1

Análisis de la velocidad del viento en Irlanda

Autores: Alejandro Magnorsky, Andrés Mata Suárez, Mariano Merchante Instituto Tecnológico de Buenos Aires

Resumen

Palabras clave

Velocidad del viento; Cuadrados mínimos; Irlanda.

I. Introducción

La energía eólica es aquella obtenida a partir del viento. Se trata de energía cinética generada por medio de las corrientes de aire, la cual es transformada en otras formas útiles de energía para las actividades humanas. Las ventajas de la energía eólica es que es un recurso abundante, renovable y limpio. Sin embargo, el principal inconveniente es su intermitencia.

Para poder aprovechar la energía eólica es importante conocer la velocidad del viento. Esto incluye la velocidad máxima y mínima. Para poder utilizar la energía del viento, es necesario que éste alcance una velocidad mínima que depende del aerogenerador que se vaya a utilizar pero que suele empezar entre los 3 m/s y los 4 m/s, sin exceder los 25 m/s. En los aerogeneradores la energía eólica mueve una hélice y mediante un sistema mecánico se hace girar el rotor de un generador que produce energía eléctrica. Para que su instalación resulte rentable, suelen agruparse en concentraciones denominadas parques eólicos.

El gobierno irlandés consideró la posibilidad de utilizar la energía eólica para satisfacer una porción significativa de las necesidades energéticas de Irlanda. Para determinar la conveniencia y los lugares con mayor potencial se realizó un relevamiento de las velocidades del viento medidas por 12 estaciones meteorológicas distribuidas a lo largo del territorio. Cabe mencionar que existen distintas escalas de implementación de energía eólica: desde la calefacción de edificios hasta el abastecimiento de energía eléctrica de un cierto porcentaje de la población de una ciudad.

Antes de instalar y comenzar a operar un aerogenerador en un potencial lugar para producir otras fuentes de energía usando la eólica se suele utilizar registros de las velocidades del viento en dicha zona a lo largo de varios meses. La energía que puede producir un aerogenerador es una función no lineal de la velocidad del viento. Por lo tanto, el cálculo de la velocidad media del viento en la zona es insuficiente. Se hace, entonces, necesaria la estimación de la distribución completa de las velocidades (Haslett, J. y Raftery, A. E., 1989).

En la sección II se explica de que manera se ajustan los datos de las velocidades a una función usando cuadrados mínimos y cómo se calcula el error cuadrático medio. En la sección III se exponen, para cada estación meteorológica, las funciones que se ajustan a los datos, el error cuadrático medio y las velocidades medias del viento. En la sección IV se sacan comparan los resultados y se mencionan las características más importantes encontradas. En el apéndice se detallan secciones del código utilizado para resolver el problema de cuadrados mínimos.

II. DESARROLLO

A. Aproximación de los datos a una función

Para cada una de las estaciones meteorológicas, se desea ajustar las velocidades medidas a una función de la forma:

$$v(t) = A_0 + A_1 \cos(2\pi f_1 t) + B_1 \sin(2\pi f_1 t) \tag{1}$$

donde t es el tiempo en días, v(t) es la velocidad del viento en el instante t y $f_1=\frac{1}{365,25}dia^{-1}$. v(t) es lineal en función de A_0 , A_1 y B_1 y se puede expresar como $v(t)=A_0f_1(t)+A_1f_2(t)+B_1f_3(t)$ donde $f_1(t)=1$, $f_2(t)=cos(2\pi f_1t)$ y $f_3(t)=sen(2\pi f_1t)$.

Para resolver el problema de ajuste se utiliza el método de cuadrados mínimos (Mathews y Fink, 1992). El objetivo entonces es encontrar A_0 , A_1 y B_1 tal que $\sum_{k=1}^{n} (v_k - v(t_k))^2$ sea mínimo.

Estación meteorológica	Velocidad media (m/s)
Roche's Pt.	6.3604
Valentia	5.4770
Rosslare	5.9984
Kilkenny	3.2442
Shannon	5.3794
Birr	3.6485
Dublin	5.0399
Claremorris	4.3699
Mullingar	4.3706
Clones	4.4794
Belmullet	6.7500
Malin head	8.0250

Tabla I: Velocidades medias en cada estación meteorológica.

Si definimos la matriz A y los vectores \vec{x} y \vec{b} como:

$$A = \begin{pmatrix} f_1(t_1) & f_2(t_1) & f_3(t_1) \\ f_1(t_2) & f_2(t_2) & f_3(t_2) \\ \vdots & \vdots & \vdots \\ f_1(t_n) & f_2(t_n) & f_3(t_n) \end{pmatrix} \qquad \vec{x} = \begin{pmatrix} A_0 \\ A_1 \\ B_1 \end{pmatrix} \qquad \vec{b} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$$
(2)

entonces, el objetivo puede expresarse como encontrar \vec{x} tal que $||A\vec{x} - b||^2$ sea mínimo.

La solución clásica al problema de cuadrados mínimos es hacer $\vec{x} = (A^T A)^{-1} A^T \vec{b}$. Sin embargo, calcular la inversa de una matriz es de $O(n^3)$. Es por eso que, en general, se opta por resolver el problema utilizando la factorización QR obtenida por:

- Householder
- Gram-Schmidt
- Givens

La forma de resolver el problema de cuadrados mínimos usando QR consiste en:

$$A = QR = (Q_1 Q_2) \begin{pmatrix} R_1 \\ 0 \end{pmatrix} \tag{3}$$

donde A tiene dimensiones nx3, Q_1 de nx3, Q_2 de nx(n-3) y R_1 de 3x3.

La solución se obtiene resolviendo:

$$R_1 \vec{x} = Q_1^T \vec{b} \tag{4}$$

por sustitución hacia atrás ya que R_1 es triangular superior.

B. Error cuadrático medio

El error cuadrático medio se calcula mediante la siguiente ecuación:

$$E_{cm} = \sqrt{\frac{\sum_{k=1}^{n} e_k^2}{n}} = \sqrt{\frac{||Q_2^T \vec{b}||^2}{n}}$$
 (5)

siendo e_k el error en un punto (t_k, v_k) , tal que:

$$e_k = v_k - v(t_k) \tag{6}$$

para un conjunto de n mediciones de la velocidad el viento v_k para el día número t_k .

III. RESULTADOS Y CONCLUSIONES

A. Cálculo de las velocidades medias

Con el fin de conocer mejor cómo son los datos obtenidos de la medición de la velocidad del viento en las distintas estaciones, se calcula el promedio de todos los datos en cada una de ellas. El resultado de ello se encuentra en la tabla I.

Estación meteorológica	A_0 (m/s)	A_1 (m/s)	B_1 (m/s)
Roche's Pt.	6.360473	1.098654	0.273242
Valentia	5.477037	1.031857	0.228245
Rosslare	5.998487	0.828876	0.372581
Kilkenny	3.244228	0.367452	0.327301
Shannon	5.379480	0.560103	0.308363
Birr	3.648573	0.447176	0.239542
Dublin	5.039962	1.030374	0.370597
Claremorris	4.369907	0.489844	0.342406
Mullingar	4.370628	0.512658	0.312935
Clones	4.479414	0.620200	0.368142
Belmullet	6.750024	0.700321	0.074164
Malin head	8.025106	1.568598	0.024888

Tabla II: Valores de los coeficientes A_0 , A_1 y B_1 para cada estación meteorológica.

Estación meteorológica	E_{cm} (m/s)
Roche's Pt.	2.7777
Valentia	2.6051
Rosslare	2.4946
Kilkenny	1.8217
Shannon	2.4984
Birr	2.0097
Dublin	2.4404
Claremorris	2.2754
Mullingar	2.1014
Clones	2.2598
Belmullet	2.9600
Malin head	3.2619

Tabla III: Error cuadrático medio para cada estación meteorológica.

B. Cálculo de las funciones que se ajustan a los datos

Utilizando la ecuación 4 se obtuvieron los coeficientes que figuran en la tabla II.

C. Cálculo de los errores cuadráticos medios

La tabla III muestra los resultados del cálculo del error cuadrático medio para cada estación meteorológica considerada.

D. Histogramas de los errores

IV. CONCLUSIONES

- A. Valor medio de días por año
- B. El valor del coeficiente A_0

REFERENCIAS

Haslett, J., Raftery, Adrian E., "Space-time Modelling with Long-memory Dependence: Assessing Ireland's Wind Power Resource", 1989

Mathews, John H., Fink, Kurtis D., "Numerical Methods Using MATLAB", Prentice Hall, 1999

Fig. 1: Histograma del error

A. Detalles sobre los algoritmos para la factorización QR

A continuación se detallan de manera general algunos puntos considerados relevantes para cada una de las implementaciones de los métodos de descomposición QR considerados en este trabajo, para una matriz A de mxn, con $m \ge n$.

1) Reflexiones de Householder: El algoritmo consiste en usar las matrices de Householder para hacer 0 todos los elementos debajo de la diagonal para cada columna de la matriz A. La matriz de Householder se define como:

$$H = \mathbb{I} - 2\frac{\vec{u}\vec{u}^T}{||\vec{u}||^2} \tag{7}$$

con $\vec{u} = \vec{x}$ excepto en el elemento que no queremos que sea 0, donde toma el valor $\vec{u}_k = \vec{x}_k + \sigma$, siendo \vec{x} el vector columna que sobre el que se está operando y $\sigma = sign(x_k)||\vec{x}||$.

Con el fin de optimizar el algoritmo se realizaron ciertas modificaciones usando las siguientes igualdades:

$$||\vec{u}||^2 = \sum_{i=1}^n u_i^2 = \sum_{i=2}^n x_i^2 + (x_1 + \sigma)^2 = \sum_{i=2}^n x_i^2 + x_1^2 + 2x_1\sigma + \sigma^2 = 2(||\vec{x}||^2 + x_1\sigma)$$
(8)

$$R_{k:m,k} = H\vec{x} = \vec{x} - 2\frac{\vec{u}\vec{u}^T\vec{x}}{||\vec{u}||^2} = \vec{x} - \vec{u}\frac{2(||\vec{x}||^2 + x_1\sigma)}{||\vec{u}||^2} = \vec{x} - \vec{u}$$
(9)

$$R_{k,k} = \vec{x}_1 - \vec{u}_1 = \vec{x}_1 - (\vec{x}_1 + \sigma) = -\sigma \tag{10}$$

A su vez, como el cálculo de Q es muy costoso ya que requiere de la multiplicación de matrices de mxm (m es el número de filas), se optó por calcular directamente $Q_1\vec{b}$, ya que para ello se multiplican entre sí vectores y no matrices. La desventaja de esto es que el algoritmo devuelve los coeficientes de la aproximación, en lugar de Q y R. Esto implica que hay que ejecutarlo una vez para cada función que se quiera aproximar a los datos. En cambio, el algoritmo de Givens y el de Gram-Schmidt se ejecutan una sola vez ya que devuelven las matrices Q y R que luego se utilizan para realizar sustitución hacia atras y obtener los coeficientes para los distintos valores de \vec{b} .

2) Rotaciones de Givens: La idea basamental del algoritmo es ir anulando, mediante rotaciones de Givens, los elementos de la matriz A que se encuentren por debajo de la diagonal de manera ascendente (de abajo hacia arriba, de izquierda a derecha), empezando por el elemento en la posición (m,1), de manera tal que en la última iteración A se convierta en la matriz triangular superior R de la descomposición.

En cada paso del algoritmo, se busca rotar el elemento (i,j) con el elemento (i-1,j); esto provoca la anulación del primero. Para dicho cometido, se utiliza una matriz de rotación de Givens G=G(i), que se encarga de rotar tales elementos un ángulo $\theta=\arctan(\frac{-A(i,j)}{A(i-1,j)})$. La anulación del elemento (i,j) se produce mediante el producto de la matriz de rotación y la matriz A.

Definamos entonces a $G_k = G_k(i)$ como la matriz de rotación de Givens para los elementos (i, j) y (i - 1, j) en el paso k del algoritmo, a $A_{k+1} = G_{k+1}A_k$ como el estado de la matriz inicial A en la (k+1)-ésima iteración y a s como la cantidad de iteraciones del algoritmo. Se tiene, por lo tanto, que:

$$R = (\prod_{t=1}^{s} G_{s-t+1})A \tag{11}$$

Podemos suponer que se utilizarán tantas matrices de rotación como elementos no nulos haya debajo de la diagonal de A, una en cada iteración. De manera análoga, definimos $Q_{k+1} = Q_k * G_{k+1}^T$ como el estado de la matriz Q de la descomposicón en la (k+1)-ésima iteración. Finalmente:

$$Q = \prod_{t=1}^{s} G_t^T \tag{12}$$

Debido a las características de las matrices de rotación de Givens (valores nulos excepto en los elementos de las diagonales y las posiciones (i,i-1) y (i-1,i)), el producto A_{k+1} puede ser computado mediante la modificación de las filas i e (i-1)-ésimas de A_k únicamente. Lo mismo ocurre si hablamos de Q_{k+1} : es necesario alterar solamente las columnas i e (i-1)-ésimas de Q_k . Es aquí dónde el algoritmo de Givens obtiene un gran punto a favor: no es necesario calcular el producto matricial entero; sólo basta realizar los cambios necesario en las filas o columnas mencionadas. Esto es especialmente ventajoso en casos en dónde se está trabajando con matrices de dimensiones superlativas, en donde la memoria disponible para las operaciones se vuelve un factor delicado, teniendo en cuenta, además, que ambos productos deben realizarse en cada iteración.

Listing 1: Implementación de la factorización QR usando reflexiones de Householder.

```
% A es una matriz de mxn con m >= n
% b es un vector de mx1
% Devuelve el vector x de nx1 tal que R1*x = Q1'*b
function [x,e] = householder(A,b)
        [m, n] = size(A);
        R = A;
        for k=1:n
                x = R(k:m,k);
                 % | |x||^2 = \langle x, x \rangle = x' \star x
                nx2 = x' *x;
                sigma = sign(x(1)) * sqrt(nx2);
                u = x;
                u(1) = u(1) + sigma;
                H = eye(m-(k-1)) - (1/(nx2+x(1)*sigma)).*(u*u');
                R(k,k) = -sigma;
                R(k+1:m,k) = 0;
                 if k < n
                         R(k:m, k+1:n) = H*R(k:m, k+1:n);
                 endif
                 % Calcula Q1'*b en lugar de calcular Q
                 b(k:m) = H*b(k:m);
        endfor
        % Calcula x por sustitucion hacia atras
        x = zeros(n, 1);
        for k=n:-1:1
                x(k) = (b(k) - R(k,k+1:n) *x(k+1:n))/R(k,k);
        % Calcula el error minimo
        e = b(n+1:m)' *b(n+1:m);
endfunction
```

Listing 2: Implementación de la factorización QR por medio del método de Gram-Schmidt.

```
% For testing:
% [Q, R] = gramSchmidt([12,-51,4;6,167,-68;-4,24,-41])
% Q*R deberia dar la matriz
function [Q,R] = gramSchmidt(A)
       [m, n] = size(A);
       Q = zeros(m,n);
       R = zeros(m,n);
       e = zeros(m,n);
       for k=1:n
               accum = zeros(m, 1);
               for j=1:k-1
                       accum = accum + e(:,j) .* ( (e(:,j)'*A(:,k)) / (e(:,j)'*e(:,j)) );
               endfor
               u = A(:,k) - accum;
               e(:,k) = u / norm(u);
               % for R, k is taken as rows...
               for j=k:n
                       R(k,j) = (e(:,k)' *A(:,j));
               endfor
       endfor
       Q = e;
endfunction
```

Listing 3: Implementación de la factorización QR por medio rotaciones de Givens.

```
% QR descomposition using Givens' rotations.
                A must be mxn with m >= n
function [Q R] = givens(A)
               m = length(A);
                n = length(A(1,:));
                Q = eye(m);
                R = A;
                aux = zeros(m);
                % Rotating and zeroing in bottom-up order, from left to right.
                % E.g. for a 4x4 A matrix:
                                 X \quad X \quad X \quad X
                                                                   X X X X
                                                                                                      X X X X
                                 X \quad X \quad X \quad X
                                                                   X \quad X \quad X \quad X
                                                                                                      X \quad X \quad X \quad X
                                                                                                                                        0 X X X
                용
                      --> X X X X
                                                     --> X X X X ...->
                                                                                                    0 X X X
                                                                                                                           -->
                                                                                                                                         0 X X X
                                 X \quad X \quad X \quad X
                                                                   0 X X X
                                                                                                      0 X X X
                                                                                                                                        0 X X X
                                 will rotate
                                                                   will rotate
                                                                                                      will rotate
                                                                                                                                        will rotate
                                 (4,1) < -> (3,1)
                                                                 (3,1) <-> (2,1)
                                                                                                     (2,1) < -> (1,1)
                                                                                                                                     (4,2) <-> (3,2)
                                 X \quad X \quad X \quad X
                                                                   X \quad X \quad X \quad X
                                                                                                      X X X X
                                0 X X X
                                                                  0 X X X
                                                                                                      0 X X X
                      --> 0 X X X
                                                                                                     0 0 X X
                오
                                                                  0 0 X X -->
                                                      -->
                용
                                 0 0 X X
                                                                   0 0 X X
                                                                                                      0 0 0 X
                 ջ
                                 will rotate
                                                                  will rotate
                                                                                                     upper
                응
                                  (3,2)<->(2,2)
                                                                 (4,3) < -> (3,3) triangular
                for j = 1:n;
                                 for i = m:-1:j+1
                                                  if (R(i,j) != 0)
                                                                    a = R(i-1, j);
                                                                                                                      % a will rotate with b
                                                                    b = R(i,j);
                                                                                                                       % zeroing target
                                                                    d = sqrt(a^2 + b^2);
                                                                                                                      % distance from a to b
                                                                    c = a / d;
                                                                                                                       % cos
                                                                    s = -b / d;
                                                                                                                       % sin
                                                                    \( \cdot \cd
                                                                    % Rotation of element (i,j) with (i-1,j) only
                                                                    \mbox{\ensuremath{\$}} affects rows i and i-1 of R.
                                                                    \mbox{\ensuremath{\mbox{\$}}} It's unefficient to perform a whole matrix
                                                                    % multiplication if only few rows are affected,
                                                                    % specially for large matrixes.
                                                                    The following assignations improve:
                                                                   용
                                                                                   R = G * R
                                                                    용
                                                                          where:
                                                                    용
                                                                             - G is the rotation matrix for rotating
                                                                    % (i,j) with (i-1,j).
                                                                                    - R starts being A, but at the end, becomes
                                                                    % the upper triangular matrix of QR descomposition.
                                                                    aux = [R(i-1,:); R(i,:)];
                                                                    R(i-1,:) = c * aux(1,:) - s * aux(2,:);
                                                                    R(i,:) = s * aux(1,:) + c * aux(2,:);
                                                                          The following assignations improve:
                                                                    용
                                                                                   0 = Q * G'
                                                                    % where:
                                                                                    - G' is the transpose of (i, j)-with-(i-1, j)
                                                                    % rotation matrix G.
                                                                                  - Q starts being an mxm identity matrix, but
                                                                    \mbox{\ensuremath{\mbox{\$}}} at the end, becomes the orthogonal matrix of QR
                                                                    % descomposition.
                                                                    aux = [Q(:,i-1) Q(:,i)];
                                                                    Q(:,i-1) = c * aux(:,1) - s * aux(:,2);
                                                                    Q(:,i) = s * aux(:,1) + c * aux(:,2);
                                                   endif
                                  endfor
```

endfor endfunction