

Cours

ELECTRONIQUE

Dispositifs électroniques à base de l'amplificateur opérationnel

email: nasser_baghdad @ yahoo.fr

ELECTRONIQUE

Contenu du programme

Chapitre I : Généralités sur l'amplificateur opérationnel

Chapitre II : Montages à régime linéaire indépendants de la fréquence

Chapitre III : Montages à régime linéaire dépendants de la fréquence

Chapitre IV : Montages à régime non linéaire

Chapitre V : Oscillateurs sinusoïdaux

Chapitre VI: Multivibrateurs

Chapitre VII: Convertisseurs A/N et N/A

ELECTRONIQUE

Chapitre I

Généralités sur l'amplificateur opérationnel

- I. Définition
- II. Symbole et notation
- III. Brochage
- IV. Caractéristiques de l'amplificateur opérationnel en boucle ouverte
- V. Schéma électrique équivalent de l'amplificateur opérationnel
- VI. Propriétés de de l'amplificateur opérationnel en boucle ouverte
- VII. Fonction de transfert de l'amplificateur opérationnel en boucle ouverte
- VIII. Fonctionnement linéaire et non linéaire de l'amplificateur opérationnel
- IX. Différents modes de fonctionnement
- X Hypothèses simplificatrices pour un fonctionnement en linéaire

I. Définition

- ▶ Un amplificateur opérationnel (A.O.) est un macro-composant qui contient une vingtaine de transistors (TB ou/et TEC) intégrés sur une même puce semi-conductrice de dimension de l'ordre du mm².
- ► La polarisation des transistors internes au composant AO est réalisée à l'aide de deux alimentations continues symétriques V+ = 15V et V- = 15V.
- L'amplificateur opérationnel peut être utilisé dans un grand nombre de montages pour, comme son nom l'indique, réaliser de l'amplification ou/et effectuer des <u>opérations</u> (mathématiques).

Circuit Intégré (C.I.L)

Amplificateur opérationnel

 ∞ e⁻ Masse externe

Européen

Américain

 V^+ = + 15 V : tension positive d'alimentation.

 $V^- = -15 \text{ V}$: tension négative d'alimentation.

e+: borne d'entrée non inverseuse.

e⁻: borne d'entrée inverseuse.

I⁺ : courant de l'entrée non inverseuse

l': courant de l'entrée inverseuse

 $\varepsilon = e^+ - e^-$: tension différentielle d'entrée

s: borne de sortie.

$$s = G_0 \cdot \epsilon$$

$$G_0 \approx 10^5$$

- \blacksquare G_0 : amplification en tension statique en boucle ouverte (ou gain continu) (ou gain en tension différentielle statique).
- Le triangle « ➤ » est le symbole de l'amplification et rappelle qu'il s'agit d'un composant unidirectionnel
- Le symbole « [∞] » qui se trouve à l'intérieur du schéma du composant signifie que l'on peut idéaliser la caractéristique de transfert de l'AO.

- ▶ Dans le <u>symbole simplifié</u> de l'amplificateur opérationnel (l'alimentation n'est pas toujours représentée car elle n'intervient pas dans le calcul, mais elle est indispensable en pratique).
- ► L'AO ne possède pas de masse propre à lui, la masse externe sera donc ôtée du symbole.
- ► L'AO sera considéré tout le temps idéal, donc l+ = l- = 0, les courants des entrées seront retirés du symbole.
- Si l'on s'intéressera à l'utilisation de l'AO en fonctionnement linéaire, donc $\varepsilon = 0$ et $e^+ = e^-$, la tension différentielle sera donc retirée du symbole.

III. Brochage

■ Il possède 8 bornes (ou 8 broches) mais 5 bornes sont généralement utilisées :

■ La masse des alimentations symétriques est la référence de tous les potentiels

Électronique

IV. Caractéristiques de l'amplificateur opérationnel en boucle ouverte

Amplificateur réel (AOR) en BO

- Résistance d'entrée différentielle <u>très élevée</u> : R_E ≥ 1 MΩ
- Résistance de sortie <u>très faible</u> : R_S ≤ 50 Ω
- Gain en tension différentielle statique (ou gain continu) très élevé : $G_0 \approx 10^5$

Amplificateur idéal (AOI) en BO

- Résistance d'entrée différentielle : $R_F \approx \infty$ ===> $I^- = I^+ = 0$
- Résistance de sortie : $R_s \approx 0 \Omega$
- Gain différentielle statique : G₀ ≈ ∞

V. Schéma électrique équivalent de l'amplificateur opérationnel

Amplificateur idéal (AOI) en BO

VI. Propriétés de de l'amplificateur opérationnel en boucle ouverte

AOR en BO

■ L'amplification en tension (ou gain en boucle ouverte) dépend de la fréquence.

$$\underline{\underline{G}}(\omega) = \frac{\underline{s}}{\underline{\underline{\varepsilon}}} = \frac{G_0}{1 + j\frac{\omega}{\omega_c}} = \frac{G_0}{1 + j\frac{f}{f_c}}$$

$$\begin{cases} pulsation \ de \ coupure \ \omega_c = qcq \ 10 \ rad \ / s \\ f_c = qcq \ 100Hz \implies dispositif \ TBF \\ f = 0 \implies G = G_0 = 10^5 \quad soit \quad 100dB \end{cases}$$

- L'AOR en BO se comporte comme un filtre passe-bas actif du 1er ordre
- La bande passante BP ou la bande d'utilisation de l'AOR va de 0 à f_c.
- Comme f_c = à qcq 100 Hz alors l'AO en BO est un dispositif TBF (de 0 à 30 kHz)

AO en BO est un dispositif TBF

VII. Fonction de transfert de l'AO en boucle Ouverte : $s = f(\epsilon)$

$$\begin{vmatrix}
e^{-} = 0 \\
e^{+} = v_{e}
\end{vmatrix} \implies \varepsilon = e^{+} - e^{-} = +v_{e}$$

$$s = +G_{0} \cdot v_{e}$$

► La fonction de transfert $s = f(\epsilon)$ est fournie en fonctionnement de l'AO en BO

On distingue trois zones de fonctionnement :

- Zone 1 : $s = G_0 \epsilon$
- Zone 2 : s = + V_{sat}
- Zone 3 : s = V_{sat}

Dans le domaine <u>linéaire</u> :

$$s = G_0 \ \varepsilon$$
 avec $G_0 = \frac{s}{\varepsilon} = \frac{\Delta s}{\Delta \varepsilon} = \frac{2 \cdot V_{sat}}{2 \cdot \varepsilon_m} = \frac{13.5 \ V}{13.10^{-5} V} \approx 10^5$

AOI en BO : $G_0 \rightarrow \infty$

► On constate que la tension différentielle ε est très faible aux autres tensions du circuit (de l'ordre du 1/10 du mvolt, le plus souvent) ; on pourra ainsi considérer, dans la zone linéaire, que $\varepsilon = 0$ (ce qui revient à un gain infini) :

Si
$$\varepsilon = 0$$
 <====> $e^+ = e^-$ alors FL

VIII. Fonctionnement linéaire et non linéaire de l'AO

Fonctionnement non linéaire

Signal de sortie s a la même forme que celui de l'entée e

Fonctionnement linéaire

Signal de sortie s n'a pas la même forme que celui de l'entée e ou complètement déformé

AOI en BO

AOI en contre réaction $\Rightarrow \varepsilon = 0$

 $-V_{sat} < s < +V_{sat}$

Autrement

 $G <<< G_0$ et $B >>> B_0$

 $\begin{vmatrix}
e^{-} = s \\
e^{+} = v_{e}
\end{vmatrix} \implies \varepsilon = 0 \Leftrightarrow e^{+} = e^{-}$ $s = v_{\rho}$ AOI en CR

 $s = v_e$

- V_{sat}

IX. Différents modes de fonctionnement

Il existe 4 façons de faire fonctionner l' AO :

Boucle ouverte ou Réaction positive :

Fonctionnement en régime <u>saturé</u> (ou non linéaire)

si
$$e^+ > e^-$$
 alors $s = + V_{sat}$
si $e^+ < e^-$ alors $s = - V_{sat}$

Réaction négative (ou contre réaction) :

Fonctionnement en régime <u>linéaire</u>

$$\varepsilon = 0$$
 $e^+ = e^-$ et $-V_{sat} < s < +V_{sat}$

La contre réaction : diminue le gain en tension et augmente la bande passante

X. Hypothèses simplificatrices pour un fonctionnement en linéaire

Résistance d'entrée infinie (AOI) ====>
$$I^+ = I^- = 0$$

Contre réaction ====> $\epsilon = 0$ <====> $e^+ = e^-$

Circuit de contre réaction peut être un fil, un dipôle ou un quadripôle

Récapitulation de l'essentiel des résultats

L'AO en BO est un dispositif TBF

Le fonctionnement de l'AO en BO est non linéaire

1ère hypothèse simplificatrice

 $AOI ===> I^+ = I^- = 0 car R_e \sim \infty$

2ème hypothèse simplificatrice

Contre réaction ====> $\epsilon = 0$ <====> $e^+ = e^-$ alors Fl

La contre réaction augmente la bande d'utilisation de l'AO

ELECTRONIQUE

Fin du chapitre I

Généralités sur l'amplificateur opérationnel