BOEING

99thm142-8 9/22/99

Amsterdam, 11-12 October 1999 Liquid Rocket Propulsion 50th IAF Congress

RS-68 & Linear Aerospike

Terry Murphy Rocketdyne Propulsion & Power The Boeing Company

Agenda

- Mission
- Design & Development Strategies & Trades
 - Design Solution
- Development Program

The Mission

BOEING JPC98-21: page 3

Design & Development Strategies

Cost Driven Design Trades

- · Gas Generator Cycle
- Simplicity, experience, environment
- Vehicle roll control
- Parallel Flow Turbines
- · Simplified turbopump design & test
- · Simplified engine control & sequence Coaxial Injectors
- Performance margins
- Stability
- · Channel Wall Combustion Chamber
 - Simplicity, structural margins
 - Ablative Nozzle
- Simplicity/Cost

BOEING

Moderate Pressure Requirements Enable Reduced Complexity

Experience Based Design

RS-68

Engines OX/RP

- GG Cycle
- Comb Stability
 - Scaling
- Development
 - Integration - TP Tech
- Flex Ducts

STME

- Perf for Cost Trade
 - Design-to-Cost
- Low Torque Vivs - Casting Devel.
- Concurrent Engrg

SSME

- DTC/IPPD/Variability Red.

- Low Cost/Risk Driven

- High Density Coax Inj Component Designs - High Perf Cycle and
 - Stability Aid Design
- Mechanical elements Regen MCC TP Hydro Design and Fabrication Methods

Engines J-2/J-2S

- Hydrogen tech
- HEE Materials
- High Density Coax - TP Design Tech
 - GG Cycle
- Regen Cooling

- Investment/Spin Castings

Fewer Parts/Processes

Reducing Development Costs

RS-68 Engine

Accketdyne Propulsion & Power

RS-68 Engine Performance Baseline

	Rated Throttled	nrottled
Thrust, vac, klbf	745	440
Thrust, s/I, klbf	650	N/A
Chamber pressure, psia	1410	836
Engine mixture ratio	6.0	0
l _{sp} , vaćuum, sec	410	410 Avg
Expansion ratio	21.5	rč.
Weight, lb	< 15,000	000
Reliability, %	99.73	73

Simple Gas Generator Cycle

Rocketdyne Propulsion & Power

RS-68

SSME

Combustion Chamber

Main Injector

BOEING JPCS4-25: PAGE 20

Ablative Nozzle Assembly

Powerpack

Gas Generator

Oxidizer Turbopump

Hydrogen Turbopump

Rocketdyne Propulsion & Power

Gas Generator Assembly

Rocketdyne Propulsion & Power

BDEING JOHER PROPER

LO2 Turbopump Inlet/Volute Casting

LO2 Turbopump Shaft/Blisk

Rocketdyne Propulsion & Power

BOEING JPCB-2s; page 25

Turbopump Assembly

LOX Pump Shaft Balance

Fuel Pump Shaft Installation

Gas Generator Testing Validates Design

Turbomachinery Full Scale Cold Flow Test

Full-Scale Powerpack Hot-Fire Testing

RS-68 Test Facilities

Development

Stand 1-A AF Research Lab

Certification/Production

Stand B-1 Stennis Space Center

55 Fest Stand Capability Supports Remai Test Program

Capability	High LOX inlet pressuresPOGO pulsing120 sec duration at 100%	 Thrust/thrust vector measurement Inlet flow/MR Mission duration Gimbaling 	Thrust/thrust vector measurementInlet flow/MRMission duration	Stage tankageStage integrationPOGO verification
Stand	1-A	B-1A	B-1B	B-2

BOEING

RS-68-917-58

Space Systems:Lora:

n Power Level Achieved o 1st Bngine

Start

(60% power level) Mainstage

Ignition

36 **Engine 10001 Total Tests** Total Sec

BOEING

AS-68-63-SP €-568 Status June 1965

Rocketdyne Propulsion & Power

Engine 10202 Tests

-013: Start 7 sec

-014: Transition 13 sec

6 sec (facility cut)

-015: 60% S-S

Demonstration Objectives

Start/shutdown

18 sec

-020: Stability 78% ramp

-019: Stability

-018: 60% S-S

-017: 60% S-S

38 sec

68 sec

6 sec

-024: 93% Ramp 9 sec

-023: Stability 83% S-S

-022: Stability

-021: Stability

6 sec

8 sec

14 sec

-027: 100% Ramp

-026: 60%/93%

68 sec

8 sec

Nozzle dynamic environment

Injector stability-60%

Bootstrap

| Ignition

18 sec

Bleed valve characteristics

Purge development

Mainstage 60%

-028: 102% Ramp (Redline cut)

Config. - 60% power level

Drying verification

- High power (96%) steady-state
- 100% start transient

48.68 943 29 4erospace 3910

15 sec Rocketdyne Propulsion & Power -025: 93% S-S

Heat Exchanger Turbopump/w Ducts Mod 2 Shaft **Gimbal Bearing** Combustion Chamber Engine in Assem Gas Generator Nozzle Propellant Valves Turbopump Fuel Exhaust Oxidizer Injector Rocketdyne Propuision & Power

Assembly

Rochetavne Propulsion & Power Same Many

A BOEING

X-33 Linear Aerospike Engine Program Overview

Aerospike One of Many Nozzle Shapes

All four shapes produce the same thrust

What's a Linear Aerospike

Rocketdyne Propulsion & Power

,(

Bell Nozzle vs Aerospike

Gas Generator Cycle Bell

Gas Generator Cycle Aerospike

زز

SSTO Demands on Propulsion

High altitude performance drives engine requirements – prefer a large area ratio nozzle

Large area ratio nozzles at sea level cause flow separation, performance losses, high nozzle structural loads . Pexit < $P_{\infty} \Longrightarrow$ thrust loss

F = mVexit + Aexit (Pexit - P∞)

Optimum performance occurs when Pexit = P\infty at all altitudes

Variable nozzle required to get $Pexit = P\infty at$ all altitudes, but design is not feasible

Aerospike Performance Advantage

Space

Liftoff

Bell Engi e

- Pw (exit) > Pa

Boundary Plume

Separation Region Plume

Outer Plume Boundary

Aerospike

Boundary

Aerospike Nozzles Avoid **Bell Nozzle Problems**

Thruster flow discharges to ramp

Expansion waves turn flow axially

Ramp curves, turns flow axially (at low altitudes) Turning causes compression wave from (1) to (2) – nozzle pressure increases

Compression wave reflects off boundary causing expansion waves

Flow crosses expansion waves in (2) – nozzle pressure decreases Ramp continues to curve and turn flow

ullet Process repeats (2) to (3)

Average nozzle pressure >P∞, therefore no losses or separation, therefore large area ratio nozzle can be used, enabling SSTO

Aerospike Benefits

- Enables smallest, lowest cost vehicle
- Smallest thrust take-out structure
- No gimbal joints or actuators
 - High installed performance
 - Altitude compensating
- Lowers vehicle base drag
- Lowest development riskLowest risk cycle gas generator
- Parallel component development

Linear Aerospike Heritage

Two Linear Aerospike Engine testbeds built & testing in early 1970's

Testbed #1

- 44 starts
- 3,113 seconds

Testbed #2

- 29 starts
- 1,200 seconds
- Gimballing demonstration

Over \$500M Invested in Aerospi

H2O2 (0.4K) 43 Tests at AEDC

O2/RP-1 (8K) 9 Tests at PRA

N2O2/50-50 (10K) 61 Tests at AEDC

O2/H2 (40K) 24 Tests at NFL

O2/H2 (250K) 15 Tests at SSFL

O2/H2 (250K) 48 Tests at NFL

O2/H2 (250K) 44 Tests at SSFL

O2/H2 Linear (125K) Gimbaled 29 Tests at SSFL

X-33 Linear Aerospike

7.2	CETALTA	ARLION!	2007 (A. J.	reichs Ra	interprisessor —		F-	er er er		\$77 dest.	- K.M. 1 O CO CO		
206.2/266	340/429	854	28	20	Ox/hydrogen	5.5	Gas generator	57 - 102	35	inches	133w x 88 ^ℓ	46w x 88	79
F, sea level/vacuum, Klbf.	Isp, sea level/vacuum, sec.	Chamber pressure, psia.	Area ratio	Thrust cells	Propellants	Mixture ratio, o/h	Cycle	Throttling, % thrust	Thrust/weight	Dimensions,	Forward end	Aft end	Forward to aft

X-33 Engine Major Components

Fhrust Vector Control X-33 Two Engine

X-33 LOX Turbopump

X-33 Fuel Turbopump

4

X-33 Gas Generator

X-33 Heat Exchanger

Combustion Wave Ignition Spider Rig

X-33 Leverages Universal MCC Technology

X-33 Aerospike Thrust Cell

Thrust Ramp Design

X-33 Thrust Ramp - Final Assemb

O BOEIN

Most Significant Design Challenges

 Thermal Load Management

Distribution of

Thrust Loads

Engine to engine

Packaging

Rocketdyne Propulsion & Power

interaction

X-33 Engine Developm

powerpack hardware Apollo 18 J2 engine recycled

at SSC

Implementation Methodology

XRS-2200 Verification

PRO-E design model > 2 Gigabytes

 Structural analysis using Stardyne & ANSYS

Test-to-Verify Development Goa

X-33 Powerpack Test

Summary

- performance & integration needs for X-33/RLV Aerospike rocket engine technology meets
- demand high performance design, analysis & Unique design & operational requirements manufacturing tools
- Cost & schedule constraints demand high performance work teams & business management tools