Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\left\{ \begin{array}{l} \min \ 3 \ y_1 + 12 \ y_2 + y_3 + y_4 + 4 \ y_5 + 4 \ y_6 \\ -y_1 - 4 \ y_2 + y_4 + 4 \ y_5 = 1 \\ y_1 - 3 \ y_2 + y_3 + y_4 - y_5 - y_6 = 6 \\ y \ge 0 \end{array} \right.$$

Base	Soluzione di base	Ammissibile (si/no)	Degenere
		(si/no)	(si/no)
$\{1, 2\}$	x = (-3, 0)	SI	NO
$\{3, 4\}$	y = (0, 0, 5, 1, 0, 0)	SI	NO

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso duale per il problema dell'esercizio 1.

	Base	x	y	Indice entrante	Rapporti	Indice uscente
1° iterazione	{1, 5}	$\left(\frac{7}{3}, \frac{16}{3}\right)$	$\left(\frac{25}{3},\ 0,\ 0,\ 0,\ \frac{7}{3},\ 0\right)$	3	$\frac{25}{4}$, 7	1
2° iterazione	{3, 5}	$\left(\frac{5}{4},\ 1\right)$	$\left(0,\ 0,\ \frac{25}{4},\ 0,\ \frac{1}{4},\ 0\right)$	4	5, 1	5

Esercizio 3.

variabili decisionali	modello
x_1 = milioni di Euro investiti in fondi azionari x_2 = milioni di Euro investiti in fondi bilanciati x_3 = milioni di Euro investiti in fondi monetari x_4 = milioni di Euro investiti in fondi obbligazionari	$\begin{cases} \max & 0.3 \ x_1 + 0.11 \ x_2 + 0.2 \ x_3 + 0.08 \ x_4 \\ x_1 + x_2 + x_3 + x_4 \le 14 \\ x_2 + x_4 \ge 0.35 * (x_1 + x_2 + x_3 + x_4) \\ x_1 \ge 0.5 * (x_1 + x_3) \\ 0.1 \ x_1 + 0.08 \ x_2 + 0.15 \ x_3 + 0.02 \ x_4 \le \\ 0.1 \ (x_1 + x_2 + x_3 + x_4) \\ x_i \ge 0, \ i = 1, 2, 3, 4 \end{cases}$

Esercizio 4. Completare la tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,4) (2,3) (3,5)				
(4,3) (5,7) (6,7)	(2,5)	x = (0, 0, 5, -2, 6, 6, 0, 3, 0, 6, -2)	NO	NO
(1,3) $(1,4)$ $(2,5)$				
(3,5) (3,7) (6,7)	(5,7)	$\pi = (0, 7, 7, 3, 15, 1, 10)$	NO	NO

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,3) (2,5) (3,5) (4,3) (4,6) (5,7)	(1,2) (2,5) (3,5) (4,3) (4,6) (5,7)
Archi di U	(1,4)	(1,4)
x	(0, 1, 4, 0, 4, 6, 0, 0, 2, 4, 0)	(1, 0, 4, 0, 5, 5, 0, 0, 2, 4, 0)
π	(0, 7, 7, -3, 15, 2, 24)	(0, 3, 3, -7, 11, -2, 20)
Arco entrante	(1,2)	(1,4)
ϑ^+,ϑ^-	2,1	1,0
Arco uscente	(1,3)	(4,3)

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	iter	1	iter	2	iter	. 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo visitato	1		3		2		۷ِ	Į.	Ę	,)	(;	7	7
nodo 2	12	1	12	1	12	1	12	1	12	1	12	1	12	1
nodo 3	7	1	7	1	7	1	7	1	7	1	7	1	7	1
nodo 4	17	1	17	1	17	1	17	1	17	1	17	1	17	1
nodo 5	$+\infty$	-1	22	3	19	2	19	2	19	2	19	2	19	2
nodo 6	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	20	4	20	4	20	4	20	4
nodo 7	$+\infty$	-1	25	3	25	3	25	3	25	3	23	6	23	6
$\begin{matrix} \text{insieme} \\ Q \end{matrix}$	2, 3	, 4	2, 4,	5, 7	4, 5	, 7	5, 6	5, 7	6,	7	7	7	Q	ý

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v
cammino admentante	0	J.	U
1 - 3 - 7	8	(0, 8, 0, 0, 0, 0, 8, 0, 0, 0, 0)	8
1 - 2 - 5 - 7	8	(8, 8, 0, 8, 0, 0, 8, 0, 0, 8, 0)	16
1 - 4 - 3 - 7	6	(8, 8, 6, 8, 0, 0, 14, 6, 0, 8, 0)	22

Taglio di capacità minima: $N_s = \{1, 2, 5\}$ $N_t = \{3, 4, 6, 7\}$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max 5 x_1 + 13 x_2 \\ 12 x_1 + 6 x_2 \le 41 \\ 11 x_1 + 15 x_2 \le 54 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =
$$\left(0, \frac{18}{5}\right)$$
 $v_S(P) = 46$

b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile =
$$(0,3)$$

c) Calcolare un taglio di Gomory.

$$\begin{vmatrix} r = 2 \\ r = 3 \end{vmatrix}$$
 $x_2 \le 3$ $6x_1 + 9x_2 \le 32$

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	44	22	51	21
2		13	52	25
3			10	29
4				22

a) Trovare una valutazione inferiore del valore ottimo calcolando il 4-albero di costo minimo.

4-albero:
$$(1,3)(1,5)(2,3)(3,4)(4,5)$$
 $v_I(P)=88$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 3.

ciclo:
$$3 - 4 - 5 - 1 - 2$$
 $v_S(P) = 110$

c) Applicare il metodo del Branch and Bound, utilizzando il 4-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{24} , x_{23} , x_{14} .

