

Predicting Cab Booking Cancellations

- ✓ Problem Statement
- ✓ Data Source and Features
- ✓ Feature Engineering and Exploratory Data Analysis
- ✓ Machine learning
- ✓ Inference

Problem Statement

Customers can cancel the booking up to the last minute of pick up at no cost to them

Cancelled booking dents the revenue of the company and adds operational overheads

Use the Data collected over time to predict the probability of booking cancellation

Problem Analysis

Classification Task – Classify the Cancellation feature into :

√ '0' (Not Cancelled)

or

√ '1' Cancelled

- ✓ Problem Statement
- ✓ Data Source and Features
- ✓ Feature Engineering and Exploratory Data Analysis
- ✓ Machine learning
- ✓ Inference

Dataset

Training Data-

- ✓ 43 K records
- √ 18 Features

Uneven Classes

✓ Approx 7% of the total bookings are actually Cancelled(Training Data)

Source:- https://inclass.kaggle.com/c/predicting-cab-booking-cancellations/data

Features at a Glance

✓ Vehicle attributes

- ✓ Booking attributes including-
 - Online
 - GPS data
 - Mobile
 - Travel Type
 - Source
 - Destination

Features at a Glance(Contd..)

- ✓ Problem Statement
- ✓ Data Source and Features
- ✓ Feature Engineering and Exploratory Data Analysis
- ✓ Machine learning
- ✓ Inference

(GPS Data)

Booking Coordinates (Latitude ,longitude of source & Destination) New feature 'Distance'

Implementation

- df['distance'] = 6367 * 2 * np.arcsin(np.sqrt(np.sin(np.radians(df['to_lat']) math.radians(37.2175900)/2)**2 + math.cos(math.radians(37.2175900)) * np.cos(np.radians(df['to_lat']) * np.sin(np.radians(df['from_long']) math.radians(-56.7213600)/2)**2)))
- df['distance']=df.distance/1000
- df.distance = df.distance.apply(replace_null)

(Area information)

- Data set has features from_area_id and to_area_id that depicts the location of the origin and destination
- 599 unique values for feature- 'Area_id'

- Majority of the bookings cater to a few of the areas as is evident from the density function
- New feature 'Popular_Pickup'=0 if area_id of the booking is not from the popular_area and 1 otherwise
- New feature 'Popular_Drop'=0 if area_id of the booking is not from the popular_area and 1 otherwise

(Fleet Analysis)

- Creating new_feature- vehicle_category
- cat_1 = vehicle_cat_df.vehicle_count.max()
- cat_2 = round(vehicle_cat_df.vehicle_count.quantile(.75))
- cat_3 = round(vehicle_cat_df.vehicle_count.quantile(.5))
- cat_4 = round(vehicle_cat_df.vehicle_count.quantile(.25))

(User segmentation)

Distribution of User_id

User_id - Id of the user requesting the service

New Feature – is_frequent

- ✓ Is_frequent = 1 (returning user)
- ✓ Is_frequent = 0 (one time user)

(Summary)

Stratified Sampling

- Uneven Data Set-less than 7% of the booking are cancelled
- Creating a balanced data set with equal distribution of dependent variable
- y_0 = df[df.Car_Cancellation == 0]
- y_1 = df[df.Car_Cancellation == 1]
- n = min([len(y_0), len(y_1)])
- y 0 = y 0.sample(n = n, random state = 0)
- y_1 = y_1.sample(n = n, random_state = 0)df_strat = pd.concat([y_0, y_1])
- X_strat = df_strat[['online_booking','distance','mobile_site_booking','vehicle_type','frequent_user','Req_start_Month','Creation_Month','Popular_Pickup']]y_strat = df_strat.Car_Cancellation

- ✓ Problem Statement
- ✓ Data Source and Features
- ✓ Feature Engineering and Exploratory Data Analysis
- ✓ Machine learning
- ✓ Inference

Modelling-Stats Model

(Kitchen Sink Strategy)

Output of Stats Model

	coef	std err	z	P> z	[95.0% Conf. Int.]
const	-908.5756	4799.228	-0.189	0.850	-1.03e+04 8497.738
online_booking	1.2302	0.047	26.333	0.000	1.139 1.322
distance	63.2429	2.440	25.923	0.000	58.461 68.024
mobile_site_booking	1.3237	0.080	16.562	0.000	1.167 1.480
vehicle_type	-0.8444	0.056	-15.117	0.000	-0.954 -0.735
travel_type_id	12.8902	2399.554	0.005	0.996	-4690.149 4715.929
frequent_user	-0.7271	0.043	-16.901	0.000	-0.811 -0.643
Req_start_Month	0.7830	0.077	10.134	0.000	0.632 0.934
Creation_Month	-0.5925	0.078	-7.583	0.000	-0.746 -0.439
Popular_Pickup	-0.3916	0.049	-7.946	0.000	-0.488 -0.295
Popular_Drop	-0.1377	0.048	-2.867	0.004	-0.232 -0.044

- Kitchen Sink strategy on the Data set further reduces the features
- Travel_type_id gets eliminated from further analysis due to the higher p value

(Logistic Regression)

• 69% Accuracy on the Training Data

Cross Validation

• 69% mean Accuracy on the CV Data(10 folds)

Test Data

model.score(test_X_strat,test_y_strat)

0.6999999999999996

(Decision Trees)

Training

model_tree.score(train_X_strat, train_y_strat)

0.96877189424135701

97 % Accuracy on the Training Data

68.2% mean Accuracy on the CV Data(10 folds)

Test Data

model_tree.score(test_X_strat , test_y_strat)

-0.20076622358025387

0.67927927927922

(Random Forests - no of trees=10000)

Training

model_forest.score(train_X_strat, train_y_strat)

0.98626126126126124

98 % Accuracy on the Training Data

Cross Validation

79% mean Accuracy on the CV Data(10 folds)

Test Data

model_forest.score(test_X_strat, test_y_strat)

0.71621621621621623

(Random Forests-Feature Importance & Co-relation)

Feature	%age	Co-Relation with the dependent variable
distance	62.4	0.261690
Creation_Month	10.4	0.262376
Req_start_Month	9.1	0.262179
online_booking	6.2	0.255332
frequent_user	4.1	-0.158572
vehicle_type	3.3	-0.154804
mobile_site_booking	2.2	0.104083
Popular_Pickup	1.9	-0.056936
Total	96	

- ✓ Problem Statement
- ✓ Data Source and Features
- ✓ Feature Engineering and Exploratory Data Analysis
- ✓ Machine learning
- ✓ Inference

Model Accuracy (Random Forest on Test set)

Appears that the Maximum number of misclassifications are occurring in Apr, May

Interpretation

Appears that the chances for the cancellation is maximum in Jul when the mean travel distance is between 13 -14 KMs

Questions/Feedback

