal when overexpressed	morph MYB-(R1)R2R3 Multiple developmental alterations	morph MYB-(R1)R2R3 Multiple developmental alterations	Multiple developmental alterations	Multiple developmental alterations	Multiple developmental alterations	Lethal when overexpressed	Lethal when overexpressed	Multiple developmental alterations	Abnormal inflorescence and flower development	Militine developmental alterations
morph AT-hook		AIZq	HLH/MYC	72R3	morph Z-CO-like	MYB-(R1)R2R3	MYB-(R1)R2R3	MYB-(R1)R2R3	morph MYB-(R1)R2R3	morph Z-C2H2	NAC	NAC	CAAT	AP2	AP2	Mornh AT book
Dev and morph	Dev and morph; seed biochemistry	Dev and morph; seed biochemistry	Dev and morph; seed biochemistry	Dev and morph; seed biochemistry	Dev and morph	Dev and morph	Dev and morph	Dev and morph	Dev and morph	Dev and morph				Dev and morph AP2	Dev and morph AP2	Oct and mornh
Morphology: other	Morphology: other; seed protein content	Morphology: other; seed oil and protein	Morphology: other; seed oil and protein content	Morphology: other; seed protein content	Morphology: other; seed	Morphology: other	Morphology: other	Morphology: other	Morphology: other	Morphology: other	Morphology: other	Morphology: other	Morphology: other	Morphology: other	Morphology: other	Morphology:
G1127	G1131	G1145	G1229		G1255	G1304		G1320	G1330	G1352	ı	G1360]		
263	265	267	269	271	273	275	277	279	281	283	285	287	289	291	293	. 300

	——Т	T		\neg			Т	$\neg \neg$					Т		[$\neg \neg$		П		Т	
(тво)	(239-296)	(172-223)		(9-178)	(10-152)		(TBD)	(2-57)		(49-70)	(51-73)		(29-48)		(251-276)	(34-83)		(41-77)	(35-98)	722	(64-124)
298	300	302		304	306		308	310		312	314	0.00	316		318	320		322	324		326
Multiple developmental alterations	Reduced seedling germination and vigor; increase in 18:2, decrease in 18:3	Multiple developmental alterations	the list book boarding to be be a second of book and the book of t	Multiple developmental ancidations, altered seed on and protein content	Multiple developmental alterations	Multiple developmental alterations; altered seed protein	content	Multiple developmental defects	M. itial descendent of the formation of the following the	multiple developmental and another, increased seed on content	Multiple developmental alterations		Multiple developmental alterations		 Multiple developmental alterations; altered seed oil and protein content 	Multiple developmental alterations		Muttiple developmental alterations; pale seed; altered seed protein content	Doding of Afforontiation in morietam		Multiple developmental alterations
AP2	WRKY	GRF-like		NAC	NAC		NAC	MADS		Z-C2H2	Z-C2H2		Z-C2H2		GATA/Zn	GARP		RING/C3HC4	9	00	HB
Dev and morph AP2	Dev and morph; seed biochemistry	Dev and morph GRF-like	Dev and	morph; seed biochemistry	Dev and morph NAC	Dev and morph; seed	biochemistry	Dev and morph MADS	Dev and	morpn; seed biochemistry	Dev and morph Z-C2H2		Dev and morph Z-C2H2	Dev and	morph: seed biochemistry	Dev and morph GARP	Dev and	morph; seed biochemistry		Dev and morph no	Dev and morph HB
Morphology:	nology:	Morphology: other	ology: seed oil	and protein content	ogy:	nology: seed	lent	Morphology: other		Morphology: other; seed oil		Morphology:	other	Morphology: other; seed oil	and protein content	Morphology: other	Morphology: other; seed;	seed protein content	ogy:	omer	Morphology: other
G1415 (-	G1442		G1454		1	G1460	G147		G1471	G1475		G1477		G1487	1		G1531		0.1540	G1544
297	299	301		303	305		307	309		311	313		315		317	319		321		323	325

1				-						Γ	Т			Ι						7
	(2-57)	(TBD)	(61-121)	(66-124)		(384-448)	(7-62)	(100-165)	(TBD)	(11,11)	7.11-111	(84-155)	(TBD)	(83-151)	(140-209)	(10-153)	(255-272)	(94-119)	(1-50)	(217-316)
	328	330	332	334		336	338	340	342	796	1	346	348	350	352	354	356	358	360	362
	Multiple developmental defects; seed color alteration	Multiple developmental alterations	Multiple developmental alterations	Multiple developmental alterations	Multiple developmental alterations: aftered seed protein	content	Multiple developmental defects	Pale green, smaller plants	morph MYB-(R1)R2R3 Multiple developmental alterations	Multiple developmental alterations; altered seed protein	Multiple developmental alterations: formation of necrotic	lesions	Multiple developmental alterations	Multiple developmental alterations	Lethal when overexpressed	Multiple developmental alterations	Multiple developmental alterations; altered seed oil content	Lethal when overexpressed	Delayed development; altered seed protein content	Dev and morph MYB-(R1)R2R3 Lethal when overexpressed
	MADS	里	田	招		НВ	MADS	MYB-related	MYB-(R1)R2R3	MVD (B410000	CA20(17)-01111	AP2	AP2	AP2	AP2	NAC	SCR	morph GATA/Zn	MYB-related	MYB-(R1)R2R3
	Dev and morph MADS	Dev and morph HB	Dev and morph HB	Dev and morph HB	Dev and morph: seed	biochemistry	Dev and morph MADS	Dev and morph MYB-related	Dev and morph	Dev and morph; seed	DIOCHERINSH Y	Dev and morph AP2	Dev and morph AP2	Dev and morph AP2	Dev and morph AP2	Dev and morph NAC	Dev and morph; seed biochemistry	Dev and morph	Dev and morph; seed biochemistry	Dev and morph
	Morphology: other; seed	Morphology: other	Morphology: other	Morphology: other	nology: seed	protein content	Morphology: other	Morphology: other	Morphology: other	ology: seed	Morphology:	other	Morphology: other	Morphology: other	Morphology: other	Morphology: other	Morphology: other; seed oil content		Morphology: other; seed protein content	Morphology: other
	G156	G1584	G1587	G1588		G1589	G160	G1636	G1642		Т	G1749	G1751		1	I	G1767	G1778	G1789	G1790
	327	329	331	333		335	337	339	25	242	240	345	347	349	351	353	355	357	359	361

Multiple developmental alterations 402 (43-85)	Lethal when overexpressed 404 (31-59)	Multiple developmental alterations; increased seed oil content	Multiple developmental alterations 408 (53-95)	Multiple developmental alterations 410 (19-47)	Lethal when overexpressed 412 (27-55)	Multiple developmental alterations 414 (195-216, 245-266)	Multiple developmental alterations 416 (6-150)	Slow growth, delayed development . 418 (31-53)	Multiple developmental alterations . 420 (59-124)	Multiple developmental defects 422 (183-239)	Lethal when overexpressed 424 (187-259)	Reduced size and root mass in plates.; altered seed protein content (230-278)	Multiple developmental alterations; altered seed protein content	Lethal when overexpressed 430 (27-55)	Multiple developmental alterations 432 (219-323)	Multiple developmental alterations 434 (TBD)	
Dev and morph Z-Dof	Dev and morph Z-Dof	Dev and morph; seed biochemistry Z-Dof	듄	Dev and morph Z-Dof	Dev and morph Z-Dof	Dev and morph Z-C2H2	Dev and morph NAC	Dev and morph Z-CO-like	Dev and morph AP2	Dev and morph WRKY	Dev and morph HLH/	Dev and morph; seed biochemistry GARP	Dev and morph; seed biochemistry WRKY	듄	Dev and morph Z-C2H2	Dev and morph TEO	
Morphology: Cher	Morphology: other	tology: seed oil nt	ogy:	ology:	nology:	Morphology:	Morphology: other	nology:	Morphology:	ology:	nology:	Morphology: Cother; seed	Morphology: [other; seed r	1	Morphology:	Morphology: other	
G1896	G1898	G1902	1	G1906	G1913	G1914	G1925	G1929	G1930	G195		G1958	G196	1 .0	G1976	G2057	
401	403	405	407	409	411	413	415	417	419	421	423	425	427	429	431	433	

437	G211	Morphology: other	Dev and morph	MYB-(R1)R2R3	Dev and morph MYB-(R1)R2R3 Multiple developmental alterations	438	(24-137)
750	C2423	Morphology: other; flowering time; seed	Dev and morph;	A B 2	Multiple developmental alterations; late flowering; altered	440	(11-83)
408	62133		nowering mine	714		2	722
441	G2134	Morphology: other	Dev and morph AP2	AP2	Multiple developmental alterations	442	(ТВD)
		Morphology:	Dev and				
		and protein	morph; seed		Multiple developmental alterations; altered seed oil and		:
443	G2151	content	biochemistry	AT-hook	protein content	444	(93-113, 124-144)
445	G2154	Morphology: other	Dev and morph AT-hook		Multiple developmental alterations	446	(97-119)
447	G2157	Morphology:	Nev and mornh AT-hook		Multiple developmental alterations	448	(82-102, 164-107)
		Morphology:				750	00 460)
449	G2181	other	Dev and morph NAC	NAC	Multiple developmental alterations	450	(601-77)
451	G221	Morphology: other	Dev and morph	MYB-(R1)R2R3	Dev and morph MYB-(R1)R2R3 Multiple developmental alterations	452	(21-125)
		Morphology:			:		1
453	G 2290	other	Dev and morph WRKY	WRKY	Multiple developmental alterations	454	(147-205)
455	G2299	Morphology: other	Dev and morph AP2	AP2	Multiple developmental alterations	456	(48-115)
		Morphology: other: seed oil	Dev and	-			
		and protein	morph; seed		Tissue necrosis; multiple developmental alterations;	750	120)
457	G2340	content	biochemistry	MYB-(K1)KZK3	MYB-(K1)KZK3 altered seed oil and protein content	430	(14-120)
459	G2346	other	Dev and morph SBP	SBP	Enlarged seedlings	460	(59-135)
461	G237	Morphology: other	Dev and morph	MYB-(R1)R2R3	Dev and morph MYB-(R1)R2R3 Multiple developmental alterations	462	(11-113)
		Morphology:	Dev and		Multiple developmental alterations: aftered seed omfeln		
463	G2373	protein content	biochemistry	E	content	464	(290-350)
			Dev and morph; seed				
465	G2376		biochemistry	· 王	Seedling lethality; altered seed protein content	466	(79-178, 336-408)
467	G24	Morphology: other	Dev and morph AP2	AP2	Reduced size and necrotic patches	468	(25-93)
birning and a second se							

469	G2424	Morphology: other	Dev and morph	MYB-(R1)R2R3	Dev and morph MYB-(R1)R2R3 Multiple developmental alterations	470	(107-219)
471	G2505	Morphology: other	Dev and morph NAC	NAC	Lethal when overexpressed	472	(10-159)
473	G2512	Morphology: other	Dev and morph AP2	AP2	Multiple developmental alterations	474	(79-139)
475	G2513	Morphology: other	Dev and morph AP2	AP2	Multiple developmental alterations	476	(TBD)
477	G2519	Morphology: other	Dev and morph HLH/MYC	HLH/MYC	Multiple developmental alterations	478	(1-65)
		Morphology: other; seed oil	Dev and				
479	G2520	and protein content	morph; seed biochemistry	HLH/MYC	Multiple developmental alterations; altered seed oil and protein content	480	(135-206)
		Morphology: other; seed	Dev and morph; seed		Multiple developmental alterations; altered seed protein		
481	G2533	protein content	biochemistry	NAC	content	482	(11-186)
483	G2534	Morphology: other	Dev and morph NAC		Lethal when overexpressed	484	(10-157)
		Morphology: other; seed oil	Dev and				
485	G2573	and protein content	morph; seed blochemistry	AP2	Multiple developmental alterations; altered seed oil and protein content	486	(31-98)
	1	Morphology:					(2)
487	62589	other	Dev and morph MADS	MADS	Multiple developmental alterations	488	(2-57)
489	G2687	Morphology: other	Dev and morph AP2	AP2	Multiple developmental alterations	490	(51-120)
491	G27	Morphology: other	Dev and morph AP2	AP2	Abnormal development: small	492	(37-104)
		Morphology:					,
		other; seed oil	Dev and momh: seed		Multiple developments starstions: elfered seed of and		
493	G2720		biochemistry	MYB-(R1)R2R3 protein content	profein content	494	(10-114)
		-	Dev and		Multiply described and an all and an analysis of the second and an all and an analysis of the second analysis of the second analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second analysis of the second and an analysis of the second and an analysis of the second and an analysis		(172-192, 226-247,
495	G2787	content	biochemistry	AT-hook	manpie developine indicate and anoths, and ed seed on content	496	230-270, 230-311, 243 366)
497	G2789	Morphology:	Dev and mornh	mornh AT-hook	Multinle develormental afterations	408	(63.73.424.465)
700	1	ology:	da ou ou		Militaria davialamentali altamina		(2013) (213)
200	3		שומוסוחו חווא זהם ו		พนเทุย นองอเวกเอาเลา สเซเลเบทร	nnc	(180)

501	G33	Morphology: other	Dev and morph AP2	AP2	Multiple developmental defects	502	(50-117)
		Morphology: other; seed oil	Dev and		-		
203	G342	and protein content	morph; seed biochemistry	GATA/Zn	Multiple developmental alterations; altered seed oil and protein content	504	(155-190)
505	G352		Dev and morph	morph Z-C2H2	Multiple developmental alterations	506	(99-119,166-186)
507	C257	ology:	Dov and mornh	0007-7	Davialonmental defect	508	(66-2)
100	200		Dev and morphs	2020-7 ildi0ill	הפעפוס הוופווים חפופתי	88	1.50
509	G358		Dev and morph	morph Z-C2H2	Lethal when overexpressed	510	(124-135, 188-210)
511	G360	:Vgolot	Dev and morph	morph Z-C2H2	Multiple developmental alterations	512	(42-62)
		Size;					
		:vgolot	Dev and				
			morph;		-		
		 	flowering time;		Reduced size; increased pigmentation in seed, embryos		
513	 	seed protein	seed hinchemistry	. CHaJ-2	and other organs; ectopic trichome formation; increased	514	(62-82)
		Morphology:	Τ	1			7
515	G364	other	Dev and morph	morph Z-C2H2	Developmental defect	516	(54-76)
						!	. !
517	G365		Dev and morph	morph Z-C2H2	Multiple developmental alterations	518	(70-90)
519	G367		Dev and morph	morph Z-C2H2	Lethal when overexpressed	520	(63-84)
521	G373		Dev and morph	morph RING/C3HC4	Multiple developmental alterations	522	(129-168)
	1	Morphology:			Altered leaf coloration and shape, reduced fertility; small		
523	G396	other; size	Dev and morph HB	HB	plant	524	(159-220)
525	G431		Dev and morph HB	HB	Developmental defect, sterile	526	(286-335)
527	G479		Dev and morph SBP	SBP	Multiple developmental alterations	528	(70-149)
		hology:			Slow growth and development; increased anthocyanin		
529	G 546		Dev and morph	morph RING/C3H2C3	pigmentation	530	(114-155)
531	G551	Morphology: other	Dev and morph HB	НВ	Multiple developmental alterations	532	(73-133)
533	G578	Morphology: other	Dev and morph bZIP	bZIP	Lethal when overexpressed	534	(36-96)

535	G596	Morphology: other	Dev and morph	morph AT-hook	Multiple developmental alterations	536	(96-68)
537	G617		Dev and morph TEO		Multiple developmental alterations	538	(64-118)
539	G620	Morphology: other; seed protein content	Dev and morph; seed biochemistry	—	Multiple developmental alterations; altered seed protein content	540	. (20-118)
541	G625		Dev and morph AP2		Lethal when overexpressed	542	(52-119)
543	G658	ology:	Dev and morph	MYB-(R1)R2R3	morph MYB-(R1)R2R3 Developmental defect	544	(2-105)
545	G716	Morphology: other	Dev and morph ARF		Multiple developmental defects	546	(24-355)
547	G725	Morphology: other	Dev and morph GARP	Ω.	Developmental defect	548	(39-87)
549	G727	Morphology: other	Dev and morph GARP	,	Multiple morphological alterations	550	(226-269)
551	G740	Morphology: other	Dev and morph	SH	Slow growth	552	(24-42, 232-268)
553	G770	Morphology: other	Dev and morph NAC	NAC	Multiple developmental alterations	554	(19-162)
555	G858	nology:	Dev and morph MADS	S	Multiple developmental alterations	556	(2-57)
567	צא	seed	Dev and morph; seed biochemistry	AP?	Altered morphology: increased seed protein	558	(36-103)
229		2	Dev and morph AP2	AP2	Multiple developmental alterations	560	(18-85)
561			Dev and morph	з/сзн2сз	Multiple developmental alterations	562	(117-158)
563	G910	g:	Dev and morph; flowering	Z-CO-like	Multiple developmental alterations; late flowering	564	(14-37, 77-103)
565	G912	Morphology: other; slze; sugar sensing; flowering time	Dev and morph; sugar sensing; flowering time	AP2	Dark green color; small plant; reduced cotyledon expansion in glucose; late flowering	566	(51-118)
567	G920	Morphology: other	Dev and morph	morph WRKY	Multiple developmental alterations	268	(152-211)

570 (97-106)	572 (TBD)	574 (63-139,165-233)	576 (428-432,704-708)	578 (69-134)	580 (14-120)		. 584 (39-76)		286 (28-78)	588 (62-127)	(109-158)	592 (221-297, 323-393)						600 (372-425)	602 (9-156)	604 (87-100)			606 (89-149)	1000 007
Pale seedlings on agar; reduced size	Slowed growth rate; altered seed protein content	Several developmental defects; altered seed development, ripening and germination	Developmental defects	Multiple developmental alterations; altered seed protein content	Multiple developmental alterations; overexpression results in an increase in M39480	Increased root growth	Increased root hairs; glabrous, lack of trichomes	Increased root hairs; glabrous, lack of trichomes;	increased seed protein	Increased root mass	Smaller and more rounded seeds	Increased seed size	7	Increased seed size; reduced plant size; altered seed	protein content	Large seeds	morph MYB-(R1)R2R3 Reduced seed color	Delayed senescence	Premature senescence	Early senescence; reduced size; altered seed protein			Early senescence; altered seed protein content	
	ပ				MYB-(R1)R2R3 I		be		-related							morph HLH/MYC	MYB-(R1)R2R3	J dlZq		- AT-hook			TEO	
Dev and morph EIL	Dev and morph; seed biochemistry	Dev and morph AP2	Dev and morph SCR			Dev and morph	Dev and morph			Dev and morph AP2	Dev and morph GARP	Dev and morph AP2	Dev and		biochemistry	Dev and morph	Dev and morph	Dev and morph bZIP	Dev and morph NAC	eed		morph; seed	biochemistry	
Morphology: other; size	y: Jent	1			Morphology: other; leaf		trichome		nt		Seed		; size;	otein	ŧ	Seed	Seed	scence		Senescence; size; seed	Senescence;	seed protein	content	Senescence;
6665	6963				1	7	G225		92	ı	G1040	1						G1050	1	71044	Т		G2383	
569	571	573	575	577	579		583		585	587	589	591			593	595	597	599	601	603			605	

609	G636	Senescence; size	Dev and morph TH	王	Premature senescence; reduced size	610	(55-145, 405-498)
		Senescence:	Dev and morph:				
611	G878	flowering time	flowering time WRKY		Delayed senescence; late flowering	612	(250-305, 415-475)
613	G1134	er Pe	Dev and morph	//VC	Slilques with altered shape	614	(198-247)
615	G1008		Dev and morph		Small plant	616	(96-163)
617	G1020		Dev and morph	AP2	Very small T1 plants	618	(28-95)
619	G1023		Dev and morph AP2	AP2	Reduced size	620	(128-195)
621	G1053		Dev and morph		Small plant	622	(74-120)
623	G1137		Dev and morph HLH/N	ξÇ	Small T1 plants	624	(264-314)
625	G1181		Dev and morph		Small T1 plants	626	(24-114)
627	G1228		Dev and morph	HLH/MYC	Reduced size	628	(179-233)
629	G1277	Size	Dev and morph	AP2	Small plant	630	(18-85)
631	G1309	Size	Dev and morph	Dev and morph MYB-(R1)R2R3 Small plant	Small plant	632	(9-114)
		Oigo: Oigos	Dev and				
		Sensing seed	inoipii, sugar sensina: seed		Reduced size: reduced seedling vigor on high aluges.		
633	G1314	protein content	biochemistry	MYB-(R1)R2R3	MYB-(R1)R2R3 laftered seed protein content	634	(14-116)
635	G1317	Size	Dev and morph	MYB-(R1)R2R3	Reduced size	636	(13-118)
		Size; seed oil	Dev and	Dev and			
		and protein	morph; seed		Small T1 plants, dark green; decreased seed oil,		
637	G1323	content	biochemistry	MYB-(R1)R2R3	increased seed protein	638	(15-116)
		Size; trichome;	Dev and				
			morph; seed		Reduced size; reduced trichome density; altered seed oil		
639	G1332	protein content	biochemistry	1)R2R3	and protein content	640	(13-116)
641	G1334		Dev and morph CAAT		Small, dark green	642	(18-190)
643	G1381		Dev and morph		Reduced size	644	(68-135)
645	G1382	Size	Dev and morph		Small plant	646	(210-266, 385-437)
			Dev and				
647	G1435	time	flowering time	GARP	Increased plant size: late flowering	648	(146-194)
649	G1537	Size	Dev and morph		Small T1 plants with altered development	650	(14-74)
651	G1545	Size	Dev and morph HB		Reduced size	652	(54-117)
		Size; seed oil	Dev and				
		and protein	morph; seed				
653	G1641	content	biochemistry	MYB-related	Small plant; altered seed oil and protein content	654	(139-200)
			Dev and				
. 655	G165	orze; seed protein content	morpn, seed biochemistry	MADS	Reduced size; altered seed protein content	656	(7-62)

		(143-215)	(134-192)	(твр)	(ТВD)		(158-218)	(166-238)	(295-352)	(140-207)		(27 476)	(10/-1/6)	(5-50)		(7070,007)	(40.400)	(40-102)	(174-230)	(335-406)		(07_164)	(101-104)		(TRD)	(166-243)	(64-117)	(317-10)	(18D)	(180)	(425-478)	(118-234)	(145-213)		(24-124)
		658	099	662	664		999	899	029	672		7.5	0/4	676		678	0/0	089	682	684		9	000		888	069	602	700	694	969	869	200	702	****	704
		Reduced size; altered seed oll and protein content	Small plant	Reduced size	Reduced size; altered seed protein content		Small plant; altered seed protein content	Small, spindly plant	Small plant	Small plant		-	Reduced size; altered seed oil and protein content	Reduced size, dark green feaves		factors aistern bose borrells to the factors of	Increased leaf size, anereu seeu protein content	Reduced size	Small plant	Reduced size		trotace aleton been been been been been been been	Reduced Size; altered seed oil and protein contein		المواموم متماميم لحم إلى لمممم لمصمال بمدنه لموريكين	Deduced Size, aftered seed of and protein content	Negative State	olitali I i pidilis	Reduced size	Reduced size, slow growth	Increased leaf size, faster development	Reduced size	Reduced size		MYB-(R1)R2R3 Reduced size; altered seed oil and protein content
		HLH/MYC	HLH/MYC	NAC	WRKY		WRKY	CAAT	WRKY	AP2		!	HLH/MYC ·	Z-CO-like		751075	WKKY	PCF	WRKY	HLH/MYC		Ç	APZ		Ç.	APZ III I WAYO	טוואוין שיי	AFZ	MYB-related	CAAT	GARP	WRKY	HLH/MYC		MYB-(R1)R2R3
	Dev and	morpn; seed blochemistry	Dev and morph HLH/MYC	Dev and morph NAC	Dev and morph; seed biochemistry	Dev and		Dev and morph	Dev and morph WRKY	Dev and morph AP2	Dev and	morph; seed	biochemistry	Dev and morph	Dev and	morph; seed	Diocnemistry	Dev and morph PCF	Dev and morph	Dev and morph HLH/MYC	Dev and	morph; seed	Diocnemistry	Dev and	morph; seed	Diocnernistry	Dev and morph reminis	Dev and morph	Dev and morph MYB-related	Dev and morph CAAT	Dev and morph GARP	Dev and morph WRKY	Dev and morph HLH/MYC	Dev and	morph; seed biochemistry
Ì		and protein content			Size; seed protein content		tent	\top			seed oil	tein	content				in content	Size		Size	Size; seed oil	ein		Size; seed oil	and protein	content	97IC	Size	Size	Size	Size	Size	Size	Size; seed oil	and protein content
		G1652	7	1	G1756		G1757	Т	Г		T			G1888			\neg	G1939		G1943			125			- 1	اه	- 1	က		Г	G2517			G258
		657	629	661	663		665	299	699	671			673	675			//9	629	681	683		1	685			180	Roo	1.69	693	695	269	669	701		703

(97-104,130-137-155- 162,185-192)	(28-95)	(178-214)	(87-108)	(97-117)	(60-123)	(110-177)	(122-189)	(149-216)	(134-180)	(14-122)	(12-156)	(470-591)	(119-186)	(227-285, 407-465)			(148-185)	(6-28, 48-74)	٠	(60 108)	(02-120)	(197-246)	(13-156)	(7-14,48-59,82-	115,128-164)		(112-140)		(15-116)	(436-501)		(62-147, 189-245)	(17-119)
706	708	710	712	714	716	718	720	722	724	726	728	730	732	734		9	/36	738		240	740	747	744		746		748		750	752		754	756
Reduced size: attered seed protein content	Small plant	Small plant	Small plant	Reduced size, shiny leaves	Small plant, short inflorescence stems, dark green	Small plant	Small plant	Small plant	Small plant	Small plant	Reduced size	Reduced size	Small plant	Reduced size			Reduced size; altered seed oil and protein content	Reduced size			Small plant; late flowering	Slightly reduced size	Small plant	Slightly reduced size: altered seed oil and protein	content		More vascular bundles in stem; late flowering	Altered trichome distribution: altered seed protein			Increased trichome density and size; altered seed	protein content	morph MYB-(R1)R2R3 Reduced trichomes
AT-hook	AP2	morph GATA/Zn	morph Z-C2H2	morph Z-C2H2	HB	AP2	AP2	AP2	Z-Dof	morph MYB-(R1)R2R3	NAC	AKR	AP2	morph WRKY			RING/C3HC4	morph Z-CO-like		!	AP2	morph GARP	NAC		IAA		Z-Dof		MYB-(R1)R2R3	morph HLH/MYC		<u>王</u>	MYB-(R1)R2R3
Dev and morph; seed	Dev and morph AP2	Dev and morph	Dev and morph	Dev and morph	Dev and morph HB	Dev and morph AP2	Dev and morph AP2	Dev and morph AP2	Dev and morph Z-Dof	Dev and morph	Dev and morph NAC	Dev and morph AKR	Dev and morph AP2	Dev and morph	Dev and	morph; seed	biochemistry	Dev and morph	Dev and	morph;	flowering time	Dev and morph	Dev and morph NAC	Dev and	biochemistry	Dev and	morph; flowering time	Dev and	norpii, seed blochemistry	Dev and morph	Dev and morph: seed	biochemistry	Dev and morph
Size; seed	Т				Size		Size					Size			seed oil		content	Size	l	flowering		Size		Size; seed oil			Stem; flowering	1	nrofein content		paas		Trichome
Corp	93	G343	6363	G370	G385		G440		Г	I]			6898	0069			G913	G937	0969		G991		G748		G247	G585		G634	1 1
705	707	709	711	713	715	717	719	721	723	725	727	729	731	733			735	737			739	741	743		745		747		749	751		753	755

2	G682	Trichome	Dev and morph	d morph MYB-related	Glabrous, lack of trichomes	758	(27-63)
759	G635	E	Dev and morph TH			760	(239-323)
761	G1068	Sugar sensing	Sugar sensing	-hook	Reduced cotyledon expansion in glucose	762	(143-150)
	-	Sugar sensing;	Sugar sensing;	-			
		seed oil and	seed		Better germination on sucrose and glucose medla;		-
763	G1225	protein content	biochemistry		altered seed oil and protein content	764	(78-147)
765	G1337		Sugar sensing	ke	Decreased germination on sucrose medium	992	(6-75)
767	G1759	1 1	Sugar sensing	MADS	Reduced germination on high glucose	768	(2-57)
			Sugar sensing;				
769	G1804		flowering time	bZIP /	Altered sugar sensing; late flowering	770	(357-407)
771	G207	Sugar sensing	Sugar sensing	MYB-(R1)R2R3	MYB-(R1)R2R3 Decreased germination on glucose medium	772	(6-106)
			Sugar sensing;				
773	G218	seed oil content	seed biochemistry	MYB-(R1)R2R3	Reduced cotyledon expansion in glucose, altered seed oil content	774	(TBD)
		Sugar sensing;	Sugar sensing;				
		seed oil and	pees		Decreased germination and growth on glucose medium;		
775	G241	1	biochemistry		MYB-(R1)R2R3 decreased seed oil, altered protein content	776	(14-114)
777	G254		Sugar sensing	MYB-related	Decreased germination and growth on glucose medium	778	(62-106)
779	G26		Sugar sensing	AP2	Decreased germination and growth on glucose medium	780	(67-134)
					Decreased root growth on sucrose medium, root specific		
781	G263	Sugar sensing	Sugar sensing	HS	expression	782	(TBD)
783		Sugar sensing			No germination on glucose medium	784	(270-274)
785		Sugar sensing			Reduced germination on glucose medium	786	(76-143)
787		Sugar sensing	Sugar sensing	AP2	Decreased germination and growth on glucose medium	788	(104-172)
789	G536	Sugar sensing	Sugar sensing	GF14	Decreased germination and growth on glucose medium	790	(226-233)
		Sugar sensing;	Sugar sensing;				
i	-	seed oil and	pees		Decreased seedling vigor on high glucose; altered seed	i	
791	2997	protein content	biochemistry	bZIP	oil and protein content	787	(210-270)
202	0890	Sugar sensing;	Sugar sensing;	potojo: OXVV	neignment of the second and second and produced	707	(02 70)
705	2000	Charles tille	Custon dilla	T	Softer socialization charge an energy modium	705	(50 404)
Cal	7000	- 1	ougal sensing		Dellei seeuiiig vigoi oii suciose iiieuuiii	1 30	(39-124)
797	6956		Sugar sensing		Reduced germination on glucose medium	798	(TBD)
799	9669	sensing	Sugar sensing	MYB-(R1)R2R3	Reduced germination on glucose medium	800	(14-114)
	,						
		glucosinolates,					
		oil, proteln	Seed		Increase in M3950; increased oil content; decreased		
801	G1946		biochemistry	HS ·	protein content	802	(32-130)
803	2247	Seed oil	Seed biochemistry	MVB related	. 2002 ni asearani	804	(8-67)
200	10211	COLLIDOSICION	Diodioni	7	110 Edda 11 Co. C	5	110-01

(600-700)	(ТВD)	(ТВД)	(220-267)	(75-143)	(2-57)	(96-104)	(423-486)	(33-82)	(entire protein)	(173-223)	(115-174)	(22-357)	(32-76)	(184-248)	(493-620, 864-1006)	(135-195)	(2-57)
808	808	810	812	814	816	818	820	822	824	826	828	830	832	834	836	838	840
Altered composition	Altered seed oil composition and content; altered seed protein content	Decreased 18:2 fatty acid	Increased seed 18:1 fatty acid	Altered seed fatty acid composition	Increase in 16:1; altered seed oil content	Altered seed fatty acid composition	Increase in 18:1	Altered seed oil and protein content	Increased content	Altered seed oil and protein content	Altered seed oil and protein content	Altered seed oil content	Altered seed oll, protein content; late flowering	Altered seed oil content	Increased seed oil content	Decreased seed oil	Altered seed oil content; altered seed oil and protein content
bZiP-NIN	NAC	ABI3/VP-1	HLH/MYC	HLH/MYC	MADS		里	HLH/MYC	AKR	bZIP	HLH/MYC	ARF	Z-CO-like	HLH/MYC	SWI/SNF	НВ	MADS
Seed blochemistry	Seed biochemistry	Seed biochemistry	Seed biochemistry	Seed biochemistry	Seed biochemistry	Seed biochemistry	Seed biochemistry	Seed biochemistry	Seed biochemistry	Seed biochemistry	Seed blochemistry	Seed blochemistry	Seed blochemistry; flowering time	Seed blochemistry	Seed biochemistry	Seed biochemistry	Seed biochemistry
Seed oil somposition	١			Seed oil composition	tent.	Seed oil		Į į		Seed oil and protein content		Seed oil content blochemistry	Seed oil and protein content; liowering time	Seed oil content blochemistry	Seed oil content biochemistry	Seed oil content	Seed oil and Seed protein content biochemistry
G2192	7	1	l									G1451	1	1	G1526	G1543	I
805	807	808	811	813		817	819	821	823	825	827	829	831	833	835	837	839

(39-102) (72-162) (41-194) (17-181) (20-140) (124-247) (179-255, 281-349) (118-174) (128-185) (entire protein) (99-109) (TBD)	846 846 848 852 852 854 860 860 862 864 864	MYB-(R1)R2R3 Increased seed oil MYB-(R1)R2R3 Altered seed oil, protein content CAAT Altered seed oil content NAC Altered seed oil content NAC Altered seed oil ontent NAC Altered seed oil and protein content NAC Altered seed oil and protein content NRKY Decreased seed oil content WRKY Altered seed oil and protein content AFE Altered seed oil and protein content GF14 Altered seed oil and protein content GF14 Altered seed oil and protein content AFE Increased seed oil and protein content AFE Altered seed oil and protein content GF14 Altered seed oil content	Itered see Itered see Itered see Icreased (Icreased (Icreased see Itered see Itered see Itered see Itered see	3HC4	NAC NAC RING/C3HC4 AP2 WRKY WRKY GF14 GF14	Seed biochemistry RING/C3HC4 Seed biochemistry AP2 Seed blochemistry; flowering time WRKY Seed blochemistry; flowering time WRKY Seed blochemistry AKR Seed blochemistry AKR Seed blochemistry AKR Seed blochemistry AKR Seed
(14-69)	868	Increased seed content	creased	MADS Increased seed content	MADS	emistry MADS
(14-69)	868	seed content	ncreased		istry MADS	istry MADS
(ТВD)	998	Increased seed oil content	creased		nistry AP2	nistry AP2
(твр)	998	seed oil content	creased		nistry AP2	nistry AP2
(601-66)	864	Altered seed oil and protein content	Itered se		Seed blochemistry GF14 Seed	Seed blochemistry GF14 Seed
(00-100)	864		מופופח סם		Seed Seed	Seed Seed
(entire protein)	862	ed oil and protein content	Itered sec		Seed biochemistry AKR	Seed t blochemistry AKR
(128-185)	860	d oil and protein content; late flowering	ltered see		blochemistry; flowering time WRKY	Seed t; blochemistry; flowering time WRKY
(118-174)	. 828	seed oil content	ecreased		WRKY	WRKY
(179-255, 281-349)	826	sed oil content	creased se		AP2	AP2
7	100	, decreased protein contain	icieasea oil	T	KING/C3HC4	Diocnemistry King/C3HC4
(124-247)	854	decreased protein content	io boscoroi		NO COLONIO	Seed DINCOUCA
(20-140)	852	oil and protein content	Itered seed		Seed biochemistry NAC	
(17-181)	nca	oil, protein content	tered seed		biochemistry NAC	Seed nt biochemistry NAC
(47 404)	C C					biochemistry NAC Seed biochemistry NAC
(41-194)	848	oil content	ltered seed	NAC Altered seed oil content	Spad	NAC
(72-162)	846	oil content	tered seed		NAC	Seed biochemistry NAC Seed blochemistry NAC Seed blochemistry NAC
(39-102)	844	oil, protein content			CAAT	CAAT NAC NAC
		ed oil	ltered seec	R1)R2R3		MYB-(R1)R2R3 CAAT NAC NAC

G281 Seed oil content Society Seed oil content Seed oil cont				Pood				
G427 Seed oil and Seed HB Increased oil content, decreased protein content 882 G509 protein content blochemistry NAC Altered seed oil and protein content 884 G519 protein content blochemistry NAC Altered seed oil and protein content 888 G561 Seed oil and Seed Seed oil and Seed Seed oil and Seed 889 G550 protein content blochemistry HLHMYC Altered seed oil and protein content 889 G590 protein content blochemistry HC Altered seed oil and protein content 899 G590 protein content blochemistry HC Altered seed oil altered protein content 899 G840 protein content blochemistry HS Increased seed oil and protein content 894 G840 protein content blochemistry RING/G3HZC3 Altered seed oil content 896 G840 protein content blochemistry NAC Altered seed oil content 896 G842 protein content blochemistry NAC Altered seed oil content 896 G425 Seed oil and Seed		G291	Seed oil content	istry		ncreased seed oil content	880	(132-160)
G509 Seed oil and protein content Seed oil and blochemistry NAC Altered seed oil and protein content 884 G519 Protein content Boochemistry NAC Altered seed oil and protein content 886 G561 Seed oil content blochemistry Drotein content blochemistry Drotein content blochemistry NAC Altered seed oil and protein content 889 G580 Seed oil and Seed Protein content blochemistry HLHMYC Altered seed oil and protein content 892 G849 Protein content Blochemistry HSP-1 Increased seed oil and protein content 896 G820 Seed oil sontent blochemistry RING/C3H2C3 Altered seed oil and protein content 896 G921 Seed oil content blochemistry NAC Altered seed oil and protein content 896 G425 Seed oil content blochemistry NAC Altered seed oil and protein content 902 G426 Seed oil content blochemistry Altered seed oil and protein content 906 G427 Seed oil and Seed Altered seed oil and protein content 906 G427				emistry		increased oil content; decreased protein content	882	(307-370)
G559 Seed oil and protein content Seed oil and protein content Seed oil and seed oil and protein content RBB G560 Seed oil content blochemistry NAC Altered seed oil and protein content 888 G580 Protein content blochemistry HLHMYC Altered seed oil and protein content 892 G849 Protein content Biochemistry HLHMYC Altered seed oil and protein content 894 G849 protein content Biochemistry BPF-1 Increased seed oil, altered protein content 894 G892 protein content Biochemistry RING/C3HZC3 Altered seed oil, protein content 896 G892 protein content Biochemistry RING/C3HZC3 Altered seed oil and protein content 896 G892 protein content Biochemistry NAC Altered seed oil content 896 G6425 Seed oil and Seed Seed oil and Seed Altered seed oil content 900 G425 Seed oil and Seed Altered seed oil and protein content 904 G5426 Seed oil and Seed oil and Seed Altered seed oil and protein c		1				Altered seed oil and protein content	884	(13-169)
G561 Seed oil content biochemistry bZIP Altered seed oil content BBB 888 G590 protein content biochemistry HLHMYC Altered seed oil and protein content 890 G818 Seed oil and content biochemistry HLHMYC Altered seed oil and protein content 894 G849 protein content biochemistry BPF-1 increased content 894 G892 protein content biochemistry RING/C3H2C3 Altered seed oil content 896 G892 protein content biochemistry NAC Altered seed oil content 896 G894 protein content biochemistry NAC Altered seed oil content 896 G895 protein content biochemistry NAC Altered seed oil content 904 G8425 Seed oil and Seed Altered seed oil content 906 G1512 protein content biochemistry Altered seed oil content 904 G1512 protein content biochemistry Altered seed oil content 904		1		istry		Altered seed oll and protein content	886	(11-104)
GS90 Seed oil and protein content Seed oil and protein content HLHMYC Altered seed oil and protein content 890 G848 Seed oil content blochemistry HS Increased content Increased content 892 G849 protein content blochemistry BPF-1 Increased seed oil, protein content 894 G892 protein content blochemistry RING/C3H2C3 Altered seed oil, protein content 896 G894 protein content blochemistry NAC Altered seed oil content 896 G961 Seed oil and Seed Altered seed oil content 900 902 G964 Seed oil and Seed Altered seed oil and protein content 900 902 G965 protein content blochemistry HB Altered seed oil and protein content 904 G347 protein content blochemistry Altered seed oil and protein content 906 G1512 protein content blochemistry Altered seed oil and protein content 906 G1562 protein content blochemistry Altered seed oil content 910 G1783 Seed oil content blochemistry		G561	Seed oil content			Altered seed oil content	888	(248-308)
G818 Seed oil content biochemistry HS Increased content Increased content Increased content BPP-1 Increased content BPP-3 Increased content BPP-3 Increased seed oil, altered protein content BPP-3 Increased content BPP-3 Increased seed oil, protein content BPP-3 Altered seed oil content BPP-3 Altered seed oil and protein content BPA-3 Altered seed oil content BPA-3 Altered		G590	Seed oil and protein content		MYC	Altered seed oil and protein content	890	(202-254)
G849 Seed oil and Seed Seed oil and Seed Seed oil and Seed PPF-1 Increased seed oil, altered protein content 894 G892 Speed oil and Seed Seed oil content blochemistry RING/C3H2C3 Altered seed oil content 896 G961 Seed oil content blochemistry NAC Altered seed oil content 896 G1465 protein content blochemistry NAC Altered seed oil and protein content blochemistry NAC Altered seed oil content 800 G347 protein content blochemistry NAC Altered seed oil and protein content blochemistry Altered seed oil and protein content blochemistry Altered seed oil and protein content blochemistry 2-LSDIike Altered seed oil and protein content blochemistry Seed 904 G1512 protein content blochemistry ARR Altered seed oil and protein content blochemistry ARR Altered seed oil content 908 G1763 Seed oil and seed oil content blochemistry ARR Altered seed oil content 916 G1763 Seed oil and seed oil content blochemistry ARR Altered seed oil content 916 G1763 protein content blochem		G818	Seed oil content			Increased content	892	(70-162)
G892 protein content Seed oil and content RING/C3H2C3 Altered seed oil protein content 998 G961 Seed oil content blochemistry NAC Altered seed oil content 898 G962 Seed oil content blochemistry NAC Altered seed oil content 900 G425 Seed oil and Seed NAC Altered seed oil content 902 G425 Seed oil and Seed oil content blochemistry NAC Altered seed oil content 902 G347 Seed oil and Seed oil content blochemistry Altered seed oil content 916 G4447 Seed oil content blochemistry Altered seed oil content Altered seed oil content 916 G4447 Seed oil content blochemistry Altered seed oil content Altered se		G849	Seed oil and protein content	Seed biochemistry		Increased seed oil, altered protein content	894	(324-413, 504-583)
G961 Seed oil content biochemistry NAC Altered seed oil content Altered seed oil content Seed oil and biochemistry NAC Altered seed oil and protein content 900 G425 Seed oil and Seed Altered seed oil and protein content Altered seed oil and protein content 902 G347 Protein content biochemistry Altered seed oil and protein content 906 G347 Protein content biochemistry Altered seed oil and protein content 906 G1512 protein content biochemistry RING/C3HC4 Altered seed oil and protein content 906 G2069 protein content biochemistry Altered seed oil content Altered seed oil content 910 G1793 Seed oil content biochemistry ARR Altered seed oil content 914 G1793 Seed oil content biochemistry ARC Altered seed oil content 916 G1793 Seed oil content biochemistry ARC Altered seed oil content 916 G17056 Seed oil content biochemistry ARC Altered seed oil content		G892	Seed oil and protein content	Seed biochemistry	C3H2C3	Altered seed oil, protein content	968	(177-270)
G1465 protein content Seed oil and Seed NAC Altered seed oil and protein content 900 G425 Seed oil and Seed oil content blochemistry HB Altered seed oil and protein content 902 G347 Protein content blochemistry Z-LSDlike Altered seed oil and protein content 904 G1512 protein content blochemistry RING/C3HC4 Altered seed oil and protein content 906 G2069 protein content blochemistry RING/C3HC4 Altered seed oil and protein content 908 G1852 Seed oil content blochemistry ARR Altered seed oil content 910 G1793 Seed oil content blochemistry ARR Altered seed oil content 914 G1793 Seed oil content blochemistry ARR Altered seed oil content 916 G1794 protein content blochemistry ARR Altered seed oil content 916 G1795 Seed oil content blochemistry ARR Altered seed oil content 916 G1056 Seed oil content blochemistry ARR Altered seed oil content 916		G961		Seed biochemistry	NAC	Altered seed oil content	868	(15-140)
Seed oil content blochemistry Altered seed oil content blochemistry Altered seed oil content blochemistry Altered seed oil and protein content blochemistry Altered seed oil content		G1465	Seed oil and proteint	Seed blochemistry	NAC	Altered seed oil and protein content	006	(242-306)
Seed oil and Seed Seed Seed Seed oil and protein content biochemistry Z-LSDlike Altered seed oil and protein content biochemistry RING/C3HC4 Altered seed oil and protein content biochemistry BZ-LSDlike Altered seed oil and protein content biochemistry BZ-BE-BE-BE-BE-BE-BE-BE-BE-BE-BE-BE-BE-BE-		G425	Seed oil content	Seed blocherr	HB	Altered seed oil content	902	(ТВD)
Seed oil and Seed		G347		Seed biocherr	Z-LSDlike	Altered seed oil and protein content	904	(9-39, 50-70, 80-127)
Seed oil and Seed Seed oil content biochemistry Altered seed oil content biochemistry ARR Altered seed oil content biochemistry Altered seed oil cont	905	1 8	Seed oil and protein content	Seed biochemistry	RING/C3HC4	Altered seed oil and protein content	906	(39-93)
G1852 Seed oil content biochemistry AKR Altered seed oil content Seed G1793 Seed oil content biochemistry AP2 Altered seed oil content Seed G761 protein content biochemistry NAC Altered seed oil content Seed G1056 Seed oil content biochemistry AP2 Altered seed oil content Seed G1056 Seed oil content biochemistry AISC Altered seed oil content biochemistry AISC AITER A	206		Seed oil and protein content	Seed biochemistry	bZIP	Altered seed oil and protein content	808	(TBD)
G1793 Seed oil content blochemistry AP2 Altered seed oil content Seed oil content blochemistry NAC Altered seed oil content Seed G1056 Seed oil content blochemistry DZIP Altered seed oil content blochemistry NAC Altered seed oil content blochemistry NAC Altered seed oil content blochemistry NAC Altered seed oil content blochemistry NASC Altered seed oil content bloch	606	G1852	1	Seed biochemistry	AKR	Altered seed oil content	910	(1-601)
Seed oil and Seed Seed Altered seed oil and protein content 914	911	G1793		Seed biochemistry	AP2	Altered seed oil content	912	(179-255, 281-349)
G1056 Seed oil content biochemistry bZIP Altered seed oil content Seed Seed MISC Altered seed oil content biochemistry MISC Altered seed oil content biochemistry MISC Altered seed oil content 518	913	G761	Seed oil and protein content	Seed biochemistry	NAC	Altered seed oil and protein content	914	(10-156)
Canal Seed Altered seed oil content hochemistry MISC Altered seed oil content	915	G1056	Seed oil content	Seed biochemistry	bZIP	Altered seed oil content	916	(183-246)
19144/ Seed oil control blocklering 1914/	917	G1447	Seed oil content blochen	Seed blochemistry	MISC	Altered seed oil content	918	(3-54, 124-156)

919	G323	Seed oil and protein content	Seed biochemistry	RING/C3HC4	Altered seed oil and protein content	920	(48-96)
921	G176	Seed oil content biochemistry		WRKY	Altered seed oil content	922	(117-173,234-290)
923	G174	Seed oil and protein content		WRKY	Altered seed oil and protein content	924	(111-166, 283-339)
	G715			CAAT	Altered seed oil content	926	(60-132)
927	G588	Seed oil and protein content		ιλc	Altered seed oll and protein content	. 928	(309-376)
926	G1758	1	1	WRKY	Altered seed oil and protein content	930	(109-165)
931	G2148	Seed oil content biochemistry		Ş	Altered seed oil content	932	(130-268)
	G2379	Seed oil content biochemistry	Seed biochemistry	,	Altered seed oil content	934	(19-110, 173-232)
935	G1462	Seed oil content biochemistry	Seed biochemistry	NAC	Altered seed oil content	936	(твр)
937	G1211	Seed oil and protein content	Seed biochemistry	MISC	Altered seed oil and protein content	938	(123-179)
939	G1048	Seed oil content biochemistry	Seed t biochemistry	bZIP	Altered seed oil content	940	(138-190)
941	9865	Seed oil content biochemistry		WRKY	Altered seed oil content	942	(146-203)
943	G789	Seed oil content blochemistry	Seed t biochemistry	HLH/MYC	Altered seed oil content	944	(253-313)
945	G2085	Seed oil and protein content	Seed biochemistry	RING/C3HC4	Alfered seed oil and protein content	946	(ТВD)
	G1783	Seed oil and protein content	Seed biochemistry		Alfered seed oil and protein content	948	(81129)
949	G2072	Seed oil and protein content	Seed biochemistry	bZIP	Altered seed oil and protein content	950	(90-149)
951	G931	Seed oil and protein content	Seed biochemistry	CAAT	Altered seed oil and protein content	952	(твр)
953	G278	Seed oil and protein content	Seed biochemistry	AKR	Altered seed oil and protein content	954	(2-593)
955	G2421	Seed oil content biochemistry	Seed t biochemistry	MYB-(R1)R2R3	MYB-(R1)R2R3 Altered seed oil content	956	(9-110)
957	G2032	Seed Seed oil content biochemistry	Seed t biochemistry	AKR	Altered seed oil content	958	(entire protein)

		•			+ 2100 -		
959	G1396	Seed oil and protein content	Seed biochemistry	S1FA	Altered seed oll and protein content	096	(ТВD)
961	G619		stry	ARF	Altered seed oil and protein content	3962	(64-406)
963	G2295			MADS	Altered seed oil content	964	(2-57)
965	G312	Seed oil content	Seed biochemistry	SCR	Altered seed oil content	996	(320-336)
296	G1444	Seed oil and Seed protein content biochemistry	Seed biochemistry	·like	Altered seed oil and protein content	. 896	(168-193)
696	G801		Seed biochemistry	PCF	Altered seed oil content	970	(32-93)
971	G1950	Seed oil content biochem	stry	AKR	Altered seed oil content	972	(65-228)
973	G958	Seed oil and protein content	Seed biochemistry	NAC	Altered seed oil and protein content	974	(7-156)
975	G1037		Seed blochemistry	GARP	Alfered seed oil and protein content	976	(11-134, 200-248)
226	G2065	Seed oil content	Seed blochemistry	MADS	Altered seed oil content	978	(ТВD)
979	G2137	Seed oil and Seed protein content biochemistry		WRKY	Altered seed oil and protein content	086	(109-168)
981	G746	Seed oil content	Seed biochemistry	RING/C3HC4	Altered seed oil content	982	(139-178)
983	G2701	Seed oil and Seed protein content biochemistry	Seed biochemistry	MYB-related	Altered seed oil and protein content	984	(33-81, 129-183)
985	G1819	Į	Seed biochemistry	CAAT	Altered seed oil content	986	(46-188)
987	G1227	Seed oll and protein content	Seed biochemistry	HLH/MYC	Altered seed oil and protein content	988	(183-244)
686	G2417	Seed oil content biochemistry	Seed biochemistry	GARP	Altered seed oil content	066	(235-285)
991	G2116	Seed oil content biochemistry	Seed · biochemistry	bZIP	Altered seed oil content	992	(150-210)
993	G647	Seed oil content	Seed biochemistry	2-СЗН	Altered seed oil content	994	(77-192)
995	G974	Seed oil and Seed protein content biochemistry	Seed biochemistry	AP2	Altered seed oil and protein content	986	(81-140)
997	G1419	Seed protein content	Seed biochemistry	AP2	Increased seed protein	866	(69-137)

666	G1634	Seed protein	Seed biochemistry	MYB-related	Altered seed protein content	1000	(129-180)
1001	G1637	otein	Seed biochemistry	MYB-related	Altered seed protein content	1002	(109-173)
		otein	Seed biochemistry;				
1003	G1818	time	flowering time	CAAT	Increased protein content; late flowering	1004	(36-113)
1005	G1820	Seed oil and protein content	Seed biochemistry	CAAT	Altered seed oil, protein content	1006	(70-133)
1007	G1903	Seed oil and protein content	Seed biochemistry	Z-Dof	Altered seed oil and protein content	1008	(134-180)
1009	5	Seed oil and protein content	Seed biochemistry	RING/C3HC4	Alfered seed oil and protein content	1010	(21-74)
1011	G597	Seed protein content	Seed biochemistry	AT-hook	Altered seed protein content	1012	(97-104,137-144)
1013	G1009	otein	Seed blochemistry	AP2	Altered seed protein content	1014	(201-277, 303-371)
1015	G170	otein	Seed biochemistry	MADS	Alfered seed protein content	1016	(2-57)
1017	G1768	otein	Seed biochemistry	SCR	Altered seed protein content	1018	(54-413)
1019	G185	otein	Seed biochemistry	WRKY	Altered seed protein content	1020	(113-172)
1021	G1931	Seed protein content	Seed biochemistry	WRKY	Altered seed protein content	1022	(114-170)
1023	G2543	otein	Seed biochemistry	뮢	Altered seed protein content	1024	(31-91)
1025	G264	Seed protein content	Seed biochemistry	RS SH	Altered seed protein content	1026	(24-114)
1027	G32	Seed protein content	Seed biochemistry	AP2	Altered seed protein content	1028	(17-84)
1029	G436	Seed protein content	Seed biochemistry	HB	Altered seed protein content	1030	(22-85)
1031	G556	Seed protein content	Seed biochemistry	bZIP	Altered seed protein content	1032	(83-143)
1033	G1420	Seed protein content	Seed biochemistry	WRKY	Altered seed protein content	1034	(221-280)
1035	G1412	Seed protein content	Seed biochemistry	NAC	Altered seed protein content	1036	(17-159)
			: :				

		ſ			- 0.25			
1037	G738	Seed protein content	Seed biochemistry	Z-Dof	Altered seed protein content	1038	(351-393)	
		otein	Seed					
1039	G2426		biochemistry	MYB-(R1)R2R3	MYB-(R1)R2R3 Altered seed protein content	1040	(14-114)	
1041	G1524	Seed protein content	Seed biochemistry	RING/C3HC4	Altered seed protein content	1042	(49-110)	
		otein	Seed		44	777	216,6001	
1043	G1243		biochemistry	SWI/SNF	Altered seed protein content		(210-003)	
4707	200	otein	Seed		Alfored each protein content	1046	(TRD)	
1045	25	7	Diocnernistry	021F	אונפופת אפפר לוסופוון הסוויפון	T	(22)	
1047	G1909	Seed protein content	Seed biochemistry	Z-Dof	Altered seed protein content	1048	(23-51)	
1049	G1663	Seed protein content	Seed biochemistry	PCF	Altered seed protein content	1050	(ТВD)	
		otein	Seed					_
1051	G1231		biochemistry	Z-C4HC3	Altered seed protein content	1052	(ТВD)	
		Seed protein	Seed					_
1053	G227	content	biochemistry	MYB-(R1)R2R3	MYB-(R1)R2R3 Altered seed protein content	1054	(13-112)	
		Seed protein			A to a control of the	1058	(2,57)	
1055	G1842	content	mistry	MAUS	Altered seed protein content	000	7.0-7	_
		Seed protein	Seed			0	í	_
1057	G1505		biochemistry	GATA/Zn	Altered seed protein content	1028	(180)	
		Seed protein	Seed				í.	_
1059	G 657		biochemistry	MYB-(R1)R2R3	MYB-(R1)R2R3 Altered seed protein content	1060	(TBD)	
400 400	04050	Seed protein	Seed biochemistry	ממעט	Altered seed profein content	1062	(46-97)	
100	6190	Contein	Diodici III au y	200				_
1063	G2180	seed protein content	seed biochemistry	NAC	Altered seed protein content	1064	(7-156)	
		Seed protein	Seed					
1065	G1817		biochemistry	PMR	Altered seed protein content	1066	(47-331)	
4004	04040	otein	Seed	ON WITH	Alternational protein content	1068	(925-295)	
/001	61049	content	Diochemismy	יייייייייייייייייייייייייייייייייייייי	Alieled aged protein content	222		
1060	G9131	Seed protein	Seed	AP2	Altered seed protein content	1070	(50-186, 112-183)	
		Seed protein	Seed					
1071	G215	content	blochemistry	MYB-related	Altered seed protein content	1072	(TBD)	
		Seed protein	Seed	!	1000	1074	(28 63)	
1073	G1508	content	biochemistry	GATA/Zn	Altered seed protein content	1014	(20-02)	_
1075	G2110	Seed protein content	Seed biochemistry	WRKY	Altered seed protein content	1076	(239-298)	
		***************************************	1					

Table 4

(220-246)	(189-250)	(201-261)	(1-50)	(24-43, 131-144, 185- 203)		(2-57)	(55-110)	(54-106)		(Car)	(CG 1)	(22-(1)	(18-38)	(14-115)	(43-63)	(253-315)	(143-240)	(151-217, 243-296)	-	(CBD)	(100)	(250-303, 413-473)	(120-100)		(4-71)	(44-403)	(60, 426)	(50-130)	((23-12/)
1078	1080	1082	1084	1086		1088	1090	1092		1001	1094	0801	1098	1100	1102	1104	1106	1108		1110	2 2 2	7111	1114	•	1116	4440	0 0 0	1120	1122
Altered seed protein content	Late flowering	Late flowering	Late flowering; altered seed protein content	l ate flowering slow growth	Altered flowering: significant overexpression delays	Altered liowering, significant over cyprosocial colors flowering time	Late flowering	Late flowering				Late flowering	Late flowering	-		Late flowering	Late flowering	Late flowering ·		to the second se	Late flowering; altered seed protein content	Late flowering	Late flowering		CONTROL CONTRO	Late iloweillig, glossy ieaves	Flowering time MYB-(R1)R2R3 Late tlowering, small	Late flowering, small	Late flowering
RING/C3HC4	bZIP	bZIP	BZIPT2	15 HSU 10-7	10000	MADS	Z-Dof	Z-Dof		!	MYB-(R1)R2R3	ing time MYB-related	ing time AT-hook	ing time MYB-(R1)R2R3	aring time Z-C2H2	bZIP	ing time HLH/MYC	AP2		(MADS	WRKY	AP2			APZ	MYB-(R1)R2F	SBP	SBP
Seed	na fime	Flowering time bZIP	Flowering time: BZIPT2	Cloworing time	Division of the	Flowering time MADS	Flowering time Z-Dof	Flowering time Z-Dof	Flowering time;	seed	blochemistry	Flowering time	Flowering time	Flowering time	Flowering time	Flowering time	Flowering time	Flowering time AP2	Flowering time;	seed	biochemistry	Flowering time	Flowering time AP2		Flowering time;	dev and morph AP2	Flowering time	Flowering time SBP	Flowering time SBP
Seed protein	na time	1	1	1	-1	Flowering time	1	Į	Flowering time;	seed protein	content	Flowering time		Flowering time	$\overline{}$	Т	7	Т	Flowering time;	otein	content	Flowering time	Flowering time		:vgolot	other	Flowering time		Flowering time
62042	Ţ	Т	T	1	Т	G157	2	T			G2007	G214	١.,	•		G562	5501	88			<u>G829</u>	G878	6971			G975	6994		G2010
4077	1079	1081	1083	408	1003	1087	1089	1091			1093	1095	1097	1099	1101	1103	1105	1107			1109	1111	1113			1115	1117	1119	1121

Test Sequence GenBank Amolation	sj84f07.y1 Gm-c1034 Glycine max cDNA clone GENO	AV423663 Lotus japonicus young plants (two-	ES 1532/40 tomato callus, 1 Alviu Lycop	BRY 1082 BRY Triticum aestivum cDNA clone	EST429783 GVSN Medicago truncatula cDNA	chromosome 10 clone OSJNBa0056G17, "" SEQUENC	EST505372 cSTS Solanum tuberosum cDNA clo	OV2 11 B04.g1 A002 Ovary 2 (OV2) Sorgnum bi	putative DNA-binding protein.	DNA-binding protein WRKY3.	WRKY3.	DNA-binding protein NtWRKY3.	somatic embryogenesis related protein.	SPF1-like DNA-binding protein.	hypothetical protein.	zinc finger protein; WRKY1.	DNA-binding protein.	SPF1 protein.	L.peruvianum Lp-hsf8 mRNA for heat	clone 8D15, *** SEQUENCING IN PROGRESS	L.esculentum Le-hsf8 gene for heat	si63g09.y1 Gm-r1030 Glycine max cDNA clone GENO	EST516750 cSTD Solanum tuberosum cDNA clo	subsp. japonica BAC nbxb0006113, chromosome 10	AV833112 K. Sato unpublished	heat shock transcription factor 8	heat stress transcription factor	heat shock transcription factor 21.	heat shock factor.	putative heaf shock factor protein 1 (HSF 1)	heat shock factor.	heat shock transcription factor.	heat shock transcription factor (HSFA).
Smallest Test Sequence Species Sum Probability	7.70E-40 [Glycine max]	2,40E-39[(Lotus japonicus]	4.50E-34 [Lycopersicon esculentum]	1.40E-27 [Triticum aestivum]	2.60E-24 [Medicago truncatula]	1.70E-23 [Oryza sativa]	1.00E-20 [Solanum tuberosum]	2.80E-16[[Sorghum bicolor]	1.10E-31 [Oryza sativa]	3.30E-14 [Avena sativa]	5.80E-14 [Petroselinum crispum]	2.60E-13 [Nicotiana tabacum]	1.40E-12 [Dactylis glomerata]	7.60E-09 [Cucumis sativus]	8.40E-09 [Lycopersicon esculentum]	2.80E-08[[Pimpinella brachycarpa]	4.70E-08 [Avena fatua]	1.60E-07 [Ipomoea batatas]	1.10E-119 [Lycopersicon peruvianum]	4.10E-112 [Medicago truncatula]	5.90E-103 [Lycopersicon esculentum]	3.10E-75[[Glycine max]	1.30E-70 [Solanum tuberosum]	4.60E-53 [Oryza sativa]	4.90E-52 [Hordeum vulgare subsp. vulgare]	2.80E-121 [Lycopersicon peruvianum]	5.10E-106 [Lycopersicon esculentum]	2.00E-47 [Glycine max]	9.70E-46 [Nicotiana tabacum]	2.90E-40 [Oryza sativa]	3.20E-40 [Zea mays]	2.70E-38 [Medicago sativa]	1.90E-30[[Pisum sativum]
GID Test Sequence	G192 AW596933	_	G192 BI422074	G192 AW447931	G192 BE998060	G192 AC018727	G192 BG600477	•	G192 gi12039364	G192 gi4894963	G192 gi1432056	G192 gi4760596	G192 qi11993901	G192 gi927025	G192 gi13620227	G192 qi3420906	G192 ai1159877	G192 qi484261		7		38	G1946 BG890899	G1946 AC027658		Γ		4	8	~		2	G1946 gi3550588
SEQ ID NO	859	П	829	829			T	T		T	T	859	859	T	859	T	T	859		T		T	Γ	801		Γ	801	801	Γ			801	801

Table (

		O AGI[Avera safiva]	
7	5 gi100546	U.40 Averia sauva	averilli piecuisci - car.
	_	1 [Apium graveolens]	putative pnicem transcription ractor ivit.
		3.40E-33 [Medicago truncatula]	NF106BU/S11F1060 Developing stem integrica
Т	BG595870	1.90E-31 [Solanum tuberosum]	ES 1494548 CS 1S Solanum tuberosum culva Gio
\vdash		3.70E-31 [Lycopersicon esculentum]	EST268706 tomato ovary, TAMU Lycope
1	NTBBF3	4.00E-31 [Nicotiana tabacum]	N.tabacum mRNA for zinc finger protein, B
t	BG405482	2.70E-30 [Glycine max]	sac44a11.y1 Gm-c1062 Glycine max cDNA clone GEN
239 G375	AB028130	3.30E-30[[Oryza sativa]	mRNA for Dof zinc finger protein, complete cds
T	AB026297	7.30E-28 [Pisum sativum]	mRNA for elicitor-responsive Dof protein ERDP
t	HVBPBF	1.10E-27 [Hordeum vulgare]	mRNA for DNA binding protein BPBF.
239 G375	5 BG263089	1.70E-27 [Triticum aestivum]	WHE2337 A02 A03ZS Wheat pre-anthesis spik
t	5 ZMU82230	4.20E-27 [Zea mays]	endosperm-specific prolamin box binding factor (PB
1	i gi4996640	1.90E-37 [Oryza sativa]	Dof zinc finger protein.
	5 gi3777436	8.10E-35 [Hordeum vulgare]	DNA binding protein.
┢	gi2393775	1.10E-33 [Zea mays]	prolamin box binding factor.
t	5 gi1360088	2.00E-33 [Nicotiana tabacum]	Zn finger protein.
T		4.30E-32 [Triticum aestivum]	PBF protein.
T	5 gi6092016	1.30E-29 [Pisum sativum]	elicitor-responsive Dof protein ERDP.
T	5 qi7688355	5.60E-29 [Solanum tuberosum]	Dof zinc finger protein.
T	5 gi1669341	4.60E-20 [Cucurbita maxima]	AOBP (ascorbate oxidase promoter-binding
忊	5 gi3929325	5.50E-18 [Dendrobium grex Madame Thong-In]	putative DNA-binding prot
T	5 gi19547	5.50E-06 [Medicago sativa subsp. falcata]	environmental stress and a
T	G1255 AC087181	1.60E-46 [Oryza sativa]	chromosome 3 clone OSJNBa0018H01, *** SEQUENCI
T	G1255 BG239774	4.50E-33 [Glycine max]	sab74c03.y1 Gm-c1032 Glycine max cDNA clone GEN
T	I	1.70E-32 [Descurainia sophia]	Ds01_06h10_A Ds01_AAFC_ECORC_cold_stress
Т	ł.	2.90E-30 [Lycopersicon esculentum]	EST253941 tomato resistant, Comell
	5 BF480245	4.60E-29 [Mesembryanthemum crystallinum]	L0-2152T3 Ice plant Lambda Un
	5 AW688119	2.10E-28 [Medicago truncatula]	NF002E07ST1F1000 Developing stem Medica
	G1255 BF266327	1.80E-26 [Hordeum vulgare]	HV CEa0014N02f Hordeum vulgare seedling gre
l	5 AW671538	5.80E-25 [Sorghum bicolor]	LG1_348_B08.b1_A002 Light Grown 1 (LG1) Sor
	G1255 BI072021	5.30E-20 [Populus tremula x Populus tremuloides]	C067P76U Populus stra
273 6125	ω	4.90E-19[[Vitis vinifera]	EST 110 Green Grape berries Lambda Zap II Li
273 G125	G1255 gi13702811	3.70E-52[[Oryza sativa]	putative zinc finger protein.
	 ←	4.00E-21 [Brassica nigra]	constans-like protein.
	ı	1.10E-19[[Brassica napus]	unnamed protein product.
İ	1001001	COOL 10 PALCE Lambacking	CONICTANIC like protein 1

273 G1255 gi1094633 273 G1255 gi4557093 273 G1255 gi4557093 273 G1255 gi11795 273 G1255 gi65646 557 G865 BE419451 557 G865 AW760968 557 G865 BI421895 557 G865 BI421895 557 G865 BI421895 557 G865 BE42320	346337	5.20E-17 [[pomoea nil]	CONSTANS-like protein.
G1255 G1255 G1255 G1255 G865 G865 G865 G865 G865	57093		
G1255 G1255 G1255 G865 G865 G865 G865 G865		3.30E-15 [Pinus radiata]	zinc finger protein.
G1255 G1255 G865 G865 G865 G865 G865 G865	32543	0.97 [Chloroplast Zamia furfuracea]	cytochrome b559 alpha subuni
G1255 G865 G865 G865 G865 G865 G865	795	0.99 [Nicotiana tabacum]	put. psbE protein (aa 1-83).
G865 G865 G865 G865 G865	346	0.99[[Chloroplast Nicotiana tabacum]	cytochrome b559 component p
G865 G865 G865 G865	19451	3.70E-32 [Triticum aestivum]	WWS012.C2R000101 ITEC WWS Wheat Scutellum
G865 G865 G865	AW560968	1.10E-28 [Medicago truncatula]	EST316016 DSIR Medicago truncatula cDNA
G865 G865	AW782252	1.20E-26 [Glycine max]	sm03d11.y1 Gm-c1027 Glycine max cDNA clone GENO
G865	1895	3.60E-25 [Lycopersicon esculentum]	EST532561 tomato callus, TAMU Lycop
	BE642320	1.60E-24 [Ceratopteris richardii]	Cri2_5_L17_SP6 Ceratopterls Spore Li
G865	BE494041	1.60E-24 [Secale cereale]	WHE1277 B09 D17ZS Secale cereale anther cDNA
557 G865 D39914	314	2.60E-24 [Oryza sativa]	RICS1576A Rice shoot Oryza sativa cDNA, mRNA s
557 G865 AV428124	28124	9.00E-23 [Lotus japonicus]	AV428124 Lotus japonicus young plants (two-
G865	TOBBY4D	1.80E-21 [Nicotiana tabacum]	Tobacco mRNA for EREBP-2, complete cds.
557 G865 gi1208495	38495	2.40E-23 [Nicotiana tabacum]	ERF1.
T	19571	5.10E-23 [Nicotiana sylvestris]	ethylene-responsive element binding
\vdash	12211	1.40E-22[[Lycopersicon esculentum]	Pti4.
十	28276	1.70E-22 [Mesembryanthemum crystallinum]	AP2-related transcription f
H	217291	7.80E-22 [Oryza sativa]	Putative AP2 domain containing protein.
	34767	2.70E-21 [Prunus armeniaca]	AP2 domain containing protein.
G865	gi8980313	2.10E-20[Catharanthus roseus]	AP2-domain DNA-binding protein.
G865		9.30E-20 [Atriplex hortensis]	apetala2 domain-containing protein.
G865	i	1.40E-19 [Solanum tuberosum]	DNA binding protein homolog.
G865	l	1.80E-19 [Matricaria chamomilla]	ethylene-responsive element binding
G2509		2.50E-29 [Brassica oleracea]	BOHOJ67TR BOHO Brassica oleracea genomic
Γ		5.90E-28 [Glycine max]	sak01e08.y1 Gm-c1074 Glycine max cDNA clone SOY
23 G2509 BE419451		2.20E-27 [Triticum aestivum]	WWS012.C2R000101 ITEC WWS Wheat Scutellum
23 G2509 AI483636		7.80E-27 [Lycopersicon esculentum]	EST249507 tomato ovary, TAMU Lycope
23 G2509 AW560968	ļ.	8.90E-27 [Medicago truncatula]	EST316016 DSIR Medicago truncatula cDNA
23 G2509 BE642320		4.30E-26[[Ceratopterls richardii]	Cri2_5_L17_SP6 Ceratopteris Spore Li
23 G2509 AP003286		1.00E-25[[Oryza sativa]	chromosome 1 clone P0677H08, *** SEQUENCING IN
23 G2509 BE494041		3.20E-25[(Secale cereale]	WHE1277 B09 D17ZS Secale cereale anther cDNA
23 G2509 BE602106	02106	1.10E-24 [Hordeum vulgare]	HVSMEh0102i06f Hordeum vulgare 5-45 DAP spi
23 G2509 AV428124	28124	1.00E-23[[Lotus japonicus]	AV428124 Lotus japonicus young plants (two-
T	64767	4.00E-27 [Prunus armeniaca]	AP2 domain containing protein.

23	G2509 gi12003376	1.40E-23 [Nicotiana tabacum]	AVIS/CI-9 rapidly elicited protein 1.
23	G2509 gi14140141	2.30E-23[[Oryza sativa]	putative AP2-related transcription factor.
23	G2509 gi1688233	5.40E-23 [Solanum tuberosum]	DNA binding protein homolog.
23	G2509 gi4099921	2.60E-22[[Stylosanthes hamata]	EREBP-3 homolog.
23	G2509 gi8809571	7.80E-22[[Nicotiana sylvestris]	ethylene-responsive element binding
23	G2509 gi3342211	1.00E-21[Lycopersicon esculentum]	Pti4.
23	G2509 gi7528276	2.70E-21 [Mesembryanthemum crystallinum]	AP2-řelated transcription f
23	G2509 gi17385636	1.90E-20 [Matricaria chamomilla]	ethylene-responsive element binding
23	G2509 gi18496063	3.30E-20 [Fagus sylvatica]	ethylene responsive element binding prote
1119	G2347 BI931517	5.30E-31 [Lycopersicon esculentum]	EST551406 tomato flower, 8 mm to pr
1119	G2347 BE058432	4.20E-29[[Glycine max]	sn16a06.y1 Gm-c1016 Glycine max cDNA clone GENO
1119	G2347 AMSPB1	1.80E-28 [Antirrhinum majus]	A.majus mRNA for squamosa-promoter bindin
1119	G2347 BG525285	5.70E-28 [Stevia rebaudiana]	48-3 Stevia field grown leaf cDNA Stevia
1119	G2347 L38193	4.60E-27[Brassica rapa]	BNAF1025E Mustard flower buds Brassica rapa c
1119	G2347 BG455868	6.40E-27 [Medicago truncatula]	NF068F05PL1F1045 Phosphate starved leaf
1119	G2347 BG097153	1.70E-24[Solanum tuberosum]	EST461672 potato leaves and petioles Sola
1119	G2347 BF482644	1.60E-23 [Triticum aestivum]	WHE2301-2304_A21_A21ZS Wheat pre-anthesis
1119	G2347 AW747167	2.30E-23 [Sorghum bicolor]	WS1_66_F11.b1_A002 Water-stressed 1 (WS1) S
1119	G2347 BG442540	2.50E-23 [Gossypium arboreum]	GA Ea0017G06f Gossypium arboreum 7-10 d
1119	G2347 gi1183864	1.50E-31 [Antirrhinum majus]	squamosa-promoter binding protein 2.
1119	G2347 gi5931786	3.40E-25[Zea mays]	SBP-domain protein 5.
1119	G2347 gi8468036	1.40E-21 [Oryza sativa]	Similar to Arabidopsis thaliana chromosome 2
1119	G2347 gi9087308	6.60E-09 [Mitochondrion Beta vulgaris var. altissima]	orf102a.
1119	G2347 gi7209500	0.83 [Brassica rapa]	S-locus pollen protein.
43	G988 CRU303349	3.10E-208 [Capsella rubella]	ORF1, ORF2, ORF3, ORF4, ORF5 and ORF6 (pa
43	G988 A84072	4.50E-86 [Lycopersicon esculentum]	Sequence 1 from Patent WO9846759.
43	G988 A84080	3.30E-85 [Solanum tuberosum]	Sequence 9 from Patent WO9846759.
43	G988 AP003944	1.30E-57 [Oryza sativa]	chromosome 6 clane 0J1126_F05, *** SEQUENCING
43	G988 AX081276	2.80E-43 [Brassica napus]	Sequence 1 from Patent WO0109356.
43	G988 ZMA242530	1.50E-40[[Zea mays]	partial d8 gene for gibberellin response modulato
43		2.50E-37 [Triticum aestivum]	Sequence 13 from Patent WO9909174.
43		9.10E-33 [Pisum sativum]	PSSCR mRNA for SCARECROW, complete cds.
43	G988 AW774515	2.00E-29[Medicago truncatula]	EST333666 KV3 Medicago fruncatula cDNA
43	G988 BE822458	1.20E-27 [Glycine max]	GM700017A20H12 Gm-r1070 Glycine max cDNA clone
43		8.00E-211 [Capsella rubella]	hypothetical protein.
43		1.40E-87[[Lycopersicon esculentum]	lateral suppressor protein.
	Ž		

4.3 G988 g1970472 Cachar Call (Jammays) Submitted No. 1. (1924.4) [Chara Barkel] Inches Submitted No. 1. (1924.4) [Chara Barkel]			ŀ	NO COLORO CO
G988 gi6970472 1.20E-47 [Oryza sativa] G988 gi640157 2.80E-46 [Triticum aestivum] G988 gi1347010 1.10E-46 [Pistum sativum] G988 gi1347016 1.10E-46 [Pistum sativum] G988 gi14318115 1.10E-41 [Zea mays subsp. mays] G988 gi14318165 7.30E-14 [Tripsacum dactyloides] G988 gi14318165 7.30E-24 [Triticum majus] G988 gi347457 2.40E-05 [Glycine max] G2346 AMA011622 3.10E-26 [Medicago tuncatula] G2346 AMA011622 3.10E-26 [Medicago tuncatula] G2346 BG53787 5.50E-24 [Solanum tubencsum] G2346 BG53787 5.50E-24 [Solanum tubencsum] G2346 BG42540 1.00E-25 [Gossyplum arboreum] G2346 BE566165 2.70E-22 [Glycine max] G2346 BE566165 2.70E-22 [Clycine max] G2346 BE566165 2.70E-22 [Clycine max] G2346 BE566165 2.70E-26 [Clycine max] G2346 BE566165 2.70E-26 [Zea mays] G2346 BE566165 2.70E-26 [Zea mays] G2346 BE566165 2.70E-42 [Chrica max] G1354 BE202831 1.50E-42 [Chrica sativa] G1354 BE202831 1.50E-42 [Popunia	43		╁	SCANECHOW.
G98B gi5640157 2.80E-45 [Triticum aestivum] G98B gi13170126 7.10E-45 [Brassica napus] G98B gi13365610 1.10E-40 [Pisum sativum] G98B gi14318115 1.10E-14 [Tica mays subsp. mays] G98B gi14318115 1.00E-14 [Tica mays subsp. mays] G98B gi14318115 1.00E-14 [Ticacum dactyloides] G98B gi14318115 1.00E-14 [Ticacum dactyloides] G98B gi347457 2.40E-05 [Glycine max] G2346 AMA011622 3.10E-35 [Maitrinium majus] G2346 AW691786 1.80E-25 [Oryza sativa] G2346 BG442540 1.00E-25 [Oryza sativa] G2346 BG442540 1.00E-25 [Colanum tuberosum] G2346 BG480565 2.70E-22 [Glycine max] G2346 BG482743 3.0E-22 [Glycine max] G2346 BG482744 4.30E-28 [Antirrhinum majus] G2346 Gi3646036 3.30E-14 [Oryza sativa] G2346 Gi3640374 2.90E-26 [Cu max] G1354 BE202831 1.30E-26 [Medicago truncatula] G1354 BE202831 <td>43</td> <td></td> <td></td> <td>OsGAI.</td>	43			OsGAI.
G988 gi13170126 7.10E-45 [Brassica napus] G988 gi13355610 1.10E-40 [Pisum sativum] G988 gi14318115 1.10E-14 [Zea mays subsp. mays] G988 gi14318165 7.30E-14 [Tripsacum dactyloides] G988 gi14318165 7.30E-14 [Tripsacum dactyloides] G988 gi347457 2.40E-05 [Glycine max] G2346 AMM011622 3.10E-26 [Glycine max] G2346 AMM011622 3.00E-26 [Glycine max] G2346 AV932595 7.30E-24 [Solanum tuberosum] G2346 AV932595 7.30E-24 [Solanum tuberosum] G2346 BG593787 9.50E-24 [Solanum tuberosum] G2346 BG593787 9.50E-24 [Solanum tuberosum] G2346 BG593787 1.30E-23 [Gossypium arboreum] G2346 BG593787 1.30E-23 [Gyorine max] G2346 BH48244 4.30E-23 [Sorghum bicolor] G2346 BH482644 4.30E-22 [Triticum aestivam] G2346 gi593786 4.20E-26 [Zea mays] G2346 gi593786 4.20E-26 [Zea mays] G2346 gi593786 4.20E-26 [Zea mays] G2346 gi593786 4.20E-28 [Mitochondrion Beta vulgaris atvalled gi8987808 G1334 BE102031 1.90E-56 [Modicago tuncatula]	43		Н	gibberellin response modulator.
G988 gi13365610 1.10E-40 [Pisum sativum] G988 gi14318115 1.10E-14 [Zea mays subsp. mays] G988 gi14318115 1.10E-14 [Zea mays subsp. mays] G988 gi14318165 7.30E-14 [Tripsacum dactyloides] G988 gi14318165 7.30E-14 [Tripsacum dactyloides] G988 gi347457 2.40E-05 [Glycine max] G2346 AW691786 7.00E-26 [Medicago truncatula] G2346 AW691786 7.00E-25 [Oryza sativa] G2346 BG42540 7.00E-25 [Oryza sativa] G2346 BC49240 1.00E-23 [Gossyptium arboreum] G2346 BE596165 2.70E-23 [Gossyptium arboreum] G2346 BE596165 2.70E-22 [Glycine max] G2346 Gl3931786 4.20E-26 [Zea mays] G2346 Gl39087308 8.30E-31 [Oryza sativa] G1354 AB028186 1.20E-56 [Medicago truncatula] G1354 AB028186 1.20E-53 [Oryza sativa] G1354 AB028186 1.20E-53 [Oryza sativa] G1354 AB028186 1	43		7.10E-45 [Brassica napus]	unnamed protein product.
G988 gi14318115 1.10E-14 [Zea mays subsp. mays] G988 gi14318165 7.30E-14 [Tripsacum dactyloides] G988 gi347457 2.40E-05 [Glycine max] G2346 AMM011622 3.10E-35 [Antifrthinum majus] G2346 AW0922595 7.00E-25 [Oryza sativa] G2346 AQX32595 7.00E-25 [Cossypium arboreum] G2346 AQX32595 7.00E-23 [Gossypium arboreum] G2346 AQX32595 7.00E-23 [Gossypium arboreum] G2346 BAC803787 1.00E-23 [Gossypium arboreum] G2346 BES96165 2.70E-24 [Solanum bicolor] G2346 BES96165 2.70E-22 [Glycine max] G2346 BER92644 4.30E-22 [Minchondrion Beta vulgaris var. altissima] G2346 BIG480333 2.30E-44 [Minchondrion Beta vulgaris var. altissima] G2346 BIG4803304 2.00E-56 [Medicago truncatula] G1354 BEL202831 1.5	43		0 1.10E-40 [Pisum sativum]	SCARECROW.
G988 gi14318165 7.30E-14 [Tripsacum dactyloides] G988 gi347457 2.40E-05 [Glycine max] G2346 AMA011622 3.10E-35 [Antirthinum majus] G2346 AW691786 1.80E-26 [Medicago truncatula] G2346 AW69273505 7.00E-25 [Oryza sativa] G2346 AW6927855 7.90E-24 [Lycopersicon esculentum] G2346 BAW932595 7.90E-24 [Solanum tuberosum] G2346 BG442540 1.00E-23 [Gossypium arboreum] G2346 BE596165 2.70E-23 [Gossypium arboreum] G2346 BE596165 2.70E-23 [Gossypium arboreum] G2346 BE596165 2.70E-22 [Glycine max] G2346 BE482644 4.30E-22 [Triticum aestivum] G2346 BE480836 3.30E-24 [Mitochondrion Beta vulgaris var. altissima] G2346 BIS087308 8.30E-26 [IZea mays] G1354 BE102831 1.90E-56 [ICora	43	G988 gi1431811	5 1.10E-14 [Zea mays subsp. mays]	gibberellin response modulator.
G988 gi347457 2.40E-06 [Glycine max] G2346 AMA011622 3.10E-35 [Antirthinum majus] G2346 AW691786 1.80E-26 [Medicago truncatula] G2346 AW691786 1.80E-26 [Oryza sativa] G2346 AQ273505 7.00E-25 [Oryza sativa] G2346 BG593787 9.50E-24 [Lycopersicon esculentum] G2346 BG593787 9.50E-24 [Solanum tuberosum] G2346 BG593787 9.50E-24 [Solanum tuberosum] G2346 BE596165 2.70E-23 [Gossypium arboreum] G2346 BE482644 4.30E-22 [Triticum aestivum] G2346 BE482644 4.30E-22 [Triticum aestivum] G2346 gi593168 4.20E-26 [Zea mays] G2346 gi5931786 4.20E-26 [Zea mays] G2346 gi5931786 4.20E-26 [Zea mays] G2346 gi5931786 4.20E-26 [Zea mays] G1354 BE102831 1.90E-56 [Medicago truncatula] G1354 BE008373 2.90E-56 [Medicago truncatula] G1354 AB028186 <td>43</td> <td>G988 gi1431816</td> <td>55 7.30E-14 [Tripsacum dactyloides]</td> <td>gibberellin response modulator.</td>	43	G988 gi1431816	55 7.30E-14 [Tripsacum dactyloides]	gibberellin response modulator.
G2346 AMA011622 3.10E-35 [Antirrhinum majus] G2346 AW691786 1.80E-26 [Medicago truncatula] G2346 AW691786 1.80E-26 [Medicago truncatula] G2346 AW691786 1.80E-26 [Medicago truncatula] G2346 AQ273505 7.00E-25 [Oryza sativa] G2346 BG593787 9.50E-24 [Solanum tuberosum] G2346 BG42540 1.00E-23 [Gossypium arboreum] G2346 BE596165 2.70E-23 [Gossypium picolor] G2346 BE596165 2.70E-23 [Gossypium arboreum] G2346 BE596165 2.70E-23 [Gossypium picolor] G2346 BE596165 2.70E-23 [Gordum bicolor] G2346 BE596165 2.70E-23 [Glycine max] G2346 BF48264 4.30E-22 [Glycine max] G2346 BF482644 4.30E-22 [Glycine max] G2346 BG693774 6.20E-45 [Medicago truncatula] G2346 BG19887308 8.30E-36 [Medicago truncatula] G1354 BG128374 1.30E-56 [Medicago truncatula] G1354 BG028316 1.20E-56 [Medicago truncatula] G1354 AB002818 1.20E-56 [Medicago truncatula] G1354 AB002818 1.20E-56 [Medicago truncatula] G1354 AB002818 1.50E-56 [Medicago truncatula]	43	G988 gi347457	2.40E-05 [Glycine max]	hydroxyproline-rich glycoprotein.
G2346 AW691786 1.80E-26 [Medicago truncatula] G2346 AQ273505 7.00E-25 [Oryza sativa] G2346 AQ273505 7.00E-24 [Lycopersicon esculentum] G2346 BG593787 9.50E-24 [Solanum tuberosum] G2346 BG442540 1.00E-23 [Gossypium arboreum] G2346 BG442540 1.00E-23 [Gossypium arboreum] G2346 BE596165 2.70E-23 [Cossypium arboreum] G2346 BE596165 2.70E-23 [Corpum bicolor] G2346 BF482644 4.30E-22 [Glycine max] G2346 G19937643 6.20E-45 [Antirrhinum majus] G2346 G19987308 8.30E-06 [IMedicago truncatula] G2346 G19987308 8.30E-08 [IMitochondrion Beta vulgaris remula x Populus tremula x Populus tremula x Populus tremula x Populus tremuloides] G1354 BE1020831 1.50E-65 [Populus vulgaris] G1354 ABC060921 8.00E-65 [Populus vulgaris] G1354 ABC060921 8.00E-67 [Potunia x hybrida] G1354 BE10208373 4.50E-63 [Oryza sativa] G1354 BHRNANAM 3.60E-44 [Petunia x hybrida] <t< td=""><td></td><td>G2346 AMA01162</td><td>22 3.10E-35 [Antirrhinum majus]</td><td>mRNA for squamosa promoter binding</td></t<>		G2346 AMA01162	22 3.10E-35 [Antirrhinum majus]	mRNA for squamosa promoter binding
G2346 AQ273505 7.00E-25 [Oryza sativa] G2346 AW932595 7.90E-24 [Lycopersicon esculentum] G2346 BC593787 9.50E-24 [Solanum tuberosum] G2346 BC593787 9.50E-24 [Solanum tuberosum] G2346 BC42540 1.00E-23 [Gossypium arboreum] G2346 BC596165 2.70E-23 [Sorghum bicolor] G2346 BE596165 2.70E-23 [Sorghum bicolor] G2346 BE596165 2.70E-22 [Glycine max] G2346 BF482644 4.30E-22 [Triticum aestivum] G2346 G15931786 4.20E-26 [Zea mays] G2346 G15931786 4.20E-26 [Zea mays] G2346 G15931786 4.20E-26 [Antirrhinum majus] G2346 G15931786 4.20E-26 [Antirrhinum majus] G1354 BG128374 2.90E-56 [Wedicago truncatula] G1354 BG128374 2.90E-56 [Medicago truncatula] G1354 BE060921 8.00E-56 [Populus tremula x Populus tremuloides] G1354 BE060921 8.00E-56 [Populus vulgaris] G1354 BE357920 1.60E-42 [Sorghum bicolor] G1354 AW185617 5.30E-40 [Glycine max] G1354 AW185617 5.30E-44 [Potas vulgaris] G1354 G14485513 3.50E-44 [Potas vulgaris] <td< td=""><td></td><td>G2346 AW691786</td><td></td><td>NF044B06ST1F1000 Developing stem Medica</td></td<>		G2346 AW691786		NF044B06ST1F1000 Developing stem Medica
G2346 AW932595 7.90E-24 [Lycopersicon esculentum] G2346 BC593787 9.50E-24 [Solanum tuberosum] G2346 BC593787 9.50E-24 [Solanum tuberosum] G2346 AZ919034 1.00E-23 [Gossypium arboreum] G2346 BC596165 2.70E-23 [Zoa mays] G2346 BE596165 2.70E-23 [Sorghum bicolor] G2346 BE596165 2.70E-22 [Glycine max] G2346 BF482644 4.30E-22 [Triticum aestivum] G2346 Gi5931643 6.20E-45 [Antirrhinum majus] G2346 Gi5931643 6.20E-45 [Antirrhinum majus] G2346 Gi5931786 4.20E-26 [Zea mays] G2346 Gi5931786 4.20E-26 [Zea mays] G2346 Gi5931643 6.20E-45 [Moticondrion Beta vulgaris var. altissima] G1354 BG128374 2.90E-56 [Wedicago truncatula] G1354 BE060921 8.00E-56 [Modicago truncatula] G1354 BE060921 8.00E-56 [Populus tremula x Populus tremuloides] G1354 BE060921 8.00E-56 [Populus vulgaris] G1354 AF402603 1.50E-42 [Potunia x hybrida] G1354 AW185617 5.30E-44 [Potunia x hybrida] G1354 Gi14485513 3.50E-44 [Potunia x hybrida] G1354 gi14485513 3.50E-44 [Potunia x hyb		G2346 AQ273505		nbxb0030003f CUGI Rice BAC Library Oryza sativ
G2346 BG593787 9.50E-24 [Solanum tuberosum] G2346 BG442540 1.00E-23 [Gossypium arboreum] G2346 AZ919034 1.90E-23 [Zea mays] G2346 BE596165 2.70E-23 [Sorghum bicolor] G2346 AI443033 2.30E-22 [Glycine max] G2346 BE482644 4.30E-22 [Glycine max] G2346 BISE361786 4.20E-26 [Zea mays] G2346 gi5931786 4.20E-26 [Zea mays] G2346 gi5931786 4.20E-26 [Zea mays] G2346 gi5931643 6.20E-45 [Matirrhinum majus] G2346 gi5931643 6.20E-46 [Matirrhinum majus] G2346 gi5931643 6.20E-46 [Matirrhinum majus] G1354 BE202831 1.90E-56 [Medicago truncatula] G1354 BE1028379 1.20E-56 [Modeum vulgare] G1354 AB028186 1.20E-53 [Oryza sativa] G1354 AF402603 1.50E-42 [Petunia x hybrida] <		G2346 AW932595		EST358438 tomato fruit mature green
G2346 BG442540 1.00E-23 [Gossypium arboreum] G2346 AZ919034 1.90E-23 [Zea mays] G2346 BE596165 2.70E-23 [Sorghum bicolor] G2346 BE596165 2.70E-22 [Glycine max] G2346 BIF482644 4.30E-22 [Triticum aestivum] G2346 gi5931643 6.20E-45 [Antirrhinum majus] G2346 gi5931786 4.20E-26 [Zea mays] G2346 gi5931786 4.20E-26 [Zea mays] G2346 gi6987308 8.30E-14 [Oryza sativa] G2346 gi89468036 8.30E-14 [Oryza sativa] G1354 BE202831 1.90E-56 [Medicago truncatula] G1354 BE1020831 1.90E-56 [Modeum vulgare] G1354 AB028186 1.20E-53 [Oryza sativa] G1354 AB028186 1.50E-42 [Phaseolus vulgare] G1354 AF402603 1.50E-42 [Potunia x hybrida] G1354	Γ	G2346 BG593787		EST492465 cSTS Solanum tuberosum cDNA clo
G2346 AZ919034 1.90E-23 [Zea mays] G2346 BE596165 2.70E-23 [Sorghum bicolor] G2346 BH443033 2.30E-22 [Glycine max] G2346 BF482644 4.30E-22 [Triticum aestivum] G2346 gi5931643 6.20E-45 [Antirrhinum majus] G2346 gi5931786 4.20E-22 [Triticum aestivum] G2346 gi5931786 4.20E-26 [Zea mays] G1354 gi8468036 3.30E-14 [Oryza sativa] G1354 BG128374 2.90E-58 [Wedicago fruncatula] G1354 BE202831 1.90E-56 [Medicago fruncatula] G1354 BE202831 1.50E-42 [Populus tremula x Populus tremuloides] G1354 BE060921 8.00E-56 [Medicago fruncatula] G1354 AF402603 1.50E-42 [Populus vulgaris] G1354 AF402603 1.50E-42 [Potunia x hybrida] G1354 GHRNANANAM 3.50E-44 [Potunia x hybrida]	Г	G2346 BG442540		GA_Ea0017G06f Gossypium arboreum 7-10 d
G2346 BE596165 2.70E-23 [Sorghum bicolor] G2346 AI443033 2.30E-22 [Glycine max] G22346 BF482644 4.30E-22 [Triticum aestivum] G2346 gi5931643 6.20E-45 [Antirrhinum majus] G2346 gi5931786 4.20E-26 [Zea mays] G2346 gi898036 3.30E-14 [Oryza sativa] G2346 gi898036 3.30E-14 [Oryza sativa] G2346 gi898037 2.90E-58 [Lycopersicon esculentum] G1354 BE202831 1.90E-56 [Medicago truncatula] G1354 BE202831 1.90E-56 [Medicago truncatula] G1354 BE202831 1.50E-55 [Populus tremula x Populus tremuloides] G1354 BE202831 1.50E-56 [Medicago truncatula] G1354 BE202831 1.50E-56 [Medicago truncatula] G1354 BE202831 1.50E-42 [Potulus x hybrida] G1354 BE357920 1.60E-42 [Sorghum bicolor] G1354 PHRNANAM 3.60E-42 [Potuna x hybrida] G1354 BE357920 1.60E-42 [Potuna x hybrida] G1354 Gi6006373 4.50E-63 [Oryza sativa] G1354 gif148514 2.30E-44 [Potuna x hybrida] G1354 gif4485513 3.50E-44 [Potunia x hybrida] G1354 gif4485513 3.50E-44 [Potunia x hybrida]	Г	G2346 AZ919034		1006013G02.x3 1006 - RescueMu Grid G Zea mays geno
G2346 Al443033 2.30E-22 [Glycine max] G2346 BF482644 4.30E-22 [Triticum aestivum] G2346 gi5931643 6.20E-45 [Antirrhinum majus] G2346 gi5931786 4.20E-26 [Zea mays] G2346 gi8468036 3.30E-14 [Oryza sativa] G2346 gi8987308 8.30E-08 [Mitochondrion Beta vulgaris var. altisslma] G1354 BG128374 2.90E-58 [Lycopersicon esculentum] G1354 BE202831 1.90E-56 [Medicago truncatula] G1354 AB028186 1.20E-55 [Populus tremula x Populus tremuloides] G1354 AB028186 1.20E-56 [Medicago truncatula] G1354 AB028186 1.20E-56 [Populus tremula x Populus tremuloides] G1354 AB028186 1.20E-57 [Populus tremula x Populus tremuloides] G1354 AF402603 1.50E-42 [Phaseolus vulgaris] G1354 AF402603 1.50E-42 [Sorghum bicolor] G1354 AW185617 5.30E-40 [Glycine max] G1354 gi15148914 2.30E-44 [Phaseolus vulgaris] G1354 gi1485513 3.50E-44 [Potunia x hybrida] G1354 gi14485513 3.50E-44 [Potunia x hybrida] G1354 gi1779640 5.90E-44 [Potunia x hybrida] G1354 gi175246 5.20E-41 [Lycopersicon esculentum]	Ì	G2346 BE596165	5 2.70E-23 [Sorghum bicolor]	PI1_50_D04.b1_A002 Pathogen induced 1 (PI1)
G2346 BF482644 4.30E-22 [Triticum aestivum] G2346 gi5931643 6.20E-45 [Antirrhinum majus] G2346 gi5931786 4.20E-26 [Zea mays] G2346 gi5931786 4.20E-26 [Zea mays] G2346 gi8468036 3.30E-14 [Oryza sativa] G2346 gi8987308 8.30E-08 [Mitochondrion Beta vulgaris var. altisslma] G1354 BG128374 2.90E-58 [Lycopersicon esculentum] G1354 BE202831 1.90E-56 [Medicago fruncatula] G1354 Al161918 6.60E-55 [Populus tremula x Populus tremuloides] G1354 AF402603 1.20E-53 [Oryza sativa] G1354 BE367920 1.60E-42 [Phaseolus vulgaris] G1354 BE357920 1.60E-42 [Potunia x hybrida] G1354 BE357920 1.60E-42 [Potunia x hybrida] G1354 AVV185617 5.30E-40 [Glycine max] G1354 Gi6006373 4.50E-63 [Oryza sativa] G1354 gi15148914 2.30E-44 [Phaseolus vulgaris] G1354 gi1485513 3.50E-44 [Phaseolus vulgaris] G1354 gi1485513 3.50E-44 [Phaseolus vulgaris] G1354 gi1779640 5.90E-44 [Petunia x hybrida] G1354 gi1779640 5.90E-44 [Phaseolus vulgaris]		G2346 AI443033	2.30E-22 [Glycine max]	sa31a08.y1 Gm-c1004 Glycine max cDNA clone GENO
G2346 gi5931643 6.20E-45 [Antirrhinum majus] G2346 gi5931786 4.20E-26 [Zea mays] G2346 gi5931786 4.20E-26 [Zea mays] G2346 gi8468036 3.30E-14 [Oryza sativa] G2346 gi89087308 8.30E-08 [Mitochondrion Beta vulgaris var. altissima] G1354 BG128374 2.90E-58 [Lycopersicon esculentum] G1354 BE202831 1.90E-56 [Medicago truncatula] G1354 BE202831 1.90E-56 [Medicago truncatula] G1354 AB028186 1.20E-53 [Oryza sativa] G1354 AB028186 1.20E-53 [Oryza sativa] G1354 BE357920 1.60E-42 [Petunia x hybrida] G1354 BHRNANAM 3.60E-42 [Petunia x hybrida] G1354 PHRNANAM 3.60E-42 [Petunia x hybrida] G1354 Gi1606373 4.50E-63 [Oryza sativa] G1354 gi16068373 4.50E-63 [Oryza sativa] G1354 gi161485513 3.50E-44 [Phaseolus vulgaris] G1354 gi1779640 5.90E-44 [Petunia x hybrida] G1354 gi1779640 5.90E-41 [Lycopersicon esculentum]		G2346 BF482644	4.30E-22 Triticum aestivum]	WHE2301-2304_A21_A21ZS Wheat pre-anthesis
G2346 gi5931786 4.20E-26 [Zea mays] G2346 gi8468036 3.30E-14 [Oryza sativa] G2346 gi8468036 3.30E-14 [Oryza sativa] G2346 gi8087308 8.30E-08 [Mitochondrion Beta vulgaris var. altissima] G1354 BG128374 2.90E-58 [Lycopersicon esculentum] G1354 BE202831 1.90E-56 [Medicago truncatula] G1354 AB028186 1.20E-53 [Populus tremula x Populus tremuloides] G1354 AB028186 1.20E-53 [Oryza sativa] G1354 BE060921 8.00E-50 [Hordeum vulgare] G1354 BE060921 8.00E-50 [Hordeum vulgaris] G1354 BE357920 1.60E-42 [Petunia x hybrida] G1354 PHRNANAM 3.60E-42 [Petunia x hybrida] G1354 AW185617 5.30E-44 [Phaseolus vulgaris] G1354 gi6006373 4.50E-63 [Oryza sativa] G1354 gi151485513 3.50E-44 [Phaseolus vulgaris] G1354 gi1779640 5.90E-44 [Petunia x hybrida] G1354 gi177946 5.90E-44 [Petunia x hybrida]	l	G2346 gi5931643	3 6.20E-45 [Antirrhinum majus]	squamosa promoter binding protein-homol
G2346 gi8468036 3.30E-14 [Oryza sativa] G2346 gi8087308 8.30E-08 [Mitochondrion Beta vulgaris var. altisslma] G1354 BG128374 2.90E-58 [Lycopersicon esculentum] G1354 BE202831 1.90E-56 [Medicago truncatula] G1354 AB028186 1.20E-53 [Populus tremula x Populus tremuloides] G1354 AB028186 1.20E-53 [Populus tremula x Populus tremuloides] G1354 BE060921 8.00E-50 [Hordeum vulgare] G1354 BE060921 8.00E-50 [Hordeum vulgare] G1354 BE060921 8.00E-50 [Hordeum vulgare] G1354 BE357920 1.60E-42 [Petunia x hybrida] G1354 PHRNANAM 3.60E-42 [Petunia x hybrida] G1354 Gi1606373 4.50E-63 [Oryza sativa] G1354 Gi1606373 4.50E-63 [Oryza sativa] G1354 Gi151485513 3.50E-44 [Phaseolus vulgaris] G1354 gi1779640 5.90E-44 [Petunia x hybrida] G1354 gi177946 5.90E-44 [Petunia x hybrida] G1354 gi177546 5.20E-41 [Lycopersicon esculentum]		G2346 gi5931786	3 4.20E-26 [Zea mays]	SBP-domain protein 5.
G2346 gi9087308 8.30E-08 [Mitochondrion Beta vulgaris var. altissima] G1354 BG128374 2.90E-58 [Lycopersicon esculentum] G1354 BE202831 1.90E-56 [Medicago fruncatula] G1354 AB228186 1.20E-55 [Populus fremula x Populus fremuloides] G1354 AB028186 1.20E-53 [Oryza sativa] G1354 BE060921 8.00E-50 [Hordeum vulgare] G1354 BE060921 8.00E-50 [Hordeum vulgaris] G1354 BE357920 1.60E-42 [Phaseolus vulgaris] G1354 PHRNANAM 3.60E-42 [Petunia x hybrida] G1354 Gi006373 4.50E-63 [Oryza sativa] G1354 gi151485513 3.50E-44 [Phaseolus vulgaris] G1354 gi151485513 3.50E-44 [Phaseolus vulgaris] G1354 gi1779640 5.90E-44 [Potunia x hybrida] G1354 gi1779640 5.90E-44 [Petunia x hybrida] G1354 gi1779640 5.90E-44 [Petunia x hybrida] G1354 gi6006373 4.50E-63 [Oryza sativa] G1354 gi1779640 5.90E-44 [Petunia x hybrida]		G2346 gi8468036		Similar to Arabidopsis thaliana chromosome 2
G1354 BG128374 2.90E-58 [Lycopersicon esculentum] G1354 BE202831 1.90E-56 [Medicago truncatula] G1354 Al161918 6.60E-55 [Populus tremula x Populus tremuloides] G1354 Al161918 6.60E-55 [Populus tremula x Populus tremuloides] G1354 AB028186 1.20E-53 [Oryza sativa] G1354 BE060921 8.00E-50 [Hordeum vulgare] G1354 BE060921 8.00E-50 [Hordeum vulgaris] G1354 BE357920 1.60E-42 [Potunia x hybrida] G1354 PHRNANAM 3.60E-42 [Petunia x hybrida] G1354 gi6006373 4.50E-63 [Oryza sativa] G1354 gi151485513 3.50E-44 [Phaseolus vulgaris] G1354 gi1279640 5.90E-44 [Potunia x hybrida] G1354 gi177546 5.90E-44 [Petunia x hybrida]		G2346 gi9087308		ı] orf102a.
G1354 BE202831 1.90E-56 [Medicago truncatula] G1354 Al161918 6.60E-55 [Populus tremula x Populus tremuloides] G1354 AB028186 1.20E-53 [Oryza sativa] G1354 BE060921 8.00E-50 [Hordeum vulgare] G1354 BE060921 8.00E-50 [Hordeum vulgare] G1354 BE357920 1.50E-42 [Phaseolus vulgaris] G1354 BE357920 1.60E-42 [Sorghum bicolor] G1354 PHRNANAM 3.60E-42 [Petunia x hybrida] G1354 Gi0006373 4.50E-63 [Oryza sativa] G1354 gi15148914 2.30E-44 [Phaseolus vulgaris] G1354 gi1485513 3.50E-44 [Potunia x hybrida] G1354 gi1279640 5.90E-44 [Petunia x hybrida] G1354 gi6075246 5.20E-41 [LycopersIcon esculentum]		G1354 BG128374		EST474020 tomato shoot/meristem Lyc
G1354 Al161918 6.60E-55 [Populus tremula x Populus tremuloides] G1354 AB028186 1.20E-53 [Oryza sativa] G1354 BE060921 8.00E-50 [Hordeum vulgare] G1354 BE060921 8.00E-50 [Hordeum vulgare] G1354 BE37920 1.50E-42 [Phaseolus vulgaris] G1354 BE37920 1.60E-42 [Potunia x hybrida] G1354 PHRNANAM 3.60E-42 [Petunia x hybrida] G1354 G15006373 4.50E-63 [Oryza sativa] G1354 gi15148914 2.30E-44 [Phaseolus vulgaris] G1354 gi14485513 3.50E-44 [Potunia x hybrida] G1354 gi1279640 5.90E-44 [Petunia x hybrida] G1354 gi6005373 4.50E-61 [Copensicon esculentum]		G1354 BE202831		EST402853 KV1 Medicago truncatula cDNA
G1354 AB028186 1.20E-53 [Oryza sativa] G1354 BE060921 8.00E-50 [Hordeum vulgare] G1354 BE060921 8.00E-42 [Phaseolus vulgaris] G1354 BE357920 1.50E-42 [Phaseolus vulgaris] G1354 PHRNANAM 3.60E-42 [Petunia x hybrida] G1354 AW185617 5.30E-40 [Glycine max] G1354 gi0006373 4.50E-63 [Oryza sativa] G1354 gi15148914 2.30E-44 [Phaseolus vulgaris] G1354 gi14485513 3.50E-44 [Solanum tuberosum] G1354 gi1279640 5.90E-44 [Petunia x hybrida] G1354 gi6075246 5.20E-41 [Lycopersicon esculentum]	T	G1354 AI161918	ı	A009P50U Hybrid aspen
G1354 BE060921 8.00E-50 [Hordeum vulgare] G1354 AF402603 1.50E-42 [Phaseolus vulgaris] G1354 BE357920 1.60E-42 [Potunia x hybrida] G1354 PHRNANAM 3.60E-42 [Petunia x hybrida] G1354 AW185617 5.30E-40 [Glycine max] G1354 gi6006373 4.50E-63 [Oryza sativa] G1354 gi15148914 2.30E-44 [Phaseolus vulgaris] G1354 gi14485513 3.50E-44 [Solanum tuberosum] G1354 gi1779640 5.90E-44 [Petunia x hybrida] G1354 gi6175246 5.20E-41 [Lycopersicon esculentum]		G1354 AB028186		mRNA for OsNAC7 protein, complete cds.
G1354 AF402603 1.50E-42 [Phaseolus vulgaris] G1354 BE357920 1.60E-42 [Sorghum bicolor] G1354 PHRNANAM 3.60E-42 [Petunia x hybrida] G1354 AW185617 5.30E-40 [Glycine max] G1354 gi6006373 4.50E-63 [Oryza sativa] G1354 gi15148914 2.30E-44 [Phaseolus vulgaris] G1354 gi17485513 3.50E-44 [Solanum tuberosum] G1354 gi1779640 5.90E-44 [Petunia x hybrida] G1354 gi6175246 5.20E-41 [LycopersIcon esculentum]		G1354 BE060921	1	HVSMEg0013N15f Hordeum vulgare pre-anthesis
G1354 BE357920 1.60E-42 [Sorghum bicolor] G1354 PHRNANAM 3.60E-42 [Petunia x hybrida] G1354 AW185617 5.30E-40 [Glycine max] G1354 gi6006373 4.50E-63 [Oryza sativa] G1354 gi15148914 2.30E-44 [Phaseolus vulgaris] G1354 gi14485513 3.50E-44 [Solanum tuberosum] G1354 gi1279640 5.90E-44 [Petunia x hybrida] G1354 gi6175246 5.20E-41 [Lycopersicon esculentum]	Γ	G1354 AF402603		NAC domain protein NAC2 mRNA, complete c
G1354 PHRNANAM 3.60E-42 [Petunia x hybrida] G1354 AW185617 5.30E-40 [Glycine max] G1354 gi6006373 4.50E-63 [Oryza sativa] G1354 gi15148914 2.30E-44 [Phaseolus vulgaris] G1354 gi1485513 3.50E-44 [Solanum tuberosum] G1354 gi1279640 5.90E-44 [Petunia x hybrida] G1354 gi6175246 5.20E-41 [Lycopersicon esculentum]	Г	G1354 BE357920		DG1 23 F03.b1 A002 Dark Grown 1 (DG1) Sorgh
G1354 AW/185617 5.30E-40 [Glycine max] G1354 gi6006373 4.50E-63 [Oryza sativa] G1354 gi15148914 2.30E-44 [Phaseolus vulgaris] G1354 gi14485513 3.50E-44 [Solanum tuberosum] G1354 gi1279640 5.90E-44 [Petunia x hybrida] G1354 gi6175246 5.20E-41 [Lycopersicon esculentum]		G1354 PHRNANA		P.hybrida mRNA encoding NAM protein.
G1354 gi6006373 4.50E-63 [Oryza sativa] G1354 gi15148914 2.30E-44 [Phaseolus vulgaris] G1354 gi14485513 3.50E-44 [Solanum tuberosum] G1354 gi1279640 5.90E-44 [Petunia x hybrida] G1354 gi6175246 5.20E-41 [Lycopersicon esculentum]		G1354 AW185617		se80b05.y1 Gm-c1023 Glycine max cDNA clone GENO
G1354 gi15148914 2.30E-44 [Phaseolus vulgaris] G1354 gi14485513 3.50E-44 [Solanum tuberosum] G1354 gi1279640 5.90E-44 [Petunia x hybrida] G1354 gi6175246 5.20E-41 [Lycopersicon esculentum]		G1354 gi6006373		Similar to NAM like protein (AC005310).
G1354 gi14485513 3.50E-44 [Solanum tuberosum] G1354 gi1279640 5.90E-44 [Petunia x hybrida] G1354 gi6175246 5.20E-41 [Lycopersicon esculentum]		G1354 gi1514891	l I	NAC domain protein NAC2.
G1354 gi1279640 5.90E-44 [Petunia x hybrida] G1354 gi6175246 5.20E-41 [Lycopersicon esculentum]		G1354 gi1448551;		putative NAC domain protein.
G1354 gi6175246 5.20E-41 [Lycopersicon esculentum]	Г	G1354 gi1279640		NAM.
	Г	G1354 gi6175246		jasmonic acid 2.

0E-39 [Triticum monococcum] 0E-35 [Medicago truncatula] 0E-26 [Nicotiana tabacum] 0E-27 [Nicotiana tabacum] 0E-14 [Picea mariana] 0E-17 [Lycopersicon esculentum] 0E-30 [Brassica oleracea] 0E-31 [Oryza sativa] 0E-32 [Oryza sativa] 0E-32 [Hordeum vulgare] 0E-32 [Oryza sativa] 0E-34 [Ilenssica napus] 0E-60 [Petunia x hybrida] 0E-67 [Volvox carteri] 0E-67 [Volvox carteri] 0E-67 [Nicotiana alata] 0E-67 [Nicotiana alata] 0E-67 [Volvox sativa] 0E-67 [Ilenssica oleracea] 0E-68 [Brassica oleracea] 0E-69 [Catharanthus roseus] 0E-69 [Catharanthus roseus] 0E-60 [Catharanthus roseus] 0E-61 [Glycine max] 0E-8 [Brassica rapa subsp. pekinensis] 0E-8 [Hordeum vulgare] 0E-31 [Brassica rapa subsp. pekinensis] 0E-32 [Sorghum propinquum] 0E-34 [Sorghum propinquum] 0E-18 [Sorghum propinquum] 0E-18 [Sorghum propinquum]	П	G1354 gi4218535	5.10E-39 [Triticum sp.]	GRAB1 protein.
G1354 gi7716952 3.30E-36 [Medicago truncatula] G1354 gi7716952 3.30E-36 [Nicotiana tabacum] G1354 gl4996349 2.56E-26 [Nicotiana tabacum] G1053 BH700922 4.50E-90 [Brassica oleracea] G1063 BH700922 4.50E-90 [Brassica oleracea] G1063 BH700923 4.50E-90 [Brassica oleracea] G1063 BH700923 5.90E-37 [Oryza sativa] (apponica cultivar-group)] G1063 AP004662 4.40E-32 [Oryza sativa] (apponica cultivar-group)] G1063 BF567011 4.20E-22 [Brassica rapa subsp. pekinensis] G1063 BF567014 4.20E-22 [Brassica rapa subsp. pekinensis] G1063 BF567011 4.20E-22 [Gorghum bicolor] G1063 BG559930 1.40E-18 [Sorghum propinquum] G1063 BG559930 1.40E-18 [Sorghum propinquum] G1063 gi166283 8.10E-10 [Pinus taeda] G1063 gi166283 8.10E-10 [Pinus taeda] G1063 gi166283 8.10E-10 [Pinus taeda] G1063 gi166288 8.10E-10 [Pinus taeda] G1063 gi166288 8.10E-07 [Antirrhinum majus] G1063 gi166428 8.10E-07 [Antirrhinum majus] G1063 gi166428 8.10E-07 [Antirrhinum reseus] G1063 gi166428 <		354 gi6732158	5.10E-39 [Triticum monococcum]	unnamed protein product.
G1354 gl4996349 2.50E-26 Nicotiana tabacum G1354 gl4996349 2.50E-26 Nicotiana tabacum G1354 gl2982275 3.10E-14 Picea mariana G1063 BH700922 4.50E-90 Brassica oleracea G1063 BH700922 4.50E-90 Brassica oleracea G1063 BH700462 2.40E-40 Llycopersicon esculentum s G1063 AP004662 2.40E-40 Llycopersicon esculentum s G1063 AP004662 4.40E-32 Olyza sativa (japonica cultivar-group) G1063 BP263465 5.40E-22 Roghum bicolor G1063 BP263405 3.40E-22 Roghum propinguum G1063 BP2636930 1.40E-12 Roghum propinguum G1063 BP363930 1.40E-12 Roghum propinguum G1063 gl15528743 8.40E-26 Cloyza sativa G1063 gl15528743 8.0E-09 Brassica napus G1063 gl166228 8.0E-07 Pinus taeda G1063 gl166228 8.0E-07 Rokovo carteri G1063 gl1662038 8.0E-07 Rokovo carteri G1063 gl1662038 8		354 gi7716952	3.30E-35 [[Medicago truncatula]	NAC1.
G1354 gi2982275 3.10E-14 [Picea mariana] G1053 BH700922 4.50E-90 [Brassica oleracea] G1063 BH700922 4.50E-90 [Brassica oleracea] G1063 BH700922 4.50E-90 [Brassica oleracea] G1063 AW832545 2.00E-40 [Glycine max] G1063 AP004693 5.90E-37 [Oryza sativa] [appoint a period of the provided of the pro	Г	354 gi4996349	2.50E-26 [Nicotiana tabacum]	NAC-domain protein.
G1063 BH700922 4.50E-90 [Brassica oleracea] G1063 BH700922 4.50E-90 [Brassica oleracea] G1063 BE451174 2.40E-41 [Lycopersicon esculentum] G1063 BE451174 2.40E-41 [Lycopersicon esculentum] G1063 AP004693 5.90E-37 [Oryza sativa] G1063 AP004462 4.40E-32 [Brassica rapa subsp. pekinensis] G1063 AP004462 4.40E-32 [Brassica rapa subsp. pekinensis] G1063 BE57041 4.20E-22 [Brassica rapa subsp. pekinensis] G1063 BG559930 1.40E-28 [Hordeum vulgare] G1063 BG559930 1.40E-28 [Hordeum vulgare] G1063 gi15528743 4.20E-26 [Oryza sativa] G1063 gi15528743 4.20E-26 [Oryza sativa] G1063 gi166283 8.10E-10 [Pinus taeda] G1063 gi166283 8.10E-10 [Pinus taeda] G1063 gi166283 8.10E-07 [Inaseolus vulgaris] G1063 gi166283 8.10E-07 [Inaseolus vulgaris] G1063 gi166283 1.40E-06 [Uvopersicon esculentum] G1063 gi166283 1.40E-06 [Catharanthus roseus] G2143 BH650724 3.00E-88 [Brassica oleracea] G2143 BE451174 3.50E-40 [Glycine max] G2143 BE45174 3.50E-40 [Glycine max] G2143 BE507011 2.60E-27 [Hordeum vulgare] G2143 BG550310 6.10E-18 [Sorghum picolor] G2143 BG550313 6.10E-18 [Sorghum picolor] G2143 BG550310 6.10E-18 [Sorghum picolor] G2143 BG550310 6.10E-18 [Sorghum picolor] G2143 BG550310 6.10E-18 [Sorghum picolor] G2		gi2982275	3.10E-14[[Picea mariana]	ATAF1-like protein.
G1063 BE451174 2.40E-41 [Lycopersicon esculentum] G1063 AW832545 2.00E-40 [Glycine max] G1063 AP004693 5.90E-37 [Oryza sativa] G1063 AP004462 4.40E-32 [Oryza sativa] G1063 AP004462 4.40E-32 [Oryza sativa] G1063 AP004462 4.60E-32 [Brassica rapa subsp. pekinensis] G1063 BG557011 4.20E-26 [Hordeum vulgare] G1063 BG557011 4.20E-26 [Sorghum bicolor] G1063 BG558930 1.40E-18 [Sorghum propinquum] G1063 BG558930 1.40E-26 [Oryza sativa] G1063 BG558930 1.40E-18 [Sorghum propinquum] G1063 gi15628743 4.20E-26 [Oryza sativa] G1063 gi1562893 8.10E-10 [Pinus taeda] G1063 gi166283 8.10E-10 [Pinus taeda] G1063 gi166284 7.10E-08 [Petunia x hybrida] G1063 gi166288 8.10E-07 [Notvox carteri] G1063 gi166281 8.10E-07 [Internation esculentum] G1063 gi1247386 9.50E-07 [Motorian alata] G1063 gi166428 8.10E-07 [Motorian alata] G1063 gi166428 8.10E-07 [Motorian alata] G1063 gi166428 8.10E-07 [Motorian alata] G1063 gi166428 <td></td> <td>l</td> <td>4.50E-90[[Brassica oleracea]</td> <td>BOMMZ07TR BO 2 3 KB Brassica oleracea gen</td>		l	4.50E-90[[Brassica oleracea]	BOMMZ07TR BO 2 3 KB Brassica oleracea gen
G1063 AW832545 2.00E-40 [Glycine max] G1063 AP004693 5.90E-37 [Oryza sativa] G1063 AP004693 5.90E-37 [Oryza sativa] G1063 AP004662 4.40E-32 [Oryza sativa] G1063 AP00234 4.90E-32 [Oryza sativa] G1063 BF263465 5.40E-25 [Hordeum vulgare] G1063 BF263465 5.40E-25 [Hordeum vulgare] G1063 BF263465 3.10E-21 [Zea mays] G1063 BG55930 1.40E-18 [Sorghum propinquum] G1063 BG55930 1.40E-18 [Sorghum propinquum] G1063 g16528743 4.20E-26 [Oryza sativa] G1063 g1662873 8.10E-10 [Pinus taeda] G1063 g16628743 4.20E-26 [Oryza sativa] G1063 g11045087 8.80E-07 [Volvox carter] G1063 g11045087 8.10E-07 [Volvox carter] G1063 g11247386 9.50E-07 [Volvox carter] G1063 g11486263 1.40E-06 [Catharanthus roseus] G2103 g11486263 1.40E-06 [Catharanthus roseus] G21043 BH650724 3.00E-07 [Uyopersic	Г		2.40E-41 [Lycopersicon esculentum]	EST402062 tomato root, plants pre-a
G1063 AP004693 5.90E-37 [Oryza sativa] G1063 AP004462 4.40E-32 [Oryza sativa (japonica cultivar-group)] G1063 AP004462 4.40E-32 [Oryza sativa (japonica cultivar-group)] G1063 BF263465 5.40E-25 [Hordeum vulgare] G1063 BF2637011 4.20E-22 [Sorghum bicolor] G1063 BG557011 4.20E-22 [Sorghum propinguum] G1063 BG55930 1.40E-12 [Zea mays] G1063 BG55930 1.40E-18 [Sorghum propinguum] G1063 G1662283 8.10E-10 [Pinus taeda] G1063 g1662283 8.10E-10 [Pinus taeda] G1063 g1662283 8.10E-10 [Pinus taeda] G1063 g1662283 8.10E-07 [Volvox carter] G1063 g166428 8.0E-08 [Incateral max] G1063 g166428 8.0E-08 [Incateral max] G21063 g17473 AV832545	Г	اما	2.00E-40 [Glycine max]	sm12e10.y1 Gm-c1027 Glycine max cDNA clone GENO
G1063 AP004462 4.40E-32 [Oryza sativa (japonica cultivar-group)] G1063 AT002234 8.90E-32 [Brassica rapa subsp. pekinensis] G1063 BF263465 5.40E-25 [Hordeum vulgare] G1063 BF2637011 4.20E-22 [Sorghum bicolor] G1063 BG557011 4.20E-22 [Sorghum bicolor] G1063 BG65930 1.40E-18 [Sorghum propinguum] G1063 BG65930 1.40E-18 [Sorghum propinguum] G1063 gi15628743 4.20E-26 [Oryza sativa] G1063 gi166283 8.10E-10 [Pinus taeda] G1063 gi1045087 8.80E-09 [Brassica napus] G1063 gi1045087 8.80E-09 [Petunia x hybrida] G1063 gi10498404 7.10E-08 [Petunia x hybrida] G1063 gi10498404 7.10E-08 [Petunia x hybrida] G1063 gi10498404 7.00E-06 [Catharanthus roseus] G1063 gi104736 8.50E-07 [Nicotiana alata] G1063 gi104736 9.50E-07 [Nicotiana alata] G1063 gi104736 1.00E-06 [Catharanthus roseus] G2143 BH486263 1.50E-40 [Gycopersicon esculentum] G2143 BH486263 4.00E-38 [Brassica rapa subsp. pekinensis] G2143 BE4046693 4.00E-38 [Oryza sativa (japonica cultivar-group)] G2143 AP004584<		1	5.90E-37 [Oryza sativa]	chromosome 8 clone P0461F06, *** SEQUENCING IN
G1063 AT002234 8.90E-32 [Brassica rapa subsp. pekinensis] G1063 BF263465 5.40E-25 [Hordeum vulgare] G1063 BG557011 4.20E-22 [Sorghum bicolor] G1063 BG557011 4.20E-22 [Sorghum bicolor] G1063 BG55930 1.40E-18 [Sorghum propinquum] G1063 gi15528743 4.20E-26 [Oryza sativa] G1063 gi166283 8.10E-10 [Pinus taeda] G1063 gi10998404 7.10E-08 [Petunia x hybrida] G1063 gi142621 5.00E-07 [Volvox carteri] G1063 gi142621 5.00E-07 [Volvox carteri] G1063 gi142622 5.00E-07 [Volvox carteri] G1063 gi1486263 1.40E-06 [Catharanthus roseus] G1063 gi1486263 1.40E-06 [Catharanthus roseus] G2143 AW832545 1.50E-40 [Glycine max] G2143 AV832545 1.50E-40 [Glycine max] G2143 AP004693 4.00E-38 [Dryza sativa] G2143 AP004584 6.30E-33 [Oryza sativa] G2143 BF263465 2.90E-26 [Hordeum vulgare] G2143 BG557011 2.60E-27 [Sorghum bicolor] G2143 BG557011 2.60E-20 [Zea mays] G2143 BG559930 6.10E-18 [Sorghum propinquum]			4.40E-32[Oryza sativa (japonica cultivar-group)]	() chromosome 8 clo
G1063 BF263465 5.40E-25 [Hordeum vulgare] G1063 BG557011 4.20E-22 [Sorghum bicolor] G1063 BG55930 1.40E-21 [Zea mays] G1063 BG55930 1.40E-18 [Sorghum propinquum] G1063 gi15528743 4.20E-26 [Oryza sativa] G1063 gi16528743 4.20E-26 [Oryza sativa] G1063 gi166283 8.10E-10 [Pinus taeda] G1063 gi10998404 7.10E-08 [Petunia x hybrida] G1063 gi10998404 7.10E-08 [Petunia x hybrida] G1063 gi10998404 7.10E-08 [Petunia x hybrida] G1063 gi1142621 5.00E-07 [Nolvox carteri] G1063 gi166428 8.10E-07 [Nolvox carteri] G1063 gi1486203 1.40E-06 [Catharanthus roseus] G1063 gi1486203 1.40E-06 [Catharanthus roseus] G2143 AW832545 1.50E-40 [Glycine max] G2143 AF004693 4.00E-38 [Oryza sativa (japonica cultivar-group)] G2143 AF004584 6.30E-32 [Prodeum vulgare] G2143 AF004584 6.30E-32 [Sorghum bicolor]	Γ	١.	8.90E-32 [Brassica rapa subsp. pekinensis]	AT002234 Flower bud cDNA Br
G1063 BG557011 4.20E-22 [Sorghum bicolor] G1063 BG559930 1.40E-21 [Zea mays] G1063 BG559930 1.40E-18 [Sorghum propinquum] G1063 gi15528743 4.20E-26 [Oryza sativa] G1063 gi10598404 7.10E-08 [Petunia x hybrida] G1063 gi10998404 7.10E-08 [Petunia x hybrida] G1063 gi1247386 9.50E-07 [Antirrhinum majus] G1063 gi1247386 9.50E-07 [Antirrhinum majus] G1063 gi1247386 9.50E-06 [Lycopersicon esculentum] G2143 AW832545 1.50E-07 [Micotiane alata] G2143 AP004584 6.30E-30 [Lycopersicon esculentum] G2143 AP004584 6.30E-30 [Hordeum vulgare] G2143 BG557011 2.60E-22 [Sorghum bicolor] G2143 BG559930 6.10E-22 [Sorghum propinquum]]	5.40E-25 [Hordeum vulgare]	HV_CEa0006N02f Hordeum vulgare seedling gre
G1063 BG842856 3.10E-21 [Zea mays] G1063 BG559930 1.40E-18 [Sorghum propinquum] G1063 gl15528743 4.20E-26 [Oyza sativa] G1063 gl16528743 4.20E-26 [Oyza sativa] G1063 gl1045087 8.80E-09 [Brassica napus] G1063 gl10998404 7.10E-08 [Petunia x hybrida] G1063 gl10998404 7.10E-08 [Petunia x hybrida] G1063 gl10998404 7.10E-08 [Petunia x hybrida] G1063 gl166428 8.10E-07 [Anitrhinum majus] G1063 gl166428 8.10E-07 [Anitrhinum majus] G1063 gl1486263 1.40E-07 [Anitrhinum majus] G1063 gl1486263 1.40E-07 [Anitrhinum majus] G1063 gl1486263 1.40E-06 [Catharanthus roseus] G2143 BH650724 3.00E-88 [Brassica oleracea] G2143 AP004693 4.00E-38 [Oryza sativa (japonica cultivar-group)] G2143 AP004693 <td< td=""><td>Γ</td><td>l</td><td>4.20E-22[Sorghum bicolor]</td><td>EM1_41_E02.g1_A002 Embryo 1 (EM1) Sorghum b</td></td<>	Γ	l	4.20E-22[Sorghum bicolor]	EM1_41_E02.g1_A002 Embryo 1 (EM1) Sorghum b
G1063 BG559930 1.40E-18 [Sorghum propinquum] G1063 gi15528743 4.20E-26 [Oryza sativa] G1063 gi15528743 4.20E-26 [Oryza sativa] G1063 gi11045087 8.80E-09 [Brassica napus] G1063 gi11045087 7.10E-08 [Petunia x hybrida] G1063 gi11042621 7.10E-08 [Petunia x hybrida] G1063 gi11042621 7.00E-07 [Volvox carteri] G1063 gi1142621 5.00E-07 [Volvox carteri] G1063 gi1142621 5.00E-07 [Micotiana alata] G1063 gi1166428 8.10E-07 [Micotiana alata] G1063 gi1247386 9.50E-07 [Micotiana alata] G1063 gi1486263 1.40E-06 [Catharanthus roseus] G2143 AW832545 1.50E-40 [Glycine max] G2143 AF004693 4.00E-38 [Oryza sativa (japonica cultivar-group)] G2143 AF004584 6.30E-36 [Hordeum vulgare] G2143 AF004584 6.30E-26 [Hordeum vulgare] G2143 BF263465 2.90E-26 [Hordeum vulgare] G2143 BG557011 2.60E-22 [Sorghum propinquum] <td>Г</td> <td>ŀ</td> <td>3.10E-21 [Zea mays]</td> <td>MEST40-H05.T3 ISUM4-TN Zea mays cDNA clone MEST40-</td>	Г	ŀ	3.10E-21 [Zea mays]	MEST40-H05.T3 ISUM4-TN Zea mays cDNA clone MEST40-
G1063 gi15528743 4.20E-26 [Oryza sativa] G1063 gi6166283 8.10E-10 [Pinus taeda] G1063 gi6166283 8.10E-09 [Brassica napus] G1063 gi1045087 8.80E-09 [Brassica napus] G1063 gi104045087 8.80E-09 [Brassica napus] G1063 gi10404604 7.10E-08 [Petunia x hybrida] G1063 gi10404261 2.60E-07 [Volvox carteri] G1063 gi1142621 5.00E-07 [Antirrhinum majus] G1063 gi1247386 9.50E-07 [Antirrhinum majus] G1063 gi1486263 1.00E-06 [Catharanthus roseus] G1063 gi1486263 1.40E-06 [Catharanthus roseus] G2143 BH650724 3.00E-88 [Brassica oleracea] G2143 BH650724 3.50E-40 [Glycine max] G2143 AP004693 4.00E-38 [Oryza sativa] G2143 BF657011 2.60E-22 [Sorghum bicolor] G2143 BG557011 2.60E-22 <td< td=""><td></td><td>ı</td><td>1.40E-18[[Sorghum propinguum]</td><td>. RHIZ2_75_D09.g1_A003 Rhizome2 (RHIZ2) So</td></td<>		ı	1.40E-18[[Sorghum propinguum]	. RHIZ2_75_D09.g1_A003 Rhizome2 (RHIZ2) So
G1063 gi6166283 8.10E-10 [Pinus taeda] G1063 gi11045087 8.80E-09 [Brassica napus] G1063 gi110998404 7.10E-08 [Petunia x hybrida] G1063 gi110998404 7.10E-08 [Petunia x hybrida] G1063 gi10998404 7.10E-08 [Petunia x hybrida] G1063 gi1142621 2.60E-07 [Volvox carteri] G1063 gi1142621 5.00E-07 [Phaseolus vulgaris] G1063 gi1247386 9.50E-07 [Nicotiana alata] G1063 gi1247386 9.50E-07 [Nicotiana alata] G1063 gi1486263 1.40E-06 [Catharanthus roseus] G2143 BH650724 3.00E-88 [Brassica oleracea] G2143 BH650724 3.00E-88 [Brassica rapa subsp. pekinensis] G2143 AN832545 1.50E-40 [Glycine max] G2143 AP004693 4.00E-38 [Oryza sativa] G2143 AP004584 6.30E-31 [Brassica rapa subsp. pekinensis] G2143 BF263465 2.90E-26 [Hordeum vulgare] G2143 BG557011 2.60E-22 [Sorghum bicolor] G2143 BG557011 2.60E-22 [Sorghum picolor] G2143 BG559930 6.10E-18 [Sorghum propinquum] G2143 G258743 5.50E-26 [Oryza sativa]	Γ		4.20E-26 [Oryza sativa]	contains EST C74560(E31855)~unknown protein.
G1063 gi11045087 8.80E-09 [Brassica napus] G1063 gi10998404 7.10E-08 [Petunia x hybrida] G1063 gi10998404 7.10E-08 [Petunia x hybrida] G1063 gi10998404 7.10E-08 [Petunia x hybrida] G1063 gi142621 5.00E-07 [Volvox carteri] G1063 gi142621 5.00E-07 [Phaseolus vulgaris] G1063 gi166428 8.10E-07 [Antirrhinum majus] G1063 gi1247386 9.50E-07 [Nicotiana alata] G1063 gi82091 1.00E-06 [Lycopersicon esculentum] G2143 BH650724 3.00E-88 [Brassica oleracea] G2143 BH650724 3.00E-88 [Brassica oleracea] G2143 ANW832545 1.50E-40 [Glycine max] G2143 AP004693 4.00E-38 [Oryza sativa] G2143 AP004584 6.30E-31 [Brassica rapa subsp. pekinensis] G2143 BF263465 2.90E-26 [Hordeum vulgare] G2143 BG557011 2.60E-22 [Sorghum bicolor] G2143 BG559930 6.10E-18 [Sorghum propinquum] G2143 BG559930 6.10E-18 [Sorghum propinquum]		1	8.10E-10[[Pinus taeda]	helix-loop-helix protein 1A.
G1063 gi10998404 7.10E-08 [Petunia x hybrida] G1063 gi10998401 2.60E-07 [Volvox carteri] G1063 gi1142621 5.00E-07 [Phaseolus vulgaris] G1063 gi1247386 9.50E-07 [Antirrhinum majus] G1063 gi1247386 9.50E-07 [Nicotiana alata] G1063 gi1247386 9.50E-07 [Nicotiana alata] G1063 gi1247386 9.50E-07 [Nicotiana alata] G1063 gi1247386 9.50E-07 [Lycopersicon esculentum] G2143 BH650724 3.00E-88 [Brassica oleracea] G2143 BH650724 3.50E-40 [Clycopersicon esculentum] G2143 AW832545 1.50E-40 [Clycopersicon esculentum] G2143 AW832545 1.50E-40 [Clycopersicon esculentum] G2143 AW832545 1.50E-40 [Clycopersicon esculentum] G2143 AP004693 4.00E-38 [Oryza sativa] G2143 AF004584 6.30E-36 [Hordeum vulgare] G2143 BF2634	Γ	 	8.80E-09 [Brassica napus]	putative protein.
G1063 gi99441 2.60E-07 [Volvox carteri] G1063 gi1142621 5.00E-07 [Phaseolus vulgaris] G1063 gi126428 8.10E-07 [Antirrhinum majus] G1063 gi1247386 9.50E-07 [Nicotiana alata] G1063 gi1247386 9.50E-07 [Nicotiana alata] G1063 gi1247386 9.50E-07 [Nicotiana alata] G2143 BH650724 1.00E-06 [Catharanthus roseus] G2143 BH650724 3.00E-88 [Brassica oleracea] G2143 AW832545 1.50E-40 [Glycine max] G2143 AW832545 1.50E-40 [Glycine max] G2143 AP004693 4.00E-38 [Oryza sativa] G2143 AP004584 6.30E-31 [Oryza sativa] G2143 AT002234 3.00E-31 [Brassica rapa subsp. pekinensis] G2143 BF263465 2.90E-26 [Hordeum vulgare] G2143 BG557011 2.60E-22 [Sorghum bicolor] G2143 BG557011 2.60E-22 [Sorghum propinquum] G2143 BG559930 6.10E-18 [Sorghum propinquum]	Γ		7.10E-08 [Petunia x hybrida]	anthocyanin 1.
G1063 gi1142621 5.00E-07 [Phaseolus vulgaris] G1063 gi166428 8.10E-07 [Antirrhinum majus] G1063 gi1247386 9.50E-07 [Nicotiana alata] G1063 gi1247386 9.50E-07 [Nicotiana alata] G1063 gi1486263 1.40E-06 [Catharanthus roseus] G2143 BH650724 3.00E-88 [Brassica oleracea] G2143 AW832545 1.50E-40 [Glycine max] G2143 AW832545 1.50E-40 [Glycine max] G2143 AP004693 4.00E-38 [Oryza sativa] G2143 AP004584 6.30E-31 [Brassica rapa subsp. pekinensis] G2143 AF002234 3.00E-31 [Brassica rapa subsp. pekinensis] G2143 BF263465 2.90E-22 [Sorghum bicolor] G2143 BG557011 2.60E-22 [Sorghum bicolor] G2143 BG559930 6.10E-18 [Sorghum propinquum] G2143 g15528743 5.50E-26 [Oryza sativa]	-	1	2.60E-07 [Volvox carteri]	sulfated surface glycoprotein 185 - Volvox
G1063 gi166428 8.10E-07 [Antirrhinum majus] G1063 gi1247386 9.50E-07 [Nicotiana alata] G1063 gi1247386 9.50E-07 [Nicotiana alata] G1063 gi1486263 1.00E-06 [Lycopersicon esculentum] G2143 BH650724 3.00E-88 [Brassica oleracea] G2143 BH650724 3.50E-40 [Glycine max] G2143 AW832545 1.50E-40 [Glycine max] G2143 BF51174 3.50E-40 [Glycine max] G2143 AP004693 4.00E-38 [Oryza sativa] G2143 AP004584 6.30E-31 [Brassica rapa subsp. pekinensis] G2143 BF263465 2.90E-26 [Hordeum vulgare] G2143 BG557011 2.60E-22 [Sorghum bicolor] G2143 BG559930 6.10E-18 [Sorghum propinquum] G2143 g15528743 5.50E-26 [Oryza sativa]		_	5.00E-07 [Phaseolus vulgaris]	phaseolin G-box binding protein PG2.
G1063 gi1247386 9.50E-07 [Nicotiana alata] G1063 gi1247386 1.00E-06 [Lycopersicon esculentum] G1063 gi1486263 1.40E-06 [Lycopersicon esculentum] G2143 BH650724 3.00E-88 [Brassica oleracea] G2143 AW832545 1.50E-40 [Glycine max] G2143 BE451174 3.50E-40 [Glycine max] G2143 AP004693 4.00E-38 [Oryza sativa] G2143 AP004584 6.30E-38 [Oryza sativa (japonica cultivar-group)] G2143 AP002234 3.00E-31 [Brassica rapa subsp. pekinensis] G2143 BF263465 2.90E-26 [Hordeum vulgare] G2143 BG557011 2.60E-22 [Sorghum bicolor] G2143 BG559930 6.10E-18 [Sorghum propinquum] G2143 g15528743 5.50E-26 [Oryza sativa]	Γ		8.10E-07 [Antirrhinum majus]	DEL.
G1063 gi82091 1.00E-06 [Lycopersicon esculentum] G1063 gi1486263 1.40E-06 [Catharanthus roseus] G2143 BH650724 3.00E-88 [Brassica oleracea] G2143 AW832545 1.50E-40 [Glycine max] G2143 BE451174 3.50E-40 [Glycine max] G2143 AP004693 4.00E-38 [Oryza sativa] G2143 AP004584 6.30E-38 [Oryza sativa] G2143 AP002234 3.00E-31 [Brassica rapa subsp. pekinensis] G2143 BF263465 2.90E-26 [Hordeum vulgare] G2143 BG557011 2.60E-22 [Sorghum bicolor] G2143 BG557011 2.60E-20 [Zea mays] G2143 BG559930 6.10E-18 [Sorghum propinquum] G2143 g15528743 5.50E-26 [Oryza sativa]		وا	9.50E-07 [Nicotiana alata]	PRP2.
G1063 gi1486263 1.40E-06 [Catharanthus roseus] G2143 BH650724 3.00E-88 [Brassica oleracea] G2143 AW832545 1.50E-40 [Glycine max] G2143 AF004693 4.00E-38 [Oryza sativa] G2143 AP004584 6.30E-31 [Oryza sativa] G2143 AF002234 3.00E-31 [Brassica rapa subsp. pekinensis] G2143 BF263465 2.90E-26 [Hordeum vulgare] G2143 BG557011 2.60E-22 [Sorghum bicolor] G2143 BG559930 6.10E-18 [Sorghum propinquum] G2143 BG558743 5.50E-26 [Oryza sativa]	Γ	l	1.00E-06 [Lycopersicon esculentum]	hydroxyproline-rich glycoprotein
G2143 BH650724 3.00E-88 [Brasslca oleracea] G2143 AW832545 1.50E-40 [Clycopersicon esculentum] G2143 BE451174 3.50E-40 [Lycopersicon esculentum] G2143 AP004693 4.00E-38 [Oryza sativa] G2143 AP004584 6.30E-33 [Oryza sativa] G2143 AF002234 3.00E-31 [Brassica rapa subsp. pekinensis] G2143 BF263465 2.90E-26 [Hordeum vulgare] G2143 BG557011 2.60E-22 [Sorghum bicolor] G2143 BG557011 2.60E-20 [Zea mays] G2143 BG559930 6.10E-18 [Sorghum propinquum] G2143 BI5528743 5.50E-26 [Oryza sativa]	T	١.	1.40E-06 [Catharanthus roseus]	extensin.
G2143 AW832545 1.50E-40 [Glycine max] G2143 BE451174 3.50E-40 [Lycopersicon esculentum] G2143 AP004693 4.00E-38 [Oryza sativa] G2143 AP004584 6.30E-33 [Oryza sativa (japonica cultivar-group)] G2143 AT002234 3.00E-31 [Brassica rapa subsp. pekinensis] G2143 BF263465 2.90E-26 [Hordeum vulgare] G2143 BG557011 2.60E-22 [Sorghum bicolor] G2143 BG842856 3.50E-20 [Zea mays] G2143 BG559930 6.10E-18 [Sorghum propinquum] G2143 g15528743 5.50E-26 [Oryza sativa]		2143 BH650724	3.00E-88 [Brassica oleracea]	BOMIW43TR BO 2 3 KB Brassica oleracea gen
G2143 BE451174 3.50E-40 [Lycopersicon esculentum] G2143 AP004693 4.00E-38 [Oryza sativa] G2143 AP004584 6.30E-33 [Oryza sativa (japonica cultivar-group)] G2143 AP004584 6.30E-31 [Brassica rapa subsp. pekinensis] G2143 BF263465 2.90E-26 [Hordeum vulgare] G2143 BG557011 2.60E-22 [Sorghum bicolor] G2143 BG842856 3.50E-20 [Zea mays] G2143 BG55930 6.10E-18 [Sorghum propinquum] G2143 g15528743 5.50E-26 [Oryza sativa]	Ī	2143 AW832545	1.50E-40 [Glycine max]	sm12e10.y1 Gm-c1027 Glycine max cDNA clone GENO
G2143 AP004693 4.00E-38 [Oryza sativa] G2143 AP004584 6.30E-33 [Oryza sativa (japonica cultivar-group)] G2143 AT002234 3.00E-31 [Brassica rapa subsp. pekinensis] G2143 BF263465 2.90E-26 [Hordeum vulgare] G2143 BG557011 2.60E-22 [Sorghum bicolor] G2143 BG842856 3.50E-20 [Zea mays] G2143 BG559930 6.10E-18 [Sorghum propinquum] G2143 g15528743 5.50E-26 [Oryza sativa]		2143 BE451174	3.50E-40 [Lycopersicon esculentum]	EST402062 tomato root, plants pre-a
G2143 AP004584 6.30E-33 [Oryza sativa (japonica cultivar-group)] G2143 AT002234 3.00E-31 [Brassica rapa subsp. pekinensis] G2143 BF263465 2.90E-26 [Hordeum vulgare] G2143 BG557011 2.60E-22 [Sorghum bicolor] G2143 BG842856 3.50E-20 [Zea mays] G2143 BG559930 6.10E-18 [Sorghum propinquum] G2143 g15528743 5.50E-26 [Oryza sativa]	Γ	1	4.00E-38 [Oryza sativa]	chromosome 8 clone P0461F06, *** SEQUENCING IN
G2143 AT002234 3.00E-31 [Brassica rapa subsp. pekinensis] G2143 BF263465 2.90E-26 [Hordeum vulgare] G2143 BG557011 2.60E-22 [Sorghum bicolor] G2143 BG842856 3.50E-20 [Zea mays] G2143 BG559930 6.10E-18 [Sorghum propinquum] G2143 g15528743 5.50E-26 [Oryza sativa]	Γ		6.30E-33 [Oryza sativa (japonica cultivar-group)]	() chromosome 8 clo
G2143 BF263465 2.90E-26 [Hordeum vulgare] G2143 BG557011 2.60E-22 [Sorghum bicolor] G2143 BG842856 3.50E-20 [Zea mays] G2143 BG559930 6.10E-18 [Sorghum propinquum] G2143 g15528743 5.50E-26 [Oryza sativa]	Γ		3.00E-31 [Brassica rapa subsp. pekinensis]	AT002234 Flower bud cDNA Br
G2143 BG557011 2.60E-22 [Sorghum bicolor] G2143 BG842856 3.50E-20 [Zea mays] G2143 BG559930 6.10E-18 [Sorghum propinguum] G2143 g115528743 5.50E-26 [Oryza sativa]			2.90E-26 [Hordeum vulgare]	HV_CEa0006N02f Hordeum vulgare seedling gre
G2143 BG559930 6.10E-18 [Sorghum propinquum] 62143 gi15528743 5.50E-26 [Oryza sativa]	Т	_	2.60E-22 [Sorghum bicolor]	EM1 41 E02.g1 A002 Embryo 1 (EM1) Sorghum b
G2143 BG559930 6.10E-18 [Sorghum propinquum] G2143 gi15528743 5.50E-26 [Oryza sativa]			3.50E-20 [Zea mays]	MEST40-H05.T3 ISUM4-TN Zea mays cDNA clone MEST40-
G2143 gi15528743 5.50E-26 [Oryza sativa]			6.10E-18 [Sorghum propinguum]	RHIZ2 75 D09.g1 A003 Rhizome2 (RHIZ2) So
		1	5.50E-26[Oryza sativa]	contains EST C74560(E31855)~unknown protein.

	0010007		
	G2143 gi1086538		יייי ייייי איייייייייייייייייייייייייי
129 G21	G2143 gi6166283	1.10E-08[[Pinus taeda]	helix-loop-helix protein 1A.
Ĺ	G2143 gi1142621	4.60E-07 [Phaseolus vulgaris]	phaseolin G-box binding protein PG2.
	G2143 gi3399777	5.20E-07 [Glycine max]	symbiotic ammonium transporter; nodulin.
129 GZ1	G2143 gi5923912	6.10E-07 [Tulipa gesneriana]	bHLH transcription factor GBOF-1.
	G2143 gi10998404	9.20E-07 [Petunia x hybrida]	anthocyanin 1.
İ	G2143 gi4321762	5.20E-06 [Zea mays]	transcription factor MYC7E.
	G2143 gi166428	6.00E-06 [Antirrhinum majus]	DEL.
Г	G2143 gi527665	7.40E-06 [Sorghum bicolor]	myc-like regulatory R gene product.
T	٥	6.70E-62 [Brassica oleracea]	BOGRJ19TR BOGR Brassica oleracea genomic
	G2557 BE347811	3.70E-46 [Glycine max]	sp05h10.y1 Gm-c1041 Glycine max cDNA clone GENO
Γ	G2557 AP003141	2.40E-33 [Oryza sativa]	genomic DNA, chromosome 1, PAC clone:P0002805,
	١	3.00E-31 [Hordeum vulgare]	HV_CEa0006N02f Hordeum vulgare seedling gre
T		6.60E-27 [Brassica rapa subsp. pekinensis]	AT002234 Flower bud cDNA Br
133 G25	i	6.40E-26 [Sorghum bicolor]	EM1 41 E02.g1 A002 Embryo 1 (EM1) Sorghum b
1	. :	7.90E-26 [Oryza sativa (japonica cultivar-group)]	() chromosome 8 clo
Γ	l	3.90E-25 [Lycopersicon esculentum]	EST402062 tomato root, plants pre-a
Г	l	5.60E-22 [Zea mays]	MEST40-H05.T3 ISUM4-TN Zea mays cDNA clone MES140-
Γ		7.00E-14 [Sorghum propinguum]	RHIZ2_75_D09.g1_A003 Rhizome2 (RHIZ2) So
	G2557 gi15289790	2.40E-36 [Oriyza sativa]	contains EST C74560(E31855)~unknown protein.
	G2557 gi3399777	2.60E-06 [Glycine max]	symbiotic ammonium transporter; nodulin.
T	G2557 gi4206118	1.10E-05 [Mesembryanthemum crystallinum]	transporter homolog.
Γ	G2557 gi6166283	1.30E-05[[Pinus taeda]	helix-loop-helix protein 1A.
Γ	G2557 qi527655	3.70E-05 [Pennisetum glaucum]	myc-like regulatory R gene product.
T	G2557 gi5923912	3.70E-05 Tulipa gesneriana]	bHLH transcription factor GBOF-1.
\vdash	G2557 gi527661	7.80E-05 [Phyllostachys acuta]	myc-like regulatory R gene product.
	G2557 gi527665	9.50E-05 [Sorghum bicolor]	myc-like regulatory R gene product.
Γ	G2557 gi1086538	0.0001 [Oryza rufipogon]	transcriptional activator Rb homolog.
	G2557 gi5669656	0.00013 [Lycopersicon esculentum]	ER33 protein.
T	G2430 BF632520	1.90E-14 [Medicago truncatula]	NF039A08DT1F1054 Drought Medicago trunc
	G2430 AW396912	1.20E-13 [Glycine max]	
T	G2430 D41804	4.50E-13 [Oryza sativa]	RICS4626A Rice shoot Oryza sativa cDNA, mRNA s
	G2430 BE214029	2.60E-10 [Hordeum vulgare]	HV CEb0001P06f Hordeum vulgare seedling gre
Γ	G2430 AW564570	2.70E-10 [Sorghum bicolor]	LG1 296 E01.b1 A002 Light Grown 1 (LG1) Sor
	G2430 BG129795	5.40E-10 [Lycopersicon esculentum]	EST475441 tomato shoot/meristem Lyc
t	G2430 AR060130	E ADE DOITZes mayel	I ZmPP8 mRN∆ for response regulator 8, complete cds.

FM1 32 C05.b1 A003 Floral-Induced Merist	A033P70U Hybrid aspen	EST494306 cSTS Solanum tuberosum cDNA clo	response regulator 8.	hypothetical protein.	CDPK substrate protein 1; C	ίσ.	GA Eb0025C07f Gossypium arboreum 7-10 d	sab36g12.y1 Gm-c1026 Glycine max cDNA clone GEN	C95300 Citrus unshiu Miyagawa-wase maturation	EST278168 tomato callus, TAMU Lycop	C037P68U Populus stra -	CONSTANS homolog (Bn9CON10) gene, complete c	PI1 84 H11.b1 A002 Pathogen induced 1 (PI1)	WHE2331 C04 F07ZS Wheat pre-anthesis spik	HV_CEb0017D19f Hordeum vulgare seedling gre	EST508710 HOGA Medicago truncatula cDNA	CONSTANS homolog.	zinc finger protein.	constans-like protein.	CONSTANS-like 1 protein.	CONSTANS-like protein 2.	CONSTANS-like protein.	zinc finger protein.	mabinlin III B-chain=sweet protein mabi	bundle sheath defective protein 2.	Chain A, Putative Ancestral Protein Encod	EST473793 tomato shoot/meristem Lyc	EST439727, potato leaves and petioles Sola	GA Ea0002018f Gossypium arboreum 7-10 d	L0-3478T3 Ice plant Lambda Un	HVSMEc0019F08f Hordeum vulgare seedling sho	WHE0364 C04 E08ZS Wheat cold-stressed see	949021A03.y1 949 - Juvenile leaf and shoot cDNA fr	su42c10.y1 Gm-c1068 Glycine max cDNA clone GENO	LG1_354_G05.b1_A002 Light Grown 1 (LG1) Sor
2.50E-05 [Sorghum propinguum]	0.3 [Populus tremula x Populus tremuloides]	0.46 [Solanum tuberosum]	5.40E-18 [Zea mays]	0.028 [Oryza sativa]	0.12 [Mesembryanthemum crystallinum]	0.2 [Nicotiana tabacum]	1.50E-20 [Gossypium arboreum]	6.50E-19 [Glycine max]	2.20E-10 [Citrus unshiu]	2.70E-10 [Lycopersicon esculentum]	3.40E-10 [Populus tremula x Populus tremuloides]	5.10E-09 [Brassica napus]	6.20E-09 [Sorghum bicolor]	6.80E-09 [Triticum aestivum]	8.90E-09 [Hordeum vulgare]	1.20E-08 [Medicago truncatula]	4.70E-11 [Brassica napus]	1.50E-09 [Oryza sativa]	4.70E-09 [Brassica nigra]	1.30E-08 [Raphanus sativus]	1.50E-07 [Malus x domestica]	3.10E-07 [Ipomoea nil]	1.40E-05[[Pinus radiata]	. 0.9[(Capparis masaikai]	1 [Zea mays]	1 [Nicotiana alata]	6.80E-41 [Lycopersicon esculentum]	1.50E-39 [Solanum tuberosum]	8.40E-39 [Gossypium arboreum]	4.00E-38 [Mesembryanthemum crystallinum]	7.40E-38 [Hordeum vulgare]	1.00E-37 [Triticum aestivum]	1.40E-36[[Zea mays]	7.20E-36[[Glycine max]	3.20E-34 [Sorghum bicolor]
G2430 BF587105	G2430 AI163121	G2430 BG595628	G2430 gi13661174	G2430 gi15289981	G2430 gi6942190	G2430 gi4519671	G1478 BF275913	G1478 BG157399	G1478 C95300	G1478 AW034552	G1478 BI070429	G1478 AF016011	G1478 BE598912	G1478 BG605313	G1478 BE558327	G1478 BG647091	G1478 gi2895188		œ	1		~	G1478 gi4557093	G1478 qi619312	G1478 qi4732091	G1478 gi4699629	G681 BG128147	G681 BF054497	G681 BE054276	Т	G681 BF620286	G681 BE490032	G681 BI542536	G681 BF425254	G681 AW672062
269			Ī				Τ	831	T	Г					Γ	-	T	831	Γ	Γ		Γ		Γ	831		Γ	579	626	579	579	579	579	579	579

NF036F04RT1F1032 Developing root Medica	GHMYB25.	protein 1.	mixta.	OSMYB1.	myb-related transcription factor.	myb-related transcription factor.	Cl protein.	transforming protein (myb) homolog (clone Zm38)	GmMYB29A2.	MybHv5.	DNA-binding protein 2 (WRKY2) mRNA, compl	SPF1-like DNA-binding protein mRNA, complet	zinc finger transcription factor WRKY1 mRNA, c	Sequence 9 from Patent WO0149840.	Sweet potato mRNA for SPF1 protein, complet	A fatua mRNA for DNA-binding protein (clone ABF	mRNA for hypothetical protein (ORF	Sequence 11 from Patent WO0149840.	i zinc finger protein (ZFP1) mRNA, com	DNA-binding protein WRKY1 mRNA, comple	DNA-binding protein 2.	SPF1-like DNA-binding protein.	zinc finger transcription factor WRKY1.	SPF1 protein.	DNA-binding protein.	hypothetical protein.	zinc-finger type transcription facto	DNA-binding protein WRKY1.	zinc finger protein; WRKY1.	hypothetical protein.	() chromosome 8 clo	chromosome 8 clone P0461F06, *** SEQUENCING IN	BOHGT56TR BOHG Brassica oleracea genomic	EST473875 tomato shoot/meristem Lyc	EST508578 HOGA Medicago truncatula cDNA
1,00E-33 [Medicago fruncatula]	9.10E-37 [Gossypium hirsutum]	6.30E-36 [Petunia x hybrida]	1.20E-34 [Antirrhinum majus]	1.70E-32 [Oryza sativa]	2.00E-31 [Lycopersicon esculentum]	2.20E-30 [Pimpinella brachycarpa]	4.90E-30 [Zea mays subsp. parviglumis]	6.10E-30 [Zea mays]	8.30E-30 [Glycine max]	1.10E-29 [Hordeum vulgare]	6.20E-90 [Nicotiana tabacum]	1.80E-83 [Cucumis sativus]	3.50E-63 [Oryza sativa]	2,20E-62 [Glycine max]	3.80E-58 [Ipomoea batatas]	2.00E-56 [Avena fatua]	7.20E-55 [Lycopersicon esculentum]	4.00E-54 [Triticum aestivum]	2.10E-53 [Pimpinella brachycarpa]	2.30E-53 [Petroselinum crispum]	3.30E-128 [Nicotiana tabacum]	1.10E-109 [Cucumis sativus]	1.50E-74[[Oryza sativa]	1.10E-66 [lpomoea batatas]	2.30E-63 [Avena fatua]	4.60E-63 [Lycopersicon esculentum]	1.70E-56 [Petroselinum crispum]	5.00E-56[[Avena sativa]	8.70E-56[Pimpinella brachycarpa]	4.20E-22[Capsella rubella]	1.20E-73[Oryza sativa (japonica cultivar-group)]	1.90E-73[Oryza sativa]	1.30E-62 [Brassica oleracea]	6.50E-55[[Lycopersicon esculentum]	3.20E-46 [Medicago truncatula]
G681 BG448527	_	т-	7-		7	G681 qi6651292	G681 gi15042116	G681 gi82730	G681 gi5139806	G681 qi19055	G878 AF096299	G878 CUSSLDB	G878 AF193802	1	١.		LES303343	AX192164		l		qi927025	gi6689916		gi1159877	qi13620227	gi5917653	l		۵	G374 AP004457	G374 AP004693	G374 BH552835	G374 BG128229	G374 BG646959
9 629	T		T	T	579 G	1	T	T	579	T	1	H	T			T	Γ			H	T	T		T	T	T		F		T	47	T	T	T	T

u)
Œ)
2	5
σ	3
-	_

47	G374	BG890162	8.70E-41 [S	0E-41 [Solanum tuberosum]	EST516013 cSTD Solanum tuberosum cDNA clo
47	G374	AW179366	6.00E-38 [Z	0E-38 [Zea mays]	618046G06.y1 618 - Inbred Tassel cDNA Library Zea
47	G374	BF473206	1.50E-32 [T	DE-32 [Triticum aestivum]	WHE0922_G12_M24ZS Wheat 5-15 DAP spike cD
47	G374	AW761011	2.90E-29 [G	0E-29 [Glycine max]	sl61g11.y1 Gm-c1027 Glycine max cDNA clone GENO
47	G374	AJ436050	1.50E-27 [h	0E-27 [Hordeum vulgare]	AJ436050 S00007 Hordeum vulgare cDNA clone
47	G374	gi422012	S] 8:0	0.8 [Sorghum bicolor]	lipid transfer protein - sorghum (fragmen
47	G374	gi1827893	Z] L .	1 [Zea mays]	Maize Nonspecific Lipid Transfer Protein Complex

93

Traits of interest

Examples of some of the traits that may be desirable in plants, and that may be provided by transforming the plants with the presently disclosed sequences, are listed in Table 6.

Table 6. Genes, traits and utilities that affect plant characteristics

		Transcription factor genes that	<u>Utility</u>
Trait Category	<u>Traits</u>	impact traits	
			Gene effect on:
Resistance and	Salt stress resistance	G22; G196; G226; G303;	Germination rate,
tolerance		G312; G325; G353; G482;	survivability,
		G545; G801; G867; G884;	yield; extended
		G922; G926; G1452; G1794;	growth range
ļ		G1820; G1836; G1843; G1863;	
		G2053; G2110; G2140; G2153;	
		G2379; G2701; G2713; G2719;	
		G2789	
	Osmotic stress	G47; G175; G188; G303;	Germination rate,
	resistance	G325; G353; G489; G502;	survivability, yield
		G526; G921; G922; G926;	
		G1069; G1089; G1452; G1794;	
·		G1930; G2140; G2153; G2379;	
		G2701; G2719; G2789;	
	Cold stress resistance;	G256; G394;	Germination,
	cold germination	G664;G864;G1322; G2130	growth, earlier
			planting
	Tolerance to freezing	G303; G325; G353; G720;	Survivability,
		G912; G913; G1794; G2053;	yield, appearance,
		G2140; G2153; G2379; G2701;	extended range
		G2719; G2789	
	Heat stress resistance	G3; G464; G682; G864; G964;	Germination,

		G1305; G1645; G2130 G2430	growth, later
			planting
	Drought, low	G303; G325; G353; G720;	Survivability,
	humidity resistance	G912; G926; G1452; G1794;	yield, extended
•		G1820; G1843; G2053; G2140;	range
		G2153; G2379; G2583; G2701;	
·		G2719; G2789	
	Radiation resistance	G1052	Survivability,
		,	vigor, appearance
	Decreased herbicide	G343; G2133; G2517	Resistant to
	sensitivity		increased
			herbicide use
	Increased herbicide	G374; G877;G1519	Use as a herbicide
	sensitivity		target
	Oxidative stress	G477; G789; G1807; G2133;	Improved yield,
•		G2517	appearance,
			reduced
			senescence
	Light response	G183; G354; G375; G1062;	Germination,
		G1322; G1331; G1488; G1494;	growth,
		G1521; G1786; G1794; G2144;	development,
		G2555;	flowering time
	<u> </u>		
Development,	Overall plant	G24; G27; G31; G33; G47;	Vascular tissues,
morphology	architecture	G147; G156; G160; G182;	lignin content; cell
		G187; G195; G196; G211;	wall content;
		G221; G237; G280; G342;	appearance
		G352; G357; G358; G360;	
		G362; G364; G365; G367;	
		G373; G377; G396; G431;	
		G447; G479; G546; G546;	
		G551; G578; G580; G596;	
j		G615; G617; G620; G625;	

G638; G658; G716; G725;
G727; G730; G740; G770;
G858; G865; G869; G872;
G904; G910; G912; G920;
G939; G963; G977; G979;
G987; G988; G993; G1007;
G1010; G1014; G1035; G1046;
G1049; G1062; G1069; G1070;
G1076; G1089; G1093; G1127;
G1131; G1145; G1229; G1246;
G1304; G1318; G1320; G1330;
G1331; G1352; G1354; G1360;
G1364; G1379; G1384; G1399;
G1415; G1417; G1442; G1453;
 G1454; G1459; G1460; G1471;
G1475; G1477; G1487; G1487;
G1492; G1499; G1531;
G1540; G1543; G1544;
G1548; G1584; G1587; G1588;
G1589; G1636; G1642; G1747;
G1749; G1749; G1751; G1752;
G1763; G1766; G1767; G1778;
G1789; G1790; G1791; G1793;
G1794; G1795; G1800; G1806;
G1811; G1835; G1836; G1838;
G1839; G1843; G1853; G1855;
G1865; G1881; G1882; G1883;
G1884; G1891; G1896; G1898;
G1902; G1904; G1906; G1913;
G1914; G1925; G1929; G1930;
G1954; G1958; G1965; G1976;
G2057; G2107; G2133; G2134;
G2151; G2154; G2157; G2181;

	G2290; G2299; G2340; G2340;	
	G2346; G2373; G2376; G2424;	
	G2465; G2505; G2509; G2512;	
	G2513; G2519; G2520; G2533;	
	G2534; G2573; G2589; G2687;	
	G2720; G2787; G2789; G2893	-
Size: increased stature	G189; G1073; G1435; G2430	
Size: reduced stature	G3; G5; G21; G23; G39; G165;	Ornamental; small
or dwarfism	G184; G194; G258; G280;	stature provides
	G340; G343; G353; G354;	wind resistance;
	G362; G363; G370; G385;	creation of dwarf
	G396; G439; G440; G447;	varieties
	G450; G550; G557; G599;	
	G636; G652; G670; G671;	
	G674; G729; G760; G804;	·
	G831; G864; G884; G898;	
	G900; G912; G913; G922;	
	G932; G937; G939; G960;	
-	G962; G977; G991; G1000;	
	G1008; G1020; G1023; G1053;	
	G1067; G1075; G1137; G1181;	
	G1198; G1228; G1266; G1267;	
	G1275; G1277; G1309; G1311;	
	G1314; G1317; G1322; G1323;	
	G1326; G1332; G1334; G1367;	
	G1381; G1382; G1386; G1421;	φ.
	G1488; G1494; G1537; G1545;	
	G1560; G1586; G1641; G1652;	
	G1655; G1671; G1750; G1756;	
	G1757; G1782; G1786; G1794;	
	G1839; G1845; G1879; G1886;	
	G1888; G1933; G1939; G1943;	
	G1944; G2011; G2094; G2115;	
i l		L

		G2130; G2132; G2144; G2145;	
		G2147; G2156; G2294; G2313;	
		G2344; G2431; G2510; G2517;	
		G2521; G2893; G2893	
	Fruit size and number	G362	Biomass, yield,
			cotton boll fiber
			density
	Flower structure,	G47; G259; G353; G354;	Ornamental
	inflorescence	G671; G732; G988; G1000;	horticulture;
		G1063; G1140; G1326; G1449;	production of
		G1543; G1560; G1587; G1645;	saffron or other
		G1947; G2108; G2143; G2893	edible flowers
	Number and	G225; G226; G247; G362;	Resistance to pests
	development of	G585; G634; G676; G682;	and desiccation;
	trichomes	G1014; G1332; G1452; G1795;	essential oil
		G2105	production
	Seed size, color, and	G156; G450; G584; G652;	Yield
	number	G668; G858; G979; G1040;	
		G1062; G1145; G1255; G1494;	
		G1531; G1534; G1594; G2105;	
		G2114;	
	Root development,	G9; G1482; G1534; G1794;	
	modifications	G1852; G2053; G2136; G2140	
	Modifications to root	G225; G226	Nutrient, water
	hairs		uptake, pathogen
			resistance
	Apical dominance	G559; G732; G1255; G1275;	Ornamental
		G1411; G1488; G1635; G2452;	horticulture
		G2509	
	Branching patterns	G568; G988; G1548	Ornamental
			horticulture, knot
			reduction,
			improved
1		_	

			windscreen
	Leaf shape, color,	G375; G377; G428; G438;	Appealing shape
	modifications	G447; G464; G557; G577;	or shiny leaves for
		G599; G635; G671; G674;	ornamental
		G736; G804; G903; G977;	agriculture,
	·	G921; G922; G1038; G1063;	increased biomass
		G1067; G1073; G1075; G1146;	or photosynthesis
		G1152; G1198; G1267; G1269;	
		G1452; G1484; G1586; G1594;	
		G1767; G1786; G1792; G1886;	·
		G2059; G2094; G2105; G2113;	
		G2117; G2143; G2144; G2431;	·
		G2452; G2465; G2587; G2583;	
		G2724;	·
:	Silique	G1134	Ornamental
	Stem morphology	G47; G438; G671; G748;	Ornamental;
		G988; G1000	digestibility
	Shoot modifications	G390; G391	Ornamental stem
			bifurcations
		· · · · · · · · · · · · · · · · · · ·	
Disease,	Bacterial	G211; G347; G367; G418;	Yield, appearance,
Pathogen		G525; G545; G578; G1049	survivability,
Resistance			extended range
	Fungal	G19; G28; G28; G28; G147;	Yield, appearance,
		G188; G207; G211; G237;	survivability,
		G248; G278; G347; G367;	extended range
		G371; G378; G409; G477;	
		G545; G545; G558; G569;	
		G578; G591; G594; G616;	
		G789; G805; G812; G865;	
		G869; G872; G881; G896;	
		G940; G1047; G1049; G1064;	
		G1084; G1196; G1255; G1266;	
I	l	I	t

		G1363; G1514; G1756; G1792;	
		G1792; G1792; G1792; G1880;	
		G1919; G1919; G1927; G1927;	
		G1936; G1936; G1950; G2069;	
		G2130; G2380; G2380; G2555	
Nutrients	Increased tolerance to	G225; G226; G1792	
Numents		G223, G220, G1792	
	nitrogen-limited soils		
	Increased tolerance to	G419; G545; G561; G1946	
	phosphate-limited		
	soils		·
	Increased tolerance to	G561; G911	
	potassium-limited		
	soils		
Hormonal	Hormone sensitivity	G12; G546; G926; G760;	Seed dormancy,
		G913; G926; G1062; G1069;	drought tolerance;
		G1095; G1134; G1330; G1452;	plant form, fruit
		G1666; G1820; G2140; G2789	ripening
Seed	Production of seed	G214; G259; G490; G652;	Antioxidant
biochemistry		G748; G883; G1052; G1328;	activity, vitamin E
biochemistry	prenyl lipids,		activity, vitatiini E
	including tocopherol	G1930; G2509; G2520	5
2	Production of seed	G20	Precursors for
	sterols		human steroid
			hormones;
			cholesterol
			modulators
	Production of seed	G353; G484; G674; G1272;	Defense against
	glucosinolates	G1506; G1897; G1946; G2113;	insects; putative
		G2117; G2155; G2290; G2340	anticancer
			activity;
			undesirable in
	<u> </u>		L

PCT/US02/25805

			animal feeds
	Modified seed oil	G162; G162; G180; G192;	Vegetable oil
	content	G241; G265; G286; G291;	production;
		G427; G509; G519; G561;	increased caloric
		G567; G590; G818; G849;	value for animal
•		G892; G961; G974; G1063;	feeds; lutein
		G1143; G1190; G1198; G1226;	content
		G1229; G1323; G1451; G1471;	
		G1478; G1496; G1526; G1543;	
		G1640; G1644; G1646; G1672;	
		G1677; G1750; G1765; G1777;	
		G1793; G1838; G1902; G1946;	
		G1948; G2059; G2123; G2138;	
		G2139; G2343; G2792; G2830	
	Modified seed oil	G217; G504; G622; G778;	Heat stability,
	composition	G791; G861; G869; G938;	digestibility of
	·	G965; G1417; G2192	seed oils
	Modified seed protein	G162; G226; G241; G371;	Reduced caloric
	content	G427; G509; G567; G597;	value for humans
	-	G732; G849; G865; G892;	
		G963; G988; G1323; G1323;	
		G1419; G1478; G1488; G1634;	
I		G1637; G1641; G1644; G1652;	
		G1677; G1777; G1777; G1818;	1
		G1820; G1903; G1909; G1946;	
		G1946; G1958; G2059; G2117;	
		G2417; G2509	
Leaf	Production of	G1666*	Ornamental
biochemistry	flavonoids		pigment
			production;
			pathogen
			resistance; health

			benefits
	Production of leaf	G264; G353; G484; G652;	Defense against
	glucosinolates	G674; G681; G1069; G1198;	insects; putative
		G1322; G1421; G1657; G1794;	anticancer
		G1897; G1946; G2115; G2117;	activity;
		G2144; G2155; G2155; G2340;	undesirable in
	÷	G2512; G2520; G2552	animal feeds
	Production of	G229	Induction of
	diterpenes		enzymes involved
			in alkaloid
			biosynthesis
	Production of	G546	Ornamental
	anthocyanin	·	pigment
	Production of leaf	G561; G2131; G2424	Precursors for
	phytosterols, inc.		human steroid
	stigmastanol,		hormones;
	campesterol	·	cholesterol
			modulators
	Leaf fatty acid	G214; G377; G861; G962;	Nutritional value;
	composition	G975; G987; G1266; G1337;	increase in waxes
		G1399; G1465; G1512; G2136;	for disease
		G2147; G2192	resistance
	Production of leaf	G214; G259; G280; G652;	Antioxidant
	prenyl lipids,	G987; G1543; G2509; G2520	activity, vitamin E
	including tocopherol		
Biochemistry,	Production of	G229; G663	
general	miscellaneous		
	secondary metabolites		
	Sugar, starch,	G158; G211; G211; G237;	Food digestibility
	hemicellulose	G242; G274; G598; G1012;	hemicellulose &
	composition,	G1266; G1309; G1309; G1641;	pectin content;
		G1765; G1865; G2094; G2094;	fiber content; plan

		C0500, C0500	tensile strength,
		G2589; G2589	
			wood quality,
			pathogen
			resistance, pulp
			production; tuber
			starch content
Sugar sensing	Plant response to	G26; G38; G43; G207; G218;	Photosynthetic
_	sugars	G241; G254; G263; G308;	rate, carbohydrate
		G536; G567; G567; G680;	accumulation,
	,	G867; G912; G956; G996;	biomass
•	'	G1068; G1225; G1314; G1314;	production,
		G1337; G1759; G1804; G2153;	source-sink
		G2379	relationships,
			senescence
	1		
Growth,	Plant growth rate and	G447; G617; G674; G730;	Faster growth,
Reproduction	development	G917; G937; G1035; G1046;	increased biomass
Reproduction	development	G1131; G1425; G1452; G1459;	
		G1492; G1589; G1652; G1879;	
		G1943; G2430; G2431; G2465;	
		G2521	in boiting
	Embryo development	G167	77.11
	Seed germination rate		Yield
	Plant, seedling vigor	G561; G2346	Survivability,
	·		yield
	Senescence; cell death	G571; G636; G878; G1050;	Yield, appearance;
		G1463; G1749; G1944; G2130	response to
		G2155; G2340; G2383	pathogens;
	Modified fertility	G39; G340; G439; G470;	Prevents or
		G559; G615; G652; G671;	minimizes escape
		G779; G962; G977; G988;	of the pollen of
		G1000; G1063; G1067; G1075	GMOs
		1	

		G1266; G1311; G1321; G1326;	
		G1367; G1386; G1421; G1453;	
		G1471; G1453; G1560; G1594;	
		G1635; G1750; G1947; G2011;	
		G2094; G2113; G2115; G2130;	
		G2143; G2147; G2294; G2510;	
		G2893	
	Early flowering	G147; G157; G180; G183;	Faster generation
		G183; G184; G185; G208;	time; synchrony of
		G227; G294; G390; G390;	flowering;
		G390; G391; G391; G427;	potential for
		G427; G490; G565; G590;	introducing new
		G592; G720; G789; G865;	traits to single
-		G898; G898; G989; G989;	variety
	,	G1037; G1037; G1142; G1225;	
		G1225; G1226; G1242; G1305;	
		G1305; G1380; G1380; G1480;	
		G1480; G1488; G1494; G1545;	
		G1545; G1649; G1706; G1760;	
		G1767; G1767; G1820; G1841;	:
		G1841; G1842; G1843; G1843;	
		G1946; G1946; G2010; G2030;	,
		G2030; G2144; G2144; G2295;	
		G2295; G2347; G2348; G2348;	
		G2373; G2373; G2509; G2509;	
	·	G2555; G2555	
	Delayed flowering	G8; G47; G192; G214; G234;	Delayed time to
		G361; G362; G562; G568;	pollen production
		G571; G591; G680; G736;	of GMO plants;
		G748; G859; G878; G910;	synchrony of
		G912; G913; G971; G994;	flowering;
		G1051; G1052; G1073; G1079;	increased yield
		G1335; G1435; G1452; G1478;	
L		1	

		G1789; G1804; G1865; G1865;	
		G1895; G1900; G2007; G2133;	
		G2155; G2291; G2465	
	Extended flowering	G1947	
	phase		
	Flower and leaf	G259; G353; G377; G580;	Ornamental
	development	G638 G652; G858; G869;	applications;
		G917; G922; G932; G1063;	decreased fertility
		G1075; G1140; G1425; G1452;	
		G1499; G1548; G1645; G1865;	
		G1897; G1933; G2094; G2124;	
		G2140; G2143; G2535; G2557	
,	Flower abscission	G1897	Ornamental:
		•	longer retention of
			flowers
1		•	I .

^{*} When co-expressed with G669 and G663

Significance of modified plant traits

Currently, the existence of a series of maturity groups for different latitudes represents a major barrier to the introduction of new valuable traits. Any trait (e.g. disease resistance) has to be bred into each of the different maturity groups separately, a laborious and costly exercise. The availability of single strain, which could be grown at any latitude, would therefore greatly increase the potential for introducing new traits to crop species such as soybean and cotton.

For many of the traits, listed in Table 6 and below, that may be conferred to plants, a single transcription factor gene may be used to increase or decrease, advance or delay, or improve or prove deleterious to a given trait. For example, overexpression of a transcription factor gene that naturally occurs in a plant may cause early flowering relative to non-transformed or wild-type plants. By knocking out the gene, or suppressing the gene (with, for example, antisense suppression) the plant may experience delayed flowering. Similarly, overexpressing or suppressing one or more genes can impart significant differences in production of plant products,

such as different fatty acid ratios. Thus, suppressing a gene that causes a plant to be more sensitive to cold may improve a plant's tolerance of cold.

Salt stress resistance. Soil salinity is one of the more important variables that determines where a plant may thrive. Salinity is especially important for the successful cultivation of crop plants, particular in many parts of the world that have naturally high soil salt concentrations, or where the soil has been over-utilized. Thus, presently disclosed transcription factor genes that provide increased salt tolerance during germination, the seedling stage, and throughout a plant's life cycle would find particular value for imparting survivability and yield in areas where a particular crop would not normally prosper.

Osmotic stress resistance. Presently disclosed transcription factor genes that confer resistance to osmotic stress may increase germination rate under adverse conditions, which could impact survivability and yield of seeds and plants.

Cold stress resistance. The potential utility of presently disclosed transcription factor genes that increase tolerance to cold is to confer better germination and growth in cold conditions. The germination of many crops is very sensitive to cold temperatures. Genes that would allow germination and seedling vigor in the cold would have highly significant utility in allowing seeds to be planted earlier in the season with a high rate of survivability. Transcription factor genes that confer better survivability in cooler climates allow a grower to move up planting time in the spring and extend the growing season further into autumn for higher crop yields.

Tolerance to freezing. The presently disclosed transcription factor genes that impart tolerance to freezing conditions are useful for enhancing the survivability and appearance of plants conditions or conditions that would otherwise cause extensive cellular damage. Thus, germination of seeds and survival may take place at temperatures significantly below that of the mean temperature required for germination of seeds and survival of non-transformed plants. As with salt tolerance, this has the added benefit of increasing the potential range of a crop plant into regions in which it would otherwise succumb. Cold tolerant transformed plants may also be

planted earlier in the spring or later in autumn, with greater success than with non-transformed plants.

<u>Heat stress tolerance</u>. The germination of many crops is also sensitive to high temperatures. Presently disclosed transcription factor genes that provide increased heat tolerance are generally useful in producing plants that germinate and grow in hot conditions, may find particular use for crops that are planted late in the season, or extend the range of a plant by allowing growth in relatively hot climates.

<u>Drought, low humidity tolerance</u>. Strategies that allow plants to survive in low water conditions may include, for example, reduced surface area or surface oil or wax production. A number of presently disclosed transcription factor genes increase a plant's tolerance to low water conditions and provide the benefits of improved survivability, increased yield and an extended geographic and temporal planting range.

Radiation resistance. Presently disclosed transcription factor genes have been shown to increase lutein production. Lutein, like other xanthophylls such as zeaxanthin and violaxanthin, are important in the protection of plants against the damaging effects of excessive light. Lutein contributes, directly or indirectly, to the rapid rise of non-photochemical quenching in plants exposed to high light. Increased tolerance of field plants to visible and ultraviolet light impacts survivability and vigor, particularly for recent transplants. Also affected are the yield and appearance of harvested plants or plant parts. Crop plants engineered with presently disclosed transcription factor genes that cause the plant to produce higher levels of lutein therefore would have improved photoprotection, leading to less oxidative damage and increase vigor, survivability and higher yields under high light and ultraviolet light conditions.

<u>Decreased herbicide sensitivity.</u> Presently disclosed transcription factor genes that confer resistance or tolerance to herbicides (e.g., glyphosate) may find use in providing means to increase herbicide applications without detriment to desirable plants. This would allow for the increased use of a particular herbicide in a local

environment, with the effect of increased detriment to undesirable species and less harm to transgenic, desirable cultivars.

<u>Increased herbicide sensitivity</u>. Knockouts of a number of the presently disclosed transcription factor genes have been shown to be lethal to developing embryos. Thus, these genes are potentially useful as herbicide targets.

Oxidative stress. In plants, as in all living things, abiotic and biotic stresses induce the formation of oxygen radicals, including superoxide and peroxide radicals. This has the effect of accelerating senescence, particularly in leaves, with the resulting loss of yield and adverse effect on appearance. Generally, plants that have the highest level of defense mechanisms, such as, for example, polyunsaturated moieties of membrane lipids, are most likely to thrive under conditions that introduce oxidative stress (e.g., high light, ozone, water deficit, particularly in combination). Introduction of the presently disclosed transcription factor genes that increase the level of oxidative stress defense mechanisms would provide beneficial effects on the yield and appearance of plants. One specific oxidizing agent, ozone, has been shown to cause significant foliar injury, which impacts yield and appearance of crop and ornamental plants. In addition to reduced foliar injury that would be found in ozone resistant plant created by transforming plants with some of the presently disclosed transcription factor genes, the latter have also been shown to have increased chlorophyll fluorescence (Yu-Sen Chang et al. Bot. Bull. Acad. Sin. (2001) 42: 265-272).

Heavy metal tolerance. Heavy metals such as lead, mercury, arsenic, chromium and others may have a significant adverse impact on plant respiration. Plants that have been transformed with presently disclosed transcription factor genes that confer improved resistance to heavy metals, through, for example, sequestering or reduced uptake of the metals will show improved vigor and yield in soils with relatively high concentrations of these elements. Conversely, transgenic transcription factors may also be introduced into plants to confer an increase in heavy metal uptake, which may benefit efforts to clean up contaminated soils.

<u>Light response</u>. Presently disclosed transcription factor genes that modify a plant's response to light may be useful for modifying a plant's growth or

development, for example, photomorphogenesis in poor light, or accelerating flowering time in response to various light intensities, quality or duration to which a non-transformed plant would not similarly respond. Examples of such responses that have been demonstrated include leaf number and arrangement, and early flower bud appearances.

Overall plant architecture. Several presently disclosed transcription factor genes have been introduced into plants to alter numerous aspects of the plant's morphology. For example, it has been demonstrated that a number of transcription factors may be used to manipulate branching, such as the means to modify lateral branching, a possible application in the forestry industry. Transgenic plants have also been produced that have altered cell wall content, lignin production, flower organ number, or overall shape of the plants. Presently disclosed transcription factor genes transformed into plants may be used to affect plant morphology by increasing or decreasing internode distance, both of which may be advantageous under different circumstances. For example, for fast growth of woody plants to provide more biomass, or fewer knots, increased internode distances are generally desirable. For improved wind screening of shrubs or trees, or harvesting characteristics of, for example, members of the Gramineae family, decreased internode distance may be advantageous. These modifications would also prove useful in the ornamental horticulture industry for the creation of unique phenotypic characteristics of ornamental plants.

Increased stature. For some ornamental plants, the ability to provide larger varieties may be highly desirable. For many plants, including t fruit-bearing trees or trees and shrubs that serve as view or wind screens, increased stature provides obvious benefits. Crop species may also produce higher yields on larger cultivars.

Reduced stature or dwarfism. Presently disclosed transcription factor genes that decrease plant stature can be used to produce plants that are more resistant to damage by wind and rain, or more resistant to heat or low humidity or water deficit. Dwarf plants are also of significant interest to the ornamental horticulture industry, and particularly for home garden applications for which space availability may be limited.

<u>Fruit size and number</u>. Introduction of presently disclosed transcription factor genes that affect fruit size will have desirable impacts on fruit size and number, which may comprise increases in yield for fruit crops, or reduced fruit yield, such as when vegetative growth is preferred (e.g., with bushy ornamentals, or where fruit is undesirable, as with ornamental olive trees).

Flower structure, inflorescence, and development. Presently disclosed transgenic transcription factors have been used to create plants with larger flowers or arrangements of flowers that are distinct from wild-type or non-transformed cultivars. This would likely have the most value for the ornamental horticulture industry, where larger flowers or interesting presentations generally are preferred and command the highest prices. Flower structure may have advantageous effects on fertility, and could be used, for example, to decrease fertility by the absence, reduction or screening of reproductive components. One interesting application for manipulation of flower structure, for example, by introduced transcription factors could be in the increased production of edible flowers or flower parts, including saffron, which is derived from the stigmas of *Crocus sativus*.

Number and development of trichomes. Several presently disclosed transcription factor genes have been used to modify trichome number and amount of trichome products in plants. Trichome glands on the surface of many higher plants produce and secrete exudates that give protection from the elements and pests such as insects, microbes and herbivores. These exudates may physically immobilize insects and spores, may be insecticidal or ant-microbial or they may act as allergens or irritants to protect against herbivores. Trichomes have also been suggested to decrease transpiration by decreasing leaf surface air flow, and by exuding chemicals that protect the leaf from the sun.

Seed size, color and number. The introduction of presently disclosed transcription factor genes into plants that alter the size or number of seeds may have a significant impact on yield, both when the product is the seed itself, or when biomass of the vegetative portion of the plant is increased by reducing seed production. In the case of fruit products, it is often advantageous to modify a plant to have reduced size

or number of seeds relative to non-transformed plants to provide seedless or varieties with reduced numbers or smaller seeds. Presently disclosed transcription factor genes have also been shown to affect seed size, including the development of larger seeds. Seed size, in addition to seed coat integrity, thickness and permeability, seed water content and by a number of other components including antioxidants and oligosaccharides, may affect seed longevity in storage. This would be an important utility when the seed of a plant is the harvested crops, as with, for example, peas, beans, nuts, etc. Presently disclosed transcription factor genes have also been used to modify seed color, which could provide added appeal to a seed product.

Root development, modifications. By modifying the structure or development of roots by transforming into a plant one or more of the presently disclosed transcription factor genes, plants may be produced that have the capacity to thrive in otherwise unproductive soils. For example, grape roots that extend further into rocky soils, or that remain viable in waterlogged soils, would increase the effective planting range of the crop. It may be advantageous to manipulate a plant to produce short roots, as when a soil in which the plant will be growing is occasionally flooded, or when pathogenic fungi or disease-causing nematodes are prevalent.

Modifications to root hairs. Presently disclosed transcription factor genes that increase root hair length or number potentially could be used to increase root growth or vigor, which might in turn allow better plant growth under adverse conditions such as limited nutrient or water availability.

Apical dominance. The modified expression of presently disclosed transcription factors that control apical dominance could be used in ornamental horticulture, for example, to modify plant architecture.

Branching patterns. Several presently disclosed transcription factor genes have been used to manipulate branching, which could provide benefits in the forestry industry. For example, reduction in the formation of lateral branches could reduce knot formation. Conversely, increasing the number of lateral branches could provide utility when a plant is used as a windscreen, or may also provide ornamental advantages.

Leaf shape, color and modifications. It has been demonstrated in laboratory experiments that overexpression of some of the presently disclosed transcription factors produced marked effects on leaf development. At early stages of growth, these transgenic seedlings developed narrow, upward pointing leaves with long petioles, possibly indicating a disruption in circadian-clock controlled processes or nyctinastic movements. Other transcription factor genes can be used to increase plant biomass; large size would be useful in crops where the vegetative portion of the plant is the marketable portion.

<u>Siliques</u>. Genes that later silique conformation in brassicates may be used to modify fruit ripening processes in brassicates and other plants, which may positively affect seed or fruit quality.

Stem morphology and shoot modifications. Laboratory studies have demonstrated that introducing several of the presently disclosed transcription factor genes into plants can cause stem bifurcations in shoots, in which the shoot meristems split to form two or three separate shoots. This unique appearance would be desirable in ornamental applications.

Diseases, pathogens and pests. A number of the presently disclosed transcription factor genes have been shown to or are likely to confer resistance to various plant diseases, pathogens and pests. The offending organisms include fungal pathogens Fusarium oxysporum, Botrytis cinerea, Sclerotinia sclerotiorum, and Erysiphe orontii. Bacterial pathogens to which resistance may be conferred include Pseudomonas syringae. Other problem organisms may potentially include nematodes, mollicutes, parasites, or herbivorous arthropods. In each case, one or more transformed transcription factor genes may provide some benefit to the plant to help prevent or overcome infestation. The mechanisms by which the transcription factors work could include increasing surface waxes or oils, surface thickness, local senescence, or the activation of signal transduction pathways that regulate plant defense in response to attacks by herbivorous pests (including, for example, protease inhibitors).

Increased tolerance of plants to nutrient-limited soils. Presently disclosed transcription factor genes introduced into plants may provide the means to improve uptake of essential nutrients, including nitrogenous compounds, phosphates, potassium, and trace minerals. The effect of these modifications is to increase the seedling germination and range of ornamental and crop plants. The utilities of presently disclosed transcription factor genes conferring tolerance to conditions of low nutrients also include cost savings to the grower by reducing the amounts of fertilizer needed, environmental benefits of reduced fertilizer runoff; and improved yield and stress tolerance. In addition, this gene could be used to alter seed protein amounts and/or composition that could impact yield as well as the nutritional value and production of various food products.

Hormone sensitivity. One or more of the presently disclosed transcription factor genes have been shown to affect plant abscisic acid (ABA) sensitivity. This plant hormone is likely the most important hormone in mediating the adaptation of a plant to stress. For example, ABA mediates conversion of apical meristems into dormant buds. In response to increasingly cold conditions, the newly developing leaves growing above the meristem become converted into stiff bud scales that closely wrap the meristem and protect it from mechanical damage during winter. ABA in the bud also enforces dormancy; during premature warm spells, the buds are inhibited from sprouting. Bud dormancy is eliminated after either a prolonged cold period of cold or a significant number of lengthening days. Thus, by affecting ABA sensitivity, introduced transcription factor genes may affect cold sensitivity and survivability. ABA is also important in protecting plants from drought tolerance.

Several other of the present transcription factor genes have been used to manipulate ethylene signal transduction and response pathways. These genes can thus be used to manipulate the processes influenced by ethylene, such as seed germination or fruit ripening, and to improve seed or fruit quality.

Production of seed and leaf prenyl lipids, including tocopherol. Prenyl lipids play a role in anchoring proteins in membranes or membranous organelles. Thus modifying the prenyl lipid content of seeds and leaves could affect membrane integrity and function. A number of presently disclosed transcription factor genes

have been shown to modify the tocopherol composition of plants. Tocopherols have both anti-oxidant and vitamin E activity.

Production of seed and leaf phytosterols: Presently disclosed transcription factor genes that modify levels of phytosterols in plants may have at least two utilities. First, phytosterols are an important source of precursors for the manufacture of human steroid hormones. Thus, regulation of transcription factor expression or activity could lead to elevated levels of important human steroid precursors for steroid semi-synthesis. For example, transcription factors that cause elevated levels of campesterol in leaves, or sitosterols and stigmasterols in seed crops, would be useful for this purpose. Phytosterols and their hydrogenated derivatives phytostanols also have proven cholesterol-lowering properties, and transcription factor genes that modify the expression of these compounds in plants would thus provide health benefits.

Production of seed and leaf glucosinolates. Some glucosinolates have anticancer activity; thus, increasing the levels or composition of these compounds by introducing several of the presently disclosed transcription factors might be of interest from a nutraceutical standpoint. (3) Glucosinolates form part of a plants natural defense against insects. Modification of glucosinolate composition or quantity could therefore afford increased protection from predators. Furthermore, in edible crops, tissue specific promoters might be used to ensure that these compounds accumulate specifically in tissues, such as the epidermis, which are not taken for consumption.

Modified seed oil content. The composition of seeds, particularly with respect to seed oil amounts and/or composition, is very important for the nutritional value and production of various food and feed products. Several of the presently disclosed transcription factor genes in seed lipid saturation that alter seed oil content could be used to improve the heat stability of oils or to improve the nutritional quality of seed oil, by, for example, reducing the number of calories in seed, increasing the number of calories in animal feeds, or altering the ratio of saturated to unsaturated lipids comprising the oils.

Seed and leaf fatty acid composition. A number of the presently disclosed transcription factor genes have been shown to alter the fatty acid composition in plants, and seeds in particular. This modification may find particular value for improving the nutritional value of, for example, seeds or whole plants. Dietary fatty acids ratios have been shown to have an effect on, for example, bone integrity and remodeling (see, for example, Weiler, H.A., *Pediatr Res* (2000) 47:5 692-697). The ratio of dietary fatty acids may alter the precursor pools of long-chain polyunsaturated fatty acids that serve as precursors for prostaglandin synthesis. In mammalian connective tissue, prostaglandins serve as important signals regulating the balance between resorption and formation in bone and cartilage. Thus dietary fatty acid ratios altered in seeds may affect the etiology and outcome of bone loss.

Modified seed protein content. As with seed oils, the composition of seeds, particularly with respect to protein amounts and/or composition, is very important for the nutritional value and production of various food and feed products. A number of the presently disclosed transcription factor genes modify the protein concentrations in seeds would provide nutritional benefits, and may be used to prolong storage, increase seed pest or disease resistance, or modify germination rates.

Production of flavonoids in leaves and other plant parts. Expression of presently disclosed transcription factor genes that increase flavonoid production in plants, including anthocyanins and condensed tannins, may be used to alter in pigment production for horticultural purposes, and possibly increasing stress resistance. Flavonoids have antimicrobial activity and could be used to engineer pathogen resistance. Several flavonoid compounds have health promoting effects such as the inhibition of tumor growth and cancer, prevention of bone loss and the prevention of the oxidation of lipids. Increasing levels of condensed tannins, whose biosynthetic pathway is shared with anthocyanin biosynthesis, in forage legumes is an important agronomic trait because they prevent pasture bloat by collapsing protein foams within the rumen. For a review on the utilities of flavonoids and their derivatives, refer to Dixon et al. (1999) Trends Plant Sci. 4:394-400.

<u>Production of diterpenes in leaves and other plant parts</u>. Depending on the plant species, varying amounts of diverse secondary biochemicals (often lipophilic

terpenes) are produced and exuded or volatilized by trichomes. These exotic secondary biochemicals, which are relatively easy to extract because they are on the surface of the leaf, have been widely used in such products as flavors and aromas, drugs, pesticides and cosmetics. Thus, the overexpression of genes that are used to produce diterpenes in plants may be accomplished by introducing transcription factor genes that induce said overexpression. One class of secondary metabolites, the diterpenes, can effect several biological systems such as tumor progression, prostaglandin synthesis and tissue inflammation. In addition, diterpenes can act as insect pheromones, termite allomones, and can exhibit neurotoxic, cytotoxic and antimitotic activities. As a result of this functional diversity, diterpenes have been the target of research several pharmaceutical ventures. In most cases where the metabolic pathways are impossible to engineer, increasing trichome density or size on leaves may be the only way to increase plant productivity.

<u>Production of anthocyanin in leaves and other plant parts</u>. Several presently disclosed transcription factor genes can be used to alter anthocyanin production in numerous plant species. The potential utilities of these genes include alterations in pigment production for horticultural purposes, and possibly increasing stress resistance in combination with another transcription factor.

Production of miscellaneous secondary metabolites. Microarray data suggests that flux through the aromatic amino acid biosynthetic pathways and primary and secondary metabolite biosynthetic pathways are up-regulated. Presently disclosed transcription factors have been shown to be involved in regulating alkaloid biosynthesis, in part by up-regulating the enzymes indole-3-glycerol phosphatase and strictosidine synthase. Phenylalanine ammonia lyase, chalcone synthase and transcinnamate mono-oxygenase are also induced, and are involved in phenylpropenoid biosynthesis.

Sugar, starch, hemicellulose composition. Overexpression of the presently disclosed transcription factors that affect sugar content resulted in plants with altered leaf insoluble sugar content. Transcription factors that alter plant cell wall composition have several potential applications including altering food digestibility, plant tensile strength, wood quality, pathogen resistance and in pulp production. The

potential utilities of a gene involved in glucose-specific sugar sensing are to alter energy balance, photosynthetic rate, carbohydrate accumulation, biomass production, source-sink relationships, and senescence.

Hemicellulose is not desirable in paper pulps because of its lack of strength compared with cellulose. Thus modulating the amounts of cellulose vs. hemicellulose in the plant cell wall is desirable for the paper/lumber industry. Increasing the insoluble carbohydrate content in various fruits, vegetables, and other edible consumer products will result in enhanced fiber content. Increased fiber content would not only provide health benefits in food products, but might also increase digestibility of forage crops. In addition, the hemicellulose and pectin content of fruits and berries affects the quality of jam and catsup made from them. Changes in hemicellulose and pectin content could result in a superior consumer product.

Plant response to sugars and sugar composition. In addition to their important role as an energy source and structural component of the plant cell, sugars are central regulatory molecules that control several aspects of plant physiology, metabolism and development. It is thought that this control is achieved by regulating gene expression and, in higher plants, sugars have been shown to repress or activate plant genes involved in many essential processes such as photosynthesis, glyoxylate metabolism, respiration, starch and sucrose synthesis and degradation, pathogen response, wounding response, cell cycle regulation, pigmentation, flowering and senescence. The mechanisms by which sugars control gene expression are not understood.

Because sugars are important signaling molecules, the ability to control either the concentration of a signaling sugar or how the plant perceives or responds to a signaling sugar could be used to control plant development, physiology or metabolism. For example, the flux of sucrose (a disaccharide sugar used for systemically transporting carbon and energy in most plants) has been shown to affect gene expression and alter storage compound accumulation in seeds. Manipulation of the sucrose signaling pathway in seeds may therefore cause seeds to have more protein, oil or carbohydrate, depending on the type of manipulation. Similarly, in tubers, sucrose is converted to starch which is used as an energy store. It is thought that sugar signaling pathways may partially determine the levels of starch synthesized

in the tubers. The manipulation of sugar signaling in tubers could lead to tubers with a higher starch content.

Thus, the presently disclosed transcription factor genes that manipulate the sugar signal transduction pathway may lead to altered gene expression to produce plants with desirable traits. In particular, manipulation of sugar signal transduction pathways could be used to alter source-sink relationships in seeds, tubers, roots and other storage organs leading to increase in yield.

Plant growth rate and development. A number of the presently disclosed transcription factor genes have been shown to have significant effects on plant growth rate and development. These observations have included, for example, more rapid or delayed growth and development of reproductive organs. This would provide utility for regions with short or long growing seasons, respectively. Accelerating plant growth would also improve early yield or increase biomass at an earlier stage, when such is desirable (for example, in producing forestry products).

Embryo development. Presently disclosed transcription factor genes that alter embryo development has been used to alter seed protein and oil amounts and/or composition which is very important for the nutritional value and production of various food products. Seed shape and seed coat may also be altered by these genes, which may provide for improved storage stability.

Seed germination rate. A number of the presently disclosed transcription factor genes have been shown to modify seed germination rate, including when the seeds are in conditions normally unfavorable for germination (e.g., cold, heat or salt stress, or in the presence of ABA), and may thus be used to modify and improve germination rates under adverse conditions.

Plant, seedling vigor. Seedlings transformed with presently disclosed transcription factors have been shown to possess larger cotyledons and appeared somewhat more advanced than control plants. This indicates that the seedlings developed more rapidly that the control plants. Rapid seedling development is likely to reduce loss due to diseases particularly prevalent at the seedling stage (e.g.,

damping off) and is thus important for survivability of plants germinating in the field or in controlled environments.

Senescence, cell death. Presently disclosed transcription factor genes may be used to alter senescence responses in plants. Although leaf senescence is thought to be an evolutionary adaptation to recycle nutrients, the ability to control senescence in an agricultural setting has significant value. For example, a delay in leaf senescence in some maize hybrids is associated with a significant increase in yields and a delay of a few days in the senescence of soybean plants can have a large impact on yield. Delayed flower senescence may also generate plants that retain their blossoms longer and this may be of potential interest to the ornamental horticulture industry.

Modified fertility. Plants that overexpress a number of the presently disclosed transcription factor genes have been shown to possess reduced fertility. This could be a desirable trait, as it could be exploited to prevent or minimize the escape of the pollen of genetically modified organisms (GMOs) into the environment.

Early and delayed flowering. Presently disclosed transcription factor genes that accelerate flowering could have valuable applications in such programs since they allow much faster generation times. In a number of species, for example, broccoli, cauliflower, where the reproductive parts of the plants constitute the crop and the vegetative tissues are discarded, it would be advantageous to accelerate time to flowering. Accelerating flowering could shorten crop and tree breeding programs. Additionally, in some instances, a faster generation time might allow additional harvests of a crop to be made within a given growing season. A number of *Arabidopsis* genes have already been shown to accelerate flowering when constitutively expressed. These include LEAFY, APETALA1 and CONSTANS (Mandel, M. et al., 1995, Nature 377, 522-524; Weigel, D. and Nilsson, O., 1995, Nature 377, 495-500; Simon et al., 1996, Nature 384, 59-62).

By regulating the expression of potential flowering using inducible promoters, flowering could be triggered by application of an inducer chemical. This would allow flowering to be synchronized across a crop and facilitate more efficient harvesting. Such inducible systems could also be used to tune the flowering of crop varieties to

different latitudes. At present, species such as soybean and cotton are available as a series of maturity groups that are suitable for different latitudes on the basis of their flowering time (which is governed by day-length). A system in which flowering could be chemically controlled would allow a single high-yielding northern maturity group to be grown at any latitude. In southern regions such plants could be grown for longer, thereby increasing yields, before flowering was induced. In more northern areas, the induction would be used to ensure that the crop flowers prior to the first winter frosts.

In a sizeable number of species, for example, root crops, where the vegetative parts of the plants constitute the crop and the reproductive tissues are discarded, it would be advantageous to delay or prevent flowering. Extending vegetative development with presently disclosed transcription factor genes could thus bring about large increases in yields.. Prevention of flowering might help maximize vegetative yields and prevent escape of genetically modified organism (GMO) pollen.

Extended flowering phase. Presently disclosed transcription factors that extend flowering time have utility in engineering plants with longer-lasting flowers for the horticulture industry, and for extending the time in which the plant is fertile.

Flower and leaf development. Presently disclosed transcription factor genes have been used to modify the development of flowers and leaves. This could be advantageous in the development of new ornamental cultivars that present unique configurations. In addition, some of these genes have been shown to reduce a plant's fertility, which is also useful for helping to prevent development of pollen of GMOs.

<u>Flower abscission</u>. Presently disclosed transcription factor genes introduced into plants have been used to retain flowers for longer periods. This would provide a significant benefit to the ornamental industry, for both cut flowers and woody plant varieties (of, for example, maize), as well as have the potential to lengthen the fertile period of a plant, which could positively impact yield and breeding programs.

A listing of specific effects and utilities that the presently disclosed transcription factor genes have on plants, as determined by direct observation and assay analysis, is provided in Table 4.

XVI. Antisense and Co-suppression

In addition to expression of the nucleic acids of the invention as gene replacement or plant phenotype modification nucleic acids, the nucleic acids are also useful for sense and anti-sense suppression of expression, e.g., to down-regulate expression of a nucleic acid of the invention, e.g., as a further mechanism for modulating plant phenotype. That is, the nucleic acids of the invention, or subsequences or anti-sense sequences thereof, can be used to block expression of naturally occurring homologous nucleic acids. A variety of sense and anti-sense technologies are known in the art, e.g., as set forth in Lichtenstein and Nellen (1997) Antisense Technology: A Practical Approach IRL Press at Oxford University Press, Oxford, U.K.. In general, sense or anti-sense sequences are introduced into a cell, where they are optionally amplified, e.g., by transcription. Such sequences include both simple oligonucleotide sequences and catalytic sequences such as ribozymes.

For example, a reduction or elimination of expression (i.e., a "knock-out") of a transcription factor or transcription factor homologue polypeptide in a transgenic plant, e.g., to modify a plant trait, can be obtained by introducing an antisense construct corresponding to the polypeptide of interest as a cDNA. For antisense suppression, the transcription factor or homologue cDNA is arranged in reverse orientation (with respect to the coding sequence) relative to the promoter sequence in the expression vector. The introduced sequence need not be the full length cDNA or gene, and need not be identical to the cDNA or gene found in the plant type to be transformed. Typically, the antisense sequence need only be capable of hybridizing to the target gene or RNA of interest. Thus, where the introduced sequence is of shorter length, a higher degree of homology to the endogenous transcription factor sequence will be needed for effective antisense suppression. While antisense sequences of various lengths can be utilized, preferably, the introduced antisense sequence in the vector will be at least 30 nucleotides in length, and improved antisense suppression will typically be observed as the length of the antisense sequence increases. Preferably, the length of the antisense sequence in the vector will be greater than 100 nucleotides.

Transcription of an antisense construct as described results in the production of RNA molecules that are the reverse complement of mRNA molecules transcribed from the endogenous transcription factor gene in the plant cell.

Suppression of endogenous transcription factor gene expression can also be achieved using a ribozyme. Ribozymes are RNA molecules that possess highly specific endoribonuclease activity. The production and use of ribozymes are disclosed in U.S. Patent No. 4,987,071 and U.S. Patent No. 5,543,508. Synthetic ribozyme sequences including antisense RNAs can be used to confer RNA cleaving activity on the antisense RNA, such that endogenous mRNA molecules that hybridize to the antisense RNA are cleaved, which in turn leads to an enhanced antisense inhibition of endogenous gene expression.

Suppression of endogenous transcription factor gene expression can also be achieved using RNA interference, or RNAi. RNAi is a post-transcriptional, targeted gene-silencing technique that uses double-stranded RNA (dsRNA) to incite degradation of messenger RNA (mRNA) containing the same sequence as the dsRNA (Constans, (2002) The Scientist 16:36). Small interfering RNAs, or siRNAs are produced in at least two steps: an endogenous ribonuclease cleaves longer dsRNA into shorter, 21-23 nucleotide-long RNAs. The siRNA segments then mediate the degradation of the target mRNA (Zamore, (2001) Nature Struct. Biol., 8:746-50). RNAi has been used for gene function determination in a manner similar to antisense oligonucleotides (Constans, (2002) The Scientist 16:36). Expression vectors that continually express siRNAs in transiently and stably transfected have been engineered to express small hairpin RNAs (shRNAs), which get processed in vivo into siRNAslike molecules capable of carrying out gene-specific silencing (Brummelkamp et al., (2002) Science 296:550-553, and Paddison, et al. (2002) Genes & Dev. 16:948-958). Post-transcriptional gene silencing by double-stranded RNA is discussed in further detail by Hammond et al. (2001) Nature Rev Gen 2: 110-119, Fire et al. (1998) Nature 391: 806-811 and Timmons and Fire (1998) Nature 395: 854.

Vectors in which RNA encoded by a transcription factor or transcription factor homologue cDNA is over-expressed can also be used to obtain co-suppression of a corresponding endogenous gene, e.g., in the manner described in U.S. Patent No.

5,231,020 to Jorgensen. Such co-suppression (also termed sense suppression) does not require that the entire transcription factor cDNA be introduced into the plant cells, nor does it require that the introduced sequence be exactly identical to the endogenous transcription factor gene of interest. However, as with antisense suppression, the suppressive efficiency will be enhanced as specificity of hybridization is increased, e.g., as the introduced sequence is lengthened, and/or as the sequence similarity between the introduced sequence and the endogenous transcription factor gene is increased.

Vectors expressing an untranslatable form of the transcription factor mRNA, e.g., sequences comprising one or more stop codon, or nonsense mutation) can also be used to suppress expression of an endogenous transcription factor, thereby reducing or eliminating it's activity and modifying one or more traits. Methods for producing such constructs are described in U.S. Patent No. 5,583,021. Preferably, such constructs are made by introducing a premature stop codon into the transcription factor gene. Alternatively, a plant trait can be modified by gene silencing using double-strand RNA (Sharp (1999) Genes and Development 13: 139-141). Another method for abolishing the expression of a gene is by insertion mutagenesis using the T-DNA of Agrobacterium tumefaciens. After generating the insertion mutants, the mutants can be screened to identify those containing the insertion in a transcription factor or transcription factor homologue gene. Plants containing a single transgene insertion event at the desired gene can be crossed to generate homozygous plants for the mutation. Such methods are well known to those of skill in the art. (See for example Koncz et al. (1992) Methods in Arabidopsis Research, World Scientific.)

Alternatively, a plant phenotype can be altered by eliminating an endogenous gene, such as a transcription factor or transcription factor homologue, e.g., by homologous recombination (Kempin et al. (1997) <u>Nature</u> 389:802-803).

A plant trait can also be modified by using the Cre-lox system (for example, as described in US Pat. No. 5,658,772). A plant genome can be modified to include first and second lox sites that are then contacted with a Cre recombinase. If the lox sites are in the same orientation, the intervening DNA sequence between the two sites

is excised. If the lox sites are in the opposite-orientation, the intervening sequence is inverted.

The polynucleotides and polypeptides of this invention can also be expressed in a plant in the absence of an expression cassette by manipulating the activity or expression level of the endogenous gene by other means. For example, by ectopically expressing a gene by T-DNA activation tagging (Ichikawa et al. (1997) Nature 390 698-701; Kakimoto et al. (1996) Science 274: 982-985). This method entails transforming a plant with a gene tag containing multiple transcriptional enhancers and once the tag has inserted into the genome, expression of a flanking gene coding sequence becomes deregulated. In another example, the transcriptional machinery in a plant can be modified so as to increase transcription levels of a polynucleotide of the invention (See, e.g., PCT Publications WO 96/06166 and WO 98/53057 which describe the modification of the DNA-binding specificity of zinc finger proteins by changing particular amino acids in the DNA-binding motif).

The transgenic plant can also include the machinery necessary for expressing or altering the activity of a polypeptide encoded by an endogenous gene, for example by altering the phosphorylation state of the polypeptide to maintain it in an activated state.

Transgenic plants (or plant cells, or plant explants, or plant tissues) incorporating the polynucleotides of the invention and/or expressing the polypeptides of the invention can be produced by a variety of well established techniques as described above. Following construction of a vector, most typically an expression cassette, including a polynucleotide, e.g., encoding a transcription factor or transcription factor homologue, of the invention, standard techniques can be used to introduce the polynucleotide into a plant, a plant cell, a plant explant or a plant tissue of interest. Optionally, the plant cell, explant or tissue can be regenerated to produce a transgenic plant.

The plant can be any higher plant, including gymnosperms, monocotyledonous and dicotyledenous plants. Suitable protocols are available for Leguminosae (alfalfa, soybean, clover, etc.), Umbelliferae (carrot, celery, parsnip),

Cruciferae (cabbage, radish, rapeseed, broccoli, etc.), Curcurbitaceae (melons and cucumber), Gramineae (wheat, corn, rice, barley, millet, etc.), Solanaceae (potato, tomato, tobacco, peppers, etc.), and various other crops. See protocols described in Ammirato et al. (1984) Handbook of Plant Cell Culture—Crop Species, Macmillan Publ. Co. Shimamoto et al. (1989) Nature 338:274-276; Fromm et al. (1990) Bio/Technology 8:833-839; and Vasil et al. (1990) Bio/Technology 8:429-434.

Transformation and regeneration of both monocotyledonous and dicotyledonous plant cells is now routine, and the selection of the most appropriate transformation technique will be determined by the practitioner. The choice of method will vary with the type of plant to be transformed; those skilled in the art will recognize the suitability of particular methods for given plant types. Suitable methods can include, but are not limited to: electroporation of plant protoplasts; liposomemediated transformation; polyethylene glycol (PEG) mediated transformation; transformation using viruses; micro-injection of plant cells; micro-projectile bombardment of plant cells; vacuum infiltration; and Agrobacterium tumefaciens mediated transformation. Transformation means introducing a nucleotide sequence into a plant in a manner to cause stable or transient expression of the sequence.

Successful examples of the modification of plant characteristics by transformation with cloned sequences which serve to illustrate the current knowledge in this field of technology, and which are herein incorporated by reference, include: U.S. Patent Nos. 5,571,706; 5,677,175; 5,510,471; 5,750,386; 5,597,945; 5,589,615; 5,750,871; 5,268,526; 5,780,708; 5,538,880; 5,773,269; 5,736,369 and 5,610,042.

Following transformation, plants are preferably selected using a dominant selectable marker incorporated into the transformation vector. Typically, such a marker will confer antibiotic or herbicide resistance on the transformed plants, and selection of transformants can be accomplished by exposing the plants to appropriate concentrations of the antibiotic or herbicide.

After transformed plants are selected and grown to maturity, those plants showing a modified trait are identified. The modified trait can be any of those traits described above. Additionally, to confirm that the modified trait is due to changes in

expression levels or activity of the polypeptide or polynucleotide of the invention can be determined by analyzing mRNA expression using Northern blots, RT-PCR or microarrays, or protein expression using immunoblots or Western blots or gel shift assays.

XVII. Integrated Systems - Sequence Identity

Additionally, the present invention may be an integrated system, computer or computer readable medium that comprises an instruction set for determining the identity of one or more sequences in a database. In addition, the instruction set can be used to generate or identify sequences that meet any specified criteria. Furthermore, the instruction set may be used to associate or link certain functional benefits, such improved characteristics, with one or more identified sequence.

For example, the instruction set can include, e.g., a sequence comparison or other alignment program, e.g., an available program such as, for example, the Wisconsin Package Version 10.0, such as BLAST, FASTA, PILEUP, FINDPATTERNS or the like (GCG, Madison, WI). Public sequence databases such as GenBank, EMBL, Swiss-Prot and PIR or private sequence databases such as PHYTOSEQ sequence database (Incyte Genomics, Palo Alto, CA) can be searched.

Alignment of sequences for comparison can be conducted by the local homology algorithm of Smith and Waterman (1981) Adv. Appl. Math. 2:482, by the homology alignment algorithm of Needleman and Wunsch (1970) J. Mol. Biol. 48:443-453, by the search for similarity method of Pearson and Lipman (1988) Proc. Natl. Acad. Sci. U.S.A. 85:2444-2448, by computerized implementations of these algorithms. After alignment, sequence comparisons between two (or more) polynucleotides or polypeptides are typically performed by comparing sequences of the two sequences over a comparison window to identify and compare local regions of sequence similarity. The comparison window can be a segment of at least about 20 contiguous positions, usually about 50 to about 200, more usually about 100 to about 150 contiguous positions. A description of the method is provided in Ausubel et al., supra.

A variety of methods for determining sequence relationships can be used, including manual alignment and computer assisted sequence alignment and analysis. This later approach is a preferred approach in the present invention, due to the increased throughput afforded by computer assisted methods. As noted above, a variety of computer programs for performing sequence alignment are available, or can be produced by one of skill.

One example algorithm that is suitable for determining percent sequence identity and sequence similarity is the BLAST algorithm, which is described in Altschul et al. J. Mol. Biol 215:403-410 (1990). Software for performing BLAST analyses is publicly available, e.g., through the National Center for Biotechnology Information (see internet website at ncbi.nlm.nih.gov). This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al., supra). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are then extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always > 0) and N (penalty score for mismatching residues; always < 0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) of 10, a cutoff of 100, M=5, N=-4, and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength (W) of 3, an expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff & Henikoff (1989) Proc. Natl. Acad. Sci. USA 89:10915). Unless otherwise indicated, "sequence identity" here refers to the % sequence identity generated from a tblastx using the NCBI version of

the algorithm at the default settings using gapped alignments with the filter "off" (see, for example, internet website at ncbi.nlm.nih.gov).

In addition to calculating percent sequence identity, the BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin & Altschul (1993) Proc. Natl. Acad. Sci. USA 90:5873-5787). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence (and, therefore, in this context, homologous) if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.1, or less than about 0.01, and or even less than about 0.001. An additional example of a useful sequence alignment algorithm is PILEUP. PILEUP creates a multiple sequence alignment from a group of related sequences using progressive, pairwise alignments. The program can align, e.g., up to 300 sequences of a maximum length of 5,000 letters.

The integrated system, or computer typically includes a user input interface allowing a user to selectively view one or more sequence records corresponding to the one or more character strings, as well as an instruction set which aligns the one or more character strings with each other or with an additional character string to identify one or more region of sequence similarity. The system may include a link of one or more character strings with a particular phenotype or gene function. Typically, the system includes a user readable output element that displays an alignment produced by the alignment instruction set.

The methods of this invention can be implemented in a localized or distributed computing environment. In a distributed environment, the methods may implemented on a single computer comprising multiple processors or on a multiplicity of computers. The computers can be linked, e.g. through a common bus, but more preferably the computer(s) are nodes on a network. The network can be a generalized or a dedicated local or wide-area network and, in certain preferred embodiments, the computers may be components of an intra-net or an internet.

Thus, the invention provides methods for identifying a sequence similar or homologous to one or more polynucleotides as noted herein, or one or more target polypeptides encoded by the polynucleotides, or otherwise noted herein and may include linking or associating a given plant phenotype or gene function with a sequence. In the methods, a sequence database is provided (locally or across an inter or intra net) and a query is made against the sequence database using the relevant sequences herein and associated plant phenotypes or gene functions.

Any sequence herein can be entered into the database, before or after querying the database. This provides for both expansion of the database and, if done before the querying step, for insertion of control sequences into the database. The control sequences can be detected by the query to ensure the general integrity of both the database and the query. As noted, the query can be performed using a web browser based interface. For example, the database can be a centralized public database such as those noted herein, and the querying can be done from a remote terminal or computer across an internet or intranet.

XVIII. Examples

The following examples are intended to illustrate but not limit the present invention. The complete descriptions of the traits associated with each polynucleotide of the invention is fully disclosed in Table 4 and Table 6.

Example I: Full Length Gene Identification and Cloning

Putative transcription factor sequences (genomic or ESTs) related to known transcription factors were identified in the *Arabidopsis thaliana* GenBank database using the tblastn sequence analysis program using default parameters and a P-value cutoff threshold of -4 or -5 or lower, depending on the length of the query sequence. Putative transcription factor sequence hits were then screened to identify those containing particular sequence strings. If the sequence hits contained such sequence strings, the sequences were confirmed as transcription factors.

Alternatively, *Arabidopsis thaliana* cDNA libraries derived from different tissues or treatments, or genomic libraries were screened to identify novel members of a transcription family using a low stringency hybridization approach. Probes were

synthesized using gene specific primers in a standard PCR reaction (annealing temperature 60° C) and labeled with ³²P dCTP using the High Prime DNA Labeling Kit (Boehringer Mannheim). Purified radiolabelled probes were added to filters immersed in Church hybridization medium (0.5 M NaPO₄ pH 7.0, 7% SDS, 1 % w/v bovine serum albumin) and hybridized overnight at 60°C with shaking. Filters were washed two times for 45 to 60 minutes with 1xSCC, 1% SDS at 60°C.

To identify additional sequence 5' or 3' of a partial cDNA sequence in a cDNA library, 5' and 3' rapid amplification of cDNA ends (RACE) was performed using the U.C. Marathon cDNA amplification kit (Clontech, Palo Alto, CA). Generally, the method entailed first isolating poly(A) mRNA, performing first and second strand cDNA synthesis to generate double stranded cDNA, blunting cDNA ends, followed by ligation of the U.C. Marathon Adaptor to the cDNA to form a library of adaptor-ligated ds cDNA.

Gene-specific primers were designed to be used along with adaptor specific primers for both 5' and 3' RACE reactions. Nested primers, rather than single primers, were used to increase PCR specificity. Using 5' and 3' RACE reactions, 5' and 3' RACE fragments were obtained, sequenced and cloned. The process can be repeated until 5' and 3' ends of the full-length gene were identified. Then the full-length cDNA was generated by PCR using primers specific to 5' and 3' ends of the gene by end-to-end PCR.

Example II: Construction of Expression Vectors

The sequence was amplified from a genomic or cDNA library using primers specific to sequences upstream and downstream of the coding region. The expression vector was pMEN20 or pMEN65, which are both derived from pMON316 (Sanders et al, (1987) Nucleic Acids Research 15:1543-1558) and contain the CaMV 35S promoter to express transgenes. To clone the sequence into the vector, both pMEN20 and the amplified DNA fragment were digested separately with Sall and NotI restriction enzymes at 37° C for 2 hours. The digestion products were subject to electrophoresis in a 0.8% agarose gel and visualized by ethidium bromide staining. The DNA fragments containing the sequence and the linearized plasmid were excised and purified by using a Qiaquick gel extraction kit (Qiagen, Valencia CA). The

fragments of interest were ligated at a ratio of 3:1 (vector to insert). Ligation reactions using T4 DNA ligase (New England Biolabs, Beverly MA) were carried out at 16° C for 16 hours. The ligated DNAs were transformed into competent cells of the *E. coli* strain DH5alpha by using the heat shock method. The transformations were plated on LB plates containing 50 mg/l kanamycin (Sigma, St. Louis, MO). Individual colonies were grown overnight in five milliliters of LB broth containing 50 mg/l kanamycin at 37° C. Plasmid DNA was purified by using Qiaquick Mini Prep kits (Qiagen).

Example III: Transformation of Agrobacterium with the Expression Vector

After the plasmid vector containing the gene was constructed, the vector was used to transform *Agrobacterium tumefaciens* cells expressing the gene products. The stock of *Agrobacterium tumefaciens* cells for transformation were made as described by Nagel et al. (1990) <u>FEMS Microbiol Letts.</u> 67: 325-328. *Agrobacterium* strain ABI was grown in 250 ml LB medium (Sigma) overnight at 28°C with shaking until an absorbance (A_{600}) of 0.5-1.0 was reached. Cells were harvested by centrifugation at 4,000 x g for 15 min at 4°C. Cells were then resuspended in 250 μ l chilled buffer (1 mM HEPES, pH adjusted to 7.0 with KOH). Cells were centrifuged again as described above and resuspended in 125 μ l chilled buffer. Cells were then centrifuged and resuspended two more times in the same HEPES buffer as described above at a volume of 100 μ l and 750 μ l, respectively. Resuspended cells were then distributed into 40 μ l aliquots, quickly frozen in liquid nitrogen, and stored at -80° C.

Agrobacterium cells were transformed with plasmids prepared as described above following the protocol described by Nagel et al. For each DNA construct to be transformed, 50 – 100 ng DNA (generally resuspended in 10 mM Tris-HCl, 1 mM EDTA, pH 8.0) was mixed with 40 μl of Agrobacterium cells. The DNA/cell mixture was then transferred to a chilled cuvette with a 2mm electrode gap and subject to a 2.5 kV charge dissipated at 25 μF and 200 μF using a Gene Pulser II apparatus (Bio-Rad, Hercules, CA). After electroporation, cells were immediately resuspended in 1.0 ml LB and allowed to recover without antibiotic selection for 2 – 4 hours at 28°C in a shaking incubator. After recovery, cells were plated onto selective medium of LB broth containing 100 μg/ml spectinomycin (Sigma) and incubated for 24-48 hours at 28°C. Single colonies were then picked and inoculated in fresh medium. The

presence of the plasmid construct was verified by PCR amplification and sequence analysis.

Example IV: Transformation of Arabidopsis Plants with Agrobacterium tumefaciens with Expression Vector

After transformation of *Agrobacterium tumefaciens* with plasmid vectors containing the gene, single *Agrobacterium* colonies were identified, propagated, and used to transform *Arabidopsis* plants. Briefly, 500 ml cultures of LB medium containing 50 mg/l kanamycin were inoculated with the colonies and grown at 28° C with shaking for 2 days until an optical absorbance at 600 nm wavelength over 1 cm (A₆₀₀) of > 2.0 is reached. Cells were then harvested by centrifugation at 4,000 x g for 10 min, and resuspended in infiltration medium (1/2 X Murashige and Skoog salts (Sigma), 1 X Gamborg's B-5 vitamins (Sigma), 5.0% (w/v) sucrose (Sigma), 0.044 μM benzylamino purine (Sigma), 200 μl/l Silwet L-77 (Lehle Seeds) until an A₆₀₀ of 0.8 was reached.

Prior to transformation, Arabidopsis thaliana seeds (ecotype Columbia) were sown at a density of ~10 plants per 4" pot onto Pro-Mix BX potting medium (Hummert International) covered with fiberglass mesh (18 mm X 16 mm). Plants were grown under continuous illumination (50-75 μ E/m²/sec) at 22-23° C with 65-70% relative humidity. After about 4 weeks, primary inflorescence stems (bolts) are cut off to encourage growth of multiple secondary bolts. After flowering of the mature secondary bolts, plants were prepared for transformation by removal of all siliques and opened flowers.

The pots were then immersed upside down in the mixture of Agrobacterium infiltration medium as described above for 30 sec, and placed on their sides to allow draining into a 1' x 2' flat surface covered with plastic wrap. After 24 h, the plastic wrap was removed and pots are turned upright. The immersion procedure-was repeated one week later, for a total of two immersions per pot. Seeds were then collected from each transformation pot and analyzed following the protocol described below.

Example V: Identification of Arabidopsis Primary Transformants

Seeds collected from the transformation pots were sterilized essentially as follows. Seeds were dispersed into in a solution containing 0.1% (v/v) Triton X-100 (Sigma) and sterile H₂O and washed by shaking the suspension for 20 min. The wash solution was then drained and replaced with fresh wash solution to wash the seeds for 20 min with shaking. After removal of the second wash solution, a solution containing 0.1% (v/v) Triton X-100 and 70% ethanol (Equistar) was added to the seeds and the suspension was shaken for 5 min. After removal of the ethanol/detergent solution, a solution containing 0.1% (v/v) Triton X-100 and 30% (v/v) bleach (Clorox) was added to the seeds, and the suspension was shaken for 10 min. After removal of the bleach/detergent solution, seeds were then washed five times in sterile distilled H₂O. The seeds were stored in the last wash water at 4°C for 2 days in the dark before being plated onto antibiotic selection medium (1 X Murashige and Skoog salts (pH adjusted to 5.7 with 1M KOH), 1 X Gamborg's B-5 vitamins, 0.9% phytagar (Life Technologies), and 50 mg/l kanamycin). Seeds were germinated under continuous illumination (50-75 µE/m²/sec) at 22-23°C. After 7-10 days of growth under these conditions, kanamycin resistant primary transformants (T1 generation) were visible and obtained. These seedlings were transferred first to fresh selection plates where the seedlings continued to grow for 3-5 more days, and then to soil (Pro-Mix BX potting medium).

Primary transformants were crossed and progeny seeds (T₂) collected; kanamycin resistant seedlings were selected and analyzed. The expression levels of the recombinant polynucleotides in the transformants varies from about a 5% expression level increase to a least a 100% expression level increase. Similar observations are made with respect to polypeptide level expression.

Example VI: Identification of *Arabidopsis* Plants with Transcription Factor Gene Knockouts

The screening of insertion mutagenized *Arabidopsis* collections for null mutants in a known target gene was essentially as described in Krysan et al (1999)

<u>Plant Cell</u> 11:2283-2290. Briefly, gene-specific primers, nested by 5-250 base pairs to each other, were designed from the 5' and 3' regions of a known target gene.

Similarly, nested sets of primers were also created specific to each of the T-DNA or

transposon ends (the "right" and "left" borders). All possible combinations of gene specific and T-DNA/transposon primers were used to detect by PCR an insertion event within or close to the target gene. The amplified DNA fragments were then sequenced which allows the precise determination of the T-DNA/transposon insertion point relative to the target gene. Insertion events within the coding or intervening sequence of the genes were deconvoluted from a pool comprising a plurality of insertion events to a single unique mutant plant for functional characterization. The method is described in more detail in Yu and Adam, US Application Serial No. 09/177,733 filed October 23, 1998.

Example VII: Identification of Modified Phenotypes in Overexpression or Gene Knockout Plants

Experiments were performed to identify those transformants or knockouts that exhibited modified biochemical characteristics. Among the biochemicals that were assayed were insoluble sugars, such as arabinose, fucose, galactose, mannose, rhamnose or xylose or the like; prenyl lipids, such as lutein, beta-carotene, xanthophyll-1, xanthophyll-2, chlorophylls A or B, or alpha-, delta- or gammatocopherol or the like; fatty acids, such as 16:0 (palmitic acid), 16:1 (palmitoleic acid), 18:0 (stearic acid), 18:1 (oleic acid), 18:2 (linoleic acid), 20:0, 18:3 (linolenic acid), 20:1 (eicosenoic acid), 20:2, 22:1 (erucic acid) or the like; waxes, such as by altering the levels of C29, C31, or C33 alkanes; sterols, such as brassicasterol, campesterol, stigmasterol, sitosterol or stigmastanol or the like, glucosinolates, protein or oil levels.

Fatty acids were measured using two methods depending on whether the tissue was from feaves or seeds. For leaves, lipids were extracted and esterified with hot methanolic H₂SO₄ and partitioned into hexane from methanolic brine. For seed fatty acids, seeds were pulverized and extracted in methanol:heptane:toluene:2,2-dimethoxypropane:H₂SO₄ (39:34:20:5:2) for 90 minutes at 80°C. After cooling to room temperature the upper phase, containing the seed fatty acid esters, was subjected to GC analysis. Fatty acid esters from both seed and leaf tissues were analyzed with a Supelco SP-2330 column.

Glucosinolates were purified from seeds or leaves by first heating the tissue at 95°C for 10 minutes. Preheated ethanol:water (50:50) is and after heating at 95°C for a further 10 minutes, the extraction solvent is applied to a DEAE Sephadex column which had been previously equilibrated with 0.5 M pyridine acetate.

Desulfoglucosinolates were eluted with 300 ul water and analyzed by reverse phase HPLC monitoring at 226 nm.

For wax alkanes, samples were extracted using an identical method as fatty acids and extracts were analyzed on a HP 5890 GC coupled with a 5973 MSD. Samples were chromatographically isolated on a J&W DB35 mass spectrometer (J&W Scientific).

To measure prenyl lipids levels, seeds or leaves were pulverized with 1 to 2% pyrogallol as an antioxidant. For seeds, extracted samples were filtered and a portion removed for tocopherol and carotenoid/chlorophyll analysis by HPLC. The remaining material was saponified for sterol determination. For leaves, an aliquot was removed and diluted with methanol and chlorophyll A, chlorophyll B, and total carotenoids measured by spectrophotometry by determining optical absorbance at 665.2 nm, 652.5 nm, and 470 nm. An aliquot was removed for tocopherol and carotenoid/chlorophyll composition by HPLC using a Waters uBondapak C18 column (4.6 mm x 150 mm). The remaining methanolic solution was saponified with 10% KOH at 80°C for one hour. The samples were cooled and diluted with a mixture of methanol and water. A solution of 2% methylene chloride in hexane was mixed in and the samples were centrifuged. The aqueous methanol phase was again reextracted 2% methylene chloride in hexane and, after centrifugation, the two upper phases were combined and evaporated. 2% methylene chloride in hexane was added to the tubes and the samples were then extracted with one ml of water. The upper phase was removed, dried, and resuspended in 400 ul of 2% methylene chloride in hexane and analyzed by gas chromatography using a 50 m DB-5ms (0.25 mm ID, 0.25 um phase, J&W Scientific).

Insoluble sugar levels were measured by the method essentially described by Reiter et al., (1997) <u>Plant Journal</u> 12:335-345. This method analyzes the neutral sugar composition of cell wall polymers found in *Arabidopsis* leaves. Soluble sugars were

separated from sugar polymers by extracting leaves with hot 70% ethanol. The remaining residue containing the insoluble polysaccharides was then acid hydrolyzed with allose added as an internal standard. Sugar monomers generated by the hydrolysis were then reduced to the corresponding alditols by treatment with NaBH4, then were acetylated to generate the volatile alditol acetates which were then analyzed by GC-FID. Identity of the peaks was determined by comparing the retention times of known sugars converted to the corresponding alditol acetates with the retention times of peaks from wild-type plant extracts. Alditol acetates were analyzed on a Supelco SP-2330 capillary column (30 m x 250 um x 0.2 um) using a temperature program beginning at 180° C for 2 minutes followed by an increase to 220° C in 4 minutes. After holding at 220° C for 10 minutes, the oven temperature is increased to 240° C in 2 minutes and held at this temperature for 10 minutes and brought back to room temperature.

To identify plants with alterations in total seed oil or protein content, 150mg of seeds from T2 progeny plants were subjected to analysis by Near Infrared Reflectance Spectroscopy (NIRS) using a Foss NirSystems Model 6500 with a spinning cup transport system. NIRS is a non-destructive analytical method used to determine seed oil and protein composition. Infrared is the region of the electromagnetic spectrum located after the visible region in the direction of longer wavelengths. 'Near infrared' owns its name for being the infrared region near to the visible region of the electromagnetic spectrum. For practical purposes, near infrared comprises wavelengths between 800 and 2500 nm. NIRS is applied to organic compounds rich in O-H bonds (such as moisture, carbohydrates, and fats), C-H bonds (such as organic compounds and petroleum derivatives), and N-H bonds (such as proteins and amino acids). The NIRS analytical instruments operate by statistically correlating NIRS signals at several wavelengths with the characteristic or property intended to be measured. All biological substances contain thousands of C-H, O-H, and N-H bonds. Therefore, the exposure to near infrared radiation of a biological sample, such as a seed, results in a complex spectrum which contains qualitative and quantitative information about the physical and chemical composition of that sample.

The numerical value of a specific analyte in the sample, such as protein content or oil content, is mediated by a calibration approach known as chemometrics.

Chemometrics applies statistical methods such as multiple linear regression (MLR), partial least squares (PLS), and principle component analysis (PCA) to the spectral data and correlates them with a physical property or other factor, that property or factor is directly determined rather than the analyte concentration itself. The method first provides "wet chemistry" data of the samples required to develop the calibration.

Calibration for Arabidopsis seed oil composition was performed using accelerated solvent extraction using 1 g seed sample size and was validated against certified canola seed. A similar wet chemistry approach was performed for seed protein composition calibration.

Data obtained from NIRS analysis was analyzed statistically using a nearestneighbor (N-N) analysis. The N-N analysis allows removal of within-block spatial variability in a fairly flexible fashion which does not require prior knowledge of the pattern of variability in the chamber. Ideally, all hybrids are grown under identical experimental conditions within a block (rep). In reality, even in many block designs, significant within-block variability exists. Nearest-neighbor procedures are based on assumption that environmental effect of a plot is closely related to that of its neighbors. Nearest-neighbor methods use information from adjacent plots to adjust for within-block heterogeneity and so provide more precise estimates of treatment means and differences. If there is within-plot heterogeneity on a spatial scale that is larger than a single plot and smaller than the entire block, then yields from adjacent plots will be positively correlated. Information from neighboring plots can be used to reduce or remove the unwanted effect of the spatial heterogeneity, and hence improve the estimate of the treatment effect. Data from neighboring plots can also be used to reduce the influence of competition between adjacent plots. The Papadakis N-N analysis can be used with designs to remove within-block variability that would not be removed with the standard split plot analysis (Papadakis, 1973, Inst. d'Amelior. Plantes Thessaloniki (Greece) Bull. Scientif., No. 23; Papadakis, 1984, Proc. Acad. Athens, 59, 326-342).

Experiments were performed to identify those transformants or knockouts that exhibited an improved pathogen tolerance. For such studies, the transformants were exposed to biotropic fungal pathogens, such as *Erysiphe orontii*, and necrotropic

fungal pathogens, such as Fusarium oxysporum. Fusarium oxysporum isolates cause vascular wilts and damping off of various annual vegetables, perennials and weeds (Mauch-Mani and Slusarenko (1994) Molecular Plant-Microbe Interactions 7: 378-383). For Fusarium oxysporum experiments, plants grown on Petri dishes were sprayed with a fresh spore suspension of F. oxysporum. The spore suspension was prepared as follows: A plug of fungal hyphae from a plate culture was placed on a fresh potato dextrose agar plate and allowed to spread for one week. 5 ml sterile water was then added to the plate, swirled, and pipetted into 50 ml Armstrong Fusarium medium. Spores were grown overnight in Fusarium medium and then sprayed onto plants using a Preval paint sprayer. Plant tissue was harvested and frozen in liquid nitrogen 48 hours post infection.

Erysiphe orontii is a causal agent of powdery mildew. For Erysiphe orontii experiments, plants were grown approximately 4 weeks in a greenhouse under 12 hour light (20°C, ~30% relative humidity (rh)). Individual leaves were infected with E. orontii spores from infected plants using a camel's hair brush, and the plants were transferred to a Percival growth chamber (20°C, 80% rh.). Plant tissue was harvested and frozen in liquid nitrogen 7 days post infection.

Botrytis cinerea is a necrotrophic pathogen. Botrytis cinerea was grown on potato dextrose agar in the light. A spore culture was made by spreading 10 ml of sterile water on the fungus plate, swirling and transferring spores to 10 ml of sterile water. The spore inoculum (approx. 105 spores/ml) was used to spray 10 day-old seedlings grown under sterile conditions on MS (minus sucrose) media. Symptoms were evaluated every day up to approximately 1 week.

Infection with bacterial pathogens Pseudomonas syringae pv maculicola (Psm) strain 4326 and pv maculicola strain 4326 was performed by hand inoculation at two doses. Two inoculation doses allows the differentiation between plants with enhanced susceptibility and plants with enhanced resistance to the pathogen. Plants were grown for 3 weeks in the greenhouse, then transferred to the growth chamber for the remainder of their growth. Psm ES4326 was hand inoculated with 1 ml syringe on 3 fully-expanded leaves per plant (4 1/2 wk old), using at least 9 plants per overexpressing line at two inoculation doses, OD=0.005 and OD=0.0005. Disease

scoring occurred at day 3 post-inoculation with pictures of the plants and leaves taken in parallel.

In some instances, expression patterns of the pathogen-induced genes (such as defense genes) was monitored by microarray experiments. cDNAs were generated by PCR and resuspended at a final concentration of ~ 100 ng/ul in 3X SSC or 150mM Na-phosphate (Eisen and Brown (1999) *Methods Enzymol.* 303:179-205). The cDNAs were spotted on microscope glass slides coated with polylysine. The prepared cDNAs were aliquoted into 384 well plates and spotted on the slides using an x-y-z gantry (OmniGrid) purchased from GeneMachines (Menlo Park, CA) outfitted with quill type pins purchased from Telechem International (Sunnyvale, CA). After spotting, the arrays were cured for a minimum of one week at room temperature, rehydrated and blocked following the protocol recommended by Eisen and Brown (1999; supra).

Sample total RNA (10 ug) samples were labeled using fluorescent Cy3 and Cy5 dyes. Labeled samples were resuspended in 4X SSC/0.03% SDS/4 ug salmon sperm DNA/2 ug tRNA/ 50mM Na-pyrophosphate, heated for 95°C for 2.5 minutes, spun down and placed on the array. The array was then covered with a glass coverslip and placed in a sealed chamber. The chamber was then kept in a water bath at 62°C overnight. The arrays were washed as described in Eisen and Brown (1999) and scanned on a General Scanning 3000 laser scanner. The resulting files are subsequently quantified using Imagene, a software purchased from BioDiscovery (Los Angeles, CA).

Experiments were performed to identify those transformants or knockouts that exhibited an improved environmental stress tolerance. For such studies, the transformants were exposed to a variety of environmental stresses. Plants were exposed to chilling stress (6 hour exposure to 4-8° C), heat stress (6 hour exposure to 32-37° C), high salt stress (6 hour exposure to 200 mM NaCl), drought stress (168 hours after removing water from trays), osmotic stress (6 hour exposure to 3 M mannitol), or nutrient limitation (nitrogen, phosphate, and potassium) (Nitrogen: all components of MS medium remained constant except N was reduced to 20 mg/l of NH₄NO₃, or Phosphate: All components of MS medium except KH₂PO₄, which was

replaced by K₂SO₄, Potassium: All components of MS medium except removal of KNO₃ and KH₂PO₄, which were replaced by NaH₄PO₄).

Experiments were performed to identify those transformants or knockouts that exhibited a modified structure and development characteristics. For such studies, the transformants were observed by eye to identify novel structural or developmental characteristics associated with the ectopic expression of the polynucleotides or polypeptides of the invention.

Experiments were performed to identify those transformants or knockouts that exhibited modified sugar-sensing. For such studies, seeds from transformants were germinated on media containing 5% glucose or 9.4% sucrose which normally partially restrict hypocotyl elongation. Plants with altered sugar sensing may have either longer or shorter hypocotyls than normal plants when grown on this media. Additionally, other plant traits may be varied such as root mass.

Flowering time was measured by the number of rosette leaves present when a visible inflorescence of approximately 3 cm is apparent Rosette and total leaf number on the progeny stem are tightly correlated with the timing of flowering (Koornneef et al (1991) *Mol. Gen. Genet* 229:57-66. The vernalization response was measured. For vernalization treatments, seeds were sown to MS agar plates, sealed with micropore tape, and placed in a 4°C cold room with low light levels for 6-8 weeks. The plates were then transferred to the growth rooms alongside plates containing freshly sown non-vernalized controls. Rosette leaves were counted when a visible inflorescence of approximately 3 cm was apparent.

Modified phenotypes observed for particular overexpressor or knockout plants are provided in Table 4. For a particular overexpressor that shows a less beneficial characteristic, it may be more useful to select a plant with a decreased expression of the particular transcription factor. For a particular knockout that shows a less beneficial characteristic, it may be more useful to select a plant with an increased expression of the particular transcription factor.

The sequences of the Sequence Listing or those in Tables 4, 5 or those disclosed here can be used to prepare transgenic plants and plants with altered traits. The specific transgenic plants listed below are produced from the sequences of the Sequence Listing, as noted. Table 4 provides exemplary polynucleotide and polypeptide sequences of the invention. Table 4 includes, from left to right for each sequence: the first column shows the polynucleotide SEQ ID NO; the second column shows the Mendel Gene ID No., GID; the third column shows the trait(s) resulting from the knock out or overexpression of the polynucleotide in the transgenic plant; the fourth column shows the category of the trait; the fifth column shows the transcription factor family to which the polynucleotide belongs; the sixth column ("Comment"), includes specific effects and utilities conferred by the polynucleotide of the first column; the seventh column shows the SEQ ID NO of the polypeptide encoded by the polynucleotide; and the eighth column shows the amino acid residue positions of the conserved domain in amino acid (AA) co-ordinates.

Seed of plants overexpressing sequences G265 (SEQ ID NOs:871 and 872), G715 (SEQ ID NOs:925 and 926), G1471 (SEQ ID NOs:311 and 312), G1793 (SEQ ID NOs:365 and 366), G1838 (SEQ ID NOs:381 and 382), G1902 (SEQ ID NOs:405 and 406), G286 (SEQ ID NOs:877 and 878), G2138 (SEQ ID NOs:865 and 866) and G2830 (SEQ ID NOs:875 and 876) was subjected to NIR analysis and a significant increase in seed oil content compared with seed from control plants was identified.

G192: G192 (SEQ ID NO: 859) was expressed in all plant tissues and under all conditions examined. Its expression was slightly induced upon infection by Fusarium. G192 was analyzed using transgenic plants in which this gene was expressed under the control of the 35S promoter. G192 overexpressors were late flowering under 12 hour light and had more leaves than control plants. This phenotype was manifested in the three T2 lines analyzed. Results of one experiment suggest that G192 overexpressor was more susceptible to infection with a moderate dose of the fungal pathogen Erysiphe orontii. The decrease in seed oil observed for one line was replicated in an independent experiment. G192 overexpression delayed flowering. A wide variety of applications exist for systems that either lengthen or shorten the time to flowering, or for systems of inducible flowering time control. In particular, in species where the vegetative parts of the plants constitute the crop and

the reproductive tissues are discarded, it will be advantageous to delay or prevent flowering. Extending vegetative development can bring about large increases in yields. G192 can be used to manipulate the defense response in order to generate pathogen-resistant plants. G192 can be used to manipulate seed oil content, which can be of nutritional value.

Closely Related Genes from Other Species

G192 had some similarity within the conserved WRKY domain to non-Arabidopsis plant proteins.

G1946: G1946 (SEQ ID NO: 801) was studied using transgenic plants in which the gene was expressed under the control of the 35S promoter. Overexpression of G1946 resulted in accelerated flowering, with 35S::G1946 transformants producing flower buds up to a week earlier than wild-type controls (24hour light conditions). These effects were seen in 12/20 primary transformants and in two independent plantings of each of the three T2 lines. Unlike many early flowering Arabidopsis transgenic lines, which are dwarfed, 35S::G1946 transformants often reached full-size at maturity, and produced large quantities of seeds, although the plants were slightly pale in coloration and had slightly flat leaves compared to wildtype. In addition, 35S::G1946 plants showed an altered response to phosphate deprivation. Seedlings of G1946 overexpressor plants showed more secondary root growth on phosphate-free media, when compared to wild-type control. In a repeat experiment, all three lines showed the phenotype. Overexpression of G1946 in Arabidopsis also resulted in an increase in seed glucosinolate M39501 in T2 lines land 3. An increase in seed oil and a decrease in seed protein was also observed in these two lines. G1946 was ubiquitously expressed, and does not appear to be significantly induced or repressed by any of the biotic and abiotic stress conditions tested at this time, with the exception of cold, which repressed G1946 expression. G1946 can be used to modify flowering time, as well as to improve the plant's performance in conditions of limited phosphate, and to alter seed oil, protein, and glucosinolate composition.

Closely Related Genes from Other Species

A comparison of the amino acid sequence of G1946 with sequences available from GenBank showed strong similarity with plant HSFs of several species (Lycopersicon peruvianum, Medicago truncatula, Lycopersicon esculentum, Glycine max, Solanum tuberosum, Oryza sativa and Hordeum vulgare subsp. vulgare).

G375: The sequence of G375 (SEQ ID NO:239) was experimentally determined and G375 was analyzed using transgenic plants in which G375 was expressed under the control of the 35S promoter. Overexpression of G375 produced marked effects on leaf development. At early stages of growth, 35S::G375 seedlings developed narrow, upward pointing leaves with long petioles (possibly indicating a disruption in circadian-clock controlled processes or nyctinastic movements). Additionally, some seedlings were noted to have elongated hypocotyls, and some were rather small compared to wild-type controls. Comparable phenotypes were obtained by overexpression of an AP2 family gene, G2113 (SEQ ID NO: 85). Following the switch to flowering, 35S::G375 plants showed reduced fertility, which possibly arose from a failure of stamens to fully elongate. One of the three T2 lines, (#41) was later flowering than wild-type controls, and also developed large numbers of small secondary rosette leaves in the axils of the primary rosette. Although these effects were not noted in the other two lines, the phenotypes obtained in line 41 were somewhat similar to those produced by overexpression of another Z-dof gene, G736 (SEQ ID NO: 211). G375 was expressed in all tissues, although at different levels. It was expressed at low levels in the root and germinating seed, and expressed at high levels in the embryo. The effects of G375 on leaf architecture are of potential interest to the ornamental horticulture industry.

Closely Related Genes from Other Species

G375 showed some homology to non-Arabidopsis plant proteins within the conserved Dof domain.

G1255: The sequence of G1255 (SEQ ID NO: 273) was experimentally determined and G1255 was analyzed using transgenic plants in which G1255 was expressed under the control of the 35S promoter. Plants overexpressing G1255 had

WO 03/013227 PCT/US02/25805...

alterations in leaf architecture, a reduction in apical dominance, an increase in seed size, and showed more disease symptoms following inoculation with a low dose of the fungal pathogen Botrytis cinerea. G1255 was constitutively expressed and not significantly induced by any conditions tested. On the basis of the phenotypes produced by overexpression of G1255, G1255 can be used to manipulate the plant's defense response to produce pathogen resistance, alter plant architecture, or alter seed size.

Closely Related Genes from Other Species

G1255 showed strong homology to a putative rice zing finger protein represented by sequence AC087181_3. Sequence identity between these two protein extended beyond the conserved domain, and therefore, these genes can be orthologs.

G865: The complete cDNA sequence of G865 (SEQ ID NO: 557) was determined. G865 was ubiquitously expressed in Arabidopsis tissues. G865 was analyzed using transgenic plants in which G865 was expressed under the control of the 35S promoter. Plants overexpressing G865 were early flowering, with numerous secondary inflorescence meristems giving them a bushy appearance. G865 overexpressors were more susceptible to infection with a moderate dose of the fungal pathogens Erysiphe orontii and Botrytis cinerea. In addition, seeds from G865 overexpressing plants showed a trend of increased protein and reduced oil content, although the observed changes were not beyond the criteria used for judging significance except in one line. G865 can be used to control flowering time. G865 can be used to manipulate the defense response in order to generate pathogen-resistant plants. G865 can be used to alter seed oil and protein content of a plant.

Closely Related Genes from Other Species

G865 and other non-Arabidopsis AP2/EREBP proteins were similar within the conserved AP2 domain.

G2509: G2509 (SEQ ID NO: 23) was studied using transgenic plants in which the gene was expressed under the control of the 35S promoter. Overexpression of G2509 caused multiple alterations in plant growth and development, most notably, altered branching patterns, and a reduction in apical dominance, giving the plants a

shorter, more bushy stature than wild type. Twenty 35S::G2509 primary transformants were examined; at early stages of rosette development, these plants displayed a wild-type phenotype. However, at the switch to flowering, almost all T1 lines showed a marked loss of apical dominance and large numbers of secondary shoots developed from axils of primary rosette leaves. In the most extreme cases, the shoots had very short internodes, giving the inflorescence a very bushy appearance. Such shoots were often very thin and flowers were relatively small and poorly fertile. At later stages, many plants appeared very small and had a low seed yield compared to wild type. In addition to the effects on branching, a substantial number of 35S::G2509 primary transformants also flowered early and had buds visible several days prior to wild type. Similar effects on inflorescence development were noted in each of three T2 populations examined. The branching and plant architecture phenotypes observed in 35S::G2509 lines resemble phenotypes observed for three other AP2/EREBP genes: G865 (SEQ ID NO: 557), G1411 (SEQ ID NO: 3), and G1794 (SEQ ID NO: 13). G2509, G865, and G1411 form a small clade within the large AP2/EREBP family, and G1794, although not belonging to the clade, is one of the AP2/EREBP genes closest to it in the phylogenetic tree. It is thus likely that all these genes share a related function, such as affecting hormone balance. Overexpression of G2509 in Arabidopsis resulted in an increase in alpha-tocopherol in seeds in T2 lines 5 and 11. G2509 was ubiquitously expressed in Arabidopsis plant tissue. G2509 expression levels were altered by a variety of environmental or physiological conditions. G2509 can be used to manipulate plant architecture and development. G2509 can be used to alter tocopherol composition. Tocopherols have anti-oxidant and vitamin E activity. G2509 can be useful in altering flowering time. A wide variety of applications exist for systems that either lengthen or shorten the time to flowering.

Closely Related Genes from Other Species

G2509 showed some sequence similarity with known genes from other plant species within the conserved AP2/EREBP domain.

G2347: G2347 (SEQ ID NO: 1119) was analyzed using transgenic plants in which G2347 was expressed under the control of the 35S promoter. Overexpression of G2347 markedly reduced the time to flowering in Arabidopsis. This phenotype

was apparent in the majority of primary transformants and in all plants from two out of the three T2 lines examined. Under continuous light conditions, 35S::G2347 plants formed flower buds up a week earlier than wild type. Many of the plants were rather small and spindly compared to controls. To demonstrate that overexpression of G2347 could induce flowering under less inductive photoperiods, two T2 lines were re-grown in 12 hour conditions; again, all plants from both lines bolted early, with some initiating flower buds up to two weeks sooner than wild-type. As determined by RT-PCR, G2347 was highly expressed in rosette leaves and flowers, and to much lower levels in embryos and siliques. No expression of G2347 was detected in the other tissues tested. G2347 expression was repressed by cold, and by auxin treatments and by infection by Erysiphe. G2347 is also highly similar to the Arabidopsis protein G2010 (SEQ ID NO: 1121). The level of homology between these two proteins suggested they could have similar, overlapping, or redundant functions in Arabidopsis. In support of this hypothesis, overexpression of both G2010 and G2347 resulted in early flowering phenotypes in transgenic plants.

Closely Related Genes from Other Species

The closest relative to G2347 is the Antirrhinum protein, SBP2 (CAA63061). The similarity between these two proteins is extensive enough to suggest they might have similar functions in a plant.

G988: G988 (SEQ ID NO: 43) was analyzed using transgenic plants in which G988 was expressed under the control of the 35S promoter. Plants overexpressing G988 had multiple morphological phenotypes. The transgenic plants were generally smaller than wild-type plants, had altered leaf, inflorescence and flower development, altered plant architecture, and altered vasculature. In one transgenic line overexpressing G988 (line 23), an increase in the seed glucosinolate M39489 was observed. The phenotype of plants overexpressing G988 was wild-type in all other assays performed. In wild-type plants, G988 was expressed primarily in flower and silique tissue, but was also present at detectable levels in all other tissues tested. Expression of G988 was induced in response to heat treatment, and repressed in response to infection with Erysiphe. Based on the observed morphological phenotypes of the transgenic plants, G988 can be used to create plants with larger flowers. This can have value in the ornamental horticulture industry. The reduction

in the formation of lateral branches suggests that G988 can have utility on the forestry industry. The Arabidopsis plants overexpressing G988 also had reduced fertility. This can be a desirable trait in some instances, as it can be exploited to prevent or minimize the escape of GMO (genetically modified organism) pollen into the environment.

Closely Related Genes from Other Species

The amino acid sequence for the Capsella rubella hypothetical protein represented by GenBank accession number CRU303349 was significantly identical to G988 outside of the SCR conserved domains. The Capsella rubella hypothetical protein is 90% identical to G988 over a stretch of roughly 450 amino acids. Therefore, it is likely that the Capsella rubella gene is an ortholog of G988.

G2346: G2346 (SEQ ID NO: 459) was analyzed using transgenic plants in which the gene was expressed under the control of the 35S promoter. 35S::G2346 seedlings from all three T2 populations had slightly larger cotyledons and appeared somewhat more advanced than controls. This indicated that the seedlings developed more rapidly that the control plants. At later stages, however, G2346 overexpressing plants showed no consistent differences from control plants. The phenotype of these transgenic plants was wild-type in all other assays performed. According to RT-PCR analysis, G2346 is expressed ubiquitously.

Closely Related Genes from Other Species

G2346 shows some sequence similarity with known genes from other plant species within the conserved SBP domain.

G1354: The complete sequence of G1354 (SEQ ID NO: 285) was determined. G1354 was analyzed using transgenic plants in which G1354 was expressed under the control of the 35S promoter. Overexpression of G1354 produced highly deleterious effects on growth and development. Only three 35S::G1354 T1 plants were obtained; all were extremely tiny and slow developing. After three weeks of growth, each of the plants comprised a completely disorganized mass of leaves and root that had no clear axis of growth. Since these individuals would not have survived transplantation to soil, they were harvested for RT-PCR analysis; all three plants showed moderate

levels of G1354 overexpression compared to whole wild-type seedlings of an equivalent size. Only a very small number of transformants were obtained from two selection attempts on separate batches of T0 seed. Usually between 15 and 120 transformants are obtained from each aliquot of 300 mg T0 seed from wild-type plants. The low transformation frequency obtained in this experiment suggests that high levels of G1354 overexpression might have completely lethal effects and prevent transformed seeds from germinating. As determined by RT-PCR, G1354 was uniformly expressed in all tissues and under all conditions tested in RT-PCR. However, the gene was repressed in leaf tissue in response to Erysiphe infection.

Closely Related Genes from Other Species

G1354 is closely related to a NAM protein encoded by polynucleotide from rice (AC005310). Similarity between G1354 and this rice protein extends beyond the signature motif of the family to a level that would suggest the genes are orthologs.

G1063: G1063 (SEQ ID NO: 119) is a member of a clade of highly related HLH/MYC proteins that also includes G779 (SEQ ID NO: 113), G1499 (SEQ ID NO: 7), G2143 (SEQ ID NO: 129), and G2557 (SEQ ID NO: 133). All of these genes caused similar pleiotropic phenotypic effects when overexpressed, the most striking of which was the production of ectopic carpelloid tissue. These genes can be considered key regulators of carpel development. A spectrum of developmental alterations was observed amongst 35S::G1063 primary transformants and the majority were markedly small, dark green, and had narrow curled leaves. The most severely affected individuals were completely sterile and formed highly abnormal inflorescences; shoots often terminated in pin-like structures, and flowers were replaced by filamentous carpelloid structures. In other cases, flowers showed internode elongation between floral whorls, with a central carpel protruding on a pedicel-like organ. Additionally, lateral branches sometimes failed to develop and tiny patches of carpelloid tissue formed at axillary nodes of the inflorescence. In lines with an intermediate phenotype, flowers contained defined whorls of organs, but sepals were converted to carpelloid structures or displayed patches of carpelloid tissue. In contrast, lines with a weak phenotype developed relatively normal flowers and produced a reasonable quantity of seed. Such plants were still distinctly smaller than wild-type controls. Since the strongest 35S::G1063 lines were sterile, three lines

with a relatively weak phenotype, that had produced sufficient seed for biochemical and physiological analysis, were selected for further study. Two of the T2 populations (T2-28,37) were clearly small, darker green and possessed narrow leaves compared to wild type. Plants from one of these populations (T2-28) also produced occasional branches with abnormal flowers like those seen in the T1. The final T2 population (T2-30) displayed a very mild phenotype. Overexpression of G1063 in Arabidopsis resulted in a decrease in seed oil content in T2 lines 28 and 37. No altered phenotypes were detected in any of the physiological assays, except that the plants were noted to be somewhat small and produce anthocyanin when grown in Petri plates. G1063 was expressed at low to moderate levels in roots, flowers, rosette leaves, embryos, and germinating seeds, but was not detected in shoots or siliques. It was induced by auxin. G1063 can be used to manipulate flower form and structure or plant fertility. One application for manipulation of flower structure can be in the production of saffron, which is derived from the stigmas of Crocus sativus. G1063 has utility in manipulating seed oil and protein content.

Closely Related Genes from Other Species

G1063 protein shared extensive homology in the basic helix loop helix region with a protein sequence encoded by Glycine max cDNA clone (AW832545) as well as a tomato root, plants pre-anthesis Lycopersicon sculentum cDNA (BE451174).

G2143: G2143 (SEQ ID NO: 129) is a member of a clade of highly related HLH/MYC proteins that also includes G779 (SEQ ID NO: 113), G1063 (SEQ ID NO: 119), G1499 (SEQ ID NO: 7), and G2557 (SEQ ID NO: 133). All of these genes caused similar pleiotropic phenotypic effects when overexpressed, the most striking of which was the production of ectopic carpelloid tissue. These genes can be considered key regulators of carpel development. Twelve out of twenty 35S::G2143 T1 lines showed a very severe phenotype; these plants were markedly small and had narrow, curled, dark-green leaves. Such individuals were completely sterile and formed highly abnormal inflorescences; shoots often terminated in pin-like structures, and flowers were replaced by filamentous carpelloid structures, or a fused mass of carpelloid tissue. Furthermore, lateral branches usually failed to develop, and tiny patches of stigmatic tissue often formed at axillary nodes of the inflorescence. Strongly affected plants displayed the highest levels of transgene expression

(determined by RT-PCR). The remaining T1 lines showed lower levels of G2143 overexpression; these plants were still distinctly smaller than wild type, but had relatively normal inflorescences and produced seed. Since the strongest 35S::G2143 lines were sterile, three lines with a relatively weak phenotype, that had produced sufficient seed for biochemical analysis, were selected for further study. T2-11 plants displayed a very mild phenotype and had somewhat small, narrow, dark green leaves. The other two T2 populations, however, appeared wild-type, suggesting that transgene activity might have been reduced between the generations. Reduced seedling vigor was noted in the physiological assays. G2143 expression was detected at low levels in flowers and siliques, and at higher levels in germinating seed. G2143 can be used to manipulate flower form and structure or plant fertility. One application for manipulation of flower structure can be in the production of saffron, which is derived from the stigmas of Crocus sativus.

Closely Related Genes from Other Species

G2143 protein shared extensive homology in the basic helix loop helix region with a protein encoded by Glycine max cDNA clones (AW832545, BG726819 and BG154493) and a Lycopersicon esculentum cDNA clone (BE451174). There was lower homology outside of the region.

G2557: G2557 (SEQ ID NO: 133) is a member of a clade of highly related HLH/MYC proteins that also includes G779 (SEQ ID NO: 113), G1063 (SEQ ID NO: 119), G1499 (SEQ ID NO: 7), and G2143 (SEQ ID NO: 129). All of these genes caused similar pleiotropic phenotypic effects when overexpressed, the most striking of which was the production of ectopic carpelloid tissue. These genes can be considered key regulators of carpel development. The flowers of 35S::G2557 primary transformants displayed patches of stigmatic papillae on the sepals, and often had rather narrow petals and poorly developed stamens. Additionally, carpels were also occasionally held outside of the flower at the end of an elongated pedicel like structure. As a result of such defects, 35S::G2557 plants often showed very poor fertility and formed small wrinkled siliques. In addition to such floral abnormalities, the majority of primary transformants were also small and darker green in coloration than wild type. Approximately one third of the T1 plants were extremely tiny and completely sterile. Three T1 lines (#7,9,12), that had produced some seeds, and

showed a relatively weak phenotype, were chosen for further study. All three of the T2 populations from these lines contained plants that were distinctly small, had abnormal flowers, and were poorly fertile compared to controls. Stigmatic tissue was not noted on the sepals of plants from these three T2 lines. Another line (#4) that had shown a moderately strong phenotype in the T1 was sown for only morphological analysis in the T2 generation. T2-4 plants were small, dark green, and produced abnormal flowers with ectopic stigmatic tissue on the sepals, as had been seen in the parental plant. G2557 expression was detected at low to moderate levels in all tissues tested except shoots. It was induced by cold, heat, and salt, and repressed by pathogen infection. G1063 can be used to manipulate flower form and structure or plant fertility. One application for manipulation of flower structure can be in the production of saffron, which is derived from the stigmas of Crocus sativus.

Closely Related Genes from Other Species

G2557 protein shows extensive sequence similarity in the region of basic helix loop helix with a protein encoded by Glycine max cDNA clone (BE347811).

G2430: The complete sequence of G2430 (SEQ ID NO: 697) was determined. G2430 is a member of the response regulator class of GARP proteins (ARR genes), although one of the two conserved aspartate residues characteristic of response regulators is not present. The second aspartate, the putative phosphorylated site, is retained so G2430 can have response regulator function. G2430 is specifically expressed in embryo and silique tissue. In morphological analyses, plants overexpressing G2430 showed more rapid growth than control plants at early stages, and in two of three lines examined produced large, flat leaves. Early flowering was observed for some lines, but this effect was inconsistent between plantings. G2430 can regulate plant growth. Overexpression of G2430 in Arabidopsis also resulted in seedlings that are slightly more tolerant to heat in a germination assay. Seedlings from G2430 overexpressing transgenic plants were slightly greener than the control seedlings under high temperature conditions. In a repeat experiment on individual lines, G2430 line 15 showed the strongest heat tolerant phenotype. G2430 can be useful to promote faster development and reproduction in plants.

Closely Related Genes from Other Species

G2430 had some similarity within of the conserved GARP and responseregulator domains to non-Arabidopsis proteins.

G1478: The sequence of G1478 (SEQ ID NO: 831) was determined and G1478 was analyzed using transgenic plants in which G1478 was expressed under the control of the 35S promoter. Plants overexpressing G1478 had a general delay in progression through the life cycle, in particular a delay in flowering time. G1478 is expressed at higher levels in flowers, rosettes and embryos but otherwise expression is constitutive. Based on the phenotypes produced through G1478 overexpression, G1478 can be used to manipulate the rate at which plants grow, and flowering time.

Closely Related Genes from Other Species

G1478 shows some homology to non-Arabidopsis proteins within the conserved domain.

G681: G681 (SEQ ID NO: 579) was analyzed using transgenic plants in which the gene was expressed under the control of the 35S promoter. Approximately half of the 35S::G681 primary transformants were markedly small and formed narrow leaves compared to controls. These plants often produced thin inflorescence stems, had rather poorly formed flowers with low pollen production, and set few seeds. Three T1 lines with relatively weak phenotypes, which had produced reasonable quantities of seed, were selected for further study. Plants from one of the T2 populations were noted to be slightly small, but otherwise the T2 lines displayed no consistent differences in morphology from controls. In leaves of two of the T2 lines, overexpression of G681 resulted in an increase in the percentage of the glucosinolate M39480. According to RT-PCR analysis, G681 expression was detected at very low levels in flower and rosette leaf tissues. G681 was induced by drought stress. G681 can be used to alter glucosinolate composition in plants. Increases or decreases in specific glucosinolates or total glucosinolate content are desirable depending upon the particular application. For example: (1) Glucosinolates are undesirable components of the oilseeds used in animal feed, since they produce toxic effects. Lowglucosinolate varieties of canola have been developed to combat this problem. (2) Some glucosinolates have anti-cancer activity; thus, increasing the levels or

composition of these compounds might be of interest from a nutraceutical standpoint.

(3) Glucosinolates form part of a plants natural defense against insects. Modification of glucosinolate composition or quantity could therefore afford increased protection from predators. Furthermore, in edible crops, tissue specific promoters can be used to ensure that these compounds accumulate specifically in tissues, such as the epidermis, which are not taken for consumption.

Closely Related Genes from Other Species

G681 shows some sequence similarity with known genes from other plant species within the conserved Myb domain.

G878: G878 (SEQ ID NO: 611) was studied using transgenic plants in which the gene was expressed under the control of the 35S promoter. Analysis of primary transformants revealed that overexpression of G878 delays the onset of flowering in Arabidopsis. 11/20 of the 35S::G878 T1 plants flowered approximately one week later than wild type under continuous light conditions. These plants were also darker green, had shorter stems, and senesced later than controls. G878 was ubiquitously expressed. G878 can be used to modify flowering time and senescence, and a wide variety of applications exist for systems that either lengthen or shorten the time to flowering.

Closely Related Genes from Other Species

G878 was highly related to other WRKY proteins from a variety of plant species, such as the Nicotiana tabacum DNA-binding protein 2 (WRKY2) (AF096299), and a Cucumis sativus SPF1-like DNA-binding protein (L44134).

G374: G374 (SEQ ID NO: 47) was expressed at low levels throughout the plant and was induced by salicylic acid. G374 was investigated using lines carrying a T-DNA insertion in this gene. The T-DNA insertion was approximately three quarters of the way into the protein coding sequence and should result in a null mutation. Homozygosity for a T-DNA insertion within G374 caused lethality at early stages of embryo development. In an initial screen for G374 knockouts, heterozygous plants were identified. Seed from those individuals was sown to soil and eleven plants were PCR-screened to identify homozygotes. No homozygotes were obtained;

6 of the progeny were heterozygous whilst the other 5 were wild type. This raised the prospect that homozygosity for the G374 insertion was lethal. To examine this possibility further, heterozygous KO.G374 plants were re-grown. These individuals looked wild type, but their siliques were examined for seed abnormalities. When green siliques were dissected, around 25% of developing seeds were white or aborted. Embryos from these siliques were cleared using Hoyers solution, and examined under the microscope. It was apparent that embryos from the white seeds had arrested at early (globular or heart) stages of development, whilst embryos from the normal seeds were fully developed. Such arrested or aborted seeds most likely represented homozygotes for the G374 insertion. To support this conclusion, seed was collected from heterozygous plants and sown to kanamycin plates (the T-DNA insertion carried the NPT marker gene). Of the seedlings that germinated, 160 were kanamycin resistant and 107 were kanamycin sensitive. These data more closely fitted a 2:1 (chisq., 1df, = 5.5, 0.05>P>0.01) than a 3:1 (chi-sq., 1df, = 32, P<0.001) ratio. Such a segregation ratio suggested that a homozygous class of kanamycin resistant seedlings was absent from the progeny of KO.G374 plant. G374 can be a herbicide target.

Closely Related Genes from Other Species

Similar sequences to G374 are present in tomato and Medicago truncatula, and these sequences can be orthologs.

Example VIII: Identification of Homologous Sequences

Homologous sequences from *Arabidopsis* and plant species other than *Arabidopsis* were identified using database sequence search tools, such as the Basic Local Alignment Search Tool (BLAST) (Altschul et al. (1990) <u>J. Mol. Biol.</u> 215:403-410; and Altschul et al. (1997) <u>Nucl. Acid Res.</u> 25: 3389-3402). The tblastx sequence analysis programs were employed using the BLOSUM-62 scoring matrix (Henikoff, S. and Henikoff, J. G. (1992) <u>Proc. Natl. Acad. Sci. USA</u> 89: 10915-10919).

Identified non-Arabidopsis sequences homologous to the *Arabidopsis* sequences are provided in Table 5. The percent sequence identity among these sequences can be as low as 47%, or even lower sequence identity. The entire NCBI GenBank database was filtered for sequences from all plants except *Arabidopsis* thaliana by selecting all entries in the NCBI GenBank database associated with NCBI

taxonomic ID 33090 (Viridiplantae; all plants) and excluding entries associated with taxonomic ID 3701 (Arabidopsis thaliana). These sequences are compared to sequences representing genes of SEQ IDs NOs:2 - 2N, where N = 2-561, using the Washington University TBLASTX algorithm (version 2.0a19MP) at the default settings using gapped alignments with the filter "off". For each gene of SEQ IDs NOs:2 - 2N, where N = 2-561, individual comparisons were ordered by probability score (P-value), where the score reflects the probability that a particular alignment occurred by chance. For example, a score of 3.6e-40 is 3.6 x 10⁻⁴⁰. In addition to Pvalues, comparisons were also scored by percentage identity. Percentage identity reflects the degree to which two segments of DNA or protein are identical over a particular length. Examples of sequences so identified are presented in Table 5. Homologous or orthologous sequences are readily identified and available in GenBank by Accession number (Table 5; Test sequence ID). The identified homologous polynucleotide and polypeptide sequences and homologues of the Arabidopsis polynucleotides and polypeptides may be orthologs of the Arabidopsis polynucleotides and polypeptides (TBD: to be determined).

Example IX Introduction of polynucleotides into dicotyledonous plants

SEQ ID NOs:1-(2N - 1), wherein N = 2-561, paralogous, orthologous, and homologous sequences recombined into pMEN20 or pMEN65 expression vectors are transformed into a plant for the purpose of modifying plant traits. The cloning vector may be introduced into a variety of cereal plants by means well-known in the art such as, for example, direct DNA transfer or Agrobacterium tumefaciens-mediated transformation. It is now routine to produce transgenic plants using most dicot plants (see Weissbach and Weissbach, (1989) supra; Gelvin et al., (1990) supra; Herrera-Estrella et al. (1983) supra; Bevan (1984) supra; and Klee (1985) supra). Methods for analysis of traits are routine in the art and examples are disclosed above.

Example X Transformation of Cereal Plants with an Expression Vector

Cereal plants such as corn, wheat, rice, sorghum or barley, may also be transformed with the present polynucleotide sequences in pMEN20 or pMEN65 expression vectors for the purpose of modifying plant traits. For example, pMEN020 may be modified to replace the NptII coding region with the BAR gene of Streptomyces hygroscopicus that confers resistance to phosphinothricin. The KpnI

and BgIII sites of the Bar gene are removed by site-directed mutagenesis with silent codon changes.

The cloning vector may be introduced into a variety of cereal plants by means well-known in the art such as, for example, direct DNA transfer or Agrobacterium tumefaciens-mediated transformation. It is now routine to produce transgenic plants of most cereal crops (Vasil, I., Plant Molec. Biol. 25: 925-937 (1994)) such as corn, wheat, rice, sorghum (Cassas, A. et al., Proc. Natl. Acad Sci USA 90: 11212-11216 (1993) and barley (Wan, Y. and Lemeaux, P. Plant Physiol. 104:37-48 (1994). DNA transfer methods such as the microprojectile can be used for corn (Fromm. et al. Bio/Technology 8: 833-839 (1990); Gordon-Kamm et al. Plant Cell 2: 603-618 (1990); Ishida, Y., Nature Biotechnology 14:745-750 (1990)), wheat (Vasil, et al. Bio/Technology 10:667-674 (1992); Vasil et al., Bio/Technology 11:1553-1558 (1993); Weeks et al., Plant Physiol. 102:1077-1084 (1993)), rice (Christou Bio/Technology 9:957-962 (1991); Hiei et al. Plant J. 6:271-282 (1994); Aldemita and Hodges, Planta 199:612-617; Hiei et al., Plant Mol Biol. 35:205-18 (1997)). For most cereal plants, embryogenic cells derived from immature scutellum tissues are the preferred cellular targets for transformation (Hiei et al., Plant Mol Biol. 35:205-18 (1997); Vasil, Plant Molec. Biol. 25: 925-937 (1994)).

Vectors according to the present invention may be transformed into corn embryogenic cells derived from immature scutellar tissue by using microprojectile bombardment, with the A188XB73 genotype as the preferred genotype (Fromm, et al., Bio/Technology 8: 833-839 (1990); Gordon-Kamm et al., Plant Cell 2: 603-618 (1990)). After microprojectile bombardment the tissues are selected on phosphinothricin to identify the transgenic embryogenic cells (Gordon-Kamm et al., Plant Cell 2: 603-618 (1990)). Transgenic plants are regenerated by standard corn regeneration techniques (Fromm, et al., Bio/Technology 8: 833-839 (1990); Gordon-Kamm et al., Plant Cell 2: 603-618 (1990)).

The plasmids prepared as described above can also be used to produce transgenic wheat and rice plants (Christou, Bio/Technology 9:957-962 (1991); Hiei et al., Plant J. 6:271-282 (1994); Aldemita and Hodges, Planta 199:612-617 (1996); Hiei et al., Plant Mol Biol. 35:205-18 (1997)) that coordinately express genes of

interest by following standard transformation protocols known to those skilled in the art for rice and wheat Vasil, et al. Bio/Technology 10:667-674 (1992); Vasil et al., Bio/Technology 11:1553-1558 (1993); Weeks et al., Plant Physiol. 102:1077-1084 (1993)), where the bar gene is used as the selectable marker.

All references, publications, patent documents, web pages, and other documents cited or mentioned herein are hereby incorporated by reference in their entirety for all purposes. Although the invention has been described with reference to specific embodiments and examples, it should be understood that one of ordinary skill can make various modifications without departing from the spirit of the invention. The scope of the invention is not limited to the specific embodiments and examples provided.

We claim:

1. A transgenic plant comprising a recombinant polynucleotide having a nucleotide sequence selected from the group consisting of:

- (a) a nucleotide sequence encoding a polypeptide comprising a sequence selected from those of SEQ ID NOs: 860, 802, 240, 274, 558, 24, 1120, 44, 460, 286, 120, 130, 134, 698, 832, 580, 612, and 48, or a complementary nucleotide sequence thereof;
- (b) a nucleotide sequence of SEQ ID NOs: 859, 801, 239, 273, 557, 23, 1119, 43, 459, 285, 119, 129, 133, 697, 831, 579, 611, 47, or a complementary nucleotide sequence thereof; and
- (c) a nucleotide sequence that hybridizes under stringent conditions to a nucleotide sequence of one or more polynucleotides of: (a) or (b).
- 2. The transgenic plant of claim 1 wherein the transgenic plant possesses an altered trait as compared to another plant, or the transgenic plant exhibits an altered phenotype as compared to another plant, or the transgenic plant expresses an altered level of one or more genes associated with a plant trait as compared to another plant, wherein the other plant does not comprise the recombinant polynucleotide.
- 3. The transgenic plant of claim 1 wherein the plant possesses an altered trait as compared to another plant wherein the trait is an alteration in one or more physical characteristics selected from the group consisting of: the number of trichomes, fruit and seed size and number, yield of stems, leaves, inflorescences, or roots, stability of seeds during storage, susceptibility of the seed to shattering, root hair length and quantity, internode distances, or the quality of seed coat.
- 4. The transgenic plant of claim 1 wherein the plant possesses an altered trait as compared to another plant wherein the trait is an alteration in a plant growth characteristic selected from the group consisting of: growth rate, germination rate of seeds, vigor of plants and seedlings, leaf and flower senescence, male sterility, apomixis, flowering time, flower abscission, rate of nitrogen uptake, osmotic sensitivity to soluble sugar concentrations, biomass or transpiration characteristics,

apical dominance, branching patterns, number of organs, organ identity, and organ shape or size.

- 5. The transgenic plant of claim 1 wherein the plant possesses an altered trait as compared to another plant wherein the trait is an alteration in one or more characteristics selected from the group consisting of protein or oil production, seed protein or oil production, insoluble sugar level, soluble sugar level, and starch composition.
- 6. The transgenic plant of claim 1, wherein the recombinant polynucleotide comprises a nucleotide sequence encoding a polypeptide of SEQ ID NO:860.
- 7. The transgenic plant of claim 1, wherein the recombinant polynucleotide comprises a nucleotide sequence encoding a polypeptide of SEQ ID NO:802.
- 8. The transgenic plant of claim 1, wherein the recombinant polynucleotide comprises a nucleotide sequence encoding a polypeptide of SEQ ID NO:240.
- 9. The transgenic plant of claim 1, wherein the recombinant polynucleotide comprises a nucleotide sequence encoding a polypeptide of SEQ ID NO:274.
- 10. The transgenic plant of claim 1, wherein the recombinant polynucleotide comprises a nucleotide sequence encoding a polypeptide of SEQ ID NO:558.
- 11. The transgenic plant of claim 1, wherein the recombinant polynucleotide comprises a nucleotide sequence encoding a polypeptide of SEQ ID NO:24.
- 12. The transgenic plant of claim 1, wherein the recombinant polynucleotide comprises a nucleotide sequence encoding a polypeptide of SEQ ID NO:1120.
- 13. The transgenic plant of claim 1, wherein the recombinant polynucleotide comprises a nucleotide sequence encoding a polypeptide of SEQ ID NO:44.

14. The transgenic plant of claim 1, wherein the recombinant polynucleotide comprises a nucleotide sequence encoding a polypeptide of SEQ ID NO:460.

- 15. The transgenic plant of claim 1, wherein the recombinant polynucleotide comprises a nucleotide sequence encoding a polypeptide of SEQ ID NO:286.
- 16. The transgenic plant of claim 1, wherein the recombinant polynucleotide comprises a nucleotide sequence encoding a polypeptide of SEQ ID NO:120.
- 17. The transgenic plant of claim 1, wherein the recombinant polynucleotide comprises a nucleotide sequence encoding a polypeptide of SEQ ID NO:130.
- 18. The transgenic plant of claim 1, wherein the recombinant polynucleotide comprises a nucleotide sequence encoding a polypeptide of SEQ ID NO:134.
- 19. The transgenic plant of claim 1, wherein the recombinant polynucleotide comprises a nucleotide sequence encoding a polypeptide of SEQ ID NO:698.
- 20. The transgenic plant of claim 1, wherein the recombinant polynucleotide comprises a nucleotide sequence encoding a polypeptide of SEQ ID NO:832.
- 21. The transgenic plant of claim 1, wherein the recombinant polynucleotide comprises a nucleotide sequence encoding a polypeptide of SEQ ID NO:580.
- 22. The transgenic plant of claim 1, wherein the recombinant polynucleotide comprises a nucleotide sequence encoding a polypeptide of SEQ ID NO:612.
- 23. The transgenic plant of claim 1, wherein the recombinant polynucleotide comprises a nucleotide sequence encoding a polypeptide of SEQ ID NO:48.
- 24. The transgenic plant of claim 1, wherein the recombinant polynucleotide comprises a nucleotide sequence of SEQ ID NO:859.

25. The transgenic plant of claim 1, wherein the recombinant polynucleotide comprises a nucleotide sequence of SEQ ID NO:801.

- 26. The transgenic plant of claim 1, wherein the recombinant polynucleotide comprises a nucleotide sequence of SEQ ID NO:239.
- 27. The transgenic plant of claim 1, wherein the recombinant polynucleotide comprises a nucleotide sequence of SEQ ID NO:273.
- 28. The transgenic plant of claim 1, wherein the recombinant polynucleotide comprises a nucleotide sequence of SEQ ID NO:557.
- 29. The transgenic plant of claim 1, wherein the recombinant polynucleotide comprises a nucleotide sequence of SEQ ID NO:23.
- 30. The transgenic plant of claim 1, wherein the recombinant polynucleotide comprises a nucleotide sequence of SEQ ID NO:1119.
- 31. The transgenic plant of claim 1, wherein the recombinant polynucleotide comprises a nucleotide sequence of SEQ ID NO:43.
- 32. The transgenic plant of claim 1, wherein the recombinant polynucleotide comprises a nucleotide sequence of SEQ ID NO:459.
- 33. The transgenic plant of claim 1, wherein the recombinant polynucleotide comprises a nucleotide sequence of SEQ ID NO:285.
- 34. The transgenic plant of claim 1, wherein the recombinant polynucleotide comprises a nucleotide sequence of SEQ ID NO:119.
- 35. The transgenic plant of claim 1, wherein the recombinant polynucleotide comprises a nucleotide sequence of SEQ ID NO:129.

36. The transgenic plant of claim 1, wherein the recombinant polynucleotide comprises a nucleotide sequence of SEQ ID NO:133.

- 37. The transgenic plant of claim 1, wherein the recombinant polynucleotide comprises a nucleotide sequence of SEQ ID NO:697.
- 38. The transgenic plant of claim 1, wherein the recombinant polynucleotide comprises a nucleotide sequence of SEQ ID NO:831.
- 39. The transgenic plant of claim 1, wherein the recombinant polynucleotide comprises a nucleotide sequence of SEQ ID NO:579.
- 40. The transgenic plant of claim 1, wherein the recombinant polynucleotide comprises a nucleotide sequence of SEQ ID NO:611.
- 41. The transgenic plant of claim 1, wherein the recombinant polynucleotide comprises a nucleotide sequence of SEQ ID NO:47.
- 42. The transgenic plant of claim 1, further comprising a constitutive, inducible, or tissue-specific promoter operably linked to said nucleotide sequence.
- 44. The transgenic plant of claim 1, wherein the plant is selected from the group consisting of: soybean, wheat, corn, potato, cotton, rice, oilseed rape, sunflower, alfalfa, sugarcane, turf, banana, blackberry, blueberry, strawberry, raspberry, cantaloupe, carrot, cauliflower, coffee, cucumber, eggplant, grapes, honeydew, lettuce, mango, melon, onion, papaya, peas, peppers, pineapple, pumpkin, spinach, squash, sweet corn, tobacco, tomato, watermelon, mint and other labiates, rosaceous fruits, and vegetable brassicas.
- 44. The transgenic plant of claim 1 wherein the encoded polypeptide is expressed and regulates transcription of a gene.

45. A method of using the transgenic plant of claim 1 to grow a progeny plant from a parent plant, the method comprising crossing the transgenic plant with another plant, selecting seed, and growing the progeny plant from the seed.

- 46. An isolated or recombinant polynucleotide comprising a nucleotide sequence selected from the group consisting of:
- (a) a nucleotide sequence encoding a polypeptide comprising a sequence selected from SEQ ID NOs: 240, 274, 558, 286, 698, and 832, or a complementary nucleotide sequence thereof;
- (b) a nucleotide sequence of SEQ ID NOs:239, 273, 557, 285, 697, 831, or a complementary nucleotide sequence thereof; and
- (c) a nucleotide sequence that hybridizes under stringent conditions to a nucleotide sequence of one or more of: (a) or (b).
- 47. The isolated or recombinant polynucleotide of claim 46, wherein the recombinant polynucleotide comprises a nucleotide sequence encoding a polypeptide of SEQ ID NO:240.
- 48. The isolated or recombinant polynucleotide of claim 46, wherein the recombinant polynucleotide comprises a nucleotide sequence encoding a polypeptide of SEQ ID NO:274.
- 49. The isolated or recombinant polynucleotide of claim 46, wherein the recombinant polynucleotide comprises a nucleotide sequence encoding a polypeptide of SEQ ID NO:558.
- 50. The isolated or recombinant polynucleotide of claim 46, wherein the recombinant polynucleotide comprises a nucleotide sequence encoding a polypeptide of SEQ ID NO:286.
- 51. The isolated or recombinant polynucleotide of claim 46, wherein the recombinant polynucleotide comprises a nucleotide sequence encoding a polypeptide of SEQ ID NO:698.

52. The isolated or recombinant polynucleotide of claim 46, wherein the recombinant polynucleotide comprises a nucleotide sequence encoding a polypeptide of SEQ ID NO:832.

- 53. The isolated or recombinant polynucleotide of claim 46, wherein the recombinant polynucleotide comprises a nucleotide sequence of SEQ ID NO:239.
- 54. The isolated or recombinant polynucleotide of claim 46, wherein the recombinant polynucleotide comprises a nucleotide sequence of SEQ ID NO:273.
- 55. The isolated or recombinant polynucleotide of claim 46, wherein the recombinant polynucleotide comprises a nucleotide sequence of SEQ ID NO:557.
- 56. The isolated or recombinant polynucleotide of claim 46, wherein the recombinant polynucleotide comprises a nucleotide sequence of SEQ ID NO:285.
- 57. The isolated or recombinant polynucleotide of claim 46, wherein the recombinant polynucleotide comprises a nucleotide sequence of SEQ ID NO:697.
- 58. The isolated or recombinant polynucleotide of claim 46, wherein the recombinant polynucleotide comprises a nucleotide sequence of SEQ ID NO:831.
- 59. The isolated or recombinant polynucleotide of claim 46, further comprising a constitutive, inducible, or tissue-specific promoter operably linked to the nucleotide sequence.
- 60. The isolated or recombinant polynucleotide of claim 46 wherein the encoded polypeptide is expressed and regulates transcription of a gene.
- 61. A vector comprising the isolated or recombinant polynucleotide of claim 46.
- 62. A host cell comprising the vector of claim 61.

63. A method of using the isolated or recombinant polynucleotide of claim 46 for producing a plant having a modified trait, the method comprising selecting a polynucleotide that encodes a polypeptide, inserting the polynucleotide into an expression vector, introducing the vector into a plant or a cell of a plant to overexpress the polypeptide, thereby producing a modified plant, and selecting a modified plant for a modified trait.

- 64. The method of claim 63 wherein the plant possesses a modified trait as compared to another plant wherein the trait is an alteration in one or more physical characteristics selected from the group consisting of: the number of trichomes, fruit and seed size and number, yield of stems, leaves, inflorescences, or roots, stability of seeds during storage, susceptibility of the seed to shattering, root hair length and quantity, internode distances, or the quality of seed coat.
- 65. The method of claim 63 wherein the plant possesses a modified as compared to another plant wherein the trait is an alteration in a plant growth characteristic selected from the group consisting of: growth rate, germination rate of seeds, vigor of plants and seedlings, leaf and flower senescence, male sterility, apomixis, flowering time, flower abscission, rate of nitrogen uptake, osmotic sensitivity to soluble sugar concentrations, biomass or transpiration characteristics, apical dominance, branching patterns, number of organs, organ identity, and organ shape or size.
- 66. The method of claim 63 wherein the plant possesses a modified trait as compared to another plant wherein the trait is an alteration in one or more characteristics selected from the group consisting of protein or oil production, seed protein or oil production, insoluble sugar level, soluble sugar level, and starch composition.
- 67. A modified plant produced by the method of claim 63.
- 68. A method of using the plant of claim 67 to grow a progeny plant from a parent plant, the method comprising crossing the transgenic plant with another plant, selecting seed, and growing the progeny plant from the seed.

69. The plant produced by the method of claim 68.

Figure 1

PCT/US02/25805 WO 03/013227

1/286

SEQUENCE LISTING

<110> Mendel Biotechnology, Inc. Ratcliffe, Oliver Riechmann, Jose Luis Adam, Luc J. Dubell, Arnold T. Heard, Jacqueline E. Pilgrim, Marsha L. Jiang, Cai-Zhong Reuber, T. Lynne Creelman, Robert A. Pineda, Omaira Yu, Guo-Liang Broun, Pierre E.

<120> YIELD-RELATED POLYNUCLEOTIDES AND POLYPEPTIDES IN PLANTS

<130> 514442002041

<150> 60/310,847

<151> 2001-08-09

<150> 60/336,049

<151> 2001-11-19

<150> 60/338,692

<151> 2001-12-11

<150> 10/171,468

<151> 2002-06-14

>G1275 (58..579)

CCAAGAAAAGGGAAGATCACGCATTCTTATAGGCGTAATTCGTAAATAGTGGTGAGTATG TTTCCGGAGCTAGACTTGTCAGATGAATGGATGATGATGATCTTGTGTCTGCGGTTTCC GGGATGAATCAGTCTTATGGTTATCAGACTAGTGATGTTGCTGGTGCTTTATTCTCAGGT TCTTCTAGCTGTTTCAGTCATCCTGAATCTCCAAGTACCAAAACTTATGTTGCTGCTACA GCGTTCAAGACACGGTCCGAGGTGGAAGTGCTTGACGACGGGTTCAAGTGGAGAAAGTAT GGGAAGAAGATGGTGAAGAACAGCCCACATCCAAGAAACTACTACAAATGTTCAGTTGAT GGCTGTCCCGTGAAGAAAGGGTTGAACGAGACAGAGATGATCCGAGCTTTGTGATAACA ACTTACGAGGGTTCCCACAATCACTCAAGCATGAACTAAGACTCGAACTAAGGCTCAAGG TTCTAGTTCTTTATATCCATTGTAAACTGGTTGCAGGGTTCACAAATTTTGAGAGGTTTAT GACATTCTAAATCTGTAGTACTTATATA

>G1275 Amino Acid Sequence (domain in AA coordinates: 113-169) ${\tt MNDADTNLGSSFSDDTHSVFEFPELDLSDEWMDDDLVSAVSGMNQSYGYQTSDVAGALFS}$ GSSSCFSHPESPSTKTYVAATATASADNQNKKEKKKIKGRVAFKTRSEVEVLDDGFKWRK YGKKMVKNSPHPRNYYKCSVDGCPVKKRVERDRDDPSFVITTYEGSHNHSSMN*

>G1411 (110..856)

GAAGAAAAGGCTATATTTAAAAGAAAATCAAGCAAAAGTAGATCCTCGGATGTATGGGAA GAGGCCTTTTGGAGGTGATGAATCTGAAGAAGGGAAGAAGATGAGAACTTGTTCCCGGT CTTCTCGGCCCGATCTCAACACGACATGCGTGTTATGGTCTCGGCCTTGACTCAAGTAAT

>G1411 Amino Acid Sequence (domain in AA coordinates: 87-154)
MYGKRPFGGDESEEREEDENLFPVFSARSQHDMRVMVSALTQVIGNQQSKSHDNISSIDD
NYPSVYNPQDPNQQVAPTHQDQGDLRRRHYRGVRQRPWGKWAAEIRDPKKAARVWLGTFE
TAESAALAYDEAALKFKGSKAKLNFPERVQLGSNSTYYSSNQIPQMEPQSIPNYNQYYHD
ASSGDMLSFNLGGGYGSGTGYSMSHDNSTTTAATTSSSSGGSSRQQEEQDYARFWRFGDS
SSSPHSGY*

>G1488 (1..996)

ATGGAAGATGAAGCACATCTTCCACACATCTGATTTTGCCGTTGATGACCTTTTA GTTGATTTCTCTAACGATGATGACGAAGAAAACGATGTTGTTGCTGATTCCACCACTACC ACCACCATAACCGACAGCTCTAACTTCTCCGCTGCTGATCTTCCCCAGTTTCCACGGTGAT GTTCAAGACGGCACTAGCTTCTCCGGTGACCTTTGTATACCTTCTGATGATTTGGCTGAT GAGTTAGAGTGGCTTTCGAACATTGTGGATGAATCATTGTCGCCTGAAGATGTACACAAG CTCGAGCTAATATCCGGTTTTAAGAGTCGACCGGAACCCGAAATCCGATACCGGAAGCCCG GAAAACCCGAATAGCAGCAGTCCGATTTTTACTACCGACGTTTCTGTACCGGCCAAAGCT AGAAGCAAACGCTCACGCGCCGCTGCGTGTAATTGGGCCTCACGTGGGCTTCTCAAGGAA ACGTTTTACGACAGTCCTTTCACCGGAGAAACCATTCTCTCTAGCCAACAACACTTGTCT GGACACCGACGGAAGAAGGATGTTTCTTCACCGGAGTCTGGTGGCGCAGAGGAGAGACGG TGTCTCCACTGCGCCACGGATAAGACTCCGCAATGGCGGACAGGCCCAATGGGCCCGAAG ACGTTGTGCAACGCTTGCGGTGTTAGGTACAAATCGGGACGTTTAGTGCCGGAGTATCGG CCCGCGGCGAGTCCGACGTTTGTGCTGGCGAAACACTCAAATTCTCATCGGAAAGTTATG GAGCTCCGGCGACAGAAGGAGATGAGTAGGGCCCATCATGAGTTCATACATCACCATCAC GGTACGGACACTGCCATGATTTTCGACGTTTCATCGGACGGTGATGATTACTTGATCCAC CACAACGTTGGCCCAGATTTCAGACAGCTTATTTGA

>G1488 Amino Acid Sequence (domain in AA coordinates: 221-246)
MEDEAHEFFHTSDFAVDDLLVDFSNDDDEENDVVADSTTTTTITDSSNFSAADLPSFHGD
VQDGTSFSGDLCIPSDDLADELEWLSNIVDESLSPEDVHKLELISGFKSRPDPKSDTGSP
ENPNSSSPIFTTDVSVPAKARSKRSRAAACNWASRGLLKETFYDSPFTGETILSSQQHLS
PPTSPPLLMAPLGKKQAVDGGHRRKKDVSSPESGGAEERRCLHCATDKTPQWRTGPMGPK
TLCNACGVRYKSGRLVPEYRPAASPTFVLAKHSNSHRKVMELRRQKEMSRAHHEFIHHHH
GTDTAMIFDVSSDGDDYLIHHNVGPDFRQLI*

>G1499 (159..833)

TACGCTATGTCAAGTTCTTGAAACGGCAGATCCGGCTACTCAATAATAATACCGGATATA CTCCTCCGCCGCCGCAAGATCAAGCTTCTCAGGCGGTGACGACGTCATGGGTTTCACCGC CACCACCGCCAAGTTTCGGCCGTGGGGGAAGAGGAGTAGGAGAATTAATCTAGACAAGAT GACATTTCCATTAGTAGTAACTAAATTATGCTATAATGTGTGAGTAATGGTGCAATTATG GA

>G1499 Amino Acid Sequence (domain in AA coordinates: 118-181)
MNNYNMNPSLFQNYTWNNIINSSNNNNKNDDHHHQHNNDPIGMAMDQYTQLHIFNPFSSS
HFPPLSSSLTTTTLLSGDQEDDEDEEEPLEELGAMKEMMYKIAAMQSVDIDPATVKKPKR
RNVRISDDPQSVAARHRERISERIRILQRLVPGGTKMDTASMLDEAIRYVKFLKRQIRL
LNNNTGYTPPPPQDQASQAVTTSWVSPPPPPSFGRGGRGVGELI*
>G1543 (1..828)

>G1543 Amino Acid Sequence (domain in AA coordinates: 135-195)
MIKLLFTYICTYTYKLYALYHMDYACVCMYKYKGIVTLQVCLFYIKLRVFLSNFTFSSSI
LALKNPNNSLIKIMAILPENSSNLDLTISVPGFSSSPLSDEGSGGGRDQLRLDMNRLPSS
EDGDDEEFSHDDGSAPPRKKLRLTREQSRLLEDSFRQNHTLNPKQKEVLAKHLMLRPRQI
EVWFQNRRARSKLKQTEMECEYLKRWFGSLTEENHRLHREVEELRAIKVGPTTVNSASSL
TMCPRCERVTPAASPSRAVVPVPAKKTFPPQERDR*

>G1635 (1..1164)

ATGGCGTCGTCTCCGTTGACTGCAAATGTTCAGGGTACCAACGCTTCTTTGAGGAATAGA GATGAAGAAACTGCAGACAAGCAGATACAATTCAATGACCAAAGTTTTGGGGGAAATGAC GAAGAGCACAAGAAGTTTGTTGAAGCCTTGAAATTATACGGGCGAGCTTGGAGACGAATA GAAGAACATGTGGGCTCAAAGACCGCAGTTCAGATTCGAAGCCATGCTCAGAAGTTTTTC TCTAAGGTTGCTCGAGAAGCAACTGGAGGTGATGGGAGCTCAGTAGAGCCGATTGTAATA CCTCCTCCTCCCAAGAGAAAGCCAGCGCATCCGTACCCTCGTAAGTTTGGGAACGAG GCAGATCAAACAAGTAGATCGGTTTCTCCCTCAGAACGTGATACTCAATCTCCAACCTCT GTGTTGTCCACTGTTGGATCAGAAGCATTGTGTTCCCTTGATTCGAGTTCACCCAATCGA AGCTTGTCCCCAGTTTCTTCTGCATCACCACCAGCTGCTCTTACAACCACTGCAAATGCA CCTGAAGAGCTTGAGACTCTGAAGCTGGAGTTGTTTCCTAGTGAGAGACTCTTAAACAGG GAGAGCTCGATCAAGGAACCAACGAAGCAAAGTCTTAAACTCTTTGGGAAGACAGTTTTG GTATCTGATTCAGGCATGTCCTCTTCTCTAACAACTTCAACATATTGTAAATCCCCAATT CAGCCATTACCACGGAAACTCTCATCATCCAAGACACTACCCATAATAAGAAACTCACAA GAAGAACTCTTGAGCTGCTGGATACAAGTCCCTCTTAAGCAAGAAGATGTGGAAAATAGA TGTTTGGATTCAGGAAAGGCTGTCCAAAACGAAGGATCATCGACTGGATCAAACACTGGT TCGGTGGATGATACGGGACACACGGAAAAGACCACAGAACCCGAAACAATGCTATGTCAA TGGGAGTTTAAACCAAGTGAGAGGTCTGCATTTTCTGAGCTCAGAAGAACAAACTCCGAG CATGAGATTCATCTCCACTTATAA

>G1635 Amino Acid Sequence (domain in AA coordinates: 44-104)
MASSPLTANVQGTNASLRNRDEETADKQIQFNDQSFGGNDYAPKVRKPYTITKERERWTD
EEHKKFVEALKLYGRAWRRIEEHVGSKTAVQIRSHAQKFFSKVAREATGGDGSSVEPIVI
PPPRPKRKPAHPYPRKFGNEADQTSRSVSPSERDTQSPTSVLSTVGSEALCSLDSSSPNR
SLSPVSSASPPAALTTTANAPEELETLKLELFPSERLLNRESSIKEPTKQSLKLFGKTVL

VSDSGMSSSLTTSTYCKSPIQPLPRKLSSSKTLPIIRNSQEELLSCWIQVPLKQEDVENR CLDSGKAVQNEGSSTGSNTGSVDDTGHTEKTTEPETMLCQWEFKPSERSAFSELRRTNSE SNSRGFGPYKKRKMVTEEEEHEIHLHL*

>G1794 (160..1335)

TAAGTTTCAGAGGAGGAGTTTAGAAGGAGGGTTTTGTATGTGTCTTTAAAAGTGGCA AATCAGGAAGATAACGTTGGCAAAAAAGCCGAGTCTATTAGAGACGATGATCATCGGACG TTATCTGAAATCGATCAATGGCTTTACTTATTCGCAGCCGAAGACGACCACCACCGTCAT AGCTTCCCTACGCAGCAGCCGCCTCCATCGTCGTCGTCCTCATCTCTATCTCAGGTTTC AGTAGAGAGATGGAGATGTCTGCTATTGTCTCTGCTTTGACTCACGTTGTTGCTGGAAAT GTTCCTCAGCATCAACAAGGAGGCGGTGAAGGTAGCGGAGAAGGGACTTCGAATTCGTCT TCTTCCTCGGGGCAGAAAAGGAGGAGAGGTGGAGGAAGGTGGCGCCAAAGCGGTTAAG GCAGCTAATACTTTGACGGTTGATCAATATTTCTCCGGTGGTAGCTCTACTTCTAAAGTG AGAGAAGCTTCGAGTAACATGTCAGGTCCGGGCCCAACATACGAGTATACAACTACGGCA ACTGCTAGTAGCGAAACGTCGTCGTTTAGTGGGGACCAACCTCGGCGAAGATACAGAGGA GTTAGACAAAGACCATGGGGAAAGTGGGCGGCTGAGATTCGAGATCCATTTAAAGCAGCT AGAGTTTGGCTCGGTACGTTCGACAATGCTGAATCAGCAGCAAGAGCTTACGACGAAGCT GCACTTCGGTTTAGAGGCAACAAAGCCAAACTCAACTTCCCTGAAAACGTCAAACTCGTT TCAAGGAACTCGGGTTCAACGACTACCCTTTTGCCCATAAGACCTGCTTCGAATCAAAGC GTTCATTCGCAGCCGTTGATGCAATCATACAACTTGAGTTACTCTGAAATGGCTCGTCAA CAACAACAGTTTCAGCAACATCATCAACAATCTTTGGATTTATACGATCAAATGTCGTTT CCGTTGCGTTTCGGTCACACTGGAGGTTCAATGATGCAATCTACGTCGTCATCATCATCT CATTCTCGTCCTCTGTTTTCCCCGGCTGCTGTTCAGCCGCCACCAGAATCAGCTAGCGAA ACCGGTTATCTCCAGGATATACAATGGCCATCAGACAAGACTAGTAATAACTACAATAAT AGTCCATCCTCCTGATGACTTGCTTCATTTTATTTGTTTCACTATAGAGTAATAGAAAAC AGGAAAATGATTATATGTTATAGAGTTATTTTTCCAAATATTATAGGGTTTAGGTTGTTT

>G1794 Amino Acid Sequence (domain in AA coordinates: TBD)
MCVLKVANQEDNVGKKAESIRDDDHRTLSEIDQWLYLFAAEDDHHRHSFPTQQPPPSSS
SSLISGFSREMEMSAIVSALTHVVAGNVPQHQQGGGEGSGEGTSNSSSSSGQKRRREVEE
GGAKAVKAANTLTVDQYFSGGSSTSKVREASSNMSGPGPTYEYTTTATASSETSSFSGDQ
PRRRYRGVRQRPWGKWAAEIRDPFKAARVWLGTFDNAESAARAYDEAALRFRGNKAKLNF
PENVKLVRPASTEAQPVHQTAAQRPTQSRNSGSTTTLLPIRPASNQSVHSQPLMQSYNLS
YSEMARQQQQFQQHHQQSLDLYDQMSFPLRFGHTGGSMMQSTSSSSSHSRPLFSPAAVQP
PPESASETGYLQDIQWPSDKTSNNYNNSPSS*

>G1839 (38..592)

>G1839 Amino Acid Sequence (domain in AA coordinates: TBD)
MLTPFCSSHHLQEKMNSCQSNPTKMDNSENVLFNDQNENFTLVAPHPSSSYLTRDQEHEI
MVSALRQVISNSGADDASSSNLIITSVPPPDAGPCPLCGVAGCYGCTLQRPHREVKKEKK
YKGVRKKPSGKWAAEIWDPRSKSRRWLGTFLTAEMAAQSYNDAAAEYRARRGKTNGEGIK

RRWR*

>G2108 (35..694)

>G2108 Amino Acid Sequence (domain in AA coordinates: 18-85)
MLKSSNKRKSKEEKKLQEGKYLGVRRRPWGRYAAEIRNPFTKERHWLGTFDTAEEAAFAY
DVAARSISGSLATTNFFYTENTSLERHPQQSLEPHMTWGSSSLCLLQDQPFENNHFVADP
ISSSFSQKQESSTNLTNTFSHCYNDGDHVGQSKBISLPNDMSNSLFGHQDKVGEHDNADH
MKFGSVLSDEPLCFEYDYIGNYLQSFLKDVNDDAPQFLM*

>G2291 (27..797)

>G2291 Amino Acid Sequence (domain in AA coordinates: TBD)
MENSYTVDGHRLQYSVPLSSMHETSQNSETYGLSKESPLVCMPLFETNTTSFDISSLFSF
NPKPEPENTHRVMDDSIAAVVGENVLFGDKNKVSDHLTKEGGVKRGRKMPQKTGGFMGVR
KRPWGRWSAEIRDRIGRCRHWLGTFDTAEEAARAYDAAARRLRGTKAKTNFVIPPLFPKE
IAQAQEDNRMRQKQKKKKKKKVSVRKCVKVTSVAQLFDDANFINSSSIKGNVISSIDNLE
KMGLELDLSLGLLSRK*

>G2452 (1..804)

ATGTCATCGTCGACGATGTACAGAGGAGTTAATATGTTTTCACCGGCAAACACAAACTGG
ATTTTTCAAGAAGTCAGAGAAGCCACGTGGACGCGGAGGAGAACAAACGGTTCGAGAAA
GCTCTCGCTTATCTGGACGACAAAGACAATCTTGAGAGCTGGTCCAAGATCGCAGATTTG
ATTCCCGGCAAAACAGTAGCTGACGTCATTAAACGATACAAGGAGCTAGAGGATGATGTC
AGCGACATCGAAGCCGGACTTATCCCCATTCCGGGATACGAGGAGCTAGAGGATGATGTC
GCAAACAGTGACTATTTCTTTGGTCTAGAAAACTCCAGCTACGGTTATGATTACGTCGTT
GGAGGAAAGAGAGAGATTCGCCGGCGATGACTGATTTTTAGGTCTCCGATGCCGGAAAAG
GAGAGAAAAGAGAGATTCCGTGGACCGAGGACGAACACCTACGATTTCTGATGGTTTG
AAGAAATATGGAAAAGGAGTTCGAGGAAAAACATAGCAAAAAGCTTTTGTGACGACTCGAACG
CCGACGCAAGTCGCTTCACACGCTCAGAAATATTTTCTTCGACAACTCACAGATGGTAAA
GACAAAAGACGATCAAGTATTCACGATATCACCACTGTTAACATCCCTGACGCAACCCCA
TCCGCAACCGCCACGACCGCTGACGTAGCACTCTCTCCTACTCCAGCCAATTCTTTTGAC
GTTTTCCTTCAGCCAAATCCTCATTACAGTTTCGCGTCTGCGTCTAGCTATTAT
AATGCGTTTCCGCAGTGGAGTTAA

>G2452 Amino Acid Sequence (conserved domain in AA coordinates:27-213)

MSSSTMYRGVNMFSPANTNWIFQEVREATWTAEENKRFEKALAYLDDKDNLESWSKIADL IPGKTVADVIKRYKELEDDVSDIEAGLIPIPGYGGDASSAANSDYFFGLENSSYGYDYVV GGKRSSPAMTDCFRSPMPEKERKKGVPWTEDEHLRFLMGLKKYGKGDWRNIAKSFVTTRT PTQVASHAQKYFLRQLTDGKDKRRSSIHDITTVNIPDADASATATTADVALSPTPANSFD VFLQPNPHYSFASASASSYYNAFPQWS*

>G2509 (143..934)

ATATATTCCCTCTTTCATTCTCCTTCTTCGTCTTTTCTTTGTTTCTCATATTCAAGACAT CCTCAATTCCAAATCTTAAACCCTAAATTTACAGACACAATCGAGATCACCTGAAAAAAG AGGTTTAAAGATTTTAGCAAAGATGGCGAATTCAGGAAATTATGGAAAGAGGCCCTTTCG AGGCGATGAATCGGATGAAAAGAAAGAAGCCGATGATGATGAGAACATATTCCCTTTCTT CTCTGCCCGATCCCAATATGACATGCGTGCCATGGTCTCAGCCTTGACTCAAGTCATTGG AAACCAAAGCAGCTCTCATGATAATAACCAACATCAACCTGTTGTGTATAATCAACAAGA TCCTAACCCACCGGCTCCTCCAACTCAAGATCAAGGGCTATTGAGGAAGAGGCACTATAG AGGGGTAAGACAACGACCATGGGGAAAGTGGGCAGCTGAAATTCGGGATCCGCAAAAGGC AGCACGGGTGTGGCTCGGGACATTTGAGACTGCTGAAGCTGCGGCTTTAGCTTATGATAA CGCAGCTCTTAAGTTCAAAGGAAGCAAAGCCAAACTCAATTTCCCTGAGAGAGCTCAACT AGCAAGTAACACTAGTACAACTACCGGTCCACCAAACTATTATTCTTCTAATAATCAAAT TTACTACTCAAATCCGCAGACTAATCCGCAAACCATACCTTATTTTAACCAATACTACTA TAACCAATATCTTCATCAAGGGGGGAATAGTAACGATGCATTAAGTTATAGCTTGGCCGG TGGAGAAACCGGAGGCTCAATGTATAATCATCAGACGTTATCTACTACAAATTCTTCATC TTCTGGTGGATCTTCAAGGCAACAAGATGATGAACAAGATTACGCCAGATATTTGCGTTT TGGGGATTCTTCACCTCCTAATTCTGGTTTTTGAGATCTTCAATAAACTGATAATAAAGG ATTTGGGTCACTTGTTATGAGGGGATCATATGTTTTCTAA

>G2509 Amino Acid Sequence (domain in aa coordinates: 89-156)
MANSGNYGKRPFRGDESDEKKEADDDENIFPFFSARSQYDMRAMVSALTQVIGNQSSSHD
NNQHQPVVYNQQDPNPPAPPTQDQGLLRKRHYRGVRQRPWGKWAAEIRDPQKAARVWLGT
FETAEAAALAYDNAALKFKGSKAKLNFPERAQLASNTSTTTGPPNYYSSNNQIYYSNPQT
NPQTIPYFNQYYYNQYLHQGGNSNDALSYSLAGGETGGSMYNHQTLSTTNSSSSGGSSRQ
QDDEQDYARYLRFGDSSPPNSGF*

>G390 (1..2526)

ATGATGGCTCATCACTCCATGGACGATAGAGACTCTCCTGATAAAGGATTTGATTCCGGC AAGTACGTTAGATACACGCCGGAACAAGTTGAAGCTCTTGAGAGAGTTTATGCTGAGTGT CCTAAACCTAGCTCTCTGAGAAGACAACAGCTTATTCGTGAATGTCCCATTCTCTGTAAC ATCGAGCCTCGACAGATCAAAGTTTGGTTCCAGAATCGCAGATGTCGAGAGAAGCAGAGG AAAGAGTCAGCTCGTCTTCAGACAGTGAACAGGAAGCTGAGTGCTATGAACAAGCTTTTG ATGGAAGAATGATCGTTTGCAGAAGCAAGTCTCCAACTTGGTTTATGAGAATGGATTC ATGAAACATCGAATCCACACTGCTTCTGGGACGACCACAGACAACAGCTGTGAGTCTGTG GTCGTGAGTGGTCAGCAACGTCAGCAGCAAAACCCAACACATCAGCATCCTCAGCGTGAT GTTAACAACCCAGCTAATCTTCTCTCGATTGCGGAGGAGACCTTGGCGGAGTTCCTTTGC AAGGCTACAGGAACTGCTGTCGACTGGGTCCAGATGATTGGGATGAAGCCTGGTCCGGAT TCTATTGGTATCGTAGCTGTTTCACGCAACTGCAGTGGAATAGCAGCACGTGCCTGTGGC $\tt CTCGTGAGTTTAGAACCCATGAAGGTCGCTGAAATCCTCAAAGATCGTCCATCTTGGTTC$ CGTGACTGTCGATGTGTCGAGACTCTGAATGTTATACCCACTGGAAATGGTGGTACTATC GAGCTTGTCAACACTCAGATTTATGCTCCTACAACATTAGCAGCAGCTCGTGACTTTTGG ACGCTGAGATATAGTACAAGTCTAGAAGATGGAAGCTATGTGGTCTGTGAGAGATCACTC ACTTCTGCAACTGGTGGCCCCAATGGTCCACTTTCTTCAAGCTTCGTGAGAGCCAAAATG CTGTCAAGCGGGTTTCTTATCCGTCCTTGTGATGGTGGTGGTTCCATTATTCACATCGTT GATCATGTGGACTTGGATGTCTCAAGTGTTCCTGAAGTCCTCAGGCCTCTTTATGAGTCT TCCAAAATCCTTGCTCAAAAAATGACTGTCGCTGCTCTGAGACATGTGCGCCAAATTGCT CAAGAGACTAGTGGAGAAGTCCAGTATAGTGGTGGACGCCAGCCTGCAGTTTTAAGGACT TTCAGCCAGAGACTCTGCCGGGGTTTCAATGATGCTGTAAATGGTTTTGTCGATGATGGA TGGTCTCCAATGAGTAGTGATGGAGGAGGAGATATTACGATCATGATTAACTCTTCCTCT GCTAAATTTGCTGGCTCCCAATACGGTAGCTCATTTCTTCCAAGTTTTTGGAAGTGGTGTC CTCTGTGCCAAAGCTTCTATGCTGTTGCAGAATGTTCCACCCCTTGTATTGATTCGGTTC CTGAGAGAACACCGAGCTGAATGGGCAGACTATGGTGTCGATGCCTATTCTGCTGCATCT CTCAGAGCAACTCCATATGCTGTTCCATGCGTCAGAACCGGTGGGTTCCCGAGTAACCAA GTCATTCTTCCTCTCGCACAGACACTCGAACATGAAGAGTTTCTCGAAGTGGTTAGACTT

PCT/US02/25805

>G390 Amino Acid Sequence (domain in AA coordinates: 18-81)
MMAHHSMDDRDSPDKGFDSGKYVRYTPEQVEALERVYAECPKPSSLRRQQLIRECPILCN
IEPRQIKVWFQNRRCREKQRKESARLQTVNRKLSAMNKLLMEENDRLQKQVSNLVYENGF
MKHRIHTASGTTTDNSCESVVVSGQQRQQQNPTHQHPQRDVNNPANLLSIAEETLAEFLC
KATGTAVDWVQMIGMKPGPDSIGIVAVSRNCSGIAARACGLVSLEPMKVAEILKDRPSWF
RDCRCVETLNVIPTGNGGTIBLVNTQIYAPTTLAAARDFWTLRYSTSLEDGSYVVCERSL
TSATGGPNGPLSSSFVRAKMLSSGFLIRPCDGGGSIIHIVDHVDLDVSSVPEVLRPLYES
SKILAQKMTVAALRHVRQIAQETSGEVQYSGGRQPAVLRTFSQRLCRGFNDAVNGFVDDG
WSPMSSDGGEDITIMINSSSAKFAGSQYGSSFLPSFGSGVLCAKASMLLQNVPPLVLIRF
LREHRAEWADYGVDAYSAASLRATPYAVPCVRTGGFPSNQVILPLAQTLEHEEFLEVVRL
GGHAYSPEDMGLSRDMYLLQLCSGVDENVVGGCAQLVFAPIDESFADDAPLLPSGFRVIP
LDQKTNPNDHQSASRTRDLASSLDGSTKTDSETNSRLVLTIAFQFTFDNHSRDNVATMAR
QYVRNVVGSIQRVALAITPRPGSMQLPTSPEALTLVRWITRSYSIHTGADLFGADSQSCG
GDTLLKQLWDHSDAILCCSLKTNASPVFTFANQAGLDMLETTLVALQDIMLDKTLDDSGR
RALCSEFAKIMQQGYANLPAGICVSSMGRPVSYEQATVWKVVDDNESNHCLAFTLVSWSF
V*

>G391 (1..2559)

ATGATGATGGTCCATTCGATGAGCAGAGATATGATGAACAGAGAGTCGCCGGATAAAGGG TTAGATTCCGGCAAGTATGTGAGGTACACGCCGGAGCAAGTGGAAGCTCTCGAGAGAGTT TACACTGAGTGTCCTAAGCCAAGTTCTCTAAGAAGACAACTCATACGTGAATGTCCG ATTCTCTAACATCGAGCCTAAGCAGATCAAAGTTTGGTTTCAGAACCGCAGATGTCGT GAGAAGCAGAGGAAAGAAGCTGCTCGTCTTCAAACAGTGAACAGAAAACTCAATGCCATG AACAAACTCTTGATGGAAGAGAATGATCGTTTGCAGAAGCAAGTTTCTAACTTGGTCTAT GAGAATGGCCACATGAAACATCAACTTCACACTGCTTCTGGGACGACCACAGACAACAGC TGTGAGTCTGTGGTCGTGAGTGGTCAGCAACATCAACAGCAAAACCCAAATCCTCAGCAT CAGCAACGTGATGCTAACAACCCAGCAGGACTCCTTTCTATAGCAGAGGAGGCCCTAGCA GAGTTCCTTTCCAAGGCTACAGGAACTGCTGTTGACTGGGTTCAGATGATTGGGATGAAG CCTGGTCCGGATTCTATTGGCATAGTCGCTATTTCGCGCAACTGCAGCGGAATTGCAGCA CGTGCCTGCGGCCTCGTGAGTTTAGAACCCATGAAGGTTGCTGAAATTCTCAAAGATCGT CCATCTTGGCTCCGAGATTGTCGAAGTGTGGATACTCTGAGTGTGATACCTGCTGGAAAC GGTGGGACGATCGAGCTTATTTACACGCAGATGTATGCTCCTACGACTTTAGCAGCAGCT CGTGACTTTTGGACGCTGAGATATAGCACATGTTTGGAAGATGGAAGCTATGTGGTTTGT GAAAGGTCGCTTACTTCTGCAACTGGTGGCCCCACTGGGCCACCTTCTTCAAACTTTGTG AGAGCTGAAATGAAACCAAGCGGGTTTCTCATCCGTCCTTGCGATGGTGGTTGCTTCCATT CTCCACATTGTTGATCATGTTGATCTGGATGCCTGGAGTGTCCCTGAAGTCATGAGGCCT CTCTATGAATCATCGAAGATTCTTGCTCAGAAAATGACTGTTGCTGCTTTGAGACATGTA AGACAAATTGCACAAGAAACAAGTGGAGAAGTTCAGTATGGTGGAGGGCGCCAACCTGCG GTTTTAAGAACCTTCAGTCAAAGACTCTGTCGGGGTTTCAATGATGCTGTTAATGGTTTT GTGGATGATGGTCACCAATGGGTAGCGATGGTGCAGAGGATGTTACTGTAATGATA GGTAGTGGCGTGCTTTGTGCCAAGGCATCTATGTTGCTTCAGAACGTTCCACCCGCTGTG

CTGGTTCGATTCCTTAGAGAACACCGATCTGAATGGGCTGATTATGGCGTGGATGCTTAT GCTGCTGCATCGCTCAGAGCAAGTCCTTTTGCTGTTCCTTGTGCTAGAGCTGGGGGGTTC CCAAGTAACCAAGTCATTCTTCCTCTTGCGCAGACAGTTGAACATGAAGAGTCACTTGAG GTGGTTAGACTTGAAGGTCACGCTTACTCACCCGAAGACATGGGTTTAGCTCGGGATATG TATTTGCTACAGCTTTGTAGCGGTGTTGATGAAAATGTGGTTGGAGGTTGTGCACAGCTT CGCATCATACCTCTTGAACAGAAATCTACTCCGAACGGTGCATCTGCAAACCGTACCCTG GATTTAGCCTCAGCTTTAGAAGGATCCACACGTCAAGCTGGTGAAGCCGACCCAAATGGC TGTAACTTTAGGTCGGTACTAACCATAGCATTCCAGTTCACATTTGATAACCATTCAAGA GACAGTGTTGCTTCAATGGCACGTCAGTACGTGCGAAGCATAGTAGGATCGATTCAGAGG GTTGCTCTAGCCATTGCTCCTCGTCCTGGCTCCAATATCAGTCCAATATCTGTTCCCACT TCCCCTGAAGCTCTCACTCTGGTCCGTTGGATCTCCCGGAGTTACAGCCTTCACACTGGT GCAGATCTCTTTGGATCTGATTCTCAAACCAGTGGTGACACGTTGCTGCATCAACTCTGG TTCGCAAACCAAACCGGTTTAGACATGCTGGAAACGACTCTTGTAGCCCTTCAAGACATA ATGCTAGACAAGACCCTTGACGAACCTGGTCGTAAAGCTCTTTGCTCTGAGTTCCCCAAG ATCATGCAACAGGGCTATGCTCATCTGCCGGCAGGAGTATGTGCGTCAAGCATGGGAAGG ATGGTATCTTACGAGCAGCAACGGTGTGGAAAGTTCTTGAAGACGATGAATCAAACCAC TGCTTAGCTTTCATGTTCGTGAATTGGTCGTTCGTTTGA

>G391 Amino Acid Sequence (domain in AA coordinates: 25-85) MMMVHSMSRDMMNRESPDKGLDSGKYVRYTPEQVEALERVYTECPKPSSLRRQQLIRECP ILSNIEPKQIKVWFQNRRCREKQRKEAARLQTVNRKLNAMNKLLMEENDRLQKQVSNLVY ENGHMKHQLHTASGTTTDNSCESVVVSGQQHQQQNPNPQHQQRDANNPAGLLSIAEEALA EFLSKATGTAVDWVQMIGMKPGPDSIGIVAISRNCSGIAARACGLVSLEPMKVAEILKDR PSWLRDCRSVDTLSVIPAGNGGTIELIYTQMYAPTTLAAARDFWTLRYSTCLEDGSYVVC ERSLTSATGGPTGPPSSNFVRAEMKPSGFLIRPCDGGGSILHIVDHVDLDAWSVPEVMRP LYESSKILAQKMTVAALRHVRQIAQETSGEVQYGGGRQPAVLRTFSQRLCRGFNDAVNGF VDDGWSPMGSDGAEDVTVMINLSPGKFGGSQYGNSFLPSFGSGVLCAKASMLLQNVPPAV LVRFLREHRSEWADYGVDAYAAASLRASPFAVPCARAGGFPSNQVILPLAQTVEHEESLE VVRLEGHAYSPEDMGLARDMYLLQLCSGVDENVVGGCAQLVFAPIDESFADDAPLLPSGF RIIPLEQKSTPNGASANRTLDLASALEGSTRQAGEADPNGCNFRSVLTIAFQFTFDNHSR DSVASMARQYVRSIVGSIQRVALAIAPRPGSNISPISVPTSPEALTLVRWISRSYSLHTG ADLFGSDSQTSGDTLLHQLWNHSDAILCCSLKTNASPVFTFANQTGLDMLETTLVALQDI MLDKTLDEPGRKALCSEFPKIMQQGYAHLPAGVCASSMGRMVSYEQATVWKVLEDDESNH CLAFMFVNWSFV*

>G438 (188..2716)

CGGGGTACCCAAGCCACGACCGTAGAATCTTCTTTTGTCTGAAAAGAATTACAATTTACG GCCAAAGAAGAAGAAGCTAGAAGAACAGTAAAGTTTGAGACTTTTTTTGAGGGTCG AGCTAAAATGGAGATGGCGGTGGCTAACCACCGTGAGAGAAGCAGTGACAGTATGAATAG ACATTTAGATAGTAGCGGTAAGTACGTTAGGTACACAGCTGAGCAAGTCGAGGCTCTTGA GCGTGTCTACGCTGAGTGTCCTAAGCCTAGCTCTCCCGTCGACAACAATTGATCCGTGA ATGTTCCATTTTGGCCAATATTGAGCCTAAGCAGATCAAAGTCTGGTTTCAGAACCGCAG GTGTCGAGATAAGCAGAGGAAAGAGGCGTCGAGGCTCCAGAGCGTAAACCGGAAGCTCTC TGCGATGAATAAACTGTTGATGGAGGAGAATGATAGGTTGCAGAAGCAGGTTTCTCAGCT TGTCTGCGAAAATGGATATATGAAACAGCAGCTAACTACTGTTGTTAACGATCCAAGCTG TGAATCTGTGGTCACAACTCCTCAGCATTCGCTTAGAGATGCGAATAGTCCTGCTGGATT GCTCTCAATCGCAGAGGACTTTGGCAGAGTTCCTATCCAAGGCTACAGGAACTGCTGT TGATTGGGTTCAGATGCCTGGGATGAAGCCTGGTCCGGATTCGGTTGGCATCTTTGCCAT TTCGCAAAGATGCAATGGAGTGGCAGCTCGAGCCTGTGGTCTTGTTAGCTTAGAACCTAT GAAGATTGCAGAGATCCTCAAAGATCGGCCATCTTGGTTCCGTGACTGTAGGAGCCTTGA AGTTTTCACTATGTTCCCGGCTGGTAATGGTGGCACAATCGAGCTTGTTTATATGCAGAC GTATGCACCAACGACTCTGGCTCCTGCCCGCGATTTCTGGACCCTGAGATACACAACGAG CCTCGACAATGGGAGTTTTGTGGTTTGTGAGAGGTCGCTATCTGGCTCTGGAGCTGGGCC TAATGCTGCTTCAGCTTCTCAGTTTGTGAGAGCAGAAATGCTTTCTAGTGGGTATTTAAT AAGGCCTTGTGATGGTGGTTGTTCTATTATTCACATTGTCGATCACCTTAATCTTGAGGC TTGGAGTGTTCCGGATGTGCTTCGACCCCTTTATGAGTCATCCAAAGTCGTTGCACAAAA

AATGACCATTTCCGCGTTGCGGTATATCAGGCAATTAGCCCAAGAGTCTAATGGTGAAGT AGTGTATGGATTAGGAAGGCAGCCTGCTGTTCTTAGAACCTTTAGCCAAAGATTAAGCAG GGGCTTCAATGATGCGGTTAATGGGTTTGGTGACGACGGGTGGTCTACGATGCATTGTGA TGGAGCGGAAGATATTATCGTTGCTATTAACTCTACAAAGCATTTGAATAATATTTCTAA TTCTCTTTCGTTCCTTGGAGGCGTGCTCTGTGCCAAGGCTTCAATGCTTCTCCAAAATGT TCCTCCTGCGGTTTTGATCCGGTTCCTTAGAGAGCATCGATCTGAGTGGGCTGATTTCAA TGTTGATGCATATTCCGCTGCTACACTTAAAGCTGGTAGCTTTGCTTATCCGGGAATGAG ACCAACAAGATTCACTGGGAGTCAGATCATAATGCCACTAGGACATACAATTGAACACGA AGAAATGCTAGAAGTTGTTAGACTGGAAGGTCATTCTCTTGCTCAAGAAGATGCATTTAT GTCACGGGATGTCCATCTCCTTCAGATTTGTACCGGGATTGACGAGAATGCCGTTGGAGC TTGTTCTGAACTGATATTTGCTCCGATTAATGAGATGTTCCCGGATGATGCTCCACTTGT TCCCTCTGGATTCCGAGTCATACCCGTTGATGCTAAAACGGGAGATGTACAAGATCTGTT AACCGCTAATCACCGTACACTAGACTTAACTTCTAGCCTTGAAGTCGGTCCATCACCTGA GAATGCTTCTGGAAACTCTTTTTCTAGCTCAAGCTCGAGATGTATTCTCACTATCGCGTT TCAATTCCCTTTTGAAAACAACTTGCAAGAAAATGTTGCTGGTATGGCTTGTCAGTATGT GAGGAGCGTGATCTCATCAGTTCAACGTGTTGCAATGGCGATCTCACCGTCTGGGATAAG CCCGAGTCTGGGCTCCAAATTGTCCCCAGGATCTCCTGAAGCTGTTACTCTTGCTCAGTG AAGCGACGACTCGGTACTAAAACTTCTATGGGATCACCAAGATGCCATCCTGTGTTGCTC ATTAAAGCCACAGCCAGTGTTCATGTTTGCGAACCAAGCTGGTCTAGACATGCTAGAGAC AACACTTGTAGCCTTACAAGATATAACACTCGAAAAGATATTCGATGAATCGGGTCGTAA **AATCTGTGTGTCAACGATGGGAAGACATGTGAGTTATGAACAAGCTGTTGCTTGGAAAGT** GTTTGCTGCATCTGAAGAAAACAACAACAATCTGCATTGTCTTGCCTTCTCCTTTGTAAA CTGGTCTTTTGTGTGATTCGATTGACAGAAAAAGACTAATTTAAATTTACGTTAGAGAAC TCAAATTTTTGGTTGTTTAGGTGTCTCTGTTTTGTTTTTAAAATTATTTTGATCAA

>G438 Amino Acid Sequence (domain in AA coordinates: 22-85) MEMAVANHRERSSDSMNRHLDSSGKYVRYTAEQVEALERVYAECPKPSSLRRQQLIRECS ILANIEPKOIKVWFONRRCRDKORKEASRLQSVNRKLSAMNKLLMEENDRLQKQVSQLVC ENGYMKQQLTTVVNDPSCESVVTTPQHSLRDANSPAGLLSIAEETLAEFLSKATGTAVDW VQMPGMKPGPDSVGIFAISQRCNGVAARACGLVSLEPMKIAEILKDRPSWFRDCRSLEVF TMFPAGNGGTIELVYMQTYAPTTLAPARDFWTLRYTTSLDNGSFVVCERSLSGSGAGPNA ASASQFVRAEMLSSGYLIRPCDGGGSIIHIVDHLNLEAWSVPDVLRPLYESSKVVAQKMT ISALRYIRQLAQESNGEVVYGLGRQPAVLRTFSQRLSRGFNDAVNGFGDDGWSTMHCDGA EDIIVAINSTKHLNNISNSLSFLGGVLCAKASMLLQNVPPAVLIRFLREHRSEWADFNVD AYSAATLKAGSFAYPGMRPTRFTGSQIIMPLGHTIEHEEMLEVVRLEGHSLAQEDAFMSR DVHLLOICTGIDENAVGACSELIFAPINEMFPDDAPLVPSGFRVIPVDAKTGDVQDLLTA NHRTLDLTSSLEVGPSPENASGNSFSSSSSRCILTIAFQFPFENNLQENVAGMACQYVRS VISSVQRVAMAISPSGISPSLGSKLSPGSPEAVTLAQWISQSYSHHLGSELLTIDSLGSD DSVLKLLWDHQDAILCCSLKPQPVFMFANQAGLDMLETTLVALQDITLEKIFDESGRKAI CSDFAKLMQQGFACLPSGICVSTMGRHVSYEQAVAWKVFAASEENNNNLHCLAFSFVNWS FV*

>G47 (38..472)

AAAAA

>G47 Amino Acid Sequence (domain in AA coordinates: 11-80) MDYRESTGESQSKYKGIRRKKWGKWVSEIRVPGTRDRLWLGSFSTAEGAAVAHDVAFFCL HQPDSLESLNFPHLLNPSLVSRTSPRSIQQAASNAGMAIDAGIVHSTSVNSGCGDTTTYY ENGADQVEPLNISVYDYLGGHDHV*

>G559 (89..1285)

aaaqttqctaqctttaatttgccaacttactattcttatgtgtaataatcgtttgcaggg tcqttqatttqqtqataaqtcaqtaqaaATGqataaqqaqaaatctccaqcacctccttq tggaggtettectectecatetceateaggtegatgetetgeatteteagaagetggtee cattggtcatggttcagatgctaatcgaatgagtcatgatattagccgtatgcttgataa tgatgagactgaagaagatttgctctctatgtatcttgatatggataagtttaattcttc tgctacatcttctgcccaagttggtgagccatcaggaactgcttggaaaaatgagacaat gatgcagacaggcacaggctcaacttccaatcctcagaatacggttaatagtcttggcga aaqqccaaqaatcaqqcatcaacataqccaatctatggatggttcaatgaatatcaatga gatgcttatgtcgggaaatgaagatgattctgctattgatgctaagaagtctatgtctgc tactaaacttgctgagcttgctctcattgatcctaaacgtgctaagaggatatgggcaaa caggcagtccgcagcacgatcaaaagaaaggaagacgagatacatatttgagcttgagag aaaagtacagactttgcaaacagaggctacaactctctcagcccagttgaccctcttaca ggagcagcaggttcacttgcaggatgaactaaacgaagcactaaaggaggaaatccagca tctgaaggtgttgactggccaagttgctccatcagcgttgaactatgggtcgtttgatc aaaccaqcaqcaattctattccaacaatcaqtcaatqcaaacaatcttaqctqcaaaaca qttccaqcaacttcagattcattcacagaagcagcaacaacaacaacaacaacaacaaca gcaacaccaacagcagcagcagcaacagcaacagtatcagtttcaacagcaacagatgca acagettatgcageagegettcaacagcaagaacaacaaaatggagtaagaetcaagee ttcacaagcccagaaagagaacTGAggaatatgaatatgtcccacgtaagtgagaggttc ttggattttaggttttagctaacaca

>G568 (141..995)

TCTGCGTGTAGGATACTAGACAATTGACAACCAAAGACTAAAGCTGTGTTGTTGGTT CACTTCTGTTCTCTTTTCCAATGTTGTCATCAGCTAAGCATCAGAAACCATAGACTCT CTGCTACAAACAAGAACCAGACTCTCACCAAAGTTTCTTCCATTTCATCCTCATCACCAT CGTCTTCTTCATCATCATCATCATCATCATCTCTCTTTACCTTCTCAAGACTCTC AAGCCCAGAAGAGATCTCTTGTCACCATGGAAGAAGTTTGGAATGACATCAACCTTGCTT GGGGCCAAAACCACCAAAACCCTAACTCAATCTTCCAAGATTTTCTCAAAGGAT CTTTGAACCAGGAACCAGCACCACAGCCAGACCACGGGTTCTGCGCCTAATGGCGATT CCACCACGGTCACTGTTCTTTACAGCTCTCCTTTTCCACCTCCTGCAACTGTTCTGAGCT TGAATTCCGGCGCTGGCTTCGAGTTTCTCGATAACCAAGATCCTCTTGTTACCTCAAACT CTAATCTTCATACCCACCATCACCTCTCAAACGCTCATGCCTTCAACACCTCTTTCGAGG CTCTGGTTCCATCCAGTTCTTTTGGTAAGAAAAGAGGCCAAGATTCCAATGAAGGTTCAG GGAATAGAAGACATAAGCGTATGATCAAGAACAGAGAATCTGCAGCTCGTTCCCGCGCTA CAAGACTCAAGAGACAACAAGATCAAAAAATGGCTGCAGCAATTCAGCAACCCAAAAAGA ACACACTTCAACGGTCTTCCACAGCTCCATTTTGAGAAATCTACAAGTCCTTGTTTCTCT TTTGGGGATTGAGATTGTCTCATGAAGAAGTGAAAAAATGGCAAAAGTTTGTACCCTTTT

TTATTAGCTATAAGTATAACTAAGCCTAAAATTGTAGAACTAAGATATTGTAGGGGAAAA AAGAAGATGTAAAACAAAAGACCCGGAAAGAGAAAAAGGATCTTTCAATTTCCTAAGGCACAGGAACACCTGTCCTGGGTCCTCTCTTAATGTTCTGTCGTTTTCCTATGCAAACCCTTTTTTCACTTCTGTACTAACTTATACTTGTATTCTTG

>G568 Amino Acid Sequence (domain in AA coordinates: 215-265)
MLSSAKHQRNHRLSATNKNQTLTKVSSISSSPSSSSSSSTSSSSPLPSQDSQAQKRSL
VTMEEVWNDINLASIHHLNRHSPHPQHNHEPRFRGQNHHNQNPNSIFQDFLKGSLNQEPA
PTSQTTGSAPNGDSTTVTVLYSSPFPPPATVLSLNSGAGFEFLDNQDPLVTSNSNLHTHH
HLSNAHAFNTSFEALVPSSSFGKKRGQDSNEGSGNRRHKRMIKNRESAARSRARKQAYTN
ELELEVAHLQAENARLKRQQDQKMAAAIQQPKKNTLQRSSTAPF*
>G580 (43..747)

CCAAAAAACAAAGCATTCTATGCTATTCTGTTCTCTCCAATGTTGTCATCAGCAAAG CATAATAAGATCAACAACCATAGTGCCTTTTCAATTTCCTCTTCATCATCATCATTATCA ACATCATCCTCCCTAGGCCATAACAAATCTCAAGTCACCATGGAAGAAGTATGGAAAGAA ATCAACCTTGGTTCACTTCACTACCATCGGCAACTAAACATTGGTCATGAACCAATGTTA AAGAACCAAAACCCTAATAACTCCATCTTTCAAGATTTCCTCAACATGCCTCTGAATCAA CCACCACCACCACCACCACCTTCCTCTTCCACCATTGTCACTGCTCTCTATGGCTCT CTGCCTCTTCCGCCTCCTGCCACTGTCCTCAGCTTAAACTCCGGTGTTGGATTCGAGTTT CTTGATACCACAGAAAATCTTCTTGCTTCTAACCCTCGCTCCTTTGAGGAATCTGCAAAG TTTGGTTGTCTTGGTAAGAAAAGAGGCCAAGATTCTGATGATACTAGAGGAGACAGAAGG TATAAGCGTATGATCAAGAACAGAGAATCTGCTGCTCGTTCAAGGGCTAGGAAGCAGGCA ATACAACAAGAGCAGCTGAAAATAGCCGAAGCAACTCAAAACCAAGTAAAGAAAACACTA CAACGGTCTTCCACAGCTCCATTTTGAGAAAAATCTACTATTTCTTTTTGGGGGAGTTTC AAGTGTTTCTTATGAAGATGAGAAAAACAGAAAAAGTTTGTACATTTTAGCTAAGTTAAA TTTGTGGTGGTAAGTAATGTAAAAGAAAAGTGTGTGTAGAAAAAGTGTCTAGAAAAAG AAAGCAACTAACTTTCTTCTTCTTCTGGTTTCCTATCAACTCTTTTGACTTTTGTACT TTTTTTCTTCTCTACTTAACCTCTATTATTGTAATGCCAAGTCAAGTCCTTATCTAGCTA GTACATGAGTTTCTGTTTTCACTGGTTAAGCCAT

>G580 Amino Acid Sequence (domain in AA coordinates:162-218)
MLSSAKHNKINNHSAFSISSSSSSLSTSSSLGHNKSQVTMEEVWKEINLGSLHYHRQLNI
GHEPMLKNQNPNNSIFQDFLNMPLNQPPPPPPPPSSSTIVTALYGSLPLPPPATVLSLNS
GVGFEFLDTTENLLASNPRSFEESAKFGCLGKKRGQDSDDTRGDRRYKRMIKNRESAARS
RARKQAYTNELELEIAHLQTENARLKIQQEQLKIAEATQNQVKKTLQRSSTAPF*
>G615 (197..1252)

CTCTCTGCCAGATTCTCTCTTTTTGATGATGTGAAAGTTGTGCTTTTGTTTCTTAAGAAA AAGGCATATTTTTAATACTTGATTCTTGGTTCTTGATTCTTGATTCTTGGTTTTTTTAG CTTCTTAAGTTCGGTGATGTCGTCTTCCACCAATGACTACAACGATGGTAATAACAATGG TCCCTACAACCATCAGTTAAAAGCATCTCCGGGCCATATGGTATCAGCAGTTCCTGAATC TCTGATCGATTACATGGCGTTTAAGTCAAATAATGTTGTGAATCAACAAGGCTTTGAGTT TCCTGAGGTGTCAAAGGAAATCAAGAAGGTGGTGAAGAAGGACCGACATAGCAAGATTCA AACGGCACAAGGGATTAGAGACAGGAGGGTTAGGCTTTTTATTGGGATTGCTCGCCAATT ${\tt CTTTGATCTTCAGGATATGTTGGGGTTTGATAAAGCTAGTAAAACGTTAGACTGGCTGCT}$ CAAGAAGTCAAGAAAAGCCATCAAAGAGGTCGTACAAGCAAAAAACCTCAACAATGATGA TGAAGATTTTGGAAACATTGGAGGCGATGTAGAACAAGAAGAGGAGAAGGAGGAGGATGA CAATGGCGATAAGAGCTTCGTGTATGGTTTGAGCCCCGGGTACGGTGAAGAAGAAGTGGT AAAGGGGCTAGGAGCCAAAGCTAGAGGAAAAGCAAAGGAGCGAACAAAAGAGATGATGGC CTATGATAATCCAGAGACTGCCTCTGATATTACACAATCTGAAATCATGGACCCATTCAA GAGGTCTATAGTCTTCAATGAAGGAGAAGATATGACACACCTTTTCTACAAGGAACCAAT $\tt CGAGGAGTTTGATAATCAAGAATCTATCTTAACCAATATGACTCTACCAACGAAGATGGG$ TCAAAGTTACAATCAAAATAATGGGATACTTATGTTGGTAGATCAGAGTTCTAGCAGCAA CTATAATACATTTCTGCCTCAAAATTTGGATTATAGTTATGATCAAAACCCTTTTCATGA CCAAACCTTATATGTAGTCACCGACAAAAATTTCCCCAAAGGTTTCCTATAAATCTCGAC AGTTTTGAAGGACTATGCATGATCAAGTTTAAACATGTAAGCCAATATAGTCCCTTATTC

CTCTGAATGTATACAAAATCTATAGTTATGTATATCTGTTCCTTTTTTAACGTATCTTTAT TGATCTTCTGTGCCTTGATCAAAATTGTCATTTTAAGATTCAGTTTGTGTAATATTTTAG CTACAACTTTTAAGTGGTATTATTGTAACCTTTTGAACTATATTTTTGAAGATGAATAA GAACATGTTTATATAAAAA

>G615 Amino Acid Sequence (domain in AA coordinates:88-147)
MSSSTNDYNDGNNNGVYPLSLYLSSLSGHQDIIHNPYNHQLKASPGHMVSAVPESLIDYM
AFKSNNVVNQQGFEFPEVSKEIKKVVKKDRHSKIQTAQGIRDRRVRLFIGIARQFFDLQD
MLGFDKASKTLDWLLKKSRKAIKEVVQAKNLNNDDEDFGNIGGDVEQEEEKEEDDNGDKS
FVYGLSPGYGEEEVVCEATKAGIRKKKSELRNISSKGLGAKARGKAKERTKEMMAYDNPE
TASDITQSEIMDPFKRSIVFNEGEDMTHLFYKEPIEEFDNQESILTNMTLPTKMGQSYNQ
NNGILMLVDQSSSSNYNTFLPQNLDYSYDQNPFHDQTLYVVTDKNFPKGFL*
>G732 (73..588)

>G732 Amino Acid Sequence (domain in AA coordinates: 31-91)
MASSSSTYRSSSSSDGGNNNPSDSVVTVDERKRKRMLSNRESARRSRMRKQKHVDDLTAQ
INQLSNDNRQILNSLTVTSQLYMKIQAENSVLTAQMEELSTRLQSLNEIVDLVQSNGAGF
GVDQIDGCGFDDRTVGIDGYYDDMNMMSNVNHWGGSVYTNQPIMANDINMY*
>G988 (1..1338)

ATGCTTACTTCCTAAATCCTCTAGCTCCTCCGAAGATGCCACCGCTACCACCACC GAGAATCCTCCTCTTGTGCATCGCCTCCTCCTCGGCCGCAACCTCCGCCTCACATCAC CTCCGTCGTCTTTTCACCGCTGCGAATTTCGTCTCCCAGTCAAACTTCACCGCCGCT CTTGTACACCTCTTCACTAAAGCCTTGTCCGTACGAATCAACCGTCAGCAACAAGATCAG ACGGCTGAAACGGTTGCCACGTGGACGAACGAACGAATGACGATGAGTAACTCCACGGTG TTCACGAGCAGTGTATGCAAAGAACAGTTCTTGTTTCGAACCAAGAACAACAATTCTGAC TTCGAGTCTTGTTACTATCTTTGGCTAAACCAACTAACGCCGTTTATTCGGTTCGGTCAT TTAACGGCGAACCAAGCTATCCTCGACGCGACGAGACAAACGATAACGGAGCTCTACAT ATACTTGATTTAGATATATCACAAGGACTTCAATGGCCTCCATTGATGCAAGCCCTAGCA GAGAGGTCATCAAACCCTAGCAGTCCACCTCCATCTCTCCGCATAACCGGATGCGGTCGA GATGTAACCGGATTAAACCGAACTGGAGACCGGTTAACCCGGTTCGCTGACTCTTTAGGT CTCCAATTCCAGTTTCACACGCTAGTGATCGTAGAAGAAGATCTCGCCGGACTTTTGCTA CAGATCCGATTGTTAGCTCTCAGCCGTACAAGGAGAGACCATTGCCGTCAATTGTGTT CACTTCCTCCACAAAATATTTAACGACGATGGAGATATGATCGGTCACTTCTTGTCAGCG CACTCGTTCTTGAATAGATTCTCTGAGGCAGTGGATCATTACATGGCGATCTTTGATTCG TTGGAAGCGACGTTGCCGCCAAATAGCCGAGAGAGACTAACCCTAGAGCAACGGTGGTTC GGTAAGGAGATTTTGGATGTTGTGGCGGCGGAAGAGACGGAGAGAAAGCAAAGACATCGG AGGTTTGAGATTTGGGAAGAGATGATGAAGAGGTTTGGTTTAACGTTCCTATTGGA AGCTTTGCTTTGTCTCAAGCTTAAGCTTCTTAGACTTCATTATCCTTCAGAAGGTTAT GTTTCGTCGTGGAAATGA

>G988 Amino Acid Sequence (domain in AA coordinates:178-195) MLTSFKSSSSSEDATATTTENPPPLCIASSSAATSASHHLRRLLFTAANFVSQSNFTAA QNLLSILSLNSSPHGDSTERLVHLFTKALSVRINRQQQDQTAETVATWTTNEMTMSNSTV

FTSSVCKEQFLFRTKNNNSDFESCYYLWLNQLTPFIRFGHLTANQAILDATETNDNGALH ILDLDISQGLQWPPLMQALAERSSNPSSPPPSLRITGCGRDVTGLNRTGDRLTRFADSLG LQFQFHTLVIVEEDLAGLLLQIRLLALSAVQGETIAVNCVHFLHKIFNDDGDMIGHFLSA IKSLNSRIVTMAEREANHGDHSFLNRFSEAVDHYMAIFDSLEATLPPNSRERLTLEQRWF GKEILDVVAABETERKQRHRRFEIWEEMMKRFGFVNVPIGSFALSQAKLLLRLHYPSEGY NLQFLNNSLFLGWQNRPLFSVSSWK*

>G1519 (1..1146)

ATGAGGCTTAATGGGGATTCGGGTCCGGGTCAGGATGAACCCGGTTCGAGCGGGTTTCAC GGCGGAATCAGACGATTCCCGTTAGCAGCTCAGCCGGAGATTATGAGAGCTGCTGAGAAA GACGATCAATACGCTTCTTTCATCCACGAAGCTTGCCGCGATGCCTTCCGACACCTTTTC GGTACAAGAATCGCTCTTGCTTACCAGAAGGAGATGAAGCTACTTGGACAGATGCTTTAC TATGTTCTTACGACAGGTTCAGGGCAACAACTTTAGGAGAGGAATATTGTGACATTATA CAGGTTGCAGGGCCTTATGGACTCTCTCCTACACCAGCTAGACGTGCTTTGTTCATATTG TACCAGACCGCAGTTCCATATATCGCAGAGAGAATTAGCACTCGAGCTGCTACGCAAGCA GTCACCTTTGATGAGTCTGATGAGTTTTTTGGTGATAGTCATATCCACTCACCAAGAATG ATAGATCTTCCATCTTCAAGTTGAAACTTCAACTTCTGTAGTATCTAGGTTAAAC GATAGACTTATGAGATCGTGGCACCGAGCTATTCAGCGATGGCCTGTGGTTCTTCCTGTT GCCCGCGAGTCTTACAACTGGTTTTGCGTGCCAATCTGATGCTCTTCTACTTTGAAGGT TTTTATTATCATATCGAAACGTGCATCCGGGGTTCGTTATGTTTTCATAGGAAAGCAA CTGAATCAGAGACCTAGATACCAAATTCTTGGGGTTTTCCTTCTAATCCAATTGTGCATC CTTGCTGCTGAGGGCTTGCGTCGGAGTAATTTGTCATCTATCACTAGCTCCATTCAGCAG GCTTCTATAGGATCTTATCAAACTTCAGGAGGGAGAGGTTTACCTGTTTTAAATGAAGAG GGGAATTTGATAACTTCGGAAGCTGAAAAGGGAAACTGGTCTACCTCCGATTCAACTTCA ACGGAGGCAGTAGGGAAATGCACTCTCTGCTTAAGCACCCGTCAGCACCCAACGGCCACT CCTTGTGGTCATGTGTTTTGTTGGAGCTGCATTATGGAATGGTGCAACGAGAAGCAAGAA

>G1519 Amino Acid Sequence (domain in AA coordinates: 327-364)
MRLNGDSGPGQDEPGSSGFHGGIRRFPLAAQPEIMRAAEKDDQYASFIHEACRDAFRHLF
GTRIALAYQKEMKLLGQMLYYVLTTGSGQQTLGEEYCDIIQVAGPYGLSPTPARRALFIL
YQTAVPYIAERISTRAATQAVTFDESDEFFGDSHIHSPRMIDLPSSSQVETSTSVVSRLN
DRLMRSWHRAIQRWPVVLPVAREVLQLVLRANLMLFYFEGFYYHISKRASGVRYVFIGKQ
LNQRPRYQILGVFLLIQLCILAAEGLRRSNLSSITSSIQQASIGSYQTSGGRGLPVLNEE
GNLITSEAEKGNWSTSDSTSTEAVGKCTLCLSTRQHPTATPCGHVFCWSCIMEWCNEKQE
CPLCRTPNTHSSLVCLYHSDF*

>G374 (1..1359)

ATGGACAACAAAATGATCAGGATATTGATGTTAGATCAGTGGTTGAAGCTGTTTCCGCC GATCTTTCCTTTGGTGCTCCCCTCTATGTGGTTGAGAGCATGTGCATGCGCTGCCAAGAA AATGGAACAACCAGATTTCTATTGACCTTAATTCCTCACTTCAGAAAGGTCTTAATATCT GCATTTGAATGTCCGCATTGCGGGGAAAGGAATAATGAAGTTCAGTTCGCAGGCGAGATT CAACCCCGTGGATGCTGTTACAATCTAGAGGTTCTAGCTGGTGATGTGAAGATATTTGAC CGGCAAGTTGTGAAATCTGAATCAGCCACTATTAAGATTCCTGAACTGGATTTTGAGATT CCACCAGAGGCCCAACGTGGAAGTTTGTCTACTGTGGAAGGGATATTAGCACGGGCTGCT GATGAACTGAGTGCCCTTCAAGAAGAACGCAAGAAAGTTGATCCTAAAACTGCTGAAGCA ATAGACCAATTCTTGTCCAAACTGAGAGCTTGTGCTAAAGCAGAGACATCCTTCACCTTC ATTTTGGATGATCCTGCTGGAAACAGTTTCATTGAGAACCCACATGCTCCATCACCAGAT CCCTCTCTAACCATCAAATTCTATGAGCGAACACCAGAGCAACAAGCAACACTTGGATAT GTTGCTAACCCATCTCAGGCTGGACAATCAGAAGGAAGCCTTGGCGCACCTGTGATGACT TTCCCTTCAACTTGCGGAGCATGTACGGAGCCGTGTGAGACACGGATGTTCAAAATAGAA ATCCCGTACTTCAGGAAGTTATTGTCATGGCATCTACATGTGACAGTTGTGGCTATCGT GTGAGGAACATTACAGACCTTAGCCGAGATGTTATCAAGTCGGACACTGCAGGAGTGATA ATCCCAGAACTTGATCTGGAGCTAGCTGGTGGTACACTTGGTGGAATGGTAACAACAGTT ${\tt GAAGGGTTGGTTACACAGATCAGAGAAAGCCTAGCGAGAGTTCACGGATTCACTTTTGGT}$ GATAGTATGGAAGAGTAAGTTGAACAAATGGAGAATTTGGAGCCAGGCTCACTAAG CTCCTAAGCTTTGAACAGCCGTGGACATTGATTCTTGATGATGAATTAGCAAATTCCTTT ATTGCACCAGTAACAGATGATCAAAGATGACCATCAGCTCACATTTGAAGAGTACGAG

AGGTCATGGGATCAAAACGAGGAGTTGGGTCTCAACGACATAGATACTTCTTCAGCTGAT GCTGCTTATGAATCCACAGAGACGACTAAATTACCTTAA

>G374 Amino Acid Sequence (domain in aa coordinates: 35-67, 245-277)
MDNKNDQDIDVRSVVEAVSADLSFGAPLYVVESMCMRCQENGTTRFLLTLIPHFRKVLIS
AFECPHCGERNNEVQFAGEIQPRGCCYNLEVLAGDVKIFDRQVVKSESATIKIPELDFEI
PPEAQRGSLSTVEGILARAADELSALQEERKKVDPKTAEAIDQFLSKLRACAKAETSFTF
ILDDPAGNSFIENPHAPSPDPSLTIKFYERTPEQQATLGYVANPSQAGQSEGSLGAPVMT
FPSTCGACTEPCETRMFKIEIPYFQEVIVMASTCDSCGYRNSELKPGGAIPEKGKKITLS
VRNITDLSRDVIKSDTAGVIIPELDLELAGGTLGGMVTTVEGLVTQIRESLARVHGFTFG
DSMEESKLNKWREFGARLTKLLSFEQPWTLILDDELANSFIAPVTDDIKDDHQLTFEEYE
RSWDQNEELGLNDIDTSSADAAYESTETTKLP*

>G877 (397..2460)

AGTTGTAAAGTTTTGATTTTTTTTTCTGGGTTTTTTCTGTGAGACCCAGAAGAAGAACAG AGAGAGGAAGAAGGAAAAAAAAAATATCTCTTTCTCTCCGGCTTTCAACAAAATCTCT GTTCGGATCAGAGCACAGTTGGATGTTAGCGACGGAACTGAGGATTTCAGTTTGCGGCTG TTTGATCAGAGATTCAGCCAAATTCTTGGATACTAAATGGCTGGTTTTGATGAAAAATGTT GCTGTGATGGGAGAATGGGTGCCTCGTAGTCCTAGTCCCGGGACACTTTTCTCCTCTGCT ATTGGAGAAGAGAGAGCTCGAAACGTGTTCTTGAAAGAGAGTTATCTTTGAATCATGGT CAAGTTATTGGTTTAGAAGAAGACACTAGTAGTAATCATAACAAGGATTCTTCACAAAGC AATGTTTTTCGAGGTGGTCTCAGTGAAAGAATTGCTGCAAGAGCTGGATTTAATGCTCCA AGGTTGAACACTGAGAATATCCGCACCAACACCGACTTTTCCATTGACTCTAACCTTCGA TCTCCTTGCTTAACCATCTCTTCTCCTGGCCTTAGCCCTGCAACACTCTTGGAATCTCCT GTTTTCCTTTCTAACCCATTGGCTCAACCTTCTCCAACTACCGGGAAATTTCCATTTCTT CCTGGTGTTAATGGTAATGCATTGTCTTCTGAGAAAGCGAAAGACGAGTTCTTTGATGAT ACAACAGAGATGATGACTGATTATGGTAACTACAACAATAGATCTTCTTCTCATCAA TCCGCAGAAGAAGTAAAACCTGGCTCTGAAAACATAGAAAGCTCCAATCTTTATGGGATT GAAACTGACAATCAAAACGGGCAGAACAAGACATCTGATGTCACTACAAACACCAGTCTT GAAACCGTGGATCATCAAGAGGAAGAAGAAGAGCAAAGACGCGGTGATTCGATGGCTGGT GGTGCGCCTGCAGAGGATGGATATAACTGGAGGAAATACGGACAAAAGTTGGTCAAAGGA AGTGAGTATCCGCGAAGCTATTACAAGTGCACAAACCCGAATTGTCAGGTGAAGAAGAAA GTTGAGAGATCAAGGGAAGGTCACATCACAGAGATTATATACAAAGGAGCTCATAATCAT CTTAAACCTCCACCTAATCGCCGCTCAGGGATGCAAGTAGATGGAACTGAACAAGTTGAA CAACAACAACAACAGAGAGATTCTGCTGCAACGTGGGTTAGTTGTAATAACACTCAACAA CAAGGTGGAAGCAATGAGAACAATGTCGAAGAGGGATCTACGAGATTCGAGTATGGAAAC CAATCTGGATCAATTCAAGCTCAAACCGGAGGTCAATACGAGTCAGGTGATCCTGTGGTT GTGGTTGATGCTTCTTCAACATTCTCTAATGATGAAGATGAAGATGATCGAGGGACACAT TCAGAGTCGAAAAGAAGGAAACTAGAAGCTTTTGCAGCAGAGATGAGTGGATCAACAAGA GCCATACGTGAGCCAAGAGTTGTTGTGCAGACAACGAGTGATGTTGACATTCTTGATGAT GGTTATCGCTGGCGAAAATATGGTCAGAAAGTTGTCAAAGGCAATCCAAATCCAAGGAGT TATTACAAATGCACAGCTCCAGGATGTACAGTGAGGAAACATGTTGAAAGAGCTTCTCAT GATCTCAAATCCGTTATAACAACTTACGAAGGCAAACATAACCATGACGTCCCCGCTGCA CGCAACAGCAGCCACGGAGGCGGTGGTGATAGTGGTAACGGTAACAGCGGCGGTTCAGCC GCAGTTTCTCACCATTACCACAACGGTCATCACTCAGAGCCGCCACGTGGGAGATTCGAC AGACAAGTCACAACTAACAATCAGTCTCCTTTTAGCCGTCCCTTTAGCTTTCAGCCACAT TTGGGTCCTCCTTCTGGTTTCTCCTTCGGTTTAGGACAAACCGGTTTGGTTAATCTTTCA ATGCCTGGTTTAGCGTATGGTCAAGGGAAAATGCCGGGTTTGCCTCACCCGTATATGACA CAACCGGTTGGGATGAGTGAAGCAATGATGCAGAGAGGGATGGAACCAAAGGTTGAACCG GTTTCAGATTCAGGACAATCGGTATATAACCAGATCATGAGTAGATTACCTCAGATTTGA AATTTACTCTTCTTCTTCTTCTTCTGCATTTGGTCACTCCTTATAATAACTTTTAATTTC TGCTTCTTCTTCTTTCATTTATTGGTTTCAAACTTTGGGGAAGGTAAAGGCTGTTTT ATTGTTAAAAAAAAAAAAAAAAAAA

>G877 Amino Acid Sequence (domain in AA coordinates: 272-328, 487-603)

MAGFDENVAVMGEWVPRSPSPGTLFSSAIGEEKSSKRVLERELSLNHGQVIGLEEDTSSN
HNKDSSQSNVFRGGLSERIAARAGFNAPRLNTENIRTNTDFSIDSNLRSPCLTISSPGLS
PATLLESPVFLSNPLAQPSPTTGKFPFLPGVNGNALSSEKAKDEFFDDIGASFSFHPVSR
SSSSFFQGTTEMMSVDYGNYNNRSSSHQSAEEVKPGSENIESSNLYGIETDNQNGQNKTS
DVTTNTSLETVDHQEEEEEQRRGDSMAGGAPAEDGYNWRKYGQKLVKGSEYPRSYYKCTN
PNCQVKKKVERSREGHITEIIYKGAHNHLKPPPNRRSGMQVDGTEQVEQQQQQRDSAATW
VSCNNTQQQGGSNENNVEEGSTRFEYGNQSGSIQAQTGGQYESGDPVVVVDASSTFSNDE
DEDDRGTHGSVSLGYDGGGGGGGGGGEDESESKRRKLEAFAAEMSGSTRAIREPRVVVQTT
SDVDILDDGYRWRKYGQKVVKGNPNPRSYYKCTAPGCTVRKHVERASHDLKSVITTYEGK
HNHDVPAARNSSHGGGGDSGNGNSGGSAAVSHHYHNGHHSEPPRGRFDRQVTTNNQSPFS
RPFSFQPHLGPPSGFSFGLGQTGLVNLSMPGLAYGQGKMPGLPHPYMTQPVGMSEAMMQR
GMEPKVBPVSDSGQSVYNQIMSRLPQI*

>G1000 (1..954)

ATGGGAAGACCTCCTTGTTGTGACAAGTCCAATGTCAAGAAAGGTCTCTGGACCGAGGAA GAAGACGCTAAGATCCTTGCTTATGTTGCTATCCATGGTGTAGGAAACTGGAGCTTGATC CCCAAAAAAGCAGGTCTGAATCGATGTGGAAAGAGCTGTAGACTAAGATGGACTAATTAC TTAAGACCTGACCTTAAACATGACAGCTTCTCTACCCAAGAAGAAGAGCTTATCATTGAG TGTCATAGAGCCATTGGCAGCAGGTGGTCTTCCATTGCACGAAAGCTTCCAGGAAGAACG GATAATGATGTGAAGAATCACTGGAACACAAAGCTGAAGAAGAAGCTGATGAAAATGGGG ATAGACCCGGTGACTCATAAACCGGTTTCTCAACTCCTTGCAGAATTCAGAAACATTAGC GGCCATGGAAATGCATCCTTCAAAACAGAACCATCTAACAACTCTATACTCACACAATCC AACTCAGCTTGGGAAATGATGAGAAACACAACAACAACCATGAGAGTTATTACACCAAC TCTCCAATGATGTTTACAAATTCCTCTGAGTACCAAACTACTCCATTTCATTTCTATAGC CATCCAAATCATCTGCTCAATGGAACCACATCTTCATGCTCTTCCTCATCATCTTCTACT AGTATCACTCAGCCAAACCAAGTACCTCAAACACCGGTTACTAACTTCTACTGGAGCGAT TTCCTTCTCTCGGACCCGGTTCCTCAAGTAGTGGGATCCTCAGCTACTAGCGACCTCACT TTTACGCAGAACGAACATCATTTCAACATCGAAGCCGAATACATCTCTCAAAACATCGAT TCAAAGGCCTCGGGAACATGTCATTCCGCGAGTTCCTTCGTTGACGAAATACTAGATAAA GACCAAGAGATGTTGTCACAGTTTCCTCAACTCTTGAATGATTTCGATTATTAG >G1000 Amino Acid Sequence (domain in AA coordinates: 14-117) MGRPPCCDKSNVKKGLWTEEEDAKILAYVAIHGVGNWSLIPKKAGLNRCGKSCRLRWTNY LRPDLKHDSFSTQEEELIIECHRAIGSRWSSIARKLPGRTDNDVKNHWNTKLKKKLMKMG IDPVTHKPVSQLLAEFRNISGHGNASFKTEPSNNSILTQSNSAWEMMRNTTTNHESYYTN SPMMFTNSSEYQTTPFHFYSHPNHLLNGTTSSCSSSSSTSITQPNQVPQTPVTNFYWSD

FLLSDPVPOVVGSSATSDLTFTQNEHHFNIEAEYISQNIDSKASGTCHSASSFVDEILDK

DQEMLSQFPQLLNDFDY* >G1067 (436..1371)

TCTCAAGCTTCTCTCTCTTTTTTTCCCATAGCACATCAGAATCGCTAAATACGACTCCT TCTTACCTTTCATGAGAGAGATCATTTAACATAAGTCACCTTTTTTATATCTTTTGCTTC GTCTTTAATTTAGTTCTGTTCTTGGTCTGTTTCTATATTTTGTCGGCTTGCGTAACCGAT CACACCTTAATGCTTTAGCTATTGTTTCCTCAAAATCATGAGTTTTTGACTTCTCGATCTG AGTTTTCTTTTTCTCTCTTTACGCTCTTCTTCACCTAGCTACCAATATATGAACGAGCAG GATCAAGAATCGAGAAATTGATTTGAGCTGGCGAATAAGCAGTGGTGGGATAGGGAATTA GTAGATGCGGCGGCGATGGAAGGCGGTTACGAGCAAGGCGGTGGAGCTTCTAGATACTTC CATAACCTCTTTAGACCGGAGATTCACCACCAACAGCTTCAACCGCAGGGCGGGATCAAT CTTATCGACCAGCATCATCAGCACCAGCAACATCAACAACAACAACAACCGTCGGAT GATTCAAGAGAATCTGACCATTCAAACAAAGATCATCATCAACAGGGTCGACCCGATTCA GACCCGAATACATCAAGCTCAGCACCGGGAAAACGTCCACGTGGACGTCCACCAGGATCT AAGAACAAAGCCAAGCCACCGATCATAGTAACTCGTGATAGCCCCAACGCGCTTAGATCT CACGTTCTTGAAGTATCTCCTGGAGCTGACATAGTTGAGAGTGTTTCCACGTACGCTAGG AGGAGAGGGAGAGGCGTCTCCGTTTTAGGAGGAAACGGCACCGTATCTAACGTCACTCTC CGTCAGCCAGTCACTCCTGGAAATGGCGGTGGTGTGTCCGGAGGAGGAGGAGTTGTGACT TTACATGGAAGGTTTGAGATTCTTTCGCTAACGGGGACTGTTTTGCCACCTCCTGCACCG ${\tt CCTGGTGCCGGTGGTTTGTCTATATTTTTAGCCGGAGGGCAAGGTCAGGTGGTCGGAGGA}$ AGCGTTGTGGCTCCCCTTATTGCATCAGCTCCGGTTATACTAATGGCGGCTTCGTTCTCA AATGCGGTTTTCGAGAGACTACCGATTGAGGAGGAGGAGGAAGAAGATGGTGGTGGCGGA

>G1067 Amino Acid Sequence (domain in AA coordinates: 86-93)
MEGGYEQGGGASRYFHNLFRPEIHHQQLQPQGGINLIDQHHHQHQQHQQQQQPSDDSRES
DHSNKDHHQQGRPDSDPNTSSSAPGKRPRGRPPGSKNKAKPPIIVTRDSPNALRSHVLEV
SPGADIVESVSTYARRRGRGVSVLGGNGTVSNVTLRQPVTPGNGGGVSGGGGVVTLHGRF
EILSLTGTVLPPPAPPGAGGLSIFLAGGQGQVVGGSVVAPLIASAPVILMAASFSNAVFE
RLPIEEEEEEGGGGGGGGGGPPQMQQAPSASPPSGVTGQGQLGGNVGGYGFSGDPHLLG
WGAGTPSRPPF*

>G1075 (19..876)

>G1266 (62..718)

ACTTTTGTGATACTTGGCG

TTTGTGTTTGGTGCTGGCATGGCTGGTCTCGATCTAGGCACAACTTCTCGCTACGTCCAC AACGTCGATGGTGGCGGCGGCGGACAGTTCACCACCGACAACCACCACGAAGATGACGGT GGCGCTGGAGGAAACCACCATCATCACCATCATAATCATAATCACCATCAAGGTTTAGAT TTAATAGCTTCTAATGATAACTCTGGACTAGGCGGCGGTGGAGGAGGAGGAGCGGTGAC CTCGTCATGCGTCGGCCACGTGGCCGTCCAGCTGGATCGAAGAACAAACCGAAGCCGCCG GTGATTGTCACGCGCGAGAGCGCAAACACTCTTAGGGCTCACATTCTTGAAGTTGGAAGT GGCTGCGACGTTTTCGAATGTATCTCCACTTACGCTCGTCGGAGACAGCGCGGGATTTGC GTTTTATCCGGGACGGGAACCGTCACTAACGTCAGCATCCGTCAGCCTACGGCGGCCGGA GCTGTTGTGACTCTGCGGGGTACTTTTGAGATTCTTTCCCTCTCCGGATCTTTTCTTCCG CCACCTGCTCCTCCAGGGGCGACTAGCTTGACGATATTCCTCGCTGGAGCTCAAGGACAG GTCGTCGGAGGTAACGTAGTTGGTGAGTTAATGGCGGCGGGGCCGGTAATGGTCATGGCA GCGTCTTTTACAAACGTGGCTTACGAAAGGTTGCCTTTGGACGAGCATGAGGAGCACTTG CAAAGTGGCGGCGGGGGGGGGGGAATATGTACTCGGAAGCCACTGGCGGTGGCGGA GGGTTGCCTTTCTTTAATTTGCCGATGAGTATGCCTCAGATTGGAGTTGAAAGTTGGCAG GGGAATCACGCCGGCGCCGGTAGGGCTCCGTTTTAGCAATTTAAGAAACTTTAATTGTTT ATTGTTCATGTATTGACCCTCTTACTGCATGGTTTCTTCTATTGGGTTAATTGGCTAGCT CATAAGAATTGTTTAATTTGGTTATTGTCATCAAATTTGCCCCACATATAAAGCTTCTAGC

>G1075 Amino Acid Sequence (domain in AA coordinates: 78-85)
MAGLDLGTTSRYVHNVDGGGGGQFTTDNHHEDDGGAGGNHHHHHHNHNHHQGLDLIASND
NSGLGGGGGGGGDLVMRRPRGRPAGSKNKPKPPVIVTRESANTLRAHILEVGSGCDVFE
CISTYARRRQRGICVLSGTGTVTNVSIRQPTAAGAVVTLRGTFEILSLSGSFLPPPAPPG
ATSLTIFLAGAQGQVVGGNVVGELMAAGPVMVMAASFTNVAYERLPLDEHEEHLQSGGGG
GGGNMYSEATGGGGGLPFFNLPMSMPQIGVESWQGNHAGAGRAPF*

>G1266 Amino Acid Sequence (domain in AA coordinates: 79-147)
MDPFLIQSPFSGFSPEYSIGSSPDSFSSSSSNNYSLPFNENDSEEMFLYGLIEQSTQQTY
IDSDSQDLPIKSVSSRKSEKSYRGVRRRPWGKFAAEIRDSTRNGIRVWLGTFESAEEAAL

TGTTTTTTGTTTGCTTAAATATTTGATTCTATTGAGAAACATCGAAAACAGTTTGTATGT

AYDQAAFSMRGSSAILNFSAERVQESLSEIKYTYEDGCSPVVALKRKHSMRRRMTNKKTK DSDFDHRSVKLDNVVVFEDLGEQYLEELLGSSENSGTW*

>G1311 (41..757)

>G1311 Amino Acid Sequence (domain in AA coordinates: 11-112)
MDFKKEETLRRGPWLEEEDERLVKVISLLGERRWDSLAIVSGLKRSGKSCRLRWMNYLNP
TLKRGPMSQEEERIIFQLHALWGNKWSKIARRLPGRTDNEIKNYWRTHYRKKQEAQNYGK
LFEWRGNTGEELLHKYKETEITRTKTTSQEHGFVEVVSMESGKEANGGVGGRESFGVMKS
PYENRISDWISEISTDQSEANLSEDHSSNSCSENNINIGTWWFQETRDFEEFSCSLWS*
>G1321 (72..803)

GTTCTTGTATTGGTTTGGATCGGTATACTTAGTTGATTACGTAATTAAATAGATCGGCGT GAAGAAGAAAATGATCATGTGCAGCCGAGGCCATTGGAGACCAGCTGAAGACGAGAAGC TCAAGGATCTTGTCGAACAATACGGTCCTCACAATTGGAACGCCATTGCTCTCAAGCTTC CTGGTCGCTCTGGTAAGAGTTGTAGATTGAGATGGTTTAATCAATTGGATCCAAGGATCA ACCGAAACCCTTTCACGGAAGAAGAAGAAGAAGACTTTTAGCGGCTCATCGGATCCATG GGAACAGATGGTCCATCATCGCAAGGCTTTTCCCTGGAAGAACTGATAACGCCGTCAAGA ACCATTGGCACGTCATCATGGCTCGTCGCACACGCCAAACCTCTAAGCCTCGTCTTCTTC CCTCGACGACTTCGTCTTCTTTAATGGCGAGTGAACAAATCATGATGAGTTCTGGTG GTTATAATCATAATTATAGTTCCGATGATCGGAAGAAAATATTTCCAGCAGACTTTATAA ATTTCCCTTACAAATTCTCTCATATCAATCATCTTCACTTCCTAAAGGAGTTTTTCCCCG GAAAGATCGCTTTAAGTCACAAAGCAAATCAGAGTAAGAAGCCTATGGAGTTCTACAATT TTCTACAAGTAAACACAGATTCAAACAAGAGCGAGATTATAGATCAAGATTCAGGTCAAA GCAAACGCAGTGACTCGGACACCAAACATGAAAGTCATGTTCCATTCTTCGACTTTTTAT CCGTTGGAAACTCTGCCTCCTAGGATTAGTTTTTTTTGCAGTAACTCCTAAATTTCTAGAT TAACTATTTAGTCCGTATACGTACGAGATTATCTAGGTCGTTAGCATGTATGCTTGATGT GTATAATCACTAACTAGTGAGCTATTACCTGCGAAAATTGTAAGAAAAATACATAATGTT GATGTATCACACATTCTCAATGTCTGTAAAATTTCCATCGAGTTGTTAACTATCAAAGTT ATCCGTTTGAAAAAAAAAAAA

>G1321 Amino Acid Sequence (domain in AA coordinates: 4-106)
MIMCSRGHWRPAEDEKLKDLVEQYGPHNWNAIALKLPGRSGKSCRLRWFNQLDPRINRNP
FTEEEEERLLAAHRIHGNRWSIIARLFPGRTDNAVKNHWHVIMARRTRQTSKPRLLPSTT
SSSSLMASEQIMMSSGGYNHNYSSDDRKKIFPADFINFPYKFSHINHLHFLKEFFPGKIA
LSHKANQSKKPMEFYNFLQVNTDSNKSEIIDQDSGQSKRSDSDTKHESHVPFFDFLSVGN
SAS*

>G1326 (32..784)

>G1326 Amino Acid Sequence (domain in AA coordinates: 18-121)
MEMSRGSNSFDNKKPSCQRGHWRPVEDDNLRQLVEQYGPKNWNFIAQHLYGRSGKSCRLR
WYNQLDPNITKKPFTEEEEERLLKAHRIQGNRWASIARLFPGRTDNAVKNHFHVIMARRK
RENFSSTATSTFNQTWHTVLSPSSSLTRLNRSHFGLWRYRKDKSCGLWPYSFVSPPTNGQ
FGSSSVSNVHHEIYLERRKSKELVDPQNYTFHAATPDHKMTSNEDGPSMGDDGEKNDVTF
IDFLGVGLAS*

>G1367 (128..1567)

ATCCTCCATGGATCCTTCTCTCTCTGCAACCAATGATCCTCATCATCCTCCTCCTCCA GTTCACATCTTTCCCTCCTTTCACCAACACCAACCCCTTCGCCTCTCCAAACCACCCCTT AGCTATTTCGAGGTACATAGAGAGAATTTACACTGGGATTCCTACTGCTCATGGAGCTTT GTTGACACACCATCTCAAGACTTTGAAGACCAGTGGGATTCTTGTCATGGTTAAGAAATC TTACAAGCTTGCTTCTACTCCTCCTCCTCCTCCTACTAGTGTAGCTCCTAGTCTTGA ACCTCCCAGATCTGATTTCATAGTCAACGAGAACCAACCTTTACCTGATCCGGTTTTGGC TTCTTCTACTCCTCAGACTATTAAACGTGGTCGTGGTCGACCTCCAAAAGCTAAACCAGA TGTTGTTCAACCTCAACCTCTGACTAATGGAAAACTCACCTGGGAACAGAGTGAATTACC TGTCTCTCGACCAGAGGAGATACAGATACAGCCGCCACAGTTACCGTTACAGCCACAGCA GCCGGTTAAGAGACCGCCGGGTCGTCCTAGAAAAGATGGAACTTCGCCGACGGTGAAGCC AGCTGCTTCTGTTTCCGGTGGTGTGGAGACTGTGAAACGAAGAGGTAGACCTCCGAGTGG AAGAGCTGCTGGGAGGGAGAAAGCCTATAGTAGTCTCAGCTCCAGCTTCAGTGTTCCC GTATGTTGCTAATGGTGGTGTTAGACGCCGAGGGAGACCAAAGAGAGTTGACGCTGGTGG TGCTTCCTCTGTTGCTCCACCACCACCACCACCAACTAACGTAGAGAGTGGAGGAGAGA GGTTGCAGTCAAGAAACGAGGAAGAGGACGGCCTCCTAAGATTGGAGGTGTTATCAGGAA GCCTATGAAGCCGATGAGAAGCTTTGCTCGTACTGGAAAACCCGTAGGAAGACCCAGAAA GAATGCGGTGTCAGTGGGAGCTTCTGGACGACAAGATGGTGACTATGGAGAACTGAAGAA GAAGTTTGAGTTGTTTCAAGCGAGAGCTAAGGATATTGTAATTGTGTTGAAATCCGAGAT AGGAGGAAGTGGAAATCAAGCAGTGGTTCAAGCCATACAGGACCTGGAAGGGATAGCAGA GACAACAAACGAGCCAAAGCACATGGAAGAAGTGCAGCTGCCAGACGAGGAACACCTTGA AACCGAACCAGAAGCAGAGGGTCAAGGACAGACAGAAGCAGAGGCAATGCAAGAAGCTCT GTTCTAAAGATAAAGCCTTGACATAAAAAGCTAGCAAGTGGTGGGTTTACTTGTTGTGTG TTACATGAAATTTTTAATCTTATAAGGGTGTTTGCAGGAGAAAAACAAAAAGAACAATGT GATGAACTGATGATGATGTGTGTCTCTAACCAAACAACAAGGAGGGGTAGGGTAATGT CTGTAAAGTGAATTAGGATGTTACCATTGTTCATGCTTCCCATCTCTCCCATCGTCCAT TATTCTATTTTGTCTCCTTAGGCTTTTTAGGAGTTGTTGTTGATGTTTATCAAAAACGCT TATGTAATTTTTATGACCACTTCTACTTTTTATGATGGTTTCTT

>G1367 Amino Acid Sequence (domain in AA coordinates: 179-201, 262-285, 298-319,

MDPSLSATNDPHHPPPPQFTSFPPFTNTNPFASPNHPFFTGPTAVAPPNNIHLYQAAPPQ
QPQTSPVPPHPSISHPPYSDMICTAIAALNEPDGSSKQAISRYIERIYTGIPTAHGALLT
HHLKTLKTSGILVMVKKSYKLASTPPPPPPTSVAPSLEPPRSDFIVNENQPLPDPVLASS
TPQTIKRGRGRPPKAKPDVVQPQPLTNGKLTWEQSELPVSRPEEIQIQPPQLPLQPQQPV
KRPPGRPRKDGTSPTVKPAASVSGGVETVKRRGRPPSGRAAGRERKPIVVSAPASVFPYV
ANGGVRRGRPKRVDAGGASSVAPPPPPPTNVESGGEEVAVKKRGRGRPPKIGGVIRKPM
KPMRSFARTGKPVGRPRKNAVSVGASGRQDGDYGELKKKFELFQARAKDIVIVLKSEIGG
SGNQAVVQAIQDLEGIAETTNEPKHMEEVQLPDEEHLETEPEAEGQGQTEAEAMQEALF*
>G1386 (89..673)

>G1386 Amino Acid Sequence (domain in AA coordinates: TBD)
MERDDCRRFQDSPAQTTERRVKYKPKKKRAKDDDDEKVVSKHPNFRGVRMRQWGKWVSEI
REPKKKSRIWLGTFSTAEMAARAHDVAALAIKGGSAHLNFPELAYHLPRPASADPKDIQA
AAAAAAAVAIDMDVETSSPSPSPTVTETSSPAMIALSDDAFSDLPDLLLNVNHNIDGFW
DSFPYEEPFLSQSY*

>G1421 (292..1155)

GAAATTTCATCCCTAAATAAGAAAAAGCATCTCCTTCTTTAGTGTCCTCCTTCACCAAA CTCTTGATTCCATAAGCATATATTAAAAAAAGCTCTCTGCTTTCTTCAACTTTCCCGGGAA AATCTTCTTGTTACAAAGCATCAATCTCTTGTTTTACCAATTTTCTCTCTTTATTCCTTT TTTGCCCTTTACTTTTCCTAACTTTGGTCTTTATATATAAACACACGACACAAAGAAGAA GAGAAGAAGTTTCTCTCCCAAGAATCTTACGAATCTCTGTTACTGATCCTTACGCAACA GATTCGTCAAGCGACGAAGAAGAAGAAGTTGATTTTGATGCATTATCTACAAAACGACGT CGTGTTAAGAAGTACGTGAAGGAAGTGGTGCTTGATTCGGTGGTTTCTGATAAAGAGAAG CCGATGAAGAAGAAGAAGAAGAAGCGCGTTGTTACTGTTCCAGTGGTTGTTACGACGGCG ACGAGGAAGTTTCGTGGAGTGAGGCAAAGACCGTGGGGAAAATGGGCGGCGGAGATTAGA GATCCGAGTAGACGTGTTAGGGTTTGGTTAGGTACTTTTGACACGGCGGAGGAAGCTGCC ATTGTTTACGATAACGCAGCTATTCAGCTACGTGGTCCTAACGCAGAGCTTAACTTCCCT $\verb|CCTCCTCCGGTGACGGAGATGTTGAAGAAGCTTCGACGGAGGTGAAAGGAGTTTCGGAT| \\$ ${\tt TTTATCATTGGCGGTGGAGAATGTCTTCGTTCGCCGGTTTCTGTTCTCGAATCTCCGTTC}$ ${\tt TCCGGCGAGTCTACTGCGGTTAAAGAGGAGTTTGTCGGTGTATCGACGGCGGAGATTGTG}$ GTTAAAAAGGAGCCGTCTTTTAACGGTTCAGATTTCTCGGCGCCGTTGTTCTCGGACGAC ${\tt AATCTTTTTGCGGATATGAGTTTTGGATCCGGGTTTGGATTCGGGTCTGGGTCTGGATTC}$ TCCAGCTGGCACGTTGAGGACCATTTTCAAGATATTGGGGATTTATTCGGGTCGGATCCT GTCTTAACTGTTTAAGAAATAACTGGCCGTTTAACGGCGTTTAGTGAAGTTTTGTTACCG >G1421 Amino Acid Sequence (domain in AA coordinates: 74-151) METEKKVSLPRILRISVTDPYATDSSSDEEEEVDFDALSTKRRRVKKYVKEVVLDSVVSD KEKPMKKKRKKRVVTVPVVVTTATRKFRGVRQRPWGKWAAEIRDPSRRVRVWLGTFDTAE EAAIVYDNAAIQLRGPNAELNFPPPPVTENVEEASTEVKGVSDFIIGGGECLRSPVSVLE SPFSGESTAVKEEFVGVSTAEIVVKKEPSFNGSDFSAPLFSDDDVFGFSTSMSESFGGDL ${\tt FGDNLFADMSFGSGFGFGSGSGFSSWHVEDHFQDIGDLFGSDPVLTV*}$

>G1453 (39..917)

CGTCGACGCGAAATAAATCCTAGAAAATAACTATCAATATGATGAAGGTTGATCAAGATT
ATTCGTGTAGTATACCGCCTGGATTTAGGTTTCATCCGACAGATGAAGAACTTGTCGGAT
ATTATCTCAAGAAGAAAATCGCCTCCCAGAGGATTGATCTCGACGTTATCAGAGAAATTG
ATCTTTACAAGATCGAACCATGGGATCTACAAGAGAGATGTAGGATAGGGTACGAGGAGC
AAACGGAGTGGTATTTCTTCAGCCATAGAGACAAGAAGTATCCGACTGGGACTAGGACAA
ACCGAGCCACCGTGGCCGGTTTCTGGAAAGCAACGGGCCGGGACAAGGCGGTTTACCTCA
ACTCCAAACTTATCGGTATGAGAAAAACGCTTGTCTTTTACCGAGGTCGAGCGCCTAATG

CAAAAAGGAGGCAACTTTGGGATCCGAACTGCTTATTCTACGACGACGCCACTCTCTTGG AACTACTCTCCGAGGCCAGTCACGTCCAGGATGGAGATTTCGGATCTATGTACCTTCAAT GCATCGATGATGATCAATTCTCCCAGCTTCCTCAGCTCGAGAGCCCCTCTCTTCCGTCGG AAATAACTCCCCATAGTACTACTTTTTCTGAGAACAGTAGCCGGAAAGATGACATGAGCT CCGAGAAGAGGATCACTGACTGGAGATATCTAGATAAGTTCGTGGCGTCTCAATTTTTGA TTTTGGATTTACATGCGGCCGCT

>G1453 Amino Acid Sequence (conserved domain in AA coordinates:13-160) MMKVDQDYSCSIPPGFRFHPTDEELVGYYLKKKIASQRIDLDVIREIDLYKIEPWDLQER CRIGYEEQTEWYFFSHRDKKYPTGTRTNRATVAGFWKATGRDKAVYLNSKLIGMRKTLVF YRGRAPNGQKSDWIIHEYYSLESHQNSPPQEEGWVVCRAFKKRTTIPTKRRQLWDPNCLF YDDATLLEPLDKRARHNPDFTATPFKQELLSEASHVQDGDFGSMYLQCIDDDQFSQLPQL ${ t ESPSLPSEITPHSTTFSENSSRKDDMSSEKRITDWRYLDKFVASQFLMSGED*$ >G1560 (120..1340)

 ${\tt ATCCTTTCAATTTCCACTCCTCTTAATATATATCACATTTTCCCACTATTGCTGATTCACATTCACATTTCCCACTATTGCTGATTCACATTCACATTTCCCACTATTGCTGATTCACATTCACATTTCCCACTATTGCTGATTCACATTCACATTTCCCACTATTGCTGATTCACATTCACATTTCCCACTATTGCTGATTCACATTCACATTTCACATTTCACATTTCACATTTCACATTTCACATTTCACATTCACATTTCACATTTCACATTTCACATTTCACATTTCACATTCACATTCACATTCACATTTCACATTCATTCACATTCACATTCATTCACATTCATTCACATTCATTCACATTCATTCATTCATTCACATTCATTCATTCATTCATTCATTCATTCATTCATTCACATTCAT$ TTTTTTTTTGTGAATTATTTCAAACCCACATAAAAAAATCTTTGTTTAAATTTAAAACCA TGGATCCTTCATTTAGGTTCATTAAAGAGGAGTTTCCTGCTGGATTCAGTGATTCTCCAT CACCACCATCTTCTTCATACCTTTATTCATCTTCCATGGCTGAAGCAGCCATAAATG ATCCAACAACATTGAGCTATCCACAACCATTAGAAGGTCTCCATGAATCAGGGCCACCTC CATTTTTGACAAAGACATATGACTTGGTGGAAGATTCAAGAACCAATCATGTCGTGTCTT GGAGCAAATCCAATAACAGCTTCATTGTCTGGGATCCACAGGCCTTTTCTGTAACTCTCC TTCCCAGATTCTTCAAGCACAATAACTTCTCCAGTTTTGTCCGCCAGCTCAACACATATG GTTTCAGAAAGGTGAATCCGGATCGGTGGGAGTTTGCAAACGAAGGGTTTCTTAGAGGGC AAAAGCATCTCCTCAAGAACATAAGGAGAAGAAAAACAAGTAATAATAGTAATCAAATGC AACAACCTCAAAGTTCTGAACAACAATCTCTAGACAATTTTTGCATAGAAGTGGGTAGGT AGCTCAAGAAGACCGAGTCAAAACAAAAACAAATGATGAGCTTCCTTGCCCGCGCAATGC AGAATCCAGATTTTATTCAGCAGCTAGTAGAGCAGAAGGAAAAGAGGAAAGAGATCGAAG AGGCGATCAGCAAGAAGAGACAAAGACCGATCGATCAAGGAAAAAGAAATGTGGAAGATT TGAGTCAGGAATATACATATGGAAACATGTCTGAATTCGAGATGTCGGAGTTGGACAAAC TTGCTATGCACATTCAAGGACTTGGAGATAATTCCAGTGCTAGGGAAGAAGTCTTGAATG TGGAAAAAGGAAATGATGAGGAAGAAGTAGAAGATCAACAACAAGGGTACCATAAGGAGA ACAATGAGATTTATGGTGAAGGTTTTTGGGAAGATTTGTTAAATGAAGGTCAAAATTTTG ATTTTGAAGGAGATCAAGAAAATGTTGATGTGTTAATTCAGCAACTTGGTTATTTGGGTT CTAGTTCACACACTAATTAAGAAGAAATTGAAATGATGACTACTTTAAGCATTTGAATCA ACTTGTTTCCTATTAGTAATTTGGCTTTGTTTCAATCAAGTGAGTCGTGGACTAACTTGC >G1560 Amino Acid Sequence (domain in AA coordinates: 62-151) MDPSFRFIKEEFPAGFSDSPSPPSSSSYLYSSSMAEAAINDPTTLSYPQPLEGLHESGPP PFLTKTYDLVEDSRTNHVVSWSKSNNSFIVWDPQAFSVTLLPRFFKHNNFSSFVRQLNTY GFRKVNPDRWEFANEGFLRGQKHLLKNIRRRKTSNNSNQMQQPQSSEQQSLDNFCIEVGR YGLDGEMDSLRRDKQVLMMELVRLRQQQQSTKMYLTLIEEKLKKTESKQKQMMSFLARAM QNPDFIQQLVEQKEKRKEIEEAISKKRQRPIDQGKRNVEDYGDESGYGNDVAASSSALIG MSQEYTYGNMSEFEMSELDKLAMHIQGLGDNSSAREEVLNVEKGNDEEEVEDQQQGYHKE NNEIYGEGFWEDLLNEGQNFDFEGDQENVDVLIQQLGYLGSSSHTN*

>G1594 (1..984)

ATGGATGGAATGTACAATTTCCATTCGGCCGGTGATTATTCAGATAAGTCGGTTCTGATG ATGTCACCGGAGAGTCTCATGTTTCCTTCCGATTACCAAGCTTTGCTATGTTCCTCCGCC GGTGAAAATCGTGTCTCTGATGTTTTCGGATCCGACGAGCTACTCTCAGTAGCCGTCTCC GCTTTGTCGTCGGAGGCGGCTTCGATCGCTCCGGAGATCCGAAGAAATGATGATAACGTT TCTCTAACTGTCATCAAAGCTAAAATCGCTTGTCATCCTTCGTATCCTCGCTTACTTCAA GCTTACATCGATTGCCAAAAGGTCGGAGCACCACCGGAGATAGCGTGTTTACTAGAGGAG ATTCAACGGGAGAGTGATGTTTATAAGCAAGAGGTTGTTCCTTCTTCTTGCTTTGGAGCT GATCCTGAGCTTGATGAATTTATGGAAACGTACTGCGATATATTAGTGAAATACAAATCG

21/286

PCT/US02/25805

GATCTAGCAAGACCGTTTGACGAGGCAACGTGTTTCTTGAACAAGATTGAGATGCAGCTA CGGAACCTATGTACTGGTGTCGAGTCTGCCAGGGGAGTTTCTGAGGATGGTGTAATATCA TCTGACGAGGAACTGAGTGGAGGTGATCATGAGGTAGCAGAGGATGGGAGACAAAGATGT GAAGACCGGGACCTCAAAGATAGGTTGCTACGCAAATTTGGAAGCCGTATTAGTACTTTA AAGCTTGAGTTCTCAAAGAAGAAGAAGAAAGGAAAGTTACCAAGAGAAGCAAGACAAGCT CTTCTTGATTGGTGGAATCTCCATTATAAGTGGCCTTACCCTACTGAAGGAGATAAGATA GCATTAGCTGATGCAACGGGGTTAGACCAAAAACAAATCAACAATTGGTTTATAAACCAA GGATCATTCTTTACCGAGGAATGA

>G1594 Amino Acid Sequence (conserved domain in AA coordinates:343-308) MDGMYNFHSAGDYSDKSVLMMSPESLMFPSDYQALLCSSAGENRVSDVFGSDELLSVAVS ALSSEAASIAPEIRRNDDNVSLTVIKAKIACHPSYPRLLQAYIDCQKVGAPPEIACLLEE IQRESDVYKQEVVPSSCFGADPELDEFMETYCDILVKYKSDLARPFDEATCFLNKIEMQL RNLCTGVESARGVSEDGVISSDEELSGGDHEVAEDGRQRCEDRDLKDRLLRKFGSRISTL KLEFSKKKKKGKLPREARQALLDWWNLHYKWPYPTEGDKIALADATGLDQKQINNWFINQ RKRHWKPSENMPFAMMDDSSGSFFTEE*

>G1750 (94..1101)

AGACCAGTGAAGTACACAGAGCACAAGACTGTTATCAGAAAGTACACTAAAAAGTCGTCT CGTGACGCCACTGATTCATCAAGCGACGAGGAAGAGTTTCTGTTCCCTCGAAGACGTGTC AAGAGATTGATTAACGAGATCAGAGTCGAGCCTAGCAGCTCTTCCACCGGCGACGTCTCT GCTTCTCCGACGAAGGACCGGAAAAGAATCAACGTTGATTCTACGGTTCAAAAGCCCTCT GTTTCCGGCCAAAACCAGAAGAAGTACCGCGGCGTGAGACAGCGACCATGGGGAAAATGG GCGGCGGAGATTCGTGATCCTGAGCAACGCCGGAGAATCTGGCTCGGTACTTTTGCAACG GCGGAGGAAGCTGCCATCGTCTACGACAACGCAGCAATCAAACTTCGTGGCCCTGATGCT CTTACCAACTTCACCGTACAACCAGAACCAGAACCGGTACAAGAACAAGAACAAGAACCG GAGAGCAACATGTCGGTTTCGATATCAGAATCAATGGACGATTCTCAACATCTATCATCT ${\tt CCGACATCGGTTCTCAACTACCAAACATATGTCTCGGAGGAACCAATCGATAGTCTTATC}$ AAACCGGTTAAACAAGAGTTTCTTGAACCAGAACAAGAGCCAATAAGCTGGCATCTTGGA ${\tt GAAGGTAATACTAATGATGATTCATTTCCATTGGACATTACATTTCTCGACAAC}$ TATTTCAATGAATCATTACCAGACATCTCCATCTTCGATCAACCTATGTCTCCTATTCAA CCAACAGAGAATGATTTCTTCAACGACCTTATGTTATTCGATAGCAACGCAGAAGAATAC TACTCCTCCGAGATCAAAGAGATTGGTTCATCGTTCAACGATCTTGATGATTCTTTGATA TCCGATCTCTTACTTGTGTGATATTTTTGCCATTAACCAAACACCGGTTTGGTTGC >G1750 Amino Acid Sequence (domain in AA coordinates: 107-173) MMMDEFMDLRPVKYTEHKTVIRKYTKKSSMERKTSVRDSARLVRVSMTDRDATDSSSDEE EFLFPRRRVKRLINEIRVEPSSSSTGDVSASPTKDRKRINVDSTVQKPSVSGQNQKKYRG VRORPWGKWAAEIRDPEQRRRIWLGTFATAEEAAIVYDNAAIKLRGPDALTNFTVQPEPE PVQEQEPESNMSVSISESMDDSQHLSSPTSVLNYQTYVSEEPIDSLIKPVKQEFLEPE QEPISWHLGEGNTNTNDDSFPLDITFLDNYFNESLPDISIFDQPMSPIQPTENDFFNDLM LFDSNAEEYYSSEIKEIGSSFNDLDDSLISDLLLV*

>G1947 (70..918)

ACAACTATTCTCTCTCTCTCTTTTTTTTTATTAAAAAAGCTCAAATTTATATAGGTTTTTT GTTCACAAAATGGATTATAACCTTCCAATTCCATTAGAGGGTCTCAAAGAAACGCCACCA TCATGGAGCAGAGACAACAACAGCTTCATTGTTTGGGAACCAGAGACTTTTGCCCTAATT TGCCTCCCTAGATGCTTTAAGCACAATAATTTCTCCAGCTTTGTTAGACAGCTCAATACT TATGGGTTTAAGAAGATTGATACAGAGAGATGGGGAATTTGCAAATGAGCATTTTCTGAAG GGAGAGAGGCATCTTCTTAAGAACATCAAGAGAAGAAGACATCATCTCAAACGCAAACG CAGTCGCTAGAAGGAGAGATCCATGAGCTGCGAAGAGACAGAATGGCTTTAGAAGTAGAA CTGGTTAGACTGCGACGAAAACAAGAAAGCGTGAAGACATATCTGCATTTGATGGAAGAG AAACTGAAAGTCACAGAAGTAAAGCAAGAAATGATGATGAATTTCTTGCTAAAGAAGATT AAGAAACCGAGTTTTTTACAGAGCTTAAGGAAACGTAATCTGCAAGGAATCAAGAATCGA GAGCAAAAGCAAGAGGTGATCTCAAGCCATGGTGTTGAGGATAATGGAAAGTTTGTTAAA GCTGAGCCAGAAGAGTATGGTGATGACATCGATGATCAATGTGGAGGTGTGTTTGATTAT

AATGTCGGTTGTACAATTATTTGTCACTAAAGTTTCCAAATTTCTTCTAAACTGATGAAT CCACCGCCTCTCTATTCCCCAGATTTTTTTCAATTATCTGACTACAGTTTGTCGGTTACT ATTATCACACACCCCAATTTCTCACTCTCTCTCTCACTAAAACCCGTAAATTTTCTAC TATATCAAATGAGCCCAAAAAAAGATGCTGTTTCTAAACCAACTCCAATTTCAGTACCCG TTTCGAGACGATCCGATATACCCGGGTCTCTCTACGTCGACACTGACATGGGTTTCTCTG GGTCACCACTTCCCATGCCACTAGACATCTTACAAGGGAATCCAATTCCACCTTTTTTAT CCAAGACTTTTGATTTGGTTGATGACCCGACTCTTGACCCGGTCATCTCTTGGGGACTGA CCGGAGCTAGCTTCGTAGTTTGGGATCCTCTAGAGTTTGCCAGAATCATACTTCCAAGGA ATTTCAAACACAACTTTCTCCAGCTTCGTCAGACAGCTTAACACTTATGGATTTCGAA AGATTGATACTGACAAGTGGGAATTCGCTAACGAGGCTTTCCTTAGAGGCAAGAAGCATC CTAGCCAAAGCCAAGGGTCACCTACTGAGGTTGGAGGAGATTGAGAAGCTGAGGAAAG AGCGGCGTGCATTGATGGAGGAAATGGTTGAGCTTCAGCAGCAAAGCAGAGGCACAGCTC GACATGTGGACACTGTAAACCAGAGGCTGAAAGCTGCAGAGCAACGTCAGAAGCAATTGC TCTCTTTCTTGGCTAAGTTGTTTCAGAACCGGGGTTTCTTGGAACGCCTGAAGAACTTCA ATTGGGAGAGATTGCTAATGTATGACGAAGAGCTGAGAACACCAAGGGTTTAGGAGGGA TGACTTCAAGCGATCCAAAAGGCAAGAACTTGATGTATCCATCAGAAGAAGAGATGAGCA AACCAGATTACTTGATGTCCTTCCCATCTCCTGAAGGACTTATTAAACAAGAAGAGACGA CATGGAGCATGGGTTTCGATACTACAATACCGAGTTTCAGCAACACCGATGCATGGGGAA ACACAATGGACTATAATGATGTCTCAGAGTTTGGTTTTGCTGCAGAAACAACAAGTGATG GTTTGCCTGATGTCTGCTGGGAACAATTTGCTGCAGGAATCACAGAGACTGGATTCAACT ATAGTTTAGACCAAAAACCCGTTTCTTATCGGGTGAACTATTAATTCATTATTCATTTTG >G2011 Amino Acid Sequence (domain in AA coordinates: 56-147) MSPKKDAVSKPTPISVPVSRRSDIPGSLYVDTDMGFSGSPLPMPLDILQGNPIPPFLSKT FDLVDDPTLDPVISWGLTGASFVVWDPLEFARIILPRNFKHNNFSSFVRQLNTYGFRKID TDKWEFANEAFLRGKKHLLKNIHRRRSPQSNQTCCSSTSQSQGSPTEVGGEIEKLRKERR ALMEEMVELQQQSRGTARHVDTVNQRLKAAEQRQKQLLSFLAKLFQNRGFLERLKNFKGK EKGGALGLEKARKKFIKHHQQPQDSPTGGEVVKYEADDWERLLMYDEETENTKGLGGMTS SDPKGKNLMYPSEEEMSKPDYLMSFPSPEGLIKQEETTWSMGFDTTIPSFSNTDAWGNTM DYNDVSEFGFAAETTSDGLPDVCWEQFAAGITETGFNWPTGDDDDNTPMNDP* >G2094 (1..450)

>G2094 Amino Acid Sequence (domain in AA coordinates:43-68) MLDPTEKVIDSESMESKLTSVDAIEEHSSSSSNEAISNEKKSCAICGTSKTPLWRGGPAG PKSLCNACGIRNRKKRRTLISNRSEDKKKKSHNRNPKFGDSLKQRLMELGREVMMQRSTA ENQRRNKLGEEEQAAVLLMALSYASSVYA*

>G2113 (90..590)

>G2113 Amino Acid Sequence (domain in AA coordinates: TBD)
MAPTVKTAAVKTNEGNGVRYRGVRKRPWGRYAAEIRDPFKKSRVWLGTFDTPEEAARAYD
KRAIEFRGAKAKTNFPCYNINAHCLSLTQSLSQSSTVESSFPNLNLGSDSVSSRFPFPKI
QVKAGMMVFDERSESDSSSVVMDVVRYEGRRVVLDLDLNFPPPPEN*
>G2115 (41..733)

AATCACTCTACAAAGCCTGTACGTACACAACAACATTACCATGGTGAAACAAGAACGCAA
GATCCAAACCAGCAGCACAAAAAAAGGAAATGCCTTTGTCATCATCATCATCATCTTCTTCT
TTCTTCATCTTCTTCCTCGTCTTCGTCTTCGTGTAAGAACAAGAACAAGAAGAAGAAGATAAGAT
TAAGAAGTACAAAGGAGTGAGGATGAGAAGTTGGGGATCATGGGTCTCTGAGATTAGGGC
ACCAAATCAAAAGACAAGGATTTGGTTAGGTTCTTACTCAACAGCTGAAGCAGCTGCTAG
AGCTTACGATGTTGCACTCTTATGTCTCAAAGGCCCTCAAGCCAATCTCAACTTCCCTAC
TTCTTCTTCTCTCATCATCTTCTTGATAATCTCTTAGATGAAAATACCCTTTTGTCCCC
CAAATCCATCCAAAGAGTAGCTGCTCAAGCTGCCAACTCATTTAACCATTTTGCCCCTAC
TTCATCAGCCGTCTCGTCACCGTCCGATCATGATCATCACCATGATGATGATGATGATGATCATCTTCATGGTA
TTGATGGGATCTTTTTGTGGACAATCATGTGTCTTTGATGATTCAACATCTTCATGGTA
TGATGATCATAAATGGGATGTTCTTTGTTTGATAATGGAGCTCCATTCAATTACTCTCCTCA
ACTAAACTCGACGACGATGCTCGATGAATACTTCTACGAAGATGCTGACATTCCGCTTTG
GAGTTTCAATTAATCCGACGGTCCATAATACATACTTTTAATTAGT

>G2115 Amino Acid Sequence (conserved domain in AA coordinates:46-115)
MVKQERKIQTSSTKKEMPLSSSPSSSSSSSSSSSSSSCKNKNKKSKIKKYKGVRMRSWGS
WVSEIRAPNQKTRIWLGSYSTAEAAARAYDVALLCLKGPQANLNFPTSSSSHHLLDNLLD
ENTLLSPKSIQRVAAQAANSFNHFAPTSSAVSSPSDHDHHHDDGMQSLMGSFVDNHVSLM
DSTSSWYDDHNGMFLFDNGAPFNYSPQLNSTTMLDEYFYEDADIPLWSFN*
>G2130 (41..988)

AGTGAAGTTCACAGAGAATCGTACGGTCACAAACGTAGCAGCTACACCATCTAACGGGTC TCCGAGACTGGTCCGTATCACTGTTACTGATCCTTTCGCTACTGACTCGTCTAGCGACGA CGACGACAACAACGTCACGGTGGTTCCAAGAGTGAAACGATACGTGAAGGAGATTAG ATTCTGCCAAGGTGAATCTTCTTCCTCCACCGCGGCGAGGAAAGGTAAGCACAAGGAGGA GGAAAGCGTAGTGGATGAAGATGACGTGTCGACGTCGATGAAGCCTAAAAAGTACAGAGG CGTGAGACAGAGACCTTGGGGAAAATTCGCGGCGGAGATTAGAGATCCGTCGAGCCGTAC TCGGATTTGGCTTGGGACTTTTGTCACGGCGGAGGAAGCTGCTATAGCGTACGATAGAGC CGCGATTCATCTCAAAGGACCTAAAGCGCTCACGAATTTCCTAACTCCGCCGACGCCAAC GCCGGTTATCGATCTCCAAACGGTTTCCGCCTGCGATTACGGTAGAGATTCTCGGCAGAG CCTTCATTCACCGACCTCTGTTCTAAGATTCAACGTCAACGAGGAAACAGAGCATGAGAT TGAAGCGATCGAGCTATCTCCGGAGAGAAGTCGACGGTTATAAAAGAAGAAGAAGAATC GTCGGCGGTTTGGTGTTCCCGGATCCGTATCTGTTACCGGATTTATCTCTCGCCGGCGA ATGTTTTTGGGATACCGAAATTGCCCCTGACCTTTTGTTTCTCGATGAAGAAACCAAAAT CCAATCAACGTTGTTACCAAACACAGAGGTTTCGAAACAAGGAGAAAACGAAACTGAAGA TTTCGAGTTTGGTTTGATGATTTCGAGTCTTCTCCATGGGATGTGGATCATTTCTT

>G2130 Amino Acid Sequence (domain in AA coordinates 93-160)
MERRTRRVKFTENRTVTNVAATPSNGSPRLVRITVTDPFATDSSSDDDDNNNVTVVPRVK
RYVKEIRFCQGESSSSTAARKGKHKEEESVVVEDDVSTSVKPKKYRGVRQRPWGKFAAEI
RDPSSRTRIWLGTFVTAEEAAIAYDRAAIHLKGPKALTNFLTPPTPTPVIDLQTVSACDY
GRDSRQSLHSPTSVLRFNVNEETEHEIEAIELSPERKSTVIKEEEESSAGLVFPDPYLLP
DLSLAGECFWDTEIAPDLLFLDEETKIQSTLLPNTEVSKQGENETEDFEFGLIDDFESSP
WDVDHFFDHHHHSFD*

>G2147 (162..1262)

CTGTGATTGTCAAGAGTTTGAACACACAAAGAAGAAGAAGAAGAACTCAACATTTCAAGCAA TTGTCAGTTTATTCTCTGCAAACGTGCGGCCTAAGTAACACATGTCGAATTATGGAGTTA AAGAGCTCACATGGGAAAATGGGCAACTAACCGTTCATGGTCTAGGCGACGAAGTAGAAC CAACCACCTCGAATAACCCTATTTGGACTCAAAGTCTCAACGGTTGTGAGACTTTGGAGT CTGTGGTTCATCAAGCGGCTCTACAGCAGCCAAGCAAGTTTCAGCTGCAGAGTCCGAATG GTCCAAACCACAATTATGAGAGCAAGGATGGATCTTGTTCAAGAAAACGCGGTTATCCTC AAGAAATGGACCGATGGTTCGCTGTTCAAGAGGAGAGCCATAGAGTTGGCCACAGCGTCA CTGCAAGTGCGAGTGGTACCAATATGTCTTGGGCGTCTTTTGAATCCGGTCGGAGCTTGA AGACAGCTAGAACCGGAGACAGAGACTATTTCCGCTCTGGATCGGAAACTCAAGATACTG AAGGAGATGAACAAGAGACAAGAGGAGAAGCAGGTAGATCTAATGGACGACGGGGACGAG CAGCAGCGATTCACAACGAGTCCGAAAGGAGACGGCGTGATAGGATAAACCAGAGGATGA GAACACTTCAGAAGCTGCTTCCTACTGCAAGTAAGGCGGATAAAGTCTCAATCTTGGATG ATGTTATCGAACACTTGAAACAGCTACAAGCACAAGTACAGTTCATGAGCCTAAGAGCCA AGATGTCGTTGCTTGCAACAATGGCAAGAATGGGAATGGGAGGTGGTGGAAATGGTTATG GAGGTTTAGTTCCTCCTCCTCCTCCTCCACCAATGATGGTCCCTCCTATGGGTAACAGAG ACTGCACCAACGGTTCTTCAGCCACATTATCTGATCCATACAGCGCCTTTTTCGCACAGA AAACAACAAAGGTAAATATCGGCATGCCTTCAAGTTCTTCGAATCATGAGAAAAGAGATT AGTCTAGCGACCTAGTATTATTGATCCATATATATAGTTCTTGAAAGATTGTTGTATCAT GATTGTAAAAACTGTTTTGAGTATGGAAAAAGACTTGCAGATAAAA

>G2147 Amino Acid Sequence (domain in AA coordinates:160-234)
MSNYGVKELTWENGQLTVHGLGDEVEPTTSNNPIWTQSLNGCETLESVVHQAALQQPSKF
QLQSPNGPNHNYESKDGSCSRKRGYPQEMDRWFAVQEESHRVGHSVTASASGTNMSWASF
ESGRSLKTARTGDRDYFRSGSETQDTEGDEQETRGEAGRSNGRRGRAAAIHNESERRRD
RINQRMRTLQKLLPTASKADKVSILDDVIEHLKQLQAQVQFMSLRANLPQQMMIPQLPPP
QSVLSIQHQQQQQQQQQQQQQQQQQQQQGGMSLLATMARMGMGGGGNGYGGLVPPPPPPPMMV
PPMGNRDCTNGSSATLSDPYSAFFAQTMNMDLYNKMAAAIYRQQSDQTTKVNIGMPSSSS
NHEKRD*

>G2156 (384..1292)

GCACATGAATTAATTTGAAGCTTCCCTAGAATTCTTTCACATCAATTAATACGACACCGT CTCGGGTGAAGAATCTCTCCTCTCTTGCCCTAAAGCGAGTTAGGGTTTAACACACAAAGC ATACCCTTTAGATTTGTGTCTCTTAGCTCTGTTTTTTGTCGGCTTGTGTAACCGATCAACT CAAGCTATTGGCTCCTCACCTCCTGAAATTTGACTTCTCCAATGGATCTCAAAGTTTCTC AAGAGTCAGTAGATGCGGCTGCCATGGACGGTGGTTACGATCAATCCGGAGGAGCTTCTA GATACTTTCACAACCTCTTCAGGCCTGAGCTTCATCACCAGCTTCAACCTCAGCCTCAAC TTCACCCTTTGCCTCAGCCTCAGCCTCAACCTCAGCCTCAGCAGCAGAATTCAGATGATG AATCTGACTCCAACAAGGATCCGGGTTCCGACCCAGTTACCTCTGGTTCAACCGGGAAAC GTCCACGTGGACGTCCTCCGGGATCCAAGAACAAGCCGAAGCCACCGGTGATAGTGACTA GAGATAGCCCCAACGTGCTTAGATCTCATGTTCTTGAAGTCTCATCTGGAGCCGACATAG TCGAGAGCGTTACCACTTACGCTCGCAGGAGAGGAGAGAGGAGTCTCCATTCTCAGTGGTA ACGGCACGGTGGCTAACGTCAGTCTCCGGCAGCCGGCAACGACAGCGGCTCATGGGGCAA ATGGTGGAACCGGAGGTGTTGTGGCTCTACATGGAAGGTTTGAGATACTTTCCCTCACAG GCGTTCAAGGTCAGGTGATTGGAGGAAACGTGGTGGCTCCGCTTGTGGCTTCGGGTCCAG

>G2156 Amino Acid Sequence (domain in AA coordinates:66-86)
MDGGYDQSGGASRYFHNLFRPELHHQLQPQPQLHPLPQPQPQPQQQQNSDDESDSNKDP
GSDPVTSGSTGKRPRGRPPGSKNKPKPPVIVTRDSPNVLRSHVLEVSSGADIVESVTTYA
RRRGRGVSILSGNGTVANVSLRQPATTAAHGANGGTGGVVALHGRFEILSLTGTVLPPPA
PPGSGGLSIFLSGVQGQVIGGNVVAPLVASGPVILMAASFSNATFERLPLEDEGGEGGE
GEVGEGGGGGGGPPPATSSSPPSGAGQGQLRGNMSGYDQFAGDPHLLGWGAAAAAAPPRP
AF*

>G2294 (24..659)

>G2294 Amino Acid Sequence (conserved domain in AA coordinates:32-102)
MVKTLQKTPKRMSSPSSSSSSSSSSSSSSIRMKKYKGVRMRSWGSWVSEIRAPNQKTRIW
LGSYSTAEAAARAYDAALLCLKGSSANNLNFPEISTSLYHIINNGDNNNDMSPKSIQRVA
AAAAAANTDPSSSSVSTSSPLLSSPSEDLYDVVSMSQYDQQVSLSESSSWYNCFDGDDQF
MFINGVSAPYLTTSLSDDFFEEGDIRLWNFC*

>G2510 (16..594)

>G2510 Amino Acid Sequence (conserved domain in AA coordinates:41-108)
MSPQRMKLSSPPVTNNEPTATASAVKSCGGGGKETSSSTTRHPVYHGVRKRRWGKWVSEI
REPRKKSRIWLGSFPVPEMAAKAYDVAAFCLKGRKAQLNFPEEIEDLPRPSTCTPRDIQV
AAAKAANAVKIIKMGDDDVAGIDDGDDFWEGIELPELMMSGGGWSPEPFVAGDDATWLVD
GDLYQYQFMACL*

>G2893 (130..981)

>G2893 Amino Acid Sequence (conserved domain in AA coordinates:19-120)
MSNITKKKCNGNEEGAEQRKGPWTLEEDTLLTNYISHNGEGRWNLLAKSSGLKRAGKSCR
LRWLNYLKPDIKRGNLTPQEQLLILELHSKWGNRWSKISKYLPGRTDNDIKNYWRTRVQK
QARQLNIDSNSHKFIEVVRSFWFPRLINEIKDNSYTNNIKANAPDLLGPILRDSKDLGFN
NMDCSTSMSEDLKKTSQFMDFSDLETTMSLEGSRGGSSQCVSEVYSSFPCLEEEYMVAVM
GSSDISALHDCHVADSKYEDDVTQDLMWNMDDIWQFNEYAHFN*

>G340 (97..834)

AAACCAAAATAACTCTTTAGATCATTGCAAGGAAAAATGTTGAAAAGTGCAAGTCCAATG GCATTCTACGATATCGGAGAGCAGCAATACTCTACTTTCGGGTACATTTTAAGCAAACCT GGGAACGCAGGAGCTTACGAGATTGACCCTTCGATCCCAAACATCGACGATGCGATCTAC GGCTCAGATGAGTTCCGTATGTACGCTTACAAAATCAAACGGTGTCCTCGTACTCGTAGC CACGACTGGACGGAGTGTCCCTACGCTCACCGTGGCGAGAAAGCCACACGCCGTGATCCT CGCCGTTACACTTACTGTGCAGTCGCATGCCCGGCTTTCCGAAATGGCGCATGCCACCGT GGCGACTCATGCGAATTCGCACATGGCGTATTCGAGTACTGGCTCCACCCGGCGCGTTAC CGAACACGCGCATGTAACGCCGGGAACTTGTGTCAGAGGAAAGTGTGTTTCTTTGCCCAC GCGCCGGAGCAGCTAAGGCAGTCTGAAGGAAAGCACAGGTGCAGGTACGCATATAGGCCG GTGAGGGCTAGAGGTGGTGGAAACGGCGATGGAGTGACGATGAGAATGGACGACGAGGGT TACGACACGTCACGGTCTCCGGTGAGAAGCGGGAAAGATGATTTAGATAGTAACGAGGAG AAGGTGTTGTTGAAGTGTTGGAGTCGGATGAGCATTGTGGATGATCATTATGAGCCGTCC GATTTGGATTTGGATTTGTCACACTTTGATTGGATCTCAGAGTTGGTCGATTAAATTTGG GAAATCAAAGCAGAGAACAAAAGAAACCCGATAAATAAAGTGGATTTTGTTAAAATCCAC **AAGATCAAGATTCAAGATGAGAGATCTTGTCATGTATATGGTAAATTTAATTGTAATGAT** TTATTGCAATGTCGCAAAAGAAGTTACTTCTCTTTTGCATGTAAACAGATTCTTGATCTTC TATAAGTCTTTGTATTAA

>G340 Amino Acid Sequence (domain in AA coordinates: 37-154)
MLKSASPMAFYDIGEQQYSTFGYILSKPGNAGAYEIDPSIPNIDDAIYGSDEFRMYAYKI
KRCPRTRSHDWTECPYAHRGEKATRRDPRRYTYCAVACPAFRNGACHRGDSCEFAHGVFE
YWLHPARYRTRACNAGNLCQRKVCFFAHAPEQLRQSEGKHRCRYAYRPVRARGGGNGDGV
TMRMDDEGYDTSRSPVRSGKDDLDSNEEKVLLKCWSRMSIVDDHYEPSDLDLDLSHFDWI
SELVD*

>G39 (75..638)

GTTTCCACAGTCCCTGTACTTGTGCATAAAACTGTAAAACACTACTCTGAAAATTTTGCT
TCTGTTAGGATATAATGCCACCCTCTCCTCCTAAATCTCCTTTTATTAGCTCTTCACTCA
AAGGAGCTCATGAAGATCGCAAATTTAAATGCTATAGGGGTGTCCGAAAGAGGTCTTGGG
GCAAATGGGTGTCTGAAATCAGAGTTCCAAAGACTGGACGAATATGGCTAGGTTCAT
ACGATGCTCCAGAGAAGGCAGCTAGAGCCTATGATGCTGCTTTGTTCTGTATTAGGGGTG
AGAAGGGAGTTTACAATTTTCCCACTGATAAAAAGCCGCAGCTTCCAGAAGGTTCTGTCC
GGCCTCTGTCCAAGCTCGACATACAGACAATAGCAACAAACTATGCTTCATCAGTTGTGC
ATGTACCTTCCCATGCCACCACACTCCCGGCAACAACCCAGGTTCCCTTGAAGTTCCTG
CTTCCTCTGATGTTTCTGCTTCTACTGAGATTACAGAGATGGTCGATGAATATTATCTCC
CAACCGATGCAACTGCAGAATCAATATTCTCAGTTGAAGACTTACAACTGGACAGTTTCC

WO 03/013227 PCT/US02/25805 27/286

TCATGATGGACATTGATTGGATAAACAATCTAATCTGATGTGTAACGTCACTTGCAGTGA CATTTAATATGGTTTANCTATCAGTTACCTGTCTGCTTCTTGTAAGGGTATACTTGGATC CTTGTCTTTGAACTTGTTTTATTTAGCATGCAAA

>G39 Amino Acid Sequence (domain in AA coordinates: 24-90) MPPSPPKSPFISSSLKGAHEDRKFKCYRGVRKRSWGKWVSEIRVPKTGRRIWLGSYDAPE KAARAYDAALFCIRGEKGVYNFPTDKKPQLPEGSVRPLSKLDIQTIATNYASSVVHVPSH ATTLPATTQVPSEVPASSDVSASTEITEMVDEYYLPTDATAESIFSVEDLQLDSFLMMDI DWINNLI*

>G439 (128..967)

TATAAATCTTCGTTTCTACTTTTTTTTCTTCCATAATATAGTCAATTCGTTTTCTTAATT TATACAAATGGCAATGGCTTTAAACATGAATGCTTACGTAGACGAGTTCATGGAAGCTCT TGAACCATTCATGAAGGTAACTTCATCTTCTTCTACTTCGAATTCATCAAAATCCAAAACC ATTAACTCCTAATTCATCCCTAATAATGACCAAGTCTTACCGGTATCTAACCAAACCGG TCTCCGGCAAAACCAATCTCGTCGTCGCGCTGGTAGTCATCTTCTCACCGCTAAACCAAC CTCAATGAAGAAAATCGACGTAGCAACTAAACCGGTTAAACTATACCGAGGCGTAAGACA GAGGCAATGGGGTAAATGGGTAGCTGAGATTCGGCTACCTAAAAACCGAACCCGGTTATG GCTCGGTACGTTCGAAACGGCTCAAGAAGCTGCATTAGCTTACGATCAAGCAGCTCATAA GATCAGAGGAGACAACGCTCGTCTCAATTTCCCAGACATTGTTCGTCAAGGACACTATAA ACAGATATTGTCTCCGTCTATCAACGCAAAGATCGAATCCATCTGCAATAGTTCTGATCT TCCACTGCCTCAGATCGAGAAACAGAACAAAACAGAGGAGGTGCTCTCTGGTTTTTCCAA ACCGGAGAAAGAACCGGAATTTGGGGAGATATACGGATGCGGATACTCGGGCTCATCTCC TGAGTCGGATATAACGTTGTTGGATTTCTCAAGCGACTGTGTGAAAGAAGATGAGAGTTT CTTCTGAATCCATTTTATCTTTTTGATTCATTTGTCTCTAAATTGTAGAATTTTATTTTC AGAGCTTTGTAAGGGAAGTTCTTGAATGAGAGTTGCAGAGGACTAGTGGAACCTAACTCT GTTTTCTTTTGTAAGTATTGTTTATAATGGGCCGTTGAATGGGCCTTATTGATTTAAACA

>G439 Amino Acid Sequence (domain in AA coordinates: 110-177) MAMALNMNAYVDEFMEALEPFMKVTSSSSTSNSSNPKPLTPNFIPNNDQVLPVSNQTGPI GLNQLTPTQILQIQTELHLRQNQSRRRAGSHLLTAKPTSMKKIDVATKPVKLYRGVRQRQ WGKWVAEIRLPKNRTRLWLGTFETAQEAALAYDQAAHKIRGDNARLNFPDIVRQGHYKQI LSPSINAKIESICNSSDLPLPQIEKQNKTEEVLSGFSKPEKEPEFGEIYGCGYSGSSPES DITLLDFSSDCVKEDESFLMGLHKYPSLEIDWDAIEKLF*

>G470 (1..2580)

ATGGCGAGTTCGGAGGTTTCAATGAAAGGTAATCGTGGAGGAGATAACTTCTCCTCCTCT GGTTTTAGTGACCCTAAGGAGACTAGAAATGTCTCCGTCGCCGGCGAGGGGCAAAAAAAGT AATTCTACCCGATCCGCTGCGGCTGAGCGTGCTTTGGACCCTGAGGCTGCTCTTTACAGA GAGCTATGGCACGCTTGTGGTCCGCTTGTGACGGTTCCTAGACAAGACGACCGAGTC TTCTATTTTCCTCAAGGACACATCGAGCAGGTGGAGGCTTCGACGAACCAGGCGGCAGAA CAACAGATGCCTCTCTATGATCTTCCGTCAAAGCTTCTCTGTCGAGTTATTAATGTAGAT TTAAAGGCAGAGCAGATACAGATGAAGTTTATGCGCAGATTACTCTTCTTCCTGAGGCT AATCAAGACGAGAATGCAATTGAGAAAGAAGCGCCTCTTCCTCCACCTCCGAGGTTCCAG GTGCATTCGTTCTGCAAAACCTTGACTGCATCCGACACAAGTACACATGGTGGATTTTCT GTTCTTAGGCGACATGCGGATGAATGTCTCCCACCTCTGGATATGTCTCGACAGCCTCCC ACTCAAGAGTTAGTTGCAAAGGATTTGCATGCAAATGAGTGGCGATTCAGACATATATTC AGGCTAGTTGCAGGCGATGCGTTTATATTTCTAAGGGGCGAGAATGGAGAATTAAGAGTT GGTGTAAGGCGTGCGATGCGACAACAAGGAAACGTGCCGTCTTCTGTTATATCTAGCCAT AGCATGCATCTTGGAGTACTGGCCACCGCATGGCATGCCATTTCAACAGGGACTATGTTT ACAGTCTACTACAAACCCAGGACGAGCCCATCTGAGTTTATTGTTCCGTTCGATCAGTAT ATGGAGTCTGTTAAGAATAACTACTCTATTGGCATGAGATTCAAAATGAGATTTGAAGGC GAAGAGGCTCCTGAGCAGAGGTTTACTGGCACAATCGTTGGGATTGAAGAGTCTGATCCT ACTAGGTGGCCAAAATCAAAGTGGAGATCCCTCAAGGTGAGATGGGATGAGACTTCTAGT ATTCCTCGACCTGATAGAGTATCTCCGTGGAAAGTAGAGCCAGCTCTTGCTCCTCCTGCT TTGAGTCCTGTTCCAATGCCTAGGCCTAAGAGGCCCAGATCAAATATAGCACCTTCATCT

CCTGACTCTTCGATGCTTACCAGAGAAGGTACAACTAAGGCAAACATGGACCCTTTACCA GCAAGCGGACTTTCAAGGGTCTTGCAAGGTCAAGAATACTCGACCTTGAGGACGAAACAT ACTGAGAGTGTAGAGTGTGATGCTCCTGAGAATTCTGTTGTCTGGCAATCTTCAGCGGAT GATGATAAGGTTGACGTGGTTTCGGGTTCTAGAAGATATGGATCTGAGAACTGGATGTCC TCAGCCAGGCATGAACCTACTTACACAGATTTGCTCTCCGGCTTTGGGACTAACATAGAT CCATCCCATGGTCAGCGGATACCTTTTTATGACCATTCATCATCACCTTCTATGCCTGCA AAGAGAATCTTGAGTGATTCAGAAGGCAAGTTCGATTATCTTGCTAACCAGTGGCAGATG ATACACTCTGGTCTCTCCCTGAAGTTACATGAATCTCCTAAGGTACCTGCAGCAACTGAT GCGTCTCCCAAGGGCGATGCAATGTTAAATACAGCGAATATCCTGTTCTTAATGGTCTA TCGACTGAGAATGCTGGTGGTAACTGGCCAATACGTCCACGTGCTTTGAATTATTATGAG GAAGTGGTCAATGCTCAAGCGCAAGCTCAGGCTAGGGAGCAAGTAACAAAACAACCCTTC ACGATACAAGAGGAGACAGCAAAGTCAAGAGAAGGGAACTGCAGGCTCTTTGGCATTCCT CTGACCAACAACATGAATGGGACAGACTCAACCATGTCTCAGAGAAACAACTTGAATGAT GCTGCGGGGCTTACACAGATAGCATCACCAAAGGTTCAGGACCTTTCAGATCAGTCAAAA GGGTCAAAATCAACAAACGATCATCGTGAACAGGGAAGACCATTCCAGACTAATAATCCT CATCCGAAGGATGCTCAAACGAAAACCAACTCAAGTAGGAGTTGCACAAAGGTTCACAAG CAGGGAATTGCACTTGGCCGTTCAGTGGATCTTTCAAAGTTCCAAAACTATGAGGAGTTA TGGTTGATAGTTTACACAGATGAAGAGAATGATATGATGCTTGTTGGTGACGATCCTTGG CAGGAGTTTTGTTGCATGGTTCGCAAAATCTTCATATACACGAAAGAGGAAGTGAGGAAG ATGAACCCGGGGACTTTAAGCTGTAGGAGCGAGGAAGAAGCAGTTGTTGGGGAAGGATCA GATGCAAAGGACGCCAAGTCTGCATCAAATCCTTCATTGTCCAGCGCTGGGAACTCTTAA >G470 Amino Acid Sequence (domain in AA coordinates: 61-393) MASSEVSMKGNRGGDNFSSSGFSDPKETRNVSVAGEGQKSNSTRSAAAERALDPEAALYR ELWHACAGPLVTVPRODDRVFYFPOGHIEQVEASTNQAAEQQMPLYDLPSKLLCRVINVD LKAEADTDEVYAQITLLPEANQDENAIEKEAPLPPPPRFQVHSFCKTLTASDTSTHGGFS VLRRHADECLPPLDMSRQPPTQELVAKDLHANEWRFRHIFRGQPRRHLLQSGWSVFVSSK RLVAGDAFIFLRGENGELRVGVRRAMRQQGNVPSSVISSHSMHLGVLATAWHAISTGTMF TVYYKPRTSPSEFIVPFDQYMESVKNNYSIGMRFKMRFEGEEAPEQRFTGTIVGIEESDP TRWPKSKWRSLKVRWDETSSIPRPDRVSPWKVEPALAPPALSPVPMPRPKRPRSNIAPSS PDSSMLTREGTTKANMDPLPASGLSRVLQGQEYSTLRTKHTESVECDAPENSVVWQSSAD DDKVDVVSGSRRYGSENWMSSARHEPTYTDLLSGFGTNIDPSHGORIPFYDHSSSPSMPA KRILSDSEGKFDYLANOWOMIHSGLSLKLHESPKVPAATDASLQGRCNVKYSEYPVLNGL STENAGGNWPIRPRALNYYEEVVNAQAQAQAREQVTKQPFTIQEETAKSREGNCRLFGIP LTNNMNGTDSTMSQRNNLNDAAGLTQLASPKVQDLSDQSKGSKSTNDHREQGRPFQTNNP HPKDAQTKTNSSRSCTKVHKQGIALGRSVDLSKFQNYEELVAELDRLFEFNGELMAPKKD WLIVYTDEENDMMLVGDDPWQEFCCMVRKIFIYTKEEVRKMNPGTLSCRSEEEAVVGEGS DAKDAKSASNPSLSSAGNS*

>G652 (1..606)

>G671 (61..1119)

TTCACTTGAGAACAACCCCCTTTGAACTCGATCAAGAAAGCTAAGTTTGAAGAATCAAGA

GAGGAAGATCAGAAGCTTCTCTCTTACCTTAACCGCCACGGTGAAGGTGGATGGCGAACT CTCCCCGAAAAAGCTGGACTCAAGAGATGCGGCAAAAGCTGCAGACTGAGATGGGCCAAT TATCTTAGACCTGACATCAAAAGAGGAGAGTTCACTGAAGACGAAGAACGTTCAATCATC TCTCTTCACGCCCTTCACGGCAACAAATGGTCTGCTATAGCTCGTGGACTACCAGGAAGA ACCGATAACGAGATCAAGAACTACTGGAACACTCATATCAAAAAACGTTTGATCAAGAAA GGTATTGATCCAGTTACACACAAGGGCATAACCTCCGGTACCGACAAATCAGAAAACCTC CCGGAGAAACAAAATGTTAATCTGACAACTAGTGACCATGATCTTGATAATGACAAGGCG AAGAAGAACAACAAGAATTTTGGATTATCATCGGCTAGTTTCTTGAACAAAGTAGCTAAT AGGTTCGGAAAGAGAATCAATCAGAGTGTTCTGTCTGAGATTATCGGAAGTGGAGGCCCA CTTGCTTCTACTAGTCACACTACTAATACTACAACTACAAGTGTTTCCGTTGACTCTGAA TCAGTTAAGTCAACGAGTTCTTCCTTCGCACCAACCTCGAATCTTCTCTGCCATGGGACC GTTGCAACAACACCAGTTTCATCGAACTTTGACGTTGATGGTAACGTTAATCTGACGTGT TCTTCGTCCACGTTCTCTGATTCCTCCGTTAACAATCCTCTAATGTACTGCGATAATTTC GTTGGTAATAACAACGTTGATGATGAGGATACTATCGGGTTCTCCACATTTCTGAATGAT GAAGATTTCATGATGTTGGAGGAGTCTTGTGTTGAAAACACTGCGTTCATGAAAGAACTT ACGAGGTTTCTTCACGAGGATGAAAACGACGTCGTTGATGTGACGCCGGTCTATGAACGT CAAGACTTGTTTGACGAAATTGATAACTATTTTGGATGAGTGAAACTCATAATCGATGAA TCCCACGTGACCATGTCAATATGATGTCTATGGATATGTTACCTTGATGATGTTGATGGT AAAA

>G671 Amino Acid Sequence (domain in AA coordinates: 15-115)
MVRTPCCKAELGLKKGAWTPEEDQKLLSYLNRHGEGGWRTLPEKAGLKRCGKSCRLRWAN
YLRPDIKRGEFTEDEERSIISLHALHGNKWSAIARGLPGRTDNEIKNYWNTHIKKRLIKK
GIDPVTHKGITSGTDKSENLPEKQNVNLTTSDHDLDNDKAKKNNKNFGLSSASFLNKVAN
RFGKRINQSVLSEIIGSGGPLASTSHTTNTTTTSVSVDSESVKSTSSSFAPTSNLLCHGT
VATTPVSSNFDVDGNVNLTCSSSTFSDSSVNNPLMYCDNFVGNNNVDDEDTIGFSTFLND
EDFMMLEESCVENTAFMKELTRFLHEDENDVVDVTPVYERQDLFDEIDNYFG*
>G779 (110..712)

>G779 Amino Acid Sequence (domain in AA coordinates: 126-182)
MKMENGMYKKKGVCDSCVSSKSRSNHSPKRSMMEPQPHHLLMDWNKANDLLTQEHAAFLN
DPHHLMLDPPPETLIHLDEDEEYDEDMDAMKEMQYMIAVMQPVDIDPATVPKPNRRNVRI
SDDPQTVVARRRRERISEKIRILKRIVPGGAKMDTASMLDEAIRYTKFLKRQVRILQPHS
QIGAPMANPSYLCYYHNSQP*

>G962 (148..1392)

CGTCGACTCTCTACTCAACACCACTCAATTTCATCTCTTTTTTCCCTTCCATTGTTAGT
ATAAAAACCAAGCAAACCCTTAATCACTTTTCATCATCATATATCACCTTAATCCACATG
ATACACATATCTAGTCTTTTTGATATATGGCAATTGTATCCTCCACAACAAGCATCATT
CCCATGAGTAACCAAGTCAACAATAACGAAAAAGGTATAGAAGACAATGATCATAGAGGC
GGCCAAGAGAGTCATGTCCAAAATGAAGATGAAGCTGATCATGATCATGACATGGTC
ATGCCCGGATTTAGATTCCATCCTACCGAAGAAGAACTCATAGAGTTTTACCTTCGCCGA
AAAGTTGAAGGCAAACGCTTTAATGTAGAACTCATCACTTTCCTCGATCTTTATCGCTAT

GATCCTTGGGAACTTCCTGCTATGGCGGCGATAGGAGAGAAAGAGTGGTACTTCTATGTG CCAAGAGATCGGAAATATAGAAATGGAGATAGACCGAACCGAGTAACGACTTCAGGATAT TGGAAAGCCACCGGAGCTGATAGGATGATCAGATCGGAGACTTCTCGGCCTATCGGATTA AAGAAAACCCTAGTTTTCTACTCTGGTAAAGCCCCTAAAGGCACTCGTACTAGTTGGATC ATGAACGAGTATCGTCTTCCGCACCATGAAACCGAGAAGTACCAAAAGGCTGAAATATCA TCCACAAGACATCATAACCATAACTCATCGACATCATCCCGTTTAGCCTTAAGACAACAA CAACACCATTCATCCTCCTCTAATCATTCCGACAACAACCTTAACAACAACAACAACATC AACAATCTCGAGAAGCTCTCCACCGAATATTCCGGCGACGGCAGCACAACAACAACGACC ACAAACAGTAACTCTGACGTTACCATTGCTCTAGCCAATCAAAACATATATCGTCCAATG CCTTACGACACAAGCAACAACACTGATAGTCTCTACGAGAAATCATCAAGACGATGAT GAAACTGCCATTGTTGACGATCTTCAAAGACTAGTTAACTACCAAATATCAGATGGAGGT AACATCAATCACCAATACTTTCAAATTGCTCAACAGTTTCATCATACTCAACAACAAAAT GCTAACGCAAACGCATTACAATTGGTGGCTGCGGCGACTACAGCGACAACGCTAATGCCT CAAACTCAAGCGGCGTTAGCTATGAACATGATTCCTGCAGGAACGATTCCAAACAATGCT TTGTGGGATATGTGGAATCCAATAGTACCAGATGGAAACAGAGATCACTATACTAATATT

>G962 Amino Acid Sequence (domain in AA coordinates: 53-175)
MAIVSSTTSIIPMSNQVNNNEKGIEDNDHRGGQESHVQNEDEADDHDHDMVMPGFRFHPT
EEELIEFYLRKVEGKRFNVELITFLDLYRYDPWELPAMAAIGEKEWYFYVPRDRKYRNG
DRPNRVTTSGYWKATGADRMIRSETSRPIGLKKTLVFYSGKAPKGTRTSWIMNEYRLPHH
ETEKYQKAEISLCRVYKRPGVEDHPSVPRSLSTRHHNHNSSTSSRLALRQQQHHSSSSNH
SDNNLNNNNNINNLEKLSTEYSGDGSTTTTTTNSNSDVTIALANQNIYRPMPYDTSNNTL
IVSTRNHQDDDETAIVDDLQRLVNYQISDGGNINHQYFQIAQQFHHTQQQNANANALQLV
AAATTATTLMPQTQAALAMNMIPAGTIPNNALWDMWNPIVPDGNRDHYTNIPFK*

>G977 Amino Acid Sequence (domain in AA coordinates: 5-72)
MARPQQRFRGVRQRHWGSWVSEIRHPLLKTRIWLGTFETAEDAARAYDEAARLMCGPRAR
TNFPYNPNAIPTSSKLLSATLTAKLHKCYMASLQMTKQTQTQTQTARSQSADSDGVT
ANESHLNRGVTETTEIKWEDGNANMQQNFRPLEEDHIEQMIEELLHYGSIELCSVLPTQT
L*

>G1063 (241..966)

GTTAAAGAAGATGGATGGGCCACAAGTTGCTATATAAATCCTTCCACTTCTTGTTGTATA
CTATTGCTTGAGTTCTGATTGGGCACAGTAGTACCATTGCCATTTCTCTCACACATACCG
TCTCTTTCTCTCATCATCAATCATCAATCATCCAAAAGAAAAAACCCTAAAATTTCACTT
GTAAGCTTTTCACCAGTTTCTCTCCCATACCCATTTTATCAGCTTCTCCATATCTTTCTCT
ATGGATTCTGACATAATGAACATGATGATGATGATGAGAAGAAGCCTTACCCTGAGTTTTGT
AACCCTAATTCCTCTTTCTTCTCCCGACCACAACAACACTTACCCTTTTCTCTTTAAC
TCCACTCATTACCAGTCCGATCACTCAATGACCAACAACACCAGGTTTCCGCTACGGTTCC
GGTTTACTCACTAACCCTTCTTCTATCTCTCCCAACACACCAGCTTACTCTTCCGTTTTCTT
GACAAAAGAAACAACAGTAACAACAACAATAATGGCACGAACATGGCAGCTATGCGAGAG
ATGATCTTCCGTATCGCCGTGATGCAACCGATCCATATCGATCCCGAGGCGGTTAAGCCA

>G1063 Amino Acid Sequence (domain in aa coordinates: 131-182)
MDSDIMNMMMHQMEKLPEFCNPNSSFFSPDHNNTYPFLFNSTHYQSDHSMTNBPGFRYGS
GLLTNPSSISPNTAYSSVFLDKRNNSNNNNNGTNMAAMREMIFRIAVMQPIHIDPEAVKP
PKRRNVRISKDPQSVAARHRRERISERIRILQRLVPGGTKMDTASMLDEAIHYVKFLKKQ
VQSLEEQAVVTGGGGGGGGRVLIGGGGMTAASGGGGGGGVVMKGCGTVGTHQMVGNAQIL
P*

>G1140 (67..729)

ATCCAAGATCCTCCAACTCACAGAAAGGCAGATTCAAGAACAGTAGTGAAGGAGAGATCT GGTAAAATGGCGAGAGAGAAGATAAGGATAAAGAAGATTGATAACATAACAGCGAGACAA GTTACTTTCTCAAAGAGAAGAAGAGGAATCTTCAAGAAAGCCGATGAACTTTCAGTTCTT TGCGATGCTGATGTTGCTCTCATCATCTTCTCTGCCACCGGAAAGCTCTTCGAGTTCTCC AGCTCAAGAATGAGAGACATATTGGGAAGGTATAGTCTTCATGCAAGTAACATCAACAAA TTGATGGATCCACCTTCTACTCATCTCCGGCTTGAGAATTGTAACCTCTCCAGACTAAGT AAGGAAGTCGAAGACAAAACCAAGCAGCTACGGAAACTGAGAGGAGAGGATCTTGATGGA TTGAACTTAGAAGAGTTGCAGCGGCTGGAGAAACTACTTGAATCCGGACTTAGCCGTGTG TCTGAAAAGAAGGGCGAGTGTGATGAGCCAAATTTTCTCACTTGAGAAACGGGGATCG GAATTGGTGGATGAGAATAAGAGACTGAGGGATAAACTAGAGACGTTGGAAAGGGCAAAA CTGACGACGCTTAAAGAGGCTTTGGAGACAGAGTCGGTGACCACAAATGTGTCAAGCTAC GACAGTGGAACTCCCCTTGAGGATGACTCCGACACTTCCCTGAAGCTTGGGCTTCCATCT TGGGAATGAATCTGAGAGAGAGAAGATCCAGCAGAGTTGACTTCGATGGAAGCCCACAA ATATTAAGTCTACCTTTTCCCTTTCTTTTCTTTGAATAAGTGTTGAAAAAAGAATTGAGAT GGGAAGGATGAATTCTCATTGCATTGCAGAGAAGCAAGTTTCAGATATTGTACGTGTTAT

>G1140 Amino Acid Sequence (conserved domain in AA coordinates:2-57)
MAREKIRIKKIDNITARQVTFSKRRRGIFKKADELSVLCDADVALIIFSATGKLFEFSSS
RMRDILGRYSLHASNINKLMDPPSTHLRLENCNLSRLSKEVEDKTKQLRKLRGEDLDGLN
LEELQRLEKLLESGLSRVSEKKGECVMSQIFSLEKRGSELVDENKRLRDKLETLERAKLT
TLKEALETESVTTNVSSYDSGTPLEDDSDTSLKLGLPSWE*

>G1425 (43..1005)

ACTCTCTCAAACCATAAAAAATATTCTCCGATCATCATTTTAATGGAGAGTACAGATTCT TCCGGTGGTCCTCCGCCGCCGCAACCAAACCTCCCTCCAGGATTCCGGTTTCATCCAACA GACGAAGAACTTGTAATTCATTACCTCAAACGCAAAGCAGATTCTGTTCCTTTACCAGTC GCGATCATCGCCGACGTTGATCTTTACAAATTTGATCCATGGGAACTTCCCGCGAAAGCT TCGTTTGGAGAACAAGAATGGTATTTTTCAGTCCAAGAGATCGGAAATATCCCAACGGA GCTAGACCTAACCGAGCTGCGACTTCCGGTTATTGGAAAGCGACTGGTACAGATAAACCG GTGATTTCAACCGGCGGTGGTGGTAGTAAAAAAGTGGGAGTTAAAAAAGGCTCTAGTGTTT TACAGTGGTAAACCACCAAAAGGAGTTAAATCAGATTGGATTATGCATGAATATCGGTTA ACTGATAATAAACCTACTCACATTTGTGACTTCGGCAACAAGAAAAACTCTCTCAGGCTT GATGATTGGGTGTTGTCGTATCTACAAGAAAAACAATAGTACAGCATCTAGACATCAT GATGATCGATTCCGTCATGTTCCTCCTGGTCTTCACTTCCCGGCGATTTTTTCTGACAAT AATGATCCGACGGCTATATATGATGGTGGCGGCGGCGGATACGGAGGTGGAAGTTACTCG ATGAATCATTGTTTCGCATCTGGATCAAAGCAGGAGCAGTTGTTTCCACCGGTGATGATG ATGACTAGTCTAAATCAAGATTCCGGTATTGGATCGTCGTCGTCACCTAGCAAGAGATTT AACGGCGGCGCGTTGGAGATTGTTCGACTTCTATGGCGGCGACGCCGTTAATGCAGAAC CAAGGTGGGATTTACCAATTGCCTGGTTTGAATTGGTATTCTTGAAAACAATTTACGATG AAGAATTTTTAAAATTTGTGTATATATATACGGTTTGAGTGATTAGGGGGCATTGGGGGA

>G1425 Amino Acid Sequence (domain in AA coordinates: 20-173)
MESTDSSGGPPPPQPNLPPGFRFHPTDEELVIHYLKRKADSVPLPVAIIADVDLYKFDPW
ELPAKASFGEQEWYFFSPRDRKYPNGARPNRAATSGYWKATGTDKPVISTGGGGSKKVGV
KKALVFYSGKPPKGVKSDWIMHEYRLTDNKPTHICDFGNKKNSLRLDDWVLCRIYKKNNS
TASRHHHLHHIHLDNDHHRHDMMIDDDRFRHVPPGLHFPAIFSDNNDPTAIYDGGGGGY
GGGSYSMNHCFASGSKQEQLFPPVMMMTSLNQDSGIGSSSSPSKRFNGGGVGDCSTSMAA
TPLMQNQGGIYQLPGLNWYS*

>G1449 (105..581)

>G1449 Amino Acid Sequence (domain in AA coordinates: 48-53,74-107,122-152)
MEVSNSCSSFSSSSVDSTKPSPSESSVNLSLSLTFPSTSPQREARQDWPPIKSRLRDTLK
GRRLLRRGDDTSLFVKVYMEGVPIGRKLDLCVFSGYESLLENLSHMFDTSIICGNRDRKH
HVLTYEDKDGDWMMVGDIPWDMFLETVRRLKITRPERY*

>G1897 (1..678)

ATGCCTTCTGAATTCAGTGAATCTCGTCGGGTTCCTAAGATTCCCCACGGCCAAGGAGGA
TCTGTTGCGATTCCGACGGATCAACAAGAGCAGCTTTCTTGTCCTCGCTGTGAATCAACC
AACACCAAGTTCTGTTACTACAACAACTACAACTTCTCACAACCTCGTCATTTCTGCAAG
TCTTGTCGCCGTTACTGGACTCATGGAGGTACTCTCCGTGACATTCCCGTCGTGGTGTT
TCCCGTAAAAGCTCAAAACGTTCCCGGACTTATTCCTCTGCCGCTACCACCTCCGTTGTC
GGAAGCCGGAACTTTCCCTTACAAGCTACGCCTGTTCTTTTCCCTCAGTCGTCTTCCAAC
GGCGGTATCACGACGGCGAAGGGAAGTGCTTCGTCGTTCTATGGCGGTTTCAGCTCTTTG
ATCAACTACAACGCCGCCGTGAGCAGAAATGGGCCTGGTGGCGGGTTTAATGGGCCAGAT
GCTTTTGGTCTTGGGCTTGGTCACGGGTCGTATTATGAGGACGTCAGATATGGGCAAGGA
ATAACGGTCTGGCCGTTTTCAAGTGGCGCTACTGATGCTGCAACTACTACAAGCCACATT
GCTCAAATACCCGCCACGTGGCAGTTTGAAGGTCAAGAGAGAAAGTCGGGTTCGTCT
GGAGACTACGTAGCGTGA

>G1897 Amino Acid Sequence (domain in AA coordinates:34-62)
MPSEFSESRRVPKIPHGQGGSVAIPTDQQEQLSCPRCESTNTKFCYYNNYNFSQPRHFCK
SCRRYWTHGGTLRDIPVGGVSRKSSKRSRTYSSAATTSVVGSRNFPLQATPVLFPQSSSN
GGITTAKGSASSFYGGFSSLINYNAAVSRNGPGGGFNGPDAFGLGLGHGSYYEDVRYGQG
ITVWPFSSGATDAATTTSHIAQIPATWQFEGQESKVGFVSGDYVA*

>G2143 (89..784)

TCTTCTTCTCCCATACCTTATCTCACCAGCTTCTCCATATCTCTCAAAGAAAAAACA
AACCCTATAAATTCCACAAAAAAAGGAGGATGGATAACTCCGACATTCTAATGAACATGAT
GATGCAGCAGATGGAGAAGCTTCCTGAACACTCTCTAACTCAAACCCTAACCCTAATCC
CCATAACATTATGATGCTTTCTGAATCCAACACCCACCCGTTCTTCTTCAACCCCACTCA
TTCTCATCTCCCATTTGACCAAACCATGCCTCACCACCAACCCGGTTTAAATTTCCGGTA
CGCCCCTCCCCGTCATCATCTCTCCCCGGAGAAGAGAGGAGGCTGCAGCGACAACGCCAA
CATGGCGGCGATGAGAGAGATGATCTTTCGAATAGCCGTGATGCAGCCTATACATATTGA
TCCGGAATCCGTAAAGCCACCAAAGAGAAAGAACGTGAGGATCTCTAAGGATCCACAGAG
CGTGGCAGCTCGGCATCGAAGGGAGAGGATAAGCGGGGATTCGGATTCTTCAGCGGCT
TGTTCCCGGTGGGACTAAGATGGATACGGCTCGATGCTCGATTCCATTACGT

>G2143 Amino Acid Sequence (domain in aa coordinates: 128-179)
MDNSDILMNMMMQQMEKLPEHFSNSNPNPNPHNIMMLSESNTHPFFFNPTHSHLPFDQTM
PHHQPGLNFRYAPSPSSSLPEKRGGCSDNANMAAMREMIFRIAVMQPIHIDPESVKPPKR
KNVRISKDPQSVAARHRERISERIRILQRLVPGGTKMDTASMLDEAIHYVKFLKKQVQS
LEEHAVVNGGGMTAVAGGALAGTVGGGYGGKGCGIMRSDHHQMLGNAQILR*
>G2535 (1..1005)

ATGAACATATCAGTAAACGGACAGTCACAAGTACCTCCTGGCTTTAGGTTTCACCCAACC GATGTTATTCCTGACATTGATCTCAACAAGCTCGAGCCTTGGGATATTCAAGAGATGTGT AAGATTGGAACGACGCCGCAAAACGATTGGTACTTTTATAGCCATAAGGACAAGAAGTAT CCCACCGGGACTAGAACCAACAGAGCCACCACGGTCGGATTTTGGAAAGCGACGGGACGT GACAAGACCATATATACCAATGGTGATAGAATCGGGATGCGAAAGACGCTTGTCTTCTAC AAAGGTCGAGCCCCTCATGGTCAGAAATCCGATTGGATCATGCACGAATATAGACTCGAC GAGAGTGTATTAATCTCCTCGTGTGGCGATCATGACGTCAACGTAGAAACGTGTGATGTC ATAGGAAGTGACGAAGGATGGGTGTGTCGTGTTTTCAAGAAAAATAACCTTTGCAAA ${\tt AACATGATTAGTAGTAGCCCGGCGAGTTCGGTGAAAACGCCGTCGTTCAATGAGGAGACT}$ ATCGAGCAACTTCTCGAAGTTATGGGGCAATCTTGTAAAGGAGAGATAGTTTTAGACCCT TTCTTAAAACTCCCTAACCTCGAATGCCATAACAACACCACCATCACGAGTTATCAGTGG TTAATCGACGACCAAGTCAACAACTGCCACGTCAGCAAAGTTATGGATCCCAGCTTCATC ACTAGCTGGGCCGCTTTGGATCGGCTCGTTGCCTCACAGTTAAATGGGCCCAACTCGTAT TCAATACCAGCCGTTAATGAGACTTCACAATCACCGTATCATGGACTGAACCGGTCCGGT GATTTCGCGAGAACGACATGCCACTTGTTGAACGGTAGTGGATAA

>G2535 Amino Acid Sequence (conserved domain in AA coordinates:11-114)
MNISVNGQSQVPPGFRFHPTEEELLKYYLRKKISNIKIDLDVIPDIDLNKLEPWDIQEMC
KIGTTPQNDWYFYSHKDKKYPTGTRTNRATTVGFWKATGRDKTIYTNGDRIGMRKTLVFY
KGRAPHGQKSDWIMHEYRLDESVLISSCGDHDVNVETCDVIGSDEGWVVCRVFKKNNLCK
NMISSSPASSVKTPSFNEETIEQLLEVMGQSCKGEIVLDPFLKLPNLECHNNTTITSYQW
LIDDQVNNCHVSKVMDPSFITSWAALDRLVASQLNGPNSYSIPAVNETSQSPYHGLNRSG
CNTGLTPDYYIPEIDLWNEADFARTTCHLLNGSG*

>G2557 (94..1215) TCGACTTCCTGTGAACTCATCTGTTTGTTCTCTTCTTCCGGTTTCACTTTTTCATGTCCT GCCGTTATTACAACGAGGATTGTGTTTGATCCGATGGAAGGATTGGAATCTGTGTACGCT CAAGCTATGTATGGAATGACACGAGAGAGCAAAATCATGGAGCATCAAGGATCAGATTTG ATTTGGGGAGGAATGAGCTAATGGCTCGAGAACTCTGTTCTTCTTCTTCTTATCACCAC CAACTCATTAATCCGAATCTTAGCAGCTGTTTCATGTCTGATCTTGGAGTCTTAGGTGAG ATTCAACAGCAGCAACATGTTGGCAACAGAGCTAGCTCGATAGATCCATCATCACTCGAT TGTTTGTTATCTGCGACGTCGAATAGCAACAACACCTCGACGGAGGACGATGAAGGAATA TCTGTGCTTTTCTCAGATTGTCAGACTCTTTGGAGCTTTGGTGGAGTCTCATCTGCAGAG TCTGAGAACAGAGAGATCACTACTGAGACGACAACGATAAAGCCTAAGCCTTTGAAG AGAAACAGAGGAGGAGATGGAGGAACTACTGAGACTACAACAACAACAACAAAAAACCTAAG TCTTTGAAGAGAAACAGAGGAGACGAGACAGGAAGTCACTTTAGTCTTGTTCATCCTCAA AAACCAAGAACAGAAAAGAACGAGGCGGTTCTTCGAACATTAGTTTCCAACATTCAACT TGTTTGTCTGACAATGTCGAGCCCGATGCTGAGGCGATTGCACAAATGAAGGAGATGATA TACAGAGCGGCTGCATTTAGACCGGTGAATTTCGGGTTAGAGATTGTGGAGAAGCCTAAG AGGAAGACGTCAAGATATCGACGGATCCTCAAACGGTTGCAGCGAGACAGAGAAGGGAG ${\tt AGGATAAGTGAGAAGATTAGGGTTTTACAAACATTGGTTCCAGGTGGGACGAAGATGGAT}$ ACTGCATCAATGCTTGATGAAGCTGCTAATTATCTCAAGTTCCTTAGAGCACAAGTAAAA GCTTTAGAAAACTTGAGACCCAAGCTTGACCAAACCAATCTCTCTTTCTCTTCTGCTCCT ACATCGTTTCCATTATTCCACCCATCTTTTCTTCCATTGCAAAATCCTAATCAAATCCAT CATCCAGAGTGTTGACAGATTATAAACTTTTGAGTTTCATCATCATCAACAGAATCATGG CGTCTTGATTGTTTTAGCAGTTCTCAAGAAAGGCAACTTCTGTGACAAGGGTGGTGTCGG GCAGTGTTGTTTACACTTTCCAGTCTTTGTTTTTGCATTTCTTTTTATATAAAGTTTGTAT TTTATATAGAATCTGTGGAATTCGAGGGTTGAAATATTGTGAAAAAACAGAGCCGCAAGAG GTTAATTACAGTCTCTGCAATATTTTCAACCTTTTATTACTTTATTAGAGTAAAGATAGC

>G2557 Amino Acid Sequence (domain in aa coordinates: 278-328) MEGLESVYAQAMYGMTRESKIMEHQGSDLIWGGNELMARELCSSSSYHHQLINPNLSSCF MSDLGVLGEIQQQQHVGNRASSIDPSSLDCLLSATSNSNNTSTEDDEGISVLFSDCQTLW SFGGVSSAESENREITTETTTIKPKPLKRNRGGDGGTTETTTTTKPKSLKRNRGDETG SHFSLVHPQDDSEKGGFKLIYDENQSKSKKPRTEKERGGSSNISFQHSTCLSDNVEPDAE AIAOMKEMIYRAAAFRPVNFGLEIVEKPKRKNVKISTDPQTVAARQRRERISEKIRVLQT LVPGGTKMDTASMLDEAANYLKFLRAQVKALENLRPKLDQTNLSFSSAPTSFPLFHPSFL PLONPNOIHHPEC*

>G259 (52..786)

GAGATCTTCTACTACTTGTTTTCTTCAAGAATAATAATTTTCGTTTTATATATGGAAGAT GCTGGTGAACATTTACGGTGTAACGATAACGTTAACGACGAGGAGCGTTTGCCATTGGAG TTTATGATCGGAAACTCAACATCCACGGCGGAGCTACAGCCGCCTCCACCGTTCTTGGTA AAGACATACAAAGTGGTGGAGGATCCGACGACGGACGGGGTTATATCTTGGAACGAATAC GGAACTGGTTTCGTCGTGTGGCAGCCGGCAGAATTCGCTAGAGATCTGTTACCAACACTT TTCAAGCATTGCAACTTCTCTAGCTTCGTTCGCCAGCTCAATACTTACGGTTTTCGAAAA GTAACGACGATAAGATGGGAATTTAGTAATGAGATGTTTCGAAAGGGGCAAAGAGAGCTT ATGAGCAATATCCGAAGAAGGAAGAGCCAACATTGGTCACACAACAAGTCTAATCACCAG GTTGTACCAACAACAACGATGGTGAATCAAGAAGGTCATCAACGGATTGGGATTGATCAT CACCATGAGGATCAACAGTCTTCCGCCACTTCATCCTCTTTCGTATACACTGCATTACTC GACGAAAACAAATGCTTGAAGAATGAAAACGAGTTATTAAGCTGCGAACTTGGGAAAACC AAGAAGAAATGCAAGCAGCTTATGGAGTTGGTGGAGAGATACAGAGGAGAAGACGAAGAT GCAACTGATGAAAGTGATGAAGAAGAAGATGAAGGGCTTAAGTTGTTCGGAGTAAAACTT GAATGAAACTAGATTGCTAGATTGATATTCGTAATATACCAGTTTCTTCATATTCTTAGA AGTTTTGCATAACTATATAGTACTCTTTTAAGACATGCAAGATCAGAACATATG >G259 Amino Acid Sequence (domain in AA coordinates: 27-131) MEDAGEHLRCNDNVNDEERLPLEFMIGNSTSTAELQPPPPPFLVKTYKVVEDPTTDGVISW NEYGTGFVVWQPAEFARDLLPTLFKHCNFSSFVRQLNTYGFRKVTTIRWEFSNEMFRKGQ RELMSNIRRRKSQHWSHNKSNHQVVPTTTMVNQEGHQRIGIDHHHEDQQSSATSSSFVYT ALLDENKCLKNENELLSCELGKTKKKCKQLMELVERYRGEDEDATDESDDEEDEGLKLFG VKUE*

>G353 (82..570)

ATCATCATCAGAAGAAAAATGGTTGCGATATCGGAGATCAAGTCGACGGTGGATGTC ACGGCGGCGAATTGTTTGATGCTTTTATCTAGAGTTGGACAAGAAAACGTTGACGGTGGC GATCAAAAACGCGTTTTCACATGTAAAACGTGTTTGAAGCAGTTTCATTCGTTCCAAGCC TTAGGAGGTCACCGTGCGAGTCACAAGAAGCCTAACAACGACGCTTTGTCGTCTGGATTG ATGAAGAAGGTGAAAACGTCGTCGCATCCTTGTCCCATATGTGGAGTGGAGTTTCCGATG GGACAAGCTTTGGGAGGACACATGAGGAGACACAGGAACGAGAGTGGGGCTGCTGGTGGC GCGTTGGTTACACGCGCTTTGTTGCCGGAGCCCACGGTGACTACGTTGAAGAAATCTAGC AGTGGGAAGAGTGGCTTGTTTGGATCTGAGTCTAGGGATGGTGGACAATTTGAATCTC TAGCAAA

>G353 Amino Acid Sequence (domain in aa coordinates: 41-61, 84-104) MVAISEIKSTVDVTAANCLMLLSRVGQENVDGGDQKRVFTCKTCLKQFHSFQALGGHRAS HKKPNNDALSSGLMKKVKTSSHPCPICGVEFPMGQALGGHMRRHRNESGAAGGALVTRAL LPEPTVTTLKKSSSGKRVACLDLSLGMVDNLNLKLELGRTVY*

>G354 (27..533)

>G354 Amino Acid Sequence (domain in aa coordinates: 42-62, 88-109)
MVARSEEIVIVEEDTTAKCLMLLSRVGECGGGCGGDERVFRCKTCLKEFSSFQALGGHRA
SHKKLINSDNPSLLGSLSNKKTKTSHPCPICGVKFPMGQALGGHMRRHRNEKVSGSLVTR
SPLPETTTVTALKKFSSGKRVACLDLDLDSMESLVNWKLELGRTISWS*
>G638 (86..1861)

GAATTAAAAGGTTTAACCTTTACCTTTTTTTCCCTTCACTATCGATAATTGATCTTCTCT TTCGGCTGAATATAAATCTGAAAAAATGGATCAAGATCAGCATCCTCAGTACGGTATACC GGAGCTCCGGCAGCTCATGAAAGGCGGAGGAAGGACGACTACTACAACACCGTCTACTTC TTCTCATTTTCCCTCTGATTTCTTCGGTTTTAACCTTGCTCCGGTGCAGCCACCACA CCGTCTTCATCAGTTCACTACTGATCAAGATATGGGTTTCTTGCCACGTGGCATACATGG ATTGGGTGGAGGTTCTTCAACGGCTGGAAATAACAGTAACTTAAACGCGAGTACTAGTGG TGGAGGAGTTGGGTTTAGTGGGTTTCTTGACGGTGGTTGTTTCGGCAGCGGAGTAGGAGG AGACGGTGGAGGAACTGGAAGGTGGCCGAGACAAGAAACCCTAACTCTGTTGGAAATTAG ATCTCGTCTTGATCATAAATTCAAAGAAGCTAATCATAAAGGACCTCTTTGGGATGAAGT TTCTAGGATTATGTCCGAGGAACATGGATACCAAAGGAGTGGGAAGAAATGCAGAGAGAA GTTTGAGAATCTGTACAAATACTATAGTAAGACTAAAGAAGGCGAAGCCGGAAGACAAGA CGGAAAACATCACAGATTTTTCCGCCAGCTCCAAGCGCTATACGGGGATTCTAATAACTT GGTTTCTTGTCCCAATCATAACACGCAGTTCATGAGCAGTGCTCTTCATGGTTTCCATAC TCAAAACCCTATGAACGTTGCTACAACAACGTCCAACATCCATAACGTTGATAGTGTTCA TGGTTTTCATCAAAGCCTTAGTCTTTCTAACAACTACAACTCCTCCGAGCTTGAGCTGAT GACTTCCTCTTCGGAAGGGAATGATTCTAGTAGTAGAAGGAAAAAGAGGAGTTGGAAAGC GAAGATAAAGGAGTTCATTGATACGAACATGAAAAGGTTGATAGAGAGGCAAGATGTTTG GCTTGAGAAGTTGACAAAGGTTATTGAAGACAAAGAGGAACAACGGATGATGAAAGAAGA GGAATGGAGGAAGATTGAAGCTGCAAGGATTGATAAAGAGCATTTGTTTTGGGCTAAAGA GAGGGCGAGGATGGAAGCTAGGGATGTTGCGGTGATTGAGGCATTGCAATACTTGACAGG AAAGCCATTGATAAAGCCGCTGTGTTCATCCCCGGAAGAGAGGACAAATGGTAATAATGA GATCCGAAACAATAGTGAGACACAGAATGAGAATGGAAGCGATCAAACGATGACTAACAA TGTTTGTGTTAAAGGAAGTAGTAGCTGCTGGGGTGAGCAAGAGATTTTAAAGCTTATGGA GATAAGAACGAGCATGGACTCGACCTTTCAAGAGATATTAGGAGGGTGCTCGGATGAGTT TCTATGGGAGGAAATCGCAGCGAAGTTGATTCAGTTAGGGTTTGATCAGAGAAGTGCCTT CAACAAGAAAAGAAAGGATAATTCGTCCAGCTGCGGCGTGTACTACCCCGAGAAACGAAGA AAATCCAATCTACAATAATCGAGAAAGTGGATATAATGATAATGATCCGCATCAAATCAA CGAACAAGGCAATGTAGGTTCTTCAACATCAAACGCAAACGCAAACGCAAACGTAACCAC TGGAAATCCGAGCGGTGCAATGGCTGCTAGTACAAACTGCTTCCCGTTCTTCATGGGAGA TGGAGATCAGAATTTGTGGGAGAGTTATGGTTTGAGGCTCAGTAAAGAAGAAGAATCAGTA AGTAATTTCTCTT<u>AA</u>TGAAGAAGAAGAAGGTAATCATGTGGTTAACTAATTCTTTTGAGT TAGCTATATATGAGATAAACCTTGACTTAGCTATTATATGTCACATGCTGCTTAGAATTA AGAAATATTTGTTGGGGCTTAACGAATTATATATCAGCATATATAAGATGAGAGTCTAAG AATTATATCAAATTAGGCTTTAACCAACGTACGATTATATATTATGTTTTCATGTATTTA TTCTGTAAGACTTTTTAATATCAATCTTTCTCTAAA

>G638 Amino Acid Sequence (domain in AA coordinates: 119-206)
MDQDQHPQYGIPELRQLMKGGGRTTTTTPSTSSHFPSDFFGFNLAPVQPPPHRLHQFTTD
QDMGFLPRGIHGLGGGSSTAGNNSNLNASTSGGGVGFSGFLDGGGFGSGVGGDGGGTGRW
PRQETLTLLEIRSRLDHKFKEANHKGPLWDEVSRIMSEEHGYQRSGKKCREKFENLYKYY
SKTKEGEAGRQDGKHHRFFRQLQALYGDSNNLVSCPNHNTQFMSSALHGFHTQNPMNVAT

TTSNIHNVDSVHGFHQSLSLSNNYNSSELELMTSSSEGNDSSSRRKKRSWKAKIKEFIDT NMKRLIERQDVWLEKLTKVIEDKEEQRMMKEEEWRKIEAARIDKEHLFWAKERARMEARD VAVIEALQYLTGKPLIKPLCSSPEERTNGNNEIRNNSETQNENGSDQTMTNNVCVKGSSS CWGEQEILKLMEIRTSMDSTFQEILGGCSDEFLWEEIAAKLIQLGFDQRSALLCKEKWEW ISNGMRKEKKQINKKRKDNSSSCGVYYPRNEENPIYNNRESGYNDNDPHQINEQGNVGSS TSNANANANVTTGNPSGAMAASTNCFPFFMGDGDQNLWESYGLRLSKEENQ* >G869 (428..1402)

AGGAACAGTGAAAGGTTCGGTTTTTTGGGTTTCGATCTGATAATCAACAAGAAAAAAGGG TTTGATTTATGTCGGCTGGGTTTGAATCGACTGTGATTTTGTCTTTGATTCATATCTCTT CTCCGATTTCATCATCTTCCCCATCATCGTCGTCTTTGAAATCTTGTCTTCTCAACG CTCTTCACTTCTGCTGTAATAAGCAGAGGCTTGTTCTGGAGACTCCTTCTCTTTCCATGC GCTTAAGACCCAAAAGGACTTGTTCTAGTGTTGAAGTCTTTGGGGGGTTTTCACATAAAGC AGCAAAAGTTTTCTTTTTTCATAGTTCGCTGAGAGTTTTGAGTTTTGATACCAAAAAAGT TTTGACCTTTTAGAGTGATTTTTTGTTCTTTTTTTTGGGTATTTTTGAGGAGTGGG TTTAACAATGGTTGCGATTAGAAAGGAACAGTCTTTGAGTGGTGTTAGTAGCGAGATTAA GAAGAGAGCTAAGAGAAACACTCTATCGTCCCTTCCTCAAGAAACCCAACCTTTGAGGAA AGTCCGTATTATTGTGAATGATCCTTATGCTACTGATGATTCCTCTAGTGATGAGGAAGA TATGGAAGTTTCTGAACAGCCTTCTGAGAGTTCTTCTCAGGACAGTACTAAAACTGATGG CAAGATAGCTGTCAGCTTCTCCTGCTGTTCCTAGGAAGAGCCTGTTGGTGTTAGGCA AAGGAAATGGGGGAAATGGGCTGCTGAGATTAGAGATCCTATTAAGAAAACTAGGACTTG GTTGGGTACTTTGATACTCTTGAAGAAGCTGCTAAAGCTTATGATGCTAAGAAGCTTGA GTTTGATGCTATTGTTGCTGGAAATGTGTCCACTACTAAACGTGATGTTTCTTCATCTGA GACTAGCCAATGCTCTCGTTCTTCACCTGTTGTTCCTGTTGAGCAAGATGACACTTCTGC ATCAGCTCTCACTTGTGTCAACAACCCTGATGACGTCTCGACCGTTGCTCCAACTGCTCC AACTCCAAATGTTCCTGCTGGTGGAAACAAGGAAACGTTGTTCGATTTCGACTTTACTAA TCTACAGATCCCTGATTTTGGTTTCTTGGCAGAGGAGCAACAAGACCTAGACTTCGATTG AGATAACGGTCCAAGTGCGTTACCAGATTTCGACTTTGCGGATGTTGAAGATCTTCAGCT AGCTGACTCTAGTTTCGGTTTCCTTGATCAACTTGCTCCTATCAACATCTCTTGCCCATT AAAAGTTTTGCAGCTTCATAGGATCTTGCTTAGTAATGTTAAGTGAGAAGAGTGTTTTG AAGATCTTAAGACATAAAGCCGGGTTTTGCAATTAGGAATCGAGTTTTAATGAAGTTTTA

>G869 Amino Acid Sequence (domain in AA coordinates: 109-177)
MVAIRKEQSLSGVSSEIKKRAKRNTLSSLPQETQPLRKVRIIVNDPYATDDSSSDEEELK
VPKPRKMKRIVREINFPSMEVSEQPSESSSQDSTKTDGKIAVSASPAVPRKKPVGVRQRK
WGKWAAEIRDPIKKTRTWLGTFDTLEEAAKAYDAKKLEFDAIVAGNVSTTKRDVSSSETS
QCSRSSPVVPVEQDDTSASALTCVNNPDDVSTVAPTAPTPNVPAGGNKETLFDFDFTNLQ
IPDFGFLAEEQQDLDFDCFLADDQFDDFGLLDDIQGFEDNGPSALPDFDFADVEDLQLAD
SSFGFLDQLAPINISCPLKSFAAS*

>G1645 (25..1104)

>G1645 Amino Acid Sequence (domain in AA coordinates: 90-210)
MFITEKQVWMDEIVARRASSSWDFPFNDINIHQHHHRHCNTSHEFEILKSPLGDVAVHEE
ESNNNNPNFSNSESGKKETTDSGQSWSSSSSKPSVLGRGHWRPAEDVKLKELVSIYGPQN
WNLIAEKLQGRSGKSCRLRWFNQLDPRINRRAFTEEEEERLMQAHRLYGNKWAMIARLFP
GRTDNSVKNHWHVVMARKYREHSSAYRRKLMSNNPLKPHLTNNHHPNPNPNYHSFISTN
HYFAQPFPEFNLTHHLVNNAPITSDHNQLVLPFHCFQGYENNEPPMVVSMFGNQMMVGDN
VGATSDALCNIPHIDPSNQEKPEPNDAMHWIGMDAVDEEVFEKAKQQPHFFDFLGLGTA*
>G1038 (240..1574)

GCTCGTTTCAAATTAAAACAGGGAGAAATTTGGAAATTCCAGTACGACGGGAGATAAA ACCTAACATACGCCATGGTGACCGTTATCTAAACTACGCCAAAATATTTGAAGTGTCGTC TGGAGAAAAGCGGCTTCTCCCCGTCGGTCTAAGGGTTCTTGTCGTAGACGATGATCCAA CTTGGCTCAAGATTCTCGAGAAAATGCTCAAGAAGTGTTCTTACGAAGTAACGACCTGTG GATTAGCTAGAGAGGCTTTGAGGTTGCTGAGGGAGCGTAAAGATGGATATGATATCGTGA TCAGCGATGTGAACATGCCTGACATGGATGGTTTCAAGCTTCTTGAGCATGTTGGTCTTG AATTAGACCTCCCTGTAATAATGATGTCGGTGGACGGCGAAACAAGCCGAGTGATGAAGG GAGTGCACACGGGAGCTTGTGATTACCTCTTGAAGCCGATAAGAATGAAGGAGTTAAAGA TTATATGGCAACATGTTCTGAGAAAGAAGCTTCAAGAAGTGAGAGATATCGAAGGCTGTG GATACGAAGGAGGAGCGGATTGGATCACTCGATACGATGAAGCACATTTTCTTGGAGGTG GTGAAGATGTTTCTTTTGGGAAAAAGAGAAAAGACTTTGACTTTGAGAAGAAGCTTCTTC AAGATGAGAGTGATCCATCATCTTCTTCTTCCAAGAAAGCTAGAGTTGTTTGGTCTTTTG AGCTTCATCATAAGTTTGTCAACGCCGTTAACCAAATCGGATGCGATCACAAAGCTGGTC CCAAGAAGATATTGGATCTCATGAATGTTCCATGGCTCACTAGAGAAAATGTTGCAAGCC ACCTTCAGAAATATAGACTTTACCTGAGCAGATTAGAGAAAGGAAAGGAGCTCAAGTGTT ${\tt ATTCAGGTGGCGTGAAGAATGCGGATTCATCTCCAAAAGATGTCGAAGTGAATTCAGGCT}$ ACCAAAGCCCTGGGAGGAGCAGCTATGTATTCTCTGGAGGAAATTCTCTGATCCAAAAAG CAACAGAGATTGATCCAAAGCCACTTGCTTCAGCTTCTTTGTCTGACCCCAACACCGATG TGATCATGCCTCCGAAAACAAAAAAGACGCGTATAGGATTTGATCCTCCCATTTCCTCCT CTGCGTTTGACTCTCTGCTTCCTTGGAATGATGTTCCAGAGGTCCTTGAATCGAAGCCGG TTCTGTATGAGAATAGCTTTCTCCAGCAACAACCATTGCCAAGTCAAAGTTCCTATGTTG CAATTTCTGCACCATCTCTCATGGAGGAGGAAATGAAGCCTCCTTATGAGACACCAGCAG GAGGCAGTAGTGTGAATGCAGATGAGTTTCTCATGCCACAAGACAAGATCCCTACTGTAA CCCTTCAAGATTTGGATCCCTCTGCCATGAAGCTGCAGGAGTTCAACACAGAAGGCGATT CTGAAGAAGCTTGAACTGGGGAACTTCCAGAATCACATCATTCTGTTTCTTTAGACACTG ACTTAGACTTGACTTGGCTTCAAGGCGAGCGTTTCTTGCAAACACCGACTCCAGTTTCAA GATACAGTAGTAGCCCATCACTCCTATCTGAGCTCCCAGCCCACCTTAATTGGTATGGAA ATGAGCGGCTGCCTGACCCTGACGAGTATTCCTTCATGGTAGACCAAGGTTTATTCATAT GTGGGTATACCTGAAAATAATCTTGCTTTCCCAAGAACCTTCCATGATCGGATGCATTGT ACAATAATCCACGAGTGTCGTAGGCTAATTACACCAAACAGGTTGATGACAGTGATAAGG

>G1038 Amino Acid Sequence (domain in AA coordinates: 198-247)
MEKSGFSPVGLRVLVVDDDPTWLKILEKMLKKCSYEVTTCGLAREALRLLRERKDGYDIV
ISDVNMPDMDGFKLLEHVGLELDLPVIMMSVDGETSRVMKGVHTGACDYLLKPIRMKELK
IIWQHVLRKKLQEVRDIEGCGYEGGADWITRYDEAHFLGGGEDVSFGKKRKDFDFEKKLL
QDESDPSSSSSKKARVVWSFELHHKFVNAVNQIGCDHKAGPKKILDLMNVPWLTRENVAS
HLQKYRLYLSRLEKGKELKCYSGGVKNADSSPKDVEVNSGYQSPGRSSYVFSGGNSLIQK
ATEIDPKPLASASLSDPNTDVIMPPKTKKTRIGFDPPISSSAFDSLLPWNDVPEVLESKP
VLYENSFLQQQPLPSQSSYVAISAPSLMEEEMKPPYETPAGGSSVNADEFLMPQDKIPTV
TLQDLDPSAMKLQEFNTEGDSEEA*

>G1073 (62..874)

PCT/US02/25805 WO 03/013227

CCCCCGACCTGCCTCTACAGAGACCTGAAGATTCCAGAACCCCACCTGATCAAAAATAA CATGGAACTTAACAGATCTGAAGCAGACGAAGCAAAGGCCGAGACCACTCCCACCGGTGG AGCCACCAGCTCAGCCACAGCCTCTGGCTCTTCCTCCGGACGTCGTCCACGTGGTCGTCC TGCAGGTTCCAAAAACAAACCCAAACCTCCGACGATTATAACTAGAGATAGTCCTAACGT CCTTAGATCACACGTTCTTGAAGTCACCTCCGGTTCGGACATATCCGAGGCAGTCTCCAC $\tt CTACGCCACTCGTCGCGGCTTGCGGCGTTTGCATTATAAGCGGCACGGGTGCGGTCACTAA$ CGTCACGATACGGCAACCTGCGGCTCCGGCTGGTGGAGGTGTGATTACCCTGCATGGTCG GTTTGACATTTTGTCTTTGACCGGTACTGCGCTTCCACCGCCTGCACCACCGGGAGCAGG AGGTTTGACGGTGTATCTAGCCGGAGGTCAAGGACAAGTTGTAGGAGGGAATGTGGCTGG TTCGTTAATTGCTTCGGGACCGGTAGTGTTGATGGCTGCTTCTTTTGCAAACGCAGTTTA TGATAGGTTACCGATTGAAGAGGAAGAAACCCCACCGCCGAGAACCACCGGGGTGCAGCA GCAGCAGCCGGAGGCGTCTCAGTCGTCGGAGGTTACGGGGAGTGGGGCCCAGGCGTGTGA GTCAAACCTCCAAGGTGGAAATGGTGGAGGAGGTGTTGCTTTCTACAATCTTGGAATGAA TATGAACAATTTTCAATTCTCCGGGGGAGATATTTACGGTATGAGCGGCGGTAGCGGAGG AGGTGGTGGCGGTGCGACTAGACCCGCGTTTTAGAGTTTTAGCGTTTTTGGTGACACCTTT TGTTGCGTTTGCGTGTTTGACCTCAAACTACTAGGCTACTAGCTATAGCGGTTGCGAAAT GCGAATATTAGGTT

>G1073 Amino Acid Sequence (domain in AA coordinates: 33-42, 78-175) MELNRSEADEAKAETTPTGGATSSATASGSSSGRRPRGRPAGSKNKPKPPTIITRDSPNV LRSHVLEVTSGSDISEAVSTYATRRGCGVCIISGTGAVTNVTIRQPAAPAGGGVITLHGR FDILSLTGTALPPPAPPGAGGLTVYLAGGQGQVVGGNVAGSLIASGPVVLMAASFANAVY DRLPIEEEETPPPRTTGVQQQQPEASQSSEVTGSGAQACESNLQGGNGGGGVAFYNLGMN MNNFQFSGGDIYGMSGGSGGGGGGATRPAF*

>G1146 (129..3095)

gttttaagttttgtttcattctttttgtagtggagaaaaagagtttttgaaaatcaaaac aacaaaaatgccgattaggcaaatgaaagatagctctgagactcacttagttatcaaaa cccaacctttaaagcaccacaatccaaaaaccgttcaaaacggtaaaatccctcctt ctccttctccggtgacggtgactactccggcgacggttactcagagtcaagcttcttcac cttcaccaccgtcaaagaatcgtagccggaggagaaaccgtggtggaagaaaatctgatc aaggagatgtttgtatgagacctagctctcgtcctcgtaaaccgccaccgccaagtcaaa ccacttcctccgccgtctccgtcgccaccgccggtgagattgtcgctgtgaatcatcaga tgcagatgggtgttcgtaaaaactcaaactttgctccaagacctggatttggaacacttg gaactaaatgcattgttaaagctaaccactttctcgctgatttgcctaccaaggatttga atcagtatgatgttacaattactcctgaagtgtcatcaaagagtgttaacagagctataa ttgctgagttagttagactttacaaagagtctgatctcgggaggagacttccggcttacg atggccggaaaagtctttacactgctggagaacttccttttacttggaaggagttcagtg ttaagattgttgatgaagatgacggtatcatcaatggccctaaaagggagagatcatata aggtggcaatcaagtttgttgcacgggcaaatatgcatcacttaggcgagtttctagctg gtaaacgggcagattgtccgcaagaggcggtgcagattcttgatattgtactcagggagt cgcagcgactcggtgaagggttagagtcatggtgtgggttttaccagagtattagaccaa ctcaaatgggtttatcactaaatatcgatatggcttcagctgcattcatcgagcctcttc cagtgatagagtttgtagcacagcttcttggaaaggatgtcttgtcgaagccattgtcgg attctgatcgcgtcaagattaagaagggtcttagaggagtgaaagtagaggttactcaca taatgtttccagtagatgagaactgtactatgaagtcagttattgagtatttccaagaga tgtatggattcacgatccagcacacgcatttgccatgtctccaagttggaaaccaaaaga aggcaagctatttgccgatggaggcatgcaaaattgtcgagggacaacggtacacgaaaa ggttgaatgagaagcagattactgctctcttgaaagttacatgccaaagggccgagggac agagaaacgatattttgcggactgtccaacacacgcatatgatcaagatccatatgcaa aggagtttggcatgaacataagcgaaaagttagcttctgttgaagctcgtattcttccag $\verb"ctccatggcttaagtatcacgagaacgggaaagaaaaagattgtctcccgcaagttggtc"$ agtggaatatgatgaacaagaaaatgatcaacgggatgactgtgagcagatgggcctgtg ttaacttctcacgcagcgttcaagaaaacgttgctcgtggattttgtaatgaacttggtc agatgtgtgaagtctcaggcatggagtttaatccagaacccgtgataccaatatatagtg cgaggcccgatcaagtcgagaaagctctaaagcatgtttatcacacttcaatgaacaaaa

ccaaaggcaaagagttagagcttctgctggcaatattacctgataacaacggttcacttt atggtgatcttaagagaatctgtgaaaccgagcttggtttgatatctcaatgttgtctca caaaacatgtgttcaagattagcaaacagtatctggcagatgtatcccttaaaatcaacg taaagatgggaggaaggaacacagttctagtagacgccataagctgtagaattccactgg ttagcgatataccgacaatcatttttggcgcagacgtgactcacccagagaacggggaag agtcaagcccttcaatcgctgctgttgttgcttctcaagactggcctgaagtgacaaaat atgcgggtttagtttgtgctcaagctcacaggcaagaacttatacaagatttgtataaaa catggcaagatcctgttcgcggtactgttagtggcggtatgatcagggaccttcttatct catttagaaaagcaacagggcaaaaaccgcttcgaattatcttttatcgtgatggagtaa gcgaagggcaattctatcaagttttactctatgagttggatgcaattcgaaaggcttgtg catcgcttgaaccgaattatcagccaccggtgacattcatagttgtacagaagcgtcacc acactcgtttgtttgctaataatcaccgagacaaaaacagtactgaccgaagcggaaata tcttaccaggtactgtagttgacactaaaatatgtcatccaactgaattcgacttctacc tttgtagccatgcgggtattcagggaacaagcaggcctgcacattaccatgttctttggg acgagaacaatttcacagcagatggtattcaatctctgactaacaatctctgttatacct atgcgcggtgcactcggtcggtctctatagttcctccagcgtattatgctcatcttgcag catttcgagcacgtttctacctggaacctgagataatgcaagacaacggatcaccgggta aaaagaacacgaaaacaacaactgtcggagacgtaggtgtgaagcctttaccagccttga aggagaatgtgaagagagtaatgttctactgctaaaaatccaaacattccttaatcagtt ttaataagtagtttggttgtttgcttgtagttcggctttagatttaccaatgttttctt atgtaaattttgtcggtttggtttaagcctttaggaattagtgtattagggtttttctaa agttgtactttagctgatgataacgttgatgcagtgactttgttaaaacctcctcttcta cagtagtgtttacgtcgttcctc

>G1146 Amino Acid Sequence (domain in AA coordinates: 886-896) MPIRQMKDSSETHLVIKTQPLKHHNPKTVQNGKIPPPSPSPVTVTTPATVTQSQASSPSP PSKNRSRRRNRGGRKSDQGDVCMRPSSRPRKPPPPSQTTSSAVSVATAGEIVAVNHQMQM GVRKNSNFAPRPGFGTLGTKCIVKANHFLADLPTKDLNQYDVTITPEVSSKSVNRAIIAE LVRLYKESDLGRRLPAYDGRKSLYTAGELPFTWKEFSVKIVDEDDGIINGPKRERSYKVA IKFVARANMHHLGEFLAGKRADCPQEAVQILDIVLRELSVKRFCPVGRSFFSPDIKTPQR LGEGLESWCGFYQSIRPTQMGLSLNIDMASAAFIEPLPVIEFVAQLLGKDVLSKPLSDSD RVKIKKGLRGVKVEVTHRANVRRKYRVAGLTTQPTRELMFPVDENCTMKSVIEYFQEMYG FTIQHTHLPCLQVGNQKKASYLPMEACKIVEGQRYTKRLNEKQITALLKVTCQRAEGQRN DILRTVQHNAYDQDPYAKEFGMNISEKLASVEARILPAPWLKYHENGKEKDCLPQVGQWN MMNKKMINGMTVSRWACVNFSRSVQENVARGFCNELGQMCEVSGMEFNPEPVIPIYSARP DQVEKALKHVYHTSMNKTKGKELELLLAILPDNNGSLYGDLKRICETELGLISQCCLTKH VFKISKQYLADVSLKINVKMGGRNTVLVDAISCRIPLVSDIPTIIFGADVTHPENGEESS PSIAAVVASQDWPEVTKYAGLVCAQAHRQELIQDLYKTWQDPVRGTVSGGMIRDLLISFR KATGQKPLRIIFYRDGVSEGQFYQVLLYELDAIRKACASLEPNYQPPVTFIVVQKRHHTR LFANNHRDKNSTDRSGNILPGTVVDTKICHPTEFDFYLCSHAGIQGTSRPAHYHVLWDEN NFTADGIQSLTNNLCYTYARCTRSVSIVPPAYYAHLAAFRARFYLEPEIMQDNGSPGKKN ${\tt TKTTTVGDVGVKPLPALKENVKRVMFYC*}$

>G1267 (152..967)

>G1269 (88..951)

AACAATTCTCTCTCTTTATTCTTCTTCTTCAGCTTCAGATTTCAGATCTTAAATCTTC AAGTCTTCTTCTTCTTCTGCAACCATGGCTATGCAGGAACGTTGTGAGAGTTTATGT TCTGATGAACTTATATCTTCCTCAGATGCCTTTTACCTCAAGACAAGAAAGCCTTATACC ATCACTAAACAAAGAGAGAAATGGACAGAAGCAGAGCATGAGAAGTTTGTAGAAGCATTG AAACTCTATGGCAGAGCTTGGAGACGAATCGAAGAACATGTTGGAACAAAAACTGCAGTT CAGATTCGAAGCCATGCGCAGAAGTTCTTTACTAAGGTTGCTCGCGATTTTGGTGTTAGC TCTGAGTCCATTGAGATCCCGCCTCCAAGGCCAAAGAGAAAGCCGATGCATCCTTACCCT AGAAAGCTTGTGATTCCTGATGCAAAAGAGATGGTATACGCTGAACTAACCGGATCCAAG CTGATTCAGGATGAAGATAACCGATCTCCAACATCGGTTTTATCAGCTCATGGCTCAGAT GGATTAGGTTCCATTGGTTCAAATTCACCTAACTCTTCTTCAGCTGAGTTATCATCTCAC ACAGAGGAATCATTGTCTCTAGAAGCAGAGACCAAACAGAGCCTTAAGCTCTTTGGAAAA ACTTTTGTAGTTGGTGATTACAACTCTTCAATGAGTTGTGATGATTCTGAAGATGGCAAG AAGAAGCTATACTCAGAAACACAGTCTCTTCAATGTTCTTCTTCTACTTCAGAAAACGCT GAAACAGAAGTGGTAGTGTCGGAGTTCAAAAGAAGTGAGAGATCAGCTTTCTCTCAGTTA AAATCGTCGGTGACTGAGATGAACAACATGAGAGGGTTCATGCCTTACAAAAAGAGAGTA AAGGTGGAAGAAACATTGACAATGTAAAATTATCATATCCTTTGTGGTGAAGTGTTCGT TTGTGTCAAGTCAGTTGTGTAAACTCTTTTGATCTCAACATCAGATTATGTGTATAATGT CAGAGTATTAGGGAAAGTTTTTTTGGATTAGATTCGTAAGATCACTCCAAAGTTTCGTGT CTTTCCATATAACCAGTTAGAAATTGAGATCCTTGTACTTAAACATTTTTATTTGATCAA TCAAATCTTCTTGATGAAAAAAAAAAA

>G1269 Amino Acid Sequence (domain in AA coordinates: 27-83)
MAMQERCESLCSDELISSSDAFYLKTRKPYTITKQREKWTEAEHEKFVEALKLYGRAWRR
IEEHVGTKTAVQIRSHAQKFFTKVARDFGVSSESIEIPPPRPKRKPMHPYPRKLVIPDAK
EMVYAELTGSKLIQDEDNRSPTSVLSAHGSDGLGSIGSNSPNSSSAELSSHTEESLSLEA
ETKQSLKLFGKTFVVGDYNSSMSCDDSEDGKKKLYSETQSLQCSSSTSENAETEVVVSEF
KRSERSAFSQLKSSVTEMNNMRGFMPYKKRVKVEENIDNVKLSYPLW*

>G1452 (175..1296) ATTTATTAAGCATCAATGAGAGAACTTCAGAGCTGGGTTTGAGTTCTGTCCAATAATACA TAACCACGTTATCATTTTTGTCCTTTACTATCTCATTACACTCTTCTGTTATTCGCCCAA TTCTTACAGTCATTACTCTCTATAGGGCTCGAGCGGCCGCCCGGGCAGGTTTCTATGCAG ATGGTTCACACTTCCCGCTCCATTGCCCAGATTGGGTTCGGTGTTAAGTCGCAATTAGTA CTCACTATAGGGCTCGAGCGGCCGCCCGGGCAGGTAAAAGATCAAACAATGTCTAAAGAA GCTGAGATGTCGATCGCGGTGTCGGCTTTGTTCCCTGGTTTTAGATTCTCTCCTACTGAT GTTGAACTTATCTCGTACTATCTTCGTCGTAAAATCGATGGTGATGAGAACTCTGTTGCT GTGATTGCTGAGGTCGAGATTTACAAGTTCGAGCCGTGGGACTTGCCAGAGGAATCGAAA CTGAAATCGGAGAACGAGTGGTTTTACTTCTGCGCGAGGGGGAGGAAGTACCCGCACGGG TCACAAAGCCGGCGAGCCACACAGCTAGGATATTGGAAAGCGACCGGTAAAGAGCGGAGT GCTCCTCGTGGCGAGAACGGAGTGGATTATGCATGAATACTGCATCCATGGAGCCCCA CAGGATGCATTAGTGGTGTGCCGGTTAAGAAAAAATGCTGATTTTCGGGCTAGTTCGACC CAAAAATTGAGGATGGTGTTGTGCAAGACGATGGCTACGTTGGCCAAAGAGGTGGTTTG GACAAGGAGGACAAATCCTACTATGAATCTGAGCATCAGATACCAAATGGTGACATCGCA GAATCATCAAATGTTGTTGAGGATCAGGCCGATACCGATGATGATTGTTACGCCGAGATT CTGAACGATGATATAATAAAGCTCGACGAAGAAGCGTTGAAAGCTAGCCAAGCGTTTCGA CCAACTAATCCAACTCATCAAGAAACAATATCAAGCGAGTCATCGAGTAAGAGGTCAAAA TGTGGTATAAAAAAAGAATCAACGGAAACAATGAATTGTTACGCTTTGTTCAGGATCAAG

>G1494 (114..1406)

TCGACAGAGTTGTGTTGGGCGTGGAACTTGGACTAGTTCCACATATCAGGTTATATAGAT CTTCTCTTTCAACTTCTGATTCGTCCAGAAGCTTTCCTAATCTGAGATCTGACATGGAAC ACCAAGGTTGGAGTTTTGAGGAGAATTATAGTTTGTCCACTAATAGAAGATCTATCAGGC CACAAGATGAACTAGTGGAGTTATTATGGCGAGATGGACAAGTGGTTCTGCAGAGCCAAA CTCATAGAGAACAAACCCAAACCCAGAAACAAGATCATCATGAAGAAGCCCTAAGATCCA GCACCTTTCTTGAAGATCAAGAAACTGTCTCTTGGATCCAATACCCTCCAGATGAAGACC CATTCGAACCCGACGACTTCTCCCCCACTTCTTCTCAACCATGGATCCCCTCCAGAGAC CAACCTCAGAGACGGTTAAGCCTAAGTCCAGTCCTGAACCTCCTCAAGTCATGGTTAAGC CTAAGGCCTGTCCTGACCCTCCTCAAGTCATGCCTCCTCCAAAATTTAGGTTAACAA ATTCATCATCGGGGATTAGGGAAACAGAAATGGAACAGTACTCGGTAACGACCGTTGGAC CTAGCCATTGCGGAAGCAACCCATCACAGAACGATCTCGATGTCTCAATGAGTCATGATC GAAGCAAAAACATAGAAGAAAAGCTTAATCCGAACGCAAGTTCCTCATCAGGTGGCTCCT CTGGTTGCAGCTTTGGCAAAGATATCAAAGAAATGGCTAGTGGAAGATGCATCACAACCG ACCGTAAGAGAAAACGTATAAATCACACTGACGAATCTGTATCTCTATCAGATGCAATCG GTAACAAGTCGAACCAACGATCAGGATCAAACCGAAGGAGTCGAGCAGCTGAAGTTCATA ATCTCTCCGAAAGGAGGAGAGATAGGATCAATGAGAGAATGAAGGCTTTGCAAGAAC TAATACCTCACTGCAGTAAAACTGATAAAGCTTCGATTTTAGACGAAGCCATAGATTATT TGAAATCACTTCAGTTACAGCTTCAAGTGATGTGGATGGGGAGTGGAATGGCGGCGGCGG CGGCTTCGGCTCCGATGATGTTCCCCGGAGTTCAACCTCAGCAGTTCATACGTCAGATAC AGAGCCCGGTACAGTTACCTCGATTTCCGGTTATGGATCAGTCTGCAATTCAGAACAATC CCGGTTTAGTTTGCCAAAACCCGGTACAAAACCAGATCATCTCCGACCGGTTTGCTAGAT ACATCGGTGGGTTCCCACACATGCAGGCCGCGACTCAGATGCAGCCGATGGAGATGTTGA GATTTAGTTCACCGGCGGGACAGCAAAGTCAACAACCGTCGTCTGTGCCGACGAAGACCA CCGACGGTTCTCGTTTGGACCACTAGGTTGGTGAGCCACTTTGC

>G1494 Amino Acid Sequence (domain in aa coordinates: 261-311)
MEHQGWSFEENYSLSTNRRSIRPQDELVELLWRDGQVVLQSQTHREQTQTQKQDHHEEAL
RSSTFLEDQETVSWIQYPPDEDPFEPDDFSSHFFSTMDPLQRPTSETVKPKSSPEPPQVM
VKPKACPDPPPQVMPPPKFRLTNSSSGIRETEMEQYSVTTVGPSHCGSNPSQNDLDVSMS
HDRSKNIEEKLNPNASSSSGGSSGCSFGKDIKEMASGRCITTDRKRKRINHTDESVSLSD
AIGNKSNQRSGSNRRSRAAEVHNLSERRRDRINERMKALQELIPHCSKTDKASILDEAI
DYLKSLQLQLQVMWMGSGMAAAAASAPMMFPGVQPQQFIRQIQSPVQLPRFPVMDQSAIQ
NNPGLVCQNPVQNQIISDRFARYIGGFPHMQAATQMQPMEMLRFSSPAGQQSQQPSSVPT
KTTDGSRLDH*

>G1548 (1..2511)

ATGGCAATGTCTTGCAAGGATGGTAAGTTGGGATGTTTGGATAATGGGAAGTATGTGAGG
TATACACCTGAACAAGTTGAAGCACTTGAGAGGCTTTATCATGACTGTCCTAAACCGAGT
TCTATTCGCCGTCAGCAGTTGATCAGAAGAGTGTCCTATTCTCTCTAACATTGAGCCTAAA
CAGATCAAAGTGTGGTTTCAGAACCGAAGATGTAGAGAAAACAAAGGAAAGAGGCTTCA
CGGCTTCAAGCTGTGAATCGGAAGTTGACGGCAATGAACAAGCTCTTGATGGAGGAGAAT
GACAGGTTGCAGAAGCAAGTGTCACAGCTGGTCCATGAAAACAGCTACTTCCGTCAACAT
ACTCCAAATCCTTCACTCCCAGCTAAAGACACAAGCTGTGAATCGGTGGTGACGAGTGGT
CAGCACCAATTGGCATCTCAAAATCCTCAGAGAGATGCTAGTCCTGCAGGACTTTTGTCC
ATTGCAGAAGAAACTTTAGCAGAGTTTCTTTCAAAGGCAACTGGAACCGCTGTTGAGTGG
GTTCAGATGCCTGGAATGAAGCCTGGTCCGGATTCCATTGGAATCATCGCTATTTCTCAT
GGTTGCACTGGTGTGGCCAGCACCCCCTGTGGCCTTTGAGGGTT

GCAGAGATTGTCAAGGATCGTCCTTCGTGGTTCCGCGAATGTCGAGCTGTTGAAGTTATG AACGTGTTGCCAACTGCCAATGGTGGAACCGTTGAGCTGCTTTATATGCAGCTCTATGCA CCAACTACATTGGCCCCACCACGCGATTTCTGGCTGTTACGTTACACCTCTGTTTTAGAA GATGGCAGCCTTGTGGTGTGCGAGAGATCTCTTAAGAGCACTCAAAATGGTCCTAGTATG CCACTGGTTCAGAATTTTGTGAGAGCAGAGATGCTTTCCAGTGGGTACTTGATACGGCCT TGTGATGGTGGTGGCTCAATCATACACATAGTGGATCATATGGATTTGGAGGCTTGTAGC GTGCCTGAGGTCTTGCGCCCGCTCTATGAGTCACCCAAAGTACTTGCACAGAAGACAACA ATGGCGGCACTGCGTCAGCTCAAGCAAATAGCTCAGGAGGTTACTCAGACTAATAGTAGT GTTAATGGGTGGGGACGGCGTCCTGCCTGCCTTAAGAGCTCTCAGCCAGAGGCTAAGCAGA GGCTTCAATGAAGCTGTAAATGGTTTCACTGATGAAGGATGGTCAGTGATAGGAGATAGC ATGGATGATGTCACAATCACTGTAAACTCTTCTCCAGACAAGCTAATGGGTCTAAATCTT ACATTTGCCAATGGCTTTGCTCCTGTAAGCAATGTTGTTTTATGCGCAAAAGCATCAATG CTTTTACAGAATGTTCCTCCGGCGATCCTGCTTCGGTTTCTGAGGGAGCATAGGTCAGAA TGGGCTGACAACACATTGATGCGTATCTAGCAGCAGCAGTTAAAGTAGGGCCTTGTAGT GCCCGAGTTGGAGGATTTGGAGGGCAGGTTATACTTCCACTTGCTCATACTATTGAGCAT GAAGAGTTTATGGAAGTCATCAAATTGGAAGGTCTTGGTCATTCCCCTGAAGATGCAATC GTTCCAAGAGATATCTTCCTTCTTCAACTTTGTAGCGGAATGGATGAAAATGCTGTAGGA ACCTGTGCGGAACTTATATTTGCTCCAATCGATGCTTCGTTTGCGGATGATGCACCTCTG CTTCCTTCTGGTTTTCGTATTATCCCTCTTGATTCCGCAAAGGAAGTATCTAGCCCAAAC CGAACCTTGGATCTTGCTTCGGCACTGGAAATTGGTTCAGCTGGAACAAAAGCCTCAACT GATCAATCAGGAAACTCCACATGTGCAAGATCTGTGATGACAATAGCATTTGAGTTTGGT ATCGAGAGCCATATGCAAGAACATGTAGCATCCATGGCTAGGCAGTATGTTCGAGGTATC ${\tt ATATCATCGGTGCAGAGAGTAGCATTGGCTCTTTCTCCTTCTCATATCAGCTCACAAGTT}.$ GGTCTACGCACTCCTTTGGGTACTCCTGAAGCCCAAACACTTGCTCGTTGGATTTGCCAG AGTTACAGGGGCTACATGGGTGTTGAGCTACTTAAATCAAACAGTGACGGCAATGAATCT ATTCTTAAGAATCTTTGGCATCACACTGATGCTATAATCTGCTGCTCAATGAAGGCCTTG CCCGTCTTCACATTTGCAAACCAGGCGGGACTTGACATGCTGGAGACTACATTAGTTGCT GAGTTCCCACAGATCATGCAACAGGGCTTCGCGTGCCTTCAAGGCGGGATATGTCTCTCA AGCATGGGGAGACCAGTTTCGTATGAGAGAGCAGTTGCTTGGAAAGTACTCAATGAAGAA GAAAATGCTCATTGCATCTGCTTTGTGTTCATCAATTGGTCCTTTGTGTGA

>G1548 Amino Acid Sequence (domain in AA coordinates: 17-77) MAMSCKDGKLGCLDNGKYVRYTPEQVEALERLYHDCPKPSSIRRQQLIRECPILSNIEPK QIKVWFQNRRCREKQRKEASRLQAVNRKLTAMNKLLMEENDRLQKQVSQLVHENSYFRQH TPNPSLPAKDTSCESVVTSGQHQLASQNPQRDASPAGLLSIAEETLAEFLSKATGTAVEW VQMPGMKPGPDSIGIIAISHGCTGVAARACGLVGLEPTRVAEIVKDRPSWFRECRAVEVM NVLPTANGGTVELLYMOLYAPTTLAPPRDFWLLRYTSVLEDGSLVVCERSLKSTQNGPSM PLVQNFVRAEMLSSGYLIRPCDGGGSIIHIVDHMDLEACSVPEVLRPLYESPKVLAQKTT MAALRQLKQIAQEVTQTNSSVNGWGRRPAALRALSQRLSRGFNEAVNGFTDEGWSVIGDS MDDVTITVNSSPDKLMGLNLTFANGFAPVSNVVLCAKASMLLQNVPPAILLRFLREHRSE WADNNIDAYLAAAVKVGPCSARVGGFGGQVILPLAHTIEHEEFMEVIKLEGLGHSPEDAI VPRDIFLLQLCSGMDENAVGTCAELIFAPIDASFADDAPLLPSGFRIIPLDSAKEVSSPN RTLDLASALEIGSAGTKASTDQSGNSTCARSVMTIAFEFGIESHMQEHVASMARQYVRGI ISSVQRVALALSPSHISSQVGLRTPLGTPEAQTLARWICQSYRGYMGVELLKSNSDGNES ILKNLWHHTDAIICCSMKALPVFTFANQAGLDMLETTLVALQDISLEKIFDDNGRKTLCS EFPQIMQQGFACLQGGICLSSMGRPVSYERAVAWKVLNEEENAHCICFVFINWSFV* >G1574 (1..1962)

ATTCAGCCTCACGTTGGTGCACTAGGAAGAGTTAGGTGGTTGAGAGTAGTATTAGATGAA GCTCATACAATTAAAAACCATAGAACCCTAATTGCAAAAGCTTGTTTTAGCCTTAGAGCC AAAAGGAGATGGTGTTTGACTGGAACGCCGATAAAGAACAAAGTAGACGATCTTTATAGC TATTTCAGATTTCTTAGATATCATCCATATGCCATGTGCAATTCATTTCACCAAAGAATC AAAGCTCCAATTGATAAAAAGCCTCTTCATGGTTACAAGAAGCTTCAAGCTATTCTAAGG GGTATAATGTTGCGCCGCACCAAAGAATGGTCTTTCTACAGGAAGCTTGAATTGAATTCA CGTTGGAAGTTTGAGGAATATGCTGCTGATGGGACTTTGCATGAACACATGGCTTATCTT TTGGTGATGCTTTTGCGACTACGCCAAGCTTGTAACCATCCACAACTTGTTAACGGATAT AGTCACTCAGATACTACAAGAAAATGTCAGATGGAGTTCGAGTAGCCCCTAGAGAGAAT CTAATCATGTTCCTCGATCTCTTGAAATTATCCTCAACCACCTGCTCTGTTTGTAGTGAT CCACCAAAAGACCCTGTTGTTACTTTGTGTGGCCATGTGTTTTTGTTATGAGTGTGTCT CATGATGTTGTTTTCACTGAATCTGCAGTTAGAAGTTGCATCAACGATTATGATGATCCT GAAGATAAAAATGCTTTAGTTGCATCAAGGCGAGTTTATTTCATCGAAAATCCGAGCTGT GATAGAGATTCTTCAGTCGCTTGCAGAGCAAGGCAGTCCAGACACTCCACCAATAAAGAC AATAGTATCAGTGGACTGAATCTCATTTTTACGTTTCTCAAAGACAAATGTAATGATTAT GAAACAGGTGCGATGTTGATGTCTCTTAAAGCTGGAAACCTTGGATTGAATATGGTAGCT GCAAGTCATGTCATTCTACTGGACCTATGGTGGAATCCAACAACAGAGGATCAAGCTATT GATCGAGCTCATCGTATCGGACAAACTCGAGCTGTTACGGTCACTCGTATTGCCATCAAA AATACCGTTGAGGAACGAATTTTGACTCTTCATGAACGTAAAAGGAACATTGTTGCATCT GCATTGGGTGAAAAAACTGGCAAAAGTTCTGCGATTCAACTAACACTAGAAGATCTCGA ATATCTGTTTTTTGGTGTGTAGAATATCCCAGAGTTTTTATTGATAAGAGGAATAAAACC TTTAGCTATTTAATAAGTCACAAGTGTGAATGTAATGAATAA

>G1574 Amino Acid Sequence (domain in AA coordinates: 28-350)
MDDTMDMSSGSDEEVQEEKTTVNERVIYQAALQDLKQPKTEKDLPPGVLTVPLMRHQKIA
LNWMRKKEKRSRHCLGGILADDQGLGKTISTISLILLQKLKSQSKQRKRKGQNSGGTLIV
CPASVVKQWAREVKEKVSDEHKLSVLVHHGSHRTKDPTEIAIYDVVMTTYAIVTNEVPQN
PMLNRYDSMRGRESLDGSSLIQPHVGALGRVRWLRVVLDEAHTIKNHRTLIAKACFSLRA
KRRWCLTGTPIKNKVDDLYSYFRFLRYHPYAMCNSFHQRIKAPIDKKPLHGYKKLQAILR
GIMLRRTKEWSFYRKLELNSRWKFEEYAADGTLHEHMAYLLVMLLRLRQACNHPQLVNGY
SHSDTTRKMSDGVRVAPRENLIMFLDLLKLSSTTCSVCSDPPKDPVVTLCGHVFCYECVS
VNINGDNNTCPALNCHSQLKHDVVFTESAVRSCINDYDDPEDKNALVASRRVYFIENPSC
DRDSSVACRARQSRHSTNKDNSISGLNLIFTFLKDKCNDYETGAMLMSLKAGNLGLNMVA
ASHVILLDLWWNPTTEDQAIDRAHRIGQTRAVTVTRIAIKNTVEERILTLHERKRNIVAS
ALGEKNWQKFCDSTNTRRSRISVFWCVEYPRVFIDKRNKTFSYLISHKCECNE*
>G1586 (1..807)

>G1586 Amino Acid Sequence (domain in AA coordinates: 21-81)
MNQEGASHSPSSTSTEPVRARWSPKPEQILILESIFNSGTVNPPKDETVRIRKMLEKFGA
VGDANVFYWFQNRRSRSRRRHRQLLAATTAAATSIGAEDHQHMTAMSMHQYPCSNNEIDL
GFGSCSNLSANYFLNGSSSSQIPSFFLGLSSSSGGCENNNGMENLFKMYGHESDHNHQQQ
HHSSNAASVLNPSDQNSNSQYEQEGFMTVFINGVPMEVTKGAIDMKTMFGDDSVLLHSSG
LPLPTDEFGFLMHSLOHGQTYFLVPRQT*

>G1786 (1..1170)

ATGATCGTGTACGGTGGGGGAGCATCCGAGGACGGTGAAGGTGGAGGGGTGGTTCTGAAG CGCCTCCGCTGGGCTAACCACTTACGACCTAATCTCAGGAAAGGCTCCTTCACCCCCGAG GAAGAACGTCTCATCATACAACTCCACTCTCAGCTAGGCAACAAATGGGCTCGCATGGCT GCTCAGTTACCAGGCAGAACAGATAACGAGATCAAGAACTACTGGAACACGAGGTTGAAA CGCTTCCAACGCCAAGGCCTCCCTCTCTACCCTCCAGAATATTCCCAAAACAATCATCAA CAACAAATGTATCCTCAACAGCCCTCCTCACCTCTCCCGTCCCAAACACCTGCTTCTTCC TTTACCTTTCCTCTCCAACCGCCTTCTCTGTGTCCCAAACGTTGTTATAACACTGCC TTCTCTCCCAAGGCCTCATATATTTCTTCTCCAACCAATTTCCTTGTCTCGTCTCCGACC TTTCTTCACACCCATTCCTCTCTTTCCTCCTATCAGTCTACCAATCCGGTTTACTCCATG AAACATGAGCTCTCTTCAAACCAAATTCCATACTCTGCCTCTTTAGGAGTCTATCAAGTA AGCAAGTTCTCAGACAATGGGGATTGTAACCAAAACCTGAACACCGGTTTGCATACAAAT ACCTGTCAGCTGTTAGAGGATCTTATGGAGGAGGCCGAGGCTCTAGCTGATAGCTTTCGT GCTCCTAAGCGGAGACAAATCATGGCTGCGCTTGAGGACAACAACAACAACAACAACTTT TTCTCGGGAGGTTTCGGACATCGTGTTTCTTCCAACAGTCTATGTTCCTTGCAAGGTTTA ACACCAAAGGAAGATGAGTCTCTCCAGATGAACACAATGCAAGATGAGGACATAACAAAG ${\tt CTTCTTGACTGGGGAAGTGAAAGTGAAGAAATCTCAAACGGGCAATCCTCTGTGATAACA}$ ACAGAGAACAACCTTGTCCTTGACGATCACCAGTTCGCTTTTCTGTTTCCAGTTGATGAT GACACCAACAACTTGCCAGGGATCTGCTAG

>G1786 Amino Acid Sequence (domain in AA coordinates: TBD)
MIVYGGGASEDGEGGGVVLKKGPWTVAEDETLAAYVREYGEGNWNSVQKKTWLARCGKSC
RLRWANHLRPNLRKGSFTPEEERLIIQLHSQLGNKWARMAAQLPGRTDNEIKNYWNTRLK
RFQRQGLPLYPPEYSQNNHQQQMYPQQPSSPLPSQTPASSFTFPLLQPPSLCPKRCYNTA
FSPKASYISSPTNFLVSSPTFLHTHSSLSSYQSTNPVYSMKHELSSNQIPYSASLGVYQV
SKFSDNGDCNQNLNTGLHTNTCQLLEDLMEEAEALADSFRAPKRRQIMAALEDNNNNNNF
FSGGFGHRVSSNSLCSLQGLTPKEDESLQMNTMQDEDITKLLDWGSESEEISNGQSSVIT
TENNLVLDDHOFAFLFPVDDDTNNLPGIC*

>G1792 (77..496)

>G1792 Amino Acid Sequence (domain in aa coordinates: 17-85)
MESSNRSSNNQSQDDKQARFRGVRRRPWGKFAAEIRDPSRNGARLWLGTFETAEEAARAY
DRAAFNLRGHLAILNFPNEYYPRMDDYSLRPPYASSSSSSSGSTSTNVSRQNQREVFEF
EYLDDKVLEELLDSEERKR*

>G1865 (48..899)

TGGAAGATAATGATGATGGCTCATGTAGAGGCATCAACAACGAGGAGAAGCAGCCGGATC
GACATTGCTTCATCCTTGGTACTGACTTGAGGACACGTGAGAGGCCATTGATGTTAGAGG
AGAAGCTGAAACAAAGAGATCATGATAATGAAGAAGAGCAAGGAAGCAAGAGGTTTTATA
GGTTTCTTGATGAATGGCCTTCTTCTAAATCTTCTGTTTCTACTTCACTCTCATTTGAT
CATCTTTTGTTCTTATAACCTTGTATTTCTTGTTAAGATGGTAATGCAAATT
>G1865 Amino Acid Sequence (domain in AA coordinates: 124-149)
MDTLSIKTYLLLSYTFNFPIQIPIFNLSFFFISLSLSLFMATRIPFTESQWEELENQALV
FKYLAANMPVPPHLLFLIKRPFLFSSSSSSSSSSFFSPTLSPHFGWNVYEMGMGRKIDA
EPGRCRRTDGKKWRCSKEAYPDSKYCERHMHRGKNRSSSRKPPPTQFTPNLFLDSSSRRR
RSGYMDDFFSIEPSGSIKSCSGSAMEDNDDGSCRGINNEEKQPDRHCFILGTDLRTRERP
LMLEEKLKQRDHDNEEEQGSKRFYRFLDEWPSSKSSVSTSLFI*
>G1886 (43..909)

ATCTCAAACGAGACTTTGGAAACTATATTGGTAAGTTCAACAAAAGGAAGCAATAATAAC AATAAGAAAATGGAAGAAATGAAGAAGAAGTATCAAGAGGAGAATTAGGAGGTGAA GCTCAAAATTGTCCAAGATGTGAATCTCCAAACACAAAGTTTTGTTACTACAACAACTAT AGTCTCTCACAACCTCGTTACTTCTGCAAATCTTGTCGGAGATATTGGACTAAAGGCGGT ACTCTTCGTAACGTTCCCGTCGGTGGTGGTTGCCGTCGAAACAACGATCCTCTTCCTCA GCTTTCTCCAAGAACAACAACAATAAGTCTATTAATTTCCATACTGATCCACTTCAGAAC CCTTTAATTACGGGAATGCCACCATCATCTTTTGGTTATGATCACTCCATTGATCTCAAC $\tt CTCGCTTTCGCTACTCTCCAAAAGCATCATTTATCCTCTCAAGCTACTACGCCTTCTTTT$ GGGTTTGGAGGTGATCTTTCTATTTATGGAAACTCAACGAATGATGTAGGGATCTTCGGA GGGCAAAACGGTACTTATAACAATAGTTTGTGTTATGGGTTTATGTCCGGAAATGGTAAT AGAAAGCAAGAGAATGTGAACAATAACAATAATAACTCAGAGAATCCTAGCAAGGTGTTC TGGGGGTTTCCATGGCAGATGACCGGAGATTCCGCCGGAGTTGTACCGGAGATTGATCCC GGAAGGGAAAGCTGGAATGGGATGGTTTCATCTTGGAATAATGGTTTACTCAACACTCCT TTGGTCTAGCAGATCATTAA

>G1886 Amino Acid Sequence (domain in aa coordinates: 17-59)
MDPEQEISNETLETILVSSTKGSNNNNKKMEEEMKKKVSRGELGGEAQNCPRCESPNTKF
CYYNNYSLSQPRYFCKSCRRYWTKGGTLRNVPVGGGCRRNKRSSSSAFSKNNNNKSINFH
TDPLQNPLITGMPPSSFGYDHSIDLNLAFATLQKHHLSSQATTPSFGFGGDLSIYGNSTN
DVGIFGGQNGTYNNSLCYGFMSGNGNNNQNEIKMASTLGMSLEGNERKQENVNNNNNNSE
NPSKVFWGFPWQMTGDSAGVVPEIDPGRESWNGMVSSWNNGLLNTPLV*
>G1933 (33..1418)

AATTGAGATTAAAGTAATTTATCTTTCAGAAAATGGCGGTTGAAGACGATGTATCTTTGA TAAGAACGACGACGTTAGTGGCACCAACAAGACCCACGATTACAGTTCCTCATAGACCTC CGGCGATCGAAACGGCGGCGTATTTCTTTGGCGGTGGAGATGGGCTTAGTCTAAGCCCAG ATAACCAACGGACGACGTCGTTTACTCAGCTTCTTAACGGAACTATGTCGGTGTCTCCTG GTGGCGGAGGACGTTCAACGGCGGGGATGTTCGCCGGAGGAGGTCCGATGTTTACAATCC CTTCTGGTTTCAGCCCTTCTAGTCTTCTCACCTCGCCCATGTTCTTTCCCCCGCAGTCGT CAGCTCATACCGGCTTTATTCAACCACGGCAGCAGTCACAACCGCAACCACAACGACCAG ACACGTTTCCTCACCATATGCCACCATCGACATCCGTCGCCGTCCATGGTCGACATCTT TAGACGTTTCACAAGTAGATCAAAGAGCTCGAAACCATTATAATAATCCGGGGAATAACA ATAATAACCGGTCGTATAACGTTGTGAACGTTGATAAACCGGCGGATGACGGTTATAACT GGAGGAAGTACGGACAAAAGCCTATCAAAGGGTGTGAATATCCAAGGAGTTATTACAAAT GTACACATGTTAACTGTCCGGTGAAGAAGAAGTCGAACGGTCATCGGATGGACAGATCA CTCAGATCATTTACAAAGGTCAACATGATCACGAGAGGCCTCAGAATCGCCGTGGCGGTG GAGGCAGAGATTCCACTGAGGTTGGTGGTGCAGGGCAAATGATGGAATCTAGTGATGATA GTGGTTATCGTAAGGATCATGATGATGATGATGATGATGAAGATGATGAAGATCTTC CGGCTTCAAAGATAAGAAGAATAGACGGTGTGTCGACGACTCACCGGACGGTGACCGAGC CTAAGATTATCGTTCAGACAAAAAGTGAAGTCGATCTTCTCGACGATGGCTATAGGTGGC GTAAGTACGGACAAAAAGTTGTCAAAGGAAATCCCCATCCAAGGAGCTATTATAAATGTA CAACGCCAAATTGTACGGTCCGTAAACATGTAGAGAGAGCTTCCACGGATGCTAAGGCTG TGATTACAACTTACGAAGGTAAACACAATCACGATGTCCCTGCCGCTAGAAACGGTACCG CGGCAGCAACCGCAGCTGCGGTGGGGCCGTCTGACCACCATCGTATGAGATCAATGTCGG GGAACAATATGCAACAACATATGAGTTTCGGTAACAATAATAACACAGGCCAATCTCCGG TTCTTTTGAGGTTGAAAGAAGAAGAAAATCACAATTTGACTTTTAAGAACCAAAGATTTCG AGATTGATATT

>G1933 Amino Acid Sequence (conserved domain in AA coordinates:205-263, 344-404)
MAVEDDVSLIRTTTLVAPTRPTITVPHRPPAIETAAYFFGGGDGLSLSPGPLSFVSSLFV
DNFPDVLTPDNQRTTSFTQLLNGTMSVSPGGGRSTAGMFAGGGPMFTIPSGFSPSSLLT
SPMFFPPQSSAHTGFIQPRQQSQPQPQRPDTFPHHMPPSTSVAVHGRQSLDVSQVDQRAR
NHYNNPGNNNNNRSYNVVNVDKPADDGYNWRKYGQKPIKGCEYPRSYYKCTHVNCPVKKK
VERSSDGQITQIIYKGQHDHERPQNRRGGGGRDSTEVGGAGQMMESSDDSGYRKDHDDDD
DDDEDDEDLPASKIRRIDGVSTTHRTVTEPKIIVQTKSEVDLLDDGYRWRKYGQKVVKGN
PHPRSYYKCTTPNCTVRKHVERASTDAKAVITTYEGKHNHDVPAARNGTAAATAAAVGPS
DHHRMRSMSGNNMQQHMSFGNNNNTGQSPVLLRLKEEKITI*
>G2059 (58..1089)

GAAGATCAGTTTCCTAAAATAGAAACTAGCTTCATGCACGACAAGCTCTTGTCTTCTGGA ATCTACGGGTTCTTGAGTTCTTCGACGCCGCCACAACTTCTCGGTGTTCCAATATTTTTG GAAGGTATGAAATCTCCTCTTCTTCCTGCTTCTTCGACTCCGAGCTACTTTGTGTCGCCT CATGATCATGAGCTCACATCTTCTATTCATCCATCTCCGGTAGCTTCTGTTCCTTGGAAC TTTCTAGAATCTTTTCCTCAGTCTCAACATCCTGATCATCATCCTTCTAAACCTCCAAAC CTTACTTTGTTCCTTAAAGAACCAAAGCTACTAGAACTTTCTCAATCCGAAAGCAACATG AGCCCTTACCATAAATACATCCCAAACTCCTTTTATCAATCAGACCAAAACAGAAACGAA TGGGTAGAGATCAATAAAACTCTAACCAACTATCCCTCGAAAGGTTTTGGAAACTATTGG CTAAGTACCACCAAGACTCAACCCATGAAGTCAAAAACAAGAAAGGTTGTTCAGACGACG ACCCCAACAAAACTGTATAGAGGAGTGAGACAAAGACACTGGGGCAAATGGGTCGCAGAG ATTAGGCTTCCAAGGAACAGAACCCGTGTTTGGCTCGGCACTTTTGAAACCGCTGAGCAA GCAGCAATGGCTTACGATACAGCAGCTTATATCCTTCGTGGCGAATTCGCACACCTCAAC ${\tt TTTCCTGATCTTAAACACCAGCTCAAGTCCGGTTCTTTGCGATGCATGATCGCCTCACTT}$ CCTCCAAAAGTGGGAACACCGGAGCAAAAGAATCATCACATGAAGATGGAGTCAGGAGAA GACGTGATGATGAAGAAACAGAAAAGCCATAAGGAAGTGATGGAAGGAGATGGTGTACAA TTGAGTAGGATGCCTTCTTTGGATATGGATCTCATTTGGGATGCTCTCTCATTTCCTCAT TATCAAAAGTTTCCACCAAAGAAAGAAATTCATATTATGATGCCAAGATTGGTTTGCATT TGGGGTTGAACACATTGTAATTCTTCTTACGACCACATAATCAAGTGGTTCTCCTTTTTT TGTCTGCTAA

>G2059 Amino Acid Sequence (conserved domain in AA coordinates:184-254)
MEDQFPKIETSFMHDKLLSSGIYGFLSSTPPQLLGVPIFLEGMKSPLLPASSTPSYFVS
PHDHELTSSIHPSPVASVPWNFLESFPQSQHPDHHPSKPPNLTLFLKEPKLLELSQSESN
MSPYHKYIPNSFYQSDQNRNEWVEINKTLTNYPSKGFGNYWLSTTKTQPMKSKTRKVVQT
TTPTKLYRGVRQRHWGKWVAEIRLPRNRTRVWLGTFETAEQAAMAYDTAAYILRGEFAHL
NFPDLKHQLKSGSLRCMIASLLESKIQQISSSQVSNSPSPPPPKVGTPEQKNHHMKMESG
EDVMMKKQKSHKEVMEGDGVQLSRMPSLDMDLIWDALSFPHSS*
>G2105 (42..1487)

>G2105 Amino Acid Sequence (domain in AA coordinates: 100-153)
MEDHQNHPQYGIEQPSSQFSSDLFGFNLVSAPDQHHRLHFTDHEISLLPRGIQGLTVAGN
NSNTITTIQSGGCVGGFSGFTDGGGTGRWPRQETLMLLEVRSRLDHKFKEANQKGPLWDE
VSRIMSEEHGYTRSGKKCREKFENLYKYYKKTKEGKSGRRQDGKNYRFFRQLEAIYGESK
DSVSCYNNTQFIMTNALHSNFRASNIHNIVPHHQNPLMTNTNTQSQSLSISNNFNSSSDL
DLTSSSEGNETTKREGMHWKEKIKEFIGVHMERLIEKQDFWLEKLMKIVEDKEHQRMLRE
EEWRRIEAERIDKERSFWTKERERIEARDVAVINALQYLTGRALIRPDSSSPTERINGNG
SDKMMADNEFADEGNKGKMDKKQMNKKRKEKWSSHGGNHPRTKENMMIYNNQETKINDFC
RDDDQCHHEGYSPSNSKNAGTPSCSNAMAASTKCFPLLEGEGDQNLWEGYGLKQRKENNH
Q*

>G2117 (49..465)

>G2117 Amino Acid Sequence (conserved domain in AA coordinates:46-106)
MAGSVYNLPSQNPNPQSLFQIFVDRVPLSNLPATSDDSSRTAEDNERKRRKVSNRESAR
RSRMRKQRHMEELWSMLVQLINKNKSLVDELSQARECYEKVIEENMKLREENSKSRKMIG
EIGLNRFLSVEADQIWTF*

>G2124 (87..923)

GAACAGCAAAACCCTAGATTTCCTGTTCAAGCTCAAGACCGTACAAAACTTTGGAACTCA TATATAAAGATCTCGAGAATAGCATTATGAATATCGTCTCTTGGAAAGATGCAAACGACG AAGTTGCAGGCGGCGCTACGACAAGACGTGAAAGAGAAGTAAAAGAGGATCAAGAAGAAA CCGAAGTCAGAGCCACCAGTGGCAAAACCGTAATTAAAAAGCAGCCTACATCGATCTCTT ${\tt CTTCTTCTTCGTGGATGAAATCCAAGGATCCGAGGATTGTTAGGGTTTCACGCGCCT}$ TTGGAGGCAAAGACCGTCACAGCAAAGTGTGTACGTTACGTGGACTACGTGACAGACGCG TGAGATTATCAGTCCCAACGGCTATTCAGCTCTACGATCTTCAAGAACGGCTCGGTGTTG ACCAGCCTAGCAAAGCCGTTGACTGGTTGCTTGATGCAGCTAAAGAGGAGATCGACGAGC TACCTCCGTTACCTATCTCGCCGGAAAATTTCAGCATCTTCAACCATCATCAGTCCTTCT TGAATCTTGGTCAACGGCCCGGTCAAGATCCGACCCAACTCGGGTTTAAAATCAATGGAT GTGTACAAAAGTCTACTACTAGCCGCGAAGAAAACGATAGAGAGAAAAGGAGAAAACG ATGTCGTTTACACAAACAATCATCATGTTGGGTCTTATGGAACTTATCACAACCTGGAAC ATCATCATCATCACCAACATTTGAGTTTACAGGCAGATTATCATAGTCATCAACTAC ATAGTCTTGTCCCATTTCCATCACAAATTTTGGTATGTCCAATGACGACATCACCAACAA CTACAACTATACAATCTTTGTTTCCATCATCATCGTCAGCTGGTTCAGGGACTATGGAGA CATTAGATCCGAGGCAAATGTAGCAACAATGGTGGTAGAGACATTGATAATCGGATGTCG TCGGTCCAATTCAACCGAACTAATAGCACTACAACGGCTAACATGTCGAGGCATCTAGGC TCGGAGCGTTGTACAAGTAGAGGAAGTGATCACCATATGTGAAGTTAGATTATTGAAACG ATATAATTGTTTGATGTGTTCAGAAATAAGGGGACAC

>G2124 Amino Acid Sequence (domain in AA coordinates: 75-132)

MNIVSWKDANDEVAGGATTRREREVKEDQEETEVRATSGKTVIKKQPTSISSSSSSWMKS KDPRIVRVSRAFGGKDRHSKVCTLRGLRDRRVRLSVPTAIQLYDLQERLGVDQPSKAVDW LLDAAKEEIDELPPLPISPENFSIFNHHQSFLNLGQRPGQDPTQLGFKINGCVQKSTTTS REENDREKGENDVVYTNNHHVGSYGTYHNLEHHHHHHQHLSLQADYHSHQLHSLVPFPSQ ILVCPMTTSPTTTTIQSLFPSSSSAGSGTMETLDPRQM*

>G2140 (148..1254)

ACTCTCTTAACTTTCGTTTCTTCTCCTACCTTCTTTTACCAACCTTTCCTTTCTCTTACA CACATATATATATACATATATAGAGAGAGAGAGAGAGACAAAGAGTTGAAAGATGAAGAC GAAGAAGACAGTTCTGAAGCCATGAACAACATACAAAATTACCAAAATGACCTCTTCTTT CACCAACTCATCTCTCATCATCACCATCATCATCATGATCCTTCTCAATCTGAAACTTTG GGAGCATCCGGTAACGTTGGATCTGGTTTCACTATCTTCTCAAGATTCCGTCTCTCCA ATATGGTCTCTACCTCCACCTCGATCCAACCACCATTTGATCAGTTTCCTCCTCCT TCTTCTTCTCCAGCATCTTTCTACGGAAGTTTCTTCAACAGAAGTCGAGCTCATCATCAG GGATTACAGTTTGGGTACGAGGGTTTTGGTGGAGCCACGTCAGCAGCACATCATCATCAT GAACAACTTCGGATCTTGTCGGAAGCTTTAGGTCCGGTAGTACAAGCCGGGTCCGGTCCT TTTGGGTTACAAGCTGAGTTAGGGAAGATGACAGCACAAGAGATCATGGACGCTAAAGCT CATCTCGCTAAGCTCCGTAGCATATTACCCAACACCACCAAAACGGATAAAGCGTCGTTA ACAAATCTTGTCCCAACGGAAAGCGATGAGTTAACGGTAGCTTTCACGGAGGAGGAAGAA ACCGGAGATGGCAGATTTGTAATTAAAGCGTCGCTTTGCTGTGAAGACAGGTCGGATCTC TTGCCTGACATGATTAAAACATTGAAAGCTATGCGTCTCAAAACGCTCAAGGCGGAGATA GAGGAAGTGGAGGAAGAGTACTGTATAGGGACGATTGAGGAAGCTTTGAAAGCGGTGATG GAGAAGAGCAATGTAGAGGAATCATCTTCTTCTGGAAATGCTAAGAGACAGAGAATGAGT AGTCACAACACTATCACTATCGTCGAACAACAACAACAATATAATCAGAGGTAATCAATT TTTTACTTAAATCGCTTTTTTTTTTTTCTTACTTTCGGTGTATCTACTACGTGTGTTTTTTCCT GGTTATGGAAATGAATGTTGTACGTCACGTTATACTATAGATATATGTGTGTTTTGTGTGT ATGTATAACGGAAGTATTTGTATCCGTTGTGGTCTTGGACTTTTGGTTTGGTTCTAAGAT ACTTATTTTAAAAACTTGTATCGTTGAGTTGGTTTTCTAGATATGCTTAATGGGAGTAT

>G2140 Amino Acid Sequence (domain in AA coordinates:167-242)
MCAKKEEEEEEEDSSEAMNNIQNYQNDLFFHQLISHHHHHHHDPSQSETLGASGNVGSG
FTIFSQDSVSPIWSLPPPTSIQPPFDQFPPPSSSPASFYGSFFNRSRAHHQGLQFGYEGF
GGATSAAHHHHEQLRILSEALGPVVQAGSGPFGLQAELGKMTAQEIMDAKALAASKSHSE
AERRRERINNHLAKLRSILPNTTKTDKASLLAEVIQHVKELKRETSVISETNLVPTESD
ELTVAFTEEEETGDGRFVIKASLCCEDRSDLLPDMIKTLKAMRLKTLKAEITTVGGRVKN
VLFVTGEESSGEEVEEEYCIGTIEEALKAVMEKSNVEESSSGNAKRQRMSSHNTITIVE
QQQQYNQR*

>G2144 (102..1241)

ATTAGGGTTTTGTTGTCGTGAGATTTGATTACACAAATTGCTGAATTTGGTTTCGATTAT TGGTGTTATTGTTTTCGAAGATTTCCAGTGAGTTTCCGTTTATGGATCTGACTGGAGGAT TTGGAGCTAGATCCGCGGTGTTGGACCGTGCCGGGAACCAATAGGCCTTGAATCGCTAC ATCTCGGTGACGAATTTCGGCAACTAGTGACGACTTTACCTCCCGAGAACCCCGGCGGTT CGTTCACGGCTTTGCTTGAGCTTCCACCTACACAAGCAGTGGAGCTTCTCCATTTCACTG ATTCTTCGTCTTCTCAACAAGCGGCAGTGACAGGGATCGGTGGAGAGATTCCTCCGCCGC CTCGTTTCTCGGTGATTGCCACTGAGCAACAAAACGGAAATATCTCCGGGGAGACTCCGA CGAGCTCTGTACCTTCCAATTCAAGTGCTAATCTCGACAGAGTCAAGACGGAGCCTGCTG AGACCGATTCATCTCAGCGGTTGATTTCTGATTCAGCGATTGAGAATCAAATCCCTTGCC CTAACCAGAACAATCGAAATGGGAAGAGGAAAGAATTTCGAAAAGAAGGGTAAAAGCTCGA CGAAGAAGACAAAAGCTCTGAAGAGAACGAGAAGCTGCCATATGTTCACGTTAGAGCTC GTCGTGGTCAAGCAACCGATAGCCATAGCTTAGCAGAACGAGCAAGAAGAGAGAAGATAA ATGCACGAATGAAGCTGTTACAGGAACTGGTCCCAGGCTGTGATAAGATTCAAGGTACCG CGCTGGTGCTGGATGAAATCATTAACCATGTCCAGTCATTACAACGTCAAGTGGAGATGC TATCAATGAGACTTGCTGCGGTAAACCCCAGAATCGACTTCAATCTCGACACCATATTGG

>G2144 Amino Acid Sequence (domain in AA coordinates:203-283)
MDLTGGFGARSGGVGPCREPIGLESLHLGDEFRQLVTTLPPENPGGSFTALLELPPTQAV
ELLHFTDSSSSQQAAVTGIGGEIPPPLHSFGGTLAFPSNSVLMERAARFSVIATEQQNGN
ISGETPTSSVPSNSSANLDRVKTEPAETDSSQRLISDSAIENQIPCPNQNNRNGKRKDFE
KKGKSSTKKNKSSEENEKLPYVHVRARRGQATDSHSLAERARREKINARMKLLQELVPGC
DKIQGTALVLDEIINHVQSLQRQVEMLSMRLAAVNPRIDFNLDTILASENGSLMDGSFNA
APMQLAWPQQAIETEQSFHHRQLQQPPTQQWPFDGLNQPVWGREEDQAHGNDNSNLMAVS
ENVMVASANLHPNQVKMEL*

>G2431 (47..1057)

CCCTTTCGTTTTTATTTAAATTTCTTGGGTCGTTTCTTAAATTTGTATGTGTTTATTAAT GGAGATCAACAATAATGCCAACAATACTAATACTACTATTGATAATCACAAGGCAAAGAT GAGCCTTGTGTTGTCAACGGATGCTAAGCCAAGGTTGAAATGGACTTGTGATCTTCATCA CAAATTCATCGAAGCCGTTAATCAACTTGGAGGACCTAACAAAGCAACACCTAAGGGTTT GATGAAGGTTATGGAGATTCCTGGGCTTACCTTATACCATCTCAAGAGCCATTTACAGAA ATATCGGTTAGGGAAGAGCATGAAGTTCGATGATAACAAGCTAGAAGTTTCCTCTGCATC AGAGAATCAAGAAGTTGAGAGTAAAAACGATTCAAGAGATCTCCGAGGCTGCAGTGTCAC CGAAGAAACAGCAATCCAGCTAAAGAAGGGCTACAAATCACAGAGGCTTTACAAATGCA GATGGAAGTTCAGAAGAAACTTCATGAACAAATCGAAGTTCAGAGGCATTTGCAGGTGAA GATTGAGGCACAAGGAAAGTATCTACAGTCCGTTTTAATGAAAGCTCAACAAACTCTCGC TGGCTACTCATCTTCAAATCTCGGCATGGATTTTGCGAGGACCGAGCTCTCTAGATTAGC TTCAATGGTGAACAGAGGCTGTCCAAGCACTTCGTTCTCAGAGCTAACGCAAGTAGAAGA AGAAGAAGAAGGTTTCTTGTGGTACAAGAAACCAGAAAACAGAGGAATTAGTCAGCTGAG ATGTTCAGTAGAGAGCTCGTTGACATCTTCAGAGACCTCAGAGACAAAACTGGATACTGA CAATAACCTTAATAAATCGATTGAACTTCCGTTGATGGAGATCAACTCGGAAGTGATGAA GGGGAAGAAGAAGCATAAACGACGTCGTTTGCGTGGAGCAGCCTCTAATGAAGAGAGC ATATAAAAATGTTTTAAAAGAATCCA

>G2431 Amino Acid Sequence (conserved domain in AA coordinates:38-88)
MCLLMEINNNANNTNTTIDNHKAKMSLVLSTDAKPRLKWTCDLHHKFIEAVNQLGGPNKA
TPKGLMKVMEIPGLTLYHLKSHLQKYRLGKSMKFDDNKLEVSSASENQEVESKNDSRDLR
GCSVTEENSNPAKEGLQITEALQMQMEVQKKLHEQIEVQRHLQVKIEAQGKYLQSVLMKA
QQTLAGYSSSNLGMDFARTELSRLASMVNRGCPSTSFSELTQVEEEEEGFLWYKKPENRG
ISQLRCSVESSLTSSETSETKLDTDNNLNKSIELPLMEINSEVMKGKKRSINDVVCVEQP
LMKRAFGVDDDEHLKLSLNTYKKDMEACTNIGLGFN*

>G2465 (86..1150)

CAATATTCTTTCTCCATTGAGATTAAGCTTCTTTCTCGCTGTCGTCTCTCTATAGATCTT
GGTTCTTAGTCCCTTTTGAATAATAATGATGGTGGAGATGATTACGCTAAGAAAATGCA
GAAATGTCATGAATACGTTGAAGCACTTGAAGAAGAACAGAAGAAAAATCCAAGTCTTTCA
ACGCGAGCTTCCTTTATGTTTAGAGCTTGTCACTCAAGCGATCGAAGCTTGTCGGAAGGA
GTTATCTGGTACGACGACAACTACATCAGAACAGTGTTCAGAACAGACCACAAGTGTTTG
TGGTGGTCCTGTCTTTGAAGAGTTTATTCCTATCAAGAAAATTAGTTCCTTGTGTAAGA
AGTACAAGAAGAAGAAGAAGAAGATGGTGAACATGAATCTTCTCCAGAACTTGTGAATAA
TAAGAAATCAGATTGGCTTAGATCTGTTCAGCTATGGAATCATTCACCGGATCTAAATCC
AAAAGAGGGGCGTGTAGCTAAGAAAGCGAAAGTGGTGGAGGTGAAACCAAAAAGCGGTGC
GTTTCAGCCGTTTCAAAAGCGCGTTTTGGAGACTGATTTGCAACCGGCGGTGAAAGTAGC
TAGTTCGATGCCAGCGACGACGACGAGTTCTACGACGGAAACTTGTGGTGGTAAAAGTGA
TTTGATTAAAGCTGGAGATGAGGAAAGACGGATAGAGCAGCAACTCGCAGTCGCATAC

>G2465 Amino Acid Sequence (conserved domain in AA coordinates:219-269)
MMVEMDYAKKMQKCHEYVEALEEEQKKIQVFQRELPLCLELVTQAIEACRKELSGTTTTT
SEQCSEQTTSVCGGPVFEEFIPIKKISSLCEEVQEEEEEDGEHESSPELVNNKKSDWLRS
VQLWNHSPDLNPKEERVAKKAKVVEVKPKSGAFQPFQKRVLETDLQPAVKVASSMPATTT
SSTTETCGGKSDLIKAGDEERRIEQQQSQSHTHRKQRRCWSPELHRRFLNALQQLGGSHV
ATPKQIRDHMKVDGLTNDEVKSHLQKYRLHTRRPAATSVAAQSTGNQQQPQFVVVGGIWV
PSSQDFPPPSDVANKGGVYAPVAVAQSPKRSLERSCNSPAASSSTNTNTSTPVS*
>G2583 (38..607)

>G2583 Amino Acid Sequence (domain in AA coordinates:4-71)
MVHSRKFRGVRQRQWGSWVSEIRHPLLKRRVWLGTFETAEAAARAYDQAALLMNGQNAKT
NFPVVKSEEGSDHVKDVNSPLMSPKSLSELLNAKLRKSCKDLTPSLTCLRLDTDSSHIGV
WQKRAGSKTSPTWVMRLELGNVVNESAVDLGLTTMNKQNVEKEEEEEEAIISDEDQLAME
MIEELLNWS*

>G2724 (1..651)

>G2724 Amino Acid Sequence (conserved domain in AA coordinates:7-113)
MEIEIRRGPWTVEEDMKLVSYISLHGEGRWNSLSRSAGLNRTGKSCRLRWLNYLRPDIRR
GDISLQEQFIILELHSRWGNRWSKIAQHLPGRTDNEIKNYWRTRVQKHAKLLKCDVNSKQ
FKDTIKHLWMPRLIERIAATQSVQFTSNHYSPENSSVATATSSTSSSEAVRSSFYGGDQV
EFGTLDHMTNGGYWFNGGDTFETLCSFDELNKWLIQ*

>G377 (1..396)

cacaccacatgccctctttgcaggtccattctctag

>G377 Amino Acid Sequence (domain in AA coordinates:85-128)
MGLSHFPTASEGVLPLLVMNTVVSITLLKNMVRSVFQIVASETESSMEIDDEPEDDFVTR
RISITQFKSLCENIEEEEEEKGVECCVCLCGFKEEEEVSELVSCKHFFHRACLDNWFGNN
HTTCPLCRSIL*

>G428 (97..1032)

TTACTTTTGTGTTTCTTCATATTCTTCAGAAGCAAGCACAAGGCTAGGGATCGAAGAAGC GGCGATCACTGATCGTATCTCACTACGATCACATTAATGGATAGAATGTGTGGTTTCCGC TCGACGGAAGACTATTCGGAGAAAGCGACGTTGATGATGCCGTCCGATTATCAGTCTTTG ATTTGTTCAACCACCGGAGACAATCAAAGACTGTTTGGATCCGACGAACTCGCTACCGCT TTGTCCTCGGAGTTGCTTCCGCGTATTCGAAAAGCTGAGGATAATTTCTCTCTTAGTGTC ATCAAATCCAAAATCGCTTCTCATCCTTTGTATCCTCGCTTACTCCAAACCTACATCGAT TGCCAAAAGGTGGGAGCGCCTATGGAAATAGCGTGTATATTGGAAGAGATTCAGCGAGAG AACCATGTGTACAAGAGAGATGTTGCTCCATTATCTTGCTTTGGAGCTGATCCTGAGCTT GATGAATTCATGGAAACCTACTGTGATATATTGGTTAAATACAAAACCGATCTTGCGAGG CCGTTCGACGAGGCTACAACTTTCATAAACAAGATTGAAATGCAGCTTCAGAACTTGTGC ACTGGTCCAGCGTCTGCTACAGCTCTTTCAGATGATGGTGCGGTTTCATCTGACGAGGAA CTGAGAGAAGATGATGACATAGCAGCGGATGACAGCCAACAAAGAAGCAATGACCGCGAT CTGAAGGACCAGCTACTACGCAAATTTGGTAGCCATATCAGTTCATTGAAACTCGAGTTC TCTAAAAAGAAGAAGAAAGGGAAGCTACCAAGAGAAGCAAGACAAGCGTTGCTCGATTGG TGGAATGTTCATAATAAATGGCCTTACCCTACTGAAGGCGACAAAATAGCTCTGGCTGAA GAAACAGGTTTGGATCAAAAACAAATCAACAATTGGTTTATAAACCAAAGGAAACGCCAT TGGAAGCCTTCGGAGAACATGCCGTTTGATATGATGGACGATTCTAATGAAACATTCTTT ACCGAGGAATGAAAAGAGAGACATGGGATTGTGCATTGTATAATTTTTACACTGTTTTCC CCAGTTAGCCAAAACGGTCAAGGGCGTGGCGTAACGAGACATTGTATTGGAAATAGTGGC AATATTATGTCACTAATCTTCCAATGGTCCAAAATGATAGATTTCTTATTTGTATŢGAAC >G428 Amino Acid Sequence (domain in AA coordinates: 229-292) MDRMCGFRSTEDYSEKATLMMPSDYQSLICSTTGDNQRLFGSDELATALSSELLPRIRKA EDNFSLSVIKSKIASHPLYPRLLQTYIDCQKVGAPMEIACILEEIQRENHVYKRDVAPLS CFGADPELDEFMETYCDILVKYKTDLARPFDEATTFINKIEMQLQNLCTGPASATALSDD GAVSSDEELREDDDIAADDSQQRSNDRDLKDQLLRKFGSHISSLKLEFSKKKKKGKLPRE ARQALLDWWNVHNKWPYPTEGDKIALAEETGLDQKQINNWFINQRKRHWKPSENMPFDMM DDSNETFFTEE*

>G447 (241..3501)

CTTTTTAAGAGCTTAAAAATTTGCTTTGAAGCTTCAAATATTCTTATGAACTAAAAAGAA GAAAAAAGCTTTTGTTTCCTTTTCCTTAGCAGCAGAATGATTTTTGTTTCCAAAATTATT ACTATTTAGTTTCTCTCGTGCTCTTCTCTTGAGCAAATACAGATTCGTTAATTTTGCTGA ATGAAAGCTCCATCAAATGGATTTCTTCCAAGTTCCAACGAAGGAGAAGAAGAAGCCAATC AATTCTCAACTATGGCACGCTTGTGCAGGGCCTTTAGTTTCATTACCTCCTGTGGGAAGT CTTGTGGTTTACTTCCCTCAAGGACACAGCGAGCAAGTTGCAGCATCGATGCAGAAGCAA GTTACATTACATGCTGATACCGAAACAGATGAAGTCTATGCACAAATGACTCTTCAACCT GTGAATAAGTATGATAGAGAAGCATTGCTAGCTTCTGATATGGGCTTGAAGCTAAACAGA CAACCTACTGAGTTTTTTTGCAAGACTCTTACTGCAAGTGACACAAGCACTCATGGTGGA TTCTCTGTACCGCGTCGTGCAGCTGAGAAAATATTCCCTCCTCTTGATTTCTCGATGCAA CCGCCTGCGCAAGAGATTGTAGCTAAAGATTTACATGATACTACATGGACTTTCAGACAT ATCTATCGAGGCCAACCAAAAAGACACTTGCTTACCACAGGTTGGAGCGTTTTTGTTAGC ACAAAGAGACTATTTGCGGGTGATTCAGTTTTGTTTGTAAGAGATGAGAAATCACAGCTG ATGTTGGGTATAAGACGTGCAAATAGACAAACTCCGACTCTTTCCTCATCGGTCATATCC AGCGACAGTATGCACATTGGGATACTTGCAGCTGCAGCTCATGCTAATGCCAATAGTAGC CCTTTTACCATCTTCTTCAATCCAAGGGCAAGTCCTTCAGAGTTTGTAGTTCCTTTAGCC AAATACAACAAAGCCTTATACGCTCAAGTATCTCTAGGAATGAGATTCCGGATGATGTTT GAGACTGAGGATTGTGGGGTTCGTAGATATATGGGTACAGTCACAGGTATTAGTGATCTT

GACCCTGTAAGATGGAAAGGCTCACAATGGCGTAATCTTCAGGTAGGATGGGATGAATCA ACAGCTGGAGATAGGCCAAGCCGAGTATCCATATGGGAAATCGAACCCGTCATAACTCCT TTTTACATATGTCCTCCTCCATTTTCAGACCTAAGTACCCGAGGCAACCCGGGATGCCA GATGATGAGTTAGACATGGAAAATGCTTTCAAAAGAGCAATGCCTTGGATGGGAGAAGAC TTTGGGATGAAGGACGCACAGAGTTCGATGTTCCCTGGTTTAAGTCTAGTTCAATGGATG AGTATGCAGCAAAACAATCCATTGTCAGGTTCTGCTACTCCTCAGCTCCCGTCCGCGCTC TCATCTTTTAACCTACCAAACAATTTTGCTTCCAACGACCCTTCCAAGCTGTTGAACTTC CAATCCCCAAACCTCTCTCCGCAAATTCCCAATTCAACAAACCGAACACGGTTAACCAT ATCAGCCAACAGATGCAAGCACCAGCCATGGTGAAATCTCAACAACAACAACAACAA CAACAACAACAACACCAACAACAACAACAACTGCAACAACAACAACAACTACAGATG TCACAGCAACAGGTGCAGCAACAAGGGATTTATAACAATGGTACGATTGCTGTTGCTAAC CAAGTCTCTTGTCAAAGTCCAAACCAACCTACTGGATTCTCTCAGTCTCAGCTTCAGCAG CAGTCAATGCTCCCTACTGGTGCTAAAATGACACACCAGAACATAAATTCTATGGGGAAT AAAGGCTTGTCTCAAATGACATCGTTTGCGCAAGAAATGCAGTTTCAGCAGCAACTGGAA CAACAAAATCTGTCCCAAAATCCTCAGCAACTCCAAATGCAACAACAATCATCAAAACCA AGTCCTTCACAACAGCTTCAGTTGCAGCTACTGCAGAAGCTACAGCAGCAGCAACAGCAG CAGTCGATTCCTCCAGTAAGCTCATCCTTACAGCCACAATTATCAGCGTTGCAGCAGACA CAAAGCCATCAATTGCAACAACTTCTGTCGTCTCAAAATCAACAGCCCTTGGCACATGGT AATAACAGCTTCCCAGCTTCAACTTTCATGCAGCCTCCACAGATTCAGGTGAGTCCTCAG CAGCAAGGACAGATGAGTAACAAAAATCTTGTAGCCGCTGGAAGATCACATTCTGGCCAC ACAGATGGAGAAGCTCCTTCTTGTTCAACCTCACCTTCCGCCAATAACACGGGACATGAT AATGTTTCACCGACAAATTTCCTGAGCAGAAATCAACAGCAAGGACAAGCTGCATCTGTA TCTGCATCTGATTCAGTCTTTGAGCGCGCAAGCAATCCGGTCCAAGAGCTTTATACAAAA ACTGAGAGCCGGATCAGTCAAGGCATGATGAATATGAAGAGTGCTGGTGAACATTTCAGA TTTAAAAGCGCGGTAACAGATCAAATCGATGTATCCACAGCGGGAACGACGTACTGTCCT GATGTTGTTGGCCCTGTACAGCAGCAACAACTTTCCCACTACCATCATTTGGTTTTGAT GGAGACTGCCAATCTCATCATCCAAGAAACAACTTAGCTTTCCCTGGTAATCTCGAAGCC GTAACTTCTGATCCACTCTATTCTCAAAAGGACTTTCAAAACTTGGTTCCCAACTATGGC AACACACCAAGAGACATTGAGACGGAGCTGTCCAGTGCTGCAATCAGTTCTCAGTCATTT GGTATTCCCAGCATTCCCTTTAAGCCCGGATGTTCAAATGAGGTTGGCGGCATCAATGAT TCAGGAATCATGAATGGTGGAGGACTGTGGCCCAATCAGACTCAACGAATGCGAACATAT ACAAAGGTTCAAAAACGAGGGTCAGTAGGTAGATCAATAGATGTTACCCGTTATAGCGGC TATGATGAACTTAGGCATGACTTAGCGAGAATGTTTGGCATCGAAGGACAGCTCGAAGAT CCGCTAACCTCTGATTGGAAACTCGTCTACACCGATCACGAAAACGATATTTTACTAGTT GGTGATGATCCTTGGGAAGAGTTTGTGAACTGCGTGCAGAACATAAAGATACTATCATCA GTAGAAGTTCAGCAAATGAGCTTAGACGGAGATCTTGCAGCTATCCCAACCACAAACCAA GCCTGCAGCGAAACAGACAGCGGAAATGCTTGGAAAGTACACTATGAAGACACTTCTGCT GCAGCTTCTTTCAACAGATAGAAATAAAAAGATGCAAATATACCAAGTCAACTTACATTA ACTGAGAAGAAGAAGATACTGCACGGTATATAAACATTTTTATAGGACAGTGATTTGATT TTTCATTCTAACTTGATGTTGTTGTACTTTCTTGTTTCCATATTTGTATAACAAGTATAA TGCTTGACAAGTCTATGAGGAGCATATCTTATACAGAGATACTAAGATGTAATGTTAATG TAACTAAACAATTACCTTCATTAATCATGAATCCTTTGGTCGTTTAAAA

>G447 Amino Acid Sequence (conserved domain in AA coordinates:22-356)
MKAPSNGFLPSSNEGEKKPINSQLWHACAGPLVSLPPVGSLVVYFPQGHSEQVAASMQKQ
TDFIPNYPNLPSKLICLLHSVTLHADTETDEVYAQMTLQPVNKYDREALLASDMGLKLNR
QPTEFFCKTLTASDTSTHGGFSVPRRAAEKIFPPLDFSMQPPAQEIVAKDLHDTTWTFRH
IYRGQPKRHLLTTGWSVFVSTKRLFAGDSVLFVRDEKSQLMLGIRRANRQTPTLSSSVIS
SDSMHIGILAAAAHANANSSPFTIFFNPRASPSEFVVPLAKYNKALYAQVSLGMRFRMMF
ETEDCGVRRYMGTVTGISDLDPVRWKGSQWRNLQVGWDESTAGDRPSRVSIWEIEPVITP
FYICPPPFFRPKYPRQPGMPDDELDMENAFKRAMPWMGEDFGMKDAQSSMFPGLSLVQWM
SMQQNNPLSGSATPQLPSALSSFNLPNNFASNDPSKLLNFQSPNLSSANSQFNKPNTVNH
ISQQMQAQPAMVKSQQQQQQQQQHQHQQQQLQQQQQLQMSQQQVQQQGIYNNGTIAVAN
QVSCQSPNQPTGFSQSQLQQQSMLPTGAKMTHQNINSMGNKGLSQMTSFAQEMQFQQQLE
MHNSSQLLRNQQEQSSLHSLQQNLSQNPQQLQMQQQSSKPSPSQQLQLQLLQKLQQQQQQ
QSIPPVSSSLQPQLSALQQTQSHQLQQLLSSQNQQPLAHGNNSFPASTFMQPPQIQVSPQ

QQGQMSNKNLVAAGRSHSGHTDGEAPSCSTSPSANNTGHDNVSPTNFLSRNQQQGQAASV SASDSVFERASNPVQELYTKTESRISQGMMNMKSAGEHFRFKSAVTDQIDVSTAGTTYCP DVVGPVQQQQTFPLPSFGFDGDCQSHHPRNNLAFPGNLEAVTSDPLYSQKDFQNLVPNYG NTPRDIETELSSAAISSQSFGIPSIPFKPGCSNEVGGINDSGIMNGGGLWPNQTQRMRTY TKVQKRGSVGRSIDVTRYSGYDELRHDLARMFGIEGQLEDPLTSDWKLVYTDHENDILLV GDDPWEEFVNCVQNIKILSSVEVQQMSLDGDLAAIPTTNQACSETDSGNAWKVHYEDTSA

>G464 (41..760)

CTCTGCTGGTATCATTGGAGTCTAGGGTTTTGTTATTGACATGCGTGGTGTGTCAGAATT GGAGGTGGGGAAGAGTAATCTTCCGGCGGAGAGTGAGCTGGAATTGGGATTAGGGCTCAG CCTCGGTGGTGGCGCGTGGAAAGAGCGTGGGAGGATTCTTACTGCTAAGGATTTTCCTTC CGTTGGGTCTAAACGCTCTGCTGAATCTTCCTCTCACCAAGGAGCTTCTCCTCCTCGTTC AAGTCAAGTGGTAGGATGGCCACCAATTGGGTTACACAGGATGAACAGTTTGGTTAATAA TGATGAGCTCAAAGATGTGTCAATGAAGGTGAATCCGAAAGTTCAGGGCTTAGGGTTTGT TAAGGTGAATATGGATGGAGTTGGTATAGGCAGAAAAGTGGATATGAGAGCTCATTCGTC TTACGAAAACTTGGCTCAGACGCTTGAGGAAATGTTCTTTGGAATGACAGGTACTACTTG TCGAGAAAAGGTTAAACCTTTAAGGCTTTTAGATGGATCATCAGACTTTGTACTCACTTA TGAAGATAAGGAAGGGGATTGGATGCTTGTTGGAGATGTTCCATGGAGAATGTTTATCAA CTCGGTGAAAAGGCTTCGGATCATGGGAACCTCAGAAGCTAGTGGACTAGCTCCAAGACG TCAAGAGCAGAAGGATAGACAAAGAAACAACCCTGTTTAGCTTCCCTTCCAAAGCTGGCA TTGTTTATGTATTGTTTGAGGTTTGCAATTTACTCGATACTTTTTGAAGAAAGTATTTTG GAGAATATGGATAAAAGCATGCAGAAGCTTAGATATGATTTGAATCCGGTTTTCGGATAT CAATTATCTATGTTCTGTGAGAGAAAGCTCTT

>G464 Amino Acid Sequence (domain in AA coordinates: 20-28, 71-82, 126-142, 187-224)

MRGVSELEVGKSNLPAESELELGLGLSLGGGAWKERGRILTAKDFPSVGSKRSAESSSHQ GASPPRSSQVVGWPPIGLHRMNSLVNNQAMKAARAEEGDGEKKVVKNDELKDVSMKVNPK VQGLGFVKVNMDGVGIGRKVDMRAHSSYENLAQTLEEMFFGMTGTTCREKVKPLRLLDGS SDFVLTYEDKEGDWMLVGDVPWRMFINSVKRLRIMGTSEASGLAPRRQEQKDRQRNNPV* >G557 (192..698)

>G557 Amino Acid Sequence (domain in AA coordinates: 90-150)
MQEQATSSLAASSLPSSSERSSSSAPHLEIKEGIESDEEIRRVPEFGGEAVGKETSGRES
GSATGQERTQATVGESQRKRGRTPAEKENKRLKRLLRNRVSAQQARERKKAYLSELENRV
KDLENKNSELEERLSTLQNENQMLRHILKNTTGNKRGGGGGSNADASL*

>G577 (44..2155)

AAAAACAGACTGAGAGAGAGAGAGAGAGAGTGTTGTTGGCCATGGGATGCACGGCCTC
CAAGCTCGACAGTGAGGATGCTGTCCGTCGCTGCAAGGAGCGGCGCCGTCTTATGAAGGA
CGCCGTCTACGCTCGTCACCATCTCGCCGCCGCTCACTCTGACTACTGCCGCTCCCTTCG
TCTCACTGGCTCTGCCCTCCTCCTTCGCCGCCGGGAGCCCCTCTCCGTCTCCGAGAA
TACTCCCGCTGTTTTTCTCCGCCCCTTCCTCCAGTCAGGACGCGCCACGTGTCCCTTCTTC

CCATTCCCCAGAACCCCTCCTCCGCCCATCCGCAGCAAGCCTAAGCCTACTAGGCCTAG GAGGCTTCCACACATTCTCTCCGACTCCTCTCCTTCTTCCTCCTGCCACCAGTTTCTA GAACTGGGAGAATTTCTACCCTCCCTCTCCCCCGACTCCGAGTACTTCGAACGCAAAGC TCGCCAGAACCACAAGCACCGTCCTCCTTCCGACTACGACGCCGAAACTGAAAGATCCGA CCACGATTACTGCCACTCACGGAGAGATGCCGCCGAGGAAGTTCACTGCAGCGAGTGGGG CGACGACCACGACCGTTTCACTGCCACCTCTTCGTCCGACGGAGATGGGGAGGTCGAAAC TCACGTTTCCAGATCCGGTATTGAAGAAGAGCCTGTGAAACAACCACATCAAGACCCAAA TGGCAAAGAGCACTCTGACCATGTTACCACTTCTTCCGACTGCTACAAGACCAAATTGGT GGTAAGGCACAAGAATTTGAAGGAGATCCTTGACGCCGTTCAAGACTACTTCGACAAGGC TGCCTCCGCTGGGGACCAGGTCTCCGCCATGCTTGAGATCGGCCGGGCTGAGCTCGACCG CAGCTTCAGCAAGCTGAGGAAGACGGTGTATCATTCAAGCAGTGTGTTCAGCAACTTGAG CGCAAGCTGGACCTCAAAACCCCCATTGGCAGTCAAATACAAGCTCGATGCATCTACCCT GAATGATGAACAAGGCGGCCTCAAGAGCCTCTGCTCCACTCTAGACCGACTCCTCGCTTG GGAAAAGAAGCTTTATGAGGATGTCAAGGCAAGAGAAGGAGTTAAGATTGAGCACGAGAA GAAGCTGTCTGCGCTGCAGAGTCAGGAGTATAAGGGAGGTGATGAATCCAAGCTAGACAA GACTAAAACTTCCATAACCAGACTGCAATCACTCATCATTGTTTCTTCAGAAGCTGTTTT AACCACGTCTAATGCCATTCTCCGCCTCCGGGACACTGACCTTGTCCCTCAGCTTGTTGA ACTCTGCCACGGATTAATGTACATGTGGAAGTCAATGCACGAGTATCACGAAATCCAGAA AGAGGTACACCGGCAGGTGACGCGGGACCTAGAGTCAGCTGTGTCCTTGTGGCATTCGAG CTTCTGTCGCATCATTAAATTCCAGAGGGAGTTCATATGCTCTCTCCACGCATGGTTCAA GCTGAGCCTGGTTCCCCTGAGCAACGGAGACCCAAAGAAACAGCGGCCAGACTCATTTGC CTTGTGCGAGGAGTGGAAGCAGAGCCTGGAACGGGTGCCTGACACAGTGGCGTCAGAAGC CATAAAGAGCTTTGTAAACGTGGTACATGTGATATCAATAAAGCAGGCGGAAGAGGTGAA GATGAAGAAACGCACGGAGAGTGCAGGAAAGGAGCTGGAGAAGAAAGCATCCTCACTGAG GAGCATAGAGAGGAAGTACTACCAGGCATACTCGACGGTTGGGATAGGCCCTGGACCGGA GGTGTTGGACTCACGGGACCCGCTATCTGAGAAGAAATGTGAGCTGGCGGCATGTCAGAG GCAGGTGGAGGATGAGGTAATGAGGCACGTGAAGGCTGTGGAGGTGACACGAGCTATGAC TCTCAACAATCTACAAACCGGCCTGCCCAATGTATTCCAGGCCTTGACCAGCTTCTCATC TCTCTTCACTGAATCTCTCCAGACTGTCTGTTCTCGTTCCTACTCCATCAACTGATTATG TCCAAGTTTCTCATTTATTTTTAAGCTCTCATTACGTTGGTATCATGTAAATTTGAGGAT

>G577 Amino Acid Sequence (domain in AA coordinates: TBD)
MGCTASKLDSEDAVRRCKERRLMKDAVYARHHLAAAHSDYCRSLRLTGSALSSFAAGEP
LSVSENTPAVFLRPSSSQDAPRVPSSHSPEPPPPPPIRSKPKPTRPRRLPHILSDSSPSSS
PATSFYPTAHQNSTYSRSPSQASSVWNWENFYPPSPPDSEYFERKARQNHKHRPPSDYDA
ETERSDHDYCHSRRDAAEEVHCSEWGDDHDRFTATSSSDGDGEVETHVSRSGIEEEPVKQ
PHQDPNGKEHSDHVTTSSDCYKTKLVVRHKNLKEILDAVQDYFDKAASAGDQVSAMLEIG
RAELDRSFSKLRKTVYHSSSVFSNLSASWTSKPPLAVKYKLDASTLNDEQGGLKSLCSTL
DRLLAWEKKLYEDVKAREGVKIEHEKKLSALQSQEYKGGDESKLDKTKTSITRLQSLIIV
SSEAVLTTSNAILRLRDTDLVPQLVELCHGLMYMWKSMHEYHEIQNNIVQQVRGLINQTE
RGESTSEVHRQVTRDLESAVSLWHSSFCRIIKFQREFICSLHAWFKLSLVPLSNGDPKKQ
RPDSFALCEEWKQSLERVPDTVASEAIKSFVNVVHVISIKQAEEVKMKKRTESAGKELEK
KASSLRSIERKYYQAYSTVGIGPGPEVLDSRDPLSEKKCELAACQRQVEDEVMRHVKAVE
VTRAMTLNNLQTGLPNVFQALTSFSSLFTESLQTVCSRSYSIN*

>G674 (1..786)-

CATAGTTTGCTTATGGATCAGTCACCTCAAAAGTCTAGCTATGTTCAAAATCTTGTTTTA CCGGAAGAGAGAGTTCATTGGACCATGTGGCCCTCGTTATTTGGGAAACGACTCTTTG CCTGATTTCGTGCCAAATTCAGAATTTTTGTTGGATGATGAGATATCATCTGAGATCGAG TTCTGTACTTCATTTTCAGACAACTTTTTGTTCGATGGTCTCATCAACGAGCTACGACCA ATGTAA

>G674 Amino Acid Sequence (domain in AA coordinates: 20-120) MVFKSEKSNREMKSKEKQRKGLWSPEEDEKLRSHVLKYGHGCWSTIPLQAGLQRNGKSCR LRWVNYLRPGLKKSLFTKQEETILLSLHSMLGNKWSQISKFLPGRTDNEIKNYWHSNLKK GVTLKQHETTKKHQTPLITNSLEALQSSTERSSSSINVGETSNAQTSSFSPNLVFSEWLD HSLLMDQSPQKSSYVQNLVLPEERGFIGPCGPRYLGNDSLPDFVPNSEFLLDDEISSEIE FCTSFSDNFLFDGLINELRPM*

>G736 (1..513)

>G736 Amino Acid Sequence (domain in AA coordinates: 54-111) MATQDSQGIKLFGKTIAFNTRTIKNEEETHPPEQEATIAVRSSSSSDLTAEKRPDKIIAC PRCKSMETKFCYFNNYNGNQPRHFCKGCHRYWTAGGALRNVPVGAGRRKSKPPGRVVVGM LGDGNGVROVELINGLLVEEWQHAAAAAHGSFRHDFPMKRLRCYSDGQSC*

>G903 (96..1496)

CCCGGGTCGACCCACGCGTCCGCTCTCTCTCTGAACTATACAAAAACCTACTTTTAAT TTCTCTTCCAAGAAGTCAAGAACCCAGAAGAAGACATGACAAGTGAAGTTCTTCAAACAA TCTCAAGTGGATCAGGTTTTGCTCAGCCACAGAGCTCATCAACCCTGGATCATGAAT CTCTCATCAATCCTCCTCTTGTTAAGAAAAAGAGAAATCTCCCTGGAAATCCTGATCCGG AAGCTGAAGTGATAGCTTTATCCCCCACGACCTTGATGGCTACGAACCGGTTCCTATGTG AGGTATGTGGCAAAGGTTTCCAAAGAGACCAAAACTTACAGCTTCATCGGCGAGGACATA ATCTTCCATGGAAGTTGAAGCAGAGGACAAGCAAAGAAGTGAGAAAACGTGTCTACGTTT GCCCCGAGAAGACATGTGTCCACCATCACTCCTCTAGAGCTCTAGGCGATCTCACTGGAA TCAAAAAGCATTTTTGCCGGAAACACGGGGGAGAAGAAGTGGACGTGCGAGAAATGTGCTA AGAGATACGCAGTCCAATCTGATTGGAAAGCTCATTCCAAGACTTGTGGTACTAGAGAGT ACCGTTGCGATTGTGGCACCATTTTCTCAAGGCGAGACAGCTTTATCACTCATAGAGCTT TCTGCGATGCCTTAGCGGAAGAAACCGCTAAGATAAACGCAGTGTCTCATCTCAACGGTT TAGCCGCGGCTGGAGCCCCAGGATCAGTTAATCTCAACTATCAATATCTCATGGGAACAT CGCCTCAACCGCAACCGGACTACGATTGGGTTTTTGGAAACGCTAAGGCAGCGTCTGCTT GCATTGATAATAATAATACTCACGATGAGCAGATTACGCAAAACGCAAACGCAAGTTTGA ACGCAAATTCAAACGTGAATATGTCCGCGACAGCTTTACTACAGAAAGCTGCTGAAATTG GCGCTACTTCTACAACAACCGCAGCGACCAATGACCCATCAACGTTTCTTCAAAGTTTCC CGCTTAAATCCACCGATCAAACCACCAGTTATGACAGTGGCGAAAAGTTTTTTGCTTTGT TCGGGTCTAACAACAACATTGGGTTAATGAGTCGTAGTCATGATCATCAAGAGATCGAGA ACGCTAGAAATGACGTTACGGTTGCGTCTGCCTTGGATGAATTACAGAATTACCCTTGGA GTTTAAAAATTTCGGGGTTAATGCATAAATTACGTAAAAGAAGAAGAATCTTTTGTCAT TTCCACCATTTTCTAAGATAACATATGTATATGGTAATGGAAGTTGTTTTCTTTTATTAA TTCAATATTCTAAAACTTATGATATATGTATAATGAATGTGTTTATCTTCAAA

>G903 Amino Acid Sequence (domain in AA coordinates: 68-92) MTSEVLQTISSGSGFAQPQSSSTLDHDESLINPPLVKKKRNLPGNPDPEAEVIALSPTTL MATNRFLCEVCGKGFQRDQNLQLHRRGHNLPWKLKQRTSKEVRKRVYVCPEKTCVHHHSS

RALGDLTGIKKHFCRKHGEKKWTCEKCAKRYAVQSDWKAHSKTCGTREYRCDCGTIFSRR DSFITHRAFCDALAEETAKINAVSHLNGLAAAGAPGSVNLNYQYLMGTFIPPLQPFVPQP QTNPNHHHQHFQPPTSSSLSLWMGQDIAPPQPQPDYDWVFGNAKAASACIDNNNTHDEQI TQNANASLTTTTTLSAPSLFSSDQPQNANANSNVNMSATALLQKAAEIGATSTTTAATND PSTFLQSFPLKSTDQTTSYDSGEKFFALFGSNNNIGLMSRSHDHQEIENARNDVTVASAL DELQNYPWKRRRVDGGGEVGGGGQTRDFLGVGVQTLCHPSSINGWI*

>G917 (32..679) TTAGGGTTTTAGAAAGATAGATCGATTGAAGATGAGGAAAGGTAAGAGAGTGATAAAAAA GATAGAGGAGAAAATAAAGAGACAAGTGACATTCGCAAAGAGAAGAAGAGAGTCTAATCAA CTCCAACAGGCTCTACGATTTCTGCTCCAACTCTACCAGCATGGAGAATCTCATCATGAG ATACCAAAAGGAAAAAGAAGGTCAAACCACTGCAGAACACAGTTTCCACTCGGATCAGTG TGAGCTCCATCTCGAATCTTCTCTACAACATGCTCGAGCTCGCAAGTCTGAGTTCATGCA TCAGCAGCAGCAGCAACAAACAGATCAAAAGCTTAAGGGAAAAGAAAAGGGTCAAGGAAG CTCTTGGGAGCAGCTGATGTGGCAAGCAGAGAGACAGATGATGACGTGTCAAAGACAAAA AGATCCTGCGCCGGCGAATGAAGGAGGAGTTCCTTTTTTACGGTGGGGAACAACCCACCG ACGTTCTTCACCTCCTTAAGCTACCACAACCAGGCCCAAATACAGGCCCATAACTTCTCT CTATCTATAAAAAACAACTGATAGTAAAAAGTATTGACCCGGTTTGGTTCGGTTATGTTG ATACCAGACTATTAATTAACTTCGGTTAGACGTATTTACGACTTGATGCTATCTAGACCT TTTTGCCCTTCAAAAAAA

>G917 Amino Acid Sequence (conserved domain in AA coordinates:2-57)
MRKGKRVIKKIEEKIKRQVTFAKRKKSLIKKAYELSVLCDVHLGLIIFSHSNRLYDFCSN
STSMENLIMRYQKEKEGQTTAEHSFHSDQCSDCVKTKESMMREIENLKLNLQLYDGHGLN
LLTYDELLSFELHLESSLQHARARKSEFMHQQQQQQTDQKLKGKEKGQGSSWEQLMWQAE
RQMMTCQRQKDPAPANEGGVPFLRWGTTHRRSSPP*

>G921 (116..1024)

CCAAGATCGACTCTTACTTCGAATCTCTCTCAACTTTCTTCCTCAGCTTACGGGAACTTC CACACATATACATCCACAAGAACCCATATCGAAGATTCATCCTACATATATTTACATGGA TCAGTACTCATCCTCTTTGGTCGATACTTCATTAGATCTCACTATTGGCGTTACTCGTAT GCGAGTTGAAGAAGATCCACCGACAAGTGCTTTGGTGGAAGAATTAAACCGAGTTAGTGC TGAGAACAAGAAGCTCTCGGAGATGCTAACTTTGATGTGTGACAACTACAACGTCTTGAG GAAGCAACTTATGGAATATGTTAACAAGAGCAACATAACCGAGAGGGATCAAATCAGCCC TCCCAAGAAACGCAAATCCCCGGCGAGAGAGGACGCATTCAGCTGCGCGGTTATTGGCGG AGTGTCGGAGAGTAGCTCAACGGATCAAGATGAGTATTTGTGTAAGAAGCAGAGAGAAGA GACTGTCGTGAAGGAGAAAGTCTCAAGGGTCTATTACAAGACCGAAGCTTCTGACACTAC CCTCGTTGTGAAAGATGGGTATCAATGGAGGAAATATGGACAGAAAGTGACTAGAGACAA TCCATCTCCAAGAGCTTACTTCAAATGTGCTTGTGCTCCAAGCTGTTCTGTCAAAAAGAA GGTTCAGAGAAGTGTGGAGGATCAGTCCGTGTTAGTTGCAACTTATGAGGGTGAACACAA CCATCCAATGCCATCGCAGATCGATTCAAACAATGGCTTAAACCGCCACATCTCTCATGG TGGTTCAGCTTCAACACCCGTTGCAGCAAACAGAAGAAGTAGCTTGACTGTGCCGGTGAC TACCGTAGATATGATTGAATCGAAGAAAGTGACGAGCCCAACGTCAAGAATCGATTTTCC CCAAGTTCAGAAACTTTTGGTGGAGCAAATGGCTTCTTCCTTAACCAAAGATCCTAACTT TACAGCAGCTTTAGCAGCAGCTGTTACCGGAAAATTGTATCAACAGAATCATACCGAGAA ATAGTTTAGCTTCAAATTCCGTTAGAGTTTTTAGATTTGAATTTGTCATGAGTAAGAGAA

>G921 Amino Acid Sequence (domain in AA coordinates: 146-203)
MDQYSSSLVDTSLDLTIGVTRMRVEEDPPTSALVEELNRVSAENKKLSEMLTLMCDNYNV
LRKQLMEYVNKSNITERDQISPPKKRKSPAREDAFSCAVIGGVSESSSTDQDEYLCKKQR
EETVVKEKVSRVYYKTEASDTTLVVKDGYQWRKYGQKVTRDNPSPRAYFKCACAPSCSVK
KKVQRSVEDQSVLVATYEGEHNHPMPSQIDSNNGLNRHISHGGSASTPVAANRRSSLTVP
VTTVDMIESKKVTSPTSRIDFPQVQKLLVEQMASSLTKDPNFTAALAAAVTGKLYQQNHT

>G922 (1..1449)

ATGGTGGCTATGTTTCAAGAAGATAATGGAACATCTTCTGTAGCTTCATCACCACTTCAA GTCTTCTCAACTATGTCACTCAACAGACCGACTCTCCTCGCTTCTTCATCTCCGTTTCAT

TGTCTCAAAGATCTCAAACCAGAGGAGCGTGGTCTCTACTTAATCCACCTCTTGCTAACT TGTGCCAACCACGTGGCTTCAGGTAGCCTCCAAAACGCTAACGCAGCGCTCGAGCAGCTC TCTCACCTCGCTTCTCCTGACGGCGACACGATGCAGCGAATCGCTGCTTACTTCACCGAA GCGCTTGCTAACAGAATCCTTAAGTCCTGGCCTGGTCTTTACAAGGCTCTTAACGCAACT CAGACAAGAACTAACAATGTCTCTGAGGAGATTCATGTTAGAAGACTCTTCTTTGAGATG TTCCCGATACTCAAAGTCTCTTACTTGCTCACTAATCGAGCTATACTCGAGGCTATGGAA GGAGAGAAGATGGTTCATGTGATTGATCTCGATGCTTCTGAGCCAGCTCAATGGCTTGCT TTGCTTCAAGCTTTTAACTCTAGGCCTGAAGGTCCACCTCATTTGAGAATCACTGGTGTT CATCACCAGAAGGAAGTGCTTGAACAAATGGCTCATAGACTCATTGAGGAAGCAGAGAAA CTCGATATCCCGTTTCAGTTTAATCCCGTTGTGAGTAGGTTAGACTGTTTAAATGTAGAA CAGTTGCGGGTTAAAACAGGAGAGGCCTTAGCCGTTAGCTCGGTTCTTCAATTGCATACC TTCTTGGCCTCTGATGATGATCTCATGAGAAAGAACTGCGCTTTACGGTTTCAGAACAAC CCTAGTGGAGTTGACTTGCAGAGAGTTCTAATGATGAGCCATGGCTCTGCAGCTGAGGCA CGTGAGAATGATATGAGTAACAACAATGGGTATAGCCCTAGCGGTGACTCGGCCTCATCT TTGCCTTTACCAAGTTCAGGAAGGACTGATAGCTTCCTCAATGCTATTTGGGGTTTGTCT CCAAAGGTCATGGTGGTCACTGAGCAAGACTCAGACCACAACGGCTCCACACTAATGGAG AGGCTATTAGAATCACTTTACACCTACGCAGCATTGTTTGATTGCTTGGAAACAAAAGTT CCAAGAACGTCTCAAGATAGGATCAAAGTGGAGAAGATGCTCTTCGGGGAGGAGATCAAG AACATCATATCCTGCGAGGGATTTGAGAGAAGAGAAAGACACGAGAAGCTTGAGAAATGG AGCCAGAGGATCGATTTGGCTGTTTTGGGAATGTTCCTCTTAGCTATTATGCGATGTTG CAGGCTAGGAGATTGCTTCAAGGGTGCGGTTTTGATGGGTATAGAATCAAGGAAGAGAGC GGGTGCGCAGTAATTTGCTGGCAAGATCGACCTCTATACTCGGTATCAGCTTGGAGATGC AGGAAGTGA

>G922 Amino Acid Sequence (conserved domain in AA coordinates:225-242)
MVAMFQEDNGTSSVASSPLQVFSTMSLNRPTLLASSSPFHCLKDLKPEERGLYLIHLLLT
CANHVASGSLQNANAALEQLSHLASPDGDTMQRIAAYFTEALANRILKSWPGLYKALNAT
QTRTNNVSEEIHVRRLFFEMFPILKVSYLLTNRAILEAMEGEKMVHVIDLDASEPAQWLA
LLQAFNSRPEGPPHLRITGVHHQKEVLEQMAHRLIEEAEKLDIPFQFNPVVSRLDCLNVE
QLRVKTGEALAVSSVLQLHTFLASDDDLMRKNCALRFQNNPSGVDLQRVLMMSHGSAAEA
RENDMSNNNGYSPSGDSASSLPLPSSGRTDSFLNAIWGLSPKVMVVTEQDSDHNGSTLME
RLLESLYTYAALFDCLETKVPRTSQDRIKVEKMLFGEEIKNIISCEGFERRERHEKLEKW
SQRIDLAGFGNVPLSYYAMLQARRLLQGCGFDGYRIKEESGCAVICWQDRPLYSVSAWRC
RK*

>G932 (206..1213)

CCACGCGTCCGACCACTTGTACCTCTTTGTCTTAAGTACTCTTTAACCCTACAATTTCCT ATCAAAGTCCTTCTCTCTGCTCATACCACAAACCGTTCCATTCTTCCCCTAATCACAAAG TGATATTTACATAGAGAAGATAGAGATGGGAAGACCACCATGCTGTGACAAGATTGGAGT GAAGAAAGGACCATGGACACCAGAGGAAGATATCATCTTGGTTTCTTACATCCAAGAACA TGGTCCTGGAAACTGGAGATCTGTGCCTACTCACACAGGTTTGAGGAGATGTAGCAAAAG CTGTAGATTGAGGTGGACTAATTATCTTCGACCTGGGATCAAGCGTGGAAATTTCACCGA GCATGAAGAGAAGATGATTCTCCATCTTCAAGCTCTTTTGGGAAACAGGTGGGCAGCTAT AGCATCATATCTTCCAGAAAGGACAGACAATGATATAAAGAACTATTGGAACACTCATTT GAAGAAAAAGCTCAAGAAGATGAATGATTCTTGTGATAGTACTATCAACAATGGCCTTGA TAATAAAGACTTCTCCATATCAAACAAAAACACTACCTCACATCAAAGCAGCAACTCCAG TAAAGGTCAATGGGAGAGAAGGCTTCAGACAGATATCAACATGGCTAAACAAGCTCTTTG TGATGCCTTGTCTATTGACAAACCACAAAACCCAACTAATTTTTCTATTCCCGATCTTGG TTATGGTCCATCATCTTCTTCGTCCTCTACCACCACCACCACCACCACCACCACCACGAG AAACACTAATCCATACCCATCTGGGGTCTATGCTTCAAGTGCTGAGAACATTGCTCGTTT GCTTCAGAATTTTATGAAAGACACACCAAAGACCTCGGTGCCCTTGCCGGTTGCAGCCAC CGAGATGGCTATCACCACGGCAGCTTCGAGCCCTAGCACAACCGAAGGAGACGGAGAAGG GATTGACCATTCTTTGTTCAGCTTCAACTCCATAGATGAAGCTGAAGAGAAGCCTAAACT GCTCTTTGATGAGCAAAGCCACGATATGATCATCAATAACATGTCACTAGAGGGTCAGGA AGTGTTGTTCTAGAAAGCATTAAAGTTTGACGATTTGCTTGAGGAACCACGAGGCTTAGT TATAAACAATTTGTATAATTAAGTACTCTTTAGTTTTGTTTTCAATCCTTATTATGATCA TATTGCAGTAATTAGGGATTTTAGTCTTTAGTAGTAACTCTTAAGTTTTAACACATTTTT

CTCTATCTTTTAGTAGTAACTCTTTATTTTTTCCTTAAATCTTTGTCGACGTGGAGATG ATATCTTCTATGTAGTAGAAACTCAAAAGTGTACATCATCTTTATTAATGTAACGTCTTT ТТААААААААААААААА

>G932 Amino Acid Sequence (domain in AA coordinates: 12-118) MGRPPCCDKIGVKKGPWTPEEDIILVSYIQEHGPGNWRSVPTHTGLRRCSKSCRLRWTNY LRPGIKRGNFTEHEEKMILHLQALLGNRWAAIASYLPERTDNDIKNYWNTHLKKKLKKMN DSCDSTINNGLDNKDFSISNKNTTSHQSSNSSKGQWERRLQTDINMAKQALCDALSIDKP QNPTNFSIPDLGYGPSSSSSSTTTTTTTTTTTTRNTNPYPSGVYASSAENIARLLQNFMKDT PKTSVPLPVAATEMAITTAASSPSTTEGDGEGIDHSLFSFNSIDEAEEKPKLIDHDINGL ITQGSLSLFEKWLFDEQSHDMIINNMSLEGQEVLF*

TCGACAGAACAGCTTCGTTGTCACTTGTCATTCTATAAATCGCATCCCCATTGACAACCT TTCACTTCCATCAAAACTCTCTCTATATCTCTCTCTCTATATATCTCTCTCTATATCT CTCTCTCTCTCACTCTCTTTTCTTTCAAAATGGAAAAACTCATGGTTCCGACATGGAG ACCCGACCCGGTTTACCGTCCACCGGAAACACCACTCGAACCGATGGAGTTTTTAGCTCG TTCATGGAGCGTCTCTGCTCTCGAAGTCTCCAAGGCTCTAACACCACCCCAACCCTCAGAT TCTCCTCTCCAAAACCGAAGAAGAAGAAGAAGAAGAACCCATCTCCTCTGTCGTAGACGG CGACGGCGACACGGAAGACACCGGACTTGTCACCGGAAACCCATTCTCCTTCGCTTGTTC AGAAACTTCTCAAATGGTCATGGATCGTATCTTGTCTCACTCTCAAGAAGTATCACCAAG AACATCTGGTCGGCTATCTCACAGTAGTGGTCCACTTAATGGTTCTTTGACCGACAGTCC TCCTGTGTCTCCTCCCGAATCCGACGACATTAAGCAATTTTGCAGAGCGAACAAAAATTC ATTGAACAGTGTAAATTCTCAGTTCCGTTCAACGGCGGCAACTCCGGGACCTATAACCGC TACAGCTACACAGTCCAAGACGGTGGGACGGTGGCTTAAGGACCGGAGAGAAAAAAGAA TGCAGCTGTTGCTGCTATTGCAGCAGCCACCGCTGCGTCTTCTAGCTGTGGTAAGGATGA GCAGATGGCTAAAACTGACATGGCCGTTGCTTCTGCTGCGACCCTTGTGGCTGCTCAGTG TGTGGAAGCTGCTGAAGTTATGGGAGCTGAGAGAGAGTATTTGGCTTCTGTTGTTAGCTC CGCCGTCAATGTTCGTTCTGCCGGAGATATTATGACTCTCACCGCCGGAGCAGCTACAGC AGTGATACCAATGGATAAAGGACTCACTTCTACAGGAGGAAGCAGCAATAATGTTAATGG TAGCAATGGAAGCTCAAGCAGTAGTCACAGTGGTGAACTTGTACAACAGGAGAATTTCTT GGGAACTTGTAGTAGAGAATGGCTCGCTAGAGGTTGTGAACTCCTCAAACGCACTCGCAA AGGTGATCTCCACTGGAAGATAGTATCTGTTTACATCAACAAAATGAATCAGGTTATGTT GAAGATGAAGAGCAGGCATGTTGGAGGAACCTTCACCAAGAAGAAAAAAGAACATTGTGCT TCTAAGATACTTCGGTTTGAAGACGGTTATGCGAGGTGATGTTGAATTCGAGGTCAAGAG CCAAAGGGAATATGAAATGTGGACACAAGGTGTCTCAAGGCTTCTTGTTCTTGCTGCTGA GAGGAAGTTTAGGATGTGAATAAACGTTCAATGGCTGCTTTGGTTTAAGTGTGAGTTTTTT TTTAACTTATGTGGTCAAATTTCATTAGTAGGGGTTCTTTTAAGGTAATGGTTTTTTGGG TTGGGTATAGGATAAAATGGACCTACCAGTCAAGGTGAGGAAGCATTTGGGTAAACAAAA

TTTTGTATAAAAAACAAAGTTGAAGTAATAGATATATAGTATGTTTTAATTTTAAA >G599 Amino Acid Sequence (domain in AA coordinates: 187-219, 264-300) MEKLMYPTWRPDPVYRPPETPLEPMEFLARSWSVSALEVSKALTPPNPQILLSKTEEEEE EEPISSVVDGDGDTEDTGLVTGNPFSFACSETSQMVMDRILSHSQEVSPRTSGRLSHSSG PLNGSLTDSPPVSPPESDDIKQFCRANKNSLNSVNSQFRSTAATPGPITATATQSKTVGR WLKDRREKKKEETRAHNAOIHAAVSVAGVAAAVAAIAAATAASSSCGKDEQMAKTDMAVA SAATLVAAOCVEAAEVMGAEREYLASVVSSAVNVRSAGDIMTLTAGAATALRGVQTLKAR AMKEVWNIASVIPMDKGLTSTGGSSNNVNGSNGSSSSSHSGELVQQENFLGTCSREWLAR GCELLKRTRKGDLHWKIVSVYINKMNQVMLKMKSRHVGGTFTKKKKNIVLDVIKNVPAWP GRHLLEGGDDLRYFGLKTVMRGDVEFEVKSQREYEMWTQGVSRLLVLAAERKFRM*

>G804 (114..1139)

>G599 (152..1579)

TTCCATTTTCTTGTGTGTTTTTTTTCCCCATAATTTATAAATTTTATAAGCAATATGGAGT CCCACAACAACAACCAGAGCAACAACAACACCACTGGTTCGGCCCATCTGGTCCCATCCA TGGGACCAATCTCCGGTTCAGTCTCATTAACCACCACTGCTCCAAACTCCACTACCACCA CCGTCACCGCCGCTAAAACACCCGCAAAACGACCGTCCAAGGACCGTCACATCAAAGTAG

ACGGACGTGGCCGGAGGATACGTATGCCGGCTATCTGCGCAGCACGTGTCTTCCAACTAA CACGTGAGTTACAACACAAATCGGACGGCGAGACTATAGAGTGGCTGCTCCAACAAGCGG AGCCAGCTATCATCGCAGCCACCGGAACTGGAACCATACCGGCGAATATCTCTACTTTGA ACATCTCTCTTCGAAGCAGTGGCTCTACTCTTTCAGCTCCACTGTCTAAATCTTTCCACA TGGGAAGAGCGGCTCAAAACGCTGCCGTTTTTGGGTTCCAGCAACAGCTTTATCATCCTC ATCATATCACGACAGATTCTTCTTCTTCTTCTTCCCAAAACATTCCGTGAAGAAGATC TTTTTAAAGATCCTAATTTTCTAGATCAAGAACCCGGTTCAAGATCACCTAAACCGGGAT CCGAAGCTCCTGATCAAGATCCGGGTTCGACCCGGTCAAGAACACAAAATATGATACCGC ${\tt CGATGTGGGCACTAGCGCCAACGCCAGCCTCCACAAACGGAGGTAGTGCTTTTTGGATGT}$ TACCAGTCGGAGGAGGAGGAGGTCCGGCTAACGTTCAGGATCCATCACAGCACATGTGGG ${\tt CGTTTAATCCGGGTCATTACCCGGGTCGAATCGGGTCGGTTCAGCTAGGGTCTATGTTAG}$ TGGGAGGTCAACAGTTAGGGTTAGGTGTTGCAGAAAATAACAATTTGGGGCTATTTTCCG GCGGAGGAGGAGGCGTGGTCGGGTTGGTCTCGGAATGAGTCTTGAGCAAAAGCCTCAAC ATCAAGTGAGTGATCATGCTACTAGAGACCAAAATCCTACTATAGATGGTTCTCCTTGAA AGACTTCATGATTTCTTTGGTTTTTAAAAAGTGTGAATGTGTGATTTATTGCAACTTTTG TTGAGGACTCCAATGTTAATATGGGTTTTAGGGTTGGCTTTTCGGGATTGCCAAATTGTT

>G804 Amino Acid Sequence (domain in AA coordinates: 54-117)
MESHNNNQSNNNTTGSAHLVPSMGPISGSVSLTTTAPNSTTTTVTAAKTPAKRPSKDRHI
KVDGRGRRIRMPAICAARVFQLTRELQHKSDGETIEWLLQQAEPAIIAATGTGTIPANIS
TLNISLRSSGSTLSAPLSKSFHMGRAAQNAAVFGFQQQLYHPHHITTDSSSSSLPKTFRE
EDLFKDPNFLDQEPGSRSPKPGSEAPDQDPGSTRSRTQNMIPPMWALAPTPASTNGGSAF
WMLPVGGGGGPANVQDPSQHMWAFNPGHYPGRIGSVQLGSMLVGGQQLGLGVAENNNLGL
FSGGGGDGGRVGLGMSLEQKPQHQVSDHATRDQNPTIDGSP*

>G1062 (297..1781)

TATCTCTATCTTCCTTTTCAGATTTCGCTTCTTCAATTCATGAAATCCTCGTGATTCTAC TTTAATGCTTCTCTTTTTTTACTTTTCCAAGTCTCTGAATATTCAAAGTATATATCTTTT GTTTTCAAACTTTTGCAGAATTGTCTTCAAGCTTCCAAATTTCAGTTAAAGGTCTCAACT TTGCAGAATTTTCCTCTAAAGGTTCAGACTTTGGGGTAAAGGTGTCAACTTTGGCGATGG GTCTTGACGGAAACAATGGTGGAGGGGTTTGGTTAAACGGTGGTGGTGGAGAAAGGGAAG AGAACGAGGAAGGTTCATGGGGAAGGAATCAAGAAGATGGTTCTTCTCAGTTTAAGCCTA TGCTTGAAGGTGATTGGTTTAGTAGTAACCAACCACATCCACAAGATCTTCAGATGTTAC AGAATCAGCCAGATTTCAGATACTTTGGTGGTTTTCCTTTTAACCCTAATGATAATCTTC TTCTTCAACACTCTATTGATTCTTCTTCTTCTTGTTCTCCTTCTCAAGCTTTTAGTCTTG ACCCTTCTCAGCAAAATCAGTTCTTGTCAACTAACAACAACAAGGGTTGTCTTCTCAATG TTCCTTCTTCTGCAAACCCTTTTGATAATGCTTTTGAGTTTGGCTCTGAATCTGGTTTTC TTAACCAAATCCATGCTCCTATTTCGATGGGGTTTGGTTCTTTGACACAATTGGGGAACA GGGATTTGAGTTCTGTTCCTGATTTCTTGTCTGCTCGGTCACTTCTTGCGCCGGAAAGCA ACAACAACAACAATGTTGTGTGGTGGTTTCACAGCTCCGTTGGAGTTGGAAGGTTTTG GTAGTCCTGCTAATGGTGGTTTTGTTGGGAACAGAGCGAAAGTTCTGAAGCCTTTAGAGG TGTTAGCATCGTCTGGTGCACAGCCTACTCTGTTCCAGAAACGTGCAGCTATGCGTCAGA GCTCTGGAAGCAAAATGGGAAATTCGGAGAGTTCGGGAATGAGGAGGTTTAGTGATGATG GAGATATGGATGAGACTGGGATTGAGGTTTCTGGGTTGAACTATGAGTCTGATGAGATAA ATGAGAGCGGTAAAGCGGCTGAGAGTGTTCAGATTGGAGGAGGAGGAAAGGGTAAGAAGA GGCTTTATATGCTTAGATCAGTTGTCCCCAAGATCAGCAAAATGGATAGAGCATCAATAC TTGGAGATGCAATTGATTATCTGAAGGAACTTCTACAAAGGATCAATGATCTTCACAATG AACTTGAGTCAACTCCTCCTGGATCTTTGCCTCCAACTTCATCAAGCTTCCATCCGTTGA CACCTACACCGCAAACTCTTTCTTGTCGTGTCAAGGAAGAGTTGTGTCCCTCTTCTTTAC ACATTCATATGTTCTGTGGTCGTAGACCGGGTCTGTTGCTCGCTACCATGAAAGCTTTGG ATAATCTTGGATTGGATGTTCAGCAAGCTGTGATCAGCTGTTTTAATGGGTTTGCCTTGG ATGTTTTCCGCGCTGAGCAATGCCAAGAAGACAAGAGATACTGCCTGATCAAATCAAAG CAGTGCTTTTCGATACAGCAGGGTATGCTGGTATGATCTGATCTGATCCTGACTTCGAGT CCATTAAGCATCTGTTGAAGCAGAGCTAGAAGAACTAAGTCCCTTTAAATCTGCAATTTT CTTCTCAACTTTTTTTCTTATGTCATAACTTCAATCTAAGCATGTAATGCAATTGCAAAT

>G1062 Amino Acid Sequence (domain in AA coordinates: 308-359)
MGLDGNNGGGVWLNGGGGEREENEEGSWGRNQEDGSSQFKPMLEGDWFSSNQPHPQDLQM
LQNQPDFRYFGGFPFNPNDNLLLQHSIDSSSCSPSQAFSLDPSQQNQFLSTNNNKGCLL
NVPSSANPFDNAFEFGSESGFLNQIHAPISMGFGSLTQLGNRDLSSVPDFLSARSLLAPE
SNNNNTMLCGGFTAPLELEGFGSPANGGFVGNRAKVLKPLEVLASSGAQPTLFQKRAAMR
QSSGSKMGNSESSGMRRFSDDGDMDETGIEVSGLNYESDEINESGKAAESVQIGGGGKGK
KKGMPAKNLMAERRRKKLNDRLYMLRSVVPKISKMDRASILGDAIDYLKELLQRINDLH
NELESTPPGSLPPTSSSFHPLTPTPQTLSCRVKEELCPSSLPSPKGQQARVEVRLREGRA
VNIHMFCGRRPGLLLATMKALDNLGLDVQQAVISCFNGFALDVFRAEQCQEGQEILPDQI
KAVLFDTAGYAGMI*

>G1322 (213..833)

AAAGTTATTGATAGTTTCTGTTACTTATTAATTTTTTAAGGTTATGTGTATTATTACCAAT TGGAGGACTATATAGTCGCAAGTCTCAACCCTATAAAAGAAAACATTCGTCGATCATCTT CAAAAATACACACATACACAACAGAAAGAAGATGGAGACGACGATGAAGAAGAAAGGGA GAGTGAAAGCGACAATAACGTCACAGAAAGAAGAAGAAGGAACAGTGAGAAAAAGGACCTT GGACTATGGAAGAGATTTCATCCTCTTTAATTACATCCTTAATCATGGTGAAGGTCTTT GGAACTCTGTCGCCAAAGCCTCTGGTCTAAAACGTACTGGAAAAAGTTGTCGGCTCCGGT GGCTGAACTATCTCCGACCAGATGTGCGGCGAGGGAACATAACCGAAGAAGAACAGCTTT TGATCATTCAGCTTCATGCTAAGCTTGGAAACAGGTGGTCGAAGATTGCGAAGCATCTTC CGGGAAGAACGGACAACGAGATAAAGAACTTCTGGAGGACAAAGATTCAGAGACACATGA AAGTGTCATCGGAAAATATGATGAATCATCAACATCATTGTTCGGGAAACTCACAGAGCT CGGGGATGACGACGCAAGGCAGCTCCGGCAAAGCCATAGACACGGCTGAGAGCTTCTCTC AGGCGAAGACGACGTTTAATGTGGTGGAACAACAGTCAAACGAGAATTACTGGAACG TTGAAGATCTGTGGCCCGTCCACTTGCTTAATGGTGACCACCATGTGATTTAAGATATAT ATATAGACCTCCTATACATTTATATGCCCCAGCTGGGTTTTTTTGTATGGTACGTTATTT GGTTTTTCTATTGCTGAAATGTCGTTGCATTTAATTTACATACGAAAAGTGCATTAAATC >G1322 Amino Acid Sequence (domain in AA coordinates:26-130)

>G1322 Amino Acid Sequence (domain in AA coordinates:26-130)
METTMKKKGRVKATITSQKEEEGTVRKGPWTMEEDFILFNYILNHGEGLWNSVAKASGLK
RTGKSCRLRWLNYLRPDVRRGNITEEEQLLIIQLHAKLGNRWSKIAKHLPGRTDNEIKNF
WRTKIQRHMKVSSENMMNHQHHCSGNSQSSGMTTQGSSGKAIDTAESFSQAKTTTFNVVE
OOSNENYWNVEDLWPVHLLNGDHHVI*

>G1331 (1..786)

ATGGTGGAAGAAGTTTGGAGAAAGGGTCCATGGACCGCCGAAGAAGACCGTCTTTTGATC
GAATACGTCCGTGTTCACGGTGAAGGTCGTTGGAACTCTGTCTCTAAACTCGCAGGATTG
AAAAGGAATGGCAAAAGCTGCAGACTAAGATGGGTGAATTACCTTAGACCAGACCTCAAG
AGAGGACAGATCACTCCACATGAAGAAAGTATAATACTTGAGCTACACGCTAAGTGGGGA
AATAGGTGGTCAACAATTGCACGTAGTTTACCAGGAAGAACAGACAATGAGATCAAGAAC
TATTGGAGAACCCATTTCAAGAAAAAGGCAAAGCCTACGACTAACAATGCGGAGAAGATA
AAGAGTCGTCTCCTAAAAAGGCAACACTTCAAGGAACAGAGAGAAATAGAGTTGCAACAA
GAACAGCAGTTGTTTCAGTTCGACCAACTCGGTATGAAAAAGATCATCTCTTTACTCGAA
ATAACACATTCATCAAAACCCTTTGGCTATAACTCTAATTCATTAGAGGAGCAGTTACAA
GGTAGATTTTCTCCTGTAAACATCCTGATGCTAATACTATGAACGAAGACAATGCCATA
TGGGACGGGTTTTTGGAACATGGATGTTGTAAATACTATGAACGAAGACAATGCCATA
TGGGACGGGTTTTTGGAACATGGATGTTGTAAATGGACATTGGTGTTTGTG
GCTGCTACTGCTTGTTGGCCCAAGGAAGCCCTATTTCCATAACTTTGGTGATTCCATTT

>G1331 Amino Acid Sequence (conserved domain in AA coordinates:8-109)
MVEEVWRKGPWTAEEDRLLIEYVRVHGEGRWNSVSKLAGLKRNGKSCRLRWVNYLRPDLK
RGQITPHEESIILELHAKWGNRWSTIARSLPGRTDNEIKNYWRTHFKKKAKPTTNNAEKI
KSRLLKRQHFKEQREIELQQEQQLFQFDQLGMKKIISLLEENNSSSSSDGGGDVFYYPDQ
ITHSSKPFGYNSNSLEEQLQGRFSPVNIPDANTMNEDNAIWDGFWNMDVVNGHGGNLGVV
AATAACGPRKPYFHNLVIPFC*

>G1521 (1..891)

>G1521 Amino Acid Sequence (domain in AA coordinates: 39-80)
MPPLPSSTAPSSSRHLRSPESIAKFAGRAIFPALQGKSCPICLENLTERRSAAVITVCKH
GYCLACIRKWSSFKRNCPLCNTRFDSWFIVSDFASRKYHKEQLPILRDRETLTYHRNNPS
DRRRIIQRSRDVLENSSSRSRPLPWRRSFGRPGSVPDSVIFQRKLQWRASIYTKQLRAVR
LHSRRLELSLAVNDYTKAKITERIEPWIRRELQAVLGDPDPSVIVHFASALFIKRLEREN
NRQTGQTGMLVEDEVSSLRKFLSDKVDIFWHELRCFAESILTMETYDAVVEYNEVE*
>G183 (1..1458)

ATGAGTGATTTTGATGAAAACTTCATCGAAATGACGTCGTATTGGGCTCCACCATCCAGT CCTAGCCCAAGAACGATATTGGCAATGCTGGAGCAAACCGACAATGGTCTGAATCCAATC AGTGAGATCTTCCCTCAAGAAAGCTTGCCAAGAGATCATACTGATCAATCTGGACAAAGA TCTGGTCTTCGTGAGAGACTGGCTGCAAGAGTAGGATTCAATCTTCCAACACTCAATACA GAAGAAAACATGAGTCCTTTGGATGCATTTTTCAGGAGCTCGAATGTTCCTAATTCTCCT GTCGTTGCAATCTCTCCAGGATTCAGTCCATCAGCACTATTGCATACTCCCAATATGGTC AGTGATTCTTCCCAGATTATCCCTCCGTCTTCAGCCACCAATTACGGACCTCTAGAGATG GTGGAAACTTCCGGTGAAGACAATGCAGCGATGATGATGTTCAACAACGATCTTCCTTAT CAGCCGTACAATGTTGATCTGCCTTCTCTAGAAGTCTTTGATGATATTGCAACGGAAGAG TCCTTTTATATCCCATCTTATGAACCTCATGTTGACCCAATTGGAACTCCTTTAGTCACA TCCTTTGAATCTGAACTCGTTGACGATGCCCATACCGACATCATCTCCATTGAGGACAGT GAGAGCGAGGATGGAAACAAGATGATGACGACGAGGACTTCCAATACGAAGACGAAGAC GAAGACCAATACGACCAAGATCAAGATGTAGATGAAGATGAAGAGGAAGAAAAAGATGAA GACAATGTTGCATTAGATGATCCTCAACCTCCACCTCCAAAGAGAAGGAGATATGAGGTA TCAAACATGATTGGAGCCACAAGAACAAGCAAGACACAAAGGATCATACTTCAGATGGAA AGCGACGAAGACAATCCTAACGATGGTTATCGCTGGAGAAAATACGGTCAGAAAGTCGTC AAAGGAAATCCTAATCCGAGGAGTTACTTCAAGTGCACAAACATCGAGTGCAGAGTGAAA CACAACCATCCTTCACCACCTGCACGTAGAAGCAATTCCAGTTCAAGGAACCGGTCTGCA ACTCCTACTCCTCCTCCTCCTTCGTCTTACACACCTGAGGAGATGAGGCCTTTC TCTTCGTTGGCTACAGAAATTGATCTGACAGAGGTTTATATGACCGGAATCTCTATGCTG CCGAATATACCGGTTTACGAGAATTCGGGTTTTATGTACCAGAATGATGAACCGACGATG AATGCGATGCCGGATGGTTCAGATGTGTACGATGGGATCATGGAACGCCTGTATTTTAAG TTTGGTGTCGACATGTAG

>G183 Amino Acid Sequence (domain in AA coordinates: TBD)
MSDFDENFIEMTSYWAPPSSPSPRTILAMLEQTDNGLNPISEIFPQESLPRDHTDQSGQR
SGLRERLAARVGFNLPTLNTEENMSPLDAFFRSSNVPNSPVVAISPGFSPSALLHTPNMV
SDSSQIIPPSSATNYGPLEMVETSGEDNAAMMMFNNDLPYQPYNVDLPSLEVFDDIATEE
SFYIPSYEPHVDPIGTPLVTSFESELVDDAHTDIISIEDSESEDGNKDDDDEDFQYEDED
EDQYDQDQDVDEDEEEEKDEDNVALDDPQPPPPKRRRYEVSNMIGATRTSKTQRIILQME
SDEDNPNDGYRWRKYGQKVVKGNPNPRSYFKCTNIECRVKKHVERGADNIKLVVTTYDGI
HNHPSPPARRSNSSSRNRSAGATIPQNQNDRTSRLGRAPPTPTPPPPSSYTPEEMRPF
SSLATEIDLTEVYMTGISMLPNIPVYENSGFMYQNDEPTMNAMPDGSDVYDGIMERLYFK
FGVDM*

>G2555 (177..956)

CTGTTTTTGTATCCGTGTAAATTAATCACACGGTAGTTTTTGATGAAAAGACAACAATCG GAGAACAATCTGGTCTGCTGCTAAAATTTAATAAATTGTTTTTGTCTAATTGTCTCCACCC ATAAAAAAGCGCGAATTCAATTCACCGACTAAAGACATTCTCCGGTGGAGACCCCGATGC AATCCACTCATATAAGCGGCGGAAGTAGCGGTGGTGGTGGTGGAGGAGGAGGAGGAGGTGA GTCGAAGTGGATTATCTCGGATCCGTTCAGCTCCAGCTACTTGGATTGAAACCCTACTCG AAGAAGATGAAGAAGAAGGTTTAAAACCTAACCTTTGTTTAACAGAGCTGCTTACTGGTA ATAATAACTCTGGAGGAGTGATAACGAGTCGTGACGACTCGTTCGAGTTCCTGAGTTCTG TTGAGCAAGGATTGTATAATCATCATCAAGGTGGTGGCTTTCACCGTCAGAATAGTTCTC CGGCTGATTTTCTTAGTGGGTCTGGTTCTGGGACTGATGGGTATTTCTCTAATTTTGGTA TTCCGGCGAATTATGACTATTTGTCGACCAACGTTGATATTTCTCCGACTAAACGGTCTA GAGATATGGAAACACAGTTTTCTTCTCAGCTGAAAGAAGAGCAAATGAGTGGTGGGATAT CAGGAATGATGGATATGAACATGGACAAGATTTTTGAGGATTCAGTTCCTTGTAGGGTTC GTGCTAAACGTGGTTGTGCTACTCATCCTCGTAGCATTGCTGAACGGGTGAGAAGAACGC GAATAAGTGATCGGATTAGGAGGCTGCAAGAGCTTGTTCCTAACATGGATAAGCAAACCA ACACTGCAGACATGTTGGAAGAAGCTGTGGAGTATGTGAAGGCTCTTCAAAGCCAGATCC AGGAATTGACAGAGCAGCAGAAGAGATGCAAATGCAAACCTAAAGAAGAACAATAATGTA TCCTTTAGGATTTGATATATCTGTATTTTATTTTTTGTACTATCTAAAAATGGTGATGATC TTTTAGCTGTAAAATTTTTGTACAATAAGGAGAAAAAGATTTAGAAGAGTCAATAAAAAG ATGATGTTTACAAGTCAAAAAAAAAAAA

>G2555 Amino Acid Sequence (domain in AA coordinates: 175-245)
MQSTHISGGSSGGGGGGEVSRSGLSRIRSAPATWIETLLEEDEEGLKPNLCLTELLT
GNNNSGGVITSRDDSFEFLSSVEQGLYNHHQGGGFHRQNSSPADFLSGSGSGTDGYFSNF
GIPANYDYLSTNVDISPTKRSRDMETQFSSQLKEEQMSGGISGMMDMNMDKIFEDSVPCR
VRAKRGCATHPRSIAERVRRTRISDRIRRLQELVPNMDKQTNTADMLEEAVEYVKALQSQ
IQELTEQQKRCKCKPKEEQ*

>G375 (53..1171)

TCGACAAAAACTCTCACTCTCCCTCAAACTAAACAAACATACAGAACACAAAATGGGTCT CACTTCTCTCAAGTTTGCATGGATTCTGATTGGCTCCAGGAATCCGAGTCATCAGGAGG AAGCATGTTAGACTCTTCAACGAATTCTCCGTCAGCAGCCGACATACTAGCAGCTTGCAG CACTAGACCACAAGCCTCGGCCGTGGCTGTAGCCGCTGCAGCTCTGATGGACGGTGGAAG GAGGCTGCGTCCACCTCACGACCATCCTCAAAAGTGTCCTCGTTGCGAGTCAACACATAC TAAGTTCTGTTACTACAATAACTACAGCCTCTCTCAGCCTCGTTACTTCTGCAAGACTTG TCGCCGTTACTGGACAAAAGGCGGAACTCTAAGGAATATTCCGGTTGGTGGTGGATGCCG TAAAAACAAGAAACCATCTTCCTCTAATTCCTCCTCCTCCACTTCTTCCGGCAAAAAACC ATCCAACATCGTTACCGCCAATACCTCTGATCTTATGGCTTTAGCACATTCTCATCAAAA TTACCAACATTCTCCTCTAGGGTTTTCACATTTTGGTGGGATGATGGGGTCTTACTCAAC TCCGGAGCATGGTAACGTTGGTTTCTTGGAGAGCAAGTATGGCGGTTTGCTTTCGCAGAG CCCTAGACCTATTGATTTCTTGGACAGTAAGTTTGATCTCATGGGAGTGAACAATGACAA CCTGGTCATGGTTAATCATGGAAGTAACGGAGATCATCATCATCATCATCATCATCACAT GGGTCTGAATCACGGTGTAGGTCTTAACAACAACAACAACAATGGTGGATTTAATGGGAT TTCTACGGGAGGCAATGGAAATGGTGGTGGTCTCATGGATATATCGACATGCCAAAGACT TATGCTATCTAATTATGATCATCACCATTACAATCATCAAGAAGATCATCAAAGGGTAGC AACAATAATGGATGTGAAGCCAAATCCGAAGTTGTTATCGCTTGATTGGCAGCAAGATCA ATGCTACTCCAATGGTGGTGGTAGCGGAGGCGCAGGAAAATCCGACGGTGGTGGATACGG CAATGGTGGTTATATCAACGGTTTAGGTTCGTCGTGGAATGGTTTGATGAATGGCTATGG AACGTCCACTAAAACAAACTCCTTGGTTTGATAAGTTAATCAGAACTTCTTTTTTCTTGT CGTCATCAACTAGTAGTAGTAGTAGTAGTAGTTGGAGACTAGAGAAGCACTTCAAATTAT TTATGGGTTTGTTTGCTAAGCCAGTTTTAC

>G375 Amino Acid Sequence (domain in AA coordinates: 75-103)
MGLTSLQVCMDSDWLQESESSGGSMLDSSTNSPSAADILAACSTRPQASAVAVAAAALMD
GGRRLRPPHDHPQKCPRCESTHTKFCYYNNYSLSQPRYFCKTCRRYWTKGGTLRNIPVGG
GCRKNKKPSSSNSSSTSSGKKPSNIVTANTSDLMALAHSHQNYQHSPLGFSHFGGMMGS
YSTPEHGNVGFLESKYGGLLSQSPRPIDFLDSKFDLMGVNNDNLVMVNHGSNGDHHHHHN
HHMGLNHGVGLNNNNNNGGFNGISTGGNGNGGGLMDISTCQRLMLSNYDHHHYNHQEDHQ
RVATIMDVKPNPKLLSLDWQQDQCYSNGGGSGGAGKSDGGGYGNGGYINGLGSSWNGLMN

GYGTSTKTNSLV*

>G1007 (86..763)

ATTCCTTCTTGCCTAGGAACTAATTGTTGCACACTTCGGTACACAATTTTTTGAGCACTT CGACATCAAAACGAGAGAAAAGAATGGTGGATTCTCATGGCTCCGACACGGAATGTTC CTCCAAGAAGAAAAAGGAGAAAACGAAAGAAAAGGGGGTATATCGTGGGGCTCGCATGAG GAGCTGGGGGAAATGGGTCTCGGAGATTCGGGAGCCCCGTAAGAAATCAAGAATCTGGCT CGGGACTTTCCCCACGGCGGAGATGGCAGCGCGTGCCCATGATGTTGCGGCATTGAGTAT CAAAGGAAGTTCCGCAATCCTTAACTTCCCTGAGCTCGCGGATTTTCTGCCAAGACCAGT CTCGCTCAGCCAACAGGATATCCAGGCCGCAGCCGCCGAAGCCGCTCTTATGGATTTCAA AACTGTACCATTCCATCTTCAGGATGACTCAACGCCGTTGCAAACTAGGTGTGATACTGA GAAGATCGAAAAGTGGTCATCCTCATCGTCCTCAGCCTCATCCTCATCCTCATCTTCGTC CTCGTCCTCATCATCTATGCTTTCGGGGGGGGCTAGGAGATATTGTGGAGTTGCCGAGTCT TGAAAACAATGTAAAATACGATTGTGCGCTGTATGACTCGTTGGAGGGGCTGGTGTCGAT GCCCCCATGGTTAGATGCTACCGAAAATGATTTTAGGTATGGAGATGATTCGGTACTGTT ATATCTTCTACATATGTAATACTTTTCCATTAGTAAACAATGATTCGGTTTCGGGTACAA ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

>G1010 (344..1276)

AAAAGAGAGAGAGCTATGTAGCTATGAAACAGTAAGAGATATAGATATAGAGAGACAGAG AAAGATGATGATCAGTGAAGTTAGGCTAAACCCACTTTCTATTTATGTATAATTAGGTCA CTTGTATCTCACCCCCTTTCTCAATTCCCTAGGGAAACTGTGAATTTCATCAAATTCCAT TATTTTTTGGTCACACCCTTAAAGAGATCTGAGAGTTCTAAAGATGATGACAGATTTATC TCTCACGAGAGATGAAGATGAAGAAGAAGCAAAGCCCTTAGCAGAAGAAGAAGAAGCGCGCG TGAAGTAGCAGACAGAGAGCACATGTTCGACAAAGTTGTGACTCCAAGTGATGTCGGAAA ACTAAACCGACTTGTGATCCCAAAGCAACACGCAGAGAGATTCTTCCCTTTAGATTCATC TTCAAACGAGAAAGGTTTGCTTTTAAACTTCGAAGATCTCACTGGCAAATCTTGGAGGTT CCGTTACTCTTACTGGAACAGTAGTCAAAGCTATGTCATGACTAAAGGTTGGAGCAGATT CGTTAAAGACAAAAAGCTTGACGCCGGAGATATTGTCTCTTTCCAAAGATGTGTCGGAGA TTCAGGAAGAGATAGCCGTTTGTTTATTGATTGGAGGAGAAGACCTAAAGTCCCTGACCA TCCTCATTTCGCCGCCGGAGCTATGTTCCCTAGGTTTTACAGCTTTCCTTCGACCAATTA CAGTCTTTATAATCATCAGCAGCAACGTCATCATCACAGTGGTGGTTGTTATAATTATCA TCAAATTCCGAGAGAATTTGGTTATGGTTACTTCGTTAGGTCAGTGGATCAGAGGAACAA TCCTGCGGCTGCGGTGGCTGATCCGTTGGTGATTGAATCTGTGCCGGTGATGATGCACGG GAGAGCTAATCAGGAACTTGTTGGAACGGCCGGGAAGAGACTGAGGCTTTTTGGAGTTGA TATGGAATGCGGCGAGAGCGGAATGACCAACAGTACGGAGGAGGAATCATCATCTTCCGG ACTTGGAAGCAGCAGTGAAGATGATCACTTCACTAAGAAAGGAAAGTCTTCATTGTCTTT TACATATATATTCTATATATATGACAACATAATGCATTGATTTCCTT

>G1010 Amino Acid Sequence (domain in AA coordinates: 33-122)
MMTDLSLTRDEDEEEAKPLAEEEGAREVADREHMFDKVVTPSDVGKLNRLVIPKQHAERF
FPLDSSSNEKGLLLNFEDLTGKSWRFRYSYWNSSQSYVMTKGWSRFVKDKKLDAGDIVSF
QRCVGDSGRDSRLFIDWRRRPKVPDHPHFAAGAMFPRFYSFPSTNYSLYNHQQQRHHHSG
GGYNYHQIPREFGYGYFVRSVDQRNNPAAAVADPLVIESVPVMMHGRANQELVGTAGKRL
RLFGVDMECGESGMTNSTEEESSSSGGSLPRGGGGGASSSSFFQLRLGSSSEDDHFTKKG
KSSLSFDLDO*

>G1014 (174..1112)

ATGAAAATGTGGAAACCAAGGCCTCTACTTTAGTGGCAAGTGTTGATCATGGGTTTGGAT CCGGGTCGGGTCATGATCATCATGGGTTATCGGCGTCTGTGCCTCTTCTTGGTGTTAACT GGAGAGAGAGAGGATGCCTAGACAGAGACGATCTTCTTCTTCTTTAACCTTCTCTT TCCCTCCTATGCCTCCTATTTCCCACGTGCCAACTCCTCTCCCCGCACGTAAAATTG ACCCAAGAAAGCTAAGATTCCTCTTCCAAAAGGAACTCAAGAACAGTGACGTCAGCTCTC TCCGACGTATGATACTCCCGAAGAAAGCCGCGGAGGCTCACTTGCCGGCACTTGAATGCA AGGAAGGGATTCCTATAAGAATGGAAGATTTGGACGGTTTTCACGTTTGGACCTTCAAGT ATAGGTACTGGCCAAACAACAATAGCAGAATGTACGTGCTAGAAAACACAGGCGATTTTG TGAATGCTCATGGTCTGCAGCTAGGTGACTTCATCATGGTTTACCAAGATCTCTACTCAA TTGAAGAAGACGACGTTTACACAAACTTAACAAGGATCGAAAACACTGTGGTTAACGATC GCAACAAATGTTCTTACTATTATCCAGTCATAGATGATGTCACCACAAACACAGAGTCTT TTGTCTACGACACGACGGCTCTTACCTCCAACGATACTCCTCTCGATTTTTTGGGTGGAC ATACGACGACTACTAATAATTATTACTCCAAGTTCGGAACATTCGATGGTTTGGGCTCCG >G1014 Amino Acid Sequence (domain in AA coordinates: 90-172) MVDENVETKASTLVASVDHGFGSGSGHDHHGLSASVPLLGVNWKKRRMPRQRRSSSSFNL LSFPPPMPPISHVPTPLPARKIDPRKLRFLFQKELKNSDVSSLRRMILPKKAAEAHLPAL ECKEGIPIRMEDLDGFHVWTFKYRYWPNNNSRMYVLENTGDFVNAHGLQLGDFIMVYQDL YSNNYVIQARKASEEEEVDVINLEEDDVYTNLTRIENTVVNDLLLQDFNHHNNNNNNNSN SNSNKCSYYYPVIDDVTTNTESFVYDTTALTSNDTPLDFLGGHTTTTNNYYSKFGTFDGL GSVENISLDDFY*

>G1035 (103..624)

GCGTCTTAATCATAGTACTTAATTTTCTCTGTGTGTTTTAATATGAATAATAAAACTGAA ATGGGATCTTCCACAAGTGGAAATTGCTCGTCGGTTTCAACCACTGGTTTAGCTAACTCC GGTTCAGAATCTGATCTCCGGCAACGTGATCTAATCGACGAGCGGAAGAAAAGAGGAAA CAGTCGAACAGAATCTGCGAGGAGGTCGAGGATGAGGAAGCAGAAGCATTTGGATGAT ${\tt CTCACTGCTCAGGTGACTCATCTACGTAAAGAAAACGCTCAGATCGTCGCCGGAATCGCC}$ GTCACGACGCAGCACTACGTCACTATCGAGGCGGAGAACGACATTCTCAGAGCTCAGGTT CTTGAACTTAACCACCGTCTCCAATCTCTTAACGAGATCGTTGATTTCGTCGAATCTTCT TCTTCAGGATTCGGTATGGAGACCGGTCAGGGATTATTCGACGGTGGATTATTCGACGGC GTGATGAATCCTATGAATCTAGGGTTTTATAATCAACCAATCATGGCTTCTGCTTCTACT TCATCGCAGCAGGGGTAAAACTGTAATTTTTCTTATAAATTATGTGATGATGCTTTGTTT CTTTATTTTATAAGATGGTTAATTAGTGTTTAAAACTGATTGTAATGATAGACAGTGTAA GAAATGTGTGATATCATGGAGATGGTGATGTGAGTTTGGTACAAATATTTTAAGATCTTT AAA

>G1035 Amino Acid Sequence (domain in AA coordinates: 39-91)
MNNKTEMGSSTSGNCSSVSTTGLANSGSESDLRQRDLIDERKRKRKQSNRESARRSRMRK
QKHLDDLTAQVTHLRKENAQIVAGIAVTTQHYVTIEAENDILRAQVLELNHRLQSLNEIV
DFVESSSGFGMETGQGLFDGGLFDGVMNPMNLGFYNQPIMASASTAGDVFNC*
>G1046 (1..567)-

ATGATTAGACATCTAAAACCCTACATGGAGTCGTCTAGTGTCCATCGCTCTCATTGTTTC
GATATTCTTGATGGAGTCCCACTACACGACGATCATTTCAACTCGGCATTCCTACCAAAC
ACTGACTTTAATGTTCATTTGCAGTCAAACGTATCGACCCGCATCAACAATCAGTCTCAC
ACTGACCTAAATGCAGAAAACATTTTCCATAACGAAGGTCTTGCTCCAGAAGAAAAGAAGA
GCAAGAAGAATGGTCTCTAACCGGGAATCTGCAAGGAGGTCACGTATGCGCAAAAAGAAG
CAGATCGAAGAGCTGCAACAACAAGTTGAACAACTCATGATGTTGAATCATCACTTGTCT
GAGAAAGTCATCAACTTGTTGGAAAGCAACCATCAGATCCTACAAGAGAACTCACAGCTG
AAAGAGAAAGTCTCTTCCTTTCACTTGCTCATGGCAGATGTGCTATTACCCATGAGAAAT
GCAGAGAGACAACATCAATGACCGCAATGTGAATTATCTAAGAGGAGAACCATCAAACCGT

CCCACCAACAGTCCCTTTGGTAAGTAA

>G1046 Amino Acid Sequence (conserved domain in AA coordinates:79-138)
MIRHLKPYMESSSVHRSHCFDILDGVPLHDDHFNSAFLPNTDFNVHLQSNVSTRINNQSH
LDPNAENIFHNEGLAPEERRARRMVSNRESARRSRMRKKKQIEELQQQVEQLMMLNHHLS
EKVINLLESNHQILQENSQLKEKVSSFHLLMADVLLPMRNAESNINDRNVNYLRGEPSNR
PTNSPFGK*

>G1049 (29..550)

CTAACTTTCTTCCCAAGTAAACTTCAAAATGCAGCCGCAAACAGACGTTTTCAGCCTCCA
TAACTACCTAAACTCATCGATACTGCAGTCTCCGTATCCTTCTAATTTCCCGATATCTAC
GCCATTTCCAACCAACGGTCAAAACCCGTACCTCCTCTACGGATTCCAAAGCCCTACAAA
CAATCCACAATCCATGAGCCTAAGCAGCAACAACTCAACATCAGATGAAGCAGAAGAGCA
GCAGACGAACAACAATATAATCAACGAGGCGGAAGCAGAAGAACGATTTCAAACCGAGA
ATCCGCAAGGAGATCGCGTATGAGGAAGCAAAGACACCTTGACGAGCTTTGGTCACAAGT
GATGTGGTTAAGGATCGAGAATCATCAGTTGCTTGATAAGCTTAACAATCTCTCTGAGTC
TCACGACAAGGTTCTTCAAGAGAATCCTCAGCTTAAAGAAGAAACATTTGAGCTTAAGCA
AGTGATCAGCGATATGCAAATTCAAAGCCCTTTCTCTTGCTTTAGAGACGATATAATCCC
CATTGAATAAAAGCATTTTTCCCCGATTCATATTTATGAAAATTTTCTTCAAGAGTATGTT
TCTTTGTATGTATATGTGGAGATGTATTTCAGGGTTTTTGATAATAAACCCTTTACGACG
ACGTTTTTAGATTGTAGTAAAATTTATAAACTAAAGAAGAATTAGTGTTAATGAAGAACAAA

>G1049 Amino Acid Sequence (domain in AA coordinates 77-132)
MQPQTDVFSLHNYLNSSILQSPYPSNFPISTPFPTNGQNPYLLYGFQSPTNNPQSMSLSS
NNSTSDEAEEQQTNNNIINERKQRRMISNRESARRSRMRKQRHLDELWSQVMWLRIENHQ
LLDKLNNLSESHDKVLQENAQLKEETFELKQVISDMQIQSPFSCFRDDIIPIE*
>G1069 (89..934)

TTAGCGAATTTCCAGTTTTTGGTCAATCATGGCAAACCCTTGGTGGACGAACCAGAGTGG TTTAGCGGGCATGGTGGACCATTCGGTCTCCTCAGGCCATCACCAAAACCATCACCACCA AAGTCTTCTTACCAAAGGAGATCTTGGAATAGCCATGAATCAGAGCCAAGACAACGACCA AGACGAAGAAGATGATCCTAGAGAAGGAGCCGTTGAGGTGGTCAACCGTAGACCAAGAGG TAGACCACCAGGATCCAAAAACAAACCCAAAGCTCCAATCTTTGTGACAAGAGACAGCCC CAACGCACTCCGTAGCCATGTCTTGGAGATCTCCGACGGCAGTGACGTCGCCGACACAAT CGCTCACTTCTCAAGACGCAGGCAACGCGGGCGTTTGCGTTCTCAGCGGGACAGGCTCAGT GTTTGAAATCTTATCTTTAACCGGTGCTTTCCTCCCTGGACCTTCCCCACCCGGGTCAAC CGGTTTAACGGTTTACTTAGCCGGGGTCCAGGGTCAGGTCGTTGGAGGTAGCGTTGTAGG CCCACTCTTAGCCATAGGGTCGGTCATGGTGATTGCTGCTACTTTCTCTAACGCTACTTA TGAGAGATTGCCCATGGAAGAAGAGGGAAGACGGTGGCGGCTCAAGACAGATTCACGGAGG CGGTGACTCACCGCCCAGAATCGGTAGTAACCTGCCTGATCTATCAGGGATGGCCGGGCC AGGCTACAATATGCCGCCGCATCTGATTCCAAATGGGGCTGGTCAGCTAGGGCACGAACC AATATAGAGCTTGGGAAGGTAGAAAGAGACGACATT

>G1069 Amino Acid Sequence (domain in AA coordinates: 67-74)
MANPWWTNQSGLAGMVDHSVSSGHHQNHHHQSLLTKGDLGIAMNQSQDNDQDEEDDPREG
AVEVVNRRPRGRPPGSKNKPKAPIFVTRDSPNALRSHVLEISDGSDVADTIAHFSRRQR
GVCVLSGTGSVANVTLRQAAAPGGVVSLQGRFEILSLTGAFLPGPSPPGSTGLTVYLAGV
QGQVVGGSVVGPLLAIGSVMVIAATFSNATYERLPMEEEEDGGGSRQIHGGGDSPPRIGS
NLPDLSGMAGPGYNMPPHLIPNGAGQLGHEPYTWVHARPPY*

>G1070 (170..1144)

AGAGACAAGCGACAACATAGACAACATAGCTAACAACAGCGGTAGTGAAGGTAAAGACAT AGATATACACGGTGGTTCAGGAGAAGGAGGTGGTGGCTCCGGAGGAGATCATCAGATGAC AAGAAGACCAAGAGGAAGACCAGCGGGATCCAAGAACAAACCAAAACCACCGATTATCAT CACACGGGACAGCGCAAACGCGCTTAGAACCCACGTGATGGAGATCGGAGATGGCTGCGA CTTAGTCGAAAGCGTTGCCACTTTTGCACGAAGACGCCAACGCGGCGTTTGCGTTATGAG CGGTACTGGAAATGTTACTAACGTCACTATACGTCAGCCTGGATCTCATCCTTCTCCTGG TCCTCCGGCTCCTCCTACAGCCACCGGATTGAGTGTTTACCTCGCTGGAGGACAAGGACA GGTGGTTGGAGGAAGCGTAGTTGGTCCGTTGTTATGTGCTGGTCCTGTCGTTGTCATGGC TGCGTCTTTTAGCAATGCGGCGTACGAAAGGTTGCCTTTAGAGGAAGATGAGATGCAGAC GCCGGTTCATGGCGGAGGAGGAGGAGGATCATTGGAGTCGCCGCCAATGATGGGACAACA ACTGCAACATCAGCAACAAGCTATGTCAGGTCATCAAGGGTTACCACCTAATCTTCTTGG TTCGGTTCAGTTGCAGCAGCAACATGATCAGTCTTATTGGTCAACGGGACGACCACCGTA TTTAGTGGATATATATATGATTAAAAGAGGTTAGCTTATGAACATTAATAAGAGTTTGGA TTCTATCGAGCTTCATTATGTTTGGGTCATCGTTC

>G1070 Amino Acid Sequence (domain in AA coordinates: 98-120)
MDPVQSHGSQSSLPPPFHARDFQLHLQQQQQEFFLHHHQQQRNQTDGDQQGGSGGRRQIK
MDREETSDNIDNIANNSGSEGKDIDIHGGSGEGGGGGGGDHQMTRRPRGRPAGSKNKPKP
PIIITRDSANALRTHVMEIGDGCDLVESVATFARRRQRGVCVMSGTGNVTNVTIRQPGSH
PSPGSVVSLHGRFEILSLSGSFLPPPAPPTATGLSVYLAGGQGQVVGGSVVGPLLCAGPV
VVMAASFSNAAYERLPLEEDEMQTPVHGGGGGGSLESPPMMGQQLQHQQQAMSGHQGLPP
NLLGSVQLQQQHDQSYWSTGRPPY*

>G1076 (198..1076)

TTGCTTTTGATGTGGGCATGGCTGGTCTTGATCTAGGCACAGCTTTTCGTTACGTTAATC ACCAGCTCCATCGTCCCGATCTCCACCTTCACCACAATTCCTCCTCCGATGACGTCACTC CCGGAGCCGGGATGGGTCATTTCACCGTCGACGACGAGACAACAACAACAACCATCAAG GTCTTGACTTAGCCTCTGGTGGAGGATCAGGAAGCTCTGGAGGAGGAGGAGGTCACGGCG GGGGAGGAGACGTCGTTGGTCGTCCACGTGGCAGACCACCGGGATCCAAGAACAAAC CGAAACCTCCGGTAATTATCACGCGCGAGAGCGCAAACACTCTAAGAGCTCACATTCTTG AAGTAACAAACGGCTGCGATGTTTTCGACTGCGTTGCGACTTATGCTCGTCGGAGACAGC GAGGGATCTGCGTTCTGAGCGGTAGCGGAACGGTCACGAACGTCAGCATACGTCAGCCAT CGTTTCTTCCTCCTCCGGCACCTCCCGGAGCAACGAGTTTGACAATTTTCTTAGCCGGAG GACAAGGTCAGGTGGTTGGAGGAAGCGTTGTGGGTGAGCTTACGGCGGCTGGACCGGTGA TTGTGATTGCAGCTTCGTTTACTAATGTTGCTTATGAGAGACTTCCTTTAGAAGAAGATG AGCAGCAGCAACAGCTTGGAGGAGGATCTAACGGCGGAGGTAATTTGTTTCCGGAGGTGG CAGCTGGAGGAGGAGGACTTCCGTTCTTTAATTTACCGATGAATATGCAACCAAATG TGCAACTTCCGGTGGAAGGTTGGCCGGGGAATTCCGGTGGAAGAGGTCCTTTCTGATGTG TATATTGATAATCATTATATATATACCGGCGGAGAAGCTTTTCCGGCGAAGAATTTGC GAGAGTGAAGAAAGGTTAGAAAAGCTTTTAATGGACTAATGAATTTCAAATTATCATCGT AATTTTATGTTTGAATCCTTTTTTTTTTCTGTGAAACTCTATTGTGTTCGTCTGCGAAGG АААААААТТСТСАААААААА

>G1076 Amino Aeid Sequence (domain in AA coordinates: 82-89)
MAGLDLGTAFRYVNHQLHRPDLHLHHNSSSDDVTPGAGMGHFTVDDEDNNNNHQGLDLAS
GGGSGSSGGGGGGGGGGDVVGRRPRGRPPGSKNKPKPPVIITRESANTLRAHILEVTNGC
DVFDCVATYARRRQRGICVLSGSGTVTNVSIRQPSAAGAVVTLQGTFEILSLSGSFLPPP
APPGATSLTIFLAGGQGQQVVGGSVVGELTAAGPVIVIAASFTNVAYERLPLEEDEQQQQL
GGGSNGGGNLFPEVAAGGGGGLPFFNLPMNMQPNVQLPVEGWPGNSGGRGPF*

>G1089 (31..2427)

GCTCTTTCCGATTACTCTCACGGCGAGTTTTTAGTCTCTAATCACTCGTCTTCCTCCGCA GCTGCAGCAATCGCTTCTACTTCTCTCTCTCCCACTGCTATATCTCCTCCTCTTCTTCT TCCACCGCTCCGGTTTCTAATTCAACCGCTTCTTCTTCCTCCGCTGCGGTTCCTCAGCCG ATTCCTGATACTCTTCCTCCTCCTCCTCCTCCACCACCGCTTCCTCTAACGTGCTGCT ACTATGCCGGAGATGAACGGTAGATCCGGTGGTGGTCATGCTGGTAGTGGACTCAACGGA ATTGAAGAAGATGGAGCCCTAGATAACGATGATGATGACGATGATGATGATGACTCT GAAATGGAGAATCGTGATCGTTTGATTAGGAAATCGAGAAGCCGTGGAGGTAGTACTAGA GGAAATAGGACGACGATTGAAGATCATCATCTTCAGGAGGAGAAAGCTCCGCCACCTCCC CCTTTGGCGAATTCGCGGCCAATTCCGCCGCCACGTCAGCATCAGCATCAACATCAGCAA CAGCAACAACCATTCTACGATTACTTCTTCCCTAATGTTGAGAATATGCCTGGAACT CCACATTCACCAGTCGTTACTGAGGATGACGAAGATGAGGAGGAGGAAGAGGAGGAAGAG GAGGAGGAAGAGGAGACGGTGATTGAACGGAAACCACTGGTGGAGGAAAGACCGAAGAGA GTAGAGGAAGTGACGATTGAATTGGAAAAAGTTACTAATTTGAGAGGGATGAAGAAGAGT AAAGGGATAGGGATTCCCGGAGAGAGGAGGAGGAATGCCGAATGCCGGTGACTGCGACGCAT TTGGCGAATGTATTCATTGAGCTTGATGATAATTTCTTGAAAGCTTCTGAAAGTGCTCAT GATGTTTCTAAGATGCTTGAAGCTACTAGGCTCCATTACCATTCTAATTTTGCAGATAAC CGAGGACATATTGATCACTCTGCTAGAGTGATGCGTGTAATTACATGGAATAGATCATTT AGAGGAATACCAAATGCTGATGATGGGAAAGATGATGTTGATTTGGAAGAGAATGAAACT CATGCTACTGTTCTTGACAAATTGCTAGCATGGGAAAAGAAGCTCTATGACGAAGTCAAG GCTGGCGAACTCATGAAAATCGAGTACCAGAAAAAGGTTGCTCATTTAAATCGGGTGAAG AAACGAGGTGGCCACTCGGATTCATTAGAGAGAGCTAAAGCAGCAGTAAGTCATTTGCAT AGGGATGAACAACTATACCTAAAGCTCGTTCACCTTGTTGAGGCGATGGGGAAGATGTGG GAAATGATGCAAATACATCATCAAAGACAAGCTGAGATCTCAAAGGTGTTGAGATCTCTA GATGTTTCACAAGCGGTGAAAGAAACAAATGATCATCATCACGAACGCACCATCCAGCTC TACATAAAAGCACTTGGCGGATGGCTAAAGCTAAATCTCATCCCTATCGAAAGCACACTC AAGGAGAAAGTATCTTCGCCTCCTCGAGTTCCCAATCCCGCAATCCAAAAACTCCTCCAC GCTTGGTATGACCGTTTAGACAAAATCCCCGACGAAATGGCTAAAAGTGCCATAATCAAT TTCGCAGCGGTTGTAAGCACGATAATGCAGCAGCAAGAAGACGAGATAAGTCTCAGAAAC AAATGCGAAGACAAGAAAAGAATTGGGAAGAAAAATTAGACAGTTTGAGGATTGGTAC CACAAATACATCCAGAAGAGAGGACCGGAGGGGATGAATCCGGATGAAGCGGATAACGAT CATAATGATGAGGTCGCTGTGAGGCAATTCAATGTAGAACAAATTAAGAAGAGGTTGGAA GAAGAAGAAGAAGCTTACCATAGACAAAGCCATCAAGTTAGAGAGAAGTCACTGGCTAGT ${\tt CTTCGAACTCGCCTCCCCGAGCTTTTTCAGGCAATGTCCGAGGTTGCGTATTCATGTTCG}$ GATATGTATAGAGCTATAACGTATGCGAGTAAGCGGCAAAGCCAAAGCGAACGGCATCAG AAACCTAGCCAGGGACAGAGTTCGTAAGAACTAATGTAAGATCAGAGTAATGTCTTCTTC ATTGCTTTCTTATATTAAGGTTTTGGCTTTTGTAAGAAGGTTTCTTACATATGAGATTCA TATAGTGTTTGATTCTTAAGGAACTGTTCTGTTGAGTAATAAGAAAGTTGTGTATTGAAA TAGAGTTGCATTTGTTAATTTTG

>G1089 Amino Acid Sequence (domain in AA coordinates 425-500)
MGCAQSKIENEEAVTRCKERKQLMKDAVTARNAFAAAHSAYAMALKNTGAALSDYSHGEF
LVSNHSSSSAAAAIASTSSLPTAISPPLPSSTAPVSNSTASSSSAAVPQPIPDTLPPPPP
PPPLPLQRAATMPEMNGRSGGGHAGSGLNGIEEDGALDNDDDDDDDDDDSEMENRDRLIR
KSRSRGGSTRGNRTTIEDHHLQEEKAPPPPPLANSRPIPPPRQHQHQHQQQQQQPFYDYF
FPNVENMPGTTLED#PPQPQPPTRPVPPQPHSPVVTEDDEDEEEEEEEEEEETVIER
KPLVEERPKRVEEVTIELEKVTNLRGMKKSKGIGIPGERRGMRMPVTATHLANVFIELDD
NFLKASESAHDVSKMLEATRLHYHSNFADNRGHIDHSARVMRVITWNRSFRGIPNADDGK
DDVDLEENETHATVLDKLLAWEKKLYDEVKAGELMKIEYQKKVAHLNRVKKRGGHSDSLE
RAKAAVSHLHTRYIVDMQSMDSTVSEINRLRDEQLYLKLVHLVEAMGKMWEMMQIHHQRQ
AEISKVLRSLDVSQAVKETNDHHHERTIQLLAVVQEWHTQFCRMIDHQKEYIKALGGWLK
LNLIPIESTLKEKVSSPPRVPNPAIQKLLHAWYDRLDKIPDEMAKSAIINFAAVVSTIMQ
QQEDEISLRNKCEETRKELGRKIRQFEDWYHKYIQKRGPEGMNPDEADNDHNDEVAVRQF
NVEQIKKRLEEEEEAYHRQSHQVREKSLASLRTRLPELFQAMSEVAYSCSDMYRAITYAS
KRQSQSERHQKPSQGQSS*

>G1093 (1..531)

>G1127 (191..1351)

TCTCTCTTAGGCTTAATACGAACACTCATAGACACGGGTTTTCGGATATTGGGTCTACCC GACTTTCTCGAATCCGACCCGGTTTCATCGTCATCGTCATGGCTGGAACCACCGTATATG TCCACGGCGCGCATCATCACCAAGAAAGCTCATTTTTCTTCCCAGTGGCGGCGAGGCTA GCTGGAGAAATCTTGCCCGTCATCAGATTCTCGGAGCTAACTCGACCCGGATTCGGATCC GGATCCGATTGCTGCGCGGTGTGCCTCCACGAGTTCGAGAACGATGACGAGATCCGACGG CTGACGAATTGTCAACACATATTTCACCGGAGCTGTTTAGACCGTTGGATGATGGGTTAT AATCAGATGACGTGTCCACTTTGTAGAACGCCGTTTATTTCTGATGAGTTACAAGTTGCT TTTAACCAACGAGTTTGGTCTGAATCTGAACTTCTCGCAGAATCAAATTAG >G1093 Amino Acid Sequence (domain in AA coordinates: 105-148) MGYPVGYTELLLPRIFLHLLSLLGLIRTLIDTGFRILGLPDFLESDPVSSSSSWLEPPYM STAAHHHQESSFFFPVAARLAGEILPVIRFSELTRPGFGSGSDCCAVCLHEFENDDEIRR LTNCQHIFHRSCLDRWMMGYNQMTCPLCRTPFISDELQVAFNQRVWSESELLAESN*

TTAGCTCACACGCTTTCTCTATTTTCTCGGAATTCACAAAACAGAAAGTTTCATCCTTTA CTCTGCTCTAATGGATTCCAGAGACATCCCACCGTCACATAACCAGCTTCAACCACCACC GGGAATGTTAATGTCTCATTACCGTAACCCTAACGCCGCCGCTTCACCATTAATGGTTCC CACTTCCACATCTCAACCGATTCAACACCCTCGTCTTCCTTTTGGCAATCAACAACAATC TCAAACGTTTCATCAGCAGCAACAACAACAAATGGATCAGAAGACTCTTGAATCTCTTGG ATTTGGTGATGGATCACCTTCTCCAACCGATGCGATTCGGGATCGATGATCAGAATCA GCAACTGCAAGTGAAGAAGAAGCGAGGAAGGCCGAGAAAGTATACTCCTGATGGTAGCAT TGCTTTAGGTTTAGCTCCTACGTCTCCTCTTCTCTCTGCAGCTTCTAATTCTTACGGTGA GGGTGGTGTTGGAGATAGTGGTGGAAATGGAAACTCTGTTGATCCACCTGTTAAACGTAA CAGAGGAAGGCCTCCTGGTTCTAGTAAGAAACAGCTTGATGCTTTAGGAGGAACTTCAGG AGTTGGGTTTACACCTCATGTCATTGAAGTGAACACAGGAGAGGACATAGCGTCAAAGGT GATGGCTTTTTCGGATCAAGGGTCAAGAACAATTTGTATTCTCTCTGCAAGTGGTGCAGT TTCTAGAGTGATGCTTCGTCAAGCTTCTCATTCTAGTGGAATCGTTACTTATGAGGGACG ATTTGAGATCATTACTCTCTCAGGCTCAGTCTTGAATTATGAGGTAAATGGTTCCACCAA CAGAAGTGGTAACTTGAGTGTGGCTTTGGCTGGACCTGATGGCGGCATCGTAGGTGGCAG TGTAGTTGGTAATCTAGTAGCTGCAACACAAGTCCAGGTGATAGTGGGAAGCTTTGTTGC AGAAGCAAAGAAACCGAAACAAAGTAGTGTTAACATTGCTCGGGGGCAGAATCCTGAACC GGCTTCAGCGCCGGCTAACATGTTGAACTTTGGATCAGTCTCTCAAGGACCATCGAGCGA GTCATCAGAAGAGAATGAGAGCGGTTCTCCTGCAATGCACCGTGACAATAATAATGGGAT ATATGGAGCTCAACAACAACAACAACAACCTCTTCATCCTCATCAGATGCAAATGTA TTGGTTACGGTTATGGTTTGATTTCTT

>G1127 Amino Acid Sequence (domain in AA coordinates:103-110, 155-162) MDSRDIPPSHNQLQPPPGMLMSHYRNPNAAASPLMVPTSTSQPIQHPRLPFGNQQQSQTF HQQQQQQMDQKTLESLGFGDGSPSSQPMRFGIDDQNQQLQVKKKRGRPRKYTPDGSIALG LAPTSPLLSAASNSYGEGGVGDSGGNGNSVDPPVKRNRGRPPGSSKKQLDALGGTSGVGF TPHVIEVNTGEDIASKVMAFSDQGSRTICILSASGAVSRVMLRQASHSSGIVTYEGRFEI ITLSGSVLNYEVNGSTNRSGNLSVALAGPDGGIVGGSVVGNLVAATQVQVIVGSFVAEAK KPKQSSVNIARGQNPEPASAPANMLNFGSVSQGPSSESSEENESGSPAMHRDNNNGIYGA QQQQQQPLHPHQMQMYQHLWSNHGQ*

>G1131 (57..758)

TCGACTCCTCTCTGATTGCTTCACCTTCTTTACTACAGGTTTCAGCTCCTCAATGT CCATGGATTGCTTAAGCTACTTCTTTAACTACGATCCTCCTGTCCAGCTCCAGGATTGCT TTATTCCCGAGATGGATATGATTATCCCTGAAACCGATAGTTTCTTCTTCCAATCTCAAC CGCAACTGGAGTTTCATCAGCCATTGTTTCAAGAAGAAGCTCCTTCACAGACCCACTTTG ACCCTTTCTGCGACCAGTTTCTTCTCCGCAAGAAATCTTTCTCCCTAACCCTAAAAAACG AAATCTTCAACGAAACACACGACCTCGATTTCTTCTCCCCCACGCCAAAACGCCAGAGAC TTGTTAACTCCAGCTACAATTGTAACACTCAAAACCATTTCCAGAGCCGTAACCCGAATT TCTTCGACCCTTTCGGCGACACTGATTTCGTTCCAGAATCTTGTACCTTCCAGGAGTTTC GAGTTCCGGATTTCTCTTTAGCTTTCAAGGTAGGCCGGGGAGATCAAGATGACTCAAAGA

>G1131 Amino Acid Sequence (domain in AA coordinates: 173-220)
MSMDCLSYFFNYDPPVQLQDCFIPEMDMIIPETDSFFFQSQPQLEFHQPLFQEEAPSQTH
FDPFCDQFLSPQEIFLPNPKNEIFNETHDLDFFLPTPKRQRLVNSSYNCNTQNHFQSRNP
NFFDPFGDTDFVPESCTFQEFRVPDFSLAFKVGRGDQDDSKKPTLSSQSIAARGRRRRIA
EKTHELGKLIPGGNKLNTAEMFQAAAKYVKFLQSQVGILQLMQTTKKVITNPK*
>G1145 (243..1142)

TTCTGCATGTTTCGCCACTCTACCTTAGAAAAAAGGTTACTTTCGCCTCCGATTTAGGCT CGATTTGATGAATTCGTCGTCGTGTGGCTATTTATCAAATTGAGCATTAGGGTTTCTGAT ${\tt TTGTGGGTTCAGAATTGTTTTATCTATCTGTCTTGTTGTTTTTTTGTCCGCTACAAAAGC}$ CTATGGATTCTCAGAGGGGTATTGTTGAACAAGCTAAATCTCAGTCCTTGAATAGGCAAA GCTCTCTTTACAGCTTAACACTTGATGAGGTTCAAAATCACTTGGGGAGTTCTGGTAAAG CTCTGGGAAGCATGAACCTTGATGAGGCTTTTGAAGAGTGTCTGTTCTGTTGAAGCTAATC AGCCATCGTCTATGGCTGTCAATGGTGGAGCAGCTGCTCAGGAGGGTCTTTCTCGCCAGG GGAGTTTGACTTTGCCTCGGGATCTCAGCAAAAAGACTGTTGATGAGGTTTGGAAAGACA TTCAGCAGAATAAGAATGGAGGTAGTGCTCATGAGAGGAGGAGTAAGCAGCCTACACTTG GGGAAATGACGCTTGAAGACCTGTTGTTGAAAGCAGGAGTGGTCACTGAGACTATCCCTG GTTCGAACCATGATGGTCCTGTTGGTGGTGGTAGTGCTGGTTCAGGTGCTGGTTTAGGGC AAAACATTACTCAAGTTGGCCCATGGATTCAATATCATCAGCTCCCATCAATGCCACAGC TTGTAGAGAAGACTGTAGAGAGGAGGCAGAAGAATGATAAAGAACAGAGTCTGCTG CTCGTTCCCGAGCTAGGAAACAGGCTTACACTCATGAGCTAGAGATCAAAGTTTCACGGT TAGAAGAAGAAACGAAAGACTCAGGAAGCAAAAGGAGGTGGAAAAATCCTCCCAAGTGT ACCACCGCCTGATCCCAAGCGGCAGCTCCGACGGACAAGCTCGGCTCCTTTCTGATCTCT AAACTCTTTTTGTCTTTTTCTTTTTTCTCTCTGTGTCGGTTCACTTATAAAAAAGAGA GGAAAACAGCTTTGTTTCTTTGTACATTCCGTAGACTTTCTTGACTTGGAGCAATTCTGT TAACTTTAAAATATTCTCGAGTTATTGTAGTAGCAGACTAGCAGCAGTAATGGTTTTCAT GAGTCCGATTGAAATTCAGAGATTGAACAGGAAAAAA

>G1145 Amino Acid Sequence (conserved domain in AA coordinates:227-270)
MDSQRGIVEQAKSQSLNRQSSLYSLTLDEVQNHLGSSGKALGSMNLDELLKSVCSVEANQ
PSSMAVNGGAAAQEGLSRQGSLTLPRDLSKKTVDEVWKDIQQNKNGGSAHERRDKQPTLG
EMTLEDLLLKAGVVTETIPGSNHDGPVGGGSAGSGAGLGQNITQVGPWIQYHQLPSMPQP
QAFMPYPVSDMQAMVSQSSLMGGLSDTQTPGRKRVASGEVVEKTVERRQKRMIKNRESAA
RSRARKQAYTHELEIKVSRLEEENERLRKQKEVEKSSQVYHRLIPSGSSDGQARLLSDL*
>G1229 (123..1217)

AGAAACAACGTAAAACCTACGCCGAAGTCCTAAGCCCGAGAGTTGTCCCGAGCCCTCGTC CTTCACCGCCTGTTCTAAGCCCAAGAAAACCGCCTCTTAGCCCGCGCATCAACCACCACC AGATTCACCACCACCTACTTCTCCCTCCCATAAGTCCTCGAACACCTCAGCCAACAAGCC CATACCGGGCCATTCCACCGCAACTACCACTCATCCCACAGCCTCCGCTTCGCTCTTACA GCTCATTGGCCAGTTGCAGCAGCTTAGGAGATCCACCTCCATACTCTCCTGCTTCATCTT CTTCATCTCCTTCAGTTAGTAGTAACCATGAGAGTAGTGTGATCAATGAGCTTGTTGCTA ACTCAAAATCGGCTTTGGCTGATGTGGAAGTGAAGTTTTCAGGAGCTAACGTGCTGCTCA AAACGGTGTCGCATAAGATCCCGGGACAAGTTATGAAGATAATTGCTGCTCTTGAAGATT TGGCTCTTGAGATTCTTCAGGTTAATATTAACACCGTCGACGAAACCATGCTTAATTCTT TCACCATCAAGATTGGAATTGAGTGCCAACTAAGTGCAGAAGAACTGGCTCAACAAATTC AGCAAACATTCTGCTAGTAAAGAAGGATTTAATATAGCTTCGTATAAACCTTAACGAGAG AGCAGTACGTACTCACTTTCTCTCCTTAGTATCCCTTTAATTATCTTTTCAGTTTTCTGC AAAGATATGGAGTTTAAAAAAATAAAATTGTTATCTAAAGTTTTAATCAAATATTGATTA ATTATAACTAATATAGGTATAAGTGAGTTTTAAAGATTATCAGCTTCATAACAGCCATCG TCATGTTTACTTTCTTTTAAATTTTAGAATTTAGACGTACTCCTACCATGTAATTTTATT

>G1229 Amino Acid Sequence (domain in AA coordinates: 102-160)
MQEIIPDFLEECEFVDTSLAGDDLFAILESLEGAGEISPTAASTPKDGTTSSKELVKDQD
YENSSPKRKKQRLETRKEEDEEEEDGDGEAEEDNKQDGQQKMSHVTVERNRRKQMNEHLT
VLRSLMPCFYVKRGDQASIIGGVVEYISELQQVLQSLEAKKQRKTYAEVLSPRVVPSPRP
SPPVLSPRKPPLSPRINHHQIHHHLLLPPISPRTPQPTSPYRAIPPQLPLIPQPPLRSYS
SLASCSSLGDPPPYSPASSSSSPSVSSNHESSVINELVANSKSALADVEVKFSGANVLLK
TVSHKIPGQVMKIIAALEDLALEILQVNINTVDETMLNSFTIKIGIECQLSAEELAQQIQ
OTFC*

>G1246 (1..1746)

ATGATCATGTACGGAGGAGGAGGAGCAGGGAAGGACGGTGGATCCACCAATCACTTATCA GACGGAGGAGTGATATTGAAGAAAGGTCCATGGACGGCGGCGGAAGATGAGATACTTGCT GCGTACGTTAGAGAGAACGGTGAAGGGAATTGGAACGCCGTTCAGAAAAACACAGGTTTG GCTCGTTGCGGCAAAAGCTGCCGTCTTCGATGGGCCAATCACCTCCGACCAAATCTGAAA AAAGGCTCTTTCACCGGTGACGAAGAACGTCTCATCATTCAGCTTCATGCTCAGCTTGGT AACAAATGGGCTCGCATGGCTGCTCAGTTACCGGGAAGAACAGACAACGAGATTAAGAAC TATTGGAACACGAGATTGAAACGACTTCTTCGCCAAGGACTTCCTCTTTATCCTCCAGAT TCTTCACAACGAAACACACCATCATCTTCCCCTCTTCCATCTCCAACACCAGCAAACGCA CCTCACACTCCAAACACCATCTCAACTCTCTTCCACACCGCCTCCACCACCACCACTTTCC TCTCCTTTATGTTCCCCTCGCAACAACCAATACCCGACCCTTCCCCTCTTTGCCCTCCCG CGTTCCCAAATCAACAACAACAACGGAAATTTCACTTTCCCTAGACCTCCACCTCTC CTTCAACCGCCTTCATCACTCTTCGCAAAACGTTACAACAATGCTAACACTCCTCTTAAT TGCATCAACCGCGTCTCAACCGCACCATTTTCCCCTGTTTCAAGAGACTCCTACACTTCC TTTCTTACATTGCCTTACCCTTCCCCAACCGCTCAAACCGCTACTTACCACAATACTAAT TCAACTTCTTCCCCAAGCTTTCTTCACTCCCATTACACTCCTTCTTCCACCTCATTTCAT ACCAACCCAGTTTACTCCATGAAACAAGAGCAGCTCCCTTCAAACCAAATTCCCCAAATA GATGGCTTCAATAACGTCAACAACTTCACAGACAACGAGAGACAGAATCATAACCTTAAC AGTTCCGGTGCTCATAGAAGAAGTAGTAGCTGCAGCCTCTTAGAGGATGTCTTCGAAGAG GCCGAAGCTTTAGCCTCTGGAGGCAGAGGCCGACCTCCAAAACGAAGACAACTCACAGCT TCTCTTCCGAACCACAACAACACCCAACAACACCGACAACTTCTTCTCGGTTAGTTTC GGACATTATGATTCTTCTGACAACTTATGTTCCTTGCAAGATTTGAAATCAAAGGAAGAA GAGTCTCTTCAAATGAACACAATGCAGGAGGACATAGCTAAGCTTCTTGATTGGGGAAGT GATAGTGGAGAGATCTCTAATGGACAATCATCTGTTGTCACTGACGACAATCTTGTTCTT GATGTTCATCAATTAGCTTCACTATTCCCGGCTGATTCTACAGCCGTCGTAGCCGCAACA AACGACCAACAACAAGAATAATAACAATAATTGTTCCTGGGATGACATGCAGGGAATA AGGTAG

>G1246 Amino Acid Sequence (domain in AA coordinates: 27-139)

MIMYGGGGAGKDGGSTNHLSDGGVILKKGPWTAAEDEILAAYVRENGEGNWNAVQKNTGL ARCGKSCRLRWANHLRPNLKKGSFTGDEERLIIQLHAQLGNKWARMAAQLPGRTDNEIKN YWNTRLKRLLRQGLPLYPPDIIPNHQLHPHPHHQQQQQHNHHHHHHHQQQQQHQMYFQPQ SSQRNTPSSSPLPSPTPANAKSSSSFTFHTTTANLLHPLSPHTPNTPSQLSSTPPPPPLS SPLCSPRNNQYPTLPLFALPRSQINNNNNGNFTFPRPPPLLQPPSSLFAKRYNNANTPLN CINRVSTAPFSPVSRDSYTSFLTLPYPSPTAQTATYHNTNNPYSSSPSFSLNPSSSSYPT STSSPSFLHSHYTPSSTSFHTNPVYSMKQEQLPSNQIPQIDGFNNVNNFTDNERQNHNLN SSGAHRRSSSCSLLEDVFEEAEALASGGRGRPPKRRQLTASLPNHNNNTNNNDNFFSVSFGHYDSSDNLCSLQDLKSKEEESLQMNTMQEDIAKLLDWGSDSGEISNGQSSVVTDDNLVLDVHQLASLFPADSTAVVAATNDQHNKNNNNNCSWDDMQGIR*

>G1255 (138..1388)

CAGCTCAAACTCTCTAGGACTACACTAAATCTAACTTTTTGCAGAGAGCAAAAGATTCAA AGACTTTGTATACAATGATGAAAAGTTTGGCGAATGCTGTTGGAGCGAAGACGGCGAGGG CTTGCGACAGCTGCGTGAAGAGACGTGCACGGTGGTACTGCGCGGCCGACGATGCTTTTC TTTGCCAGTCTTGCGACAGTTTGGTCCATTCAGCAAACCCTCTTGCTCGCCGCCACGAGA GAGTCCGTTTGAAGACGGCTAGCCCGGCGGTCGTAAAGCATAGCAACCACTCATCAGCTT CTCCTCCACATGAGGTCGCCACGTGGCATCACGGGTTTACTCGTAAAGCTCGAACGCCAC GTGGCTCTGGTAAGAAAACAATTCGTCGATATTTCATGACTTGGTTCCTGATATTAGTA TTGAGGATCAGACAGCTATGAGCTTGAAGAGCAGCTGATCTGTCAAGTGCCGGTTC TAGATCCGTTGGTGTCTGAGCAGTTCTTGAACGATGTCGTTGAGCCCAAGATCGAGTTTC CTATGATCAGAAGTGGTTTGATGATCGAGGAGGAGGAAGACAACGCTGAAAGTTGTCTTA ATGGATTTTTCCCGACCGACATGGAGCTTGAGGAGTTTGCTGCTGACGTGGAGACTCTGC TCGGTCGCGGGTTAGACACGGAGTCGTATGCCATGGAGGAGCTAGGGTTATCTAATTCAG AGATGTTCAAAATCGAAAAAGATGAGATTGAAGAAGAAGTAGAAGAGATAAAAGCCATGA GCTTTGATTACGAGTCGTCACAAGACGTCCGAAGAGAGGTAATGAAGAACGTTGAAA GTAGTGGTGAATGTGTTGTTAAGGTGAAAGAGGAAGAACATAAGAATGTTCTGATGCTAA GATTAAACTATGACTCGGTGATATCCACTTGGGGAGGTCAAGGTCCACCGTGGAGTTCAG GAGAGCCACCGGAACGAGACATGGACATCAGCGGTTGGCCAGCCTTTTCCATGGTGGAGA ATGGAGGAGAAAGTACTCATCAGAAGCAATACGTTGGTGGATGTTTACCATCAAGTGGGT TGTTTTCTAAGAAGATACGGTACGAGGTACGTAAATTGAATGCAGAGAAAAGACCACGAA ${\tt TGAAAGGAAGATTCGTGAAGAGAGCCTCGCTCGCTGCTGCTGCTTCACCATTAGGTGTTA}$ ATTACTGAATAGTTAATATCTATTCATGTTATATCTCACTTTACAAATTTCGGTGAATCT TTTTTCTTCTGAAACAACAGAAGTTATTTTGGCACTTAATTGTGCTTTGAGGACTTGTAT GTACATAGAAGTAACCAATAATAATGTGACTTTTACTA

>G1255 Amino Acid Sequence (domain in aa coordinates: 18-56)
MKSLANAVGAKTARACDSCVKRRARWYCAADDAFLCQSCDSLVHSANPLARRHERVRLKT
ASPAVVKHSNHSSASPPHEVATWHHGFTRKARTPRGSGKKNNSSIFHDLVPDISIEDQTD
NYELEEQLICQVPVLDPLVSEQFLNDVVEPKIEFPMIRSGLMIEEEEDNAESCLNGFFPT
DMELEEFAADVETLLGRGLDTESYAMEELGLSNSEMFKIEKDEIEEEVEEIKAMSMDIFD
DDRKDVDGTVPFELSFDYESSHKTSEEEVMKNVESSGECVVKVKEEEHKNVLMLRLNYDS
VISTWGGQGPPWSSGEPPERDMDISGWPAFSMVENGGESTHQKQYVGGCLPSSGFGDGGR
EARVSRYREKRRTRLFSKKIRYEVRKLNAEKRPRMKGRFVKRASLAAAASPLGVNY*
>G1304 (1..978)

TCTCACATTCTTGAGGATGAGAATTTGATGGTCAAAACCCAAATTATTGATAACCCTTTG
GACTCTTTTTCTTCCCCCATACAACCCGGTTTTCAAGATGATCATAATTCACTCCCTCTA
TTGGTTCCGGCGTCTCCTGAAGAATCTAAAGAAACTCAAAGGATGATCAAGAACAAAGAC
ATCGTCGATTACCATCATCATGATGCTTCAAACCCTTCATCATCAAACTCAACGTTTACA
CAAGATCATCATCACCCATGGTGTGACACTATTGATGATGGAGCAAGTGATTCTTTTTGG
AAAGAGATAATAGAGTAA

>G1304 Amino Acid Sequence (conserved domain in AA coordinates:13-118)
MGRSPCCDENGLKKGPWTQEEDDKLIDHIQKHGHGSWRALPKQAGLNRCGKSCRLRWTNY
LRPDIKRGNFTEEEEQTIINLHSLLGNKWSSIAGNLPGRTDNEIKNYWNTHLRKKLLQMG
IDPVTHRPRTDHLNVLAALPQLIAAANFNSLLNLNQNVQLDATTLAKAQLLHTMIQVLST
NNNTTNPSFSSSTMQNSNTNLFGQASYLENQNLFGQSQNFSHILEDENLMVKTQIIDNPL
DSFSSPIQPGFQDDHNSLPLLVPASPEESKETQRMIKNKDIVDYHHHDASNPSSSNSTFT
QDHHHPWCDTIDDGASDSFWKEIIE*

>G1318 (7..849)

AAAAATATGAGGAAGCCAGAGGTAGCCATTGCAGCTAGTACTCACCAAGTAAAGAAGATG AAGAAGGGACTTTGGTCTCCTGAGGAAGACTCAAAGCTGATGCAATACATGTTAAGCAAT GGACAAGGATGTTGGAGTGATGTTGCGAAAAACGCAGGACTTCAAAGATGTGGCAAAAGC TGCCGTCTTCGTTGGATCAACTATCTTCGTCCTGACCTCAAGCGTGGCGCTTTCTCTCCT CAAGAAGAGGATCTCATCATTCGCTTTCATTCCATCCTCGGCAACAGGTGGTCTCAGATT GCAGCACGATTGCCTGGTCGGACCGATAACGAGATCAAGAATTTCTGGAACTCAACAATA AAGAAAAGGCTAAAGAAGATGTCCGATACCTCCAACTTAATCAACAACTCATCCTCATCA CCCAACACAGCAAGCGATTCCTCTTCTAATTCCGCATCTTCTTTGGATATTAAAGACATT CAAACCAACAATCCATTTCCAACGGGAAACATGATCAGCCACCCGTGCAATGACGATTTT ACCCCTTATGTAGATGGTATCTATGGAGTAAACGCAGGGGTACAAGGGGAACTCTACTTC CCACCTTTGGAATGTGAAGAAGGTGATTGGTACAATGCAAATATAAACAACCACTTAGAC GAGTTGAACACTAATGGATCCGGAAACGCACCTGAGGGTATGAGACCÁGTGGAAGAATTT TGGGACCTTGACCAGTTGATGAACACTGAGGTTCCTTCGTTTTACTTCAACTTCAAACAA AGCATATGAATATTTTTACGTCATCTTATTCTTTTTTCTATTGCGGTTTATACTCAAGAT TCTTAGCCACACACACATAAATGCAAATATATATACATTGTTAGAGAGTATTTTGTATTT CGTATAATCTTTTCGTACTAGGGCTTGAGCCTTGAGGTCCCATGTAACGATTAGTCAATG A

>G1318 Amino Acid Sequence (domain in AA coordinates: 20-123)
MRKPEVAIAASTHQVKKMKKGLWSPEEDSKLMQYMLSNGQGCWSDVAKNAGLQRCGKSCR
LRWINYLRPDLKRGAFSPQEEDLIIRFHSILGNRWSQIAARLPGRTDNEIKNFWNSTIKK
RLKKMSDTSNLINNSSSSPNTASDSSSNSASSLDIKDIIGSFMSLQEQGFVNPSLTHIQT
NNPFPTGNMISHPCNDDFTPYVDGIYGVNAGVQGELYFPPLECEEGDWYNANINNHLDEL
NTNGSGNAPEGMRPVEEFWDLDQLMNTEVPSFYFNFKQSI*

>G1320 (39..788)

GAAGATCATAAAGATCAAAAGGAGAGAGGTATTAAAAAATGATGTGTAGTCGAGGCCATT GGAGACCTGCAGAAGACGAGAAGCTAAGAGAACTCGTCGAGCAATTTGGTCCTCATAATT GGAACGCCATAGCTCAGAAGCTCTCTGGTCGATCTGGTAAGAGTTGTAGATTGAGATGGT TTAATCAATTGGATCCTAGGATTAACCGAAACCCTTTCACGGAGGAAGAAGAAGAAGACGC TTTTAGCGCCTCATCGGATCCATGGGAACAGATGGTCTGTGATCGCTAGATTTTTTCCCG GTCGAACTGATAACGCTGTTAAAAACCATTGGCACGTCATCATGGCTCGTCGTGGCCGAG AACGGTCCAAGCTCCGTCCACGAGGCCTTGGCCATGATGGCACGGTGGCTGCGACTGGGA TGATTGGTAATTATAAAGACTGCGATAAGGAGAGAAGATTGGCAACCACAACCGCTATCA ATTTTCCTTATCAATTCTCTCATATTAATCATTTTCAAGTCCTCAAAGAGTCCTTGACCG GAAAGATCGGGTTCAGAAATAGTACTACTCCAATACAAGAAGGAGCAATAGACCAAACTA AACGACCGATGGAGTTCTACAATTTTCTCCAAGTAAACACGGATTCGAAGATACACGAAT TGATAGATAATTCAAGAAAAGACGAAGAAGAAGATGTCGATCAAAACAACCGAATTCGTA ACGAGAATTGTGTTCCATTTTTCGACTTTTTGTCTGTTGGAAACTCTGCCTCTCAGGGTT TATGTTAATTTGTCCGTACCACATGTACTATAAGGTGGACCATATGTTAACTAAAGATAA TGTAGAAAGTACTAATCAATTAGAGCTCCTGTTTGAGCCAAATGTGAAAATTAGTTAAGA CATCCCAAACATTTTCTTGTATAACACATATAAGGTTGTACTTTTATCAGGTCTAATTTT

>G1320 Amino Acid Sequence (domain in AA coordinates: 5-108)
MMCSRGHWRPAEDEKLRELVEQFGPHNWNAIAQKLSGRSGKSCRLRWFNQLDPRINRNPF
TEEEEERLLAPHRIHGNRWSVIARFFPGRTDNAVKNHWHVIMARRGRERSKLRPRGLGHD
GTVAATGMIGNYKDCDKERRLATTTAINFPYQFSHINHFQVLKESLTGKIGFRNSTTPIQ
EGAIDQTKRPMEFYNFLQVNTDSKIHELIDNSRKDEEEDVDQNNRIRNENCVPFFDFLSV
GNSASQGLC*

>G1330 (36..959)

AGATCAACAAGAACATGGAGGAATTCACGAAAGTGGAAGAAGAAATGGACGTAAGGAGAG GTCCATGGACAGTTGAGGAAGATTTAGAGCTCATCAATTACATTGCTAGTCATGGTGAAG GTCGATGGAACTCTCTCGCTCGTTGCGCCGAACTCAAAAGGACCGGAAAAAGCTGCAGAC TTCGGTGGCTGAACTATCTCCGACCAGATGTGCGCCGTGGAAACATAACCCTCGAAGAAC **AACTCTTGATTCTTGAACTTCACACACGTTGGGGCAATAGATGGTCTAAGATTGCACAAT** ATTTACCAGGAAGAACGGATAACGAGATCAAAAACTATTGGAGAACACGTGTTCAAAAGC ATGCAAAACAGCTTAAATGCGACGTGAACAGTCAACAATTTAAAGACACCATGAAGTATC ${\tt TTTGGATGCCTCGGCTCGTAGAAAGGATCCAAGCCGCGTCCATCGGGTCTGTTTCCATGT}$ CATCTTGCGTCACCACCTCCTCAGATCAGTTCGTGATCAACAACAACAACAACAACAACAACA TGGATAATTTGGCTTTAATGAGTAACCCTAATGGTTACATCACGCCGGATAATTCCAGCG TGGCAGTATCTCCTGTATCAGATTTGACGGAGTGTCAAGTGAGTAGTGAAGTGTGGAAGA TTGGTCAGGATGAGAATTTGGTGGATCCAAAAATGACATCGCCGAATTATATGGATAATA GCAGTGGACTATTAAACGGAGATTTTACGAAGATGCAAGATCAAAGTGACCTTAATTGGT TTGAAAATATTAATGGGATGGTACCAAATTATTCGGACAGTTTTTGGAACATTGGAAATG ATGAAGACTTCTGGCTCTTACAACAACATCAACAAGTCCACGACAATGGAAGCTTCTGAA TAGACAAGAAGCTATGCGGCC

>G1330 Amino Acid Sequence (domain in AA coordinates: 28-134)
MGDKGRSLKINKNMEEFTKVEEEMDVRRGPWTVEEDLELINYIASHGEGRWNSLARCAEL
KRTGKSCRLRWLNYLRPDVRRGNITLEEQLLILELHTRWGNRWSKIAQYLPGRTDNEIKN
YWRTRVQKHAKQLKCDVNSQQFKDTMKYLWMPRLVERIQAASIGSVSMSSCVTTSSDQFV
INNNNTNNVDNLALMSNPNGYITPDNSSVAVSPVSDLTECQVSSEVWKIGQDENLVDPKM
TSPNYMDNSSGLLNGDFTKMQDQSDLNWFENINGMVPNYSDSFWNIGNDEDFWLLQQHQQ
VHDNGSF*

>G1352 (79..900)

GCGCGATTAAAAACTCTCAACTTTTCTCTCAAATTTCTGATCCTTTGATCCAACAGTTAG AAGAAGATTCATCTGATCATGGCCCTCGAAGCGATGAACACTCCAACTTCTTCTTCACC AGAATCGAAACGAAAGAAGATTTGATGAACGACGCCGTTTTCATTGAGCCGTGGCTTAAA CGCAAACGCTCAAACGTCAGCGTTCTCACAGCCCTTCTTCGTCTTCTTCCTCACCGCCT CGATCTCGACCCAAATCCCAGAATCAAGATCTTACGGAAGAAGAGTATCTCGCTCTTTGT CTCCTCATGCTCGCTAAAGATCAACCGTCGCAAACGCGATTTCATCAACAGTCGCAATCG TTAACGCCGCCGCCAGAATCAAAGAACCTTCCGTACAAGTGTAACGTCTGTGAAAAAGCG TTTCCTTCCTATCAGGCTTTAGGCGGTCACAAAGCAAGTCACCGAATCAAACCACCAACC GTAATCTCAACACCGCCGATGATTCAACAGCTCCGACCATCTCCATCGTCGCCGGAGAA AAACATCCGATTGCTCCCGGAAAGATCCACGAGTGTTCAATCTGTCATAAAGTGTTT ${\tt CCGACGGGTCAAGCTTTAGGCGGTCACAAACGTTGTCACTACGAAGGCAACCTCGGCGGC}$ GGAGGAGGAGGAAGCAAATCAATCACTCACAGTGGAAGCGTGTCGAGCACGGTATCG GAAGAAGGAGCCACCGTGGATTCATCGATCTAAACCTACCGGCGTTACCTGAACTCAGC CTTCATCACAATCCAATCGTCGACGAAGAGATCTTGAGTCCGTTGACCGGTAAAAAACCG CTTTTGTTGACCGATCACGACCAAGTCATCAAGAAGAAGATTTATCTTTAAAAAATCTAA TACTCGACTATTAATTCTTGTGTGATTTTTTTTCGTTACAACCATAGTTTCATTTTCATTT TTTTAGTTACAAATTTTTAATTGTTCTGATTTGGATTGAAA

>G1352 Amino Acid Sequence (domain in AA coordinates: 108-129,167-188)
MALEAMNTPTSSFTRIETKEDLMNDAVFIEPWLKRKRSKRQRSHSPSSSSSSPPRSRPKS
QNQDLTEEEYLALCLLMLAKDQPSQTRFHQQSQSLTPPPESKNLPYKCNVCEKAFPSYQA
LGGHKASHRIKPPTVISTTADDSTAPTISIVAGEKHPIAASGKIHECSICHKVFPTGQAL
GGHKRCHYEGNLGGGGGGSKSISHSGSVSSTVSEERSHRGFIDLNLPALPELSLHHNPI
VDEEILSPLTGKKPLLLTDHDQVIKKEDLSLKI*

>G1354 (1..1047)

GTTGACTATTATCTCAAGAACAAAGTTGCATTCCCGGGAATGCAAGTTGATGTTATCAAA GATGTTGATCTCTACAAAATCGAGCCATGGGACATCCAAGAGTTATGTGGAAGAGGGACA GGAGAAGAGAGGGAATGGTATTTCTTTAGCCACAAGGACAAGAAATATCCAACTGGGACA CGAACCAATAGAGCAACGGGCTCCGGATTTTGGAAAGCAACGGGTCGAGACAAGGCCATT TACTCAAAGCAAGAGCTTGTTGGGATGAGGAAGACTCTTGTCTTTTACAAAGGTAGGGCC CCAAATGGTCAGAAATCTGATTGGATAATGCACGAATACCGTCTTGAGACCGATGAAAAT GGACCGCCTCATGAGGAAGGATGGGTGGTTTGTCGCGCTTTCAAGAAGAAGCTAACCACG ATGAACTACAACAATCCAAGAACAATGATGGGATCATCATCAGGCCAAGAATCTAACTGG TTCACGCAGCAAATGGATGTGGGGAATGGTAATTACTATCATCTTCCTGATCTAGAGAGT CCGAGAATGTTTCAAGGCTCATCATCATCATCACTATCATCATTACATCAGAATGATCAA GACCCTTATGGTGTCGTACTCAGCACTATTAACGCAACCCCAACTACAATAATGCAACGA GATGATGGTCATGTGATTACCAATGATGATGATCATATGATCATGATGAACACAAGTACT GGTGATCATCATCAGTCAGTTACTAGTCAATGATGATCATAATGATCAAGTAATGAT TGGCAAACGCTTGACAAGTTTGTTGCTTCTCAGCTAATCATGAGCCAAGAAGAAGAAGAA GTTAACAAAGATCCATCAGATAATTCTTCGAATGAAACATTTCATCATCTCTCTGAAGAG CAAGCTGCAACAATGGTTTCGATGAATGCTTCTTCCTCTTCTTCTCCATGTTCCTTCTAC TCTTGGGCTCAAAATACACACACGTAA

>G1354 Amino Acid Sequence (domain in AA coordinates: TBD)
MESLAHIPPGYRFHPTDEELVDYYLKNKVAFPGMQVDVIKDVDLYKIEPWDIQELCGRGT
GEEREWYFFSHKDKKYPTGTRTNRATGSGFWKATGRDKAIYSKQELVGMRKTLVFYKGRA
PNGQKSDWIMHEYRLETDENGPPHEEGWVVCRAFKKKLTTMNYNNPRTMMGSSSGQESNW
FTQQMDVGNGNYYHLPDLESPRMFQGSSSSSLSSLHQNDQDPYGVVLSTINATPTTIMQR
DDGHVITNDDDHMIMMNTSTGDHHQSGLLVNDDHNDQVMDWQTLDKFVASQLIMSQEEEE
VNKDPSDNSSNETFHHLSEEQAATMVSMNASSSSSPCSFYSWAQNTHT*

>G1360 (1..1257)

ATGGGAGATAGAAACAACGACGGTGATCAGAAAATGGAGGATGTATTGTTGCCCGGATTT AGGTTTCATCCAACCGACGAAGAGCTCGTAAGCTTCTACCTGAAGCGGAAGGTTCAACAC AACCCTCTCTCCATTGAGCTCATAAGACAACTCGATATCTACAAATATGACCCCTGGGAT ${\tt CTTCCAAAGTTTGCGATGACGGGTGAAAAAGAATGGTACTTTTATTGTCCAAGGGACAGG}$ AAGTATAGGAACAGCTCGAGGCCAAACCGAGTGACCGGAGCTGGTTTTTGGAAAGCCACG GGAACGGACCGGCCGATATACTCGTCAGAAGGAAACAAATGCATAGGTTTAAAGAAGTCC TTAGTGTTCTACAAAGGAAGAGCAGCGAAAGGAGTTAAGACTGATTGGATGATGCATGAG TTTCGTTTGCCTTCTCTCCGAACCATCTCCTCCTCTAAGAGATTCTTCGACTCTCT GTCTCTCCCAACGATTCATGGGCTATATGCAGAATCTTCAAAAAGACCAACAACGACC CTAAGAGCTCTCTCACTCTTTTGTTTCCTCGTTACCACCAGAAACAAGCACCGACACA ATGTCTAACCAAAAGCAATCAAACACATACCATTTTTCTTCAGACAAGATCCTCAAACCT AGCTCTCACTTCCAGTTTCACCATGAGAATATGAACACTCCCAAAACTAGTAATAGTACA ACTCCATCCGTTCCCACTATAAGTCCCTTCTCTTACTTGGATTTCACTTCATACGACAAA CCCACCAACGTTTTCAATCCGGTTTCATGTTTAGACCAACAATACCTCACAAATCTCTTT CTTGCCACACAAGAAACACAACCTCAGTTTCCCAGGCTCCCCTCGTCAAATGAAATCCCA TCGTTTCTGCTAAACACGTCTTCAGATTCGACCTTCTTGGGAGAATTCACGAGCCATATC GACCTCAGCGCAGTGTTGGCCCAAGAGCAATGTCCCCCGCTTGTAAGCCTACCACAGGAG TATCAAGAGACGGGATTCGAAGGAAATGGTATAATGAAGAACATGCGTGGTTCCAATGAA GATCATCTTGGTGATCATTGCGACACACTTCGGTTTGATGATTTCACTTCAACAATTAAT GAGAACCATCGTCATCAAGACCTGAAACAGAACATGACATTGCTGGAGAGTTATTAT TCTTCTTTATCGTCCATCAATAGCGATTTGCCAGCTTGTTTCTCCAGTACAACCTGA

>G1360 Amino Acid Sequence (conserved domain in AA coordinates:18-174)
MGDRNNDGDQKMEDVLLPGFRFHPTDEELVSFYLKRKVQHNPLSIELIRQLDIYKYDPWD
LPKFAMTGEKEWYFYCPRDRKYRNSSRPNRVTGAGFWKATGTDRPIYSSEGNKCIGLKKS
LVFYKGRAAKGVKTDWMMHEFRLPSLSEPSPPSKRFFDSPVSPNDSWAICRIFKKTNTTT
LRALSHSFVSSLPPETSTDTMSNQKQSNTYHFSSDKILKPSSHFQFHHENMNTPKTSNST
TPSVPTISPFSYLDFTSYDKPTNVFNPVSCLDQQYLTNLFLATQETQPQFPRLPSSNEIP
SFLLNTSSDSTFLGEFTSHIDLSAVLAQEQCPPLVSLPQEYQETGFEGNGIMKNMRGSNE
DHLGDHCDTLRFDDFTSTINENHRHHQDLKQNMTLLESYYSSLSSINSDLPACFSSTT*
>G1364 (1..537)

ATGGCGGAGTCGCAGGCCAAGAGTCCCGGAGGCTGTGGAAGCCATGAGAGTGGTGGAGATCAAAGTCCCAGGTCGTTACATGTTCGTGAGCAAGATAGGTTTCTTCCGATTGCTAACATA

CTCTGCCTCTCTCTCTCTCAAAACCCATCTCGAAAGTCTTTCTCTTTCGAGGGTTTAG ATCCTCCATGGAAGGCGGCGGAGTTGCTGACGTGGCTGTCCCCGGTACGAGGAAGAGAGA GCCTAACAAGCGCTCTAGGTTATGGCTTGGCTCTTACTCTACTCCCGAGGCGGCGCGCG AGCTTACGACACGGCGGTTTTCTATCTTAGAGGACCTACGGCGAGGCTTAACTTCCCTGA GCTTCTTCCTGGGGAGAAATTCTCCGACGAGGATATGTCGGCTGCGACCATCAGGAAGAA AGCCACGGAGGTCGGTGCTCAGGTTGATGCTTTGGGCACGGCGGTGCAAAATAACCGCCA CCGTGTTTTTGGTCAGAATCGAGATAGTGATGTGGATAATAAGAATTTTCATCGGAATTA TCAAAACGGTGAACGAGAAGAAGAAGAAGATGAGGATGACAAGAGATTGAGGAGTGG CGGCCGGTTATTGGATCGGGTTGACTTGAATAAATTACCCGACCCGGAAAGCTCCGATGA AGAATGGGAAAGCAAACATTAAAAATATATAGTTTGGAGCGGTGGCTGTTGCTAACGTAC >G1379 Amino Acid Sequence (domain in AA coordinates: 18-85) MEGGGVADVAVPGTRKRDRPYKGIRMRKWGKWVAEIREPNKRSRLWLGSYSTPEAAARAY DTAVFYLRGPTARLNFPELLPGEKFSDEDMSAATIRKKATEVGAQVDALGTAVQNNRHRV FGQNRDSDVDNKNFHRNYQNGEREEEEEDEDDKRLRSGGRLLDRVDLNKLPDPESSDEEW ESKH*

>G1384 (33..977)

>G1379 (68..622)

GTACATTTTTTTTTTTTCAGGAAACTCCGATGGCGGATCTCTTCGGTGGTGGCCACG GCGGCGAGCTTATGGAAGCACTTCAACCTTTTTACAAAAGTGCTTCCACGTCTGCTTCAA ATCCTGCGTTTGCGTCCTCAAACGATGCGTTTGCGTCTGCCCCAAACGACCTATTTTCTT CTTCTTCTTACTATAATCCTCATGCATCTTTATTCCCTTCACATTCCACAACCTCTTACC CGGATATTTATTCTGGATCCATGACCTATCCATCTTCATTCGGGTCGGATCTTCAACAAC CCGAAAACTACCAATCTCAGTTCCATTACCAAAACACTATCACTTACACTCACCAAGACA ACAACACTTGCATGCTTAACTTCATTGAGCCGAGCCAACCGGGTTTTATGACCCAACCGG GTCCGAGTTCGGGTTCGGTTTCAAAACCGGCTAAGCTCTATAGAGGAGTGAGGCAAAGAC ATTGGGGAAAATGGGTCGCGGAGATCCGTTTACCCAGGAACCGAACCCGACTTTGGCTCG GAACATTCGACACGGCTGAAGAAGCCGCGTTGGCTTATGATCGCGCCGCGTTTAAGCTTC GTGGTGACTCGGCTCGGCTTAACTTCCCAGCTCTCCGATACCAAACCGGCTCGTCTCCGT CTGATACCGGCGAATATGGTCCTATTCAAGCTGCCGTAGACGCTAAACTAGAAGCCATAT TAGCTGAGCCGAAGAATCAGCCGGGCAAAACGGAGAGGACGTCGAGGAAACGAGCTAAAG CCGCGGCTTCTTCAGCTGAGCAGCCGTCAGCGCCACAACAACATTCCGGGTCGGGTGAAA GTGATGGGTCGGGTTCACCGACTTCGGATGTTATGGTGCAGGAGATGTGCCAAGAGCCAG CTTCAATTTTATCGTGAAAAATTAGGATTCAATTCATTTTATTCATTTTAACTTGTTTG TATTTTCTTTTAAACTTTAGGGTTATTAGCTGTGCGTAA

>G1384 Amino Acid Sequence (domain in AA coordinates: TBD)
MADLFGGGHGGELMEALQPFYKSASTSASNPAFASSNDAFASAPNDLFSSSSYYNPHASL
FPSHSTTSYPDIYSGSMTYPSSFGSDLQQPENYQSQFHYQNTITYTHQDNNTCMLNFIEP
SQPGFMTQPGPSSGSVSKPAKLYRGVRQRHWGKWVAEIRLPRNRTRLWLGTFDTAEEAAL
AYDRAAFKLRGDSARLNFPALRYQTGSSPSDTGEYGPIQAAVDAKLEAILAEPKNQPGKT
ERTSRKRAKAAASSAEQPSAPQQHSGSGESDGSGSPTSDVMVQEMCQEPEMPWNENFMLG
KCPSYEIDWASILS*

>G1399 (261..1475)

AGGTCGAATTTCTGAAATTAAGATTCATTCCTCCATGGAAGAAGCTCTGTTTTTATTCT CTTTAGCTTAGCTTCTACTGATCTGTTTTTGCTACAAAATCCCATCTTTTTCTTT AAAACTCTTTATCTCTGAATCTTGAGTTTCTTGTAGAAGAAGAAGCAATTTTGAATCTTT CGTAATCATAAAGATTCGTGGAGGATCTCTACTGATTTGTCGGAATCTCTCACTACAGAA CTAGCAGTTTCGGCTTGAAGCAGCAACATGAAGCTGCTGCTTCTGATGGTGGTTACTCAA CCGCGGCCGCCACCGTAGCAGCAGCTGTTACTGAGAATGCGGCTACTCCGTTTAGCTTAA CAATGCCGACGAGAACACTTCAGCTGAGCAGCTGAAAAAGAAGAGAGGTAGGCCGAGAA AGTATAATCCCGATGGGACTCTTGTCGTGACTTTATCGCCGATGCCAATCTCGTCCTCTG TTCCGTTGACGTCGGAGTTTCCTCCAAGGAAACGAGGAAGAGGACGTGGCAAGTCTAATC GATGGCTCAAGAGTCTCAAATGTTCCAATTCGATAGAAGTCCTGTTGATACCAATTTGG CAGGTGTAGGAACTGCTGATTTTGTTGGTGCCAACTTTACACCTCATGTACTGATCGTCA ACGCCGGAGAGGATGTGACGATGAAGATAATGACATTCTCTCAACAAGGATCTCGTGCTA TCTGCATCCTTTCAGCTAATGGTCCCATCTCCAATGTTACGCTTCGTCAATCTATGACAT CCGGTGGTACTCTAACTTATGAGGGTCGTTTTGAGATTCTCTCTTTGACGGGTTCGTTTA TGCAAAATGACTCTGGAGGAACTCGAAGTAGAGCTGGTGGTATGAGTGTTTGCCTTGCAG TCCAGGTAATGGTAGGGACTTTTATAGCTGGTCAAGAGCAGTCACAGCTGGAGCTAGCAA AAGAAGACGGCTAAGATTTGGGGCTCAACCATCTTCTATCTCCTTTAACATATCCGCAG CTTCATACACGCATGTAAACACAACAAATGCGGTTCACAGTTACTATACAAACTCGGTTA ACCATGTCAAGGATCCCTTCTCGTCTATCCCAGTAGGAGGAGGAGGAGGTGGAGAGGTAG GAGAAGAAGAGGGTGAAGAAGATGATGATGAATTAGAAGGTGAAGACGAAGAATTCGGAG GCGATAGCCAATCTGACAACGAGATTCCGAGCTGATGATGATCATACGGTTTCTTTTCGC GGATTTGTTAGGTTTGATGGATTTCAGATTTTTGGTTGATTGTTTTTATTAACACAGAATG TTTAGAAGCTGCTATCTTTAGGTTCCCATCCTCTTGTGATTGTTGAGTATCCTTGTTAGA AACAAACTTACTGTTGCAAAACTCTCTTCAAAAAAGTTTCACTTTGCTTTCCCA

>G1399 Amino Acid Sequence (domain in AA coordinates: 86-93)
MEEREGTNINNNITSSFGLKQQHEAAASDGGYSMDPPPRPENPNPFLVPPTTVPAAATVA
AAVTENAATPFSLTMPTENTSAEQLKKKRGRPRKYNPDGTLVVTLSPMPISSSVPLTSEF
PPRKRGRGRGKSNRWLKKSQMFQFDRSPVDTNLAGVGTADFVGANFTPHVLIVNAGEDVT
MKIMTFSQQGSRAICILSANGPISNVTLRQSMTSGGTLTYEGRFBILSLTGSFMQNDSGG
TRSRAGGMSVCLAGPDGRVFGGGLAGLFLAAGPVQVMVGTFIAGQEQSQLELAKERRLRF
GAQPSSISFNISAEERKARFERLNKSVAIPAPTTSYTHVNTTNAVHSYYTNSVNHVKDPF
SSIPVGGGGGGEVGEEEGEEDDDELEGEDEEFGGDSQSDNEIPS*

>G1415 (60..680)

>G1415 Amino Acid Sequence (domain in AA coordinates: TBD)
MSSIEPKVMMVGANKKQRTVQASSRKGCMRGKGGPDNASCTYKGVRQRTWGKWVAEIREP
NRGARLWLGTFDTSREAALAYDSAARKLYGPEAHLNLPESLRSYPKTASSPASQTTPSSN
TGGKSSSDSESPCSSNEMSSCGRVTEEISWEHINVDLPVMDDSSIWEEATMSLGFPWVHE

GDNDISRFDTCISGGYSNWDSFHSPL*

>G1417 (32..1501)

TCTATCTCTATCTATCTCTCTTTGTCTGCAAATGGAAGAACATATTCAAGATCGCCGTGA AATTGCGTTCTTACACTCAGGAGAATTTCTCCACGGAGATTCTGACTCAAAGGATCATCA ACCGAACGAGTCTCCGGTGGAACGTCATCACGAGTCGTCTATCAAAGAAGTTGATTTCTT CGCTGCTAAAAGTCAGCCGTTTGATCTTGGTCATGTGAGAACAACGACGATCGTTGGATC ATCTGGTTTTAATGATGGATTAGGTTTGGTAAATTCATGTCATGGAACATCAAGCAATGA TGGCGATGACAAAACCAAAACTCAAATTAGTAGACTGAAGTTGGAGCTAGAGAGGCTTCA CGAGGAGAATCACAAACTGAAGCATTTATTAGATGAGGTCAGTGAGAGTTACAACGACCT CCAAAGAAGAGTTTTGTTAGCAAGACAAACACAAGTGGAAGGTCTTCATCATAAACAACA TGAGGATGTACCTCAAGCTGGTTCCTCACAAGCTCTAGAGAACAGAAGACCAAAGGATAT GAACCATGAAACTCCGGCCACCACCTTGAAACGACGGTCTCCAGACGACGTGGATGGTCG TGATATGCACCGAGGATCACCAAAAACTCCTCGAATAGACCAAAACAAGAGTACTAATCA TGAAGAACAACAAAACCCTCATGATCAATTACCCTATAGAAAAGCTAGGGTTTCCGTTAG AGCTAGATCTGATGCCACTACGGTAAATGACGGATGTCAATGGAGAAAATACGGTCAGAA AATGGCGAAAGGGAATCCATGTCCTCGCGCTTATTATCGTTGCACCATGGCCGTTGGATG TCCTGTCCGTAAACAGGTCCAACGATGCGCGGAGGATACAACTATCTTGACAACAACGTA CGAAGGAAACCATAACCATCCTCTTCCCCCGTCAGCCACAGCCATGGCTGCAACCACCTC CGCCGCAGCAGCCATGCTCTTATCAGGCTCCTCCTCCAGCAACCTCCACCAAACACTCTC TAGCCCCTCCGCCACGTCATCATCATCCTTCTACCATAACTTCCCATACACCTCCACAAT CGCAACACTCTCTGCCTCAGCTCCTTTCCCCACCATAACCTTAGACCTCACCAACCCACC TCGACCGCTACAACCGCCACCGCAGTTTCTAAGCCAGTATGGTCCCGCCGCGTTTTTACC AAACGCTAATCAAATTAGGTCTATGAATAATAATAACCAGCAGTTATTAATACCTAAŢTT GTTTGGCCCACAAGCCCCACCACGTGAAATGGTCGATTCAGTTAGGGCTGCGATTGCGAT GGATCCGAACTTCACGGCGCACTTGCGGCCGCGATCTCAAACATTATCGGAGGAGGTAA TAACGACAACAATAATAATACTGATATTAATGATAACAAGGTTGATGCAAAAAGTGGAGG GAGTAGTAACGGAGATTCGCCACAGCTTCCTCAGTCTTGCACCACTTTCTCTACAAACTA AGAGAGAGAGCTATTATGGGTTTTTTTT

>G1417 Amino Acid Sequence (domain in AA coordinates: 239-296)
MEEHIQDRREIAFLHSGEFLHGDSDSKDHQPNESPVERHHESSIKEVDFFAAKSQPFDLG
HVRTTTIVGSSGFNDGLGLVNSCHGTSSNDGDDKTKTQISRLKLELERLHEENHKLKHLL
DEVSESYNDLQRRVLLARQTQVEGLHHKQHEDVPQAGSSQALENRRPKDMNHETPATTLK
RRSPDDVDGRDMHRGSPKTPRIDQNKSTNHEEQQNPHDQLPYRKARVSVRARSDATTVND
GCQWRKYGQKMAKGNPCPRAYYRCTMAVGCPVRKQVQRCAEDTTILTTTYEGNHNHPLPP
SATAMAATTSAAAMLLSGSSSSNLHQTLSSPSATSSSSFYHNFPYTSTIATLSASAPFP
TITLDLTNPPRPLQPPPQFLSQYGPAAFLPNANQIRSMNNNNQQLLIPNLFGPQAPPREM
VDSVRAAIAMDPNFTAALAAAISNIIGGGNNDNNNTDINDNKVDAKSGGSSNGDSPQLP
QSCTTFSTN*

>G1442 (1..1293)

ATGGGAACAAGAGCAGAACGCAAGGAAGATTTTGTTGGTGGGTTTGGATTTGGTGTTGTA GAAAATTCGCATAAAGACGTTATGGTGCTACCTCATCATCACTATTATCCATCATATTCA TCACCTTCCTCTTCTTGTGTTACTGTTCTGCTGGTGTTAGCGATCCCATGTTCTCT GTTTCTAGCAATCAGGCTTACACTTCTTCTCACAGTGGTATGTTCACACCCGCCGGTTCT GGTTCTGCTGTGACTGTAGCAGATCCTTTTTTCTCCTTGAGCTCTTCAGGGGAAATG AGAAGAAGTATGAACGAAGATGCTGGTGCAGCTTTCAGCGAAGCTCAATGGCATGAGCTT GAGAGGCAGAGGAATATATACAAGTACATGATGGCTTCTGTTCCTGTTCCTCCAGAGCTT CTCACACCCTTTCCCAAGAACCACCAATCAAACACTAACCCGGATGTAACTGTGGCAGTG CTGGAGCCATGGAGGTGCAAGAACAGATGGGAAGAAATGGAGGTGCTCTAGAAACGTG ATTCCTGATCAGAAATACTGTGAGAGACACACACACAGAGCCGTCCTCGTTCAAGAAAG CATGTGGAATCATCTCACCAATCATCTCACCACAATGACATTCGTACGGCTAAGAATGAT ACTAGCCAGCTTGTGAGAACTTATCCTCAGTTTTACGGACAACCTATAAGCCAGATCCCT GTGCTTTCTACTCTTCCGTCTGCCTCCTCTCCATATGATCACCACAGAGGACTGAGGTGG TTTACGAAAGAAGATGATGCCATTGGAACCTTAAACCCGGAGACTCAAGAAGCTGTCCAG CTGAAAGTTGGATCAAGCAGAGAGCTCAAACGGGGATTCGATTATGATCTGAATTTCAGG CAGAAAGAGCCAATAGTAGACCAGAGCTTTGGAGCATTGCAGGGTCTATTAAGTCTAAACCAGACACCACAACATAACCAAGAAACAAGACAGTTTGTTGTAGAAGGAAAGCAAGATGAAGCGATGGACACTCTCCAATGGCTGGAGGAGGCATGGAGGAAACCAGGAAACCAGCATCAGTGGCTAAGCCATGAAGGTCCATCATGGCTCTATTCAACAACACCAGGTGGACCATTGGCTGAAGCACCTGTGTCTCCGGTGTCTCCAACAACCCAAGTTCTAGTACTACTAGTAGCTGCAGCAGAAGCTCAAGCACAAGCTCAAGCACAACCCAAGTTCTAGTACTACTAGTAGCTGCAGCAGAAGCTCAAGCTAA

>G1442 Amino Acid Sequence (domain in AA coordinates: 172-223)
MGTRAERKEDFVGGFGFGVVENSHKDVMVLPHHHYYPSYSSPSSSSLCYCSAGVSDPMFS
VSSNQAYTSSHSGMFTPAGSGSAAVTVADPFFSLSSSGEMRRSMNEDAGAAFSEAQWHEL
ERQRNIYKYMMASVPVPPELLTPFPKNHQSNTNPDVTVAVATGGSLQLGIASSASNNTAD
LEPWRCKRTDGKKWRCSRNVIPDQKYCERHTHKSRPRSRKHVESSHQSSHHNDIRTAKND
TSQLVRTYPQFYGQPISQIPVLSTLPSASSPYDHHRGLRWFTKEDDAIGTLNPETQEAVQ
LKVGSSRELKRGFDYDLNFRQKEPIVDQSFGALQGLLSLNQTPQHNQETRQFVVEGKQDE
AMGSSLTLSMAGGGMEETEGTNQHQWVSHEGPSWLYSTTPGGPLAEALCLGVSNNPSSST
TTSSCSRSSS*

>G1454 (86..1180)

CTAGTAGTGATGATGATCGCTTCTTCTCCTACAATCTCAGAAACCTCCGATCACGGTT TTAGATATCTTCTACAACGGATACAATGGAGAGCACCGATTCTTCCGGTGGTCCACCACC GCCACAACCTAACCTTCCTCCAGGCTTCCGGTTTCACCCTACCGACGAAGAGCTTGTTGT TCACTACCTCAAACGCAAAGCAGCCTCTGCTCCTTTACCTGTCGCCATCATCGCCGAAGT CGATCTCTATAAATTTGATCCATGGGAACTTCCCGCTAAAGCATCGTTTGGAGAACAAGA ATGGTACTTCTTTAGTCCACGAGATCGGAAGTATCCAAACGGAGCAAGACCAAACAGAGC GGCGACTTCAGGTTATTGGAAAGCGACCGGTACAGATAAACCGGTACTTGCTTCCGACGG TAACCAAAAGGTGGGCGTGAAGAAGGCACTAGTCTTCTACAGTGGTAAACCACCAAAAGG ATGTAGAATCTACAAGAAGAACAACGCAAGTCGACATGTTGATAACGATAAGGATCATGA TATGATCGATTACATTTTCAGGAAGATTCCTCCGTCTTTATCAATGGCGGCTGCTTCTAC AGGACTTCACCAACATCATCATAATGTCTCAAGATCAATGAATTTCTTCCCTGGCAAATT CTCCGGTGGTGGTTACGGGATTTTCTCTGACGGTGGTAACACGAGTATATACGACGGCGG TGGCATGATCAACAATATTGGTACTGACTCAGTAGATCACGACAATAACGCTGACGTCGT TGGTTTAAATCATGCTTCGTCGTCAGGTCCTATGATGATGGCGAATTTGAAACGAACTCT CCCGGTGCCGTATTGGCCTGTAGCAGATGAGGAGCAAGATGCATCTCCGAGCAAACGGTT TCACGGTGTAGGAGGAGGAGGAGAGATTGTTCGAACATGTCTTCCTCCATGATGGAAGA GACTCCACCATTGATGCAACAACAAGGTGGTGTGTTAGGAGATGGATTATTCAGAACGAC ATCGTACCAATTACCCGGTTTAAATTGGTACTCTTCTTAATCAAATGTGTTTCGCCGCCG GTGTGAAGAATTTTCCGGTGACAGTGAAGATTTTTTTTCCGATTGGTGGGGTCATTTGCAT GCATTATATATTTGAGATTTGTGTATATGTTTTGGGTTAATTAATTGGTCACAGGGGC >G1454 Amino Acid Sequence (conserved domain in AA coordinates:9-178) MESTDSSGGPPPPQPNLPPGFRFHPTDEELVVHYLKRKAASAPLPVAIIAEVDLYKFDPW ELPAKASFGEQEWYFFSPRDRKYPNGARPNRAATSGYWKATGTDKPVLASDGNQKVGVKK ALVFYSGKPPKGVKSDWIMHEYRLIENKPNNRPPGCDFGNKKNSLRLDDWVLCRIYKKNN ASRHVDNDKDHDMIDYIFRKIPPSLSMAAASTGLHQHHHNVSRSMNFFPGKFSGGGYGIF SDGGNTSIYDGGGMINNIGTDSVDHDNNADVVGLNHASSSGPMMMANLKRTLPVPYWPVA

>G1459 (1..1272)

WYSS*

DEEQDASPSKRFHGVGGGGGDCSNMSSSMMEETPPLMQQQGGVLGDGLFRTTSYQLPGLN

>G1459 Amino Acid Sequence (conserved domain in AA coordinates:10-152)
MMKGLIGYRFSPTGEEVINHYLKNKLLGKYWLVDEAISEINILSHKPSKDLPKLARIQSE
DLEWYFFSPIEYTNPNKMKMKRTTGSGFWKPTGVDREIRDKRGNGVVIGIKKTLVYHEGK
SPHGVRTPWVMHEYHITCLPHHKRKYVVCQVKYKGEAAEISYEPSPSLVSDSHTVIAITG
EPEPELQVEQPGKENLLGMSVDDLIEPMNQQEEPQGPHLAPNDDEFIRGLRHVDRGTVEY
LFANEENMDGLSMNDLRIPMIVQQEDLSEWEGFNADTFFSDNNNNYNLNVHHQLTPYGDG
YLNAFSGYNEGNPPDHELVMQENRNDHMPRKPVTGTIDYSSDSGSDAGSISTTVKQBIPR
AVDAPMNNESSLVKTEKKGLFIVEDAMERNRKKPRFIYLMKMIIGNIISVLLPVKRLIPV
KKL*

>G1460 (87..995)

CGTCGACCTTCACTCAAACCCTAATCCCGGGAACCCGGGAATTTTGATCATTTTGTTTCT ${\tt TTTCGATCTGTTTCTATTTTAAAAAGATGATGAAAGATCCGACTGGGTATAGATTTAGTC}$ CGACGGGAGAGGAAGTGATAAACCATTACCTAAAGAACAAAATTCTGGGTAAGACTTGGC TCGTTGATGAAGCCATTAGCGAGATCAACATCTTGAATCACAAACCCAGCAAGGATTTGC CTAAGTTAGCTAGGATCCAATCGGAAGATCTTGAGTGGTACTTTTTCTCTCCGATTGAGT ACACGAACCCGAATAAGATGAAAATGAAGAGGACGACAGGTTCTGGGTTTTTGGAAACCTA GTGGTGTTGATCGGAAAATTAGGGATAAAAGAGGAAATGGTGTTGTGATAGGGATTAAGA ${\bf AGACGCTTGTGTACCATGAAGGTAAGAGTCCTCATGGAGTTAGAACTCCTTGGGTTATGC}$ ACGAGTATCACATCACTTGCTTGCCTCATCATAAGAGGAAATATGTTGTCTGCCAAGTAA AGTATAAGGGTGAAGCTGCAGAAATTTCATATGAGCCAAGTCCCTCTTTGGTATCCGATT CGCATACCGTCATAGCGATTAACGGAGAACCGGAACCTGAGCTTCAGGTTGAGCAGCCAG GTAAAGAAAATCTCTTGGGTATGTCTGTAGATGATTTGATAGAACCAATGAACCAACAAG AGGAGCCACAAGGTCCTCACTTAGCTCCGAATGATGATGAGTTTATACGTGGATTGAGAC CTATTATGAATGACTTGACAATCCCAATGATCGCCCAACAAGAGGATCTCATTCTCTCTG AGTGGGAGGGATTTATCGCAGCCACCTTTTTCAGCGACAACAACAATAACAATAACCTTA ACGTGCATCAACTAACGTCTTTCTTACCGGGATGATTATCAGAATGCATTTTGGGTTACA ACGGAGCGNCCGCT

>G1460 Amino Acid Sequence (domain in AA coordinates: TBD)
MMKDPTGYRFSPTGEEVINHYLKNKILGKTWLVDEAISEINILNHKPSKDLPKLARIQSE
DLEWYFFSPIEYTNPNKMKMKRTTGSGFWKPSGVDRKIRDKRGNGVVIGIKKTLVYHEGK
SPHGVRTPWVMHEYHITCLPHHKRKYVVCQVKYKGEAAEISYEPSPSLVSDSHTVIAING
EPEPELQVEQPGKENLLGMSVDDLIEPMNQQEEPQGPHLAPNDDEFIRGLRHVDREPVEY
LFANEENMDGLSIMNDLTIPMIAQQEDLILSEWEGFIAATFFSDNNNNNNLNVHQLTSFL
PG*

>G147 (37..672)

WO 03/013227 PCT/US02/25805.

>G147 Amino Acid Sequence (domain in AA coordinates: 2-57)
MARGKIQLKRIENPVHRQVTFCKRRTGLLKKAKELSVLCDAEIGVVIFSPQGKLFELATK
GTMEGMIDKYMKCTGGGRGSSSATFTAQEQLQPPNLDPKDEINVLKQEIEMLQKGISYMF
GGGDGAMNLEELLLLEKHLEYWISQIRSAKMDVMLQEIQSLRNKEGVLKNTNKYLLDKIE
ENNNSILDANFAVMETNYSYPLTMPSEIFQF*

>G1471 (1..735)

>G1471 Amino Acid Sequence (domain in AA coordinates: 49-70)
MENQSMSSSSSSTHKHDQKLKSSVVAMEVLEEKETVNNPPQYYNKIYICYLCKRAFPTPH
ALGGHGTTHKEDRELERQQIESRLSNKDKSNLLFGGSSQDVLSNDNHLGLSLGPLKSIEG
SSSNNVNPLLNVGVPRGTTDMNMNNYSSHALSTDDINLDLTLGPSKSIGDSNNIINNNT
NSSFDGNLIIPVRPRVSRYHFVAGNPLDSISRNIPPSITFPHLNINLSHDSFSLQENGSG
SSHS*

>G1475 (1..645)

>G1475 Amino Acid Sequence (domain in AA coordinates: 51-73)
MKRTHLASPSNRDKTQEEEGEDGNGDNRVIMNHYKNYEAGLIPWPPKNYTCSFCRREFRS
AQALGGHMNVHRRDRAKLRQIPSWLFEPHHHTPIANPNPNFSSSSSSTTTAHLEPSLTN
QRSKTTPFPSARFD&LDSTTSYGGLMMDREKNKSNVCSREIKKSAIDACHSVRCEISRGD
LMNKKDDQVMGLELGMSLRNPNQVLDLELRLGYL*

>G1477 (1..606)

>G1477 Amino Acid Sequence (domain in AA coordinates: 29-48)
MLSSDSNYASDISDDASATGSIENPIYKCKYCPRKFDKTQALGGHQNAHRKEREVEKQQK
AFLAHLNRPEPDLYAYSYSYHHSFPNQYALPPGFEQPQYKVDRSYKMSMVYNQYVGSSS
SFAGLQSDPSQGMNQDWTFTGIPFLPQSQPQPLSSPICLDLCLGIGSSQTQPQPQEPNDA
TEEMDAEKENDGSSLSLSLKL*

>G1487 (1..1020)

ATGGAACAAGCCGCGTTGAAGAGCAGCGTCAGGAAAGAGATGGCTCTCAAAACGACTTCT CCGGTTTACGAAGAGTTTCTTGCCGTCACCACCGCTCAAAATGGCTTTTCCGTCGACGAT TTCTCTGTAGACGACTTGCTTGACTTGTCAAACGATGACGTTTTTGCCGACGAAGAAACT GACCTCAAGGCTCAACATGAGATGGTCCGTGTTTCCTCTGAGGAACCCAACGACGACGA GACGCTCTTCGCCGGAGCAGCGATTTCTCCGGCTGTGACGACTTTGGTTCTCTCCCTACA AGCGAACTCTCTCTCCGGCGGATGATTTAGCGAACCTTGAGTGGCTCTCTCATTTCGTG GAGGACTCCTTCACGGAATATTCGGGTCCAAACCTCACCGGAACCCCGACTGAGAAACCG GCGTGGTTAACGGGTGACCGGAAACATCCTGTGACTGCAGTCACGGAAGAGACCTGTTTC AAATCCCCTGTTCCGGCTAAAGCCCGTAGCAAACGTAACCGCAATGGCCTCAAGGTCTGG TCGCTTGGTTCGTCGTCCTCGGGTCCTTCCTCGTCCGGTTCGACCTCCTCCTCCTCT TCGGGTCCTTCCAGCCCGTGGTTCTCCGGCGCTGAGCTGCTCGAGCCTGTGGTCACGTCA GAGAGGCCACCGTTTCCCAAGAAGCATAAGAAAAGGTCAGCCGAGTCTGTTTTCTCCGGT GAGCTGCAGCAGCTGCAACCTCAGCGAAAGTGCAGCCACTGCGGCGTTCAGAAAACTCCG AAGTCGGGTAGGTTGCTACCGGAATACAGACCCGCTTGTAGCCCGACATTCTCGAGTGAG CTGCACTCGAACCACCGGAAAGTCATAGAGATGAGGCGGAAGAAGGAGCCAACCAGT GACAACGAAACCGGTTTAAACCAGCTGGTTCAGTCCCCACAAGCTGTACCAAGTTTTTGA >G1487 Amino Acid Sequence (domain in AA coordinates:251-276). MEQAALKSSVRKEMALKTTSPVYEEFLAVTTAQNGFSVDDFSVDDLLDLSNDDVFADEET DLKAQHEMVRVSSEEPNDDGDALRRSSDFSGCDDFGSLPTSELSLPADDLANLEWLSHFV EDSFTEYSGPNLTGTPTEKPAWLTGDRKHPVTAVTEETCFKSPVPAKARSKRNRNGLKVW SLGSSSSSGPSSSGSTSSSSSGPSSPWFSGAELLEPVVTSERPPFPKKHKKRSAESVFSG ELOQLOPORKCSHCGVQKTPQWRAGPMGAKTLCNACGVRYKSGRLLPEYRPACSPTFSSE LHSNHHRKVIEMRRKKEPTSDNETGLNQLVQSPQAVPSF*

>G1492 (149..919)

AATCCCAACCCACACCTCTCAAATCCTCCTCTCTCTCTTTTTCTCTCTCTTTCA CAGAACCAAAACATATCAAACCTTTTTTTCTCTTTGGGTTTAAGTAAAAATCGAATCTTTG TGTCGGTTTTTAGGGTTCTTGAAACGATATGGGTAAGTCTAGTGGTAGAAATGGTAACGG GCTTAGATGGACGCCGGATCTTCACCGTTGTTCACGCCGTCGAGATTCTCGGTGG TTCACATGTCAAAAGCCACCTTCAGATGTATAGAGGAGGTTCAAAGCTCACTTTGGAGAA ACCAGAAGAAAGCTCATCATCTTCAATAAGAAGACAAGACAAGACAGTGAAGAAGATTATTA TCTTCATGACAACTTGTCTTTACACACAAGGAATGATTGTCTTTTGGGTTTTCACTCTTT TCCTCTTCTCACATTCTTCATTTAGAGGAGGAGGAGGAGGAAGAACAAAAGAGCAGCA GACTTCAGAGTCTGGTGGTTATGATGATGATGCTGACTTTCTTCACATCAAGAAGATGAA CGATACGACGACGTTTTTGTCACATCATTTCCCCAAGGGAACAGAGGAGTGGCGGGAACA AGAACACGAAGAAGAAGAAGATTTGTCGTTGTCTCTCTCGTTAAATCATCATCATTG GAGAAGCAATGGATCATCGGTGGTGAGCGAAACGAGTGAAGCAGCAGTCTCGACTTGTTC AGCACCATTCGTATCCAAAGATTGCTTTGGTTCTTCAAAGATTGATCTTAATCTGTCAAT TTCTCTCCTCGGTAGCTAAATAAGTTATGCAAGATTTAGGTTCAGAGAAACTATTCGGAT GTGTTTTTGAAACTAGGATATTGAATGTTAGTAGAGAAACCTAGAAAATGAAGTTTAGAT AAATTATCAACGCAGCGTTTTGATCGCCTTTGAACGGAAAATTAACAAA

>G1492 Amino Acid Sequence (domain in AA coordinates: 34-83)
MGKSSGRNGNGSFNGNKFHGVRPYVRSPVPRLRWTPDLHRCFVHAVEILGGQHRATPKLV
LKMMDVKGLTISHVKSHLQMYRGGSKLTLEKPEESSSSIRRRQDSEEDYYLHDNLSLHT
RNDCLLGFHSFPLSSHSSFRGGGGGRTKEQQTSESGGYDDDADFLHIKKMNDTTTFLSHH

FPKGTEEWREQEHEEEEEDLSLSLSLNHHHWRSNGSSVVSETSEAAVSTCSAPFVSKDCF
GSSKIDLNLSISLLGS*

>G1531 (1..666)

>G1531 Amino Acid Sequence (domain in AA coordinates: 41-77)
MCESSNKVRVSPYPLRSSRTDKHKASESPIETGWEDVRGCHPYMCDTSVRHSNCFKQFRR
KTIKKRLYPKTLHCPLCRGEVSETTKVTSTARRFMNAKPRSCSVEDCKFSGTFSQLTKHL
KTEHRGIVPPKVDPLRQQRWEMMERHSEYVELMTAAGISRMAEVMQQQLPQDQNHPHVFQ
VTVNGTIWNLIDPSQGRNGLGITNYSAMQFVPLSINHSRTL*

>G1540 (122..997)

atctctttactaccagcaagttgttttcttgctaacttcaaacttctcttttctcttgttc ctctctaagtcttgatcttatttaccgttaactttgtgaacaaaagtcgaatcaaacaca catggagccgccacagcatcagcatcatcatcatcaagccgaccaagaaagcggcaacaa caacaacaaqtccggctctggtggttacacgtgtcgccagaccagcacgaggtggacacc gacgacggagcaaatcaaaatcctcaaagaactttactacaacaatgcaatccggtcacc aacagccgatcagatccagaagatcactgcaaggctgagacagttcggaaagattgaggg caaqaacgtcttttactggttccagaaccataaggctcgtgagcgtcagaagaagagatt caacggaacaaacatgaccacaccatcttcatcacccaactcggttatgatggcggctaa cgatcattatcatcctctacttcaccatcatcacggtgttcccatgcagagacctgctaa ttccgtcaacgttaaacttaaccaagaccatcatctctatcatcataacaagccatatcc cagcttcaataacqqqaatttaaatcatqcaaqctcaqqtactqaatqtqqtgttgttaa tqcttctaatgqctacatqaqtaqccatqtctatqqatctatqqaacaaqactqttctat qaattacaacaacgtaggtggaggatgggcaaacatggatcatcattactcatctgcacc ttacaacttcttcgatagagcaaagcctctgtttggtctagaaggtcatcaagacgaaga agaatgtggtggcgatgcttatctggaacatcgacgtacgcttcctctctccctatgca $\verb|cggtgaagatcacatcaacggtggtagtggtgccatctggaagtatggccaatcggaagt|\\$ tegecettgegettetettgagetaegtetgaactagetettaegeeggtgtegeteggg attaaagetettteetetetetetetttegtaetegtatgtteaeaactatgettege tagtgattaatgatgcagttgttatattagtagttaactagttatctctcgttatgtgta atttgtaattactagctaagtatcgtctaggtttaattgtaattgacaaccgtttatctc tatgatgaataagttaaatttatatat

>G1540 Amino Acid Sequence (domain in AA coordinates: 35-98)
MEPPQHQHHHHQADQESGNNNNKSGSGGYTCRQTSTRWTPTTEQIKILKELYYNNAIRSP
TADQIQKITARLRQFGKIEGKNVFYWFQNHKARERQKKRFNGTNMTTPSSSPNSVMMAAN
DHYHPLLHHHHGVPMQRPANSVNVKLNQDHHLYHHNKPYPSFNNGNLNHASSGTECGVVN
ASNGYMSSHVYGSMEQDCSMNYNNVGGGWANMDHHYSSAPYNFFDRAKPLFGLEGHQDEE
ECGGDAYLEHRRTLPLFPMHGEDHINGGSGAIWKYGQSEVRPCASLELRLN*

>G1544 (1..2178)

TGTGGAGGCCAAACTGCAATTGGCGAAATGACCTTCGAAGAGCACCATCTTCGCATCCTC AACGCTCGTTTGACTGAAGAGATCAAGCAACTTTCCGTGACAGCGGAAAAGATATCAAGG CTTACGGGGATACCAGTAAGGAGCCATCCCCGTGTGTCTCCTAATCCTCCTCCAAAT TTCGAGTTCGGGATGGGATCTAAGGGAAATGTCGGAAACCACTCGAGGGAAACCACTGGA CCTGCAGATGCTAATACCAAGCCGATCATCATGGAGTTGGCATTTGGAGCCATGGAGGAG $\tt CTCTTGGTGATGGCTCAAGTGGCTGAACCACTGTGGATGGGAGGATTTAATGGCACTAGC$ TTAGCTTTGAACTTGGATGAATACGAAAAGACGTTTCGCACGGGTCTCGGTCCTAGACTT GGCGGGTTTCGAACCGAGGCATCCAGGGAAACTGCACTCGTGGCAATGTGTCCTACTGGC ATTGTTGAAATGCTCATGCAAGAGAATCTGTGGTCAACAATGTTTGCCGGAATTGTTGGT AGAGCCAGGACTCATGAACAGATAATGGCTGATGCTGGAAAACTTCAATGGAAATCTC CAAATAATGAGTGCTGAGTACCAAGTGCTTTCCCCGCTAGTCACAACCCGCGAAAGCTAC TTCGTCCGCTACTGTAAGCAACAAGGAGAGGGTTTGTGGGCGGTGGTCGATATTTCCATC GACCATCTCCTCCCAAACATCAACCTAAAATGTCGCCGCCGACCCTCTGGATGTCTGATT CAAGAAATGCATAGTGGTTACTCCAAGGTTACATGGGTGGAACATGTGGAAGTAGATGAT GCAGGAAGTTACAGCATCTTTGAGAAATTAATCTGTACTGGTCAAGCTTTTGCTGCTAAC CGCTGGGTTGGTACATTGGTACGCCAGTGTGAGCGGATATCTAGCATCTTGTCGACAGAT CTGAAGATAGCTGAGCGGATTGCGAGAACCTTCTTTGCTGGAATGACCAATGCGACGGGG TCTACAATATTTTCTGGTGTTGAAGGAGAAGATATCAGAGTGATGACAATGAAGAGCGTG AATGATCCAGGAAAGCCTCCCGGTGTCATTATTTGTGCAGCCACTTCCTTTTGGCTTCCT GCTCCTCCTAACACTGTCTTTGACTTCCTCAGAGAGGCTACTCACCGACACAATTGGGAT GTTCTCTGCAACGGAGAGATGATGCACAAGATAGCAGAGATTACGAATGGGATAGACAAA AGGAACTGTGCAAGTTTACTCCGGCATGGACACACTAGCAAGAGCAAGATGATGATAGTT CAAGAGACTTCTACTGACCCAACAGCTTCATTTGTGCTTTATGCGCCTGTTGATATGACA TCAATGGATATTACTCTCCATGGAGGTGGTGATCCTGACTTTGTGGTGATCCTGCCTTCT GGTTTTGCTATTTTTCCAGATGGTACGGGTAAGCCTGGAGGAAAAGAAGAAGGATCACTT TTGACCATTTCCTTCCAAATGCTGGTTGAGTCAGGTCCTGAGGCTAGGCTGAGTGTTAGC ${\tt TCTGTTGCAACTACTGAGAATCTGATTCGTACAACCGTGCGGAGGATCAAAGATTTGTTT}$ CCTTGTCAGACTGCTTGA

>G1544 Amino Acid Sequence (domain in AA coordinates: 64-124)
MSQSNMVPVANNGDNNNDNENNNNNNNGGTDNTNAGNDSGDQDFDSGNTSSGNHGEGLG
NNQAPRHKKKKYNRHTQLQISEMEAFFRECPHPDDKQRYDLSAQLGLDPVQIKFWFQNKR
TQNKNQQERFENSELRNLNNHLRSENQRLREAIHQALCPKCGGQTAIGEMTFEEHHLRIL
NARLTEEIKQLSVTAEKISRLTGIPVRSHPRVSPPNPPPNFEFGMGSKGNVGNHSRETTG
PADANTKPIIMELAFGAMEELLVMAQVAEPLWMGGFNGTSLALNLDEYEKTFRTGLGPRL
GGFRTEASRETALVAMCPTGIVEMLMQENLWSTMFAGIVGRARTHEQIMADAAGNFNGNL
QIMSAEYQVLSPLVTTRESYFVRYCKQQGEGLWAVVDISIDHLLPNINLKCRRRPSGCLI
QEMHSGYSKVTWVEHVEVDDAGSYSIFEKLICTGQAFAANRWVGTLVRQCERISSILSTD
FQSVDSGDHITLTNHGKMSMLKIAERIARTFFAGMTNATGSTIFSGVEGEDIRVMTMKSV
NDPGKPPGVIICAATSFWLPAPPNTVFDFLREATHRHNWDVLCNGEMMHKIAEITNGIDK
RNCASLLRHGHTSKSKMMIVQETSTDPTASFVLYAPVDMTSMDITLHGGGDPDFVVILPS
GFAIFPDGTGKPGGKEGGSLLTISFQMLVESGPEARLSVSSVATTENLIRTTVRRIKDLF
PCOTA*

>G156 (39..755)

>G156 Amino Acid Sequence (domain in AA coordinates: 2-57)
MGRGKIEIKKIENQTARQVTFSKRRTGLIKKTRELSILCDAHIGLIVFSATGKLSEFCSE
QNRMPQLIDRYLHTNGLRLPDHHDDQEQLHHEMELLRRETCNLELRLRPFHGHDLASIPP
NELDGLERQLEHSVLKVRERKRRMLEEDNNNMYRWLHEHRAAMEFQQAGIDTKPGEYQQF
IEQLQCYKPGEYQQFLEQQQQQPNSVLQLATLPSEIDPTYNLQLAQPNLQNDPTAQND*
>G1584 (160..1281)

ATTCACATTTTATTTATCTTTCCATTTAGCCATTCTGTTCCCTGTCTCTCCTCTC ACACATACATCTGTGTTCTGCGGATCGAGTTAATTAGTTATGGCTTCTTCGAATAGACAC TGGCCAAGCATGTTCAAGTCCAAACCTCATCCCCATCAATGGCAACATGACATCAACTCT CCTCTCTTGCCTTCTCACCGATCTTCTCCTTTCTCTCAGGATGTGAAGTGGAG AGGAGTCCAGAGCCAAAACCAAGATGGAATCCAAAGCCAGAGCAGATTCGGATACTTGAA GCAATCTTTAACTCCGGGATGGTGAATCCTCCAAGAGGGGGGGATCAGGCTTCAAGAATAC GGCCAAGTCGGTGATGCTAACGTCTTCTACTGGTTCCAAAACCGTAAGTCCCGTAGTAAA CACAAACTCCGCCTCCCACAACCACTCCAAACACTCTCTCCCTCAAACGCAACCGCAG CCGCAGCCGCAACCTTCGGCTTCCTCTTCCTCTCCTCCTCCTCCTCCTCCAAATCC ACCAAACCCCGAAAAAGCAAGAACAAGAACAACACTAATCTCTCTTTGGGTGGTAGTCAA ATGATGGGGATGTTTCCACCGGAACCGGCGTTTCTCTTCCCGGTCTCCACTGTCGGAGGG TTTGAAGGTATCACCGTCTCATCCCAATTAGGGTTTCTCTCCGGTGATATGATTGAGCAA AGTTATGGAACTCATCAACAACACTTGAGTGAGAAAGAAGTTGAAGAAATGAGGATG AAGATGTTGCAACAGCCACAGACTCAGATTTGTTACGCTACCACTAATCATCAAATAGCT TCTTACAACAACAACAACAACAATAACATCATGCTTCATATTCCTCCCACTACTTCT ACTGCCACCACTATTACTACTTCGCATTCTCTCGCTACTGTCCCATCAACTTCGGACCAG CTTCAAGTTCAAGCGGACGCACGAATAAGAGTTTTCATCAATGAAATGGAGCTTGAAGTG AGCTCAGGACCGTTCAATGTGAGGGATGCATTTGGGGAAGAGGTTGTTCTGATTAATTCC GCGGGTCAGCCCATTGTCACCGATGAATATGGCGTCGCTCTTCACCCTCTTCAACACGGA GCCTCGTACTATCTGATCTAGTCGTGTGGGAGATTTGAGTTTGAAGAAGAAATTAAGACC TGTCTCTTTCACCATCTCGTACGTAGGCTTAAATGTTAAGATTTTATAAAGTAT TGGTTTCAGTTACCTGTTGTGACGGTGTTTATGTATGAGTTTCGGACAACATTCACAAAA CTCTCTCGTTAAATTGTTGACCAATAATATATGATGTGTGTTTCATTATTATCTAAAAAA

>G1584 Amino Acid Sequence (domain in AA coordinates: TBD)
MASSNRHWPSMFKSKPHPHQWQHDINSPLLPSASHRSSPFSSGCEVERSPEPKPRWNPKP
EQIRILEAIFNSGMVNPPREEIRLQEYGQVGDANVFYWFQNRKSRSKHKLRLLHNHSKHS
LPQTQPQPQPPSASSSSSSSSSSSSSSKSTKPRKSKNKNNTNLSLGGSQMMGMFPPEPAFLF
PVSTVGGFEGITVSSQLGFLSGDMIEQQKPAPTCTGLLLSEIMNGSVSYGTHHQQHLSEK
EVEEMRMKMLQQPQTQICYATTNHQIASYNNNNNNNIMLHIPPTTSTATTITTSHSLAT
VPSTSDQLQVQADARIRVFINEMELEVSSGPFNVRDAFGEEVVLINSAGQPIVTDEYGVA
LHPLQHGASYYLI*

>G1587 (1..816)

TGTTACTACTACGAGTTCATGCCTCTGAAGAACTGA
>G1587 Amino Acid Sequence (conserved domain in AA coordinates:61-121)
MGYISNNNLINYLPLSTTQPPLLLTHCDINGNDHHQLITASSGEHDIDERKNNIPAAATL
RWNPTPEQITTLEELYRSGTRTPTTEQIQQIASKLRKYGRIEGKNVFYWFQNHKARERLK
RRRREGGAIIKPHKDVKDSSSGGHRVDQTKLCPSFPHTNRPQPQHELDPASYNKDNNANN
EDHGTTEESDQRASEVGKYATWRNLVTWSITQQPEEINIDENVNGEEEETRDNRTLNLFP
VREYQEKTGRLIEKTKACNYCYYYEFMPLKN*

>G1588 (1..2232) ATGTACCATCCAAACATGTTTGAGAGCCATCATATGTTCGATATGACCCCAAAGAGTACC TCTGATAACGACTTGGGAATCACCGGTAGCCGAGAAGATGACTTTGAGACCAAGTCAGGT ACCGAAGTCACTACTGAGAATCCTTCTGGTGAAGAGCTTCAAGATCCTAGCCAACGTCCC AACAAAAAGAAGCGTTACCATCGCCACACGCAACGCCAAATTCAAGAGCTCGAATCATTC TTTAAGGAATGTCCTCATCCAGATGATAAGCAACGAAAAGAGTTGAGCCGTGATCTCAAT AGTGAGAGCATGAGAACCAGATTCTAAAGTCAGACAATGACAAGCTCAGAGCAGAGAAC AATAGATACAAAGAAGCTCTAAGCAATGCTACATGCCCTAACTGTGGCGGTCCAGCTGCT ATTGGAGAAATGTCTTTTGACGAACAACATCTCAGGATCGAAAATGCTCGGCTCCGCGAA GAGATTGATAGGATCTCTGCTATTGCTGCGAAATACGTTGGGAAGCCGTTAGGATCGTCT TTCGCTCCACTAGCGATCCACGCGCCTTCTCGTTCGCTTGATCTTGAAGTTGGAAACTTT GGGAACCAGACAGGCTTTGTAGGAGAAATGTATGGAACAGGGGACATTTTGAGGTCAGTT TCGATTCCTTCTGAGACTGATAAGCCTATAATCGTGGAGCTAGCGGTTGCAGCTATGGAG GAACTCGTGAGAATGGCTCAAACTGGAGATCCTTTATGGCTTTCAACCGATAATTCAGTC GAGATTCTCAACGAAGAAGAGTATTTCAGAACGTTTCCGAGAGGAATTGGACCAAAGCCA TTAGGATTAAGATCAGAGGCGTCAAGACAATCTGCAGTTGTTATAATGAATCACATCAAT ${\tt CTCGTTGAGATTCTCATGGATGTGAATCAATGGTCTTGTGTTTTTCTCTGGGATTGTGTCA}$ AGAGCCTTGACACTTGAAGTTCTTTCAACTGGAGTTGCTGGGAACTACAACGGTGCTTTA CAAGTGATGACAGCTGAGTTTCAAGTTCCATCACCCCTAGTCCCAACGCGTGAGAACTAC TTTGTGAGATACTGCAAACAACACAGTGACGGCTCTTGGGCTGTGGTTGATGTCTCTTTG GACAGCCTTAGACCAAGTACTCCAATCTTAAGAACTAGAAGAAGGCCTTCAGGTTGTCTG ATTCAAGAATTGCCTAATGGTTATTCTAAGGTTACATGGATAGAGCATATGGAGGTAGAT GATAGATCAGTTCACAACATGTATAAACCGTTGGTTCAGTCCGGTTTAGCTTTCGGTGCG AAACGTTGGGTGGCTACACTCGAACGACAATGCGAGCGGCTTGCTAGCTCCATGGCCAGC CTAGCTGAGAGAATGGTTATGAGTTTCTGCAGTGGTGTTGGCGCGTCGACTGCACACGCT TGGACAACAATGTCGACAACAGGATCCGATGATGTTCGGGTCATGACCCGCAAGAGTATG GATGATCCAGGAAGACCTCCGGGTATTGTTCTTAGTGCAGCTACTTCATTCTGGATCCCA GTTGCTCCCAAACGTGTTTTTGATTTCCTCCGTGACGAAAATTCAAGAAAAGAGTGGGAT ATTCTGTCAAATGGAGGTATGGTTCAGGAAATGGCTCATATAGCCAATGGTCATGAACCT GGAAACTGTGTCTCCTTGCTCCGAGTCAATAGTGGAAACTCGAGCCAGAGCAACATGTTG ATTCTACAAGAGAGCTGTACAGATGCATCAGGATCGTATGTGATTTACGCGCCAGTGGAT ATAGTGGCGATGAATGTGGTTCTAAGCGGTGGAGATCCTGATTACGTGGCGTTGTTGCCG TCTGGTTTTGCTATTTTACCGGATGGTTCGGTTGGAGGAGGAGATGGGAATCAGCATCAG GAAATGGTTTCTACTACTTCTTCTGGGAGTTGTGGTGGTTCGCTTTTAACCGTTGCGTTT ${\tt CAGATTCTTGTTGACTCTGTTCCTACAGCTAAACTCTCACTTGGCTCGGTGGCTACGGTT}$ AATAGTCTGATCAAATGTACGGTGGAGAGGATTAAAGCTGCTGTTTCTTGTGATGTTGGA

>G1588 Amino Acid Sequence (domain in AA coordinates: 66-124)
MYHPNMFESHHMFDMTPKSTSDNDLGITGSREDDFETKSGTEVTTENPSGEELQDPSQRP
NKKKRYHRHTQRQIQELESFFKECPHPDDKQRKELSRDLNLEPLQVKFWFQNKRTQMKAQ
SERHENQILKSDNDKLRAENNRYKEALSNATCPNCGGPAAIGEMSFDEQHLRIENARLRE
EIDRISAIAAKYVGKPLGSSFAPLAIHAPSRSLDLEVGNFGNQTGFVGEMYGTGDILRSV
SIPSETDKPIIVELAVAAMEELVRMAQTGDPLWLSTDNSVEILNEEEYFRTFPRGIGPKP
LGLRSEASRQSAVVIMNHINLVEILMDVNQWSCVFSGIVSRALTLEVLSTGVAGNYNGAL
QVMTAEFQVPSPLVPTRENYFVRYCKQHSDGSWAVVDVSLDSLRPSTPILRTRRPSGCL
IQELPNGYSKVTWIEHMEVDDRSVHNMYKPLVQSGLAFGAKRWVATLERQCERLASSMAS
NIPGDLSVITSPEGRKSMLKLAERMVMSFCSGVGASTAHAWTTMSTTGSDDVRVMTRKSM
DDPGRPPGIVLSAATSFWIPVAPKRVFDFLRDENSRKEWDILSNGGMVQEMAHIANGHEP

GNCVSLLRVNSGNSSQSNMLILQESCTDASGSYVIYAPVDIVAMNVVLSGGDPDYVALLP SGFAILPDGSVGGGDGNQHQEMVSTTSSGSCGGSLLTVAFQILVDSVPTAKLSLGSVATV NSLIKCTVERIKAAVSCDVGGGA*

>G1589 (179..2221)

ACCAAACTCACATAGCAATCACACACATCTCCACAAACACAGCTTGAGATGATCATGAAA CACGTGCATCCTCAGATCTCTATCAATCCAGCTTGGTGAAAGAAGGTCAAGAATTGAAAG AGAATCAAAGAAAACGACGTCGTTTCATTCGTGTGTAACAACTACTAATTATACATAGAT GGCTGCTTACTTTCACGGAAACCCACCGGAGATCTCTGCCGGATCCGACGGTGGTCTTCA AACGTTGATCCTCATGAATCCAACTACTTACGTTCAGTACACCCAACAAGACAACGACTC CAACAACAGTAGTTTCGTTTTCCTCGATTCCCACGCGCCGCAGCCAAACGCGAGCCAGCA GTTCGTCGGAATACCACTCTCAGGTCACGAAGCTGCTTCCATTACAGCCGCCGACAACAT $\tt CTCCGTACTTCACGGTTATCCTCCGCGCGTGCAGTACAGTCTCTACGGTAGCCACCAAGT$ GGATCCCACTCACCAGCAAGCCGCGTGTGAGACGCCACGCGCGCAGCAAGGCCTCTCTTT AACCCTCTCGTCTCAACAGCAGCAGCAACAGCAACATCATCAACAACACCCAGCCTATTCA CGTCGGATTCGGGTCCGGACATGGAGAAGATATCCGGGTCGGGTCTGGCTCTACAGGATC GGGGGTAACAAACGGTATAGCTAATCTTGTTAGCTCCAAGTACTTGAAGGCAGCACAAGA GCTTCTTGACGAAGTAGTCAACGCTGATTCCGATGACATGAACGCTAAATCCCAACTATT TGGAGGAGAAGGTTCCGGTGGCGGAGCAGAAGCAGCCGGGAAACGTCCGGTGGAGCTAGG CACGGCAGAGAGACAAGAAATACAGATGAAGAAAGCAAAACTTAGTAACATGCTTCATGA GCAAGCGGCAGGGATAGGATCAGCGAAGTCATACACGTCGCTAGCATTGAAAACCATATC AAGACAGTTCCGTTGCTTGAAAGAGGCGATCGCTGGTCAGATAAAAGCGGCCAACAAGAG TCTTGGGGAGGAAGATTCAGTGTCTGGTGTTGGGAGG^TTTGAGGGGTCGAGGCTCAAGTT CGTGGACCACCACTTGAGACAGCAAAGAGCTCTTCAACAACTGGGAATGATTCAACATCC TTCCAATAATGCTTGGAGACCTCAACGTGGTCTCCCAGAACGAGCCGTCTCAGTTCTCCG TGCTTGGCTCTTCGAACACTTTCTTCATCCATACCCTAAGGATTCGGACAAGCACATGCT AGCTAAGCAAACAGGACTCACTCGTAGCCAGGTGTCGAACTGGTTTATAAACGCGAGAGT TCGGTTATGGAAACCAATGGTGGAGGAGATGTACATGGAGGAAATGAAGGAGCAGCAAA GAACATGGGATCCATGGAAAAGACTCCTTTGGATCAAAGCAACGAAGATTCTGCTTCAAA GTCAACAAGTAACCAAGAAAAGAGCCCAATGGCGGACACTAATTACCATATGAATCCCAA TCACAACGGTGACCTAGAAGGCGTCACTGGAATGCAAGGATGCCCCAAGAGACTAAGAAC CAGCGACGAGACAATGATGCAGCCAATAAATGCGGATTTCAGCTCCAACGAGAAGCTCAC ${\tt GATGAAGATTCTAGAAGAACGGCAAGGGATAAGATCAGATGGTGGCTACCCTTTCATGGG}$ TAATTTCGGGCAATACCAAATGGATGAGATGTCAAGATTTGATGTAGTCTCAGACCAGGA GCTCATGGCGCAAAGGTACTCAGGAAACAACAATGGCGTGTCCCTCACGTTAGGTTTACC TCATTGTGATAGCTTGTCGTCCACGGACCATCAGGGTTTCATGCAGACCCACCATGGGAT TCCTATAGGGAGAAGAGTGAAAATAGGAGAAACAGAGGAATATGGACCCGCCACCATCAA TGGTGGTAGCTCGACCACAACCGCACATTCATCAGCGGCAGCTGCCGCGGCTTACAATGG GATGAACATACAGAACCAGAAGAGATATGTGGCTCAGTTATTGCCCGACTTCGTTGCATA TTAGTATATAGTTTCTCATACCATTGAACCAAAACAAAGAACAAAATTTAATTTTAGTCT TTGGTTATATATGGCCGACGGGCTACGTCAGGGCCCTGACGTAGC

>G1589 Amino Acid Sequence (conserved domain in AA coordinates:384-448)
MAAYFHGNPPEISAGSDGGLQTLILMNPTTYVQYTQQDNDSNNNNNSNNNNNTNTNTN
NNNSSFVFLDSHAPQPNASQQFVGIPLSGHEAASITAADNISVLHGYPPRVQYSLYGSHQ
VDPTHQQAACETPRAQQGLSLTLSSQQQQQQQHHQQHQPIHVGFGSGHGEDIRVGSGSTG
SGVTNGIANLVSSKYLKAAQELLDEVVNADSDDMNAKSQLFSSKKGSCGNDKPVGESSAG
AGGEGSGGGAEAAGKRPVELGTAERQEIQMKKAKLSNMLHEVEQRYRQYHQQMQMVISSF
EQAAGIGSAKSYTSLALKTISRQFRCLKEAIAGQIKAANKSLGEEDSVSGVGRFEGSRLK
FVDHHLRQQRALQQLGMIQHPSNNAWRPQRGLPERAVSVLRAWLFEHFLHPYPKDSDKHM
LAKQTGLTRSQVSNWFINARVRLWKPMVEEMYMEEMKEQAKNMGSMEKTPLDQSNEDSAS
KSTSNQEKSPMADTNYHMNPNHNGDLEGVTGMQGCPKRLRTSDETMMQPINADFSSNEKL
TMKILEERQGIRSDGGYPFMGNFGQYQMDEMSRFDVVSDQELMAQRYSGNNNGVSLTLGL
PHCDSLSSTDHQGFMQTHHGIPIGRRVKIGETEEYGPATINGGSSTTTAHSSAAAAAAYN
GMNIQNQKRYVAQLLPDFVA*

>G160 (38..784)

TCAAATTTGTCATTTGTTTATTCAAATTTTTGAGAAAATGGTGAGAAGTACCAAAGGTCG TCAGAAAATAGAGATGAAAAAAATGGAAAACGAAAGCAACCTTCAGGTTACTTTCTCAAA AAGAAGATTCGGTCTTTTCAAAAAAGCTAGTGAACTTTGCACATTAAGTGGTGCAGAGAT TCTGTTGATTGTGTTCTCTCCTGGTGGGAAAGTGTTTTCTTTTGGCCATCCAAGTGTTCA AGAACTCATTCATCGCTTTTCGAATCCTAACCATAATTCTGCCATTGTCCATCATCAGAA CAACAATCTCCAACTTGTTGAAACCCGTCCGGATAGAAATATCCAATATCTCAACAATAT ACTCACTGAGGTGCTGGCAAACCAGGAAAAGGAGAAACAGAAGAAGAATGGTTTTGGACCT ATTGAAAGAATCCAGAGAACAAGTAGGAAACTGGTATGAAAAAGATGTGAAAGATCTCGA CATGAATGAAACCAACCAGCTGATATCTGCTCTTCAAGATGTGAAAAAGAAACTGGTAAG AGAAATGTCTCAATATTCTCAAGTAAATGTTTCGCAGAATTACTTTGGTCAAAGTTCTGG CGTGATTGGTGGTGGTAATGTTGGCATTGATCTTTTTGATCAAAGAAGAAATGCATTCAA CTATAATCCAAACATGGTGTTTCCCAATCATACACCACCAATGTTTGGATACAACAATGA TGGAGTTCTCGTTCCGATATCCAACATGAACTACATGTCAAGTTACAACTTCAACCAGAG CTAGAGTCTGAAGCTAGAAGAACATCCTAATCAATATTTGCGTTATTTTGGCTATGGTTA GTTGGTTGGTTTTCATTTTATTCGTCGTTTTGTTTTTCCTTTTTTGGATATTTTTGTA TCCCAGAATAAATTTATTTATCCTTTAAAAA

>G160 Amino Acid Sequence (domain in AA coordinates: 7-62)
MVRSTKGRQKIEMKKMENESNLQVTFSKRRFGLFKKASELCTLSGAEILLIVFSPGGKVF
SFGHPSVQELIHRFSNPNHNSAIVHHQNNNLQLVETRPDRNIQYLNNILTEVLANQEKEK
QKRMVLDLLKESREQVGNWYEKDVKDLDMNETNQLISALQDVKKKLVREMSQYSQVNVSQ
NYFGQSSGVIGGGNVGIDLFDQRRNAFNYNPNMVFPNHTPPMFGYNNDGVLVPISNMNYM
SSYNFNOS*

>G1636 (19..666)

>G1636 Amino Acid Sequence (domain in AA coordinates: 100-165)
MASSQWTRSEDKMFEQALVLFPEGSPNRWERIADQLHKSAGEVREHYEVLVHDVFEIDSGRVDVPDYMDDSAAAAAGWDSAGQISFGSKHGESERKRGTPWTENEHKLFLIGLKRYGKGD
WRSISRNVVVTRTPTQVASHAQKYFLRQNSVKKERKRSSIHDITTVDATLAMPGSNMDWT
GQHGSPVQAPQQQQIMSEFGQQLNPGHFEDFGFRM*

>G1642 (1..1077)

ATGAAAATGATGCAAGAGGGAGGGAAACCGAAAAGGTCCATGGACAGAACAGGAAGACATA CTTCTGGTAAATTTTGTTCACTTATTTGGAGATCGACGATGGGATTTTATAGCAAAAGTA TCAGGTTTGAACAGAACAGGAAAGAGTTGCAGGCTAAGATGGGTTAATTACCTACATCCT GGTCTCAAACGTGGCAAGATGACGCCTCAAGAAGAGCGCCTCGTCCTTGAGCTTCACGCT AAGTGGGGAAACAGGTGGTCGAAAATAGCCCGAAAATTGCCGGGACGAACGGATAACGAG ATAAAGAACTACTGGAGGACTCATATGAGGAAGAAAGCTCAAGAAAAGAAGCGTCCTGTT TCCCCAACTTCCTCATTTTCCAACTGCAGCTCGTCATCTGTGACCACTACCACCAACT ACTCAAGATACATCGTGCCACTCGCGTAAATCTTCAGGGGAAGTGAGCTTTTACGACACT GGAGGTTCCCGATCCACTAGAGAGATGAATCAAGAAAACGAAGACGTGTACTCGTTGGAT GATATATGGAGAGAGATTGATCACTCAGCAGTAAACATAATAAAACCGGTTAAAGACATC TACTCAGAACAAAGCCATTGCTTAAGTTACCCAAATCTAGCTTCACCATCATGGGAAAGC TCATTGGATTCTATATGGAACATGGATGCAGATAAAAGTAAGATATCGTCTTACTTTGCA AATGATCAGTTTCCTTTCTGTTTCCAACACAGTAGATCACCATGGTCGTCAGGTTAA >G1747 Amino Acid Sequence (domain in AA coordinates: 11-114) MKMMQEEGNRKGPWTEQEDILLVNFVHLFGDRRWDFIAKVSGLNRTGKSCRLRWVNYLHP GLKRGKMTPQEERLVLELHAKWGNRWSKIARKLPGRTDNEIKNYWRTHMRKKAQEKKRPV SPTSSFSNCSSSSVTTTTTNTQDTSCHSRKSSGEVSFYDTGGSRSTREMNQENEDVYSLD DIWREIDHSAVNIIKPVKDIYSEQSHCLSYPNLASPSWESSLDSIWNMDADKSKISSYFA NDOFPFCFQHSRSPWSSG*

>G1749 (59..535)

>G1749 Amino Acid Sequence (conserved domain in AA coordinates:84-155)
MENSENVPSYDQNINFTPNLTRDQEHVIMVSALQQVISNVGGDTNSNAWEADLPPLNAGP
CPLCSVTGCYGCVFPRHEAIIKKEKKHKGVRKKPSGKWAAEIWDPSLKVRRWLGTFPTAE
MAAKAYNDAAAEFVGRRSARRGTKNGEEASTKKTTEKN*

>G1751 Amino Acid Sequence (domain in AA coordinates: TBD)
MHYPNNRTEFVGAPAPTRYQKEQLSPEQELSVIVSALQHVISGENETAPCQGFSSDSTVI
SAGMPRLDSDTCQVCRIEGCLGCNYFFAPNQRIEKNHQQEEEITSSSNRRRESSPVAKKA
EGGGKIRKRKNKKNGYRGVRQRPWGKFAAEIRDPKRATRVWLGTFETAEDAARAYDRAAI
GFRGPRAKLNFPFVDYTSSVSSPVAADDIGAKASASASVSATDSVEAEQWNGGGGDCNME
EWMNMMMMDFGNGDSSDSGNTIADMFQ*

>G1752 (25..756)

AAAAAAAAAAAAAAAAACTTATGGAATATTCCCAATCTTCCATGTATTCATCTCCA AGTTCTTGGAGCTCATCACAGAATCACTCTTATGGAACGAGAGCTGTTTCTTGGATCAA TCATCTGAACCTCAAGCCTTCTTTTGCCCTAATTATGATTACTCCGATGACTTTTTCTCA TTTGAGTCACCGGAGATGATGATTAAGGAAGAAATTCAAAACGGCGACGTTTCTAACTCC GAAGAAGAAGAAAGGTTGGAATTGATGAAGAAAGATCATACAGAGGAGTGAGGAAAAGG CCGTGGGGGAAATTTGCAGCGGAGATAAGAGATTCAACGAGGAATGGAATTAGGGTTTGG CTCGGGACATTTGACAAAGCCGAGGAAGCCGCTCTTGCTTATGATCAAGCGGCTTTCGCC ACAAAAGGATCTCTTGCAACACTTAATTTCCCGGTGGAAGTGGTTAGAGAGTCGCTAAAG AAAATGGAGAATGTGAATCTTCATGATGGAGGATCTCCGGTTATGGCCTTGAAGAGAAAA CATTCTCTTCGAAACCGGCCTAGAGGGAAAAAGCGATCCTCTTCTTCTTCTTCTTCT TCTAATTCTTCTTCTTGCTCTTCTTCGTCTACTTCTTCAACATCAAGAAGTAGTAGT AAGCAGAGTGTTGTGAAGCAAGAAAGTGGTACACTTGTGGTTTTTGAAGATTTAGGTGCT GAGTATTTAGAACAACTTCTTATGAGCTCATGTTGATCTTGTAATTGATTTCAGCAAAAG CCACTATTAAACTTTAATTTTGTGATAATTAATCTTGAAATTTGTTTTGTTCATTCTGCA ATTTCTTTGGTTCTCTTATTTTTTGTTTGTTGTATCCAAATGAAATTATTGGAAGAGATG GTGATGTTAAAGTGTATATATATAAAAAAAAAA

>G1763 (33..977)

>G1766 (32..1216)

AGGCTATTCTCGGAAAAACAAAGAATAAAGAATGAATTCGTTTTCACAAGTACCTCCTGG CTTCAGATTTCATCCTACTGATGAAGAACTTGTAGACTACTACTTGAGGAAAAAAGTTGC ATCAAAGAGAATAGAAATCGATATCATCAAGGATGTTGATCTTTACAAGATTGAGCCATG TGATCTTCAAGAGTTATGCAAGATAGGAAACGAAGAGCAGAGCGAATGGTACTTCTTTAG TCATAAAGACAAGAAGTATCCCACGGGAACTCGAACCAATAGAGCCACGAAAGCAGGATT TTGGAAAGCCACTGGAAGAGACAAGGCTATATATATAAGACATAGTCTTATCGGTATGAG GAAAACACTTGTGTTTTACAAAGGAAGAGCCCCAAATGGTCAGAAATCCGATTGGATCAT GCACGAATATCGCTTAGAAACAAGTGAAAATGGAACCCCTCAGGAAGAAGGATGGGTAGT ATGTAGGGTATTCAAGAAGAAATTGGCAGCGACAGTGAGGAAAATGGGAGATTACCATTC ATCACCATCGCAGCATTGGTACGATGATCAGCTCTCTTTTATGGCCTCCGAGATCATTTC TAGTTCTCCACGACAGTTTCTTCCCAATCATCATTATAACCGCCACCATCACCAGCAGAC GCTCGAGTTACATTACAATCAAATGGTACAACATCAACAACAAAACCATCATCTTCGTGA ATCTATGTTTCTCCAGCTTCCTCAGCTCGAAAGCCCTACCAGTAATTGCAATTCTGACAA CAACAATAACACAAGAAATATTAGTAACTTGCAGAAATCATCAAATATATCTCATGAGGA ACAATTGCAACAAGGAATCAAAGTTTCAGCTCTCTGTATTACGATCAAGGAGTAGAGCA AATGACTACTGACTGGAGAGTTCTCGATAAATTTGTTGCTTCACAGCTTAGCAATGATGA AGAGGCTGCAGCCGTGGTTTCTTCTTCTTCTCATCAAAACAACGTCAAGATTGACACGAG AAACACGGGTTATCATGTGATAGATGAGGGAATAAATTTGCCGGAGAATGATTCTGAAAG GGTTGTTGAAATGGGAGAAGAGTATTCAAATGCTCATGCTGCTTCTACTTCTTCAAGTTG GAAAATACATGCACACTAGTGTTATTTATACTTAAAGATGGAAGGGGAAAAACAAGGAGT TATTTCCTGGATTTATGGAGGTTTTGTACATAATAAAAACCTACAACCATATGGTATTTT CTTTTGAAAAAAAAAAAAAAAAAAAAAAAAA

>G1766 Amino Acid Sequence (domain in AA coordinates: 10-153)
MNSFSQVPPGFRFHPTDEELVDYYLRKKVASKRIEIDIIKDVDLYKIEPCDLQELCKIGN
EEQSEWYFFSHKDKKYPTGTRTNRATKAGFWKATGRDKAIYIRHSLIGMRKTLVFYKGRA
PNGQKSDWIMHEYRLETSENGTPQEEGWVVCRVFKKKLAATVRKMGDYHSSPSQHWYDDQ
LSFMASEIISSSPRQFLPNHHYNRHHHQQTLPCGLNAFNNNNPNLQCKQELELHYNQMVQ
HQQQNHHLRESMFLQLPQLESPTSNCNSDNNNNTRNISNLQKSSNISHEEQLQQGNQSFS
SLYYDQGVEQMTTDWRVLDKFVASQLSNDEBAAAVVSSSSHQNNVKIDTRNTGYHVIDEG
INLPENDSERVVEMGEEYSNAHAASTSSSCQIDL*

>G1767 (1..1596)

>G1767 Amino Acid Sequence (domain in AA coordinates: 255-272)
MDTLFRLVSLQQQQQSDSIITNQSSLSRTSTTTTGSPQTAYHYNFPQNDVVEECFNFFMD
EEDLSSSSSHHNHHNHNNPNTYYSPFTTPTQYHPATSSTPSSTAAAAALASPYSSSGHHN
DPSAFSIPQTPPSFDFSANAKWADSVLLEAARAFSDKDTARAQQILWTLNELSSPYGDTE
QKLASYFLQALFNRMTGSGERCYRTMVTAAATEKTCSFESTRKTVLKFQEVSPWATFGHV
AANGAILEAVDGEAKIHIVDISSTFCTQWPTLLEALATRSDDTPHLRLTTVVVANKFVND
QTASHRMMKEIGNRMEKFARLMGVPFKFNIIHHVGDLSEFDLNELDVKPDEVLAINCVGA
MHGIASRGSPRDAVISSFRRLRPRIVTVVEEEADLVGEEEGGFDDEFLRGFGECLRWFRV
CFESWEESFPRTSNERLMLERAAGRAIVDLVACEPSDSTERRETARKWSRRMRNSGFGAV
GYSDEVADDVRALLRRYKEGVWSMVQCPDAAGIFLCWRDQPVVWASAWRPT*
>G1778 (1..627)

ATGATGGGATACCAAACAAACTCTAATTTCTCCATGTTTTTTTCCTCGGAAAATGACGAC
CAAAACCACCACAACTACGATCCTTATAATAATTTCTCTTCATCAACTTCTGTTGATTGC
ACTCTCTCACTTGGAACACCCTCTACTCGTCTCGACGACCACCATAGATTTTCTTCTGCT
AATTCTAACAACATCTCCGGCGACTTTTATATTCACGGAGGAAACGCTAAGACTTCTTCG
TACAAGAAGGGTGGTTGCTCATAGCCTACCTCGCCGTTGTGCTAGCTGCGACACCACT
TCAACTCCTCTATGGAGAAACGGACCAAAAGGACCTAAGTCGTTATGTAACGCGTGTGGA
ATCCGATTCAAGAAAGAGGAGGAGGCGTGCGACGCCAGAAACTTAACGATCTCCGGTGGA
GGTTCATCAGCGGCAGAAGTCCCAGTAGAGAATTCGTACAACGGAGGTGGAAACTATTAC
AGTCATCATCATCACTATGCCTCGTCGTCGCCGTCGTGGGCTCATCAGAACACAA
AGAGTTCCATATTTCTCACCGGTTCCGGAGATTATCCCTACGTGGATAACGTCACG
GCTTCTTCTTTTATGTCTTGGAATTGA

>G1778 Amino Acid Sequence (domain in AA coordinates:94-119) MMGYQTNSNFSMFFSSENDDQNHHNYDPYNNFSSSTSVDCTLSLGTPSTRLDDHHRFSSA NSNNISGDFYIHGGNAKTSSYKKGGVAHSLPRRCASCDTTSTPLWRNGPKGPKSLCNACG IRFKKEERRATARNLTISGGGSSAAEVPVENSYNGGGNYYSHHHHHYASSSPSWAHQNTQ RVPYFSPVPEMEYPYVDNVTASSFMSWN*

>G1789 (108..413)

>G1789 Amino Acid Sequence (domain in AA coordinates: 1-50) MASGSMSSYGSGSWTVKQNKAFERALAVYDQDTPDRWHNVARAVGGKTPEEAKRQYDLLV RDIESIENGHVPFPDYKTTTGNSNRGRLRDEEKRMRSMKLQ* >G1790 (63..1346)

CAATGGAGAATTTCGTCGACGAGAATGGTTTTGCTTCTCTAAACCAAAACATCTTCACAC GTGATCAAGAACACATGAAAGAAGAAGATTTTCCATTCGAAGTCGTCGACCAATCAAAAC CTACAAGCTTTCTTCAAGATTTTCACCATCTTGATCATGATCATCAGTTTGATCATCATC ATCATCATGGCTCCTCATCTTCACATCCTTTGCTCAGCGTCCAAACTACGTCTTCTTGTA TCAATAATGCTCCTTTCGAGCATTGCTCTTACCAAGAAAACATGGTCGATTTCTATGAAA CTAAACCAAATTTGATGAATCATCATCATTTCCAAGCAGTGGAAAACTCATACTTCACTC GTAATCATCATCATCAAGAGATCAATTTGGTCGATGAACATGATGATCCTATGGACT TGGAGCAAAACAACATGATGATGAGGATGATCCCTTTTGATTACCCTCCTACAGAGA CTTTCAAACCTATGAACTTCGTAATGCCAGATGAAATTTCATGTGTTTCTGCAGATAATG ATTGTTATAGAGCAACGAGTTTCAACAAGACCAAACCATTTCTTACACGAAAGTTGTCTT CTTCTTCTTCATCATCATCATGGAAAGAAACCAAAAAGTCAACCTTAGTCAAAGGACAAT GGACTGCTGAAGAAGACAGGGTACTGATTCAACTCGTGGAGAAGTATGGATTGCGTAAAT ATAACCATTTGAGACCTGACATTAAGAAAGAAACATGGAGTGAAGAAGAGGACAGAGTGT TGATAGAATTTCACAAAGAGATTGGAAACAAATGGGCAGAGATTGCGAAAAGACTCCCGG GAAGAACAGAGAACTCGATCAAGAACCATTGGAACGCAACAAAAAGAAGACAATTCTCTA AAAGAAAATGTAGATCTAAGTATCCAAGACCTTCTCTGTTGCAGGATTACATCAAGAGCT ATAACAAGAAGAAGGATGTTGTTGTGCGGTTGAGGAGAAGAAGAAGAAGAAGAAGAGGAGGTGT ATGGACAGACAGGATTGTGCCTGAATGTGTGTTTACTGATGATTTTGGATTCAATGAGA AGCTGCTTGAGGAAGGATGTAGCATTGACTCTTTGCTTGATGACATTCCTCAGCCTGACA TTGATGCTTTTGTTCATGGGCTCTGATTTGTATTTTTATTCTGCTTGTTTCAGTTTTGT TGTTTTTTGTTTGTCTTTTTTATACGAGACAGATTCCACCAAACTTCAATAATTTGAAAAG

>G1790 Amino Acid Sequence (conserved domain in AA coordinates:217-316)
MENFVDENGFASLNQNIFTRDQEHMKEEDFPFEVVDQSKPTSFLQDFHHLDHDHQFDHHH
HHGSSSSHPLLSVQTTSSCINNAPFEHCSYQENMVDFYETKPNLMNHHHFQAVENSYFTR
NHHHHQEINLVDEHDDPMDLEQNNMMMMRMIPFDYPPTETFKPMNFVMPDEISCVSADND
CYRATSFNKTKPFLTRKLSSSSSSSWKETKKSTLVKGQWTAEEDRVLIQLVEKYGLRKW
SHIAQVLPGRIGKQCRERWHNHLRPDIKKETWSEEEDRVLIEFHKEIGNKWAEIAKRLPG
RTENSIKNHWNATKRRQFSKRKCRSKYPRPSLLQDYIKSLNMGALMASSVPARGRRRESN
NKKKDVVVAVEEKKKEEEVYGQDRIVPECVFTDDFGFNEKLLEEGCSIDSLLDDIPQPDI
DAFVHGL*

>G1791 (36..455)

>G1791 Amino Acid Sequence (domain in AA coordinates: TBD)
MERIESYNTNEMKYRGVRKRPWGKYAAEIRDSARHGARVWLGTFNTAEDAARAYDRAAFG
MRGQRAILNFPHEY@MMKDGPNGSHENAVASSSSGYRGGGGGDDGREVIEFEYLDDSLLE
ELLDYGERSNQDNCNDANR*

>G1793 (59..1783)

GAGTGCTCACAATCTACAGTCACTTACTTTGTCCATGGGGACCACCGCTGGTAATAATGT TGTAGACAAAGCTTCACCATCCGAGACCACCGGGGATAACGCTAGCGGTGGAGCACTAGC CGTTGTTGAGACGGCCACGCCAAGACGTGCATTGGACACTTTCGGACAACGAACCTCGAT CTATCGTGGTGTCACAAGACATCGATGGACTGGTCGATATGAGGCTCATCTATGGGATAA TAGTTGTAGAAGGGAAGGCCAGTCTAGGAAAGGAAGACAAGTTTACTTGGGTGGATATGA CAAAGAAGATAAAGCAGCAAGATCATATGATCTAGCTGCACTTAAGTACTGGGGTCCTTC GACGAGACAAGAGTTCGTGGCTGCCATTAGAAGGAAAAGTAGTGGATTTTCGAGAGGCGC CCGAGTCGCCGGAAACAAAGACCTCTACTTGGGAACTTTTAGCACTGAGGAAGAAGCAGC AGAAGCTTACGATATAGCTGCAATAAAGTTTAGAGGACTTAATGCAGTGACCAACTTCGA GATCAACCGGTACGACGTGAAAGCCATTCTAGAGAGTAGCACTCTTCCCATCGGAGGAGG CGCAGCTAAACGGCTCAAAGAAGCTCAAGCTCTTGAGTCTTCAAGGAAACGCGAGGCGGA GATGATAGCCCTTGGTTCAAGTTTCCAGTACGGTGGTGGCTCGAGCACAGGCTCTGGCTC CACCTCATCAAGACTTCAGCTTCAACCTTACCCTCTAAGCATTCAACAACCATTAGAGCC TTTTCTATCTCTCAGAACAATGACATCTCTCATTACAACAACAACAATGCTCACGATTC CTCCTCTTTTAATCACCATAGCTATATCCAGACACAACTTCATCTCCACCAACAGACCAA CAATTACTTGCAGCAACAGTCGAGCCAGAACTCTCAGCAGCTCTACAATGCGTATCTTCA TAGCAATCCGGCTCTGCTTCATGGACTTGTCTCTACCTCTATCGTTGACAACAATAATAA CAATGGAGGCTCTAGTGGGAGCTACAACACTGCAGCATTTCTTGGGAACCACGGTATTGG TATTGGGTCCAGCTCGACTGTTGGATCGACCGAGGAGTTTCCAACCGTTAAAACAGATTA CGATATGCCTTCCAGTGATGGAACCGGAGGGTATAGTGGTTGGACCAGTGAGTCTGTTCA GCGGCACAAGGAATGGGT

>G1793 Amino Acid Sequence (conserved domain in AA coordinates:179-255, 281-349)
MNSNNWLGFPLSPNNSSLPPHEYNLGLVSDHMDNPFQTQEWNMINPHGGGGDEGGEVPKV
ADFLGVSKPDENQSNHLVAYNDSDYYFHTNSLMPSVQSNDVVVAACDSNTPNNSSYHELQ
ESAHNLQSLTLSMGTTAGNNVVDKASPSETTGDNASGGALAVVETATPRRALDTFGQRTS
IYRGVTRHRWTGRYEAHLWDNSCREEGQSRKGRQVYLGGYDKEDKAARSYDLAALKYWGP

STTTNFPITNYEKEVEEMKHMTRQEFVAAIRRKSSGFSRGASMYRGVTRHHQHGRWQARI GRVAGNKDLYLGTFSTEEEAAEAYDIAAIKFRGLNAVTNFBINRYDVKAILESSTLPIGG GAAKRLKEAQALESSRKREAEMIALGSSFQYGGGSSTGSGSTSSRLQLQPYPLSIQQPLE PFLSLQNNDISHYNNNNAHDSSSFNHHSYIQTQLHLHQQTNNYLQQQSSQNSQQLYNAYL HSNPALLHGLVSTSIVDNNNNNGGSSGSYNTAAFLGNHGIGIGSSSTVGSTEEFPTVKTD YDMPSSDGTGGYSGWTSESVQGSNPGGVFTMWNE*

>G1795 (27..422)

ACAAACACGCAAAAAGTCATTAATATATGGATCAAGGAGGTCGAGGTGTCGGTGCCGAGC ATGGAAAGTACCGGGGGTTCGGAGACGACCTTGGGGAAAATATGCAGCAGAGATACGAG ATTCGAGGAAGCACGGTGAACGTGTGTGGCTTGGAACGTTCGATACGGCAGAGGAAGCCG CTAGAGCCTATGACCAAGCTGCTTACTCCATGAGAGCCCAAGCAGCAATCCTTAACTTCC CTCATGAGTATAACATGGGGAGTGGTGTCTCTTCTTCCACCGCCATGGCTGGATCTTCCT CCGCCTCCGCCTCCGCTTCTTCTTCTAGGCAAGTTTTTGAATTTGAGTACTTGATG ATAGTGTTTTGGAGGAGGAGAAAACCTAACAAGGGCAAGAAAAT GAGCGAGATATAATTCATGATTATTTCTAA

>G1795 Amino Acid Sequence (domain in AA coordinates: 12-80)
MDQGGRGVGAEHGKYRGVRRPWGKYAAEIRDSRKHGERVWLGTFDTAEEAARAYDQAAY
SMRGQAAILNFPHEYNMGSGVSSSTAMAGSSSASASSSSRQVFEFEYLDDSVLEELLE
EGEKPNKGKKK* —

>G1800 (61..894)

>G1800 Amino Acid Sequence (domain in AA coordinates: TBD)
MEKSSMKQWKKGPARGKGGPQNALCQYRGVRQRTWGKWVAEIREPKKRARLWLGSFATA
EEAAMAYDEAALKLYGHDAYLNLPHLQRNTRPSLSNSQRFKWVPSRKFISMFPSCGMLNV
NAQPSVHIIQQRLEELKKTGLLSQSYSSSSSTESKTNTSFLDEKTSKGETDNMFEGGDQ
KKPEIDLTEFLQQLGILKDENEAEPSEVAECHSPPPWNEQEETGSPFRTENFSWDTLIEM
PRSETTTMQFDSSNFGSYDFEDDVSFPSIWDYYGSLD*

>G1806 (1..1356)

ATGCAGAGCAGCTTCAAAACCGTTCCTTTCACTCCTGATTTCTACTCTCAATCCTCTTAC TTCTTCAGAGGAGATAGTTGTCTTGAGGAGTTTCATCAACCAGTCAATGGTTTTCACCAT GAAGAAGCTATCGATTTAAGTCCAAATGTCACTATTGCTTCAGCTAACTTACACTACACG ACGTTTGATACGGTTATGGATTGTGGTGGTGGTGGTGGTGGCTTGAGGGAGAGACTTGAA GGAGGAGAAGAGGGTGTTTGGACACAGGGCAATTAGTGTACCAGAAAGGGACAAGATTA GTAGGAGGAGGAGTAGGAGAGTGAACAGCAGTTGGTGTGATTCGGTTTCAGCTATGGCT GATAACAGTCAACATACTGACACTTCCACAGATATTGATACTGATGACAAGACTCAGTTG AATGGAGGTCATCAAGGGATGCTATTGGCTACAAATTGTTCAGATCAATCCAATGTGAAA TCTAGTGATCAAAGGACACTTCGTCGACTTGCTCAGAACCGGGAGGCTGCTAGGAAAAGT CGGTTGAGGAAAAAGGCCTATGTTCAGCAACTTGAGAATAGTCGAATCAGGCTTGCACAG CTAGAGGAAGAGCTCAAAAGAGCTCGCCAACAGGGATCTTTGGTTGAAAGAGGAGTTTCA GCGGATCACACGCATTTGGCAGCAGGAAATGGTGTCTTTTCATTTGAATTGGAATATACA CGTTGGAAGGAACATCAAAGAATGATCAACGACTTAAGATCGGGTGTGAATTCGCAG TTAGGTGACAACGATCTACGCGTTCTAGTGGATGCTGTGATGAGTCACTATGATGAAATA TTCAGGCTAAAGGGAATTGGCACTAAAGTTGAAGTCTTTCATATGCTCTCAGGCATGTGG AAGACACCTGCCGAGAGATTTTTCATGTGGTTAGGTGGATTTAGATCATCAGAGTTACTT AAGATATTGGGGAACCATGTGGATCCATTGACGGACCAGCAGTTGATAGGCATTTGCAAC CTTCAGCAATCGTCTCAACAAGCAGAGGATGCATTGTCACAAGGCATGGAAGCTCTACAA CAATCACTTCTCGAGACGCTTTCTTCTGCTTCTATGGGTCCAAACTCTTCAGCAAATGTT GCAGATTATATGGGTCATATGGCTATGGCTATGGGCAAACTTGGCACTCTTGAAAACTTC CTTCGCCAGGCTGATTTATTGAGGCAACAAACTCTGCAACAGCTTCACAGAATTCTCACC ACACGACAAGCTGCTCGCGCCTTTTTGGTCATCCACGATTATATTTCTCGGCTTAGAGCA CTTAGCTCTCTATGGTTAGCCAGACCTAGAGACTAA

>G1806 Amino Acid Sequence (domain in AA coordinates 165-225)
MQSSFKTVPFTPDFYSQSSYFFRGDSCLEEFHQPVNGFHHEEAIDLSPNVTIASANLHYT
TFDTVMDCGGGGGGLRERLEGGEEECLDTGQLVYQKGTRLVGGGVGEVNSSWCDSVSAMA
DNSQHTDTSTDIDTDDKTQLNGGHQGMLLATNCSDQSNVKSSDQRTLRRLAQNREAARKS
RLRKKAYVQQLENSRIRLAQLEEELKRARQQGSLVERGVSADHTHLAAGNGVFSFELEYT
RWKEEHQRMINDLRSGVNSQLGDNDLRVLVDAVMSHYDEIFRLKGIGTKVEVFHMLSGMW
KTPAERFFMWLGGFRSSELLKILGNHVDPLTDQQLIGICNLQQSSQQAEDALSQGMEALQ
QSLLETLSSASMGPNSSANVADYMGHMAMAMGKLGTLENFLRQADLLRQQTLQQLHRILT
TRQAARAFLVIHDYISRLRALSSLWLARPRD*

>G1811 (93..827)

GGAGATTCAGATACTCGTACTGGAACAGTAGCCAGAGTTATGTCTTGACCAAAGGCTGGA
GCAGATACGTCAAGGAGAAGCACCTTGACGCCGGAGACGTCGTTCTCTTCCATCGACACC
GTTCAGACGGCGGAAGATTCTTCATTGGCTGGAGAAGACGCGGTGACTCTTCTTCCTCCT
CCGACTCTTATCGCCATGTTCAATCCAATGCCTCGCTCCAATATTATCCTCATGCAGGGG
CTCAAGCGGTGGAGAGCCAAAGAGGCAACTCGAAGACATTAAGACTGTTCGGAGTGAACA
TGGAGTGCCAGCTAGATTCGGACTGGTCCGAGCCATCCACACCTGACGGTTCTAACACAT
ATACAACCAATCACGACCAGTTTCATTTCTACCCTCAACAACAACAACTATCCTCCTCCGT
ACTACATGGACATAAGTTTCACAGGAGATATGAACCGGACGAGCTAGAAGCCCACAAGGA
TTAAAAAAAAGCTTCACATCTGGTCCTGTTATGTTGTCATAGATGTTGATTCCTTTAATTT
TACACAAGCTTCATTTTGCATTATTTTAAAGTAAAATCGTATTTTGATTCTTTTACATAGCTA
ACACTTGTATATGAGAGAATTCAAAGGTTCCTTTAAAA
ACACTTGTATAGAGAAATTCAAAGGTTCTCGGCTATTTTCGAAAGTTATTTTCTCTTTAAAA

>G1811 Amino Acid Sequence (domain in AA coordinates: TBD)
MSINQYSSDFHYHSLMWQQQQQQQQHQNDVVEEKEALFEKPLTPSDVGKLNRLVIPKQHA
ERYFPLAAAAADAVEKGLLLCFEDEEGKPWRFRYSYWNSSQSYVLTKGWSRYVKEKHLDA
GDVVLFHRHRSDGGRFFIGWRRRGDSSSSDSYRHVQSNASLQYYPHAGAQAVESQRGNS
KTLRLFGVNMECQLDSDWSEPSTPDGSNTYTTNHDQFHFYPQQQHYPPPYYMDISFTGDM
NPTS*

>G182 (74..1366)

CGTCGACGATCAGATTCTTGCGTATAGCTGTATATATACACCAAGATACACTCATCATCG TCATATATAGATTATGTGCAGCGTCTCTGAGCTTCTTGACATGGAAAACTTCCAAGGAGA GAACATCTGGCCTCTTCCTCTGTCACATCCAACACCCATCACCGTCAGATCTTAACATAAA ${\tt CCCCTTCGGAGATCCCTTTGTGAGCATGGACGATCCACTCCTCCAAGAACTAAACTCCAT}$ CACAAACTCCGGCTATTTCTCCACCGTAGGAGATAACAACAACAACATTCACAACAACAA TGGTTTCTTGGTTCCAAAGGTATTTGAGGAGGATCATATAAAGAGTCAATGTAGTATCTT CCCAAGAATCCGGATCTCGCATAGTAACATCATCCACGATTCTTCTCCGTGTAATTCTCC GGCCATGTCGGCTCACGTTGTCGCAGCCGCAGCAGCCGCCTCGCCGAGAGGCATCATCAA CGTAGACACAAACAGTCCTAGAAACTGTCTATTGGTTGATGGTACCACGTTCTCCTCGCA GGTGGTGTGTATTCCGGCCCCGGCTGCAATGAACAGCCGATCAAGCGGAGAAGTGGTTCC ATCGGATCTATGGGCTTGGCGTAAATACGGTCAAAAACCTATCAAAGGCTCTCCTTTTCC AAGGGGTTATTATAGATGCAGCAGCTCAAAAGGTTGTTCAGCAAGAAAGCAAGTCGAAAG AAGCCGAACCGATCCAAACATGTTGGTGATTACATATACCTCCGAACATAACCATCCTTG GCCCATCCAACGCAACGCTCTCGCCGGCTCCACACGCTCCTCCACCTCCTCATCTAA CCCTAATCCTTCCAAACCCTCAACCGCAAACGTAAACTCCTCATCCATTGGCTCCCAAAA CACCATCTACTTGCCTTCCTCCACCACTCCTCCTCCTACCCTCTCATCCTCCGCCATCAA AGATGAACGAGGGGACGATATGGAGTTGGAAAACGTAGATGATGATGATAACCAGAT TCTTGAAGAGCTAGAAGGAGATTCTCTAAGCATGTTGCTTTCTCATGGCTGTGGCGGCGA CGGGAAGGATAAAACGACCGCGTCCGATGGGATCAGCAATTTCTTCGGGTGGTCGGGAGA TAATAATTATAATAATTACGACGACCAAGACTCAAGGTCGTTATAGTATAGTGTTAATTA CAGGTAAACAAATTATATTAAATTAAGTTGAGCTTGTGAAAATGAAGATCATATGGTCTG GTCAGGTTGGGGGC

>G182 Amino Acid Sequence (conserved domain in AA coordinates:217-276)
MCSVSELLDMENFQGDLTDVVRGIGGHVLSPETPPSNIWPLPLSHPTPSPSDLNINPFGD
PFVSMDDPLLQELNGITNSGYFSTVGDNNNIHNNNGFLVPKVFEEDHIKSQCSIFPRIR
ISHSNIIHDSSPCNSPAMSAHVVAAAAAASPRGIINVDTNSPRNCLLVDGTTFSSQIQIS
SPRNLGLKRRKSQAKKVVCIPAPAAMNSRSSGEVVPSDLWAWRKYGQKPIKGSPFPRGYY
RCSSKGCSARKQVERSRTDPMMLVITYTSEHNHPWPIQRNALAGSTRSSTSSSSNPNPS
KPSTANVNSSSIGSQNTIYLPSSTTPPPTLSSSAIKDERGDDMELENVDDDDDNQIAPYR
PELHDHQHQPDDFFADLEELEGDSLSMLLSHGCGGDGKDKTTASDGISNFFGWSGDNNYN
NYDDQDSRSL*

>G1835 (1..969)

 $\label{eq:total} \textbf{ATGATTGGAACAAGCTTCCCCGAGGATCTTGATTGTGGCAACTTCTTTGACAACATGGATGATCTCATGGACTTTCCCGGTGGAGATATCGATGTCGGTTTCGGCATAGGTGACTCCGAC$

>G1835 Amino Acid Sequence (domain in AA coordinates: 224-296)
MIGTSFPEDLDCGNFFDNMDDLMDFPGGDIDVGFGIGDSDSFPTIWTTHHDTWPAASDPL
FSSNTNSDSSPELYVPFEDIVKVERPPSFVEETLVEKKEDSFSTNTDSSSSHSQFRSSSP
VSVLESSSSSSQTTNTTSLVLPGKHGRPRTKRPRPPVQDKDRVKDNVCGGDSRLIIRIPK
QFLSDHNKMINKKKKKKAKITSSSSSSGIDLEVNGNNVDSYSSEQYPLRKCMHCEVTKTP
QWRLGPMGPKTLCNACGVRYKSGRLFPEYRPAASPTFTPALHSNSHKKVAEMRNKRCSDG
SYITEENDLOGLIPNNAYIGVD*

>G1836 (47..610)

>G1836 Amino Acid Sequence (domain in AA coordinates: 30-164)
MENNNGNNQLPPKGNEQLKSFWSKEMEGNLDFKNHDLPITRIKKIMKYDPDVTMIASEAP
ILLSKACEMFIMDLTMRSWLHAQESKRVTLQKSNVDAAVAQTVIFDFLLDDDIEVKRESV
AAAADPVAMPPIDDGELPPGMVIGTPVCCSLGIHQPQPQMQAWPGAWTSVSGEEEEARGK
KGGDDGN*

>G1838 (132..1628)

TTCCTTGGCATTCTCTTTAGAACTTTCGTACAAAATGCAAAACCTGAACCTCTAAAGCTA AAAAAAAGATTAGAGACTGTAACTGCTTTTATCAGATTTTCAACTAGGAAAAAAGTTAC AATCTTTTTTGATGGCTCCTCCAATGACGAATTGCTTAACGTTTTCTCTGTCACCAATGG AGATGTTGAAATCAACTGATCAGTCTCACTTCTCTTCTTACGACGATTCTTCTACTC CTTATCTCATCGATAACTTCTATGCTTTCAAAGAAGAAGCTGAGATAGAAGCTGCTGCTG CTTCAATGGCGGATTCAACAACCTTATCTACTTTTTTCGATCATTCTCAGACTCAGATTC CAAAGCTGGAAGATTTCCTCGGTGATTCCTTTGTCCGTTACTCTGATAACCAAACAGAGA CCCAAGACTCTTCTCTCTCACTCCATTCTACGATCCACGTCACCGCACCGTTGCCGAAG GAGTTACAGGGTTCTTCTCTGATCATCATCAGCCAGATTTCAAGACGATAAACTCGGGAC CAGAAATCTTCGATGACTCAACAACTTCCAACATCGGTGGTACTCATCTCTCCAGTCACG TGGTGGAGTCATCAACGACGGCGAAGTTAGGGTTTAACGGTGATTGCACCACCACCGGAG GAGTTTTGTCTCTAGGGGTTAACAACACATCAGATCAACCTTTGAGCTGTAACAATGGCG AGAGAGGTGGAAACAGTAACAAGAAGAAAACAGTTTCTAAGAAGGAAACATCAGATGATT CAAAGAAGAAGATTGTCGAAACATTGGGACAAAGAACTTCAATTTATCGTGGAGTCACCC GACATAGATGGACTGGAAGATACGAAGCGCATCTATGGGATAACAGCTGTAGGAGGGAAG GTCAAGCCAGAAAAGGACGTCAAGTGTACTTAGGTGGATATGACAAGGAAGATAGAGCAG

CTAGAGCCTATGACTTGGCAGCTTTAAAATACTGGGGTTCTACTGCTACTACAAATTTTC TTGCATCTCTTAGGAGGAAAAGTAGCGGTTTTTCGAGAGGAGCTTCAATATATAGAGGTG TCACAAGGCATCATCAACAAGGTCGCTGGCAAGCAAGAATCGGCCGTGTCGCAGGAAACA AAGATCTTTACCTCGGAACCTTTGCAACCGAAGAGGAAGCAGCAGAGGCTTATGACATTG CAGCCATAAAGTTCAGAGGAATCAACGCAGTAACTTAACTTTGAGATGAACAGGTATGACA TTGAAGCTGTCATGAATAGTTCTTTACCTGTAGGAGGAGCAGCTGCGAAACGCCACAAAC TCAAACTCGCTCTTGAATCTCCTTCTTCATCATCCTCTGACCATAACCTCCAACAACAAC AGTTGCTTCCGTCCTCTCCCCCGGATCAAAACCCTAACTCAATCCCATGTGGCATTC CATTTGAGCCTTCAGTTCTCTATTACCACCAGAACTTCTTTCAGCATTATCCTTTGGTCT CTGACTCTACAATTCAAGCTCCTATGAACCAAGCTGAGTTTTTCTTGTGGCCTAACCAGT CTTACTAAATCATTTGGTTCGTTCTTGCTTAGACTTCTATTCACCGCACTAACCGATGAC CCGAGGCTTATCTTCTTGATTCTGGCTATAAGGATGAATCTTTCAAGTTCCTTTTTTAAC TGTAGGCTAAGACAGAAGTAGAGGGGAGAAAAGTTGAAGAATCTGAAACTTTTGGGGTCA ATTTTGTATTAATGTTTTTCTTTTGTCAAGGGTGGATTATCGGTTTTATTACTTATTTTT TGAATGTAATCGGCCTATAACGGTATAACTCTGTTTCCATTTATGAATATTTTTCTCAAA TTGAAAAAAAAAAAAAAAAAA

>G1838 Amino Acid Sequence (conserved domain in AA coordinates:229-305, 330-400)
MAPPMTNCLTFSLSPMEMLKSTDQSHFSSSYDDSSTPYLIDNFYAFKEEAEIEAAAASMA
DSTTLSTFFDHSQTQIPKLEDFLGDSFVRYSDNQTETQDSSSLTPFYDPRHRTVAEGVTG
FFSDHHQPDFKTINSGPEIFDDSTTSNIGGTHLSSHVVESSTTAKLGFNGDCTTTGGVLS
LGVNNTSDQPLSCNNGERGGNSNKKKTVSKKETSDDSKKKIVETLGQRTSIYRGVTRHRW
TGRYEAHLWDNSCRREGQARKGRQVYLGGYDKEDRAARAYDLAALKYWGSTATTNFPVSS
YSKELEEMNHMTKQEFIASLRRKSSGFSRGASIYRGVTRHHQQGRWQARIGRVAGNKDLY
LGTFATEEEAAEAYDIAAIKFRGINAVTNFEMNRYDIEAVMNSSLPVGGAAAKRHKLKLA
LESPSSSSSDHNLQQQQLLPSSSPSDQNPNSIPCGIPFEPSVLYYHQNFFQHYPLVSDST
IQAPMNQAEFFLWPNQSY*

>G1843 (51..653)

CAGACATCACAATCAAATTAGGTCAGAAGAATTAGTCGGAGAAAACAGCCATGGGAAGAA
GAAAAGTAGAGATCAAACGAATTGAGAACAAAAGCTCTCGACAAGTTACTTTCTGTAAAC
GACGAAATGGTCTCATGGAGAAAGCTCGTCAACTCTCAATTCTTTGTGAATCCTCCGTCG
CTCTTATCATCATCTCTGCCACCGGAAGACTCTACAGCTTCTCCTCAGGTGATAGCATGG
CCAAGATCCTCAGTCGTTATGAATTAGAACAGGCTGATGATCTTAAAACCTTGGATCTAG
AAGAAAAACTCTTAATTATCTTTCGCACAAGGAGTTGCTAGAAACAATCCAATGCAAGA
TTGAAGAAGCGAAAAGCGATAATGTAAGTATAGATTGTCTAAAGTCCTTGGAAGAGCAGC
TCAAGACTGCTCTGTCTGTAACTAGAGCTAGGAAGAACTAATGATGGAGCTTGTGA
AGACCCATCAAGAGAAGGAGAAGCTGCTGAGAGAGAGAACCAAGAGTTTGACTAACCAGC
TTATAAAGATGGGGAAGATGAAGAAGTCTGTGGAAGCAGAGTTCAAAGACCACCAT
CGGAAAGTAGCTCTGACAACAAGCCACCGGAGACTCTCCTGCTTCTCAAGTAACCACCAT
CACCAACGACTGATTCGAAAAAATAAAAATTGTAAAAATTATGATTTGTAGTTCATAAGGA
AAGCTACATACTGTATGTTAAAAAATCCTCTTTCTCCCCCTGCTACGGAAAAGTCATCCAA
GGAGATGCATCAAATAAAGTAATTGATTTTTATTGTTA

>G1843 Amino Acid Sequence (domain in AA coordinates: 2-57)
MGRRKVEIKRIENKSSRQVTFCKRRNGLMEKARQLSILCESSVALIIISATGRLYSFSSG
DSMAKILSRYELEQADDLKTLDLEEKTLNYLSHKELLETIQCKIEEAKSDNVSIDCLKSL
EEQLKTALSVTRARKTELMMELVKTHQEKEKLLREENQSLTNQLIKMGKMKKSVEAEDAR
AMSPESSSDNKPPETLLLLK*

>G1853 (1..1860)

ACCTTTCACTCGGAGGACGGCCTGGTCTTTGATGGGGTCAAAGACTATGCTCGTCAAATT GCTGAGATGATAGGTTTAGGAAGTGATACTGAATTTGCTCAAGCGGGTGTACGGACTGTG TTAGACATTGGTTGCGGATTTGGTAGCTTTGGTGCTCATTTAGTGTCTTTTGAAGCTGATG CCTATATGTATTGCTGAGTATGAGGCAACTGGGAGCCAAGTTCAGTTAGCTCTAGAGAGA GGCCTTCCTGCAATGATTGGCAATTTCTTTTCAAAACAGCTTCCTTATCCAGCACTGTCT TTTGATATGGTCCATTGTGCTCAATGTGGCACTACTTGGGATATCAAAGATGCAATGCTA CTTTTGGAAGTGGATCGTGTTCTGAAACCCGGGGGATACTTTGTTTTAACTTCTCCCACA AACAAAGCACAGGGAAACTTACCAGATACCAAGAAAACGAGCATCTCAACACGGGTGAAT GAGTTATCTAAGAAAATCTGTTGGAGTCTAACAGCTCAGCAGGATGAGACGTTTCTTTGG CAGAAAACTTCTGATTCAAGTTGCTATTCTTCTCGTTCGCAAGCTTCTATACCTCTTTGC AAAGATGGAGATAGCGTTCCGTATTACCACCCATTGGTTCCATGTATAAGCGGAACCACG AGTAAACGCTGGATTTCTATACAGAACAGGTCTGCTGTTGCAGGAACAACCTCTGCCGGG CTTGAAATTCATGGTTTAAAACCGGAAGAATTCTTCGAGGATACACAAATATGGAGATCA GCTCTGAAAAACTATTGGTCCTTGCTTACACCTCTAATTTTCTCTGACCATCCGAAGAGA CCCGGTGATGAGGATCCTCTCCCGCCTTTCAACATGATACGCAATGTGATGGACATGCAT GCTCGTTTTGGGAATTTAAATGCCGCTTTACTCGACGAAGGAAAATCTGCTTGGGTAATG **AACGTCGTCCCAGTCAATGCACGTAATACTCTTCCTATCATACTTGATCGTGGTTTCGCC** GGTGTTCTACATGACTGGTGTGAACCATTCCCGACATATCCTCGAACATATGACATGCTT CATGCCAATGAACTTCTCACACATCTTAGCTCAGAACGATGCAGCCTAATGGACTTGTTC TTGGAGATGGACCGGATTCTTCGCCCTGAGGGATGGGTTGTTCTAAGCGACAAAGTGGGA GTAATCGAGATGGCTCGAGCACTTGCAGCTCGAGTGCGTTGGGAAGCAAGAGTCATTGAT >G1853 Amino Acid Sequence (domain in AA coordinates: entire protein) MRGSWYKSVSSVFGLRPRIRGLLFFIVGVVALVTILAPLTSNSYDSSSSSTLVPNIYSNY RRIKEOAAVDYLDLRSLSLGASLKEFPFCGKERESYVPCYNITGNLLAGLQEGEELDRHC EFEREKERCVVRPPRDYKIPLRWPLGRDIIWSGNVKITKDQFLSSGTVTTRLMLLEENQI TFHSEDGLVFDGVKDYARQIAEMIGLGSDTEFAQAGVRTVLDIGCGFGSFGAHLVSLKLM PICIAEYEATGSQVQLALERGLPAMIGNFFSKQLPYPALSFDMVHCAQCGTTWDIKDAML LLEVDRVLKPGGYFVLTSPTNKAQGNLPDTKKTSISTRVNELSKKICWSLTAQQDETFLW **QKTSDSSCYSSRSQASIPLCKDGDSVPYYHPLVPCISGTTSKRWISIQNRSAVAGTTSAG** LEIHGLKPEEFFEDTQIWRSALKNYWSLLTPLIFSDHPKRPGDEDPLPPFNMIRNVMDMH ARFGNLNAALLDEGKSAWVMNVVPVNARNTLPIILDRGFAGVLHDWCEPFPTYPRTYDML HANELLTHLSSERCSLMDLFLEMDRILRPEGWVVLSDKVGVIEMARALAARVRWEARVID LQDGSDQRLLVCQKPFIKK*

>G1855 (1..1902)

TTGATTCTTGGTGTAAGTGGACTCTGCATTTTGTTCTATGTTTTAGGTGCATGGCAAGCC AATACCGTCCCATCTTCTATCTCGAAGCTCGGATGCGAGACGCAATCAAACCCTTCTTCG TCCTCTTCCTCATCTTCAGAGTCAGCTGAACTAGATTTCAAAAGCCATAATCAG ATTGAGTTAAAGGAAACAAACCAAACCATTAAGTACTTTGAACCATGTGAATTATCTCTC AGTGAGTACACTCCTTGTGAAGACCGACAAAGAGGAAGAAGATTCGATAGGAACATGATG AAATATAGAGAAAGACATTGTCCTGTAAAAGATGAGCTTCTTTATTGTTTGATTCCTCCT CCACCAAACTACAAGATTCCATTTAAATGGCCACAAAGTAGAGACTATGCTTGGTATGAC AATATCCCTCACAAGGAACTTAGTGTTGAGAAAGCAGTTCAAAACTGGATTCAAGTTGAA GGTGACCGCTTTAGATTCCCTGGTGGTGGTACTATGTTTCCTCGTGGAGCTGATGCTTAT ATCGATGATATTGCTAGGCTTATTCCTCTTACTGATGGTGGAATCAGAACAGCTATTGAC ${\tt ACTGGATGTGGTGTTTGCAAGTTTTGGTGCTTACCTCTTGAAGAGAGACATTATGGCTGTG}$ TCTTTTGCTCCAAGAGACACTCATGAAGCTCAGGTACAGTTTGCTTTAGAACGCGGAGTT CCTGCGATAATCGGGATTATGGGATCAAGAAGACTTCCTTATCCAGCTAGAGCTTTTGAT CTTGCTCATTGTTCTCGTTGTTTGATCCCTTGGTTTAAAAATGATGGTTTGTACCTTATG GAGGTCGACCGGGTTTTAAGACCGGGCGGTTACTGGATCCTCTCGGGACCACCGATTAAC TCAATAGAAGATGTAGCAAAGAGTCTTTGCTGGAAGAAAGTAACTGAAAAAGGTGACTTA TCACCTCCGATATGCAGCTCAGATAACGCGGATTCCGCTTGGTACAAAGACTTGGAAACT TGTATAACACCATTACCAGAAACAAACAATCCAGATGATTCAGCAGGCGGTGCACTCGAG GATTGGCCAGACCGAGCATTCGCGGTACCTCCAAGAATCATCAGAGGAACTATACCAGAA

>G1855 Amino Acid Sequence (domain in AA coordinates: entire protein)
MAKENSGHHHQTEARRKKLTLILGVSGLCILFYVLGAWQANTVPSSISKLGCETQSNPSS
SSSSSSSSSSESAELDFKSHNQIELKETNQTIKYFEPCELSLSEYTPCEDRQRGRRFDRNMM
KYRERHCPVKDELLYCLIPPPPNYKIPFKWPQSRDYAWYDNIPHKELSVEKAVQNWIQVE
GDRFRFPGGGTMFPRGADAYIDDIARLIPLTDGGIRTAIDTGCGVASFGAYLLKRDIMAV
SFAPRDTHEAQVQFALERGVPAIIGIMGSRRLPYPARAFDLAHCSRCLIPWFKNDGLYLM
EVDRVLRPGGYWILSGPPINWKQYWRGWERTEBDLKKEQDSIEDVAKSLCWKKVTEKGDL
SIWQKPLNHIECKKLKQNNKSPPICSSDNADSAWYKDLETCITPLPETNNPDDSAGGALB
DWPDRAFAVPPRIIRGTIPEMNAEKFREDNEVWKERIAHYKKIVPELSHGRFRNIMDMNA
FLGGFAASMLKYPSWVMNVVPVDAEKQTLGVIYERGLIGTYQDWCEGFSTYPRTYDMIHA
GGLFSLYEHRCDLTLILLEMDRILRPEGTVVLRDNVETLNKVEKIVKGMKWKSQIVDHEK
GPFNPEKILVAVKTYWTGQPSDKNNNNNNNNNN*

>G187 (118..1074)

TAGACCTCTTAGGAAAAAACCTAAAAACCTAATCCCCAAACCTAAAAGGCTTATCTCAT TCTAATGAAACCAGAGATCTCTACAACTACCAATACCCTTCATCGTTTCGTTGCACGAA ATGATGAATCTGCCTACTTCAAATCCATCTTCTTATGGAAACCTCCCATCACAAAACGGT TTTAATCCATCTACTTATTCCTTCACCGATTGTCTCCAAAGTTCTCCAGCAGCGTATGAA TCTCTACTTCAGAAAACTTTTGGTCTTTCTCCCTCTTCCTCAGAGGTTTTCAATTCTTCG GAGACTGAAACTAGGGTTTCTCCTTCTAATTCTTCCTCTAGTGAGGCTGATCACCCCGGT GAAGATTCCGGTAAGAGCCGGAGGAAACGAGAGTTAGTCGGTGAAGAAGATCAAATTTCC AAAAAGTTGGGAAAACGAAAAAGACTGAGGTGAAGAAACAAAGAGAGCCACGAGTCTCG TTTATGACTAAAAGTGAAGTTGATCATCTTGAAGATGGTTATAGATGGAGAAAATACGGC CAAAAGGCTGTAAAAAATAGCCCTTATCCAAGGAGTTACTATAGATGTACAACACAAAAG TGCAACGTGAAGAAACGAGTGGAGAGATCGTTCCAAGATCCAACGGTTGTGATTACAACT TACGAGGGTCAACACAACCACCGATTCCGACTAATCTTCGAGGAAGTTCTGCCGCGGCT GCTATGTTCTCCGCAGACCTCATGACTCCAAGAAGCTTTGCACATGATATGTTTAGGACG GCAGCTTATACTAACGGCGGTTCTGTGGCGGCGGCTTTGGATTATGGATATGGACAAAGT GGTTATGGTAGTGTGAATTCAAACCCTAGTTCTCACCAAGTGTATCATCAAGGGGGTGAG

>G187 Amino Acid Sequence (domain in AA coordinates: 172-228)
MSNETRDLYNYQYPSSFSLHEMMNLPTSNPSSYGNLPSQNGFNPSTYSFTDCLQSSPAAY
ESLLQKTFGLSPSSSEVFNSSIDQEPNRDVTNDVINGGACNETETRVSPSNSSSSEADHP
GEDSGKSRRKRELVGEEDQISKKVGKTKKTEVKKQREPRVSFMTKSEVDHLEDGYRWRKY
GQKAVKNSPYPRSYYRCTTQKCNVKKRVERSFQDPTVVITTYEGQHNHPIPTNLRGSSAA
AAMFSADLMTPRSFAHDMFRTAAYTNGGSVAAALDYGYGQSGYGSVNSNPSSHQVYHQGG
EYELLREIFPSIFFKQEP*

>G1881 (1..519)

ATGCGAATTTTGTGTGATGCTTGTGAGAGCGCCGCCGCTATCGTCTTTTGCGCCGCCGAC
GAAGCTGCCCTCTGTTGCTCCTGCGACGAAAAAGTTCATAAGTGCAACAAGCTGGCTAGT
CGGCATCTTCGTGTAGGCTTAGCTGATCCGAGTAATGCACCAAGCTGTGACATATGCGAA
AATGCACCCGCATTCTTTTACTGTGAGATAGATGGTAGTTCCCTTTGTCTACAATGTGAT
ATGGTGGTACATGTTGGTGGGAAGAACACATAGGCGGTTTCTATTACTGAGACAGAGA
ATTGAGTTTCCAGGCGATAAGCCTAATCATGCTGACCAACTGGGACTACGGTGTCAAAAG
GCTTCCTCTGGTCGTCGTCAAGAATCAAATGGGAATGGTGATCATGATCATAATATGATC

GATCTTAACTCCAATCCTCAAAGAGTACACGAGCCTGGATCACATAACCAAGAGGAGGGT
ATTGATGTAAATAACGCAAACAATCACGAGCATGAATAG
>G1881 Amino Acid Sequence (domain in AA coordinates:5-28, 56-79)
MRILCDACESAAAIVFCAADEAALCCSCDEKVHKCNKLASRHLRVGLADPSNAPSCDICE
NAPAFFYCEIDGSSLCLQCDMVVHVGGKRTHRRFLLLRQRIEFPGDKPNHADQLGLRCQK
ASSGRGQESNGNGDHDHNMIDLNSNPQRVHEPGSHNQEEGIDVNNANNHEHE*
>G1882 (1..1200)

CACCATCCCCTCCCACCGCAACAGCAACAACGCCTCCGCAGCTTCACCACAACAACGGT AACGGCGGAGTCGCTGTTCCCGGTGGACCTGGCGGGTTAATCCGACCAGGTTCGATGGCG GAAAGAGCAAGGCTAGCCAACATACCATTACCTGAAACAGCCTTGAAGTGTCCAAGATGT TTCTGCAAAGCATGCCGTCGTTACTGGACACGTGGCGGTGCTCTAAGGAGCGTTCCCGTC GGTGGCGGTTGCCGTAGAAACAAAAGAACCAAAAACAGCAGCGGTGGAGGTGGCGGTAGC ACCAGTAGCGGTAACAGCAAGTCACAAGACAGCGCCACGAGCAACGACCAATACCACCAC CGAGCCATGGCTAACAATCAGATGGGACCACCTTCTTCGTCATCGTCTCTAAGCTCGTTG CTGTCTTCTTACAACGCAGGGTTAATCCCCGGACATGATCATAACAGCAATAACAACAAC ATACTTGGACTTGGATCATCTTTGCCTCCTCTTAAGCTTATGCCTCCTTTAGACTTCACA GACAACTTCACCTTACAATACGGTGCCGTTTCAGCTCCTTCTTATCATATAGGCGGTGGA AGCAGTGGAGGAGCGGCGCTCTTTTAAACGGTTTTGACCAGTGGAGATTCCCGGCAACA AACCAACTTCCTTTAGGCGGTTTAGACCCGTTTGATCAACAACATCAAATGGAGCAGCAG AATCCAGGTTACGGATTGGTTACCGGGTCGGGTCAGTATCGACCTAAGAACATTTTCCAT AACCTTATCTCCTCTTCTTCGTCTGCTTCATCAGCTATGGTTACAGCCACCGCGTCGCAA TTAGCTTCAGTGAAAATGGAAGATAGTAACAATCAGCTCAACTTGTCTAGACAACTTTTT GGAGACGAACAACAGCTCTGGAATATTCATGGCGCTGCTGCAGCATCCACCGCAGCTGCA ACAAGTTCGTGGAGTGAAGTCTCTAATAATTTCAGTTCTTCTTCTACTAGCAATATATAA >G1882 Amino Acid Sequence (domain in AA coordinates:97-125) MVFSSFPTYPDHSSMWQQQHQPITTTVGFTGNNINQQFLPHHPLPPQQQQTPPQLHHNNG NGGVAVPGGPGGLIRPGSMAERARLANIPLPETALKCPRCDSTNTKFCYFNNYSLTQPRH FCKACRRYWTRGGALRSVPVGGGCRRNKRTKNSSGGGGGSTSSGNSKSQDSATSNDQYHH RAMANNOMGPPSSSSLSSLLSSYNAGLIPGHDHNSNNNNILGLGSSLPPLKLMPPLDFT DNFTLQYGAVSAPSYHIGGGSSGGAAALLNGFDQWRFPATNQLPLGGLDPFDQQHQMEQQ NPGYGLVTGSGQYRPKNIFHNLISSSSSASSAMVTATASQLASVKMEDSNNQLNLSRQLF GDEQQLWNIHGAAAASTAAATSSWSEVSNNFSSSSTSNI*

>G1883 (1..1110)

ATGGACGCTACGAAGTGGACACAGGGTTTTCAAGAAATGATGAACGTTAAACCAATGGAG CAGATCATGATTCCTAATAACAACACACATCAACCAAACACCACATCCAATGCAAGGCCA AACACCATTCTCACATCTAACGGCGTCTCAACTGCTGGAGCAACCGTCTCCGGCGTAAGC AACAACAATAACAATACGGCGGTTGTGGCGGAGAGGAAAGCAAGACCACAAGAGAAACTA AATTGTCCAAGATGCAACTCAACCAACACAAGTTTTGTTACTACAACAACTATAGTCTC ACACAACCAAGATACTTCTGCAAAGGTTGTCGAAGGTATTGGACCGAAGGTGGATCTCTT AGGAATGTTCCTGTGGGAGGAAGCTCAAGAAAGAACAAGAGATCATCTTCATCTTCA TCAAACATCCTTCAGACAATACCATCTTCACTTCCAGATCTAAACCCGCCAATACTCTTC TCAAACCAAATCCATAATAAATCGAAAGGGTCATCACAAGATCTCAACTTGTTGTCTTTC CCAGTCATGCAAGATCAACATCATCATGTCCATATGTCTCAGTTTCTTCAGATGCCT AAGATGGAGGGAAATGGTAACATAACTCATCAGCAGCAGCCTTCATCATCTTCTTCTGTC ${\tt TATGGTTCCTCGTCGTCTGTTTCAGCTCTTGAACTTTTAAGAACCGGAGTTAATGTT}$ TCTTCAAGATCAGGGATTAACTCATCGTTCATGCCTTCCGGTTCAATGATGGATTCAAAC ACTGTGCTTTACACTTCTTCAGGGTTTCCAACAATGGTGGATTACAAGCCAAGTAATCTC TCCTTCTCTACCGATCATCAAGGGCTTGGACACAATAGCAACAATAGGTCTGAAGCTCTT CATAGTGATCATCACCAACAAGGTAGAGTTTTGTTTCCATTTGGGGGATCAAATGAAGGAG CTTTCATCAAGCATAACACAAGAAGTTGATCATGATGATAATCAACAACAGAAGAGTCAT GGAAATAATAATAATAATAACTCAAGCCCTAATAATGGATATTGGAGTGGGATGTTC AGTACTACAGGAGGAGGATCTTCATGGTGA

>G1883 Amino Acid Sequence (domain in aa coordinates: 82-124)
MDATKWTQGFQEMMNVKPMEQIMIPNNNTHQPNTTSNARPNTILTSNGVSTAGATVSGVS

101/286

NNNNNTAVVAERKARPQEKLNCPRCNSTNTKFCYYNNYSLTQPRYFCKGCRRYWTEGGSL RNVPVGGSSRKNKRSSSSSSSSILQTIPSSLPDLNPPILFSNQIHNKSKGSSQDLNLLSF PVMQDQHHHHVHMSQFLQMPKMEGNGNITHQQQPSSSSSVYGSSSSPVSALELLRTGVNV SSRSGINSSFMPSGSMMDSNTVLYTSSGFPTMVDYKPSNLSFSTDHQGLGHNSNNRSEAL HSDHHQQGRVLFPFGDQMKELSSSITQEVDHDDNQQQKSHGNNNNNNNSSPNNGYWSGMF STTGGGSSW*

>G1884 (1..741)

>G1884 Amino Acid Sequence (domain in AA coordinates:43-71)
MMTSSHQSNTTGFKPRRIKTTAKPPRQINNKEPSPATQPVLKCPRCDSVNTKFCYYNNYS
LSQPRHYCKNCRRYWTRGGALRNVPIGGSTRNKNKPCSLQVISSPPLFSNGTSSASRELV
RNHPSTAMMMMSSGGFSGYMFPLDPNFNLASSSIESLSSFNQDLHQKLQQQRLVTSMFLQ
DSLPVNEKTVMFQNVBLIPPSTVTTDWVFDRFATGGGATSGNHEDNDDGEGNLGNWFHNA
NNNALL*

>G1891 (1..750)

>G1891 Amino Acid Sequence (domain in aa coordinates: 27-69)
MDNLNVFANEDNQVNDVKPPPPPPRVCARCDSDNTKFCYYNNYCEFQPRYFCKNCRRYWT
HGGALRNIPIGGSSRAKRARVNQPSVARMVSVETQRGNNQPFSNVQENVHLVGSFGASSS
SSVGAVGNLFGSLYDIHGGMVTNLHPTRTVRPNHRLAFHDGSFEQDYYDVGSDNLLVNQQ
VGGYGYHMNPVDQFKWNQSFNNTMNMNYNNDSTSGSSRGSDMNVNHDNKKIRYRNSVIMH
PCHLEKDGP*

>G1896 (1..951)

AGCGACGGAAACTTAGCTTCTTCTATAGAGACTTTGAGTTGTTTAAACCAAGATTTACAC
TGGAGGCTTCAGCAACAGAGGATGGCGATGCTTTTTGGTAATTCTAAGGAAGAAACTGTT
GTCGTCGAGAGGCCACAACCTATTCTTTATCGGAATCTTGAGATCGTAAACTCATCATCG
CCGTCGTCGCCGACGAAGAAAGGAGATAATCAGACAGAGTGGTATTTTGGTAATAACAGT
GATAATGAAGGAGTGATTAGTAATAATGCTAATACAGGAGGAGGAGGAAGTGAATGGAAC
AATGGAATTCAAGCTTGGACTGATCTTAATCATTATAATGCATTGCCTTGA

>G1896 Amino Acid Sequence (domain in aa coordinates: 43-85)
MSSHTNLPSPKPVPKPDHRISGTSQTKKPPSSSVAQDQQNLKCPRCNSPNTKFCYYNNYS
LSQPRHFCKSCRRYWTRGGALRNVPIGGGCRKTKKSIKPNSSMNTLPSSSSSQRFFSSIM
EDSSKFFPPPTTMDFQLAGLSLNKMNDLQLLNNQEVLDLRPMMSSGRENTPVDVGSGLSL
MGFGDFNNNHSPTGFTTAGASDGNLASSIETLSCLNQDLHWRLQQQRMAMLFGNSKEETV
VVERPQPILYRNLEIVNSSSPSSPTKKGDNQTEWYFGNNSDNEGVISNNANTGGGGSEWN
NGIQAWTDLNHYNALP*

>G1898 (1..630)

>G1898 Amino Acid Sequence (domain in AA coordinates: 31-59)
MPSEPNQTRPTRVQPSTAAYPPPNLAEPLPCPRCNSTTTKFCYYNNYNLAQPRYYCKSCR
RYWTQGGTLRDVPVGGGTRRSSSKRHRSFSTTATSSSSSSVITTTTQEPATTEASQTKV
TNLISGHGSFASLLGLGSGNGGLDYGFGYGYGLEEMSIGYLGDSSVGEIPVVDGCGGDTW
QIGEIEGKSGGDSLIWPGLEISMQTNDVK*

>G1902 (1..615)

>G1902 Amino Acid Sequence (domain in AA coordinates:31-59)
MQDPAAYYQTMMAKQQQQQQPQFAEQEQLKCPRCDSPNTKFCYYNNYNLSQPRHFCKSCR
RYWTKGGALRNVPVGGGSRKNATKRSTSSSSSASSPSNSSQNKKTKNPDPDPDPRNSQKP
DLDPTRMLYGFPIGDQDVKGMEIGGSFSSLLANNMQLGLGGGGIMLDGSGWDHPGMGLGL
RRTEPGNNNNNPWTDLAMNRAEKN*

>G1904 (1..924)

TACGGTAACGGGATCGAGTGGTCGACGTTACTTGGACAAGGCTCATCGGCCGGTGGTGTT
TTCTCGGAGATCGGTGGTTTTCCGGCGGTTTCAGCTATTGAAACTACACCGTTTGGATTC
GGGGGTAAATTCGTAAATCAAGATGATCATCTGAAGTTAGAAGGTGAAACTGTACAGCAG
CAACAGTTTGGAGATCGAACGGCTCAGGTTGAGTTTCAAGGAAGATCTTCGGATCCGAAT
ATGGGATTTGAACCGTTGGATTGGGGAAGTGGCGGTGGAGATCAAACACTGTTTGATTTA
ACCAGTACCGTTGATCATGCATACTGGAGTCAAAGTCAATGGACGTCGTCTGACCAAGAT
CAGAGTGGTCTCTACCTTCCTTGA

>G1904 Amino Acid Sequence (domain in aa coordinates: 53-95)
MQDIHDFSMNGVGGGGGGGFFFGGGIGGGGGGDRRMRAHQNNILNHHQSLKCPRCNSLN
TKFCYYNNYNLSQPRHFCKNCRRYWTKGGVLRNVPVGGGCRKAKRSKTKQVPSSSSADKP
TTTQDDHHVEEKSSTGSHSSSESSSLTASNSTTVAAVSVTAAAEVASSVIPGFDMPNMKI
YGNGIEWSTLLGQGSSAGGVFSEIGGFPAVSAIETTPFGFGGKFVNQDDHLKLEGETVQQ
QQFGDRTAQVEFQGRSSDPNMGFEPLDWGSGGGDQTLFDLTSTVDHAYWSQSQWTSSDQD
QSGLYLP*

>G1906 (1..795)

>G1906 Amino Acid Sequence (domain in AA coordinates:19-47)
MVERARIAKVPLPEAALNCPRCDSTNTKFCYFNNYSLTQPRHFCKTCRRYWTRGGSLRNV
PVGGGFRRNKRSKSRSKSTVVVSTDNTTSTSSLTSRPSYSNPSKFHSYGQIPEFNSNLPI
LPPLQSLGDYNSSNTGLDFGGTQISNMISGMSSSGGILDAWRIPPSQQAQQFPFLINTTG
LVQSSNALYPLLEGGVSATQTRNVKAEENDQDRGRDGDGVNNLSRNFLGNININSGRNEE
YTSWGGNSSWTGFTSNNSTGHLSF*

>G1913 (1..744)

>G1913 Amino Acid Sequence (domain in AA coordinates: 27-55)
MERAEALTSSFIWRPNANANAEITPSCPRCGSSNTKFCYYNNYSLTQPRYFCKGCRRYWT
KGGSLRNVPVGGGCRKSRRPKSSSGNNTKTSLTANSGNPGGGSPSIDLALVYANFLNPKP
DESILQENCDLATTDFLVDNPTGTSMDPSWSMDINDGHHDHYINPVEHIVEECGYNGLPP
FPGEELLSLDTNGVWSDALLIGHNHVDVGVTPVQAVHEPVVHFADESNDSTNLLFGSWSP
FDFTADG*

>G1914 (1..945)

ATGGAGAGATACAAGTGTAGATTTTGCTTCAAGAGCTTCATCAATGGAAGAGCTTTAGGT

104/286

GGTCACATGAGATCTCACATGCTTACTCTTTCTGCAGAACGTTGTGTAATAACTGGTGAA GCAGAAGAAGAAGTAGAGGAACGGCCGAGTCAACTCTGTGACGACGACGACGATACCGAG TCCGATGCTTCTTCTTCTTGGTGAGTTTGATAATCAAAAGATGAATCGTCTTGATGAT GAATTGGAGTTTGATTTCGCTGAAGACGACGACGTTGAAAGTGAAACCGAGTCGTCCAGG ATTAACCCAACTCGGCGACGATCTAAACGAACTCGGAAACTTGGATCGTTTGATTTCGAC TTTGAGAAGCTAACAACGAGCCAACCCAGTGAGTTAGTGGCCGAGCCAGAGCATCACAGC TCAGCTTCTGATACAACAACGGAGGAAGATCTCGCCTTTTGTCTCATTATGCTGTCCAGA GACAAATGGAAGCAACAGAAGAAGAAGAAGCAACGTGTAGAAGAAGATGAGACAGATCAT GACAGTGAAGATTACAAATCAAGCAAGAGCAGAGGGAGATTCAAGTGTGAGACTTGTGGT AAAGTGTTTAAATCGTATCAAGCATTAGGAGGACACAGAGCAAGCCACAAGAAGAACAAG GCATGCATGACGAAAACAGAGCAAGTTGAAACAGAGTACGTTCTTGGAGTAAAGGAGAAG AAAGTTCATGAATGTCCGATCTGTTTTAGGGTTTTTACTTCAGGGCAAGCACTTGGAGGT CATAAGAGATCTCACGGAAGTAACATCGGAGCAGGAAGAGGATTGTCAGTAAGTCAAATT CCTAATGAAGAAGATGAAACTTCTTTGGTGTTTGATGAATGGTGA

>G1914 Amino Acid Sequence (domain in AA coordinates:195-216, 245-266) MERYKCRFCFKSFINGRALGGHMRSHMLTLSAERCVITGEAEEEVEERPSQLCDDDDDTE SDASSSSGEFDNQKMNRLDDELEFDFAEDDDVESETESSRINPTRRRSKRTRKLGSFDFD FEKLTTSQPSELVAEPEHHSSASDTTTEEDLAFCLIMLSRDKWKQQKKKKQRVEEDETDH DSEDYKSSKSRGRFKCETCGKVFKSYQALGGHRASHKKNKACMTKTEQVETEYVLGVKEK KVHECPICFRVFTSGQALGGHKRSHGSNIGAGRGLSVSQIVQIEEEVSVKQRMIDLNLPA PNEEDETSLVFDEW*

>G1925 (1..945)

ATGGAAGAAAATCTTCCTCCGGGGTTCAGATTTCATCCTACAGACGAGGAGCTCATAACG CATTATCTATGTCGGAAAGTCTCCGATATAGGATTCACCGGTAAAGCTGTCGTCGACGTT GATCTCAACAAGTGTGAACCTTGGGATTTGCCAGCCAAGGCTTCAATGGGAGAAAAGAG TGGTATTTCTTCAGCCAAAGGGATCGGAAATATCCAACCGGTTTAAGAACAAACCGGGCA ACAGAAGCTGGTTACTGGAAAACCACCGGGAAAGATAAAGAAATATACCGAAGTGGAGTG TTGGTTGGGATGAAGAAAACCCTAGTTTTCTACAAAGGAAGAGCTCCCAAAGGTGAGAAA AGCAATTGGGTTATGCATGAGTACAGGCTTGAGAGCAAACAACCTTTCAACCCCACGAAT GAACAACCACCTCAATCTTCTCAACCATCTTTTGGATCTCCATGCGATGCAAACTCATCA ATGGCAAATGAGTTTGAAGATATTGATGAGCTTCCGAATCTGAATTCAAACTCATCAACC ATCGATTACAATAATCATATCCATCAATATTCGCAACGCAATGTTTACTCAGAAGACAAC ACAACAAGTACGGCTGGTCTCAACATGAACATGAACATGGCTAGTACTAATCTTCAGTCT TGGACAACAAGTCTCCTTGGTCCGCCTTTATCTCCAATCAACTCTTTGTTGCTCAAGGCT TTCCAAATCAGGAACTCTTATAGTTTCCCAAAAGAGATGATCCCCAGTTTCAATCATTCT TCTCTTCAACAAGGAGTCTCCAATATGATCCAAAATGCTTCAAGTTCGTCTCAAGTGCAA CCCCAACCGCAAGAGGAAGCGTTTAATATGGACTCCATATGGTGA

>G1925 Amino Acid Sequence (conserved domain in AA coordinates:6-150) MEENLPPGFRFHPTDEELITHYLCRKVSDIGFTGKAVVDVDLNKCEPWDLPAKASMGEKE WYFFSQRDRKYPTGLRTNRATEAGYWKTTGKDKEIYRSGVLVGMKKTLVFYKGRAPKGEK SNWVMHEYRLESKQPFNPTNKEEWVVCRVFEKSTAAKKAQEQQPQSSQPSFGSPCDANSS MANEFEDIDELPNLNSNSSTIDYNNHIHQYSQRNVYSEDNTTSTAGLNMNMNMASTNLQS WTTSLLGPPLSPINSLLLKAFQIRNSYSFPKEMIPSFNHSSLQQGVSNMIQNASSSSQVQ PQPQEEAFNMDSIW*

>G1929 (1..366)

ATGTGTAGAGGCTTGAATAATGAAGAGAGCAGAAGAAGTGACGGAGGAGGTTGCCGGAGT CTCTGCACGAGACCGAGTGTTCCGGTAAGGTGTGAGCTTTGCGACGGAGACGCCTCCGTG TTCTGTGAAGCGGACTCGGCGTTCCTCTGTAGAAAATGTGACCGGTGGGTTCATGGAGCG AATTTTCTAGCTTGGAGACACGTAAGGCGCGTGCTATGCACTTCTTGTCAGAAACTCACG CGCCGGTGCCTCGTCGGAGATCATGACTTCCACGTTGTTTTTACCGTCGGTGACGACGGTC

>G1929 Amino Acid Sequence (domain in AA coordinates:31-53) MCRGLNNEESRRSDGGGCRSLCTRPSVPVRCELCDGDASVFCEADSAFLCRKCDRWVHGA NFLAWRHVRRVLCTSCQKLTRRCLVGDHDFHVVLPSVTTVGETTVENRSEQDNHEVPFVF

>G1930 (76..1077)

ATTCACATTACTAATCTCTCAAGATTTCACAATTTTCTTGTGATTTTCTCTCAGTTTCTT ATTTCGTTTCATAACATGGATGCCATGAGTAGCGTAGACGAGAGCTCTACAACTACAGAT TCCATTCCGGCGAGAAAGTCATCGTCTCCGGCGAGTTTACTATATAGAATGGGAAGCGGA ACAAGCGTGGTACTTGATTCAGAGAACGGTGTCGAAGTCGAAGTCGAAGCCGAATCAAGA AAGCTTCCTTCTTCAAGATTCAAAGGTGTTGTTCCTCAACCAAATGGAAGATGGGAGCT CAGATTTACGAGAAACATCAACGCGTGTGGCTTGGTACTTTCAACGAGGAAGACGAAGCA GCTCGTGCTTACGACGTCGCGGCTCACCGTTTCCGTGGCCGCGATGCCGTTACTAATTTC AAAGACACGACGTTCGAAGAAGAGGTTGAGTTCTTAAACGCGCATTCGAAATCAGAGATC GTAGATATGTTGAGAAAACACACTTACAAAGAAGAGTTAGACCAAAGGAAACGTAACCGT GACGGTAACGGAAAAGAGACGACGGCGTTTGCTTTGGCTTCGATGGTGGTTATGACGGGG TTTAAAACGGCGGAGTTACTGTTTGAGAAAACGGTAACGCCAAGTGACGTCGGGAAACTA AACCGTTTAGTTATACCAAAACACCAAGCGGAGAAACATTTTCCGTTACCGTTAGGTAAT AATAACGTCTCCGTTAAAGGTATGCTGTTGAATTTCGAAGACGTTAACGGGAAAGTGTGG ${\tt AGGTTCCGTTACTCTTATTGGAATAGTAGTCAAAGTTATGTGTTGACCAAAGGTTGGAGT}$ AGATTCGTTAAAGAGAAGAGACTTTGTGCTGGTGATTTGATCAGTTTTAAAAGATCCAAC GATCAAGATCAAAAATTCTTTATCGGGTGGAAATCGAAATCCGGGTTGGATCTAGAGACG GGTCGGGTTATGAGATTGTTTGGGGTTGATATTTCTTTAAACGCCGTCGTTGTAGTGAAG GAAACAACGGAGGTGTTAATGTCGTCGTTAAGGTGTAAGAAGCAACGAGTTTTGTAATAA CAATTTAACAACTTGGGAAAGAAAAAAAGCTTTTTGATTTTAATTTCTCTTCAACGTTA ATCTTGCTGAGATTA

>G1930 Amino Acid Sequence (domain in AA coordinates: 59-124)
MDAMSSVDESSTTTDSIPARKSSSPASLLYRMGSGTSVVLDSENGVEVEVEAESRKLPSS
RFKGVVPQPNGRWGAQIYEKHQRVWLGTFNEEDEAARAYDVAAHRFRGRDAVTNFKDTTF
EEEVEFLNAHSKSEIVDMLRKHTYKEELDQRKRNRDGNGKETTAFALASMVVMTGFKTAE
LLFEKTVTPSDVGKLNRLVIPKHQAEKHFPLPLGNNNVSVKGMLLNFEDVNGKVWRFRYS
YWNSSQSYVLTKGWSRFVKEKRLCAGDLISFKRSNDQDQKFFIGWKSKSGLDLETGRVMR
LFGVDISLNAVVVVKETTEVLMSSLRCKKQRVL*

>G195 (51..1031)

TTTTCTTTTTCTTTTCTTTTTGGTTTAAGTTTTTTCTCTTTTGTTCTTCGTCATGTCTCATG AAATCAAAGATCTTAACAACTATCACTACACTTCATCGTATAATCATTACAATATCAACA ACCAAAATATGATTAATCTCCCTTACGTTTCTGGTCCATCTGCTTATAATGCAAACATGA TCTCATCATCACAAGTAGGTTTTGATCTACCCTCGAAGAACTTGAGTCCTCAAGGAGCCT TCGAGTTGGGTTTCGAGCTTTCTCCATCTTCTTCTGACTTTTTTAATCCTTCCCTCGATC AAGAGAACGGTTTGTATAATGCTTATAATTATAATAGTAGTCAAAAGAGTCATGAAGTTG TCGGTGATGGTTGTGCAACCATTAAGAGTGAAGTTAGGGTTTCAGCATCTCCTTCTTCAA GTGAGGCCGATCATCATCCAGGAGAAGATTCCGGCAAGATCCGGAAGAAAAGAGAAGTTC GCGATGGAGGAGAAGATGATCAACGCTCTCAGAAAGTAGTTAAAACAAAGAAGAAGAAGAGG AGAAGAAAAAAGAGCCACGAGTCTCGTTCATGACTAAGACCGAAGTTGATCATCTCGAAG ACGGCTATCGTTGGAGAAAGTATGGCCAAAAAGCAGTCAAAAACAGTCCTTATCCGAGGA GTTACTATAGATGCACGACTCAGAAGTGCAACGTGAAGAAGAGAGTGGAGAGATCTTACC AAGACCCAACGGTCGTCATCACAACCTACGAGAGTCAACACAACCATCCGATCCCGACCA ATCGTCGGACAGCAATGTTCTCTGGAACCACCGCATCTGATTATAACCCCATCATCGTCTC CAATATTCTCCGATCTCATCATCAATACTCCAAGAAGCTTCTCAAATGATGATCTCTTCC GTGTGCCATACGCTAGTGTGAACGTGAACCCTAGTTATCATCAACAGCAACATGGATTTC ATCAACAGGAGAGTGAGTTCGAGCTCTTGAAGGAGATGTTTCCTTCGGTTTTCTTCAAAC ATACATGTTTTGTTAACTAGCTATAGGATATACTGGTAGTAATTAAGCATAAATATGGAG CCCTTCGACTTATTACAATAATTTTTGGTATGGAAAAANTTNGNTACATGCCTGCCTTTT

>G195 Amino Acid Sequence (domain in AA coordinates: 183-239)
MSHEIKDLNNYHYTSSYNHYNINNQNMINLPYVSGPSAYNANMISSSQVGFDLPSKNLSP
QGAFELGFELSPSSSDFFNPSLDQENGLYNAYNYNSSQKSHEVVGDGCATIKSEVRVSAS
PSSSEADHHPGEDSGKIRKKREVRDGGEDDQRSQKVVKTKKKEEKKKEPRVSFMTKTEVD
HLEDGYRWRKYGQKAVKNSPYPRSYYRCTTQKCNVKKRVERSYQDPTVVITTYESQHNHP

IPTNRRTAMFSGTTASDYNPSSSPIFSDLIINTPRSFSNDDLFRVPYASVNVNPSYHQQQ HGFHQQESEFELLKEMFPSVFFKQEP*

>G1954 (196..1440)

ATTTATGACTTCTCAATACAAAAAGCTCCCCTCACTTTTTTAAGTTTTGTCTTCTCTAAT CCGTCTTCTTCTACTATCTTGCATGTCTTGCGTCTTTTATATACATCTCTCGTAAACCCT AGCAAATCATACAAGGTCAAGAAGCTTGACCTTCATTAGACTTAAGCAGTTTATAATCAA CTACCACGAATAGCAATGGATAAAGATTACTCGGCACCAAACTTCTTAGGTGAATCCTCA GGCGGTAACGATGATAACAGCTCTGGTATGATAGACTATATGTTCAATAGAAACCTTCAA CAACAACAAAAGCAATCGATGCCACAACAGCAGCAACATCAACTCTCTCCTTCCGGATTT GGAGCAACACCCTTTGATAAAATGAACTTCTCTGATGTGATGCAGTTTGCGGACTTCGGT TCGAAACTTGCGTTGAACCAGACCAGAAACCAAGACGATCAAGAAACCGGGATTGACCCC GTTTATTTCTTGAAGTTCCCTGTCTTGAACGACAAAATAGAGGACCATAACCAAACCCAA CATCTCATGCCTTCTCATCAGACGTCTCAAGAAGGAGGTGAGTGTGGAGGAAACATAGGC AATGTGTTTCTTGAAGAAAAAGAAGATCAAGACGATGACAACGACAACAACTCCGTGCAA CTACGTTTTATTGGAGGAGAAGAAGAAGATAGGGAGAACAAGAATGTTACGAAAAAGGAG GTGAAGAGCAAGAGGAAGAGAGCTAGAACGAGCAAGACCAGCGAAGAAGTGGAAAGCCAA GTCCTTAGATCTCTCATGCCTGGCTCCTACGTTCAAAGGGGAGACCAAGCGTCAATCATA GGAGGAGCAATAGAGTTTGTGAGAGAGCTCGAGCAACTCCTACAATGTCTTGAATCACAG AAGCGTCGAAGAATCTTAGGAGAAACCGGTAGGGACATGACAACGACAACGACTTCTTCT TCTTCTCCCATAACTACGGTAGCGAACCAAGCACAACCGCTCATTATTACGGGAAATGTA ACCGAGCTAGAGGGCGGAGGAGGGCTTCGGGAGGAGACTGCGGAGAACAAGTCGTGCTTG GCTGACGTGGAGGTGAAGCTGCTAGGGTTTGACGCCATGATCAAGATACTTTCAAGAAGA AGGCCGGGACAGCTGATTAAGACTATAGCTGCTTTGGAGGATCTTCATCTCTATTCTT CACACTAACATCACTACCATGGAACAAACCGTCCTCTACTCCTTTAATGTCAAGATAACA ATTCATGCAAATACCAACATATCTGGAAGCTCTAACCTGGGAAATATTGTGTTTACTTGA AAATCATCACACGGCGACAACTTTGTACACTGGTGAAGATTACAGTACGTAATAATCTCT ACATATTGGGTTTTATTCTCCAAGCATTTGGAAGAGTGTTTAAGTTAAAGGGAGTGCTTA CTTTATTTTTTTGGGGCTTTTTTCATGCAATTTAAATTTTAGTGATGATTGTCTCGCTTG TAATGTTAGAACTCGTTGTTGTGATTTCTGCTGCTTTGATTTGTAGGTTTTGAACAAGCG AAGAAAAAA

>G1954 Amino Acid Sequence (domain in AA coordinates:187-259)
MDKDYSAPNFLGESSGGNDDNSSGMIDYMFNRNLQQQQKQSMPQQQQHQLSPSGFGATPF
DKMNFSDVMQFADFGSKLALNQTRNQDDQETGIDFVYFLKFPVLNDKIEDHNQTQHLMPS
HQTSQEGGECGGNIGNVFLEEKEDQDDDNDNNSVQLRFIGGEEEDRENKNVTKKEVKSKR
KRARTSKTSEEVESQRMTHIAVERNRRKQMNEHLRVLRSLMPGSYVQRGDQASIIGGAIE
FVRELEQLLQCLESQKRRRILGETGRDMTTTTTSSSSPITTVANQAQPLIITGNVTELEG
GGGLREETAENKSCLADVEVKLLGFDAMIKILSRRRPGQLIKTIAALEDLHLSILHTNIT
TMEQTVLYSFNVKITSETRFTAEDIASSIQQIFSFIHANTNISGSSNLGNIVFT*

>G1958 (107..1336) GTACCGTCGACCGATTATCCCCAAGAGGAGAATCCTCATAATCATTTTCTCCGATTCGAT TCGTCTTCCTTGGTCCTGGATTGCTTCATGAATTTCTAGGACAACAATGGAGGCTCGTCC AGTTCATAGATCAGGTTCGAGAGACCTCACACGCACTTCTTCAATCCCATCTACACAAAA ACCATTAGGACAAACCTACCATTTACTTTCATCTAGTAACGGTGGAGCTGTTGGACATAT ATGTTCTTCTTCATCATCTGGTTTTGCAACCAATCTCCATTACTCAACTATGGTATCTCA TGAGAAACAACAACACTACACAGGAAGCAGCAGTAATAATGCTGTGCAGACACCAAGCAA CAACGATAGTGCTTGGTGTCATGATTCATTGCCAGGAGGGTTTCTTGACTTCCATGAAAC CAACCCGGCGATTCAAAACAACTGTCAGATTGAGGATGGTGGCATTGCGGCTGCTTTTGA TGACATTCAAAAACGAAGTGATTGGCATGAATGGGCTGACCATTTGATCACTGATGATGA TCCTTTGATGTCTACTAACTGGAATGATCTCTTGCTTGAAACAAATTCCAATTCAGATTC AAAGGACCAGAAGACACTGCAAATTCCGCAACCTCAGATTGTTCAGCAGCAACCTTCTCC GTCTGTGGAATTGCGACCTGTTAGCACAACATCTTCAAACAGCAATAACGGAACGGGCAA GGCACGAATGCGTTGGACGCCAGAGCTTCACGAGGCTTTTGTTGAGGCTGTCAACAGTCT TGGCGGTAGTGAAAGAGCTACTCCTAAAGGGGTACTGAAGATTATGAAAGTTGAAGGCTT

GACTATATATCATGTTAAAAGCCATTTACAGAAATATAGGACAGCTAGATATCGGCCAGA
ACCATCAGAAACTGGTTCGCCAGAAAGGAAGTTGACACCGCTTGAACATATAACATCTCT
TGATTTGAAAGGTGGGATAGGTATTACAGAGGCTCTACGACTTCAGATGGAAGTACAGAA
GCAACTCCATGAGCAGCTCGAGATTCAAAGAAACCTGCAACTCCGAATAGAAGAACAAGG
CAAGTACCTGCAAATGATGTTCGAGAAGCAAAACTCTGGTCTTACCAAAGGGACAGCCTC
AACATCAGATTCCGCAGCCAAATCTGAACAAGAAGACAAGAAGACTGCTGATTCGAAGGA
GGTTCCAGAAGAAGAAACCAGGAAATGTGAGGAACTAGAATCTCCACAGCCAAAGCGTCC
CAAAATCGATAATTGAAAGTATTGGTCTTTTGCTGGATAATCTCGGAGTTTCAGAGTTAA
CAGTGATAGAGAAACGAGCTCTTATCTTGAGGTTCTTCAGGACTTCTCTCGCGGCCGCT

>G1958 Amino Acid Sequence (domain in AA coordinates: 230-278)
MEARPVHRSGSRDLTRTSSIPSTQKPSPVEDSFMRSDNNSQLMSRPLGQTYHLLSSSNGG
AVGHICSSSSGGATNLHYSTMVSHEKQQHYTGSSSNNAVQTPSNNDSAWCHDSLPGGFL
DFHETNPAIQNNCQIEDGGIAAAFDDIQKRSDWHEWADHLITDDDPLMSTNWNDLLLETN
SNSDSKDQKTLQIPQPQIVQQQPSPSVELRPVSTTSSNSNNGTGKARMRWTPELHEAFVE
AVNSLGGSERATPKGVLKIMKVEGLTIYHVKSHLQKYRTARYRPEPSETGSPERKLTPLE
HITSLDLKGGIGITEALRLQMEVQKQLHEQLEIQRNLQLRIEEQGKYLQMMFEKQNSGLT
KGTASTSDSAAKSEQEDKKTADSKEVPEEETRKCEELESPQPKRPKIDN*
>G196 (111..1421)

TCGACATCAGATTTCTCTCACGGATTCCTAATCATTTTTATTATATTTGGATATTTGCTA TCTTTGAGTTTCAAGACATGGACAACTTCCAAGGAGATCTAACAGACGTCGTACGAGGAA TAGGATCAGGCCACGTGTCACCATCTCCTGGACCACCGGAAGGTCCATCTCCGAGCAGCA TGTCTCCGCCGCCAACATCAGATCTCCACGTGGAATTCCCCTCCGCCGCTACTTCTGCCA GCTGTCTCGCAAATCCCTTCGGAGACCCGTTCGTAAGCATGAAGGATCCTCTCATCCACC TCCCGGCCAGCTACATCTCCGGCGCCGGTGATAATAAAAGCAACAAAAGTTTTGCAATCT TTCCAAAGATTTTTGAGGATGATCATATTAAGAGTCAATGCAGTGTCTTCCCAAGAATTA AGATCTCGCAAAGTAACAATATCCACGATGCCTCCACGTGTAATTCTCCGGCCATAACCG TCTCCTCTGCCGCCGTAGCAGCTTCGCCGTGGGGCATGATCAACGTTAATACCACTAACA GTCCAAGAAACTGTTTACTTGTCGATAATAATAACAACACGTCATCATGCTCACAGGTTC TGGTGTGCATACCGGCTCCAGCCGCTATGAACAGCCGGTCCAGTGGAGAAGTTGTTCCGT CTGATCTATGGGCTTGGCGAAAGTACGGTCAAAAACCTATCAAAGGTTCTCCTTATCCAA GGGGTTACTACAGATGTAGCAGCTCAAAAGGTTGTTCAGCTAGGAAACAAGTCGAACGTA GCCGCACTGATCCAAACATGTTAGTCATTACTTACACCTCTGAGCATAACCACCCATGGC ${\tt CTACTCAACGCAACGCTCTCGCAGGTTCCACTCGTTCCTCTTCCTCCTCTTTAAACC}$ $\tt CTTCTTCCAAATCCTCAACCGCAGCCGCCACTACTTCTCCCTCATCCAGAGTTTTCCAAA$ ACAACAGCAGCAAAGACGAACCCAATAACTCCAACTTGCCTTCCTCTTCCACTCATCCTC CTTTTGACGCCGCCAATTAAGGAGGAGAACGTGGAAGAGCGTCAGGAAAAGATGGAGT TCGATTATAATGACGTTGAAAATACCTATAGACCGGAGTTGTTGCAAGAGTTTCAACATC AGCCGGAGGATTTCTTTGCCGATCTCGACGAGCTTGAGGGAGATTCTTTGACTATGTTGC TCTCTCACAGTAGCGGCGGAGGCAACATGGAAAACAAAACGACGATTCCAGACGTTTTTA CATAGAAATGAAATTATTCATGTAATTCGTTTTGTGTTAAATGACGGTATTTGCCTTTGC

>G196 Amino Acid Sequence (conserved domain in AA coordinates:223-283)
MCSVFEFQDMDNFQGDLTDVVRGIGSGHVSPSPGPPEGPSPSSMSPPPTSDLHVEFPSAA
TSASCLANPFGDPFYSMKDPLIHLPASYISGAGDNKSNKSFAIFPKIFEDDHIKSQCSVF
PRIKISQSNNIHDASTCNSPAITVSSAAVAASPWGMINVNTTNSPRNCLLVDNNNNTSSC
SQVQISSSPRNLGIKRRKSQAKKVVCIPAPAAMNSRSSGEVVPSDLWAWRKYGQKPIKGS
PYPRGYYRCSSSKGCSARKQVERSRTDPNMLVITYTSEHNHPWPTQRNALAGSTRSSSSS
SLNPSSKSSTAAATTSPSSRVFQNNSSKDEPNNSNLPSSSTHPPFDAAAIKEENVEERQE
KMEFDYNDVENTYRPELLQEFQHQPEDFFADLDELEGDSLTMLLSHSSGGGNMENKTTIP
DVFSDFFDDDESSRSL*

>G1965 (1..609)

ATGGATAACTTCAATGTTGTTGCCAATGAAGACAATCAAGTGAATGATGTGAAGCCTCCA CCACCCCCACGCGAGTGTGTGCAAGATGTGATTCTGATAACACAAAATTTTGTTACTAC AACAATTATAGTGAGTTTCAACCGCGCTACTTCTGCAAGAACTGTCGAAGATACTGGACT CATGGTGGGGCTTTAAGAAACGTACCAATTGGTGGGAGTAGTCGTGCCAAGCGGACAAGG ATAAATCAACCTTCAGTTGCTCAGATGGTTTCTGTTGGAATCCAACCAGGGAACCGTTTT AGTTCTTTGTCTCATATTCATGGTGGTATGGTAACAAATGTGCATCCAACTCAAACTTTT CGACCAAATCATCGCCTAGCTTTCCATAATGGATCATTTGAGCAAGATTATTATGATGTT GGGTCTGATAATCTTTTGGTAAACCAACAAGTTGGTGGATATGTTGATAATCACAACGGT TATCACATGAATCAAGTGGATCAATACAACTGGAACCAGAGCTTCAATAACGCTATGAAC ATGAATTATAATAACGCTAGCACTAGCGGAAGGATGCATCCTAGTCATTTAGAGAAGGGT

>G1965 Amino Acid Sequence (domain in AA coordinates:27-55) MDNFNVVANEDNQVNDVKPPPPPPRVCARCDSDNTKFCYYNNYSEFQPRYFCKNCRRYWT HGGALRNVPIGGSSRAKRTRINQPSVAQMVSVGIQPGNRFSSLSHIHGGMVTNVHPTQTF RPNHRLAFHNGSFEQDYYDVGSDNLLVNQQVGGYVDNHNGYHMNQVDQYNWNQSFNNAMN MNYNNASTSGRMHPSHLEKGGP*

>G1976 (1..1152)

ATGACTGATCCTTATTCCAATTTCTTCACAGACTGGTTCAAGTCTAATCCTTTTCACCAT TCCTTCTTCTTCCCTCAATCCGGAGACCTCCGCCGTCCACCGCCGCCACCAACTCCT CCTCCTTCTCCTCCTCCGAGAAGCCCTCCCTCTCCTCAGCCTCAGCCCCGCCAACAAA CAACAAGACCACCATCACAACCATGACCACCTTATTCAAGAACCACCTTCAACCTCCATG GATGTCGACTACGATCACCATCAAGATGATCATCATAACCTCGATGACGATGACCAT GACGTCACCGTTGCTCTTCACATAGGCCTTCCAAGCCCTAGTGCTCAAGAGATGGCCTCT TTGCTCATGATGTCTTCTTCCTCTCTCCTCGAGGACCACTCATCATCACGAGGACATG AATCACAAGAAAGACCTCGACCATGAGTACAGCCACGGAGCTGTCGGAGGAGGAGAAGAT GACGATGAAGATTCAGTCGGCGGAGACGGCGGCTGTAGAATCAGCAGACTCAACAAGGGT CAATATTGGATCCCTACACCTTCTCAGATTCTCATTGGCCCTACTCAGTTCTCATGTCCT GTTTGCTTCAAAACCTTCAACAGATACAATAACATGCAGATGCATATGTGGGGACATGGA CTTCCGTGCTATTGCTGCGCCCCAGGCTGTCGCAACAACATTGACCATCCAAGGGCAAAG CCTCTCAAAGACTTCAGAACCCTTCAAACACATTACAAGAGAAAACATGGGATCAAACCT TTCATGTGTAGGAAATGTGGAAAGGCTTTCGCAGTCCGAGGGGACTGGAGAACACATGAG AAGAATTGTGGCAAACTTTGGTATTGCATATGTGGATCTGATTTCAAGCACAAGAGATCT CTCAAAGATCACATCAAGGCTTTTGGGAATGGTCATGGAGCCTACGGAATTGATGGGTTT GATGAAGAAGATGAGCCTGCCTCTGAGGTAGAACAATTAGACAATGATCATGAGTCAATG CAGTCTAAATAG

>G1976 Amino Acid Sequence (domain in AA coordinates: 219-323) MTDPYSNFFTDWFKSNPFHHYPNSSTNPSPHPLPPVTPPSSFFFFPQSGDLRRPPPPPTP PPSPPLREALPLLSLSPANKQQDHHHNHDHLIQEPPSTSMDVDYDHHHQDDHHNLDDDDH DVTVALHIGLPSPSAQEMASLLMMSSSSSSSRTTHHHEDMNHKKDLDHEYSHGAVGGGED DDEDSVGGDGGCRISRLNKGQYWIPTPSQILIGPTQFSCPVCFKTFNRYNNMQMHMWGHG SQYRKGPESLRGTQPTGMLRLPCYCCAPGCRMNIDHPRAKPLKDFRTLQTHYKRKHGIKP FMCRKCGKAFAVRGDWRTHEKNCGKLWYCICGSDFKHKRSLKDHIKAFGNGHGAYGIDGF DEEDEPASEVEQLDNDHESMQSK*

>G2057 (27..1289)

GCCGTCTCGACGAATATGCTCTACCAATGTCTGACGACCAATTCCATCACCCGCCGCCTC CTTCTTCAATGAGGCACCGTTCTACGTCGGATGCGGCGGACGGCGGCTGCGGCGAGATTG TTGAGGTGCAAGGTGGTCACATTGTTCGGTCTACCGGAAGAAAAGACCGCCACAGCAAAG TCTGCACGGCTAAAGGGCCACGTGACCGGCGCGTGAGACTCTCTGCTCACACGGCGATTC TTATCAAAAAGGCTAAGACTTCCATTGACGAGCTCGCTGAGCTTCCTCCCTGGAATCCCG CCGATGCAATTCGCCTAGCCGCTAACGCTAAACCCAGAAGAACCACCGCCAAAACCC AAATCTCTCCGTCTCCGCCACCGCCGCAACAGCAACAACAACAACAACAGCTTCAGTTCG GTGTTGGCTTCAACGGAGGAGGAGCAGCATCCGAGTAACAACGAGTCGAGTTTTCTCC CGCCGTCAATGGATTCAGATTCGATAGCTGACACTATAAAGTCGTTTTTTCCGGTGATTG GCTCTTCAACGGAGGCTCCTTCGAATCATAACCTTATGCACAACTATCATCATCAGCATC CGCCGGATTTGCTTTCTCGAACTAATAGCCAAAACCAAGATCTCCGTCTCTCGCTGCAAT CGTTCCCGGATGGTCCACCGTCGCTTCTGCACCACCACCACCACCACCACCCTCTGCTT MSDDQFHHPPPPSSMRHRSTSDAADGGCGEIVEVQGGHIVRSTGRKDRHSKVCTAKGPRD RRVRLSAHTAIQFYDVQDRLGFDRPSKAVDWLIKKAKTSIDELAELPPWNPADAIRLAAA NAKPRRTTAKTQISPSPPPPQQQQQQQQQLQFGVGFNGGGAEHPSNNESSFLPPSMDSDSI ADTIKSFFPVIGSSTEAPSNHNLMHNYHHQHPPDLLSRTNSQNQDLRLSLQSFPDGPPSL LHHQHHHTSASASEPTLFYGQSNPLGFDTSSWEQQSSEFGRIQRLVAWNSGGGGGATDT GNGGGFLFAPPTPSTTSFQPVLGQSQQLYSQRGPLQSSYSPMIRAWFDPHHHHQSISTDD LNHHHHLPPPVHQSAIPGIGFASGEFSSGFRIPARFQGQEEEQHDGLTHKPSSASSISRH

>G2107 (79..624)

>G2107 Amino Acid Sequence (domain in AA coordinates: TBD)
MENDDITVAEMKPKKRAGRRIFKETRHPIYRGVRRRDGDKWVCEVREPIHQRRVWLGTYP,
TADMAARAHDVAVLALRGRSACLNFSDSAWRLPVPASTDPDTIRRTAAEAAEMFRPPEFS
TGITVLPSASEFDTSDEGVAGMMMRLAEEPLMSPPRSYIDMNTSVYVDEEMCYEDLSLWS
Y*

>G211 (1..750)

>G211 Amino Acid Sequence (conserved domain in AA coordinates:24-137)
MMSCGGKKPVSKKTTPCCTKMGMKRGPWTVEEDEILVSFIKKEGEGRWRSLPKRAGLLRC
GKSCRLRWMNYLRPSVKRGGITSDEEDLILRLHRLLGNRWSLIAGRIPGRTDNEIKNYWN
THLRKKLLRQGIDPQTHKPLDANNIHKPEEEVSGGQKYPLEPISSSHTDDTTVNGGDGDS

 ${\tt KNSINVFGGEHGYEDFGFCYDDKFSSFLNSLINDVGDPFGNIIPISQPLQMDDCKDGIVGASSSSLGHD*}$

>G2133 (26..457)

>G2133 Amino Acid Sequence (domain in AA coordinates:11-83)
MDSRDTGETDQSKYKGIRRRKWGKWVSEIRVPGTRQRLWLGSFSTAEGAAVAHDVAFYCL
HRPSSLDDESFNFPHLLTTSLASNISPKSIQKAASDAGMAVDAGFHGAVSGSGGCEERSS
MANMEEEDKLSISVYDYLEDDLV*

>G2134 (36..644)

GAGCAAAAACTTTGTGTGCGTGTGTGTGTGTTCATGGCTGGTCTTAGGAATTCCGGTA ACAGCGACAAAGCGCAAAACGATGGCAAAGGTGTACCATCTGCCTACAGAGGAGTCCGGA AGAGAAAATGGGGGAAATGGGTGTCTGAAATCCGTGAACCGGGGACCAAGAACCGTATCT GGCTAGGCAGTTTCGAGACTCCTGAAATGGCTGCAACCGCATACGACGTGGCAGCATTTC ATTTCAGAGGGAGAGAGCTCGTCTCAACTTCCCTGAGCTCGCCAGCAGCCTTCCACGTC $\tt CTGCAGACTCTAGCTCAGACAGCATTCGCATGGCAGTTCATGAGGCAACACTCTGCCGCA$ CCACCGAAGGAACAGAGTCAGCCATGCAAGTGGACAGCTCAAGCTCCTCCAATGTAGCTC CAACAATGGTCAGACTCTCGCCCAGGGAAATTCAAGCGATCAACGAGTCAACTTTGGGAT CTCCTACTACAATGATGCATTCAACATACGACCCTATGGAGTTTGCTAATGATGTGGAGA TGAATGCTTGGGAAACATACCAGAGTGACTTTCTTTGGGACCCTTAACCCCAAAACCTAA CTCATGGAGAGCTTCTACAGCTCAATCTTACAATACCAGCATAAGTTACTGGCTTAGAAT ACTTAAATTTATTGAAGTTTAGTTTTCAGAGTCTACCACAAGGGTTGTTGATTCTGACGT TATAGCAAAGAATAAAGCTCATCAGATTTTGGAGGGAAAGACTCTATGAGCTTGATGGGT CCCTGAAAGGACCTCTTCACAAATATTTTTAAATTTTTTTGTTACTAGTAGAAACATAGA ATTT

>G2134 Amino Acid Sequence (domain in AA coordinates: TBD)
MAGLRNSGNSDKAQNDGKGVPSAYRGVRKRKWGKWVSEIREPGTKNRIWLGSFETPEMAA
TAYDVAAFHFRGREARLNFPELASSLPRPADSSSDSIRMAVHEATLCRTTEGTESAMQVD
SSSSSNVAPTMVRLSPREIQAINESTLGSPTTMMHSTYDPMEFANDVEMNAWETYQSDFL
WDP*PQNLTHGELLQLNLTIPA*

>G2151 (236..1321)

ACTTTGATTACTGGGTAATTTTAAAACCGCCATTGTTGTTCTCTTTTACTACTTTTGGGAA AATTTAAAAATCTCTTATTTCTGTTAAAGACTTGTAATTTTGGAGTTTTTAATGCATGGA CGGAAGAGAAGCAATGGCATTTCCAGGCTCGCATTCTCAGTACTATCTTCAAAGAGGAGC CTTTACTAATCTCGCACCTTCCCAAGTCGCGAGTGGGCTTCACGCGCCGCCGCCACATAC GGGATTGAGGCCAATGTCTAACCCTAACATTCATCACCCTCAGGCTAACAATCCAGGACC TCCTTTCTCGGATTTTGGACACACCATTCACATGGGAGTGGTCTCCTCTGCTTCTGATGC TGATGTGCAACCGCCACCGCCACCACCACCAGAGGAACCGATGGTTAAGAGGAAACG TGGACGGCCAAGAAAGTATGGAGAACCGATGGTTAGTAATAAGTCTAGGGACTCTTCTCC GCAACGCTTGGCTAATCTTGGTGAGTGGATGAATACTTCAGCTGGACTTGCTTTTGCACC TCATGTGATCAGCATTGGAGCAGGAGAAGACATTGCTGCGAAAGTTTTGTCATTTTCACA ACAAAGACCTCGGGCTCTTTGTATAATGTCAGGCACTGGAACCATTTCTTCAGTCACTCT GTGCAAACCCGGTTCAACCGATCGTCACTTAACATACGAGGGACCTTTTGAGATTATAAG TTTTGGTGGATCTTATTTGGTGAATGAAGAAGGTGGATCCAGAAGTCGAACAGGCGGATT GAGTGTCTCTCTTTCTCGTCCCGATGGTAGTATTATTGCCGGTGGAGTTGACATGCTTAT CGCAGCCAACCTTGTTCAGGTGGTGGCATGTAGTTTTGTATACGGAGCAAGGGCAAAGAC

PCT/US02/25805 WO 03/013227

TCATAATAACAATAACAAGACCATCAGACAAGAAAAGGAACCAAATGAAGAGGACAACAA TAGTGAAATGGAGACCACACCGGGTAGTGCAGCTGAACCAGCAGCATCTGCGGGTCAGCA GACGCCACAGAACTTCTCTCTCAGGGAATAAGGGGGTGGCCCGGTTCAGGCTCAGGCTC TGGCAGATCACTTGACATTTGCAGAAACCCACTCACTGATTTTGATTTGACTCGTGGATG ATATACACTATTAGTCTTTGAAGCAGCAGCATACAAAATGTGATTGCTGTACATATGTTA TTGTAGATTTCTCTCTGGGAATGTTGAAATCAGACATTTAAGGATTGATACTAGATCTCT CAGCTCCTTCTAACATTGTTAATGTAACAGAACCCTCCCACTTTCATGCTATTTGC >G2151 Amino Acid Sequence (domain in AA coordinates:93-113, 124-144) MDGREAMAFPGSHSQYYLQRGAFTNLAPSQVASGLHAPPPHTGLRPMSNPNIHHPQANNP GPPFSDFGHTIHMGVVSSASDADVQPPPPPPPPPEEPMVKRKRGRPRKYGEPMVSNKSRDS SPMSDPNEPKRARGRPPGTGRKQRLANLGEWMNTSAGLAFAPHVISIGAGEDIAAKVLSF SQQRPRALCIMSGTGTISSVTLCKPGSTDRHLTYEGPFEIISFGGSYLVNEEGGSRSRTG GLSVSLSRPDGSIIAGGVDMLIAANLVQVVACSFVYGARAKTHNNNNKTIRQEKEPNEED NNSEMETTPGSAAEPAASAGQQTPQNFSSQGIRGWPGSGSGSGRSLDICRNPLTDFDLTR

>G2154 (82..1317)

GCAAAAAGAAAAATGAAAAAAATCCCTAACTCTCTCTCTAGAAATTCTTATTTTTG TGCGTATCTCTAAAAAGGAATGGATCCTAACGAAAGCCACCATCACCACCAACAACAA CAGCTCCATCACCTCCACCAACAGCAACAGCAACAGCAGCAGCAGCAACGACTCACTTCT CCTTACTTCCACCACCAACTACAGCACCATCACCACCTTCCAACCACCGTAGCAACCACC GCTTCTACCGGAAACGCCGTTCCATCTTCCAACAATGGGCTTTTCCCTCCGCAGCCTCAG CCACAGCACCAGCCTAATGATGGGTCATCTTCTCTCGCGGTGTACCCTCATTCAGTTCCG TCCTCGGCTGTGACGGCGCCGATGGAGCCGGTAAAGAGGAAGAGGGGTCGACCAAGAAAG TATGTGACGCCGGAACAAGCCCTAGCGGCTAAGAAATTGGCGTCTTCTGCGAGTAGTTCG TCTGCTAAACAGAGGCGAGAGCTTGCTGCTGTTACCGGTGGTACGGTATCGACTAATTCC GGGTCATCCAAGAAATCTCAGCTTGGTTCTGTCGGGAAAACTGGACAATGTTTTACTCCG CATATTGTTAATATAGCTCCTGGCGAGGATGTGGTCCAGAAAATTATGATGTTCGCAAAC CAAAGCAAGCATGAACTATGCGTTCTTTCTGCATCAGGCACTATCTCTAATGCATCCTTG CGCCAACCGGCTCCATCAGGAGGCAACTTACCATATGAGGGTCAATACGAGATTCTCTCA CTATCTGGATCCTATATCCGAACTGAACAAGGTGGTAAATCCGGCGGCCTTAGCGTTTCT TTATCTGCTTCAGATGGTCAGATCATCGGTGGAGCGATTGGTAGCCATCTCACAGCTGCT AGTGGTGGGAAAGGGGATGCTTCAAACAGTGGAAGTCGGTTAACTTCTCCTGTAAGCTCT GGACAGTTGCTTGGCATGGGTTTCCCTCCTGGTATGGAATCTACGGGAAGAAATCCAATG AGGGGAAACGACGAGCAACATGATCATCATCATCAAGCCGGTTTGGGTGGACCTCAT CATTTCATGATGCAAGCGCCGCAGGGGATACACATGACACATTCCAGGCCATCTGAATGG CGCGGAGGAGGCAACAGCGGTCATGATGGCAGAGGCGGTGGCGGGTATGATTTGTCAGGA AGGATAGGACATGAGTCGTCGGAGAATGGAGATTACGAGCAGCAAATACCGGATTAGCAG AGCTTCCAGGAGAAGTGTGTAGAGTTTAGATCCCAAGTAGAGAAACAGAAGGCGAGCAAA GAATCTGAACTGAGAGAGGACTTATTAGACAGAGACTCGTCTGAAGGGTCTTTAATCATA GAAAGAAGTTGCTGAGTGATTGCTTTTGTTCTTCTTCTTGGTACGGTGTATTATATTAAC TCCACAACCTTTTTTTTATACTTTCAGTAACGATTCTCCTTCACTTTCAATTTCATTCCT CTAAAAAAGGAAATGCTCTTTTTGTGAAATATATACACTTCGTTTG

>G2154 Amino Acid Sequence (domain in AA coordinates:97-119) MDPNESHHHHQQQQLHHLHQQQQQQQQQQRLTSPYFHHQLQHHHHLPTTVATTASTGNAV PSSNNGLFPPQPQPQHQPNDGSSSLAVYPHSVPSSAVTAPMEPVKRKRGRPRKYVTPEQA LAAKKLASSASSSAKQRRELAAVTGGTVSTNSGSSKKSQLGSVGKTGQCFTPHIVNIAP GEDVVQKIMMFANQSKHELCVLSASGTISNASLRQPAPSGGNLPYEGQYEILSLSGSYIR TEQGGKSGGLSVSLSASDGQIIGGAIGSHLTAAGPVQVILGTFQLDRKKDAAGSGGKGDA ${ t SNSGSRLTSPVSSGQLLGMGFPPGMESTGRNPMRGNDEQHDHHHHQAGLGGPHHFMMQAP}$ QGIHMTHSRPSEWRGGGNSGHDGRGGGGYDLSGRIGHESSENGDYEQQIPD*

>G2157 (306..1238)

CCTTTTATGATAAAGGTATGATGATAGCAAACAAATGATACCCCCATGTCTTGTGTGTCT GCTTCATGCAACATGTTGGTTTGGATTTGGTTAATCTAAAAGTTTAAGATAAGGTTTTCG GATTCTCTTCCTGTCTTGTAATAGTTTCTTGTCGGAGAGCCATCAACACCAACTTCAACA 112/286

AAAAAACAAGAAAAAGAAAAGATTCTCTTTTCTCGTTTTATTTCCATTAGAGAAGAAAA AAAGAATGGCGAATCCTTGGTGGGTAGGGAATGTTGCGATCGGTGGAGTTGAGAGTCCAG TGACGTCATCAGCTCCTTCTTTGCACCACAGAAACAGTAACAACAACAACCCACCGACTA TGACTCGTTCGGATCCAAGATTGGACCATGACTTCACCACCAACAACAGTGGAAGCCCTA ATACCCAGACTCAGAGCCAAGAAGAACAGAACAGCAGAGACGAGCAACCAGCTGTTGAAC CCGGATCCGGATCCGGGTCTACGGGTCGTCCTAGAGGTAGACCTCCTGGTTCCAAGA ACAAACCAAAGAGTCCAGTTGTTGTTACCAAAGAAAGCCCTAACTCTCTCCAGAGCCATG TTCTTGAGATTGCTACGGGAGCTGACGTGGCGGAAAGCTTAAACGCCTTTGCTCGTAGAC GCGGCCGGGCGTTTCGGTGCTGAGCGGTAGTGGTTTGGTTACTAATGTTACTCTGCGTC ${\tt AGCCTGCTGCATCCGGTGGAGTTGTTAGTTTACGTGGTCAGTTTGAGATCTTGTCTATGT}$ GTGGGGCTTTTCTTCCTACGTCTGGCTCTCCTGCTGCAGCCGCTGGTTTAACCATTTACT TAGCTGGAGCTCAAGGTCAAGTTGTGGGAGGTGGAGTTGCTGGCCCGCTTATTGCCTCTG GACCCGTTATTGTGATAGCTGCTACGTTTTGCAATGCCACTTATGAGAGGTTACCGATTG AGAATGATGATAACGAGAGTGGGAATAACGGAAACGAAGGATCGATGCAGCCGCCGATGT ATAATATGCCTCCTAATTTTATCCCAAATGGTCATCAAATGGCTCAACACGACGTGTATT GTGCGTTCTTTTTACTGGAATGATTATATTTTCCATTAGGATGGTTAGGCTTTTGTTTAT TAAAGCTATCAAGTTTCTTTTTTTTTTACGGATAATTCGGATGACAATTAGCTAGTGTTT GTTTGTTTGTTGTGGCGGCTTTTCTGACTTGACTATTTTGATCGCGGATAGCTTTGTA TGAAAGTGAATTGATTGTAGAATCGTCTTTTGAATTTTTGATGTTGGAAAAAACCAA >G2157 Amino Acid Sequence (domain in AA coordinates: 82-102, 164-107) MANPWWVGNVAIGGVESPVTSSAPSLHHRNSNNNNPPTMTRSDPRLDHDFTTNNSGSPNT QTQSQEEQNSRDEQPAVEPGSGSGSTGRRPRGRPPGSKNKPKSPVVVTKESPNSLQSHVL EIATGADVAESLNAFARRRGRGVSVLSGSGLVTNVTLRQPAASGGVVSLRGQFEILSMCG AFLPTSGSPAAAAGLTIYLAGAQGQVVGGGVAGPLIASGPVIVIAATFCNATYERLPIEE EQQQEQPLQLEDGKKQKEENDDNESGNNGNEGSMQPPMYNMPPNFIPNGHQMAQHDVYWG

GPPPRAPPSY* >G2181 (1..1005)

ATGATGCTTGCGGTGGAAGATGTGTTAAGCGAACTCGCCGGAGAAGAAAGGAACGAGAGA GGATTGCCACCTGGCTTCCGGTTTCACCCGACGGACGAAGAGCTCATTACCTTCTACTTA GCTTCCAAAATCTTCCATGGTGGTCTCTCCGGCATTCACATTTCCGAAGTTGATCTCAAC TATAGTCTAAGGGACAGGAAATATCCGACAGGTTTGAGGACTAACAGAGCAACTACTGCT GGATACTGGAAAGCTACCGGCAAAGATAAGGAAGTCTTCTCCGGCGGAGGAGGACAGCTT GTTGGGATGAAGAAGACGTTGGTGTTCTACAAAGGTAGGGCTCCACGTGGCCTCAAGACT AAGTGGGTCATGCATGAGTATCGCCTCGAAAACGACCATTCACACCGCCACACGTGTAAG GAGGAATGGGTGATTTGCAGAGTGTTCAATAAAACAGGAGACAGAAAAAATGTTGGATTA CATGAAGCCTTACCTTTGCTTATAGAACCTTCCAACAAAACCCTAACCAACTTCCCATCA GGCCACAACATCGACGAGCTCAAAGCCTTAATCAACCCTGTCGTCTCTCAGCTCAACGGT ATCATCTTTCCTTCAGGGAACAACAACAACGACGAGGACGACTTCGACTTTAACCTCGGC GTGAAAACAGAGCAGTCTTCGAACGGTAACGAAATTGACGTACGAGATTACTTGGAGAAC ${\tt CCTCTGTTTCAGGAAGCGAGTTATGGTCTGTTTGGGTTTTTCGTCTTCTCCTGGACCTCTT}$ CACATGCTACTAGATTCTCCATGTCCTTTAGGATTCCAGCTGTAG

>G2181 Amino Acid Sequence (conserved domain in AA coordinates:22-169) MMLAVEDVLSELAGEERNERGLPPGFRFHPTDEBLITFYLASKIFHGGLSGIHISEVDLN RCEPWELPEMAKMGEREWYFYSLRDRKYPTGLRTNRATTAGYWKATGKDKEVFSGGGGQL VGMKKTLVFYKGRAPRGLKTKWVMHEYRLENDHSHRHTCKBEWVICRVFNKTGDRKNVGL IHNQISYLHNHSLSTTHHHHHEALPLLIEPSNKTLTNFPSLLYDDPHQNYNNNNFLHGSS GHNIDELKALINPVVSQLNGIIFPSGNNNNDEDDFDFNLGVKTEQSSNGNEIDVRDYLEN PLFQEASYGLLGFSSSPGPLHMLLDSPCPLGFQL*

>G221 (115..795)

CTCTCTTATTCTCTCACTCTTTTTTTTTTTTTTATATTCCTCTCTCTCTAAATCTATAAAATAT AAAAGAGGAGGAAGTAGTGGAGGTTCGGGATCATCAGCAGAAGCAGAAGTGAGAAAA >G221 Amino Acid Sequence (domain in AA coordinates: 21-125)
MEKRGGGSSGGSSAEAEVRKGPWTMEEDLILINYIANHGDGVWNSLAKSAGLKRTGKS
CRLRWLNYLRPDVRRGNITPEEQLIIMELHAKWGNRWSKIAKHLPGRTDNEIKNFCRTRI
QKYIKQSDVTTTSSVGSHHSSEINDQAASTSSHNVFCTQDQAMETYSPTPTSYQHTNMEF
NYGNYSAAAVTATVDYPVPMTVDDQTGENYWGMDDIWSSMHLLNGN*
>G2290 (119..982)

TTCTTTCTTTCTTTCTCTTCCAATCAAGAACAAACCCTAGCTCCTCTTTTTCTC TCTCTACCTCTCTTCTCTATCTTCTCTTATCAÇTACTTCTCTCGCCGATCAATCATCAT GAACGATCCTGATAATCCCGATCTGAGCAACGACGACTCTGCTTGGAGAGAACTCACACT CACAGCTCAAGATTCTGACTTCTTCGACCGAGACACTTCCAATATCCTCTCTGACTTCGG TTGGAACCTCCACCACTCCTCCGATCATCCTCACAGTCTCAGATTCGACTCCGATTTAAC ACAAACCACCGGAGTCAAACCTACCACCGTCACTTCTTCTTGTTCCTCATCCGCCGCCGT TTCCGTTGCCGTTACCTCTACTAATAATAATCCCTCAGCTACCTCAAGTTCAAGTGAAGA TCCGGCCGAGAACTCAACCGCCTCCGCCGAGAAAACACCACCACCGGAGACACCAGTGAA GGAGAAGAAGAGGCTCAAAAGCGAATTCGGCAACCAAGATTCGCATTCATGACCAAGAG TGATGTGGATAATCTTGAAGATGGATATCGATGGCGTAAATATGGACAAAAAGCCGTCAA GAATAGCCCATTCCCAAGGAGCTACTATAGATGCACAAACAGCAGATGCACGGTGAAGAA GAGAGTAGAACGTTCATCAGATGATCCATCGATAGTGATCACAACATACGAAGGACAACA TTGCCATCAAACCATTGGATTCCCTCGTGGTGGAATCCTCACTGCACACGACCCACATAG CCTTCATCAACTTCACAGAGACAATAATGCTCCTTCACCGCGGTTACCCCGACCTACTAC TGAAGATACACCTGCCGTGTCTACTCCATCAGAGGAAGGCTTACTTGGTGATATTGTACC TCAAACTATGCGCAACCCTTGAGGTAAGCTTGGTACGTAGCAATAGCTAAGGAGGTGCTA GGCGTTGTAACAATGGATCTATATATTACCTCATTGTTGATCAATAGCACACCACCGGTA CGTTTGCAATTTCTTCATGTATATTTCTTGTTATATATGTAGTTATATATCCAGGTATAA GTGCACTTAAGAAAAAGAACATGGAGGAAATAACGTTATTTTTTATTATTCT

>G2290 Amino Acid Sequence (conserved domain in AA coordinates:147-205)
MNDPDNPDLSNDDSAWRELTLTAQDSDFFDRDTSNILSDFGWNLHHSSDHPHSLRFDSDL
TQTTGVKPTTVTSSCSSSAAVSVAVTSTNNNPSATSSSSEDPAENSTASAEKTPPPETPV
KEKKKAQKRIRQPRFAFMTKSDVDNLEDGYRWRKYGQKAVKNSPFPRSYYRCTNSRCTVK
KRVERSSDDPSIVITTYEGQHCHQTIGFPRGGILTAHDPHSFTSHHHLPPPLPNPYYYQE
LLHQLHRDNNAPSPRLPRPTTEDTPAVSTPSEEGLLGDIVPQTMRNP*
>G2299 (231..941)

114/286

PCT/US02/25805

CGGAGATTCGTGAGCCGAGGAAGAATCACGTATTTGGCTGGGAACTTTCCCGACGCCGG AGATGGCGCGCGTGCACACGACGTGGCGCTCTGAGCATTAAAGGAACGGCCGCTATAC TÅAACTTCCCTGAACTCGCTGACTCATTCCCTCGACCCGTTTCATTAAGCCCTCGAGACA TTCAGACAGCAGCTCTTAAAGCAGCTCACATGGAACCGACGACGTCGTTTTCATCTTCCA CGTCTTCGTCGTCGTCTTTGTCTTCTACGTCTTCGCTCGAGTCTCTTGTGTTGGTGATGG ACCTCTCGAGGACTGAGTCGGAGGAGCTCGGTGAGATTGTGGAGCTTCCAAGTCTCGGGG CGAGTTACGACGTCGACTCGGCTAACCTTGGGAACGAGTTTGTCTTCTATGACTCAGTTG ACTACTGTTTATATCCGCCGCGGTGGGGACAGTCGTCCGAAGATAACTATGGTCACGGAA TTAGCCCTAATTTTGGCCATGGCTTGTCATGGGATCTCTAACAGTTTATTTTTGTATCATT ACCATAATGTTTTGTTTAAAACAGTTTATTTTGTATCATTGCCATAATGTTTTGTTTAAT

>G2299 Amino Acid Sequence (conserved domain in AA coordinates:48-115) MAEEYYSLRSERVTQLLVPNSESDSVSDKSKAEQSEKKTKRGRDSGKHPVYRGVRMRNWG KWVSEIREPRKKSRIWLGTFPTPEMAARAHDVAALSIKGTAAILNFPELADSFPRPVSLS PRDIQTAALKAAHMEPTTSFSSSTSSSSSSSSSSSSLSSTSSLESLVLVMDLSRTESEELGEIVELP SLGASYDVDSANLGNEFVFYDSVDYCLYPPPWGQSSEDNYGHGISPNFGHGLSWDL* >G2340 (274..1275)

AAGAGAGAACACAAAATTTCAGTTTACGAAAAGCTAGCAAAGTCGAGTATCGAGGAATAA CAGAATAAGACGTATCTATCCTTGCCTTAATGTTCTTACCAAAAGATCTAGTCCTTTCTT TGTATGATCGATCCACAAGCCCACAACAACAACAACTACATCTCTTTCTCTATCTCT AGCTTCTATTTTAATACATTCAAGAATCAAGAATGGTACGGACGCCGTGTTGTAGAGCA GAAGGGTTGAAGAAGGAGCATGGACTCAAGAAGAAGACCAAAAGCTTATCGCCTATGTT CAACGACATGGTGAAGGCGGTTGGCGAACCCTTCCGGACAAAGCTGGACTCAAAAGATGT GGCAAAAGCTGCAGATTGAGATGGGCGAATTACTTAAGACCTGACATTAAACGTGGAGAG TTTAGCCAAGACGAGGAAGATTCCATCATCAACCTCCACGCCATTCATGGCAACAAATGG TCGGCCATAGCTCGTAAAATACCAAGAAGAACAGACAATGAGATCAAGAACCATTGGAAC ACTCACATCAAGAAATGTCTGGTCAAGAAAGGTATTGATCCGTTGACCCACAAATCCCTT CTCGATGGAGCCGTAAATCATCTGACCATTCCGCGCATCCCGAGAAAAGCAGCGTTCAT GACGACAAGATGATCAGAATTCAAATAACAAAAAGTTGTCAGGATCATCAGCTCGG ATTATTGGAAGTAATGGCCTACTTACTAGTCACACTACTCCAACTACAAGTGTTTCAGAA GGTGAGAGGTCAACGAGTTCTTCCTCCACACATACCTCTTCGAATCTCCCCCATCAACCGT AGCATAACCGTTGATGCAACATCTCTATCCTCATCCACGTTCTCTGACTCCCCCGACCCG TGTTTATACGAGGAAATAGTCGGTGACATTGAAGATATGACGAGATTTTCATCAAGATGT TTGAGTCATGTTTTATCTCATGAAGATTTATTGATGTCCGTTGAGTCTTGTTTGGAGAAT ACTTCATTCATGAGGGAAATTACAATGATCTTTCAAGAGGATAAAATCGAGACGACGTCG TTTAATGATAGCTACGTGACGCCGATCAATGAAGTTGATGACTCCTGTGAAGGGATTGAC AATTATTTTGGATGAGTTATATTGATGATGATGAAAATTTGCATTTGGCATGTAAATCAA ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

>G2340 Amino Acid Sequence (domain in AA coordinates:14-120) MVRTPCCRAEGLKKGAWTQEEDQKLIAYVQRHGEGGWRTLPDKAGLKRCGKSCRLRWANY LRPDIKRGEFSQDEEDSIINLHAIHGNKWSAIARKIPRRTDNEIKNHWNTHIKKCLVKKG IDPLTHKSLLDGAGKSSDHSAHPEKSSVHDDKDDQNSNNKKLSGSSSARFLNRVANRFGH RINHNVLSDIIGSNGLLTSHTTPTTSVSEGERSTSSSSTHTSSNLPINRSITVDATSLSS STFSDSPDPCLYEEIVGDIEDMTRFSSRCLSHVLSHEDLLMSVESCLENTSFMREITMIF QEDKIETTSFNDSYTPINEVDDSCEGIDNYFG*

>G2346 (1..1011)

ATGGAGTTGTTAATGTGTTCGGGTCAGGCCGAGTCAGGTGGTTCTTCTTCCACCGAGTCT TCCAGAAGCAAGAACCGGGTCAATACCGTTCGTAAGTCGTCTACCACGGCGAGGTGCCAA GTGGAAGGTTGTAGAATGGATCTAAGCAATGTTAAAGCTTATTACTCGAGACACAAAGTT TGTTGCATTCACTCTAAATCATCTAAAGTCATTGTCTCTGGTCTTCATCAAAGGTTTTGT CAACAATGTAGCAGGTTTCACCAGCTTTCTGAGTTTGACTTGGAGAAAAGAAGTTGTCGC AGAAGACTCGCTTGTCATAACGAACGACGAAGAAAACCACAACCCACAACGGCTCTTTTC ACTTCTCATTACTCTCGAATCGCTCCATCTCTTTACGGAAACCCCAATGCTGCAATGATT. AAAAGCGTTTTGGGAGATCCTACTGCGTGGTCAACCGCAAGATCAGTGATGCAGCGGCCT
GGACCGTGGCAGATTAATCCAGTTAGGGAAACCCATCCACACATGAATGTTTTATCACAT
GGAAGCTCAAGCTTTACTACATGTCCAGAGATGATAAACAACAATAGCACAGATTCAAGC
TGTGCTCTCTCTCTCTGTCAAACTCATACCCAATTCATCAGCAGCAACTTCAGACACCA
ACAAATACATGGCGACCATCTTCTGGTTTCGACTCGATGATCTCATTCTCCGATAAGGTT
ACAATGGCTCAGCCACCGCCCATTTCAACCCATCAGCCGCCCATCTCAACACATCAGCAG
TACCTCAGCCAAACTTGGGAAGTCATCGCGGGCGAAAAGAGCAATTCACATTATATGTCT
CCTGTGAGTCAAATCTCGGAGCCAGCAGATTTCCAGATAAGCAATGGCAGTGTGTCGCCC
TATTCTCCTCCGTCCTTACTATCTCTTTGTGTGCTACATCACACTATAAG

>G2346 Amino Acid Sequence (domain in AA coordinates: 59-135)
MELLMCSGQAESGSSSTESSSLSGGLRFGQKIYFEDGSGSRSKNRVNTVRKSSTTARCQ
VEGCRMDLSNVKAYYSRHKVCCIHSKSSKVIVSGLHQRFCQQCSRFHQLSEFDLEKRSCR
RRLACHNERRKPQPTTALFTSHYSRIAPSLYGNPNAAMIKSVLGDPTAWSTARSVMQRP
GPWQINPVRETHPHMNVLSHGSSSFTTCPEMINNNSTDSSCALSLLSNSYPIHQQQLQTP
TNTWRPSSGFDSMISFSDKVTMAQPPPISTHQPPISTHQQYLSQTWEVIAGEKSNSHYMS
PVSQISEPADFQISNGSVSPYSPPSLLSLVCYLRPL*

>G237 (1..852)

ATGGCGAAGACGAAATATGGAGAGAGACATAGGAAAGGGTTATGGTCACCTGAAGAAGAC GAGAAGCTAAGGAGCTTCATCCTCTTATGGCCATTCTTGCTGGACCACTGTTCCCATC CCAGGGTTAAAGAGGGATATGATTAGTGCAGAAGAAGAAGAGACTATCTTGACGTTTCAT TCTCCCTTGGGTAACAAGTGGTCGCAAATAGCTAAATTCTTACCGGGAAGAACAGACAAT GAGATAAAGAACTATTGGCACTCTCATTTGAAAAAGAAATGGCTCAAGTCTCAGAGCTTA CAAGATGCAAAATCTATTTCCCCTCCTTCGTCTTCATCATCATCACTTGTTGCTTGTGGA AACAAATCTTCATCTCCCTCACAAGAAAGCAACGGAAATAACAGCCATCAATGTTCTTCT GCTCCTGAGATTCCAAGGCTTTTCTTCTCTGAATGGCTTTCTTCATATCCCCACACC GATTATTCCTCTGAGTTTACCGACTCTAAGCACAGTCAAGCTCCAAATGTCGAAGAGACT CTCTCAGCTTATGAAGAAATGGGTGATGTTGATCAGTTCCATTACAACGAAATGATGATC AACAACAGCAACTGGACTCTTAACGACATTGTGTTTGGTTCCAAATGTAAGAAGCAGGAG CATCATATTTATAGAGAGGCTTCAGATTGTAATTCTTCTGCTGAATTCTTTTCTCCACCA ACAACGACGTAAATTGCGTTTATTGTAATGTAAATCAAATTTCTAAGGCAAAACCGGAAA ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

>G237 Amino Acid Sequence (domain in AA coordinates: 11-113)
MAKTKYGERHRKGLWSPEEDEKLRSFILSYGHSCWTTVPIKAGLQRNGKSCRLRWINYLR
PGLKRDMISAEEEETILTFHSPLGNKWSQIAKFLPGRTDNEIKNYWHSHLKKKWLKSQSL
QDAKSISPPSSSSSSLVACGERNPETLISNHVFSLQRLLENKSSSPSQESNGNNSHQCSS
APEIPRLFFSEWLSSSYPHTDYSSEFTDSKHSQAPNVEETLSAYEEMGDVDQFHYNEMMI
NNSNWTLNDIVFGSKCKKQEHHIYREASDCNSSAEFFSPPTTT*

>G2373 (48..1199)

ACGAGATTCAGTCAATTCCATCTCCGGGAGATTCTTCCCTTTCACCACAAGCTCCTCCTT CTCCGCCGATTTTGCCAACAAACGACGTGACGGTGGCCGTCGTGAAGAAACCACAACCGG GGCTTTCTCAATCTCCGTCCATGAACGCTTTAGCGTTAGTGGTTCATACTCCTTCTG TAACCGGTGGTGGTAGCGGAAACAGAAACGGACGAGGAGGAGGAGGAGCAGGAGCGTG GTGGTGGAGGAGGAGGATGATTGTTGGAGCGAAGAAGCTACAAAGGTTCTAATCGAAG ${\tt CTTGGGGAGATCGATCTCTGAACCAGGTAAAGGAACTTTGAAGCAACAACATTGGAAAG}$ AAGTAGCTGAGATTGTGAACAAGAGTCGTCAATGCAAATACCCTAAAACTGATATTCAGT GTAAGAACAGAATTGATACGGTGAAGAAGAAGTATAAGCAAGAGAAAGCTAAGATTGCTT CTGGTGATGGACCTAGTAAATGGGTTTTCTTCAAGAAGCTTGAGAGTTTGATTGGTGGTA CTACAACATTCATTGCTTCTTCAAAAGCTTCAGAGAAGGCTCCTATGGGAGGAGCTCTTG GGAATAGCCGTTCGAGTATGTTTAAACGGCAAACTAAAGGTAATCAGATTGTGCAGCAAC AACAAGAGAGAGAGGCTCTGATTCGATGCGGTGGCATTTTAGGAAACGTAGTGCTTCTG AGACTGAGTCTGAGTCTGAACCTGAGGCTTCTCCTGAGGAATCTGCTGAGAGTC TCCCACCTTTGCAACCGATTCAACCGCTTTCGTTTCATATGCCAAAGCGGTTGAAGGTGG ATAAGAGTGGAGGTGGAGTGGAGTTGGAGTGTGGCGAGGGCGATACTTGGATTTA CGGAAGCTTATGAGAAGGCGGAACTGCTAAGCTTAAGTTAATGGCGGAACTGGAAAAGG 116/286

AGAGGATGAAATTTGCTAAAGAGATGGAGTTGCAGAGAATGCAGTTCTTGAAAACTCAAT TGGAGATAACACAGAACAATCAAGAAGAGGAAGAGGGAGCAGCAGCAGCAGAAAAGGA GGATCGTTGATGATGATGATGATCGCAATGCCAAGAATAACGGCAATGTAAGTAGCTGAC **AATTGAACACACAAATGTTCCTATGATATTTGCTATGATAAGCTGGATTTTAGGTTTTGA**

>G2373 Amino Acid Sequence (domain in AA coordinates:290-350) MEDDDEIQSIPSPGDSSLSPQAPPSPPILPTNDVTVAVVKKPQPGLSSQSPSMNALALVV HTPSVTGGGGSGNRNGRGGGGGGGGGGGDDCWSEEATKVLIEAWGDRFSEPGKGTLKQ QHWKEVAEIVNKSRQCKYPKTDIQCKNRIDTVKKKYKQEKAKIASGDGPSKWVFFKKLES LIGGTTTFIASSKASEKAPMGGALGNSRSSMFKRQTKGNQIVQQQQEKRGSDSMRWHFRK RSASETESESDPEPEASPEESAESLPPLOPIOPLSFHMPKRLKVDKSGGGGSGVGDVARA ILGFTEAYEKAETAKLKLMAELEKERMKFAKEMELQRMQFLKTQLEITQNNQEEEBRSRQ RGERRIVDDDDDDRNGKNNGNVSS*

>G2376 (39..1370)

CACGAGCTTCTGACTCAGATCCGGCGATATCGAATTCCATGGAGGACGATGAAGACATCC GATCTCAGGGTTCCGATTCACCTGATCCGTCTTCCTCCCGGCGGGGGACGAATCACGG TTACGGTGGCTTCGGCAGGTCCGCCTTCTTATTCTCTGACTCCTCCGGGTAATTCGTCGC AGAAGGATCCGGATGCGTTGGCTCTGCGCTTCCGATTCAGGCCAGCGGTGGAGGGA CTACGGCTGTGTTGATTGATGCGTGGGGTGAGAGATACTTGGAGCTTAGCAGAGGGAATC TGAAGCAGAAGCACTGGAAAGAGGTGGCTGAGATTGTGAGCAGCAGAGAGGATTACGGTA AAATTCCCAAAACTGATATACAGTGTAAGAATAGGATCGATACGGTGAAGAAGAAGTATA AACAAGAGAAGGTGAGAATCGCTAACGGCGGTGGCCGTAGCAGATGGGTGTTCTTCGACA AGCTTGACCGTCTGATTGGATCAACGGCGAAGATCCCGACGGCAACTTCTGGAGTCAGCG GTCCTGTCGGAGGATTGCATAAGATTCCTATGGGTATTCCAATGGGAAGTCGTTCGAATC TGTACCATCAGCAAGCTAAGGCTGCAACACCGCCTTTCAATAATCTTGACCGGTTAATTG GAGCTACGGCTAGAGTCTCAGCTGCTTCTTTCGGTGGCAGTGGTGGAGGAGGCGGAGGAG GATCTGTCAATGTACCTATGGGAATTCCGATGAGTAGCCGTTCAGCTCCGTTTGGACAGC AAGGGAGGACTCTGCCACAGCAAGGTAGGACACTGCCACAGCAACAGCAACAGGGATGA TGGTGAAAAGGTGTAGTGAGTCGAAACGCTGCGTTTCAGGAAGAGGAACGCTTCTGATT CAGACTCGGAATCTGAAGCAGCAATGTCAGATGATTCCGGTGACAGTTTACCACCTCCTC CTCTGTCGAAGAGGATGAAGACGGAGGAGAAGAAGAAGCAAGATGGTGATGGAGTGGGGA ACAAATGGAGGGAGCTGACTCGGGCAATCATGAGATTCGGTGAAGCTTATGAGCAAACAG AGAATGCGAAACTGCAACAGGTGGTTGAGATGGAGAAAGAGAGGATGAAGTTCTTGAAGG AGCTTGAGTTGCAGAGAATGCAGTTCTTTGTGAAGACTCAATTGGAGATATCACAACTTA AGCAGCAACATGGGAGGAGAATGGGAAACACCAGTAATGATCATCACCAGCCGCAAGA ACAACATCAATGCGATTGTCAACAACAACAACGATTTGGGTAATAACTAGAATTTAGTGA TGCAGTGTCGTAATTGATATATTTTAGATTTGAG

>G2376 Amino Acid Sequence (domain in AA coordinates:79-178, 336-408) MEDDEDIRSQGSDSPDPSSSPPAGRITVTVASAGPPSYSLTPPGNSSQKDPDALALALLP IQASGGGNNSSGRPTGGGGREDCWSEAATAVLIDAWGERYLELSRGNLKQKHWKEVAEIV SSREDYGKIPKTDIQCKNRIDTVKKKYKQEKVRIANGGGRSRWVFFDKLDRLIGSTAKIP TATSGVSGPVGGLHKIPMGIPMGSRSNLYHQQAKAATPPFNNLDRLIGATARVSAASFGG SGGGGGGSVNVPMGIPMSSRSAPFGQQGRTLPQQGRTLPQQQQQGMMVKRCSESKRWRF RKRNASDSDSESEAAMSDDSGDSLPPPPLSKRMKTEEKKKQDGDGVGNKWRELTRAIMRF GEAYEQTENAKLQQVVEMEKERMKFLKELELQRMOFFVKTQLEISQLKQQHGRRMGNTSN DHHHSRKNNINAIVNNNNDLGNN*

>G24 (194..724.)

CGGACGCGTGGGCAAATATTAAAATAAAAGTGTCGGTGAATTCTCAATCTTTGTCTTCT TTCGTCGTCTCTTTAAAACTCCTCCGTCCCTCCTTATTATGTAACCGTCTCGCCGTCAAA ${\tt TTTTCAAAATCTCTCCCTCCGTTCATAAACCCAGATCGAAATTTATGGTTTTGTAATTTT}$ ${\tt TTTACCGGCGGTTATGGAGACGGAAGCGGCGGTGACAGCGACGGTTACGGCGGCGACGAT}$ GGGGATTGGGACGAGGAAGAGAGATCTGAAACCGTATAAAGGAATACGAATGAGGAAATG GGGGAAATGGGTGGCGGAGATACGGGAACCGAATAAGAGATCAAGGATCTGGTTAGGTTC TTATGCGACGCCTGAAGCGGCGGGGAGAGCTTACGACACTGCTGTTTTTTACCTCCGTGG TCCTTCAGCGAGGCTTAATTTTCCGGAGCTTTTGGCTGGACTTACTGTTTCTAACGGCGG AGGAAGAGGTGGTGATTTATCGGCGGCGTATATTAGGAGAAAAGCGGCGGAGGTTGGTGC

TCTTCTTTGTCTTCGTCCTCACATCACCATCACCAACAACAACAACATTGTATCATGTCG GAAGATCAACACCATTCGATGGATCAGACCACTTCATCGGACTACTTCTCTTTAAATATC GACAATGCTCAACATCTCCGTAGCTACTACACAAGTCATAGAGAAGAAGACATGAACCCT AATCTAAGTGATTACAGTAATTGCAACAAGAAAGACACAACAGTCTATAGAAGCTGTGGA CACTCGTCAAAAGCTTCGGTGTCTAGAGGACATTGGAGACCAGCTGAAGATACTAAGCTC AAAGAACTAGTCGCCGTCTACGGTCCACAAAACTGGAACCTCATAGCTGAGAAGCTCCAA GGAAGATCCGGGAAAAGCTGTAGGCTTCGATGGTTTAACCAACTAGACCCAAGGATAAAT AGAAGAGCCTTCACTGAGGAAGAAGAAGAGGGCTAATGCAAGCTCATAGGCTTTATGGT AACAAATGGGCGATGATAGCGAGGCTTTTCCCTGGTAGGACTGATAATTCTGTGAAGAAC CATTGGCATGTTATAATGGCTCGCAAGTTTAGGGAACAATCTTCTTCTTACCGTAGGAGG AAGACGATGGTTTCTCTTAAGCCACTCATTAACCCTAATCCTCACATTTTCAATGATTTT GACCCTACCCGGTTAGCTTTGACCCACCTTGCTAGTAGTGACCATAAGCAGCTTATGTTA CCAGTTCCTTGCTTCCCAGGTTATGATCATGAAAATGAGAGTCCATTAATGGTGGATATG TTCGAAACCCAAATGATGGTTGGCGATTACATTGCATGGACAAGAGGCCAACTACATTC GATTTCTTAAACCAAACCGGGAAGAGTGAGATATTTGAAAGAATCAATGAGGAGAAGAAA CCACCATTTTCCGATTTTCTTGGGTTGGGGACGGTGTGA

>G2424 Amino Acid Sequence (conserved domain in AA coordinates:107-219)
MRMEMVHADVASLSITPCFPSSLSSSSHHHYNQQQHCIMSEDQHHSMDQTTSSDYFSLNI
DNAQHLRSYYTSHREEDMNPNLSDYSNCNKKDTTVYRSCGHSSKASVSRGHWRPAEDTKL
KELVAVYGPQNWNLIAEKLQGRSGKSCRLRWFNQLDPRINRRAFTEEEEERLMQAHRLYG
NKWAMIARLFPGRTDNSVKNHWHVIMARKFREQSSSYRRKKTMVSLKPLINPNPHIFNDF
DPTRLALTHLASSDHKQLMLPVPCFPGYDHENESPLMVDMFETQMMVGDYIAWTQEATTF
DFLNQTGKSEIFERINEEKKPPFFDFLGLGTV*

>G2505 (1..1026)

GAGCTTCTCCATTACTACTTGAAGAAGAAAATCTCTTACCAAAAGTTTGAGATGGAAGTC ATCAGAGAGGTTGACCTTAAACAAGCTTGAGCCTTGGGATTTGCAAGAGAGATGCAAGATA GGATCAACACCACAAAACGAATGGTACTTCTTCAGCCACAAGGACAGGAAATATCCGACG GGGTCAAGGACCAACCGTGCTACTCATGCAGGGTTCTGGAAGGCGACGGGACGTGACAAG TGCATAAGGAACTCTTACAAAAAGATAGGAATGAGGAAGACACTTGTGTTCTACAAAGGT GATGATCCTCAAGCCAACCCTAGTGAAGATGGATGGGTGGTATGTAGAGTGTTTATGAAG AAAAATTTGTTCAAGGTAGTAAATGAAGGTAGCTCAAGCATTAACTCATTGGACCAACAC AACCATGACGCATCTAACAACCATGCACTTCAAGCTCGTAGCTTTATGCACCGAGAC AGTCCATACCAGCTAGTACCTAACCACGGAGCCATGACATTCGAACTTAACAAGCCTGAC CTTGCTCTTCATCAATACCCACCAATCTTCCACAAGCCACCTTCACTTGGATTTGACTAC TCTTCAGGACTTGCAAGGGACAGTGAGAGTGCGGCTAGTGAAGGGTTACAATACCAGCAA GCGTGTGAGCCGGGTTTAGACGTTGGTACATGTGAGACAGTGGCTAGTCATAATCATCAA CAAGGTCTAGGTGAATGGCAATGATGGATAGACTTGTGACTTGTCACATGGGAAATGAA GATTCCTCTAGAGGGATTACGTATGAGGATGGTAACAACAATTCGTCCTCTGTGGTTCAG CCAGTTCCCGCGACGAACCAGCTAACATTGCGTAGTGAGATGGATTTCTGGGGTTATTCT AAATAG

>G2505 Amino Acid Sequence (domain in AA coordinates: 10-159)
MGSSSNGGVPPGFRFHPTDEELLHYYLKKKISYQKFEMEVIREVDLNKLEPWDLQERCKI

GSTPQNEWYFFSHKDRKYPTGSRTNRATHAGFWKATGRDKCIRNSYKKIGMRKTLVFYKG RAPHGQKTDWIMHEYRLEDADDPQANPSEDGWVVCRVFMKKNLFKVVNEGSSSINSLDQH NHDASNNNHALQARSFMHRDSPYQLVRNHGAMTFELNKPDLALHQYPPIFHKPPSLGFDY SSGLARDSESAASEGLQYQQACEPGLDVGTCETVASHNHQQGLGEWAMMDRLVTCHMGNE DSSRGITYEDGNNNSSSVVQPVPATNQLTLRSEMDFWGYSK* >G2512 (64..798)

ATGAGATCATGTTCTTGATAATCTCTGCTTCTACAATTTTTATGTAATTTGA

>G2513 (69..698)

TTTCAACAGTAATTTAAGTTAACCGGAGTCTCTTTTTGTTTTCCGGCGAATTTTTGGTAC
TTTGAGTTATGAATAATGATGATATTATTCTGGCGGAGATGAGGCCTAAGAAGCGTGCGG
GAAGGAGAGTGTTTAAGGAGACACGTCACCCAGTTTACAGAGGCCTAAGAAGCGTGCGG
GAAGGAGAGTGTTTAAGGAGACACGCCCAGTTTACAGAGGCATAAGGCGGAGGAACG
GTGACAAATGGGTCTGCGAAGTCAGAGAACCGACGACGCACCAACGCCGCATTTGGCTCGGGA
CTTATCCCACAGCAGATATGGCAGCGCGTGCACACGACGTGGCGGTTTTAGCTCTGCGTG
GGAGATCCGCATGTTTGAATTTCGCCGACTCCGCTTGGCGGCTTCCGGTGCCGGAATCCA
ATGATCCGGATGTGATAAGAAGAGTTGCGGCGGAAGCTGCGGAGATGTTTAGGCCGGTGG
ATTTAGAAAGTGGAATTACGGTTTTGCCTTGTGCGGGAGATGATGTGGATTTTG
GTTCGGGTTCCGGCTCTGGTTCGGGATCGGAGGAGAATTCTTCTTCTTCGTATGGATTTG
GAGACTACGAAGAAGTCTCAACGACGATGATGAGACTCCCGGGAGGGGCCCACTAATGTCGC
CGCCGCGATCGTATATGGAAGACATGACTCCTACTAATGTTTACACGGAAGAAGAAGATGT
GTTATGAAGATATGTCATTGTGGAGTTACAGATATTAAGTGGGACTCACATATCTACTAT
ACATAATATTTAGCTTTTATGTAAGAGGTATTTATGTGAGTTTTAAGATTGTAGATTTTAAAAAT
CCCCAGGCGTTAGAAGTTTCCTTGATGGTATTGGAATCTTTTTAAAAATTATAAAAT

>G2513 Amino Acid Sequence (domain in AA coordinates: TBD)
MNNDDIILAEMRPKKRAGRRVFKETRHPVYRGIRRRNGDKWVCEVREPTHQRRIWLGTYP
TADMAARAHDVAVLALRGRSACLNFADSAWRLPVPESNDPDVIRRVAAEAAEMFRPVDLE
SGITVLPCAGDDVDLGFGSGSGSGSGSEERNSSSYGFGDYEEVSTTMMRLAEGPLMSPPR
SYMEDMTPTNVYTEEEMCYEDMSLWSYRY*

>G2519 (83..691)

CAAAGTGAAAACATAAGATCATCTTCTTCGTTGATAGATCAATATAGGAACTCCAGAAGA
GAATCTTGATCAATTAAGTATCATGTCTCACATCGCTGTTGAAAGGAATCGAAGAAGGCA
AATGAACGAGCATCTTAAATCCCTTCGTTCTTTGACTCCTTGTTTCTACATCAAAAGGGG
AGATCAAGCTTCGATCATCGGAGGAGTGATAGAGTTCATCAAAGAGTTGCAGCAATTGGT
TCAAGTTCTTGAGTCCAAGAAACGTCGAAAGACCCTAAACCGACCATCTTTCCCTTATGA
TCACCAGACAATCGAGCCATCCAGTTTAGGAGCCGCCACTACCCGAGTACCGTTTAGTCG
AATCGAAAATGTGATGACCACAAGTACTTTCAAGGAAGTAGGAGCATGCTGTAACTCCCC
TCATGCTAACGTAGAAGCAAAGATTTCAGGTTCTTAATGTTGTATTGAGAGTTGTCTCTAG
GCGAATCGTGGGGCCAGCTCGTAAAGATCATCTCTTTTCAAGT

TCTTCACCTCAATATTAGTAGCATGGAGGAGACTGTCTTATACTTTTTCGTTGTTAAGAT
AGGATTGGAGTGTCACTTAAGCTTGGAGGAGCTAACTCTTGAAGTTCAGAAAAGCTTTGT
GTCTGATGAAGTGATCGTCTCTACCAATTAAAAACAAAATTCTACATGTACTAGAGCGTG
TATCGTTTTTTGGGATTAATAATCATATAATCGTTACATGAGCCTTGATACTTTGCTAGA
AATAAGCTCCTCTAAACAAAACCTTCTTTTTAAAAAAAACACACTTATGTTTTACTTAGTT
TGTTGTTGTATCCGAAGTTGATCAACGTTGTAATTTCCCACAATAAATCATGACATTTTA
TATGCTCT

>G2519 Amino Acid Sequence (domain in AA coordinates:1-65)
MSHIAVERNRRRQMNEHLKSLRSLTPCFYIKRGDQASIIGGVIEFIKELQQLVQVLESKK
RRKTLNRPSFPYDHQTIEPSSLGAATTRVPFSRIENVMTTSTFKEVGACCNSPHANVEAK
ISGSNVVLRVVSRRIVGQLVKIISVLEKLSFQVLHLNISSMEETVLYFFVVKIGLECHLS
LEELTLEVQKSFVSDEVIVSTN*

>G2520 (133..1197)

AAGGAGTTTTGCATACTCACCAAGCCACAATCATTTCTCTCTTCTCTATCTCTCTGGTTT TGAATCGGCGACGACTGAGTCAACTCGGTGTTGTTACTGGTTTCGTCGTATGTGTTGTAA CTGATTAAGTTGATCGAGTGGGATGATGAACGAAGGAGGACCGTTTAATCTAGCG GAGATCTGGCAGTTTCCGTTGAACGGAGTTTCAACCGCCGGAGATTCTTCTAGAAGAAGC TTCGTTGGACCGAATCAGTTCGGTGATGCTGATCTAACCACAGCTGCTAACGGTGATCCA GCGCGTATGAGTCACGCGTTGTCTCAGGCGGTTATTGAAGGTATCTCCGGCGCTTGGAAA CGGAGGGAAGATGAGTCTAAGTCGGCGAAGATCGTCTCCACCATTGGCGCTAGTGAAGGT GAGAACAAAAGACAGAAGATAGATGAAGTGTGTGATGGGAAAGCAGAAGCAGAATCGCTA GGAACAGAGACGAACAAAGAAGCAACAGATGGAACCAACGAAGATTATATTCATGTT CGAGCTAGAAGAGGTCAAGCTACTGATAGTCACAGTTTAGCTGAAAGAGCGAGAAGAGA AAAATAAGTGAGCGGATGAAAATCTTGCAAGATCTTGTTCCGGGATGTAACAAGGTTATT GGAAAAGCACTTGTTCTAGATGAGATAATTAACTATATACAATCATTGCAACGTCAAGTT GAGTTCTTATCGATGAAGCTTGAAGCAGTCAACTCAAGAATGAACCCTGGTATCGAGGTT TTTCCACCCAAAGAGGTGATGATCTCATGATCATCAACTCAATCTTCTCCATTTTTTTC ACAAAACAATACATGTTTCTATCGAGGTATTCTCGGGGTAGGAGTCTCGATGTTTATGCG GTTCGGTCATTTAAGCATTGCAATAAACGGAGTGACCTCTGTTTTTGCTCCTGCTCCCCA AAAACAGAACTTAAGACAACTATATTTTCACAAAACATGACATGTTTCTGTCGATATTCT CGAGTAGGAGTCGCTATTAGTTCATCTAAGCATTGCAATGAACCGTTTGGTCAGCAAGCG TTTGAGAATCCGGAGATACAGTTCGGGTCGCAGTCTACGAGGGAATACAGTAGAGGAGCA TCACCAGAGTGGTTGCACATGCAGATAGGATCAGGTGGTTTCGAAAGAACGTCTTGA >G2520 Amino Acid Sequence (domain in AA coordinates: 135-206) MDPSGMMNEGGPFNLAEIWQFPLNGVSTAGDSSRRSFVGPNQFGDADLTTAANGDPARMS HALSQAVIEGISGAWKRREDESKSAKIVSTIGASEGENKROKIDEVCDGKAEAESLGTET EQKKQQMEPTKDYIHVRARRGQATDSHSLAERARREKISERMKILQDLVPGCNKVIGKAL VLDEIINYIQSLQRQVEFLSMKLEAVNSRMNPGIEVFPPKEVMILMIINSIFSIFFTKQY MFLSRYSRGRSLDVYAVRSFKHCNKRSDLCFCSCSPKTELKTTIFSONMTCFCRYSRVGV AISSSKHCNEPFGQQAFENPEIQFGSQSTREYSRGASPEWLHMQIGSGGFERTS* >G2533 (1..1080)

ATGATAAGCAAGGATCCAATATCGAGTTTACCTCCAGGGTTTCGATTTCATCCAACAGAT GAAGAACTCATTCTCCATTACCTAAGGAAGAAAGTTTCCTCTTCCCCAGTCCCGCTTTCG ATTATCGCCGATGTCGATATCTACAAATCCGATCCATGGGATTTACCAGCTAAGGCTCCA TTTGGGGAGAAAGAGTGGTATTTTTCAGTCCGAGGGATAGGAAATATCCAAACGGAGCA AGACCAAACAGAGCAGCTGCGTCTGGATATTGGAAAGCAACCGGAACAGATAAATTGATT GCGGTACCAAATGGTGAAGGGTTTCATGAAAACATTGGTATAAAAAAAGCTCTTGTGTTT GCCGATTCATTATCTCCCAAAAGAATTAACTCTTCTAGGAGCGGTGGTAGCGAAGTTAAT AATAATTTTGGAGATAGGAATTCTAAAGAATATTCGATGAGACTGGATGATTGGGTTCTT TGCCGGATTTACAAGAAATCACACGCTTCATTGTCATCACCTGATGTTGCTTTGGTCACA AGCAATCAAGAGCATGAGGAAAATGACAACGAACCATTCGTAGACCGCGGAACCTTTTTG TTACTAGACGCTACAGATTTGACGTTTCTCGCAAATTTTCTAAACGAAACCCCGGAAAAT CGTTCTGAATCAGATTTTTCTTTCATGATTGGCAATTTCTCTAATCCTGACATTTACGGA AACCATTACTTGGATCAGAAGTTACCGCAGTTGAGCTCTCCCACTTCAGAGACAAGCGGC ATCGGAAGCAAAAGAGAGAGAGGATTTTGCGGAAGAAACGATAAACGCTTCGAAGAAG

ATGATGAACACATATAGTTACAATAATAGTATAGATCAAATGGATCATAGTATGATGCAA
CAACCTAGTTTCCTGAACCAGGAACTCATGATGAGTCTCACCTTCAATATCAAGGCTAG
>G2533 Amino Acid Sequence (conserved domain in AA coordinates:11-186)
MISKDPISSLPPGFRFHPTDEELILHYLRKKVSSSPVPLSIIADVDIYKSDPWDLPAKAP
FGEKEWYFFSPRDRKYPNGARPNRAAASGYWKATGTDKLIAVPNGEGFHENIGIKKALVF
YRGKPPKGVKTNWIMHEYRLADSLSPKRINSSRSGGSEVNNNFGDRNSKEYSMRLDDWVL
CRIYKKSHASLSSPDVALVTSNQEHEENDNEPFVDRGTFLPNLQNDQPLKRQKSSCSFSN
LLDATDLTFLANFLNETPENRSESDFSFMIGNFSNPDIYGNHYLDQKLPQLSSPTSETSG
IGSKRERVDFAEETINASKKMMNTYSYNNSIDQMDHSMMQQPSFLNQELMMSSHLQYQG*
>G2534 (1..975)

ATGGATAATATAATGCAATCGTCAATGCCACCGGGATTCCGATTTCATCCGACAGAGGAA GAGCTTGTGGGTTATTACCTAGATAGGAAGATCAATTCAATGAAGAGTGCTTTAGATGTC ATTGTAGAGATTGATCTCTACAAAATGGAGCCATGGGATATACAAGCGAGGTGTAAACTA GGGTATGAAGAGCAAAACGAGTGGTACTTCTTTAGTCATAAGGACAGGAAGTACCCTACC GGGACTAGGACCAACCGAGCCACTGCGGCTGGGTTCTGGAAAGCCACGGGTAGAGACAAG GCGGTACTATCAAAAAACAGTGTCATCGGAATGCGGAAGACACTTGTCTACTACAAGGGT CGAGCTCCTAATGGAAGAAGTCCGATTGGATCATGCACGAATACCGTCTCCAAAACTCC GAGCTTGCCCCGGTTCAGGAGGAAGGCTGGGTGTGTCGAGCATTTAGGAAGCCAATT CCAAACCAGAGGCCATTAGGGTACGAGCCATGGCAGAACCAGCTCTACCACGTCGAAAGT AGTAACAACTACTCATCTTCAGTGACAATGAACACGAGTCATCATATCGGTGCATCTTCA TCAAGTCATAACCTTAATCAAATGCTCATGAGCAATAACCACTACAATCCTAATAATACA TCCTCATCGATGCATCAATATGGCAACATTGAGCTCCCGCAGTTGGACAGCCCGAGCTTG TCGCCTAGTTTAGGGACGAATAAAGATCAGAACGAGAGTTTCGAGCAAGAAGAAGAAGAAG CCGCATAACCCTAATATTCTTATGTTCGAAACGCAGTCGTATAATCCGGCGCCCAAGCTTC CCTTCCATGCATCAAAGCTATAATGAGGTCGAAGCTAATATTCATCATTCTCTTGGATGC TTCCCTGACTCGTAA

>G2534 Amino Acid Sequence (conserved domain in AA coordinates:10-157)
MDNIMQSSMPPGFRFHPTEEELVGYYLDRKINSMKSALDVIVEIDLYKMEPWDIQARCKL
GYEEQNEWYFFSHKDRKYPTGTRTNRATAAGFWKATGRDKAVLSKNSVIGMRKTLVYYKG
RAPNGRKSDWIMHEYRLQNSELAPVQEEGWVVCRAFRKPIPNQRPLGYEPWQNQLYHVES
SNNYSSSVTMNTSHHIGASSSSHNLNQMLMSNNHYNPNNTSSSMHQYGNIELPQLDSPSL
SPSLGTNKDQNESFEQEEEKSFNCVDWRTLDTLLETQVIHPHNPNILMFETQSYNPAPSF
PSMHQSYNEVEANIHHSLGCFPDS*

>G2573 (34..957) CCAGATTTAATTTGAGACTCTCAAAGAAACACCATGGAAGAAGAGCCAACCTCCGGCCAAG AAACGAAACATGGGGAGATCTAGAAAAGGTTGCATGAAAGGTAAAGGCGGTCCAGAGAAC GCCACGTGTACTTTCCGTGGAGTTAGGCAACGGACTTGGGGTAAATGGGTGGCTGAGATC CGTGAGCCTAACCGTGGGACTCGTCTCTGGCTCGGCACGTTTAATACCTCGGTCGAGGCC GCCATGGCTTACGATGAAGCCGCTAAGAAACTCTATGGACACGAGGCTAAACTCAACTTG GTGCACCACAACAACAACAAGTAGTAGTGAACAGAAACTTGTCTTTTTCTGGCCAC GGGTCGGGTTCTTGGGCTTATAATAAGAAGCTCGATATGGTTCATGGGTTGGACCTTGGT CTCGGCCAGGCAAGTTGTTCACGAGGTTCTTGCTCAGAGAGATCGAGTTTTCTACAAGAA GATGATGATCATAGTCATAATCGATGTTCGTCTTCAAGTGGTTCGAATCTTTGTTGGTTA TTACCTAAACAAAGTGATTCACAAGATCAAGAGACCGTTAATGCTACGACTAGTTATGGC GGTGAAGGCGGTGGTGGCTCTACGTTAACGTTTTCGACCAATTTGAAACCAAAGAATTTG ATGAGTCAGAATTATGGATTATACAATGGAGCTTGGTCTAGGTTTCTTGTGGGGCAAGAA AAGAAGACGGAACATGACGTGTCATCGTCGTGTGGATCGTCGGACAACAAGGAGAGTATG TTGGTTCCTAGTTGCGGCGGAGAGAGGGATGCATAGGCCGGAGTTGGAAGAGCGAACAGGA TATTTGGAAATGGATGATCTTTTGGAGATTGATGATTTAGGTTTGTTGATTGGCAAAAAT GGAGATTTCAAGAATTGGTGTTGTGAAGAGTTTCAACATCCATGGAATTGGTTCTGAGAG TTTTTATTATTACTATTATTATCATACATATTTCTTATATTTGACTTAGG

>G2573 Amino Acid Sequence (domain in AA coordinates: TBD)
MEEEQPPAKKRNMGRSRKGCMKGKGGPENATCTFRGVRQRTWGKWVAEIREPNRGTRLWL
GTFNTSVEAAMAYDEAAKKLYGHEAKLNLVHPQQQQQVVVNRNLSFSGHGSGSWAYNKKL
DMVHGLDLGLGQASCSRGSCSERSSFLQEDDDHSHNRCSSSSGSNLCWLLPKQSDSQDQE
TVNATTSYGGEGGGGSTLTFSTNLKPKNLMSQNYGLYNGAWSRFLVGQEKKTEHDVSSSC

GSSDNKESMLVPSCGGERMHRPELEERTGYLEMDDLLEIDDLGLLIGKNGDFKNWCCEEF QHPWNWF*

>G2589 (23..1354)

AAAGAAAAGAAAAATAAAGATAATGAGGACGAAGACTAAGTTAGTACTCATACCTGATAG ACACTTTCGGAGAGCCACATTCAGGAAGAGGAATGCAGGGATAAGGAAGAAACTCCACGA GCTGACAACTCTCTGTGACATCAAAGCATGTGCGGTAATCTACAGTCCGTTCGAGAATCC AACGGTGTGGCCGTCAACCGAAGGTGTTCAAGAGGTGATTTCGGAGTTCATGGAGAAGCC GGCGACAGAACGGTCCAAGACGATGATGAGTCATGAGACTTTCTTGCGGGACCAAATCAC CAAAGAACAAACAAACTAGAGAGTCTACGTCGTGAAAACCGAGAAACTCAGCTTAAGCA TTTTATGTTTGATTGCGTTGGAGGCAAGATGAGTGAGCAACAGTATGGTGCAAGGGACCT TCAAGATTTAAGTCTTTTTACTGATCAATATCTTAATCAGCTTAATGCCAGGAAGAAGTT CCTTACAGAATATGGTGAGTCTTCTTCTTCTGTTCCTCCTCTGTTTGATGTTGCGGGTGC GGGTGCCAATCTTCCTGTTGCTGATCAAGCTGCGGTAACTGTTCCTCCTCTGTTTGC TGTTGCGGGTGCCAATCTTCCTGTTGTTGCAGATCAAGCTGCGGTTAATGTTCCTACTGG ATTTCATAACATGAATGTGAACCAGAATCAGTATGAGCCGGTTCAGCCCTATGTCCCTAC GGTTCATTACCAGGCTCTTGCTGTTGCGGGTGCCGGTCTTCCTATGACTCAGAATCAGTA TGAGCCCGTTCACTACCAGAGTCTTGCTGTCGCGGGTGGCGGTCTTCCTATGAGTCAGTT GCAGTATGAGCCGGTTCAGCCTTATATCCCTACTGTTTTTAGTGATAATGTTCAATATCA GCATATGAATTTGTATCAAAATCAACAAGAGCCGGTTCACTACCAAGCTCTTGGTGTTGC AGGTGCCGGTCTTCCTATGAATCAGAATCAGTATGAGCCGGTTCAGCCCTATGTCCCTAC TGGTTTTAGTGATCATTTTCAGTTTGAGAATATGAATTTGAATCAAAATCAACAGGAGCC GGTTCAATACCAAGCTCCTGTTGATTTTAATCATCAGATTCAACAAGGAAACTATGATAT GAATTTGAACCAGAATATGAGTTTGGATCCAAATCAGTATCCGTTTCAAAATGATCCATT CATGAATATGTTGACAGAATATCCTTATGAATAAGCGGGTTATGTTGGAGAGCATGCAC >G2589 Amino Acid Sequence (domain in AA coordinates: TBD) MRTKTKLVLIPDRHFRRATFRKRNAGIRKKLHELTTLCDIKACAVIYSPFENPTVWPSTE GVQEVISEFMEKPATERSKTMMSHETFLRDQITKEQNKLESLRRENRETQLKHFMFDCVG GKMSEQQYGARDLQDLSLFTDQYLNQLNARKKFLTEYGESSSSVPPLFDVAGANPPVVAD QAAVTVPPLFAVAGANLPVVADQAAVTVPPLFAVAGANLPVVADQAAVNVPTGFHNMNVN QNQYEPVQPYVPTGFSDHIQYQNMNFNQNQQEPVHYQALAVAGAGLPMTQNQYEPVHYQS $\verb|LAVAGGGLPMSQLQYEPVQPYIPTVFSDNVQYQHMNLYQNQQEPVHYQALGVAGAGLPMN|$ QNQYEPVQPYVPTGFSDHFQFENMNLNQNQQEPVQYQAPVDFNHQIQQGNYDMNLNQNMS LDPNQYPFQNDPFMNMLTEYPYE*

>G2687 (45..1139)

CTCTGTCTCTCTATCTTCTACTACTCTGTTTCTTGAATTCTAATGAACAACATCGACG AACGCATGAGACTTGATGACGAACCAGAAAACGCCCTAGTGGTTTCGTCTTCACCAAAGA $\tt CGGTTGTGGCTTCTGGCAATGTCAAGTACAAAGGAGTCGTTCAGCAACAGAACGGTCATT$ GGGGTGCCCAGATTTACGCAGACCACAAAAGGATTTGGCTTGGAACTTTCAAATCCGCTG ATGAAGCCGCCACGGCTTACGATAGTGCATCTATCAAACTCCGAAGCTTTGACGCTAACT CGCACCGGAACTTCCCTTGGTCTACAATCACTCTCAACGAACCAGACTTTCAAAATTGCT ACACAACAGAGACTGTGTTGAACATGATCAGAGACGGTTCGTACCAACACAAATTCAGAG ATTTTCTCAGAATCAGATCTCAGATTGTTGCGAGTATCAACATCGGGGGACCAAAACAAG ${\tt CCCGAGGAGAGTGAATCAGAATCAGACAAGTGTTTTTCTTGCACACAGCTTTTTCAGA}$ AGGAATTGACACCGAGCGATGTAGGGAAACTAAATAGGCTTGTGATACCTAAAAAGTATG TAGGATCTGTGGAAGATGTGGAGGTTGTGTTTTACGACAGAGCAATGAGACAATGGAAGT TTAGGTATTGTTACTGGAAAAGTAGCCAGAGCTTTGTCTTCACCAGAGGATGGAATAGTT TCGTGAAGGAGAATCTCAAGGAGAAGGATGTTATTGCCTTCTACACTTGCGATGTCC CGAACAATGTGAAGACATTAGAAGGTCAAAGAAGAACTTCTTGATGATCGATGTTCATT CAGTGCAAGTAAAGAAAACAGAAAACTTGGTTAGCTCCATGTTAGAAGATAAAGAAACCA AATCAGAGGAGAACAAAGGAGGGTTTATGCTGTTTGGTGTAAGGATCGAATGTCCTTAGG ${\tt GAATTTTTTTTAAAAGTTTCTTACTTCAACTAGAACTTGTTTTACTTGTACCT}$ >G2687 Amino Acid Sequence (domain in AA coordinates: TBD)

MNNIDDAKTETSVSSGSSDSFLPLKKRMRLDDEPENALVVSSSPKTVVASGNVKYKGVVQ QQNGHWGAQIYADHKRIWLGTFKSADEAATAYDSASIKLRSFDANSHRNFPWSTITLNEP DFQNCYTTETVLNMIRDGSYQHKFRDFLRIRSQIVASINIGGPKQARGEVNQESDKCFSC TQLFQKELTPSDVGKLNRLVIPKKYAVKYMPFISADQSEKEEGEIVGSVEDVEVVFYDRA MRQWKFRYCYWKSSQSFVFTRGWNSFVKEKNLKEKDVIAFYTCDVPNNVKTLEGQRKNFL MIDVHCFSDNGSVVAEEVSMTVHDSSVQVKKTENLVSSMLEDKETKSEENKGGFMLFGVR IECP*

>G27 (83..622)

>G27 Amino Acid Sequence (domain in AA coordinates: 37-104)
MQDSSSHESQRNLRSPVPEKTGKSSKTKNEQKGVSKQPNFRGVRMRQWGKWVSEIREPRK
KSRIWLGTFSTPEMAARAHDVAALAIKGGSAHLNFPELAYHLPRPASADPKDIQEAAAA
AAVDWKAPESPSSTVTSSPVADDAFSDLPDLLLDVNDHNKNDGFWDSFPYEDPFFLENY*
>G2720 (1..894)

>G2720 Amino Acid Sequence (domain in AA coordinates: 10-114)
MEAKKEEIKKGPWKAEEDEVLINHVKRYGPRDWSSIRSKGLLQRTGKSCRLRWVNKLRPN
LKNGCKFSADEERTVIELQSEFGNKWARIATYLPGRTDNDVKNFWSSRQKRLARILHNSS
DASSSSFNPKSSSSHRLKGKNVKPIRQSSQGFGLVEEEVTVSSSCSQMVPYSSDQVGDEV
LRLPDLGVKLEHQPFAFGTDLVLAEYSDSQNDANQQAISPFSPESRELLARLDDPFYYDI
LGPADSSEPLFALPQPFFEPSPVPRRCRHVSKDEEADVFLDDFPADMFDQVDPIPSP*
>G2787 (142..1584)

ATCGAGAGATGTTACACCGGTTTAACTTCTGCTCATGCTGCTTTGTTGACTCACCATCTC ${\tt AAGACTTTGAAGACCAGTGGTGTTCTTTCTATGGTTAAGAAATCTTACAAAATTGCTGGT}$ TCTTCTACTCCTCCTGCTAGTGTAGCTGTTGCTGCTGCCGCCGCCCCAAGGTCTCGAT GTTCCCAGATCTGAGATTCTCCATTCAAGTAACAACGATCCCATGGCTTCTGGCTCTGCT TCTCAGCCTCTGAAACGAGGTCGTGGTCGTCCTCCTAAGCCTAAACCTGAATCTCAACCA CAACCACTACAGCAACTTCCACCGACCAATCAAGTCCAGGCTAACGGACAGCCAATCTGG GAACAGCAGCAAGTTCAATCACCTGTTCCGGTTCCGACTCCGGTTACAGAGTCGGCGAAG AGAGGACCTGGTCGAAGGAAGAACGGTTCTGCTGCTGCTGCTACTGCACCAATCGTT ${\tt CAAGCTTCGGTTATGGCTGGAATTATGAAACGTAGAGGTAGACCACCGGGTCGTCGAGCT}$ GCTGGGAGACAGAGGCCCAAATCCGTTTCTTCTACTGCCTCTGTGTATCCTTATGTT GCTAATGGTGCTAGACGCAGAGGAGGCCTAGGAGAGTTGTTGACCCTAGCAGTATTGTT AGTGTTGCTCCAGTAGGTGGTGAAAATGTGGCAGCGGTTGCGCCAGGGATGAAGCGTGGA CGTGGACGACCACCTAAGATTGGTGGTGTTATCAGTAGGCTTATTATGAAGCCTAAGAGA GGACGAGGACGTCCTGTAGGTAGACCCCAGAAAGATTGGAACATCAGTCACGACTGGGACA GTGAAGGTGTTGAAGGATGGAGTTACAAGTGAGAATCAAGCAGTGGTGCAAGCCATAAAA GATCTGGAAGCACTAACAGTGACGGAGACCGTTGAGCCACAAGTTATGGAAGAAGTGCAG CCAGAGGAGACTGCAGCACCACAGACTGAAGCTCAACAAACTGAAGCTGCTGAGACACAA GGAGGACAAGAAGAAGACAAGAAGAAGAGAGAAACACAGACCCAGACAGAAGCAGAG GCAATGCAAGAAGCTCTGTTCTGAAGAATAATAATGATCTAGAAAACAACCTAGACATAA ${ t ATCTTAAATTATAAAAATCTATAAGGAATTTTAATTTTTCTAGGTTTTGTTGTCTGCA$ GAAGAAGAAATAGTAGACTCGTTAATGGTGTTGTTGTCGGTGTGTCTTTAACCAAACCAT ${\tt AAGACGTGGCTGTAAATTAGCGATGTTTCTAGTCTTCCATCTTTAATAATCTCTTATTGC}$ GTCTGTGCCTTTGTTTT

>G2787 Amino Acid Sequence (domain in AA coordinates: 172-192, 226-247, 256-276, 290-311, 245-366)

MDPSLGDPHHPPQFTPFPHFPTSNHHPLGPNPYNNHVVFQPQPQTQTQIPQPQMFQLSPH VSMPHPPYSEMICAAIAALNEPDGSSKMAISRYIERCYTGLTSAHAALLTHHLKTLKTSG VLSMVKKSYKIAGSSTPPASVAVAAAAAQGLDVPRSEILHSSNNDPMASGSASQPLKRG RGRPPKPKPESQPQPLQQLPPTNQVQANGQPIWEQQQVQSPVPVPTPVTESAKRGPGRPR KNGSAAPATAPIVQASVMAGIMKRRGRPPGRRAAGRQRKPKSVSSTASVYPYVANGARRR GRPRRVVDPSSIVSVAPVGGENVAAVAPGMKRGRGPPKIGGVISRLIMKPKRGRGRPVG RPRKIGTSVTTGTQDSGELKKKFDIFQEKVKEIVKVLKDGVTSENQAVVQAIKDLEALTV TETVEPQVMEEVQPEETAAPQTEAQQTEAAETQGGQEEGQEREGETQTQTEAEAMQEALF

>G2789 (82..879)

CTTTAGGGACACCAAATCTATTCAACCTAAAAGCCTTCTTTTCCCCTATATTGACCAACT TTTTAGCGAATCAGAAGAGGAATGGATGAGGTATCTCGTTCTCATACACCGCAATTTCTA TCAAGTGATCATCAGCACTATCACCATCAAAACGCTGGACGACAAAAACGCGGCAGAGAA GAGAATATCAAGAAGAGAAGGCCACGTGGCAGACCTGCTGGTTCCAAGAACAAACCCAAA GCACCAATCATAGTCACTCGCGACTCCGCGAACGCCTTCAGATGTCACGTCATGGAGATA ACCAACGCCTGCGATGTAATGGAAAGCCTAGCCGTCTTCGCTAGACGCCGTCAGCGTGGC GTTTGCGTCTTGACCGGAAACGGGGCCGTTACAAACGTCACCGTTAGACAACCTGGCGGA CCACCGGCACCAGCTGCGTCTGGTTTAAAGGTTTACTTAGCCGGTGGTCAAGGTCAA $\tt GTGATCGGAGGCAGTGTGGTGGGACCGCTTACGGCATCAAGTCCGGTGGTCGTTATGGCA$ GCTTCATTTGGAAACGCATCTTACGAGAGGCTGCCACTAGAGGAGGAGGAGGAAACTGAA ${\tt AGAGAAATAGATGGAAACGCGGATTGGAACGCAAACGCAGAAACAGTTAATG}$ GGTGAAGCTTATTGGGGAACGCAACGACCGTCTTTCTAAGATAATATCATTGATAATATA ${\tt AGTTTCGTCTTATTCTTTTCACTTTTTACCTTTTTCACTTTCTTAGGTTTTGTTTT}$ AACGTTTGATTAATACCTGAAGGTTTTTGGAAAATTTTCGATCGGATAAAAGGATTTATG TTGCGAGCCGAAACGCGGCC

>G2789 Amino Acid Sequence (domain in AA coordinates: 53-73, 121-165)
MDEVSRSHTPQFLSSDHQHYHHQNAGRQKRGREEEGVEPNNIGEDLATFPSGEENIKKRR

PRGRPAGSKNKPKAPIIVTRDSANAFRCHVMEITNACDVMESLAVFARRRQRGVCVLTGN GAVTNVTVRQPGGGVVSLHGRFEILSLSGSFLPPPAPPAASGLKVYLAGGQGQVIGGSVV GPLTASSPVVVMAASFGNASYERLPLEEEEETEREIDGNAARAIGTQTQKQLMQDATSFI GSPSNLINSVSLPGEAYWGTQRPSF*

>G31 (13..615)

>G31 Amino Acid Sequence (domain in AA coordinates: TBD)
MAPRQANGRSIAVSEGGGGKTMTMTTMRKEVHFRGVRKRPWGRYAAEIRDPGKKTRVWLG
TFDTAEEAARAYDTAAREFRGSKAKTNFPLPGESTTVNDGGENDSYVNRTTVTTAREMTR
QRFPFACHRERKVVGGYASAGFFFDPSRAASLRAELSRVCPVRFDPVNIELSIGIRETVK
VEPRRELNLDLNLAPPVVDV*

>G33 (20..757)

ATTCTCCCCAACCAAAATATGACCACAGAAAAAGAGAATGTCACTACGGCCGTGGCCGT GAAAGACGCCGGAGAAAAGAGTAAGGAAGTGACTGACAAGGCCGTAAAGAAGAAGAA TGTAACTAAGGCCCTGGCCGTGAATGACGGCGGAGAAAAGAGTAAGGAAGTGCGTTACAG GGGTGTAAGGAGGAGACCATGGGGGAGATATGCTGCGGAGATCCGTGÁTCCGGTAAAGAA AAAACGGGTCTGGCTCGGGTCCTTCAACACGGGGGAGGAAGCCGCCAGAGCCTACGACTC CGCTGCCATAAGGTTTCGAGGATCGAAAGCTACTACTAACTTCCCTCTAATCGGATACTA TGCCAACCTCCCTCTGGTGGAGACGATGGGAATGCTTTGGCTTCTCCGGTGAACACAC CCTTTCCGAAACGCCGCGTGATGGAACACTTCCATCGGATTGTCACGACATGTTATCTCC GGGGGTGGCTGAAGCGGTTGCTGGATTTTTCTTAGATCTGCCTGAAGTTATTGCGTTGAA AGAGGAGCTTGATCGAGTTTGTCCTGACCAGTTTGAGTCCATTGATATGGGGTTGACTAT TGGTCCTCAAACCGCCGTGGAAGAGCCTGAGACTTCCTCCGCCGTGGATTGTAAGCTGCG AATGGAACCGGATCTTGACCTCAACGCAAGTCCCTAAAGATTGATCTGATGTTGTCC TTGAATAAGTTTGTTATCTTGTCGCTCTTCTGATTGTCTGTACTTCTATTGGTTGATTCG TGCTTTTGGAGGACAAACAACATTTTTTTTTTTTTATGTATTAAAAAAAGGTAATTGAACTATT ATCGAAAAAAAAAAAAAAAAAAAAAAAA

>G33 Amino Acid Sequence (domain in AA coordinates: 50-117)
MTTEKENVTTAVAVKDGGEKSKEVSDKGVKKRKNVTKALAVNDGGEKSKEVRYRGVRRRP
WGRYAAEIRDPVKKKRVWLGSFNTGEEAARAYDSAAIRFRGSKATTNFPLIGYYGISSAT
PVNNNLSETVSDGNANLPLVGDDGNALASPVNNTLSETARDGTLPSDCHDMLSPGVAEAV
AGFFLDLPEVIALKEELDRVCPDQFESIDMGLTIGPQTAVEEPETSSAVDCKLRMEPDLD
LNASP*

>G342 (1..723)

CTCCGGCGACAGAAGAACAAGAATCTTGCGTTCGAATTCCGCCGTTTCAGCCGCAG

>G342 Amino Acid Sequence (domain in AA coordinates: 155-190)
MDVYGMSSPDLLRIDDLLDFSNDEIFSSSSTVTSSAASSAASSENPFSFPSSTYTSPTLL
TDFTHDLCVPSDDAAHLEWLSRFVDDSFSDFPANPLTMTVRPEISFTGKPRSRRSRAPAP
SVAGTWAPMSESELCHSVAKPKPKKVYNAESVTADGARRCTHCASEKTPQWRTGPLGPKT
LCNACGVRYKSGRLVPEYRPASSPTFVLTQHSNSHRKVMELRRQKEQQESCVRIPPFQPQ

>G352 (80..817)

>G352 Amino Acid Sequence (domain in AA coordinates: 99-119,166-186)
MALETLNSPTATTTARPLLRYREEMEPENLEQWAKRKRTKRQRFDHGHQNQETNKNLPSE
EEYLALCLLMLARGSAVQSPPLPPLPSRASPSDHRDYKCTVCGKSFSSYQALGGHKTSHR
KPTNTSITSGNQELSNNSHSNSGSVVINVTVNTGNGVSQSGKIHTCSICFKSFASGQALG
GHKRCHYDGGNNGNGNGSSSNSVELVAGSDVSDVDNERWSEESAIGGHRGFDLNLPADQV
SVTTS*

>G357 (1..615)

>G357 Amino Acid Sequence (domain in AA coordinates: 7-29)
MQNKHKCKLCSKSFCNGRALGGHMKSHLVSSQSSARKKLGDSVYSSSSSSDGKALAYGL
RENPRKSFRVFNPDPESSTIYNSETETEPESGDPVKKRVRGDVSKKKKKKAKSKRVFENS
KKQKTIHESPEPASSVSDGSPEQDLAMCLMMLSRDSRELEIKLKKPEEERKPEKRHFPEL
RRCMIDLNLPPPQEAEAVTVVSAI*

>G358 (1..855)

PCT/US02/25805 WO 03/013227 126/286

CAAGCTCTCGGTGGTCACATGAGGCGGCACAGGACAGCCGTAACCACGATTAGCCCCGTT GCAGCCACCGCAGAAGTAAGCAGAAACAGTACAGAGGAAGAGATTGAGATCAATATAGGC CGTTCGATGGAACAGCAGAGGAAATATCTACCGTTGGATCTTAATCTACCAGCACCAGAA GATGATCTAAGAGTCAAAGTTTCAAGGGATAGTATTCTCAGCAACACCAGCGTTAATA GATTGTCATTACTAG

>G358 Amino Acid Sequence (domain in AA coordinates: 124-135, 188-210) MGODEVGSDQTQIIKGKRTKRQRSSSTFVVTAATTVTSTSSSAGGSGGERAVSDEYNSAV SSPVTTDCTQEEEDMAICLIMLARGTVLPSPDLKNSRKIHQKISSENSSFYVYECKTCNR TFSSFOALGGHRASHKKPRTSTEEKTRLPLTQPKSSASEEGQNSHFKVSGSALASQASNI INKANKVHECSICGSEFTSGQALGGHMRRHRTAVTTISPVAATAEVSRNSTEEEIEINIG RSMEQQRKYLPLDLNLPAPEDDLRESKFQGIVFSATPALIDCHY*

>G360 (1..543)

ATGTGGAACCCTAACAAAATTGAAGAATTGGAGGATGATGATGATCTTGGGAAGTCAAA GCCTTTGAGCAAGACACTAAAGGCAACATCTCTGGTACCACTTGGCCTCCAAGATCTTAC ACTTGCAATTTCTGCCGCCGTGAGTTCCGTTCTGCTCAAGCCTTAGGCGGTCACATGAAT GTCCACCGCCGTGACCGCGCCTCATCTAGGGCTCATCAAGGTTCCACCGTTGCGGCTGCG GCTAGAAGCGGCCACGGGGGGATGTTACTCAATTCTTGTGCTCCGCCGTTGCCTACAACG ACACTTATAATACAATCCACGGCGAGTAACATTGAAGGTTTGTCCCATTTCTACCAACTG CAAAACCCTAGTGGCATTTTTGGTAATTCTGGTGACATGGTGAATCTTTATGTAGAAGTT CCTCCTCGGCTTATTGAATATTCGACAGGAGATGATGAGAGCATTGGCTCGATGAAAGAA GCGACAGGAACATCAGTGGATGAGCTTGATCTTGAACTTCGGCTAGGGCACCATCCACCG

>G360 Amino Acid Sequence (domain in aa coordinates: 42-62) MWNPNKIEELEDDDESWEVKAFEQDTKGNISGTTWPPRSYTCNFCRREFRSAQALGGHMN VHRRDRASSRAHQGSTVAAAARSGHGGMLLNSCAPPLPTTTLIIQSTASNIEGLSHFYQL QNPSGIFGNSGDMVNLYVEVPPRLIEYSTGDDESIGSMKEATGTSVDELDLELRLGHHPP

>G362 (195..830)

ATAAAAAACCCTTCATACAATATAAAATTTCTTTAGACATACAATATATTATACTATTAC TATATAAAGAAGATCATTTACACATCTCCTTAAGCAAATTAAACCCATCGATAAACACAT ACGTTCACACATATATGTCTATAAATCCGACAATGTCTCGTACTGGCGAAAGTTCTTCAG GTTCGTCCTCCGACAAGACGATAAAGCTATTCGGCTTCGAACTCATCAGCGGCAGTCGTA CGCCGGAAATCACGACGGCGGAAAGCGTGAGCTCGTCCACAAACACGACGTCGTTAACAG TGATGAAAAGACACGAGTGCCAATACTGCGGTAAAGAGTTTGCAAATTCTCAAGCCTTAG GAGGTCACCAAAACGCTCACAAGAAGGAGGGGTTGAAGAAGAAGAGGCTTCAAG TTCAGAGACAATACAAAACGCCGTCGTATTGTGCATTCTCCTCCATGCACGTGAATAATG ATCAGATGGGTGTGTACAACGAAGATTGGTCGTCGAGGTCGTCGCAGATTAACTTCGGTA ATAATGACACGTGCCAAGATCTTAATGAACAAAGCGGTGAGATGGGTAAGCTGTACGGTG TTCGACCGAACATGATTCAGTTCCAGAGAGATCTGAGTTCTCGTTCTGATCAGATGAGAA GTATTAACTCGCTGGATCTTCATCTAGGTTTTGCCGGAGATGCGGCATAACAAATTAAAG AGAGATATATGATTAAGATTATATGTACTATAGTGGCGTATTTCATTGGGATCATGAAGG TATGTATGTTTTCGAAG

>G362 Amino Acid Sequence (domain in AA coordinates: 62-82) MSINPTMSRTGESSSGSSSDKTIKLFGFELISGSRTPEITTAESVSSSTNTTSLTVMKRH ECQYCGKEFANSQALGGHQNAHKKERLKKKRLQLQARRASIGYYLTNHQQPITTSFQRQY KTPSYCAFSSMHVNNDQMGVYNEDWSSRSSQINFGNNDTCQDLNEQSGEMGKLYGVRPNM IQFQRDLSSRSDQMRSINSLDLHLGFAGDAA*

>G364 (64..516)

AAGCTTGATATCGCCTCTCTAATCTCTCTTTTCTCTCTATCTCTAAGAATATATAAA GGTATGGACTACCAGCCAAACACATCCCTACGTCTAAGCCTACCAAGTTACAAGAACCAC CAACTAAACCTAGAACTTGTTCTCGAGCCTTCTTCCATGTCTTCTTCATCTTCTCC ACGAACTCATCATCTTTGGAGCAGCCTAGGGTATTCTCATGTAACTATTGTCAAAGA AAGTTTTACAGCTCTCAAGCTCTTGGTGGTCATCAAAACGCTCATAAGCTTGAGAGAACC TTAGCCAAGAAGAGTCGAGAACTCTTTAGATCCTCAAACACTGTTGATTCTGATCAGCCT

>G364 Amino Acid Sequence (domain in AA coordinates: 54-76) MDYQPNTSLRLSLPSYKNHQLNLELVLEPSSMSSSSSSTNSSSCLEQPRVFSCNYCQRK FYSSQALGGHQNAHKLERTLAKKSRELFRSSNTVDSDQPYPFSGRFELYGRGYQGFLESG GSRDFSARRVPESGLDQDQEKSHLDLSLRL*

>G365 (69..755)

GAATATACATGGAACCGTCCATCAAAGGAGATCAAGAAATGTTAAAAATCAAGAAACAAG GTCATCAAGATCTTGAGTTGGGGTTGACCCTTTTGTCACGTGGAACCGCGACCTCATCAG AGCTCAATCTCATCGATTCTTTCAAAACCAGCTCATCATCGACTTCTCATCATCAGCACC AGCAAGAACAATTGGCAGATCCGAGAGTGTTCTCGTGTAATTATTGTCAAAGAAGTTCT ATAGTTCACAAGCGCTAGGCGGTCACCAAAACGCTCATAAACGTGAGCGCACCTTAGCCA AACGTGGACAGTATTACAAGATGACTCTCTCCTCCTTGCCTTCTCAGCGTTTGCGTTTG GCCACGGTTCAGTCAGCAGATTCGCAAGCATGGCATCGTTACCATTACATGGCTCGGTGA ATAACAGGTCAACGTTAGGGATTCAAGCTCATTCAACGATCCATAAGCCCAGCTTCTTAG GAAGACAAACGACGAGTTTAAGTCATGTTTTCAAACAGAGCATTCACCAGAAACCGACCA TAGGAAAGATGTTGCCGGAGAAATTTCACCTTGAAGTCGCCGGAAATAATAACAGTAACA AGTTTAAGAAAATTGACTTGACTCTTAAGCTATGAGCTCTGCCATCTTCTTTTTAGTCTT CATTATAACTTTTTTTTTTCTCATCTTTGTTTGATAAATGATTGACGGCAGGGTGTGTT AGAGTTTCACTAATGATCAAGTTGTACTTTTTATATATTTCATTGATACCTTGTTGATGT **AATTCAATATTTTAGGTCTGTTTTT**

>G365 Amino Acid Sequence (domain in aa coordinates: 70-90)
MEPSIKGDQEMLKIKKQGHQDLELGLTLLSRGTATSSELNLIDSFKTSSSSTSHHQHQQE
QLADPRVFSCNYCQRKFYSSQALGGHQNAHKRERTLAKRGQYYKMTLSSLPSSAFAFGHG
SVSRFASMASLPLHGSVNNRSTLGIQAHSTIHKPSFLGRQTTSLSHVFKQSIHQKPTIGK
MLPEKFHLEVAGNNNSNMVAAKLERIGHFKSNQEDHNQFKKIDLTLKL*

>G367 Amino Acid Sequence (domain in AA coordinates:63-84)
MDASIVSSSTAFPYQDSLNQSIEDEERDVHNSSHELNLIDCIDDTTSIVNESTTSTEQKL
FSCNYCQRTFYSSQALGGHQNAHKRERTLAKRGQRMAASASAFGHPYGFSPLPFHGQYNN
HRSLGIQAHSISHKLSSYNGFGGHYGQINWSRLPFDQQPAIGKFPSMDNFHHHHHQMMMM
APSVNSRSNNIDSPSNTGRVLEGSPTLEQWHGDKGLLLSTSHHEEQQKLDLSLKL*
>G373 (1..1854)

GAGAAGAAGAAGTTAGAAATCTTTTGTTCTATTTGCATTCAATTGCCAGAAAGACCTATC ACGACACCGTGTGGGCACAATTTCTGTTTGAAATGTTTCGAGAAATGGGCAGTAGGTCAA GGGAAGCTAACTTGTATGATATGCCGAAGCAAAATTCCGAGACATGTGGCAAAAAATCCT CGCATCAACTTAGCTCTAGTTTCTGCTATTCGTTTAGCAAATGTTACCAAATGTTCTGTT GAGGCAACTGCAGCCAAGGTTCATCATATTATCCGCAACCAAGACCGTCCTGAGAAAGCA TTTACTACCGAGCGGCAGTAAAAACTGGGAAAGCTAATGCTGCTAGCGGTAAGTTTTTT GTGACAATACCTCGTGATCATTTTGGTCCCATACCAGCTGAGAATGATGTCACTAGAAAG CAAGGTGTTTTGGTTGGAGAATCTTGGGAGGCAAGAGTGTAGGCAGTGGGGAGCT CATTTCCCGCATATTGCTGGCATTGCCGGCCAATCAGCGGTTGGAGCTCAGTCTGTGGCC CTCTCTGGGGGTTATGACGATGATGAGGATCATGGTGAATGGTTTCTCTACACAGGAAGT GGTGGAAGGGATCTCAGTGGAAACAAAAGAATTAACAAGAAACAGTCGTCTGACCAGGCG TTTAAAAACATGAATGAATCTCTAAGACTTAGTTGCAAAATGGGCTATCCTGTCCGAGTT GTCAGGTCTTGGAAGGAGAAGCGTTCTGCATATGCCCCTGCTGAAGGTGTGAGATATGAT GGGGTCTATCGAATTGAGAAGTGCTGGAGTAATGTTGGAGTACAGGGTTCTTTTAAGGTC TGTCGTTACCTGTTTGTTAGATGTGACAATGAGCCAGCTCCATGGACCAGTGATGAGCAT GGCGATCGTCCAAGACCGTTGCCTAATGTTCCGGAGCTTGAGACTGCTGCTGACCTGTTT GTGAGAAAGGAGACCCATCATGGGATTTCGATGAAGCTGAGGGTCGTTGGAAATGGATG AAGTCTCCTCTTTAGCAGAATGGCTTTGGATCCTGAGGAGGAAGAAGAATAAGAGA GCAAAAAATACTATGAAGGCCAGACTTCTGAAAGAATTTAGTTGCCAAATCTGTCGGGAA GTGCTGAGTCTTCCAGTGACGACGCCTTGTGCACACACTTCTGCAAAGCATGCTTAGAA GCGAAGTTTGCTGGGATAACTCAACTGAGAGAGAGAGCAATGGCGGACGTAAACTACGT GCAAAGAAGAACATCATGACCTGCCCTTGCTGCACGACGGATCTCTCCGAGTTTCTCCAA AACCCGCAGGTGAACAGAGAGATGATGGAGATAATAGAGAATTTTTAAGAAGAGTGAGGAA GAGGCTGATGCATTCCTGAAGAAGAAGAAGAAGAATCCGAACCTCCAACTAAGAAG ATTAAGATGGATAACAACTCTGTTGGTGGTAGTGGTACAAGTCTCTCAGCTTAA >G373 Amino Acid Sequence (domain in AA coordinates: 129-168)

>G373 Amino Acid Sequence (domain in AA coordinates: 129-168 MAIETQLPCDGDGVCMRCQVMPPSEETLTCGTCVTPWHVPCLLPESLASSTGEWECPDCS GVVVPSAAPGTGNARPESSGSVLVAAIRAIQADETLTEAEKAKKRQKLMSGGGDDGVDEE EKKKLEIFCSICIQLPERPITTPCGHNFCLKCFEKWAVGQGKLTCMICRSKIPRHVAKNP RINLALVSAIRLANVTKCSVEATAAKVHHIIRNQDRPEKAFTTERAVKTGKANAASGKFF VTIPRDHFGPIPAENDVTRKQGVLVGESWEDRQECRQWGAHFPHIAGIAGQSAVGAQSVA LSGGYDDDEDHGEWFLYTGSGGRDLSGNKRINKKQSSDQAFKNMNESLRLSCKMGYPVRV VRSWKEKRSAYAPAEGVRYDGVYRIEKCWSNVGVQGSFKVCRYLFVRCDNEPAPWTSDEH GDRPRPLPNVPELETAADLFVRKESPSWDFDEAEGRWKWMKSPPVSRMALDPEERKKNKR AKNIMKARLLKEFSCQICREVLSLPVTTPCAHNFCKACLEAKFAGITQLRERSNGGRKLR AKKNIMTCPCCTTDLSEFLQNPQVNREMMEIIENFKKSEEEADASISEEEEEESEPPTKK IKMDNNSVGGSGTSLSA*

>G396 (1..957)

ATGGGGGAAAGAGATGATGGGTTGGGTTTGAGTCTAAGCTTGGGAAATAGTCAACAAAAA GAACCATCTCTGAGGTTGAATCTTATGCCGTTGACAACTTCTTCTTCTTCTTCTTCTTT CAACACATGCACAATCAGAATAACAATAGCCATCCCCAGAAGATTCATAACATCTCTTGG ACTCATCTGTTTCAATCTTCTGGGATTAAACGTACAACTGCAGAGAGAAACTCCGACGCC GGGTCATTTCTAAGAGGTTTCAACGTGAACAGAGCTCAGTCTTCGGTGGCGGTAGTGGAC TTGGAAGAAGAAGCCGCCGTCGTCTCCAAACAGCGCCGTTTCGAGTCTGAGTGGA AATAAAAGGGATCTTGCGGTGGCGAGAGGAGGAGAGATGAAAACGAGGCGGAGAGAGCTTCT TGCTCACGCGGAGGGGAAGCGGTGGTAGCGACGATGAAGACGGCGGAAACGGCGACGGA ${\tt TCAAGGAAGAAACT}_{\tt ACGGTTATCGAAGGATCAAGCTCTTGTTCTCGAGGAGACTTTTAAA}$ GAACATAGCACTCTTAATCCGAAGCAAAAGCTGGCTCTAGCAAAACAGTTGAATCTAAGG GAGGTTGATTGTGAGTATTTAAAGAGATGTTGCGATAATCTGACCGAGGAGAATCGACGG CTGCAGAAAGAAGTGTCGGAGCTGAGGGCGTTGAAGTTGTCTCCACATCTCTACATGCAC ATGACTCCTACTACTCTCACCATGTGCCCTTCTTGCGAACGTGTCTCCTCCTCTGCC GCCACTGTGACCGCTGCTCCACTACTACTACTACTACGGTGGTGGGGGGGCCAAGT CCACAGCGATTAACTCCTTGGACTGCTATTTCTCTCCAGCAAAAATCAGGTCGCTAG >G396 Amino Acid Sequence (domain in AA coordinates: 159-220) MGERDDGLGLSLSLGNSQQKEPSLRLNLMPLTTSSSSSFQHMHNQNNNSHPQKIHNISW

THLFQSSGIKRTTAERNSDAGSFLRGFNVNRAQSSVAVVDLEEEAAVVSSPNSAVSSLSG NKRDLAVARGGDENEABRASCSRGGGSGGSDDEDGGNGDGSRKKLRLSKDQALVLEETFK EHSTLNPKQKLALAKQLNLRARQVEVWFQNRRARTKLKQTEVDCEYLKRCCDNLTEENRR LQKEVSELRALKLSPHLYMHMTPPTTLTMCPSCERVSSSAATVTAAPSTTTTPTVVGRPS PQRLTPWTAISLQQKSGR*

>G431 (1..1149)

ATGGAGAGTGGTTCCAACAGCACTTCTTGTCCAATGGCTTTTGCCGGGGATAATAGTGAT GGTCCGATGTGTCCTATGATGATGATGATGCCGCCCATCATGACATCACATCAACATCAT GGTCATGATCATCAACATCAACAACAAGAACATGATGGTTATGCATATCAGTCACACCAC CAACAAAGTAGTTCCCTTTTTCTTCAATCACTAGCTCCTCCCCAAGGAACTAAGAACAAA GTTGCTTCTTCTTCTTCCTCCTCTTGTGCTCCTGCCTATTCTCTAATGGAGATCCAT GTCAAGGCCAAGATCATGGCTCATCCTCACTACCACCGCCTCTTGGCCGCTTATGTCAAT TGTCAGAAGGTTGGAGCACCACCGGAGGTTGTGGCGAGGCTGGAGGAGGCATGCTCGTCT GCCGCAGCCGCAGCCGCATCTATGGGGCCAACAGGGTGTCTTGGTGAAGATCCAGGGCTT GATCAATTCATGGAAGCTTACTGTGAAATGCTCGTTAAGTATGAGCAAGAGCTCTCCAAA CCTTTCAAGGAAGCTATGGTCTTCCTTCAACGTGTCGAGTGTCAATTCAAATCCCTCTCT CTATCCTCACCTTCCTCTTTCTCCGGTTATGGAGAGACAATTGATAGGAACAATAAT GGGTCATCCGAGGAAGAAGTCGATATGAACAATGAATTTGTAGATCCACAAGCTGAGGAT AGAGAGCTTAAAGGACAGCTCTTGCGCAAGTACAGTGGTTACTTAGGGAGCCTCAAGCAA GAGTTCATGAAGAAGAGGAAGAAGGAAAGCTCCCTAAAGAAGCTCGTCAACAACTGCTT GATTGGTGGAGCCGTCACTACAAATGGCCTTACCCTTCGGAGCAACAAAAGCTCGCCCTT GCGGAATCAACGGGGCTGGACCAGAAACAGATAAACAATTGGTTCATAAACCAGAGGAAA CGGCATTGGAAGCCGTCGGAGGACATGCAGTTTGTAGTAATGGACGCAACACATCCTCAC CATTACTTCATGGATAATGTCTTGGACAATCCTTTCCCAATGGATCACATCTCCTCCACC

>G431 Amino Acid Sequence (domain in AA coordinates: 286-335)
MESGSNSTSCPMAFAGDNSDGPMCPMMMMPPIMTSHQHHGHDHQHQQQEHDGYAYQSHH
QQSSSLFLQSLAPPQGTKNKVASSSSPSSCAPAYSLMEIHHNEIVAGGINPCSSFSSSAS
VKAKIMAHPHYHRLLAAYVNCQKVGAPPEVVARLEEACSSAAAAAASMGPTGCLGEDPGL
DQFMEAYCEMLVKYEQELSKPFKEAMVFLQRVECQFKSLSLSSPSSFSGYGETAIDRNNN
GSSEEEVDMNNEFVDPQAEDRELKGQLLRKYSGYLGSLKQEFMKKRKKGKLPKEARQQLL
DWWSRHYKWPYPSEQQKLALAESTGLDQKQINNWFINQRKRHWKPSEDMQFVVMDATHPH
HYFMDNVLDNPFPMDHISSTML*

>G479 (1..1128)

ATGGAGATGGGTTCCAACTCGGGTCCGGGTCATGGTCCGGGTCAGGCAGAGTCGGGTGGT TCCTCCACTGAGTCATCCTCTTTCAGTGGAGGGCTCATGTTTGGCCAGAAGATCTACTTC GAGGACGTGGTGGTGGATCCGGGTCTTCTTCCTCAGGTGGTCGTTCAAACAGACGTGTC CGTGGAGGCGGTCGGTCAGTCGGGTCAGATACCAAGGTGCCAAGTGGAAGGTTGTGGG ATGGATCTAACCAATGCAAAAGGTTATTACTCGAGACACCGAGTTTGTGGAGTGCACTCT AAAACACCTAAAGTCACTGTGGCTGGTATCGAACAGAGGTTTTGTCAACAGTGCAGCAGG TTTCATCAGCTTCCGGAATTTGACCTAGAGAAAAGGAGTTGCCGCAGGAGACTCGCTGGT ${\tt CATAATGAGCGACGAAGGAAGCCACAGCCTGCGTCTCTCTGTGTTAGCTTCTCGTTAC}$ GGGAACCAAGAGATAGGATGGCCAAGTTCAAGAACATTGGATACAAGAGTGATGAGGCGG CCAGTGTCGTCACCGTCATGCAGATCAATCCAATGAATGTATTTAGTCAAGGTTCAGTT GGTGGAGGAGGACAAGCTTCTCATCTCCAGAGATTATGGACACTAAACTAGAGAGCTAC TCAGGTTTTGGCCCGATGACGGTTACAATGGCTCAACCACCACCTGCACCTAGCCAGCAT CAGTATCTGAACCCGCCTTGGGTATTCAAGGACAATGATAATGATATGTCTCCTGTTTTG AATTTAGGTCGATACACCGAGCCAGATAATTGTCAGATAAGTAGTGGCACGGCAATGGGT GAGTTCGAGTTATCTGATCACCATCATCAAAGTAGGAGACAGTACATGGAAGATGAGAAC ACAAGGGCTTATGACTCTTCTTCTCACCATACCAACTGGTCTCTCTGA

>G479 Amino Acid Sequence (conserved domain in AA coordinates:70-149)
MEMGSNSGPGHGPGQAESGGSSTESSSFSGGLMFGQKIYFEDGGGGSGSSSSGGRSNRRV
RGGGSGQSGQIPRCQVEGCGMDLTNAKGYYSRHRVCGVHSKTPKVTVAGIEQRFCQQCSR

FHQLPEFDLEKRSCRRRLAGHNERRRKPQPASLSVLASRYGRIAPSLYENGDAGMNGSFL GNQEIGWPSSRTLDTRVMRRPVSSPSWQINPMNVFSQGSVGGGGTSFSSPEIMDTKLESY KGIGDSNCALSLLSNPHQPHDNNNNNNNNNNNNNTWRASSGFGPMTVTMAQPPPAPSQH QYLNPPWVFKDNDNDMSPVLNLGRYTEPDNCQISSGTAMGEFELSDHHHQSRRQYMEDEN TRAYDSSSHHTNWSL*

>G546 (1..588)

>G546 Amino Acid Sequence (domain in AA coordinates:114-155) MTRPSRLLETAAPPPQPSEEMIAAESDMVVILSALLCALICVAGLAAVVRCAWLRRFTAG GDSPSPNKGLKKKALQSLPRSTFTAAESTSGAAAEEGDSTECAICLTDFADGEEIRVLPL CGHSFHVECIDKWLVSRSSCPSCRRILTPVRCDRCGHASTAEMKDQAHRHQHHQHSSTTI PTFLP*

>G551 (1..708)

>G551 Amino Acid Sequence (conserved domain in AA coordinates:73-133)
MEWSTTSNVENVRVAFMPPPWPESSSFNSLHSFNFDPYAGNSYTPGDTQTGPVISVPESE
KIMNAYRFPNNNNEMIKKKRLTSGQLASLERSFQEEIKLDSDRKVKLSRELGLQPRQIAV
WFQNRRARWKAKQLEQLYDSLRQEYDVVSREKQMLHDEVKKLRALLRDQGLIKKQISAGT
IKVSGEEDTVEISSVVVAHPRTENMNANQITGGNQVYGQYNNPMLVASSGWPSYP*
>G578 (1..978)

ATGCATAGTTTGAATGAAACAGTAATTCCTGATGTTGATTACATGCAGTCTGATAGAGGG CATATGCATGCTGCTGCTTGATTCCAGTGATCGATCAAAGGATAAGTTGGATCAAAAG ACCCTTCGTAGGCTTGCTCAAAATCGTGAGGCAGCAAGAAAAAGCAGATTGAGGAAGAAG GCGTATGTTCAGCAGCTGGAAGATAGTCGATTAAAGCTGACTCAAGTTGAGCAGGAGCTG CAAAGAGCAAGACAGCAGGGAGTTTTCATCTCAAGTTCAGGAGACCAAGCTCATTCTACT GGTGGCAATGGTGGGGCTTTGGCATTTGATGCAGAACACTCACGATGGCTTGAAGAAAAG AACAGGCAAATGAACGAGCTGAGATCTGCCCTGAATGCTCATGCAGGTGATACTGAGCTC CGGATAATTGTGGATGGGTGATGGCTCACTATGAGGAGCTTTTCAGGATTAAGAGCAAT GCATCTAAGAATGATGTCTTCCACTTGTTATCTGGAATGTGGAAAACACCAGCTGAGCGA TGTTTCTTGTGGCTTGGCGGGTTCCCGTCATCCGAACTTCTCAAGCTTCTTGCGAATCAG CTAGAGCCCATGACAGAACGACAGGTAATGGGCATCAATAGCTTGCAGCAGACGTCGCAG CAGGCAGAGATGCTTTATCTCAAGGGATGGAGAGTTTACAGCAATCCCTAGCTGATACT TTATCCAGTGGAACTCTTGGTTCCAGTTCATCGGATAATGTCGCGAGCTACATGGGTCAG ATGGCCATGGCAATGGGCAAGTTAGGCACCCTCGAAGGATTCATACGCCAGGCTGATAAC GCTCTTCTTGCTATACACGATTATTCATCTCGATTACGTGCTCTTAGTTCCTTGTGGCTT GCCCGGCCAAGAGAGTGA

>G578 Amino Acid Sequence (domain in AA coordinates 36-96)
MHSLNETVIPDVDYMQSDRGHMHAAASDSSDRSKDKLDQKTLRRLAQNREAARKSRLRKK
AYVQQLEDSRLKLTQVEQELQRARQQGVFISSSGDQAHSTGGNGGALAFDAEHSRWLEEK
NRQMNELRSALNAHAGDTELRIIVDGVMAHYEELFRIKSNASKNDVFHLLSGMWKTPAER
CFLWLGGFPSSELLKLLANQLEPMTERQVMGINSLQQTSQQAEDALSQGMESLQQSLADT
LSSGTLGSSSSDNVASYMGQMAMAMGKLGTLEGFIRQADNLRLQTLQQMLRVLTTRQSAR
ALLAIHDYSSRLRALSSLWLARPRE*

>G596 (168..1121)

TAATTTCTCTACTTCAGATTTTTTTCTCCTTAGATTAATTTAATTGAGTTATTGTACATC CCTCAAGCTAAGATTCTGGTTTTGTGAGTTGAGTGGATGAGAAGAGGAGAGATTAACTAA ATTAGGGTTTCAATTGTTTACTTTTTGTTTGCTTTTATATCAAGTAATGGATCAGGTCT CTCGCTCTCTCCCACCTTTTCTCTCAAGAGATCTCCATCTTCACCCACACCATCAAT TCCAGCATCAGCAGCAGCAGCAACAGAATCACGGCCACGATATAGACCAGCACCGAA TCGGTGGGCTAAAACGTGACCGAGATGCTGATATCGATCCCAACGAGCACTCTTCAGCCG ATCACATCACGAGAAGGCCACGTGGCAGACCAGCGGGATCTAAGAACAAACCAAAACCGC CAATCATCACTCGAGACAGCGCAAACGCTCTCAAATCTCATGTCATGGAAGTAGCAA GCGTTTTGAGCGGAAACGCCGCTTACCAACGTTACCATAAGACAACCAGCTTCAGTAC GATCATTCCTCCTCCGGCTCCACCAGCTGCGTCAGGTCTAACGATTTACTTAGCCG GTGGTCAGGGACAGGTTGTTGGAGGAAGCGTGGTTGGTCCACTCATGGCTTCAGGACCTG TAGTGATTATGGCAGCTTCGTTTGGAAACGCTGCGTATGAGAGACTGCCGTTGGAGGAAG ACGATCAAGAAGAGCAAACAGCTGGAGCGGTTGCTAATAATATCGATGGAAACGCAACAA TGGGTGGTGGAACGCAAACGCAAACTCAGACGCAGCAGCAACAGCAACAACAGTTGATGC AAGATCCGACGTCGTTTATACAAGGGTTGCCTCCGAATCTTATGAATTCTGTTCAATTGC CAGCTGAAGCTTATTGGGGAACTCCGAGACCATCTTTCTAAATCGCGAAGAAAAAACAAG TTCTTCTTTGTTTTCTAAAGATAATTGTAGTCTTTGACGAAGATTCGTGGTACGTAT GAATCGAAGAGAATCGTTTTGGTCATGGGATTGCTCGATCTATTAGGTTTGAGAGGGGGT TTGTGTTTTGCGTTGACTAGCAGATTATAAAATTGTTGATTTTCGAGTTTTTATTTTCAT

>G596 Amino Acid Sequence (domain in AA coordinates: 89-96)
MDQVSRSLPPPFLSRDLHLHPHHQFQHQQQQQQQNHGHDIDQHRIGGLKRDRDADIDPNE
HSSAGKDQSTPGSGGESGGGGGDNHITRRPRGRPAGSKNKPKPPIIITRDSANALKSHV
MEVANGCDVMESVTVFARRRQRGICVLSGNGAVTNVTIRQPASVPGGGSSVVNLHGRFEI
LSLSGSFLPPPAPPAASGLTIYLAGGQGQVVGGSVVGPLMASGPVVIMAASFGNAAYERL
PLEEDDQEEQTAGAVANNIDGNATMGGGTQTQTQTQQQQQQLMQDPTSFIQGLPPNLMN
SVQLPAEAYWGTPRPSF*

>G617 (59..1141)

CAGATCTGTTCTTTACACCAAATTGAGTACTGAAGATCTTGTTGAGTGAATTAAAGAGAT AAATCATCAAGTAAACTTAAACCACATGTTGCAACAACAACAGCCGAGTTCGGTATCATC TTCAAGGCAATGGACTTCAGCTTTTAGGAATCCAAGAATCGTTCGAGTCTCAAGAACATT CGGTGGCAAAGACAGACACAGCAAAGTATGTACAGTCCGTGGTCTTCGAGACCGGAGGAT AAGGTTGTCCGTACCTACAGCTATTCAACTCTACGACCTTCAAGATCGATTAGGGCTGAG TCAGCCAAGCAAAGTCATTGATTGGTTACTCGAAGCAGCAAAAGATGACGTAGACAAGCT ACCTCCTCTACAATTCCCACATGGATTTAACCAGATGTATCCAAATCTCATCTTCGGAAA CTCCGGGTTTGGAGAATCTCCATCTTCAACTACATCAACAACGTTTCCAGGAACCAATCT CGGGTTCTTGGAAAATTGGGATCTTGGTGGTTCTTCAAGAACAAGAGCAAGATTAACCGA TACAACTACGACCCAAAGAGAAAGTTTTGATCTTGATAAAGGAAAATGGATCAAAAACGA CGAGAATAGTAATCAAGATCATCAAGGGTTTAACACCAATCATCAACAACAATTTCCTCT GACCAATCCGTACAACAACACTTCAGCTTATTACAACCTTGGACATCTTCAACAATCGTT AGACCAATCTGGTAATAACGTTACTGTCGCAATATCTAATGTTGCTGCTAATAATAACAA TAATCTCAATTTGCATCCTCCTTCCTCGTCTGCCGGAGATGGATCTCAGCTTTTTTTCGG TCCTACTCCTCCGGCAATGAGCTCTCTATTCCCGACATACCCTTCGTTTCTTGGAGCTTC TCATCATCATGTCGTCGATGGAGCCGGTCATCTTCAGCTCTTTAGCTCGAATTCAAA

TACCGCATCGCAGCAACACATGATGCCGGGTAATACGAGTTTGATTAGACCATTTCATCA
TTTGATGAGCTCGAATCATGATACGGATCATCATAGTAGCGATAATGAATCAGATTCTTG
AATGATTTTATATATCTACACTATACATTGAAAATGTTATATGTATACGTATTCTTAT
ATTTTGATATATATGCGTATTGTTGGATTGGTTTATGTATCT

>G617 Amino Acid Sequence (domain in AA coordinates: 64-118)
MRSGECDEEEIQAKQERDQNQNHQVNLNHMLQQQQPSSVSSSRQWTSAFRNPRIVRVSRT
FGGKDRHSKVCTVRGLRDRRIRLSVPTAIQLYDLQDRLGLSQPSKVIDWLLEAAKDDVDK
LPPLQFPHGFNQMYPNLIFGNSGFGESPSSTTSTTFPGTNLGFLENWDLGGSSRTRARLT
DTTTTQRESFDLDKGKWIKNDENSNQDHQGFNTNHQQQFPLTNPYNNTSAYYNLGHLQQS
LDQSGNNVTVAISNVAANNNNNLNLHPPSSSAGDGSQLFFGPTPPAMSSLFPTYPSFLGA
SHHHHVVDGAGHLQLFSSNSNTASQQHMMPGNTSLIRPFHHLMSSNHDTDHHSSDNESDS

>G620 (40..666)

>G620 Amino Acid Sequence (domain in AA coordinates: 20-118) MTSSVIVAGAGDKNNGIVVQQQPPCVAREQDQYMPIANVIRIMRKTLPSHAKISDDAKET IQECVSEYISFVTGEANERCQREQRKTITAEDILWAMSKLGFDNYVDPLTVFINRYREIE TDRGSALRGEPPSLRQTYGGNGIGFHGPSHGLPPPGPYGYGMLDQSMVMGGGRYYQNGSS GQDESSVGGGSSSSINGMPAFDHYGQYK*

>G625 (151..1137)

TCCTCTTCTTCTTCTTCTTCTTCATCTATGGACCCTTTAGCTTCCCAACATCAACAC AACCATCTGGAAGATAATAACCAAACCCTAACCCATAATAATCCTCAATCCGATTCCACC ACCGACTCATCAACTTCCTCCGCTCAACGCAAACGCAAAGGCAAAGGTGGTCCGGACAAC TCCAAGTTCCGTTACCGTGGCGTTCGACAAAGAAGCTGGGGCAAATGGGTCGCCGAGATC CGAGAGCCACGTAAGCGCACTCGCAAGTGGCTTGGTACTTTCGCAACCGCCGAAGACGCC GCACGTGCCTACGACCGGGCTGCCGTTTACCTATACGGGTCACGTGCTCAGCTCAACTTA GCCACCGTAGGAGGAGGAGCCAACTTTGGTCCGTACGGTATCCCTTTTAACAACAACATC TTCCTTAATGGTGGGACCTCTATGTTATGCCCTAGTTATGGTTTTTTCCCTCAACAACAA CAACAACAAAATCAGATGGTCCAGATGGGACAATTCCAACACCAACAGTATCAGAATCTT CATTCTAATACTAACAATAACAAGATTTCTGACATCGAGCTCACTGATGTTCCGGTAACT AATTCGACTTCGTTTCATCATGAGGTGGCGTTAGGGCAGGAACAAGGAGGAAGTGGGTGT ${\tt AATAATAATAGTTCGATGGAGGATTTGAACTCTCTAGCTGGTTCGGTGGGTTCGAGTCTA}$ TCAATAACTCATCCACCGCCGTTGGTTGATCCGGTATGTTCTATGGGTCTGGATCCGGGT TATATGGTTGGAGATGGATCTTCGACCATTTGGCCTTTTGGAGGAGAAGAAGAATATAGT CATAATTGGGGGAGTATTTGGGATTTTATTGATCCCATCTTGGGGGAATTCTATTAATTT ATTTTGGAGGATTTTTTTACTACCTATAGAGATAAATAAGAGGGTATTTTTATTATTATTTTT TTGAAGATTTTTATTTTCAAGGAATTCGTAAAAGAGATTACGGTTCCAATAAAGTATGTA TATGTGGAAGAATCGGAGGAGATGGTGGAAAGTTGTATGGGAATTTTATTGGTTCAAC

ACTTCCTTCACAGTGTGCCTACCTTAATATATATATTGTTGATAGGATATGATAATTTCTG
>G625 Amino Acid Sequence (conserved domain in AA coordinates:52-119)
MDPLASQHQHNHLEDNNQTLTHNNPQSDSTTDSSTSSAQRKRKGKGGPDNSKFRYRGVRQ
RSWGKWVAEIREPRKRTRKWLGTFATAEDAARAYDRAAVYLYGSRAQLNLTPSSPSSVSS
SSSSVSAASSPSTSSSSTQTLRPLLPRPAAATVGGGANFGPYGIPFNNNIFLNGGTSMLC
PSYGFFPQQQQQQNQMVQMGQFQHQQYQNLHSNTNNNKISDIELTDVPVTNSTSFHHEVA
LGQEQGGGGCNNNSSMEDLNSLAGSVGSSLSITHPPPLVDPVCSMGLDPGYMVGDGSSTI
WPFGGEEEYSHNWGSIWDFIDPILGEFY*

>G658 (17..757) CCACGCGTCCGCTCACATGAACAAAGGAGCTTGGACTAAAGAAGAAGATCAGCTTCTTGT TGATTACATCCGTAAACACGGTGAAGGTTGCTGGCGATCTCTCCCTCGCGCCGCTGGATT ACAAAGATGTGGTAAGAGTTGTAGATTGAGATGGATGAATTATCTAAGACCAGATCTCAA TAACAAATGGTCTTTAATAGCTGGGAGATTACCAGGAAGAACAGATAACGAGATCAAGAA CTATTGGAACACTCATATCAAGAGGAAGCTTCTCAGCCGTGGGATTGATCCAAACTCTCA $\tt CCGTCTGATCAACGAATCCGTCGTGTCTCCGTCGTCTTCAAAACGATGTCGTTGAGAC$ TATACATCTTGATTTCTCTGGACCGGTTAAACCGGAACCGGTGCGTGAAGAGATTGGTAT GGTTAATAATTGTGAGAGTAGTGGAACGACGTCGGAGAAGGATTATGGGAACGAGGAAGA TTGGGTGTTGAATTTGGAACTCTCTGTTGGACCGAGTTATCGGTACGAGTCGACTCGGAA AGTGAGTGTTGTTGACTCGGCTGAGTCGACTCGACGGTGGGGTTCCGAGTTGTTTGGAGC TCATGAGAGTGATGCGGTGTTTTGTGTTGTCGGATTGGGTTGTTTCGTAATGAGTCGTG TCGGAATTGTCGGGTTTCTGATGTTAGAACTCATTAGAGAGTCAATCGAGAATTCTTTAG AACATCAAGTAAGAAACTAGCATAATTATTTGATGGCAAAGCCAAAAGATTGTGCTC >G658 Amino Acid Sequence (domain in AA coordinates: 2-105) MNKGAWTKEEDOLLVDYIRKHGEGCWRSLPRAAGLORCGKSCRLRWMNYLRPDLKRGNFT EEEDELIIKLHSLLGNKWSLIAGRLPGRTDNEIKNYWNTHIKRKLLSRGIDPNSHRLINE SVVSPSSLQNDVVETIHLDFSGPVKPEPVREEIGMVNNCESSGTTSEKDYGNEEDWVLNL ELSVGPSYRYESTRKVSVVDSAESTRRWGSELFGAHESDAVCLCCRIGLFRNESCRNCRV SDVRTH*

>G716 (271..2079)

AAAAAAAGGGGAGAGATTTAGTTTTATCCNNCAGNGCCTGAANTACGTTCTGCAATCA ANTGATGGGTCTTTTCTTCTCTCTCTCTCTGTGTTTTCTTCATGGGGTTAAGACTAGTG TTCTTCTCCAGTTCTCATCTGGGTTCTTCAATGGCGAGTGTTGAAGGTGATGATGATTTC GGAAGTTCTTCGTCAAGGTCTTATCAAGATCAACTATACACAGAGCTATGGAAAGTTTGT CACATGGAACAACTTGTGGCGTCAACTAATCAAGGAATCAATTCAGAAGAAATACCTGTT TTTGATCTTCCTCCAAAGATACTTTGTCGAGTTCTTGATGTCACTTTAAAGGCGGAGCAT GAAACAGATGAGGTTTACGCTCAGATCACATTACAACCAGAGGAAGATCAAAGTGAACCA ACAAGTCTTGATCCACCTATTGTTGGACCAACTAAGCAAGAGTTTCATTCGTTTGATAAG ATTTTAACGGCTTCAGATACAAGCACTCATGGTGGATTCTCTGTTCTTCGTAAACACGCC ACTGAATGCTTGCCTTCTTTGGATATGACACAAGCTACTCCTACTCAAGAACTTGTGACT AGAGATCTTCATGGCTTTGAATGGAGGTTTAAGCATATATTCAGAGGACAACCACGGAGG CATTTGCTTACTACGGGTTGGAGTACATTTGTATCCTCGAAAAGACTTGTAGCTGGAGAT GCTTTTGTGTTCTTGAGGGGTGAGAATGGGGATTTACGGGTTGGAGTGAGACGATTAGCT CTTGCTACAGCTTCTCATGCTGTGCGTACAACAACAATCTTTGTTGTTCTTTTACAAGCCT AGGATAAGCCAATTCATAGTTGGGGTGAACAAGTATATGGAAGCTATAAAGCATGGATTT TCTCTCGGTACCCGATTCAGAATGAGGTTTGAAGGAGAAGAGTCTCCTGAGAGAATATTT ACTGGTACGATTGTGGGAAGTGGAGATCTATCTTCACAATGGCCAGCTTCTAAATGGAGG TCATTGCAGGTACAATGGGATGAGCCAACAACAGTTCAGAGACCAGATAAAGTCTCACCA TGGGAGATAGAGCCTTTCTTGGCAACTTCCCCAATTTCAACTCCTGCTCAACAACCACAA TCGAAATGCAAGCGGTCAAGACCCATCGAGCCATCAGTTAAAACACCAGCCCCACCTAGT TTCTTGTACAGCCTCCCTCAGAGCCAAGATTCCATTAATGCATCCCTTAAACTGTTTCAA GATCCATCACTTGAGAGAATTTCAGGTGGATACTCCTCAAACAACAGCTTCAAACCGAG

>G716 Amino Acid Sequence (domain in AA coordinates: 24-355)
MASVEGDDDFGSSSSRSYQDQLYTELWKVCAGPLVEVPRAQERVFYFPQGHMEQLVASTN
QGINSEEIPVFDLPPKILCRVLDVTLKAEHETDEVYAQITLQPEEDQSEPTSLDPPIVGP
TKQEFHSFVKILTASDTSTHGGFSVLRKHATECLPSLDMTQATPTQELVTRDLHGFEWRF
KHIFRQQPRRHLLTTGWSTFVSSKRLVAGDAFVFLRGENGDLRVGVRRLARHQSTMPTSV
ISSQSMHLGVLATASHAVRTTTIFVVFYKPRISQFIVGVNKYMEAIKHGFSLGTRFRMRF
EGEESPERIFTGTIVGSGDLSSQWPASKWRSLQVQWDEPTTVQRPDKVSPWEIEPFLATS
PISTPAQQPQSKCKRSRPIEPSVKTPAPPSFLYSLPQSQDSINASLKLFQDPSLERISGG
YSSNNSFKPETPPPPTNCSYRLFGFDLTSNSPAPIPQDKQPMDTCGAAKCQEPITPTSMS
EQKKQQTSRSRTKVQMQGIAVGRAVDLTLLKSYDELIDELEEMFEIQGQLLARDKWIVVF
TDDEGDMMLAGDDPWNEFCKMAKKIFIYSSDEVKKMTTKLKISSSLENEEYGNESFENRS
RG*

>G725 (46..1122)

AAACCTTCAAGTATGAATGGTTCATATGAGAACAGAGCTATGTGCGTTCAAGGCGATTCA GGCCTTGTCCTCACCACCGACCCTAAACCGCGTTTGCGTTGGACCGTCGAACTCCACGAG CGTTTTGTGGACGCCGTCGCTCAGCTCGGCGGCCCCGACAAAGCGACCCCAAAGACGATT ATGAGAGTTATGGGTGTGAAGGGTCTTACTCTTTACCACCTAAAGAGCCATCTTCAGAAA AGAGCTTCTGCCATGGATATTCAGCGCAACGTAGCTTCTTCTTCTGGCATGATGAGTCGC AACATGAATGAGATGCAAATGGAAGTGCAGAGAGGTTGCATGAACAGCTAGAGGTGCAA GCTTGCCAAACCCTAGCCGGTGAGAACATGGCAGCCGCCACCGCAGCAGCCGCCGTCGGA GGAGGATACAAGGGTAATCTGGGAAGTTCGAGTCTTTCAGCAGCGGTGGGCCCCACCTCCT CATCCTCTTAGTTTCCCGCCGTTTCAAGACCTAAACATCTATGGAAACACAACCGACCAA GTCCTCGACCATCACAACTTCCATCATCAAAACATAGAGAACCATTTCACGGGTAACAAT GCTGCAGACACCAACATTTACTTGGGGAAGAGCGACCTAATCCTAATTTTGGTAACGAT GTAAGGAAAGGACTATTGATGTGGTCTGATCAAGATCACGATCTTTCCGCAAACCAATCG ATCGATGATGAGCATAGAATTCAGATACAGATGGCTACACATGTCTCCACGGATTTGGAT TCTTTGTCGGAGATCTACGAAAGGAAATCAGGTTTATCAGGTGATGAAGGGAATAATGGT GGGAAATTACTGGAAAGGCCATCGCCTAGGAGATCACCATTGAGTCCTATGAACCCT AATGGTGGATTAATACAAGGAAGAAACTCGCCATTTGGGTGATACAATTTATTAATTTTT TGACGTAGGGTTTAGAGAAAA

>G725 Amino Acid Sequence (domain in AA coordinates: 39-87)
MFHAKKPSSMNGSYENRAMCVQGDSGLVLTTDPKPRLRWTVELHERFVDAVAQLGGPDKA
TPKTIMRVMGVKGLTLYHLKSHLQKFRLGKQPHKEYGDHSTKEGSRASAMDIQRNVASSS
GMMSRNMNEMQMEVQRRLHEQLEVQRHLQLRIEAQGKYMQSILERACQTLAGENMAAATA
AAAVGGGYKGNLGSSSLSAAVGPPPHPLSFPPFQDLNIYGNTTDQVLDHHNFHHQNIENH
FTGNNAADTNIYLGKKRPNPNFGNDVRKGLLMWSDQDHDLSANQSIDDEHRIQIQMATHV
STDLDSLSEIYERKSGLSGDEGNNGGKLLERPSPRRSPLSPMMNPNGGLIQGRNSPFG*
>G727 (43..1977)

AATCTTCGAGTTCTTGTCGTTGATGATGATCCAACTTGTCTCATGATCTTAGAGAGGATG CTTATGACTTGTCTCTACAGAGAGCAGAGAGCGCATTGTCTCTGCTTCGGAAGAACAAAG CTTGAACACGTTGGTTTAGAGATGGATTTACCTGTTATCAATCTGAATGTTTTGAAACCT TTGGTTATAGTGATGTCTGCGGATGATTCGAAGAGCGTTGTGTTGAAAGGAGTGACTCAC GGTGCAGTTGATTACCTCATCAAACCGGTACGTATTGAGGCTTTGAAGAATATATGGCAA CATGTGGTGCGGAAGAAGCGTAACGAGTGGAATGTTTCTGAACATTCTGGAGGAAGTATT GAAGATACTGGCGGTGACAGGGACAGGCAGCAGCATAGGGAGGATGCTGATAACAAC GATGATCAAGGGGATGATAAGGAAGACTCATCGAGTTTAAAGAAACCACGCGTGGTTTGG TCTGTTGAATTGCATCAGCAGTTTGTTGCTGCTGTGAATCAGCTAGGCGTTGACAGTGAG TTAAAAACTTGCTTATGCATTTGTGTGTGTCGATTGGTAACATTGTGGAATTCCAG AAGTATCGGATATATCTGAGACGGCTTGGAGGAGTATCGCAACACCAAGGAAATATGAAC GATCTTCAATCTTTAGCTGTTACTGGTCAGCTCCCTCCTCAGAGCCTTGCACAGCTTCAA GCAGCTGGTCTTGGCCGGCCTACACTCGCTAAACCAGGGATGTCGGTTTCTCCCCTTGTA GATCAGAGAAGCATCTTCAACTTTGAAAACCCAAAAATAAGATTTGGAGACGGACATGGT CAGACGATGAACAATGGAAATTTGCTTCATGGTGTCCCAACGGGTAGTCACATGCGTCTG CGTCCTGGACAGAATGTTCAGAGCAGCGGAATGATGTTGCCAGTAGCAGACCAGCTACCT CGAGGAGGACCATCGATGCTACCATCCCTCGGGCAACAGCCGATATTGTCAAGCAGCGTT TCAAGAAGAAGCGATCTCACTGGTGCGCTGGCGGTTAGAAACAGTATCCCCGAGACCAAC AGCAGAGTGTTACCAACTACTCACTCGGTCTTCAATAACTTCCCCGCGGATCTACCTCGC AGCAGCTTCCCGTTGGCAAGTGCCCCAGGGATTTCAGTTCCAGTATCAGTTTCTTACCAA GAAGAGGTCAACAGCTCGGATGCAAAAGGAGGTTCATCAGCTGCTACTGCTGGATTTGGT AACCCAAGCTACGACATATTTAACGATTTTCCGCAGCACCAACAGCACAACAAGAACATC AGCAATAAACTAAACGATTGGGATCTGCGGAATATGGGATTGGTCTTCAGTTCCAATCAG GACGCAGCAACTGCAACCGCAACCGCAGCATTTTCCACTTCGGAAGCATACTCTTCGTCT TCTACGCAGAGAAAAGACGGGAAACGGACGCAACAGTTGTGGGTGAGCATGGGCAGAAC $\tt CTGCAGTCACCGAGCCGGAATCTGTATCATCTGAACCACGTTTTTATGGACGGTGGTTCA$ GTCAGAGTGAAGTCAGAAAGAGTGGCGGAGACAGTGACTTGTCCTCCAGCAAATACATTG TTTCACGAGCAGTATAATCAAGAAGATCTGATGAGCGCATTTCTCAAACAGGTTTGATTA TTACTCGAATACAGTGCACTCTAAAAC

>G727 Amino Acid Sequence (domain in AA coordinates: 226-269)
MVNPGHGRGPDSGTAAGGSNSDPFPANLRVLVVDDDPTCLMILERMLMTCLYREQRAHCL
CFGRTKNGFDIVISDVHMPDMDGFKLLEHVGLEMDLPVINLNVLKPLVIVMSADDSKSVV
LKGVTHGAVDYLIKPVRIEALKNIWQHVVRKKRNEWNVSEHSGGSIEDTGGDRDRQQQHR
EDADNNSSSVNEGNGRSSRKRKEEEVDDQGDDKEDSSSLKKPRVVWSVELHQQFVAAVNQ
LGVDSELKTCLLMHLCVSIGNIVEFQKYRIYLRRLGGVSQHQGNMNHSFMTGQDQSFGPL
SSLNGFDLQSLAVTGQLPPQSLAQLQAAGLGRPTLAKPGMSVSPLVDQRSIFNFENPKIR
FGDGHGQTMNNGNLLHGVPTGSHMRLRPGQNVQSSGMMLPVADQLPRGGPSMLPSLGQQP
ILSSSVSRRSDLTGALAVRNSIPETNSRVLPTTHSVFNNFPADLPRSSFPLASAPGISVP
VSVSYQEEVNSSDAKGGSSAATAGFGNPSYDIFNDFPQHQQHNKNISNKLNDWDLRNMGL
VFSSNQDAATATATAAFSTSEAYSSSSTQRKRRETDATVVGEHGQNLQSPSRNLYHLNHV
FMDGGSVRVKSERVAETVTCPPANTLFHEQYNQEDLMSAFLKQV*

>G740 (25..924)

>G740 Amino Acid Sequence (domain in AA coordinates: 24-42, 232-268)
MASEDQSAARSTGKVNWFNASKGYGFITPDDGSVELFVHQSSIVSEGYRSLTVGDAVEFA
ITQGSDGKTKAVNVTAPGGGSLKKENNSRGNGARRGGGGSGCYNCGELGHISKDCGIGGG
GGGGERRSRGGEGCYNCGDTGHFARDCTSAGNGDQRGATKGGNDGCYTCGDVGHVARDCT
QKSVGNGDQRGAVKGGNDGCYTCGDVGHFARDCTQKVAAGNVRSGGGSGTCYSCGGVGH
IARDCATKRQPSRGCYQCGGSGHLARDCDQRGSGGGGNDNACYKCGKEGHFARECSSVA*
>G770 (119..1069)

CCTTCCTCTATATAAGGAAGTTCATTTCATTTGGAGAGGACACGCTGACAAGCTGACTCT AGCAGATCTGGTACCGTCGACGGTTCTTGGATTTTGGAGTAAACTAAAGATCATATAAAAT GGAACAAGGAGATCATCAGCAGCATAAGAAAGAAGAAGCTTTGCCACCGGGTTTCAG ATTTCATCCGACGGATGAGGAGCTAATCTCATATTACTTGGTTAATAAGATTGCCGATCA AAACTTCACCGGGAAAGCAATCGCTGACGTTGATCTTAACAAGTCCGAGCCATGGGAGCT TCCTGAGAAGGCGAAAATGGGAGGAAAAGAATGGTACTTTTTTAGCCTCCGGGACCGGAA GTACCCGACGGAGTGAGGACGAATAGGGCGACGAATACAGGATATTGGAAAACCACAGG AAAAGACAAAGAGATATTCAATAGCACAACCTCGGAGTTGGTCGGGATGAAGAAGACTTT AGTGTTCAAGAAAACAGAAGCAACCAAGAAATACATAAGCACCAGTAGCAGCAGCACAAG TTACTCATCAGACCTCCTTCAACTCCCACCGCATCTACAACCACACCCGAGCCTCAATAT TAACCAATCCCTCATGGCAAACGCCGTTCACCTAGCTGAGCTCTCAAGAGTCTTCCGTGC CTCTACAAGCACCACGATGGACTCTTCTCATCAGCAGCTAATGAACTACACCCACATGCC TGTCTCAGGGCTCAACCTTGGCGGTGCACTGGTCCAGCCGCCTCCTGTTGTGTC TCTTGAGGATGTTGCCGCGGTTAGTGCTTCGTACAATGGCGAAAACGGGTTTGGAAATGT CAGTTTAAGTTATGGTTTTATATTGTTTCCATTTACTTGTTGGTAAAACGATTTTGGTT TATCATCGGTTTC

>G770 Amino Acid Sequence (domain in AA coordinates: 19-162)
MEQGDHQQHKKEEEALPPGFRFHPTDEELISYYLVNKIADQNFTGKAIADVDLNKSEPWE
LPEKAKMGGKEWYFFSLRDRKYPTGVRTNRATNTGYWKTTGKDKEIFNSTTSELVGMKKT
LVFYRGRAPRGEKTCWVMHEYRLHSKSSYRTSKQDEWVVCRVFKKTEATKKYISTSSST
SHHHNNHTRASILSTNNNNPNYSSDLLQLPPHLQPHPSLNINQSLMANAVHLAELSRVFR
ASTSTTMDSSHQQLMNYTHMPVSGLNLNLGGALVQPPPVVSLEDVAAVSASYNGENGFGN
VEMSQCMDLDGYWPSY*

>G858 (99..869)

>G858 Amino Acid Sequence (domain in AA coordinates: 2-57)
MGRGRIEIKKIENINSRQVTFSKRRNGLIKKAKELSILCDAEVALIIFSSTGKIYDFSSV
CMEQILSRYGYTTASTEHKQQREHQLLICASHGNEAVLRNDDSMKGELERLQLAIERLKG
KELEGMSFPDLISLENQLNESLHSVKDQKTQILLNQIERSRIQEKKALEENQILRKQVEM
LGRGSGPKVLNERPQDSSPEADPESSSSEEDENDNEEHHSDTSLQLGLSSTGYCTKRKKP
KIELVCDNSGSQVASD*

>G865 (282..920)

ATCCCCACTTGTTGTTCATCACCAAGCCAAGCTCCATGTCCTAGTCACTCCACAGATTCC CTATCATCATCATTCGTTTCAAACTTAGTTCCTTTCAAAGTCTTGTACATATATACACA CACACCTATTATTCTCTTGGTGTTTTGTGTGTTACATATACGTGTGAGTACATACTTTG TTGTAAAAGTGGATCGGAGGTATGGAAAGGGACCGGTTCCACCGGAAACATCGGCGGCGG CGGATGATAATTCGTCTTGGAACGAGACTGATGTCACCGCCATGGTCTCCGCTCTCAGCC GTGTCATAGAGAATCCGACAGACCCGCCGGTCAAACAAGAGCTTGATAAATCGGATCAAC ATCAACCAGACCAAGATCAACCAAGAAGAAGACACTATAGAGGCGTAAGGCAGAGACCAT GGGGTAAATGGGCGGCAGAAATCCGCGATCCAAAGAAAGCAGCCCGTGTCTGGCTCGGGA CTTTCGAGACGCCAGAGGAAGCTGCTTTAGCCTATGACCGAGCTGCCCTCAAATTCAAAG TTTCTCATGCACCAAGAGGAGTTAGTGAATCCATGAACTCACCTCCTCCTCGACCTGGTC CACCTTCAACTACTACTTCGTGGCCAATGACTTATAACCAGGACATACTTCAATACG CTCAGTTGCTTACGAGTAACAATGAGGTTGATTTATCATACTACACGTCGACTCTCTTCA GTCAACCTTTTTCAACGCCTTCTTCATCTTCTTCTTCCTCCCAACAGACGCAGCAACAGC AGCTACAACAACAACAACAGCAGCGTGAAGAAGAAGAAGAATTATGGTTACAATTATT ATAACTACCCAAGAGAATAATCTAATTATTATTGTTGGTCGAATCAGTTTTATAAATAGC GGGACATGTGTAACAATTTGTTTTGTGTTTCGTAAATGTTAGTTGTATTTGGATTTGCTGA

>G865 Amino Acid Sequence (domain in AA coordinates: 36-103)
MVSALSRVIENPTDPPVKQELDKSDQHQPDQDQPRRRHYRGVRQRPWGKWAAEIRDPKKA
ARVWLGTFETAEEAALAYDRAALKFKGTKAKLNFPERVQGPTTTTTISHAPRGVSESMNS
PPPRPGPPSTTTTSWPMTYNQDILQYAQLLTSNNEVDLSYYTSTLFSQPFSTPSSSSSS
QQTQQQQLQQQQQQREEEEKNYGYNYYNYPRE*

>G872 (59..646)

>G872 Amino Acid Sequence (domain in AA coordinates: 18-85) MVKQAMKEEEKKRNTAMQSKYKGVRKRKWGKWVSEIRLPHSRERIWLGSYDTPEKAARAF DAAQFCLRGGDANFNFPNNPPSISVEKSLTPPEIQEAAARFANTFQDIVKGEEESGLVPG

SEIRPESPSTSASVATSTVDYDFSFLDLLPMNFGFDSFSDDFSGFSGGDRFTEILPIEDY GGESLLDESLILWDF*

>G904 (1..1005)

atggaateteteateateccagecatggeggaggaaaetaegatteteaetettettet ctcgatagtctcaaaccaagcgtactagtcatcattctcattctcctcatgactcttctc atctccgtttccatttgcttcctcctccgctgtctcaatcgctgtagccaccgctccgtt ctcctctttcatcttcctcttccgtcgcaaccgtaacttccgattcccgacgattctct ggacategagtetetecegaaacagaaeggteeteegtgettgattegetteegatttte aaattctcctccqtcactcqccqatctaqctccatqaattccqqaqattgcqccqtttgt ttgtcgaaattcgaaccggaggatcagctccqtcttcttcctctctqttqtcacgctttt cacqccqattqtatcqatatctqqctaqtctctaaccaqacttqtcctctctqtcqctct cctctcttcgcttcagaatctgatctcatgaagtctctcgccgtcgtcggctcaaacaac ggcggaggagaaacagcttccgtctcgaaatcggatccatcagccgtcgtcgtcaaaca gtagacgacgtagattcagaaatctcagagtcaaatttcaaccgtggaaaacaggaagac gcgactacaacaactgccacagcaacggcggttacgactaatccgacgtcgtttgaagct agtttagcggcggatataggtaacgatggttctagaagctggctcaaggattacgttgac agactctcacgaggtatatcgtcgcgtgcaatgtcgtttagaagctctggtagatttttt actgggagtagtcgtcggagtgaggaattgacggtgatggatttagaagcgaatcatgcc ggagaagagataagtgagcttttccggtggctctcaggggtgtga

>G904 Amino Acid Sequence (domain in AA coordinates: 117-158)
MESLINPSHGGGNYDSHSSSLDSLKPSVLVIILILLMTLLISVSICFLLRCLNRCSHRSV
LPLSSSSSVATVTSDSRRFSGHRVSPETERSSVLDSLPIFKFSSVTRRSSSMNSGDCAVC
LSKFEPEDQLRLLPLCCHAFHADCIDIWLVSNQTCPLCRSPLFASESDLMKSLAVVGSNN
GGGENSFRLEIGSISRRRQTPIPESVEQHRTYSIGSFDYIVDDVDSEISESNFNRGKQED
ATTTTATATAVTTNPTSFEASLAADIGNDGSRSWLKDYVDRLSRGISSRAMSFRSSGRFF
TGSSRRSEELTVMDLEANHAGEEISELFRWLSGV*

>G910 (1..1071)

ATGTTATGTATAATAATTGAGAATATGGAAAGAGTATGTGAGTTTTGTAAAGCGTAT AGAGCAGTGGTTTATTGTATAGCTGATACAGCAAATCTTTGTTTAACATGTGATGCAAAG AAGAATCAGCCTTGTGTGTCCGATGTTTTGACCATAAAATGTTTCTTTGCCATGGATGT ${\tt AATGATAAGTTTCATGGTGGTGGTCTTCTGAGCATCGTAGAAGGGATTTGAGGTGTTAT}$ ACGGGTTGTCCTCCTGCTAAAGATTTCGCGGTTATGTGGGGTTTTCGAGTTATGGATGAC GATGATGTTTCGTTAGAGCAATCTTTTCGAATGGTTAAACCTAAGGTGCAAAGAGAA ${\tt GGTGGTTTTATCTTGGAACAGATTCTTGAATTGGAGAAGGTTCAGCTCAGGGAAGAGAAT}$ GGTAGTTCTTCCTTGACAGAACGAGGTGATCCATCTCCATTGGAGCTTCCTAAGAAACCC GAAGAACAGTTAATCGATCTTCCGCAGACCGGAAAAGAGCTGGTTGTTGATTTTTCACAC TTGTCCTCATCTTCCACACTTGGTGATTCCTTTTGGGAATGCAAAAGTCCATACAATAAG AACAATCAGTTGTGGCATCAAAATATACAAGACATTGGAGTATGTGAAGATACAATCTGC AGTGACGATGACTTCCAAATACCTGACATTGATCTCACTTTCCGGAACTTTGAAGAGCAA TTTGGAGCTGATCCTGAGCCAATTGCAGATAGTAACAACGTGTTCTTTGTTTCTTCCCTT AAACCAGCTTCATCAACTATCTCATTCTCAAGCAGTGAAACCGATAACCCTTATAGTCAC TCAGAGGAAGTAATCTCATTTTGTCCCTCCCTCTCTAACAATACACGTCAAAAAGGTCATC ACAAGGCTCAAGGAGAAGAAGAGAGAGAGAGAGAGAAAAAAGCTTAA

>G910 Amino Acid Sequence (domain in AA coordinates:14-37, 77-103)
MLCIIIIENMERVCEFCKAYRAVVYCIADTANLCLTCDAKVHSANSLSGRHLRTVLCDSG
KNQPCVVRCFDHKMFLCHGCNDKFHGGGSSEHRRDLRCYTGCPPAKDFAVMWGFRVMDD
DDDVSLEQSFRMVKPKVQREGGFILEQILELEKVQLREENGSSSLTERGDPSPLELPKKP
EEQLIDLPQTGKELVVDFSHLSSSSTLGDSFWECKSPYNKNNQLWHQNIQDIGVCEDTIC
SDDDFQIPDIDLTFRNFEEQFGADPEPIADSNNVFFVSSLDKSHEMKTFSSSFNNPIFAP
KPASSTISFSSSETDNPYSHSEEVISFCPSLSNNTRQKVITRLKEKKRARVEEKKA*
>G912 (20..694)

CATCTTATCCAAAGAAAAAATGAATCCATTTTACTCTACATTCCCAGACTCGTTTCTCTC AATCTCCGATCATAGATCTCCGGTTTCAGACAGTGAGTGTTCACCAAAGTTAGCTTC AAGTTGTCCAAAGAAACGAGCTGGGAGGAAGAAGTTTCGTGAGACACGTCATCCGATTTA

>G912 Amino Acid Sequence (domain in AA coordinates:51-118)
MNPFYSTFPDSFLSISDHRSPVSDSSECSPKLASSCPKKRAGRKKFRETRHPIYRGVRQR
NSGKWVCEVREPNKKSRIWLGTFPTVEMAARAHDVAALALRGRSACLNFADSAWRLRIPE
TTCPKEIQKAASEAAMAFQNETTTEGSKTAAEAEEAAGEGVREGERRAEEQNGGVFYMDD
EALLGMPNFFENMAEGMLLPPPEVGWNHNDFDGVGDVSLWSFDE*

>G920 (114..1154)

ATACTAAAAACCTAAAAAAGTTACATATTCATTGTATCTTTGTGAGAAAAAAATGGATT CGAATAGTAACAACACGAAATCCATAAAGAGAAAAGTTGTCGACCAACTTGTCGAAGGCT ATGAATTCGCTACTCAGCTTCAGCTTCTCCTTTCTCATCAACACTCTAACCAGTACCACA TCGATGAGACCCGTCTTGTTTCCGGGTCGGGTTCAGTTTCCGGTGGTCCAGATCCCGTTG ATGAGCTCATGTCTAAGATCTTGGGATCTTTCCATAAAACTATATCGGTTCTTGATTCTT TTGATCCCGTCGCCGTCTCTGTCCCCATCGCCGTCGAGGGTTCATGGAATGCTTCATGTG GGGATGATTCGGCGACTCCGGTGAGTTGCAACGGTGGAGATTCCGGTGAGAGTAAGAAGA AGAGATTAGGGGTTGGTAAGGGTAAAAGAGGATGCTACACTAGAAAGACGAGATCACATA CAAGGATCGTGGAAGCTAAAAGTTCTGAAGACAGATATGCTTGGAGGAAATATGGACAAA AAGGATGCAAAGCAACAAAGCAAGTTCAGAAACAGGATCAAGATTCTGAGATGTTCCAAA CTTTTGATCAAGAAATCATTATGGATTCGGAAAAGACATTGGCTGCTAGCACTGCTCAGA ACCATGTCAATGCTATGGTGCAAGAGCAAGAGAACAACACCAGCAGTGTGACAGCAATAG ACGCAGGCATGGTTAAGGAGGAACAAAATAACAATGGTGATCAGAGTAAAGATTATTATG AGGGCTCTTCGACAGGTGAGGACTTGTCATTGGTTTGGCAAGAGACGATGATGTTTGATG ATCATCAAAATCACTACTATTGTGGTGAAACCAGTACTACTTCTCATCAATTTGGTTTCA TCGACAACGATGATCAGTTTTCCTCCTTCTTCGACTCATATTGTGCTGATTATGAAAGAA CAAGTGCTATGTGAACATCCAAATCTGGAATGATGAATCAGCACTAGGTCTTCTCTTTGA GTATGTCTAGTTTAATGTAATATTTTTGTTGTATGTTTGATAAAAACACCATATATACTT

>G920 Amino Acid Sequence (domain in AA coordinates: 152-211)
MDSNSNNTKSIKRKVVDQLVEGYEFATQLQLLLSHQHSNQYHIDETRLVSGSGSVSGGPD
PVDELMSKILGSFHKTISVLDSFDPVAVSVPIAVEGSWNASCGDDSATPVSCNGGDSGES
KKKRLGVGKGKRGCYTRKTRSHTRIVEAKSSEDRYAWRKYGQKEILNTTFPRSYFRCTHK
PTQGCKATKQVQKQDQDSEMFQITYIGYHTCTANDQTHAKTEPFDQEIIMDSEKTLAAST
AQNHVNAMVQEQENNTSSVTAIDAGMVKEEQNNNGDQSKDYYEGSSTGEDLSLVWQETMM
FDDHQNHYYCGETSTTSHQFGFIDNDDQFSSFFDSYCADYERTSAM*

>G939 (9..1565)

CAGATTCTATGGATATGTATAACAACAATATAGGGATGTTCCGGAGTTTAGTTTGTAGCT
CGGCGCCTCCATTTACAGAGGGACATATGTGTTCTGATTCGCATACGGCTTTGTGCGATG
ATCTGAGTAGTGATGAGGAAATGGAAATAGAGGAGCTTGAGAAGAAGATCTGGAGAGACA
AGCAGCGTTTAAAGCGGCTCAAGGAAATGGCGAAGAACGGTCTAGGAACAAGATTGTTGT
TGAAGCAGCAACATGATGATTTTCCAGAGCACTCTAGTAAGAGAACCATGTACAAGGCAC
AAGATGGGATCTTGAAGTACATGTCGAAGACAATGGAGCGATATAAAGCTCAAGGTTTTG
TTTATGGGATTGTGTTAGAGAATGGGAAAACGGTAGCGGGATCTTCTGATAATCTCCGTG
AATGGTGGAAAGACAAAGTGAGGTTTGATAGGAACGGCCCAGCTGCTATAATCAAGCACC
AAAGGGATATCAATCTTTCTGATGGAAGTGATTCAGGGTCTGAGGTTGGGGATTCTACCG
CACAGAAGTTGCTTGAGCTTCAAGATACTACTCTTTGGAGCTCTGTTATCGGCTCTGTTTC
CTCACTGCAACCCTCCTCAGAGGCGGTTTCCGTTGGAGAAAAGGCGTGACACCCACTGCTT

GGCCAACGGGAAAGAAGATTGGTGGGATCAACTGTCTTTACCCGTTGATTTTCGAGGTG TTCCGCCACCTTACAAGAAGCCTCATGATCTCAAGAAGCTGTGGAAAATTGGTGTTTTGA TTGGTGTAATCAGACATATGGCTTCTGACATTAGCAACATACCCAATCTCGTGAGACGGT ${\tt CTAGAAGTTTGCAGGAGAAAATGACGTCAAGAGAAGGCGCTTTATGGCTCGCTGCTCTTT}$ ACCGAGAAAAGGCTATTGTTGATCAAATAGCCATGTCTAGAGAAAACAACAACACTTCTA ACTTTCTTGTTCCTGCAACCGGTGGAGACCCAGATGTTTTGTTTCCTGAATCTACAGACT ATGATGTTGAACTGATTGGTGGCACTCATCGGACCAATCAGCAGTATCCTGAATTTGAAA ACAACTACAACTGTGTTTACAAGAGAAAGTTTGAAGAAGATTTTGGGATGCCAATGCATC CAACACTCCTAACATGTGAGAACAGTCTCTGTCCTTATAGCCAACCACATATGGGATTTC ACCAACCAACTAAACCCTATGGTATGACGGGTTTAATGGTTCCTTGTCCGGATTATAACG GGATGCAGCAGCAGGTTCAGAGCTTTCAAGACCAGTTTAATCATCCCAACGATCTCTACA GACCAAAAGCTCCACAAAGAGGCAACGATGACTTGGTTGAGGATTTGAATCCTTCTCCTT CGACGCTGAATCAGAATCTTGGTTTAGTCTTACCTACTGACTTCAATGGAGGTGAGGAAA CAGTAGGAACAGAGAACAATCTGCATAATCAAGGGCAAGAGTTGCCCACATCTTGGATTC AGTAAAGAAAGCTTCAGAGTTTTCTTTTTATGTTTTCTAGTCTTTATAGCTTTGTCTCTT GCTTATTCTCTCATTAAACACAGTTTTTGATCTCTCCATTTCATAGCCCATGTAGCAATG GAGAAGATTAGGTTTCATAATAAGTTAATAACCAAATTCAAA

>G939 Amino Acid Sequence (domain in AA coordinates: 97-106)
MDMYNNNIGMFRSLVCSSAPPFTEGHMCSDSHTALCDDLSSDEEMEIEELEKKIWRDKQR
LKRLKEMAKNGLGTRLLLKQQHDDFPEHSSKRTMYKAQDGILKYMSKTMERYKAQGFVYG
IVLENGKTVAGSSDNLREWWKDKVRFDRNGPAAIIKHQRDINLSDGSDSGSEVGDSTAQK
LLELQDTTLGALLSALFPHCNPPQRRFPLEKGVTPPWWPTGKEDWWDQLSLPVDFRGVPP
PYKKPHDLKKLWKIGVLIGVIRHMASDISNIPNLVRRSRSLQEKMTSREGALWLAALYRE
KAIVDQIAMSRENNNTSNFLVPATGGDPDVLFPESTDYDVELIGGTHRTNQQYPEFENNY
NCVYKRKFEEDFGMPMHPTLLTCENSLCPYSQPHMGFLDRNLRENHQMTCPYKVTSFYQP
TKPYGMTGLMVPCPDYNGMQQQVQSFQDQFNHPNDLYRPKAPQRGNDDLVEDLNPSPSTL
NQNLGLVLPTDFNGGEETVGTBNNLHNQGQELPTSWIQ*

>G963 (1..897)

ATGAGTTTGCCTCCAGGATTCAGGTTTCATCCCACTGATGAAGAACTGGTGGCTTACTAT CTTGATAGGAAGGTCAACGGCCAAGCCATTGAGCTCGAGATCATCCCAGAAGTTGATCTT TATAAATGCGAGCCATGGGACTTGCCTGAAAAGTCATTTTTGCCGGGAAACGACATGGAA TGGTACTTTTACAGCACAAGGGATAAGAAGTATCCAAATGGCTCTAGGACGAACCGTGCG ACCCGAGCGGGTTACTGGAAGGCCACGGGGAAAGATCGTACAGTAGAATCAAAGAAGATG AAGATGGGAATGAAGAAGACACTGGTTTATTATAGAGGAAGGGCTCCTCATGGCCTTCGT TCGTATGCATTGTGCCGAGTGTTTAAGAAGAACATACAAATTCCAAAGAGAAAAAGGGGAA GAAGAAGAAGAAGAAGAGAGACACTAGTGTAGGAAAAGAAGAAGAAGAAGAAAAAGAA AAGAAGTGGAGAAAATGTGATGGTAATTATATTGAAGACGAGAGCTTGAAAAGAGCATCC GCGGAGACATCTTCATCAGAGCTAACTCAAGGGGTCCTTTTAGACGAAGCAAACAGCTCA TCCATATTTGCTCTTCATTTCTCATCTTCTCTGGACGATCATGATCATCTTTTCTCA AACTATTCTCATCAGCTTCCATATCATCCTCCTCTTCAACTCCAAGATTTCCCTCAACTT TCTATGAACGAAGCAGAGATTATGTCAATCCAACAAGACTTTCAATGCAGAGACTCTATG AACGGGACACTTGACGAAATCTTCTCTTCTTCCCCCCCCTTTCCCCCGCTTCCCTTTGA >G963 Amino Acid Sequence (domain in AA coordinates: TBD) MSLPPGFRFHPTDEELVAYYLDRKVNGQAIELEIIPEVDLYKCEPWDLPEKSFLPGNDME WYFYSTRDKKYPNGSRTNRATRAGYWKATGKDRTVESKKMKMGMKKTLVYYRGRAPHGLR TNWVMHEYRLTHAPSSSLKESYALCRVFKKNIQIPKRKGEEEEAEEESTSVGKEEEEEKE KKWRKCDGNYIEDESLKRASAETSSSELTQGVLLDEANSSSIFALHFSSSLLDDHDHLFS NYSHQLPYHPPLQLQDFPQLSMNEAEIMSIQQDFQCRDSMNGTLDEIFSSSATFPASL*

>G979 (60..1352)
CCTCTGAGGAATCAAATCACTCACACTCCAAAAAAAAATCTAAACTTTCTCAGAGTTTAA
TGAAGAAGCGCTTAACCACTTCCACTTGTTCTTCTTCTCCATCTTCTCTGTTTCTTCTT
CTACTACTACTTCCTCTCTCTATTCAGTCGGAGGCTCCAAGGCCTAAACGAGCCAAAAAGGG
CTAAGAAATCTTCTCCTTCTGGTGATAAATCTCATAACCCGACAAGCCCTGCTTCTACCC
GACGCAGCTCTATCTACAGAGGAGTCACTAGACATAGATGGACTGGGAGATTCGAGGCTC
ATCTTTGGGACAAAAGCTCTTGGAATTCGATTCAGAACAAGAAAGGCAAACAAGTTTATC

ACTGGGGACCCGACACCATCTTGAATTTTCCGGCAGAGACGTACAAAAGGAATTGGAAG AAATGCAGAGAGTGACAAAGGAAGAATATTTGGCTTCTCTCCGCCGCCAGAGCAGTGGTT TCTCCAGAGGCGTCTCTAAATATCGCGGCGTCGCTAGGCATCACCACAACGGAAGATGGG AGGCTCGGATCGGAAGAGTGTTTGGGAACAAGTACTTGTACCTCGGCACCTATAATACGC AGGAGGAAGCTGCTGCAGCATATGACATGGCTGCGATTGAGTATCGAGGCGCAAACGCGG TTACTAATTTCGACATTAGTAATTACATTGACCGGTTAAAGAAGAAAGGTGTTTTCCCGT TCCCTGTGAACCAAGCTAACCATCAAGAGGGTATTCTTGTTGAAGCCAAACAAGAAGTTG AAACGAGAGAAGCGAAGGAAGACCCTAGAGAAGAAGTGAAACAACAGTACGTGGAAGAAC TAGGATATTCAGAAGAAGCAGCAGTGGTCAATTGCTGCATAGACTCTTCAACCATAATGG AAATGGATCGTTGTGGGGACAACAATGAGCTGGCTTGGAACTTCTGTATGATGGATACAG GGTTTTCTCCGTTTTTGACTGATCAGAATCTCGCGAATGAGAATCCCATAGAGTATCCGG AGCTATTCAATGAGTTAGCATTTGAGGACAACATCGACTTCATGTTCGATGATGGGAAGC CTTCTTCTCACCATTGTCTTGCTTATCTACTGACTCTGCTTCATCAACAACAACAACAA TATTTCAGTTTCAGGGCTTGTTCGTTGGTTCTGAATAATCAATGTCTTTGCCCCTTTTNN AANGNTNCAAGNTNAAANAAAAAAAAAAAA

>G979 Amino Acid Sequence (domain in AA coordinates: 63-139,165-233)
MKKRLTTSTCSSSPSSSVSSSTTTSSPIQSEAPRPKRAKRAKKSSPSGDKSHNPTSPAST
RRSSIYRGVTRHRWTGRFEAHLWDKSSWNSIQNKKGKQVYLGAYDSEEAAAHTYDLAALK
YWGPDTILNFPAETYTKELEEMQRVTKEEYLASLRRQSSGFSRGVSKYRGVARHHHNGRW
EARIGRVFGNKYLYLGTYNTQEEAAAAYDMAAIEYRGANAVTNFDISNYIDRLKKKGVFP
FPVNQANHQEGILVEAKQEVETREAKEEPREEVKQQYVEEPPQEEEEKEEEKAEQQEAEI
VGYSEEAAVVNCCIDSSTIMEMDRĆGDNNELAWNFCMMDTGFSPFLTDQNLANENPIEYP
ELFNELAFEDNIDFMFDDGKHECLNLENLDCCVVGRESPPSSSSPLSCLSTDSASSTTTT
TTSVSCNYLV*

>G987 (1..4011)

ATGGGTTCTTACTCAGCTGGCTTCCCTGGATCCTTGGACTGGTTTGATTTTCCCGGTTTA GGAAACGGATCCTATCTAAATGATCAACCTTTGTTAGATATTGGATCTGTTCCTCCTC CTAGACCCATATCCTCAACAGAATCTTGCTTCTGCGGATGCTGATTTCTCTGATTCTGTT TTGAAGTACATAAGCCAAGTTCTTATGGAAGAGGACATGGAAGATAAGCCTTGTATGTTT CATGATGCTTTATCTCTTCAAGCAGCTGAGAAGTCTCTCTATGAAGCTCTCGGCGAGAAG TACCCGGTTGATGATCTGATCAGCCTCTGACTACTACTAGCCTTGCTCAATTGGTT AGTAGTCCTGGTGGTTCTTCTTATGCTTCAAGCACCACAACCACTTCCTCTGATTCACAA TGGAGTTTTGATTGTTTGGAGAATAATAGGCCTTCTTCTTGGTTGCAGACACCGATCCCG AGTAACTTCATTTTTCAGTCTACATCTACTAGAGCCAGTAGCGGGTAACGCGGTTTTCGGG TCAAGTTTTAGCGGTGATTTGGTTTCTAATATGTTTAATGATACTGACTTGGCGTTACAA TTCAAGAAAGGGATGGAGGAAGCTAGTAAATTCCTTCCTAAGAGCTCTCAGTTGGTTATA GATAACTCTGTTCCTAACAGATTAACCGGAAAGAAGACCATTGGCGCGAAGAAGAACAT TTGACTGAAGAAGAAGTAAGAAACAATCTGCTATTTATGTTGATGAAACTGATGAGCTT ACTGATATGTTTGACAATATTCTGATATTTGGCGAGGCTAAGGAACAACCTGTATGCATT CTTAACGAGAGTTTCCCTAAGGAACCTGCGAAAGCTTCAACGTTTAGTAAGAGTCCTAAA GGCGAAAAACCGGAAGCTAGTGGTAACAGTTATACAAAAGAGACACCTGATTTGAGGACA ATGCTGGTTTCTTGTGCTCAAGCTGTTTCGATTAACGATCGTAGAACTGCTGACGAGCTG TTAAGTCGGATAAGGCAACATTCTTCATCTTACGGCGATGGAACAGAGAGATTGGCTCAT TATTTTGCTAACAGTCTTGAAGCACGTTTGGCTGGGATAGGTACACAGGTTTATACTGCC GTCTGTCCGTTCAAGAAAATCGCAATCATATTCGCCAACCATAGTATTATGCGGTTGGCT TCAAGTGCTAATGCCAAAACCATCCACATCATAGATTTTGGAATATCTGATGGTTTCCAG TGGCCTTCTCTGATTCATCGACTTGCTTGGAGACGTGGTTCATCTTGTAAGCTTCGGATA ACCGGTATAGAGTTGCCTCAACGTGGTTTTAGACCAGCCGAGGGAGTTATTGAGACTGGT CGTCGCTTGGCTAAGTATTGTCAGAAGTTCAATATTCCGTTTGAGTACAATGCGATTGCG CAGAAATGGGAATCAAGTTGGAGGACTTGAAGCTAAAAGAAGGCGAGTTTGTTGCG GTAAACTCTTTATTTCGGTTTAGGAATCTTCTAGATGAGACGGTGGCAGTGCATAGCCCG AGAGATACGGTTTTGAAGCTGATAAGGAAGATAAAGCCAGACGTGTTCATCCCCGGGATC CTCAGCGGATCCTACAACGCGCCTTTCTTTGTCACGAGGTTTAGAGAAGTTCTGTTTCAT TACTCATCTCTGTTTGACATGTGTGACACGAATCTAACACGGGAAGATCCAATGAGGGTT ATGTTTGAGAAAGAGTTCTATGGGCGGGAGATCATGAACGTGGTGGCGTGTGAGGGGACG GAGAGAGTGGAGAGGCCAGAGAGTTATAAGCAGTGGCAGGCGAGGGCGATGAGAGCCGGG TTTAGACAGATTCCGCTGGAGAAGGAACTAGTTCAGAAACTGAAGTTGATGGTGGAAAGT GGATACAAACCCAAAGAGTTTGATGTTGATCAAGATTGTCACTGGTTGCTTCAGGGCTGG GCAACTAGGGTTTTGATCATGGATCCAAACTTCTCTGAATCTCTAAACGGCTTTGAGTAT TTTGATGGTAACCCTAATTTGCTTACTGATCCAATGGAAGATCAGTATCCACCACCATCT GATACTCTGTTGAAATACGTGAGTGAGATTĆTTATGGAAGAGAGTAATGGAGATTATAAG CAATCTATGTTCTATGATTCATTGGCTTTACGAAAAACTGAAGAAATGTTGCAGCAAGTC ATTACTGATTCTCAAAATCAGTCCTTTAGTCCTGCTGATTCATTGATTACTAATTCTTGG ATTATGGTTAAGAGTATGTTTAGTGATGCAGAATCAGCTTTACAGTTTAAGAAAGGGGTT GAAGAAGCTAGTAAATTCCTTCCCAATAGTGATCAATGGGTTATCAATCTGGATATCGAG AGATCCGAAAGGCGCGATTCGGTTAAAGAAGAGATGGGATTGGATCAGTTGAGAGTTAAG AAGAATCATGAAAGGGATTTTGAGGAAGTTAGGAGTAGTAAGCAATTTGCTAGTAATGTA GAAGATAGTAAGGTTACAGATATGTTTGATAAGGTTTTGCTTCTTGACGGTGAATGCGAT CCGCAAACATTGTTAGACAGCGAGATTCAAGCGATTCGGAGTAGTAAGAACATAGGAGAG AAAGGGAAGAAGAAGAAGAAGAAGAGTCAAGTGGTTGATTTTCGTACACTTCTCACT CATTGTGCACAAGCCATTTCCACAGGAGATAAAACCACGGCTCTTGAGTTTCTGTTACAG ATAAGGCAACAGTCTTCGCCTCTCGGTGACGCGGGGCAAAGACTAGCTCATTGTTTCGCT AACGCGCTTGAAGCTCGTCTACAGGGAAGTACCGGTCCTATGATCCAGACTTATTACAAT GCTTTAACCTCGTCGTTGAAGGATACTGCTGCGGATACAATTAGAGCGTATCGAGTTTAT ${\tt CTTTCTTCGTCTCCGTTTGTTACCTTGATGTATTTCTTCTCCATCTGGATGATTCTTGAT}$ GTGGCTAAAGATGCTCCTGTTCTTCATATAGTTGATTTTGGGATTCTATACGGGTTTCAA TGGCCGATGTTTATTCAGTCTATATCAGATCGAAAAGATGTACCGCGGAAGCTGCGGATT ACTGGTATCGAGCTTCCTCAGTGCGGGTTTCGGCCCGCGGAGCGAATAGAGGAGACAGGA CGGAGATTGGCTGAGTATTGTAAACGGTTTAATGTTCCGTTTGAGTACAAAGCCATTGCG TCTCAGAACTGGGAAACAATCCGGATAGAAGATCTCGATATACGACCAAACGAAGTCTTA GCGGTTAATGCTGGACTTAGACTCAAGAACCTTCAAGATGAAACAGGAAGCGAAGAGAAT TGCCCGAGAGATGCTGTCTTGAAGCTAATAAGAAACATGAACCCGGACGTTTTCATCCAC GCGATTGTCAACGGTTCATTCAACGCACCCTTCTTTATCTCGCGGTTTAAAGAAGCGGTT TACCATTACTCCGCTCTCTTCGACATGTTTGATTCGACGTTGCCTCGGGATAACAAAGAG AGGATTAGGTTCGAGAGGGAGTTTTACGGGAGAGAGGCTATGAACGTGATAGCGTGCGAG GAAGCTGATCGAGTGGAGAGGCCTGAGACTTACAGGCAATGGCAGGTTAGAATGGTTAGA GCCGGGTTTAAGCAGAAAACGATTAAGCCTGAGCTGGTAGAGTTGTTTAGAGGAAAGCTG AAGAAATGGCGTTACCATAAAGACTTTGTGGTTGATGAAAATAGTAAATGGTTGTTACAA GGCTGGAAAGGTCGAACTCTCTATGCTTCTTCTTGTTGGGTTCCTGCCTAG

>G987 Amino Acid Sequence (domain in AA coordinates: 428-432,704-708) MGSYSAGFPGSLDWFDFPGLGNGSYLNDQPLLDIGSVPPPLDPYPQQNLASADADFSDSV $\verb|LKYISQVLMEEDMEDKPCMFHDALSLQAAEKSLYEALGEKYPVDDSDQPLTTTTSLAQLV|\\$ SSPGGSSYASSTTTTSSDSQWSFDCLENNRPSSWLQTPIPSNFIFQSTSTRASSGNAVFG SSFSGDLVSNMFNDTDLALQFKKGMEEASKFLPKSSQLVIDNSVPNRLTGKKSHWREEEH LTEERSKKQSAIYVDETDELTDMFDNILIFGEAKEQPVCILNESFPKEPAKASTFSKSPK GEKPEASGNSYTKETPDLRTMLVSCAQAVSINDRRTADELLSRIRQHSSSYGDGTERLAH YFANSLEARLAGIGTQVYTALSSKKTSTSDMLKAYQTYISVCPFKKIAIIFANHSIMRLA SSANAKTIHIIDFGISDGFQWPSLIHRLAWRRGSSCKLRITGIELPQRGFRPAEGVIETG RRLAKYCOKFNIPFEYNAIAQKWESIKLEDLKLKEGEFVAVNSLFRFRNLLDETVAVHSP RDTVLKLIRKIKPDVFIPGILSGSYNAPFFVTRFREVLFHYSSLFDMCDTNLTREDPMRV MFEKEFYGREIMNVVACEGTERVERPESYKQWQARAMRAGFRQIPLEKELVQKLKLMVES GYKPKEFDVDQDCHWLLQGWKGRIVYGSSIWVPFFFYVGRATRVLIMDPNFSESLNGFEY FDGNPNLLTDPMEDQYPPPSDTLLKYVSEILMEESNGDYKQSMFYDSLALRKTEEMLQQV ITDSQNQSFSPADSLITNSWDASGSIDESAYSADPQPVNEIMVKSMFSDAESALQFKKGV EEASKFLPNSDQWVINLDIERSERRDSVKEEMGLDQLRVKKNHERDFEEVRSSKQFASNV EDSKVTDMFDKVLLLDGECDPQTLLDSEIQAIRSSKNIGEKGKKKKKKKSQVVDFRTLLT

HCAQAISTGDKTTALEFLLQIRQQSSPLGDAGQRLAHCFANALEARLQGSTGPMIQTYYN ALTSSLKDTAADTIRAYRVYLSSSPFVTLMYFFSIWMILDVAKDAPVLHIVDFGILYGFQ WPMFIQSISDRKDVPRKLRITGIELPQCGFRPAERIEETGRRLAEYCKRFNVPFEYKAIA SQNWETIRIEDLDIRPNEVLAVNAGLRLKNLQDETGSEENCPRDAVLKLIRNMNPDVFIH AIVNGSFNAPFFISRFKEAVYHYSALFDMFDSTLPRDNKERIRFEREFYGREAMNVIACE EADRVERPETYRQWQVRMVRAGFKQKTIKPELVELFRGKLKKWRYHKDFVVDENSKWLLQ GWKGRTLYASSCWVPA*

>G993 (6..1091)

CAAATATGGAATACAGCTGTGTAGACGACAGTAGTACAACGTCAGAATCTCTCCCATCT CTACTACTCCAAAGCCGACAACGACGACGAGAAGAAACTCTCTTCTCCGCCGGCGACGT CGATGCGTCTCTACAGAATGGGAAGCGGCGGAAGCAGCGTCGTTTTGGATTCAGAGAACG GCGTCGAGACCGAGTCACGTAAGCTTCCTTCGTCGAAATATAAAGGCGTTGTGCCTCAGC $\tt CTAACGGAAGATGGGGAGCTCAGATTTACGAGAAGCATCAGCGAGTTTGGCTCGGTACTT$ TCAACGAGGAAGAAGAAGCTGCGTCTTCTTACGACATCGCCGTGAGGAGATTCCGCGGCC GCGACGCCGTCACTAACTTCAAATCTCAAGTTGATGGAAACGACGCCGAATCGGCTTTTC TTGACGCTCATTCTAAAGCTGAGATCGTGGATATGTTGAGGAAACACACTTACGCCGATG AGTTTGAGCAGAGTAGACGGAAGTTTGTTAACGGCGACGGAAAACGCTCTGGGTTGGAGA CGGCGACGTACGGAAACGACGCTGTTTTGAGAGCGCGTGAGGTTTTGTTCGAGAAGACTG TTACGCCGAGCGACGTCGGGAAGCTGAACCGTTTAGTGATACCGAAACAACACGCGGAGA AGCATTTTCCGTTACCGGCGATGACGACGGCGATGGGGATGAATCCGTCTCCGACGAAAG GCGTTTTGATTAACTTGGAAGATAGAACAGGGAAAGTGTGGCGGTTCCGTTACAGTTACT GGAACAGCÀGTCAAAGTTACGTGTTGACCAAGGGCTGGAGCCGGTTCGTTAAAGAGAAGA ATCTTCGAGCCGGTGATGTGGTTTGTTTCGAGAGATCAACCGGACCAGACCGGCAATTGT ATATCCACTGGAAAGTCCGGTCTAGTCCGGTTCAGACTGTGGTTAGGCTATTCGGAGTCA ACATTTTCAATGTGAGTAACGAGAAACCAAACGACGTCGCAGTAGAGTGTGTTGGCAAGA AGAGATCTCGGGAAGATGATTTGTTTTCGTTAGGGTGTTCCAAGAAGCAGGCGATTATCA ACATCTTGTGACAAATTCTTTTTTTTTGGTTTTTTTCTTCAATTTGTTTCTCCTTTTTCA ATATTTTGTATTGAAATGACAAGTTGTAAATTAGGACAAGACAAGAAAAAATGACAACTA

>G993 Amino Acid Sequence (domain in AA coordinates: 69-134) MEYSCVDDSSTTSESLSISTTPKPTTTTEKKLSSPPATSMRLYRMGSGGSSVVLDSENGV ETESRKLPSSKYKGVVPQPNGRWGAQIYEKHQRVWLGTFNEEEEAASSYDIAVRRFRGRD AVTNFKSQVDGNDAESAFLDAHSKAEIVDMLRKHTYADEFEQSRRKFVNGDGKRSGLETA TYGNDAVLRAREVLFEKTVTPSDVGKLNRLVIPKQHAEKHFPLPAMTTAMGMNPSPTKGV LINLEDRTGKVWRFRYSYWNSSQSYVLTKGWSRFVKEKNLRAGDVVCFERSTGPDRQLYI HWKVRSSPVQTVVRLFGVNIFNVSNEKPNDVAVECVGKKRSREDDLFSLGCSKKQAIINI L*

>G681 (1..804)

ATGGGGAGGACGACATGGTTCGACGTCGACGGGATGAAGAAAGGAGAGTGGACGGCAGAG GAAGACCAGAAGCTCGGCGCTTACATCAACGAGCATGGCGTTTGTGATTGGCGTTCCCTC CCCAAAAGAGCTGGTTTGCAGAGATGTGGAAAGAGCTGCAGATTAAGGTGGCTTAACTAT CTAAAGCCTGGGATTAGAAGAGGCAAATTCACTCCTCAAGAAGAAGAAGAAATCATCCAA CTTCATGCTGTTCTCGGAAACAGGTGGGCAGCCATGGCGAAGAAGATGCAGAATCGAACA GACAATGATATCAAGAACCATTGGAACTCTTGTCTCAAGAAAAGACTTTCGAGAAAGGGA ATCGACCCTATGACCCACGAGCCCATCATCAAACACCTCACCGTCAATACCACTAACGCA GGCTCGTCTCGTCTTTAACAAACTCGCCGCAGGTATCTCATCTAGACAACATAGTCTC GATAGGATCAAGTACATCTTGTCGAATTCAATAATCGAAAGCAGTGATCAAGCAAAAGAG GAAGAAGAAAAGAAGAAGAAGAAGAAGAAGAGATTCAATGATGGGTCAGAAGATTGAC GGTAGTGAAGGAGAAGATATTCAGATTTGGGGCGAGGAAGTTAGGCGTTTAATGGAG ATTGATGCAATGGATATGTACGAGATGACTTCGTACGACGCTGTCATGTACGAGAGTAGT >G681 Amino Acid Sequence (domain in AA coordinates:14-120) MGRTTWFDVDGMKKGEWTAEEDQKLGAYINEHGVCDWRSLPKRAGLQRCGKSCRLRWLNY LKPGIRRGKFTPQEEEEIIQLHAVLGNRWAAMAKKMQNRTDNDIKNHWNSCLKKRLSRKG IDPMTHEPIIKHLTVNTTNADCGNSSTTTSPSTTESSPSSGSSRLLNKLAAGISSRQHSL DRIKYILSNSIIESSDQAKEEEEKEEEEEERDSMMGQKIDGSEGEDIQIWGEEEVRRLME

IDAMDMYEMTSYDAVMYESSHILDHLF*

>G1482 (1..996)

ATGAAGATCAGGTGCGACGTCTGCGATAAAGAAGAAGCGTCGGTGTTTTGCACGGCCGAC GAAGCATCTCTCTGCGGCGGCTGCGACCACCAAGTCCACCACGCTAACAAACTCGCCTCT GACATCTGTCAGGATAAAAAAGCTCTGTTGTTCTGTCAACAAGATAGAGCTATTTTATGC AAAGATTGCGATTCATCGATCCACGCTGCGAACGAACACACAAAGAAACACGATAGGTTT CTTCTTACAGGGGTTAAGCTCTCTGCAACATCGTCTGTTTACAAACCTACTTCGAAATCT TCTTCTTCTTCAAGCAACCAAGATTTCTCTGTCCCTGGATCATCAATCTCTAATCCT CCTCCTCTCAAGAAACCTCTCTCAGCTCCTCCTCAGAGCAACAAGATCCAACCCTTTTCG AAGATCAACGGCGGTGATGCGTCGGTGAATCAGTGGGGATCCACAAGCACGATTTCTGAG ${\tt TATTTGATGGATACGTTACCTGGTTGGCACGTTGAGGATTTCCTCGATTCCTCTTCCT}$ ACTTATGGTTTCTCTAAGAGTGGTGATGATGATGGAGTGTTACCATATATGGAACCAGAA GATGACAACAACACTAAGAGAAACAACAACAACAACAACAACAACAACAACAATACAGTG TCATACCCAAATCAATACTTTTCTCAAGACAACAACATACAGTTTGGGATGTACAACAAA GAAACATCACCAGAAGTAGTGTCTTTTGCTCCAATACAAAACATGAAACAACAAGGACAG AACAACAAGAGATGGTATGATGATGGTGGCTTCACTGTCCCACAGATCACTCCTCCTC CTTTCTTCTAATAAAAAGTTTAGATCTTTCTGGTAA

>G1482 Amino Acid Sequence (domain in aa coordinates: 5-63)
MKIRCDVCDKEEASVFCTADEASLCGGCDHQVHHANKLASKHLRFSLLYPSSSNTSSPLC
DICQDKKALLFCQQDRAILCKDCDSSIHAANEHTKKHDRFLLTGVKLSATSSVYKPTSKS
SSSSSNQDFSVPGSSISNPPPLKKPLSAPPQSNKIQPFSKINGGDASVNQWGSTSTISE
YLMDTLPGWHVEDFLDSSLPTYGFSKSGDDDGVLPYMEPEDDNNTKRNNNNNNNNNTV
SLPSKNLGIWVPQIPQTLPSSYPNQYFSQDNNIQFGMYNKETSPEVVSFAPIQNMKQQGQ
NNKRWYDDGGFTVPQITPPPLSSNKKFRSFW*

>G225 (157..441)

>G225 Amino Acid Sequence (domain in AA coordinates: 39-76) MFRSDKAEKMDKRRRQSKAKASCSEEVSSIEWEAVKMSEEEEDLISRMYKLVGDRWELI AGRIPGRTPEEIERYWLMKHGVVFANRRRDFFRK*

>G226 (10..348)

>G226 Amino Acid Sequence (domain in AA coordinates: 28-78)
MDNTNRLRLRRGPSLRQTKFTRSRYDSEEVSSIEWEFISMTEQEEDLISRMYRLVGNRWD
LIAGRVVGRKANEIERYWIMRNSDYFSHKRRRLNNSPFFSTSPLNLQENLKL*

>G9 (81..1139)

GTGTTTCTTCTTCTGCTAAAAGGTTATAATTTTTGTTTCTTGGTTTGGTGAGAATCTTC
AAGAAACTGAAACAAAGAAAATGGATTCTAGTTGCATAGACGAGATAAGTTCCTCCACTT
CAGAATCTTTCTCCGCCACCACCGCCAAGAAGCTCTCTCCTCCTCCCCGCGGCGGCGTTAC
GCCTCTACCGGATGGGAAGCGGCGGGAGCAGCGTCGTTGGATCCCGAGAACGGCCTAG
AGACGGAGTCACGAAAGCTACCATCTTCAAAATACAAAGGTGTTGTTCCTCAGCCTAACG

GAAGATGGGGAGCTCAGATCTACGAGAAGCACCAACGAGTATGGCTCGGGACTTTCAACG AGCAAGAAGAAGCTGCTCGTTCCTACGACATCGCAGCTTGTAGATTCCGTGGCCGCGACG $\tt CCGTCGTCAACTTCAAGAACGTTCTGGAAGACGGCGATTTAGCTTTTCTTGAAGCTCACT$ CAAAGGCCGAGATCGTCGACATGTTGAGAAAACACACTTACGCCGACGAGCTTGAACAGA ACAATAAACGGCAGTTGTTTCTCTCCGTCGACGCTAACGGAAAACGTAACGGATCGAGTA CTACTCAAAACGACAAAGTTTTAAAGACGTGTGAAGTTCTTTTCGAGAAGGCTGTTACAC CTAGCGACGTTGGGAAGCTAAACCGTCTCGTGATACCTAAACAACACGCCGAGAAACACT TTCCGTTACCGTCACCGTCACCGGCAGTGACTAAAGGAGTTTTGATCAACTTCGAAGACG TTAACGGTAAAGTGTGGAGGTTCCGTTACTCATACTGGAACAGTAGTCAAAGTTACGTGT TGACCAAGGGATGGAGTCGATTCGTCAAGGAGAAGAATCTTCGAGCCGGTGATGTTGTTA GTCCGAGAGAAAACCCGGTTCAGGTGGTGGTTCGGCTTTTCGGAGTTGATATCTTTAATG TGACCACCGTGAAGCCAAACGACGTCGTGGCCGTTTGCGGTGGAAAGAGATCTCGAGATG TTGATGATATGTTTGCGTTACGGTGTTCCAAGAAGCAGGCGATAATCAATGCTTTGTGAC AGGTTGTGATTCATGCTAGGTTGTATTTAGGAAAAGAGATAAGACC

>G9 Amino Acid Sequence (domain in AA coordinates: 62-127)
MDSSCIDEISSSTSESFSATTAKKLSPPPAAALRLYRMGSGGSSVVLDPENGLETESRKL
PSSKYKGVVPQPNGRWGAQIYEKHQRVWLGTFNEQEEAARSYDIAACRFRGRDAVVNFKN
VLEDGDLAFLEAHSKAEIVDMLRKHTYADELEQNNKRQLFLSVDANGKRNGSSTTQNDKV
LKTCEVLFEKAVTPSDVGKLNRLVIPKQHAEKHFPLPSPSPAVTKGVLINFEDVNGKVWR
FRYSYWNSSQSYVLTKGWSRFVKEKNLRAGDVVTFERSTGLERQLYIDWKVRSGPRENPV
QVVVRLFGVDIFNVTTVKPNDVVAVCGGKRSRDVDDMFALRCSKKQAIINAL*
>G1040 (51..863)

CTTTGATCTCCACTATTTAAGTAGACAAGAATCATAAAGAAAATAGTGAGATGATGATGT TAGAGTCAAGAAACAGTATGAGAGCTTCAAACTCAGTCCCAGATCTGTCTCTTCAGATCA GTCTTCCTAACTATCACGCCGGAAAACCTCTTCACGGCGGTGACCGGAGCTCCACAAGCA GTGATTCTGGAAGCAGCCTCAGTGACCTGAGCCATGAGAACAACTTCTTCAACAAACCTC TCTTGAGCTTAGGATTTGACCATCATCATCAAAGGCGCTCAAACATGTTCCAACCTCAAA GTGCTCCAAGAATGAGATGGACTTCTACTCTTCATGCTCACTTCGTCCATGCTGTTCAAC TTCTTGGCGGCCATGAAAGAGCAACGCCTAAATCAGTGTTGGAGCTCATGAATGTGAAGG ATCTAACCCTAGCTCATGTCAAGAGTCACTTGCAGATGTATAGAACAGTGAAATGCACTG ATAAAGGATCACCAGGAGAAGGAAAGGTAGAGAAAGAGGCAGAGCAGAGGATAGAGGACA ATAATAATAATGAAGAAGCTGATGAAGGAACTGACACAAATTCGCCAAACTCATCATCTG TGCAAAAGACCCAAAGAGCTTCATGGTCATCGACAAAGGAAGTATCTAGGAGCATATCTA CACAAGCATATTCTCACTTGGGAACAACTCATCACACTAAGGCCAATGAAGAAGAAGAGG ATACCAACATTCATCTCAATTTGGATTTCACATTGGGCGGCCTAGTTGGGGGATGGAATA TGCGGAACCCTCCAGTGATTTAACCCTTCTCAAGTGCTAATTGCCTTAAGCTACAACAAA TAAGTCAGCTTAGGTTACCAGTTTTAACATAATTTTAACTTGTTTTGATCATATGAGCTT $\tt CGGAAGAATCATATTATCATCATATATGAACTTCTTTCCAAGAATGTTCTATGAGTTTTT$ TGATATGTATAATCAAGAGAATCGTTTGAAGTAAAAA

>G1040 Amino Acid Sequence (domain in AA coordinates: 109-158)
MMMLESRNSMRASNSVPDLSLQISLPNYHAGKPLHGGDRSSTSSDSGSSLSDLSHENNFF
NKPLLSLGFDHHHQRRSNMFQPQIYGRDFKRSSSSMVGLKRSIRAPRMRWTSTLHAHFVH
AVQLLGGHERATPKSVLELMNVKDLTLAHVKSHLQMYRTVKCTDKGSPGEGKVEKEAEQR
IEDNNNNEEADEGTDTNSPNSSSVQKTQRASWSSTKEVSRSISTQAYSHLGTTHHTKANE
EKEDTNIHLNLDFTEGGLVGGWNMRNPPVI*

>G2114 (64..1311)

GAGGCTGGTACGAGCAATAATATTAGTCATTTTAGTAACGAAGAGACTGGTTATAACACC AATGGCTCAATGCTATCATTGGCTTTGAGCCATGGGGCTTGTTCTGATTTGATCAACGAA TCGAATGTATCCGCACGGGTCGAAGAACCGGTTAAGGTAGATGAGAAGCGGAAGAGATTG GTTGTTAAACCTCAGGTAAAGGAATCCGTTCCTCGGAAGTCGGTTGATAGTTATGGACAA AGAACTTCTCAGTATCGTGGAGTTACAAGGCATAGATGGACAGGGAGATATGAAGCTCAC GGAGGGTATGATGAGGAGAGAAAGCAGCGAGGGCATATGATTTAGCGGCTCTGAAGTAT TGGGGTCCTACCACTCACTTAAATTTCCCTTTGAGTAATTACGAAAAGGAGATCGAGGAA CTCAATAACATGAATCGGCAAGAATTTGTTGCCATGTTGAGGAGGAATAGCAGCGGGTTT TCGAGGGGAGCTTCCGTGTATAGAGGAGTTACAAGGCATCATCAACATGGAAGGTGGCAA GCCAGAATTGGAAGAGTTGCTGGAAACAAGGACTTGTACCTTGGAACATTTAGCACGCAA GAAGAAGCAGCGGAGGCGTACGATATCGCGGCAATTAAATTCAGAGGCCTAAACGCTGTA ACCAATTTCGATATAAATAGATATGACGTGAAGAGGATATGTTCAAGCTCAACGATTGTT GATAGCGACCAGGCCAAACATTCTCCCACCAGCTCTGGCGCCGGCCACTAACCGACACCG CAGTCTGTTTAATCATTTATGGTTTAATAAACATATATTCCTAAGTAATTGAGGCCGGTC TACATATATACAACTTTTTTAGCAAATTAAGTTATCAGAATCCACTATATATTATTCTCT

>G2114 Amino Acid Sequence (conserved domain in AA coordinates:221-297, 323-393)

MKKWLGFSLTPPLRICNSEEELRHDGSDVWRYDINFDHHHHDEDVPKVEDLLSNSHQTE
YPINHNQTNVNCTTVVNRINPPGYLLHDQTVVTPHYPNLDPNLSNDYGGFERVGSVSVFK
SWLEQGTPAFPLSSHYVTEEAGTSNNISHFSNEETGYNTNGSMLSLALSHGACSDLINES
NVSARVEEPVKVDEKRKRLVVKPQVKESVPRKSVDSYGQRTSQYRGVTRHRWTGRYEAHL
WDNSCKKEGQTRRGRQVYLGGYDEEEKAARAYDLAALKYWGPTTHLNFPLSNYEKEIEEL
NNMNRQEFVAMLRRNSSGFSRGASVYRGVTRHHQHGRWQARIGRVAGNKDLYLGTFSTQE
EAAEAYDIAAIKFRGLNAVTNFDINRYDVKRICSSSTIVDSDQAKHSPTSSGAGH*
>G450 (65..751)

GAGTTATCGAGAGAGAGAGAAAACATATTCTGATTTAAGACATATATAGACAGCAAGAAG AGATATGAACCTTAAGGAGACGGAGCTTTGTCTTGGCCTCCCCGGAGGCACTGAAACCGT TGAAAGTCCGGCCAAGTCGGGTGTTGGGAACAAGAGAGGCTTCTCCGAGACCGTTGATCT CAAACTTAATCTTCAATCTAACAAACAAGGACATGTGGATCTCAACACTAATGGAGCTCC CAAGGAGAAGACCTTCCTTAAAGACCCTTCTAAGCCTCCTGCTAAAGCACAAGTGGTGGG TTGGCCACCGGTGAGGAACTACCGGAAAAATGTTATGGCTAATCAGAAGAGCGGCGAAGC AGCTCCTTATCTTCGGAAGGTTGACCTCAAGATGTACACCAGCTACAAGGATCTCTCTGA TGCCTTGGCCAAAATGTTCAGCTCCTTTACCATGGGGAGTTATGGAGCACAAGGGATGAT AGATTTCATGAACGAGAGTAAAGTGATGGATCTGTTGAACAGTTCTGAGTATGTTCCAAG CTACGAGGACAAAGATGGTGACTGGATGCTCGTTGGTGATGTCCCCTGGCCGATGTTTGT CGAGTCATGCAAACGTTTGCGCATAATGAAAGGATCCGAAGCAATTGGACTTGCTCCAAG AATTAGTCTGTGTTTTTGTTTTCATCTCTTAATTAGTAGAAATCATTTTTTAATATGTAA TTGTGATAGTAAATCTATAGAGTTCGTA

>G450 Amino Acid Sequence (domain in AA coordinates: TBD)
MNLKETELCLGLPGGTETVESPAKSGVGNKRGFSETVDLKLNLQSNKQGHVDLNTNGAPK
EKTFLKDPSKPPAKAQVVGWPPVRNYRKNVMANQKSGEAEEAMSSGGGTVAFVKVSMDGA
PYLRKVDLKMYTSYKDLSDALAKMFSSFTMGSYGAQGMIDFMNESKVMDLLNSSEYVPSY
EDKDGDWMLVGDVP#PMFVESCKRLRIMKGSEAIGLAPRAMEKFKNRS*
>G584 (40..1809)

GTAGGAGGAGGAGATGAAGCTGGAGATGAAGAAGTTACAGATACTGAATGGTTCTTCTTA GTTTCAATGACACAGAGCTTTGTCAAGGGTACTGGTTTACCTGGTCAAGCTTTCTCAAAT TCAGACACGATTTGGTTATCTGGTTCTAATGCTTTAGCTGGATCAAGTTGTGAGAGAGCT GTTGAGCTTGGTTCGTCGGAGATTATTCATCAAAGTTCAGATCTTGTTGATAAAGTTGAC ACCTTTTTCAATTTTAACAATGGTGGTGGTGAATTTGGTTCTTGGGCGTTTAATTTGAAT CCAGATCAAGGAGAATGATCCAGGTTTGTGGATTAGTGAACCTAATGGTGTTGACTCT GGTCTTGTAGCTGCTCCGGTGATGAATAATGGTGGAAATGACTCAACTTCTAATTCTGAT TCTCAACCAATTTCTAAGCTTTGTAATGGAAGCTCTGTTGAAAACCCTAACCCTAAAGTT CTGAAATCTTGTGAAATGGTGAATTTCAAGAATGGGATTGAGAATGGTCAAGAAGAAGAT TCTGTTCTTCCATGTGACTCGAATCACTCTGATCTTGAAGCTTCAGTGGCTAAAGAAGCT GAGAGTAACAGAGTTGTGGTTGAACCGGAGAAGAAACCGAGGAAACGAGGGAGAAAACCG GCGAATGGAAGAGAGAGCCTTTGAATCATGTAGAGGCAGAGAGACAGAGAAGAGAGAAGA TTGAATCAGAGATTCTATTCTTTAAGAGCTGTGGTTCCTAATGTGTCTAAGATGGATAAA GCTTCTCTATTAGGAGATGCTATTTCGTATATCAGTGAGCTTAAGTCTAAGTTGCAAAAG GCTGAATCTGATAAAGAAGAGTTGCAGAAGCAGATTGATGTGATGAATAAAGAAGCGGGA AATGCGAAAAGTTCGGTAAAAGATCGAAAATGTTTGAATCAAGAATCGAGTGTGTTGATA GAGATGGAGGTTGATGTGAAGATTATTGGTTGGGATGCAATGATAAGGATTCAATGTAGT AAGAGGAATCATCCTGGTGCTAAGTTCATGGAAGCACTTAAGGAGTTGGATTTGGAAGTG AATCATGCGAGTTTATCGGTAGTGAATGATCTTATGATCCAACAAGCGACTGTGAAAATG GGGAATCAGTTTTTCACGCAAGATCAACTCAAGGTTGCTCTAACGGAGAAAGTTGGAGAA TGTCCATGAATTGAAGTCAGCATCTTTAGGGCTAATACACCGGAGAATACTGCGAAAAGT CGAAAACAACGATCATAGTATAAGCCGCGGTAAAAAGTGTTAAACCTTTCACACAAGTTT CTCTAGTGAATGTAGTTGTAAACTCTATTGTGTAAGGGTAATTTTGTAGTACCCACTTGT TGCTATTGAATGCTTGTTAGAGAGGATTCTTAGTGTAGTATATGATTAGGTTTGGGGTTTG TTGTTCATGAGATAAATAATGTGTTTGATCAATGGTTAAGTCTTTGGTTTGTTGGTGT ATGTATGTAAATAAGGCTTTTGTTAGAAATAAGACAAATGGGACTGAAGTTGGAGTTTAA

>G584. Amino Acid Sequence (domain in AA coordinates: 401-494) MSPTNVQVTDYHLNQSKTDTTNLWSTDDDASVMEAFIGGGSDHSSLFPPLPPPPLPQVNE DNLQQRLQALIEGANENWTYAVFWQSSHGFAGEDNNNNNTVLLGWGDGYYKGEEEKSRKK KSNPASAAEOEHRKRVIRELNSLISGGVGGGDEAGDEEVTDTEWFFLVSMTQSFVKGTGL PGOAFSNSDTIWLSGSNALAGSSCERARQGQIYGLQTMVCVATENGVVELGSSEIIHQSS DLVDKVDTFFNFNNGGGEFGSWAFNLNPDQGENDPGLWISEPNGVDSGLVAAPVMNNGGN DSTSNSDSQPISKLCNGSSVENPNPKVLKSCEMVNFKNGIENGQEEDSSNKKRSPVSNNE EGMLSFTSVLPCDSNHSDLEASVAKEAESNRVVVEPEKKPRKRGRKPANGREEPLNHVEA ERQRREKLNQRFYSLRAVVPNVSKMDKASLLGDAISYISELKSKLQKAESDKEELQKQID VMNKEAGNAKSSVKDRKCLNQESSVLIEMEVDVKIIGWDAMIRIQCSKRNHPGAKFMEAL KELDLEVNHASLSVVNDLMIQQATVKMGNQFFTQDQLKVALTEKVGECP*

>G668 (1..1056)

ATGGGAAGACCACCTTGCTGTGAAAAGATTGGAGTGAAGAAAGGGCCATGGACACCAGAG GAAGACATCATCTTGGTTTCTTACATCCAAGAACATGGTCCTGGAAACTGGAGATCTGTC CCAACACACACAGGTTTAAGATGTAGCAAGAGCTGCAGATTGAGATGGACTAATTATCTT CGACCCGGTATTAAGCGTGGAAATTTTACTGAGCATGAAGAGAAAAATTGTTCATCTT CAAGCCCTTTTAGGCAACAGATGGGCAGCCATAGCATCATACCTTCCAGAAAGGACAGAC AATGATATAAAGAACTATTGGAACACTCACTTGAAGAAGAAGCTCAAAAAGATTAATGAA TCTGGTGAAGAAGATAATGATGGTGTCTCTTCATCAAACACTAGTTCACAAAAGAACCAT CAAGCTCTTTGTGAGGCCTTGTCTTTAGACAAACCATCATCCACTCTTTCATCATCTTCA TCATTACCGACACCAGTAATCACACAACAAAACATCCGTAACTTCTCATCAGCTTTGCTT GACCGTTGTTATGATCCATCCTCTTCTTCTTCATCTACCACAACCACCACTACAAGCAAC ACTACTAATCCATACCCATCAGGGGTATATGCGTCAAGTGCTGAGAACATCGCCCGGTTG CTTCAAGATTTCATGAAAGACACACCCAAGGCTTTAACTTTATCATCTTCATCTCCGGTT TCAGAGACTGGACCACTCACTGCAGTCTCGGAAGAAGGTGGAGAAGGGTTTGAACAA TCTTTCTTCAGCTTCAATTCAATGGACGAAACTCAAAACTTGACTCAGGAGACAAGCTTC TTCCATGATCAAGTGATCAAACCGGAAATAACAATGGACCAAGATCATGGTCTAATATCA

>G668 Amino Acid Sequence (domain in AA coordinates: 13-113)
MGRPPCCEKIGVKKGPWTPEEDIILVSYIQEHGPGNWRSVPTHTGLRCSKSCRLRWTNYL
RPGIKRGNFTEHEEKTIVHLQALLGNRWAAIASYLPERTDNDIKNYWNTHLKKKLKKINE
SGEEDNDGVSSSNTSSQKNHQSTNKGQWERRLQTDINMAKQALCEALSLDKPSSTLSSS
SLPTPVITQQNIRNFSSALLDRCYDPSSSSSSTTTTTTSNTTNPYPSGVYASSAENIARL
LQDFMKDTPKALTLSSSSPVSETGPLTAAVSEEGGEGFEQSFFSFNSMDETQNLTQETSF
FHDQVIKPEITMDQDHGLISQGSLSLFEKWLFDEQSHEMVGMALAGQEGMF*

>G1050 (23..1582)

TTCCCCATTTCAGAAAATCAAAATGGGTGGTGGTGGTGATACAACAGATACCAATATGAT GCAGAGAGTTAATTCTTCTTCTGGTACATCGTCTTCTTCGATCCCTAAACACAATCTTCA CTTGAATCCTGCTCTTATCCGCTCTCACCATCACTTCCGTCACCCTTTCACCGGAGCTCC TCCACCGCCGATTCCACCCATTTCTCCTTACTCTCAGATCCCGGCGACTTTACAACCTAG ACATTCTCGCTCTATGTCGCAACCGTCTTCTTCTTCTTCTTCTTGATTCATTGCCGCCGTT AAATCCTTCTGCTCCGTCGGTTTCGGTGTCGGTGGAGGAGAAAACCGGTGCCGGATTTAG TCCTTCGTTGCCTCCGTCACCGTTTACGATGTGTCATTCTTCTAGCTCTAGGAACGCCGG AGATGGAGAGAATCTACCTCCGAGAAAGTCGCATAGGCGTTCGAATAGTGATGTTACTTT TGGGTTTAGTTCAATGATGTCTCAGAATCAAAAGTCTCCTCCTTTGAGTTCTTTGGAGAG AGGCTTCTACAAGGGAAGAAAACCAGAGGTTGAAGCAGCTATGGACGATGTTTTCACGGC TTATATGAATCTTGATAACATTGATGTCTTGAATTCTTTTGGAGGTGAAGATGGCAAGAA TGGGAATGAGAATGTGGAGGAGATGGAGAGTAGTAGAGGTAGTGGTACAAAGAAGACGAA TGGTGGAAGTAGTAGTGATTCTGAAGGAGATAGCAGTGCGAGTGGGAATGTGAAGGTTGC GTTGAGTTCTTCTTCAGGCGTGAAGAGAGAGAGCAGGTGGAGATATTGCTCCTACTGG TAGACATTACAGGAGTGTTTCTATGGACAGTTGTTTCATGGGGAAGTTGAATTTCGGCGA TGAAGGGAATTCAAGTGCTTATAGTGTTGAATTTGGAAACAGTGAGTTTACTGCAGCTGA AATGAAGAAGATTGCAGCTGATGAGAAACTCGCTGAGATTGTAATGGCTGACCCTAAGCG TGTTAAAAGAATCTTGGCGAACCGCGTATCTGCTGCACGTTCAAAGGAGCGGAAGACGCG ATACATGGCAGAGTTGGAACACAAGGTGCAGACACTTCAGACTGAAGCTACTACATTATC GGCTCAGCTCACACATTTGCAGAGAGATTCTATGGGGTTGACAAACCAGAACAGTGAGCT GAAGTTTCGTCTTCAAGCTATGGAGCAGCAAGCACAACTCCGCGATGCTCTGTCAGAGAA ACTGAATGAAGAAGTCCAGCGGTTGAAACTGGTGATAGGGGAGCCGAACCGCAGGCAAAG TGGGAGCAGCAGCGAATCAAAGATGTCACTAAACCCGGAGATGTTTCAGCAGCTTAG CATAAGTCAGTTACAACACCAACAGATGCAGCATTCCAATCAGTGTAGCACAATGAAAGC AAAGCACACTTCAAACGACTAGGGTAAGTAAAACTGCGATCCGCAGTTGTCTAGTTACAT ATATGATAAGAATCTTTTGTGCAGAGTTCTGTTTTTGGAAGTTTTAAAGAAACATATATA TAATGGAGGACTTTCTTTCTGGACCA

>G1050 Amino Acid Sequence (domain in AA coordinates: 372-425)
MGGGGDTTDTNMMQRVNSSSGTSSSSIPKHNLHLNPALIRSHHHFRHPFTGAPPPPIPPI
SPYSQIPATLQPRHSRSMSQPSSFFSFDSLPPLNPSAPSVSVSVEEKTGAGFSPSLPPSP
FTMCHSSSSRNAGDGENLPPRKSHRRSNSDVTFGFSSMMSQNQKSPPLSSLERSISGEDT
SDWSNLVKKEPREGFYKGRKPEVEAAMDDVFTAYMNLDNIDVLNSFGGEDGKNGNENVEE
MESSRGSGTKKTNGGSSSDSEGDSSASGNVKVALSSSSSGVKRRAGGDIAPTGRHYRSVS
MDSCFMGKLNFGDESSLKLPPSSSAKVSPTNSGEGNSSAYSVEFGNSEFTAAEMKKIAAD
EKLAEIVMADPKRVKRILANRVSAARSKERKTRYMAELEHKVQTLQTEATTLSAQLTHLQ
RDSMGLTNQNSELKFRLQAMEQQAQLRDALSEKLNEEVQRLKLVIGEPNRRQSGSSSSES
KMSLNPEMFQQLSISQLQHQQMQHSNQCSTMKAKHTSND*

>G1463 (199..1209)

GACGTGTTCAACAAGGATCCATATGTGAAGTTCCATGCTGAGATCCCTAGCTTCGTGATC ATCATTGGTCGTGATAAGCTGATAAAGTCGGAGGAGACTGGTAAGATTCTAGGGTTCAAG AAGATACTCAAGTTCTGCCTAAAGTGGAAACCTAGAGAATACAAGAGAAGTTTGGTAATG GAAGAGTATAGGCTTACCAATAACTTCAACTGGAAGCAAGATCATGTGATTTGCAAGATT CGGCTTTTGTTTGAAGCAGAAATTAGTTTCTTGCTAGCCAAGCATTTCTACACTACATCA GACTCACTTCCTCGAAATGTGCTGTTGCCAGCTTATGGATTCTGTTCACCAGATAAACAA GAGGAGGACGAATTTTATCCGGTGACGATAATGATTTCAGAAGGAAAAGATTGGCCTAGC TACGTTACCAACAACGTGTATTGTCTGCATCCATCGGAGCTTGTGAATGTTCACGATGGG AAGTTTCATGATAACGGAATCTGCATCTTCGCTAACAGGACTTGTGGTGTAACCGATAAA TGCAATGAAGGTTACTGGAAGATTAAGCACCGTGAGAAGCTGATCATGTCACGGTACGGG GGTAATGGAGAAGAGTGAAGGTAACTTGGACTCTAAAAGAGTATAGGCTTACCAGAAAA ATGAACAAGAATAAAGTGGTGTGCGTTATCAAGTATAAGGTAAAGTGTTTACCGAGGATA ACTAGCTAGGGACTTCTACTCTTGGTTTCATGATCGATGCGACCGCTCTAGACAGGCCTC GTACCGGATCCTCTAGCTAGAGCTTTCGTTCGTATCATCGGTTTCGACAACGTTCGTCA >G1463 Amino Acid Sequence (conserved domain in AA coordinates:9-156) MRFFFSLVPLFLGRFSFVMADTLLNAEDEVIISRYLKPMIVNRVSWPDLFIEDADVFNKD PYVKFHAEIPSFVIVKPRTKACGKTDGCDSGCWRIIGRDKLIKSEETGKILGFKKILKFC LKWKPREYKRSLVMEEYRLTNNFNWKQDHVICKIRLLFEABISFLLAKHFYTTSDSLPRN VLLPAYGFCSPDKQEEDEFYPVTIMISEGKDWPSYVTNNVYCLHPSELVNVHDGKFHDNG ICIFANRTCGVTDKCNEGYWKIKHREKLIMSRYGQTIGWKKVFQFYETEKERHFGNGEEV KVTWTLKEYRLTRKMNKNKVVCVIKYKVKCLPRITS* >G1944 (236..1306)

TCGACCTTCCTAATTTCCAACCTCTGTTCTTAGCAATATATTTTTTCTCCAAAAATAATT AATCCTTTAATCTCATCTTTGTTTATCTTTAATCAAAACCCAAAATTTACATGGGTTCTT CTTAAATATGGAGTCTACCGGAGAAGCTGTTAGATCAACCACCGGTAACGACGGTGGTAT TACGGTGGTTAGATCCGACGCGCCGTCAGATTTCCACGTAGCTCAAAGATCAGAAAGCTC AAACCAATCTCCCACCTCTGTCACTCCTCCTCCACCACGCCATCGTCTCATCACACAGC TCCTCCGCCGCTGCAAATTTCGACGGTGACGACTACGACTACGACGGCCGCGATGGAAGG TATCTCCGGTGGACTGATGAAGAAGAAGCGTGGACGGCCAAGGAAGTATGGACCGGACGG GCCGCCGAGTTCACACGTCATCGATTTCTCCGCTTCTGAGAAACGTAGCAAAGTGAAACC AACGAACTCGTTTAACAGAACAAAGTATCATCACCAAGTTGAGAATTTGGGTGAATGGGC TCCTTGCTCCGTCGGTGGTAATTTCACACCTCATATAATCACAGTCAACACCCGGCGAGGA TGTAACAATGAAGATAATCTCGTTTTCGCAACAAGGACCTCGCTCTATTTGTGTTCTGTC AGCAAACGGTGTTATTTCAAGCGTTACACTTCGTCAGCCAGATTCCTCTGGCGGCACATT AGGCGGAACACGAAGTAGAACGGGAGGAATGAGTGTATCGTTAGCAAGTCCCGATGGACG TGTAGTAGGCGGTGGCCTCGCCGGTTTACTAGTAGCCGCGAGTCCGGTTCAGGTGGTTGT TTTCATGTTGTCGAGTCCTACCGCTGCAATTCCTATCTCTAGTGCAGCTGATCACCGGAC AATCCATTCGGTCTCTTCCGGTCAATAATAATACATGGCAGACTTCTTTAGCTTC CGATCCAAGAAACAAGCATACCGATATTAATGTCAATGTAACTTGAAATCCAATCTTTCT CTGTATTTTCTGTTAACAAGTTTGATTTGGTTGTTTATCTACATTAGGATTTTACTAAAA TGGTAGTATTATTATAGGGTTTTTAGGGTCTTTATTTTGGTTCCACTGTTGTCACTTGTA

>G1944 Amino Acid Sequence (domain in AA coordinates:87-100)
MVLNMESTGEAVRSTTGNDGGITVVRSDAPSDFHVAQRSESSNQSPTSVTPPPPQPSSHH
TAPPPLQISTVTTTTTTAAMEGISGGLMKKKRGRPRKYGPDGTVVALSPKPISSAPAPSH
LPPPSSHVIDFSASEKRSKVKPTNSFNRTKYHHQVENLGEWAPCSVGGNFTPHIITVNTG
EDVTMKIISFSQQGPRSICVLSANGVISSVTLRQPDSSGGTLTYEGRFEILSLSGSFMPN
DSGGTRSRTGGMSVSLASPDGRVVGGGLAGLLVAASPVQVVVGSFLAGTDHQDQKPKKNK
HDFMLSSPTAAIPISSAADHRTIHSVSSLPVNNNTWQTSLASDPRNKHTDINVNVT*
>G2383 (37..990)

PCT/US02/25805

GACCTCTTTGATCCCTTCATTCCCCATCAAACAACCATGTTTCCTTCTTTCATTACTCAC ATTCAAAGCCCTAATTCTCACCATCACTACTCTTCGCCTTCTTTTCCTTTCTCTCCGAT TTTCTTGAGAGTTTTGATGAATCCTTCTTGATAAACCAATTCTTGTTACAGCAGCAAGAT GTAGCAGCAAATGTTGTTGAATCTCCTTGGAAATTTTGCAAGAAGCTTGAGCTTAAGAAG AAGAATGAGAAGTGTTGATGGAAGCACCTCACAAGAGGTTCAATGGAGAAGGACGGTC AAAAAAGGGACAGGCATAGTAAGATCTGCACGGCTCAAGGTCCTAGAGACCGGAGGATG AGGCTGTCTCTTCAGATTGCTCGCAAGTTTTTCGATCTTCAAGACATGTTGGGTTTCGAC AAGGCGAGCAAGACGATTGAATGGCTTTTCTCCAAATCAAAGACTTCCATCAAACAACTT AAAGAAAGAGTGGCTGCATCGGAAGGAGGAGGAAAGGATGAACATCTCCAGGTTGATGAA AAGGAAAAGGATGAGACACTGAAGTTGAGAGTCTCAAAGAGAAGAACAAAGACTATGGAG ATGGCAAAGATGAAGATGAGATTATTTGAGACCTCGGAAACAATTTCAGATCCTCATCAA GAAACTAGAGAGATCAAGATAACCAATGGTGTACAATTACTAGAAAAGGAAAATAAAGAA CAAGAATGGAGTAATACTAATGATGTTCACATGGTAGAGTATCAAATGGATTCTGTGAGC ATCATAGAGAAGTTTCTTGGACTAACCAGTGACTCTAGCTCCTCTTCCATTTTTGGTGAC TCCGAGGAATGTTACACAAGTCTTAGTTCAGTAAGAGGTACAATTTCAGCAGCAGGTAAC AGCAATGTGTTAACTAAAAACCCTAATTGAGTAATGCAGTTTTGATTAATATTAGCTTTT TGGTAATTCCAGGAATGTCGACACCAAGGG

>G2383 Amino Acid Sequence (conserved domain in AA coordinates:89-149)
MFPSFITHIQSPNSHHYSSPSFPFSSDFLESFDESFLINQFLLQQQDVAANVVESPWKF
CKKLELKKKNEKCVDGSTSQEVQWRRTVKKRDRHSKICTAQGPRDRRMRLSLQIARKFFD
LQDMLGFDKASKTIEWLFSKSKTSIKQLKERVAASEGGGKDEHLQVDEKEKDETLKLRVS
KRRTKTMESSFKTKESRERARKRARERTMAKMKMRLFETSETISDPHQETREIKITNGVQ
LLEKENKEQEWSNTNDVHMVEYQMDSVSIIEKFLGLTSDSSSSSIFGDSEECYTSLSSVR
GTISAAGNSNVLTKNPN*

>G571 (326..1708)

TAGCCGACCTCTCTCTCTCTCTGAAAAAAACACCAAAGGAGCTTTAAATGCTCCGTTA CATAATCTCTATCTCTTTCCAAGAATATAGAGAAAGGAAAATAATATACAAGAATTAAAA GAAGGTATATCATCATCTCTCTAGCTAGTGATCAAAGCACCGTCATCATCATCATATATC TCTTCATCATCTTCTGCTGTTACTATCATATCACACGCTCTCTCAAACATCATCCTATAT ATAGACTTCTCTTCATCATCATCAAATGCAAGGTCATCACCAGAATCATCATCAACACTT ATCATCATCCTCCGCCACGTCTTCCCATGGAAACTTCATGAACAAAGATGGGTATGATAT TGGAGAGATAGACCCATCACTCTTCCTCTATCTTGATGGACAAGGACATCATGATCCTCC ATCAACTGCTCCTTCTCCTTTACATCATCATCACACACTCAGAATTTGGCGATGAGACC TCCAACATCGACGCTCAACATCTTTCCATCTCAGCCTATGCACATAGAGCCACCTCCTTC TTCTACACACAATACCGATAATACAAGATTAGTTCCGGCTGCTCAACCTAGTGGTTCCAC TCGACCAGCTTCTGACCCGTCCATGGACTTGACCAATCATTCTCAGTTTCATCAACCTCC TCAAGGTTCTAAATCCATCAAGAAGGAAGGGAACCGCAAGGGTCTTGCCTCATCGGACCA TGACATACCTAAATCGTCAGACCCTAAAACATTGAGAAGACTAGCACAAAACAGAGAAGC AGCAAGAAAAGCAGATTACGTAAAAAGGCTTATGTTCAGCAACTCGAGTCATGTAGGAT CAAACTGACCCAACTAGAACAAGAGATTCAACGGGCCAGATCCCAAGGCGTATTCTTTGG AGGGTCTCTTATAGGAGGAGATCAACAGCAAGGTGGACTACCCATTGGCCCTGGCAACAT CAGCTCTGAAGCAGCGGTGTTCGATATGGAATATGCGAGGTGGCTGGAGGAGCAGCAGAG GCTATTAAACGAACTAAGGGTGGCAACACAAGAACACTTGTCCGAGAACGAGCTTAGGAT GTTTGTGGACACATGTTTAGCTCATTATGACCATTTGATTAACCTCAAGGCTATGGTCGC TAAGACCGATGTCTTCCACCTCATTTCTGGAGCATGGAAAACTCCAGCTGAACGTTGCTT CTTGTGGATGGGTG&TTTCCGTCCATCGGAGATCATTAAGGTGATTGTGAACCAGATAGA ACCATTGACGGAGCAACAGATAGTTGGGATATGTGGGCTGCAACAGTCCACACAGAGGGC CTCTGACTCCCTCCCGCCTCCCGCACCACTTCCTCCTCATCTATCCAATTTCATGTC ACACATGTCCTTAGCTCTCAACAAGCTCTCTGCTCTCGAGGGCTTCGTTCTCCAGGCGGA TAATTTGAGGCACCAAACGATCCATAGGCTGAACCAATTGTTGACGACCCGTCAAGAAGC ACGGTGTCTTCTAGCCGTTGCGGAGTACTTCCACCGTCTTCAAGCTCTAAGTTCTCTCTG GCTAGCCCGTCCTCGGCAAGATGGATAATACTAAAACAACTGATGAAGGAAACCAAAAAC GTCTCTCTACTCAAATACAGTGCAATTAGGGAAAATTGTTTGGCTTCTTTTTGGTATATG 151/286

ATTCTTACTATTATGTTTTTAATCAAGA

>G571 Amino Acid Sequence (domain in AA cordinates: 160-220) MOGHHONHHOHLSSSSATSSHGNFMNKDGYDIGEIDPSLFLYLDGQGHHDPPSTAPSPLH HHHTTONLAMRPPTSTLNIFPSQPMHIEPPPSSTHNTDNTRLVPAAQPSGSTRPASDPSM DLTNHSQFHQPPQGSKSIKKEGNRKGLASSDHDIPKSSDPKTLRRLAQNREAARKSRLRK KAYVQQLESCRIKLTQLEQEIQRARSQGVFFGGSLIGGDQQQGGLPIGPGNISSEAAVFD MEYARWLEEQQRLLNELRVATQEHLSENELRMFVDTCLAHYDHLINLKAMVAKTDVFHLI SGAWKTPAERCFLWMGGFRPSEIIKVIVNQIEPLTEQQIVGICGLQQSTQEAEEALSQGL EALNQSLSDSIVSDSLPPASAPLPPHLSNFMSHMSLALNKLSALEGFVLQADNLRHQTIH RLNQLLTTRQEARCLLAVAEYFHRLQALSSLWLARPRQDG*

>G636 (6..1814)

CGATGATGCAACTGGGTGGTGGTACTCCGACCACTACAGCGGCGGCTACAACCGTCACAA CTGCTACAGCACCACCACAATCAAACAACAACGATTCAGCGGCAACAGAAGCAGCGG CAGCAGCGGTTGGGGCGTTTGAGGTGTCGGAAGAGATGCACGACCGTGGGTTTGGAGGAA ATCGTTGGCCGCGGCAGGAAACGCTAGCGTTGTTGAAAATACGATCTGACATGGGAATAG CGTTTCGAGACGCTAGCGTTAAAGGTCCCTTATGGGAAGAGGTTTCTAGGAAAATGGCGG AGCATGGTTACATAAGAAACGCAAAGAAATGCAAAGAGAAATTCGAGAACGTTTACAAAT ACCACAAACGAACCAAAGAAGGTCGTACCGGAAAATCCGAAGGCAAAACTTATCGCTTCT TTGATCAATTAGAAGCTCTCGAGTCTCAATCTACAACCTCACTCCACCATCATCAACAAC TTCCTCCGTATACTCAGCAGATTAATGTACCTTCGTTTCCAAACATCTCCGGTGATTTTC TATCGGATAATTCTACATCGTCTTCGTCTTTATTCGACTTCTTCTGACATGGAGATGG GTGGTGGAACTGCGACTACAAGGAAGAAAAGGAAGAGGAAATGGAAGGTGTTTTTCGAGC GGTTGATGAAACAAGTAGTTGATAAACAGGAAGAGCTTCAACGCACATTCTTGGAAGCTG TTGAAAAGCGAGAACACAAGAGATTGGTTAGAGAAGAGTCTTGGAGAGTTCAAGAGATTG CCAGAATCAACCGCGAGCACGAGATCTTAGCTCAAGAACGCTCTATGTCCGCTGCAAAAG ACGCTGCTGTTATGGCCTTTCTTCAAAAACTGTCAGAGAAACAACCGAATCAGCCACAAC CGCAGCCTCAGCCGCAACAAGTTCGACCATCAATGCAGCTTAATAACAACAATCAGCAGC AACCGCCTCAACGGTCTCCTCCACCGCAACCTCCTGCTCCGCTTCCGCAGCCAATTCAAG CGGTTGTGTCGACGTTAGACACAACGAAAACGCACAATCGTGGTGATCAGAATATGACTC CTGCAGCTTCAGCGAGCTCGTCGCGGTGGCCGAAAGTGGAGATAGAAGCATTGATAAAGC TGAGGACGAATCTTGATTCGAAATATCAAGAAAACGGACCAAAAGGACCATTGTGGGAAG AGATATCAGCGGGAATGAGAAGGTTAGGATTCAACAGGAACTCAAAGAGATGCAAAGAGA AATGGGAAAACATAAACAAATACTTCAAGAAAGTCAAAGAGAGCAACAAGAAACGTCCCG AATTCCACAGCAACAACATTGCAGCTTCTTCTTCATCTTCCGGTCTTGTTAAACCGG ATAATTCTGTTCCCTTGATGGTCCAACCAGAGCAGCAATGGCCTCCGGCTGTAACGACTG CGACAACTACTCCCGCAGCGGCTCAGCCTGATCAGCAATCTCAGCCGTCGGAGCAGAACT AAGAAGAGGAAGGAGGTGAGTTCGAGCTTGTGCCTAGCAATAACAACAACAACAAGACGA CGAATAATCTGTAATGATGATGATTCGAGTTCGAACCGGTTTGGTGGTGAAAGATTAGTA ATCTTTTTTAAGTTTTGATACAGAACATGAGAATTTAAATATTGGAGGGTTT

>G636 Amino Acid Sequence (domain in AA coordinates: 55-145, 405-498) MOLGGGTPTTTAAATTVTTATAPPPQSNNNDSAATEAAAAAVGAFEVSEEMHDRGFGGNR WPRQETLALLKIRSDMGIAFRDASVKGPLWEEVSRKMAEHGYIRNAKKCKEKFENVYKYH KRTKEGRTGKSEGKTYRFFDQLEALESQSTTSLHHHQQQTPLRPQQNNNNNNNNNNNNSSI

 ${ t FSTPPPVTTVMPTL} { t PSSSIPPYTQQINVPSFPNISGDFLSDNSTSSSSSYSTSSDMEMGG}$ GTATTRKKRKRKWKVFFERLMKQVVDKQEELQRTFLEAVEKREHKRLVREESWRVQEIAR INREHEILAQERSMSAAKDAAVMAFLQKLSEKQPNQPQPQPQPQQVRPSMQLNNNNQQQP PORSPPPOPPAPLPOPIQAVVSTLDTTKTHNRGDONMTPAASASSSRWPKVEIEALIKLR TNLDSKYOENGPKGPLWEEISAGMRRLGFNRNSKRCKEKWENINKYFKKVKESNKKRPED SKTCPYFHOLDALYRERNKFHSNNNIAASSSSSGLVKPDNSVPLMVQPEQQWPPAVTTAT TTPAAAQPDQQSQPSEQNFDDEEGTDEEYDDEDEEEENEEEEGGEFELVPSNNNNNKTTN

NL*

>G878 (197..1738)

CAAAAAAATCTCTCCCATTAAAAGACTGCCCAAAGAAATATTTTATACAAAATGAAAGA

GAGAAACACGACACGAATTTTGTATAATTAAGATTACACAAAAAAAGTGTTAGAAAGAG AAATATCTTCTTCTTTTTTCTGTGTGAGTTGGGTTTGTTAAAGTTTTATCCTTTTTGTTC CACCGGAGTTTCACGGCCAACGATTTCACTACCTCCTCGACCGTTTGGTGAAATGTTTTT TAGCGGTGGCGTTGGATTTAGTCCTGGACCAATGACTCTCGTCTCAAATTTATTCTCTGA TCCTGATGAGTTCAAGTCTTTCTCTCAGCTTTTAGCTGGAGCTATGGCTTCTCCGGCGGC AGCTGCTGTTGCCGCCGCTGCTGTGGTTGCTACTGCTCATCAGACACCTGTGAGCTC TGTCGGTGATGGCGGTGGAAGCGGTGGTGATGTTGACCCGAGGTTTAAGCAGAGTAGACC AACGGGATTGATGATAACTCAACCACCGGGGATGTTTACTGTACCGCCGGGGTTAAGTCC GGCTACTCTTTGGATTCTCCGAGCTTCTTTGGTCTTTTTTCACCTCTTCAGGGAACATT TGGTATGACACATCAACAAGCTTTAGCACAAGTCACTGCACAAGCAGTTCAAGGCAATAA TGTTCATATGCAGCAATCACAACAATCTGAATATCCTTCTTCTACACAACAACAACAACA ACAACAACAACAAGCTTCATTGACTGAGATTCCATCATTTTCTTCTGCACCTAGGTCTCA CTTTGAGCATCGGTCACAGCCTCAAAATGCTGACAAACCAGCTGATGATGGATACAACTG GCGGAAATATGGGCAGAAGCAAGTGAAGGGGAGCGATTTTCCTCGGAGTTATTACAAATG TACGCATCCAGCTTGTCCTGTCAAGAAGAAGTGGAGAGGTCACTCGATGGACAAGTAAC GGAAATCATCTACAAGGGTCAACACAATCATGAGCTTCCTCAAAAGCGCGGTAACAATAA CGGGAGTTGTAAAAGTTCTGATATTGCAAATCAGTTTCAAACAAGTAATAGCAGTCTCAA CAAGAGTAAGAGGGACCAGGAAACAAGCCAAGTTACAACAACAGAGCAGATGTCTGAAGC AAGTGATAGCGAGGAGGTTGGGAATGCAGAGACTAGTGTGGGAGAAAGACATGAGGATGA GCCTGATCCCAAGCGAAGAATACAGAAGTTCGGGTTTCAGAACCAGTTGCTTCATCGCA TAGAACTGTGACAGAGCCTAGGATTATTGTCCAAACGACGAGTGAAGTTGACCTCTTAGA TGATGGATATAGGTGGCGCAAGTATGGTCAGAAAGTAGTCAAAGGAAATCCTTATCCGAG AACTGACCCAAAAGCTGTTGTAACAACATATGAAGGTAAACATAACCATGATGTTCCAGC TGCTAGAACCAGCAGCCATCAGTTAAGACCAAACAATCAACACACCACCACCACCGGTTAA CTTCAATCATCAACAGCCTGTTGCACGTTTAAGGCTTAAAGAAGAGCAAATCACTTGACA GAGAAGAAGAATACGACGGCGCTTGAGCTTTTGTGAGTTTAATGAATCTTCTTTTTGGTT AATGAACCTGTTTTTGTTGCCTCAAAACACCACAGGTTTCTCTGGACAGAATCTCTGATA TTACAGTTTCAAAAGGTATGTTCTTTTATTTCATGTTGGAATCTTCTGTGTAATCTTAAG AAGCTTTAGGAGGTAATGTAAAAAACCAGATTCAAAGTTATGCCCTTATGTGAATTCTTT

>G878 Amino Acid Sequence (domain in AA coordinates:250-305, 415-475) ${\tt MAEKEEKEPSKLKSSTGVSRPTISLPPRPFGEMFFSGGVGFSPGPMTLVSNLFSDPDEFK}$ SFSQLLAGAMASPAAAAVAAAAVVATAHHQTPVSSVGDGGGSGGDVDPRFKQSRPTGLMI TQPPGMFTVPPGLSPATLLDSPSFFGLFSPLQGTFGMTHQQALAQVTAQAVQGNNVHMQQ SQQSEYPSSTQQQQQQQQQQASLTEIPSFSSAPRSQIRASVQETSQGQRETSEISVFEHRS QPQNADKPADDGYNWRKYGQKQVKGSDFPRSYYKCTHPACPVKKKVERSLDGQVTEIIYK GOHNHELPOKRGNNNGSCKSSDIANQFQTSNSSLNKSKRDQETSQVTTTEQMSEASDSEE VGNAETSVGERHEDEPDPKRRNTEVRVSEPVASSHRTVTEPRIIVQTTSEVDLLDDGYRW RKYGQKVVKGNPYPRSYYKCTTPDCGVRKHVERAATDPKAVVTTYEGKHNHDVPAARTSS HQLRPNNQHNTSTVNFNHQQPVARLRLKEEQIT*

>G1134 (61..849)

TAAAGAAAGAAAAAAGCTTTCGTAGTGTCTATTGAAACCAGAGAAAAGCCAAAGGGG ATGCAACCAACATCCGTCGGTAGTAGCGGCGGTGGTGACGACGGAGGAGGCAGAGGAGGA GGAGGAGGGCTAAGTAGAAGTGGACTATCTCGGATCCGTTCAGCTCCAGCGACTTGGCTT GAAGCTTTACTTGAGGAAGATGAAGAAGAGTCTTTGAAACCTAATCTTGGTCTCACCGAT TTGCTTACCGGGAACTCGAACGATTTACCGACAAGTCGCGGCTCGTTCGAGTTCCCGATT CCTGTTGAGCAAGGGTTGTATCAACAAGGTGGGTTTCACCGACAGAATAGTACTCCGGCG ${\tt GATTTTCTTAGTGGTTCTGATGGATTTATCCAAAGCTTTGGGATTCAGGCGAATTACGAT}$ TACTTATCGGGGAATATCGATGTTTCTCCGGGAAGTAAGCGGTCTAGAGAAATGGAAGCA CTCTTCTCTCTGAGTTTACTTCTCAAATGAAAGGAGAGCAAAGCAGCGGTCAAGTT ${\tt CCTACCGGAGTATCAAGCATGTCGGATATGAACATGGAGAACCTTATGGAGGACTCTGTT}$ GCTTTTAGGGTTCGGGCTAAACGTGGTTGCGCAACTCATCCCCGCAGCATTGCCGAGAGG GTACGAAGGACGCGGATTAGTGATCGGATAAGGAAGCTACAAGAGCTTGTACCTAACATG

>G1134 Amino Acid Sequence (domain in AA coordinates: 198-247)
MQPTSVGSSGGGDDGGRGGGGGLSRSGLSRIRSAPATWLEALLEEDEESLKPNLGLTD
LLTGNSNDLPTSRGSFEFPIPVEQGLYQQGGFHRQNSTPADFLSGSDGFIQSFGIQANYD
YLSGNIDVSPGSKRSREMEALFSSPEFTSQMKGEQSSGQVPTGVSSMSDMNMENLMEDSV
AFRVRAKRGCATHPRSIAERVRRTRISDRIRKLQELVPNMDKQTNTADMLEEAVEYVKVL
ORQIQELTEEQKRCTCIPKEEQ*

>G1008 (89..973)

TCTTCTTCTCCGGTTAACTAAAAGAGAAATGAAAAGCCGAGTGAGAAAATCCAAGTACAC GGTTCACCGGAAAATCACATCCACACCGTTCGACGGTTTCCCGAAGATTGTCAAAATCAT AGTCACTGACCCATGCGCTACTGATTCTTCCAGCGATGAGGAAAACGACAACAAATCTGT $\tt TGCTCCGAGGGTGAAACGTTATGTGGATGAGATCAGGTTCTGTGACGAAGATGACGAACC$ TAAACCGGCGAGGAAAGCGAAGAAAAAGTCCCCGGCGGCTGCGGCGGAGAACGGTGGAGA TTTGGTAAAGTCTGTGGTGAAGTATAGAGGAGTGAGACAACGACCTTGGGGAAAATTTGC GGCGGAGATTCGTGATCCTTCGAGTCGTACTAGACTCTGGCTTGGGACTTTTGCGACGGC GGAGGAAGCTGCTATAGGTTACGATAGAGCCGCGATTCGAATCAAAGGTCATAACGCTCA GACGAATTTTCTCACTCCTCCTCCTAGTCCGACGACTGAGGTGTTACCGGAAACTCCGGT GATTGACCTTGAAACTGTCTCTGGTTGTGATTCGGCGAGGGAATCGCAAATCAGTCTGTG TTCTCCGACTTCTGTTCTCCGGTTTAGTCACAACGACGAAACAGAGTACAGAACAGAGCC AACGGAAGAACAAAATCCGTTTTTCTTGCCTGATTTGTTTCGCTCCGGAGATTATTTTTG GGATTCCGAAATTACCCCTGACCCTTTGTTTCTCGACGAATTCCACCAGTCCTTGTTACC GTTGGGAGTGATCGGAGATTTCAGCTCATGGGATGTTGATGAGTTTTTCCAAGATCATTT GTTGGATAAGTAATTTGATGAGTTCTTCCCCAGAATTTTTCTGGGTTTCTCTTTTTTGGTT TGAGAATTTTATAATTTAATTTGCGAGTAAATATAGTAATTAGTGTTAAGATTGTGAGAG ${\tt TTTAAGTTAATTAGGGAGGGTTTTGAATATTGGGGATTTTGGGAGGTTTTTGTTTGGTT$ TTAATATTGATAAAAGTAAAAAAAAAAAAAAAAAAA

>G1008 Amino Acid Sequence (domain in AA coordinates: 96-163)
MKSRVRKSKYTVHRKITSTPFDGFPKIVKIIVTDPCATDSSSDEENDNKSVAPRVKRYVD
EIRFCDEDDEPKPARKAKKKSPAAAAENGGDLVKSVVKYRGVRQRPWGKFAAEIRDPSSR
TRLWLGTFATAEEAAIGYDRAAIRIKGHNAQTNFLTPPPSPTTEVLPETPVIDLETVSGC
DSARESQISLCSPTSVLRFSHNDETEYRTEPTEEQNPFFLPDLFRSGDYFWDSEITPDPL
FLDEFHQSLLPNINNNNTVCDKDTNLSDSFPLGVIGDFSSWDVDEFFQDHLLDK*
>G1020 (132..689)

>G1020 Amino Acid Sequence (domain in AA coordinates:28-95)
MPNITMGLKPDPVAPTNPTHHESNAAKEIRYRGVRKRPWGRYAAEIRDPVKKTRVWLGTF
DTAQQAARAYDAARDFRGVKAKTNFGVIVGSSPTQSSTVVDSPTAARFITPPHLELSLG
GGGACRRKIPLVHPVYYYNMATYPKMTTCGVQSESETSSVVDFEGGAGKISPPLDLDLNL
APPAE*

>G1023 (252..1250)

TCGTCTTCTTAATCGCTTTCTGCTCTGTTTTTCTCGTTCATCAAGCTACATCTACTAGCT CTCTCAGTGATTGATTTCTCACAGTTTCATCGATTTCCATGCGTTTAAGACCTAAAAGGA CTTGTTCTGGGGTAAAGGACTTTTCTTGTTCTTGAGAGAGTTCATTTTGAGGCTTTTCTG GGAATTTTGAGAGGTTTTTTAGGGTTTAAGGGGGTTTGGTTTTGAATTTCGCACACCAAG TGTTCGATAAAATGGCTGAACGAAAGAAACGCTCTTCTATTCAAACCAATAAACCCAACA AAAAACCCATGAAGAAGAAACCTTTTCAGCTAAATCACCTCCCAGGTTTATCTGAAGATT TGAAGACTATGAGAAAACTCCGTTTCGTTGTGAATGATCCTTACGCTACTGACTACTCAT ${\tt CTTTCGCTCAAGCTGCTACTCAAGCAGAATCTGAAAGCTCATATTGTCAGGAGAGTAACA}$ ATAATGGTGTAAGCAAGACTAAAATCTCAGCTTGTAGCAAAAAGGTTTTACGCAGCAAAG ${\tt CATCTCCGGTCGTTGGACGTTCTTCTACTACTGTCTCGAAGCCTGTTGGTGTTAGGCAGA}$ GGAAATGGGGTAAATGGGCTGCTGAGATTAGACATCCAATCACCAAAGTAAGAACTTGGT TGGGTACTTACGAGACGCTTGAACAAGCAGCTGATGCTTATGCTACCAAGAAGCTTGAGT TTGATGCTCTGGCTGCAGCCACTTCTGCTGCTTCCTCTGTTTTGTCAAATGAGTCTGGTT CTATGATCTCAGCCTCAGGGTCAAGCATTGATCTTGACAAGAAGCTAGTTGATTCGACTC TTGATCAACAAGCTGGTGAATCGAAGAAAGCGAGTTTTGATTTCGACTTTGCAGATCTAC ATTTTCTCTTAACAGAAGAGAACAACCAAATGTTGGATGATTACTGTGGCATAGATG ATCTGGACATCATTGGTCTTGAATGTGACGGTCCAAGCGAACTTCCAGACTATGATTTCT CAGATGTGGAGATCGTTGGTCTCATTGGAACCACCATTGACAAGTATGCTTTCGTTG ATCATATCGCAACAACTACTCCCACTCCTCTTAATATCGCGTGCCCATAAGTTTTGCAGC TAGGTGTTATTATTAGCTATAGGAGCAACGTAAAAAGCTCGTTGTTACTCGGTTTTTGTCT TAAGTTATTAAAGTATAGCAGAGGCAGTTAATCTCAAGGGAAGCAAAAACCCTAAAGATA TTGATGTTGTGGAGAAGATAGAGAGGTGTGATCGAAATTGTAAATCTCAGGTGGTTTTTT TTGAAGGCAATTGTTTCTCATTTAGGGTTTTTTTTCTATATGAGGATTGTCTTTGAAAAGC CTTTAGATGTTTCTAATTCGTAAGCTCTCTCAATCTTTGTAAGTTTTGCCTGTTGAGTT CGTCAAAAAAAAA

>G1023 Amino Acid Sequence (conserved domain in AA coordinates:128-195)
MAERKKRSSIQTNKPNKKPMKKKPFQLNHLPGLSEDLKTMRKLRFVVNDPYATDYSSSEE
EERSQRRKRYVCEIDLPFAQAATQAESESSYCQESNNNGVSKTKISACSKKVLRSKASPV
VGRSSTTVSKPVGVRQRKWGKWAAEIRHPITKVRTWLGTYETLEQAADAYATKKLEFDAL
AAATSAASSVLSNESGSMISASGSSIDLDKKLVDSTLDQQAGESKKASFDFDFADLQIPE
MGCFIDDSFIPNACELDFLLTEENNNQMLDDYCGIDDLDIIGLECDGPSELPDYDFSDVE
IDLGLIGTTIDKYAFVDHIATTTPTPLNIACP*

>G1053 (38..538)

>G1053 Amino Acid Sequence (domain in AA coordinates: 74-120)
MIPAEINGYFQYLSPEYNVINMPSSPTSSLNYLNDLIINNNNYSSSSNSQDLMISNNSTS
DEDHHQSIMVLDERKQRRMLSNRESARRSRMRKQRHLDELWSQVIRLRNBNNCLIDKLNR
VSETQNCVLKENSKLKEBASDLRQLVCELKSNKNNNNSFPREFEDN*

>G1137 (202..1248)

TCAATCTGTGATTGTTTTCGTTCGTCTTTTCTTTACTATTTTCTCGAAAAGGACACAAG AAGTATTGCATTCACTCAGTTGAGCAACTTAACAATCGTGTTGTACTTTTTGAAGTTCCC TTGAGCTAAACTGCTAAGAGCATGCCTCTGGATAAGAGGCAACGGGATTTGCCTCTGGGC $\tt CTCCCTGAGCTTGGGAAACTATATGCAGCTAAGCTTCAGGCTCGCTGTTTGCAGCCACCA$ CCATTCCAGTCTTTGCTGTGCAGTCATGATAAGGAGTCTTATGGAAAAAGATTCTCACGG TCTGACATGCGGTCTTGGTGCGCTGCTGCTACTACTACTACTCCACTTGGAGCATTA CAATGTCCATTTCCTCTACGGTTTCCATCTCATGCGGCTGCAGAACCAGTGAAACTCTCT GAGTTACAAGGTATAGAGAAAGCTTTCAAAGAAGATGGTGAAGAGTTTCACAAGAGTGAT GGAACAGAGTCAGAAATGCATGAAGACACTGAGGAGATCAATGCATTGCTATATTCAGAT GATGATTATGATGATGATTGCGAGAGTGATGATGAAGTAATGAGCACTGGTCACTCCCT TATCCAAATGAAGGAGTTTGCAACAAAAGGGAATTAGAAGAAATCGATGGTCCTTGTAAA AGGCAGAAACTACTGGATAAGGTCAACAACATCAGCGACTTATCATCACTTGTGGGCACT GAGAGCTCCACAACTCAATGGATCTTCCTTTCTTAAGGACAAAAAGCTCCCTGAATCA AAAACCATATCGACCAAAGAGGACACTGGTTCTGGTCTGAGCAACGAGCAGTCGAAGAAA GACAAGATCCGCACAGCTCTGAAAATACTCGAGAGCGTAGTCCCTGGTGCAAAAGGAAAC GAAGCGCTCTTACTTCTGGACGAAGCAATTGATTACCTAAAGTTGCTGAAACGAGACTTA ATCTCCACAGAGGTTAAGAACCAAAGCTCCACCACTCACAAGTCACCAATCTTGTTGCTT AAAGAGACAACATGGGGAACAAGAAATCTGCAGACAGATAAGGCGTGAAAGATTCTGACG AGTTAAAACGTGTGAAGTGGGTTTTTGGGTACGTATCCTTGCACCAGCTTT

>G1137 Amino Acid Sequence (domain in AA coordinates:264-314)
MPLDKRQRDLPLGLSPQACFKDIVGRSVLPRIPLPELGKLYAAKLQARCLQPPPFQSLLC
SHDKESYGKRFSRSDMRSWCAAATTTTTPLGALESSQKRLLIFDQSGDQTRLLQCPFPLR
FPSHAAAEPVKLSELQGIEKAFKEDGEEFHKSDGTESEMHEDTEEINALLYSDDDYDDDC
ESDDEVMSTGHSPYPNEGVCNKRELEEIDGPCKRQKLLDKVNNISDLSSLVGTESSTQLN
GSSFLKDKKLPESKTISTKEDTGSGLSNEQSKKDKIRTALKILESVVPGAKGNEALLLLD
EAIDYLKLLKRDLISTEVKNQSSTTHKSPILLLKETTWGTRNLQTDKA*

>G1181 (113..1012)

TTCGTGACTTTCAGGGGACACTTTTGTTTTTATAACTTACGCTTAAAATCCTATGAATTC GCCGCCGGTTGACGCAATGATTACCGGAGAATCATCGTCACAAAGATCTATCCCAACGCC GTTTCTCACAAAAACGTTTAACCTCGTTGAAGATAGTTCCATCGACGATGTTATCTCATG GAACGAAGATGGTTCCTCTTTCATCGTATGGAATCCGACAGATTTCGCTAAAGATTTGCT ATTCAAAAAAGTTGTACCGGATCGATGGGAGTTTTCAAACGATTTCTTTAAGAGAGGAGA AAAACGTCTTCTCCGTGAGATCCAACGTCGGAAAATAACAACGACGCATCAAACAGTTGT TGCTCCTTCGTCGGAACAACGAAACCAGACGATGGTTGTATCACCGTCAAATTCCGGGGA AGATAATAATAATAATCAGGTGATGTCTTCGTCTCCGTCGTCGTGGTATTGTCATCAAAC GAAGACGACTGGGAATGGTGGTTTATCAGTGGAGTTATTGGAAGAGAACGAGAAGCTTCG CTATAGTCTCATGTCGAATTACGTCGGATCTCAGCCCACTGATCGGAGTTATTCTCCCGG AGGTAGTAGTAGTCAACCGATGGAGTTTTTACCGGCGAAGCGGTTTTCGGAGATGGAGAT TGAAGAAGAAGAAGAAGCGAGTCCGAGGTTGTTTGGTGTTCCGATTGGGTTAAAACGGAC GAGAAGTGAAGGTGTTCAGGTGAAGACGACGGCGGTGGTTGGGGAAAATTCCGATGAGGA GACGCCGTGGTTGAGACATTATAATCGAACCAATCAGAGAGTTTGTAATTAAAAACGAAC GGTTTAGATTTGTGGTGTAGATATGTGCGCGAAGTAGACGATTACAGCTTTTTAAGACAA GCAGAGCACGTGTCCCATCTGTTTCAAGAAGTTTCTGCAATCTTGACTTCTTCTTTAAC ACTTTGTGTTTTTTTTTTTTATTTAATTAATAACAATAAATGTTCTTTTTCAGTTTTGTTTTC TTCAAAAATAGTTCGGCTGTTTCTAGACTTTCCTTTTTT

>G1181 Amino Acid Sequence (domain in AA coordinates: 24-114)
MNSPPVDAMITGESSSQRSIPTPFLTKTFNLVEDSSIDDVISWNEDGSSFIVWNPTDFAK
DLLPKHFKHNNFSSFVRQLNTYGFKKVVPDRWEFSNDFFKRGEKRLLREIQRRKITTTHQ
TVVAPSSEQRNQTMVVSPSNSGEDNNNNQVMSSSPSSWYCHQTKTTGNGGLSVELLEENE
KLRSQNIQLNRELTQMKSICDNIYSLMSNYVGSQPTDRSYSPGGSSSQPMEFLPAKRFSE

MEIEEEEEASPRLFGVPIGLKRTRSEGVQVKTTAVVGENSDEETPWLRHYNRTNQRVCN*
>G1228 (63..1139)

GCATTTATAATTACTCACTCATCTTCTTTTCATTACATTACATACCAAACAAGAGCTCTC GAAGCCTCGAGGTTCAAGGATTTGCAGAGGCTCAAAGCTTTGCTTTCAAAGAAAAAGAGG AAGAAAGCTTACAAGATACAGTTCCATTTCTACAGATGCTGCAAAGTGAAGACCCCTCAT CGTTTTTTCAATCAAAGAGCCAAACTTTCTGACGCTACTGTCTCTTCAAACCCTCAAGG AATCTGAGACCAACCGCTTCATGGAAGGAGCCAATCAAGCTGTGTCAAGCCAAGAAATTC CCTTTAGCCAAGCAAACATGACACTCCCTTCTTCTACCTCATCACCACTCAGTGCACATT CAAGACGAAAGCGCAAAATCAACCACTTGCTGCCTCAAGAAATGACTAGAGAAAAGAGAA AGAGGAGGAAAACAAAACCAAGTAAAAACAATGAAGAGATTGAGAATCAAAGAATAAACC CCCTTCTCCCACCTTCCTACATCCAACGAGGAGACCAAGCTTCCATAGTAGGAGGAGCAA TAAACTACGTGAAGGTCCTCGAGCAAATCATACAATCTCTCGAATCGCAAAAGAGAACGC AACAACAAAGTAACAGTGAGGTAGTAGAAAACGCACTTAATCATCTCTCAGGCATTTCGT CGAACGACCTGTGGACAACTCTTGAAGATCAAACTTGTATCCCCAAAATCGAAGCTACAG TGATACAAAACCATGTCAGCCTTAAAGTTCAATGTGAGAAGAAACAAGGACAACTTCTCA AAGGAATCATATCACTTGAAAAGCTTAAACTCACTGTTCTTCATCTCAATATCACTACTT CGTCTCATTCCTCTGTTTCTTATTCCTTCAACCTCAAGATGGAAGATGAGTGCGACTTAG AGTCAGCCGACGAGATTACGGCGGCTGTTCATCGGATTTTCGATATTCCGACAATTTGAT TAAACACATATAATTCCAAAAATATTAACAGCTGACAAAATGGTATCTTTGCGGCC >G1228 Amino Acid Sequence (domain in AA coordinates: 179-233) MERFQGHINPCFFDRKPDVRSLEVQGFAEAQSFAFKEKEEESLQDTVPFLQMLQSEDPSS FFSIKEPNFLTLLSLQTLKEPWELERYLSLEDSQFHSPVQSETNRFMEGANQAVSSQEIP FSQANMTLPSSTSSPLSAHSRRKRKINHLLPQEMTREKRKRRKTKPSKNNEEIENQRINH IAVERNRRRQMNEHINSLRALLPPSYIQRGDQASIVGGAINYVKVLEQIIQSLESQKRTQ OOSNSEVVENALNHLSGISSNDLWTTLEDQTCIPKIEATVIQNHVSLKVQCEKKQGQLLK GIISLEKLKLTVLHLNITTSSHSSVSYSFNLKMEDECDLESADEITAAVHRIFDIPTI* >G1277 (51..512)

ATTCTAAAGTCCTCCTCTCGGAAAGTAAGAGACTCAACTTCCGAGCCGCCATGGACGCCG GAGTAGCAGTAAAAGCTGACGTGGCAGTCAAAATGAAGAGAGAAAAGACCATTCAAAGGGA TCAGAATGAGAAAATGGGGGAAATGGGTTGCGGAGATTCGAGAACCCAACAAGCGTTCAA GACTTTGGCTCGGCTCTTACTCTACTCCCGAAGCGGCGCGCGTGCATACGACACGGCTG TCTTTTACCTCAGAGGACCAACTGCTACGCTCAACTTCCCGGAGCTTCTGCCGTGTACCT CCGCCGAGGATATGTCAGCGGCAACGATCAGGAAAAAGGCGACGGAGGTGGGAGCTCAAG TAGATGCGATAGGGGCGACGGTGGTGCAGAACAACAACGCCGCCGCGTTTTTAGTCAAA AGCGTGACTTTGGCGGCGGGTTATTAGAGCTTGTTGACTTGAACAAGTTACCTGACCCGG AAAATCTCGATGATGATTTGGTGGGAAAATAGACTGAAAAATAATAATAAAATATCTTAC AATGGTGGCTGTAGCTATCGTACGCGGAATGCTTGGGCTTGTGTTATATGACTACGTGGT TACGGAAAGATTCCTCTGTTTCGTCATTGTATTAAAATTTAATCCCACAAGTCAAACATA CCAGAATATTAGACTATTAATGTAACGAGTTTTTAATATTTCGATCATAATAACACCAAG TAACGGAAGAGGTTCGTTCGGGTCCCAAGTGAAGTGGATCAAAGGTGACTTCACATAAAA AAAAAAAAA

>G1277 Amino Acid Sequence (domain in AA coordinates: 18-85)
MDAGVAVKADVAVKMKRERPFKGIRMRKWGKWVAEIREPNKRSRLWLGSYSTPEAAARAY
DTAVFYLRGPTATLNFPELLPCTSAEDMSAATIRKKATEVGAQVDAIGATVVQNNKRRRV
FSQKRDFGGGLLELVDLNKLPDPENLDDDLVGK*

>G1309 (53..859)

>G1309 Amino Acid Sequence (domain in AA coordinates: 9-114)
MTKSGERPKQRQRKGLWSPEEDQKLKSFILSRGHACWTTVPILAGLQRNGKSCRLRWINY
LRPGLKRGSFSEEEEETILTLHSSLGNKWSRIAKYLPGRTDNEIKNYWHSYLKKRWLKSQ
PQLKSQISDLTESPSSLLSCGKRNLETETLDHVISFQKFSENPTSSPSKESNNNMIMNNS
NNLPKLFFSEWISSSNPHIDYSSAFTDSKHINETQDQINEEEVMMINNNNYSSLEDVMLR
TDFLQPDHEYANYYSSGDFFINSDQNYV*

>G1314 (1..990)

ATGGGAAGAGCTCCGTGTTGCGACAAGACAAAAGTGAAGCGAGGGCCTTGGTCGCCTGAA GAAGACTCTAAACTTAGAGATTACATTGAAAAGTATGGTAATGGTGGAAATTGGATCTCT TTCCCCCTCAAAGCCGGTTTGAGGAGATGTGGGAAGAGTTGTAGACTGAGGTGGCTAAAC TATTTGAGACCAAACATAAAGCATGGTGACTTCTCTGAGGAAGAAGACAGGATCATTTTT AGTCTCTTCGCTGCCATAGGAAGCAGGTGGTCAATAATAGCAGCTCATCTACCGGGACGA ACAGACAACGACATAAAAAACTATTGGAACACAAAGCTAAGGAAGAAACTCTTGTCTTCT TCCTCTGATTCATCATCACCCATGGCTTCTCCTTATCTAAACCCTATTTCTCAGGAT GTGAAAAGACCAACCTCACCAACAACAATCCCATCTTCTTACAATCCGTATGCTGAA AACCCTAATCAATACCCAACAAAATCCCTCATCTCCAGCATCAATGGCTTCGAAGCTGGT GACAAACAGATAATTTCCTATATTAACCCTAATTATCCTCAAGATCTCTATCTCTCGGAC AGCAACAACACCTCGAACGCAAATGGTTTCTTGCTCAACCACAATATGTGTGATCAG TACAAGAACCACACCAGTTTTTCTTCAGACGTCAATGGGATAAGATCAGAGATTATGATG AAGCAAGAAGAGATAATGATGATGATGATGATAGACCACCACATTGACCAGAGGACAAAA GGGTACAATGGGGAATTCACACAAGGGTATTATAATTACTACAATGGGCATGGGGATTTG AAGCAAATGATTAGTGGAACAGGCACTAATTCTAACATAAACATGGGTGGTTCAGGTTCA TCTTCTAGTTCGATAAGCAACCTAGCTGAGAACAAAAGCAGTGGTAGCCTCCTACTAGAA TACAAATGCTTGCCCTATTTCTACTCCTAG

>G1314 Amino Acid Sequence (domain in AA coordinates: 14-116)
MGRAPCCDKTKVKRGPWSPEEDSKLRDYIEKYGNGGNWISFPLKAGLRRCGKSCRLRWLN
YLRPNIKHGDFSEEEDRIIFSLFAAIGSRWSIIAAHLPGRTDNDIKNYWNTKLRKKLLSS
SSDSSSSAMASPYLNPISQDVKRPTSPTTIPSSSYNPYAENPNQYPTKSLISSINGFEAG
DKQIISYINPNYPQDLYLSDSNNNTSNANGFLLNHNMCDQYKNHTSFSSDVNGIRSEIMM
KQEEIMMMMMIDHHIDQRTKGYNGEFTQGYYNYYNGHGDLKQMISGTGTNSNINMGGSGS
SSSSISNLAENKSSGSLLLEYKCLPYFYS*

>G1317 (1..849)

ATGGGAAGATCACCTTGTTGTGATAAAAATGGAGTGAAGAAGGGACCATGGACTGCTGAG
GAGGATCAGAAACTCATCGATTATATTCGATTTCATGGTCCTGGCAATTGGCGTACGCTC
CCCAAAAATGCTGGACTCCATAGATGTGGAAAAAGCTGCCGTCTTCGATGGACCAATTAT
CTAAGACCGGACATCAAGAGAGAGAAGATTCTCGTTCGAGGAAGAAAACTATCATTCAG
CTACACAGTGTTATGGGAAACAAGTGGTCAGCAATAGCCGCTCGTCTACCAGGGAGGACC
GATAACGAAATAAAAACCATTGGAACACTCACATCCGCAAGAGACTTGTAAGGAGTGGT
ATCGACCCTGTTACTCATTCTCCACGCCTTGATCTTCTTGATTTGTCCTCACTTTTTGAGT
GCACTTTTCAACCAGCCAAAACTTTTCAGCAGTTGCAACACATGCGTCTTCTTCTTTAAT
CCTGATGTATTGAGGTTGGCCTCTCTACTACTGCCACTTCAAAACCCTAATCCAGTTTAC
CCATCGAACCTCGACCAAAATCTTCAAACTCCAAATACATCATCAGAATCGTCTCAACCA
CAAGCTGAGACTAGTACAGTCCCAACAAACTATGAAACTTCATCATTGGAGCCTATGAAC
GCAAGACTCGACGACGTTGGTCTTGCAGATGTATTACCACCTTTGTCAGAGAGTTTTGAC
TTAGACTCGCTCATGTCAACGCCAATGTCTTCTCCACGACAAAATAGCATTGAAGCATTTAAAACCCTTTTTAA

>G1317 Amino Acid Sequence (conserved domain in AA coordinates:13-118)
MGRSPCCDKNGVKKGPWTAEEDQKLIDYIRFHGPGNWRTLPKNAGLHRCGKSCRLRWTNY
LRPDIKRGRFSFEEEETIIQLHSVMGNKWSAIAARLPGRTDNEIKNHWNTHIRKRLVRSG
IDPVTHSPRLDLLDLSSLLSALFNQPNFSAVATHASSLLNPDVLRLASLLLPLQNPNPVY
PSNLDQNLQTPNTSSESSQPQAETSTVPTNYETSSLEPMNARLDDVGLADVLPPLSESFD
LDSLMSTPMSSPRQNSIEAETNSSTFFDFGIPEDFILDDFMF*
>G1323 (49..870)

AGAGCACCATGTTGTGACAAAACCAAAGTGAAGAGAGGCCATGGAGCCATGATGAAGAC TTGAAACTCATCTCTTTCATTCACAAGAATGGTCATGAGAATTGGAGATCTCTCCCAAAG CCTGATGTGAAACGTGGCAATTTCAGTGCAGAGGAAGAAGACACCATCATCAAACTTCAC CAGAGCTTTGGTAACAAGTGGTCGAAGATTGCTTCTAAGCTGCCTGGAAGAACAGACAAT GAGATCAAGAATGTGTGGCATACACATCTCAAGAAAAGATTGAGCTCGGAAACTAACCTT AATGCCGATGAAGCGGGTTCAAAAGGTTCTTTGAATGAAGAAGAACTCTCAAGAGTCA TCTCCAAATGCTTCAATGTCTTTTGCTGGTTCCAACATTTCAAGCAAAGACGATGATGCA CAGATAAGTCAAATGTTTGAGCACATTCTAACTTATAGCGAGTTTACGGGGATGTTACAA ${\tt GAGGTAGACCAGAGCTGCTGGAGATGCCTTTTGATTTAGATCCTGACATTTGGAGT}$ TTCATAGATGGTTCAGACTCATTCCAACAACCAGAGAACAGAGCTCTTCAAGAGTCTGAA GAAGATGAAGTTGATAAATGGTTTAAGCACCTGGAAAGCGAACTCGGGTTAGAAGAAAAC GATAACCAACAACAACAGCATAAACAGGGAACAGAAGATGAACATTCATCATCACTC TTGGAGAGTTACGAGCTCCTCATACATTAATGAAGCCATAAAGCAAGTCATTTTCACCTT GAAAATGGAATTATTAGCTAACTTATTGGCATTATTAGTATAAGCAAGATCAGATAGG CGCATGTAGTAGCAACAACGAAGAAACGTCGAATTGTAGACAAAATGTAGATATTACAGA GTTGAAAGATTGTATTTTGCAAATGATTGCTTTGTAGTGAAATCAAGTTATCACAAAAAA

>G1323 Amino Acid Sequence (domain in AA coordinates: 15-116)
MGKGRAPCCDKTKVKRGPWSHDEDLKLISFIHKNGHENWRSLPKQAGLLRCGKSCRLRWI
NYLRPDVKRGNFSAEEEDTIIKLHQSFGNKWSKIASKLPGRTDNEIKNVWHTHLKKRLSS
ETNLNADEAGSKGSLNEEENSQESSPNASMSFAGSNISSKDDDAQISQMFEHILTYSEFT
GMLQEVDKPELLEMPFDLDPDIWSFIDGSDSFQQPENRALQESEEDEVDKWFKHLESELG
LEENDNQQQQQHKQGTEDEHSSSLLESYELLIH*

>G1332 (1..606)

>G1332 Amino Acid Sequence (conserved domain in AA coordinates:13-116)
MECKREEGKSYVKRGLWKPEEDMILKSYVETHGEGNWADISRRSGLKRGGKSCRLRWKNY
LRPNIKRGSMSPQEQDLIIRMHKLLGNRWSLIAGRLPGRTDNEVKNYWNTHLNKKPNSRK
QNAPESIVGATPFTDKPVMSTELRRSHGEGGEEESNTWMEETNHFGYDVHVGSPLPLISH
YPDNTLVFDPCFSFTDFFPLL*

>G1334 (76..885)

>G1334 Amino Acid Sequence (domain in AA coordinates: 18-190)
MQTEELLSPPQTPWWNAFGSQPLTTESLSGEASDSFTGVKAVTTEAEQGVVDKQTSTTLF
TFSPGGEKSSRDVPKPHVAFAMQSACFEFGFAQPMMYTKHPHVEQYYGVVSAYGSQRSSG
RVMIPLKMETEEDGTIYVNSKQYHGIIRRRQSRAKAEKLSRCRKPYMHHSRHLHAMRRPR
GSGGRFLNTKTADAAKQSKPSNSQSSEVFHPENETINSSREANESNLSDSAVTSMDYFLS
SSAYSPGGMVMPIKWNAAAMDIGCCKLNI*

>G1381 (32..802)

CAGCTTTAACACTACTCTCTCTCTCTCAAATGGGAAAACAAATCAACATAGAGAGTAG TGCTACTCATCATCAAGACAATATTGTTTCCGTTATAACAGCCACGATATCCTCCTCCTC CGTCGTAACGTCTTCGTCAGACTCTTGGTCTACCTCCAAAAGATCGTTAGTGCAAGACAA TGACTCCGGAGGGAAACGGCGGAAGAGCAACGTTAGTGATAACAAGAATCCGACGTC GTATAGAGGAGTGAGGATGAGGAGTTGGGGAAAATGGGTGTCGGAGATTAGAGAGCCGAG GAAGAAATCAAGAATATGGCTTGGCACTTATCCAACGGCAGAGATGGCAGCTCGTGCTCA TGATGTGGCGGCTTTAGCTATTAAAGGCAACTCCGGTTTTCTTAATTTCCCTGAATTATC CGGTTTGCTTCCTCGTCCGGTTAGCTGCTCTCCTAAGGATATACAAGCTGCAGCTACCAA AGCCGCCGAAGCAACCACGTGGCACAAACCGGTTATCGATAAGAAATTAGCTGATGAGCT AAGCCACTCTGAGTTGTTGTCTACCGCTCAGTCTTCGACTTCTAGTAGTTTCGTGTTTTTC TTCGGACACGTCGGAGACTTCTAGTACGGACAAGGAAAGCAACGAAGAGACGGTGTTTGA TTTGCCGGACCTTTTCACGGACGGGCTTATGAACCCAAACGATGCGTTTTGTTTATGCAA CGGCACCTTTACGTGGCAGCTTTACGGAGAGGAGGATGTAGGGTTCAGGTTTGAAGAGCC GTTTAATTGGCAAAATGACTAAACCGCCCTCCACTTGCTTACTGTAATTACTAACATATA ATTTTCTTGATAAAGAACATATATTTCCATTACGGTATTAACTAATCTTTTCTATCCTTT TCTCTTTTCTTGTTTCTACATCTGAGTATATTGTCACTATGTGAAAAAATTGATCTCGTT >G1381 Amino Acid Sequence (domain in AA coordinates: TBD) MGKQINIESSATHHQDNIVSVITATISSSSVVTSSSDSWSTSKRSLVQDNDSGGKRRKSN VSDDNKNPTSYRGVRMRSWGKWVSEIREPRKKSRIWLGTYPTAEMAARAHDVAALAIKGN SGFLNFPELSGLLPRPVSCSPKDIQAAATKAAEATTWHKPVIDKKLADELSHSELLSTAQ SSTSSSFVFSSDTSETSSTDKESNEETVFDLPDLFTDGLMNPNDAFCLCNGTFTWQLYGE EDVGFRFEEPFNWQND*

>G1382 (90..1763)

ATGATGGTTATAACTGGAGAAAATATGGTCAAAAGCATGTCAAAGGGAGTGAATTTCCCC GGAGCTATTATAAATGTACACATCCTAATTGTGAAGTGAAAAAGTTATTTGAAAGATCTC ATGATGGGCAGATCACCGATATTATATACAAGGGTACACATGACCATCCTAAACCTCAAC CTGGTCGCCGAAACTCTGGTGGTATGGCTGCACAAGAAGAAAGGCTAGACAAGTATCCTT CTTCAACTGGCCGAGATGAGAAGGGATCTGGCGTCTACAACTTGTCTAACCCCAATGAAC AAACTGGTAACCCTGAAGTACCTCCTATCTCAGCATCTGACGATGGTGGAGAAGCGGCAG CGTCAAATAGGAATAAAGATGAGCCGGACGATGATGATCCATTCTCAAAACGGAGGAGGA TGGAGGGTGCGATGGAAATAACTCCACTAGTGAAACCCATCCGGGAGCCTCGGGTTGTTG TTCAAACTCTGAGTGAGGTTGACATTCTGGATGATGGTTATAGATGGCGCAAATATGGGC AGAAAGTCGTAAGGGGGAACCCAAATCCCAGGAGCTACTACAAATGCACAGCTCATGGAT GCCCAGTGAGAAAACACGTGGAGAGAGCATCACATGATCCAAAAGCTGTAATAACAACAT ACGAAGGCAAACACGATCATGATGTTCCCACTTCAAAGTCTAGCAGCAATCACGAAATCC AGCCTCGGTTCAGACCAGATGAAACAGACACCATCAGCCTCAATCTTGGTGTTGGAATCT CATCTGATGGACCTAACCACGCTTCCAACGAACATCAGCACCAGAATCAACAACTTGTCA ACCAAACTCACCCAAATGGAGTCAATTTCAGGTTTGTTCATGCTAGTCCCATGTCATCCT ACTATGCTAGCTTAAATAGCGGTATGAATCAGTACGGCCAGAGAGAAACAAAGAACGAGA CTCAAAATGGTGACATCTCGTCCTTGAACAATTCATCTTACCCATATCCGCCCAACATGG GGAGAGTACAATCGGGTCCGTAAAACAAAAGTAAGCAACATTATGTACGGGATCTTCTT AGGTTAGGAATGGGACGAGGCCTTGTTCTATATAATTCCTATTTCTTCACAGAGAGCTGA TCTTGATTCAAACTATCTCCACCATATATATTTGTTTGTGTCACCTGTATTGAGTTCCAA **АТАТТАСТАСААААААААААААААА**

>G1382 Amino Acid Sequence (domain in AA coordinates: 210-266, 385-437)
MNPQANDRKEFQGDCSATGDLTAKHDSAGGNGGGGARYKLMSPAKLPISRSTDITIPPGL
SPTSFLESPVFISNIKPEPSPTTGSLFKPRPVHISASSSSYTGRGFHQNTFTEQKSSEFE
FRPPASNMVYAELGKIRSEPPVHFQGQGHGSSHSPSSISDAAGSSSELSRPTPPCQMTPT
SSDIPAGSDQEESIQTSQNDSRGSTPSILADDGYNWRKYGQKHVKGSEFPRSYYKCTHPN
CEVKKLFERSHDGQITDIIYKGTHDHPKPQPGRRNSGGMAAQEERLDKYPSSTGRDEKGS
GVYNLSNPNEQTGNPEVPPISASDDGGEAAASNRNKDEPDDDDPFSKRRRMEGAMEITPL
VKPIREPRVVVQTLSEVDILDDGYRWRKYGQKVVRGNPNPRSYYKCTAHGCPVRKHVERA
SHDPKAVITTYEGKHDHDVPTSKSSSNHEIQPRFRPDETDTISLNLGVGISSDGPNHASN
EHQHQNQQLVNQTHPNGVNFRFVHASPMSSYYASLNSGMNQYGQRETKNETQNGDISSLN
NSSYPYPPNMGRVQSGP*

>G1435 (8..904)

GTGAAACATGGGGAAGGAAGTTATGGTGAGCGATTACGGTGACGACGACGGAGAAGACGC CGGCGGCGATGAATATAGGATTCCGGAATGGGAAATTGGTTTACCCAACGGAGATGA TTTGACTCCGTTATCTCAATATCTAGTCCCGTCGATTCTCGCGTTAGCTTTCAGCATGAT CCCAGAACGAAGCCGTACAATTCACGACGTCAATCGCGCGTCGCAAATCACGCTCTCTTC GTTGAGAAGCAGTACCAATGCTTCGTCTGTGATGGAGGAGGTCGTGGATCGAGTTGAATC GAGTGTTCCAGGATCAGATCCGAAGAAACAGAAGAAATCGGATGGTGGAAGCAGCGGC GGTGGAGGATTCCACGGCGGAGGAAGGAGACTCCGGGCCTGAAGACGCGTCTGGGAAGAC ATCGAAACGACCGCGTTTAGTGTGGACACCGCAGCTACAAGAGATTTGTGGACGTTGT GGCTCATCTAGGGATTAAAAACGCAGTGCCGAAGACGATTATGCAGCTGATGAACGTGGA AGGACTTACTCGTGAGAACGTTGCGTCTCATTTGCAGAAATATAGGCTTTACCTTAAACG GATTCAAGGATTGACGACGGAAGAAGATCCTTATTCGTCGTCGGATCAGCTCTTCTCTTC AACGCCGGTTCCTCCACAGAGCTTTCAAGACGGCGGAGGAAGTAACGGAAAGTTGGGGGT TCCGGTTCCGGTTCEGTCGATGGTGCCTATTCCAGGCTATGGGAATCAAATGGGTATGCA AGGATATTATCAACAGTATAGTAACCATGGCAATGAATCAAACCAATATGATGCAGCA GAATAAGTTTGGAACAATGGTGACATATCCTTCTGTTGGTGGTGGTGACGTGAATGACAA GTAAATGGATCTTAAAGGTCTATAATTTGCTCTACAGAGAGATACTGGTTCTTGGCTTAT GGTTTATTTTCCCACTTCATGAGGTTGTTGTGACTTTTAATTCTCCATGTTTTCCACACA AGTCTTTATTGCCTTTGTATAGAAAATGATTTCGAGAAAATCACTGGGAAGCTTGGTATT GTTGGAGGATGAAGCCTTCTATGAATGATTTAGTTTCCTACTGTCTCCATTCTTTATGAG GTAATAAAGCCTTCTTTTGCTCATCGCTTGTAGTCTTCTTAAATTCAAGACAGCGTCACA TGTTTGTTCGGTTATGTTAATTGTTTCTTTCTTTGGATAATGAAGATAGCATCAGGTCTC ATGTCTCCTCACTTTGATAAA

>G1435 Amino Acid Sequence (domain in AA coordinates: 146-194)
MGKEVMVSDYGDDDGEDAGGGDEYRIPEWEIGLPNGDDLTPLSQYLVPSILALAFSMIPE
RSRTIHDVNRASQITLSSLRSSTNASSVMEEVVDRVESSVPGSDPKKQKKSDGGEAAAVE
DSTAEEGDSGPEDASGKTSKRPRLVWTPQLHKRFVDVVAHLGIKNAVPKTIMQLMNVEGL
TRENVASHLQKYRLYLKRIQGLTTEEDPYSSSDQLFSSTPVPPQSFQDGGGSNGKLGVPV
PVPSMVPIPGYGNQMGMQGYYQQYSNHGNESNQYMMQQNKFGTMVTYPSVGGGDVNDK*
>G1537 (1..783)

>G1537 Amino Acid Sequence (domain in AA coordinates: 14-74)
MENEVNAGTASSSRWNPTKDQITLLENLYKEGIRTPSADQIQQITGRLRAYGHIEGKNVF
YWFQNHKARQRQKQKQERMAYFNRLLHKTSRFFYPPPCSNVGCVSPYYLQQASDHHMNQH
GSVYTNDLLHRNNVMIPSGGYEKRTVTQHQKQLSDIRTTAATRMPISPSSLRFDRFALRD
NCYAGEDINVNSSGRKTLPLFPLQPLNASNADGMGSSSFALGSDSPVDCSSDGAGREQPF
IDFFSGGSTSTRFDSNGNGL*

>G1545 (67..729)

>G1545 Amino Acid Sequence (domain in AA coordinates: 54-117)
MNNQNVDDHNLLLISQLYPNVYTPLVPQQGGEAKPTRRKKKSKSVVVAEEGENEGNGWF
RKRKLSDEQVRMLEISFEDDHKLESERKDRLASELGLDPRQVAVWFQNRRARWKNKRVED
EYTKLKNAYETTVVEKCRLDSEVIHLKEQLYEAEREIQRLAKRVEGTLSNSPISSSVTIE
ANHTTPFFGDYDIGFDGEADENLLYSPDYIDGLDWMSQFM*

>G1641 (1..867)

ATGGAGGTTATGAGACCGTCGACGTCACACGTGTCAGGTGGGAACTGGCTCATGGAGGAA
ACTAAGAGCGGCGTCGCAGCTTCTGGTGAAGGTGCCACGTGGACGCGCGCAGAGAACAAG
GCATTCGAGAATGCTTTTGGCGGTTTACGACGACAACACTCCTGATCGGTGGCAGAAGACAAG
GCTTCGAGAATGCTTTTGGCGGTTTACGACGACAACACTCCTGATCGGTGGCAGAAGGTG
GCTGCGGTGATTCCGGGGAAGACAGTGAGTGACGTAATTAGACAGTATAACGATTTTGGAA
GCTGATGTCAGCAGCATCGAGGCCGGTTTAATCCCGGTCCCCGGTTACATCACCTCGCCG
CCTTTCACTCTAGATTGGGCCGGCGGCGGTGGCGGATGTAACGGGTTTAAACCGGGTCAT
CAGGTTTGTAATAAACGGTCGCAGGCCGGTAGATCGCCGGAGCTGGAGCGGAAGAAAAGGC
GTTCCTTGGACGGAGGAAGAACACAAGCTATTTCTAATGGGTTTGAAGAAATATGGGAAA
GGAGATTGGAGAAACATATCTCGGAACTTTGTGATAACGCGAACGCCAACACAAGTAGCT
AGCCACGCCCAAAAGTACTTCATCCGGCAACTTTCCGGCGGCAAGACAAAGAGACAAGCA

AGCATTCACGACATAACCACCGTAAATCTCGAAGAGGAGGCTTCTTTGGAGACCAATAAG
AGCTCCATTGTTGTTGGAGATCAGCGTTCAAGGCTAACCGCGTTTCCTTGGAACCAAACG
GACAACAATGGAACACAGGCAGACGCTTTCAATATAACGATTGGAAACGCTATTAGTGGC
GTTCATTCATACGGCCAGGTTATGATTGGAGGGTATAACAATGCAGATTCTTGCTATGAC
GCCCAAAACACAATGTTTCAACTATAG

>G1641 Amino Acid Sequence (domain in AA coordinates: 139-200)
MEVMRPSTSHVSGGNWLMEETKSGVAASGEGATWTAAENKAFENALAVYDDNTPDRWQKV
AAVIPGKTVSDVIRQYNDLEADVSSIEAGLIPVPGYITSPPFTLDWAGGGGGCNGFKPGH
QVCNKRSQAGRSPELERKKGVPWTEEEHKLFLMGLKKYGKGDWRNISRNFVITRTPTQVA
SHAQKYFIRQLSGGKDKRRASIHDITTVNLEEEASLETNKSSIVVGDQRSRLTAFPWNQT
DNNGTQADAFNITIGNAISGVHSYGQVMIGGYNNADSCYDAQNTMFQL*

>G165 Amino Acid Sequence (conserved domain in AA coordinates:7-62)
MVKKTLGRRKVEIVKMTKESNLQVTFSKRKAGLFKKASEFCTLCDAKIAMIVFSPAGKVF
SFGHPNVDVLLDHFRGCVVGHNNTNLDESYTKLHVQMLNKSYTEVKAEVEKEQKNKQSRA
QNERENENAEEWWSKSPLELNLSQSTCMIRVLKDLKKIVDEKAIQLIHQTNPNFYVGSSS
NAAAPATVSGGNISTNQGFFDQNGMTTNPTQTLLFGFDIMNRTPGV*

>G1652 (77..1078)

AGCAAGTCCAAATCTCCCTCTCTCTCTCTATCTATCTCTCTATAGAAGATTTTTTAAC TAAGAAGCTAGCGATCATGGCCACAGCGATGAACGTTTTCTCTACCAAATGGTCCTCCGA TGTTCCACAGTCTCTCATCTCTTGATGATACCACCACTTGTTATAACCTTGATGCTTC TTGTAATAAAAGTTTGGTAGAAGAAAGACCTTCAAAGATCCTCAAGACCACTCACATATC TAGGATTCTTTCTTTTGAAAAGACAGGTTTACATGTTATGAATCACAACTCTCCAAACTT AATATTTAGCCCCAAGGACGAAGAAATTGGATTACCAGAGCATAAGAAAGCCGAGCTGAT AATAAGAGGGACAAAGAGAGCTCAATCCTTGACTCGAAGCCAATCAAATGCTCAAGATCA CATACTGGCAGAGAGAAAACGGAGAGAGAGAGCTTACTCAAAGATTTGTAGCTCTTTCCGC GCTAATTCCTGGCCTAAAGAAGATGGACAAGGCTTCTGTGTTGGGAGATGCAATAAAGCA TATAAAGTACCTCCAAGAGAGTGTGAAAGAGTATGAGGAACAAAAGAAGGAAAAGACAAT GGAATCAGTGGTTCTTGTAAAGAAGTCTAGTCTGGTTTTAGATGAAAATCATCAACCATC ATCATCATCTTCCTCAGATGGAAATCGCAATAGCTCGAGCTCAAATCTTCCAGAAATAGA AGTTAGGGTTTCAGGAAAAGATGTTCTTATTAAGATCCTATGCGAGAAGCAAAAGGGTAA TGTGATCAAGATTATGGGGGAGATTGAAAAGCTTGGTTTGTCTATCACCAACAGCAATGT CTTGCCCTTTGGACCCACTTTTGACATCTCTATTATCGCTCAGAAGAATAACAATTTTGA TATGAAAATCGAGGATGTTGTGAAGAACTTGAGTTTTGGCTTATCAAAGCTCACTTAATT GGTTTCACGTTACATACATATACACATTCATCATCGATTTCTCCGATCGAAGAATCCAAA ATCAGTTTTTCCATGAAAGTGGTTTTTTAGTTGTTAAGTTTGTTGTATGGAGATTCTTAA GTCATTTAAAGATCCTTGTTCTTGTGTTGTTAAGTGTGCTTTAAGATGCATATCATCAAA TGTTTAGTAATTATTTCTCTCCAGTTTCATTTGGGACGGAATTTTTTTCGCAGTTGTTGG ATATATATTTCCTGCGATGTAAAGCATTTCGTTAGTTTAATAAACGTCCGATATGTTTCT

>G1652 Amino Acid Sequence (domain in AA coordinates:143-215)

MATAMNVFSTKWSSELDIEEYSIIHQFHMNSLVGDVPQSLSSLDDTTTCYNLDASCNKSL VEERPSKILKTTHISPNLHPFSSSNPPPPKHQPSSRILSFEKTGLHVMNHNSPNLIFSPK DEEIGLPEHKKAELIIRGTKRAQSLTRSQSNAQDHILAERKRREKLTQRFVALSALIPGL KKMDKASVLGDAIKHIKYLQESVKEYEEQKKEKTMESVVLVKKSSLVLDENHQPSSSSSS DGNRNSSSSNLPEIEVRVSGKDVLIKILCEKQKGNVIKIMGEIEKLGLSITNSNVLPFGP TFDISIIAQKNNNFDMKIEDVVKNLSFGLSKLT*

>G1655 (132..755)

>G1655 Amino Acid Sequence (domain in AA coordinates: 134-192)
MVESLFPSIENTGESSRRKKPRISETAEAEIEARRVNEESLKRWKTNRVQQIYACKLVEA
LRRVRQRSSTTSNNETDKLVSGAAREIRDTADRVLAASARGTTRWSRAILASRVRAKLKK
HRKAKKSTGNCKSRKGLTETNRIKLPAVERKLKILGRLVPGCRKVSVPNLLDEATDYIAA
LEMQVRAMEALAELLTAAAPRTTLTGT*

>G1671 (188..751)

TCCCACTATCCTTCGCAAGACCCTTCCTCTATATAAGGAAGTTCATTTCATTTGGAGAGG ACACGCTGACAAGCTGACTCTAGCAGATCTGGTACCGTCGACCCTCTCTATATAATCTTC TTCTACACACACACACACGCAACCATATACGTACATGTGAAGTAGTGAGATCAATATC TCACTTCCTCCACCGGAAAGCTTCCCTCTTGCCTTGTCACCCTGATGTCATCCCCGACCT TGATCTTTACCATTACGATCCTTGGGACCTTCCCGGGAAAGCTTTGGGAGAAGGGAGGCA ATGGTACTTCTATAGTAGAAAGACACAAGAGAGAGTGACAAGCAATGGGTATTGGGGATC GTATCTAACTTTCTATCTCGGAGATTCTCAGACTAATTGGATCATGCAAGAATATTCCCT CCCGGATTCCTCTTCATCTAGTCGATCTTCTAAGAGATCAAGCCGTGCTTCTAGTTC TAGTCACAAACCCGATTATAGCAAGTGGGTGATATGCAGAGTGTATGAGCAAAATTGCAG TGAGGAGGAAGACGATGATGGGACAGAACTCTCATGTTTGGATGAAGTGTTTTTGTCTTT AGATGATCTTGACGAAGTAAGCTTACCGTAATAAAGACAGAAGCACCCAAGAAGAAAAA AAAAAAAAGGGTTTAGTGGGCAATTATTTCTAAGCGACCGCTCTAGACAGGCCTAGTAC CGGATCCTCTAGCTAGAGCTTTCGTTCGTATCATCGGTTTCGACAACGTTCGTCAAGT >G1671 Amino Acid Sequence (domain in AA coordinates: TBD) MNLPPGFRFFPTDEELVVHFLHRKASLLPCHPDVIPDLDLYHYDPWDLPGKALGEGRQWY FYSRKTQERVTSNGYWGSMGMDEPIYTSSTHKKVGIKKYLTFYLGDSQTNWIMQEYSLPD SSSSSSSSKRSSRASSSSHKPDYSKWVICRVYEQNCSEEEDDDGTELSCLDEVFLSLDD LDEVSLP*

>G1756 (71..1003)

TCTGTTGTCGGACGCATGGGCGTGGCGTAAATACGGGCAGAAACCCATCAAAGGATCTCC
ATACCCAAGGAGTTATTACAGATGCAGTAGCTCAAAAGGGTGTTTGGCAAGAAAACAAGT
CGAAAGAAATCCTCAAAACCCGGAGAAATTCACCATAACATACACTAATGAGCACAATCA
TGAACTACCAACCCGGAGAAACTCATTAGCCGGTTCGACTCGAGCAAAAACTTCCCAACC
CAAACCAACCTTAACCAAAAAATCCGAAAAAAGAAGTTGTTTCTTCCCCTACAAGTAATCC
TATGATCCCATCCGCTGATGAATCTTCTGTTGCGGTTCAAGAAATGAGCGTTGCGGAAAC
GAGTACGCACCAAGCGGCTGGAGCAATCGAGGGCCGCCGCTTGAGTAACGGTTTACCATC
GGATTTGATGTCCGGGAGCGGAACTTTTCCAAGTTTTACCGGTGACTTCGATGAACTATT
GAATAGCCAAGAGTTCTTCAGTGGGTATTTATGGAATTACTAGAGAGCATTAGGTGTATG

>G1756 Amino Acid Sequence (domain in AA coordinates: TBD)
MGEVAYMDEGDLEAIVRGYSGSGDAFSGESSGTFSPSFCLPMETSSFYEPEMETSGLDEL
GELYKPFYPFSTQTILTSSVSLPEDSKPFRDDKKQRSHGCLLSNGSRADHIRISESKSKK
SKKNQQKRVVEQVKEENLLSDAWAWRKYGQKPIKGSPYPRSYYRCSSSKGCLARKQVERN
PQNPEKFTITYTNEHNHELPTRRNSLAGSTRAKTSQPKPTLTKKSEKEVVSSPTSNPMIP
SADESSVAVQEMSVAETSTHQAAGAIEGRRLSNGLPSDLMSGSGTFPSFTGDFDELLNSQ
EFFSGYLWNY*

>G1757 (250..1224)

TCTTAATTATACTCAACACACATTATATTTTTCTGATCATATCATTCTTTCAGTCCATCT ATACTAAAAATGGAAGGAAGAGATATGTTAAGTTGGGAGCAAAAGACATTGCTAAGCGAG CTTATCAATGGATTTGATGCGGCCAAAAAGCTTCAGGCACGACTTAGAGAAGCTCCGTCG CCGTCGTCATCATTTTCATCACCGGCGACGGCTGTTGCTGAGACTAACGAGATTCTGGTG AAGCAGATAGTTTCTTCCTACGAGAGATCTCTTCTTCTTCTAAACTGGTCATCCTCACCG AGCGTACAACTTATTCCGACGCCGGTTACTGTAGTCCCGGTGGCAAATCCCCGGCAGTGTT CCAGAATCTCCGGCATCGATAAACGGAAGTCCGAGAAGTGAAGAGTTTGCCGATGGAGGA GATGATGTCTTTAGCTGGAGAAAATATGGTCAAAAAGACATTTTAGGCGCCAAATTCCCA AGGAGTTATTACAGATGCACACATCGTAGCACACAAAACTGTTGGGCAACGAAACAAGTC TCGCAGGCGATCACAAGAACACCACCATTAGCCTCGCCGGAGAAGCGACAAGACACCAGA GTCAAACCAGCCATTACCCAAAAGCCAAAGGATATTCTCGAGAGTCTTAAATCCAACTTA ACCGTTCGAACCGATGGGCTTGATGATGGTAAAGACGTTTTCTCGTTCCCTGATACGCCG CCGTTTTACAATTACGGAACTATCAACGGCGAGTTCGGCCACGTGGAGAGTTCTCCGATC TTCGACGTTGTTGACTGGTTCAATCCAACGGTCGAGATTGACACAACTTTCCCCGCGTTT AAGTAATGATCAGCGAGAGTTAAAACATAAAAGTACTTAGAGTAATCTAACGATGCATAA TAAGGAATGTTCAACAGGACTTGAACATGATTTCAATACTAAGAGAGATTTATCTAGCTA ${\tt CTGGTAGTAGCCGCAGACTTCTTGTTGTAGCTTCACTTNCTTTTTGTTGCTT}$

>G1757 Amino Acid Sequence (domain in AA coordinates: 158-218)
MEGRDMLSWEQKTLLSELINGFDAAKKLQARLREAPSPSSSFSSPATAVAETNEILVKQI
VSSYERSLLLLNWSSSPSVQLIPTPVTVVPVANPGSVPESPASINGSPRSEEFADGGGSS
ESHHRQDYIFNSKKRKMLPKWSEKVRISPERGLEGPQDDVFSWRKYGQKDILGAKFPRSY
YRCTHRSTQNCWATKQVQRSDGDATVFEVTYRGTHTCSQAITRTPPLASPEKRQDTRVKP
AITQKPKDILESLKSNLTVRTDGLDDGKDVFSFPDTPPFYNYGTINGEFGHVESSPIFDV
VDWFNPTVEIDTTFPAFLHESIYY*

>G1782 (1..927) ·

ATGCAAGTGTTTCAAAGGAAAGAAGATTCATCTTGGGGAAACTCAATGCCTACAACAAAT
TCAAATATTCAAGGATCTGAATCTTTCAGCTTGACTAAGGATATGATAATGTCTACAACA
TCAAATATTCAAGGATCTGAATCTTTCAGCTTGACTAAGGATATGATAATGTCTACAACA
CAATTACCCGCGATGAAACATTCGGGTTTGCAGCTGCAAAATCAAGATTCAACCTCATCA
CAATCTACTGAAGAAGAATCAGGCGGCGGTGAAGTTGCAAGCTTTTGGAGAATATAAGCGT
TATGGATGCAGCATTGTTAATAACAATCTCTCAGGTTACATCGAAAACTTTGGGAAAGCCT
ATTGAAAATTATACTAAGTCAATTACTACCTCGTCGATGGTGTCTCAAGACTCTGTGTTT
CCTGCTCCTACTTCTGGTCAAATATCTTGGTCTCTTCAATGTGCTGAAACGTCACATTTC

AATGGTTTCTTGGCTCCTGAATATGCATCAACACCAACGGCGCTGCCACATTTAGAGATG ATGGGTTTGGTTTCTTCAAGAGTGCCATTGCCTCATCACATTCAAGAGAATGAACCAATA TTTGTCAATGCGAAACAGTATCATGCGATTCTCCGTCGCAGGAAGCACCGTGCTAAACTC GAAGCTCAGAACAAACTCATCAAATGCCGTAAACCGTACCTTCATGAGTCTCGCCATCTT CATGCTTTAAAGAGAGCTAGAGGCTCCGGTGGACGTTTCCTCAATACAAAGAAGCTTCAA GAATCATCAAACTCACTGTGTTCTTCTCAAATGGCAAATGGACAAAATTTCTCTATGAGC CCTCACGGTGGTGGAAGCGGAATCGGGTCTAGTTCGATCTCACCGAGCTCCAATTCAAAC TGTATCAACATGTTCCAAAACCCGCAGTTCAGATTCTCAGGTTATCCGTCAACACACCAT GCCTCAGCTCTCATGTCAGGGACTTGA

>G1782 Amino Acid Sequence (domain in AA coordinates: 166-238) MQVFQRKEDSSWGNSMPTTNSNIQGSESFSLTKDMIMSTTQLPAMKHSGLQLQNQDSTSS QSTEEESGGGEVASFGEYKRYGCSIVNNNLSGYIENLGKPIENYTKSITTSSMVSQDSVF PAPTSGQISWSLQCAETSHFNGFLAPEYASTPTALPHLEMMGLVSSRVPLPHHIQENEPI FVNAKQYHAILRRRKHRAKLEAQNKLIKCRKPYLHESRHLHALKRARGSGGRFLNTKKLQ ESSNSLCSSQMANGQNFSMSPHGGGSGIGSSSISPSSNSNCINMFQNPQFRFSGYPSTHH ASALMSGT*

>G184 (327..1937)

TGAATTCTAGCCTTTTTGTAGGCGAATCATCTGGACCGGTAAGAGACTCTCTCATCGATA ATAACCACATAATTTAATCAAACTCTTTCTCTCTCTTTTCTAAGATCTTTTGCTTTGCTCT TGTACGGATCCATCAAACTGGATTAATTATCAAAACGTACATTTTTATCTTACCTGGCAA GTTACATTCCTAGGGTTTTGGAGAATCCAATCAACAACAAGAAAATAATCATCGTTACA ATAATCAGTATCACGCACAGACTTAGATGTTCCGGTTTCCAGTGAGTCTAGGCGGTTCAC GTGACGAAGACCGTCACGATCAGATCACACCGTTGGATGACCATCGTGTGGTGGTTGATG AGGTTGACTTCTTCTCAGAGAAGAGAGATAGGGTTTCACGTGAGAACATCAACGACGACG ACGACGAAGGCAATAAGGTTCTCATCAAAATGGAGGGTTCACGAGTTGAAGAAAACGATC GTTCCAGAGATGTCAATATCGGTCTGAATCTTCTGACCGCGAATACGGGAAGCGATGAGT CAACGGTGGATGATGGACTATCAATGGATATGGAAGATAAACGTGCAAAGATTGAGAACG CACAACTACAAGAAGAGCTCAAGAAGATGAAAATAGAGAATCAAAGGCTAAGAGATATGT TGAGCCAAGCGACGACCTTCAATGCCTTACAAATGCAACTTGTTGCCGTCATGAGGC AACGGCAGGAACTGCAAATCATGGTGCCAAGGCAGTTCATGGACCTTGGGCCGTCGTCTG CTCCTCCTTCGCTTCTAGAAAGTTCCAATCCCCGAGAGAACGGAAAGAGGTTGCTTGGAA GAGAAGAAAGCTCAGAGGAATCAGAGTCTAACGCCTGGGGAAACCCTAACAAAGTCCCCA AACATAATCCATCCTCTAGCAATAGCAATGGAAACAGAAACGGAAATGTTATTGATCAGT CGGCCGCAGAAGCCACCATGCGGAAAGCCCGTGTCTCAGTTCGTGCCCGATCTGAAGCTG CCATGATAAGCGATGGATGTCAATGGAGAAAGTACGGACAAAAAATGGCTAAAGGAAAACC TGCAGCGTTGCGCAGAAGACAGATCTATTCTCATAACCACCTACGAAGGAAACCACAACC ATCCACTCCCACCAGCCGCTACGGCCATGGCCTCAACAACCACCGCAGCTGCAAGCATGC TCCTCTCGGGCTCAATGTCGAGTCAAGACGGTTTAATGAACCCAACAAACCTCCTAGCTC GAGCTATCTTGCCTTGCTCCTCAAGCATGGCTACAATCTCAGCCTCCGCACCATTCCCAA CCATCACATTGGACCTCACCAATTCACCCAACGGTAACAACCCTAATATGACCACTAATA ACCCGTTGATGCAGTTCGCTCAACGGCCCGGTTTCAACCCGGCAGTTTTGCCTCAAGTGG TTGGTCAAGCTATGTACAATAACCAACAACAGTCCAAGTTTTCTGGTTTACAGTTACCGG CTCAGCCACTGCAGATCGCGGCCACTTCCTCGGTGGCCGAGAGCGTTAGTGCTGCCAGTG CAGCAATTGCGTCCGATCCAAACTTTGCGGCGGCTCTAGCGGCAGCGATCACGTCCATTA TGAACGGTTCCAGTCATCAAAATAATAACACCAATAATAATAATGTGGCTACGAGCAACA >G184 Amino Acid Sequence (domain in AA coordinates: 295-352) ${\tt MFRFPVSLGGSRDEDRHDQITPLDDHRVVVDEVDFFSEKRDRVSRENINDDDDEGNKVLI}$ KMEGSRVEENDRSRDVNIGLNLLTANTGSDESTVDDGLSMDMEDKRAKIENAQLQEELKK ${\tt MKIENQRLRDMLSQATTNFNALQMQLVAVMRQQEQRNSSQDHLLESKAEGRKRQELQIMV}$

PRQFMDLGPSSGAAEHGAEVSSEERTTVRSGSPPSLLESSNPRENGKRLLGREESSEESE SNAWGNPNKVPKHNPSSSNSNGNRNGNVIDQSAAEATMRKARVSVRARSEAAMISDGCQW RKYGQKMAKGNPCPRAYYRCTMAGGCPVRKQVQRCAEDRSILITTYEGNHNHPLPPAATA MASTTTAAASMLLSGSMSSQDGLMNPTNLLARAILPCSSSMATISASAPFPTITLDLTNS PNGNNPNMTTNNPLMQFAQRPGFNPAVLPQVVGQAMYNNQQQSKFSGLQLPAQPLQIAAT SSVAESVSAASAAIASDPNFAAALAAAITSIMNGSSHQNNNTNNNNVATSNNDSRQ* >G1845 (111..989)

TTTTGGCAAATCGTGAACTGCCACGTCTTTAAGGCATCAGTGAAGCAAAGATGGACTTTG ACGAGGAGCTAAATCTTTGTATTACGAAAGGTAAAAATGTTGATCATTCTTTTGGAGGAG AAGCTTCTTCCACGTCCCCAAGATCTATGAAGAAAATGAAGAGTCCTAGTCGTCCTAAAC CCTATTTCCAATCCTCTTCTTCTCTTATTCGTTAGAGGCTTTCCCTTTTTCTCTCGATC CAACACTTCAGAATCAGCAACAACACTCGGATCATACGTTCCGGTACTTGAGCAACGAC AAGACCCGACAATGCAAGGCCAGAAGCAAATGATCTCCTTTAGTCCTCAACAACAACAAC AGCAGCAGCAGTATATGGCCCAGTACTGGAGTGACACATTGAATCTGAGTCCAAGAGGAA GAATGATGATGATGATGAGCCAAGAAGCTGTTCAACCTTACATCGCAACGAAGCTGTACA GAGGAGTGAGACAACGTCAATGGGGAAAATGGGTCGCAGAGATCCGTAAGCCACGAAGCA GGGCACGTCTTTGGCTTGGTACCTTTGATACAGCTGAAGAAGCTGCCATGGCCTACGACC GCCAAGCCTTCAAATTACGAGGCCACAGCGCAACACTGAATTTCCCGGAGCATTTTGTGA AAGGTATGGCTGAGGCATGGTACAATGCCATTACATCGGGATGGGGTCCTGAAAGTCCTC TTTGGGATGATTTGGATAGTTCTCATCAGTTTTCATCAGAAAGCTCATCTTCTTCTCCTC TCTCTTGTCCTATGAGGCCTTTCTTTTGAAAAAGTTTATAAACCCACATTGTGTTGTAGG TTATAGTTTAGGGTTATGCTCATTGGCATTTGGATGGAGGCAATTTTTGTGATCTCCCAT TCCACCACATATCAGTCATTATATGTGTCTACCTTTTCTCTGTATTTCTATCATTATCAT ТТСААААААААААААААААААААА

>G1845 Amino Acid Sequence (domain in AA coordinates: 140-207)
MDFDEELNLCITKGKNVDHSFGGEASSTSPRSMKKMKSPSRPKPYFQSSSSPYSLEAFPF
SLDPTLQNQQQQLGSYVPVLEQRQDPTMQGQKQMISFSPQQQQQQQQYMAQYWSDTLNLS
PRGRMMMMMSQEAVQPYIATKLYRGVRQRQWGKWVAEIRKPRSRARLWLGTFDTAEEAAM
AYDRQAFKLRGHSATLNFPEHFVNKESELHDSNSSDQKEPETPQPSEVNLESKELPVIDV
GREEGMAEAWYNAITSGWGPESPLWDDLDSSHQFSSESSSSSPLSCPMRPFF*
>G1879 (3..917)

AAATGCCCTTAGAGGCTGTCGTATACCCGCAAGATCCATTCGGATATCTCTCCAATTGCA AAGATTTTATGTTCCACGACTTATACTCTCAAGAAGAGTTCGTAGCTCAAGATACGAAGA ACAACATTGATAAGTTAGGGCATGAACAGAGCTTTGTGGAACAAGGTAAGGAGGACGATC ATCAATGGCGAGACTATCATCAGTATCCTTTGTTGATCCCTTCGTTGGGAGAAGAGCTTG GTCTTACCGCCATTGATGTGGAGAGTCATCCTCCTCCACAGCACCGGAGGAAGAGGAGGA GAACGAGAAACTGCAAGAACAAGGAAGAGATCGAGAACCAGAGAATGACTCACATCGCCG TCGAGAGAAATCGCCGGAAACAGATGAACGAGTATCTGGCTGTGCTCCGTTCTCTAATGC CGTCGTCGTATGCTCAAAGAGGAGATCAAGCGTCGATAGTAGGAGGAGCTATAAACTACG TGAAGGAGTTAGAGCATATTTTACAATCTATGGAGCCGAAGAGAACTAGGACTCATGATC CCAAAGGAGACAAGACTAGCACTAGCTCGTTAGTGGGTCCATTCACAGATTTTTTCAGCT TCCCACAATATTCTACAAAGTCATCATCAGATGTACCGGAAAGCTCATCTTCACCGGCGG AGATAGAGGTTACGGTGGCAGAAAGCCATGCGAACATCAAGATAATGACGAAGAAGAAAAC CGAGGCAGCTTCTTAAGCTCATAACTTCTTTACAAAGCCTAAGGCTCACTCTTCTTCATC TCAATGTCACCACTCTCCACAACTCCATTCTCTACTCCATCAGCGTCAGGGTTGAAGAAG GAAGCCAACTGAATACCGTGGACGACATTGCAACAGCTTTGAATCAAACCATAAGGAGGA ${\tt TTCAAGAAGAGACA}{\tt TAATTCAGCAAATAGATTATAATTAACTTGTTTTATTTTATTTTA}$ TCCCTATGTAAGTTGCATTTTTGTCTCTTGTAATGAATCAATGGTCATAAAGATCTGAAC AAAAAATTGAATAAAAGAAAATGGTT

>G1879 Amino Acid Sequence (domain in AA coordinates: 107-176)
MPLEAVVYPQDPFGYLSNCKDFMFHDLYSQEEFVAQDTKNNIDKLGHEQSFVEQGKEDDH
QWRDYHQYPLLIPSLGEELGLTAIDVESHPPPQHRRKRRRTRNCKNKEEIENQRMTHIAV
ERNRRKQMNEYLAVLRSLMPSSYAQRGDQASIVGGAINYVKELEHILQSMEPKRTRTHDP
KGDKTSTSSLVGPFTDFFSFPQYSTKSSSDVPESSSSPAEIEVTVAESHANIKIMTKKKP
RQLLKLITSLQSLRLTLLHLNVTTLHNSILYSISVRVEEGSQLNTVDDIATALNQTIRRI

QEET*

>G1888 (1..729)

>G1888 Amino Acid Sequence (domain in aa coordinates: 5-50)
MKIWCAVCDKEEASVFCCADEAALCNGCDRHVHFANKLAGKHLRFSLTSPTFKDAPLCDI
CGERRALLFCQEDRAILCRECDIPIHQANEHTKKHNRFLLTGVKISASPSAYPRASNSNS
AAAFGRAKTRPKSVSSEVPSSASNEVFTSSSSTTTSNCYYGIEENYHHVSDSGSGSGCTG
SISEYLMETLPGWRVEDLLEHPSCVSYEDNIITNNNNSESYRVYDGSSQFHHQGFWDHKP
FS*

>G189 (34..987)

CCACAACTCTCCTTGTAGAGAGAGAGATTTTATGGCGGTGGAGCTCATGACTCGGAAT TACATCTCCGGCGTCGGAGCTGATAGCTTCGCCGTTCAAGAAGCAGCTGCTTCAGGACTC AAAAGTATCGAAAATTTCATCGGTTTAATGTCTCGTGATAGCTTTAACTCTGATCAGCCA TCTTCTTCTCCGCCTCCGCCTCCGCCTCCGCCGCAGATCTTGAATCAGCTCGTAAC ACAACGGCGGACGCGGCTGTTTCAAAGTTTAAAAGAGTCATATCTCTCTTAGATCGAACT CGAACCGGACACGCCCGGTTTAGACGTGCTCCGGTTCATGTTATTTCTCCGGTTCTTTTA CAAGAAGAACCAAAAACGACGCCGTTTCAGTCTCCTCTTCCTCCTCCGCCGCAAATGATC ACAACGGAATCAGACAACCAGAAGAAGATTCATCATCATCAACGTCCCTCTGAAACGGCG CCGTTTGCGTCTCAAACTCAAAGCCTCTCCACGACGGTCTCGTCTTTCTCAAAATCAACA AAGAGAAAATGTAACTCTGAGAATCTTCTCACCGGAAAATGCGCTTCCGCTTCTTCCTCC GGTCGTTGTCATTGCTCGAAGAAAAGAAAAGATAAAACAGAGGAGAATAATTAGGGTTCCG GCGATAAGTGCAAAAATGTCCGATGTACCACCGGACGATTATTCATGGAGGAAATACGGA CAAAAACCAATTAAAGGATCTCCACATCCAAGAGGATATTATAAGTGTAGTAGCGTAAGA GGTTGTCCAGCACGTAAACATGTTGAGAGAGCAGCTGATGATTCGTCCATGTTGATTGTT ACTTATGAAGGAGATCATAATCATTCTCTCCGCCGCTGATCTCGCCGGAGCCGCCGTT AATCAAAAAGCTTTTGCTAAAAAAAAAAAAAAAAAA

>G189 Amino Acid Sequence (domain in AA coordinates: 240-297)
MAVELMTRNYISGVGADSFAVQEAAASGLKSIENFIGLMSRDSFNSDQPSSSSASASAA
AADLESARNTTADAAVSKFKRVISLLDRTRTGHARFRRAPVHVISPVLLQEEPKTTPFQS
PLPPPPQMIRKGSFSSSMKTIDFSSLSSVTTESDNQKKIHHHQRPSETAPFASQTQSLST
TVSSFSKSTKRKCNSENLLTGKCASASSSGRCHCSKKRKIKQRRIIRVPAISAKMSDVPP
DDYSWRKYGQKPIKGSPHPRGYYKCSSVRGCPARKHVERAADDSSMLIVTYEGDHNHSLS
AADLAGAAVADLILESS*

>G1939 (92..844)

AATCATTAGCTTCTTCTCTCTCTCTCTCACAGAGAGAGATAATCACAAGCCAAGTGAGA
AAAAGAAACACTAAACCCAGATCGAAAACCATGTCTATTAACAACAACAACAACAACAACAA
CAACAATAACAACGATGGTCTTATGATCTCATCAAACGGAGCTTTAATCGAACAACAACA
ATCAGTCGTTGTGAAGAAACCACCGGCGAAAGATCGACATAGCAAAGTCGATGGAAGAGG
GAGAAGAATCCGTATGCCGATTATATGTGCTGCTCGTGTTTTTCAGCTAACGAGAGAGCT
TGGTCATAAGTCAGATGGCCAAACAATTGAATGGTTACTTCGTCAAGCAGAGCCTTCTAT
TATAGCTGCAACAGGAACTGGTACAACTCCAGCGAGTTTCTCAACTGCTTCTGTCTCTAT
CCGTGGAGCCACCAATTCTACTTCTTTAGATCATAAACCCACTTCTTTACTTGGTGGTAC

>G1939 Amino Acid Sequence (domain in AA coordinates: 40-102)
MSINNNNNNNNNNDGLMISSNGALIEQQPSVVVKKPPAKDRHSKVDGRGRRIRMPIICA
ARVFQLTRELGHKSDGQTIEWLLRQAEPSIIAATGTGTTPASFSTASVSIRGATNSTSLD
HKPTSLLGGTSPFILGKRVRADEDSNNSHNHSSVGKDETFTTTPAGFWAVPARPDFGQVW
SFAGAPQEMFLQQQHHHQQPLFVHQQQQQQAAMGEASAARVGNYLPGHLNLLASLSGGSP
GSDRREEDPR*

>G194 (192..1205)

GATCTTTTTGTATTTTTGATTTTGACATTTGCTTTGTGTTCGATCTCTGTTTTGATGCGA TTTCTCTGTTTTTAAAGCCATTTGATAGATTGTTTCCGGTAAAGCTCAGCGAGAGAAAA GAAGAACAACAATGGAGTTTACAGATTTCTCAAAGACGAGTTTTTACTACCCGTCGTCAC AAAGCGTTTGGGATTTCGGAGATTTAGCGGCGGCGGAGAGGCATTCTTTAGGGTTCATGG TCCAAACGTCTCAACCGCAAACGCAAACGCAACCATCGGCGAAGCTGTCTTCAAGTATCA TTCAAGCTCCACCGTCAGAGCAATTAGTGACGTCAAAGGTGGAGTCTTTGTGTTCGGATC ATTTGTTGATAAACCCACCGGCGACTCCTAACTCGTCATCGATTTCGTCTGCTTCAAGCG AGGCTCTAAATGAAGAGAAACCGAAAACAGAAGACAATGAAGAAGAAGGAGGTGAAGATC AACAAGAGAAGAGTCATACTAAGAAACAGTTGAAAGCAAAGAAGAATAATCAGAAGAGAC AGAGAGAGGCAAGAGTCGCATTCATGACAAAGAGTGAAGTTGATCATCTCGAAGATGGTT ATCGCTGGCGAAAATATGGTCAAAAAGCTGTCAAAAACAGTCCTTTTCCCAGGAGTTACT ACCGTTGCACAACGGCTTCATGTAACGTGAAGAAGAGAGTGGAGAGATCATTCAGAGATC CAAGCACTGTGGTTACAACCTACGAAGGTCAACACACTCACATTAGTCCACTCACGTCTC GTCCTATTTCCACTGGAGGTTTCTTCGGATCGTCAGGAGCTGCTTCGAGTCTCGGTAATG GTTGCTTTGGGTTTCCTATTGATGGCTCCACGTTAATCTCTCCTCAGTTCCAACAGCTTG TCCAATACCATCACCAACAGCAGCAACAAGAACTCATGTCTTGTTTTGGAGGAGTCAACG AGTACCTTAATAGCCACGCTAATGAGTATGGTGATGATAATCGTGTGAAGAAGAGTCGAG AAAGAAACGGATCTTTTGTTCTGATGAAGAAGATGTTTTCTTATGGTTCTGAAATCGTAA GGTAATGATGATTGTACCAAGCCGAGAAAGTACTTGTGATTTTCACCATTGAATCACTAT

>G194 Amino Acid Sequence (domain in AA coordinates: 174-230)
MEFTDFSKTSFYYPSSQSVWDFGDLAAAERHSLGFMELLSSQQHQDFATVSPHSFLLQTS
QPQTQTQPSAKLSSSIIQAPPSEQLVTSKVESLCSDHLLINPPATPNSSSISSASSEALN
EEKPKTEDNEEEGGEDQQEKSHTKKQLKAKKNNQKRQREARVAFMTKSEVDHLEDGYRWR
KYGQKAVKNSPFPRSYYRCTTASCNVKKRVERSFRDPSTVVTTYEGQHTHISPLTSRPIS
TGGFFGSSGAASSLGNGCFGFPIDGSTLISPQFQQLVQYHHQQQQQELMSCFGGVNEYLN
SHANEYGDDNRVKKSRVLVKDNGLLQDVVPSHMLKEE*

>G1943 (137..1858)

TTCTTGGCTTCACCATTCTCACCCCGGCGTTACGTCCACCCCGGCTTCTTCTGTCTCCCT GCCACCACCACCAATGCTCCGCGTGAAGATGATATAGTGGAGCTTTTATGGCAAAGCGG CCAAGTAGTTGGAACCAACCAAACACATAGACAATCCTACGATCCTCCCCATTCTCCG CGGCAGCGGAAGTGGCAGAGGAGAAAAATGCTCCCCTTTCACAACCTCCGCCTCACCT GCATCAGCAAAATCTCTTCATTCAAGAAGGCGAAATGTATTCGTGGCTACACCATTCTTA CCGCCAAAACTATTCTGCTCAGAACTTCTCAACTCCACTCCGGCTACTCACCCGCAAAG TTCCATCTCTGGCACCACGTCAGACTATCGCCACGAGAAGGGCGGAAAACTTTATGAA CTTCTCGTGGCTAAGAGGGAACATATTTACCGGCGGTAGAGTTGATGAAGCTGGACCGTC GTTTTCGGTGGTAAGAGAATCGATGCAGGTAGGCTCGAACACGACCCCCCCTTCTTCTTC TGCCACTGAATCATGTGTAATACCAGCTACAGAGGGCACCGCGAGTCGAGTGTCGGGAAC TTTGGCAGCTCATGATCTTGGTCGGAAGGGGAAAGGCGGTGGCGGTTGAGGCGGCCGGAAC ACCATCTTCAGGAGTGTGCAAGGCCGAAACAGAGCCGGTTCAGATACAACCAGCAACGGA GTCGAAGCTAAAAGCGAGAGAAGAAACCCATGGAACTGAAGAAGCTCGTGGTTCAACGTC TAGAAAGAGATCACGAACTGCAGAAATGCATAACCTCGCCGAAAGGAGAAGGAGAGAAAAA GATCAACGAGAAGATGAAGACTCTGCAACAACTCATTCCTCGCTGCAACAAGGTTGAATC TGATTCTGTTTCTACTCTGATCAGTCTACTAAAGTTTCAACGCTGGATGATGCTATCGAG TACGTCAAATCGTTACAGAGCCAAATACAAGTATGCTCTTCAAAACAGAATGTGTTTTAA ACCAATGGTTCAACATGGAAAGAGTTCATATGTATCTAGTTTTGTTGAGATGATGTCGAC GGGACAGGGTATGATGTCGCCAATGATGAATGCCGGGAATACGCAACAGTTCATGCCCCA TATGGCCATGGATATGAACCGACCTCCTCCATTCATACCTTTCCCCGGCACATCTTTTCC TATGCCGGCTCAAATGGCAGGTGTAGGTCCATCATATCCAGCACCGCGCTACCCTTTTCC CAACATTCAGACCTTTGACCCATCCAGAGTCCGTTTACCAAGCCCGCAGCCTAACCCGGT GTCGAACCAGCCTCAGTTTCCGGCTTACATGAATCCCTATAGCCAGTTTGCTGGTCCCCA CCAGTTGCAACAACCTCCTCCTCCATTTCAGGGTCAAACAACATCACAACTGAGTTC AAAGTGTGGAGCTGAAACGGATCAGTTCTTCAAGCAAATTACAACTTTGAAGATAAACCA GAGTTGTAACATGTAGATTTTGTCTGTTAAGTTTAATGTAAGTACTTTTTAGTTAATGGG AAAGATACTGACAGGTTGCAAGGTGGTCAGTATTTGTGCATCACGCTTAAGATTCCTCGA TGTGGCCAGTATCTCCCTTTTCTAGCATGTGAGGTCCCTACTCTCTGGTTCTACGGAGAC CAAATGTTCGACTGATTAAACACACAATGACTTACCAAAAGTACACGCGGCCCATCCTCG TCTTTATGTTCCAAGTGCGACTGTTTGTTTATTTGTAAGCATTTTTCTTATAATAATAAA ACAGCTCTATCTTCGTTAAAAAAAA

>G1943 Amino Acid Sequence (domain in AA coordinates: 335-406)
MGEDDIVELLWKSGQVVRTSQTQRPSSNTPPSLPPPPILRGSGSGNGEENAPLPLPQPSP
PLHHQNLFILEDEMSSWLHHSHPGVTSTPASSVSLPPPPNAPREDDIVELLWQSGQVVGT
NQTHRQSYDPPPILRGSGSGRGEENAPLSQPPPHLHQQNLFIQEGEMYSWLHHSYRQNYF
CSELLNSTPATHPQSSISLAPRQTIATRRAENFMNFSWLRGNIFTGGRVDEAGPSFSVVR
ESMQVGSNTTPPSSSATESCVIPATEGTASRVSGTLAAHDLGRKGKAVAVEAAGTPSSGV
CKAETEPVQIQPATESKLKAREETHGTEEARGSTSRKRSRTAEMHNLAERRREKINEKM
KTLQQLIPRCNKVESDSVSTLISLLKFQRWMMLSSTSNRYRAKYKYALQNRMCFKPMVQH
GKSSYVSSFVEMMSTGQGMMSPMMNAGNTQQFMPHMAMDMNRPPPFIPFPGTSFPMPAQM
AGVGPSYPAPRYPFPNIQTFDPSRVRLPSPQPNPVSNQPQFPAYMNPYSQFAGPHQLQQP
PPPPFQGQTTSQLSSGQASSSKEPEDQENQPTA*

>G21 (79..966)

TCGACTTCGGCGTGTACGGACAAAGACAGTGAGGAAGAGAAGCTGTTTGATTTGCCGGAT TTGTTTACCGATGAGAATGAGATGATGATACGAAACGATGCGTTTTGCTACTACTCGTCC ACGTGGCAGCTTTGTGGAGCCGATGCTGGGTTTCGGCTTGAAGAGCCGTTTTTTCTATCT GAATGACTAAAGTACCCCCTCTCGAGAGAGCTCTCACTAACACT

>G21 Amino Acid Sequence (domain in AA coordinates: 97-164)
MARQINIESSYSQVTFISSAIPAVSSSSSITASASLSSSPTTSSSSSSSTNSNFIEEDNS
KRKASRRSLSSLVSVEDDDDQNGGGGKRRKTNGGDKHPTYRGVRMRSWGKWVSEIREPRK
KSRIWLGTYPTAEMAARAHDVAALAIKGTTAYLNFPKLAGELPRPVTNSPKDIQAAASLA
AVNWQDSVNDVSNSEVAEIVEAEPSRAVVAQLFSSDTSTTTTTQSQEYSEASCASTSACT
DKDSEEEKLFDLPDLFTDENEMMIRNDAFCYYSSTWQLCGADAGFRLEEPFFLSE*
>G2132 (42..1031)

ATTCTGTTACTTAGTACCGGAGTTTAGTCGGAGAGAACAATGATCAGTTTCAGAGAAG AGAACATCGATCTCAACTTGATTAAAACAATTAGTGTAATCTGTAATGATCCAGACGCCA CCGATTCCTCTAGCGACGATGAATCTATCTCCGGCAATAATCCTCGCCGTCAGATCAAAC CAAAACCACCGAAACGTTACGTCTCAAAGATCTGTGTCCCGACGCTGATCAAAAGGTATG AGAACGTTTCGAATTCTACAGGGAATAAAGCAGCCGGAAAACCGGGAAAACGTCGTCGGGTT TCAAAGGCGTACGACGGAGGCCGTGGGGGGAAATTTGCGGCGGAGATAAGAAATCCGTTTG AGAAGAAGAAAGTGGCTTGGAACGTTTCCTACTGAAGAAGAAGCAGCAGAAGCTTACC AAAAGAGTAAAAGAGAGTTTGATGAACGATTGGGTTTAGTTAAACAGGAAAAAGACCTAG CGAATTGCAAAAAGGTAAATAAGAGAATTGTTACTGATCAGAAGCCATTTGGTTGTGGTT ATAACGCTGATCATGAAGAAGAGGGGAGTGATTAGTAAAATGTTGGAAGATCCGTTGATGA CATCGTCAATTGCTGATATTTTTGGTGATTCGGCTGTTGAAGCAAATGATATTTGGGTGG ATTACAATTCAGTGGAATTTATTTCCATTGTAGATGATTTCAAGTTTGATTTTGTGGAGA ATGATAGAGTAGGAAAAGGAGAAAACATTTGGATTTAAGATTGGGGATCACACTAAAGTTA ATCAACATGCCAAAATCGTATCGACCAATGGGGACTTATTCGTCGATGATTTACTTGATT TTGATCCGTTGATAGATGATTTTAAGTTAGAAGATTTTCCTATGGATGATCTTGGATTAT TAGGAGATCCAGAGGATGATGATTTAGTTGGTTAATGGTACTACTGATTGGATCGATA AGTTTTTATGAATACTTTCTTGACACGGCCAACGGTATTAGTAC

>G2132 Amino Acid Sequence (domain in AA coordinates: TBD)
MISFREENIDLNLIKTISVICNDPDATDSSSDDESISGNNPRRQIKPKPPKRYVSKICVP
TLIKRYENVSNSTGNKAAGNRKTSSGFKGVRRRPWGKFAAEIRNPFEKKRKWLGTFPTEE
EAAEAYQKSKREFDERLGLVKQEKDLVDLTKPCGVRKPEEKEVTEKSNCKKVNKRIVTDQ
KPFGCGYNADHEEEGVISKMLEDPLMTSSIADIFGDSAVEANDIWVDYNSVEFISIVDDF
KFDFVENDRVGKEKTFGFKIGDHTKVNQHAKIVSTNGDLFVDDLLDFDPLIDDFKLEDFP
MDDLGLLGDPEDDDFSWFNGTTDWIDKFL*

>G2145 (1..777)

ATGGACGTTTTTGTTGATGGTGAATTGGAGTCTCTCTTGGGGGATGTTCAACTTTGATCAA TGTTCATCATCTAAAGAGGAGAGCCGCGAGACGAGTTGCTTGGCCTCTCTAGCCTTTAC AATGGTCATCTTCATCAACATCAACACCATAACAATGTCTTATCTTCTGATCATCATGCT TTCTTGCTCCCTGATATGTTCCCATTTGGTGCAATGCCGGGAGGAAATCTTCCGGCCATG CTTGATTCTTGGGATCAAAGTCATCACCTCCAAGAAACGTCTTCTCTTAAGAGGAAACTA CTTGACGTGGAGAATCTATGCAAAACTAACTCTAACTGTGACGTCACAAGACAAGAGCTT GCGAAATCCAAGAAAAACAGAGGGTAAGCTCGGAAAGCAATACAGTTGACGAGAGCAAC ACTAATTGGGTAGATGGTCAGAGTTTAAGCAACAGTTCAGATGATGAGAAAGCTTCGGTC ACAAGTGTTAAAGGCAAAACTAGAGCCACCAAAGGGACAGCCACTGATCCTCAAAGCCTT TATGCTCGGAAACGAAGAGAGAGAGATTAACGAAAGGCTCAAGACACTACAAAACCTTGTG CCAAACGGGACAAAAGTCGATATAAGCACGATGCTTGAAGAAGCGGTCCATTACGTGAAG TTCTTGCAGCTTCAGATTAAGTTGTTGAGCTCGGATGATCTATGGATGTACGCACCATTG GCTTACAACGGCCTGGACATGGGGTTCCATCACAACCTTTTGTCTCGGCTTATGTGA >G2145 Amino Acid Sequence (domain in AA coordinates:166-243) MDVFVDGELESLLGMFNFDQCSSSKEERPRDELLGLSSLYNGHLHQHQHHNNVLSSDHHA FLLPDMFPFGAMPGGNLPAMLDSWDQSHHLQETSSLKRKLLDVENLCKTNSNCDVTRQEL AKSKKKQRVSSESNTVDESNTNWVDGQSLSNSSDDEKASVTSVKGKTRATKGTATDPQSL YARKRREKINERLKTLQNLVPNGTKVDISTMLEEAVHYVKFLQLQIKLLSSDDLWMYAPL AYNGLDMGFHHNLLSRLM*

>G23 (22..732)

TATCAAACGAGAGTACAAAAGATGACGTCACTCAACAGCTCTGCATCACCAACATCATCG TCATCAGACCAATCTGATGCAACTACTACAACAAGCACCCACTTGTCTGAAGAAGAAGCT CCACCCAGAAACAACACAAGAAAGAAGAGAGAGAGATTCTTCTTCTTCTTCATCT TCTTCAATGCAACATCCTGTTTACAGAGGTGTGCGGATGAGAAGTTGGGGCAAATGGGTC TCCGAGATCCGACAACCTCGTAAGAAAACTCGTATTTGGCTCGGCACTTTTGTCACCGCT GATATGGCTGCTCGTGCTCACGACGTCGCTCTCACCATCAAAGGCTCCTCCGCCGTC TTAAATTTCCCTGAGCTTGCTTCTCTCTTCCCTCGTCCGGCGTCATCATCGCCGCATGAT ATCCAGACAGCCGCCGCAGAAGCCGCCGCCATGGTGGTCGAAGAAAACTGTTAGAGAAG GATGAGGCTCCGGAGGCCCCACCTTCGTCGGAATCTTCTTACGTGGCGGCGGAGTCAGAG GAGAGTGTGACATCACGTGCTGATCTGGCTTATTCTGAGCCGTTCGATTGTTGGGTGTAT CCTCCGGTTATGGATTTTTATGAAGAAATATCGGAGTTTAATTTCGTGGAATTGTGGAGC TTTAATCACTAATTAAGTTAGGAAAGTGCATTATATTGCAATATTGCATCATAGATAACA TTTGTATTTCTTTTCTTTTGTACGGATACGTAGCATATGCTACTATACTAGGGCTAGTG ΑΑΑΑΑΑΑΑΑ

>G23 Amino Acid Sequence (domain in AA coordinates: 61-117)
MTSLNSSASPTSSSSDQSDATTTTSTHLSEEEAPPRNNNTRKRRDSSSASSSSSMQHPV
YRGVRMRSWGKWVSEIRQPRKKTRIWLGTFVTADMAARAHDVAALTIKGSSAVLNFPELA
SLFPRPASSSPHDIQTAAABAAAMVVEEKLLEKDEAPEAPPSSESSYVAAESEDEERLEK
IVELPNIEEGSYDESVTSRADLAYSEPFDCWVYPPVMDFYEEISEFNFVELWSFNH*
>G2313 (104..724)

>G2313 Amino Acid Sequence (domain in AA coordinates: TBD)
MASSPRWTEDDNRRFKSALSQFPPDNKRLVNVAQHLPKPLEEVKYYYEKLVNDVYLPKPL
ENVTQHLQKPMEMEEMKYMYEKMANDVNQMPEYVPLAESSQSKRRKKDTPNPWTEEEHRL
FLQGLKKYGEGASTLTSTNFVKTKTPRQVSSHAQYYKRQKSDNKKEKRRSIFDITLESTE
GNPDSGNQNPPDDDDDPSQGQGTCLGV*

>G2344 (1..573)

>G2344 Amino Acid Sequence (domain in AA coordinates: TBD)
MTSSIHELSDNIGSHEKQEQRDSHFQPPIPSARNYESIVTSLVYSDPGTTNSMAPGQYPY
PDPYYRSIFAPPPQPYTGVHLQLMGVQQQGVPLPSDAVEEPVFVNAKQYHGILRRRQSRA
RLESQNKVIKSRKPYLHESRHLHAIRRPRGCGGRFLNAKKEDEHHEDSSHEEKSNLSAGK
SAMAASSGTS*

>G2430 (69..1907)

AACTTCAACATACACATAATCTCTCACTTAAAAATATCTCTCTCTCTCTCTCTACAAAAT CAATTCCAATGTTGGTGGGAAAGATAAGTGGATATGAAGATAATACTCGCTCTTTGGAGC GAGAAACATCTGAAATCACTTCTCTTCTCAGCCAATTTCCGGGGAATACTAATGTCCTTG TTGTTGACACCAATTTCACCACTCTACTCAACATGAAACAAATCATGAAACAATACGCTT ATCAAGTGTCTATTGAGACAGATGCAGAAAAAGCTCTTGCGTTTTTGACAAGCTGCAAAC ATGAAATCAATATTGTGATTTGGGATTTTCATATGCCTGGAATTGATGGACTTCAAGCTC TCAAGAGCATTACTTCAAAGTTGGATTTACCTGTAGTGATTATGTCTGATGATAATCAAA CGGAATCTGTGATGAAAGCAACATTTTACGGTGCTTGTGACTATGTTGTGAAACCGGTTA AAGAAGAGGTAATGGCCAATATATGGCAACACATTGTACGGAAGAGGCTGATCTTTAAAC AAGCTGATTTCAAGATCGTAGAAGATGAACCAATAATCAATGAGACACCGCTGATCACAT GGACCGAAGAAATTCAACCGGTTCAGTCAGATCTGGTTCAAGCCAACAAGTTCGACCAAG TGAATGGCTATTCCCCAATCATGAACCAAGATAACATGTTCAACAAAGCACCACCTAAAC AGTTCGGCCAACTCAATGACTATTCCCAAATCATGAACCAAGATAGCATGTACAACAAAG CAGCAACCAAACCACAATTGACGTGGACCGAAGAAATTCAACCGGTTCAATCAGGTCTGG TTCAAGCCAACGAGTTCAGCAAAGTGAATGGATATTCCCAAAGCATGAACCAAGATAGCA TGTTCAACAAATCAGCAACCAACCCGCGATTGACATGGAACGAATTACTTCAACCGGTTC AATCAGATCTGGTTCAATCCAATGAGTTTAGCCAATTCAGTGACTATTCTCAAATCATGA ACGAAGATAACATGTTCAACAAAGCAGCAAAGAAACCGCGGATGACATGGAGTGAAGTAT TTCAACCGGTTCAATCACATCTGGTTCCGACTGACGGTTTAGACCGAGACCACTTTGATT CACGGAAGCCGCGGATGACGTGGACCGAAGAGCTTCACCAAAAATTTCTGGAAGCCATCG AAATAATTGGTGGTATCGAAAAAGCTAACCCAAAGGTACTTGTCGAATGCTTGCAAGAAA TGAGGATAGAAGGAATTACTAGAAGCAATGTGGCAAGTCATCTTCAGAAACACCGTATCA ATCTTGAAGAAACCAAATTCCTCAACAAACACAAGGGAATGGTTGGGCCACTGCGTATG GTACACTAGCTCCCTCTCCCAAGGTTCAGACAATGTCAACACAACAATACCATCGTACC TTATGAATGGTCCAGCCACTTTGAACCAAATCCAGCAGAATCAATATCAAAATGGTTTCT TGACAATGAACAACCAGATCATAACCAATCCTCCGCCTCCTTTGCCCTATTTGGACC ATCATCACCAACAGCAACATCAGTCTTCTCCTCAATTTAATTACCTGATGAACAATGAAG AACTTCTTCAAGCCTCTGGCCTCTCTGCGACAGATCTTGAACTCACTTATCCAAGTTTAC CATATGATCCACAGAGTATCTAATCAATGGCTACAATTATAATTAGTCATATAGCCCTT CTCTTTACTTAAGGCAGTCTATGTATGACAAATAATATGCGACTTCCCTTGTGAGTCACA ATATTGTTTCATTATTC

>G2430 Amino Acid Sequence (domain in AA coordinates:425-478)
MLVGKISGYEDNTRSLERETSEITSLLSQFPGNTNVLVVDTNFTTLLNMKQIMKQYAYQV
SIETDAEKALAFLTSCKHEINIVIWDFHMPGIDGLQALKSITSKLDLPVVIMSDDNQTES
VMKATFYGACDYVVKPVKEEVMANIWQHIVRKRLIFKPDVAPPVQSDPARSDRLDQVKAD
FKIVEDEPIINETPLITWTEEIQPVQSDLVQANKFDQVNGYSPIMNQDNMFNKAPPKPRM
TWTEVIQPVQSNLVQTKEFGQLNDYSQIMNQDSMYNKAATKPQLTWTEEIQPVQSGLVQA
NEFSKVNGYSQSMNQDSMFNKSATNPRLTWNELLQPVQSDLVQSNEFSQFSDYSQIMNED
NMFNKAAKKPRMTWSEVFQPVQSHLVPTDGLDRDHFDSITINGGNGIQNMEKKQGKKPRK
PRMTWTEELHQKFLEAIEIIGGIEKANPKVLVECLQEMRIEGITRSNVASHLQKHRINLE
ENQIPQQTQGNGWATAYGTLAPSLQGSDNVNTTIPSYLMNGPATLNQIQQNQYQNGFLTM
NNNQIITNPPPPLPYLDHHHQQQHQSSPQFNYLMNNEELLQASGLSATDLELTYPSLPYD
PQEYLINGYNYN*

>G2517 (66..899)

>G2517 Amino Acid Sequence (domain in AA coordinates: TBD)
MENVGVGMPFYDLGQTRVYPLLSDFHDLSAERYPVGFMDLLGVHRHTPTHTPLMHFPTTP
MSSSSEAVNGDDEEEEDGEEQQHKTKKRFKFTKMSRKQTKKKVPKVSFITRSEVLHLDDG
YKWRKYGQKPVKDSPFPRNYYRCTTTWCDVKKRVERSFSDPSSVITTYEGQHTHPRPLLI
MPKEGSSPSNGSASRAHIGLPTLPPQLLDYNNQQQQAPSSFGTEYINRQEKGINHDDDDD
HVVKKSRTRDLLDGAGLVKDHGLLQDVVPSHIIKEEY*

>G2521 (103..768)

ATTCTCCACAATTTCATAACTTTCTTCCGCTCAACTTCAGATAAATTCGGATTCTGTAGC TCTTTCAATACGACTGCGGAGATCAGAGCCAATTATTTGGTTATGGCGTCTCTGATCTCA GCTTCATCCGCCGCATCGTCTCGTTCAAGCGCATCTTCCGTCTCCGGTGAGATTCACGCG CGATGGCGATCGGAGAAGCAACAACGGATCTACTCAGCCAAACTGTTCCAAGCGCTCCAA CAAGTCCGCCTCAACTCTTCCGCCTCAACATCATCTCCCAACGGCTCAGAAACGAGGA AAGGCCGTCCGTGAAGCCGCCGATCGAGCTCTTGCCGTTTCCGCTCGGGGAAGAACACTC TGGAGCAGAGCGATCTTAGCTAATCGGATCAAACTGAAATTTCGTAAACAGAGACGTCCT CGAGCTACGATGCCGATTCCGGCCATGACTACGGTGGTTAGTAGCAGCAGCAACAGATCG AGAAAACGGAGAGTGTCGGTGTTGAGATTGAATAAGAAGAGTATACCGGATGTTAACCGG AAAGTACGTGTTCTAGGCCGGTTAGTTCCCGGTTGCGGTAAACAATCCGTACCGGTGATT CTAGAAGAAGCAACTGATTATATTCAGGCTCTGGAGATGCAAGTGAGAGCCCATGAACTCT TTAGTTCAGCTTCTCCTCCTACGGCTCAGCTCCTCCACCGATTTGATGAGGTTAAAAT CGTCTTTTAATTCTACCATCTCTCGATCTTTCACAGCTTATGTGTATATAGAAGATTCG GTTTGATTATATCTGTAACTACTCTTCCCAACCGCTGATTCTTCTCTGCTACAAGTAAA AGTAAATTTTGAACCGAGTCTTCCCATTTTTACGATCCTCAAGTCTAAATTAAGTATATG ATTGATTAATAAAGTCTTTACCATTAGGGTTC

>G2521 Amino Acid Sequence (domain in AA coordinates: 145-213)
MASLISDIEPPTSTTSDLVRRKKRSSASSASSRSSASSVSGEIHARWRSEKQQRIYSAK
LFQALQQVRLNSSASTSSSPTAQKRGKAVREAADRALAVSARGRTLWSRAILANRIKLKF
RKQRRPRATMAIPAMTTVVSSSSNRSRKRRVSVLRLNKKSIPDVNRKVRVLGRLVPGCGK
QSVPVILEEATDYIQALEMQVRAMNSLVQLLSSYGSAPPPI*

>G258 (60..983)

 ${\tt AGTGACCACCTGCTGGTTAATCAACACCAAGAGACCTTGTAATATATAAGTTAGGAAGA}$ TGAGAGAGAGTGGGAAATGAAAAGAGATGAAATGGGACATCGATGTTGTGGAAAACACA AAGTGAAGAGGTCTTTGGTCTCCAGAGGAAGACGAGAAGCTTCTTCGTTATATCACCA CTCATGGTCATCCTAGTTGGAGTTCCGTTCCAAAGCTTGCCGGGTTGCAGAGATGTGGGA AGAGTTGCAGATTAAGGTGGATAAACTATCTAAGGCCTGATCTGAGGAGAGGTTCGTTTA ATGAGGAAGAAGAGCAGATTATCATCGACGTACATCGTATTCTTGGTAACAAATGGGCTC AGATTGCTAAGCACTTACCTGGACGCACTGATAATGAAGTCAAGAACTTTTGGAACTCAT GCATTAAGAAGAACTTCTTTCTCAAGGCTTAGATCCTTCTACACATAATCTTATGCCTT CCATCATGAAGAACCCTACTGATCTTGATCAATCAACCACTGCTTTTTCAATCACAAACA TCAATCCACCACTTCACTAAACCAAACAAACTTAAATCTCCTAACCAGACTACAATCC CATCTCAAACCGTGATCCCTATCAATGATAACATGTCAAGTACTCAAACCATGATCCCTA TCAATGATCCCATGTCAAGTCTTTTAGATGATGAGAATATGATTCCTCACTGGTCAGATG TTGATGGAATGGCGATCCACGAAGCTCCGATGTTGCCTAGTGATAAGGCAGTAGTGGGAG TGGATGATGATCTCAACATGGACATTTTGTTTAACACTCCTTCTTCTTCTGCTTTTG ATCCTGATTTTGCTTCCATTTTCTCCTCTGCAATGTCTATCGATTTCAATCCCATGGATG ATCTTGGCAGCTGGACCTTTTAGCTTTTACTCTACAGC

>G258 Amino Acid Sequence (domain in AA coordinates: 24-124) MREKWEMKRDEMGHRCCGKHKVKRGLWSPEEDEKLLRYITTHGHPSWSSVPKLAGLQRCG KSCRLRWINYLRPDLRRGSFNEEEEQIIIDVHRILGNKWAQIAKHLPGRTDNEVKNFWNS

CIKKKLLSQGLDPSTHNLMPSHKRSSSSNNNNIPKPNKTTSIMKNPTDLDQSTTAFSITN INPPTSTKPNKLKSPNQTTIPSQTVIPINDNMSSTQTMIPINDPMSSLLDDENMIPHWSD VDGMAIHEAPMLPSDKAVVGVDDDDLNMDILFNTPSSSAFDPDFASIFSSAMSIDFNPMD DLGSWTF*

>G280 (108..722)

AAGTTAATATGAGAATAATGAGAAAACCACTTTCCCAAATTGCTTTTTAAAATCCCTCCT CACACAGATTCCTTCCTTCATCACCTCACACACTCTCTACGCTTGACATGGCCTTCGATC TCCACCATGGCTCAGCTTCAGATACGCATTCATCAGAACTTCCGTCGTTTTCTCTCCCAC CTTATCCTCAGATGATAATGGAAGCGATTGAGTCCTTGAACGATAAGAACGGCTGCAACA AAACGACGATTGCTAAGCACATCGAGTCGACTCAACAAACTCTACCGCCGTCACACATGA CGCTGCTCAGCTACCATCTCAACCAGATGAAGAAAACCGGTCAGCTAATCATGGTGAAGA ACAATTATATGAAACCAGATCCAGATGCTCCTCCTAAGCGTGGTCGTGGCCGTCCTCCGA AGCAGAAGACTCAGGCCGAATCTGACGCCGCTGCTGCTGCTGTTGTTGCTGCCACCGTCG TCTCTACAGATCCGCCTAGATCTCGTGGCCGTCCACCGAAGCCGAAAGATCCATCGGAGC CTCCCCAGGAGAAGGTCATTACCGGATCTGGAAGGCCACGAGGACGACCACCGAAGAGAC CGAGAACAGATTCGGAGACGGTTGCTGCGCCGGAACCGGCAGCTCAGGCGACAGGTGAGC GTAGGGGACGTGGGAGCCTCCGAAGGTGAAGCCGACGGTGGTTGCTCCGGTTGGGTGCT GAATTAATCGGTACTTATGCAATTTCGGAATCTTTAGTTACTGAAAAATGGAATCTCTTA TGGATTGTAAACTTTAGAATTTGTGTGTGTGTTGTTGCTTAGTCCTGAGATAAGATATAA CATTAGCGACTGTGTATTATTATTATTACTGCATTGTGTATGTGAAACTTTGTTCTCTT СТТСААААААААААААААААА

>G280 Amino Acid Sequence (domain in AA coordinates: 97-104,130-137-155-162,185-

MAFDLHHGSASDTHSSELPSFSLPPYPQMIMEAIESLNDKNGCNKTTIAKHIESTQQTLP PSHMTLLSYHLNQMKKTGQLIMVKNNYMKPDPDAPPKRGRGRPPKQKTQAESDAAAAAVV AATVVSTDPPRSRGRPPKPKDPSEPPQEKVITGSGRPRGRPPKRPRTDSETVAAPEPAAQ ATGERRGRGRPPKVKPTVVAPVGC*

>G3 (16..477)

GTTTGTCTTTTATCAATGGAAAGAGAACAAGAAGAGTCTACGATGAGAAAGAGAAGGCAG CCACCTCAAGAAGAAGTGCCTAACCACGTGGCTACAAGGAAGCCGTACAGAGGGATACGG AGGAGGAAGTGGGCAAGTGGGTGGCTGAGATTCGTGAGCCTAACAAACGCTCACGGCTT TGGCTTGGCTCTTACACAACCGATATCGCCGCCGCTAGAGCCTACGACGTGGCCGTCTTC TACCTCCGTGGCCCCTCCGCACGTCTCAACTTCCCTGATCTTCTCTTGCAAGAAGAGGAC CATCTCTCAGCCGCCACCACCGCTGACATGCCCGCAGCTCTTATAAGGGAAAAAGCGGCG GAGGTCGGCGCCAGAGTCGACGCTCTTCTAGCTTCTGCCGCTCCTTCGATGGCTCACTCC ACTCCGCCGGTAATAAAACCCGACTTGAATCAAATACCCGAATCCGGAGATATATAGTCA CATAGATACTGGAAAATATAGGTATGTATACATTCATAAATTATCTTATGTATCAAAGAA TTTTATAGATTCTGATTAGCTTTTTGTTTTTGTTTTTGATAAGAACTCTGATTAGTTGTC CGGAGACAAAACCGGCTAAGAGCAATCCATGAGAAGCTAGCGAGTGTTTTTTAGTTCAAG TTGTAATATAAATGCATATTAATTCTTTAGTAATTTTGT

>G3 Amino Acid Sequence (domain in AA coordinates: 28-95) MEREQEESTMRKRRQPPQEEVPNHVATRKPYRGIRRRKWGKWVAEIREPNKRSRLWLGSY TTDIAAARAYDVAVFYLRGPSARLNFPDLLLQEEDHLSAATTADMPAALIREKAAEVGAR VDALLASAAPSMAHSTPPVIKPDLNQIPESGDI*

>G343 (1..795)

ATGGACGTCTATGGETTATCTTCACCAGACTTACTTCGAATCGACGACCTTCTTGATTTC TCCAACGAAGACATCTTCTCCGCTTCTTCTTCCGGTGGTTCCACCGCCGCTACTTCCTCT TCTTCTTTCCCTCCTCCTCAAAACCCTAGTTTCCACCACCACCATCTCCCTTCCTCCGCC GATCATCACTCCTTCCTCCACGACATTTGCGTTCCCAGTGATGACGCAGCTCATCTTGAA TGGCTTTCGCAATTCGTGGACGATTCTTTCGCTGATTTTCCGGCGAATCCATTAGGAGGA ACTATGACTTCTGTCAAAACTGAAACTTCCTTTCCGGGGAAACCAAGAAGCAAACGATCA AGAGCTCCTGCTCCTTTCGCCGGAACATGGTCTCCGATGCCACTGGAATCCGAGCATCAG CAGCTTCACTCCGCCGCCAAATTCAAGCCAAAGAAAGAACAATCCGGCGGAGGAGGAGGA GGAGGAGGAAGACATCAGTCATCGTCATCGGAGACTACGGAAGGAGGAGGAATGAGGAGA TGTACTCACTGTGCATCGGAGAAAACGCCACAGTGGAGGACAGGACCACTTGGACCTAAA

>G343 Amino Acid Sequence (domain in AA coordinates: 178-214)
MDVYGLSSPDLLRIDDLLDFSNEDIFSASSSGGSTAATSSSSFPPPQNPSFHHHHLPSSA
DHHSFLHDICVPSDDAAHLEWLSQFVDDSFADFPANPLGGTMTSVKTETSFPGKPRSKRS
RAPAPFAGTWSPMPLESEHQQLHSAAKFKPKKEQSGGGGGGGGRHQSSSSETTEGGGMRR
CTHCASEKTPQWRTGPLGPKTLCNACGVRFKSGRLVPEYRPASSPTFVLTQHSNSHRKVM
ELRRQKEVMRQPQQVQLHHHHHPF*

>G363 (1..780)

ATGAGACCAATATTAGACCTCGAAATTGAAGCTTCATCGGGCAGTAGTAGCAGCCAAGTG GCCTCAAACTTGTCTCCGGTTGGGGAAGATTACAAACCAATCTCGCTGAATCTTAGCCTC AGTTTCAACAACAACAACAACAATAATCTGGATCTTGAATCATCGTCTTTGACGCTGCCA CTTTCGAGCACGAGTGAGAGTAGTAACCCGGAGCAGCAGCAGCAACAACAACCATCTGTA TCAAAGAGAGTCTTCTCTTGTAACTACTGCCAAAGGAAGTTCTATAGCTCTCAAGCGCTA GGTGGTCACCAAAACGCTCACAAACGTGAGAGAACACTCGCCAAACGCGCTATGCTATGG GTCTTGCTGGGGTCTTCCCCGGTAGAGGATCAAGTAGCAATTATGCGGCTGCTGCCACAG CAGCCGCTCTCGTGTTTGCCGCTTCACGGAAGCGGAAACGGGAACATGACATCGTTCAGG ACTTTGGGAATCCGGGCACATTCCTCGGCGCACGACGTCAGCATGACAAGGCAGACACCA GAAACACTTATTAGAAACATTGCCAGGTTCAACCAGGGGTATTTCGGTAATTGTATACCT TTTTACGTGGAGGACGACGAGGCCGAGATGCTCTGGCCGGGGAGTTTCCGGCAAGCTACG GACGTCAAGCAAGCGATGGATATGGAAAGTTCTCTTCCAGATCTAACCTTGAAGCTTTGA >G363 Amino Acid Sequence (domain in AA coordinates: 87-108) MRPILDLEIEASSGSSSSQVASNLSPVGEDYKPISLNLSLSFNNNNNNNLDLESSSLTLP LSSTSESSNPEQQQQQPSVSKRVFSCNYCQRKFYSSQALGGHQNAHKRERTLAKRAMLW VLLGSSPVEDQVAIMRLLPQQPLSCLPLHGSGNGNMTSFRTLGIRAHSSAHDVSMTRQTP ETLIRNIARFNQGYFGNCIPFYVEDDEAEMLWPGSFRQATNAVAVEAGNDNLGERKMDFL DVKQAMDMESSLPDLTLKL*

>G370 (1..774)

ATGGACGAAACCAACGGACGAAGAGAAACTCACGATTTCATGAACGTCAACGTTGAATCC
TTCTCTCAGCTTCCTTTCATCCGCCGTACTCCTCCCAAAGAAAAAGCCGCCATTATTCGT
CTCTTCGGCCAAGAGCTCGTCGGTGATAACTCCGACAACTTATCCGCCAGAACCTTCTGAT
CATCAAACCACTACCAAGAACGATGAGAGCTCTGAGAATATCAAGGACAAAGACAAAGAA
AAAGATAAGGACAAAGACAAAGATAACAACAACAACAGGAGATTCGAGTGTCACTACTGC
TTCAGAAACTTCCCAACTTCTCAAGCCCTAGGTGGACATCAAAACGCTCACAAACGTGAA
CGTCAACACGCCAAACGGGGTTCCATGACATCATCATCATCATCATCATCATCATCATGAC
CCTCACCACATCTACGGCTTCCTCAACAACCACCACCACCGTCACTATCCGTCTTGGACG
ACGGAAGCTAGATCATACTACGGCGGAGGGGGACATCAAACGCCGTCGTACTACTCAAGG
AATACTCTTGCTCCTCCTTCTTCTAACCCACCGACAATCAACGGAAGTCCTTTAGGTTTG
TGGCGTGTACCGCCTTCCACGTCAACAAATACTATTCAAGGCGTTTACTCATCTCACCA
GCTTCAGCGTTTAGGTCGCATGAGCAAGAGACTAATAAGGAGCCTAATAACTGGCCGTAC
AGATTGATGAAACCCAATGTGCAAGATCATGTGAGTCTCCATCTTCACCA

>G370 Amino Acid Sequence (domain in aa coordinates: 97-117)
MDETNGRRETHDFMNVNVESFSQLPFIRRTPPKEKAAIIRLFGQELVGDNSDNLSAEPSD
HQTTTKNDESSENIKDKDKEKDKDKDKDNNNNRRFECHYCFRNFPTSQALGGHQNAHKRE
RQHAKRGSMTSYLHHHQPHDPHHIYGFLNNHHHRHYPSWTTEARSYYGGGGHQTPSYYSR
NTLAPPSSNPPTINGSPLGLWRVPPSTSTNTIQGVYSSSPASAFRSHEQETNKEPNNWPY
RLMKPNVQDHVSLDLHL*

>G385 (37..2202)

TAGGGTTTGCTTTCAGTTTCCGGAGTATAAGAAAAGATGTTCGAGCCAAATATGCTGCTT GCGGCTATGAACAACGCAGACAGCAATAACCACAACTACAACCACGAAGACAACAATAAT GAAGGATTTCTTCGGGACGATGAATTCGACAGTCCGAATACTAAATCGGGAAGTGAGAAT CAAGAAGGAGGATCAGGAAACGACCAAGATCCTCTTCATCCTAACAAGAAGAAACGATAT CATCGACACACCCAACTTCAGATCCAGGAGATGGAAGCGTTCTTCAAAGAGTGTCCTCAC CCAGATGACAAGCAAAGGAAACAGCTAAGCCGTGAATTGAATTTGGAACCTCTTCAGGTC

AAATTCTGGTTCCAAAACAAACGTACCCAAATGAAGAATCATCACGAGCGGCATGAGAAC TCACATCTTCGGGCGAGAACGAAAAGCTTCGAAACGACAACCTAAGATATCGAGAGGCT CTTGCAAATGCTTCGTGTCCTAATTGTGGTGGTCCAACAGCTATCGGAGAAATGTCATTC GACGAACACCAACTCCGTCTCGAAAATGCTCGATTAAGGGAAGAGATCGACCGTATATCC GCAATCGCAGCTAAATACGTAGGCAAGCCAGTCTCAAACTATCCACTTATGTCTCCTCCT CCTCTTCCTCCACGTCCACTAGAACTCGCCATGGGAAATATTGGAGGAGAAGCTTATGGA AACAATCCAAACGATCTCCTTAAGTCCATCACTGCACCAACAGAATCTGACAAACCTGTC ATCATCGACTTATCCGTGGCTGCAATGGAAGAGCTCATGAGGATGGTTCAAGTAGACGAG CCTCTGTGGAAGAGTTTGGCTTTAGACGAAGAAGAATATGCAAGGACCTTTCCTAGAGGG ATCGGACCTAGACCGGCTGGATATAGATCAGAAGCTTCGCGAGAAAGCGCGGTTGTGATC ATGAATCATGTTAACATCGTTGAGATTCTCATGGATGTGAATCAATGGTCGACGATTTTC GCGGGGATGGTTTCTAGAGCAATGACATTAGCGGTTTTATCGACAGGAGTTGCAGGAAAC TATAATGGAGCTCTTCAAGTGATGAGCGCAGAGTTTCAAGTTCCATCTCCATTAGTCCCA ACACGTGAAACCTATTTCGCACGTTACTGTAAACAACAAGGAGATGGTTCGTGGGCGGTT GTCGATATTTCGTTGGATAGTCTCCAACCAAATCCCCCGGCTAGATGCAGGCGGCGAGCT TCAGGATGTTTGATTCAAGAATTGCCAAATGGATATTCTAAGGTGACTTGGGTGGAGCAT GTGGAAGTTGATGACAGAGGAGTTCATAACTTATACAAACACATGGTTAGTACTGGTCAT GCCTTCGGTGCTAAACGCTGGGTAGCCATTCTTGACCGCCAATGCGAGCGGTTAGCTAGT TCAACCGCTCACACGTGGACTACATTGTCCGGTACAGGAGCTGAAGATGTTAGAGTGATG ACTAGGAAGAGTGTGGATGATCCAGGAAGGTCTCCTGGTATTGTTCTTAGTGCAGCCACT TCTTTTTGGATCCCTGTTCCTCCAAAGCGAGTCTTTGACTTCCTCAGAGACGAGAATTCA AGAAATGAGTGGGATATTCTGTCTAATGGAGGAGTTGTGCAAGAAATGGCACATATTGCT AACGGGAGGGATACCGGAAACTGTGTTTCTCTTCTTCGGGTAAATAGTGCAAACTCTAGC CAGAGCAATATGCTGATCCTACAAGAGAGCTGCATTGATCCTACAGCTTCCTTTGTGATC TATGCTCCAGTCGATATTGTAGCTATGAACATAGTGCTTAATGGAGGTGATCCAGACTAT GTGGCTCTGCTTCCATCAGGTTTTGCTATTCTTCCTGATGGTAATGCCAATAGTGGAGCC ${\tt CCTGGAGGAGATGGAGGTCGCTCTTGACTGTTGCTTTTCAGATTCTGGTTGACTCAGTT}$ CCTACGGCTAAGCTGTCTCTTGGCTCTGTTGCAACTGTCAATAATCTAATAGCTTGCACT >G385 Amino Acid Sequence (domain in AA coordinates: 60-123) MFEPNMLLAAMNNADSNNHNYNHEDNNNEGFLRDDEFDSPNTKSGSENQEGGSGNDQDPL HPNKKKRYHRHTQLQIQEMEAFFKECPHPDDKQRKQLSRELNLEPLQVKFWFQNKRTQMK NHHERHENSHLRAENEKLRNDNLRYREALANASCPNCGGPTAIGEMSFDEHQLRLENARL REEIDRISAIAAKYVGKPVSNYPLMSPPPLPPRPLELAMGNIGGEAYGNNPNDLLKSITA PTESDKPVIIDLSVAAMEELMRMVQVDEPLWKSLALDEEEYARTFPRGIGPRPAGYRSEA SRESAVVIMNHVNIVEILMDVNQWSTIFAGMVSRAMTLAVLSTGVAGNYNGALQVMSAEF QVPSPLVPTRETYFARYCKQQGDGSWAVVDISLDSLQPNPPARCRRASGCLIQELPNGY SKYTWYEHYEVDDRGVHNLYKHMYSTGHAFGAKRWYAILDRQCERLASVMATNISSGEVG VITNQEGRRSMLKLAERMVISFCAGVSASTAHTWTTLSGTGAEDVRVMTRKSVDDPGRSP GIVLSAATSFWIPVPPKRVFDFLRDENSRNEWDILSNGGVVQEMAHIANGRDTGNCVSLL RVNSANSSQSNMLILQESCIDPTASFVIYAPVDIVAMNIVLNGGDPDYVALLPSGFAILP DGNANSGAPGGDGGSLLTVAFQILVDSVPTAKLSLGSVATVNNLIACTVERIKASMSCET

>G439 (128..967)

>G439 Amino Acid Sequence (domain in AA coordinates: 110-177)
MAMALNMNAYVDEFMEALEPFMKVTSSSSTSNSSNPKPLTPNFIPNNDQVLPVSNQTGPI
GLNQLTPTQILQIQTELHLRQNQSRRRAGSHLLTAKPTSMKKIDVATKPVKLYRGVRQRQ
WGKWVAEIRLPKNRTRLWLGTFETAQEAALAYDQAAHKIRGDNARLNFPDIVRQGHYKQI
LSPSINAKIESICNSSDLPLPQIEKQNKTEEVLSGFSKPEKEPEFGEIYGCGYSGSSPES
DITLLDFSSDCVKEDESFLMGLHKYPSLEIDWDAIEKLF*

>G440 (237..1301)

TCTTGTTACCAAAAAATCTCGTGATAAATCTCTTCAAACTTTGTTTTATTTTCTTCTTGA TTCTCTCGAAATCTCTCTCAACAAACCCAGAAACTTTCCTTGATTCGCAAGCTTTTCTTC CTTTTATATTCTTCATTTTGATGCGAATATAGAGAGAGTCCATAAAAGAAACAGTAATGG ACGAATATATTGATTTCCGACCATTGAAGTACACAGAGCACAAGACTTCAATGACTAAAT ACACCAAAAAGTCATCGGAAAAACTTTCCGGTGGTAAGTCATTGAAAAAGGTTAGTATTT GTTATACTGATCCTGACGCAACAGATTCATCAAGTGACGAAGACGAAGAAGATTTCTTGT TTCCTCGCCGGAGAGTCAAAAGATTCGTTAACGAGATCACTGTTGAGCCTAGCTGTAACA ACGTCGTCACCGGAGTTTCGATGAAAGATAGAAAGAGACTCTCTTCTTCCTCCGATGAAA CTCAATCTCCGGCGTCGAGTCGTCAACGTCCTAATAACAAAGTTTCAGTCTCCGGTCAGA TAAAGAAGTTCCGTGGTGTTAGACAACGGCCATGGGGGAAATGGGCGGCGGAGATTAGAG ATCCGGAGCAACGTCGGAGGATTTGGCTCGGGACTTTTGAGACGGCGGAGGAAGCTGCCG ${\tt TGGTTTATGATAACGCCGCTATAAGACTCCGTGGACCGGACGCTTTAACTAATTTCTCCA}$ TACCGCCTCAAGAAGAGGAAGAAGAAGAACCGGAACCGGTTATTGAGGAGAAACCGG TTATTATGACGACGCCAACACCAACAACATCGAGTTCTGAATCAACTGAAGAAGATTTAC AACATCTCTCATCTCCTACTTCGGTTCTCAATCACCGGTCAGAAGAGATTCAACAAGTAC AACAACCGTTTAAATCAGCTAAACCCGAACCGGGGGTTTCAAATGCACCATGGTGGCATA CCGGGTTTAATACCGGTTTAGGTGAATCAGACGATTCATTTCCTTTTGGATACTCCGTTTC AAATTTTCTGTGAAAATGATGATATCTTCAATGATATGTTGTTCTTGGGTGGTGAAACTA TGAACATTGAAGATGAGTTAACAAGTTCTAGTATCAAAGATATGGGTTCAACGTTTAGTG ATTTTGATGATTCATTGATATCAGATCTATTAGTTGCTTAATATGATGATGAGAGTGAAG AAGAAACCATCAAGCAAATATCTATGGTGTGACTGAAAAATTTTGGTGTTACTTTTTTT

>G440 Amino Acid Sequence (domain in AA coordinates: 122-189)
MDEYIDFRPLKYTEHKTSMTKYTKKSSEKLSGGKSLKKVSICYTDPDATDSSSDEDEEDF
LFPRRVKRFVNEITVEPSCNNVVTGVSMKDRKRLSSSSDETQSPASSRQRPNNKVSVSG
QIKKFRGVRQRPWGKWAAEIRDPEQRRRIWLGTFETAEEAAVVYDNAAIRLRGPDALTNF
SIPPQEEEEEEPEPVIEEKPVIMTTPTPTTSSSESTEEDLQHLSSPTSVLNHRSEEIQQ
VQQPFKSAKPEPGVSNAPWWHTGFNTGLGESDDSPPLDTPFLDNYFNESPPEMSIFDQPM
DQIFCENDDIFNDMLFLGGETMNIEDELTSSSIKDMGSTFSDFDDSLISDLLVA*
>G5 (417..1421)

CAGCTGCTATGAATTTGTACACTTGTAGCAGATCGTTTCAAGACTCTGGTGGTGAACTCA TGGACGCGCTTGTACCTTTTATCAAAAGCGTTTCCGATTCTCCTTCTTCTTCTTCTGCAG ACCCGGATTCAACGTTCTTGACCCAACCGTTTTCATACGGGTCGGATCTTCAACAAACCG GGTCATTAATCGGACTCAACAACCTCTCTTCTTCTCAGATCCACCAGATCCAGTCTCAGA TCCATCATCCTCTCCGACGCATCACAACAACAACACTCTTTCTCGAATCTTCTCA GCCCAAAGCCGTTACTGATGAAGCAATCTGGAGTCGCTGGATCTTGTTTCGCTTACGGTT CAGGTGTTCCTTCGAAGCCGACGAAGCTTTACAGAGGTGTGAGGCAACGTCACTGGGGAA AATGGGTGGCTGAGATCCGTTTGCCGAGAAATCGGACTCGTCTCTGGCTTGGGACTTTTG ACACGGCGGAGGAAGCTGCGTTGGCCTATGATAAGGCGGCGTACAAGCTGCGCGGCGATT TCGCCCGGCTTAACTTCCCTAACCTACGTCATAACGGATTTCACATCGGAGGCGATTTCG GTGAATATAAACCTCTTCACTCCTCAGTCGACGCTAAGCTTGAAGCTATTTGTAAAAGCA TGGCGGAGACTCAGAAACAGGACAAATCGACGAAATCATCGAAGAAACGTGAGAAGAAGG TTTCGTCGCCAGATCTATCGGAGAAAGTGAAGGCGGAGGAGAATTCGGTTTCGATCGGTG GATCTCCACCGGTGACGGAGTTTGAAGAGTCCACCGCTGGATCTTCGCCGTTGTCGGACT TGACGTTCGCTGACCCGGAGGAGCCGCCGCAGTGGAACGAGACGTTCTCGTTGGAGAAGT ATCCGTCGTACGAGATCGATTGGGATTCGATTCTAGCTTAGGGGCAAAATAGGAAATTCA ATGGATTAGTGTTAAATTTCGTATGTTAATATTTGTATTATGGTTTTGTATTAGTCTCTCT GTGTCGGTCCAGCTTGCGGTTTTTTGTCAGGCTCGACCATGCCACAGTTTTCATTTTATG ATTTTATTATGATTATGTG

>G5 Amino Acid Sequence (domain in AA coordinates: 149-216)
MAAAMNLYTCSRSFQDSGELMDALVPFIKSVSDSPSSSSAASASAFLHPSAFSLPPLPG
YYPDSTFLTQPFSYGSDLQQTGSLIGLNNLSSSQIHQIQSQIHHPLPPTHHNNNNSFSNL
LSPKPLLMKQSGVAGSCFAYGSGVPSKPTKLYRGVRQRHWGKWVAEIRLPRNRTRLWLGT
FDTAEEAALAYDKAAYKLRGDFARLNFPNLRHNGFHIGGDFGEYKPLHSSVDAKLEAICK
SMAETQKQDKSTKSSKKREKKVSSPDLSEKVKAEENSVSIGGSPPVTEFEESTAGSSPLS
DLTFADPEEPPQWNETFSLEKYPSYEIDWDSILA*

>G550 (1..1374)

ATGGCTGATCCGGCGATTAAGCTCTTTGGAAAGACGATTCCTTTACCTGAGCTTGGTGTT GTTGATTCTTCTAGCTATACCGGATTTTTAACCGAAACTCAGATTCCTGTTCGGTTA TCAGATTCGTGTACCGGCGATGATGATGATGAGAGAGGGTGATTCCGGTTTAGGACGA ACATCGGGTATAACTGAAAAAACGGAAACAACAAAAGCTGCAAAGACGAATGAAGAGTCA GGTGGTACTGCTCTCAAGAGGGGAAGTTAAAGAAACCTGATAAGATTCTACCGTGT ${\tt CCGCGATGTAACAGCATGGAAACCAAGTTCTGTTACTACAACAACTATAATGTTAACCAA}$ CCTCGCCATTTCTGCAAGAAATGTCAGAGATATTGGACAGCTGGTGGAACGATGAGGAAT GTTCCGGTTGGTGCTGGGAGACGTAAGAATAAGAGTCCAGCTTCTCATTATAACCGTCAT GTAAGTATAACATCTGCGGAAGCTATGCAGAAGGTGGCGAGAACTGATCTTCAACATCCT AATGGTGCAAATCTTCTCACTTTTGGCTCTGATTCTGTGCTTTGTGAATCTATGGCTTCT GGATTGAATCTTGTTGAGAAGTCATTGTTGAAGACACAAACTGTATTGCAAGAACCCAAT GAAGGCTTGAAGATTACGGTTCCGTTAAACCAGACAAACGAAGAAGCTGGAACAGTCAGC ${\tt CCGTTACCAAAAGTTCCATGCTTTCCAGGACCACCAACTTGGCCTTACGCTTGGAAC}$ GGAGTTTCGTGGACGATTTTACCGTTTTACCCTCCACCGGCTTACTGGAGCTGCCCGGGG GTTTCACCGGGGGCATGGAACAGCTTCACATGGATGCCACAACCCAATTCACCATCTGGT TCCAATCCAAATTCTCCTACACTAGGTAAACATTCACGTGACGAGAACGCTGCTGAACCA GGAACCGCTTTTGATGAAACCGAGTCACTTGGTAGGGAGAAAAGCAAACCCGAGAGATGC TTGTGGGTTCCCAAGACGCTGAGGATTGATGATCCAGAGGAAGCTGCTAAAAGTTCCATC TGGGAAACATTAGGGATCAAAAAAGACGAAAATGCGGATACTTTCGGAGCTTTCAGATCA TCAACCAAAGAAAAAGCAGTCTTTCTGAAGGAAGACTTCCGGGAAGAAGACCGGAGTTG . CAAGCGAATCCTGCTGCTCTTTCTAGGTCAGCAAACTTCCATGAGAGCTCATAG

>G550 Amino Acid Sequence (domain in AA coordinates: 134-180)
MADPAIKLFGKTIPLPELGVVDSSSSYTGFLTETQIPVRLSDSCTGDDDEEMGDSGLGR
EEGDDVGDGGGESETDKKEEKDSECQEESLRNESNDVTTTTSGITEKTETTKAAKTNEES
GGTACSQEGKLKKPDKILPCPRCNSMETKFCYYNNYNVNQPRHFCKKCQRYWTAGGTMRN

VPVGAGRRKNKSPASHYNRHVSITSAEAMQKVARTDLQHPNGANLLTFGSDSVLCESMAS GLNLVEKSLLKTQTVLQEPNEGLKITVPLNQTNEEAGTVSPLPKVPCFPGPPPTWPYAWN GVSWTILPFYPPPAYWSCPGVSPGAWNSFTWMPQPNSPSGSNPNSPTLGKHSRDENAAEP GTAFDETESLGREKSKPERCLWVPKTLRIDDPEEAAKSSIWETLGIKKDENADTFGAFRS STKEKSSLSEGRLPGRRPELQANPAALSRSANFHESS*

>G670 (28..1152)

CTGAGGAAAGGGCTTTGGTCTCCTGAAGAAGACGAGAAGCTTCTTACTCACATCACCAAT CACGGCCATGGCTGCTGGAGCTCTGTCCCTAAACTCGCTGGTTTGCAGAGATGTGGGAAG AGTTGTCGACTCGAGCAGATCTGGTACCGCCGACTAAGATGGATCAATTACTTGAGACCT GATTTAAAGAGAGGAGCTTTTTCTCCTGAAGAAGAATCTCATCGTCGAACTTCATGCC GTCCTTGGAAACAGATGGTCACAGATTGCGTCAAGGCTTCCGGGTAGAACCGACAACGAG ATCAAGAATCTATGGAACTCAAGCATCAAGAAGAAACTGAAACAAGAGGCATTGACCCA **AACACACAGGCCCATCTCTGAAGTGGAGAGTTTTAGCGACAAAGACAAACCAACAACA** AGCAACAACAAAAGAAGCGGTAACGATCACAAGTCTCCTAGTTCCTCTTCTGCGACTAAC CAAGACTTCTTCCTCGAAAGGCCATCTGATTTATCCGACTACTTCGGATTTCAGAAGCTT AACTTCAACTCCAATCTAGGACTCTCTGTTACAACTGATTCTTCACTCTGCTCGATGATT CCGCCGCAGTTTAGCCCCGGGAACATGGTTGGTTCTGTCCTTCAGACACCAGTATGCGTA AAGCCCTCGATTAGTCTTCCTCCCGACAACAACAGTTCGAGTCCTATCTCCGGAGGAGAT TTCTTCGACAATGCCGGATTCTCATGGTCTATCCCAAATTCTTCTACTTCTTCTTCACAA GTCAAACCAAATCATAACTTCGAAGAAATAAAATGGTCAGAGTATTTGAACACACCGTTC TTCATAGGGAGTACTGTACAGAGTCAAACCTCTCAACCAATCTACATCAAAATCAGAAACA GATTACTTAGCCAATGTTTCAAACATGACAGATCCTTGGAGCCAAAACGAGAACTTGGGC ACAACTGAAACTAGTGACGTGTTCTCCAAGGATCTTCAGAGAATGGCCGTCTCTTTTGGT CAGTCCCTTTAGCTTTTTCTTTCTTTCTTTCTTATTTCTAACAGATGTAGAGAACATAA AGATATACAAATACAATGTCAATACGTACAGTGGATTTAAGTGTTCTGTATATTTC

>G670 Amino Acid Sequence (domain in AA coordinates: 14-122)
MGRHSCCYKQKLRKGLWSPEEDEKLLTHITNHGHGCWSSVPKLAGLQRCGKSCRLEQIWY
RRLRWINYLRPDLKRGAFSPEEENLIVELHAVLGNRWSQIASRLPGRTDNEIKNLWNSSI
KKKLKQRGIDPNTHKPISEVESFSDKDKPTTSNNKRSGNDHKSPSSSSATNQDFFLERPS
DLSDYFGFQKLNFNSNLGLSVTTDSSLCSMIPPQFSPGNMVGSVLQTPVCVKPSISLPPD
NNSSSPISGGDHVKLAAPNWEFQTNNNNTSNFFDNGGFSWSIPNSSTSSSQVKPNHNFEE
IKWSEYLNTPFFIGSTVQSQTSQPIYIKSETDYLANVSNMTDPWSQNENLGTTETSDVFS
KDLQRMAVSFGQSL*

>G760 (175..1878)

ATTCTTTTTTAAAACCCTAATTTTTCAGATATCTGATTATCTCTTGTATTTCTTCTACTC GATTTGCTCCCATAAAAACCCTTACTTTCTTCAAGTTCTGGTTTTCACCGATTGATGGGT CGTGGCTCAGTGACGTCGCTTGCTCCTGGGTTCCGTTTTCACCCGACGGATGAGGAACTT GTTCGCTACTTAAGCGTAAGGTCTGCAACAACCCTTTAAGTTCGATGCTATTTCC GTCACCGACATATACAAGTCTGAGCCTTGGGATCTACCAGATAAGTCGAAGCTGAAAAGT AGAGACTTGGAATGGTACTTCTTTAGTATGCTGGATAAGAAGTACAGTAATGGTTCCAAG ACGAATCGTGCTACGGAGAAAGGGTATTGGAAGACGACTGGGAAAGATCGGGAGATTCGT AATGGTTCAAGAGTCGTTGGGATGAAGAGACACTTGTTTATCACAAGGGTCGAGCTCCT CGTGGTGAAAGGACCAATTGGGTTATGCATGAGTATCGGCTTTCTGATGAGGACTTGAAG AAAGCTGGTGTGCCACAAGAAGCATATGTGTTATGTAGGATATTCCAGAAAAGTGGTACG GGTCCTAAGAATGGGGAGCAGTATGGTGCTCCTTATCTTGAGGAGGAGTGGGAAGAAGAT GGAATGACTTATGTACCTGCTCAAGATGCTTTCAGTGAAGGATTGGCTTTGAATGATGAT GTTTATGTCGATATTGATGACATTGACGAGAAGCCCGAAAATCTGGTGGTCTATGATGCC GTTCCTATTCTACCTAACTATTGTCATGGGGAATCAAGTAACAATGTTGAATCAGGCAAT TACTCAGACTCTGGAAATTACATTCAACCAGGAAACAATGTTGTCGACTCTGGTGGGTAC TTTGAACAACCAATTGAAACTTTTTGAGGAAGATCGGAAGCCTATTATACGGGAGGGTAGC ATTCAGCCTTGTTCTCTGTTTCCAGAGGAACAAATTGGCTGTGGTGTGCAAGACGAAAAT GTGGTGAATCTGGAATCTTCCAACAATAATGTGTTTGTAGCTGATACATGCTACAGTGAC ATTCCTATTGATCATAACTATTTACCCGATGAGCCATTCATGGATCCTAATAACAATCTT

>G760 Amino Acid Sequence (domain in AA coordinates: 12-156)
MGRGSVTSLAPGFRFHPTDEELVRYYLKRKVCNKPFKFDAISVTDIYKSEPWDLPDKSKL
KSRDLEWYFFSMLDKKYSNGSKTNRATEKGYWKTTGKDREIRNGSRVVGMKKTLVYHKGR
APRGERTNWVMHEYRLSDEDLKKAGVPQEAYVLCRIFQKSGTGPKNGEQYGAPYLEEEWE
EDGMTYVPAQDAFSEGLALNDDVYVDIDDIDEKPENLVVYDAVPILPNYCHGESSNNVES
GNYSDSGNYIQPGNNVVDSGGYFEQPIETFEEDRKPIIREGSIQPCSLFPEEQIGCGVQD
ENVVNLESSNNNVFVADTCYSDIPIDHNYLPDEPFMDPNNNLPLNDGLYLETNDLSCAQQ
DDFNFEDYLSFFDDEGLTFDDSLLMGPEDFLPNQEALDQKPAPKELEKEVAGGKEAVEEK
ESGEGSSSKQDTDFKDFDSAPKYPFLKKTSHMLGAIPTPSSFASQFQTKDAMRLHAAQSS
GSVHVTAGMMRISNMTLAADSGMGWSYDKNGNLNVVLSFGVVQQDDAMTASGSKTGITAT
RAMLVFMCLWVLLLSVSFKIVTMVSAR*

>G831 (92..1987)

TTCTTTCATCGTTGTGTCTATTATAAATATATGTCAATTTGGTTTCTAAAAAATTCTACC ATTGATTGATTGATTTTTTTTTTTTTAAGAGATGAATTTATTTACAAGAATCTCATCTCG ${\tt CCTTCTCGGTATTTGGCAAAACACGGCGGTTAATCCACGCGCCCCTTCGATGATTCAGA}$ CGGTACACCGTGCGAGGGATTCACCAGACCTAATTCTACGAAAGATCTCGACTTCGACGC GCATCACAACATTCAAGATCCACCTCCGGTGACGGAAACCGCCGTTAGTTTCCCGTCGTG TGCCGCCGCGTTGAGCGAGCACGCCATGCGAAGACGCGAAGCGATCGTTGAAATTCTC GAGGGAGAGATTGGAGTATAGGCAAAGGCATTGTCCCGAGAGAAAAAATCTTGAAGTG CAGAATTCCGGCGCGCTACGGTTACAAAACGCCGTTCCGATGGCCGGCGAGTCGTGACGT GGCGTGGTTCGCTAATGTGCCTCACACGGAGCTTACGGTTGAGAAAAAGAATCAGAATTG GGTCCGGTACGAGAATGATCGGTTTTGGTTCCCTGGTGGAGGTACGATGTTTCCACGTGG TACAGCCATCGATACCGGTTGCGGGGTGGCTAGCTTCGGTGCATATCTTTTATCAAGAAA CATTACAACGATGTCATTTGCACCAAGAGACACACACGAAGCTCAAGTCCAGTTCGCACT CGAGCGTGGTGTCCCGCGATGATCGGAATCATGGCTACAATCCGCCTACCGTACCCTTC TAGAGCCTTTGATTTAGCACATTGCTCTCGTTGCCTTATTCCGTGGGGCCAAAACGATGG GGCTTACTTGATGGAGGTGGATAGGGTTTTAAGACCAGGAGGGTACTGGATACTTTCTGG ACCGCCGATTAATTGGCAGAAACGGTGGAAAGGGTGGGAACGGACCATGGATGATTTGAA TGCAGAGCAGACTCAGATCGAGCAGGTCGCGAGAAGCTTGTGTTGGAAGAAAGTTGTTCA AAGAGATGATCTTGCTATTTGGCAAAAACCCTTTAACCACATTGACTGTAAGAAAACCAG AGAGGTTTTGAAAAATCCGGAGTTTTGTCGTCATGATCAAGATCCCGACATGGCCTGGTA TACGAAGATGGATTETTGTTTGACACCATTACCTGAAGTTGATGACGCTGAGGATCTAAA GACGGTGGCCGGAGGGAAGGTAGAAAAGTGGCCGGCTAGATTAAACGCGATTCCTCCGAG AGTAAACAAAGGCGCTCTCGAGGAAATCACACCTGAAGCTTTCTTGGAGAACACGAAACT GTGGAAACAGAGGTTTCTTATTACAAGAAGTTAGATTACCAGTTGGGTGAAACCGGGAG ATACAGAAACTTAGTCGACATGAACGCTTACCTCGGTGGATTCGCGGCGCTCTAGCGGA TGATCCGGTCTGGGTCATGAACGTTGTCCCGGTCGAGGCTAAGCTCAATACGCTCGGTGT CATCTACGAGCGTGGTCTAATCGGAACGTATCAAAACTGGTGTGAAGCCATGTCGACGTA TCCAAGAACGTATGATTTTATCCATGCTGACTCGGTTTTCACATTGTACCAAGGTCAATG TGAACCGGAGGAGATATTGTTGGAGATGGACCGAATTCTTAGACCGGGTGGTGGTGAT TATAAGAGATGACGTGGACGTTTTGATCAAGGTTAAGGAATTAACCAAAGGATTAGAATG

>G831 Amino Acid Sequence (domain in AA coordinates: 470-591)
MNLFTRISSRTKKANLYYVTLVALLCIASYLLGIWQNTAVNPRAAFDDSDGTPCEGFTRP
NSTKDLDFDAHHNIQDPPPVTETAVSFPSCAAALSEHTPCEDAKRSLKFSRERLEYRQRH
CPEREEILKCRIPAPYGYKTPFRWPASRDVAWFANVPHTELTVEKKNQNWVRYENDRFWF
PGGGTMFPRGADAYIDDIGRLIDLSDGSIRTAIDTGCGVASFGAYLLSRNITTMSFAPRD
THEAQVQFALERGVPAMIGIMATIRLPYPSRAFDLAHCSRCLIPWGQNDGAYLMEVDRVL
RPGGYWILSGPPINWQKRWKGWERTMDDLNAEQTQIEQVARSLCWKKVVQRDDLAIWQKP
FNHIDCKKTREVLKNPEFCRHDQDPDMAWYTKMDSCLTPLPEVDDAEDLKTVAGGKVEKW
PARLNAIPPRVNKGALEBITPEAFLENTKLWKQRVSYYKKLDYQLGETGRYRNLVDMNAY
LGGFAAALADDPVWVMNVVPVEAKLNTLGVIYERGLIGTYQNWCEAMSTYPRTYDFIHAD
SVFTLYQGQCEPEEILLEMDRILRPGGGVIIRDDVDVLIKVKELTKGLEWEGRIADHEKG
PHEREKIYYAVKOYWTVPAPDEDKNNTSALS*

>G864 (503..1534)

 $\tt CTAGAAAAACCCAAGCAAAGCTTTAACCCCTTCCTCCTAAAAGTAGCATCTTCCTCTT$ TTTCTATTTCTCTTTTCTCTTTATCTCTCTCTCTCTGTGAACGATTCCTTAAGAAT ATAACCAAAAGCCCTTTTCTCCTTTCTTCAACTTTCCGGGAAAAATCTTCACGCAGCAAG TTCGCGTCCTTTAAGAAAACTTTTTCCACCTAGAGAAGAAGAAGAGATATCACTCTTGTTG TTCAAGTTTCTCTCTTTAATAAAAATCCATCTTTATTCTTTGTCTTTCCTTTTTTGC TTTCCCTAATCTCTATGTTATAAACACACAGAGAGAAACAAAGTCACAGTCTCGAGTCAA AAACAGAGAATACGAAAGAAAAATGGAAGCGGAGAAGAAAATGGTTCTACCGAGAATCAA ATTCACAGAGCACAAAACCAACACGACAACAATCGTATCGGAGTTAACCAACACTCACCA AACCAGGATTCTTCGTATCTCAGTCACTGACCCAGACGCTACTGATTCCTCCAGTGACGA CGAAGAAGAACATCAACGCTTTGTCTCTAAACGCCGTCGTGTTAAGAAGTTTGTCAA CGAAGTCTATCTCGATTCCGGTGCTGTTGTTACTGGTAGTTGTGGTCAAATGGAGTCGAA GAAGAGACAAAAGAGAGCGGTTAAATCGGAGTCTACTGTTTCTCCGGTTGTTTCAGCGAC GACGACTACGACGGGAGAGAAGAAGTTCCGAGGAGTGAGACAGCGTCCATGGGGAAAATG GGCGGCGAGATAAGAGATCCGTTGAAACGTGTACGGCTCTGGTTAGGTACTTACAACAC GGCGGAAGAGCTGCTATGGTTTACGATAACGCCGCTATTCAGCTTCGTGGTCCCGACGC TCTGACTAATTTCTCAGTCACTCCGACAACAGCGACGAGAAAAGCCCCCACCACCGTC TCCGGTGAAGAAGAAGAAGAAAAACAACAAAAGCAAAAAATCCGTTACTGCTTCTTC CTCCATCAGCAGAAGCAGCAACGATTGTCTCTGCTCTCCGGTGTCTGTTCTCCGATC TCCTTTCGCCGTCGACGAATTCTCCGGCATTTCTTCATCACCAGTCGCGGCCGTTGTAGT CAAGGAAGAGCCATCCATGACAACGGTATCTGAAACTTTCTCTGATTTCTCGGCGCCCTT GTTCTCAGATGACGTGTTCGATTTCCGGAGCTCAGTGGTTCCCGACTATCTCGGCGG CGATTTATTTGGGGAAGATCTATTCACGGCGGATATGTGTACGGATATGAACTTCGGATT CGATTTCGGATCCGGATTATCCAGCTGGCACATGGAGGACCATTTTCAAGATATCGGGGA TACCGGCCGTTACTAAACGGAACCGGAGAAAGTTTTGTATACCGGTGACATAAAATCTCG ΑΑΑΑΑΑ

>G864 Amino Acid Sequence (domain in AA coordinates: 119-186)
MEAEKKMVLPRIKFTEHKTNTTTIVSELTNTHQTRILRISVTDPDATDSSSDDEEEEHQR
FVSKRRVKKFVNEVYLDSGAVVTGSCGQMESKKRQKRAVKSESTVSPVVSATTTTTGEK
KFRGVRQRPWGKWAAEIRDPLKRVRLWLGTYNTAEEAAMVYDNAAIQLRGPDALTNFSVT
PTTATEKKAPPPSPVKKKKKKNNKSKKSVTASSSISRSSSNDCLCSPVSVLRSPFAVDEF
SGISSSPVAAVVVKEEPSMTTVSETFSDFSAPLFSDDDVFDFRSSVVPDYLGGDLFGEDL
FTADMCTDMNFGFDFGSGLSSWHMEDHFQDIGDLFGSDPLLAV*

>G884 (31..1575)

TTTTTTTTTTTTTTTTTTTTTTTTGGGGATCGATGTCGGAAAAGGAAGAAGCTCCGTCGACA TCGAAGTCCACCGGAGCTCCGTCGCGTCCGACTTTATCTCTTCCTCCACGGCCGTTTAGT

GAGATGTTCTTTAACGGTGGCGTTGGATTCAGTCCTGGTCCGATGACTCTGGTCTCTAAT ATGTTCCCTGATTCCGATGAGTTTAGGTCTTTCTCTCAGCTTCTCGCTGGAGCCATGTCT TCTCCAGCGACTGCAGCTGCTGCTGCTGCGACGGCTAGTGATTACCAGAGACTT GGTGAAGGGACTAATAGCTCTAGTGGTGATGTTGACCCGAGATTCAAGCAAAACAGACCA ACCGGTTTGATGATTTCTCAATCTCAATCGCCGTCGATGTTCACCGTACCGCCTGGTTTA AGTCCAGCTATGTTGCTCGATTCACCAAGCTTTTTGGGTCTTTTCTCTCCCGTTCAGGGA TCATATGGAATGACACATCAGCAAGCTCTAGCTCAAGTCACTGCTCAAGCAGTTCAAGCC TCGGGTCAAGCGCAGATCCCGACCTCGGCTCCACTACCAGCTCAAAGAGAAACCTCAGAT GTAACCATCATAGAGCACAGGTCACAACAGCCTCTAAATGTTGACAAACCAGCTGATGAT GGCTATAACTGGCGAAAATATGGGCAAAAGCAAGTTAAAGGTAGCGAGTTTCCACGAAGC TATTACAAGTGTACTAATCCAGGATGTCCTGTCAAGAAGAAGGTTGAGAGATCTCTTGAT GGACAAGTAACGGAGATTATCTACAAAGGTCAGCACAATCATGAACCTCCTCAAAACACT GGGAGTTCTGAATTGGGGGCATCACAGTTTCAAACTAATAGCTCCAACAAGACTAAGAGA GAGCAACATGAAGCAGTAAGTCAAGCTACGACAACAGAGCACTTGTCTGAGGCAAGTGAC CCCAAGAGAAGAAGTACAGAAGTTCGGATTTCAGAACCAGCTCCTGCTGCTTCACATAGA ACTGTGACAGAGCCTAGAATTATTGTCCAAACGACGAGTGAAGTTGATCTTCTAGATGAT GGATATAGGTGGCGTAAATATGGACAGAAAGTTGTCAAAGGGAATCCTTATCCGAGGAGC GATCCAAAAGCTGTAGTAACAACATATGAAGGAAAACATAACCATGACCTTCCCGCTGCT AAATCAAGCAGCCATGCCGCTGCAGCGGCACAGTTAAGGCCAGATAATCGACCTGGCGGT TTGGCTAACTTAAATCAACAGCAGCAGCAACAGCCCGTTGCGCGGCTAAGGCTTAAAGAA GAGCAAACAACTTGAGAGAAGAAAACTCTTGACCGTTTTTCATTACAAAAGCTTTCAAAT GTTGTAGTTCTTCTATGTTCTGGTGTAAAACTTAAAAGCTTTTTAGGGTTTTCAGATTTC TGTTTACTAATACTGTATGTGAATTCTTTTGTACATGAGGAAGAAAATTACAGGGGGATA TTTTGTGTTGTATCTTTTGTGTTATTGTTTCAGTAAAAGATAGGTCTTACATTTTGTGTA ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

>G884 Amino Acid Sequence (conserved domain in AA coordinates:227-285, 407-465)
MSEKEEAPSTSKSTGAPSRPTLSLPPRPFSEMFFNGGVGFSPGPMTLVSNMFPDSDEFRS
FSQLLAGAMSSPATAAAAAAAATASDYQRLGEGTNSSSGDVDPRFKQNRPTGLMISQSQS
PSMFTVPPGLSPAMLLDSPSFLGLFSPVQGSYGMTHQQALAQVTAQAVQANANMQPQTEY
PPPSQVQSFSSGQAQIPTSAPLPAQRETSDVTIIEHRSQQPLNVDKPADDGYNWRKYGQK
QVKGSEFPRSYYKCTNPGCPVKKKVERSLDGQVTEIIYKGQHNHEPPQNTKRGNKDNTAN
INGSSINNNRGSSELGASQFQTNSSNKTKREQHEAVSQATTTEHLSEASDGEEVGNGETD
VREKDENEPDPKRRSTEVRISEPAPAASHRTVTEPRIIVQTTSEVDLLDDGYRWRKYGQK
VVKGNPYPRSYYKCTTPGCGVRKHVERAATDPKAVVTTYEGKHNHDLPAAKSSSHAAAAA
QLRPDNRPGGLANLNQQQQQQPVARLRLKEEQTT*

>G898 (161..772)

GAAAAAAGATTCAAAAACCCTAGATTTCACAAAATCGATTGGCTGTCAAATTTCTCTCC GGCGATTTTCCTCGAGTGAAATTCGGCTCAAGGTGATTATAGCGATCATCGAATCAAATT GATTGAAGAGGTACAAAGGTTAGTTACTTTGAGCTGAAAGATGAACACGTCAGAGGTGAG TCAAGAAGGGACCTCTGCTTCTGTTAGAACTCTTACGGTGCCTATTACACCGTCTCAGCC TGCTCCTACGATGATGATGTCGATGCTATTGAGGATGATGTTATTGAATCATCCGCTAG TGCTTTTGCTGAAGCTAAAAGCAAATCAAGAAATGCACGTCGGAGACCTTTGATGGTTGA TGTAGAGTCAGGAGGTACGACTAGATTCCCTGCCAACATAAGCAACAAACGCAGAAGGAT TCCTTCTAGTGAATCTGTCATCGACTGTGAGCATGCCTCTGTAAATGATGAAGTCAACAT GTCTTCGAGAGTGTCTAGATCAAAGGCTCCAGCTCCTCCACCAGAAGAGCCAAAGTTTAC ATGTCCAATCTGCATGTGTCCCTTTACGGAGGAGATGTCAACCAAGTGCGGTCACATCTT CTGCAAGGGATGTATAAAGATGGCAATATCTCGCCAGGGCAAATGCCCTACTTGTAGGAA AAAGGTTACTGCAAAAGAGCTGATTCGAGTTTTCCTTCCAACCACTAGATGAGTGGTCCG GCAACATCACCAGCCACCCTGTCTAATGGTTTATCAGACTATCCTCCTATTCACTTTGGA ACATTGAAGGGACTTCGTTGACTTGGTATTTTTGAATATTTTGCTTTGGTAAGAAAA TATTCAGTGATCAAGAAGCCAGAAGGCCCTATCATTCGATGGATATCATTGGTAATAACT

CTTTGTTTTTAGTTGTTCTATGTAATTTAGGTCTCTGCAAACCTCTCAGTCGATACT CTTCTCTCTTGATAGATGATAAGATATATGGAAAAAAAATTAATATTGAATCTTTACTA AAA

>G898 Amino Acid Sequence (domain in AA coordinates: 148-185)
MNTSEVRVPRGNRRRKAVIDLNAVPVDQEGTSASVRTLTVPITPSQPAPTMIDVDAIEDD
VIESSASAFAEAKSKSRNARRRPLMVDVESGGTTRFPANISNKRRRIPSSESVIDCEHAS
VNDEVNMSSRVSRSKAPAPPPEEPKFTCPICMCPFTEEMSTKCGHIFCKGCIKMAISRQG
KCPTCRKKVTAKELIRVFLPTTR*

>G900 (1..648)

>G900 Amino Acid Sequence (domain in AA coordinates: 6-28, 48-74)
MGKKKCELCCGVARMYCESDQASLCWDCDGKVHGANFLVAKHMRCLLCSACQSHTPWKAS
GLNLGPTVSICESCLARKKNNNSSLAGRDQNLNQEEEIIGCNDGAESYDEESDEDEEEEE
VENQVVPAAVEQELPVVSSSSSVSSGEGDQVVKRTRLDLDLNLSDEENQSRPLKRLSRDE
GLSRSTVVMNSSIVKLHGGRRKAEGCDTSSSSSFY*

>G913 (108..806)

>G913 Amino Acid Sequence (domain in AA coordinates: 62-128)
MSNNNNSPTTVNQETTTSREVSITLPTDQSPQTSPGSSSSPSPRPSGGSPARRTATGLSG
KHSIFRGIRLRNGKWVSEIREPRKTTRIWLGTYPVPEMAAAAYDVAALALKGPDAVLNFP
GLALTYVAPVSNSAADIRAAASRAAEMKQPDQGGDEKVLEPVQPGKEEELEEVSCNSCSL
EFMDEEAMLNMPTLLTEMAEGMLMSPPRMMIHPTMEDDSPENHEGDNLWSYK*

>G937 (45..1046)

LYLKDKRCSEMETQPLLKDFISVNKPIQGERGIELLKREELMREKKFQQWKANDDHTSKI KSKLEIKRNEEKSPMLLIPKVETGLGLGLSSSSIRRKGIVASCGFTSNSMPQPPTPAVPQ QPAFLKQQALRKQRRCWNPELHRRFVDALQQLGGPGVATPKQIREHMQEEGLTNDEVKSH LQKYRLHIRKPNSNAEKQSAVVLGFNLWNSSAQDEEETCEGGESLKRSNAQSDSPQGPLQ LPSTTTTTGGDSSMEDVEDAKSESFQLERLRSP*

>G960 (63..1538)

TTATGGGTGCTGTATCGATGGAGTCGCTTCCTTTAGGTTTCAGATTCAGACCTACCGATG AAGAGCTCGTCAATCACTACCTCCGTCTCAAGATCAACGGACGTCACTCCGATGTCCGTG TCATCCCTGATATCGATGTCTGCAAATGGGAACCTTGGGATCTTCCTGCTCTCTCGGTGA TTAAGACGGATGATCCAGAGTGGTTCTTTTTCTGCCCTCGTGATCGGAAATACCCTAATG GTCATCGCTCTAACAGAGCAACTGACTCTGGCTATTGGAAAGCTACTGGTAAAGATCGTA GCATCAAGTCTAAGAAGACTTTAATCGGTATGAAGAAGACTCTTGTCTTCTATCGTGGAC GAGCTCCTAAAGGTGAGCGGACTAATTGGATTATGCACGAGTATCGTCCCACTCTTAAGG ATCTTGATGGCACTTCCCCTGGCCAAAGCCCTTACGTTCTTTGTCGCCTCTTCCACAAGC CTGATGATCGGGTTAATGGTGTCAAGTCCGATGAAGCAGCTTTTACGGCCAGCAACAAAT ACTCACCTGATGATACATCATCTGATCTTGTTCAAGAAACACCTTCCTCTGATGCTGCTG TTGAGAAACCATCAGATTATTCAGGTGGATGCGGTTATGCTCATAGTAATAGTACCGCAG ATGGGACAATGATTGAGGCACCTGAAGAGAATCTTTGGTTATCTTGTGACCTTGAAGATC AAAAGGCACCACTACCGTGTATGGATTCTATATATGCTGGTGATTTCAGTTACGATGAGA TTGGATTCCAATTTCAAGATGGTACCAGCGAACCAGATGTATCACTAACAGAATTGTTGG AGGAGGTGTTCAATAACCCTGATGACTTCTCTTGCGAGGAATCGATCAGTCGAGAGAATC CAGCAGTCTCACCAAATGGGATATTTTCATCTGCTAAAATGCTGCAGTCTGCAGCACCAG AGGATGCTTTCTTCAACGACTTCATGGCTTTCACTGATACAGATGCTGAGATGGCGCAAT TGCAGTATGGTTCAGAAGGTGGAGCTTCTGGTTGGCCAAGTGACACTAATTCATACTATA GTGATTTGGTTCAGCAAGAGCAAATGATCAATCATAACACAGAGAACAACCTCACAGAAG GGAGAGGGATAAAGATCCGGGCTCGACAGCCTCAGAACCGGCAGAGTACAGGATTGATAA ACCAGGGTATTGCTCCAAGGAGAATCCGTCTGCAGCTGCAGTCTAACTCTGAAGTAAAAG AACGAGAGGAGGTGAATGAAGGACACACTGTTATTCCCGAGGCCAAAGAAGCTGCAGCTA AATACTCAGAGAAGAGTGGTTCTTTGGTTAAACCTCAAATAAAGCTCAGGGCGCGGGGAA CTATAGGCCAAGTAAAAGGAGAGAGATTTGCAGACGACGAGGTACAGGTGCAGAGCACAA AGAGAGAGAGAGAGAATCAAATGTAGTTAATGTAATTAGGGATGATGCAATGTTAGC ATGTTTGTGTGTGTAACTTAAAAACTTATTTAGGAATCTGATAAAAGTTACTGTTGAAA АААСАААААААААААААААААААААААААААА

>G960 Amino Acid Sequence (domain in AA coordinates: 13-156)
MGAVSMESLPLGFRFRPTDEELVNHYLRLKINGRHSDVRVIPDIDVCKWEPWDLPALSVI
KTDDPEWFFFCPRDRKYPNGHRSNRATDSGYWKATGKDRSIKSKKTLIGMKKTLVFYRGR
APKGERTNWIMHEYRPTLKDLDGTSPGQSPYVLCRLFHKPDDRVNGVKSDEAAFTASNKY
SPDDTSSDLVQETPSSDAAVEKPSDYSGGCGYAHSNSTADGTMIEAPEENLWLSCDLEDQ
KAPLPCMDSIYAGDFSYDEIGFQFQDGTSEPDVSLTELLEEVFNNPDDFSCEESISRENP
AVSPNGIFSSAKMLQSAAPEDAFFNDFMAFTDTDAEMAQLQYGSEGGASGWPSDTNSYYS
DLVQQEQMINHNTENNLTEGRGIKIRARQPQNRQSTGLINQGIAPRRIRLQLQSNSEVKE
REEVNEGHTVIPEAKEAAAKYSEKSGSLVKPQIKLRARGTIGQVKGERFADDEVQVQSTK
RERERIKCSLM*

>G991 (6..533)

>G991 Amino Acid Sequence (domain in AA coordinates: 7-14,48-59,82-115,128-164)
MEEEKRLELRLAPPCHQFTSNNNINGSKQKSSTKETSFLSNNRVEVAPVVGWPPVRSSRR
NLTAQLKEEMKKKESDEEKELYVKINMEGVPIGRKVNLSAYNNYQQLSHAVDQLFSKKDS
WDLNRQYTLVYEDTEGDKVLVGDVPWEMFVSTVKRLHVLKTSHAFSLSPRKHGKE*
>G748 (98..1444)

CATAGAGAGAAGAAGACGGAACAGAGGCTCCAAAAAAATGATGATGGAGACTAGAGATCC AGCTATTAAGCTTTTCGGTATGAAAATCCCTTTTCCGTCGGTTTTTGAATCGGCAGTTAC GGTGGAGGATGACGAAGAAGATGACTGGAGCGGCGGAGATGACAAATCACCAGAGAAGGT AACTCCAGAGTTATCAGATAAGAACAACAACAACTGTAACGACAACAGTTTTAACAATTC GAAACCCGAAACCTTGGACAAAGAGGAAGCGACATCAACTGATCAGATAGAGAGTAGTGA CACGCCTGAGGATAATCAGCAGACGACACCTGATGGTAAAAACCCTAAAGAAACCGACTAA GATTCTACCGTGTCCGAGATGCAAAAGCATGGAGACCAAGTTCTGTTATTACAACAACTA CAACATAAACCAGCCTCGTCATTTCTGCAAGGCTTGTCAGAGATATTGGACTGCTGGAGG GACTATGAGGAATGTTCCTGTGGGGGCAGGACGTCGTAAGAACAAAAGCTCATCTTCTCA TTACCGTCACATCACTATTTCCGAGGCTCTTGAGGCTGCGAGGCTTGACCCGGGCTTACA GGCAAACACAAGGGTCTTGAGTTTTGGTCTCGAAGCTCAGCAGCAGCACGTTGCTGCTCC CATGACACCTGTTATGAAGCTACAAGAAGATCAAAAGGTCTCAAACGGTGCTAGGAACAG GTTTCACGGGTTAGCGGATCAACGGCTTGTAGCTCGGGTAGAGAATGGAGATGATTGCTC AAGCGGATCCTCTGTGACCACCTCTAACAATCACTCAGTGGATGAATCAAGAGCACAAAG CGGCAGTGTTGTTGAAGCACAAATGAACAACAACAACAACAATAACATGAATGGTTATGC TTGCATCCCAGGTGTTCCATGGCCTTACACGTGGAATCCAGCGATGCCTCCACCAGGTTT TTACCCGCCTCCAGGGTATCCAATGCCGTTTTACCCTTACTGGACCATCCCAATGCTACC ACCGCATCAATCCTCATCGCCTATAAGCCAAAAGTGTTCAAATACAAACTCTCCGACTCT CGGAAAGCATCCGAGAGATGAAGGATCATCGAAAAAGGACAATGAGACAGAGCGAAAACA GAAGGCCGGGTGCGTTCTGGTCCCGAAAACGTTGAGAATAGATGATCCTAACGAAGCAGC AAAGAGCTCGATATGGACAACATTGGGAATCAAGAACGAGGCGATGTGCAAAGCCGGTGG TATGTTCAAAGGGTTTGATCATAAGACAAAGATGTATAACAACGACAAAGCTGAGAACTC CCCTGTTCTTCTGCTAACCCTGCTGCTCTATCAAGATCACACAATTTCCATGAACAGAT AGAATGATGAGTTTTTGAGAATCAAACTCTTTTCTTCTTCTAGTGATTGCCTTTATTCC TTGTCAGGAAATGTTGGAAGATAACATTAATGGTAAAAAGTTGGTGTGGACCGTTGTTGC GTTGGCATTTCAAAAAAAAAAAAAAAAAA

>G748 Amino Acid Sequence (domain in AA coordinates: 112-140)
MMMETRDPAIKLFGMKIPFPSVFESAVTVEDDEEDDWSGGDDKSPEKVTPELSDKNNNNC
NDNSFNNSKPETLDKEEATSTDQIESSDTPEDNQQTTPDGKTLKKPTKILPCPRCKSMET
KFCYYNNYNINQPRHFCKACQRYWTAGGTMRNVPVGAGRRKNKSSSSHYRHITISEALEA
ARLDPGLQANTRVLSFGLEAQQQHVAAPMTPVMKLQEDQKVSNGARNRFHGLADQRLVAR
VENGDDCSSGSSVTTSNNHSVDESRAQSGSVVEAQMNNNNNNMNGYACIPGVPWPYTWN
PAMPPPGFYPPPGYPMPFYPYWTIPMLPPHQSSSPISQKCSNTNSPTLGKHPRDEGSSKK
DNETERKQKAGCVLVPKTLRIDDPNEAAKSSIWTTLGIKNEAMCKAGGMFKGFDHKTKMY
NNDKAENSPVLSANPAALSRSHNFHEQI*

>G247 (1..660)

ATGAGAATGACAAGAGATGGAAAAGAACATGAATACAAGAAAGGTTTATGGACAGTGGAA GAAGACAAGATCCTCATGGATTATGTCCGAACTCATGGCCAGGGCCACTGGAACCGCATC TTAAGCCCTAATGTTAACAGAGGCAATTTTACTGACCAAGAAGAAGATCTCATCATCAGA CTCCACAAGCTCCTCGGCAACAGATGGTCGTTGATAGCGAAAAGAGTTCCGGGAAGAACA GACAACCAAGTAAAGAATTACTGGAACACACATCTCAGCAAGAAACTTGGTCTCGGAGAT CATTCAACTGCCGTCAAAGCCGCATGCGGTGTAGAGTCTCCACCGTCTATGGCCCTTATA ACCACAACGTCCTCTCTCATCAAGAGATCTCCGGTGGAAAAAATTCAACTCTAAGGTTC GACACTTTAGTTGACGAATCCAAACTCAAACCAAAATCCAAACTAGTCCACGCAACACCA ACTGACGTAGAAGTTGCAGCTACGGTTCCAAATCTGTTCGATACCTTTTGGGTTCTTGAA GACGACTTCGAGCTTAGTTCACTCACTATGATGGATTTTACTAATGGGTATTGCCTTTGA >G247 Amino Acid Sequence (domain in AA coordinates: 15-116) MRMTRDGKEHEYKKGLWTVEEDKILMDYVRTHGQGHWNRIAKKTGLKRCGKSCRLRWMNY LSPNVNRGNFTDQEEDLIIRLHKLLGNRWSLIAKRVPGRTDNQVKNYWNTHLSKKLGLGD HSTAVKAACGVESPPSMALITTTSSSHQEISGGKNSTLRFDTLVDESKLKPKSKLVHATP TDVEVAATVPNLFDTFWVLEDDFELSSLTMMDFTNGYCL*

>G585 (111..2039)

CTCTCAAACATTTCTCTGTTTGTTCCGGCGAAAACGGCAACTGTTTCATCAAATGACAAA AAACAATGGCTACCGGACAAAACAGAACAACTGTGCCAGAGAATCTGAAGAAACACCTCG AGTCTGGAGTTTTAGAATGGGGAGATGGATACTATAATGGAGATATCAAAACGAGGAAGA GCGAGCTTTACGAGTCTCTCTCCGTCGCTGAATCTTCTTCTTCAGGCGTTGCTGCCGGAT CTCAAGTCACCAGACGAGCTTCCGCCGCCGCACTTTCACCGGAAGATCTCGCCGACACCG AGTGGTACTATTTGGTTTGTATGTCTTTCGTCTTCAACATTGGTGAAGGAATGCCTGGAC GGACGTTTGCAAACGGTGAACCGATATGGTTGTGCAACGCTCATACGGCGGATAGTAAAG TGTTTAGCCGTTCTCTTCTAGCAAAAAGTGCTGCGGTTAAGACAGTGGTTTGCTTCCCGT TCCTTGGAGGAGTCGTTGAGATTGGTACCACAGAACATATTACGGAAGACATGAATGTAA TACAATGCGTGAAGACATCATTCCTCGAAGCCCCTGATCCGTACGCTACAATATTACCAG CAAGATCCGATTATCACATCGACAACGTTCTTGATCCGCAACAGATTCTAGGCGACGAGA TTTACGCGCCTATGTTCAGTACGGAGCCTTTTCCAACAGCTTCTCCGAGCAGAACTACCA ACGGTTTCGATCAAGAACATGAACAAGTAGCAGATGATCATGATTCTTTCATGACCGAAA GAATCACTGGAGGAGCTTCTCAGGTGCAAAGCTGGCAGCTCATGGACGACGAGCTTAGTA ACTGCGTTCACCAGTCGCTAAATTCCAGCGATTGCGTCTCTCAAACGTTTGTTGAAGGGG CGGCTGGACGGGTTGCTTACGGTGCAAGAAAGAGTAGAGTTCAAAGACTAGGGCAAATTC AAGAGCAACAGAGAAATGTGAAGACATTGTCATTTGATCCAAGAAACGACGACGTTCATT ACCAAAGTGTGATCTCAACGATTTTTAAGACCAACCATCAGTTAATTCTCGGACCGCAGT TTCGAAACTGCGATAAACAGTCAAGCTTCACTAGGTGGAAGAAATCATCGTCATCAT CAGGAACCGCCACGGTCACGGCACCATCACAAGGAATGTTAAAGAAAATTATTTTCGATG TTCCGCGAGTGCACCAGAAAGAGAAGTTAATGTTGGACTCACCAGAAGCCAGAGATGAAA CCTTGAGAAAAATCATTCCGTCAATCAACAAGATCGATAAAGTATCGATTCTTGACGATA CGATAGAGTATCTTCAAGAACTCGAGAGACGGGTTCAAGAACTAGAATCTTGCAGAGAAT CAACCGATACAGAGACTCGTGGGACGATGACGATGAAGAGGAAGAAACCATGCGACGCAG GAGAAAGAACATCAGCTAATTGCGCAAATAATGAAACAGGAAATGGGAAGAAGGTGTCGG TTAACAATGTTGGTGAAGCCGAGCCAGCAGATACCGGTTTTACTGGTTTAACCGATAATT TAAGGATCGGTTCGTTTGGTAATGAGGTGGTTATTGAGCTTAGATGTGCTTGGAGAGAAG GAGTATTGCTTGAGATAATGGATGTGATTAGTGATCTCCATTTGGATTCTCATTCGGTTC AATCCTCGACCGGAGACGGTTTGCTCTGCTTAACCGTCAATTGCAAGCACAAGGGGTCAA AAATAGCGACACCAGGAATGATCAAAGAAGCACTTCAAAGGGTTGCATGGATCTGTTGAA GACTACTTAGTTAAAATTGACAGCAAAGAAAAAACATTCCCGGTTTGGTTTCTATTCTTT ${\tt GGTTTTCTTCTAACCGGGTTTTAGGAATTAATGTTATGTTTATCATTTGTTTTTTGTTTT}$ TTTTTTGTGTCTTTTTTCCGTTGCTTAACGTAGGTGAAGAGGAACATACACTATGCGTA TTTTGTTTGAGGTAGATTATTTTAAGGGTATTAGTAATAGTAATAGCCAGTTTAGATGAT TTTGTGTTCTTTTGTTGTT

187/286

>G585 Amino Acid Sequence (domain in AA coordinates:436-501) MDEETMATGQNRTTVPENLKKHLAVSVRNIQWSYGIFWSVSASQSGVLEWGDGYYNGDIK TRKTIQASEIKADQLGLRRSEQLSELYESLSVAESSSSGVAAGSQVTRRASAAALSPEDL ADTEWYYLVCMSFVFNIGEGMPGRTFANGEPIWLCNAHTADSKVFSRSLLAKSAAVKTVV CFPFLGGVVEIGTTEHITEDMNVIQCVKTSFLEAPDPYATILPARSDYHIDNVLDPQQIL GDEIYAPMFSTEPFPTASPSRTTNGFDQEHEQVADDHDSFMTERITGGASQVQSWQLMDD ELSNCVHQSLNSSDCVSQTFVEGAAGRVAYGARKSRVQRLGQIQEQQRNVKTLSFDPRND DVHYQSVISTIFKTNHQLILGPQFRNCDKQSSFTRWKKSSSSSGTATVTAPSQGMLKKI IFDVPRVHQKEKLMLDSPEARDETGNHAVLEKKRREKLNERFMTLRKIIPSINKIDKVSI LDDTIEYLQELERRVQELESCRESTDTETRGTMTMKRKKPCDAGERTSANCANNETGNGK KVSVNNVGEAEPADTGFTGLTDNLRIGSFGNEVVIELRCAWREGVLLEIMDVISDLHLDS HSVQSSTGDGLLCLTVNCKHKGSKIATPGMIKEALQRVAWIC*

>G634 (1..798)

ATGGAGCAAGGAGGAGGTGGTGGTAATGAAGTTGTGGAGGAAGCTTCACCTATTAGT TCAAGACCTCCTGCTAACAACTTAGAAGAGCTTATGAGATTCTCAGCCGCCGCGGATGAC GGTGGATTAGGAGGTGGAGGAGGAGGAGGAGGAGGAGTGCTTCTTCATCGGGA AATCGATGGCCGAGAGAAAACTTTAGCTCTTCTTCGGATCCGATCCGATATGGATTCT ACTITTCGTGATGCTACTCTCAAAGCTCCTCTTTGGGAACATGTTTCCAGGAAGCTATTG GAGTTAGGTTACAAACGAAGTTCAAAGAAATGCAAAGAGAAATTCGAAAACGTTCAGAAA TATTACAAACGTACTAAAGAAACTCGCGGTGGTCGTCATGATGGTAAAGCTTACAAGTTC TTCTCTCAGCTTGAAGCTCTCAACACTACTCCTCCTCCTCCTCCTCTCATCCTCACGCT CATCAACCAGAACAGAACAACAACAACAACAACAAGAGATGGTCATGAGCTCGGAA CAATCATCATTACCATCATCATCAAGATGGCCAAAGGCAGAGATTCTAGCGCTTATAAAC CTGAGAAGTGGAATGGAACCAAGGTACCAAGATAATGTACCTAAAGGACTTCTATGGGAA GAGATCTCAACTTCAATGAAGAGAATGGGATACAACAGAAACGCTAAGAGATGTAAAGAG AACAACAAGAATCAATGA

>G634 Amino Acid Sequence (domain in aa coordinates: 62-147, 189-245) MEQGGGGGGNEVVEEASPISSRPPANNLEELMRFSAAADDGGLGGGGGGGGGGASSSSG NRWPREETLALLRIRSDMDSTFRDATLKAPLWEHVSRKLLELGYKRSSKKCKEKFENVQK YYKRTKETRGGRHDGKAYKFFSQLEALNTTPPPPPSHPHAHQPEQKQQQQPQQEMVMSSE OSSLPSSSRWPKAEILALINLRSGMEPRYQDNVPKGLLWEEISTSMKRMGYNRNAKRCKE KWENINKYYKKVKESNNSNYNNKNQ*

>G676 (1..612)

atgagaaagaaagtaagtagtagtggtgacgaaggaaacaatgagtacaagaaaggtttg tggacagtagaagaagacaaaatcctcatggattatgtcaaagctcatggcaaaggtcac tggaatcgtattgccaaaaagactggtttaaagagatgtggaaagagttgtagattgagg tggatgaattatctcagccctaatgtgaaaagaggcaatttcaccgagcaagaagaggat cttatcattaggctccacaagttgcttggtaataggtggtctttaattgctaaaagagtg ccgggtcgaacggataatcaagtgaagaactattggaacacgcatcttagtaagaaactc ccgaatcctaccgaaacatcagaagaaacgaaaatctcgaatattgtcgataacaataat atcctcggagatgaaattcaagaagatcatcaaggaagtaactacttgagttcactttgg gttcatgaggatgagtttgagcttagcacactcaccaacatgatggactttatagatgga cactgtttttga

>G676 Amino Acid Sequence (domain in AA coordinates: 17-119) MRKKVSSSGDEGNNEYKKGLWTVEEDKILMDYVKAHGKGHWNRIAKKTGLKRCGKSCRLR WMNYLSPNVKRGNFTEQEEDLIIRLHKLLGNRWSLIAKRVPGRTDNQVKNYWNTHLSKKL GIKDQKTKQSNGDIVYQINLPNPTETSEETKISNIVDNNNILGDEIQEDHQGSNYLSSLW VHEDEFELSTLTNMMDFIDGHCF*

>G682 (1..228)

ATGGATAACCATCGCAGGACTAAGCAACCCAAGACCAACTCCATCGTTACTTCTTCT GAAGAAGTGAGTAGTCTTGAGTGGGAAGTTGTGAACATGAGTCAAGAAGAAGAAGATTTG GTCTCTCGAATGCATAAGCTTGTCGGTGACAGGTGGGAACTGATAGCTGGGAGGATCCCA GGAAGAACCGCTGGAGAAATTGAGAGGTTTTGGGTCATGAAAAATTGA

>G682 Amino Acid Sequence (domain in AA coordinates 27-63) MDNHRRTKQPKTNSIVTSSSEEVSSLEWEVVNMSQEEEDLVSRMHKLVGDRWELIAGRIP

GRTAGEIERFWVMKN*

>G635 (1..993)

ATGGAGATCATGCGTCCAGGGGTCTCAGAAAACACTTTGAAAGGAAAAATAAGAATCACA ACGCGGTGCATGTGGCTTGACAAAGGAAGACTTTTAGATGCACTTCACAAAGCAGCTCAT GCTGCTCTATCAAGTTGTCCTGTGACATGTCCCTTGTCTCACATGGAAAGAACAGTCTCC GAAGTCCTGAGGAAGATTGTAAGGAAGTACAGTGGTAAAAGGCCTGAAGTCATCGCTATA GCCACTGAGAATCCAATGGCTGTCCGAGCTGATGAGGTCAGTGCGAGACTGTCTGGTGAT CCAAGTGTTGGTTCTGGAGTTGCAGCTTTAAGGAAAGTTGTTGAAGGAAATGACAAAAGA AGTCGGGCGAAGAAGCACCTTCACAAGAAGCTTCCCCCAAAGAAGTAGATCGCACTTTG GAAGATGATATCATTGATAGTGCAAGACTACTGGCTGAAGAAGAAACTGCGGCATCAACA TACACGGAAGAAGTTGATACGCCCGTTGGGAGTTCTTCAGAAGAGTCAGACGATTTTTGG AAATCATTCATCAATCCATCATCGTCACCTTCACCGAGTGAAACAGAAAATATGAATAAG GTAGCTGATACGGAGCCTAAAGCAGAGGGTAAGGAAAACAGCAGAGACGACGATGAATTA GCTGATGCTTCAGATTCTGAAACCAAGTCATCACCAAAACGTGTGAGGAAGAACAAATGG AAACCGGAGGAGATAAAGAAGGTAATCAGAATGCGAGGAGAGCTGCACAGTAGATTTCAA GTGGTGAAAGGTAGAATGGCATTGTGGGAAGAGATCTCTTCAAATCTATCAGCTGAAGGA ATCAATCGAAGCCCGGGACAATGCAAATCTCTCTGGGCATCACTTATTCAGAAATACGAG GAGAGCAAGGCTGATGAGAGAAGCAAGACGAGTTGGCCACATTTTGAGGATATGAACAAC ATTTTGTCAGAGCTAGGCACACCTGCGTCTTAA

>G635 Amino Acid Sequence (domain in AA coordinates: 239-323)
MEIMRPGVSENTLKGKIRITTRCMWLDKGRLLDALHKAAHAALSSCPVTCPLSHMERTVS
EVLRKIVRKYSGKRPEVIAIATENPMAVRADEVSARLSGDPSVGSGVAALRKVVEGNDKR
SRAKKAPSQEASPKEVDRTLEDDIIDSARLLAEEETAASTYTEEVDTPVGSSSEESDDFW
KSFINPSSSPSPSETENMNKVADTEPKAEGKENSRDDDELADASDSETKSSPKRVRKNKW
KPEEIKKVIRMRGELHSRFQVVKGRMALWEEISSNLSAEGINRSPGQCKSLWASLIQKYE
ESKADERSKTSWPHFEDMNNILSELGTPAS*

>G1068 (150..1310)

GAGAGTTGTTAGCTAGCTCACACGCTTTCGCTTAAAACTCAAAAACCTGCACTTTCTCGT CTATTTTCTCGGCATTCGTAAAACAGAAAAGTGGGTCTCCAAGAAAATTACCCTAAATTC ACAAAGATTCATACTTTTCTCCACCTCCAATGGATTCCAGAGAGATCCACCACCAACAAC AACAACCACCGCCAGGGATGTTAATGAGTCACCACAATTCCTACAATCGAAACCCTAACG CCGCCGCCGCTGTTTTAATGGGTCACAACACCTCCACATCTCAAGCTATGCATCAAAGAT TACCTTTTGGTGGTTCTATGTCACCGCATCAGCCTCAACAACATCAGTATCATCATCCTC AGCCTCAGCAACAGATAGATCAGAAGACTCTTGAATCTCTTGGATTTCCTACTTCGCCTC ${\tt TTCCTTCTGCTTCTAATTCTTACGGTGGTGGAAATGAAGGAGGTGGTGGTGATAGCG}$ CCGGAGCTAATGCTAACTCTTCCGATCCACCTGCTAAACGGAACAGAGGACGTCCTCCTG GCTCCGGTAAGAAGCAGCTCGATGCTTTAGGAGGAACAGGAGGAGTTGGGTTCACGCCTC ATGTCATTGAGGTTAAAACAGGAGAGACATAGCTACGAAGATATTGGCGTTTACGAACC AAGGGCCACGCGCAATCTGTATTCTCTCAGCTACAGGAGCTGTAACTAATGTGATGCTTC GTCAAGCTAACAATAGCAATCCTACTGGAACTGTTAAGTATGAGGGCCGATTTGAAATCA TTTCTCTGTCAGGTTCTTTCTTGAATTCTGAGAGTAATGGTACTGTGACCAAAACTGGTA TGCTAGTAGCTGGATCACAAGTCCAGGTCATTGTGGGAAGCTTTGTACCAGATGGAAGGA AGCAGAAACAAAGTGCGGGGCGTGCTCAGAATACTCCGGAGCCAGCTTCAGCACCAGCCA ATATGTTGAGCTTTGGTGGTGTGGACCGGGAAGCCCTCGATCTCAAGGACAACAAC ACTCGAGCGAGTCATCAGAGGAAAACGAAAGTAATTCTCCGTTGCACCGTAGAAGCAACA ACAACAACAGCAACAATCATGGGATATTTGGAAACTCTACACCTCAACCGCTTCACCAAA TTCCTATGCAGATGTACCAGAATCTCTGGCCTGGCAACAGTCCTCAATAAACAGATGGTT CATGGGTCAAGATTTGACCGGGTTTGCTTCTCTGTTCCTTTTGACACATCTCTCCATCAG ATTTATCTCTATAAAGTAGATTGAGCTCTCTTACTCTCTCATCTTCTTCTCCTTTACTAT AAGACTTGTTCTTTTTCTCCTATATTCAACGAATTATCCACTTTAA

>G1068 Amino Acid Sequence (domain in AA coordinates: 143-150)
MDSREIHHQQQQQQQQQQQQQQQQQQQQQQQQPPPGMLMSHHNSYNRNPNAAAAVLMGHN
TSTSQAMHQRLPFGGSMSPHQPQQHQYHHPQPQQQIDQKTLESLGFPTSPLPSASNSYGG

GNEGGGGGDSAGANANSSDPPAKRNRGRPPGSGKKQLDALGGTGGVGFTPHVIEVKTGED IATKILAFTNQGPRAICILSATGAVTNVMLRQANNSNPTGTVKYEGRFEIISLSGSFLNS ESNGTVTKTGNLSVSLAGHEGRIVGGCVDGMLVAGSQVQVIVGSFVPDGRKQKQSAGRAQ NTPEPASAPANMLSFGGVGGPGSPRSQGQQHSSESSEENESNSPLHRRSNNNNSNNHGIF GNSTPQPLHQIPMQMYQNLWPGNSPQ*

>G1225 (1..984)

ATGACTCTAGAAGCTTTATCATCAAACGGTCTTTTAAACTTTTTGCTCTCTGAAACTCTT TCACCAACTCCATTCAAGTCTCTCGTCGATCTCGAGCCATTGCCGGAAAATGATGTCATC ATATCGAAGAACACAATTTCGGAGATATCTAATCAAGAACCGCCACCACAGCGACAACCA CCAGCTACGAATCGAGGGAAGAAGCGGCGGAGGAGGAAGCCTAGGGTTTGCAAAAACGAG ATGAATCAACATCTCTCTGTCTTGCGATCTCTCATGCCTCAACCTTTTGCTCACAAGGGT GATCAAGCTTCAATAGTTGGTGGAGCCATAGATTTCATCAAAGAACTTGAACACAAATTA CTATCTCTTGAAGCTCAAAAACATCATAATGCTAAATTAAACCAGTCGGTTACTTCTTCA ACAAGTCAAGACTCAAATGGTGAACAAGAGAATCCTCATCAACCATCTTCACTATCTCTA TCGCAGTTCTTTCTTCATTCATACGATCCGAGCCAAGAGAATAGGAACGGCTCAACAAGC TCGGTGAAAACCCCTATGGAAGATCTTGAGGTGACTCTAATCGAAACTCATGCTAACATC CAGCTTTCGAAGCTGGTGGCTTCTCTACAATCGCTGTCCCTCTCCATTCTTCACCTTAGT GTCACAACATTGGACAATTATGCTATTTACTCCATCAGCGCTAAGGTGGAAGAGAGTTGC CAGCTAAGTTCAGTAGATGACATTGCAGGAGCAGTTCACCACATGCTAAGTATCATTGAA GAGGAGCCTTTTTGTTGCTCATCAATGTCAGAATTACCATTTGACTTCTCTTTGAATCAC TCAAATGTCACTCATTCTCTGAGAAATCTCTTTTTTGTTGTTGTTATTCCTTCTTTTA ATTTTATCACATAGCACATCTTTAGTTTTTTTTTTT

>G1225 Amino Acid Sequence (domain in AA coordinates: 78-147)
MTLEALSSNGLLNFLLSETLSPTPFKSLVDLEPLPENDVIISKNTISEISNQEPPPQRQP
PATNRGKKRRRKPRVCKNEEEAENQRMTHIAVERNRRRQMNQHLSVLRSLMPQPFAHKG
DQASIVGGAIDFIKELEHKLLSLEAQKHHNAKLNQSVTSSTSQDSNGEQENPHQPSSLSL
SQFFLHSYDPSQENRNGSTSSVKTPMEDLEVTLIETHANIRILSRRRGFRWSTLATTKPP
QLSKLVASLQSLSLSILHLSVTTLDNYAIYSISAKVEESCQLSSVDDIAGAVHHMLSIIE
EEPFCCSSMSELPFDFSLNHSNVTHSL*

>G1337 (97..1398)

ATTTCGAATTTTAGGGATTTTGAGAGAGAGTCAGTTATGAGTAGTTCGGAGAGAGTACCG TGTTTGCCTTGTGATCAGCAAGTTCACACGGCGAATCTGTTGTCGAGGAAGCACGTGCGA TCTCAGATCTGCGATAATTGCGGTAACGAGCCAGTCTCTGTTCGGTGTTTCACCGATAAT $\tt CTGATTTTGTGTCAGGAGTGTGATTGGGATGTTCACGGAAGTTGTTCAGTTTCCGATGCT$ CATGTTCGATCCGCCGTGGAAGGTTTTTCCGGTTGTCCATCGGCGTTGGAGCTTGCTGCT TTATGGGGACTTGATTTGGAGCAAGGGAGGAAAGATGAAGAGAATCAAGTTCCGATGATG GCGATGATGATGGATAATTTCGGGATGCAGTTGGATTCTTGGGTTTTGGGATCTAATGAA TTGATTGTTCCCAGCGATACGACGTTTAAGAAGCGTGGATCTTGTGGATCTAGTTGTGGG AGGTATAAGCAGGTATTGTGTAAGCAGCTTGAGGAGTTGCTTAAGAGTGGTGTTGTCGGT GGTGATGGCGATGATGGTGATCGTGACCGTGATTGTGACCGTGAGGGTGCTTGTGATGGA GATGGAGATGGAGAGCAGGAGAGGGGCTTATGGTTCCGGAGATGTCAGAGAGATTGAAA TGGTCAAGAGATGTTGAGGAGATCAATGGTGGCGGAGGAGGAGGAGGTTAACCAGCAGTGG AATGCTACTACTAATCCTAGTGGTGGCCAGAGTTCTCAGATATGGGATTTTAACTTG GGACAGTCACGGGGACCTGAGGATACGAGTCGAGTGGAAGCTGCATATGTAGGGAAAGGT AATGTGAAAGGTGTCAAAGAGATTAAAAAGGATGACTACAAGCGATCAACTTCAGGCCAG GTACAACCAACAAAATCTGAGAGCAACAATCGTCCAATTACCTTTGGCTCTGAGAAAGGT TCGAACTCCTCCAGTGACTTGCATTTCACAGAGCATATTGCTGGAACTAGTTGTAAGACC ATGCAGCGTTACAAGGAAAAGAGGAAGACACGGAGATATGATAAGACCATAAGGTATGAA TCGAGGAAGGCAAGAGCTGACACTAGGTTGCGTGTCAGAGGCAGATTTGTGAAAGCTAGT GAAGCTCCTTACCCTTAACCTTAAGTTTTTTCACATAGGCTTCCTTTTAGCTACAAACTT AGTTACTTTTTTTACTCCACTGCCTCATAAATGTACAGACCGGTCTCGTTTCATCTGGCC

GCCCTTCTTGTTTTATTGCCTTATCTGGCCCTTTTATGTACCTTGGAATCTTATCTAGTT
TAAAAAAGATTGTAACCTTCTAGAAAACCATATTCTGTTGACAGTATATACATGTCTATC
CAAGCAAAA

>G1337 Amino Acid Sequence (domain in AA coordinates: 9-75)
MSSSERVPCDFCGERTAVLFCRADTAKLCLPCDQQVHTANLLSRKHVRSQICDNCGNEPV
SVRCFTDNLILCQECDWDVHGSCSVSDAHVRSAVEGFSGCPSALELAALWGLDLEQGRKD
EENQVPMMAMMMDNFGMQLDSWVLGSNELIVPSDTTFKKRGSCGSSCGRYKQVLCKQLEE
LLKSGVVGGDGDDGDRDRDCDREGACDGDGDGEAGEGLMVPEMSERLKWSRDVEEINGGG
GGGVNQQWNATTTNPSGGQSSQIWDFNLGQSRGPEDTSRVEAAYVGKGAASSFTINNFVD
HMNETCSTNVKGVKEIKKDDYKRSTSGQVQPTKSESNNRPITFGSEKGSNSSSDLHFTEH
IAGTSCKTTRLVATKADLERLAQNRGDAMQRYKEKRKTRRYDKTIRYESRKARADTRLRV
RGRFVKASEAPYP*

>G1759 (110..700)

CGAGAAAAGGAAAAAAAAAAAATAGAAAAGAGAAAACGCTTAGTATCTCCGGCGACTTGAAC CCAAACCTGAGGATCAAATTAGGGCACAAAGCCCTCTCGGAGAGAAGCCATGGGAAGAAA AAAACTAGAAATCAAGCGAATTGAGAACAAAAGTAGCCGACAAGTCACCTTCTCCAAACG TCGCAACGGTCTCATCGAGAAAGCTCGTCAGCTTTCTGTTCTCTGTGACGCATCCGTCGC TCTTCTCGTCGTCTCCGCCTCCGGCAAGCTCTACAGCTTCTCCTCCGGCGATAACCTGGT CAAGATCCTTGATCGATATGGGAAACAGCATGCTGATGATCTTAAAGCCTTGGATCATCA GTCAAAAGCTCTGAACTATGGTTCACACTATGAGCTACTTGAACTTGTGGATAGCAAGCT TGTGGGATCAAATGTCAAAATGTGAGTATCGATGCTCTTGTTCAACTGGAGGAACACCT TGAGACTGCCCTCTCCGTGACTAGAGCCAAGAAGACCGAACTCATGTTGAAGCTTGTTGA GAATCTTAAAGAAAAGGAGAAAATGCTGAAAGAAGAGAACCAGGTTTTGGCTAGCCAGAT GGAGAATAATCATCATGTGGGAGCAGAAGCTGAGATGGAGATGTCACCTGCTGGACAAAT CTCCGACAATCTTCCGGTGACTCTCCCACTACTTAATTAGCCACCTTAAATCGGCGGTTG TGTGTGATACTTAAGTAGACGGAACTAAGTCAATACTATCTGTTTTAAGACAAAAGGTTG

>G1759 Amino Acid Sequence (conserved domain in AA coordinates: 2-57)
MGRKKLEIKRIENKSSRQVTFSKRRNGLIEKARQLSVLCDASVALLVVSASGKLYSFSSG
DNLVKILDRYGKQHADDLKALDHQSKALNYGSHYELLELVDSKLVGSNVKNVSIDALVQL
EEHLETALSVTRAKKTELMLKLVENLKEKEKMLKEENQVLASQMENNHHVGAEAEMEMSP
AGQISDNLPVTLPLLN*

>G1804 (169..1497)

TATCTCTCTCTCTCAAAACCTTTCAGTCAAAATTCTCCGGCGGCTTTTAAACTATGTG AAGGAGGAGAACCTCCATAACAAGAAGCGGATTCTCTCAGTTTTCCGGCGGCGGAGGAAC ACAAAGCCACCGGTTTTTAGACACACAGATTTCATTTTCAGTTGTTAAATGGTAACTAGA GAAACGAAGTTGACGTCAGAGCGAGAAGTAGAGTCGTCCATGGCGCAAGCGAGACATAAT TCATTGACCCTTGACGAGTTCCAACATGCTTTATGTGAGAACGGCAAGAACTTTGGGTCC ATGAACATGGACGAGTTTCTTGTCTCTATTTGGAACGCAGAGGAGAATAATAACAATCAA CAACAAGCAGCAGCAGCTGCAGGTTCACATTCTGTTCCGGCTAATCACAATGGTTTCAAC AACGAAGATGCTAACAATAAGAGAGGGATAGCGAACGAGTCTAGTCTTCCTCGACAAGGC TCTTTGACACTTCCAGCTCCGCTTTGTAGGAAGACTGTTGATGAGGTTTGGTCTGAGATA CATAGAGGTGGTGGTAGCGGTAATGGAGGAGACAGCAATGGACGTAGTAGTAGTAAT GGACAGAACAATGCTCAGAACGGCGGTGAGACTGCGGCTAGACAACCGACTTTTGGAGAG ATGACACTTGAGGATTTCTTGGTGAAGGCTGGTGTGGTTAGAGAACATCCCACTAATCCT AAACCTAATCCAAACCCGAACCAAAACCAAAACCCGTCTAGTGTAATACCCGCAGCTGCA CAGCAACAGCTTTATGGTGTGTTTCAAGGAACCGGTGATCCTTCATTCCCGGGTCAAGCT ATGGGTGTGGGTGACCCATCAGGTTATGCTAAAAGGACAGGAGGAGGAGGAGGATATCAGCAG GCGCCACCAGTTCAGGCAGGTGTTTGCTATGGAGGTGGCGTTGGGTTTGGAGCGGGTGGA CAGCAAATGGGAATGGTTGGACCGTTAAGCCCGGTGTCTTCAGATGGATTAGGACATGGA AGAGTAGTGGATGGTCCAGTGGAGAAAGTAGTGGAGAAGAAGACAGAGGAGGATGATCAAG AACCGCGAGTCTGCTGCTAGATCTAGAGCAAGAAAACAAGCATATACAGTGGAATTGGAA

>G1804 Amino Acid Sequence (domain in AA coordinates: 357-407)
MYTRETKLITSEREVESSMAQARHNGGGGGENHPFTSLGRQSSIYSLTLDEFQHALCENGK
NFGSMNMDEFLVSIWNAEENNNNQQQAAAAAGSHSVPANHNGFNNNNNNGGEGGVGVFSG
GSRGNEDANNKRGIANESSLPRQGSLTLPAPLCRKTVDEVWSEIHRGGGSGNGGDSNGRS
SSSNGQNNAQNGGETAARQPTFGEMTLEDFLVKAGVVREHPTNPKPNPNPNQNQNPSSVI
PAAAQQQLYGVFQGTGDPSFPGQAMGVGDPSGYAKRTGGGGYQQAPPVQAGVCYGGGVGF
GAGGQQMGMVGPLSPVSSDGLGHGQVDNIGGQYGVDMGGLRGRKRVVDGPVEKVVERRQR
RMIKNRESAARSRARKQAYTVELEAELNQLKEENAQLKHALAELERKRKQQYFESLKSRA
QPKLPKSNGRLRTLMRNPSCPL*

>G207 (16..930)

aaaagatctgtttcaatggcggatcgtgttaaaggtccatggagtcaagaagaagatgag cagctacgaaggatggttgagaaatacggaccgaggaattggtctgcgattagcaaatcg attccaggtcgatctggtaaatcgtgtagattacgttggtgtaatcagttatctccggag gttqagcatcgtcctttctcgccggaggaagatgagactattgtaaccgcccgtgctcag tttggtaacaagtgggcgacgattgctcgtcttcttaacggtcgtacggataacgccgtt aaaaatcactggaactctacgcttaagaggaaatgcagcggaggtgtgggcggttacgacg gtgacggagacggaggaagatcaggatcggccgaagaagaggagatctgttagctttgat cctgcttttgctccggtggatactggattgtacatgagtcctgagagtcctaacggaatc qatqttaqtqattctaqcacgattccgtcaccgtcgtctcctgttgctcagctgtttaaa ccaatgccgatttccggcggttttacggtggttccgcagccgttaccggttgaaatgtct tcgtcttcggaggatccacctacttcgttgagtttgtcactacctggagctgagaacacg agttcgagccataacaataacaacaacqcqttgatgtttccgagatttgagagtcagatg gtggtgcaggagatgataaaagctgaagtgaggagttacatggcggaaatgcagaaaaca agtgqtggattcgtcgtcggaggtttatacgaatccggcggcaatggtggttttagggat tgtgqagtaataacacctaaggttgagtagttttggtttagggttaaaacttgaatcgat tggggattttcaagagcattcatttttggggtttatggtaaaattaaaaacaaaacaaa atgtacagaggaattaaaatttctatggaataatcttaaatctcaaatatttgttacttg ttttqqtqattcataaccaaaatcaaa

>G207 Amino Acid Sequence (domain in AA coordinates: 6-106)
MADRVKGPWSQEEDEQLRRMVEKYGPRNWSAISKSIPGRSGKSCRLRWCNQLSPEVEHRP
FSPEEDETIVTARAQFGNKWATIARLLINGRTDNAVKNHWNSTLKRKCSGGVAVTTVTETE
EDQDRPKKRRSVSFDPAFAPVDTGLYMSPESPNGIDVSDSSTIPSPSSPVAQLFKPMPIS
GGFTVVPQPLPVEMSSSSEDPPTSLSLSLPGAENTSSSHNNNNNALMFPRFESQMKINVE
ERGGGGEGRRGEFMTVVQEMIKAEVRSYMAEMQKTSGGFVVGGLYESGGNGGFRDCGVIT
PKVE*

>G218 (1..1182)

>G218 Amino Acid Sequence (domain in AA coordinates: TBD)
MEAEIVRRSEVTGLRREVEESSIGRGDCDGDGGDVGEDAAGFVGTSGRGRRDRVKGPWSK
EEDDVLSELVKRLGARNWSFIARSIPGRSGKSCRLRWCNQLNPNLIRNSFTEVEDQAIIA
AHAIHGNKWAVIAKLLPGRTDNAIKNHWNSALRRRFIDFEKAKNIGTGSLVVDDSGFDRT
TTVASSEETLSSGGGCHVTTPIVSPEGKEATTSMEMSEEQCVEKTNGEGISRQDDKDPPT
LFRPVPRLSSFNACNHMEGSPSPHIQDQNQLQSSKQDAAMLRLLEGAYSERFVPQTCGGG
CCSNNPDGSFQQESLLGPEFVDYLDSPTFPSSELAAIATEIGSLAWLRSGLESSSVRVME
DAVGRLRPQGSRGHRDHYLVSEQGTNITNVLST*

>G241 (46..867)

GAAAACATTTCAACTTCTTTTATCAGCAATCACAAATCAAAGAGATGGGAAGAGCTCCA TGCTGTGAGAAGATGGGGTTGAAGAGAGGACCATGGACACCTGAAGAAGATCAAATCTTG CTTTTGAGATGTGGAAAAAGCTGTAGACTTAGGTGGATGAACTATTTAAAGCCTGATATT AAACGTGGCAATTTCACCAAAGAAGAGGAAGATGCTATCATCAGCTTACACCAAATACTT GGCAATAGATGGTCAGCGATTGCAGCAAAACTGCCTGGAAGAACCGATAACGAGATCAAG AACGTATGGCACACTCACTTGAAGAAGAGACTCGAAGATTATCAACCAGCTAAACCTAAG ACCAGCAACAAAAAGAAGGGTACTAAACCAAAATCTGAATCCGTAATAACGAGCTCGAAC AGTACTAGAAGCGAATCGGAGCTAGCAGATTCATCAAACCCTTCTGGAGAAAGCTTATTT TCGACATCGCCTTCGACAAGTGAGGTTTCTTCGATGACACTCATAAGCCACGACGGCTAT AGCAACGAGATTAATATGGATAACAAACCGGGAGATATCAGTACTATCGATCAAGAATGT GTTTCTTTCGAAACTTTTGGTGCGGATATCGATGAAAGCTTCTGGAAAGACACTGTAT AGCCAAGATGAACACCAACTACGTATCGAATGACCTAGAAGTCGCTGGTTTAGTTGAGATA CAACAAGAGTTTCAAAACTTGGGCTCCGCTAATAATGAGATGATTTTTGACAGTGAGATG GAACTTCTGGTTCGATGTATTGGCTAGAACCGGCGGGGAACAAGATCTCTTAGCCGGGCT CTAGTTAACATGTTTGAGGAGTAAAGTGAAATGGTGCAAATTAGTTAAGGCTAAGAAATT GTATTAATTAGAGGCTGCGTTTTCAA

>G241 Amino Acid Sequence (domain in AA coordinates: 14-114)
MGRAPCCEKMGLKRGPWTPEEDQILVSFILNHGHSNWRALPKQAGLLRCGKSCRLRWMNY
LKPDIKRGNFTKEEEDAIISLHQILGNRWSAIAAKLPGRTDNEIKNVWHTHLKKRLEDYQ
PAKPKTSNKKKGTKPKSESVITSSNSTRSESELADSSNPSGESLFSTSPSTSEVSSMTLI
SHDGYSNEINMDNKPGDISTIDQECVSFETFGADIDESFWKETLYSQDEHNYVSNDLEVA
GLVEIQQEFQNLGSANNEMIFDSEMELLVRCIG*

>G254 (15..923)

CGATTTCGAGCTCTATGGTGTCCGTAAACCCTAGACCTAAGGGTTTTCCAGTTTTCGATT CCTCGAATATGAGTTTACCAAGCTCCGATGGATTTGGTTCGATTCCGGCCACGGGACGGA CCAGTACGGTGTCGTTTTCTGAGGATCCGACGAGGATTCGGAAGCCGTACACAATCA AGAAGTCGAGAGAATTGGACAGATCAAGAGCACGATAAATTTCTAGAAGCTCTTCACT TATTCGATAGGGATTGGAAGAAAATAGAAGCCTTTGTTGGATCAAAAACAGTAGTTCAGA TACGAAGCCACGCTCAGAAATACTTTCTCAAAGTTCAGAAGAGTGGTGCTAACGAACATC TTCCACTTCCTCGACCTAAGAGGAAAGCGAGTCATCCTTATCCTATAAAGGCTCCTAAAA ATGTTGCTTATACCTCTCCCGTCTTCGAGTACATTACCGTTGCTTGAGCCTGGTTATT TGTATAGCTCTGATTCGAAGTCATTGATGGGAAACCAGGCTGTTTGTGCATCTACCTCTT CTTCGTGGAATCATGAATCGACAAATCTGCCAAAACCGGTGATTGAAGAGGAACCGGGAG TCTCGGCCACGGCTCCTCCCCAAATAATCGCTGCAGACAGGAAGATACAGAGAGGGTAC GAGCAGTGACAAAGCCAAATAACGAAGAAAGTTGTGAAAAGCCACATAGAGTGATGCCGA ${\tt ATTTTGCTGAAGTTTACAGCTTCATTGGAAGTGTCTTCGATCCCAACACATCAGGCCACC}$ TCCAGAGATTAAAGCAGATGGATCCAATAAATATGGAAACGGTTCTTTTACTGATGCAAA ACCTGTCTGTAAATCTGACAAGTCCCGAGTTTGCAGAGCAAAGGAGGTTGATATCATCAT ACAGCGCTAAAGCTTTGAAATAGAGATAGAATAAAACAATAATGTACCTTATGTGAGATC

>G254 Amino Acid Sequence (domain in AA coordinates: 62-106)
MVSVNPRPKGFPVFDSSNMSLPSSDGFGSIPATGRTSTVSFSEDPTTKIRKPYTIKKSRE
NWTDQEHDKFLEALHLFDRDWKKIEAFVGSKTVVQIRSHAQKYFLKVQKSGANEHLPLPR
PKRKASHPYPIKAPKNVAYTSLPSSSTLPLLEPGYLYSSDSKSLMGNQAVCASTSSSWNH
ESTNLPKPVIEEEPGVSATAPLPNNRCRQEDTERVRAVTKPNNEESCEKPHRVMPNFAEV
YSFIGSVFDPNTSGHLQRLKQMDPINMETVLLLMQNLSVNLTSPEFAEQRRLISSYSAKA

>G26 (73..729)

TTGGCTTGTACCCAAACCCATCTTTGACTTCAAAAATAAAATAAAAATAATCATAATTGA CATCATCGGATAATGCATAGCGGGAAGAGACCTCTATCACCAGAATCAATGGCCGGAAAT AGAGAAGAGAAAAAAGAGTTGTTGTTGCTCAACTTTGTCGGAATCTGATGTGTCTGAT TTTGTCTCTGAACTCACTGGTCAACCCATCCCATCATCCATTGATGATCAATCTTCGTCG CTTACTCTTCAAGAAAAAGTAACTCGAGGCAACGAAACTACAGAGGCGTGAGGCAAAGA CCGTGGGGAAAATGGGCGGCTGAGATTCGTGACCCGAACAAGGCAGCTCGTGTGGCTT GGGACGTTCGACACTGCAGAAGAAGCCGCCTTAGCGTATGATAAAGCTGCATTTGAGTTT AGAGGTCACAAGGCCAAGCTTAACTTCCCCGAGCATATTCGTGTCAACCCTACTCAACTC TATCCATCGCCCGCTACTTCCCATGATCGCATTATCGTGACACCACCTAGTCCACCTCCA CCAATTGCTCCTGACATACTTCTTGATCAATATGGCCACTTTCAATCTCGAAGTAGTGAT TCCAGTGCCAACTTGTCCATGAATATGCTGTCTTCTTCGTCTTCATCTTTGAATCATCAA GGGCTAAGACCAAATTTGGAGGATGGTGAAAACGTGAAGAACATTAGTATCCACAAACGA CGAAAATAACATGTTAATGGCATAAATATCTCTTCGTCCAAGTTATCAAACGCATTGACC TCCGGCTTTGATCATTTTAGGCGCTTAATCTCTTTACGACTTCATTTTGGTAGTCTTTAA AGAGTCTATGGAGTGGATTTAGCTAGGAATCAGGCCTTATGGATGAAAAATATATAAATT TTGAACATGACTATGCAAGAATGGGATGAAGACTACTTAGCTTGGAAAACGTCCTGATAG GTCATGACGACTATATCCACAGAAGATGACCGACGGAGACAACAACATGCCTCACCTGAT $\tt CGACCGATCAAATGAGATAATGTGTTGACCGGACCGGTCGGATCAGGTTGGGTCGAGTAT$ ATCA

>G26 Amino Acid Sequence (domain in AA coordinates: 67-134)
MHSGKRPLSPESMAGNREEKKELCCCSTLSESDVSDFVSELTGQPIPSSIDDQSSSLTLQ
EKSNSRQRNYRGVRQRPWGKWAAEIRDPNKAARVWLGTFDTAEEAALAYDKAAFEFRGHK
AKLNFPEHIRVNPTQLYPSPATSHDRIIVTPPSPPPPIAPDILLDQYGHFQSRSSDSSAN
LSMNMLSSSSSSLNHQGLRPNLEDGENVKNISIHKRRK*

>G263 (48..902)

TTTTTAGTTTTATTTTTCTGTGGTAAAATAAAAAAGTTCGCCGGAGATGACGGCTGTGA CGGCGCGCAAAGATCAGTTCCGGCGCCGTTTTTAAGCAAAACGTATCAGCTAGTTGATG ATCATAGCACAGACGACGTCGTTTCATGGAACGAAGAAGGAACAGCTTTTGTCGTGTGGA AAACAGCAGAGTTTGĊTAAAGATCTTCTTCCTCAATACTTCAAGCATAATAATTTCTCAA GCTTCATTCGTCAGCTCAACACTTACGGATTTCGTAAAACTGTACCGGATAAATGGGAAT TTGCAAACGATTATTTCCGGAGAGGCGGGGGAGGATCTGTTGACGGACATACGACGGCGTA AATCGGTGATTGCTTCAACGGCGGGAAATGTGTTGTTGTTGGTTCGCCTTCTGAGTCTA ATTCTGGTGGTGGTGATGATCACGGTTCAAGCTCCACGTCATCACCCGGGTTCGTCGAAGA ATCCTGGTTCGGTGGAGAACATGGTTGCTGATTTATCAGGAGAGAACGAGAAGCTTAAAC GTGAAAACAATAACTTGAGCTCGGAGCTCGCGGCGGCGAAGAAGCAGCGCGATGAGCTAG TGACGTTCTTGACGGGTCATCTGAAAGTAAGACCGGAACAAATCGATAAAATGATCAAAG GCGGAGGAGCAGAGGGGGGTAGGTGAAGGATTGAAATTGTTTGGGGTGTGGTTGAAAG GAGAGAGAAAAAGAGGGACCGGGATGAAAAGAATTATGTGGTGAGTGGGTCCCGTATGA CGGAAATAAAGAACGTGGACTTTCACGCGCCGTTGTGGAAAAGCAGCAAAGTCTGCAACT AAAAAAGAGTAGAAGACTGTTCAAACCAGCGTGTGACACGTCATCGACGACGAAAAA

AAATGATTTAAAAACTATTTTTTCCGTAAGGAAGAAAGTTATTTTTATGTTTTAAAA AGGTGAAGAAGGTCCAGAAGGATCAACGCAAATATAAAATGGATTTTCATGTATTATAT AATTTAATTAGTGTATTAAGAAAA

>G263 Amino Acid Sequence (domain in AA coordinates: TBD)
MTAVTAAQRSVPAPFLSKTYQLVDDHSTDDVVSWNEEGTAFVVWKTAEFAKDLLPQYFKH
NNFSSFIRQLNTYGFRKTVPDKWEFANDYFRRGGEDLLTDIRRRKSVIASTAGKCVVVGS
PSESNSGGGDDHGSSSTSSPGSSKNPGSVENMVADLSGENEKLKRENNNLSSELAAAKKQ
RDELVTFLTGHLKVRPEQIDKMIKGGKFKPVESDEESECEGCDGGGGAEEGVGEGLKLFG
VWLKGERKKRDRDEKNYVVSGSRMTEIKNVDFHAPLWKSSKVCN*

>G308 (196..1794)

AGTAATTTAGTTTTTTTTTTTTTTTTTTACAATTTATTTTGTTATTAGAAGTGGTAGTGG AGTGAAAAAACAAATCCTAAGCAGTCCTAACCGATCCCCGAAGCTAAAGATTCTTCACCT TCCCAAATAAAGCAAAACCTAGATCCGACATTGAAGGAAAAACCTTTTAGATCCATCTCT GAAAAAACCCAACCATGAAGAGAGATCATCATCATCATCAAGATAAGAAGACTATG ATGATGAATGAAGAAGACGACGGTAACGGCATGGATGAGCTTCTAGCTGTTCTTGGTTAC AAGGTTAGGTCATCGGAAATGGCTGATGTTGCTCAGAAACTCGAGCAGCTTGAAGTTATG ATGTCTAATGTTCAAGAAGACGATCTTTCTCAACTCGCTACTGAGACTGTTCACTATAAT CCGGCGGAGCTTTACACGTGGCTTGATTCTATGCTCACCGACCTTAATCCTCCGTCGTCT AACGCCGAGTACGATCTTAAAGCTATTCCCGGTGACGCGATTCTCAATCAGTTCGCTATC TTGAAATGCTCAAACGGCGTCGTGGAAACCACCACAGCGACGGCTGAGTCAACTCGGCAT GTTGTCCTGGTTGACTCGCAGGAGAACGGTGTGCGTCTCGTTCACGCGCTTTTGGCTTGC GCTGAAGCTGTTCAGAAGGAGAATCTGACTGTGGCGGAAGCTCTGGTGAAGCAAATCGGA GATACTCTTCAGATGCACTTCTACGAGACTTGTCCTTATCTCAAGTTCGCTCACTTCACG GCGAATCAAGCGATTCTCGAAGCTTTTCAAGGGAAGAAAAGAGTTCATGTCATTGATTTC TCTATGAGTCAAGGTCTTCAATGGCCGGCGCTTATGCAGGCTCTTGCGCTTCGACCTGGT GGTCCTCCTGTTTTCCGGTTAACCGGAATTGGTCCACCGGCACCGGATAATTTCGATTAT CTTCATGAAGTTGGGTGTAAGCTGGCTCATTTAGCTGAGGCGATTCACGTTGAGTTTGAG TACAGAGGATTTGTGGCTAACACTTTAGCTGATCTTGATGCTTCGATGCTTGAGCTTAGA CCAAGTGAGATTGAATCTGTTGCGGTTAACTCTGTTTTCGAGCTTCACAAGCTCTTGGGA CGACCTGGTGCGATCGATAAGGTTCTTGGTGTGTGAATCAGATTAAACCGGAGATTTTC ACTGTGGTTGAGCAGGAATCGAACCATAATAGTCCGATTTTCTTAGATCGGTTTACTGAG TCGTTGCATTATTACTCGACGTTGTTTGACTCGTTGGAAGGTGTACCGAGTGGTCAAGAC ${\tt AAGGTCATGTCGGAGGTTTACTTGGGTAAACAGATCTGCAACGTTGTGGCTTGTGATGGA}$ CCTGACCGAGTTGAGCGTCATGAAACGTTGAGTCAGTGGAGGAACCGGTTCGGGTCTGCT CTGTTCAACGGCGGTGAGGGTTATCGGGTGGAGGAGAGTGACGGCTGTCTCATGTTGGGT TGGCACACACGACCGCTCATAGCCACCTCGGCTTGGAAACTCTCCACCAATTAGATGGTG AAATCCTACTGTTTTTCCCTTTGTCACTTGTTAAGATCTTATCTTTCATTATATTAGGTA ATTGAAAAATTTTAATCTCGCCTAAATTACT

>G308 Amino Acid Sequence (domain in AA coordinates: 270-274)
MKRDHHHHHQDKKTMMMNEEDDGNGMDELLAVLGYKVRSSEMADVAQKLEQLEVMMSNVQ
EDDLSQLATETVHYNPAELYTWLDSMLTDLNPPSSNAEYDLKAIPGDAILNQFAIDSASS
SNQGGGGDTYTTNKRLKCSNGVVETTTATAESTRHVVLVDSQENGVRLVHALLACAEAVQ
KENLTVAEALVKQIGFLAVSQIGAMRQVATYFAEALARRIYRLSPSQSPIDHSLSDTLQM
HFYETCPYLKFAHFTANQAILEAFQGKKRVHVIDFSMSQGLQWPALMQALALRPGGPPVF
RLTGIGPPAPDNFDYLHEVGCKLAHLAEAIHVEFEYRGFVANTLADLDASMLELRPSEIE
SVAVNSVFELHKLLGRPGAIDKVLGVVNQIKPEIFTVVEQESNHNSPIFLDRFTESLHYY
STLFDSLEGVPSGQDKVMSEVYLGKQICNVVACDGPDRVERHETLSQWRNRFGSAGFAAA
HIGSNAFKQASMLLALFNGGEGYRVEESDGCLMLGWHTRPLIATSAWKLSTN*

>G38 (149..1156)

GAGGAAAACTCGAAAAAGCTACACACAAGAAGAAGAAGAAAAGATACGAGCAAGAAGACT AAACACGAAAGCGATTTATCAACTCGAAGGAAGAGACTITGATITTCAAATTTCGTCCCC TATAGATTGTGTTGTTTCTGGGAAGGAGGATGGCAGTTTATGATCAGAGTGGAGATAGAAA

CAGAACACAAATTGATACATCGAGGAAAAGGAAATCTAGAAGTAGAGGTGACGGTACTAC TGTGGCTGAGAGATTAAAGAGATGGAAAGAGTATAACGAGACCGTAGAAGAAGTTTCTAC CAAGAAGAGGAAAGTACCTGCGAAAGGGTCGAAGAAGGGTTGTATGAAAGGTAAAGGAGG ACCAGAGAATAGCCGATGTAGTTTCAGAGGAGTTAGGCAAAGGATTTGGGGTAAATGGGT TGCTGAGATCAGAGAGCCTAATCGAGGTAGCAGGCTTTGGCTTGGTACTTTCCCTACTGC GTGTACTGTTGAGACTCCTGGTTGTGTTCATGTGAAAACAGAGGATCCAGATTGTGAATC TAAACCCTTCTCCGGTGGAGTGGAGCCGATGTATTGTCTGGAGAATGGTGCGGAAGAGAT GAAGAGAGGTGTTAAAGCGGATAAGCATTGGCTGAGCGAGTTTGAACATAACTATTGGAG TGATATTCTGAAAGAGAAAGAGAAACAGAAGGAGCAAGGGATTGTAGAAACCTGTCAGCA ACAACAGCAGGATTCGCTATCTGTTGCAGACTATGGTTGGCCCAATGATGTGGATCAGAG TCACTTGGATŢCTTCAGACATGTTTGATGTCGATGAGCTTCTACGTGACCTAAATGGCGA CGATGTGTTTGCAGGCTTAAATCAGGACCGGTACCCGGGGAACAGTGTTGCCAACGGTTC ATACAGGCCCGAGAGTCAACAAAGTGGTTTTGATCCGCTACAAAGCCTCAACTACGGAAT ACCTCCGTTTCAGCTCGAGGGAAAGGATGGTAATGGATTCTTCGACGACTTGAGTTACTT GGATCTGGAGAACTAAACAAAACAATATGAAGCTTTTTGGATTTGATATTTGCCTTAATC CCACAACGACTGTTGATTCTCTATCCGAGTTTTAGTGATATAGAGAACTACAGAACACGT TTTTTCTTGTTATAAAGGTGAACTGTATATATCGAAACAGTGATATGACAATAGAGAAGA CAACTATAGTTTGTTAGTCTGCTTCTCTTAAGTTGTTCTTTAGATATGTTTTATGTTTTG >G38 Amino Acid Sequence (domain in AA coordinates: 76-143) MAVYDQSGDRNRTQIDTSRKRKSRSRGDGTTVAERLKRWKEYNETVEEVSTKKRKVPAKG SKKGCMKGKGGPENSRCSFRGVRQRIWGKWVAEIREPNRGSRLWLGTFPTAQEAASAYDE AAKAMYGPLARLNFPRSDASEVTSTSSQSEVCTVETPGCVHVKTEDPDCESKPFSGGVEP MYCLENGAEEMKRGVKADKHWLSEFEHNYWSDILKEKEKQKEQGIVETCQQQQQDSLSVA DYGWPNDVDOSHLDSSDMFDVDELLRDLNGDDVFAGLNQDRYPGNSVANGSYRPESQQSG FDPLQSLNYGIPPFQLEGKDGNGFFDDLSYLDLEN*

>G43 (38..643)

CTCCTGTCTTGTCTAAAGAAAAAAGAGAGAGAAAATGGAGACTTTTGAGGAAAGCTC TGATTTGGATGTTATACAGAAACATCTATTTGAAGACTTGATGATCCCTGATGGTTTCAT TGAAGATTTTGTCTTTGATGATACTGCTTTTGTCTCCGGACTCTGGTCTCTAGAACCCTT TAACCCAGTTCCGAAACTGGAACCTAGTTCACCTGTTCTTGATCCAGATTCCTATGTCCA AGAGATTCTGCAAATGGAAGCAGAATCATCATCATCATCAACAACAACAACGTCACCTGA GGTTGAGACTGTCTCAAACCGGAAAAAAACAAAGAGGTTTGAAGAAACGAGACATTACAG AGGCGTGAGAAGGAGCCATGGGGGAAATTTGCAGCAGAGATTCGAGATCCGGCAAAGAA AGGATCCAGGATTTGGTTAGGCACTTTTGAGAGTGATATTGATGCTGCAAGGGCTTACGA CTATGCAGCTTTTAAGCTCAGGGGAAGAAAAGCTGTTCTCAACTTTCCTTTGGATGCCGG AAAGTATGATGCTCCGGTCAATTCATGCCGAAAAAGGAGGAGAACCGATGTACCACAGCC TCAAGGAACAACAAGTACTTCATCATCGTCATCAAACTAATGGGGGAATAGTGATGT TTAATTAGTATATATAGGTTAATATCTTAAGTATGTGAAGCATCATGTATAGAGCCAAGA ACCTGTTAGACTAGTGTACTGAAAAGAACTCTTGCAAAATATGTACTAAAGAGTTCCTGT AACAATGGAACTTCTGCGTTTTCTCTTGTCTTAAAGAGCTTAAGGTTCTAGAAACAAAGT AAAAAAAA

>G43 Amino Acid Sequence (domain in AA coordinates: 104-172)
METFEESSDLDVIQKHLFEDLMIPDGFIEDFVFDDTAFVSGLWSLEPFNPVPKLEPSSPV
LDPDSYVQEILQMEAESSSSSSTTTSPEVETVSNRKKTKRFEETRHYRGVRRRPWGKFAA
EIRDPAKKGSRIWLGTFESDIDAARAYDYAAFKLRGRKAVLNFPLDAGKYDAPVNSCRKR
RRTDVPQPQGTTTSTSSSSSN*

>G536 (1..768)

ATGTCGACAAGGGAAGAATGTTTACATGGCGAAATTAGCCGAACAAGCTGAACGTTAC
GAAGAAATGGTTGAATTCATGGAGAAAGTTGCGAAAACTGTTGATGTTGAGGAACTTTCA
GTTGAAGAGAGGAATCTTCTCTCTGTTGCTTACAAGAACGTGATTGGAGCGAGAAGAGCT
TCGTGGAGAATCATTTCTTCGATTGAGCAGAAAGAAGAGAGCAAAGGGAACGAAGATCAT
GTTGCTATTATCAAGGATTACAGAGGAGAGAGATTGAATCCGAGCTTAGCAAAATCTGTGAT
GGGATTTTGAATGTTCTTGAAGCTCATCTTATTCCTTCTGCTTCACCAGCTGAATCTAAA

PCT/US02/25805 WO 03/013227

GTGTTTTATCTTAAGATGAAGGGTGATTATCATAGGTATCTTGCTGAGTTTAAGGCTGGT GCTGAAAGGAAAGCAGCTGCTGAAAGCACTTTGGTTGCTTACAAGTCTGCTTCCGACATT GCCACTGCTGAGTTAGCTCCTACTCACCCGATAAGGCTTGGTCTTGCACTCAACTTCTCT GTGTTTTACTATGAAATCCTCAACTCGCCTGATCGTGCTTGCAGCCTCGCAAAGCAGGCG TTTGATGATGCAATCGCTGAGTTAGATACATTGGGTGAGGAATCATACAAGGACAGTACA GCAGGAGATGAGATTAAGGAGGCATCAAAGCCCGATGGTGCCGAGTAA

>G536 Amino Acid Sequence (domain in AA coordinates:226-233) MSTREENVYMAKLAEQAERYEEMVEFMEKVAKTVDVBELSVEERNLLSVAYKNVIGARRA SWRIISSIEOKEESKGNEDHVAIIKDYRGEIESELSKICDGILNVLEAHLIPSASPAESK VFYLKMKGDYHRYLAEFKAGAERKEAAESTLVAYKSASDIATAELAPTHPIRLGLALNFS VFYYEILNSPDRACSLAKQAFDDAIAELDTLGEESYKDSTLIMQLLRDNLTLWTSDMTDE AGDEIKEASKPDGAE*

>G567 (38..1273)

AAAAGAAGAATCAGAAAGTGAAAAAGAGAGCGAGCGATGAACAGTATCTTCTCCATTGA CGATTTCTCCGATCCTTTCTGGGAAACTCCTCCGATTCCTCAATCCCGACTCTTCTAA GCCTGTTACGGCGGATGAAGTTAGCCAGAGTCAACCGGAATGGACTTTCGAGATGTTTCT CGAAGAGATTTCTTCGTCGGCGGTGAGCTCTGAGCCACTTGGTAACAACAACAACGCGAT CGTCGGTGTTTCTTCGGCGCAATCTCTTCCTTCTGTTTCCGGACAGAATGATTTCGAGGA TGATAGTCGATTTCGTGATCGCGATTCGGGAAATTTGGATTGTGCTGCTCCCATGACGAC GAAGACGGTGAATGTTGATTCCGATGATTATCGTCGTGTTCTTAAGAACAAGCTTGAGGC TGAGTGCGCGACTGGTGTTTCTCTTCGGGTTGGGTCTGTGAAGCCTGAAGATTCGACTAG TTCTCCAGAAACTCAACTTCAACCAGTTCAATCCAGTCCTCTTACTCAAGGAGAACTTGG TGTTACTTCTTCCTTACCAGCTGAGGTGAAAAAAACTGGTGTATCAATGAAGCAGGTTAC TAGTGGATCGTCGAGAGAATATTCTGATGACGAGGACCTTGATGAAGAGAATGAAACCAC CGGTTCCTTGAAGCCAGAGGACGTTAAAAAATCTAGAAGGATGCTGTCAAATCGTGAGTC AGCTAGGCGATCTAGAAGGAGAAAGCAGGAGCAAACAAGTGACCTCGAAACACAGGTTAA TGATCTAAAAGGTGAGCATTCATCACTTCTTAAACAACTGAGCAACATGAATCACAAGTA TGACGAGGCTGCTGTTGGCAATAGAATACTAAAGGCTGACATTGAGACATTAAGAGCTAA **AAGATCAAGTGGACATAACAACAACAACAGAATGCCAATAACTGGTAACAACAGGATGGA** TTCTTCTAGCATTATTCCAGCTTATCAACCACACTCAAACCTAAACCATATGTCAAACCA AAACATCGGGATCCCAACCATTCTACCTCCAAGACTCGGAAACAATTTCGCTGCTCCTCC ATCCCAAACCAGCTCTCCCTTGCAGAGAATTAGAAATGGGCAAAATCACCATGTTACTCC AAGCGCCAACCGTATGGCTGGAATACCGAACCTCAGAACGATTCAGCATGGCCGAAAAA ATGCGTGGACTGATCAAACAAGAAGCGGGTTTCGCACTATATTAATGTCTATGCATCTGT AATTTGTAAGTGTTATTAAGTTACGAATCATGAGAAAACATCTTGTGAAAATACAGTCTC ATGGCTTATATATATATATAAGCTCTGTCTTATAACATTACAAGATTCTTATTTGAGAAT

>G567 Amino Acid Sequence (domain in AA cordinates 210-270) MNSIFSIDDFSDPFWETPPIPLNPDSSKPVTADEVSQSQPEWTFEMFLEEISSSAVSSEP LGNNNNAIVGVSSAQSLPSVSGQNDFEDDSRFRDRDSGNLDCAAPMTTKTVNVDSDDYRR VLKNKLEAECATGVSLRVGSVKPEDSTSSPETQLQPVQSSPLTQGELGVTSSLPAEVKKT GVSMKQVTSGSSREYSDDEDLDEENETTGSLKPEDVKKSRRMLSNRESARRSRRRKQEQT SDLETQVNDLKGEHSSLLKOLSNMNHKYDEAAVGNRILKADIETLRAKVKMAEETVKRVT GMNPMLLGRSSGHNNNNRMPITGNNRMDSSSIIPAYQPHSNLNHMSNQNIGIPTILPPRL GNNFAAPPSQTSSPLQRIRNGQNHHVTPSANPYGWNTEPQNDSAWPKKCVD*

>G680 (338..2275)

TTTTGCTTCCGATTTGATTATTTCCGGGAACGATGACTTCTCCGGGGAGTTCCCGGTGAG ATGATAAGTCAGATTGCATACTTGTCTCCTCCATGGCTACTCTCAAGGGTTTTGGCTGCG GTGGATTCGTTTGGTTTCTCTAGAATCTAAAGAGGTTATCACAACGGCTTTGCAATTTGA AAACTTTCATGTTTGGGGAGATCAAAGATGGTTTCTTTTTTATACTTTACTTGTTAGAGA GGATTTGAAGCAGCGAATAGCTGCAACCGGTCCTGTTATGGATACTAATACATCTGGAGA AGAATTATTAGCTAAGGCAAGAAGCCATATACAATAACAAAGCAGCGAGAGCGATGGAC TGAGGATGAGCATGAGAGGTTTCTAGAAGCCTTGAGGCTTTATGGAAGAGCTTGGCAACG AATTGAAGAACATATTGGGACAAAGACTGCTGTTCAGATCAGAAGTCATGCACAAAAGTT

CTTCACAAAGTTGGAGAAAGAGGCTGAAGTTAAAGGCATCCCTGTTTGCCAAGCTTTGGA CATAGAAATTCCGCCTCCTCGTCCTAAACGAAAACCCAATACTCCTTATCCTCGAAAACC TGGGAACAACGGTACATCTTCCTCTCAAGTATCATCAGCAAAAGATGCAAAACTTGTTTC ${\tt ATCGGCCTCTTCTTCACAGTTGAATCAGGCGTTCTTGGAAAAAATGCCGTTCTC}$ TGAGAAAACATCAACTGGAAAAGAAAATCAAGATGAGAATTGCTCGGGTGTTTCTACTGT GAACAAGTATCCCTTACCAACGAAACAGGTAAGTGGCGACATTGAAACAAGTAAGACCTC AACTGTGGACAACGCGGTTCAAGATGTTCCCAAGAAGAACAAAGACAAAGATGGTAACGA TGGTACTACTGTGCACAGCATGCAAAACTACCCTTGGCATTTCCACGCAGATATTGTGAA CGGGAATATAGCAAAATGCCCTCAAAATCATCCCTCAGGTATGGTATCTCAAGACTTCAT GTTTCATCCTATGAGAGAAGAACTCACGGGCACGCAAATCTTCAAGCTACAACAGCATC TGCTACTACAGCTTCTCATCAAGCGTTTCCAGCTTGTCATTCACAGGATGATTACCG TTCGTTTCTCCAGATATCATCTACTTTCTCCAATCTTATTATGTCAACTCTCCTACAGAA TCCTGCAGCTCATGCTGCAGCTACATTCGCTGCTTCGGTCTGGCCTTATGCGAGTGTCGG GAATTCTGGTGATTCATCAACCCCAATGAGCTCTTCTCCTCCAAGTATAACTGCCATTGC ${\tt CGCTGCTACAGTAGCTGCTACAACTGCTTGGTGGGCTTCTCATGGACTTCTTCCTGTATG}$ CGCTCCAGCTCCAATAACATGTGTTCCATTCTCAACTGTTGCAGTTCCAACTCCAGCAAT GACTGAAATGGATACCGTTGAAAATACTCAACCGTTTGAGAAACAAAACACAGCTCTGCA AGATCAAACCTTGGCTTCGAAATCTCCAGCTTCATCATCTGATGATTCAGATGAGACTGG AGTAACCAAGCTAAATGCCGACTCAAAAACCAATGATGATAAAATTGAGGAGGTTGTTGT TACTGCCGCTGTGCATGACTCAAACACTGCCCAGAAGAAAATCTTGTGGACCGCTCATC GTGTGGCTCAAATACACCTTCAGGGAGTGACGCAGAAACTGATGCATTAGATAAAATGGA GAAAGATAAAGAGGATGTGAAGGAGACAGATGAGAATCAGCCAGATGTTATTGAGTTAAA TAACCGTAAGATTAAAATGAGAGACAACAACAACAACAACAACAACTACTGATTCGTG GAAGGAAGTCTCCGAAGAGGGTCGTATAGCGTTTCAGGCTCTCTTTGCAAGAGAAAGATT GCCTCAAAGCTTTTCGCCTCCAAGTGGCAGAGAATGTGAATAGAAAACAAAGTGACAC GTCAATGCCATTGGCTCCTAATTTCAAAAGCCAGGATTCTTGTGCTGCAGACCAAGAAGG GCCATACAAGAGATGTTCAATGGAAGTGAAAGAGAGCCAAGTTGGGAACATAAACAATCA AAGTGATGAAAAAGTCTGCAAAAGGCTTCGATTGGAAGGAGAAGCTTCTACATGACAGAC TTGGAGGTAAAAAAAAAACATCCACATTTTTATCAATATCTTTAAATCTAGTGTTAGTAG

>G680 Amino Acid Sequence (domain in AA coordinates: 24-70) MDTNTSGEELLAKARKPYTITKQRERWTEDEHERFLEALRLYGRAWQRIEEHIGTKTAVO IRSHAQKFFTKLEKEAEVKGIPVCQALDIEIPPPRPKRKPNTPYPRKPGNNGTSSSQVSS AKDAKLVSSASSSQLNQAFLDLEKMPFSEKTSTGKENQDENCSGVSTVNKYPLPTKQVSG DIETSKTSTVDNAVQDVPKKNKDKDGNDGTTVHSMQNYPWHFHADIVNGNIAKCPQNHPS GMVSQDFMFHPMREETHGHANLQATTASATTTASHQAFPACHSQDDYRSFLQISSTFSNL IMSTLLQNPAAHAAATFAASVWPYASVGNSGDSSTPMSSSPPSITAIAAATVAAATAWWA SHGLLPVCAPAPITCVPFSTVAVPTPAMTEMDTVENTQPFEKQNTALQDQTLASKSPASS SDDSDETGVTKLNADSKTNDDKIEEVVVTAAVHDSNTAQKKNLVDRSSCGSNTPSGSDAE TDALDKMEKDKEDVKETDENQPDVIELNNRKIKMRDNNSNNNATTDSWKEVSEEGRIAFQ ALFARERLPQSFSPPQVAENVNRKQSDTSMPLAPNFKSQDSCAADQEGVVMIGVGTCKSL ${\tt KTRQTGFKPYKRCSMEVKESQVGNINNQSDEKVCKRLRLEGEAST} \\$

>G867 (64..1098)

TAAATGGAATCGAGTAGCGTTGATGAGAGTACTACAAGTACAGGTTCCATCTGTGAAACC ${\tt CCGGCGATAACTCCGGCGAAAAAGTCGTCGGTAGGTAACTTATACAGGATGGGAAGCGGA}$ TCAAGCGTTGTGTTAGATTCAGAGAACGGCGTAGAAGCTGAATCTAGGAAGCTTCCGTCG TCAAAATACAAAGGTGTGGTGCCACAACCAAACGGAAGATGGGGAGCTCAGATTTACGAG AAACACCAGCGCGTGTGGCTCGGGACATTCAACGAAGAGACGAAGCCGCTCGTGCCTAC GACGTCGCGGTTCACAGGTTCCGTCGCCGTGACGCCGTCACAAATTTCAAAGACGTGAAG ATGGACGAAGACGAGGTCGATTTCTTGAATTCTCATTCGAAATCTGAGATCGTTGATATG TTGAGGAAACATACTTATAACGAAGAGTTAGAGCAGAGTAAACGGCGTCGTAATGGTAAC GGAAACATGACTAGGACGTTGTTAACGTCGGGGTTGAGTAATGATGGTGTTTCTACGACG >G867 Amino Acid Sequence (domain in AA coordinates: 59-124)
MESSSVDESTTSTGSICETPAITPAKKSSVGNLYRMGSGSSVVLDSENGVEAESRKLPSS
KYKGVVPQPNGRWGAQIYEKHQRVWLGTFNEEDEAARAYDVAVHRFRRRDAVTNFKDVKM
DEDEVDFLNSHSKSEIVDMLRKHTYNEELEQSKRRRNGNGNMTRTLLTSGLSNDGVSTTG
FRSAEALFEKAVTPSDVGKLNRLVIPKHHAEKHFPLPSSNVSVKGVLLNFEDVNGKVWRF
RYSYWNSSQSYVLTKGWSRFVKEKNLRAGDVVSFSRSNGQDQQLYIGWKSRSGSDLDAGR
VLRLFGVNISPESSRNDVVGNKRVNDTEMLSLVCSKKQRIFHAS*

>G956 (1..840)

>G996 (53..1063)

ATGGAGGAGACAGAAAAGAATAAGGGCAGCATAAGTATGGTTGAGGCTAATCTACCTCCT GGTTTTAGATTCCATCCTAGAGACGACGACCTCGTCTGTGACTACTTAATGAGAAGAACC GTTCGCAGCCTCTATCAACCAGTTGTCTTGATCGACGTCGATCTTAACAAATGCGAGCCT TGGGACATTCCTCAAACGGCGAGAGTGGGAGGGAAAGAATGGTACTTTTACAGCCAAAAA GACCGTAAATACGCAACAGGCTACAGAACAAACCGGGCTACGGCCACCGGTTATTGGAAA GCCACCGGGAAAGATAGAGCAATCCAAAGAAACGGTGGTCTTGTGGGTATGAGAAAGACA TTTCGTCTCCAAGGAAAACTTCTTCACCACTCCCCTAATTCTCTCGAGGAAGAGTGGGTA TTGTGTAGAGTTTTCCACAAGAACAGCAACGGAGCTGATATAGACGACATCACAAGGAGC TGCTCTGATGCAACAGCTTCTGCATTCATGGACTCTTACATCAACTTCGACCATCATCAC TCCGGTTTAATCTCCAAGAACTCCAGCCCATTGTTTAATGCTTCCCCTGATCAAATGATT CTCAGAACTTTGCTAAGTCAACTCACAAAAAAAGTCGAAGAATCACAGAGTCGTGGAGAC >G956 Amino Acid Sequence (domain in AA coordinates: TBD) MEETEKNKGSISMVEANLPPGFRFHPRDDELVCDYLMRRTVRSLYQPVVLIDVDLNKCEP WDIPQTARVGGKEWYFYSQKDRKYATGYRTNRATATGYWKATGKDRAIQRNGGLVGMRKT LVFYRGRSPKGRKTDWVMHEFRLQGKLLHHSPNSLEEEWVLCRVFHKNSNGADIDDITRS CSDATASAFMDSYINFDHHHIINQHVPCFSNNLSHNQTNQSGLISKNSSPLFNASPDQMI LRTLLSQLTKKVEESQSRGDGSSESQLTDIGIPSHAWNY*

ACATTCATGTTGTTACAAACAGAAACTGAGGAAAGGACTTTGGTCTCCTGAAGAAGATGA GAAGCTTCTTCGTTACATCACTAAGTATGGTCATGGTTGCTGGAGCTCTGTCCCTAAACA AGATTTGAAGAGAGGAGCATTTTCTCAAGATGAAGAAAATCTCATTATTGAACTTCATGC CGTTCTTGGCAATAGATGGTCTCAGATAGCTGCACAGCTTCCTGGAAGAACCGACAATGA AATCAAGAATCTTTGGAATTCTTGTTTGAAGAAGAAATTGAGGCTGAGAGGAATTGACCC GGTTACACACAAGCTCTTAACCGAAATCGAAACCGGTACAGATGACAAAACAAAACCGGT TGAGAAGAGTCAACAGACCTACCTCGTTGAGACTGATGGCTCCTCTAGTACCACTACTTG TAGTACTAACCAAAACAACACTGATCATCTTTATACCGGAAATTTCGGTTTTCAACG GTTAAGTCTAGAAAACGGTTCAAGAATCGCAGCCGGTTCTGACCTCGGTATCTGGATTCC $\verb|CCAAACCGGAAGAAACCATCATCATGTCGATGAAACCATCCCTAGTGCAGTGGTACT|\\$ ACCCGGTTCAATGTTCTCATCCGGTTTAACCGGTTATAGATCCTCCAATCTCGGTTTAAT TGAATTGGAAAACTCATTCTCAACCGGGCCAATGATGACAGAGCATCAGCAAATTCAAGA GAGTAACTACAACAATTCAACATTCTTTGGAAATGGGAATCTGAATTGGGGATTAACAAT GGAGGAAAATCAAAATCCATTCACAATATCGAATCATTCAAATTCGTCCTTATACAGTGA TATAAAATCAGAGACCAATTTTTTTGGCACAGAGGCTACAAATGTTGGTATGTGGCCATG TAACCAGCTTCAGCCTCAGCAACATGCATATGGCCATATATAAATCTTCTTGTATATTAT AA

>G996 Amino Acid Sequence (domain in AA coordinates: 14-114)
MGRHSCCYKQKLRKGLWSPEEDEKLLRYITKYGHGCWSSVPKQAGLQRCGKSCRLRWINY
LRPDLKRGAFSQDEENLIIELHAVLGNRWSQIAAQLPGRTDNEIKNLWNSCLKKKLRLRG
IDPVTHKLLTEIETGTDDKTKPVEKSQQTYLVETDGSSSTTTCSTNQNNNTDHLYTGNFG
FQRLSLENGSRIAAGSDLGIWIPQTGRNHHHHVDETIPSAVVLPGSMFSSGLTGYRSSNL
GLIELENSFSTGPMMTEHQQIQESNYNNSTFFGNGNLNWGLTMEENQNPFTISNHSNSSL
YSDIKSETNFFGTEATNVGMWPCNQLQPQQHAYGHI*

>G1946 (90..1547)

TCTCACCTATTGTAAAAATCACCAGTTTCGTATATAAAACCCTAATTTTCTCAAAATTCC CAAATATTGACTTGGAATCAAAAATCCGAATGGATGTGAGCAAAGTAACCACAAGCGACG GCGGAGGAGATTCAATGGAGACTAAGCCATCTCCTCAACCTCAGCCTGCGGCGATTCTAA GTTCAAACGCGCCTCCTCCGTTTCTGAGCAAGACCTATGATATGGTTGATGATCACAATA CAGATTCGATTGTCTCTTGGAGTGCTAATAACAACAGTTTTATCGTTTGGAAACCACCGG AGTTCGCTCGCGATCTTCTTCCTAAGAACTTTAAGCATAATAATTTCTCCAGCTTCGTTA ATGGACAGGGACAGGGACATCAGCGATCTCAGCACTCGAATGGACAGAACTCATCTGTTA GCGCATGTGTTGAAGTTGGCAAATTTGGTCTCGAAGAAGAAGTTGAAAGGCTTAAAAGAG ATAAGAACGTCCTTATGCAAGAACTCGTCAGATTAAGACAGCAGCAACAGTCCACTGATA ACCAACTTCAAACGATGGTTCAGCGTCTCCAGGGCATGGAGAATCGGCAACAACAATTAA TGTCATTCCTTGCAAAGGCAGTACAAAGCCCTCATTTTCTATCTCAATTCTTACAGCAGC AGAATCAGCAAAACGAGAGTAATAGGCGCATCAGTGATACCAGTAAGAAGCGGAGATTCA AGCGAGACGGCATTGTCCGTAATAATGATTCTGCTACTCCTGATGGACAGATAGTGAAGT ATCAACCTCCAATGCACGAGCAAGCCAAAGCAATGTTTAAACAGCTTATGAAGATGGAAC CTTACAAAACCGGCGATGATGGTTTCCTTCTAGGTAATGGTACGTCTACTACCGAGGGAA CAGAGATGGAGACTTCATCAAACCAAGTATCGGGTATAACTCTTAAGGAAATGCCTACAG CTTCTGAGATACAGTCATCACCAATTGAAACAACTCCTGAAAATGTTTCGGCAGCAT CAGAAGCAACCGAGAACTGTATTCCTTCACCTGATGATCTAACTCTTCCCGACTTCACTC ATATGCTACCGGAAAATAATTCAGAGAAGCCTCCAGAGAGTTTCATGGAACCAAACCTGG GAGGTTCTAGTCCATTACTAGATCCAGATCTGTTGATCGATGATTCTTTGTCCTTCGACA TTGACGACTTTCCAATGGATTCTGATATAGACCCTGTTGATTACGGTTTACTCGAACGCT TACTCATGTCAAGCCCGGTTCCAGATAATATGGATTCAACACCAGTGGACAATGAAACAG AGCAGGAACAAAATGGATGGGACAAAACTAAGCATATGGATAATCTGACTCAACAGATGG GTCTCCTCTCTGAAACCTTAGATCTCTCAAGGCAAAATCCTTGATTTTGGGAGTTTT TAAAGTCTTTTGAGGTAACACAGTCCCTGAGAGCAGCATATTCAT

>G1946 Amino Acid Sequence (domain in AA coordinates: 32-130)
MDVSKVTTSDGGGDSMETKPSPQPQPAAILSSNAPPPFLSKTYDMVDDHNTDSIVSWSAN
NNSFIVWKPPEFARDLLPKNFKHNNFSSFVRQLNTYGFRKVDPDRWEFANEGFLRGQKHL
LQSITRRKPAHGQGGHQRSQHSNGQNSSVSACVEVGKFGLEEEVERLKRDKNVLMQELV
RLRQQQQSTDNQLQTMVQRLQGMENRQQQLMSFLAKAVQSPHFLSQFLQQQNQQNESNRR
ISDTSKKRRFKRDGIVRNNDSATPDGQIVKYQPPMHEQAKAMFKQLMKMEPYKTGDDGFL
LGNGTSTTEGTEMETSSNQVSGITLKEMPTASEIQSSSPIETTPENVSAASEATENCIPS
PDDLTLPDFTHMLPENNSEKPPESFMEPNLGGSSPLLDPDLLIDDSLSFDIDDFPMDSDI
DPVDYGLLERLLMSSPVPDNMDSTPVDNETEQEQNGWDKTKHMDNLTQQMGLLSPETLDL

>G217 (84..2618)

cttcgttcttaccgagttccacgagcattagcttcagagaccttgaattggagtgcggtt ggatcaaaaacagttgagcgaagatgaggattatgattaagggaggtgtttggaagaaca ccgaagatgagattctcaaagccgccgtgatgaagtatggtaagaaccaatgggctcgga tctcgtcttctcgttcgtaagtctgctaaacagtgtaaagctcgctggtacgagtggc tcgatccatctatcaaaaagactgaatggaccagagaagaagatgagaagcttctacatc ttgctaaacttctgcctactcaatggagaactattgctcctattgtgggtcgtacaccat ctcaatgtcttgagaggtatgagaagctccttgatgcagcatgcactaaggatgaaaatt atgatgcagcggatgatccacgaaaattacgtcctggtgagattgatccacgaag

aagcaagagctagattggctaacacgaggggaaagaaggctaaaagaaaagctagagaaa . aacaacttgaggaagctagaaggcttgcttctctgcaaaaaagaagaagtaaaagcag ctgggattgatggaaggcataggaaaagaaaagagaaatcgactataatgcagaaa ttccttttgaaaagagggcacctgcgggattttatgatactgcggatgaagatcgtcctg ctgatcaagtaaaatttccaactaccattgaagaacttgaaggaaaaagaagatgatg tagaagcacatttacgcaaacaagatgttgcaaggaataaaattgctcagagacaggatg ctccagcagctatattgcaagcaaacaagctgaatgatccggaagttgttaggaagaggt caaagctgatgttaccaccaccgcagatttcagaccacgagctagaagaaattgctaaga tgggctatgccagtgaccttcttgccgagaatgaggagctaacagaaggcagtgctgcta ctcgtgcacttttggcaaattactcacaaacaccaaggcaaggaatgacacccatgagga cacctcaaagaactcctgctggtaaaggtgatgctattatgatggaagcagaaaacctgg ccagattaagagactctcagacacctttgctaggaggagaaaatcctgagttgcaccctt ctgacttcactggggtcactccgagaaagaaggagattcaaacgcctaatccaatgttga ccccttcaatgactcctggtggtgctggtcttactccaagaattggcttgacgccatcaa gggatgggtcttctttttctatgacacccaaagggactcccttcagggatgaacttcaca ttaacqaaqacatggacatgcagcaaagtgcaaaacttgagaggcagagacgagaggaag ctaqaaggagtttacgctctggtttgactgggcttcctcagccaaagaacgagtaccaaa tagttgcacaacctcctcctgaggaaagtgaagagccagaagagaaaattgaggaagaca tgtcagacaggatagcgagggaaaaggcggaggaagaagcaagacaacaggcattgctta agaagagatccaaggtcttgcagagagatcttcctagacccccagctgcttcattggcag taattaggaactcgttgctttcagctgatggagacaaaagttctgttgttcctcctactc cgattgaggttgcagataaaatggtaagagaggagcttctacagttgctggagcatgata atgcaaagtatccgcttgatgacaaagctgagaagaagaaaggagccaagaaccgtacca accgttctgcttctcaagttcttgcaattgacgattttgatgaaaatgagctccaagagg agacacttgatgattttgtagaagctcacaacacatgcgtgaatgatctcatgtatttcc ccactcgaagcgcttacgagctctcaagtgttgctgggaacgcggacaaagttgcagctt ggacccaaatagaggcgacattgaagcaggctgagattggtggaacagaagtagagtgct ttaaagcattgaagaggcaagaagaggtggcatcttttaggaaaaagaatttgcaag aggaagtgataaagcaaaaggaaacagagagtaaactgcagactcgctatgggaatatgt tggcaatggttgaaaaagcagaggagataatggtcggtttccgagcacaggcattgaaga aacaagaggatgttgaagattctcacaaactgaaagaagctaagctagccactggagagg aagaggacatagccatagcatggaagcttctgcataaaaacttgagttttgtattgctt ${\tt acaagttttaaggagacgtagcttgactttgtattggtaagtttttttaatatgagtcat}$ gactttgtaaaaaggttatgatatattctctgtttgtatgctttgcaagagtcaagaaat

>G217 Amino Acid Sequence (conserved domain in AA coordinates: 8-67) MRIMIKGGVWKNTEDEILKAAVMKYGKNQWARISSLLVRKSAKQCKARWYEWLDPSIKKT EWTREEDEKLLHLAKLLPTQWRTIAPIVGRTPSQCLERYEKLLDAACTKDENYDAADDPR ${\tt KLRPGEIDPNPEAKPARPDPVDMDEDEKEMLSEARARLANTRGKKAKRKAREKQLEEARR}$ LASLQKRRELKAAGIDGRHRKRKRKGIDYNAEIPFEKRAPAGFYDTADEDRPADQVKFPT TIEELEGKRRADVEAHLRKQDVARNKIAQRQDAPAAILQANKLNDPEVVRKRSKLMLPPP QISDHELEEIAKMGYASDLLAENEELTEGSAATRALLANYSQTPRQGMTPMRTPQRTPAG KGDAIMMEAENLARLRDSQTPLLGGENPELHPSDFTGVTPRKKEIQTPNPMLTPSMTPGG AGLTPRIGLTPSRDGSSFSMTPKGTPFRDELHINEDMDMQQSAKLERQRREEARRSLRSG LTGLPOPKNEYOIVAOPPPEESEEPEEKIEEDMSDRIAREKAEEEARQQALLKKRSKVLQ RDLPRPPAASLAVIRNSLLSADGDKSSVVPPTPIEVADKMVREELLQLLEHDNAKYPLDD KAEKKKGAKNRTNRSASQVLAIDDFDENELQEADKMIKEEGKFLCVSMGHENKTLDDFVE AHNTCVNDLMYFPTRSAYELSSVAGNADKVAAFQEEMENVRKKMEEDEKKAEHMKAKYKT YTKGHERRAETVWTQIEATLKQAEIGGTEVECFKALKRQEEMAASFRKKNLQEEVIKQKE TESKLQTRYGNMLAMVEKAEEIMVGFRAQALKKQEDVEDSHKLKEAKLATGEEEDIAIAM EASA*

>G2192 (92..2971)

CGGAAAGAGATCAACCAACGATAGAGGAGAAGAAGAACTTGCATACGCAAAAAAACTTTC

201/286

CCGGGAAAATTCCAGAAACTGCTTTGGAAAAATGTGCGAGCCCGATGATAATTCCGCTAG AAACGGCGTCACTACTCAACCTTCGAGGTCAAGGGAGCTTCTAATGGATGTTGACGACTT GATTTCTCCGATTTTTGTCTCCTCTTCCTCTGAGCAGCCTTGCTCGCCTCTCTGGGCTTT $\tt CTCCGACGGTGGAGGAAATGGTTTTCACCACGCAACCTCCGGTGGCGATGATGAGAAGAT$ CAGCTCTGTCTCCGGTGTTCCTTTCTTTCCGTCTCGCCGAGTATCCTCTCTTCCTCCCTTA CTCTTCTCCATCAGCAGCTGAGAACACAGCAGAGAGCATAACAGTTTCCAGTTTCCGTC TCCATTGATGAGCCTAGTCCCACCAGAGAACACAGACAACTACTGTGTGATCAAAGAGAG GATGACTCAGGCGCTTCGATACTTCAAAGAATCAACCGAACAACACGTTTTGGCTCAGGT CTGGGCTCCTGTGAGAAAGAATGGTCGTGATTTGCTGACGACTTTGGGTCAACCTTTTGT TTCTGTGGATAGTGAAAGTGACGTAGAGCTCGGACTCCCGGGTCGAGTTTTCCGTCAGAA ${\tt ATTGCCTGAATGGACTCCAAATGTTCAGTACTATTCCAGCAAAGAATTCTCGCGGCTTGA}$ TCACGCCTTGCACTACAACGTGCGTGGTACACTGGCCTTGCCTGTCTTTAATCCCTCTGG TCAGTCCTGCATAGGTGTTGTGGAACTTATAATGACCTCAGAGAAGATTCACTATGCACC CGAAGTGGACAAAGTTTGCAAAGCCCTTGAGGCGGTAAATCTGAAAAGCTCGGAAATACT TGATCACCAAACAACAGATATGCAATGAGAGTCGCCAAAACGCGCTTGCTGAGATTCT CGAAGTGCTGACAGTTGTATGTGAGACCCATAACTTGCCTCTCGCTCAGACTTGGGTTCC ATGTCAGCATGGGAGCGTTCTTGCCAATGGTGGCGGTCTAAAGAAAAACTGCACCAGCTT TGACGGTAGCTGCATGGGTCAAATCTGCATGTCTACAACCGACATGGCCTGCTATGTCGT GGATGCTCATGTCTGGGGGCTTTAGAGATGCCTGTCTTGAACACCATCTCCAGAAAGGCCA GGGAGTCGCTGGACGAGCTTTTCTCAATGGTGGCTCATGTTTCTGCAGAGACATCACCAA GTTCTGCAAAACGCAGTACCCACTAGTCCATTATGCGCTCATGTTCAAGTTGACCACTTG TTTTGCAATATCTCTCCAGAGCTCTTACACGGGCGACGACAGTTACATTCTTGAATTTTT TCTTCCTTCGAGTATAACAGACGACCAAGAGCCAAGATTTGCTGTTGGGTTCTATTTTGGT GACAATGAAAGAACATTTTCAGAGTCTGAGGGTTGCATCTGGGGGTTGACTTTGGTGAAGA AATAGAATCCATTCGAGTTCCCTTTTCTGGTTTTAAGTCAAATGCAACAGAGACGATGTT GATTCCTCAGCCTGTGGTTCAGTCTTCTGATCCAGTAAATGAGAAAATCAACGTGGCCAC TGTTAACGGTGTGGTTAAGGAGAAGAAGAAAACAGAGAAAAAGCGTGGGAAGACTGAGAA AACAATCAGTCTAGATGTACTTCAGCAGTATTTCACTGGAAGTCTCAAAGACGCTGCAAA GAGCCTAGGAGTTTGCCCGACGACAATGAAGCGAATTTGCAGGCAACACGGAATCTCGCG GTGGCCATCGAGGAAGATCAAGAAGTGAATCGTTCAATCACAAAGCTGAAACGAGTCAT CGAATCTGTTCAAGGTACTGATGGAGGCCTCGACCTGACTTCCATGGCCGTTAGTTCCAT CCCTTGGACACACGGTCAAACATCAGCACAGCCACTAAACTCACCCAATGGTTCCAAACC ACCTGAGCTACCAAACACCAATAATTCACCTAACCATTGGTCAAGTGATCACAGTCCGAA CGAGCCAAATGGTTCGCCTGAGTTACCACCAAGCAATGGTCACAAGCGATCACGAACGGT GGATGAGAGCGCTGGGACTCCAACCTCTCATGGCTCATGTGACGGTAACCAATTAGATGA ACCGAAAGTCCCAAATCAAGATCCGCTCTTCACGGTTGGTGGATCACCCGGGCTCCTTTT TCTTGGTTCTATAGACCATTTCCGAGGAATGCTCATTGAAGACGCTGGAAGTTCAAAAGA TCTGAGAAATCTCTGCCCCACTGCAGCATTTGACGATAAGTTTCAAGACACAAACTGGAT GAACAATGATAATAATAGCAACAACAACTTATACGCTCCCCCAAAGGAAGAGGCCATTGC AAATGTTGCATGCGAACCATCAGGCTCAGAAATGAGAACGGTAACAATCAAAGCAAGTTA CAAAGACGACATAATACGGTTCAGAATATCCTCGGGTTCAGGTATAATGGAATTGAAGGA TGAAGTGGCTAAGAGGCTGAAAGTTGATGCAGGAACGTTCGATATCAAGTATCTTGACGA TGATAACGAATGGGTTTTAATAGCTTGTGATGCTGATCTTCAAGAATGTCTCGAGATCCC TAGATCCTCCCGCAEGAAAATCGTAAGGCTCTTAGTTCATGATGTAACGACAAATCTAGG

>G2192 Amino Acid Sequence (conserved domain in AA coordinates:600-700)
MCEPDDNSARNGVTTQPSRSRELLMDVDDLDLDGSWPLDQIPYLSSSNRMISPIFVSSSS
EQPCSPLWAFSDGGGNGFHHATSGGDDEKISSVSGVPSFRLAEYPLFLPYSSPSAAENTT
EKHNSFQFPSPLMSLVPPENTDNYCVIKERMTQALRYFKESTEQHVLAQVWAPVRKNGRD
LLTTLGQPFVLNPNGNGLNQYRMISLTYMFSVDSESDVELGLPGRVFRQKLPEWTPNVQY
YSSKEFSRLDHALHYNVRGTLALPVFNPSGQSCIGVVELIMTSEKIHYAPEVDKVCKALE
AVNLKSSEILDHQTTQICNESRQNALAEILEVLTVVCETHNLPLAQTWVPCQHGSVLANG

GGLKKNCTSFDGSCMGQICMSTTDMACYVVDAHVWGFRDACLEHHLQKGQGVAGRAFLNG
GSCFCRDITKFCKTQYPLVHYALMFKLTTCFAISLQSSYTGDDSYILEFFLPSSITDDQE
QDLLLGSILVTMKEHFQSLRVASGVDFGEDDDKLSFEIIQALPDKKVHSKIESIRVPFSG
FKSNATETMLIPQPVVQSSDPVNEKINVATVNGVVKEKKKTEKKRGKTEKTISLDVLQQY
FTGSLKDAAKSLGVCPTTMKRICRQHGISRWPSRKIKKVNRSITKLKRVIESVQGTDGGL
DLTSMAVSSIPWTHGQTSAQPLNSPNGSKPPELPNTNNSPNHWSSDHSPNEPNGSPELPP
SNGHKRSRTVDESAGTPTSHGSCDGNQLDEPKVPNQDPLFTVGGSPGLLFPPYSRDHDVS
AASFAMPNRLLGSIDHFRGMLIEDAGSSKDLRNLCPTAAFDDKFQDTNWMNNDNNSNNNL
YAPPKEEAIANVACEPSGSEMRTVTIKASYKDDIIRFRISSGSGIMELKDEVAKRLKVDA
GTFDIKYLDDDNEWVLIACDADLQECLEIPRSSRTKIVRLLVHDVTTNLGSSCESTGEL*
>G504 (69..1040)

CGTCGACCTCTTGACGATCATGAGACTGATTTCGTGAAAATATCGTCATTATATCAAATT AGAAGTTGATGGAAAACATGGGGGGTTTCGAGCATAGGGCCGGGCCATCCGCATCTCCCTC CCGGGTTTCGGTTTCACCCGACTGATGAGGAACTAGTAGTTCATTACCTCAAGAAGAAAG CAGATTCTGTTCCACTTCCAGTCTCAATCATCGCAGAGATTGATCTTTACAAGTTTGATC ${\tt CTTGGGAGCTTCCAAGCAAGGCGAGTTTTGGAGAGCACGAGTGGTACTTCTTTAGTCCTC}$ GGGATCGGAAGTATCCAAATGGGGTTAGGCCAAACCGGGCAGCAACTTCCGGTTATTGGA AAGCAACGGGAACCGATAAACCGATATTTACGTGCAATAGTCACAAGGTTGGTGTCAAGA AAGCGCTTGTTTTTTACGGTGGAAAGCCTCCTAAAGGGATAAAAACAGATTGGATCATGC ATGAATATCGCCTCACTGATGGTAACCTTAGCACTGCGGCTAAGCCGCCTGACTTAACCA CGACAAGGAAAAACTCACTACGGCTAGACGATTGGGTTCTATGTAGGATCTATAAGAAGA ATAGTTCACAAAGACCAACAATGGAGAGAGTATTACTTAGAGAGGATCTAATGGAAGGCA TGCTCTCAAAATCATCTGCTAATTCTTCTTCTACATCAGTACTAGACAACAACGACAACA ATAATAACAATAACGAAGAACACTTTTTCGACGGTATGGTCGTTTCTTCAGACAAACGTT CCTTGTGTGGTCAATACCGAATGGGCCACGAGGCCTCAGGATCATCTTCATTCGGATCTT TCTTATCGAGCAAGAGGTTTCATCATACAGGTGATCTCAACAATGATAACTACAATGTCT CTTTTGTTTCGATGCTTAGTGAGATTCCTCAGAGTTCGGGGTTTCATGCAAATGGTGTTA TGGATACGACGTCTCTAGCTGATCATGGGGTTTTAAGACAGGCGTTTCAGCTTCCTA ACATGAACTGGCACTCATAATCTATATAGATATATATGTGTGTATCATATATGTATCTAT GCAGGCCTAATATAGTTTACACATAAATCATCTGGGGCGGCCGCT

>G504 Amino Acid Sequence (domain in AA coordinates: TBD)
MENMGDSSIGPGHPHLPPGFRFHPTDEELVVHYLKKKADSVPLPVSIIAEIDLYKFDPWE
LPSKASFGEHEWYFFSPRDRKYPNGVRPNRAATSGYWKATGTDKPIFTCNSHKVGVKKAL
VFYGGKPPKGIKTDWIMHEYRLTDGNLSTAAKPPDLTTTRKNSLRLDDWVLCRIYKKNSS
QRPTMERVLLREDLMEGMLSKSSANSSSTSVLDNNDNNNNNNEEHFFDGMVVSSDKRSLC
GQYRMGHEASGSSSFGSFLSSKRFHHTGDLNNDNYNVSFVSMLSEIPQSSGFHANGVMDT
TSSLADHGVLRQAFQLPNMNWHS*

>G622 (248..2620)

TCTTTCTTCTTCAATTCGCCGTCAAAATCTTCTCTTTCTCTTCCCCCGCCGGTCCTTCA ${\tt CCAATCCTCTGATCTCTACACACGAACCTTTGATTTTGACCAACGTCGATGCATGTTC}$ ATGACTAGTCTCTCAATCCTTCAATTTCATCAATTCACGTCGATTTCGTATCCGAT TCGTTGTTCTAGCTCTTTGTGTGTGTTTAGGGTTTTAAGATTTTGGAATTGGGGTTTTGGA GTTTGTGATGTTTGAAGTCAAAATGGGGTCAAAGATGTGCATGAACGCTTCATGTGGTAC GACTTCTACTGTTGAATGGAAGAAAGGTTGGCCTCTTCGATCTGGTCTTCTCGCTGATCT CTGTTATCGTTGCGGATCTGCGTATGAGAGTTCTCTATTCTGTGAACAATTTCATAAGGA CCAATCTGGTTGGAGGGAATGCTATTTGTGTAGCAAGAGACTACATTGTGGATGCATTGC $\tt CTGCCATCAACTCAATTTGAACACAAGGGGTGAGAATCCAGGTGTTTTTAGCAGATTGCC$ AATGAAAACGTTAGCTGATAGGCAACATGTAAATGGCGAAAGCGGAGGAAGAAACGAAGG CGATCTCTTTTCTCAGCCACTAGTCATGGGCGGAGATAAAAGGGAAGAGTTCATGCCTCA CCGTGGGTTTGGTAAGCTAATGAGTCCAGAAAGTACAACCACCGGGCATAGGCTGGATGC TGCTGGGGAAATGCATGAATCATCACCTTTACAGCCATCTTTAAATATGGGTTTGGCTGT GAATCCGTTTAGCCCATCTTTTGCAACCGAGGCTGTCGAGGGAATGAAACACATCAGTCC TTCTCAGTCCAACATGGTCCATTGCTCTGCTTCTAATATACTGCAAAAGCCATCAAGACC TGCTATTTCAACTCCTCTGTGGCTAGTAAATCCGCTCAGGCGCGGATTGGAAGGCCTCC TGTCGAAGGGCGAGGGAGAGGCCACTTGCTTCCGCGGTATTGGCCAAAATATACGGATAA AGAGGTTCAGCAGATCTCTGGAAATTTGAATTTGAACATTGTACCTCTCTTTGAGAAAAC

TCTTAGTGCCAGTGATGCTGGTCGCATTGGTCGTCTAGTTCTTCCAAAAGCCTGTGCAGA GGCATATTTTCCTCCGATTAGTCAATCCGAAGGCATTCCTTTGAAAATCCAAGATGTGAG TTTAGAAGGTGTCACTCCATGCATACAGTCCATGATGCTACAGGCTGGTGATACAGTAAC ${\tt TTTCAGTCGGGTTGATCCTGGCGGAAAACTAATCATGGGTTCCAGGAAGGCAGCTAATGC}$ TGGAGACATGCAGGGTTGTGGGCTCACCAACGGAACATCAACTGAGGACACATCATCGTC TGGTGTAACAGAAAACCCACCCTCCATAAATGGTTCCTCGTGTATTTCACTAATACCGAA AGAGTTGAATGGTATGCCTGAGAATTTGAACAGTGAGACTAACGGGGGCAGGATAGGTGA TGATCCTACACGAGTTAAAGAGAAGAAGAAGTCGAACCATTGGTGCAAAAAATAAGAG ACTTCTTTTGCATAGTGAAGAATCTATGGAGCTGAGACTCACTTGGGAAGAAGCTCAGGA CTTGCTTCGTCCCTCTCCTAGTGTAAAGCCTACCATCGTTGTCATTGAGGAGCAAGAAAT TGAAGAATATGACGAACCTCCTGTCTTTGGAAAGAGGACTATAGTCACTACAAAACCTTC AGGTGAACAGGAACGATGGGCAACTTGCGACGACTGCTCTAAATGGAGAAGGTTACCTGT AGATGCTCTTCTTTCCTTTAAATGGACATGTATAGACAATGTTTGGGATGTGAGTAGGTG AGAGCACAAGAAGAAGAACTGGGGAAAGACAGGCAGCACAAAGTCAGCAAGAACCGTG TGGTTTGGACGCACTGGCGAGTGCAGCAGTCTTAGGAGACACAATAGGCGAGCCAGAGGT AGCGACCACGACCAGACATCCAAGGCACAGGGCTGGATGCTCTTGCATCGTGTGCATTCA GCCACCAAGTGGGAAAGGTAGGCACAAGCCTACATGTGGCTGCACTGTGTAGCACCGT GAAGAGAAGGTTCAAGACGCTTATGATGAGGAGGAAGAAGAAGCAGTTGGAGCGCGATGT AACAGCAGCAGAAGATAAGAAGAAGAAGACATGGAACTGGCTGAGTCTGATAAGAGTAA GGAGGAGAAGGAAGTGAACACAGCGAGAATAGACCTGAACAGTGATCCATACAATAAAGA AGATGTTGAAGCTGTTGCGGTGGAGAAAGAAGAGAGTCGAAAAAGAGCAATAGGACAGTG TTCGGGCGTGGTGGCTCAAGACGCCAGTGATGTTTTAGGAGTTACAGAGTTAGAAGGAGA GGGTAAGAATGTTCGTGAAGAGCCGAGAGTTTCAAGCTGATATGGAAA

>G622 Amino Acid Sequence (domain in AA coordinates: TBD) MFEVKMGSKMCMNASCGTTSTVEWKKGWPLRSGLLADLCYRCGSAYESSLFCEQFHKDQS GWRECYLCSKRLHCGCIASKVTIELMDYGGVGCSTCACCHQLNLNTRGENPGVFSRLPMK TLADRQHVNGESGGRNEGDLFSQPLVMGGDKREEFMPHRGFGKLMSPESTTTGHRLDAAG EMHESSPLQPSLNMGLAVNPFSPSFATEAVEGMKHISPSQSNMVHCSASNILQKPSRPAI STPPVASKSAQARIGRPPVEGRGRGHLLPRYWPKYTDKEVQQISGNLNLNIVPLFEKTLS ASDAGRIGRLVLPKACAEAYFPPISQSEGIPLKIQDVRGREWTFQFRYWPNNNSRMYVLE ${\tt GVTPCIQSMMLQAGDTVTFSRVDPGGKLIMGSRKAANAGDMQGCGLTNGTSTEDTSSSGV}$ TENPPSINGSSCISLIPKELNGMPENLNSETNGGRIGDDPTRVKEKKRTRTIGAKNKRLL LHSEESMELRLTWEEAQDLLRPSPSVKPTIVVIEEQEIEEYDEPPVFGKRTIVTTKPSGE QERWATCDDCSKWRRLPVDALLSFKWTCIDNVWDVSRCSCSAPEESLKELENVLKVGREH KKRRTGERQAAQSQQEPCGLDALASAAVLGDTIGEPEVATTTRHPRHRAGCSCIVCIQPP SGKGRHKPTCGCTVCSTVKRRFKTLMMRRKKKQLERDVTAAEDKKKKDMELAESDKSKEE KEVNTARIDLNSDPYNKEDVEAVAVEKEESRKRAIGQCSGVVAQDASDVLGVTELEGEGK NVREEPRVSS*

>G778 (50..1249)

TCTCAATAACACAAAACCTTTTAAACTAGTAAAATACACAGATTTTAGGATGAGCCAATG TGTTCCAAACTGTCACATCGATGATACTCCGGCAGCAGCCACCACCACCGTCCGCTCCAC CACAGCCGCAGACATCCCCATATTAGACTACGAGGTAGCCGAGCTGACGTGGGAGAACGG GCAACTAGGCTTGCACGGCTTAGGTCCACCGCGAGTGACGGCTTCGTCGACCAAGTACTC CACAGGCGCCGGTGGAACGTTGGAGTCGATAGTGGACCAAGCTACTCGCCTCCCTAACCC TAAGCCCACGGATGAGCTCGTCCCGTGGTTCCATCATCGCTCCTCCAGGGCCGCGATGGC AATGGACGCGCTTGTCCCTTGCTCCAACCTAGTACACGAGCAGCAGAGCAAGCCTGGTGG CGTTGGCTCCACCCGGGTGGGGTCATGTAGCGATGGTCGTACCATGGGCGGTGGAAAACG AGCAAGAGTGGCACCGGAGTGGAGCGGCGGCGGAGTCAGCGGCTGACCATGGACACTTA CGACGTAGGTTTCACCTCAACATCAATGGGCTCGCACGATAACACAATCGACGATCATGA CTCCGTCTGCCACAGCCGCCCACAGATGGAGGACGAAGAAGAGAAGAAAAGCCGGAGGAAA ATCATCAGTTTCAACCAAGAGAAGCAGAGCTGCTGCTATTCATAACCAATCCGAACGTAA GAGGAGAGATAAAATCAATCAAAGGATGAAGACTTTGCAAAAACTGGTTCCCAATTCCAG CAAGACGGATAAAGCATCTATGTTGGATGAAGTGATAGAGTATTTGAAGCAACTTCAAGC ACAAGTGAGCATGATGAGCAGAATGAATATGCCTTCTATGATGCTTCCTATGGCCATGCA GCAACAACAACTACAAATGTCTCTCATGTCCAATCCCATGGGTTTAGGGATGGGCAT >G778 Amino Acid Sequence (domain in AA coordinates: 220-267)
MSQCVPNCHIDDTPAAATTTVRSTTAADIPILDYEVAELTWENGQLGLHGLGPPRVTASS
TKYSTGAGGTLESIVDQATRLPNPKPTDELVPWFHHRSSRAAMAMDALVPCSNLVHEQQS
KPGGVGSTRVGSCSDGRTMGGGKRARVAPEWSGGGSQRLTMDTYDVGFTSTSMGSHDNTI
DDHDSVCHSRPQMEDEEEKKAGGKSSVSTKRSRAAAIHNQSERKRRDKINQRMKTLQKLV
PNSSKTDKASMLDEVIEYLKQLQAQVSMMSRMNMPSMMLPMAMQQQQQLQMSLMSNPMGL
GMGMGMPGLGLLDLNSMNRAAASAPNIHANMMPNPFLPMNCPSWDASSNDSRFQSPLIPD
PMSAFLACSTQPTTMEAYSRMATLYQQMQQQLPPPSNPK*

>G791 (173..877)

TTTTCTTTGGGTGTTCCTTCCACCAACGGCAGAAATCGATTCGGCTTAAATCTCCCCCTC CTTTCGATCTCTGATCGCCGCCGGGAACATTCAATTTCCCGGGAGTTCAACAAAAAA AAACTCTCCGTTTTTATTTTTCCCCCTTTTTCACCGGTGGAAGTTTCCGGAGATGGTGTC ACCCGAAAACGCTAATTGGATTTGTGACTTGATCGATGCTGATTACGGAAGTTTCACAAT CCAAGGTCCTGGTTTCTCTTGGCCTGTTCAGCAACCTATTGGTGTTTCTTCTAACTCCAG TGCTGGAGTTGATGGCTCGGCTGGAAACTCAGAAGCTAGCAAAGAACCTGGATCCAAAAA GAGGGGGAGATGTGAATCATCCTCTGCCACTAGCTCGAAAGCATGTAGAGAAGCAGCG ACGGGACAGGTTGAATGACAAGTTTATGGAATTGGGTGCAATTTTGGAGCCTGGAAATCC TCCCAAAACAGACAAGGCTGCTATCTTGGTTGATGCTGTCCGCATGGTGACACAGCTACG GGGCGAGGCCCAGAAGCTGAAGGACTCCAATTCAAGTCTTCAGGACAAAATCAAAGAGTT AAAGACTGAGAAAAACGAGCTGCGAGATGAGAAACAGAGGCTGAAGACAGAGAAAAAA GCTGGAGCAGCTGAAAGCCATGAATGCTCCTCAACCAAGTTTTTTCCCAGCCCCACC TATGATGCCTACTGCTTTTGCTTCAGCGCAAGGCCAAGCTCCTGGAAACAAGATGGTGCC AATCATCAGTTACCCAGGAGTTGCCATGTGGCAGTTCATGCCTCCTGCTTCAGTCGATAC TTCTCAGGATCATGTCCTTCGTCCTCCTGTTGCTTAATCAAGAAAAATCATCAACCGGTT GCTTTCTTAGTCTTATCCTTTTGCTTTGTCGTGTTATCATCGTAACTGTTATCTGTTGAA CAATGATATGACATTGTAAACTCCAATTGCTTCGCGCAATGTTATCTATTCACATGTAAA TTTAAGTAGAGTTTGGCAAAAAAAAAA

>G791 Amino Acid Sequence (domain in AA coordinates: 75-143)
MVSPENANWICDLIDADYGSFTIQGPGFSWPVQQPIGVSSNSSAGVDGSAGNSEASKEPG
SKKRGRCESSSATSSKACREKQRRDRLNDKFMELGAILEPGNPPKTDKAAILVDAVRMVT
QLRGEAQKLKDSNSSLQDKIKELKTEKNELRDEKQRLKTEKEKLEQQLKAMNAPQPSFFP
APPMMPTAFASAQGQAPGNKMVPIISYPGVAMWQFMPPASVDTSQDHVLRPPVA*

>G938 (1..1755)

WO 03/013227

ATGATGATGTTTAACGAGATGGGAATGTATGGAAACATGGATTTCTTCTTCTCCCCACA TCTCTCGATGTGTGTCCATTACCACAAGCTGAACAAGAACCTGTAGTTGAAGATGTCGAC TACACCGATGATGAGATGGATGTGGATGAGCTTGAGAAGAGGATGTGGAGAGACAAAATG CGTTTGAAACGTCTCAAGGAGCAACAGAGTAAGTGTAAAGAAGGCGTCGATGGTTCGAAA CAGAGGCAGTCGCAAGAGCAAGCTAGGAGGAAGAAAATGTCTAGAGCCCAAGATGGGATC TTGAAGTATATGTTGAAGATGATGGAAGTTTGTAAAGCTCAAGGCTTTGTTTATGGTATT ATTCCTGAGAAGGGTAAGCCTGTGACTGGTGCTTCGGATAATTTGAGGGAATGGTGGAAA CAGGAGCTTCAGGACACGACTCTTGGTTCGCTTTTATCGGCTTTGATGCAACATTGTGAT CCACCGCAGAGACGGTTTCCTTTGGAGAAAGGAGTTTCTCCACCTTGGTGGCCTAATGGG AATGAAGAGTGGTGGCCTCAGCTTGGTTTACCAAATGAGCAAGGTCCTCCTCCTTATAAG AAGCCTCATGATTTGAAGAAAGCTTGGAAAGTCGGTGTTTTAACTGCGGTGATCAAGCAT ATGTCGCCGGATATTGCGAAGATCCGTAAGCTTGTGAGGCAATCAAAATGCTTGCAGGAT AAGATGACGGCGAAAGAGAGTGCTACTTGGCTTGCCATTATTAACCAAGAAGAGGTTGTG GGGTCGCTTCTCATTAATGATTGTAGCGAGTATGACGTTGAAGGTTTCGAGAAGGAACAA CATGGTTTCGATGTGGAAGAGCGGAAACCAGAGATAGTGATGATGCATCCTCTAGCAAGC TTTGGGGTTGCTAAAATGCAACATTTTCCCATAAAGGAGGAGGTCGCCACCACGGTAAAC TTAGAGTTCACGAGAAGGGAAGCAGAACAATGATATGAATGTTATGGTAATGGACAGA TCAGCAGGTTACACTTGTGAGAATGGTCAGTGTCCTCACAGCAAAATGAATCTTGGATTT CAAGACAGGAGTTCAAGGGACAACCACCAGATGGTTTGTCCATATAGAGACAATCGTTTA GCGTATGGAGCATCCAAGTTTCATATGGGTGGAATGAAACTAGTAGTTCCTCAGCAACCA GTCCAACCGATCGACCTATCGGGCGTTGGAGTTCCGGAAAACGGGCAGAAGATGATCACC GAGCTTATGGCCATGTACGACAGAAATGTCCAAAGCAACCAAACGCCTCCTACTTTGATG GAAAACCAAAGCATGGTCATTGATGCAAAAGCAGCTCAGAATCAGCAGCTGAATTTCAAC AGTGGCAATCAAATGTTTATGCAACAAGGGACGAACAACGGGGTTAACAATCGGTTCCAG ATGGTGTTTGATTCGACACCATTCGATATGGCAGCATTCGATTACAGAGATGATTGGCAA ACCGGAGCAATGGAAGGAATGGGGAAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGATGTA TCAATATGGTTCTGA

>G938 Amino Acid Sequence (domain in AA coordinates: 96-104)
MMMFNEMGMYGNMDFFSSSTSLDVCPLPQAEQEPVVEDVDYTDDEMDVDELEKRMWRDKM
RLKRLKEQQSKCKEGVDGSKQRQSQEQARRKKMSRAQDGILKYMLKMMEVCKAQGFVYGI
IPEKGKPVTGASDNLREWWKDKVRFDRNGPAAIAKYQSENNISGGSNDCNSLVGPTPHTL
QELQDTTLGSLLSALMQHCDPPQRRFPLEKGVSPPWWPNGNEEWWPQLGLPNEQGPPPYK
KPHDLKKAWKVGVLTAVIKHMSPDIAKIRKLVRQSKCLQDKMTAKESATWLAIINQEEVV
ARELYPESCPPLSSSSSLGSGSLLINDCSEYDVEGFEKEQHGFDVEERKPEIVMMHPLAS
FGVAKMQHFPIKEEVATTVNLEFTRKRKQNNDMNVMVMDRSAGYTCENGQCPHSKMNLGF
QDRSSRDNHQMVCPYRDNRLAYGASKFHMGGMKLVVPQQPVQPIDLSGVGVPENGQKMIT
ELMAMYDRNVQSNQTPPTLMENQSMVIDAKAAQNQQLNFNSGNQMFMQQGTNNGVNNRFQ
MVFDSTPFDMAAFDYRDDWQTGAMEGMGKQQQQQQQDVSIWF*

>G965 (73..1956)

GATTCTCTGTGTATGTCTGAATCCTTACAGGATCCAAGAGCTTTGGAAAAAAGATATAAT GAATAACAAGATATGGGTTTAGCTACTACAACTTCTTCTATGTCACAAGATTATCATCAT CACCAAGGAATCTTTTCCTTCTCTAATGGATTCCACCGATCATCATCAACCACTCATCAG GAGGAAGTAGATCAGCCCCGTCGTCTCCCGGTGCTCAAATTCCGGTTTATGAAACCGCC

GGAATGTTGTCTGAAATGTTTGCTTACCCTGGCGGAGGTGGCGGCGGTTCCGGTGGAGAG ATTCTTGATCAGTCTACTAAACAGTTGCTAGAGCAACAAAACCGTCACAACAACAACAAT AACTCAACTCTTCATATGTTATTACCAAATCATCATCAAGGTTTTGCTTTCACCGACGAA AACACTATGCAGCCGCAGCAACAACACTTTACATGGCCATCTTCCTCCTCCGATCAT CATCAAAACCGAGATATGATCGGAACCGTCCACGTGGAAGGAGGAAAGGGTTTGTCTTTA TCTCTCTCATCTTCATTAGCCGCAGCTAAAGCCGAGGAATATAGAAGCATTTATTGTGCA GCCGTTGATGGAACTTCTTCTTCTTAACGCATCCGCTCATCATCATCAATTCAATCAG TTCAAGAATCTTCTTGAGAATTCTTCTTCTCAACATCATCACCATCAAGTTGTTGGA CATTTTGGTTCATCATCATCATCTCCCATGGCGGCTTCTTCATCCATTGGAGGGATCTAC ACGTTGAGGAATTCGAAATATACGAAACCGGCTCAAGAGTTGTTGGAAGAGTTTTGTAGT GTTGGAAGAGACATTTCAAGAAGAACAAACTTAGTAGGAACAACTCAAACCCTAATACT ACCGGTGGAGGAGGAGGGGGGCCTCGTCATCGGCCGGAACAGCTAATGATAGTCCT CTTGAAGAGGTGGACCGACGGTACAACCACTACTGCGAACAAATGCAAATGGTAGTGAAC TCATTCGACCAAGTAATGGGTTACGGCGCGGCGGTTCCGTACACGACATTAGCTCAAAAG GCAATGTCTAGGCATTTCCGGTGTTTGAAAGACGCGGTAGCGGTTCAGCTTAAACGCAGC TGTGAGCTTCTAGGGGATAAAGAGGCGGCAGGGGCTGCATCCTCGGGGTTAACCAAAGGG GAAACGCCGCGATTGCGTTTGCTAGAGCAGAGTTTGCGTCAGCAACGAGCGTTTCATCAT ATGGGTATGATGGAGCAAGAGGCATGGAGACCGCAACGTGGTTTGCCTGAACGCTCCGTT AATATCCTTAGAGCTTGGCTATTCGAGCATTTTCTTAATCCGTACCCAAGCGATGCTGAT AAGCACCTCTTAGCACGACAGACTGGTTTATCCAGAAATCAGGTGTCAAATTGGTTCATA AATGCTAGGGTTCGCCTATGGAAACCAATGGTGGAAGAGATGTATCAACAAGAAGCAAAA GAAAGAGAAGAAGCAGAAGAAGAAAATGAAAATCAACAACAACAAGAAGAAGACAACAACAA ACAAACAACAACGACACGAAACCCAACAACAATGAAAACAACTTCACTGTCATAACCGCA CAAACTCCAACGACGATGACATCGACACATCACGAAAACGACTCTTCATTCCTCTCTCC GTCGCCGCCGCTTCTCACGGCGGTTCAGACGCGTTCACCGTCGCCACGTGTCAGCAAGAC GTCAGTGACTTCCACGTCGACGGAGATGGTGTGAACGTCATAAGATTCGGGACCAAACAG ACTGGTGACGTGTCTTACGCTTGGTCTACGCCACTCTGGCAATATTCCTGATAAGAAC ACTTCTTTCTCCGTTAGAGACTTTGGAGATTTTTAGTCTTCTTTGTTTCTCAATTTATTC

>G965 Amino Acid Sequence (domain in AA coordinates: 423-486)
MGLATTTSSMSQDYHHHQGIFSFSNGFHRSSSTTHQEEVDESAVVSGAQIPVYETAGMLS
EMFAYPGGGGGGGGGEILDQSTKQLLEQQNRHNNNNNSTLHMLLPNHHQGFAFTDENTMQ
PQQQHFTWPSSSSDHHQNRDMIGTVHVEGGKGLSLSLSSSLAAAKAEEYRSIYCAAVDG
TSSSSNASAHHHQFNQFKNLLLENSSSQHHHHQVVGHFGSSSSSPMAASSSIGGIYTLRN
SKYTKPAQELLEEFCSVGRGHFKKNKLSRNNSNPNTTGGGGGGGGSSSSAGTANDSPPLSP
ADRIEHQRRKVKLLSMLEEVDRRYNHYCEQMQMVVNSFDQVMGYGAAVPYTTLAQKAMSR
HFRCLKDAVAVQLKRSCELLGDKEAAGAASSGLTKGETPRLRLLEQSLRQQRAFHHMGMM
EQEAWRPQRGLPERSVNILRAWLFEHFLNPYPSDADKHLLARQTGLSRNQVSNWFINARV
RLWKPMVEEMYQQEAKEREEAEEENENQQQQRRQQQTNNNDTKPNNNENNFTVITAQTPT
TMTSTHHENDSSFLSSVAAASHGGSDAFTVATCQQDVSDFHVDGDGVNVIRFGTKQTGDV
SLTLGLRHSGNIPDKNTSFSVRDFGDF*

>G1143 (54..677)

>G1143 Amino Acid Sequence (domain in AA coordinates:33-82) MGGGSRFQEPVRMSRRKQVTKEKEEDENFKSPNLEAERRRREKLHCRLMALRSHVPIVTN MTKASIVEDAITYIGELQNNVKNLLETFHEMEEAPPEIDEEQTDPMIKPEVETSDLNEEM KKLGIEENVQLCKIGERKFWLKIITEKRDGIFTKFMEVMRFLGFEIIDISLTTSNGAILI SASVQTQELCDVEQTKDFLLEVMRSNP*

>G1190 (209..2020)

ATCTTACGACTCTCACTTCTTATCTCAAATCTACTTCAACTCTATTTCCAGTCTCCACAT TTTCCCACAAATTTCAACTCTTGTTCTCTTCCTCCAAAGTAAAAAACAAATCGTTGCAAG TGAGGTTTGGTTTTTGGTGTTATAGAATTATGAAGAGCGGGAAGCAATCTTCGCAACCTGA AAAGGGTACTTCCAGGATCTTGTCACTGACTGTCCTGTTTATCGCATTTTGCGGTTTCTC CTTCTACCTCGGTGGTATATTTTGCTCTGAGAGAGACAAGATTGTAGCCAAGGATGTCAC AAGGACGACTACAAAGGCTGTAGCTTCCCCTAAAGAACCTACAGCTACTCCTATTCAAAT CAAATCCGTTTCTTTCCCGGAGTGCGGGTCAGAGTTCCAAGATTACACCCCGTGCACCGA TCCAAAGAGGTGGAAGAAGTATGGTGTCCATCGCTTAAGTTTCTTGGAGCGTCATTGTCC TCCGGTATATGAAAAGAATGAGTGTTTGATTCCACCACCAGACGGGTATAAACCGCCTAT AAGATGGCCCAAGAGCCGAGAACAGTGTTGGTACAGGAACGTGCCTTATGATTGGATCAA TAAGCAAAAGTCTAACCAGCATTGGCTTAAGAAAGAAGGAGATAAGTTCCATTTCCCTGG TCCTGAAATGAAAGACGGAACAGTCAGGACCGCCATTGATACTGGCTGTGGGGTTGCGAG CCATGAAGCTCAGGTTCAATTTGCTCTTGAACGTGGAATTCCTGCGATTCTCGGGATCAT CTCTACGCAACGTCTCCCTTTTCCTTCAAATGCATTTGATATGGCTCATTGTTCAAGATG TCTTATTCCCTGGACAGAATTTGGTGGAATCTATTTACTTGAGATTCACCGTATAGTTCG ACCTGGAGGTTTTTGGGTTCTTTCTGGTCCACCTGTGAACTATAATAGACGATGGCGTGG ATGGAACACAACCATGGAAGATCAGAAATCTGACTACAACAAGCTTCAGTCACTTCTAAC CTCCATGTGTTTCAAAAAGTACGCTCAAAAAGATGACATAGCCGTGTGGCAGAAACTCTC AGACAAATCTTGCTATGACAAAATCGCTAAGAACATGGAAGCTTACCCTCCCAAATGTGA CGACAGTATAGAACCTGATTCTGCTTGGTACACTCCACTCCGTCCTTGCGTGGTTGCCCC GACACCTAAAGTCAAGAAGTCTGGTCTCGGATCAATCCCAAAATGGCCCGAGAGGTTACA TGTCGCGCCCGAGAGAATCGGTGATGTTCACGGAGGGAGTGCGAACAGTTTGAAACACGA TGATGGTAAATGGAAGAACAGAGTTAAGCATTACAAGAAAGTTTTACCAGCTCTTGGGAC AGACAAGATAAGAAATGTTATGGATATGAACACTGTTTATGGAGGTTTCTCTGCGGCCCT CATTGAGGATCCCATTTGGGTCATGAACGTTGTATCATCGTACAGCGCAAATTCGCTTCC TGTTGTCTTTGATCGCGGTCTCATCGGGACTTACCACGACTGGTGCGAAGCTTTCTCAAC GTATCCAAGAACATATGATCTTCTTCACCTCGACAGTCTTTTTACCTTGGAGAGTCACAG GTGTGAGATGAAGTACATTTTGCTAGAGATGGACAGGATCTTGCGGCCGAGTGGATATGT TATAATCCGAGAATCGAGTTATTTCATGGACGCAATCACAACGTTAGCGAAAGGGATAAG GTGGAGTTGCCGGAGAGAGAGACTGAGTATGCAGTCAAAAGTGAGAAGATTCTGGTTTG CCAGAAAAAGCTATGGTTTTCGTCAAACCAAACCTCTTGATGAGACCACCTGTATCATAG TGTTTATCATCTCCTGTGATGCACACTACAGAGAGAAGGATCTAGTCCTTTGAGTCCAAG ATATAGCTCTATAAACAATCTCCTTTTTTTGTTCTCTTTAATTTCTTGGGTATTTCACGG TATAGATTGATATTATATTTTTAATTATATTTTTAATATATATATAGATATATTAGTATGT GGTTTAAACACTATTATTATCAAGGTCTTAAAGATTTGCTTTGCAAGAGTTAAAAAATGT TGGAGTAAGGACCTCTTGATTAATAAATTGACTGACGCAGCAAA

>G1190 Amino Acid Sequence (domain in AA coordinates: entire protein) MKSGKQSSQPEKGTSRILSLTVLFIAFCGFSFYLGGIFCSERDKIVAKDVTRTTTKAVAS PKEPTATPIQIKSVSFPECGSEFQDYTPCTDPKRWKKYGVHRLSFLERHCPPVYEKNECL IPPPDGYKPPIRWPKSREQCWYRNVPYDWINKQKSNQHWLKKEGDKFHFPGGGTMFPRGV SHYVDLMQDLIPEMKDGTVRTAIDTGCGVASWGGDLLDRGILSLSLAPRDNHEAQVQFAL ERGIPAILGIISTQRLPFPSNAFDMAHCSRCLIPWTEFGGIYLLEIHRIVRPGGFWVLSG PPVNYNRRWRGWNTTMEDQKSDYNKLQSLLTSMCFKKYAQKDDIAVWQKLSDKSCYDKIA KNMEAYPPKCDDSIEPDSAWYTPLRPCVVAPTPKVKKSGLGSIPKWPERLHVAPERIGDV HGGSANSLKHDDGKWKNRVKHYKKVLPALGTDKIRNVMDMNTVYGGFSAALIEDPIWVMN VVSSYSANSLPVVFDRGLIGTYHDWCEAFSTYPRTYDLLHLDSLFTLESHRCEMKYILLE MDRILRPSGYVIIRESSYFMDAITTLAKGIRWSCRREETEYAVKSEKILVCQKKLWFSSN OTS*

>G1198 (230..1675)

CTCTCTCCCTCTCCCTAGCTAGTTCTCTCTTGTGTTTCTTAACTCGAGCTTCTC TCAATAGTGATTATCATCTTTTTCATCATTTCAAGATTTAATGTGTTTTGCAGAAAAGAG ACTAATCAAGAAGAGATATCATCAATTGAAGCTGTTTTCTTGAGTAGAGATGGCGAACCA TAGAATGAGCGAAGCTACAAACCATAACCACAATCATCATCTTCCTTATTCACTTATTCA TGGTCTCAACAACAATCATCCATCTTCTGGTTTCATTAACCAAGATGGATCGTCCAGTTT CGATTTTGGAGAGCTAGAAGAAGCAATTGTTCTGCAAGGTGTCAAGTATAGGAACGAGGA AGCCAAGCCACCTTTATTAGGAGGAGGAGGAGGAGCTACGACTCTGGAGATGTTCCCTTC GTGGCCAATCAGAACTCACCAAACTCTTCCTACTGAGAGTTCCAAGTCAGGAGGAGAGAG CAGCGATTCAGGATCGGCTAATTTCTCCGGCAAAGCTGAAAGTCAACAACCGGAGTCTCC TATGAGTAGCAAACATCATCTCATGCTTCAACCTCATCATAATAACATGGCAAACTCAAG TTCAACATCTGGACTTCCTTCCACTTCTCGAACTTTAGCTCCTCCTAAACCTTCGGAAGA TAAGAGGAAGGCTACAACTTCAGGCAAACAGCTTGATGCTAAGACGTTGAGACGTTTGGC CCAAAATAGAGAAGCTGCTCGCAAAAGCCGTCTTAGGAAAAAGGCGTATGTGCAACAGCT AGAATCAAGTAGGATAAAGCTTTCCCAATTGGAGCAAGAACTTCAGCGAGCTCGTTCTCA GGGGCTGTTCATGGGTGGTTGTGGACCACCAGGACCTAACATCACTTCCGGAGCTGCAAT ATTTGACATGGAATATGGGAGATGGCTAGAGGATGATAACCGGCATATGTCGGAGATTCG AACCGGTCTTCAGGCTCATTTATCTGACAATGATTTAAGGTTGATCGTTGACGGTTACAT TGCTCATTTGATGAGATATTCCGATTAAAAGCCGTGGCAGCGAAAGCCGATGTTTTTCA CCTCATCATTGGGACATGGATGTCCCCAGCCGAACGTTGTTTTATTTGGATGGCTGGTTT CCGTCCATCCGACCTAATCAAGATATTGGTGTCGCAAATGGATCTATTGACGGAGCAACA ACTGATGGGAATATATAGCCTACAACACTCGTCGCAACAAGCAGAGGAGGCTCTCTCGCA AGGCCTCGAACAACTTCAGCAATCTCTCATCGATACTCTCGCCGCATCTCCAGTCATTGA CGGAATGCAACAAATGGCTGTCGCTCTCGGAAAGATCTCTAATCTCGAAGGCTTTATCCG CCAGGCTGATAACTTGAGGCAGCAGACCGTTCACCAGCTGAGGCGGATCTTGACCGTCCG ACAAGCTGCACGGTGTTTCCTAGTCATCGGAGAGTACTATGGACGGCTCAGAGCTCTTAG $\tt CTCCCTTTGGTTGTCACGCCCACGAGAGACACTGATGAGTGATGAAACCTCTTGTCAAAC$ GACGACGGATTTGCAGATTGTTCAGTCATCTCGGAACCACTTCTCCAATTTCTGAATGGA CTTTAAAGTTGTACTAGAGAAAAGATAGGATCTTCCTTCG

>G1198 Amino Acid Sequence (domain in AA coordinates: 173-223)
MANHRMSEATNHNHHHLPYSLIHGLNNNHPSSGFINQDGSSSFDFGELEEAIVLQGVKY
RNEEAKPPLLGGGGGATTLEMFPSWPIRTHQTLPTESSKSGGESSDSGSANFSGKAESQQ
PESPMSSKHHLMLQPHHNNMANSSSTSGLPSTSRTLAPPKPSEDKRKATTSGKQLDAKTL
RRLAQNREAARKSRLRKKAYVQQLESSRIKLSQLEQELQRARSQGLFMGGCGPPGPNITS
GAAIFDMEYGRWLEDDNRHMSEIRTGLQAHLSDNDLRLIVDGYIAHFDEIFRLKAVAAKA
DVFHLIIGTWMSPAERCFIWMAGFRPSDLIKILVSQMDLLTEQQLMGIYSLQHSSQQAEE
ALSQGLEQLQQSLIDTLAASPVIDGMQQMAVALGKISNLEGFIRQADNLRQQTVHQLRRI
LTVRQAARCFLVIGEYYGRLRALSSLWLSRPRETLMSDETSCQTTTDLQIVQSSRNHFSN

>G1226 (212..1159)

>G1226 Amino Acid Sequence (domain in AA coordinates:115-174)
MSGLMSFGELEDQFGQISDTTMEEKIPFLQMLQCIEHPFTTTEPNQFLQSLLQIQTLESK
SCLTLETNIKRDPGQTDDPEKDPRTENGAVTVKEKRKRKRTRAPKNKDEVENQRMTHIAV
ERNRRQMNEHLNSLRSLMPPSFLQRGDQASIVGGAIDFIKELEQLLQSLEAEKRKDGTD
ETPKTASCSSSSLACTNSSISSVSTTSENGFTARFGGGDTTEVEATVIQNHVSLKVRCK
RGKRQILKAIVSIEELKLAILHLTISSSFDFVIYSFNLKMEDGCKLGSADEIATAVHQIF
EQINGEVMWSNLSRT*

>G1451 (124..2559)

TTTGTACTTCCGGAGCTAAAGAGTTATAGCTACTGTAGTAGCTGGAAGTGAAGAAGATTT TTTAATAGATTGTACGGAAAAATTAGGGTTTTCAAAGTTTGGTTTCTTGAAGTTGAATTA CGAGTTGTTTACTTTCCACAGGGTCACAGTGAACAGGTAGCTGCTACAACTAATAAGGAA GTTGATGGTCACATACCCAATTACCCAAGCCTACCACCACAATTGATATGCCAGCTCCAT AATGTTACAATGCATGCAGATGTTGAGACGGATGAAGTCTATGCTCAAATGACACTTCAA $\verb|CCATTGACACCGGAGGAGCAGAAGGAAACATTTGTACCGATTGAGTTGGGGATACCGAGT|\\$ AAGCAACCTAGTAATTATTTTTGTAAGACTCTCACAGCTAGTGATACCAGTACACATGGA GGGTTTTCTGTTCCTAGACGTGCTGCTGAGAAAGTGTTTCCTCCATTGGATTACACACTG CAGCCACCAGCTCAAGAACTGATTGCAAGGGATCTCCATGATGTTGAATGGAAGTTTAGG AGTGCCAAGCGACTAGTAGCTGGAGATTCTGTCATTTTCATCAGGAATGAAAAGAATCAA CTCTTTTTGGGAATTCGTCATGCCACTCGGCCGCAGACTATTGTACCATCATCTTTTA TCTAGTGATAGCATGCATATTGGACTCCTTGCTGCTGCTGCACATGCTTCTGCAACTAAT AGCTGTTTCACTGTTTTCTTTCATCCAAGGGCTAGCCAATCTGAGTTTGTGATACAACTT TCCAAGTACATTAAAGCCGTTTTTCACACGCGTATTTCAGTTGGGATGCGCTTTCGCATG CTCTTCGAGACAGAAGAGTCGAGTGTCCGCAGGTACATGGGTACTATAACTGGTATTAGT GAATCGACTGCAGGGGAGAGACAGCCAAGGGTTTCTTTATGGGAGATTGAGCCTCTGACT ACCTTTCCTATGTATCCATCTCTTTTTCCTCAGACTAAAACGTCCATGGCATGCTGGC ACATCATCTTTGCCTGATGGAAGGGGTGATTTGGGAAGTGGTCTAACATGGCTAAGAGGG TGGATGCAACAAGGCTGGATCTCAGTCAAATGGGGACTGATAATAATCAGCAATACCAA GCAATGTTAGCTGCTGGGTTGCAGAACATCGGCGGTGGAGATCCTTTAAGACAGCAGTTT GTACAGCTGCAAGAGCCTCACCACCAATATCTTCAACAATCAGCTTCCCATAATTCTGAT GCTGGACAGCAGCAACAGCTACAGCAACCGGACCAAAATGCATATCTTAATGCTTTCAAA ATGCAAAATGGCCATCTTCAACAGTGGCAGCAGCAATCAGAGATGCCATCTCCCTCGTTC ATGAAGTCAGATTTTACTGACTCAAGCAACAAATTTGCAACAACTGCTAGTCCGGCTTCT GGAGATGGCAATCTTTTGAATTTTTCTATAACCGGTCAGTCTGTACTCCCTGAGCAGTTA ACAACAGAGGGCTGGTCTCCAAAAGCATCCAACACTTTTTCTGAACCGTTGTCACTTCCA ${\tt CAAGCCTATCCTGGGAAGAGTCTTGCTCTAGAACCCGGAAATCCGCAGAATCCCTCTTT}$ TTCGGTGTTGATCCCGACTCTGGACTCTTCCTCCCCAGTACGGTTCCCCGCTTTGCTTCT TCATCAGGAGATGCTGAAGCTTCCCCTATGTCACTAACAGATTCAGGATTTCAGAATTCC TTATATAGCTGCATGCAAGACACAACTCATGAGTTATTGCATGGAGCTGGACAGATTAAC TCGTCCAACCAAGCAAGAACTTTGTAAAGGTTTATAAATCTGGTTCGGTTGGGCGTTCA TTAGACATCTCCCGATTCAGCAGCTACCACGAGCTGCGAGAAGAGTTAGGGAAGATGTTT GCTATCGAAGGGTTGTTGGAAGACCCCCTTAGATCAGGCTGGCAGCTTGTATTCGTTGAC AAGGAAAATGATATTCTTCTCCTTGGTGATGACCCATGGGAGTCATTTGTGAATAACGTT

TGGTACATAAAGATACTATCACCAGAAGATGTGCATCAAATGGGAGATCATGGAGAAGGC AGTGGTGGGTTATTCCCGCAAAACCCGACCCATCTCTAGAAGCTGCTTCGGTGTTAGTCT CATCATGCTACAACGCGGGAGCCCTTTGTTTCCCATTTGAAGTCGTTTCCACTCATCTTT CGTCATAAACATAAGAACCTTTATGTAGCTGTCTCAGGGTAACTAAACTTTTCTAG >G1451 Amino Acid Sequence (domain in AA coordinates: 22-357) MKLSTSGLGQQGHEGEKCLNSELWHACAGPLVSLPSSGSRVVYFPQGHSEQVAATTNKEV DGHIPNYPSLPPOLICQLHNVTMHADVETDEVYAQMTLQPLTPEEQKETFVPIELGIPSK OPSNYFCKTLTASDTSTHGGFSVPRRAAEKVFPPLDYTLQPPAQELIARDLHDVEWKFRH IFRGQPKRHLLTTGWSVFVSAKRLVAGDSVIFIRNEKNQLFLGIRHATRPQTIVPSSVLS SDSMHIGLLAAAAHASATNSCFTVFFHPRASQSEFVIQLSKYIKAVFHTRISVGMRFRML FETEESSVRRYMGTITGISDLDSVRWPNSHWRSVKVGWDESTAGERQPRVSLWEIEPLTT FPMYPSLFPLRLKRPWHAGTSSLPDGRGDLGSGLTWLRGGGGEQQGLLPLNYPSVGLFPW MQQRLDLSQMGTDNNQQYQAMLAAGLQNIGGGDPLRQQFVQLQEPHHQYLQQSASHNSDL MLQQQQQQASRHLMHAQTQIMSENLPQQNMRQEVSNQPAGQQQQLQQPDQNAYLNAFKM ONGHLOOWOOOSEMPSPSFMKSDFTDSSNKFATTASPASGDGNLLNFSITGQSVLPEQLT. TEGWSPKASNTFSEPLSLPQAYPGKSLALEPGNPQNPSLFGVDPDSGLFLPSTVPRFASS SGDAEASPMSLTDSGFQNSLYSCMQDTTHELLHGAGQINSSNQTKNFVKVYKSGSVGRSL DISRFSSYHELREELGKMFAIEGLLEDPLRSGWQLVFVDKENDILLLGDDPWESFVNNVW YIKILSPEDVHQMGDHGEGSGGLFPQNPTHL*

>G1478 (1..354)

>G1478 Amino Acid Sequence (domain in aa coordinates: 32-76) MCRGFEKEEERRSDNGGCQRLCTESHKAPVSCELCGENATVYCEADAAFLCRKCDRWVHS ANFLARRHLRRVICTTCRKLTRRCLVGDNFNVVLPEIRMIARIEEHSSDHKIPFVFL* >G1496 (116..1123)

ACTTTTGGTCTCACTTTAAAAGATCATAAGTTGAAAGATTTCTGCAGAGAACAATATGTT GGAAGGTCTTGTCTCAAGAAAGCTTGTCCTTAAACTCTATGGACATGTCTGTACTTGA AAGGCTTAAATGGGTACAACAGCAACAACAGCAACTGCAACAAGTTGTGTCCCATAGCAG TAATAATTCACCTGAACTTCTTCAGATACTTCAGTTCCATGGAAGCAACAATGATGAGTT GTTGGAGAGTAGTTCAGCCAATTTCAAATGCTTGGATCTGGTTTTGGACCAAACTATAA CATGGGTTTTGGTCCTCCACATGAATCCATTTCAAGAACAAGTAGCTGCCATATGGAACC TGTGGATACAATGGAGGTTTTGTTGAAGACCGGTGAAGAACCAGAGCCGTTGCCTTGAA GAACAAGAGAAAACCAGAGGTTAAGACAAGGGAAGAGACAAAAGACAGAGAAGAAGATCAA AGTAGAGGCTGAGACAGAGTCAAGCATGAAAGGAAAATCAAACATGGGAAACACTGAAGC ATCTTCAGACACTTCAAAGGAGACATCGAAAGGAGCTTCAGAGAATCAGAAATTAGATTA GAGAAGAAAAGATCAGCAAGAAAATGAAATATCTGCAAGATATTGTGCCTGGATGCAA TAAGGTCACAGGAAAAGCTGGTATGCTTGATGAGATCATCAATTATGTTCAATGTCTCCA AAGACAAGTCGAGTTCCTGTCGATGAAACTTGCTGTCTTGAACCCGGAACTAGAGCTTGC CGTGGAAGATGTATCCGTAAAACAGGCTTACTTTACAAATGTAGTTGCTTCAAAGCAATC AATAATGGTTGATGTGCCATTGTTTCCGTTAGACCAGCAAGGATCTCTAGATTTGTCTGC GATAAACCCGAACCAAACGACATCTATCGAAGCTCCATCTGGAAGCTGGGAAACTCAATC ACAGAGTCTCTACAACACATCTAGCCTCGGTTTTCATTACTAAGCAAGATTCATTGAAAC AACATGGTTGACATCAATCAATCAAAATCAGAAGCAAATTCTATTACATTTGCTCAT CAAAGTAGTAATTTCGAAATTTGGTTAATGCATTATCCTTTGATCCTTGTTTTCTGATAT TTAAACCAGAAGAACTGGAGATAGCAATCCAATGATCTTGTCACCA

>G1496 Amino Acid Sequence (domain in AA coordinates: 184-248)
MLEGLVSQESLSLNSMDMSVLERLKWVQQQQQQLQQVVSHSSNNSPELLQILQFHGSNND
ELLESSFSQFQMLGSGFGPNYNMGFGPPHESISRTSSCHMEPVDTMEVLLKTGEETRAVA

LKNKRKPEVKTREEQKTEKKIKVEAETESSMKGKSNMGNTEASSDTSKETSKGASENQKL DYIHVRARRGQATDRHSLAERARREKISKKMKYLQDIVPGCNKVTGKAGMLDEIINYVQC LQRQVEFLSMKLAVLNPELELAVEDVSVKQAYFTNVVASKQSIMVDVPLFPLDQQGSLDL SAINPNQTTSIEAPSGSWETQSQSLYNTSSLGFHY*

>G1526 (1..3090)

ATGGGAACGAAAGTCTCAGACGATCTTGTTTCCACCGTCAGATCAGTCGTGGGTTCCGAT TACTCAGATATGGATATAATCAGGGCTTTACACATGGCGAATCATGATCCAACGGCTGCT ATCAATATAATCTTCGACACTCCAAGTTTCGCCAAACCTGATGTAGCCACTCCTACCCCG AGCGGCTCTAATGGAGGGAAGCGAGTTGATAGTGGATTAAAGGGCTGTACTTTTGGTGAC AGCGGAAGTGTTGGAGCGAATCATCGCGTGGAGGAAGAAAATGAGAGTGTTAATGGTGGA TTATCGACATGTAAAGGAAGGAAATTGAAGTCTGGTGATGAATTGGTGTTCACGTTTCCG CATAGTAAAGGATTAAAGCCTGAGACTACGCCTGGGAAGCGCGGTTTTGGGCGGGGAAGG CCAGCTTTGCGTGGTGCTTCTGATATCGTTAGGTTCTCTACAAAGGATTCAGGAGAGATT GGTAGAATACCAAACGAGTGGGCTCGGTGTCTTCTACCACTTGTGAGAGACAAGAAAATT ${\tt AGGATAGAAGGCAGTTGCAAGTCGGCGCCTGAAGCTTTGAGCATCATGGATACAATTCTT}$ CTGTCTGTAAGCGTGTACATTAATAGTTCCATGTTTCAAAAGCATAGTGCGACTTCATTT AAGACAGCTAGTAATACGGCAGAGGAATCAATGTTCCATCCTCTCCCAAATCTCTTTCGG TTACTCGGTTTGATCCCCTTTAAGAAGGCAGAGTTTACTCCAGAGGATTTTTACTCTAAG AAGCGACCTTTGAGTTCCAAGGATGGTTCTGCTATTCCTACTTCGTTGCTTCAATTAAAC AAGGTCAAGAATATGAATCAAGATGCAAACGGAGATGAAAATGAGCAGTGTATCAGCGAT GGTGATCTTGATAACATTGTTGGTGTTGGGGACAGTTCTGGATTAAAGGAAATGGAAACT CCACATACACTTCTGTGTGAGCTTCGTCCATACCAAAAGCAGGCACTTCATTGGATGACC CAACTGGAGAAAGGAAATTGCACTGATGAGGCAGCAACAATGCTTCACCCGTGTTGGGAA GCATACTGTTTAGCAGACAAGAGGGAACTGGTTGTCTACCTGAATTCTTTTACTGGTGAT GCTACAATACACTTCCCTAGCACACTTCAAATGGCAAGAGGGGAATATTAGCAGACGCA GCATCAACTGGGTTTCTATGCCCCAACTATGAAGGAGACAAAGTGATCAGCAGTTCTGTA GATGATCTCACTAGTCCCCCGGTGAAGGCAACCAAATTTCTAGGCTTTGATAAGAGGCTT CTTGAACAAAAAGTGTACTTCAAAATGGTGGTAACCTGATTGTATGTCCGATGACACTT TTAGGACAGTGGAAGACAGAGATTGAAATGCATGCAAAGCCTGGGTCTCTATCTGTCTAT GTTCACTATGGGCAAAGCAGGCCGAAGGATGCAAAACTTCTTTCCCAGAGTGATGTGGTA ATCACCACATATGGAGTTCTAACATCCGAATTCTCGCAAGAGAACTCAGCAGACCATGAA GGAATTTATGCAGTTCGATGGTTTAGGATTGTTCTTGACGAGGCACATACCATCAAAAAC ${\tt TCAAAAAGCCAAATTTCCTTGGCTGCTGCAGCTCTGGTTGCTGATAGGCGTTGGTGTCTT}$ ACGGGTACTCCTATTCAGAACAATCTGGAGGATTTATACAGCCTTCTACGGTTTTTGAGG ATTGAACCATGGGGAACTTGGGCATGGTGGAATAAACTTGTCCAAAAGCCATTTGAAGAG GGTGATGAGAGAGGGTTAAAGCTAGTGCAGTCTATCTTAAAACCTATCATGCTTAGGAGA ACAAAGTCTAGCACAGACCGAGAAGGAAGGCCGATTCTTGTTCTACCCCCTGCTGATGCA CGGGTCATTTACTGTGAACTTTCGGAGTCTGAGAGGGATTTCTACGACGCGCTATTTAAA AGATCCAAGGTCAAATTTGATCAATTTGTTGAACAAGGCAAAGTTCTTCATAACTATGCT TCGATCCTGGAACTGCTTTTGCGTCTTCGACAATGTTGTGATCACCCATTTTTAGTAATG AGTCGAGGGGATACAGCGGAATACTCTGATCTGAATAAGCTTTCTAAACGTTTCCTTAGT GGAAAGTCTTCTGGCTTAGAAAGGGAAGGAAAAGATGTACCGTCAGAGGCTTTTGTTCAG GAGGTGGTAGAGGAACTGCGCAAAGGAGGAGCAAGGAGTGTCCAATATGCCTTGAAGCA CTTGAGGATGCTGTATTAACGCCATGTGCTCATAGATTATGTCGTGAGTGTCTCTTGGCA AGTTGGAGAAATTCTACTTCTGGGTTATGTCCTGTGTGTAGGAACACTGTAAGCAAACAA GAACTCATCACAGCACCAACCGAAAGTAGATTCCAGGTTGACGTGGAAAAGAATTGGGTG GAATCATCGAAAATCACTGCTCTTCTGGAAGAGCTTGAAGGTCTTCGTTCTTCAGGCTCT AAGAGCATTCTCTTTAGCCAGTGGACCGCTTTCCTCGATCTCCTCCAAATTCCCCTCTCT CGGAATAACTTTTCATTTGTCCGTCTTGATGGCACGCTAAGTCAGCAGCAACGAGAAAG GTCCTTAAAGAATTTTCCGAAGATGGCAGTATCCTGGTACTGTTGATGTCTCTAAAAGCT GGTGGCGTTGGGATAAATCTAACAGCTGCGTCCAATGCTTTTGTCATGGATCCATGGTGG AACCCAGCGGTAGAGGAACAAGCTGTTATGCGTATTCATCGTATAGGGCAAACTAAGGAA GTCAAAATCAGAAGATTCATCGTTAAGGGAACGGTTGAAGAGAGAATGGAGGCGGTTCAG GCGAGGAAGCAGAATGATCTCTGGGGCTTTAACCGATCAAGAAGTACGAAGTGCACGT ATAGAGGAACTCAAGATGTTATTTACCTGA

>G1526 Amino Acid Sequence (domain in AA coordinates: 493-620, 864-1006) MGTKVSDDLVSTVRSVVGSDYSDMDIIRALHMANHDPTAAINIIFDTPSFAKPDVATPTP SGSNGGKRVDSGLKGCTFGDSGSVGANHRVEEENESVNGGGEESVSGNEWWFVGCSELAG LSTCKGRKLKSGDELVFTFPHSKGLKPETTPGKRGFGRGRPALRGASDIVRFSTKDSGEI GRIPNEWARCLLPLVRDKKIRIEGSCKSAPEALSIMDTILLSVSVYINSSMFQKHSATSF KTASNTAEESMFHPLPNLFRLLGLIPFKKAEFTPEDFYSKKRPLSSKDGSAIPTSLLQLN KVKNMNQDANGDENEQCISDGDLDNIVGVGDSSGLKEMETPHTLLCELRPYQKQALHWMT QLEKGNCTDEAATMLHPCWEAYCLADKRELVVYLNSFTGDATIHFPSTLQMARGGILADA MGLGKTVMTISLLLAHSWKAASTGFLCPNYEGDKVISSSVDDLTSPPVKATKFLGFDKRL LEQKSVLQNGGNLIVCPMTLLGQWKTEIEMHAKPGSLSVYVHYGQSRPKDAKLLSQSDVV ITTYGVLTSEFSQENSADHEGIYAVRWFRIVLDEAHTIKNSKSQISLAAAALVADRRWCL TGTPIQNNLEDLYSLLRFLRIEPWGTWAWWNKLVQKPFEEGDERGLKLVQSILKPIMLRR TKSSTDREGRPILVLPPADARVIYCELSESERDFYDALFKRSKVKFDQFVEQGKVLHNYA SILELLLRLRQCCDHPFLVMSRGDTAEYSDLNKLSKRFLSGKSSGLEREGKDVPSEAFVQ EVVEELRKGEQGECPICLEALEDAVLTPCAHRLCRECLLASWRNSTSGLCPVCRNTVSKQ ELITAPTESRFQVDVEKNWVESSKITALLEELEGLRSSGSKSILFSQWTAFLDLLQIPLS RNNFSFVRLDGTLSQQQREKVLKEFSEDGSILVLLMSLKAGGVGINLTAASNAFVMDPWW NPAVEEQAVMRIHRIGQTKEVKIRRFIVKGTVEERMEAVQARKQRMISGALTDQEVRSAR IEELKMLFT*

>G1543 (1..828)

>G1543 Amino Acid Sequence (domain in AA coordinates: 135-195)
MIKLLFTYICTYTYKLYALYHMDYACVCMYKYKGIVTLQVCLFYIKLRVFLSNFTFSSSI
LALKNPNNSLIKIMAILPENSSNLDLTISVPGFSSSPLSDEGSGGGRDQLRLDMNRLPSS
EDGDDEEFSHDDGSAPPRKKLRLTREQSRLLEDSFRQNHTLNPKQKEVLAKHLMLRPRQI
EVWFQNRRARSKLKQTEMECEYLKRWFGSLTEENHRLHREVEELRAIKVGPTTVNSASSL
TMCPRCERVTPAASPSRAVVPVPAKKTFPPQERDR*

>G162 (101..619)

>G162 Amino Acid Sequence (domain in AA coordinates: 2-57)
MGRRKIKMEMVQDMNTRQVTFSKRRTGLFKKASELATLCNAELGIVVFSPGGKPFSYGKP

NLDSVAERFMREYDDSDSGDEEKSGNYRPKLKRLSERLDLLNQEVEAEKERGEKSQEKLE SAGDERFKESIETLTLDELNEYKDRLQTVHGRIEGQVNHLQASSCLMLLSRK* >G1640 (168..1196)

 ${\tt CTTTTTCAGTTTCTCTTTTTTGACAGAAGAGCGAGAAGCAATGGGAAGGGCTC}$ CGTGTTGTGAGAAAATCGGGTTGAAGAGAGGGGAGATGGACAGCCGAGGAAGATGAGATCC TCACCAAGTATATTCAGACCAATGGTGAAGGTTCTTGGCGATCTTTGCCTAAGAAAGCTG GATTGTTGAGATGTGGAAAGAGCTGTAGACTAAGGTGGATAAACTACTTAAGAAGAGACT TAAAAAGAGGAAATATTACTTCCGACGAAGAAGAAATAATCGTCAAGTTGCATTCCCTTC TCGGCAACAGATGGTCACTTATTGCAACACATCTACCAGGAAGAACAGACAACGAAATTA AAAACTATTGGAACTCACATCTCAGCCGCAAAATCTATGCCTTCACTGCCGTTTCCGGAG ATGGACACAATCTACTCGTCAACGATGTAGTCTTGAAGAAATCTTGTTCATCGTCTTCTG TGAAGAAACACAAGCAAATGGTGACGGCCTCACAATGTTTCTCACAACCTAAGGAGCTAG AGAGTGATTTCAGTGAGGGAGGGCAAAATGGTAATTTTGAAGGAGAGTCTTTGGGGCCTT ATGAGTGGTTGGATGGTGAGTTAGAACGGCTCTTGAGTAGTTGTGTCTGGGAATGCACTA GTGAAGAGGCTGTGATTGGAGTAAATGATGAAAAGGTGTGTGAGAGTGGGGACAATAGTA GTTGTTGTGTTAATTTGTTTGAAGAAGAACAAGGAAGCGAGACAAAGATTGGTCACGTAG GAATCACAGAGGTTGATCATGATATGACGGTGGAAAGAGAAGAGAGGGGAAGTTTTTTAA GTTCGAATTCAAATGAAAATAATGATAAAGATTGGTGGGTTGGTCTATGTAATTCTTCAG AAGTTGGGTTTGGGGTTGATGAGGAGTTGCTTGATTGGGAGTTTCAAGGTAATGTCACTT GTCAAAGTGATGATCTATGGGATCTCTCAGATATTGGAGAGATAACATTGGAGTGATTGT ${\tt CTTTCGTTCGTATCATCGGTTTCGACAACGTTCGTCAAGT}$

>G1640 Amino Acid Sequence (domain in AA coordinates: 14-115)
MGRAPCCEKIGLKRGRWTAEEDEILTKYIQTNGEGSWRSLPKKAGLLRCGKSCRLRWINY
LRRDLKRGNITSDEEEIIVKLHSLLGNRWSLIATHLPGRTDNEIKNYWNSHLSRKIYAFT
AVSGDGHNLLVNDVVLKKSCSSSSGAKNNNKTKKKKKGRTSRSSMKKHKQMVTASQCFSQ
PKELESDFSEGGQNGNFEGESLGPYEWLDGELERLLSSCVWECTSEEAVIGVNDEKVCES
GDNSSCCVNLFEEEQGSETKIGHVGITEVDHDMTVEREREGSFLSSNSNENNDKDWWVGL
CNSSEVGFGVDEELLDWEFQGNVTCQSDDLWDLSDIGEITLE*

>G1644 (1..348)

ATGAAATTGATTGATAGGAAAGACTGTGCTTTGATGACTTACACCGAACTCATTTTGGGT
TTCTGCAATGTTTAATGTTGATCTGCAGGAGGACTAGTGGACCTATGAGACGAGCAAAA
GGTGGTTGGACTCCAGAGGAGGATGAGACACTTAGACGAGCAGTTGAAAAGTATAAGGGG
AAGAGGTGGAAGAAAATAGCGGAATTTTTCCCAGAGAGACACAAGTCCAATGCTTGCAC
AGGTGGCAGAAAGTTCTTAATCCAGAGCTTGTTAAAGGACCTTGGACTCAAGAGGTTCTC
TTATCATTTTCATGTTCTGAAACTTTTTTTTGGTTTTCATTTTACGTAA

>G1644 Amino Acid Sequence (conserved domain in AA coordinates:39-102)
MKLIDWKDCALMTYTELILGFCNVLMLICRRTSGPMRRAKGGWTPEEDETLRRAVEKYKG
KRWKKIAEFFPERTQVQCLHRWQKVLNPELVKGPWTQEVLLSFSCSETFFGFHFT*
>G1646 (34..786)

>G1646 Amino Acid Sequence (domain in AA coordinates: 72-162)
MDNNNNNNNQQPPPTSVYPPGSAVTTVIPPPPSGSASIVTGGGATYHHLLQQQQQQLQMF
WTYQRQEIEQVNDFKNHQLPLARIKKIMKADEDVRMISAEAPILFAKACELFILELTIRS
WLHAEENKRRTLQKNDIAAAITRTDIFDFLVDIVPREEIKEEEDAASALGGGGMVAPAAS
GVPYYYPPMGQPAVPGGMMIGRPAMDPSGVYAQPPSQAWQSVWQNSAGGGDDVSYGSGGS
SGHGNLDSQG*

>G1672 (239..1399)

CCATTCCTGACGTCCGGGATGACGCACAATCCCACTATCCTTCGCAAGACCCTTCCTCTA TATAAGGAAGTTCATTTCATTTGGAGAGGACACGCTGACAAGCTGACTCTAGCAGATCTG GTACCGATCACTCCCGTCTTTATCAAATTCTTCTTCTTCTTACATTTTCCCTATCCAATC GATCTCACGCAGATCTGATCAATTTCTCATCAAATCATTTAGAGATCAAAAGAAAACTAT. GAAGAATAGTAAATGTAACCTCATAGATTCAAAGCTCGAAGAACATCATCATCTTTGCGG ATCAAAACATTGTCCTGGATGTGGTCGCATGATTCAAGCTGCTACTAAACCAAATTGGGT TGGATTGCCGGCAGGAGTGAAATTCGATCCGACAGATCAAGAACTTATAGAACATTTAGA AGCAAAAGTGAAGGGAAAAGAAGAAAATAAGAAATGGTCGTCGTCTCATCCACTTATAGA TGAATTTATTCCCACCATTGATGGAGAAGATGGAATATGTTACACTCATCCTCAGAAGCT TCCAGGGGTGACAAGAGATGGCTTGAGCAAACACTTCTTCCACAAACCATCAAGAGCTTA CACAACCGGAACAAGAAAACGACGTAAAATAATTCAAACCGATCACGACTCTGAGTTAAC CGGATCATCAGAAACCAGGTGGCACAAAACGGGCAAAACAAGACCGGTTATGATCAACGG TCAACAAGAGGATGCAAGAAGATATTAGTACTCTACACAAACTTCGGCAAGAATCGTCG ACCGGAGAAAACAAATTGGGTGATGCATCAATATCATTTAGGGATTAATGAGGAAGAGAG TAATACTAATTGGTCTGATCACCATGGTTCCAAGGACGTGATCGGAATTGGTGTCGGAGA TGAGATTTCCAGCGTAGCTGCCACGTTGCAGAGTCTTGGCTCCGGTGACGTCGTTTCTAG GGTTAATATGCATCCCCATACAAGATCCTTTGATGAGGGGACAGCCGAAGCTTCAAAGGG AAGAGAACCAGCATGTCTGCCACGTGCGAGGAAGTACATGATGGGATCATAACATC ATCAATGTCATCATCATATGATTCATGATCATCATAATCAACATCATCAAATCGGAGA TAGAAGAGAATTTCACATGTCATCATCATATCCCATGACCCCTACTATCACATCACAACA TGAGTCAATCTTCCATGTTACAAGTACTATGCCCTTTCAGCGGCAGCAATTAAGGGGTCG ${\tt GTCGTCTGGTTCGGGATTAGAAGACCTAATTATGGGTTGTACCACAGCTACGTGTACAGA}$ AGACAATAATCACAAATGATTAAATTCGCAGGAGCATTCAGAAGCAAACCCTCAGCGAAA TGCAGAGTGGTTAACGTTTCCACAATTCTGGAACCAAGCCGAATCAGATGATCAAAACCG AAGATTTTAACAGAACCAAAAGGAAGCAGAGAAATCTTGCAAAAAGCTCCTGCTTAGCTG TTGATCAATGCCGGAAATGCTGAGCTATGACTAGTCTCTGCCATTTAACTTACAAT ATCACCAGAGGTTGCGATGAATGTTGATTCGCTCAAAGGAGAGCGGCCGCTCTAGACAGG

>G1672 Amino Acid Sequence (conserved domain in AA coordinates: 41-194)
MKNSKCNLIDSKLEEHHHLCGSKHCPGCGRMIQAATKPNWVGLPAGVKFDPTDQELIEHL
EAKVKGKEENKKWSSSHPLIDEFIPTIDGEDGICYTHPQKLPGVTRDGLSKHFFHKPSRA
YTTGTRKRRKIIQTDHDSELTGSSETRWHKTGKTRPVMINGQQRGCKKILVLYTNFGKNR
RPEKTNWVMHQYHLGINEEEREGELVVSKIFYQTQPRQCVSNTNWSDHHGSKDVIGIGVG
DEISSVAATLQSLGSGDVVSRVNMHPHTRSFDEGTAEASKGRENQHVSGTCEEVHDGIIT
SSMSSHHMIHDHHNQHHQIGDRREFHMSSSYPMTPTITSQHESIFHVTSTMPFQRQQLRG
RSSGSGLEDLIMGCTTATCTEDNNHK*

>G1677 (24..1037)

PCT/US02/25805

ACATATCAACAAGACAAAACTTTATTCCTTCTCCAGTCAACGAACCCGCAAGCTTCACAG AATCAGCTGCTTCTTACTTCGCGTCTCAGATGCTCGGAGTCACGTACAATACAGCCAGAA ACAACGGAACAGGGGATGCTCTGTTTCTGAGAAACAATGGAACAGGGGATGCTCTGGTTC TGAGCAACAATGAGAATAACTACTTCAACAACTTGACTGGAGGGTTGACTCATGAGGTTC $\tt CGAATGTAAGATCAATGGTGATGGAGGAGACTACGGGGAGTGAGATGTCGGCGACGTCGT$ ATTCCACTAACAATTAAGATCATAGTACTATTAACACTTGAATTAGTGTAGACGTTGATC

>G1677 Amino Acid Sequence (conserved domain in AA coordinates:17-181) MVLVMDDEESNNVERYDDVVLPGFRFHPTDEELVSFYLKRKVLHKSLPFDLIKKVDIYKY DPWDLPKLAAMGEKEWYFYCPRDRKYRNSTRPNRVTGGGFWKATGTDRPIYSLDSTRCIG LKKSLVFYRGRAAKGVKTDWMMHEFRLPSLSDSHHSSYPNYNNKKQHLNNNNNSKELPSN DAWAICRIFKKTNAVSSQRSIPQSWVYPTIPDNNQQSHNNTATLLASSDVLSHISTRQNF IPSPVNBPASFTESAASYFASQMLGVTYNTARNNGTGDALFLRNNGTGDALVLSNNENNY FNNLTGGLTHEVPNVRSMVMEETTGSEMSATSYSTNN*

>G1765 (139..966)

TCCTTCGCAAGACCCTTCCTCTATATAAGGAAGTTCATTTCATTTGGAGAGGACACGCTG ACAAGCTGACTCTAGCAGATCTGGTACCGTCGACAAGAATGACTTGATTGGTGTTCTAAA GAGATCGATGTAGTGAAGATGAGTGGCGAAGGTAACTTAGGTAAGGATCATGAAGAAGAA AACGAAGCACCACTTCCTGGGTTCAGGTTTCATCCGACGGATGAAGAGCTTTTAGGATAC TATCTTCGAAGAAAAGTAGAGAACAAAACCATCAAACTCGAACTTATCAAACAGATCGAT ATCTATAAGTACGATCCTTGGGATCTTCCAAGAGTGAGCAGCGTCGGAGAAAAGGAGTGG TACTTCTTCTGCATGAGAGGTAGGAAATACAGGAATAGCGTTCGACCAAACCGAGTGACC GGTTCAGGTTTCTGGAAAGCCACTGGTATTGATAAACCGGTTTACTCCAATCTTGACTGT GTTGGTCTCAAGAAATCTCTGGTTTACTATCTTGGTTCAGCCGGTAAAGGCACCAAAACC GATTGGATGATGCATGAATTCCGCCTCCCCTCCACCACGAAAACCGACTCTCCAGCTCAA CAAGCAGAGGTATGGACACTTTGCAGAATCTTCAAACGAGTCACATCTCAAAGAAACCCA ACCATCTTACCACCAAACCGAAAACCGGTTATCACTTTAACCGACACTTGTTCTAAGACC AGCAGCTTAGATTCCGACCACGAGCCACCGTACAGTAGATTCCATGTCCCACGAGCCG CCGCTTCCACAGCCACAGAATCCTTATTGGAACCAACATATAGTTGGTTTTAATCAACCG ACATATACTGGTAATGATAATAACCTCCTGATGAGTTTCTGGAACGGCAACGGTGGAGAT TTCATAGGAGACTCAGCAAGTTGGGATGAACTTAGATCTGTTATAGATGGCAACACTAAA GCTCTAGACAGGCCTCGTACCGGGATCCTCTAGCTAGAGCTTTCGTTTCGTATCATCGGT TTCGACAACGTTCGT

>G1765 Amino Acid Sequence (conserved domain in AA coordinates: 20-140) MSGEGNLGKDHEEENEAPLPGFRFHPTDEELLGYYLRRKVENKTIKLELIKQIDIYKYDP WDLPRVSSVGEKEWYFFCMRGRKYRNSVRPNRVTGSGFWKATGIDKPVYSNLDCVGLKKS LVYYLGSAGKGTKTDWMMHEFRLPSTTKTDSPAQQAEVWTLCRIFKRVTSQRNPTILPPN RKPVITLTDTCSKTSSLDSDHTSHRTVDSMSHEPPLPQPQNPYWNQHIVGFNQPTYTGND NNLLMSFWNGNGGDFIGDSASWDELRSVIDGNTKP* >G1777 (97..1878)

CTCGTACTTTATCACCTCCGTCGTTCTATAATACTCTCTTCCGTCAATCATATCATTTGT CGACAATTTCATTCTGATCAGTTTAAAAATTGATCCATGGATGATAATTTAAGCGGCGAG GAAGAAGATTACTATTACTCCTCCGATCAGGAATCTCTCAACGGGATTGATAATGATGAA TCCGTTTCGATACCTGTTTCTTCCCGATCAAATACTGTCAAGGTTATTACGAAGGAATCA CTTTTGGCTGCACAGAGGGAGGGTTTGCGGAGAGTGATGGAATTGTTATCGGTTAAGGAG CACCATGCTCGGACTCTTCTTATACATTACCGATGGGATGTGGAGAAGTTGTTTGCTGTT CTTGTTGAGAAAGGGAAAGATAGCTTGTTTTCTGGTGCTGGTGTTACACTTCTTGAAAAC ${\tt CAAAGTTGTGATTCTTCCGTTTCTTGGTTCTTCGATGATGAGTTGTGATATCTGCGTA}$ GAGGATGTACCGGGTTATCAGCTGACAAGGATGGACTGTGGCCATAGCTTTTGCAATAAC TGTTGGACTGGGCATTTTACTGTAAAGATAAATGAAGGTCAGAGCAAAAGGATTATATGC AGCCAACCAGATTTAGCTGAGAAGTTTGATCGTTTTCTTCTTGAGTCGTATATCGAAGAT AACAAAATGGTGAAGTGGTGTCCGAGTACTCCTCATTGTGGGAATGCCATACGTGTTGAG GATGACGAGCTCTGTGAGGTTGAATGCTCTTGTGGTTTGCAGTTCTGTTTCAGTTGTTCA GATGAGTCCGAGACTGTTAATTGGATAACTGTTCACACAAAGCCGTGTCCCAAATGTCAC

AAGCCTGTTGAAAAGAATGGTGGATGCAATCTCGTGACTTGTCTTTGTCGACAATCTTTT TGTTGGTTGTGTGAAGCTACTGGAAGGGACCACACTTGGGCTAGAATCTCGGGTCAT AGTTGTGGTCGGTTCCAAGAAGATAAAGAGAAACAAATGGAGAGAGCGAAAAGGGATCTC AAGCGGTATATGCATTATCATAACCGATACAAAGCACATATCGACTCCTCCAAGCTAGAG GCTAAGCTTAGTAATATTAGTAAAAAGGTGTCTATTTCAGAAAAGAGGGAGTTACAA CTTAAAGACTTCAGCTGGGCTACCAATGGACTCCATCGGTTATTTAGATCAAGACGAGTT CTTTCATATTCATACCCTTTCGCATTTTACATGTTTGGAGATGAGCTGTTTAAAGATGAG ATGAGCTCTGAGGAAAGAGAAATAAAACAAAATCTGTTTGAGGATCAGCAGCAGCAGCTT GAGGCTAATGTTGAGAAACTTTCTAAGTTCTTGGAGGAACCTTTTGATCAATTTGCTGAT GATAAGGTCATGCAGATAAGGATTCAAGTCATCAATTTGTCAGTTGCGGTCGATACACTC TGCGAAAATATGTATGAATGCATTGAGAATGACTTGTTGGGTTCTCTGCAACTTGGCATC CACAACATTACTCCATACAGATCAAACGGCATAGAACGAGCATCTGATTTTTATAGTTCC CAAGCTTTGGAGTCAGGGAAGTCGGAAGACACAAGTTGCTCTTCCGGGAAGCGTGCTAGA ATAGACGAAAGTTACAGAAACAGCCAAACCACCTTACTAGATTTAAACTTGCCAGCGGAA GCCATTGAGCGGAAATGAACACTTATCCTTCTTCACCTCCCAATAACACCCTTTTTGTCC AAATAAAGTGTGTTACCCGGATATTTATAGCTCTAAACCCAATCCCCTCTGCTTAATTTG TCAGTGACCTTACCTAACCCTCTTCA

>G1777 Amino Acid Sequence (domain in AA coordinates:124-247)
MDDNLSGEEEDYYYSSDQESLNGIDNDESVSIPVSSRSNTVKVITKESLLAAQREDLRRV
MELLSVKEHHARTLLIHYRWDVEKLFAVLVEKGKDSLFSGAGVTLLENQSCDSSVSGSSS
MMSCDICVEDVPGYQLTRMDCGHSFCNNCWTGHFTVKINEGQSKRIICMAHKCNAICDED
VVRALVSKSQPDLAEKFDRFLLESYIEDNKMVKWCPSTPHCGNAIRVEDDELCEVECSCG
LQFCFSCSSQAHSPCSCVMWELWRKKCFDESETVNWITVHTKPCPKCHKPVEKNGGCNLV
TCLCRQSFCWLCGEATGRDHTWARISGHSCGRFQEDKEKQMERAKRDLKRYMHYHNRYKA
HIDSSKLEAKLSNNISKKVSISEKRELQLKDFSWATNGLHRLFRSRRVLSYSYPFAFYMF
GDELFKDEMSSEEREIKQNLFEDQQQQLEANVEKLSKFLEEPFDQFADDKVMQIRIQVIN
LSVAVDTLCENMYECIENDLLGSLQLGIHNITPYRSNGIERASDFYSSQNSKEAVGQSSD
CGWTSRLDQALESGKSEDTSCSSGKRARIDESYRNSQTTLLDLNLPAEAIERK*
>G1793 (59..1783)

AGTGATTTATTGATTAACCCAAACACAAAATAAACAGATTTGACTCAAAAAGAAGAAAAT GAATTCTAACAACTGGCTTGGCTTTCCTCTTTCACCGAACAACTCTTCTTTGCCTCCTCA TGAATACAACCTTGGTTGGTCAGCGACCATATGGACAACCCTTTTCAAACACAAGAGTG GAATATGATCAATCCACACGGTGGAGGAGGAGATGAAGGAGGAGGGTTCCAAAAGTGGC CGATTTTCTCGGTGTGAGCAAACCGGACGAAAACCAATCCAACCACCTAGTAGCTTACAA CGACTCAGACTACTTCCATACCAATAGCTTGATGCCTAGCGTCCAATCAAACGATGT CGTTGTAGCAGCTTGTGACTCCAATACTCCTAACAACAGTAGCTATCATGAGCTTCAAGA GAGTGCTCACAATCTACAGTCACTTACTTTGTCCATGGGGACCACCGCTGGTAATAATGT TGTAGACAAAGCTTCACCATCCGAGACCACCGGGGATAACGCTAGCGGTGGAGCACTAGC CGTTGTTGAGACGCCACGCCAAGACGTGCATTGGACACTTTCGGACAACGAACCTCGAT CTATCGTGGTGTCACAAGACATCGATGGACTGGTCGATATGAGGCTCATCTATGGGATAA TAGTTGTAGAAGGGAAGGCCAGTCTAGGAAAGGAAGACAAGTTTACTTGGGTGGATATGA CAAAGAAGATAAAGCAGCAAGATCATATGATCTAGCTGCACTTAAGTACTGGGGTCCTTC GACGAGACAAGAGTTCGTGGCTGCCATTAGAAGGAAAAGTAGTGGATTTTCGAGAGGCGC CCGAGTCGCCGGAAACAAGACCTCTACTTGGGAACTTTTAGCACTGAGGAAGAAGCAGC AGAAGCTTACGATATAGCTGCAATAAAGTTTAGAGGACTTAATGCAGTGACCAACTTCGA GATCAACCGGTACGACGTGAAAGCCATTCTAGAGAGTAGCACTCTTCCCATCGGAGGAGG CGCAGCTAAACGGCTCAAAGAAGCTCAAGCTCTTGAGTCTTCAAGGAAACGCGAGGCGGA GATGATAGCCCTTGGTTCAAGTTTCCAGTACGGTGGTGGCTCGAGCACAGGCTCTGGCTC CACCTCATCAAGACTTCAGCTTCAACCTTACCCTCTAAGCATTCAACAACCATTAGAGCC TTTTCTATCTCTCAGAACAATGACATCTCTCATTACAACAACAACAATGCTCACGATTC CTCCTCTTTTAATCACCATAGCTATATCCAGACACACTTCATCTCCACCAACAGACCAA CAATTACTTGCAGCAACAGTCGAGCCAGAACTCTCAGCAGCTCTACAATGCGTATCTTCA TAGCAATCCGGCTCTGCTTCATGGACTTGTCTCTACCTCTATCGTTGACAACAATAATAA CAATGGAGGCTCTAGTGGGAGCTACAACACTGCAGCATTTCTTGGGAACCACGGTATTGG

>G1793 Amino Acid Sequence (conserved domain in AA coordinates:179-255, 281-349)
MNSNNWLGFPLSPNNSSLPPHEYNLGLVSDHMDNPFQTQEWNMINPHGGGGDEGEVPKV
ADFLGVSKPDENQSNHLVAYNDSDYYFHTNSLMPSVQSNDVVVAACDSNTPNNSSYHELQ
ESAHNLQSLTLSMGTTAGNNVVDKASPSETTGDNASGGALAVVETATPRRALDTFGQRTS
IYRGVTRHRWTGRYEAHLWDNSCRREGQSRKGRQVYLGGYDKEDKAARSYDLAALKYWGP
STTTNFPITNYEKEVEEMKHMTRQEFVAAIRRKSSGFSRGASMYRGVTRHHQHGRWQARI
GRVAGNKDLYLGTFSTEEEAAEAYDIAAIKFRGLNAVTNFEINRYDVKAILESSTLPIGG
GAAKRLKEAQALESSRKREAEMIALGSSFQYGGGSSTGSGSTSSRLQLQPYPLSIQQPLE
PFLSLQNNDISHYNNNNAHDSSSFNHHSYIQTQLHLHQQTNNYLQQQSSQNSQQLYNAYL
HSNPALLHGLVSTSIVDNNNNNGGSSGSYNTAAFLGNHGIGIGSSSTVGSTEEFPTVKTD
YDMPSSDGTGGYSGWTSESVQGSNPGGVFTWWNE*

>G180 (54..629)

GTAATTACGATCTACAACAAGTGACATCGTCGTCGACGACGATTCAAGAGAATATGAACT TCCTCGTTCCTTTTGAAGAAACCAATGTCTTAACCTTTTTCTCTTCTTCTTCTTCCTCTT CTCTAGGGTTTTCTAATAATCTTCAGGGTGGAGGACCCTTGGGATCAAAGGTGGTTAATG ATGATCAGGAGAATTTTGGAGGTGGAACTAACAATGATGCTCATTCTAATTCTTGGTGGA GATCAAATAGTGGAAGTGGAGATATGAAGAACAAAGTGAAGATAAGGAGGAAACTAAGAG AGCCAAGATTCTGTTTCCAAACCAAAAGCGATGTTGATGTTCTTGACGATGGCTACAAAT GGCGTAAATATGGTCAGAAAGTCGTCAAGAACAGCCTTCACCCCAGGAGTTATTACAGAT GCACACACAACAACTGTAGGGTGAAAAAGAGAGTGGAGCGACTATCGGAAGATTGTAGAA TGGTGATTACTACTTACGAAGGTCGTCACAACCACATTCCCTCTGATGACTCCACTTCTC CTGACCATGATTGTCTCTCTTCCTTTTAACATCTCTTTTCTATATATCTATATATAGACAG TTATATGTGCACATATAGATGTGTGATATATTGCATATTTGATATTGCATGTGTTTTTCA AGAGTATGTCATCAGATGTTATGCATATATTCTTGACTTGTTGCTTATAGTATACATATG >G180 Amino Acid Sequence (domain in AA coordinates: 118-174) MNFLVPFEETNVLTFFSSSSSSSSSSPSFPIHNSSSTTTTHAPLGFSNNLQGGGPLGSKV VNDDQENFGGGTNNDAHSNSWWRSNSGSGDMKNKVKIRRKLREPRFCFQTKSDVDVLDDG YKWRKYGQKVVKNSLHPRSYYRCTHNNCRVKKRVERLSEDCRMVITTYEGRHNHIPSDDS TSPDHDCLSSF*

>G192 (63..959)

CTTTTTTCTCTCTCTCCTCAGAGATTCGAAGCTTTTTGTCTCCCCTGAGTAACCAAATT CAATGGCCGACGATTGGGATCTCCACGCCGTAGTCAGAGGCTGCTCAGCCGTAAGCTCAT CAGCTACTACCACCGTATATTCCCCCGGCGTTTCATCTCACACAAACCCTATATTCACCG TCGGACGACAAGTAATGCCGTCTCCTTCGGAGAGATTCGAGATCTCTACACACCGTTCA CACAAGAATCTGTCGTCTCTTCGTTTTCTTGTATAAACTACCCAGAAGAACCTAGAAAGC CCAGTGGCTCCAATACCTCTAGATCTAAAAGAAGAAGATACAGCATAAGAAAGTGTGCC ATGTAGCAGCAGAAGCTTTAAACTCCGATGTCTGGGCATGGCGAAAGTACGGACAGAAAC CCATCAAAGGTTCACCATATCCAAGAGGATACTACAGATGTACATCAAAAGGTTGTT TAGCCCGTAAACAAGTGGAGCGAAATAGATCCGACCCGAAGATGTTTATCGTCACTTACA CGGCGGAGCATAATCATCCAGCTCCGACACACCGTAATTCTCTCGCCGGAAGCACACGTC AGAAACCATCCGATCAACAGACGAGTAAATCTCCGACGACCACTATTGCTACTTATTCAT CGTCTCCGGTGACTTCAGCCGACGAATTTGTTTTGCCTGTTGAGGATCATCTAGCGGTGG GAGATCTTGACGGAGAAGAAGATCTGTTATCTTTGTCGGATACGGTGGTTAGCGATGATT TCTTCGATGGGTTAGAGGAATTCGCAGCCGGAGATAGCTTTTCCGGGAACTCGGCTCCGG CGAGTTTTGATCTCTTGGGTTGTGAACAGTGCCGCCACTACCACCGGAGGAATATGAT TAGATTACGACGGCTTAGAATACTCTTATTAGGACAGATTTATAGGATTAAGGAATTATT CTCGGAGCATATGTAAAAATAGGATAAAAGAAAATGTTCTTTGTTACTTTTTTTCGGGTT TTCTTCCTATTGTTTCTAAACATCTTAGAAAAAATTTAATTGTATATTCCTTAAGCTCGA TACATCTTGTTTTAAAAAAAAAAAAAAAAAAAA

>G192 Amino Acid Sequence (domain in AA coordinates: 128-185)

MADDWDLHAVVRGCSAVSSSATTTVYSPGVSSHTNPIFTVGRQSNAVSFGEIRDLYTPFT OESVVSSFSCINYPEEPRKPQNQKRPLSLSASSGSVTSKPSGSNTSRSKRRKIQHKKVCH VAAEALNSDVWAWRKYGOKPIKGSPYPRGYYRCSTSKGCLARKQVERNRSDPKMFIVTYT **AEHNHPAPTHRNSLAGSTROKPSDOQTSKSPTTTIATYSSSPVTSADEFVLPVEDHLAVG** DLDGEEDLLSLSDTVVSDDFFDGLEEFAAGDSFSGNSAPASFDLSWVVNSAATTTGGI*

AAAAGGTCTTCTTGGCCATGGATACTTGTGCTCTAGTAATCCATCAGTCTCTGTCTCGCA TACCGATCAGACGGATCGAGCTGTTTTCCGAGGAGCTATATGTGCCGCCGTACAAAGAA ACTACGAAGAACGACCTCCTCCGTGGAAGAGGCAGAGGAAGATGATGAGTCATCAT CGTACGGAGAAGTGAACAAGATCATTGGAAGCCGAACGGCGGGGAAGGAGCCATGGAGT ACCTTATCGAGTGGAAGGACGGCCATTCTCCGTCGTGGGTTCCATCGAGCTACATCGCAG CAGACGTAGTGTCGGAGTACGAGACACCCTGGTGGACGCCAGCTAGAAAAGCCGACGAGC AGGCCTGTCACAGCTCCTGGAGGACCGAGACGTCGATGCCGTGGACGAAAACGGCCGGA CGGCTCTGCTTTTCGTGGCAGGTCTGGGGTCGGACAAGTGCGTAAGGCTTCTGGCGGAGG CTGGAGCCGATCTCGACCACCGAGACATGAGGGGAGGCTTGACGGCGCTGCACATGGCGG ${\tt CTGGTTACGTGAGGCCGGAGGTGGTGGAGCTGGTGGAGCTGGAGCTGATATTGAAG}$ TGGAAGACGAGAGAGGGTTAACGGCGTTGGAACTAGCGAGGGAGATTCTGAAGACGACGC CGAAGGGGAATCCGATGCAGTTCGGGAGGAGAATTGGGTTAGAGAAAGTGATCAATGTCC TGGAAGGACAAGTGTTCGAGTACGCCGAGGTGGATGAGATCGTAGAGAAACGAGGGAAAG GCAAAGACGTTGAATATCTGGTCAGATGGAAGGACGGTGGAGATTGCGAGTGGAAAAG GTGTACACGTGGCGGAAGATGTGGCTAAGGACTACGAGGATGGGCTGGAGTACGCTGTAG CGGAGAGTGTGATCGGGAAGAGGGTGGGAGACGATGGGAAGACCATCGAGTATCTTGTĆA AATGGACTGATATGTCTGATGCCACTTGGGAGCCTCAGGACAATGTCGACTCTACTCTTG ${\tt CGGTACATTTTCATTTTTTAAGATGTGATCTTGATGGTTTTTTGGCCTTTTTGGGGACA}$ CTATTTGATTTATATCCATGCTTTGAATTTTGCTTCCCTTTTTGGGGAAGATTCATGAAA >G1948 Amino Acid Sequence (domain in AA coordinates: entire protein) MDTCALVIHQSLSRIKLSPPKSSSSSSSAFSPESLPIRRIELCFRGAICAAVQRNYEETT SSVEEAEEDDESSSSYGEVNKIIGSRTAGEGAMEYLIEWKDGHSPSWVPSSYIAADVVSE YETPWWTAARKADEQALSQLLEDRDVDAVDENGRTALLFVAGLGSDKCVRLLAEAGADLD HRDMRGGLTALHMAAGYVRPEVVEALVELGADIEVEDERGLTALELAREILKTTPKGNPM QFGRRIGLEKVINVLEGQVFEYAEVDEIVEKRGKGKDVEYLVRWKDGGDCEWVKGVHVAE ${\tt DVAKDYEDGLEYAVAESVIGKRVGDDGKTIEYLVKWTDMSDATWEPQDNVDSTLVLLYQQ}$ OOPMNE*

>G2123 (1..657)

ATGAGAAAGTATGTGAGCTTGATATAGAGCTAAGTGAAGAGGAAAGAGACCTACTAACA ACTGGATACAAGAATGTCATGGAGGCTAAGAGAGTTTCATTGAGAGTAATATCATCCATT GAAAAAATGGAAGACTCGAAAGGAAACGACCAAAATGTGAAACTGATAAAAGGACAACAA GAAATGGTTAAATATGAGTTTTTCAATGTTTGTAATGACATTTTGTCTCTCATTGATTCT CATCTCATACCATCAACTACTAATGTCGAATCAATTGTCCTTTTTAACAGAGTGAAA GGAGATTATTTCGATATATGGCAGAGTTTGGTTCTGATGCTGAACGTAAAGAAAATGCA GATAATTCTCTAGATGCATATAAGGTTGCAATGGAAATGGCAGAGAATAGTTTAGCACCC ACCAATATGGTTAGACTTGGATTGGCTTTAAATTTCTCGATATTCAATTATGAGATCCAT AAATCTATTGAAAGCGCATGTAAATTGGTTAAGAAAGCTTACGATGAAGCAATCACTGAA CTCGATGGCCTTGACAAGAATATATGCGAAGAGAGCATGTATATCATAGAGATGCTTAAA >G2123 Amino Acid Sequence (domain in AA coordinates:99-109) MRKVCELDIELSEEERDLLTTGYKNVMEAKRVSLRVISSIEKMEDSKGNDQNVKLIKGQQ EMVKYEFFNVCNDILSLIDSHLIPSTTTNVESIVLFNRVKGDYFRYMAEFGSDAERKENA DNSLDAYKVAMEMAENSLAPTNMVRLGLALNFSIFNYEIHKSIESACKLVKKAYDEAITE LDGLDKNICEESMYIIEMLKYNLSTWTSGDGNGNKTDG*

>G2138 (27..512)

GGAACCCTAATTTCCGCAAATTCACTATGAAGCGTATTATCAGAATCTCATTCACCGACG CAGAAGCCACCGATTCTTCTAGCGACGAAGACACGGAGGAGCGTGGAGGAGCATCCCAGA CTCGGCGCGTGGGAAACGCCTCGTTAAAGAGATCGTAATCGATCCTTCCGATTCCGCCG

>G2139 Amino Acid Sequence (conserved domain in AA coordinates:14-69)
MSSTKQAKGRKTKGKQKIEMKKVENYGDRMITFSKRKTGIFKKMNELVAMCDVEVAFLIF
SQPKKPYTFAHPSMKKVADRLKNPSRQEPLERDDTRPLVEAYKKRRLHDLVKKMEALEEE
LAMDLEKLKLLKESRNEKKLDKMWWNFPSEGLSAKELQQRYQAMLELRDNLCDNMAHLRL
GKDCGGSSSVRVGRRVSGGVRLFDREA*

>G2343 (1..1113)

ATGGGTCATCACTCATGCTGCAACCAGCAAAAGGTGAAGAGAGGGGCTTTGGTCACCGGAA GAAGATGAGAAGCTTATTAGATATATCACAACTCATGGCTATGGATGTTGGAGTGAAGTC CCTGAAAAAGCAGGCTTCAAAGATGTGGAAAAAGTTGTAGATTGCGATGGATAAACTAT CTTCGACCTGATATCAGGAGGGAAGGTTCTCTCCAGAAGAAGAAATTGATCATAAGC CTTCATGGAGTTGTGGGAAACAGGTGGGCTCATATAGCTAGTCATTTACCGGGAAGAACA GATAACGAGATTAAAAACTATTGGAATTCATGGATTAAGAAAAAGATACGAAAACCGCAC CATCATTACAGTCGTCATCAACCGTCAGTAACTACTGTGACATTGAATGCGGACACTACA TCGATTGCCACTACCATCGAGGCCTCTACCACCACAACATCGACTATCGATAACTTACAT TTTGACGGTTTCACTGATTCTCCTAACCAATTAAATTTCACCAATGATCAAGAAACTAAT ATAAAGATTCAAGAAACTTTTTTCTCCCATAAACCTCCTCTCTTCATGGTAGACACAACA GATCATGATGACACGCAAAGAGGAGGAAGAGAAAATGTTTGTGAACAAGCATTTCTAACA ACTAACACGGAAGAATGGGATATGAATCTTCGTCAGCAAGAGCCGTTTCAAGTTCCTACA CTGGCGTCACATGTGTTCAACACTCTTCCAATTCAAATATTGACACGGTTATAAGTTAT AATCTACCGGCGCTAATAGAGGGAAATGTCGATAACATCGTCCATAATGAAAACAGCAAT GTCCAAGATGGAGAAATGGCGTCCACATTCGAATGTTTAAAGAGGCAAGAACTAAGCTAT GATCAATGGGACGATTCACAACAATGCTCTAACTTTTTCTTTTGGGACAACCTTAATATA AACGTGGAAGGTTCATCTCTTGTTGGAAACCAAGACCCATCAATGAATTTGGGATCATCT GCCTTATCTTCTTCTTTCCCTTCTTCGTTTTAA

>G2343 Amino Acid Sequence (domain in AA coordinates: 14-116)
MGHHSCCNQQKVKRGLWSPEEDEKLIRYITTHGYGCWSEVPEKAGLQRCGKSCRLRWINY
LRPDIRRGRFSPEEEKLIISLHGVVGNRWAHIASHLPGRTDNEIKNYWNSWIKKKIRKPH
HHYSRHQPSVTTVTLNADTTSIATTIEASTTTTSTIDNLHFDGFTDSPNQLNFTNDQETN
IKIQETFFSHKPPLFMVDTTLPILEGMFSENIITNNNKNNDHDDTQRGGRENVCEQAFLT
TNTEEWDMNLRQQEPFQVPTLASHVFNNSSNSNIDTVISYNLPALIEGNVDNIVHNENSN
VQDGEMASTFECLKRQELSYDQWDDSQQCSNFFFWDNLNINVEGSSLVGNQDPSMNLGSS

ALSSSFPSSF*

>G265 (280..1317)

CTTTGGTCTTGGAAGCCAAATCAAACCTTTCCTTCAATCCTCAAATTTTCGAAAATTTTC AAATCAAAGAGACTTTTGAAGATTGTTTCCCAATTTGCGTCAATCGGGATCGAGTCAAAT ${\tt CTGAAATCTTCTCCACTCATCATCTGACTATAAGACTTAATCAAGGGACTTTTTGTTCGG}$ GTTTGGTTTTAAACGTCTTGGATTCGAAGTGGTTAAGGTATGGATGAAAATAATGGAGGT TCAAGCTCACTTCCACCTTTCCTTACTAAAACATATGAAATGGTTGATGATTCTTCTTCT GACTCGGTCGTTGCTTGGAGCGAAAACAACAAAAGCTTCATCGTCAAGAATCCAGCAGAG TTTTCAAGAGACCTTCTTCCGAGATTCTTCAAGCATAAGAATTTCTCAAGTTTCATCCGT CAGCTTAATACATATGGTTTTCGAAAAGTAGATCCTGAGAAATGGGAATTCTTGAATGAT GATTTTGTTAGAGGTCGACCTTACCTTATGAAGAACATTCATAGACGAAAAACCGGTTCAT AGCCACTCGTTAGTGAATCTACAAGCGCAAAATCCTTTGACGGAATCAGAAAGACGGAGC ATGGAGGATCAGATAGAAAGACTGAAAAATGAGAAAGAAGGCCTTCTTGCGGAGTTACAG AACCAAGAGCAAGAACGGAAAGAGTTTGAGCTGCAAGTAACGACATTGAAAGATCGGTTA CAACATATGGAACAACATCAGAAATCAATAGTGGCATATGTTTCACAGGTTTTGGGAAAA CCAGGACTTTCACTAAACCTCGAAAACCATGAGAGAAGAAAAAGAAGATTTCAAGAGAAC TCTCTTCCTCCAAGCAGTTCACACATAGAACAGGTCGAAAAGTTAGAATCTTCGCTAACG TTTTGGGAGAATCTTGTATCGGAATCATGCGAGAAGAGCGGTTTGCAGTCATCAAGCATG GATCATGATGCAGCTGAGTCAAGTCTAAGTATTGGCGATACACGACCCAAATCATCGAAG ATTGATATGAACTCAGAGCCGCCCGTTACCGTTACTGCGCCTGCTCCAAAAACAGGCGTT AACGATGACTTTTGGGAACAATGTTTGACAGAGAACCCTGGATCAACCGAGCAACAAGAA GTTCAGTCAGAGAGAGAGATGTCGGTAATGATAATAATGGTAATAAGATTGGAAATCAA AGGACGTATTGGTGGAATTCAGGGAATGTAAATAACATTACAGAGAAAGCTTCTTGACAT ${\tt GAATGAGGTTTTGTAAAATAGTTTTCTTTTGGTTCCACTGAGATTATTGTATGTGTTCA}$ TTATTTATTACTCTGTTTCTGTAAAAACAAATCTCTCTATTGTTTGAGGCAGGAGTGACA TAAATGCATATGCAGAATTGGTTTCAAAAA

>G265 Amino Acid Sequence (domain in AA coordinates: 11-105)
MDENNGGSSSLPPFLTKTYEMVDDSSSDSVVAWSENNKSFIVKNPAEFSRDLLPRFFKHK
NFSSFIRQLNTYGFRKVDPEKWEFLNDDFVRGRPYLMKNIHRRKPVHSHSLVNLQAQNPL
TESERRSMEDQIERLKNEKEGLLAELQNQEQERKEFELQVTTLKDRLQHMEQHQKSIVAY
VSQVLGKPGLSLNLENHERRKRRFQENSLPPSSSHIEQVEKLESSLTFWENLVSESCEKS
GLQSSSMDHDAAESSLSIGDTRPKSSKIDMNSEPPVTVTAPAPKTGVNDDFWEQCLTENP
GSTEQQEVQSERRDVGNDNNGNKIGNQRTYWWNSGNVNNITEKAS*

>G2792 (1..960)

ATGGATCATCATCACATAGCATCAAGAAATTCATCAACAACATCAGAATTACCATCA TTCGAGCCAGCGTGCCATAACGGTAATGGTAACGGTTGGATCTATGACCCAAATCAAGTT AGGTACGATCAAAGTAGTGACCAACGGCTGTCAAAGTTGACGGATCTTGTAGGCAAGCAC TGGTCAATTGCACCACCGAATAATCCCGACATGAACCATAACCTTCATCATCACTTCGAT CATGATCATTCTCAAAACGACGACATTTCTATGTACAGACAAGCCTTGGAGGTGAAAAAT ${\tt GAGGAAGATCTTTGTTACAATAATGGCTCAAGTGGTGGTTGCTTCCTTGTTCCATGATCCT}$ ATAGAAAGTTCTAGAAGTTTCCTTGATATAAGGTTAAGTAGGCCATTAACGGATATTAAT CAAACGGCATCTCTGGCAGCAGTGAGACTGGGAACAACAACGCTGGAAAAAAGAAGAGAGA TGTGAAGAAATTTCCGATGAGGTTTCAAAGAAGGCCAAGTGCAGTGAGGGCTCTACACTT TCGCCAGAGAAGGAACTACCCAAAGCCAAACTTCGAGACAAGATCACGACTCTACAGCAA ATTGTGTCTCCCTTTGGAAAGACTGATACTGCTTCTGTGCTTCAAGAGGCCCATCACTTAC ATAAATTTTTATCAAGAGCAAGTTAAGCTGCTAAGCACTCCTTATATGAAGAATTCATCA ATGAAGGATCCATGGGGGGGATGGGACAGAGAAGATCACAACAAAAGGGGACCGAAGCAT ${\tt CTTGATCTAAGGAGTAGAGGGCTTTGTTTGGTTCCTATTTCATATACCCCAATCGCATAC}$ $\tt CGCGATAACAGTGCAACTGACTACTGGAATCCCACGTATAGAGGTTCTTTGTATCGTTAG$ >G2792 Amino Acid Sequence (domain in AA coordinates:190-258) MDHHHHIASRNSSTTSELPSFEPACHNGNGNGWIYDPNQVRYDQSSDQRLSKLTDLVGKH WSIAPPNNPDMNHNLHHHFDHDHSQNDDISMYRQALEVKNEEDLCYNNGSSGGGSLFHDP IESSRSFLDIRLSRPLTDINPSFKPCFKALNVSEFNKKEHQTASLAAVRLGTTNAGKKKR CEEISDEVSKKAKCSEGSTLSPEKELPKAKLRDKITTLQQIVSPFGKTDTASVLQEAITY INFYQEQVKLLSTPYMKNSSMKDPWGGWDREDHNKRGPKHLDLRSRGLCLVPISYTPIAY

RDNSATDYWNPTYRGSLYR* >G2830 (1..903)

ATGTCTTCCATCCCAAATAGGTTCAATATTTATGGTGGTGATACCACAAACCATCGTGAA TCGCTTCCCATCGAAATGAATCACAACTCTCGAATGGTTCGATCCATGTTCATTACATCT TCACATATCTCTTCATCTTCTGTTGGGTTTAATAATTCACATATGACTTATCATATGCTG AAAAGAAATTATGATTCTGTTTCCCGTGCTGATTATTTCTCTACTAAAGATCATTCTCAT AATATATTTGACACTGTTCACTATGATATTGGTCGTGTCAAACGTGCCATAGATTTTAGA AATATTTGGAATCCTAAATCTCATCTTCCAAAAAAATTTAATAGGCAATGCGAGATTTTG AATCCTACCCCTCTTAATATCGTCTTTCCGCACCAGGATTCAGCTGATCGTCAACATTTA GACATTATTTCTCGTCATCAAAGCACAACCATGTTTTCCAAGATGGTCGATCCTTGAAG AAAATTTCCGAACCAACCAATCTGTTTGAAAAATCTAATTCTTATGATTCTCAAGAAGAT GAGAAAATCGATGCTTATCAATATGATGGTCGTACACATAGTCTACCGTATACGAAATAC GGTCCATATACATGTCCCAGGTGTAACGGTGTGTTTGATACTTCTCAAAAATTTGCTGCA CATATGTTATCTCACTACAATAATGAGACGGACAAAGAAGAAGACCAAAGATTTCGTGCA AGAAATAAAAACGATATCGTAAGTTTATGGACAGTCTTAAAATATCAAAACAGAAGATA

>G2830 Amino Acid Sequence (domain in AA coordinates:245-266) MSSIPNRFNIYGGDTTNHRESLPIEMNHNSRMVRSMFITSDRMNHRDLFSSPPSFSSYQN SHISSSSVGFNNSHMTYHMLKRNYDSVSRADYFSTKDHSHFTQVSFTQTITNKYTTIVPS NIFDTVHYDIGRVKRAIDFRNIWNPKSHLPKKFNRQCEILNPTPLNIVFPHQDSADRQHL DIIFSSSKHNHVFQDGRSLKKISEPTNLFEKSNSYDSQEDEKIDAYQYDGRTHSLPYTKY GPYTCPRCNGVFDTSQKFAAHMLSHYNNETDKERDQRFRARNKKRYRKFMDSLKISKQKI

>G286 (94..2454)

GCCAATGGCATTGGCAATGGCAATGGTGAGTCTATTCCCGGGATTCCAGATGACTTACGG TGCAAGAGATCGGATGGTAAACAGTGGAGATGCACTGCAATGTCCATGGCTGATAAGACT AACCAGAAGAAAGCGAAAAGGCGATCATCGTTAGGCGAAACAGATACGTATTCGGAAGGG AAGATGGATGATTTCGAGTTACCAGTCACCAGCATTGACCACTATAATAACGGTCTTGCC TCTGCTTCCAAGAGTAATGGTAGACTAGAGAGAGACATAATAAAAGCCTGATGCGGTAC TCGCCCGAGACACCGATGATGAGGAGTTTCTCTCCACGTGTTGCAGTGGATTTGAATGAT GACTTGGGTAGAGATGTTGTAATGTTTGAAGAGGGCTACAGATCTTATAGGACACCACCA TCTGTTGCTGTTATGGATCCGACACGAAACAGATCACCAAAGCACCAGTCCTATGGAA TACTCAGCAGCAAGCACAGATGTGTCTGCAGAGTCTTTGGGGGGAAATCTGCCATCAATGC CAGAGAAAAGATAGAGAGAGAATCATTTCTTGCCTCAAATGCAATCAAAGAGCCTTCTGC CACAATTGTCTATCGGCAAGGTACTCGGAGATATCACTTGAAGAAGTCGAGAAAGTTTGC CCTGCATGTCGTGGCTTGTGTGATTGCAAATCTTGCCTGCGTTCAGATAATACAATAAAG GTTCGGATCCGGGAAATACCCGTTTTGGACAAGTTGCAGTATCTTTATCGTCTATTATCA GCTGTCCTACCAGTCATAAAGCAGATCCATCTTGAACAATGTATGGAAGTTGAACTAGAG AAGAGGCTTCTTGAAGTTGAGATTGATCTTGTCAGGGCAAGATTGAAAGCAGATGAGCAG ATGTGCTGCAACGTGTCCGATACCAGTTGTTGACTACCGTCACTGTCCGAACTGC TCATATGACCTTTGCCTGAGATGCTGTCAAGATCTACGGGAAGAGTCTTCAGTGACGATT AGTGGGACTAACCAAAACGTACAAGATAGAAAAGGAGCTCCCAAACTAAAACTAAACTTT TCATACAAGTTTCCTGAGTGGGAAGCCAACGGTGATGGGAGCATCCCTTGCCCTCCTAAG GAGTATGGAGGCTGCGGTTCACATTCTTTGAATCTTGCCCGCATTTTCAAGATGAATTGG GTTGCAAAGCTTGTGAAAAATGCTGAGGAGATTGTTAGTGGCTGCAAATTATCTGATCTT GACAACTACGTGTACAGCCCGTCGCTTGAAACGATTAAAACTGATGGAGTAGCTAAGTTT GAGCAACAATGGGCAGAGGGTCGGCTTGTTACTGTGAAAATGGTACTTGATGACTCATCT TGCTCTAGATGGGATCCTGAGACTATTTGGAGGGATATAGACGAGCTTTCGGACGAGAAA ${\tt CTGAGAGAACATGATCCATTCTTGAAGGCCATTAATTGCTTGGATGGTTTAGAGGTTGAT}$ GTAAGACTTGGGGAGTTTACAAGAGCATATAAAGATGGAAAGAACCAAGAGCAGGTCTT CCGCTATTGTGGAAGTTAAAGGACTGGCCGAGCCCAAGTGCTTCCGAGGAGTTCATTTTC

TACCAAAGACCTGAGTTTATCAGAAGTTTTCCGTTTCTCGAGTACATTCATCCCCGGTTA GGCCTTCTGAATGTTGCAGCCAAGTTACCTCATTACTCGCTCCAAAACGATTCAGGTCCA **AAGATTTATGTGTCTTGTGGGACGTACCAAGAAATCAGTGCTGGCGATTCATTGACTGGT** ATTCACTACAACATGCGTGACATGGTATACCTATTGGTGCACACGTCTGAAGAAACAACA TTCGAAAGGGTGAGAAAAACAAAACCTGTTCCAGAGGAACCTGACCAGAAGATGAGCGAA AATGAGTCACTTCTTAGCCCTGAGCAGAAATTAAGGGACGGAGAGTTACATGATCTATCA CTTGGTGAAGCCAGTATGGAGAAGAATGAACCTGAGTTGGCGTTGACTGTGAATCCAGAG AACTTAACGGAAAACGGTGACAACATGGAATCTTCTTGCACATCTTCATGTGCAGGAGGA GCCCAGTGGGATGTCTTTCGACGCCAAGACGTCCCAAAGTTGTCCGGGTATTTGCAGAGA ACATTCCAGAGCCTGATAATATCCAGACTGATTTTGTAAGCCGTACCTGCTAATTCAAA GGTTTCAGGTGTCACGCCCGTTGTATGAAGGATTGTCTTTAAATGAACACCACAAGAGAC AACTAAGAGACGAGTTTGGAGTTGAGCCATGGACATTTGAGCAACATCGTGGTGAGGCTA TCTTCATTCCGGCTGGATGTCCGTTCCAAATCACTAATCTTCAGTCGAATATTCAGGTGG CACTTGACTTCTTGTGCCCTGAAAGCGTTGGAGAGTCAGCAAGACTAGCTGAAGAAATCC GGTGTTTACCAAACGACCACGAGGCAAAACTTCAGATTCTAGAGATTGGAAAGATATCAT TATACGCAGCTAGCTCAGCCATTAAAGAGGTTCAGAAACTGGTCTTGGATCCAAAGTTTG GAGCAGAGCTTGGATTTGAAGACTCTAACTTAACCAAAGCAGTCTCTCACAACTTAGACG AGGCAACCAAGCGGCC

>G286 Amino Acid Sequence (domain in AA coordinates: TBD)
MNANEQTRSANGIGNGNESIPGIPDDLRCKRSDGKQWRCTAMSMADKTVCEKHYIQAKK
RAANSAFRANQKKAKRSSLGETDTYSEGKMDDFELPVTSIDHYNNGLASASKSNGRLEK
RHNKSLMRYSPETPMMR\$F\$PRVAVDLNDDLGRDVVMFEEGYR\$YRTPPSVAVMDPTRNR
SHQST\$PMEYSAASTDVSAESLGEICHQCQRKDRERIISCLKCNQRAFCHNCLSARYSEI
SLEEVEKVCPACRGLCDCK\$CLR\$SDNTIKVRIREIPVLDKLQYLYRLL\$AVLPVIKQIHL
EQCMEVELEKRLLEVEIDLVRARLKADEQMCCNVCRIPVVDYYRHCPNC\$YDLCLRCCQD
LREES\$VTI\$GTNQNVQDRKGAPKLKLNF\$YKFPEWEANGDG\$IPCPPKEYGGCG\$H\$LN
LARIFKMNWVAKLVKNAEEIV\$GCKL\$DLLNPDMCD\$RFCKFAEREE\$GDNYVY\$P\$LET
IKTDGVAKFEQQWAEGRLVTVKMVLDD\$SC\$RWDPETIWRDIDEL\$DEKLREHDPFLKAI
NCLDGLEVDVRLGEFTRAYKDGKNQETGLPLLWKLKDWP\$P\$A\$EEFIFYQRPEFIR\$FP
FLEYIHPRLGLLNVAAKLPHY\$LQND\$GPKIYV\$CGTYQEI\$AGD\$LTGTHYNMRDMVYL
LVHT\$EETTFERVRKTKPVPEEPDQKM\$ENE\$LL\$PEQKLRDGELHDL\$LGEA\$MEKNEP
ELALTVNPENLTENGDNMES\$CT\$\$CAGGAQWDVFRRQDVPKL\$GYLQRTFQKPDNIQTD
FV\$RTC*

>G291 (124..1197)

TCAAATCAATTCTCGCGATTAAGCAAAACCCTAGATTTATTCTACTCTTCGAAGTCGATT TCAATGGAAGGTTCCTCGTCAGCCATCGCGAGGAAGACATGGGAGCTAGAGAACAACATT CTCCCAGTGGAACCAACCGATTCAGCCTCCGACAGTATATTCCACTACGACGACGCTTCA CAAGCCAAAATCCAGCAGGAGAAGCCATGGGCCTCCGATCCTAACTACTTCAAGCGCGTT GAGATCATGGGTCTTATGCAGGGTAAAACCGAGGGTGATACAATCATCGTTATGGATGCT TTTGCTTTGCCTGTTGAAGGTACTGAGACTAGGGTTAATGCTCAGTCTGATGCCTATGAG TATATGGTTGAATACTCTCAGACCAGCAAGCTGGCTGGGAGGTTGGAGAACGTTGTTGGA TGGTATCACTCTCACCCTGGGTATGGATGTTGGCTCTCGGGTATTGATGTTTCGACACAG ATGCTTAACCAACAGTATCAGGAGCCATTCTTAGCTGTTGTTATTGATCCAACAAGGACT GTTTCGGCTGGTAAGGTTGAGATTGGGGCATTCAGAACATATCCAGAGGGACATAAGATC TCGGATGATCATGTTTCTGAGTATCAGACTATCCCTCTTAACAAGATTGAGGACTTTGGT GTACATTGCAAACAGTACTACTCATTGGACATCACTTATTTCAAGTCATCTCTCGATAGT TTGGGCAATGGAGACTATGTTGCCGGGCAAATATCAGACTTGGCTGAGAAGCTCGAGCAA GCGGAGAGTCAGCTCGCTAACTCCCGGTATGGAGGAATTGCGCCAGCCGGTCACCAAAGG AGGAAAGAGGATGAGCCTCAACTCGCGAAGATAACTCGGGATAGTGCAAAGATAACTGTC GAGCAGGTCCATGGACTAATGTCACAGGTTATCAAAGACATCTTGTTCAATTCCGCTCGT CAGTCCAAGAAGTCTGCTGACGACTCATCAGATCCAGAGCCCATGATTACATCGTGAAGT TGGTCTATTCTTTTGTTTTTTGGCTGCGGAAATTGACTATCGGTTTGACCCGGTTTATGA GGCAATGCCCATTGTTCCCTATATCTCTAGTGTAGTATCTGCTTCAGACAAAGATCTTTG

223/286

GGTTATTAAATGACATTAACATAAAAAAA

>G291 Amino Acid Sequence (domain in AA coordinates: 132-160)
MEGSSSAIARKTWELENNILPVEPTDSASDSIFHYDDASQAKIQQEKPWASDPNYFKRVH
ISALALLKMVVHARSGGTIEIMGLMQGKTEGDTIIVMDAFALPVEGTETRVNAQSDAYEY
MVEYSQTSKLAGRLENVVGWYHSHPGYGCWLSGIDVSTQMLNQQYQEPFLAVVIDPTRTV
SAGKVEIGAFRTYPEGHKISDDHVSEYQTIPLNKIEDFGVHCKQYYSLDITYFKSSLDSH
LLDLLWNKYWVNTLSSSPLLGNGDYVAGQISDLAEKLEQAESQLANSRYGGIAPAGHQRR
KEDEPQLAKITRDSAKITVEQVHGLMSQVIKDILFNSARQSKKSADDSSDPEPMITS*
>G427 (49..1230)

TTTCCCTCTCCGAAACAGAAATTCAAAAACAAATTCAACACGAAAACGATGGCGTTTCAT AACAATCACTTTAATCATTTCACCGACCAACAACAACATCAGCCTCCTCCTCCGCCGCAA CAGCAGCAGCAACAACTTTTCAAGAATCAGCACCCCCTAATTGGCTCCTCCGCTCCGAC AACAACTTCCTCAATCTCCACACAGCTGCCACAGCCGCCGCTACAAGCTCCGATTCTCCT ACCGCAAACAACAACAACAACGAAACATCCGGTGACGTCATCGAAGACGTTCCCGGCGGA GAGGAGTCAATGATCGGAGAGAAGAAGGAGGCGGAGAGGTGGCAGAATGCGAGACACAAG GCGGAGATACTGTCTCATCCACTATACGAGCAACTTTTGTCGGCACACGTGGCGTGCCTG AGGATCGCAACGCCGGTGGATCAGCTTCCGAGGATAGACGCACAGCTTGCTCAGTCTCAA AACGTCGTGGCTAAGTACTCAACTTTAGAAGCCGCTCAAGGACTCCTCGCCGGCGATGAC AAGGAGCTTGACCACTTCATGACGCATTATGTACTATTGCTTTTGCTCTTTCAAAGAACAA CTGCAACAGCATGTTCGTGTTCATGCAATGGAAGCTGTTATGGCCTGTTGGGAGATTGAA CAGTCGCTTCAAAGTTTTACAGGAGTATCTCCTGGTGAAGGCACAGGAGCAACAATGTCT TTAGGGTTTGGTCCTCTAGTTCCCACTGAGAGCGAGAGATCTTTGATGGAACGAGTCAGA CAAGAACTCAAACATGAACTCAAGCAGGGTTACAAGGAGAAAATTGTGGACATAAGAGAG GAGATACTGAGGAAGAGAGAGCTGGAAAATTACCAGGAGACACCACCTCTGTTCTCAAA TCATGGTGGCAATCTCATTCTAAGTGGCCTTACCCTACTGAGGAAGATAAGGCGAGGTTG AGGAATTGGCATAGCAATCCATCTTCTTCTACCGTCTCAAAGAATAAACGCCGAAGCAAT GCAGGTGAAAACAGCGGAAGAGACCGTTGAGATCAAGCTTGCATGTAGAGATCCAAAAGC TTTATAGAAAGGTGGAGGCATGAAGACAAAGAATTCTTACACAACAAACGTAGGACGTAA TTTTGTGCCAGTACATGGTATGGCTTTCATATTTGGTAATGATTAGGGCCACACAAAATT AAACCCCAAAGCATGATTTGTAATATGAGGTTTTAGATGGACTTTATGATAGGATCGTCA

>G427 Amino Acid Sequence (domain in AA coordinates: 307-370)
MAFHNNHFNHFTDQQQHQPPPPPQQQQQQHFQESAPPNWLLRSDNNFLNLHTAATAATS
SDSPSSAAANQWLSRSSSFLQRGNTANNNNNETSGDVIEDVPGGEESMIGEKKEAERWQN
ARHKAEILSHPLYEQLLSAHVACLRIATPVDQLPRIDAQLAQSQNVVAKYSTLEAAQGLL
AGDDKELDHFMTHYVLLLCSFKEQLQQHVRVHAMEAVMACWEIEQSLQSFTGVSPGEGTG
ATMSEDEDEQVESDAHLFDGSLDGLGFGPLVPTESERSLMERVRQELKHELKQGYKEKIV
DIREEILRKRRAGKLPGDTTSVLKSWWQSHSKWPYPTEEDKARLVQETGLQLKQINNWFI
NQRKRNWHSNPSSSTVSKNKRRSNAGENSGRDR*

>G509 (122..1054)

CTTCCTCTTTGCTAATAAACTTTTCTTTGAACCTTACACGCCTTGTTGATATTACTCTC
TTAAATATATTTTTCGTACATTAACACAGACATATATAAAGCTAAAGATTTCTTCACGT
AATGGGTTTGAAAGATATTGGGTCCAAATTGCCACCGGGGTTTCGATTTCATCCAAGTGA
TGAAGAGTTGGTTGATCATTATCTTTGCAACAAGATTAGGGCCAAATCTGATCATGGTGA
TGTTGATGATGATGATGATGATGTTGATGAAGCTTTGAAGGGTTCTACTGATCATTGTGGA
GAATTGACTTGCATATCTTGTGAGCCATGGGAGCTTCCTGATGTGGCAAAGTTAAACGCAAA
GGAATGGTACTTCTTCAGTTTCCGTGATCGAAAGTATGCTACTGGATATCGCACGAACAG
AGCGACAGTAAGCGGATACTGGAAAGCAACAGGAAAAGATCGAACAGGTGATGGATCCACG
TACAAGGCAATTGGTAGGGATGAGAAAAACACTAGTGTTCTACAGAAACAGAGCACCAAA
TGGGATCAAAACTACTTGGATCATGCACGAGTTCCGTCTTGAGTGTCCTAACATCCCACA
TAAGGAAGACTGGGTCTTGTGCAGAGTGTTCAACAAAGGCAGAGACTCATCGCTACAAGA
CAATAATTATTATAACAATGATAATCAGACGCAAAGGCTTGAAGTTAATGACGCTCCGGA
TCTTAATTACAACAATCAGTTGCCACCTTTTTTTTTATAACAATCATCACCACA

>G509 Amino Acid Sequence (domain in AA coordinates: 13-169)
MGLKDIGSKLPPGFRFHPSDEELVCHYLCNKIRAKSDHGDVDDDDDVDEALKGSTDLVE
IDLHICEPWELPDVAKLNAKEWYFFSFRDRKYATGYRTNRATVSGYWKATGKDRTVMDPR
TRQLVGMRKTLVFYRNRAPNGIKTTWIMHEFRLECPNIPHKEDWVLCRVFNKGRDSSLQD
NNYYNNDNQTQRLEVNDAPDLNYNNQLPPLLSSPPHNHQHEKMKIQVCDQWEQLMKQPSR
TTGHPYHHHCHHQTIACGWEQMMIGSLSSPSSHGPDHESFAKFALPSTITTVSTSVVIII
RIMRRFCCHH*

>G519 (85..894)

CACAAAGATCCTCCGATTCGAAGGTTTATAAAAACTCAAAATCGAATCTTATCCACAAGA AAACAACAAGGTACTTTTCCAAAAATGAAGGCGGAGTTGAATTTGCCGGCGGGATTCCGA TTTCATCCGACGACGAGAGCTTGTCAAGTTCTATCTTTGCCGGAGATGTGCGTCAGAA CCGATTAACGTTCCGGTTATCGCAGAGATTGACTTGTACAAATTCAATCCATGGGAGCTT CCAGAAATGGCGTTGTACGGTGAGAAAGAATGGTACTTCTCTCGCATAGAGACCGGAAA TACCCAAACGGGTCGAGACCAAACCGGGCAGCTGGAACCGGTTATTGGAAAGCGACTGGA GCTGATAAACCGATCGGAAAACCGAAGACGTTAGGGATTAAGAAAGCACTCGTCTTCTAC GCAGGAAAAGCTCCGAAAGGGATTAAAACGAATTGGATTATGCACGAGTATCGTCTCGCT AATGTCGATCGATCTGCTTCTACCAACAAGAAGAACAACTTAAGACTTGATGATTGGGTT TTGTGTCGGATATACAATAAGAAAGGAACAATGGAGAAGTATTTACCGGCGGCGGCTGAG AAACCGACGGAAAAGATGAGTACGTCGGACTCAAGATGCTCAAGTCACGTGATTTCACCG GACGTCACGTGTTCTGATAACTGGGAGGTTGAGAGTGAGCCCAAATGGATTAATCTGGAA GACGCGTTAGAGGCATTTAATGATGACACGTCCATGTTTAGTTCCATTGGTTTGCAA AATGACGCCTTTGTTCCTCAGTTTCAGTACCAGTCCTCCGATTTCGTCGATTCGTTTCAG GACCCGTTCGAGCAGAAACCGTTCTTGAATTGGAATTTTGCTCCTCAAGGGTAAAAATAA TCGGCAAAAAGTTGAAGCTTTTCAGAGTCTTCGATCACCGGCATTGTGTCGGATCCTGAC CCGGAGACCAAGTCGGGTCATACGATTACATAATCGGGTTATTGAGATTTCCACATTTGG ATTTCCGAGACTAACCAACTTAACGGATTCTGGGGTAATTGGGGGGTTTTGCACAGGTGA TCTAAAGATATCACGAAGTAGATTCAGAAGAACTGTAAAAGCAATTGTGACCACCCGTTA

>G519 Amino Acid Sequence (conserved domain in AA coordinates: 11-104)
MKAELNLPAGFRFHPTDEELVKFYLCRRCASEPINVPVIAEIDLYKFNPWELPEMALYGE
KEWYFFSHRDRKYPNGSRPNRAAGTGYWKATGADKPIGKPKTLGIKKALVFYAGKAPKGI
KTNWIMHEYRLANVDRSASTNKKNNLRLDDWVLCRIYNKKGTMEKYLPAAAEKPTEKMST
SDSRCSSHVISPDVTCSDNWEVESEPKWINLEDALEAFNDDTSMFSSIGLLQNDAFVPQF
QYQSSDFVDSFQDPFEQKPFLNWNFAPQG*

>G561 (86..1168)

AATTTGTTTTTTTTTTTTTTTTTGTGGGTTCAATTCGAATTGTTTTCCCTGAGACTCAAGTTA
CTGTGTCATTACTCTGCATTGAGCAATGGGTAGCAACGAAGAAGGAAACCCCACTAACAA
CTCTGATAAGCCATCGCAAGCTGCTGCTCCTGAGCAGAGTAATGTTCATGTGTATCATCA
TGACTGGGCTGCTATGCAGGCATATTATGGGCCTAGAGTTGGTATACCTCAATATTACAA
CTCAAATTTGGCGCCTGGTCATGCTCCACCGCCTTATATGTGGGCGTCTCCATCGCCAAT
GATGGCTCCTTATGGAGCACCATATCCACCACTTTTGCCCTCCTGGTGGAGTTTATGCTCA
TCCTGGTGTTCAAATGGGCTCACAACCACAAGGTCCTGTTTCTCAATCAGCATCTGGAGT
TACAACCCCTTTGACCATTGATGCACCAGCTAATTCAGCTGGAAACTCAGATCATGGGTT
CATGAAAAAGCTGAAAGAGTTCGATGGACTTGCAATGTCAATAAGCAATAACAAAGTTGG

>G561 Amino Acid Sequence (domain in AA coordinates: 248-308)
MGSNEEGNPTNNSDKPSQAAAPEQSNVHVYHHDWAAMQAYYGPRVGIPQYYNSNLAPGHA
PPPYMWASPSPMMAPYGAPYPPFCPPGGVYAHPGVQMGSQPQGPVSQSASGVTTPLTIDA
PANSAGNSDHGFMKKLKEFDGLAMSISNNKVGSAEHSSSEHRSSQSSENDGSSNGSDGNT
TGGEQSRRKRRQQRSPSTGERPSSQNSLPLRGENEKPDVTMGTPVMPTAMSFQNSAGMNG
VPQPWNEKEVKREKRKQSNRESARRSRLRKQAETEQLSVKVDALVAENMSLRSKLGQLNN
ESEKLRLENEAILDQLKAQATGKTENLISRVDKNNSVSGSKTVQHQLLNASPITDPVAAS

>G590 (102..1223)

AAAGAGAAGAAGAAGCAGAGAGTGATGGGAGATAAGAAATTGATTTCATCTTCTT CTTCCTCGGTTTACGATACTCGTATCAATCATCATCATCATCCTCCGTCTTCTTCCG ACGAAATCTCTCAGTTTCTCCGGCATATTTTCGACCGTTCTTCTCCTTTACCTTCTTACT ACTCCCGGCGACGACTACAACGACGGCGTCTTTGATTGGTGTGCACGGGAGCGGTGACC CACATGCAGATAACTCGAGAAGTCTCGTTTCTCATCATCACCGTCAGATTCTGTGCTTA TGTCGAAACGTGTCGGAGATTTCTCTGAGGTTTTAATCGGCGGAGGATCAGGCTCAGCCG CCGCGTGTTTTGGTTTCTCCGGTGGTGGTAATAATAACAACGTTCAAGGAAATAGCTCTG GGACTCGAGTATCGTCTTCCGTTGGAGCTAGTGGCAACGAGACAGATGAGTATGACT GTGAAAGCGAGGAGGAGGAGGAGCTGTAGTTGATGAAGCTCCCTCTTCCAAGTCAGGTC CTTCTTCTCGTAGTTCATCTAAAAGATGCAGAGCTGCTGAAGTTCATAATCTCTCTGAGA AGAGGAGGAGAAGTAGAATTAATGAAAAATGAAAGCTTTACAAAGTCTCATCCCTAATT CAAATAAGACGGATAAGGCTTCAATGCTTGATGAAGCCATTGAGTATCTGAAACAGCTTC AGCTCCAAGTTCAGATGTTGACTATGAGAAATGGAATAAACTTGCATCCTTTGTGTTTAC CTGGAACTACATTACACCCATTGCAACTCTCTCAGATTCGACCCCCTGAAGCAACCAATG ATCCTCTGCTTAATCATACCAATCAGTTTGCTTCGACTTCTAATGCACCGGAAATGATCA ATACTGTGGCTTCTTCATACGCTTTGGAACCTTCTATTCGCAGTCACTTTGGACCTTTCC $\tt CTCTCCTTACTTCACCCGTGGAGATGAGTCGGGAAGGTGGGTTAACTCATCCAAGGTTGA$ ACATTGGTCATTCCAACGCAAACATAACCGGGGAACAAGCTCTGTTTGATGGACAACCTG ACCTAAAAGATCGAATTACTTGAACAGTGTCCCAACTTCGGGATCTCTATGTGTTCTTGT TTCTTAGAACGCAAGCCATAAAGCTGTCTGAC

>G590 Amino Acid Sequence (domain in AA coordinates: 202-254)
MISQREEREEKKQRYMGDKKLISSSSSSVYDTRINHHLHHPPSSSDEISQFLRHIFDRS
SPLPSYYSPATTTTTASLIGVHGSGDPHADNSRSLVSHHPPSDSVLMSKRVGDFSEVLIG
GGSGSAAACFGFSGGGNNNNVQGNSSGTRVSSSSVGASGNETDEYDCESEEGGEAVVDEA
PSSKSGPSSRSSSKRCRAAEVHNLSEKRRRSRINEKMKALQSLIPNSNKTDKASMLDEAI
EYLKQLQLQVQMLTMRNGINLHPLCLPGTTLHPLQLSQIRPPEATNDPLLNHTNQFASTS
NAPEMINTVASSYALEPSIRSHFGPFPLLTSPVEMSREGGLTHPRLNIGHSNANITGEQA
LFDGQPDLKDRIT*

>G818 (65..1060)

AGAGACGGCAACGGAGACCGTCACCGTTGAAAGGGCTCGTCTGATTCATCTTCAAAGCC AGACGACGTCGTTTTACTAATCAAGGAAGAGGAGGATGACGCCGTTAACTTGTCACTTGG TTTTTGGAAATTGCACGAGATAGGTTTAATAACACCGTTCTTGAGAAAGACGTTTGAGAT CGTCGATGACAAAGTAACAGACCCGGTTGTATCATGGAGCCCGACCCGTAAAAGCTTTAT CATTTGGGATTCTTACGAGTTCTCAGAGAATCTACTTCCCAAATACTTCAAGCACAAGAA CTTCTCCAGTTTTATTCGTCAGCTTAACTCTTACGGTTTTAAAAAGGTCGATTCAGATAG GTGGGAATTTGCTAACGAAGGGTTTCAAGGAGGGAAGAAACATTTGCTTAAGAACATCAA GAGGAGAAGCAAAAACACTAAATGTTGTAACAAGGAAGCGAGTACCACCACGACAGAGAC TGAGGTTGAGTCATTGAAGGAGGAACAGAGTCCAATGAGATTGGAGATGTTGAAGCTGAA ACAACAAGAAGAATCTCAACATCAGATGGTCACTGTGCAGGAGAAGATCCACGGAGT TGATACCGAACAACAGCATATGCTTAGTTTCTTTGCAAAGTTGGCTAAAGATCAAAGATT ATTCGTGAAGAAGCTCAAGTTGCTTCAGGATCAAGAACTCAAAAGAACTTGTTAGATGT AGAAAGAGAATTTATGGCCATGGCTGCAACAGAACACAATCCCGAGCCTGACATTTTGGT GAACAATCAAAGCGGGAATACGAGATGTCAGCTTAACTCAGAGGACCTACTTGTTGACGG TGGCTCAATGGATGTAAATGGGAGGATAGAGATAGAGTAGAGCAAAACCGGTAACATAGC AATAGAGAAGGTACCAAATCCCAAGGCTTGAGATCCGAAT

>G818 Amino Acid Sequence (domain in AA coordinates: 70-162)
MTAIPNVVDIESSSSSLCQETATETVTVERGSSDSSSKPDDVVLLIKEEEDDAVNLSLGF
WKLHEIGLITPFLRKTFEIVDDKVTDPVVSWSPTRKSFIIWDSYEFSENLLPKYFKHKNF
SSFIRQLNSYGFKKVDSDRWEFANEGFQGGKKHLLKNIKRRSKNTKCCNKEASTTTTETE
VESLKEEQSPMRLEMLKLKQQQEESQHQMVTVQEKIHGVDTEQQHMLSFFAKLAKDQRFV
ERLVKKRKMKIQRELEAAEFVKKLKLLQDQETQKNLLDVEREFMAMAATEHNPEPDILVN
NQSGNTRCQLNSEDLLVDGGSMDVNGRIEIE*

>G849 (218..2077)

AACTCGAGAATTCTTCATTTCTTTTAAATCTTAGAATCTCGAGTTTTTGTATAAATCGAT TCTAATTTTTCCTTTGTACATTGTTTTATATATACATAAAACACACAAATCGGGTATGGG GGAATTTGGGTTTTAAGATAGCGTGATCTGTAATAATAAGTGGTTCGCGATCGTGATCAA GAAACTGGTGGCTGATAGTGATATGCATATTTGAGAGATGGTGTTCAAGAGAAAGTTAGA TTGCCTTTCCGTGGGATTTGATTTTCCCAACATTCCCAGAGCTCCTCGTTCATGCAGGAG GAAGGTTCTAAACAAGAGGATTGATCATGATGATGATAACACTCAGATCTGTGCAATTGA CTTACTAGCTTTGGCTGGAAAGATTCTACAGGAAAGCGAGAGTTCCTCTGCGTCTTCTAA TGCATTTGAAGAAATTAAGCAAGAGAAAGTAGAAAATTGCAAGACTATTAAATCTGAGTC TTCTGACCAAGGAAACTCTGTGTCAAAGCCTACTTATGATATCTCTACTGAGAAGTGTGT GGTGAACAGTTGTTTTCATTTCCGGATAGTGACGGCGTTTTGGAGCGGACTCCGATGTC TGATTACAAGAAGATTCATGGTTTGATGGATGTAGGGTGTGAAAACAAGAATGTAAATAA TGGGTTCGAGCAAGGAGAAGCAACCGATCGCGTGGTGATGGAGGCTTAGTCACTGATAC TTGCAACTTAGAGGATGCAACTGCGTTAGGTCTGCAGTTTCCGAAATCAGTCTGTGTGGG TGGTGATTTAAAATCACCATCCACCTTGGATATGACCCCTAATGGTTCCTATGCTAGACA TGGGAACCATACTAACCTAGGTAGAAAAGATGATGATGAAAAATTCTATAGTTACCATAA ACTTAGCAATAAATTTAAGTCGTATAGGTCTCCAACAATTCGAAGAATAAGAAAGTCCAT GTCGTCCAAATACTGGAAACAAGTTCCAAAAGATTTTGGATACAGTAGAGCTGATGTGGG TGTGAAGACTCTTTATCGCAAAAGAAAATCATGTTATGGTTACAACGCATGGCAGCGTGA GATCATTTATAAGAGAAGATCACCTGACAGAAGCTCGGTCGTAACTTCTGATGGAGG ACTCAGTAGTGGAAGTGTTTCCAAGTTACCCAAGAAGGGAGATACAGTAAAGCTAAGCAT TAAGTCCTTTAGGATTCCAGAGCTTTTTATTGAAGTTCCAGAAACTGCAACAGTAGGATC ACTAAAGAGGACTGTGATGGAGGCTGTCAGTGTTTTACTCAGCGGAGGAATACGTGTTGG GGTGTTAATGCATGGGAAGAAGGTTAGAGATGAAAGGAAAACTCTGTCCCAGACTGGGAT CTCATGTGATGAAAATCTAGACAACCTTGGGTTCACCTTGGAGCCTAGTCCCAGCAAAGT TCCCCTACCTTTGTGTTCTGAAGATCCTGCTGTGCCAACCGACCCTACAAGTTTGTCTGA ACGGTCTGCGGCGTCTCCTATGCTAGATTCTGGAATTCCACATGCAGATGACGTGATTGA TTCAAGAAATATTGTGGACAGTAACCTCGAATTAGTTCCATATCAGGGTGACATATCTGT TGATGAACCTTCATCAGATTCAAAAGAGCTTGTCCCACTTCCAGAGTTGGAAGTCAAGGC GCTTGCCATAGTTCCGTTGAACCAGAAACCTAAGCGTACTGAGCTAGCCCAGAGGAGAAC TAGGAGACCCTTCTCTGTGACAGAGGTAGAAGCTCTTGTACAAGCAGTTGAGGAACTCGG GACTGGAAGATGGCGTGATGTAAAATTGCGTGCTTTCGAGGATGCAGATCATCGGACTTA CGTGGACTTGAAGGACAAATGGAAGACGCTAGTTCACACAGCAAGTATATCCCCACAGCA

504-583)

ACGAAGAGGAGACCGGTGCCACAAGAACTGCTAGACAGAGTCTTGAGGGCATACGGGTA TTGGTCGCAGCACGAAAAACATCAGGCGAGAGGAGCGTCCAAAGATCCAGACATGAA CAGAGGTGGAGCTTTTGAATCAGGTGTTTCAGTGTAAAAAAGGAGGTACGCATTGGTGGG TGGGTGTACAGAAGCAACAACACAATAAATGGACAACTCAATTTCTGCAAAGTTTAATT >G849 Amino Acid Sequence (domain in AA coordinates: 324-413, MVFKRKLDCLSVGFDFPNIPRAPRSCRRKVLNKRIDHDDDNTQICAIDLLALAGKILQES ESSSASSNAFEEIKQEKVENCKTIKSESSDQGNSVSKPTYDISTEKCVVNSCFSFPDSDG VLERTPMSDYKKIHGLMDVGCENKNVNNGFEQGEATDRVGDGGLVTDTCNLEDATALGLQ FPKSVCVGGDLKSPSTLDMTPNGSYARHGNHTNLGRKDDDEKFYSYHKLSNKFKSYRSPT IRRIRKSMSSKYWKQVPKDFGYSRADVGVKTLYRKRKSCYGYNAWQREIIYKRRRSPDRS SVVTSDGGLSSGSVSKLPKKGDTVKLSIKSFRIPELFIEVPETATVGSLKRTVMEAVSVL LSGGIRVGVLMHGKKVRDERKTLSQTGISCDENLDNLGFTLEPSPSKVPLPLCSEDPAVP TDPTSLSERSAASPMLDSGIPHADDVIDSRNIVDSNLELVPYQGDISVDEPSSDSKELVP LPELEVKALAIVPLNOKPKRTELAQRRTRRPFSVTEVEALVQAVEELGTGRWRDVKLRAF EDADHRTYVDLKDKWKTLVHTASISPQQRRGEPVPQELLDRVLRAYGYWSQHQGKHQARG ASKDPDMNRGGAFESGVSV*

>G892 (21..1004)

TATAACAATTCCTTCCAACAATGTCATTGAGTCAGCCAATAACACGGACCGATAGTGCAC ${\tt CCAATGGAGCATTTAGGACTTTTGGTCTCTACTGGTGCTACCATTGTGATCGTATGGTCA}$ GAATTGCATCCTCTAACCCATCAGAGATCGCCTGTCCTCGATGTTTGAGGCAATTTGTCG TTGAGATTGAAACGAGACAACGGCCTCGGTTTACTTTCAACCATGCTACTCCGCCTTTTG ATGCTTCTCGAGGCTCGTCTTCTCGAAGCTCTCTCGCTCATGTTTGAGCCTGCAACCA TAGGTAGGTTTGGTGCAGACCCATTTCTTAGGGCAAGATCCAGAAACATCTTGGAACCTG AATCAAGACCCCGACCGCAACATCGAAGACGACACACCCTTGACAATGTTAACAATGGTG GTTTACCTCTACCAAGAAGAACATATGTTATTCTCCGGCCCAATAATCCGACTAGTCCAC TCGGAAACATAATTGCGCCACCAAATCAAGCACCACCGCATGTGAACTCACATGATT ACTTTACTGGAGCATCAAGCTTAGAGCAGCTGATTGAACAACTAACACAAGACGATAGGC CTGGACCACCACCTGCGTCAGAACCCACCATTAATTCCCTACCATCTGTGAAAATAACAC CACAACATCTAACTAACGACATGTCCCAATGCACAGTGTGCATGGAAGAATTCATTGTTG GTGGGGACGCAACGGAATTACCATGTAAACATATTTACCATAAAGATTGTATAGTCCCGT GGCTTAGGCTTAACAATTCTTGCCCTATCTGCCGCCGTGACCTGCCACTTGTCAACACCG TTGCTGAATCTCGAGAAAGGAGCAATCCTATTAGACAAGACATGCCTGAAAGAAGGCGTC CAAGGTGGATGCAACTCGGTAACATTTGGCCATTTAGAGCAAGATACCAAAGGGTTAGTC CAGAAGAAACAGCAAACCAGAATCCTCGAGATAACAGGAGCTAACTCTGAATATTCCATG GGAAATAAAAATCGTGACTATCTATATGTATAGACTCTATGAGACATTGTCTATTTGAAT >G892 Amino Acid Sequence (domain in AA coordinates: 177-270) MSLSQPITRTDSAPNGAFRTFGLYWCYHCDRMVRIASSNPSEIACPRCLRQFVVEIETRQ RPRFTFNHATPPFDASPEARLLEALSLMFEPATIGRFGADPFLRARSRNILEPESRPRPQ HRRRHSLDNVNNGGLPLPRRTYVILRPNNPTSPLGNIIAPPNQAPPRHVNSHDYFTGASS LEQLIEQLTQDDRPGPPPASEPTINSLPSVKITPQHLTNDMSQCTVCMEEFIVGGDATEL PCKHIYHKDCIVPWLRLNNSCPICRRDLPLVNTVAESRERSNPIRQDMPERRRPRWMQLG NIWPFRARYQRVSPEETANQNPRDNRS*

>G961 (1..1200)

CTCGAAAGCCCTAACAGTCAGGCAATCAACAACTGCCACGTAAGCTCTCCCGACACTAAT CATAATATCCACGTCAGCAACGTGGTCGACACTAGCTTTGTTACTAGCTGGGCGGCTTTA GACCGCCTCGTGGCCTCGCAGCTTAACGGACCCACATCATATTCAATTACAGCCGTCAAT CTAAACCGGTCCGCTTCGTACCACGCCGGTTTAACACAGGAATATACACCGGAGATGGAG CTATGGAATACGACGACGTCGTCTCTATCGTCATCGCCTGGCCCATTTTGTCACGTGTCG AATGTTTTGCTGCTTGTTTGTCTCCTTCGTCTGCAGCTTCAGTTCTGGCCGTTCCAACCA >G961 Amino Acid Sequence (conserved domain in AA coordinates: 15-140) MSKSMSISVNGQSQVPPGFRFHPTEEELLQYYLRKKVNSIEIDLDVIRDVDLNKLEPWDI QEMCKIGTTPQNDWYFFSHKDKKYPTGTRTNRATAAGFWKATGRDKIIYSNGRRIGMRKT LVFYKGRAPHGQKSDWIMHEYRLDDNIISPEDVTVHEVVSIIGEASQDEGWVVCRIFKKK NLHKTLNSPVGGASLSGGGDTPKTTSSQIFNEDTLDQFLELMGRSCKEELNLDPFMKLPN LESPNSQAINNCHVSSPDTNHNIHVSNVVDTSFVTSWAALDRLVASQLNGPTSYSITAVN ESHVGHDHLALPSVRSPYPSLNRSASYHAGLTQEYTPEMELWNTTTSSLSSSPGPFCHVS NVLLLVCLLRLQLQFWPFQPWQRQVHFDLSSPQMQISLH*

>G1465 (163..1125)

TATCCTTCGCAAGACCCTTCCTCTATATAAGGAAGTTCATTTCATTTGGAGAGGACACGC TGACAAGCTGACTCTAGCTTATCTGGTACCGTCGACCTCATTCTTGCGTTTGATCTTTCT TTCTCTAGATCCCATATTTTCTTGATCAATTTAGTTTCATTATGGAGGAAGATGCAGCT TTTGATCTACTCAAAGCCGAACTCTTAAACGCAGAAGACGATGCAATAATCTCACGTTAT CTGAAGCGTATGGTCGTCAACGGAGACTCATGGCCTGATCACTTCATCGAAGACGCAGAC -GTGTTCAACAAGAATCCAAATGTGGAGTTCGATGCTGAGAGCCCTAGCTTCGTGATAGTT AAACCTCGAACAGAGGCTTGTGGTAAAACCGATGGATGTGAAACTGGTTGCTGGAGGATC ATGGGTCGTGATAAACCGATAAAATCGACGGAGACTGTGAAGATTCAAGGGTTCAAGAAG ATTCTCAAGTTCTGCCTAAAGAGAAACCTAGAGGATACAAGAGAGATTGGGTAATGGAA GAGTATAGGCTTACCAATAACTTGAACTGGAAGCAAGATCATGTGATTTGCAAGATTCGG TTTATGTTTGAAGCTGAAATCAGTTTCTTGCTAGCCAAGCATTTCTACACTACATCAGAA TCACTTCCTCGAAATGAGCTGTTGCCAGCTTACGGATTCCTTTCATCAGATAAGCAATTG GAGGATGTATCTTATCCGGTGACGATAATGACTTCTGAAGGAAACGATTGGCCTAGCTAC GTTACCAACAATGTGTATTGTCTGCATCCATTGGAGCTCGTTGATCTTCAAGATCGGATG TTTAATGATTACGGAACCTGCATCTTCGCTAACAAGACTTGTGGTAAAACCGATAGATGC ATTAATGGTGGTTACTGGAAAATTTTGCACCGTGATAGGCTGATCAAGTCAAAGTCCGGG TGTGGTGGAGAAGATGTGAAGGTAACTTGGACTCTAGAAGAGTATAGGCTTAGCGTGAAG CAGAATAAATTCTTGTGCGTTATCAAGTTTACTTATGATAACTAAGAATCTTTTCTTTGG ATTTTATGATCATCTTAGTATCGCGACCGCTCTAGACAGGCCTCGTACCGGATCCTCTAG CTAGAGCTTTCGTTCGTATCATCGGTTTCGACAACG

>G1465 Amino Acid Sequence (conserved domain in AA coordinates: 242-306)
MEEDAAFDLLKAELLNAEDDAIISRYLKRMVVNGDSWPDHFIEDADVFNKNPNVEFDAES
PSFVIVKPRTEACGKTDGCETGCWRIMGRDKPIKSTETVKIQGFKKILKFCLKRKPRGYK
RSWVMEEYRLTNNLNWKQDHVICKIRFMFEAEISFLLAKHFYTTSESLPRNELLPAYGFL
SSDKQLEDVSYPVTIMTSEGNDWPSYVTNNVYCLHPLELVDLQDRMFNDYGTCIFANKTC
GKTDRCINGGYWKILHRDRLIKSKSGIVIGFKKVFKFHETEKERYFCGGEDVKVTWTLEE
YRLSVKQNKFLCVIKFTYDN*

>G425 (45..1196)

>G425 Amino Acid Sequence (domain in AA coordinates: TBD)
MSFNSSHLLPPQEDLPLRHFTDQSQQPPPQRHFSETPSLVTASFLNLPTTLTTADSDLAPPHR
NGDNSVADTNPRWLSFHSEMQNTGEVRSEVIDGVNADGETILGVVGGEDWRSASYKAAILR
HPMYEQLLAAHVACLRVATPVDQIPRIDAQLSQLHTVAAKYSTLGVVVDNKELDHFMSHYVVL
LCSFKEQLQHHVCVHAMEAITACWEIEQSLQSLTGVSPSESNGKTMSDDEDDNQVESEVNM
FDGSLDGSDCLMGFGPLVPTERERSLMERVKKELKHELKQGFKEKIVDIREEIMRKRRAGKLP
GDTTSVLKEWWRTHSKWPYPTEEDKAKLVQETGLQLKQINNWFINQRKRNWNSNSSTSSTLT
KNKRKTGKS*

>G347 (1..570)

atgaaagtagcagatatgcaggaccagctggtgtgtcatggttgtaggaatttattgatg tatcctagaggagcatctaatgtgcgttgtgcgttatgtaacactatcaacatggttcct cctcctcctccacctcacgacatggcacacattatatgtggtggttgtagaacaatgctt atgtatacgcgtgggctagtagcgtaagatgctcttgctgtcaaactacgaaccttgtg ccagcgcactccaatcaggttgcccatgctccttccagtcaggttgcgcagatcaattgt gggcattgtcggacgaccctcatgtatccttacggtgcatcatccgtcaaatgcgctgtt tgtcaattcgtaactaacgttaatatgagcaatggaagggtacctctcccaactaaccgg ccaaatggaacagcttgtcccccctctacatcaacttcaaccaccctctcagacccaa accgttgttgtagaaaaccccatgtccgttgatgaaaagcggaaagttggtgagcaatgtt gttgttggagtgacaactgacaaaaagtaa

>G347 Amino Acid Sequence (domain in AA coordinates: 9-39, 50-70, 80-127)
MKVADMQDQLVCHGCRNLLMYPRGASNVRCALCNTINMVPPPPPPHDMAHIICGGCRTML
MYTRGASSVRCSCCQTTNLVPAHSNQVAHAPSSQVAQINCGHCRTTLMYPYGASSVKCAV
CQFVTNVNMSNGRVPLPTNRPNGTACPPSTSTSTPPSQTQTVVVENPMSVDESGKLVSNV
VVGVTTDKK*

>G1512 (1..732)

ATGGAAGGGAACTTCTTCATCAGGTCTGATGCTCAACGAGCACATGACAATGGCTTCATA
GCCAAACAAAAACCTAATCTCACCACGGCTCCAACAGCAGGTCAAGCTAATGAAAGTGGC
TGTTTTGACTGCAACATCTGTTTAGACACAGCCCATGATCCGGTGGTCACTCTCTGCGGG
CACCTTTTCTGCTGGCCTTGCATTTACAAGTGGTTACATGTTCAGTTATCTTCTGTCTCC
GTTGATCAGCACCAGAACAATTGCCCTGTTTGTAAATCCAACATTACTATCACCTCTTTG
GTTCCTCTCTATGGAAGAGGCATGTCTTCGCCTTCTTCCACGTTTTGGCTCCAAGAAACAA
GACGCACTGTCCACTGACATACCCCGCAGACCTGCTCCATCAGCCTTACGCAATCCGATT
ACCTCAGCATCATCTCTGAACCCCAAGCTTGCAACATCAAACTCTGTCTCCTTCATTTCAT
AATCATCAGTATTCCCCTCGTGGCTTCACCACAACCGAATCAACCTTGCCAATGCT
GTAATGATGAGTTTCCTCTACCCTGTGATTGGAATGTTTGGAGACCTGGTCTACACCAGG
ATATTCGGGACCTTCACAAACACAAATAGCTCAGCCTTACCAAAGCCAGAGGATGATGCAG
CGTGAGAAGTCTCTTAATCGGGTATCGATATTCTTCCTTTTGTTGCATCATCCTTTGCCTC
CTTCTCTTTAG

>G1512 Amino Acid Sequence (domain in AA coordinates: 39-93)
MEGNFFIRSDAQRAHDNGFIAKQKPNLTTAPTAGQANESGCFDCNICLDTAHDPVVTLCG
HLFCWPCIYKWLHVQLSSVSVDQHQNNCPVCKSNITITSLVPLYGRGMSSPSSTFGSKKQ
DALSTDIPRRPAPSALRNPITSASSLNPSLQHQTLSPSFHNHQYSPRGFTTTESTDLANA
VMMSFLYPVIGMFGDLVYTRIFGTFTNTIAQPYQSQRMMQREKSLNRVSIFFLCCIILCL
LLF*

>G2069 (1..1026)

ATGGAAGGAGGAGGACCAAATCAAACGATTCTCAGTGAAATAGAACATATGCCT GGCGAATCAATCGACGATCTCCTCTTATTCGATCCTTCCGATATCGATTTCTCTTCTCTA GACTTCCTCAACGCTCCACCACCACCACAACAACAACAACAACCGCAAGCTTCTCCC ATGTCCGTTGATTCGGAAGAAACCTCATCGAACGGTGTTGTTCCTCCTAATTCTCTTCCT CCAAAACCCGAAGCTAGATTCGGTCGCCATGTTCGTAGCTTCTCGGTTGATTCCGATTTC TTCGATGATTTGGGTGTTACTGAGGAGAAGTTTATAGCTACAAGTTCAGGAGAAGAAG AAAGGGAATCATCATAGCAGGAGTAATTCTATGGATGGAGAGATGAGTTCGGCGTCG TTTAATATCGAATCGATTTTAGCTTCTGTGAGTGGTAAAGATAGTGGGAAGAAGAATATG GAGTTAGAGAGGAAGGTTCAGACTTCAGAATGAAGCTACTACATTGTCTGCTCAAGTC --ACTATGTTACAGAGGGAACATCAGAGCTGAACACTGAAAATAAACACCTCAAAATGCGG ${\tt GAACTGAACCGACTTAAGGTGGTAGCTGGAGAAATTCCTCAGGGGAATGGAAATTCTTAC}$ AACCGTGCTCAATTCTCATCTCAGCAATCGGCAATGAATCAGTTTGGGAACAAAACGAAC CAACAGATGAGTACAAACGGGCAGCCATCGCTCCCAAGCTACATGGATTTCACCAAGAGA **GGCTGA**

>G2069 Amino Acid Sequence (domain in AA coordinates: TBD)
MEGGGRGPNQTILSEIEHMPEAPRQRISHHRRARSETFFSGESIDDLLLFDPSDIDFSSL
DFLNAPPPPQQSQQQPQASPMSVDSEETSSNGVVPPNSLPPKPEARFGRHVRSFSVDSDF
FDDLGVTEEKFIATSSGEKKKGNHHHSRSNSMDGEMSSASFNIESILASVSGKDSGKKNM
GMGGDRLAELALLDPKRAKRILANRQSAARSKERKIRYTGELERKVQTLQNEATTLSAQV
TMLQRGTSELNTENKHLKMRLQALEQQAELRDALNEALRDELNRLKVVAGEIPQGNGNSY
NRAQFSSQQSAMNQFGNKTNQQMSTNGQPSLPSYMDFTKRG*

>G1852 (55..1857)

CATCTGATCTGCTCTCGAAGACGAAAGCTTCGAGTACTGGTTGAAGCTAAAGCTATGGGA CACGTGAATCTACCTGCATCAAAGCGTGGTAACCCTCGTCAATGGCGTCTCCTCGACATC GTAACCGCTGCTTTCTTCGGTATCGTACTTCTTCTTCATCCTTTTATTCACTCCTCTT GGTGATTCCATGGCGGCTTCTGGTCGGCAAACGCTGCTTCTCTCTACGGCGTCAGATCCG AGGCAACGGCAGCGATTAGTGACTTTGGTTGAAGCTGGTCAGCATTTGCAACCGATCGAG TATTGTCCTGCGGAAGCTGTTGCTCATATGCCTTGTGAGGATCCGAGAAGGAATAGTCAG ${\tt CTTAGTAGAGAGATGAATTTCTATAGGGAGAGACATTGTCCTTTGCCTGAGGAGACTCCG}$ CTCTGTTTGATTCCTCCGCCTTCTGGTTATAAAATTCCTGTTCCGTGGCCTGAGAGTCTT CACAAGATTTGGCATGCAAACATGCCATATAACAAAATTGCTGACCGGAAAGGTCATCAA GGATGGATGAAAAGGGAAGGGGAATACTTTACTTTCCCAGGCGGTGGCACGATGTTTCCT GGCGGAGCTGGCCAATACATTGAAAAGCTTGCACAGTATATTCCGCTTAATGGTGGAACT TTGAGAACTGCTCTTGACATGGGATGCGGGGTAGCTAGTTTTGGAGGTACTCTACTATCT CAAGGCATTCTAGCCCTCTCATTTGCTCCAAGAGATTCACATAAATCTCAAATTCAGTTC ${\tt GCTTTGGAAAGAGGAGTGCCTGCATTTGTTGCCATGCTTGGCACTCGTAGACTCCCCTTT}$ CCTGCATACTCCTTTGACCTGATGCACTGTTCCCGATGTTTGATTCCTTTTACGGCTTAC AATGCAACTTACTTCATCGAAGTAGATAGGTTACTGCGCCCTGGAGGATATCTTGTAATC TCTGGCCCACCTGTACAATGGCCTAAACAAGAACAATGGGCTGATCTTCAGGCGGTG GCTAGAGCTTTGTGCTATGAGCTAATTGCGGTTGATGGAAAACACTGTCATCTGGAAGAAG CCTGTTGGAGATTCATGTCTACCTAGCCAGAATGAGTTTGGGCTTGAGTTGTGATGAG TCTGTTCCGCCAAGTGATGCATGGTATTTTAAATTGAAGAGGTGTGTTACCAGGCCATCA TCCGTCAAAGGAGAACACGCTTTGGGAACTATATCCAAGTGGCCGGAGAGGCTTACTAAA GTTCCTTCTAGGGCCATTGTCATGAAAAACGGATTGGATGTGTTTGAAGCAGATGCAAGG ${\tt CGGTGGGCAAGACGCGTTGCTTATTACAGGGATTCTCTTAACTTGAAGCTGAAATCTCCA}$ ${\tt ACTGTCCGCAATGTCATGGACATGAACGCATTCTTCGGAGGCTTTGCAGCAACCCTTGCA}$ TCTGATCCTGTGTGGGTTATGAATGTCATTCCAGCTCGGAAGCCATTAACTCTTGACGTG ATTTATGACAGAGGTCTCATCGGTGTTTACCATGATTGGTGTGAACCATTTTCAACATAT CCCCGCACGTATGATTCATCCATGTATCAGGAATTGAATCACTGATAAAACGACAAGAC TCAAGCAAATCGAGGTGTAGCCTAGTAGATCTAATGGTAGAGATGGACAGAATATTACGT CCAGAAGGAAAGGTTGTGATCCGAGACTCTCCTGAGGTGCTAGATAAAGTCGCACGAATG

>G1852 Amino Acid Sequence (domain in AA coordinates: 1-601)
MGHVNLPASKRGNPRQWRLLDIVTAAFFGIVLLFFILLFTPLGDSMAASGRQTLLLSTAS
DPRQRQRLVTLVEAGQHLQPIEYCPAEAVAHMPCEDPRRNSQLSREMNFYRERHCPLPEE
TPLCLIPPPSGYKIPVPWPESLHKIWHANMPYNKIADRKGHQGWMKREGEYFTFPGGGTM
FPGGAGQYIEKLAQYIPLNGGTLRTALDMGCGVASFGGTLLSQGILALSFAPRDSHKSQI
QFALERGVPAFVAMLGTRRLPFPAYSFDLMHCSRCLIPFTAYNATYFIEVDRLLRPGGYL
VISGPPVQWPKQDKEWADLQAVARALCYELIAVDGNTVIWKKPVGDSCLPSQNEFGLELC
DESVPPSDAWYFKLKRCVTRPSSVKGEHALGTISKWPERLTKVPSRAIVMKNGLDVFEAD
ARRWARRVAYYRDSLNLKLKSPTVRNVMDMNAFFGGFAATLASDPVWVMNVIPARKPLTL
DVIYDRGLIGVYHDWCEPFSTYPRTYDFIHVSGIESLIKRQDSSKSRCSLVDLMVEMDRI
LRPEGKVVIRDSPEVLDKVARMAHAVRWSSSIHEKEPESHGREKILIATKSLWKLPSNSH

>G1793 (59..1783)

AGTGATTTATTGATTAACCCAAACACAAAATAAACAGATTTGACTCAAAAAGAAGAAAAT GAATTCTAACAACTGGCTTGGCTTTCCTCTTTCACCGAACAACTCTTCTTTGCCTCCTCA TGAATACAACCTTGGCTTGGTCAGCGACCATATGGACAACCCTTTTCAAACACAAGAGTG GAATATGATCAATCCACACGGTGGAGGAGGAGATGAAGGAGGAGGAGGTTCCAAAAGTGGC CGATTTTCTCGGTGTGAGCAAACCGGACGAAAACCAATCCAACCACCTAGTAGCTTACAA CGACTCAGACTACTTCCATACCAATAGCTTGATGCCTAGCGTCCAATCAAACGATGT CGTTGTAGCAGCTTGTGACTCCAATACTCCTAACAACAGTAGCTATCATGAGCTTCAAGA GAGTGCTCACAATCTACAGTCACTTACTTTGTCCATGGGGACCACCGCTGGTAATAATGT TGTAGACAAAGCTTCACCATCCGAGACCACCGGGGATAACGCTAGCGGTGGAGCACTAGC CGTTGTTGAGACGCCACGCCAAGACGTGCATTGGACACTTTCGGACAACGAACCTCGAT CTATCGTGGTGTCACAAGACATCGATGGACTGGTCGATATGAGGCTCATCTATGGGATAA TAGTTGTAGAAGGGAAGGCCAGTCTAGGAAAGGAAGACAAGTTTACTTGGGTGGATATGA CAAAGAAGATAAAGCAGCAAGATCATATGATCTAGCTGCACTTAAGTACTGGGGTCCTTC GACGAGACAAGAGTTCGTGGCTGCCATTAGAAGGAAAAGTAGTGGATTTTCGAGAGGCGC CCGAGTCGCCGGAAACAAGACCTCTACTTGGGAACTTTTAGCACTGAGGAAGAAGCAGC AGAAGCTTACGATATAGCTGCAATAAAGTTTAGAGGACTTAATGCAGTGACCAACTTCGA GATCAACCGGTACGACGTGAAAGCCATTCTAGAGAGTAGCACTCTTCCCATCGGAGGAGG CGCAGCTAAACGCTCAAGAAGCTCAAGCTCTTGAGTCTTCAAGGAAACGCGAGGCGGA GATGATAGCCCTTGGTTCAAGTTTCCAGTACGGTGGTGGCTCGAGCACAGGCTCTGGCTC CACCTCATCAAGACTTCAGCTTCAACCTTACCCTCTAAGCATTCAACAACCATTAGAGCC TTTTCTATCTCTTCAGAACAATGACATCTCTCATTACAACAACAACAATGCTCACGATTC CTCCTCTTTTAATCACCATAGCTATATCCAGACACAACTTCATCTCCACCAACAGACCAA CAATTACTTGCAGCAACAGTCGAGCCAGAACTCTCAGCAGCTCTACAATGCGTATCTTCA TAGCAATCCGGCTCTGCTTCATGGACTTGTCTCTACCTCTATCGTTGACAACAATAATAA CAATGGAGGCTCTAGTGGGAGCTACAACACTGCAGCATTTCTTGGGAACCACGGTATTGG TATTGGGTCCAGCTCGACTGTTGGATCGACCGAGGAGTTTCCAACCGTTAAAACAGATTA CGATATGCCTTCCAGTGATGGAACCGGAGGGTATAGTGGTTGGACCAGTGAGTCTGTTCA GCGGCACAAGGAATGGGT

>G1793 Amino Acid Sequence (conserved domain in AA coordinates:179-255, 281-349)
MNSNNWLGFPLSPNNSSLPPHEYNLGLVSDHMDNPFQTQEWNMINPHGGGGDEGEVPKV
ADFLGVSKPDENQSNHLVAYNDSDYYFHTNSLMPSVQSNDVVVAACDSNTPNNSSYHELQ
ESAHNLQSLTLSMGTTAGNNVVDKASPSETTGDNASGGALAVVETATPRRALDTFGQRTS
IYRGVTRHRWTGRYEAHLWDNSCRREGQSRKGRQVYLGGYDKEDKAARSYDLAALKYWGP
STTTNFPITNYEKEVEEMKHMTRQEFVAAIRRKSSGFSRGASMYRGVTRHHQHGRWQARI
GRVAGNKDLYLGTFSTEEEAAEAYDIAAIKFRGLNAVTNFEINRYDVKAILESSTLPIGG
GAAKRLKEAQALESSRKREAEMIALGSSFQYGGGSSTGSGSTSSRLQLQPYPLSIQQPLE
PFLSLQNNDISHYNNNNAHDSSSFNHHSYIQTQLHLHQQTNNYLQQQSSQNSQQLYNAYL
HSNPALLHGLVSTSIVDNNNNGGSSGSYNTAAFLGNHGIGIGSSSTVGSTEEFPTVKTD

232/286

YDMPSSDGTGGYSGWTSESVQGSNPGGVFTMWNE* >G761 (521..1549)

TGATCATCTTTATATAACCCTACTCTTTTCTCTTTTTCCCATTCTTTCATATCATTCTCC CTTTCTCTCTCGGGATCTGATCTCTCTTTCCAGTAACCTATTCCCGAGGAGCACTGTCAA TAAAGCTTTCTTAGAAGCTTTAAAAAGGTCTCATCTGGATTATCCTGTTTAATTTCTAGA GTTTCTTCAGGCAGATTATTAACCGATCAAGAAGACAACATGAATTCATTTTCCCACGT CCCTCCGGGTTTTAGATTTCACCCGACAGATGAAGAACTTGTAGACTACTACCTGAGGAA AAAAGTCGCATCGAAGAGAATAGAAATTGATTTCATAAAGGACATTGATCTTTACAAGAT TGAGCCATGGGACCTTCAAGAGTTGTGCAAAATTGGGCATGAAGAGCAGAGTGATTGGTA CTTCTTTAGCCATAAAGACAAGAAGTATCCCACAGGGACTCGAACCAATAGAGCAACAAA TGGCATGAGGAAAACACTTGTGTTTTACAAGGGAAGAGCCCCAAATGGACAAAAGTCTGA TTGGATCATGCACGAATACCGCTTAGAAACCGATGAAAACGGAACTCCTCAGGAAGAAGG ATGGGTTGTGTGTAGGGTTTTCAAGAAGAGATTGGCTGCAGTTAGACGAATGGGAGATTA GACAAACGGTCAACGACGGATTCTCCCCAATCATCATCAGCAGCAGCAGCACGAGCACCA ACAACATATGCCATATGGCCTCAATGCATCTGCTTACGCTCTCAACAACCCTAACTTGCA ATGCAAGCAAGAGCTAGAACTACACTACAACCACCTGCAATCAAATATCGCGCATGAGGA ACAATTGAATCAAGGAAATCAGAACTTCAGCTCTCTATACATGAACAGCGGCAACGAGCA <u>AGTGATGGACCAAGTCACAGACTGGAGAGTTCTCGATAAATTTGTTGCTTCTCAGCTAAG</u> CAACGAGGAGGCTGCCACAGCTTCTGCATCTATACAGAATAATGCCAAGGACACAAGCAA TGCTGAGTACCAAGTTGATGAAGAAAAAGATCCGAAAAGGGCTTCAGACATGGGAGAAGA ATATACTGCTTCTACTTCTTCGAGTTGTCAGATTGATCTATGGAAGTGAGCTGAAAGAGA AGACATATAAATGCATATATACATATATATATATACGTACACGCAACACTAATCAAGTG ACTTATGTCATATGCATATACATTGCGTATCTATGCATATTTATACTTGTACTCAATA TGATTAACCATATATAAACTCTAATCTAAATGTAACTCCAATATTTTTTAAATAGACAAT TGTCTCTTCTTATTAGAAAAAAAA

>G761 Amino Acid Sequence (domain in AA coordinates: 10-156)
MNSFSHVPPGFRFHPTDEELVDYYLRKKVASKRIEIDFIKDIDLYKIEPWDLQELCKIGH
EEQSDWYFFSHKDKKYPTGTRTNRATKAGFWKATGRDKAIYLRHSLIGMRKTLVFYKGRA
PNGQKSDWIMHEYRLETDENGTPQEEGWVVCRVFKKRLAAVRRMGDYDSSPSHWYDDQLS
FMASELETNGQRRILPNHHQQQQHEHQQHMPYGLNASAYALNNPNLQCKQELELHYNHLQ
SNIAHEEQLNQGNQNFSSLYMNSGNEQVMDQVTDWRVLDKFVASQLSNEEAATASASIQN
NAKDTSNAEYQVDEEKDPKRASDMGEEYTASTSSSCQIDLWK*

>G1056 (10..798)

GCTACATATATGGGTTCTATTAGAGGAAACATTGAAGAGCCTATATCTCAGTCATTAACG AGGCAGAACTCTCTATAGCTTAAAGCTCCATGAGGTTCAAACCCACTTAGGAAGTTCT GGAAAACCACTAGGAAGCATGAACCTTGATGAGCTTCTCAAGACTGTCTTGCCACCAGCT GAGGAAGGCTTGTTCGTCAGGGAAGCTTGACGTTACCTCGAGATCTCAGTAAAAAGACA GTTGATGAGGTCTGGAGAGATATCCAACAGGACAAGAATGGAAACGGTACTAGTACTACT ACTACTCATAAGCAGCCTACACTCGGTGAAATAACACTTGAGGATTTGTTGTTGAGAGCT GGTGTAGTGACTGAGACAGTAGTCCCTCAAGAAAATGTTGTTAACATAGCTTCAAAATGGG CAATGGGTTGAGTATCATCATCAGCCTCAACAACAACAAGGGTTTATGACATATCCGGTT TGCGAGATGCAAGATATGGTGATGATGGGTGGATTATCGGATACACCACAAGCGCCTGGG AGGAAAAGAGTAGCTGGAGAGATTGTGGAGAAGACTGTTGAGAGGAGACAGAAGAGGATG ATCAAGAACAGAGAATCTGCAGCACGTTCACGAGCTAGGAAACAGGCTTATACACATGAA TTAGAGATCAAGGTTTCAAGGTTAGAAGAAGAAAACGAAAAACTTCGGAGGCTAAAGGAG GTGGAGAGATCCTACCAAGTGAACCACCAGCAGATCCTAAGTGGAAGCTCCGGCGAACA ATATCAGACCGCTTTGTTCTTTGTATATTGTGTAGACTTTATTGACTTTGAACAGCATGT CTTTATAAACATTTCTTGAGTGT

>G1056 Amino Acid Sequence (domain in AA coordinates 183-246)
MGSIRGNIEEPISQSLTRQNSLYSLKLHEVQTHLGSSGKPLGSMNLDELLKTVLPPAEEG
LVRQGSLTLPRDLSKKTVDEVWRDIQQDKNGNGTSTTTTHKQPTLGEITLEDLLLRAGVV
TETVVPQENVVNIASNGQWVEYHHQPQQQQGFMTYPVCEMQDMVMMGGLSDTPQAPGRKR
VAGEIVEKTVERRQKRMIKNRESAARSRARKQAYTHELEIKVSRLEEENEKLRRLKEVEK
ILPSEPPPDPKWKLRRTNSASL*

>G1447 (82..1086)

AAAAACCCTAACCCTAATTCTCTCAAGACAACTCAAAGGTCTCTCTTTTTTAGGTTTAT TATCACTTCCGTATAATCGCCATGTCTTCTCTACCATGGAAAAAACCAAAATCGAGTCGA TCTCTGATCGATCTCTTCTAAGAATCGCGATCGTCTAAAAAAATCTCCATCTAAACGC TTCCAACGAATCGAACGCCAGATTCGAACCGCTCCAAACGCTTCTTCGTTGAGTAATCAA GATACGATTTTTGAAAAGCCCTCGAGGATTAAAACCGTTCGAAGTAAGGTCGAGAAAGTT AATTGCGTTAAAGGTAAATCAGCGGCGTTGAAGAAGAACGCGATTAAAAATAGCGTTTTC GGCGGTAGCGGTGAGGTCGTTTTGATGGCGTTTAAGGTTTTGATAGTAGCGTTGCTCGCC ACAGAGCTCGTGGCGCGCGTGTTTTCACGCGCTCTAATAACACCGACAAAGACAAAAAC GCGATTGCCCGCGAGAAAATCGAAACTTTTGATGAAACTCGAGTTCCCAAAGCGATTCCA TGTCCTGAGGAACAGAGCATGTAGTATCTGAAACAGAGGTTTCGAAGTTGAAAGGTTTA ACGATACGTGATCTGTTGTCAAAGGACGAGAAATCAACAAGTAAAAGTTGGAGACTAAAA TCGAAGATTGTGAAGAAGTTGAGGAGTTACAATAAGAAGGATAAGAAGACGATGAAGATC AAAGAAGACTCTTTGATTGAAGTCTCGAGTTTTGGTTTTAGAAGATAAACCAAAGAAAATT GAGTCTGAGAGAGAGAAGAAACGTTGAATCCTCCAGTGGTTGGATCAAACCTGAAT GGGATTGTTCTGATCGTGATTGTGCTAACCGGTTTGTTATGTGGGAAGGTCTTAGCTATT GTTCTGACACTATCATGTTTGGTTCTTAGATTAGGAGCAGTCAAAAAAGTTAATCTTTGC AŢATAATTTTTTTGTATTTTTAACATGCTTGCATGTGAAACTGTAAATTTTTCTCATT CATATGAAGGAGATTGGATTGAATGTTGAATACTAAA

>G1447 Amino Acid Sequence (domain in AA coordinates: 3-54, 124-156)
MSSLPWKKPKSSRILRFISEFQQSPFVETGFPTSLIDLFFKNRDRLKKSPSKRFQRIERQ
IRTAPNASSLSNQDTIFEKPSRIKTVRSKVEKVNCVKGKSAALKKNAIKNSVFGGSGEVV
LMAFKVLIVALLALSTKKKLTLGITLSAFALLLTELVAARVFTRSNNTDKDKNAIAREKI
ETFDETRVPKAIPCPEETEHVVSETEVSKLKGLTIRDLLSKDEKSTSKSWRLKSKIVKKL
RSYNKKDKKTMKIKEESLIEVSSLVLEDKPKKIESERDEEETLNPPVVGSNLNGIVLIVI
VLTGLLCGKVLAIVLTLSCLVLRLGAVKKVNLCI*
>G323 (77..826)

CTGCTCATATCAGCCATTGACACAGTTGCTTTGGGTTTCCCTCAAACGGCGCGATTGTC
TGGATTTTGACCACTGATGGCCTTAGATCAATCTTTTGAAGATGCTGCTTTACTTGGAGA
ACTCTATGGAGAAGGTGCATTTTGTTTCAAGAGCAAGAAACCTGAACCCATTACAGTCTC
GGTTCCTTCTGATGATACTGATGATTCGAATTTTGACTGCAATATTTGCTTAGACTCGGT
GCAAGAACCTGTTGTGACTCTCTGTGGTCACCTCTTTTGCTGGCCTTGTATTCACAAATG
GCTTGATGTACAGAGCTTCTCAACAAGTGATGAATACCAAAGACATAGACAGTGTCCTGT
TTGTAAATCTAAAGTTTCTCATTCTACTTTGGTTCCTTTGTATGGTAGAGGCCGTTGTAC
TACTCAGGAGGAAGGTAAAAACAGTGTGCCTAAAAGACCCGTAGGACCGGTTTATCGGCT
TGAAATGCCGAATTCACCTTATGCAAGTACTGATCTGCGGTTATCACAACGGGTTCATTT
CAATAGCCCACAGGAAGGTTACTACCCTGTCTCAGGGGTGATGAGCTCGAACAGTTTATC
ATACTCTGCTGTTTTGGATCCGGTGATGGTGATGAGAAATGGTAGCTACGAGGGT
GTTTGGAACACGAGTGATGGATAGATTTGCGTATCCGGACACTTACAATCTCGCAGGGAC
TAGCGGGCCGAGGATGAGAAGGCGGATAATGCAGGCAGATAAATCGCTGGGAAGAATCTT
CTTCTTCTTTATGTGTTGTTGTTTCTTCTTTTTTTAGGTTTTCATAGCTAG

>G323 Amino Acid Sequence (conserved domain in AA coordinates:48-96)
MALDQSFEDAALLGELYGEGAFCFKSKKPEPITVSVPSDDTDDSNFDCNICLDSVQEPVV
TLCGHLFCWPCIHKWLDVQSFSTSDEYQRHRQCPVCKSKVSHSTLVPLYGRGRCTTQEEG
KNSVPKRPVGPVYRLEMPNSPYASTDLRLSQRVHFNSPQEGYYPVSGVMSSNSLSYSAVL
DPVMVMVGEMVATRLFGTRVMDRFAYPDTYNLAGTSGPRMRRRIMQADKSLGRIFFFFMC
CVVLCLLLF*

>G176 (41..1606)

CTTGGTTCTGCTACTGTTCAGTTTCTTCAGG

AGAAGAAGAAGAAGAAGAAGTACCTCATACGTAAACCATTGATGGGCTCTTTTGATCGCCA AAGAGCTGTTCCGAAATTCAAAACAGCAACACCGTCACCGCTCCCTCTTTCTCCTTCGCC TTACTTCACTATGCCTCCTGGCCTTACTCCCGCCGACTTTCTCGACTCTCCTCTTCTTT CACTTCCTCCAACATTTTGCCGTCTCCTACGACAGGCACATTTCCAGCGCAATCTCTGAA CTATAACAATAACGGTTTGCTCATTGACAAAAATGAAATCAAATATGAAGACACAACTCC TCCCTTGTTCCTACCATCTATGGTAACTCAGCCTTTACCTCAACTGGATTTATTCAAATC CGAAATCATGTCGAGTAACAAAACCTCTGATGACGGCTACAATTGGCGCAAATACGGGCA GAAGCAAGTCAAAGGAAGCGAAAACCCGAGGAGTTACTTCAAATGCACGTATCCAAATTG TCTCACAAAGAAGAAGTAGAGACGTCTCTTGTGAAGGGTCAGATGATTGAGATTGTCTA TAAAGGAAGCCACAATCATCCCAAGCCCCAATCCACGAAGCGATCATCTTCCACCGCTAT AGCAGCACATCAGAACAGCAGTAATGGAGACGGTAAAGACATTGGTGAAGATGAAACAGA GGCCAAGAGATGGAAAAGAGAAGAGAATGTGAAGGAGCCAAGAGTGGTGGTTCAGACAAC AAGTGATATAGACATTCTTGACGATGGCTACAGATGGAGAAAGTATGGTCAGAAAGTCGT CAAGGGTAATCCAAATCCAAGGAGCTATTACAAGTGCACATTTACAGGATGTTTTGTAAG GAAACACGTTGAAAGAGCATTTCAAGATCCCAAGTCAGTGATCACAACTTACGAAGGAAA ACACAAACACCAAATCCCGACCCCAAGAAGAGGGTCCAGTTTTAAGATCTGCTGCAATGGC TTCTCCTCTTCTCCCAACTTCGACTACTCCTGATCAACTTCCCGGCGGCGATCCACAGTT AGATGCCAGACCCTGGGCAGAGCTCGTTGACCGGTCAGCGTTTTCCCGGCCACCATCGCT CTCGGAGGCAACGTCACGAGTAAGGAAGAACTTTTCCTATTTCCGAGCCAATTACATAAC CTTAGTGGCAATCTTACTCGCCGCGTCTCTGCTCACGCACCCTTTCGCTCTTCCTCCT GGTCATTGGAGGACGCACGTTCTCCGATCTTGAGACGCTAGGGATACTCTGCCTGTCCAC TGTGGTGGTGATGTTCATGACCAGCGTTGGATCGCTCTTGATGTCCACTCTAGCAGTTGG GATCATGGGCGTGGCCATCCACGGAGCGTTTCGTGCTCCCGAAGACCTGTTTCTTGAAGA ACAAGAAGCCATTGGATCTGGACTTTTCGCATTCTTCAACAACAATGCCTCTAATGCAGC TGCCGCTGCCATAGCCACCTCAGCATGTCACGCGTTCGAGTCTGAGATTGTTGAAGAGA

>G176 Amino Acid Sequence (domain in AA coordinates: 117-173,234-290)
MGSFDRQRAVPKFKTATPSPLPLSPSPYFTMPPGLTPADFLDSPLLFTSSNILPSPTTGT
FPAQSLNYNNNGLLIDKNEIKYEDTTPPLFLPSMVTQPLPQLDLFKSEIMSSNKTSDDGY
NWRKYGQKQVKGSENPRSYFKCTYPNCLTKKKVETSLVKGQMIEIVYKGSHNHPKPQSTK
RSSSTAIAAHQNSSNGDGKDIGEDETEAKRWKREENVKEPRVVVQTTSDIDILDDGYRWR
KYGQKVVKGNPNPRSYYKCTFTGCFVRKHVERAFQDPKSVITTYEGKHKHQIPTPRRGPV
LRSAAMASPLLPTSTTPDQLPGGDPQLLSSLRVLLSRVLATVRHASADARPWAELVDRSA
FSRPPSLSEATSRVRKNFSYFRANYITLVAILLAASLLTHPFALFLLASLAASWLFLYFF
RPADQPLVIGGRTFSDLETLGILCLSTVVVMFMTSVGSLLMSTLAVGIMGVAIHGAFRAP
EDLFLEEQEAIGSGLFAFFNNNASNAAAAAIATSAMSRVRV*

>G174 (194..1585)

CCCAATTTGAGATTGTTCGATTTCGATCTACGAGATTCTTACAAGAACATAAGCAGCTTC GGTTTTTTGGGATTATCTTATTTGGTCGGATGATCTTCTCGATGTCTGTGCTAGGCT TTGGGAATTAGATATTTGGGGTTAAGCTCGAGTCTCTCCGGTTTTGAGTTTACTTGAG TTTGTTAGTATTTATGGCTGAGGTGGGAAAAGTTCTGGCTAGTGATATGGAGTTAGACCA TTCAAATGAGACTAAAGCAGTGGATGATGTTGTTGCCACTACTGATAAAGCGGAGGTCAT GGAGCTTGAAAAACTTGTTCCACATACGGTAGCTTCGCAGTCGGAAGTAGATGTTGCTTC CCCGGTATCCGAGAAGCACCGAAGGTTTCTGAAAGTAGCGGTGCATTATCTTTGCAGTC TGGTTCGGAAGGGAATAGTCCTTTTATTCGTGAGAGGTTATGGAAGACGGATACAACTG GCGGAAATATGGACAGAAACTTGTGAAAGGAAATGAGTTTGTAAGGAGCTATTACAGGTG CACTCACCCTAACTGCAAAGCGAAAAAACAGTTGGAACGGTCTGCGGGTGGACAAGTCGT GGATACCGTTTACTTTGGGGAACATGATCACCCAAAGCCTCTTGCTGGTGCTGTTCCTAT ${\tt CAATCAGGATAAGCGAAGTGATGTCTTCACAGCTGTTAGTAAAGAGAAAACATCTGGATC}$ ${\tt CAGTGTTCAGACACTTCGTCAAACCGAACCACCAAAGATCCATGGAGGATTACATGTTTC}$ AGTTATTCCACCAGCTGATGATGTGAAAACTGATATTTCACAATCAAGTAGGATAACGGG CATTGAGCTGAGTCCAGTGGAGAGGTCAACCAATGATTCACGCATTGTGGTTCACACTCA GACTCTGTTTGATATTGTGAATGATGGGTACCGATGGCGTAAATATGGTCAGAAATCAGT

>G174 Amino Acid Sequence (domain in AA coordinates: TBD)
MAEVGKVLASDMELDHSNETKAVDDVVATTDKAEVIPVAVTRTETVVESLESTDCKELEK
LVPHTVASQSEVDVASPVSEKAPKVSESSGALSLQSGSEGNSPFIREKVMEDGYNWRKYG
QKLVKGNEFVRSYYRCTHPNCKAKKQLERSAGGQVVDTVYFGEHDHPKPLAGAVPINQDK
RSDVFTAVSKEKTSGSSVQTLRQTEPPKIHGGLHVSVIPPADDVKTDISQSSRITGDNTH
KDYNSPTAKRRKKGGNIELSPVERSTNDSRIVVHTQTLFDIVNDGYRWRKYGQKSVKGSP
YPRSYYRCSSPGCPVKKHVERSSHDTKLLITTYEGKHDHDMPPGRVVTHNNMLDSEVDDK
EGDANKTPQSSTLQSITKDQHVEDHLRKKTKTNGFEKSLDQGPVLDEKLKEEIKERSDAN
KDHAANHAKPEAKSDDKTTVCQEKAVGTLESEEQKPKTEPAQS*

>G715 (1..705)

>G715 Amino Acid Sequence (domain in AA coordinates: 60-132)
MDTNNQQPPPSAAGIPPPPPGTTISAAGGGASYHHLLQQQQQQLQLFWTYQRQEIEQVND
FKNHQLPLARIKKIMKADEDVRMISAEAPILFAKACELFILELTIRSWLHAEENKRRTLQ
KNDIAAAITRTDIFDFLVDIVPRDEIKDEAAVLGGGMVVAPTASGVPYYYPPMGQPAGPG
GMMIGRPAMDPNGVYVQPPSQAWQSVWQTSTGTGDDVSYGSGGSSGQGNLDGQG*
>G588 (196..1599)

ATCTGAAGTGAACCAAGCTCAGGTTTTGTCTTCTCTTTGATCATTCCTTTCTCAGCAATA
TAAATTAGAGTTATATCCTTTATAAAGGATTTTGCTTTTTCACCAACAAACCCTAAATTC
GGTGTCTCAGCAAGAATCACGTGATTCTCGTTCCTCTCTCACGAAACCCATCATCTTC
TATCTCATTTGAGAAATGGGTCAAAAGTTTTGGGAGAATCAAGAAGATCGAGCGATGGTT
GAATCCACCATAGGCTCTGAAGCTTGCGACTTTTTCATCTCAACAGCTTCAGCTTCCAAC
ACTGCCTTGTCCAAGCTTGTCTCACCACCAAGTGATTCCAATCTCCAACAAGGGTTACGT
CACGTTGTTGAAGGATCTGATTGGGATTATGCTCTTTTCTGGCTAGCGTCCAACATAAT
AGCTCTGATGGTTGTCTTGATCTGGGGAGATGGTCATTGCCGTGTCAAAAAGGGTGCT
TCAGGTGAGGATTACTCTCAGCAAGATGAGATCAAAAAGACGTGTGCTTCGCAAGCTTCAC
TTGTCGTTCGTTGGTTCAGATGAAGATCATCGTTTGGTGAAATCAGGAGCTCTTACTGAT
CTCGACATGTTTTATCTGGCTTCTTTTGTACTTTTCCTTTAGGTGTGATTCCAATAAGTAC
GGTCCTGCTGGAACCTATGTGTCTGGGAAGCCTCTTTTGGCTGCAGATTTTCCTAGCTGC
TTGAGTTATTATAGGGTTAGGTCTTTCTTAGCTAGGTCAGCTGTTTTCAGACTGTTTG
TCTGTACCAGTGAATTCTGGAGTTGTGGAGCTTTTTTAAGACATATTCCAGAAGAT
AAGAGTGTGATTGAGATTGTGAAATCAGTGTTTTGGTGGGTCTGACTTTTTCAGGCTAAAA

>G588 Amino Acid Sequence (domain in AA coordinates: 309-376)
MGQKFWENQEDRAMVESTIGSEACDFFISTASASNTALSKLVSPPSDSNLQQGLRHVVEG
SDWDYALFWLASNVNSSDGCVLIWGDGHCRVKKGASGEDYSQQDEIKRRVLRKLHLSFVG
SDEDHRLVKSGALTDLDMFYLASLYFSFRCDTNKYGPAGTYVSGKPLWAADLPSCLSYYR
VRSFLARSAGFQTVLSVPVNSGVVELGSLRHIPEDKSVIEMVKSVFGGSDFVQAKEAPKI
FGRQLSLGGAKPRSMSINFSPKTEDDTGFSLESYEVQAIGGSNQVYGYEQGKDETLYLTD
EQKPRKRGRKPANGREEALNHVEAERQRREKLNQRFYALRAVVPNISKMDKASLLADAIT
YITDMQKKIRVYETEKQIMKRRESNQITPAEVDYQQRHDDAVVRLSCPLETHPVSKVIQT
LRENEVMPHDSNVAITEEGVVHTFTLRPQGGCTAEQLKDKLLASLSQ*
>G1758 (69..677)

>G1758 Amino Acid Sequence (domain in AA coordinates: TBD)
MNYPSNPNPSSTDFTEFFKFDDFDDTFEKIMEEIGREDHSSSPTLSWSSSEKLVAAEITS
PLQTSLATSPMSFEIGDKDEIKKRKRHKEDPIIHVFKTKSSIDEKVALDDGYKWRKYGKK
PITGSPFPRHYHKCSSPDCNVKKKIERDTNNPDYILTTYEGRHNHPSPSVVYCDSDDFDL
NSLNNWSFQTANTYSFSHSAPY*

>G2148 (66..737)

GTCTCTAATATAAGCTTGAACGTTGCTATATATAAATGTAAAGGCGAACGCATAAGAAAA
GAAAAATGGAGAATGAAGCTTTTGTAGATGGTGAATTTGGAGTCTCTTTTGGGGATGTTCA
ACTTTGATCAATGTTCATCTAACGAATCGAGCTTTTTGCAATGCTCCAAATGAGACTGATG
TTTTCTCTTCTGATGATTTCTTCCCATTTGGTACAATTCTGCAAAGTAACTATGCGGCCG
TTCTTGATGGTTCCAACCAAACGAACCGAAATGTCGACTCAAGACAAGATCTGTTGA
AACCAAGGAAGAAGCCAAAAGTTAAGCTCGGAAAGCAATTTGGTTACCGAGCCTAAGACTG
CTTGGAGAGATGGTCAAAGCCTAAGCAGTTATAATAGTTCAGATGATGAAAAAGGCTTTAG
GTTTAGTGTCTAATACATCAAAAAGCCTAAAACGCAAAGCGAAAGCCAACAGAGGGATAG
CTTCCGATCCTCAGAGCCTATACGCTAGGAAACGAAAAGGATAAACGATAGGCTAA
AGACATTGCAGAGCCTAGTTCCTAATGGGACAAAGGTCGATATAAGCACAATGCTGGAAG
ATGCTGTCCATTACGTGAAGTTCCTGCAGCTTCAAATCAAGCTCTTTGAGTTCAGAAGATC

>G2148 Amino Acid Sequence (conserved domain in AA coordinates:130-268)
MENEAFVDGELESLLGMFNFDQCSSNESSFCNAPNETDVFSSDDFFPFGTILQSNYAAVL
DGSNHQTNRNVDSRQDLLKPRKKQKLSSESNLVTEPKTAWRDGQSLSSYNSSDDEKALGL
VSNTSKSLKRKAKANRGIASDPQSLYARKRRERINDRLKTLQSLVPNGTKVDISTMLEDA
VHYVKFLQLQIKLLSSEDLWMYAPLAHNGLNMGLHHNLLSRLI*
>G2379 (52..798)

>G2379 Amino Acid Sequence (domain in AA coordinates:19-110, 173-232)
METTTPQSKSSVSHRPPLGREDWWSEEATATLVEAWGNRYVKLNHGNLRQNDWKDVADAV
NSRHGDNSRKKTDLQCKNRVDTLKKKYKTEKAKLSPSTWRFYNRLDVLIGPVVKKSAGGV
VKSAPFKNHLNPTGSNSTGSSLEDDDEDDDEVGDWEFVARKHPRVEEVDLSEGSTCRELA
TAILKFGEVYERIEGKKQQMMIELEKQRMEVTKEVELKRMNMLMEMQLEIEKSKHRKRAS
ASGKKNSH*

>G1462 (63..1031)

CGTCGACCATTCTTGCGATTGATCTTTCTCTAGATAATTTTTTTGATCGATTTAGTTTCA TTATGGAGGACGACGCAGCTTATGATCTAATCAAACACGAACTGTTATACTCAGAAG ACGAAGTAATAATCTCACGTTATCTGAAGGGTATGGTCGTTAACGGAGATTCTTGGCCAG ATCACTTCATCGAAGACGCAAACGTGTTCACCAAGAATCCAGATAAGGTGTTCAATTCTG AGAGACCTAGATTCGTGATCGTTAAACCACGAACAGAGGCTTGTGGTAAAACCGATGGAT GTGATTCGGGTTGCTGGAGGATCATTGGTCGTGATAAACTGATAAAGTCGGAGGAGACTG GGAAGATTCTAGGGTTCAAGAAGATACTCAAGTTTTGCCTAAAGAGGAAACCTATAGACT ACAAGAGAAGTTGGGTAATGGAAGAGTATAGGCTTACCAATAACTTGAACTGGAAGCAAG ATCATGTGATTTGCAAAATTCGGTTTATGTTTGAAGCTGAAATTAGTTTCTTGCTAAGCA AGCATTTCTACACTACATCAGAATCGGTTCTTGAAAATGAGCTGTTGCCATCTTATGGAT ATTATTATCCAATACACAAGAGGAGGATGAATTTTATCTGGACGCGATAATGACTTCGG AAGGAAACGAGTGGCCTAGCTACCATACCAACAACGTGTACTGTCTGCATCCATTGGAGC TTGTGGATCTTCAAGATCGGATGTTTAATGATTACGGAACCTGCATCTTCGCTAACAAGA CTTGTGGTGAAACTGATAAATGCGATGGTGGTTACTGGAAGATCCTGCACGGTGATAAGC TGATCAAGTCAAATTTCGGAAAGGTCATTGGTTTCAAGAAGGTATTTGAGTTCTATGAAA CGGTGAGACAAATATATCTTTGTGATGGAGAGAAGTGACGGTAACTTGGACTATACAAG AGTATAGGCTTAGCAAAAACGTGAAGCAGAATAAAGTGTTGTGCGTTATCAAGTTGACTT ATGATAGATAGGATACTTTACTTTGGTTTTTGTGATCATCTTAGTATCTTACGAATATTC TAGATACACACATCTATAGGCGACCGCTCTAGACAGGCCTCGTACCG

>G1462 Amino Acid Sequence (domain in AA coordinates: TBD)
MEDDDAAYDLIKHELLYSEDEVIISRYLKGMVVNGDSWPDHFIEDANVFTKNPDKVFNSE
RPRFVIVKPRTEACGKTDGCDSGCWRIIGRDKLIKSEETGKILGFKKILKFCLKRKPIDY
KRSWVMEEYRLTNNLNWKQDHVICKIRFMFEAEISFLLSKHFYTTSESVLENELLPSYGY
YLSNTQEEDEFYLDAIMTSEGNEWPSYVTNNVYCLHPLELVDLQDRMFNDYGTCIFANKT
CGETDKCDGGYWKILHGDKLIKSNFGKVIGFKKVFEFYETVRQIYLCDGEEVTVTWTIQE

238/286

PCT/US02/25805

YRLSKNVKQNKVLCVIKLTYDR*

>G1211 (44..1120)

TGAAACCTAGATTTCTGCAACTGAATTCCTAATTCGAAAAAGAATGGAGGGTTCGTCGTC GACGATAGCAAGGAAGACATGGGAACTAGAGAACAGCATTCTAACAGTAGACTCACCTGA TTCAACCTCCGACAACATCTTCTACTACGACGATACTTCACAGACTAGGTTCCAGCAAGA TCTTAAGATGGTGGTTCACGCTCGCTCTGGTGGTACAATTGAAATAATGGGTCTTATGCA AGGTAAGACCGATGGTGATACTATCATTGTTATGGATGCTTTTGCTTTACCAGTGGAAGG TACTGAGACAAGGGTTAATGCTCAGGATGATGCTTATGAGTACATGGTTGAGTATTCACA GACCAACAAGCTCGCGGGGCGGCTGGAGAATGTTGTTGGATGGTATCACTCTCACCCTGG ATATGGATGCTGGCTCTCCGGTATTGATGTTTCTACGCAGACGCTTAACCAACAGCATCA GGAGCCATTTTTAGCTGTTGTTATTGATCCCACAAGGACTGTTTCAGCTGGTAAGGTTGA GATTGGTGCTTTCAGAACATACTCTAAAGGATATAAGCCTCCAGATGAACCTGTTTCTGA GTATCAAACTATTCCTTTAAATAAGATTGAGGACTTTGGTGTTCACTGCAAACAGTACTA TTCATTAGATGTCACTTATTTCAAGTCATCTCTTGATTCTCACCTTCTGGATCTACTATG GAACAAGTACTGGGTGAACACTCTTTCTTCTTCTCCACTGCTGGGTAATGGAGACTATGT TGCTGGACAATATCAGACTTAGCTGAGAAGCTTGAGCAAGCCGAGAGTCATCTGGTTCA GTCTCGCTTTGGAGGAGTTGTGCCATCATCCCTTCATAAGAAAAAAGAAGATGAGTCTCA ACTAACTAAGATAACTCGGGATAGCGCAAAGATAACTGTGGAACAGGTCCATGGACTAAT GTCGCAGGTCATAAAAGATGAATTATTCAACTCAATGCGTCAGTCCAACAACAAATCTCC CACTGACTCGTCGGATCCAGACCCTATGATTACATATTGAAGTTGCTCTTCTTTTGGTTT NCCATTCCAACATCTTTATTTAATATTATCTCCTCNATTATATAATATTCAAACATCCCT ANTANCTTCATTTGACCGTCCCCCTCCCTCCCGTGTTGCNTTGGTGCTGGCCCC >G1211 Amino Acid Sequence (domain in AA coordinates: 123-179)

MEGSSSTIARKTWELENSILTVDSPDSTSDNIFYYDDTSOTRFQQEKPWENDPHYFKRVK ISALALLKMVVHARSGGTIEIMGLMQGKTDGDTIIVMDAFALPVEGTETRVNAQDDAYEY MVEYSQTNKLAGRLENVVGWYHSHPGYGCWLSGIDVSTQTLNQQHQEPFLAVVIDPTRTV SAGKVEIGAFRTYSKGYKPPDEPVSEYQTIPLNKIEDFGVHCKQYYSLDVTYFKSSLDSH LLDLLWNKYWVNTLSSSPLLGNGDYVAGQISDLAEKLEQAESHLVQSRFGGVVPSSLHKK KEDESQLTKITRDSAKITVEQVHGLMSQVIKDELFNSMRQSNNKSPTDSSDPDPMITY* >G1048 (5..892)

GACCATGGCGGAGGAATTTGGAAGCATAGATTTACTCGGAGATGAAGATTTCTTCTTCGA TTTCGATCCTTCAATCGTAATTGATTCTCTTCCGGCGGAGGATTTTCTTCAGTCTTCACC GGATTCATGGATCGAGAATCGAGAATCAATTGATGAACGATGAGAATCATCAAGAGGA GAGTTTTGTGGAATTGGATCAGCAATCGGTTTCAGATTTCATAGCGGATCTACTCGTTGA TTATCCAACTAGCGATTCTGGCTCCGTTGATTTGGCGGCTGATAAAGTTCTAACCGTCGA TTCTCCCGCCGCCGCTGATGATTCCGGGAAGGAGAATTCGGATTTGGTTGTTGAGAAGAA GTCTAATGATTCTGGTAGCGAGATTCATGATGATGACGAAGAAGGAGACGATGATGC TGTGGCTAAAAAACGAAGAAGGAGGAGTAAGAAATAGAGATGCGGCGGTTAGATCGAGAGA CTTGAGACTAGGACGTATGCTTGAGTGCTTCGTTGCTGAAAACCAGTCTCTACGTTACTG TTTGCAAAAGGGTAATGGCAATAATACTACCATGATGTCGAAGCAGGAGTCTGCTGTGCT CTTGTTGGAATCCCTGCTGTTGGGTTCCCTGCTTTGGCTTCTGGGAGTAAACTTCATTTG CCTATTCCCTTATATGTCCCACACAAAGTGTTGCCTCCTACGTCCAGAACCAGAAAAGCT GGTTCTAAACGGGCTCGGGAGTAGTAGCAAACCGTCTTATACCGGCGTTAGTCGGAGATG TAAGGGTTCGAGGCCTAGGATGAAATACCAAATCTTAACCCTTGCGGCGTGACAACGCCT TTTTTAACTGCTTCTTTTGCGCATTTTGAGTTGTAGATGAGTGTCTTTTAGTTTTCTCTC TCTTGTTTTGTATTTCGCTGTTGAAAGTTTTCTGTCTAATATCGATAAGTTAACAGTGAA ΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

>G1048 Amino Acid Sequence (domain in AA coordinates 138-190) MAEEFGSIDLLGDEDFFFDFDPSIVIDSLPAEDFLQSSPDSWIGEIENQLMNDENHQEES FVELDQQSVSDFIADLLVDYPTSDSGSVDLAADKVLTVDSPAAADDSGKENSDLVVEKKS NDSGSEIHDDDDEEGDDDAVAKKRRRVRNRDAAVRSRERKKEYVQDLEKKSKYLERECL RLGRMLECFVAENQSLRYCLQKGNGNNTTMMSKQESAVLLLESLLLGSLLWLLGVNFICL FPYMSHTKCCLLRPEPEKLVLNGLGSSSKPSYTGVSRRCKGSRPRMKYQILTLAA*

>G986 (31..846)

CATTAAATTGGCTCCTGTGAACCTAAATTTATGGACTATGATCCCAACACCAATCCGTTC GACCTTCATTTCTCCGGTAAACTTCCGAAAAGAGAGTCTCGGCTTCAGCTTCTAAAGTT GTAGAGAAAATGGTTAGTGAAAGATGAGAAGAGAAATATGCTACAAGATGAAATAAAC CGGGTTAATTCGGAGAACAAGAAGCTAACCGAAATGTTAGCAAGAGTCTGTGAGAAGTAC TATGCTCTTAATAATCTTATGGAGGAGTTGCAGAGTCGAAAGAGTCCTGAAAGTGTTAAC ·TTTCAGAACAACAGCTAACGGGGAAACGAAAACAAGAACTTGATGAGTTTGTTAGCTCC CCAATTGGACTCAGTCTCGGACCAATCGAGAACATCACCAACGATAAAGCGACGGTTTCA ACCGCTTACTTTGCTGCTGAGAAGTCTGACAAGCTTGACTGTGAAAGATGGATATCAA TGGAGGAAATACGGGCAAAAGATTACGAGAGATAATCCATCTCCTAGAGCTTACTTCAGA TGCTCGTTTTCACCGTCTTGTCTAGTCAAGAAGAAGGTGCAACGAAGTGCAGAAGATCCA TCTTTCTTGGTAGCCACTTACGAAGGGACACATAACCACACCGGACCACATGCAAGTGTG TCCAGGACAGTGAAACTTGATCTAGTTCAAGGTGGGCTTGAACCAGTTGAGGAAAAGAAA GAGAGAGGGACGATTCAAGAGGTTTTGGTGCAACAAATGGCTTCTTCGTTGACCAAAGAT CCTAAGTTCACTGCAGCTCTTGCGACTGCTATTTCCGGGAGATTGATAGAGCATTCAAGA ACATGAAAGTTCTCTAGAACATGTATATTTCTGTTTTTGTTCTATTTTGTTGCTCATTCCT AGTAAAAAGGTAAAGATTTGTTTGATCTTGATTAGGAGGCATAGATGTCAATTTTAATGT GTGTGTATATAATTACATCAAATCTAAGTATCCAAAAAGGGTCACCCCCATTTTATCTTA TG

>G986 Amino Acid Sequence (domain in AA coordinates: 146-203)
MDYDPNTNPFDLHFSGKLPKREVSASASKVVEKKWLVKDEKRNMLQDEINRVNSENKKLT
EMLARVCEKYYALNNLMEELQSRKSPESVNFQNKQLTGKRKQELDEFVSSPIGLSLGPIE
NITNDKATVSTAYFAAEKSDTSLTVKDGYQWRKYGQKITRDNPSPRAYFRCSFSPSCLVK
KKVQRSAEDPSFLVATYEGTHNHTGPHASVSRTVKLDLVQGGLEPVEEKKERGTIQEVLV
QQMASSLTKDPKFTAALATAISGRLIEHSRT*

>G789 (259..1593)

CTGTTTCAACTTTACTCCCTCAGTTTCAGAACAATTCCCTATCTAGAAGAGAGATAAAAC CGAGAAGGTTTTGGAGATAGAATCTTTTGTTCTTCTTTTTGTCCCTCCTTGCTCGATTTTT TTCTAAATCTGATCTGACATGGAACAAGTGTTTGCTGATTTGGAATTTTTGAAGATAATTTT CACATGTCCACTAATAAAAGATCAATCAGACCAGAAGATGAATTAGTGGAGCTATTGTGG AGAGATGGTCAAGTGGTTTTACAAAGCCAAGCTCGTAGAGAACCGTCAGTCCAAGTCCAA ACCCACAAACAAGAAACCCTAAGAAAACCCAACAATATTTTTCTTGACAACCAAGAAACA GTACAAAAGCCTAACTACGCTGCTCTAGATGATCAAGAAACCGTCTCCTGGATACAATAC CCTCCGGATGACGTCATCGACCCTTTCGAATCCGAGTTCTCCTCATTTCTTCTTCTC ATCGATCACCTCGGAGGTCCTGAGAAGCCACGAACGATCGAAGAGACAGTTAAGCATGAG GCTCAAGCCATGGCTCCTCCTAAGTTTAGATCCTCGGTTATAACAGTCGGACCGAGTCAT TGCGGCAGCAACCAGTCAACAATATTCATCAGGCCACTACACTTCCGGTTTCTATGAGT GATAGAAGCAAGAACGTCGAAGAAAGACTTGACACTTCGTCAGGTGGCTCCTCCGGTTGC AGCTATGGAAGGAACAAAGAAACCGTTAGTGGAACAAGTGTAACCATTGACCGTAAA AGAAAACATGTTATGGATGCTGATCAAGAATCTGTGTCTCAATCAGATATAGGTTTGACC TCAACCGATGATCAAACCATGGGTAACAAATCGAGCCAACGGTCAGGATCTACTCGAAGA AGCCGTGCAGCTGAAGTTCATAATCTCTCAGAAAGGAGGAGGAGAGATCGGATCAATGAA AGAATGAAAGCTCTTCAAGAACTCATACCTCACTGCAGCAGAACAGATAAAGCTTCGATA TTGGATGAAGCAATTGATTACTTAAAATCACTTCAAATGCAACTCCAAGTGATGTGGATG GGAAGTGGAATGGCGGCGGCGGCAGCAGCAGCAAGTCCGATGATGTTTCCCGGGGTA CAATCATCTCCATACATTAATCAGATGGCTATGCAAAGTCAGATGCAATTGTCTCAATTC CCGGTTATGAACCGGTCCGCTCCGCAGAACCATCCCGGTTTAGTATGTCAAAACCCGGTA CAGTTGCAGCTCCAAGCACAGAACCAAATCTTATCGGAGCAGCTCGCTAGGTACATGGGC GGGATTCCCCAGATGCCGCCGGCGGGAAATCAGATGCAGACCGTGCAACAACAACCAGCG GACATGTTGGGATTTGGATCTCCGGCGGGACCGCAAAGTCAACTGTCGGCACCGGCGACC ACCGACAGTCTTCATATGGGTAAAATAGGCTGACTTGGCATATAGTTTTCCTCCGAAATT AAGTCAAATGTATTATAGAGATCTAATAAGTTAGTCTCATACTTATAACTTATTTTTAAA CAGTTGAATTATAGTATCAATCAAGTGTTGGGAACCTAAAGATCATACATGTGTCAATAC

CATTTGACATTATCATGGGCTTTTTTGGGTCTATGAATATGAACATTAACCCC '
>G789 Amino Acid Sequence (domain in AA coordinates: 253-313)
MEQVFADWNFEDNFHMSTNKRSIRPEDELVELLWRDGQVVLQSQARREPSVQVQTHKQET
LRKPNNIFLDNQETVQKPNYAALDDQETVSWIQYPPDDVIDPFESEFSSHFFSSIDHLGG
PEKPRTIEETVKHEAQAMAPPKFRSSVITVGPSHCGSNQSTNIHQATTLPVSMSDRSKNV
EERLDTSSGGSSGCSYGRNNKETVSGTSVTIDRKRKHVMDADQESVSQSDIGLTSTDDQT
MGNKSSQRSGSTRRSRAAEVHNLSERRRRDRINERMKALQELIPHCSRTDKASILDEAID
YLKSLQMQLQVMWMGSGMAAAAAAAASPMMFPGVQSSPYINQMAMQSQMQLSQFPVMNRS
APQNHPGLVCQNPVQLQLQAQNQILSEQLARYMGGIPQMPPAGNQMQTVQQQPADMLGFG
SPAGPQSQLSAPATTDSLHMGKIG*

>G2085 (1..930)

ATGTTTGGTCGCCATTCGATTATCCCAAATAACCAGATTGGTACCGCCTCTGCTTCCGCT GGTGAAGACCATGTCTCTGCCTCCGCTACGTCTGGTCACATTCCTTACGACGATATGGAA GAAATCCCTCATCCTGACTCTATCTATGGTGCTGCCTCCGATTTGATTCCCGATGGCTCT CAATTGGTTGCTCACCGATCCGATGGCTCTGAATTACTTGTTTCTCGGCCACCGGAAGGG GCGAATCAGCTTACGATCTCGTTCCGTGGACAAGTTTACGTTTTTGATGCCGTTGGTGCT GACAAGGTGGATGCTGTTGTCGCTGTTGGGTGGTTCTACTGAGCTTGCTCCTGGTCCG CAGGTGATGGAACTAGCTCAACAGCAGAATCATATGCCTGTTGTAGAATATCAGAGCCGC TGTAGCCTTCCGCAACGGGCACAATCCTTGGATAGGTTTCGGAAGAAGAGGAATGCTAGA TGTTTCGAGAAGAAGTAAGATACGGTGTTCGCCAAGAAGTTGCCTTAAGAATGGCACGT AATAAAGGTCAATTCACCTCTTCAAAGATGACAGATGGGGCTTATAACTCTGGCACAGAT CAAGATTCTGCCCAAGATGATGCCCATCCAGAAATATCGTGTACTCATTGCGGCATTAGT TCCAAATGTACACCAATGATGCGACGTGGCCCTTCCGGCCCCAGGACTCTCTGCAATGCC TGTGGACTTTTTTGGGCTAACAGGGGTACATTGAGGGATCTCTCAAAGAAAACAGAAGAG AATCAGTTGGCTTTAATGAAACCGGATGATGGTGGGAGTGTTGCTGATGCTAACAAC TTAAACACTGAAGCTGCAAGTGTTGAAGAACACACTTCCATGGTTTCTCTTGCCAATGGG GATAATTCTAATCTGTTAGGTGATCACTAA

>G2085 Amino Acid Sequence (domain in AA coordinates: TBD)
MFGRHSIIPNNQIGTASASAGEDHVSASATSGHIPYDDMEEIPHPDSIYGAASDLIPDGS
QLVAHRSDGSELLVSRPPEGANQLTISFRGQVYVFDAVGADKVDAVLSLLGGSTELAPGP
QVMELAQQQNHMPVVEYQSRCSLPQRAQSLDRFRKKRNARCFEKKVRYGVRQEVALRMAR
NKGQFTSSKMTDGAYNSGTDQDSAQDDAHPEISCTHCGISSKCTPMMRRGPSGPRTLCNA
CGLFWANRGTLRDLSKKTEENQLALMKPDDGGSVADAANNLNTEAASVEEHTSMVSLANG
DNSNLLGDH*

>G1783 (1..603)

ATGGCCGCGTTTCCGCAGTGGACAAGGGTCGATGACAAACGTTTTGAGTTAGCTCTGCTT
CAAATCCCGGAGGGTTCGCCGAATTTTATAGAGAATATCGCCTATTATCTCCAGAAACCG
GTGAAGGAGGTGGAGTACTACTACTGCGCGTTGGTCCATGATATTGAGCGGATCGAATCG
GGTAAGTATGTTTTGCCCAAATACCCGGAAGACGATTACGTGAAACTGACGGAAGCAGGT
GAGTCTAAGGGCAATGGGAAAAAGACGGGAATTCCTTGGTCAGAAGAGGAACAGAGGTTG
TTTCTGGAAGGACTAAATAAGTTTGGGAAAGGAGACATGATATCGAGGTATTGT
GTGAAGTCAAGGACCTCGACGCAAGTGGCAAGCCATGCTCAGAAGTATTTTTGCAAGGCAA
AAGCAGGAGAGTACCAACTTAAACGCCCGAGTATTCATGACATGACTCTGGGAGTTGCG
GTCAATGTCCCTGGGATCCAACTTGGAGTCTACTGGCCAGCAACCACATTTTGGTGATCAA
ATTCCTTCGAATCAATATTATCCCTCCCAGGAAAACTTTCGGGGTTTTGATCAGCGATGG
TGA

>G1783 Amino Acid Sequence (domain in AA coordinates: 81..129)
MAAFPQWTRVDDKRFELALLQIPEGSPNFIENIAYYLQKPVKEVEYYYCALVHDIERIES
GKYVLPKYPEDDYVKLTEAGESKGNGKKTGIPWSEEEQRLFLEGLNKFGKGDWKNISRYC
VKSRTSTQVASHAQKYFARQKQESTNTKRPSIHDMTLGVAVNVPGSNLESTGQQPHFGDQ
IPSNOYYPSQENFRGFDQRW*

>G2072 (155..793)

 241/286

>G2072 Amino Acid Sequence (conserved domain in AA coordinates:90-149)
MPSKENHVAGSSWQFQNYDLWQSNSYEQHNKLGWDFSTANGTNIQRNMSCGALNMSSKPI
EKHVSKMKEGTSTKPDGPRSKTDSKRIKHQNAHRARLRRLEYISDLERTIQVLQVEGCEM
SSAIHYLDQQLLMLSMENRALKQRMDSLAEIQKLKHVEQQLLEREIGNLQFRRHQQQPQQ
NQKQVQAIQNRYTKYQPPVTQEPDAQFAALAI*

>G931 (85..1071)

AGCTAATTGTTGCCTCTGAGTCACATGGATAAGAAAGTTTCATTTACTAGCTCTGTGGCA ${\tt GGTGTGACTGAATCACTGAGTTTGAAGGTGGTAGATGCAAGACCAGAACGTCTTATAAAC}$ ACAAAGAATATCAGTTTCCAGGACCAGGATTCATCTTCAACTCTGTCCTCTGCTCAATCT TCTAACGATGTTACAAGTAGTGGAGATGATAACCCCTCAAGACAATCTCATTTTTAGCA CATTCAGATGTTTGTAAAGGATTTGAAGAAACTCAAAGGAAGCGATTTGCAATTAAATCA GGCTCCTCCACGGCAGGAATCGCTGATATTCACTCTTCTCCTTCCAAGGCTAACTTCTCA ACAATATGGAATCCCCAAATGACTCGAGTTCCGCTACCATTCGATCTCATAGAGAATGAG CCTGTCTTTGTCAATGCAAAGCAATTCCATGCAATTATGAGGAGGAGGCAACAGCGTGCT AAGCTAGAGGCGCAAAACAAACTAATCAAAGCCCGTAAGCCGTATCTTCATGAATCTCGA CATGTTCACGCTCTTAAACGACCTAGAGGATCTGGTGGAAGATTCCTAAACACCCAAAAAG CTTCAAGAATCTACAGATCCAAAACAAGACATGCCAATCCAACAGCAACACGCAACGGGA AACATGTCAAGATTTGTGCTTTATCAGTTGCAGAACAGCAATGACTGTGATTGTTCAACC ACTTCTCGCTCTGACATCACATCTGCTTCTGACAGCGTTAATCTCTTTGGACACTCTGAA AATGACATGCATGGAGGTAGGAACACACCATTTCTCTGTCCATATCTGAGCCGGTGGA ATCTGGTAATGTGTACGTTCCTACAAAAAAAGGGAAGTCATCCTTGGCTGCTACTTCGCT TATTAGCTAGTTCTTATTTCACACGCTTTGTCCAGATATC

>G931 Amino Acid Sequence (domain in AA coordinates: TBD)
MDKKVSFTSSVAHSTPPYLSTSISWGLPTKSNGVTESLSLKVVDARPERLINTKNISFQD
QDSSSTLSSAQSSNDVTSSGDDNPSRQISFLAHSDVCKGFEETQRKRFAIKSGSSTAGIA
DIHSSPSKANFSFHYADPHFGGLMPAAYLPQATIWNPQMTRVPLPFDLIENEPVFVNAKQ
FHAIMRRRQQRAKLEAQNKLIKARKPYLHESRHVHALKRPRGSGGRFLNTKKLQESTDPK
QDMPIQQQHATGNMSRFVLYQLQNSNDCDCSTTSRSDITSASDSVNLFGHSEFLISDCPS
QTNPTMYVHGQSNDMHGGRNTHHFSVHI*

>G278 (93..1874)

TCGATCTTTAACCAAATCCAGTTGATAAGGTCTCTTCGTTGATTAGCAGAGATCTCTTTA
ATTTGTGAATTCAATCCAGCACCTGTTGATGGACACCACCATTGATGGATTCGCCG
ATTCTTATGAAATCAGCAGCACTAGTTTCGTCGCTACCGATAACACCGACTCCTCTATTG
TTTATCTGGCCGCCGAACAAGTACTCACCGGACCTGATGTATCTGCTCTGCAATTGCTCT
CCAACAGCTTCGAATCCGTCTTTGACTCGCCGGATGATTTCTACAGCGACGCTAAGCTTG
TTCTCTCCGACGGCCGGAAGTTTCTTTCCACCGGTGCGTTTTGTCAGCGAGAAGCTCTT
TCTTCAAGAGCGCTTTAGCCGCCGCTAAGAAGAAGACTCCCAACAACACCGCCGCCG
TGAAGCTCGAGCTTAAGGAGATTGCCAAGAATTACGAAGTCGGTTTCGATTCGGTTGTGA
CTGTTTTGGCTTATGTTTACAGCAGCAGCAGAGTCAGCCCCCCTAAAGGAGTTTCTGAAT

GCGCAGACGAGAATTGCTGCCACGTGGCTTGCCGGCCGGTGGATTTCATGTTGGAGG TATTGGACGTTGTAGACAAAGTTGTTATAGAGGACACATTGGTTATACTCAAGCTTGCTA ATATATGTGGTAAAGCTTGTATGAAGCTATTGGATAGATGTAAAGAGATTATTGTCAAGT CTAATGTAGATATGGTTAGTCTTGAAAAGTCATTGCCGGAAGAGCTTGTTAAAGAGATAA TTGATAGACGTAAAGAGCTTGGTTTGGAGGTACCTAAAGTAAAGAAACATGTCTCGAATG TACATAAGGCACTTGACTCGGATGATATTGAGTTAGTCAAGTTGCTTTTGAAAGAGGATC ACACCAATCTAGATGATGCGTGTGCTCTTCATTTCGCTGTTGCATATTGCAATGTGAAGA CCGCAACAGATCTTTTAAAACTTGATCTTGCCGATGTCAACCATAGGAATCCGAGGGGAT ATACGGTGCTTCATGTTGCTGCGATGCGGAAGGAGCCACAATTGATACTATCTCTATTGG AAAAAGGTGCAAGTGCATCAGAAGCAACTTTGGAAGGTAGAACCGCACTCATGATCGCAA AACAAGCCACTATGGCGGTTGAATGTAATAATATCCCGGAGCAATGCAAGCATTCTCTCA AAGGCCGACTATGTGTAGAAATACTAGAGCAAGAAGACAAACGAGAACAAATTCCTAGAG ATGTTCCTCCTCTTTTGCAGTGGCGGCCGATGAATTGAAGATGACGCTGCTCGATCTTG **AAAATAGAGTTGCACTTGCTCAACGTCTTTTTCCAACGGAAGCACAAGCTGCAATGGAGA** TCGCCGAAATGAAGGGAACATGTGAGTTCATAGTGACTAGCCTCGAGCCTGACCGTCTCA CTGGTACGAAGAGACATCACCGGGTGTAAAGATAGCACCTTTCAGAATCCTAGAAGAGC ATCAAAGTAGACTAAAAGCGCTTTCTAAAACCGTGGAACTCGGGAAACGATTCTTCCCGC GCTGTTCGGCAGTGCTCGACCAGATTATGAACTGTGAGGACTTGACTCAACTGGCTTGCG GAGAAGACGACTGCTGAGAAACGACTACAAAAGAAGCAAAGGTACATGGAAATACAAG AGACACTAAAGAAGGCCTTTAGTGAGGACAATTTGGAATTAGGAAATTCGTCCCTGACAG ATTCGACTTCTTCCACATCGAAATCAACCGGTGGAAAGAGGTCTAACCGTAAACTCTCTC ATCGTCGTCGGTGAGACTCTTGCCTCTTAGTGTAATTTTTGCTGTACCATATAATTCTGT TTTCATGATGACTGTAACTGTTTATGTCTATCGTTGGCGTCATATAGTTTCGCTCTTCGT

>G278 Amino Acid Sequence (domain in AA coordinates: 2-593)
MDTTIDGFADSYEISSTSFVATDNTDSSIVYLAAEQVLTGPDVSALQLLSNSFESVFDSP
DDFYSDAKLVLSDGREVSFHRCVLSARSSFFKSALAAAKKEKDSNNTAAVKLELKEIAKD
YEVGFDSVVTVLAYVYSSRVRPPPKGVSECADENCCHVACRPAVDFMLEVLYLAFIFKIP
ELITLYQRHLLDVVDKVVIEDTLVILKLANICGKACMKLLDRCKEIIVKSNVDMVSLEKS
LPEELVKEIIDRRKELGLEVPKVKKHVSNVHKALDSDDIELVKLLLKEDHTNLDDACALH
FAVAYCNVKTATDLLKLDLADVNHRNPRGYTVLHVAAMRKEPQLILSLLEKGASASEATL
EGRTALMIAKQATMAVECNNIPEQCKHSLKGRLCVEILEQEDKREQIPRDVPPSFAVAAD
ELKMTLLDLENRVALAQRLFPTEAQAAMEIAEMKGTCEFIVTSLEPDRLTGTKRTSPGVK
IAPFRILEEHQSRLKALSKTVELGKRFFPRCSAVLDQIMNCEDLTQLACGEDDTAEKRLQ
KKQRYMEIQETLKKAFSEDNLELGNSSLTDSTSSTSKSTGGKRSNRKLSHRRR*
>G2421 (1..630)

>G2421 Amino Acid Sequence (domain in AA coordinates: 9-110)
MEGSSKGLRKGAWTAEEDSLLRQCIGKYGEGKWHQVPLRAGLNRCRKSCRLRWLNYLKPS
IKRGKFSSDEVDLLLRLHKLLGNRWSLIAGRLPGRTANDVKNYWNTHLSKKHEPCCKTKI
KRINIITPPNTPAQKVCENSITCNKDDEKDDFVDNFMVGDNIWLERLLDEGQEVDVLVTE
AAATEKEGTLAFDVEQLWNLFDGETVIFD*

PCT/US02/25805 WO 03/013227

>G2032 (53..1789)

TCCCTCCCAGAGTAAGAACTTCCATACTTTGCTCTAGATTTCTTGAGAAAAGATGCAGCC GATCTTCCATGCGATCCTTAAAAATGACCTTCCAGCTTTTTTAGAGTTGGTAGAAGATAG TGAATCGTCTCTGGAGGAGAAACGAGGAAGAACACTTGAACAACACGGTTTTGCACAT ${\tt GGCTGCAAAGTTTGGTCACCGAGAACTCGTCTCCAAGATTATTGAGCTCCGACCTTCCCT}$ $\tt CGTGTCTTCCCGCAACGCATACAGAAACACACCTTTGCATCTTGCTGCTATCCTTGGAGA$ TGTAAACATAGTTATGCAGATGTTAGAGACTGGATTGGAAGTGTGTTCTGCACGCAATAT ${\tt CAACAACCACACCACTCCACTTGGCTTGCCGTAGCAATTCCATAGAGGCTGCCAGACT}$ CATCGCGGAAAAGACAATCAATTGGCCTCGGTGAACTCATTCTCGCCATATCAAGTGG TTGGGTGGTTGAAGACGGCTCACAATCAACGCTACTGCATCATGCGTGTGATAAGGGAGA CTTTGAACTGACAACTATATTGTTAGGGCTCGATCAAGGATTAGAAGAAGCACTTAACCC CAATGGTTTATCACCTCTGCATCTTGCGGTCCTCAGAGGCTCGGTTGTGATCCTGGAGGA GTTCTTGGACAAGGTTCCATTGTCTTTCAGCTCAATCACGCCGTCGAAAGAGACAGTCTT ${\tt TCATCTCGCTGCTCGAAACAAAATATGGATGCCTTTGTTTTTATGGCAGAGAGTTTGGG}$ AATTAACAGCCAAATTCTTCTACAGCAAACCGATGAAAGTGGCAACACTGTCTTACATAT TGCTGCATCCGTCTCTTTTGATGCTCCTCTTATACGTTACATTGTTGGTAAGAATATAGT AGATATCACGTCCAAGAACAAGATGGGTTTTGAAGCTTTTCAACTTCTCCCTCGAGAAGC CCAAGACTTTGAGTTGTTATCAAGGTGGCTGAGATTTGGTACCGAGACTTCACAAGAGCT GGATTCTGAGAACAATGTAGAACAACACGAAGGCTCTCAAGAGGTCGAGGTAATACGGTT GCTAAGGATTATAGGAATAAACACATCAGAGATAGCAGAGAGAAAGAGAAAGCAAGGAACA GGAAGTGGAAAGAGGTCGTCAGAACTTGGAATATCAGATGCATATAGAAGCATTACAGAA TGCAAGAAATACGATTGCTATAGTGGCAGTCTTGATTGCTTCAGTTGCTTATGCCGGTGG GATAAACCCTCCGGGGGGCGTCTACCAAGACGGGCCATGGAGAGGGAAATCCTTAGTGGG GAAAACAACGGCGTTTAAGGTCTTTGCGATATGCAACAACATCGCACTGTTCACGTCCTT GGGCATCGTTATTCTTCTTGTTAGCATCATACCTTACAAGAGGAAACCCTTAAAGAGATT ATTGGTGGCCACGCATAGGATGATGTGGGTTTCTGTAGGTTTCATGGCGACGGCTTATAT ${\tt AGCGGCGTCTTGGGTGACCATACCGCATTATCATGGAACACAATGGTTATTTTCCAGCAAT}$ TGTAGCCGTTGCTGGTGGAGCGTTGACCGTACTCTTTTCTATCTCGGAGTTGAGACCAT CAGTTCAGATTTAGCCGTCTCCGGAAAATCAGGCTATTTCACCTATTAAGAAAAACTGGT TTTCTAATTTCCCTGTAACCTGTGTAATTGTGTATGTG

>G2032 Amino Acid Sequence (domain in AA coordinates: entire protein) MQPIFHAILKNDLPAFLELVEDSESSLEERNEEEHLNNTVLHMAAKFGHRELVSKIIELR PSLVSSRNAYRNTPLHLAAILGDVNIVMQMLETGLEVCSARNINNHTPLHLACRSNSIEA ARLIAEKTOSIGLGELILAISSGSTSIVGTILERFPDLAREEAWVVEDGSQSTLLHHACD KGDFELTTILLGLDOGLEEALNPNGLSPLHLAVLRGSVVILEEFLDKVPLSFSSITPSKE TVFHLAARNKNMDAFVFMAESLGINSQILLQQTDESGNTVLHIAASVSFDAPLIRYIVGK NIVDITSKNKMGFEAFQLLPREAQDFELLSRWLRFGTETSQELDSENNVEQHEGSQEVEV IRLLRIIGINTSEIAERKRSKEQEVERGRQNLEYQMHIEALQNARNTIAIVAVLIASVAY AGGINPPGGVYQDGPWRGKSLVGKTTAFKVFAICNNIALFTSLGIVILLVSIIPYKRKPL KRLLVATHRMMWVSVGFMATAYIAASWVTIPHYHGTQWLFPAIVAVAGGALTVLFFYLGV ETIGHWFKKMNRVGDNIPSFARTSSDLAVSGKSGYFTY*

>G1396 (83..313)

TCGACCTCGTTTCCTCTCTCTCTCTCCTACCATTAGTACGTTACTGGAGCTGATCTC ACGTATATTTTGGATCGTAATCATGGACGGCGAAGATTTTGCCGGAAAGGCGGCTGCTGA AGCCAAGGGATTGAACCCGGGATTAATCGTGCTGCTTGTTGTTGGAGGTCCGCTTCTTGT GAAGAAGCCCGTTTCCAAAAAGAAGCTCAAGCGGGAGAAGCTAAAGCAAGGAGTCCCTGT $\verb|CCCTGGAGAATAAAAGCCAGCTTAAGCTTCCTTCACTTGTGCCTCCTTCAAAGCGGTTTT|\\$ TGTTCGGTTACCAAATTTCACCCTTGCGGGTTTTTTTCTTCCTTTACTTCTGTCATGAGG ATTATCTTTGAGGCCT

>G1396 Amino Acid Sequence (domain in AA coordinates: TBD) MDGEDFAGKAAAEAKGLNPGLIVLLVVGGPLLVFLIANYVLYVYAQKNLPPRKKKPVSKK KLKREKLKQGVPVPGE*

>G619 (382..2748)

ATTTTTTCCAATCTGCAAATTTTAGTCTATGTCTGTTCCTTGTGCTCCCTCTTCTCAGT

ACCTGCAAATGGAGGAAGAAGAATCCTTCTCTGAAACCCTTGTTCTCATTTGATTCCTCC TTCCTCTCTCTTCTCTCTCTCTCTGTCTCTGATTCGTTATTCCACACTTATGACTCATCTT TCCCGTCAATAGCTAAGTTTGCCTCTTCTTTGTGAAATTTAGCTGAAAAAGGAGAGGAAT TCCGAATTCTGTCACTTCAAAGCTCGAATTTTGCAAACTTTCCTTTGATGGGTTTTACTT GTTTTGTTGTAATCTGATTAAAAATAGAAACTTTTTGTTTTCTTCTTGTCTCCTTTTTGCT CTTAAAAGAGAAGCTTTTTCAATGGAATTTGACTTGAATACTGAGATTGCGGAGGTGGAA AGGCTTGGAATTTCACCATCTTCTTCTTCTTCATGCTCTTCCGGATCATCATCGTCATCA TCTTCTACAGGCTCTGCATCTTCCATTTACTCTGAGCTTTGGCATGCTTGTGCTGGTCCT CTCACTTGTCTTCCCAAGAAAGGCAATGTAGTTGTCTATTTCCCTCAAGGTCATTTGGAG CAAGATGCTATGGTTTCATATTCGTCTCCTCTTGAAATCCCCAAATTTGACCTTAATCCC CAAATCGTCTGCAGGGTGGTTAATGTCCAGTTGCTAATAAGGACACCGATGAGGTC TACACTCAAGTCACTCTGCTTCCACTTCAAGAGTTTTCGATGCTAAATGGGGAGGGGAAA GAGGTCAAGGAGTTAGGAGGGAGGAAGAGAGGAACGGAAGCTCATCCGTCAAGCGGACA CCTCATATGTTCTGTAAAACCTTAACAGCGTCTGACACAAGCACATGGAGGCTTCTCT TCTCAAGAGCTCATTGCAAAGGACCTCCATGGAGTAGAGTGGAAGTTTCGCCATATCTAT AATCTCGTCTCTGGTGATGCGGTTCTCTTTCTGAGAGACGAAGGAGGAGAGCTGAGATTA GGAATCAGAAGAGCACCACCAAGAAATGGACTTCCTGACTCAATCATTGAGAAGAAT TCATGTTCAAACATTCTGTCTCTTGTGGCTAATGCTGTATCTACAAAAAGCATGTTTCAT GTGTTCTACAGTCCACGAGCGACGCATGCAGAGTTTGTGATTCCTTATGAGAAGTATATC ACAAGCATCAGGAGTCCTGTTTGCATAGGCACAAGATTTAGAATGCGATTTGAAATGGAC GATTCTCCTGAGAGAGATGCGCTGGTGTAGTGACTGGAGTCTGTGACTTGGACCCGTAT AGGTGGCCAAACTCTAAATGGAGGTGCTTGTTGGTGCGATGGGATGAGTCTTTTGTGAGT GATCATCAAGAAAGAGTTTCACCTTGGGAGATTGATCCCTCGGTTTCTCTCCCACACTTG AGCATTCAGTCATCTCCAAGGCCTAAAAGGCCATGGGCAGGTTTACTGGATACTACCCCA CCCGGAAACCCCATAACAAAAAGGGGTGGTTTTTTGGACTTTGAGGAGTCGGTTAGACCC TCTAAGGTCTTGCAAGGTCAAGAAAATATAGGTTCTGCATCACCCTCACAGGGGTTTGAT GTTATGAACCGCCGGATACTGGATTTTGCGATGCAGTCTCATGCAAATCCAGTCCTTGTG TCGAGTAGAGTCAAGGATCGATTTGGTGAGTTTGTAGATGCTACTGGCGTGAACCCAGCT TGTTCAGGTGTTATGGACCTGGATAGGTTTCCAAGGGTCTTGCAAGGTCAAGAAATTTGC TCGCTTAAATCATTCCCGCAATTTGCTGGTTTCAGTCCAGCTGCTGCTCCTAATCCCTTT GCTTACCAAGCCAACAAGTCAAGTTACTATCCGCTAGCTTTGCATGGGATTAGGAGCACT CATGTTCCGTATCAGAATCCATACAATGCGGGAAACCAATCCTCGGGTCCCCCTTCACGT GCAATAAACTTTGGTGAAGAGACTAGAAAGTTTGATGCACAAAATGAAGGTGGCCTACCA AATAATGTTACAGCTGATTTGCCATTCAAGATTGATATGATGGGAAAACAGAAAGGCAGT GAGTTGAATATGAATGCTTCATCAGGATGTAAACTTTTCGGATTCTCCTTACCAGTGGAG ACACCTGCATCTAAGCCGCAAAGCTCGAGCAAAAGAATCTGTACAAAGGTTCACAAGCAA GGAAGCCAAGTGGGGAGAGCTATTGATTTGTCGCGACTTAACGGGTATGATGATCTCCTT ATGGAGCTTGAACGGCTGTTCAACATGGAAGGGCTTCTCAGGGATCCTGAAAAAGGATGG AGGATCTTATATACTGATAGTGAGAACGATATGATGGTCGTTGGCGATGATCCATGGCAT GATTTCTGCAATGTGGTGTGGAAGATACACTTATACACGAAAGAGGAAGTGGAGAATGCG AATGACGATAACAAGAGTTGTTTAGAGCAAGCTGCTCTCATGATGGAAGCATCAAAGTCA TCTTCTGTGAGCCAGCCTGATTCTTCTCCTACAATCACTAGGGTTTGATACCCATAAAGA AGCTTATTTCCTATGTTTTAAAGTGTGTTTTTGCTCACAAAAGAACTTCAACTTTATCTTT GTCTTTGAATCCATTTATGTGTTTGTTTTGTGTTTTCTTGTGTCTCCATGGATGTCTCATG TGTACCGTTTTACTCGAGAGATATGTGAGTTTATGGGATGTGTAAAGCATGCCATTGGAT Α

AGVVTGVCDLDPYRWPNSKWRCLLVRWDESFVSDHQERVSPWEIDPSVSLPHLSIQSSPR PKRPWAGLLDTTPPGNPITKRGGFLDFEESVRPSKVLQGQENIGSASPSQGFDVMNRRIL DFAMQSHANPVLVSSRVKDRFGEFVDATGVNPACSGVMDLDRFPRVLQGQEICSLKSFPQ FAGFSPAAAPNPFAYQANKSSYYPLALHGIRSTHVPYQNPYNAGNQSSGPPSRAINFGEE TRKFDAQNEGGLPNNVTADLPFKIDMMGKQKGSELNMNASSGCKLFGFSLPVETPASKPQ SSSKRICTKVHKQGSQVGRAIDLSRLNGYDDLLMELERLFNMEGLLRDPEKGWRILYTDS ENDMMVVGDDPWHDFCNVVWKIHLYTKEEVENANDDNKSCLEQAALMMEASKSSSVSQPD SSPTITRV*

>G2295 (33..917)

GTAATATAACAATAACTCAGGTTACAAAGGATGGTTCCGAAAGTGGTCGACCTACAAA GGATAGCGAACGATAAGACAAGGATAACAACTTACAAGAAGAGGAAAGCTAGTCTTTACA AGAAGGCACAAGAGTTCTCAACTCTCTGCGGCGTCGAGACATGTCTCATCGTCTACGGTC CCACGAAGGCTACCGATGTGGTGATTTCCGAGCCAGAGATATGGCCGAAGGACGAGACCA CCAACGTGGAGACTTTCGTCAACGATGTAGGGAAAGGAAACGAGGTGGTGACTAAAAAGA GAGTGAAGCGTGAGAATAAGTATTCTAGTTGGGAGGAGAAGCTAGACAAGTGTTCACGAG AGCAACTACATGGGATTTTCTGTGCCGTGGATAGCAAGTTAAATGAAGCTGTAACGAGAC AGGAGCGTAGTATGTTTAGGGTTAATCATCAAGCCATGGACACACCATTCCCGCAGAATT TAATGGACCAACAATTCATGCCACAGTATTTTCATGAGCAGCCACAGTTTCAAGGCTTCC CTAATAATTTCAATAATATGGGTTTCTCGTTGATTTCACCTCATGATGGTCAGATTCAAA TGGACCCAAATCTCATGGAGAAGTGGACCGACTTGGCTTTGACTCAAAGCTTGATGATGT CAAAGGGAAACGATGGTACTCAATTCATGCAGAGGCAAGAACAACCATACTATAATCGTG AACAGGTTGTATCGAGGTCTGCAGGTTTCAATGTTAACCCGTTTATGGGATATCAAGTCC ${\tt CGTTTAATATTCCTAATTGGAGATTATCGGGAAATCAAGTTGAAAATT\underline{GGGAGCTTTCAG}$ $\tt GGAAGAAAACGATATGATTTGAATTACGGAGCTTTATTAGTTTTTAGGGTTTTATAGTTT$

>G2295 Amino Acid Sequence (domain in AA coordinates: TBD)
MVPKVVDLQRIANDKTRITTYKKRKASLYKKAQEFSTLCGVETCLIVYGPTKATDVVISE
PEIWPKDETKVRAIIRKYKDTVSTSCRKETNVETFVNDVGKGNEVVTKKRVKRENKYSSW
EEKLDKCSREQLHGIFCAVDSKLNEAVTRQERSMFRVNHQAMDTPFPQNLMDQQFMPQYF
HEQPQFQGFPNNFNNMGFSLISPHDGQIQMDPNLMEKWTDLALTQSLMMSKGNDGTQFMQ
RQEQPYYNREQVVSRSAGFNVNPFMGYQVPFNIPNWRLSGNQVENWELSGKKTI*
>G312 (1..1755)

ATGGCTTACATGTGCACTGATAGTGGCAATCTAATGGCTATTGCTCAACAAGTCATCAAA CAGAAGCAGCAACAACAACAACAGCAGCAACATCATCAAGACCATCAGATTTTTGGT ATTAATCCTTTGTCTCTTAACCCATGGCCCAATACTTCCCTCGGGTTTGGGCTTTCAGGT TCGGCTTTTCCCGACCCGTTTCAAGTTACCGGCGGCGGAGATTCCAACGATCCTGGCTTT CCTTTTCCTAACTTAGACCACCACCACGCCACACCACCGGCGGTGGGTTCAGGTTATCT ATCAGCGGTGGAGACTCCGTTGCAGACGGTCCTGATTGTGACACCTGGCATGATAATCCC GATTACGTAATCTACGGTCCTGATCCATTCGATACTTACCCGAGTCGACTCAGTGTCCAA ${\tt CCGTCAGATCTAAACCGAGTCATTGACACGTCGAGTCCGCTTCCTCCGCCGACCTTGTGG}$ CCAGAGACTAACGACTCCGAAGACGATGACTTCGACCTAGAACCACCTCTCCTCAAAGCT ATATACGACTGTGCACGGATCTCAGACTCTGACCCTAACGAAGCTTCCAAGACGCTTCTT CAGATCCGAGAATCTGTATCGGAGCTAGGTGATCCGACGGAGCGAGTTGCATTTTACTTC ACGGAAGCTCTCTCCAACAGACTGTCTCCTAATTCGCCGGCGACGTCGTCTTCTTCTA TCTACGGAGGATTTAATCTTATCTTATAAAACCCTAAACGACGCTTGTCCTTACTCCAAA TTCGCACATTTGACGGCGAATCAAGCGATTCTAGAAGCGACGGAGAAGTCGAACAAGATT CACATCGTCGATTTTGGAATCGTTCAAGGTATACAATGGCCTGCTCTTCTTCAAGCTCTA ${\tt GCTACTCGTACTTCTGGTAAACCCACTCAAATCCGGGTCTCGGGTATACCCGCTCCATCT}$ CTCGGTGAATCTCCGGAACCGTCGTTAATCGCCACCGGAAACCGCCTCCGTGATTTCGCC AAGGTTCTGGATCTGAATTTCGATTTCATCCCAATTCTCACTCCCATACATTTACTTAAC GGGTCAAGTTTCCGGGTCGACCCGGATGAAGTACTGGCCGTGAATTTCATGCTCCAGCTC TACAAATTACTCGACGAGACGCCGACGATAGTTGACACCGCACTACGGCTCGCCAAATCG TTGAACCCGAGGGTCGTCACTCTCGGAGAATACGAAGTGAGCTTAAACCGGGTCGGTTTC GCTAACCGGGTAAAGAACGCGCTTCAATTCTATTCCGCGGTTTTCGAATCCCTTGAACCG

>G312 Amino Acid Sequence (domain in AA coordinates: 320-336)
MAYMCTDSGNLMAIAQQVIKQKQQQEQQQQQHHQDHQIFGINPLSLNPWPNTSLGFGLSG
SAFPDPFQVTGGGDSNDPGFPFPNLDHHHATTTGGGFRLSDFGGGTGGGEFESDEWMETL
ISGGDSVADGPDCDTWHDNPDYVIYGPDPFDTYPSRLSVQPSDLNRVIDTSSPLPPPTLW
PPSSPLSIPPLTHESPTKEDPETNDSEDDDFDLEPPLLKAIYDCARISDSDPNEASKTLL
QIRESVSELGDPTERVAFYFTEALSNRLSPNSPATSSSSSSTEDLILSYKTLNDACPYSK
FAHLTANQAILEATEKSNKIHIVDFGIVQGIQWPALLQALATRTSGKPTQIRVSGIPAPS
LGESPEPSLIATGNRLRDFAKVLDLNFDFIPILTPIHLLNGSSFRVDPDEVLAVNFMLQL
YKLLDETPTIVDTALRLAKSLNPRVVTLGEYEVSLNRVGFANRVKNALQFYSAVFESLEP
NLGRDSEERVRVERELFGRRISGLIGPEKTGIHRERMEEKEQWRVLMENAGFESVKLSNY
AVSQAKILLWNYNYSNLYSIVESKPGFISLAWNDLPLLTLSSWR*

>G1444 (192..1001)

GACACGCTGACAAGCTGACTCTAGCATATCTGGCACCGGCGACCAGTCCTTCTTTGGTGC AAAGATCCCAAAAAATCAAAATCGAAAGAGAGAATAAATCAAAAGGAAGAATCTTTATCT GCTTTCTCTCGATGAGGATCCGGAAACGACAAGTGCCTCTTCCTTTATCGTCTCTATTAC CAGTTCCTCTATCAGATCTCTACTTTAACCGCTCACCGACGGCCACCGCGAGATACTTTC GCGGTGGTTATAAAGACGGCGGTGATGATTTTTGGTTCTCTTCAGCTTTCGCTTCCGCCGC CGTCGCAGATTTCTGATCGGCTTATTCAAAGAGATTTGATAAAGAAGAAGGAGGAGGTCA AGGCTTTGGATGATGATGTGATGTAGACGTCAAGAGTCGTACTGATGCATCGGGCA GCAAGAATGTTAATCCCCGAGGAGAATCCGTCTCTTCAATACAAGTTGTCGAGAAGAATG AAAAGGTTGTGTCTTTGAGGAAGAGAGAGGCTTTATCAACTTTGAGGATTACGAAGATG AAAAGAGCGGTGGTGGGTTAGAGGAAGGATCACGGTGCAGCCGTGTTAACGGTAGAGGAT GGAGATGTTGTCAGCAAACGCTTGTTGGTTATTCTCTTTTGTGAGCATCATCTCGGTAAAG GAAGGGTAAGGAGCATGAACAAGAGTGGTGGTGGTGGTGGCGGCGAGAAAAAAGGCGGTGG TGGTGGAAGTGAAGAAGAAGAGTAAAGCTTGGCATGGTAAAGGCACGTTCAATAAGTA GTTTGCTTGGACAAACCAGCACTAGTGGTGGTACTAGTGGTGATGTTGATCAGGGTGAGA TAAGTGCACCTGCTGATCAGTTCGCTGCATGTGATAAGTAGGTCTGTTGATCAGCATTTG CATGTATATGGATATGTGTATGTTATGTACATGATGATAATGGGCATAGCGCGGCCGCT ${\tt CTAGACAGGCCTGGAACCGGATCCTCTAGCTAGAGCTTTCGTTAGTATCATCGGGTTTAG}$

>G1444 Amino Acid Sequence (domain in AA coordinates: 168-193)
MRIRKRQVPLPLSSLLPVPLSDLYFNRSPTATARYFRGGYKDGGDDFGSLQLSLPPPSQI
SDRLIQRDLIKKKEEVKALDDDNGDVDVKSRTDASGSKNVNPRGESVSSIQVVEKNEKVV
SLRKRRGFINFEDYEDEEDEEASGGGGRINKGKKKAKKSGGGLEEGSRCSRVNGRGWRCC
QQTLVGYSLCEHHLGKGRVRSMNKSGGGRGGEKKAVVVEVKKKRVKLGMVKARSISSLLG
QTSTSGGTSGDVDQGEISAPADQFAACDK*

>G801 (27..746)

GATAGTGATAACGAAATCCTAATTCCATGGCCGACAACGACGAGCAGTGAGTAACGGCA
TCATAGTCGAGCAGACGTCAAACAAAGGACCTCTTAACGCCGTTAAGAAACCACCGTCTA
AAGATCGACACAGCAAAGTTGACGGAAGAGGAAGAAGGATTCGTATGCCAATCATTTGCG
CAGCTCGAGTTTTTCAATTGACCAGAGAGTTAGGTCACAAGTCCGATGGTCAAACCATAG
AGTGGCTTCTCCGTCAAGCTGAGCCTTCTATCATAGCCGCCACTGGAACTGGCACTACTC
CGGCGAGTTTCTCCACTGCTTCTCTCTCCACTTCTTCTCCGTTTACTCTCGGGAAACGTG
TCGTCAGAGCGGAGGAAGGAGAATCCGGCGGCGGAGGAGGAGGAGGGTTAACAGTGGGAC
ACACAATGGGGACTTCGTTAATGGGTGGTGGTTCTGGTGGGTTTTTGGGCTGTTCCGG
CGAGGCCGGATTTCGGACAAGTCTGGAGCTTTCGAACCGGAGCTCCACCGGAAATGGTTT
TTGCGCAGCAGCAGCAACCAGCTACACTCTTCGTCCGCCACCAGCAGCAACAGCAAGCTT
CCGCCGCCGCAGCAGCAGCTACAATTGCTTCTTTTGTCTGGTGGAGCTAACGGGTCGGA

PCT/US02/25805

>G801 Amino Acid Sequence (domain in AA coordinates: 32-93)
MADNDGAVSNGIIVEQTSNKGPLNAVKKPPSKDRHSKVDGRGRRIRMPIICAARVFQLTR
ELGHKSDGQTIEWLLRQAEPSIIAATGTGTTPASFSTASLSTSSPFTLGKRVVRAEEGES
GGGGGGGLTVGHTMGTSLMGGGGSGGFWAVPARPDFGQVWSFATGAPPEMVFAQQQQPAT
LFVRHQQQQQASAAAAAAMGEASAARVGNYLPGHHLNLLASLSGGANGSGRREDDHEPR*
>G1950 (42..764)

>G1950 Amino Acid Sequence (domain in AA coordinates: 65-228)
MEIATDTAKQMRDEELFKAAEWGDSSLFMSLSEEQLSKSLNFRNEDGRSLLHVAASFGHS
QIVKLLSSSDEAKTVINSKDDEGWAPLHSAASIGNAELVEVLLTRGADVNAKNNGGRTAL
HYAASKGRLEIAQLLLTHGAKINITDKVGCTPLHRAASVGKLEVCEFLIEEGAEIDATDK
MGQTALMHSVICDDKQVAFLLIRHGADVDVEDKEGYTVLGRATNEFRPALIDAAKAMLEG

>G958 (55..1950)

CGTCGACATGTTCATATTTGTTTCTAGCTAAGAAGTTTGTATAAGGCAGTGGACATGGCT CCTGTTTCAATGCCTCCAGGTTTCCGGTTTCATCCAACAGACGAAGAGCTTGTCATATAC TACCTCAAGCGAAAGATTAATGGTCGGACTATTGAGTTAGAGATAATACCCGAGATTGAT CTTTACAAATGCGAACCTTGGGATTTACCTGGGAAGTCCTTGCTGCCAAGTAAAGACCTA GAATGGTTCTTTTCAGTCCTCGAGACCGGAAATATCCAAACGGATCAAGAACAAACCGG GCGACCAAAGCAGGTTACTGGAAAGCCACCGGGAAAGATCGTAAAGTGACTTCACATTCA CGGATGGTTGGAACAAAGAAAACATTAGTTTATTACCGAGGAAGAGCGCCTCATGGCTCT CGTACCGATTGGGTCATGCACGAGTACCGTCTTGAAGAACAAGAATGTGACTCTAAATCC GGTATACAGGATGCCTATGCACTTTGTCGAGTATTTAAGAAGAGTGCTTTAGCCAACAAA ATTGAAGAACAACACGATGGTACGAAGAAGAACAAAGGAACGACTAATAGTGAACAATCT ACTTCTAGTACTTGTTTGTATTCTGATGGAATGTATGAAAACCTCGAAAACTCGGGGTAT CCAGTCTCACCTGAGACAGGAGGCTTAACTCAACTCGGTAATAATTCGTCGTCGGATATG GAAACGATAGAGAATAAATGGAGTCAGTTTATGTCGCATGACACGTCCTTCAACTTCCCA CCTCAGTCTCAATATGGAACAATCTCATATCCTCCCTCGAAGGTTGATATAGCGTTAGAG TGTGCAAGACTACAAAATCGTATGTTGCCACCAGTACCACCACTTTACGTAGAAGGTCTC ACACACATGAATATTTTGGAAACAATGTAGCTAACGATACAGATGAAATGTTGAGCAAG ATTATAGCATTGGCTCAAGCCTCACATGAGCCACGAAACAGTCTAGACTCATGGGACGGT GGTTCTGCTTCCGGGAACTTCCATGGAGACTTTAACTATTCCGGAGAAAAAGTCTCATGC CTAGAGGCGAACGTGGAGGCTGTAGATATGCAAGAACACCATGTGAATTTTAAGGAAGAA GTTGAAGAACACTCAACGGTAATTCCTATAGAAGATATTTGGAGATATCATAATGATAAT CAAGAACAAGAACATCATGATCAAGATGGTATGGACGTTAACAACAACAATGGAGATGTG GATGATGCTTTCACACTCGAGTTTTCGGAAAACGAACATAACGAGAATCTTTTGGACAAG AACGATCATGAGACAACGAGTTCCTCATGTTTTGAGGTGGTAAAAAAAGTTGAGGTTAGC CATGGATTGTTTGTCACAACTCGTCAGGTAACCAACACATTCTTCCAACAGATAGTACCA TCGCAAACCGTTATAGTTTATATAAATCCGACGGATGGCAATGAGTGTTGTCATAGTATG ACATCAAAAGAGGAGGTTCATGTCCGTAAAAAGATAAATCCGCGAATCAACGGAGTAAGC TCAACAGTTCTTGGACAATGGAGAAAATTCGCGCATGTTATTGGCTTCATTCCTATGCTT CTATTGATGCGTTGTTCATCGAGGTAACTCTAACAAAAACAGAGGCAGTGAAGGTTAC TCGAGGCAGCCTACGAGAGGAGATTGTAACAATCGGGGAACAATACTCATGATGGAAAAT GGTTTTCGGTTTCAAGATAGTTTCGTATTGAAGAAGTTGGGGCTTTCTCTTTGCTATCATC TTAGCTGTTTCTACCATAAGTCTTATTTGAATACTGAGGTTCAATATATCATATATGGCT TTTCACTTTTCTATTGTACTCCCATTTGCCTAGGTCGTATGC

>G958 Amino Acid Sequence (conserved domain in AA coordinates:7-156) MAPVSMPPGFRFHPTDEELVIYYLKRKINGRTIELEIIPEIDLYKCEPWDLPGKSLLPSK DLEWFFFSPRDRKYPNGSRTNRATKAGYWKATGKDRKVTSHSRMVGTKKTLVYYRGRAPH GSRTDWVMHEYRLEEOECDSKSGIODAYALCRVFKKSALANKIEEOHHGTKKNKGTTNSE OSTSSTCLYSDGMYENLENSGYPVSPETGGLTOLGNNSSSDMETIENKWSQFMSHDTSFN FPPOSOYGTISYPPSKVDIALECARLONRMLPPVPPLYVEGLTHNEYFGNNVANDTDEML SKIIALAQASHEPRNSLDSWDGGSASGNFHGDFNYSGEKVSCLEANVEAVDMQEHHVNFK EERLVENLRWVGVSSKELEKSFVEEHSTVIPIEDIWRYHNDNQEQEHHDQDGMDVNNNNG DVDDAFTLEFSENEHNENLLDKNDHETTSSSCFEVVKKVEVSHGLFVTTRQVTNTFFQQI VPSQTVIVYINPTDGNECCHSMTSKEEVHVRKKINPRINGVSSTVLGQWRKFAHVIGFIP MLLLMRCVHRGNSNKNRGSEGYSRQPTRGDCNNRGTILMMENAVVRRKIWKKKKEKNMVD EOGFRFQDSFVLKKLGLSLAIILAVSTISLI*

>G1037 (1..1722)

ATGACTGTTGAACAAAATTTAGAAGCTTTGGATCAGTTTCCTGTAGGAATGAGAGTTCTT GCTGTTGATGATGACCAAACTTGTCTCAAAATCCTTGAATCTCTCCTTCGTCACTGCCAA TACCATGTAACAACGACGAACCAAGCACAAAAGGCTTTAGAGTTATTGAGAGAACAAG CTTGAGCTTGTTGGTCTTGAAATGGACCTACCTGTCATAATGTTGTCTGCGCATAGTGAT CCAAAGTATGTGATGAAGGGAGTTACTCATGGTGCTTGTGATTATCTACTGAAGCCGGTT CGTATTGAGGAGTTGAAGAACATATGGCAACATGTCGTGAGAAGTAGATTTGATAAGAAC CGTGGGAGTAATAATGGTGATAAGAGAGATGGATCAGGTAATGAAGGTGTTGGGAAT TCTGATCCGAACAATGGGAAAGGTAATAGAAAACGTAAAGATCAGTATAATGAAGATGAG GATGAGGATAGAGATGATGATGATTCGTGTGCTCAAAAGAAGCAACGTGTTGTTTGG ACTGTTGAGCTGCATAAGAAATTTGTTGCAGCTGTTAACCAATTGGGATATGAGAAGGCT ATGCCTAAAAAGATTTTGGATCTGATGAATGTTGAGAAGCTCACTAGAGAAAATGTGGCC AGTCATCTTCAGAAATTCCGCCTTTACTTGAAGAGGATCAGTGGTGTGGCTAATCAGCAA CACCGCCCAATCCCTGTTGGATCTGGTCAGTACCATGGTGGGGCTCCTGCAATGAGATCT TTCCCTCCAAACGGGATTCTTGGCAGACTCAATAGCTCTTCGGGGGATCGGTGTCCGCAGC CTTTCTTCTCCTCCTGCAGGAATGTTCTTGCAAAACCAGACCGATATCGGAAAGTTTCAC CATGTCTCATCACTTCCTTAACCACAGTGATGGAGGAAACATACTTCAAGGGTTGCCA ATGCCTTTAGAGTTCGACCAGCTTCAGACAAACAACAACAAAAGTAGAAACATGAACAGT AACAAGAGCATTGCTGGGACCTCCATGGCTTTTCCTAGCTTCTCTACGCAACAAAACTCG CTCATCAGTGCTCCTAATAACAATGTCGTGGTTCTAGAAGGTCACCCACAAGCAACTCCT CCAGGCTTCCCAGGACACCAGATCAATAAACGTTTGGAGCATTGGTCAAATGCTGTATCC GTCTCTCCATTACCGCATTCTAGACCCGACCCCTTGGAATGGAACAATGTGTCATCAAGC TACTCTATACCATTCTGTGACTCTGCCAATACATTGAGTTCTCCAGCCTTGGATACAACA AATCCCCGAGCTTTCTGTAGAAACACGGACTTCGATTCAAACACAAATGTGCAACCTGGA GTCTTTTATGGTCCATCCACGGATGCTATGGCTCTGTTGAGTAGTAGTAACCCGAAAGAA GGGTTCGTCGTAGGCCAACAGAAGTTACAGAGTGGTGGATTCATGGTTGCAGATGCTGGT TCCTTAGATGATATAGTCAACTCCACGATGAAGCAGGTGTGA

>G1037 Amino Acid Sequence (domain in AA coordinates: 11-134, 200-248) ${\tt MTVEQNLEALDQFPVGMRVLAVDDDQTCLKILESLLRHCQYHVTTTNQAQKALELLRENK}$ NKFDLVISDVDMPDMDGFKLLELVGLEMDLPVIMLSAHSDPKYVMKGVTHGACDYLLKPV ${\tt RIEELKNIWQHVVRSRFDKNRGSNNNGDKRDGSGNEGVGNSDPNNGKGNRKRKDQYNEDE}$ DEDRDDNDDSCAQKKQRVVWTVELHKKFVAAVNQLGYEKAMPKKILDLMNVEKLTRENVA

SHLQKFRLYLKRISGVANQQAIMANSELHFMQMNGLDGFHHRPIPVGSGQYHGGAPAMRS FPPNGILGRLNSSSGIGVRSLSSPPAGMFLQNQTDIGKFHHVSSLPLNHSDGGNILQGLP MPLEFDQLQTNNNKSRNMNSNKSIAGTSMAFPSFSTQQNSLISAPNNNVVVLEGHPQATP PGFPGHQINKRLEHWSNAVSSSTHPPPPAHNSNSINHQFDVSPLPHSRPDPLEWNNVSSS YSIPFCDSANTLSSPALDTTNPRAFCRNTDFDSNTNVQPGVFYGPSTDAMALLSSSNPKE GFVVGQQKLQSGGFMVADAGSLDDIVNSTMKQV*

>G2065 (33..1124)

AACCACAAAACAAAACAAAAAAAAACATATTGATGGGGATGAAGAAGGTAAAGCTATCTT TGATAGCTAATGAAAGATCAAGGAAAACATCCTTCATGAAGAGGAAAAACGGGATATTCA AGAAACTCCACGAGTTGTCAACTCTATGTGGTGTCCAAGCTTGTGCTCTCATCTATAGTC CATTCATACCGGTTCCAGAGTCATGGCCGTCAAGGGAAGGTGCTAAAAAGGTAGCTTCAA AGTTTCTGGAGATGCCGCGGACCGGACCAGGAAGATGATGGATCAAGAAACCCATC TTATGGAGAGGATTACCAAAGCAAAAGAGCAACTAAAGAATTTGGCTGCTGAGAACCGAG **AATTACAGGTTAGACGATTTATGTTTGATTGTTGAAGGCAAAATGTCCCAGTATCGTT ATGATGCAAAAGACCTTCAAGATTTGCTATCTTGTATGAATCTATATCTCGATCAGCTTA** ACGGAAGGATCGAGTCCATTAAAGAAAACGGTGAGTCGTTGTTGTCTTCCGTCTCTCTT TTCCTACTAGAATTGGTGTTGACGAAATTGGTGATGAGTCGTTTTCCGACTCTCCTATTC ATTCTACAACTAGGGTTGTAGATACTCCTAATGCTACCAATCCTCATGTTCTTGCGGGCG ATATGACTCCTTTTCTTGATGCGGACGCAAATGCGGTAACTGCTCCCAGTCGATTTTCTG ATCATATTCAATATGAAAATATGAATATGAGTCAAAATCTGCATGAACCGTTTCAACACC TTGTTCCTACTAACGTTTGTGATTTTTATCAAAATCAGAATATGAATCAGGTTCAATACC AGGCTCCTAATAATCTGTTTAATCAGATTCAACGAGAATTCTACAACATAAATTTGAATC TGGTGGAACAACATATGAATCATGTTGGAGGGCGTGAAAGCATTCCTTTCGTGGACAGAA ACTACTACAACTACAATCAACTACCAGCCGTTGATCTTGCTTCCACCAGTTACATGCCTT CAACCACCGATGTTTATGATCCTTACATCAACAACAATCTCTAATCACAAAAGACGGAGA TTTTCTAGTTTAA

>G2065 Amino Acid Sequence (domain in AA coordinates: TBD)
MGMKKVKLSLIANERSRKTSFMKRKNGIFKKLHELSTLCGVQACALIYSPFIPVPESWPS
REGAKKVASKFLEMPRTARTRKMMDQETHLMERITKAKEQLKNLAAENRELQVRRFMFDC
VEGKMSQYRYDAKDLQDLLSCMNLYLDQLNGRIESIKENGESLLSSVSPFPTRIGVDEIG
DESFSDSPIHSTTRVVDTPNATNPHVLAGDMTPFLDADANAVTAPSRFSDHIQYENMNMS
QNLHEPFQHLVPTNVCDFYQNQNMNQVQYQAPNNLFNQIQREFYNINLNLNLNLNSNQYL
NQQQSFMNPMVEQHMNHVGGRESIPFVDRNYYNYNQLPAVDLASTSYMPSTTDVYDPYIN
NNL*

>G2137 (77..1123)

GGGATTTGACTTTAGCACTTCAAAATCCAAAGCTAAAAGACAAAAAAGAATAGAGGTTCG ATTTGCATCTCCATTAATGGGCATCGATCTTTCTCTTAAGCTCGAGGCCGAGGAGAAAAA GAAAGAGATAGAAGGATCGAAACATAGCCGTGAGAACAAGAAGAAGAAGAACATGATGC TAGTGGTGATGAAGATGAACAAATGGTGAAAGAAGACGAAGATGATTCTTCTTCTTTAGG TTTAAGAACCCGAGAAGAAGAAAACGAACGTGAAGAGCTCTTGCAGCTACAGATCCAGAT GGAAAGTGTGAAAGAAGAGAATACTAGGTTGAGGAAGCTTGTCGAGCAGACTCTTGAAGA TTATCGTCATCTTGAGATGAAATTCCCGGTTATCGATAAAACCAAGAAGATGGATCTTGA AATGTTCCTTGGAGTACAAGGCAAACGATGTGTGGGATATAACAAGTAAGGCTCGGAAAAG AGGAGCTGAGAGATCTCCGTCAATGGAAAGAGAAATAGGGCTTTCACTTTCTCTAGAGAA AAAACAGAACAAGAAGAGCAAAGAAGCTGTTCAGTCTCATCACCAAAGATACAATAG TAGCAGCTTAGATATGAATATGCCACGTATCATTTCATCTTCTCAAGGTAATAGAAAGGC GAAGTACGGTCAGAAAACCGCGAAAGGGAATCCATGTCCTCGAGCTTATTACCGATGCAC CGTGGCTCCAGGATGTCCCGTTAGAAAACAGGTGCAAAGGTGTTTAGAAGACATGTCAAT ACTGATAACAACCTACGAAGGAACACATAACCATCCACTTCCGGTCGGAGCAACAGCCAT GGCTTCCACTGCCTCTACTTCTCCATTCTTGTTACTCGATTCCAGTGACAACCTCTCTCA TCCTTCCTATTACCAAACTCCTCAAGCCATAGACTCTTCTTTGATTACATACCCACAAAA TAGCAGCTACAACAATCGAACCATAAGAAGCTTGAACTTTGATGGTCCATCTAGAGGAGA TCACGTTTCATCTCCAAAACCGATTAAATTGGATGATGTAGAGTTTCCTATATCTCTA TGCTTGTTCTTTGGTCCCATTATTTGTCATTATGGATTCTTTGCCTTTCTTCTTGTTCTC GTTTCTAACATTTATGTTTCGTATA

>G2137 Amino Acid Sequence (conserved domain in AA coordinates:109-168) MGIDLSLKLEAEEKKKEIEGSKHSRENKEDEEHDASGDEDEQMVKEDEDDSSSLGLRTRE EENEREELLQLQIQMESVKEENTRLRKLVEQTLEDYRHLEMKFPVIDKTKKMDLEMFLGV OGKRCVDITSKARKRGAERSPSMEREIGLSLSLEKKQKQEESKEAVQSHHQRYNSSSLDM NMPRIISSSQGNRKARVSVRARCETATMNDGCQWRKYGQKTAKGNPCPRAYYRCTVAPGC PVRKQVQRCLEDMSILITTYEGTHNHPLPVGATAMASTASTSPFLLLDSSDNLSHPSYYQ TPQAIDSSLITYPQNSSYNNRTIRSLNFDGPSRGDHVSSSQNRLNWMM* >G746 (1..1311)

ATGGGTGAGGAGTTAGCTGACACAATGAACCTGGATTTGAATCTTGGGCCTGGTCCTGAG TCTGATCTCCAACCTGCACCAAACGAGACTGTGAATTTGGCTGATTGGACTAATGACCCG CCTGAGAGATCTTCTGAAGCTGTGACAAGGATCAGGACTCGGCATAGGACACGGTTCAGA CAGCTTAATCTCCCGATCCCGGTTCTATCTGAAACCCATACCATGGCTATAGAGCTCAAC CAGTTGATGGGAAATTCTGTAAATAGAGCTGCTATGCAGACTGGTGAGGGTAGTGAAAGA GGCAATGAGGATTTGAAAATGTGTGAGAATGGCGATGGAGCCCTTGGGGACGGTGTATTG GATAAGAAAGCGGATGTCGAGAAAAGCAGTGGCAGCGACGGTAACTTTTTCGATTGTAAT ATATGTTTGGATTTGTCGAAGGAGCCGGTTCTCACCTGTTGTGGTCATCTTTACTGTTGG CCTTGTCTGTACCAATGGTTACAAATTTCGGATGCAAAGGAATGTCCTGTTTGTAAAGGA GAGGTGACCTCCAAAACCGTGACACCGATCTATGGACGTGGAAACCACAAGAGAGAAATT GAAGAGAGTTTAGATACTAAGGTCCCCATGAGACCACACGCGAGACGCATTGAGAGCTTG AGGAATACAATTCAAAGGTCGCCTTTTACAATACCAATGGAAGAAATGATTAGACGTATA CAGAATAGGTTTGACAGGGATTCAACCCCAGTCCCTGATTTTAGTAACCGAGAGGCATCA GAAAGAGTCAACGATCGAGCCAATTCGATCCTTAACCGGTTGATGACATCTAGGGGAGTT AGATCAGAGCAGAACCAGGCTAGTGCTGCAGCAGCAGCATTGTCGCAGCATCAGAGGAT ATTGATCTAAATCCAAACATTGCTCCTGATCTTGAAGGAGAAAGCAACACGAGATTCCAT ${\tt CCTCTCTTGATCAGGAGACAGTTACAGTCGCACCGAGTTGCAAGGATCTCGACTTTCACT}$ TCTGCGTTGAGTTCAGCTGAGAGGCTTGTGGATGCGTATTTTAGGACTCATCCGTTGGGG AGGAACCACCAAGAGCAAAACCATCATGCTCCTGTTGTGGTTGATGATAGAGACTCATTC TCAAGCATTGCAGCTGTTATAAACTCTGAGAGTCAAGTGGATACTGCAGTTGAGATCGAT TCTATGGCTCTTTCGACATCGTCCTCGAGGAGAAGGAATGAGAATGGTTCGAGGGTTTCT GATGTAGACAGTGCAGATTCTCGTCCGCCTAGGAGAAGGAGATTTACTTGA

>G746 Amino Acid Sequence (domain in AA coordinates: 139-178) ${\tt MGEELADTMNLDLNLGPGPESDLQPAPNETVNLADWTNDPPERSSEAVTRIRTRHRTRFR}$ QLNLPIPVLSETHTMAIELNQLMGNSVNRAAMQTGEGSERGNEDLKMCENGDGALGDGVL DKKADVEKSSGSDGNFFDCNICLDLSKEPVLTCCGHLYCWPCLYQWLQISDAKECPVCKG EVTSKTVTPIYGRGNHKREIEESLDTKVPMRPHARRIESLRNTIQRSPFTIPMEEMIRRI ONRFDRDSTPVPDFSNREASERVNDRANSILNRLMTSRGVRSEQNQASAAAAAIVAASED IDLNPNIAPDLEGESNTRFHPLLIRROLOSHRVARISTFTSALSSAERLVDAYFRTHPLG RNHQEQNHHAPVVVDDRDSFSSIAAVINSESQVDTAVEIDSMALSTSSSRRRNENGSRVS DVDSADSRPPRRRRFT*

>G2701 (46..837)

 $\tt CCATTCTCTCACCTACCTATCTCTGACCACCGGTTCGTTGTTCAAGAGATGGTGAGCTTA$ ${\tt CACAGCTCGAGTAGCGGTAGCTGGACTAAAGAAGAAGAAGATGTTCGAACGAGCTCTT}$ GCGATATACGCTGAAGACTCGCCTGATCGCTGGTTTAAAGTTGCTTCCATGATCCCTGGA AAGACTGTTTTTGATGTTATGAAGCAATATAGTAAGCTTTGAAGAAGACGTTTTCGATATT GAAGCAGGACGTGTTCCCATTCCTGGTTATCCTGCAGCTTCTTCTCCCTTGGGGTTTGAC GGAGTCCCTTGGACAGAGAAGAACACAGGAGATTCTTGTTAGGCCTTCTCAAGTACGGT AAAGGAGATTGGAGAAACATATCGAGAAACTTCGTGGTGTCAAAGACGCCAACGCAAGTG GCGAGCCACGCCAAAAGTATTACCAGAGACAGCTCTCCGGAGCCAAGGACAAACGCAGG CCAAGTATCCATGACATCACAACCGGCAATCTTCTCAATGCCAATCTCAACCGTTCCTTT TCCGATCATAGAGATATTCTCCCTGATTTAGGGTTTATCGATAAGGATGATACGGAGGAG GGAGTAATATTTATGGGTCAGAATCTCTCTTCAGAAAATCTGTTTTCTCCATCACCAACT TCATTCGAAGCTGCCATTAACTTCGCCGGAGAAAATGTCTTCAGTGCCGGAGCTTAAGGC AACATAGAATCCCCAAACTCAGCGGC

>G2701 Amino Acid Sequence (domain in AA coordinates: 33-81, 129-183) METLHPFSHLPISDHRFVVQEMVSLHSSSSGSWTKEENKMFERALAIYAEDSPDRWFKVA

SMIPGKTVFDVMKQYSKLEEDVFDIEAGRVPIPGYPAASSPLGFDTDMCRKRPSGARGSD QDRKKGVPWTEEEHRRFLLGLLKYGKGDWRNISRNFVVSKTPTQVASHAQKYYQRQLSGA KDKRRPSIHDITTGNLLNANLNRSFSDHRDILPDLGFIDKDDTEEGVIFMGQNLSSENLF SPSPTSFEAAINFAGENVFSAGA*

>G1819 (1..639)

ATGGAAGAGAACAACGGCAACAACAACCACTACCTGCCGCAACCATCGTCTTCCCAACTG
CCGCCGCCACCATTGTATTATCAATCAATGCCGTTGCCGTCATATTCACTGCCGCTGCCG
TACTCACCGCAGATGCGGAATTATTGGATTGCGCAGATGGGAAACGCAACTGATGTTAAG
CATCATGCGTTTCCACTAACCAGGATAAAGAAAATCATGAAGTCCAACCCGGAAGTGAAC
ATGGTCACTGCAGAGGCTCCGGTCCTTATATCGAAGGCCTGTGAGATGCTCATTCTTGAT
CTCACAATGCGATCGTGGCTTCATACCGTGGAGGCCGGTCGCCAAACTCTCAAGAGATCC
GATACGCTCACGAGATCCGATATCTCCGCCGCAACGACTCGTAGTTTCAAATTTACCTTC
CTTGGCGACGTTGTCCCAAGAGACCCTTCCGTCGTTACCGATGATCCCGTGCTACATCCG
GACGGTGAAGTACTTCCTCCGGGAACGGTGATACCGGTGTTTGATTGTAATGGT
GTGTACGCGTCACCGCCACAGATGCAGGAGTGGCCGGCGGTGCCTGGTGACGGAGAGGAG
GCAGCTGGGGAAATTGGAGGAACCAGCGCGGTTAATTGA

>G1819 Amino Acid Sequence (domain in AA coordinates: 46-188)
MEENNGNNNHYLPQPSSSQLPPPPLYYQSMPLPSYSLPLPYSPQMRNYWIAQMGNATDVK
HHAFPLTRIKKIMKSNPEVNMVTAEAPVLISKACEMLILDLTMRSWLHTVEGGRQTLKRS
DTLTRSDISAATTRSFKFTFLGDVVPRDPSVVTDDPVLHPDGEVLPPGTVIGYPVFDCNG
VYASPPQMQEWPAVPGDGEEAAGEIGGSSGGN*

>G1227 (372..1451)

CTCTTCTTGCTCTGCTCAGCTCTCTCACCAACTCATCTTCAGTCCTCAAACAACATCTG TTCTCATCTTTGTTTTCTTTCTTTTCTCATATCTCATTTTCAATTTTCCCAATTTC TCTTCAACATCTTCATAGCAATTTAAGACCACTATTCCATTATAAAGCTAACTGCTTTAG TCAGCTTTCTGATGGAGAGGAGTATTCAAGGACAAAACAAGCTCTGTTGTTTGGACCAAA AAGTGAATGTGAGAAGAAGCCTACAAGTTCAAGAAACTGTAGAGGATCATCAAAGCTTTG CCCTTGAAGAGAACAACAACTCTCAACTCCGAGCTTGCTGCAAGACAACAATAC CATTTCTACAAATGCTGCAACAAAGTGAAGACCCTTCACCGTTTTTGTCATTCAAAGACC CAAGCTTTCTAGCACTACTATCTCTCCAGACACTTGAAAAGCCTTGGGAACTCGAAAACT ATCATAATCCATCTTTGGAAGGAGTCAATGAAGCCATCTCAAACCAAGAACTTCCATTCA ACCCACTAGAGAATGCGCGTTCAAGACGCAAGCGGAAAAACAACAACTTGGCATCATTGA TGACAAGAGAAAAGCGAAAGAGAAGAAGAACTAAACCAACAAAGAACATAGAAGAGATAG AGAGTCAAAGAATGACACACTTGCGGTTGAACGAAACCGCAGACGCCAAATGAACGTTC ATCTGAACTCACTCCGCTCCATCATTCCATCTTCATACATCCAGAGGGGAGACCAAGCGT CAATAGTAGGAGGAGCAATAGACTTCGTAAAGATCCTAGAGCAACAGTTGCAATCCCTTG AAGCACAAAAGAGAAGTCAACAGAGTGATGATAACAAAGAGCAAATTCCAGAAGATAACA GTCTCAGGAACATTTCGTCGAACAAGTTGCGTGCGAGTAATAAAGAAGAACAAAGTAGCA AACTCAAAATCGAAGCCACAGTGATAGAGAGTCACGTCAACCTAAAAATTCAATGTACGA GGAAACAAGGACAACTTCTCAGATCAATCATATTGCTGGAGAAACTTCGATTCACTGTTC TTCATCTCAACATCTCCGACCAATACATCTGTCTCTTATTCCTTCAACCTCAAGA TGGAAGATGAATTTGGGATCAGCGGATGAGATAACGGCGGCGATTCGTCAGATTT GTAACTTCGTTTTCATGATTAAATTCTTTATTTGGTCGTATGTGATTGGAGTCTTCTCGG CATGGAACTTGACTTTGGTTTTAGGGTACTAGTCTCTACAGAAGCTGTGGTCCTTCTTTG GATGC

>G1227 Amino Acid Sequence (domain in AA coordinates: 183-244)
MERSIQGQNKLCCLDQKVNVRRSLQVQETVEDHQSFALEEEEQQLSTPSLLQDTTIPFLQ
MLQQSEDPSPFLSFKDPSFLALLSLQTLEKPWELENYLPHEVPEFHSPIHSETNHYYHNP
SLEGVNEAISNQELPFNPLENARSRRKRKNNNLASLMTREKRKRRRTKPTKNIEEIESQR
MTHIAVERNRRQMNVHLNSLRSIIPSSYIQRGDQASIVGGAIDFVKILEQQLQSLEAQK
RSQQSDDNKEQIPEDNSLRNISSNKLRASNKEEQSSKLKIEATVIESHVNLKIQCTRKQG
QLLRSIILLEKLRFTVLHLNITSPTNTSVSYSFNLKMEDECNLGSADEITAAIRQIFDS*

>G2417 (118..1311)

 ${\tt CATACCGGTGGAAGATTCTGCTTTACTACGCTCTCCGCTTCTTCTTCTCCTCGATTCGAT}$ TCTCCTCATGGGTTTATCATGAATTTTTAGGTTTTTGAGTAATTCAGAAACTCGAGTGATG ATCCCGAATGATGATGATGATGCAAATTCTATGAAGAATTATCCGTTAAATGATGATGAT GCAAATTCTATGAAGAATTATCCGTTAAATGATGATGATGCAAATTCTATGGAGAATTAT CCGTTAAGGTCAATTCCGACGGAGCTTTCACACACTTGTTCATTGATACCACCTTCTTTA GCAAGGCCTTGTGATATGCTCCCTGCCAATGGTGGAGCTGTTGGTCATAACCCTTTTTTTG GAACCAGGATTCAACTGCCCCGAGACAACAGATTGGATTCCCTCTCCACTCCCCCATATT TATTTTCCTTCGGGTTCTCCCAATCTAATAATGGAGGATGGTGTCATTGATGAGATTCAC AAACAAAGTGACTTGCCACTTTGGTATGACGACTTGATTACCACTGATGAAGATCCACTC ATGTCTAGTATCTTGGGCGATCTTCTCCTTGACACTAATTTCAACTCAGCTTCAAAGGTC CAGCAACCAAGTATGCAATCGCAGATTCAACAACCCCAAGCTGTTCTGCAGCAGCCTTCT TCTTGTGTGGAATTGCGCCCACTTGATAGGACAGTATCCTCAAACAGCAACAACAATAGC AACAGTAATAATGCAGCAGCAGCAGCTAAGGGACGTATGCGTTGGACGCCTGAACTTCAT GAGGTTTTTGTTGACGCTGTTAACCAGCTCGGTGGCAGTAATGAAGCAACTCCTAAAGGT GTCCTGAAGCATATGAAAGTCGAAGGTTTGACTATTTTTCATGTCAAAAGTCATTTGCAG AAATATAGAACAGCTAAATATACCAGTACCATCAGAAGGTTCGCCGGAGGCAAGGTTG CTGCGAATTCAGATGGAACATCAGAAGAAACTGCATGAGCAGCTTGAGAGTCTAAGAACA ATGCAACTTCGGATAGAAGAGCAAGGAAAGGCGCTGTTGATGATGATTGAGAAGCAAAAT ATGGGTTTCGGCGGACCAGAACAAGGAGAAAACAAGTGCGAAAACGCCTGAAAATGGT TCAGAGGAGTCGGAATCCCCGCGGCCAAAGCGTCCGAGAAATGAAGAATGAAGGAAACCT TTCTTCGGATGGTAGATCATAAAACTGTGGTTTTGGTGGAGTTGTAGAGTATGACTTATT AGGAGTAGAGCTTTCAGTCTTCTTCAGGC

>G2417 Amino Acid Sequence (domain in AA coordinates: 235-285)
MIPNDDDDANSMKNYPLNDDDANSMKNYPLNDDDANSMENYPLRSIPTELSHTCSLIPPS
LPNPSEAAADMSFNSELNQIMARPCDMLPANGGAVGHNPFLEPGFNCPETTDWIPSPLPH
IYFPSGSPNLIMEDGVIDEIHKQSDLPLWYDDLITTDEDPLMSSILGDLLLDTNFNSASK
VQQPSMQSQIQQPQAVLQQPSSCVELRPLDRTVSSNSNNNSNSNNAAAAAKGRMRWTPEL
HEVFVDAVNQLGGSNEATPKGVLKHMKVEGLTIFHVKSHLQKYRTAKYIPVPSEGSPEAR
LTPLEQITSDDTKRGIDITETLRIQMEHQKKLHEQLESLRTMQLRIEEQGKALLMMIEKQ
NMGFGGPEQGEKTSAKTPENGSEESESPRPKRPRNEE*

>G2116 (104..1117)

TTCATCTCCATCATTATCTCCATTGACATTGTTCTCAATTGCGAATAATAATCATAATTA TTCACACAACCAAAGCATTCATCTCTCAGATTCTCTTAAAAAAATGGAGAAATCAGATCC TCCACCAGTCCCAAAGCCCGGCGCCACTATTATCCCCTCCTCCGATCCAATTCCTAATGC CGATCCGATTCCATCTTCCTTCCACCGCCGATCTCGCTCCGACGATATGTCCATGTT CGACGATCTCTTCTTCTTCATCGATGTCGATAGCCTCACCTCTAATCCCAATCCCTT TCAAAATCCTTCCCTCCCAACTCCGTTTCCGGCGCTGCTAATCCTCCTCCTCCTC TTCCTCTCGTCCTCGCCACCGTCACAGCAATTCCGTTGACGCTGGATGCGCCATGTATGC CGGTGATATCATGGACGCTAAGAAAGCTATGCCTCCTGAAAAACTCTCTGAGCTTTGGAA CATCGATCCCAAACGCGCCAAAAGGATTCTAGCGAATCGACAATCTGCAGCTCGATCCAA AGAGAGAAAAGCTCGATACATTCAAGAACTTGAGCGCAAAGTTCAATCTCTTCAAACCGA AGCTACCACTCTCTCTCCTCAGCTTACTCTCTCCAGAGAGACACAAATGGACTAGCAAA CGAAAACACAGAGCTGAAACTTAGGTTGCAAGCAATGGAACAACAAGCTCAGCTTCGTAA TGCTTTAAACGAAGEGTTGAGGAAAGAAGTTGAAAGGATGAAGATGGAGACAGGAGAAAT CTCTGGTAATTCAGATTCGTTTGATATGGGAATGCAGCAGATTCAGTATTCTTCCTCAAC TTTCATGGCTATTCCACCATATCATGGCTCAATGAACCTCCATGATATGCAGATGCATTC TAGTTTCAATCCTATGGAGATGTCCAATTCTCAAAGCGTGTCGGACTTTCTACAGAACGG ${\tt CCGAATGCAAGGGCTGGAGATTAGTAGCAATAGCTCAAGCTTAGTCAAATCTGAAGGACC}$ TTCTCTCTCTGCTAGTGAGAGTAGCTCTGCCTATTGACGACAAGATTATGATGAGGCTCA TTTTTCTG

>G2116 Amino Acid Sequence (conserved domain in AA coordinates:150-210)
MEKSDPPPVPKPGATIIPSSDPIPNADPIPSSSFHRRSRSDDMSMFMFMDPLSSAAPPSS
DDLPSDDDLFSSFIDVDSLTSNPNPFQNPSLSSNSVSGAANPPPPPSSRPRHRHSNSVDA

GCAMYAGDIMDAKKAMPPEKLSELWNIDPKRAKRILANRQSAARSKERKARYIQELERKV QSLQTEATTLSAQLTLYQRDTNGLANENTELKLRLQAMEQQAQLRNALNEALRKEVERMK METGEISGNSDSFDMGMQQIQYSSSTFMAIPPYHGSMNLHDMQMHSSFNPMEMSNSQSVS DFLQNGRMQGLEISSNSSSLVKSEGPSLSASESSSAY*

>G647 (1..948)

ATGATGATCGGCGAAAATAAAAACCGGCCACATCCAACGATCCATATCCCTCAATGGGAT CAAATCAACGATCCAACGGCCACAATCTCTTCACCATTCTCTTCCGTCAACCTTAACAGC GTTAACGACTACCCACACTCTCCGTCACCGTATCTCGACTCCTTCGCTTCTCTCTTCCGT TACCTCCCGTCAAACGAGTTAACAAACGATTCAGACTCATCAAGTGGCGACGAGTCATCA CCACTCACCGACTCATTCTCCTCCGACGAGTTTCGCATCTACGAGTTCAAAATCCGGCGA TGCGCTCGAGGTCGATCTCATGATTGGACGGAGTGTCCGTTCGCACATCCCGGAGAAAAA GCTCGACGACGTGATCCGAGAAAGTTTCATTACTCCGGCACCGCTTGTCCTGAGTTTCGT AAAGGAAGTTGTAGAAGAGGTGATTCGTGTGAGTTCTCTCATGGAGTTTTTCGAGTGTTTGG CTCCATCCTTCTCGTTACCGTACTCAGCCGTGTAAAGACGGAACTAGCTGCCGGAGAAGA ATCTGTTTCTTCGCTCATACGACGGAGCAGTTACGTGTATTACCTTGTTCGTTAGATCCA GATCTTGGATTCTTCTCAGGATTAGCTACTTCTCCGACTTCGATTCTTGTTTCTCCTTCG TTTTCACCACCGTCGGAATCTCCGCCGCTTTCTCCGAGTACCGGTGAACTTATTGCGTCG ATGAGGAAAATGCAATTGAACGGAGGTGGTTGTTCGTGGAGTTCTCCGATGAGATCTGCA GTTAGGTTACCTTTTCGTCGTCTCTGCGTCCGATTCAGGCGGCAACGTGGCCGAGGATA AGAGAGTTTGAGATCGAAGAGCTCCGGCGATGGAATTTGTGGAATCTGGGAAAGAGCTG

>G647 Amino Acid Sequence (domain in aa coordinates: 77-192)
MMIGENKNRPHPTIHIPQWDQINDPTATISSPFSSVNLNSVNDYPHSPSPYLDSFASLFR
YLPSNELTNDSDSSSGDESSPLTDSFSSDEFRIYEFKIRRCARGRSHDWTECPFAHPGEK
ARRDPRKFHYSGTACPEFRKGSCRRGDSCEFSHGVFECWLHPSRYRTQPCKDGTSCRRR
ICFFAHTTEQLRVLPCSLDPDLGFFSGLATSPTSILVSPSFSPPSESPPLSPSTGELIAS
MRKMQLNGGGCSWSSPMRSAVRLPFSSSLRPIQAATWPRIREFEIEEAPAMEFVESGKEL
RAEMYARLSRENSLG*

>G974 (377..1162)

AAAAAAAAGTTGATATACTTTCTGGTTTTCTCCTTAACTTTTATTCTTTACAAATCCAT CCCCCTTAGATCTGTTTATTTCCCGCTACTTTGATTCATTTCTGTTAGTAATCTGTCTTT CGTATAGAAGAAACTGATTTCTTGGTTTGTATTTTCTTAAAGAGATCAATCTTTTTTTA TTTTTGATCTTCTTGTGTTTTTTTTTTTTTTTTTTTTAGAATTAATCGTTTGTGAGGGTATTTTT TTAATTCCCTCCTCAGAAATCTACACAGAGGTTTTTTATTATAAACCTCTTTTTCG ATTTTCTTGAAAACAAAAATCCTGTTCTTTACTTTTTTTACAAGAACAAGGGAAAAAAA TTTCTTTTTATTAGAAATGACAACTTCTATGGATTTTTACAGTAACAAAACGTTTCAACA ATCTGATCCATTCGGTGGTGAATTAATGGAAGCGCTTTTACCTTTTATCAAAAGCCCTTC CAACGATTCATCCGCGTTTGCGTTCTCTCTACCCGCTCCAATTTCATACGGGTCGGATCT CGCGGCTAAACCGACGAAGCTATACAGAGGAGTGAGACAACGTCACTGGGGAAAATGGGT GGCTGAGATTCGTTTACCGAGGAATCGAACTCGACTTTGGCTCGGAACATTCGACACGGC GGAGGAAGCTGCTTTAGCTTATGACAAGGCGGCGTATAAGCTCCGAGGAGATTTTGCGCG GCTTAATTTCCCTGATCTCCGTCATAACGACGAGTATCAACCTCTTCAATCATCAGTCGA CGCTAAGCTTGAAGCTATTTGTCAAAACTTAGCTGAGACGACGCAGAAACAGGTGAGATC AACGAAGAAGTCTTCTCCGGAAACGTTCATCAACCGTCGCAGTGAAACTACCGGAGGA GGACTACTCTAGCGCCGGATCTTCGCCGCTGTTAACGGAGAGTTATGGATCTGGTGGATC TTCTTCGCCGTTGTCGGAGCTGACGTTTGGTGATACGGAGGAGAGATTCAGCCGCCGTG GAACGAGAACGCGTTGGAGAGTATCCGTCGTACGAGATCGATTGGGATTCGATTCTTCA GTGTTCGAGTCTTGTAAATTAGATGTTGCCATAGGGGTATTTTAGGGACTTTAGAGCTCT CTGCGATGGAGTTTTTGGTCATTGCAGAGATTTTATTATTATTAAGGGGGGTTTGTTATGT TAATATCAAATAAGTTTATCTACTTTGATGTTAATTAGTGTTAATCTCTGCGTCGGTCCA AGCTGTTTTTTTTGGCATGCTTCGACCGTGTGAGATTTCTTATGTAATTTTTTGTAGTTC

>G974 Amino Acid Sequence (domain in AA coordinates: 81-140) MTTSMDFYSNKTFQQSDPFGGELMEALLPFIKSPSNDSSAFAFSLPAPISYGSDLHSFSH HLSPKPVSMKQTGTSAAKPTKLYRGVRQRHWGKWVAEIRLPRNRTRLWLGTFDTAEEAAL AYDKAAYKLRGDFARLNFPDLRHNDEYQPLQSSVDAKLEAICQNLAETTQKQVRSTKKSS

 ${\tt SRKRSSTVAVKLPEEDYSSAGSSPLLTESYGSGGSSSPLSELTFGDTEEEIQPPWNENAL}\\ {\tt EKYPSYEIDWDSILQCSSLVN*}$

>G1419 (27..692)

>G1419 Amino Acid Sequence (domain in AA coordinates: 69-137)
MASSHQQQQEQDQSALDLITQHLLTDFPSLDTFASTIHHCTTSTLSQRKPPLATIAVPTT
APVVQENDQRHYRGVRRPWGKYAAEIRDPNKKGVRVWLGTFDTAMEAARGYDKAAFKLR
GSKAILNFPLEAGKHEDLGDNKKTISLKAKRKRQVTEDESQLISRKAVKREEAQVQADAC
PLTPSSWKGFWDGADSKDMGIFSVPLLSPCPSLGHSQLVVT*

>G1634 (22..855)

TTATCTCGTAGCCTTTAAACGATGGAGACTCTGCATCCACTACTCTCGCACGTGCCAACT TCTGACCACCGGTTTGTAGTTCAAGAGATGATGTGCTTGCAAAGCTCGAGCTGGACTAAA GAAGAGAACAAGAAGTTTGAGCGAGCTCTTGCTGTCTACGCTGATGACACGCCTGATCGC TGGTTCAAAGTTGCTGCTATGATCCCTGGAAAGACCATATCAGATGTCATGAGGCAATAC TCTAAGCTTGAAGAAGACCTCTTCGATATCGAAGCAGGACTTGTCCCGATCCCGGGTTAC CGTTCAGTTACTCCTTGTGGATTTGATCAGGTTGTGAGTCCACGTGACTTTGATGCGTAT CGTAAACTTCCTAATGGAGCCAGAGGATTTGATCAAGACCGTAGGAAAGGAGTTCCATGG ACGGAGGAGACACAGGAGATTCTTGTTAGGGCTTCTCAAGTATGGGAAAGGAGATTGG AGAAACATATCGAGGAACTTTGTGGGATCAAAAACACCAACTCAGGTTGCAAGTCATGCC CAAAAGTACTACCAAAGACAGCTTTCCGGTGCGAAAGACAAACGACGGCCTAGCATTCAC GACATCACCACCGTCAATCTTCTCAATGCCAATCTTAGCCGTCCATCGTCTGATCACGGT TGCTTAGTCTCAAAACAGGCCGAGCCGAAACTAGGGTTCACCGACAGGGATAATGCAGAG GAGGGAGTTATGTTTCTTGGTCAGAATCTATCCTCGGTCTTCTCTTCCTACGATCCTGCC ATTAAGTTTTCCGGAGCAAATGTTTACGGTGAAGGAGGTTACTGTATCTCACAAGATCTT GAAACGAGAAAATGAGAATTTTGAAATTTTAACTATTGCAACGAAACCATAATTGC >G1634 Amino Acid Sequence '(domain in AA coordinates: 129-180)

>G1634 AMINO ACID Sequence (domain in AA COOFDINATES: 129-180, METLHPLLSHVPTSDHRFVVQEMMCLQSSSWTKEENKKFERALAVYADDTPDRWFKVAAM IPGKTISDVMRQYSKLEEDLFDIEAGLVPIPGYRSVTPCGFDQVVSPRDFDAYRKLPNGA RGFDQDRRKGVPWTEEEHRRFLLGLLKYGKGDWRNISRNFVGSKTPTQVASHAQKYYQRQ LSGAKDKRRPSIHDITTVNLLNANLSRPSSDHGCLVSKQAEPKLGFTDRDNAEEGVMFLG QNLSSVFSSYDPAIKFSGANVYGEGGYCISQDLETRK*

>G1637 (1..954)

 255/286

ATGTACCATCCAAATTATCCAATGTACTATGCCAACCCTCAAGTACCGGTTAGGTTTGTT CATCCTTCTGGTATACCTGTTCCAAGACATATACCGATTGGTTTGCCTCTGTCTCAACCG AGTGAAGCTTCTAATATGACAAATAAAGACGGTTTGGATCTTCATATCGGTTTGCCTCCA CAAGCTACTGGAGCTTCTGACTTGACTGGTCATGGCGTTATTCATGTGAAATGA >G1637 Amino Aoid Sequence (domain in AA coordinates: 109-173) MVKETVTVAKTCSHCGHNGHNARTCLNGVNKASVKLFGVNISSDPIRPPEVTALRKSLSL GNLDALLANDESNGSGDPIAAVDDTGYHSDGQIHSKKGKTAHEKKKGKPWTEEEHRNFLI GLNKLGKGDWRGIAKSFVSTRTPTQVASHAQKYFIRLNVNDKRKRRASLFDISLEDQKEK ERNSQDASTKTPPKQPITGIQQPVVQGHTQTEISNRFQNLSMEYMPIYQPIPPYYNFPPI MYHPNYPMYYANPQVPVRFVHPSGIPVPRHIPIGLPLSQPSEASNMTNKDGLDLHIGLPP OATGASDLTGHGVIHVK*

>G1818 (601..1161) TAACAAATCAAATAATTAGAGAAATAACCAAAATTTAACTTTTAGAGGGACTACAGGATT TGTACTTTGTACATTCATATATTATTGTTATATATCGTTTCATACATTAATTTGAACCAA TGTAAATTAAGTAAAATTCAATTTAACATCATGAGCAAATTCTTATTAAAATTCTCTTAA AATTTTGAGCAAATTATGCTTTCACATTTAACATTTGAAAACATCATTTTTAACAAGATA TTCAAAACTAAGTTTTGTACAGCAAAATTTTAACTTTCAATTTTATAGAGAAAAAGGTAT TTTTTTTTTTTGTTTCATTTTTATAAGACTATTATTTGGTATATAATATACACTTTAAGTA CATACAGTTAATAACATTAAATATTCTTAACAAACTACTAAATAGGTTGAGATTCATATA TGTAAAGAGATCACTTCTTAATCTTATCCTACCATATCTTATATACGCTTAATTTTCCTT ATGGAGAACAACAACAACCACCAACAGCCACCGAAAGATAACGAGCAACTAAAGAGT TTCTGGTCAAAGGGGATGAAGGTGACTTGAATGTCAAGAATCACGAGTTCCCCATCTCT CGTATCAAGAGGATAATGAAGTTTGATCCGGATGTGAGTATGATCGCTGCTGAGGCTCCA AATCTCTTATCTAAGGCTTGTGAAATGTTTGTCATGGACCTCACGATGCGTTCATGGCTC CATGCTCAAGAGAGCAACCGACTCACGATACGGAAATCTGATGTTGATGCCGTAGTGTCT CAAACCGTCATCTTTGATTTCTTGCGTGATGATGTCCCTAAGGACGAGGGAGAGCCCGTT GTCGCCGCTGCTGATCCTGTGGACGATGTTGCTGATCATGTGGCTGTGCCAGATCTTAAC AATGAAGAACTGCCGCCGGAACGGTGATAGGAACTCCGGTTTGTTACGGTTTAGGAATA CACGCGCCACACCCGCAGATGCCTGGAGCTTGGACCGAGGAGGATGCGACTGGGGCAAAT GGAGGAAACGGTGGGAATTAATATTTGGATTGGGTTTTGTAACCGCTGTTGTGAGAACTT GAATTTCTTTTGAGTTCTGCTTATGTTTTCAATGTTATGTTTTTTAGTTGTTGAATGTA TTTCTGTTGTTTTGTCCAAAAAAAAAAAAGAATGTATTTCTGTTGTTGTCTTTCAAATGA ATCTAATGGTTTATGAATATTGGCTTTAGATTAATTTATGCATACAAAAACACAAGGATT ACGGATAAAAAAGTCCTCAGTTTACCCATGGAAACATAATCTTCTAGTGATTCCTTATGA GAGTAGAAAAĠAATCATATATATAATCTATTTCATAAGAGATAGGGTACTGTAAACAAG GATGTTTATTCGGCTATTTCTTTTTTTTTAATCACTTTTACTTGTCAAGACTCTTTTGT GTTTGCAGCTTTTTGTTAGATTACATTCTAGAGGCAACAAGATCCAGAGATCTAGCAAAA AAAACTTATTTTGAAACCTGAATCTATTTTAAAAATTTTCCAACTCATTTTTCGTTCTTA >G1818 Amino Acid Sequence (domain in AA coordinates: 36-113) MENNNNHQQPPKDNEQLKSFWSKGMEGDLNVKNHEFPISRIKRIMKFDPDVSMIAAEAP NLLSKACEMFVMDLTMRSWLHAQESNRLTIRKSDVDAVVSQTVIFDFLRDDVPKDEGEPV VAAADPVDDVADHVAVPDLNNEELPPGTVIGTPVCYGLGIHAPHPQMPGAWTEEDATGAN GGNGGN*

>G1820 (1..609)

ATGGCTGAGAACAACAACAACGACGACAACAACGACAACCACCAGCAACCA CCGTCGTACTCGCAGCTGCCGCCGATGGCATCATCCAACCCTCAGTTACGTAATTACTGG ATTGAGCAGATGGAAACCGTCTCGGATTTCAAAAACCGTCAGCTTCCATTGGCTCGAATT AAGAAGATCATGAAGGCTGATCCAGATGTGCACATGGTCTCCGCAGAGGCTCCGATCATC TTCGCAAAGGCTTGCGAAATGTTCATCGTTGATCTCACGATGCGGTCGTGGCTCAAAGCC GAGGAGAACAACGCCACACGCTTCAGAAATCGGATATCTCCAACGCAGTGGCTAGCTCT ${\tt TTCACCTACGATTTCCTTCTTGATGTTGTCCCTAAGGACGAGTCTATCGCCACCGCTGAT}$ CCTGGCTTTGTGGCTATGCCACATCCTGACGGTGGAGGAGTACCGCAATATTATTATCCA CCGGGAGTGGTGATGGGAACTCCTATGGTTGGTAGTGGAATGTACGCGCCATCGCAGGCG TGGCCAGCAGCGGTGACGGGGAGGATGATGCTGAGGATAATGGAGGAAACGGCGGC

GGAAATTGA

>G1820 Amino Acid Sequence (domain in AA coordinates: 70-133)
MAENNNNNGDNMNNDNHQQPPSYSQLPPMASSNPQLRNYWIEQMETVSDFKNRQLPLARI
KKIMKADPDVHMVSAEAPIIFAKACEMFIVDLTMRSWLKAEENKRHTLQKSDISNAVASS
FTYDFLLDVVPKDESIATADPGFVAMPHPDGGGVPQYYYPPGVVMGTPMVGSGMYAPSQA
WPAAAGDGEDDAEDNGGNGGGN*

>G1903 (1..1200)

ATGTCTAAATCTAGAGATACGGAGATAAAGTTGTTTGGGAGGACAATCACATCTCTTTTA GATGTGAATTGTTATGATCCGTCGTCGTTGTCCCCTGTTCACGATGTTTCTTCTGATCCA AGCAAGGAGGATTCGTCTTCTTCATCTTCTTGTTCTCCAACTATTGGACCAATCAGG GTTCCGGTTAAAAAAGTGAGCAAGAGAGTAACAAATTCAAAGATCCATATATTATCC GATCTAAACGAACCACCAAAAGCAGTATCTGAGATTTCATCACCAAGAAGTTCCAAGAAC AACTGTGATCAACAGAGCGAGATCACAACAACAACTACCACAAGTACTACATCAGGAGAG AAATCAACGGCTCTCAAGAAACCGGACAAGCTTATTCCATGTCCTAGATGTGAAAGCGCA AACACCAAATTCTGTTATTACAACAACTACAACGTGAACCAGGCCACGTTACTTCTGCAGG AACTGTCAGAGGTATTGGACAGCTGGTGGATCTATGAGGAACGTTCCTGTTGGCTCAGGT CGTCGCAAGAACAAGGATGGCCTTCTTCAAACCATTACTTGCAAGTCACTTCTGAGGAT TGTGATAATAACTCGGGGACGATCCTTAGTTTCGGTTCTTCGGAGTCTTCGGTTACA GAGACTGGTAAGCATCAGTCAGGTGATACAGCAAAGATAAGTGCTGATTCAGTTTCTCAA GAAAATAAAGCTACCAAGGGTTTCTTCCTCCGCAAGTAATGTTACCTAATAATTCTTCT CCTTGGCCTTACCAATGGAGTCCAACGGGTCCTAACGCTAGTTTCTACCCTGTCCCCTTC TACTGGGGATGCACGGTTCCGATATACCCTACCTCAGAGACTTCATCATGTTTAGGAAAA CGGTCAAGAGATCAAACTGAAGGAAGAATCAATGATACTAATACAACAATAACTACTACA AGAGCAAGATTGGTCTCAGAATCTCTTAGAATGAATATCGAAGCTAGTAAGAGCGCTGTG TGGTCTAAGTTACCGACAAAACCCGAGAAAAAAACGCAAGGATTCAGTTTGTTCAATGGA TTTGACACAAAGGGAAACAGCAACAGAAGTAGCTTGGTCTCCGAAACTTCTCACAGTCTA CAAGCAAACCCTGCAGCGATGTCTAGAGCTATGAACTTCAGGGAGAGCATGCAACAATAA >G1903 Amino Acid Sequence (domain in AA coordinates: 134-180) MSKSRDTEIKLFGRTITSLLDVNCYDPSSLSPVHDVSSDPSKED\$SSSSSSSSSTIGPIR VPVKKSEQESNKFKDPYILSDLNEPPKAVSEISSPRSSKNNCDQQSEITTTTTTTSTTSGE KSTALKKPDKLIPCPRCESANTKFCYYNNYNVNQPRYFCRNCQRYWTAGGSMRNVPVGSG RRKNKGWPSSNHYLQVTSEDCDNNNSGTILSFGSSESSVTETGKHOSGDTAKISADSVSO ENKSYQGFLPPQVMLPNNSSPWPYQWSPTGPNASFYPVPFYWGCTVPIYPTSETSSCLGK RSRDQTEGRINDTNTTITTTRARLVSESLRMNIEASKSAVWSKLPTKPEKKTQGFSLFNG FDTKGNSNRSSLVSETSHSLQANPAAMSRAMNFRESMQQ*

>G371 (1..582)

ATGGAGATTGAGAAGGATGAGGACGACACACATTGGTTGATTCTGGAGGAGACTTCGAC
TGCAACATATGTTTGGATCAGGTTCGAGACCCGGTCGTGACTTTATGTGGCCACCTGTTT
TGTTGGCCCTGCATTCACAAGTGGACTTATGCGTCCAACAATTCAAGACAACGAGTCGAT
CAATACGATCATAAGAGGGAACCACCAAAATGTCCGGTATGCAAATCTGATGTCTCCGAG
GCTACGCTTGTCCCGATCTACGGACGAGGACAGAAAGCTCCCCAGTCCGGTTCAAATGTA
CCGAGCAGACCAACTGGTCCGGTTTATGACTTAAGAGGAGTTGGTCAACGTTTAGGAGAA
GGGGAGAGTCAACGTTACATGTATAGAATGCCTGATCCGGTGATGGGTGTGTATGCGAA
ATGGTATACCGGAGACTATTTGGAGAGTCTTCGAGCAACATGGCACCTTACCGCGATATG
AATGTCCGGTCTAGGCGACGGGCAATGCAGGCTGAGGAGTCATTAAGCAGAGTCTACTTG
TTTCTACTTTGCTTCATGTTTATGTGTCTATTTCTCTTTTTA

>G371 Amino Acid Sequence (domain in aa coordinates: 21-74)
MEIEKDEDDTTLVDSGGDFDCNICLDQVRDPVVTLCGHLFCWPCIHKWTYASNNSRQRVD
QYDHKREPPKCPVCKSDVSEATLVPIYGRGQKAPQSGSNVPSRPTGPVYDLRGVGQRLGE
GESQRYMYRMPDPVMGVVCEMVYRRLFGESSSNMAPYRDMNVRSRRRAMQAEESLSRVYL
FLLCFMFMCLFLF*

>G597 (255..1310)

AAAATTCTCCTGTAAAATTTAATATTATAAAAGTGGTTTCTTTTTCATTTATGTTTATAT AATTTTCATCTTTAAATCTTAAATTCTGGTAACCTTAATGCGCGATCCGCTTTTCTAAAGT TTTGTGAGAGAGAGAGATCTAAAAAAAATCCACAATTTTGTTCAAATCTTGGAGTTAAAT GCTGAATTTTAGGCCTTGTTGCTTAGATTTATGGCTTAAAGTTTCAAACTTTTCATTGGA TATGTGAGAAGAAAAATCCAGAATCTAAAGTTTCAAACTTTTCATTAGA TATGTGAGAAGAAAAAATCCAGAATCAA

TGCAATTTACAATGGCTCTCCACCAGCAGCAGCAACACAGTCAAGCTCAACCTCAGCAGT CTCAGAACAGGCCATTGTCATTCGGTGGAGACGACGGAACTGCTCTTTACAAGCAGCCGA TGAGATCAGTATCACCACCGCAGCAGTACCAACCCAACTCAGCTGGTGAGAATTCTGTCT TGAACATGAACTTGCCCGGAGGTGAGTCTGGAGGCATGACTGGAACTGGAAGTGAGCCAG TGAAAAGGGGGGGGGAACCGAGGAAATATGGGCCTGATAGTGGTGAAATGTCACTTG GTTTGAATCCTGGAGCTCCTTCTTTCACTGTCAGCCAACCTAGTAGCGGCGGCGATGGAG GAGAGAAGAAGAGAAGACCTCCTGGTTCTTCTAGCAAAAGGCTCAAGCTTCAAGCTT TATCATCCAAGATAATGGCGTTAACTCATAATGGACCCCGTGCTGTGTGTCTTGTCTG CAAATGGAGCCATCTCCAATGTGACTCTCCGCCAGTCTGCCACATCCGGTGGAACTGTTA CATATGAGGGGAGATTTGAGATTCTGTCTTTATCGGGATCTTTCCATTTGCTGGAGAACA ATGGTCAAAGAAGCAGGACGGAGGTCTAAGCGTGTCATTATCAAGTCCGGATGGTAATG TCCTCGGTGGCAGTGTAGCTGGTCTTCTTATAGCAGCATCACCTGTTCAGATTGTTGTTG GGAGTTTCTTACCAGACGGAGAAAAAGAACCAAAACAGCATGTGGGACAAATGGGACTGT CGTCACCCGTATTACCGCGTGTGGCCCCAACGCAGGTGCTGATGACTCCAAGTAGCCCAC AATCTCGAGGCACAATGAGTGAGTCATCTTGTGGAGGAGGACATGGAAGCCCTATTCATC AGAGCACTGGAGGACCTTACAATAACACCATTAACATGCCCTGGAAGTAGCCAAGTGATC TAGACTTTCTAGTTCTGATGGTTATTTCTACAGTTGGTTTAGACTTTCTAGTTCTGTTCA GACAAAAGGAGTTTGATAAATTGACCGACCTATTTTGTGTGTTTTGAGGTACTTTCAGAAC CATAGGTGTTCAGAAATTAGAATGTTCTGTTTAAAAAA

>G597 Amino Acid Sequence (domain in AA coordinates: 97-104,137-144)
MSGSETGLMAATRESMQFTMALHQQQQHSQAQPQQSQNRPLSFGGDDGTALYKQPMRSVS
PPQQYQPNSAGENSVLNMNLPGGESGGMTGTGSEPVKKRRGRPRKYGPDSGEMSLGLNPG
APSFTVSQPSSGGDGGEKKRGRPPGSSSKRLKLQALGSTGIGFTPHVLTVLAGEDVSSKI
MALTHNGPRAVCVLSANGAISNVTLRQSATSGGTVTYEGRFEILSLSGSFHLLENNGQRS
RTGGLSVSLSSPDGNVLGGSVAGLLIAASPVQIVVGSFLPDGEKEPKQHVGQMGLSSPVL
PRVAPTQVLMTPSSPQSRGTMSESSCGGGHGSPIHQSTGGPYNNTINMPWK*
>G1009 (28..1704)

AAAAAAAAAAAAAACCTATTCCCAAAGATGAAGAACAATAACAACAAATCTTCTTCTTCT TCTAGCTATGATTCTTCTTTGTCTCCTTCTTCTTCATCCTCCTCCCACCAGAACTGGCTC TCCACTTCTCCAGTCGAACGCCAAGATGGGTCACCGGGAGTTTCACCCAGCGATGCCACG GCGGTTCTTTCCGTATACCCCGGCGGTCCTAAACTTGAGAACTTCCTCGGCGGAGGAGCC TCAACGACGACAACAAGACCAATGCAACAAGTGCAATCTCTTGGCGGCGTTGTCTTCTCT TCCGACCTACAGCCACCGCTCATCCTCCGTCCGCCGAGATCTACGACTCTGAGCTC AAGTCAATAGCCGCTAGCTTCCTAGGAAACTACTCCGGTGGACACTCGTCGGAGGTCTCT AGCGTACATAAACAACCAACCGAATCCTCTAGCTGTCTCAGAGGCTTCGCCTACTCCGAAG AAGAACGTAGAGAGTTTTGGACAACGTACCTCGATTTATAGAGGAGTCACAAGACATAGA TGGACTGGAAGATACGAAGCTCATCTATGGGATAATAGTTGCCGAAGAGAAGGCCAAAGC AGAAAAGGAAGACAAGTTTATTTAGGTGGTTATGATAAGGAAGATAAAGCAGCTAGAGCT TACGACCTTGCAGCTCTTAAGTATTGGGGTCCTACAACTACGACTAATTTCCCGATATCA AATTACGAATCTGAACTTGAAGAAATGAAACACATGACTCGACAAGAGTTCGTTGCTTCT TTAAGACGGAAAAGCAGTGGATTCTCTAGGGGTGCCTCCATGTACAGAGGCGTCACTAGA CATCATCAGCATGGTCGATGGCAGGCACGAATTGGAAGAGTTGCAGGCAACAAAGACCTT TATCTTGGCACATTTAGCACTCAAGAGGAAGCTGCAGAAGCTTATGATATAGCAGCGATC AAATTCCGCGGTCTAAATGCAGTCACCAATTTCGACATCAGTCGATATGATGTCAAATCA ATTGCTAGCTGTAATCTCCCTGTGGGTGGACTAATGCCTAAACCTTCTCCAGCAACCGCA GCGGCTGACAAAACCGTTGATCTTTCTCCATCCGACTCTCCATCTCTAACCACACCGTCC CTCACGTTCAATGTGGCAACACCGGTCAATGACCATGGAGGAACTTTTTACCACACTGGT ATACCAATCAAACCAGACCCGGCTGATCATTATTGGTCCAACATCTTTGGATTCCAGGCA AACCCGAAAGCAGAAATGCGACCATTAGCAAACTTTGGGTCGGATCTTCATAACCCTTCT CCTGGTTATGCTATAATGCCGGTAATGCAGGAAGGTGAAAACAACTTTGGTGGTAGTTTT GTTGGGTCTGATGGGTATAACAATCATTCCGCTGCATCGAACCCGGTCTCAGCAATTCCG CTGTCCTCGACAACTACAATGAGTAACGGTAACGAAGGGTATGGTGGAAACATAAACTGG ATTAATAACAACATTTCAAGTTCTTACCAAACTGCAAAATCAAATCTCTCTGTTTTGCAC

>G1009 Amino Acid Sequence (domain in aa coordinates: 201-277, 303-371)
MKNNNNKSSSSSYDSSLSPSSSSSSHQNWLSFSLSNNNNNFNSSSNPNLTSSTSDHHHP
HPSHLSLFQAFSTSPVERQDGSPGVSPSDATAVLSVYPGGPKLENFLGGGASTTTTRPMQ
QVQSLGGVVFSSDLQPPLHPPSAAEIYDSELKSIAASFLGNYSGGHSSEVSSVHKQQPNP
LAVSEASPTPKKNVESFGQRTSIYRGVTRHRWTGRYEAHLWDNSCRREGQSRKGRQVYLG
GYDKEDKAARAYDLAALKYWGPTTTTNFPISNYESELEEMKHMTRQEFVASLRRKSSGFS
RGASMYRGVTRHHQHGRWQARIGRVAGNKDLYLGTFSTQEEAAEAYDIAAIKFRGLNAVT
NFDISRYDVKSIASCNLPVGGLMPKPSPATAAADKTVDLSPSDSPSLTTPSLTFNVATPV
NDHGGTFYHTGIPIKPDPADHYWSNIFGFQANPKAEMRPLANFGSDLHNPSPGYAIMPVM
QEGENNFGGSFVGSDGYNNHSAASNPVSAIPLSSTTTMSNGNEGYGGNINWINNNISSSY
QTAKSNLSVLHTPVFGLE*

>G170 (1..1107)

ATGGGGATGAAGAAGGTGAAGCTATCTTTGATAGCTAATGAAAGATCAAGGAAAACATCC TTCATAAAGAGGAAAGACGGGATTTTTAAGAAACTCCACGAGTTGTCAACTCTGTGTGGT GTCCAAGCTTGTGCTCTCATCTACAGTCCATTCATACCGGTTCCAGAGTCATGGCCGTCA AGGGAAGGTGCTAAAAAGGTGGCTTCAAGGTTTCTGGAGATGCCGCCGACAGCCCGAACC AAGAAGATGATGGATCAAGAGACTTACCTTATGGAGAGGATTACCAAAGCAAAAGAGCAA CTAAAGAACCTGGCTGCTGAGAACCGAGAGTTACAGGTTAGACGATTTATGTTTGATTGT GTTGAAGGCAAAATGTCCCAGTATCATTATGATGCAAAAGACCTTCAAGATTTGCAATCT TGTATAAATCTATATCTCGATCAGCTTAACGGAAGGATCGAGTCCATTAAAGAAAATGGT GAGTCGTTGTTGTCTTCCGTCTCTCTTTTCCTACTAGAATTGGTGTTGACGAAATTGGT ${\tt GATGAGTCATTTTCCGACTCTCCTATTCATGCTACAACTGGGGTTGTAGATACTCTTAAT}$ GCTACCAATCCTCATGTTCTTACGGGCGATATGACTCCTTTTCTTGATGCGGACGCAACT GCGGTAACTGCTTCCAGTAGATTTTTTGATCATATTCCATATGAAAATATGAATATGAGT CAAAATCTGCATGAACCGTTTCAACACCTTGTTCCTACTAACGTTTGTGATTTTTTTCAA AATCAGAATATGAATCAGGTTCAATACCAGGCTCCTAATAATCTGTTTAATCAGATTCAA CGAGAATTCTACAACATAAATTTGAATCTGAATTTGAATCTGAATTCGAATCAGTATCTG AATCAACAACAATCATTCATGAATCCGATGGTGGAACAACATATGAATCATGTTGGAGGG CGTGAAAGCATTCCTTTCGTGGAÇGGAAACTGCTACAACTACCATCAACTACCATCCAAT CAACTACCAGCCGTTGATCATGCTTCCACCAGTTACATGCCTTCCACCACCGGTGTCTAT GATCCTTACATCAACAATAATCTCTAA

>G170 Amino Acid Sequence (domain in aa coordinates: 2-57)
MGMKKVKLSLIANERSRKTSFIKRKDGIFKKLHELSTLCGVQACALIYSPFIPVPESWPS
REGAKKVASRFLEMPPTARTKKMMDQETYLMERITKAKEQLKNLAAENRELQVRRFMFDC
VEGKMSQYHYDAKDLQDLQSCINLYLDQLNGRIESIKENGESLLSSVSPFPTRIGVDEIG
DESFSDSPIHATTGVVDTLNATNPHVLTGDMTPFLDADATAVTASSRFFDHIPYENMNMS
QNLHEPFQHLVPTNVCDFFQNQNMNQVQYQAPNNLFNQIQREFYNINLNLNLNLNSNQYL
NQQQSFMNPMVEQHMNHVGGRESIPFVDGNCYNYHQLPSNQLPAVDHASTSYMPSTTGVY
DPYINNNL*

>G1768 (185..1426)

TGGATACATGTCAGCGAATGGTGCGATTGCAGAAGCAATGAAGGATGAAGAGAGGATTCA CATTATTGACTTCCAAATTGGACAAGGGAGCCAGTGGATAGCACTTATCCAGGCTTTTGC AGCTAGGCCTGGTGGGGCTCCAAATATTCGAATTACCGGAGTTGGTGATGGATCTGTCTT GGTTACAGTCAAGAAGAGACTAGAGAAACTTGCAAAGAAGTTTGATGTTCCATTCAGGTT CAATGCGGTTTCAAGGCCAAGTTGTGAAGTTGAAGTGGAAAATCTTGATGTCCGAGATGG CGAAGCCCTTGGAGTGAACTTTGCTTACATGCTGCATCATTTGCCAGATGAGAGTGTAAG CATGGAAAACCACAGGGACCGGTTGCTGAGGATGGTGAAGAGTCTATCACCTAAAGTAGT CACTCTTGTGGAACAGAATGCAACACGAACACTTCCCCTTTCCTTAGGTTCCTTGA GACATTAAGTTATTACACGGCAATGTTCGAATCTATCGATGTTATGCTTCCGAGAAATCA CAAGGAAAGGATCAATATCGAGCAGCACTGCATGGCAAGGGATGTCGTCAACATCATAGC TTGTGAAGGAGCCGAGAGGATCGAAAGACACGAGCTTCTCGGGAAATGGAAGTCAAGGTT TTCCATGGCGGGTTTTGAGCCATACCCCTTGAGCTCAATCATTTCAGCCACCATTAGAGC TGGTTGGATGGACCGAATCTTGGTCTCATCTTGTGCATGGAAGTGAAAGAATAAACGTCT TAATAAGGTTGAATCAAATCATATACATCCCCATGCTACAACTATTACACAGGCTCCATC AACAAAGAAGGGCTCTTGTTGTTGTTACCTTCTCTTCTTGTAACTCTTATTTGAACCAAAT GGAAGTGGTTACAT

>G1768 Amino Acid Sequence (domain in AA coordinates: 54-413)
MDNVRGSIMLQPLPEIAESIDDAICHELSMWPDDAKDLLLIVEAISRGDLKLVLVACAKA
VSENNLLMARWCMGELRGMVSISGEPIQRLGAYMLEGLVARLAASGSSIYKSLQSREPES
YEFLSYVYVLHEVCPYFKFGYMSANGAIAEAMKDEERIHIIDFQIGQGSQWIALIQAFAA
RPGGAPNIRITGVGDGSVLVTVKKRLEKLAKKFDVPFRFNAVSRPSCEVEVENLDVRDGE
ALGVNFAYMLHHLPDESVSMENHRDRLLRMVKSLSPKVVTLVEQECNTNTSPFLPRFLET
LSYYTAMFESIDVMLPRNHKERINIEQHCMARDVVNIIACEGAERIERHELLGKWKSRFS
MAGFEPYPLSSIISATIRALLRDYSNGYAIEERDGALYLGWMDRILVSSCAWK*
>G185 (77..988)

ATGCAAAAATAACATAGTAACAATACTTTAAACTATTTACACCACTTTAATCTTATTCT CCACTCTTTGAACGTAATGGAGAAGAACCATAGTAGTGGAGAGTGGGAGAAGATGAAGAA CGAGATCAACGAGCTAATGATAGAAGGAAGAGACTATGCACACCAGTTTGGATCAGCTTC ATCTCAAGAAACACGTGAACATTTAGCCAAAAAGATTCTTCAATCTTACCACAAGTCTCT CACCATCATGAACTACTCCGGCGAACTTGACCAAGTTTCTCAGGGTGGAGGAAGCCCCAA GAGCGATGATTCCGATCAAGAACCACTTGTCATCAAGAGTTCGAAGAAGTCAATGCCAAG GTGGAGTTCAAAAGTCAGAATTGCCCCTGGAGCTGTTTGATAGAACGCTGGACGATGG ATTCAGTTGGAGAAAGTACGGCCAGAAGGATATTCTCGGAGCCAAATTTCCAAGAGGATA ${\tt CTATAGATGCACGTATAGAAAGTCTCAAGGATGTGAAGCCACTAAACAAGTCCAAAGATC}$ TGATGAAAATCAGATGCTCCTTGAGATCAGTTACCGAGGAATACATTCTTGCTCTCAAGC TGCAAATGTCGGTACAACAATGCCGATACAAAACCTCGAACCGAACCAAGACCAAGAACA CGGAAATCTTGACATGGTAAAGGAAAGTGTAGACAACTACAATCACCAAGCACATTTGCA TCACAACCTTCACTATCCATTGTCATCTACCCCAAATCTAGAGAATAACAATGCCTATAT GCTTCAAATGCGAGATCAAAACATCGAATATTTTGGATCTACGAGCTTCTCTAGTGATCT CTCTCCGTCCACCGTCCCTTTGGAATCCCCGTTTGAAAGCTATGATCCAAATCATCCATA CATGACCTCTTGATTAAAGAGAGAGTTTTCATAATAGCTAATCAATTTCCTATTCAAATA TCCGAGTTTTTTTTCTAATCATGTTTATCAATTGTCTTATTACAGAAGGCTTATTTTCAG AAAAA

>G185 Amino Acid Sequence (domain in AA coordinates: 113-172)
MEKNHSSGEWEKMKNEINELMIEGRDYAHQFGSASSQETREHLAKKILQSYHKSLTIMNY
SGELDQVSQGGGSPKSDDSDQEPLVIKSSKKSMPRWSSKVRIAPGAGVDRTLDDGFSWRK
YGQKDILGAKFPRGYYRCTYRKSQGCEATKQVQRSDENQMLLEISYRGIHSCSQAANVGT
TMPIQNLEPNQTQEHGNLDMVKESVDNYNHQAHLHHNLHYPLSSTPNLENNNAYMLQMRD
QNIEYFGSTSFSSDLGTSINYNFPASGSASHSASNSPSTVPLESPFESYDPNHPYGGFGG
FYS*

>G1931 (5..592)

ATCAATGGAAGGGGTTGACAACACAAATCCTATGTTAACCCTAGAAGAAGGCGAAAACAA

>G2543 (1..2169)
ATGAGTTTCGTCGTCGGCGTCGGCGGAAGTGGTAGTGGAAGCGGCGGAGACGGTGGTGGT

AGTCATCATCACGACGGCTCTGAAACTGATAGGAAGAAAACGTTACCATCGTCACACC GCTCAACAGATTCAACGCCTTGAATCGAGTTTCAAGGAGTGTCCTCATCCAGATGAGAAA CAGAGGAACCAGCTTAGCAGAGAATTGGGTTTTGGCTCCAAGACAAATCAAGTTCTGGTTT CAGAACAGAAGAACTCAGCTTAAGGCTCAACATGAGAGAGCAGATAATAGTGCACTAAAG GCAGAGAATGATAAAATTCGTTGCGAAAACATTGCTATTAGAGAAGCTCTCAAGCATGCT ATATGTCCTAACTGTGGAGGTCCTCCTGTTAGTGAAGATCCTTACTTTGATGAACAAAAG ${\tt CTTCGGATTGAAAATGCACACCTTAGAGAAGAAGGACTTGAAAGAATGTCTACCATTGCATCA}$ AAGTACATGGGAAGACCGATATCGCAACTCTCTACGCTACATCCAATGCACATCTCACCG TTGGATTTGTCAATGACTAGTTTAACTGGTTGTGGACCTTTTGGTCATGGTCCTTCACTC GATTTTGATCTTCTCCAGGAAGTTCTATGGCTGTTGGTCCTAATAATAATCTGCAATCT CAGCCTAACTTGGCTATATCAGACATGGATAAGCCTATTATGACCGGCATTGCTTTGACT GCAATGGAAGAATTGCTCAGGCTTCTTCAGACAAATGAACCTCTATGGACAAGAACAGAT GGCTGCAGAGACATTCTCAATCTTGGTAGCTATGAGAATGTTTTCCCAAGATCAAGTAAC . CGAGGGAAGAACCAGAACTTTCGAGTCGAAGCATCAAGGTCTTCTGGTATTGTCTTCATG AATGCTATGGCACTTGTCGACATGTTCATGGATTGTGTCAAGTGGACAGAACTCTTTCCC TCTATCATTGCAGCTTCTAAAACACTTGCAGTGATTTCTTCAGGAATGGGAGGTACCCAT GAGGGTGCATTGCATTTGTTGTATGAAGAAATGGAAGTGCTTTCGCCTTTAGTAGCAACA CGCGAATTCTGCGAGCTACGCTATTGTCAACAGACTGAACAAGGAAGCTGGATAGTTGTA AACGTCTCATATGATCTTCCTCAGTTTGTTTCTCACTCTCAGTCCTATAGATTTCCATCT GGATGCTTGATTCAGGATATGCCCAATGGATATTCCAAGGTTACTTGGGTTGAACATATT GAAACTGAAGAAAAGAACTGGTTCATGAGCTATACAGAGAGATTATTCACAGAGGGATT GCTTTTGGGGCTGATCGTTGGGTTACCACTCTCCAGAGAATGTGTGAAAGATTTGCTTCT CTATCGGTACCAGCGTCTTCATCTCGTGATCTCGGTGGAGTGATTCTATCACCGGAAGGG AAGAGAAGCATGATGAGACTTGCTCAGAGGATGATCAGCAACTACTGTTTAAGTGTCAGC AGATCCAACACACCGCTCAACCGTTGTTTCGGAACTGAACGAAGTTGGAATCCGTGTG ACTGCACATAAGAGCCCTGAACCAAACGGCACAGTCCTATGTGCAGCCACCACTTTCTGG CTTCCCAATTCTCCTCAAAATGTCTTCAATTTCCTCAAAGACGAAAGAACCCGTCCTCAG TGGGATGTTCTTTCAAACGGAAACGCAGTGCAAGAAGTTGCTCACATCTCAAACGGATCA CATCCTGGAAACTGCATATCGGTTCTACGTGGATCCAATGCAACACATAGCAACAACATG CTTATTCTGCAAGAAAGCTCAACAGACTCATCAGGAGCATTTGTGGTCTACAGTCCAGTG GATTTAGCAGCATTGAACATCGCAATGAGCGGTGAAGATCCTTCTTATATTCCTCTTTG TCCTCAGGTTTCACAATCTCACCAGATGGAAATGGCTCAAACTCTGAACAAGGAGGAGCC TCGACGAGCTCAGGACGGCATCAGCTAGCGGTTCGTTGATAACGGTTGGGTTTCAGATA ATGGTAAGCAATTTACCGACGGCAAAACTGAATATGGAGTCGGTGGAAACGGTTAATAAC CTGATAGGAACAACTGTACATCAAATTAAAACCGCCTTGAGCGGTCCTACAGCTTCAACT

>G2543 Amino Acid Sequence (domain in AA coordinates: 31-91) MSFVVGVGGGGGGGGGGGGGHHHDGSETDRKKKRYHRHTAQQIQRLESSFKECPHPDEK QRNQLSRELGLAPRQIKFWFQNRRTQLKAQHERADNSALKAENDKIRCENIAIREALKHA ICPNCGGPPVSEDPYFDEQKLRIENAHLREELERMSTIASKYMGRPISQLSTLHPMHISP

LDLSMTSLTGCGPFGHGPSLDFDLLPGSSMAVGPNNNLQSQPNLAISDMDKPIMTGIALT
AMEELLRLLQTNEPLWTRTDGCRDILNLGSYENVFPRSSNRGKNQNFRVEASRSSGIVFM
NAMALVDMFMDCVKWTELFPSIIAASKTLAVISSGMGGTHEGALHLLYEEMEVLSPLVAT
REFCELRYCQQTEQGSWIVVNVSYDLPQFVSHSQSYRFPSGCLIQDMPNGYSKVTWVEHI
ETEEKELVHELYREIIHRGIAFGADRWVTTLQRMCERFASLSVPASSSRDLGGVILSPEG
KRSMMRLAQRMISNYCLSVSRSNNTRSTVVSELNEVGIRVTAHKSPEPNGTVLCAATTFW
LPNSPQNVFNFLKDERTRPQWDVLSNGNAVQEVAHISNGSHPGNCISVLRGSNATHSNNM
LILQESSTDSSGAFVVYSPVDLAALNIAMSGEDPSYIPLLSSGFTISPDGNGSNSEQGGA
STSSGRASASGSLITVGFQIMVSNLPTAKLNMESVETVNNLIGTTVHQIKTALSGPTAST
TA*

>G264 (30..1430)

CTTGTACCAGTTTCTGATTAGATTCAACAATGAACGCGCATTAGGTAACTCCTCCGCCT CCGTTAGCGGCGAGAAGGACCGGAGGACCAGCGCCTTTCTTGGTGAAAACCTACGAGA TGGTCGACGATTCATCAACGGACCAGATCGTATCGTGGAGCGCTAACAACAACAGCTTCA TCGTTTGGAATCATGCCGAATTTTCACGCCTCCTTCTTCCAACCTACTTCAAACACAATA ACTTCTTCTTCATTCGTCAGCTCAATACCTATGGGTTTAGGAAGATTGATCCAGAGA GGTGGGAGTTTTTGAATGATGATTTTATTAAGGATCAGAAGCATCTTCTCAAGAATATAC ATAGAAGGAAACCTATACACAGCCACAGTCATCCACCTGCTTCGTCGACTGATCAAGAAA GAGCAGTGTTGCAAGAGCAAATGGACAAGCTTTCACGTGAGAAAGCTGCAATTGAAGCTA AGCTTTTAAAGTTCAAACAACAGAAGGTTGTAGCAAAGCATCAGTTTGAAGAAATGACTG AGCATGTTGATGATATGGAGAATAGGCAGAAGAAGCTGCTGAATTTTTTGGAAACTGCGA TTCGGAATCCTACTTTTGTTAAGAATTTTGGTAAGAAAGTCGAGCAGTTGGATATTTCAG CTTACAACAAAAAGCGAAGGCTCCCTGAAGTTGAGCAATCAAAGCCACCTTCAGAAGATT CTCATCTGGATAATAGTAGTGGTAGCTCGAGACGCGAGTCTGGAAACATTTTTCATCAAA ATTTCTCTAATAAATTGCGACTAGAGCTTTCTCCAGCTGATTCAGATATGAACATGGTTT CACACAGTATACAAAGTTCCAATGAAGAAGGTGCGAGTCCCAAAGGGATACTGTCAGGAG GTGATCCAAATACTACACTAACAAAAAGAGAAGGCCTACCATTTGCACCTGAAGCTCTAG AGCTTGCGGATACCGGGACATGCCCGAGGAGATTACTGTTAAATGATAATACAAGGGTGG AGACCTTGCAGCAGAGGCTAACTTCTTCAGAGGAGACTGATGGTAGCTTTTCATGTCATT TAAATCTAACCCTGGCTTCTGCTCCGTTACCGGACAAAACAGCTTCACAGATAGCTAAGA CGACTCTTAAAAGTCAGGAGTTAAACTTTAACTCAATAGAAACAAGTGCAAGTGAGAAAA ATCGGGGTAGACAAGAGATTGCAGTTGGAGGTAGCCAAGCAAATGCAGCTCCTCCAGCAA GAGTGAATGATGTATTCTGGGAACAGTTCCTAACAGAAAGGCCAGGGTCTTCAGATAATG AGGAGGCAAGTTCGACTTATAGAGGTAACCCATACGAAGAGCAAGAGGAGAAAAGAAACG GGAGTATGATGTTACGTAATACAAAGAATATCGAGCAGCTGACCTTATAAACTATTTGGA TGAAACATTGGACTGAAAAAGCGTAAGTAGCTTTGTTGTAAACACTTGCGTCTCTGTCTA CACAAGTAATTTGACTGTAAATGTAAGTGTACAGGATTTAAATTGAATAAGCA

>G264 Amino Acid Sequence (domain in AA coordinates: 24-114)
MNGALGNSSASVSGGEGAGGPAPFLVKTYEMVDDSSTDQIVSWSANNNSFIVWNHAEFSR
LLLPTYFKHNNFSSFIRQLNTYGFRKIDPERWEFLNDDFIKDQKHLLKNIHRRKPIHSHS
HPPASSTDQERAVLQEQMDKLSREKAAIEAKLLKFKQQKVVAKHQFEEMTEHVDDMENRQ
KKLLNFLETAIRNPTFVKNFGKKVEQLDISAYNKKRRLPEVEQSKPPSEDSHLDNSSGSS
RRESGNIFHQNFSNKLRLELSPADSDMNMVSHSIQSSNEEGASPKGILSGGDPNTTLTKR
EGLPFAPEALELADTGTCPRRLLLNDNTRVETLQQRLTSSEETDGSFSCHLNLTLASAPL
PDKTASQIAKTTLKSQELNFNSIETSASEKNRGRQEIAVGGSQANAAPPARVNDVFWEQF
LTERPGSSDNEEASSTYRGNPYEEQEEKRNGSMMLRNTKNIEQLTL*

>G32 (101..736+)

PCT/US02/25805

>G32 Amino Acid Sequence (domain in aa coordinates: 17-84)
MNTTSSKSKKKQDDQVGTRFLGVRRRPWGRYAAEIRDPTTKERHWLGTFDTAEEAALAYD
RAARSMRGTRARTNFVYSDMPPSSSVTSIVSPDDPPPPPPPPPPPPPPDYMMMFNQYS
STDSPMLQPHCDQVDSYMFGGSQSSNSYCYSNDSSNELPPLPSDLSNSCYSQPQWTWTGD
DYSSEYVHSPMFSRMPPVSDSFPQGFNYFGS*

>G436 (1..2157)

ATGGATTTTACTCGCGATGACAACTCAAGTGATGAACGGGAAAATGATGTAGACGCCAAC ACCAACAACCGTCACGAGAAGAAGGGTTACCATCGCCACACTAATGAACAAATTCATAGG $\tt CTTGAAACGTATTTCAAGGAATGTCCTCATCCAGACGAATTTCAGCGACGTCTGTTGGGT$ GAAGAACTGAATCTGAAACCAAAACAAATCAAATTTTGGTTTCAAAACAAAAGAACTCAA GCTAAGAGTCACAATGAAAAAGCAGACAATGCAGCGCTTAGGGCAGAAAATATTAAGATT AGACGTGAGAACGAATCAATGGAAGATGCACTGAATAATGTGGTTTGCCCTCCATGTGGT GGTCGTGGTCCTGGGAGAGAAGACCAACTTCGACATCTCCAAAAACTCCGTGCACAAAAC GCTTATCTCAAAGATGAGTATGAAAGAGTCTCAAACTACCTAAAACAGTACGGAGGTCAC TCAATGCATAACGTCGAGGCCACACCCTATCTCCATGGTCCATCAAACCATGCATCAACG TCCAAGAACCGTCCAGCATTGTACGGAACCTCTTCTAACCGTCTCCCCGAGCCTTCAAGC ATATTTAGAGGACCATACACTCGTGGAAACATGAACACCACCGCACCGCCTCAGCCGCA AAGCCGCTGGAAATGCAGAATTTCCAACCACTATCTCAACTGGAGAAAATTGCAATGTTG GAAGCAGCGGAAAAAGCGGTGTCAGAGGTTTTGAGCCTCATTCAAATGGATGATACAATG TGGAAAAAGTCGTCTATTGATGATAGGCTCGTCATTGATCCAGGGCTCTATGAGAAATAT ${\tt TTTACTAAGACTAACACAAATGGTCGTCCTGAGTCTTCTAAAGATGTCGTGGTGGTTCAA}$ ATGGATGCTGGAAACTTGATCGACATCTTCTTAACTGCGGAGAAATGGGCGAGGCTTTTT CCAACAATTGTGAACGAAGCTAAAACGATTCACGTCTTGGATTCCGTTGACCATCGAGGA AAAACTTTCTCAAGAGTGATTTATGAGCAACTGCACATACTGTCACCATTGGTGCCACCG AGGGAATTTATGATCCTAAGGACTTGCCAACAAATTGAAGACAATGTCTGGATGATTGCT GATGTGTCGTGTCATCTCCCAAACATTGAGTTTGATCTTTCGTTTCCCATTTGCACCAAA ${\tt CGTCCTCAGGTGTGCTCATTCAAGCCTTGCCCCACGGCTTCTCTAAGGTGACGTGGATA}$ GAGCATGTGGTAGTGAATGATAATAGAGTGCGGCCACATAAGCTTTACAGAGACCTCTTA TACGGCGGCTTTGGCTACGGAGCTCGACGTTGGACCGTTACTCTTGAGAGGACGTGTGAG AGGCTGATTTTCTCCACCTCCGTCCCTGCCTTGCCCAACAATGACAATCCCGGAGTTGTG GCATGGATGATGAAAATGGTTAACAAACTCGACTTCTCGCCACAGTCTGAAACTAACAAC AGCGGAATTAGGATTGGGGTGCGGATAAACAATGAGGCGGGTCAACCGCCCGGTCTCATT GTCTGTGCTGGTTCATCTTTATCCCTCCCTCTCCCTGTCCAAGTGTACGATTTCCTT AAGAATCTGGAGGTTCGTCACCAGTGGGACGTTCTGTGCCATGGGAATCCAGCGACTGAG GCTGCTCGTTTCGTCACCGGATCAAACCCAAGGAACACTGTGTCTTTTCTCGAGCCTTCA ATTAGGGATATTAATACTAAGCTAATGATACTCCAAGATAGCTTCAAAGATGCATTGGGA GGAATGGTGGCCTACGCTCCAATGGATCTAAACACCGCCTGCGCTGCCATTTCAGGCGAT ATCGATCCTACCACCATTCCAATCCTCCCTTCCGGTTTTATGATCTCCCGTGACGGCCGT ${\tt CCTTCCGAGGCGAAGCCGAGGGTGGCAGCTATACACTCCTCACCGTGGCTTTCCAGATC}$ CTTGTCTCCGGTCCGAGTTACTCTCCTGATACCAACCTGGAAGTTTCTGCCACCACAGTC AATACCTTGATTAGCTCCACCGTTCAAAGGATCAAAGCCATGCTCAAGTGCGAATGA >G436 Amino Acid Sequence (domain in AA coordinates: 22-85) MDFTRDDNSSDERENDVDANTNNRHEKKGYHRHTNEQIHRLETYFKECPHPDEFQRRLLG EELNLKPKQIKFWFQNKRTQAKSHNEKADNAALRAENIKIRRENESMEDALNNVVCPPCG GRGPGREDQLRHLQKLRAQNAYLKDEYERVSNYLKQYGGHSMHNVEATPYLHGPSNHAST SKNRPALYGTSSNRLPEPSSIFRGPYTRGNMNTTAPPQPRKPLEMQNFQPLSQLEKIAML EAAEKAVSEVLSLIQMDDTMWKKSSIDDRLVIDPGLYEKYFTKTNTNGRPESSKDVVVVQ MDAGNLIDIFLTAEKWARLFPTIVNEAKTIHVLDSVDHRGKTFSRVIYEQLHILSPLVPP REFMILRTCQQIEDNVWMIADVSCHLPNIEFDLSFPICTKRPSGVLIQALPHGFSKVTWI

263/286

EHVVVNDNRVRPHKLYRDLLYGGFGYGARRWTVTLERTCERLIFSTSVPALPNNDNPGVV QTIRGRNSVMHLGERMLRNFAWMMKMVNKLDFSPQSETNNSGIRIGVRINNEAGQPPGLI VCAGSSLSLPLPPVQVYDFLKNLEVRHQWDVLCHGNPATEAARFVTGSNPRNTVSFLEPS IRDINTKLMILQDSFKDALGGMVAYAPMDLNTACAAISGDIDPTTIPILPSGFMISRDGR PSEGEAEGGSYTLLTVAFQILVSGPSYSPDTNLEVSATTVNTLISSTVQRIKAMLKCE* >G556 (50..1144)

CTTTTTTGAAGCCCTTTTGACACAAAAGACCAGAACAAGTTGAAGAAATATGAATACAAC CTCGACACATTTGTTCCACCGAGAAGGTTTGAAGTTTACGAGCCTCTCAACCAAATCGG TATGTGGGAAGAAGTTTCAAGAACAATGGAGACATGTATACGCCTGGCTCTATCATAAT CCCGACTAACGAAAAACCAGACAGCTTGTCAGAGGATACTTCTCATGGGACAGAAGGAAC TCCTCACAAGTTTGACCAAGAGGCTTCCACATCTAGACATCCTGATAAGATACAGAGAAG GCTAGCACAGAATCGAGAGGCAGCTAGGAAAAGTCGTTTGCGCAAGAAAGCTTATGTTCA GCAGCTAGAGACTAGCCGGTTAAAGCTAATTCATTTAGAGCAAGAACTCGATCGTGCTAG ACAACAGGGTTTCTATGTGGGGAACGGAGTAGATACCAATGCTCTTAGTTTCTCAGATAA CATGAGCTCAGGGATTGTTGCATTTGAGATGGAATATGGACATTGGGTGGAAGAACAGAA CAGGCAAATATGTGAACTAAGAACGGTTTTACATGGACAAGTTAGTGATATAGAGCTTCG TTCTCTAGTCGAGAATGCCATGAAACATTACTTTCAACTCTTCCGAATGAAGTCAGCCGC TGCAAAAATCGATGTTTTCTATGTCATGTCCGGAATGTGGAAAACTTCAGCAGAGCGGTT TTTCTTGTGGATAGGCGGATTTAGACCCTCAGAGCTTCTCAAGGTTCTGTTACCGCATTT TGATCCTTTGACGGATCAACAACTTTTGGATGTAATCTGAGGCAATCATGTCAACA AGCAGCCGGGAAACTTGGTGAAGGAAGTTATATTCCTCAAATGACTTGTGCTATGGAGAG ATTGGAGGCTTTGGTCAGCTTTGTAAATCAAGCTGATCATCTGAGACATGAGACATTGCA ACAGATGCATCGGATCTTAACCACGCGACAAGCGGCTAGAGGTTTGTTAGCATTAGGGGA GTATTCCAAAGGCTTCGAGCTTTGAGTTCGAGTTGGGCGGCTAGGCAACGTGAACCAAC GTAATTAAGGTGTTTAGATGTCAAGAAAGGTTTGAGACCTTAACAATCAAGAATGGAGTT TGCTGGTGAGTGGATTTTTGGGTCAAGAACAAGAGCAATAACACAAGCTGCTGTGTGATG ATGAATCTTGTCTTGCGGCTAAAGGAAATGTTTGAGGAAAGTTGTACATATGATCAGCAA GTAATATTATAGATAAGCTTGTGGTATATATGATTTTAATGTGACATTACGAACTTGATT TATAACCATGGTAAAAT

>G556 Amino Acid Sequence (domain in AA coordinates: 83-143)
MNTTSTHFVPPRRFEVYEPLNQIGMWEESFKNNGDMYTPGSIIIPTNEKPDSLSEDTSHG
TEGTPHKFDQEASTSRHPDKIQRRLAQNREAARKSRLRKKAYVQQLETSRLKLIHLEQEL
DRARQQGFYVGNGVDTNALSFSDNMSSGIVAFEMEYGHWVEEQNRQICELRTVLHGQVSD
IELRSLVENAMKHYFQLFRMKSAAAKIDVFYVMSGMWKTSAERFFLWIGGFRPSELLKVL
LPHFDPLTDQQLLDVCNLRQSCQQSEDALSQGMEKLQHTLAESVAAGKLGEGSYIPQMTC
AMERLEALVSFVNQADHLRHETLQQMHRILTTRQAARGLLALGEYFQRLRALSSSWAARQ
REPT*

>G1420 (39..1238)

AAAGTATCATCATAGATTCCATCTTTTCTCTATTACATGGAGAAGAAAAAAGAAGAGG ATCATCATCAACAACAACAACAACAAAAAGGAGATCAAGAACACAGAGACAAAGA TCGAGCAAGAACAAGAACAAGAACAAGAAATCTCTCAAGCATCATCATCAA CAAGCATCTTCGATACTTCATCTTTACCTTTTCCTTATTCTTATTTCGAAGATCACTCTT CTAATAATCCTAATTCTTTCCTAGACTTGCTCCGACAAGATCATCAGTTTGCTTCCT CTAATTCCTCTTCTTTTTCATTCGATGCCTTTCCTCTCCCCAATAACAACAACAACACCT CGACTTCTCCAAACTCAACCTCAGTCTCATCTTCCTCCAACGAAGCTGCAAATGATAACA ACAGTGGTAAAGAAGTTACTGTTAAAGATCAAGAAGAAGGAGATCAACAACAAGAGCAAA GGTTTGCGTTTCTGACGAAGAGCGATATTGATAATCTTGACGACGGTTATAGGTGGAGAA AATACGGCCAAAAAGCTGTCAAAAACAGTCCTTATCCCAGAAGCTATTACCGTTGCACCA CAGTGGGTTGCGGAGTGAAGAAGAGTGGAGAGATCCTCCGATGATCCTTCGATCGTCA TGACAACCTACGAAGGTCAGCATACCCATCCTTTCCCCATGACGCCACGTGGACACATCG GAATGCTCACGACCAATCCTAGACCACGGTGCAACCACCGCGTCATCATCATTCT CCATCCCTCAGCCACGTTACTTGCTGACTCAACATCACCAGCCCTACAACATGTACAACA

>G1420 Amino Acid Sequence (domain in AA coordinates: 221-280)
MEKKKEEDHHHQQQQQQKEIKNTETKIEQEQEQEQKQEISQASSSSNMANLVTSSDHHP
LELAGNLSSIFDTSSLPFPYSYFEDHSSNNPNSFLDLLRQDHQFASSSNSSSFSFDAFPL
PNNNNNTSFFTDLPLPQAESSEVVNTTPTSPNSTSVSSSSNEAANDNNSGKEVTVKDQEE
GDQQQEQKGTKPQLKAKKKNQKKAREARFAFLTKSDIDNLDDGYRWRKYGQKAVKNSPYP
RSYYRCTTVGCGVKKRVERSSDDPSIVMTTYEGQHTHPFPMTPRGHIGMLTSPILDHGAT
TASSSSFSIPQPRYLLTQHHQPYNMYNNNSLSMINRRSSDGTFVNPGPSSSFPGFGYDMS
OASTSTSSSIRDHGLLQDILPSQIRSDTINTQTNEENKK*

>G1412 (115..1008)

CCCACGCGTCCGCCCACGCGTCCGAAACAAAAACATATAATTTGGGTTTTTAGAGTTCGA AACTTGAAATCTTTTTTTTTTGGTTGCTGAGGAATCGAAGTAGAAGAGTATAAATGGGT GTTAGAGAGAAAGATCCGTTAGCCCAGTTGAGTTTGCCACCAGGTTTTAGATTTTATCCG ACAGATGAAGAGCTTCTTGTTCAGTATCTATGTCGGAAAGTTGCAGGCTATCATTTCTCT CTCCAGGTCATCGGAGACATCGATCTCTACAAGTTCGATCCTTGGGATTTGCCAAGTAAG GCTTTGTTTGGAGAGAAGGAATGGTATTTCTTTAGCCCAAGAGATCGGAAATATCCGAAC GGGTCAAGACCCAATAGAGTAGCCGGGTCGGGTTATTGGAAAGCAACGGGTACTGACAAA ATTATCACGCCGATGTCGTCGTGTCGGGATTAAAAAAGCTCTGGTCTTTTACGCCGGA AAAGCTCCCAAAGGCACTAAAACCAACTGGATTATGCACGAGTATCGCTTAATAGAACAT TCTCGTAGCCATGGAAGCTCCAAGTTGGATGATTGGGTGTTGTCGAATTTACAAGAAA ACATCTGGATCTCAGAGACAAGCTGTTACTCCTGTTCAAGCTTGTCGTGAAGAGCATAGC ${\tt ACGAATGGGTCGTCATCGTCTTCATCACAGCTTGACGACGTTCTTGATTCGTTCCCG}$ GAGATAAAAGACCAGTCTTTTAATCTTCCTCGGATGAATTCGCTCAGGACGATTCTTAAC AATGGATTACCGAGTTGCGTTACGATGCGTTTCGAGCGGCGGAAGGTGAGGCGGAG AGTGGGCATGTGAATCGGCAGCAGAACTCGAGCGGGTTGACTCAGAGTTTCGGGTACAGC GTTACTGATGGGTGAAAAAAGTAAAAAAAAAACTTGGAGATAGTAGAGTGGCAATTGATG TAAATAATAGGGATTTATATGGGGCTTTTACCGATTCGGTGAGGCTTAGGATTCCCCAAA GGAAAAAGGCTCGACTGGGGACTAGTTTGATCCAACTTGACGGCCCCCAAATGTGTAATG >G1412 Amino Acid Sequence (domain in AA coordinates: 17-159) MGVREKDPLAQLSLPPGFRFYPTDEELLVQYLCRKVAGYHFSLQVIGDIDLYKFDPWDLP SKALFGEKEWYFFSPRDRKYPNGSRPNRVAGSGYWKATGTDKIITADGRRVGIKKALVFY AGKAPKGTKTNWIMHEYRLIEHSRSHGSSKLDDWVLCRIYKKTSGSQRQAVTPVQACREE HSTNGSSSSSSQLDDVLDSFPEIKDQSFNLPRMNSLRTILNGNFDWASLAGLNPIPELA PTNGLPSYGGYDAFRAAEGEAESGHVNRQQNSSGLTQSFGYSSGFGVSGQTFEFRQ* >G738 (1..885)

>G738 Amino Acid Sequence (domain in aa coordinates: 351-393)
MDHHQYHHHDQYQHQMMTSTNNNSYNTIVTTQPPPTTTTMDSTTATTMIMDDEKKLMTTM
STRPQEPRNCPRCNSSNTKFCYYNNYSLAQPRYLCKSCRRYWTEGGSLRNVPVGGGSRKN
KKLPFPNSSTSSSTKNLPDLNPPFVFTSSASSSNPSKTHQNNNDLSLSFSSPMQDKRAQG
HYGHFSEQVVTGGQNCLFQAPMGMIQFRQEYDHEHPKKNLGFSLDRNEEEIGNHDNFVVN
EEGSKMMYPYGDHEDRQQHHHVRHDDGNKKREGGSSNELWSGIILGGDSGGPTW*
>G2426 (1..1038)

ATGGGCAGATCGCCATGTTGTGATAAGGCCGGGTTGAAGAAAGGGCCTTGGACTCCAGAA GAGGATCAGAAACTTTTGGCTTATATTGAAGAACATGGCCATGGAAGCTGGCGTTCTTTG CTAAGACCTGACATCAAGAGAGGCAAATTCACTGTACAAGAAGAACAAACCATCATTCAA CTCCACGCTCTCCTCGGAAACAGGTGGTCAGCGATTGCAACTCATTTACCAAAGAGGACA GACAACGAGATCAAGAACTACTGGAACACACTTGAAGAAACGTCTGATCAAAATGGGG ATAGATCCAGTGACTCACAAGCACAAAAACGAGACTCTTTCGTCTTCCACAGGACAATCA AAGAACGCAGCCACGCTTAGTCATATGGCTCAATGGGAGAGTGCAAGACTCGACGCTGAA GCAAGGCTAGCTAGAGAATCAAAGCTTCTCCATTTACAGCATTACCAAAACAATAACAAC CTTAACAAATCAGCAGCTCCTCAACAACATTGCTTCACTCAAAAAACATCAACAAACTGG ACTAAACCAAACCAAGGAAACGGAGACCAACAGCTTGAATCTCCGACATCGACGGTGACA TTCTCTGAGAATCTTCTGATGCCTTTAGGAATCCCTACGGATAGCAGCAGAAATAGAAAC AATAACAACAATGAGTCCTCGGCGATGATTGAATTGGCCGTATCTTCGTCAACCTCCTCC GATGTGAGTCTGGTCAAAGAACATGAACACGACTGGATTAGGCAGATCAACTGTGGTAGT GAGGATAACAAGAATTACTGGAATAGCATTCTCAACTTGGTTGATTCTTCACCGTCCGAT TCCGCGACGATGTTCTGA

>G2426 Amino Acid Sequence (conserved domain in AA coordinates:14-114)
MGRSPCCDKAGLKKGPWTPEEDQKLLAYIEEHGHGSWRSLPEKAGLQRCGKSCRLRWTNY
LRPDIKRGKFTVQEEQTIIQLHALLGNRWSAIATHLPKRTDNEIKNYWNTHLKKRLIKMG
IDPVTHKHKNETLSSSTGQSKNAATLSHMAQWESARLDAEARLARESKLLHLQHYQNNNN
LNKSAAPQQHCFTQKTSTNWTKPNQGNGDQQLESPTSTVTFSENLLMPLGIPTDSSRNRN
NNNNESSAMIELAVSSSTSSDVSLVKEHEHDWIRQINCGSGGIGEGFTSLLIGDSVGRGL
PTGKNEATAGVGNESEYNYYEDNKNYWNSILNLVDSSPSDSATMF*

>G1524 (1..825)

>G1243 (1..3174)

>G1524 Amino Acid Sequence (conserved domain in AA coordinates:49-110)
MGRTKEQATLTRYPPCPRNPAKFNDINKALQEKGYGKALKRKPWTGVTCPVCLEVPHNSV
VLLCSSYHKGCRPYMCATGNRFSNCLEQYKKAYAKDEKSDKPPELLCPLCRGQVKGWTVV
EKERKYLNSKKRSCMNDECLFYGSYRQLKKHVKENHPRAKPRAIDPVLEAKWKKLEVERE
RSDVISTVMSSTPGAMVFGDYVIEPYNGYDHQDDSDDYSDSSDDEMEGGVFELGAFDLGR
LQPRSAAISSRGIRGMIIRNRWARSRGASRRRQT*

ATGGCGAGAAATTCGAATTCCGATGAGGCTTTCTCGTCAGAGGAGGAAGAAGAAGACGGGTT AAGGATAATGAAGAAGAAGATGAGGAGGAGCTCGAGGCTGTTGCTCGTTCTTCTGGCTCC GACGATGACGAAGTAGCCGCCGCCGACGAATCACCAGTCTCCGACGGAGAGGCTGCTCCC 266/286

GTAGAAGATGATTACGAGGACGAAGAAGATGAGGAAAAAGCTGAAATCAGCAAACGTGAG AAAGCCAGACTTAAAGAGATGCAGAAGTTGAAGAAGCAGAAGATTCAAGAGATGCTGGAG TCGCAGAATGCTTCCATTGACGCGGATATGAACAATAAGGGAAAAGGGAGACTGAAGTAT CTTCTGCAGCAAACTGAGTTATTTGCCCACTTTGCTAAAAGTGATGGATCTTCTTCTCAG AAGAAGGCAAAAGGAAGGGGACGTCATGCTTCCAAAATAACTGAAGAGGAGGAAGACGAA GAGTATCTAAAGGAAGAAGAGGATGGCTTAACTGGATCTGGAAACACACGGTTACTCACA CAGCCCTCTTGTATTCAAGGGAAGATGAGAGATTACCAATTAGCTGGTTTGAACTGGCTC ATTCGTCTTTATGAGAATGGCATAAATGGAATTCTTGCTGATGAAATGGGTCTGGGGAAG ACGCTTCAAACGATTTCTTTGTTGGCATATCTTCATGAATACAGGGGAATCAATGGTCCC CATATGGTGGTTGCTCCAAAATCAACACTTGGTAATTGGATGAACGAAATTCGCCGGTTT GAAGACCTGCTAGTTGCTGGGAAATTTGATATTTGTGTCACAAGCTTTGAGATGGCCATC AAAGAGAAGACACTTCGTCGGTTTAGCTGGCGTTATATTATCATTGATGAAGCGCAT CGAATCAAGAACGAGAATTCACTCCTTTCTAAAACCATGAGACTTTTTAGCACCAATTAT CGGCTTCTTATCACGGGGACCCCCTTCAGAATAATCTCCATGAACTGTGGGCTCTTCTA AATTTTCTTCTGCCTGAGATTTTTAGTTCAGCAGAGACTTTTGATGAATGGTTTCAAATT TCTGGTGAGAATGACCAGCAAGAAGTTGTGCAACAACTGCACAAGGTTCTTCGACCATTT CTTCTTCGAAGACTAAAGTCAGATGTTGAGAAAGGTTTGCCACCGAAGAAGGAGACCATA CTTAAAGTTGGTATGTCTCAGATGCAAAAGCAATACTACAAGGCTTTACTGCAGAAGGAT CTTGAAGCGGTTAATGCTGGTGGAGAACGCAAACGTCTGCTAAACATTGCAATGCAACTG CGTAAATGCTGCAATCACCCCTATCTCTTCCAGGGTGCAGAACCTGGTCCCCCATATACC ACAGGAGATCACCTTATAACAAATGCTGGTAAGATGGTTCTCTTGGATAAATTGCTTCCT AAGTTGAAAGAACGTGATTCAAGGGTGCTGATATTTTCTCAGATGACAAGACTTTTTGGAT ATTCTTGAGGACTATTTAATGTATCGTGGTTACTTGTATTGCCGTATTGATGGAAACACT GGTGGTGACGAACGAGATGCCTCCATAGAAGCCTACAACAAGCCAGGAAGTGAGAAATTT ${\tt GTTTTCTTGTTATCTACTAGAGCTGGAGGGCTTGGTATCAATCTTGCTACTGCAGATGTT}$ GTGATCCTTTACGATAGTGATTGGAACCCACAAGTCGACTTGCAAGCTCAGGATCGTGCC CATAGGATTGGTCAAAAAAAAAGAGTTCAAGTGTTTCGATTCTGCACTGAGTCTGCTATT GAGGAGAAAGTGATTGAAAGAGCTTACAAGAAGTTAGCACTTGATGCTCTGGTTATTCAA CAAGGGAGATTGGCAGAACAGAAAAGTAAGTCTGTCAATAAGGATGAGTTGCTTCAAATG GTAAGATATGGTGCTGAGATGGTGTTCAGTTCTAAAGATAGCACAATCACAGACGAGGAT ATTGATAGAATCATTGCCAAAGGAGAAGAGGCAACAGCTGAACTTGATGCTAAGATGAAG AAATTCACAGAAGATGCTATACAGTTTAAAATGGATGACAGTGCTGACTTCTATGATTTT GATGATGACAATAAGGATGAAAACAAGCTCGATTTTAAAAAGATTGTAAGCGACAATTGG AATGATCCCCCAAGCGGAGAGAAAGCGCAACTACTCTGAATCTGAGTACTTTAAGCAA ACATTGCGGCAAGGTGCTCCAGCTAAACCTAAAGAGCCTAGAATTCCGCGCATGCCCCAG TTGCACGATTTCCAGTTCTTTAACATTCAGAGATTGACCGAGTTGTATGAAAAGGAAGTA CGTTATCTCATGCAAACACATCAGAAAAATCAGTTGAAAGACACAATTGATGTTGAAGAA CCAGAAGGTGGGGATCCCTTAACTACTGAAGAAGAAGAAAAGGAGGGATTATTGGAG GAGGGTTTCTCAACATGGAGCAGAAGAGATTTTAATACTTTCCTCAGGGCTTGTGAGAAG TATGGCCGCAACGACATAAAAAGCATTGCCTCTGAGATGGAAGGGAAAACAGAGGAAGAA GTTGAAAGATATGCCAAAGTATTTAAAGAGCGGTACAAGGAGCTGAACGACTATGATAGA ATCATTAAGAACATTGAGAGGGGAGAGGCAAGGATCTCTAGGAAAGACGAAATCATGAAG GCCATAGGGAAGAACTGGATCGCTACAGAAACCCTTGGCTGGAACTGAAGATTCAATAT GGTCAGAACAAGGCAAGCTGTACAATGAAGAGTGTGACCGTTTCATGATCTGCATGATT CACAAACTTGGTTATGGGAATTGGGATGAGCTAAAGGCAGCATTTAGGACATCGTCTGTG TTCAGGTTTGACTGGTTTGTGAAATCCCGCACGAGTCAGGAACTTGCAAGAAGATGCGAC CGCAAAGAGAAGATCGCGAAGAGTGCAACACCATCAAAGCGACCTTTAGGAAGACAA GCAAGTGAGAGTCCTTCATCGACGAAGAAGCGGAAGCACCTGTCGATGAGATGA >G1243 Amino Acid Sequence (domain in AA coordinates: 216-609) MARNSNSDEAFSSEEEEERVKDNEEEDEEELEAVARSSGSDDDEVAAADESPVSDGEAAP VEDDYEDEEDEEKAEISKREKARLKEMQKLKKQKIQEMLESQNASIDADMNNKGKGRLKY $\verb|LLQQTELFAHFAKSDGSSSQKKAKGRGRHASKITEEEEDEEYLKEEEDGLTGSGNTRLLT|$ QPSCIQGKMRDYQLAGLNWLIRLYENGINGILADEMGLGKTLQTISLLAYLHEYRGINGP HMVVAPKSTLGNWMNEIRRFCPVLRAVKFLGNPEERRHIREDLLVAGKFDICVTSFEMAI KEKTALRRFSWRYIIIDEAHRIKNENSLLSKTMRLFSTNYRLLITGTPLONNLHELWALL

267/286

NFLLPEIFSSAETFDEWFQISGENDQQEVVQQLHKVLRPFLLRRLKSDVEKGLPPKKETI LKVGMSQMQKQYYKALLQKDLEAVNAGGERKRLLNIAMQLRKCCNHPYLFQGAEPGPPYT TGDHLITNAGKMVLLDKLLPKLKERDSRVLIFSQMTRLLDILEDYLMYRGYLYCRIDGNT GGDERDASIBAYNKPGSEKFVFLLSTRAGGLGINLATADVVILYDSDWNPQVDLQAQDRA HRIGQKKEVQVFRFCTESAIEEKVIERAYKKLALDALVIQQGRLAEQKSKSVNKDELLQM VRYGAEMVFSSKDSTITDEDIDRIIAKGEEATAELDAKMKKFTEDAIQFKMDDSADFYDF DDDNKDENKLDFKKIVSDNWNDPPKRERKRNYSESEYFKQTLRQGAPAKPKEPRIPRMPQ LHDFQFFNIQRLTELYEKEVRYLMQTHQKNQLKDTIDVEEPEGGDPLTTEEVEEKEGLLE EGFSTWSRRDFNTFLRACEKYGRNDIKSIASEMEGKTEEEVERYAKVFKERYKELNDYDR IIKNIERGEARISRKDEIMKAIGKKLDRYRNPWLELKIQYGQNKGKLYNEECDRFMICMI HKLGYGNWDELKAAFRTSSVFRFDWFVKSRTSQELARRCDTLIRLIEKENQEFDERERQA RKEKKLAKSATPSKRPLGRQASESPSSTKKRKHLSMR*

>G631 (190..1461)

CTTCTTCTTCTTCTTCTTCTTCTTCCTCCTCTCTCTCGGATCTCTCTGATTTAGTG ATTTTCAAATTTCAAGTTTTCTTCACCTTTAATTTTGTGTCTCGTTGATCTCTCTTTGG ACATTCTGCTTTGGATTCTGGAGGCTTCTCATTAGATCTCTATTAGTGGGTTTAGGTCAA GTTCTTGAAATGGATAAGGAGAAATCTCCTGCACCACCACCTAGTGGAGGTCTTCCTCCA CCATCGGGTCGTTACTCTGCGTTTTCACCTAATGGAAGTAGCTTTGCAATGAAAGCTGAA TCATCTTTTCCTCCTTTGACTCCAAGTGGAAGCAATAGCTCAGATGCTAACCGATTCAGC CATGATATTAGCCGAATGCCGGATAATCCACCTAAGAACCTAGGCCATCGCCGAGCTCAT GCTGCTGATGGACCTTCTTTCTCTGATGATACTGACGAGGACTTACTCTATATGTATCTT GATATGGAAAAATTCAATTCTTCTGCTACATCGACTTCTCAAATGGGTGAGCCATCAGAA CCGACTTGGAGGAATGAATTAGCCTCGACTTCTAACCTTCAGAGTACACCCGGTAGCTCT AAGCCTGAGATGCTTATGTCAGGGAATGAAGATGTCTGGAGTTGACTCTAAGAAAGCC ATCTCTGCTGCTAAACTTTCTGAGCTTGCTCTCATTGATCCAAAACGCGCCAAGAGGATA CTCGAGAGAAAGTACAGACTTTACAAACAGAGGCCACATCTCTCAGCCCAGTTGACT CTCTTACAGAGAGATACAAATGGCCTGGGTGTTGAAAACAATGAGCTTAAACTGCGAGTA CAAACTATGGAGCAACAGGTCCACCTACAGGATGCTTTAAATGATGCACTAAAGGAGGAA GTCCAGCATCTTAAGGTATTGACGGGGCAAGGTCCATCAAATGGTACATCAATGAACTAC GGTTCTTTTGGATCAAACCAGCAATTCTATCCCAATAATCAGTCGATGCACACTATCTTA GCCGCACAACAGTTACAGCAGCTCCAGATCCAGTCACAGAAACAGCAACAACAACAACAG CAACACCAGCAACAACAACAGCAGCAGCAGCAATTTCACTTTCAACAGCAGCAACTG TACCAGCTTCAGCAGCAGCAACGGCTTCAACAACAGGAACAACAAAGCGGGGCTTCAGAG CTAAGAAGACCCATGCCTTCTCCTGGTCAGAAAGAGAGTGTGACATCGCCTGATCGTGAA ACTCCCTTGACAAAAGACTGAGTCTAGACTGTGCTAATGTCCAATTTAGTAAGTTACTCT TGGAAAATCTTCTTTTCATCGCAGGCTCATGGATTTGGGATTTACTGCATTATAGAGTT AAAAACAAGACAGCTTAGAAGTTGCGGATTTAGAAGTTGTTAGTGAAGCTTTTGTTCTCG TCTGTTGGTAGTTTACAATCTTCTCTTTTGTATGATCCTAAG

>G631 Amino Acid Sequence (domain in AA coordinates: TBD) MDKEKSPAPPPSGGLPPPSGRYSAFSPNGSSFAMKAESSFPPLTPSGSNSSDANRFSHDI SRMPDNPPKNLGHRRAHSEILTLPDDLSFDSDLGVVGAADGPSFSDDTDEDLLYMYLDME KFNSSATSTSQMGEPSEPTWRNELASTSNLQSTPGSSSERPRIRHQHSQSMDGSTTIKPE MLMSGNEDVSGVDSKKAISAAKLSELALIDPKRAKRIWANRQSAARSKERKMRYIAELER KVQTLQTEATSLSAQLTLLQRDTNGLGVENNELKLRVQTMEQQVHLQDALNDALKEEVQH LKVLTGQGPSNGTSMNYGSFGSNQQFYPNNQSMHTILAAQQLQQLQIQSQKQQQQQQQHQ QQQQQQQFHFQQQQLYQLQQQQRLQQQEQQSGASELRRPMPSPGQKESVTSPDRETPL ጥዠጉ*

>G1909 (1..828)

ATGGGTGGATCGATGGCGGAGAGAGCAAGGCAGGCCAACATTCCTCCACTAGCGGGACCC CTAAAGTGTCCTCGATGCGACTCCAGCAACACTAAGTTCTGTTACTACAACAACTATAAC CTCACTCAGCCTCGTCACTTCTGCAAAGGTTGCCGTCGCTACTGGACACAAGGGGGCGCC CTGAGAAACGTCCCTGTAGGTGGAGGCTGCCGGAGGAATAACAAGAAGGGCCAAAAATGGA AATTTAAAATCTTCTTCTTCTTCGTCCAAACAGTCTTCCTCGGTCAACGCTCAAAGTCCT AGCTCAGGACAGCTAAGGACAAATCATCAGTTCCCTTTTTCACCAACTCTTTACAATCTC

>G1909 Amino Acid Sequence (conserved domain in AA coordinates:23-51)
MGGSMAERARQANIPPLAGPLKCPRCDSSNTKFCYYNNYNLTQPRHFCKGCRRYWTQGGA
LRNVPVGGGCRRNNKKGKNGNLKSSSSSSKQSSSVNAQSPSSGQLRTNHQFPFSPTLYNL
TQLGGIGLNLAATNGNNQAHQIGSSLMMSDLGFLHGRNTSTPMTGNIHENNNNNNNENNL
MASVGSLSPFALFDPTTGLYAFQNDGNIGNNVGISGSSTSMVDSRVYQTPPVKMEEQPNL
ANLSRPVSGLTSPGNQTNQYFWPGSDFSGPSNDLL*

>G1663 (64..630)

TTCTCTGTGAATCCTTGTTCATCGTCACTGAAATTAGTTTACAAAATCGACGAATTCG
GAGATGATTTTTCAGAATGTGTGCAGAAATGAGTCCAACTTCAACGCTATAGCTTCCGAA
TCGCGTTCCCAAACGCAGTTCGGTGTTTCGAAATCCTCCTCGAGCGGCGGGGGGTGTATC
TCCGCCAGGACTAAAGACCGTCACACGAAGGTTAACGGACGAAGCCGTCGAGTTACGATG
CCGGCTCTCGCCGCCGCTAGGATTTTCCAGTTAACGCGTGAGCTCGGTCACAAAACTGAA
GGAGAAACCATCGAATGGCTTCTTAGTCAAGCTGAACCGTCGATTATTGCCGCCACTGGC
TACGGGACTAAGCTCATTTCGAATTGGGTTGATGTTGCGGCGGACGATTCCTCGTCGTCG
TCGTCGATGACGTCGCCGCAAACGCAAACGCCACAATCGCCGAGTTGTAGGTTG
GATCTTTGTCAGCCAATCGGAATTCAGTATCCGGTGAATGGTTACAGTCATATGCCGTTC
ACAGCGATGCTTTTAGAGCCCGATGACCACGACGCGGAATCTGAGGTTGAGATCGCGGAG
GAGGAGGAACGTAGACGCCATCACCATTAGTAAAATTAGGCTTTTTAGAGTGTTAA
AATTAGGATTTTAAAAGTTTAGGAGGTAACAGATAAGGATAATT

>G1663 Amino Acid Sequence (domain in AA coordinates: TBD)
MIFQNVCRNESNFNAIASESRSQTQFGVSKSSSSGGGCISARTKDRHTKVNGRSRRVTMP
ALAAARIFQLTRELGHKTEGETIEWLLSQAEPSIIAATGYGTKLISNWVDVAADDSSSS
SMTSPQTQTQTPQSPSCRLDLCQPIGIQYPVNGYSHMPFTAMLLEPMTTTAESEVEIAEE
EERRRRHH*

>G1231 (103..870)

TACAATCCACGCACTGTTGAAGAGGTGTTTTAGGGATTTTTAAGGGTCGTAGAGCTGGCATG ATTAAGGCTTTAACCACTGATGTTCAGGAGTTTTTCCGACTTTGTGATCCCGAAAAGGAG AACCTTTGCCTTTACGGACATCCAAATGAGCACTGGGAAGTGAATTTGCCAGCTGAAGAG GTTCCTCCTGAGCTCCCAGAGCCTGTCTTGGGTATCAATTTTGCCAGAGACGGGATGGCG GAAAAGGATTGGTTGTCCTTGTTGCTGTCCACAGTGATGCTTGGCTTCTTGCTGTTGCT TTCTTTTTTGGAGCCAGGTTTGGATTTGACAAAGCTGATAGGAAGAGGCTTTTCAATATG GTGAATGACCTCCCAACAATCTTTGAGGTTGTAGCTGGCACTGCTAAGAAACAAGGAAAA GATAAGTCCTCTGTTTCCAACAACAGCAGCAACAGATCCAAATCAAGCTCCAAGCGAGGA TCTGAATCCCGTGCCAAGTTCTCAAAGCCGGAGCCCAAAGATGATGAGGAGGAGGAGAGAG GAAGGTGTGGAAGAGGAGGATGAGGATGAGCAAGGTGAAACACAGTGTGGAGCATGTGGT GAGAGCTATGCAGCTGATGAGTTCTGGATTTGCTGTGACCTCTGTGAGATGTGGTTTCAT GGAAAGTGTTTAAGATAACACCAGCAAGAGCTGAGCACATCAAGCAATACAAGTGCCCT ${\tt CCTTTGCATATGATGAACAGCTTAACTGTTTTGGTTTAGATCAGATTTGTCATATGGA}$ TTTGGTAATTTAGGAAGACATTTTAGTTTTCATTGTTACATTTTGGCGATTGAAGGGA TTCAAACTCAATCAAAAGTATTTTGGTTAGTCTTAAAA

>G1231 Amino Acid Sequence (domain in AA coordinates: TBD)
MEAGGAYNPRTVEEVFRDFKGRRAGMIKALTTDVQEFFRLCDPEKENLCLYGHPNEHWEV
NLPAEEVPPELPEPVLGINFARDGMAEKDWLSLVAVHSDAWLLAVAFFFGARFGFDKADR
KRLFNMVNDLPTIFEVVAGTAKKQGKDKSSVSNNSSNRSKSSSKRGSESRAKFSKPEPKD
DEEEEEEGVEEEDEDEQGETQCGACGESYAADEFWICCDLCEMWFHGKCVKITPARAEHI

KQYKCPSCSNKRARS*

>G227 (21..983)

GTACCGTCGACGATCCGGCGATGTCAAACCCGACCCGTAAGAATATGGAGAGGATTAAAG GTCCATGGAGTCCAGAAGAAGATGATCTGTTGCAGAGGCTTGTTCAGAAACATGGTCCGA GGAACTGGTCTTTGATTAGCAAATCAATCCCTGGACGTTCCGGCAAATCTTGTCGTCTCC GGTGGTGTAACCAGCTATCTCCGGAGGTAGAGCACCGTGCTTTTTCGCAGGAAGAAGACG AGACGATTATTCGAGCTCACGCTCGGTTTGGTAACAAGTGGGCTACGATCTCTCGTCTTC TCAATGGACGAACCGATAACGCTATCAAGAATCATTGGAACTCGACGCTGAAGCGAAAAT GCAGCGTCGAAGGGCAAAGTTGTGATTTTGGTGGTAATGGAGGGTATGATGGTAATTTAG GAGAAGAGCAACCGTTGAAACGTACGGCGAGTGGTGGTGGTGTCTCGACTGGCTTGT ATATGAGTCCCGGAAGTCCATCGGGATCTGACGTCAGCGAGCAATCTAGTGGTGGTGCAC ACGTGTTTAAACCAACGGTTAGATCTGAGGTTACAGCGTCATCGTCTGGTGAAGATCCTC CAACTTATCTTAGTTTGTCTCTTCCTTGGACTGACGAGACGGTTCGAGTCAACGAGCCGG ${\tt TTCAACTTAACCAGAATACGGTTATGGACGGTGGTTATACGGCGGAGCTGTTTCCGGTTA}$ GAAAGGAAGAGCAAGTGGAAGTAGAAGAAGAAGAAGCGAAGGGGATATCTGGTGGATTCG ${\tt GTGGTGAGTTCATGACGGTGGTTCAGGAGATGATAAGGACGGAGGTGAGGAGTTACATGG}$ $\tt CGGATTTACAGCGAGGAAACGTCGGTGGTAGTAGTTCTGGCGGCGGAGGTGGCGGTTCGT$ ${\tt GTATGCCACAAAGTGTAAACAGCCGTCGTGTTGGGTTTAGAGAGTTTATAGTGAACCAAA}$ TCGGAATTGGGAAGATGGAGTAGGCGGCC

>G227 Amino Acid Sequence (domain in AA coordinates: 13-112)
MSNPTRKNMERIKGPWSPEEDDLLQRLVQKHGPRNWSLISKSIPGRSGKSCRLRWCNQLS
PEVEHRAFSQEEDETIIRAHARFGNKWATISRLLNGRTDNAIKNHWNSTLKRKCSVEGQS
CDFGGNGGYDGNLGEEQPLKRTASGGGGVSTGLYMSPGSPSGSDVSEQSSGGAHVFKPTV
RSEVTASSSGEDPPTYLSLSLPWTDETVRVNEPVQLNQNTVMDGGYTAELFPVRKEEQVE
VEEEEAKGISGGFGGEFMTVVQEMIRTEVRSYMADLQRGNVGGSSSGGGGGGSCMPQSVN
SRRVGFREFIVNQIGIGKME*

>G1842 (219..809)

 ${\tt ACTATTACATGCCTCTTCCTCGCTTCAAAACGGCACCGTTTCCACTTGTTATTATTTTTC}$ TCTCTATCGTCTAACAAAAAAAAAACTGACTTGGGATTTTTTTCATTTGTCTAGCCCA AAAGAAGAAGATAGAAACGAAGAAAAAAAGCAAACACATTTTGGGTCCCCGGTGGTTAGG ATCAAATTAGGGCACAAACCTTATCGGAGAAAGAAGCCATGGGAAGAAGAAAAGTCGAGA TCAAGCGAATCGAGAACAAAGCAGTCGACAAGTCACTTTCTCCAAACGACGCAAAGGTC TCATCGAAAAAGCTCGACAACTTTCAATTCTCTGTGAATCTTCCATCGCTGTTGTCGCCG TCTCCGGTTCCGGAAAACTCTACGACTCTGCCTCCGGTGACAACATGTCAAAGATCATTG ATCGTTATGAAATACATCATGCTGATGAACTTAAAGCCTTAGATCTTGCAGAAAAAATTC ATGTCGATAATGTAAGTGTAGATTCTCTAATATCTATGGAGGAACAGCTCGAGACTGCTC TGTCAGTAATTAGAGCTAAGAAGACAGAACTAATGATGGAGGATATGAAGTCACTTCAAG AAAGGGAGAAGTTGCTGATAGAAGAAGAACCAGATTCTGGCTAGCCAGGTGGGGAAGAAGA CGTTTCTGGTTATAGAAGGTGACAGAGGAATGTCACGGGAAAATGGCTCCGGCAACAAAG TACCGGAGACTCTTTCGCTGCTCAAGTAATCACCATCATCAACGGCTGAGCTTTCACCAT AAACTTACTCACAGCCTGATTCAGAAGCTTTTACAAAATTGTAAATTATAAAAAGCTGCA TAATAATCTCAACCTTTTTATCTTCCTCGCGCCAATGTGGAAATAAAGGTAAAACAAAAC GAAGCTCTTTTCTTTTATGCGAAAGAATTGTAAAACTAAGATAAAGCTACCGATCTTTGT TGTACCTTAGTAGACAAATATCAGAGTTCTTGTGCTTGT

>G1842 Amino Acid Sequence (domain in AA coordinates: 2-57)
MGRRKVEIKRIENKSSRQVTFSKRRKGLIEKARQLSILCESSIAVVAVSGSGKLYDSASG
DNMSKIIDRYEIHHADELKALDLAEKIRNYLPHKELLEIVQSKLEESNVDNVSVDSLISM
EEQLETALSVIRAKKTELMMEDMKSLQEREKLLIEENQILASQVGKKTFLVIEGDRGMSR
ENGSGNKVPETLSLLK*

>G1505 (1..681)

ATGGATGATATAGCGGAACTTGAATGGTTATCAAATTTCGTAGATGATTCTTCTTCACG
CCGTATTCTGCTCCGACGAATAAACCGGTTTGGTTAACCGGAAATCGGAGACATCTTGTA
CAACCGGTTAAAGAGGAGACCTGCTTCAAATCCCAACATCCGGCCGTCAAAACCAGACCC
AAACGAGCCAGAACCGGAGTCAGAGTCTGGTCTCATGGTTCGCAGTCGTTAACCGACTCA
TCTTCAAGCTCTACAACATCTTCGTCGTCCTCCTCGTCCTTCAAGCCCTCTATGGCTC
GCCAGCGGTCAGTTTCTTGATGAGCCAATGACTAAAAGAAGAAGAAGAAGAAGTTTGG

>G1505 Amino Acid Sequence (domain in AA coordinates: TBD)
MDDIABLEWLSNFVDDSSFTPYSAPTNKPVWLTGNRRHLVQPVKEETCFKSQHPAVKTRP
KRARTGVRVWSHGSQSLTDSSSSSTTSSSSSPRPSSPLWLASGQFLDEPMTKTQKKKKVW
KNAGQTQTQTQTQTQTQCGHCGVQKTPQWRAGPLGAKTLCNACGVRYKSGRLLPEYRPACS
PTFSSELHSNHHSKVIEMRRKKETSDGAEETGLNQPVQTVQVVSSF*
>G657 (1..2331)

ATGAAGCGTGAGATGAAAGCACCTACTACTCCACTAGAGAGTCTCCAAGGTGACCTCAAA GGAAAACAAGGGAGGACATCTGGCCCTGCTAGACGATCTACCAAAGGACAATGGACACCT GAAGAGGACGAAGTCTTGTGTAAAGCTGTTGAGCGTTTTCAAGGAAAGAACTGGAAGAAG ATAGCTGAATGTTTTAAGGATCGGACTGATGTTCAGTGTCTTCATAGATGGCAAAAGGTC TTGAACCCAGAGCTTGTGAAAGGACCGTGGTCAAAAGAGGAGGATAACACAATAATTGAC CTGGTTGAAAAATATGGGCCAAAGAAATGGTCTACTATATCTCAGCATTTACCTGGGCGC . ATAGGAAAGCAATGTAGGGAAAGGTGGCATAACCATCTTAACCCTGGGATTAATAAAAAT GCATGGACTCAGGAAGAGGAACTGACTCTTATTCGTGCGCATCAAATTTATGGGAATAAA TGGGCAGAGCTTATGAAATTTTTGCCAGGAAGGTCAGATAATTCGATAAAAAATCATTGG AACAGCTCAGTTAAGAAGAAGTTGGATTCCTACTATGCATCAGGTCTTTTAGATCAGTGT CAAAGCTCGCCATTAATTGCCCTTCAGAACAAATCTATCGCTTCATCTTCCTCGTGGATG CACAGCAATGGAGATGAAGGTAGTTCAAGGCCAGGGGTTGATGCTGAGGAATCAGAATGC AGCCAAGCTTCAACTGTTTTCTCACAATCAACCAACGATTTACAAGATGAAGTTCAACGT GGAAATGAGGAATATTACATGCCTGAATTTCATTCAGGAACGGAGCAGCAAATCTCAAAC GCTGCATCTCATGCAGAACCGTACTACCCTTCCTTTAAAGATGTCAAAATTGTTGTCCCC GAAATTTCTTGTGAAACAGAATGTTCGAAGAAGTTTCAGAATCTTAATTGTTCTCACGAG CTAAGAACTACCACAGCTACGGAGGATCAATTGCCGGGTGTATCTAATGATGCTAAACAG GACCGTGGTCTAGAGTTATTGACCCATAACATGGACAACGGTGGAAAAAACCAAGCACTT CAACAAGATTTŤCAAAGTTCAGTAAGATTAAGTGATCAACCTTTTTTGTCAAACTCGGAC ACAGATCCAGAAGCTCAAACTTTGATCACGGATGAGGAGTGTTGTAGGGTTCTTTTTCCA GATAACATGAAAGATAGCAGTACATCTTCTGGTGAGCAAGGTCGGAATATGGTTGACCCT CAAAACGGCAAAGGATCTCTTTGTTCTCAGGCTGCAGAAACCCATGCTCATGAAACTGGA AAAGTTCCAGCTTTACCGTGGCATCCTTCAAGTTCTGAGGGCCTGGCGGGTCATAATTGT GTCCCTTTGTTGGATTCAGACTTGAAGGACTCACTTTTACCCCGTAATGATTCCAACGCT CCTATACAAGGTTGTCGCCTTTTTGGAGCTACCGAATTAGAATGTAAGACTGATACAAAT GACGGTTTCATCGATACTTACGGACATGTAACTTCCCATGGCAATGATGATAATGGTGGT TTCCCAGAACAACAGGGGCTGTCATATATTCCCAAGGATTCTTTGAAGCTAGTACCTTTG GCTGAAAAGACAAAGGAGCTCTTTGTTATGAACCTCCACGTTTTCCAAGTGCAGATATT CCTTTCTTCAGCTGTGATCTTGTACCATCAAATAGTGACTTACGGCAAGAGTACAGTCCC TTTGGTATCCGTCAGTTGATGATTTCTTCAATGAATTGTACAACTCCGTTAAGGTTATGG GATTCACCGTGTCACGATAGGAGCCCTGATGTCATGCTTAATGATACTGCCAAAAGTTTT AGTGGTGCACCATCTTAAAGAAGCGGCATCGAGACTTGCTTTCACCTGTGCTTGAT AGAAGAAAAGCAAAAAGCTTAAAAGGGCTGCGACTTCCTCCTTGGCTAATGATTTTTCG CCTGAAGATAAAATATATGTGCCTCCCCTTCCATAGCCAGAGATAACAGAAATTGTGCA TCAGCTCGGTTATATCAAGAAATGATTCCGATAGATGAGGAACCAAAGGAAACCTTAGAA TCAGGTGGAGTGACTTCTATGCAAAATGAAAATGGATGTAATGACGGTGGTGCTTCAGCT AAAAATGTAAGTCCGTCTTTGTCCTTGCATATTATCTGGTATCAGTTATAA

>G657 Amino Acid Sequence (domain in AA coordinates: TBD)
MKREMKAPTTPLESLQGDLKGKQGRTSGPARRSTKGQWTPEEDEVLCKAVERFQGKNWKK
IAECFKDRTDVQCLHRWQKVLNPELVKGPWSKEEDNTIIDLVEKYGPKKWSTISQHLPGR
IGKQCRERWHNHLNPGINKNAWTQEEELTLIRAHQIYGNKWAELMKFLPGRSDNSIKNHW
NSSVKKKLDSYYASGLLDQCQSSPLIALQNKSIASSSSWMHSNGDEGSSRPGVDAEESEC
SQASTVFSQSTNDLQDEVQRGNEEYYMPEFHSGTEQQISNAASHAEPYYPSFKDVKIVVP

EISCETECSKKFQNLNCSHELRTTTATEDQLPGVSNDAKQDRGLELLTHNMDNGGKNQAL QQDFQSSVRLSDQPFLSNSDTDPEAQTLITDEECCRVLFPDNMKDSSTSSGEQGRNMVDP QNGKGSLCSQAAETHAHETGKVPALPWHPSSSEGLAGHNCVPLLDSDLKDSLLPRNDSNA PIQGCRLFGATELECKTDTNDGFIDTYGHVTSHGNDDNGGFPEQQGLSYIPKDSLKLVPL NSFSSPSRVNKIYFPIDDKPAEKDKGALCYEPPRFPSADIPFFSCDLVPSNSDLRQEYSP FGIRQLMISSMNCTTPLRLWDSPCHDRSPDVMLNDTAKSFSGAPSILKKRHRDLLSPVLD RRKDKKLKRAATSSLANDFSRLDVMLDEGDDCMTSRPSESPEDKNICASPSIARDNRNCA

SARLYQEMIPIDEEPKETLESGGVTSMQNENGCNDGGASAKNVSPSLSLHIIWYQL* >G1959 (141..1028)

CGTCGACTGTCCATAAATCCGGAGCCTGACCCGACGTTTGACCCGGATCCGAAACTCCCA CAATCTCCATACCACCCAAATTCATCTCCCCTAAAGCTTTCTCTCACTTTCCCGGGAAAA ACGTTGGTGGTGACTACCATGGACCTCTTGACGGAACCAATCTTCCCGGTGACGCTTGTT TGGTTTTAACGACTGACCCTAAACCTCGTCTCCGGTGGACAACTGAGCTTCATGAGAGAT TCGTTGACGCCGTTACTCAGCTCGGTGGTCCTGACAAAGCGACTCCCAAAACTATTATGA GAACAATGGGAGTGAAGGGTCTCACTCTCTACCACCTCAAATCACATCTTCAGAAATTCC GCCTAGGGAGGCAAGCTGGCAAAGAATCAACTGAGAACTCTAAAGATGCTTCTTGTGTAG GGGAGAGTCAGGACACAGGTTCATCTTCGACATCATCAATGAGAATGGCGCAGCAGGAGC AGAACGAGGGTTACCAAGTCACCGAAGCTCTACGTGCTCAGATGGAAGTCCAAAGAAGAC TACACGATCAATTGGAGGTGCAACGGAGGCTCCAGCTGAGGATAGAGGCACAAGGAAAAT ACCTGCAATCGATTCTTGAAAAAGCTTGCAAGGCCTTTGACGAGCAAGCTGCTACTTTTG CTGGACTTGAGGCTGCTAGGGAAGAGCTATCAGAGCTAGCCATCAAAGTCTCCAATAGCT CTCAAGGAACATCAGTCCCGTACTTCGATGCAACAAAGATGATGATGATGCCATCGTTGT GCTCTCTGACTTCCATCACACATGGGAGCTCTATATCTGCTGCATCAATGAAGAAGCGTC AACGTGGAGACAATTTGGGCGTAGGGTATGAATCAGGCTGGATTATGCCTAGTAGCACCA TTGGATAAAGTTTAGGAGAGGGAAAAAGTTCATTATGGGAAAGGTAGAGATAAGATTTAA CTGTTCTTTACTTGCTTTGAGGGGCCTGCGGCCGCT

>G1959 Amino Acid Sequence (conserved domain in AA coordinates:46-97)
MYSAIRSLPLDGGHVGGDYHGPLDGTNLPGDACLVLTTDPKPRLRWTTELHERFVDAVTQ
LGGPDKATPKTIMRTMGVKGLTLYHLKSHLQKFRLGRQAGKESTENSKDASCVGESQDTG
SSSTSSMRMAQQEQNEGYQVTEALRAQMEVQRRLHDQLEVQRRLQLRIEAQGKYLQSILE
KACKAFDEQAATFAGLEAAREELSELAIKVSNSSQGTSVPYFDATKMMMMPSLSELAVAI
DNKNNITTNCSVESSLTSITHGSSISAASMKKRQRGDNLGVGYESGWIMPSSTIG*
>G2180 (1..1440)

ACTTACTATCTAAAAAGAAAGATCAACGGTCTAGAAATCGAACTTGAAGTTATCGCTGAA GTTGATCTTTACAAGTGTGAGCCATGGGACTTACCAGGGAAGTCCTTGCTTCCGAGCAAA GACCAAGAATGGTACTTCTTCAGCCCACGAGACCGGAAGTATCCCAACGGCTCAAGGACA AGAGACCGAGCCATAGGAACCAAGAAGACATTGGTTTACTACCGTGGGCGCGCCCACAT GGCATAGAACTGGTTGGGTCATGCACGAATATCGACTTGATGAAACAGAATGTGAGCCT TCTGCATACGGCATGCAGGACGCATATGCACTTTGTCGTGTGTTCAAAAAGATTGTTATT GAAGCTAAGCCAAGAGATCAACATCGGTCATATGTCCACGCGATGTCGAATGTGAGTGGT AATTGCTCATCGAGTTTTGACACTTGTTCGGATCTCGAAATCAGTTCAACTACTCATCAA GTTCAAAACACATTCCAACCGCGATTTGGCAACGAGCGATTTAACTCCAACGCAATCAGC AACGAGGATTGGTCACAATACTACGGTTCTTTATAGACCGTTCCCTACTCCATATAAG ${\tt GTTAACACAGAGAT}{\tt GGAATGTTCAATGTTACAACACAATATATATCTACCACCGTTGCGT}$ GTAGAGAACTCTGCGTTTAGTGATTCCGATTTCTTCACGAGTATGACTCACAACAACGAC CATGGCGTTTTCGATGACTTTACTTTTGCTGCAAGTAACTCCAACCACAATAATAGCGTT GGTGATCAAGTGATCCACGTTGGCAATTATGATGAACAATTAATAACATCTAACCGTCAT ATGAACCAGACTGGTTATATAAAAGAGCAGAAGATCAGATCGAGTTTGGATAATACTGAC GAAGATCCAGGATTTCATGGTAACAATACCAATGACAACATAGATATCGATGATTTTCTC TCGTTTGATATATAACGAGGACAACGTGAATCAAATAGAAGATAATGAAGACGTGAAT ACAAATGAAACCCTTGATTCATCGGGATTCGAGGTGGTTGAAGAAGAAACTAGATTTAAC AACCAAATGCTCATCTCGACATATCAAACGACAAAGATTCTATATCACCAAGTCGTACCT TGTCACACGTTGAAAGTTCACGTCAATCCTATTAGTCACAATGTGGAAGAGAGAACATTG

TTCATTGAAGAGGACAAAGATTCTTGGTTACAAAGAGCTGAGAAGATCACGAAGACAAAA
CTAACACTTTTTAGTTTAATGGCTCAGCAATACTACAAATGTCTTGCTATTTTTTCTGA
>G2180 Amino Acid Sequence (conserved domain in AA coordinates:7-156)
MAPVSLPPGFRFHPTDEELITYYLKRKINGLEIELEVIAEVDLYKCEPWDLPGKSLLPSK
DQEWYFFSPRDRKYPNGSRTNRATKGGYWKATGKDRRVSWRDRAIGTKKTLVYYRGRAPH
GIRTGWVMHEYRLDETECEPSAYGMQDAYALCRVFKKIVIEAKPRDQHRSYVHAMSNVSG
NCSSSFDTCSDLEISSTTHQVQNTFQPRFGNERFNSNAISNEDWSQYYGSSYRPFPTPYK
VNTEIECSMLQHNIYLPPLRVENSAFSDSDFFTSMTHNNDHGVFDDFTFAASNSNHNNSV
GDQVIHVGNYDEQLITSNPHMNOTGYIKEOKIPSSLDNTDEDPGFHGNNTNDNIDDIDDEL

VNTEIECSMLQHNIYLPPLRVENSAFSDSDFFTSMTHNNDHGVFDDFTFAASNSNHNNSV GDQVIHVGNYDEQLITSNRHMNQTGYIKEQKIRSSLDNTDEDPGFHGNNTNDNIDIDDFL SFDIYNEDNVNQIEDNEDVNTNETLDSSGFEVVEEETRFNNQMLISTYQTTKILYHQVVP CHTLKVHVNPISHNVEERTLFIEEDKDSWLQRAEKITKTKLTLFSLMAQQYYKCLAIFF* >G1817 (1..1308)

AGAGGAAGAAGACTAAGGAAAAGAAGAAGAAGAACGAGAAGCGAGTACTAATGGTTCCA TCATCATTACCAAACGACGTGCTAGAGGAGATCTTTTTAAGATTTCCGGTTAAAGCCCTA ATCCGACTCAAGTCTCTCCGAAACAATGGAGATCGACGATCGAATCTCGCAGTTTTGAA GAGAGACACTTGACGATCGCTAAGAAAGCCTTCGTGGATCATCCCAAGGTCATGCTCGTA GGAGAAGAAGATCCCATAAGAGGAACCGGGATTCGTCCAGACACTGACATTGGTTTTAGG TTATTCTGCTTGGAATCGGCTTCTCTTCTATCCTTTACTCGTCTCAATTTCCCTCAAGGG TTCTTCAACTGGATCTACATATCTGAAAGCTGTGATGGCCTTTTCTGCATCCATTCCCCA AAATCACATTCCGTATATGTAGTGAATCCGGCTACACGGTGGCTCCGCCTACTTCCTCCG GCAGGGTTTCAGATTTTGATCCACAAGTTTAACCCCACTGAACGTGAGTGGAATGTAGTG ATGAAATCAATCTTCATCTAGCATTCGTGAAGGCCACCGATTACAAATTAGTGTGGTTG TACAATTGTGATAAGTACATTGTTGATGCGTCGAGTCCAAACGTGGGAGTCACAAAGTGC GAGATTTTTGACTTTAGGAAAAATGCTTGGAGGTACTTGGCTTGCACTCCAAGTCATCAG ATATTCTATTACCAAAAGCCAGCATCTGCAAACGGGTCGGTTTATTGGTTTACAGAACCA TATAATGAAAGAATCGAAGTAGTGGCTTTTGATATTCAGACCGAAACATTCCGGTTGCTG CCTAAGATTAATCCGGCTATTGCTGGTTCAGATCCTCACCATATTGACATGTGCACTCTG GATAATAGTTTGTGTATGTCGAAAAGGGAGAAAGATACTATGATCCAAGATATTTGGAGG TTGAAACCATCAGAAGACACATGGGAAAAGATTTTTAGCATAGACTTGGTTTCCTGTCCT TCTTCTCGGACTGAGAAGCGTGATCAATTTGATTGGAGCAAGAAGGATAGGGTTGAGCCA GCCACACCCGTCGCGGTTTGTAAGAATAAGAAGATCCTTCTCTCACATCGCTATTCCCGA GCTTACAGAAAGTTATTTTTTCAAAGTTTGATATCTCATCTATAA

>G1817 Amino Acid Sequence (conserved domain in AA coordinates:47-331)
MKDAEKREVIASSSLQRKRNRGRRLRKRRRRNEKRVLMVPSSLPNDVLEEIFLRFPVKAL
IRLKSLSKQWRSTIESRSFEERHLTIAKKAFVDHPKVMLVGEEDPIRGTGIRPDTDIGFR
LFCLESASLLSFTRLNFPQGFFNWIYISESCDGLFCIHSPKSHSVYVVNPATRWLRLLPP
AGFQILIHKFNPTEREWNVVMKSIFHLAFVKATDYKLVWLYNCDKYIVDASSPNVGVTKC
EIFDFRKNAWRYLACTPSHQIFYYQKPASANGSVYWFTEPYNERIEVVAFDIQTETFRLL
PKINPAIAGSDPHHIDMCTLDNSLCMSKREKDTMIQDIWRLKPSEDTWEKIFSIDLVSCP
SSRTEKRDQFDWSKKDRVEPATPVAVCKNKKILLSHRYSRGLVKYDPLTKSIDFFSGHPT

AYRKVIYFQSLISHL* >G1649 (61..1311)

273/286

PCT/US02/25805

CGAAGAGATGAATTCAACAAGAAAATGCGTGCTTTTGCAGGACCTACTACCAAATTGTTAC AAGGATGATAAGGCTTCATTGTTGGATGAGGCTATCAAATATATGCGGACCCTTCAACTT CAAGTTCAGATGAGTATGGGAAATGGATTAATAAGACCACCTACGATGTTGCCAATG GGTCATTACTCTCCCATGGGTCTAGGAATGCATATGGGTGCAGCAGCAACAACAACATCA ATACCGCAATTCCTGCCTATGAATGTTCAAGCAACCGGTTTTCCGGGGATGAACAATGCA CCACCACAAATGCTAAGCTTTCTTAATCACCCAAGTGGACTAATTCCAAACACTCCTATC TTTTCTCCATTGGAAAATTGCTCTCAGCCATTCGTGTGCCTTCGTGTGTTTCTCAGACT CAGGCTACTTCTTTTACTCAATTCCCAAAGTCTGCGTCCGCCTCAAACTTAGAAGATGCA GTGTTGTTAGTCTATGGGCCTTTGGGCCTTGATTCTTGGAACGATTTGAACTTAATTCCA ACTATTTCAAAGTGGATGTACAAAGTAAAA

>G1649 Amino Acid Sequence (conserved domain in AA coordinates:225-295) MEAKPLASSSSEPNMISPSSNIKPKLKDEDYMELVCENGQILAKIRRPKNNGSFQKQRRQ SLLDLYETEYSEGFKKNIKILGDTQVVPVSQSKPQQDKETNEQMNNNKKKLKSSKIEFER NVSKSNKCVESSTLIDVSAKGPKNVEVTTAPPDEQSAAVGRSTELYFASSSKFSRGTSRD LSCCSLKRKYGDIEEEESTYLSNNSDDESDDAKTQVHARTRKPVTKRKRSTEVHKLYERK RRDEFNKKMRALQDLLPNCYKDDKASLLDEAIKYMRTLQLQVQMMSMGNGLIRPPTMLPM GHYSPMGLGMHMGAAATPTSIPQFLPMNVQATGFPGMNNAPPQMLSFLNHPSGLIPNTPI FSPLENCSOPFVVPSCVSQTQATSFTQFPKSASASNLEDAMQYRGSNGFSYYRSPN* >G2131 (69..1010)

GTCTCTCATTTTCATAATTCCATTTTCAGGATTGTCTCTCAATCTTTTATTCTTCTCATT CACCGGTAATGGCAAAAGTCTCTGGGAGGAGCAAGAAAACAATCGTTGACGATGAAATCA GCGATAAAACAGCGTCTGCGTCTGAGTCTGCGTCCATTGCCTTAACATCCAAACGCAAAC GTAAGTCGCCGCCTCGAAACGCTCCTCTTCAACGCAGCTCCCCTTACAGAGGCGTCACAA GGCATAGATGGACTGGGAGATACGAAGCGCATTTGTGGGATAAGAACAGCTGGAACGATA CACAGACCAAGAAGGACGTCAAGTTTATCTAGGGGCTTACGACGAAGAAGAAGCAGCAG CACGTGCCTACGACTTAGCAGCATTGAAGTACTGGGGACGAGACACACTCTTGAACTTCC CTTTGCCGAGTTATGACGAAGACGTCAAAGAAATGGAAGGCCAATCCAAGGAAGAGTATA TTGGATCATTGAGAAGAAAAGTAGTGGATTTTCTCGCGGTGTATCAAAATACAGAGGCG TTGCAAGGCATCACCATAATGGGAGATGGGAAGCTAGAATTGGAAGGGTGTTTGGTAATA AATATCTATATCTTGGAACATACGCCACGCAAGAAGAAGCAGCAATCGCCTACGACATCG $\tt CGGCAATAGAGTACCGTGGACTTAACGCCGTTACCAATTTCGACGTCAGCCGTTATCTAA$ ACCCTAACGCCGCGGGATAAAGCCGATTCCGATTCTAAGCCCATTCGAAGCCCTAGTC GCGAGCCCGAATCGTCGGATGATAACAAATCTCCGAAATCAGAGGAAGTAATCGAACCAT CTACATCGCCGGAAGTGATTCCAACTCGCCGGAGCTTCCCCGACGATATCCAGACGTATT TTGGGTGTCAAGATTCCGGCAAGTTAGCGACTGAGGAAGACGTAATATTCGATTGTTTCA ATTCTTATAAATCCTGGCTTCTATAACGAGTTTGATTATGGACCTTAATCGTATTTTC TACAAGTTTTGTTTTGATTATCTACACAATACATCAATATATTCT

>G2131 Amino Acid Sequence (conserved domain in AA coordinates:50-186, 112-183) MAKVSGRSKKTIVDDEISDKTASASESASIALTSKRKRKSPPRNAPLQRSSPYRGVTRHR WTGRYEAHLWDKNSWNDTQTKKGRQVYLGAYDEEEAAARAYDLAALKYWGRDTLLNFPLP SYDEDVKEMEGQSKEEYIGSLRRKSSGFSRGVSKYRGVARHHHNGRWEARIGRVFGNKYL YLGTYATQEEAAIAYDIAAIEYRGLNAVTNFDVSRYLNPNAAADKADSDSKPIRSPSREP ESSDDNKSPKSEEVIEPSTSPEVIPTRRSFPDDIQTYFGCQDSGKLATEEDVIFDCFNSY INPGFYNEFDYGP*

>G215 (1..1110)

CGTGGGTCTGGTTCCTCCGCCGTGAAGTTATTTGGTGTGAGGTTAACGGATGGCTCG ATTATTAAAAAGAGTGCGAGTATGGGTAATCTCTCGGCATTGGCTGTTGCGGCGGCGGCG GCAACGCACCGTTTATCTCCGTCGTCTCTCTGGCGACGTCAAATCTTAATGATTCG ${\tt CCGTTATCGGATCATGCCCGATACTCTAATTTGCATCATAATGAAGGGTATTTATCTGAT}$ GATCCTGCTCATGGTTCTGGGTCTAGTCACCGTCGTGGTGAGAGGAAGAGAGGTGTTCCT TGGACTGAAGAGAACATAGACTATTCTTAGTCGGTCTTCAGAAACTCGGGAAAGGAGAT TGGCGCGGTATTTCGAGAAACTATGTAACGTCAAGAACTCCTACACAAGTGGCTAGTCAT GCTCAAAAGTATTTATTCGACATACTAGTTCAAGCCGCAGGAAAAGACGGTCTAGCCTC TTCGACATGGTTACAGATGAGATGGTAACCGATTCATCGCCAACACAGGAAGAGCAGACC

>G215 Amino Acid Sequence (domain in AA coordinates: TBD)
MTRRCSHCSNNGHNSRTCPTRGSGSSSAVKLFGVRLTDGSIIKKSASMGNLSALAVAAAA
ATHHRLSPSSPLATSNLNDSPLSDHARYSNLHHNEGYLSDDPAHGSGSSHRRGERKRGVP
WTEEEHRLFLVGLQKLGKGDWRGISRNYVTSRTPTQVASHAQKYFIRHTSSSRKKRRSSL
FDMVTDEMVTDSSPTQEEQTLNGSSPSKEPEKKSYLPSLELSLNNTTEAEEVVATAPRQE
KSQEAIEPSNGVSPMLVPGGFFPPCFPVTYTIWLPASLHGTEHALNAETSSQQHQVLKPK
PGFAKERVNMDELVGMSQLSIGMATRHETETSPSPLSLRLEPSRPSAFHSNGSVNGADLS
KGNSAIQAI*

>G1508 (1..420)

>G2110 (36..1622)

GAGAGCTAATAAAAAATTTATCAAAGAAGACTAATATGGAGAAGGACGATTTCTTGAGGA GTGGTCATGGAAGAAGAAAGCCATGATGAGATGAGAAAACTTGATTCATCTCACGATG ATTCTCATCAAGAACACGACCATATTATAAGATCCAAGTTGGACTCAACTAAAGTCGAAA TGGATGAGGCTAAAGAGGAAAATCGAAGACTAAAGTCATCATTGAGTAAAATCAAGAAAG AGTTCCAATCAAAAGGGCATCATCAAGACAAAGGCGAAGATGAAGACAGAGAAAAAGTTA ACGAACGTGAAGAACTTGTCTCGTTGAGCCTAGGCAGACGGTTAAATTCAGAGGTTCCAA GTGGTTCGAATAAAGAAGAAAAAAATAAAGATGTTGAAGAAGCGGAAGGTGACAGAAATT ATGATGATAATGAAAAAAGCAGTATTCAAGGGTTGAGTATGGGGGATTGAATACAAGGCTT TGAGTAATCCTAATGAGAAGTTAGAGATTGATCATAATCAAGAAACCATGTCGTTGGAGA TTAGTAACAATAATAAGATCAGATCACAAAATAGTTTTGGGTTTAAGAATGATGGAGATG ATCATGAAGATGAAGATTTTTGCCTCAAAACCTTGTTAAGAAAACTAGGGTTTCGG TGAGATCAAGATGTGAGACACCAACGATGAACGACGGATGTCAATGGAGGAAATATGGCC ${\tt AGAAAATAGCTAAAGGCAATCCATGTCCCCGAGCTTACTATCGTTGCACCATTGCAGCTT}$ CTTGTCCAGTAAGAAAACAGGTGCAAAGATGTTCAGAAGATATGTCTATACTTATCTCAA CGTACGAAGGAACACATAACCATCCACTTCCCATGTCAGCAACTGCCATGGCCTCTGCCA CTTCCGCTGCCGCCTCCATGCTTCTCTCCGGCGCCTCCTCCTCATCCGCCGCAGCTG ${ t ATCTTCATGGCCTT}{ t AACTTCTCTCTTTCCGGCAACAACATCACTCCAAAAACCTAAAACTC}$ ATTTCCTCCAATCCCCTTCTTCTTCTGGCCATCCGACCGTCACTCTCGACCTCACAACCT CCTCCTCGTCGCAGCAACCGTTCTTATCAATGCTCAATAGATTCAGCTCTCCTCCAAGTA ATGTCTCACGATCTAATAGTTATCCTTCAACCAATCTCAACTTTTCAAACAACACCAACA CATTGATGAATTGGGGTGGTGGTAATCCCAGTGATCAATACCGTGCAGCTTACGGCA ACATTAACACCCATCAGCAATCACCTTACCACAAAATCATTCAAACCCGAACCGCCGGGT ATATCGGAATCAAGAACATCATCAGTCACCAAGTGCCATCTTTACCGGCTGAAACAATCA AGGCAATCACGACAGATCCAAGTTTCCAATCGGCTTTGGCGACAGCTCTATCTTCCATCA TGGGCGGCGATTTAAAGATTGATCACAATGTGACTAGAAATGAAGCTGAGAAGAGCCCTT

>G2110 Amino Acid Sequence (conserved domain in AA coordinates:239-298)
MEKDDFLRSGHGREESHDEMRKLDSSHDDSHQEHDHIIRSKLDSTKVEMDEAKEENRRLK
SSLSKIKKDFDILQTQYNQLMAKHNEPTKFQSKGHHQDKGEDEDREKVNEREELVSLSLG
RRLNSEVPSGSNKEEKNKDVEEAEGDRNYDDNEKSSIQGLSMGIEYKALSNPNEKLEIDH
NQETMSLEISNNNKIRSQNSFGFKNDGDDHEDEDEILPQNLVKKTRVSVRSRCETPTMND
GCQWRKYGQKIAKGNPCPRAYYRCTIAASCPVRKQVQRCSEDMSILISTYEGTHNHPLPM
SATAMASATSAAASMLLSGASSSSSAAADLHGLNFSLSGNNITPKPKTHFLQSPSSSGHP
TVTLDLTTSSSSQQPFLSMLNRFSSPPSNVSRSNSYPSTNLNFSNNTNTLMNWGGGGNPS
DQYRAAYGNINTHQQSPYHKIIQTRTAGSSFDPFGRSSSSHSPQINLDHIGIKNIISHQV
PSLPAETIKAITTDPSFQSALATALSSIMGGDLKIDHNVTRNEAEKSP*
>G2442 (71..997)

TCGACCAATTTAGACCATTCCAAATTCGTCGTCCTTTTCTCTGTGTAGTCTAATTATATA ${\tt TTACAAGTAGATTGGTTACCTGAAGCTGAAGCTGAGGGAGCACTTGAAAGGTATTCT}$ CTCTGGTGATTTCTTTGATGGTCTCACCAATCACCTTGATTGCCCACTTGAAGACATCGA TTCCACCAATGGTGAGGGAGATTGGGTCGCCAGGTTTCAAGACCTTGAGCCTCCCTT GGATATGTTCCCTGCTTTGCCTTCTGACCTCACCTCTTGTCCCAAGGGCGCCGCTCGTGT GCGGATTCCCAACAACATGATTCCTGCTTTGAAGCAGTCCTGTTCTTCTGAAGCCTTGTC CGGCATTAATAGCACTCCCCACCAATCTTCAGCTCCTCCTGATATCAAAGTTTCATATCT CCCCACAACAGTGAGACTTAGCTACCTTTTCCCCTTTGAACCCAGAAAGTCAACTCCGGG TGAATCAGTAACCGAGGGTTACTATTCTTCTGAGCAACATGCCAAGAAGAAGCGCAAGAT CCGGATATGCACTCATTGTGAGACAATCACGACCCCACAGTGGAGGCAAGGACCCAGTGG ACCCAAGACCCTCTGCAACGCTTGCGGAGTCCGGTTCAAATCTGGTCGCCTAGTTCCAGA ATACCGGCCAGCCTCAAGCCCGACCTTCATCCCATCTGTGCATTCAAACTCACACAGGAA GATCATTGAGATGAGAAGGACGACGAGTTTGATACCAGCATGATTCGCAGTGATAT CCAGAAGGTAAAGCAGGGGAGGAAGAAAATGGTATAAAAGTA

>G2442 Amino Acid Sequence (domain in aa coordinates: 220-246)
MNWLPEAEAEEHLKGILSGDFFDGLTNHLDCPLEDIDSTNGEGDWVARFQDLEPPPLDMF
PALPSDLTSCPKGAARVRIPNNMIPALKQSCSSEALSGINSTPHQSSAPPDIKVSYLFQS
LTPVSVLENSYGSLSTQNSGSQRLAFPVKGMRSKRRRPTTVRLSYLFPFEPRKSTPGESV
TEGYYSSEQHAKKRKIHLITHTESSTLESSKSDGIVRICTHCETITTPQWRQGPSGPKT
LCNACGVRFKSGRLVPEYRPASSPTFIPSVHSNSHRKIIEMRKKDDEFDTSMIRSDIQKV
KQGRKKMV*

>G1051 (66..1031)

 ${ t CCTGTAAATTCAGATTTGCTTTCTTTGGTAATCTTTTGGATCAAGATCCATCTATTTTTTT$ CTTCAATGGCACAACTCCCTCCTAAAATCCCCAACATGACACAACATTGGCCTGATTTCT CTTCCCAAAAGCTCTCTCTTTCTCTACCCCAACCGCAACCGCTGTCGCCACCGCTACAA CCACCGTACAAAACCCCTCATGGGTCGACGAATTCCTCGACTTCTCAGCGTCTCGCCGTG GCAACCACCGTCGTTCCATCAGCGACTCTATCGCATTCCTCGAAGCTCCAACAGTCAGCA TCGAAGACCACCAATTCGACAGGTTCGATGACGAACAGTTCATGTCGATGTTCACCGACG ACGACAACCTTCATAGCAATCCTTCCCATATCAACAACAAAAATAACAATGTGGGGCCCA CGGGATCTTCCTCGAACACATCCACGCCGTCCAATAGCTTCAACGACGATAACAAAGAAT TACCACCGTCCGATCATAACATGAACAATAATATCAACAACAACTATAACGATGAAGTCC AAAGCCAATGCAAGATGGAGCCAGAAGATGGTACGGCGTCGAATAACAATTCCGGTGATA GCTCCGGCAACCGGATTCTCGATCCCAAAAGGGTTAAGAGAATATTAGCAAATCGGCAAT CAGCACAGAGATCAAGGGTGAGGAAACTGCAATACATATCAGAGCTCGAACGTAGCGTCA CTTCGTTGCAGGCGGAAGTGTCAGTGTTATCGCCAAGAGTTGCATTCTTGGATCATCAAC GTTTGCTTCTTAACGTTGACAACAGCGCTCTCAAGCAACGAATCGCTGCTTTATCTCAAG ACAAGCTTTTCAAAGACGCACATCAAGAAGCATTGAAGAGAGAAATAGAGAGACTTCGAC AAGTGTATAATCAACAAAGCCTCACGAATGTGGAAAATGCAAATCATTTATCGGCGACCG GAGCCGGTGCTACTCCGGCCGTCGACATCAAGTCGTCCGTTGAAACAGAGCAGCTCCTCA

>G1051 Amino Acid Sequence (domain in AA coordinates 189-250)
MAQLPPKIPNMTQHWPDFSSQKLSPFSTPTATAVATATTTVQNPSWVDEFLDFSASRRGN
HRRSISDSIAFLEAPTVSIEDHQFDRFDDEQFMSMFTDDDNLHSNPSHINNKNNNVGPTG
SSSNTSTPSNSFNDDNKELPPSDHNMNNNINNNYNDEVQSQCKMEPEDGTASNNNSGDSS
GNRILDPKRVKRILANRQSAQRSRVRKLQYISELERSVTSLQAEVSVLSPRVAFLDHQRL
LLNVDNSALKQRIAALSQDKLFKDAHQEALKREIERLRQVYNQQSLTNVENANHLSATGA
GATPAVDIKSSVETEQLLNVS*

>G1052 (138..1127)

 ${\tt TCAAATCTTTGATCCTTTGTTTTTTCATTTGACCTCTTACAAAAAATCTGGTGTG}$ CCATTAAATCTTTATTAATGGCACAACTTCCTCCGAAAATCCCAACCATGACGACGCCAA ATTGGCCTGACTTCTCCCCAGAAACTCCCTTCCATAGCCGCAACGGCGGCAGCCGCAG $\tt CGACTCGCCGTGGGACTCACCGTCGTTCTATAAGCGACTCCATTGCTTTCCTTGAACCAC$ CTTCCTCCGGCGTCGGAAACCACCACTTCGATAGGTTTGACGACGAGCAATTCATGTCCA TGTTCAACGACGACGTACAACAATAACCACAATCATCATCATCACAGCATCAACG GCAATGTGGGTCCCACGCGTTCATCCTCCAACACCTCCACGCCGTCCGATCATAATAGCC TTAGCGACGACGACAACAAGAAGAAGCACCACCGTCCGATCATGATCATCACATGGACA ATAATGTAGCCAATCAAAACAACGCCGCCGGTAACAATTACAACGAATCAGACGAGGTCC AAAGCCAGTGCAAGACGGAGCCACAAGATGGTCCGTCGGCGAATCAAAACTCCGGTGGAA GCTCCGGTAATCGTATTCACGACCCTAAAAGGGTAAAAAGAATTTTAGCAAATAGGCAAT CAGCACAGAGATCAAGGGTGAGGAAATTGCAATACATATCAGAGCTTGAAAGGAGCGTTA ${\tt CTTCATTGCAGACTGAAGTGTCAGTGTTATCGCCAAGAGTTGCGTTTTTGGATCATCAGC}$ GATTGCTTCTCAACGTCGACAATAGTGCTATCAAGCAACGAATCGCAGCTTTAGCACAAG ATAAGATTTTCAAAGACGCTCATCAAGAAGCATTGAAGAGAGAAATAGAGAGACTTCGAC AAGTATATCATCAACAAAGCCTCAAGAAGATGGAGAATAATGTCTCCGGATCAATCTCCGG CTAAGATCTTTCTTTCATGGCGAAAAGATTCTTGACTATAAAACCTCTTTGTGTCAAGA AATTAATTTATCAAAGAAGATGGCCTTTTTTATTTGATCTAATCACATTTTTTTAAGTTG

>G1052 Amino Acid Sequence (domain in AA coordinates 201-261)
MAQLPPKIPTMTTPNWPDFSSQKLPSIAATAAAAATAGPQQQNPSWMDEFLDFSATRRGT
HRRSISDSIAFLEPPSSGVGNHHFDRFDDEQFMSMFNDDVHNNNHNHHHHHSINGNVGPT
RSSSNTSTPSDHNSLSDDDNNKEAPPSDHDHHMDNNVANQNNAAGNNYNESDEVQSQCKT
EPQDGPSANQNSGGSSGNRIHDPKRVKRILANRQSAQRSRVRKLQYISELERSVTSLQTE
VSVLSPRVAFLDHQRLLLNVDNSAIKQRIAALAQDKIFKDAHQEALKREIERLRQVYHQQ
SLKKMENNVSDQSPADIKPSVEKEQLLNV*

>G1079 (1..1995)

ATGGTTGTGCTTCAAGAATTGATAATGAAGAAAAGGTTTTAGTGTGTAGGCAGAĢA
AAGAGGCTAATGAAAAAGTTATTAGGGTTCAGGGAGAATTTGCAGATGCACAGTTGGCT
TATCTTAGAGCTTTGAGGAACACTGGTGTTACTCTTAGGCAATTCACTGAGTCTGAGACC
TTGGAGCTTGAAAACACTAGTTATGGTTTAAGTTTGCCTTTTGCCTCCTCCTCCT
ACATTGCCTCCTCCACCACCTCCTCCATTTAGCCCGGATTTGAGAAATCCTGAG
ACATTGCCTCCTCCACCACCTCCTCCATTTAGCCCGGATTTGAGAAATCCTGAG
ACTAGTCATGACTTGGCTGATGAGGAGGAGAGAGGGTGAAAATGATGGTAATGATGGA
AGTGGTGCAGCTCCTCCGCCTCCATTGCCGAATTCTTGGAACATTTTGAACCCTTTTTGAG
TCACTTGAGCTGCATAGTCATCCAAATGGTGACAATGTAGTTACACAAGTTGAACTGAAG
AAGAAACAACAAATTCAGCAAGCTGAAGAGAGAAGATTGGCGGAGACGAAGTCTCAATTT
GAGGAAGAAGATGAGCAACAAGAAGAAGCAGGAGGTACTTGCCTTGATTTGAGTGTTCATCAA
ATAGAGGCTGTTAGTGGCTGTAACATGAAGAAGCCACGTCGTCTGAAGTTTAAGCTGGGA
GAAGTTATGGACGGTAACTCATCTATGACAAGCTGCTCCGGTAAAGATCTTGAGAAAACT
CATGTGACTGATTGTAGAATCAGGAGGACCTTAGAAGGAATCATCAGAGAGTTGGATGAT
TATTTCTTAAAGCATCGGGTTGCGAGAAGGAGATAGCTGTGATAGTAGACATCAACAGT

AAGGTATTCAGTGCATTGTCATGGAGTTGGTCTTCAAAGTCTCTTCAGTTGGGCAAAGAT GCTACAACAAGCGGGACTGTTGAACCCTGTAGGCCTGGAGCTCACTGCAGCACACTTGAG AAGCTATACACAGCTGAGAAGAAACTTTACCAGCTAGTCAGAAACAAAGAGATTGCCAAA ${\tt GTGGAGCATGAGAGGGAAGTCTGCATTACTGCAAAAGCAAGATGGGGAAACCTATGATTTG}$ AGCAAAATGGAGAAAGCACGCTTGTCTTTGGAGAGTTTGGAAACCGAGATACAGCGTCTA GAAGATTCCATAACTACAACACGCTCATGTTTGCTTAACTTGATCAATGATGAGCTGTAT ${\tt CCGCAGCTAGTTGCTTTAACTTCAGGGCTAGCACAGATGTGGAAAACAATGCTCAAGTGT}$ CATCAAGTTCAAATTCATATATCCCAGCAACTGAACCATCTTCCGGATTACCCGAGTATA GATCTCAGTTCGGAATACAAACGCCAGGCGGTTAATGAACTAGAGACCGAGGTTACTTGC TGGTACAATAGCTTTTGCAAGTTAGTAAATTCCCAGCGAGAATACGTGAAAAACACTCTGT ACGTGGATCCAACTTACTGATCGCCTCTCTAACGAAGAACCAAAGAAGTAGCTTGCCT GTTGCTGCTCGTAAGCTCTGCAAAGAGTGGCAGCTTGAATACAACCTGCGTAGGAAATGC AATAAACTTGAGAGGGGGCTTGAGAAAGAGCTAATTTCACTGGCTGAGATTGAAAGAAGG $\tt CTCGAGGGGATTTTAGCAATGGAAGAGGAGGAAGTAAGCTCAACGAGTTTGGGCTCTAAG$ ${\tt CATCCGTTGTCAATCAAACAAGCCAAGATCGAAGCCTTGAGAAAACGAGTGGATATTGAG}$ AAAACTAAGTACTTAAACTCGGTCGAGGTTAGTAAGAGAATGACACTAGACAACCTCAAA TCAAGCCTTCCCAATGTCTTTCAGATGTTGACTGCTCTAGCTAATGTCTTTGCCAATGGG TTTGAATCCGTTAATGGCCAAACCGGTACAGATGTTTCCGACACATCCCAACATTCCGAT GAATCTCAACCCTAA

>G1079 Amino Acid Sequence (conserved domain in AA coordinates:1-50) MGCAASRIDNEEKVLVCRQRKRLMKKLLGFRGEFADAQLAYLRALRNTGVTLRQFTESET LELENTSYGLSLPLPPSPPPTLPPSPPPPPPPFSPDLRNPETSHDLADEEEEGENDGGNDG SGAAPPPPLPNSWNIWNPFESLELHSHPNGDNVVTQVELKKKQQIQQAEEEDWAETKSQF EEEDEQQEAGGTCLDLSVHQIEAVSGCNMKKPRRLKFKLGEVMDGNSSMTSCSGKDLEKT HVTDCRIRRTLEGIIRELDDYFLKASGCEKEIAVIVDINSRDTVDPFRYQETRRKRSSSA KVFSALSWSWSSKSLQLGKDATTSGTVEPCRPGAHCSTLEKLYTAEKKLYQLVRNKEIAK VEHERKSALLQKQDGETYDLSKMEKARLSLESLETEIQRLEDSITTTRSCLLNLINDELY PQLVALTSGLAQMWKTMLKCHQVQIHISQQLNHLPDYPSIDLSSEYKRQAVNELETEVTC WYNSFCKLVNSQREYVKTLCTWIQLTDRLSNEDNQRSSLPVAARKLCKEWQLEYNLRRKC NKLERRLEKELISLAEIERRLEGILAMEEEEVSSTSLGSKHPLSIKQAKIEALRKRVDIE KTKYLNSVEVSKRMTLDNLKSSLPNVFQMLTALANVFANGFESVNGQTGTDVSDTSQHSD

>G1335 (56..667)

CGGAGACAACGGCGGTGGTGAGAGGCCCAAAGGCTCCGTCAAGTGGTTTGATACCCAGAA GGGTTTCGGCTTCATCACTCCTGACGACGGTGGCGACGATCTCTTCGTTCACCAGTCCTC CATCAGATCTGAGGGTTTCCGTAGCCTCGCTGCCGAAGAAGCCGTAGAGTTCGAGGTTGA GATCGACAACAACCGTCCCAAGGCCATCGATGTTTCTGGACCCGACGGCGCTCCCGT CCAAGGAAACAGCGGTGGTGGTTCATCTGGCGGACGCGGCGGTTTCGGTGGAGGAAGAGG AGGTGGACGCGGATCTGGAGGTGGATACGGCGGTGGTGGATACGGAGGAAGAGG AGGTGGTGGTCGAGGAGCAGCGACTGCTACAAGTGTGGTGAGCCCGGTCACATGGCGAG AGACTGTTCTGAAGGCGGTGGAGGTTACGGAGGAGGCGGCGGTGGCTACGGAGGTGGAGG CGGATACGGCGGAGGAGGTGGTGGTTACGGAGGTGGTGGCGGCGG GGGAAGCTGCTACAGCTGTGGCGAGTCGGGACATTTCGCCAGGGATTGCACCAGCGGTGG TCGGTTCTTTCTCCCGCCGCCTTCTATCTCTCTATTATCCACTTTTTTGCTTATTATGATG ${\tt GATCTCTATCTTTGTTAGTTGGTTTTTTCTTGATGGTTTCGGATTAGGACTCTTTTTG}$ GTTTTGCTACTTATGGTTGGTTTTATTTATGGTACTTGTGATATGGGTGAAATGCTCTAC TTGTTGCTCTGTTTCAAGTGTTCATAATATGCGAACAAATATTCTGGGTTTTGTTTCAAA

>G1335 Amino Acid Sequence (domain in AA coordinates: 24-43, 131-144, 185-203) MSGDNGGGERRKGSVKWFDTQKGFGFITPDDGGDDLFVHQSSIRSEGFRSLAAEEAVEFE GGGSCYSCGESGHFARDCTSGGR*

>G157 (31..621)

>G157 Amino Acid Sequence (domain in AA coordinates: 2-57)
MGRRKIEIKRIENKSSRQVTFSKRRNGLIDKARQLSILCESSVAVVVVSASGKLYDSSSG
DDISKIIDRYEIQHADELRALDLEEKIQNYLPHKELLETVQSKLEEPNVDNVSVDSLISL
EEQLETALSVSRARKAELMMEYIESLKEKEKLLREENQVLASQMGKNTLLATDDERGMFP
GSSSGNKIPETLPLLN*

>G1895 (1..954)

 ${f ATGAATAACCAATCTGTTACTGACAATACAAGTCTTAAGCTGTCATCTAATCTTAACAAC}$ GAGTCAAAAGAAACATCTGAGAACAGTGATGACCAACACAGCGAGATCACAACAATTACA TCGGAAGAAGAAACAACTGAACTGAAGAAACCAGACAAGATTCTTCCATGTCCGAGA TGCAACAGCGCAGACACCAAATTCTGTTACTACAACAACTACAACGTTAACCAGCCACGT CACTTCTGTAGAAAATGCCAGAGGTATTGGACCGCTGGTGGATCCATGAGGATCGTCCCG GTTGGCTCAGGCCGTCGCAAGAACAAGGGATGGGTTTCTTCAGACCAGTACCTGCACATC ACTTCCGAGGATACTGACAATTACAATAGCTCCTCAACAAAGATTCTAAGCTTCGAGTCT GAACCTGTTTCACAAGAACCCAACAACTTCCAAGGGTTACTTCCTCCCCAAGCATCCCCT GTTTCGCCTCCTTGGCCTTACCAATACCCTCCAAACCCTAGTTTCTACCACATGCCCGTC TACTGGGGCTGCGCGATACCGGTTTGGTCTACCCTCGACACTTCTACATGTCTTGGGAAA AGGACAAGAGACGAAACTTCTCATGAAACTGTTAAAGAGAGTAAAAATGCTTTTGAGAGA ACAAGCTTGCTTTTGGAATCTCAGAGCATCAAAAATGAAACAAGTATGGCTACAAATAAC CATGTGTGGTATCCAGTACCGATGACCCGCGAGAAGACACAAGAATTCAGCTTTTTCAGT AATGGAGCTGAAACAAGAGCAGCAACAACAGATTCGTCCCTGAAACGTATCTTAACCTG

>G1895 Amino Acid Sequence (domain in AA coordinates: 55-110)
MNNQSVTDNTSLKLSSNLNNESKETSENSDDQHSEITTITSEEEKTTELKKPDKILPCPR
CNSADTKFCYYNNYNVNQPRHFCRKCQRYWTAGGSMRIVPVGSGRRKNKGWVSSDQYLHI
TSEDTDNYNSSSTKILSFESSDSLVTERPKHQSNEVKINAEPVSQEPNNFQGLLPPQASP
VSPPWPYQYPPNPSFYHMPVYWGCAIPVWSTLDTSTCLGKRTRDETSHETVKESKNAFER
TSLLLESQSIKNETSMATNNHVWYPVPMTREKTQEFSFFSNGAETKSSNNRFVPETYLNL
QANPAAMARSMNFRESI*

>G1900 (1..897)

GCTGCAAAGAGTTCGATATGGACAACACTTGGGATCAAGAACGAAGTTATGTTCAATGGG
TTTGGTTCGAAGAAAGAGGTTAAGCTCAGTAACAAAGAAGAAACAGAGACCTCACTTGTT
CTTTGTGCAAACCCTGCTGCGTTATCAAGATCAATCAATTTCCATGAGCAGATGTGA
>G1900 Amino Acid Sequence (domain in AA coordinates: 54-106)
MLETKDPAIKLFGMKIPFPTVLEVADEEEEKNQNKTLTDQSEKDKTLKKPTKILPCPRCN
SMETKFCYYNNYNVNQPRHFCKACQRYWTSGGTMRSVPIGAGRRKNKNNSPTSHYHHVTI
SETNGPVLSFSLGDDQKVSSNRFGNQKLVARIENNDERSNNNTSNGLNCFPGVSWPYTWN
PAFYPVYPYWSMPVLSSPVSSSPTSTLGKHSRDEDETVKQKQRNGSVLVPKTLRIDDPNE
AAKSSIWTTLGIKNEVMFNGFGSKKEVKLSNKEETETSLVLCANPAALSRSINFHEQM*
>G2007 (1..861)

>G2007 Amino Acid Sequence (domain in AA coordinates: TBD)
MGRQPCCDKLMVKKGPWTAEEDKKLINFILTNGHCCWRALPKLAGLRRCGKSCRLRWTNY
LRPDLKRGLLSDAEEQLVIDLHALLGNRWSKIAARLPGRTDNEIKNHWNTHIKKKLLKME
IDPSTHQPLNKVFTDTNLVDKSETSSKADNVNDNKIVEIDGTTINTIDDSIITHQNSSND
DYELLGDIIHNYGDLFNILWTNDEPPLVDDASWSNHNVGIGGTAAVAASDKNNTAAEEDF
PERSFEKQNGESWMFLDYCQEFGVEDFGFECYHGFGQSSMKTGHKD*
>G214 (238..2064)

 ${\tt TGAGATTTCTCCATTTCCGTAGCTTCTGGTCTCTTTTCTTTGTTTCATTGATCAAAAGCA}$ AATCACTTCTTCTTCTTCTTCTCGATTTCTTACTGTTTTCTTATCCAACGAAATCTG TCTCTAAAGTGGAATTTTGTAAAGAGAAGATCTGAAGTTGTGTAGAGGAGCTTAGTGATG GAGACAAATTCGTCTGGAGAAGATCTGGTTATTAAGACTCGGAAGCCATATACGATAACA ${ t AAGCAACGTGAAGGTGGACTGAGGAAGAACATAATAGATTCATTGAAGCTTTGAGGCTT}$ TATGGTAGAGCATGGCAGAAGATTGAAGAACATGTAGCAACAAAAACTGCTGTCCAGATA AGAAGTCACGCTCAGAAATTTTTCTCCAAGGTAGAGAAAGAGGCTGAAGCTAAAGGTGTA GCTATGGGTCAAGCGCTAGACATAGCTATTCCTCCTCCACGGCCTAAGCGTAAACCAAAC AATCCTTATCCTCGAAAGACGGGAAGTGGAACGATCCTTATGTCAAAAACGGGTGTGAAT GATGGAAAAGAGTCCCTTGGATCAGAAAAAGTGTCGCATCCTGAGATGGCCAATGAAGAT CGACAACAATCAAAGCCTGAAGAGAAAACTCTGCAGGAAGACAACTGTTCAGATTGTTTC ACTCATCAGTATCTCTCTGCTGCATCCTCCATGAATAAAAGTTGTATAGAGACATCAAAC GCAAGCACTTTCCGCGAGTTCTTGCCTTCACGGGAAGAGGGGAAGTCAGAATAACAGGGTA AGAAAGGAGTCAAACTCAGATTTGAATGCAAAATCTCTGGAAAACGGTAATGAGCAAGGA ${\tt CCTCAGACTTATCCGATGCCTATGCCCATTGGGGAGCTCAATAACAAGT}$ TCTCTATCACATCCTCCTTCAGAGCCAGATAGTCATCCCCACACAGTTGCAGGAGATTAT CAGTCGTTTCCTAATCATATAATGTCAACCCTTTTACAAACACCGGCTCTTTATACTGCC GCAACTTTCGCCTCATCATTTTGGCCTCCCGATTCTAGTGGTGGCTCACCTGTTCCAGGG AACTCACCTCCGAATCTGGCTGCCATGGCCGCAGCCACTGTTGCAGCTGCTAGTGCTTGG TGGGCTGCCAATGGATTATTACCTTTATGTGCTCCTCTTAGTTCAGGTGGTTTCACTAGT CAACATGGTTCTGTGCAGAGCCGAGAGCAAGAACACTCCGAGGCATCAAAGGCTCGATCT TCACTGGACTCAGAGGATGTTGAAAATAAGAGTAAACCAGTTTGTCATGAGCAGCCTTCT GCAACACCTGAGAGTGATGCAAAGGGTTCAGATGGAGCAGGAGACAGAAAACAAGTTGAC

>G214 Amino Acid Sequence (domain in AA coordinates: 22-71)
METNSSGEDLVIKTRKPYTITKQRERWTEEEHNRFIEALRLYGRAWQKIEEHVATKTAVQ
IRSHAQKFFSKVEKEAEAKGVAMGQALDIAIPPPRPKRKPNNPYPRKTGSGTILMSKTGV
NDGKESLGSEKVSHPEMANEDRQQSKPEEKTLQEDNCSDCFTHQYLSAASSMNKSCIETS
NASTFREFLPSREEGSQNNRVRKESNSDLNAKSLENGNEQGPQTYPMHIPVLVPLGSSIT
SSLSHPPSEPDSHPHTVAGDYQSFPNHIMSTLLQTPALYTAATFASSFWPPDSSGGSPVP
GNSPPNLAAMAAATVAAASAWWAANGLLPLCAPLSSGGFTSHPPSTFGPSCDVEYTKAST
LQHGSVQSREQEHSEASKARSSLDSEDVENKSKPVCHEQPSATPESDAKGSDGAGDRKQV
DRSSCGSNTPSSSDDVEADASERQEDGTNGEVKETNEDTNKPQTSESNARRSRISSNITD
PWKSVSDEGRIAFQALFSREVLPQSFTYREEHREEEQQQQEQRYPMALDLNFTAQLTPVD
DQEEKRNTGFLGIGLDASKLMSRGRTGFKPYKRCSMEAKESRILNNNPIIHVEQKDPKRM
RLETQAST*

>G2155 (63..740)

CTCATATATACCAACCAAACCTCTCTCTGCATCTTTATTAACACAAAATTCCAAAAGATT CAATCTTTGTCACCATTGACCCTCCTATGAGTCCTTACATCCTCGAAGTGCCATCCGGAA ACGATGTCGTTGAAGCCCTAAACCGTTTCTGCCGCGGTAAAGCCATCGGCTTTTGCGTCC ${ t TCAGTGGCTCAGGCTCCGTTGCTGATGTCACTTTGCGTCAGCCTTCTCCGGCAGCTCCTG}$ GCTCAACCATTACTTTCCACGGAAAGTTCGATCTTCTCTCTGTCTCCGCCACTTTCCTCC CTCCTCTACCTCCTTGTCCCCTCCCGTCTCCAATTTCTTCACCGTCTCTCG $\tt CCGGACCTCAGGGGAAAGTCATCGGTGGATTCGTCGCTGGTCCTCTCGTTGCCGCCGGAA$ $\tt CTGTTTACTTCGTCGCCACTAGTTTCAAGAACCCTTCCTATCACCGGTTACCTGCTACGG$ AGGAAGAGCAAAGAAACTCGGCGGAAGGGGAAGAGGGGACAATCGCCGCCGGTCTCTG GAGGTGGTGGAGAGTCGATGTACGTGGGTGGCTCTGATGTCATTTGGGATCCCAACGCCA AAGCTCCATCGCCGTACTGACCACAAATCCATCTCGTTCAAACTAGGGTTTCTTCTTCTT TAGATCATCAAGAATCAACAAAAAGATTGCATTTTTAGATTCTTTGTAATATCATAATTG ACTCACTCTTAATCTCTCTATCACTTCTTTAGCTTTTTCTGCAGTGTCAAACTTCA CATATTTGTAGTTTGATTTGACTATCCCCAAGTTTTGTATTTTATCATACAAATTTTTGC ${ t CTGTCTCTAATGGTTGTTTTTCGTTTGTATAATCTTATGCATTGTTTATTGGAGCTCCA$ GAGATTGAATGTATAATATAATGGTTTAAT

>G2155 Amino Acid Sequence (domain in AA coordinates:18-38)
MLSKLPTQRHLHLSPSSPSMETVGRPRGRPRGSKNKPKAPIFVTIDPPMSPYILEVPSGN
DVVEALNRFCRGKAIGFCVLSGSGSVADVTLRQPSPAAPGSTITFHGKFDLLSVSATFLP
PLPPTSLSPPVSNFFTVSLAGPQGKVIGGFVAGPLVAAGTVYFVATSFKNPSYHRLPATE
EEQRNSAEGEEEGQSPPVSGGGGESMYVGGSDVIWDPNAKAPSPY*

>G234 (106..1035)

CACAACATCATACCCACCAACATATATAATCTTGATCATAGAGAGATAAACAGAGGCCGC
TATCAAGAACAAGACTAAGAACAAGACTTCACTAGGAGTACAAGTATGGGAAGAGCACCG
TATCAAGAACAAGCTAAGAACAAGACTTCACTAGGAGTACAAGAGTACGAAGACTC
TGTTGTGACAAAGCATAGTGGAAGAAAGGCCCTTGGTCTCCTGAGGAAGATGCCAAAACATC
AAATCTTACATTGAAAATAGTGGCACCGGAGGCAATTGGATCGCTTTACCTCAAAAGATT
GGTTTAAAGAGATGTGGAAAGAGTTGCAGGCTGAGGTGGCTTAACTATCTTAGACCAAAC
ATCAAACATGGTGGCTTCTCTGAGGAAGAAAAACATCATTTGTAGCCTTTACA
ATTGGTAGCAGGTGGTCTATAATCGCTGCTCAATTGCCGGGACGAACAGACAACGATATA

281/286

CAAGAAGCTTGTATGGAGCAGCAAGAGATGATGATGATGAAGAGACAACACAACAA CAACAAATCCAAACTTCTTTTATGATGAGACAAGACCAAACAATGTTCACATGGCCACTA CATCATCATATGTTCAAGTTCCAGCTCTTTTCAGAATCAAACCAACTCGTTTTGCGACC AAGAAGATGTTAAGCCAGTGCTCATCAAGAACATGGTCAAGATCGAAGATCAAGAACTGG AGAAAACAAACCTCATCATCATCAAGATTCAATGACAACGCTTTTGATCATCTCTCTTTC TCTCAACTCTTGTTAGATCCTAATCATAACCACTTAGGATCAGGAGAGGGTTTCTCCATG AACTCTATCTTGAGCGCCAACACACAACTCTCCATTGCTTAACACAAGTAATGATAATCAG TGGTTCGGGAATTTCCAGGCCGAAACCGTAAACTTGTTCTCAGGAGCCTCCACAAGTACT TCGGCAGATCAAAGCACTATAAGTTGGGAAGACATAAGCTCTCTTGTTTATTCTGATTCA AAGCAATTTTTTAATTAATAATAATATATTATTCTTAAGATGAAACGTACATCATTATTA >G234 Amino Acid Sequence (domain in AA coordinates: 14-115) MGRAPCCDKANVKKGPWSPEEDAKLKSYIENSGTGGNWIALPQKIGLKRCGKSCRLRWLN YLRPNIKHGGFSEEEENIICSLYLTIGSRWSIIAAQLPGRTDNDIKNYWNTRLKKKLINK QRKELQEACMEQQEMMVMMKRQHQQQQIQTSFMMRQDQTMFTWPLHHHNVQVPALFRIKP TRFATKKMLSQCSSRTWSRSKIKNWRKQTSSSSRFNDNAFDHLSFSQLLLDPNHNHLGSG EGFSMNSILSANTNSPLLNTSNDNQWFGNFQAETVNLFSGASTSTSADQSTISWEDISSL VYSDSKQFF*

>G361 (54..647)

TCTGTCTCTCTCTCTCTTTGTAAATATACATATAGATAAGCTCACATATATGGCGA CTGAAACATCTTCTTTGAAGCTCTTCGGTATAAACCTACTTGAAACGACGTCGGTTCAAA ACCAGTCATCGGAACCAAGACCCGGATCCGGATCAGGATCCGAGTCACGTAAGTACGAGT GTCAATACTGTTGTAGAGAGTTTGCTAACTCTCAAGCTCTTGGTGGTCACCAAAACGCTC ACAAGAAAGAGCGTCAGCTTCTTAAACGTGCACAGATGTTAGCTACTCGTGGTTTGCCAC GTCATCATAATTTTCACCCTCATACCAATCCGCTTCTCTCCCGCCTTCGCGCCCGCTGCCTC ACCTCCTCTCAGCCGCATCCTCCGCCGCATATGATGCTCTCTCCTTCTTCTTCGAGTT CTAAGTGGCTTTACGGTGAACACATGTCGTCACAAAACGCCGTTGGGTACTTTCATGGTG GAAGGGGACTTTACGGAGGTGGCATGGAGTCTATGGCCGGAGAAGTAAAGACTCATGGTG GTTCTTTGCCGGAGATGAGGAGGTTCGCCGGAGATAGTGATCGGAGTAGCGGAATTAAGT TGGCCCAGTAAAGATCTGTAAAATACTACTAGGATTTCATTTTATAGAGTATGTTTTTT TCTATGTATGCGTTTGCTTTCACTTTTTTTTTTTTATATAATTCTTCTTGTAAAAAATGCA ATGTGAGTTTTCTTCCCTATCATTCTGTCAAGCTTTGGTTCAATTATTTAGTAATCGAAT AATATAGGAATAGTGTTGAAAG

>G361 Amino Acid Sequence (domain in AA coordinates: 43-63) MATETSSLKLFGINLLETTSVQNQSSEPRPGSGSGSESRKYECQYCCREFANSQALGGHQ NAHKKERQLLKRAQMLATRGLPRHHNFHPHTNPLLSAFAPLPHLLSQPHPPPHMMLSPSS SSSKWLYGEHMSSQNAVGYFHGGRGLYGGGMESMAGEVKTHGGSLPEMRRFAGDSDRSSG IKLENGIGLDLHLSLGP*

>G562 (137..1285)

 ${ t ATTTGAATTTCTGGGTTTCTCTCTGTTTAAGCTTCTTCTTCTTCATCTTCTGCTTACGTT$ TCTTCTTCAAGGAGCTTTCGGATTCTTGTAGAAAGAGTCATTGTTCTCTTGAGTGGGAAA CCTTGAAACCATTCCTATGGGAAATAGCAGCGAGGAACCAAAGCCTCCTACCAAATCAGA TAAACCATCTTCACCCCGGTGGATCAAACAAATGTTCATGTCTACCCTGATTGGGCAGC TATGCAGGCATATTATGGTCCAAGAGTAGCAATGCCTCCTTATTACAATTCAGCTATGGC TGCATCTGGTCATCCTCCTCCTTACATGTGGAATCCTCAGCATATGATGTCACCATC TGGAGCACCCTATGCTGCTGTTTATCCTCATGGAGGAGGAGTTTACGCTCATCCCGGTAT TCCCATGGGATCACTGCCTCAAGGTCAAAAGGATCCACCTTTAACAACTCCGGGGACGCT TTTGAGCATCGACACTCCTACTAAATCTACAGGGAACACAGACAATGGATTGATGAAGAA GCTGAAAGAGTTTGATGGGCTTGCTATGTCTCTAGGAAATGGGAATCCTGAAAATGGTGC AGATGAACATAAACGATCACGGAACAGCTCAGAAACTGATGGTTCTACTGATGGAAGTGA TGGGAATACAACTGGGGCAGATGAACCGAAACTTAAAAGAAGTCGAGAGGGAACTCCAAC AAAAGATGGGAAACAATTGGTTCAAGCTAGCTCATTTCATTCTGTTTCTCCGTCAAGTGG TGATACCGGCGTAAAACTCATTCAAGGATCTGGAGCTATACTCTCCTGGTGTAAGTGC AAATTCCAACCCCTTCATGTCACAATCTTTAGCCATGGTTCCTCCTGAAACTTGGCTTCA

>G562 Amino Acid Sequence (domain in AA coordinates: 253-315)
MGNSSEEPKPPTKSDKPSSPPVDQTNVHVYPDWAAMQAYYGPRVAMPPYYNSAMAASGHP
PPPYMWNPQHMMSPSGAPYAAVYPHGGGVYAHPGIPMGSLPQGQKDPPLTTPGTLLSIDT
PTKSTGNTDNGLMKKLKEFDGLAMSLGNGNPENGADEHKRSRNSSETDGSTDGSDGNTTG
ADEPKLKRSREGTPTKDGKQLVQASSFHSVSPSSGDTGVKLIQGSGAILSPGVSANSNPF
MSQSLAMVPPETWLQNERELKRERRKQSNRESARRSRLRKQAETEELARKVEALTAENMA
LRSELNQLNEKSDKLRGANATLLDKLKCSEPEKRVPANMLSRVKNSGAGDKNKNQGDNDS
NSTSKFHQLLDTKPRAKAVAAG*

>G591 (88..1020)

GTAAATCTCTCTTTGAAGGTTCCTAACTCGTTAATCGTAACTCACAGTGACTCGTTCGAG TCAAAGTCTCTGTCTTAGCTCAAACCATGGCTAGTAACAACCCTCACGACAACCTTTCT GACCAAACTCCTTCTGATGATTTCTTCGAGCAAATCCTCGGCCTTCCTAACTTCTCAGCC TCTTCTGCCGCCGGTTTATCTGGAGTTGACGGAGGATTAGGTGGTGGAGCACCGCCTATG ATGCTGCAGTTGGGTTCCGGAGAAGAAGGAAGTCACATGGGTGGCTTAGGAGGAAGTGGA CCAACTGGGTTTCACAATCAGATGTTTCCTTTGGGGTTAAGTCTTGATCAAGGGAAAGGA CCTGGGTTTCTTAGACCTGAAGGAGGACATGGAAGTGGGGAAAAGATTCTCAGATGATGTT GTTGATAATCGATGTTCTTCTATGAAACCTGTTTTCCACGGGCAGCCTATGCAACAGCCA ${\tt CCTCCATCGGCCCCACATCAGCCTACTTCAATCCGTCCCAGGGTTCGAGCTAGGCGTGGT}$ ATCAGGGCGCTGCAGGAACTTGTACCTACTGTGAACAAGACCGATAGAGCTGCTATGATC GATGAGATTGTCGATTATGTAAAGTTTCTCAGGCTCCAAGTCAAGGTTTTGAGCATGAAC $\tt CGACTTGGTGGAGCCGGTGCGGTTGCTCCACTTGTTACTGATATGCCTCTTTCATCATCA$ GTTGAGGATGAAACGGGTGAGGGTGGAAGGACTCCGCAACCAGCGTGGGAGAAATGGTCT AACGATGGGACTGAACGTCAAGTGGCTAAACTGATGGAAGAACGTTGGAGCCGCGATG CAGCTTCTTCAATCAAAGGCTCTTTGTATGATGCCAATCTCATTGGCAATGGCAATTTAC CATTCTCAACCTCCGGATACATCTTCAGTGGTCAAGCCTGAGAACAATCCTCCACAGTAG ${ t GATTTCTGCAATAAAGAGTTTGTACAGCTAATCCAACTGTCCAACATGGGTTTTTCTTCT}$ GCTCTAATGACTCTGGTTTCTTCTCTCCTCTCTCACCGACTTGAAAGGTAAAAAGTGAA AAAGGCTTTGTAGATGGAATCAATGTAGGATTTGCAGTAGAGGGCAAAAAAATGTCATAT

>G591 Amino Acid Sequence (domain in AA coordinates: 143-240)
MASNNPHDNLSDQTPSDDFFEQILGLPNFSASSAAGLSGVDGGLGGGAPPMMLQLGSGEE
GSHMGGLGGSGPTGFHNQMFPLGLSLDQGKGPGFLRPEGGHGSGKRFSDDVVDNRCSSMK
PVFHGQPMQQPPPSAPHQPTSIRPRVRARRGQATDPHSIAERLRRERIAERIRALQELVP
TVNKTDRAAMIDEIVDYVKFLRLQVKVLSMNRLGGAGAVAPLVTDMPLSSSVEDETGEGG
RTPQPAWEKWSNDGTERQVAKLMEENVGAAMQLLQSKALCMMPISLAMAIYHSQPPDTSS
VVKPENNPPQ*

>G8 (247..1596)

AAAAAAAAATATCCGTCTCACTCTCTCGCCGCCGGTAACATTTCCCGGCGACAAAACTTC
TCTACTCTCACCATTCCTCCATCGTAATCTCTAAATTCTTCTCCATTCTTCTTCTCCC
CGATCATCTCGAGCTCTTCGTGAGAGATTATGTGATTATGTAATCGTTGTTGCTGTAGAA
GACGATCTCTAACAACTGATTCCTTCATCATCACCTTCGCTAGATTTGTAATTTTCAGAG
CTTGAGATGTTGGATCTTAACCTCAACGCTGATTCTCCCGAGTCGACTCAGTACGGTGGT
GACTCATACTTAGATCGGCAGACATCAGACAACTCCGCCGGGAATCGAGTGGAAGAGTCC
GGTACATCGACGTCGTCAGTTATCAATGCCGATGGAAGACTCTTGCTCTACTCGA
GCTTTCACTCTCAGTTTCGATATTTTAAAAAGTCGGAAGTTAGCGGCGGAGACGAAAGC

 $\verb|CCCGCCGCTTCAGCTTCCGTTACTAAAGAGTTTTTTCCGGTGAGTGGAGACTGTGGACAT|\\$ ${\tt ATTGGTGACGGAGAAACGAAATTGGTAACTCCGGTTCCGGCTCCGGCTCCGGCT}$ ${\tt CAGGTTAAAAAGAGTCGGAGAGGACCAAGGTCTAGAAGTTCACAGTATAGAGGAGTTACT}$ TTTTATAGAAGAACTGGTCGATGGGAGTCACATATTTGGGATTGTGGGAAACAAGTTTAT TTAGGTGGTTTCGACACTGCTCATGCTGCAGCTAGAGCTTATGATCGAGCTGCTATTAAA TTTAGAGGTGTTGATGCTGATATCAACTTTACTCTTGGTGATTATGAGGAAGATATGAAA CAGGTACAAAACTTGAGTAAGGAAGAGTTTGTGCATATACTGCGTAGACAGAGCACGGGG TTTTCGCGGGGGAGTTCGAAGTATCGAGGGGTTACGTTACACAAATGTGGTAGATGGGAA GCTAGGATGGGCAGTTTCTTGGTAAAAAGGCTTATGACAAGGCTGCAATCAACACTAAT GGTAGAGAAGCAGTCACGAACTTCGAGATGAGTTCATACCAAAATGAGATTAACTCTGAG AGCAATAACTCTGAGATTGACCTCAACTTGGGAATCTCTTTATCGACCGGTAATGCGCCA AAGCAAAATGGGAGGCTCTTTCACTTCCCTTCTAATACTTATGAAACTCAGCGTGGAGTT AGCTTGAGGATAGATAACGAATACATGGGAAAGCCGGTGAATACACCTCTTCCTTATGGA TCCTCGGATCATCGCCTTTACTGGAACGGAGCATGCCCGAGTTATAATAATCCCGCCGAG GGAAGAGCAACAGAAAAGAGAAGTGAAGCTGAAGGGATGATGAGTAACTGGGGATGGCAG AGACCGGGGCAAACAAGCGCCGTGAGACCGCAGCCACCACCACCACCACCATTG TTCTCAGTTGCAGCATCATCAGGATTCTCACATTTCCGGCCACAACCTCCCAATGAC AATGCAACACGTGGTTACTTTTATCCACACCCTTAACTTGTAAGGGGACATATGAGAGTT TTTTTACCATCTCTCTCTCTCAACACTCTAGTCCCCTTTCAAAAATGTCATTTGGGTT TTAGATTTTCACATACAATGATCAATTTTTCC

>G8 Amino Acid Sequence (domain in AA coordinates: 151-217, 243-296)
MLDLNLNADSPESTQYGGDSYLDRQTSDNSAGNRVEESGTSTSSVINADGDEDSCSTRAF
TLSFDILKVGSSSGGDESPAASASVTKEFFPVSGDCGHLRDVEGSSSSRNWIDLSFDRIG
DGETKLVTPVPTPAPVPAQVKKSRRGPRSRSSQYRGVTFYRRTGRWESHIWDCGKQVYLG
GFDTAHAAARAYDRAAIKFRGVDADINFTLGDYEEDMKQVQNLSKEEFVHILRRQSTGFS
RGSSKYRGVTLHKCGRWEARMGQFLGKKAYDKAAINTNGREAVTNFEMSSYQNEINSESN
NSEIDLNLGISLSTGNAPKQNGRLFHFPSNTYETQRGVSLRIDNEYMGKPVNTPLPYGSS
DHRLYWNGACPSYNNPAEGRATEKRSEAEGMMSNWGWQRPGQTSAVRPQPPGPQPPPLFS
VAAASSGFSHFRPQPPNDNATRGYFYPHP*

>G859 (162..752)

GAGAGAGAGAAACGAAGAAAAAAAAAAGAAGCAAAAAACATTGTGGGTCTCCGGTGATT AGGATCAAATTAGGGCACCAGCCTTATCGGAGGAAGAAGCCATGGGTAGAAAAAAGTCG AGATCAAGCGAATCGAGAACAAAAGTAGTCGACAAGTCACTTTCTCCAAACGACGCAATG GTCTCATCGAGAAAGCTCGACAACTTTCAATTCTCTGTGAATCTTCCATCGCTGTTCTCG TCGTCTCCGGCTCCGGAAAACTCTACAAGTCTGCCTCCGGTGACAACATGTCAAAGATCA TTGATCGTTACGAAATACATCATGCTGATGAACTTGAAGCCTTAGATCTTGCAGAAAAA CAAATGTCGATAATGCAAGTGTGGATACTTTAATTTCTCTGGAGGAACAGCTCGAGACTG CTCTGTCCGTAACTAGAGCTAGGAAGACAGAACTAATGATGGGGGAAGTGAAGTCCCTTC AAAAAACGGAGAACTTGCTGAGAGAAGAGAACCAGACTTTGGCTAGCCAGGTGGGGAAGA AGACGTTTCTGGTTATAGAAGGTGACAGAGGAATGTCATGGGAAAATGGCTCCGGCAACA AAGTACGGGAGACTCTTCCGCTGCTCAAGTAATCACCATCATCAACGGCTGAGCTTTCAC CTTAAACTTACAGCCTGATTCAGAAGTTTTTACAAATTTGTAAATTATAAAAAGCTTCAT AATAATCTCAACCTTTTTATCTTCCTCGCGCCAATGTGGAAATTAAGGTTAAAAATAAAA TAAAACAGAAGCTCATGCGAAAGAATTGTAAAACTAAGATAAAGCTATAGTAGATCTTTA TTGTACCTTCGTAGACGATATAAGATTTATTCGTGTGTTTTGTCTTCCCCTCNAAAAAAA AAAAAAAAAAAA

>G859 Amino Acid Sequence (domain in AA coordinates: TBD)
MGRKKVEIKRIENKSSRQVTFSKRRNGLIEKARQLSILCESSIAVLVVSGSGKLYKSASG
DNMSKIIDRYEIHHADELEALDLAEKTRNYLPLKELLEIVQSKLEESNVDNASVDTLISL
EEQLETALSVTRARKTELMMGEVKSLQKTENLLREENQTLASQVGKKTFLVIEGDRGMSW
ENGSGNKVRETLPLLK*

>G878 (197..1738)

AAATATCTTCTTTTTTTCTGTGTGAGTTGGGTTTGTTAAAGTTTTATCCTTTTTGTTC TCAAAATCAAGAATCGATGGCGGAGAAGGAAGAAAAAGAACCATCGAAGTTAAAATCATC CACCGGAGTTTCACGGCCAACGATTTCACTACCTCCTCGACCGTTTGGTGAAATGTTTTT TAGCGGTGGCGTTGGATTTAGTCCTGGACCAATGACTCTCGTCTCAAATTTATTCTCTGA AGCTGCTGTTGCCGCCGCTGCTGGTTGCTACTGCTCATCATCAGACACCTGTGAGCTC ${\tt TGTCGGTGATGGCGGTGGAGCGGTGGTGATGTTGACCCGAGGTTTAAGCAGAGTAGACC}$ AACGGGATTGATGATAACTCAACCACCGGGGATGTTTACTGTACCGCCGGGGTTAAGTCC GGCTACTCTTTGGATTCTCCGAGCTTCTTTGGTCTTTTTTCACCTCTTCAGGGAACATT TGGTATGACACATCAACAAGCTTTAGCACAAGTCACTGCACAAGCAGTTCAAGGCAATAA TGTTCATATGCAGCAATCACAACAATCTGAATATCCTTCTTCTACACAACAACAACAACA ACAACAACAACAAGCTTCATTGACTGAGATTCCATCATTTTCTTCTGCACCTAGGTCTCA CTTTGAGCATCGGTCACAGCCTCAAAATGCTGACAAACCAGCTGATGATGGATACAACTG GCGGAAATATGGGCAGAAGCAAGTGAAGGGGAGCGATTTTCCTCGGAGTTATTACAAATG TACGCATCCAGCTTGTCCTGTCAAGAAGAAGTGGAGAGGTCACTCGATGGACAAGTAAC GGAAATCATCTACAAGGGTCAACACAATCATGAGCTTCCTCAAAAGCGCGGTAACAATAA CGGGAGTTGTAAAAGTTCTGATATTGCAAATCAGTTTCAAACAAGTAATAGCAGTCTCAA CAAGAGTAAGAGGGACCAGGAAACAAGCCAAGTTACAACAACAGAGCAGATGTCTGAAGC AAGTGATAGCGAGGAGGTTGGGAATGCAGAGACTAGTGTGGGAGAAAGACATGAGGATGA GCCTGATCCCAAGCGAAGAAATACAGAAGTTCGGGTTTCAGAACCAGTTGCTTCATCGCA TAGAACTGTGACAGAGCCTAGGATTATTGTCCAAACGACGAGTGAAGTTGACCTCTTAGA TGATGGATATAGGTGGCGCAAGTATGGTCAGAAAGTAGTCAAAGGAAATCCTTATCCGAG AACTGACCCAAAAGCTGTTGTAACAACATATGAAGGTAAACATAACCATGATGTTCCAGC CTTCAATCATCAACAGCCTGTTGCACGTTTAAGGCTTAAAGAAGAGCAAATCACTTGACA GAGAAGAAGAATACGACGGCGCTTGAGCTTTTGTGAGTTTAATGAATCTTCTTTTTGGTT AATGAACCTGTTTTTGTTGCCTCAAAACACCACAGGTTTCTCTGGACAGAATCTCTGATA ${ t TTACAGTTTCAAAAGGTATGTTCTTTTATTTCATGTTGGAATCTTCTGTGTAATCTTAAG$ AAGCTTTAGGAGGTAATGTAAAAAACCAGATTCAAAGTTATGCCCCTTATGTGAATTCTTT

>G878 Amino Acid Sequence (domain in AA coordinates:250-305, 415-475) MAEKEEKEPSKLKSSTGVSRPTISLPPRPFGEMFFSGGVGFSPGPMTLVSNLFSDPDEFK SFSQLLAGAMASPAAAAVAAAAVVATAHHQTPVSSVGDGGGSGGDVDPRFKQSRPTGLMI TQPPGMFTVPPGLSPATLLDSPSFFGLFSPLQGTFGMTHQQALAQVTAQAVQGNNVHMQQ SQQSEYPSSTQQQQQQQQQQASLTEIPSFSSAPRSQIRASVQETSQGQRETSEISVFEHRS QPQNADKPADDGYNWRKYGQKQVKGSDFPRSYYKCTHPACPVKKKVERSLDGQVTEIIYK GQHNHELPQKRGNNNGSCKSSDIANQFQTSNSSLNKSKRDQETSQVTTTEQMSEASDSEE VGNAETSVGERHEDEPDPKRRNTEVRVSEPVASSHRTVTEPRIIVQTTSEVDLLDDGYRW RKYGQKVVKGNPYPRSYYKCTTPDCGVRKHVERAATDPKAVVTTYEGKHNHDVPAARTSS HQLRPNNQHNTSTVNFNHQQPVARLRLKEEQIT*

>G971 (131..1171)

TCTTTTTTCTCTCTCCCTCTCTCTGGCCGGAAAAAAGAACAACGTCGTTTATAGCTAA AGATTCGATCATGTTGGATCTTAACCTAAAGATCTTTTCTTCTTATAACGAAGATCAAGA TCGGAAAGTACCATTAATGATCTCAACCACCGGTGAAGAAGAATCTAACTCATCTTCCTC CTCCACAACAGACTCTGCAGCGAGAGATGCTTTCATCGCTTTTGGAATTCTCAAACGCGA CGATGACCTTGTTCCTCCTCCTCCTCCTCCTCATAAAGAAACAGGAGATCTCTTTCC GGTGGTGGCTGATGCTCGGGAATATAGAATTCTCCGTGGAAGACAGTCACTGGTTGAA TCTTTCTTTACAAAGAAATACACAGAAAATGGTGAAGAAGAGCAGAAGAGGACCAAG GTCTCGTAGCTCCCAATATCGTGGCGTCACTTTTTACCGTCGCACCGGTCGTTGGGAATC TCATATTTGGGATTGTGGAAAGCAAGTTTATTTGGGCGGGTTTGATACTGCTTACGCAGC AGCAAGGGCTTACGACCGAGCTGCTATCAAATTCCGTGGTCTCGATGCAGACATCAATTT CGTCGTGGATGATTATAGGCATGACATCGATAAGATGAAGAATTTAAATAAGGTGGAGTT CGTGCAAACACTTAGGCGAGAGAGTGCGAGTTTCGGAAGAGGAAGTTCCAAATACAAAGG

CTTGGCTCTTCAAAAATGCACCCAATTCAAAACTCATGATCAGATTCATCTCTTCCAAAA CAGGGGATGGATGCAGCAATAAAATACAATGAGTTGGGAAAGGGAGAGGAGCCAT GAAGTTTGGTGCCCATATCAAAGGAAATGGTCACAATGATCTTGAACTAAGTCTCGGAAT TTCATCATCATCGGAAAGTATAAAGTTGACAACAGGCGATTACTATAAGGGTATCAATCG GTCCACGATGGGTTTATACGGTAAGCAATCATCGATATTTTTACCCATGGCAACCATGAA ACCTCTGAAGACAGTTGCAGCATCATCAGGATTCCCTTTTATCAGCATGACAAGTTCCTC TTCCTCCATGTCCAATTGTTTTGATCCATAGGATCGTTCTACACTCTCTTAACTAATATA TATTTTTACTCTATCTGATTATTGTATACAAGGATAAAATTTGATTCTTTCCTTAATGAG

>G971 Amino Acid Sequence (conserved domain in aa coordinates: 120-186) MLDLNLKIFSSYNEDQDRKVPLMISTTGEEESNSSSSSTTDSAARDAFIAFGILKRDDDL VPPPPPPHKETGDLFPVVADARRNIEFSVEDSHWLNLSSLQRNTQKMVKKSRRGPRSRS SQYRGVTFYRRTGRWESHIWDCGKQVYLGGFDTAYAAARAYDRAAIKFRGLDADINFVVD DYRHDIDKMKNLNKVEFVQTLRRESASFGRGSSKYKGLALQKCTQFKTHDQIHLFQNRGW DAAAIKYNELGKGEGAMKFGAHIKGNGHNDLELSLGISSSSESIKLTTGDYYKGINRSTM GLYGKQSSIFLPMATMKPLKTVAASSGFPFISMTSSSSSMSNCFDP* >G975 (58..657)

GTACAGACGAAGAAGTTCAGAGGTGTCAGGCAACGCCATTGGGGTTCTTGGGTCGCTGAG ATTCGTCATCCTCTTGAAACGGAGGATTTGGCTAGGGACGTTCGAGACCGCAGAGGAG GCAGCAAGAGCATACGACGAGGCCGCCGTTTTAATGAGCGGCCGCAACGCCAAAACCAAC TTTCCCCTCAACAACAACAACACCGGAGAAACTTCCGAGGGCAAAACCGATATTTCAGCT TCGTCCACAATGTCATCCTCAACATCATCTTCATCGCTCTCTTCCATCCTCAGCGCCAAA CTGAGGAAATGCTGCAAGTCTCCTTCCCCATCCCTCACCTGCCTCCGTCTTGACACAGCC AGCTCCCATATCGGCGTCTGGCAGAAACGGGCCGGTTCAAAGTCTGACTCCAGCTGGGTC ATGACGGTGGAGCTAGGTCCCGCAAGCTCCTCCCAAGAGACTACTAGTAAAGCTTCACAA GACGCTATTCTTGCTCCGACCACTGAAGTTGAAATTGGTGGCAGCAGAGAAGAAGTATTG GATGAGGAAGAAAGGTTGCTTTGCAAATGATGAGGGGGCTTCTCAATACAAACTAAATC TTATTTGCTTATATATATGTACCTATTTTCATTGCTGATTTACAGCCAAAATAATCAATT ATACCGTGTATTTTATAGATGTTTTATATTAAAAGGTTGTTAGATATA

>G975 Amino Acid Sequence (domain in AA coordinates: 4-71) MVQTKKFRGVRQRHWGSWVAEIRHPLLKRRIWLGTFETAEEAARAYDEAAVLMSGRNAKT NFPLNNNNTGETSEGKTDISASSTMSSSTSSSSLSSILSAKLRKCCKSPSPSLTCLRLDT ASSHIGVWQKRAGSKSDSSWVMTVELGPASSSQETTSKASQDAILAPTTEVEIGGSREEV LDEEEKVALQMIEELLNTN*

>G994 (180..917)

TTCTTTTTCCATTTTCCATTTATCGACCCCTTGGGTGTAGCTAATTACTTTCGCGATT TTCAAATCCAATAAAGTTTTAATTTGATGAAGCTTTTTTTAAACCATATAATAAAATAA TGGGTGGTCGTAAACCATGTTGTGATGAGGTTGGATTAAGAAAGGGTCCATGGACAGTGG ${\tt AAGAAGATGGGAAACTAGTTGATTTCTTAAGGGCACGTGGCAACTGCGGTGGTGGTGGAG}$ GAGGATGGTGCTGGAGAGACGTGCCAAAACTGGCGGGGCTAAGGAGGTGTGGCAAAAGTT ${\tt GCCGTCTCCGGTGGACTAATTATCTCCGGCCAGATCTCAAGAGAGGTCTTTTTACTGAAG}$ AAGAAATCCAACTAGTCATTGATCTTCATGCTCGCCTTGGCAATAGATGGTCGAAGATTG CAGTGGAGTTACCAGGAAGAACAGACAACGATATCAAAAATTATTGGAACACTCATATAA AGAGGAAGCTTATAAGAATGGGTATTGATCCAAACACACCATCGTCGATTTGACCAACAAA TATCTGTTGCTTTGAAGAATGACACGTCAGCAGTGTTATCAGGAAATCTAAACCAATTGG CTGACGTGGACGTGATGATCAGCCGTGGAGCTTTCTAATGGAAAATGACGAAGGAGGAG GTGGCGACGCCGGAGAGCTTACGATGCTATTGTCCGGTGACATTACGTCATCATGTT CTTCTTCGTCATCTTTGTGGATGAAGTATGGAGAATTCGGATACGAAGATTTAGAACTTG GATGTTTCGATGTTTAGAGATTCAAGTATGTTTAATTAGGCCGTAGGTTGATTAATCATA ${\tt AGGTTCATTGACTTCTAGAATTGTGTAGTTGGACCAGTATAAAGAATCAAAGTTAT}$ GAAACATTGTAATTTGATTTCCAAATTAATCTAATGAATAAATGTGCTTTGCAAAAAAA ΑΑΑΑΑΑΑΑΑΑΑΑ

>G994 Amino Acid Sequence (domain in AA coordinates: 14-123) MGGRKPCCDEVGLRKGPWTVEEDGKLVDFLRARGNCGGGGGGWCWRDVPKLAGLRRCGKS CRLRWTNYLRPDLKRGLFTEEEIQLVIDLHARLGNRWSKIAVELPGRTDNDIKNYWNTHI KRKLIRMGIDPNTHRRFDQQKVNEEETILVNDPKPLSETEVSVALKNDTSAVLSGNLNQL ADVDGDDQPWSFLMENDEGGGGDAAGELTMLLSGDITSSCSSSSSLWMKYGEFGYEDLEL GCFDV*

>G2347 (81..626)

>G2347 Amino Acid Sequence (domain in AA coordinates: 60-136)
MEGQRTQRRGYLKDKATVSNLVEEEMENGMDGEEEDGGDEDKRKKVMERVRGPSTDRVPS
RLCQVDRCTVNLTEAKQYYRRHRVCEVHAKASAATVAGVRQRFCQQCSRFHELPEFDEAK
RSCRRRLAGHNERRRKISGDSFGEGSGRRGFSGQLIQTQERNRVDRKLPMTNSSFKRPQI
R*

>G2010 (1..525)

>G2010 Amino Acid Sequence (domain in AA coordinates: 53-127)
MEGKRSQGQGYMKKKSYLVEEDMETDTDEEEEVGRDRVRGSRGSINRGGSLRLCQVDRCT
ADMKEAKLYHRRHKVCEVHAKASSVFLSGLNQRFCQQCSRFHDLQEFDEAKRSCRRRLAG
HNERRRKSSGESTYGEGSGRRGINGQVVMQNQERSRVEMTLPMPNSSFKRPOIR*