

UNCLASSIFIED

AD NUMBER

AD858093

LIMITATION CHANGES

TO:

Approved for public release; distribution is unlimited. Document partially illegible.

FROM:

Distribution authorized to U.S. Gov't. agencies only; Administrative/Operational Use; 22 AUG 1969. Other requests shall be referred to Department of Defense, Attn: Public Affairs Office, Washington, DC 20301. Document partially illegible.

AUTHORITY

DoD per DTIC form 55

THIS PAGE IS UNCLASSIFIED

REV LTR

THE **BOEING** COMPANY

AD-858093

CODE IDENT. NO. 81205

NUMBER D2-113222-3

TITLE: INCIDENT FAILURE DETECTION: INCIDENT
FAILURE DETECTION IN BALL BEARINGS

ORIGINAL RELEASE DATE _____. FOR THE RELEASE DATE OF SUBSEQUENT REVISIONS, SEE THE REVISIONS SHEET. FOR LIMITATIONS IMPOSED ON THE DISTRIBUTION AND USE OF INFORMATION CONTAINED IN THIS DOCUMENT, SEE THE LIMITATIONS SHEET.

MODEL All ASG

PREPARED UNDER:

ISSUE NO. _____

CONTRACT NO.

ISSUE TO _____

IR&D

OTHER

Edited by C. R. James
C. R. James

PREPARED BY M. R. Richardson

L. Balderston.

SUPERVISED BY R. C. Schneider

H. F. Eppenstein

APPROVED BY R. C. Schneider

8/24/69

APPROVED BY R. C. Schneider

8/24/69

Distribution limited to U.S. Gov't. agencies only.

Other requests

for this document must be referred to John W. Eppenstein

Headquarters, R&D

SHEET

NUMBER D2-113029-3
REV LTR

THE BOEING COMPANY

ACTIVE SHEET RECORD

SHEET NUMBER	REV LTR	ADDED SHEETS				SHEET NUMBER	REV LTR	ADDED SHEETS			
		SHEET NUMBER	REV LTR	SHEET NUMBER	REV LTR			SHEET NUMBER	REV LTR	SHEET NUMBER	REV LTR
1						46					
2						47					
3						48					
4						49					
5						50					
6						51					
7						52					
8						53					
9						54					
10						55					
11						56					
12						57					
13						58					
14						59					
15						60					
16						61					
17						62					
18						63					
19						64					
20						65					
21						66					
22						67					
23						68					
24						69					
25						70					
26						71					
27						72					
28						73					
29						74					
30						75					
31						76					
32						77					
33						78					
34						79					
35						80					
36						81					
37						82					
38						83					
39						84					
40						85					
41						86					
42						87					
43						88					
44						89					
45						90					

NUMBER D2-113029-3
REV LIR

THE BOEING COMPANY

ACTIVE SHEET RECORD

SHEET NUMBER	REV LIR	ADDED SHEETS				SHEET NUMBER	REV LIR	ADDED SHEETS			
		SHEET NUMBER	REV LIR	SHEET NUMBER	REV LIR			SHEET NUMBER	REV LIR	SHEET NUMBER	REV LIR
91											
92											
93											
94											
95											
96											
97											
98											
99											
100											
101											
102											
103											
104											
105											
106											
107											
108											
109											
110											
111											
112											
113											
114											
115											
116											
117											
118											

Accepted for:

WES	C. A. 1
FDS	43
U.S. AIR FORCE	J. J. J.
2	3
4	5
6	7
8	9
10	11
12	13
14	15
16	17
18	19
20	21
22	23
24	25
26	27
28	29
30	31
32	33
34	35
36	37
38	39
40	41
42	43
44	45
46	47
48	49
50	51
52	53
54	55
56	57
58	59
60	61
62	63
64	65
66	67
68	69
70	71
72	73
74	75
76	77
78	79
80	81
82	83
84	85
86	87
88	89
90	91
92	93
94	95
96	97
98	99
100	101
102	103
104	105
106	107
108	109
110	111
112	113
114	115
116	117
118	119
120	121
122	123
124	125
126	127
128	129
130	131
132	133
134	135
136	137
138	139
140	141
142	143
144	145
146	147
148	149
150	151
152	153
154	155
156	157
158	159
160	161
162	163
164	165
166	167
168	169
170	171
172	173
174	175
176	177
178	179
180	181
182	183
184	185
186	187
188	189
190	191
192	193
194	195
196	197
198	199
200	201
202	203
204	205
206	207
208	209
210	211
212	213
214	215
216	217
218	219
220	221
222	223
224	225
226	227
228	229
230	231
232	233
234	235
236	237
238	239
240	241
242	243
244	245
246	247
248	249
250	251
252	253
254	255
256	257
258	259
260	261
262	263
264	265
266	267
268	269
270	271
272	273
274	275
276	277
278	279
280	281
282	283
284	285
286	287
288	289
290	291
292	293
294	295
296	297
298	299
300	301
302	303
304	305
306	307
308	309
310	311
312	313
314	315
316	317
318	319
320	321
322	323
324	325
326	327
328	329
330	331
332	333
334	335
336	337
338	339
340	341
342	343
344	345
346	347
348	349
350	351
352	353
354	355
356	357
358	359
360	361
362	363
364	365
366	367
368	369
370	371
372	373
374	375
376	377
378	379
380	381
382	383
384	385
386	387
388	389
390	391
392	393
394	395
396	397
398	399
400	401
402	403
404	405
406	407
408	409
410	411
412	413
414	415
416	417
418	419
420	421
422	423
424	425
426	427
428	429
430	431
432	433
434	435
436	437
438	439
440	441
442	443
444	445
446	447
448	449
450	451
452	453
454	455
456	457
458	459
460	461
462	463
464	465
466	467
468	469
470	471
472	473
474	475
476	477
478	479
480	481
482	483
484	485
486	487
488	489
490	491
492	493
494	495
496	497
498	499
500	501
502	503
504	505
506	507
508	509
510	511
512	513
514	515
516	517
518	519
520	521
522	523
524	525
526	527
528	529
530	531
532	533
534	535
536	537
538	539
540	541
542	543
544	545
546	547
548	549
550	551
552	553
554	555
556	557
558	559
560	561
562	563
564	565
566	567
568	569
570	571
572	573
574	575
576	577
578	579
580	581
582	583
584	585
586	587
588	589
590	591
592	593
594	595
596	597
598	599
600	601
602	603
604	605
606	607
608	609
610	611
612	613
614	615
616	617
618	619
620	621
622	623
624	625
626	627
628	629
630	631
632	633
634	635
636	637
638	639
640	641
642	643
644	645
646	647
648	649
650	651
652	653
654	655
656	657
658	659
660	661
662	663
664	665
666	667
668	669
670	671
672	673
674	675
676	677
678	679
680	681
682	683
684	685
686	687
688	689
690	691
692	693
694	695
696	697
698	699
700	701
702	703
704	705
706	707
708	709
710	711
712	713
714	715
716	717
718	719
720	721
722	723
724	725
726	727
728	729
730	731
732	733
734	735
736	737
738	739
740	741
742	743
744	745
746	747
748	749
750	751
752	753
754	755
756	757
758	759
760	761
762	763
764	765
766	767
768	769
770	771
772	773
774	775
776	777
778	779
780	781
782	783
784	785
786	787
788	789
790	791
792	793
794	795
796	797
798	799
800	801
802	803
804	805
806	807
808	809
810	811
812	813
814	815
816	817
818	819
820	821
822	823
824	825
826	827
828	8

REVISIONS

LTR	DESCRIPTION	DATE	APPROV. A.

LIMITATIONS

All U. S. Government agencies may obtain copies directly from DDC. [REDACTED] requested to route all other requests to Boeing for approval.

Lettler, Wash. 98124

This document is controlled by Reliability, System Safety
and Value Engineering

All revisions to this document shall be approved by the
above noted organization prior to release.

ABSTRACT AND KEY WORDS

This document reports the results of an investigation of incipient failure detection in ball bearings by means of acoustic monitoring techniques. The change of acoustic emanation strength with bearing condition was studied to determine if changes within the frequency spectrum monitored would manifest the onset of a bearing failure. This investigation showed that the acoustic energy emitted from bearings is very sensitive to bearing condition and provides a clear indication of the onset of bearing failure.

INCIPIENT FAILURE
BEARING FAILURE
FAILURE DETECTION
ULTRASONIC MONITORING
BEARING MAINTENANCE
BEARING INSPECTION

USE FOR TYPEWRITTEN MATERIAL ONLY

TABLE OF CONTENTS

	Page
ILLUSTRATIONS	7-33
1.0 INTRODUCTION	34
1.1 Objective	34
1.2 Scope	34
1.3 Method	34
2.0 SUMMARY	35
3.0 CONCLUSIONS AND RECOMMENDATIONS	35
4.0 DISCUSSION	36
4.1 Techniques Employed	36
4.1.1 Test Description	36
4.1.2 Instrumentation	37
4.1.3 Data Analysis	38
4.2 Rotational Frequencies	40
4.3 Resonant Frequencies	42
4.4 Acoustic Emission	43
5.0 DEFINITIONS	47
6.0 REFERENCES	48
7.0 BIBLIOGRAPHY	49
8.0 APPENDICES	50
8.1 Rotational Frequency Calculations	51
8.2 Resonant Frequency Calculations	55
8.3 Raw Data	60

USE FOR TYPEWRITTEN MATERIAL ONLY

ILLUSTRATIONS

The following several pages are illustrations which pertain to the textual discussion in Section 4.0. There are twenty-six such illustrations. These have been gathered here for two reasons. Firstly, their logical position within the text itself would be awkward for the reader, since continuity would suffer. Secondly, their inclusion in the Appendices would be equally confusing, because the Appendices contain more than fifty additional pages of plotted raw data.

Accordingly, we hope for the readers' indulgence in referring forward to this area when any of the illustrations gathered here are mentioned in Section 4.0. If reader reaction is adverse, however, we will rearrange these pages at the first revision to the document.

USE FOR TYPED OR WRITTEN MATERIAL ONLY

SD 2-7883-1-3 rev 3-68

THE BOEING COMPANY

NUMBER
REV LTR

POWER SPECTRAL DENSITY, /HZ

CALC.	D
CHECK	A
APP'D	T
APP'D	E

RANGE OF ENERGY
BEARINGS 1,2,3,5 - NEW, LUBED
5000 RPM

DIRECT

Figure 1

D2-113029-3

PAGE: 3

SD 2-7883-1-3 rev 3-68

POWER SPECTRAL DENSITY, /HZ

CALC.	D
CHECK	A
APP'D	T
APP'D	E

RANGE OF ENERGY DIRECT
BEARINGS 1,2,3,5 - NEW, LUBED
10,000 RPM

Figure 2
D-113029-3
PAGE: 9

CALC.	D
CHECK	A
APP'D	T
APP'D	E

RANGE OF ENERGY

BEARINGS 4, 6, 7 - NEW LUBED

5000 RPM

DIRECT

Figure 3

D2-113029-3

PAGE: 10

THE **BOEING** COMPANY

• 102

100

CALC.		D
CHECK		A
APP'D		T
APP'D		E

RANGE OF ENERGY DIRECT
BEARINGS 4, 6, 7 - NEW LUBED
10,000 RPM

Figure 4
M-113022-3
PAGE: 11

THE BOEING COMPANY

NUMBER
154

CALC.		R
CHECK		L
APP'R		T
APP'D		E

RANGE OF ENERGY FM
BEARINGS 4,687 NEW LUBED
5000 RPM

Figure 5
12-113029-3

PAGE 12

CALC.	D	RANGE OF ENERGY BEARINGS 4,6,7 - NEW LUBED 10,000 RPM	FM	Figure 6
CHECK	A			U2-113020-3
APP'D	T			
APP'D	E			PAGE: 13

THE **BOEING** COMPANY

卷之二

CALC.		D
CHECK		A
APP'D		T
APP'D		E

BEARING NO. 1 FAULT EFFECTS

5000 RPM

Figure 7
D2-113029-3
PAGE: 14

THE BOEING COMPANY

CALC.	D	BEARING NO. 2 FAULT EFFECTS	Figure 3
CHECK	A		D2-113020-2
APP'D	T		
APP'D	E		
5000 RPM		PAGE: 15	

CALC.	D	BEARING NO. 3 FAULT EFFECTS	Figure a
CHECK	A		46-113000-3
APP'D	T		
APP'D	E		PAGE: 16
5000 RPM			

THE **BOEING** COMPANY

1152

CALC.		D
CHECK		A
APP'D		T
APP'D		E

BEARING NO. 5 FAULT EFFECTS

FAULT EFFECTS

5000 RPM

Figure 10
B2-113229-3

PAGE: 17

CALC.	D
CHECK	A
APP'D	T
APP'D	E

BEARING NO. 1 FAULT EFFECTS

10,000 RPM

Figure 11
12-113026-1
PAGE: 12

THE BOEING COMPANY

NUMBER
-S. L. K.

CALC.		D
CHECK		A
APP'D		T
APP'D		E

BEARING NO. 2 FAULT EFFECTS

10,000 RPM

Figure 12

12-113020-2

PAGE: 10

THE BOEING COMPANY

卷之三

CALC.		D
CHECK		A
APP'D		T
APP'D		E

BEARING NO. 3 FAULT EFFECTS

10,000 RPM

Figure 13
D2-113022-3
PAGE: 20

THE BOEING COMPANY

四百九十二

CALC.		D
CHECK		A
APP'D		T
APP'D		S

BEARING NO. 5 FAULT EFFECTS

10,000 RPM

Figure 14
D2-113029-3

PAGE: 21

CALC		D
CHECK		A
APP'D		T
APP'D		S

BEARING #4 FLAW EFFECTS

OUTER RACE

.5000 RPM

Figure 15

DE-113033-3

PAGE: 22

SD 2-7883-1-3 rev 3-68

POWER SPECTRAL DENSITY, /Hz

CALC.	D
CHECK	A
APP'D	T
APP'D	V

BEARING #6 INNER RACE
FLAW EFFECTS 5000 RPM

Figure 15
D2-113029-3
PAGE: 23

THE **BOEING** COMPANY

WINTER
1948

CALC		D
CHSCK		A
APP'D		T
APP'D		E

**BEARING #7 BALL FLAW
EFFECTS 5000**

5000 RPM

Figure 17
D2-113029-3

PAGE: 24

THE **BOEING** COMPANY

一、二

CALC.		D
CHECK		A
APP'D		T
APP'D		E

**BEARING #4 OUTER RACE FLAW
EFFECT**

10,000 RPM

Figure 18
M-113020-21
PAGE: 25

CALC.	D
CHECK	A
APP'D	T
APP'D	E

BEARING #6 INNER RACE
FLAW EFFECTS

10,000 RPM

Figure 19
D2-113020-3
PAGE: 20

CALC.	D	BEARING #7 PITTED BALL EFFECTS	Figure 20
CHECK	A		DP-113029-3
APP'D	T		
APP'D	R		PAGE: 27

19,000 RPM

SD 2-7883-1-3 rev 3-68

THE BOEING COMPANY

NUMBER
ME-174

CALC.	D
CHECK	A
APP'D	T
APP'D	E

BEARING #4 OUTER RACE
FLAW EFFECTS

•5000 RPM

Figure 21
DP-11302G-3
PAGE: 23

CALC.	D	BEARING #6 INNER RACE	Figure 22
CHECK	A		12-113029-3
APP'D	T		
APP'D	E	'5000 RPM	PAGE: 29

CALC.	D	BEARING #7 BALL FLAW EFFECTS	Figure 23
CHECK	A		LO-112000-2
APP'D	T		
APP'D	E		PAGE: 30

5000 RPM

SD 2-7883-1-3 rev 3-68

POWER SPECTRAL DENSITY, /Hz

CALC.	D	BEARING #4 OUTER RACE FLAW EFFECTS	Figure 24
CHECK	A		D-112029-3
APP'D	T		
APP'D	E		PAGE: 31

10,000 RPM

SD 2-7883-1-3 rev 3-68

POWER SPECTRAL DENSITY. / Hz

THE **BOEING** COMPANY

5.10⁴ V. VSEPR
23.11.94

CALC.		D
CHECK		A
APP'D		T
APP'D		E

BEARING #6 INNER RACE FLAW EFFECTS

Figure 25

D2-113029-2

10,000 RPM

PAGE: 52

CALC.	D	BEARING #7 PITED BALL EFFECTS	Figure 26
CHECK	A		10,000 RPM
APP'D	T		PAGE: 33
APP'D	E		10,000 RPM

1.0 INTRODUCTION

The detection of incipient failure, in general, is related to a thorough understanding of the basic causes of failure. Detection at an early stage of recognized evidence that a failure is incipient will allow action to be taken which can, in some cases, prevent the failure from occurring, and, in others allow scheduled replacement of the affected part or component on a convenience basis. The full development of an incipient failure detection sub-system and/or concept, thus, has the potential of preventing many types of failures or of allowing more maintenance to be scheduled. The elimination of unscheduled maintenance and the elimination of failure itself, to the extent that the detection of incipient failure allows this to be done, will increase the reliability of any operational system to which these techniques are applied. In this report, which represents only one of a series, the problem of detecting incipient failures in bearings is detailed.

1.1 Objectives

It is generally accepted that the acoustic energy emitted by a severe bearing failure is frequently quite audible. However, severe failures, for the most part, start as minute defects, or incipient failures, and it was the primary objective of these experiments to determine if such incipient failures could be discerned by acoustic monitoring.

A secondary objective was to examine three basic sources of acoustic energy to determine which would provide the most reliable indication of trouble. These three sources were (a) rotational frequency energy, (b) mechanical resonance energy, and (c) acoustic emission energy. The first two sources emit energy in fairly well defined frequency ranges, but acoustic emission energy is a very broad band phenomenon.

1.2 Scope

The bearings utilized for these experiments were S-204H ball bearings, installed in the standard Pope lubricant test apparatus described in Federal Standards 791. These tests were run at 5000 RPM and 10,000 RPM with the bearings new, with old grease, dry, and with small flaws in the inner race, the outer race, and one ball. The types of acoustic energy emitted from these several conditions were analyzed and compared for differences.

1.3 Method

The method utilized to evaluate and compare the acoustic energy emitted from the various test conditions consisted of examining the energy-frequency relationships for each bearing condition. This type of relationship is readily apparent when the data is graphed in the power-spectral-density (PSD) form. The acoustic energy was detected by piezoelectric transducers and recorded on magnetic tape for subsequent data processing into the PSD form. The instrumentation system, currently available, limited the frequency range to approximately 100 kilocycles per second.

2.0 SUMMARY

These tests indicate that there is positive correlation between bearing condition and the change in emitted acoustic energy. There is, as one would expect, a sensitivity threshold for this method. That is, certain small flaws can be present which may not be detected by this method without further refinement, such as the utilization of some discrete frequency band which is highly indicative of flaw occurrence.

The frequency spectrum of emitted energy was analyzed to determine if the rotational frequencies and mechanical resonance frequencies would provide positive indicators of flaw presence. The rotational frequencies (i.e. the pulse-repetition-frequencies of physical defects) were found to be of negligible value when viewing a wide frequency spectrum of emitted energy, as was done here. Rotational frequencies might be usable if different data processing techniques were employed. The explanation for this is detailed later in this report.

For these tests, the most positive indicator of flaw presence appeared to be energy in the frequency band from 20 KC to 40 KC. A low frequency technique used with three of the test bearings, specifically, FM monitoring between 100 cycles and 10,000 CPS, indicated that the overall energy level was the most practicable indicator with the FM system.

3.0 CONCLUSIONS AND RECOMMENDATIONS

Three sources of acoustic energy related to bearing failure have been examined in this test program. These are (1) rotational noise, (2) resonant noises of the total system, and (3) acoustic emission. A direct relation exists between acoustic emission, the resonant noise, and the severity of bearing defects. The rotational noise energy appears to be distributed across the bandwidth of frequencies studied here, namely 100 to 50 KC. The system predominant resonances appeared to provide data in three different frequency bands. In most of the tests of the S-204H bearing, a blank space existed between 3 KC and 10 KC on the spectral density plots. This space would permit detection of burst type acoustic emission, when and if it occurred.

Direct correlation of severity of defects to amplitude was observed within specific bandwidths. Direct correlation was also observed between severity of defects and total noise. If the resonant and rotational frequencies are translated downward to 1/16 (compressed), the higher resonant frequencies are brought within the range of human hearing so that bearing defects can be readily distinguished, one from the other. This was done, using a tape recorder, by recording at 60 inches per second and playing back at 3 3/4 inches per second.

Our research thus far has shown that bearing defects can be detected prior to failure of the bearing. A prototype piece of test equipment has been built which has the capability of monitoring the true R/S energy content within a selected frequency band. Once a pre-set limit has been set into this test equipment, it will indicate by "go, no-go" lights whether the test article exceeds the red-line condition. We believe that we will be able to detect bearing defects in the presence of the noise of jet engines by this method, using the resonant rather than the rotational frequencies. We believe that the employment of resonant frequencies to detect incipient failure is our most important present contribution to the detection of such incipient failures.

We also believe that the use of the acoustic emission phenomena will become more important with the development of wider band transducers and charge amplifier systems. We are doing a minimum amount of work in this area. It is recommended that this activity be increased and broadened in scope.

4.0 DISCUSSION

4.1 Techniques Employed

4.1.1 Test Description

The equipment used for bearing testing (see Figure A) was a standard Pope Spindle described in Federal Standards 791, Method 33, which is used for testing lubricants. It consisted of a cartridge spindle with a shaft supported by two 6204 sized ball bearings, which in these tests were of the angular contact variety, so that they could be easily disassembled. The spindle was belt-driven by an electric motor at speeds of 5,000 and 10,000 RPM.

Two distinct series of tests were run. The first series of tests consisted of tests of four S-204H bearings (Nos. 1, 2, 3, and 5). For these bearings, the data was recorded in the direct mode (from 1 KC to 100 KC), and the bearings had only one flaw injected into each. Subsequently, a second series was run (bearings 4, 6, and 7) with minor flaws first and then with enlarged flaws. In this second series, it was decided to investigate the intelligence carried in the lower frequencies, so the data was recorded in the FM mode (100 CPS to 10,000 CPS) in addition to the direct mode. In all conditions the bearings were run at 5000 RPM and 10,000 RPM. These bearings were all run in the unlubricated condition.

The test conditions are detailed below:

First Series:

NO. 1 -

NEW, LUBED. Bearing was lubricated with MIL-G-23827 (Aeroshell-7) grease.
NO LUBE. The bearing was cleansed of all grease and run completely dry. This condition was run only long enough to acquire data; approximately 30 seconds.

RE-LUBED. The bearing was re-lubricated as above.

PITTED BALL. A fatigue spall was simulated on one ball by etching a small pit in the ball with an electric pencil. The pit was polished to remove any protruding metal.

NO. 2 -

NEW, LUBED. Same as bearing #1.

PITTED OUTER RACE. A pit was made in the outer race with an electric pencil. The pit was then polished so that no metal protruded above the race surface.

NO. 3 -

NEW, LUBED. Same as bearing #1.

OLD GREASE. The bearing was cleaned and re-packed with old, hardened MIL-G-7711 grease which had been installed in a Minuteman generator for three years.

WORN CAGE. The cage pockets were enlarged with a file. The bearing was re-assembled and lubricated as in the new condition.

NO. 5 -

NEW, LUBED. Same as bearing #1.

PITTED INNER RACE. A pit was made in the inner race in the same manner described for bearing #2 outer race.

Second Series:

NO. 4 -

NEW, LUBED. Same as bearing #1.

PITTED OUTER RACE. The pit in this race was made with an S. S. White Industrial Abrasive Cutting Unit. It was found that this method provided a better simulation of incipient spalling than the electric pencil used in the first series.

ENLARGED PIT. The initial pit was enlarged to approximately three times its initial size.

NO. 6 -

NEW, LUBED. Same as bearing #1.

PITTED INNER RACE. A small pit was cut into the inner race in the same manner described above for bearing #4.

ENLARGED PIT. The initial pit in the inner race was enlarged approximately three times.

NO. 7 -

NEW, LUBED. Same as bearing #1

PITTED BALL. A small pit was placed in one ball with the S. S. White unit.

ENLARGED PIT. The pit in the ball was enlarged approximately three times.

4.1.2 Instrumentation and Data Processing

The transducers utilized to pick up the acoustic energy were piezoelectric crystal transducers which respond to frequencies up to approximately 100 KC. The dynamic response of these transducers is not flat throughout this range. For the purposes used here, the dynamic response curve of the transducers is irrelevant since the data has value only on a comparative basis. That is, incipient failure intelligence is derived from the differences between two PSD plots, any single PSD plot carries practically no information by itself. Since the dynamic response of these transducers differ from one another, it is important to compare only data recorded from the same transducer. As will be

noted for the second series of tests, the data in the frequency range of overlap, between the FM (100 to 10,000 CPS) and the Direct (1,000 to 100,000 CPS), plots does not necessarily appear similar. This is to be expected since different transducers were used to record these two types of data. In addition, the state of the art of transducer development is such that an absolute calibration above 10,000 CPS is unattainable. Therefore, the shape of the PSD curve cannot be interpreted as an absolute measure of the bearing energy emission. Certain frequency spikes on the PSD plot may rise to a high amplitude due either to a transducer resonance at that frequency or a high energy emission from the bearing. However, it must be made clear that this "unknown" does not detract from the validity of the data, since the plots are used in a comparative sense only. A transducer resonance merely serves to magnify the presence of emitted energy at that frequency and makes comparison that much more significant.

The transducer signals were amplified by charge amplifiers and recorded on the Ampex FR-1300 tape recorder at 60 inches per second. These recordings were subsequently operated on by the frequency analyzer to provide the PSD plots. The FR-1300 tape recorder response at this speed is flat up to nearly 300 KC. The response of the charge amplifiers, Dynamics 6937, were flat up to approximately 70 KC. This upper frequency limit explains the apparent "roll-off" on the PSD plots around 50 KC and above.

4.1.3 Data Analysis

Each bearing appeared to have a unique initial PSD signature, as the variation between bearings in the new, lubricated condition shows in Figures 1 through 6. This spread in data can be attributed to several factors, the most predominant two being actual small structural differences between new bearings, and different run-in times before data acquisition. The noise (or acoustic energy) emitted from a bearing is normally high when the bearing is initially used, but, as the bearing surfaces tend to lap each other, the bearing becomes quieter. Of course, as this wearing process transcends the condition of optimum parts fit, the noise increases again. Wear-in time is a function of the lubrication, speed, and load on the bearing in service.

The PSD plots for the first series of tests (Bearings 1, 2, 3, and 5) are presented in Figures 7 through 14. These Figures show, among other things, that the two test conditions of lack of adequate lubrication, specifically the "no lube" and "old grease" conditions, result in a general increase of noise level which exceeds the maximum new bearing envelope by a factor of 100 to 300 times. Such an incipient failure as no lubrication would, indeed, be readily detected. These Figures also show the effects of the minor flaws inserted into these bearings. In each case, these flaws result in noise increases which exceed the new bearing range limit in certain frequency bands. The worn cage condition (Figure 9) shows the least indication of change of any other condition. However, even this condition manifests itself at about 12 KC and 40 KC to 50 KC. It is interesting to note, and Figure 9 shows this nicely, that the overall energy level is not always a good fault indicator; one should examine the emission behavior within discrete frequency bands. In this series of tests, the frequency bands of 1,500 to 3,000 CPS, 10,000 to 15,000 CPS, and 20,000 to 50,000 CPS appear to be the bands of major significance. In the second series, these same frequency bands carry the predominance of fault indication information in the direct data.

As pointed out earlier, the second test series included more than a single small flaw injection into the test article. Figures 15 through 20 are the direct data recorded on these bearings. These plots show that, in nearly every case, the first flaw, which was very small, failed to give a strong indication when compared to the maximum noise level of the three bearings in the new condition. This effect is attributable to the decrease in general noise level due to the run-in process, coupled with the fact that these initial flaws were very small. After enlargement of the flaws approximately three times, the data shows a very distinct indication of trouble in every case. The low frequency, FM, plots for this series (Figures 21 to 26) show the same thing, except here there are no clear cut frequency bands which manifest the onset of failure. The primary purpose for recording this low frequency data was to examine the possible occurrence of rotational frequencies and to determine if these would provide specific indicators of bearing failure.

There appear to be three basic sources of noise in bearings: rotational motion, structural resonance, and acoustic emission phenomenon. The rotational frequencies for these tests were all below 2,000 cycles per second. The resonant frequencies spanned the region from about 10,000 cycles to 90,000 cycles per second. The acoustic emission phenomena, when present, create a broad band of frequencies covering the entire spectrum. The so-called 'burst' type of acoustic emission will occur during the work-hardening processes associated with fatigue. This would occur in heavily loaded bearings and/or bearings operated at high speed. Since the so-called "acoustic emission phenomena" are classically associated with the formation of defects, such as cracks, flaking, etc., it should be quite valuable in the detection of incipient failures in bearings. See references (1) and (2).

It appears that any one of the three basic sources of noise--or any combination--can be utilized for the detection of incipient failure. However, the sounds of rotation would have to be detected and presented by some means other than the power spectral density (PSD) method utilized here.

A study of the power spectral density plots for these tests revealed that the rotational frequency energy was negligible when compared to the energy content of other frequencies. This appeared to be true for even the largest flaw injected into these test bearings. Although this seems contrary to intuition, it can be understood by considering the make-up of the "rotational frequencies" and the significance of the information presented in the power spectral density graphs.

The "rotational frequencies" are periodic occurrences caused by some repetitive mechanical impact within the rotating machinery (e.g. the rolling elements of a bearing striking a flaw in the race). Each impact is an impulse function which contains a multiplicity of frequencies which are multiples of the pulse repetition frequency (see Appendix 5.1), and it excites various system resonances at each occurrence. In effect, then, these periodic impulses "gate" energy over a wide frequency range into the instrumentation system. On the power spectral density plot, this energy appears to be distributed over this wide frequency range, rather than concentrated at a discrete rotational frequency.

The occurrence of rotational frequencies might possibly be detected by a modulator-detector scheme, but this was not attempted for this series of tests.

For a relatively simple mechanism, this technique might be quite effective, provided that these frequencies could be predetermined. However, in more complex equipments, the sounds of rotation of other components may very well drown out the sounds of rotation of the bearings. This is the case with jet engines. If one desired to detect incipient failure in the form of fatigue, it is doubtful that the sounds of rotation would give as early a warning as could be obtained from the acoustic emission phenomena. Thus, in analyzing power spectral density curves, one selects a band of frequencies which can be correlated to a bearing defect and which are not overridden or camouflaged by noises from other sources. Thus, the mechanical resonant frequencies may be a valuable tool, since they are of much higher frequency, falling in the range of 10 kilocycles to 50 kilocycles. If the higher resonant frequencies are interfered with by other equipment noises and/or resonances, then one could use the acoustic emission phenomena, which characteristically gives off a burst of energy covering a very broad frequency spectrum. Thus, it would be possible to detect the formation of a crack, the growth and propagation of a crack, at frequencies far above 100 kilocycles. This would require, however, that higher frequency and/or wide band acoustic transducers be employed.

To understand more thoroughly the possible conditions under which each of the three phenomenon mentioned above could be employed in incipient failure detection, the following subsections will define and examine the source of each phenomena insofar as possible:

4.2 Rotational Frequencies

The sounds of rotation of simple rotating equipments are characteristically low in frequency, the frequency being related to the configuration of the rotating element and the RPM with which it rotates. Thus, the sound of rotation of a shaft is equal to the RPM divided by 60; the sound of rotation of a fan blade is equal to the number of blades on the fan multiplied by RPM and divided by 60; the sound of rotation of a centrifugal blower is equal to the RPM of the blower multiplied by the number of vanes and divided by 60. The sounds of rotation of a bearing are a bit more complex. Because of the interaction between the bearing balls, the inner race and the outer race, and the differences in diameter between the inner race and the outer race, the calculation of rotational frequency is more difficult. For example, from Palmgrin, "Ball and Roller Bearing Engineering," Section 24, the frequency of rolling elements passing over a spot on a stationary outer race is given by the formula:

$$f_{\text{outer}} = \frac{n}{2} f_r \left(1 - \frac{D_w}{d_m} \cos \alpha\right) \quad (\#1)$$

where

- D_w = ball diameter
- d_m = pitch circle diameter
- α = contact angle
- n = number of balls

$$f_r = \text{speed of rotation in revolutions per second}$$

$$= \frac{\text{RPM}}{60}$$

The frequency of rolling elements passing over a spot on the moving inner race is given by the expression -

$$f_{\text{inner}} = \frac{n}{2} f_r \left(1 + \frac{D_w}{d_m} \cos \alpha\right) \quad (\#2)$$

The rotational speed of one ball about its own axis is given by the expression -

$$n_b = f_r (0.5) \frac{d}{D_w} \left(1 - \frac{D_w}{d_m} \cos \alpha\right) \left(1 + \frac{D_w}{d_m} \cos \alpha\right) \quad (\#3)$$

The frequency of a defect in one ball bearing striking the cage twice each revolution is equal to twice equation #3.

The rotational frequencies computed from equations #1, #2, and #3 for these bearings are:

	<u>5,000 RPM</u>	<u>10,000 RPM</u>
Ball flaw striking cage only	342	634
Ball flaw striking cage and races	684	1368
Ball striking outer race flaw	355	712
Ball striking inner race flaw	562	1124

USE FOR TYPEWRITTEN MATERIAL ONLY

Examination of the appropriate power spectral density plots showed that when a frequency spike is present at one of these rotational frequencies, it is very minor compared with other frequencies. This is explained in Appendix 5.1.

Also, it should be noted that, if a defect in a ball were lined up correctly, it would strike both the inner and outer races at the same frequencies as the ball striking the cage twice. However, since the ball travels in a spiral as it rolls, the variations in these frequencies appear to be modulated by the speed with which the ball spirals. The effect can be readily noted when one listens to the translated higher frequencies of the bearing; more so than if one listens directly to the sounds of rotation.

Translation of these high, sometimes inaudible, frequencies to the range audible to humans is accomplished by playing back the taped data at a reduced speed. In the case of these tests, a speed reduction of 16:1 was found to be excellent. In effect, this process merely expands the time scale of the recorded event a sufficient amount to permit the human ear to follow the frequency excursions. Since the time scale is the only change in this process, the interrelationships between the frequencies making up the data are unaffected.

It is evident from the above that the frequencies of rotation are relatively low and well within the range of hearing of the human ear. However, other sounds produced by the speed of rotation may not be within the range of the human ear. For example, in the case of a fan, the frequencies produced by the blade of the fan striking air molecules at high speed and the resultant collisions of air molecules produce a band of frequencies above and below 40 kilocycles.

The frequencies of rotation could be a very important diagnostic tool in relatively simple mechanisms, wherein their occurrence increases the overall noise level appreciably. They are highly effective in diagnosing the existence of defects which will result in failure and are particularly effective in diagnosing failure itself. There are, however, limitations. These limitations are experienced in more complex equipment, such as a jet engine, wherein the rotation of the major elements, such as the N-1 and N-2 rotor, can produce sounds which are much greater in magnitude than those produced by the bearing and other small accessories, such as generators and gear boxes, driven by the jet engine. If one were able to mount a transducer directly on the bearing or gear housing, this interference would not be so pronounced. However, if one is forced to mount the transducer on the outer case of the engine or on an engine cowling, the sounds of the bearing might very well be overridden. In addition, within a complex system such as an airplane, the sounds of the other engines and other accessories provide interference and further complicate identification of the basic rotational frequencies of small components and the effects upon amplitudes at these frequencies by defects existing within the components of interest. Accordingly, it is sometimes necessary and effective to utilize the resonant frequencies of the components under observation.

4.3 Resonant Frequencies

Resonant frequencies are a function of the mass configuration and type of material involved. They are usually initiated by the shock excitation associated with minor structural irregularities and/or defects.

The amplitude of acoustic energy at resonant frequencies is much higher than the amplitude of the sound of rotation. In addition, resonant frequencies are usually much higher in frequency than those of rotating elements. The frequencies of resonance of components under observation do not vary with RPM. Their amplitudes, however, will vary directly with the RPM. Variations in amplitude due to the severity of a defect in a bad bearing may be as high as 1,000,000 times that of a new bearing.

The advantages of using the high resonant frequencies over the rotational frequencies are two-fold: (1) they do not vary with RPM and (2) there is less confusion with the rotational frequencies of other components. This is particularly true with ball bearings. In utilizing this technique of incipient failure detection in bearings, it is not specifically necessary to identify all of the resonant frequencies of the system under test. Simply monitoring the frequency content of the data at several speeds will disclose those frequencies which are unaffected by speed, whereupon one can reasonably conclude that these are the resonant frequencies in question.

The theoretical determination of total system dynamic response characteristics is completely impracticable in most instances, as it has been for the relatively simple machines used for these tests. However, to acquire an order-of-magnitude approximation to some of the resonances expected during these tests, the resonant frequencies of the major components of the S-204-H bearing were computed. The computations are detailed in Appendix 5.2. The frequencies for these bearing elements are presented in the table below:

Ball: $f_1 = 383 \text{ KC}$

Mode, n:	2	3	4	5
Outer Race	3.29 KC	9.32 KC	17.9 KC	28.9 KC
Inner Race	16.25 KC	46.0 KC	68.0 KC	142.3 KC

The degree to which these frequencies will be changed by assembly within a complete structure is unknown, but there is evidence that certain structures do not change these frequencies greatly but merely increase the damping.

4.4 Acoustic Emission

B. H. Schofield in the Dictionary of Physics defines acoustic emission phenomena as follows:

"Acoustic Emission is a generic term denoting the occurrence of deformation induced sound pulses or elastic waves in metals. This term includes those sounds that are usually audible, as well as those that are not (that is, ultrasonic frequencies, ^{Ed.}) The audible sounds are more commonly known as the phenomenon 'tin cry,' which is produced by the twinning deformation so common in the tetragonal and hexagonal crystallographic structures. Two other processes which may also produce audible (and ultrasonic, ^{Ed.}) sounds are: (1) sudden re-orientation of large grains in a polycrystalline material, and (2) the martensite transformation associated with the heat treatment of steel. The inaudible emission (ultrasonic frequency, ^{Ed.}) is of greater import, since it is ubiquitous in metals, being related to the more efficacious deformation process, slip.*"

"Evidence of acoustic emission becomes apparent almost immediately upon stressing many metals, particularly those that do not exhibit a 'linear' response of the stress-strain curve. In other metals, it appears at stress levels 1/3 to 1/2 the nominal engineering yield point. Characteristically, all metals exhibit two distinct types of emission, referred to as burst type and high frequency type. The relative activity of the two types varies with different metals and alloys, with pure zinc and pure aluminum representing the extremes; zinc being predominantly a burst type and the aluminum almost entirely the high frequency type.*"

* Clarification and revised punctuation of these and the following quoted paragraphs provided by the editor.

USE FOR TYPED MATERIAL ONLY

"As observed on an oscilloscope screen, the burst type appears as an exponentially decaying ring down pulse, with a periodicity of occurrence long relative to the pulse time constant. The high frequency type is somewhat more subtle, and appears as an amplitude rise of the general background noise level, with occurrence periodicity of the pulses comparable to their time constant. In contrast to the burst type, which does not change amplitude significantly as deformation proceeds, the high frequency rises to appreciable amplitude levels, usually becoming maximal just prior to gross yielding and again prior to final failure. Of the two types, the high frequency (ultrasonic, Bi^+) is most interesting from the deformation mechanics view.

"Significant characteristics of the acoustic emission are: it is irreversible (Kaiser Effect); it is a volume, as opposed to a surface phenomenon; the amplitude level (high frequency type) is proportional to strain rate, the emission signal repetition rate ranges from a few hundred counts per second to 75,000 per second at normal loading rates, (and, Ed.) evidence indicates a direct correlation between the number of fine slip lines and the number of acoustic pulses. These acoustic pulses evidence the discontinuous nature of deformation on a micro-scale suggestive of the macro Portevin-LeChatelier Effect and stepped stress-strain curve.

"The irreversibility characteristic is most unique and, aside from its physical implications, offers the possibility of application as a tool with non-destructive potentialities. Once the material is subjected to a given state of stress and deformation, during which considerable emission is generated, subsequent restressing up to the previous stress level will not induce emission. Exceeding the previous stress level produces an abrupt reappearance of the emission at usual tensile loading rates. This property is the most positive evidence of the intimate relationship between emission and permanent deformation. The appearance of the emission in aluminum, for example, at $1/3$ the nominal yield strength demonstrates the existence of localized plastic deformation. Aging, heat treating, or otherwise restoring the material to the un-stressed state will, of course, restore the emission; the degree of restoration depending on the completeness of the treatment.

"The fundamental mechanism giving rise to the inaudible emission has not been conclusively identified to date. Present results indicate a source intimately associated with the dynamic response of dislocation blocking and unblocking."

The burst type and high frequency type emission referred to above, in current practice, are known as burst type and continuous type. Work done by D. L. Parry of the Phillips Petroleum Company in the detection of defects in large nuclear reactor pressure vessels indicates that burst type signals emanate from the growth of defects and/or flaws within the pressure vessel. He states:

"During our feasibility studies, two types of acoustic emissions have been characterized; the 'Burst' signal, indicative of material flaw growth, and the low amplitude, so-called continuous emission, due primarily to stress-induced dislocation movement. The 'Burst' signals allowed location of the flaw through triangulation techniques. Times of arrival of

the initial, high amplitude 'Burst' signal from three transducers provide information for triangulation purposes. The detection threshold for the 'Burst' type signal was 0.1 to 30% of normal vessel operated stress and 0.02% to 5% of the nominal material yield."

Thus, Parry concludes that, with proper detection, signal conditioning, and diagnostics, acoustic signals could be detected, recorded, and analyzed to yield information regarding the presence of flaws in large, complex, reactor vessels under low stress conditions. Parry anticipates that the continuous-emission, energy-released signature of the pre-annealed hydrostatic test will yield information on the degree of change in vessel embrittlement when compared with the post-annealed acoustic signature.

In ball bearings, both of these types of acoustic emission have been observed. The characteristic "burst" type emission occurred when flaws were placed in the inner race, the outer race, and on a ball. The so-called continuous signal has been observed in a dry bearing operated at 5000 to 10,000 RPM and in a bearing operated through a 30 degree arc at low speed, with the application of 450 degrees of heat in a vacuum, under 20 pounds of stress. In the latter bearing test setup, wherein one bearing was failed using only dry lubricant, a very high rate of acoustic emission signals occurred during and prior to actual seizure of the bearing. A great deal of wear occurred in this particular bearing due to oxidation of bearing surfaces and subsequent scaling of the oxidized layer. A large number of "burst" signals, as many as 30,000 per minute, were observed during this wear process. In the bearings tested in the Pope Spindle, operated at 5000 and 10,000 RPM, the "burst" type signals were attributed to growth of the artificially placed flaw and to resonant ringing of the bearing components.

Acoustic emission monitoring was attempted as a sideline on a bearing fatigue test being run. The bearing was a front main bearing from a J-69 jet engine. It was run at 3600 RPM under 3000 lbs. radial load until the first indication of fatigue failure was noted. The piezoelectric transducer output was passed through a high-pass (20 KC) filter and into a Berkeley EPUI counter, which was set to count all bursts over 1.0 volt amplitude. A plot of the counts per unit time is shown in Figure 27 below.

It will be noted in Figure 27 that a marked rise in counts per minute occurred approximately 45 minutes before actual spalling of the bearing. If this count history were adjusted to conform to the normal service life conditions, it is felt that impending failure would have occurred sufficiently early to permit preventive maintenance action.

USE FOR TYPED WRITTEN MATERIAL ONLY

USE FOR TYPEWRITTEN MATERIAL ONLY

5.0 DEFINITIONS

A. Reliability (R)

The probability that a system or portion of a system will perform its specified function(s) under specified conditions for the specified period of time or number of cycles or trials, when installed, tested/used, maintained, and logistically supported as specified.

B. Failure

The inability of a system or portion of a system to perform its specified function(s) under specified conditions for the specified period of time or number of cycles or trials, when installed, tested/used, maintained, and logistically supported as specified. Number of failures is denoted by "f."

C. Defect

A non-conformance to specification/drawing which has not resulted in a failure.

D. Wear

Gradual, cumulative change to a physical or chemical characteristic of a device resulting from continued operation or use. (Not as a result of failure).

E. Maintenance *

All the activities necessary to keep subsystems in, or restore them to, a satisfactory operating condition. Scheduled maintenance is preplanned for accomplishment at given points or intervals. All other maintenance is classed as unscheduled.

F. Incipient Failure **

An impending failure or an existing characteristic or defect which will lead to failure.

* Not a reliability definition, but included herein for convenience. Ed.

** This is a tentative definition, i.e., not formally accepted at this time. Ed.

6.0 REFERENCES

1. Parry, D. L., "Non-destructive Flaw Detection, Nuclear Power Installations," Page 111, Incipient Failure Diagnosis for Assuring Safety and Availability of Nuclear Power Plants, United States Atomic Energy Commission, Division of Technical Information, Published January 1968.
2. Sternlicht, Veno, "Analysis, Detection and Control of Failures in Mechanical Equipment," Page 284, Incipient Failure Diagnosis for Assuring Safety and Availability of Nuclear Power Plants, United States Atomic Energy Commission, Division of Technical Information, Published January 1968.
3. Love, A. E. H., Treatise on The Mathematical Theory of Elasticity, New York, N. Y.: Dover Publications, Inc., 1944. (Pages 204-205, 451-453).
4. Schofield, B. H., Encyclopaedic Dictionary of Physics, Supplementary Volume 1, (Pg. 1, 2, & 3), Oxford, London, New York, Paris: Pergamon Press, 1967.
5. Palmgrin, Arvid, Ball and Roller Bearing Engineering, Section 24, Philadelphia, Penn: S. H. Burbank & Co., 1959.

USE FOR TYPEWRITTEN MATERIAL ONLY

7.0 BIBLIOGRAPHY

Crimmins, P. P., Green, A. T., Development of a Nondestructive Testing Technique to Determine Flaw Criticality, Advanced Research Projects Agency, ARPA Order No. 1244, Program Code Number 8D10.

Dunegan, H. and Harris, D., Acoustic Emission-A New Nondestructive Testing Tool, Lawrence Radiation Laboratory, University of California, Livermore, 16 January 1968.

Hutton, Phillip H., Acoustic Emission in Metals as an NDT Tool, Pacific Northwest Laboratories, Battelle Memorial Institute, Richland, Washington, 16-19 October 1968.

Kusenberger, Felix N., Leonard, Byron E., Barton, John R., and Donaldson, W. Lyle, Nondestructive Evaluation of Metal Fatigue, Southwest Research Institute, 6500 Culebra Road, San Antonio, Texas 78206, March 1965.

Parry, D. L., Nondestructive Flaw Detection by Use of Acoustic Emission, Phillips Petroleum Company, AEC Research & Development, Reactor Technology, TID 4500, May 1967.

Randall, R. L., Application of Noise Analysis Techniques to Detection of Incipient Malfunctions, Atomics International, Canoga Park, California, 30, 31 October and 1 November 1967.

Schofield, B. H., Acoustic Emission Under Cyclic Stress, Final Report, TR 796/P31, (Lessells & Assoc.), July 1964.

Schofield, B. H., "Acoustic Emission from Metals, Its Detection, Characteristics and Source," Proceedings of the Symposium on Physics and Nondestructive Testing, Southwest Research Inst., San Antonio, Texas, 1963.

Weiss, V., et al; Crack Initiation and Crack Propagation in Structural Metal Alloys, Final Report, SURI Met-E-1209-0600F (Syracuse Univ. Res. Inst.), June 1966.

The Early Detection of Fatigue Damage, North American Rockwell/Los Angeles Division, First Semiannual Report, 1968 July 1 - 1969 February 28.

USE FOR TYPEWRITTEN MATERIAL ONLY

SECTION 8.0 APPENDICES

8.1 Rotational Frequencies

The frequencies of rolling elements passing over a spot on the inner and outer races, as given by equations (1) and (2) in the text are:

	5000 RPM	10,000 RPM
f_{outer}	356 CPS	712 CPS
f_{inner}	562 CPS	1124 CPS

When the "spot" on one of the races is a flaw, these frequencies are the pulse-repetition frequencies of a series of mechanical impacts, and is therefore a pulse train.

For the purpose of detecting these rotational frequencies on a power spectral density plot, we must examine the pulse train to ascertain the frequency content of such a function. This is accomplished by a Fourier wave form analysis.

The pulse train function is described in Figure A-1 below -

Figure A-1

USE FOR TYPEWRITTEN MATERIAL ONLY

In Figure A-1, T is the period of the function, T_p is the pulse width, and A is the pulse amplitude.

The expression for this function in one period is:

$$f(t) = \begin{cases} 0, & -\frac{T}{2} < t < 0 \\ A, & 0 < t < T_p \\ 0, & T_p < t < \frac{T}{2} \end{cases} \quad (A-1)$$

The exponential form of a Fourier series expansion of a periodic function of period T is (1):

$$f(t) = \sum_{n=-\infty}^{+\infty} \alpha_n e^{j\omega nt} \quad (A-2)$$

1.) D. K. Cheng, Analysis of Linear Systems, Reading, Mass.: Addison-Wesley Publishing Co., May 1961

$$\alpha_n = \frac{1}{T} \int_{-T/2}^{T/2} f(t) e^{-j\omega nt} dt \quad (A-3)$$

where:

$$j = \sqrt{-1}$$

$$\omega = \frac{2\pi}{T} \text{ and}$$

α_n = the average value of the exponential form of $f(t)$ in one period.

Substituting the expression (A-1) for $f(t)$ into (A-3) gives

$$\alpha_n = \frac{A}{n\pi} e^{jn\pi} \frac{T_p}{T} \sin \left(n\pi \frac{T_p}{T} \right) \quad (A-4)$$

The frequency spectrum of the pulse train is obtained by plotting

$$2 \left| \alpha_n \right| \text{ versus } n\pi = \left| \frac{2An}{\pi} \right|$$

$$2 \left| \alpha_n \right| = \frac{2A}{\pi} \left| \sin n\pi \frac{T_p}{T} \right| \quad (A-5)$$

For $n = 0$, equation (A-4) is evaluated using l'Hospital's rule and

$$\alpha_0 = A \frac{T_p}{T} \quad (A-6)$$

This is the equivalent DC component of the series.

To evaluate the ratio $\frac{T_p}{T}$:

The pulse width, T_p , is the time duration of the physical impact; in this case, the time during which a ball is impacting a flaw in one of the races. The period of impacts is, of course, T . To evaluate T_p , we assume the ball rolls down into the flaw and the impact commences when the ball strikes the far edge of the impact. If the flaw width is small relative to the ball diameter, then the ball center is over the center of the flaw at this point - see Figure A-2. Assuming a perfectly plastic impact (i.e. no bounce), the duration of the impact is equal to the time required for the ball to roll up and over the far edge of the flaw.

Again, relying on the assumption that the flaw width (W) is small compared to the ball diameter, the horizontal ball velocity is essentially constant, and the impact duration equals the time required for the ball to travel $\frac{W}{2}$.

$$\text{Therefore, } T_p = \frac{W}{2v}$$

where v is the ball velocity relative to the race. Assuming that the slippage between the ball and race is negligible, the velocity becomes

$$v = 2\pi r_b f_b \quad (A-7)$$

USE FOR TYPEWRITTEN MATERIAL ONLY

Figure A-2

where r_b is the ball radius and f_b is the ball rotational frequency given by equation (3) in the text.

$$\text{Therefore, } T_p = \frac{W}{4\pi r_b f_b} \quad (\text{A-8})$$

The period (T) depends upon which race the flaw is in. For the inner race, the period is the reciprocal of equation (2) and, for the outer race, it is the reciprocal of equation (1). The ratio T_p/T is independent of bearing RPM; these two ratios for inner and outer race flaws being:

$$\text{Inner Race: } \frac{T_p}{T} = 1.675 W \quad (\text{A-9})$$

$$\text{Outer Race: } \frac{T_p}{T} = 1.06 W \quad (\text{A-10})$$

The width (W) of the largest flaw injected into bearings 4, 6, and 7 was approximately 0.02 inches. Using this as the typical width, and substituting this into equations A-9 and A-10, the ratios become:

$$\text{Inner Race: } \frac{T_p}{T} = 0.0335$$

$$\text{Outer Race: } \frac{T_p}{T} = 0.0212$$

Substituting these values in the expression (A-5), and plotting these values versus n , yields the pulse train frequency spectrum shown in Figure A-3 below.

USE FOR TYPEWRITTEN MATERIAL ONLY

Figure A-3

Figure A-3 shows that the fundamental frequency is the largest amplitude and even this is only a small fraction of the pulse train amplitude. In these series of tests, the amplitude of the pulses would be small in view of the small flaw width and the fact that the bearings were run unloaded.

8.2 Resonant Frequencies

The resonant frequencies of the major components of the S-204H bearing are "free-free" oscillations and would not necessarily be exhibited as calculated when the bearing is assembled into a structure and subjected to loading. The variation from the calculated frequencies may be considerable, depending upon the lubrication, loading, and overall fit of all components within the bearing and the fit into the structural assembly. The calculation of these frequencies is based on M-50 Tool Steel material with a density of 0.283 lb/in³ and a Young's modulus of elasticity of 30×10^6 PSI. It was assumed that the cross-sectional area of the races were rectangular.

The equations used are as follows:

$$\text{Ball: } f \text{ (cps)} = \frac{0.424}{r} \sqrt{\frac{E}{2\rho}} \quad (\#4)$$

$$\text{Ring: } f \text{ (cps)} = \frac{n(n^2 - 1) \sqrt{\frac{EI}{m}}}{2\pi a^2 \sqrt{n^2 + 1}} \quad (\#5)$$

Where: r (ball) = radius (ft)

a (ring) = radius to neutral axis (ft)

E = Young's modulus (Lb/ft²)

I = Moment of inertia of cross-sectional area about the neutral axis (ft⁴)

ρ (ball) = density (slugs/ft³)

m (ring) = density (slugs per linear foot)

n = number of waves around circumference of ring

MATERIAL: M-50 TOOL STEEL:

E = 30.10^6 psi

ρ = 0.283 Lb/in³

ρ = $0.283 \frac{\text{Lb}}{\text{in}^3} \times 1728 \frac{\text{in}^3}{\text{ft}^3} \times \frac{1}{32.2} \frac{\text{slug}}{\text{Lb}}$

ρ = 15.2 slugs/ft³

E = $30.10^6 \frac{\text{Lb}}{\text{in}^2} \times 144 \frac{\text{in}^2}{\text{ft}^2}$

E = $4.32 \cdot 10^9 \text{ Lb/ft}^2$

USE FOR TYPEWRITTEN MATERIAL ONLY

BALL COMPUTATIONS:

$$\sqrt{\frac{E}{2\rho}} = 11.9 \cdot 10^3$$

$$r = \frac{0.3125}{2 \times 12} = 0.013 \text{ ft.}$$

$$\text{Let } A = \frac{1}{r} \sqrt{E/2\rho}$$

$$A = 0.92 \cdot 10^6$$

Ball Dia. = 0.3125"

Figure B-1

DEFORMATIONAL FREQUENCIES:

$$\text{Ball: } f = \frac{0.424}{r} \sqrt{\frac{E}{2\rho}} = 0.388 \cdot 10^6 \text{ cps}$$

$$\text{Ball: } f = 388 \text{ KC}$$

RADIAL MOTION MODES:

$$f_1 = 0.92A = 0.84 \text{ MC}$$

$$f_2 = 1.49A = 1.36 \text{ MC}$$

$$f_3 = 1.96A = 1.79 \text{ MC}$$

$$f_4 = 2.47A = 2.26 \text{ MC}$$

$$f_5 = 2.97A = 2.72 \text{ MC}$$

$$f_6 = 3.98A = 3.64 \text{ MC}$$

The ball deformational resonant frequency, calculated above as 383 KC, is the lowest frequency for what is termed "spheroidal vibrations." There are vibrations of a dilatational type whereby the sphere dilates and contracts radially and shear types in which there are twisting motions within the ball. It was felt that the spheroidal motions, wherein the sphere was distorted to an ellipsoid of revolution, becoming alternately prolate and oblate on a microscopic scale, are most representative of the actual deflection of the ball within the bearing assembly. The radial motion modes, calculated above, are well above the range of the transducer employed. It is our intention in future work to investigate the possible existence of these frequencies with higher frequency transducers and to determine the effect of defects on these frequencies. Under certain conditions of interference, the frequency band represented by these radial motion modes may be important. The inner race and outer race computations are based upon calculations of ring frequencies taken from page 452 in reference (3). The equation employed for resonant frequency in cycles per second is as follows;

$$f_n = \frac{n(n^2 - 1)}{2\pi a^2} \sqrt{\frac{EI}{m}} \quad (\#5)$$

Where: $EI = \text{lb}/\text{ft}^2$

$m = \text{slugs per linear foot}$

$a = \text{ring radius in ft}$

$I = \text{area moment of inertia of race about neutral axis}$

$n = \text{number of waves around ring}$

$n = 2, 3, 4, 5, \dots$

USE FOR TYPED MATERIAL ONLY

For inner race:

Neutral Axis
 $a = 0.5147'' = 0.0428'$

Cross Section

$$I_{NA} = \frac{bh^3}{12}$$

$$I_{NA} = 1.1 \times 10^{-8}$$

where $b = 0.046'$
 $h = 0.0142'$

$$E = 30 \cdot 10^6 \frac{\text{Lb}}{\text{in}^2} \times 144 \frac{\text{in}^2}{\text{ft}^2} = 4.32 \cdot 10^9 \frac{\text{Lb}}{\text{ft}^2}$$

$$\rho = 0.233 \frac{\text{Lb}}{\text{in}^3} \times 1723 \frac{\text{in}^3}{\text{ft}^3} = 433 \text{ Lb}/\text{ft}^3$$

$$m \left(\frac{\text{Lb}}{\text{ft}} \right) = p.b.h. = 0.319 \frac{\text{Lb}}{\text{ft}}$$

$$m \left(\frac{\text{slug}s}{\text{ft}} \right) = \frac{0.319}{32.2} = 0.0099 \frac{\text{slug}s}{\text{ft}}$$

$$\sqrt{\frac{EI}{m}} = \sqrt{\frac{(43.2 \cdot 10^8) (1.1 \cdot 10^{-3})}{9.9 \cdot 10^{-2}}} = \sqrt{4.8 \cdot 10^3}$$

$$\sqrt{\frac{EI}{m}} = 69.3$$

$$\frac{1}{a^2} = \sqrt{\frac{EI}{m}} = 3.78 \cdot 10^4$$

n	2	3	4	5
$\frac{n(n^2 - 1)}{2\pi\sqrt{n^2 + 1}}$	0.428	1.21	2.32	3.75
f_n	16.2 K	45.7 K	87.7 K	142.0 K

USE FOR TYPED MATERIAL ONLY

For outer race:

Neutral Axis
 $a = 0.99" = 0.083'$

Cross Section

$$I_{NA} = \frac{bh^3}{12}$$

$$I = 0.491 \cdot 10^8 \text{ ft}^4$$

where:

$$b = 0.046'$$

$$h = 0.13'' = 0.0108'$$

$$E = 4.32 \cdot 10^9 \frac{\text{Lb}}{\text{ft}^2}$$

$$m = \frac{(433)b \cdot h}{32.2} = 0.00753 \frac{\text{slugs}}{\text{ft}}$$

Thus,

$$\sqrt{\frac{EI}{m}} = 53.1$$

Therefore,

$$\frac{1}{a^2} \sqrt{\frac{EI}{m}} = 0.77 \times 10^4$$

n	2	3	4	5
$\frac{n(n^2 - 1)}{2\pi\sqrt{n^2 + 1}}$	0.428	1.21	2.32	3.75
f_n	3.29 K	9.32 K	17.9 K	28.9 K

USE FOR TYPEWRITTEN MATERIAL ONLY

These calculations indicate that a wide band of frequencies extend from a few kilocycles to 40 kilocycles and above, including harmonics. As these frequencies are driven higher in amplitude, hidden harmonics should appear, extending to and well above 100,000 cycles per second. Because of the interaction between the components of a bearing, a defect in any one component would cause ringing in all components. Accordingly, there exists a direct relationship between amplitude of these frequencies and severity (size and depth) of the defect. Hence, it does not appear necessary to positively identify each resonant frequency, nor does it appear feasible at the present time. Nevertheless, this band of frequencies, directly related as it is to the severity of the defect, can be employed in incipient failure detection. This has been demonstrated by translating this band of frequencies back to the audible region and listening to the sounds of defects in a ball bearing. It has been further demonstrated that the peak spectral density G's correlate directly to the severity of defects in bearings.

8.3 Raw Data

This appendix contains the power spectral density plots made for each individual test run.

8.3.1 First Series

Figures C-1 through C-22 are the direct recording PSD's made for bearing numbers 1, 2, 3, and 5.

8.3.2 Second Series

Figures C-23 through C-40 are the direct recording PSD's for the second set of bearings, numbers 4, 6, and 7 in the several test conditions.

8.3.3 FM Data

Figures C-41 through C-58 are the PSD's made from the FM data recorded from the tests on bearings 4, 6, and 7.

USE FOR TYPEWRITTEN MATERIAL ONLY

میں اپنے بھائیوں کے ساتھ 60% تک پہنچا۔

SD 2-7883-1-3 rev 3-68

POWER SPECTRAL DENSITY, G^2/Hz

THE BOEING COMPANY

RMS

LEVEL DB

FREQUENCY HZ

CALC.	D4 F	D 11/17
CHECK	✓ ✓ ✓ ✓	A // -2 ✓ ✓
APP'D		T
APP'D		E

Bewillig #1 von Lubsd
1902. 11. 11.

5000 13-111

Figure C-1
D2-113029-3

PAGE: 61

1/60 - $\frac{d}{dt}$ $- \infty$ dw . $\beta / C_{V,RMC}$

SD 2-7883-1-3 rev 3-68

POWER SPECTRAL DENSITY, G_z^2 / Hz

CALC.	1014	D 1-17-7
CHECK	1012	A 11-23-1
APP'D		T
APP'D		E

Bearing #1 New Lubed
10,000 KHM

10,000 F.M.

Figure C-2

D2-113029-3

PAGE: 62

SD 2-7883-1-3 rev 10-66

POWER SPECTRAL DENSITY, ζ^2 / CPS

CALC.		D1-1-1
CHECK		A/A
APP'D		T
APP'D		E

$\zeta = 1$ $A \propto \omega^{1/2}$
5000 CPS

Figure C-3
D2-113029-3

PAGE: 63

SD 2-7883-1-3 rev 10-66

POWER SPECTRAL DENSITY, G²/CPS

CALC.	WLC	D/-17-7
CHECK	A	
APP'D	T	
APP'D	E	

E -String # 1
No Lube
10,000 CPS

Figure C-4

D2-113020-2

PAGE: 64

CALC		D
CHECK		A
APP'D		T
APP'D		E

E-ring #1 Relubed

5,000 RPM (Run in at 10,000)

Figure C-5
D2-113020-3

Page: 65

SD 2-7883-1-3 rev 10-66

POWER SPECTRAL DENSITY, G^2/CPS

CALC.	D	E
CHECK	A	
APP'D	T	
APP'D	E	

Bearing "1" R-14603
10,000 RPM

Figure C-6
D2-113029-3
PAGE: 66

SD 2-7883-1-3 rev 10-66

CALC.	7	D
CHECK	1..	A'
APP'D		T
APP'D		E

Figure C-7
M-113029-2
PAGE: 67

CALC.	D-11	D-12					Fluxes C-8
CHECK	A-11	A-12					D2-113029-3
APP'D	T						
APP'D	E						PAGE: 63

CALC.	B	D	Earnings FT 2 New, Lubed 5000 RPM	Figure C-9 D2-113029-3
CHECK		A		
APP'D		T		
APP'D		E		PAGE: 69

SD 2-7883-1-3 rev 10-66

POWER SPECTRAL DENSITY, V^2/CPS

CALC.	D-11302	Bearing - New Lubed	Figure C-10
CHECK	A/M		D2-11302
APP'D	T	10,000 RPM	
APP'D	E		PAGE: 70

JD 2-783-1-3 rev 10-66

POWER SPECTRAL DENSITY, S^2/CPS

CALC.	D	D	Figure C-11
CHECK	A	A	D2-113029-3
APP'D	T		
APP'D	E		PAGE: 71

SD 2-7883-1-3 rev 10-66

POWER - CTRAL DENSITY, G/CPS

CALC.	1	D1747-2
CHECK	A	
APP'D	T	
APP'D	E	

100 1000 10,000 100,000

Figure C-12
D2-113020-3
PAGE: 72

CALC.		D
CHECK	/	A
APP'D		T
APP'D		E

Bearing #3 (Now + Lubric.)
5000 R.P.M.

5000 RPM.

Figure C-13
D2-113029-3

PAGE: 73

SD 2-7883-1-3 rev 10-66

POWER SPECTRAL DENSITY, G^2/CPS

CALC.	D
CHECK	A.M.
APP'D	T
APP'D	E

Bearing # 3 (Normal Lubrication)
10,000 R.P.M.

Figure C-14
D2-113020-3
PAGE 74

CALC.	4-14	D
CHECK	"	A
APP'D	"	T
APP'D	"	E

Expt. no. = 3 (Rumbe with hard,
5000 R.P.M. dry ground)

Figure C-1
D2-113029-3

CALC.	D	Bearing #3 (calculated with hard, dry interface)	Figure C-16
CHECK	A		D2-113020-2
APP'D	T		
APP'D	E	10,000 RPM.	PAGE: 76

SD 2-7883-1-3 rev 10-66

POWER SPECTRAL DENSITY. /CPS

CALC.	D	Bearing #3 Disturbed Condition 5000 RPM.	Figure C-17
CHECK	A		R2-113029-3
APP'D	T		
APP'D	E		PAGE: 77

CALC.		D
CHECK		A
APP'D		T
APP'D		E

Exercise #3 Distorted Cogn.

10,000 RPM.

Figure 18

D2-113029-3

PAGE: 73

CALC.	=	D
CHECK		A
APP'D		T
APP'D		E

Feeding at New, Lubed
5000 R.P.M.

Figure C-12
D2-113029-3

PAGE • 79

761-7

2-10-1

SD 2-7883-1-3 rev 10-66

345 Vrms

CALC.	DLF	D 112029
CHECK	/	A/ /
APP'D		T
APP'D		E

Eearing #5 New Lub'd
10,000 R.P.M.

Figure C-10

DP-112029-3

PAGE: 80

SD 2-7883-1-3 rev 10-66

CALC.	DCT	D
CHECK	/	A
APP'D	/	T
APP'D	/	E

Figure C-21
M2-113020-2
PAGE: 81

CALC.	T	D12-1137		Figure C-22
CHECK	A	A-1137		D2-113029-3
APP'D	T			
APP'D	E			PAGE: 82

1195 - 2

卷之三

SD 2-7883-1-3 rev 3-68

POWER SPECTRAL DENSITY. / Hz

THE BOEING COMPANY

NUMBER
REF ID:

1.0 - RMS

LEVEL

FREQUENCY

1000 10000

Hz

CALC.	100	DS	Elevating & NEW	Figure C-23 D2-113029-3
CHECK	M 2	A 5.65		
APP'D		T		
APP'D		E	5000 RPM	PAGE: 83

SD 2-7883-1-3 rev 3-68

POWER SPECTRAL DENSITY, / Hz

THE **BOEING** COMPANY

NUMBER
NINETY

CALC.	5/6/14	D
CHECK	100	A
APP'D		T
APP'D		E

1 - 101-4 New

10,000 RPM.

Figure C-24

D2-113029-3

PAGE: 84

THE BOEING COMPANY

NUMBER
05-110

CALC.		D 50	Eldering #4 Ferrari Doctor race. 5000 RPM	Figure C-25
CHECK		A 10		D2-113029-3
APP'D		T		
APP'D		S		PAGE: 85

THE BOEING COMPANY

1158

W.F. Q

CALC	1111~	D
CHECK	1111	A S D E S
APP'D		T
APP'D		E

Eating #4

Front/outer race

10,000 KPA

Figure C-26

D2-113020-3

PAGE: 86

THE **BOEING** COMPANY

NUMBER
26, 1942

CALC.	DAT	07.17%
CHECK	MCK	A7.1
APP'D	T	-

BEARING = 11 5000 RPM
ENLARGED PIT IN OUTER RACE

Figure C-27
D2-113029-3

PAGE: 37

1328-3 - 2011 - 27 NOV 2015

SD 2-7883-1-3 rev 3-68

POWER SPECTRAL DENSITY. / Hz

The figure is a log-log plot titled "THE BOEING COMPANY" at the top left. The vertical axis is labeled "RMS" and has logarithmic scales ranging from 10^{-3} to 10. The horizontal axis is labeled "FREQUENCY" and has logarithmic scales ranging from 100 to 10,000 Hz. The plot area contains numerous horizontal lines representing different frequency bands. A significant peak is observed between 1000 and 1500 Hz. The plot is annotated with several labels: "RMS" at the top left, "100" and "10,000" on the bottom x-axis, and "1000" and "10,000" on the top x-axis. The y-axis also features labels such as "10⁻³", "10⁻²", "10⁻¹", "10⁰", "10¹", "10²", and "10³".

CALC.	SRT	DT-17
CHECK	1:17 P	A7151
APP'D	T	
APP'D	E	

PEARING #4 10,000 R.P.M.
ENLARGED P.T IN OUTER RACE

Figure C-23
D2-113029-3
PAGE: 83

THE **BOEING** COMPANY

卷之二

CALC.	W.C.	D
CHECK	W.C.	A
APP'D		T
APP'D		Z

Early '6 New

5000 RPM

Figure C-29

D2-113029-3

PAGE: 89

THE BOEING COMPANY

10

CALC.	✓	D
CHECK	✓	A
APP'D		T
APP'D		E

Bearing "G" NEW

10,000 RPM

Figure C-3C

D2-113029-3

PAGE: 90

1217-6 -30 dB 1240 V RMS

SD 2-7883-1-3 rev 3-68

POWER SPECTRAL DENSITY, cm^2/Hz

CALC.	WGT	D
CHECK	..	A
APP'D		T
APP'D		E

1217-46 FAN/inner race
5000 RPM

Figure C-3
D2-113029-
PAGE: 91

THE BOEING COMPANY

卷之三

CALC		D
CHECK		A
APP'D		T
APP'D		E

Bearing #6 FAULT/inner race
10,000 RPM

10,000 KPI

Figure C-32

M-113029-3

PAGE: 92

THE BOEING COMPANY

1468

CALC.	DCT	DIT
CHECK	M-L	A7111
APP'D	T	
APP'D	E	

BEARING SET 5000 RPM
ENLARGED PIT IN INNER RACE

Figure C-33
D2-113029-3

PAGE: 93

15228-C-263V Page 5

SD 2-7883-1-3 rev 3-68

POWER SPECTRAL DENSITY. / BZ

THE BOEING COMPANY

4048

CALC.	DCT	D
CHECK	100%	A 70%
APP'D		T
APP'D		E

BEARING #6 10,000 R.P.M.
ENLARGED PIT IN INNER RACE

Figure C-34
D2-113029-3

PAGE: 94

THE BOEING COMPANY

卷之二

CALC.	64.5	D
CHECK	✓	A - ✓
APP'D		T
APP'D		E

Gearing "7 New

5000 RPM

Figure C-35
D2-113029-3

D2-113029-3

PAGE: 95

1193 - 1 - 200 D6 , - 201 U700

CALC.	WCH	D5	Bearing # 7	NEW	Figure C-36
CHECK	WCH	A5			D2-113029-3
APP'D		T			
APP'D		E	10,000 RPM		PAGE: 96

1217-8

SD 2-7883-1-3 rev 3-68

YOUNG

POWER SPECTRAL DENSITY, V RMS^2

CALC.	W/L/T	D
CHECK	1111	A
APP'D	T	
APP'D	E	

Drawing #7 Fair IT/ball

5000 RPM

Figure C-32

D2-113029-21

PAGE: 97

CALC.	✓	D
CHECK	✓	A-13
APP'D	✓	B
APP'D	✓	B

Bearing #7 FAULT / FAIL
10,000 RPM

Figure C-38
D2-113029-3

PAGE: 98

THE BOEING COMPANY

MARCH

CALC.	A	-	D	7.4	S
CHECK	MET		A	7.4	S
APP'D			T		
APP'D			E		

BEARING #7 5000 RPM
ENLARGED PIT IN BALL

Figure C-39
D2-113029-3
PAGE: 99

SD 2-7833-1-3 rev 3-68

POWER SPECTRAL DENSITY. / Hz

CALC.	PIT	DIGI
CHECK	N.C.Z	A.T.M.
APP'D	T	
APP'D	E	

PEARING #7 10,000 R.P.M.
ENLARGED PIT IN BALL

Figure C-40

D2-113029-3

PAGE: 100

THE BOEING COMPANY

NUMBER
REVIEW

CALC.	10010	D7-21-1
CHECK	10010	A7221
APP'D		T
APP'D		E

Francy's
5000 RPM

Figure C-41

D2-113029-3

PAGE: 101

CALC.	✓	D7-1	FREQUENCY # 4	FIGURE C-42
CHECK	MCR	A7-1	FOR T/OUTER	D2-113029-3
APP'D		T	10,000 RMS	
APP'D		E		PAGE: 102

1329-3

ر، میر، سماں کے نامے۔

SD 2-7883-1-3 rev 3-68

POWER SPECTRAL DENSITY, e^2/Hz

THE BOEING COMPANY

NUMBER
85115

CALC.	1164	D72-5	Bearing # 4 Enlarged 1:10 10,000 RPM	Figure C-10 D2-113029-2
CHECK	M-11	A7-7-1		
APP'D	T			
APP'D	E			PAGE: 103

NUMBER
RE. LTR

THE **BOEING** COMPANY

1196-3

二二一

CALC	<i>i = 24</i>	D 7-2 ✓
CHECK	<i>M + R</i>	A 7-2 ✓
APP'D		T
APP'D		E

Bearings "F" New

10,000 A.P. 11

Figure C-4:

D2-113029-3

PAGE: 104

SD 2-7883-1-3 rev 3-68

THE BOEING COMPANY

NUMBER
D2-LTR

POWER SPECTRAL DENSITY, Hz^2

CALC.	111	D
CHECK	111	A
APP'D		T
APP'D		E

$E_{\text{ring}} = 4$
FAULT, JUT, reacce
5,000 rpm

Figure C-4
D2-113029-3
PAGE: 105

NUMBER
REF LTR

THE BOEING COMPANY

SD 2-7883-1-3 rev 3-68

CALC.	DCT	D
CHECK	A	A7131
APP'D	T	
APP'D	E	

BEARING #4 5000 RPM
ENLARGED PIT IN OUTER RACE

Figure C-45

D2-113029-3

PAGE: 106

1196 - 4

۱۵۰۰ زندگانی

CALC.	W111	D-111	Engineering 116 No. 11	Figure C-47 D2-113029-3
CHECK	W 11	A 11		
APP'D		T		
APP'D		E	5000 RPM	PAGE: 107

1196-5

1196-5

SD 2-7883-1-3 rev 3-68

1196-5

CALC.	1196-5	D3
CHECK	MCK	A7000
APP'D		
APP'D		

E-3011-1 FT 6 NW
10,000 RPM

Figure C-18
D2-113029-3
PAGE: 108

THE BOEING COMPANY

WINTER
M. L. R.

CALC.	-A'	D
CHECK	A	A
APP'D	T	
APP'D	E	

Bearing #6 Fault/inner race

5000 RPM

Figure C-4C

D2-113029-3

PAGE: 109

SD 2-7883-1-3 rev 3-68

CALC.	"	D-216
CHECK	"	A
APP'D	T	
APP'D	E	

Engineering #6
10,000 RIM

FAULT/INTERFACe

Figure C-50
D2-113029-3

PAGE: 110

SD 2-7883-1-3 rev 3-68

POWER SPECTRAL DENSITY. / BZ

THE BOEING COMPANY

NUMBER
1118

CALC.	✓	D 7/17/88
CHECK	-	A 7/17/88
APP'D	T	
APP'D	E	

BEARING = 6 5,000 R.P.M.
ENLARGED PIT IN INNER RACE

Figure C-51
D2-113029-3
PAGE: 111

1324-5 -20 (1). 32011 1-115

SD 2-7883-1-3 rev 3-68

POWER SPECTRAL DENSITY, / Hz

THE BOEING COMPANY

RMS

FREQUENCY

10 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 100 2 3 4 5 6 7 8 9 1.000 2 3 4 5 6 7 8 9 10,000

10⁻³

10⁻²

10⁻¹

10⁰

10¹

10²

10³

10⁴

10⁵

10⁶

10⁷

10⁸

10⁹

10¹⁰

10¹¹

10¹²

10¹³

10¹⁴

10¹⁵

10¹⁶

10¹⁷

10¹⁸

10¹⁹

10²⁰

10²¹

10²²

10²³

10²⁴

10²⁵

10²⁶

10²⁷

10²⁸

10²⁹

10³⁰

10³¹

10³²

10³³

10³⁴

10³⁵

10³⁶

10³⁷

10³⁸

10³⁹

10⁴⁰

10⁴¹

10⁴²

10⁴³

10⁴⁴

10⁴⁵

10⁴⁶

10⁴⁷

10⁴⁸

10⁴⁹

10⁵⁰

10⁵¹

10⁵²

10⁵³

10⁵⁴

10⁵⁵

10⁵⁶

10⁵⁷

10⁵⁸

10⁵⁹

10⁶⁰

10⁶¹

10⁶²

10⁶³

10⁶⁴

10⁶⁵

10⁶⁶

10⁶⁷

10⁶⁸

10⁶⁹

10⁷⁰

10⁷¹

10⁷²

10⁷³

10⁷⁴

10⁷⁵

10⁷⁶

10⁷⁷

10⁷⁸

10⁷⁹

10⁸⁰

10⁸¹

10⁸²

10⁸³

10⁸⁴

10⁸⁵

10⁸⁶

10⁸⁷

10⁸⁸

10⁸⁹

10⁹⁰

10⁹¹

10⁹²

10⁹³

10⁹⁴

10⁹⁵

10⁹⁶

10⁹⁷

10⁹⁸

10⁹⁹

10¹⁰⁰

10¹⁰¹

10¹⁰²

10¹⁰³

10¹⁰⁴

10¹⁰⁵

10¹⁰⁶

10¹⁰⁷

10¹⁰⁸

10¹⁰⁹

10¹¹⁰

10¹¹¹

10¹¹²

10¹¹³

10¹¹⁴

10¹¹⁵

10¹¹⁶

10¹¹⁷

10¹¹⁸

10¹¹⁹

10¹²⁰

10¹²¹

10¹²²

10¹²³

10¹²⁴

10¹²⁵

10¹²⁶

10¹²⁷

10¹²⁸

10¹²⁹

10¹³⁰

10¹³¹

10¹³²

10¹³³

10¹³⁴

10¹³⁵

10¹³⁶

10¹³⁷

10¹³⁸

10¹³⁹

10¹⁴⁰

10¹⁴¹

10¹⁴²

10¹⁴³

10¹⁴⁴

10¹⁴⁵

10¹⁴⁶

10¹⁴⁷

10¹⁴⁸

10¹⁴⁹

10¹⁵⁰

10¹⁵¹

10¹⁵²

10¹⁵³

10¹⁵⁴

10¹⁵⁵

10¹⁵⁶

10¹⁵⁷

10¹⁵⁸

10¹⁵⁹

10¹⁶⁰

10¹⁶¹

10¹⁶²

10¹⁶³

10¹⁶⁴

10¹⁶⁵

10¹⁶⁶

10¹⁶⁷

10¹⁶⁸

10¹⁶⁹

10¹⁷⁰

10¹⁷¹

10¹⁷²

10¹⁷³

10¹⁷⁴

10¹⁷⁵

10¹⁷⁶

10¹⁷⁷

10¹⁷⁸

10¹⁷⁹

10¹⁸⁰

10¹⁸¹

10¹⁸²

10¹⁸³

10¹⁸⁴

10¹⁸⁵

10¹⁸⁶

10¹⁸⁷

10¹⁸⁸

10¹⁸⁹

10¹⁹⁰

10¹⁹¹

10¹⁹²

10¹⁹³

10¹⁹⁴

10¹⁹⁵

10¹⁹⁶

10¹⁹⁷

10¹⁹⁸

10¹⁹⁹

10²⁰⁰

10²⁰¹

10²⁰²

10²⁰³

10²⁰⁴

10²⁰⁵

10²⁰⁶

10²⁰⁷

10²⁰⁸

10²⁰⁹

10²¹⁰

10²¹¹

10²¹²

10²¹³

10²¹⁴

10²¹⁵

10²¹⁶

10²¹⁷

10²¹⁸

10²¹⁹

10²²⁰

10²²¹

10²²²

10²²³

10²²⁴

10²²⁵

10²²⁶

10²²⁷

10²²⁸

10²²⁹

10²³⁰

10²³¹

10²³²

10²³³

10²³⁴

10²³⁵

10²³⁶

10²³⁷

10²³⁸

10²³⁹

10²⁴⁰

10²⁴¹

10²⁴²

10²⁴³

10²⁴⁴

10²⁴⁵

10²⁴⁶

10²⁴⁷

10²⁴⁸

10²⁴⁹

10²⁵⁰

10²⁵¹

10²⁵²

10²⁵³

10²⁵⁴

10²⁵⁵

10²⁵⁶

10²⁵⁷

10²⁵⁸

10²⁵⁹

10²⁶⁰

10²⁶¹

10²⁶²

10²⁶³

10²⁶⁴

10²⁶⁵

10²⁶⁶

10²⁶⁷

10²⁶⁸

10²⁶⁹

10²⁷⁰

10²⁷¹

10²⁷²

10²⁷³

10²⁷⁴

10²⁷⁵

10²⁷⁶

10²⁷⁷

10²⁷⁸

10²⁷⁹

10²⁸⁰

10²⁸¹

10²⁸²

10²⁸³

10²⁸⁴

10²⁸⁵

10²⁸⁶

10²⁸⁷

10²⁸⁸

10²⁸⁹

10²⁹⁰

10²⁹¹

10²⁹²

10²⁹³

10²⁹⁴

10²⁹⁵

10²⁹⁶

10²⁹⁷

10²⁹⁸

10²⁹⁹

10³⁰⁰

10³⁰¹

10³⁰²

10³⁰³

10³⁰⁴

10³⁰⁵

10³⁰⁶

10³⁰⁷

10³⁰⁸

10³⁰⁹

10³¹⁰

10³¹¹

10³¹²

10³¹³

10³¹⁴

10³¹⁵

10³¹⁶

10³¹⁷

10³¹⁸

10³¹⁹

10³²⁰

10³²¹

10³²²

10³²³

10³²⁴

10³²⁵

10³²⁶

10³²⁷

10³²⁸

10³²⁹

10³³⁰

10³³¹

10³³²

10³³³

10³³⁴

10³³⁵

10³³⁶

10³³⁷

10³³⁸

10³³⁹

10³⁴⁰

10³⁴¹

10³⁴²

10³⁴³

10³⁴⁴

10³⁴⁵

10³⁴⁶

10³⁴⁷

10³⁴⁸

10³⁴⁹

10³⁵⁰

10³⁵¹

10³⁵²

10³⁵³

10³⁵⁴

10³⁵⁵

10³⁵⁶

10³⁵⁷

10³⁵⁸

10³⁵⁹

10³⁶⁰

10³⁶¹

10³⁶²

10³⁶³

10³⁶⁴

10³⁶⁵

10³⁶⁶

10³⁶⁷

10³⁶⁸

10³⁶⁹

10³⁷⁰

10³⁷¹

10³⁷²

10³⁷³

10³⁷⁴

10³⁷⁵

10³⁷⁶

10³⁷⁷

10³⁷⁸

10³⁷⁹

10³⁸⁰

10³⁸¹

10³⁸²

10³⁸³

10³⁸⁴

10³⁸⁵

10³⁸⁶

10³⁸⁷

10³⁸⁸

10³⁸⁹

10³⁹⁰

10³⁹¹

10³⁹²

10³⁹³

10³⁹⁴

10³⁹⁵

10³⁹⁶

10³⁹⁷

10³⁹⁸

10³⁹⁹

10⁴⁰⁰

10⁴⁰¹

10⁴⁰²

10⁴⁰³

10⁴⁰⁴

10⁴⁰⁵

10⁴⁰⁶

10⁴⁰⁷

10⁴⁰⁸

10⁴⁰⁹

10⁴¹⁰

10⁴¹¹

10⁴¹²

10⁴¹³

10⁴¹⁴

10⁴¹⁵

10⁴¹⁶

10⁴¹⁷

10⁴¹⁸

10⁴¹⁹

10⁴²⁰

10⁴²¹

10⁴²²

10⁴²³

10⁴²⁴

10⁴²⁵

10⁴²⁶

10⁴²⁷

10⁴²⁸

10⁴²⁹

10⁴³⁰

10⁴³¹

10⁴³²

10⁴³³

10⁴³⁴

10⁴³⁵

10⁴³⁶

10⁴³⁷

10⁴³⁸

10⁴³⁹

10⁴⁴⁰

10⁴⁴¹

10⁴⁴²

10⁴⁴³

10⁴⁴⁴

10⁴⁴⁵

10⁴⁴⁶

10⁴⁴⁷

10⁴⁴⁸

10⁴⁴⁹

10⁴⁵⁰

10⁴⁵¹

10⁴⁵²

10⁴⁵³

10⁴⁵⁴

10⁴⁵⁵

10⁴⁵⁶

10⁴⁵⁷

10⁴⁵⁸

10⁴⁵⁹

10⁴⁶⁰

10⁴⁶¹

10⁴⁶²

10⁴⁶³

10⁴⁶⁴

10⁴⁶⁵

10⁴⁶⁶

10⁴⁶⁷

10⁴⁶⁸

10⁴⁶⁹

10⁴⁷⁰

10⁴⁷¹

10⁴⁷²

10⁴⁷³

10⁴⁷⁴

10⁴⁷⁵

10⁴⁷⁶

10⁴⁷⁷

10⁴⁷⁸

10⁴⁷⁹

10⁴⁸⁰

10⁴⁸¹

10⁴⁸²

10⁴⁸³

10⁴⁸⁴

10⁴⁸⁵

10⁴⁸⁶

10⁴⁸⁷

10⁴⁸⁸

10⁴⁸⁹

10⁴⁹⁰

10⁴⁹¹

10⁴⁹²

10⁴⁹³

10⁴⁹⁴

10⁴⁹⁵

10⁴⁹⁶

10⁴⁹⁷

10⁴⁹⁸

10⁴⁹⁹

10⁵⁰⁰

10⁵⁰¹

10⁵⁰²

10⁵⁰³

10⁵⁰⁴

10⁵⁰⁵

10⁵⁰⁶

10⁵⁰⁷

10⁵⁰⁸

10⁵⁰⁹

10⁵¹⁰

10⁵¹¹

10⁵¹²

10⁵¹³

10⁵¹⁴

10⁵¹⁵

10⁵¹⁶

10⁵¹⁷

10⁵¹⁸

10⁵¹⁹

10⁵²⁰

10⁵²¹

10⁵²²

10⁵²³

10⁵²⁴

10⁵²⁵

10⁵²⁶

10⁵²⁷

10⁵²⁸

10⁵²⁹

10⁵³⁰

10⁵³¹

10⁵³²

10⁵³³

10⁵³⁴

10⁵³⁵

10⁵³⁶

10⁵³⁷

10⁵³⁸

10⁵³⁹

10⁵⁴⁰

10⁵⁴¹

10⁵⁴²

10⁵⁴³

10⁵⁴⁴

10⁵⁴⁵

10⁵⁴⁶

10⁵⁴⁷

10⁵⁴⁸

10⁵⁴⁹

10⁵⁵⁰

10⁵⁵¹

10⁵⁵²

10⁵⁵³

10⁵⁵⁴

10⁵⁵⁵

10⁵⁵⁶

10⁵⁵⁷

10⁵⁵⁸

10⁵⁵⁹

10⁵⁶⁰

10⁵⁶¹

10⁵⁶²

10⁵⁶³

10⁵⁶⁴

10⁵⁶⁵

10⁵⁶⁶

10⁵⁶⁷

10⁵⁶⁸

10⁵⁶⁹

10⁵⁷⁰

10⁵⁷¹

10⁵⁷²

10⁵⁷³

10⁵⁷⁴

10⁵⁷⁵

10⁵⁷⁶

10⁵⁷⁷

10⁵⁷⁸

10⁵⁷⁹

10⁵⁸⁰

10⁵⁸¹

10⁵⁸²

10⁵⁸³

10⁵⁸⁴

10⁵⁸⁵

10⁵⁸⁶

10⁵⁸⁷

10⁵⁸⁸

10⁵⁸⁹

10⁵⁹⁰

10⁵⁹¹

10⁵⁹²

10⁵⁹³

10⁵⁹⁴

10⁵⁹⁵

10⁵⁹⁶

10⁵⁹⁷

10⁵⁹⁸

10⁵⁹⁹

10⁶⁰⁰

10⁶⁰¹

10⁶⁰²

10⁶⁰³

10⁶⁰⁴

10⁶⁰⁵

10⁶⁰⁶

10⁶⁰⁷

10⁶⁰⁸

10⁶⁰⁹

10⁶¹⁰

10⁶¹¹

10⁶¹²

10⁶¹³

10⁶¹⁴

10⁶¹⁵

10⁶¹⁶

10⁶¹⁷

10⁶¹⁸

10⁶¹⁹

10⁶²⁰

10⁶²¹

10⁶²²

10⁶²³

10⁶²⁴

10⁶²⁵

10⁶²⁶

10⁶²⁷

10⁶²⁸

10⁶²⁹

10⁶³⁰

10⁶³¹

10⁶³²

10⁶³³

10⁶³⁴

10⁶³⁵

10⁶³⁶

10⁶³⁷

10⁶³⁸

10⁶³⁹

10⁶⁴⁰

10⁶⁴¹

10⁶⁴²

10⁶⁴³

10⁶⁴⁴

10⁶⁴⁵

10⁶⁴⁶

10⁶⁴⁷

10⁶⁴⁸

10⁶⁴⁹

10⁶⁵⁰

10⁶⁵¹

10⁶⁵²

10⁶⁵³

10⁶⁵⁴

10⁶⁵⁵

10⁶⁵⁶

10⁶⁵⁷

10⁶⁵⁸

10⁶⁵⁹

10⁶⁶⁰

10⁶⁶¹

10⁶⁶²

10⁶⁶³

10⁶⁶⁴

10⁶⁶⁵

10⁶⁶⁶

10⁶⁶⁷

10⁶⁶⁸

10⁶⁶⁹

10⁶⁷⁰

10⁶⁷¹

10⁶⁷²

10⁶⁷³

10⁶⁷⁴

10⁶⁷⁵

10⁶⁷⁶

10⁶⁷⁷

10⁶⁷⁸

10⁶⁷⁹

10⁶⁸⁰

10⁶⁸¹

10⁶⁸²

10⁶⁸³

10⁶⁸⁴

10⁶⁸⁵

10⁶⁸⁶

10⁶⁸⁷

10⁶⁸⁸

10⁶⁸⁹

10⁶⁹⁰

10⁶⁹¹

10⁶⁹²

10⁶⁹³

10⁶⁹⁴

10⁶⁹⁵

10⁶⁹⁶

10⁶⁹⁷

10⁶⁹⁸

10⁶⁹⁹

10⁷⁰⁰

10⁷⁰¹

10⁷⁰²

10⁷⁰³

10⁷⁰⁴

10⁷⁰⁵

10⁷⁰⁶

10⁷⁰⁷

10⁷⁰⁸

10⁷⁰⁹

10⁷¹⁰

10⁷¹¹

10⁷¹²

10⁷¹³

10⁷¹⁴

10⁷¹⁵

10⁷¹⁶

10⁷¹⁷

10⁷¹⁸

10⁷¹⁹

10⁷²⁰

10⁷²¹

10⁷²²

10⁷²³

10⁷²⁴

10⁷²⁵

10⁷²⁶

10⁷²⁷

10⁷²⁸

10⁷²⁹

10⁷³⁰

10⁷³¹

10⁷³²

10⁷³³

10⁷³⁴

10⁷³⁵

10⁷³⁶

10⁷³⁷

10⁷³⁸

10⁷³⁹

10⁷⁴⁰

10⁷⁴¹

10⁷⁴²

10⁷⁴³

10⁷⁴⁴

10⁷⁴⁵

10⁷⁴⁶

10⁷⁴⁷

10⁷⁴⁸

10⁷⁴⁹

10⁷⁵⁰

10⁷⁵¹

10⁷⁵²

10⁷⁵³

10⁷⁵⁴

10⁷⁵⁵

10⁷⁵⁶

10⁷⁵⁷

10⁷⁵⁸

10⁷⁵⁹

10⁷⁶⁰

10⁷⁶¹

10⁷⁶²

10⁷⁶³

10⁷⁶⁴

10⁷⁶⁵

10⁷⁶⁶

10⁷⁶⁷

10⁷⁶⁸

10⁷⁶⁹

10⁷⁷⁰

10⁷⁷¹

10⁷⁷²

10⁷⁷³

10⁷⁷⁴

10⁷⁷⁵

10⁷⁷⁶

10⁷⁷⁷

10⁷⁷⁸

10⁷⁷⁹

10⁷⁸⁰

10⁷⁸¹

10⁷⁸²

10⁷⁸³

10⁷⁸⁴

10⁷⁸⁵

10⁷⁸⁶

10⁷⁸⁷

10⁷⁸⁸

10⁷⁸⁹

10⁷⁹⁰

10⁷⁹¹

10⁷⁹²

10⁷⁹³

10⁷⁹⁴

10⁷⁹⁵

10⁷⁹⁶

10⁷⁹⁷

10⁷⁹⁸

10⁷⁹⁹

10⁸⁰⁰

10⁸⁰¹

10⁸⁰²

10⁸⁰³

10⁸⁰⁴

10⁸⁰⁵

10⁸⁰⁶

10⁸⁰⁷

10⁸⁰⁸

10⁸⁰⁹

10⁸¹⁰

10⁸¹¹</p

CALC.	DAT	D 7-17-2
CHECK	115.4	A 7-17-2
APP'D		T
APP'D		E

BEARING #6 10,000 RPM
ENLARGED PIT IN INNER RACE

Figure C-52
D2-113029-3
PAGE: 112

1196-60 - 30 JUN 1968

SD 2-7883-1-3 rev 3-68

POWER SPECTRAL DENSITY, G^2/HZ

CALC.	A	D
CHECK	MCR	A7
APP'D	T	
APP'D	E	

Entry 7 New
5000 RPM.

Figure C-53
D2-113029-2
PAGE: 113

1-174
-0005-
.212-8-11

SD 2-7883-1-3 rev 3-68

POWER SPECTRAL DENSITY, S_p / Hz

CALC.		D7	Stainless 117 New	Figure C-54 D2-113029-3
CHECK	MCR	A7076		
APP'D		T	10,000 RPM	
APP'D		E		PAGE: 114

12/18-8 -4000 0.240 0.050

SD 2-7883-1-3 rev 3-68

POWER SPECTRAL DENSITY²/HZ

THE **BOEING** COMPANY

NUMBER
N. U.

CALC.	4000	D7-1	Earnings # 7	Foot/Earn	Figure C-55 D2-113029-3
CHECK	4000	A7-11			
APP'D		T	5000 R10-1		
APP'D		E			PAGE: 115

1/2/8-9

شامل

CALC	11-2-16	D7-2
CHECK	V1-L	A7-2
APP'D		T
APP'D		E

Emergency First/Emergency

10,000 RPM

Figure C-56

D2-113029-3

PAGE: 116

THE **BOEING** COMPANY

NUMBER
33-118

10

CALC.	D/T	D-17.7
CHECK	A	A-17.7
APP'D		T
APP'D		E

BEARING #7 5,000 RPM
ENCARGED PIT IN BALL

Figure C-57

D2-113029-32

PAGE: 117

1329-7 -50.11, -292.1 m.s

SD 2-7883-1-3 rev 3-68

POWER SPECTRAL DENSITY, / Hz

THE **BOEING** COMPANY

NUMBER
OF LTR

CALC.	D	T	D 7-17-57
CHECK	A	S	A :
APP'D			T
APP'D			E

PEARING #7 10,000 R.P.H.
ENLARGED PIT IN BALL

Figure C-58
D2-113029-3

PAGE: 113

Unclassified

DOCUMENT CONTROL DATA - R&D

Security classification of title, body of abstract and indexing information must be entered when the overall report is classified D.

1. SPONSORING MILITARY ACTIVITY (Corporate entity)

The Boeing Company, Aerospace Group,
Aerospace Systems Division--Kent Facility
P. O. Box 3999, Seattle, Wash. 98124

12a. REPORT SECURITY CLASSIFICATION

Unclassified

12b. GROUP

3. REPORT TITLE

Incipient Failure Detection: Incipient Failure Detection
in Ball Bearings.

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Final Report

5. AUTHORS (First name, middle initial, last name)

H. L. Balderston

6. REPORT DATE

August 22, 1969

7a. TOTAL NO. OF PAGES

118

7b. NO. OF REFS

5

8a. CONTRACT OR GRANT NO.

9a. ORIGINATOR'S REPORT NUMBERS

b. nil

D2-113029-3

c. nil

d. nil

9b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report)

10. DISTRIBUTION STATEMENT - All government agencies may obtain copies directly from DDC. DDC is requested to route all other requests to Boeing for approval.

Ref. H. F. Eppenstein or J. W. Griswold

11. SUPPLEMENTARY NOTES

Includes a bibliography of ten (10) items.

12. SPONSORING MILITARY ACTIVITY

nil

13. ABSTRACT

This document reports the results of an investigation of incipient failure detection in ball bearings by means of acoustic monitoring techniques. The change of acoustic emanation strength with bearing condition was studied to determine if changes within the frequency spectrum monitored would manifest the onset of a bearing failure. This investigation showed that the acoustic energy emitted from bearings is very sensitive to bearing condition and provides a clear indication of the onset of bearing failure.

Unclassified

Security Classification

14. KEY WORDS	LINK A		LINK B		LINK C	
	ROLE	WT	ROLE	WT	ROLE	WT
INCIDENT FAILURE BEARING FAILURE FAILURE DETECTION ULTRASONIC MONITORING BEARING MAINTENANCE BEARING INSPECTION						