EPITA

Mathématiques S2

Contrôle de mi-semestre

Mars 2021

Durée : 3 heures

Nom:
Prénom :
Classe:
NOTE:
Le barème indiqué est sur 30 points qui seront ramenés à 20 par une règle de trois.
Consignes:
 Documents et calculatrices interdits. Répondre directement sur les feuilles jointes, dans les espaces prévus. Aucune autre feuille ne sera corrigée.

— Ne pas écrire au crayon de papier.

Exercice 1 (4 points)

Résoudre les équations différentielles suivantes :

a. (E_1) $(t+3)y'+y=\frac{1}{2\sqrt{t}}$ sur \mathbb{R}_+^* en cherchant une solution particulière grâce à une variation de la constante.

b. (E_2) $y' + y = \cos(t) + 2\sin(t)$ sur \mathbb{R} en cherchant une solution particulière de la forme $y_p = a\cos(t) + b\sin(t)$ $(a,b) \in \mathbb{R}^2$.

Exercice 2 (3 points)

a. Montrer, en rédigeant soigneusement votre réponse, que l'équation (E): $x^3 - 3x + 6 = 0$ admet une solution sur l'intervalle]-3,3[.

b. Établir le tableau de variation de $f(x) = x^3 - 3x + 6$ sur [-3, 3].

En déduire que cette racine est unique et en donner un encadrement entre deux entiers consécutifs.

Exercice 3 (6 points)

1. Déterminer le développement limité à l'ordre 2 en zéro de $f(x)=e^x\left(1+x\right)^{-\frac{1}{2}}$

2. Déterminer le développement limité à l'ordre 4 en zéro de $g(x) = \ln(1 + \cos(x))$.

3. Calculer $\lim_{x\to +\infty} \left(1+2\sin\left(\frac{1}{x}\right)\right)^x$ en détaillant chaque étape de calcul.

Exercice 4 (4 points)

a. Soit $E = \mathbb{R}^2$. Les ensembles suivants sont-ils des sous-espaces vectoriels de E? Justifiez vos réponses par une démonstration en cas de réponse positive, en montrant précisément ce qui ne marche pas sinon.

A: Le singleton $A = \{O_E\}$

 $B: \text{Demi-plan } y \geqslant 0: B = \{(x, y) \in \mathbb{R}^2, y \geqslant 0\}$

C: Droite $C = \{(x, y) \in \mathbb{R}^2, x - 2y = 0\}$

D: Droite $D=\left\{(x,y)\in\mathbb{R}^2, x-2y=1\right\}$

b. Citer, sans démonstration, les sous-espaces vectoriels de $\mathbb{R}^2.$

Exercice 5 (3 points)

On pose $E = \mathbb{R}^3$ et $F = \{(a, b, 0); (a, b) \in \mathbb{R}^2\}$, $G = \{(c, c, c), c \in \mathbb{R}\}$, deux sous-espaces vectoriels de E. Rappeler à quelles conditions F et G sont supplémentaires dans E puis montrer que $F \oplus G = E$.

Exercice 6 (3 points)

Soit $\mathcal{F} = \{u = (1, 1, 0); v = (0, 1, 1); w = (1, 0, 1)\}$ une famille de vecteurs de \mathbb{R}^3 .

a. Montrer que \mathcal{F} est une base de \mathbb{R}^3 .

Exercice 7 (3 points)

On considère l'espace vectoriel $E=\mathbb{R}^4$. Soient F et G les deux sous-espaces vectoriels de E définis par : $F=\left\{(x,y,z,t)\in\mathbb{R}^4,\ y-z=0\ \text{et}\ x+y-z=0\right\}$ et $G=\mathrm{Vect}\left(\{(1,-1,0,1);(-2,2,0,-2)\}\right)$

a. Écrire F sous forme de Vect.

Exercice 8 (4 points)

Pour chacune des familles de vecteurs suivantes, montrer si la famille est libre ou liée.

$$\mathcal{F}_1 = \left\{ P, Q, R \right\} \text{ dans } \mathbb{R}[X] \text{ où } : P(X) = -X^3 + X^2 + 2X - 2; \ Q(X) = 2X^3 - X + 3, \ \ R(X) = 2X^2 + 3X - 1,$$

