Photon flux calculation

Yuanjing Ji Aug 20, 2021

Method 1: In the form of y and Q2 (widely used in Hera)

ullet Use (y,Q^2) dependence of photon flux (Φ_γ) formula from H1 paper

$$\frac{d^2\sigma_{ep}}{dydQ^2} = \Phi_{\gamma}^T(y, Q^2)\sigma_{\gamma p}^T + \Phi_{\gamma}^L(y, Q^2)\sigma_{\gamma p}^L$$

 $\sigma^T_{\gamma p}$ - Transverse and $\sigma^L_{\gamma p}$ - longitudinal component of cross section Φ^T - Transverse and Φ^L - longitudinal component of photon flux

$$R = \sigma_{\gamma p}^{L} / \sigma_{\gamma p}^{T}, \quad \sigma_{\gamma p} = \sigma_{\gamma p}^{L} + \sigma_{\gamma p}^{T}$$

$$\epsilon_{\Phi} = \Phi^{L} / \Phi^{T} = \frac{1 - y}{1 - y + y^{2} / 2} \quad \text{~1 at y~0}$$

$$\frac{d^2\sigma_{ep}}{dydQ^2} = \Phi_{\gamma}^T(y, Q^2)\sigma_{\gamma p} \times \frac{1 + \epsilon R}{1 + R} \simeq \Phi_{\gamma}^T(y, Q^2)\sigma_{\gamma p}$$

$$\iint \frac{d^2 \sigma_{ep}}{dy dQ^2} dy dQ^2 \simeq \iint \Phi_{\gamma}^T(y, Q^2) \sigma_{\gamma p} dy dQ^2, \quad \sigma_{\gamma p} \simeq \frac{\iint \frac{d^2 \sigma_{ep}}{dy dQ^2} dy dQ^2}{\iint \Phi_{\gamma}^T(y, Q^2) dy dQ^2}$$

J/psi production at $Q^2 > 1$ GeV^2

$$\sigma_{\gamma p} \simeq \frac{\int_{y_{min}}^{y_{max}} \int_{Q_{min}^2}^{Q_{max}^2} \frac{d^2 \sigma_{ep}}{dy dQ^2} dy dQ^2}{\int_{y_{min}}^{y_{max}} \int_{Q_{min}^2}^{Q_{max}^2} \Phi_{\gamma}^T(y, Q^2) dy dQ^2}$$

$$y = (W^2 + Q^2 - m_p)/(s - m_p)$$

The y max/min is calculated from W range;

$$\Phi_{\gamma}^{T} \simeq \frac{\alpha}{\pi y Q^2} (1 - y + 0.5y^2)$$

This approximation used in most of H1 and Zeus paper

Algorithm

- Integral photon flux numerically for each W and Q2 bins
- Split Q^2 in 100 bins and y in 100 bins

P. Fleischmann, PhD thesis, DESY-THESIS-2004-013

• e.g. $ln(Q_{max}^2/Q_{min}^2)/nQ^2$, nQ2 = 100

$$\Phi_{\gamma} = \sum \delta Q^2 \sum \delta y \Phi_{\gamma}^T$$

H1 data: Eur.Phys.J.C 46:585-603,2006

- eStarlight results consistent with data
- $|t| < 1.2 \text{ GeV}^2$, ep 27.5x920 GeV

t-dependence

- Similar calculation but as a function of t
- Consistent with data

J/psi at $Q^2 < 1 \ GeV^2$ @ ep 27.5x920 geV

- Not sure about the exact Q^2 range
 - only mentioned $Q^2<1~GeV^2$ and $<\!Q^2\!>=0.05$ in paper), but cross-section has very weak Q2 dependence at low Q^2
- My range: $0.01 < Q^2 < 1 \text{ GeV}$

H1 data: Eur.Phys.J.C 46:585-603,2006

J/psi at $Q^2 < 1 GeV^2$ vs W and t

• Open circle -> H1 data, full circle -> eStarlight

H1 data: Eur.Phys.J.C 46:585-603,2006

Method 2: In the form of Q2 and photon energy

In target rest framework:

$$\frac{d^2 N_{\gamma}}{dk dQ^2} = \frac{\alpha}{\pi} \frac{dk}{k} \frac{dQ^2}{Q^2} \left[1 - \frac{k}{Ee} + \frac{k^2}{2E_e^2} - \left(1 - \frac{k}{Ee} \right) \left| \frac{Q_{\min}^2}{Q^2} \right| \right]$$

arXiv:1803.06420, Equation 2

 E_{e} is the electron energy in target rest framework

 Q_{min}^2 is the minimum Q^2

$$Q_{\min}^2 = rac{m_e^2 k^2}{E_e(E_e - k)}$$

Algorithm

- Integral photon flux numerically for each photon energy (k) and Q2 bins
- Split Q^2 in 100 bins and k in 100 bins
 - e.g. $\ln(Q_{max}^2/Q_{min}^2)/nQ^2$, nQ2 = 100

$$\Phi_{\gamma} = \sum \delta Q^2 \sum \delta y \frac{d^2 N_{\gamma}}{dk dQ^2}$$

Comparison between eStarlight and data

eStarlight: ep 275x18 GeV

Photon flux is calculated with method 2

ZEUS: Eur.Phys.J.C 24 (2002) 345-360, 2002

E687: Phys.Rev.Lett. 48 (1982) 73

FANL 1982: Phys.Lett.B 316 (1993) 197-206

N14: Z.Phys.C 33 (1987) 505

