IE1204 Digital Design

L8: Memory Elements: Latches and Flip-Flops. Counter

Elena Dubrova KTH / ICT / ES dubrova@kth.se

This lecture

• BV pp. 383-418, 469-471

Sequential System

A sequential system has a built-in memory - the output depends therefore BOTH on the current and previous value(s) of the input signal

Lecture 8 - Lecture 13

How do we get the hardware to remember something?

- To remember something, we have to somehow retain the information
- One way is to store information in the form of a charge on a capacitance (DRAM)
- Another way is to let the information "run around in a circle and bit its own tail"

SR-latch (NOR)

- SR-latch can be implemented with NOR gates
- SET and RESET inputs are active high
- SET and RESET should not be active at the same time!

SR-latch (NAND)

- SR-latch can also be implemented with NAND gates
- SET and RESET inputs are active low

Construction of clocked latch

 To ensure that the state can only be changed at certain points in time, a special Clock signal is used

Gated SR-Latch

CI	k S	R	Q(t+1)
0	X	X	Q(t) (no change)
1	0	0	Q(t) (no change)
1	0	1	0
1	1	0	1
1	1	1	$ \mathbf{x}\rangle$

"Prohibited location"

Gated D-Latch

CI	k D	Q(t+1)
0	Χ	Q(t)
1	0	0
1	1	1

Setup & Hold Time

How do we create a sequence?

 We get a sequence if we take a value and then determine the next value based on the current value.

```
Ex: 0,1,0,1, ...
the next value = NOT (present value)
```

 We need to process (invert) the current value and then remember it until the next value is calculated

Sequential machines (cont.)

Problems !!! If CLK is 1 for a long time, values with a period of T_{latch} + T_{NOT} just spin around We want to design a storage element which changes its state no more than once during one clock cycle

Master-slave D-flip flop

Timing Chart Master-slave

Positive edge-triggered D flip-flop

Positive edge-triggered D flip-flop

Flip-Flops with Clear and Preset inputs

- It is important for the design sequential circuits to be able to set flip-flops to predetermined values
 - Preset: Sets the flip-flop to 1
 - Clear: Sets the flip-flop to 0

Asynchronous reset

 An asynchronous reset (clear) means that the flip-flop will change its state to 0 immediately after the reset is active

Synchronous reset

- A synchronous reset causes the flip-flop to take state 0 at the next clock edge
- Synchronous reset is implemented with an additional logic

Other common types of flip-flops

JK flip-flop (by Jack Kilby - Nobel Prize 2000)

				•	
	Clk	J	K	Q	Q
Ī	\downarrow	0	0	Q(t)	Q(t)
	\downarrow	0	1	0	1
	\downarrow	1	0	1	0
	\downarrow	1	1	$\overline{Q(t)}$	$\overline{Q(t)}$

T-flip-flop (T = Toggle)

Clk	Т	Q	Q
\downarrow	0	Q(t)	Q(t)
\	1	$\overline{Q(t)}$	$\overline{Q(t)}$

Construction of new flip-flops

 One can construct new flip-flops based on the existing types

Construction of the T flip-flop with D flip-flop

 One can construct the new flip-flops based on an existing type

$$\begin{array}{c|c} Clk T & Q(t+1) \\ \uparrow & 0 & \underline{Q}(t) \\ \uparrow & 1 & Q(t) \end{array}$$

Toggles at each positive edge of clock

Timing Analysis

- It is possible to determine the maximum frequency in a sequential circuit by having information about
 - Gate delays t_{logic}
 - Setup time t_{su} of flip-flops
 - Hold time t_h of flip-flops
 - Clock-to-output t_{cQ} time

Setup & Hold Time

D must be stable within t_{hold} this area to ensure correct operation t_{setup} Q Clk t_{clk-to-Q}

What is the maximum frequency?

Gate delays

$$-t_{logic} = t_{NOT} = 1.1 \text{ ns}$$

- Setup time
 - $t_{su} = 0.6 \text{ ns}$
- Hold time

$$- t_h = 0.4 \text{ ns}$$

- Clock-to-output
 - $t_{cQ} = 1.0 \text{ ns}$

$$T = t_{su} + max(t_h, t_{cQ}) + t_{logic} = 2.7 \text{ ns}$$

$$F = 1/T = 370 \text{ MHz}$$

Shift Register

- A shift register contains several flip-flops
- For each clock cycle, we shift all values from left to right
- Many designs use shift registers and values
 Q₄, ..., Q₁ as input to other components

Asynchronous counter

- One can realize a counter with flip-flops
- The examples below show an asynchronous counter
- Some clock inputs are coupled to the Q output of the previous flip-flop

Asynchronous 3-bit counter

Toggles at each positive edge of clock

Synchronous counter

 In a synchronous counter clock inputs of flip-flops are connected to the same clock signal

Synchronous counter

What is the maximum frequency?

- The critical path determines the maximum frequency!
- This is the longest combinational path from Q₀ through the two AND gates to the input of flipflop that computes Q₃
 - t_{logic} thus is equivalent to the delay of two AND gates

Summary

- Memory Elements
 - Latches
 - Flip-Flops
- Shift registers
- Counters
- Next lecture: BV pp. 485-507