2022年度暑期强化课程

循环神经网络语言模型

授课人:曹亚男

助教: 任昱冰

3. 循环神经网络

3.1 RNN语言模型

3.2 RNN激活单元

3.3 双向循环神经网络

Seq2seq框架

3.4

3. 循环神经网络

 3.1
 RNN语言模型

 3.2
 RNN激活单元

 3.3
 双向循环神经网络

 3.4
 Seq2seq框架

知识回顾: 统计语言模型

• 统计语言模型的作用是为一个长度为m的字符串确定一个概率 分布 $P(w_1, w_2, ..., w_m)$,表示其存在的可能性。其中 w_1 到 w_m 依次 表示这段文本中的各个词

$$P(w_1, w_2, ..., w_m) = P(w_1)P(w_2 \mid w_1)P(w_3 \mid w_1, w_2)$$

$$...P(w_i \mid w_1, w_2, ..., w_{i-1})...P(w_m \mid w_1, w_2, ..., w_{m-1})$$

$$= \prod_{i=1}^{m} P(w_i \mid w_1, w_2, ..., w_{i-1})$$

• 由于 $P(w_i|w_1,w_2,...,w_{i-1})$ 很难估算,通常使用n-gram模型来简化

$$P(w_i \mid w_1, w_2, ..., w_{i-1}) \approx P(w_i \mid w_{i-(n-1)}, ..., w_{i-1})$$

知识回顾:神经网络语言模型 (NNLM)

• 采用神经网络结构对n-gram模型进行建模,估算 $P(w_i|w_{i-(n-1)},...,w_{i-1})$ 的值。输入为条件部分的整个词序列,输出为目标词 w_i 的分布

循环神经网络语言模型 (RNNLM)

• 不同于NNLM是对n-gram建模,RNNLM直接对 $P(w_i|w_1,w_2,...,w_{i-1})$ 进行建模。RNNLM可以利用 w_i 所有上文信息,预测下一个词

独特的隐藏层算法:

$$h(i) = f(Ux(i) + Wh(i-1))$$

- *h(i)*表示文本中第*i*个词对应的隐藏层,由当前词的词向量及上一个词对应的隐藏层结合得到
- 隐藏层初始状态为h(0),模型逐个读入语料中的词 w_1, w_2, \dots ,隐藏层不断更新为 $h(1), h(2), \dots$

- 1. Tomas Mikolov, et.al. Statistical language models based on neural networks. 2012
- 2. Tomas Mikolov, et.al. Recurrent neural network based language model. 2010

RNNLM vs NNLM

。对于RNN来说,隐层的更新可通过 h(t) = f(Ux(t) + Wh(t-1))来实现 ,其中f 可以是非线性激活函数(如sigmoid),也可以是复杂的模型结构(如LSTM)

RNNLM vs NNLM

RNN

对于RNN来说,隐层的更新可通过 h(t) = f(Ux(t) + Wh(t-1))来实现, 其中f 可以是非线性激活函数(如sigmoid),也可以是复杂的模型结构(如LSTM)

RNNLM vs NNLM

o对于RNN来说,隐层的更新可通过 h(t) = f(Ux(t) + Wh(t-1))来实现 ,其中f可以是非线性激活函数(如sigmoid),也可以是复杂的模型结构(如LSTM)

RNN应用场景: 序列标注任务

结构预测任务大多可以看作序列标注任务,例如词性标注、命名 实体识别等

一个例子

- 采用常用的BIO(Beginning, Inside, Other)实体标注体系
 - 1. 以字作为基本输入单元:

2. 以词作为基本输入单元:

Input: 主席 习 近平 发表 重要 讲话 Output: O B-PER I-PER O O

RNN for Speech Recognition

Table 1: Performance of models on WSJ DEV set when increasing size of training data.

Model	# words	PPL	WER
KN5 LM	200K	336	16.4
KN5 LM + RNN 90/2	200K	271	15.4
KN5 LM	1M	287	15.1
KN5 LM + RNN 90/2	1M	225	14.0
KN5 LM	6.4M	221	13.5
KN5 LM + RNN 250/5	6.4M	156	11.7

Table 2: Comparison of various configurations of RNN LMs and combinations with backoff models while using 6.4M words in training data (WSJ DEV).

		PPL	WER	
Model	RNN RNN+KN		RNN RNN+K	
KN5 - baseline	-	221	-	13.5
RNN 60/20	229	186	13.2	12.6
RNN 90/10	202	173	12.8	12.2
RNN 250/5	173	155	12.3	11.7
RNN 250/2	176	156	12.0	11.9
RNN 400/10	171	152	12.5	12.1
3xRNN static	151	143	11.6	11.3
3xRNN dynamic	128	121	11.3	11.1

减小词表

$$P(w_i(t+1) \mid w(t), s(t-1)) = \begin{cases} \frac{y_{rare}}{C_{rare}} & \text{if } w_i(t+1) \text{ is rare,} \\ y_i(t) & \text{otherwise} \end{cases}$$

- 出现频度低于阈值的词合并为特殊标记
- 词表越大,稀有词合并阈值越大

超参数设置

- 激活单元使用sigmoid函数
- 采用不同的隐单元数量
- 权重矩阵初始化为均值为0、方差为0.1 的随机分布

训练技巧

- 静态训练 vs. 动态:模型在训练阶段不断更新,测试阶段不更新或更新
- 使用标准的SGD算法,学习率设为0.1, 学习率提升明显时保持不变,没有明显提升时,学习率减半

RNN for Speech Recognition

Table 1: Performance of models on WSJ DEV set when increasing size of training data.

Model	# words	PPL	WER
KN5 LM	200K	336	16.4
KN5 LM + RNN 90/2	200K	271	15.4
KN5 LM	1M	287	15.1
KN5 LM + RNN 90/2	1M	225	14.0
KN5 LM	6.4M	221	13.5
KN5 LM + RNN 250/5	6.4M	156	11.7

困惑度降低 50% 错误率降低 18%

ra

Table 2: Comparis and combinations v in training data (WSJ I

		PPL		WER
Model	RNN	RNN+KN	RNN	RNN+KN
KN5 - baseline	_	221	-	13.5
RNN 60/20	229	186	13.2	12.6
RNN 90/10	202	173	12.8	12.2
RNN 250/5	173	155	12.3	11.7
RNN 250/2	176	156	12.0	11.9
RNN 400/10	171	152	12.5	12.1
3xRNN static	151	143	11.6	11.3
3xRNN dynamic	128	121	11.3	11.1

评价标准

错误率:将识别出的词序列转为标准词 序列,所需替换、删除、插入词的比例

$$WER = \frac{S + D + I}{N}$$

- 困惑度:困惑度越小、测试集中句子概率越大、语言模型越好

$$PPL = 2^{\frac{H(L,q)}{n}} \approx 2^{-\frac{1}{n}\log_2 q(x_1^n)} = [q(x_1^n)]^{-\frac{1}{n}}$$
文义熵

实验结论

- RNN比KN5 LM好
- 在一定范围内,隐单元数量越多,效果 越好
- 动态训练效果比静态训练效果好

3. 循环神经网络

3.1 RNN语言模型

3.2 RNN激活单元

3.3 双向循环神经网络

3.4 Seq2seq框架

回顾RNN

• 对于RNN来说,隐层的前向计算方法是 h(t) = f(Ux(t) + Wh(t-1))

非线性激活函数

• RNN通常采用sigmoid、tanh函数作为激活函数,容易导致梯度消失 $h(t) = \tanh(Ux(t) + Wh(t-1))$

长期依赖 (Long-Term Dependency)

- 很久以前的输入,对当前时刻的网络影响较小;反向传播的梯度, 也很难影响很久以前的输入
- 例如:
 - The cat, which already ate a bunch of food, (was) full.
 - The cats, which already ate a bunch of food, (were) full.

▶ 解决思路:采用ReLu函数,或采用其他模型来代替非线性激活函数

LSTM模型

- LSTM单元不仅接受 x_t 和 h_{t-1} ,还维持一个细胞状态 C_t ,保证信息在 长期传播过程中不会被丢失
- 通过设计"门"结构保留重要特征,丢弃不重要的特征;每个门结构由一个sigmoid层和一个piecewise操作构成

LSTM模型

GRU

- 有单独的细胞状态
- 用输入门和遗忘门决定保留或放弃
- 新信息 C_t^{\sim} 来源于 h_{t-1} 和 x_t
- 输出门控制细胞状态的输出

- 遗忘门 $f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)$
- $\hat{\mathbf{h}}$ $\hat{\mathbf{h}}$ $\hat{\mathbf{h}}$ $i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$
- 新信息 $\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$
- 细胞状态 $C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$
- 输出门 $o_t = \sigma(W_o[h_{t-1}, x_t] + b_o)$
- 隐状态 $h_t = o_t * \tanh(C_t)$

- 没有单独的细胞状态
- 用更新门决定保留或放弃
- h_t^{\sim} 由重置门决定来自 h_{t-1} 的信息
- 直接输出隐状态

- 更新门 $z_t = \sigma\left(W_z \cdot [h_{t-1}, x_t]\right)$
 - 重置门 $r_t = \sigma(W_r \cdot [h_{t-1}, x_t])$
- 新信息 $\tilde{h}_t = \tanh (W \cdot [r_t * h_{t-1}, x_t])$
- 隐状态 $h_t = (1 z_t) * h_{t-1} + z_t * \tilde{h}_t$

保留哪些旧状态

接收哪些新状态

Tanh vs. LSTM vs. GRU

			tanh	GRU	LSTM
	Nattinaham	train	3.22	2.79	3.08
	Nouingnam	Nottingham test		3.23	3.20
Music Datasets	JSB Chorales	train	8.82	6.94	8.15
	JSB Chorates	rales test		8.54	8.67
	MuseData	train	5.64	5.06	5.18
	MuseData	test	6.23	5.99	6.23
	Piano-midi	train	5.64	4.93	6.49
	r iano-iniui	test	9.03	8.82	9.03
3	Ubisoft dataset A	train	6.29	2.31	1.44
	Obisoit dataset A	test	6.44	3.59	2.70
Ubisoft Datasets	Ubisoft dataset B	train	7.61	0.38	0.80
	Obison dataset B	test	7.62	0.88	1.26

Table 2: The average negative log-probabilities of the training and test sets.

任务

$$\max_{\boldsymbol{\theta}} \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} \log p\left(x_t^n \mid x_1^n, \dots, x_{t-1}^n; \boldsymbol{\theta}\right)$$

- 最大化语言模型的log似然

参数设置

三种模型使用相近的参数数量,以避免过拟合造成不同的影响

结论

- GRU比LSTM稍好,比tanh好的多; 具体需要根据任务数据进行选择
- 收敛速度: GRU>LSTM>Tanh

3. 循环神经网络

3.1 RNN语言模型

3.2 RNN激活单元

3.3 双向循环神经网络

3.4 Seq2seq框架

RNN

$$h_t = f(Wx_t + Vh_{t-1} + b)$$

$$y_t = g(Uh_t + c)$$

- x 表示输入序列中的一个词的词向量,y 表示该词对应的输出标签
- h 表示隐层,通过当前词和上一个隐层的信息进行计算,存储了 截止目前状态输入的句子信息

Problems

- 问题: RNN不能解决上文环境相同, 但标注不同的情况
 - I did not go to the rodeo.
 - I [did not accept]_{DSE} his suggestion.

- 解决方案
 - 设置一个固定的窗口,对一个词的上下文进行建模
 - 在模型中考虑过去的状态(上文),也考虑未来的状态(下文)

Bidirectional RNN (Schuster and Paliwal, 1997)

Bidirectional RNNs

- 针对每个时刻的输入,都有一个正向隐层、一个反向隐层 $h = [\vec{h}; \bar{h}]$
- 两个隐层分别表示一个词的上下文信息(即当前时刻之前和未来时刻的信息)

Deep Bidirectional RNNs

● 深度双向RNN采用多个隐层,每个隐层向后一层传递序列信息h

Elmo

- Elmo使用双向的LSTM语言模型,由一个前向和一个后向语言模型构成, 目标函数是取这两个方向语言模型的最大似然
- ELMo首先训练一个完整的语言模型,再用语言模型去处理训练语料,生成相应的词向量,可对复杂特征(如句法和语义)和多义词进行建模

$$p(t_1,t_2,\ldots,t_N) = \prod_{k=1}^N p(t_k|t_1,t_2,\ldots,t_{k-1})$$

$$p(t_1, t_2, \dots, t_N) = \prod_{k=1}^N p(t_k | t_{k+1}, t_{k+2}, \dots, t_N)$$

$$\sum_{k=1}^{N} (logp(t_k|t_1,t_2,\ldots,t_{k-1}) + logp(t_k|t_{k+1},t_{k+2},\ldots,t_N))$$

RNN for Opinion Ming

- 识别输入序列中表达观点的文本片段,候选类别包括DSE和ESE
 - DSE: 显式表达情感、情绪的文本片段(词或短语)
 - ESE: 隐式表达情感、情绪的文本片段(词或短语)

The committee, [as usual]_{ESE}, [has refused to make any statements]_{DSE}.

B10标注策略(B、I、0表示观点表达式的开始、内部和外部)

```
The committee , as usual , has refused to 0 0 0 B_ESE I_ESE 0 B_DSE I_DSE I_DSE  
make any statements .  
I_DSE I_DSE I_DSE 0
```

RNN for Opinion Mining: Experiments

Layers	h	Precision		Recall		F1	
		Prop.	Bin.	Prop.	Bin.	Prop	Bin.
Shallow	36	62.24	65.90	65.63*	73.89*	63.83	69.62
Deep 2	29	63.85*	67.23*	65.70*	74.23*	64.70*	70.52*
Deep 3	25	63.53*	67.67*	65.95*	73.87*	64.57*	70.55*
Deep 4	22	64.19*	68.05*	66.01*	73.76*	64.96*	70.69*
Deep 5	21	60.65	61.67	56.83	69.01	58.60	65.06
Shallow	200	62.78	66.28	65.66*	74.00*	64.09	69.85
Deep 2	125	62.92*	66.71*	66.45*	74.70*	64.47	70.36
Deep 3	100	65.56*	69.12*	66.73*	74.69*	66.01*	71.72*
Deep 4	86	61.76	65.64	63.52	72.88*	62.56	69.01
Deep 5	77	61.64	64.90	62.37	72.10	61.93	68.25

Evaluation of RNNs for DSE extraction

	Model		Prec	ision	Red	call	F	1
	- 1011		Prop.	Bin.	Prop.	Bin.	Prop	Bin.
DSE	CRF	3	74.96*	82.28*	46.98	52.99	57.74	64.45
	semiCRF		61.67	69.41	67.22*	73.08*	64.27	71.15*
	CRF	+vec	74.97*	82.43*	49.47	55.67	59.59	66.44
	semiCRF	+vec	66.00	71.98	60.96	68.13	63.30	69.91
	Deep RNN	3 100	65.56	69.12	66.73*	74.69*	66.01*	71.72*
ESE	CRF		56.08	68.36	42.26	51.84	48.10	58.85
	semiCRF		45.64	69.06	58.05	64.15	50.95	66.37*
	CRF	+vec	57.15*	69.84*	44.67	54.38	50.01	61.01
	semiCRF	+vec	53.76	70.82*	52.72	61.59	53.10	65.73
	Deep RNN	3 100	52.04	60.50	61.71*	76.02*	56.26*	67.18*

Comparison of Deep RNNs to CRF

超参数设置

- 激活函数:输出层softmax,隐层ReLU
- 词向量: word2vec
- 正则:针对较大网络,采用dropout来 避免过拟合
- 损失函数: 交叉熵
- **SGD**: 学习率0.005

结论

- 双向 vs. 单向: 双向浅层RNN(36个隐单元)比单向浅层RNN(65个隐单元)好
- 网络层次: Deep RNN层数不是越多越好, 平均看来3层RNN效果最好
- DeepRNN vs. CRF: DeepRNN在DSE和 ESE上效果均最好

BI-LSTM-CRF for Sequence Tagging

Figure 7: A BI-LSTM-CRF model.

Table 2: Comparison of tagging performance on POS, chunking and NER tasks for various models.

		POS	CoNLL2000	CoNLL2003
	Conv-CRF (Collobert et al., 2011)	96.37	90.33	81.47
	LSTM	97.10	92.88	79.82
	BI-LSTM	97.30	93.64	81.11
Random	CRF	97.30	93.69	83.02
	LSTM-CRF	97.45	93.80	84.10
	BI-LSTM-CRF	97.43	94.13	84.26
	Conv-CRF (Collobert et al., 2011)	97.29	94.32	88.67 (89.59)
	LSTM	97.29	92.99	83.74
	BI-LSTM	97.40	93.92	85.17
Senna	CRF	97.45	93.83	86.13
	LSTM-CRF	97.54	94.27	88.36
	BI-LSTM-CRF	97.55	94.46	88.83 (90.10)

- CRF很强大,其效果好 于只用LSTM或BI-LSTM
- BI-LSTM与CRF的结合 几乎将序列标注任务的 效果推向顶峰

3. 循环神经网络

3.1 RNN语言模型

3.2 RNN激活单元

3.3 双向循环神经网络

3.4 Seq2seq框架

RNN基本结构

输入序列和输出序列等长,不等长怎么办?

RNN变体

one to many

$$h(t) = \begin{cases} f(Wh(t-1)), t > 1\\ f(UX + Wh(t-1)), t = 1\\ 0, t = 0 \end{cases}$$

one to many

RNN变体: Encoder-Decoder

Seq2Seq Model for Machine Translation

深层的编解码器效果更好

Seq2Seq Model for Text Summarization

Attention Based Seq2seq Model

The capability of RNN

欢迎加入DL4NLP!

