Introduction to Arduino A hands on Workshop

Sunil Thomas T

College of Engineering Attingal suniltt@gmail.com

February 16, 2018

Overview of Arduino Platform

- Software Support
 - Windows
 - Linux
 - Mac
- Hardware Variants
 - Arduino Uno
 - Arduino Mega
 - Arduino Mini
 - Many more

Let us meet Arduino Uno

Getting started

Get hardware

Get hold of an arduino from amazon, ebay or a local vendor

Download software

Check out: http://arduino.cc/en/Guide/HomePage

Play

Download & install the Arduino environment (IDE) (not needed in Linux) Connect the board to your computer via the USB cable Launch the Arduino IDE Select your board

Select your serial port Open the blink example

Arduino IDE

5 / 38

Selecting Serial Port

Selecting Board

Using Arduino

- Write your sketch
- Press Compile button (to check for errors)
- Press Upload button to program Arduino board with your sketch

Try it out with the "Blink" sketch!

Load "File/Sketchbook/Examples/Digital/Blink"

What you can do with arduino

Structure of typical sketch

Know your prototyping board

11 / 38

Let us turn on an LED

Now turn it off


```
void setup()
{
  pinMode(13, OUTPUT);
  digitalWrite(13, LOW);
}
void loop()
{
}
```

Blink


```
void setup()
{
    pinMode(13, OUTPUT);
}

void loop()
{
    digitalWrite(13, HIGH);
    delay(1000);
    digitalWrite(13, LOW);
    delay(1000);
}
```

Project 1 -Build a dancing light


```
void setup()
{
   pinMode(10, OUTPUT);
   pinMode(11, OUTPUT);
}

void loop()
{
   digitalWrite(10, HIGH);
   digitalWrite(11, HIGH);
   delay(1000);
   digitalWrite(10, LOW);
   digitalWrite(11, LOW);
   delay(1000);
}
```

Serial Monitor

```
void setup()
{
    Serial.begin(9600);
    Serial.println("Hello world!");
}
void loop()
{
}
```


Serial Monitor

Reading switch

Reading switch

Reading switch


```
void setup()
{
    Serial.begin(9600);
    pinMode(2, INPUT);
}

void loop()
{
    Serial.print("Read switch input: ");
    Serial.println(digitalRead(2));
    delay(100);
}
```

Switch with LED

Switch with LED

```
+5√
      81
     Pushbutton
                                 switch
                   Arduino - UNO
                                     330 ohm
    ₹R2
10K
                     GND
Push button controlled LED
int val;
void setup() {
  pinMode(12, OUTPUT);
  pinMode(2, INPUT);
void loop(){
  val = digitalRead(2);
  if (val == LOW) {
    digitalWrite(12, LOW);
  if (val == HIGH) {
    digitalWrite(12, HIGH);
```

Digital IO vs Analog IO

I/O Pins

Digital I/O

Standard 1/0 levels

5 volts

Analog Input

10-bit ADC

0-5 volts adjusted via AREF

Can be used as Digital I/O

23 / 38

Know your potentiometer

Analog Read

```
Arduino
void setup()
Serial.begin(9600);
void loop() {
int sensorValue = analogRead(A0);
Serial.println(sensorValue);
delay(10);
```

Analog Read

```
void setup() {
 Serial.begin(9600);
void loop() {
 int sensorValue = analogRead(A0);
 float voltage = sensorValue * (5.0 / 1023.0);
 Serial.println(voltage);
 delay(100);
```

Project 2 - Reading Light intensity


```
void setup()
{
Serial.begin(9600);
}
void loop() {
int lightLevel = analogRead(A0);
float lux = lightLevel * (5.0 / 1024.0);
Serial.println(lux);
```

27 / 38

Project 3 - Thermometer

Temperature Measurement Using LM35

```
int val:
void setup()
Serial.begin(9600);
void loop()
val = analogRead(A0);
float mv = (val/1024.0)*5000;
float cel = mv/10:
I/float farh = (cel*9)/5 + 32;
Serial.print("TEMPRATURE =
Serial.print(cel);
Serial.print("*C");
Serial.println();
delay(1000);
```

Made with Fritzing.org

PWM

29 / 38

PWM-Example: Fading light

```
int led = 9:
                // the pin that the LED is attached to
int brightness = 0; // how bright the LED is
int fadeAmount = 5; // how many points to fade the LED by
// the setup routine runs once when you press reset:
void setup() {
 // declare pin 9 to be an output:
 pinMode(led, OUTPUT);
// the loop routine runs over and over again forever:
void loop() {
 // set the brightness of pin 9:
 analogWrite(led, brightness);
 // change the brightness for next time through the loop:
 brightness = brightness + fadeAmount;
 // reverse the direction of the fading at the ends of the fade:
 if (brightness == 0 || brightness == 255) {
    fadeAmount = -fadeAmount :
 // wait for 30 milliseconds to see the dimming effect
 delay(30);
```

DC motor and H bridge

H-Bridge board

Motor Control

The Road ahead

- Interfacing LCD displays
- Interfacing sensors like ultra sound PIR
- Ethernet and bluetooth

Other IOT platforms

- Raspberry PI
- ESP 8266

MQTT Protocol

- Installation
- Programming

Cloud and Big data

37 / 38

Thank you

You can reach me

On Facebook
http://facebook.com/vu2swx
On Email
suniltt@gmail.com
On the web

brainstorms.in On Amateur Radio VU2SWX