Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»
КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»
Лабораторная работа № 2
Тема Программно-алгоритмическая реализация метода Рунге-Кутта 4-го порядка точности при решении системы ОДУ в задаче Коши.
Студент Жигалкин Д.Р.
Группа <u>ИУ7-65Б</u>
Оценка (баллы)
Преподаватель Градов В М

Цель работы. Получение навыков разработки алгоритмов решения задачи Коши при реализации моделей, построенных на системе ОДУ, с использованием метода Рунге-Кутта 4-го порядка точности.

Исходные данные. Задана система электротехнических уравнений, описывающих разрядный контур, включающий постоянное активное сопротивление R_k , нелинейное сопротивление $R_p(I)$, зависящее от тока I, индуктивность L_k и емкость C_k .

$$\begin{cases} \frac{dI}{dT} = \frac{U - \left(R_k + R_p(I)\right)I}{L_k} \\ \frac{dU}{dt} = -\frac{I}{C_k} \end{cases}$$

Начальные условия: t = 0, $I = I_0$, $U = U_0$.

Здесь I, U- ток и напряжение на конденсаторе. Сопротивление R_p рассчитать по формуле.

$$R_p = \frac{l_p}{2\pi R^2 \int_0^1 \sigma(T(z)) z dz}.$$

Для функции T(z) применить выражение $T(z) = T_0 + (T_w - T_0)z^m$.

Параметры T_0 , m находятся интерполяцией из табл.1 при известном токе I. Коэффициент электропроводности $\sigma(T)$ зависит от T и рассчитывается интерполяцией из табл.2.

Таблица 1.

I, A To, K m 0.5 6730 0.50 6790 0.55 5 7150 1.7 10 7270 50 8010 11 9185 32 200 400 10010 40 11140 41 800 12010 39 1200

Таблица 2.

T, K	σ, 1/Ом см
4000	0.031
5000	0.27
6000	2.05
7000	6.06
8000	12.0
9000	19.9
10000	29.6
11000	41.1
12000	54.1
13000	67.7
14000	81.5

Параметры разрядного контура:

$$R = 0.35 \text{ cm}$$

$$l_{9}=12$$
 cm

$$L_k$$
=187 10^{-6} Гн

$$C_k = 268 \ 10^{-6} \ \Phi$$

$$R_k = 0.25 \text{ Om}$$

$$U_{co} = 1400 \text{ B}$$

$$I_0 = 0..3 A$$

$$T_w$$
=2000 K

Теоретические сведения:

Метод Рунге-Кутты 4-го порядка точности.

Дана система уравнений вида

$$\begin{cases} u'(x) = f(x, u, v) \\ v'(x) = \varphi(x, u, v) \\ u(\xi) = \eta_1 \\ v(\xi) = \eta_2 \end{cases}$$

Тогда

$$y_{n+1} = y_n + \frac{k_1 + 2k_2 + 2k_3 + k_4}{6}$$

$$z_{n+1}=z_n+rac{g_1+2g_2+2g_3+g_4}{6},$$
 где

$$k_{1} = h_{n} f(x_{n}, y_{n}, z_{n})$$

$$g_{1} = h_{n} \varphi(x_{n}, y_{n}, z_{n})$$

$$k_{2} = h_{n} f\left(x_{n} + \frac{h_{n}}{2}, y_{n} + \frac{k_{1}}{2}, z_{n} + \frac{g_{1}}{2}\right)$$

$$g_{2} = h_{n} \varphi\left(x_{n} + \frac{h_{n}}{2}, y_{n} + \frac{k_{1}}{2}, z_{n} + \frac{g_{1}}{2}\right)$$

$$k_{3} = h_{n} f\left(x_{n} + \frac{h_{n}}{2}, y_{n} + \frac{k_{2}}{2}, z_{n} + \frac{g_{2}}{2}\right)$$

$$g_{3} = h_{n} \varphi\left(x_{n} + \frac{h_{n}}{2}, y_{n} + \frac{k_{2}}{2}, z_{n} + \frac{g_{2}}{2}\right)$$

$$k_{4} = h_{n} f(x_{n} + h_{n}, y_{n} + k_{3}, z_{n} + g_{3})$$

$$g_{4} = h_{n} \varphi(x_{n}, y_{n}, z_{n})$$

Реализация.

Метод Рунге-Кутты 4-го порядка точности:

```
def runge kutta fourth order(xn, yn, zn, hn, Rp):
    k1 = hn * f(xn, yn, zn, Rp)
    q1 = hn * phi(xn, yn, zn)
    k2 = hn * f(xn + hn / 2, yn + k1 / 2, zn + q1 / 2, Rp)
    q2 = hn * phi(xn + hn / 2, yn + k1 / 2, zn + q1 / 2)
   k3 = hn * f(xn + hn / 2, yn + k2 / 2, zn + q2 / 2, Rp)
   q3 = hn * phi(xn + hn / 2, yn + k2 / 2, zn + q2 / 2)
   k4 = hn * f(xn + hn, yn + k3, zn + q3, Rp)
    q4 = hn * phi(xn + hn, yn + k3, zn + q3)
    y next = yn + (k1 + 2 * k2 + 2 * k3 + k4) / 6
    z = zn + (q1 + 2 * q2 + 2 * q3 + q4) / 6
    return y next, z next
def f(x, y, z, Rp):
    return -((Rp + Rk) * y - z) / Lk
def phi(x, y, z):
    return -y / Ck
Функция T(z)
def T(z):
    return T0 + (Tw - T0) * z ** m
Вычисление Rp
def Rp(I):
   global m
    global T0
    I from table = []
    for i in range(len(table1)):
        I from table.append(table1[i][0])
   TO from table = []
    for j in range(len(table1)):
        TO from table.append(table1[j][1])
   m from table = []
    for z in range(len(table1)):
        m from table.append(table1[z][2])
    m = interpolate(I, I from table, m from table)
    T0 = interpolate(I, I from table, T0 from table)
    func = lambda z: sigma(T(z)) * z
    integral = integrate.quad(func, 0, 1)
    Rp = Le / (2 * pi * R ** 2 * integral[0])
    return Rp
```

Результат работы программы.

1) Графики зависимости от времени импульса t: $I(t), U(t), R_p(t), npouвзедения <math>I(t) \cdot R_p(t), T_0(t)$ при заданных выше параметрах. Указать шаг сетки.

Шаг сетки: h = 1e-06

2) График зависимости I(t) при $R_k + R_p = 0$. Обратить внимание на то, что в этом случае колебания тока будут незатухающими.

3) График зависимости I(t) при $R_k + R_p = const = 200$ Ом в интервале значений 0-20 мкс.

4) Результаты исследования влияния параметров контура C_k , L_k , R_k на длительность импульса $t_{\rm имп}$ апериодической формы. Длительность импульса определяется по кривой зависимости тока от времени на высоте $0.35I_{max}$, I_{max} значение тока в максимуме (см. рисунок).

График I(t) при начальных параметрах.

График I(t) при увеличении изначального значения C_k в 2 раза.

Из графика видно, что при увеличении \mathcal{C}_k значение $t_{\text{имп}}$ также увеличивается.

График I(t) при уменьшении изначального значения C_k в 1.5 раза.

Из графика видно, что при уменьшении \mathcal{C}_k значение $t_{\text{имп}}$ также уменьшается.

График I(t) при увеличении изначального значения L_k в 2 раза.

Из графика видно, что при увеличении L_k значение $t_{\scriptscriptstyle \mathrm{ИМП}}$ также увеличивается.

График I(t) при уменьшении изначального значения L_k в 2 раза.

Из графика видно, что при уменьшении L_k значение $t_{\rm имп}$ также уменьшается.

График I(t) при увеличении изначального значения R_k в 10 раз.

Из графика видно, что при увеличении R_k значение $t_{\rm имп}$ также увеличивается.

График I(t) при уменьшении изначального значения R_k в 10 раз.

Из графика видно, что при уменьшении R_k значение $t_{\scriptscriptstyle \mathsf{ИМ\Pi}}$ также уменьшается.

Ответы на вопросы по лабораторной работе.

1. Какие способы тестирования программы, кроме указанного в п.2, можете предложить еще?

Ответ: например, убрать лампу, при большом значении параметра R_k будет апериодическое затухание, при небольших значениях будут затухающие колебания.

2. Получите систему разностных уравнений для решения сформулированной задачи неявным методом трапеций. Опишите алгоритм реализации полученных уравнений.

Ответ:

$$U_{n+1} = U_n + \frac{h}{2} + \left[f(x_n, u_n) + f(x_{n+1}, u_{n+1}) \right] + O(h^2)$$

$$\begin{cases} \frac{dI}{dT} = \frac{U - \left(R_k + R_p(I) \right) I}{L_k} \\ \frac{dU}{dt} = -\frac{I}{C_k} \end{cases}$$

$$I_{n+1} = I_n + \frac{h}{2} \left[\frac{U_n - \left(R_k + R_p(I_n) \right) I_n}{L_k} + \frac{U_{n+1} - \left(R_k + R_p(I_{n+1}) \right) I_{n+1}}{L_k} \right]$$

$$U_{n+1} = U_n + \frac{h}{2} \left[-\frac{I_n}{C_k} - \frac{I_{n+1}}{C_k} \right] = U_n - \frac{h}{2} \left[\frac{I_n + I_{n+1}}{C_k} \right]$$

Подставим U_{n+1} в выражение для I_{n+1}

$$I_{n+1} = I_n + \frac{h}{2L_k} \left[2U_n - \left(R_k + R_p(I_n) + \frac{h}{2C_k} \right) I_n - \left(R_k + R_p(I_{n+1}) + \frac{h}{2C_k} \right) I_{n+1} \right]$$

3. Из каких соображений проводится выбор того или иного метода, учитывая, что чем выше порядок точности метода, тем он более сложен?

Ответ: оценка погрешности для частного случая вида правой части дифференциального уравнения

$$\varphi(x,v) \equiv \varphi(x)$$

Если функция $\varphi(x,v)$ непрерывна и ограничена, а также непрерывны и ограничены её четвертые производные, то наилучший результат достигается при использовании схемы

$$y_{n+1} = y_n + \frac{k_1 + 2k_2 + 2k_3 + k_4}{6}$$

$$k_{1} = h_{n} f(x_{n}, y_{n})$$

$$k_{2} = h_{n} f\left(x_{n} + \frac{h_{n}}{2}, y_{n} + \frac{k_{1}}{2}\right)$$

$$k_{3} = h_{n} f\left(x_{n} + \frac{h_{n}}{2}, y_{n} + \frac{k_{2}}{2}\right)$$

$$k_{4} = h_{n} f(x_{n} + h_{n}, y_{n} + k_{3})$$

Если функция $\varphi(x,v)$ не имеет таких производных, то четвертый порядок схемы выше не может быть достигнут и тогда целесообразно применение более простых схем.