Lecture 16

niceguy

March 14, 2023

1 Normal Operators

Recall for a finite dimensional complex space V with an inner product,

 $TT^* = T^*T \Leftrightarrow V$ has an orthonormal basis of eigenvectors of T

Let P_{λ} be orthogonal projections to eigenspaces $E(\lambda, T)$.

Theorem 1.1 (Spectral Resolution). For a normal T, all of the following hold.

$$P_{\lambda}P_{\mu} = \begin{cases} 0 & \lambda \neq \mu \\ P_{\lambda} & \lambda = \mu \end{cases}$$
$$\sum_{\lambda} P_{\lambda} = I$$
$$T = \sum_{\lambda} \lambda P_{\lambda}$$

Proof. Trivial.

If $W \subseteq \mathbb{C}^n$ is a subspace with orthonormal basis $v_1, \ldots, v_k \in W$, then the orthogonal projection to W is

$$P = \sum_{i=1}^{k} v_i v_i^*$$

This is because

$$Pv_j = \sum_i v_i v_i^* v_j = \sum_i v_i \langle v_j, v_i \rangle = \begin{cases} v_j & v_j \in W \\ 0 & v_j \notin W \end{cases}$$

Example 1.1. Find the spectral resolution of $A \in M_{2\times 2}(\mathbb{C})$

$$A = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$

The eigenvalues are $a \pm ib$ with unit eigenvectors $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ \pm i \end{pmatrix}$. The orthogonal projections are then

$$P_{\lambda_1} = v_1 v_1^* = \frac{1}{2} \begin{pmatrix} 1 \\ i \end{pmatrix} \begin{pmatrix} 1 & -i \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix}$$

$$P_{\lambda_2} = v_2 v_2^* = \frac{1}{2} \begin{pmatrix} 1 \\ -i \end{pmatrix} \begin{pmatrix} 1 & i \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}$$

Thus the spectral resolution is

$$\begin{pmatrix} a & b \\ -b & a \end{pmatrix} = (a+ib)\frac{1}{2}\begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix} + (a-ib)\frac{1}{2}\begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}$$

The spectral resolution is useful in finding us the adjoint, as

$$T^* = \sum_{\lambda} \overline{\lambda} P_{\lambda}$$

and that

$$T^k = \sum_{\lambda} = \lambda^k P_{\lambda}$$

More generally,

$$q(T) = \sum_{\lambda} q(\lambda) P_{\lambda}$$

Recall Spec(T) is the set of eigenvalues of T.

Definition 1.1 (Functional Calculus). For any $f: \operatorname{Spec}(T) \to \mathbb{C}$, define, for normal T,

$$f(T) = \sum_{\lambda} f(\lambda) P_{\lambda}$$

If $v \in V$ is an eigenvalue of T, eigenvalue λ , then it is also an eigenvalue for f(T) with eigenvalue $f(\lambda)$ and f(T) is the unique operator with this property. In particular f(T) is normal.

Example 1.2. The properties of f(T) are as follows.

•
$$f(\lambda) = \lambda \Rightarrow f(T) = T$$

•
$$f(\lambda) = 1 \Rightarrow f(T) = 1$$

•
$$f(\lambda) = q(\lambda) \Rightarrow f(T) = q(T)$$

•
$$f(\lambda) = \overline{\lambda} \Rightarrow f(T) = T^*$$

$$\bullet \ (f+g)(T) = f(T) + g(T)$$

•
$$(af)(T) = af(T)$$

•
$$(f \cdot g)(T) = f(T)g(T)$$

•
$$f(T)^* = \overline{f}(T^*)$$

•
$$\operatorname{Spec}(f(T)) = f(\operatorname{Spec}(T))$$

Now we can define all kinds of functions of normal operators.

Example 1.3. |A| from the first example becomes

$$|a+ib|\frac{1}{2}\begin{pmatrix}1 & -i\\ i & 1\end{pmatrix} + |a-bi|\frac{1}{2}\begin{pmatrix}1 & i\\ -i & 1\end{pmatrix}$$

$$\exp\begin{pmatrix} a & b \\ -b & a \end{pmatrix} = e^{a+ib} \frac{1}{2} \begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix} + e^{a-ib} \frac{1}{2} \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix} = e^a \begin{pmatrix} \cos b & \sin b \\ -\sin b & \cos b \end{pmatrix}$$

For a finite dimensional vector space $V = \mathbb{R}$ or $V = \mathbb{C}$, $T \in \mathcal{L}(V)$,

$$\exp(T) = e^T$$

is always defined (it converges, but one has to show it). More generally, f(T) is defined $\forall f(z) = \sum_{n=0}^{\infty} a_n z^n$ with an ∞ radius of convergence.

2 Positive Operators

For a finite dimensional complex space V,

Proposition 2.1. For self adjoint $T \in \mathcal{L}(V)$, the following are equivalent

- 1. $\langle Tv, v \rangle > 0 \forall v \in V$
- 2. The eigenvalues of T are all ≥ 0

Proof. The first obviously implies the second; put v to be any eigenvector. Given the second,

$$\langle Tv, v \rangle = \langle T\left(\sum_{i} a_{i}e_{i}\right), \sum_{i} a_{i}e_{i} \rangle = \langle \sum_{i} a_{i}\lambda_{i}e_{i}, \sum_{i} a_{i}e_{i} \rangle = \sum_{i} \lambda_{i}a_{i}^{2} \geq 0$$

where e_i is an orthonormal basis of eigenvectors.

Definition 2.1. A self-adjoint operator satisfying these properties is called positive. Note that 0 (the operator) is positive.

Example 2.1. I is positive. $\forall T \in \mathcal{L}(V)$, the operators TT^*, T^*T are positive. This is because

$$\langle T^*Tv, v \rangle = \langle Tv, Tv \rangle = ||Tv|| \ge 0$$

and similarly for TT^* . Then for any normal T and any $f : \operatorname{Spec}(\mathbb{C}) \to \mathbb{R}^+$, then f(T) is positive. In particular, |T| is positive.

Proposition 2.2. If T_1, T_2 are positive, $a_1, a_2 \ge 0$, then $a_1T_1 + a_2T_2$ is positive.

Example 2.2. If $T \in \mathcal{L}(V)$ is any self adjoint operator, then $I + \epsilon T$ is positive for sufficiently small ϵ . This is when $1 - \epsilon \lambda \ge 0 \forall$ eigenvalues λ

Given $T \in \mathcal{L}(V)$, an operator $S \in \mathcal{L}(V)$ is its "suare root" if $S^2 = T$.

Proposition 2.3. If $T \in \mathcal{L}(V)$ is positive, then it has a unique positive square root.

Proof. Note that the positive square root function is well defined on $\operatorname{Spec}(T) \subseteq \mathbb{R}^+ \cup \{0\}$. Then \sqrt{T} is a square root. To show uniqueness, let $Tv = \mu^2 v$ and Sv = kv + u, where u and v are orthogonal. Since S is positive, $k \geq 0$. Then

$$\mu^2 v = S^2 v = k^2 v + ku + Su \Rightarrow Su = -ku$$

which means k=0 is the only possible value of k. Then S and T share the same eigenvectors. This uniquely determines the eigenvalues of S as the square roots of that of T.

This can be applied to polar decomposition. Let $T \in \mathcal{L}(V)$ be any operator.

Theorem 2.1. Suppose $T \in \mathcal{L}(V)$ is invertible. Then there exists a unique unitary operator $U \in \mathcal{L}(V)$ and positive $R \in \mathcal{L}(V)$ such that T = UR.

Proof.

$$T^*T = R^*U^*UR = R^*R = R^2$$

We can take $R = \sqrt{T^*T}$. Then we have a unique $U = TR^{-1}$. Note that

$$U^*U = (R^{-1})^*T^*TR^{-1} = R^{-1}R^2R^{-1} = I$$

As a consequence, if T is not normal, then U, R do not commute. We also have $T = \sqrt{TT^*}U_1$, where U_1 is unitary.