TD 1

DIVISIBILITÉ, PGCD ET ALGORITHMES D'EUCLIDE

Exercice 1. Pour tout $a, b, c \in \mathbb{Z}$, montrer que :

- 1) $a \mid b \text{ et } a \mid c \Rightarrow a \mid (b+c) \text{ and } a \mid (b-c).$
- 2) $a \mid b \text{ et } b \mid c \Rightarrow a \mid c$.
- 3) $a \mid b \text{ et } b \mid a \Rightarrow a = \pm b$.
- 4) $a \mid 1 \Leftrightarrow a = \pm 1$.

Exercice 2. En cours, nous avons vu la version originale de l'algorithme d'Euclide :

```
Algorithme 1: Algorithme d'Euclide (version originale)
```

Montrer que l'algorithme est correct, c'est-à-dire :

- 1) montrer que l'algorithme termine.
- 2) montrer que l'algorithme renvoie effectivement pgcd(a, b). Pour cela, il suffit de prouver que si a > b alors :

$$pgcd(a, b) = pgcd(a - b, b).$$

Exercice 3. En appliquant l'algorithme d'Euclide étendu, calculer le pgcd et le couple (u, v) de l'identité de Bézout pour les couples de nombres suivants :

- 1) 13 et 21;
- 2) 2926 et 2046.

Exercice 4. Soient a, b, c des entiers non nuls avec c > 0. Montrer que :

- 1) $\operatorname{pgcd}(ac, bc) = c \operatorname{pgcd}(a, b)$;
- 2) si $\operatorname{pgcd}(a,b)=d$ alors les entiers $\frac{a}{d}$ et $\frac{b}{d}$ sont premiers entre eux.

Exercice 5. Soient $a, b \in \mathbb{Z}$, $(a, b) \neq (0, 0)$, et soit $d = \operatorname{pgcd}(a, b)$.

- 1) Montrer que s'il existe $s, t \in \mathbb{Z}$ tels que as + bt = r, alors $d \mid r$.
- 2) Montrer que si (u, v) forment une paire d'entiers satisfaisant l'identité de Bézout d = au + bv, alors pgcd(u, v) = 1.

Exercice 6. Soient $a, b_1, \ldots, b_k \in \mathbb{Z}$. Montrer que $\operatorname{pgcd}(a, b_1 b_2 \cdots b_k) = 1$ si et seulement si $\operatorname{pgcd}(a, b_i) = 1$ pour tout $i = 1, \ldots k$.

Exercice 7. Soit a et b deux entiers et d leur pgcd. Par simplicité, on suppose a et b strictement positifs.

- 1. Montrer qu'il existe une infinité de couples de coefficients de Bézout (u,v) tels que au+bv=d.
 - [Indice : Ajouter et retrancher ab au membre de gauche de l'équation.]
- 2. Soit (u, v) des coefficients de Bézout associés à a et b. Montrer qu'un couple (u', v') satisfait au' + bv' = d si et seulement s'il existe k tel que $u' = u + k \frac{b}{d}$ et $v' = v k \frac{a}{d}$.
- 3. Montrer qu'il existe exactement deux couples de coefficients de Bézout tels que $|u| \leq \frac{b}{d}$ et $|v| \leq \frac{a}{d}$.