PTT	GLOB	BAL CHEMIC	AL PUBL	IC CO	ОМРА	NY L	IMITED		
RECORD B	SOOK NO.	-	S	ECTION	-	-			
	SERVICE 540-V5 STRIPPER COLUMN								
DOCUME	DOCUMENT TITLE CALCULATION SHEET FOR STRIPPER COLUMN 540-V5								
	PLANT	GC4	JOB NO.	A-P	1-2018/	051			
REQUIS	ITION NO.	N.A.	ITEM NO.		N.A.				
DOCUME	NT NO.	5120	-4-41-540	-V5-0	001				
0	9MAR.'20	AS-BUILT FOR A	A-P1-2018/051	KS	PCS	NSR	CTS		
Rev.	Date	Descript	ion	Made	Checked	Verified	Approved		
VENDOR DOC. NO. CA-9044-540V5									
VENDOR NAME UNIMIT ENGINEERING PUBLIC COMPANY LIMITED									
					TOTA	L PAGES	451		

OWNER'S NAME : PTT GLOBAL CHEMICAL PUBLIC COMPANY LIMITED (PTTGC)

CLIENT'S NAME : PTT GLOBAL CHEMICAL PUBLIC COMPANY LIMITED (PTTGC)

PROJECT NAME : SHELL REPLACEMENT 540-V5

: 1040283087 P/O NO. \overline{u}

ITEM NO. : 540-V5

ITEM NAME : STRIPPER COLUMN

: CA-9044-540V5 DOCUMENT NO.

DOCUMENT TITLE : CALCULATION SHEET (TOTAL: 450 PAGES)

REV. NO.	DATE	DESCRIPTION	DESIGNED	CHECKED	REVIEWED	APPROVED
0	26-Feb-2019	FOR APPROVAL	P.PICHSINEE	S.NAKKARIN	S.NAKKARIN	P.RUNGROTE
1	21-Jun-2019	AS BUILT	P.PICHSINEE	S.NAKKARIN	S.NAKKARIN	P.RUNGROTE

UNIMIT ENGINEERING PUBLIC COMPANY LIMITED

CONTENT

Description	Page
Nozzle Schedule	4
Nozzle Summary	6
Pressure Summary	7
Thickness Summary	11
Top Head	12
Straight Flange on Top Head	15
Top existing shell	24
New shell	34
Bottom existing shell 1	44
Bottom Head	54
Straight Flange on Bottom Head	57
Nozzle (AA)	66
Nozzle (AB)	72
Nozzle (AC)	84
Nozzle (AD)	96
Nozzle (BB)	109
Nozzle (CB)	120
Nozzle (CC)	131
Nozzle (CD)	142
Nozzle (CF)	153
Nozzle (CL1)	164
Nozzle (CL2)	170
Nozzle (CM1)	176
Nozzle (CM2)	182
Nozzle (CN)	188
Nozzle (CO1)	196
Nozzle (CO2)	202
Nozzle (CO3)	208
Nozzle (CO4)	214
Nozzle (CO5)	220
Nozzle (CO6)	226
Nozzle (CO7)	232
Nozzle (CO8)	238
Nozzle (DC)	244
Access Opening (A1)	255
·	

CONTENT

	Description	Page
	Access Opening (A2)	264
•	Sleeve Opening (S)	273
	Vent Hole (V1)	282
	Vent Hole (V2)	292
•	Vent Hole (V3)	302
	Vent Hole (V4)	312
	Rings #1	322
	Rings #2	325
	Rings #3	328
•	Rings #4	331
	Rings #5	334
	Rings #6	349
	Rings #7	352
	Rings #8	355
	Rings #9	358
	Rings #10	361
	Rings #11	364
	Rings #12	367
	Rings #13	370
•	Rings #14	373
•	Support Skirt #1	376
	Support Skirt #2	383
	Skirt Base Ring	391
	Wind Code 3	411
	Liquid Level bounded by Bottom Head	423
	Calculation of Platform #3	424
	Calculation of Platform #4	430
~	Wind load design	436
	Column support design	437
	Check stress in shell/shell and ring supports	441
8	Check lacal stress in shell at support	446
(

Nozzle Schedule ۱₁

				Specifications					
Nozzle mark	Identifier	Size	N	Materials	Impact Tested	Normalized	Fine Grain	Flange	Blind
<u>AA</u>	Nozzle	NPS 2 Sch 160 DN 50	Nozzle	SA-106 B Smls Pipe	No	No	No	NPS 2 Class 150 WN A105	No
<u>AB</u>	Nozzle	609.6 OD x 13	Nozzle	SA-516 70	No	No	No	NPS 24 Class 150 WN A105	SA-105
			Pad	SA-516 70	No	No	No	WN A105	
<u>AC</u>	Nozzle	406.4 OD x 13	Nozzle	SA-516 70	No	No	No	NPS 16 Class 150 WN A105	No
			Pad	SA-516 70	No	No	No	WIVIIIOS	
<u>AD</u>	Nozzle	406.4 OD x 13	Nozzle	SA-516 70	No	No	No	NPS 16 Class 150 WN A105	No
			Pad	SA-516 70	No	No	Yes		
BB	Nozzle	609.6 OD x 13	Nozzle	SA-516 70	No	No	No	NPS 24 Class 150 WN A105	No
			Pad	SA-516 70	No	No	No		
<u>CB</u>	Nozzle	609.6 OD x 13	Nozzle	SA-516 70	No	No	No	NPS 24 Class 150 WN A105	No
			Pad	SA-516 70	No	No	No		
<u>CC</u>	Nozzle	406.4 OD x 13	Nozzle	SA-516 70	No	No	No	NPS 16 Class 150 WN A105	No
			Pad Nozzle	SA-516 70 SA-106 B Smls	No No	No No	No No	NPS 8 Class 150	
<u>CD</u>	Nozzle	NPS 8 Sch 80 (XS) DN 200		Pipe	NO		NO	WN A105	No
			Pad	SA-516 70	No	No	No		
<u>CF</u>	Nozzle	812.8 OD x 13	Nozzle	SA-516 70	No	No	No	NPS 32 Class 150 WN A105 Series B	No
			Pad	SA-516 70	No	No	No		
CL1	Nozzle	NPS 2 Sch 160 DN 50	Nozzle	SA-106 B Smls Pipe	No	No	No	NPS 2 Class 300 WN A105	No
			Pad	SA-516 70	No	No	No		
CL2	Nozzle	NPS 2 Sch 160 DN 50	Nozzle	SA-106 B Smls Pipe	No	No	No	NPS 2 Class 300 WN A105	No
			Pad	SA-516 70	No	No	No		
<u>CM1</u>	Nozzle	NPS 2 Sch 160 DN 50	Nozzle	SA-106 B Smls Pipe	No	No	No	NPS 2 Class 300 WN A105	No
			Pad	SA-516 70	No	No	No		
<u>CM2</u>	Nozzle	NPS 2 Sch 160 DN 50	Nozzle	SA-106 B Smls Pipe	No	No	No	NPS 2 Class 300 WN A105	No
			Pad	SA-516 70	No	No	No		
<u>CN</u>	Nozzle	NPS 3 Sch 160 DN 80	Nozzle	SA-106 B Smls Pipe	No	No	No	NPS 3 Class 150 WN A105	No
			Pad	SA-516 70	No	No	No		
<u>CO1</u>	Nozzle	NPS 2 Sch 160 DN 50	Nozzle	SA-106 B Smls Pipe	No	No	No	NPS 2 Class 300 WN A105	No
			Pad	SA-516 70	No	No	No		
<u>CO2</u>	Nozzle	NPS 2 Sch 160 DN 50	Nozzle	SA-106 B Smls Pipe	No	No	No	NPS 2 Class 300 WN A105	No
			Pad	SA-516 70	No	No	No	,,,,,,,,,,,	
<u>CO3</u>	Nozzle	NPS 2 Sch 160 DN 50	Nozzle	SA-106 B Smls Pipe	No	No	No	NPS 2 Class 300 WN A105	No
			Pad	SA-516 70	No	No	No		
<u>CO4</u>	Nozzle	NPS 2 Sch 160 DN 50	Nozzle	SA-106 B Smls Pipe	No	No	No	NPS 2 Class 300 WN A105	No
			Pad	SA-516 70	No	No	No	WINAIUS	
<u>CO5</u>	Nozzle	NPS 2 Sch 160 DN 50	Nozzle	SA-106 B Smls Pipe	No	No	No	NPS 2 Class 300 WN A105	No
			Pad	SA-516 70	No	No	No	111111100	

<u>CO6</u>	Nozzle	zzle NPS 2 Sch 160 DN 50		SA-106 B Smls Pipe	No	No	No	NPS 2 Class 300 WN A105	No
			Pad	SA-516 70	No	No	No		
<u>CO7</u>	Nozzle	NPS 2 Sch 160 DN 50	Nozzle	SA-106 B Smls Pipe	No	No	No	NPS 2 Class 300 WN A105	No
			Pad	SA-516 70	No	No	No		
<u>CO8</u>	Nozzle	NPS 2 Sch 160 DN 50	Nozzle	SA-106 B Smls Pipe	No	No	No	NPS 2 Class 300 WN A105	No
			Pad	SA-516 70	No	No	No		
	Nozzle	406.4 OD x 13	Nozzle	SA-516 70	No	No	No	N/A	No
DC			Pad	SA-516 70	No	No	No		
<u>DC</u>	<u>B16.9 Elbow (DC)</u>	NPS 16 (Thk = 0.562") DN 400	B16.9 Elbow	SA-234 WPB	No	No	No	N/A	No
	Nozzle Pipe (DC)	NPS 16 (Thk = 0.562") DN 400	Nozzle Pipe	SA-106 B Smls Pipe	No	No	No	NPS 16 Class 150 WN A105	No

Dimensions											_	
Nozzle	OD	t _n	Req t _n	A ₁ ?	A ₂ ?		Shell		Reinfor Pa		Corr	A _a /A _r
Identifier	(mm)	(mm)	(mm)	1.	A ₁ . A ₂ .	Nom t (mm)	Design t (mm)	User t (mm)	Width (mm)	t _{pad} (mm)	(mm)	(%)
Nozzle	60.33	8.74	3.91	Yes	Yes	46.1	N/A		N/A	N/A		Exempt
Nozzle	406.4	13	7.37	Yes	Yes	12.4*	12.4		160.78	15	3	264.6
Nozzle	406.4	13	7.37	Yes	Yes	12.4*	12.4		176.66	15	3	326.8
Nozzle	609.6	13	7.38	Yes	Yes	14	14		270.2	14	3	254.2
<u>Nozzle</u>	219.08	12.7	5	Yes	Yes	14	11.75		90.46	14		306.4
Nozzle	812.8	13	4.38	Yes	Yes	14	11.75		156.1	15		159.8
<u>Nozzle</u>	60.33	8.74	3.91	Yes	Yes	14	N/A		44.85	14		Exempt
<u>Nozzle</u>	609.6	13	4.65	Yes	Yes	14	14		270.2	14		209.0
<u>Nozzle</u>	406.4	13	4.66	Yes	Yes	14	14		186.8	14		219.2
<u>Nozzle</u>	60.33	8.74	3.91	Yes	Yes	14	N/A		44.85	14		Exempt
<u>Nozzle</u>	60.33	8.74	3.91	Yes	Yes	14	N/A		44.85	14		Exempt
<u>Nozzle</u>	60.33	8.74	3.91	Yes	Yes	14	N/A		44.85	14		Exempt
<u>Nozzle</u>	88.9	11.13	5.36	Yes	Yes	14	14		45.55	14		269.9
<u>Nozzle</u>	60.33	8.74	3.91	Yes	Yes	14	N/A		44.85	14		Exempt
<u>Nozzle</u>	60.33	8.74	3.91	Yes	Yes	14	N/A		44.85	14		Exempt
<u>Nozzle</u>	60.33	8.74	3.91	Yes	Yes	14	N/A		44.85	14		Exempt
Nozzle	60.33	8.74	3.91	Yes	Yes	14	N/A		44.85	14		Exempt
Nozzle	60.33	8.74	3.91	Yes	Yes	14	N/A		44.85	14		Exempt
Nozzle	60.33	8.74	3.91	Yes	Yes	14	N/A		44.85	14		Exempt
<u>Nozzle</u>	60.33	8.74	3.91	Yes	Yes	14	N/A		44.85	14		Exempt
<u>Nozzle</u>	60.33	8.74	3.91	Yes	Yes	14	N/A		44.85	14		Exempt
Nozzle	406.4	13	7.9	Yes	Yes	12.4*	12.4		186.8	15	3	324.4
Nozzle	609.6	13	7.37	Yes	Yes	12.4*	12.4		265.52	15	3	304.3
*Head mini	mum thic	kness af	ter forming	g	-							

Definitions Nozzle thickness Nozzle thickness required per UG-45/UG-16 Req tn Increased for pipe to account for 12.5% pipe thickness tolerance Nom t Vessel wall thickness Required vessel wall thickness due to pressure + corrosion allowance per UG-37 $\,$ Design t User t Local vessel wall thickness (near opening) A_{a} Area available per UG-37, governing condition A_{r} Area required per UG-37, governing condition Corr Corrosion allowance on nozzle wall

Pressure Summary

		Compor	nent Sumi	mary				
Identifier	P Design (bar)	T Design (°C)	MAEP (bar)	T _e external (°C)	MDMT (°C)		OMT option	Impact Tested
Top Head	3.6	202	1.18	175	-48	No	te 1	No
Straight Flange on Top Head	3.6	202	3.64	175	-48	Note 2		No
Top existing shell	3.6	202	1.81	175	-48	No	ite 3	No
New shell	3.6	202	8	175	-105	No	te 4	No
Bottom existing shell	3.6	202	2.91	175	-105	No	te 5	No
Straight Flange on Bottom Head	3.6	202	1.97	175	-48	No	te 7	No
Bottom Head	3.6	202	1.18	175	-48	No	ite 6	No
Rings #6	N/A	N/A	1.9	175	N/A	N	//A	No
Rings #7	N/A	N/A	1.6	175	N/A	N	//A	No
Rings #8	N/A	N/A	1.52	175	N/A	N	//A	No
Rings #9	N/A	N/A	1.83	175	N/A	N	//A	No
<u>Rings #11</u>	N/A	N/A	1.71	175	N/A	N	//A	No
<u>Rings #12</u>	N/A	N/A	2.05	175	N/A	N	//A	No
<u>Rings #13</u>	N/A	N/A	1.6	175	N/A	N	//A	No
<u>Rings #14</u>	N/A	N/A	1.78	175	N/A	N	//A	No
Rings #5 (Ring #3 in Group)	N/A	N/A	1.71	175	N/A	N/A		No
Rings #5 (Ring #4 in Group)	N/A	N/A	1.71	175	N/A	N/A		No
Rings #5 (Ring #5 in Group)	N/A	N/A	1.71	175	N/A	N/A		No
<u>Rings #10</u>	N/A	N/A	1.49	175	N/A	N/A		No
Rings #4	N/A	N/A	2.91	175	N/A	N/A		No
Rings #5 (Ring #2 in Group)	N/A	N/A	2.58	175	N/A	N	//A	No
Rings #5	N/A	N/A	2.91	175	N/A	N	//A	No
PF clip#4	3.6	202	N/A	N/A	N/A	N	//A	N/A
Rings #2	N/A	N/A	1.93	175	N/A	N	//A	No
Rings #3	N/A	N/A	1.93	175	N/A	N	//A	No
Rings #1	N/A	N/A	1.58	175	N/A	N	//A	No
PF clip #3	3.6	202	N/A	N/A	N/A	N	//A	N/A
Nozzle (AA)	3.6	202	21.98	175	-48	No	te 8	No
Nozzle (AB)	3.6	202	1.18	175	-48	Nozzle Pad	Note 9 Note 10	No No
Blind Flange (AB)	3.6	202	21.98	175	-105	Not	te 11	No
Nozzle (AC)	3.6	202	1.18	175	-48	Nozzle	Note 12	No
THOELIC (TIC)	3.0	202	1.10	175	10	Pad	Note 13	No
Nozzle (AD)	3.6	202	1.18	175	-48	Nozzle	Note 9	No
						Pad	Note 10	No
Nozzle (BB)	3.6	202	1.81	175	-48	Nozzle Pad	Note 14 Note 15	No No
Nozzle (CB)	3.6	202	2.91	175	-48	Nozzle	Note 16	No
						Pad	Note 17	No
Nozzle (CC)	3.6	202	2.91	175	-48	Nozzle	Note 18	No
N. J. (CD)						Pad Nozzle	Note 19 Note 8	No No
Nozzle (CD)	3.6	202	2.91	175	-48	Pad	Note 20	No

Nozzle (CF)	3.6	202	2.91	175	-48	Nozzle	Note 8	No
						Pad	Note 20	No
Nozzle (CL1)	3.6	202	2.91	175	-48	Nozzle	Note 21	No
			-			Pad	Note 20	No
Nozzle (CL2)	3.6	202	2.91	175	-48	Nozzle	Note 22	No
			-			Pad	Note 23	No
Nozzle (CM1)	3.6	202	2.91	175	-48	Nozzle	Note 21	No
						Pad	Note 20	No
Nozzle (CM2)	3.6	202	2.91	175	-48	Nozzle	Note 21	No
						Pad	Note 20	No
Nozzle (CN)	3.6	202	2.91	175	-48	Nozzle	Note 24	No
						Pad	Note 25	No
Nozzle (CO1)	3.6	202	2.91	175	-48	Nozzle	Note 21	No
						Pad	Note 20	No
Nozzle (CO2)	3.6	202	2.91	175	-48	Nozzle	Note 21	No
						Pad	Note 20	No
Nozzle (CO3)	3.6	202	2.91	175	-48	Nozzle	Note 21	No
						Pad	Note 20	No
Nozzle (CO4)	3.6	202	2.91	175	-48	Nozzle	Note 21	No
						Pad	Note 20	No
Nozzle (CO5)	3.6	202	2.91	175	-48	Nozzle	Note 21	No
						Pad	Note 20	No
Nozzle (CO6)	3.6	202	2.91	175	-48	Nozzle	Note 26	No
						Pad	Note 27	No
Nozzle (CO7)	3.6	202	2.91	175	-48	Nozzle	Note 28	No
						Pad	Note 29	No
Nozzle (CO8)	3.6	202	2.91	175	-48	Nozzle	Note 22	No
						Pad	Note 23	No
Nozzle (DC)	3.6	202	1.18	175	-48	Nozzle	Note 30	No
						Pad	Note 31	No
<u>B16.9 Elbow (DC)</u>	3.6	202	28.52	175	-105	No	te 32	No
Nozzle Pipe (DC)	3.6	202	19.27	175	-105	No	te 33	No

Chamber Summary							
Design MDMT	17 °C						
Rated MDMT	-48 °C @ 3.6 bar						
MAWP hot & corroded	3.6 bar						
MAEP	1.18 bar @ 175 °C						

	Notes for Maximum Pressure Rating								
Note # Details									
1. Option to calculate MAP was not selected. See the Calculation->General tab of the Set Modialog.									
2.	Option to calculate MAWP was not selected. See the Calculation->General tab of the Set Mode dialog.								

	Notes for MDMT Rating	
Note #	Exemption	Details
1.	Material impact test exemption temperature from Fig UCS-66M Curve B = -22.56°C 17°C MDMT reduction per UCS-68(c) applies. Fig UCS-66.1M MDMT reduction = 36.2°C, (coincident ratio = 0.4647) Rated MDMT of -75.76°C is limited to -48°C by UCS-66(b)(2)	UCS-66 governing thickness = 12.4 mm
2.	Material impact test exemption temperature from Fig UCS-66M Curve B = -16.69°C 17°C MDMT reduction per UCS-68(c) applies. Fig UCS-66.1M MDMT reduction = 67.7° C, (coincident ratio = 0.3653) Rated MDMT of -101.39°C is limited to -48°C by UCS-66(b)(2)	UCS-66 governing thickness = 15 mm
3.	Material impact test exemption temperature from Fig UCS-66M Curve B = -18.75°C 17°C MDMT reduction per UCS-68(c) applies. Fig UCS-66.1M MDMT reduction = 52.3 °C, (coincident ratio = 0.3987) Rated MDMT of -88.05°C is limited to -48°C by UCS-66(b)(2)	UCS-66 governing thickness = 14 mm
4.	Material is impact test exempt to -105°C per UCS-66(b)(3) (coincident ratio = 0.1993)	
5.	Material is impact test exempt to -105°C per UCS-66(b)(3) (coincident ratio = 0.336)	
6.	Material impact test exemption temperature from Fig UCS-66M Curve B = -22.56°C 17°C MDMT reduction per UCS-68(c) applies. Fig UCS-66.1M MDMT reduction = 30.5 °C, (coincident ratio = 0.511) Rated MDMT of -70.06°C is limited to -48°C by UCS-66(b)(2)	UCS-66 governing thickness = 12.4 mm
7.	Material impact test exemption temperature from Fig UCS-66M Curve B = -16.69°C 17°C MDMT reduction per UCS-68(c) applies. Fig UCS-66.1M MDMT reduction = 54.5°C, (coincident ratio = 0.3929) Rated MDMT of -88.19°C is limited to -48°C by UCS-66(b)(2)	UCS-66 governing thickness = 15 mm
8.	Flange rating governs: Flange rated MDMT per UCS-66(b)(3) = -105 $^{\circ}$ C (Coincident ratio = 0.1837) Bolts rated MDMT per Fig UCS-66 note (c) = -48 $^{\circ}$ C	
9.	Nozzle impact test exemption temperature from Fig UCS-66M Curve B = -21.25°C 17°C MDMT reduction per UCS-68(c) applies. Fig UCS-66.1M MDMT reduction = 45.9°C, (coincident ratio = 0.4185) Rated MDMT of -84.15°C is limited to -48°C by UCS-66(b)(2)	UCS-66 governing thickness = 13 mm.
10.	Pad impact test exemption temperature from Fig UCS-66M Curve B = -21.25°C 17°C MDMT reduction per UCS-68(c) applies. Fig UCS-66.1M MDMT reduction = 45.9 °C, (coincident ratio = 0.4185) Rated MDMT of -84.15°C is limited to -48°C by UCS-66(b)(2)	UCS-66 governing thickness = 13 mm.
11.	Bolted cover is impact test exempt to -105°C per UCS-66(b)(3) (coincident ratio = 0.2312)	
12.	Nozzle impact test exemption temperature from Fig UCS-66M Curve B = -21.25°C 17°C MDMT reduction per UCS-68(c) applies. Fig UCS-66.1M MDMT reduction = 36.2 °C, (coincident ratio = 0.4647) Rated MDMT of -74.45°C is limited to -48°C by UCS-66(b)(2)	UCS-66 governing thickness = 13 mm.
13.	Pad impact test exemption temperature from Fig UCS-66M Curve B = -21.25°C 17°C MDMT reduction per UCS-68(c) applies. Fig UCS-66.1M MDMT reduction = 36.2°C, (coincident ratio = 0.4647) Rated MDMT of -74.45°C is limited to -48°C by UCS-66(b)(2)	UCS-66 governing thickness = 13 mm.
14.	Nozzle is impact test exempt to -105° C per UCS-66(b)(3) (coincident ratio = 0.077).	
15.	Pad impact test exemption temperature from Fig UCS-66M Curve B = -18.75°C 17°C MDMT reduction per UCS-68(c) applies. Fig UCS-66.1M MDMT reduction = 52.3 °C, (coincident ratio = 0.3986) Rated MDMT of -88.05°C is limited to -48°C by UCS-66(b)(2)	UCS-66 governing thickness = 14 mm.
16.	Flange rating governs: Flange rated MDMT per UCS-66(b)(3) = -105° C (Coincident ratio = 0.1936) Bolts rated MDMT per Fig UCS-66 note (c) = -48° C	
17.	Pad is impact test exempt to -105°C per UCS-66(b)(3) (coincident ratio = 0.3323).	
18.	Flange rating governs: Flange rated MDMT per UCS-66(b)(3) = -105°C (Coincident ratio = 0.1945) Bolts rated MDMT per Fig UCS-66 note (c) = -48°C	
19.	Pad is impact test exempt to -105°C per UCS-66(b)(3) (coincident ratio = 0.3328).	
20.	Pad is impact test exempt to -105°C per UCS-66(b)(3) (coincident ratio = 0.3126).	
21.	Flange rating governs: Flange rated MDMT per UCS-66(b)(3) = -105°C (Coincident ratio = 0.0705) Bolts rated MDMT per Fig UCS-66 note (c) = -48°C	
22.	Flange rating governs: Flange rated MDMT per UCS-66(b)(3) = -105° C (Coincident ratio = 0.0754) Bolts rated MDMT per Fig UCS-66 note (c) = -48° C	

23.	Pad is impact test exempt to -105 °C per UCS-66(b)(3) (coincident ratio = 0.3348).	
24.	Flange rating governs: Flange rated MDMT per UCS-66(b)(3) = -105° C (Coincident ratio = 0.1966) Bolts rated MDMT per Fig UCS-66 note (c) = -48° C	
25.	Pad is impact test exempt to -105°C per UCS-66(b)(3) (coincident ratio = 0.3349).	
26.	Flange rating governs: Flange rated MDMT per UCS-66(b)(3) = -105°C (Coincident ratio = 0.072) Bolts rated MDMT per Fig UCS-66 note (c) = -48 °C	
27.	Pad is impact test exempt to -105°C per UCS-66(b)(3) (coincident ratio = 0.3196).	
28.	Flange rating governs: Flange rated MDMT per UCS-66(b)(3) = -105°C (Coincident ratio = 0.0723) Bolts rated MDMT per Fig UCS-66 note (c) = -48 °C	
29.	Pad is impact test exempt to -105 °C per UCS-66(b)(3) (coincident ratio = 0.3212).	
30.	Nozzle impact test exemption temperature from Fig UCS-66M Curve B = -21.25°C 17°C MDMT reduction per UCS-68(c) applies. Fig UCS-66.1M MDMT reduction = 35.5°C, (coincident ratio = 0.4695) Rated MDMT of -73.75°C is limited to -48°C by UCS-66(b)(2)	UCS-66 governing thickness = 13 mm.
31.	Pad impact test exemption temperature from Fig UCS-66M Curve B = -21.25°C 17°C MDMT reduction per UCS-68(c) applies. Fig UCS-66.1M MDMT reduction = 35.5°C, (coincident ratio = 0.4695) Rated MDMT of -73.75°C is limited to -48°C by UCS-66(b)(2)	UCS-66 governing thickness = 13 mm.
32.	Material is impact test exempt to -105°C per UCS-66(b)(3) (coincident ratio = 0.064)	
33.	Material is impact test exempt to -105°C per UCS-66(b)(3) (coincident ratio = 0.0763)	

Component Data								
Component Identifier	Material	Diameter (mm)	Length (mm)	Nominal t (mm)	Design t (mm)	Total Corrosion (mm)	Joint E	Load
Top Head	SA-516 70	3,350 ID	849.9	12.4*	11.78	3	1.00	External
Straight Flange on Top Head	SA-516 70	3,350 ID	38	15	10.03	3	1.00	External
Top existing shell	SA-516 70	3,350 ID	18,882	14	11.76	3	0.85	External
New shell	SA-516 70	3,350 ID	3,030	25	10.79	3	0.85	External
Bottom existing shell	SA-516 70	3,350 ID	6,372	14	9.28		0.85	External
Straight Flange on Bottom Head	SA-516 70	3,350 ID	38	15	12.2	3	1.00	External
Bottom Head	SA-516 70	3,350 ID	849.9	12.4*	11.78	3	1.00	External
Blind Flange (AB)	SA-105	812.8 OD	46.1	46.1	38.17		1.00	External
Support Skirt #1	SA-516 70	3,358 ID	976	10	6.99	1.6	0.60	Wind
Support Skirt #2	SA-285 C	3,358 ID	7,010	10	8.75	1.6	0.70	Wind
*Head minimum thickness after forming								

Definitions					
Nominal t	Vessel wall nominal thickness				
Design t	Required vessel thickness due to governing loading + corrosion				
Joint E Longitudinal seam joint efficiency					
	Load				
Internal	Circumferential stress due to internal pressure governs				
External	External pressure governs				
Wind	Combined longitudinal stress of pressure + weight + wind governs				
Seismic	Combined longitudinal stress of pressure + weight + seismic governs				

		E Section VIII Divi	sion 1, 2017 Edition Metr	ic			
Com	ponent	Ellipsoidal Head					
Ma	terial	SA-516 70 (II-D Metric p. 18, ln. 33)					
Attac	hed To		Top existing shell				
Impact Tested	Normalized	Fine Grain Practice	PWHT	Maximize MDMT/ No MAWP			
No	No	Yes	Yes	No			
		Design Pressure (bar)	Design Temperature (°C)	Design MDMT (°C)			
Inte	ernal	3.6	202	17			
Ext	ernal	1.03	175	,			
		Static Li	quid Head				
Con	dition	P _s (bar)	H _s (mm)	SG			
Test v	vertical	0.15	1,504.5	1			
		Dime	ensions				
Inner I	Diameter	3,350 mm					
Head	l Ratio	2					
Minimum	Thickness	12.4 mm					
Corrosion	Inner	3 mm					
	Outer						
Leng	gth L _{sf}	38 mm					
Nominal T	Thickness t _{sf}	15 mm					
		Weight a	nd Capacity				
		We	Capacity (liters) ¹				
N	ew		1,260.93	5,256.16			
Cor	roded		1,260.93	5,292.69			
		Inst	ılation				
		Thickness (mm) Density (kg/m³)		Weight (kg)			
Insu	lation	75	150	146.9			
		Spacing(mm)	Individual Weight (kg)	Total Weight (kg)			
	lation ports	3,000 100 100					
		Radio	ography				
Categor	y A joints	Full UW-11(a) Type 1					
Head to	shell seam	Full UW-11(a) Type 1					

1 includes straight flange

Results Summary							
Governing condition	external pressure						
Minimum thickness per UG-16	1.5 mm + 3 mm = 4.5 mm						
Design thickness due to internal pressure (t)	7.37 mm						
Design thickness due to external pressure (t _e)	<u>11.78</u> mm						
Maximum allowable external pressure (MAEP)	<u>1.18</u> bar						
Rated MDMT	-48°C						

UCS-66 Material Toughness Requirements	
Governing thickness, $t_g =$	12.4 mm
Exemption temperature from Fig UCS-66M Curve B =	-22.56°C
$t_r = 3.6*3,356*0.997623 / (2*1,380*1 - 0.2*3.6) =$	4.37 mm
Stress ratio = $t_r^* E^* / (t_n - c) = 4.37*1 / (12.4 - 3) =$	0.4647
Reduction in MDMT, T _R from Fig UCS-66.1M =	36.2°C
Reduction in MDMT, T _{PWHT} from UCS-68(c) =	17°C
$MDMT = max[MDMT - T_R - T_{PWHT}, -48] = max[-22.56 - 36.2 - 17, -48] =$	-48°C
Material is exempt from impact testing at the Design MDMT of 17°C.	

Factor K								
K = (1/6)*	$K = (1/6)*[2 + (D / (2*h))^2]$							
Corroded	$K = (1/6)*[2 + (3,356 / (2*840.5))^2]$	0.9976						
New	$K = (1/6)*[2 + (3,350 / (2*837.5))^2]$	1						

Design thickness for internal pressure, (Corroded at 202 °C) Appendix 1-4(c)

```
t = P*D*K / (2*S*E - 0.2*P) + Corrosion
        3.6*3,356*0.997623 / (2*1,380*1 - 0.2*3.6) + 3
        <u>7.37</u> mm
```

Design thickness for external pressure, (Corroded at 175 °C) UG-33(d)

Equivalent outside spherical radius (R_o)

 $K_o * D_o$ = 0.8934*3,374.83,015.16 mm

 $= 0.125 / (R_o / t)$ 0.125 / (3,015.16 / 8.77) 0.000364

360.9567 From Table CS-2 Metric: B kg_f/cm²

 $P_a = B/(R_o/t)$ 353.9779 / (3,015.16 / 8.77) = 1.03 bar

t = 8.77 mm + Corrosion = 8.77 mm + 3 mm = 11.77 mmCheck the external pressure per UG-33(a)(1) Appendix 1-4(c)

t =
$$1.67*P_e*D*K / (2*S*E - 0.2*1.67*P_e) + Corrosion$$

= $1.67*1.03*3,356*0.997623 / (2*1,380*1 - 0.2*1.67*1.03) + 3$
= 5.09 mm

The head external pressure design thickness (t_e) is 11.77 mm.

Maximum Allowable External Pressure, (Corroded at 175 °C) UG-33(d)

Equivalent outside spherical radius (R_o)

$$R_o = K_o D_o$$

= 0.8934*3,374.8
= 3,015.16 mm

$$A = 0.125 / (R_o / t)$$

$$= 0.125 / (3,015.16 / 9.4)$$

$$= 0.00039$$

From Table CS-2 Metric: B =
$$\frac{386.9029}{\text{kg}/\text{cm}^2}$$

$$P_a = B/(R_o/t)$$

= 379.4224 / (3,015.16 / 9.4)
= 1.1829 bar

Check the Maximum External Pressure, UG-33(a)(1) Appendix 1-4(c)

$$P = 2*S*E*t / ((K*D + 0.2*t)*1.67)$$

$$= 2*1,380*1*9.4 / ((0.997623*3,356 + 0.2*9.4)*1.67)$$

$$= 4.64 \text{ bar}$$

The maximum allowable external pressure (MAEP) is 1.18 bar.

% Extreme fiber elongation - UCS-79(d)

EFE =
$$(75*t/R_f)*(1 - R_f/R_o)$$

= $(75*15/577)*(1 - 577/infinity)$
= 1.9497%

The extreme fiber elongation does not exceed 5%.

Straight Flange on Top Head

ASME Section VIII Division 1, 2017 Edition Metric							
Com	ponent	Cylinder					
Ma	terial	SA-516 70 (II-D Metric p. 18, ln. 33)					
Impact Tested	Normalized	Fine Grain Practice	PWHT	Maximize MDMT/ No MAWP			
No	No	Yes	Yes	No			
		Design Pressure (bar)	Design Temperature (°C)	Design MDMT (°C)			
Inte	ernal	3.6	202	17			
Ext	ernal	1.03	175				
		Static Li	quid Head				
Con	dition	P _s (bar)	H _s (mm)	SG			
Test	vertical	0.15	1,542.5	1			
		Dime	ensions				
Inner I	Diameter	3,350 mm					
Le	ngth	38 mm					
Nominal	Thickness	15 mm					
Corrosion	Inner	3 mm					
	Outer	0 mm					
		Weight a	nd Capacity				
		W	eight (kg)	Capacity (liters)			
N	ew		334.94				
Cor	roded	47.2 336.14					
			ılation				
		Thickness (mm)	Density (kg/m³)	Weight (kg)			
Insu	lation	75	150	0			
		Spacing(mm)	Individual Weight (kg)	Total Weight (kg)			
Insulation Supports		0	0				
		Radio	ography				
Longitud	linal seam	Full UW-11(a) Type 1					
	ttom cential seam	Full UW-11(a) Type 1					

.dor	Doc.	No.	CA-9044-540V5	R

Results Summary							
Governing condition	External pressure						
Minimum thickness per UG-16	1.5 mm + 3 mm = 4.5 mm						
Design thickness due to internal pressure (t)	7.39 mm						
Design thickness due to external pressure (t _e)	<u>10.03 mm</u>						
Design thickness due to combined loadings + corrosion	<u>4.82 mm</u>						
Maximum allowable external pressure (MAEP)	3.64 bar						
Rated MDMT	-48 °C						

UCS-66 Material Toughness Requirements	
Governing thickness, $t_g =$	15 mm
Exemption temperature from Fig UCS-66M Curve B =	-16.69°C
$t_r = 3.6*1,678 / (1,380*1 - 0.6*3.6) =$	4.38 mm
Stress ratio = $t_r^* E^* / (t_n - c) = 4.38*1 / (15 - 3) =$	0.3653
Reduction in MDMT, T _R from Fig UCS-66.1M =	67.7°C
Reduction in MDMT, T _{PWHT} from UCS-68(c) =	17°C
$MDMT = max[MDMT - T_R - T_{PWHT}, -48] = max[-16.69 - 67.7 - 17, -48] =$	-48°C
Material is exempt from impact testing at the Design MDMT of 17°C.	

Design thickness, (at 202 °C) UG-27(c)(1)

```
= P*R / (S*E - .60*P) + Corrosion
= 3.6*1,678 / (1,380*1.00 - .60*3.6) + 3
= 7.39 \text{ mm}
```

External Pressure, (Corroded & at 175 °C) UG-28(c)

```
L/D_o = 1,180.17/3,380 = 0.3492
D_o/t = 3,380/7.03 = 480.5443
```

From table G: A = 0.000381

From table CS-2 Metric: $B = 378.5413 \text{ kg/cm}^2 (371.22 \text{ bar})$

 $= 4*B / (3*(D_o / t))$ = 4*371.22 / (3*(3,380 / 7.03))= 1.03 bar

Design thickness for external pressure $P_a = 1.03$ bar

```
= t + Corrosion = 7.03 + 3 = 10.03 \text{ mm}
```

Maximum Allowable External Pressure, (Corroded & at 175 °C) UG-28(c)

 $L/D_o = 1,180.17/3,380 = 0.3492$ $D_0 / t = 3,380 / 12 = 281.6606$

From table G: A = 0.000866

From table CS-2 Metric: $B = 784.1542 \text{ kg/cm}^2 (768.9912 \text{ bar})$

 $= 4*B/(3*(D_o/t))$ = 4*768.99 / (3*(3,380 / 12))= 3.64 bar

% Extreme fiber elongation - UCS-79(d)

EFE = $(50*t/R_f)*(1 - R_f/R_o)$ (50*15 / 1,682.5)*(1 - 1,682.5 / infinity) 0.4458%

The extreme fiber elongation does not exceed 5%.

	Thickness Required Due to Pressure + External Loads							
Condition	Pressure P (Allowable Before U Stress Inc kg/cr	UG-23 crease (Temperature (°C)	Corrosion C (mm)	Load	Req'd Thk Due to Tension (mm)	Req'd Thk Due to Compression (mm)
		S_t	S_c					
Operating, Hot & Corroded	3.6	1,407.2	<u>751.6</u>	202	3	Wind	<u>1.82</u>	<u>1.76</u>
Operating, Hot & New	3.6	1,407.2	803.8	202		Wind	<u>1.82</u>	<u>1.76</u>
Hot Shut Down, Corroded		1,407.2	<u>751.6</u>	202	3	Wind		<u>.12</u>
Hot Shut Down, New		1,407.2	803.8	202		Wind		<u>.11</u>
Empty, Corroded		1,407.2	826.6	13	3	Wind		<u>.11</u>
Empty, New		1,407.2	890.3	13		Wind		<u>.1</u>
Vacuum	-1.03	1,407.2	<u>789.7</u>	175	3	Wind	<u>.93</u>	<u>1.04</u>
Hot Shut Down, Corroded, Weight & Eccentric Moments Only		1,407.2	<u>751.6</u>	202	3	Weight	<u>.04</u>	.14
Operating, Hot & Corroded, Vortex Shedding	3.6	1,407.2	<u>751.6</u>	202	3	Wind	1.82	<u>1.76</u>
Empty, Cold & Corroded, Vortex Shedding		1,407.2	<u>826.6</u>	13	3	Wind		<u>.11</u>
Vacuum, Vortex Shedding	-1.03	1,407.2	<u>789.7</u>	175	3	Wind	<u>.93</u>	<u>1.04</u>

Allowable Compressive Stress, Hot and Corroded- S_{cHC}, (table **CS-2 Metric)**

A $= .125 / (R_o / t)$ = .125 / (1,690 / 12)= 0.000888

В $= 751.6 \text{ kg/cm}^2$ S $= 1,407.2 / 1.00 = 1,407.2 \text{ kg/cm}^2$

 $= min(B, S) = \frac{751.6 \text{ kg/cm}^2}{1000 \text{ kg/cm}^2}$ S_{cHC}

Allowable Compressive Stress, Hot and New- S_{cHN}, (table CS-2 Metric)

Α $= .125 / (R_o / t)$

= .125 / (1,690 / 15)

= 0.001109В $= 803.8 \text{ kg/cm}^2$

S $= 1,407.2 / 1.00 = 1,407.2 \text{ kg/cm}^2$

 S_{cHN} $= min(B, S) = 803.8 \text{ kg/cm}^2$

Allowable Compressive Stress, Cold and New-S_{cCN}, (table CS-2 Metric)

Α $= .125 / (R_o / t)$ = .125 / (1,690 / 15)= 0.001109

В $= 890.3 \text{ kg/cm}^2$

S $= 1,407.2 / 1.00 = 1,407.2 \text{ kg/cm}^2$

 $= min(B, S) = 890.3 \text{ kg/cm}^2$ S_{cCN}

Allowable Compressive Stress, Cold and Corroded- S_{ccc}, (table CS-2 Metric)

Α $= .125 / (R_o / t)$

= .125 / (1,690 / 12)

= 0.000888

В $= 826.6 \text{ kg/cm}^2$

S $= 1,407.2 / 1.00 = 1,407.2 \text{ kg/cm}^2$

 S_{cCC} $= min(B, S) = 826.6 kg/cm^2$

Allowable Compressive Stress, Vacuum and Corroded- S_{cVC}, (table CS-2 Metric)

 $= .125 / (R_0 / t)$

= .125 / (1,690 / 12)

= 0.000888

В $= 789.7 \text{ kg/cm}^2$

S $= 1,407.2 / 1.00 = 1,407.2 \text{ kg/cm}^2$

 $= min(B, S) = \frac{789.7 \text{ kg/cm}^2}{}$

Operating, Hot & Corroded, Wind, Bottom Seam

= $P*R / (2*S_t*K_s*E_c + .40*|P|)$ (Pressure)

= 3.6*1,678 / (2*1,380*1.20*1.00 + .40*|3.6|)

= 1.82 mm

= $M / (\pi * R_m^2 * S_t * K_s * E_c) * MetricFactor$ (bending) $t_{\rm m}$

= $3,419.5 / (\pi *1,684^2 *1,380*1.20*1.00) *98066.5$

= .02 mm

= $0.6*W / (2*\pi*R_m*S_t*K_s*E_c) * MetricFactor$ (Weight)

= $0.60*7,116.2 / (2*\pi*1,684*1,380*1.20*1.00) * 98.0665$

= .02 mm

(total required, t, = $t_p + t_m - t_w$ tensile)

= 1.82 + .02 - (.02)

= <u>1.82 mm</u>

= $W/(2*\pi*R_m*S_t*K_s*E_c)*MetricFactor$ (Weight) t_{wc}

= $7,116.2/(2*\pi*1,684*1,380*1.20*1.00)*98.0665$

= .04 mm

(total, net = $|t_{mc} + t_{wc} - t_{pc}|$ t_c tensile)

= 1.02 + (.04) - (1.82)

Operating, Hot & New, Wind, Bottom Seam

$$\begin{array}{lll} t_p &= P^*R \, / \, (2^*S_t^*K_s^*E_c + .40^*|P|) & (Pressure) \\ &= 3.6^*1,675 \, / \, (2^*1,380^*1.20^*1.00 + .40^*|3.6|) \\ &= 1.82 \, \text{mm} \\ t_m &= M \, / \, (\pi^*R_m^{~2*}S_t^*K_s^*E_c) \, ^* \, \text{MetricFactor} & (bending) \\ &= 3,419.5 \, / \, (\pi^*1,682.5^{2*}1,380^*1.20^*1.00) \, ^* \, 98066.5 \\ &= .02 \, \text{mm} \\ t_w &= 0.6^*W \, / \, (2^*\pi^*R_m^*S_t^*K_s^*E_c) \, ^* \, \text{MetricFactor} & (Weight) \\ &= 0.60^*7,116.2 \, / \, (2^*\pi^*1,682.5^*1,380^*1.20^*1.00) \, ^* \, 98.0665 \\ &= .02 \, \text{mm} \\ t_t &= t_p + t_m - t_w & (total \, required, \, tensile) \\ &= 1.82 + .02 - (.02) \\ &= 1.82 \, \text{mm} \\ t_wc &= W \, / \, (2^*\pi^*R_m^*S_t^*K_s^*E_c) \, ^* \, \text{MetricFactor} & (Weight) \\ &= 7,116.2 \, / \, (2^*\pi^*1,682.5^*1,380^*1.20^*1.00) \, ^* \, 98.0665 \\ &= .04 \, \text{mm} \\ t_c &= |t_{mc} + t_{wc} - t_{pc}| & (total, \, \text{net \, tensile}) \\ &= |.02 + (.04) - (1.82)| \\ &= 1.76 \, \text{mm} \end{array}$$

Hot Shut Down, Corroded, Wind, Bottom Seam

$$\begin{array}{lll} t_p &= mm & (Pressure) \\ t_m &= M \, / \, (\pi^* R_m^{2*} S_c^* K_s^{}) \, ^* \, MetricFactor & (bending) \\ &= 3,419.5 \, / \, (\pi^* 1,684^{2*}737.05^*1.20) \, ^* \, 98066.5 \\ &= .04 \, mm \\ t_w &= 0.6^* W \, / \, (2^* \pi^* R_m^* S_c^* K_s^{}) \, ^* \, MetricFactor & (Weight) \\ &= 0.60^* 7,116.2 \, / \, (2^* \pi^* 1,684^* 737.05^*1.20) \, ^* \, 98.0665 \\ &= .04 \, mm \\ t_t &= |t_p + t_m - t_w| & (total, \, net \, compressive) \\ &= |t_s - 0.04 - (.04)| &= mm \\ t_wc &= W \, / \, (2^* \pi^* R_m^* S_c^* K_s^{}) \, ^* \, MetricFactor & (Weight) \\ &= 7,116.2 \, / \, (2^* \pi^* 1,684^* 737.05^* 1.20) \, ^* \, 98.0665 \\ &= .07 \, mm \\ t_c &= t_{mc} + t_{wc} - t_{pc} & (total \, required, \, compressive) \\ &= .04 + (.07) - () &= 12 \, mm \end{array}$$

Hot Shut Down, New, Wind, Bottom Seam

$$t_p = mm$$
 (Pressure)
 $t_m = M / (\pi^* R_m^2 * S_c * K_s) * MetricFactor$ (bending)
 $= 3,419.5 / (\pi^* 1,682.5^2 * 788.29 * 1.20) * 98066.5$
 $= .04 \text{ mm}$

```
t_{w} = 0.6*W / (2*\pi*R_{m}*S_{c}*K_{s}) * MetricFactor
                                                                      (Weight)
    = 0.60*7,116.2 / (2*\pi*1,682.5*788.29*1.20) * 98.0665
    = .04 \text{ mm}
t_t = |t_p + t_m - t_w|
                                                                      (total, net compressive)
```

= | + .04 - (.04)|= mm

 $t_{wc} = W / (2*\pi*R_m*S_c*K_s) * MetricFactor$ (Weight)

 $= 7,116.2 / (2*\pi*1,682.5*788.29*1.20) * 98.0665$ = .07 mm

 $t_{c} = t_{mc} + t_{wc} - t_{pc}$ (total required, compressive)

= .04 + (.07) - ()= .11 mm

Empty, Corroded, Wind, Bottom Seam

(Pressure) $t_p = mm$ $t_{\rm m} = M / (\pi^* R_{\rm m}^{2*} S_{\rm c}^* K_{\rm s}) * MetricFactor$ (bending)

 $= 3,419.5 / (\pi *1,684^2 *810.65 *1.20) *98066.5$

= .04 mm

 $t_{w} = 0.6*W / (2*\pi*R_{m}*S_{c}*K_{s}) * MetricFactor$ (Weight)

 $= 0.60*7,116.2 / (2*\pi*1,684*810.65*1.20) * 98.0665$

= .04 mm

(total, net compressive) $t_t = |t_p + t_m - t_w|$

= 1 + .04 - (.04)

 $t_{wc} = W / (2*\pi*R_m*S_c*K_s) * MetricFactor$ (Weight)

 $= 7,116.2 / (2*\pi*1,684*810.65*1.20) * 98.0665$

= .07 mm

 $t_c = t_{mc} + t_{wc} - t_{pc}$ (total required, compressive)

= .04 + (.07) - ()

= .11 mm

Empty, New, Wind, Bottom Seam

(Pressure) $t_p = mm$

 $t_m = M / (\pi^* R_m^2 S_c^* K_s) * MetricFactor$ (bending)

 $= 3,419.5 / (\pi * 1,682.5^2 * 873.07 * 1.20) * 98066.5$

= .04 mm

 $t_w = 0.6*W / (2*\pi*R_m*S_c*K_s) * MetricFactor$ (Weight)

 $= 0.60*7,116.2 / (2*\pi*1,682.5*873.07*1.20) * 98.0665$

= .04 mm

 $t_t = |t_p + t_m - t_w|$ (total, net compressive)

= 1 + .04 - (.04)

 $t_{wc} = W / (2*\pi*R_m*S_c*K_s) * MetricFactor$ (Weight)

 $= 7,116.2 / (2*\pi*1,682.5*873.07*1.20) * 98.0665$

= .06 mm

(total required, compressive) $t_c = t_{mc} + t_{wc} - t_{pc}$

$$= .04 + (.06) - ()$$

= .1 mm

Vacuum, Wind, Bottom Seam

$$\begin{array}{lll} t_{p} &= P*R \, / \, (2*S_{c}*K_{s} + .40*|P|) & (Pressure) \\ &= -1.03*1,678 \, / \, (2*774.39*1.20 + .40*|1.03|) \\ &= -.93 \, \text{mm} \\ t_{m} &= M \, / \, (\pi*R_{m}^{\,\,\,\,\,\,\,\,}^{2}*S_{c}*K_{s}) \, * \, \text{MetricFactor} & (bending) \\ &= 3,419.5 \, / \, (\pi*1,684^{2*}774.39*1.20) \, * \, 98066.5 \\ &= .04 \, \text{mm} \\ t_{w} &= 0.6*W \, / \, (2*\pi*R_{m}*S_{c}*K_{s}) \, * \, \text{MetricFactor} & (Weight) \\ &= 0.60*7,116.2 \, / \, (2*\pi*1,684*774.39*1.20) \, * \, 98.0665 \\ &= .04 \, \text{mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (total, \, \text{net compressive}) \\ &= |-.93 + .04 - (.04)| & \\ &= .93 \, \text{mm} \\ t_{wc} &= W \, / \, (2*\pi*R_{m}*S_{c}*K_{s}) \, * \, \text{MetricFactor} & (Weight) \\ &= 7,116.2 \, / \, (2*\pi*1,684*774.39*1.20) \, * \, 98.0665 \\ &= .07 \, \text{mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (total \, \text{required, compressive}) \\ &= .04 + (.07) - (-.93) & \\ &= 1.04 \, \text{mm} \end{array}$$

Hot Shut Down, Corroded, Weight & Eccentric Moments Only, Bottom Seam

$$\begin{array}{lll} t_{p} & = & mm & (Pressure) \\ t_{m} & = & M \, / \, (\pi^{*}R_{m}^{\; 2*}S_{c}^{\; *}K_{s}^{\; }) \, ^{*} \, \text{MetricFactor} & (bending) \\ & = & 3,349.9 \, / \, (\pi^{*}1,684^{2*}737.05^{*}1.00) \, ^{*} \, 98066.5 \\ & = & .05 \, \text{mm} \\ t_{w} & = & W \, / \, (2^{*}\pi^{*}R_{m}^{\; *}S_{c}^{\; *}K_{s}^{\; }) \, ^{*} \, \text{MetricFactor} & (Weight) \\ & = & 7,116.2 \, / \, (2^{*}\pi^{*}1,684^{*}737.05^{*}1.00) \, ^{*} \, 98.0665 \\ & = & .09 \, \text{mm} \\ t_{t} & = & |t_{p} + t_{m} - t_{w}| & (total, \, \text{net compressive}) \\ & = & | + .05 - (.09)| \\ & = & .04 \, \text{mm} \\ t_{c} & = & t_{mc} + t_{wc} - t_{pc} & (total \, \text{required}, \, \text{compressive}) \\ & = & .05 + (.09) - () \\ & = & .14 \, \text{mm} \end{array}$$

Operating, Hot & Corroded, Vortex Shedding, Wind, Bottom Seam

$$\begin{array}{lll} t_{p} & = & P*R \, / \, (2*S_{t}*K_{s}*E_{c} + .40*|P|) & (Pressure) \\ & = & 3.6*1,678 \, / \, (2*1,380*1.20*1.00 + .40*|3.6|) \\ & = & 1.82 \text{ mm} \\ \\ t_{m} & = & M \, / \, (\pi*R_{m}^{\ 2}*S_{t}*K_{s}*E_{c}) * \, \text{MetricFactor} \\ & = & 3.514.5 \, / \, (\pi*1,684^{2}*1,380*1.20*1.00) * \, 98066.5 \end{array} \tag{bending}$$

Vendor Doc. No. CA-9044-540V5 Rev. 1 Job No. 19-9044

$$\begin{array}{lll} &=& .02 \text{ mm} \\ & t_{w} &=& 0.6^{*}\text{W} \, / \, (2^{*}\pi^{*}\text{R}_{m}^{*}\text{S}_{t}^{*}\text{K}_{s}^{*}\text{E}_{c}) \, ^{*}\, \text{MetricFactor} \\ &=& 0.60^{*}7,116.2 \, / \, (2^{*}\pi^{*}1,684^{*}1,380^{*}1.20^{*}1.00) \, ^{*}\, 98.0665 \\ &=& .02 \text{ mm} \\ & t_{t} &=& t_{p} + t_{m} - t_{w} & \text{(total required, tensile)} \\ &=& 1.82 + .02 - (.02) \\ &=& 1.82 \text{ mm} \\ & t_{wc} &=& W \, / \, (2^{*}\pi^{*}\text{R}_{m}^{*}\text{S}_{t}^{*}\text{K}_{s}^{*}\text{E}_{c}) \, ^{*}\, \text{MetricFactor} & \text{(Weight)} \\ &=& 7,116.2 \, / \, (2^{*}\pi^{*}1,684^{*}1,380^{*}1.20^{*}1.00) \, ^{*}\, 98.0665 \\ &=& .04 \text{ mm} \\ & t_{c} &=& |t_{mc} + t_{wc} - t_{nc}| & \text{(total, net tensile)} \\ \end{array}$$

tensile) = 1.02 + (.04) - (1.82)

 $= 1.76 \, \text{mm}$

 t_c

Empty, Cold & Corroded, Vortex Shedding, Wind, Bottom Seam

$$\begin{array}{lll} t_p &= mm & (Pressure) \\ t_m &= M \, / \, (\pi^* R_m^{\ 2*} S_c^{\ *} K_s^{\ }) \, ^* \, MetricFactor & (bending) \\ &= 3,569.7 \, / \, (\pi^* 1,684^{2*} 810.65^* 1.20) \, ^* \, 98066.5 \\ &= .04 \, mm \\ t_w &= 0.6^* W \, / \, (2^* \pi^* R_m^{\ *} S_c^{\ *} K_s^{\ }) \, ^* \, MetricFactor & (Weight) \\ &= 0.60^* 7,116.2 \, / \, (2^* \pi^* 1,684^* 810.65^* 1.20) \, ^* \, 98.0665 \\ &= .04 \, mm \\ t_t &= |t_p + t_m - t_w| & (total, \, net \, compressive) \\ &= |t + .04 - (.04)| &= mm \\ t_{wc} &= W \, / \, (2^* \pi^* R_m^{\ *} S_c^{\ *} K_s^{\ }) \, ^* \, MetricFactor & (Weight) \\ &= 7,116.2 \, / \, (2^* \pi^* 1,684^* 810.65^* 1.20) \, ^* \, 98.0665 \\ &= .07 \, mm \\ t_c &= t_{mc} + t_{wc} - t_{pc} & (total \, required, \, compressive) \\ &= .04 + (.07) - () &= .11 \, mm \end{array}$$

Vacuum, Vortex Shedding, Wind, Bottom Seam

$$\begin{array}{lll} t_p &= P*R \, / \, (2*S_c*K_s + .40*|P|) & (Pressure) \\ &= -1.03*1,678 \, / \, (2*774.39*1.20 + .40*|1.03|) \\ &= -.93 \, \text{mm} \\ \\ t_m &= M \, / \, (\pi*R_m^{\, 2*}S_c*K_s) \, * \, \text{MetricFactor} & (bending) \\ &= 3,514.6 \, / \, (\pi*1,684^2*774.39*1.20) \, * \, 98066.5 \\ &= .04 \, \text{mm} \\ \\ t_w &= 0.6*W \, / \, (2*\pi*R_m*S_c*K_s) \, * \, \text{MetricFactor} & (Weight) \\ &= 0.60*7,116.2 \, / \, (2*\pi*1,684*774.39*1.20) \, * \, 98.0665 \\ &= .04 \, \text{mm} \\ \\ t_t &= |t_p + t_m - t_w| & (total, \, \text{net compressive}) \\ &= |-.93 + .04 - (.04)| & (total, \, \text{net compressive}) \\ \end{array}$$

= <u>.93 mm</u>

 $t_{wc} = W / (2*\pi*R_m*S_c*K_s) * MetricFactor$ (Weight)

 $= 7,116.2 \, / \, (2*\pi*1,684*774.39*1.20) * 98.0665$

= .07 mm

 $t_c = t_{mc} + t_{wc} - t_{pc}$

= .04 + (.07) - (-.93)

= <u>1.04 mm</u>

(total required, compressive)

ASME Section VIII Division 1, 2017 Edition Metric								
Component		Cylinder						
Material		SA-516 70 (II-D Metric p. 18, ln. 33)						
Impact Tested	Normalized	Fine Grain Practice	Maximize MDMT/ No MAWP					
No	No	Yes	Yes	No				
		Design Pressure (bar)	Design MDMT (°C)					
Inte	ernal	3.6	202	17				
Ext	ernal	1.03	175					
		Static Li	quid Head					
Con	dition	P _s (bar)	H _s (mm)	SG				
Test	vertical	2	20,424.5	1				
		Dime	ensions					
Inner I	Diameter	3,350 mm						
Length		18,882 mm						
Nominal	Thickness	14 mm						
Corrosion	Inner		3 mm					
	Outer							
	Weight and Capacity							
		Weight (kg) Capacity (liters)						
N	lew	2	166,428.43					
Cor	roded	2	167,025.07					
		Inst	lation					
		Thickness (mm)	Density (kg/m³)	Weight (kg)				
Insu	lation	75	150	2,304.34				
		Spacing(mm)	Individual Weight (kg)	Total Weight (kg)				
	Insulation Supports 3,000		100	600				
Radiography								
Longitud	dinal seam	Spot UW-11(b) Type 1						
_	umferential eam	Full UW-11(a) Type 1						
	ttom ential seam	Spot UW-11(b) Type 1						

Results Summary				
Governing condition	External pressure			
Minimum thickness per UG-16	1.5 mm + 3 mm = 4.5 mm			
Design thickness due to internal pressure (t)	<u>8.16 mm</u>			
Design thickness due to external pressure (t _e)	11.76 mm			
Design thickness due to combined loadings + corrosion	<u>5.68 mm</u>			
Maximum allowable external pressure (MAEP)	<u>1.81 bar</u>			
Rated MDMT	-48 °C			

UCS-66 Material Toughness Requirements	
Governing thickness, $t_g =$	14 mm
Exemption temperature from Fig UCS-66M Curve B =	-18.75°C
$t_r = 3.6*1,678 / (1,380*.85 - 0.6*3.6) =$	5.16 mm
Stress ratio = $t_r^* E^* / (t_n - c) = 5.16*0.85 / (14 - 3) =$	0.3987
Reduction in MDMT, T _R from Fig UCS-66.1M =	52.3°C
Reduction in MDMT, T _{PWHT} from UCS-68(c) =	17°C
$MDMT = max[MDMT - T_R - T_{PWHT}, -48] = max[-18.75 - 52.3 - 17, -48] =$	-48°C
Material is exempt from impact testing at the Design MDMT of 17°C.	

Design thickness, (at 202 °C) UG-27(c)(1)

```
= P*R / (S*E - .60*P) + Corrosion
= 3.6*1,678 / (1,380*0.85 - .60*3.6) + 3
= 8.16 \text{ mm}
```

External Pressure, (Corroded & at 175 °C) UG-28(c)

```
L/D_o = 2,000/3,378 = 0.5921
D_o / t = 3,378 / 8.76 = 385.5602
From table G: A = 0.000306
```

From table CS-2 Metric: $B = 303.7181 \text{ kg/cm}^2 (297.85 \text{ bar})$

```
= 4*B/(3*(D_o/t))
= 4*297.85 / (3*(3,378 / 8.76))
= 1.03 \text{ bar}
```

Design thickness for external pressure $P_a = 1.03$ bar

```
= t + Corrosion = 8.76 + 3 = 11.76 \text{ mm}
```

Maximum Allowable External Pressure, (Corroded & at 175 °C) UG-28(c)

```
L/D_o = 2,000/3,378 = 0.5921
D_0 / t = 3,378 / 11 = 307.0837
```

From table G: A = 0.000428

From table CS-2 Metric: $B = 425.3279 \text{ kg/cm}^2 (417.1034 \text{ bar})$

% Extreme fiber elongation - UCS-79(d)

```
EFE = (50*t/R_f)*(1 - R_f/R_o)
        (50*14 / 1,682)*(1 - 1,682 / infinity)
        0.4162%
```

The extreme fiber elongation does not exceed 5%.

External Pressure + Weight + Wind Loading Check (Bergman, ASME paper 54-A-104)

```
P_v = W / (2*\pi*R_m) + M / (\pi*R_m^2)
           = 10*66,401.7 / (2*\pi*1,683.5) + 10000*51,607.6 / (\pi*1,683.5^2)
           = 120.7362 \text{ kg/cm}
       \alpha = P_v / (P_e * D_o)
           = 9.803*120.7362 / (1.03*3,378)
           = .3403
        n = 8
       m = 1.23 / (L / D_0)^2
           = 1.23 / (2,000 / 3,378)^2
           = 3.5088
 Ratio P_e = (n^2 - 1 + m + m^*\alpha) / (n^2 - 1 + m)
           = (8^2 - 1 + 3.5088 + 3.5088 * .3403) / (8^2 - 1 + 3.5088)
        Ratio P_e * P_e \le MAEP
(1.018 * 1.03 = 1.05) \le 1.81
```

Cylinder design thickness is satisfactory.

Thickness Required Due to Pressure + External Loads								
Condition	Pressure P (Allowable Before U Stress Inc kg/cr	UG-23 crease (Temperature (°C)	Corrosion C (mm)	Load	Req'd Thk Due to Tension (mm)	Req'd Thk Due to Compression (mm)
		S_t	Sc					
Operating, Hot & Corroded	3.6	1,407.2	<u>734.3</u>	202	3	Wind	2.29	<u>1.3</u>
Operating, Hot & New	3.6	1,407.2	<u>790.6</u>	202		Wind	<u>2.28</u>	<u>1.3</u>
Hot Shut Down, Corroded		1,407.2	<u>734.3</u>	202	3	Wind	<u>.14</u>	1.37
Hot Shut Down, New		1,407.2	<u>790.6</u>	202		Wind	<u>.14</u>	1.27
Empty, Corroded		1,407.2	805.7	13	3	Wind	<u>.19</u>	<u>1.12</u>
Empty, New		1,407.2	<u>873.4</u>	13		Wind	<u>.2</u>	1.03
<u>Vacuum</u>	-1.03	1,407.2	<u>770.5</u>	175	3	Wind	<u>.73</u>	<u>2.26</u>
Hot Shut Down, Corroded, Weight & Eccentric Moments Only		1,407.2	<u>734.3</u>	202	3	Weight	<u>.73</u>	<u>.98</u>
Operating, Hot & Corroded, Vortex Shedding	3.6	1,407.2	<u>734.3</u>	202	3	Wind	<u>2.56</u>	1.03
Empty, Cold & Corroded, Vortex Shedding		1,407.2	805.7	13	3	Wind	<u>.65</u>	1.79
Vacuum, Vortex Shedding	-1.03	1,407.2	<u>770.5</u>	175	3	Wind	.31	2.69

Allowable Compressive Stress, Hot and Corroded- S_{cHC}, (table CS-2 Metric)

 $= .125 / (R_o / t)$

= .125 / (1,689 / 11)

= 0.000814

В $= 734.3 \text{ kg/cm}^2$

S $= 1,407.2 / 1.00 = 1,407.2 \text{ kg/cm}^2$

 $= min(B, S) = 734.3 \text{ kg/cm}^2$

Allowable Compressive Stress, Hot and New- S_{cHN}, (table CS-2 Metric)

 $= .125 / (R_o / t)$ A

= .125 / (1,689 / 14)

= 0.001036

В $= 790.6 \text{ kg/cm}^2$

 $= 1,407.2 / 1.00 = 1,407.2 \text{ kg/cm}^2$

 \boldsymbol{S}_{cHN} $= min(B, S) = 790.6 \text{ kg/cm}^2$

Allowable Compressive Stress, Cold and New- S_{cCN}, (table CS-2 Metric)

A $= .125 / (R_o / t)$

= .125 / (1,689 / 14)

= 0.001036

 $= 873.4 \text{ kg/cm}^2$

S $= 1,407.2 / 1.00 = 1,407.2 \text{ kg/cm}^2$

 S_{cCN} $= min(B, S) = 873.4 \text{ kg/cm}^2$

Allowable Compressive Stress, Cold and Corroded- S_{ccc}, (table **CS-2 Metric)**

Α $= .125 / (R_o / t)$ = .125 / (1,689 / 11)= 0.000814 $= 805.7 \text{ kg/cm}^2$ В S $= 1,407.2 / 1.00 = 1,407.2 \text{ kg/cm}^2$

 $= min(B, S) = 805.7 \text{ kg/cm}^2$ S_{cCC}

Allowable Compressive Stress, Vacuum and Corroded- S_{cVC}, (table CS-2 Metric)

Α $= .125 / (R_o / t)$ = .125 / (1,689 / 11)= 0.000814В $= 770.5 \text{ kg/cm}^2$ S $= 1,407.2 / 1.00 = 1,407.2 \text{ kg/cm}^2$ $S_{\text{cVC}} = \min(B, S) = \frac{770.5 \text{ kg/cm}^2}{10.5 \text{ kg/cm}^2}$

Operating, Hot & Corroded, Wind, Bottom Seam

 $t_{p} = P*R / (2*S_{t}*K_{s}*E_{c} + .40*|P|)$ (Pressure) = 3.6*1,678 / (2*1,380*1.20*0.85 + .40*|3.6|)= 2.14 mm $t_m = M / (\pi^* R_m^2 S_t^* K_s^* E_c) * MetricFactor$ (bending) $= 51,607.6 / (\pi *1,683.5^2*1,380*1.20*0.85) *98066.5$ = .4 mm $t_w = 0.6*W / (2*\pi*R_m*S_t*K_s*E_c) * MetricFactor$ (Weight) $= 0.60*66,401.7 / (2*\pi*1,683.5*1,380*1.20*0.85) * 98.0665$ = .26 mm(total required, tensile) $t_t = t_p + t_m - t_w$ = 2.14 + .4 - (.26)= 2.29 mm $t_{wc} = W / (2*\pi*R_m*S_t*K_s*E_c) * MetricFactor$ (Weight) $= 66,401.7 / (2*\pi*1,683.5*1,380*1.20*0.85) * 98.0665$ = .44 mm $t_c = |t_{mc} + t_{wc} - t_{pc}|$ (total, net tensile) = |.4 + (.44) - (2.14)|= 1.3 mm

Operating, Hot & New, Wind, Bottom Seam

 $t_p = P*R / (2*S_t*K_s*E_c + .40*|P|)$ (Pressure) = 3.6*1,675 / (2*1,380*1.20*0.85 + .40*|3.6|) $t_m = M / (\pi^* R_m^2 S_t^* K_s^* E_c) * MetricFactor$ (bending) $= 51,607.6 / (\pi * 1,682^2 * 1,380 * 1.20 * 0.85) * 98066.5$ = .4 mm $t_w = 0.6*W / (2*\pi*R_m*S_t*K_s*E_c) * MetricFactor$ (Weight)

```
= 0.60*66,401.7 / (2*\pi*1,682*1,380*1.20*0.85) * 98.0665
    = .26 \text{ mm}
                                                                            (total required, tensile)
t_t = t_p + t_m - t_w
    = 2.14 + .4 - (.26)
    = 2.28 \text{ mm}
t_{wc} = W / (2*\pi*R_m*S_t*K_s*E_c) * MetricFactor
                                                                            (Weight)
    = 66,401.7 / (2*\pi*1,682*1,380*1.20*0.85) * 98.0665
    = .44 \text{ mm}
t_c = |t_{mc} + t_{wc} - t_{pc}|
                                                                            (total, net tensile)
    = |.4 + (.44) - (2.14)|
    = 1.3 \text{ mm}
```

Hot Shut Down, Corroded, Wind, Bottom Seam

$$\begin{array}{lll} t_p & = & mm & (Pressure) \\ t_m & = & M \, / \, (\pi^* R_m^{\; 2*} S_t^* K_s^* E_c) \, ^* \, \text{MetricFactor} & (bending) \\ & = & 51,607.6 \, / \, (\pi^* 1,683.5^{2*} 1,380^* 1.20^* 0.85) \, ^* \, 98066.5 \\ & = & .4 \, \text{mm} & \\ t_w & = & 0.6^* W \, / \, (2^* \pi^* R_m^* S_t^* K_s^* E_c) \, ^* \, \text{MetricFactor} & (Weight) \\ & = & 0.60^* 66,401.7 \, / \, (2^* \pi^* 1,683.5^* 1,380^* 1.20^* 0.85) \, ^* \, 98.0665 \\ & = & .26 \, \text{mm} & \\ t_t & = & t_p + t_m - t_w & (total \, required, \, tensile) \\ & = & + .4 - (.26) & (total \, required, \, tensile) \\ & = & 14 \, \text{mm} & \\ t_mc & = & M \, / \, (\pi^* R_m^{\; 2*} S_c^* K_s) \, ^* \, \text{MetricFactor} & (bending) \\ & = & 51,607.6 \, / \, (\pi^* 1,683.5^{2*} 720.1^* 1.20) \, ^* \, 98066.5 \\ & = & .66 \, \text{mm} & \\ t_wc & = & W \, / \, (2^* \pi^* R_m^* S_c^* K_s) \, ^* \, \text{MetricFactor} & (Weight) \\ & = & 66,401.7 \, / \, (2^* \pi^* 1,683.5^* 720.1^* 1.20) \, ^* \, 98.0665 \\ & = & .71 \, \text{mm} & \\ t_c & = & t_{mc} + t_{wc} - t_{pc} & (total \, required, \, compressive) \\ & = & .66 + (.71) - () & (total \, required, \, compressive) \\ & = & .66 + (.71) - () & (total \, required, \, compressive) \\ & = & .66 + (.71) - () & (total \, required, \, compressive) \\ & = & .66 + (.71) - () & (total \, required, \, compressive) \\ & = & .61 + (.71) - () & (total \, required, \, compressive) \\ & = & .61 + (.71) - () & (total \, required, \, compressive) \\ & = & .61 + (.71) - () & (total \, required, \, compressive) \\ & = & .61 + (.71) - () & (total \, required, \, compressive) \\ & = & .61 + (.71) - () & (total \, required, \, compressive) \\ & = & .61 + (.71) - () & (total \, required, \, compressive) \\ & = & .61 + (.71) - () & (total \, required, \, compressive) \\ & = & .61 + (.71) - () & (total \, required, \, compressive) \\ & = & .61 + (.71) - () & (total \, required, \, compressive) \\ & = & .61 + (.71) - () & (total \, required, \, compressive) \\ & = & .61 + (.71) - (.71) + (.$$

Hot Shut Down, New, Wind, Bottom Seam

t_{p}	=	mm	(Pressure)
t _m	=	M / $(\pi^* R_m^2 * S_t * K_s * E_c) * MetricFactor$	(bending)
	=	$51,607.6 / (\pi^*1,682^{2*}1,380^*1.20^*0.85) * 98066.5$	
	=	.4 mm	
$t_{\rm w}$	=	$0.6*W/(2*\pi*R_m*S_t*K_s*E_c)*MetricFactor$	(Weight)
	=	$0.60*66,401.7 / (2*\pi*1,682*1,380*1.20*0.85) * 98.0665$	
	=	.26 mm	
\mathbf{t}_{t}	=	$t_p + t_m - t_w$	(total required, tensile)
	=	+ .4 - (.26)	

= <u>.14 mm</u>

 $t_{mc} = M / (\pi * R_m^2 * S_c * K_s) * MetricFactor$ (bending)

= $51,607.6 / (\pi * 1,682^2 * 775.35 * 1.20) * 98066.5$

= .61 mm

 $t_{wc} = W/(2*\pi*R_m*S_c*K_s)*MetricFactor$ (Weight)

= $66,401.7 / (2*\pi*1,682*775.35*1.20) * 98.0665$

= .66 mm

 $t_c = t_{mc} + t_{wc} - t_{pc}$ (total required, compressive)

= .61 + (.66) - ()

= <u>1.27 mm</u>

Empty, Corroded, Wind, Bottom Seam

 $t_{p} = mm (Pressure)$

 $t_{\rm m} = M / (\pi^* R_{\rm m}^{2*} S_{\rm t}^* K_{\rm s}^* E_{\rm c}) * MetricFactor$ (bending)

= $51,607.6 / (\pi * 1,683.5^2 * 1,380 * 1.20 * 0.85) * 98066.5$

= .4 mm

 $t_w = 0.6*W/(2*\pi*R_m*S_t*K_s*E_c)*MetricFactor$ (Weight)

 $= 0.60*52,953.8 / (2*\pi*1,683.5*1,380*1.20*0.85) * 98.0665$

= .21 mm

 $t_t = t_p + t_m - t_w$ (total required, tensile)

= + .4 - (.21)

= <u>.19 mm</u>

 $t_{mc} = M / (\pi^* R_m^{2*} S_c^* K_s)^* MetricFactor$ (bending)

 $= 51,607.6 / (\pi *1,683.5^{2}*790.09*1.20) *98066.5$

= .6 mm

 $t_{wc} = W/(2*\pi*R_m*S_c*K_s)*MetricFactor$ (Weight)

= $52,953.8 / (2*\pi*1,683.5*790.09*1.20) * 98.0665$

= .52 mm

 $t_c = t_{mc} + t_{wc} - t_{pc}$ (total required, compressive)

= .6 + (.52) - ()

= <u>1.12 mm</u>

Empty, New, Wind, Bottom Seam

 $t_{p} = mm$ (Pressure)

 $t_{\rm m}$ = M/($\pi * R_{\rm m}^{2} * S_{\rm t} * K_{\rm s} * E_{\rm c}$) * MetricFactor (bending)

= $51,607.6 / (\pi * 1,682^2 * 1,380 * 1.20 * 0.85) * 98066.5$

= .4 mm

 $t_w = 0.6*W/(2*\pi*R_m*S_t*K_s*E_c)*MetricFactor$ (Weight)

 $= 0.60*52,953.8 / (2*\pi*1,682*1,380*1.20*0.85) * 98.0665$

= .21 mm

 $t_t = t_p + t_m - t_w$ (total required, tensile)

= + .4 - (.21)

= <u>.2 mm</u>

$$t_{mc} = M/(\pi * R_m^2 * S_c * K_s) * MetricFactor$$
 (bending)

 $51,607.6 / (\pi * 1,682^2 * 856.48 * 1.20) * 98066.5$

.55 mm

$$t_{wc} = W/(2*\pi*R_m*S_c*K_s)*MetricFactor$$
 (Weight)

 $52,953.8 / (2*\pi*1,682*856.48*1.20) * 98.0665$

.48 mm

$$t_c = t_{mc} + t_{wc} - t_{pc}$$
 (total required, compressive)

.55 + (.48) - ()

1.03 mm

Vacuum, Wind, Bottom Seam

$$t_{p} = P*R / (2*S_{c}*K_{s} + .40*|P|)$$
 (Pressure)

= -1.03*1,678 / (2*755.63*1.20 + .40*|1.03|)

= -.95 mm

$$t_{\rm m} = M / (\pi^* R_{\rm m}^{2*} S_{\rm c}^* K_{\rm s}) * MetricFactor$$
 (bending)

= $51,607.6 / (\pi * 1,683.5^2 * 755.63 * 1.20) * 98066.5$

= .63 mm

$$t_w = 0.6*W / (2*\pi*R_m*S_c*K_s) * MetricFactor$$
 (Weight)

 $= 0.60*66,401.7 / (2*\pi*1,683.5*755.63*1.20) * 98.0665$

= .41 mm

$$t_t = |t_p + t_m - t_w|$$
 (total, net compressive)

= |-.95 + .63 - (.41)|

= .73 mm

$$t_{wc} = W / (2*\pi*R_m*S_c*K_s) * MetricFactor$$
 (Weight)

= $66,401.7 / (2*\pi*1,683.5*755.63*1.20) * 98.0665$

= .68 mm

$$t_c = t_{mc} + t_{wc} - t_{pc}$$
 (total required, compressive)

= .63 + (.68) - (-.95)

= 2.26 mm

Hot Shut Down, Corroded, Weight & Eccentric Moments Only, Bottom Seam

(Pressure) t_p

 $M / (\pi^* R_m^2 S_c^* K_s) * MetricFactor$ (bending) $t_{\rm m}$

 $7,985.9 / (\pi * 1,683.5^2 * 720.1 * 1.00) * 98066.5$.12 mm

W / $(2*\pi*R_m*S_c*K_s)$ * MetricFactor (Weight)

 $66,401.7 / (2*\pi*1,683.5*720.1*1.00) * 98.0665$ =

.85 mm

(total, net $|t_p + t_m - t_w|$ t_t compressive)

|+.12 - (.85)|

<u>.73 mm</u>

(total required, t_c = $t_{mc} + t_{wc} - t_{pc}$ compressive)

.12 + (.85) - ()

.98 mm

Operating, Hot & Corroded, Vortex Shedding, Wind, Bottom Seam

$$\begin{array}{lll} t_p &= P*R \, / \, (2*S_t*K_s*E_c + .40*|P|) & (Pressure) \\ &= 3.6*1,678 \, / \, (2*1,380*1.20*0.85 + .40*|3.6|) \\ &= 2.14 \, \text{mm} \\ t_m &= M \, / \, (\pi*R_m^{\; 2*}S_t*K_s*E_c) \, * \, \text{MetricFactor} & (bending) \\ &= 86,673.6 \, / \, (\pi*1,683.5^{2*}1,380*1.20*0.85) \, * \, 98066.5 \\ &= .68 \, \text{mm} \\ t_w &= 0.6*W \, / \, (2*\pi*R_m*S_t*K_s*E_c) \, * \, \text{MetricFactor} & (Weight) \\ &= 0.60*66,401.7 \, / \, (2*\pi*1,683.5*1,380*1.20*0.85) \, * \, 98.0665 \\ &= .26 \, \text{mm} \\ t_t &= t_p + t_m - t_w & (total \, required, \, tensile) \\ &= 2.14 + .68 - (.26) \\ &= 2.56 \, \text{mm} \\ t_wc &= W \, / \, (2*\pi*R_m*S_t*K_s*E_c) \, * \, \text{MetricFactor} & (Weight) \\ &= 66,401.7 \, / \, (2*\pi*1,683.5*1,380*1.20*0.85) \, * \, 98.0665 \\ &= .44 \, \text{mm} \\ t_c &= |t_{mc} + t_{wc} - t_{pc}| & (total, \, \text{net \, tensile}) \\ &= |L68 + (.44) - (2.14)| \\ &= 1.03 \, \text{mm} \end{array}$$

Empty, Cold & Corroded, Vortex Shedding, Wind, Bottom Seam

$$\begin{array}{lll} t_p & = & mm & (Pressure) \\ t_m & = & M \, / \, (\pi * R_m^{\ 2} * S_t^* K_s * E_c) * \, \text{MetricFactor} & (bending) \\ & = & 109,243.9 \, / \, (\pi * 1,683.5^{2} * 1,380* 1.20* 0.85) * \, 98066.5 \\ & = & .85 \, \text{mm} & \\ t_w & = & 0.6 * W \, / \, (2 * \pi * R_m^{\ *} S_t^* K_s^{\ *} E_c) * \, \text{MetricFactor} & (Weight) \\ & = & 0.60 * 52,953.8 \, / \, (2 * \pi * 1,683.5* 1,380* 1.20* 0.85) * \, 98.0665 \\ & = & .21 \, \text{mm} & \\ t_t & = & t_p + t_m - t_w & (total \, required, \, tensile) \\ & = & + .85 - (.21) & (total \, required, \, tensile) \\ & = & + .85 - (.21) & (bending) \\ & = & 109,243.9 \, / \, (\pi * 1,683.5^{2} * 790.09* 1.20) * \, 98066.5 \\ & = & 1.27 \, \text{mm} & \\ t_{wc} & = & W \, / \, (2 * \pi * R_m^{\ *} S_c^{\ *} K_s) * \, \text{MetricFactor} & (Weight) \\ & = & 52,953.8 \, / \, (2 * \pi * 1,683.5* 790.09* 1.20) * \, 98.0665 \\ & = & .52 \, \text{mm} & \\ t_c & = & t_{mc} + t_{wc} - t_{pc} & (total \, required, \, compressive) \\ & = & 1.27 + (.52) - () & (total \, required, \, compressive) \\ & = & 1.27 + (.52) - () & (total \, required, \, compressive) \\ & = & 1.79 \, \text{mm} & (total \, required, \, compressive) \\ & = & 1.79 \, \text{mm} & (total \, required, \, compressive) \\ & = & 1.79 \, \text{mm} & (total \, required, \, compressive) \\ & = & 1.79 \, \text{mm} & (total \, required, \, compressive) \\ & = & 1.79 \, \text{mm} & (total \, required, \, compressive) \\ & = & 1.79 \, \text{mm} & (total \, required, \, compressive) \\ & = & 1.79 \, \text{mm} & (total \, required, \, compressive) \\ & = & 1.79 \, \text{mm} & (total \, required, \, compressive) \\ & = & 1.79 \, \text{mm} & (total \, required, \, compressive) \\ & = & 1.79 \, \text{mm} \\ & (total \, required, \, compressive) \\ & = & 1.79 \, \text{mm} \\ & (total \, required, \, compressive) \\ & = & 1.79 \, \text{mm} \\ & (total \, required, \, compressive) \\ & = & 1.79 \, \text{mm} \\ & (total \, required, \, compressive) \\ & = & 1.79 \, \text{mm} \\ & (total \, required, \, compressive) \\ & = & 1.79 \, \text{mm} \\ & (total \, required, \, compressive) \\ & = & 1.79 \, \text{mm} \\ & (total \, required, \, compressive) \\ & = & 1.79 \, \text{mm} \\ & (total \, required, \, compressive) \\ & = & 1.79 \, \text{mm} \\ & (total$$

Vacuum, Vortex Shedding, Wind, Bottom Seam

 $t_p = P*R / (2*S_c*K_s + .40*|P|)$ (Pressure)

= -1.03*1,678 / (2*755.63*1.20 + .40*11.031)

= -.95 mm

 $t_{\rm m} = M / (\pi * R_{\rm m}^2 * S_{\rm c} * K_{\rm s}) * MetricFactor$ (bending)

 $= 86,714.9 / (\pi *1,683.5^2*755.63*1.20) *98066.5$

= 1.05 mm

 $t_w = 0.6*W / (2*\pi*R_m*S_c*K_s) * MetricFactor$ (Weight)

 $= 0.60*66,401.7 / (2*\pi*1,683.5*755.63*1.20) * 98.0665$

= .41 mm

 $t_t = |t_p + t_m - t_w|$ (total, net compressive)

= |-.95 + 1.05 - (.41)|

 $= .31 \, \text{mm}$

 $t_{wc} = W / (2*\pi*R_m*S_c*K_s) * MetricFactor$ (Weight)

 $= 66,401.7 / (2*\pi*1,683.5*755.63*1.20) * 98.0665$

= .68 mm

(total required, compressive) $t_c = t_{mc} + t_{wc} - t_{pc}$

= 1.05 + (.68) - (-.95)

= 2.69 mm

ASME Section VIII Division 1, 2017 Edition Metric							
Component		Cylinder					
Material		SA-516 70 (II-D Metric p. 18, ln. 33)					
Impact Tested	Normalized	Fine Grain Practice	Maximize MDMT/ No MAWP				
No	No	Yes	Yes	No			
		Design Pressure (bar)	Design MDMT (°C)				
Inte	ernal	3.6	17				
Ext	ernal	1.03	175				
		Static Li	quid Head				
Con	dition	P _s (bar)	H _s (mm)	SG			
Test	vertical	2.3	23,454.5	1			
		Dime	ensions				
Inner I	Diameter	3,350 mm					
Length		3,030 mm					
Nominal	Thickness	25 mm					
Corrosion	Inner	3 mm					
	Outer						
		Weight a	nd Capacity				
		W	eight (kg)	Capacity (liters)			
N	lew	(26,706.82				
Cor	roded	(26,802.56				
		Insu	ılation				
		Thickness (mm)	Density (kg/m³)	Weight (kg)			
Insu	lation	75	150	372.13			
		Spacing(mm)	Individual Weight (kg)	Total Weight (kg)			
Insulation Supports		3,000 100		100			
Radiography							
Longitud	linal seam	Full UW-11(a) Type 1					
_	umferential eam	Spot UW-11(b) Type 1					
	ttom ential seam	Full UW-11(a) Type 1					

Results Summary					
Governing condition	External pressure				
Minimum thickness per UG-16	1.5 mm + 3 mm = 4.5 mm				
Design thickness due to internal pressure (t)	8.16 mm				
Design thickness due to external pressure (t _e)	<u>10.79 mm</u>				
Design thickness due to combined loadings + corrosion	<u>5.71 mm</u>				
Maximum allowable external pressure (MAEP)	8 bar				
Rated MDMT	-105 °C				

UCS-66 Material Toughness Requirements			
$t_r = 3.6*1,678 / (1,380*.85 - 0.6*3.6) =$	5.16 mm		
Stress ratio = $t_r^* E^* / (t_n - c) = 5.16*0.85 / (25 - 3) =$	0.1993		
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-105°C		
Material is exempt from impact testing at the Design MDMT of 17°C.			

Design thickness, (at 202 °C) UG-27(c)(1)

```
t = P*R / (S*E - .60*P) + Corrosion
      = 3.6*1,678 / (1,380*0.85 - .60*3.6) + 3
      = 8.16 \text{ mm}
```

External Pressure, (Corroded & at 175 °C) UG-28(c)

```
L/D_0 = 1,500/3,400 = 0.4412
D_0 / t = 3,400 / 7.79 = 436.2676
From table G: A = 0.000346
From table CS-2 Metric: B = 343.6619 \text{ kg/cm}^2 (337.02 \text{ bar})
   = 4*B/(3*(D_o/t))
      = 4*337.02 / (3*(3,400 / 7.79))
      = 1.03 \text{ bar}
```

Design thickness for external pressure $P_a = 1.03$ bar

```
= t + Corrosion = 7.79 + 3 = 10.79 mm
```

Maximum Allowable External Pressure, (Corroded & at 175 °C) UG-28(c)

```
L/D_0 = 1,500/3,400 = 0.4412
D_0/t = 3,400/22 = 154.5436
From table G:
                A = 0.001688
From table CS-2 Metric: B = 946.1129 \text{ kg/cm}^2 (927.8182 \text{ bar})
P_a = 4*B / (3*(D_o / t))
     = 4*927.82 / (3*(3,400 / 22))
      = 8 bar
```

% Extreme fiber elongation - UCS-79(d)

```
EFE =
       (50*t/R_f)*(1-R_f/R_o)
        (50*25 / 1,687.5)*(1 - 1,687.5 / infinity)
         0.7407%
```

The extreme fiber elongation does not exceed 5%.

External Pressure + Weight + Wind Loading Check (Bergman, ASME paper 54-A-104)

```
P_v = W / (2*\pi*R_m) + M / (\pi*R_m^2)
             = 10*100,390.6 / (2*\pi*1,689) + 10000*65,679.7 / (\pi*1,6892)
             = 167.8845 \text{ kg/cm}
          \alpha = P_v / (P_e * D_o)
             = 9.803*167.8845 / (1.03*3,400)
          n = 8
         m = 1.23 / (L / D_0)^2
             = 1.23 / (1,500 / 3,400)^2
             = 6.3195
   Ratio P_e = (n^2 - 1 + m + m*\alpha) / (n^2 - 1 + m)
             = (8^2 - 1 + 6.3195 + 6.3195 * .4701) / (8^2 - 1 + 6.3195)
           Ratio P_e * P_e \le MAEP
 (1.0429 * 1.03 = 1.07) \le 8
Cylinder design thickness is satisfactory.
```

Thickness Required Due to Pressure + External Loads								
Condition	Pressure P (Allov Stress UG-23 Incre kg/c	Before Stress	Temperature (°C)	Corrosion C (mm)	Load	Req'd Thk Due to Tension (mm)	Req'd Thk Due to Compression (mm)
		S_t	Sc					
Operating, Hot & Corroded	3.6	1,407.2	880.7	202	3	Wind	<u>1.92</u>	<u>.83</u>
Operating, Hot & New	3.6	1,407.2	908.4	202		Wind	1.92	<u>.82</u>
Hot Shut Down, Corroded		1,407.2	880.7	202	3	Wind	<u>.1</u>	<u>1.59</u>
Hot Shut Down, New		1,407.2	908.4	202		Wind	<u>.1</u>	<u>1.54</u>
Empty, Corroded		1,407.2	<u>989.6</u>	13	3	Wind	<u>.15</u>	<u>1.29</u>
Empty, New		1,407.2	1,025.8	13		Wind	<u>.15</u>	<u>1.25</u>
<u>Vacuum</u>	-1.03	1,407.2	935.7	175	3	Wind	<u>.64</u>	<u>2.28</u>
Hot Shut Down, Corroded, Weight & Eccentric Moments Only		1,407.2	880.7	202	3	Weight	<u>.97</u>	<u>1.18</u>
Operating, Hot & Corroded, Vortex Shedding	3.6	1,407.2	880.7	202	3	Wind	2.2	<u>.55</u>
Empty, Cold & Corroded, Vortex Shedding		1,407.2	<u>989.6</u>	13	3	Wind	<u>.61</u>	<u>1.95</u>
Vacuum, Vortex Shedding	-1.03	1,407.2	935.7	175	3	Wind	.21	2.71

Allowable Compressive Stress, Hot and Corroded- $\mathbf{S}_{\mathrm{cHC}},$ (table CS-2 Metric)

Α $= .125 / (R_o / t)$

= .125 / (1,700 / 22)

= 0.001618

В $= 880.7 \text{ kg/cm}^2$

 $= 1,407.2 / 1.00 = 1,407.2 \text{ kg/cm}^2$

 $= min(B, S) = 880.7 \text{ kg/cm}^2$ S_{cHC}

Allowable Compressive Stress, Hot and New- S_{cHN} , (table CS-2 Metric)

A $= .125 / (R_o / t)$

= .125 / (1,700 / 25)

= 0.001838

В $= 908.4 \text{ kg/cm}^2$

 $= 1,407.2 / 1.00 = 1,407.2 \text{ kg/cm}^2$

 S_{cHN} $= min(B, S) = 908.4 \text{ kg/cm}^2$

Allowable Compressive Stress, Cold and New- $S_{\rm cCN}$, (table CS-2 Metric)

Α $= .125 / (R_o / t)$

= .125 / (1,700 / 25)

= 0.001838

 $= 1,025.8 \text{ kg/cm}^2$ В

S $= 1,407.2 / 1.00 = 1,407.2 \text{ kg/cm}^2$

 S_{cCN} $= min(B, S) = 1.025.8 kg/cm^2$

Allowable Compressive Stress, Cold and Corroded- S_{ccc}, (table **CS-2 Metric)**

Α $= .125 / (R_o / t)$ = .125 / (1,700 / 22)= 0.001618 $= 989.6 \text{ kg/cm}^2$ В

S $= 1,407.2 / 1.00 = 1,407.2 \text{ kg/cm}^2$

 $= min(B, S) = 989.6 \text{ kg/cm}^2$ S_{cCC}

Allowable Compressive Stress, Vacuum and Corroded- S_{cVC} , (table CS-2 Metric)

 $= .125 / (R_o / t)$ Α = .125 / (1,700 / 22)= 0.001618В $= 935.7 \text{ kg/cm}^2$

S $= 1,407.2 / 1.00 = 1,407.2 \text{ kg/cm}^2$

Operating, Hot & Corroded, Wind, Bottom Seam

 $t_p = P*R / (2*S_t*K_s*E_c + .40*|P|)$ (Pressure) = 3.6*1,678 / (2*1,380*1.20*1.00 + .40*|3.6|)= 1.82 mm $t_m = M / (\pi^* R_m^2 S_t^* K_s^* E_c) * MetricFactor$ (bending) $= 65,679.7 / (\pi *1,689^2 *1,380 *1.20 *1.00) *98066.5$ = .43 mm $t_w = 0.6*W / (2*\pi*R_m*S_t*K_s*E_c) * MetricFactor$ (Weight) $= 0.60*100,390.6 / (2*\pi*1,689*1,380*1.20*1.00) * 98.0665$ = .34 mm(total required, tensile) $t_t = t_p + t_m - t_w$ = 1.82 + .43 - (.34)= 1.92 mm $t_{wc} = W / (2*\pi*R_m*S_t*K_s*E_c) * MetricFactor$ (Weight) $= 100,390.6 / (2*\pi*1,689*1,380*1.20*1.00) * 98.0665$ = .56 mm $t_c = |t_{mc} + t_{wc} - t_{pc}|$ (total, net tensile)

Operating, Hot & New, Wind, Bottom Seam

 $t_{w} = 0.6*W / (2*\pi*R_{m}*S_{t}*K_{s}*E_{c}) * MetricFactor$

= 1.43 + (.56) - (1.82)

= .83 mm

 $t_p = P*R / (2*S_t*K_s*E_c + .40*|P|)$ (Pressure) = 3.6*1,675 / (2*1,380*1.20*1.00 + .40*|3.6|) $t_m = M / (\pi^* R_m^2 S_t^* K_s^* E_c) * MetricFactor$ (bending) $= 65,679.7 / (\pi *1,687.5^{2}*1,380*1.20*1.00) *98066.5$ = .43 mm

(Weight)

$$= 0.60*100,390.6 / (2*\pi*1,687.5*1,380*1.20*1.00) * 98.0665$$

$$= .34 \text{ mm}$$

$$t_t = t_p + t_m - t_w \qquad \text{(total required, tensile)}$$

$$= 1.82 + .43 - (.34)$$

$$= 1.92 \text{ mm}$$

$$t_{wc} = W / (2*\pi*R_m*S_t*K_s*E_c) * \text{MetricFactor}$$

$$= 100,390.6 / (2*\pi*1,687.5*1,380*1.20*1.00) * 98.0665$$

$$= .56 \text{ mm}$$

$$t_c = |t_{mc} + t_{wc} - t_{pc}| \qquad \text{(total, net tensile)}$$

$$= |.43 + (.56) - (1.82)|$$

$$= .82 \text{ mm}$$

Hot Shut Down, Corroded, Wind, Bottom Seam

$$\begin{array}{lll} t_{p} & = & mm & (Pressure) \\ t_{m} & = & M \, / \, (\pi * R_{m}^{2} * S_{t} * K_{s} * E_{c}) * \, \text{MetricFactor} & (bending) \\ & = & 65,679.7 \, / \, (\pi * 1,689^{2} * 1,380*1.20*1.00) * \, 98066.5 \\ & = & .43 \, \, \text{mm} & \\ t_{w} & = & 0.6 * W \, / \, (2 * \pi * R_{m} * S_{t} * K_{s} * E_{c}) * \, \text{MetricFactor} & (Weight) \\ & = & 0.60 * 100,390.6 \, / \, (2 * \pi * 1,689*1,380*1.20*1.00) * \, 98.0665 \\ & = & .34 \, \, \text{mm} & \\ t_{t} & = & t_{p} + t_{m} - t_{w} & (total \, required, \, tensile) \\ & = & + .43 - (.34) & (total \, required, \, tensile) \\ & = & 4.43 - (.3$$

Hot Shut Down, New, Wind, Bottom Seam

t _p	=	mm	(Pressure)
t _m	=	$M / (\pi * R_m^2 * S_t * K_s * E_c) * MetricFactor$	(bending)
	=	$65,679.7 / (\pi*1,687.5^2*1,380*1.20*1.00) * 98066.5$	
	=	.43 mm	
$t_{\rm w}$	=	$0.6*W / (2*\pi*R_m*S_t*K_s*E_c) * MetricFactor$	(Weight)
	=	$0.60*100,390.6 / (2*\pi*1,687.5*1,380*1.20*1.00) * 98.0665$	
	=	.34 mm	
t _t	=	$t_p + t_m - t_w$	(total required, tensile)
	=	+ .43 - (.34)	

= <u>.1 mm</u>

 $t_{mc} = M / (\pi * R_m^2 * S_c * K_s) * MetricFactor$ (bending)

= $65,679.7 / (\pi *1,687.5^2 *890.79 *1.20) *98066.5$

= .67 mm

 $t_{wc} = W/(2*\pi*R_m*S_c*K_s)*MetricFactor$ (Weight)

= $100,390.6 / (2*\pi*1,687.5*890.79*1.20) * 98.0665$

= .87 mm

 $t_c = t_{mc} + t_{wc} - t_{pc}$ (total required, compressive)

= .67 + (.87) - ()

= <u>1.54 mm</u>

Empty, Corroded, Wind, Bottom Seam

 $t_p = mm$ (Pressure)

 $t_{\rm m}$ = M / $(\pi^* R_{\rm m}^{2*} S_{\rm t}^* K_{\rm s}^* E_{\rm c})$ * MetricFactor (bending)

 $= 65,679.7 / (\pi^*1,689^2*1,380*1.20*1.00) * 98066.5$

= .43 mm

 $t_w = 0.6*W/(2*\pi*R_m*S_t*K_s*E_c)*MetricFactor$ (Weight)

 $= 0.60*85,084.5 / (2*\pi*1,689*1,380*1.20*1.00) * 98.0665$

= .28 mm

 $t_t = t_p + t_m - t_w$ (total required, tensile)

= + .43 - (.28)

= <u>.15 mm</u>

 $t_{mc} = M / (\pi * R_m^2 * S_c * K_s) * MetricFactor$ (bending)

= $65,679.7 / (\pi^*1,689^2*970.49*1.20) * 98066.5$

= .62 mm

 $t_{wc} = W/(2*\pi*R_m*S_c*K_s)*MetricFactor$ (Weight)

= $85,084.5 / (2*\pi*1,689*970.49*1.20) * 98.0665$

= .68 mm

 $t_c = t_{mc} + t_{wc} - t_{pc}$ (total required, compressive)

= .62 + (.68) - ()

= <u>1.29 mm</u>

Empty, New, Wind, Bottom Seam

 $t_p = mm$ (Pressure) $t_m = M / (\pi^* R_m^{2*} S_* * K_s * E_s) * MetricFactor$ (bending)

 $t_{\rm m}$ = M / $(\pi^* R_{\rm m}^{2*} S_{\rm t}^* K_{\rm s}^* E_{\rm c})$ * MetricFactor = 65,679.7 / $(\pi^* 1,687.5^{2*} 1,380^* 1.20^* 1.00)$ * 98066.5

= .43 mm

 $t_w = 0.6*W/(2*\pi*R_m*S_t*K_s*E_c)*MetricFactor$ (Weight)

 $= 0.60*85,084.5 / (2*\pi*1,687.5*1,380*1.20*1.00) * 98.0665$

= .29 mm

 $t_t = t_p + t_m - t_w$ (total required, tensile)

= + .43 - (.29)

= <u>.15 mm</u>

$$\begin{array}{lll} t_{\rm mc} & = & M \, / \, (\pi^* R_{\rm m}^{\ 2} {}^* S_{\rm c} {}^* K_{\rm s}) \, {}^* \, {\rm MetricFactor} & (bending) \\ & = & 65,679.7 \, / \, (\pi^* 1,687.5^2 {}^* 1,005.92 {}^* 1.20) \, {}^* \, 98066.5 \\ & = & .6 \, {\rm mm} \\ \\ t_{\rm wc} & = & W \, / \, (2^* \pi^* R_{\rm m}^* S_{\rm c}^* K_{\rm s}) \, {}^* \, {\rm MetricFactor} & (Weight) \\ & = & 85,084.5 \, / \, (2^* \pi^* 1,687.5^* 1,005.92 {}^* 1.20) \, {}^* \, 98.0665 \\ & = & .65 \, {\rm mm} \\ \\ t_{\rm c} & = & t_{\rm mc} + t_{\rm wc} \, {}^- t_{\rm pc} & (total \, required, \\ & compressive) \\ & = & .6 + (.65) \, - () \end{array}$$

Vacuum, Wind, Bottom Seam

1.25 mm

$$\begin{array}{lll} t_p &= P^*R \, / \, (2^*S_c^*K_s + .40^*|P|) & (\text{Pressure}) \\ &= -1.03^*1,678 \, / \, (2^*917.57^*1.20 + .40^*|1.03|) \\ &= -.78 \, \text{mm} \\ \\ t_m &= M \, / \, (\pi^*R_m^{\ 2^*S_c^*K_s}) \, ^* \, \text{MetricFactor} & (\text{bending}) \\ &= 65,679.7 \, / \, (\pi^*1,689^2*917.57^*1.20) \, ^* \, 98066.5 \\ &= .65 \, \text{mm} \\ \\ t_w &= 0.6^*W \, / \, (2^*\pi^*R_m^*S_c^*K_s) \, ^* \, \text{MetricFactor} & (\text{Weight}) \\ &= 0.60^*100,390.6 \, / \, (2^*\pi^*1,689^*917.57^*1.20) \, ^* \, 98.0665 \\ &= .51 \, \text{mm} \\ \\ t_t &= |t_p + t_m - t_w| & (\text{total, net compressive}) \\ &= |-.78 + .65 - (.51)| & (\text{total, net compressive}) \\ &= |-.78 + .65 - (.51)| & (\text{Weight}) \\ &= |.64 \, \text{mm} \\ \\ t_{wc} &= W \, / \, (2^*\pi^*R_m^*S_c^*K_s) \, ^* \, \text{MetricFactor} & (\text{Weight}) \\ &= 100,390.6 \, / \, (2^*\pi^*1,689^*917.57^*1.20) \, ^* \, 98.0665 \\ &= .84 \, \text{mm} \\ \\ t_c &= t_{mc} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= .65 + (.84) - (-.78) & (\text{total required, compressive}) \\ &= 2.28 \, \text{mm} \\ \end{array}$$

Hot Shut Down, Corroded, Weight & Eccentric Moments Only, Bottom Seam

t _p	=	mm	(Pressure)
t _m	=	$M / (\pi * R_m^2 * S_c * K_s) * MetricFactor$	(bending)
	=	$7,985.9 / (\pi *1,689^2 *863.65 *1.00) *98066.5$	
	=	.1 mm	
$t_{\rm w}$	=	W / $(2*\pi*R_m*S_c*K_s)$ * MetricFactor	(Weight)
	=	$100,390.6 / (2*\pi*1,689*863.65*1.00) * 98.0665$	
	=	1.07 mm	
t _t	=	$ \mathbf{t}_{\mathrm{p}} + \mathbf{t}_{\mathrm{m}} - \mathbf{t}_{\mathrm{w}} $	(total, net compressive)
	=	l + .1 - (1.07)l	
	=	<u>.97 mm</u>	
t _c	=	$t_{mc} + t_{wc} - t_{pc}$	(total required, compressive)
	=	.1 + (1.07) - ()	

Operating, Hot & Corroded, Vortex Shedding, Wind, Bottom Seam

$$\begin{array}{lll} t_p &= P^*R \, / \, (2^*S_1^*K_s^*E_c + .40^*|P|) & (Pressure) \\ &= 3.6^*1,678 \, / \, (2^*1,380^*1.20^*1.00 + .40^*|3.6|) \\ &= 1.82 \, \text{mm} \\ t_m &= M \, / \, (\pi^*R_m^{\ 2*}S_1^*K_s^*E_c) \, ^* \, \text{MetricFactor} & (bending) \\ &= 108,449.3 \, / \, (\pi^*1,689^2*1,380^*1.20^*1.00) \, ^* \, 98066.5 \\ &= .72 \, \text{mm} \\ t_w &= 0.6^*W \, / \, (2^*\pi^*R_m^*S_1^*K_s^*E_c) \, ^* \, \text{MetricFactor} & (Weight) \\ &= 0.60^*100,390.6 \, / \, (2^*\pi^*1,689^*1,380^*1.20^*1.00) \, ^* \, 98.0665 \\ &= .34 \, \text{mm} \\ t_t &= t_p + t_m - t_w & (total \ required, \ tensile) \\ &= 1.82 + .72 - (.34) \\ &= 2.2 \, \text{mm} \\ t_{wc} &= W \, / \, (2^*\pi^*R_m^*S_1^*K_s^*E_c) \, ^* \, \text{MetricFactor} & (Weight) \\ &= 100,390.6 \, / \, (2^*\pi^*1,689^*1,380^*1.20^*1.00) \, ^* \, 98.0665 \\ &= .56 \, \text{mm} \\ t_c &= |t_{mc} + t_{wc} - t_{pc}| & (total, \ net \ tensile) \\ &= |1.72 + (.56) - (1.82)| \\ &= .55 \, \text{mm} \end{array}$$

Empty, Cold & Corroded, Vortex Shedding, Wind, Bottom Seam

$$\begin{array}{lll} t_{p} & = & mm & (Pressure) \\ t_{m} & = & M / (\pi * R_{m}^{2} * S_{1} * K_{s} * E_{c}) * \text{ MetricFactor} & (bending) \\ & = & 136,021.8 / (\pi * 1,689^{2}* 1,380^{*} 1.20^{*} 1.00) * 98066.5 \\ & = & .9 \text{ mm} \\ t_{w} & = & 0.6 * W / (2 * \pi * R_{m} * S_{1} * K_{s} * E_{c}) * \text{ MetricFactor} & (Weight) \\ & = & 0.60 * 85,084.5 / (2 * \pi * 1,689 * 1,380 * 1.20 * 1.00) * 98.0665 \\ & = & .28 \text{ mm} \\ t_{t} & = & t_{p} + t_{m} - t_{w} & (total required, tensile) \\ & = & + .9 - (.28) \\ & = & .61 \text{ mm} \\ t_{mc} & = & M / (\pi * R_{m}^{2} * S_{c} * K_{s}) * \text{ MetricFactor} & (bending) \\ & = & 136,021.8 / (\pi * 1,689^{2} * 970.49 * 1.20) * 98066.5 \\ & = & 1.28 \text{ mm} \\ t_{wc} & = & W / (2 * \pi * R_{m} * S_{c} * K_{s}) * \text{ MetricFactor} & (Weight) \\ & = & 85,084.5 / (2 * \pi * 1,689 * 970.49 * 1.20) * 98.0665 \\ & = & .68 \text{ mm} \\ t_{c} & = & t_{mc} + t_{wc} - t_{pc} & (total required, compressive) \\ & = & 1.28 + (.68) - () \\ & = & 1.95 \text{ mm} \\ \end{array}$$

Vacuum, Vortex Shedding, Wind, Bottom Seam

 $t_p = P*R / (2*S_c*K_s + .40*|P|)$ (Pressure)

= -1.03*1,678 / (2*917.57*1.20 + .40*11.031)

= -.78 mm

 $t_{\rm m} = M / (\pi * R_{\rm m}^2 * S_{\rm c} * K_{\rm s}) * MetricFactor$ (bending)

= $108,499.8 / (\pi * 1,689^2 * 917.57 * 1.20) * 98066.5$

= 1.08 mm

 $t_w = 0.6*W / (2*\pi*R_m*S_c*K_s) * MetricFactor$ (Weight)

 $= 0.60*100,390.6 / (2*\pi*1,689*917.57*1.20) * 98.0665$

= .51 mm

 $t_t = |t_p + t_m - t_w|$ (total, net compressive)

= |-.78 + 1.08 - (.51)|

= <u>.21 mm</u>

 $t_{wc} = W / (2*\pi*R_m*S_c*K_s) * MetricFactor$ (Weight)

= $100,390.6 / (2*\pi*1,689*917.57*1.20) * 98.0665$

= .84 mm

(total required, compressive) $t_{c} = t_{mc} + t_{wc} - t_{pc}$

= 1.08 + (.84) - (-.78)

= 2.71 mm

Bottom existing shell

ASME Section VIII Division 1, 2017 Edition Metric							
Com	ponent	Cylinder					
Ma	terial	SA-516 70 (II-D Metric p. 18, ln. 33)					
Impact Tested	Normalized	Fine Grain Practice	PWHT	Maximize MDMT/ No MAWP			
No	No	Yes	Yes	No			
		Design Pressure (bar)	Design Temperature (°C)	Design MDMT (°C)			
Inte	ernal	3.6	202	17			
Ext	ernal	1.06	175				
		Static Li	quid Head				
Con	dition	P _s (bar)	H _s (mm)	SG			
Ope	rating	0.27	2,562	1.065			
Test	vertical	2.92	29,826.5	1			
		Dime	ensions				
Inner I	Diameter	3,350 mm					
Le	ngth	6,372 mm					
Nominal Thickness		14 mm					
Corrosion	Inner	0 mm					
	Outer		0 mm				
Weight and Capacity							
		eight (kg)	Capacity (liters)				
N	ew	7	55,962.64				
Cor	roded	7	7,273.08				
		Insulati	on\Lining				
		Thickness (mm)	Density (kg/m³)	Weight (kg)			
Li	ning	3	8,027	1,613.45			
Insu	lation	75	150	777.63			
		Spacing(mm)	Individual Weight (kg)	Total Weight (kg)			
Insulation Supports		3,000	100	200			
		Radio	ography				
Longitud	linal seam		Spot UW-11(b) Type 1				
_	ımferential am	Full UW-11(a) Type 1					
Bottom Circumferential seam Full UW-11(a) Type 1							

Results Summary							
Governing condition	External pressure						
Minimum thickness per UG-16	1.5 mm + mm = 1.5 mm						
Design thickness due to internal pressure (t)	<u>5.53 mm</u>						
Design thickness due to external pressure (t _e)	9.28 mm						
Design thickness due to combined loadings + corrosion	3.82 mm						
Maximum allowable external pressure (MAEP)	2.91 bar						
Rated MDMT	-105 °C						

UCS-66 Material Toughness Requirements						
$t_r = 3.87*1,675 / (1,380*.85 - 0.6*3.87) =$	5.53 mm					
Stress ratio = $t_r^* E^* / (t_n - c) = 5.53*0.85 / (14 - 0) =$	0.336					
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-105°C					
Material is exempt from impact testing at the Design MDMT of 17°C.						

Design thickness, (at 202 °C) UG-27(c)(1)

```
= P*R / (S*E - .60*P) + Corrosion
= 3.87*1,675 / (1,380*0.85 - .60*3.87) +
= 5.53 \text{ mm}
```

External Pressure, (Corroded & at 175 °C) UG-28(c)

```
L/D_0 = 2,280.17/3,378 = 0.6750
D_0/t = 3,378/9.28 = 363.9740
From table G:
                     A = 0.000296
From table CS-2 Metric: B = 293.6728 \text{ kg/cm}^2 (287.99 \text{ bar})
   = 4*B / (3*(D_o/t))
     = 4*287.99 / (3*(3,378 / 9.28))
      = 1.05 \, \text{bar}
```

Design thickness for external pressure $P_a = 1.05$ bar

```
= t + Corrosion = 9.28 + = 9.28 \text{ mm}
```

Maximum Allowable External Pressure, (Corroded & at 175 °C) UG-28(c)

```
L/D_o = 2,280.17/3,378 = 0.6750
D_0 / t = 3,378 / 14 = 241.2857
From table G:
                A = 0.000541
From table CS-2 Metric: B = 537.7881 \text{ kg/cm}^2 (527.389 \text{ bar})
   = 4*B / (3*(D_0/t))
     = 4*527.39 / (3*(3,378 / 14))
      = 2.91 \text{ bar}
```

% Extreme fiber elongation - UCS-79(d)

```
EFE =
       (50*t/R_f)*(1-R_f/R_o)
        (50*14 / 1,682)*(1 - 1,682 / infinity)
         0.4162%
```

The extreme fiber elongation does not exceed 5%.

External Pressure + Weight + Wind Loading Check (Bergman, ASME paper 54-A-104)

```
P_v = W / (2*\pi*R_m) + M / (\pi*R_m^2)
           = 10*114,803.6 / (2*\pi*1,682) + 10000*103,236.4 / (\pi*1,682^2)
           = 224.7830 \text{ kg/cm}
        \alpha = P_v / (P_e * D_o)
           = 9.803*224.783 / (1.06*3,378)
           = .6185
        n = 8
       m = 1.23 / (L/D_0)^2
           = 1.23 / (2,280.17 / 3,378)^2
           = 2.6995
 Ratio P_e = (n^2 - 1 + m + m * \alpha) / (n^2 - 1 + m)
           = (8^2 - 1 + 2.6995 + 2.6995 * .6185) / (8^2 - 1 + 2.6995)
         Ratio P_e * P_e \le MAEP
(1.0254 * 1.06 = 1.08) \le 2.91
```

Cylinder design thickness is satisfactory.

Thickness Required Due to Pressure + External Loads								
Condition	Pressure P (Allowable Before U Stress Inc kg/cr	UG-23 crease (Temperature (°C)	Corrosion C (mm)	Load	Req'd Thk Due to Tension (mm)	Req'd Thk Due to Compression (mm)
		S_t	Sc					
Operating, Hot & Corroded	3.6	1,407.2	<u>790.6</u>	202		Wind	2.12	<u>.49</u>
Operating, Hot & New	3.6	1,407.2	<u>790.6</u>	202		Wind	<u>2.12</u>	<u>.49</u>
Hot Shut Down, Corroded		1,407.2	<u>790.6</u>	202		Wind	<u>.3</u>	2.37
Hot Shut Down, New		1,407.2	<u>790.6</u>	202		Wind	<u>.3</u>	<u>2.37</u>
Empty, Corroded		1,407.2	<u>873.4</u>	13		Wind	<u>.35</u>	2.01
Empty, New		1,407.2	<u>873.4</u>	13		Wind	<u>.35</u>	2.01
<u>Vacuum</u>	-1.06	1,407.2	832.6	175		Wind	<u>.39</u>	<u>3.15</u>
Hot Shut Down, Corroded, Weight & Eccentric Moments Only		1,407.2	<u>790.6</u>	202		Weight	1.23	<u>1.51</u>
Operating, Hot & Corroded, Vortex Shedding	3.6	1,407.2	<u>790.6</u>	202		Wind	<u>2.51</u>	.1
Empty, Cold & Corroded, Vortex Shedding		1,407.2	<u>873.4</u>	13		Wind	1	3.05
Vacuum, Vortex Shedding	-1.06	1,407.2	832.6	175		Wind	<u>.16</u>	3.82

Allowable Compressive Stress, Hot and Corroded- $\mathbf{S}_{\mathrm{cHC}},$ (table **CS-2 Metric)**

Α $= .125 / (R_o / t)$

= .125 / (1,689 / 14)

= 0.001036

 $= 790.6 \text{ kg/cm}^2$ В

S $= 1,407.2 / 1.00 = 1,407.2 \text{ kg/cm}^2$

 $= min(B, S) = \frac{790.6 \text{ kg/cm}^2}{1000 \text{ kg/cm}^2}$

Allowable Compressive Stress, Hot and New- S_{CHN}

= S_{cHC} S_{cHN}

 $= \frac{790.6 \text{ kg/cm}^2}{1000 \text{ kg/cm}^2}$

Allowable Compressive Stress, Cold and New- S_{cCN} , (table CS-2 Metric)

 $= .125 / (R_o / t)$ A

= .125 / (1,689 / 14)

= 0.001036

В $= 873.4 \text{ kg/cm}^2$

S $= 1,407.2 / 1.00 = 1,407.2 \text{ kg/cm}^2$

 $= min(B, S) = 873.4 \text{ kg/cm}^2$

Allowable Compressive Stress, Cold and Corroded-S_{cCC}

 S_{cCC} = S_{cCN}

 $= 873.4 \text{ kg/cm}^2$

Allowable Compressive Stress, Vacuum and Corroded- S_{cvc}, (table **CS-2 Metric)**

Α $= .125 / (R_o / t)$ = .125 / (1,689 / 14)= 0.001036 $= 832.6 \text{ kg/cm}^2$ В

S $= 1,407.2 / 1.00 = 1,407.2 \text{ kg/cm}^2$

 S_{cVC} $= min(B, S) = 832.6 kg/cm^2$

Operating, Hot & Corroded, Wind, Bottom Seam

 $t_p = P*R / (2*S_t*K_s*E_c + .40*|P|)$ (Pressure) = 3.6*1,675 / (2*1,380*1.20*1.00 + .40*|3.6|)= 1.82 mm $t_m = M / (\pi^* R_m^2 S_t^* K_s^* E_c) * MetricFactor$ (bending) = $103,236.4 / (\pi * 1,682^2 * 1,380 * 1.20 * 1.00) * 98066.5$ = .69 mm $t_w = 0.6*W / (2*\pi*R_m*S_t*K_s*E_c) * MetricFactor$ (Weight) $= 0.60*114,803.6 / (2*\pi*1,682*1,380*1.20*1.00) * 98.0665$ = .39 mm $t_t = t_p + t_m - t_w$ (total required, tensile) = 1.82 + .69 - (.39)= 2.12 mm $t_{wc} = W / (2*\pi*R_m*S_t*K_s*E_c) * MetricFactor$ (Weight) $= 114,803.6 / (2*\pi*1,682*1,380*1.20*1.00) * 98.0665$ = .64 mm(total, net tensile) $t_c = |t_{mc} + t_{wc} - t_{pc}|$ = 1.69 + (.64) - (1.82)

Operating, Hot & New, Wind, Bottom Seam

= .49 mm

 $t_c = |t_{mc} + t_{wc} - t_{pc}|$

 $t_p = P*R / (2*S_t*K_s*E_c + .40*|P|)$ (Pressure) = 3.6*1,675 / (2*1,380*1.20*1.00 + .40*13.61)= 1.82 mm $t_{\rm m} = M / (\pi * R_{\rm m}^2 * S_{\rm t} * K_{\rm s} * E_{\rm c}) * MetricFactor$ (bending) = $103,236.3 / (\pi * 1,682^2 * 1,380 * 1.20 * 1.00) * 98066.5$ = .69 mm $t_{w} = 0.6*W / (2*\pi*R_{m}*S_{t}*K_{s}*E_{c}) * MetricFactor$ (Weight) $= 0.60*114,803.6 / (2*\pi*1,682*1,380*1.20*1.00) * 98.0665$ = .39 mm $t_t = t_p + t_m - t_w$ (total required, tensile) = 1.82 + .69 - (.39)= 2.12 mm $t_{wc} = W / (2*\pi*R_m*S_t*K_s*E_c) * MetricFactor$ (Weight) $= 114,803.6 / (2*\pi*1,682*1,380*1.20*1.00) * 98.0665$ = .64 mm

(total, net tensile)

= .49 mm

Hot Shut Down, Corroded, Wind, Bottom Seam

(Pressure) t_p mm $M/(\pi^*R_m^2*S_t^*K_s^*E_c)$ * MetricFactor (bending) = $t_{\rm m}$ $103,236.4 / (\pi^*1,682^2*1,380*1.20*1.00) * 98066.5$ = .69 mm 0.6*W / (2* $\pi*\text{R}_{\text{m}}*\text{S}_{\text{t}}*\text{K}_{\text{s}}*\text{E}_{\text{c}}$) * MetricFactor (Weight) $0.60*114,803.6 / (2*\pi*1,682*1,380*1.20*1.00) * 98.0665$.39 mm = (total required, $t_p + t_m - t_w$ t_t tensile) +.69 - (.39)<u>.3 mm</u>

 $M / (\pi^* R_m^2 S_c^* K_s) * MetricFactor$ (bending) t_{mc} $103,236.4/(\pi*1,682^2*775.35*1.20)*98066.5$

1.22 mm

W / $(2*\pi*R_m*S_c*K_s)$ * MetricFactor (Weight) t_{wc}

 $114,803.6 / (2*\pi*1,682*775.35*1.20) * 98.0665$

= 1.14 mm

(total required, t_c $t_{mc} + t_{wc} - t_{pc}$ compressive)

1.22 + (1.14) - ()= 2.37 mm

Hot Shut Down, New, Wind, Bottom Seam

 t_p (Pressure) $M/(\pi^*R_m^{2*}S_t^*K_s^*E_c)^*$ MetricFactor (bending)

 $103,236.3 / (\pi * 1,682^2 * 1,380 * 1.20 * 1.00) * 98066.5$

.69 mm

 $0.6*W / (2*\pi*R_m*S_t*K_s*E_c) * MetricFactor$ $t_{\rm w}$ (Weight)

 $0.60*114,803.6 / (2*\pi*1,682*1,380*1.20*1.00) * 98.0665$

.39 mm

(total required, t_t $t_p + t_m - t_w$ tensile)

+.69 - (.39)

<u>.3 mm</u>

 $M / (\pi^* R_m^{2*} S_c^* K_s) * MetricFactor$ (bending) t_{mc}

 $103,236.3 / (\pi * 1,682^2 * 775.35 * 1.20) * 98066.5$ =

1.22 mm

W / $(2*\pi*R_m*S_c*K_s)$ * MetricFactor (Weight) t_{wc}

 $114,803.6 / (2*\pi*1,682*775.35*1.20) * 98.0665$

1.14 mm

(total required, t_c $t_{mc} + t_{wc} - t_{pc}$ compressive)

1.22 + (1.14) - ()

Empty, Corroded, Wind, Bottom Seam

(Pressure) t_p mm = M / $(\pi^*R_m^2*S_t^*K_s^*E_c)$ * MetricFactor (bending) $t_{\rm m}$ $103,236.4 / (\pi *1,682^2 *1,380 *1.20 *1.00) *98066.5$.69 mm $0.6*W / (2*\pi*R_m*S_t*K_s*E_c) * MetricFactor$ (Weight) $t_{\rm w}$ $0.60*99,497.4/(2*\pi*1,682*1,380*1.20*1.00)*98.0665$.33 mm (total required, $t_p + t_m - t_w$ t_t tensile) +.69 - (.33).35 mm M / $(\pi^* R_m^2 * S_c * K_s) * MetricFactor$ (bending) t_{mc} $103,236.4 / (\pi * 1,682^2 * 856.48 * 1.20) * 98066.5$ 1.11 mm W / $(2*\pi*R_m*S_c*K_s)$ * MetricFactor (Weight) t_{wc} $99,497.4/(2*\pi*1,682*856.48*1.20)*98.0665$.9 mm (total required, $t_{mc} + t_{wc} - t_{pc}$ t_c compressive) 1.11 + (.9) - ()2.01 mm

Empty, New, Wind, Bottom Seam

t_p	=	mm	(Pressure)
t _m	=	$M / (\pi * R_m^2 * S_t * K_s * E_c) * MetricFactor$	(bending)
	=	$103,236.3 / (\pi*1,682^2*1,380*1.20*1.00) * 98066.5$	
	=	.69 mm	
t _w	=	$0.6*W / (2*\pi*R_m*S_1*K_s*E_c) * MetricFactor$	(Weight)
**	=	$0.60*99,497.4/(2*\pi*1,682*1,380*1.20*1.00)*98.0665$	
	=	.33 mm	
			(total required,
t _t	=	$t_p + t_m - t_w$	tensile)
	=	+ .69 - (.33)	
	=	<u>.35 mm</u>	
t _{mc}	=	$M / (\pi * R_m^2 * S_c * K_s) * MetricFactor$	(bending)
	=	$103,236.3 / (\pi * 1,682^2 * 856.48 * 1.20) * 98066.5$	
	=	1.11 mm	
t_{wc}	=	W / $(2*\pi*R_m*S_c*K_s)$ * MetricFactor	(Weight)
***	=	$99,497.4/(2*\pi*1,682*856.48*1.20)*98.0665$	
	=	.9 mm	
			(total required,
t_c	=	$t_{\rm mc} + t_{\rm wc} - t_{\rm pc}$	compressive)
	=	1.11 + (.9) - ()	
	=	<u>2.01 mm</u>	

Vacuum, Wind, Bottom Seam

$$\begin{array}{lll} t_p &= P*R \, / \, (2*S_c*K_s + .40*|P|) & (Pressure) \\ &= -1.06*1,675 \, / \, (2*816.47*1.20 + .40*|1.05|) \\ &= -.9 \, mm \\ \\ t_m &= M \, / \, (\pi*R_m^{2*}S_c*K_s) \, * \, MetricFactor & (bending) \\ &= 103,236.4 \, / \, (\pi*1,682^{2*}816.47*1.20) \, * \, 98066.5 \\ &= 1.16 \, mm \\ \\ t_w &= 0.6*W \, / \, (2*\pi*R_m*S_c*K_s) \, * \, MetricFactor & (Weight) \\ &= 0.60*114,803.6 \, / \, (2*\pi*1,682*816.47*1.20) \, * \, 98.0665 \\ &= .65 \, mm \\ \\ t_t &= |t_p + t_m - t_w| & (total, \, net \, compressive) \\ &= |-.9 + 1.16 - (.65)| & (4.2*\pi*R_m*S_c*K_s) \, * \, MetricFactor & (Weight) \\ &= 114,803.6 \, / \, (2*\pi*1,682*816.47*1.20) \, * \, 98.0665 \\ &= 1.09 \, mm \\ \\ t_c &= t_{mc} + t_{wc} - t_{pc} & (total \, required, \, compressive) \\ &= 1.16 + (1.09) - (-.9) \\ &= 3.15 \, mm \end{array}$$

Hot Shut Down, Corroded, Weight & Eccentric Moments Only, Bottom Seam

$$\begin{array}{lll} t_{p} & = & mm & (Pressure) \\ t_{m} & = & M \, / \, (\pi^{*}R_{m}^{2*}S_{c}^{*}K_{s}^{}) \, * \, MetricFactor & (bending) \\ & = & 9,844.6 \, / \, (\pi^{*}1,682^{2*}775.35^{*}1.00) \, * \, 98066.5 \\ & = & .14 \, mm \\ t_{w} & = & W \, / \, (2^{*}\pi^{*}R_{m}^{*}S_{c}^{*}K_{s}^{}) \, * \, MetricFactor & (Weight) \\ & = & 114,803.6 \, / \, (2^{*}\pi^{*}1,682^{*}775.35^{*}1.00) \, * \, 98.0665 \\ & = & 1.37 \, mm \\ t_{t} & = & |t_{p} + t_{m} - t_{w}| & (total, \, net \, compressive) \\ & = & | + .14 - (1.37) | & (total \, required, \, compressive) \\ & = & 1.23 \, mm \\ t_{c} & = & t_{mc} + t_{wc} - t_{pc} & (total \, required, \, compressive) \\ & = & .14 + (1.37) - () & (total \, required, \, compressive) \\ & = & 1.51 \, mm \\ \end{array}$$

Operating, Hot & Corroded, Vortex Shedding, Wind, Bottom Seam

$$\begin{array}{ll} t_{\rm p} &= {\rm P*R \, / \, (2*S_t*K_s*E_c + .40*|P|)} & ({\rm Pressure}) \\ &= 3.6*1,675 \, / \, (2*1,380*1.20*1.00 + .40*|3.6|) \\ &= 1.82 \, {\rm mm} \\ \\ t_{\rm m} &= {\rm M \, / \, (\pi*R_m^2*S_t*K_s*E_c) * \, MetricFactor} & ({\rm bending}) \\ &= 162,206.4 \, / \, (\pi*1,682^2*1,380*1.20*1.00) * 98066.5 \\ &= 1.08 \, {\rm mm} \\ \\ t_{\rm w} &= 0.6*{\rm W \, / \, (2*\pi*R_m*S_t*K_s*E_c) * \, MetricFactor} \\ &= 0.60*114,803.6 \, / \, (2*\pi*1,682*1,380*1.20*1.00) * 98.0665 \\ \end{array} \tag{Weight}$$

= .1 mm

$$= .39 \text{ mm}$$

$$t_{t} = t_{p} + t_{m} - t_{w}$$
 (total required, tensile)
$$= 1.82 + 1.08 - (.39)$$

$$= 2.51 \text{ mm}$$

$$t_{wc} = W / (2*\pi*R_{m}*S_{t}*K_{s}*E_{c}) * \text{MetricFactor}$$
 (Weight)
$$= 114,803.6 / (2*\pi*1,682*1,380*1.20*1.00) * 98.0665$$

$$= .64 \text{ mm}$$

$$t_{c} = |t_{mc} + t_{wc} - t_{pc}|$$
 (total, net tensile)
$$= |1.08 + (.64) - (1.82)|$$

Empty, Cold & Corroded, Vortex Shedding, Wind, Bottom Seam

$$\begin{array}{lll} t_p & = & mm & (Pressure) \\ t_m & = & M / (\pi^* R_m^{\; 2} * S_t * K_s * E_c) * \; \text{MetricFactor} & (bending) \\ & = & 200,298.2 / (\pi^* 1,682^2* 1,380^* 1.20^* 1.00) * \; 98066.5 \\ & = & 1.33 \; \text{mm} \\ t_w & = & 0.6 * W / (2 * \pi^* R_m * S_t * K_s * E_c) * \; \text{MetricFactor} & (Weight) \\ & = & 0.60 * 99,497.4 / (2 * \pi^* 1,682^* 1,380^* 1.20^* 1.00) * \; 98.0665 \\ & = & .33 \; \text{mm} \\ t_t & = & t_p + t_m - t_w & (total \; required, \; tensile) \\ & = & + 1.33 - (.33) & (total \; required, \; tensile) \\ & = & 1 \; \text{mm} \\ t_me & = & M / (\pi^* R_m^{\; 2} * S_c * K_s) * \; \text{MetricFactor} & (bending) \\ & = & 200,298.2 / (\pi^* 1,682^2 * 856.48* 1.20) * \; 98066.5 & (Weight) \\ & = & 2.15 \; \text{mm} \\ t_wc & = & W / (2 * \pi^* R_m * S_c * K_s) * \; \text{MetricFactor} & (Weight) \\ & = & 99,497.4 / (2 * \pi^* 1,682 * 856.48* 1.20) * \; 98.0665 & (0.9) \; \text{mm} \\ t_c & = & t_{mc} + t_{wc} - t_{pc} & (total \; required, \; compressive) \\ & = & 2.15 + (.9) - () & (0.9) \; \text{mm} \\ \end{array}$$

Vacuum, Vortex Shedding, Wind, Bottom Seam

t_p	=	$P*R / (2*S_t*K_s*E_c + .40* P)$	(Pressure)
г	=	-1.06*1,675 / (2*1,380*1.20*1.00 + .40* 1.05)	
	=	53 mm	
t _m	=	$M / (\pi^* R_m^2 S_t^* K_s^* E_c)^* MetricFactor$	(bending)
	=	$162,276.2 / (\pi*1,682^2*1,380*1.20*1.00) * 98066.5$	
	=	1.08 mm	
$t_{\rm w}$	=	$0.6*W / (2*\pi*R_m*S_t*K_s*E_c) * MetricFactor$	(Weight)
	=	$0.60*114,803.6 / (2*\pi*1,682*1,380*1.20*1.00) * 98.0665$	
	=	.39 mm	
t _t	=	$t_p + t_m - t_w$	(total required, tensile)

-.53 + 1.08 - (.39)

<u>.16 mm</u>

 $P*R / (2*S_c*K_s + .40*|P|)$ t_{pc}

(Pressure)

-1.06*1,675 / (2*816.47*1.20 + .40*11.051)=

-.9 mm

M / $(\pi^*R_m^2 * S_c * K_s) * MetricFactor$ (bending) t_{mc}

 $162,276.2 / (\pi*1,682^2*816.47*1.20) * 98066.5$

1.83 mm

W / $(2*\pi*R_m*S_c*K_s)$ * MetricFactor (Weight)

 $114,\!803.6\,/\,(2^*\pi^*1,\!682^*816.47^*1.20)*98.0665$ =

1.09 mm =

(total required, $t_{mc} + t_{wc} - t_{pc}$ t_c compressive)

1.83 + (1.09) - (-.9)

3.82 mm

ASME Section VIII Division 1, 2017 Edition Metric							
Com	ponent	Ellipsoidal Head					
Material		SA-516 70 (II-D Metric p. 18, ln. 33)					
Attac	hed To		Bottom existing shell				
Impact Tested	Normalized	Fine Grain Practice	PWHT	Maximize MDMT/ No MAWP			
No	No	Yes	Yes	No			
		Design Pressure (bar)	Design Temperature (°C)	Design MDMT (°C)			
Inte	ernal	3.6	202	17			
Ext	ernal	1.03	175				
		Static Li	quid Head				
Con	dition	P _s (bar)	H _s (mm)	SG			
Ope	rating	0.36	3,440.5	1.065			
Test	vertical	3.01	30,702	1			
		Dim	ensions				
Inner I	Diameter	3,350 mm					
Head Ratio		2					
Minimun	Thickness	12.4 mm					
Corrosion	Inner		3 mm				
	Outer	0 mm					
Leng	gth L _{sf}	38 mm					
Nominal T	Thickness t _{sf}	15 mm					
		Weight a	nd Capacity				
		We	eight (kg) ¹	Capacity (liters) ¹			
N	lew]	1,301.88	5,219.78			
Cor	roded	1	1,301.88	5,219.78			
		Insulati	on\Lining				
		Thickness (mm)	Density (kg/m³)	Weight (kg)			
Li	ning	3	8,027	291.99			
Insulation		75	150	146.9			
		Spacing(mm)	Individual Weight (kg)	Total Weight (kg)			
	lation ports	3,000	100	100			
	Radiography						
Categor	y A joints		Full UW-11(a) Type 1				

Head to shell seam Full UW-11(a) Type 1

¹ includes straight flange

Results Summary							
Governing condition	external pressure						
Minimum thickness per UG-16	1.5 mm + 3 mm = 4.5 mm						
Design thickness due to internal pressure (t)	<u>7.81</u> mm						
Design thickness due to external pressure (t _e)	<u>11.78</u> mm						
Maximum allowable external pressure (MAEP)	1.18 bar						
Rated MDMT	-48°C						

UCS-66 Material Toughness Requirements	
Governing thickness, $t_g =$	12.4 mm
Exemption temperature from Fig UCS-66M Curve B =	-22.56°C
$t_r = 3.96*3,356*0.997623 / (2*1,380*1 - 0.2*3.96) =$	4.8 mm
Stress ratio = $t_r^* E^* / (t_n - c) = 4.8*1 / (12.4 - 3) =$	0.511
Reduction in MDMT, T _R from Fig UCS-66.1M =	30.5°C
Reduction in MDMT, T _{PWHT} from UCS-68(c) =	17°C
$MDMT = max[MDMT - T_R - T_{PWHT}, -48] = max[-22.56 - 30.5 - 17, -48] =$	-48°C
Material is exempt from impact testing at the Design MDMT of 17°C.	•

Factor K				
K = (1/6)*	$[2 + (D / (2*h))^2]$			
Corroded	$K = (1/6)*[2 + (3,356 / (2*840.5))^2]$	0.9976		
New	$K = (1/6)*[2 + (3,350 / (2*837.5))^2]$	1		

Design thickness for internal pressure, (Corroded at 202 °C) Appendix 1-4(c)

- = P*D*K / (2*S*E 0.2*P) + Corrosion
 - 3.96*3,356*0.997623 / (2*1,380*1 0.2*3.96) + 3
 - 7.8 mm

Design thickness for external pressure, (Corroded at 175 °C) UG-33(d)

Equivalent outside spherical radius (R_o)

 $R_o = K_o * D_o$ = 0.8934*3,374.8

= 3,015.16 mm

 $= 0.125 / (R_o / t)$

0.125 / (3,015.16 / 8.77)

0.000364

360.9567 From Table CS-2 Metric: B kg_f/cm²

Page 56 of 450

$$P_a = B/(R_o/t)$$

= 353.9779 / (3,015.16 / 8.77)
= 1.03 bar

8.77 mm + Corrosion = 8.77 mm + 3 mm = 11.77 mmCheck the external pressure per UG-33(a)(1) Appendix 1-4(c)

t =
$$1.67*P_e*D*K / (2*S*E - 0.2*1.67*P_e) + Corrosion$$

= $1.67*1.03*3,356*0.997623 / (2*1,380*1 - 0.2*1.67*1.03) + 3$
= 5.09 mm

The head external pressure design thickness (t_e) is 11.77 mm.

Maximum Allowable External Pressure, (Corroded at 175 °C) UG-33(d)

Equivalent outside spherical radius (R_o)

$$R_o = K_o * D_o$$

= 0.8934*3,374.8
= 3,015.16 mm

$$A = 0.125 / (R_o / t)$$

$$= 0.125 / (3,015.16 / 9.4)$$

$$= 0.00039$$

From Table CS-2 Metric: B =
$$\frac{386.9029}{\text{kg}_{\text{p}}/\text{cm}^2}$$

$$P_a = B/(R_o/t)$$

= 379.4224 / (3,015.16 / 9.4)
= 1.1829 bar

Check the Maximum External Pressure, UG-33(a)(1) Appendix 1-4(c)

$$P = 2*S*E*t / ((K*D + 0.2*t)*1.67)$$

= 2*1,380*1*9.4 / ((0.997623*3,356 +0.2*9.4)*1.67)
= 4.64 bar

The maximum allowable external pressure (MAEP) is 1.18 bar.

% Extreme fiber elongation - UCS-79(d)

EFE =
$$(75*t/R_f)*(1 - R_f/R_o)$$

= $(75*15/577)*(1 - 577/infinity)$
= 1.9497%

The extreme fiber elongation does not exceed 5%.

Straight Flange on Bottom Head

ASME Section VIII Division 1, 2017 Edition Metric						
Com	ponent	Cylinder				
Ma	terial	SA-	516 70 (II-D Metric p. 18,	ln. 33)		
Impact Tested	Normalized	Fine Grain Practice	PWHT	Maximize MDMT/ No MAWP		
No	No	Yes	Yes	No		
		Design Pressure (bar)	Design Temperature (°C)	Design MDMT (°C)		
Inte	ernal	3.6	17			
Ext	ernal	1.03				
		Static Li	quid Head			
Con	dition	P _s (bar)	H _s (mm)	SG		
Ope	rating	0.27	2,600	1.065		
Test v	vertical	2.93	29,864.5	1		
		Dime	ensions			
Inner I	Diameter	3,350 mm				
Length		38 mm				
Nominal	Thickness	15 mm				
Corrosion	Inner		3 mm			
	Outer		0 mm			
		Weight a	nd Capacity			
		W	eight (kg)	Capacity (liters)		
N	ew		333.74			
Cor	roded		47.2	333.74		
			on\Lining			
		Thickness (mm)	Density (kg/m³)	Weight (kg)		
	ning	3	8,027	0		
Insu	lation	75	150	0		
		Spacing(mm)	Individual Weight (kg)	Total Weight (kg)		
	lation ports	0	0			
		Radio	ography			
Longitud	linal seam		Full UW-11(a) Type 1			
_	ımferential am	Full UW-11(a) Type 1				

D	\sim	τ

Results Summary					
Governing condition	External pressure				
Minimum thickness per UG-16	1.5 mm + 3 mm = 4.5 mm				
Design thickness due to internal pressure (t)	7.72 mm				
Design thickness due to external pressure (t _e)	<u>12.2 mm</u>				
Design thickness due to combined loadings + corrosion	<u>7 mm</u>				
Maximum allowable external pressure (MAEP)	1.97 bar				
Rated MDMT	-48 °C				

UCS-66 Material Toughness Requirements				
Governing thickness, $t_g =$	15 mm			
Exemption temperature from Fig UCS-66M Curve B =	-16.69°C			
$t_r = 3.87*1,678 / (1,380*1 - 0.6*3.87) =$	4.72 mm			
Stress ratio = $t_r *E^* / (t_n - c) = 4.72*1 / (15 - 3) =$	0.3929			
Reduction in MDMT, T _R from Fig UCS-66.1M =	54.5°C			
Reduction in MDMT, T _{PWHT} from UCS-68(c) =	17°C			
$MDMT = max[MDMT - T_R - T_{PWHT}, -48] = max[-16.69 - 54.5 - 17, -48] =$	-48°C			
Material is exempt from impact testing at the Design MDMT of 17°C.				

Design thickness, (at 202 °C) UG-27(c)(1)

```
= P*R / (S*E - .60*P) + Corrosion
= 3.87*1,678 / (1,380*1.00 - .60*3.87) + 3
= 7.72 \text{ mm}
```

External Pressure, (Corroded & at 175 °C) UG-28(c)

```
L/D_o = 2,280.17/3,380 = 0.6746
D_o/t = 3,380/9.2 = 367.3097
```

From table G: A = 0.000292

From table CS-2 Metric: $B = 289.3419 \text{ kg/cm}^2 (283.75 \text{ bar})$

```
= 4*B/(3*(D_o/t))
  = 4*283.75 / (3*(3,380 / 9.2))
  = 1.03 \text{ bar}
```

Design thickness for external pressure $P_a = 1.03$ bar

```
= t + Corrosion = 9.2 + 3 = 12.2 \text{ mm}
```

Maximum Allowable External Pressure, (Corroded & at 175 °C) UG-28(c)

```
L/D_o = 2,280.17/3,380 = 0.6746
D_0/t = 3,380/12 = 281.6606
```

From table G: A = 0.000428

From table CS-2 Metric: $B = 425.2207 \text{ kg/cm}^2 (416.9983 \text{ bar})$

$$P_a = 4*B / (3*(D_o / t))$$

= 4*417 / (3*(3,380 / 12))
= 1.97 bar

% Extreme fiber elongation - UCS-79(d)

 $EFE = (50*t / R_f)*(1 - R_f / R_o)$ (50*15 / 1,682.5)*(1 - 1,682.5 / infinity) 0.4458%

The extreme fiber elongation does not exceed 5%.

Thickness Required Due to Pressure + External Loads								
Condition	Condition Pressure P (bar) Allowable St Before UG- Stress Increa kg/cm²)		UG-23 crease (Temperature (°C)	Corrosion C (mm)	Load	Load Req'd Thk Due to Tension (mm)	Req'd Thk Due to Compression (mm)
		S _t	S_c					` ′
Operating, Hot & Corroded	3.6	1,407.2	<u>751.6</u>	202	3	Wind	<u>2.13</u>	<u>.49</u>
Operating, Hot & New	3.6	1,407.2	803.8	202		Wind	2.12	<u>.49</u>
Hot Shut Down, Corroded		1,407.2	<u>751.6</u>	202	3	Wind	<u>.3</u>	<u>2.49</u>
Hot Shut Down, New		1,407.2	803.8	202		Wind	<u>.3</u>	2.33
Empty, Corroded		1,407.2	826.6	13	3	Wind	<u>.35</u>	2.12
Empty, New		1,407.2	890.3	13		Wind	<u>.35</u>	<u>1.97</u>
Vacuum	-1.03	1,407.2	<u>789.7</u>	175	3	Wind	.39	<u>3.3</u>
Hot Shut Down, Corroded, Weight & Eccentric Moments Only		1,407.2	<u>751.6</u>	202	3	Weight	1.3	1.59
Operating, Hot & Corroded, Vortex Shedding	3.6	1,407.2	<u>751.6</u>	202	3	Wind	<u>2.52</u>	.1
Empty, Cold & Corroded, Vortex Shedding		1,407.2	<u>826.6</u>	13	3	Wind	1	3.22
Vacuum, Vortex Shedding	-1.03	1,407.2	<u>789.7</u>	175	3	Wind	<u>.17</u>	<u>4</u>

Allowable Compressive Stress, Hot and Corroded- S_{cHC}, (table **CS-2 Metric)**

A $= .125 / (R_o / t)$ = .125 / (1,690 / 12)= 0.000888

В $= 751.6 \text{ kg/cm}^2$

 $= 1,407.2 / 1.00 = 1,407.2 \text{ kg/cm}^2$

 $= min(B, S) = \frac{751.6 \text{ kg/cm}^2}{1000 \text{ kg/cm}^2}$ S_{cHC}

Allowable Compressive Stress, Hot and New- $\rm S_{cHN}$, (table CS-2 Metric)

Α $= .125 / (R_o / t)$

= .125 / (1,690 / 15)

= 0.001109В $= 803.8 \text{ kg/cm}^2$

S $= 1,407.2 / 1.00 = 1,407.2 \text{ kg/cm}^2$

 S_{cHN} $= min(B, S) = 803.8 \text{ kg/cm}^2$

Allowable Compressive Stress, Cold and New- S_{CCN}, (table CS-2 Metric)

Α $= .125 / (R_o / t)$ = .125 / (1,690 / 15)= 0.001109 $= 890.3 \text{ kg/cm}^2$ В

S $= 1,407.2 / 1.00 = 1,407.2 \text{ kg/cm}^2$

 $= min(B, S) = 890.3 \text{ kg/cm}^2$ S_{cCN}

Allowable Compressive Stress, Cold and Corroded- S_{ccc}, (table CS-2 Metric)

Α $= .125 / (R_o / t)$ = .125 / (1,690 / 12)= 0.000888В $= 826.6 \text{ kg/cm}^2$

S $= 1,407.2 / 1.00 = 1,407.2 \text{ kg/cm}^2$

 S_{cCC} $= min(B, S) = 826.6 kg/cm^2$

Allowable Compressive Stress, Vacuum and Corroded- S_{cVC}, (table CS-2 Metric)

 $= .125 / (R_0 / t)$ = .125 / (1,690 / 12)= 0.000888 В $= 789.7 \text{ kg/cm}^2$ S $= 1,407.2 / 1.00 = 1,407.2 \text{ kg/cm}^2$ S_{cVC}

Operating, Hot & Corroded, Wind, Bottom Seam

 $t_p = P*R / (2*S_t*K_s*E_c + .40*|P|)$ (Pressure) = 3.6*1,678 / (2*1,380*1.20*1.00 + .40*|3.6|)= 1.82 mm $t_m = M / (\pi^* R_m^2 S_t^* K_s^* E_c) * MetricFactor$ (bending) = $103,514/(\pi *1,684^2*1,380*1.20*1.00)*98066.5$ = .69 mm $t_w = 0.6*W / (2*\pi*R_m*S_t*K_s*E_c) * MetricFactor$ (Weight) $= 0.60*114,850.8 / (2*\pi*1,684*1,380*1.20*1.00) * 98.0665$ = .39 mm(total required, tensile) $t_t = t_p + t_m - t_w$ = 1.82 + .69 - (.39)= 2.13 mm $t_{wc} = W / (2*\pi*R_m*S_t*K_s*E_c) * MetricFactor$ (Weight) $= 114,850.8 / (2*\pi*1,684*1,380*1.20*1.00) * 98.0665$ = .64 mm(total, net tensile) $t_c = |t_{mc} + t_{wc} - t_{pc}|$ = 1.69 + (.64) - (1.82)= .49 mm

Operating, Hot & New, Wind, Bottom Seam

$$\begin{array}{lll} t_p &= \text{P*R} \, / \, (2*\text{S}_t * \text{K}_s * \text{E}_c + .40* | \text{P}|) & (\text{Pressure}) \\ &= 3.6*1,675 \, / \, (2*\text{1},380*\text{1}.20*\text{1}.00 + .40* | 3.6|) \\ &= 1.82 \, \text{mm} \\ \\ t_m &= \text{M} \, / \, (\pi*\text{R}_m^2*\text{S}_t * \text{K}_s * \text{E}_c) * \, \text{MetricFactor} & (\text{bending}) \\ &= 103,514 \, / \, (\pi*\text{1},682.5^2*\text{1},380*\text{1}.20*\text{1}.00) * \, 98066.5 \\ &= .69 \, \text{mm} \\ \\ t_w &= 0.6*\text{W} \, / \, (2*\pi*\text{R}_m^*\text{S}_t^*\text{K}_s^*\text{E}_c) * \, \text{MetricFactor} & (\text{Weight}) \\ &= 0.60*\text{114,850.8} \, / \, (2*\pi*\text{1},682.5*\text{1},380*\text{1}.20*\text{1}.00) * \, 98.0665 \\ &= .39 \, \text{mm} \\ \\ t_t &= t_p + t_m - t_w & (\text{total required, tensile}) \\ &= 1.82 + .69 - (.39) & \\ &= 2.12 \, \text{mm} \\ \\ t_{wc} &= \text{W} \, / \, (2*\pi*\text{R}_m^*\text{S}_t^*\text{K}_s^*\text{E}_c) * \, \text{MetricFactor} & (\text{Weight}) \\ &= 114,850.8 \, / \, (2*\pi*\text{1},682.5*\text{1},380*\text{1}.20*\text{1}.00) * \, 98.0665 \\ &= .64 \, \text{mm} \\ \\ t_c &= |t_{mc} + t_{wc} - t_{pc}| & (\text{total, net tensile}) \\ &= |.69 + (.64) - (1.82)| & (\text{total, net tensile}) \\ \end{array}$$

Hot Shut Down, Corroded, Wind, Bottom Seam

= .49 mm

$$\begin{array}{lll} t_{p} & = & mm & (Pressure) \\ t_{m} & = & M / (\pi * R_{m}^{2} * S_{t} * K_{s} * E_{c}) * \text{ MetricFactor} & (bending) \\ & = & 103,514 / (\pi * 1,684^{2} * 1,380 * 1.20 * 1.00) * 98066.5 \\ & = & .69 \text{ mm} \\ t_{w} & = & 0.6 * W / (2 * \pi * R_{m} * S_{t} * K_{s} * E_{c}) * \text{ MetricFactor} & (Weight) \\ & = & 0.60 * 114,850.8 / (2 * \pi * 1,684 * 1,380 * 1.20 * 1.00) * 98.0665 \\ & = & .39 \text{ mm} \\ t_{t} & = & t_{p} + t_{m} - t_{w} & (total \ required, \ tensile) \\ & = & + .69 - (.39) & (total \ required, \ tensile) \\ & = & \frac{.3 \ mm}{100} \\ t_{mc} & = & M / (\pi * R_{m}^{2} * S_{c} * K_{s}) * \text{ MetricFactor} & (bending) \\ & = & 103,514 / (\pi * 1,684^{2} * 737.05 * 1.20) * 98066.5 \\ & = & 1.29 \ mm \\ t_{wc} & = & W / (2 * \pi * R_{m} * S_{c} * K_{s}) * \text{ MetricFactor} & (Weight) \\ & = & 114,850.8 / (2 * \pi * 1,684 * 737.05 * 1.20) * 98.0665 \\ & = & 1.2 \ mm \\ t_{c} & = & t_{mc} + t_{wc} - t_{pc} & (total \ required, \ compressive) \\ & = & 1.29 + (1.2) - () \\ & = & 2.49 \ mm \\ \end{array}$$

Hot Shut Down, New, Wind, Bottom Seam

t_p	=	mm	(Pressure)
t _m	=	$M / (\pi^* R_m^2 * S_t * K_s * E_c) * MetricFactor$	(bending)

compressive)

$$= 103,514 / (\pi^*1,682.5^{2*}1,380^*1.20^*1.00) * 98066.5$$

$$= .69 \text{ mm}$$

$$t_{w} = 0.6^*W / (2^*\pi^*R_{m}^*S_{t}^*K_{s}^*E_{c}) * \text{MetricFactor}$$

$$= 0.60^*114,850.8 / (2^*\pi^*1,682.5^*1,380^*1.20^*1.00) * 98.0665$$

$$= .39 \text{ mm}$$

$$t_{t} = t_{p} + t_{m} - t_{w}$$

$$= + .69 - (.39)$$

$$= \frac{.3 \text{ mm}}{2}$$

$$t_{mc} = M / (\pi^*R_{m}^{2*}S_{c}^*K_{s}) * \text{MetricFactor}$$

$$= 103,514 / (\pi^*1,682.5^{2*}788.29^*1.20) * 98066.5$$

$$= 1.21 \text{ mm}$$

$$t_{wc} = W / (2^*\pi^*R_{m}^*S_{c}^*K_{s}) * \text{MetricFactor}$$

$$= 14,850.8 / (2^*\pi^*1,682.5^{*7}88.29^*1.20) * 98.0665$$

$$= 1.13 \text{ mm}$$

$$(total required, total requi$$

Empty, Corroded, Wind, Bottom Seam

1.21 + (1.13) - ()

 $t_{mc} + t_{wc} - t_{pc}$

2.33 mm

 t_c

Empty, New, Wind, Bottom Seam

 t_{p} = mm (Pressure) t_{m} = M / ($\pi^* R_{m}^{2*} S_{t}^{*} K_{s}^{*} E_{c}$) * MetricFactor (bending) = 103,514 / ($\pi^* 1,682.5^{2*}1,380^*1.20^*1.00$) * 98066.5

$$=$$
 .69 mm

$$t_w = 0.6*W / (2*\pi*R_m*S_t*K_s*E_c) * MetricFactor$$
 (Weight)

 $0.60*99,544.6 / (2*\pi*1,682.5*1,380*1.20*1.00) * 98.0665$

.33 mm =

$$t_t = t_p + t_m - t_w$$
 (total required, tensile)

+.69 - (.33)

.35 mm

$$t_{mc} = M / (\pi * R_m^2 * S_c * K_s) * MetricFactor$$
 (bending)

 $103,514/(\pi*1,682.5^2*873.07*1.20)*98066.5$

1.09 mm

$$t_{wc} = W/(2*\pi*R_m*S_c*K_s)*MetricFactor$$
 (Weight)

 $99,544.6 / (2*\pi*1,682.5*873.07*1.20) * 98.0665$

.88 mm

$$t_c = t_{mc} + t_{wc} - t_{pc}$$
 (total required, compressive)

1.09 + (.88) - ()

1.97 mm

Vacuum, Wind, Bottom Seam

$$t_p = P*R / (2*S_c*K_s + .40*|P|)$$
 (Pressure)

= -1.03*1,678 / (2*774.39*1.20 + .40*11.031)

= -.93 mm

$$t_{m} = M / (\pi * R_{m}^{2} * S_{c} * K_{s}) * MetricFactor$$
 (bending)

 $= 103,514 / (\pi *1,684^2 *774.39 *1.20) *98066.5$

= 1.23 mm

$$t_w = 0.6*W / (2*\pi*R_m*S_c*K_s) * MetricFactor$$
 (Weight)

 $= 0.60*114,850.8 / (2*\pi*1,684*774.39*1.20) * 98.0665$

= .69 mm

$$t_t = |t_p + t_m - t_w|$$
 (total, net compressive)

= |-.93 + 1.23 - (.69)|

= .39 mm

$$t_{wc} = W / (2*\pi*R_m*S_c*K_s) * MetricFactor$$
 (Weight)

 $= 114,850.8 / (2*\pi*1,684*774.39*1.20) * 98.0665$

= 1.15 mm

$$t_c = t_{mc} + t_{wc} - t_{pc}$$
 (total required, compressive)

= 1.23 + (1.15) - (-.93)

= 3.3 mm

Hot Shut Down, Corroded, Weight & Eccentric Moments Only, Bottom Seam

(Pressure) t_p

 $M / (\pi^* R_m^{2*} S_c^* K_s) * MetricFactor$ = (bending)

 $9,844.6 / (\pi *1,684^2*737.05*1.00) * 98066.5$

.15 mm

W / $(2*\pi*R_m*S_c*K_s)$ * MetricFactor (Weight) $t_{\rm w}$

 $114,850.8 / (2*\pi*1,684*737.05*1.00) * 98.0665$

$$t_{t} = |t_{p} + t_{m} - t_{w}|$$
 (total, net compressive)

= |+.15 - (1.44)|

1.3 mm

$$t_c = t_{mc} + t_{wc} - t_{pc}$$
 (total required, compressive)

.15 + (1.44) - ()=

1.59 mm

Operating, Hot & Corroded, Vortex Shedding, Wind, Bottom Seam

$$t_p = P*R / (2*S_t*K_s*E_c + .40*|P|)$$
 (Pressure)

= 3.6*1,678 / (2*1,380*1.20*1.00 + .40*|3.6|)

= 1.82 mm

$$t_m = M / (\pi^* R_m^{2*} S_t^* K_s^* E_c) * MetricFactor$$
 (bending)

= $162,597 / (\pi * 1,684^2 * 1,380 * 1.20 * 1.00) * 98066.5$

= 1.08 mm

$$t_{w} = 0.6*W / (2*\pi*R_{m}*S_{t}*K_{s}*E_{c}) * MetricFactor$$
 (Weight)

 $= 0.60*114,850.8 / (2*\pi*1,684*1,380*1.20*1.00) * 98.0665$

= .39 mm

$$t_t = t_p + t_m - t_w$$
 (total required, tensile)

= 1.82 + 1.08 - (.39)

= 2.52 mm

$$t_{wc} = W / (2*\pi*R_m*S_t*K_s*E_c) * MetricFactor$$
 (Weight)

= $114,850.8 / (2*\pi*1,684*1,380*1.20*1.00) * 98.0665$

= .64 mm

$$t_c = |t_{mc} + t_{wc} - t_{pc}|$$
 (total, net tensile)

= |1.08 + (.64) - (1.82)|

= .1 mm

Empty, Cold & Corroded, Vortex Shedding, Wind, Bottom Seam

$$t_p = mm$$
 (Pressure)

$$t_m = M/(\pi * R_m^2 * S_t * K_s * E_c) * MetricFactor$$
 (bending)

 $200,762.1 / (\pi *1,684^2 *1,380 *1.20 *1.00) *98066.5$

1.33 mm

$$t_w = 0.6*W / (2*\pi*R_m*S_t*K_s*E_c) * MetricFactor$$
 (Weight)

 $0.60*99,544.6 / (2*\pi*1,684*1,380*1.20*1.00) * 98.0665$

.33 mm

$$t_t = t_p + t_m - t_w$$
 (total required, tensile)

+1.33 - (.33)

<u>1 mm</u>

$$t_{mc} = M/(\pi * R_m^2 * S_c * K_s) * MetricFactor$$
 (bending)

 $200,762.1 / (\pi * 1,684^2 * 810.65 * 1.20) * 98066.5$

2.27 mm

$$t_{wc} = W/(2*\pi*R_m*S_c*K_s)*MetricFactor$$
 (Weight)

 $99,544.6 / (2*\pi*1,684*810.65*1.20) * 98.0665$

.95 mm =

(total required, t_c $t_{mc} + t_{wc} - t_{pc}$ compressive)

2.27 + (.95) - ()

3.22 mm

Vacuum, Vortex Shedding, Wind, Bottom Seam

 $P*R / (2*S_t*K_s*E_c + .40*|P|)$ (Pressure) t_p

-1.03*1,678 / (2*1,380*1.20*1.00 + .40*|1.03|)

-.52 mm =

M / $(\pi^*R_m^2*S_t^*K_s^*E_c)$ * MetricFactor (bending) $t_{\rm m}$

 $162,666.9 / (\pi * 1,684^2 * 1,380 * 1.20 * 1.00) * 98066.5$

1.08 mm =

 $0.6*W / (2*\pi*R_m*S_t*K_s*E_c) * MetricFactor$ (Weight) $t_{\rm w}$

 $0.60*114,850.8 / (2*\pi*1,684*1,380*1.20*1.00) * 98.0665$

.39 mm

(total required, t_{t} $t_p + t_m - t_w$ tensile)

-.52 + 1.08 - (.39)

.17 mm

 $P*R / (2*S_c*K_s + .40*|P|)$ (Pressure) t_{pc}

-1.03*1,678 / (2*774.39*1.20 + .40*|1.03|)

-.93 mm =

M / $(\pi^* R_m^{2*} S_c^* K_s)$ * MetricFactor (bending) t_{mc}

 $162,666.9 / (\pi * 1,684^2 * 774.39 * 1.20) * 98066.5$

1.93 mm =

W / $(2*\pi*R_m*S_c*K_s)$ * MetricFactor (Weight) = t_{wc}

 $114,850.8 / (2*\pi*1,684*774.39*1.20) * 98.0665$

1.15 mm

(total required, t_c $t_{mc} + t_{wc} - t_{pc}$

compressive)

1.93 + (1.15) - (-.93)=

<u>4 mm</u>

ASME Section VIII Division 1, 2017 Edition Metric 46,1

Note: round inside edges per UG-76(c)					
Location and Orientation					
Located on	Blind Flange (AB)				
Orientation	45°				
Distance to head center, R	180 mm				
Passes through a Category A joint	No				
Nozzle					
Description	NPS 2 Sch 160 DN 50				
Access opening	No				
Material specification	SA-106 B Smls Pipe (II-D Metric p. 14, ln. 10)				
Inside diameter, new	42.85 mm				
Pipe nominal wall thickness	8.74 mm				
Pipe minimum wall thickness ¹	7.65 mm				
Corrosion allowance	0 mm				
Projection available outside vessel, Lpr	70.4 mm				
Projection available outside vessel to flange face, Lf	133.9 mm				
Local vessel minimum thickness	46.1 mm				
Liquid static head included	0 bar				
Longitudinal joint efficiency	1				
Welds					
Inner fillet, Leg ₄₁	9 mm				
Nozzle to vessel groove weld	46.1 mm				

¹Pipe minimum thickness = nominal thickness times pipe tolerance factor of 0.875.

ASME B16.5-2013 Flange				
Description	NPS 2 Class 150 WN A105			
Bolt Material	SA-193 B7 Bolt <= 64 (II-D Metric p. 388, ln. 32)			
Blind included	No			
Rated MDMT	-48°C			
Liquid static head	0 bar			
MAWP rating	13.73 bar @ 202°C			
MAP rating	19.6 bar @ 30°C			
Hydrotest rating	30 bar @ 30°C			
PWHT performed	Yes			
Impact Tested	No			
Circumferential joint radiography	Spot UW-11(b) Type 1			
Notes				
Flange rated MDMT per UCS-66(b)(3) = -105°C (Coincident ratio = 0.1837)				

Bolts rated MDMT per Fig UCS-66 note (c) = -48° C

UCS-66 Material Toughness Requirements Nozzle					
$t_r = 3.6*21.42 / (1,180*1 - 0.6*3.6) =$	0.0655 mm				
Stress ratio = $t_r^* E^* / (t_n - c) = 0.0655*1 / (7.65 - 0) =$	0.0086				
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-105°C				
Material is exempt from impact testing at the Design MDMT of -1.11°C.					

Reinforcement Calculations for Internal Pressure

UG-39 Area Calculation Summary (cm²)					UG Sumi (m	mary		
	For P = 3.6 bar @ 202 °C						The nozzle passes UG-45	
A required	1 A1 A2 A2 A5						$t_{\rm req}$	t _{min}
	This nozzle is exempt from area calculations per UG-36(c)(3)(a)					3.42	7.65	

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary					
Weld description	Required weld throat size (mm)	Actual weld throat size (mm)	Status		
Nozzle to shell fillet (Leg ₄₁)	<u>6</u>	6.3	weld size is adequate		

Calculations for internal pressure 3.6 bar @ 202 °C

Parallel Limit of reinforcement per UG-40

$$L_{R} = MAX(d, R_{n} + (t_{n} - C_{n}) + (t - C))$$

$$= MAX(42.85, 21.42 + (8.74 - 0) + (46.1 - 0))$$

$$= 76.26 \text{ mm}$$

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = MIN(2.5*(t - C), 2.5*(t_{n} - C_{n}) + t_{e})$$

$$= MIN(2.5*(46.1 - 0), 2.5*(8.74 - 0) + 0)$$

$$= 21.84 \text{ mm}$$

Nozzle required thickness per UG-27(c)(1)

$$t_{rn}$$
 = $P*R_n / (S_n*E - 0.6*P)$
= $3.6*21.42 / (1,180*1 - 0.6*3.6)$
= 0.066 mm

Required thickness t, from UG-34

The static head of liquid has not been included in the total design load because the vessel is supported below the flange.

$$\begin{array}{lll} W & = & 0.785*G^{2}*P + 2*b*3.14*G*m*P \\ & = & 0.785*666.91^{2}*3.671/100 + 2*9.45*3.14*666.91*3*3.671/1003.671/100 \\ & = & 17,173.93 \ kg_f \\ \\ t_r & = & d*Sqr(C*P / (S*E) + 1.9*W*h_g / (S*E*d^3)) \\ & = & 666.91*Sqr(0.3*3.671 / (1,407.207*1) + 1.9*17,173.93*41.2 / (1,407.207 / 100*1*666.91^3)) \\ \end{array}$$

22.17 mm

Gasket seating

```
d*Sqr(1.9*W*h_G / (S*E*d^3))
     666.91*Sqr(1.9*174,659.56*41.2 / (1,407.207 / 100*1*666.91<sup>3</sup>))
     38.17 mm
=
```

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

```
Fillet weld: t_{min} = lesser of 19 mm or t_n or t = 8.74 mm
t_{c(min)} = lesser of 6 mm or 0.7*t_{min} = \underline{6} mm
t_{c(actual)} = 0.7*Leg = 0.7*9 = 6.3 \text{ mm}
```

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

```
P*R_n / (S_n*E - 0.6*P) + Corrosion
t_{a \text{ UG-}27} =
                3.6*21.42 / (1,180*1 - 0.6*3.6) + 0
                0.066 mm
          =
                \max[t_{a \text{ UG-}27}, t_{a \text{ UG-}22}]
t_a
                max[ 0.066, 0 ]
                0.066 \text{ mm}
                38.17 mm
t_{b1}
                \max[t_{b1}, t_{b \text{ UG}16}]
t_{b1}
                max[ 38.17, 1.5]
                38.17 mm
                \min[\ t_{b3}\ ,\, t_{b1}\ ]
t_{b}
                min[ 3.42, 38.17]
                3.42 mm
          = \max[t_a, t_b]
t_{UG-45}
                max[ 0.066, 3.42]
                3.42 mm
          =
```

Available nozzle wall thickness new, $t_n = 0.875*8.74 = 7.65$ mm

The nozzle neck thickness is adequate.

Reinforcement Calculations for MAEP

UG-39 Area Calculation Summary (cm ²)					UG-45 Summary (mm)			
For Pe = 21.98 bar @ 175 °C						The nozzle passes UG-45		
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	$t_{\rm req}$	t _{min}
This nozzle is exempt from area calculations per UG-36(c)(3)(a)					3.42	7.65		

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary					
Weld description	Required weld throat size (mm)	Actual weld throat size (mm)	Status		
Nozzle to shell fillet (Leg ₄₁)	<u>6</u>	6.3	weld size is adequate		

Calculations for external pressure 21.98 bar @ 175 $^{\circ}$ C

Parallel Limit of reinforcement per UG-40

$$L_{R} = MAX(d, R_{n} + (t_{n} - C_{n}) + (t - C))$$

$$= MAX(42.85, 21.42 + (8.74 - 0) + (46.1 - 0))$$

$$= 76.26 \text{ mm}$$

Outer Normal Limit of reinforcement per UG-40

$$\begin{array}{lll} L_{H} & = & MIN(2.5*(t-C), 2.5*(t_{n}-C_{n})+t_{e}) \\ & = & MIN(2.5*(46.1-0), 2.5*(8.74-0)+0) \\ & = & 21.84 \ mm \end{array}$$

Nozzle required thickness per UG-28 t_{rn} = 1.11 mm

From UG-34 required thickness $t_r = 46.1 \text{ mm}$

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

Fillet weld:
$$t_{min}$$
 = lesser of 19 mm or t_n or t = 8.74 mm $t_{c(min)}$ = lesser of 6 mm or $0.7*t_{min}$ = $\frac{6}{9}$ mm $t_{c(actual)}$ = $0.7*Leg$ = $0.7*9$ = 6.3 mm

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

```
1.11 mm
t_{a \text{ UG-28}} =
t_a
                 max[ t_{\rm a\,UG\text{-}28} , t_{\rm a\,UG\text{-}22} ]
                 max[ 1.11, 0 ]
                 1.11 mm
                 46.1 mm
                 \max[\,t_{b2}^{}\,,\,t_{b\,UG16}^{}\,]
t_{b2}
                 max[46.1, 1.5]
                 46.1 mm
                 \min[t_{b3}, t_{b2}]
t_b
                 min[ 3.42, 46.1]
                 3.42 mm
          = \max[t_a, t_b]
t_{UG-45}
                 max[ 1.11, 3.42]
                 3.42 mm
```

Available nozzle wall thickness new, $t_n = 0.875*8.74 = 7.65$ mm

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 175 °C) UG-28(c)

```
L/D_o = 133.9/60.33 = 2.2196
D_o / t = 60.33 / 1.11 = 54.1393
                        A = 0.001455
From table G:
From table CS-2 Metric: B = 910.0732 \text{ kg/cm}^2 (892.48 \text{ bar})
      = 4*B / (3*(D_o/t))
      = 4*892.48 / (3*(60.33 / 1.11))
      = 21.98 \text{ bar}
```

Design thickness for external pressure $P_a = 21.98$ bar

```
= t + Corrosion = 1.11 + = 1.11 \text{ mm}
```

ASME Section VIII Division 1, 2017 Edition Metric - 265,52 12,4 15(Nom)

Note: round inside edges per UG-76(c)						
Location and Orientation						
Located on	Top Head					
Orientation	45°					
End of nozzle to datum line	29,680 mm					
Calculated as hillside	Yes					
Distance to head center, R	550 mm					
Passes through a Category A joint	No					
Nozzle						
Access opening	No					
Material specification	SA-516 70 (II-D Metric p. 18, ln. 33)					
Inside diameter, new	583.6 mm					
Nominal wall thickness	13 mm					
Corrosion allowance	3 mm					
Opening chord length	598.79 mm					
Projection available outside vessel, Lpr	326.72 mm					
Projection available outside vessel to flange face, Lf	479.12 mm					
Local vessel minimum thickness	12.4 mm					
Liquid static head included	0 bar					
Longitudinal joint efficiency	1					
Reinforcing Pad						
Material specification	SA-516 70 (II-D Metric p. 18, ln. 33)					
Diameter, D _p	1,150 mm					
Thickness, t _e	15 mm					
Is split	No					

Welds					
Inner fillet, Leg ₄₁	9 mm				
Outer fillet, Leg ₄₂	12 mm				
Nozzle to vessel groove weld	12.4 mm				
Pad groove weld	15 mm				

ASME B16.5-2013 Flange					
Description	NPS 24 Class 150 WN A105				
Bolt Material	SA-193 B7 Bolt <= 64 (II-D Metric p. 388, ln. 32)				
Blind included	Yes				
Rated MDMT	-48°C				
Liquid static head	0 bar				
MAWP rating	13.73 bar @ 202°C				
MAP rating	19.6 bar @ 30°C				
Hydrotest rating	30 bar @ 30°C				
PWHT performed	Yes				
Impact Tested	No				
Circumferential joint radiography	Spot UW-11(b) Type 1				
Bore diameter, B (specified by purchaser) 583.6 mm					
	Gasket				
Туре	Spiral-Wound				
Description	Lamons Spiral Wound W 304 SS / Flexible Graphite				
Factor, m	3				
Seating Stress, y	703.069 kg _r /cm ²				
Thickness, T	4.5 mm				
Inner Diameter	628.7 mm				
Outer Diameter	685.8 mm				
Notes					
Flange rated MDMT per UCS-66(b)(3) = -105° C (Coincident ratio = 0.1837) Bolts rated MDMT per Fig UCS-66 note (c) = -48° C					

UCS-66 Material Toughness Requirements Nozzle At Intersection				
Governing thickness, $t_g =$	13 mm			
Exemption temperature from Fig UCS-66M Curve B =	-21.25°C			
$t_r = 3.6*0.8984*3,356 / (2*1,380*1 - 0.2*3.6) =$	3.93 mm			
Stress ratio = $t_r^* E^* / (t_n - c) = 3.93*1 / (12.4 - 3) =$				
Reduction in MDMT, T _R from Fig UCS-66.1M =				
Reduction in MDMT, T _{PWHT} from UCS-68(c) =				
MDMT = max[MDMT - T_R - T_{PWHT} , -48] = max[-21.25 - 45.9 - 17 , -48] = -4.				
Material is exempt from impact testing at the Design MDMT of 17°C.				

UCS-66 Material Toughness Requirements Nozzle					
$t_r = 3.6*294.8 / (1,380*1 - 0.6*3.6) =$	0.77 mm				
Stress ratio = $t_r^* E^* / (t_n - c) = 0.77*1 / (13 - 3) =$	0.077				
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-105°C				
Material is exempt from impact testing at the Design MDMT of 17°C.					

UCS-66 Material Toughness Requirements Pad					
Governing thickness, $t_g =$	13 mm				
Exemption temperature from Fig UCS-66M Curve B =	-21.25°C				
$t_r = 3.6*0.8984*3,356 / (2*1,380*1 - 0.2*3.6) =$	3.93 mm				
Stress ratio = $t_r^* E^* / (t_n - c) = 3.93*1 / (12.4 - 3) =$	0.4185				
Reduction in MDMT, T _R from Fig UCS-66.1M =					
Reduction in MDMT, T _{PWHT} from UCS-68(c) =	17°C				
MDMT = max[MDMT - T_R - T_{PWHT} , -48] = max[-21.25 - 45.9 - 17 , -48] = -48°C					
Material is exempt from impact testing at the Design MDMT of 17°C.					

Reinforcement Calculations for Internal Pressure

UG-37 Area Calculation Summary (cm²)						UG- Sumn (mr	nary	
	For P = 3.6 bar @ 202 °C The opening is adequately reinforced					The nozzle		
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	$t_{\rm req}$	t _{min}
23.5545	118.9738	32.7328	4.3387		<u>79.6545</u>	2.2477	<u>7.37</u>	13

U	UG-41 Weld Failure Path Analysis Summary (kg _f)							
All failure paths are stronger than the applicable weld loads								
Weld load W	Weld load W ₁₋₁	Path 1-1 strength	Weld load W ₂₋₂	Path 2-2 strength	Weld load W ₃₋₃	Path 3-3 strength		
-11,377	121,359	242,249	9,888	302,728	124,005	243,204		

UW-16 Weld Sizing Summary						
Weld description	Required weld size (mm)	Actual weld size (mm)	Status			
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	6.3	weld size is adequate			
Pad to shell fillet (Leg ₄₂)	<u>6</u>	8.4	weld size is adequate			
Nozzle to shell groove (Lower)	7	9.4	weld size is adequate			

Calculations for internal pressure 3.6 bar @ 202 $^{\circ}$ C

Parallel Limit of reinforcement per UG-40

$$L_{R} = MAX(d, R_{n} + (t_{n} - C_{n}) + (t - C))$$

$$= MAX(598.79, 299.39 + (13 - 3) + (12.4 - 3))$$

$$= 598.79 \text{ mm}$$

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = MIN(2.5*(t - C), 2.5*(t_{n} - C_{n}) + t_{e})$$

$$= MIN(2.5*(12.4 - 3), 2.5*(13 - 3) + 15)$$

$$= 23.5 \text{ mm}$$

Nozzle required thickness per UG-27(c)(1)

$$t_{rn} = P*R_n / (S_n*E - 0.6*P)$$

$$= 3.6*294.8 / (1,380*1 - 0.6*3.6)$$

$$= 0.77 \text{ mm}$$

Required thickness t_r from UG-37(a)(c)

$$t_r$$
 = P*K₁*D / (2*S*E - 0.2*P)
= 3.6*0.8984*3,356 / (2*1,380*1 - 0.2*3.6)
= 3.93 mm

Required thickness t, per Interpretation VIII-1-07-50

$$t_r$$
 = P*D*K / (2*S*E - 0.2*P)
= 3.6*3,356*0.997623 / (2*1,380*1 - 0.2*3.6)
= 4.37 mm

Area required per UG-37(c)

Allowable stresses: $S_n = 1,407.207$, $S_v = 1,407.207$, $S_p = 1,407.207$ kg_f/cm² $f_{r1} = lesser of 1 or S_n / S_v = 1$ $f_{r2} = lesser of 1 or S_n / S_v = 1$ $f_{r3} = lesser of f_{r2} or S_p / S_v = 1$ $f_{r4} = lesser of 1 or S_p / S_v = 1$ $A = d*t_r*F + 2*t_n*t_r*F*(1 - f_{r1})$ = (598.79*3.93*1 + 2*10*3.93*1*(1 - 1)) / 100

Area available from FIG. UG-37.1

 $= 23.5545 \text{ cm}^2$

 $A_1 = larger of the following = 32.7328 cm^2$

$$= d^*(E_1^*t - F^*t_r) - 2^*t_n^*(E_1^*t - F^*t_r)^*(1 - f_{r1})$$

$$= (598.79^*(1^*9.4 - 1^*3.93) - 2^*10^*(1^*9.4 - 1^*3.93)^*(1 - 1)) / 100$$

$$= 32.7328 \text{ cm}^2$$

$$= 2^*(t + t_n)^*(E_1^*t - F^*t_r) - 2^*t_n^*(E_1^*t - F^*t_r)^*(1 - f_{r1})$$

$$= (2^*(9.4 + 10)^*(1^*9.4 - 1^*3.93) - 2^*10^*(1^*9.4 - 1^*3.93)^*(1 - 1)) / 100$$

$$= 2.1213 \text{ cm}^2$$

 A_2 = smaller of the following= 4.3387 cm²

$$= 5*(t_n - t_{rn})*f_{r2}*t$$

$$= (5*(10 - 0.77)*1*9.4) / 100$$

$$= 4.3387 \text{ cm}^2$$

$$= 2*(t_n - t_{rn})*(2.5*t_n + t_e)*f_{r2}$$

$$= (2*(10 - 0.77)*(2.5*10 + 15)*1) / 100$$

$$= 7.3845 \text{ cm}^2$$

$$A_{41} = Leg^{2*}f_{r3}$$

= $(8.99^{2*}1) / 100$
= $0.8077 cm^{2}$

(Part of the weld is outside of the limits)

$$A_{42} = Leg^{2*}f_{r4}$$

$$= (12^{2*}1) / 100$$

$$= 1.44 cm^{2}$$

$$A_5 = (D_p - d - 2*t_n)*t_e*f_{r4}$$

$$= ((1,150 - 618.97)*15*1) / 100$$

$$= 79.6545 \text{ cm}^2$$

Area =
$$A_1 + A_2 + A_{41} + A_{42} + A_5$$

= $32.7328 + 4.3387 + 0.8077 + 1.44 + 79.6545$
= 118.9738 cm^2

As Area \geq A the reinforcement is adequate.

UW-16(d) Weld Check

Inner fillet:
$$t_{min}$$
 = lesser of 19 mm or t_n or t_e = 10 mm $t_{c(min)}$ = lesser of 6 mm or $0.7*t_{min}$ = $\frac{6}{9}$ mm $t_{c(actual)}$ = $0.7*Leg$ = $0.7*9$ = 6.3 mm

Outer fillet:
$$t_{min}$$
 = lesser of 19 mm or t_e or t = 12 mm $t_{w(min)}$ = 0.5* t_{min} = $\frac{6}{9}$ mm $t_{w(actual)}$ = 0.7*Leg = 0.7*12 = 8.4 mm

Lower groove:
$$t_{min}$$
 = lesser of 19 mm or t_n or $t = 10$ mm
$$t_{w(min)} = 0.7*t_{min} = 7 \text{ mm}$$
$$t_{w(actual)} = 9.4 \text{ mm}$$

UG-45 Nozzle Neck Thickness Check

Interpretation VIII-1-83-66 has been applied.

$$\begin{array}{lll} t_{a\;UG\text{-}27} & = & P^*R_n\,/\,(S_n^*E\text{-}0.6^*P) + Corrosion \\ & = & 3.6^*294.8\,/\,(1,380^*1\text{-}0.6^*3.6) + 3 \\ & = & 3.77\;mm \\ \\ t_a & = & \max[\,\,t_{a\;UG\text{-}27}\,,\,t_{a\;UG\text{-}22}\,] \\ & = & \max[\,\,3.77\,\,,\,0\,\,] \\ & = & 3.77\;mm \\ \\ t_{b1} & = & 7.37\;mm \\ \\ t_{b1} & = & \max[\,\,t_{b1}\,,\,t_{b\;UG16}\,] \\ & = & \max[\,\,7.37\,\,,\,4.5\,\,] \\ & = & 7.37\;mm \\ \end{array}$$

 $= \min[t_{b3}, t_{b1}]$

 t_{b}

$$\begin{array}{rcl} t_{\text{UG-45}} & = & \max[\ t_{\text{a}} \,, t_{\text{b}} \,] \\ & = & \max[\ 3.77 \,, 7.37 \,] \\ & = & 7.37 \, \text{mm} \end{array}$$

Available nozzle wall thickness new, $t_n = 13 \text{ mm}$

The nozzle neck thickness is adequate.

Allowable stresses in joints UG-45 and UW-15(c)

Groove weld in tension: $0.74*1,407.207 = 1,041.333 \text{ kg/cm}^2$ Nozzle wall in shear: $0.7*1,407.207 = 985.045 \text{ kg}/\text{cm}^2$ $0.49*1,407.207 = 689.532 \text{ kg}/\text{cm}^2$ Inner fillet weld in shear: Outer fillet weld in shear: $0.49*1,407.207 = 689.532 \text{ kg}/\text{cm}^2$ Upper groove weld in tension: $0.74*1,407.207 = 1,041.333 \text{ kg/cm}^2$

Strength of welded joints:

- (1) Inner fillet weld in shear $(\pi / 2)$ *Nozzle OD*Leg*S_i = $(\pi / 2)$ *609.6*9*689.532 = 59,424 kg_f
- (2) Outer fillet weld in shear $(\pi/2)$ *Pad OD*Leg*S_o = $(\pi/2)$ *1,150*12*689.532 = 149,470.15 kg_f
- (3) Nozzle wall in shear $(\pi / 2)$ *Mean nozzle dia* t_n * $S_n = (\pi / 2)$ *599.6*10*985.045 = 92,778.87 kg_f
- (4) Groove weld in tension $(\pi \ / \ 2)*Nozzle\ OD*t_{_W}*S_{_g} = (\pi \ / \ 2)*609.6*9.4*1,041.333 = 93,733.51\ kg_f$
- (6) Upper groove weld in tension $(\pi / 2)*Nozzle OD*t_w*S_g = (\pi / 2)*609.6*15*1,041.333 = 149,570.61 kg_f$

Loading on welds per UG-41(b)(1)

$$W = (A - A_1 + 2*t_n*f_{r1}*(E_1*t - F*t_r))*S_v$$

= (2,355.4481 - 3,273.2838 + 2*10*1*(1*9.4 - 1*3.93))*1,407.207
= -11,377.3 kg_f

$$W_{1-1} = (A_2 + A_5 + A_{41} + A_{42}) *S_v$$

= (433.8701 + 7,965.45 + 80.774 + 143.9997)*1,407.207
= 121,358.98 kg_f

$$\begin{aligned} W_{2-2} &= & (A_2 + A_3 + A_{41} + A_{43} + 2^* t_n^* t^* f_{r1}^* S_v \\ &= & (433.8701 + 0 + 80.774 + 0 + 2^* 10^* 9.4^* 1)^* 1,407.207 \\ &= & \underline{9.887.81} \text{ kg}_f \end{aligned}$$

$$W_{3-3} = (A_2 + A_3 + A_5 + A_{41} + A_{42} + A_{43} + 2 t_n^* t_n^* t_{r1}^*) S_v$$

- = (433.8701 + 0 + 7,965.45 + 80.774 + 143.9997 + 0 + 2*10*9.4*1)*1,407.207
- $= 124,004.68 \text{ kg}_{\text{f}}$

Load for path 1-1 lesser of W or W_{1-1} = -11,377.3 kg $_{\rm f}$ Path 1-1 through (2) & (3) = 149,470.15 + 92,778.87 = $\underline{242,249.03}$ kg $_{\rm f}$ Path 1-1 is stronger than W so it is acceptable per UG-41(b)(2).

Load for path 2-2 lesser of W or $W_{2-2} = -11,377.3 \text{ kg}_f$ Path 2-2 through (1), (4), (6) = 59,424 + 93,733.51 + 149,570.61 = $302,728.12 \text{ kg}_f$ Path 2-2 is stronger than W so it is acceptable per UG-41(b)(2).

Load for path 3-3 lesser of W or $W_{3-3} = -11,377.3 \text{ kg}_f$ Path 3-3 through (2), (4) = 149,470.15 + 93,733.51 = $\underline{243,203.66}$ kg_f Path 3-3 is stronger than W so it is acceptable per UG-41(b)(2).

% Extreme fiber elongation - UCS-79(d)

EFE = $(50*t / R_f)*(1 - R_f / R_o)$ = (50*13 / 298.3)*(1 - 298.3 / infinity)= 2.179%

The extreme fiber elongation does not exceed 5%.

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary (cm ²)							UG- Sumn (mr	nary
	For Pe = 1.18 bar @ 175 $^{\circ}$ C The opening is adequately reinforced						The nozzle	
A required	A available	A ₁	A ₂	A3	A ₅	A welds	$t_{\rm req}$	t _{min}
28.1429	<u>85.6364</u>	0.0013	3.7329		<u>79.6545</u>	2.2477	<u>5.06</u>	13

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary						
Weld description	Required weld size (mm)	Actual weld size (mm)	Status			
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	6.3	weld size is adequate			
Pad to shell fillet (Leg ₄₂)	<u>6</u>	8.4	weld size is adequate			
Nozzle to shell groove (Lower)	7	9.4	weld size is adequate			

Calculations for external pressure 1.18 bar @ 175 °C

Parallel Limit of reinforcement per UG-40

$$L_{R} = MAX(d, R_{n} + (t_{n} - C_{n}) + (t - C))$$

$$= MAX(598.78, 299.39 + (13 - 3) + (12.4 - 3))$$

$$= 598.78 \text{ mm}$$

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = MIN(2.5*(t - C), 2.5*(t_{n} - C_{n}) + t_{e})$$

$$= MIN(2.5*(12.4 - 3), 2.5*(13 - 3) + 15)$$

$$= 23.5 \text{ mm}$$

Nozzle required thickness per UG-28 t_{rn} = 2.06 mm

From UG-37(d)(1) required thickness $t_r = 9.4 \text{ mm}$

Area required per UG-37(d)(1)

Allowable stresses: $S_n = 1,407.207$, $S_v = 1,407.207$, $S_p = 1,407.207$ kg/cm² f_{r1} = lesser of 1 or $S_n / S_v = 1$ f_{r2} = lesser of 1 or $S_n / S_v = 1$

$$f_{r4} = lesser of 1 or S_p / S_v = 1$$

$$A = 0.5*(d*t_r*F + 2*t_n*t_r*F*(1 - f_{r1}))$$

$$= (0.5*(598.78*9.4*1 + 2*10*9.4*1*(1 - 1))) / 100$$

$$= 28.1429 \text{ cm}^2$$

Area available from FIG. UG-37.1

 $A_1 = larger of the following = 0.0013 cm^2$

$$= d^*(E_1^*t - F^*t_r) - 2^*t_n^*(E_1^*t - F^*t_r)^*(1 - f_{r1})$$

$$= (598.78^*(1^*9.4 - 1^*9.4) - 2^*10^*(1^*9.4 - 1^*9.4)^*(1 - 1)) / 100$$

$$= 0.0013 \text{ cm}^2$$

$$= 2^*(t + t_n)^*(E_1^*t - F^*t_r) - 2^*t_n^*(E_1^*t - F^*t_r)^*(1 - f_{r1})$$

$$= (2^*(9.4 + 10)^*(1^*9.4 - 1^*9.4) - 2^*10^*(1^*9.4 - 1^*9.4)^*(1 - 1)) / 100$$

$$= 0 \text{ cm}^2$$

 A_2 = smaller of the following= 3.7329 cm²

$$= 5*(t_n - t_{rn})*f_{r2}*t$$

$$= (5*(10 - 2.06)*1*9.4) / 100$$

$$= 3.7329 \text{ cm}^2$$

$$= 2*(t_n - t_{rn})*(2.5*t_n + t_e)*f_{r2}$$

$$= (2*(10 - 2.06)*(2.5*10 + 15)*1) / 100$$

$$= 6.3542 \text{ cm}^2$$

$$A_{41} = \text{Leg}^{2*}f_{r3}$$

$$= (8.99^{2*}1) / 100$$

$$= 0.8077 \text{ cm}^{2}$$

(Part of the weld is outside of the limits)

$$A_{42} = Leg^{2*}f_{r4}$$

$$= (12^{2*}1) / 100$$

$$= 1.44 cm^{2}$$

$$A_5 = (D_p - d - 2*t_n)*t_e*f_{r4}$$
= ((1,150 - 618.97)*15*1) / 100
= 79.6545 cm²

Area =
$$A_1 + A_2 + A_{41} + A_{42} + A_5$$

= 0.0013 + 3.7329 + 0.8077 + 1.44 + 79.6545
= 85.6364 cm²

As Area \geq A the reinforcement is adequate.

UW-16(d) Weld Check

Inner fillet:
$$t_{min}$$
 = lesser of 19 mm or t_n or t_e = 10 mm $t_{c(min)}$ = lesser of 6 mm or $0.7*t_{min}$ = $\underline{6}$ mm $t_{c(actual)}$ = $0.7*Leg$ = $0.7*9$ = 6.3 mm

Outer fillet: t_{min} = lesser of 19 mm or t_e or t = 12 mm $t_{w(min)}$ = $0.5*t_{min}$ = $\underline{6}$ mm $t_{w(actual)}$ = $0.7*Leg$ = $0.7*12$ = 8.4 mm

Lower groove: t_{min} = lesser of 19 mm or t_n or t = 10 mm $t_{w(min)}$ = $0.7*t_{min}$ = $\frac{7}{2}$ mm $t_{w(actual)}$ = 9.4 mm

UG-45 Nozzle Neck Thickness Check

Interpretation VIII-1-83-66 has been applied.

```
t_{a \text{ UG-28}} =
                5.06 mm
                \max[t_{a \text{ UG-28}}, t_{a \text{ UG-22}}]
                max[ 5.06, 0]
          =
                5.06 mm
                4.43 mm
t_{b2}
t_{b2}
          = \max[t_{b2}, t_{b \text{ UG}16}]
                max[ 4.43, 4.5]
                4.5 mm
                min[t_{b3}, t_{b2}]
                min[ 11.33, 4.5]
                4.5 mm
                \max[t_a, t_b]
t_{UG-45}
                max[ 5.06, 4.5]
          =
                 5.06 mm
```

Available nozzle wall thickness new, $t_n = 13 \text{ mm}$

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 175 °C) UG-28(c)

```
L/D_0 = 587.22/609.6 = 0.9633
D_0 / t = 609.6 / 2.06
                       = 296.2265
```

From table G: A = 0.000271

From table CS-2 Metric: $B = 267.9733 \text{ kg/cm}^2 (262.79 \text{ bar})$

 $= 4*B/(3*(D_o/t))$ = 4*262.79 / (3*(609.6 / 2.06))= 1.18 bar

Design thickness for external pressure $P_a = 1.18$ bar

 $t_a = t + Corrosion = 2.06 + 3 = 5.06 \text{ mm}$

ASME Section VIII Division 1, 2017 Edition Metric - 160,78 12,4 15(Nom)

Note: round inside edges per UG-76(c)						
Location and Orientation						
Top Head						
270°						
29,680 mm						
Yes						
1,200 mm						
No						
No						
SA-516 70 (II-D Metric p. 18, ln. 33)						
380.4 mm						
13 mm						
3 mm						
436.76 mm						
507.24 mm						
634.24 mm						
12.4 mm						
0 bar						
1						
SA-516 70 (II-D Metric p. 18, ln. 33)						
780 mm						
15 mm						
No						

Welds					
Inner fillet, Leg ₄₁	9 mm				
Outer fillet, Leg ₄₂	12 mm				
Nozzle to vessel groove weld	12.4 mm				
Pad groove weld	15 mm				

ASME B16.5-2013 Flange					
Description	NPS 16 Class 150 WN A105				
Bolt Material	SA-193 B7 Bolt <= 64 (II-D Metric p. 388, ln. 32)				
Blind included	No				
Rated MDMT	-48°C				
Liquid static head	0 bar				
MAWP rating	13.73 bar @ 202°C				
MAP rating	19.6 bar @ 30°C				
Hydrotest rating	30 bar @ 30°C				
PWHT performed	Yes				
Impact Tested	No				
Circumferential joint radiography	Spot UW-11(b) Type 1				
Bore diameter, B (specified by purchaser)	380.4 mm				
Notes					
Flange rated MDMT per UCS-66(b)(3) = -105°C (Coincident ratio = 0.1837) Bolts rated MDMT per Fig UCS-66 note (c) = -48°C					

UCS-66 Material Toughness Requirements Nozzle At Intersection	
Governing thickness, $t_g =$	13 mm
Exemption temperature from Fig UCS-66M Curve B =	-21.25°C
$t_r = 3.6*3,356*0.997623 / (2*1,380*1 - 0.2*3.6) =$	4.37 mm
Stress ratio = $t_r^* E^* / (t_n - c) = 4.37*1 / (12.4 - 3) =$	0.4647
Reduction in MDMT, T _R from Fig UCS-66.1M =	36.2°C
Reduction in MDMT, T _{PWHT} from UCS-68(c) =	17°C
$MDMT = max[MDMT - T_R - T_{PWHT}, -48] = max[-21.25 - 36.2 - 17, -48] =$	-48°C
Material is exempt from impact testing at the Design MDMT of 17°C.	

UCS-66 Material Toughness Requirements Nozzle					
$t_r = 3.6*193.2 / (1,380*1 - 0.6*3.6) =$	0.5 mm				
Stress ratio = $t_r^* E^* / (t_n - c) = 0.5*1 / (13 - 3) =$	0.0505				
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-105°C				
Material is exempt from impact testing at the Design MDMT of 17°C.					

UCS-66 Material Toughness Requirements Pad	
Governing thickness, $t_g =$	13 mm
Exemption temperature from Fig UCS-66M Curve B =	-21.25°C
$t_r = 3.6*3,356*0.997623 / (2*1,380*1 - 0.2*3.6) =$	4.37 mm
Stress ratio = $t_r^* E^* / (t_n - c) = 4.37*1 / (12.4 - 3) =$	0.4647
Reduction in MDMT, T _R from Fig UCS-66.1M =	36.2°C
Reduction in MDMT, T _{PWHT} from UCS-68(c) =	17°C
$MDMT = max[MDMT - T_R - T_{PWHT}, -48] = max[-21.25 - 36.2 - 17, -48] =$	-48°C
Material is exempt from impact testing at the Design MDMT of 17°C.	

Reinforcement Calculations for Internal Pressure

UG-37 Area Calculation Summary (cm²)								.45 nary n)
	For P = 3.6 bar @ 202 °C The opening is adequately reinforced							
A required	A available	A ₁	A ₂	A3	A ₅	A welds	$t_{\rm req}$	t _{min}
19.078	76.923	21.9787	4.4626		48.234	2.2477	7.37	13

UG-41 Weld Failure Path Analysis Summary (kg _f)									
All failure paths are stronger than the applicable weld loads									
Weld load Weld load Wul-1 Strength W2-2 Strength W3-3 Stre									

UW-16 Weld Sizing Summary							
Weld description	Required weld size (mm)	Actual weld size (mm)	Status				
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	6.3	weld size is adequate				
Pad to shell fillet (Leg ₄₂)	<u>6</u>	8.4	weld size is adequate				
Nozzle to shell groove (Lower)	7	9.4	weld size is adequate				

Calculations for internal pressure 3.6 bar @ 202 $^{\circ}$ C

Parallel Limit of reinforcement per UG-40

$$L_{R} = MAX(d, R_{n} + (t_{n} - C_{n}) + (t - C))$$

$$= MAX(436.76, 218.38 + (13 - 3) + (12.4 - 3))$$

$$= 436.76 \text{ mm}$$

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = MIN(2.5*(t - C), 2.5*(t_{n} - C_{n}) + t_{e})$$

$$= MIN(2.5*(12.4 - 3), 2.5*(13 - 3) + 15)$$

$$= 23.5 \text{ mm}$$

Nozzle required thickness per UG-27(c)(1)

$$t_{rn} = P*R_{n} / (S_{n}*E - 0.6*P)$$

$$= 3.6*193.2 / (1,380*1 - 0.6*3.6)$$

$$= 0.51 \text{ mm}$$

Required thickness t_r from UG-37(a)

$$t_r$$
 = P*D*K / (2*S*E - 0.2*P)
= 3.6*3,356*0.997623 / (2*1,380*1 - 0.2*3.6)
= 4.37 mm

Area required per UG-37(c)

Allowable stresses: $S_n = 1,407.207$, $S_v = 1,407.207$, $S_p = 1,407.207$ kg_f/cm²

$$f_{r1} = lesser of 1 or S_n / S_v = 1$$

$$f_{r2}$$
 = lesser of 1 or $S_n / S_v = 1$

$$f_{r3}$$
 = lesser of f_{r2} or $S_p / S_v = 1$

$$f_{r4} = lesser of 1 or S_p / S_v = 1$$

$$A = d*t_r*F + 2*t_n*t_r*F*(1 - f_{r1})$$

$$= (436.76*4.37*1 + 2*10*4.37*1*(1 - 1)) / 100$$

$$= 19.078 \text{ cm}^2$$

Area available from FIG. UG-37.1

 $A_1 = larger of the following = 21.9787 cm^2$

$$= d^*(E_1^*t - F^*t_r) - 2^*t_n^*(E_1^*t - F^*t_r)^*(1 - f_{r1})$$

$$= (436.76^*(1^*9.4 - 1^*4.37) - 2^*10^*(1^*9.4 - 1^*4.37)^*(1 - 1)) / 100$$

$$= 21.9787 \text{ cm}^2$$

$$= 2^*(t + t_n)^*(E_1^*t - F^*t_r) - 2^*t_n^*(E_1^*t - F^*t_r)^*(1 - f_{r1})$$

$$= (2*(9.4+10)*(1*9.4-1*4.37) - 2*10*(1*9.4-1*4.37)*(1-1)) / 100$$

 1.9523 cm^2

 A_2 = smaller of the following= 4.4626 cm²

$$= 5*(t_n - t_{rn})*f_{r2}*t$$

$$= (5*(10 - 0.51)*1*9.4) / 100$$

 $= 4.4626 \text{ cm}^2$

$$= 2*(t_n - t_{rn})*(2.5*t_n + t_e)*f_{r2}$$

$$= (2*(10-0.51)*(2.5*10+15)*1)/100$$

 $= 7.5961 \text{ cm}^2$

$$A_{41} = Leg^{2*}f_{r3}$$

 $= (8.99^{2*}1) / 100$

 0.8077 cm^2

(Part of the weld is outside of the limits)

$$A_{42} = Leg^{2*}f_{r4}$$

= $(12^{2*}1) / 100$
= $1.44 cm^2$

$$A_5 = (D_p - d - 2*t_n)*t_e*f_{r4}$$

$$= ((780 - 458.44)*15*1) / 100$$

$$= 48.234 \text{ cm}^2$$

Area =
$$A_1 + A_2 + A_{41} + A_{42} + A_5$$

= $21.9787 + 4.4626 + 0.8077 + 1.44 + 48.234$
= 76.923 cm^2

As Area \geq A the reinforcement is adequate.

UW-16(d) Weld Check

UG-45 Nozzle Neck Thickness Check

Interpretation VIII-1-83-66 has been applied.

$$\begin{array}{lll} t_{a\,UG\text{-}27} & = & P^*R_n\,/\,(S_n^*E\text{-}0.6^*P) + \text{Corrosion} \\ & = & 3.6^*193.2\,/\,(1,380^*1\text{-}0.6^*3.6) + 3 \\ & = & 3.51 \text{ mm} \\ \\ t_a & = & \max[\,t_{a\,UG\text{-}27}\,,\,t_{a\,UG\text{-}22}\,] \\ & = & \max[\,3.51\,,\,0\,] \\ & = & 3.51 \text{ mm} \\ \\ t_{b1} & = & 7.37 \text{ mm} \\ \\ t_{b1} & = & \max[\,t_{b1}\,,\,t_{b\,UG16}\,] \\ & = & \max[\,7.37\,,\,4.5\,] \\ & = & 7.37 \text{ mm} \\ \\ t_b & = & \min[\,t_{b3}\,,\,t_{b1}\,] \\ & = & \min[\,11.33\,,\,7.37\,] \\ & = & 7.37 \text{ mm} \\ \end{array}$$

$$t_{UG-45} = max[t_a, t_b]$$

= max[3.51, 7.37]
= 7.37 mm

Available nozzle wall thickness new, $t_n = 13 \text{ mm}$

The nozzle neck thickness is adequate.

Allowable stresses in joints UG-45 and UW-15(c)

Groove weld in tension: $0.74*1,407.207 = 1,041.333 \text{ kg}/\text{cm}^2$ Nozzle wall in shear: $0.7*1,407.207 = 985.045 \text{ kg}/\text{cm}^2$ Inner fillet weld in shear: $0.49*1,407.207 = 689.532 \text{ kg}/\text{cm}^2$ Outer fillet weld in shear: $0.49*1,407.207 = 689.532 \text{ kg}/\text{cm}^2$ Upper groove weld in tension: $0.74*1,407.207 = 1,041.333 \text{ kg/cm}^2$

Strength of welded joints:

- (1) Inner fillet weld in shear $(\pi / 2)$ *Nozzle OD*Leg*S_i = $(\pi / 2)$ *406.4*9*689.532 = 39,616 kg_f
- (2) Outer fillet weld in shear $(\pi/2)$ *Pad OD*Leg*S_o = $(\pi/2)$ *780*12*689.532 = 101,379.8 kg_f
- (3) Nozzle wall in shear $(\pi / 2)$ *Mean nozzle dia* t_n * S_n = $(\pi / 2)$ *396.4*10*985.045 = 61,336.79 kg_f
- (4) Groove weld in tension $(\pi / 2)*Nozzle OD*t_w*S_g = (\pi / 2)*406.4*9.4*1,041.333 = 62,489.01 kg_f$
- (6) Upper groove weld in tension $(\pi / 2)$ *Nozzle OD* t_w * $S_g = (\pi / 2)$ *406.4*15* $1,041.333 = 99,713.74 kg_f$

Loading on welds per UG-41(b)(1)

$$W = (A - A_1 + 2*t_n*f_{r1}*(E_1*t - F*t_r))*S_v$$

= (1,907.7981 - 2,197.8666 + 2*10*1*(1*9.4 - 1*4.37))*1,407.207
= -2.665.55 kg_f

$$\begin{aligned} W_{1-1} &= & (A_2 + A_5 + A_{41} + A_{42}) * S_v \\ &= & (446.2572 + 4,823.4 + 80.774 + 143.9997) * 1,407.207 \\ &= & \underline{77,318.1} \text{ kg}_f \end{aligned}$$

$$\begin{aligned} W_{2\text{-}2} &= & (A_2 + A_3 + A_{41} + A_{43} + 2^* t_n^* t^* f_{r1})^* S_v \\ &= & (446.2572 + 0 + 80.774 + 0 + 2^* 10^* 9.4^* 1)^* 1,407.207 \\ &= & \underline{10.062.12} \text{ kg}_f \end{aligned}$$

$$\begin{split} W_{3\text{-}3} &= & (A_2 + A_3 + A_5 + A_{41} + A_{42} + A_{43} + 2^*t_n^*t^*f_{r1})^*S_v \\ &= & (446.2572 + 0 + 4,823.4 + 80.774 + 143.9997 + 0 + 2^*10^*9.4^*1)^*1,407.207 \\ &= & \underline{79.963.79} \text{ kg}_f \end{split}$$

```
Load for path 1-1 lesser of W or W_{1-1} = -2,665.55 \text{ kg}_f
Path 1-1 through (2) & (3) = 101,379.8 + 61,336.79 = 162,716.58 \text{ kg}_f
Path 1-1 is stronger than W so it is acceptable per UG-41(b)(2).
```

Load for path 2-2 lesser of W or $W_{2-2} = -2,665.55 \text{ kg}_f$ Path 2-2 through (1), (4), (6) = $39,616 + 62,489.01 + 99,713.74 = 201.818.75 \text{ kg}_f$ Path 2-2 is stronger than W so it is acceptable per UG-41(b)(2).

Load for path 3-3 lesser of W or $W_{3-3} = -2,665.55 \text{ kg}_f$ Path 3-3 through (2), (4) = $101,379.8 + 62,489.01 = 163,868.8 \text{ kg}_f$ Path 3-3 is stronger than W so it is acceptable per UG-41(b)(2).

% Extreme fiber elongation - UCS-79(d)

EFE =
$$(50*t / R_f)*(1 - R_f / R_o)$$

= $(50*13 / 196.7)*(1 - 196.7 / infinity)$
= 3.3045%

The extreme fiber elongation does not exceed 5%.

Page 92 of 450

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary (cm ²)							UG- Sumn (mr	nary
	For Pe = 1.18 bar @ 175 $^{\circ}\mathrm{C}$ The opening is adequately reinforced							
A required	A1 A2 A2 A5							t _{min}
20.5197	54.2991	0.0013	3.8161		48.234	2.2477	4.88	13

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary							
Weld description	Required weld size (mm)	Actual weld size (mm)	Status				
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	6.3	weld size is adequate				
Pad to shell fillet (Leg ₄₂)	<u>6</u>	8.4	weld size is adequate				
Nozzle to shell groove (Lower)	7	9.4	weld size is adequate				

Calculations for external pressure 1.18 bar @ 175 °C

Parallel Limit of reinforcement per UG-40

$$L_{R} = MAX(d, R_{n} + (t_{n} - C_{n}) + (t - C))$$

$$= MAX(436.59, 218.29 + (13 - 3) + (12.4 - 3))$$

$$= 436.59 \text{ mm}$$

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = MIN(2.5*(t - C), 2.5*(t_{n} - C_{n}) + t_{e})$$

$$= MIN(2.5*(12.4 - 3), 2.5*(13 - 3) + 15)$$

$$= 23.5 \text{ mm}$$

Nozzle required thickness per UG-28 t_{rn} = 1.88 mm

From UG-37(d)(1) required thickness $t_r = 9.4 \text{ mm}$

Area required per UG-37(d)(1)

Allowable stresses:
$$S_n = 1,407.207$$
, $S_v = 1,407.207$, $S_p = 1,407.207$ kg/cm²
$$f_{r1} = lesser\ of\ 1\ or\ S_n\ /\ S_v = 1$$

$$f_{r2} = lesser\ of\ 1\ or\ S_n\ /\ S_v = 1$$

$$f_{r4} = lesser of 1 or S_p / S_v = 1$$

$$A = 0.5*(d*t_r*F + 2*t_n*t_r*F*(1 - f_{r1}))$$

$$= (0.5*(436.59*9.4*1 + 2*10*9.4*1*(1 - 1))) / 100$$

$$= 20.5197 \text{ cm}^2$$

Area available from FIG. UG-37.1

 A_1 = larger of the following= 0.0013 cm²

$$= d*(E_1*t - F*t_r) - 2*t_n*(E_1*t - F*t_r)*(1 - f_{r1})$$

$$= (436.59*(1*9.4 - 1*9.4) - 2*10*(1*9.4 - 1*9.4)*(1 - 1)) / 100$$

$$= 0.0013 \text{ cm}^2$$

$$= 2*(t + t_n)*(E_1*t - F*t_r) - 2*t_n*(E_1*t - F*t_r)*(1 - f_{r1})$$

$$= (2*(9.4 + 10)*(1*9.4 - 1*9.4) - 2*10*(1*9.4 - 1*9.4)*(1 - 1)) / 100$$

$$= 0 \text{ cm}^2$$

 A_2 = smaller of the following= <u>3.8161</u> cm²

$$= 5*(t_n - t_m)*f_{r2}*t$$

$$= (5*(10 - 1.88)*1*9.4) / 100$$

$$= 3.8161 \text{ cm}^2$$

$$= 2*(t_n - t_m)*(2.5*t_n + t_e)*f_{r2}$$

$$= (2*(10 - 1.88)*(2.5*10 + 15)*1) / 100$$

$$= 6.4948 \text{ cm}^2$$

$$A_{41} = Leg^{2*}f_{r3}$$

$$= (8.99^{2*}1) / 100$$

$$= 0.8077 \text{ cm}^{2}$$

(Part of the weld is outside of the limits)

$$A_{42} = Leg^{2*}f_{r4}$$

$$= (12^{2*}1) / 100$$

$$= 1.44 cm^{2}$$

$$A_5 = (D_p - d - 2*t_n)*t_e*f_{r4}$$

$$= ((780 - 458.44)*15*1) / 100$$

$$= 48.234 \text{ cm}^2$$

Area =
$$A_1 + A_2 + A_{41} + A_{42} + A_5$$

= $0.0013 + 3.8161 + 0.8077 + 1.44 + 48.234$
= 54.2991 cm²

As Area >= A the reinforcement is adequate.

UW-16(d) Weld Check

Inner fillet:
$$t_{min}$$
 = lesser of 19 mm or t_n or t_e = 10 mm $t_{c(min)}$ = lesser of 6 mm or $0.7*t_{min}$ = $\underline{6}$ mm $t_{c(actual)}$ = $0.7*Leg$ = $0.7*9$ = 6.3 mm

Outer fillet: t_{min} = lesser of 19 mm or t_e or t = 12 mm $t_{w(min)}$ = $0.5*t_{min}$ = $\underline{6}$ mm $t_{w(actual)}$ = $0.7*Leg$ = $0.7*12$ = 8.4 mm

Lower groove: t_{min} = lesser of 19 mm or t_n or t = 10 mm $t_{w(min)}$ = $0.7*t_{min}$ = $\frac{7}{2}$ mm $t_{w(actual)}$ = 9.4 mm

UG-45 Nozzle Neck Thickness Check

Interpretation VIII-1-83-66 has been applied.

```
t_{a \text{ UG-28}} =
                4.88 mm
                \max[t_{a \text{ UG-28}}, t_{a \text{ UG-22}}]
                max[ 4.88, 0]
          =
                4.88 mm
                4.43 mm
t_{b2}
t_{b2}
          = \max[t_{b2}, t_{b \text{ UG}16}]
                max[ 4.43, 4.5]
                4.5 mm
                min[t_{b3}, t_{b2}]
                min[ 11.33, 4.5]
                4.5 mm
          = \max[t_a, t_b]
t_{UG-45}
                max[ 4.88, 4.5]
          =
                4.88 mm
```

Available nozzle wall thickness new, $t_n = 13 \text{ mm}$

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 175 °C) UG-28(c)

```
L/D_o = 847.96 / 406.4 = 2.0865

D_o/t = 406.4 / 1.88 = 215.9811
```

From table G: A = 0.000198

From table CS-2 Metric: $B = 195.3787 \text{ kg/cm}^2 (191.6 \text{ bar})$

 $= 4*B / (3*(D_o / t))$ = 4*191.6 / (3*(406.4 / 1.88)) = 1.18 bar

Design thickness for external pressure $P_a = 1.18$ bar

 $t_a = t + Corrosion = 1.88 + 3 = 4.88 \text{ mm}$

ASME Section VIII Division 1, 2017 Edition Metric ← 176,66 12,4 15(Nom) → | | 13 592

Note: round inside edges per UG-76(c)						
Location and Orientation						
Top Head						
315°						
29,680 mm						
Yes						
900 mm						
No						
Nozzle						
No						
SA-516 70 (II-D Metric p. 18, ln. 33)						
380.4 mm						
13 mm						
3 mm						
405.99 mm						
418.95 mm						
592 mm						
545.95 mm						
12.4 mm						
0 bar						
1						
SA-516 70 (II-D Metric p. 18, ln. 33)						
780 mm						
15 mm						

				-	
,	τ	7		- 1	

Is split	No
Welds	
Inner fillet, Leg ₄₁	9 mm
Outer fillet, Leg ₄₂	12 mm
Lower fillet, Leg ₄₃	13 mm
Nozzle to vessel groove weld	12.4 mm
Pad groove weld	15 mm

ASME B16.5-2013 Flange					
Description NPS 16 Class 150 WN A105					
Bolt Material	SA-193 B7 Bolt <= 64 (II-D Metric p. 388, ln. 32)				
Blind included No					
Rated MDMT	-48°C				
Liquid static head	0 bar				
MAWP rating	13.73 bar @ 202°C				
MAP rating 19.6 bar @ 30°C					
Hydrotest rating 30 bar @ 30°C					
PWHT performed Yes					
Impact Tested	No				
Circumferential joint radiography	Spot UW-11(b) Type 1				
Bore diameter, B (specified by purchaser)	380.4 mm				
Notes					
Flange rated MDMT per UCS-66(b)(3) = -105°C (Coincident ratio = 0.1837) Bolts rated MDMT per Fig UCS-66 note (c) = -48°C					

UCS-66 Material Toughness Requirements Nozzle At Intersection					
Governing thickness, $t_g =$	13 mm				
Exemption temperature from Fig UCS-66M Curve B =	-21.25°C				
$t_r = 3.6*0.8984*3,356 / (2*1,380*1 - 0.2*3.6) =$	3.93 mm				
Stress ratio = $t_r^* E^* / (t_n - c) = 3.93*1 / (12.4 - 3) =$	0.4185				
Reduction in MDMT, T _R from Fig UCS-66.1M =	45.9°C				
Reduction in MDMT, T _{PWHT} from UCS-68(c) =	17°C				
$MDMT = max[MDMT - T_R - T_{PWHT}, -48] = max[-21.25 - 45.9 - 17, -48] =$	-48°C				
Material is exempt from impact testing at the Design MDMT of 17°C.					

UCS-66 Material Toughness Requirements Nozzle					
$t_r = 3.6*193.2 / (1,380*1 - 0.6*3.6) =$	0.5 mm				
Stress ratio = $t_r^* E^* / (t_n - c) = 0.5*1 / (13 - 3) =$ 0.0505					
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-105°C				
Material is exempt from impact testing at the Design MDMT of 17°C.					

UCS-66 Material Toughness Requirements Pad					
Governing thickness, $t_g =$	13 mm				
Exemption temperature from Fig UCS-66M Curve B =	-21.25°C				
$t_r = 3.6*0.8984*3,356 / (2*1,380*1 - 0.2*3.6) =$	3.93 mm				
Stress ratio = $t_r^* E^* / (t_n - c) = 3.93*1 / (12.4 - 3) =$	0.4185				
Reduction in MDMT, T _R from Fig UCS-66.1M =					
Reduction in MDMT, T _{PWHT} from UCS-68(c) =					
MDMT = max[MDMT - T_R - T_{PWHT} , -48] = max[-21.25 - 45.9 - 17 , -48] =					
Material is exempt from impact testing at the Design MDMT of 17°C.					

Page 99 of 450

Reinforcement Calculations for Internal Pressure

UG-37 Area Calculation Summary (cm²)							UG- Sumn (mr	nary
For P = 3.6 bar @ 202 °C The opening is adequately reinforced						The nozzle		
A A A A A required available A1 A2 A3 A5 Welds							$t_{\rm req}$	t _{min}
<u>15.9703</u>	<u>85.1115</u>	22.1935	4.4626	2.4504	52.998	3.0071	7.37	13

UG-41 Weld Failure Path Analysis Summary (kg _f)								
All failure paths are stronger than the applicable weld loads								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
-7,219	84,022	162,717	14,579	240,179	91,184	202 220		

UW-16 Weld Sizing Summary							
Weld description	Required weld size (mm)	Actual weld size (mm)	Status				
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	6.3	weld size is adequate				
Pad to shell fillet (Leg ₄₂)	<u>6</u>	8.4	weld size is adequate				
Nozzle to inside shell fillet (Leg ₄₃)	<u>6</u>	6.1 (corroded)	weld size is adequate				
Nozzle to shell groove (Lower)	7	12.4	weld size is adequate				

Calculations for internal pressure 3.6 bar @ 202 $^{\circ}$ C

Parallel Limit of reinforcement per UG-40

$$L_{R} = MAX(d, R_{n} + (t_{n} - C_{n}) + (t - C))$$

$$= MAX(405.99, 202.99 + (13 - 3) + (12.4 - 3))$$

$$= 405.99 \text{ mm}$$

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = MIN(2.5*(t - C), 2.5*(t_{n} - C_{n}) + t_{e})$$

$$= MIN(2.5*(12.4 - 3), 2.5*(13 - 3) + 15)$$

$$= 23.5 \text{ mm}$$

Inner Normal Limit of reinforcement per UG-40

$$\begin{split} L_{\rm I} &= & \text{MIN(h, 2.5*(t - C), 2.5*(t_i - C_n - C))} \\ &= & \text{MIN(589, 2.5*(12.4 - 3), 2.5*(13 - 3 - 3))} \\ &= & 17.5 \text{ mm} \end{split}$$

Nozzle required thickness per UG-27(c)(1)

$$t_{rn}$$
 = P*R_n / (S_n*E - 0.6*P)
= 3.6*193.2 / (1,380*1 - 0.6*3.6)
= 0.51 mm

Required thickness t, from UG-37(a)(c)

```
t_r
   = P*K_1*D / (2*S*E - 0.2*P)
    = 3.6*0.8984*3,356 / (2*1,380*1 - 0.2*3.6)
    = 3.93 \text{ mm}
```

Required thickness t, per Interpretation VIII-1-07-50

$$t_r$$
 = P*D*K / (2*S*E - 0.2*P)
= 3.6*3,356*0.997623 / (2*1,380*1 - 0.2*3.6)
= 4.37 mm

Area required per UG-37(c)

Allowable stresses: $S_n = 1,407.207$, $S_v = 1,407.207$, $S_p = 1,407.207$ kg_f/cm² $f_{r1} = lesser of 1 or S_n / S_v = 1$ $f_{r2} = lesser of 1 or S_n / S_v = 1$ $f_{r3} = lesser of f_{r2} or S_p / S_v = 1$ $f_{r4} = lesser of 1 or S_p / S_v = 1$ $A = d*t_r*F + 2*t_n*t_r*F*(1 - f_{r1})$ = (405.99*3.93*1 + 2*10*3.93*1*(1 - 1)) / 100 $= 15.9703 \text{ cm}^2$

Area available from FIG. UG-37.1

 $A_1 = larger of the following = 22.1935 cm^2$

$$= d*(E_1*t - F*t_r) - 2*t_n*(E_1*t - F*t_r)*(1 - f_{r1})$$

$$= (405.99*(1*9.4 - 1*3.93) - 2*10*(1*9.4 - 1*3.93)*(1 - 1)) / 100$$

$$= 22.1935 \text{ cm}^2$$

$$= 2*(t + t_n)*(E_1*t - F*t_r) - 2*t_n*(E_1*t - F*t_r)*(1 - f_{r1})$$

$$= (2*(9.4 + 10)*(1*9.4 - 1*3.93) - 2*10*(1*9.4 - 1*3.93)*(1 - 1)) / 100$$

$$= 2.1213 \text{ cm}^2$$

 A_2 = smaller of the following= 4.4626 cm²

$$= 5*(t_n - t_m)*f_{r2}*t$$

$$= (5*(10 - 0.51)*1*9.4) / 100$$

$$= 4.4626 \text{ cm}^2$$

 A_3 = smaller of the following= 2.4504 cm²

$$= 5*t*t_i*f_{r2}$$

$$= (5*9.4*7*1) / 100$$

$$= 3.2903 \text{ cm}^2$$

$$= 5*t_i*t_i*f_{r2}$$

$$= (5*7*7*1) / 100$$

$$= 2.4504 \text{ cm}^2$$

$$= 2*h*t_i*f_{r2}$$

$$= (2*589*7*1) / 100$$

$$A_{41} = Leg^{2*}f_{r3}$$

82.4662 cm²

 $= (8.99^{2*}1) / 100$ $= 0.8077 \text{ cm}^2$

(Part of the weld is outside of the limits)

$$A_{42} = Leg^{2*}f_{r4}$$

$$= (12^{2*}1) / 100$$

$$= 1.44 cm^{2}$$

$$A_{43} = Leg^{2*}f_{r2}$$

$$= (8.71^{2*}1) / 100$$

$$= 0.7594 cm^{2}$$

$$A_5 = (D_p - d - 2*t_n)*t_e*f_{r4}$$

$$= ((780 - 426.68)*15*1) / 100$$

$$= 52.998 \text{ cm}^2$$

Area =
$$A_1 + A_2 + A_3 + A_{41} + A_{42} + A_{43} + A_5$$

= $22.1935 + 4.4626 + 2.4504 + 0.8077 + 1.44 + 0.7594 + 52.998$
= 85.1115 cm^2

As Area \geq A the reinforcement is adequate.

UW-16(d) Weld Check

Inner fillet:
$$t_{min}$$
 = lesser of 19 mm or t_n or t_e = 10 mm
$$t_{c(min)}$$
 = lesser of 6 mm or $0.7*t_{min}$ = $\underline{6}$ mm
$$t_{c(actual)}$$
 = $0.7*Leg$ = $0.7*9$ = 6.3 mm

Outer fillet:
$$t_{min}$$
 = lesser of 19 mm or t_e or t = 12 mm $t_{w(min)}$ = 0.5* t_{min} = $\frac{6}{9}$ mm $t_{w(actual)}$ = 0.7*Leg = 0.7*12 = 8.4 mm

$$\begin{array}{ll} \text{Lower fillet:} \ \ t_{min} &= \text{lesser of 19 mm or } t_n \text{ or } t = 10 \text{ mm} \\ & t_{c(min)} &= \text{lesser of 6 mm or } 0.7*t_{min} \text{ or } 0.7*h = \underline{6} \text{ mm} \\ & t_{c(actual)} &= 0.7*\text{Leg} = 0.7*8.71 = 6.1 \text{ mm} \end{array}$$

Lower groove:
$$t_{min}$$
 = lesser of 19 mm or t_n or t = 10 mm
$$t_{w(min)} = 0.7*t_{min} = 7 \text{ mm}$$

$$t_{w(actual)} = 12.4 \text{ mm}$$

UG-45 Nozzle Neck Thickness Check

Interpretation VIII-1-83-66 has been applied.

$$\begin{array}{lll} t_{a\,UG-27} & = & P^*R_n\,/\,(S_n^*E - 0.6^*P) + Corrosion \\ & = & 3.6^*193.2\,/\,(1,380^*1 - 0.6^*3.6) + 3 \\ & = & 3.51\ mm \\ \\ t_a & = & \max[\,\,t_{a\,UG-27}\,,\,t_{a\,UG-22}\,] \\ & = & \max[\,\,3.51\,,\,0\,\,] \\ & = & 3.51\ mm \\ \\ t_{b1} & = & 7.37\ mm \\ \\ t_{b1} & = & \max[\,\,t_{b1}\,,\,t_{b\,UG16}\,] \\ & = & \max[\,\,7.37\,,\,4.5\,\,] \\ & = & 7.37\ mm \\ \\ t_b & = & \min[\,\,t_{b3}\,,\,t_{b1}\,] \\ & = & \min[\,\,11.33\,,\,7.37\,\,] \\ & = & 7.37\ mm \\ \\ t_{UG-45} & = & \max[\,\,t_a\,,\,t_b\,] \\ & = & \max[\,\,3.51\,,\,7.37\,\,] \\ \end{array}$$

Available nozzle wall thickness new, $t_n = 13 \text{ mm}$

The nozzle neck thickness is adequate.

7.37 mm

Allowable stresses in joints UG-45 and UW-15(c)

Groove weld in tension:	$0.74*1,407.207 = 1,041.333 \text{ kg}_f/\text{cm}^2$
Nozzle wall in shear:	$0.7*1,407.207 = 985.045 \text{ kg}_f/\text{cm}^2$
Inner fillet weld in shear:	$0.49*1,407.207 = 689.532 \text{ kg}_f/\text{cm}^2$
Outer fillet weld in shear:	$0.49*1,407.207 = 689.532 \text{ kg/cm}^2$

Upper groove weld in tension: $0.74*1,407.207 = 1,041.333 \text{ kg/cm}^2$ Lower fillet weld in shear: $0.49*1,407.207 = 689.532 \text{ kg/cm}^2$

Strength of welded joints:

- (1) Inner fillet weld in shear $(\pi / 2)$ *Nozzle OD*Leg*S_i = $(\pi / 2)$ *406.4*9*689.532 = 39,616 kg_f
- (2) Outer fillet weld in shear $(\pi/2)$ *Pad OD*Leg*S_o = $(\pi/2)$ *780*12*689.532 = 101,380.1 kg_f
- (3) Nozzle wall in shear $(\pi / 2)$ *Mean nozzle dia* t_n * $S_n = (\pi / 2)$ *396.4*10*985.045 = 61,336.79 kg_f
- (4) Groove weld in tension $(\pi / 2)*Nozzle OD*t_w*S_g = (\pi / 2)*406.4*9.4*1,041.333 = 62,489.01 kg_f$
- (5) Lower fillet weld in shear $(\pi / 2)$ *Nozzle OD*Leg*S₁ = $(\pi / 2)$ *406.4*8.71*689.532 = 38,359.98 kg_f
- (6) Upper groove weld in tension $(\pi / 2)*Nozzle OD*t_w*S_g = (\pi / 2)*406.4*15*1,041.333 = 99,713.74 kg_f$

Loading on welds per UG-41(b)(1)

$$W = (A - A_1 + 2*t_n*f_{r1}*(E_1*t - F*t_r))*S_v$$

$$= (1,597.0262 - 2,219.3504 + 2*10*1*(1*9.4 - 1*3.93))*1,407.207$$

$$= -7.218.84 \text{ kg}_f$$

$$\begin{split} W_{2\text{-}2} &= & (A_2 + A_3 + A_{41} + A_{43} + 2^*t_n^*t^*f_{r1})^*S_v \\ &= & (446.2572 + 245.0364 + 80.774 + 75.9353 + 2^*10^*9.4^*1)^*1,407.207 \\ &= & \underline{14.578.86} \text{ kg}_f \end{split}$$

$$\begin{split} W_{3\text{-}3} &= & (A_2 + A_3 + A_5 + A_{41} + A_{42} + A_{43} + 2^*t_n^*t^*f_{r1})^*S_v \\ &= & (446.2572 + 245.0364 + 5,299.8 + 80.774 + 143.9997 + 75.9353 + 2^*10^*9.4^*1)^*1,407.207 \\ &= & \underbrace{91.184.48}_{} \text{kg}_f \end{split}$$

Load for path 1-1 lesser of W or $W_{1-1} = -7,218.84 \text{ kg}_f$ Path 1-1 through (2) & (3) = $101,380.1 + 61,336.79 = 162,716.89 \text{ kg}_{\text{f}}$ Path 1-1 is stronger than W so it is acceptable per UG-41(b)(2).

Load for path 2-2 lesser of W or $W_{2-2} = -7,218.84 \text{ kg}_f$ Path 2-2 through (1), (4), (5), (6) = 39,616 + 62,489.01 + 38,359.98 + 99,713.74 = 240,178.73 kg_f Path 2-2 is stronger than W so it is acceptable per UG-41(b)(2).

Load for path 3-3 lesser of W or $W_{3-3} = -7,218.84 \text{ kg}_f$ Path 3-3 through (2), (4), (5) = $101,380.1 + 62,489.01 + 38,359.98 = 202,229.09 \text{ kg}_{\text{f}}$ Path 3-3 is stronger than W so it is acceptable per UG-41(b)(2).

% Extreme fiber elongation - UCS-79(d)

EFE = $(50*t / R_f)*(1 - R_f / R_o)$ = (50*13 / 196.7)*(1 - 196.7 / infinity)= 3.3045%

The extreme fiber elongation does not exceed 5%.

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary (cm²)						UG- Sumn (mr	nary	
For Pe = 1.18 bar @ 175 °C The opening is adequately reinforced						The nozzle		
A A A A A Welds							$t_{\rm req}$	t _{min}
<u>19.0801</u>	62.3516	0.0006	3.8955	2.4504	<u>52.998</u>	3.0071	<u>4.71</u>	13

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary							
Weld description	Required weld size (mm)	Actual weld size (mm)	Status				
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	6.3	weld size is adequate				
Pad to shell fillet (Leg ₄₂)	<u>6</u>	8.4	weld size is adequate				
Nozzle to inside shell fillet (Leg ₄₃)	<u>6</u>	6.1 (corroded)	weld size is adequate				
Nozzle to shell groove (Lower)	7	12.4	weld size is adequate				

Calculations for external pressure 1.18 bar @ 175 °C

Parallel Limit of reinforcement per UG-40

$$L_{R} = MAX(d, R_{n} + (t_{n} - C_{n}) + (t - C))$$

$$= MAX(405.96, 202.98 + (13 - 3) + (12.4 - 3))$$

$$= 405.96 \text{ mm}$$

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = MIN(2.5*(t - C), 2.5*(t_{n} - C_{n}) + t_{e})$$

$$= MIN(2.5*(12.4 - 3), 2.5*(13 - 3) + 15)$$

$$= 23.5 \text{ mm}$$

Inner Normal Limit of reinforcement per UG-40

$$\begin{split} L_{\rm I} &= & \text{MIN(h, 2.5*(t - C), 2.5*(t_i - C_n - C))} \\ &= & \text{MIN(589, 2.5*(12.4 - 3), 2.5*(13 - 3 - 3))} \\ &= & 17.5 \text{ mm} \end{split}$$

Nozzle required thickness per UG-28 t_{rn} = 1.71 mm

From UG-37(d)(1) required thickness $t_r = 9.4 \text{ mm}$

Area required per UG-37(d)(1)

Allowable stresses: $S_n = 1,407.207$, $S_v = 1,407.207$, $S_p = 1,407.207$ kg/cm²

$$f_{r1} = lesser of 1 or S_n / S_v = 1$$

$$f_{r2}$$
 = lesser of 1 or $S_n / S_v = 1$

$$f_{r3}$$
 = lesser of f_{r2} or $S_p / S_v = 1$

$$f_{r4} = lesser of 1 or S_p / S_v = 1$$

$$A = 0.5*(d*t_r*F + 2*t_n*t_r*F*(1 - f_{r1}))$$

$$= (0.5*(405.96*9.4*1 + 2*10*9.4*1*(1 - 1))) / 100$$

$$= 19.0801 \text{ cm}^2$$

Area available from FIG. UG-37.1

 $A_1 = larger of the following = 0.0006 cm^2$

$$= d^*(E_1^*t - F^*t_r) - 2^*t_n^*(E_1^*t - F^*t_r)^*(1 - f_{r1})$$

$$= (405.96*(1*9.4 - 1*9.4) - 2*10*(1*9.4 - 1*9.4)*(1 - 1)) / 100$$

$$= 0.0006 \text{ cm}^2$$

$$= 2*(t+t_n)*(E_1*t-F*t_r)-2*t_n*(E_1*t-F*t_r)*(1-f_{r_1})$$

$$= (2*(9.4+10)*(1*9.4-1*9.4)-2*10*(1*9.4-1*9.4)*(1-1)) / 100$$

$$= 0 \text{ cm}^2$$

 A_2 = smaller of the following= 3.8955 cm²

$$= 5*(t_n - t_{rn})*f_{r2}*t$$

$$= (5*(10 - 1.71)*1*9.4) / 100$$

 $= 3.8955 \text{ cm}^2$

=
$$2*(t_n - t_{rn})*(2.5*t_n + t_e)*f_{r2}$$

$$= (2*(10-1.71)*(2.5*10+15)*1)/100$$

 $= 6.6303 \text{ cm}^2$

 A_3 = smaller of the following= 2.4504 cm²

$$= 5*t*t_{i}*f_{r2}$$

$$= (5*9.4*7*1) / 100$$

$$= 3.2903 \text{ cm}^2$$

$$= 5*t_i*t_i*f_{r2}$$

$$= 2.4504 \text{ cm}^2$$

$$= 2*h*t_i*f_{r2}$$

$$= 82.4662 \text{ cm}^2$$

$$A_{41} = \text{Leg}^{2*}f_{r3}$$

$$= (8.99^{2*}1) / 100$$

$$= 0.8077 \text{ cm}^{2}$$

(Part of the weld is outside of the limits)

$$\begin{array}{rcl} A_{42} &=& Leg^{2*}f_{r4}\\ &=& (12^{2*}1)\,/\,100\\ &=& \underline{1.44}\,cm^2\\ \\ A_{43} &=& Leg^{2*}f_{r2}\\ &=& (8.71^{2*}1)\,/\,100\\ &=& \underline{0.7594}\,cm^2\\ \\ A_5 &=& (D_p-d-2^*t_n)^*t_e^*f_{r4}\\ &=& ((780-426.68)^*15^*1)\,/\,100\\ &=& \underline{52.998}\,cm^2\\ \end{array}$$

Area =
$$A_1 + A_2 + A_3 + A_{41} + A_{42} + A_{43} + A_5$$

= $0.0006 + 3.8955 + 2.4504 + 0.8077 + 1.44 + 0.7594 + 52.998$
= 62.3516 cm^2

As Area \geq A the reinforcement is adequate.

UW-16(d) Weld Check

UG-45 Nozzle Neck Thickness Check

```
t_{a \text{ UG-}28} = 4.71 \text{ mm}
t_a
                 \max[\ t_{a\,UG-28}\ ,\, t_{a\,UG-22}\ ]
                 max[ 4.71 , 0 ]
                 4.71 mm
          = 4.43 \text{ mm}
t_{b2}
                 \max[\,t_{b2}^{}\,,\,t_{b\,UG16}^{}\,]
t_{b2}
                 max[ 4.43 , 4.5 ]
                 4.5 mm
          = \min[t_{b3}, t_{b2}]
                 min[ 11.33, 4.5]
                 4.5 mm
         = \max[t_a, t_b]
t_{UG-45}
           = \max[4.71, 4.5]
                 <u>4.71</u> mm
```

Available nozzle wall thickness new, $t_n = 13 \text{ mm}$

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 175 °C) UG-28(c)

```
L/D_0 = 676.9/406.4 = 1.6656
D_o / t = 406.4 / 1.71 = 237.2647
From table G:
                  A = 0.000217
From table CS-2 Metric: B = 214.6325 \text{ kg/cm}^2 (210.48 \text{ bar})
      = 4*B/(3*(D_o/t))
      = 4*210.48 / (3*(406.4 / 1.71))
      = 1.18 \, bar
```

Design thickness for external pressure $P_a = 1.18$ bar

```
= t + Corrosion = 1.71 + 3 = 4.71 \text{ mm}
```


ASME Section VIII Division 1, 2017 Edition Metric - 270,2

Note: round inside edges per UG-76(c)				
Location and Orientation				
Located on	Top existing shell			
Orientation	0°			
Nozzle center line offset to datum line	17,588 mm			
End of nozzle to shell center	1,940 mm			
Passes through a Category A joint	No			
Nozzle				
Access opening	No			
Material specification	SA-516 70 (II-D Metric p. 18, ln. 33)			
Inside diameter, new	583.6 mm			
Nominal wall thickness	13 mm			
Corrosion allowance	3 mm			
Projection available outside vessel, Lpr	98.6 mm			
Projection available outside vessel to flange face, Lf	251 mm			
Local vessel minimum thickness	14 mm			
Liquid static head included	0 bar			
Longitudinal joint efficiency	1			
Reinforcing Pad				
Material specification	SA-516 70 (II-D Metric p. 18, ln. 33)			
Diameter, D _p	1,150 mm			
Thickness, t _e	14 mm			
Is split	No			
Welds				
Inner fillet, Leg ₄₁	9 mm			

Outer fillet, Leg ₄₂	12 mm
Nozzle to vessel groove weld	14 mm
Pad groove weld	14 mm

ASME B16.5-2013 Flange				
Description	NPS 24 Class 150 WN A105			
Bolt Material	SA-193 B7 Bolt <= 64 (II-D Metric p. 388, ln. 32)			
Blind included	No			
Rated MDMT	-48°C			
Liquid static head	0 bar			
MAWP rating	13.73 bar @ 202°C			
MAP rating	19.6 bar @ 30°C			
Hydrotest rating	30 bar @ 30°C			
PWHT performed	Yes			
Impact Tested	No			
Circumferential joint radiography	Spot UW-11(b) Type 1			
Bore diameter, B (specified by purchaser) 583.6 mm				
Notes				
Flange rated MDMT per UCS-66(b)(3) = -105° C (Coincident ratio = 0.1837) Bolts rated MDMT per Fig UCS-66 note (c) = -48° C				

UCS-66 Material Toughness Requirements Nozzle				
$t_r = 3.6*294.8 / (1,380*1 - 0.6*3.6) =$	0.77 mm			
Stress ratio = $t_r^* E^* / (t_n - c) = 0.77*1 / (13 - 3) =$	0.077			
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-105°C			
Material is exempt from impact testing at the Design MDMT of 17°C.				

UCS-66 Material Toughness Requirements Pad				
Governing thickness, $t_g =$	14 mm			
Exemption temperature from Fig UCS-66M Curve B =	-18.75°C			
$t_r = 3.6*1,678 / (1,380*1 - 0.6*3.6) =$	4.38 mm			
Stress ratio = $t_r^* E^* / (t_n - c) = 4.38*1 / (14 - 3) =$	0.3986			
Reduction in MDMT, T _R from Fig UCS-66.1M =	52.3°C			
Reduction in MDMT, T _{PWHT} from UCS-68(c) =	17°C			
MDMT = max[MDMT - T_R - T_{PWHT} , -48] = max[-18.75 - 52.3 - 17 , -48] =	-48°C			
Material is exempt from impact testing at the Design MDMT of 17°C.				

Reinforcement Calculations for Internal Pressure

UG-37 Area Calculation Summary (cm²)							UG- Sumn (mr	nary
For P = 3.6 bar @ 202 °C The opening is adequately reinforced							The nozzl	
A required	A available	A ₁	A ₂	A3	A ₅	A welds	$t_{\rm req}$	t _{min}
25.8498	121.9907	39.0077	5.0768		<u>75.656</u>	2.2503	<u>7.38</u>	13

U	UG-41 Weld Failure Path Analysis Summary (kg _f)							
All failure paths are stronger than the applicable weld loads								
Weld load W	Weld load W ₁₋₁	Path 1-1 strength	Weld load W ₂₋₂	Path 2-2 strength	Weld load W ₃₋₃	Path 3-3 strength		
<u>-16,654</u>	116,775	242,249	11,380	308,711	119,871	<u>259,158</u>		

UW-16 Weld Sizing Summary					
Weld description	Required weld size (mm)	Actual weld size (mm)	Status		
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	6.3	weld size is adequate		
Pad to shell fillet (Leg ₄₂)	<u>5.5</u>	8.4	weld size is adequate		

Calculations for internal pressure 3.6 bar @ 202 $^{\circ}$ C

Parallel Limit of reinforcement per UG-40

$$L_{R} = MAX(d, R_{n} + (t_{n} - C_{n}) + (t - C))$$

$$= MAX(589.6, 294.8 + (13 - 3) + (14 - 3))$$

$$= 589.6 \text{ mm}$$

Outer Normal Limit of reinforcement per UG-40

$$\begin{array}{lll} L_{H} & = & MIN(2.5*(t-C), \, 2.5*(t_{n}-C_{n})+t_{e}) \\ & = & MIN(2.5*(14-3), \, 2.5*(13-3)+14) \\ & = & 27.5 \; mm \end{array}$$

Nozzle required thickness per UG-27(c)(1)

$$t_{rn} = P*R_n / (S_n*E - 0.6*P)$$

$$= 3.6*294.8 / (1,380*1 - 0.6*3.6)$$

$$= 0.77 \text{ mm}$$

Required thickness t, from UG-37(a)

$$t_r$$
 = P*R / (S*E - 0.6*P)
= 3.6*1,678 / (1,380*1 - 0.6*3.6)
= 4.38 mm

Required thickness t, per Interpretation VIII-1-07-50

$$t_r$$
 = P*R / (S*E - 0.6*P)
= 3.6*1,678 / (1,380*0.85 - 0.6*3.6)
= 5.16 mm

Area required per UG-37(c)

Allowable stresses: $S_n = 1,407.207$, $S_v = 1,407.207$, $S_p = 1,407.207$ kg_f/cm² $f_{r1} = lesser of 1 or S_n / S_v = 1$ f_{r2} = lesser of 1 or $S_n / S_v = 1$ f_{r3} = lesser of f_{r2} or $S_p / S_v = 1$ $f_{r4} = lesser of 1 or S_p / S_v = 1$ $A = d*t_r*F + 2*t_n*t_r*F*(1 - f_{r1})$ = (589.6*4.38*1 + 2*10*4.38*1*(1 - 1)) / 100 $= 25.8498 \text{ cm}^2$

Area available from FIG. UG-37.1

 $A_1 = larger of the following = 39.0077 cm^2$

$$= d^*(E_1^*t - F^*t_r) - 2^*t_n^*(E_1^*t - F^*t_r)^*(1 - f_{r1})$$

$$= (589.6^*(1^*11 - 1^*4.38) - 2^*10^*(1^*11 - 1^*4.38)^*(1 - 1)) / 100$$

$$= 39.0077 \text{ cm}^2$$

$$= 2^*(t + t_n)^*(E_1^*t - F^*t_r) - 2^*t_n^*(E_1^*t - F^*t_r)^*(1 - f_{r1})$$

$$= (2^*(11 + 10)^*(1^*11 - 1^*4.38) - 2^*10^*(1^*11 - 1^*4.38)^*(1 - 1)) / 100$$

$$= 2.7787 \text{ cm}^2$$

 A_2 = smaller of the following= 5.0768 cm²

$$= 5*(t_n - t_{rn})*f_{r2}*t$$

$$= (5*(10 - 0.77)*1*11) / 100$$

$$= 5.0768 \text{ cm}^2$$

$$= 2*(t_n - t_{rn})*(2.5*t_n + t_e)*f_{r2}$$

$$= (2*(10 - 0.77)*(2.5*10 + 14)*1) / 100$$

$$= 7.2 \text{ cm}^2$$

$$A_{41} = \text{Leg}^{2*}f_{r3}$$

$$= (9^{2*}1) / 100$$

$$= (9^{2}*1) / 100$$
$$= 0.8103 \text{ cm}^{2}$$

$$A_{42} = Leg^{2*}f_{r4}$$

$$= (12^{2}*1) / 100$$
$$= 1.44 \text{ cm}^{2}$$

$$A_5 = (D_p - d - 2*t_n)*t_e*f_{r4}$$

$$= ((1,150 - 589.6 - 2*10)*14*1) / 100$$

$$= 75.656 \text{ cm}^2$$

Area =
$$A_1 + A_2 + A_{41} + A_{42} + A_5$$

= $39.0077 + 5.0768 + 0.8103 + 1.44 + 75.656$
= 121.9907 cm^2

As Area >= A the reinforcement is adequate.

UW-16(c)(2) Weld Check

Inner fillet:
$$t_{min}$$
 = lesser of 19 mm or t_n or t_e = 10 mm $t_{c(min)}$ = lesser of 6 mm or $0.7*t_{min} = \underline{6}$ mm $t_{c(actual)}$ = $0.7*Leg = 0.7*9 = 6.3$ mm

Outer fillet:
$$t_{min}$$
 = lesser of 19 mm or t_e or t = 11 mm $t_{w(min)}$ = 0.5* t_{min} = 5.5 mm $t_{w(actual)}$ = 0.7*Leg = 0.7*12 = 8.4 mm

UG-45 Nozzle Neck Thickness Check

$$t_{a \text{ UG-27}}$$
 = P*R_n / (S_n*E - 0.6*P) + Corrosion
 = 3.6*294.8 / (1,380*1 - 0.6*3.6) + 3
 = 3.77 mm

$$t_a = max[t_{a UG-27}, t_{a UG-22}]$$

= max[3.77, 0]
= 3.77 mm

$$t_{b1}$$
 = P*R / (S*E - 0.6*P) + Corrosion
 = 3.6*1,678 / (1,380*1 - 0.6*3.6) + 3
 = 7.38 mm

$$t_{b1}$$
 = max[t_{b1} , $t_{b \text{ UG16}}$]
= max[7.38, 4.5]
= 7.38 mm

$$t_b$$
 = min[t_{b3} , t_{b1}]
= min[11.33, 7.38]
= 7.38 mm

$$t_{UG-45} = max[t_a, t_b]$$

= max[3.77,7.38]

= 7.38 mm

Available nozzle wall thickness new, $t_n = 13 \text{ mm}$

The nozzle neck thickness is adequate.

Allowable stresses in joints UG-45 and UW-15(c)

Groove weld in tension: $0.74*1,407.207 = 1,041.333 \text{ kg}_f/\text{cm}^2$ Nozzle wall in shear: $0.7*1,407.207 = 985.045 \text{ kg}_f/\text{cm}^2$ Inner fillet weld in shear: $0.49*1,407.207 = 689.532 \text{ kg}_f/\text{cm}^2$ Outer fillet weld in shear: $0.49*1,407.207 = 689.532 \text{ kg}_f/\text{cm}^2$ Upper groove weld in tension: $0.74*1,407.207 = 1,041.333 \text{ kg}_f/\text{cm}^2$

Strength of welded joints:

- (1) Inner fillet weld in shear
- $(\pi / 2)$ *Nozzle OD*Leg*S_i = $(\pi / 2)$ *609.6*9*689.532 = 59,424 kg_f
- (2) Outer fillet weld in shear

$$(\pi/2)$$
*Pad OD*Leg*S₀ = $(\pi/2)$ *1,150*12*689.532 = 149,469.82 kg_f

(3) Nozzle wall in shear

$$(\pi / 2)$$
Mean nozzle dia t_n * S_n = $(\pi / 2)$ *599.6*10*985.045 = 92,778.87 kg_f

(4) Groove weld in tension

$$(\pi/2)$$
Nozzle OD t_w * $S_g = (\pi/2)$ * 609.6 * 11 * $1,041.333 = 109,687.71 kg_f$

(6) Upper groove weld in tension

$$(\pi / 2)$$
Nozzle OD t_w * $S_g = (\pi / 2)$ * 609.6 * 14 * $1,041.333 = 139,599.24 kg_f$

Loading on welds per UG-41(b)(1)

$$W = (A - A_1 + 2*t_n*f_{r1}*(E_1*t - F*t_r))*S_v$$

$$= (2,584.9775 - 3,900.7664 + 2*10*1*(1*11 - 1*4.38))*1,407.207$$

$$= -16.653.84 \text{ kg}_f$$

$$W_{1-1} = (A_2 + A_5 + A_{41} + A_{42}) *S_v$$

= (507.6764 + 7,565.6 + 81.0321 + 143.9997)*1,407.207
= $\frac{116,774.5}{1} \text{ kg}_f$

$$\begin{split} W_{2\text{-}2} &= & (A_2 + A_3 + A_{41} + A_{43} + 2^* t_n^* t^* f_{r1})^* S_v \\ &= & (507.6764 + 0 + 81.0321 + 0 + 2^* 10^* 11^* 1)^* 1,407.207 \\ &= & \underline{11.380.37} \text{ kg}_f \end{split}$$

$$\begin{aligned} W_{3\text{-}3} &= & (A_2 + A_3 + A_5 + A_{41} + A_{42} + A_{43} + 2^*t_n^*t^*f_{r1})^*S_v \\ &= & (507.6764 + 0 + 7,565.6 + 81.0321 + 143.9997 + 0 + 2^*10^*11^*1)^*1,407.207 \\ &= & \underline{119.870.51} \text{ kg}_f \end{aligned}$$

Path 1-1 is stronger than W so it is acceptable per UG-41(b)(2).

Load for path 2-2 lesser of W or $W_{2-2} = -16,653.84 \text{ kg}_f$ Path 2-2 through (1), (4), (6) = 59,424 + 109,687.71 + 139,599.24 = 308,710.95 kg_f Path 2-2 is stronger than W so it is acceptable per UG-41(b)(2).

Load for path 3-3 lesser of W or $W_{3-3} = -16,653.84 \text{ kg}_f$ Path 3-3 through (2), (4) = $149,469.82 + 109,687.71 = 259,157.52 \text{ kg}_f$ Path 3-3 is stronger than W so it is acceptable per UG-41(b)(2).

% Extreme fiber elongation - UCS-79(d)

EFE =
$$(50*t / R_f)*(1 - R_f / R_o)$$

= $(50*13 / 298.3)*(1 - 298.3 / infinity)$
= 2.179%

The extreme fiber elongation does not exceed 5%.

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary (cm ²)						UG Sum (m	mary	
	For Pe = 1.81 bar @ 175 °C The opening is adequately reinforced						The nozz	
A required	A available	A ₁	A ₂	A3	A ₅	A welds	$t_{\rm req}$	t _{min}
32.4287	82.4386		4.5322		<u>75.656</u>	2.2503	<u>5.2</u>	13

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary					
Weld description	Required weld size (mm)	Actual weld size (mm)	Status		
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	6.3	weld size is adequate		
Pad to shell fillet (Leg ₄₂)	<u>5.5</u>	8.4	weld size is adequate		

Calculations for external pressure 1.81 bar @ 175 °C

Parallel Limit of reinforcement per UG-40

$$L_{R} = MAX(d, R_{n} + (t_{n} - C_{n}) + (t - C))$$

$$= MAX(589.6, 294.8 + (13 - 3) + (14 - 3))$$

$$= 589.6 \text{ mm}$$

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = MIN(2.5*(t - C), 2.5*(t_{n} - C_{n}) + t_{e})$$

$$= MIN(2.5*(14 - 3), 2.5*(13 - 3) + 14)$$

$$= 27.5 \text{ mm}$$

Nozzle required thickness per UG-28 t_{rn} = 1.76 mm

From UG-37(d)(1) required thickness $t_r = 11 \text{ mm}$

Area required per UG-37(d)(1)

Allowable stresses:
$$S_n = 1,407.207$$
, $S_v = 1,407.207$, $S_p = 1,407.207$ kg_f/cm²
$$f_{r1} = lesser \ of \ 1 \ or \ S_n \ / \ S_v = 1$$

$$f_{r2} = lesser \ of \ 1 \ or \ S_n \ / \ S_v = 1$$

$$f_{r3} = lesser \ of \ f_{r2} \ or \ S_p \ / \ S_v = 1$$

A =
$$0.5*(d*t_r*F + 2*t_n*t_r*F*(1 - f_{r1}))$$

= $(0.5*(589.6*11*1 + 2*10*11*1*(1 - 1))) / 100$
= 32.4287 cm^2

Area available from FIG. UG-37.1

 $A_1 = larger of the following = 0 cm^2$

$$= d*(E_1*t - F*t_r) - 2*t_n*(E_1*t - F*t_r)*(1 - f_{r1})$$

$$= (589.6*(1*11 - 1*11) - 2*10*(1*11 - 1*11)*(1 - 1)) / 100$$

$$= 0 cm^2$$

$$= 2*(t + t_n)*(E_1*t - F*t_r) - 2*t_n*(E_1*t - F*t_r)*(1 - f_{r1})$$

$$= (2*(11 + 10)*(1*11 - 1*11) - 2*10*(1*11 - 1*11)*(1 - 1)) / 100$$

$$= 0 cm^2$$

 A_2 = smaller of the following= 4.5322 cm²

$$= 5*(t_n - t_m)*f_{r2}*t$$

$$= (5*(10 - 1.76)*1*11) / 100$$

$$= 4.5322 \text{ cm}^2$$

$$= 2*(t_n - t_m)*(2.5*t_n + t_e)*f_{r2}$$

$$= (2*(10 - 1.76)*(2.5*10 + 14)*1) / 100$$

$$= 6.4277 \text{ cm}^2$$

$$A_{41} = Leg^{2*}f_{r3}$$

$$= (9^{2*}1) / 100$$

$$= 0.8103 \text{ cm}^2$$

$$A_{42} = Leg^{2*}f_{r4}$$

= $(12^{2*}1) / 100$
= $1.44 cm^{2}$

$$A_5 = (D_p - d - 2*t_n)*t_e*f_{r4}$$
= ((1,150 - 589.6 - 2*10)*14*1) / 100
= 75.656 cm²

Area =
$$A_1 + A_2 + A_{41} + A_{42} + A_5$$

= $0 + 4.5322 + 0.8103 + 1.44 + 75.656$
= 82.4386 cm^2

As Area \geq A the reinforcement is adequate.

UW-16(c)(2) Weld Check

```
Inner fillet: t<sub>min</sub>
                        = lesser of 19 mm or t_n or t_e = 10 mm
               t_{c(min)} = lesser of 6 mm or 0.7*t_{min} = 6 mm
               t_{c(actual)} = 0.7*Leg = 0.7*9 = 6.3 \text{ mm}
Outer fillet: t<sub>min</sub>
                         = lesser of 19 mm or t_e or t = 11 mm
               t_{w(min)} = 0.5 * t_{min} = 5.5 mm
```

 $t_{\text{w(actual)}} = 0.7*\text{Leg} = 0.7*12 = 8.4 \text{ mm}$

UG-45 Nozzle Neck Thickness Check

```
4.76 mm
t_{a \text{ UG-28}} =
ta
         = \max[t_{a \text{ UG-28}}, t_{a \text{ UG-22}}]
         = \max[4.76, 0]
               4.76 mm
         = P*R / (S*E - 0.6*P) + Corrosion
t_{b2}
               1.811*1,678 / (1,380*1 - 0.6*1.811) + 3
               5.2 mm
               \max[t_{b2}, t_{b \text{ UG}16}]
t_{b2}
               max[ 5.2 , 4.5 ]
               5.2 mm
         = \min[t_{b3}, t_{b2}]
          = \min[11.33, 5.2]
               5.2 mm
        = \max[t_a, t_b]
t_{UG-45}
         = \max[4.76, 5.2]
               <u>5.2</u> mm
```

Available nozzle wall thickness new, $t_n = 13 \text{ mm}$

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 175 °C) UG-28(c)

```
L/D_0 = 278.73/609.6 = 0.4572
D_0 / t = 609.6 / 1.76 = 346.4015
From table G:
                       A = 0.000483
From table CS-2 Metric: B = 479.7834 \text{ kg/cm}^2 (470.51 \text{ bar})
      = 4*B/(3*(D_o/t))
      = 4*470.51 / (3*(609.6 / 1.76))
      = 1.81 \, bar
```

Design thickness for external pressure $P_a = 1.81$ bar

 $t_a = t + Corrosion = 1.76 + 3 = 4.76 \text{ mm}$

Note: round inside edges per UG-76(c)				
Location and Orientation				
Located on	Bottom existing shell			
Orientation	330°			
Nozzle center line offset to datum line	728 mm			
End of nozzle to shell center	1,940 mm			
Passes through a Category A joint	No			
Nozzle				
Access opening	No			
Material specification	SA-516 70 (II-D Metric p. 18, ln. 33)			
Inside diameter, new	583.6 mm			
Nominal wall thickness	13 mm			
Corrosion allowance	0 mm			
Projection available outside vessel, Lpr	98.6 mm			
Projection available outside vessel to flange face, Lf	251 mm			
Local vessel minimum thickness	14 mm			
Liquid static head included	0.23 bar			
Longitudinal joint efficiency	1			
Reinforcing Pad				
Material specification	SA-516 70 (II-D Metric p. 18, ln. 33)			
Diameter, D_p	1,150 mm			
Thickness, t _e	14 mm			
Is split	No			
Welds				
Inner fillet, Leg ₄₁	9 mm			

Outer fillet, Leg ₄₂	12 mm
Nozzle to vessel groove weld	14 mm
Pad groove weld	14 mm

ASME B16.5-2013 Flange				
Description	NPS 24 Class 150 WN A105			
Bolt Material	SA-193 B7 Bolt <= 64 (II-D Metric p. 388, ln. 32)			
Blind included	No			
Rated MDMT	-48°C			
Liquid static head	0.2 bar			
MAWP rating	13.73 bar @ 202°C			
MAP rating	19.6 bar @ 30°C			
Hydrotest rating	30 bar @ 30°C			
PWHT performed	Yes			
Impact Tested	No			
Circumferential joint radiography	Spot UW-11(b) Type 1			
Bore diameter, B (specified by purchaser)	583.6 mm			
Notes				
Flange rated MDMT per UCS-66(b)(3) = -105°C (Coincident ratio = 0.1936) Bolts rated MDMT per Fig UCS-66 note (c) = -48°C				

UCS-66 Material Toughness Requirements Nozzle				
$t_r = 3.83*291.8 / (1,380*1 - 0.6*3.83) =$	0.81 mm			
Stress ratio = $t_r^* E^* / (t_n - c) = 0.81*1 / (13 - 0) =$	0.0623			
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-105°C			
Material is exempt from impact testing at the Design MDMT of 17°C.				

UCS-66 Material Toughness Requirements Pad				
$t_r = 3.83*1,675 / (1,380*1 - 0.6*3.83) =$	4.65 mm			
Stress ratio = $t_r^* E^* / (t_n - c) = 4.65*1 / (14 - 0) =$	0.3323			
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-105°C			
Material is exempt from impact testing at the Design MDMT of 17°C.				

Reinforcement Calculations for Internal Pressure

UG-37 Area Calculation Summary (cm²)						UG- Sumn (mr	nary	
For P = 3.83 bar @ 202 $^{\circ}$ C The opening is adequately reinforced							The nozzle	
A required	A1 A2 A5						$t_{ m req}$	t _{min}
27.1462	140.8817	<u>54.558</u>	8.5329		<u>75.656</u>	2.1348	<u>4.65</u>	13

UG-41 Weld Failure Path Analysis Summary (kg _f)								
All failure paths are stronger than the applicable weld loads								
Weld load W	Weld load W ₁₋₁	Path 1-1 strength	Weld load W ₂₋₂	Path 2-2 strength	Weld load W ₃₋₃	Path 3-3 strength		
-35,154	121,475	269,476	18,270	338,622	126,598	289,069		

UW-16 Weld Sizing Summary					
Weld description	Required weld size (mm)	Actual weld size (mm)	Status		
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	6.3	weld size is adequate		
Pad to shell fillet (Leg ₄₂)	7	8.4	weld size is adequate		

Calculations for internal pressure 3.83 bar @ 202 °C

Parallel Limit of reinforcement per UG-40

$$L_{R} = MAX(d, R_{n} + (t_{n} - C_{n}) + (t - C))$$

$$= MAX(583.6, 291.8 + (13 - 0) + (14 - 0))$$

$$= 583.6 \text{ mm}$$

Outer Normal Limit of reinforcement per UG-40

$$\begin{array}{lll} L_{H} & = & MIN(2.5*(t-C), \, 2.5*(t_{n}-C_{n})+t_{e}) \\ & = & MIN(2.5*(14-0), \, 2.5*(13-0)+14) \\ & = & 35 \; mm \end{array}$$

Nozzle required thickness per UG-27(c)(1)

$$\begin{array}{rcl} t_{rn} & = & P^*R_n / (S_n^*E - 0.6^*P) \\ & = & 3.8258^*291.8 / (1,380^*1 - 0.6^*3.8258) \\ & = & 0.81 \text{ mm} \end{array}$$

Required thickness t, from UG-37(a)

$$t_r$$
 = P*R / (S*E - 0.6*P)
= 3.8258*1,675 / (1,380*1 - 0.6*3.8258)
= 4.65 mm

$$t_r$$
 = P*R / (S*E - 0.6*P)
= 3.8258*1,675 / (1,380*0.85 - 0.6*3.8258)
= 5.47 mm

Area required per UG-37(c)

Allowable stresses:
$$S_n = 1,407.207$$
, $S_v = 1,407.207$, $S_p = 1,407.207$ kg/cm² $f_{r1} = lesser$ of 1 or $S_n / S_v = 1$
$$f_{r2} = lesser$$
 of 1 or $S_n / S_v = 1$
$$f_{r3} = lesser$$
 of f_{r2} or f_{r2} or $f_{r3} / S_v = 1$
$$f_{r4} = lesser$$
 of 1 or $f_{r4} / S_v = 1$
$$f_{r5} / S_v = 1$$

$$f_{r5} / S_v = 1$$

$$f_{r6} / S_v = 1$$

$$f_{r6} / S_v = 1$$

$$f_{r7} / S_v = 1$$

$$f_{r7} / S_v = 1$$

$$f_{r8} / S_v = 1$$

$$f_{r8} / S_v = 1$$

$$f_{r9} / S_v = 1$$

$$f$$

Area available from FIG. UG-37.1

 $A_1 = larger of the following = 54.558 cm^2$

$$= d^*(E_1^*t - F^*t_r) - 2^*t_n^*(E_1^*t - F^*t_r)^*(1 - f_{r1})$$

$$= (583.6^*(1^*14 - 1^*4.65) - 2^*13^*(1^*14 - 1^*4.65)^*(1 - 1)) / 100$$

$$= 54.558 \text{ cm}^2$$

$$= 2^*(t + t_n)^*(E_1^*t - F^*t_r) - 2^*t_n^*(E_1^*t - F^*t_r)^*(1 - f_{r1})$$

$$= (2^*(14 + 13)^*(1^*14 - 1^*4.65) - 2^*13^*(1^*14 - 1^*4.65)^*(1 - 1)) / 100$$

$$= 5.0484 \text{ cm}^2$$

 A_2 = smaller of the following= 8.5329 cm²

$$= 5*(t_n - t_m)*f_{r2}*t$$

$$= (5*(13 - 0.81)*1*14) / 100$$

$$= 8.5329 \text{ cm}^2$$

$$= 2*(t_n - t_m)*(2.5*t_n + t_e)*f_{r2}$$

$$= (2*(13 - 0.81)*(2.5*13 + 14)*1) / 100$$

$$= 11.3368 \text{ cm}^2$$

$$A_{41} = \text{Leg}^2*f_{r3}$$

$$= (9^2*1) / 100$$

$$= 0.8103 \text{ cm}^2$$

$$= (11.51^{2*}1) / 100$$
$$= 1.3245 \text{ cm}^{2}$$

(Part of the weld is outside of the limits)

$$A_5 = (D_p - d - 2*t_n)*t_e*f_{r4}$$

$$= ((1,150 - 583.6 - 2*13)*14*1) / 100$$

$$= 75.656 \text{ cm}^2$$

Area =
$$A_1 + A_2 + A_{41} + A_{42} + A_5$$

= $54.558 + 8.5329 + 0.8103 + 1.3245 + 75.656$
= 140.8817 cm²

As Area \geq A the reinforcement is adequate.

UW-16(c)(2) Weld Check

UG-45 Nozzle Neck Thickness Check

```
P*R_n / (S_n*E - 0.6*P) + Corrosion
t_{a \text{ UG-27}} =
                3.8258*291.8 / (1,380*1 - 0.6*3.8258) + 0
                0.81 mm
          =
                \max[\ t_{\rm a\,UG\text{-}27}\ ,\, t_{\rm a\,UG\text{-}22}\ ]
t_a
                \max[0.81, 0]
                0.81 mm
                P*R / (S*E - 0.6*P) + Corrosion
t_{b1}
                3.8258*1,675 / (1,380*1 - 0.6*3.8258) + 0
                4.65 mm
          =
                \max[t_{b1}, t_{b \text{ UG}16}]
t_{b1}
                max[ 4.65, 1.5]
                4.65 mm
          = \min[t_{b3}, t_{b1}]
t_b
                min[8.33, 4.65]
                4.65 mm
```

Available nozzle wall thickness new, $t_n = 13 \text{ mm}$

The nozzle neck thickness is adequate.

Allowable stresses in joints UG-45 and UW-15(c)

Groove weld in tension: $0.74*1,407.207 = 1,041.333 \text{ kg/cm}^2$ Nozzle wall in shear: $0.7*1,407.207 = 985.045 \text{ kg}/\text{cm}^2$ Inner fillet weld in shear: $0.49*1,407.207 = 689.532 \text{ kg}/\text{cm}^2$ Outer fillet weld in shear: $0.49*1,407.207 = 689.532 \text{ kg}/\text{cm}^2$ Upper groove weld in tension: $0.74*1,407.207 = 1,041.333 \text{ kg/cm}^2$

Strength of welded joints:

- (1) Inner fillet weld in shear $(\pi / 2)$ *Nozzle OD*Leg*S_i = $(\pi / 2)$ *609.6*9*689.532 = 59,424 kg_f
- (2) Outer fillet weld in shear $(\pi / 2)$ *Pad OD*Leg*S_o = $(\pi / 2)$ *1,150*12*689.532 = 149,469.82 kg_f
- (3) Nozzle wall in shear $(\pi / 2)$ *Mean nozzle dia* t_n * S_n = $(\pi / 2)$ *596.6*13*985.045 = 120,006 kg_f
- (4) Groove weld in tension $(\pi / 2)*Nozzle OD*t_w*S_g = (\pi / 2)*609.6*14*1,041.333 = 139,599.24 kg_f$
- (6) Upper groove weld in tension $(\pi / 2)*Nozzle OD*t_w*S_g = (\pi / 2)*609.6*14*1,041.333 = 139,599.24 kg_f$

Loading on welds per UG-41(b)(1)

$$W = (A - A_1 + 2*t_n*f_{r_1}*(E_1*t - F*t_r))*S_v$$

= (2,714.6166 - 5,455.7955 + 2*13*1*(1*14 - 1*4.65))*1,407.207
= $\frac{-35,153.73}{2} \text{ kg}_f$

$$W_{1-1} = (A_2 + A_5 + A_{41} + A_{42}) *S_v$$

= (853.2886 + 7,565.6 + 81.0321 + 132.4513)*1,407.207
= \frac{121,475.48}{2} kg_f

$$\begin{split} W_{2\text{-}2} &= & (A_2 + A_3 + A_{41} + A_{43} + 2^* t_n^* t^* f_{r1})^* S_v \\ &= & (853.2886 + 0 + 81.0321 + 0 + 2^* 13^* 14^* 1)^* 1,407.207 \\ &= & \underline{18,270.08} \text{ kg}_f \end{split}$$

$$\begin{aligned} \mathbf{W}_{3\text{-}3} &= & (\mathbf{A}_2 + \mathbf{A}_3 + \mathbf{A}_5 + \mathbf{A}_{41} + \mathbf{A}_{42} + \mathbf{A}_{43} + 2^*\mathbf{t}_n^*\mathbf{t}^*\mathbf{f}_{r1})^*\mathbf{S}_v \\ &= & (853.2886 + 0 + 7,565.6 + 81.0321 + 132.4513 + 0 + 2^*13^*14^*1)^*1,407.207 \\ &= & \underline{126.597.71} \ \mathrm{kg}_\mathrm{f} \end{aligned}$$

```
Load for path 1-1 lesser of W or W_{1-1} = -35,153.73 \text{ kg}_{f}
Path 1-1 through (2) & (3) = 149,469.82 + 120,006 = 269,475.82 \text{ kg}_f
Path 1-1 is stronger than W so it is acceptable per UG-41(b)(2).
```

Load for path 2-2 lesser of W or $W_{2-2} = -35,153.73 \text{ kg}_{f}$ Path 2-2 through (1), (4), (6) = $59,424 + 139,599.24 + 139,599.24 = 338,622.48 \text{ kg}_f$ Path 2-2 is stronger than W so it is acceptable per UG-41(b)(2).

Load for path 3-3 lesser of W or $W_{3-3} = -35,153.73 \text{ kg}_f$ Path 3-3 through (2), (4) = $149,469.82 + 139,599.24 = 289.069.05 \text{ kg}_f$ Path 3-3 is stronger than W so it is acceptable per UG-41(b)(2).

% Extreme fiber elongation - UCS-79(d)

EFE =
$$(50*t / R_f)*(1 - R_f / R_o)$$

= $(50*13 / 298.3)*(1 - 298.3 / infinity)$
= 2.179%

The extreme fiber elongation does not exceed 5%.

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary (cm²)						n ²)	UG- Sumn (mr	nary
For Pe = 2.91 bar @ 175 °C The opening is adequately reinforced						The nozzle		
A required	A1 A2 A5						$t_{ m req}$	t _{min}
40.8519	85.3895		7.5987		<u>75.656</u>	2.1348	<u>3.54</u>	13

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary					
Weld description	Required weld size (mm)	Actual weld size (mm)	Status		
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	6.3	weld size is adequate		
Pad to shell fillet (Leg ₄₂)	7	8.4	weld size is adequate		

Calculations for external pressure 2.91 bar @ 175 °C

Parallel Limit of reinforcement per UG-40

$$L_{R} = MAX(d, R_{n} + (t_{n} - C_{n}) + (t - C))$$

$$= MAX(583.6, 291.8 + (13 - 0) + (14 - 0))$$

$$= 583.6 \text{ mm}$$

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = MIN(2.5*(t - C), 2.5*(t_{n} - C_{n}) + t_{e})$$

$$= MIN(2.5*(14 - 0), 2.5*(13 - 0) + 14)$$

$$= 35 \text{ mm}$$

Nozzle required thickness per UG-28 t_{rn} = 2.14 mm

From UG-37(d)(1) required thickness $t_r = 14 \text{ mm}$

Area required per UG-37(d)(1)

Allowable stresses:
$$S_n = 1,407.207$$
, $S_v = 1,407.207$, $S_p = 1,407.207$ kg_f/cm²
$$f_{r1} = lesser of 1 or S_n / S_v = 1$$

$$f_{r2} = lesser of 1 or S_n / S_v = 1$$

$$f_{r3} = lesser of f_{r2} or S_p / S_v = 1$$

$$A = 0.5*(d*t_r*F + 2*t_n*t_r*F*(1 - f_{r1}))$$

$$= (0.5*(583.6*14*1 + 2*13*14*1*(1 - 1))) / 100$$

$$= 40.8519 \text{ cm}^2$$

Area available from FIG. UG-37.1

 $A_1 = larger of the following = 0 cm^2$

$$= d^*(E_1^*t - F^*t_r) - 2^*t_n^*(E_1^*t - F^*t_r)^*(1 - f_{r1})$$

$$= (583.6^*(1^*14 - 1^*14) - 2^*13^*(1^*14 - 1^*14)^*(1 - 1)) / 100$$

$$= 0 \text{ cm}^2$$

$$= 2^*(t + t_n)^*(E_1^*t - F^*t_r) - 2^*t_n^*(E_1^*t - F^*t_r)^*(1 - f_{r1})$$

$$= (2^*(14 + 13)^*(1^*14 - 1^*14) - 2^*13^*(1^*14 - 1^*14)^*(1 - 1)) / 100$$

$$= 0 \text{ cm}^2$$

 A_2 = smaller of the following= 7.5987 cm²

$$= 5*(t_n - t_m)*f_{r2}*t$$

$$= (5*(13 - 2.14)*1*14) / 100$$

$$= 7.5987 \text{ cm}^2$$

$$= 2*(t_n - t_m)*(2.5*t_n + t_e)*f_{r2}$$

$$= (2*(13 - 2.14)*(2.5*13 + 14)*1) / 100$$

$$= 10.0955 \text{ cm}^2$$

$$\begin{array}{rcl} A_{41} & = & Leg^{2*}f_{r3} \\ & = & (9^{2*}1) / 100 \\ & = & \underline{0.8103} \, cm^{2} \end{array}$$

$$A_{42} & = & Leg^{2*}f_{r4} \end{array}$$

$$= \frac{1.3245}{1} \text{ cm}^2$$

(Part of the weld is outside of the limits)

$$A_5 = (D_p - d - 2*t_n)*t_e*f_{r4}$$
= ((1,150 - 583.6 - 2*13)*14*1) / 100
= 75.656 cm²

Area =
$$A_1 + A_2 + A_{41} + A_{42} + A_5$$

= $0 + 7.5987 + 0.8103 + 1.3245 + 75.656$
= 85.3895 cm²

As Area \geq A the reinforcement is adequate.

UW-16(c)(2) Weld Check

```
Inner fillet: t<sub>min</sub>
                          = lesser of 19 mm or t_n or t_e = 13 mm
                t_{c(min)} = lesser of 6 mm or 0.7*t_{min} = \underline{6} mm
                t_{c(actual)} = 0.7*Leg = 0.7*9 = 6.3 \text{ mm}
Outer fillet: t<sub>min</sub>
                            = lesser of 19 mm or t_e or t = 14 mm
                 t_{w(min)} = 0.5*t_{min} = 7 \text{ mm}
                 t_{\text{w(actual)}} = 0.7*\text{Leg} = 0.7*12 = 8.4 \text{ mm}
```

UG-45 Nozzle Neck Thickness Check

```
2.14 mm
t_{a UG-28} =
ta
              \max[\,t_{a\,UG-28}^{}\,,\,t_{a\,UG-22}^{}\,]
              max[ 2.14, 0]
              2.14 mm
         = P*R / (S*E - 0.6*P) + Corrosion
t_{b2}
              2.9143*1,675 / (1,380*1 - 0.6*2.9143) + 0
              3.54 mm
              \max[t_{b2}, t_{b \text{ UG}16}]
t_{b2}
              max[ 3.54, 1.5]
              3.54 mm
         = \min[t_{b3}, t_{b2}]
         = \min[8.33, 3.54]
              3.54 mm
       = \max[t_a, t_b]
t_{UG-45}
         = \max[2.14, 3.54]
              3.54 mm
```

Available nozzle wall thickness new, $t_n = 13 \text{ mm}$

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 175 °C) UG-28(c)

```
L/D_0 = 278.73/609.6 = 0.4572
D_0/t = 609.6/2.14 = 284.2856
                       A = 0.000636
From table G:
From table CS-2 Metric: B = 633.6344 \text{ kg/cm}^2 (621.38 \text{ bar})
      = 4*B/(3*(D_o/t))
      = 4*621.38 / (3*(609.6 / 2.14))
      = 2.91 \, \text{bar}
```

Design thickness for external pressure $P_a = 2.91$ bar

 $t_a = t + Corrosion = 2.14 + = 2.14 \text{ mm}$

Note: round inside edges per UG-76(c)					
Location and Orientation					
Located on	Bottom existing shell				
Orientation	135°				
Nozzle center line offset to datum line	568 mm				
End of nozzle to shell center	1,940 mm				
Passes through a Category A joint	No				
Nozzle					
Access opening	No				
Material specification	SA-516 70 (II-D Metric p. 18, ln. 33)				
Inside diameter, new	380.4 mm				
Nominal wall thickness	13 mm				
Corrosion allowance	0 mm				
Projection available outside vessel, Lpr	124 mm				
Projection available outside vessel to flange face, Lf	251 mm				
Local vessel minimum thickness	14 mm				
Liquid static head included	0.23 bar				
Longitudinal joint efficiency	1				
Reinforcing Pad					
Material specification	SA-516 70 (II-D Metric p. 18, ln. 33)				
Diameter, D _p	780 mm				
Thickness, t _e	14 mm				
Is split	No				
Welds					
Inner fillet, Leg ₄₁	9 mm				

Outer fillet, Leg ₄₂	11 mm
Nozzle to vessel groove weld	14 mm
Pad groove weld	14 mm

ASME B16.5-2013 Flange				
Description	NPS 16 Class 150 WN A105			
Bolt Material	SA-193 B7 Bolt <= 64 (II-D Metric p. 388, ln. 32)			
Blind included	No			
Rated MDMT	-48°C			
Liquid static head	0.21 bar			
MAWP rating	13.73 bar @ 202°C			
MAP rating	19.6 bar @ 30°C			
Hydrotest rating	30 bar @ 30°C			
PWHT performed	Yes			
Impact Tested	No			
Circumferential joint radiography	Spot UW-11(b) Type 1			
Bore diameter, B (specified by purchaser)	380.4 mm			
Notes				
Flange rated MDMT per UCS-66(b)(3) = -105°C (Coincident ratio = 0.1945) Bolts rated MDMT per Fig UCS-66 note (c) = -48°C				

UCS-66 Material Toughness Requirements Nozzle				
$t_r = 3.83*190.2 / (1,380*1 - 0.6*3.83) =$	0.53 mm			
Stress ratio = $t_r^* E^* / (t_n - c) = 0.53*1 / (13 - 0) =$	0.0407			
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-105°C			
Material is exempt from impact testing at the Design MDMT	Material is exempt from impact testing at the Design MDMT of 17°C.			

UCS-66 Material Toughness Requirements Pad			
$t_r = 3.83*1,675 / (1,380*1 - 0.6*3.83) =$	4.66 mm		
Stress ratio = $t_r^* E^* / (t_n - c) = 4.66*1 / (14 - 0) =$	0.3328		
Stress ratio \leq 0.35, MDMT per UCS-66(b)(3) =	-105°C		
Material is exempt from impact testing at the Design MDMT of 17°C.			

Reinforcement Calculations for Internal Pressure

UG-37 Area Calculation Summary (cm²)						UG- Sumn (mr	nary	
For P = 3.83 bar @ 202 °C The opening is adequately reinforced						The nozzle		
A required	A available	A ₁	A ₂	A3	A ₅	A welds	$t_{ m req}$	t _{min}
17.7223	94.6901	35.5335	8.7303		<u>49.616</u>	0.8103	<u>4.66</u>	13

U	UG-41 Weld Failure Path Analysis Summary (kg _f)						
All failure paths are stronger than the applicable weld loads							
Weld load W	Weld load W ₁₋₁	Path 1-1 strength	Weld load W ₂₋₂	Path 2-2 strength	Weld load W ₃₋₃	Path 3-3 strength	
-21,646	83,246	172,064	18,548	225,748	88,368	185,997	

UW-16 Weld Sizing Summary					
Weld description	Required weld size (mm)	Actual weld size (mm)	Status		
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	6.3	weld size is adequate		
Pad to shell fillet (Leg ₄₂)	7	7.7	weld size is adequate		

Calculations for internal pressure 3.83 bar @ 202 °C

Parallel Limit of reinforcement per UG-40

$$L_{R} = MAX(d, R_{n} + (t_{n} - C_{n}) + (t - C))$$

$$= MAX(380.4, 190.2 + (13 - 0) + (14 - 0))$$

$$= 380.4 \text{ mm}$$

Outer Normal Limit of reinforcement per UG-40

$$\begin{array}{lll} L_{H} & = & MIN(2.5*(t-C), \, 2.5*(t_{n}-C_{n})+t_{e}) \\ & = & MIN(2.5*(14-0), \, 2.5*(13-0)+14) \\ & = & 35 \; mm \end{array}$$

Nozzle required thickness per UG-27(c)(1)

$$t_{rn} = P*R_n / (S_n*E - 0.6*P)$$

$$= 3.8319*190.2 / (1,380*1 - 0.6*3.8319)$$

$$= 0.53 \text{ mm}$$

Required thickness t, from UG-37(a)

$$t_r$$
 = P*R / (S*E - 0.6*P)
= 3.8319*1,675 / (1,380*1 - 0.6*3.8319)
= 4.66 mm

Required thickness t, per Interpretation VIII-1-07-50

Area required per UG-37(c)

Allowable stresses: $S_n = 1,407.207$, $S_v = 1,407.207$, $S_p = 1,407.207$ kg_f/cm² $f_{r1} = lesser of 1 or S_n / S_v = 1$ f_{r2} = lesser of 1 or $S_n / S_v = 1$ $f_{r3} = lesser of f_{r2} or S_p / S_v = 1$ $f_{r4} = lesser of 1 or S_p / S_v = 1$ $A = d*t_r*F + 2*t_n*t_r*F*(1 - f_{r1})$ = (380.4*4.66*1 + 2*13*4.66*1*(1 - 1)) / 100 $= 17.7223 \text{ cm}^2$

Area available from FIG. UG-37.1

 $A_1 = larger of the following = 35.5335 cm^2$

$$= d^*(E_1^*t - F^*t_r) - 2^*t_n^*(E_1^*t - F^*t_r)^*(1 - f_{r1})$$

$$= (380.4^*(1^*14 - 1^*4.66) - 2^*13^*(1^*14 - 1^*4.66)^*(1 - 1)) / 100$$

$$= 35.5335 \text{ cm}^2$$

$$= 2^*(t + t_n)^*(E_1^*t - F^*t_r) - 2^*t_n^*(E_1^*t - F^*t_r)^*(1 - f_{r1})$$

$$= (2^*(14 + 13)^*(1^*14 - 1^*4.66) - 2^*13^*(1^*14 - 1^*4.66)^*(1 - 1)) / 100$$

$$= 5.0445 \text{ cm}^2$$

 A_2 = smaller of the following= 8.7303 cm²

$$= 5*(t_n - t_{rn})*f_{r2}*t$$

$$= (5*(13 - 0.53)*1*14) / 100$$

$$= 8.7303 \text{ cm}^2$$

$$= 2*(t_n - t_{rn})*(2.5*t_n + t_e)*f_{r2}$$

$$= (2*(13 - 0.53)*(2.5*13 + 14)*1) / 100$$

$$= 11.5987 \text{ cm}^2$$

$$A_{41} = Leg^{2*}f_{r3}$$

$$= (9^{2*}1) / 100$$

$$= 0.8103 \text{ cm}^{2}$$

$$A_{42} = Leg^{2*}f_{r4}$$

$$= (0^{2}*1) / 100$$
$$= 0 \text{ cm}^{2}$$

(Part of the weld is outside of the limits)

$$A_5 = (D_p - d - 2*t_n)*t_e*f_{r4}$$

$$= ((760.8 - 380.4 - 2*13)*14*1) / 100$$

$$= 49.616 \text{ cm}^2$$

$$Area = A_1 + A_2 + A_{41} + A_{42} + A_5$$

$$= 35.5335 + 8.7303 + 0.8103 + 0 + 49.616$$

$$= 94.6901 \text{ cm}^2$$

As Area \geq A the reinforcement is adequate.

UW-16(c)(2) Weld Check

$$\begin{array}{ll} \text{Inner fillet:} \ t_{\text{min}} &= \text{lesser of } 19 \ \text{mm or } t_{\text{n}} \ \text{or } t_{\text{e}} = 13 \ \text{mm} \\ t_{\text{c(min)}} &= \text{lesser of } 6 \ \text{mm or } 0.7^* t_{\text{min}} = \underline{6} \ \text{mm} \\ t_{\text{c(actual)}} &= 0.7^* \text{Leg} = 0.7^* 9 = 6.3 \ \text{mm} \\ \\ \text{Outer fillet:} \ t_{\text{min}} &= \text{lesser of } 19 \ \text{mm or } t_{\text{e}} \ \text{or } t = 14 \ \text{mm} \\ t_{\text{w(min)}} &= 0.5^* t_{\text{min}} = \underline{7} \ \text{mm} \\ t_{\text{w(actual)}} &= 0.7^* \text{Leg} = 0.7^* 11 = 7.7 \ \text{mm} \\ \end{array}$$

UG-45 Nozzle Neck Thickness Check

```
P*R_n / (S_n*E - 0.6*P) + Corrosion
t_{a \text{ UG-27}} =
                3.8319*190.2/(1,380*1 - 0.6*3.8319) + 0
                0.53 mm
          =
                \max[\ t_{\rm a\,UG\text{-}27}\ ,\, t_{\rm a\,UG\text{-}22}\ ]
t_a
                \max[0.53, 0]
                0.53 mm
                P*R / (S*E - 0.6*P) + Corrosion
t_{b1}
                3.8319*1,675 / (1,380*1 - 0.6*3.8319) + 0
          =
                4.66 mm
          =
                \max[t_{b1}, t_{b \text{ UG}16}]
t_{b1}
                max[ 4.66, 1.5]
                4.66 mm
                \min[t_{b3}, t_{b1}]
t_b
                min[8.33, 4.66]
                4.66 mm
```

Available nozzle wall thickness new, $t_n = 13 \text{ mm}$

The nozzle neck thickness is adequate.

Allowable stresses in joints UG-45 and UW-15(c)

Groove weld in tension: $0.74*1,407.207 = 1,041.333 \text{ kg/cm}^2$ Nozzle wall in shear: $0.7*1,407.207 = 985.045 \text{ kg}/\text{cm}^2$ Inner fillet weld in shear: $0.49*1,407.207 = 689.532 \text{ kg}/\text{cm}^2$ Outer fillet weld in shear: $0.49*1,407.207 = 689.532 \text{ kg}/\text{cm}^2$ Upper groove weld in tension: $0.74*1,407.207 = 1,041.333 \text{ kg/cm}^2$

Strength of welded joints:

- (1) Inner fillet weld in shear $(\pi / 2)$ *Nozzle OD*Leg*S_i = $(\pi / 2)$ *406.4*9*689.532 = 39,616 kg_f
- (2) Outer fillet weld in shear $(\pi/2)$ *Pad OD*Leg*S_o = $(\pi/2)$ *780*11*689.532 = 92,931.23 kg_f
- (3) Nozzle wall in shear $(\pi / 2)$ *Mean nozzle dia* t_n * S_n = $(\pi / 2)$ *393.4*13*985.045 = 79,132.35 kg_f
- (4) Groove weld in tension $(\pi / 2)$ *Nozzle OD* t_w *S_g = $(\pi / 2)$ *406.4*14*1,041.333 = 93,066.16 kg_f
- (6) Upper groove weld in tension $(\pi / 2)$ *Nozzle OD* t_w *S $_g = (\pi / 2)$ *406.4*14*1,041.333 = 93,066.16 kg_f

Loading on welds per UG-41(b)(1)

$$W = (A - A_1 + 2*t_n*f_{r_1}*(E_1*t - F*t_r))*S_v$$

$$= (1,772.2334 - 3,553.3477 + 2*13*1*(1*14 - 1*4.66))*1,407.207$$

$$= -21.646.31 \text{ kg}_f$$

$$\begin{aligned} W_{1\text{--}1} &= & (A_2 + A_5 + A_{41} + A_{42}) * S_v \\ &= & (873.0305 + 4,961.6 + 81.0321 + 0) * 1,407.207 \\ &= & 83,245.71 \text{ kg}_f \end{aligned}$$

$$\begin{aligned} W_{2\text{-}2} &= & (A_2 + A_3 + A_{41} + A_{43} + 2^* t_n^* t^* f_{r1})^* S_v \\ &= & (873.0305 + 0 + 81.0321 + 0 + 2^* 13^* 14^* 1)^* 1,407.207 \\ &= & \underline{18.547.89} \text{ kg}_f \end{aligned}$$

$$\begin{aligned} W_{3-3} &= & (A_2 + A_3 + A_5 + A_{41} + A_{42} + A_{43} + 2^* t_n^* t^* f_{r1})^* S_v \\ &= & (873.0305 + 0 + 4,961.6 + 81.0321 + 0 + 0 + 2^* 13^* 14^* 1)^* 1,407.207 \\ &= & 88,367.95 \text{ kg}_e \end{aligned}$$

```
Load for path 1-1 lesser of W or W_{1-1} = -21,646.31 \text{ kg}_f
Path 1-1 through (2) & (3) = 92,931.23 + 79,132.35 = 172,063.59 \text{ kg}_f
Path 1-1 is stronger than W so it is acceptable per UG-41(b)(2).
```

Load for path 2-2 lesser of W or $W_{2-2} = -21,646.31 \text{ kg}_f$ Path 2-2 through (1), (4), (6) = $39,616 + 93,066.16 + 93,066.16 = 225,748.32 \text{ kg}_f$ Path 2-2 is stronger than W so it is acceptable per UG-41(b)(2).

Load for path 3-3 lesser of W or $W_{3-3} = -21,646.31 \text{ kg}_f$ Path 3-3 through (2), (4) = $92,931.23 + 93,066.16 = 185,997.39 \text{ kg}_f$ Path 3-3 is stronger than W so it is acceptable per UG-41(b)(2).

% Extreme fiber elongation - UCS-79(d)

```
EFE =
         (50*t/R_f)*(1-R_f/R_o)
         (50*13 / 196.7)*(1 - 196.7 / infinity)
         3.3045%
```

The extreme fiber elongation does not exceed 5%.

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary (cm²)					UG- Sumn (mr	nary		
For Pe = 2.91 bar @ 175 °C The opening is adequately reinforced					The nozzle			
A required	A available	A ₁	A ₂	A3	A ₅	A welds	$t_{\rm req}$	t _{min}
26.6279	<u>58.365</u>		7.9387		<u>49.616</u>	0.8103	<u>3.54</u>	13

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary					
Weld description	Required weld size (mm)	Actual weld size (mm)	Status		
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	6.3	weld size is adequate		
Pad to shell fillet (Leg ₄₂)	7	7.7	weld size is adequate		

Calculations for external pressure 2.91 bar @ 175 °C

Parallel Limit of reinforcement per UG-40

$$L_{R} = MAX(d, R_{n} + (t_{n} - C_{n}) + (t - C))$$

$$= MAX(380.4, 190.2 + (13 - 0) + (14 - 0))$$

$$= 380.4 \text{ mm}$$

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = MIN(2.5*(t - C), 2.5*(t_{n} - C_{n}) + t_{e})$$

$$= MIN(2.5*(14 - 0), 2.5*(13 - 0) + 14)$$

$$= 35 \text{ mm}$$

Nozzle required thickness per UG-28 t_{rn} = 1.66 mm

From UG-37(d)(1) required thickness $t_r = 14 \text{ mm}$

Area required per UG-37(d)(1)

Allowable stresses:
$$S_n = 1,407.207$$
, $S_v = 1,407.207$, $S_p = 1,407.207$ kg/cm²
$$f_{r1} = lesser \ of \ 1 \ or \ S_n \ / \ S_v = 1$$

$$f_{r2} = lesser \ of \ 1 \ or \ S_n \ / \ S_v = 1$$

$$f_{r3} = lesser \ of \ f_{r2} \ or \ S_p \ / \ S_v = 1$$

 $f_{r4} = lesser of 1 or S_p / S_v = 1$

$$\begin{array}{lll} A & = & 0.5*(d*t_r*F + 2*t_n*t_r*F*(1-f_{r1})) \\ & = & (0.5*(380.4*14*1 + 2*13*14*1*(1-1))) / 100 \\ & = & 26.6279 \ cm^2 \end{array}$$

Area available from FIG. UG-37.1

 $A_1 = larger of the following = 0 cm^2$

$$= d^*(E_1^*t - F^*t_r) - 2^*t_n^*(E_1^*t - F^*t_r)^*(1 - f_{r_1})$$

$$= (380.4^*(1^*14 - 1^*14) - 2^*13^*(1^*14 - 1^*14)^*(1 - 1)) / 100$$

$$= 0 \text{ cm}^2$$

$$= 2^*(t + t_n)^*(E_1^*t - F^*t_r) - 2^*t_n^*(E_1^*t - F^*t_r)^*(1 - f_{r_1})$$

$$= (2^*(14 + 13)^*(1^*14 - 1^*14) - 2^*13^*(1^*14 - 1^*14)^*(1 - 1)) / 100$$

$$= 0 \text{ cm}^2$$

 A_2 = smaller of the following= $\frac{7.9387}{1}$ cm²

$$= 5*(t_n - t_{rn})*f_{r2}*t$$

$$= (5*(13 - 1.66)*1*14) / 100$$

$$= 7.9387 \text{ cm}^2$$

$$= 2*(t_n - t_{rn})*(2.5*t_n + t_e)*f_{r2}$$

$$= (2*(13 - 1.66)*(2.5*13 + 14)*1) / 100$$

$$= 10.5471 \text{ cm}^2$$

$$A_{41} = Leg^{2*}f_{r3}$$

$$= (9^{2*}1) / 100$$

$$= 0.8103 \text{ cm}^{2}$$

$$A_{42} = Leg^{2*}f_{r4}$$

= $(0^{2*}1) / 100$
= $0 cm^2$

(Part of the weld is outside of the limits)

$$A_5 = (D_p - d - 2*t_n)*t_e*f_{r_4}$$
= ((760.8 - 380.4 - 2*13)*14*1) / 100
= 49.616 cm²

Area =
$$A_1 + A_2 + A_{41} + A_{42} + A_5$$

= $0 + 7.9387 + 0.8103 + 0 + 49.616$
= 58.365 cm^2

As Area \geq A the reinforcement is adequate.

UW-16(c)(2) Weld Check

```
Inner fillet: t<sub>min</sub>
                          = lesser of 19 mm or t_n or t_e = 13 mm
                t_{c(min)} = lesser of 6 mm or 0.7*t_{min} = \underline{6} mm
                t_{c(actual)} = 0.7*Leg = 0.7*9 = 6.3 \text{ mm}
Outer fillet: t<sub>min</sub>
                            = lesser of 19 mm or t_e or t = 14 mm
                 t_{w(min)} = 0.5*t_{min} = 7 \text{ mm}
                 t_{\text{w(actual)}} = 0.7*\text{Leg} = 0.7*11 = 7.7 \text{ mm}
```

UG-45 Nozzle Neck Thickness Check

```
1.66 mm
t_{a UG-28} =
ta
              \max[t_{a \text{ UG-}28}, t_{a \text{ UG-}22}]
              max[ 1.66, 0]
              1.66 mm
              P*R / (S*E - 0.6*P) + Corrosion
t_{b2}
              2.9143*1,675 / (1,380*1 - 0.6*2.9143) + 0
              3.54 mm
              \max[t_{b2}, t_{b \text{ UG}16}]
t_{b2}
              max[ 3.54, 1.5]
              3.54 mm
         = \min[t_{b3}, t_{b2}]
         = \min[8.33, 3.54]
              3.54 mm
        = \max[t_a, t_b]
t_{UG-45}
         = \max[1.66, 3.54]
              3.54 mm
```

Available nozzle wall thickness new, $t_n = 13 \text{ mm}$

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 175 °C) UG-28(c)

```
L/D_0 = 263.27/406.4 = 0.6478
D_0 / t = 406.4 / 1.66 = 244.9884
                        A = 0.000549
From table G:
From table CS-2 Metric: B = 546.0442 \text{ kg/cm}^2 (535.49 \text{ bar})
      = 4*B/(3*(D_0/t))
      = 4*535.49 / (3*(406.4 / 1.66))
      = 2.91 \, \text{bar}
```

Design thickness for external pressure $P_a = 2.91$ bar

 $t_a = t + Corrosion = 1.66 + = 1.66 mm$

ASME Section VIII Division 1, 2017 Edition Metric -90,46

Note: round inside edges per UG-76(c)

Note: round inside edges per UG-76(c)					
Location and C	Location and Orientation				
Located on	Bottom existing shell				
Orientation	200°				
Nozzle center line offset to datum line	5,808 mm				
End of nozzle to shell center	1,890 mm				
Passes through a Category A joint	No				
Nozzl	e				
Description	NPS 8 Sch 80 (XS) DN 200				
Access opening	No				
Material specification	SA-106 B Smls Pipe (II-D Metric p. 14, ln. 10)				
Inside diameter, new	193.68 mm				
Pipe nominal wall thickness	12.7 mm				
Pipe minimum wall thickness ¹	11.11 mm				
Corrosion allowance	0 mm				
Projection available outside vessel, Lpr	99.4 mm				
Projection available outside vessel to flange face, Lf	201 mm				
Local vessel minimum thickness	14 mm				
Liquid static head included	0 bar				
Longitudinal joint efficiency	1				
Reinforcin	g Pad				
Material specification SA-516 70 (II-D Metric p. 18, ln. 33)					

Reinforcing Pad				
Material specification	SA-516 70 (II-D Metric p. 18, ln. 33)			
Diameter, D _p	400.01 mm			
Thickness, t _e	14 mm			
Is split	No			

Welds			
Inner fillet, Leg ₄₁	9 mm		
Outer fillet, Leg ₄₂	11 mm		
Nozzle to vessel groove weld	14 mm		
Pad groove weld	14 mm		

¹Pipe minimum thickness = nominal thickness times pipe tolerance factor of 0.875.

ASME B16.5-2013 Flange			
Description	NPS 8 Class 150 WN A105		
Bolt Material	SA-193 B7 Bolt <= 64 (II-D Metric p. 388, ln. 32)		
Blind included	No		
Rated MDMT	-48°C		
Liquid static head	0 bar		
MAWP rating	13.73 bar @ 202°C		
MAP rating	19.6 bar @ 30°C		
Hydrotest rating	30 bar @ 30°C		
PWHT performed	Yes		
Impact Tested	No		
Circumferential joint radiography Spot UW-11(b) Type 1			
Notes			
Flange rated MDMT per UCS-66(b)(3) = -105° C (Coincident ratio = 0.1837) Bolts rated MDMT per Fig UCS-66 note (c) = -48° C			

UCS-66 Material Toughness Requirements Nozzle			
$t_r = 3.6*96.84 / (1,180*1 - 0.6*3.6) =$	0.3 mm		
Stress ratio = $t_r^* E^* / (t_n - c) = 0.3*1 / (11.11 - 0) =$	0.0266		
Stress ratio ≤ 0.35 , MDMT per UCS-66(b)(3) =	-105°C		
Material is exempt from impact testing at the Design MDMT of 17°C.			

UCS-66 Material Toughness Requirements Pad			
$t_r = 3.6*1,675 / (1,380*1 - 0.6*3.6) =$	4.38 mm		
Stress ratio = $t_r^* E^* / (t_n - c) = 4.38*1 / (14 - 0) =$	0.3126		
Stress ratio \leq 0.35, MDMT per UCS-66(b)(3) =	-105°C		
Material is exempt from impact testing at the Design MDMT of 17°C.			

Reinforcement Calculations for Internal Pressure

UG-37 Area Calculation Summary (cm²)							Sum	G-45 mary nm)
	For P = 3.6 bar @ 202 °C The opening is adequately reinforced							zle passes G-45
A required	A1 A2 A5 A5						t _{req}	t _{min}
8.6371								11.11

UC	UG-41 Weld Failure Path Analysis Summary (kg _f)								
	All failure paths are stronger than the applicable weld loads								
Weld load W	Weld load W ₁₋₁	d Path 1-1 Weld load W2-2		Path 2-2 strength	Weld load W ₃₋₃	Path 3-3 strength			

UW-16 Weld Sizing Summary							
Weld description	Required weld size (mm)	Actual weld size (mm)	Status				
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	6.3	weld size is adequate				
Pad to shell fillet (Leg ₄₂)	7	7.7	weld size is adequate				

Calculations for internal pressure 3.6 bar @ 202 °C

Parallel Limit of reinforcement per UG-40

$$L_{R} = MAX(d, R_{n} + (t_{n} - C_{n}) + (t - C))$$

$$= MAX(193.68, 96.84 + (12.7 - 0) + (14 - 0))$$

$$= 193.68 \text{ mm}$$

Outer Normal Limit of reinforcement per UG-40

$$\begin{array}{rcl} L_{H} & = & MIN(2.5*(t-C), \, 2.5*(t_{n}-C_{n})+t_{e}) \\ & = & MIN(2.5*(14-0), \, 2.5*(12.7-0)+14) \\ & = & 35 \; mm \end{array}$$

Nozzle required thickness per UG-27(c)(1)

$$t_{rn} = P*R_n / (S_n*E - 0.6*P)$$

$$= 3.6*96.84 / (1,180*1 - 0.6*3.6)$$

$$= 0.3 \text{ mm}$$

Required thickness t, from UG-37(a)

$$t_r$$
 = P*R / (S*E - 0.6*P)
= 3.6*1,675 / (1,380*1 - 0.6*3.6)
= 4.38 mm

Required thickness t, per Interpretation VIII-1-07-50

$$t_r$$
 = P*R / (S*E - 0.6*P)
= 3.6*1,675 / (1,380*0.85 - 0.6*3.6)
= 5.15 mm

Area required per UG-37(c)

Allowable stresses:
$$S_n = 1,203.264$$
, $S_v = 1,407.207$, $S_p = 1,407.207$ kg/cm² $f_{r1} = lesser$ of 1 or $S_n / S_v = 0.8551$ $f_{r2} = lesser$ of 1 or $S_n / S_v = 0.8551$ $f_{r3} = lesser$ of f_{r2} or $S_p / S_v = 0.8551$ $f_{r4} = lesser$ of 1 or $S_p / S_v = 1$
$$A = d^*t_r^*F + 2^*t_n^*t_r^*F^*(1 - f_{r1})$$
 = $(193.68*4.38*1 + 2*12.7*4.38*1*(1 - 0.8551)) / 100$ = 8.6371 cm²

Area available from FIG. UG-37.1

 A_1 = larger of the following= 18.2845 cm²

$$= d^*(E_1^*t - F^*t_r) - 2^*t_n^*(E_1^*t - F^*t_r)^*(1 - f_{r_1})$$

$$= (193.68^*(1^*14 - 1^*4.38) - 2^*12.7^*(1^*14 - 1^*4.38)^*(1 - 0.8551)) / 100$$

$$= 18.2845 \text{ cm}^2$$

$$= 2^*(t + t_n)^*(E_1^*t - F^*t_r) - 2^*t_n^*(E_1^*t - F^*t_r)^*(1 - f_{r_1})$$

$$= (2^*(14 + 12.7)^*(1^*14 - 1^*4.38) - 2^*12.7^*(1^*14 - 1^*4.38)^*(1 - 0.8551)) / 100$$

$$= 4.7845 \text{ cm}^2$$

 A_2 = smaller of the following= $\frac{7.4239}{1.00}$ cm²

$$= 5*(t_n - t_{rn})*f_{r2}*t$$

$$= (5*(12.7 - 0.3)*0.8551*14) / 100$$

$$= 7.4239 \text{ cm}^2$$

$$= 2*(t_n - t_{rn})*(2.5*t_n + t_e)*f_{r2}$$

$$= (2*(12.7 - 0.3)*(2.5*12.7 + 14)*0.8551) / 100$$

$$= 9.7039 \text{ cm}^2$$

$$A_{41} = \text{Leg}^2*f_{r3}$$

$$A_{42} = Leg^{2*}f_{r4}$$

 $= (9^2*0.8551) / 100$ $= 0.6929 \text{ cm}^2$

$$= (0^{2}*1) / 100$$
$$= 0 \text{ cm}^{2}$$

(Part of the weld is outside of the limits)

$$A_5 = (D_p - d - 2*t_n)*t_e*f_{r4}$$

$$= ((387.35 - 193.68 - 2*12.7)*14*1) / 100$$

$$= 23.5585 \text{ cm}^2$$

$$Area = A_1 + A_2 + A_{41} + A_{42} + A_5$$

$$= 18.2845 + 7.4239 + 0.6929 + 0 + 23.5585$$

$$= 49.9597 \text{ cm}^2$$

As Area \geq A the reinforcement is adequate.

UW-16(c)(2) Weld Check

UG-45 Nozzle Neck Thickness Check

```
P*R_n / (S_n*E - 0.6*P) + Corrosion
t_{a \text{ UG-27}} =
                3.6*96.84 / (1,180*1 - 0.6*3.6) + 0
                0.3 mm
          =
                \max[\ t_{\rm a\,UG\text{-}27}\ ,\, t_{\rm a\,UG\text{-}22}\ ]
t_a
                \max[0.3, 0]
                0.3 mm
                P*R / (S*E - 0.6*P) + Corrosion
t_{b1}
                3.6*1,675 / (1,380*1 - 0.6*3.6) + 0
                4.38 mm
          =
                \max[t_{b1}, t_{b \text{ UG}16}]
t_{b1}
                max[ 4.38, 1.5]
                4.38 mm
                \min[t_{b3}, t_{b1}]
t_b
                min[7.16, 4.38]
                4.38 mm
```

Available nozzle wall thickness new, $t_n = 0.875*12.7 = 11.11 \text{ mm}$

The nozzle neck thickness is adequate.

Allowable stresses in joints UG-45 and UW-15(c)

Groove weld in tension: $0.74*1,407.207 = 1,041.333 \text{ kg}/\text{cm}^2$ Nozzle wall in shear: $0.7*1,203.264 = 842.285 \text{ kg}/\text{cm}^2$ Inner fillet weld in shear: $0.49*1,203.264 = 589.599 \text{ kg}/\text{cm}^2$ Outer fillet weld in shear: $0.49*1,407.207 = 689.532 \text{ kg}/\text{cm}^2$ Upper groove weld in tension: $0.74*1,407.207 = 1,041.333 \text{ kg/cm}^2$

Strength of welded joints:

- (1) Inner fillet weld in shear $(\pi/2)$ *Nozzle OD*Leg*S; = $(\pi/2)$ *219.08*9*589.599 = 18,260.5 kg;
- (2) Outer fillet weld in shear $(\pi/2)$ *Pad OD*Leg*S₀ = $(\pi/2)$ *400.01*11*689.532 = 47,657.64 kg_f
- (3) Nozzle wall in shear $(\pi / 2)$ *Mean nozzle dia* t_n * S_n = $(\pi / 2)$ *206.38*12.7*842.285 = 34,676.89 kg_f
- (4) Groove weld in tension $(\pi / 2)*Nozzle OD*t_w*S_g = (\pi / 2)*219.08*14*1,041.333 = 50,168.48 kg_f$
- (6) Upper groove weld in tension $(\pi / 2)*Nozzle OD*t_w*S_g = (\pi / 2)*219.08*14*1,041.333 = 50,168.48 kg_f$

Loading on welds per UG-41(b)(1)

$$W = (A - A_1 + 2*t_n*f_{r_1}*(E_1*t - F*t_r))*S_v$$

= (863.7104 - 1,828.448 + 2*12.7*0.8551*(1*14 - 1*4.38))*1,407.207
= $-10.634.53$ kg_f

$$\begin{aligned} W_{1\text{--}1} &= & (A_2 + A_5 + A_{41} + A_{42}) * S_v \\ &= & (742.3856 + 2,355.85 + 69.2902 + 0) * 1,407.207 \\ &= & \underbrace{44,573.69}_{} \text{kg}_f \end{aligned}$$

$$W_{2-2} = (A_2 + A_3 + A_{41} + A_{43} + 2*t_n*t*f_{r1})*S_v$$

$$= (742.3856 + 0 + 69.2902 + 0 + 2*12.7*14*0.8551)*1,407.207$$

$$= 15,700.92 \text{ kg}_f$$

$$\begin{split} W_{3\text{-}3} &= & (A_2 + A_3 + A_5 + A_{41} + A_{42} + A_{43} + 2^*t_n^*t^*f_{r1})^*S_v \\ &= & (742.3856 + 0 + 2,355.85 + 69.2902 + 0 + 0 + 2^*12.7^*14^*0.8551)^*1,407.207 \\ &= & \underline{48.852.64} \text{ kg}_f \end{split}$$

Load for path 1-1 lesser of W or $W_{1-1} = -10,634.53 \text{ kg}_f$ Path 1-1 through (2) & (3) = $47,657.64 + 34,676.89 = 82,334.53 \text{ kg}_f$ Path 1-1 is stronger than W so it is acceptable per UG-41(b)(2).

Load for path 2-2 lesser of W or $W_{2-2} = -10,634.53 \text{ kg}_f$ Path 2-2 through (1), (4), (6) = $18,260.5 + 50,168.48 + 50,168.48 = \underline{118,597.45} \text{ kg}_f$ Path 2-2 is stronger than W so it is acceptable per UG-41(b)(2).

Load for path 3-3 lesser of W or $W_{3-3} = -10,634.53 \text{ kg}_f$ Path 3-3 through (2), (4) = $47,657.64 + 50,168.48 = 97.826.11 \text{ kg}_f$ Path 3-3 is stronger than W so it is acceptable per UG-41(b)(2).

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary (cm²)							Sum	G-45 mary nm)
	For Pe = 2.91 bar @ 175 °C The opening is adequately reinforced							zle passes G-45
A required	1 A1 A2 A2 A5						$t_{\rm req}$	t _{min}
11.5902	1							11.11

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary							
Weld description	Required weld size (mm)	Actual weld size (mm)	Status				
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	6.3	weld size is adequate				
Pad to shell fillet (Leg ₄₂)	7	7.7	weld size is adequate				

Calculations for external pressure 2.91 bar @ 175 °C

Parallel Limit of reinforcement per UG-40

$$L_{R} = MAX(d, R_{n} + (t_{n} - C_{n}) + (t - C))$$

$$= MAX(193.68, 96.84 + (12.7 - 0) + (14 - 0))$$

$$= 193.68 \text{ mm}$$

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = MIN(2.5*(t - C), 2.5*(t_{n} - C_{n}) + t_{e})$$

$$= MIN(2.5*(14 - 0), 2.5*(12.7 - 0) + 14)$$

$$= 35 \text{ mm}$$

Nozzle required thickness per UG-28 t_{rn} = 1.04 mm

From UG-37(d)(1) required thickness $t_r = 11.75 \text{ mm}$

Area required per UG-37(d)(1)

Allowable stresses:
$$S_n = 1,203.264$$
, $S_v = 1,407.207$, $S_p = 1,407.207$ kg_f/cm² $f_{r1} = lesser$ of 1 or $S_n / S_v = 0.8551$ $f_{r2} = lesser$ of 1 or $S_n / S_v = 0.8551$ $f_{r3} = lesser$ of f_{r2} or $f_{r2} = 0.8551$

 $f_{r4} = lesser of 1 or S_p / S_v = 1$

$$\begin{array}{lll} A & = & 0.5*(d*t_r*F + 2*t_n*t_r*F*(1-f_{r1})) \\ & = & (0.5*(193.68*11.75*1 + 2*12.7*11.75*1*(1-0.8551))) / 100 \\ & = & 11.5902 \ cm^2 \end{array}$$

Area available from FIG. UG-37.1

 $A_1 = larger of the following = 4.2832 cm^2$

$$= d^*(E_1^*t - F^*t_r) - 2^*t_n^*(E_1^*t - F^*t_r)^*(1 - f_{r1})$$

$$= (193.68^*(1^*14 - 1^*11.75) - 2^*12.7^*(1^*14 - 1^*11.75)^*(1 - 0.8551)) / 100$$

$$= 4.2832 \text{ cm}^2$$

$$= 2^*(t + t_n)^*(E_1^*t - F^*t_r) - 2^*t_n^*(E_1^*t - F^*t_r)^*(1 - f_{r1})$$

$$= (2^*(14 + 12.7)^*(1^*14 - 1^*11.75) - 2^*12.7^*(1^*14 - 1^*11.75)^*(1 - 0.8551)) / 100$$

$$= 1.1206 \text{ cm}^2$$

 A_2 = smaller of the following= $\underline{6.98}$ cm²

$$= 5*(t_n - t_m)*f_{r2}*t$$

$$= (5*(12.7 - 1.04)*0.8551*14) / 100$$

$$= 6.98 \text{ cm}^2$$

$$= 2*(t_n - t_m)*(2.5*t_n + t_e)*f_{r2}$$

$$= (2*(12.7 - 1.04)*(2.5*12.7 + 14)*0.8551) / 100$$

$$= 9.1239 \text{ cm}^2$$

$$\begin{array}{rcl} A_{41} &=& Leg^{2*}f_{r3} \\ &=& (9^{2*}0.8551) / 100 \\ &=& \underline{0.6929} \ cm^{2} \\ \\ A_{42} &=& Leg^{2*}f_{r4} \\ &=& (0^{2*}1) / 100 \end{array}$$

= 0 cm²

(Part of the weld is outside of the limits)

$$A_5 = (D_p - d - 2*t_n)*t_e*f_{r4}$$

$$= ((387.35 - 193.68 - 2*12.7)*14*1) / 100$$

$$= 23.5585 \text{ cm}^2$$

Area =
$$A_1 + A_2 + A_{41} + A_{42} + A_5$$

= $4.2832 + 6.98 + 0.6929 + 0 + 23.5585$
= 35.5146 cm^2

As Area \geq A the reinforcement is adequate.

UW-16(c)(2) Weld Check

```
Inner fillet: t<sub>min</sub>
                          = lesser of 19 mm or t_n or t_e = 12.7 mm
                t_{c(min)} = lesser of 6 mm or 0.7*t_{min} = \underline{6} mm
                t_{c(actual)} = 0.7*Leg = 0.7*9 = 6.3 \text{ mm}
Outer fillet: t<sub>min</sub>
                            = lesser of 19 mm or t_e or t = 14 mm
                 t_{w(min)} = 0.5*t_{min} = 7 \text{ mm}
                 t_{\text{w(actual)}} = 0.7*\text{Leg} = 0.7*11 = 7.7 \text{ mm}
```

UG-45 Nozzle Neck Thickness Check

```
1.04 mm
t_{a \text{ UG-28}} =
ta
               \max[\,t_{a\,UG-28}^{}\,,\,t_{a\,UG-22}^{}\,]
               max[ 1.04, 0]
             1.04 mm
         = P*R / (S*E - 0.6*P) + Corrosion
t_{b2}
              2.9143*1,675 / (1,380*1 - 0.6*2.9143) + 0
              3.54 mm
               \max[t_{b2}, t_{b \text{ UG}16}]
t_{b2}
               max[ 3.54, 1.5]
               3.54 mm
         = \min[t_{b3}, t_{b2}]
         = \min[7.16, 3.54]
               3.54 mm
       = \max[t_a, t_b]
t_{UG-45}
         = \max[1.04, 3.54]
               3.54 mm
```

Available nozzle wall thickness new, $t_n = 0.875*12.7 = 11.11 \text{ mm}$

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 175 °C) UG-28(c)

```
L/D_0 = 204.56/219.08 = 0.9337
D_0 / t = 219.08 / 1.04 = 210.7936
                        A = 0.000473
From table G:
From table CS-2 Metric: B = 469.8193 \text{ kg/cm}^2 (460.73 \text{ bar})
      = 4*B/(3*(D_0/t))
      = 4*460.73 / (3*(219.08 / 1.04))
      = 2.91 \, \text{bar}
```

Design thickness for external pressure $P_a = 2.91$ bar

 $t_a = t + Corrosion = 1.04 + = 1.04 mm$

Note: round inside edges per UG-76(c)	
Location and Orient	ation
Located on	Bottom existing shell
Orientation	45°
Nozzle center line offset to datum line	5,808 mm
End of nozzle to shell center	1,940 mm
Passes through a Category A joint	No
Nozzle	
Access opening	No
Material specification	SA-516 70 (II-D Metric p. 18, ln. 33)
Inside diameter, new	786.8 mm
Nominal wall thickness	13 mm
Corrosion allowance	0 mm
Projection available outside vessel, Lpr	143.05 mm
Projection available outside vessel to flange face, Lf	251 mm
Local vessel minimum thickness	14 mm
Liquid static head included	0 bar
Longitudinal joint efficiency	1
Reinforcing Pac	
Material specification	SA-516 70 (II-D Metric p. 18, ln. 33)
Diameter, D_p	1,125 mm
Thickness, t _e	15 mm
Is split	No
Welds	
Inner fillet, Leg ₄₁	9 mm

Outer fillet, Leg ₄₂	11 mm	
Nozzle to vessel groove weld	14 mm	
Pad groove weld	15 mm	

ASME B1	6.47-2011 Flange				
Description	NPS 32 Class 150 WN A105 Series B				
Bolt Material	SA-193 B7 Bolt <= 64 (II-D Metric p. 388, ln. 32)				
Blind included	No				
Rated MDMT	-48°C				
Liquid static head	0 bar				
MAWP rating	13.73 bar @ 202°C				
MAP rating	19.6 bar @ 30°C				
Hydrotest rating	30 bar @ 30°C				
PWHT performed	Yes				
Impact Tested	No				
Circumferential joint radiography	Spot UW-11(b) Type 1				
Bore diameter, B (specified by purchaser)	786.8 mm				
	Notes				
Flange rated MDMT per UCS-66(b)(3) = -105 °C (Coincident ratio = 0.1837) Bolts rated MDMT per Fig UCS-66 note (c) = -48 °C					

UCS-66 Material Toughness Requirements Nozzle						
$t_r = 3.6*393.4 / (1,380*1 - 0.6*3.6) =$	1.03 mm					
Stress ratio = $t_r^* E^* / (t_n - c) = 1.03*1 / (13 - 0) =$	0.0791					
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-105°C					
Material is exempt from impact testing at the Design MDMT of 17°C.						

UCS-66 Material Toughness Requirements Pad						
$t_r = 3.6*1,675 / (1,380*1 - 0.6*3.6) =$	4.38 mm					
Stress ratio = $t_r^* E^* / (t_n - c) = 4.38*1 / (14 - 0) =$	0.3126					
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-105°C					
Material is exempt from impact testing at the Design MDMT of 17°C.						

Reinforcement Calculations for Internal Pressure

UG-37 Area Calculation Summary (cm²)							UG- Sumn (mr	nary
	For P = 3.6 bar @ 202 °C The opening is adequately reinforced							e passes 45
A required	A1 A2 A5 A2						$t_{\rm req}$	t _{min}
34.4337								13

U	UG-41 Weld Failure Path Analysis Summary (kg _f)								
	All failure paths are stronger than the applicable weld loads								
Weld load W	Weld load W ₁₋₁	Path 1-1 strength	Weld load W2-2	Path 2-2 strength	Weld load W ₃₋₃	Path 3-3 strength			
	1-1	g	*** 2-2	our ongen	5=5				

UW-16 Weld Sizing Summary							
Weld description	Required weld size (mm)	Actual weld size (mm)	Status				
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	6.3	weld size is adequate				
Pad to shell fillet (Leg ₄₂)	7	7.7	weld size is adequate				

Calculations for internal pressure 3.6 bar @ 202 °C

Parallel Limit of reinforcement per UG-40

$$L_{R} = MAX(d, R_{n} + (t_{n} - C_{n}) + (t - C))$$

$$= MAX(786.8, 393.4 + (13 - 0) + (14 - 0))$$

$$= 786.8 \text{ mm}$$

Outer Normal Limit of reinforcement per UG-40

$$\begin{array}{lll} L_{H} & = & MIN(2.5*(t-C), \, 2.5*(t_{n}-C_{n})+t_{e}) \\ & = & MIN(2.5*(14-0), \, 2.5*(13-0)+15) \\ & = & 35 \; mm \end{array}$$

Nozzle required thickness per UG-27(c)(1)

$$t_{rn} = P*R_n / (S_n*E - 0.6*P)$$

$$= 3.6*393.4 / (1,380*1 - 0.6*3.6)$$

$$= 1.03 \text{ mm}$$

Required thickness t, from UG-37(a)

$$t_r$$
 = P*R / (S*E - 0.6*P)
= 3.6*1,675 / (1,380*1 - 0.6*3.6)
= 4.38 mm

Required thickness t, per Interpretation VIII-1-07-50

$$t_r$$
 = P*R / (S*E - 0.6*P)
= 3.6*1,675 / (1,380*0.85 - 0.6*3.6)
= 5.15 mm

Area required per UG-37(c)

Allowable stresses:
$$S_n = 1,407.207$$
, $S_v = 1,407.207$, $S_p = 1,407.207$ kg/cm² $f_{r1} = lesser$ of 1 or $S_n / S_v = 1$ $f_{r2} = lesser$ of 1 or $S_n / S_v = 1$ $f_{r3} = lesser$ of f_{r2} or $S_p / S_v = 1$ $f_{r4} = lesser$ of 1 or $S_p / S_v = 1$
$$A = d*t_r*F + 2*t_n*t_r*F*(1 - f_{r1}) = (786.8*4.38*1 + 2*13*4.38*1*(1 - 1)) / 100 = 34.4337$$
 cm²

Area available from FIG. UG-37.1

 $A_1 = larger of the following = 75.7186 cm^2$

$$= d^*(E_1^*t - F^*t_r) - 2^*t_n^*(E_1^*t - F^*t_r)^*(1 - f_{r1})$$

$$= (786.8^*(1^*14 - 1^*4.38) - 2^*13^*(1^*14 - 1^*4.38)^*(1 - 1)) / 100$$

$$= 75.7186 \text{ cm}^2$$

$$= 2^*(t + t_n)^*(E_1^*t - F^*t_r) - 2^*t_n^*(E_1^*t - F^*t_r)^*(1 - f_{r1})$$

$$= (2^*(14 + 13)^*(1^*14 - 1^*4.38) - 2^*13^*(1^*14 - 1^*4.38)^*(1 - 1)) / 100$$

$$= 5.1968 \text{ cm}^2$$

 A_2 = smaller of the following= 8.38 cm²

$$= 5*(t_n - t_m)*f_{r2}*t$$

$$= (5*(13 - 1.03)*1*14) / 100$$

$$= 8.38 \text{ cm}^2$$

$$= 2*(t_n - t_m)*(2.5*t_n + t_e)*f_{r2}$$

$$= (2*(13 - 1.03)*(2.5*13 + 15)*1) / 100$$

$$= 11.3729 \text{ cm}^2$$

$$A_{41} = Leg^{2*}f_{r3}$$

$$= (9^{2*}1) / 100$$

$$= 0.8103 \text{ cm}^{2}$$

$$A_{42} = Leg^{2*}f_{r4}$$

$$A_5 = (D_p - d - 2*t_n)*t_e*f_{r4}$$

$$= ((1,125 - 786.8 - 2*13)*15*1) / 100$$

$$= 46.83 \text{ cm}^2$$

Area =
$$A_1 + A_2 + A_{41} + A_{42} + A_5$$

= $75.7186 + 8.38 + 0.8103 + 1.2103 + 46.83$
= 132.9492 cm^2

As Area >= A the reinforcement is adequate.

UW-16(c)(2) Weld Check

Inner fillet:
$$t_{min}$$
 = lesser of 19 mm or t_n or t_e = 13 mm $t_{c(min)}$ = lesser of 6 mm or $0.7*t_{min}$ = $\frac{6}{9}$ mm $t_{c(actual)}$ = $0.7*Leg$ = $0.7*9$ = 6.3 mm

Outer fillet:
$$t_{min}$$
 = lesser of 19 mm or t_e or t = 14 mm
$$t_{w(min)} = 0.5*t_{min} = 7 \text{ mm}$$

$$t_{w(actual)} = 0.7*Leg = 0.7*11 = 7.7 \text{ mm}$$

UG-45 Nozzle Neck Thickness Check

$$\begin{array}{lll} t_{a\,UG-27} & = & P^*R_n\,/\,(S_n^*E-0.6^*P) + Corrosion \\ & = & 3.6^*393.4\,/\,(1,380^*1-0.6^*3.6) + 0 \\ & = & 1.03 \text{ mm} \\ \\ t_a & = & \max[\,\,t_{a\,UG-27}\,,\,t_{a\,UG-22}\,] \\ & = & \max[\,\,1.03\,\,,\,0\,\,] \\ & = & 1.03 \text{ mm} \\ \\ t_{b1} & = & P^*R\,/\,(S^*E-0.6^*P) + Corrosion \\ & = & 3.6^*1,675\,/\,(1,380^*1-0.6^*3.6) + 0 \\ & = & 4.38 \text{ mm} \\ \\ t_{b1} & = & \max[\,\,t_{b1}\,,\,t_{b\,UG16}\,] \\ & = & \max[\,\,4.38\,\,,\,1.5\,\,] \\ & = & 4.38 \text{ mm} \\ \\ t_b & = & \min[\,\,t_{b3}\,,\,t_{b1}\,\,] \\ \end{array}$$

$$t_{UG-45} = max[t_a, t_b]$$

= max[1.03, 4.38]

= 4.38 mm

Available nozzle wall thickness new, $t_n = 13 \text{ mm}$

The nozzle neck thickness is adequate.

Allowable stresses in joints UG-45 and UW-15(c)

Groove weld in tension: $0.74*1,407.207 = 1,041.333 \text{ kg}_f/\text{cm}^2$ Nozzle wall in shear: $0.7*1,407.207 = 985.045 \text{ kg}_f/\text{cm}^2$ Inner fillet weld in shear: $0.49*1,407.207 = 689.532 \text{ kg}_f/\text{cm}^2$ Outer fillet weld in shear: $0.49*1,407.207 = 689.532 \text{ kg}_f/\text{cm}^2$ Upper groove weld in tension: $0.74*1,407.207 = 1,041.333 \text{ kg}_f/\text{cm}^2$

Strength of welded joints:

- (1) Inner fillet weld in shear
- $(\pi / 2)$ *Nozzle OD*Leg*S_i = $(\pi / 2)$ *812.8*9*689.532 = 79,232 kg_f
- (2) Outer fillet weld in shear

$$(\pi/2)$$
*Pad OD*Leg*S_o = $(\pi/2)$ *1,125*11*689.532 = 134,035.43 kg_f

(3) Nozzle wall in shear

(
$$\pi$$
 / 2)*Mean nozzle dia* t_n * S_n = (π / 2)*799.8*13*985.045 = 160,879.65 kg $_f$

(4) Groove weld in tension

$$(\pi / 2)*Nozzle OD*t_w*S_g = (\pi / 2)*812.8*14*1,041.333 = 186,132.32 kg_f$$

(6) Upper groove weld in tension

$$(\pi / 2)$$
Nozzle OD t_w * $S_g = (\pi / 2)$ *812.8*15*1,041.333 = 199,427.48 kg_f

Loading on welds per UG-41(b)(1)

$$W = (A - A_1 + 2*t_n*f_{r1}*(E_1*t - F*t_r))*S_v$$

= (3,443.3673 - 7,571.8558 + 2*13*1*(1*14 - 1*4.38))*1,407.207
= $-54.575.42$ kg_f

$$W_{1-1} = (A_2 + A_5 + A_{41} + A_{42}) * S_v$$

= (837.9983 + 4,683 + 81.0321 + 121.032) * 1,407.207
= 80.535.42 kg_f

$$\begin{split} W_{2\text{-}2} &= & (A_2 + A_3 + A_{41} + A_{43} + 2^* t_n^* t^* f_{r1})^* S_v \\ &= & (837.9983 + 0 + 81.0321 + 0 + 2^* 13^* 14^* 1)^* 1,407.207 \\ &= & \underline{18.054.91} \text{ kg}_f \end{split}$$

$$\begin{aligned} W_{3-3} &= & (A_2 + A_3 + A_5 + A_{41} + A_{42} + A_{43} + 2^*t_n^*t^*f_{r1})^*S_v \\ &= & (837.9983 + 0 + 4,683 + 81.0321 + 121.032 + 0 + 2^*13^*14^*1)^*1,407.207 \\ &= & 85,657.66 \text{ kg}_f \end{aligned}$$

Path 1-1 is stronger than W so it is acceptable per UG-41(b)(2).

Load for path 2-2 lesser of W or $W_{2-2} = -54,575.42 \text{ kg}_f$ Path 2-2 through (1), (4), (6) = $79,232 + 186,132.32 + 199,427.48 = 464,791.8 \text{ kg}_f$ Path 2-2 is stronger than W so it is acceptable per UG-41(b)(2).

Load for path 3-3 lesser of W or $W_{3-3} = -54,575.42 \text{ kg}_f$ Path 3-3 through (2), (4) = $134,035.43 + 186,132.32 = 320,167.75 \text{ kg}_f$ Path 3-3 is stronger than W so it is acceptable per UG-41(b)(2).

% Extreme fiber elongation - UCS-79(d)

EFE =
$$(50*t / R_f)*(1 - R_f / R_o)$$

= $(50*13 / 399.9)*(1 - 399.9 / infinity)$
= 1.6254%

The extreme fiber elongation does not exceed 5%.

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary (cm²)								45 nary n)
For Pe = 2.91 bar @ 175 °C The opening is adequately reinforced							The nozzle	
A A A A A A A A A A A A A A A A A A A								t _{min}
46.2067	73.857	17.7387	7.2677		46.83	2.0206	<u>3.54</u>	13

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary							
Weld description	Required weld size (mm)	Actual weld size (mm)	Status				
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	6.3	weld size is adequate				
Pad to shell fillet (Leg ₄₂)	7	7.7	weld size is adequate				

Calculations for external pressure 2.91 bar @ 175 °C

Parallel Limit of reinforcement per UG-40

$$L_{R} = MAX(d, R_{n} + (t_{n} - C_{n}) + (t - C))$$

$$= MAX(786.8, 393.4 + (13 - 0) + (14 - 0))$$

$$= 786.8 \text{ mm}$$

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = MIN(2.5*(t - C), 2.5*(t_{n} - C_{n}) + t_{e})$$

$$= MIN(2.5*(14 - 0), 2.5*(13 - 0) + 15)$$

$$= 35 \text{ mm}$$

Nozzle required thickness per UG-28 t_{rn} = 2.62 mm

From UG-37(d)(1) required thickness $t_r = 11.75 \text{ mm}$

Area required per UG-37(d)(1)

Allowable stresses:
$$S_n = 1,407.207$$
, $S_v = 1,407.207$, $S_p = 1,407.207$ kg_f/cm²
$$f_{r1} = lesser \ of \ 1 \ or \ S_n \ / \ S_v = 1$$

$$f_{r2} = lesser \ of \ 1 \ or \ S_n \ / \ S_v = 1$$

$$f_{r3} = lesser \ of \ f_{r2} \ or \ S_p \ / \ S_v = 1$$

 $f_{r4} = lesser of 1 or S_p / S_v = 1$

$$\begin{array}{lll} A & = & 0.5*(d*t_r*F + 2*t_n*t_r*F*(1-f_{r1})) \\ & = & (0.5*(786.8*11.75*1 + 2*13*11.75*1*(1-1))) / 100 \\ & = & 46.2067 \ cm^2 \end{array}$$

Area available from FIG. UG-37.1

 $A_1 = larger of the following = 17.7387 cm^2$

```
= d^*(E_1^*t - F^*t_r) - 2^*t_n^*(E_1^*t - F^*t_r)^*(1 - f_{r1})
= (786.8*(1*14 - 1*11.75) - 2*13*(1*14 - 1*11.75)*(1 - 1)) / 100
= 17.7387 \text{ cm}^2
= 2*(t+t_n)*(E_1*t-F*t_r)-2*t_n*(E_1*t-F*t_r)*(1-f_{r1})
= (2*(14+13)*(1*14-1*11.75) - 2*13*(1*14-1*11.75)*(1-1)) / 100
= 1.2174 \text{ cm}^2
```

 A_2 = smaller of the following= 7.2677 cm²

$$= 5*(t_n - t_m)*f_{r2}*t$$

$$= (5*(13 - 2.62)*1*14) / 100$$

$$= 7.2677 \text{ cm}^2$$

$$= 2*(t_n - t_m)*(2.5*t_n + t_e)*f_{r2}$$

$$= (2*(13 - 2.62)*(2.5*13 + 15)*1) / 100$$

$$= 9.8632 \text{ cm}^2$$

$$A_{41} = Leg^{2*}f_{r3}$$

$$= (9^{2*}1) / 100$$

$$= 0.8103 \text{ cm}^{2}$$

$$\begin{array}{rcl} A_{42} & = & Leg^{2*}f_{r4} \\ & = & (11^{2*}1) / 100 \\ & = & \underline{1.2103} \, cm^2 \end{array}$$

$$A_5 = (D_p - d - 2*t_n)*t_e*f_{r4}$$
= ((1,125 - 786.8 - 2*13)*15*1) / 100
= 46.83 cm²

Area =
$$A_1 + A_2 + A_{41} + A_{42} + A_5$$

= $17.7387 + 7.2677 + 0.8103 + 1.2103 + 46.83$
= 73.857 cm²

As Area \geq A the reinforcement is adequate.

UW-16(c)(2) Weld Check

Inner fillet: t_{min} = lesser of 19 mm or t_n or t_e = 13 mm $t_{c(min)}$ = lesser of 6 mm or $0.7*t_{min} = 6$ mm $t_{c(actual)} = 0.7*Leg = 0.7*9 = 6.3 \text{ mm}$

Outer fillet: t_{min} = lesser of 19 mm or t_e or t = 14 mm $t_{w(min)} = 0.5*t_{min} = 7 \text{ mm}$ $t_{\text{w(actual)}} = 0.7*\text{Leg} = 0.7*11 = 7.7 \text{ mm}$

UG-45 Nozzle Neck Thickness Check

2.62 mm $t_{a \text{ UG-28}} =$ ta $= \max[t_{a \text{ UG-28}}, t_{a \text{ UG-22}}]$ $= \max[2.62, 0]$ 2.62 mm = P*R / (S*E - 0.6*P) + Corrosion t_{b2} 2.9143*1,675 / (1,380*1 - 0.6*2.9143) + 03.54 mm t_{b2} $\max[t_{b2}, t_{b \text{ UG}16}]$ max[3.54, 1.5] 3.54 mm $= \min[t_{b3}, t_{b2}]$ $= \min[8.33, 3.54]$ 3.54 mm $= \max[t_a, t_b]$ t_{UG-45} $= \max[2.62, 3.54]$ 3.54 mm

Available nozzle wall thickness new, $t_n = 13 \text{ mm}$

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 175 °C) UG-28(c)

 $L/D_0 = 300.62/812.8 = 0.3699$ $D_0 / t = 812.8 / 2.62 = 310.5031$ From table G: A = 0.000699From table CS-2 Metric: $B = 692.0637 \text{ kg/cm}^2 (678.68 \text{ bar})$

 $= 4*B/(3*(D_o/t))$ = 4*678.68 / (3*(812.8 / 2.62))= 2.91 bar

Design thickness for external pressure $P_a = 2.91$ bar

 t_a = t + Corrosion = 2.62 + = 2.62 mm

Note: round inside edges per UG-76(c)						
Location and Orientation						
Located on	Bottom existing shell					
Orientation	265°					
Nozzle center line offset to datum line	6,128 mm					
End of nozzle to shell center	1,840 mm					
Passes through a Category A joint	No					
Nozzle						
Description	NPS 2 Sch 160 DN 50					
Access opening	No					
3.5	G + 10(P G + P) (W P) (+ 1 + 1 + 10)					

Description	NPS 2 Sch 160 DN 50
Access opening	No
Material specification	SA-106 B Smls Pipe (II-D Metric p. 14, ln. 10)
Inside diameter, new	42.85 mm
Pipe nominal wall thickness	8.74 mm
Pipe minimum wall thickness ¹	7.65 mm
Corrosion allowance	0 mm
Projection available outside vessel, Lpr	81.15 mm
Projection available outside vessel to flange face, Lf	151 mm
Local vessel minimum thickness	14 mm
Liquid static head included	0 bar
Longitudinal joint efficiency	1

Reinforcing Pad						
Material specification	SA-516 70 (II-D Metric p. 18, ln. 33)					
Diameter, D _p	150.03 mm					
Thickness, t _e	14 mm					
Is split	No					

Welds					
Inner fillet, Leg ₄₁	9 mm				
Outer fillet, Leg ₄₂	11 mm				
Nozzle to vessel groove weld	14 mm				
Pad groove weld	14 mm				

¹Pipe minimum thickness = nominal thickness times pipe tolerance factor of 0.875.

ASME B16.5-2013 Flange				
Description	NPS 2 Class 300 WN A105			
Bolt Material	SA-193 B7 Bolt <= 64 (II-D Metric p. 388, ln. 32)			
Blind included	No			
Rated MDMT	-48°C			
Liquid static head	0 bar			
MAWP rating	43.72 bar @ 202°C			
MAP rating	51.1 bar @ 30°C			
Hydrotest rating	77 bar @ 30°C			
PWHT performed	Yes			
Impact Tested	No			
Circumferential joint radiography Spot UW-11(b) Type 1				
Notes				
Flange rated MDMT per UCS-66(b)(3) = -105° C (Coincident ratio = 0.0705) Bolts rated MDMT per Fig UCS-66 note (c) = -48° C				

UCS-66 Material Toughness Requirements Nozzle					
$t_r = 3.6*21.42 / (1,180*1 - 0.6*3.6) =$	0.0655 mm				
Stress ratio = $t_r^* E^* / (t_n - c) = 0.0655*1 / (7.65 - 0) =$	0.0086				
Stress ratio \leq 0.35, MDMT per UCS-66(b)(3) =	-105°C				
Material is exempt from impact testing at the Design MDMT of 17°C.					

UCS-66 Material Toughness Requirements Pad					
$t_r = 3.6*1,675 / (1,380*1 - 0.6*3.6) =$	4.38 mm				
Stress ratio = $t_r^*E^* / (t_n - c) = 4.38*1 / (14 - 0) =$	0.3126				
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-105°C				
Material is exempt from impact testing at the Design MDMT of 17°C.					

Reinforcement Calculations for Internal Pressure

UG-37 Area Calculation Summary (cm²)					UG Sumi (m	•		
For P = 3.6 bar @ 202 °C						The nozzle passes UG-45		
A required							$t_{\rm req}$	t _{min}
This nozzle is exempt from area calculations per UG-36(c)(3)(a)						3.42	7.65	

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary						
Weld description	Required weld size (mm)	Actual weld size (mm)	Status			
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	6.3	weld size is adequate			
Pad to shell fillet (Leg ₄₂)	7	7.7	weld size is adequate			

Calculations for internal pressure 3.6 bar @ 202 °C

Parallel Limit of reinforcement per UG-40

$$L_{R} = MAX(d, R_{n} + (t_{n} - C_{n}) + (t - C))$$

$$= MAX(42.85, 21.42 + (8.74 - 0) + (14 - 0))$$

$$= 44.16 \text{ mm}$$

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = MIN(2.5*(t - C), 2.5*(t_{n} - C_{n}) + t_{e})$$

$$= MIN(2.5*(14 - 0), 2.5*(8.74 - 0) + 14)$$

$$= 35 \text{ mm}$$

Nozzle required thickness per UG-27(c)(1)

$$t_{rn}$$
 = P*R_n / (S_n*E - 0.6*P)
 = 3.6*21.42 / (1,180*1 - 0.6*3.6)
 = 0.066 mm

Required thickness t, from UG-37(a)

$$t_r$$
 = P*R / (S*E - 0.6*P)
= 3.6*1,675 / (1,380*1 - 0.6*3.6)
= 4.38 mm

Required thickness t, per Interpretation VIII-1-07-50

```
t_r = P*R / (S*E - 0.6*P)
= 3.6*1,675 / (1,380*0.85 - 0.6*3.6)
= 5.15 mm
```

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c)(2) Weld Check

UG-45 Nozzle Neck Thickness Check

```
P*R_n / (S_n*E - 0.6*P) + Corrosion
t_{a \text{ UG-}27} =
               3.6*21.42 / (1,180*1 - 0.6*3.6) + 0
               0.066 mm
               \max[\ t_{a\,UG-27}\ ,\, t_{a\,UG-22}\ ]
t_a
               \max[0.066, 0]
               0.066 \text{ mm}
               P*R / (S*E - 0.6*P) + Corrosion
t_{b1}
               3.6*1,675 / (1,380*1 - 0.6*3.6) + 0
               4.38 mm
          =
               \max[t_{b1}, t_{b \cup G16}]
t_{b1}
               max[ 4.38, 1.5]
               4.38 mm
               \min[t_{b3}, t_{b1}]
t_{\rm b}
               min[ 3.42, 4.38]
               3.42 mm
        = \max[t_a, t_b]
t_{UG-45}
               max[ 0.066, 3.42]
               3.42 mm
         =
```

Available nozzle wall thickness new, $t_n = 0.875*8.74 = 7.65$ mm

The nozzle neck thickness is adequate.

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary (cm ²)						UG-45 Summary (mm)		
	For Pe = 2.91 bar @ 175 °C						The nozzle passes UG-45	
A required							$t_{\rm req}$	t _{min}
	This nozzle is exempt from area calculations per UG-36(c)(3)(a)							7.65

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary							
Weld description	Actual weld size (mm)	Status					
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	6.3	weld size is adequate				
Pad to shell fillet (Leg ₄₂)	7	7.7	weld size is adequate				

Calculations for external pressure 2.91 bar @ 175 °C

Parallel Limit of reinforcement per UG-40

$$L_{R} = MAX(d, R_{n} + (t_{n} - C_{n}) + (t - C))$$

$$= MAX(42.85, 21.42 + (8.74 - 0) + (14 - 0))$$

$$= 44.16 \text{ mm}$$

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = MIN(2.5*(t - C), 2.5*(t_{n} - C_{n}) + t_{e})$$

$$= MIN(2.5*(14 - 0), 2.5*(8.74 - 0) + 14)$$

$$= 35 \text{ mm}$$

Nozzle required thickness per UG-28 $t_{rn} = 0.43$ mm

From UG-37(d)(1) required thickness $t_r = 11.75 \text{ mm}$

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c)(2) Weld Check

Inner fillet:
$$t_{min}$$
 = lesser of 19 mm or t_n or t_e = 8.74 mm $t_{c(min)}$ = lesser of 6 mm or $0.7*t_{min}$ = $\underline{6}$ mm $t_{c(actual)}$ = $0.7*Leg$ = $0.7*9$ = 6.3 mm

Outer fillet: t_{min} = lesser of 19 mm or t_e or t = 14 mm $t_{w(min)} = 0.5 * t_{min} = 7 mm$ $t_{w(actual)} = 0.7*Leg = 0.7*11 = 7.7 \text{ mm}$

UG-45 Nozzle Neck Thickness Check

 $t_{a \text{ UG-}28} = 0.43 \text{ mm}$ t_a $\max[t_{a \text{ UG-}28}, t_{a \text{ UG-}22}]$ max[0.43, 0] 0.43 mm = P*R / (S*E - 0.6*P) + Corrosion t_{b2} 2.9143*1,675 / (1,380*1 - 0.6*2.9143) + 0 3.54 mm $= \max[t_{b2}, t_{b \text{ UG}16}]$ t_{b2} max[3.54, 1.5] = 3.54 mm $\min[t_{b3}, t_{b2}]$ t_b min[3.42, 3.54] = 3.42 mm $= \max[t_a, t_b]$ t_{UG-45} $= \max[0.43, 3.42]$ 3.42 mm

Available nozzle wall thickness new, $t_n = 0.875*8.74 = 7.65$ mm

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 175 °C) UG-28(c)

 $L/D_0 = 151.27/60.33 = 2.5076$ $D_0 / t = 60.33 / .43$ = 139.0659From table G: A = 0.000313From table CS-2 Metric: $B = 309.9467 \text{ kg/cm}^2 (303.95 \text{ bar})$ $= 4*B / (3*(D_o/t))$ = 4*303.95 / (3*(60.33 / .43))= 2.91 bar

Design thickness for external pressure $P_a = 2.91$ bar

 t_a = t + Corrosion = .43 + = .43 mm

Is split

Note: round inside edges per UG-76(c)						
Location and Orientation						
Located on	Bottom existing shell					
Orientation	265°					
Nozzle center line offset to datum line	178 mm					
End of nozzle to shell center	1,840 mm					
Passes through a Category A joint	No					
Nozzl	le					
Description	NPS 2 Sch 160 DN 50					
Access opening	No					
Material specification	SA-106 B Smls Pipe (II-D Metric p. 14, ln. 10)					
Inside diameter, new	42.85 mm					
Pipe nominal wall thickness	8.74 mm					
Pipe minimum wall thickness ¹	7.65 mm					
Corrosion allowance	0 mm					
Projection available outside vessel, Lpr	81.15 mm					
Projection available outside vessel to flange face, Lf	151 mm					
Local vessel minimum thickness	14 mm					
Liquid static head included	0.26 bar					
Longitudinal joint efficiency	1					
Reinforcir	ng Pad					
Material specification	SA-516 70 (II-D Metric p. 18, ln. 33)					
Diameter, D _p	150.03 mm					
Thickness, t _e	14 mm					

No

Welds						
Inner fillet, Leg ₄₁	9 mm					
Outer fillet, Leg ₄₂	11 mm					
Nozzle to vessel groove weld	14 mm					
Pad groove weld	14 mm					

¹Pipe minimum thickness = nominal thickness times pipe tolerance factor of 0.875.

ASME B16.5-2013 Flange					
Description NPS 2 Class 300 WN A105					
Bolt Material SA-193 B7 Bolt <= 64 (II-D Metric p. 388, ln. 32					
Blind included No					
Rated MDMT -48°C					
Liquid static head 0.25 bar					
MAWP rating 43.72 bar @ 202°C					
MAP rating 51.1 bar @ 30°C					
Hydrotest rating 77 bar @ 30°C					
PWHT performed	Yes				
Impact Tested	No				
Circumferential joint radiography Spot UW-11(b) Type 1					
Notes					
Flange rated MDMT per UCS-66(b)(3) = -105° C (Coincident ratio = 0.0754) Bolts rated MDMT per Fig UCS-66 note (c) = -48° C					

UCS-66 Material Toughness Requirements Nozzle						
$t_r = 3.86*21.42 / (1,180*1 - 0.6*3.86) =$	0.0701 mm					
Stress ratio = $t_r^* E^* / (t_n - c) = 0.0701*1 / (7.65 - 0) =$	0.0092					
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-105°C					
Material is exempt from impact testing at the Design MDMT of 17°C.						

UCS-66 Material Toughness Requirements Pad						
$t_r = 3.86*1,675 / (1,380*1 - 0.6*3.86) =$	4.69 mm					
Stress ratio = $t_r^* E^* / (t_n - c) = 4.69*1 / (14 - 0) =$	0.3348					
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-105°C					
Material is exempt from impact testing at the Design MDMT of 17°C.						

Reinforcement Calculations for Internal Pressure

UG-37 Area Calculation Summary (cm²)							UG-45 Summary (mm)	
	For P = 3.86 bar @ 202 °C						The nozzle passes UG-45	
A required								t _{min}
	This nozzle is exempt from area calculations per UG-36(c)(3)(a)							7.65

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary							
Weld description	Required weld size (mm)	Status					
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	6.3	weld size is adequate				
Pad to shell fillet (Leg ₄₂)	7	7.7	weld size is adequate				

Calculations for internal pressure 3.86 bar @ 202 °C

Parallel Limit of reinforcement per UG-40

$$L_{R} = MAX(d, R_{n} + (t_{n} - C_{n}) + (t - C))$$

$$= MAX(42.85, 21.42 + (8.74 - 0) + (14 - 0))$$

$$= 44.16 \text{ mm}$$

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = MIN(2.5*(t - C), 2.5*(t_{n} - C_{n}) + t_{e})$$

$$= MIN(2.5*(14 - 0), 2.5*(8.74 - 0) + 14)$$

$$= 35 \text{ mm}$$

Nozzle required thickness per UG-27(c)(1)

$$t_{rn}$$
 = P*R_n / (S_n*E - 0.6*P)
= 3.855*21.42 / (1,180*1 - 0.6*3.855)
= 0.0711 mm

Required thickness t, from UG-37(a)

$$t_r$$
 = P*R / (S*E - 0.6*P)
= 3.855*1,675 / (1,380*1 - 0.6*3.855)
= 4.69 mm

Required thickness t, per Interpretation VIII-1-07-50

```
= P*R / (S*E - 0.6*P)
   3.855*1,675 / (1,380*0.85 - 0.6*3.855)
    5.52 mm
```

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c)(2) Weld Check

```
Inner fillet: t<sub>min</sub>
                        = lesser of 19 mm or t_n or t_e = 8.74 mm
               t_{c(min)} = lesser of 6 mm or 0.7*t_{min} = 6 \text{ mm}
               t_{c(actual)} = 0.7*Leg = 0.7*9 = 6.3 \text{ mm}
Outer fillet: t<sub>min</sub>
                          = lesser of 19 mm or t_e or t = 14 mm
                t_{w(min)} = 0.5 * t_{min} = 7 mm
                t_{w(actual)} = 0.7*Leg = 0.7*11 = 7.7 \text{ mm}
```

UG-45 Nozzle Neck Thickness Check

```
P*R_n / (S_n*E - 0.6*P) + Corrosion
t_{a \text{ UG-}27} =
              3.855*21.42 / (1,180*1 - 0.6*3.855) + 0
          = 0.0711 \text{ mm}
               \max[t_{a \text{ UG-}27}, t_{a \text{ UG-}22}]
t_a
               max[ 0.0711, 0 ]
               0.0711 mm
               P*R / (S*E - 0.6*P) + Corrosion
t_{b1}
               3.855*1,675 / (1,380*1 - 0.6*3.855) + 0
               4.69 mm
          =
               \max[t_{b1}, t_{b \cup G16}]
t_{b1}
               max[ 4.69, 1.5]
               4.69 mm
               \min[t_{b3}, t_{b1}]
t_{\rm b}
               min[ 3.42, 4.69]
               3.42 mm
        = \max[t_a, t_b]
t_{UG-45}
               max[ 0.0711, 3.42]
               3.42 mm
         =
```

Available nozzle wall thickness new, $t_n = 0.875*8.74 = 7.65$ mm

The nozzle neck thickness is adequate.

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary (cm²)						UG-45 Summary (mm)		
	For Pe = 2.91 bar @ 175 °C						The nozzle passes UG-45	
A required							$t_{\rm req}$	t _{min}
	This nozzle is exempt from area calculations per UG-36(c)(3)(a)							7.65

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary							
Weld description	Required weld size (mm)	Actual weld size (mm)	Status				
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	6.3	weld size is adequate				
Pad to shell fillet (Leg ₄₂)	7	7.7	weld size is adequate				

Calculations for external pressure 2.91 bar @ 175 °C

Parallel Limit of reinforcement per UG-40

$$L_{R} = MAX(d, R_{n} + (t_{n} - C_{n}) + (t - C))$$

$$= MAX(42.85, 21.42 + (8.74 - 0) + (14 - 0))$$

$$= 44.16 \text{ mm}$$

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = MIN(2.5*(t - C), 2.5*(t_{n} - C_{n}) + t_{e})$$

$$= MIN(2.5*(14 - 0), 2.5*(8.74 - 0) + 14)$$

$$= 35 \text{ mm}$$

Nozzle required thickness per UG-28 $t_{rn} = 0.43$ mm

From UG-37(d)(1) required thickness $t_r = 14 \text{ mm}$

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c)(2) Weld Check

Inner fillet:
$$t_{min}$$
 = lesser of 19 mm or t_n or t_e = 8.74 mm $t_{c(min)}$ = lesser of 6 mm or $0.7*t_{min}$ = $\underline{6}$ mm $t_{c(actual)}$ = $0.7*Leg$ = $0.7*9$ = 6.3 mm

Outer fillet:
$$t_{min}$$
 = lesser of 19 mm or t_e or t = 14 mm $t_{w(min)}$ = 0.5* t_{min} = 7 mm $t_{w(actual)}$ = 0.7*Leg = 0.7*11 = 7.7 mm

UG-45 Nozzle Neck Thickness Check

$$\begin{array}{lll} t_{a\,\, \text{UG-28}} &=& 0.43\,\, \text{mm} \\ \\ t_{a} &=& \max[\,\,t_{a\,\, \text{UG-28}}\,,\,t_{a\,\, \text{UG-22}}\,] \\ &=& \max[\,\,0.43\,\,,\,0\,\,] \\ &=& 0.43\,\, \text{mm} \\ \\ t_{b2} &=& P*R\,/\,(S*E-0.6*P) + \text{Corrosion} \\ &=& 2.9143*1,675\,/\,(1,380*1-0.6*2.9143) + 0 \\ &=& 3.54\,\, \text{mm} \\ \\ t_{b2} &=& \max[\,\,t_{b2}\,,\,t_{b\,\, \text{UG16}}\,] \\ &=& \max[\,\,3.54\,\,,\,1.5\,\,] \\ &=& 3.54\,\, \text{mm} \\ \\ t_{b} &=& \min[\,\,t_{b3}\,,\,t_{b2}\,] \\ &=& \min[\,\,3.42\,\,,\,3.54\,\,] \\ &=& 3.42\,\, \text{mm} \\ \\ \end{array}$$

Available nozzle wall thickness new, $t_n = 0.875*8.74 = 7.65$ mm

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 175 °C) UG-28(c)

$$L/D_o = 151.27/60.33 = 2.5076$$
 $D_o/t = 60.33/.43 = 139.0659$

From table G: A = 0.000313

From table CS-2 Metric: B = 309.9467 kg/cm² (303.95 bar)

 $P_a = 4*B/(3*(D_o/t))$
= 4*303.95/(3*(60.33/.43))
= 2.91 bar

Design thickness for external pressure $P_a = 2.91$ bar

$$t_a = t + Corrosion = .43 + = .43 \text{ mm}$$

Is split

Note: round inside edges per UG-76(c)						
Location and Orientation						
Located on	Bottom existing shell					
Orientation	15°					
Nozzle center line offset to datum line	6,128 mm					
End of nozzle to shell center	1,840 mm					
Passes through a Category A joint	No					
Nozzl	e					
Description	NPS 2 Sch 160 DN 50					
Access opening	No					
Material specification	SA-106 B Smls Pipe (II-D Metric p. 14, ln. 10)					
Inside diameter, new	42.85 mm					
Pipe nominal wall thickness	8.74 mm					
Pipe minimum wall thickness ¹	7.65 mm					
Corrosion allowance	0 mm					
Projection available outside vessel, Lpr	81.15 mm					
Projection available outside vessel to flange face, Lf	151 mm					
Local vessel minimum thickness	14 mm					
Liquid static head included	0 bar					
Longitudinal joint efficiency	1					
Reinforcin	g Pad					
Material specification	SA-516 70 (II-D Metric p. 18, ln. 33)					
Diameter, D_p	150.03 mm					
Thickness, t _e	14 mm					

No

Welds					
Inner fillet, Leg ₄₁	9 mm				
Outer fillet, Leg ₄₂	11 mm				
Nozzle to vessel groove weld	14 mm				
Pad groove weld	14 mm				

¹Pipe minimum thickness = nominal thickness times pipe tolerance factor of 0.875.

ASME B16.5-2013 Flange				
Description	NPS 2 Class 300 WN A105			
Bolt Material	SA-193 B7 Bolt <= 64 (II-D Metric p. 388, ln. 32)			
Blind included	No			
Rated MDMT -48°C				
Liquid static head	0 bar			
MAWP rating	43.72 bar @ 202°C			
MAP rating	51.1 bar @ 30°C			
Hydrotest rating	77 bar @ 30°C			
PWHT performed Yes				
Impact Tested	No			
Circumferential joint radiography	Spot UW-11(b) Type 1			
Notes				
Flange rated MDMT per UCS-66(b)(3) = -105° C (Coincident ratio = 0.0705) Bolts rated MDMT per Fig UCS-66 note (c) = -48° C				

UCS-66 Material Toughness Requirements Nozzle				
$t_r = 3.6*21.42 / (1,180*1 - 0.6*3.6) =$	0.0655 mm			
Stress ratio = $t_r^* E^* / (t_n - c) = 0.0655*1 / (7.65 - 0) =$	0.0086			
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-105°C			
Material is exempt from impact testing at the Design MDMT of 17°C.				

UCS-66 Material Toughness Requirements Pad				
$t_r = 3.6*1,675 / (1,380*1 - 0.6*3.6) =$	4.38 mm			
Stress ratio = $t_r^*E^* / (t_n - c) = 4.38*1 / (14 - 0) =$	0.3126			
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-105°C			
Material is exempt from impact testing at the Design MDMT of 17°C.				

Reinforcement Calculations for Internal Pressure

UG-37 Area Calculation Summary (cm ²)					UG-45 Summary (mm)			
For P = 3.6 bar @ 202 °C						The nozzle passes UG-45		
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	$t_{\rm req}$	t _{min}
This nozzle is exempt from area calculations per UG-36(c)(3)(a)					3.42	7.65		

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary						
Weld description	Required weld size (mm)	Actual weld size (mm)	Status			
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	6.3	weld size is adequate			
Pad to shell fillet (Leg ₄₂)	7	7.7	weld size is adequate			

Calculations for internal pressure 3.6 bar @ 202 °C

Parallel Limit of reinforcement per UG-40

$$L_{R} = MAX(d, R_{n} + (t_{n} - C_{n}) + (t - C))$$

$$= MAX(42.85, 21.42 + (8.74 - 0) + (14 - 0))$$

$$= 44.16 \text{ mm}$$

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = MIN(2.5*(t - C), 2.5*(t_{n} - C_{n}) + t_{e})$$

$$= MIN(2.5*(14 - 0), 2.5*(8.74 - 0) + 14)$$

$$= 35 \text{ mm}$$

Nozzle required thickness per UG-27(c)(1)

$$t_{rn}$$
 = $P*R_n / (S_n*E - 0.6*P)$
= $3.6*21.42 / (1,180*1 - 0.6*3.6)$
= 0.066 mm

Required thickness t, from UG-37(a)

$$t_{r}$$
 = P*R / (S*E - 0.6*P)
= 3.6*1,675 / (1,380*1 - 0.6*3.6)
= 4.38 mm

Required thickness t, per Interpretation VIII-1-07-50

```
t_r = P*R / (S*E - 0.6*P)
= 3.6*1,675 / (1,380*0.85 - 0.6*3.6)
= 5.15 mm
```

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c)(2) Weld Check

UG-45 Nozzle Neck Thickness Check

```
P*R_n / (S_n*E - 0.6*P) + Corrosion
t_{a \text{ UG-}27} =
               3.6*21.42 / (1,180*1 - 0.6*3.6) + 0
               0.066 mm
               \max[\ t_{a\,UG-27}\ ,\, t_{a\,UG-22}\ ]
t_a
               \max[0.066, 0]
               0.066 \text{ mm}
               P*R / (S*E - 0.6*P) + Corrosion
t_{b1}
               3.6*1,675 / (1,380*1 - 0.6*3.6) + 0
               4.38 mm
          =
               \max[t_{b1}, t_{b \cup G16}]
t_{b1}
               max[ 4.38, 1.5]
               4.38 mm
               \min[t_{b3}, t_{b1}]
t_{\rm b}
               min[ 3.42, 4.38]
               3.42 mm
        = \max[t_a, t_b]
t_{UG-45}
               max[ 0.066, 3.42]
               3.42 mm
         =
```

Available nozzle wall thickness new, $t_n = 0.875*8.74 = 7.65$ mm

The nozzle neck thickness is adequate.

UG-37 Area Calculation Summary (cm²)						UG Sumi (m	•	
	For Pe = 2.91 bar @ 175 °C						The nozz	
A required							$t_{\rm req}$	t _{min}
	This nozzle is exempt from area calculations per UG-36(c)(3)(a)						3.42	7.65

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary							
Weld description	Actual weld size (mm)	Status					
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	6.3	weld size is adequate				
Pad to shell fillet (Leg ₄₂)	7	7.7	weld size is adequate				

Calculations for external pressure 2.91 bar @ 175 °C

Parallel Limit of reinforcement per UG-40

$$L_{R} = MAX(d, R_{n} + (t_{n} - C_{n}) + (t - C))$$

$$= MAX(42.85, 21.42 + (8.74 - 0) + (14 - 0))$$

$$= 44.16 \text{ mm}$$

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = MIN(2.5*(t - C), 2.5*(t_{n} - C_{n}) + t_{e})$$

$$= MIN(2.5*(14 - 0), 2.5*(8.74 - 0) + 14)$$

$$= 35 \text{ mm}$$

Nozzle required thickness per UG-28 $t_{rn} = 0.43$ mm

From UG-37(d)(1) required thickness $t_r = 11.75 \text{ mm}$

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c)(2) Weld Check

Inner fillet:
$$t_{min}$$
 = lesser of 19 mm or t_n or t_e = 8.74 mm $t_{c(min)}$ = lesser of 6 mm or $0.7*t_{min}$ = $\underline{6}$ mm $t_{c(actual)}$ = $0.7*Leg$ = $0.7*9$ = 6.3 mm

Outer fillet:
$$t_{min}$$
 = lesser of 19 mm or t_e or t = 14 mm $t_{w(min)}$ = 0.5* t_{min} = 7 mm $t_{w(actual)}$ = 0.7*Leg = 0.7*11 = 7.7 mm

UG-45 Nozzle Neck Thickness Check

```
t_{a \text{ UG-}28} = 0.43 \text{ mm}
t_a
               \max[t_{a \text{ UG-}28}, t_{a \text{ UG-}22}]
               max[ 0.43, 0]
               0.43 mm
         = P*R / (S*E - 0.6*P) + Corrosion
t_{b2}
              2.9143*1,675 / (1,380*1 - 0.6*2.9143) + 0
               3.54 mm
t_{b2}
         = \max[t_{b2}, t_{b \text{ UG}16}]
               max[ 3.54, 1.5]
         =
               3.54 mm
               \min[t_{b3}, t_{b2}]
t_b
               min[ 3.42, 3.54]
         =
               3.42 mm
        = \max[t_a, t_b]
t_{UG-45}
         = \max[0.43, 3.42]
               3.42 mm
```

Available nozzle wall thickness new, $t_n = 0.875*8.74 = 7.65$ mm

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 175 °C) UG-28(c)

$$L/D_o$$
 = 151.27 / 60.33 = 2.5076
 D_o/t = 60.33 / .43 = 139.0659
From table G: A = 0.000313
From table CS-2 Metric: B = 309.9467 kg/cm² (303.95 bar)
 P_a = 4*B / (3*(D_o/t))
= 4*303.95 / (3*(60.33 / .43))
= 2.91 bar

Design thickness for external pressure $P_a = 2.91$ bar

$$t_a = t + Corrosion = .43 + = .43 \text{ mm}$$

Is split

Note: round inside edges per UG-76(c)						
rientation						
Bottom existing shell						
335°						
6,128 mm						
1,840 mm						
No						
e						
NPS 2 Sch 160 DN 50						
No						
SA-106 B Smls Pipe (II-D Metric p. 14, ln. 10)						
42.85 mm						
8.74 mm						
7.65 mm						
0 mm						
81.15 mm						
151 mm						
14 mm						
0 bar						
1						
g Pad						
SA-516 70 (II-D Metric p. 18, ln. 33)						
150.03 mm						

No

Welds						
Inner fillet, Leg ₄₁	9 mm					
Outer fillet, Leg ₄₂	11 mm					
Nozzle to vessel groove weld	14 mm					
Pad groove weld	14 mm					

 $^{^{1}}$ Pipe minimum thickness = nominal thickness times pipe tolerance factor of 0.875.

ASME B16.5-2013 Flange					
Description	NPS 2 Class 300 WN A105				
Bolt Material	SA-193 B7 Bolt <= 64 (II-D Metric p. 388, ln. 32)				
Blind included No					
Rated MDMT	-48°C				
Liquid static head 0 bar					
MAWP rating	43.72 bar @ 202°C				
MAP rating	51.1 bar @ 30°C				
Hydrotest rating	77 bar @ 30°C				
PWHT performed	Yes				
Impact Tested	No				
Circumferential joint radiography Spot UW-11(b) Type 1					
Notes					
Flange rated MDMT per UCS-66(b)(3) = -105° C (Coincident ratio = 0.0705) Bolts rated MDMT per Fig UCS-66 note (c) = -48° C					

UCS-66 Material Toughness Requirements Nozzle						
$t_r = 3.6*21.42 / (1,180*1 - 0.6*3.6) =$	0.0655 mm					
Stress ratio = $t_r^* E^* / (t_n - c) = 0.0655*1 / (7.65 - 0) =$	0.0086					
Stress ratio \leq 0.35, MDMT per UCS-66(b)(3) =	-105°C					
Material is exempt from impact testing at the Design MDMT of 17°C.						

UCS-66 Material Toughness Requirements Pad						
$t_r = 3.6*1,675 / (1,380*1 - 0.6*3.6) =$	4.38 mm					
Stress ratio = $t_r^* E^* / (t_n - c) = 4.38*1 / (14 - 0) =$	0.3126					
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-105°C					
Material is exempt from impact testing at the Design MDMT of 17°C.						

Page 184 of 450

Reinforcement Calculations for Internal Pressure

UG-37 Area Calculation Summary (cm²)						UG Sumi (m	•	
	For P = 3.6 bar @ 202 °C						The nozz	
A required							$t_{\rm req}$	t _{min}
	This nozzle is exempt from area calculations per UG-36(c)(3)(a)							7.65

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary								
Weld description	Required weld size (mm)	Actual weld size (mm)	Status					
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	6.3	weld size is adequate					
Pad to shell fillet (Leg ₄₂)	7	7.7	weld size is adequate					

Calculations for internal pressure 3.6 bar @ 202 °C

Parallel Limit of reinforcement per UG-40

$$L_{R} = MAX(d, R_{n} + (t_{n} - C_{n}) + (t - C))$$

$$= MAX(42.85, 21.42 + (8.74 - 0) + (14 - 0))$$

$$= 44.16 \text{ mm}$$

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = MIN(2.5*(t - C), 2.5*(t_{n} - C_{n}) + t_{e})$$

$$= MIN(2.5*(14 - 0), 2.5*(8.74 - 0) + 14)$$

$$= 35 \text{ mm}$$

Nozzle required thickness per UG-27(c)(1)

$$t_{rn}$$
 = P*R_n / (S_n*E - 0.6*P)
 = 3.6*21.42 / (1,180*1 - 0.6*3.6)
 = 0.066 mm

Required thickness t, from UG-37(a)

$$t_{r}$$
 = P*R / (S*E - 0.6*P)
= 3.6*1,675 / (1,380*1 - 0.6*3.6)
= 4.38 mm

Required thickness t, per Interpretation VIII-1-07-50

```
t_r = P*R / (S*E - 0.6*P)
= 3.6*1,675 / (1,380*0.85 - 0.6*3.6)
= 5.15 mm
```

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c)(2) Weld Check

UG-45 Nozzle Neck Thickness Check

```
P*R_n / (S_n*E - 0.6*P) + Corrosion
t_{a \text{ UG-}27} =
               3.6*21.42 / (1,180*1 - 0.6*3.6) + 0
               0.066 mm
               \max[\ t_{a\,UG-27}\ ,\, t_{a\,UG-22}\ ]
t_a
               max[ 0.066, 0 ]
               0.066 \text{ mm}
               P*R / (S*E - 0.6*P) + Corrosion
t_{b1}
               3.6*1,675 / (1,380*1 - 0.6*3.6) + 0
               4.38 mm
          =
               \max[t_{b1}, t_{b \cup G16}]
t_{b1}
               max[ 4.38, 1.5]
               4.38 mm
               \min[t_{b3}, t_{b1}]
t_{\rm b}
               min[ 3.42, 4.38]
               3.42 mm
        = \max[t_a, t_b]
t_{UG-45}
               max[ 0.066, 3.42]
               3.42 mm
          =
```

Available nozzle wall thickness new, $t_n = 0.875*8.74 = 7.65$ mm

The nozzle neck thickness is adequate.

UG-37	UG-37 Area Calculation Summary (cm²)						UG Sumi (m	•
	For Pe = 2.91 bar @ 175 °C						The nozz	
A required	A1 A2 A2 A5						$t_{\rm req}$	t _{min}
	This nozzle is exempt from area calculations per UG-36(c)(3)(a)						3.42	7.65

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary							
Weld description	Required weld size (mm)	Actual weld size (mm)	Status				
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	6.3	weld size is adequate				
Pad to shell fillet (Leg ₄₂)	7	7.7	weld size is adequate				

Calculations for external pressure 2.91 bar @ 175 °C

Parallel Limit of reinforcement per UG-40

$$L_{R} = MAX(d, R_{n} + (t_{n} - C_{n}) + (t - C))$$

$$= MAX(42.85, 21.42 + (8.74 - 0) + (14 - 0))$$

$$= 44.16 \text{ mm}$$

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = MIN(2.5*(t - C), 2.5*(t_{n} - C_{n}) + t_{e})$$

$$= MIN(2.5*(14 - 0), 2.5*(8.74 - 0) + 14)$$

$$= 35 \text{ mm}$$

Nozzle required thickness per UG-28 $t_{rn} = 0.43$ mm

From UG-37(d)(1) required thickness $t_r = 11.75 \text{ mm}$

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c)(2) Weld Check

Inner fillet:
$$t_{min}$$
 = lesser of 19 mm or t_n or t_e = 8.74 mm $t_{c(min)}$ = lesser of 6 mm or $0.7*t_{min}$ = $\underline{6}$ mm $t_{c(actual)}$ = $0.7*Leg$ = $0.7*9$ = 6.3 mm

Outer fillet: t_{min} = lesser of 19 mm or t_e or t = 14 mm $t_{w(min)} = 0.5 * t_{min} = 7 mm$ $t_{w(actual)} = 0.7*Leg = 0.7*11 = 7.7 \text{ mm}$

UG-45 Nozzle Neck Thickness Check

 $t_{a \text{ UG-}28} = 0.43 \text{ mm}$ t_a $\max[t_{a \text{ UG-}28}, t_{a \text{ UG-}22}]$ max[0.43, 0] 0.43 mm = P*R / (S*E - 0.6*P) + Corrosion t_{b2} 2.9143*1,675 / (1,380*1 - 0.6*2.9143) + 0 3.54 mm $= \max[t_{b2}, t_{b \text{ UG}16}]$ t_{b2} max[3.54, 1.5] = 3.54 mm $\min[t_{b3}, t_{b2}]$ t_b min[3.42, 3.54] = 3.42 mm $= \max[t_a, t_b]$ t_{UG-45} $= \max[0.43, 3.42]$ 3.42 mm

Available nozzle wall thickness new, $t_n = 0.875*8.74 = 7.65$ mm

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 175 °C) UG-28(c)

 $L/D_0 = 151.27/60.33 = 2.5076$ $D_0 / t = 60.33 / .43$ = 139.0659From table G: A = 0.000313From table CS-2 Metric: $B = 309.9467 \text{ kg/cm}^2 (303.95 \text{ bar})$ $= 4*B / (3*(D_o/t))$ = 4*303.95 / (3*(60.33 / .43))= 2.91 bar

Design thickness for external pressure $P_a = 2.91$ bar

 t_a = t + Corrosion = .43 + = .43 mm

ASME Section VIII Division 1, 2017 Edition Metric 45,55

Note: round inside edges per UG-76(c)

Location and Orientation					
Located on	Bottom existing shell				
Orientation	310°				
Nozzle center line offset to datum line	178 mm				
End of nozzle to shell center	1,890 mm				
Passes through a Category A joint	No				

Nozzle				
Description	NPS 3 Sch 160 DN 80			
Access opening	No			
Material specification	SA-106 B Smls Pipe (II-D Metric p. 14, ln. 10)			
Inside diameter, new	66.65 mm			
Pipe nominal wall thickness	11.13 mm			
Pipe minimum wall thickness ¹	9.73 mm			
Corrosion allowance	0 mm			
Projection available outside vessel, Lpr	131.15 mm			
Projection available outside vessel to flange face, Lf	201 mm			
Local vessel minimum thickness	14 mm			
Liquid static head included	0.26 bar			
Longitudinal joint efficiency	1			

Reinforcing Pad				
Material specification	SA-516 70 (II-D Metric p. 18, ln. 33)			
Diameter, D _p	180 mm			
Thickness, t _e	14 mm			
Is split	No			

Welds				
Inner fillet, Leg ₄₁	9 mm			
Outer fillet, Leg ₄₂	11 mm			
Nozzle to vessel groove weld	14 mm			
Pad groove weld	14 mm			

¹Pipe minimum thickness = nominal thickness times pipe tolerance factor of 0.875.

ASME B16.5-2013 Flange				
Description NPS 3 Class 150 WN A105				
SA-193 B7 Bolt <= 64 (II-D Metric p. 388, ln. 32)				
Blind included No				
Rated MDMT	-48°C			
Liquid static head 0.25 bar				
MAWP rating 13.73 bar @ 202°C				
MAP rating 19.6 bar @ 30°C				
Hydrotest rating 30 bar @ 30°C				
PWHT performed	Yes			
Impact Tested	No			
Circumferential joint radiography	Spot UW-11(b) Type 1			
Notes				
Flange rated MDMT per UCS-66(b)(3) = -105° C (Coincident ratio = 0.1966) Bolts rated MDMT per Fig UCS-66 note (c) = -48° C				

UCS-66 Material Toughness Requirements Nozzle				
$t_r = 3.86*33.32 / (1,180*1 - 0.6*3.86) =$	0.11 mm			
Stress ratio = $t_r^* E^* / (t_n - c) = 0.11*1 / (9.73 - 0) =$	0.0112			
Stress ratio ≤ 0.35 , MDMT per UCS-66(b)(3) = -105°C				
Material is exempt from impact testing at the Design MDMT of 17°C.				

UCS-66 Material Toughness Requirements Pad				
$t_r = 3.86*1,675 / (1,380*1 - 0.6*3.86) =$	4.69 mm			
Stress ratio = $t_r^* E^* / (t_n - c) = 4.69*1 / (14 - 0) =$	0.3349			
Stress ratio ≤ 0.35 , MDMT per UCS-66(b)(3) = -105° C				
Material is exempt from impact testing at the Design MDMT of 17°C.				

Reinforcement Calculations for Internal Pressure

UG-37	UG-37 Area Calculation Summary (cm²)					UG Sumi (m	mary	
	For P = 3.86 bar @ 202 °C						The nozz	
A required	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						$t_{\rm req}$	t _{min}
	This nozzle is exempt from area calculations per UG-36(c)(3)(a)						4.69	9.73

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary					
Weld description	Required weld size (mm)	Actual weld size (mm)	Status		
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	6.3	weld size is adequate		
Pad to shell fillet (Leg ₄₂)	7	7.7	weld size is adequate		

Calculations for internal pressure 3.86 bar @ 202 °C

Parallel Limit of reinforcement per UG-40

$$L_{R} = MAX(d, R_{n} + (t_{n} - C_{n}) + (t - C))$$

$$= MAX(66.65, 33.32 + (11.13 - 0) + (14 - 0))$$

$$= 66.65 \text{ mm}$$

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = MIN(2.5*(t - C), 2.5*(t_{n} - C_{n}) + t_{e})$$

$$= MIN(2.5*(14 - 0), 2.5*(11.13 - 0) + 14)$$

$$= 35 \text{ mm}$$

Nozzle required thickness per UG-27(c)(1)

$$t_{rn}$$
 = P*R_n / (S_n*E - 0.6*P)
= 3.8562*33.32 / (1,180*1 - 0.6*3.8562)
= 0.11 mm

Required thickness t, from UG-37(a)

$$t_r$$
 = P*R / (S*E - 0.6*P)
= 3.8562*1,675 / (1,380*1 - 0.6*3.8562)
= 4.69 mm

Required thickness t, per Interpretation VIII-1-07-50

```
t_r = P*R / (S*E - 0.6*P)
= 3.8562*1,675 / (1,380*0.85 - 0.6*3.8562)
= 5.52 mm
```

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c)(2) Weld Check

```
\begin{split} \text{Inner fillet:} \ t_{\text{min}} &= \text{lesser of } 19 \text{ mm or } t_{\text{n}} \text{ or } t_{\text{e}} = 11.13 \text{ mm} \\ t_{\text{c(min)}} &= \text{lesser of } 6 \text{ mm or } 0.7^* t_{\text{min}} = \underline{6} \text{ mm} \\ t_{\text{c(actual)}} &= 0.7^* \text{Leg} = 0.7^* 9 = 6.3 \text{ mm} \end{split} \begin{aligned} \text{Outer fillet:} \ t_{\text{min}} &= \text{lesser of } 19 \text{ mm or } t_{\text{e}} \text{ or } t = 14 \text{ mm} \\ t_{\text{w(min)}} &= 0.5^* t_{\text{min}} = \underline{7} \text{ mm} \\ t_{\text{w(actual)}} &= 0.7^* \text{Leg} = 0.7^* 11 = 7.7 \text{ mm} \end{aligned}
```

UG-45 Nozzle Neck Thickness Check

```
P*R_n / (S_n*E - 0.6*P) + Corrosion
t_{a \text{ UG-27}} =
               3.8562*33.32/(1,180*1 - 0.6*3.8562) + 0
               0.11 mm
          =
               \max[t_{a \text{ UG-27}}, t_{a \text{ UG-22}}]
t_a
               \max[0.11, 0]
               0.11 mm
               P*R / (S*E - 0.6*P) + Corrosion
t_{b1}
               3.8562*1,675 / (1,380*1 - 0.6*3.8562) + 0
               4.69 mm
          =
               \max[t_{b1}, t_{b \cup G16}]
t_{b1}
               max[ 4.69, 1.5]
               4.69 mm
               \min[t_{b3}, t_{b1}]
t_{\rm b}
               min[ 4.8, 4.69]
               4.69 mm
        = \max[t_a, t_b]
t_{UG-45}
               max[ 0.11, 4.69]
               4.69 mm
         =
```

Available nozzle wall thickness new, $t_n = 0.875*11.13 = 9.73$ mm

The nozzle neck thickness is adequate.

UG	UG-37 Area Calculation Summary (cm²)						UG Sumi (m	mary
	For Pe = 2.91 bar @ 175 °C The opening is adequately reinforced						The nozz	
A required	A1 A2 A2 A5						$t_{\rm req}$	t _{min}
4.8911	13.2004		6.2916		6.2159	0.6929	<u>3.54</u>	9.73

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary					
Weld description	Required weld size (mm)	Actual weld size (mm)	Status		
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	6.3	weld size is adequate		
Pad to shell fillet (Leg ₄₂)	7	7.7	weld size is adequate		

Calculations for external pressure 2.91 bar @ 175 °C

Parallel Limit of reinforcement per UG-40

$$L_{R} = MAX(d, R_{n} + (t_{n} - C_{n}) + (t - C))$$

$$= MAX(66.65, 33.32 + (11.13 - 0) + (14 - 0))$$

$$= 66.65 \text{ mm}$$

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = MIN(2.5*(t - C), 2.5*(t_{n} - C_{n}) + t_{e})$$

$$= MIN(2.5*(14 - 0), 2.5*(11.13 - 0) + 14)$$

$$= 35 \text{ mm}$$

Nozzle required thickness per UG-28 $t_{rn} = 0.61$ mm

From UG-37(d)(1) required thickness $t_r = 14 \text{ mm}$

Area required per UG-37(d)(1)

Allowable stresses:
$$S_n = 1,203.264$$
, $S_v = 1,407.207$, $S_p = 1,407.207$ kg_f/cm² $f_{r1} = lesser$ of 1 or $S_n / S_v = 0.8551$ $f_{r2} = lesser$ of 1 or $S_n / S_v = 0.8551$ $f_{r3} = lesser$ of f_{r2} or $f_{r3} = 1,407.207$ or $f_{r2} = 1,407.207$ kg_r/cm² $f_{r3} = 1,407.207$ kg_r/s_v = 0.8551

$$\begin{array}{lll} A & = & 0.5*(d*t_r*F + 2*t_n*t_r*F*(1-f_{r1})) \\ & = & (0.5*(66.65*14*1 + 2*11.13*14*1*(1-0.8551))) / 100 \\ & = & 4.8911 \ cm^2 \end{array}$$

Area available from FIG. UG-37.1

 $A_1 = larger of the following = 0 cm^2$

$$= d^*(E_1^*t - F^*t_r) - 2^*t_n^*(E_1^*t - F^*t_r)^*(1 - f_{r1})$$

$$= (66.65^*(1^*14 - 1^*14) - 2^*11.13^*(1^*14 - 1^*14)^*(1 - 0.8551)) / 100$$

$$= 0 \text{ cm}^2$$

$$= 2^*(t + t_n)^*(E_1^*t - F^*t_r) - 2^*t_n^*(E_1^*t - F^*t_r)^*(1 - f_{r1})$$

$$= (2^*(14 + 11.13)^*(1^*14 - 1^*14) - 2^*11.13^*(1^*14 - 1^*14)^*(1 - 0.8551)) / 100$$

$$= 0 \text{ cm}^2$$

 A_2 = smaller of the following= <u>6.2916</u> cm²

$$= 5*(t_n - t_m)*f_{r2}*t$$

$$= (5*(11.13 - 0.61)*0.8551*14) / 100$$

$$= 6.2916 \text{ cm}^2$$

$$= 2*(t_n - t_m)*(2.5*t_n + t_e)*f_{r2}$$

$$= (2*(11.13 - 0.61)*(2.5*11.13 + 14)*0.8551) / 100$$

$$= 7.5168 \text{ cm}^2$$

$$A_{41} = Leg^{2*}f_{r3}$$

$$= (9^{2*}0.8551) / 100$$

$$= 0.6929 cm^{2}$$

$$A_{42} = Leg^{2*}f_{r4}$$

$$= (0^{2*}1) / 100$$

$$= 0 cm^{2}$$

(Part of the weld is outside of the limits)

$$A_5 = (D_p - d - 2*t_n)*t_e*f_{r4}$$
= ((133.3 - 66.65 - 2*11.13)*14*1) / 100
= 6.2159 cm²

Area =
$$A_1 + A_2 + A_{41} + A_{42} + A_5$$

= $0 + 6.2916 + 0.6929 + 0 + 6.2159$
= 13.2004 cm^2

As Area \geq A the reinforcement is adequate.

UW-16(c)(2) Weld Check

```
Inner fillet: t<sub>min</sub>
                          = lesser of 19 mm or t_n or t_e = 11.13 mm
                t_{c(min)} = lesser of 6 mm or 0.7*t_{min} = \underline{6} mm
                t_{c(actual)} = 0.7*Leg = 0.7*9 = 6.3 \text{ mm}
Outer fillet: t<sub>min</sub>
                            = lesser of 19 mm or t_e or t = 14 mm
                 t_{w(min)} = 0.5*t_{min} = 7 \text{ mm}
                 t_{\text{w(actual)}} = 0.7*\text{Leg} = 0.7*11 = 7.7 \text{ mm}
```

UG-45 Nozzle Neck Thickness Check

```
0.61 mm
t_{a UG-28} =
              max[ \rm t_{a\,UG\text{-}28} , \rm t_{a\,UG\text{-}22} ]
ta
               max[0.61,0]
               0.61 mm
            P*R / (S*E - 0.6*P) + Corrosion
t_{b2}
              2.9143*1,675 / (1,380*1 - 0.6*2.9143) + 0
              3.54 mm
               \max[t_{b2}, t_{b \text{ UG}16}]
t_{b2}
               max[ 3.54, 1.5]
               3.54 mm
         = \min[t_{b3}, t_{b2}]
         = \min[4.8, 3.54]
               3.54 mm
        = \max[t_a, t_b]
t_{UG-45}
         = \max[0.61, 3.54]
               3.54 mm
```

Available nozzle wall thickness new, $t_n = 0.875*11.13 = 9.73$ mm

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 175 °C) UG-28(c)

```
L/D_0 = 201.59/88.9 = 2.2675
D_0/t = 88.9/.61 = 144.8443
                       A = 0.000326
From table G:
From table CS-2 Metric: B = 322.8268 \text{ kg/cm}^2 (316.58 \text{ bar})
P_a
      = 4*B/(3*(D_o/t))
      = 4*316.58 / (3*(88.9 / .61))
      = 2.91 \, bar
```

Design thickness for external pressure $P_a = 2.91$ bar

 $t_a = t + Corrosion = .61 + = .61 mm$

Is split

ASME Section VIII Division 1, 2017 Edition Metric 14

Note: round inside edges per UG-76(c)					
Location and Orientation					
Located on	Bottom existing shell				
Orientation	345°				
Nozzle center line offset to datum line	6,333 mm				
End of nozzle to shell center	1,840 mm				
Passes through a Category A joint	No				
Nozzl	e				
Description	NPS 2 Sch 160 DN 50				
Access opening	No				
Material specification	SA-106 B Smls Pipe (II-D Metric p. 14, ln. 10)				
Inside diameter, new	42.85 mm				
Pipe nominal wall thickness	8.74 mm				
Pipe minimum wall thickness ¹	7.65 mm				
Corrosion allowance	0 mm				
Projection available outside vessel, Lpr	81.15 mm				
Projection available outside vessel to flange face, Lf	151 mm				
Local vessel minimum thickness	14 mm				
Liquid static head included	0 bar				
Longitudinal joint efficiency	1				
Reinforcin	g Pad				
Material specification	SA-516 70 (II-D Metric p. 18, ln. 33)				
Diameter, D _p	150.03 mm				
Thickness, t _e	14 mm				

No

Welds				
Inner fillet, Leg ₄₁	9 mm			
Outer fillet, Leg ₄₂	11 mm			
Nozzle to vessel groove weld	14 mm			
Pad groove weld	14 mm			

¹Pipe minimum thickness = nominal thickness times pipe tolerance factor of 0.875.

ASME B16.5-2013 Flange			
Description NPS 2 Class 300 WN A105			
SA-193 B7 Bolt <= 64 (II-D Metric p. 388, ln. 32)			
Blind included	No		
Rated MDMT	-48°C		
Liquid static head 0 bar			
MAWP rating 43.72 bar @ 202°C			
MAP rating 51.1 bar @ 30°C			
Hydrotest rating 77 bar @ 30°C			
PWHT performed	Yes		
Impact Tested	No		
Circumferential joint radiography Spot UW-11(b) Type 1			
Notes			
Flange rated MDMT per UCS-66(b)(3) = -105 °C (Coincident ratio = 0.0705) Bolts rated MDMT per Fig UCS-66 note (c) = -48 °C			

UCS-66 Material Toughness Requirements Nozzle			
$t_r = 3.6*21.42 / (1,180*1 - 0.6*3.6) =$	0.0655 mm		
Stress ratio = $t_r^* E^* / (t_n - c) = 0.0655*1 / (7.65 - 0) =$	0.0086		
Stress ratio ≤ 0.35 , MDMT per UCS-66(b)(3) = -105°C			
Material is exempt from impact testing at the Design MDMT of 17°C.			

UCS-66 Material Toughness Requirements Pad			
$t_r = 3.6*1,675 / (1,380*1 - 0.6*3.6) =$	4.38 mm		
Stress ratio = $t_r^*E^* / (t_n - c) = 4.38*1 / (14 - 0) =$	0.3126		
Stress ratio ≤ 0.35 , MDMT per UCS-66(b)(3) = -105°C			
Material is exempt from impact testing at the Design MDMT of 17°C.			

Reinforcement Calculations for Internal Pressure

UG-37 Area Calculation Summary (cm²)					UG Sum (m		
	For P = 3.6 bar @ 202 °C					The nozz	
A required	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					$t_{ m req}$	t _{min}
This nozzle is exempt from area calculations per UG-36(c)(3)(a) 3.42					7.65		

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary					
Weld description	Required weld size (mm)	Actual weld size (mm)	Status		
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	6.3	weld size is adequate		
Pad to shell fillet (Leg ₄₂)	7	7.7	weld size is adequate		

Calculations for internal pressure 3.6 bar @ 202 °C

Parallel Limit of reinforcement per UG-40

$$L_{R} = MAX(d, R_{n} + (t_{n} - C_{n}) + (t - C))$$

$$= MAX(42.85, 21.42 + (8.74 - 0) + (14 - 0))$$

$$= 44.16 \text{ mm}$$

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = MIN(2.5*(t - C), 2.5*(t_{n} - C_{n}) + t_{e})$$

$$= MIN(2.5*(14 - 0), 2.5*(8.74 - 0) + 14)$$

$$= 35 \text{ mm}$$

Nozzle required thickness per UG-27(c)(1)

$$t_{rn}$$
 = P*R_n / (S_n*E - 0.6*P)
= 3.6*21.42 / (1,180*1 - 0.6*3.6)
= 0.066 mm

Required thickness t, from UG-37(a)

$$t_r$$
 = P*R / (S*E - 0.6*P)
= 3.6*1,675 / (1,380*1 - 0.6*3.6)
= 4.38 mm

Required thickness t, per Interpretation VIII-1-07-50

```
t_r = P*R / (S*E - 0.6*P)
= 3.6*1,675 / (1,380*0.85 - 0.6*3.6)
= 5.15 mm
```

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c)(2) Weld Check

UG-45 Nozzle Neck Thickness Check

```
P*R_n / (S_n*E - 0.6*P) + Corrosion
t_{a \text{ UG-}27} =
               3.6*21.42/(1,180*1 - 0.6*3.6) + 0
               0.066 mm
               \max[\ t_{a\,UG-27}\ ,\, t_{a\,UG-22}\ ]
t_a
               max[ 0.066, 0 ]
               0.066 \text{ mm}
               P*R / (S*E - 0.6*P) + Corrosion
t_{b1}
               3.6*1,675 / (1,380*1 - 0.6*3.6) + 0
               4.38 mm
          =
               \max[t_{b1}, t_{b \cup G16}]
t_{b1}
               max[ 4.38, 1.5]
               4.38 mm
               \min[t_{b3}, t_{b1}]
t_{\rm b}
               min[ 3.42, 4.38]
               3.42 mm
        = \max[t_a, t_b]
t_{UG-45}
               max[ 0.066, 3.42]
               3.42 mm
         =
```

Available nozzle wall thickness new, $t_n = 0.875*8.74 = 7.65$ mm

The nozzle neck thickness is adequate.

UG-37 Area Calculation Summary (cm²)				UG Sumi (m	mary		
	For Pe = 2.91 bar @ 175 °C					The nozz	
A required	A. A. A. A.					$t_{\rm req}$	t _{min}
I .	This nozzle is exempt from area calculations per UG-36(c)(3)(a) 3.42 7.65					7.65	

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary					
Weld description	Required weld size (mm)	Actual weld size (mm)	Status		
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	6.3	weld size is adequate		
Pad to shell fillet (Leg ₄₂)	7	7.7	weld size is adequate		

Calculations for external pressure 2.91 bar @ 175 °C

Parallel Limit of reinforcement per UG-40

$$L_{R} = MAX(d, R_{n} + (t_{n} - C_{n}) + (t - C))$$

$$= MAX(42.85, 21.42 + (8.74 - 0) + (14 - 0))$$

$$= 44.16 \text{ mm}$$

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = MIN(2.5*(t - C), 2.5*(t_{n} - C_{n}) + t_{e})$$

$$= MIN(2.5*(14 - 0), 2.5*(8.74 - 0) + 14)$$

$$= 35 \text{ mm}$$

Nozzle required thickness per UG-28 $t_{rn} = 0.43$ mm

From UG-37(d)(1) required thickness $t_r = 11.75 \text{ mm}$

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c)(2) Weld Check

Inner fillet:
$$t_{min}$$
 = lesser of 19 mm or t_n or t_e = 8.74 mm $t_{c(min)}$ = lesser of 6 mm or $0.7*t_{min}$ = $\underline{6}$ mm $t_{c(actual)}$ = $0.7*Leg$ = $0.7*9$ = 6.3 mm

Outer fillet: t_{min} = lesser of 19 mm or t_e or t = 14 mm $t_{w(min)} = 0.5 * t_{min} = 7 mm$ $t_{w(actual)} = 0.7*Leg = 0.7*11 = 7.7 \text{ mm}$

UG-45 Nozzle Neck Thickness Check

 $t_{a \text{ UG-}28} = 0.43 \text{ mm}$ t_a $\max[t_{a \text{ UG-}28}, t_{a \text{ UG-}22}]$ max[0.43, 0] 0.43 mm = P*R / (S*E - 0.6*P) + Corrosion t_{b2} 2.9143*1,675 / (1,380*1 - 0.6*2.9143) + 0 3.54 mm t_{b2} $= \max[t_{b2}, t_{b \text{ UG}16}]$ max[3.54, 1.5] = 3.54 mm $\min[t_{b3}, t_{b2}]$ t_b min[3.42, 3.54] = 3.42 mm $= \max[t_a, t_b]$ t_{UG-45} $= \max[0.43, 3.42]$ 3.42 mm

Available nozzle wall thickness new, $t_n = 0.875*8.74 = 7.65$ mm

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 175 °C) UG-28(c)

 $L/D_0 = 151.27/60.33 = 2.5076$ $D_0 / t = 60.33 / .43$ = 139.0659From table G: A = 0.000313From table CS-2 Metric: $B = 309.9467 \text{ kg/cm}^2 (303.95 \text{ bar})$ $= 4*B / (3*(D_o/t))$ = 4*303.95 / (3*(60.33 / .43))= 2.91 bar

Design thickness for external pressure $P_a = 2.91$ bar

 t_a = t + Corrosion = .43 + = .43 mm

ASME Section VIII Division 1, 2017 Edition Metric

Note: round inside edges per LIG-76(c)

Note: round inside edges per UG-/6(c)			
Location and Orientation			
Located on Bottom existing shell			
Orientation	275°		
Nozzle center line offset to datum line 4,838 mm			
End of nozzle to shell center	1,840 mm		
Passes through a Category A joint No			
Nozzle			
Description NPS 2 Sch 160 DN 50			

Nozzie				
Description	NPS 2 Sch 160 DN 50			
Access opening	No			
Material specification	SA-106 B Smls Pipe (II-D Metric p. 14, ln. 10)			
Inside diameter, new	42.85 mm			
Pipe nominal wall thickness	8.74 mm			
Pipe minimum wall thickness ¹	7.65 mm			
Corrosion allowance	0 mm			
Projection available outside vessel, Lpr	81.15 mm			
Projection available outside vessel to flange face, Lf	151 mm			
Local vessel minimum thickness	14 mm			
Liquid static head included	0 bar			
Longitudinal joint efficiency	1			

Reinforcing Pad				
Material specification	SA-516 70 (II-D Metric p. 18, ln. 33)			
Diameter, D _p	150.03 mm			
Thickness, t _e	14 mm			
Is split	No			

Welds		
Inner fillet, Leg ₄₁	9 mm	
Outer fillet, Leg ₄₂	11 mm	
Nozzle to vessel groove weld	14 mm	
Pad groove weld	14 mm	

¹Pipe minimum thickness = nominal thickness times pipe tolerance factor of 0.875.

ASME B16.5-2013 Flange			
Description NPS 2 Class 300 WN A105			
SA-193 B7 Bolt <= 64 (II-D Metric p. 388, ln. 32)			
Blind included	No		
Rated MDMT	-48°C		
Liquid static head 0 bar			
MAWP rating 43.72 bar @ 202°C			
MAP rating 51.1 bar @ 30°C			
Hydrotest rating 77 bar @ 30°C			
PWHT performed	Yes		
Impact Tested	No		
Circumferential joint radiography Spot UW-11(b) Type 1			
Notes			
Flange rated MDMT per UCS-66(b)(3) = -105 °C (Coincident ratio = 0.0705) Bolts rated MDMT per Fig UCS-66 note (c) = -48 °C			

UCS-66 Material Toughness Requirements Nozzle					
$t_r = 3.6*21.42 / (1,180*1 - 0.6*3.6) =$	0.0655 mm				
Stress ratio = $t_r^* E^* / (t_n - c) = 0.0655*1 / (7.65 - 0) =$	0.0086				
Stress ratio \leq 0.35, MDMT per UCS-66(b)(3) =	-105°C				
Material is exempt from impact testing at the Design MDM	IT of 17°C.				

UCS-66 Material Toughness Requirements Pad					
$t_r = 3.6*1,675 / (1,380*1 - 0.6*3.6) =$	4.38 mm				
Stress ratio = $t_r^* E^* / (t_n - c) = 4.38*1 / (14 - 0) =$	0.3126				
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-105°C				
Material is exempt from impact testing at the Design MDMT	Material is exempt from impact testing at the Design MDMT of 17°C.				

Reinforcement Calculations for Internal Pressure

UG-37 Area Calculation Summary (cm²)						UG Sumi (m	mary	
	For P = 3.6 bar @ 202 °C						The nozz	
A required	A A A A A						$t_{\rm req}$	t _{min}
I .	This nozzle is exempt from area calculations per UG-36(c)(3)(a)						<u>3.42</u>	7.65

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary						
Weld description	Actual weld size (mm)	Status				
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	6.3	weld size is adequate			
Pad to shell fillet (Leg ₄₂)	7	7.7	weld size is adequate			

Calculations for internal pressure 3.6 bar @ 202 °C

Parallel Limit of reinforcement per UG-40

$$\begin{split} L_R &= MAX(d, R_n + (t_n - C_n) + (t - C)) \\ &= MAX(42.85, 21.42 + (8.74 - 0) + (14 - 0)) \\ &= 44.16 \text{ mm} \end{split}$$

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = MIN(2.5*(t - C), 2.5*(t_{n} - C_{n}) + t_{e})$$

$$= MIN(2.5*(14 - 0), 2.5*(8.74 - 0) + 14)$$

$$= 35 \text{ mm}$$

Nozzle required thickness per UG-27(c)(1)

$$t_{rn}$$
 = $P*R_n / (S_n*E - 0.6*P)$
= $3.6*21.42 / (1,180*1 - 0.6*3.6)$
= 0.066 mm

Required thickness t, from UG-37(a)

$$t_r$$
 = P*R / (S*E - 0.6*P)
= 3.6*1,675 / (1,380*1 - 0.6*3.6)
= 4.38 mm

Required thickness t, per Interpretation VIII-1-07-50

```
t_r = P*R / (S*E - 0.6*P)
= 3.6*1,675 / (1,380*0.85 - 0.6*3.6)
= 5.15 mm
```

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c)(2) Weld Check

UG-45 Nozzle Neck Thickness Check

```
P*R_n / (S_n*E - 0.6*P) + Corrosion
t_{a \text{ UG-}27} =
               3.6*21.42 / (1,180*1 - 0.6*3.6) + 0
               0.066 mm
               \max[\ t_{a\,UG-27}\ ,\, t_{a\,UG-22}\ ]
t_a
               max[ 0.066, 0 ]
               0.066 \text{ mm}
               P*R / (S*E - 0.6*P) + Corrosion
t_{b1}
               3.6*1,675 / (1,380*1 - 0.6*3.6) + 0
               4.38 mm
          =
               \max[t_{b1}, t_{b \cup G16}]
t_{b1}
               max[ 4.38, 1.5]
               4.38 mm
               \min[t_{b3}, t_{b1}]
t_{\rm b}
               min[ 3.42, 4.38]
               3.42 mm
        = \max[t_a, t_b]
t_{UG-45}
               max[ 0.066, 3.42]
               3.42 mm
          =
```

Available nozzle wall thickness new, $t_n = 0.875*8.74 = 7.65$ mm

The nozzle neck thickness is adequate.

UG-37 Area Calculation Summary (cm²)						UG Sumi (m	mary	
	For Pe = 2.91 bar @ 175 °C						The nozz	
A required	A A A A A						$t_{\rm req}$	t _{min}
	This nozzle is exempt from area calculations per UG-36(c)(3)(a)						3.42	7.65

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary						
Weld description	Actual weld size (mm)	Status				
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	6.3	weld size is adequate			
Pad to shell fillet (Leg ₄₂)	7	7.7	weld size is adequate			

Calculations for external pressure 2.91 bar @ 175 °C

Parallel Limit of reinforcement per UG-40

$$L_{R} = MAX(d, R_{n} + (t_{n} - C_{n}) + (t - C))$$

$$= MAX(42.85, 21.42 + (8.74 - 0) + (14 - 0))$$

$$= 44.16 \text{ mm}$$

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = MIN(2.5*(t - C), 2.5*(t_{n} - C_{n}) + t_{e})$$

$$= MIN(2.5*(14 - 0), 2.5*(8.74 - 0) + 14)$$

$$= 35 \text{ mm}$$

Nozzle required thickness per UG-28 $t_{rn} = 0.43$ mm

From UG-37(d)(1) required thickness $t_r = 12.05$ mm

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c)(2) Weld Check

Inner fillet:
$$t_{min}$$
 = lesser of 19 mm or t_n or t_e = 8.74 mm $t_{c(min)}$ = lesser of 6 mm or $0.7*t_{min}$ = $\underline{6}$ mm $t_{c(actual)}$ = $0.7*Leg$ = $0.7*9$ = 6.3 mm

Outer fillet:
$$t_{min}$$
 = lesser of 19 mm or t_e or t = 14 mm
$$t_{w(min)} = 0.5*t_{min} = 7 \text{ mm}$$

$$t_{w(actual)} = 0.7*Leg = 0.7*11 = 7.7 \text{ mm}$$

UG-45 Nozzle Neck Thickness Check

$$\begin{array}{lll} t_{a\,\, \text{UG-28}} &=& 0.43\,\, \text{mm} \\ \\ t_{a} &=& \max[\,\,t_{a\,\, \text{UG-28}}\,,\,t_{a\,\, \text{UG-22}}\,] \\ &=& \max[\,\,0.43\,\,,\,0\,\,] \\ &=& 0.43\,\, \text{mm} \\ \\ t_{b2} &=& P*R\,/\,(S*E-0.6*P) + \text{Corrosion} \\ &=& 2.9143*1,675\,/\,(1,380*1-0.6*2.9143) + 0 \\ &=& 3.54\,\, \text{mm} \\ \\ t_{b2} &=& \max[\,\,t_{b2}\,,\,t_{b\,\, \text{UG16}}\,] \\ &=& \max[\,\,3.54\,\,,\,1.5\,\,] \\ &=& 3.54\,\, \text{mm} \\ \\ t_{b} &=& \min[\,\,t_{b3}\,,\,t_{b2}\,] \\ &=& \min[\,\,3.42\,\,,\,3.54\,\,] \\ &=& 3.42\,\, \text{mm} \\ \\ \end{array}$$

Available nozzle wall thickness new, $t_n = 0.875*8.74 = 7.65$ mm

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 175 °C) UG-28(c)

$$L/D_o$$
 = 151.27 / 60.33 = 2.5076
 D_o/t = 60.33 / .43 = 139.0659
From table G: A = 0.000313
From table CS-2 Metric: B = 309.9467 kg/cm² (303.95 bar)
 P_a = 4*B / (3*(D_o/t))
= 4*303.95 / (3*(60.33 / .43))
= 2.91 bar

Design thickness for external pressure $P_a = 2.91$ bar

$$t_a = t + Corrosion = .43 + = .43 \text{ mm}$$

Is split

ASME Section VIII Division 1, 2017 Edition Metric 14

k					
Note: round inside edges per UG-76(c)					
Location and Orientation					
Located on	Bottom existing shell				
Orientation	345°				
Nozzle center line offset to datum line	4,663 mm				
End of nozzle to shell center	1,840 mm				
Passes through a Category A joint	No				
Nozzlo	e				
Description	NPS 2 Sch 160 DN 50				
Access opening	No				
Material specification	SA-106 B Smls Pipe (II-D Metric p. 14, ln. 10)				
Inside diameter, new	42.85 mm				
Pipe nominal wall thickness	8.74 mm				
Pipe minimum wall thickness ¹	7.65 mm				
Corrosion allowance	0 mm				
Projection available outside vessel, Lpr	81.15 mm				
Projection available outside vessel to flange face, Lf	151 mm				
Local vessel minimum thickness	14 mm				
Liquid static head included	0 bar				
Longitudinal joint efficiency	1				
Reinforcing	g Pad				
Material specification	SA-516 70 (II-D Metric p. 18, ln. 33)				
Diameter, D_p	150.03 mm				
Thickness, t _e	14 mm				

No

Welds					
Inner fillet, Leg ₄₁	9 mm				
Outer fillet, Leg ₄₂	11 mm				
Nozzle to vessel groove weld	14 mm				
Pad groove weld	14 mm				

¹Pipe minimum thickness = nominal thickness times pipe tolerance factor of 0.875.

ASME B16.5-2013 Flange				
Description	NPS 2 Class 300 WN A105			
Bolt Material	SA-193 B7 Bolt <= 64 (II-D Metric p. 388, ln. 32)			
Blind included	No			
Rated MDMT	-48°C			
Liquid static head	0 bar			
MAWP rating	43.72 bar @ 202°C			
MAP rating	51.1 bar @ 30°C			
Hydrotest rating	77 bar @ 30°C			
PWHT performed	Yes			
Impact Tested	No			
Circumferential joint radiography Spot UW-11(b) Type 1				
Notes				
Flange rated MDMT per UCS-66(b)(3) = -105° C (Coincident ratio = 0.0705) Bolts rated MDMT per Fig UCS-66 note (c) = -48° C				

UCS-66 Material Toughness Requirements Nozzle					
$t_r = 3.6*21.42 / (1,180*1 - 0.6*3.6) =$	0.0655 mm				
Stress ratio = $t_r^* E^* / (t_n - c) = 0.0655*1 / (7.65 - 0) =$	0.0086				
Stress ratio \leq 0.35, MDMT per UCS-66(b)(3) =	-105°C				
Material is exempt from impact testing at the Design MDMT of 17°C.					

UCS-66 Material Toughness Requirements Pad	
$t_r = 3.6*1,675 / (1,380*1 - 0.6*3.6) =$	4.38 mm
Stress ratio = $t_r^*E^* / (t_n - c) = 4.38*1 / (14 - 0) =$	0.3126
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-105°C
Material is exempt from impact testing at the Design MDMT	Γ of 17°C.

Reinforcement Calculations for Internal Pressure

UG-37 Area Calculation Summary (cm²)					UG Sumi (m	•		
For P = 3.6 bar @ 202 °C						The nozz		
A required	A1 A2 A2 A5						$t_{ m req}$	t _{min}
	This nozzle is exempt from area calculations per UG-36(c)(3)(a)						3.42	7.65

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary				
Weld description	Required weld size (mm)	Actual weld size (mm)	Status	
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	6.3	weld size is adequate	
Pad to shell fillet (Leg ₄₂)	7	7.7	weld size is adequate	

Calculations for internal pressure 3.6 bar @ 202 °C

Parallel Limit of reinforcement per UG-40

$$\begin{split} L_R &= MAX(d, R_n + (t_n - C_n) + (t - C)) \\ &= MAX(42.85, 21.42 + (8.74 - 0) + (14 - 0)) \\ &= 44.16 \text{ mm} \end{split}$$

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = MIN(2.5*(t - C), 2.5*(t_{n} - C_{n}) + t_{e})$$

$$= MIN(2.5*(14 - 0), 2.5*(8.74 - 0) + 14)$$

$$= 35 \text{ mm}$$

Nozzle required thickness per UG-27(c)(1)

$$t_{rn}$$
 = $P*R_n / (S_n*E - 0.6*P)$
= $3.6*21.42 / (1,180*1 - 0.6*3.6)$
= 0.066 mm

Required thickness t, from UG-37(a)

$$t_r$$
 = P*R / (S*E - 0.6*P)
= 3.6*1,675 / (1,380*1 - 0.6*3.6)
= 4.38 mm

Required thickness t, per Interpretation VIII-1-07-50

```
t_r = P*R / (S*E - 0.6*P)
= 3.6*1,675 / (1,380*0.85 - 0.6*3.6)
= 5.15 mm
```

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c)(2) Weld Check

UG-45 Nozzle Neck Thickness Check

```
P*R_n / (S_n*E - 0.6*P) + Corrosion
t_{a \text{ UG-27}} =
               3.6*21.42 / (1,180*1 - 0.6*3.6) + 0
               0.066 mm
               \max[\ t_{a\,UG-27}\ ,\, t_{a\,UG-22}\ ]
t_a
               max[ 0.066, 0 ]
               0.066 \text{ mm}
               P*R / (S*E - 0.6*P) + Corrosion
t_{b1}
               3.6*1,675 / (1,380*1 - 0.6*3.6) + 0
               4.38 mm
          =
               \max[t_{b1}, t_{b \cup G16}]
t_{b1}
               max[ 4.38, 1.5]
               4.38 mm
               \min[t_{b3}, t_{b1}]
t_{\rm b}
               min[ 3.42, 4.38]
               3.42 mm
        = \max[t_a, t_b]
t_{UG-45}
               max[ 0.066, 3.42]
               3.42 mm
          =
```

Available nozzle wall thickness new, $t_n = 0.875*8.74 = 7.65$ mm

The nozzle neck thickness is adequate.

UG-37 Area Calculation Summary (cm ²)			UG-45 Summary (mm)					
For Pe = 2.91 bar @ 175 °C				The nozzle passes UG-45				
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	$t_{\rm req}$	t _{min}
	zzle is extions per						3.42	7.65

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary			
Weld description	Required weld size (mm)	Actual weld size (mm)	Status
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	6.3	weld size is adequate
Pad to shell fillet (Leg ₄₂)	7	7.7	weld size is adequate

Calculations for external pressure 2.91 bar @ 175 °C

Parallel Limit of reinforcement per UG-40

$$L_{R} = MAX(d, R_{n} + (t_{n} - C_{n}) + (t - C))$$

$$= MAX(42.85, 21.42 + (8.74 - 0) + (14 - 0))$$

$$= 44.16 \text{ mm}$$

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = MIN(2.5*(t - C), 2.5*(t_{n} - C_{n}) + t_{e})$$

$$= MIN(2.5*(14 - 0), 2.5*(8.74 - 0) + 14)$$

$$= 35 \text{ mm}$$

Nozzle required thickness per UG-28 $t_{rn} = 0.43$ mm

From UG-37(d)(1) required thickness $t_r = 12.05$ mm

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c)(2) Weld Check

Inner fillet:
$$t_{min}$$
 = lesser of 19 mm or t_n or t_e = 8.74 mm $t_{c(min)}$ = lesser of 6 mm or $0.7*t_{min}$ = $\underline{6}$ mm $t_{c(actual)}$ = $0.7*Leg$ = $0.7*9$ = 6.3 mm

Outer fillet: t_{min} = lesser of 19 mm or t_e or t = 14 mm $t_{w(min)} = 0.5 * t_{min} = 7 mm$ $t_{w(actual)} = 0.7*Leg = 0.7*11 = 7.7 \text{ mm}$

UG-45 Nozzle Neck Thickness Check

 $t_{a \text{ UG-}28} = 0.43 \text{ mm}$ t_a $\max[t_{a \text{ UG-}28}, t_{a \text{ UG-}22}]$ max[0.43, 0] 0.43 mm = P*R / (S*E - 0.6*P) + Corrosion t_{b2} 2.9143*1,675 / (1,380*1 - 0.6*2.9143) + 0 3.54 mm $= \max[t_{b2}, t_{b \text{ UG}16}]$ t_{b2} max[3.54, 1.5] = 3.54 mm $\min[t_{b3}, t_{b2}]$ t_b min[3.42, 3.54] = 3.42 mm $= \max[t_a, t_b]$ t_{UG-45} $= \max[0.43, 3.42]$ 3.42 mm

Available nozzle wall thickness new, $t_n = 0.875*8.74 = 7.65$ mm

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 175 °C) UG-28(c)

 $L/D_0 = 151.27/60.33 = 2.5076$ $D_0 / t = 60.33 / .43$ = 139.0659From table G: A = 0.000313From table CS-2 Metric: $B = 309.9467 \text{ kg/cm}^2 (303.95 \text{ bar})$ $= 4*B / (3*(D_o/t))$ = 4*303.95 / (3*(60.33 / .43))= 2.91 bar

Design thickness for external pressure $P_a = 2.91$ bar

 t_a = t + Corrosion = .43 + = .43 mm

Thickness, t_e

Is split

ASME Section VIII Division 1, 2017 Edition Metric 14

Note: round inside edges per UG-76(c)				
Location and Orientation				
Bottom existing shell				
305°				
3,343 mm				
1,840 mm				
No				
zle				
NPS 2 Sch 160 DN 50				
No				
SA-106 B Smls Pipe (II-D Metric p. 14, ln. 10)				
42.85 mm				
8.74 mm				
7.65 mm				
0 mm				
81.15 mm				
151 mm				
14 mm				
0 bar				
1				
ing Pad				
SA-516 70 (II-D Metric p. 18, ln. 33)				
150.03 mm				

14 mm

No

Welds			
Inner fillet, Leg ₄₁	9 mm		
Outer fillet, Leg ₄₂	11 mm		
Nozzle to vessel groove weld	14 mm		
Pad groove weld	14 mm		

¹Pipe minimum thickness = nominal thickness times pipe tolerance factor of 0.875.

ASME B16.5-2013 Flange		
Description	NPS 2 Class 300 WN A105	
Bolt Material	SA-193 B7 Bolt <= 64 (II-D Metric p. 388, ln. 32)	
Blind included	No	
Rated MDMT	-48°C	
Liquid static head	0 bar	
MAWP rating	43.72 bar @ 202°C	
MAP rating	51.1 bar @ 30°C	
Hydrotest rating	77 bar @ 30°C	
PWHT performed	Yes	
Impact Tested	No	
Circumferential joint radiography	Spot UW-11(b) Type 1	
Notes		
Flange rated MDMT per UCS-66(b)(3) = -105° C (Coincident ratio = 0.0705) Bolts rated MDMT per Fig UCS-66 note (c) = -48° C		

UCS-66 Material Toughness Requirements Nozzle			
$t_r = 3.6*21.42 / (1,180*1 - 0.6*3.6) =$	0.0655 mm		
Stress ratio = $t_r^* E^* / (t_n - c) = 0.0655*1 / (7.65 - 0) =$	0.0086		
Stress ratio \leq 0.35, MDMT per UCS-66(b)(3) =	-105°C		
Material is exempt from impact testing at the Design MDMT of 17°C.			

UCS-66 Material Toughness Requirements Pad		
$t_r = 3.6*1,675 / (1,380*1 - 0.6*3.6) =$	4.38 mm	
Stress ratio = $t_r^*E^* / (t_n - c) = 4.38*1 / (14 - 0) =$	0.3126	
Stress ratio \leq 0.35, MDMT per UCS-66(b)(3) =	-105°C	
Material is exempt from impact testing at the Design MDMT of 17°C.		

Reinforcement Calculations for Internal Pressure

UG-37 Area Calculation Summary (cm ²)						UG-45 Summary (mm)		
	For P = 3.6 bar @ 202 °C						The nozzle passes UG-45	
A required							$t_{\rm req}$	t _{min}
l .	This nozzle is exempt from area calculations per UG-36(c)(3)(a)							7.65

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary								
Weld description	Actual weld size (mm)	Status						
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	6.3	weld size is adequate					
Pad to shell fillet (Leg ₄₂)	7	7.7	weld size is adequate					

Calculations for internal pressure 3.6 bar @ 202 °C

Parallel Limit of reinforcement per UG-40

$$L_{R} = MAX(d, R_{n} + (t_{n} - C_{n}) + (t - C))$$

$$= MAX(42.85, 21.42 + (8.74 - 0) + (14 - 0))$$

$$= 44.16 \text{ mm}$$

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = MIN(2.5*(t - C), 2.5*(t_{n} - C_{n}) + t_{e})$$

$$= MIN(2.5*(14 - 0), 2.5*(8.74 - 0) + 14)$$

$$= 35 \text{ mm}$$

Nozzle required thickness per UG-27(c)(1)

$$t_{rn}$$
 = P*R_n / (S_n*E - 0.6*P)
 = 3.6*21.42 / (1,180*1 - 0.6*3.6)
 = 0.066 mm

Required thickness t, from UG-37(a)

$$t_{r}$$
 = P*R / (S*E - 0.6*P)
= 3.6*1,675 / (1,380*1 - 0.6*3.6)
= 4.38 mm

Required thickness t, per Interpretation VIII-1-07-50

```
t_r = P*R / (S*E - 0.6*P)
= 3.6*1,675 / (1,380*0.85 - 0.6*3.6)
= 5.15 mm
```

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c)(2) Weld Check

UG-45 Nozzle Neck Thickness Check

```
P*R_n / (S_n*E - 0.6*P) + Corrosion
t_{a \text{ UG-}27} =
               3.6*21.42 / (1,180*1 - 0.6*3.6) + 0
               0.066 mm
               \max[\ t_{a\,UG-27}\ ,\, t_{a\,UG-22}\ ]
t_a
               \max[0.066, 0]
               0.066 \text{ mm}
               P*R / (S*E - 0.6*P) + Corrosion
t_{b1}
               3.6*1,675 / (1,380*1 - 0.6*3.6) + 0
               4.38 mm
          =
               \max[t_{b1}, t_{b \cup G16}]
t_{b1}
               max[ 4.38, 1.5]
               4.38 mm
               \min[t_{b3}, t_{b1}]
t_{\rm b}
               min[ 3.42, 4.38]
               3.42 mm
        = \max[t_a, t_b]
t_{UG-45}
               max[ 0.066, 3.42]
               3.42 mm
         =
```

Available nozzle wall thickness new, $t_n = 0.875*8.74 = 7.65$ mm

The nozzle neck thickness is adequate.

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary (cm ²)						UG-45 Summary (mm)		
	For Pe = 2.91 bar @ 175 °C						The nozzle passes UG-45	
A required							$t_{\rm req}$	t _{min}
	This nozzle is exempt from area calculations per UG-36(c)(3)(a)							7.65

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary							
Weld description	Actual weld size (mm)	Status					
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	6.3	weld size is adequate				
Pad to shell fillet (Leg ₄₂)	7	7.7	weld size is adequate				

Calculations for external pressure 2.91 bar @ 175 °C

Parallel Limit of reinforcement per UG-40

$$L_{R} = MAX(d, R_{n} + (t_{n} - C_{n}) + (t - C))$$

$$= MAX(42.85, 21.42 + (8.74 - 0) + (14 - 0))$$

$$= 44.16 \text{ mm}$$

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = MIN(2.5*(t - C), 2.5*(t_{n} - C_{n}) + t_{e})$$

$$= MIN(2.5*(14 - 0), 2.5*(8.74 - 0) + 14)$$

$$= 35 \text{ mm}$$

Nozzle required thickness per UG-28 $t_{rn} = 0.43$ mm

From UG-37(d)(1) required thickness $t_r = 11.75 \text{ mm}$

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c)(2) Weld Check

Inner fillet:
$$t_{min}$$
 = lesser of 19 mm or t_n or t_e = 8.74 mm $t_{c(min)}$ = lesser of 6 mm or $0.7*t_{min}$ = $\underline{6}$ mm $t_{c(actual)}$ = $0.7*Leg$ = $0.7*9$ = 6.3 mm

UG-45 Nozzle Neck Thickness Check

 $t_{a \text{ UG-}28} = 0.43 \text{ mm}$ t_a $\max[t_{a \text{ UG-}28}, t_{a \text{ UG-}22}]$ max[0.43, 0] 0.43 mm = P*R / (S*E - 0.6*P) + Corrosion t_{b2} 2.9143*1,675 / (1,380*1 - 0.6*2.9143) + 0 3.54 mm $= \max[t_{b2}, t_{b \text{ UG}16}]$ t_{b2} max[3.54, 1.5] = 3.54 mm $\min[t_{b3}, t_{b2}]$ t_b min[3.42, 3.54] = 3.42 mm $= \max[t_a, t_b]$ t_{UG-45} $= \max[0.43, 3.42]$ 3.42 mm

Available nozzle wall thickness new, $t_n = 0.875*8.74 = 7.65$ mm

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 175 °C) UG-28(c)

 $L/D_0 = 151.27/60.33 = 2.5076$ $D_0 / t = 60.33 / .43$ = 139.0659From table G: A = 0.000313From table CS-2 Metric: $B = 309.9467 \text{ kg/cm}^2 (303.95 \text{ bar})$ $= 4*B / (3*(D_o/t))$ = 4*303.95 / (3*(60.33 / .43))= 2.91 bar

Design thickness for external pressure $P_a = 2.91$ bar

 t_a = t + Corrosion = .43 + = .43 mm

Is split

ASME Section VIII Division 1, 2017 Edition Metric 14

Note: round inside edges per UG-76(c)						
No. of the state o						
Pettern existing chall						
Bottom existing shell						
275°						
3,168 mm						
1,840 mm						
No						
e						
NPS 2 Sch 160 DN 50						
No						
SA-106 B Smls Pipe (II-D Metric p. 14, ln. 10)						
42.85 mm						
8.74 mm						
7.65 mm						
0 mm						
81.15 mm						
151 mm						
14 mm						
0 bar						
1						
g Pad						
SA-516 70 (II-D Metric p. 18, ln. 33)						
4.50.00						
150.03 mm						

No

Welds						
Inner fillet, Leg ₄₁	9 mm					
Outer fillet, Leg ₄₂	11 mm					
Nozzle to vessel groove weld	14 mm					
Pad groove weld	14 mm					

¹Pipe minimum thickness = nominal thickness times pipe tolerance factor of 0.875.

ASME B16.5-2013 Flange					
Description	NPS 2 Class 300 WN A105				
Bolt Material	SA-193 B7 Bolt <= 64 (II-D Metric p. 388, ln. 32)				
Blind included	No				
Rated MDMT	-48°C				
Liquid static head	0 bar				
MAWP rating	43.72 bar @ 202°C				
MAP rating	51.1 bar @ 30°C				
Hydrotest rating	77 bar @ 30°C				
PWHT performed	Yes				
Impact Tested	No				
Circumferential joint radiography	Spot UW-11(b) Type 1				
Notes					
Flange rated MDMT per UCS-66(b)(3) = -105° C (Coincident ratio = 0.0705) Bolts rated MDMT per Fig UCS-66 note (c) = -48° C					

UCS-66 Material Toughness Requirements Nozzle						
$t_r = 3.6*21.42 / (1,180*1 - 0.6*3.6) =$	0.0655 mm					
Stress ratio = $t_r^* E^* / (t_n - c) = 0.0655*1 / (7.65 - 0) =$	0.0086					
Stress ratio \leq 0.35, MDMT per UCS-66(b)(3) =	-105°C					
Material is exempt from impact testing at the Design MDMT of 17°C.						

UCS-66 Material Toughness Requirements Pad	
$t_r = 3.6*1,675 / (1,380*1 - 0.6*3.6) =$	4.38 mm
Stress ratio = $t_r^*E^* / (t_n - c) = 4.38*1 / (14 - 0) =$	0.3126
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-105°C
Material is exempt from impact testing at the Design MDMT	Γ of 17°C.

Reinforcement Calculations for Internal Pressure

UG-37 Area Calculation Summary (cm ²)						UG-45 Summary (mm)		
	For P = 3.6 bar @ 202 °C						The nozzle passes UG-45	
A required							$t_{\rm req}$	t _{min}
l .	This nozzle is exempt from area calculations per UG-36(c)(3)(a)							7.65

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary							
Weld description	Actual weld size (mm)	Status					
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	6.3	weld size is adequate				
Pad to shell fillet (Leg ₄₂)	7	7.7	weld size is adequate				

Calculations for internal pressure 3.6 bar @ 202 °C

Parallel Limit of reinforcement per UG-40

$$\begin{split} L_R &= MAX(d, R_n + (t_n - C_n) + (t - C)) \\ &= MAX(42.85, 21.42 + (8.74 - 0) + (14 - 0)) \\ &= 44.16 \text{ mm} \end{split}$$

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = MIN(2.5*(t - C), 2.5*(t_{n} - C_{n}) + t_{e})$$

$$= MIN(2.5*(14 - 0), 2.5*(8.74 - 0) + 14)$$

$$= 35 \text{ mm}$$

Nozzle required thickness per UG-27(c)(1)

$$t_{rn}$$
 = $P*R_n / (S_n*E - 0.6*P)$
= $3.6*21.42 / (1,180*1 - 0.6*3.6)$
= 0.066 mm

Required thickness t, from UG-37(a)

$$t_{r}$$
 = P*R / (S*E - 0.6*P)
= 3.6*1,675 / (1,380*1 - 0.6*3.6)
= 4.38 mm

Required thickness t, per Interpretation VIII-1-07-50

```
t_r = P*R / (S*E - 0.6*P)
= 3.6*1,675 / (1,380*0.85 - 0.6*3.6)
= 5.15 mm
```

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c)(2) Weld Check

UG-45 Nozzle Neck Thickness Check

```
P*R_n / (S_n*E - 0.6*P) + Corrosion
t_{a \text{ UG-}27} =
               3.6*21.42 / (1,180*1 - 0.6*3.6) + 0
               0.066 mm
               \max[\ t_{a\,UG-27}\ ,\, t_{a\,UG-22}\ ]
t_a
               \max[0.066, 0]
               0.066 \text{ mm}
               P*R / (S*E - 0.6*P) + Corrosion
t_{b1}
               3.6*1,675 / (1,380*1 - 0.6*3.6) + 0
               4.38 mm
          =
               \max[t_{b1}, t_{b \cup G16}]
t_{b1}
               max[ 4.38, 1.5]
               4.38 mm
               \min[t_{b3}, t_{b1}]
t_{\rm b}
               min[ 3.42, 4.38]
               3.42 mm
        = \max[t_a, t_b]
t_{UG-45}
               max[ 0.066, 3.42]
               3.42 mm
         =
```

Available nozzle wall thickness new, $t_n = 0.875*8.74 = 7.65$ mm

The nozzle neck thickness is adequate.

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary (cm ²)						UG-45 Summary (mm)		
For Pe = 2.91 bar @ 175 °C						The nozzle passes UG-45		
A required	A1 A2 A2 A5						$t_{ m req}$	t _{min}
	This nozzle is exempt from area calculations per UG-36(c)(3)(a)						<u>3.42</u>	7.65

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary						
Weld description	Required weld size (mm)	Actual weld size (mm)	Status			
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	6.3	weld size is adequate			
Pad to shell fillet (Leg ₄₂)	7	7.7	weld size is adequate			

Calculations for external pressure 2.91 bar @ 175 °C

Parallel Limit of reinforcement per UG-40

$$L_{R} = MAX(d, R_{n} + (t_{n} - C_{n}) + (t - C))$$

$$= MAX(42.85, 21.42 + (8.74 - 0) + (14 - 0))$$

$$= 44.16 \text{ mm}$$

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = MIN(2.5*(t - C), 2.5*(t_{n} - C_{n}) + t_{e})$$

$$= MIN(2.5*(14 - 0), 2.5*(8.74 - 0) + 14)$$

$$= 35 \text{ mm}$$

Nozzle required thickness per UG-28 $t_{rn} = 0.43$ mm

From UG-37(d)(1) required thickness $t_r = 11.75 \text{ mm}$

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c)(2) Weld Check

Inner fillet:
$$t_{min}$$
 = lesser of 19 mm or t_n or t_e = 8.74 mm $t_{c(min)}$ = lesser of 6 mm or $0.7*t_{min}$ = $\underline{6}$ mm $t_{c(actual)}$ = $0.7*Leg$ = $0.7*9$ = 6.3 mm

Outer fillet: t_{min} = lesser of 19 mm or t_e or t = 14 mm $t_{w(min)} = 0.5 * t_{min} = 7 mm$ $t_{w(actual)} = 0.7*Leg = 0.7*11 = 7.7 \text{ mm}$

UG-45 Nozzle Neck Thickness Check

 $t_{a \text{ UG-}28} = 0.43 \text{ mm}$ t_a $\max[t_{a \text{ UG-}28}, t_{a \text{ UG-}22}]$ max[0.43, 0] 0.43 mm = P*R / (S*E - 0.6*P) + Corrosion t_{b2} 2.9143*1,675 / (1,380*1 - 0.6*2.9143) + 0 3.54 mm $= \max[t_{b2}, t_{b \text{ UG}16}]$ t_{b2} max[3.54, 1.5] = 3.54 mm $\min[t_{b3}, t_{b2}]$ t_b min[3.42, 3.54] = 3.42 mm $= \max[t_a, t_b]$ t_{UG-45} $= \max[0.43, 3.42]$ 3.42 mm

Available nozzle wall thickness new, $t_n = 0.875*8.74 = 7.65$ mm

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 175 °C) UG-28(c)

 $L/D_0 = 151.27/60.33 = 2.5076$ $D_0 / t = 60.33 / .43$ = 139.0659From table G: A = 0.000313From table CS-2 Metric: $B = 309.9467 \text{ kg/cm}^2 (303.95 \text{ bar})$ $= 4*B / (3*(D_o/t))$ = 4*303.95 / (3*(60.33 / .43))= 2.91 bar

Design thickness for external pressure $P_a = 2.91$ bar

 t_a = t + Corrosion = .43 + = .43 mm

Is split

+					
Note: round inside edges per UG-76(c)					
Location and Orientation					
Located on	Bottom existing shell				
Orientation	275°				
Nozzle center line offset to datum line	1,848 mm				
End of nozzle to shell center	1,840 mm				
Passes through a Category A joint	No				
Nozz	le				
Description	NPS 2 Sch 160 DN 50				
Access opening	No				
Material specification	SA-106 B Smls Pipe (II-D Metric p. 14, ln. 10)				
Inside diameter, new	42.85 mm				
Pipe nominal wall thickness	8.74 mm				
Pipe minimum wall thickness ¹	7.65 mm				
Corrosion allowance	0 mm				
Projection available outside vessel, Lpr	81.15 mm				
Projection available outside vessel to flange face, Lf	151 mm				
Local vessel minimum thickness	14 mm				
Liquid static head included	0.08 bar				
Longitudinal joint efficiency	1				
Reinforci	ng Pad				
Material specification	SA-516 70 (II-D Metric p. 18, ln. 33)				
Diameter, D_p	150.03 mm				
Thickness, t _e	14 mm				

No

Welds			
Inner fillet, Leg ₄₁	9 mm		
Outer fillet, Leg ₄₂	11 mm		
Nozzle to vessel groove weld	14 mm		
Pad groove weld	14 mm		

¹Pipe minimum thickness = nominal thickness times pipe tolerance factor of 0.875.

ASME B16.5-2013 Flange				
Description	NPS 2 Class 300 WN A105			
Bolt Material	SA-193 B7 Bolt <= 64 (II-D Metric p. 388, ln. 32)			
Blind included	No			
Rated MDMT	-48°C			
Liquid static head	0.08 bar			
MAWP rating 43.72 bar @ 202°C				
MAP rating	51.1 bar @ 30°C			
Hydrotest rating 77 bar @ 30°C				
PWHT performed Yes				
Impact Tested	No			
Circumferential joint radiography Spot UW-11(b) Type 1				
Notes				
Flange rated MDMT per UCS-66(b)(3) = -105° C (Coincident ratio = 0.072) Bolts rated MDMT per Fig UCS-66 note (c) = -48° C				

UCS-66 Material Toughness Requirements Nozzle					
$t_r = 3.68*21.42 / (1,180*1 - 0.6*3.68) =$	0.067 mm				
Stress ratio = $t_r^* E^* / (t_n - c) = 0.067*1 / (7.65 - 0) =$	0.0088				
Stress ratio ≤ 0.35 , MDMT per UCS-66(b)(3) =	-105°C				
Material is exempt from impact testing at the Design MDMT of 17°C.					

UCS-66 Material Toughness Requirements Pad					
$t_r = 3.68*1,675 / (1,380*1 - 0.6*3.68) =$	4.47 mm				
Stress ratio = $t_r *E^* / (t_n - c) = 4.47*1 / (14 - 0) =$	0.3196				
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-105°C				
Material is exempt from impact testing at the Design MDMT of 17°C.					

Reinforcement Calculations for Internal Pressure

UG-37	UG-37 Area Calculation Summary (cm ²)						UG Sumi (m	•
	For P = 3.68 bar @ 202 °C					The nozz		
A required							$t_{\rm req}$	t _{min}
	This nozzle is exempt from area calculations per UG-36(c)(3)(a)						3.42	7.65

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary						
Weld description	Required weld size (mm)	Actual weld size (mm)	Status			
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	6.3	weld size is adequate			
Pad to shell fillet (Leg ₄₂)	7	7.7	weld size is adequate			

Calculations for internal pressure 3.68 bar @ 202 °C

Parallel Limit of reinforcement per UG-40

$$L_{R} = MAX(d, R_{n} + (t_{n} - C_{n}) + (t - C))$$

$$= MAX(42.85, 21.42 + (8.74 - 0) + (14 - 0))$$

$$= 44.16 \text{ mm}$$

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = MIN(2.5*(t - C), 2.5*(t_{n} - C_{n}) + t_{e})$$

$$= MIN(2.5*(14 - 0), 2.5*(8.74 - 0) + 14)$$

Nozzle required thickness per UG-27(c)(1)

$$t_{rn}$$
 = P*R_n / (S_n*E - 0.6*P)
= 3.6807*21.42 / (1,180*1 - 0.6*3.6807)
= 0.066 mm

Required thickness t, from UG-37(a)

$$t_r$$
 = P*R / (S*E - 0.6*P)
= 3.6807*1,675 / (1,380*1 - 0.6*3.6807)
= 4.47 mm

Required thickness t, per Interpretation VIII-1-07-50

```
t<sub>r</sub> = P*R / (S*E - 0.6*P)
= 3.6807*1,675 / (1,380*0.85 - 0.6*3.6807)
= 5.27 mm
```

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c)(2) Weld Check

UG-45 Nozzle Neck Thickness Check

```
P*R_n / (S_n*E - 0.6*P) + Corrosion
t_{a \text{ UG-}27} =
               3.6807*21.42 / (1,180*1 - 0.6*3.6807) + 0
                0.066 \text{ mm}
          =
                \max[t_{a \text{ UG-27}}, t_{a \text{ UG-22}}]
t_a
                \max[0.066, 0]
                0.066 \text{ mm}
                P*R / (S*E - 0.6*P) + Corrosion
t_{b1}
                3.6807*1,675 / (1,380*1 - 0.6*3.6807) + 0
                4.48 mm
          =
                \max[t_{b1}, t_{b \cup G16}]
t_{b1}
                max[ 4.48, 1.5]
                4.48 mm
                \min[t_{b3}, t_{b1}]
t_{\rm b}
                min[ 3.42, 4.48]
               3.42 mm
        = \max[t_a, t_b]
t_{UG-45}
               max[ 0.066, 3.42]
                3.42 mm
          =
```

Available nozzle wall thickness new, $t_n = 0.875*8.74 = 7.65$ mm

The nozzle neck thickness is adequate.

UG-37	UG-37 Area Calculation Summary (cm²)					UG Sum (m		
	For Pe = 2.91 bar @ 175 °C					The nozz		
A required							$t_{\rm req}$	t _{min}
	This nozzle is exempt from area calculations per UG-36(c)(3)(a)						<u>3.42</u>	7.65

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary						
Weld description	Required weld size (mm)	Actual weld size (mm)	Status			
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	6.3	weld size is adequate			
Pad to shell fillet (Leg ₄₂)	7	7.7	weld size is adequate			

Calculations for external pressure 2.91 bar @ 175 °C

Parallel Limit of reinforcement per UG-40

$$L_{R} = MAX(d, R_{n} + (t_{n} - C_{n}) + (t - C))$$

$$= MAX(42.85, 21.42 + (8.74 - 0) + (14 - 0))$$

$$= 44.16 \text{ mm}$$

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = MIN(2.5*(t - C), 2.5*(t_{n} - C_{n}) + t_{e})$$

$$= MIN(2.5*(14 - 0), 2.5*(8.74 - 0) + 14)$$

$$= 35 \text{ mm}$$

Nozzle required thickness per UG-28 $t_{rn} = 0.43$ mm

From UG-37(d)(1) required thickness $t_r = 14 \text{ mm}$

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c)(2) Weld Check

Inner fillet:
$$t_{min}$$
 = lesser of 19 mm or t_n or t_e = 8.74 mm $t_{c(min)}$ = lesser of 6 mm or $0.7*t_{min}$ = $\underline{6}$ mm $t_{c(actual)}$ = $0.7*Leg$ = $0.7*9$ = 6.3 mm

UG-45 Nozzle Neck Thickness Check

 $t_{a \text{ UG-}28} = 0.43 \text{ mm}$ t_a $\max[t_{a \text{ UG-}28}, t_{a \text{ UG-}22}]$ max[0.43, 0] 0.43 mm = P*R / (S*E - 0.6*P) + Corrosion t_{b2} 2.9143*1,675 / (1,380*1 - 0.6*2.9143) + 0 3.54 mm $= \max[t_{b2}, t_{b \text{ UG}16}]$ t_{b2} max[3.54, 1.5] = 3.54 mm $\min[t_{b3}, t_{b2}]$ t_b min[3.42, 3.54] = 3.42 mm $= \max[t_a, t_b]$ t_{UG-45} $= \max[0.43, 3.42]$ 3.42 mm

Available nozzle wall thickness new, $t_n = 0.875*8.74 = 7.65$ mm

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 175 °C) UG-28(c)

 $L/D_0 = 151.27/60.33 = 2.5076$ $D_0 / t = 60.33 / .43$ = 139.0659From table G: A = 0.000313From table CS-2 Metric: $B = 309.9467 \text{ kg/cm}^2 (303.95 \text{ bar})$ $= 4*B / (3*(D_o/t))$ = 4*303.95 / (3*(60.33 / .43))= 2.91 bar

Design thickness for external pressure $P_a = 2.91$ bar

 t_a = t + Corrosion = .43 + = .43 mm

Thickness, t_e

Is split

ASME Section VIII Division 1, 2017 Edition Metric 14

Note: round inside edges per UG-76(c)					
Location and Orientation					
Located on	Bottom existing shell				
Orientation	305°				
Nozzle center line offset to datum line	1,673 mm				
End of nozzle to shell center	1,840 mm				
Passes through a Category A joint	No				
Nozzle					
Description	NPS 2 Sch 160 DN 50				
Access opening	No				
Material specification	SA-106 B Smls Pipe (II-D Metric p. 14, ln. 10)				
Inside diameter, new	42.85 mm				
Pipe nominal wall thickness	8.74 mm				
Pipe minimum wall thickness ¹	7.65 mm				
Corrosion allowance	0 mm				
Projection available outside vessel, Lpr	81.15 mm				
Projection available outside vessel to flange face, Lf	151 mm				
Local vessel minimum thickness	14 mm				
Liquid static head included	0.1 bar				
Longitudinal joint efficiency	1				
Reinforcing	g Pad				
Material specification	SA-516 70 (II-D Metric p. 18, ln. 33)				
Diameter, D _p	150.03 mm				

14 mm

No

Welds			
Inner fillet, Leg ₄₁	9 mm		
Outer fillet, Leg ₄₂	11 mm		
Nozzle to vessel groove weld	14 mm		
Pad groove weld	14 mm		

¹Pipe minimum thickness = nominal thickness times pipe tolerance factor of 0.875.

ASME B16.5-2013 Flange			
Description	NPS 2 Class 300 WN A105		
Bolt Material	SA-193 B7 Bolt <= 64 (II-D Metric p. 388, ln. 32)		
Blind included	No		
Rated MDMT	-48°C		
Liquid static head	0.1 bar		
MAWP rating	43.72 bar @ 202°C		
MAP rating	51.1 bar @ 30°C		
Hydrotest rating	77 bar @ 30°C		
PWHT performed	Yes		
Impact Tested	No		
Circumferential joint radiography Spot UW-11(b) Type 1			
Notes			
Flange rated MDMT per UCS-66(b)(3) = -105° C (Coincident ratio = 0.0723) Bolts rated MDMT per Fig UCS-66 note (c) = -48° C			

UCS-66 Material Toughness Requirements Nozzle			
$t_r = 3.7*21.42 / (1,180*1 - 0.6*3.7) =$	0.0673 mm		
Stress ratio = $t_r^* E^* / (t_n - c) = 0.0673*1 / (7.65 - 0) =$	0.0088		
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-105°C		
Material is exempt from impact testing at the Design MDMT of 17°C.			

UCS-66 Material Toughness Requirements Pad			
$t_r = 3.7*1,675 / (1,380*1 - 0.6*3.7) =$	4.5 mm		
Stress ratio = $t_r^* E^* / (t_n - c) = 4.5*1 / (14 - 0) =$	0.3212		
Stress ratio \leq 0.35, MDMT per UCS-66(b)(3) =	-105°C		
Material is exempt from impact testing at the Design MDMT of 17°C.			

Reinforcement Calculations for Internal Pressure

UG-37 Area Calculation Summary (cm ²)				UG Sumi (m	•		
	For P = 3.7 bar @ 202 °C					The nozzle passes UG-45	
A A A A A A A A A A A A A A A A A A A					$t_{\rm req}$	t _{min}	
This nozzle is exempt from area calculations per UG-36(c)(3)(a)						3.42	7.65

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary						
Weld description	Required weld size (mm)	Actual weld size (mm)	Status			
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	6.3	weld size is adequate			
Pad to shell fillet (Leg ₄₂)	7	7.7	weld size is adequate			

Calculations for internal pressure 3.7 bar @ 202 °C

Parallel Limit of reinforcement per UG-40

$$\begin{split} L_R &= MAX(d, R_n + (t_n - C_n) + (t - C)) \\ &= MAX(42.85, 21.42 + (8.74 - 0) + (14 - 0)) \\ &= 44.16 \text{ mm} \end{split}$$

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = MIN(2.5*(t - C), 2.5*(t_{n} - C_{n}) + t_{e})$$

$$= MIN(2.5*(14 - 0), 2.5*(8.74 - 0) + 14)$$

$$= 35 \text{ mm}$$

Nozzle required thickness per UG-27(c)(1)

$$t_{rn}$$
 = $P*R_n / (S_n*E - 0.6*P)$
= $3.699*21.42 / (1,180*1 - 0.6*3.699)$
= 0.066 mm

Required thickness t, from UG-37(a)

$$t_r$$
 = P*R / (S*E - 0.6*P)
= 3.699*1,675 / (1,380*1 - 0.6*3.699)
= 4.5 mm

Required thickness t, per Interpretation VIII-1-07-50

```
t_{r} = P*R / (S*E - 0.6*P)
= 3.699*1,675 / (1,380*0.85 - 0.6*3.699)
= 5.29 mm
```

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c)(2) Weld Check

```
\begin{array}{ll} \text{Inner fillet:} \  \, t_{min} &= \text{lesser of } 19 \text{ mm or } t_n \text{ or } t_e = 8.74 \text{ mm} \\ t_{c(min)} &= \text{lesser of } 6 \text{ mm or } 0.7^* t_{min} = \underline{6} \text{ mm} \\ t_{c(actual)} &= 0.7^* \text{Leg} = 0.7^* 9 = 6.3 \text{ mm} \\ \\ \text{Outer fillet:} \  \, t_{min} &= \text{lesser of } 19 \text{ mm or } t_e \text{ or } t = 14 \text{ mm} \\ t_{w(min)} &= 0.5^* t_{min} = \underline{7} \text{ mm} \\ t_{w(actual)} &= 0.7^* \text{Leg} = 0.7^* 11 = 7.7 \text{ mm} \\ \end{array}
```

UG-45 Nozzle Neck Thickness Check

```
P*R_n / (S_n*E - 0.6*P) + Corrosion
t_{a \text{ UG-}27} =
               3.699*21.42 / (1,180*1 - 0.6*3.699) + 0
               0.066 mm
               \max[t_{a \text{ UG-27}}, t_{a \text{ UG-22}}]
t_a
               \max[0.066, 0]
               0.066 \text{ mm}
               P*R / (S*E - 0.6*P) + Corrosion
t_{b1}
               3.699*1,675 / (1,380*1 - 0.6*3.699) + 0
               4.5 mm
          =
               \max[t_{b1}, t_{b \cup G16}]
t_{b1}
               max[ 4.5, 1.5]
               4.5 mm
               \min[t_{b3}, t_{b1}]
t_{\rm b}
               min[ 3.42, 4.5]
               3.42 mm
        = \max[t_a, t_b]
t_{UG-45}
          = \max[0.066, 3.42]
               3.42 mm
          =
```

Available nozzle wall thickness new, $t_n = 0.875*8.74 = 7.65$ mm

The nozzle neck thickness is adequate.

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary (cm²)				UG Sumi (m	mary		
	For Pe = 2.91 bar @ 175 °C					The nozz	
A required						$t_{\rm req}$	t _{min}
This nozzle is exempt from area calculations per UG-36(c)(3)(a)						<u>3.42</u>	7.65

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary						
Weld description	Required weld size (mm)	Actual weld size (mm)	Status			
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	6.3	weld size is adequate			
Pad to shell fillet (Leg ₄₂)	7	7.7	weld size is adequate			

Calculations for external pressure 2.91 bar @ 175 °C

Parallel Limit of reinforcement per UG-40

$$L_{R} = MAX(d, R_{n} + (t_{n} - C_{n}) + (t - C))$$

$$= MAX(42.85, 21.42 + (8.74 - 0) + (14 - 0))$$

$$= 44.16 \text{ mm}$$

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = MIN(2.5*(t - C), 2.5*(t_{n} - C_{n}) + t_{e})$$

$$= MIN(2.5*(14 - 0), 2.5*(8.74 - 0) + 14)$$

$$= 35 \text{ mm}$$

Nozzle required thickness per UG-28 $t_{rn} = 0.43$ mm

From UG-37(d)(1) required thickness $t_r = 14 \text{ mm}$

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c)(2) Weld Check

Inner fillet:
$$t_{min}$$
 = lesser of 19 mm or t_n or t_e = 8.74 mm $t_{c(min)}$ = lesser of 6 mm or $0.7*t_{min}$ = $\underline{6}$ mm $t_{c(actual)}$ = $0.7*Leg$ = $0.7*9$ = 6.3 mm

Outer fillet: t_{min} = lesser of 19 mm or t_e or t = 14 mm $t_{w(min)} = 0.5 * t_{min} = 7 mm$ $t_{w(actual)} = 0.7*Leg = 0.7*11 = 7.7 \text{ mm}$

UG-45 Nozzle Neck Thickness Check

 $t_{a \text{ UG-}28} = 0.43 \text{ mm}$ t_a $\max[t_{a \text{ UG-}28}, t_{a \text{ UG-}22}]$ max[0.43, 0] 0.43 mm = P*R / (S*E - 0.6*P) + Corrosion t_{b2} 2.9143*1,675 / (1,380*1 - 0.6*2.9143) + 0 3.54 mm $= \max[t_{b2}, t_{b \text{ UG}16}]$ t_{b2} max[3.54, 1.5] = 3.54 mm $\min[t_{b3}, t_{b2}]$ t_b min[3.42, 3.54] = 3.42 mm $= \max[t_a, t_b]$ t_{UG-45} $= \max[0.43, 3.42]$ 3.42 mm

Available nozzle wall thickness new, $t_n = 0.875*8.74 = 7.65$ mm

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 175 °C) UG-28(c)

 $L/D_0 = 151.27/60.33 = 2.5076$ $D_0 / t = 60.33 / .43$ = 139.0659From table G: A = 0.000313From table CS-2 Metric: $B = 309.9467 \text{ kg/cm}^2 (303.95 \text{ bar})$ $= 4*B / (3*(D_o/t))$ = 4*303.95 / (3*(60.33 / .43))= 2.91 bar

Design thickness for external pressure $P_a = 2.91$ bar

 t_a = t + Corrosion = .43 + = .43 mm

Is split

ASME Section VIII Division 1, 2017 Edition Metric 14

e.					
Note: round inside edges per UG-76(c)					
Location and Orientation					
Located on	Bottom existing shell				
Orientation	275°				
Nozzle center line offset to datum line	178 mm				
End of nozzle to shell center	1,840 mm				
Passes through a Category A joint	No				
Nozzl	e				
Description	NPS 2 Sch 160 DN 50				
Access opening	No				
Material specification	SA-106 B Smls Pipe (II-D Metric p. 14, ln. 10)				
Inside diameter, new	42.85 mm				
Pipe nominal wall thickness	8.74 mm				
Pipe minimum wall thickness ¹	7.65 mm				
Corrosion allowance	0 mm				
Projection available outside vessel, Lpr	81.15 mm				
Projection available outside vessel to flange face, Lf	151 mm				
Local vessel minimum thickness	14 mm				
Liquid static head included	0.26 bar				
Longitudinal joint efficiency	1				
Reinforcin	g Pad				
Material specification	SA-516 70 (II-D Metric p. 18, ln. 33)				
Diameter, D _p	150.03 mm				
Thickness, t _e	14 mm				

No

Welds				
Inner fillet, Leg ₄₁	9 mm			
Outer fillet, Leg ₄₂	11 mm			
Nozzle to vessel groove weld	14 mm			
Pad groove weld	14 mm			

¹Pipe minimum thickness = nominal thickness times pipe tolerance factor of 0.875.

ASME B16.5-2013 Flange			
Description	NPS 2 Class 300 WN A105		
Bolt Material	SA-193 B7 Bolt <= 64 (II-D Metric p. 388, ln. 32)		
Blind included	No		
Rated MDMT	-48°C		
Liquid static head	0.25 bar		
MAWP rating	43.72 bar @ 202°C		
MAP rating	51.1 bar @ 30°C		
Hydrotest rating	77 bar @ 30°C		
PWHT performed	Yes		
Impact Tested	No		
Circumferential joint radiography Spot UW-11(b) Type 1			
Notes			
Flange rated MDMT per UCS-66(b)(3) = -105° C (Coincident ratio = 0.0754) Bolts rated MDMT per Fig UCS-66 note (c) = -48° C			

UCS-66 Material Toughness Requirements Nozzle			
$t_r = 3.86*21.42 / (1,180*1 - 0.6*3.86) =$	0.0701 mm		
Stress ratio = $t_r^* E^* / (t_n - c) = 0.0701*1 / (7.65 - 0) =$	0.0092		
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-105°C		
Material is exempt from impact testing at the Design MDMT of 17°C.			

UCS-66 Material Toughness Requirements Pad				
$t_r = 3.86*1,675 / (1,380*1 - 0.6*3.86) =$	4.69 mm			
Stress ratio = $t_r^* E^* / (t_n - c) = 4.69*1 / (14 - 0) =$	0.3348			
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-105°C			
Material is exempt from impact testing at the Design MDMT of 17°C.				

Reinforcement Calculations for Internal Pressure

UG-37 Area Calculation Summary (cm²)				UG Sumi (m	•			
	For P = 3.86 bar @ 202 °C					The nozz		
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	$t_{\rm req}$	t _{min}
This nozzle is exempt from area calculations per UG-36(c)(3)(a)					3.42	7.65		

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary					
Weld description	Required weld size (mm)	Actual weld size (mm)	Status		
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	6.3	weld size is adequate		
Pad to shell fillet (Leg ₄₂)	7	7.7	weld size is adequate		

Calculations for internal pressure 3.86 bar @ 202 °C

Parallel Limit of reinforcement per UG-40

$$\begin{split} L_R &= MAX(d, R_n + (t_n - C_n) + (t - C)) \\ &= MAX(42.85, 21.42 + (8.74 - 0) + (14 - 0)) \\ &= 44.16 \text{ mm} \end{split}$$

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = MIN(2.5*(t - C), 2.5*(t_{n} - C_{n}) + t_{e})$$

$$= MIN(2.5*(14 - 0), 2.5*(8.74 - 0) + 14)$$

Nozzle required thickness per UG-27(c)(1)

$$t_{rn}$$
 = P*R_n / (S_n*E - 0.6*P)
= 3.855*21.42 / (1,180*1 - 0.6*3.855)
= 0.0711 mm

Required thickness t, from UG-37(a)

$$t_{r}$$
 = P*R / (S*E - 0.6*P)
= 3.855*1,675 / (1,380*1 - 0.6*3.855)
= 4.69 mm

Required thickness t, per Interpretation VIII-1-07-50

```
t_r = P*R / (S*E - 0.6*P)
= 3.855*1,675 / (1,380*0.85 - 0.6*3.855)
= 5.52 mm
```

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c)(2) Weld Check

UG-45 Nozzle Neck Thickness Check

```
P*R_n / (S_n*E - 0.6*P) + Corrosion
t_{a \text{ UG-}27} =
              3.855*21.42 / (1,180*1 - 0.6*3.855) + 0
          = 0.0711 \text{ mm}
               \max[t_{a \text{ UG-}27}, t_{a \text{ UG-}22}]
t_a
               max[ 0.0711, 0 ]
               0.0711 mm
               P*R / (S*E - 0.6*P) + Corrosion
t_{b1}
               3.855*1,675 / (1,380*1 - 0.6*3.855) + 0
               4.69 mm
          =
               \max[t_{b1}, t_{b \cup G16}]
t_{b1}
               max[ 4.69, 1.5]
               4.69 mm
               \min[t_{b3}, t_{b1}]
t_{\rm b}
               min[ 3.42, 4.69]
               3.42 mm
        = \max[t_a, t_b]
t_{UG-45}
               max[ 0.0711, 3.42]
               3.42 mm
         =
```

Available nozzle wall thickness new, $t_n = 0.875*8.74 = 7.65$ mm

The nozzle neck thickness is adequate.

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary (cm ²)				UG-45 Summary (mm)			
For Pe = 2.91 bar @ 175 °C				The nozzle passes UG-45			
A required	A1 A2 A2 A5				A welds	$t_{ m req}$	t _{min}
This nozzle is exempt from area calculations per UG-36(c)(3)(a)					<u>3.42</u>	7.65	

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary					
Weld description	Required weld size (mm)	Actual weld size (mm)	Status		
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	6.3	weld size is adequate		
Pad to shell fillet (Leg ₄₂)	7	7.7	weld size is adequate		

Calculations for external pressure 2.91 bar @ 175 °C

Parallel Limit of reinforcement per UG-40

$$L_{R} = MAX(d, R_{n} + (t_{n} - C_{n}) + (t - C))$$

$$= MAX(42.85, 21.42 + (8.74 - 0) + (14 - 0))$$

$$= 44.16 \text{ mm}$$

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = MIN(2.5*(t - C), 2.5*(t_{n} - C_{n}) + t_{e})$$

$$= MIN(2.5*(14 - 0), 2.5*(8.74 - 0) + 14)$$

$$= 35 \text{ mm}$$

Nozzle required thickness per UG-28 $t_{rn} = 0.43$ mm

From UG-37(d)(1) required thickness $t_r = 14 \text{ mm}$

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c)(2) Weld Check

Inner fillet:
$$t_{min}$$
 = lesser of 19 mm or t_n or t_e = 8.74 mm $t_{c(min)}$ = lesser of 6 mm or $0.7*t_{min}$ = $\underline{6}$ mm $t_{c(actual)}$ = $0.7*Leg$ = $0.7*9$ = 6.3 mm

Outer fillet: t_{min} = lesser of 19 mm or t_e or t = 14 mm $t_{w(min)} = 0.5 * t_{min} = 7 mm$ $t_{w(actual)} = 0.7*Leg = 0.7*11 = 7.7 \text{ mm}$

UG-45 Nozzle Neck Thickness Check

 $t_{a \text{ UG-}28} = 0.43 \text{ mm}$ t_a $\max[t_{a \text{ UG-}28}, t_{a \text{ UG-}22}]$ max[0.43, 0] 0.43 mm = P*R / (S*E - 0.6*P) + Corrosion t_{b2} 2.9143*1,675 / (1,380*1 - 0.6*2.9143) + 0 3.54 mm $= \max[t_{b2}, t_{b \text{ UG}16}]$ t_{b2} max[3.54, 1.5] = 3.54 mm $\min[t_{b3}, t_{b2}]$ t_b min[3.42, 3.54] = 3.42 mm $= \max[t_a, t_b]$ t_{UG-45} $= \max[0.43, 3.42]$ 3.42 mm

Available nozzle wall thickness new, $t_n = 0.875*8.74 = 7.65$ mm

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 175 °C) UG-28(c)

 $L/D_0 = 151.27/60.33 = 2.5076$ $D_0 / t = 60.33 / .43$ = 139.0659From table G: A = 0.000313From table CS-2 Metric: $B = 309.9467 \text{ kg/cm}^2 (303.95 \text{ bar})$ $= 4*B / (3*(D_o/t))$ = 4*303.95 / (3*(60.33 / .43))= 2.91 bar

Design thickness for external pressure $P_a = 2.91$ bar

 t_a = t + Corrosion = .43 + = .43 mm

Note: round inside edges per UG-76(c)

rvote. Found inside edges per od-70(e)			
Location and Orientation			
Located on	Bottom Head		
Orientation	90°		
End of nozzle to datum line	-1,614.4 mm		
Calculated as hillside	No		
Distance to head center, R	0 mm		
Passes through a Category A joint	No		
Nozzle			
Access opening No			

Nozzle			
Access opening	No		
Material specification	SA-516 70 (II-D Metric p. 18, ln. 33)		
Inside diameter, new	380.4 mm		
Nominal wall thickness	13 mm		
Corrosion allowance	3 mm		
Projection available outside vessel, Lpr	770.68 mm		
Local vessel minimum thickness	12.4 mm		
Liquid static head included	0.44 bar		
Longitudinal joint efficiency	1		

Reinforcing Pad				
Material specification SA-516 70 (II-D Metric p. 18, ln. 33)				
Diameter, D _p	780 mm			
Thickness, t _e	15 mm			
Is split	No			
Wolde				

Welds			
Inner fillet, Leg ₄₁	9 mm		

Outer fillet, Leg ₄₂	12 mm
Nozzle to vessel groove weld	12.4 mm
Pad groove weld	15 mm

UCS-66 Material Toughness Requirements Nozzle At Intersection	
Governing thickness, $t_g =$	13 mm
Exemption temperature from Fig UCS-66M Curve B =	-21.25°C
$t_r = 4.04*0.8984*3,356 / (2*1,380*1 - 0.2*4.04) =$	4.41 mm
Stress ratio = $t_r *E^* / (t_n - c) = 4.41*1 / (12.4 - 3) =$	0.4695
Reduction in MDMT, T _R from Fig UCS-66.1M =	35.5°C
Reduction in MDMT, T _{PWHT} from UCS-68(c) =	17°C
$MDMT = max[MDMT - T_R - T_{PWHT}, -48] = max[-21.25 - 35.5 - 17, -48] =$	-48°C
Material is exempt from impact testing at the Design MDMT of 17°C.	

UCS-66 Material Toughness Requirements Nozzle			
$t_r = 4.04*193.2 / (1,380*1 - 0.6*4.04) =$	0.57 mm		
Stress ratio = $t_r^* E^* / (t_n - c) = 0.57*1 / (13 - 3) =$	0.0566		
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-105°C		
Material is exempt from impact testing at the Design MDMT of 17°C.			

UCS-66 Material Toughness Requirements Pad	
Governing thickness, $t_g =$	13 mm
Exemption temperature from Fig UCS-66M Curve B =	-21.25°C
$t_r = 4.04*0.8984*3,356 / (2*1,380*1 - 0.2*4.04) =$	4.41 mm
Stress ratio = $t_r *E^* / (t_n - c) = 4.41*1 / (12.4 - 3) =$	0.4695
Reduction in MDMT, T _R from Fig UCS-66.1M =	35.5°C
Reduction in MDMT, T _{PWHT} from UCS-68(c) =	17°C
$MDMT = max[MDMT - T_R - T_{PWHT}, -48] = max[-21.25 - 35.5 - 17, -48] =$	-48°C
Material is exempt from impact testing at the Design MDMT of 17°C.	

UG-37 Area Calculation Summary (cm²)							UG-45 Summary (mm)	
For P = 4.04 bar @ 202 °C The opening is adequately reinforced							The nozzle passes UG-45	
A required	A available	A ₁	A ₂	A3	A ₅	A welds	$t_{\rm req}$	t _{min}
17.0518	<u>79.4727</u>	19.2709	4.4342		<u>54.9598</u>	0.8077	<u>7.9</u>	13

UG-41 Weld Failure Path Analysis Summary (kg _f)							
All failure paths are stronger than the applicable weld loads							
Weld load W	Weld load W ₁₋₁	Path 1-1 strength	Weld load W ₂₋₂	Path 2-2 strength	Weld load W ₃₋₃	Path 3-3 strength	
-1,719	84,716	162,716	10,022	201,819	87,362	163,869	

UW-16 Weld Sizing Summary							
Weld description	Required weld size (mm)	Actual weld size (mm)	Status				
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	6.3	weld size is adequate				
Pad to shell fillet (Leg ₄₂)	<u>6</u>	8.4	weld size is adequate				
Nozzle to shell groove (Lower)	7	9.4	weld size is adequate				

Calculations for internal pressure 4.04 bar @ 202 °C

Parallel Limit of reinforcement per UG-40

$$L_{R} = MAX(d, R_{n} + (t_{n} - C_{n}) + (t - C))$$

$$= MAX(386.4, 193.2 + (13 - 3) + (12.4 - 3))$$

$$= 386.4 \text{ mm}$$

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = MIN(2.5*(t - C), 2.5*(t_{n} - C_{n}) + t_{e})$$

$$= MIN(2.5*(12.4 - 3), 2.5*(13 - 3) + 15)$$

$$= 23.5 \text{ mm}$$

Nozzle required thickness per UG-27(c)(1)

$$t_{rn} = P*R_n / (S_n*E - 0.6*P)$$

$$= 4.0385*193.2 / (1,380*1 - 0.6*4.0385)$$

$$= 0.57 \text{ mm}$$

Required thickness t_r from UG-37(a)(c)

$$t_r$$
 = P*K₁*D / (2*S*E - 0.2*P)
= 4.0385*0.8984*3,356 / (2*1,380*1 - 0.2*4.0385)
= 4.41 mm

Required thickness t, per Interpretation VIII-1-07-50

$$t_r$$
 = P*D*K / (2*S*E - 0.2*P)
= 4.04*3,356*0.997623 / (2*1,380*1 - 0.2*4.04)
= 4.9 mm

Area required per UG-37(c)

Allowable stresses: $S_n = 1,407.207$, $S_v = 1,407.207$, $S_p = 1,407.207$ kg_f/cm² $f_{r1} = lesser of 1 or S_n / S_v = 1$ $f_{r2} = lesser of 1 or S_n / S_v = 1$ $f_{r3} = lesser of f_{r2} or S_p / S_v = 1$ $f_{r4} = lesser of 1 or S_p / S_v = 1$ $A = d*t_r*F + 2*t_n*t_r*F*(1 - f_{r1})$ = (386.4*4.41*1 + 2*10*4.41*1*(1 - 1)) / 100

Area available from FIG. UG-37.1

 $= 17.0518 \text{ cm}^2$

 $A_1 = larger of the following = 19.2709 cm^2$

$$= d^*(E_1^*t - F^*t_r) - 2^*t_n^*(E_1^*t - F^*t_r)^*(1 - f_{r1})$$

$$= (386.4^*(1^*9.4 - 1^*4.41) - 2^*10^*(1^*9.4 - 1^*4.41)^*(1 - 1)) / 100$$

$$= 19.2709 \text{ cm}^2$$

$$= 2^*(t + t_n)^*(E_1^*t - F^*t_r) - 2^*t_n^*(E_1^*t - F^*t_r)^*(1 - f_{r1})$$

$$= (2^*(9.4 + 10)^*(1^*9.4 - 1^*4.41) - 2^*10^*(1^*9.4 - 1^*4.41)^*(1 - 1)) / 100$$

$$= 1.9348 \text{ cm}^2$$

 A_2 = smaller of the following= 4.4342 cm²

$$= 5*(t_n - t_m)*f_{r2}*t$$

$$= (5*(10 - 0.57)*1*9.4) / 100$$

$$= 4.4342 \text{ cm}^2$$

$$= 2*(t_n - t_m)*(2.5*t_n + t_e)*f_{r2}$$

$$= (2*(10 - 0.57)*(2.5*10 + 15)*1) / 100$$

$$= 7.5471 \text{ cm}^2$$

$$A_{41} = \text{Leg}^{2*}f_{r3}$$

$$= (8.99^{2*}1) / 100$$

$$= 0.8077 \text{ cm}^{2}$$

(Part of the weld is outside of the limits)

(Part of the weld is outside of the limits)

$$A_5 = (D_p - d - 2*t_n)*t_e*f_{r4}$$

$$= ((772.8 - 386.4 - 2*10)*15*1) / 100$$

$$= 54.9598 \text{ cm}^2$$

Area =
$$A_1 + A_2 + A_{41} + A_{42} + A_5$$

= $19.2709 + 4.4342 + 0.8077 + 0 + 54.9598$
= 79.4727 cm^2

As Area \geq A the reinforcement is adequate.

UW-16(d) Weld Check

Inner fillet:
$$t_{min}$$
 = lesser of 19 mm or t_n or t_e = 10 mm
$$t_{c(min)}$$
 = lesser of 6 mm or $0.7*t_{min} = \underline{6}$ mm
$$t_{c(actual)}$$
 = $0.7*Leg = 0.7*9 = 6.3$ mm

Outer fillet:
$$t_{min}$$
 = lesser of 19 mm or t_e or $t = 12$ mm
$$t_{w(min)} = 0.5*t_{min} = \underline{6} \text{ mm}$$
$$t_{w(actual)} = 0.7*Leg = 0.7*12 = 8.4 \text{ mm}$$

Lower groove:
$$t_{min}$$
 = lesser of 19 mm or t_n or $t = 10$ mm
$$t_{w(min)} = 0.7*t_{min} = 7 \text{ mm}$$
$$t_{w(actual)} = 9.4 \text{ mm}$$

UG-45 Nozzle Neck Thickness Check

Interpretation VIII-1-83-66 has been applied.

$$\begin{array}{lll} t_{a\,UG-27} & = & P^*R_n\,/\,(S_n^*E - 0.6^*P) + Corrosion \\ & = & 4.0398*193.2\,/\,(1,380*1 - 0.6*4.0398) + 3 \\ & = & 3.57 \text{ mm} \\ \\ t_a & = & \max[\,\,t_{a\,UG-27}\,,\,t_{a\,UG-22}\,] \\ & = & \max[\,\,3.57\,\,,\,0\,\,] \\ & = & 3.57 \text{ mm} \\ \\ t_{b1} & = & 7.9 \text{ mm} \\ \\ t_{b1} & = & \max[\,\,t_{b1}\,,\,t_{b\,UG16}\,] \\ & = & \max[\,\,7.9\,\,,\,4.5\,\,] \\ & = & 7.9 \text{ mm} \end{array}$$

$$\begin{array}{rcl} t_{\rm b} & = & \min[\,t_{\rm b3}\,,\,t_{\rm b1}\,] \\ & = & \min[\,11.33\,,\,7.9\,] \\ & = & 7.9\,{\rm mm} \end{array}$$

$$t_{\rm UG-45} & = & \max[\,t_{\rm a}\,,\,t_{\rm b}\,] \\ & = & \max[\,3.57\,,\,7.9\,] \\ & = & 7.9\,{\rm mm} \end{array}$$

Available nozzle wall thickness new, $t_n = 13 \text{ mm}$

The nozzle neck thickness is adequate.

Allowable stresses in joints UG-45 and UW-15(c)

Groove weld in tension: $0.74*1,407.207 = 1,041.333 \text{ kg}/\text{cm}^2$ Nozzle wall in shear: $0.7*1,407.207 = 985.045 \text{ kg}/\text{cm}^2$ Inner fillet weld in shear: $0.49*1,407.207 = 689.532 \text{ kg}/\text{cm}^2$ Outer fillet weld in shear: $0.49*1,407.207 = 689.532 \text{ kg}/\text{cm}^2$ Upper groove weld in tension: $0.74*1,407.207 = 1,041.333 \text{ kg}_f/\text{cm}^2$

Strength of welded joints:

- (1) Inner fillet weld in shear $(\pi / 2)$ *Nozzle OD*Leg*S_i = $(\pi / 2)$ *406.4*9*689.532 = 39,616 kg_f
- (2) Outer fillet weld in shear $(\pi / 2)$ *Pad OD*Leg*S_o = $(\pi / 2)$ *780*12*689.532 = 101,379.53 kg_f
- (3) Nozzle wall in shear $(\pi / 2)$ *Mean nozzle dia* t_n * S_n = $(\pi / 2)$ *396.4*10*985.045 = 61,336.79 kg_f
- (4) Groove weld in tension $(\pi / 2)*Nozzle OD*t_w*S_g = (\pi / 2)*406.4*9.4*1,041.333 = 62,489.01 kg_f$
- (6) Upper groove weld in tension $(\pi / 2)$ *Nozzle OD* t_w *S $_g = (\pi / 2)$ *406.4*15*1,041.333 = 99,713.74 kg $_f$

Loading on welds per UG-41(b)(1)

$$\begin{split} W &= & (A - A_1 + 2^*t_n^*f_{r1}^*(E_1^*t - F^*t_r))^*S_v \\ &= & (1,705.1794 - 1,927.0929 + 2^*10^*1^*(1^*9.4 - 1^*4.41))^*1,407.207 \\ &= & -1.719.13 \text{ kg}_f \end{split}$$

$$W_{1-1} &= & (A_2 + A_5 + A_{41} + A_{42})^*S_v \\ &= & (443.4185 + 5,495.9844 + 80.774 + 0)^*1,407.207 \\ &= & \underline{84,716.44} \text{ kg}_f \end{split}$$

$$\begin{split} W_{2\text{-}2} &= & (A_2 + A_3 + A_{41} + A_{43} + 2^* t_n^* t^* f_{r1})^* S_v \\ &= & (443.4185 + 0 + 80.774 + 0 + 2^* 10^* 9.4^* 1)^* 1,407.207 \\ &= & \underline{10.022.18} \text{ kg}_f \end{split}$$

$$\begin{aligned} W_{3\text{-}3} &= & (A_2 + A_3 + A_5 + A_{41} + A_{42} + A_{43} + 2^* t_n^* t^* f_{r1})^* S_v \\ &= & (443.4185 + 0 + 5,495.9844 + 80.774 + 0 + 0 + 2^* 10^* 9.4^* 1)^* 1,407.207 \\ &= & 87,362.14 \text{ kg}_f \end{aligned}$$

Load for path 1-1 lesser of W or $W_{1-1} = -1,719.13 \text{ kg}_f$ Path 1-1 through (2) & (3) = $101,379.53 + 61,336.79 = 162,716.31 \text{ kg}_{\text{f}}$ Path 1-1 is stronger than W so it is acceptable per UG-41(b)(2).

Load for path 2-2 lesser of W or $W_{2-2} = -1,719.13 \text{ kg}_f$ Path 2-2 through (1), (4), (6) = $39,616 + 62,489.01 + 99,713.74 = 201,818.75 \text{ kg}_f$ Path 2-2 is stronger than W so it is acceptable per UG-41(b)(2).

Load for path 3-3 lesser of W or $W_{3-3} = -1,719.13 \text{ kg}_f$ Path 3-3 through (2), (4) = $101,379.53 + 62,489.01 = 163,868.53 \text{ kg}_f$ Path 3-3 is stronger than W so it is acceptable per UG-41(b)(2).

% Extreme fiber elongation - UCS-79(d)

EFE =
$$(50*t / R_f)*(1 - R_f / R_o)$$

= $(50*13 / 196.7)*(1 - 196.7 / infinity)$
= 3.3045%

The extreme fiber elongation does not exceed 5%.

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary (cm ²)							UG-45 Summary (mm)	
For Pe = 1.18 bar @ 175 $^{\circ}$ C The opening is adequately reinforced							The nozzle passes UG-45	
A required	A available	A ₁	A ₂	A3	A ₅	A welds	$t_{\rm req}$	t _{min}
18.1608	<u>58.9179</u>	0.0006	3.1497		54.9598	0.8077	6.3	13

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary							
Weld description	Required weld size (mm)	Actual weld size (mm)	Status				
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	6.3	weld size is adequate				
Pad to shell fillet (Leg ₄₂)	<u>6</u>	8.4	weld size is adequate				
Nozzle to shell groove (Lower)	7	9.4	weld size is adequate				

Calculations for external pressure 1.18 bar @ 175 °C

Parallel Limit of reinforcement per UG-40

$$L_{R} = MAX(d, R_{n} + (t_{n} - C_{n}) + (t - C))$$

$$= MAX(386.4, 193.2 + (13 - 3) + (12.4 - 3))$$

$$= 386.4 \text{ mm}$$

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = MIN(2.5*(t - C), 2.5*(t_{n} - C_{n}) + t_{e})$$

$$= MIN(2.5*(12.4 - 3), 2.5*(13 - 3) + 15)$$

$$= 23.5 \text{ mm}$$

Nozzle required thickness per UG-28 t_{rn} = 3.3 mm

From UG-37(d)(1) required thickness $t_r = 9.4 \text{ mm}$

Area required per UG-37(d)(1)

Allowable stresses:
$$S_n = 1,407.207$$
, $S_v = 1,407.207$, $S_p = 1,407.207$ kg/cm²
$$f_{r1} = lesser\ of\ 1\ or\ S_n\ /\ S_v = 1$$

$$f_{r2} = lesser\ of\ 1\ or\ S_n\ /\ S_v = 1$$

$$f_{r4} = lesser of 1 or S_p / S_v = 1$$

$$A = 0.5*(d*t_r*F + 2*t_n*t_r*F*(1 - f_{r1}))$$

$$= (0.5*(386.4*9.4*1 + 2*10*9.4*1*(1 - 1))) / 100$$

$$= 18.1608 \text{ cm}^2$$

Area available from FIG. UG-37.1

 $A_1 = larger of the following = 0.0006 cm^2$

$$= d^*(E_1^*t - F^*t_r) - 2^*t_n^*(E_1^*t - F^*t_r)^*(1 - f_{r1})$$

$$= (386.4^*(1^*9.4 - 1^*9.4) - 2^*10^*(1^*9.4 - 1^*9.4)^*(1 - 1)) / 100$$

$$= 0.0006 \text{ cm}^2$$

$$= 2^*(t + t_n)^*(E_1^*t - F^*t_r) - 2^*t_n^*(E_1^*t - F^*t_r)^*(1 - f_{r1})$$

$$= (2^*(9.4 + 10)^*(1^*9.4 - 1^*9.4) - 2^*10^*(1^*9.4 - 1^*9.4)^*(1 - 1)) / 100$$

$$= 0 \text{ cm}^2$$

 A_2 = smaller of the following= 3.1497 cm²

$$= 5*(t_n - t_m)*f_{r2}*t$$

$$= (5*(10 - 3.3)*1*9.4) / 100$$

$$= 3.1497 \text{ cm}^2$$

$$= 2*(t_n - t_m)*(2.5*t_n + t_e)*f_{r2}$$

$$= (2*(10 - 3.3)*(2.5*10 + 15)*1) / 100$$

$$= 5.3606 \text{ cm}^2$$

$$A_{41} = \text{Leg}^{2*}f_{r3}$$

$$= (8.99^{2*}1) / 100$$

$$= 0.8077 \text{ cm}^{2}$$

(Part of the weld is outside of the limits)

$$A_{42} = Leg^{2*}f_{r4}$$

= $(0^{2*}1) / 100$
= 0 cm^2

(Part of the weld is outside of the limits)

$$A_5 = (D_p - d - 2*t_n)*t_e*f_{r4}$$

$$= ((772.8 - 386.4 - 2*10)*15*1) / 100$$

$$= 54.9598 \text{ cm}^2$$

Area =
$$A_1 + A_2 + A_{41} + A_{42} + A_5$$

```
0.0006 + 3.1497 + 0.8077 + 0 + 54.9598
58.9179 cm<sup>2</sup>
```

As Area \geq A the reinforcement is adequate.

UW-16(d) Weld Check

$$\begin{split} \text{Inner fillet:} \ t_{\text{min}} &= \text{lesser of } 19 \text{ mm or } t_{\text{n}} \text{ or } t_{\text{e}} = 10 \text{ mm} \\ t_{\text{c(min)}} &= \text{lesser of } 6 \text{ mm or } 0.7^* t_{\text{min}} = \underline{6} \text{ mm} \\ t_{\text{c(actual)}} &= 0.7^* \text{Leg} = 0.7^* 9 = 6.3 \text{ mm} \end{split}$$

$$\begin{aligned} \text{Outer fillet:} \ t_{\text{min}} &= \text{lesser of } 19 \text{ mm or } t_{\text{e}} \text{ or } t = 12 \text{ mm} \\ t_{\text{w(min)}} &= 0.5^* t_{\text{min}} = \underline{6} \text{ mm} \\ t_{\text{w(actual)}} &= 0.7^* \text{Leg} = 0.7^* 12 = 8.4 \text{ mm} \end{aligned}$$

$$\begin{aligned} \text{Lower groove:} \ t_{\text{min}} &= \text{lesser of } 19 \text{ mm or } t_{\text{n}} \text{ or } t = 10 \text{ mm} \\ t_{\text{w(min)}} &= 0.7^* t_{\text{min}} = \underline{7} \text{ mm} \\ t_{\text{w(actual)}} &= 9.4 \text{ mm} \end{aligned}$$

UG-45 Nozzle Neck Thickness Check

Interpretation VIII-1-83-66 has been applied.

```
6.3 mm
t_{a \text{ UG-28}} =
t_a
                 \max[t_{a \text{ UG-}28}, t_{a \text{ UG-}22}]
                 max[ 6.3, 0]
                 6.3 mm
                 4.43 mm
t_{b2}
                 \max[t_{b2}, t_{b \text{ UG}16}]
t_{b2}
                 max[ 4.43 , 4.5 ]
                 4.5 mm
                 min[t_{b3}, t_{b2}]
t_b
                 min[ 11.33, 4.5]
                 4.5 mm
                 \max[t_a, t_b]
          =
t_{UG-45}
           =
                 max[ 6.3, 4.5]
                 6.3 mm
```

Available nozzle wall thickness new, $t_n = 13 \text{ mm}$

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 175 °C) UG-28(c)

 $L/D_o = 3,058.64/406.4 = 7.5262$ $D_0 / t = 406.4 / 3.3 = 123.1627$

From table G: A = 0.000113

From table CS-2 Metric: $B = 111.4156 \text{ kg/cm}^2 (109.26 \text{ bar})$

 $P_a = 4*B/(3*(D_o/t))$ = 4*109.26 / (3*(406.4 / 3.3))= 1.18 bar

Design thickness for external pressure $P_a = 1.18$ bar

 $t_a = t + Corrosion = 3.3 + 3 = 6.3 \text{ mm}$

Access Opening (A1)

ASME Section VIII Division 1, 2017 Edition Metric						
Compor	nent	Skirt Opening				
Descrip	tion	Access Opening				
Drawing 1	Mark		A1			
Sleeve Ma	terial	SA-516	70 (II-D Metric p. 18, ln. 33)			
	Lo	cation and	l Orientation			
Attache	d to		Support Skirt #2			
Orienta	tion		radial			
Offset,	L		900 mm			
Angle,	, θ	330°				
Distanc	e, r	1,769 mm				
Throug Category F		No				
		Dime	nsions			
Inside Dia	meter	450 mm				
Nominal Wall Thickness		14 mm	130			
Skirt Thic	Skirt Thickness		14			
Leg ₄	1	9 mm				
Leg ₄₃		9 mm	i			
External Projection Available, L _{pr1}		80 mm				
$\begin{array}{c} \textbf{Internal} \\ \textbf{Projection, L}_{\text{pr2}} \end{array}$		130 mm	9 4 6			
Corrosion	Inner	0 mm				

Outer

0 mm

Skirt Opening Reinforcement Calculations				
$L_{R} = min[(R_{eff}^* t)^{0.5}, 2*R_{n}]$	(4.5.4)			
$L_{HI} = min[1.5*t, t_e] + (R_n * t_n)^{0.5}$	(4.5.11)			
$L_{\rm H2} = L_{\rm pr1}$	(4.5.12)			
$L_{\rm H3} = 8*(t + t_{\rm e})$	(4.5.13)			
$L_{\rm H} = \min[\ L_{\rm H1}, L_{\rm H2}, L_{\rm H3}] + t$	(4.5.14)			
$L_{11} = (R_n * t_n)^{0.5}$	(4.5.16)			
$\boxed{L_{I2} = L_{pr2}}$	(4.5.17)			
$L_{I3} = 8*(t + t_e)$	(4.5.18)			
$L_{I} = min[L_{I1}, L_{I2}, L_{I3}]$	(4.5.19)			
$f_{r1} = min[S_n / S, 1]$				
$f_{r2} = \min[S_n / S, 1]$				
$A_1 = 2*L_R*(E_1*t - t_r)$				
$A_2 = 2*(L_H - t_r)*t_n*f_{r2}$				
$A_3 = 2*L_1*t_i*f_{r_2}$				
$A_{41} = L_{41}^{2*} f_{r2}$				
$A_{43} = L_{43}^{2*} f_{r2}$				
$A_{T} = A_{1} + A_{2} + A_{3} + A_{41} + A_{43}$				
$A_{r} = d*t_{r} + 2*t_{n}*t_{r}*(1 - f_{r1})$				
New				
$L_R = min[(1,679*10)^{0.5}, 2*225] =$	129.58 mm			
$L_{\rm HI} = \min[\ 1.5*10\ , 0] + (225*14)^{0.5} =$	56.12 mm			
L _{H2} = 80 =	80 mm			
$L_{\rm H3} = 8*(10+0) =$	80 mm			
L _H = min[56.12, 80, 80] + 10 =	66.12 mm			
$L_{11} = (225*14)^{0.5} =$	56.12 mm			
$L_{12} = L_{pr2} =$	130 mm			
$L_{I3} = 8*(10+0) =$	80 mm			
L _I = min[56.12, 130, 80] =	56.12 mm			
Corroded				
$L_R = min[(1,680.6*8.4)^{0.5}, 2*225] =$	118.82 mm			
$L_{H1} = min[1.5*8.4, 0] + (225*14)^{0.5} =$	56.12 mm			
L _{H2} = 80 =	80 mm			
$L_{H3} = 8*(8.4 + 0) =$	67.2 mm			
$L_{\rm H} = \min[56.12, 80, 67.2] + 8.4 =$	64.52 mm			
$L_{11} = (225*12.4)^{0.5} =$	52.82 mm			

$L_{I3} = 8*(8.4+0) = 6$	28.4 mm 57.2 mm			
	1 / / HITTI			
$L_r = 1111111 \ J2.02, 120.4, 07.21 = 13$				
	52.82 mm			
Operating Hot & Corroded Wind Tensile f . = min[1.407.21 / 1.101.29 , 1] = 1				
rı Eyran Ayran				
	-			
	8.1245 cm ²			
	7.8506 cm ²			
	3.0995 cm ²			
41	0.81 cm ²			
43	0.4539 cm ²			
	50.3385 cm ²			
	3.4777 cm ²			
$A_T = 50.3385 \text{ cm}^2 \ge A_r = 3.4777 \text{ cm}^2$				
Operating Hot & Corroded Wind Compressive	ve .			
$f_{r1} = min[1,407.21/1,101.29,1] = 1$	-			
$f_{r2} = min[1,407.21/1,101.29,1] = 1$	-			
$A_1 = \{2*118.82*(1*8.4 - 5.1)\} / 100 = $	7.8305 cm ²			
$A_2 = 2*(64.52 - 5.1)*14*1 / 100 = $	6.6376 cm ²			
A ₃ = 2*52.82*12.4*1 / 100 =	3.0995 cm ²			
$A_{41} = 9^{2*}1 / 100 = 0.$	0.81 cm ²			
$A_{43} = 6.74^{2*}1 / 100 = 0.00$	0.4539 cm ²			
$A_T = 7.8305 + 16.6376 + 13.0995 + 0.81 + 0.4539 = 3.53$	38.8315 cm ²			
$A_r = (450*5.1 + 2*14*5.1*(1 - 1)) / 100 =$	22.9714 cm ²			
$A_T = 38.8315 \text{ cm}^2 \ge A_r = 22.9714 \text{ cm}^2$				
Operating Hot & New Wind Tensile				
$f_{r1} = min[1,407.21/1,101.29,1] = 1$	-			
$f_{r2} = min[1,407.21/1,101.29,1] = 1$	-			
$A_1 = \{2*129.58*(1*10 - 0.77)\} / 100 =$	23.9198 cm ²			
$A_2 = 2*(66.12 - 0.77)*14*1 / 100 =$	8.2994 cm ²			
A ₃ = 2*56.12*14*1 / 100 =	5.715 cm ²			
A ₄₁ = 9 ² *1 / 100 = 0.	0.81 cm ²			
A ₄₃ = 9 ² *1 / 100 = 0.	0.81 cm ²			
$A_T = 23.9198 + 18.2994 + 15.715 + 0.81 + 0.81 = 5$	59.5541 cm ²			
$A_r = (450*0.77 + 2*14*0.77*(1 - 1)) / 100 = 3.$	3.4649 cm ²			
$A_T = 59.5541 \text{ cm}^2 \ge A_r = 3.4649 \text{ cm}^2$				

Operating Hot & New Wind Compressive				
f _{r1} = min[1,407.21 / 1,101.29 , 1] =	1			
f _{r2} = min[1,407.21 / 1,101.29 , 1] =	1			
A ₁ = {2*129.58*(1*10 - 4.3)} / 100 =	14.7788 cm ²			
A ₂ = 2*(66.12 - 4.3)*14*1 / 100 =	17.3117 cm ²			
A ₃ = 2*56.12*14*1 / 100 =	15.715 cm ²			
A ₄₁ = 9 ² *1 / 100 =	0.81 cm ²			
A ₄₃ = 9 ² *1 / 100 =	0.81 cm ²			
$A_T = 14.7788 + 17.3117 + 15.715 + 0.81 + 0.81 =$	49.4255 cm ²			
$A_r = (450*4.3 + 2*14*4.3*(1 - 1)) / 100 =$	19.3376 cm ²			
$A_T = 49.4255 \text{ cm}^2 \ge A_r = 19.3376 \text{ cm}^2$				
Empty Cold & Corroded Wind Tensile				
$f_{r1} = min[1,407.21 / 1,101.29 , 1] =$	1			
f _{r2} = min[1,407.21 / 1,101.29 , 1] =	1			
$A_1 = \{2*118.82*(1*8.4 - 1.01)\} / 100 =$	17.5708 cm ²			
A ₂ = 2*(64.52 - 1.01)*14*1 / 100 =	17.7853 cm ²			
A ₃ = 2*52.82*12.4*1 / 100 =	13.0995 cm ²			
A ₄₁ = 9 ² *1 / 100 =	0.81 cm ²			
A ₄₃ = 6.74 ² *1 / 100 =	0.4539 cm^2			
$A_T = 17.5708 + 17.7853 + 13.0995 + 0.81 + 0.4539 =$	49.7196 cm ²			
$A_r = (450*1.01 + 2*14*1.01*(1 - 1)) / 100 =$	4.5261 cm ²			
$A_T = 49.7196 \text{ cm}^2 \ge A_r = 4.5261 \text{ cm}^2$				
Empty Cold & Corroded Wind Compressi	ve			
$f_{r1} = min[1,407.21 / 1,101.29 , 1] =$	1			
f _{r2} = min[1,407.21 / 1,101.29 , 1] =	1			
A ₁ = {2*118.82*(1*8.4 - 4.43)} / 100 =	9.4436 cm ²			
A ₂ = 2*(64.52 - 4.43)*14*1 / 100 =	16.8277 cm ²			
A ₃ = 2*52.82*12.4*1 / 100 =	13.0995 cm ²			
A ₄₁ = 9 ² *1 / 100 =	0.81 cm ²			
A ₄₃ = 6.74 ² *1 / 100 =	0.4539 cm ²			
$A_T = 9.4436 + 16.8277 + 13.0995 + 0.81 + 0.4539 =$	40.6346 cm ²			
$A_r = (450*4.43 + 2*14*4.43*(1 - 1)) / 100 =$	<u>19.9167 cm²</u>			
$A_T = 40.6346 \text{ cm}^2 \ge A_r = 19.9167 \text{ cm}^2$				
Empty Cold & New Wind Tensile				
f _{r1} = min[1,407.21 / 1,101.29 , 1] =	1			
f _{r2} = min[1,407.21 / 1,101.29 , 1] =	1			

$A_1 = \{2*129.58*(1*10 - 1)\} / 100 =$	23.3163 cm ²			
A ₂ = 2*(66.12 - 1)*14*1 / 100 =	18.2342 cm ²			
A ₃ = 2*56.12*14*1 / 100 =	15.715 cm ²			
A ₄₁ = 9 ² *1 / 100 =	0.81 cm ²			
A ₄₃ = 9 ² *1 / 100 =	0.81 cm ²			
$A_T = 23.3163 + 18.2342 + 15.715 + 0.81 + 0.81 =$	58.8854 cm ²			
$A_r = (450*1 + 2*14*1*(1 - 1)) / 100 =$	4.5129 cm ²			
$A_T = 58.8854 \text{ cm}^2 \ge A_r = 4.5129 \text{ cm}^2$				
Empty Cold & New Wind Compressive				
f _{r1} = min[1,407.21 / 1,101.29 , 1] =	1			
f _{r2} = min[1,407.21 / 1,101.29 , 1] =	1			
A ₁ = {2*129.58*(1*10 - 3.73)} / 100 =	16.2546 cm ²			
A ₂ = 2*(66.12 - 3.73)*14*1 / 100 =	17.4712 cm ²			
A ₃ = 2*56.12*14*1 / 100 =	15.715 cm ²			
A ₄₁ = 9 ² *1 / 100 =	0.81 cm ²			
A ₄₃ = 9 ² *1 / 100 =	0.81 cm^2			
$A_T = 16.2546 + 17.4712 + 15.715 + 0.81 + 0.81 =$	51.0608 cm ²			
$A_r = (450*3.73 + 2*14*3.73*(1 - 1)) / 100 =$	<u>16.775 cm²</u>			
$A_T = 51.0608 \text{ cm}^2 \ge A_r = 16.775 \text{ cm}^2$				
Shop Test New Wind Compressive				
f _{r1} = min[1,407.21 / 1,101.29 , 1] =	1			
f _{r2} = min[1,407.21 / 1,101.29 , 1] =	1			
$A_1 = \{2*129.58*(1*10 - 4.8)\} / 100 =$	13.4846 cm ²			
A ₂ = 2*(66.12 - 4.8)*14*1 / 100 =	17.1719 cm ²			
A ₃ = 2*56.12*14*1 / 100 =	15.715 cm ²			
A ₄₁ = 9 ² *1 / 100 =	0.81 cm ²			
A ₄₃ = 9 ² *1 / 100 =	0.81 cm^2			
$A_T = 13.4846 + 17.1719 + 15.715 + 0.81 + 0.81 =$	47.9915 cm ²			
$A_r = (450*4.8 + 2*14*4.8*(1 - 1)) / 100 =$	21.5849 cm ²			
$A_T = 47.9915 \text{ cm}^2 \ge A_r = 21.5849 \text{ cm}^2$				
External Pressure Hot & Corroded Wind Tensile				
$f_{r1} = min[1,407.21 / 1,101.29 , 1] =$	1			
$f_{r2} = min[1,407.21/1,101.29,1] =$	1			
$A_1 = \{2*118.82*(1*8.4 - 0.77)\} / 100 =$	18.1245 cm ²			
$A_2 = 2*(64.52 - 0.77)*14*1 / 100 =$	17.8506 cm ²			

	1			
A ₄₁ = 9 ² *1 / 100 =	0.81 cm^2			
A ₄₃ = 6.74 ² *1 / 100 =	0.4539 cm^2			
$A_T = 18.1245 + 17.8506 + 13.0995 + 0.81 + 0.4539 =$	50.3385 cm ²			
$A_r = (450*0.77 + 2*14*0.77*(1 - 1)) / 100 =$	3.4777 cm ²			
$A_T = 50.3385 \text{ cm}^2 \ge A_r = 3.4777 \text{ cm}^2$				
External Pressure Hot & Corroded Wind Comp	oressive			
f _{r1} = min[1,407.21 / 1,101.29 , 1] =	1			
f _{r2} = min[1,407.21 / 1,101.29 , 1] =	1			
$A_1 = \{2*118.82*(1*8.4 - 5.1)\} / 100 =$	7.8305 cm ²			
A ₂ = 2*(64.52 - 5.1)*14*1 / 100 =	16.6376 cm ²			
A ₃ = 2*52.82*12.4*1 / 100 =	13.0995 cm ²			
A ₄₁ = 9 ² *1 / 100 =	0.81 cm^2			
A ₄₃ = 6.74 ² *1 / 100 =	0.4539 cm^2			
$A_T = 7.8305 + 16.6376 + 13.0995 + 0.81 + 0.4539 =$	38.8315 cm ²			
$A_r = (450*5.1 + 2*14*5.1*(1 - 1)) / 100 =$	22.9714 cm ²			
$A_T = 38.8315 \text{ cm}^2 \ge A_r = 22.9714 \text{ cm}^2$				
Operating Hot & Corroded Vortex shedding Tensile				
f _{r1} = min[1,407.21 / 1,101.29 , 1] =	1			
f _{r2} = min[1,407.21 / 1,101.29 , 1] =	1			
$A_1 = \{2*118.82*(1*8.4 - 1.56)\} / 100 =$	16.2524 cm ²			
A ₂ = 2*(64.52 - 1.56)*14*1 / 100 =	17.63 cm ²			
A ₃ = 2*52.82*12.4*1 / 100 =	13.0995 cm ²			
A ₄₁ = 9 ² *1 / 100 =	0.81 cm ²			
A ₄₃ = 6.74 ² *1 / 100 =	0.4539 cm ²			
$A_T = 16.2524 + 17.63 + 13.0995 + 0.81 + 0.4539 =$	48.2457 cm ²			
$A_r = (450*1.56 + 2*14*1.56*(1 - 1)) / 100 =$	7.0229 cm ²			
$A_T = 48.2457 \text{ cm}^2 \ge A_r = 7.0229 \text{ cm}^2$				
Operating Hot & Corroded Vortex shedding Compressive				
f _{r1} = min[1,407.21 / 1,101.29 , 1] =	1			
f _{r2} = min[1,407.21 / 1,101.29 , 1] =	1			
A ₁ = {2*118.82*(1*8.4 - 6.48)} / 100 =	4.5579 cm ²			
A ₂ = 2*(64.52 - 6.48)*14*1 / 100 =	16.252 cm ²			
A ₃ = 2*52.82*12.4*1 / 100 =	13.0995 cm ²			
A ₄₁ = 9 ² *1 / 100 =	0.81 cm ²			
A ₄₃ = 6.74 ² *1 / 100 =	0.4539 cm ²			

$A_T = 4.5579 + 16.252 + 13.0995 + 0.81 + 0.4539 =$	35.1733 cm ²			
$A_r = (450*6.48 + 2*14*6.48*(1 - 1)) / 100 =$	29.1688 cm ²			
$A_T = 35.1733 \text{ cm}^2 \ge A_r = 29.1688 \text{ cm}^2$				
Empty Cold & Corroded Vortex shedding Tensile				
f _{r1} = min[1,407.21 / 1,101.29 , 1] =	1			
f _{r2} = min[1,407.21 / 1,101.29 , 1] =	1			
$A_1 = \{2*118.82*(1*8.4 - 2.3)\} / 100 =$	14.4879 cm ²			
A ₂ = 2*(64.52 - 2.3)*14*1 / 100 =	17.4221 cm ²			
A ₃ = 2*52.82*12.4*1 / 100 =	13.0995 cm ²			
A ₄₁ = 9 ² *1 / 100 =	0.81 cm ²			
A ₄₃ = 6.74 ² *1 / 100 =	0.4539 cm^2			
$A_T = 14.4879 + 17.4221 + 13.0995 + 0.81 + 0.4539 =$	46.2733 cm ²			
$A_r = (450*2.3 + 2*14*2.3*(1 - 1)) / 100 =$	10.3643 cm ²			
$A_T = 46.2733 \text{ cm}^2 \ge A_r = 10.3643 \text{ cm}^2$				
Empty Cold & Corroded Vortex shedding Compressive				
f _{r1} = min[1,407.21 / 1,101.29 , 1] =	1			
f _{r2} = min[1,407.21 / 1,101.29 , 1] =	1			
$A_1 = \{2*118.82*(1*8.4 - 6.69)\} / 100 =$	4.0543 cm ²			
A ₂ = 2*(64.52 - 6.69)*14*1 / 100 =	16.1927 cm ²			
A ₃ = 2*52.82*12.4*1 / 100 =	13.0995 cm ²			
A ₄₁ = 9 ² *1 / 100 =	0.81 cm ²			
A ₄₃ = 6.74 ² *1 / 100 =	0.4539 cm ²			
$A_T = 4.0543 + 16.1927 + 13.0995 + 0.81 + 0.4539 =$	34.6104 cm ²			
$A_r = (450*6.69 + 2*14*6.69*(1 - 1)) / 100 =$	30.1223 cm ²			
$A_T = 34.6104 \text{ cm}^2 \ge A_r = 30.1223 \text{ cm}^2$				
External Pressure Hot & Corroded Vortex shedding Tensile				
f _{r1} = min[1,407.21 / 1,101.29 , 1] =	1			
f _{r2} = min[1,407.21 / 1,101.29 , 1] =	1			
A ₁ = {2*118.82*(1*8.4 - 1.56)} / 100 =	16.2501 cm ²			
A ₂ = 2*(64.52 - 1.56)*14*1 / 100 =	17.6297 cm ²			
A ₃ = 2*52.82*12.4*1 / 100 =	13.0995 cm ²			
A ₄₁ = 9 ² *1 / 100 =	0.81 cm ²			
A ₄₃ = 6.74 ² *1 / 100 =	0.4539 cm^2			
$A_T = 16.2501 + 17.6297 + 13.0995 + 0.81 + 0.4539 =$	48.2432 cm ²			

$A_r = (450*1.56 + 2*14*1.56*(1 - 1)) / 100 =$	7.0271 cm ²			
$A_T = 48.2432 \text{ cm}^2 \ge A_r = 7.0271 \text{ cm}^2$				
External Pressure Hot & Corroded Vortex shedding Compressive				
$f_{r1} = min[1,407.21 / 1,101.29 , 1] =$	1			
f _{r2} = min[1,407.21 / 1,101.29 , 1] =	1			
$A_1 = \{2*118.82*(1*8.4 - 6.48)\} / 100 =$	4.554 cm ²			
A ₂ = 2*(64.52 - 6.48)*14*1 / 100 =	16.2516 cm ²			
A ₃ = 2*52.82*12.4*1 / 100 =	13.0995 cm ²			
A ₄₁ = 9 ² *1 / 100 =	0.81 cm^2			
A ₄₃ = 6.74 ² *1 / 100 =	0.4539 cm^2			
$A_T = 4.554 + 16.2516 + 13.0995 + 0.81 + 0.4539 =$	35.1689 cm ²			
$A_r = (450*6.48 + 2*14*6.48*(1 - 1)) / 100 =$	29.1761 cm ²			
$A_T = 35.1689 \text{ cm}^2 \ge A_r = 29.1761 \text{ cm}^2$				

Access Opening (A2)

ASME Section VIII Division 1, 2017 Edition Metric						
Compor	nent	Skirt Opening				
Descript	tion	Access Opening				
Drawing I	Mark		A2			
Sleeve Ma	terial	SA-516	70 (II-D Metric p. 18, ln. 33)			
	Lo	cation and	l Orientation			
Attache	d to		Support Skirt #2			
Orienta	tion		radial			
Offset,	L		900 mm			
Angle,	θ	150°				
Distanc	e, r	1,769 mm				
Throug Category F		No				
		Dime	nsions			
Inside Dia	Inside Diameter 450 mm					
Nominal Wall Thickness		14 mm	# -			
Skirt Thic	kness	10 mm				
Leg ₄₁	1	9 mm	"			
Leg ₄₃	3	9 mm				
External Projection Available, L _{pr1}		80 mm				
$\begin{array}{c} \text{Internal} \\ \text{Projection, L}_{\text{pr2}} \end{array}$		130 mm				
Corrosion	Inner	0 mm	•			

Outer

0 mm

Skirt Opening Reinforcement Summary							
			Required Thickness t _r (mm)	A _T (cm ²)	A _r (cm ²)	Ratio	Status
	Wind	Tensile	0.77	50.3385	3.4777	14.4748	OK
Operating Hot & Corroded		Compressive	5.1	38.8315	22.9714	1.6904	OK
	Vortex	Tensile	1.56	48.2457	7.0229	6.8697	OK
	shedding	Compressive	6.48	<u>35.1733</u>	<u>29.1688</u>	1.2059	OK
Operating Hot & New	Wind	Tensile	0.77	<u>59.5541</u>	3.4649	17.1876	OK
o promise services		Compressive	4.3	49.4255	19.3376	2.5559	OK
	Wind	Tensile	1.01	49.7196	4.5261	10.985	OK
Empty Cold & Corroded		Compressive	4.43	40.6346	<u>19.9167</u>	2.0402	OK
	Vortex shedding	Tensile	2.3	46.2733	10.3643	4.4647	OK
		Compressive	6.69	<u>34.6104</u>	30.1223	1.149	OK
Empty Cold & New	Wind	Tensile	1	<u>58.8854</u>	4.5129	13.0481	OK
		Compressive	3.73	<u>51.0608</u>	<u>16.775</u>	3.0439	OK
Shop Test New	Wind	Tensile	0	61.7652	0	N/A	OK
223 F 2332300		Compressive	4.8	47.9915	21.5849	2.2234	OK
	Wind	Tensile	0.77	50.3385	3.4777	14.4748	OK
External Pressure Hot & Corroded		Compressive	5.1	38.8315	22.9714	1.6904	OK
	Vortex	Tensile	1.56	48.2432	7.0271	6.8653	OK
Note: Skirt required thickness of zero on tensile	shedding	Compressive		35.1689	29.1761	1.2054	OK

Skirt Opening Reinforcement Calculations				
$L_{R} = min[(R_{eff}^* t)^{0.5}, 2*R_{n}]$	(4.5.4)			
$L_{H1} = min[1.5*t, t_e] + (R_n *t_n)^{0.5}$	(4.5.11)			
$L_{\rm H2} = L_{\rm pr1}$	(4.5.12)			
$L_{H3} = 8*(t + t_e)$	(4.5.13)			
$L_{H} = min[L_{H1}, L_{H2}, L_{H3}] + t$	(4.5.14)			
$L_{11} = (R_n * t_n)^{0.5}$	(4.5.16)			
$L_{I2} = L_{pr2}$	(4.5.17)			
$L_{13} = 8*(t + t_e)$	(4.5.18)			
$L_{I} = min[L_{I1}, L_{I2}, L_{I3}]$	(4.5.19)			
$f_{r1} = \min[S_n / S, 1]$				
$f_{r2} = \min[S_n / S, 1]$				
$A_1 = 2*L_R*(E_1*t - t_r)$				
$A_2 = 2*(L_H - t_r)*t_n*f_{r2}$				
$A_3 = 2*L_1*t_i*f_{r2}$				
$A_{41} = L_{41}^{2*} f_{r2}$				
$A_{43} = L_{43}^{2*} f_{r2}$				
$A_{T} = A_{1} + A_{2} + A_{3} + A_{41} + A_{43}$				
$A_{r} = d*t_{r} + 2*t_{n}*t_{r}*(1 - f_{r1})$				
New				
$L_R = \min[(1,679*10)^{0.5}, 2*225] =$	129.58 mm			
$L_{H1} = min[1.5*10, 0] + (225*14)^{0.5} =$	56.12 mm			
$L_{H2} = 80 =$	80 mm			
$L_{\rm H3} = 8*(10+0) =$	80 mm			
$L_{\rm H} = \min[56.12, 80, 80] + 10 =$	66.12 mm			
$L_{II} = (225*14)^{0.5} =$	56.12 mm			
$L_{12} = L_{pr2} =$	130 mm			
$L_{13} = 8*(10+0) =$	80 mm			
L _I = min[56.12, 130, 80] =	56.12 mm			
Corroded				
$L_R = min[(1,680.6*8.4)^{0.5}, 2*225] =$	118.82 mm			
$L_{H1} = min[1.5*8.4, 0] + (225*14)^{0.5} =$	56.12 mm			
$L_{H2} = 80 =$	80 mm			
$L_{H3} = 8*(8.4+0) =$	67.2 mm			
L _H = min[56.12, 80, 67.2] + 8.4 =	64.52 mm			
$L_{II} = (225*12.4)^{0.5} =$	52.82 mm			

$L_{12} = L_{pr2} =$	128.4 mm			
$L_{13} = 8*(8.4+0) =$	67.2 mm			
L _I = min[52.82, 128.4, 67.2] =	52.82 mm			
Operating Hot & Corroded Wind Tensile				
f _{r1} = min[1,407.21 / 1,101.29 , 1] =	1			
f _{r2} = min[1,407.21 / 1,101.29 , 1] =	1			
$A_1 = \{2*118.82*(1*8.4 - 0.77)\} / 100 =$	18.1245 cm ²			
A ₂ = 2*(64.52 - 0.77)*14*1 / 100 =	17.8506 cm ²			
A ₃ = 2*52.82*12.4*1 / 100 =	13.0995 cm ²			
A ₄₁ = 9 ² *1 / 100 =	0.81 cm ²			
A ₄₃ = 6.74 ² *1 / 100 =	0.4539 cm ²			
$A_T = 18.1245 + 17.8506 + 13.0995 + 0.81 + 0.4539 =$	50.3385 cm ²			
$A_r = (450*0.77 + 2*14*0.77*(1 - 1)) / 100 =$	3.4777 cm ²			
$A_T = 50.3385 \text{ cm}^2 \ge A_r = 3.4777 \text{ cm}^2$				
Operating Hot & Corroded Wind Compress	sive			
f _{r1} = min[1,407.21 / 1,101.29 , 1] =	1			
f _{r2} = min[1,407.21 / 1,101.29 , 1] =	1			
A ₁ = {2*118.82*(1*8.4 - 5.1)} / 100 =	7.8305 cm ²			
A ₂ = 2*(64.52 - 5.1)*14*1 / 100 =	16.6376 cm ²			
A ₃ = 2*52.82*12.4*1 / 100 =	13.0995 cm ²			
A ₄₁ = 9 ² *1 / 100 =	0.81 cm ²			
A ₄₃ = 6.74 ² *1 / 100 =	0.4539 cm^2			
$A_T = 7.8305 + 16.6376 + 13.0995 + 0.81 + 0.4539 =$	38.8315 cm ²			
$A_r = (450*5.1 + 2*14*5.1*(1 - 1)) / 100 =$	22.9714 cm ²			
$A_T = 38.8315 \text{ cm}^2 \ge A_r = 22.9714 \text{ cm}^2$				
Operating Hot & New Wind Tensile				
f _{r1} = min[1,407.21 / 1,101.29 , 1] =	1			
$f_{r2} = min[1,407.21/1,101.29,1] =$	1			
$A_1 = \{2*129.58*(1*10 - 0.77)\} / 100 =$	23.9198 cm ²			
A ₂ = 2*(66.12 - 0.77)*14*1 / 100 =	18.2994 cm ²			
A ₃ = 2*56.12*14*1 / 100 =	15.715 cm ²			
A ₄₁ = 9 ² *1 / 100 =	0.81 cm ²			
A ₄₃ = 9 ² *1 / 100 =	0.81 cm ²			
$A_T = 23.9198 + 18.2994 + 15.715 + 0.81 + 0.81 =$	59.5541 cm ²			
$A_r = (450*0.77 + 2*14*0.77*(1 - 1)) / 100 =$	3.4649 cm ²			
$A_T = 59.5541 \text{ cm}^2 \ge A_r = 3.4649 \text{ cm}^2$				

Operating Hot & New Wind Compressive		
f _{r1} = min[1,407.21 / 1,101.29 , 1] =	1	
f _{r2} = min[1,407.21 / 1,101.29 , 1] =	1	
A ₁ = {2*129.58*(1*10 - 4.3)} / 100 =	14.7788 cm ²	
A ₂ = 2*(66.12 - 4.3)*14*1 / 100 =	17.3117 cm ²	
A ₃ = 2*56.12*14*1 / 100 =	15.715 cm ²	
A ₄₁ = 9 ² *1 / 100 =	0.81 cm ²	
A ₄₃ = 9 ² *1 / 100 =	0.81 cm ²	
$A_T = 14.7788 + 17.3117 + 15.715 + 0.81 + 0.81 =$	49.4255 cm ²	
$A_r = (450*4.3 + 2*14*4.3*(1 - 1)) / 100 =$	19.3376 cm ²	
$A_T = 49.4255 \text{ cm}^2 \ge A_r = 19.3376 \text{ cm}^2$		
Empty Cold & Corroded Wind Tensile		
f _{r1} = min[1,407.21 / 1,101.29 , 1] =	1	
f _{r2} = min[1,407.21 / 1,101.29 , 1] =	1	
$A_1 = \{2*118.82*(1*8.4 - 1.01)\} / 100 =$	17.5708 cm ²	
A ₂ = 2*(64.52 - 1.01)*14*1 / 100 =	17.7853 cm ²	
A ₃ = 2*52.82*12.4*1 / 100 =	13.0995 cm ²	
A ₄₁ = 9 ² *1 / 100 =	0.81 cm ²	
A ₄₃ = 6.74 ² *1 / 100 =	0.4539 cm^2	
$A_T = 17.5708 + 17.7853 + 13.0995 + 0.81 + 0.4539 =$	49.7196 cm ²	
$A_r = (450*1.01 + 2*14*1.01*(1 - 1)) / 100 =$	4.5261 cm ²	
$A_T = 49.7196 \text{ cm}^2 \ge A_r = 4.5261 \text{ cm}^2$		
Empty Cold & Corroded Wind Compressi	ve	
$f_{r1} = min[1,407.21 / 1,101.29 , 1] =$	1	
$f_{r2} = min[1,407.21 / 1,101.29 , 1] =$	1	
$A_1 = \{2*118.82*(1*8.4 - 4.43)\} / 100 =$	9.4436 cm ²	
A ₂ = 2*(64.52 - 4.43)*14*1 / 100 =	16.8277 cm ²	
A ₃ = 2*52.82*12.4*1 / 100 =	13.0995 cm ²	
A ₄₁ = 9 ² *1 / 100 =	0.81 cm ²	
A ₄₃ = 6.74 ² *1 / 100 =	0.4539 cm ²	
$A_T = 9.4436 + 16.8277 + 13.0995 + 0.81 + 0.4539 =$	40.6346 cm ²	
$A_r = (450*4.43 + 2*14*4.43*(1 - 1)) / 100 =$	19.9167 cm ²	
$A_T = 40.6346 \text{ cm}^2 \ge A_r = 19.9167 \text{ cm}^2$		
Empty Cold & New Wind Tensile		
f _{r1} = min[1,407.21 / 1,101.29 , 1] =	1	
f _{r2} = min[1,407.21 / 1,101.29 , 1] =	1	

	1
$A_1 = \{2*129.58*(1*10 - 1)\} / 100 =$	23.3163 cm ²
A ₂ = 2*(66.12 - 1)*14*1 / 100 =	18.2342 cm ²
A ₃ = 2*56.12*14*1 / 100 =	15.715 cm ²
A ₄₁ = 9 ² *1 / 100 =	0.81 cm^2
A ₄₃ = 9 ² *1 / 100 =	0.81 cm^2
$A_T = 23.3163 + 18.2342 + 15.715 + 0.81 + 0.81 =$	58.8854 cm ²
$A_r = (450*1 + 2*14*1*(1 - 1)) / 100 =$	4.5129 cm ²
$A_T = 58.8854 \text{ cm}^2 \ge A_r = 4.5129 \text{ cm}^2$	
Empty Cold & New Wind Compressive	
f _{r1} = min[1,407.21 / 1,101.29 , 1] =	1
f _{r2} = min[1,407.21 / 1,101.29 , 1] =	1
A ₁ = {2*129.58*(1*10 - 3.73)} / 100 =	16.2546 cm ²
A ₂ = 2*(66.12 - 3.73)*14*1 / 100 =	17.4712 cm ²
A ₃ = 2*56.12*14*1 / 100 =	15.715 cm ²
A ₄₁ = 9 ² *1 / 100 =	0.81 cm ²
A ₄₃ = 9 ² *1 / 100 =	0.81 cm ²
$A_T = 16.2546 + 17.4712 + 15.715 + 0.81 + 0.81 =$	51.0608 cm ²
$A_r = (450*3.73 + 2*14*3.73*(1 - 1)) / 100 =$	<u>16.775 cm²</u>
$A_T = 51.0608 \text{ cm}^2 \ge A_r = 16.775 \text{ cm}^2$	
Shop Test New Wind Compressive	
f _{r1} = min[1,407.21 / 1,101.29 , 1] =	1
f _{r2} = min[1,407.21 / 1,101.29 , 1] =	1
A ₁ = {2*129.58*(1*10 - 4.8)} / 100 =	13.4846 cm ²
A ₂ = 2*(66.12 - 4.8)*14*1 / 100 =	17.1719 cm ²
A ₃ = 2*56.12*14*1 / 100 =	15.715 cm ²
1 0241 / 100	
$A_{41} = 9^{2*}1 / 100 =$	0.81 cm^2
$A_{41} = 9^{2*1} / 100 =$ $A_{43} = 9^{2*1} / 100 =$	0.81 cm ²
14	
A ₄₃ = 9 ² *1 / 100 =	0.81 cm ²
$A_{43} = 9^{2}*1 / 100 =$ $A_{T} = 13.4846 + 17.1719 + 15.715 + 0.81 + 0.81 =$	0.81 cm ² 47.9915 cm ²
$A_{43} = 9^{2*1} / 100 =$ $A_{T} = 13.4846 + 17.1719 + 15.715 + 0.81 + 0.81 =$ $A_{r} = (450*4.8 + 2*14*4.8*(1 - 1)) / 100 =$	0.81 cm ² 47.9915 cm ² 21.5849 cm ²
$A_{43} = 9^{2*1} / 100 =$ $A_{T} = 13.4846 + 17.1719 + 15.715 + 0.81 + 0.81 =$ $A_{r} = (450*4.8 + 2*14*4.8*(1 - 1)) / 100 =$ $A_{T} = 47.9915 \text{ cm}^{2} \ge A_{r} = 21.5849 \text{ cm}^{2}$	0.81 cm ² 47.9915 cm ² 21.5849 cm ²
$A_{43} = 9^{2*}1 / 100 =$ $A_{T} = 13.4846 + 17.1719 + 15.715 + 0.81 + 0.81 =$ $A_{r} = (450*4.8 + 2*14*4.8*(1 - 1)) / 100 =$ $A_{T} = 47.9915 \text{ cm}^{2} \ge A_{r} = 21.5849 \text{ cm}^{2}$ External Pressure Hot & Corroded Wind Te	0.81 cm ² 47.9915 cm ² 21.5849 cm ²
$\begin{array}{c} A_{43} = 9^{2*}1 \: / \: 100 = \\ \\ A_{T} = 13.4846 + 17.1719 + 15.715 + 0.81 + 0.81 = \\ \\ A_{r} = (450*4.8 + 2*14*4.8*(1 - 1)) \: / \: 100 = \\ \\ \\ A_{T} = 47.9915 \: \text{cm}^{2} \geq A_{r} = 21.5849 \: \text{cm}^{2} \\ \\ \hline \textbf{External Pressure Hot \& Corroded Wind Terms} \\ \\ f_{r1} = \min[\: 1,407.21 \: / \: 1,101.29 \: , 1 \:] = \\ \end{array}$	0.81 cm ² 47.9915 cm ² 21.5849 cm ²
$\begin{array}{c} A_{43} = 9^{2*}1 \ / \ 100 = \\ \\ A_{T} = 13.4846 + 17.1719 + 15.715 + 0.81 + 0.81 = \\ \\ A_{r} = (450^{*}4.8 + 2^{*}14^{*}4.8^{*}(1 - 1)) \ / \ 100 = \\ \\ \\ A_{T} = 47.9915 \ cm^{2} \geq A_{r} = 21.5849 \ cm^{2} \\ \\ \hline \\ \textbf{External Pressure Hot & Corroded Wind Te} \\ \\ f_{r1} = \min[\ 1,407.21 \ / \ 1,101.29 \ ,\ 1\] = \\ \\ f_{r2} = \min[\ 1,407.21 \ / \ 1,101.29 \ ,\ 1\] = \\ \end{array}$	0.81 cm ² 47.9915 cm ² 21.5849 cm ² nsile 1
$\begin{array}{l} A_{43} = 9^{2*}1 / 100 = \\ \\ A_{T} = 13.4846 + 17.1719 + 15.715 + 0.81 + 0.81 = \\ \\ A_{r} = (450^{*}4.8 + 2^{*}14^{*}4.8^{*}(1 - 1)) / 100 = \\ \\ \\ A_{T} = 47.9915 \mathrm{cm}^{2} \geq A_{r} = 21.5849 \mathrm{cm}^{2} \\ \\ \hline \textbf{External Pressure Hot \& Corroded Wind Terms} \\ \\ f_{r1} = \min[\ 1,407.21 / \ 1,101.29 \ , \ 1\] = \\ \\ f_{r2} = \min[\ 1,407.21 / \ 1,101.29 \ , \ 1\] = \\ \\ A_{1} = \{2^{*}118.82^{*}(1^{*}8.4 - 0.77)\} / 100 = \\ \end{array}$	0.81 cm ² 47.9915 cm ² 21.5849 cm ² nsile 1 18.1245 cm ²

A ₄₁ = 9 ² *1 / 100 =	0.81 cm^2
A ₄₃ = 6.74 ² *1 / 100 =	0.4539 cm ²
$A_T = 18.1245 + 17.8506 + 13.0995 + 0.81 + 0.4539 =$	50.3385 cm ²
$A_r = (450*0.77 + 2*14*0.77*(1 - 1)) / 100 =$	3.4777 cm ²
$A_T = 50.3385 \text{ cm}^2 \ge A_r = 3.4777 \text{ cm}^2$	
External Pressure Hot & Corroded Wind Comp	pressive
f _{r1} = min[1,407.21 / 1,101.29 , 1] =	1
f _{r2} = min[1,407.21 / 1,101.29 , 1] =	1
$A_1 = \{2*118.82*(1*8.4 - 5.1)\} / 100 =$	7.8305 cm ²
A ₂ = 2*(64.52 - 5.1)*14*1 / 100 =	16.6376 cm ²
A ₃ = 2*52.82*12.4*1 / 100 =	13.0995 cm ²
A ₄₁ = 9 ² *1 / 100 =	0.81 cm ²
A ₄₃ = 6.74 ² *1 / 100 =	0.4539 cm^2
$A_T = 7.8305 + 16.6376 + 13.0995 + 0.81 + 0.4539 =$	38.8315 cm ²
$A_r = (450*5.1 + 2*14*5.1*(1 - 1)) / 100 =$	22.9714 cm ²
$A_T = 38.8315 \text{ cm}^2 \ge A_r = 22.9714 \text{ cm}^2$	
Operating Hot & Corroded Vortex shedding Tensile	
f _{r1} = min[1,407.21 / 1,101.29 , 1] =	1
f = min[1 407 21 / 1 101 20 1] =	İ
$f_{r2} = min[1,407.21/1,101.29,1] =$	1
$A_1 = \{2*118.82*(1*8.4 - 1.56)\} / 100 =$	1 16.2524 cm ²
A ₁ = {2*118.82*(1*8.4 - 1.56)} / 100 =	16.2524 cm ²
$A_1 = \{2*118.82*(1*8.4 - 1.56)\} / 100 =$ $A_2 = 2*(64.52 - 1.56)*14*1 / 100 =$	16.2524 cm ² 17.63 cm ²
$A_1 = \{2*118.82*(1*8.4 - 1.56)\} / 100 =$ $A_2 = 2*(64.52 - 1.56)*14*1 / 100 =$ $A_3 = 2*52.82*12.4*1 / 100 =$	16.2524 cm ² 17.63 cm ² 13.0995 cm ²
$A_1 = \{2*118.82*(1*8.4 - 1.56)\} / 100 =$ $A_2 = 2*(64.52 - 1.56)*14*1 / 100 =$ $A_3 = 2*52.82*12.4*1 / 100 =$ $A_{41} = 9^{2*}1 / 100 =$	16.2524 cm ² 17.63 cm ² 13.0995 cm ² 0.81 cm ²
$A_{1} = \{2*118.82*(1*8.4 - 1.56)\} / 100 =$ $A_{2} = 2*(64.52 - 1.56)*14*1 / 100 =$ $A_{3} = 2*52.82*12.4*1 / 100 =$ $A_{41} = 9^{2*}1 / 100 =$ $A_{43} = 6.74^{2*}1 / 100 =$	16.2524 cm ² 17.63 cm ² 13.0995 cm ² 0.81 cm ² 0.4539 cm ²
$A_{1} = \{2*118.82*(1*8.4 - 1.56)\} / 100 =$ $A_{2} = 2*(64.52 - 1.56)*14*1 / 100 =$ $A_{3} = 2*52.82*12.4*1 / 100 =$ $A_{41} = 9^{2}*1 / 100 =$ $A_{43} = 6.74^{2}*1 / 100 =$ $A_{T} = 16.2524 + 17.63 + 13.0995 + 0.81 + 0.4539 =$	16.2524 cm ² 17.63 cm ² 13.0995 cm ² 0.81 cm ² 0.4539 cm ² 48.2457 cm ²
$A_{1} = \{2*118.82*(1*8.4 - 1.56)\} / 100 =$ $A_{2} = 2*(64.52 - 1.56)*14*1 / 100 =$ $A_{3} = 2*52.82*12.4*1 / 100 =$ $A_{41} = 9^{2*1} / 100 =$ $A_{43} = 6.74^{2*1} / 100 =$ $A_{T} = 16.2524 + 17.63 + 13.0995 + 0.81 + 0.4539 =$ $A_{r} = (450*1.56 + 2*14*1.56*(1 - 1)) / 100 =$	16.2524 cm ² 17.63 cm ² 13.0995 cm ² 0.81 cm ² 0.4539 cm ² 48.2457 cm ²
$A_1 = \{2*118.82*(1*8.4 - 1.56)\} / 100 =$ $A_2 = 2*(64.52 - 1.56)*14*1 / 100 =$ $A_3 = 2*52.82*12.4*1 / 100 =$ $A_{41} = 9^2*1 / 100 =$ $A_{43} = 6.74^2*1 / 100 =$ $A_T = 16.2524 + 17.63 + 13.0995 + 0.81 + 0.4539 =$ $A_r = (450*1.56 + 2*14*1.56*(1 - 1)) / 100 =$ $A_T = 48.2457 \text{ cm}^2 \ge A_r = 7.0229 \text{ cm}^2$ $Operating Hot & Corroded Vortex$	16.2524 cm ² 17.63 cm ² 13.0995 cm ² 0.81 cm ² 0.4539 cm ² 48.2457 cm ²
$A_1 = \{2*118.82*(1*8.4 - 1.56)\} / 100 =$ $A_2 = 2*(64.52 - 1.56)*14*1 / 100 =$ $A_3 = 2*52.82*12.4*1 / 100 =$ $A_{41} = 9^2*1 / 100 =$ $A_{43} = 6.74^2*1 / 100 =$ $A_T = 16.2524 + 17.63 + 13.0995 + 0.81 + 0.4539 =$ $A_r = (450*1.56 + 2*14*1.56*(1 - 1)) / 100 =$ $A_T = 48.2457 \text{ cm}^2 \ge A_r = 7.0229 \text{ cm}^2$ $Operating Hot & Corroded Vortex shedding Compressive$	16.2524 cm ² 17.63 cm ² 13.0995 cm ² 0.81 cm ² 0.4539 cm ² 48.2457 cm ² 7.0229 cm ²
$\begin{array}{c} A_1 = \left\{2*118.82*(1*8.4 - 1.56)\right\} / 100 = \\ \\ A_2 = 2*(64.52 - 1.56)*14*1 / 100 = \\ \\ A_3 = 2*52.82*12.4*1 / 100 = \\ \\ A_{41} = 9^{2*}1 / 100 = \\ \\ A_{43} = 6.74^{2*}1 / 100 = \\ \\ A_T = 16.2524 + 17.63 + 13.0995 + 0.81 + 0.4539 = \\ \\ A_r = (450*1.56 + 2*14*1.56*(1 - 1)) / 100 = \\ \\ A_T = 48.2457 \text{ cm}^2 \ge A_r = 7.0229 \text{ cm}^2 \\ \\ \hline \begin{array}{c} \textbf{Operating Hot \& Corroded Vortex shedding Compressive} \\ \\ \mathbf{f}_{r1} = \min[\ 1,407.21 /\ 1,101.29\ ,\ 1\] = \\ \\ \end{array}$	16.2524 cm ² 17.63 cm ² 13.0995 cm ² 0.81 cm ² 0.4539 cm ² 48.2457 cm ² 7.0229 cm ²
$\begin{array}{c} A_1 = \left\{2*118.82*(1*8.4 - 1.56)\right\} / 100 = \\ \\ A_2 = 2*(64.52 - 1.56)*14*1 / 100 = \\ \\ A_3 = 2*52.82*12.4*1 / 100 = \\ \\ A_{41} = 9^{2*}1 / 100 = \\ \\ A_{43} = 6.74^{2*}1 / 100 = \\ \\ A_T = 16.2524 + 17.63 + 13.0995 + 0.81 + 0.4539 = \\ \\ A_r = (450*1.56 + 2*14*1.56*(1 - 1)) / 100 = \\ \\ A_T = 48.2457 \text{ cm}^2 \ge A_r = 7.0229 \text{ cm}^2 \\ \\ \hline \begin{array}{c} \textbf{Operating Hot \& Corroded Vortex shedding Compressive} \\ \\ f_{r1} = \min[\ 1,407.21 /\ 1,101.29\ ,\ 1\] = \\ \\ f_{r2} = \min[\ 1,407.21 /\ 1,101.29\ ,\ 1\] = \\ \end{array}$	16.2524 cm ² 17.63 cm ² 13.0995 cm ² 0.81 cm ² 0.4539 cm ² 48.2457 cm ² 7.0229 cm ²
$A_{1} = \{2*118.82*(1*8.4 - 1.56)\} / 100 =$ $A_{2} = 2*(64.52 - 1.56)*14*1 / 100 =$ $A_{3} = 2*52.82*12.4*1 / 100 =$ $A_{41} = 9^{2*}1 / 100 =$ $A_{43} = 6.74^{2*}1 / 100 =$ $A_{T} = 16.2524 + 17.63 + 13.0995 + 0.81 + 0.4539 =$ $A_{T} = (450*1.56 + 2*14*1.56*(1 - 1)) / 100 =$ $A_{T} = 48.2457 \text{ cm}^{2} \ge A_{T} = 7.0229 \text{ cm}^{2}$ $Operating Hot & Corroded Vortex shedding Compressive}$ $f_{T1} = min[1,407.21 / 1,101.29 , 1] =$ $f_{T2} = min[1,407.21 / 1,101.29 , 1] =$ $A_{1} = \{2*118.82*(1*8.4 - 6.48)\} / 100 =$	16.2524 cm ² 17.63 cm ² 13.0995 cm ² 0.81 cm ² 0.4539 cm ² 48.2457 cm ² 7.0229 cm ² 1 1 4.5579 cm ²
$A_1 = \{2*118.82*(1*8.4 - 1.56)\} / 100 =$ $A_2 = 2*(64.52 - 1.56)*14*1 / 100 =$ $A_3 = 2*52.82*12.4*1 / 100 =$ $A_{41} = 9^{2*}1 / 100 =$ $A_{43} = 6.74^{2*}1 / 100 =$ $A_T = 16.2524 + 17.63 + 13.0995 + 0.81 + 0.4539 =$ $A_T = (450*1.56 + 2*14*1.56*(1 - 1)) / 100 =$ $A_T = 48.2457 \text{ cm}^2 \ge A_r = 7.0229 \text{ cm}^2$ $Operating Hot & Corroded Vortex \\ shedding Compressive$ $f_{r1} = min[1,407.21 / 1,101.29, 1] =$ $f_{r2} = min[1,407.21 / 1,101.29, 1] =$ $A_1 = \{2*118.82*(1*8.4 - 6.48)\} / 100 =$ $A_2 = 2*(64.52 - 6.48)*14*1 / 100 =$	16.2524 cm ² 17.63 cm ² 13.0995 cm ² 0.81 cm ² 0.4539 cm ² 48.2457 cm ² 7.0229 cm ² 1 1 4.5579 cm ² 16.252 cm ²

	†	
$A_T = 4.5579 + 16.252 + 13.0995 + 0.81 + 0.4539 =$	35.1733 cm ²	
$A_r = (450*6.48 + 2*14*6.48*(1 - 1)) / 100 =$	29.1688 cm ²	
$A_T = 35.1733 \text{ cm}^2 \ge A_r = 29.1688 \text{ cm}^2$		
Empty Cold & Corroded Vortex shedding Tensile		
$f_{r1} = min[1,407.21 / 1,101.29 , 1] =$	1	
$f_{r2} = min[1,407.21 / 1,101.29 , 1] =$	1	
$A_1 = \{2*118.82*(1*8.4 - 2.3)\} / 100 =$	14.4879 cm ²	
A ₂ = 2*(64.52 - 2.3)*14*1 / 100 =	17.4221 cm ²	
A ₃ = 2*52.82*12.4*1 / 100 =	13.0995 cm ²	
A ₄₁ = 9 ² *1 / 100 =	0.81 cm ²	
A ₄₃ = 6.74 ² *1 / 100 =	0.4539 cm ²	
$A_T = 14.4879 + 17.4221 + 13.0995 + 0.81 + 0.4539 =$	46.2733 cm ²	
$A_r = (450*2.3 + 2*14*2.3*(1 - 1)) / 100 =$	10.3643 cm ²	
$A_T = 46.2733 \text{ cm}^2 \ge A_r = 10.3643 \text{ cm}^2$		
Empty Cold & Corroded Vortex shedding Compressive		
f _{r1} = min[1,407.21 / 1,101.29 , 1] =	1	
f _{r2} = min[1,407.21 / 1,101.29 , 1] =	1	
$A_1 = \{2*118.82*(1*8.4 - 6.69)\} / 100 =$	4.0543 cm ²	
A ₂ = 2*(64.52 - 6.69)*14*1 / 100 =	16.1927 cm ²	
A ₃ = 2*52.82*12.4*1 / 100 =	13.0995 cm ²	
$A_{41} = 9^{2*}1 / 100 =$	0.81 cm ²	
A ₄₃ = 6.74 ² *1 / 100 =	0.4539 cm^2	
$A_T = 4.0543 + 16.1927 + 13.0995 + 0.81 + 0.4539 =$	34.6104 cm ²	
$A_r = (450*6.69 + 2*14*6.69*(1 - 1)) / 100 =$	30.1223 cm ²	
$A_T = 34.6104 \text{ cm}^2 \ge A_r = 30.1223 \text{ cm}^2$		
External Pressure Hot & Corroded Vortex shedding Tensile		
f _{r1} = min[1,407.21 / 1,101.29 , 1] =	1	
f _{r2} = min[1,407.21 / 1,101.29 , 1] =	1	
A ₁ = {2*118.82*(1*8.4 - 1.56)} / 100 =	16.2501 cm ²	
A ₂ = 2*(64.52 - 1.56)*14*1 / 100 =	17.6297 cm ²	
A ₃ = 2*52.82*12.4*1 / 100 =	13.0995 cm ²	
A ₄₁ = 9 ² *1 / 100 =	0.81 cm ²	
A ₄₃ = 6.74 ² *1 / 100 =	0.4539 cm ²	
$A_T = 16.2501 + 17.6297 + 13.0995 + 0.81 + 0.4539 =$	48.2432 cm ²	
-		

$A_r = (450*1.56 + 2*14*1.56*(1 - 1)) / 100 =$	7.0271 cm ²	
$A_T = 48.2432 \text{ cm}^2 \ge A_r = 7.0271 \text{ cm}^2$		
External Pressure Hot & Corroded Vortex shedding Compressive		
f _{r1} = min[1,407.21 / 1,101.29 , 1] =	1	
f _{r2} = min[1,407.21 / 1,101.29 , 1] =	1	
$A_1 = \{2*118.82*(1*8.4 - 6.48)\} / 100 =$	4.554 cm ²	
A ₂ = 2*(64.52 - 6.48)*14*1 / 100 =	16.2516 cm ²	
A ₃ = 2*52.82*12.4*1 / 100 =	13.0995 cm ²	
A ₄₁ = 9 ² *1 / 100 =	0.81 cm^2	
A ₄₃ = 6.74 ² *1 / 100 =	0.4539 cm^2	
$A_T = 4.554 + 16.2516 + 13.0995 + 0.81 + 0.4539 =$	35.1689 cm ²	
$A_r = (450*6.48 + 2*14*6.48*(1 - 1)) / 100 =$	29.1761 cm ²	
$A_T = 35.1689 \text{ cm}^2 \ge A_r = 29.1761 \text{ cm}^2$		

ASME Section VIII Division 1, 2017 Edition Metric					
Compor	nent	Skirt Opening			
Descrip	tion	Sleeve Opening			
Drawing 1	Mark		S		
Opening Nozzl		Nozzle (DC)			
Sleeve Ma	terial	SA-285	C (II-D Metric p. 10, ln. 3)		
	L	ocation and	Orientation		
Attache	d to		Support Skirt #2		
Orienta	tion		radial		
Offset,	L		5,876 mm		
Angle,	, θ		90°		
Distanc	e, r	1,769 mm			
Throug Category I		No			
		Dimen	sions		
Inside Dia	meter	585.6 mm	130		
Nominal Thickn		12 mm			
Skirt Thic	kness	10 mm	12		
Leg ₄	1	9 mm			
Leg ₄	3	9 mm	i i		
Extern Project Available	ion	80 mm 130 mm			
Intern Projection					
Corrosion	Inner	0 mm			
		i			

Outer

0 mm

Skirt Opening Reinforcement Summary							
			Required Thickness t _r (mm)	A _T (cm ²)	A _r (cm ²)	Ratio	Status
	Wind	Tensile	0.43	<u>47.8248</u>	<u>2.5073</u>	19.0745	OK
Operating Hot & Corroded		Compressive	4.42	<u>37.3868</u>	<u>25.8703</u>	1.4452	OK
	Vortex	Tensile	1.09	<u>46.1006</u>	<u>6.3665</u>	7.2412	OK
	shedding	Compressive	5.57	34.3728	<u>32.6165</u>	1.0538	OK
Operating Hot & New	Wind	Tensile	0.43	<u>57.1745</u>	<u>2.5087</u>	22.7907	OK
o promise services	Willia	Compressive	3.71	<u>47.8775</u>	21.7362	2.2027	OK
	Wind	Tensile	0.66	47.2152	3.8717	12.1951	OK
Empty Cold & Corroded	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Compressive	3.74	<u>39.1628</u>	21.8952	1.7886	OK
	Vortex	Tensile	1.75	44.3768	10.2249	4.3401	OK
	shedding	Compressive	5.64	34.201	33.0011	1.0364	OK
Empty Cold & New	Wind	Tensile	0.66	<u>56.5151</u>	3.8725	14.5941	OK
Zampog Cola de 14011	, , , , , ,	Compressive	3.14	<u>49.49</u>	18.4014	2.6895	OK
Shop Test New	Wind	Tensile	0	58.3875	0	N/A	OK
223.F 233.2	VV IIIG	Compressive	4.74	44.9549	27.7807	1.6182	OK
	Wind	Tensile	0.43	47.8248	2.5073	19.0745	OK
External Pressure Hot & Corroded	Willia .	Compressive	4.42	<u>37.3868</u>	25.8703	1.4452	OK
	Vortex	Tensile	1.09	46.0986	6.371	7.2357	OK
	shedding	Compressive	5.57	34.3692	32.6245	1.0535	OK

Skirt Opening Reinforcement Calculations			
$L_R = min[(R_{eff}^*t)^{0.5}, 2*R_n]$	(4.5.4)		
$L_{H1} = min[1.5*t, t_e] + (R_n * t_n)^{0.5}$	(4.5.11)		
$L_{H2} = L_{pr1}$	(4.5.12)		
$L_{H3} = 8*(t + t_e)$	(4.5.13)		
$L_{H} = min[L_{H1}, L_{H2}, L_{H3}] + t$	(4.5.14)		
$L_{11} = (R_n * t_n)^{0.5}$	(4.5.16)		
$\boxed{L_{I2} = L_{pr2}}$	(4.5.17)		
$L_{I3} = 8*(t + t_e)$	(4.5.18)		
$L_{I} = min[L_{I1}, L_{I2}, L_{I3}]$	(4.5.19)		
$f_{r1} = min[S_n/S, 1]$			
$f_{r2} = min[S_n/S, 1]$			
$A_1 = 2*L_R*(E_1*t - t_r)$			
$A_2 = 2*(L_H - t_r)*t_n*f_{r2}$			
$A_3 = 2*L_1*t_i*f_{r_2}$			
$A_{41} = L_{41}^{2*} f_{r2}$			
$A_{43} = L_{43}^{2*} f_{r2}$			
$A_{T} = A_{1} + A_{2} + A_{3} + A_{41} + A_{43}$			
$A_{r} = d*t_{r} + 2*t_{n}*t_{r}*(1 - f_{r1})$			
New			
$L_R = \min[(1,679*10)^{0.5}, 2*292.8] =$	129.58 mm		
$L_{H1} = min[1.5*10, 0] + (292.8*12)^{0.5} =$	59.28 mm		
$L_{H2} = 80 =$	80 mm		
$L_{H3} = 8*(10+0) =$	80 mm		
L _H = min[59.28, 80, 80] + 10 =	69.28 mm		
$L_{I1} = (292.8*12)^{0.5} =$	59.28 mm		
$L_{I2} = L_{pr2} =$	130 mm		
$L_{13} = 8*(10+0) =$	80 mm		
L _I = min[59.28, 130, 80] =	59.28 mm		
Corroded	Corroded		
$L_R = min[(1,680.6*8.4)^{0.5}, 2*292.8] =$	118.82 mm		
$L_{H1} = min[1.5*8.4, 0] + (292.8*12)^{0.5} =$	59.28 mm		
L _{H2} = 80 =	80 mm		
$L_{H3} = 8*(8.4+0) =$	67.2 mm		
L _H = min[59.28, 80, 67.2] + 8.4 =	67.68 mm		
$L_{II} = (292.8*10.4)^{0.5} =$	55.18 mm		

 $A_T = 57.1745 \text{ cm}^2 \ge A_r = 2.5087 \text{ cm}^2$

Operating Hot & New Wind Compressive		
$f_{r1} = min[1,101.29 / 1,101.29 , 1] =$	1	
$f_{r2} = min[1,101.29 / 1,101.29 , 1] =$	1	
$A_1 = \{2*129.58*(1*10 - 3.71)\} / 100 =$	16.2961 cm ²	
A ₂ = 2*(69.28 - 3.71)*12*1 / 100 =	15.7353 cm ²	
A ₃ = 2*59.28*12*1 / 100 =	14.2262 cm ²	
A ₄₁ = 92*1 / 100 =	0.81 cm^2	
A ₄₃ = 9 ² *1 / 100 =	0.81 cm ²	
$A_T = 16.2961 + 15.7353 + 14.2262 + 0.81 + 0.81 =$	47.8775 cm ²	
$A_r = (585.6*3.71 + 2*12*3.71*(1 - 1)) / 100 =$	21.7362 cm ²	
$A_T = 47.8775 \text{ cm}^2 \ge A_r = 21.7362 \text{ cm}^2$		
Empty Cold & Corroded Wind Tensile		
f _{r1} = min[1,101.29 / 1,101.29 , 1] =	1	
f _{r2} = min[1,101.29 / 1,101.29 , 1] =	1	
A ₁ = {2*118.82*(1*8.4 - 0.66)} / 100 =	18.3899 cm ²	
A ₂ = 2*(67.68 - 0.66)*12*1 / 100 =	16.0835 cm ²	
A ₃ = 2*55.18*10.4*1 / 100 =	11.478 cm ²	
A ₄₁ = 9 ² *1 / 100 =	0.81 cm ²	
A ₄₃ = 6.74 ² *1 / 100 =	0.4539 cm ²	
$A_T = 18.3899 + 16.0835 + 11.478 + 0.81 + 0.4539 =$	47.2152 cm ²	
$A_r = (585.6*0.66 + 2*12*0.66*(1 - 1)) / 100 =$	3.8717 cm ²	
$A_T = 47.2152 \text{ cm}^2 \ge A_r = 3.8717 \text{ cm}^2$		
Empty Cold & Corroded Wind Compress	ive	
f _{r1} = min[1,101.29 / 1,101.29 , 1] =	1	
f _{r2} = min[1,101.29 / 1,101.29 , 1] =	1	
A ₁ = {2*118.82*(1*8.4 - 3.74)} / 100 =	11.0761 cm ²	
A ₂ = 2*(67.68 - 3.74)*12*1 / 100 =	15.3448 cm ²	
A ₃ = 2*55.18*10.4*1 / 100 =	11.478 cm ²	
A ₄₁ = 9 ² *1 / 100 =	0.81 cm ²	
A ₄₃ = 6.74 ² *1 / 100 =	0.4539 cm ²	
$A_T = 11.0761 + 15.3448 + 11.478 + 0.81 + 0.4539 =$	39.1628 cm ²	
$A_r = (585.6*3.74 + 2*12*3.74*(1 - 1)) / 100 =$	21.8952 cm ²	
$A_T = 39.1628 \text{ cm}^2 \ge A_r = 21.8952 \text{ cm}^2$	•	
Empty Cold & New Wind Tensile		
f _{r1} = min[1,101.29 / 1,101.29 , 1] =	1	
$f_{r2} = min[1,101.29 / 1,101.29 , 1] =$	1	
	1	

A ₄₁ = 9 ² *1 / 100 =	0.81 cm ²	
A ₄₃ = 6.74 ² *1 / 100 =	0.4539 cm ²	
$A_T = 18.9435 + 16.1394 + 11.478 + 0.81 + 0.4539 =$	47.8248 cm ²	
$A_r = (585.6*0.43 + 2*12*0.43*(1 - 1)) / 100 =$	2.5073 cm ²	
$A_T = 47.8248 \text{ cm}^2 \ge A_r = 2.5073 \text{ cm}^2$		
External Pressure Hot & Corroded Wind Com	pressive	
$f_{r1} = min[1,101.29 / 1,101.29 , 1] =$	1	
$f_{r2} = min[1,101.29 / 1,101.29 , 1] =$	1	
A ₁ = {2*118.82*(1*8.4 - 4.42)} / 100 =	9.463 cm ²	
A ₂ = 2*(67.68 - 4.42)*12*1 / 100 =	15.1819 cm ²	
A ₃ = 2*55.18*10.4*1 / 100 =	11.478 cm ²	
$A_{41} = 9^{2*}1 / 100 =$	0.81 cm^2	
A ₄₃ = 6.74 ² *1 / 100 =	0.4539 cm^2	
$A_T = 9.463 + 15.1819 + 11.478 + 0.81 + 0.4539 =$	37.3868 cm ²	
$A_r = (585.6*4.42 + 2*12*4.42*(1 - 1)) / 100 =$	25.8703 cm ²	
$A_T = 37.3868 \text{ cm}^2 \ge A_r = 25.8703 \text{ cm}^2$		
Operating Hot & Corroded Vortex shedding Tensile		
f _{r1} = min[1,101.29 / 1,101.29 , 1] =	1	
f _{r2} = min[1,101.29 / 1,101.29 , 1] =	1	
A ₁ = {2*118.82*(1*8.4 - 1.09)} / 100 =	17.3775 cm ²	
A ₂ = 2*(67.68 - 1.09)*12*1 / 100 =	15.9812 cm ²	
A ₃ = 2*55.18*10.4*1 / 100 =	11.478 cm ²	
A ₄₁ = 9 ² *1 / 100 =	0.81 cm ²	
A ₄₃ = 6.74 ² *1 / 100 =	0.4539 cm ²	
$A_T = 17.3775 + 15.9812 + 11.478 + 0.81 + 0.4539 =$	46.1006 cm ²	
$A_r = (585.6*1.09 + 2*12*1.09*(1 - 1)) / 100 =$	6.3665 cm ²	
$A_T = 46.1006 \text{ cm}^2 \ge A_r = 6.3665 \text{ cm}^2$		
Operating Hot & Corroded Vortex shedding Compressive		
f _{r1} = min[1,101.29 / 1,101.29 , 1] =	1	
f _{r2} = min[1,101.29 / 1,101.29 , 1] =	1	
A ₁ = {2*118.82*(1*8.4 - 5.57)} / 100 =	6.7255 cm ²	
A ₂ = 2*(67.68 - 5.57)*12*1 / 100 =	14.9054 cm ²	
A ₃ = 2*55.18*10.4*1 / 100 =	11.478 cm ²	
A ₄₁ = 9 ² *1 / 100 =	0.81 cm ²	
A ₄₃ = 6.74 ² *1 / 100 =	0.4539 cm ²	

	0.4.0555		
$A_T = 6.7255 + 14.9054 + 11.478 + 0.81 + 0.4539 =$	34.3728 cm ²		
$A_{r} = (585.6*5.57 + 2*12*5.57*(1 - 1)) / 100 =$	32.6165 cm ²		
$A_T = 34.3728 \text{ cm}^2 \ge A_r = 32.6165 \text{ cm}^2$			
Empty Cold & Corroded Vortex shedding Tensile			
$f_{r1} = min[1,101.29 / 1,101.29 , 1] =$	1		
$f_{r2} = min[1,101.29 / 1,101.29 , 1] =$	1		
$A_1 = \{2*118.82*(1*8.4 - 1.75)\} / 100 =$	15.8118 cm ²		
A ₂ = 2*(67.68 - 1.75)*12*1 / 100 =	15.8231 cm ²		
A ₃ = 2*55.18*10.4*1 / 100 =	11.478 cm^2		
A ₄₁ = 9 ² *1 / 100 =	0.81 cm^2		
A ₄₃ = 6.74 ² *1 / 100 =	0.4539 cm^2		
$A_T = 15.8118 + 15.8231 + 11.478 + 0.81 + 0.4539 =$	44.3768 cm ²		
$A_r = (585.6*1.75 + 2*12*1.75*(1 - 1)) / 100 =$	10.2249 cm ²		
$A_T = 44.3768 \text{ cm}^2 \ge A_r = 10.2249 \text{ cm}^2$			
Empty Cold & Corroded Vortex shedding Compressive			
f _{r1} = min[1,101.29 / 1,101.29 , 1] =	1		
f _{r2} = min[1,101.29 / 1,101.29 , 1] =	1		
$A_1 = \{2*118.82*(1*8.4 - 5.64)\} / 100 =$	6.5694 cm ²		
A ₂ = 2*(67.68 - 5.64)*12*1 / 100 =	14.8896 cm ²		
A ₃ = 2*55.18*10.4*1 / 100 =	11.478 cm ²		
A ₄₁ = 9 ² *1 / 100 =	0.81 cm^2		
A ₄₃ = 6.74 ² *1 / 100 =	0.4539 cm^2		
$A_T = 6.5694 + 14.8896 + 11.478 + 0.81 + 0.4539 =$	34.201 cm ²		
$A_r = (585.6*5.64 + 2*12*5.64*(1 - 1)) / 100 =$	33.0011 cm ²		
$A_T = 34.201 \text{ cm}^2 \ge A_r = 33.0011 \text{ cm}^2$			
External Pressure Hot & Corroded Vortex shedding Tensile			
f _{r1} = min[1,101.29 / 1,101.29 , 1] =	1		
f _{r2} = min[1,101.29 / 1,101.29 , 1] =	1		
A ₁ = {2*118.82*(1*8.4 - 1.09)} / 100 =	17.3756 cm ²		
A ₂ = 2*(67.68 - 1.09)*12*1 / 100 =	15.981 cm ²		
A ₃ = 2*55.18*10.4*1 / 100 =	11.478 cm ²		
A ₄₁ = 9 ² *1 / 100 =	0.81 cm ²		
A ₄₃ = 6.74 ² *1 / 100 =	0.4539 cm ²		
$A_T = 17.3756 + 15.981 + 11.478 + 0.81 + 0.4539 =$	46.0986 cm ²		

$A_r = (585.6*1.09 + 2*12*1.09*(1 - 1)) / 100 =$	6.371 cm ²	
$A_T = 46.0986 \text{ cm}^2 \ge A_r = 6.371 \text{ cm}^2$		
External Pressure Hot & Corroded Vortex shedding Compressive		
$f_{r1} = min[1,101.29 / 1,101.29 , 1] =$	1	
$f_{r2} = min[1,101.29 / 1,101.29 , 1] =$	1	
$A_1 = \{2*118.82*(1*8.4 - 5.57)\} / 100 =$	6.7223 cm ²	
A ₂ = 2*(67.68 - 5.57)*12*1 / 100 =	14.9051 cm ²	
A ₃ = 2*55.18*10.4*1 / 100 =	11.478 cm ²	
A ₄₁ = 9 ² *1 / 100 =	0.81 cm^2	
A ₄₃ = 6.74 ² *1 / 100 =	0.4539 cm^2	
$A_T = 6.7223 + 14.9051 + 11.478 + 0.81 + 0.4539 =$	34.3692 cm ²	
$A_r = (585.6*5.57 + 2*12*5.57*(1 - 1)) / 100 =$	32.6245 cm ²	
$A_T = 34.3692 \text{ cm}^2 \ge A_r = 32.6245 \text{ cm}^2$		

ASME Section VIII Division 1, 2017 Edition Metric				
Componen	ıt	Skirt Opening		
Description	n	Vent Hole		
Drawing Ma	rk	V1		
Sleeve Mater	rial	SA-106 B Smls Pipe (II-D Metric p. 14, ln. 10)		
Location and Orientation				
Attached to	0	Support	Skirt #1	
Orientation	n	radial		
Offset, L		620 mm		
Angle, θ		0°		
Distance, 1	r	1,769 mm		
Through a Category B Jo		No		
		Dimensions		
Pipe NPS ar Schedule	nd	NPS 4 Sch 40 (Std) DN 100	130	
Inside Diame	eter	102.26 mm		
Nominal Wa Thickness		6.02 mm	6,02	
Skirt Thickn	ess	10 mm		
Leg ₄₁		4 mm	ii	
Leg ₄₃		4 mm		
External Projection Available, L		80 mm	4	
Internal Projection, L	pr2	130 mm		
Corrosion In	nner	0 mm		
0	uter	0 mm		

Page 283 of 450

Openings Subject to Axial Tension	
$L_R = min[(R_{eff}^* t)^{0.5}, 2*R_n]$	(4.5.4)
$L_{H1} = min[1.5*t, t_e] + (R_n * t_n)^{0.5}$	(4.5.11)
$L_{\rm H2} = L_{\rm pr1}$	(4.5.12)
$L_{H3} = 8*(t + t_e)$	(4.5.13)
$L_{H} = min[L_{H1}, L_{H2}, L_{H3}] + t$	(4.5.14)
$L_{11} = (R_n * t_n)^{0.5}$	(4.5.16)
$L_{I2} = L_{pr2}$	(4.5.17)
$L_{I3} = 8*(t + t_e)$	(4.5.18)
$L_{I} = min[L_{I1}, L_{I2}, L_{I3}]$	(4.5.19)
$f_{r1} = \min[S_n/S, 1]$	·
$f_{r2} = min[S_n/S, 1]$	
$A_1 = 2*L_R*(E_1*t - t_r)$	
$A_2 = 2*(L_H - t_r)*t_n*f_{r2}$	
$A_3 = 2*L_1*t_i*f_{r2}$	
$A_{41} = L_{41}^{2*} f_{r2}$	
$A_{43} = L_{43}^{2*} f_{r2}$	
$A_{T} = A_{1} + A_{2} + A_{3} + A_{41} + A_{43}$	
$A_r = d^*t_r + 2^*t_n^*t_r^*(1 - f_{r1})$	
New	
$L_R = \min[(1,679*10)^{0.5}, 2*51.13] =$	102.26 mm
$L_{H1} = min[1.5*10, 0] + (51.13*6.02)^{0.5} =$	17.54 mm
$L_{H2} = 80 =$	80 mm
$L_{H3} = 8*(10+0) =$	80 mm
$L_{\rm H} = \min[17.54, 80, 80] + 10 =$	27.54 mm
$L_{I1} = (51.13*6.02)^{0.5} =$	17.54 mm
$L_{12} = L_{pr2} =$	130 mm
$L_{I3} = 8*(10+0) =$	80 mm
L _I = min[17.54, 130, 80] =	17.54 mm
Corroded	
$L_R = min[(1,680.6*8.4)^{0.5}, 2*51.13] =$	102.26 mm
$L_{H1} = min[1.5*8.4, 0] + (51.13*6.02)^{0.5} =$	17.54 mm
$L_{H2} = 80 =$	80 mm
$L_{H3} = 8*(8.4 + 0) =$	67.2 mm
$L_{\rm H} = \min[17.54, 80, 67.2] + 8.4 =$	25.94 mm
$L_{11} = (51.13*4.42)^{0.5} =$	15.03 mm

I -I -	128.4 mm
$L_{12} = L_{pr2} =$	67.2 mm
$L_{13} = 8*(8.4+0) =$	
$L_{I} = min[15.03, 128.4, 67.2] =$	15.03 mm
Operating Hot & Corroded Wind Tensile	
$f_{r1} = min[1,203.26/1,407.21,1] =$	0.8551
$f_{r2} = min[1,203.26/1,407.21,1] =$	0.8551
$A_1 = \{2*102.26*(1*8.4 - 0.27)\} / 100 =$	16.6343 cm ²
A ₂ = 2*(25.94 - 0.27)*6.02*0.8551 / 100 =	2.6435 cm ²
A ₃ = 2*15.03*4.42*0.8551 / 100 =	1.1363 cm ²
A ₄₁ = 4 ² *0.8551 / 100 =	0.1368 cm ²
A ₄₃ = 1.74 ² *0.8551 / 100 =	0.0258 cm^2
$A_T = 16.6343 + 2.6435 + 1.1363 + 0.1368 + 0.0258 =$	20.5768 cm ²
$A_r = (102.26*0.27 + 2*6.02*0.27*(1 - 0.8551)) / 100 =$	<u>0.2773 cm²</u>
$A_{T} = 20.5768 \text{ cm}^{2} \ge A_{r} = 0.2773 \text{ cm}^{2}$	
Operating Hot & New Wind Tensile	
f _{r1} = min[1,203.26 / 1,407.21 , 1] =	0.8551
f _{r2} = min[1,203.26 / 1,407.21 , 1] =	0.8551
A ₁ = {2*102.26*(1*10 - 0.27)} / 100 =	19.9048 cm ²
A ₂ = 2*(27.54 - 0.27)*6.02*0.8551 / 100 =	2.8082 cm ²
A ₃ = 2*17.54*6.02*0.8551 / 100 =	1.8062 cm ²
A ₄₁ = 4 ² *0.8551 / 100 =	0.1368 cm ²
A ₄₃ = 4 ² *0.8551 / 100 =	0.1368 cm ²
$A_T = 19.9048 + 2.8082 + 1.8062 + 0.1368 + 0.1368 =$	24.7928 cm ²
$A_r = (102.26*0.27 + 2*6.02*0.27*(1 - 0.8551)) / 100 =$	<u>0.2783 cm²</u>
$A_T = 24.7928 \text{ cm}^2 \ge A_r = 0.2783 \text{ cm}^2$	
Empty Cold & Corroded Wind Tensile	
$f_{r1} = min[1,203.26 / 1,407.21, 1] =$	0.8551
$f_{r2} = min[1,203.26 / 1,407.21, 1] =$	0.8551
$A_1 = \{2*102.26*(1*8.4 - 0.45)\} / 100 =$	16.2614 cm ²
A ₂ = 2*(25.94 - 0.45)*6.02*0.8551 / 100 =	2.6248 cm ²
A ₃ = 2*15.03*4.42*0.8551 / 100 =	1.1363 cm ²
A ₄₁ = 4 ² *0.8551 / 100 =	0.1368 cm ²
A ₄₃ = 1.74 ² *0.8551 / 100 =	0.0258 cm^2
$A_T = 16.2614 + 2.6248 + 1.1363 + 0.1368 + 0.0258 =$	20.1851 cm ²
A = (102.26*0.45 + 2*6.02*0.45*(1 0.9551)) / 100 =	0.467 am²
$A_r = (102.26*0.45 + 2*6.02*0.45*(1 - 0.8551)) / 100 =$	0.467 cm ²

Empty Cold & New Wind Tensile				
f _{r1} = min[1,203.26 / 1,407.21 , 1] =	0.8551			
$f_{r2} = min[1,203.26 / 1,407.21, 1] =$	0.8551			
$A_1 = \{2*102.26*(1*10 - 0.45)\} / 100 =$	19.5321 cm ²			
$A_2 = 2*(27.54 - 0.45)*6.02*0.8551 / 100 =$	2.7894 cm ²			
A ₃ = 2*17.54*6.02*0.8551 / 100 =	1.8062 cm ²			
A ₄₁ = 4 ² *0.8551 / 100 =	0.1368 cm ²			
A ₄₃ = 4 ² *0.8551 / 100 =	0.1368 cm ²			
$A_T = 19.5321 + 2.7894 + 1.8062 + 0.1368 + 0.1368 =$	24.4013 cm ²			
$A_r = (102.26*0.45 + 2*6.02*0.45*(1 - 0.8551)) / 100 =$	0.4678 cm ²			
$A_T = 24.4013 \text{ cm}^2 \ge A_r = 0.4678 \text{ cm}^2$	I			
External Pressure Hot & Corroded Wind Te	nsile			
f _{r1} = min[1,203.26 / 1,407.21 , 1] =	0.8551			
f _{r2} = min[1,203.26 / 1,407.21 , 1] =	0.8551			
A ₁ = {2*102.26*(1*8.4 - 0.27)} / 100 =	16.6343 cm ²			
A ₂ = 2*(25.94 - 0.27)*6.02*0.8551 / 100 =	2.6435 cm ²			
A ₃ = 2*15.03*4.42*0.8551 / 100 =	1.1363 cm ²			
A ₄₁ = 4 ² *0.8551 / 100 =	0.1368 cm ²			
A ₄₃ = 1.74 ² *0.8551 / 100 =	0.0258 cm ²			
$A_T = 16.6343 + 2.6435 + 1.1363 + 0.1368 + 0.0258 =$	20.5768 cm ²			
$A_r = (102.26*0.27 + 2*6.02*0.27*(1 - 0.8551)) / 100 =$	<u>0.2773 cm²</u>			
$A_T = 20.5768 \text{ cm}^2 \ge A_r = 0.2773 \text{ cm}^2$				
Operating Hot & Corroded Vortex shedding Tensile				
f _{r1} = min[1,203.26 / 1,407.21 , 1] =	0.8551			
f _{r2} = min[1,203.26 / 1,407.21 , 1] =	0.8551			
A ₁ = {2*102.26*(1*8.4 - 0.75)} / 100 =	15.6413 cm ²			
A ₂ = 2*(25.94 - 0.75)*6.02*0.8551 / 100 =	2.5935 cm ²			
A ₃ = 2*15.03*4.42*0.8551 / 100 =	1.1363 cm ²			
A ₄₁ = 4 ² *0.8551 / 100 =	0.1368 cm ²			
A ₄₃ = 1.74 ² *0.8551 / 100 =	0.0258 cm ²			
$A_T = 15.6413 + 2.5935 + 1.1363 + 0.1368 + 0.0258 =$	19.5337 cm ²			
$A_{r} = (102.26*0.75 + 2*6.02*0.75*(1 - 0.8551)) / 100 =$	0.7823 cm ²			
$A_T = 19.5337 \text{ cm}^2 \ge A_r = 0.7823 \text{ cm}^2$				
Empty Cold & Corroded Vortex shedding Tensile				
f _{r1} = min[1,203.26 / 1,407.21 , 1] =	0.8551			

f _{r2} = min[1,203.26 / 1,407.21 , 1] =	0.8551			
$A_1 = \{2*102.26*(1*8.4 - 1.25)\} / 100 =$	14.6267 cm ²			
A ₂ = 2*(25.94 - 1.25)*6.02*0.8551 / 100 =	2.5425 cm ²			
A ₃ = 2*15.03*4.42*0.8551 / 100 =	1.1363 cm ²			
A ₄₁ = 42*0.8551 / 100 =	0.1368 cm ²			
A ₄₃ = 1.74 ² *0.8551 / 100 =	0.0258 cm ²			
$A_T = 14.6267 + 2.5425 + 1.1363 + 0.1368 + 0.0258 =$	18.4682 cm ²			
$A_r = (102.26*1.25 + 2*6.02*1.25*(1 - 0.8551)) / 100 =$	1.2982 cm ²			
$A_T = 18.4682 \text{ cm}^2 \ge A_r = 1.2982 \text{ cm}^2$	•			
External Pressure Hot & Corroded Vortex shedding Tensile				
shedding Tensile				
shedding Tensile $f_{r1} = \min[\ 1,203.26\ /\ 1,407.21\ ,\ 1\] =$	0.8551			
	0.8551 0.8551			
f _{r1} = min[1,203.26 / 1,407.21 , 1] =				
$f_{r1} = min[1,203.26 / 1,407.21, 1] =$ $f_{r2} = min[1,203.26 / 1,407.21, 1] =$	0.8551			
$f_{r1} = \min[1,203.26 / 1,407.21 , 1] =$ $f_{r2} = \min[1,203.26 / 1,407.21 , 1] =$ $A_{1} = \{2*102.26*(1*8.4 - 0.75)\} / 100 =$	0.8551 15.6401 cm ²			
$f_{r1} = \min[1,203.26 / 1,407.21 , 1] =$ $f_{r2} = \min[1,203.26 / 1,407.21 , 1] =$ $A_{1} = \{2*102.26*(1*8.4 - 0.75)\} / 100 =$ $A_{2} = 2*(25.94 - 0.75)*6.02*0.8551 / 100 =$	0.8551 15.6401 cm ² 2.5935 cm ²			
$f_{r1} = \min[1,203.26 / 1,407.21 , 1] =$ $f_{r2} = \min[1,203.26 / 1,407.21 , 1] =$ $A_{1} = \{2*102.26*(1*8.4 - 0.75)\} / 100 =$ $A_{2} = 2*(25.94 - 0.75)*6.02*0.8551 / 100 =$ $A_{3} = 2*15.03*4.42*0.8551 / 100 =$	0.8551 15.6401 cm ² 2.5935 cm ² 1.1363 cm ²			
$\begin{split} &f_{r1} = \min[\ 1,203.26\ /\ 1,407.21\ ,\ 1\] = \\ &f_{r2} = \min[\ 1,203.26\ /\ 1,407.21\ ,\ 1\] = \\ &A_1 = \{2*102.26*(1*8.4-0.75)\}\ /\ 100 = \\ &A_2 = 2*(25.94-0.75)*6.02*0.8551\ /\ 100 = \\ &A_3 = 2*15.03*4.42*0.8551\ /\ 100 = \\ &A_{41} = 4^2*0.8551\ /\ 100 = \end{split}$	0.8551 15.6401 cm ² 2.5935 cm ² 1.1363 cm ² 0.1368 cm ²			
$\begin{split} &f_{r1} = \min[\ 1,203.26\ /\ 1,407.21\ ,\ 1\] = \\ &f_{r2} = \min[\ 1,203.26\ /\ 1,407.21\ ,\ 1\] = \\ &A_1 = \{2*102.26*(1*8.4-0.75)\}\ /\ 100 = \\ &A_2 = 2*(25.94-0.75)*6.02*0.8551\ /\ 100 = \\ &A_3 = 2*15.03*4.42*0.8551\ /\ 100 = \\ &A_{41} = 4^2*0.8551\ /\ 100 = \\ &A_{43} = 1.74^2*0.8551\ /\ 100 = \end{split}$	0.8551 15.6401 cm ² 2.5935 cm ² 1.1363 cm ² 0.1368 cm ² 0.0258 cm ²			

Division 2 4.5.17.3 Openings Subject to Axial Compression	ı
$\gamma_n = d / \{2*(R*t)^{0.5}\}$	(4.5.212)
$\gamma_{\rm n} \le \{ (R/t) / 291 + 0.22 \}^2$	
$t_{n,eff} = min[t_n, t]$	
$t_{i,eff} = min[t_i, t]$	
$L_{R} = 0.75*(R*t)^{0.5}$	
$L_{\rm H} = \min[0.5^* \{ (d/2)^* t_{\rm n} \}^{0.5}, 2.5^* t_{\rm n}, L_{\rm prl}]$	
$L_{I} = min[0.5*{(d/2)*t_{i}}^{0.5}, 2.5*t_{i}, L_{pr2}]$	
$f_{r1} = \min[S_n / S, 1]$	
$f_{r2} = \min[S_n / S, 1]$	
$A_1 = 2*L_R*(t - t_r) - 2*t_{n,eff}*(t - t_r)*(1 - f_{r1})$	
$A_2 = 2*L_H*t_{n,eff}*f_{r2}$	
$A_3 = 2*L_1*t_{i,eff}*f_{r2}$	
$A_{41} = L_{41}^{2*} f_{r2}$	
$A_{43} = L_{43}^{2*} f_{r2}$	
$A_{T} = A_{1} + A_{2} + A_{3} + A_{41} + A_{43}$	
$A_r = 0.5*d*t_r$	(4.5.210)
New	
$\gamma_{\rm n} = 102.26 / \{2*(1,679*10)^{0.5}\} =$	0.3946
$\gamma_{\rm n} \le \{ (1,679 / 10) / 291 + 0.22 \}^2 =$	0.6352
Area required factor for compressive side =	0.5
$L_R = 0.75*(1,679*10)^{0.5} =$	97.18 mm
$L_{\rm H} = \min[0.5*\{(102.26/2)*6.02\}^{0.5}, 2.5*6.02, 80] =$	8.77 mm
$L_{I} = min[0.5*{(102.26 / 2)*6.02}^{0.5}, 2.5*6.02, 130] =$	8.77 mm
$t_{n,eff} = min[6.02, 10] =$	6.02 mm
$t_{i,eff} = min[6.02, 10] =$	6.02 mm
Corroded	
$\gamma_{\rm n} = 102.26 / \{2*(1,680.6*8.4)^{0.5}\} =$	0.4303
$\gamma_{\rm n} \le \{(1,680.6 / 8.4) / 291 + 0.22\}^2 =$	0.8236
Area required factor for compressive side =	0.5
$L_R = 0.75*(1,680.6*8.4)^{0.5} =$	89.11 mm
$L_{\rm H} = \min[0.5*\{(102.26 / 2)*6.02\}^{0.5}, 2.5*6.02, 80] =$	8.77 mm
$L_{I} = min[0.5*{(102.26 / 2)*4.42}^{0.5}, 2.5*4.42, 128.4] =$	7.52 mm
$t_{n,eff} = min[6.02, 8.4] =$	6.02 mm
$t_{i,eff} = min[4.42, 8.4] =$	4.42 mm
Operating Hot & Corroded Wind Compressive	

f _ min[1 202 26 / 1 407 21 1]	0.0551
$f_{r1} = min[1,203.26/1,407.21,1] =$	0.8551
f _{r2} = min[1,203.26 / 1,407.21 , 1] =	0.8551
$A_1 = \{2*89.11*(8.4 - 4.18) - 2*6.02*(8.4 - 4.18)*(1 - 0.8551)\} / 100 =$	7.4466 cm ²
A ₂ = 2*8.77*6.02*0.8551 / 100 =	0.9031 cm ²
A ₃ = 2*7.52*4.42*0.8551 / 100 =	0.5682 cm ²
A ₄₁ = 4 ² *0.8551 / 100 =	0.1368 cm ²
A ₄₃ = 1.74 ² *0.8551 / 100 =	0.0258 cm ²
$A_T = 7.4466 + 0.9031 + 0.5682 + 0.1368 + 0.0258 =$	9.0805 cm ²
$A_r = (0.5*102.26*4.18) / 100 =$	2.1375 cm ²
$A_T = 9.0805 \text{ cm}^2 \ge A_r = 2.1375 \text{ cm}^2$	
Operating Hot & New Wind Compressive	
$f_{r1} = min[1,203.26 / 1,407.21, 1] =$	0.8551
$f_{r2} = min[1,203.26 / 1,407.21, 1] =$	0.8551
$A_1 = \{2*97.18*(10 - 3.51) - 2*6.02*(10 - 3.51)*(1 - 0.8551)\} / 100 =$	12.501 cm ²
A ₂ = 2*8.77*6.02*0.8551 / 100 =	0.9031 cm ²
A ₃ = 2*8.77*6.02*0.8551 / 100 =	0.9031 cm ²
A ₄₁ = 42*0.8551 / 100 =	0.1368 cm ²
A ₄₃ = 4 ² *0.8551 / 100 =	0.1368 cm^2
$A_T = 12.501 + 0.9031 + 0.9031 + 0.1368 + 0.1368 =$	14.5808 cm ²
$A_r = (0.5*102.26*3.51) / 100 =$	1.7947 cm ²
$A_T = 14.5808 \text{ cm}^2 \ge A_r = 1.7947 \text{ cm}^2$	
Empty Cold & Corroded Wind Compressive	
$f_{r1} = min[1,203.26 / 1,407.21, 1] =$	0.8551
f _{r2} = min[1,203.26 / 1,407.21 , 1] =	0.8551
$A_1 = \{2*89.11*(8.4 - 3.5) - 2*6.02*(8.4 - 3.5)*(1 - 0.8551)\} / 100 =$	8.6446 cm ²
A ₂ = 2*8.77*6.02*0.8551 / 100 =	0.9031 cm ²
A ₃ = 2*7.52*4.42*0.8551 / 100 =	0.5682 cm ²
A ₄₁ = 4 ² *0.8551 / 100 =	0.1368 cm ²
A ₄₃ = 1.74 ² *0.8551 / 100 =	0.0258 cm ²
$A_T = 8.6446 + 0.9031 + 0.5682 + 0.1368 + 0.0258 =$	10.2784 cm ²
$A_r = (0.5*102.26*3.5) / 100 =$	1.7904 cm ²
$A_T = 10.2784 \text{ cm}^2 \ge A_r = 1.7904 \text{ cm}^2$	
Empty Cold & New Wind Compressive	
f _{r1} = min[1,203.26 / 1,407.21 , 1] =	0.8551
f _{r2} = min[1,203.26 / 1,407.21 , 1] =	0.8551
$A_1 = \{2*97.18*(10 - 2.94) - 2*6.02*(10 - 2.94)*(1 - 0.8551)\} / 100 =$	13.5979 cm ²

A ₂ = 2*8.77*6.02*0.8551 / 100 =	0.9031 cm ²
$A_3 = 2*8.77*6.02*0.8551 / 100 =$	0.9031 cm ²
$A_{41} = 4^{2*}0.8551 / 100 =$	0.1368 cm ²
$A_{43} = 4^{2*}0.8551 / 100 =$	0.1368 cm ²
$A_T = 13.5979 + 0.9031 + 0.9031 + 0.1368 + 0.1368 =$	15.6778 cm ²
$A_r = (0.5*102.26*2.94) / 100 =$	1.5035 cm ²
$A_T = 15.6778 \text{ cm}^2 \ge A_r = 1.5035 \text{ cm}^2$	
Shop Test New Wind Compressive	
f _{r1} = min[1,203.26 / 1,407.21 , 1] =	0.8551
$f_{r2} = min[1,203.26/1,407.21,1] =$	0.8551
$A_1 = \{2*97.18*(10 - 4.7) - 2*6.02*(10 - 4.7)*(1 - 0.8551)\} / 100 =$	10.2136 cm ²
A ₂ = 2*8.77*6.02*0.8551 / 100 =	0.9031 cm ²
A ₃ = 2*8.77*6.02*0.8551 / 100 =	0.9031 cm ²
A ₄₁ = 4 ² *0.8551 / 100 =	0.1368 cm ²
A ₄₃ = 4 ² *0.8551 / 100 =	0.1368 cm ²
$A_T = 10.2136 + 0.9031 + 0.9031 + 0.1368 + 0.1368 =$	12.2934 cm ²
A _r = (0.5*102.26*4.7) / 100 =	2.4019 cm ²
$A_T = 12.2934 \text{ cm}^2 \ge A_r = 2.4019 \text{ cm}^2$	
External Pressure Hot & Corroded Wind Compressive	
$f_{r1} = min[1,203.26 / 1,407.21, 1] =$	0.8551
$f_{r2} = min[1,203.26/1,407.21,1] =$	0.8551
$\begin{aligned} \mathbf{f}_{r2} &= \min[\ 1,203.26 \ / \ 1,407.21 \ , \ 1\] = \\ \mathbf{A}_{1} &= \left\{ 2*89.11*(8.4 - 4.18) - 2*6.02*(8.4 - 4.18)*(1 - 0.8551) \right\} \ / \ 100 = \end{aligned}$	0.8551 7.4466 cm ²
A ₁ = {2*89.11*(8.4 - 4.18) - 2*6.02*(8.4 - 4.18)*(1 - 0.8551)} / 100 =	7.4466 cm ²
$A_1 = \{2*89.11*(8.4 - 4.18) - 2*6.02*(8.4 - 4.18)*(1 - 0.8551)\} / 100 =$ $A_2 = 2*8.77*6.02*0.8551 / 100 =$	7.4466 cm ² 0.9031 cm ²
$A_1 = \{2*89.11*(8.4 - 4.18) - 2*6.02*(8.4 - 4.18)*(1 - 0.8551)\} / 100 =$ $A_2 = 2*8.77*6.02*0.8551 / 100 =$ $A_3 = 2*7.52*4.42*0.8551 / 100 =$	7.4466 cm ² 0.9031 cm ² 0.5682 cm ²
$A_1 = \{2*89.11*(8.4 - 4.18) - 2*6.02*(8.4 - 4.18)*(1 - 0.8551)\} / 100 =$ $A_2 = 2*8.77*6.02*0.8551 / 100 =$ $A_3 = 2*7.52*4.42*0.8551 / 100 =$ $A_{41} = 4^2*0.8551 / 100 =$	7.4466 cm ² 0.9031 cm ² 0.5682 cm ² 0.1368 cm ²
$A_1 = \{2*89.11*(8.4 - 4.18) - 2*6.02*(8.4 - 4.18)*(1 - 0.8551)\} / 100 =$ $A_2 = 2*8.77*6.02*0.8551 / 100 =$ $A_3 = 2*7.52*4.42*0.8551 / 100 =$ $A_{41} = 4^2*0.8551 / 100 =$ $A_{43} = 1.74^2*0.8551 / 100 =$	7.4466 cm ² 0.9031 cm ² 0.5682 cm ² 0.1368 cm ² 0.0258 cm ²
$A_1 = \{2*89.11*(8.4 - 4.18) - 2*6.02*(8.4 - 4.18)*(1 - 0.8551)\} / 100 =$ $A_2 = 2*8.77*6.02*0.8551 / 100 =$ $A_3 = 2*7.52*4.42*0.8551 / 100 =$ $A_{41} = 4^2*0.8551 / 100 =$ $A_{43} = 1.74^2*0.8551 / 100 =$ $A_{T} = 7.4466 + 0.9031 + 0.5682 + 0.1368 + 0.0258 =$	7.4466 cm ² 0.9031 cm ² 0.5682 cm ² 0.1368 cm ² 0.0258 cm ² 9.0805 cm ²
$A_1 = \{2*89.11*(8.4 - 4.18) - 2*6.02*(8.4 - 4.18)*(1 - 0.8551)\} / 100 =$ $A_2 = 2*8.77*6.02*0.8551 / 100 =$ $A_3 = 2*7.52*4.42*0.8551 / 100 =$ $A_{41} = 4^2*0.8551 / 100 =$ $A_{43} = 1.74^2*0.8551 / 100 =$ $A_T = 7.4466 + 0.9031 + 0.5682 + 0.1368 + 0.0258 =$ $A_r = (0.5*102.26*4.18) / 100 =$	7.4466 cm ² 0.9031 cm ² 0.5682 cm ² 0.1368 cm ² 0.0258 cm ² 9.0805 cm ²
$\begin{array}{c} A_1 = \left\{2*89.11*(8.4 - 4.18) - 2*6.02*(8.4 - 4.18)*(1 - 0.8551)\right\} / \ 100 = \\ A_2 = 2*8.77*6.02*0.8551 / \ 100 = \\ A_3 = 2*7.52*4.42*0.8551 / \ 100 = \\ A_{41} = 4^2*0.8551 / \ 100 = \\ A_{43} = 1.74^2*0.8551 / \ 100 = \\ A_T = 7.4466 + 0.9031 + 0.5682 + 0.1368 + 0.0258 = \\ A_r = (0.5*102.26*4.18) / \ 100 = \\ & A_T = 9.0805 \ \text{cm}^2 \ge A_r = 2.1375 \ \text{cm}^2 \\ & \textbf{Operating Hot \& Corroded Vortex} \end{array}$	7.4466 cm ² 0.9031 cm ² 0.5682 cm ² 0.1368 cm ² 0.0258 cm ² 9.0805 cm ²
$\begin{array}{c} A_1 = \left\{2*89.11*(8.4 - 4.18) - 2*6.02*(8.4 - 4.18)*(1 - 0.8551)\right\} / \ 100 = \\ A_2 = 2*8.77*6.02*0.8551 / \ 100 = \\ A_3 = 2*7.52*4.42*0.8551 / \ 100 = \\ A_{41} = 4^2*0.8551 / \ 100 = \\ A_{43} = 1.74^2*0.8551 / \ 100 = \\ A_T = 7.4466 + 0.9031 + 0.5682 + 0.1368 + 0.0258 = \\ A_r = (0.5*102.26*4.18) / \ 100 = \\ & A_T = 9.0805 \ \text{cm}^2 \ge A_r = 2.1375 \ \text{cm}^2 \\ & \textbf{Operating Hot \& Corroded Vortex shedding Compressive} \\ \end{array}$	7.4466 cm ² 0.9031 cm ² 0.5682 cm ² 0.1368 cm ² 0.0258 cm ² 2.1375 cm ²
$\begin{array}{c} A_1 = \left\{2*89.11*(8.4 - 4.18) - 2*6.02*(8.4 - 4.18)*(1 - 0.8551)\right\} / \ 100 = \\ A_2 = 2*8.77*6.02*0.8551 / \ 100 = \\ A_3 = 2*7.52*4.42*0.8551 / \ 100 = \\ A_{41} = 4^2*0.8551 / \ 100 = \\ A_{43} = 1.74^2*0.8551 / \ 100 = \\ A_T = 7.4466 + 0.9031 + 0.5682 + 0.1368 + 0.0258 = \\ A_r = (0.5*102.26*4.18) / \ 100 = \\ A_T = 9.0805 \ \text{cm}^2 \ge A_r = 2.1375 \ \text{cm}^2 \\ \hline \textbf{Operating Hot \& Corroded Vortex shedding Compressive}} \\ f_{r1} = \min[\ 1,203.26 / \ 1,407.21\ ,\ 1\] = \\ \end{array}$	7.4466 cm ² 0.9031 cm ² 0.5682 cm ² 0.1368 cm ² 0.0258 cm ² 2.1375 cm ² 0.8551
$\begin{array}{c} A_1 = \left\{2*89.11*(8.4 - 4.18) - 2*6.02*(8.4 - 4.18)*(1 - 0.8551)\right\} / \ 100 = \\ A_2 = 2*8.77*6.02*0.8551 / \ 100 = \\ A_3 = 2*7.52*4.42*0.8551 / \ 100 = \\ A_{41} = 4^2*0.8551 / \ 100 = \\ A_{43} = 1.74^2*0.8551 / \ 100 = \\ A_T = 7.4466 + 0.9031 + 0.5682 + 0.1368 + 0.0258 = \\ A_r = (0.5*102.26*4.18) / \ 100 = \\ A_T = 9.0805 \ cm^2 \ge A_r = 2.1375 \ cm^2 \\ \hline \begin{array}{c} \textbf{Operating Hot \& Corroded Vortex shedding Compressive} \\ f_{r1} = \min[\ 1,203.26 / \ 1,407.21\ ,\ 1\] = \\ f_{r2} = \min[\ 1,203.26 / \ 1,407.21\ ,\ 1\] = \\ \end{array}$	7.4466 cm ² 0.9031 cm ² 0.5682 cm ² 0.1368 cm ² 0.0258 cm ² 2.1375 cm ² 0.8551 0.8551
$\begin{array}{c} A_1 = \left\{2*89.11*(8.4 - 4.18) - 2*6.02*(8.4 - 4.18)*(1 - 0.8551)\right\} / \ 100 = \\ A_2 = 2*8.77*6.02*0.8551 / \ 100 = \\ A_3 = 2*7.52*4.42*0.8551 / \ 100 = \\ A_{41} = 4^2*0.8551 / \ 100 = \\ A_{43} = 1.74^2*0.8551 / \ 100 = \\ A_T = 7.4466 + 0.9031 + 0.5682 + 0.1368 + 0.0258 = \\ A_r = (0.5*102.26*4.18) / \ 100 = \\ A_T = 9.0805 \ \text{cm}^2 \ge A_r = 2.1375 \ \text{cm}^2 \\ \hline \textbf{Operating Hot \& Corroded Vortex shedding Compressive}} \\ f_{r1} = \min[\ 1,203.26 / \ 1,407.21\ ,\ 1\] = \\ f_{r2} = \min[\ 1,203.26 / \ 1,407.21\ ,\ 1\] = \\ A_1 = \left\{2*89.11*(8.4 - 5.27) - 2*6.02*(8.4 - 5.27)*(1 - 0.8551)\right\} / \ 100 = \\ \hline \end{array}$	7.4466 cm ² 0.9031 cm ² 0.5682 cm ² 0.1368 cm ² 0.0258 cm ² 2.1375 cm ² 0.8551 0.8551 5.5326 cm ²

A ₄₃ = 1.74 ² *0.8551 / 100 =	0.0258 cm^2
$A_{43} = 1.74 - 0.03317 + 100 =$ $A_{T} = 5.5326 + 0.9031 + 0.5682 + 0.1368 + 0.0258 =$	7.1664 cm ²
$A_r = (0.5*102.26*5.27) / 100 =$	2.692 cm ²
$A_T = 7.1664 \text{ cm}^2 \ge A_r = 2.692 \text{ cm}^2$	
Empty Cold & Corroded Vortex shedding Compressive	
f _{r1} = min[1,203.26 / 1,407.21 , 1] =	0.8551
f _{r2} = min[1,203.26 / 1,407.21 , 1] =	0.8551
$A_1 = \{2*89.11*(8.4 - 5.29) - 2*6.02*(8.4 - 5.29)*(1 - 0.8551)\} / 100 =$	5.4939 cm ²
A ₂ = 2*8.77*6.02*0.8551 / 100 =	0.9031 cm ²
A ₃ = 2*7.52*4.42*0.8551 / 100 =	0.5682 cm ²
A ₄₁ = 42*0.8551 / 100 =	0.1368 cm ²
A ₄₃ = 1.74 ² *0.8551 / 100 =	0.0258 cm ²
$A_T = 5.4939 + 0.9031 + 0.5682 + 0.1368 + 0.0258 =$	7.1278 cm ²
$A_r = (0.5*102.26*5.29) / 100 =$	2.7032 cm ²
$A_T = 7.1278 \text{ cm}^2 \ge A_r = 2.7032 \text{ cm}^2$	
External Pressure Hot & Corroded Vortex shedding Compressive	
f _{r1} = min[1,203.26 / 1,407.21 , 1] =	0.8551
f _{r2} = min[1,203.26 / 1,407.21 , 1] =	0.8551
$A_1 = \{2*89.11*(8.4 - 5.27) - 2*6.02*(8.4 - 5.27)*(1 - 0.8551)\} / 100 =$	5.5303 cm ²
A ₂ = 2*8.77*6.02*0.8551 / 100 =	0.9031 cm ²
A ₃ = 2*7.52*4.42*0.8551 / 100 =	0.5682 cm ²
A ₄₁ = 42*0.8551 / 100 =	0.1368 cm ²
A ₄₃ = 1.74 ² *0.8551 / 100 =	0.0258 cm ²
$A_T = 5.5303 + 0.9031 + 0.5682 + 0.1368 + 0.0258 =$	7.1642 cm ²
$A_{\rm r} = (0.5*102.26*5.27) / 100 =$	2.6927 cm ²
$A_T = 7.1642 \text{ cm}^2 \ge A_r = 2.6927 \text{ cm}^2$	

	ACMI	E Section VIII Division 1 2017	/ Edition Matric
C		E Section VIII Division 1, 2017	
Compon			pening
Descript	tion	Vent	Hole
Drawing I	Mark	V	72
Sleeve Ma	terial	SA-106 B Smls Pipe (II	I-D Metric p. 14, ln. 10)
		Location and Orientat	ion
Attached	d to	Support	Skirt #1
Orientat	tion	rac	lial
Offset,	L	620	mm
Angle,	θ	90	0°
Distance	e, r	1,769	9 mm
Through Category B		N	Io
		Dimensions	
Pipe NPS Schedu		NPS 4 Sch 40 (Std) DN 100	130 ⊬—→
Inside Dia	meter	102.26 mm	
Nominal Thickno		6.02 mm	5,02
Skirt Thic	kness	10 mm	
Leg ₄₁	l	4 mm	i i
Leg ₄₃	3	4 mm	
Extern Projecti Available	ion	80 mm	4
Intern Projection		130 mm	·
Corrosion	Inner	0 mm	
	Outer	0 mm	

Note: Skirt required thickness of zero on tensile side indicates load is compressive.

Openings Subject to Axial Tension	
$L_R = min[(R_{eff} * t)^{0.5}, 2 * R_n]$	(4.5.4)
$L_{HI} = min[1.5*t, t_e] + (R_n * t_n)^{0.5}$	(4.5.11)
$L_{\rm H2} = L_{\rm pr1}$	(4.5.12)
$L_{H3} = 8*(t + t_e)$	(4.5.13)
$L_{H} = min[L_{H1}, L_{H2}, L_{H3}] + t$	(4.5.14)
$L_{11} = (R_n * t_n)^{0.5}$	(4.5.16)
$L_{I2} = L_{pr2}$	(4.5.17)
$L_{13} = 8*(t + t_e)$	(4.5.18)
$L_{I} = min[L_{I1}, L_{I2}, L_{I3}]$	(4.5.19)
$f_{r1} = \min[S_n/S, 1]$	•
$f_{r2} = \min[S_n/S, 1]$	
$A_1 = 2*L_R*(E_1*t - t_r)$	
$A_2 = 2*(L_H - t_r)*t_n*f_{r2}$	
$A_3 = 2*L_1*t_i*f_{r2}$	
$A_{41} = L_{41}^{2*} f_{r2}$	
$A_{43} = L_{43}^{2*} f_{r2}$	
$A_{T} = A_{1} + A_{2} + A_{3} + A_{41} + A_{43}$	
$A_{r} = d*t_{r} + 2*t_{n}*t_{r}*(1 - f_{r1})$	
New	
$L_R = min[(1,679*10)^{0.5}, 2*51.13] =$	102.26 mm
$L_{H1} = min[1.5*10, 0] + (51.13*6.02)^{0.5} =$	17.54 mm
$L_{H2} = 80 =$	80 mm
$L_{\rm H3} = 8*(10+0) =$	80 mm
$L_{\rm H} = \min[17.54, 80, 80] + 10 =$	27.54 mm
$L_{11} = (51.13*6.02)^{0.5} =$	17.54 mm
$L_{12} = L_{pr2} =$	130 mm
$L_{13} = 8*(10+0) =$	80 mm
$L_{\rm I} = \min[17.54, 130, 80] =$	17.54 mm
Corroded	
$L_{R} = min[(1,680.6*8.4)^{0.5}, 2*51.13] =$	102.26 mm
$L_{H1} = min[1.5*8.4, 0] + (51.13*6.02)^{0.5} =$	17.54 mm
$L_{H2} = 80 =$	80 mm
$L_{\rm H3} = 8*(8.4+0) =$	67.2 mm
$L_{\rm H} = \min[17.54, 80, 67.2] + 8.4 =$	25.94 mm
$L_{II} = (51.13*4.42)^{0.5} =$	15.03 mm

	120.4
$L_{12} = L_{pr2} =$	128.4 mm
$L_{13} = 8*(8.4+0) =$	67.2 mm
$L_{\rm I} = \min[15.03, 128.4, 67.2] =$	15.03 mm
Operating Hot & Corroded Wind Tensile	
f _{r1} = min[1,203.26 / 1,407.21 , 1] =	0.8551
f _{r2} = min[1,203.26 / 1,407.21 , 1] =	0.8551
$A_1 = \{2*102.26*(1*8.4 - 0.27)\} / 100 =$	16.6343 cm ²
A ₂ = 2*(25.94 - 0.27)*6.02*0.8551 / 100 =	2.6435 cm ²
A ₃ = 2*15.03*4.42*0.8551 / 100 =	1.1363 cm ²
A ₄₁ = 4 ² *0.8551 / 100 =	0.1368 cm ²
A ₄₃ = 1.74 ² *0.8551 / 100 =	0.0258 cm^2
$A_T = 16.6343 + 2.6435 + 1.1363 + 0.1368 + 0.0258 =$	20.5768 cm ²
$A_r = (102.26*0.27 + 2*6.02*0.27*(1 - 0.8551)) / 100 =$	<u>0.2773 cm²</u>
$A_{\rm T} = 20.5768 \text{ cm}^2 \ge A_{\rm r} = 0.2773 \text{ cm}^2$	
Operating Hot & New Wind Tensile	
f _{r1} = min[1,203.26 / 1,407.21 , 1] =	0.8551
f _{r2} = min[1,203.26 / 1,407.21 , 1] =	0.8551
$A_1 = \{2*102.26*(1*10 - 0.27)\} / 100 =$	19.9048 cm ²
A ₂ = 2*(27.54 - 0.27)*6.02*0.8551 / 100 =	2.8082 cm ²
A ₃ = 2*17.54*6.02*0.8551 / 100 =	1.8062 cm ²
A ₄₁ = 4 ² *0.8551 / 100 =	0.1368 cm ²
A ₄₃ = 4 ² *0.8551 / 100 =	0.1368 cm ²
$A_T = 19.9048 + 2.8082 + 1.8062 + 0.1368 + 0.1368 =$	24.7928 cm ²
$A_r = (102.26*0.27 + 2*6.02*0.27*(1 - 0.8551)) / 100 =$	<u>0.2783 cm²</u>
$A_T = 24.7928 \text{ cm}^2 \ge A_r = 0.2783 \text{ cm}^2$	
Empty Cold & Corroded Wind Tensile	
$f_{r1} = min[1,203.26 / 1,407.21, 1] =$	0.8551
f _{r2} = min[1,203.26 / 1,407.21 , 1] =	0.8551
$A_1 = \{2*102.26*(1*8.4 - 0.45)\} / 100 =$	16.2614 cm ²
A ₂ = 2*(25.94 - 0.45)*6.02*0.8551 / 100 =	2.6248 cm ²
A ₃ = 2*15.03*4.42*0.8551 / 100 =	1.1363 cm ²
A ₄₁ = 4 ² *0.8551 / 100 =	0.1368 cm ²
A ₄₃ = 1.74 ² *0.8551 / 100 =	0.0258 cm ²
$A_T = 16.2614 + 2.6248 + 1.1363 + 0.1368 + 0.0258 =$	20.1851 cm ²
$A_r = (102.26*0.45 + 2*6.02*0.45*(1 - 0.8551)) / 100 =$	<u>0.467 cm²</u>
$A_T = 20.1851 \text{ cm}^2 \ge A_r = 0.467 \text{ cm}^2$	

Empty Cold & New Wind Tensile	
f _{r1} = min[1,203.26 / 1,407.21 , 1] =	0.8551
f _{r2} = min[1,203.26 / 1,407.21 , 1] =	0.8551
$A_1 = \{2*102.26*(1*10 - 0.45)\} / 100 =$	19.5321 cm ²
A ₂ = 2*(27.54 - 0.45)*6.02*0.8551 / 100 =	2.7894 cm ²
A ₃ = 2*17.54*6.02*0.8551 / 100 =	1.8062 cm ²
A ₄₁ = 4 ² *0.8551 / 100 =	0.1368 cm ²
A ₄₃ = 4 ² *0.8551 / 100 =	0.1368 cm ²
$A_T = 19.5321 + 2.7894 + 1.8062 + 0.1368 + 0.1368 =$	24.4013 cm ²
$A_r = (102.26*0.45 + 2*6.02*0.45*(1 - 0.8551)) / 100 =$	0.4678 cm ²
$A_T = 24.4013 \text{ cm}^2 \ge A_r = 0.4678 \text{ cm}^2$	
External Pressure Hot & Corroded Wind Ter	nsile
f _{r1} = min[1,203.26 / 1,407.21 , 1] =	0.8551
f _{r2} = min[1,203.26 / 1,407.21 , 1] =	0.8551
A ₁ = {2*102.26*(1*8.4 - 0.27)} / 100 =	16.6343 cm ²
A ₂ = 2*(25.94 - 0.27)*6.02*0.8551 / 100 =	2.6435 cm ²
A ₃ = 2*15.03*4.42*0.8551 / 100 =	1.1363 cm ²
A ₄₁ = 4 ² *0.8551 / 100 =	0.1368 cm ²
A ₄₃ = 1.74 ² *0.8551 / 100 =	0.0258 cm ²
$A_T = 16.6343 + 2.6435 + 1.1363 + 0.1368 + 0.0258 =$	20.5768 cm ²
$A_r = (102.26*0.27 + 2*6.02*0.27*(1 - 0.8551)) / 100 =$	0.2773 cm ²
$A_T = 20.5768 \text{ cm}^2 \ge A_r = 0.2773 \text{ cm}^2$	
Operating Hot & Corroded Vortex shedding Tensile	
f _{r1} = min[1,203.26 / 1,407.21 , 1] =	0.8551
f _{r2} = min[1,203.26 / 1,407.21 , 1] =	0.8551
$A_1 = \{2*102.26*(1*8.4 - 0.75)\} / 100 =$	15.6413 cm ²
A ₂ = 2*(25.94 - 0.75)*6.02*0.8551 / 100 =	2.5935 cm ²
A ₃ = 2*15.03*4.42*0.8551 / 100 =	1.1363 cm ²
A ₄₁ = 4 ² *0.8551 / 100 =	0.1368 cm ²
A ₄₃ = 1.74 ² *0.8551 / 100 =	0.0258 cm ²
$A_T = 15.6413 + 2.5935 + 1.1363 + 0.1368 + 0.0258 =$	19.5337 cm ²
$A_r = (102.26*0.75 + 2*6.02*0.75*(1 - 0.8551)) / 100 =$	0.7823 cm ²
$A_T = 19.5337 \text{ cm}^2 \ge A_r = 0.7823 \text{ cm}^2$	
Empty Cold & Corroded Vortex shedding Tensile	
f _{r1} = min[1,203.26 / 1,407.21 , 1] =	0.8551

<u></u>	
$f_{r2} = min[1,203.26 / 1,407.21, 1] =$	0.8551
$A_1 = \{2*102.26*(1*8.4 - 1.25)\} / 100 =$	14.6267 cm ²
A ₂ = 2*(25.94 - 1.25)*6.02*0.8551 / 100 =	2.5425 cm ²
A ₃ = 2*15.03*4.42*0.8551 / 100 =	1.1363 cm ²
A ₄₁ = 4 ² *0.8551 / 100 =	0.1368 cm ²
A ₄₃ = 1.74 ² *0.8551 / 100 =	0.0258 cm^2
$A_T = 14.6267 + 2.5425 + 1.1363 + 0.1368 + 0.0258 =$	18.4682 cm ²
$A_r = (102.26*1.25 + 2*6.02*1.25*(1 - 0.8551)) / 100 =$	1.2982 cm ²
$A_T = 18.4682 \text{ cm}^2 \ge A_r = 1.2982 \text{ cm}^2$	
External Pressure Hot & Corroded Vorter shedding Tensile	K
$f_{r1} = min[1,203.26 / 1,407.21, 1] =$	0.8551
f _{r2} = min[1,203.26 / 1,407.21 , 1] =	0.8551
	0.000
$A_1 = \{2*102.26*(1*8.4 - 0.75)\} / 100 =$	15.6401 cm ²
$A_1 = \{2*102.26*(1*8.4 - 0.75)\} / 100 =$ $A_2 = 2*(25.94 - 0.75)*6.02*0.8551 / 100 =$	
	15.6401 cm ²
A ₂ = 2*(25.94 - 0.75)*6.02*0.8551 / 100 =	15.6401 cm ² 2.5935 cm ²
A ₂ = 2*(25.94 - 0.75)*6.02*0.8551 / 100 = A ₃ = 2*15.03*4.42*0.8551 / 100 =	15.6401 cm ² 2.5935 cm ² 1.1363 cm ²
$A_2 = 2*(25.94 - 0.75)*6.02*0.8551 / 100 =$ $A_3 = 2*15.03*4.42*0.8551 / 100 =$ $A_{41} = 4^2*0.8551 / 100 =$	15.6401 cm ² 2.5935 cm ² 1.1363 cm ² 0.1368 cm ²
$A_2 = 2*(25.94 - 0.75)*6.02*0.8551 / 100 =$ $A_3 = 2*15.03*4.42*0.8551 / 100 =$ $A_{41} = 4^2*0.8551 / 100 =$ $A_{43} = 1.74^2*0.8551 / 100 =$	15.6401 cm ² 2.5935 cm ² 1.1363 cm ² 0.1368 cm ² 0.0258 cm ²

Division 2 4.5.17.3 Openings Subject to Axial Compression	1
$\gamma_n = d / \{2*(R*t)^{0.5}\}$	(4.5.212)
$\gamma_{\rm n} \le \{ (R/t) / 291 + 0.22 \}^2$	
$t_{n,eff} = min[t_n, t]$	
$t_{i,eff} = min[t_i, t]$	
$L_{R} = 0.75*(R*t)^{0.5}$	
$L_{H} = min[0.5*{(d/2)*t_{n}}]^{0.5}, 2.5*t_{n}, L_{pr1}]$	
$L_{I} = min[0.5*{(d/2)*t_{i}}^{0.5}, 2.5*t_{i}, L_{pr2}]$	
$f_{r1} = \min[S_n / S, 1]$	
$f_{r2} = \min[S_n / S, 1]$	
$A_1 = 2*L_R*(t - t_r) - 2*t_{n,eff}*(t - t_r)*(1 - f_{r1})$	
$A_2 = 2*L_H*t_{n,eff}*f_{r2}$	
$A_3 = 2*L_1*t_{i,eff}*f_{r2}$	
$A_{41} = L_{41}^{2*} f_{r2}$	
$A_{43} = L_{43}^{2*} f_{r2}$	
$A_{T} = A_{1} + A_{2} + A_{3} + A_{41} + A_{43}$	
$A_r = 0.5 * d * t_r$	(4.5.210)
New	
$\gamma_{\rm n} = 102.26 / \{2*(1,679*10)^{0.5}\} =$	0.3946
$\gamma_{\rm n} \le \{ (1,679 / 10) / 291 + 0.22 \}^2 =$	0.6352
Area required factor for compressive side =	0.5
$L_R = 0.75*(1,679*10)^{0.5} =$	97.18 mm
$L_{\rm H} = \min[0.5*\{(102.26/2)*6.02\}^{0.5}, 2.5*6.02, 80] =$	8.77 mm
$L_{I} = min[0.5*{(102.26 / 2)*6.02}^{0.5}, 2.5*6.02, 130] =$	8.77 mm
$t_{n,eff} = min[6.02, 10] =$	6.02 mm
$t_{i,eff} = min[6.02, 10] =$	6.02 mm
Corroded	
$\gamma_{\rm n} = 102.26 / \{2*(1,680.6*8.4)^{0.5}\} =$	0.4303
$\gamma_{\rm n} \le \{ (1,680.6 / 8.4) / 291 + 0.22 \}^2 =$	0.8236
Area required factor for compressive side =	0.5
$L_{R} = 0.75*(1,680.6*8.4)^{0.5} =$	89.11 mm
$L_{\rm H} = \min[0.5*\{(102.26/2)*6.02\}^{0.5}, 2.5*6.02, 80] =$	8.77 mm
$L_{I} = min[0.5*{(102.26 / 2)*4.42}^{0.5}, 2.5*4.42, 128.4] =$	7.52 mm
$t_{n,eff} = min[6.02, 8.4] =$	6.02 mm
$t_{i,eff} = min[4.42, 8.4] =$	4.42 mm
Operating Hot & Corroded Wind Compressive	

f _ min[1 202 26 / 1 407 21 1]	0.0551
$f_{r1} = min[1,203.26/1,407.21,1] =$	0.8551
f _{r2} = min[1,203.26 / 1,407.21 , 1] =	0.8551
$A_1 = \{2*89.11*(8.4 - 4.18) - 2*6.02*(8.4 - 4.18)*(1 - 0.8551)\} / 100 =$	7.4466 cm ²
A ₂ = 2*8.77*6.02*0.8551 / 100 =	0.9031 cm ²
A ₃ = 2*7.52*4.42*0.8551 / 100 =	0.5682 cm ²
A ₄₁ = 4 ² *0.8551 / 100 =	0.1368 cm ²
A ₄₃ = 1.74 ² *0.8551 / 100 =	0.0258 cm ²
$A_T = 7.4466 + 0.9031 + 0.5682 + 0.1368 + 0.0258 =$	9.0805 cm ²
$A_r = (0.5*102.26*4.18) / 100 =$	2.1375 cm ²
$A_T = 9.0805 \text{ cm}^2 \ge A_r = 2.1375 \text{ cm}^2$	
Operating Hot & New Wind Compressive	_
$f_{r1} = min[1,203.26 / 1,407.21, 1] =$	0.8551
$f_{r2} = min[1,203.26 / 1,407.21, 1] =$	0.8551
$A_1 = \{2*97.18*(10 - 3.51) - 2*6.02*(10 - 3.51)*(1 - 0.8551)\} / 100 =$	12.501 cm ²
A ₂ = 2*8.77*6.02*0.8551 / 100 =	0.9031 cm ²
A ₃ = 2*8.77*6.02*0.8551 / 100 =	0.9031 cm ²
A ₄₁ = 42*0.8551 / 100 =	0.1368 cm ²
A ₄₃ = 4 ² *0.8551 / 100 =	0.1368 cm^2
$A_T = 12.501 + 0.9031 + 0.9031 + 0.1368 + 0.1368 =$	14.5808 cm ²
$A_r = (0.5*102.26*3.51) / 100 =$	1.7947 cm ²
$A_T = 14.5808 \text{ cm}^2 \ge A_r = 1.7947 \text{ cm}^2$	
Empty Cold & Corroded Wind Compressive	
$f_{r1} = min[1,203.26 / 1,407.21, 1] =$	0.8551
f _{r2} = min[1,203.26 / 1,407.21 , 1] =	0.8551
$A_1 = \{2*89.11*(8.4 - 3.5) - 2*6.02*(8.4 - 3.5)*(1 - 0.8551)\} / 100 =$	8.6446 cm ²
A ₂ = 2*8.77*6.02*0.8551 / 100 =	0.9031 cm ²
A ₃ = 2*7.52*4.42*0.8551 / 100 =	0.5682 cm ²
A ₄₁ = 4 ² *0.8551 / 100 =	0.1368 cm ²
A ₄₃ = 1.74 ² *0.8551 / 100 =	0.0258 cm ²
$A_T = 8.6446 + 0.9031 + 0.5682 + 0.1368 + 0.0258 =$	10.2784 cm ²
$A_r = (0.5*102.26*3.5) / 100 =$	1.7904 cm ²
$A_T = 10.2784 \text{ cm}^2 \ge A_r = 1.7904 \text{ cm}^2$	
Empty Cold & New Wind Compressive	
f _{r1} = min[1,203.26 / 1,407.21 , 1] =	0.8551
f _{r2} = min[1,203.26 / 1,407.21 , 1] =	0.8551
$A_1 = \{2*97.18*(10 - 2.94) - 2*6.02*(10 - 2.94)*(1 - 0.8551)\} / 100 =$	13.5979 cm ²

A ₂ = 2*8.77*6.02*0.8551 / 100 =	0.9031 cm ²
$A_3 = 2*8.77*6.02*0.8551 / 100 =$	0.9031 cm ²
$A_{41} = 4^{2*}0.8551 / 100 =$	0.1368 cm ²
$A_{43} = 4^{2*}0.8551 / 100 =$	0.1368 cm ²
$A_T = 13.5979 + 0.9031 + 0.9031 + 0.1368 + 0.1368 =$	15.6778 cm ²
$A_r = (0.5*102.26*2.94) / 100 =$	1.5035 cm ²
$A_T = 15.6778 \text{ cm}^2 \ge A_r = 1.5035 \text{ cm}^2$	
Shop Test New Wind Compressive	
f _{r1} = min[1,203.26 / 1,407.21 , 1] =	0.8551
$f_{r2} = min[1,203.26/1,407.21,1] =$	0.8551
$A_1 = \{2*97.18*(10 - 4.7) - 2*6.02*(10 - 4.7)*(1 - 0.8551)\} / 100 =$	10.2136 cm ²
A ₂ = 2*8.77*6.02*0.8551 / 100 =	0.9031 cm ²
A ₃ = 2*8.77*6.02*0.8551 / 100 =	0.9031 cm ²
A ₄₁ = 4 ² *0.8551 / 100 =	0.1368 cm ²
A ₄₃ = 4 ² *0.8551 / 100 =	0.1368 cm ²
$A_T = 10.2136 + 0.9031 + 0.9031 + 0.1368 + 0.1368 =$	12.2934 cm ²
A _r = (0.5*102.26*4.7) / 100 =	2.4019 cm ²
$A_T = 12.2934 \text{ cm}^2 \ge A_r = 2.4019 \text{ cm}^2$	
External Pressure Hot & Corroded Wind Compressive	
$f_{r1} = min[1,203.26 / 1,407.21, 1] =$	0.8551
$f_{r2} = min[1,203.26/1,407.21,1] =$	0.8551
$\begin{aligned} \mathbf{f}_{r2} &= \min[\ 1,203.26 \ / \ 1,407.21 \ , \ 1\] = \\ \mathbf{A}_{1} &= \left\{ 2*89.11*(8.4 - 4.18) - 2*6.02*(8.4 - 4.18)*(1 - 0.8551) \right\} \ / \ 100 = \end{aligned}$	0.8551 7.4466 cm ²
A ₁ = {2*89.11*(8.4 - 4.18) - 2*6.02*(8.4 - 4.18)*(1 - 0.8551)} / 100 =	7.4466 cm ²
$A_1 = \{2*89.11*(8.4 - 4.18) - 2*6.02*(8.4 - 4.18)*(1 - 0.8551)\} / 100 =$ $A_2 = 2*8.77*6.02*0.8551 / 100 =$	7.4466 cm ² 0.9031 cm ²
$A_1 = \{2*89.11*(8.4 - 4.18) - 2*6.02*(8.4 - 4.18)*(1 - 0.8551)\} / 100 =$ $A_2 = 2*8.77*6.02*0.8551 / 100 =$ $A_3 = 2*7.52*4.42*0.8551 / 100 =$	7.4466 cm ² 0.9031 cm ² 0.5682 cm ²
$A_1 = \{2*89.11*(8.4 - 4.18) - 2*6.02*(8.4 - 4.18)*(1 - 0.8551)\} / 100 =$ $A_2 = 2*8.77*6.02*0.8551 / 100 =$ $A_3 = 2*7.52*4.42*0.8551 / 100 =$ $A_{41} = 4^2*0.8551 / 100 =$	7.4466 cm ² 0.9031 cm ² 0.5682 cm ² 0.1368 cm ²
$A_1 = \{2*89.11*(8.4 - 4.18) - 2*6.02*(8.4 - 4.18)*(1 - 0.8551)\} / 100 =$ $A_2 = 2*8.77*6.02*0.8551 / 100 =$ $A_3 = 2*7.52*4.42*0.8551 / 100 =$ $A_{41} = 4^2*0.8551 / 100 =$ $A_{43} = 1.74^2*0.8551 / 100 =$	7.4466 cm ² 0.9031 cm ² 0.5682 cm ² 0.1368 cm ² 0.0258 cm ²
$A_1 = \{2*89.11*(8.4 - 4.18) - 2*6.02*(8.4 - 4.18)*(1 - 0.8551)\} / 100 =$ $A_2 = 2*8.77*6.02*0.8551 / 100 =$ $A_3 = 2*7.52*4.42*0.8551 / 100 =$ $A_{41} = 4^2*0.8551 / 100 =$ $A_{43} = 1.74^2*0.8551 / 100 =$ $A_{T} = 7.4466 + 0.9031 + 0.5682 + 0.1368 + 0.0258 =$	7.4466 cm ² 0.9031 cm ² 0.5682 cm ² 0.1368 cm ² 0.0258 cm ² 9.0805 cm ²
$A_1 = \{2*89.11*(8.4 - 4.18) - 2*6.02*(8.4 - 4.18)*(1 - 0.8551)\} / 100 =$ $A_2 = 2*8.77*6.02*0.8551 / 100 =$ $A_3 = 2*7.52*4.42*0.8551 / 100 =$ $A_{41} = 4^2*0.8551 / 100 =$ $A_{43} = 1.74^2*0.8551 / 100 =$ $A_T = 7.4466 + 0.9031 + 0.5682 + 0.1368 + 0.0258 =$ $A_r = (0.5*102.26*4.18) / 100 =$	7.4466 cm ² 0.9031 cm ² 0.5682 cm ² 0.1368 cm ² 0.0258 cm ² 9.0805 cm ²
$\begin{array}{c} A_1 = \left\{2*89.11*(8.4 - 4.18) - 2*6.02*(8.4 - 4.18)*(1 - 0.8551)\right\} / \ 100 = \\ A_2 = 2*8.77*6.02*0.8551 / \ 100 = \\ A_3 = 2*7.52*4.42*0.8551 / \ 100 = \\ A_{41} = 4^2*0.8551 / \ 100 = \\ A_{43} = 1.74^2*0.8551 / \ 100 = \\ A_T = 7.4466 + 0.9031 + 0.5682 + 0.1368 + 0.0258 = \\ A_r = (0.5*102.26*4.18) / \ 100 = \\ & A_T = 9.0805 \ \text{cm}^2 \ge A_r = 2.1375 \ \text{cm}^2 \\ & \textbf{Operating Hot \& Corroded Vortex} \end{array}$	7.4466 cm ² 0.9031 cm ² 0.5682 cm ² 0.1368 cm ² 0.0258 cm ² 9.0805 cm ²
$\begin{array}{c} A_1 = \left\{2*89.11*(8.4 - 4.18) - 2*6.02*(8.4 - 4.18)*(1 - 0.8551)\right\} / \ 100 = \\ A_2 = 2*8.77*6.02*0.8551 / \ 100 = \\ A_3 = 2*7.52*4.42*0.8551 / \ 100 = \\ A_{41} = 4^2*0.8551 / \ 100 = \\ A_{43} = 1.74^2*0.8551 / \ 100 = \\ A_T = 7.4466 + 0.9031 + 0.5682 + 0.1368 + 0.0258 = \\ A_r = (0.5*102.26*4.18) / \ 100 = \\ & A_T = 9.0805 \ \text{cm}^2 \ge A_r = 2.1375 \ \text{cm}^2 \\ & \textbf{Operating Hot \& Corroded Vortex shedding Compressive} \\ \end{array}$	7.4466 cm ² 0.9031 cm ² 0.5682 cm ² 0.1368 cm ² 0.0258 cm ² 2.1375 cm ²
$\begin{array}{c} A_1 = \left\{2*89.11*(8.4 - 4.18) - 2*6.02*(8.4 - 4.18)*(1 - 0.8551)\right\} / \ 100 = \\ A_2 = 2*8.77*6.02*0.8551 / \ 100 = \\ A_3 = 2*7.52*4.42*0.8551 / \ 100 = \\ A_{41} = 4^2*0.8551 / \ 100 = \\ A_{43} = 1.74^2*0.8551 / \ 100 = \\ A_T = 7.4466 + 0.9031 + 0.5682 + 0.1368 + 0.0258 = \\ A_r = (0.5*102.26*4.18) / \ 100 = \\ A_T = 9.0805 \ \text{cm}^2 \ge A_r = 2.1375 \ \text{cm}^2 \\ \hline \textbf{Operating Hot \& Corroded Vortex shedding Compressive}} \\ f_{r1} = \min[\ 1,203.26 / \ 1,407.21\ ,\ 1\] = \\ \end{array}$	7.4466 cm ² 0.9031 cm ² 0.5682 cm ² 0.1368 cm ² 0.0258 cm ² 2.1375 cm ² 0.8551
$\begin{array}{c} A_1 = \left\{2*89.11*(8.4 - 4.18) - 2*6.02*(8.4 - 4.18)*(1 - 0.8551)\right\} / \ 100 = \\ A_2 = 2*8.77*6.02*0.8551 / \ 100 = \\ A_3 = 2*7.52*4.42*0.8551 / \ 100 = \\ A_{41} = 4^2*0.8551 / \ 100 = \\ A_{43} = 1.74^2*0.8551 / \ 100 = \\ A_T = 7.4466 + 0.9031 + 0.5682 + 0.1368 + 0.0258 = \\ A_r = (0.5*102.26*4.18) / \ 100 = \\ A_T = 9.0805 \ cm^2 \ge A_r = 2.1375 \ cm^2 \\ \hline \begin{array}{c} \textbf{Operating Hot \& Corroded Vortex shedding Compressive} \\ f_{r1} = \min[\ 1,203.26 / \ 1,407.21\ ,\ 1\] = \\ f_{r2} = \min[\ 1,203.26 / \ 1,407.21\ ,\ 1\] = \\ \end{array}$	7.4466 cm ² 0.9031 cm ² 0.5682 cm ² 0.1368 cm ² 0.0258 cm ² 2.1375 cm ² 0.8551 0.8551
$\begin{array}{c} A_1 = \left\{2*89.11*(8.4 - 4.18) - 2*6.02*(8.4 - 4.18)*(1 - 0.8551)\right\} / \ 100 = \\ A_2 = 2*8.77*6.02*0.8551 / \ 100 = \\ A_3 = 2*7.52*4.42*0.8551 / \ 100 = \\ A_{41} = 4^2*0.8551 / \ 100 = \\ A_{43} = 1.74^2*0.8551 / \ 100 = \\ A_T = 7.4466 + 0.9031 + 0.5682 + 0.1368 + 0.0258 = \\ A_r = (0.5*102.26*4.18) / \ 100 = \\ A_T = 9.0805 \ \text{cm}^2 \ge A_r = 2.1375 \ \text{cm}^2 \\ \hline \textbf{Operating Hot \& Corroded Vortex shedding Compressive}} \\ f_{r1} = \min[\ 1,203.26 / \ 1,407.21\ ,\ 1\] = \\ f_{r2} = \min[\ 1,203.26 / \ 1,407.21\ ,\ 1\] = \\ A_1 = \left\{2*89.11*(8.4 - 5.27) - 2*6.02*(8.4 - 5.27)*(1 - 0.8551)\right\} / \ 100 = \\ \hline \end{array}$	7.4466 cm ² 0.9031 cm ² 0.5682 cm ² 0.1368 cm ² 0.0258 cm ² 2.1375 cm ² 0.8551 0.8551 5.5326 cm ²

A ₄₃ = 1.74 ² *0.8551 / 100 =	0.0258 cm^2		
$A_T = 5.5326 + 0.9031 + 0.5682 + 0.1368 + 0.0258 =$	7.1664 cm ²		
$A_r = (0.5*102.26*5.27) / 100 =$	2.692 cm ²		
$A_T = 7.1664 \text{ cm}^2 \ge A_r = 2.692 \text{ cm}^2$			
Empty Cold & Corroded Vortex shedding Compressive			
f _{r1} = min[1,203.26 / 1,407.21 , 1] =	0.8551		
f _{r2} = min[1,203.26 / 1,407.21 , 1] =	0.8551		
$A_1 = \{2*89.11*(8.4 - 5.29) - 2*6.02*(8.4 - 5.29)*(1 - 0.8551)\} / 100 =$	5.4939 cm ²		
A ₂ = 2*8.77*6.02*0.8551 / 100 =	0.9031 cm ²		
A ₃ = 2*7.52*4.42*0.8551 / 100 =	0.5682 cm ²		
A ₄₁ = 4 ² *0.8551 / 100 =	0.1368 cm ²		
A ₄₃ = 1.74 ² *0.8551 / 100 =	0.0258 cm ²		
$A_T = 5.4939 + 0.9031 + 0.5682 + 0.1368 + 0.0258 =$	7.1278 cm ²		
$A_r = (0.5*102.26*5.29) / 100 =$	2.7032 cm ²		
$A_T = 7.1278 \text{ cm}^2 \ge A_r = 2.7032 \text{ cm}^2$			
External Pressure Hot & Corroded Vortex shedding Compressive			
f _{r1} = min[1,203.26 / 1,407.21 , 1] =	0.8551		
f _{r2} = min[1,203.26 / 1,407.21 , 1] =	0.8551		
$A_1 = \{2*89.11*(8.4 - 5.27) - 2*6.02*(8.4 - 5.27)*(1 - 0.8551)\} / 100 =$	5.5303 cm ²		
A ₂ = 2*8.77*6.02*0.8551 / 100 =	0.9031 cm ²		
A ₃ = 2*7.52*4.42*0.8551 / 100 =	0.5682 cm ²		
A ₄₁ = 4 ² *0.8551 / 100 =	0.1368 cm ²		
A ₄₃ = 1.74 ² *0.8551 / 100 =	0.0258 cm ²		
$A_T = 5.5303 + 0.9031 + 0.5682 + 0.1368 + 0.0258 =$	7.1642 cm ²		
$A_{\rm r} = (0.5*102.26*5.27) / 100 =$	2.6927 cm ²		
$A_T = 7.1642 \text{ cm}^2 \ge A_r = 2.6927 \text{ cm}^2$			

ASME Section VIII Division 1, 2017 Edition Metric			
Compor	nent	Skirt Opening	
Descript	tion	Vent Hole	
Drawing I	Mark	V3	
Sleeve Ma	terial	SA-106 B Smls Pipe (II-D Metric p. 14, ln. 10)	
		Location and Orientati	ion
Attache	d to	Support Skirt #1	
Orienta	tion	radial	
Offset,	L	620	mm
Angle,	θ	180°	
Distanc	e, r	1,769 mm	
Throug Category F		No	
		Dimensions	
Pipe NPS Schedu		NPS 4 Sch 40 (Std) DN 100	130 ⊬—→
Incido Dio			(=1
inside Dia	meter	102.26 mm	
Nominal Thickn	Wall	102.26 mm 6.02 mm	6,02
Nominal	Wall		6,02
Nominal Thickn	Wall ess ekness	6.02 mm	6,02
Nominal Thickn Skirt Thic	Wall ess kness	6.02 mm 10 mm	6,02
Nominal Thickn Skirt Thic Leg ₄₁	Wall ess kness a al ion	6.02 mm 10 mm 4 mm	6,02
Nominal Thickn Skirt Thic Leg ₄₃ Leg ₄₅ Extern Project	Wall ess kness a al ion , L pr1	6.02 mm 10 mm 4 mm 4 mm	6,02
Nominal Thickn Skirt Thic Leg ₄₁ Leg ₄₂ Extern Project Available Intern	Wall ess kness a al ion , L _{pr1} al a, L _{pr2}	6.02 mm 10 mm 4 mm 4 mm 80 mm	6,02

Page 303 of 450

Note: Skirt required thickness of zero on tensile side indicates load is compressive.

Openings Subject to Axial Tension		
$L_R = min[(R_{eff}^*t)^{0.5}, 2*R_n]$	(4.5.4)	
$L_{H1} = min[1.5*t, t_e] + (R_n *t_n)^{0.5}$	(4.5.11)	
$L_{\rm H2} = L_{\rm pr1}$	(4.5.12)	
$L_{H3} = 8*(t + t_e)$	(4.5.13)	
$L_{H} = min[L_{H1}, L_{H2}, L_{H3}] + t$	(4.5.14)	
$L_{11} = (R_n * t_n)^{0.5}$	(4.5.16)	
$L_{I2} = L_{pr2}$	(4.5.17)	
$L_{I3} = 8*(t + t_e)$	(4.5.18)	
$L_{I} = min[L_{I1}, L_{I2}, L_{I3}]$	(4.5.19)	
$f_{r1} = \min[S_n / S, 1]$		
$f_{r2} = \min[S_n / S, 1]$		
$A_1 = 2*L_R*(E_1*t - t_r)$		
$A_2 = 2*(L_H - t_r)*t_n*f_{r2}$		
$A_3 = 2*L_1*t_i*f_{r_2}$		
$A_{41} = L_{41}^{2*} f_{r2}$		
$A_{43} = L_{43}^{2*} f_{r2}$		
$A_T = A_1 + A_2 + A_3 + A_{41} + A_{43}$		
$A_{r} = d^{*}t_{r} + 2^{*}t_{n}^{*}t_{r}^{*}(1 - f_{r1})$		
New		
$L_R = min[(1,679*10)^{0.5}, 2*51.13] =$	102.26 mm	
$L_{H1} = min[1.5*10, 0] + (51.13*6.02)^{0.5} =$	17.54 mm	
L _{H2} = 80 =	80 mm	
$L_{H3} = 8*(10+0) =$	80 mm	
L _H = min[17.54, 80, 80] + 10 =	27.54 mm	
$L_{II} = (51.13*6.02)^{0.5} =$	17.54 mm	
$L_{12} = L_{pr2} =$	130 mm	
$L_{I3} = 8*(10+0) =$	80 mm	
L _I = min[17.54, 130, 80] =	17.54 mm	
Corroded		
$L_R = min[(1,680.6*8.4)^{0.5}, 2*51.13] =$	102.26 mm	
$L_{H1} = min[1.5*8.4, 0] + (51.13*6.02)^{0.5} =$	17.54 mm	
L _{H2} = 80 =	80 mm	
$L_{H3} = 8*(8.4+0) =$	67.2 mm	
L _H = min[17.54, 80, 67.2] + 8.4 =	25.94 mm	
$L_{II} = (51.13*4.42)^{0.5} =$	15.03 mm	
·		

I -I -	128.4 mm	
$L_{12} = L_{pr2} =$	67.2 mm	
$L_{13} = 8*(8.4+0) =$		
$L_{\rm I} = \min[15.03, 128.4, 67.2] =$	15.03 mm	
Operating Hot & Corroded Wind Tensile		
$f_{r1} = min[1,203.26/1,407.21,1] =$	0.8551	
$f_{r2} = min[1,203.26/1,407.21,1] =$	0.8551	
$A_1 = \{2*102.26*(1*8.4 - 0.27)\} / 100 =$	16.6343 cm ²	
A ₂ = 2*(25.94 - 0.27)*6.02*0.8551 / 100 =	2.6435 cm ²	
A ₃ = 2*15.03*4.42*0.8551 / 100 =	1.1363 cm ²	
A ₄₁ = 4 ² *0.8551 / 100 =	0.1368 cm ²	
A ₄₃ = 1.74 ² *0.8551 / 100 =	0.0258 cm ²	
$A_T = 16.6343 + 2.6435 + 1.1363 + 0.1368 + 0.0258 =$	20.5768 cm ²	
$A_{r} = (102.26*0.27 + 2*6.02*0.27*(1 - 0.8551)) / 100 =$	0.2773 cm ²	
$A_T = 20.5768 \text{ cm}^2 \ge A_r = 0.2773 \text{ cm}^2$		
Operating Hot & New Wind Tensile	Г	
f _{r1} = min[1,203.26 / 1,407.21 , 1] =	0.8551	
f _{r2} = min[1,203.26 / 1,407.21 , 1] =	0.8551	
$A_1 = \{2*102.26*(1*10 - 0.27)\} / 100 =$	19.9048 cm ²	
A ₂ = 2*(27.54 - 0.27)*6.02*0.8551 / 100 =	2.8082 cm ²	
A ₃ = 2*17.54*6.02*0.8551 / 100 =	1.8062 cm ²	
A ₄₁ = 4 ² *0.8551 / 100 =	0.1368 cm ²	
$A_{43} = 4^{2*}0.8551 / 100 =$	0.1368 cm ²	
$A_T = 19.9048 + 2.8082 + 1.8062 + 0.1368 + 0.1368 =$	24.7928 cm ²	
$A_r = (102.26*0.27 + 2*6.02*0.27*(1 - 0.8551)) / 100 =$	<u>0.2783 cm²</u>	
$A_T = 24.7928 \text{ cm}^2 \ge A_r = 0.2783 \text{ cm}^2$		
Empty Cold & Corroded Wind Tensile		
$f_{r1} = min[1,203.26 / 1,407.21, 1] =$	0.8551	
$f_{r2} = min[1,203.26 / 1,407.21, 1] =$	0.8551	
$A_1 = \{2*102.26*(1*8.4 - 0.45)\} / 100 =$	16.2614 cm ²	
A ₂ = 2*(25.94 - 0.45)*6.02*0.8551 / 100 =	2.6248 cm ²	
A ₃ = 2*15.03*4.42*0.8551 / 100 =	1.1363 cm ²	
A ₄₁ = 4 ² *0.8551 / 100 =	0.1368 cm ²	
A ₄₃ = 1.74 ² *0.8551 / 100 =	0.0258 cm ²	
$A_T = 16.2614 + 2.6248 + 1.1363 + 0.1368 + 0.0258 =$	20.1851 cm ²	
$A_r = (102.26*0.45 + 2*6.02*0.45*(1 - 0.8551)) / 100 =$	<u>0.467 cm²</u>	
$A_T = 20.1851 \text{ cm}^2 \ge A_r = 0.467 \text{ cm}^2$		

Empty Cold & New Wind Tensile			
f _{r1} = min[1,203.26 / 1,407.21 , 1] =	0.8551		
f _{r2} = min[1,203.26 / 1,407.21 , 1] =	0.8551		
$A_1 = \{2*102.26*(1*10 - 0.45)\} / 100 =$	19.5321 cm ²		
A ₂ = 2*(27.54 - 0.45)*6.02*0.8551 / 100 =	2.7894 cm ²		
A ₃ = 2*17.54*6.02*0.8551 / 100 =	1.8062 cm ²		
A ₄₁ = 4 ² *0.8551 / 100 =	0.1368 cm ²		
A ₄₃ = 4 ² *0.8551 / 100 =	0.1368 cm ²		
$A_T = 19.5321 + 2.7894 + 1.8062 + 0.1368 + 0.1368 =$	24.4013 cm ²		
$A_r = (102.26*0.45 + 2*6.02*0.45*(1 - 0.8551)) / 100 =$	0.4678 cm ²		
$A_T = 24.4013 \text{ cm}^2 \ge A_r = 0.4678 \text{ cm}^2$			
External Pressure Hot & Corroded Wind Te	ensile		
$f_{r1} = min[1,203.26/1,407.21,1] =$	0.8551		
f _{r2} = min[1,203.26 / 1,407.21 , 1] =	0.8551		
A ₁ = {2*102.26*(1*8.4 - 0.27)} / 100 =	16.6343 cm ²		
A ₂ = 2*(25.94 - 0.27)*6.02*0.8551 / 100 =	2.6435 cm ²		
A ₃ = 2*15.03*4.42*0.8551 / 100 =	1.1363 cm ²		
A ₄₁ = 4 ² *0.8551 / 100 =	0.1368 cm ²		
A ₄₃ = 1.74 ² *0.8551 / 100 =	0.0258 cm ²		
$A_T = 16.6343 + 2.6435 + 1.1363 + 0.1368 + 0.0258 =$	20.5768 cm ²		
$A_r = (102.26*0.27 + 2*6.02*0.27*(1 - 0.8551)) / 100 =$	0.2773 cm ²		
$A_T = 20.5768 \text{ cm}^2 \ge A_r = 0.2773 \text{ cm}^2$			
Operating Hot & Corroded Vortex shedding Tensile			
$f_{r1} = min[1,203.26/1,407.21,1] =$	0.8551		
$f_{r2} = min[1,203.26 / 1,407.21, 1] =$	0.8551		
A ₁ = {2*102.26*(1*8.4 - 0.75)} / 100 =	15.6413 cm ²		
A ₂ = 2*(25.94 - 0.75)*6.02*0.8551 / 100 =	2.5935 cm ²		
A ₃ = 2*15.03*4.42*0.8551 / 100 =	1.1363 cm ²		
A ₄₁ = 4 ² *0.8551 / 100 =	0.1368 cm ²		
A ₄₃ = 1.74 ² *0.8551 / 100 =	0.0258 cm ²		
$A_T = 15.6413 + 2.5935 + 1.1363 + 0.1368 + 0.0258 =$	19.5337 cm ²		
$A_r = (102.26*0.75 + 2*6.02*0.75*(1 - 0.8551)) / 100 =$	0.7823 cm ²		
$A_T = 19.5337 \text{ cm}^2 \ge A_r = 0.7823 \text{ cm}^2$			
Empty Cold & Corroded Vortex shedding Tensile			
$f_{r1} = min[1,203.26/1,407.21,1] =$	0.8551		

f _{r2} = min[1,203.26 / 1,407.21 , 1] =	0.8551		
$A_1 = \{2*102.26*(1*8.4 - 1.25)\} / 100 =$	14.6267 cm ²		
A ₂ = 2*(25.94 - 1.25)*6.02*0.8551 / 100 =	2.5425 cm ²		
A ₃ = 2*15.03*4.42*0.8551 / 100 =	1.1363 cm ²		
A ₄₁ = 4 ² *0.8551 / 100 =	0.1368 cm ²		
A ₄₃ = 1.74 ² *0.8551 / 100 =	0.0258 cm^2		
$A_T = 14.6267 + 2.5425 + 1.1363 + 0.1368 + 0.0258 =$	18.4682 cm ²		
$A_r = (102.26*1.25 + 2*6.02*1.25*(1 - 0.8551)) / 100 =$	1.2982 cm ²		
$A_T = 18.4682 \text{ cm}^2 \ge A_r = 1.2982 \text{ cm}^2$			
External Pressure Hot & Corroded Vortex shedding Tensile			
f _{r1} = min[1,203.26 / 1,407.21 , 1] =	0.8551		
	0.8551 0.8551		
f _{r1} = min[1,203.26 / 1,407.21 , 1] =			
$f_{r1} = min[1,203.26 / 1,407.21, 1] =$ $f_{r2} = min[1,203.26 / 1,407.21, 1] =$	0.8551		
$f_{r1} = \min[1,203.26 / 1,407.21 , 1] =$ $f_{r2} = \min[1,203.26 / 1,407.21 , 1] =$ $A_{1} = \{2*102.26*(1*8.4 - 0.75)\} / 100 =$	0.8551 15.6401 cm ²		
$f_{r1} = \min[1,203.26 / 1,407.21 , 1] =$ $f_{r2} = \min[1,203.26 / 1,407.21 , 1] =$ $A_{1} = \{2*102.26*(1*8.4 - 0.75)\} / 100 =$ $A_{2} = 2*(25.94 - 0.75)*6.02*0.8551 / 100 =$	0.8551 15.6401 cm ² 2.5935 cm ²		
$\begin{aligned} &f_{r1} = \min[\ 1,203.26\ /\ 1,407.21\ ,\ 1\] = \\ &f_{r2} = \min[\ 1,203.26\ /\ 1,407.21\ ,\ 1\] = \\ &A_1 = \{2*102.26*(1*8.4-0.75)\}\ /\ 100 = \\ &A_2 = 2*(25.94-0.75)*6.02*0.8551\ /\ 100 = \\ &A_3 = 2*15.03*4.42*0.8551\ /\ 100 = \end{aligned}$	0.8551 15.6401 cm ² 2.5935 cm ² 1.1363 cm ²		
$\begin{aligned} &f_{r1} = \min[\ 1,203.26\ /\ 1,407.21\ ,\ 1\] = \\ &f_{r2} = \min[\ 1,203.26\ /\ 1,407.21\ ,\ 1\] = \\ &A_1 = \{2*102.26*(1*8.4-0.75)\}\ /\ 100 = \\ &A_2 = 2*(25.94-0.75)*6.02*0.8551\ /\ 100 = \\ &A_3 = 2*15.03*4.42*0.8551\ /\ 100 = \\ &A_{41} = 4^2*0.8551\ /\ 100 = \end{aligned}$	0.8551 15.6401 cm ² 2.5935 cm ² 1.1363 cm ² 0.1368 cm ²		
$\begin{aligned} &f_{r1} = \min[\ 1,203.26\ /\ 1,407.21\ ,\ 1\] = \\ &f_{r2} = \min[\ 1,203.26\ /\ 1,407.21\ ,\ 1\] = \\ &A_1 = \{2*102.26*(1*8.4-0.75)\}\ /\ 100 = \\ &A_2 = 2*(25.94-0.75)*6.02*0.8551\ /\ 100 = \\ &A_3 = 2*15.03*4.42*0.8551\ /\ 100 = \\ &A_{41} = 4^2*0.8551\ /\ 100 = \\ &A_{43} = 1.74^2*0.8551\ /\ 100 = \end{aligned}$	0.8551 15.6401 cm ² 2.5935 cm ² 1.1363 cm ² 0.1368 cm ² 0.0258 cm ²		
$\begin{split} &f_{r1} = \min[\ 1,203.26\ /\ 1,407.21\ ,\ 1\] = \\ &f_{r2} = \min[\ 1,203.26\ /\ 1,407.21\ ,\ 1\] = \\ &A_1 = \{2*102.26*(1*8.4-0.75)\}\ /\ 100 = \\ &A_2 = 2*(25.94-0.75)*6.02*0.8551\ /\ 100 = \\ &A_3 = 2*15.03*4.42*0.8551\ /\ 100 = \\ &A_{41} = 4^2*0.8551\ /\ 100 = \\ &A_{43} = 1.74^2*0.8551\ /\ 100 = \\ &A_{T} = 15.6401 + 2.5935 + 1.1363 + 0.1368 + 0.0258 = \end{split}$	0.8551 15.6401 cm ² 2.5935 cm ² 1.1363 cm ² 0.1368 cm ² 0.0258 cm ² 19.5325 cm ²		

Division 2 4.5.17.3 Openings Subject to Axial Comp	ression
$\gamma_n = d / \{2^*(R^*t)^{0.5}\}$	(4.5.212)
$\gamma_{\rm n} \le \{ (R/t) / 291 + 0.22 \}^2$	
$t_{n,eff} = min[t_n, t]$	
$t_{i,eff} = min[t_i, t]$	
$L_{R} = 0.75*(R*t)^{0.5}$	
$L_{H} = min[0.5*{(d/2)*t_{n}}^{0.5}, 2.5*t_{n}, L_{prl}]$	
$L_{I} = min[0.5*{(d/2)*t_{i}}^{0.5}, 2.5*t_{i}, L_{pr2}]$	
$f_{r1} = \min[S_n / S, 1]$	
$f_{r2} = \min[S_n / S, 1]$	
$A_1 = 2*L_R*(t - t_r) - 2*t_{n,eff}*(t - t_r)*(1 - f_{r1})$	
$A_2 = 2*L_H*t_{n,eff}*f_{r2}$	
$A_3 = 2*L_1*t_{i,eff}*f_{r2}$	
$A_{41} = L_{41}^{2*} f_{r2}$	
$A_{43} = L_{43}^{2*} f_{r2}$	
$A_{T} = A_{1} + A_{2} + A_{3} + A_{41} + A_{43}$	
$A_r = 0.5*d*t_r$	(4.5.210)
New	
$\gamma_{\rm n} = 102.26 / \{2*(1,679*10)^{0.5}\} =$	0.3946
$\gamma_{\rm n} \le \{ (1,679 / 10) / 291 + 0.22 \}^2 =$	0.6352
Area required factor for compressive side =	0.5
$L_R = 0.75*(1,679*10)^{0.5} =$	97.18 mm
$L_{\rm H} = \min[0.5*\{(102.26 / 2)*6.02\}^{0.5}, 2.5*6.02, 80] =$	8.77 mm
$L_{\rm I} = \min[0.5*\{(102.26 / 2)*6.02\}^{0.5}, 2.5*6.02, 130] =$	8.77 mm
$t_{n,eff} = min[6.02, 10] =$	6.02 mm
$t_{i,eff} = min[6.02, 10] =$	6.02 mm
Corroded	
$\gamma_{\rm n} = 102.26 / \{2*(1,680.6*8.4)^{0.5}\} =$	0.4303
$\gamma_{\rm n} \le \{ (1,680.6 / 8.4) / 291 + 0.22 \}^2 =$	0.8236
Area required factor for compressive side =	0.5
$L_R = 0.75*(1,680.6*8.4)^{0.5} =$	89.11 mm
$L_{\rm H} = \min[0.5*\{(102.26 / 2)*6.02\}^{0.5}, 2.5*6.02, 80] =$	8.77 mm
$L_{\rm I} = \min[0.5*\{(102.26 / 2)*4.42\}^{0.5}, 2.5*4.42, 128.4] =$	7.52 mm
$t_{n,eff} = min[6.02, 8.4] =$	6.02 mm
$t_{i,eff} = min[4.42, 8.4] =$	4.42 mm
Operating Hot & Corroded Wind Compressiv	e

f _ min[1 202 26 / 1 407 21 1]	0.0551	
$f_{r1} = min[1,203.26/1,407.21,1] =$	0.8551	
f _{r2} = min[1,203.26 / 1,407.21 , 1] =	0.8551	
$A_1 = \{2*89.11*(8.4 - 4.18) - 2*6.02*(8.4 - 4.18)*(1 - 0.8551)\} / 100 =$	7.4466 cm ²	
A ₂ = 2*8.77*6.02*0.8551 / 100 =	0.9031 cm ²	
A ₃ = 2*7.52*4.42*0.8551 / 100 =	0.5682 cm ²	
A ₄₁ = 4 ² *0.8551 / 100 =	0.1368 cm ²	
A ₄₃ = 1.74 ² *0.8551 / 100 =	0.0258 cm ²	
$A_T = 7.4466 + 0.9031 + 0.5682 + 0.1368 + 0.0258 =$	9.0805 cm ²	
$A_r = (0.5*102.26*4.18) / 100 =$	2.1375 cm ²	
$A_T = 9.0805 \text{ cm}^2 \ge A_r = 2.1375 \text{ cm}^2$		
Operating Hot & New Wind Compressive	_	
$f_{r1} = min[1,203.26 / 1,407.21, 1] =$	0.8551	
$f_{r2} = min[1,203.26 / 1,407.21, 1] =$	0.8551	
$A_1 = \{2*97.18*(10 - 3.51) - 2*6.02*(10 - 3.51)*(1 - 0.8551)\} / 100 =$	12.501 cm ²	
A ₂ = 2*8.77*6.02*0.8551 / 100 =	0.9031 cm ²	
A ₃ = 2*8.77*6.02*0.8551 / 100 =	0.9031 cm ²	
A ₄₁ = 42*0.8551 / 100 =	0.1368 cm ²	
A ₄₃ = 4 ² *0.8551 / 100 =	0.1368 cm^2	
$A_T = 12.501 + 0.9031 + 0.9031 + 0.1368 + 0.1368 =$	14.5808 cm ²	
$A_r = (0.5*102.26*3.51) / 100 =$	1.7947 cm ²	
$A_T = 14.5808 \text{ cm}^2 \ge A_r = 1.7947 \text{ cm}^2$		
Empty Cold & Corroded Wind Compressive		
$f_{r1} = min[1,203.26 / 1,407.21, 1] =$	0.8551	
f _{r2} = min[1,203.26 / 1,407.21 , 1] =	0.8551	
$A_1 = \{2*89.11*(8.4 - 3.5) - 2*6.02*(8.4 - 3.5)*(1 - 0.8551)\} / 100 =$	8.6446 cm ²	
A ₂ = 2*8.77*6.02*0.8551 / 100 =	0.9031 cm ²	
A ₃ = 2*7.52*4.42*0.8551 / 100 =	0.5682 cm ²	
A ₄₁ = 4 ² *0.8551 / 100 =	0.1368 cm ²	
A ₄₃ = 1.74 ² *0.8551 / 100 =	0.0258 cm ²	
$A_T = 8.6446 + 0.9031 + 0.5682 + 0.1368 + 0.0258 =$	10.2784 cm ²	
$A_r = (0.5*102.26*3.5) / 100 =$	1.7904 cm ²	
$A_T = 10.2784 \text{ cm}^2 \ge A_r = 1.7904 \text{ cm}^2$		
Empty Cold & New Wind Compressive		
f _{r1} = min[1,203.26 / 1,407.21 , 1] =	0.8551	
f _{r2} = min[1,203.26 / 1,407.21 , 1] =	0.8551	
$A_1 = \{2*97.18*(10 - 2.94) - 2*6.02*(10 - 2.94)*(1 - 0.8551)\} / 100 =$	13.5979 cm ²	

A ₂ = 2*8.77*6.02*0.8551 / 100 =	0.9031 cm ²	
$A_3 = 2*8.77*6.02*0.8551 / 100 =$	0.9031 cm ²	
$A_{41} = 4^{2*}0.8551 / 100 =$	0.1368 cm ²	
$A_{43} = 4^{2*}0.8551 / 100 =$	0.1368 cm ²	
$A_T = 13.5979 + 0.9031 + 0.9031 + 0.1368 + 0.1368 =$	15.6778 cm ²	
$A_r = (0.5*102.26*2.94) / 100 =$	1.5035 cm ²	
$A_r = (0.3 \cdot 102.20 \cdot 2.94) / 100 =$ $A_T = 15.6778 \text{ cm}^2 \ge A_r = 1.5035 \text{ cm}^2$		
Shop Test New Wind Compressive		
f _{r1} = min[1,203.26 / 1,407.21 , 1] =	0.8551	
$f_{r2} = min[1,203.26/1,407.21,1] =$	0.8551	
$A_1 = \{2*97.18*(10 - 4.7) - 2*6.02*(10 - 4.7)*(1 - 0.8551)\} / 100 =$	10.2136 cm ²	
A ₂ = 2*8.77*6.02*0.8551 / 100 =	0.9031 cm ²	
A ₃ = 2*8.77*6.02*0.8551 / 100 =	0.9031 cm ²	
A ₄₁ = 4 ² *0.8551 / 100 =	0.1368 cm ²	
A ₄₃ = 4 ² *0.8551 / 100 =	0.1368 cm ²	
$A_T = 10.2136 + 0.9031 + 0.9031 + 0.1368 + 0.1368 =$	12.2934 cm ²	
A _r = (0.5*102.26*4.7) / 100 =	2.4019 cm ²	
$A_T = 12.2934 \text{ cm}^2 \ge A_r = 2.4019 \text{ cm}^2$		
External Pressure Hot & Corroded Wind Compressive		
$f_{r1} = min[1,203.26 / 1,407.21, 1] =$	0.8551	
$f_{r2} = min[1,203.26/1,407.21,1] =$	0.8551	
$\begin{aligned} \mathbf{f}_{r2} &= \min[\ 1,203.26 \ / \ 1,407.21 \ , \ 1\] = \\ \mathbf{A}_{1} &= \left\{ 2*89.11*(8.4 - 4.18) - 2*6.02*(8.4 - 4.18)*(1 - 0.8551) \right\} \ / \ 100 = \end{aligned}$	0.8551 7.4466 cm ²	
A ₁ = {2*89.11*(8.4 - 4.18) - 2*6.02*(8.4 - 4.18)*(1 - 0.8551)} / 100 =	7.4466 cm ²	
$A_1 = \{2*89.11*(8.4 - 4.18) - 2*6.02*(8.4 - 4.18)*(1 - 0.8551)\} / 100 =$ $A_2 = 2*8.77*6.02*0.8551 / 100 =$	7.4466 cm ² 0.9031 cm ²	
$A_1 = \{2*89.11*(8.4 - 4.18) - 2*6.02*(8.4 - 4.18)*(1 - 0.8551)\} / 100 =$ $A_2 = 2*8.77*6.02*0.8551 / 100 =$ $A_3 = 2*7.52*4.42*0.8551 / 100 =$	7.4466 cm ² 0.9031 cm ² 0.5682 cm ²	
$A_1 = \{2*89.11*(8.4 - 4.18) - 2*6.02*(8.4 - 4.18)*(1 - 0.8551)\} / 100 =$ $A_2 = 2*8.77*6.02*0.8551 / 100 =$ $A_3 = 2*7.52*4.42*0.8551 / 100 =$ $A_{41} = 4^2*0.8551 / 100 =$	7.4466 cm ² 0.9031 cm ² 0.5682 cm ² 0.1368 cm ²	
$A_1 = \{2*89.11*(8.4 - 4.18) - 2*6.02*(8.4 - 4.18)*(1 - 0.8551)\} / 100 =$ $A_2 = 2*8.77*6.02*0.8551 / 100 =$ $A_3 = 2*7.52*4.42*0.8551 / 100 =$ $A_{41} = 4^2*0.8551 / 100 =$ $A_{43} = 1.74^2*0.8551 / 100 =$	7.4466 cm ² 0.9031 cm ² 0.5682 cm ² 0.1368 cm ² 0.0258 cm ²	
$A_1 = \{2*89.11*(8.4 - 4.18) - 2*6.02*(8.4 - 4.18)*(1 - 0.8551)\} / 100 =$ $A_2 = 2*8.77*6.02*0.8551 / 100 =$ $A_3 = 2*7.52*4.42*0.8551 / 100 =$ $A_{41} = 4^2*0.8551 / 100 =$ $A_{43} = 1.74^2*0.8551 / 100 =$ $A_{T} = 7.4466 + 0.9031 + 0.5682 + 0.1368 + 0.0258 =$	7.4466 cm ² 0.9031 cm ² 0.5682 cm ² 0.1368 cm ² 0.0258 cm ² 9.0805 cm ²	
$A_1 = \{2*89.11*(8.4 - 4.18) - 2*6.02*(8.4 - 4.18)*(1 - 0.8551)\} / 100 =$ $A_2 = 2*8.77*6.02*0.8551 / 100 =$ $A_3 = 2*7.52*4.42*0.8551 / 100 =$ $A_{41} = 4^2*0.8551 / 100 =$ $A_{43} = 1.74^2*0.8551 / 100 =$ $A_T = 7.4466 + 0.9031 + 0.5682 + 0.1368 + 0.0258 =$ $A_r = (0.5*102.26*4.18) / 100 =$	7.4466 cm ² 0.9031 cm ² 0.5682 cm ² 0.1368 cm ² 0.0258 cm ² 9.0805 cm ²	
$\begin{array}{c} A_1 = \left\{2*89.11*(8.4 - 4.18) - 2*6.02*(8.4 - 4.18)*(1 - 0.8551)\right\} / \ 100 = \\ A_2 = 2*8.77*6.02*0.8551 / \ 100 = \\ A_3 = 2*7.52*4.42*0.8551 / \ 100 = \\ A_{41} = 4^2*0.8551 / \ 100 = \\ A_{43} = 1.74^2*0.8551 / \ 100 = \\ A_T = 7.4466 + 0.9031 + 0.5682 + 0.1368 + 0.0258 = \\ A_r = (0.5*102.26*4.18) / \ 100 = \\ & A_T = 9.0805 \ \text{cm}^2 \ge A_r = 2.1375 \ \text{cm}^2 \\ & \textbf{Operating Hot \& Corroded Vortex} \end{array}$	7.4466 cm ² 0.9031 cm ² 0.5682 cm ² 0.1368 cm ² 0.0258 cm ² 9.0805 cm ²	
$\begin{array}{c} A_1 = \left\{2*89.11*(8.4 - 4.18) - 2*6.02*(8.4 - 4.18)*(1 - 0.8551)\right\} / \ 100 = \\ A_2 = 2*8.77*6.02*0.8551 / \ 100 = \\ A_3 = 2*7.52*4.42*0.8551 / \ 100 = \\ A_{41} = 4^2*0.8551 / \ 100 = \\ A_{43} = 1.74^2*0.8551 / \ 100 = \\ A_T = 7.4466 + 0.9031 + 0.5682 + 0.1368 + 0.0258 = \\ A_r = (0.5*102.26*4.18) / \ 100 = \\ & A_T = 9.0805 \ \text{cm}^2 \ge A_r = 2.1375 \ \text{cm}^2 \\ & \textbf{Operating Hot \& Corroded Vortex shedding Compressive} \\ \end{array}$	7.4466 cm ² 0.9031 cm ² 0.5682 cm ² 0.1368 cm ² 0.0258 cm ² 2.1375 cm ²	
$\begin{array}{c} A_1 = \left\{2*89.11*(8.4 - 4.18) - 2*6.02*(8.4 - 4.18)*(1 - 0.8551)\right\} / \ 100 = \\ A_2 = 2*8.77*6.02*0.8551 / \ 100 = \\ A_3 = 2*7.52*4.42*0.8551 / \ 100 = \\ A_{41} = 4^2*0.8551 / \ 100 = \\ A_{43} = 1.74^2*0.8551 / \ 100 = \\ A_T = 7.4466 + 0.9031 + 0.5682 + 0.1368 + 0.0258 = \\ A_r = (0.5*102.26*4.18) / \ 100 = \\ A_T = 9.0805 \ \text{cm}^2 \ge A_r = 2.1375 \ \text{cm}^2 \\ \hline \textbf{Operating Hot \& Corroded Vortex shedding Compressive}} \\ f_{r1} = \min[\ 1,203.26 / \ 1,407.21\ ,\ 1\] = \\ \end{array}$	7.4466 cm ² 0.9031 cm ² 0.5682 cm ² 0.1368 cm ² 0.0258 cm ² 2.1375 cm ² 0.8551	
$\begin{array}{c} A_1 = \left\{2*89.11*(8.4 - 4.18) - 2*6.02*(8.4 - 4.18)*(1 - 0.8551)\right\} / \ 100 = \\ A_2 = 2*8.77*6.02*0.8551 / \ 100 = \\ A_3 = 2*7.52*4.42*0.8551 / \ 100 = \\ A_{41} = 4^2*0.8551 / \ 100 = \\ A_{43} = 1.74^2*0.8551 / \ 100 = \\ A_T = 7.4466 + 0.9031 + 0.5682 + 0.1368 + 0.0258 = \\ A_r = (0.5*102.26*4.18) / \ 100 = \\ A_T = 9.0805 \ cm^2 \ge A_r = 2.1375 \ cm^2 \\ \hline \begin{array}{c} \textbf{Operating Hot \& Corroded Vortex shedding Compressive} \\ f_{r1} = \min[\ 1,203.26 / \ 1,407.21\ ,\ 1\] = \\ f_{r2} = \min[\ 1,203.26 / \ 1,407.21\ ,\ 1\] = \\ \end{array}$	7.4466 cm ² 0.9031 cm ² 0.5682 cm ² 0.1368 cm ² 0.0258 cm ² 2.1375 cm ² 0.8551 0.8551	
$\begin{array}{c} A_1 = \left\{2*89.11*(8.4 - 4.18) - 2*6.02*(8.4 - 4.18)*(1 - 0.8551)\right\} / \ 100 = \\ A_2 = 2*8.77*6.02*0.8551 / \ 100 = \\ A_3 = 2*7.52*4.42*0.8551 / \ 100 = \\ A_{41} = 4^2*0.8551 / \ 100 = \\ A_{43} = 1.74^2*0.8551 / \ 100 = \\ A_T = 7.4466 + 0.9031 + 0.5682 + 0.1368 + 0.0258 = \\ A_r = (0.5*102.26*4.18) / \ 100 = \\ A_T = 9.0805 \ \text{cm}^2 \ge A_r = 2.1375 \ \text{cm}^2 \\ \hline \textbf{Operating Hot \& Corroded Vortex shedding Compressive}} \\ f_{r1} = \min[\ 1,203.26 / \ 1,407.21\ ,\ 1\] = \\ f_{r2} = \min[\ 1,203.26 / \ 1,407.21\ ,\ 1\] = \\ A_1 = \left\{2*89.11*(8.4 - 5.27) - 2*6.02*(8.4 - 5.27)*(1 - 0.8551)\right\} / \ 100 = \\ \hline \end{array}$	7.4466 cm ² 0.9031 cm ² 0.5682 cm ² 0.1368 cm ² 0.0258 cm ² 2.1375 cm ² 0.8551 0.8551 5.5326 cm ²	

1 7 12/20 0 7 7 1 1 1 0 0	0.0250 2		
A ₄₃ = 1.74 ² *0.8551 / 100 =	0.0258 cm ²		
$A_T = 5.5326 + 0.9031 + 0.5682 + 0.1368 + 0.0258 =$	7.1664 cm ²		
$A_r = (0.5*102.26*5.27) / 100 =$	2.692 cm ²		
$A_T = 7.1664 \text{ cm}^2 \ge A_r = 2.692 \text{ cm}^2$			
Empty Cold & Corroded Vortex shedding Compressive			
$f_{r1} = min[1,203.26 / 1,407.21, 1] =$	0.8551		
f _{r2} = min[1,203.26 / 1,407.21 , 1] =	0.8551		
$A_1 = \{2*89.11*(8.4 - 5.29) - 2*6.02*(8.4 - 5.29)*(1 - 0.8551)\} / 100 =$	5.4939 cm ²		
A ₂ = 2*8.77*6.02*0.8551 / 100 =	0.9031 cm^2		
A ₃ = 2*7.52*4.42*0.8551 / 100 =	0.5682 cm^2		
A ₄₁ = 42*0.8551 / 100 =	0.1368 cm ²		
$A_{43} = 1.74^{2*}0.8551 / 100 =$	0.0258 cm^2		
$A_T = 5.4939 + 0.9031 + 0.5682 + 0.1368 + 0.0258 =$	7.1278 cm ²		
$A_r = (0.5*102.26*5.29) / 100 =$	2.7032 cm ²		
$A_T = 7.1278 \text{ cm}^2 \ge A_r = 2.7032 \text{ cm}^2$			
External Pressure Hot & Corroded Vortex shedding Compressive			
f _{r1} = min[1,203.26 / 1,407.21 , 1] =	0.8551		
f _{r2} = min[1,203.26 / 1,407.21 , 1] =	0.8551		
$A_1 = \{2*89.11*(8.4 - 5.27) - 2*6.02*(8.4 - 5.27)*(1 - 0.8551)\} / 100 =$	5.5303 cm ²		
A ₂ = 2*8.77*6.02*0.8551 / 100 =	0.9031 cm^2		
A ₃ = 2*7.52*4.42*0.8551 / 100 =	0.5682 cm^2		
A ₄₁ = 4 ² *0.8551 / 100 =	0.1368 cm ²		
A ₄₃ = 1.74 ² *0.8551 / 100 =	0.0258 cm^2		
$A_T = 5.5303 + 0.9031 + 0.5682 + 0.1368 + 0.0258 =$	7.1642 cm ²		
$A_r = (0.5*102.26*5.27) / 100 =$	2.6927 cm ²		
$A_T = 7.1642 \text{ cm}^2 \ge A_r = 2.6927 \text{ cm}^2$			

ASME Section VIII Division 1, 2017 Edition Metric			
Compon		Skirt Opening	
Descript	tion	Vent Hole	
Drawing I	Mark	V4	
Sleeve Ma	terial	SA-106 B Smls Pipe (II-D Metric p. 14, ln. 10)	
		Location and Orientat	ion
Attache	d to	Support Skirt #1	
Orientat	tion	rac	lial
Offset,	L	620	mm
Angle,	θ	27	70°
Distance	e, r	1,769 mm	
Throug Category B		No	
		Dimensions	
Pipe NPS Schedu		NPS 4 Sch 40 (Std) DN 100	130 ←→
Inside Dia	meter	102.26 mm	
Nominal Thickn		6.02 mm	5,02
Skirt Thic	kness	10 mm	
Leg ₄₁	1	4 mm	i i
Leg ₄₃	3	4 mm	
Extern Projecti Available	ion	80 mm	4
Intern Projection		130 mm	
Corrosion	Inner	0 mm	
	Outer	0 mm	

Note: Skirt required thickness of zero on tensile side indicates load is compressive.

Openings Subject to Axial Tension		
$L_R = min[(R_{eff} * t)^{0.5}, 2 * R_n]$	(4.5.4)	
$L_{H1} = min[1.5*t, t_e] + (R_n * t_n)^{0.5}$	(4.5.11)	
$L_{H2} = L_{pr1}$	(4.5.12)	
$L_{H3} = 8*(t + t_e)$	(4.5.13)	
$L_{\rm H} = \min[L_{\rm H1}, L_{\rm H2}, L_{\rm H3}] + t$	(4.5.14)	
$L_{11} = (R_n * t_n)^{0.5}$	(4.5.16)	
$L_{12} = L_{pr2}$	(4.5.17)	
$L_{I3} = 8*(t + t_e)$	(4.5.18)	
$L_{I} = \min[L_{I1}, L_{I2}, L_{I3}]$	(4.5.19)	
$f_{r1} = \min[S_n / S, 1]$		
$f_{r2} = \min[S_n / S, 1]$		
$A_1 = 2*L_R*(E_1*t - t_r)$		
$A_2 = 2*(L_H - t_r)*t_n*f_{r2}$		
$A_3 = 2*L_1*t_i*f_{r2}$		
$A_{41} = L_{41}^{2*}f_{r2}$		
$A_{43} = L_{43}^2 f_{r2}$		
$A_{T} = A_{1} + A_{2} + A_{3} + A_{41} + A_{43}$		
$A_{r} = d^{*}t_{r} + 2^{*}t_{n}^{*}t_{r}^{*}(1 - f_{r1})$		
New		
$L_R = min[(1,679*10)^{0.5}, 2*51.13] =$	102.26 mm	
$L_{H1} = min[1.5*10, 0] + (51.13*6.02)^{0.5} =$	17.54 mm	
L _{H2} = 80 =	80 mm	
$L_{H3} = 8*(10+0) =$	80 mm	
L _H = min[17.54, 80, 80] + 10 =	27.54 mm	
$L_{II} = (51.13*6.02)^{0.5} =$	17.54 mm	
$L_{12} = L_{pr2} =$	130 mm	
$L_{13} = 8*(10+0) =$	80 mm	
L _I = min[17.54, 130, 80] =	17.54 mm	
Corroded		
$L_R = min[(1,680.6*8.4)^{0.5}, 2*51.13] =$	102.26 mm	
$L_{H1} = min[1.5*8.4, 0] + (51.13*6.02)^{0.5} =$	17.54 mm	
L _{H2} = 80 =	80 mm	
$L_{H3} = 8*(8.4 + 0) =$	67.2 mm	
L _H = min[17.54, 80, 67.2] + 8.4 =	25.94 mm	
$L_{II} = (51.13*4.42)^{0.5} =$	15.03 mm	

$L_{12} = L_{pr2} =$	128.4 mm
$L_{13} = 8*(8.4+0) =$	67.2 mm
L _I = min[15.03, 128.4, 67.2] =	15.03 mm
Operating Hot & Corroded Wind Tensile	
f _{r1} = min[1,203.26 / 1,407.21 , 1] =	0.8551
f _{r2} = min[1,203.26 / 1,407.21 , 1] =	0.8551
A ₁ = {2*102.26*(1*8.4 - 0.27)} / 100 =	16.6343 cm ²
A ₂ = 2*(25.94 - 0.27)*6.02*0.8551 / 100 =	2.6435 cm ²
A ₃ = 2*15.03*4.42*0.8551 / 100 =	1.1363 cm ²
A ₄₁ = 4 ² *0.8551 / 100 =	0.1368 cm ²
A ₄₃ = 1.74 ² *0.8551 / 100 =	0.0258 cm ²
$A_T = 16.6343 + 2.6435 + 1.1363 + 0.1368 + 0.0258 =$	20.5768 cm ²
$A_r = (102.26*0.27 + 2*6.02*0.27*(1 - 0.8551)) / 100 =$	<u>0.2773 cm²</u>
$A_T = 20.5768 \text{ cm}^2 \ge A_r = 0.2773 \text{ cm}^2$	
Operating Hot & New Wind Tensile	
f _{r1} = min[1,203.26 / 1,407.21 , 1] =	0.8551
f _{r2} = min[1,203.26 / 1,407.21 , 1] =	0.8551
$A_1 = \{2*102.26*(1*10 - 0.27)\} / 100 =$	19.9048 cm ²
A ₂ = 2*(27.54 - 0.27)*6.02*0.8551 / 100 =	2.8082 cm ²
A ₃ = 2*17.54*6.02*0.8551 / 100 =	1.8062 cm ²
A ₄₁ = 4 ² *0.8551 / 100 =	0.1368 cm^2
A ₄₃ = 4 ² *0.8551 / 100 =	0.1368 cm ²
$A_T = 19.9048 + 2.8082 + 1.8062 + 0.1368 + 0.1368 =$	24.7928 cm ²
$A_r = (102.26*0.27 + 2*6.02*0.27*(1 - 0.8551)) / 100 =$	<u>0.2783 cm²</u>
$A_T = 24.7928 \text{ cm}^2 \ge A_r = 0.2783 \text{ cm}^2$	
Empty Cold & Corroded Wind Tensile	
$f_{r1} = min[1,203.26 / 1,407.21, 1] =$	0.8551
$f_{r2} = min[1,203.26 / 1,407.21, 1] =$	0.8551
$A_1 = \{2*102.26*(1*8.4 - 0.45)\} / 100 =$	16.2614 cm ²
A ₂ = 2*(25.94 - 0.45)*6.02*0.8551 / 100 =	2.6248 cm ²
A ₃ = 2*15.03*4.42*0.8551 / 100 =	1.1363 cm ²
$A_{41} = 4^{2*}0.8551 / 100 =$	0.1368 cm ²
A ₄₃ = 1.74 ² *0.8551 / 100 =	0.0258 cm^2
$A_T = 16.2614 + 2.6248 + 1.1363 + 0.1368 + 0.0258 =$	20.1851 cm ²
$A_r = (102.26*0.45 + 2*6.02*0.45*(1 - 0.8551)) / 100 =$	<u>0.467 cm²</u>
$A_T = 20.1851 \text{ cm}^2 \ge A_r = 0.467 \text{ cm}^2$	

Empty Cold & New Wind Tensile		
f _{r1} = min[1,203.26 / 1,407.21 , 1] =	0.8551	
$f_{r2} = min[1,203.26 / 1,407.21, 1] =$	0.8551	
$A_1 = \{2*102.26*(1*10 - 0.45)\} / 100 =$	19.5321 cm ²	
$A_2 = 2*(27.54 - 0.45)*6.02*0.8551 / 100 =$	2.7894 cm ²	
A ₃ = 2*17.54*6.02*0.8551 / 100 =	1.8062 cm ²	
A ₄₁ = 4 ² *0.8551 / 100 =	0.1368 cm ²	
A ₄₃ = 4 ² *0.8551 / 100 =	0.1368 cm ²	
$A_T = 19.5321 + 2.7894 + 1.8062 + 0.1368 + 0.1368 =$	24.4013 cm ²	
$A_r = (102.26*0.45 + 2*6.02*0.45*(1 - 0.8551)) / 100 =$	0.4678 cm ²	
$A_T = 24.4013 \text{ cm}^2 \ge A_r = 0.4678 \text{ cm}^2$	<u>I</u>	
External Pressure Hot & Corroded Wind Te	nsile	
f _{r1} = min[1,203.26 / 1,407.21 , 1] =	0.8551	
f _{r2} = min[1,203.26 / 1,407.21 , 1] =	0.8551	
A ₁ = {2*102.26*(1*8.4 - 0.27)} / 100 =	16.6343 cm ²	
A ₂ = 2*(25.94 - 0.27)*6.02*0.8551 / 100 =	2.6435 cm ²	
A ₃ = 2*15.03*4.42*0.8551 / 100 =	1.1363 cm ²	
A ₄₁ = 4 ² *0.8551 / 100 =	0.1368 cm ²	
A ₄₃ = 1.74 ² *0.8551 / 100 =	0.0258 cm ²	
$A_T = 16.6343 + 2.6435 + 1.1363 + 0.1368 + 0.0258 =$	20.5768 cm ²	
$A_r = (102.26*0.27 + 2*6.02*0.27*(1 - 0.8551)) / 100 =$	<u>0.2773 cm²</u>	
$A_T = 20.5768 \text{ cm}^2 \ge A_r = 0.2773 \text{ cm}^2$		
Operating Hot & Corroded Vortex shedding Tensile		
f _{r1} = min[1,203.26 / 1,407.21 , 1] =	0.8551	
f _{r2} = min[1,203.26 / 1,407.21 , 1] =	0.8551	
A ₁ = {2*102.26*(1*8.4 - 0.75)} / 100 =	15.6413 cm ²	
A ₂ = 2*(25.94 - 0.75)*6.02*0.8551 / 100 =	2.5935 cm ²	
A ₃ = 2*15.03*4.42*0.8551 / 100 =	1.1363 cm ²	
A ₄₁ = 4 ² *0.8551 / 100 =	0.1368 cm ²	
A ₄₃ = 1.74 ² *0.8551 / 100 =	0.0258 cm ²	
$A_T = 15.6413 + 2.5935 + 1.1363 + 0.1368 + 0.0258 =$	19.5337 cm ²	
$A_{r} = (102.26*0.75 + 2*6.02*0.75*(1 - 0.8551)) / 100 =$	0.7823 cm ²	
$A_T = 19.5337 \text{ cm}^2 \ge A_r = 0.7823 \text{ cm}^2$		
Empty Cold & Corroded Vortex shedding Tensile		
f _{r1} = min[1,203.26 / 1,407.21 , 1] =	0.8551	

$f_{r2} = min[1,203.26 / 1,407.21, 1] =$	0.8551	
$A_1 = \{2*102.26*(1*8.4 - 1.25)\} / 100 =$	14.6267 cm ²	
A ₂ = 2*(25.94 - 1.25)*6.02*0.8551 / 100 =	2.5425 cm ²	
A ₃ = 2*15.03*4.42*0.8551 / 100 =	1.1363 cm ²	
A ₄₁ = 4 ² *0.8551 / 100 =	0.1368 cm ²	
A ₄₃ = 1.74 ² *0.8551 / 100 =	0.0258 cm^2	
$A_T = 14.6267 + 2.5425 + 1.1363 + 0.1368 + 0.0258 =$	18.4682 cm ²	
$A_r = (102.26*1.25 + 2*6.02*1.25*(1 - 0.8551)) / 100 =$	1.2982 cm ²	
$A_T = 18.4682 \text{ cm}^2 \ge A_r = 1.2982 \text{ cm}^2$		
External Pressure Hot & Corroded Vortex shedding Tensile		
$f_{r1} = min[1,203.26 / 1,407.21, 1] =$	0.8551	
f[120226/140721 1]		
$f_{r2} = min[1,203.26 / 1,407.21, 1] =$	0.8551	
$\begin{aligned} \mathbf{f}_{r2} &= \min[1,203.26 / 1,407.21, 1] = \\ \mathbf{A}_{1} &= \{2*102.26*(1*8.4 - 0.75)\} / 100 = \end{aligned}$	0.8551 15.6401 cm ²	
12		
$A_1 = \{2*102.26*(1*8.4 - 0.75)\} / 100 =$	15.6401 cm ²	
$A_1 = \{2*102.26*(1*8.4 - 0.75)\} / 100 =$ $A_2 = 2*(25.94 - 0.75)*6.02*0.8551 / 100 =$	15.6401 cm ² 2.5935 cm ²	
$A_1 = \{2*102.26*(1*8.4 - 0.75)\} / 100 =$ $A_2 = 2*(25.94 - 0.75)*6.02*0.8551 / 100 =$ $A_3 = 2*15.03*4.42*0.8551 / 100 =$	15.6401 cm ² 2.5935 cm ² 1.1363 cm ²	
$A_1 = \{2*102.26*(1*8.4 - 0.75)\} / 100 =$ $A_2 = 2*(25.94 - 0.75)*6.02*0.8551 / 100 =$ $A_3 = 2*15.03*4.42*0.8551 / 100 =$ $A_{41} = 4^2*0.8551 / 100 =$	15.6401 cm ² 2.5935 cm ² 1.1363 cm ² 0.1368 cm ²	
$A_{1} = \{2*102.26*(1*8.4 - 0.75)\} / 100 =$ $A_{2} = 2*(25.94 - 0.75)*6.02*0.8551 / 100 =$ $A_{3} = 2*15.03*4.42*0.8551 / 100 =$ $A_{41} = 4^{2}*0.8551 / 100 =$ $A_{43} = 1.74^{2}*0.8551 / 100 =$	15.6401 cm ² 2.5935 cm ² 1.1363 cm ² 0.1368 cm ² 0.0258 cm ²	
$A_1 = \{2*102.26*(1*8.4 - 0.75)\} / 100 =$ $A_2 = 2*(25.94 - 0.75)*6.02*0.8551 / 100 =$ $A_3 = 2*15.03*4.42*0.8551 / 100 =$ $A_{41} = 4^2*0.8551 / 100 =$ $A_{43} = 1.74^2*0.8551 / 100 =$ $A_{T} = 15.6401 + 2.5935 + 1.1363 + 0.1368 + 0.0258 =$	15.6401 cm ² 2.5935 cm ² 1.1363 cm ² 0.1368 cm ² 0.0258 cm ² 19.5325 cm ²	

Division 2 4.5.17.3 Openings Subject to Axial Compression	1
$\gamma_n = d / \{2*(R*t)^{0.5}\}$	(4.5.212)
$\gamma_{\rm n} \le \{ (R/t) / 291 + 0.22 \}^2$	
$t_{n,eff} = min[t_n, t]$	
$t_{i,eff} = min[t_i, t]$	
$L_{R} = 0.75*(R*t)^{0.5}$	
$L_{\rm H} = \min[0.5*\{(d/2)*t_{\rm n}\}^{0.5}, 2.5*t_{\rm n}, L_{\rm prl}]$	
$L_{I} = min[0.5*{(d/2)*t_{i}}^{0.5}, 2.5*t_{i}, L_{pr2}]$	
$f_{r1} = \min[S_n / S, 1]$	
$f_{r2} = \min[S_n/S, 1]$	
$A_1 = 2*L_R*(t - t_r) - 2*t_{n,eff}*(t - t_r)*(1 - f_{r1})$	
$A_2 = 2*L_H*t_{n,eff}*f_{r_2}$	
$A_3 = 2*L_1*t_{i,eff}*f_{r2}$	
$A_{41} = L_{41}^{2*} f_{r2}$	
$A_{43} = L_{43}^{2*} f_{r2}$	
$A_{T} = A_{1} + A_{2} + A_{3} + A_{41} + A_{43}$	
$A_r = 0.5*d*t_r$	(4.5.210)
New	
$\gamma_{\rm n} = 102.26 / \{2*(1,679*10)^{0.5}\} =$	0.3946
$\gamma_{\rm n} \le \{ (1,679 / 10) / 291 + 0.22 \}^2 =$	0.6352
Area required factor for compressive side =	0.5
$L_R = 0.75*(1,679*10)^{0.5} =$	97.18 mm
$L_{\rm H} = \min[0.5*\{(102.26/2)*6.02\}^{0.5}, 2.5*6.02, 80] =$	8.77 mm
$L_{I} = min[0.5*{(102.26 / 2)*6.02}^{0.5}, 2.5*6.02, 130] =$	8.77 mm
$t_{n,eff} = min[6.02, 10] =$	6.02 mm
$t_{i,eff} = min[6.02, 10] =$	6.02 mm
Corroded	
$\gamma_{\rm n} = 102.26 / \{2*(1,680.6*8.4)^{0.5}\} =$	0.4303
$\gamma_{\rm n} \le \{(1,680.6 / 8.4) / 291 + 0.22\}^2 =$	0.8236
Area required factor for compressive side =	0.5
$L_R = 0.75*(1,680.6*8.4)^{0.5} =$	89.11 mm
$L_{\rm H} = \min[0.5*\{(102.26/2)*6.02\}^{0.5}, 2.5*6.02, 80] =$	8.77 mm
$L_{I} = min[0.5*{(102.26 / 2)*4.42}^{0.5}, 2.5*4.42, 128.4] =$	7.52 mm
$t_{n,eff} = min[6.02, 8.4] =$	6.02 mm
$t_{i,eff} = min[4.42, 8.4] =$	4.42 mm
Operating Hot & Corroded Wind Compressive	

f _ min[1 202 26 / 1 407 21 1]	0.0551
$f_{r1} = min[1,203.26/1,407.21,1] =$	0.8551
f _{r2} = min[1,203.26 / 1,407.21 , 1] =	0.8551
$A_1 = \{2*89.11*(8.4 - 4.18) - 2*6.02*(8.4 - 4.18)*(1 - 0.8551)\} / 100 =$	7.4466 cm ²
A ₂ = 2*8.77*6.02*0.8551 / 100 =	0.9031 cm ²
A ₃ = 2*7.52*4.42*0.8551 / 100 =	0.5682 cm ²
A ₄₁ = 4 ² *0.8551 / 100 =	0.1368 cm ²
A ₄₃ = 1.74 ² *0.8551 / 100 =	0.0258 cm ²
$A_T = 7.4466 + 0.9031 + 0.5682 + 0.1368 + 0.0258 =$	9.0805 cm ²
$A_r = (0.5*102.26*4.18) / 100 =$	2.1375 cm ²
$A_T = 9.0805 \text{ cm}^2 \ge A_r = 2.1375 \text{ cm}^2$	
Operating Hot & New Wind Compressive	_
$f_{r1} = min[1,203.26 / 1,407.21, 1] =$	0.8551
$f_{r2} = min[1,203.26 / 1,407.21, 1] =$	0.8551
$A_1 = \{2*97.18*(10 - 3.51) - 2*6.02*(10 - 3.51)*(1 - 0.8551)\} / 100 =$	12.501 cm ²
A ₂ = 2*8.77*6.02*0.8551 / 100 =	0.9031 cm ²
A ₃ = 2*8.77*6.02*0.8551 / 100 =	0.9031 cm ²
A ₄₁ = 4 ² *0.8551 / 100 =	0.1368 cm ²
A ₄₃ = 4 ² *0.8551 / 100 =	0.1368 cm^2
$A_T = 12.501 + 0.9031 + 0.9031 + 0.1368 + 0.1368 =$	14.5808 cm ²
$A_{\rm r} = (0.5*102.26*3.51) / 100 =$	1.7947 cm ²
$A_T = 14.5808 \text{ cm}^2 \ge A_r = 1.7947 \text{ cm}^2$	
Empty Cold & Corroded Wind Compressive	
f _{r1} = min[1,203.26 / 1,407.21 , 1] =	0.8551
f _{r2} = min[1,203.26 / 1,407.21 , 1] =	0.8551
$A_1 = \{2*89.11*(8.4 - 3.5) - 2*6.02*(8.4 - 3.5)*(1 - 0.8551)\} / 100 =$	8.6446 cm ²
A ₂ = 2*8.77*6.02*0.8551 / 100 =	0.9031 cm ²
A ₃ = 2*7.52*4.42*0.8551 / 100 =	0.5682 cm ²
A ₄₁ = 4 ² *0.8551 / 100 =	0.1368 cm ²
A ₄₃ = 1.74 ² *0.8551 / 100 =	0.0258 cm ²
$A_T = 8.6446 + 0.9031 + 0.5682 + 0.1368 + 0.0258 =$	10.2784 cm ²
$A_r = (0.5*102.26*3.5) / 100 =$	1.7904 cm ²
$A_T = 10.2784 \text{ cm}^2 \ge A_r = 1.7904 \text{ cm}^2$	
Empty Cold & New Wind Compressive	
f _{r1} = min[1,203.26 / 1,407.21 , 1] =	0.8551
f _{r2} = min[1,203.26 / 1,407.21 , 1] =	0.8551
$A_1 = \{2*97.18*(10 - 2.94) - 2*6.02*(10 - 2.94)*(1 - 0.8551)\} / 100 =$	13.5979 cm ²

A ₂ = 2*8.77*6.02*0.8551 / 100 =	0.9031 cm ²
$A_3 = 2*8.77*6.02*0.8551 / 100 =$	0.9031 cm ²
$A_{41} = 4^{2*}0.8551 / 100 =$	0.1368 cm ²
$A_{43} = 4^{2*}0.8551 / 100 =$	0.1368 cm ²
$A_T = 13.5979 + 0.9031 + 0.9031 + 0.1368 + 0.1368 =$	15.6778 cm ²
$A_r = (0.5*102.26*2.94) / 100 =$	1.5035 cm ²
$A_T = 15.6778 \text{ cm}^2 \ge A_r = 1.5035 \text{ cm}^2$	
Shop Test New Wind Compressive	
f _{r1} = min[1,203.26 / 1,407.21 , 1] =	0.8551
$f_{r2} = min[1,203.26/1,407.21,1] =$	0.8551
$A_1 = \{2*97.18*(10 - 4.7) - 2*6.02*(10 - 4.7)*(1 - 0.8551)\} / 100 =$	10.2136 cm ²
A ₂ = 2*8.77*6.02*0.8551 / 100 =	0.9031 cm ²
A ₃ = 2*8.77*6.02*0.8551 / 100 =	0.9031 cm ²
A ₄₁ = 4 ² *0.8551 / 100 =	0.1368 cm ²
A ₄₃ = 4 ² *0.8551 / 100 =	0.1368 cm ²
$A_T = 10.2136 + 0.9031 + 0.9031 + 0.1368 + 0.1368 =$	12.2934 cm ²
$A_r = (0.5*102.26*4.7) / 100 =$	2.4019 cm ²
$A_T = 12.2934 \text{ cm}^2 \ge A_r = 2.4019 \text{ cm}^2$	
External Pressure Hot & Corroded Wind Compressive	
$f_{r1} = min[1,203.26 / 1,407.21 , 1] =$	0.8551
$f_{r2} = min[1,203.26 / 1,407.21, 1] =$	0.8551
$A_1 = \{2*89.11*(8.4 - 4.18) - 2*6.02*(8.4 - 4.18)*(1 - 0.8551)\} / 100 =$	7.4466 cm ²
$A_1 = \{2*89.11*(8.4 - 4.18) - 2*6.02*(8.4 - 4.18)*(1 - 0.8551)\} / 100 =$ $A_2 = 2*8.77*6.02*0.8551 / 100 =$	7.4466 cm ² 0.9031 cm ²
•	
A ₂ = 2*8.77*6.02*0.8551 / 100 =	0.9031 cm ²
A ₂ = 2*8.77*6.02*0.8551 / 100 = A ₃ = 2*7.52*4.42*0.8551 / 100 =	0.9031 cm ² 0.5682 cm ²
$A_2 = 2*8.77*6.02*0.8551 / 100 =$ $A_3 = 2*7.52*4.42*0.8551 / 100 =$ $A_{41} = 4^2*0.8551 / 100 =$	0.9031 cm ² 0.5682 cm ² 0.1368 cm ²
$A_2 = 2*8.77*6.02*0.8551 / 100 =$ $A_3 = 2*7.52*4.42*0.8551 / 100 =$ $A_{41} = 4^2*0.8551 / 100 =$ $A_{43} = 1.74^2*0.8551 / 100 =$	0.9031 cm ² 0.5682 cm ² 0.1368 cm ² 0.0258 cm ²
$A_2 = 2*8.77*6.02*0.8551 / 100 =$ $A_3 = 2*7.52*4.42*0.8551 / 100 =$ $A_{41} = 4^2*0.8551 / 100 =$ $A_{43} = 1.74^2*0.8551 / 100 =$ $A_T = 7.4466 + 0.9031 + 0.5682 + 0.1368 + 0.0258 =$	0.9031 cm ² 0.5682 cm ² 0.1368 cm ² 0.0258 cm ² 9.0805 cm ²
$A_2 = 2*8.77*6.02*0.8551 / 100 =$ $A_3 = 2*7.52*4.42*0.8551 / 100 =$ $A_{41} = 4^2*0.8551 / 100 =$ $A_{43} = 1.74^2*0.8551 / 100 =$ $A_T = 7.4466 + 0.9031 + 0.5682 + 0.1368 + 0.0258 =$ $A_r = (0.5*102.26*4.18) / 100 =$	0.9031 cm ² 0.5682 cm ² 0.1368 cm ² 0.0258 cm ² 9.0805 cm ²
$A_2 = 2*8.77*6.02*0.8551 / 100 =$ $A_3 = 2*7.52*4.42*0.8551 / 100 =$ $A_{41} = 4^2*0.8551 / 100 =$ $A_{43} = 1.74^2*0.8551 / 100 =$ $A_T = 7.4466 + 0.9031 + 0.5682 + 0.1368 + 0.0258 =$ $A_r = (0.5*102.26*4.18) / 100 =$ $A_T = 9.0805 \text{ cm}^2 \ge A_r = 2.1375 \text{ cm}^2$ $Operating Hot & Corroded Vortex$	0.9031 cm ² 0.5682 cm ² 0.1368 cm ² 0.0258 cm ² 9.0805 cm ²
$A_2 = 2*8.77*6.02*0.8551 / 100 =$ $A_3 = 2*7.52*4.42*0.8551 / 100 =$ $A_{41} = 4^2*0.8551 / 100 =$ $A_{43} = 1.74^2*0.8551 / 100 =$ $A_T = 7.4466 + 0.9031 + 0.5682 + 0.1368 + 0.0258 =$ $A_T = (0.5*102.26*4.18) / 100 =$ $A_T = 9.0805 \text{ cm}^2 \ge A_r = 2.1375 \text{ cm}^2$ $Operating Hot & Corroded Vortex shedding Compressive$	0.9031 cm ² 0.5682 cm ² 0.1368 cm ² 0.0258 cm ² 9.0805 cm ² 2.1375 cm ²
$\begin{array}{c} A_2 = 2*8.77*6.02*0.8551 / 100 = \\ A_3 = 2*7.52*4.42*0.8551 / 100 = \\ A_{41} = 4^2*0.8551 / 100 = \\ A_{43} = 1.74^2*0.8551 / 100 = \\ A_T = 7.4466 + 0.9031 + 0.5682 + 0.1368 + 0.0258 = \\ A_r = (0.5*102.26*4.18) / 100 = \\ & A_T = 9.0805 \mathrm{cm}^2 \geq A_r = 2.1375 \mathrm{cm}^2 \\ & \qquad	0.9031 cm ² 0.5682 cm ² 0.1368 cm ² 0.0258 cm ² 9.0805 cm ² 2.1375 cm ² 0.8551
$\begin{array}{c} A_2 = 2*8.77*6.02*0.8551 / 100 = \\ \\ A_3 = 2*7.52*4.42*0.8551 / 100 = \\ \\ A_{41} = 4^2*0.8551 / 100 = \\ \\ A_{43} = 1.74^2*0.8551 / 100 = \\ \\ A_T = 7.4466 + 0.9031 + 0.5682 + 0.1368 + 0.0258 = \\ \\ A_r = (0.5*102.26*4.18) / 100 = \\ \\ \\ A_T = 9.0805 \mathrm{cm}^2 \geq A_r = 2.1375 \mathrm{cm}^2 \\ \\ \\ \hline \begin{array}{c} Operating \ Hot \ \& \ Corroded \ Vortex \\ & shedding \ Compressive \\ \\ \hline f_{r1} = \min[\ 1,203.26 / \ 1,407.21 \ , \ 1\] = \\ \\ \hline \end{array}$	0.9031 cm ² 0.5682 cm ² 0.1368 cm ² 0.0258 cm ² 9.0805 cm ² 2.1375 cm ² 0.8551
$\begin{array}{c} A_2 = 2*8.77*6.02*0.8551 / 100 = \\ A_3 = 2*7.52*4.42*0.8551 / 100 = \\ A_{41} = 4^2*0.8551 / 100 = \\ A_{43} = 1.74^2*0.8551 / 100 = \\ A_T = 7.4466 + 0.9031 + 0.5682 + 0.1368 + 0.0258 = \\ A_r = (0.5*102.26*4.18) / 100 = \\ \\ A_T = 9.0805 \mathrm{cm}^2 \geq A_r = 2.1375 \mathrm{cm}^2 \\ \\ \hline \begin{array}{c} \mathbf{Operating \ Hot \ \& \ Corroded \ Vortex \ shedding \ Compressive} \\ f_{r1} = \min[\ 1,203.26 / \ 1,407.21 \ , \ 1\] = \\ f_{r2} = \min[\ 1,203.26 / \ 1,407.21 \ , \ 1\] = \\ A_1 = \{2*89.11*(8.4 - 5.27) - 2*6.02*(8.4 - 5.27)*(1 - 0.8551)\} / 100 = \\ \end{array}$	0.9031 cm ² 0.5682 cm ² 0.1368 cm ² 0.0258 cm ² 9.0805 cm ² 2.1375 cm ² 0.8551 0.8551 5.5326 cm ²

A ₄₃ = 1.74 ² *0.8551 / 100 =	0.0258 cm ²	
$A_T = 5.5326 + 0.9031 + 0.5682 + 0.1368 + 0.0258 =$	7.1664 cm ²	
$A_r = (0.5*102.26*5.27) / 100 =$	2.692 cm ²	
$A_T = 7.1664 \text{ cm}^2 \ge A_r = 2.692 \text{ cm}^2$		
Empty Cold & Corroded Vortex shedding Compressive		
f _{r1} = min[1,203.26 / 1,407.21 , 1] =	0.8551	
f _{r2} = min[1,203.26 / 1,407.21 , 1] =	0.8551	
$A_1 = \{2*89.11*(8.4 - 5.29) - 2*6.02*(8.4 - 5.29)*(1 - 0.8551)\} / 100 =$	5.4939 cm ²	
A ₂ = 2*8.77*6.02*0.8551 / 100 =	0.9031 cm ²	
A ₃ = 2*7.52*4.42*0.8551 / 100 =	0.5682 cm ²	
A ₄₁ = 42*0.8551 / 100 =	0.1368 cm ²	
A ₄₃ = 1.74 ² *0.8551 / 100 =	0.0258 cm ²	
$A_T = 5.4939 + 0.9031 + 0.5682 + 0.1368 + 0.0258 =$	7.1278 cm ²	
$A_r = (0.5*102.26*5.29) / 100 =$	2.7032 cm ²	
$A_T = 7.1278 \text{ cm}^2 \ge A_r = 2.7032 \text{ cm}^2$		
External Pressure Hot & Corroded Vortex shedding Compressive		
f _{r1} = min[1,203.26 / 1,407.21 , 1] =	0.8551	
f _{r2} = min[1,203.26 / 1,407.21 , 1] =	0.8551	
$A_1 = \{2*89.11*(8.4 - 5.27) - 2*6.02*(8.4 - 5.27)*(1 - 0.8551)\} / 100 =$	5.5303 cm ²	
A ₂ = 2*8.77*6.02*0.8551 / 100 =	0.9031 cm ²	
A ₃ = 2*7.52*4.42*0.8551 / 100 =	0.5682 cm ²	
A ₄₁ = 42*0.8551 / 100 =	0.1368 cm ²	
A ₄₃ = 1.74 ² *0.8551 / 100 =	0.0258 cm ²	
$A_T = 5.5303 + 0.9031 + 0.5682 + 0.1368 + 0.0258 =$	7.1642 cm ²	
$A_r = (0.5*102.26*5.27) / 100 =$	2.6927 cm ²	
$A_T = 7.1642 \text{ cm}^2 \ge A_r = 2.6927 \text{ cm}^2$		

	<u> </u>	
ASME Section VIII Division 1, 2017 Edition Metric		
Attached to	Bottom existing shell	
Ring type	Structural tee	
Description	T - 60 x 85 x t14	
Material	SA-516 70 (II-D Metric p. 18, ln. 33)	
External design pressure	1.06 bar	
External design temperature	175°C	
Corrosion allowance	0 mm	
Distance from ring neutral axis to datum	2,000 mm	
Distance to previous support	1,500 mm	
Distance to next support	2,280.17 mm	
Internal ring	No	
Welds		
Weld configuration	Continuous both sides	
Fillet weld leg size	9 mm	
Vessel thickness at weld location, new	14 mm	
Vessel corrosion allowance at weld location	0 mm	
Stiffener thickness at weld location	14 mm	
Ring Properties		
Max depth to thickness ratio	12	
Ring distance to centroid	68.97 mm	
Ring area	18.34 cm ²	
Ring inertia	125.36 cm ⁴	

External Pressure, (Corroded & at 175°C) UG-29(a)

 $L/D_o = 2,280.17/3,378 = 0.675$ $D_o/t = 3,378/9.28 = 363.8675$ From Table G: A = 2.9643E-04From Table CS-2 Metric: $B = 288.14 \text{ kg}/\text{cm}^2$

 $P_a = 4*B / (3*(D_o / t))$ = 4*288.14 / (3*(3,378 / 9.28)) = 1.06 kg_f/cm²

B = $0.75*P*D_o / (t + A_s / L_s)$ = 0.75*1.06*3.378 / (9.28 + 1.834 / 1.890.08)*1.02= $265.802 \text{ kg}_f/\text{cm}^2$

From Table CS-2 Metric: A = 0.00026817 (ring, 175° C)

 $I_{s'} = [D_{o}^{2} L_{s}^{*}(t + A_{s} / L_{s})^{*}A] / 10.9$ = [3,378²*1,890.08*(9.28 + 1,834 / 1,890.08)*0.00026817] / 10.9 / 10000 $= 544.1 \text{ cm}^4$

I' for the composite corroded shell-ring cross section is 814.77 cm⁴

As $I' >= I_s'$ a T - 60 x 85 x t14 stiffener is adequate for an external pressure of 1.06 bar.

Check the stiffener ring attachment welds per UG-30

Per UG-30(f)(1) the minimum attachment weld size is 6 mm

The fillet weld size of 9 mm is adequate per UG-30(f)(1).

Radial pressure load, $P*L_s = 1.06*1,890.08 / 10 = 203.34 \text{ kg/cm}$ Radial shear load, $V = 0.01*P*L_s*D_o = 0.01*1.06*1.02*1,890.08*3,378 / 100 = 686.87 kg_f$ First moment of area, $Q = 33.49*2.69 = 90.0275 \text{ cm}^3$

Weld shear flow, $q = V*Q / I' = 75.8951 \text{ kg}_f/\text{cm}$ Combined weld load, $f_w = Sqr(203.3356^2 + 75.8951^2) = 217.04 \text{ kg/cm}$

Allowable weld stress per UW-18(d) $S_w = 0.55*S = 0.55*1,407.207 = 773.964 \text{ kg/cm}^2$

Fillet weld size required to resist radial pressure and shear

$$\begin{array}{lll} t_{w} & = & f_{w}*(d_{weld \, segment} + d_{toe}) \, / \, (S_{w}*d_{weld \, total}) + corrosion \\ & = & 10*217.04*(25.4 + 0) \, / \, (773.964*50.8) + 0 \\ & = & 1.4 \, mm \end{array}$$

The fillet weld size of 9 mm is adequate to resist radial pressure and shear.

Maximum Allowable External Pressure, (Corroded & at 175°C) UG-29(a)

 $L/D_0 = 2,280.17/3,378 = 0.675$ $D_o / t = 3,378 / 11.01 = 306.7133$ From Table G: A = 3.7395E-04From Table CS-2 Metric: $B = 363.99 \text{ kg}_{p}/\text{cm}^{2}$

 $P_a = 4*B / (3*(D_o / t))$ = 4*363.99 / (3*(3,378 / 11.01)) $= 1.58 \text{ kg/cm}^2$

 $B = 0.75*P*D_o / (t + A_s / L_s)$ = 0.75*1.58*3,378 / (11.01 + 1,834 / 1,890.08)*1.02 $= 341.078 \text{ kg/cm}^2$

From Table CS-2 Metric: A = 0.00034361 (ring, 175°C)

$$I_s' = [D_o^{2*}L_s^*(t + A_s/L_s)^*A] / 10.9$$

= [3,378^{2*}1,890.08*(11.01 + 1,834 / 1,890.08)*0.00034361] / 10.9 / 10000
= 814.77 cm⁴

I' for the composite corroded shell-ring cross section is 814.77 cm⁴

As $I' >= I_s'$ a T - 60 x 85 x t14 stiffener is adequate for an external pressure of 1.58 bar.

Check the stiffener ring attachment welds per UG-30

Per UG-30(f)(1) the minimum attachment weld size is 6 mm

The fillet weld size of 9 mm is adequate per UG-30(f)(1).

Radial pressure load, $P*L_s = 1.58*1,890.08 / 10 = 304.93 \text{ kg}/\text{cm}$ Radial shear load, $V = 0.01*P*L_s*D_o = 0.01*1.58*1.02*1,890.08*3,378 / 100 = 1,030.07 kg_f$ First moment of area, $Q = 33.49*2.69 = 90.0275 \text{ cm}^3$

Weld shear flow, $q = V*Q / I' = 113.817 \text{ kg}_f/\text{cm}$ Combined weld load, $f_w = Sqr(304.9346^2 + 113.817^2) = 325.48 \text{ kg}_f/\text{cm}$

Allowable weld stress per UW-18(d) $S_w = 0.55*S = 0.55*1,407.207 = 773.964 \text{ kg/cm}^2$

Fillet weld size required to resist radial pressure and shear

$$t_{w} = f_{w}*(d_{weld segment} + d_{toe}) / (S_{w}*d_{weld total}) + corrosion$$

$$= 10*325.48*(25.4 + 0) / (773.964*50.8) + 0$$

$$= 2.1 \text{ mm}$$

ASME Section VIII Division 1, 2017 Edition Metric		
Attached to	Bottom existing shell	
Ring type	Structural tee	
Description	T - 60 x 85 x t14	
Material	SA-516 70 (II-D Metric p. 18, ln. 33)	
External design pressure	1.06 bar	
External design temperature	175°C	
Corrosion allowance	0 mm	
Distance from ring neutral axis to datum	3,500 mm	
Distance to previous support	1,600 mm	
Distance to next support	1,500 mm	
Internal ring	No	
Welds		
Weld configuration	Continuous both sides	
Fillet weld leg size	9 mm	
Vessel thickness at weld location, new	14 mm	
Vessel corrosion allowance at weld location	0 mm	
Stiffener thickness at weld location	14 mm	
Ring Properties		
Max depth to thickness ratio	36	
Ring distance to centroid	68.97 mm	
Ring area	18.34 cm ²	
Ring inertia	125.36 cm ⁴	

 $L/D_0 = 1,600/3,378 = 0.4737$ $D_0 / t = 3,378 / 8.08 = 418.1985$ From Table G: A = 3.4021E-04From Table CS-2 Metric: $B = 330.96 \text{ kg}_f/\text{cm}^2$

 $P_a = 4*B / (3*(D_o/t))$ = 4*330.96 / (3*(3,378 / 8.08)) $= 1.06 \text{ kg}_f/\text{cm}^2$

 $B = 0.75*P*D_o / (t + A_s / L_s)$ = 0.75*1.06*3,378 / (8.08 + 1,834 / 1,550)*1.02 $= 294.322 \text{ kg}_f/\text{cm}^2$

From Table CS-2 Metric: A = 0.00029677 (ring, 175°C)

 $I_{s'} = [D_{o}^{2*}L_{s}^{*}(t + A_{s}/L_{s})*A]/10.9$ $= [3,378^{2}*1,550*(8.08 + 1,834 / 1,550)*0.00029677] / 10.9 / 10000$ $= 445.93 \text{ cm}^4$

I' for the composite corroded shell-ring cross section is 814.77 cm⁴

As $I' >= I_s'$ a T - 60 x 85 x t14 stiffener is adequate for an external pressure of 1.06 bar.

Check the stiffener ring attachment welds per UG-30

Per UG-30(f)(1) the minimum attachment weld size is 6 mm

The fillet weld size of 9 mm is adequate per UG-30(f)(1).

Radial pressure load, $P*L_s = 1.06*1,550 / 10 = 166.75 \text{ kg/cm}$ Radial shear load, $V = 0.01*P*L_s*D_o = 0.01*1.06*1.02*1,550*3,378 / 100 = 563.28 kg_f$ First moment of area, $Q = 33.49*2.69 = 90.0275 \text{ cm}^3$

Weld shear flow, $q = V*Q / I' = 62.2393 \text{ kg}_f/\text{cm}$ Combined weld load, $f_w = Sqr(166.7493^2 + 62.2393^2) = 177.99 \text{ kg}_f/\text{cm}$

Allowable weld stress per UW-18(d) $S_w = 0.55*S = 0.55*1,407.207 = 773.964 \text{ kg/cm}^2$

Fillet weld size required to resist radial pressure and shear

$$\begin{array}{ll} t_{w} & = & f_{w}*(d_{weld \, segment} + d_{toe}) \, / \, (S_{w}*d_{weld \, total}) + corrosion \\ & = & 10*177.99*(25.4 + 0) \, / \, (773.964*50.8) + 0 \\ & = & 1.15 \, mm \end{array}$$

The fillet weld size of 9 mm is adequate to resist radial pressure and shear.

Maximum Allowable External Pressure, (Corroded & at 175°C) UG-29(a)

 $L/D_0 = 1,600/3,378 = 0.4737$ $D_0/t = 3,378/10.18 = 331.9119$ A = 4.9357E-04From Table G: From Table CS-2 Metric: $B = 481.22 \text{ kg}/\text{cm}^2$

$$P_a = 4*B / (3*(D_o/t))$$

= 4*481.22 / (3*(3,378 / 10.18))
= 1.93 kg_f/cm²

B =
$$0.75*P*D_o / (t + A_s / L_s)$$

= $0.75*1.93*3,378 / (10.18 + 1,834 / 1,550)*1.02$
= 439.366 kg/cm^2

From Table CS-2 Metric: A = 0.00044197 (ring, 175°C)

$$I_{s}' = [D_{o}^{2*}L_{s}^{*}(t + A_{s}/L_{s})^{*}A] / 10.9$$

= $[3,378^{2*}1,550^{*}(10.18 + 1,834/1,550)^{*}0.00044197] / 10.9 / 10000$
= 814.77 cm^{4}

I' for the composite corroded shell-ring cross section is 814.77 cm⁴

As $I' >= I_s'$ a T - 60 x 85 x t14 stiffener is adequate for an external pressure of 1.93 bar.

Check the stiffener ring attachment welds per UG-30

Per UG-30(f)(1) the minimum attachment weld size is 6 mm

Radial pressure load, $P*L_s = 1.93*1,550 / 10 = 305.39 \text{ kg}_f/\text{cm}$ Radial shear load, $V = 0.01*P*L_s*D_o = 0.01*1.93*1.02*1,550*3,378 / 100 = 1,031.61 kg_f$ First moment of area, $Q = 33.49*2.69 = 90.0275 \text{ cm}^3$

Weld shear flow, $q = V*Q / I' = 113.9867 \text{ kg}_f/\text{cm}$ Combined weld load, $f_w = Sqr(305.3892^2 + \dot{1}13.9867^2) = 325.97 \text{ kg}_f/\text{cm}$

Allowable weld stress per UW-18(d) $S_w = 0.55*S = 0.55*1,407.207 = 773.964 \text{ kg/cm}^2$

Fillet weld size required to resist radial pressure and shear

$$t_{w} = f_{w}*(d_{weld \text{ segment}} + d_{toe}) / (S_{w}*d_{weld \text{ total}}) + \text{corrosion}$$

$$= 10*325.97*(25.4 + 0) / (773.964*50.8) + 0$$

$$= 2.11 \text{ mm}$$

ASME Section VIII Division 1, 2017 Edition Metric	
Attached to	Bottom existing shell
Ring type	Structural tee
Description	T - 60 x 85 x t14
Material	SA-516 70 (II-D Metric p. 18, ln. 33)
External design pressure	1.06 bar
External design temperature	175°C
Corrosion allowance	0 mm
Distance from ring neutral axis to datum	5,100 mm
Distance to previous support	1,500 mm
Distance to next support	1,600 mm
Internal ring	No
Welds	
Weld configuration	Continuous both sides
Fillet weld leg size	9 mm
Vessel thickness at weld location, new	14 mm
Vessel corrosion allowance at weld location	0 mm
Stiffener thickness at weld location	14 mm
Ring Properties	
Max depth to thickness ratio	12
Ring distance to centroid	68.97 mm
Ring area	18.34 cm ²
Ring inertia	125.36 cm ⁴

 $P_a = 4*B / (3*(D_o / t))$ = 4*330.96 / (3*(3,378 / 8.08)) = 1.06 kg_f/cm²

B = $0.75*P*D_o / (t + A_s / L_s)$ = 0.75*1.06*3,378 / (8.08 + 1,834 / 1,550)*1.02= $294.322 \text{ kg}_f/\text{cm}^2$

From Table CS-2 Metric: A = 0.00029677 (ring, 175°C)

 $I_{s'} = [D_{o}^{2} + L_{s}^{*}(t + A_{s} / L_{s}) + A] / 10.9$ = $[3,378^{2} + 1,550 + (8.08 + 1,834 / 1,550) + 0.00029677] / 10.9 / 10000$ $= 445.93 \text{ cm}^4$

I' for the composite corroded shell-ring cross section is 814.77 cm⁴

As $I' >= I_s'$ a T - 60 x 85 x t14 stiffener is adequate for an external pressure of 1.06 bar.

Check the stiffener ring attachment welds per UG-30

Per UG-30(f)(1) the minimum attachment weld size is 6 mm

The fillet weld size of 9 mm is adequate per UG-30(f)(1).

Radial pressure load, $P*L_s = 1.06*1,550 / 10 = 166.75 \text{ kg/cm}$ Radial shear load, $V = 0.01*P*L_s*D_o = 0.01*1.06*1.02*1,550*3,378 / 100 = 563.28 kg_f$ First moment of area, $Q = 33.49*2.69 = 90.0275 \text{ cm}^3$

Weld shear flow, $q = V*Q / I' = 62.2393 \text{ kg}_f/\text{cm}$ Combined weld load, $f_w = Sqr(166.7493^2 + 62.2393^2) = 177.99 \text{ kg}_f/\text{cm}$

Allowable weld stress per UW-18(d) $S_w = 0.55*S = 0.55*1,407.207 = 773.964 \text{ kg/cm}^2$

Fillet weld size required to resist radial pressure and shear

$$\begin{array}{ll} t_{w} & = & f_{w}*(d_{weld \, segment} + d_{toe}) \, / \, (S_{w}*d_{weld \, total}) + corrosion \\ & = & 10*177.99*(25.4 + 0) \, / \, (773.964*50.8) + 0 \\ & = & 1.15 \, mm \end{array}$$

The fillet weld size of 9 mm is adequate to resist radial pressure and shear.

Maximum Allowable External Pressure, (Corroded & at 175°C) UG-29(a)

 $L/D_0 = 1,600/3,378 = 0.4737$ $D_0/t = 3,378/10.18 = 331.9119$ A = 4.9357E-04From Table G: From Table CS-2 Metric: $B = 481.22 \text{ kg}/\text{cm}^2$

 $P_a = 4*B / (3*(D_o / t))$ = 4*481.22 / (3*(3,378 / 10.18)) $= 1.93 \text{ kg}_{\text{f}}/\text{cm}^2$

 $B = 0.75*P*D_o / (t + A_s / L_s)$ = 0.75*1.93*3,378 / (10.18 + 1,834 / 1,550)*1.02 $= 439.366 \text{ kg/cm}^2$

From Table CS-2 Metric: A = 0.00044197 (ring, 175°C)

$$I_{s}' = [D_{o}^{2*}L_{s}^{*}(t + A_{s}/L_{s})^{*}A] / 10.9$$

= $[3,378^{2*}1,550^{*}(10.18 + 1,834/1,550)^{*}0.00044197] / 10.9 / 10000$
= 814.77 cm^{4}

I' for the composite corroded shell-ring cross section is 814.77 cm⁴

As $I' >= I_s'$ a T - 60 x 85 x t14 stiffener is adequate for an external pressure of 1.93 bar.

Check the stiffener ring attachment welds per UG-30

Per UG-30(f)(1) the minimum attachment weld size is 6 mm

Radial pressure load, $P*L_s = 1.93*1,550 / 10 = 305.39 \text{ kg}_f/\text{cm}$ Radial shear load, $V = 0.01*P*L_s*D_o = 0.01*1.93*1.02*1,550*3,378 / 100 = 1,031.61 \text{ kg}_f$ First moment of area, $Q = 33.49*2.69 = 90.0275 \text{ cm}^3$

Weld shear flow, $q = V*Q / I' = 113.9867 \text{ kg}_f/\text{cm}$ Combined weld load, $f_w = \text{Sqr}(305.3892^2 + 113.9867^2) = 325.97 \text{ kg}_f/\text{cm}$

Allowable weld stress per UW-18(d) $S_w = 0.55*S = 0.55*1,407.207 = 773.964 \text{ kg/cm}^2$

Fillet weld size required to resist radial pressure and shear

$$t_{w} = f_{w}*(d_{weld \text{ segment}} + d_{toe}) / (S_{w}*d_{weld \text{ total}}) + \text{corrosion}$$

$$= 10*325.97*(25.4 + 0) / (773.964*50.8) + 0$$

$$= 2.11 \text{ mm}$$

ASME Section VIII Division	1, 2017 Edition Metric	
Attached to	New shell	
Ring type	Structural tee	
Description	T - 60 x 85 x t14	
Material	SA-516 70 (II-D Metric p. 18, ln. 33)	
External design pressure	1.03 bar	
External design temperature	175°C	
Corrosion allowance	0 mm	
Distance from ring neutral axis to datum	6,600 mm	
Distance to previous support	1,160 mm	
Distance to next support	1,500 mm	
Internal ring	No	
Welds		
Weld configuration	Continuous both sides	
Fillet weld leg size	9 mm	
Vessel thickness at weld location, new	25 mm	
Vessel corrosion allowance at weld location	3 mm	
Stiffener thickness at weld location	14 mm	
Ring Properties		
Max depth to thickness ratio	12	
Ring distance to centroid	68.97 mm	
Ring area	18.34 cm ²	
Ring inertia	125.36 cm ⁴	

 $P_a = 4*B / (3*(D_o/t))$ = 4*337.16 / (3*(3,400 / 7.8)) = 1.03 kg_f/cm²

 $\begin{array}{lll} B &=& 0.75*P*D_o \ / \ (t + A_s \ / \ L_s) \\ &=& 0.75*1.03*3,400 \ / \ (7.8 + 1,834 \ / \ 1,330)*1.02 \\ &=& 291.937 \ kg \ / cm^2 \end{array}$

From Table CS-2 Metric: A = 0.00029437 (ring, 175°C)

 $I_{s'} = [D_{o}^{2} + L_{s} + (t + A_{s} / L_{s}) + A] / 10.9$ = $[3,400^{2} + 1,330 + (7.8 + 1,834 / 1,330) + 0.00029437] / 10.9 / 10000$ $= 380.94 \text{ cm}^4$

I' for the composite corroded shell-ring cross section is 1,070.46 cm⁴

As $I' >= I_s'$ a T - 60 x 85 x t14 stiffener is adequate for an external pressure of 1.03 bar.

Check the stiffener ring attachment welds per UG-30

Per UG-30(f)(1) the minimum attachment weld size is 6 mm

The fillet weld size of 9 mm is adequate per UG-30(f)(1).

Radial pressure load, $P*L_s = 1.03*1,330 / 10 = 139.69 \text{ kg/cm}$ Radial shear load, $V = 0.01*P*L_s*D_o = 0.01*1.03*1.02*1,330*3,400 / 100 = 474.95 kg_f$ First moment of area, $Q = 66.19*1.74 = 114.843 \text{ cm}^3$

Weld shear flow, $q = V*Q / I' = 50.9546 \text{ kg}_f/\text{cm}$ Combined weld load, $f_w = Sqr(139.6911^2 + 50.9546^2) = 148.69 \text{ kg}_f/\text{cm}$

Allowable weld stress per UW-18(d) $S_w = 0.55*S = 0.55*1,407.207 = 773.964 \text{ kg/cm}^2$

Fillet weld size required to resist radial pressure and shear

$$\begin{array}{ll} t_{w} & = & f_{w}*(d_{weld \, segment} + d_{toe}) \, / \, (S_{w}*d_{weld \, total}) + corrosion \\ & = & 10*148.69*(25.4 + 0) \, / \, (773.964*50.8) + 0 \\ & = & 0.96 \, mm \end{array}$$

The fillet weld size of 9 mm is adequate to resist radial pressure and shear.

Maximum Allowable External Pressure, (Corroded & at 175°C) UG-29(a)

 $L/D_0 = 1,500/3,400 = 0.4412$ $D_0 / t = 3,400 / 11.78 = 288.6338$ A = 6.4417E-04From Table G: From Table CS-2 Metric: $B = 629.07 \text{ kg}/\text{cm}^2$

$$P_a = 4*B / (3*(D_o/t))$$

= 4*629.07 / (3*(3,400 / 11.78))
= 2.91 kg_f/cm²

B =
$$0.75*P*D_o / (t + A_s / L_s)$$

= $0.75*2.91*3,400 / (11.78 + 1,834 / 1,330)*1.02$
= 574.203 kg/cm^2

From Table CS-2 Metric: A = 0.00057670 (ring, 175°C)

$$I_s' = [D_o^2 + L_s + (t + A_s / L_s) + A] / 10.9$$

= $[3,400^2 + 1,330 + (11.78 + 1,834 / 1,330) + 0.00057670] / 10.9 / 10000$
= $1,070.46 \text{ cm}^4$

I' for the composite corroded shell-ring cross section is 1,070.46 cm⁴

As $I' >= I_s'$ a T - 60 x 85 x t14 stiffener is adequate for an external pressure of 2.91 bar.

Check the stiffener ring attachment welds per UG-30

Per UG-30(f)(1) the minimum attachment weld size is 6 mm

Radial pressure load, $P*L_s = 2.91*1,330 / 10 = 394.11 \text{ kg}_f/\text{cm}$ Radial shear load, $V = 0.01*P*L_s*D_o = 0.01*2.91*1.02*1,330*3,400 / 100 = 1,339.97 \text{ kg}_f$ First moment of area, $Q = 66.19*1.74 = 114.843 \text{ cm}^3$

Weld shear flow, $q = V*Q / I' = 143.7572 \text{ kg}_f/\text{cm}$ Combined weld load, $f_w = \text{Sqr}(394.1081^2 + 143.7572^2) = 419.51 \text{ kg}_f/\text{cm}$

Allowable weld stress per UW-18(d) $S_w = 0.55*S = 0.55*1,407.207 = 773.964 \text{ kg/cm}^2$

Fillet weld size required to resist radial pressure and shear

$$t_{w} = f_{w}*(d_{weld segment} + d_{toe}) / (S_{w}*d_{weld total}) + corrosion$$

$$= 10*419.51*(25.4 + 0) / (773.964*50.8) + 0$$

$$= 2.71 \text{ mm}$$

ASME Section VIII Division 1, 2017 Edition Metric		
Attached to	New shell	
Ring type	Structural tee	
Description	T - 60 x 85 x t14	
Material	SA-516 70 (II-D Metric p. 18, ln. 33)	
External design pressure	1.03 bar	
External design temperature	175°C	
Corrosion allowance	0 mm	
Distance from ring neutral axis to datum	7,760 mm	
Distance to previous support	1,500 mm	
Distance to next support	1,160 mm	
Internal ring	No	
Welds		
Weld configuration	Continuous both sides	
Fillet weld leg size	9 mm	
Vessel thickness at weld location, new	25 mm	
Vessel corrosion allowance at weld location	3 mm	
Stiffener thickness at weld location	14 mm	
Ring Properties		
Max depth to thickness ratio	36	
Ring distance to centroid	68.97 mm	
Ring area	18.34 cm ²	
Ring inertia	125.36 cm ⁴	

 $L/D_0 = 1,500/3,400 = 0.4412$ $D_0 / t = 3,400 / 7.8 = 436.1355$ From Table G: A = 3.4655E-04From Table CS-2 Metric: $B = 337.16 \text{ kg}_f/\text{cm}^2$

 $P_a = 4*B/(3*(D_o/t))$ = 4*337.16 / (3*(3,400 / 7.8)) $= 1.03 \text{ kg}_f/\text{cm}^2$

 $B = 0.75*P*D_o / (t + A_s / L_s)$ = 0.75*1.03*3,400 / (7.8 + 1,834 / 1,330)*1.02 $= 291.937 \text{ kg}_f/\text{cm}^2$

From Table CS-2 Metric: A = 0.00029437 (ring, 175°C)

 $I_{s'} = [D_{o}^{2*}L_{s}^{*}(t + A_{s}/L_{s})*A]/10.9$ $= [3,400^{2}*1,330*(7.8+1,834/1,330)*0.00029437]/10.9/10000$ $= 380.94 \text{ cm}^4$

I' for the composite corroded shell-ring cross section is 1,070.46 cm⁴

As $I' >= I_s'$ a T - 60 x 85 x t14 stiffener is adequate for an external pressure of 1.03 bar.

Check the stiffener ring attachment welds per UG-30

Per UG-30(f)(1) the minimum attachment weld size is 6 mm

The fillet weld size of 9 mm is adequate per UG-30(f)(1).

Radial pressure load, $P*L_s = 1.03*1,330 / 10 = 139.69 \text{ kg/cm}$ Radial shear load, $V = 0.01*P*L_s*D_o = 0.01*1.03*1.02*1,330*3,400 / 100 = 474.95 kg_f$ First moment of area, $Q = 66.19*1.74 = 114.843 \text{ cm}^3$

Weld shear flow, $q = V*Q / I' = 50.9546 \text{ kg}_f/\text{cm}$ Combined weld load, $f_w = Sqr(139.6911^2 + 50.9546^2) = 148.69 \text{ kg}_f/\text{cm}$

Allowable weld stress per UW-18(d) $S_w = 0.55*S = 0.55*1,407.207 = 773.964 \text{ kg/cm}^2$

Fillet weld size required to resist radial pressure and shear

$$\begin{array}{ll} t_{w} & = & f_{w}*(d_{weld \, segment} + d_{toe}) \, / \, (S_{w}*d_{weld \, total}) + corrosion \\ & = & 10*148.69*(25.4 + 0) \, / \, (773.964*50.8) + 0 \\ & = & 0.96 \, mm \end{array}$$

The fillet weld size of 9 mm is adequate to resist radial pressure and shear.

Maximum Allowable External Pressure, (Corroded & at 175°C) UG-29(a)

 $L/D_0 = 1,500/3,400 = 0.4412$ $D_0 / t = 3,400 / 11.78 = 288.6338$ A = 6.4417E-04From Table G: From Table CS-2 Metric: $B = 629.07 \text{ kg}/\text{cm}^2$

 $P_a = 4*B / (3*(D_o / t))$ = 4*629.07 / (3*(3,400 / 11.78)) $= 2.91 \text{ kg/cm}^2$

 $B = 0.75*P*D_o / (t + A_s / L_s)$ = 0.75*2.91*3,400 / (11.78 + 1,834 / 1,330)*1.02 $= 574.203 \text{ kg/cm}^2$

From Table CS-2 Metric: A = 0.00057670 (ring, 175°C)

$$I_{s}' = [D_{o}^{2*}L_{s}^{*}(t + A_{s}/L_{s})^{*}A] / 10.9$$

= $[3,400^{2*}1,330^{*}(11.78 + 1,834/1,330)^{*}0.00057670] / 10.9 / 10000$
= $1,070.46 \text{ cm}^{4}$

I' for the composite corroded shell-ring cross section is 1,070.46 cm⁴

As $I' >= I_s'$ a T - 60 x 85 x t14 stiffener is adequate for an external pressure of 2.91 bar.

Check the stiffener ring attachment welds per UG-30

Per UG-30(f)(1) the minimum attachment weld size is 6 mm

Radial pressure load, $P*L_s = 2.91*1,330 / 10 = 394.11 \text{ kg}_f/\text{cm}$ Radial shear load, $V = 0.01*P*L_s*D_o = 0.01*2.91*1.02*1,330*3,400 / 100 = 1,339.97 \text{ kg}_f$

First moment of area, $Q = 66.19*1.74 = 114.843 \text{ cm}^3$

Weld shear flow, $q = V*Q / I' = 143.7572 \text{ kg}_f/\text{cm}$ Combined weld load, $f_w = \text{Sqr}(394.1081^2 + 143.7572^2) = 419.51 \text{ kg}_f/\text{cm}$

Allowable weld stress per UW-18(d) $S_w = 0.55*S = 0.55*1,407.207 = 773.964 \text{ kg/cm}^2$

Fillet weld size required to resist radial pressure and shear

$$t_{w} = f_{w}*(d_{weld segment} + d_{toe}) / (S_{w}*d_{weld total}) + corrosion$$

$$= 10*419.51*(25.4 + 0) / (773.964*50.8) + 0$$

$$= 2.71 \text{ mm}$$

Rings #5 (Ring #2 in Group)

ASME Section VIII Division 1, 2017 Edition Metric		
Attached to	New shell	
Ring type	Structural tee	
Description	T - 60 x 85 x t14	
Material	SA-516 70 (II-D Metric p. 18, ln. 33)	
External design pressure	1.03 bar	
External design temperature	175°C	
Corrosion allowance	0 mm	
Distance from ring neutral axis to datum	9,260 mm	
Distance to previous support	1,500 mm	
Distance to next support	1,500 mm	
Internal ring	No	
Welds		
Weld configuration	Continuous both sides	
Fillet weld leg size	9 mm	
Vessel thickness at weld location, new	25 mm	
Vessel corrosion allowance at weld location	3 mm	
Stiffener thickness at weld location	14 mm	
Ring Properties		
Max depth to thickness ratio	36	
Ring distance to centroid	68.97 mm	
Ring area	18.34 cm ²	
Ring inertia	125.36 cm ⁴	

External Pressure, (Corroded & at 175°C) UG-29(a)

 $L/D_0 = 1,500/3,400 = 0.4412$ $D_o / t = 3,400 / 7.8 = 436.1355$ From Table G: A = 3.4655E-04From Table CS-2 Metric: $B = 337.16 \text{ kg}_f/\text{cm}^2$

 $P_a = 4*B / (3*(D_o/t))$ = 4*337.16 / (3*(3,400 / 7.8)) $= 1.03 \text{ kg}_f/\text{cm}^2$

 $B = 0.75*P*D_o / (t + A_s / L_s)$ = 0.75*1.03*3,400 / (7.8 + 1,834 / 1,500)*1.02 $= 296.996 \text{ kg}_f/\text{cm}^2$

From Table CS-2 Metric: A = 0.00029945 (ring, 175°C)

 $I_{s'} = [D_{o}^{2*}L_{s}^{*}(t + A_{s}/L_{s})*A]/10.9$ $= [3,400^{2}*1,500*(7.8+1,834/1,500)*0.00029945]/10.9/10000$ $= 429.58 \text{ cm}^4$

I' for the composite corroded shell-ring cross section is 1,070.46 cm⁴

As $I' >= I_s'$ a T - 60 x 85 x t14 stiffener is adequate for an external pressure of 1.03 bar.

Check the stiffener ring attachment welds per UG-30

Per UG-30(f)(1) the minimum attachment weld size is 6 mm

The fillet weld size of 9 mm is adequate per UG-30(f)(1).

Radial pressure load, $P*L_s = 1.03*1,500 / 10 = 157.55 \text{ kg/cm}$ Radial shear load, $V = 0.01*P*L_s*D_o = 0.01*1.03*1.02*1,500*3,400 / 100 = 535.66 kg_f$ First moment of area, $Q = 66.19*1.74 = 114.843 \text{ cm}^3$

Weld shear flow, $q = V*Q / I' = 57.4675 \text{ kg}_f/\text{cm}$ Combined weld load, $f_w = Sqr(157.5464^2 + 57.4675^2) = 167.7 \text{ kg}_f/\text{cm}$

Allowable weld stress per UW-18(d) $S_w = 0.55*S = 0.55*1,407.207 = 773.964 \text{ kg/cm}^2$

Fillet weld size required to resist radial pressure and shear

$$\begin{array}{ll} t_{w} & = & f_{w}*(d_{weld \, segment} + d_{toe}) \, / \, (S_{w}*d_{weld \, total}) + corrosion \\ & = & 10*167.7*(25.4 + 0) \, / \, (773.964*50.8) + 0 \\ & = & 1.08 \, mm \end{array}$$

The fillet weld size of 9 mm is adequate to resist radial pressure and shear.

Maximum Allowable External Pressure, (Corroded & at 175°C) UG-29(a)

 $L/D_0 = 1,500/3,400 = 0.4412$ $D_0/t = 3,400/11.28 = 301.5186$ A = 5.9695E-04From Table G: From Table CS-2 Metric: $B = 582.69 \text{ kg}/\text{cm}^2$

 $P_a = 4*B / (3*(D_o / t))$ = 4*582.69 / (3*(3,400 / 11.28)) $= 2.58 \text{ kg/cm}^2$

 $B = 0.75*P*D_o / (t + A_s / L_s)$ = 0.75*2.58*3,400 / (11.28 + 1,834 / 1,500)*1.02 $= 535.866 \text{ kg/cm}^2$

From Table CS-2 Metric: A = 0.00053841 (ring, 175°C)

$$I_{s}' = \left[D_{o}^{2} + L_{s} + (t + A_{s} / L_{s}) + A \right] / 10.9$$

= $\left[3,400^{2} + 1,500 + (11.28 + 1,834 / 1,500) + 0.00053841 \right] / 10.9 / 10000$
= $1,070.46 \text{ cm}^{4}$

I' for the composite corroded shell-ring cross section is 1,070.46 cm⁴

As $I' >= I_s'$ a T - 60 x 85 x t14 stiffener is adequate for an external pressure of 2.58 bar.

Check the stiffener ring attachment welds per UG-30

Per UG-30(f)(1) the minimum attachment weld size is 6 mm

Radial pressure load, $P*L_s = 2.58*1,500 / 10 = 393.95 \text{ kg}_f/\text{cm}$ Radial shear load, $V = 0.01*P*L_s*D_o = 0.01*2.58*1.02*1,500*3,400 / 100 = 1,339.42 \text{ kg}_f$ First moment of area, $Q = 66.19*1.74 = 114.843 \text{ cm}^3$

Weld shear flow, $q = V*Q / I' = 143.6987 \text{ kg}_f/\text{cm}$ Combined weld load, $f_w = \text{Sqr}(393.9477^2 + 143.6987^2) = 419.34 \text{ kg}_f/\text{cm}$

Allowable weld stress per UW-18(d) $S_w = 0.55*S = 0.55*1,407.207 = 773.964 \text{ kg/cm}^2$

Fillet weld size required to resist radial pressure and shear

$$t_{w} = f_{w}*(d_{weld segment} + d_{toe}) / (S_{w}*d_{weld total}) + corrosion$$

$$= 10*419.34*(25.4 + 0) / (773.964*50.8) + 0$$

$$= 2.71 \text{ mm}$$

Rings #5 (Ring #3 in Group)

ASME Section VIII Division 1, 2017 Edition Metric		
Attached to	Top existing shell	
Ring type	Structural tee	
Description	T - 60 x 85 x t14	
Material	SA-516 70 (II-D Metric p. 18, ln. 33)	
External design pressure	1.03 bar	
External design temperature	175°C	
Corrosion allowance	0 mm	
Distance from ring neutral axis to datum	10,760 mm	
Distance to previous support	1,500 mm	
Distance to next support	1,500 mm	
Internal ring	No	
Welds		
Weld configuration	Continuous both sides	
Fillet weld leg size	9 mm	
Vessel thickness at weld location, new	14 mm	
Vessel corrosion allowance at weld location	3 mm	
Stiffener thickness at weld location	14 mm	
Ring Properties		
Max depth to thickness ratio	36	
Ring distance to centroid	68.97 mm	
Ring area	18.34 cm ²	
Ring inertia	125.36 cm ⁴	

External Pressure, (Corroded & at 175°C) UG-29(a)

 $L/D_0 = 1,500/3,378 = 0.4441$ $D_0 / t = 3,378 / 7.77 = 434.8806$ From Table G: A = 3.4558E-04From Table CS-2 Metric: $B = 336.22 \text{ kg}_f/\text{cm}^2$

 $P_a = 4*B / (3*(D_o/t))$ = 4*336.22 / (3*(3,378 / 7.77)) $= 1.03 \text{ kg}_f/\text{cm}^2$

 $B = 0.75*P*D_o / (t + A_s / L_s)$ = 0.75*1.03*3,378 / (7.77 + 1,834 / 1,500)*1.02 $= 295.991 \text{ kg}_f/\text{cm}^2$

From Table CS-2 Metric: A = 0.00029844 (ring, 175°C)

 $I_{s'} = [D_{o}^{2*}L_{s}^{*}(t + A_{s}/L_{s})*A]/10.9$ $= [3,378^{2}*1,500*(7.77+1,834/1,500)*0.00029844]/10.9/10000$ $= 421.31 \text{ cm}^4$

I' for the composite corroded shell-ring cross section is 697.11 cm⁴

As $I' >= I_s'$ a T - 60 x 85 x t14 stiffener is adequate for an external pressure of 1.03 bar.

Check the stiffener ring attachment welds per UG-30

Per UG-30(f)(1) the minimum attachment weld size is 6 mm

The fillet weld size of 9 mm is adequate per UG-30(f)(1).

Radial pressure load, $P*L_s = 1.03*1,500 / 10 = 157.55 \text{ kg/cm}$ Radial shear load, $V = 0.01*P*L_s*D_o = 0.01*1.03*1.02*1,500*3,378 / 100 = 532.19 kg_f$ First moment of area, $Q = 23.33*3.28 = 76.46 \text{ cm}^3$

Weld shear flow, $q = V*Q / I' = 58.3715 \text{ kg}_f/\text{cm}$ Combined weld load, $f_w = Sqr(157.5464^2 + 58.3715^2) = 168.01 \text{ kg}_f/\text{cm}$

Allowable weld stress per UW-18(d) $S_w = 0.55*S = 0.55*1,407.207 = 773.964 \text{ kg/cm}^2$

Fillet weld size required to resist radial pressure and shear

$$t_{w} = f_{w}*(d_{weld \text{ segment}} + d_{toe}) / (S_{w}*d_{weld \text{ total}}) + corrosion$$

$$= 10*168.01*(25.4 + 0) / (773.964*50.8) + 0$$

$$= 1.09 \text{ mm}$$

The fillet weld size of 9 mm is adequate to resist radial pressure and shear.

Maximum Allowable External Pressure, (Corroded & at 175°C) UG-29(a)

 $L/D_0 = 1,500/3,378 = 0.4441$ $D_0/t = 3,378/9.42 = 358.7275$ A = 4.7172E-04From Table G: From Table CS-2 Metric: $B = 459.8 \text{ kg}_{\text{r}}/\text{cm}^2$

$$P_{a} = 4*B / (3*(D_{o}/t))$$

$$= 4*459.8 / (3*(3,378/9.42))$$

$$= 1.71 \text{ kg}_{f}/\text{cm}^{2}$$

B =
$$0.75*P*D_o / (t + A_s / L_s)$$

= $0.75*1.71*3.378 / (9.42 + 1.834 / 1.500)*1.02$
= 414.691 kg/cm^2

From Table CS-2 Metric: A = 0.00041729 (ring, 175°C)

$$I_s' = [D_o^{2*}L_s^*(t + A_s/L_s)^*A] / 10.9$$

= [3,378^{2*}1,500*(9.42 + 1,834 / 1,500)*0.00041729] / 10.9 / 10000
= 697.11 cm⁴

I' for the composite corroded shell-ring cross section is 697.11 cm⁴

As $I' >= I_s'$ a T - 60 x 85 x t14 stiffener is adequate for an external pressure of 1.71 bar.

Check the stiffener ring attachment welds per UG-30

Per UG-30(f)(1) the minimum attachment weld size is 6 mm

Radial pressure load, $P*L_s = 1.71*1,500 / 10 = 261.2 \text{ kg}_f/\text{cm}$ Radial shear load, $V = 0.01*P*L_s*D_o = 0.01*1.71*1.02*1,500*3,378 / 100 = 882.33 \text{ kg}_f$ First moment of area, $Q = 23.33*3.28 = 76.46 \text{ cm}^3$

Weld shear flow, $q = V*Q / I' = 96.7755 \text{ kg}_f/\text{cm}$ Combined weld load, $f_w = \text{Sqr}(261.2001^2 + 96.7755^2) = 278.55 \text{ kg}_f/\text{cm}$

Allowable weld stress per UW-18(d) $S_w = 0.55*S = 0.55*1,407.207 = 773.964 \text{ kg/cm}^2$

Fillet weld size required to resist radial pressure and shear

$$\begin{array}{lll} t_{w} & = & f_{w}*(d_{weld \, segment} + d_{toe}) \, / \, (S_{w}*d_{weld \, total}) + corrosion \\ & = & 10*278.55*(25.4 + 0) \, / \, (773.964*50.8) + 0 \\ & = & 1.8 \, mm \end{array}$$

Rings #5 (Ring #4 in Group)

ASME Section VIII Division 1, 2017 Edition Metric		
Attached to	Top existing shell	
Ring type	Structural tee	
Description	T - 60 x 85 x t14	
Material	SA-516 70 (II-D Metric p. 18, ln. 33)	
External design pressure	1.03 bar	
External design temperature	175°C	
Corrosion allowance	0 mm	
Distance from ring neutral axis to datum	12,260 mm	
Distance to previous support	1,500 mm	
Distance to next support	1,500 mm	
Internal ring	No	
Welds		
Weld configuration	Continuous both sides	
Fillet weld leg size	9 mm	
Vessel thickness at weld location, new	14 mm	
Vessel corrosion allowance at weld location	3 mm	
Stiffener thickness at weld location	14 mm	
Ring Properties		
Max depth to thickness ratio	36	
Ring distance to centroid	68.97 mm	
Ring area	18.34 cm ²	
Ring inertia	125.36 cm ⁴	

External Pressure, (Corroded & at 175°C) UG-29(a)

 $L/D_0 = 1,500/3,378 = 0.4441$ $D_0 / t = 3,378 / 7.77 = 434.8806$ From Table G: A = 3.4558E-04From Table CS-2 Metric: $B = 336.22 \text{ kg}_f/\text{cm}^2$

 $P_a = 4*B / (3*(D_o/t))$ = 4*336.22 / (3*(3,378 / 7.77)) $= 1.03 \text{ kg}_f/\text{cm}^2$

 $B = 0.75*P*D_o / (t + A_s / L_s)$ = 0.75*1.03*3,378 / (7.77 + 1,834 / 1,500)*1.02 $= 295.991 \text{ kg}_f/\text{cm}^2$

From Table CS-2 Metric: A = 0.00029844 (ring, 175°C)

 $I_{s'} = [D_{o}^{2*}L_{s}^{*}(t + A_{s}/L_{s})*A]/10.9$ $= [3,378^{2}*1,500*(7.77+1,834/1,500)*0.00029844]/10.9/10000$ $= 421.31 \text{ cm}^4$

I' for the composite corroded shell-ring cross section is 697.11 cm⁴

As $I' >= I_s'$ a T - 60 x 85 x t14 stiffener is adequate for an external pressure of 1.03 bar.

Check the stiffener ring attachment welds per UG-30

Per UG-30(f)(1) the minimum attachment weld size is 6 mm

The fillet weld size of 9 mm is adequate per UG-30(f)(1).

Radial pressure load, $P*L_s = 1.03*1,500 / 10 = 157.55 \text{ kg/cm}$ Radial shear load, $V = 0.01*P*L_s*D_o = 0.01*1.03*1.02*1,500*3,378 / 100 = 532.19 kg_f$ First moment of area, $Q = 23.33*3.28 = 76.46 \text{ cm}^3$

Weld shear flow, $q = V*Q / I' = 58.3715 \text{ kg}_f/\text{cm}$ Combined weld load, $f_w = Sqr(157.5464^2 + 58.3715^2) = 168.01 \text{ kg}_f/\text{cm}$

Allowable weld stress per UW-18(d) $S_w = 0.55*S = 0.55*1,407.207 = 773.964 \text{ kg/cm}^2$

Fillet weld size required to resist radial pressure and shear

$$t_{w} = f_{w}*(d_{weld \text{ segment}} + d_{toe}) / (S_{w}*d_{weld \text{ total}}) + corrosion$$

$$= 10*168.01*(25.4 + 0) / (773.964*50.8) + 0$$

$$= 1.09 \text{ mm}$$

The fillet weld size of 9 mm is adequate to resist radial pressure and shear.

Maximum Allowable External Pressure, (Corroded & at 175°C) UG-29(a)

 $L/D_0 = 1,500/3,378 = 0.4441$ $D_0/t = 3,378/9.42 = 358.7275$ A = 4.7172E-04From Table G: From Table CS-2 Metric: $B = 459.8 \text{ kg}_{\text{r}}/\text{cm}^2$

$$P_a = 4*B / (3*(D_o/t))$$

= 4*459.8 / (3*(3,378 / 9.42))
= 1.71 kg_f/cm²

B =
$$0.75*P*D_o / (t + A_s / L_s)$$

= $0.75*1.71*3,378 / (9.42 + 1,834 / 1,500)*1.02$
= 414.691 kg/cm^2

From Table CS-2 Metric: A = 0.00041729 (ring, 175°C)

$$I_s' = [D_o^{2*}L_s^*(t + A_s/L_s)^*A] / 10.9$$

= [3,378^{2*}1,500*(9.42 + 1,834 / 1,500)*0.00041729] / 10.9 / 10000
= 697.11 cm⁴

I' for the composite corroded shell-ring cross section is 697.11 cm⁴

As $I' >= I_s'$ a T - 60 x 85 x t14 stiffener is adequate for an external pressure of 1.71 bar.

Check the stiffener ring attachment welds per UG-30

Per UG-30(f)(1) the minimum attachment weld size is 6 mm

Radial pressure load, $P*L_s = 1.71*1,500 / 10 = 261.2 \text{ kg}_f/\text{cm}$ Radial shear load, $V = 0.01*P*L_s*D_o = 0.01*1.71*1.02*1,500*3,378 / 100 = 882.33 kg_f$ First moment of area, $Q = 23.33*3.28 = 76.46 \text{ cm}^3$

Weld shear flow, $q = V*Q / I' = 96.7755 \text{ kg}_f/\text{cm}$ Combined weld load, $f_w = Sqr(261.2001^2 + 96.7755^2) = 278.55 \text{ kg}_f/\text{cm}$

Allowable weld stress per UW-18(d) $S_w = 0.55*S = 0.55*1,407.207 = 773.964 \text{ kg/cm}^2$

Fillet weld size required to resist radial pressure and shear

$$\begin{array}{lll} t_{w} & = & f_{w}*(d_{weld \, segment} + d_{toe}) \, / \, (S_{w}*d_{weld \, total}) + corrosion \\ & = & 10*278.55*(25.4 + 0) \, / \, (773.964*50.8) + 0 \\ & = & 1.8 \, mm \end{array}$$

Rings #5 (Ring #5 in Group)

ASME Section VIII Division 1, 2017 Edition Metric		
Attached to	Top existing shell	
Ring type	Structural tee	
Description	T - 60 x 85 x t14	
Material	SA-516 70 (II-D Metric p. 18, ln. 33)	
External design pressure	1.03 bar	
External design temperature	175°C	
Corrosion allowance	0 mm	
Distance from ring neutral axis to datum	13,760 mm	
Distance to previous support	1,500 mm	
Distance to next support	1,500 mm	
Internal ring	No	
Welds		
Weld configuration	Continuous both sides	
Fillet weld leg size	9 mm	
Vessel thickness at weld location, new	14 mm	
Vessel corrosion allowance at weld location	3 mm	
Stiffener thickness at weld location	14 mm	
Ring Properties		
Max depth to thickness ratio	36	
Ring distance to centroid	68.97 mm	
Ring area	18.34 cm ²	
Ring inertia	125.36 cm ⁴	

External Pressure, (Corroded & at 175°C) UG-29(a)

 $L/D_0 = 1,500/3,378 = 0.4441$ $D_0 / t = 3,378 / 7.77 = 434.8806$ From Table G: A = 3.4558E-04From Table CS-2 Metric: $B = 336.22 \text{ kg}_f/\text{cm}^2$

 $P_a = 4*B / (3*(D_o/t))$ = 4*336.22 / (3*(3,378 / 7.77)) $= 1.03 \text{ kg}_f/\text{cm}^2$

 $B = 0.75*P*D_o / (t + A_s / L_s)$ = 0.75*1.03*3,378 / (7.77 + 1,834 / 1,500)*1.02 $= 295.991 \text{ kg}/\text{cm}^2$

From Table CS-2 Metric: A = 0.00029844 (ring, 175°C)

 $I_{s'} = [D_{o}^{2*}L_{s}^{*}(t + A_{s}/L_{s})*A]/10.9$ $= [3,378^{2}*1,500*(7.77+1,834/1,500)*0.00029844]/10.9/10000$ $= 421.31 \text{ cm}^4$

I' for the composite corroded shell-ring cross section is 697.11 cm⁴

As $I' >= I_s'$ a T - 60 x 85 x t14 stiffener is adequate for an external pressure of 1.03 bar.

Check the stiffener ring attachment welds per UG-30

Per UG-30(f)(1) the minimum attachment weld size is 6 mm

The fillet weld size of 9 mm is adequate per UG-30(f)(1).

Radial pressure load, $P*L_s = 1.03*1,500 / 10 = 157.55 \text{ kg/cm}$ Radial shear load, $V = 0.01*P*L_s*D_o = 0.01*1.03*1.02*1,500*3,378 / 100 = 532.19 kg_f$ First moment of area, $Q = 23.33*3.28 = 76.46 \text{ cm}^3$

Weld shear flow, $q = V*Q / I' = 58.3715 \text{ kg}_f/\text{cm}$ Combined weld load, $f_w = Sqr(157.5464^2 + 58.3715^2) = 168.01 \text{ kg}_f/\text{cm}$

Allowable weld stress per UW-18(d) $S_w = 0.55*S = 0.55*1,407.207 = 773.964 \text{ kg/cm}^2$

Fillet weld size required to resist radial pressure and shear

$$t_{w} = f_{w}*(d_{weld \text{ segment}} + d_{toe}) / (S_{w}*d_{weld \text{ total}}) + corrosion$$

$$= 10*168.01*(25.4 + 0) / (773.964*50.8) + 0$$

$$= 1.09 \text{ mm}$$

The fillet weld size of 9 mm is adequate to resist radial pressure and shear.

Maximum Allowable External Pressure, (Corroded & at 175°C) UG-29(a)

 $L/D_0 = 1,500/3,378 = 0.4441$ $D_0/t = 3,378/9.42 = 358.7275$ A = 4.7172E-04From Table G: From Table CS-2 Metric: $B = 459.8 \text{ kg}_{\text{r}}/\text{cm}^2$

$$P_{a} = 4*B / (3*(D_{o}/t))$$

$$= 4*459.8 / (3*(3,378/9.42))$$

$$= 1.71 \text{ kg}_{f}/\text{cm}^{2}$$

B =
$$0.75*P*D_o / (t + A_s / L_s)$$

= $0.75*1.71*3,378 / (9.42 + 1,834 / 1,500)*1.02$
= 414.691 kg/cm^2

From Table CS-2 Metric: A = 0.00041729 (ring, 175°C)

$$I_{s}' = [D_{o}^{2} + L_{s} + (t + A_{s} / L_{s}) + A] / 10.9$$

= $[3,378^{2} + 1,500 + (9.42 + 1,834 / 1,500) + 0.00041729] / 10.9 / 10000$
= 697.11 cm^{4}

I' for the composite corroded shell-ring cross section is 697.11 cm⁴

As $I' >= I_s'$ a T - 60 x 85 x t14 stiffener is adequate for an external pressure of 1.71 bar.

Check the stiffener ring attachment welds per UG-30

Per UG-30(f)(1) the minimum attachment weld size is 6 mm

Radial pressure load, $P*L_s = 1.71*1,500 / 10 = 261.2 \text{ kg}_f/\text{cm}$ Radial shear load, $V = 0.01*P*L_s*D_o = 0.01*1.71*1.02*1,500*3,378 / 100 = 882.33 kg_f$ First moment of area, $Q = 23.33*3.28 = 76.46 \text{ cm}^3$

Weld shear flow, $q = V*Q / I' = 96.7755 \text{ kg}_f/\text{cm}$ Combined weld load, $f_w = Sqr(261.2001^2 + 96.7755^2) = 278.55 \text{ kg}_f/\text{cm}$

Allowable weld stress per UW-18(d) $S_w = 0.55*S = 0.55*1,407.207 = 773.964 \text{ kg/cm}^2$

Fillet weld size required to resist radial pressure and shear

$$\begin{array}{lll} t_{w} & = & f_{w}*(d_{weld \, segment} + d_{toe}) \, / \, (S_{w}*d_{weld \, total}) + corrosion \\ & = & 10*278.55*(25.4 + 0) \, / \, (773.964*50.8) + 0 \\ & = & 1.8 \, mm \end{array}$$

ASME Section VIII Division 1	1, 2017 Edition Metric	
Attached to	Top existing shell	
Ring type	Structural tee	
Description	T - 60 x 85 x t14	
Material	SA-516 70 (II-D Metric p. 18, ln. 33)	
External design pressure	1.03 bar	
External design temperature	175°C	
Corrosion allowance	0 mm	
Distance from ring neutral axis to datum	15,260 mm	
Distance to previous support	1,200 mm	
Distance to next support	1,500 mm	
Internal ring	No	
Welds		
Weld configuration	Continuous both sides	
Fillet weld leg size	9 mm	
Vessel thickness at weld location, new	14 mm	
Vessel corrosion allowance at weld location	3 mm	
Stiffener thickness at weld location	14 mm	
Ring Properties		
Max depth to thickness ratio	36	
Ring distance to centroid	68.97 mm	
Ring area	18.34 cm ²	
Ring inertia	125.36 cm ⁴	

 $L/D_o = 1,500/3,378 = 0.4441$ $D_o/t = 3,378/7.77 = 434.8806$ From Table G: A = 3.4558E-04From Table CS-2 Metric: $B = 336.22 \text{ kg}_f/\text{cm}^2$

 $P_a = 4*B / (3*(D_o / t))$ = 4*336.22 / (3*(3,378 / 7.77)) = 1.03 kg_f/cm²

 $B = 0.75*P*D_o / (t + A_s / L_s)$ = 0.75*1.03*3,378 / (7.77 + 1,834 / 1,350)*1.02 = 291.585 kg_f/cm²

From Table CS-2 Metric: A = 0.00029402 (ring, 175°C)

 $I_{s'} = [D_{o}^{2} + L_{s} + (t + A_{s} / L_{s}) + A] / 10.9$ = $[3,378^{2} + 1,350 + (7.77 + 1,834 / 1,350) + 0.00029402] / 10.9 / 10000$ $= 379.21 \text{ cm}^4$

I' for the composite corroded shell-ring cross section is 697.11 cm⁴

As $I' >= I_s'$ a T - 60 x 85 x t14 stiffener is adequate for an external pressure of 1.03 bar.

Check the stiffener ring attachment welds per UG-30

Per UG-30(f)(1) the minimum attachment weld size is 6 mm

The fillet weld size of 9 mm is adequate per UG-30(f)(1).

Radial pressure load, $P*L_s = 1.03*1,350 / 10 = 141.79 \text{ kg/cm}$ Radial shear load, $V = 0.01*P*L_s*D_o = 0.01*1.03*1.02*1,350*3,378 / 100 = 478.97 kg_f$ First moment of area, $Q = 23.33*3.28 = 76.46 \text{ cm}^3$

Weld shear flow, $q = V*Q / I' = 52.5343 \text{ kg}_f/\text{cm}$ Combined weld load, $f_w = Sqr(141.7917^2 + 52.5343^2) = 151.21 \text{ kg}_f/\text{cm}$

Allowable weld stress per UW-18(d) $S_w = 0.55*S = 0.55*1,407.207 = 773.964 \text{ kg/cm}^2$

Fillet weld size required to resist radial pressure and shear

$$\begin{array}{ll} t_{w} & = & f_{w}*(d_{weld \, segment} + d_{toe}) \, / \, (S_{w}*d_{weld \, total}) + corrosion \\ & = & 10*151.21*(25.4 + 0) \, / \, (773.964*50.8) + 0 \\ & = & 0.98 \, mm \end{array}$$

The fillet weld size of 9 mm is adequate to resist radial pressure and shear.

Maximum Allowable External Pressure, (Corroded & at 175°C) UG-29(a)

 $L/D_0 = 1,500/3,378 = 0.4441$ $D_0 / t = 3,378 / 9.82 = 344.105$ A = 5.0268E-04From Table G: From Table CS-2 Metric: $B = 490.17 \text{ kg}/\text{cm}^2$

$$P_{a} = 4*B / (3*(D_{o}/t))$$

$$= 4*490.17 / (3*(3,378/9.82))$$

$$= 1.9 kg_{f}/cm^{2}$$

B =
$$0.75*P*D_o / (t + A_s / L_s)$$

= $0.75*1.9*3,378 / (9.82 + 1,834 / 1,350)*1.02$
= 438.765 kg/cm^2

From Table CS-2 Metric: A = 0.00044137 (ring, 175°C)

$$I_s' = [D_o^{2*}L_s^*(t + A_s/L_s)^*A] / 10.9$$

= [3,378^{2*}1,350*(9.82 + 1,834 / 1,350)*0.00044137] / 10.9 / 10000
= 697.11 cm⁴

I' for the composite corroded shell-ring cross section is 697.11 cm⁴

As $I' >= I_s'$ a T - 60 x 85 x t14 stiffener is adequate for an external pressure of 1.9 bar.

Check the stiffener ring attachment welds per UG-30

Per UG-30(f)(1) the minimum attachment weld size is 6 mm

Radial pressure load, $P*L_s = 1.9*1,350 / 10 = 261.29 \text{ kg/cm}$ Radial shear load, $V = 0.01*P*L_s*D_o = 0.01*1.9*1.02*1,350*3,378 / 100 = 882.63 \text{ kg}_f$ First moment of area, $Q = 23.33*3.28 = 76.46 \text{ cm}^3$

Weld shear flow, $q = V*Q / I' = 96.8075 \text{ kg}_f/\text{cm}$ Combined weld load, $f_w = \text{Sqr}(261.2866^2 + 96.8075^2) = 278.64 \text{ kg}_f/\text{cm}$

Allowable weld stress per UW-18(d) $S_w = 0.55*S = 0.55*1,407.207 = 773.964 \text{ kg/cm}^2$

Fillet weld size required to resist radial pressure and shear

$$\begin{array}{lll} t_{w} & = & f_{w}*(d_{weld \, segment} + d_{toe}) \, / \, (S_{w}*d_{weld \, total}) + corrosion \\ & = & 10*278.64*(25.4 + 0) \, / \, (773.964*50.8) + 0 \\ & = & 1.8 \, mm \end{array}$$

	Catalog I (
ASME Section VIII Division 1	, 2017 Edition Metric	
Attached to	Top existing shell	
Ring type	Structural tee	
Description	T - 60 x 85 x t14	
Material	SA-516 70 (II-D Metric p. 18, ln. 33)	
External design pressure	1.03 bar	
External design temperature	175°C	
Corrosion allowance	0 mm	
Distance from ring neutral axis to datum	16,460 mm	
Distance to previous support	2,000 mm	
Distance to next support	1,200 mm	
Internal ring	No	
Welds		
Weld configuration	Continuous both sides	
Fillet weld leg size	9 mm	
Vessel thickness at weld location, new	14 mm	
Vessel corrosion allowance at weld location	3 mm	
Stiffener thickness at weld location	14 mm	
Ring Properties		
Max depth to thickness ratio	36	
Ring distance to centroid	68.97 mm	
Ring area	18.34 cm ²	
Ring inertia	125.36 cm ⁴	

 $P_a = 4*B / (3*(D_o / t))$ = 4*298.03 / (3*(3,378 / 8.76)) = 1.03 kg_f/cm²

B = $0.75*P*D_o / (t + A_s / L_s)$ = 0.75*1.03*3,378 / (8.76 + 1,834 / 1,600)*1.02= $268.533 \text{ kg}_f/\text{cm}^2$

From Table CS-2 Metric: A = 0.00027091 (ring, 175°C)

 $I_{s'} = [D_{o}^{2} + L_{s}^{*}(t + A_{s} / L_{s}) + A] / 10.9$ = $[3,378^{2} + 1,600 + (8.76 + 1,834 / 1,600) + 0.00027091] / 10.9 / 10000$ I' for the composite corroded shell-ring cross section is 697.11 cm⁴

As $I' >= I_s'$ a T - 60 x 85 x t14 stiffener is adequate for an external pressure of 1.03 bar.

Check the stiffener ring attachment welds per UG-30

Per UG-30(f)(1) the minimum attachment weld size is 6 mm

The fillet weld size of 9 mm is adequate per UG-30(f)(1).

Radial pressure load, $P*L_s = 1.03*1,600 / 10 = 168.05 \text{ kg/cm}$ Radial shear load, $V = 0.01*P*L_s*D_o = 0.01*1.03*1.02*1,600*3,378 / 100 = 567.67 kg_f$ First moment of area, $Q = 23.33*3.28 = 76.46 \text{ cm}^3$

Weld shear flow, $q = V*Q / I' = 62.2629 \text{ kg}_f/\text{cm}$ Combined weld load, $f_w = Sqr(168.0495^2 + 62.2629^2) = 179.21 \text{ kg}_f/\text{cm}$

Allowable weld stress per UW-18(d) $S_w = 0.55*S = 0.55*1,407.207 = 773.964 \text{ kg/cm}^2$

Fillet weld size required to resist radial pressure and shear

$$\begin{array}{lll} t_{w} & = & f_{w}*(d_{weld \, segment} + d_{toe}) \, / \, (S_{w}*d_{weld \, total}) + corrosion \\ & = & 10*179.21*(25.4 + 0) \, / \, (773.964*50.8) + 0 \\ & = & 1.16 \, mm \end{array}$$

The fillet weld size of 9 mm is adequate to resist radial pressure and shear.

Maximum Allowable External Pressure, (Corroded & at 175°C) UG-29(a)

 $L/D_0 = 2,000/3,378 = 0.5921$ $D_0 / t = 3,378 / 10.4 = 324.9059$ A = 4.0051E-04From Table G: From Table CS-2 Metric: $B = 390 \text{ kg}_f/\text{cm}^2$

$$P_a = 4*B / (3*(D_o / t))$$

= 4*390 / (3*(3,378 / 10.4))
= 1.6 kg/cm²

B =
$$0.75*P*D_o / (t + A_s / L_s)$$

= $0.75*1.6*3,378 / (10.4 + 1,834 / 1,600)*1.02$
= 358.014 kg/cm^2

From Table CS-2 Metric: A = 0.00036057 (ring, 175°C)

$$I_s' = [D_o^{2*}L_s^*(t + A_s/L_s)^*A] / 10.9$$

= [3,378^{2*}1,600*(10.4 + 1,834 / 1,600)*0.00036057] / 10.9 / 10000
= 697.11 cm⁴

I' for the composite corroded shell-ring cross section is 697.11 cm⁴

As $I' >= I_s'$ a T - 60 x 85 x t14 stiffener is adequate for an external pressure of 1.6 bar.

Check the stiffener ring attachment welds per UG-30

Per UG-30(f)(1) the minimum attachment weld size is 6 mm

Radial pressure load, $P*L_s = 1.6*1,600 / 10 = 260.97 \text{ kg}_f/\text{cm}$ Radial shear load, $V = 0.01*P*L_s*D_o = 0.01*1.6*1.02*1,600*3,378 / 100 = 881.57 kg_f$ First moment of area, $Q = 23.33*3.28 = 76.46 \text{ cm}^3$

Weld shear flow, $q = V*Q / I' = 96.6918 \text{ kg}_f/\text{cm}$ Combined weld load, $f_w = Sqr(260.9743^2 + 96.6918^2) = 278.31 \text{ kg}_{\text{p}}/\text{cm}$

Allowable weld stress per UW-18(d) $S_w = 0.55*S = 0.55*1,407.207 = 773.964 \text{ kg/cm}^2$

Fillet weld size required to resist radial pressure and shear

$$\begin{array}{lll} t_{w} & = & f_{w}*(d_{weld \, segment} + d_{toe}) \, / \, (S_{w}*d_{weld \, total}) + corrosion \\ & = & 10*278.31*(25.4 + 0) \, / \, (773.964*50.8) + 0 \\ & = & 1.8 \, mm \end{array}$$

ASME Section VIII Division 1, 2017 Edition Metric		
Attached to	Top existing shell	
Ring type	Structural tee	
Description	T - 60 x 85 x t14	
Material	SA-516 70 (II-D Metric p. 18, ln. 33)	
External design pressure	1.03 bar	
External design temperature	175°C	
Corrosion allowance	0 mm	
Distance from ring neutral axis to datum	18,460 mm	
Distance to previous support	1,370 mm	
Distance to next support	2,000 mm	
Internal ring	No	
Welds		
Weld configuration	Continuous both sides	
Fillet weld leg size	9 mm	
Vessel thickness at weld location, new	14 mm	
Vessel corrosion allowance at weld location	3 mm	
Stiffener thickness at weld location	14 mm	
Ring Properties		
Max depth to thickness ratio	36	
Ring distance to centroid	68.97 mm	
Ring area	18.34 cm ²	
Ring inertia	125.36 cm ⁴	

 $P_a = 4*B / (3*(D_o / t))$ = 4*298.03 / (3*(3,378 / 8.76)) = 1.03 kg_f/cm²

 $B = 0.75*P*D_o / (t + A_s / L_s)$ = 0.75*1.03*3,378 / (8.76 + 1,834 / 1,685)*1.02 = 270.109 kg_f/cm²

From Table CS-2 Metric: A = 0.00027249 (ring, 175°C)

 $I_{s'} = [D_{o}^{2} + L_{s}^{*}(t + A_{s} / L_{s}) + A] / 10.9$ = $[3,378^{2} + 1,685 + (8.76 + 1,834 / 1,685) + 0.00027249] / 10.9 / 10000$ $= 473.52 \text{ cm}^4$

I' for the composite corroded shell-ring cross section is 697.11 cm⁴

As $I' >= I_s'$ a T - 60 x 85 x t14 stiffener is adequate for an external pressure of 1.03 bar.

Check the stiffener ring attachment welds per UG-30

Per UG-30(f)(1) the minimum attachment weld size is 6 mm

The fillet weld size of 9 mm is adequate per UG-30(f)(1).

Radial pressure load, $P*L_s = 1.03*1,685 / 10 = 176.98 \text{ kg/cm}$ Radial shear load, $V = 0.01*P*L_s*D_o = 0.01*1.03*1.02*1,685*3,378 / 100 = 597.83 kg_f$ First moment of area, $Q = 23.33*3.28 = 76.46 \text{ cm}^3$

Weld shear flow, $q = V*Q / I' = 65.5706 \text{ kg}_f/\text{cm}$ Combined weld load, $f_w = Sqr(176.9771^2 + 65.5706^2) = 188.73 \text{ kg}_f/\text{cm}$

Allowable weld stress per UW-18(d) $S_w = 0.55*S = 0.55*1,407.207 = 773.964 \text{ kg/cm}^2$

Fillet weld size required to resist radial pressure and shear

$$\begin{array}{ll} t_{w} & = & f_{w}*(d_{weld \, segment} + d_{toe}) \, / \, (S_{w}*d_{weld \, total}) + corrosion \\ & = & 10*188.73*(25.4 + 0) \, / \, (773.964*50.8) + 0 \\ & = & 1.22 \, mm \end{array}$$

The fillet weld size of 9 mm is adequate to resist radial pressure and shear.

Maximum Allowable External Pressure, (Corroded & at 175°C) UG-29(a)

 $L/D_0 = 2,000/3,378 = 0.5921$ $D_0/t = 3,378/10.16 = 332.3316$ A = 3.8898E-04From Table G: From Table CS-2 Metric: $B = 378.71 \text{ kg}/\text{cm}^2$

$$P_a = 4*B / (3*(D_o/t))$$

= 4*378.71 / (3*(3,378 / 10.16))
= 1.52 kg_f/cm²

B =
$$0.75*P*D_o / (t + A_s / L_s)$$

= $0.75*1.52*3,378 / (10.17 + 1,834 / 1,685)*1.02$
= 348.628 kg/cm^2

From Table CS-2 Metric: A = 0.00035117 (ring, 175°C)

$$I_{s}' = \left[D_{o}^{2*} L_{s}^{*}(t + A_{s} / L_{s})^{*} A \right] / 10.9$$

= $\left[3.378^{2*} 1.685^{*}(10.17 + 1.834 / 1.685)^{*} 0.00035117 \right] / 10.9 / 10000$
= 697.11 cm^{4}

I' for the composite corroded shell-ring cross section is 697.11 cm⁴

As $I' >= I_s'$ a T - 60 x 85 x t14 stiffener is adequate for an external pressure of 1.52 bar.

Check the stiffener ring attachment welds per UG-30

Per UG-30(f)(1) the minimum attachment weld size is 6 mm

Radial pressure load, $P*L_s = 1.52*1,685 / 10 = 260.93 \text{ kg}_f/\text{cm}$ Radial shear load, $V = 0.01*P*L_s*D_o = 0.01*1.52*1.02*1,685*3,378 / 100 = 881.43 kg_f$ First moment of area, $Q = 23.33*3.28 = 76.46 \text{ cm}^3$

Weld shear flow, $q = V*Q / I' = 96.6768 \text{ kg}_f/\text{cm}$ Combined weld load, $f_w = Sqr(260.9335^2 + 96.6768^2) = 278.27 \text{ kg}_{\text{p}}/\text{cm}$

Allowable weld stress per UW-18(d) $S_w = 0.55*S = 0.55*1,407.207 = 773.964 \text{ kg/cm}^2$

Fillet weld size required to resist radial pressure and shear

$$\begin{array}{lll} t_{w} & = & f_{w}*(d_{weld \, segment} + d_{toe}) \, / \, (S_{w}*d_{weld \, total}) + corrosion \\ & = & 10*278.27*(25.4 + 0) \, / \, (773.964*50.8) + 0 \\ & = & 1.8 \, mm \end{array}$$

ASME Section VIII Division 1, 2017 Edition Metric		
Attached to	Top existing shell	
Ring type	Structural tee	
Description	T - 60 x 85 x t14	
Material	SA-516 70 (II-D Metric p. 18, ln. 33)	
External design pressure	1.03 bar	
External design temperature	175°C	
Corrosion allowance	0 mm	
Distance from ring neutral axis to datum	19,830 mm	
Distance to previous support	1,430 mm	
Distance to next support	1,370 mm	
Internal ring	No	
Welds		
Weld configuration	Continuous both sides	
Fillet weld leg size	9 mm	
Vessel thickness at weld location, new	14 mm	
Vessel corrosion allowance at weld location	3 mm	
Stiffener thickness at weld location	14 mm	
Ring Proper	Ring Properties	
Max depth to thickness ratio	36	
Ring distance to centroid	68.97 mm	
Ring area	18.34 cm ²	
Ring inertia	125.36 cm ⁴	

 $L/D_o = 1,430/3,378 = 0.4233$ $D_o/t = 3,378/7.61 = 444.105$ From Table G: A = 3.5263E-04

From Table CS-2 Metric: A = 3.3263E-04From Table CS-2 Metric: $B = 343.12 \text{ kg}_f/\text{cm}^2$

 $P_a = 4*B / (3*(D_o/t))$ = 4*343.12 / (3*(3,378 / 7.61))

 $= 1.03 \text{ kg}_f/\text{cm}^2$

 $B = 0.75*P*D_o / (t + A_s / L_s)$

= 0.75*1.03*3,378 / (7.61 + 1,834 / 1,400)*1.02

 $= 298.404 \text{ kg}/\text{cm}^2$

From Table CS-2 Metric: A = 0.00030086 (ring, 175°C)

 $I_{s'} = [D_{o}^{2} + L_{s}^{*}(t + A_{s} / L_{s}) + A] / 10.9$ = $[3,378^{2} + 1,400 + (7.61 + 1,834 / 1,400) + 0.00030086] / 10.9 / 10000$ $= 393.2 \text{ cm}^4$

I' for the composite corroded shell-ring cross section is 697.11 cm⁴

As $I' >= I_s'$ a T - 60 x 85 x t14 stiffener is adequate for an external pressure of 1.03 bar.

Check the stiffener ring attachment welds per UG-30

Per UG-30(f)(1) the minimum attachment weld size is 6 mm

The fillet weld size of 9 mm is adequate per UG-30(f)(1).

Radial pressure load, $P*L_s = 1.03*1,400 / 10 = 147.04 \text{ kg/cm}$ Radial shear load, $V = 0.01*P*L_s*D_o = 0.01*1.03*1.02*1,400*3,378 / 100 = 496.71 kg_f$ First moment of area, $Q = 23.33*3.28 = 76.46 \text{ cm}^3$

Weld shear flow, $q = V*Q / I' = 54.48 \text{ kg}_f/\text{cm}$ Combined weld load, $f_w = Sqr(147.0433^2 + 54.48^2) = 156.81 \text{ kg}_f/\text{cm}$

Allowable weld stress per UW-18(d) $S_w = 0.55*S = 0.55*1,407.207 = 773.964 \text{ kg/cm}^2$

Fillet weld size required to resist radial pressure and shear

$$\begin{array}{ll} t_{w} & = & f_{w}*(d_{weld \, segment} + d_{toe}) \, / \, (S_{w}*d_{weld \, total}) + corrosion \\ & = & 10*156.81*(25.4 + 0) \, / \, (773.964*50.8) + 0 \\ & = & 1.01 \, mm \end{array}$$

The fillet weld size of 9 mm is adequate to resist radial pressure and shear.

Maximum Allowable External Pressure, (Corroded & at 175°C) UG-29(a)

 $L/D_0 = 1,430/3,378 = 0.4233$ $D_0 / t = 3,378 / 9.48 = 356.296$ A = 5.0159E-04From Table G: From Table CS-2 Metric: $B = 489.09 \text{ kg}/\text{cm}^2$

$$P_{a} = 4*B / (3*(D_{o}/t))$$

$$= 4*489.09 / (3*(3,378/9.48))$$

$$= 1.83 kg_{f}/cm^{2}$$

B =
$$0.75*P*D_o / (t + A_s / L_s)$$

= $0.75*1.83*3,378 / (9.48 + 1,834 / 1,400)*1.02$
= 438.139 kg/cm^2

From Table CS-2 Metric: A = 0.00044074 (ring, 175°C)

$$I_{s}' = \left[D_{o}^{2*} L_{s}^{*}(t + A_{s} / L_{s})^{*} A \right] / 10.9$$

= $\left[3.378^{2*} 1.400^{*}(9.48 + 1.834 / 1.400)^{*} 0.00044074 \right] / 10.9 / 10000$
= 697.11 cm^{4}

I' for the composite corroded shell-ring cross section is 697.11 cm⁴

As $I' >= I_s'$ a T - 60 x 85 x t14 stiffener is adequate for an external pressure of 1.83 bar.

Check the stiffener ring attachment welds per UG-30

Per UG-30(f)(1) the minimum attachment weld size is 6 mm

Radial pressure load, $P*L_s = 1.83*1,400 / 10 = 261.28 \text{ kg}_f/\text{cm}$ Radial shear load, $V = 0.01*P*L_s*D_o = 0.01*1.83*1.02*1,400*3,378 / 100 = 882.62 \text{ kg}_f$ First moment of area, $Q = 23.33*3.28 = 76.46 \text{ cm}^3$

Weld shear flow, $q = V*Q / I' = 96.8068 \text{ kg}_f/\text{cm}$ Combined weld load, $f_w = \text{Sqr}(261.2846^2 + 96.8068^2) = 278.64 \text{ kg}_f/\text{cm}$

Allowable weld stress per UW-18(d) $S_w = 0.55*S = 0.55*1,407.207 = 773.964 \text{ kg/cm}^2$

Fillet weld size required to resist radial pressure and shear

$$\begin{array}{lll} t_{w} & = & f_{w}*(d_{weld \, segment} + d_{toe}) \, / \, (S_{w}*d_{weld \, total}) + corrosion \\ & = & 10*278.64*(25.4 + 0) \, / \, (773.964*50.8) + 0 \\ & = & 1.8 \, mm \end{array}$$

The fillet weld size of 9 mm is adequate to resist radial pressure and shear.

ASME Section VIII Division 1, 2017 Edition Metric				
Attached to	Top existing shell			
Ring type Structural tee				
Description	T - 60 x 85 x t14			
Material	SA-516 70 (II-D Metric p. 18, ln. 33)			
External design pressure	1.03 bar			
External design temperature	175°C			
Corrosion allowance	0 mm			
Distance from ring neutral axis to datum	21,260 mm			
Distance to previous support	2,000 mm			
Distance to next support	1,430 mm			
Internal ring	No			
Welds				
Weld configuration	Continuous both sides			
Fillet weld leg size	9 mm			
Vessel thickness at weld location, new	14 mm			
Vessel corrosion allowance at weld location	3 mm			
Stiffener thickness at weld location	14 mm			
Ring Properties				
Max depth to thickness ratio	36			
Ring distance to centroid	68.97 mm			
Ring area	18.34 cm ²			
Ring inertia	125.36 cm ⁴			

External Pressure, (Corroded & at 175°C) UG-29(a)

 $P_a = 4*B / (3*(D_o / t))$ = 4*298.03 / (3*(3,378 / 8.76)) = 1.03 kg_f/cm²

 $B = 0.75*P*D_o / (t + A_s / L_s)$ = 0.75*1.03*3,378 / (8.76 + 1,834 / 1,715)*1.02 = 270.632 kg_f/cm²

From Table CS-2 Metric: A = 0.00027301 (ring, 175°C)

 $I_{s'} = [D_{o}^{2} + L_{s}^{*}(t + A_{s} / L_{s}) + A] / 10.9$ = $[3,378^{2} + 1,715 + (8.76 + 1,834 / 1,715) + 0.00027301] / 10.9 / 10000$ $= 481.95 \text{ cm}^4$

I' for the composite corroded shell-ring cross section is 697.11 cm⁴

As $I' >= I_s'$ a T - 60 x 85 x t14 stiffener is adequate for an external pressure of 1.03 bar.

Check the stiffener ring attachment welds per UG-30

Per UG-30(f)(1) the minimum attachment weld size is 6 mm

The fillet weld size of 9 mm is adequate per UG-30(f)(1).

Radial pressure load, $P*L_s = 1.03*1,715 / 10 = 180.13 \text{ kg/cm}$ Radial shear load, $V = 0.01*P*L_s*D_o = 0.01*1.03*1.02*1,715*3,378 / 100 = 608.47 kg_f$ First moment of area, $Q = 23.33*3.28 = 76.46 \text{ cm}^3$

Weld shear flow, $q = V*Q / I' = 66.738 \text{ kg}_e/\text{cm}$ Combined weld load, $f_w = Sqr(180.128^2 + 66.738^2) = 192.09 \text{ kg}_f/\text{cm}$

Allowable weld stress per UW-18(d) $S_w = 0.55*S = 0.55*1,407.207 = 773.964 \text{ kg/cm}^2$

Fillet weld size required to resist radial pressure and shear

$$\begin{array}{ll} t_{w} & = & f_{w}*(d_{weld \, segment} + d_{toe}) \, / \, (S_{w}*d_{weld \, total}) + corrosion \\ & = & 10*192.09*(25.4 + 0) \, / \, (773.964*50.8) + 0 \\ & = & 1.24 \, mm \end{array}$$

The fillet weld size of 9 mm is adequate to resist radial pressure and shear.

Maximum Allowable External Pressure, (Corroded & at 175°C) UG-29(a)

 $L/D_0 = 2,000/3,378 = 0.5921$ $D_0 / t = 3,378 / 10.09 = 334.9033$ A = 3.8499E-04From Table G: From Table CS-2 Metric: $B = 374.8 \text{ kg}_{\text{r}}/\text{cm}^2$

$$P_a = 4*B / (3*(D_o / t))$$

= 4*374.8 / (3*(3,378 / 10.09))
= 1.49 kg_f/cm²

$$B = 0.75*P*D_o / (t + A_s / L_s)$$

= 0.75*1.49*3,378 / (10.09 + 1,834 / 1,715)*1.02
= 345.514 kg/cm²

From Table CS-2 Metric: A = 0.00034805 (ring, 175°C)

$$I_s' = [D_o^{2*}L_s^*(t + A_s/L_s)^*A] / 10.9$$

= $[3,378^{2*}1,715^*(10.09 + 1,834/1,715)^*0.00034805] / 10.9 / 10000$
= 697.11 cm^4

I' for the composite corroded shell-ring cross section is 697.11 cm⁴

As $I' >= I_s'$ a T - 60 x 85 x t14 stiffener is adequate for an external pressure of 1.49 bar.

Check the stiffener ring attachment welds per UG-30

Per UG-30(f)(1) the minimum attachment weld size is 6 mm

The fillet weld size of 9 mm is adequate per UG-30(f)(1).

Radial pressure load, $P*L_s = 1.49*1,715 / 10 = 260.92 \text{ kg}_f/\text{cm}$ Radial shear load, $V = 0.01*P*L_s*D_o = 0.01*1.49*1.02*1,715*3,378 / 100 = 881.39 \text{ kg}_f$ First moment of area, $Q = 23.33*3.28 = 76.46 \text{ cm}^3$

Weld shear flow, $q = V*Q / I' = 96.6717 \text{ kg}_f/\text{cm}$ Combined weld load, $f_w = \text{Sqr}(260.9199^2 + 96.6717^2) = 278.25 \text{ kg}_f/\text{cm}$

Allowable weld stress per UW-18(d) $S_w = 0.55*S = 0.55*1,407.207 = 773.964 \text{ kg/cm}^2$

Fillet weld size required to resist radial pressure and shear

$$\begin{array}{lll} t_{w} & = & f_{w}*(d_{weld \, segment} + d_{toe}) \, / \, (S_{w}*d_{weld \, total}) + corrosion \\ & = & 10*278.25*(25.4 + 0) \, / \, (773.964*50.8) + 0 \\ & = & 1.8 \, mm \end{array}$$

The fillet weld size of 9 mm is adequate to resist radial pressure and shear.

ASME Section VIII Division 1, 2017 Edition Metric				
Attached to	Top existing shell			
Ring type	Structural tee			
Description	T - 60 x 85 x t14			
Material	SA-516 70 (II-D Metric p. 18, ln. 33)			
External design pressure	1.03 bar			
External design temperature	175°C			
Corrosion allowance	0 mm			
Distance from ring neutral axis to datum	23,260 mm			
Distance to previous support	1,000 mm			
Distance to next support 2,000 mm				
Internal ring	No			
Welds				
Weld configuration	Continuous both sides			
Fillet weld leg size	9 mm			
Vessel thickness at weld location, new	14 mm			
Vessel corrosion allowance at weld location	3 mm			
Stiffener thickness at weld location	14 mm			
Ring Properties				
Max depth to thickness ratio	36			
Ring distance to centroid	68.97 mm			
Ring area	18.34 cm ²			
Ring inertia	125.36 cm ⁴			

External Pressure, (Corroded & at 175°C) UG-29(a)

 $L/D_0 = 2,000/3,378 = 0.5921$ $D_0 / t = 3,378 / 8.76 = 385.4397$ From Table G: A = 3.0655E-04From Table CS-2 Metric: $B = 298.03 \text{ kg}/\text{cm}^2$

 $P_a = 4*B / (3*(D_o/t))$ = 4*298.03 / (3*(3,378 / 8.76)) $= 1.03 \text{ kg}_f/\text{cm}^2$

 $B = 0.75*P*D_o / (t + A_s / L_s)$ = 0.75*1.03*3,378 / (8.76 + 1,834 / 1,500)*1.02 $= 266.478 \text{ kg}_f/\text{cm}^2$

From Table CS-2 Metric: A = 0.00026885 (ring, 175°C)

 $I_{s'} = [D_{o}^{2*}L_{s}^{*}(t + A_{s}/L_{s})*A]/10.9$ $= [3,378^{2}*1,500*(8.76+1,834/1,500)*0.00026885]/10.9/10000$ $= 421.57 \text{ cm}^4$

I' for the composite corroded shell-ring cross section is 697.11 cm⁴

As $I' >= I_s'$ a T - 60 x 85 x t14 stiffener is adequate for an external pressure of 1.03 bar.

Check the stiffener ring attachment welds per UG-30

Per UG-30(f)(1) the minimum attachment weld size is 6 mm

The fillet weld size of 9 mm is adequate per UG-30(f)(1).

Radial pressure load, $P*L_s = 1.03*1,500 / 10 = 157.55 \text{ kg/cm}$ Radial shear load, $V = 0.01*P*L_s*D_o = 0.01*1.03*1.02*1,500*3,378 / 100 = 532.19 kg_f$ First moment of area, $Q = 23.33*3.28 = 76.46 \text{ cm}^3$

Weld shear flow, $q = V*Q / I' = 58.3715 \text{ kg}_f/\text{cm}$ Combined weld load, $f_w = Sqr(157.5464^2 + 58.3715^2) = 168.01 \text{ kg}_f/\text{cm}$

Allowable weld stress per UW-18(d) $S_w = 0.55*S = 0.55*1,407.207 = 773.964 \text{ kg/cm}^2$

Fillet weld size required to resist radial pressure and shear

$$t_{w} = f_{w}*(d_{weld \text{ segment}} + d_{toe}) / (S_{w}*d_{weld \text{ total}}) + corrosion$$

$$= 10*168.01*(25.4 + 0) / (773.964*50.8) + 0$$

$$= 1.09 \text{ mm}$$

The fillet weld size of 9 mm is adequate to resist radial pressure and shear.

Maximum Allowable External Pressure, (Corroded & at 175°C) UG-29(a)

 $L/D_0 = 2,000/3,378 = 0.5921$ D_o/t = 3,378 / 10.7 = 315.6117 From Table G: A = 4.1493E-04 From Table CS-2 Metric: $B = 404.13 \text{ kg}/\text{cm}^2$

$$P_{a} = 4*B / (3*(D_{o}/t))$$

$$= 4*404.13 / (3*(3,378/10.7))$$

$$= 1.71 \text{ kg}_{f}/\text{cm}^{2}$$

B =
$$0.75*P*D_o / (t + A_s / L_s)$$

= $0.75*1.71*3.378 / (10.7 + 1.834 / 1.500)*1.02$
= $369.663 \text{ kg}_b/\text{cm}^2$

From Table CS-2 Metric: A = 0.00037223 (ring, 175°C)

$$I_s' = [D_o^{2*}L_s^*(t + A_s/L_s)^*A] / 10.9$$

= [3,378^{2*}1,500*(10.7 + 1,834 / 1,500)*0.00037223] / 10.9 / 10000
= 697.11 cm⁴

I' for the composite corroded shell-ring cross section is 697.11 cm⁴

As $I' >= I_s'$ a T - 60 x 85 x t14 stiffener is adequate for an external pressure of 1.71 bar.

Check the stiffener ring attachment welds per UG-30

Per UG-30(f)(1) the minimum attachment weld size is 6 mm

The fillet weld size of 9 mm is adequate per UG-30(f)(1).

Radial pressure load, $P*L_s = 1.71*1,500 / 10 = 261.02 \text{ kg}_f/\text{cm}$ Radial shear load, $V = 0.01*P*L_s*D_o = 0.01*1.71*1.02*1,500*3,378 / 100 = 881.74 kg_f$ First moment of area, $Q = 23.33*3.28 = 76.46 \text{ cm}^3$

Weld shear flow, $q = V*Q / I' = 96.7101 \text{ kg}_f/\text{cm}$ Combined weld load, $f_w = Sqr(261.0234^2 + 96.7101^2) = 278.36 \text{ kg}_f/\text{cm}$

Allowable weld stress per UW-18(d) $S_w = 0.55*S = 0.55*1,407.207 = 773.964 \text{ kg/cm}^2$

Fillet weld size required to resist radial pressure and shear

$$\begin{array}{lll} t_{w} & = & f_{w}*(d_{weld \, segment} + d_{toe}) \, / \, (S_{w}*d_{weld \, total}) + corrosion \\ & = & 10*278.36*(25.4 + 0) \, / \, (773.964*50.8) + 0 \\ & = & 1.8 \, mm \end{array}$$

The fillet weld size of 9 mm is adequate to resist radial pressure and shear.

ASME Section VIII Division 1, 2017 Edition Metric				
Attached to	Top existing shell			
Ring type Structural tee				
Description	T - 60 x 85 x t14			
Material	SA-516 70 (II-D Metric p. 18, ln. 33)			
External design pressure	1.03 bar			
External design temperature	175°C			
Corrosion allowance	0 mm			
Distance from ring neutral axis to datum	24,260 mm			
Distance to previous support	1,500 mm			
Distance to next support 1,000 mm				
Internal ring	No			
Welds				
Weld configuration	Continuous both sides			
Fillet weld leg size	9 mm			
Vessel thickness at weld location, new	14 mm			
Vessel corrosion allowance at weld location	3 mm			
Stiffener thickness at weld location	14 mm			
Ring Properties				
Max depth to thickness ratio	36			
Ring distance to centroid	68.97 mm			
Ring area 18.34 cm ²				
Ring inertia	125.36 cm ⁴			

External Pressure, (Corroded & at 175°C) UG-29(a)

 $L/D_o = 1,500/3,378 = 0.4441$ $D_o/t = 3,378/7.77 = 434.8806$ From Table G: A = 3.4558E-04From Table CS-2 Metric: $B = 336.22 \text{ kg}_f/\text{cm}^2$

 $P_a = 4*B / (3*(D_o / t))$ = 4*336.22 / (3*(3,378 / 7.77)) = 1.03 kg_f/cm²

 $B = 0.75*P*D_o / (t + A_s / L_s)$ = 0.75*1.03*3,378 / (7.77 + 1,834 / 1,250)*1.02 = 288.153 kg_f/cm²

From Table CS-2 Metric: A = 0.00029058 (ring, 175°C)

 $I_{s'} = [D_{o}^{2} + L_{s}^{*}(t + A_{s} / L_{s}) + A] / 10.9$ = $[3,378^{2} + 1,250 + (7.77 + 1,834 / 1,250) + 0.00029058] / 10.9 / 10000$ $= 351.14 \text{ cm}^4$

I' for the composite corroded shell-ring cross section is 697.11 cm⁴

As $I' >= I_s'$ a T - 60 x 85 x t14 stiffener is adequate for an external pressure of 1.03 bar.

Check the stiffener ring attachment welds per UG-30

Per UG-30(f)(1) the minimum attachment weld size is 6 mm

The fillet weld size of 9 mm is adequate per UG-30(f)(1).

Radial pressure load, $P*L_s = 1.03*1,250 / 10 = 131.29 \text{ kg/cm}$ Radial shear load, $V = 0.01*P*L_s*D_o = 0.01*1.03*1.02*1,250*3,378 / 100 = 443.49 kg_f$ First moment of area, $Q = 23.33*3.28 = 76.46 \text{ cm}^3$

Weld shear flow, $q = V*Q / I' = 48.6429 \text{ kg}_f/\text{cm}$ Combined weld load, $f_w = Sqr(131.2886^2 + 48.6429^2) = 140.01 \text{ kg/cm}$

Allowable weld stress per UW-18(d) $S_w = 0.55*S = 0.55*1,407.207 = 773.964 \text{ kg/cm}^2$

Fillet weld size required to resist radial pressure and shear

$$\begin{array}{lll} t_{w} & = & f_{w}*(d_{weld \, segment} + d_{toe}) \, / \, (S_{w}*d_{weld \, total}) + corrosion \\ & = & 10*140.01*(25.4 + 0) \, / \, (773.964*50.8) + 0 \\ & = & 0.9 \, mm \end{array}$$

The fillet weld size of 9 mm is adequate to resist radial pressure and shear.

Maximum Allowable External Pressure, (Corroded & at 175°C) UG-29(a)

 $L/D_0 = 1,500/3,378 = 0.4441$ $D_0 / t = 3,378 / 10.13 = 333.3061$ A = 5.2555E-04From Table G: From Table CS-2 Metric: $B = 512.6 \text{ kg}_f/\text{cm}^2$

$$P_a = 4*B / (3*(D_o / t))$$

= 4*512.6 / (3*(3,378 / 10.13))
= 2.05 kg_f/cm²

B =
$$0.75*P*D_o / (t + A_s / L_s)$$

= $0.75*2.05*3,378 / (10.13 + 1,834 / 1,250)*1.02$
= 456.567 kg/cm^2

From Table CS-2 Metric: A = 0.00045917 (ring, 175°C)

$$I_s' = [D_o^{2*}L_s^*(t + A_s/L_s)^*A] / 10.9$$

= $[3,378^{2*}1,250^*(10.13 + 1,834/1,250)^*0.00045917] / 10.9 / 10000$
= 697.11 cm^4

I' for the composite corroded shell-ring cross section is 697.11 cm⁴

As $I' >= I_s'$ a T - 60 x 85 x t14 stiffener is adequate for an external pressure of 2.05 bar.

Check the stiffener ring attachment welds per UG-30

Per UG-30(f)(1) the minimum attachment weld size is 6 mm

The fillet weld size of 9 mm is adequate per UG-30(f)(1).

Radial pressure load, $P*L_s = 2.05*1,250 / 10 = 261.35 \text{ kg}_f/\text{cm}$ Radial shear load, $V = 0.01*P*L_s*D_o = 0.01*2.05*1.02*1,250*3,378 / 100 = 882.83 kg_f$ First moment of area, $Q = 23.33*3.28 = 76.46 \text{ cm}^3$

Weld shear flow, $q = V*Q / I' = 96.8302 \text{ kg}_f/\text{cm}$ Combined weld load, $f_w = Sqr(261.3478^2 + 96.8302^2) = 278.71 \text{ kg}_f/\text{cm}$

Allowable weld stress per UW-18(d) $S_w = 0.55*S = 0.55*1,407.207 = 773.964 \text{ kg/cm}^2$

Fillet weld size required to resist radial pressure and shear

$$\begin{array}{lll} t_{w} & = & f_{w}*(d_{weld \, segment} + d_{toe}) \, / \, (S_{w}*d_{weld \, total}) + corrosion \\ & = & 10*278.71*(25.4 + 0) \, / \, (773.964*50.8) + 0 \\ & = & 1.8 \, mm \end{array}$$

The fillet weld size of 9 mm is adequate to resist radial pressure and shear.

ASME Section VIII Division 1, 2017 Edition Metric				
Attached to Top existing shell				
Ring type	Structural tee			
Description	T - 60 x 85 x t14			
Material	SA-516 70 (II-D Metric p. 18, ln. 33)			
External design pressure	1.03 bar			
External design temperature	175°C			
Corrosion allowance	0 mm			
Distance from ring neutral axis to datum	25,760 mm			
Distance to previous support	1,700 mm			
Distance to next support 1,500 mm				
Internal ring	No			
Welds				
Weld configuration	Continuous both sides			
Fillet weld leg size	9 mm			
Vessel thickness at weld location, new	14 mm			
Vessel corrosion allowance at weld location	3 mm			
Stiffener thickness at weld location	14 mm			
Ring Properties				
Max depth to thickness ratio	36			
Ring distance to centroid	68.97 mm			
Ring area 18.34 cm ²				
Ring inertia	125.36 cm ⁴			

External Pressure, (Corroded & at 175°C) UG-29(a)

 $L/D_0 = 1,700/3,378 = 0.5033$ $D_0/t = 3,378/8.22 = 410.7395$ From Table G: A = 3.2645E-04From Table CS-2 Metric: $B = 317.49 \text{ kg}_f/\text{cm}^2$

 $P_a = 4*B / (3*(D_o/t))$ = 4*317.49 / (3*(3,378 / 8.22)) $= 1.03 \text{ kg}_f/\text{cm}^2$

 $B = 0.75*P*D_o / (t + A_s / L_s)$ = 0.75*1.03*3,378 / (8.22 + 1,834 / 1,600)*1.02 $= 283.964 \text{ kg}/\text{cm}^2$

From Table CS-2 Metric: A = 0.00028638 (ring, 175°C)

 $I_{s'} = [D_{o}^{2*}L_{s}^{*}(t + A_{s}/L_{s})*A]/10.9$ $= [3,378^{2}*1,600*(8.22+1,834/1,600)*0.00028638]/10.9/10000$ $= 449.5 \text{ cm}^4$

I' for the composite corroded shell-ring cross section is 697.11 cm⁴

As $I' >= I_s'$ a T - 60 x 85 x t14 stiffener is adequate for an external pressure of 1.03 bar.

Check the stiffener ring attachment welds per UG-30

Per UG-30(f)(1) the minimum attachment weld size is 6 mm

The fillet weld size of 9 mm is adequate per UG-30(f)(1).

Radial pressure load, $P*L_s = 1.03*1,600 / 10 = 168.05 \text{ kg/cm}$ Radial shear load, $V = 0.01*P*L_s*D_o = 0.01*1.03*1.02*1,600*3,378 / 100 = 567.67 kg_f$ First moment of area, $Q = 23.33*3.28 = 76.46 \text{ cm}^3$

Weld shear flow, $q = V*Q / I' = 62.2629 \text{ kg}_f/\text{cm}$ Combined weld load, $f_w = Sqr(168.0495^2 + 62.2629^2) = 179.21 \text{ kg}_f/\text{cm}$

Allowable weld stress per UW-18(d) $S_w = 0.55*S = 0.55*1,407.207 = 773.964 \text{ kg/cm}^2$

Fillet weld size required to resist radial pressure and shear

$$\begin{array}{ll} t_{w} & = & f_{w}*(d_{weld \, segment} + d_{toe}) \, / \, (S_{w}*d_{weld \, total}) + corrosion \\ & = & 10*179.21*(25.4 + 0) \, / \, (773.964*50.8) + 0 \\ & = & 1.16 \, mm \end{array}$$

The fillet weld size of 9 mm is adequate to resist radial pressure and shear.

Maximum Allowable External Pressure, (Corroded & at 175°C) UG-29(a)

 $L/D_0 = 1,700/3,378 = 0.5033$ $D_o / t^0 = 3,378 / 9.67 = 349.4175$ From Table G: A = 4.3048E-04From Table CS-2 Metric: $B = 419.36 \text{ kg}/\text{cm}^2$

$$P_{a} = 4*B / (3*(D_{o}/t))$$

$$= 4*419.36 / (3*(3,378/9.67))$$

$$= 1.6 kg_{f}/cm^{2}$$

B =
$$0.75*P*D_o / (t + A_s / L_s)$$

= $0.75*1.6*3,378 / (9.67 + 1,834 / 1,600)*1.02$
= 382.296 kg/cm^2

From Table CS-2 Metric: A = 0.00038488 (ring, 175°C)

$$I_{s}' = [D_{o}^{2*}L_{s}^{*}(t + A_{s}/L_{s})^{*}A] / 10.9$$

= $[3,378^{2*}1,600^{*}(9.67 + 1,834/1,600)^{*}0.00038488] / 10.9 / 10000$
= 697.11 cm^{4}

I' for the composite corroded shell-ring cross section is 697.11 cm⁴

As $I' >= I_s'$ a T - 60 x 85 x t14 stiffener is adequate for an external pressure of 1.6 bar.

Check the stiffener ring attachment welds per UG-30

Per UG-30(f)(1) the minimum attachment weld size is 6 mm

The fillet weld size of 9 mm is adequate per UG-30(f)(1).

Radial pressure load, $P*L_s = 1.6*1,600 / 10 = 261.07 \text{ kg}_f/\text{cm}$ Radial shear load, $V = 0.01*P*L_s*D_o = 0.01*1.6*1.02*1,600*3,378 / 100 = 881.91 kg_f$ First moment of area, $Q = 23.33*3.28 = 76.46 \text{ cm}^3$

Weld shear flow, $q = V*Q / I' = 96.7291 \text{ kg}_f/\text{cm}$ Combined weld load, $f_w = Sqr(261.0747^2 + 96.7291^2) = 278.42 \text{ kg}_f/\text{cm}$

Allowable weld stress per UW-18(d) $S_w = 0.55*S = 0.55*1,407.207 = 773.964 \text{ kg/cm}^2$

Fillet weld size required to resist radial pressure and shear

$$\begin{array}{lll} t_{w} & = & f_{w}*(d_{weld \, segment} + d_{toe}) \, / \, (S_{w}*d_{weld \, total}) + corrosion \\ & = & 10*278.42*(25.4 + 0) \, / \, (773.964*50.8) + 0 \\ & = & 1.8 \, mm \end{array}$$

The fillet weld size of 9 mm is adequate to resist radial pressure and shear.

ASME Section VIII Division 1, 2017 Edition Metric				
Attached to	Top existing shell			
Ring type Structural tee				
Description	T - 60 x 85 x t14			
Material	SA-516 70 (II-D Metric p. 18, ln. 33)			
External design pressure	1.03 bar			
External design temperature	175°C			
Corrosion allowance	0 mm			
Distance from ring neutral axis to datum	27,460 mm			
Distance to previous support	1,180.17 mm			
Distance to next support 1,700 mm				
Internal ring	No			
Welds				
Weld configuration	Continuous both sides			
Fillet weld leg size	9 mm			
Vessel thickness at weld location, new	14 mm			
Vessel corrosion allowance at weld location	3 mm			
Stiffener thickness at weld location	14 mm			
Ring Proper	rties			
Max depth to thickness ratio	36			
Ring distance to centroid	68.97 mm			
Ring area	18.34 cm ²			
Ring inertia	125.36 cm ⁴			

External Pressure, (Corroded & at 175°C) UG-29(a)

 $P_a = 4*B / (3*(D_o / t))$ = 4*317.49 / (3*(3,378 / 8.22)) = 1.03 kg_f/cm²

B = $0.75*P*D_o / (t + A_s / L_s)$ = 0.75*1.03*3.378 / (8.22 + 1.834 / 1.440.08)*1.02= $280.158 \text{ kg}_p/\text{cm}^2$

From Table CS-2 Metric: A = 0.00028257 (ring, 175°C)

 $I_{s'} = [D_{o}^{2} L_{s}^{*}(t + A_{s} / L_{s})^{*}A] / 10.9$ = $[3,378^{2} + 1,440.08^{*}(8.22 + 1,834 / 1,440.08)^{*}0.00028257] / 10.9 / 10000$

 $= 404.61 \text{ cm}^4$

I' for the composite corroded shell-ring cross section is 697.11 cm⁴

As $I' >= I_s'$ a T - 60 x 85 x t14 stiffener is adequate for an external pressure of 1.03 bar.

Check the stiffener ring attachment welds per UG-30

Per UG-30(f)(1) the minimum attachment weld size is 6 mm

The fillet weld size of 9 mm is adequate per UG-30(f)(1).

Radial pressure load, $P*L_s = 1.03*1,440.08 / 10 = 151.25 \text{ kg/cm}$ Radial shear load, $V = 0.01*P*L_s*D_0 = 0.01*1.03*1.02*1,440.08*3,378 / 100 = 510.93 kg_f$ First moment of area, $Q = 23.33*3.28 = 76.46 \text{ cm}^3$

Weld shear flow, $q = V*Q / I' = 56.0398 \text{ kg}_f/\text{cm}$ Combined weld load, $f_w = Sqr(151.2533^2 + 56.0398^2) = 161.3 \text{ kg}_f/\text{cm}$

Allowable weld stress per UW-18(d) $S_w = 0.55*S = 0.55*1,407.207 = 773.964 \text{ kg/cm}^2$

Fillet weld size required to resist radial pressure and shear

$$\begin{array}{ll} t_{w} & = & f_{w}*(d_{weld \, segment} + d_{toe}) \, / \, (S_{w}*d_{weld \, total}) + corrosion \\ & = & 10*161.3*(25.4 + 0) \, / \, (773.964*50.8) + 0 \\ & = & 1.04 \, mm \end{array}$$

The fillet weld size of 9 mm is adequate to resist radial pressure and shear.

Maximum Allowable External Pressure, (Corroded & at 175°C) UG-29(a)

 $L/D_0 = 1,700/3,378 = 0.5033$ $D_0 / t = 3,378 / 10.1 = 334.4965$ A = 4.5807E-04From Table G: From Table CS-2 Metric: $B = 446.42 \text{ kg}_f/\text{cm}^2$

 $P_a = 4*B / (3*(D_o / t))$ = 4*446.42 / (3*(3,378 / 10.1)) $= 1.78 \text{ kg/cm}^2$ $B = 0.75*P*D_o / (t + A_s / L_s)$

= 0.75*1.78*3,378 / (10.1 + 1,834 / 1,440.08)*1.02 $= 404 \text{ kg/cm}^2$

From Table CS-2 Metric: A = 0.00040660 (ring, 175°C)

$$I_{s}' = \left[D_{o}^{2*} L_{s}^{*}(t + A_{s} / L_{s})^{*} A \right] / 10.9$$

= $\left[3.378^{2*} 1.440.08^{*}(10.1 + 1.834 / 1.440.08)^{*} 0.00040660 \right] / 10.9 / 10000$
= 697.11 cm^{4}

I' for the composite corroded shell-ring cross section is 697.11 cm⁴

As $I' >= I_s'$ a T - 60 x 85 x t14 stiffener is adequate for an external pressure of 1.78 bar.

Check the stiffener ring attachment welds per UG-30

Per UG-30(f)(1) the minimum attachment weld size is 6 mm

The fillet weld size of 9 mm is adequate per UG-30(f)(1).

Radial pressure load, $P*L_s = 1.78*1,440.08 / 10 = 261.16 \text{ kg}_0/\text{cm}$ Radial shear load, $V = 0.01*P*L_s*D_o = 0.01*1.78*1.02*1,440.08*3,378 / 100 = 882.2 kg_f$ First moment of area, $Q = 23.33*3.28 = 76.46 \text{ cm}^3$

Weld shear flow, $q = V*Q / I' = 96.7607 \text{ kg}_f/\text{cm}$ Combined weld load, $f_w = Sqr(261.1602^2 + 96.7607^2) = 278.51 \text{ kg}_f/\text{cm}$

Allowable weld stress per UW-18(d) $S_w = 0.55*S = 0.55*1,407.207 = 773.964 \text{ kg/cm}^2$

Fillet weld size required to resist radial pressure and shear

$$\begin{array}{lll} t_{w} & = & f_{w}*(d_{weld \, segment} + d_{toe}) \, / \, (S_{w}*d_{weld \, total}) + corrosion \\ & = & 10*278.51*(25.4 + 0) \, / \, (773.964*50.8) + 0 \\ & = & 1.8 \, mm \end{array}$$

The fillet weld size of 9 mm is adequate to resist radial pressure and shear.

A G3 5					
ASM	E Section \	VIII Divisioi	n 1, 2017 Edition Me	tric	
Compone	nt	Support Skirt			
Skirt is Attacl	ned To		Bottom Head		
Skirt Attachmen	nt Offset	152	mm down from the to	op seam	
		SA-516 70 (II-D Metric p. 18, ln. 33)			
Materia	l	Impact Tested ¹	Fine Grain Practice		
		No	No	Yes	
]	Design Tem	perature		
Internal	l		17°C		
Externa	l		17°C		
		Dimens	ions		
Inner Diameter	Тор		3,358 mm		
inner Diameter	Botttom		3,358 mm		
Length (includ		976 mm			
Nominal Thic	kness	10 mm			
Garage et au	Inner	1.6 mm			
Corrosion	Outer	0 mm			
		Weight			
New			808.91 kg		
Corrode	d		808.91 kg		
		Insulation\			
		Thickness Density Weight			
Lining		50 mm 2,400 1,217.16			
Insulatio	n	50 mm 2,400 1,261.31 kg			
		Spacing Individual Weight Total Weight			
Insulatio Support		300 mm 5 kg 15 kg			
	Joint Efficiency				
Тор		0.6			
Bottom		0.7			

¹Impact testing requirements are not checked for supports

Skirt design thickness, largest of the following + corrosion = $\underline{6.99}$ mm

The governing condition is due to vortex shedding, compressive stress at the base, empty & corroded.

The skirt thickness of 10 mm is adequate.

Results Summary							
Loading	Condition	Tensile or Compressive Side	Governing Skirt Location	Temperature (°C)	Allowable Stress (kg _f /cm ²)	Calculated Stress/E (kg _f /cm ²)	Required thickness (mm)
	operating, corroded	Tensile	bottom	17	1,407.21	65.47	0.39
	1 0	Compressive			630	319.61	<u>4.26</u>
	operating, new	Tensile	bottom	17	1,407.21	55.14	0.39
Wind	1 0,	Compressive			750.62	268.62	<u>3.58</u>
	empty, corroded	Tensile	top	30	1,407.21	116.04	0.69
	1 37	Compressive	bottom		630	268.7	3.58
	test, new	Tensile	bottom	30	750.62	-193.97	2.58
	•	Compressive				355.21	<u>4.73</u>
	vacuum, corroded	Tensile	bottom	17	1,407.21	65.47	0.39
	, , , , , , , , , , , , , , , , , , , ,	Compressive			630	319.61	4.26
	operating, corroded	Tensile	top	17	1,407.21	197.2	1.18
Vortex	1 5	Compressive	bottom		630	402.16	<u>5.36</u>
shedding	empty, corroded	Tensile	top	30	1,407.21	333.42	<u>1.99</u>
	empty, contoucu	Compressive	bottom		630	404.59	<u>5.39</u>
	vacuum, corroded	Tensile	top	17	1,407.21	197.36	1.18
	, , , , ,	Compressive	bottom		630	402.26	<u>5.36</u>

Loading due to wind, operating & corroded

Windward side (tensile)

Required thickness, tensile stress at base:

```
t = -0.6*W / (\pi^*D^*S_t^*E) + 4*M / (\pi^*D^2*S_t^*E)
  = \ -0.6*152,156.83 \ / \ (\pi*3,369.6*1,407.207/100*0.7) \ + \ 4*1e3*111,233 \ / \ (\pi*3,369.6^2*1,407.207/100*0.7)
  = 0.39 \text{ mm}
```

Required thickness, tensile stress at the top:

```
t = -0.6*W_t / (\pi^*D_t^*S_t^*E) + 4*M_t / (\pi^*D_t^{2*}S_t^*E)
   = -0.6*148,133.06 \, / \, (\pi*3,369.6*1,407.207/100*0.6) \, + \, 4*1e3*104,146.2 \, / \, (\pi*3,369.6^2*1,407.207/100*0.6)
   = 0.39 \text{ mm}
```

Leeward side (compressive)

Required thickness, compressive stress at base:

```
t = W / (\pi^*D^*S_c^*E_c) + 4*M / (\pi^*D^2*S_c^*E_c)
  = 152,156.83 / (\pi^*3,369.6*630.003/100*1) + 4*1e3*111,233 / (\pi^*3,369.6^2*630.003/100*1)
   = 4.26 \text{ mm}
```

Required thickness, compressive stress at the top:

```
t = W_t / (\pi^* D_t^* S_c^* E_c) + 4^* M_t / (\pi^* D_t^{2*} S_c^* E_c)
```

- $= 148,133.06 / (\pi * 3,369.6*630.003/100*1) + 4*1e3*104,146.2 / (\pi * 3,369.62*630.003/100*1)$
- = 4.07 mm

Loading due to wind, operating & new

Windward side (tensile)

Required thickness, tensile stress at base:

```
t = -0.6*W / (\pi*D*S_t*E) + 4*M / (\pi*D^2*S_t*E)
  = -0.6*152,115.01 / (\pi*3,368*1,407.207/100*0.7) + 4*1e3*111,233 / (\pi*3,368^2*1,407.207/100*0.7)
   = 0.39 \text{ mm}
```

Required thickness, tensile stress at the top:

```
t = -0.6*W_t / (\pi^*D_t^*S_t^*E) + 4*M_t / (\pi^*D_t^{2*}S_t^*E)
   = -0.6*148,091.24 / (\pi^*3,368^*1,407.207/100^*0.6) + 4*1e3*104,146.2 / (\pi^*3,368^*1,407.207/100^*0.6)
   = 0.39 \text{ mm}
```

Leeward side (compressive)

Required thickness, compressive stress at base:

```
t = W/(\pi^*D^*S_c^*E_c) + 4*M/(\pi^*D^2*S_c^*E_c)
   = 152,115.01/(\pi^*3,368^*750.619/100^*1) + 4^*1e3^*111,233/(\pi^*3,368^{2*}750.619/100^*1)
   = 3.58 \text{ mm}
```

Required thickness, compressive stress at the top:

```
t = W_t / (\pi^* D_t^* S_c^* E_c) + 4^* M_t / (\pi^* D_t^{2*} S_c^* E_c)
   = 148,091.24 / (\pi *3,368*750.619/100*1) + 4*1e3*104,146.2 / (\pi *3,368^2*750.619/100*1)
   = 3.42 \, \text{mm}
```

Loading due to wind, empty & corroded

Windward side (tensile)

Required thickness, tensile stress at base:

```
t = -0.6*W / (\pi^*D^*S_{_t}*E) + 4*M / (\pi^*D^{2*}S_{_t}*E)
   = -0.6*106,885.97 / (\pi*3,369.6*1,407.207/100*0.7) + 4*1e3*111,233 / (\pi*3,369.6^2*1,407.207/100*0.7)
   = 0.65 \text{ mm}
```

Required thickness, tensile stress at the top:

```
t = -0.6*W_t / (\pi^*D_t^*S_t^*E) + 4*M_t / (\pi^*D_t^{2*}S_t^*E)
   = -0.6*102,862.2 / (\pi*3,369.6*1,407.207/100*0.6) + 4*1e3*104,146.2 / (\pi*3,369.6*1,407.207/100*0.6)
   = 0.69 \text{ mm}
```

Leeward side (compressive)

Required thickness, compressive stress at base:

```
t = W / (\pi^*D^*S_c^*E_c) + 4*M / (\pi^*D^2*S_c^*E_c)
   = 106,885.97 / (\pi^*3,369.6^*630.003/100^*1) + 4^*1e3^*111,233 / (\pi^*3,369.6^2*630.003/100^*1)
   = 3.58 \text{ mm}
```

Required thickness, compressive stress at the top:

```
t = W_t / (\pi^* D_t^* S_c^* E_c) + 4^* M_t / (\pi^* D_t^{2*} S_c^* E_c)
   = 102,862.2 \, / \, (\pi^*3,369.6*630.003/100*1) \, + \, 4*1e3*104,146.2 \, / \, (\pi^*3,369.6^2*630.003/100*1)
   = 3.4 \, \text{mm}
```

Loading due to wind, test & new

Windward side (tensile)

Required thickness, tensile stress at base:

```
t = -0.6*W / (\pi*D*S_t*E) + 4*M / (\pi*D^2*S_t*E)
  = -0.6*363,176.2 / (\pi*3,368*750.619/100*1) + 4*1e3*10,664.9 / (\pi*3,3682*750.619/100*1)
  = 2.58 \text{ mm}
```

Required thickness, tensile stress at the top:

```
t = -0.6*W_{t} / (\pi*D_{t}*S_{t}*E) + 4*M_{t} / (\pi*D_{t}^{2}*S_{t}*E)
   = -0.6*359,152.43 / (\pi*3,368*750.619/100*1) + 4*1e3*9,802.1 / (\pi*3,368^2*750.619/100*1)
   = 2.57 \text{ mm}
```

Leeward side (compressive)

Required thickness, compressive stress at base:

```
t = W / (\pi^*D^*S_c^*E_c) + 4*M / (\pi^*D^2*S_c^*E_c)
   = 363,176.2/(\pi^*3,368^*750.619/100^*1) + 4^*1e3^*10,664.9/(\pi^*3,368^2*750.619/100^*1)
   = 4.73 \text{ mm}
```

Required thickness, compressive stress at the top:

```
t = W_t / (\pi^* D_t^* S_c^* E_c) + 4^* M_t / (\pi^* D_t^{2*} S_c^* E_c)
   =\ 359,152.43\ /\ (\pi*3,368*750.619/100*1)\ +\ 4*1e3*9,802.1\ /\ (\pi*3,368^2*750.619/100*1)
   = 4.67 \, \text{mm}
```

Loading due to wind, vacuum & corroded

Windward side (tensile)

Required thickness, tensile stress at base:

```
t = -0.6*W / (\pi^*D^*S_t^*E) + 4*M / (\pi^*D^2*S_t^*E)
   = -0.6*152, 156.83 \ / \ (\pi*3, 369.6*1, 407.207/100*0.7) \ + \ 4*1e3*111, 233 \ / \ (\pi*3, 369.6^2*1, 407.207/100*0.7)
   = 0.39 \text{ mm}
```

Required thickness, tensile stress at the top:

```
t = -0.6*W_t / (\pi^*D_t^*S_t^*E) + 4*M_t / (\pi^*D_t^{2*}S_t^*E)
   = -0.6*148,133.06 / (\pi*3,369.6*1,407.207/100*0.6) + 4*1e3*104,146.2 / (\pi*3,369.6^2*1,407.207/100*0.6)
   = 0.39 \text{ mm}
```

Leeward side (compressive)

Required thickness, compressive stress at base:

```
t = W / (\pi^*D^*S_c^*E_c) + 4^*M / (\pi^*D^2*S_c^*E_c)
   = 152,156.83 / (\pi^*3,369.6*630.003/100*1) + 4*1e3*111,233 / (\pi^*3,369.62*630.003/100*1)
   = 4.26 \text{ mm}
```

Required thickness, compressive stress at the top:

```
t = W_t / (\pi^* D_t^* S_c^* E_c) + 4^* M_t / (\pi^* D_t^{2*} S_c^* E_c)
   = 148,133.06/(\pi^*3,369.6*630.003/100*1) + 4*1e3*104,146.2/(\pi^*3,369.6^2*630.003/100*1)
   = 4.07 \text{ mm}
```

Loading due to vortex shedding, operating & corroded

Windward side (tensile)

Required thickness, tensile stress at base:

```
t = -0.6*W / (\pi^*D^*S_t^*E) + 4*M / (\pi^*D^2*S_t^*E)
  = -0.6*152,156.83 / (\pi*3,369.6*1,407.207/100*0.7) + 4*1e3*173,070.9 / (\pi*3,369.6^2*1,407.207/100*0.7)
   = 1.09 \text{ mm}
```

Required thickness, tensile stress at the top:

```
t = -0.6*W_t / (\pi^*D_t^*S_t^*E) + 4*M_t / (\pi^*D_t^{2*}S_t^*E)
   = -0.6*148,133.06 / (\pi * 3,369.6*1,407.207/100*0.6) + 4*1e3*163,502.7 / (\pi * 3,369.6^2*1,407.207/100*0.6)
   = 1.18 \text{ mm}
```

Leeward side (compressive)

Required thickness, compressive stress at base:

```
t = W / (\pi^*D^*S_c^*E_c) + 4^*M / (\pi^*D^{2*}S_c^*E_c)
   = 152,156.83/(\pi *3,369.6*630.003/100*1) + 4*1e3*173,070.9/(\pi *3,369.62*630.003/100*1)
```

```
= 5.36 \, \text{mm}
```

Required thickness, compressive stress at the top:

```
t = W_t / (\pi^* D_t^* S_c^* E_c) + 4^* M_t / (\pi^* D_t^{2*} S_c^* E_c)
= 148,133.06 / (\pi^* 3,369.6^* 630.003/100^* 1) + 4^* 1e3^* 163,502.7 / (\pi^* 3,369.6^{2*} 630.003/100^* 1)
= 5.13 \text{ mm}
```

Loading due to vortex shedding, empty & corroded

Windward side (tensile)

Required thickness, tensile stress at base:

```
t = -0.6*W / (\pi*D*S_t*E) + 4*M / (\pi*D^2*S_t*E)
= -0.6*106,885.97 / (\pi*3,369.6*1,407.207/100*0.7) + 4*1e3*213,024.9 / (\pi*3,369.6^2*1,407.207/100*0.7)
= 1.81 \text{ mm}
```

Required thickness, tensile stress at the top:

```
t = -0.6*W_t / (\pi*D_t*S_t*E) + 4*M_t / (\pi*D_t^2*S_t*E)
= -0.6*102,862.2 / (\pi*3,369.6*1,407.207/100*0.6) + 4*1e3*201,845.5 / (\pi*3,369.6^2*1,407.207/100*0.6)
= 1.99 \text{ mm}
```

Leeward side (compressive)

Required thickness, compressive stress at base:

```
t = W / (\pi^*D^*S_c^*E_c) + 4*M / (\pi^*D^{2*}S_c^*E_c)
= 106,885.97 / (\pi^*3,369.6*630.003/100*1) + 4*1e3*213,024.9 / (\pi^*3,369.6^2*630.003/100*1)
= 5.39 \text{ mm}
```

Required thickness, compressive stress at the top:

```
t = W_t / (\pi^* D_t^* S_c^* E_c) + 4^* M_t / (\pi^* D_t^{2*} S_c^* E_c)
= 102,862.2 / (\pi^* 3,369.6^* 630.003/100^* 1) + 4^* 1e3^* 201,845.5 / (\pi^* 3,369.6^2 * 630.003/100^* 1)
= 5.14 \text{ mm}
```

Loading due to vortex shedding, vacuum & corroded

Windward side (tensile)

Required thickness, tensile stress at base:

```
 \begin{array}{ll} t &=& -0.6*W \, / \, (\pi^*D^*S_t^*E) \, + \, 4^*M \, / \, (\pi^*D^2*S_t^*E) \\ &=& -0.6*152,\!156.83 \, / \, (\pi^*3,\!369.6*1,\!407.207/100*0.7) \, + \, 4^*1e3*173,\!144.1 \, / \, (\pi^*3,\!369.6^2*1,\!407.207/100*0.7) \\ &=& 1.1 \, \, \text{mm} \end{array}
```

Required thickness, tensile stress at the top:

```
t = -0.6*W_t / (\pi^*D_t^*S_t^*E) + 4*M_t / (\pi^*D_t^{2*}S_t^*E)
   = -0.6*148,133.06 / (\pi*3,369.6*1,407.207/100*0.6) + 4*1e3*163,573 / (\pi*3,369.6^2*1,407.207/100*0.6)
   = 1.18 \text{ mm}
```

Leeward side (compressive)

Required thickness, compressive stress at base:

```
t = W / (\pi^*D^*S_c^*E_c) + 4^*M / (\pi^*D^{2*}S_c^*E_c)
   = 152,\!156.83 \, / \, (\pi^*3,\!369.6^*630.003/100^*1) + 4^*1e3^*173,\!144.1 \, / \, (\pi^*3,\!369.6^2*630.003/100^*1)
   = 5.36 \, \text{mm}
```

Required thickness, compressive stress at the top:

```
t = W_t / (\pi^* D_t^* S_c^* E_c) + 4^* M_t / (\pi^* D_t^{2*} S_c^* E_c)
   = 148,133.06 / (\pi * 3,369.6 * 630.003/100 * 1) + 4 * 1e3 * 163,573 / (\pi * 3,369.6 * 630.003/100 * 1)
   = 5.13 \text{ mm}
```

Job No. 19-9044

ASME Section VIII Division 1, 2017 Edition Metric					
Compone	nt	Support Skirt			
Skirt is Attacl	ned To	Support Skirt #1			
Skirt Attachmen	nt Offset	0 n	nm up from the botton	n seam	
		SA-285 C (II-D Metric p. 10, ln. 3)			
Materia	l	Impact Tested ¹	Fine Grain Practice		
		No	No		
]	Design Tem	perature		
Interna	ı		17°C		
Externa	1		17°C		
		Dimens	ions		
Inner Diameter	Тор		3,358 mm		
Inner Diameter	Botttom		3,358 mm		
Length (includ		7,010 mm			
Nominal Thic	ckness	10 mm			
Corrosion	Inner	1.6 mm			
Corrosion	Outer	0 mm			
	Weight				
New			5,782.54 kg		
Corrode	d		4,855.03 kg		
		Insulation\	Lining		
		Thickness Density Weight			
Lining		50 mm 2,400 8,742.08 kg			
Insulatio	n	50 mm 2,400 9,059.2 kg			
		Spacing Individual Weight Total Weight			
Insulatio Support		300 mm 5 kg 115 kg			
	Joint Efficiency				
Тор		0.7			
Bottom		0.7			

¹Impact testing requirements are not checked for supports

Skirt design thickness, largest of the following + corrosion = 8.75 mm

The governing condition is due to vortex shedding, compressive stress at the base, empty & corroded.

The skirt thickness of 10 mm is adequate.

Results Summary							
Loading	Condition	Tensile or Compressive Side	Governing Skirt Location	Temperature (°C)	Allowable Stress (kgf/cm ²)	Calculated Stress/E (kg _f /cm ²)	Required thickness (mm)
	operating, corroded	Tensile	bottom	17	1,101.29	139.23	1.06
	1 0	Compressive			630	412.23	<u>5.5</u>
	operating, new	Tensile	bottom	17	1,101.29	116.42	1.06
Wind	3,	Compressive			750.62	347.36	4.63
	empty, corroded	Tensile	bottom	30	1,101.29	182.87	1.39
	1.37	Compressive			630	361.32	4.82
	empty, new	Tensile	bottom	30	1,101.29	153.06	1.39
	1.37	Compressive			750.62	304.61	4.06
	test, new	Tensile	bottom	30	750.62	-207.41	2.76
	,	Compressive				377.61	<u>5.03</u>
	vacuum, corroded	Tensile	bottom	17	1,101.29	139.23	1.06
	, , , , , , , , , , , , , , , , , , , ,	Compressive			630	412.23	<u>5.5</u>
	operating, corroded	Tensile	bottom	17	1,101.29	291.16	2.22
Vortex	5,	Compressive		630	518.57	6.91	
shedding	empty, corroded	Tensile	bottom	30	1,101.29	433.06	3.3
	empty, corroaca	Compressive			630	536.45	<u>7.15</u>
	vacuum, corroded	Tensile	bottom	17	1,101.29	291.34	2.22
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Compressive			630	518.7	<u>6.92</u>

Loading due to wind, operating & corroded

Windward side (tensile)

Required thickness, tensile stress at base:

```
t = -0.6*W / (\pi*D*S_t*E) + 4*M / (\pi*D^2*S_t*E)
   = -0.6*174,932.69 \, / \, (\pi*3,369.6*1,101.293/100*0.7) \, + \, 4*1e3*161,426.1 \, / \, (\pi*3,369.6^2*1,101.293/100*0.7)
   = 1.06 \, \text{mm}
```

Required thickness, tensile stress at the top:

```
t = -0.6*W_{t} / (\pi*D_{t}*S_{t}*E) + 4*M_{t} / (\pi*D_{t}^{2}*S_{t}*E)
   = -0.6*152,156.83 / (\pi*3,369.6*1,101.293/100*0.7) + 4*1e3*111,233 / (\pi*3,369.6^2*1,101.293/100*0.7)
   = 0.5 \text{ mm}
```

Leeward side (compressive)

Required thickness, compressive stress at base:

```
t = W / (\pi^*D^*S_c^*E_c) + 4^*M / (\pi^*D^{2*}S_c^*E_c)
   = 174,932.69 / (\pi *3,369.6*630.003/100*1) + 4*1e3*161,426.1 / (\pi *3,369.6^2*630.003/100*1)
   = 5.5 \text{ mm}
```

Required thickness, compressive stress at the top:

```
t = W_t / (\pi^* D_t^* S_c^* E_c) + 4^* M_t / (\pi^* D_t^{2*} S_c^* E_c)
   = 152,156.83/(\pi^*3,369.6*630.003/100*1) + 4*1e3*111,233/(\pi^*3,369.6^2*630.003/100*1)
   = 4.26 \, \text{mm}
```

Loading due to wind, operating & new

Windward side (tensile)

Required thickness, tensile stress at base:

```
t = -0.6*W / (\pi^*D^*S_t^*E) + 4*M / (\pi^*D^2*S_t^*E)
  = -0.6*175,818.39 / (\pi*3,368*1,101.293/100*0.7) + 4*1e3*161,426 / (\pi*3,368^2*1,101.293/100*0.7)
  = 1.06 \, \text{mm}
```

Required thickness, tensile stress at the top:

```
t = -0.6*W_{t} / (\pi*D_{t}*S_{t}*E) + 4*M_{t} / (\pi*D_{t}^{2}*S_{t}*E)
   = -0.6*152,115.01 / (\pi*3,368*1,101.293/100*0.7) + 4*1e3*111,233 / (\pi*3,368^2*1,101.293/100*0.7)
   = 0.5 \, \text{mm}
```

Leeward side (compressive)

Required thickness, compressive stress at base:

```
t = W / (\pi^*D^*S_c^*E_c) + 4*M / (\pi^*D^2*S_c^*E_c)
   = 175,818.39 / (\pi *3,368*750.619/100*1) + 4*1e3*161,426 / (\pi *3,368^2*750.619/100*1)
   = 4.63 \text{ mm}
```

Required thickness, compressive stress at the top:

```
t = W_t / (\pi^* D_t^* S_c^* E_c) + 4^* M_t / (\pi^* D_t^{2*} S_c^* E_c)
   = 152,115.01/(\pi^*3,368^*750.619/100^*1) + 4^*1e3^*111,233/(\pi^*3,368^2*750.619/100^*1)
   = 3.58 \, \text{mm}
```

Loading due to wind, empty & corroded

Windward side (tensile)

Required thickness, tensile stress at base:

```
t = -0.6*W / (\pi*D*S_t*E) + 4*M / (\pi*D^2*S_t*E)
   = -0.6*129,661.83 / (\pi*3,369.6*1,101.293/100*0.7) + 4*1e3*161,426.1 / (\pi*3,369.6^2*1,101.293/100*0.7)
   = 1.39 \text{ mm}
```

Required thickness, tensile stress at the top:

```
t = -0.6*W_t / (\pi^*D_t^*S_t^*E) + 4*M_t / (\pi^*D_t^{2*}S_t^*E)
  = -0.6*106,885.97 / (\pi*3,369.6*1,101.293/100*0.7) + 4*1e3*111,233 / (\pi*3,369.6^2*1,101.293/100*0.7)
   = 0.83 \text{ mm}
```

Leeward side (compressive)

Required thickness, compressive stress at base:

```
t = W / (\pi^*D^*S_c^*E_c) + 4*M / (\pi^*D^2*S_c^*E_c)
  = 129,661.83 / (\pi * 3,369.6*630.003/100*1) + 4*1e3*161,426.1 / (\pi * 3,369.62*630.003/100*1)
   = 4.82 \text{ mm}
```

Required thickness, compressive stress at the top:

```
t = W_t / (\pi^* D_t^* S_c^* E_c) + 4^* M_t / (\pi^* D_t^{2*} S_c^* E_c)
   = 106,885.97 / (\pi^*3,369.6*630.003/100*1) + 4*1e3*111,233 / (\pi^*3,369.6^2*630.003/100*1)
   = 3.58 \, \text{mm}
```

Loading due to wind, empty & new

Windward side (tensile)

Required thickness, tensile stress at base:

```
t = -0.6*W / (\pi^*D^*S_t^*E) + 4*M / (\pi^*D^2*S_t^*E)
   = -0.6*130,589.34 / (\pi * 3,368*1,101.293/100*0.7) + 4*1e3*161,426 / (\pi * 3,368^2*1,101.293/100*0.7)
   = 1.39 \text{ mm}
```

Required thickness, tensile stress at the top:

```
t = -0.6*W_t / (\pi^*D_t^*S_t^*E) + 4*M_t / (\pi^*D_t^{2*}S_t^*E)
   = -0.6*106,885.97 / (\pi*3,368*1,101.293/100*0.7) + 4*1e3*111,233 / (\pi*3,368^2*1,101.293/100*0.7)
   = 0.83 \text{ mm}
```

Leeward side (compressive)

Required thickness, compressive stress at base:

```
t = W / (\pi^*D^*S_c^*E_c) + 4*M / (\pi^*D^2*S_c^*E_c)
  = 130,589.34/(\pi^*3,368*750.619/100*1) + 4*1e3*161,426/(\pi^*3,368^2*750.619/100*1)
  = 4.06 \, \text{mm}
```

Required thickness, compressive stress at the top:

```
t = W_t / (\pi^* D_t^* S_c^* E_c) + 4^* M_t / (\pi^* D_t^{2*} S_c^* E_c)
   = 106,885.97 / (\pi^*3,368*750.619/100*1) + 4*1e3*111,233 / (\pi^*3,368^2*750.619/100*1)
   = 3.01 \text{ mm}
```

Loading due to wind, test & new

Windward side (tensile)

Required thickness, tensile stress at base:

```
t = -0.6*W / (\pi*D*S_{t}*E) + 4*M / (\pi*D^{2}*S_{t}*E)
  = -0.6*386,879.58 / (\pi*3,368*750.619/100*1) + 4*1e3*10,664.9 / (\pi*3,368^2*750.619/100*1)
   = 2.76 \, \text{mm}
```

Required thickness, tensile stress at the top:

```
t = -0.6*W_t / (\pi^*D_t^*S_t^*E) + 4*M_t / (\pi^*D_t^{2*}S_t^*E)
   = -0.6*363,176.2 / (\pi*3,368*750.619/100*1) + 4*1e3*10,664.9 / (\pi*3,368^2*750.619/100*1)
   = 2.58 \text{ mm}
```

Leeward side (compressive)

Required thickness, compressive stress at base:

```
t = W / (\pi^*D^*S_c^*E_c) + 4*M / (\pi^*D^2*S_c^*E_c)
   = 386,879.58 / (\pi *3,368*750.619/100*1) + 4*1e3*10,664.9 / (\pi *3,3682*750.619/100*1)
   = 5.03 \text{ mm}
```

Required thickness, compressive stress at the top:

```
t = W_t / (\pi^* D_t^* S_c^* E_c) + 4^* M_t / (\pi^* D_t^{2*} S_c^* E_c)
   = 363,176.2 / (\pi * 3,368 * 750.619 / 100 * 1) + 4 * 1e3 * 10,664.9 / (\pi * 3,368 ^ 2 * 750.619 / 100 * 1)
   = 4.73 \text{ mm}
```

Loading due to wind, vacuum & corroded

Windward side (tensile)

Required thickness, tensile stress at base:

```
t = -0.6*W / (\pi*D*S_{t}*E) + 4*M / (\pi*D^{2}*S_{t}*E)
   = -0.6*174,932.69 / (\pi*3,369.6*1,101.293/100*0.7) + 4*1e3*161,426.1 / (\pi*3,369.6^2*1,101.293/100*0.7)
   = 1.06 \, \text{mm}
```

Required thickness, tensile stress at the top:

```
t = -0.6*W_t / (\pi^*D_t^*S_t^*E) + 4*M_t / (\pi^*D_t^{2*}S_t^*E)
   = -0.6*152,156.83 / (\pi*3,369.6*1,101.293/100*0.7) + 4*1e3*111,233 / (\pi*3,369.6^2*1,101.293/100*0.7)
   = 0.5 \text{ mm}
```

Leeward side (compressive)

Required thickness, compressive stress at base:

```
t = W / (\pi^*D^*S_c^*E_c) + 4*M / (\pi^*D^2*S_c^*E_c)
  = 174,932.69 / (\pi * 3,369.6*630.003/100*1) + 4*1e3*161,426.1 / (\pi * 3,369.62*630.003/100*1)
   = 5.5 \text{ mm}
```

Required thickness, compressive stress at the top:

```
t = W_t / (\pi^* D_t^* S_c^* E_c) + 4^* M_t / (\pi^* D_t^2 S_c^* E_c)
   = 152,156.83 / (\pi * 3,369.6*630.003/100*1) + 4*1e3*111,233 / (\pi * 3,369.62*630.003/100*1)
   = 4.26 \, \text{mm}
```

Loading due to vortex shedding, operating & corroded

Windward side (tensile)

Required thickness, tensile stress at base:

```
t = -0.6*W / (\pi*D*S_{t}*E) + 4*M / (\pi*D^{2}*S_{t}*E)
   = -0.6*174,932.69 / (\pi * 3,369.6*1,101.293/100*0.7) + 4*1e3*241,086.5 / (\pi * 3,369.6^2*1,101.293/100*0.7)
   = 2.22 \text{ mm}
```

Required thickness, tensile stress at the top:

```
t = -0.6*W_t / (\pi^*D_t^*S_t^*E) + 4*M_t / (\pi^*D_t^{2*}S_t^*E)
   = -0.6*152,156.83 / (\pi*3,369.6*1,101.293/100*0.7) + 4*1e3*173,070.9 / (\pi*3,369.6^2*1,101.293/100*0.7)
   = 1.4 \text{ mm}
```

Leeward side (compressive)

Required thickness, compressive stress at base:

```
t = W / (\pi^*D^*S_c^*E_c) + 4*M / (\pi^*D^2*S_c^*E_c)
   = 174,932.69 / (\pi * 3,369.6*630.003/100*1) + 4*1e3*241,086.5 / (\pi * 3,369.62*630.003/100*1)
   = 6.91 \text{ mm}
```

Required thickness, compressive stress at the top:

```
t = W_t / (\pi^* D_t^* S_c^* E_c) + 4^* M_t / (\pi^* D_t^{2*} S_c^* E_c)
   = 152,156.83/(\pi^*3,369.6*630.003/100*1) + 4*1e3*173,070.9/(\pi^*3,369.6^2*630.003/100*1)
   = 5.36 \, \text{mm}
```

Loading due to vortex shedding, empty & corroded

Windward side (tensile)

Required thickness, tensile stress at base:

```
t = -0.6*W / (\pi^*D^*S_t^*E) + 4*M / (\pi^*D^2*S_t^*E)
  = -0.6*129,661.83 / (\pi*3,369.6*1,101.293/100*0.7) + 4*1e3*292,613.1 / (\pi*3,369.6*1,101.293/100*0.7)
  = 3.3 \text{ mm}
```

Required thickness, tensile stress at the top:

```
t = -0.6*W_t / (\pi^*D_t^*S_t^*E) + 4*M_t / (\pi^*D_t^{2*}S_t^*E)
   = -0.6*106,885.97 \ / \ (\pi*3,369.6*1,101.293/100*0.7) \ + \ 4*1e3*213,024.9 \ / \ (\pi*3,369.6^2*1,101.293/100*0.7)
   = 2.31 \text{ mm}
```

Leeward side (compressive)

Required thickness, compressive stress at base:

```
t = W / (\pi^*D^*S_c^*E_c) + 4*M / (\pi^*D^2*S_c^*E_c)
  = 129,661.83 / (\pi * 3,369.6*630.003/100*1) + 4*1e3*292,613.1 / (\pi * 3,369.62*630.003/100*1)
   = 7.15 \text{ mm}
```

Required thickness, compressive stress at the top:

```
t = W_t / (\pi^* D_t^* S_c^* E_c) + 4^* M_t / (\pi^* D_t^{2*} S_c^* E_c)
   =\ 106,885.97\ /\ (\pi^*3,369.6^*630.003/100^*1) + 4^*1e3^*213,024.9\ /\ (\pi^*3,369.6^{2*}630.003/100^*1)
   = 5.39 \text{ mm}
```

Loading due to vortex shedding, vacuum & corroded

Windward side (tensile)

Required thickness, tensile stress at base:

```
t = -0.6*W / (\pi^*D^*S_t^*E) + 4*M / (\pi^*D^2*S_t^*E)
   = -0.6*174,932.69 / (\pi * 3,369.6*1,101.293/100*0.7) + 4*1e3*241,180.8 / (\pi * 3,369.6^2*1,101.293/100*0.7)
  = 2.22 \text{ mm}
```

Required thickness, tensile stress at the top:

```
t = -0.6*W_t / (\pi*D_t*S_t*E) + 4*M_t / (\pi*D_t^2*S_t*E)
   = -0.6*152,156.83 / (\pi*3,369.6*1,101.293/100*0.7) + 4*1e3*173,144.1 / (\pi*3,369.6^2*1,101.293/100*0.7)
   = 1.4 \text{ mm}
```

Leeward side (compressive)

Required thickness, compressive stress at base:

```
t = W / (\pi^*D^*S_c^*E_c) + 4^*M / (\pi^*D^2*S_c^*E_c)
   = 174,932.69 / (\pi * 3,369.6*630.003/100*1) + 4*1e3*241,180.8 / (\pi * 3,369.62*630.003/100*1)
   = 6.92 \text{ mm}
```

Required thickness, compressive stress at the top:

- $t = W_t / (\pi^* D_t^* S_c^* E_c) + 4^* M_t / (\pi^* D_t^{2*} S_c^* E_c)$ $=\ 152,\!156.83\,/\,(\pi^*3,\!369.6^*630.003/100^*1) + 4^*1e3^*173,\!144.1\,/\,(\pi^*3,\!369.6^2*630.003/100^*1)$
 - $= 5.36 \, \text{mm}$

Skirt Base Ring

Inputs				
Base configuration	double base plate			
Base plate material	A285-C			
Base plate allowable stress, S_p	1,454.999 kg _f /cm ²			
Foundation compressive strength	1,455.299 kg _f /cm ²			
Concrete ultimate 28-day strength	1,455.299 kg _f /cm ²			
Bolt circle, BC	3,530 mm			
Base plate inner diameter, D _i	3,290 mm			
Base plate outer diameter, D_0	3,580 mm			
Base plate thickness, t _b	33 mm			
Gusset separation, w	105 mm			
Gusset height, h	240 mm			
Gusset thickness, t _g	16 mm			
Compression ring width	141 mm			
Compression ring thickness, t_c	30 mm			
Anchor Bolts				
Material	А307-В			
Allowable stress, S_b	1,199.999 kg _f /cm ²			
Bolt size and type	48 mm			
Number of bolts, N	20			
Corrosion allowance (applied to root radius)	1.5 mm			
Anchor bolt clearance	14 mm			
Bolt root area (corroded), A _b	11.55 cm ²			
Diameter of anchor bolt holes, d _b	62 mm			
Initial bolt preload	$0\% (0 \text{ kg}_f/\text{cm}^2)$			
Bolt at 0°	No			

Page 392 of 450

Rev. 1

Anchor bolt load (operating, corroded + Wind)

Required area per bolt = P / $S_b = 3.2267$ cm²

The area provided (11.5516 cm²) by the specified anchor bolt is adequate.

Support calculations (Jawad & Farr chapter 12, operating, corroded + Wind)

Base plate width, t_c: 145 mm Average base plate diameter, d: 3,435 mm Base plate elastic modulus, E_s: 2,038,900.1 kg_f/cm² Base plate yield stress, S_v : $2,089.998 \text{ kg}/\text{cm}^2$

 $E_c = 57,000*0.265154*Sqr(1,455.299) = 576,567.179 \text{ kg/cm}^2$

$$n = E_s/E_c = 2,038,900.1 / 576,567.179 = 3.5363$$

$$t_s = (N*A_b) / (\pi*d)$$

= (20*1,342.9593) / (\pi*3,435)
= 2.49 mm

From table 12.4 for k = 0.539529:

$$K_1 = 1.9087, K_2 = 2.0895$$

 $L_1 = -5.3498, L_2 = 48.997, L_3 = 57.1956$

Total tensile force on bolting

$$\begin{split} T &= (M - 0.6*W * (L_1 + L_3)) / (L_2 + L_3) \\ &= (161,426.1 - 0.6*175,795.42 * (-0.1359 + 1.4528)) / (1.2445 + 1.4528) \\ &= 8,351.02 \text{ kg}_{\text{f}} \end{split}$$

Tensile stress in bolts use the larger of f_s or bolt preload = 0 kg/cm^2

Total compressive load on foundation

$$C_c = T + W + Bolt Preload$$

= 8,351.02 + 175,795.42 + 0
= 184,146.44 kg_f

Foundation bearing stress

```
\begin{split} &f_c = C_c \, / \, (((t_c - t_s) + n^*t_s)^* (d \, / \, 2)^* K_2) \\ &= 100^* 184,146.44 \, / \, (((145 - 2.49) + 3.5363^* 2.49)^* (3,435 \, / \, 2)^* 2.0895) \\ &= \underline{33.912} \, \, kg_f cm^2 \end{split}
```

As $f_c \le 1,455.299 \text{ kg}_f/\text{cm}^2$ the base plate width is satisfactory.

$$k = 1 / (1 + f_s / (n*f_c))$$

= 1 / (1 + 102.349 / (3.5363*33.912))
= 0.539529

Base plate required thickness (operating, corroded + Wind)

From Brownell & Young, Table 10.3:, 1/b = 0.2419

$$\begin{aligned} \mathbf{M}_{\mathbf{x}} &= 0.01*0.0057*33.912*417.49^2 = 334.5 \text{ kg}_{\mathbf{f}} \\ \mathbf{M}_{\mathbf{y}} &= 0.01*-0.4477*33.912*101^2 = -1,548.9 \text{ kg}_{\mathbf{f}} \\ \mathbf{t}_{\mathbf{r}} &= (6*\mathbf{M}_{\text{max}} / \mathbf{S}_{\mathbf{p}})^{0.5} \\ &= (100*6*1,548.88 / 1,454.999)^{0.5} \\ &= 25.27 \text{ mm} \end{aligned}$$

The base plate thickness is satisfactory.

Check the compression ring for bolt load (Jawad & Farr equation 12.13)

```
\begin{array}{l} t_{cr} = (3.91*F \, / \, (S_y*(2*b \, / \, w+w \, / \, (2*l)-d_b*(2 \, / \, w+1 \, / \, (2*l)))))^{0.5} \\ = (100*3.91*1,374.51 \, / \, (2,089.998*(2*141 \, / \, 105+105 \, / \, (2*76)-62*(2 \, / \, 105+1 \, / \, (2*76)))))^{0.5} \\ = 11.99 \, mm \end{array}
```

The compression ring thickness is satisfactory.

Check gusset plate thickness (Bednar chapter 4.3)

Radius of gyration of gusset

```
r = 0.289*t_g
= 0.289*16
= 4.62 mm
```

Cross sectional area of one gusset

```
A_g = t_g^*(b - 0.25*25.41)
= 0.01*16*(101 - 0.25*25.41)
= 15.144 cm<sup>2</sup>
```

```
S_a = 0.07031*(17000 - 0.485*(h / r)^2)
= 1,195.27 - 0.0341*(240 / 4.62)^2
= 1,103.357 kg<sub>f</sub>/cm<sup>2</sup>
```

Gusset axial stress due to bolt load

$$S_g = F / (2 * A_g)$$

= 1,374.51 / (2 * 15.144)
= 45.381 kg/cm²

The gusset plate thickness is satisfactory.

Check skirt thickness for bolt load reaction (Brownell & Young eq. 10.59)

```
t = 1.76*(F*1/(M_b*h_c*S_s))^{2/3}*(OD_s/2)^{1/3}
= 1.76*(100*1,374.51*76/(530.62*303*1,651.939))^{2/3}*(3,378/2)^{1/3}
= 2.42 \text{ mm}
```

The skirt thickness is satisfactory.

Anchor bolt load (operating, new + Wind)

```
P = -0.6*W / N + 4 * M / (N*BC)
= -0.6*176,681.12 / 20 + 4 * 161,426 / (20*3.53)
= 3,845.52 kg<sub>f</sub>
```

Required area per bolt = P / $S_b = 3.2046$ cm²

The area provided (13.4296 cm²) by the specified anchor bolt is adequate.

Support calculations (Jawad & Farr chapter 12, operating, new + Wind)

```
Base plate width, t_c: 145 mm
Average base plate diameter, d: 3,435 mm
Base plate elastic modulus, E_s: 2,038,900.1 kg/cm<sup>2</sup>
Base plate yield stress, S_y: 2,089.998 kg/cm<sup>2</sup>
```

$$E_c = 57,000*0.265154*Sqr(1,455.299) = 576,567.179 kg_f/cm^2$$

$$n = E_s/E_c = 2,038,900.1 / 576,567.179 = 3.5363$$

$$t_s = (N*A_b) / (\pi*d)$$

= (20*1,342.9593) / (\pi*3,435)
= 2.49 mm

From table 12.4 for k = 0.542982:

$$K_1 = 1.9006, K_2 = 2.0973$$

 $L_1 = -5.8181, L_2 = 48.6363, L_3 = 57.5523$

Total tensile force on bolting

```
T = (M - 0.6*W *(L<sub>1</sub> + L<sub>3</sub>)) / (L<sub>2</sub> + L<sub>3</sub>)
= (161,426 - 0.6*176,681.12 *(-0.1478 + 1.4618)) / (1.2354 + 1.4618)
= 8,203.18 \text{ kg}_f
```

Tensile stress in bolts use the larger of f_s or bolt preload = $0 \text{ kg}_t/\text{cm}^2$

```
f_s = T / (t_s * (d/2) * K_1)
= 100*8,203.18 / (2.49 * (3,435 / 2) * 1.9006)
= 100.965 kg<sub>b</sub>/cm<sup>2</sup>
```

Total compressive load on foundation

```
C_c = T + W + Bolt Preload
= 8,203.18 + 176,681.12 + 0
= 184,884.3 kg<sub>f</sub>
```

Foundation bearing stress

```
\begin{split} &f_c = C_c / (((t_c - t_s) + n*t_s)*(d/2)*K_2) \\ &= 100*184,884.3 / (((145 - 2.49) + 3.5363*2.49)*(3,435/2)*2.0973) \\ &= \underline{33.921} \text{ kg/cm}^2 \end{split}
```

As $f_c \le 1,455.299 \text{ kg}/\text{cm}^2$ the base plate width is satisfactory.

$$k = 1 / (1 + f_s / (n*f_c))$$

= 1 / (1 + 100.965 / (3.5363*33.921))
= 0.542982

Base plate required thickness (operating, new + Wind)

From Brownell & Young, Table 10.3:, 1/b = 0.2419

$$\begin{split} \mathbf{M_x} &= 0.01*0.0057*33.921*417.49^2 = 334.6 \text{ kg}_f \\ \mathbf{M_y} &= 0.01*-0.4477*33.921*101^2 = -1,549.3 \text{ kg}_f \\ \mathbf{t_r} &= (6*\mathbf{M_{max}} / \mathbf{S_p})^{0.5} \\ &= (100*6*1,549.33 / 1,454.999)^{0.5} \\ &= 25.28 \text{ mm} \end{split}$$

The base plate thickness is satisfactory.

Check the compression ring for bolt load (Jawad & Farr equation 12.13)

```
\begin{array}{l} t_{cr} = (3.91*F \, / \, (S_y*(2*b \, / \, w+w \, / \, (2*l)-d_b*(2 \, / \, w+1 \, / \, (2*l)))))^{0.5} \\ = (100*3.91*1,355.92 \, / \, (2,089.998*(2*141 \, / \, 105+105 \, / \, (2*76)-62*(2 \, / \, 105+1 \, / \, (2*76)))))^{0.5} \\ = \underline{11.91} \, \, mm \end{array}
```

The compression ring thickness is satisfactory.

Check gusset plate thickness (Bednar chapter 4.3)

Radius of gyration of gusset

$$r = 0.289*t_g$$

= 0.289*16
= 4.62 mm

Cross sectional area of one gusset

$$A_g = t_g * (b - 0.25 * 25.41)$$

```
= 0.01*16*(101 - 0.25*25.41)
= 15.144 cm<sup>2</sup>
```

Gusset allowable stress

$$S_a = 0.07031*(17000 - 0.485*(h / r)^2)$$

= 1,195.27 - 0.0341*(240 / 4.62)^2
= 1,103.357 kg_f/cm²

Gusset axial stress due to bolt load

$$S_g = F / (2 * A_g)$$

= 1,355.92 / (2 * 15.144)
= 44.768 kg_g/cm²

The gusset plate thickness is satisfactory.

Check skirt thickness for bolt load reaction (Brownell & Young eq. 10.59)

```
t = 1.76*(F*1/(M_b*h_c*S_s))^{2/3}*(OD_s/2)^{1/3}
= 1.76*(100*1,355.92*76/(530.62*303*1,651.939))^{2/3}*(3,378/2)^{1/3}
= 2.4 mm
```

The skirt thickness is satisfactory.

Anchor bolt load (empty, corroded + Wind)

Required area per bolt = P / $S_b = 4.3585$ cm²

The area provided (11.5516 cm²) by the specified anchor bolt is adequate.

Support calculations (Jawad & Farr chapter 12, empty, corroded + Wind)

$$E_c = 57,000*0.265154*Sqr(1,455.299) = 576,567.179 \text{ kg/cm}^2$$

$$n = E_c/E_c = 2,038,900.1 / 576,567.179 = 3.5363$$

$$t_s = (N*A_b) / (\pi*d)$$

= (20*1,342.9593) / (\pi*3,435)
= 2.49 mm

From table 12.4 for k = 0.384574:

$$K_1 = 2.2576,$$
 $K_2 = 1.727$ $L_1 = 15.6071,$ $L_2 = 64.9656,$ $L_3 = 41.0623$

Total tensile force on bolting

```
T = (M - 0.6*W *(L_1 + L_3)) / (L_2 + L_3)
= (161,426.1 - 0.6*130,524.56*(0.3964 + 1.043)) / (1.6501 + 1.043)
= 18,083.02 \text{ kg}_{\text{f}}
```

Tensile stress in bolts use the larger of f_s or bolt preload = 0 kg/cm^2

```
f_s = T / (t_s * (d/2) * K_1)
= 100*18,083.02 / (2.49 * (3,435 / 2) * 2.2576)
= 187.378 \text{ kg}/\text{cm}^2
```

Total compressive load on foundation

```
C_c = T + W + Bolt Preload
= 18,083.02 + 130,524.56 + 0
= 148,607.58 \text{ kg}_{\text{f}}
```

Foundation bearing stress

```
f_c = C_c / (((t_c - t_s) + n * t_s) * (d / 2) * K_2)
= 100*148,607.58 / (((145 - 2.49) + 3.5363*2.49)*(3,435 / 2)*1.727)
= 33.111 \text{ kg/cm}^2
```

As $f_c \le 1,455.299 \text{ kg/cm}^2$ the base plate width is satisfactory.

$$k = 1 / (1 + f_s / (n*f_c))$$

= 1 / (1 + 187.378 / (3.5363*33.111))
= 0.384574

Base plate required thickness (empty, corroded + Wind)

From Brownell & Young, Table 10.3:, 1/b = 0.2419

$$\begin{split} \mathbf{M_x} &= 0.01*0.0057*33.111*417.49^2 = 326.7 \text{ kg}_f \\ \mathbf{M_y} &= 0.01*-0.4477*33.111*101^2 = -1,512.3 \text{ kg}_f \\ t_r &= (6*M_{max} / S_p)^{0.5} \\ &= (100*6*1,512.31 / 1,454.999)^{0.5} \\ &= 24.97 \text{ mm} \end{split}$$

The base plate thickness is satisfactory.

Check the compression ring for bolt load (Jawad & Farr equation 12.13)

```
t_{cr} = (3.91*F / (S_v*(2*b / w+w / (2*l)-d_b*(2 / w+1 / (2*l))))^{0.5}
= (100*3.91*2.5\overset{\circ}{1}6.41 / (2,089.998*(2*141 / 105+105 / (2*76)-62*(2 / 105+1 / (2*76)))))^{0.5}
= 16.23 \text{ mm}
```

The compression ring thickness is satisfactory.

Check gusset plate thickness (Bednar chapter 4.3)

Radius of gyration of gusset

```
r = 0.289 * t_0
= 0.289*16
= 4.62 \text{ mm}
```

Cross sectional area of one gusset

$$A_g = t_g*(b - 0.25*25.41)$$

= 0.01*16*(101 - 0.25*25.41)
= 15.144 cm²

Gusset allowable stress

$$S_a = 0.07031*(17000 - 0.485*(h / r)^2)$$

= 1,195.27 - 0.0341*(240 / 4.62)^2
= 1,103.357 kg_p/cm²

Gusset axial stress due to bolt load

$$S_g = F / (2 * A_g)$$

= 2,516.41 / (2 * 15.144)
= 83.083 kg/cm²

The gusset plate thickness is satisfactory.

Check skirt thickness for bolt load reaction (Brownell & Young eq. 10.59)

```
t = 1.76*(F*1/(M_b*h_c*S_s))^{2/3}*(OD_s/2)^{1/3}
= 1.76*(100*2,516.41*76/(530.62*303*1,651.939))^{2/3}*(3,378/2)^{1/3}
= 3.63 \text{ mm}
```

The skirt thickness is satisfactory.

Anchor bolt load (empty, new + Wind)

Required area per bolt = P / $S_b = 4.3353$ cm²

The area provided (13.4296 cm²) by the specified anchor bolt is adequate.

Support calculations (Jawad & Farr chapter 12, empty, new + Wind)

$$E_c = 57,000*0.265154*Sqr(1,455.299) = 576,567.179 \text{ kg/cm}^2$$

$$n = E_s/E_c = 2,038,900.1 / 576,567.179 = 3.5363$$

$$t_s = (N*A_b) / (\pi*d)$$

= (20*1,342.9593) / (\pi*3,435)
= 2.49 mm

From table 12.4 for k = 0.387274:

$$K_1 = 2.2516, \quad K_2 = 1.7337$$

 $L_1 = 15.241, \quad L_2 = 64.69, \quad \begin{array}{c} L_3 = \\ 41.3467 \end{array}$

Total tensile force on bolting

```
T = (M - 0.6*W *(L_1 + L_3)) / (L_2 + L_3)
= (161,426 - 0.6*131,452.08*(0.3871 + 1.0502)) / (1.6431 + 1.0502)
= 17,844.93 \text{ kg}_{\text{f}}
```

Tensile stress in bolts use the larger of f_s or bolt preload = 0 kg/cm^2

```
f_s = T / (t_s * (d/2) * K_1)
= 100*17,844.93 / (2.49 * (3,435 / 2) * 2.2516)
= 185.398 \text{ kg/cm}^2
```

Total compressive load on foundation

```
C_c = T + W + Bolt Preload
= 17,844.93 + 131,452.08 + 0
= 149,297 \text{ kg}_{\text{f}}
```

Foundation bearing stress

```
f_c = C_c / (((t_c - t_s) + n * t_s) * (d / 2) * K_2)
= 100*149,297 / (((145 - 2.49) + 3.5363*2.49)*(3,435 / 2)*1.7337)
= 33.137 \text{ kg/cm}^2
```

As $f_c \le 1,455.299 \text{ kg}/\text{cm}^2$ the base plate width is satisfactory.

$$k = 1 / (1 + f_s / (n*f_c))$$

= 1 / (1 + 185.398 / (3.5363*33.137))
= 0.387274

Base plate required thickness (empty, new + Wind)

From Brownell & Young, Table 10.3:, 1/b = 0.2419

$$\begin{split} \mathbf{M_x} &= 0.01*0.0057*33.137*417.49^2 = 326.9 \text{ kg}_f \\ \mathbf{M_y} &= 0.01*-0.4477*33.137*101^2 = -1,513.5 \text{ kg}_f \\ t_r &= (6*\mathbf{M_{max}} / \mathbf{S_p})^{0.5} \\ &= (100*6*1,513.48 / 1,454.999)^{0.5} \\ &= 24.98 \text{ mm} \end{split}$$

The base plate thickness is satisfactory.

Check the compression ring for bolt load (Jawad & Farr equation 12.13)

```
t_{cr} = (3.91*F / (S_v*(2*b / w+w / (2*l)-d_b*(2 / w+1 / (2*l))))^{0.5}
= (100*3.91*2.489.83 / (2,089.998*(2*141 / 105+105 / (2*76)-62*(2 / 105+1 / (2*76)))))^{0.5}
= 16.14 \text{ mm}
```

The compression ring thickness is satisfactory.

Check gusset plate thickness (Bednar chapter 4.3)

Radius of gyration of gusset

$$r = 0.289 * t_{o}$$

```
=0.289*16
= 4.62 \text{ mm}
```

Cross sectional area of one gusset

```
A_g = t_g^*(b - 0.25*25.41)
= 0.01*16*(101 - 0.25*25.41)
= 15.144 \text{ cm}^2
```

Gusset allowable stress

```
S_a = 0.07031*(17000 - 0.485*(h/r)^2)
= 1,195.27 - 0.0341*(240 / 4.62)^{2}
= 1,103.357 \text{ kg/cm}^2
```

Gusset axial stress due to bolt load

$$S_g = F / (2 * A_g)$$

= 2,489.83 / (2 * 15.144)
= 82.205 kg/cm²

The gusset plate thickness is satisfactory.

Check skirt thickness for bolt load reaction (Brownell & Young eq. 10.59)

```
t = 1.76*(F*1/(M_h*h_c*S_s))^{2/3}*(OD_s/2)^{1/3}
= 1.76*(100*2,489.83*76/(530.62*303*1,651.939))^{2/3}*(3,378/2)^{1/3}
= 3.6 \text{ mm}
```

The skirt thickness is satisfactory.

Anchor bolt load (test, new + Wind)

```
P = -0.6*W / N + 4 * M / (N*BC)
= -0.6*387,742.31 / 20 + 4 * 10,664.9 / (20*3.53)
= -11,028.03 \text{ kg}_{\text{f}}
```

The anchor bolts are satisfactory (no net uplift on anchor bolt)

Foundation bearing stress (test, new + Wind)

```
A_c = \pi^* (D_o^2 - D_i^2) / 4 - N^* \pi^* d_b^2 / 4
=\pi^*(358^2 - 329^2) / 4 - 20*\pi^*6.2^2 / 4
= 15,043.67 \text{ cm}^2
I_c = \pi^* (D_0^4 - D_i^4) / 64
=\pi^*(358^4 - 329^4) / 64
= 2.312E+08 \text{ cm}^4
f_c = N*A_b*Preload / A_c + W / A_c + M / 2*D_o / I_c
=20*13.4296*0 / 15,043.67 + 387,742.31 / 15,043.67 + 10*10,664.9 / 2*3,580 / 2.312E+08
= 26.6 \text{ kg/cm}^2
```

As $f_c \le 1,455.299 \text{ kg/cm}^2$ the base plate width is satisfactory.

Base plate required thickness (test, new + Wind)

From Brownell & Young, Table 10.3:, 1/b = 0.2419

```
M_x = 0.01*0.0057*26.6*417.49^2 = 262.4 \text{ kg}_f
M_v = 0.01*-0.4477*26.6*101^2 = -1,214.9 \text{ kg}_f
t_r = (6*M_{max} / S_p)^{0.5}
= (100*6*1,214.93 / 1,454.999)^{0.5}
= 22.38 \text{ mm}
```

The base plate thickness is satisfactory.

Check the compression ring for bolt load (Jawad & Farr equation 12.13)

```
t_{cr} = (3.91*F / (S_v*(2*b / w+w / (2*l)-d_b*(2 / w+1 / (2*l))))^{0.5}
= (100*3.91*0 / (2,089.998*(2*141 / 105+105 / (2*76)-62*(2 / 105+1 / (2*76)))))^{0.5}
```

The compression ring thickness is satisfactory.

Check gusset plate thickness (Bednar chapter 4.3)

Radius of gyration of gusset

```
r = 0.289 * t_0
= 0.289*16
= 4.62 \text{ mm}
```

Cross sectional area of one gusset

$$\begin{split} A_g &= t_g*(b - 0.25*25.41) \\ &= 0.01*16*(101 - 0.25*25.41) \\ &= 15.144 \text{ cm}^2 \end{split}$$

Gusset allowable stress

$$S_a = 0.07031*(17000 - 0.485*(h / r)^2)$$

= 1,195.27 - 0.0341*(240 / 4.62)²
= 1,103.357 kg_b/cm²

Gusset axial stress due to bolt load

$$S_g = F / (2 * A_g)$$

= 0 / (2 * 15.144)
= 0 kg/cm²

The gusset plate thickness is satisfactory.

Check skirt thickness for bolt load reaction (Brownell & Young eq. 10.59)

```
t = 1.76*(F*1/(M_b*h_c*S_s))^{2/3}*(OD_s/2)^{1/3}
= 1.76*(100*0*76 / (530.62*303*1,651.939))^{2/3}*(3,378 / 2)^{1/3}
=0 \text{ mm}
```

The skirt thickness is satisfactory.

Note: No local skirt reaction is present because the foundation resists the initial bolt preload.

Anchor bolt load (vacuum, corroded + Wind)

```
P = -0.6*W / N + 4 * M / (N*BC)
= -0.6*175,795.42 / 20 + 4 * 161,426.1 / (20*3.53)
= 3,872.09 \text{ kg}_{\text{f}}
```

Required area per bolt = P / $S_b = 3.2267$ cm²

The area provided (11.5516 cm²) by the specified anchor bolt is adequate.

Support calculations (Jawad & Farr chapter 12, vacuum, corroded + Wind)

Base plate width, t_c: 145 mm Average base plate diameter, d: 3,435 Base plate elastic modulus, E_s: 2,038,900.1 kg_f/cm² Base plate yield stress, S_v : $2,089.998 \text{ kg}/\text{cm}^2$

 $E_c = 57,000*0.265154*Sqr(1,455.299) = 576,567.179 \text{ kg/cm}^2$

 $n = E_s/E_c = 2,038,900.1 / 576,567.179 = 3.5363$

$$t_s = (N*A_b) / (\pi*d)$$

= (20*1,342.9593) / (\pi*3,435)
= 2.49 mm

From table 12.4 for k = 0.539529:

$$K_1 = 1.9087, K_2 = 2.0895$$

 $L_1 = -5.3498, L_2 = 48.997, L_3 = 57.1956$

Total tensile force on bolting

$$\begin{split} T &= (M - 0.6*W * (L_1 + L_3)) / (L_2 + L_3) \\ &= (161,426.1 - 0.6*175,795.42 * (-0.1359 + 1.4528)) / (1.2445 + 1.4528) \\ &= 8,351.02 \text{ kg}_{\text{f}} \end{split}$$

Tensile stress in bolts use the larger of f_s or bolt preload = 0 kg/cm^2

$$f_s = T / (t_s * (d/2) * K_1)$$

= 100*8,351.02 / (2.49 * (3,435 / 2) * 1.9087)
= 102.349 kg_b/cm²

Total compressive load on foundation

$$C_c = T + W + Bolt Preload$$

= 8,351.02 + 175,795.42 + 0
= 184,146.44 kg_f

Foundation bearing stress

$$\begin{split} &f_c = C_c \, / \, (((t_c - t_s) + n^*t_s)^* (d \, / \, 2)^* K_2) \\ &= 100^* 184,146.44 \, / \, (((145 - 2.49) + 3.5363^* 2.49)^* (3,435 \, / \, 2)^* 2.0895) \\ &= \underline{33.912} \, \, \text{kg/cm}^2 \end{split}$$

As $f_c \le 1,455.299 \text{ kg/cm}^2$ the base plate width is satisfactory.

```
k = 1 / (1 + f_s / (n * f_c))
= 1 / (1 + 102.349 / (3.5363*33.912))
= 0.539529
```

Base plate required thickness (vacuum, corroded + Wind)

From Brownell & Young, Table 10.3:, 1/b = 0.2419

$$M_x = 0.01*0.0057*33.912*417.49^2 = 334.5 \text{ kg}_f$$

$$M_v = 0.01*-0.4477*33.912*101^2 = -1,548.9 \text{ kg}_f$$

$$t_r = (6*M_{max} / S_p)^{0.5}$$

= $(100*6*1,548.88 / 1,454.999)^{0.5}$
= 25.27 mm

The base plate thickness is satisfactory.

Check the compression ring for bolt load (Jawad & Farr equation 12.13)

```
t_{cr} = (3.91*F / (S_v*(2*b / w+w / (2*l)-d_b*(2 / w+1 / (2*l))))^{0.5}
= (100*3.91*1,374.51 / (2,089.998*(2*141 / 105+105 / (2*76)-62*(2 / 105+1 / (2*76)))))^{0.5}
= 11.99 \text{ mm}
```

The compression ring thickness is satisfactory.

Check gusset plate thickness (Bednar chapter 4.3)

Radius of gyration of gusset

$$r = 0.289*t_g$$

= 0.289*16
= 4.62 mm

Cross sectional area of one gusset

$$A_g = t_g*(b - 0.25*25.41)$$

= 0.01*16*(101 - 0.25*25.41)
= 15.144 cm²

Gusset allowable stress

$$\begin{split} S_a &= 0.07031*(17000 - 0.485*(h / r)^2) \\ &= 1,195.27 - 0.0341*(240 / 4.62)^2 \\ &= 1,103.357 \text{ kg}_f/\text{cm}^2 \end{split}$$

Gusset axial stress due to bolt load

$$S_g = F / (2 * A_g)$$

= 1,374.51 / (2 * 15.144)
= 45.381 kg/cm²

The gusset plate thickness is satisfactory.

Check skirt thickness for bolt load reaction (Brownell & Young eq. 10.59)

```
t = 1.76*(F*1/(M_h*h_c*S_s))^{2/3}*(OD_s/2)^{1/3}
= 1.76*(100*1,374.51*76/(530.62*303*1,651.939))^{2/3}*(3,378/2)^{1/3}
= 2.42 \text{ mm}
```

The skirt thickness is satisfactory.

Anchor bolt load (operating, corroded + Vortex shedding)

```
\begin{split} P &= -0.6*\text{W} \ / \ \text{N} + 4*\text{M} \ / \ (\text{N*BC}) \\ &= -0.6*175,795.42 \ / \ 20 + 4*241,086.5 \ / \ (20*3.53) \\ &= 8,385.43 \ \text{kg}_{\text{f}} \end{split}
```

Required area per bolt = P / $S_b = \underline{6.9879}$ cm²

The area provided (11.5516 cm²) by the specified anchor bolt is adequate.

Support calculations (Jawad & Farr chapter 12, operating, corroded + Vortex shedding)

Base plate width, t_c : 145 mm Average base plate diameter, d: 3,435 mm Base plate elastic modulus, E_s : 2,038,900.1 kg_f/cm² Base plate yield stress, S_y : 2,089.998 kg_f/cm²

 $E_c = 57,000*0.265154*Sqr(1,455.299) = 576,567.179 \text{ kg/cm}^2$

$$n = E_s/E_c = 2,038,900.1 / 576,567.179 = 3.5363$$

$$t_s = (N*A_b) / (\pi*d)$$

= (20*1,342.9593) / (\pi*3,435)
= 2.49 mm

From table 12.4 for k = 0.349197:

$$K_1 = 2.335,$$
 $K_2 = 1.6382$
 $L_1 = 20.3967,$ $L_2 = 68.5584,$ $L_3 = 37.3352$

Total tensile force on bolting

$$\begin{split} T &= \left(M - 0.6*W * (L_1 + L_3)\right) / \left(L_2 + L_3\right) \\ &= \left(241,086.5 - 0.6*175,795.42 * (0.5181 + 0.9483)\right) / \left(1.7414 + 0.9483\right) \\ &= 32,128.5 \text{ kg}_{\text{f}} \end{split}$$

Tensile stress in bolts use the larger of f_s or bolt preload = $0 \text{ kg}/\text{cm}^2$

$$f_s = T / (t_s * (d / 2) * K_1)$$

= 100*32,128.5 / (2.49 * (3,435 / 2) * 2.335)
= 321.877 kg/cm²

Total compressive load on foundation

$$C_c = T + W + Bolt Preload$$

= 32,128.5 + 175,795.42 + 0
= 207,923.92 kg_f

Foundation bearing stress

```
\begin{split} &f_c = C_c \, / \, (((t_c - t_s) + n^*t_s)^*(d \, / \, 2)^*K_2) \\ &= 100^*207,923.92 \, / \, (((145 - 2.49) + 3.5363^*2.49)^*(3,435 \, / \, 2)^*1.6382) \\ &= \underline{48.838} \, \, \text{kg/cm}^2 \end{split}
```

As $f_c \le 1,455.299 \text{ kg}_f/\text{cm}^2$ the base plate width is satisfactory.

$$k = 1 / (1 + f_s / (n*f_c))$$

= 1 / (1 + 321.877 / (3.5363*48.838))
= 0.349197

Base plate required thickness (operating, corroded + Vortex shedding)

From Brownell & Young, Table 10.3:, 1/b = 0.2419

$$\begin{aligned} \mathbf{M_x} &= 0.01*0.0057*48.838*417.49^2 = 481.8 \text{ kg}_f \\ \mathbf{M_y} &= 0.01*-0.4477*48.838*101^2 = -2,230.6 \text{ kg}_f \\ t_r &= (6*M_{max} / S_p)^{0.5} \\ &= (100*6*2,230.65 / 1,454.999)^{0.5} \end{aligned}$$

The base plate thickness is satisfactory.

Check the compression ring for bolt load (Jawad & Farr equation 12.13)

```
t_{cr} = (3.91*F/(S_v*(2*b/w+w/(2*l)-d_b*(2/w+1/(2*l))))^{0.5}
= (100*3.91*4,322.68 / (2,089.998*(2*141 / 105+105 / (2*76)-62*(2 / 105+1 / (2*76)))))^{0.5}
= 21.27 \text{ mm}
```

The compression ring thickness is satisfactory.

Check gusset plate thickness (Bednar chapter 4.3)

Radius of gyration of gusset

```
r = 0.289 * t_0
= 0.289*16
= 4.62 \text{ mm}
```

= 30.33 mm

Cross sectional area of one gusset

$$A_g = t_g*(b - 0.25*25.41)$$

= 0.01*16*(101 - 0.25*25.41)
= 15.144 cm²

Gusset allowable stress

$$S_a = 0.07031*(17000 - 0.485*(h / r)^2)$$

= 1,195.27 - 0.0341*(240 / 4.62)²
= 1,103.357 kg_b/cm²

Gusset axial stress due to bolt load

$$S_g = F / (2 * A_g)$$

= 4,322.68 / (2 * 15.144)
= 142.719 kg/cm²

The gusset plate thickness is satisfactory.

Check skirt thickness for bolt load reaction (Brownell & Young eq. 10.59)

```
t = 1.76*(F*1/(M_h*h_c*S_s))^{2/3}*(OD_s/2)^{1/3}
= 1.76*(100*4,322.68*76 / (530.62*303*1,651.939))^{2/3}*(3,378 / 2)^{1/3}
```

= 5.2 mm

The skirt thickness is satisfactory.

Anchor bolt load (empty, corroded + Vortex shedding)

```
P = -0.6*W / N + 4*M / (N*BC)
= -0.6*130,524.56 / 20 + 4 * 292,613.1 / (20*3.53)
= 12,662.92 \text{ kg}_{\text{f}}
```

Required area per bolt = P / $S_b = 10.5524$ cm²

The area provided (11.5516 cm²) by the specified anchor bolt is adequate.

Support calculations (Jawad & Farr chapter 12, empty, corroded + Vortex shedding)

145 Base plate width, t_c: mm Average base plate diameter, d: 3,435 Base plate elastic modulus, E_s: 2,038,900.1 kg_f/cm² Base plate yield stress, S_v : $2,089.998 \text{ kg}/\text{cm}^2$

 $E_c = 57,000*0.265154*Sqr(1,455.299) = 576,567.179 \text{ kg/cm}^2$

$$n = E_s/E_c = 2,038,900.1 / 576,567.179 = 3.5363$$

$$t_s = (N*A_b) / (\pi*d)$$

= (20*1,342.9593) / (\pi*3,435)
= 2.49 mm

From table 12.4 for k = 0.248199:

$$K_1 = 2.555,$$
 $K_2 = 1.3644$ $L_1 = 34.0562,$ $L_2 = 78.6518,$ $L_3 = 26.6373$

Total tensile force on bolting

$$\begin{split} T &= (M - 0.6*W * (L_1 + L_3)) / (L_2 + L_3) \\ &= (292,613.1 - 0.6*130,524.56 * (0.865 + 0.6766)) / (1.9978 + 0.6766) \\ &= 64,270.75 \text{ kg}_f \end{split}$$

Tensile stress in bolts use the larger of f_s or bolt preload = $0 \text{ kg}_t/\text{cm}^2$

$$f_s = T / (t_s * (d/2) * K_1)$$

= 100*64,270.75 / (2.49 * (3,435 / 2) * 2.555)
= 588.46 kg/cm²

Total compressive load on foundation

$$C_c = T + W + Bolt Preload$$

= 64,270.75 + 130,524.56 + 0
= 194,795.31 kg_f

Foundation bearing stress

```
f_c = C_c / (((t_c - t_s) + n * t_s) * (d / 2) * K_2)
= 100*194,795.31 / (((145 - 2.49) + 3.5363*2.49)*(3,435 / 2)*1.3644)
= 54.937 \text{ kg}/\text{cm}^2
```

As $f_c \le 1,455.299 \text{ kg}/\text{cm}^2$ the base plate width is satisfactory.

$$k = 1 / (1 + f_s / (n*f_c))$$

= 1 / (1 + 588.46 / (3.5363*54.937))
= 0.248199

Base plate required thickness (empty, corroded + Vortex shedding)

From Brownell & Young, Table 10.3:, 1/b = 0.2419

$$\begin{aligned} \mathbf{M}_{\mathbf{x}} &= 0.01*0.0057*54.937*417.49^2 = 542 \text{ kg}_{\mathbf{f}} \\ \mathbf{M}_{\mathbf{y}} &= 0.01*-0.4477*54.937*101^2 = -2,509.2 \text{ kg}_{\mathbf{f}} \\ \mathbf{t}_{\mathbf{r}} &= (6*\mathbf{M}_{\text{max}} / \mathbf{S}_{\mathbf{p}})^{0.5} \\ &= (100*6*2,509.19 / 1,454.999)^{0.5} \end{aligned}$$

The base plate thickness is satisfactory.

Check the compression ring for bolt load (Jawad & Farr equation 12.13)

```
t_{cr} = (3.91*F / (S_v*(2*b / w+w / (2*l)-d_b*(2 / w+1 / (2*l))))^{0.5}
= (100*3.91*7.902.78 / (2,089.998*(2*141 / 105+105 / (2*76)-62*(2 / 105+1 / (2*76)))))^{0.5}
= 28.76 \text{ mm}
```

The compression ring thickness is satisfactory.

Check gusset plate thickness (Bednar chapter 4.3)

Radius of gyration of gusset

```
r = 0.289 * t_o
= 0.289*16
= 4.62 \text{ mm}
```

= 32.17 mm

Cross sectional area of one gusset

$$A_g = t_g*(b - 0.25*25.41)$$

= 0.01*16*(101 - 0.25*25.41)
= 15.144 cm²

Gusset allowable stress

$$\begin{split} S_a &= 0.07031*(17000 - 0.485*(h / r)^2) \\ &= 1,195.27 - 0.0341*(240 / 4.62)^2 \\ &= 1,103.357 \text{ kg}_f/\text{cm}^2 \end{split}$$

Gusset axial stress due to bolt load

$$S_g = F / (2 * A_g)$$

= 7,902.78 / (2 * 15.144)
= 260.921 kg/cm²

The gusset plate thickness is satisfactory.

Check skirt thickness for bolt load reaction (Brownell & Young eq. 10.59)

```
t = 1.76*(F*1/(M_b*h_c*S_s))^{2/3}*(OD_s/2)^{1/3}
= 1.76*(100*7,902.78*76 / (530.62*303*1,651.939))^{2/3}*(3,378 / 2)^{1/3}
= 7.78 \text{ mm}
```

The skirt thickness is satisfactory.

Anchor bolt load (vacuum, corroded + Vortex shedding)

```
P = -0.6*W / N + 4 * M / (N*BC)
= -0.6*175,795.42 / 20 + 4 * 241,180.8 / (20*3.53)
= 8,390.78 \text{ kg}_{c}
```

Required area per bolt = P / $S_b = 6.9923$ cm²

The area provided (11.5516 cm²) by the specified anchor bolt is adequate.

Support calculations (Jawad & Farr chapter 12, vacuum, corroded + Vortex shedding)

Base plate width, t_c: 145 mm Average base plate diameter, d: 3,435 mm Base plate elastic modulus, E_s: 2,038,900.1 kg_f/cm² Base plate yield stress, S_v: $2,089.998 \text{ kg}_{e}/\text{cm}^{2}$

 $E_c = 57,000*0.265154*Sqr(1,455.299) = 576,567.179 \text{ kg/cm}^2$

$$n = E_s/E_c = 2,038,900.1 / 576,567.179 = 3.5363$$

$$t_s = (N*A_b) / (\pi*d)$$

= (20*1,342.9593) / (\pi*3,435)
= 2.49 mm

From table 12.4 for k = 0.349076:

$$K_1 = 2.3353, K_2 = 1.6379$$

 $L_1 = 20.413, L_2 = 68.5707, L_3 = 37.3224$

Total tensile force on bolting

$$\begin{split} T &= (M - 0.6*W * (L_1 + L_3)) / (L_2 + L_3) \\ &= (241,180.8 - 0.6*175,795.42 * (0.5185 + 0.948)) / (1.7417 + 0.948) \\ &= 32,160.15 \ \mathrm{kg_f} \end{split}$$

Tensile stress in bolts use the larger of f_s or bolt preload = 0 kg/cm^2

$$f_s = T / (t_s * (d/2) * K_1)$$
= 100*32,160.15 / (2.49 * (3,435 / 2) * 2.3353)
= 322.158 kg₁/cm²

Total compressive load on foundation

$$C_c = T + W + Bolt Preload$$

= 32,160.15 + 175,795.42 + 0
= 207,955.57 kg_f

Foundation bearing stress

$$f_c = C_c / (((t_c - t_s) + n * t_s) * (d / 2) * K_2)$$

=
$$100*207,955.57 / (((145 - 2.49) + 3.5363*2.49)*(3,435 / 2)*1.6379)$$

= 48.855 kg/cm^2

As $f_c \le 1,455.299 \text{ kg}/\text{cm}^2$ the base plate width is satisfactory.

$$k = 1 / (1 + f_s / (n*f_c))$$

= 1 / (1 + 322.158 / (3.5363*48.855))
= 0.349076

Base plate required thickness (vacuum, corroded + Vortex shedding)

From Brownell & Young, Table 10.3:, 1/b = 0.2419

$$\begin{split} \mathbf{M}_{\mathbf{x}} &= 0.01*0.0057*48.855*417.49^2 = 482 \text{ kg}_{\mathbf{f}} \\ \mathbf{M}_{\mathbf{y}} &= 0.01*-0.4477*48.855*101^2 = -2,231.4 \text{ kg}_{\mathbf{f}} \\ \mathbf{t}_{\mathbf{r}} &= (6*\mathbf{M}_{\text{max}} / \mathbf{S}_{\mathbf{p}})^{0.5} \\ &= (100*6*2,231.41 / 1,454.999)^{0.5} \end{split}$$

The base plate thickness is satisfactory.

Check the compression ring for bolt load (Jawad & Farr equation 12.13)

```
t_{cr} = (3.91*F / (S_v*(2*b / w+w / (2*l)-d_b*(2 / w+1 / (2*l)))))^{0.5}
= (100*3.91*4,326.45 / (2,089.998*(2*141 / 105+105 / (2*76)-62*(2 / 105+1 / (2*76)))))^{0.5}
= 21.28 \text{ mm}
```

The compression ring thickness is satisfactory.

Check gusset plate thickness (Bednar chapter 4.3)

Radius of gyration of gusset

$$r = 0.289*t_g$$

= 0.289*16
= 4.62 mm

= 30.33 mm

Cross sectional area of one gusset

$$A_g = t_g*(b - 0.25*25.41)$$

= 0.01*16*(101 - 0.25*25.41)
= 15.144 cm²

Gusset allowable stress

$$\begin{split} S_a &= 0.07031*(17000 - 0.485*(h / r)^2) \\ &= 1,195.27 - 0.0341*(240 / 4.62)^2 \\ &= 1,103.357 \ kg_p/cm^2 \end{split}$$

Gusset axial stress due to bolt load

$$S_g = F / (2 * A_g)$$

= 4,326.45 / (2 * 15.144)
= 142.844 kg/cm²

The gusset plate thickness is satisfactory.

Check skirt thickness for bolt load reaction (Brownell & Young eq. 10.59)

$$\begin{split} t &= 1.76*(F*1/(M_b*h_c*S_s))^{2/3}*(OD_s/2)^{1/3} \\ &= 1.76*(100*4,326.45*76/(530.62*303*1,651.939))^{2/3}*(3,378/2)^{1/3} \end{split}$$
= 5.21 mm

The skirt thickness is satisfactory.

Wind Code

Building Code: ASCE 7-05						
Elevation of base above grade		0.98 ft (0.30 m)				
Increase effective outer diameter	by	2.10 ft (0.64 m)				
Wind Force Coefficient, Cf		0.7000				
Occupancy Category (Table 1-1)		II				
Basic Wind Speed, V	76.21 mph (122.6540 km/h)					
Importance Factor, I		1.0000				
Exposure Category		С				
Wind Directionality Factor, Kd	0.9500					
Top Deflection Limit	5.00 mm per m.					
Topographic Factor, Kzt	1.0000					
Enforce min. loading of 0.48 kPa	Yes					
Hazardous, toxic, or explosive co	No					
Vess	sel Characteristics					
Height, h	L	122.4078 ft (37.3100 m)				
Effective Width, b	Operating, Corroded	11.4627 ft (3.4939 m)				
Effective vividing to	Empty, Corroded	11.4627 ft (3.4939 m)				
	Operating, Corroded	1.1919 Hz				
Fundamental Frequency, n ₁	1.3185 Hz					
	1.1933 Hz					
	0.0263					
Damping coefficient, β	Empty, Corroded	0.0217				
	Vacuum, Corroded					

Vortex Shedding Calculations Table Lookup Values

2.4.1 Basic Load Combinations for Allowable Stress Design						
Load combinations considered in accordance with ASCE section 2.4.1:						
5.	$D+P+P_s+W$					
7. $0.6D + P + P_s + W$						
Para	meter Description					
D	= Dead load					
P	= Internal or external pressure load					
$\frac{P_s}{}$ = Static head load						
W	W = Wind load					

Wind Deflection Reports:

Operating, Corroded

Empty, Corroded

Vacuum, Corroded

Operating, Corroded, Vortex Shedding

Empty, Corroded, Vortex Shedding

Vacuum, Corroded, Vortex Shedding

Wind Pressure Calculations

Wind Pressures at Critical Speed: Operating, Corroded

Wind Pressures at Critical Speed: Empty, Corroded

Wind Pressures at Critical Speed: Vacuum, Corroded

	Wind Deflection Report: Operating, Corroded								
Component	Elevation of Bottom above Base (mm)	Effective OD (m)	Elastic Modulus E (kg/cm²)	Inertia I (m ⁴)	Platform Wind Shear at Bottom (kg _f)	Total Wind Shear at Bottom (kg _f)	Bending Moment at Bottom (kg _f -m)	Deflection at Top (mm)	
Top Head	36,422	4.17	1,956,632.7	*		177.1	3,419.5	17.33	
Top existing shell	17,540	4.17	1,956,632.7	0.1649		4,334.4	51,607.6	16.77	
New shell	14,510	4.19	1,956,632.7	0.333		4,954.1	65,679.7	5.65	
Bottom existing shell	8,138	4.17	1,956,632.7	0.2093		6,250.5	103,236.4	4.16	
Bottom Head (top)	7,986	4.17	1,956,632.7	*		6,281.4	104,188.8	1.51	
Support Skirt #1	7,010	4.12	2,065,538.5	0.1262		6,472.8	111,233.1	1.46	
Support Skirt #2		4.12	2,065,538.5	0.1262		7,847.6	161,426.1	1.14	
		*Momen	nt of Inertia I varies of	over the le	ngth of the compon	ent			

Wind Deflection Report: Empty, Corroded								
Component	Elevation of Bottom above Base (mm)	Effective OD (m)	Elastic Modulus E (kg/cm²)	Inertia I (m ⁴)	Platform Wind Shear at Bottom (kg _f)	Total Wind Shear at Bottom (kg _f)	Bending Moment at Bottom (kg _f -m)	Deflection at Top (mm)
Top Head	36,422	4.17	2,068,393.7	*		177.1	3,419.5	17
Top existing shell	17,540	4.17	2,068,393.7	0.1649		4,334.4	51,607.6	16.45
New shell	14,510	4.19	2,068,393.7	0.333		4,954.1	65,679.7	5.59
Bottom existing shell	8,138	4.17	2,068,393.7	0.2093		6,250.5	103,236.4	4.13
Bottom Head (top)	7,986	4.17	2,068,393.7	*		6,281.4	104,188.8	1.51
Support Skirt #1	7,010	4.12	2,068,393.7	0.1262		6,472.8	111,233.1	1.45
Support Skirt #2		4.12	2,068,393.7	0.1262		7,847.6	161,426.1	1.14
		*Momen	nt of Inertia I varies	over the le	ngth of the compon	ent		

Wind Deflection Report: Vacuum, Corroded								
Component	Elevation of Bottom above Base (mm)	Effective OD (m)	Elastic Modulus E (kg/cm²)	Inertia I (m ⁴)	Platform Wind Shear at Bottom (kg _f)	Total Wind Shear at Bottom (kg _f)	Bending Moment at Bottom (kg _f -m)	Deflection at Top (mm)
Top Head	36,422	4.17	1,973,152.1	*		177.1	3,419.5	17.28
Top existing shell	17,540	4.17	1,973,152.1	0.1649		4,334.4	51,607.6	16.73
New shell	14,510	4.19	1,973,152.1	0.333		4,954.1	65,679.7	5.64
Bottom existing shell	8,138	4.17	1,973,152.1	0.2093		6,250.5	103,236.4	4.16
Bottom Head (top)	7,986	4.17	1,973,152.1	*		6,281.4	104,188.8	1.51
Support Skirt #1	7,010	4.12	2,065,538.5	0.1262		6,472.8	111,233.1	1.46
Support Skirt #2		4.12	2,065,538.5	0.1262		7,847.6	161,426.1	1.14
		*Momen	nt of Inertia I varies	over the le	ngth of the compon	ent		

Wind Deflection Report: Operating, Corroded, Vortex Shedding								
Component	Elevation of Bottom above Base (mm)	Effective OD (m)	Elastic Modulus E (kg/cm²)	Inertia I (m ⁴)	Platform Wind Shear at Bottom (kg _f)	Total Wind Shear at Bottom (kg _f)	Bending Moment at Bottom (kg _f -m)	Deflection at Top (mm)
Top Head	36,422	4.17	1,956,632.7	*		377.1	3,514.5	27.04
Top existing shell	17,540	4.17	1,956,632.7	0.1649		6,876.8	86,673.6	26.17
New shell	14,510	4.19	1,956,632.7	0.333		7,496.6	108,449.3	8.67
Bottom existing shell	8,138	4.17	1,956,632.7	0.2093		8,792.9	162,206.4	6.37
Bottom Head (top)	7,986	4.17	1,956,632.7	*		8,823.8	163,545.3	2.29
Support Skirt #1	7,010	4.12	2,065,538.5	0.1262		9,015.2	173,071	2.21
Support Skirt #2		4.12	2,065,538.5	0.1262		10,390.1	241,086.6	1.73
	•	*Momen	at of Inertia I varies of	over the le	ngth of the compon	ent		

Wind Deflection Report: Empty, Corroded, Vortex Shedding								
Component	Elevation of Bottom above Base (mm)	Effective OD (m)	Elastic Modulus E (kg/cm²)	Inertia I (m ⁴)	Platform Wind Shear at Bottom (kg _f)	Total Wind Shear at Bottom (kg _f)	Bending Moment at Bottom (kgf-m)	Deflection at Top (mm)
Top Head	36,422	4.17	2,068,393.7	*		499.8	3,569.7	32.64
Top existing shell	17,540	4.17	2,068,393.7	0.1649		8,527.7	109,243.9	31.58
New shell	14,510	4.19	2,068,393.7	0.333		9,147.4	136,021.8	10.52
Bottom existing shell	8,138	4.17	2,068,393.7	0.2093		10,443.8	200,298.2	7.73
Bottom Head (top)	7,986	4.17	2,068,393.7	*		10,474.7	201,888.1	2.79
Support Skirt #1	7,010	4.12	2,068,393.7	0.1262		10,666.1	213,025	2.69
Support Skirt #2		4.12	2,068,393.7	0.1262		12,040.9	292,613.2	2.1
		*Momen	t of Inertia I varies	over the le	ngth of the compon	ent		

Rev	•	1

Wind Deflection Report: Vacuum, Corroded, Vortex Shedding								
Component	Elevation of Bottom above Base (mm)	Effective OD (m)	Elastic Modulus E (kg/cm²)	Inertia I (m ⁴)	Platform Wind Shear at Bottom (kg _f)	Total Wind Shear at Bottom (kg _f)	Bending Moment at Bottom (kg _f -m)	Deflection at Top (mm)
Top Head	36,422	4.17	1,973,152.1	*		377.4	3,514.6	26.97
Top existing shell	17,540	4.17	1,973,152.1	0.1649		6,879.9	86,714.9	26.1
New shell	14,510	4.19	1,973,152.1	0.333		7,499.6	108,499.8	8.66
Bottom existing shell	8,138	4.17	1,973,152.1	0.2093		8,796	162,276.2	6.36
Bottom Head (top)	7,986	4.17	1,973,152.1	*		8,826.8	163,615.5	2.29
Support Skirt #1	7,010	4.12	2,065,538.5	0.1262		9,018.2	173,144.2	2.21
Support Skirt #2		4.12	2,065,538.5	0.1262		10,393.1	241,180.9	1.73
	•	*Momen	at of Inertia I varies	over the lea	ngth of the compon	ent		

Wind Pressure (WP) Calculations

<u>Gust Factor (G⁻) Calculations</u>

```
Kz = 2.01 * (Z/Zg)^{2/\alpha}
     = 2.01 * (Z/274.32)^{0.2105}
qz = 0.613 * Kz * Kzt * Kd * <math>V^2 * I
     = 0.613 * Kz * 1.0000 * 0.9500 * 34.0706<sup>2</sup> * 1.0000
     = 675.9935 * Kz
WP = \max[qz * G * Cf, 0.0048 \text{ bar}]
     = \max[ qz * G * 0.7000, 0.0048 bar ]
```

	Design Wind Pressures										
Height Z	Kz	qz	WP (bar)								
(m)	IXZ	(bar)	Operating	Empty	Hydrotest New	Hydrotest Corroded	Vacuum				
4.6	0.8489	0.0057	0.0048	0.0048	N.A.	N.A.	0.0048				
6.1	0.9019	0.0061	0.0048	0.0048	N.A.	N.A.	0.0048				
7.6	0.9453	0.0064	0.0048	0.0048	N.A.	N.A.	0.0048				
9.1	0.9823	0.0066	0.0048	0.0048	N.A.	N.A.	0.0048				
12.2	1.0436	0.0071	0.0048	0.0048	N.A.	N.A.	0.0048				
15.2	1.0938	0.0074	0.0048	0.0048	N.A.	N.A.	0.0048				
18.3	1.1366	0.0077	0.0048	0.0048	N.A.	N.A.	0.0048				
21.3	1.1741	0.0079	0.0049	0.0049	N.A.	N.A.	0.0049				
24.4	1.2075	0.0082	0.0050	0.0050	N.A.	N.A.	0.0050				
27.4	1.2379	0.0084	0.0051	0.0051	N.A.	N.A.	0.0051				
30.5	1.2656	0.0086	0.0053	0.0053	N.A.	N.A.	0.0053				
36.6	1.3151	0.0089	0.0055	0.0055	N.A.	N.A.	0.0055				
42.7	1.3585	0.0092	0.0056	0.0056	N.A.	N.A.	0.0056				
Design Wi	nd Force	determi	ned from: F =	= Pressur	e * Af , where Af	is the projected area.					

Vortex Shedding Calculations							
Calculations based on NBC 1995 building code, Structural Commentaries (Part 4).							
Average diameter of vessel, upper third, D	10.8395 ft (3303.89 mm)						
Aspect ratio, Ar	11.2927						
	Operating, Corroded Empty, Corroded Vacuum, Corroded						
Vortex shedding factor, C ₁	2.5203	2.5203	2.5203				
Vortex shedding factor, C ₂	0.6000	0.6000	0.6000				
Weight per foot of vessel, upper third, M	2,304.0857 lb/ft (34.2886 ls/ft (27.8441 ls/g/cm) 2,304.0857 lb/ft (34.2886 kg/cm) 2,304.0857 lb/ft (34.2886 kg/cm)						
Strouhal number, S	0.2000	0.2000	0.2000				

Critical wind speed at top of vessel, $V_h = (n^*D/S)^*(3600/5280)$ mph

Operating, Corroded: $V_h = (1.1919*10.8395/0.2000)*(3600/5280) = 44.0436 \text{ mph } (70.8812 \text{ km/h})$ $V_h = (1.3185*10.8395/0.2000)*(3600/5280) = 48.7231 \text{ mph } (78.4122 \text{ km/h})$ Empty, Corroded: Vacuum, Corroded: $V_h = (1.1933*10.8395/0.2000)*(3600/5280) = 44.0965 \text{ mph } (70.9665 \text{ km/h})$

Reference wind speed corresponding to critical wind speed, $\mathbf{V}_{\mathrm{Ref}}$

Operating, Corroded: $V_{Ref} = 38.3669 \text{ mph } (61.7455 \text{ km/h})$ $V_{Ref} = 42.4433 \text{ mph } (68.3058 \text{ km/h})$ Empty, Corroded: Vacuum, Corroded: $V_{Ref} = 38.4130 \text{ mph } (61.8198 \text{ km/h})$

Corresponding reference wind speed, V_{Ref}

```
Operating, Corroded: V_{Ref} = 76.2137 \text{ mph } (122.6540 \text{ km/h})
Empty, Corroded:
                           V_{Ref} = 76.2137 \text{ mph } (122.6540 \text{ km/h})
Vacuum, Corroded: V_{Ref} = 76.2137 \text{ mph } (122.6540 \text{ km/h})
Corresponding pressure at top of vessel, q<sub>h</sub> = .00256 * V<sub>h</sub><sup>2</sup>
Operating, Corroded: q_h = .00256 * (44.0436)^2 = 4.9660 \text{ psf (bar)}
                           q_b = .00256 * (48.7231)^2 = 6.0773 \text{ psf (bar)}
Empty, Corroded:
Vacuum, Corroded: q_h = .00256 * (44.0965)^2 = 4.9779 \text{ psf (bar)}
Equivalent static loading, FL = q_h * C_1 * D / (SQR(Ar) * SQR(\underline{\beta} - (C_2 * R0 * D^2/M)))
Operating,
                         FL = 4.9660*2.5203*10.8395 / (SQR(11.2927)*SQR(0.0263 -
Corroded:
                              (0.6000*.0765*(10.8395)^2/2,304.0857)))
                              = 260.7047 \text{ lb/ft} (3.8797 \text{ kg/cm})
```

Empty, Corroded:

FL = 6.0773*2.5203*10.8395 / (SQR(11.2927)*SQR(0.0217 -

 $(0.6000*.0765*(10.8395)^2/1,871.0386)))$

= 359.9287 lb/ft (5.3563 kg/cm)

Vacuum, Corroded:

FL = 4.9779*2.5203*10.8395 / (SQR(11.2927)*SQR(0.0264 -

 $(0.6000*.0765*(10.8395)^2/2,304.0857)))$

= 260.8919 lb/ft (3.8825 kg/cm)

Static loading FL is applied throughout the top third of the vessel

Wind Pressures at Critical Wind Speed: Operating, Corroded (V_h = 19.6892 m/sec)

```
Kz = 2.01 * (Z/Zg)^{2/\alpha}
     = 2.01 * (Z/274.32)^{0.2105}
qz = 0.613 * Kz * Kd * Kzt * <math>\underline{Vh^2} * \underline{I}
     = 0.613 * Kz * 0.9500 * 1.0000 * (19.6892)^2 * 1.0000
     = 225.7572 * Kz
WP = qz * G^- * Cf
     = qz * 0.8762 * 0.7000
```

Height Z(m)	Kz	qz(bar)	WP(bar)
4.6	0.8489	0.0019	0.0012
6.1	0.9019	0.0020	0.0012
7.6	0.9453	0.0021	0.0013
9.1	0.9823	0.0022	0.0014
12.2	1.0436	0.0024	0.0014
15.2	1.0938	0.0025	0.0015
18.3	1.1366	0.0026	0.0016
21.3	1.1741	0.0027	0.0016
24.4	1.2075	0.0027	0.0017
27.4	1.2379	0.0028	0.0017
30.5	1.2656	0.0029	0.0018
36.6	1.3151	0.0030	0.0018
42.7	1.3585	0.0031	0.0019

Wind Pressures at Critical Wind Speed: Empty, Corroded ($V_h = 21.7812 \text{ m/sec}$)

```
Kz = 2.01 * (Z/\underline{Zg})^{2/\alpha}
     = 2.01 * (Z/274.32)^{0.2105}
qz = 0.613 * Kz * Kd * Kzt * <math>\underline{Vh^2} * \underline{I}
      = 0.613 * Kz * 0.9500 * 1.0000 * (21.7812)^2 * 1.0000
      = 276.2781 * Kz
WP = qz * \underline{G}^- * \underline{Cf}
      = qz * 0.8762 * 0.7000
```

Height Z(m)	Kz	qz(bar)	WP(bar)
4.6	0.8489	0.0023	0.0014
6.1	0.9019	0.0025	0.0015
7.6	0.9453	0.0026	0.0016
9.1	0.9823	0.0027	0.0017
12.2	1.0436	0.0029	0.0018
15.2	1.0938	0.0030	0.0019
18.3	1.1366	0.0031	0.0019
21.3	1.1741	0.0032	0.0020
24.4	1.2075	0.0033	0.0020
27.4	1.2379	0.0034	0.0021
30.5	1.2656	0.0035	0.0021
36.6	1.3151	0.0036	0.0022
42.7	1.3585	0.0038	0.0023

Wind Pressures at Critical Wind Speed: Vacuum, Corroded (V_h = 19.7129 m/sec)

```
Kz = 2.01 * (Z/\underline{Zg})^{2/\alpha}
     = 2.01 * (Z/274.32)^{0.2105}
qz = 0.613 * Kz * Kd * Kzt * <math>\underline{Vh^2} * \underline{I}
      = 0.613 * Kz * 0.9500 * 1.0000 * (19.7129)^2 * 1.0000
      = 226.3007 * Kz
WP = qz * \underline{G}^- * \underline{Cf}
      = qz * 0.8762 * 0.7000
```

Height Z(m)	Kz	qz(bar)	WP(bar)
4.6	0.8489	0.0019	0.0012
6.1	0.9019	0.0020	0.0013
7.6	0.9453	0.0021	0.0013
9.1	0.9823	0.0022	0.0014
12.2	1.0436	0.0024	0.0014
15.2	1.0938	0.0025	0.0015
18.3	1.1366	0.0026	0.0016
21.3	1.1741	0.0027	0.0016
24.4	1.2075	0.0027	0.0017
27.4	1.2379	0.0028	0.0017
30.5	1.2656	0.0029	0.0018
36.6	1.3151	0.0030	0.0018
42.7	1.3585	0.0031	0.0019

Gust Factor Calculations

Operating, Corroded Empty, Corroded Vacuum, Corroded Operating, Corroded, Vortex Shedding Empty, Corroded, Vortex Shedding Vacuum, Corroded, Vortex Shedding

Gust Factor Calculations: Operating, Corroded

Vessel is considered a rigid structure as $n_1 = 1.1919 \text{ Hz} \ge 1 \text{ Hz}$.

```
z^{-}
           = \max[.60 * \underline{h}, \underline{z}_{\min}]
           = \max[.60 * 122.4078, 15.0000]
           =73.4447
           = c * (33 / z^{-})^{1/6}
I,-
           = 0.2000 * (33 / 73.4447)^{1/6}
           = 0.1750
L_{z}
           = 1 * (z^{-}/33)^{ep}
           =500.0000*(73.4447/33)^{0.2000}
           = 586.7584
Q
           = Sqr(1 / (1 + .63 * ((\underline{b} + \underline{h}) / L_{z^{-}}).63))
           = Sqr(1/(1+.63*((11.4627+122.4078)/586.7584)^{.63}))
           = 0.8950
G
           = 0.925 * (1 + 1.7 * g_{\odot} * I_{z^{-}} * Q) / (1 + 1.7 * g_{\odot} * I_{z^{-}})
           = 0.925 * (1 + 1.7 * 3.40 * 0.1750 * 0.8950) / (1 + 1.7 * 3.40 *
           0.1750)
           = 0.8762
```

Gust Factor Calculations: Empty, Corroded

Vessel is considered a rigid structure as $n_1 = 1.3185 \text{ Hz} \ge 1 \text{ Hz}$.

```
z^{-}
           = \max[.60 * \underline{h}, \underline{z}_{min}]
           = \max[.60 * 122.4078, 15.0000]
           =73.4447
           = c * (33 / z^{-})^{1/6}
I,-
           = 0.2000 * (33 / 73.4447)^{1/6}
           = 0.1750
           = 1 * (z^{-}/33)^{ep}
L_{z}
           = 500.0000 * (73.4447 / 33)^{0.2000}
           = 586.7584
Q
           = Sqr(1/(1+.63*((\underline{b}+\underline{h})/L_{\tau}).63))
           = Sqr(1/(1+.63*((11.4627+122.4078)/586.7584).63))
           = 0.8950
G
           = 0.925 * (1 + 1.7 * g_{\odot} * I_{z^{-}} * Q) / (1 + 1.7 * g_{\odot} * I_{z^{-}})
           = 0.925 * (1 + 1.7 * 3.40 * 0.1750 * 0.8950) / (1 + 1.7 * 3.40 *
           0.1750)
           = 0.8762
```

Gust Factor Calculations: Vacuum, Corroded

Vessel is considered a rigid structure as $n_1 = 1.1933 \text{ Hz} \ge 1 \text{ Hz}$.

```
z^{-}
           = \max[.60 * \underline{h}, \underline{z}_{min}]
           = \max[.60 * 122.4078, 15.0000]
           =73.4447
I,-
           = c * (33 / z^{-})^{1/6}
           = 0.2000 * (33 / 73.4447)^{1/6}
           = 0.1750
L_{z^{-}}
           = 1 * (z^{-}/33)^{ep}
           = 500.0000 * (73.4447 / 33)^{0.2000}
           = 586.7584
Q
           = Sqr(1/(1 + .63 * ((\underline{b} + \underline{h})/L_{z^{-}}).63))
           = Sqr(1/(1+.63*((11.4627+122.4078)/586.7584)^{.63}))
G
           = 0.925 * (1 + 1.7 * g_{\Theta} * I_{z} * Q) / (1 + 1.7 * g_{\varphi} * I_{z})
           = 0.925 * (1 + 1.7 * 3.40 * 0.1750 * 0.8950) / (1 + 1.7 * 3.40 *
           0.1750)
           = 0.8762
```

Gust Factor Calculations: Operating, Corroded, Vortex Shedding

Vessel is considered a rigid structure as $n_1 = 1.1919 \text{ Hz} \ge 1 \text{ Hz}$.

```
z^{-}
            = \max[.60 * \underline{h}, \underline{z}_{min}]
            = \max[.60 * 122.4078, 15.0000]
            =73.4447
```

```
I_{z^-}
           = c * (33 / z^{-})^{1/6}
           = 0.2000 * (33 / 73.4447)^{1/6}
          = 0.1750
          = 1 * (z^{-}/33)^{ep}
L_{z^-}
           = 500.0000 * (73.4447 / 33)^{0.2000}
           = 586.7584
Q
           = Sqr(1 / (1 + .63 * ((\underline{b} + \underline{h}) / L_{z}).63))
           = Sqr(1/(1+.63*((11.4627+122.4078)/586.7584).63))
           = 0.8950
G
           = 0.925 * (1 + 1.7 * g_{\odot} * I_{z^{-}} * Q) / (1 + 1.7 * g_{\odot} * I_{z^{-}})
           = 0.925 * (1 + 1.7 * 3.40 * 0.1750 * 0.8950) / (1 + 1.7 * 3.40 *
           0.1750)
           = 0.8762
```

Gust Factor Calculations: Empty, Corroded, Vortex Shedding

Vessel is considered a rigid structure as $n_1 = 1.3185 \text{ Hz} \ge 1 \text{ Hz}$.

Gust Factor Calculations: Vacuum, Corroded, Vortex Shedding

Vessel is considered a rigid structure as $n_1 = 1.1933 \text{ Hz} \ge 1 \text{ Hz}$.

```
z^{-}
            = \max[.60 * \underline{h}, \underline{z}]
            = \max[.60 * 122.4078, 15.0000]
            =73.4447
I_{z^{-}}
            = c * (33 / z^{-})^{1/6}
           = 0.2000 * (33 / 73.4447)^{1/6}
           = 0.1750
L_{z^-}
           = 1 * (z^{-}/33)^{ep}
            = 500.0000 * (73.4447 / 33)^{0.2000}
            = 586.7584
Q
            = Sqr(1 / (1 + .63 * ((\underline{b} + \underline{h}) / L_{z^{-}}).63))
```

$$= \operatorname{Sqr}(1 / (1 + .63 * ((11.4627 + 122.4078) / 586.7584)^{.63}))$$

$$= 0.8950$$

$$G = 0.925 * (1 + 1.7 * \underline{g}_{Q} * I_{z^{-}} * Q) / (1 + 1.7 * \underline{g}_{z} * I_{z^{-}})$$

$$= 0.925 * (1 + 1.7 * 3.40 * 0.1750 * 0.8950) / (1 + 1.7 * 3.40 * 0.1750)$$

$$= 0.8762$$

Table Lookup Values				
$\alpha = 9.5000$, $z_g = 274.32$ m	[Table 6-2, page 78]			
c = 0.2000, 1 = 500.0000, ep = 0.2000	[Table 6-2, page 78]			
a ⁻ = 0.1538, b ⁻ = 0.6500	[Table 6-2, page 78]			
$z_{\min} = 15.0000 \text{ ft}$	[Table 6-2, page 78]			
$g_Q = 3.40$	[6.5.8.1 page 26]			
$g_v = 3.40$	[6.5.8.1 page 26]			

Liquid Level bounded by Bottom Head

ASME Section VIII Division 1, 2017 Edition Metric			
Location from Datum (mm)	2,600		
Operating Liquid Specific Gravity	1.065		

Circular Platform Design

Dead load		=	0.0012	N/mm ²
Live load		=	0.0025	N/mm ²
Designed load (Dead load + Live load)	f	=	0.0037	N/mm ²

Shape steel (Bracket)

Material of shape steel		:	SS400	
Yield stress of material	Fy	=	250	N/mm ²
Allowable bending stress, (0.66Sy)	$\mathrm{F_{B}}$	=	165	N/mm ²

Vessel clip

Material of vessel clip		:	SA516 Gr.70	
Yield stress of material	F_y	=	260	N/mm ²
Yield stress of material at design temp.		=	225	N/mm ²
Allowable shear stress of weld clip to shell	S_S	=	90	N/mm ²

Bolt / Nut

Material of Bolt		:	A325	
Size of Bolt		:	M20	
Allowable shear load in bolts (from Table 9-9)	$\mathbf{F}_{\mathbf{r}}$	=	47,150	N

Area of platform

Area =	$(R^2-r^2)\pi\phi$
Alea –	360

Area of platform							
Platform	Ф (Max)	R (mm)	r (mm)	Width (mm)	Area (mm ²)		
#3	20	3125	1925	1200	1,057,670		

Bracket support with out kneebrace

Computing moments in shell and bolt loads

		_ d			
Outside radius of vessel			=	r_{o}	
Distance from C.L of vessel to C.G. of area		С	=	$38.197(R^3 - r^3)\sin$	$\frac{\Phi}{2}$
				$\frac{38.197(R^3 - r^3)\sin}{(R^2 - r^2)\frac{\varphi}{2}}$	
Size of bracket			=	C-150 x 75 x t6.5 x	t10
Section modulus of bracket		$Z_{\rm b}$	=	115000	mm^3
Distance from r _o of vessel to CL. of bolts holes			=	d	
Number of bolts in a vertical row		n	=	2	
distance of bolt in vertical		b	=	70	mm
Number of bolts in a horizotal		m	=	2	
distance of bolt in horizontal		D	=	120	mm
Clip weld length	PF #3	i_1	=	250	mm
Thickness of clip		t	=	10	mm
Area of clip	PF #3	Ac	=	2500	mm^2
Filled weld size clip to shell		\mathbf{f}_1	=	7	mm
Distance from r _o of vessel to C.G. of area			=	\mathbf{L}_1	
Distance from CL. of bolts holes to C.G. of area			=	L_2	
Platform load per bracket		F	=	fA	
Loading per bolt		Ix	=	$2\left\lfloor \frac{nb^{2}\left(n^{2}-1\right) }{12}\right\rfloor$	
		Iy	=	$n \left\lceil \frac{mD^2 \left(m^2 - 1\right)}{12} \right\rceil$	
		f_x	=	$\frac{(\mathrm{Fl}_2)(\mathrm{n}-\mathrm{1})\mathrm{b}}{2\mathrm{Ip}}$	
		f_y	=	$\frac{F}{mn} + \frac{Fl_2D}{2Ip}$	
		f_r	=	$\sqrt{(Fx^2 + Fy^2)}$	
Moment at shell		\mathbf{M}_1	=	L_1F	
Shear stress of clip		\mathbf{s}_1	=	F/Ac	
Shear stress of weld clip to shell		s_2	=	F / (2i f ₁ sin45°)	
Bending stress in bracket		f_b	=	M_1/Z_b	

Platform	Design data					
Platform	d(mm)	r _o (mm)	F(N)	C(mm)	L ₁ (mm.)	L ₂ (mm.)
#3	316	1,789	3,889	2,559	770	454

Platform	Dlatform	Bending moment	Bend	ling stress in br	acket	SI	near stress at cli	ip
	Platiorm	M ₁ (N-mm)	$f_b(N/mm^2)$	$f_b < F_B$	check	$s_1(N/mm^2)$	$s_1 < S_S$	check
	#3	2,996,566	26.06	YES	Pass	1.56	YES	Pass

Platform				Check bolt	load			
Platform	Ix	Iy	Ip	f _x (N)	f _y (N)	f _r (N)	$f_r < F_L$	check
#3	4,900	14,400	19,300	3,205	6,467	7,218	YES	Pass

Platform	Sh	ear weld at clip	
Flationiii	$s_2(N/mm^2)$	$s_2 < S_S$	check
#3	1.57	YES	Pass

Summary load for checking local stress

Radial load	$P_{\rm r}$	=	0	N
Circumferential shear force	$V_{\rm C}$	=	0	N
Circumferential moment	${ m M}_{ m C}$	=	0	N-m
Maximum Longitudinal shear force	$ m V_{L}$	=	F	N
Maximum Longitudinal moment	$\mathrm{M_{L}}$	=	M_1	N-m

I	Platform	$P_{\rm r}$	V_{C}	$M_{\rm C}$	V_L	$\mathrm{M_{L}}$
	#3	0	0	0	3,889	2,997

Remark: Due to the programe can not calculate area cross section of attachments, so we have to convert to square section. Refered from "Pressure Vessel Design Manual" by Dennis R. Moss

	h	h	C1	C2	Width	Length
Platform	U	11	0.5b	0.4h	$2C_1$	$2C_2$
	mm.	mm.	mm.	mm.	mm.	mm.
#3	74	250	37	100	74	200

See calculation be designed by "COMPRESS" programe

PF clip #3

Rev. 1

Geometry					
Height (radial)	416 mm				
Width (circumferential)	74 mm				
Length	200 mm				
Fillet Weld Size:	7 mm				
Located On	Bottom existing shell (810 mm from top end)				
Location Angle	0.00°				

Applied Loads	
Radial load, P _r	0 kg _f
Circumferential moment, M _c	0 kg _f -m
Circumferential shear, V _c	0 kg _f
Longitudinal moment, M _L	305.6 kg _f -m
${\bf Longitudinal\ shear,\ V_L}$	396.57 kg _f
Torsion moment, M _t	0 kg _f -m
Internal pressure, P	3.6 bar
Mean shell radius, R _m	1,682 mm
Design factor	3

Maximum stresses due to the applied loads at the lug edge (includes pressure)

$$\gamma = R_{\rm m} / T = 1,682 / 14 = 120.1429$$

$$C_1 = 44, C_2 = 107 \text{ mm}$$

Local circumferential pressure stress = $P*R_i / T = 439.207 \text{ kg}_f/\text{cm}^2$

Local longitudinal pressure stress = $P*R_i / (2*T) = 219.639 \text{ kg}_f/\text{cm}^2$

Maximum combined stress ($P_L + P_b + Q$) = 1,301.66 kg_f/cm² Allowable combined stress ($P_L + P_b + Q$) = ±3*S = ±4,221.62 kg_f/cm²

The maximum combined stress $(P_L + P_b + Q)$ is within allowable limits.

Maximum local primary membrane stress (P_L) = 565.97 kg/cm² Allowable local primary membrane stress (P_L) = ±1.5*S = ±2,110.81 kg/cm²

The maximum local primary membrane stress (P_1) is within allowable limits.

		Stre	sses at t	he lug e	dge per \	WRC B	ulletin	107		
Figure	value	β	$\mathbf{A}_{\mathbf{u}}$	$\mathbf{A_l}$	B _u	B _l	$\mathbf{C}_{\mathbf{u}}$	$\mathbf{C_l}$	$\mathbf{D}_{\mathbf{u}}$	$\mathbf{D_l}$
3C*	18.9803	0.0562	0	0	0	0	0	0	0	0
4C*	21.1589	0.0472	0	0	0	0	0	0	0	0
1C	0.1827	0.037	0	0	0	0	0	0	0	0
2C-1	0.1331	0.037	0	0	0	0	0	0	0	0
3A*	2.2638	0.0352	0	0	0	0	0	0	0	0
1A	0.0994	0.0378	0	0	0	0	0	0	0	0
3B*	10.4581	0.0473	-126.763	-126.763	126.763	126.763	0	0	0	0
1B-1	0.0539	0.0407	-735.691	735.691	735.691	-735.691	0	0	0	0
Pres	sure stress	*	439.207	439.207	439.207	439.207	439.207	439.207	439.207	439.207
Total circu	ımferentia	l stress	-423.248	1,048.135	1,301.662	-169.721	439.207	439.207	439.207	439.207
	ry membra erential st		312.444	312.444	565.971	565.971	439.207	439.207	439.207	439.207
3C*	20.5332	0.0472	0	0	0	0	0	0	0	0
4C*	20.5732	0.0562	0	0	0	0	0	0	0	0
1C-1	0.1489	0.0488	0	0	0	0	0	0	0	0
2C	0.1077	0.0488	0	0	0	0	0	0	0	0
4A*	2.86	0.0352	0	0	0	0	0	0	0	0
2A	0.0579	0.0461	0	0	0	0	0	0	0	0
4B*	3.0453	0.0473	-57.581	-57.581	57.581	57.581	0	0	0	0
2B-1	0.0802	0.0502	-887.836	887.836	887.836	-887.836	0	0	0	0
Pres	sure stress	*	219.639	219.639	219.639	219.639	219.639	219.639	219.639	219.639
Total lon	gitudinal	stress	-725.778	1,049.893	1,165.056	-610.615	219.639	219.639	219.639	219.639
	ry membra Idinal stre		162.057	162.057	277.22	277.22	219.639	219.639	219.639	219.639
Shea	ar from M	t	0	0	0	0	0	0	0	0
Circ s	hear from	V _c	0	0	0	0	0	0	0	0
Long s	hear from	$V_{\rm L}$	0	0	0	0	-6.609	-6.609	6.609	6.609
Total	Shear stre	ess	0	0	0	0	-6.609	-6.609	6.609	6.609
Combined	stress (P _L	+P _b +Q)	-725.778	1,049.893	1,301.662	-610.615	439.418	439.418	439.418	439.418
* denote	denotes primary stress.									

Calculation of Platform #4

Circular Platform Design

Dead load		=	0.0012	N/mm ²
Live load		=	0.0025	N/mm ²
Designed load (Dead load + Live load)	f	=	0.0037	N/mm ²
Shape steel (Bracket)				
Material of shape steel		:	SS400	
Yield stress of material	Fy	=	250	N/mm ²
Allowable bending stress, (0.66Sy)	F_{B}	=	165	N/mm ²
Vessel clip				
Material of vessel clip		:	SA516 Gr.70	
Material of vessel clip Yield stress of material	F_y	:	SA516 Gr.70 260	N/mm ²
-	F_y			N/mm ² N/mm ²
Yield stress of material	F_y S_S	=	260	N/mm
Yield stress of material Yield stress of material at design temp.		=	260 225	N/mm N/mm ²
Yield stress of material Yield stress of material at design temp.		=	260 225	N/mm N/mm ²
Yield stress of material Yield stress of material at design temp. Allowable shear stress of weld clip to shell		=	260 225	N/mm N/mm ²

 F_{L}

Area of platform

Allowable shear load in bolts (from Table 9-9)

$$Area = \frac{(\mathsf{R}^2 - r^2)\pi\phi}{360}$$

47,150

N

Platform	Ф (Max)	R (mm)	r (mm)	Width (mm)	Area (mm ²)
#4	25	2925	1925	1000	1,058,106

$\underline{\textbf{Bracket support with out kneebrace}}$

Computing moments in shell and bolt loads

			DRACKET		
		10			
Outside radius of vessel			=	r _o	
Distance from C.L of vessel to C.G. of area		C	=	$38.197(R^3 - r^3)\sin\frac{\phi}{2}$	
				$\frac{38.197(R^3-r^3)\sin\frac{\varphi}{2}}{(R^2-r^2)\frac{\varphi}{2}}$	
Size of bracket			=	C-150 x 75 x t6.5 x t10	
Section modulus of bracket		Z_{b}	=	115000	mm ³
Distance from r_o of vessel to CL. of bolts holes			=	d	
Number of bolts in a vertical row		n	=	2	
distance of bolt in vertical		b	=	70	mm
Number of bolts in a horizotal		m	=	2	
distance of bolt in horizontal		D	=	120	mm
Clip weld length	PF #4	i_1	=	250	mm
Thickness of clip		t	=	12	mm
Area of clip	PF #4	Ac	=	3000	mm^2
Filled weld size clip to shell		\mathbf{f}_1	=	7	mm
Distance from r _o of vessel to C.G. of area			=	L_1	
Distance from CL. of bolts holes to C.G. of area			=	L_2	
Platform load per bracket		F	=	fA	
Loading per bolt		Ix	=	$2\left[\frac{nb^{2}\left(n^{2}-1\right)}{12}\right]$	
		Iy	=	$n \left\lceil \frac{mD^2 \left(m^2 - 1\right)}{12} \right\rceil$	
		f_x	=	$\frac{(\mathrm{Fl}_2)(\mathrm{n}-1)\mathrm{b}}{2\mathrm{Ip}}$	
		f_y	=	$\frac{F}{mn} + \frac{Fl_2D}{2Ip}$	
		$ m f_r$	=	$\sqrt{(Fx^2 + Fy^2)}$	
Moment at shell		\mathbf{M}_1	=	L_1F	
Shear stress of clip		\mathbf{s}_1	=	F / Ac	
Shear stress of weld clip to shell		s_2	=	F / (2i f ₁ sin45°)	
Bending stress in bracket		f_b	=	M_l/Z_b	

	Platform			Design	data		
		d(mm)	r _o (mm)	F(N)	C(mm)	L ₁ (mm.)	L ₂ (mm.)
	#4	305	1,400	3,891	2,440	1,040	735

Platform	Bending moment	Beno	ling stress in br	acket		Shear stress at	clip
riationiii	M ₁ (N-mm)	f _b (N/mm ²)	$f_b < F_B$	check	s ₁ (N/mm ²)	$s_1 \le S_S$	check
#4	4,046,071	35.18	YES	Pass	1.30	YES	Pass

Platform				Check be	olt load			
Flationiii	Ix	Iy	Ip	f _x (N)	f _y (N)	f _r (N)	$f_r < F_L$	check
#4	4,900	14,400	19,300	5,185	9,862	11,142	YES	Pass

Dlatfarms	Sh	Shear weld at clip (N/mm^2) $s_2 < S_S$ 1.57 YES	
Platform	s ₂ (N/mm ²)		check
#4	1.57	YES	Pass

$\underline{Summary\ load\ for\ checking\ local\ stress}$

Radial load	$P_{\rm r}$	=	0	N
Circumferential shear force	V_{C}	=	0	N
Circumferential moment	M_{C}	=	0	N-m
Maximum Longitudinal shear force	V_L	=	F	N
Maximum Longitudinal moment	${ m M_L}$	=	\mathbf{M}_1	N-m

Platform	$P_{\rm r}$	$V_{\rm C}$	$M_{\rm C}$	$V_{\rm L}$	M_L
#4	0	0	0	3,891	4,046

Remark: Due to the programe can not calculate area cross section of attachments, so we have to convert to square section.

Refered from "Pressure Vessel Design Manual" by Dennis R. Moss

	1.	1.	C1	C2	Width	Length
Platform	b	h	0.5b	0.4h	2C ₁	2C ₂
	mm,	mm.	mm.	mm.	mm.	mm.
#4	54	250	27	100	54	200

See calculation be designed by " COMPRESS " programe

PF clip#4

Rev. 1

	Geometry
Height (radial)	405 mm
Width (circumferential)	54 mm
Length	200 mm
Fillet Weld Size:	7 mm
Located On	New shell (1,890 mm from bottom end)
Location Angle	0.00°

Applied Loads	
Radial load, P _r	0 kg _f
Circumferential moment, M _c	0 kg _f -m
Circumferential shear, V _c	0 kg _f
Longitudinal moment, M _L	412.6 kg _f -m
Longitudinal shear, V_L	396.77 kg _f
Torsion moment, M _t	0 kg _f -m
Internal pressure, P	3.6 bar
Mean shell radius, R _m	1,689 mm
Design factor	3

Maximum stresses due to the applied loads at the lug edge (includes pressure)

$$\gamma = R_{\rm m} / T = 1,689 / 22 = 76.7718$$

$$C_1 = 34$$
, $C_2 = 107$ mm

Local circumferential pressure stress = $P*R_i / T = 279.962 \text{ kg}_f/\text{cm}^2$

Local longitudinal pressure stress = $P*R_i / (2*T) = 139.981 \text{ kg}_f/\text{cm}^2$

Maximum combined stress $(P_L + P_b + Q) = 804.8 \text{ kg/cm}^2$ Allowable combined stress $(P_L + P_b + Q) = \pm 3*S = \pm 4,221.62 \text{ kg/cm}^2$

The maximum combined stress $(P_L + P_b + Q)$ is within allowable limits.

Maximum local primary membrane stress (P_L) = 331.85 kg/cm² Allowable local primary membrane stress (P_L) = ±1.5*S = ±2,110.81 kg/cm²

The maximum local primary membrane stress (P_1) is within allowable limits.

		Stress	ses at th	e lug e	dge per	WRC	Bulletir	ı 107		
Figure	value	β	$\mathbf{A}_{\mathbf{u}}$	$\mathbf{A_l}$	B _u	$\mathbf{B_l}$	C_{u}	C_l	D _u	D _l
3C*	13.7914	0.0513	0	0	0	0	0	0	0	0
4C*	13.8559	0.0422	0	0	0	0	0	0	0	0
1C	0.2126	0.0318	0	0	0	0	0	0	0	0
2C-1	0.166	0.0318	0	0	0	0	0	0	0	0
3A*	0.9013	0.0295	0	0	0	0	0	0	0	0
1A	0.1025	0.0342	0	0	0	0	0	0	0	0
3B*	5.0859	0.0432	-51.886	-51.886	51.886	51.886	0	0	0	0
1B-1	0.0583	0.0373	-472.955	472.955	472.955	-472.955	0	0	0	0
Pres	sure stress	*	279.962	279.962	279.962	279.962	279.962	279.962	279.962	279.962
Total circu	ımferentia	l stress	-244.879	701.03	804.803	-141.106	279.962	279.962	279.962	279.962
	ry membr		228.076	228.076	331.849	331.849	279.962	279.962	279.962	279.962
3C*	14.6463	0.0422	0	0	0	0	0	0	0	0
4C*	13.64	0.0513	0	0	0	0	0	0	0	0
1C-1	0.178	0.0438	0	0	0	0	0	0	0	0
2C	0.1379	0.0438	0	0	0	0	0	0	0	0
4A*	1.0665	0.0295	0	0	0	0	0	0	0	0
2A	0.0605	0.0431	0	0	0	0	0	0	0	0
4B*	1.4157	0.0432	-24.186	-24.186	24.186	24.186	0	0	0	0
2B-1	0.0923	0.0486	-575.532	575.532	575.532	-575.532	0	0	0	0
Pres	sure stress	*	139.981	139.981	139.981	139.981	139.981	139.981	139.981	139.981
Total lon	gitudinal	stress	-459.737	691.328	739.699	-411.366	139.981	139.981	139.981	139.981
	ry membradinal stre		115.795	115.795	164.167	164.167	139.981	139.981	139.981	139.981
Shea	ar from M	t	0	0	0	0	0	0	0	0
Circ s	hear from	V _c	0	0	0	0	0	0	0	0
Long s	hear from	V_{L}	0	0	0	0	-4.218	-4.218	4.218	4.218
Total	Shear stre	ess	0	0	0	0	-4.218	-4.218	4.218	4.218
Combined	stress (P _L	+P _b +Q)	-459.737	701.03	804.803	-411.366	280.103	280.103	280.103	280.103
* denote	es prima	ry stre	ss.					_		

Wind load design

Wind Pressure per ASCE 7-05

40 Wind Speed m/s C **Exposure Category** Importance Factor Ι 1.15 Velocity pressure exposure coefficient Kz 1.0 Topographic factor , taken as $1.0\,$ KztWind directionality factor 0.95 0.82 Force Coefficient Cf Gust Effect Factor 0.85 Vessle outside diameter 3378 D mm Vessle height Н 37311.5 $P_{\rm WS}$ Velocity pressure on shell 0.613KzKztKdV²I Wind force $P_{WS}GCfAe \\$ Ρ

Find effective outer diameter of vessel

effective OD. = 1.18(OD+2Insu) reference per "Pressure Vessel Design Handbook(Henry H. Bednar)"

part	ID.	thk.	Insu. Thk.	factor I	increase eff. OD.	Used OD.
	mm.	mm.	mm. mm.		mm.	mm.
Existing Shell	3350	14	75	1.18	635.04	4163
New Shell	3330	25	73	1.10	639	4189

				Wind	pressure on vessel				
Tower	Wind Height		Wind Pressure	OD	Effective area	Wind force	Shear force	Section length	Moment
*EL. Point	Above Ground	Kz							
(m)	z (m)		$P_{WS}(N/m^2)$	(m)	Ae (m ²)	P, (N)	F, (N)	(m)	M, (N-m)
36.30	38.8	1.36	1457	4.163	9.16	9303	9303	2.20	10233
30.2	36.6	1.31	1404	4.163	25.39	24845	34148	6.10	142758
27.1	30.5	1.26	1350	4.163	12.91	12144	46293	3.10	267441
24.1	27.4	1.24	1329	4.163	12.49	11566	57859	3.00	423667
21.0	24.4	1.21	1297	4.163	12.91	11663	69521	3.10	621106
17.7	21.3	1.17	1254	4.163	13.74	12005	81526	3.30	870333
17.5	18	1.13	1211	4.163	0.67	562	82088	0.16	883422
14.9	17.84	1.13	1211	4.189	11.06	9333	91421	2.64	1112454
14.5	15.2	1.09	1168	4.189	1.63	1330	92751	0.39	1148368
11.9	14.81	1.09	1168	4.189	10.93	8900	101651	2.61	1402063
8.8	12.2	1.04	1114	4.163	12.91	10024	111675	3.10	1732719
7.3	9.1	0.98	1050	4.163	6.24	4570	116246	1.50	1903660
5.8	7.6	0.94	1007	4.163	6.24	4384	120630	1.50	2081317
4.3	6.1	0.90	964	4.163	6.24	4197	124827	1.50	2265409
0	4.6	0.85	911	4.163	17.90	11364	136191	4.30	2826599

^{*} Start elevation first ground EL.+300 mm.

91421 N. Wind force at top column support at wind height above ground (z = 17.84m) Pa Moment at top column support 1112454 N-m. Ma Wind force at bottom column support P 101651 N. Overturning moment at bottom column support Mb 1402063 N-m.

Column support design

--- Design Data --- Referance "Pressure Vessel Design Handbook Second Edition, Henry H. Bednar, P.E."

Referance "Pressure Vessel Design Handbook Second Edition, He	enry H. Bednar, P.	E."		
Column material		:	SS400	
Column size		:	H-250 x 250 x	t9 x t14
Yield stress of material at design temp	Fy	=	240.0	N/mm ²
Modulus of elesticity	E	~ -	194880	N/mm ²
Weight top part (empty)	We	,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	52000	kg.
Weight of top bracket	Wtb	=	1975	kg.
Weight of leg	Wl	=	3435	kg.
Weight of bottom bracket	Wbb	=	1975	kg.
Empty total load on top bracket	\mathbf{W}_1	=	We+Wtb	
		=	53975	kg.
Empty total load on bottom bracket	W_2	=	We+Wtb+Wl-	+Wbb
		=	59385	kg.
Inside redius of vessel	R	=	1675	mm.
Length of column	L	=	3030	mm.
Number of column	N	=	6 ^	
Bolt circle diameter	Db	=	3688	mm.
Cross section area of column	A	=	15658	mm^2
Moment of inertia X-X	Ix	=	133140739	mm^4
Moment of inertia Y-Y	Iy	=	97337560	mm^4
Sumation of the moment of inertia of all culumn	$\Sigma { m I}$	=	2Ix + 2Iy	
		=	460956598	mm^4
Minimum radius of gyration	r	=	78.8	mm.
Distance to Neutral Axis	С	=	125	mm.
Eccentric length of cl of column to shell	e	=	155	mm.
Wind force at top column support	Pa	=	91421	N.
Moment at top column support	Ma	=	1112454	N-m.
Maximum horizontal force at bottom column (wind)	P	=	101651	N.
Maximum bending moment at bottom column (wind)	Mb	=	1402063	N-m.
- Find allowable load				
Coefficient for compact member	Cm	=	0.85	
Allowable compressive stress				
K- factor from AISC	K	=	1.2	
	KL / r	=	46.1	
From AISC table C-36	Fa	=	144.00	N/mm ²
Allowable bending stress	Fb	=	0.66Fy	
		=	158	N/mm ²
Euler stress divided by safty factor			$12\pi^2 E$	
	Fe'	=	$23\left(\frac{KL}{r}\right)^2$	
		=	472	N/mm ²
- Find maximum load on column (Top Bracket)				
Empty condition	Fe	=	$(W_1 / N) + (4N)$	Ma / NDb)
• •		=	289343	N.
Lateral force per column	F	=	(P/N)Ix / ΣI	
1		_	1803	N

N.

4893

- Combind column stress in compression

Empty condition

Bending stress		fb	=	eFe/(Ix/c)+	F(3L/4)/(Ix/c)
			=	52.5	N/mm ²
			<	Fb	PASS
Axial compression		fa	=	Fe / A	
			=	18.48	N/mm ²
			<	Fa	PASS
Combind stress		fa/Fa	=	0.128	
if fa/Fa <=	0.15, then	fa/Fa + fb/Fb	=	0.460	
if $fa/Fa > 0.15$, then	fa/Fa+Cmfb/[(1-fa/Fe')Fb]+fb/Fb	=	fa/Fa <=	0.15
			_	1	PASS

Operating condition				
Bending stress	fb	=	eFo/(Ix/c)+I	F(3L/4)/(Ix/c)
		=	39.7	N/mm ²
		<	Fb	PASS
Axial compression	fa	=	Fo / A	
		=	12.84	N/mm ²
		<	Fa	PASS
Combind stres	s fa/Fa	=	0.0892	
	if $fa/Fa \le 0.15$, then $fa/Fa + fb/Fb$	=	0.340	
if $fa/Fa > 0.15$, then	fa/Fa+Cmfb/[(1-fa/Fe')Fb]+fb/Fb	=	fa/Fa <= 0).15
		<	1	PASS

- Bracket load for design for operating

^{**}Ring stress see report "Check Stress in Shell/Skirt and Ring Supports"

- Column property

		Ix-x	
C_1	=	$\Sigma AY / \Sigma A$	
	=	125.00	mm
I_1	=	$\Sigma AY^2 + \Sigma I$	$C_1\Sigma AY$
	=	133140739.	$3 ext{mm}^4$

Ix-x						
Item	A	Y	Y^2	AY	AY^2	I
1	3500	7	49	24500	171500	57167
2	6660	125	15625	832500	104062500	27352620
3	1998	125	15625	249750	31218750	8205786
4	3500	243	59049	850500	206671500	57167
Σ	15658			1957250	342124250	35672739

		Iy-y	
C_1	=	$\Sigma AY / \Sigma A$	
	=	125.00	mm
I_1	=	$\Sigma AY^2 + \Sigma I$	$C_1\Sigma AY$
	=	97337559.8	3 mm^4

Iy-y						
Item	A	Y	Y^2	AY	AY^2	I
1	3330	30	870	98235	2897933	62438
2	7000	125	15625	875000	109375000	36458333
3	1998	125	15625	249750	31218750	13487
4	3330	221	48620	734265	161905433	62438
Σ	15658			1957250	305397115	36596695

- Base plate

zuse place				
Base plate material		:	SS400	
Allowable stress	Sb	=	114	N/mm^2
Base plate width	A	=	350	mm.
	В	=	220	mm.
Used base plate thickness	tb	=	25	mm.
Bearing pressure	f_c	=	F/AB	
		=	3.758	N/mm ²
Bending moment	M	=	$f_{c}A^{2}/10$	
		=	46031.9	N-mm
Base plate required thickness			<u>6M</u>	
	tr	=	\sqrt{bSb}	
		=	3.3	mm.
		<	tb	PASS

Vendor Doc. No. CA-904	4-540V5	Rev.	1 Job No	. 19-90	44 Page	e 440 of 450
Empty condition load per support	F_1	=	Fe	=	289343	N
Empty total load on bottom bracket	F_2	=	W_2	=	582567	N
Wind force at bottom column support	F_3	=	P	=	101651	N
Shear stress of weld clip to pad						
Yield stress of clip			F_{Y}	=	250	N/mm^2
Allowable shear stress (0.4F _Y)			S_{S}	=	100	N/mm ²
Weld size			f	=	13	mm.
Weld length			L	=	2030	mm.
Shear stress			S _{W3}	=	F ₁ / (Lf Sin45)	^o)
				=	15.51	N/mm ²
				<	S_s	PASS
Shear stress of weld pad to shell						
Yield stress of clip			F_{Y}	=	250	N/mm ²
Allowable shear stress (0.4F _Y)			S_{S}	=	100.00	N/mm ²
Weld size			f	=	8	mm.
Weld length			L	=	1700.00	mm.
Shear stress			s_{W3}	=	F ₂ / (Lf Sin45)	°)
				=	60.58	N/mm^2
				<	S_{S}	PASS

F_{Y}	=	250	N/mm^2
S_S	=	100.00	N/mm^2
f	=	8	mm.
L	=	750.00	mm.
s_{W3}	=	F ₃ / (Lf Sin45	5°)
	=	23.96	N/mm ²
	<	S_{S}	PASS
	S _S f L	S_S = $=$ $=$ L = $=$ $=$ $=$	S_{S} = 100.00 f = 8 L = 750.00 S_{W3} = F_{3} / (Lf Sin45) = 23.96

Check stress in shell/shell and ring supports

Refference from "PRESSURE VESSEL DESIGN HANBOOK, Second Edition, Henry H. Bednar, P.E."

Ring material		:	SS400	
Yeild stress of material	Y_S	=	240	N/mm^2
Allowable stress of material	S_b	=	114	N/mm^2
This support is attached to		:	Shell and she	ell
Local shell outer diameter	OD	=	3,378	mm
Local shell thickness	t	=	14 /1	mm
Local shell thickness	t	=	14	mm
Local shell inner corrosion	C_{a}	=	0	mm
Mean raduis of vessel after corroded	R_{m}	=	1682	mm
Shell thickness after corroded (at support lug)	t	=	£ 11 }	mm
Shell thickness after corroded (at support lug)	ts	=	£ 14 }	mm
Internal pressure	P	=		kg/cm ²
		=	0.00	N/mm ²
Vacuum pressure	P	=	0	kg/cm ²
		=	0.000	N/mm ²
Top ring width	W_p	=	278	mm
Top ring thickness	t_a	=	45	mm
Bottom ring width	b	=	220	mm
Bottom ring thickness	t_{b}	=	25	mm
Shell to center of load bearing area	d	=	155	mm
Gusset height	h	=	270	mm
Pad width, longitudinal direction	W	=	400	mm
Pad thickness (at shell)	$t_{\rm e}$	=	16	mm
Pad thickness (at shell)	$t_{\rm e}$	=	16	mm
Number of support lug	N	=	6	
Circle dimeter	D	=	3688	mm
Angular position	α	=	30	degree
Shell outside diameter + Pad	OD_{P}	=	3410	mm
Pad attachment fillet weld size	f_1	=	8	mm
Ring attachment fillet weld size	\mathbf{f}_2	=	13	mm

Formular for ring design:

Stress at the support	σ	=	PR_m / t			
Reaction at the support (Bednar 5.2)	F_{r}	=	(4M / ND) + (W / N)			
Reaction force on ring Pf acting perpendicular to the vessel longitudinal axis						
	$\mathrm{P_{f}}$	=	$F_r d \ / \ [\ h + 0.5 (t_a + t_b) \]$			
Internal moment in ring	$M_{1,2}$	=	$0.5P_{f}R_{c}\left[\right.\left(1\left/\right.\alpha\right)$ - Cot α]			
Tension/Compression load in ring	T_1	=	$(P_f / Tan \alpha) / 2$			
Stress in the shell top ring	S	=	$\text{-}(T_{1} / A_{r1}) + (M_{1}C_{1} / I_{1}) + \sigma$			
Stress in the top ring	S	=	$-(T_1 / A_{r1}) - (M_1 y_1 / I_1)$			
Stress in the shell bottom ring	S	=	(T_1 / A_{r2}) - $(M_2 C_2 / I_2) + \sigma$			
Stress in the bottom ring	S	=	$(T_1 / A_{r2}) + (M_2 y_2 / I_2)$			
Bending moment at midpoints between loads	$M_{3,4}$	=	$0.5P_fR_c$ [(1/Sin α) - (1/ α)]			
The axial trust loads	T_2	=	$(P_f / Sin \alpha) / 2$			
Stress between support in shell top ring	S	=	-(T_2 / A_{r1}) - (M_3C_1 / I_1) + σ			
Stress between support in top ring	S	=	$-(T_2 / A_{r1}) + (M_3 y_1 / I_1)$			
Stress between support in shell bottom ring	S	=	$(T_2/A_{r2}) + (M_4C_2/I_2) + \sigma$			
Stress between support in bottom ring	S	=	(T_2 / A_{r2}) - $(M_4 y_2 / I_2)$			
Stress at weld in pad to shell	S	=	$W / 2\pi ODf_1 \sin 45$			
Stress at weld in ring to pad	S	=	$W / 4\pi OD_P f_2 \sin 45$			

- Support ring at above shell

Properties of ring

Top ring

A	=	$1.1(ODt)^{0.5}$	
	=	212.04	mm
В	=	400	mm
C_1	=	$\Sigma AY \ / \ \Sigma A$	
	=	104.09	mm
\mathbf{y}_1	=	200.91	mm
R_c	=	1782.09	mm
I_1	=	$\Sigma AY^2 + \Sigma I - C$	$C_1 \Sigma A Y$
	=	197686868	mm^4

Item	A_{r1}	Y	Y^2	$A_{r1}Y$	$A_{r1}Y^2$	I
1	2332	6	30	12828	70556	23519
2	6400	19	361	121600	2310400	136533
3	12510	166	27556	2076660	344725560	80568570
Σ	21242			2211088	347106516	80728622

A	=	1.1(ODt) ^{0.5}	
	=	212.04	mm
В	=	400	mm
C_2	=	$\Sigma AY / \Sigma A$	
	=	62.39	mm
y_2	=	184.61	mm
R_c	=	1737.39	mm
I_2	=	$\Sigma AY^2 + \Sigma I - C$	$\Sigma_1 \Sigma A Y$
	=	72558096.7	mm^4

Item	A_{r2}	Y	Y^2	$A_{r2}Y$	$A_{r2}Y^2$	I
1	2332	6	30	12828	70556	23519
2	6400	19	361	121600	2310400	136533
3	5500	137	18769	753500	103229500	22183333
Σ	14232			887928	105610456	22343385

	Stresses in Shell and Ring Girder Supports									
Condition	Weight Supported	Base Moment	Stress at Support	Reaction at support	Reaction force on ring	Int. moment in ring (top)	Int. moment in ring (bottom)			
	W, (kg)	(N-m)	σ , (N/mm ²)	F _r , (N)	P _f , (N)	M ₁ , (N-mm)	M ₂ , (N-mm)			
Empty	53975	1112454	0	289343	147043	23296857	22712495			

Stresses in Shell and Ring Girder Supports							
	Tension & Comp. load	At Supports (S, N/mm ²)				C1 1	The axial trust loads
Condition	in ring	Top Ring		Base Ring		Check, S<1.5S _b	(top ring)
	T_1 , (N)	In Shell	In Ring	In Shell	In Ring	U	M ₃ , (N-mm)
Empty	127343	6.3	-29.7	-10.58	66.74	Pass	11810427.9

	Stresses in Shell and Ring Girder Supports								
	The axial Tension & trust loads Compression		Between Supports (N/mm ²)				Cl1		
Condition	(bottom ring)		Top Ring		Base Ring		Check, S<1.5S _b		
	M ₄ , (N-mm)	T_2 , (N)	In Shell In Ring		In Shell	In Ring			
Empty	11514184	147043	-13.1	5.08	20.23	-18.96	Pass		

Stresses in Shell and Ring Girder Supports								
Condition	Stress at weld in pad to shell	Stress at weld in ring to pad	Check, S<0.55S _b					
	$S, (N/mm^2)$	S, (N/mm ²)						
Empty	4.41	1.34	Pass					

- Support ring at below shell

Properties of ring

Top ring

Item	A_{r1}	Y	Y^2	$A_{r1}Y$	$A_{r1}Y^2$	I
1	3349	7	49.00	23443	164101	54700
2	6400	22	484	140800	3097600	136533
3	12510	169	28561	2114190	357298110	80568570
Σ	22259			2278433	360559811	80759804

Item	A_{r2}	Y	Y^2	$A_{r2}Y$	$A_{r2}Y^2$	Ι
1	3349	7	49.00	23443	164101	54700
2	6400	22	484	140800	3097600	136533
3	5500	140	19600	770000	107800000	22183333
Σ	15249			934243	111061701	22374567

 $R_{\rm c}$

 I_2

1736.27

 $\Sigma AY^2 + \Sigma I\text{-}C_1\Sigma AY$

76199059.8 mm⁴

=

=

mm

	Stresses in Shell and Ring Girder Supports								
Condition	Weight Supported	Base Moment	Stress at Support	Reaction at support	Reaction force on ring	Int. moment in ring (top)	Int. moment in ring (bottom)		
	W, (kg)	(N-m)	σ, (N/mm ²)	F _r , (N)	P _f , (N)	M ₁ , (N-mm)	M ₂ , (N-mm)		
Empty	59385	1402063	0.00	350540	178143	28149316	27498477		

	Stresses in Shell and Ring Girder Supports								
Condition	Tension & Compression	At Supports (S, N/mm ²)				~.	The axial trust loads		
	load in ring	T D'		Base Ring		Check, S<1.5S _b	(top ring)		
	T ₁ , (N)	In Shell	In Ring	In Shell			M ₃ , (N-mm)		
Empty	154277	6.9	-34.75	-11.99	78.23	Pass	14270400		

Stresses in Shell and Ring Girder Supports									
	The axial	Tension &							
Condition	trust loads (bottom ring)	Compression load in ring	T D		Base Ring		Check, S<1.5S _b		
	M ₄ , (N-mm)	T ₂ , (N)	In Shell	In Ring	In Shell	In Ring			
Empty	13940455	178143	-15.0	6.10	22.89	-22.85	Pass		

Stresses in Shell and Ring Girder Supports							
Condition	Stress at weld in pad to shell S, (N/mm ²)	Stress at weld in ring to pad S, (N/mm²)	Check, S<0.55S _b				
Emarta	4.85	1.48	Pass				
Empty	4.03	1.40	r ass				

44559

N-m

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*****		* * * * * * * *	*****
Check local stress in shell at support (conside	r at wrost c	ase by assun	ne to lug sur	port)
Load per column	P	=	289343	N. 71
Laterforce per column	F	=	4893	N.
Center of column to shell	C	=	154	mm.
Assume pad width	A	=	450	mm.
Pad length	В	=	400	mm.
Radial load	$P_{\rm r}$	=	F	
Radiai load	1 r	=	4893	N
Circumferential shear force	$V_{\rm C}$	=	4093 F	11
Circumerential shear force	V C	_	4893	N
Circumferential moment	$M_{\rm C}$	=	FC	11
Circumcientiai moment	1 v1 C	_	754	N-m
Maximum Longitudinal shear force	$V_{\rm L}$	=	73 4 Р	11-111
Maximum Longitudinai sileai 10100	▼ L	_	289343	N
Maximum Longitudinal moment	$\mathrm{M_{L}}$	=	PC	14

Calculate area cross section of attachments, by Convert to square section.

Refered from "Pressure Vessel Design Manual" by Dennis R. Moss:

Lug Support

Geometry							
Height (radial)	154 mm						
Width (circumferential)	225 mm						
Length	340 mm						
Fillet Weld Size:	13 mm						
Located On	Bottom existing shell (430 mm from top end)						
Location Angle	0.00°						
	Reinforcement Pad						
Thickness	16 mm						
Width	450 mm						
Length	400 mm						
Weld Size	8 mm						

Applied Loads							
Radial load, P _r	4,893 N						
Circumferential moment, M _c	754 N-m						
Circumferential shear, V _c	4,893 N						
Longitudinal moment, M_L	44,559 N-m						
Longitudinal shear, V_L	289,342.99 N						
Torsion moment, M _t	0 N-m						
Internal pressure, P	0 kPa						
Mean shell radius, R _m	1,683.5 mm						
Design factor	3						

Maximum stresses due to the applied loads at the lug edge

$$\gamma = R_{\rm m} / T = 1,683.5 / 27 = 62.3512$$

$$C_1 = 125.5, C_2 = 183 \text{ mm}$$

Local circumferential pressure stress = $P*R_i / T = 0$ MPa

Local longitudinal pressure stress = $P*R_i / (2*T) = 0$ MPa

Maximum combined stress (P_L+P_b+Q) = -146.34 MPa Allowable combined stress (P_L+P_b+Q) = $\pm 3*S = \pm 414$ MPa

The maximum combined stress $(P_L + P_b + Q)$ is within allowable limits.

Maximum local primary membrane stress (P_L) = -37.49 MPa Allowable local primary membrane stress (P_L) = $\pm 1.5*S = \pm 207$ MPa

The maximum local primary membrane stress $(\boldsymbol{P}_{\!\scriptscriptstyle L})$ is within allowable limits.

Stresses at the lug edge per WRC Bulletin 107										
Figure	value	β	$\mathbf{A}_{\mathbf{u}}$	$\mathbf{A_l}$	B _u	B _l	C _u	C_{l}	D _u	D _l
3C*	8.2251	0.1081	0	0	0	0	-0.883	-0.883	-0.883	-0.883
4C*	10.4222	0.0976	-1.124	-1.124	-1.124	-1.124	0	0	0	0
1C	0.1216	0.0855	0	0	0	0	-4.895	4.895	-4.895	4.895
2C-1	0.0867	0.0855	-3.489	3.489	-3.489	3.489	0	0	0	0
3A*	1.9603	0.0845	0	0	0	0	-0.172	-0.172	0.172	0.172
1A	0.0939	0.0916	0	0	0	0	-3.778	3.778	3.778	-3.778
3B*	6.9314	0.0959	-36.363	-36.363	36.363	36.363	0	0	0	0
1B-1	0.0431	0.0918	-102.311	102.311	102.311	-102.311	0	0	0	0
Pres	sure stress	*	0	0	0	0	0	0	0	0
Total circu	ımferentia	l stress	-143.287	68.313	134.062	-63.583	-9.729	7.619	-1.827	0.407
Primary membrane circumferential stress*		-37.487	-37.487	35.239	35.239	-1.055	-1.055	-0.71	-0.71	
3C*	8.734	0.0976	-0.938	-0.938	-0.938	-0.938	0	0	0	0
4C*	10.1679	0.1081	0	0	0	0	-1.096	-1.096	-1.096	-1.096
1C-1	0.1082	0.0994	-4.357	4.357	-4.357	4.357	0	0	0	0
2C	0.0723	0.0994	0	0	0	0	-2.91	2.91	-2.91	2.91
4A*	2.8731	0.0845	0	0	0	0	-0.283	-0.283	0.283	0.283
2A	0.0482	0.1044	0	0	0	0	-1.703	1.703	1.703	-1.703
4B*	2.1007	0.0959	-13.645	-13.645	13.645	13.645	0	0	0	0
2B-1	0.0604	0.1033	-127.36	127.36	127.36	-127.36	0	0	0	0
Pres	sure stress	*	0	0	0	0	0	0	0	0
Total lor	gitudinal	stress	-146.3	117.135	135.71	-110.295	-5.992	3.234	-2.02	0.393
	ry membra udinal stre		-14.582	-14.582	12.707	12.707	-1.379	-1.379	-0.814	-0.814
She	Shear from M _t			0	0	0	0	0	0	0
Circ shear from V _c			0.359	0.359	-0.359	-0.359	0	0	0	0
Long s	Long shear from V _L		0	0	0	0	-14.638	-14.638	14.638	14.638
Total Shear stress			0.359	0.359	-0.359	-0.359	-14.638	-14.638	14.638	14.638
Combined	stress (P _L	+P _b +Q)	-146.341	117.135	135.785	-110.295	29.51	29.599	29.275	29.275
* denotes primary stress.										

Maximum stresses due to the applied loads at the pad edge

$$\gamma = R_{\rm m} / T = 1,683.5 / 11 = 153.0418$$

$$C_1 = 233$$
, $C_2 = 208$ mm

Local circumferential pressure stress = $P*R_i / T = 0$ MPa

Local longitudinal pressure stress = $P*R_i / (2*T) = 0$ MPa

Maximum combined stress (P_L+P_b+Q) = -366.75 MPa Allowable combined stress (P_L+P_b+Q) = $\pm 3*S = \pm 414$ MPa

The maximum combined stress $(P_L + P_b + Q)$ is within allowable limits.

Maximum local primary membrane stress (P_L) = -143.47 MPa Allowable local primary membrane stress (P_L) = $\pm 1.5*S = \pm 207$ MPa

The maximum local primary membrane stress (P_L) is within allowable limits.

	Stresses at the pad edge per WRC Bulletin 107									
Figure	value	β	$\mathbf{A}_{\mathbf{u}}$	A _l	B _u	B _l	C _u	$\mathbf{C_l}$	D _u	D _l
3C*	10.8133	0.1303	0	0	0	0	-2.854	-2.854	-2.854	-2.854
4C*	18.9218	0.1343	-4.999	-4.999	-4.999	-4.999	0	0	0	0
1C	0.0647	0.1347	0	0	0	0	-15.699	15.699	-15.699	15.699
2C-1	0.0288	0.1347	-6.984	6.984	-6.984	6.984	0	0	0	0
3A*	5.7137	0.1333	0	0	0	0	-1.027	-1.027	1.027	1.027
1A	0.0657	0.1408	0	0	0	0	-10.363	10.363	10.363	-10.363
3B*	13.6696	0.1283	-138.467	-138.467	138.467	138.467	0	0	0	0
1B-1	0.0208	0.1262	-216.295	216.295	216.295	-216.295	0	0	0	0
Pres	sure stress	;*	0	0	0	0	0	0	0	0
Total circu	umferentia	ıl stress	-366.746	79.814	342.78	-75.842	-29.944	22.18	-7.164	3.509
	Primary membrane circumferential stress*		-143.466	-143.466	133.469	133.469	-3.882	-3.882	-1.827	-1.827
3C*	10.3551	0.1343	-2.737	-2.737	-2.737	-2.737	0	0	0	0
4C*	19.231	0.1303	0	0	0	0	-5.081	-5.081	-5.081	-5.081
1C-1	0.06	0.1318	-14.555	14.555	-14.555	14.555	0	0	0	0
2C	0.0389	0.1318	0	0	0	0	-9.439	9.439	-9.439	9.439
4A*	12.5208	0.1333	0	0	0	0	-2.144	-2.144	2.144	2.144
2A	0.0305	0.1415	0	0	0	0	-4.785	4.785	4.785	-4.785
4B*	5.534	0.1283	-55.048	-55.048	55.048	55.048	0	0	0	0
2B-1	0.0264	0.1318	-262.938	262.938	262.938	-262.938	0	0	0	0
Pres	sure stress	;*	0	0	0	0	0	0	0	0
Total lor	ngitudinal	stress	-335.278	219.708	300.694	-196.073	-21.45	6.998	-7.591	1.717
	ry membr udinal stre		-57.785	-57.785	52.311	52.311	-7.226	-7.226	-2.937	-2.937
Shear from M _t		0	0	0	0	0	0	0	0	
Circ shear from V _c		0.476	0.476	-0.476	-0.476	0	0	0	0	
Long s	Long shear from V _L			0	0	0	-31.612	-31.612	31.612	31.612
Total	Total Shear stress			0.476	-0.476	-0.476	-31.612	-31.612	31.612	31.612
Combined	stress (P _L	+P _b +Q)	-366.753	219.708	342.787	-196.073	63.79	65.024	63.225	63.253
* denotes primary stress.										