Amendm nts to the claims:

1-17 (cancelled)

18. (currently amended) A process for the production of a compound of general formula I:

wherein

A represents CH or N;

R¹ represents H, lower alkyl (which alkyl group is optionally interrupted by O), Het, alkylHet, aryl or alkylaryl, which latter five groups are all optionally substituted (and/or, in the case of lower alkyl, optionally terminated) by one or more substituents selected from halo, cyano, nitro, lower alkyl, OR⁵, C(O)R⁶, C(O)OR⁷, C(O)NR⁸R⁹, NR^{10a}R^{10b} and SO₂NR^{11a}R^{11b};

R² and R⁴ independently represent lower alkyl;

R³ represents lower alkyl, which alkyl group is optionally interrupted by oxygen;

Het represents an optionally substituted four- to twelve-membered heterocyclic group,
which group contains one or more heteroatoms selected from nitrogen, oxygen and
sulfur;

R⁵, R⁶, R⁷, R⁸, R⁹, R^{11a} and R^{11b} independently represent H or lower alkyl;

R^{10a} and R^{10b} either independently represent, H or lower alkyl or, together with the nitrogen atom to which they are attached, represent azetidinyl, pyrollidinyl or piperidinyl,

which process comprises the dehydrogenation of a compound of general formula II,

wherein A, R¹, R², R³ and R⁴ are as defined above; and

€.

A process as claimed in any one of the preceding claims, wherein the compound of general formula II is prepared by reaction of a compound of formula III,

wherein A, R³-and R⁴-are as defined in any one of Claims 1 and 6 to 10 (as appropriate), with a compound of general formula IV,

$$H_2N$$
 N
 R^2
 R^2

IV

wherein R¹ and R² are as defined in any one of Claims 1 to 5 and 10.

19. (original) A process as claimed in Claim 18, wherein the compound of general formula I is formed in a "one pot" procedure, in which a compound of formula III is

reacted with a compound of general formula IV, after which the dehydrogenation reaction is performed directly on the intermediate compound of general formula II, formed *in situ*.

ζ.

20. (currently amended) A process as claimed in Claim 18 or Claim 19, wherein, in the compound of formula III, A represents CH, and that compound is prepared by oxidation of a compound of formula VI,

wherein R³ and R⁴ are as defined in any one of Claims 1 and 6 to 10 (as appropriate).

21. (currently amended) A process as claimed in Claim 20, wherein the compound of formula VI is prepared by reduction of a corresponding carboxylic acid of formula VII,

wherein R³ and R⁴ are as defined in any one of Claims 1 and 6 to 10 (as appropriate).

22. (currently amended) A process as claimed in Claim 20, wherein the compound of formula VI is prepared by esterification of a compound of formula VII as defined in Claim 21 to form a compound of formula VIIIA,

wherein R^a represents lower alkyl and R³ and R⁴ are as defined in any one of Claims 1 and 6 to 10 (as appropriate) claim 18, followed by reduction of the ester of formula VIIIA.

23. (currently amended) A process as claimed in Claim 18 or Claim 19, wherein, in the compound of formula III, A represents N, and that compound is prepared by reduction of a corresponding compound of formula VIIIB,

wherein R^a is as defined in Claim 22, and R³ and R⁴ are as defined in Claim 18 any one of Claims 1 and 6 to 10 (as appropriate).

- 24. (currently amended) A compound of general formula II as defined in Claim 1 Claim 18.
- 25. (original) A compound of formula III, as defined in Claim 18.
- 26. (original) A compound of general formula VI, as defined in Claim 20.

- 27. (original) A compound of formula VIIIA, as defined in Claim 22.
- 28. (original) A process for the production of compounds of general formula I:

wherein

A represents CH or N;

R¹ represents H, lower alkyl (which alkyl group is optionally interrupted by O), Het, alkylHet, aryl or alkylaryl, which latter five groups are all optionally substituted (and/or, in the case of lower alkyl, optionally terminated) by one or more substituents selected from halo, cyano, nitro, lower alkyl, OR⁵, C(O)R⁶, C(O)OR⁷, C(O)NR⁸R⁹, NR^{10a}R^{10b} and SO₂NR^{11a}R^{11b};

R² and R⁴ independently represent lower alkyl;

R³ represents lower alkyl, which alkyl group is optionally interrupted by oxygen; Het represents an optionally substituted four- to twelve-membered heterocyclic group, which group contains one or more heteroatoms selected from nitrogen, oxygen and sulfur;

R⁵, R⁶, R⁷, R⁸, R⁹, R^{11a} and R^{11b} independently represent H or lower alkyl; R^{10a} and R^{10b} either independently represent, H or lower alkyl or, together with the nitrogen atom to which they are attached, represent azetidinyl, pyrollidinyl or piperidinyl;

with the proviso that the compound of formula I is not sildenafil; which process comprises the dehydrogenation of a compound of general formula II,

wherein A, R¹, R², R³ and R⁴ are as defined above.

29. (original) A process for the production of compounds of general formula I:

wherein

A represents CH;

R¹ represents H, lower alkyl (which alkyl group is optionally interrupted by O), Het, alkylHet, aryl or alkylaryl, which latter five groups are all optionally substituted (and/or, in the case of lower alkyl, optionally terminated) by one or more substituents selected from halo, cyano, nitro, lower alkyl, OR⁵, C(O)R⁶, C(O)OR⁷, C(O)NR⁸R⁹, NR^{10a}R^{10b} and SO₂NR^{11a}R^{11b};

R² and R⁴ independently represent lower alkyl;

R³ represents lower alkyl, which alkyl group is optionally interrupted by oxygen;

Het represents an optionally substituted four- to twelve-membered heterocyclic group, which group contains one or more heteroatoms selected from nitrogen, oxygen and sulfur;

R⁵, R⁶, R⁷, R⁸, R⁹, R^{11a} and R^{11b} independently represent H or lower alkyl; R^{10a} and R^{10b} either independently represent, H or lower alkyl or, together with the nitrogen atom to which they are attached, represent azetidinyl, pyrollidinyl or piperidinyl;

with the proviso that the compound of formula I is not sildenafil; which process comprises the dehydrogenation of a compound of general formula II,

wherein A, R^1 , R^2 , R^3 and R^4 are as defined above.

30. (original) A process for the production of compounds of general formula I:

wherein

A represents N;

R¹ represents H, lower alkyl (which alkyl group is optionally interrupted by O), Het, alkylHet, aryl or alkylaryl, which latter five groups are all optionally substituted (and/or, in the case of lower alkyl, optionally terminated) by one or more substituents selected from halo, cyano, nitro, lower alkyl, OR⁵, C(O)R⁶, C(O)OR⁷, C(O)NR⁸R⁹, NR^{10a}R^{10b} and SO₂NR^{11a}R^{11b}:

R² and R⁴ independently represent lower alkyl;

R³ represents lower alkyl, which alkyl group is optionally interrupted by oxygen; Het represents an optionally substituted four- to twelve-membered heterocyclic group, which group contains one or more heteroatoms selected from nitrogen, oxygen and sulfur;

R⁵, R⁶, R⁷, R⁸, R⁹, R^{11a} and R^{11b} independently represent H or lower alkyl; R^{10a} and R^{10b} either independently represent, H or lower alkyl or, together with the nitrogen atom to which they are attached, represent azetidinyl, pyrollidinyl or piperidinyl,

which process comprises the dehydrogenation of a compound of general formula II,

wherein A, R¹, R², R³ and R⁴ are as defined above.