Math 210B H.W. 6

- I) let P be a projective module over R a PID. Then $\exists F$ free such that $F = P \oplus Q$. This allow us to identify $P \subset F$ a submodule. Since F is fg, on a PID, P is free as well.
- 2) We write R=Z[i] which is a free R-module on itself with basis $\{13.$ similarly, SR is generally $\{5\}$ and $S=5\cdot 1$.: $A=\int 5$

. The inecians factor is {5R3 which is also the only elementary divisor.

3) lot M be fin gen p-primary i.e. pⁿ M=0 for some n>0 ∴it is a field once R/P.

Consider M/pM and pM as vector spaces one R/p. we need to show that they are isomorphic.

PM={m & M: pm = 0} M/pM = {m+pM}

Consider the map $_{\rho}M \longrightarrow M/_{\rho}M$ $m \longmapsto m+_{\rho}M$.

Jut m ∈ρM ∴ m = ρm' but ρm = 0

.. ρ2m'=0

: m'=0, m=0 trivial beanel.

The map is subjective as $\rho(m+\rho M) = \rho m+\rho M = \rho M=0$. .: every such element $m+\rho M$ is bitted by ρ . as the two years spaces are iso, $\dim_R(M/\rho M) = \dim_R(\rho M)$.

u) let $\{(1,0,0), (0,1,0), (0,0,1)\}$ be a basis for \mathbb{Z}^3 . The matrix A is given by: $\begin{pmatrix} -4 & 16 & 8 \\ 4 & -4 & 4 \\ 2 & -8 & 2 \end{pmatrix} \longrightarrow \begin{pmatrix} 2 & -8 & 2 \\ 4 & -4 & 4 \\ -4 & 16 & 8 \end{pmatrix}$

$$\longrightarrow \begin{pmatrix} 2 & -8 & 2 \\ 4 & -4 & 4 \\ -4 & 16 & 8 \end{pmatrix} \longrightarrow \begin{pmatrix} 2 & -8 & 2 \\ 0 & 12 & 0 \\ 0 & 0 & 12 \end{pmatrix} \longrightarrow \begin{pmatrix} 2 & 4 & 2 \\ 0 & 12 & 0 \\ 0 & 0 & 12 \end{pmatrix} \sim \begin{pmatrix} 2 & 0 & 0 \\ 0 & 12 & 0 \\ 0 & 0 & 12 \end{pmatrix}$$

3) Let
$$A = \begin{pmatrix} -2 & 0 & 0 \\ -1 & -4 & -1 \\ 2 & 4 & 0 \end{pmatrix}$$
 $x \cdot I_3 - A = \begin{pmatrix} x+2 & 0 & 0 \\ 1 & x+4 & 1 \\ -2 & -4 & x \end{pmatrix} \rightarrow \begin{pmatrix} x+2 & 0 & 0 \\ 0 & x+4 & 1 \\ 0 & -4 & x \end{pmatrix} \rightarrow \begin{pmatrix} x+2 & 0 & 0 \\ 0 & x+4 & 1 \\ 0 & -(x+2)^2 & 0 \end{pmatrix}$

So
$$RCF(A) = \begin{pmatrix} -2 & 0 & 0 \\ 0 & 0 & -4 \\ 0 & 1 & -4 \end{pmatrix}$$

- 6) The issue here is that $\mathbb{Z}/n\mathbb{Z}$ is not a PID. Noveme, we have the suggestion $\mathbb{Z} \longrightarrow \mathbb{Z}/n\mathbb{Z}$ so we can pullarly each such module to a \mathbb{Z} -module. We can then apply its classification to all $\mathbb{Z}(n\mathbb{Z})$ -modules
- 7) again, we can put back via the localization homomorphism $T \longrightarrow S^{-}T$ and closests all such modules.
- e) a => b => c are all bank exercises in linear algebra. If (A) is

diagonal it is in RCF, so each ED is a linear pily: all invariant factory are product of history linear pays. Also $m_A = f_R$. This shows $(a) \Rightarrow (a) \Rightarrow (e) \Rightarrow (f)$. Now, if m_A is a product of history living, then all invariant factor must be :: elementary history must all be linear :: $\exists R$ s.t. CAR is diagonal II

- 9) Let A s.t $A^N=0$ for some N70. Then m_A/x^N ... $f_k=m_A=x^k$ for some power of $k \leq N$.

 ... Each filth = some x^{m_i} .

 ... The invariant factor of A are powers of x.

 Trustness we cannot from $deg(f_k=m_A)$? n since $Edeg(f_i)=dim(V)=n$.

 ... $deg(m_A) \leq n$, so m_A/x^n ... $A^N=0$.
- 10) We need to show that A~J~J^T~A^T

 over algebraically closed field.

 Then, A~B over K'

 iff A~B over K' (entersion)

 which is true since similar ⇔ same RCF,

 bestit charge with field K. (as we saw in lecture)