Programação Genética no Mundo Visual

Fábio Augusto Faria

ffaria@.ic.unicamp.br

Orientador: Ricardo da Silva Torres

rtorres@ic.unicamp.br

Co-Orientador: Anderson Rocha

rocha@ic.unicamp.br

Instituto de Computação - Unicamp

Roteiro

- Introdução
- Motivação
- Programação Genética
- Programação Genética no Mundo Visual
- Bibliotecas
- Conclusão

Introdução

Técnica de Inteligência Artificial

Computação Evolutiva (Teoria da Evolução de Darwin)

Herança biológica, seleção natural e evolução

Introdução

Popular com o livro de John R. Koza (1992)

Obtém programas de forma automática

Busca solução ótima para problemas complexos (Koza)

Motivação

Possui boa capacidade exploratória do espaço de busca

 Tem sido empregada em diversas áreas do conhecimento e obtido sucesso

Facilmente paralelizável (Paralelismo intrínseco)

Roteiro

- Introdução
- Motivação
- Programação Genética
- Programação Genética no Mundo Visual
- Bibliotecas
- Conclusão

Programação Genética

Indivíduo = Programa

Estruturas de dados, geralmente <u>árvores</u>

Indivíduo PG

Componentes Essenciais

- Terminais (nós folhas)
- Função (nós não-folhas): operadores e.g., +, -, /, *, sqrt e log.
- Função de Adequação (fitness)
- Reprodução
- Crossover
- Mutação

Reprodução

Crossover

Crossover

Crossover

Mutação

Mutação

Mutação

Processo de Evolução de Indivíduos PG

Parâmetros de Controle

São 19 parâmetros:

- Número de indivíduos da população
- Número de gerações para evolução
- Taxa de Reprodução
- Taxa de Mutação
- Taxa de *Crossover*

Roteiro

- Introdução
- Motivação
- Programação Genética
- Programação Genética no Mundo Visual
- Bibliotecas
- Conclusão

Programação Genética no Mundo Visual

- Classificação de Imagens
- Recuperação de Imagens por Conteúdo (CBIR)

Classificação de Imagens

Recuperação de Imagens por Conteúdo

Recuperação de Imagens

Recuperação de Imagens

Descritor de Imagem

• Descritor simples: função de extração (ϵD) e função de similaridade (δD).

Descritor de Imagem

• Descritor composto: combinação de descritores simples.

Combinação de Descritores utilizando Programação Genética

Exemplo de Indivíduo PG

Método de Classificação (PG + kNN)

 Adaptação do método de classificação de texto (Zhang et al.) para classificação de imagens

 Combinação de diferentes propriedades visuais (cor, textura e forma) utilizando PG

Utilização do classificador kNN.

Método de Classificação (PG + kNN)

Etapas

Pré-Processamento;

• Treinamento;

Classificação.

Pré-Processamento

- Extrai os vetores de características das imagens
- Calcula as matrizes de distâncias (diferentes descritores)

Treinamento

- Encontrar os melhores indivíduos (função de distância)
- Calcular a adequação dos indivíduos (função de adequação ou fitness)

Função de Adequação FFP4

- 1. Para cada indivíduo PG
- 2. F = 0
- 3. Para cada imagem D do conjunto de treino da classe N
- 4. Fitness = FFP4 calculado com base no conjunto de |C| imagens mais similares a D
- 5. F+ = Fitness
- 6. F = F / |C|

$$FFP4 = \sum_{i=1}^{|C|} r(d_i) * k_8 * (k_9)^i$$

^{*} Os valores k8=7,0 e k9=0,982 foram encontrados por meio de análise exaustiva.

Módulo PG

Classificação

- Especialista + kNN aplicado a um conjunto de imagens de teste
- Classificação final será a votação majoritária

Classificador kNN

Arcabouço PG + kNN

Resultados – Classificação

- Bases
- Descritores
- Medidas de Avaliação
- Baselines
- Parâmetros PG: mesmos da Zhang et al. (menos para as imagens de café)

Bases

- **FreeFoto:** são 3.462 imagens, 9 classes e o número de imagens por classe varia de 70 a 854 imagens
- Borboletas: são 165 imagens, 7 classes e o número de imagens por classe varia de 22 a 25 imagens

Bases

café

Café: imagem capturada pelo satélite SPOT do município de Monte Santos de Minas (MG). Foram geradas 6.400 subimagens para classificar e 2 classes (café e não-café).

Descritores

		Bases		
Descritores	Tipo de Evidência	FreeFoto	Borboletas	Café
GCH [67]	Cor	X	X	X
BIC [64]	Cor	X	X	X
CCV [55]	Cor	X	X	
JAC [72]	Cor			X
LAS [68]	Textura	X	X	
HTD $[50, 73]$	Textura	X	X	
QCCH [34]	Textura			X
SID [74]	Textura			X

Medidas de Avaliação

FreeFoto e Borboletas.

		Predita	
		Classe 1	Classe 2
Atual	Classe 1	a	b
	Classe 2	C	d

$$AC = \frac{a+d}{a+b+c+d}$$

Café foi utilizado índice Kappa.

Baselines

- PG+kNN (método proposto)
- kNN
- BAGG
- LDA
- SVM-Linear
- SVM-RBF

Resultados (Combinação de Descritores)

Classificadores	Eficácia (%)	Desvio
PG+KNN-3	92,17	1,06
SVM-RBF	90,81	1,10
BAGG-13	90,18	0,55
SVM-LINEAR	88,53	1,08
BAGG-7	87,93	0,70
LDA	85,04	1,68
KNN-1	84,43	0,75
KNN-3	80,39	2,44
KNN-7	77,76	1,95
KNN-13	75,13	2,83

Resultados de todos os classificadores utilizando a base FreeFoto e os cinco descritores (BIC, CCV, GCH, HTD e LAS).

Resultados

Classificadores	Eficácia (%)	Desvio
PG+KNN-3	92,17	1,06
SVM-RBF	90,81	1,10
BAGG-13	90,18	$0,\!55$
SVM-LINEAR	88,53	1,08
BAGG-7	87,93	0,70
LDA	85,04	1,68
KNN-1	84,43	0,75
KNN-3	80,39	2,44
KNN-7	77,76	1,95
KNN-13	75,13	2,83

Resultados de todos os classificadores utilizando a base FreeFoto e os cinco descritores (BIC, CCV, GCH, HTD e LAS).

Resultados (Qualquer Combinação)

Classificador	Eficácia (%)	Desvio	Descritores
PG + KNN-3	92,17	1,06	5 (BIC, CCV, GCH, HTD e LAS)
KNN-1	91,59	0,72	1 (BIC)
SVM-RBF	91,10	1,70	1 (BIC)
BAGG-13	90,21	1,17	3 (BIC, CCV, GCH)
BAGG-7	88,88	0,68	3 (BIC, CCV, GCH)
KNN-3	88,73	0,77	1 (BIC)
SVM-LINEAR	88,53	1,08	5 (BIC, CCV, GCH, HTD e LAS)
KNN-7	85,50	1,16	1 (BIC)
LDA	85,04	1,68	5 (BIC, CCV, GCH, HTD e LAS)
KNN-13	82,96	1,94	1 (BIC)

Resultados (Qualquer Combinação)

Classificador	Eficácia (%)	Desvio	Descritores
PG + KNN-3	92,17	1,06	5 (BIC, CCV, GCH, HTD e LAS)
KNN-1	91,59	0,72	1 (BIC)
SVM-RBF	91,10	1,70	1 (BIC)
BAGG-13	90,21	1,17	3 (BIC, CCV, GCH)
BAGG-7	88,88	0,68	3 (BIC, CCV, GCH)
KNN-3	88,73	0,77	1 (BIC)
SVM-LINEAR	88,53	1,08	5 (BIC, CCV, GCH, HTD e LAS)
KNN-7	85,50	1,16	1 (BIC)
LDA	85,04	1,68	5 (BIC, CCV, GCH, HTD e LAS)
KNN-13	82,96	1,94	1 (BIC)

Resultados (Qualquer Combinação)

Classificador	Eficácia (%)	Desvio	Descritores
PG + KNN-3	92,17	1,06	5 (BIC, CCV, GCH, HTD e LAS)
KNN-1	91,59	0,72	1 (BIC)
SVM-RBF	91,10	1,70	1 (BIC)
BAGG-13	90,21	1,17	3 (BIC, CCV, GCH)
BAGG-7	88,88	0,68	3 (BIC, CCV, GCH)
KNN-3	88,73	0,77	1 (BIC)
SVM-LINEAR	88,53	1,08	5 (BIC, CCV, GCH, HTD e LAS)
KNN-7	85,50	1,16	1 (BIC)
LDA	85,04	1,68	5 (BIC, CCV, GCH, HTD e LAS)
KNN-13	82,96	1,94	1 (BIC)

Resultados (Qualquer Combinação)

	Classificador	Eficácia (%)	Desvio	Descritores
	PG + KNN-3	92,17	1,06	5 (BIC, CCV, GCH, HTD e LAS)
	KNN-1	91,59	0,72	1 (BIC)
> [SVM-RBF	91,10	1,70	1 (BIC)
	BAGG-13	90,21	1,17	3 (BIC, CCV, GCH)
	BAGG-7	88,88	0,68	3 (BIC, CCV, GCH)
	KNN-3	88,73	0,77	1 (BIC)
	SVM-LINEAR	88,53	1,08	5 (BIC, CCV, GCH, HTD e LAS)
	KNN-7	85,50	1,16	1 (BIC)
	LDA	85,04	1,68	5 (BIC, CCV, GCH, HTD e LAS)
	KNN-13	82,96	1,94	1 (BIC)

Resultados

	Classificador	Eficácia (%)	Desvio	Descritores
•	PG + KNN-7	60,80	2,06	5 (BIC, CCV, GCH, HTD e LAS)
	KNN-7	56,80	13,68	1 (BIC)
	SVM-RBF	54,40	2,19	1 (BIC)
	BAGG-7	54,40	16,15	1 (BIC)
	BAGG-13	52,00	11,66	1 (BIC)
	SVM-LINEAR	49,60	4,56	1 (BIC)
	KNN-3	46,40	9,21	1 (BIC)
	KNN-13	45,60	6,07	1 (BIC)
	KNN-1	44,00	6,32	1 (BIC)

Análise dos Indivíduos

- Melhor resultado do método PG + kNN
- Base FreeFoto

http://www.lis.ic.unicamp.br/~fabiof/prototype_gpknn/databases.php

Indivíduo Classe 001: sqrt(((las * ccv) * (sqrt(las))))

Indivíduo Classe 007: bic

Indivíduo Classe 008: las

Classificação de Café

Outra Aplicação – Imagem de Café

Resultados – Classificação

Exp	População	Geração	Fold 1	Fold 2	Média
1	30	15	65,92	66,04	65,98
2	30	30	64,88	66,51	65,70
3	50	15	65,90	66,46	66,18
4	50	30	66,37	66,29	66,33

Resultado Kappa para reconhecimento de café aplicando o sistema proposto.

Obs. MaxVer obteve 66,00% na mesma base de imagens.

Resultados – Recuperação

Bases

Descritores

Medidas de Avaliação

Baselines

Bases

- **Corel:** são 3.906 imagens e 123 imagens consultas. Existem 85 classes de imagens e o número de imagens por classe varia de 7 a 98 imagens
- Caltech: são 8.677 imagens e 122 imagens consultas. Existem 101 classes e o número de imagens por classe varia de 40 a 800 imagens

Descritores de Imagens

Descritor	Tipo de Evidência
GCH [67]	Cor
BIC [64]	Cor
COLORBITMAP [46]	Cor
ACC [35]	Cor
CCV [55]	Cor
CGCH [65]	Cor
CSD [49]	Cor
JAC [72]	Cor
LCH [67]	Cor
CCOM [39]	Textura
LAS [68]	Textura
LBP [53]	Textura
QCCH [34]	Textura
SASI [12]	Textura
SID [74]	Textura
UNSER [70]	Textura
EOAC [48]	Forma
SPYTEC [43]	Forma

Medidas de Avaliação

Precision

Mean Average Precision (MAP)

Baselines

- Programação Genética = CBIR-PG
- LAC = CBIR-RA
- RankSVM = CBIR-SVM
- Descritor BIC = BIC

Resultados - Corel

Resultados – Caltech

Resultados

	Corel					Cal	tech	
Run	CBIR-RA	CBIR-PG	CBIR-SVM	BIC	CBIR-RA	CBIR-PG	CBIR-SVM	BIC
1	0,405	0,399	0,374	0,279	0,051	0,059	0,051	0,058
2	0,312	0,328	0,308	0,298	0,011	0,057	0,038	0,018
3	0,366	0,376	0,351	0,341	0,098	0,089	0,098	0,093
4	0,362	0,354	0,344	0,290	0,046	0,049	0,039	0,061
5	0,250	0,246	0,251	0,193	0,064	0,098	0,092	0,063
Média	0,339	0,341	0,326	0,280	0,073	0,070	0,064	0,058
CBIR-RA	-	-0,50%	4,20%	21,00%	-	4,10%	14,30%	24,00%
CBIR-PG	0,50%	-	4,70%	21,60%	-4,00%	-	9,70%	19,80%

Valores MAP.

Roteiro

- Introdução
- Motivação
- Programação Genética
- Programação Genética no Mundo Visual
- Bibliotecas
- Conclusão

Bibliotecas PG

- LILGP (linguagem C)
- JGAP (JAVA)
- Beagle (C++ with STL)
- EO (C++ with static polymorphism)

Conclusão

- PG é técnica de Inteligência Artificial
- Computação Evolutiva (Teoria da Evolução de Darwin)
- Herança biológica, seleção natural e evolução
- Muito utilizada em diversas aplicações e obtendo bons resultados

Referências

Livros

- J. R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural Selection.
- R. Poli, W. B. Langdon and N. F. Mcphee. A Field Guide to Genetic Programming.
- W. Banzhaf et al. Genetic Programming: An Introduction.

Artigos

- R. da S. Torres et al. A Genetic Programming Framework for Content-based Image Retrieval. Pattern Recognition 2009.
- C. D. Ferreira et al. Image Retrieval with Relevance Feedback based on Genetic Programming. SBBD, 2008.
- F. A. Faria, A. Rocha e R. da S. Torres. Classificação de Imagens usando Programação Genética. SPS-UNICAMP 2010.
- F. A. Faria et al. Learning to Rank for Content-based Image Retrieval. MIR 2010.
- J. A. Santos, F. A. Faria, R. T. Calumby, and R. da S. Torres. A Genetic Programming Approach for Coffee Crop Recognition. IGARSS 2010.

Obrigado pela Atenção!

Perguntas?

Querendo trabalhar com IA e Imagens?

{ffaria,rocha,rtorres}@ic.unicamp.br

Trabalho de Doutorado

- Meta-aprendizagem
- Seleção de características
- Combinação de classificadores
- Colaboração com Médicos e Biólogos da UNICAMP

• ...

Colaborações

Asas de Moscas Anastrepha

Extras

Análise de Parâmetros – PG

	Term	Stdized Effects	Sum of Squares	% Contribution
\Box	Intercept			
е	А-рор	0.20	0.16	0.98
e	B-ger	0.82	2.67	16.33
е	C-knn	1.60	10.24	62.57
е	D-crossover	-0.20	0.17	1.03
е	E-mut	0.17	0.12	0.73
е	ΑÐ	-0.088	0.031	0.19
е	AC	0.35	0.50	3.08
е	AD	0.20	0.16	0.98
е	ΑE	0.30	0.35	2.16
е	BC	0.087	0.031	0.19
е	BD	-0.17	0.12	0.73
е	BE	0.095	0.036	0.22
е	CD	0.27	0.29	1.78
e	CE	-0.14	0.076	0.46
е	DE	0.59	1.40	8.58

kNN	Reprodução	Crossover	Mutação	População	Geração
1 e 7	10 e 30	70 e 90	5 e 10	15 e 30	15 e 30

Resultado por Classe - FreeFoto

Classes	Acertos	Erros	Total	Eficácia (%)
001	91	5	96	94,79
002	46	10	56	82,14
003	82	5	87	94,25
004	34	4	38	89,47
005	14	0	14	100
006	117	2	119	98,32
007	22	1	23	95,65
800	28	6	34	82,35
009	96	12	108	88,89

Parâmetros usados na Classificação

	Bases		
Parâmetro	FreeFoto	Borboletas	Café
kNN	1 e 3	7	13
População	5	5	30 e 50
Gerações	10	20	15 e 30
Reprodução	0,30	0,30	0,30
Crossover	0,65	0,65	0,80
Mutação	0,05	0,05	0,05
Funções	+, -, *, /, sqrt		
Função de Adequação	FFP4		