1. Demonstre, utilizando a definição de limite, que:

- (a) $\lim_{x \to 4} x^2 = 16$.
- (b) $\lim_{x \to -1} (11x + 5) = -6.$
- (c) $\lim_{x \to \sqrt{2}} 8\sqrt{3} = 8\sqrt{3}$.
- (d) $\lim_{x \to 10} \frac{x^2 100}{x 10} = 20.$

2. Calcule, caso exista, cada um dos limites abaixo. Se não existir, justifique.

- (a) $\lim_{x \to 1} x + 2$.
- (b) $\lim_{x\to 2} \frac{x^2 + x}{x+3}$.
- (c) $\lim_{x \to 0} \frac{x^2 + x}{x}$.
- (d) $\lim_{x \to 1} \frac{\sqrt{x} 1}{x 1}$.
- (e) $\lim_{x \to -1} -x^2 2x + 3$.
- (f) $\lim_{x \to 3} \frac{\sqrt{x} \sqrt{3}}{x 3}$.
- (g) $\lim_{x \to 0} \frac{x^2 + 3x 1}{x^2 + 2}$.
- (h) $\lim_{h \to 0} \frac{(x+h)^3 x^3}{h}$.
- (i) $\lim_{x \to 1^+} \frac{|x-1|}{x-1}$.
- (j) $\lim_{x \to 1^-} \frac{|x-1|}{x-1}$.
- (k) $\lim_{x \to 1} \frac{|x-1|}{x-1}$.
- (l) $\lim_{x \to 1^+} \frac{f(x) f(1)}{x 1}$ onde $f(x) = \begin{cases} x + 1, & \text{se } x \ge 1 \\ 2x, & \text{se } x < 1 \end{cases}$.
- (m) $\lim_{x\to 0} \sqrt{x}$.
- (n) $\lim_{x \to 2^{-}} \frac{g(x) g(2)}{x 2}$ onde $g(x) = \begin{cases} x, \text{ se } x \ge 2\\ \frac{x^2}{2}, \text{ se } x < 2 \end{cases}$
- (o) $\lim_{x\to 2^+} \frac{g(x)-g(2)}{x-2}$ onde g(x) é a função do item (n).
- (p) $\lim_{x\to 2} \frac{g(x)-g(2)}{x-2}$ onde g(x) é a função do item (n).

- 3. Mostre, usando a definição de limite, que $\lim_{x \to x_0} f(x) = 0 \Leftrightarrow \lim_{x \to x_0} |f(x)| = 0$.
- 4. Demonstre o Teorema da Comparação dado em sala de aula: Sejam f e g funções tais que $f(x) \leqslant g(x)$ para $0 < |x-x_0| < r$, para algum r > 0. Se $\lim_{x \to x_0} f(x)$ e $\lim_{x \to x_0} g(x)$ existem, então $\lim_{x \to x_0} f(x) \leqslant \lim_{x \to x_0} g(x)$.
- 5. Demonstre o Corolário do Teorema do Confronto dado em sala de aula: Suponha que $\lim_{x \to x_0} f(x) = 0$ e que existam M>0 e r>0 satisfazendo $|g(x)|\leqslant M$ para $0<|x-x_0|< r$. Então $\lim_{x \to x_0} f(x)g(x) = 0$. [Sugestão: Use o Teorema do Confronto e o Exercício 3.]
- 6. Demonstre o Teorema da Conservação do sinal dado em sala de aula. Suponha que $\lim_{x\to x_0} f(x) = L$. Se L>0, então existe r>0 tal que $0<|x-x_0|< r, x\in D_f\Rightarrow f(x)>0$. Analogamente, se L<0, então existe r>0 tal que $0<|x-x_0|< r, x\in D_f\Rightarrow f(x)<0$. [Sugestão: Use a definição de limite com $\epsilon=L/2$ no caso em que L>0 e $\epsilon=-L/2$ no caso em que L<0.]
- 7. Considere $f(x) = \begin{cases} \frac{\sqrt{x^3 + 6x^2}}{x}, & \text{se } x \neq 0 \\ 6, & \text{se } x = 0. \end{cases}$
 - (a) Calcule $\lim_{x\to 0} f(x)$.
 - (b) Verifique se $\lim_{x\to 0} f(x) = f(0)$.
- 8. Verifique se as afirmações abaixo são verdadeiras, justificando as respostas, isto é, exibindo uma prova nos casos verdadeiros e dando um contraexemplo nos casos falsos. (Atenção: você pode assumir verdadeiras as propriedades de limites vistas em sala de aula.)
 - (a) Se existem os limites $\lim_{x \to x_0} f(x)$ e $\lim_{x \to x_0} (f(x) + g(x))$, então existe $\lim_{x \to x_0} g(x)$.
 - (b) Pode existir $\lim_{x \to x_0} (f(x) + g(x))$ sem que exista $\lim_{x \to x_0} f(x)$ ou $\lim_{x \to x_0} g(x)$.
 - (c) Se existe $\lim_{x \to x_0} f(x)$ e não existe $\lim_{x \to x_0} g(x)$, então não existe $\lim_{x \to x_0} (f(x) + g(x))$.
 - (d) Se existem $\lim_{x\to x_0} f(x)$ e $\lim_{x\to x_0} g(x)$, então existe $\lim_{x\to x_0} \frac{f(x)}{g(x)}$.
 - (e) Se existe $\lim_{x\to x_0}f(x)$ e não existe $\lim_{x\to x_0}g(x)$, então não existe $\lim_{x\to x_0}f(x)g(x)$.
 - (f) Se existem $\lim_{x\to x_0^+} f(x)$ e $\lim_{x\to x_0^-} f(x)$, então $\lim_{x\to x_0} f(x)$ existe.
- 9. Seja $f: \mathbb{R} \to \mathbb{R}$ tal que $-x^2 + 3x \leqslant f(x) < \frac{x^2 1}{x 1}$, para todo $x \neq 1$. Calcule $\lim_{x \to 1} f(x)$ e justifique.
- 10. Suponha que $g: \mathbb{R} \to \mathbb{R}$ é tal que $|g(x)| \leq x^4$, para todo $x \in \mathbb{R}$. Calcule $\lim_{x \to 0} \frac{g(x)}{x}$.
- 11. Sejam $f,g:\mathbb{R}\to\mathbb{R}$ tais que $[g(x)]^2+[f(x)]^2=2$, para todo $x\in\mathbb{R}$. Calcule e justifique
 - (a) $\lim_{x \to 0} x^5 g(x)$.
 - (b) $\lim_{x \to 3} f(x) \sqrt{x^3 27}$.

(Sugestão: Use o Corolário do Teorema do Confronto.)