

Review of sparse reduced-rank regression model

报告人: 尚尔淦

数学科学学院 概率统计系

2021年10月29日

- 1 Stability approach to regularization selection
- 2 sparse reduced-rank regression for simultaneous
- 3 sparse RRR for simultaneous rank and variable
- 4 joint variable and rank selection for parsimonious
- 5 Dimension reduction and coefficient estimation
- 6 Reduced rank stochastic regression
- 7 wavelet-based sparse reduce-rank regression

- 1 Stability approach to regularization selection
- 2 sparse reduced-rank regression for simultaneous
- 3 sparse RRR for simultaneous rank and variable
- 4 joint variable and rank selection for parsimonious
- 5 Dimension reduction and coefficient estimation
- 6 Reduced rank stochastic regression
- 7 wavelet-based sparse reduce-rank regression

definition of graph

A graph G=(V,E), V: set of vertices, E: set of edges; XY is adiacent if there's an edge joining them: $X \sim Y$ Suppose V represents a set of random variables having jointly distribution P

The graph gives a visual way of understanding the joint distribution of the entire set of random variables. The absence of an edge between 2 vertices has a special meaning: the corresponding random variables are conditionally independent given other variables.

We assume that the observation has a multivariate Gaussian distribution with mean μ and covariance matrix Σ . Then all conditional distributions are also Gaussian. Σ^{-1} contains partial covariance: covariance between i and i conditioned on all other variables

stability approach

Our major work is to determine which features of the system are conditionally independent i.e. Estimating the inverse covariance matrix Σ^{-1}

We can put forward a regularization parameter λ that controls the sparsity of the graph; A new approach to model selection based on **model stability**.

We start with a large regularization which corresponds to an empty and hence highly stable graph. We gradually reduce the amount of regularization until there's a small but acceptable amount of variability of the graph across subsamples.

 $X = (X(x), \dots, X(p))'$ is the random vector with distribution P, G=(V,E) with vertices $V=\{X(1),\cdots,X(p)\}$. We use E to denote the adjacency matrix and edges.

Our aim is to infer E from i.i.d observed data X_1, \dots, X_n where $X_i = (X_i(1), \cdots, X_i(p))'$

Suppose P is Gaussian with mean vector μ and covariance matrix Σ . let $\Omega = \Sigma^{-1}$

 $X = (X(x), \dots, X(p))'$ is the random vector with distribution P, G=(V,E) with vertices $V = \{X(1), \dots, X(p)\}$. We use E to denote the adjacency matrix and edges.

Our aim is to infer E from i.i.d observed data X_1, \dots, X_n where $X_i = (X_i(1), \cdots, X_i(p))'$

Suppose P is Gaussian with mean vector μ and covariance matrix Σ . let $\Omega = \Sigma^{-1}$

 $\Omega_{ik} = 0 \iff \text{no edge corresponding to } X(i) \text{ and } X(k)$

 $X = (X(x), \dots, X(p))'$ is the random vector with distribution P, G=(V,E) with vertices $V = \{X(1), \dots, X(p)\}$. We use E to denote the adjacency matrix and edges.

Our aim is to infer E from i.i.d observed data X_1, \dots, X_n where $X_i = (X_i(1), \cdots, X_i(p))'$

Suppose P is Gaussian with mean vector μ and covariance matrix Σ . let $\Omega = \Sigma^{-1}$

$$\Omega_{jk} = 0 \iff$$
 no edge corresponding to $X(j)$ and $X(k)$

We come to estimate the sparsity pattern of Ω , if ignoring the constants, the log-likelihood:

$$\ell(\Omega) = \log |\Omega| - \operatorname{trace}(\hat{\Sigma}\Omega)$$

 $\dot{\Sigma}$:the sample covariance matrix

$$\hat{\Sigma} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})(x_i - \bar{x})'$$

 $\hat{\Omega}(\lambda) = \arg\min_{\Omega>0} (-\ell(\Omega) + \lambda ||\Omega||_1)$ where $||\Omega||_1 = \sum_{i,k} |\Omega_{ik}|$ is the ℓ_1 norm

Therefore we get the estimator

$$\hat{G}(\lambda) = (V, \hat{E}(\lambda))$$

Regularization selection

Obviously, larger values of λ tend to yield sparse graphs, we define $\Lambda = \frac{1}{\lambda}$ so that small Λ corresponds to sparse graph. We get Grid of regularization parameters $G_n = \{\lambda_1 \cdots, \Lambda_K\}$, to choose one $\hat{\Lambda} \in G_n$ such that the true graph E is contained in $\hat{E}(\hat{\lambda})$ with high probability.

Let $d(\lambda)$ denote the degree of freedom of the corresponding Gaussian model, we have these existing criterion

$$\mathit{AIC}: \quad \hat{\Lambda} = \arg\min_{\lambda \in \mathit{G}_{\mathit{n}}} (-2\ell(\Omega(\Lambda)) + 2\mathit{d}(\Lambda))$$

$$\mathit{BIC}: \quad \hat{\Lambda} = \arg\min_{\lambda \in \mathit{G}_{\mathit{n}}} (-2\ell(\Omega(\Lambda)) + \mathit{d}(\Lambda) \cdot \mathit{logn})$$

A common practice is to calculate $d(\Lambda) = m(\Lambda)(m(\Lambda) - 1)/2 + p$, where $m(\Lambda)$ denotes the number of nonzero elements of $\hat{\Omega}(\Lambda)$

When $\Lambda = 0$, the graph is empty. As we increase Λ , the variability of graph increases and the stability decreases. Now we put forward the concrete rule for choosing Λ

When $\Lambda = 0$, the graph is empty. As we increase Λ , the variability of graph increases and the stability decreases. Now we put forward the concrete rule for choosing Λ Let b = b(n) be the parameter such that 1 < b(n) < n, we draw N random subsamples S_1, \dots, S_N from X_1, \dots, X_n each of size b. We choose a large number N of subsamples at random. Each subsample is drawn without replacement

When $\Lambda = 0$, the graph is empty. As we increase Λ , the variability of graph increases and the stability decreases. Now we put forward the concrete rule for choosing Λ Let b = b(n) be the parameter such that 1 < b(n) < n, we draw N random subsamples S_1, \dots, S_N from X_1, \dots, X_n each of size b. We choose a large number N of subsamples at random. Each subsample is drawn without replacement For each $\Lambda \in G_n$, we construct a graph using glasso for each subsample. This results in N estimated edge matrices $\hat{E}_1^b(\Lambda), \cdots, \hat{E}_N^b(\Lambda)$

When $\Lambda = 0$, the graph is empty. As we increase Λ , the variability of graph increases and the stability decreases. Now we put forward the concrete rule for choosing Λ Let b = b(n) be the parameter such that 1 < b(n) < n, we draw N random subsamples S_1, \dots, S_N from X_1, \dots, X_n each of size b. We choose a large number N of subsamples at random. Each subsample is drawn without replacement For each $\Lambda \in G_n$, we construct a graph using glasso for each subsample. This results in N estimated edge matrices $\hat{E}_1^b(\Lambda), \cdots, \hat{E}_N^b(\Lambda)$

Now we focus on one edge (s,t) and one value of Λ . Let $\psi^{\lambda}(\cdot)$ denotes the glasso algorithm with Λ

For any subsample S_j , let $\psi_{st}^{\Lambda}(S_j)=1$ if the algorithm puts an edge between s and t, otherwise $\psi_{st}^{\Lambda}(S_i) = 0$

For any subsample S_i , let $\psi_{st}^{\Lambda}(S_i) = 1$ if the algorithm puts an edge between s and t, otherwise $\psi_{st}^{\Lambda}(S_i) = 0$ Define

$$\theta_{st}^b(\Lambda) = P(\psi_{st}^{\Lambda}(X_1, \cdots, X_b) = 1)$$

For any subsample S_i , let $\psi_{st}^{\Lambda}(S_i) = 1$ if the algorithm puts an edge between s and t, otherwise $\psi_{st}^{\Lambda}(S_i) = 0$ Define

$$\theta_{st}^b(\Lambda) = P(\psi_{st}^{\Lambda}(X_1, \cdots, X_b) = 1)$$

To estimate $\theta_{st}^b(\Lambda)$, define $\hat{\theta}_{st}^b(\Lambda) = \frac{1}{N} \sum_{i=1}^N \psi_{st}^{\Lambda}(S_i)$

For any subsample S_i , let $\psi_{st}^{\Lambda}(S_i) = 1$ if the algorithm puts an edge between s and t, otherwise $\psi_{ct}^{\Lambda}(S_i) = 0$ Define

$$\theta_{st}^b(\Lambda) = P(\psi_{st}^{\Lambda}(X_1, \cdots, X_b) = 1)$$

To estimate $\theta_{st}^b(\Lambda)$, define $\hat{\theta}_{st}^b(\Lambda) = \frac{1}{N} \sum_{i=1}^N \psi_{st}^{\Lambda}(S_i)$ Now define the parameter

$$\xi_{\rm st}^b(\Lambda) = 2\theta_{\rm st}^b(\Lambda)(1 - \theta_{\rm st}^b(\Lambda))$$

For any subsample S_i , let $\psi_{st}^{\Lambda}(S_i) = 1$ if the algorithm puts an edge between s and t, otherwise $\psi_{st}^{\Lambda}(S_i) = 0$ Define

$$\theta_{st}^b(\Lambda) = P(\psi_{st}^{\Lambda}(X_1, \cdots, X_b) = 1)$$

To estimate $\theta_{st}^b(\Lambda)$, define $\hat{\theta}_{st}^b(\Lambda) = \frac{1}{N} \sum_{i=1}^N \psi_{st}^{\Lambda}(S_i)$ Now define the parameter

$$\xi_{st}^b(\Lambda) = 2\theta_{st}^b(\Lambda)(1 - \theta_{st}^b(\Lambda))$$

let $\hat{\mathcal{E}}_{\mathfrak{s}}^{b}(\Lambda) = 2\hat{\theta}_{\mathfrak{s}}^{b}(\Lambda)(1-\hat{\theta}_{\mathfrak{s}}^{b}(\Lambda))$ be its estimate. We can regard $\xi_{st}^b(\Lambda)$ as being twice the variance of the Bernoulli indicator of the edge (s,t) and as a measure of instability of the edge across subsample with $0 \leq \xi_{st}^b(\Lambda) \leq \frac{1}{2}$

Define the total instability by averaging over all edges

$$\hat{D}_b(\Lambda) = \frac{\sum_{s < t} \hat{\xi_{st}^b}}{C_p^2}$$

Define the total instability by averaging over all edges

$$\hat{D}_b(\Lambda) = \frac{\sum_{s < t} \hat{\xi_{st}^b}}{C_p^2}$$

Then define

$$\bar{D}_b(\Lambda) = \sup_{0 \leq t \leq \Lambda} \hat{D}_b(t) \quad \hat{\Lambda}_s = \sup\{\Lambda : \bar{D}_b(\Lambda) \leq \beta\}$$

 β is the threshold

- 1 Stability approach to regularization selection
- 3 sparse RRR for simultaneous rank and variable
- 4 joint variable and rank selection for parsimonious
- 5 Dimension reduction and coefficient estimation
- 6 Reduced rank stochastic regression
- wavelet-based sparse reduce-rank regression

- 1 Stability approach to regularization selection
- 3 sparse RRR for simultaneous rank and variable
- 4 joint variable and rank selection for parsimonious
- 5 Dimension reduction and coefficient estimation
- 6 Reduced rank stochastic regression
- wavelet-based sparse reduce-rank regression

SRRR

The dimension reduction aspect of multivariate regression is taken care of by reduced-rank regression(RRR)

The variable selction aspect is addressed by adding a penalty to the least squares fitting criterion to enforce the sparsity of reduced-rank coefficient matrix.

The dimension reduction aspect of multivariate regression is taken care of by reduced-rank regression(RRR)

The variable selction aspect is addressed by adding a penalty to the least squares fitting criterion to enforce the sparsity of reduced-rank coefficient matrix

The model is

$$Y = XC + E$$

with n observations. Taking advantage of possible interrelationships between response variables is to impose a constraint on the rank of C:rank(C) = r < min(p, q)Then C = BA', where $B : p \times r, A : q \times r$, and

$$Y = (XB)A' + E$$

XB is of reduced dimension with only r components, which can be interpreted as unobservable latent factors. By solving the optimization problem

$$\min_{C: rank(C)=r} ||Y - XC||^2$$

Denote $S_{xx} = \frac{1}{n}X'X$, $S_{xy} = \frac{1}{n}X'Y$, $S_{yx} = \frac{1}{n}Y'X$, we have the solution

$$\hat{A}^{(r)} = V \quad \hat{B}^{(r)} = S_{xx}^{-1} S_{xy} V$$

where $V = (v_1, \dots, v_r)$ and v_i is the eigen vector of $S_{vx}S_{vx}^{-1}S_{xv}$ The solution satisfies that: $A'A = I_r$, $B'S_{xx}B$ being diagnonal.

SRRR through penalized least square 中国神经技术大学

Exclude the redundant predictors when some predictor variables are not useful for prediction ←⇒ set as zero an entire row of B.

SRRR through penalized least square 中国神经技术大学

Exclude the redundant predictors when some predictor variables are not useful for prediction ←⇒ set as zero an entire row of B. We Consider the following optimization problem

$$\min_{A,B} ||Y - XBA'||^2 + \sum_{i=1}^p \lambda_i ||B^i||$$
 such that $A'A = I$

where B^i denotes the ith row of B. This is a penalized regression with a grouped lasso penalty.

SRRR through penalized least square 中国神学技术大学

Exclude the redundant predictors when some predictor variables are not useful for prediction ←⇒ set as zero an entire row of B. We Consider the following optimization problem

$$\min_{A,B} ||Y - XBA'||^2 + \sum_{i=1}^p \lambda_i ||B^i||$$
 such that $A'A = I$

where B^i denotes the ith row of B. This is a penalized regression with a grouped lasso penalty.

Lemma 2.1

The solution to the optimization problem is unique up to an orthogonal matrix.

proof of lemma 1

Proof 2.1

Let (\hat{A}, \hat{B}) is a solution and Q is an orthogonal matrix. Let $\tilde{A} = \hat{A}Q, \tilde{B} = \hat{B}Q$, then $\tilde{B}\tilde{A}' = \hat{B}\hat{A}'$ and $||\tilde{B}^i|| = ||\hat{B}^i||$ via QQ' = I. As a result, (\tilde{A}, \tilde{B}) is also a solution Moreover, if (\tilde{A}, \tilde{B}) and (\hat{A}, \hat{B}) are both the solution, considering $rank(\hat{A}) = rank(\hat{A}) = r$, then there's a non-singular matrix Q of $r \times r$ such that A = AQ, we reach the conclusion that Q is orthogonal because $I_r = \tilde{A}'\tilde{A} = Q'\hat{A}'\hat{A}Q = Q'Q$ Finally, $||B^i|| = ||B^iQ'||$ and ||Y - XBA'|| = ||Y - XBQ'(AQ')'||, we know that (\hat{A}, \hat{B}) is the solution. Then $\hat{B} = \tilde{B}Q'$

Definition 2.1

If the entire row j of B is zero, then the predictor variable X_i is called a nonactive variable, otherwise it is called an active variable.

Definition 2.1

If the entire row j of B is zero, then the predictor variable X_i is called a nonactive variable, otherwise it is called an active variable.

Lemma 2.2

The set of active variables obtained by the optimization problem is uniquely determined.

- 1 Stability approach to regularization selection
- 3 sparse RRR for simultaneous rank and variable
- 4 joint variable and rank selection for parsimonious
- 5 Dimension reduction and coefficient estimation
- 6 Reduced rank stochastic regression
- wavelet-based sparse reduce-rank regression

iterative optimization

For fixed B, the optimization problem is equivalent with

$$\min_{A} ||Y - XBA'||$$
 such that $A'A = I$

which is an orthogobal Procrustes Problem(Gower&Dijksterhuis 2004), and the solution is $\hat{A} = UV$. where U, V is the SVD of YXB, i.e. YXB = UDV

iterative optimization

For fixed B, the optimization problem is equivalent with

$$\min_{A} ||Y - XBA'||$$
 such that $A'A = I$

which is an orthogobal Procrustes Problem(Gower&Dijksterhuis 2004), and the solution is $\hat{A} = UV$, where U, V is the SVD of YXB, i.e. YXB = UDVThen with the fixed A, considering the column vector of A is orthogonal, we can let (A, A^{\perp}) be an orthogonal matrix. Then

$$||Y - XBA'||^2 = ||(Y - XBA')(A, A^{\perp})||^2 = ||YA - XB||^2 + ||YA^{\perp}||^2$$

iterative optimization

For fixed B, the optimization problem is equivalent with

$$\min_{A} ||Y - XBA'||$$
 such that $A'A = I$

which is an orthogobal Procrustes Problem(Gower&Dijksterhuis 2004), and the solution is $\hat{A} = UV$, where U, V is the SVD of YXB, i.e. YXB = UDVThen with the fixed A, considering the column vector of A is orthogonal, we can let (A, A^{\perp}) be an orthogonal matrix. Then

$$|| \mathbf{Y} - \mathbf{X} \mathbf{B} \mathbf{A}' ||^2 = || (\mathbf{Y} - \mathbf{X} \mathbf{B} \mathbf{A}') (\mathbf{A}, \mathbf{A}^{\perp}) ||^2 = || \mathbf{Y} \mathbf{A} - \mathbf{X} \mathbf{B} ||^2 + || \mathbf{Y} \mathbf{A}^{\perp} ||^2$$

The optimization problem is equivalent with, for A fixed, $\min_{B} ||YA - XB||^2 + \sum_{i=1}^{p} \lambda_i ||B^i||$

subgradient method

The subgradient quations about B^{ℓ} is defined as follows

$$2X'_{\ell}(XB - YA) + \lambda_{\ell}s_{\ell} \quad \forall \ell = 1, 2, \cdots, p$$

where
$$s_{\ell} = \frac{B^{\ell}}{||B^{\ell}||}, ||B^{\ell}|| \neq 0$$

subgradient method

The subgradient quations about B^{ℓ} is defined as follows

$$2X'_{\ell}(XB - YA) + \lambda_{\ell}s_{\ell} \quad \forall \ell = 1, 2, \cdots, p$$

where $s_{\ell} = \frac{B^{\ell}}{||B^{\ell}||}, ||B^{\ell}|| \neq 0$ If $||B^{\ell}|| = 0$, the equation becomes

$$2X_{\ell}(\sum_{k\neq\ell}^{p}X_{k}B^{k}-YA)+\lambda_{\ell}s_{\ell}=0$$

, then
$$s_\ell=-rac{2}{\lambda_\ell}X'_\ell(\sum_{k
eq\ell}^\rho X_kB^k-Y\!A):=rac{2}{\lambda_\ell}X'_\ell R_\ell$$

subgradient method

resulting in

$$B^{\ell} = (X_{\ell}X_{\ell} + \frac{\lambda_{\ell}}{2||B^{\ell}||})^{-1}X_{\ell}R_{\ell}$$

. Noting that the RHS involves $||B^{\ell}||$, we let $c = ||B^{\ell}||$ and solve the equation and plug in $c=\frac{||X'_{\ell}R_{\ell}||-\frac{1}{2}\lambda_{\ell}}{||X_{\ell}||^2}$ we get the final solution

$$B^{\ell} = \frac{1}{X_{\ell}' X_{\ell}} (1 - \frac{\lambda_{\ell}}{2||X_{\ell}' R_{\ell}|})_{+} X_{\ell}' R_{\ell}$$

which is a vector version of the soft-thresholding rule.

variational method

Noting that the truth that $\min_{C} \frac{1}{2}(cx^2 + \frac{1}{c}) = |x|$, then the problem is equivalent

$$f = ||YA - XB||^2 + \sum_{i=1}^p \frac{\lambda_i}{2} (\mu_i ||B^i||^2 + \frac{1}{\mu_i}) \quad \textit{jointly} \quad \textit{over} \quad B \quad \textit{and} \quad \mu_i$$

variational method

Noting that the truth that $\min_{C} \frac{1}{2}(cx^2 + \frac{1}{c}) = |x|$, then the problem is equivalent

$$f = ||YA - XB||^2 + \sum_{i=1}^{p} \frac{\lambda_i}{2} (\mu_i ||B^i||^2 + \frac{1}{\mu_i})$$
 jointly over B and μ_i

For fixed B, the solution of μ_i is that $\mu_i = \frac{1}{||B^i||}, i = 1, \dots, p$ For fixed μ_i , we have $\frac{\partial f}{\partial B^i} = -2X_i(YA - XB) + \lambda_i\mu_iB^i = 0$

variational method

Noting that the truth that $\min_{C} \frac{1}{2}(cx^2 + \frac{1}{c}) = |x|$, then the problem is equivalent

$$f = ||YA - XB||^2 + \sum_{i=1}^p \frac{\lambda_i}{2} (\mu_i ||B^i||^2 + \frac{1}{\mu_i})$$
 jointly over B and μ_i

For fixed B, the solution of μ_i is that $\mu_i = \frac{1}{||B^i||}, i = 1, \dots, p$ For fixed μ_i , we have $\frac{\partial f}{\partial B^i} = -2X_i(YA - XB) + \lambda_i\mu_iB^i = 0$ As a result, the final solution is

$$B = \{X'X + \frac{1}{2}diag(\lambda_i\mu_i, \cdots, \lambda_p\mu_p)\}^{-1}X'YA$$

We give the following algorithm of iteration Input: X, Y, λ Output: A, B while (A, B) are not convergent for fixed B, we get the solution of A by SVD while(B is not convergent) for every ℓ solve B^{ℓ} and check whether B is convergent

- 1 Stability approach to regularization selection
- 3 sparse RRR for simultaneous rank and variable
- 4 joint variable and rank selection for parsimonious
- 5 Dimension reduction and coefficient estimation
- 6 Reduced rank stochastic regression
- wavelet-based sparse reduce-rank regression

Assumptions

Assuming p, q are fixed with n going to infinity

- 1 :There's a positive definite matrix Σ such that $\frac{XX'}{n} \to \Sigma(n \to \infty)$
- 2 :The first p_0 variables are important and the rest are irrelevant i.e. $||C_*^i|| > 0 (i \le p_0)$ and $||C_*^i|| = 0 (i > p_0)$ where C_{*}^{i} is the ith row of C^{*} , which is the rank-r coefficient matrix used to generate data in the model

Theorem 2.1 (consistency of parameter estimation) suppose $\frac{\lambda_i}{\sqrt{n}} = \frac{\lambda_{n,i}}{\sqrt{n}} \to 0, \forall i \leq p_0 Then$

- ▶ There is a local minimizer \hat{C} that is \sqrt{n} -consistent in estimating C_{*}
- $ightharpoonup \hat{C} = \hat{U}\hat{D}\hat{V}$ is SVD, $\hat{C} = \hat{U}\hat{D}\hat{V}$ are \sqrt{n} -consistent in estimating U_*, D_*, V_*

Theorem 2.1 (consistency of parameter estimation) suppose $\frac{\lambda_i}{\sqrt{n}} = \frac{\lambda_{n,i}}{\sqrt{n}} \to 0, \forall i \leq p_0 Then$

- ▶ There is a local minimizer \hat{C} that is \sqrt{n} -consistent in estimating C_{*}
- $ightharpoonup \hat{C} = \hat{U}\hat{D}\hat{V}$ is SVD, $\hat{C} = \hat{U}\hat{D}\hat{V}$ are \sqrt{n} -consistent in estimating U_*, D_*, V_*

Theorem 2.2 (concistency of variable selection)

if
$$\frac{\lambda_{n,i}}{\sqrt{n}} \to 0$$
 for $i \le p_0$ and $\frac{\lambda_{n,i}}{\sqrt{n}} \to \infty (i > p_0)$, then $P(\hat{C}^i = 0) = P(\hat{U}^i = 0) \to 1$ $i > p_0$

- 1 Stability approach to regularization selection
- 2 sparse reduced-rank regression for simultaneous
- 3 sparse RRR for simultaneous rank and variable
- 4 joint variable and rank selection for parsimonious
- 5 Dimension reduction and coefficient estimation
- 6 Reduced rank stochastic regression
- 7 wavelet-based sparse reduce-rank regression

$$Y = XC + E$$
 $C \in \mathbb{R}^{p \times q}$ $rankC \leq r$

Using the polar decomposition, we have $C = U\tilde{V}$, resulting in Y = XUV + E

$$Y = XC + E$$
 $C \in \mathbb{R}^{p \times q}$ $rankC \leq r$

Using the polar decomposition, we have $C = U\tilde{V}$, resulting in $Y = XU\tilde{V} + E$

This equation is related to a factor analysis model: XU can be regarded as a common factor matrix and \tilde{V} can be regarded as a loading matrix. Furthermore, if we assume

$$\mathbb{E}[x_i] = 0$$
, $cov[x_i] = \Gamma_i$, then $cov[U'X] = U'\Gamma U = I_r$

$$Y = XC + E$$
 $C \in \mathbb{R}^{p \times q}$ $rankC < r$

Using the polar decomposition, we have $C = U\tilde{V}$, resulting in $Y = XU\tilde{V} + E$

This equation is related to a factor analysis model: XU can be regarded as a common factor matrix and \tilde{V} can be regarded as a loading matrix. Furthermore, if we assume $\mathbb{E}[x_i] = 0$, $cov[x_i] = \Gamma_i$, then $cov[U'X] = U'\Gamma U = I_r$

 $\mathbb{E}[X_i] = 0$, $cov[X_i] = 1$, then $cov[UX] = U1U = I_r$ We have the SFAR model(sequential co-sparse factor regression):

$$Y = XUDV$$
 such that $U'\Gamma U = I_r$ $V'V = I_r$

with the coefficient matrix is C = UDV'

We have the optimization problem

$$\min_{U,D,V} \frac{1}{2} ||Y - XUDV||^2 + \lambda_1 \sum_{i=1}^p \sum_{j=1}^r w_{ij}^{(u)} |u_{ij}| + \lambda_2 \sum_{i=1}^q \sum_{j=1}^r w_{ij}^{(v)} |v_{ij}|$$

such that
$$U'\frac{X'X}{n}U=I_r$$
 $VV=I_r$

where $w_{ii}^{(u)}$, $w_{ii}^{(v)}$ is called adaptive weights with positive values

The minimization problem for the kth latent factor is given by

$$\min_{dk, \mathbf{u_k}, \mathbf{v_k}} \frac{1}{2} || Y_k - d_k X \mathbf{u_k} \mathbf{v_k}^T ||^2 + \sum_{i=1}^p w_{ki}^{(u)} |u_{ki}| + \sum_{i=1}^q w_{ki}^{(w)} |v_{ki}|$$

such that
$$d_k \geq 0$$
 $u_k^T X' X u_k = n$ $v_k v_k = 1$

where $Y_k = Y - \sum_{i=1}^{k-1} d_i X u_i v_i^T (SeCURE algorithm)$ Mishra(2017))

via manifold optimization

Definition 3.1

- ► $St(r,q) := \{V \in \mathbb{R}^{q \times r} | VV = I_r\} (q \ge r)$ called Stiefel manifold
- ▶ $GSt(r, p) := \{U \in \mathbb{R}^{p \times r} | U'GU = I_r\} (p \ge r), G \in \mathbb{R}^{p \times p} \text{ is definite positive, called generalized Stiefel manifold.}$

In this paper, we use $G = \frac{X'X}{n}$ The optimization is equivalent with

$$\min_{U \in GSt(r,p), D \in \mathbb{R}^{r \times r}, V \in St(r,q)} \frac{1}{2} ||Y - XUDV||^2 + n\lambda_1 \sum_{i=1}^{p} \sum_{j=1}^{r} w_{ij}^{(u)} |u_{ij}| +$$

$$n\lambda_2 \sum_{i=1}^{q} \sum_{j=1}^{r} w_{ij}^{(v)} |v_{ij}|$$

We propose the following minimization problem

$$\min_{\textit{U} \in \textit{GSt}(\textit{r},\textit{p}),\textit{D} \in \mathbb{R}^{\textit{r} \times \textit{r}},\textit{V} \in \textit{St}(\textit{r},\textit{q})} \frac{1}{2} ||\textit{Y} - \textit{XUDV}||^2 + \textit{n} \lambda_1 \sum_{i=1}^{\textit{p}} \sum_{j=1}^{\textit{r}} \textit{w}_{ij}^{(\textit{u})} |\textit{u}_{ij}| +$$

$$\textit{n}\alpha\lambda_2\sum_{i=1}^{q}\sum_{j=1}^{r}\textit{w}_{ij}^{(\textit{v})}|\textit{v}_{ij}|+\textit{n}\sqrt{\textit{q}}(1-\alpha)\lambda_2\sum_{i=1}^{r}\textit{w}_{i}^{(\textit{d})}\textit{I}(\textit{\textbf{v}}_{\textit{\textbf{i}}}\neq 0)$$

 $w_i^{(d)}$ is an adaptive weight with a positive value proposed by Zou(2006) and the group selection in the fourth term plays the role of the rank selection of the coefficient matrix C.

- 1 Stability approach to regularization selection
- 2 sparse reduced-rank regression for simultaneous
- 3 sparse RRR for simultaneous rank and variable
- joint variable and rank selection for parsimonious
 Introduction procedure and property numerical performance
- 5 Dimension reduction and coefficient estimation
- 6 Reduced rank stochastic regression
- wavelet-based sparse reduce-rank regression

- 1 Stability approach to regularization selection
- 2 sparse reduced-rank regression for simultaneous
- 3 sparse RRR for simultaneous rank and variable
- 4 joint variable and rank selection for parsimonious
- Introduction procedure and property numerical performance
- 5 Dimension reduction and coefficient estimation
- 6 Reduced rank stochastic regression
- wavelet-based sparse reduce-rank regression

$$Y = XA + E$$
 $r = rankA$ $q = rankX$

Let J denotes the index set of the nonzero rows of A. Only r(n+|J|-r) free parameters need to be estimated by SVD, where |J| = #J

We can reduce X of rank q to an $m \times q$ matrix with q independent columns and always assume that $|J| \leq q$. Using penalized least squares methods, removing predictor X_i from the model is equivalent with setting the jth row in A to zero.

- 1 Stability approach to regularization selection
- 2 sparse reduced-rank regression for simultaneous
- 3 sparse RRR for simultaneous rank and variable
- 4 joint variable and rank selection for parsimonious
- Introduction procedure and property numerical performance
- 5 Dimension reduction and coefficient estimation
- 6 Reduced rank stochastic regression
- wavelet-based sparse reduce-rank regression

JRRS is short for the single-stage joint rank and row selection estimator. We can modify the rank selection criterion (RSC) as

$$\hat{B} = \arg\min_{B} \{||Y - XB||^2 + pen(B)\}$$
 (1)

where

$$pen(B)=c\sigma^2 r(B)(2n+\log(2e)|J(B)|+|J(B)|\log\frac{ep}{|J(B)|})$$
 ,and we call the equation (1) JRRS1

JRRS is short for the single-stage joint rank and row selection estimator. We can modify the rank selection criterion (RSC) as

$$\hat{B} = \arg\min_{B} \{||Y - XB||^2 + pen(B)\}$$
 (1)

where

$$pen(B) = c\sigma^2 r(B)(2n + log(2e)|J(B)| + |J(B)|log\frac{ep}{|J(B)|})$$
, and we call the equation (1) JRRS1

Theorem 4.1

The single-stage JRRS estimator \hat{B} using pen(B) with $c = 12^3$ satisfies

$$\mathbb{E}[||\textit{XA} - \textit{X}\hat{\textit{B}}||^2] \leq 10||\textit{XA} - \textit{XB}||^2 + 8\textit{pen}(\textit{B}) + 768\textit{n}\sigma^2\textit{e}^{-\frac{\textit{n}}{2}} \quad \forall \textit{r}(\textit{B}) \geq 1$$

In particular if r(A) >> 1

$$\mathbb{E}[||XA - X\hat{B}||^2] \lesssim \sigma^2 r(A)(n + |J(A)|\log \frac{p}{|J(A)|})$$

Theorem 4.2

For any collection of (random) nonzero matrices B_1, B_2, \cdots , the single-stage JRRS estimator

$$\tilde{B} = arg \min_{B_j}(||Y - XB_j||^2 + pen(B_j))$$
 with $c = 12$, satisfies

$$\mathbb{E}[||XA - X\tilde{B}||^2] \le \inf\{10\mathbb{E}[||XA - XB_j||^2] + 8\mathbb{E}[pen(B_j)]\} + 768n\sigma^2 e^{-\frac{n}{2}}$$

Rank-constrained predictor model

We propose a convex relaxation for the pen(B) with $||B||_{2,1} = \sum_{i=1}^{p} ||b_i||_2$ rows b_i of B

$$\hat{B}_k = \arg\min_{r(B) \le k} \{ ||Y - XB||^2 + 2\lambda ||B||_{2,1} \}$$
 (2)

The expression (2) is called rank constrained group lasso(RCGL)(here we have two parameters nedded to be tuned k and λ)

Rank-constrained predictor model

We propose a convex relaxation for the pen(B) with $||B||_{2,1} = \sum_{i=1}^{p} ||b_i||_2$ rows b_i of B

$$\hat{B}_k = \arg\min_{r(B) \le k} \{ ||Y - XB||^2 + 2\lambda ||B||_{2,1} \}$$
 (2)

The expression (2) is called **rank constrained group** lasso(RCGL)(here we have two parameters nedded to be tuned k and λ)

Assumption A:We say $\Sigma \in \mathbb{R}^{p \times p}$ satisfies condition $A(I, \delta_I)$ for an index set $I \subset \{1, \dots, p\}$ and $\delta_I > 0 \iff tr(M'\Sigma M) \ge \delta_I \sum_{i \in I} ||m_i||_2^2 \text{ for all } p \times n \text{ matrices}$ $M(\text{with rows } m_i)$ satisfying $\sum_{i \in I} ||m_i||_2 \le 2 \sum_{i \in I^c} ||m_i||_2 (\text{which } m_i)$ is ℓ_2 norm) In our paper, $\Sigma = \frac{X'X}{m}$, and we have the following remark.

Rank-constrained predictor model

Note

- the constant 2 can be replaced by any constant>1
- A sufficient condition is: there exists a diagonal matrix D with $D_{ii} = \delta_I$ for $j \in I$ and D_{ii} otherwise such that $\Sigma - D > 0$

Let $\lambda_1(\Sigma)$ denotes the largest eigenvalue of Σ and set the parameter $\lambda = c\sigma \sqrt{\lambda_1(\Sigma) kmlog(ep)} (c > 0)$

Theorem 4.3

Let B_k be the global minimizer corresponding λ above with c large enough. Then

$$\mathbb{E}[||X\hat{B}_{K}-XA||^{2}] \lesssim ||XB-XA||^{2} + k\sigma^{2}(n + (1 + \frac{\lambda_{1}(\Sigma)}{\delta_{J(B)}})|J(B)|\log(p))$$

 $\forall B \in \mathbb{R}^{p \times n}$ with $1 \leq r(B) \leq k$ provided Σ satisfies Assumption $A(J(B), \delta_{J(B)})$

method 1(RSC \rightarrow RCGL)

- ▶ Use RSC to select $k = \hat{r}$ (review the last report) as the number of singular values of PY that exceed $\sigma(\sqrt{2n} + \sqrt{2q}), P = X(X'X)^{-1}X'$
- \triangleright Compute the rank constrained GLASSO estimator B_k with $k = \hat{r}$ to obtain the final estimator $\hat{B}^{(1)} = \hat{Br}$

method 1(RSC \rightarrow RCGL)

- ▶ Use RSC to select $k = \hat{r}$ (review the last report) as the number of singular values of PY that exceed $\sigma(\sqrt{2n} + \sqrt{2q}), P = X(X'X)^{-1}X'$
- \triangleright Compute the rank constrained GLASSO estimator B_k with $k = \hat{r}$ to obtain the final estimator $\hat{B}^{(1)} = \hat{B}r$

This two-step estimator adapts to both rank and row sparsity under 2 additional mild restrictions

- Ass C_1 : $d_r(XA) > 2\sqrt{2}\sigma(\sqrt{n} + \sqrt{q})$ (RSC)
- Ass C_2 : $log(||XA||_F) \le (\sqrt{2}-1)^2 \frac{n+q}{4}$

method 1(RSC \rightarrow RCGL)

- ▶ Use RSC to select $k = \hat{r}$ (review the last report) as the number of singular values of PY that exceed $\sigma(\sqrt{2n} + \sqrt{2q}), P = X(X'X)^{-1}X'$
- \triangleright Compute the rank constrained GLASSO estimator B_k with $k = \hat{r}$ to obtain the final estimator $\hat{B}^{(1)} = \hat{B}r$

This two-step estimator adapts to both rank and row sparsity under 2 additional mild restrictions

- Ass C_1 : $d_r(XA) > 2\sqrt{2}\sigma(\sqrt{n} + \sqrt{q})$ (RSC)
- Ass C_2 : $log(||XA||_F) < (\sqrt{2}-1)^2 \frac{n+q}{4}$

And we have the following property.

Theorem 4.4

Let Σ satisfy $A(J, \delta_J)$ with $J = J(A) \neq \Phi$, let $\frac{\lambda_1(\Sigma)}{\delta_J}$ be bounded and let C_1 , C_2 hold.

$$\mathbb{E}[||X\hat{B}^{(1)} - XA||^2] \lesssim nr + |J|r \cdot \log(p)$$

The practical choice of the threshold $2\sigma(\sqrt{n}+\sqrt{q})$ can be done by CV

method 2(RCGL \rightarrow JRRS1)

- pre-specify a grid Λ of values for λ and use (2) to construct $\mathcal{B} = \{\hat{B_{k,\lambda}} : \lambda \in \Lambda\}$

method 2(RCGL→JRRS1)

- \triangleright pre-specify a grid Λ of values for λ and use (2) to construct $\mathcal{B} = \{\hat{B_{k,\lambda}} : \lambda \in \Lambda\}$
- ► Compute $B^{(2)} = \arg\min_{B \in \mathcal{B}} (||Y XB||^2 + pen(B))$

Theorem 4.5

Provided Σ satisfies condition $A(J, \delta_J)$ with $J = J(A) \neq \Phi$, $\lambda_1(\Sigma)/\delta_I$ is bounded, and Λ contains λ for c >> 1

$$\mathbb{E}[||XB^{(2)} - XA||^2] \lesssim nr + |J|\log(p)r$$

and $\hat{B}^{(2)}$ has the same rate as $\hat{B}^{(1)}$

method 3(GLASSO \rightarrow RSC)

- Select the predictors via GLASSO
- Based only on the selected predictors, use RSC to construct an adaptive estimator of reduced rank

- 1 Stability approach to regularization selection
- 2 sparse reduced-rank regression for simultaneous
- 3 sparse RRR for simultaneous rank and variable
- Joint variable and rank selection for parsimonious

 Introduction procedure and property numerical

 performance
- 5 Dimension reduction and coefficient estimation
- 6 Reduced rank stochastic regression
- wavelet-based sparse reduce-rank regression

For minimizing $F(B; \lambda) = \frac{1}{2}||Y - XB||^2 + \lambda||B||_{2,1}$ over all $p \times n$ matrices B of rank less than or equal to k. By using the polar decomposition B = SV, where V is orthogonal and S is semi-positive definite.

$$(\hat{S}, \hat{V}) := F(S, V; \lambda) = \arg \min_{S \in \mathbb{R}^{p \times k}, V \in O^{n \times k}} \frac{1}{2} ||Y - XCV||^2 + \lambda ||S||_{2.1}$$
(3)

We propse the following iterative optimization precedure.

algorithm

Given $1 \le k \le m \land p \land n, \lambda \ge 0, V_{k,\lambda}^{(0)} \in O^{n \times k}$ (first k columns of $I_{n \times n}$)

 $i \leftarrow 0$, converged \leftarrow FALSE while not converged do:

(a).
$$S_{k,\lambda}^{(j+1)} \leftarrow arg\min_{S \in \mathbb{R}^{p \times k}} \frac{1}{2} ||YV_{k,\lambda}^{(j)} - XS||^2 + \lambda ||S||_{2,1}$$

(b).
$$W \leftarrow YXS_{k,\lambda}^{(j+1)}, W \in \mathbb{R}^{n \times k}$$
, Using SVD $W = U_wD_wVw$

(c).
$$V_{k,\lambda}^{(j+1)} \leftarrow U_w V_w$$

(d).
$$B_{k,\lambda}^{(j+1)} \leftarrow S_{k,\lambda}^{(j+1)}(V_{k,\lambda}^{(j+1)})'$$

(e). converged
$$\leftarrow |F(B_{k,\lambda}^{(j+1)};\lambda) - F(B_{k,\lambda}^{(j)};\lambda)| < \epsilon$$

(f).
$$j \leftarrow j + 1$$

end while and diliver $\hat{B_{k,\lambda}} = B_{k,\lambda}^{(j+1)}, \hat{S_{k,\lambda}} = S_{k,\lambda}^{(j+1)}, \hat{V_{k,\lambda}} = V_{k,\lambda}^{(j+1)}$

some remarks

Note

We run the algorithm to obtain a solution path, for each (k, λ) in a 2-dimensional grid or a grid of λ with k determined by RSC

From the solution path, we get a series of candidate estimates. Then the single stage JRRS or other tuning criterion can be used to select the optimal estimate.

Note

We run the algorithm to obtain a solution path, for each (k, λ) in a 2-dimensional grid or a grid of λ with k determined by RSC

From the solution path, we get a series of candidate estimates. Then the single stage JRRS or other tuning criterion can be used to select the optimal estimate.

Step (a) needs to solve a GLASSO optimization problem.

- 1 Stability approach to regularization selection
- 2 sparse reduced-rank regression for simultaneous
- 3 sparse RRR for simultaneous rank and variable
- 4 joint variable and rank selection for parsimonious
- Dimension reduction and coefficient estimation
 model setup property Tuning
- 6 Reduced rank stochastic regression
- 7 wavelet-based sparse reduce-rank regression

- 1 Stability approach to regularization selection
- 2 sparse reduced-rank regression for simultaneous
- 3 sparse RRR for simultaneous rank and variable
- 4 joint variable and rank selection for parsimonious
- 6 Reduced rank stochastic regression
- 7 wavelet-based sparse reduce-rank regression

$$Y = XB + E \rightarrow Y = F\Omega + E$$

where $B = \Gamma\Omega$, $F = X\Gamma$, $\Gamma \in \mathbb{R}^{p \times r}$ for r < min(p, q). The $\Omega \in \mathbb{R}^{r \times q}$ is called factor loading matrix. The columns of $F, F_i (j = 1, \dots, r)$ represent the so-called factors

$$Y_j = XB_j + E_j$$

$$Y = XB + E \rightarrow Y = F\Omega + E$$

where $B = \Gamma \Omega$, $F = X\Gamma$, $\Gamma \in \mathbb{R}^{p \times r}$ for r < min(p, q). The $\Omega \in \mathbb{R}^{r \times q}$ is called factor loading matrix. The columns of $F, F_i (j = 1, \dots, r)$ represent the so-called factors

$$Y_j = XB_j + E_j$$

(i represents the columns of a matrix) The basic idea of dimension reduction is that the regression coefficient B_1, \cdots, B_q actually come from a linear space \mathcal{B} of dimension lower than p.

$$Y = XB + E \rightarrow Y = F\Omega + E$$

where $B = \Gamma \Omega$, $F = X\Gamma$, $\Gamma \in \mathbb{R}^{p \times r}$ for r < min(p, q). The $\Omega \in \mathbb{R}^{r \times q}$ is called factor loading matrix. The columns of $F, F_i (j = 1, \dots, r)$ represent the so-called factors

$$Y_j = XB_j + E_j$$

(i represents the columns of a matrix) The basic idea of dimension reduction is that the regression coefficient B_1, \dots, B_q actually come from a linear space \mathcal{B} of dimension lower than p.

As a result, we have a set of basis elements $\{\eta_1, \dots, \eta_p\}$ for \mathbb{R}^p and a subset $\mathcal{A} \subset \{1, \cdots, p\}$ such that $\mathcal{B} \subset span\{\eta_i : i \in \mathcal{A}\}$

Now we have the model as follows:

$$Y = F\Omega + E = X\Gamma\Omega + E = XB + E$$

where
$$F = F_1, \dots, F_p$$
, $F_i = X\eta_i, \Gamma = (\eta_1, \dots, \eta_p), B = \Gamma\Omega = (\eta_1, \dots, \eta_p)\Omega$.

Now we have the model as follows:

$$Y = F\Omega + E = X\Gamma\Omega + E = XB + E$$

where $F = F_1, \dots, F_n$, $F_i = X\eta_i, \Gamma = (\eta_1, \dots, \eta_n), B = \Gamma\Omega = \Gamma$ $(\eta_1, \cdots, \eta_p)\Omega$. A family of estimates for this can be obtained by

$$min\{tr(Y-F\Omega)W(Y-F\Omega)'\}$$
 subject to $\sum_{i=1}^{p}||\omega_i||_{\alpha}\leq t$

where ω_i is the ith row of Ω , W is a weight matrix with common choices Σ^{-1} or I(which is corresponding to Frobenius)norm).

Now we have the model as follows:

$$Y = F\Omega + E = X\Gamma\Omega + E = XB + E$$

where $F = F_1, \dots, F_n$, $F_i = X\eta_i, \Gamma = (\eta_1, \dots, \eta_n), B = \Gamma\Omega = \Gamma$ $(\eta_1, \cdots, \eta_p)\Omega$. A family of estimates for this can be obtained by

$$min\{tr(Y-F\Omega)W(Y-F\Omega)'\}$$
 subject to $\sum_{i=1}^{p}||\omega_i||_{\alpha}\leq t$

where ω_i is the ith row of Ω , W is a weight matrix with common choices Σ^{-1} or I(which is corresponding to Frobenius norm). Here we assume W = I.

$$Y = X\eta_1\omega_1 + \cdots + X\eta_p\omega_p$$

The ith factor will be included if and only if ω_i is non-zero.

$$Y = X\eta_1\omega_1 + \cdots + X\eta_p\omega_p$$

The ith factor will be included if and only if ω_i is non-zero. We choose $\alpha = 2$ and we need to obtain ηs first.

$$Y = X\eta_1\omega_1 + \cdots + X\eta_p\omega_p$$

The ith factor will be included if and only if ω_i is non-zero. We choose $\alpha=2$ and we need to obtain ηs first. We choose ηs to be the eigenvectors of BB', because this set of basis contains the basis of \mathcal{B} .

$$Y = X\eta_1\omega_1 + \cdots + X\eta_p\omega_p$$

The ith factor will be included if and only if ω_i is non-zero. We choose $\alpha=2$ and we need to obtain ηs first. We choose ηs to be the eigenvectors of BB', because this set of basis contains the basis of \mathcal{B} . We can understand this by the following truth: B = UDV' is the SVD, then $BB' = UD^2U'$ we choose $(\eta_1, \cdots, \eta_n) = U$ span the column space of B Then $\Omega = DV$, $\omega = \sigma_i v_i$, where v_i is the ith column of V, and $||\omega_i|| = \sigma_i$.

$$Y = X\eta_1\omega_1 + \cdots + X\eta_p\omega_p$$

The ith factor will be included if and only if ω_i is non-zero. We choose $\alpha=2$ and we need to obtain ηs first. We choose ηs to be the eigenvectors of BB', because this set of basis contains the basis of \mathcal{B} . We can understand this by the following truth: B = UDV' is the SVD, then $BB' = UD^2U'$ we choose $(\eta_1, \cdots, \eta_n) = U$ span the column space of B Then $\Omega = DV$, $\omega = \sigma_i v_i$, where v_i is the ith column of V.and $||\omega_i|| = \sigma_i$. Finally we have the optimization problem:

$$min(tr(Y-XB)(Y-XB)')$$
 subject to $\sum_{i=1}^{min(p,q)} \sigma_i \leq t$ (4)

The last term is known as Ky Fan norm for B. There's is no restriction of B because once the estimation B is available, the basis ηs can be obtained as its left singular vectors U. Therefore, we can also compute the factors $F_i = X\eta_i$ and loading $\Omega = DV$.

The last term is known as Ky Fan norm for B. There's is no restriction of B because once the estimation B is available, the basis ηs can be obtained as its left singular vectors U. Therefore, we can also compute the factors $F_i = X\eta_i$ and loading $\Omega = DV$.

For the tuning α cases, we get the optimization problem tr(Y-XB)(Y-XB)' subject to $(\sum_i \sigma_i^{\alpha})^{\frac{1}{\alpha}} < t$ and RRR is another special case of expression with $\alpha = 0^+$

- 1 Stability approach to regularization selection
- 2 sparse reduced-rank regression for simultaneous
- 3 sparse RRR for simultaneous rank and variable
- 4 joint variable and rank selection for parsimonious
- Dimension reduction and coefficient estimation

 model setup property Tuning
- 6 Reduced rank stochastic regression
- 7 wavelet-based sparse reduce-rank regression

orthogonal design

Lemma 5.1

Let $U^{\hat{L}S}D^{\hat{L}S}V^{\hat{L}S}$ be the SVD of the least squares estimate $B^{\hat{L}S}$. Then, under the orthogonal design where X'X = nI, the minimizer of (4) is $\hat{B} = \hat{U}^{LS}\hat{D}(\hat{V}^{LS})', \hat{D}_{ii} = \max(\hat{D}^{LS}_{ii}, 0)$ (singular values are shrunk), and $\lambda > 0$ is a constant such that $\sum_{i} \hat{D}_{ii} = min(t, \sum_{i} \hat{D}_{ii}^{\hat{L}S})$

orthogonal design

Lemma 5.1

Let $\hat{U^{LS}}\hat{D^{LS}}\hat{V^{LS}}$ be the SVD of the least squares estimate $\hat{B^{LS}}$. Then, under the orthogonal design where X'X = nI, the minimizer of (4) is $\hat{B} = \hat{U}^{LS}\hat{D}(\hat{V}^{LS})', \hat{D}_{ii} = \max(\hat{D}^{LS}_{ii}, 0)$ (singular values are shrunk), and $\lambda \geq 0$ is a constant such that $\sum_{i} \hat{D}_{ii} = min(t, \sum_{i} \hat{D}_{ii}^{\hat{L}S})$

Note

In fact, the λ arisen is the result of Lagrange multipilication

orthogonal design

Lemma 5.1

Let $U^{\hat{L}S}D^{\hat{L}S}V^{\hat{L}S}$ be the SVD of the least squares estimate $B^{\hat{L}S}$. Then, under the orthogonal design where X'X = nI, the minimizer of (4) is $\hat{B} = \hat{U}^{LS}\hat{D}(\hat{V}^{LS})', \hat{D}_{ii} = \max(\hat{D}^{LS}_{ii}, 0)$ (singular values are shrunk), and $\lambda > 0$ is a constant such that $\sum_{i} \hat{D}_{ii} = min(t, \sum_{i} \hat{D}_{ii}^{\hat{L}S})$

Note

In fact, the λ arisen is the result of Lagrange multipilication

Lemma 5.2

Suppose that max(p, q) = o(n), under the orthogonal design, if $\lambda \to 0$ in such a fashion that $\frac{\max(p,q)}{n} = o(\lambda^2)$. Then $|\sigma_i(\hat{B}) - \sigma_i(B)| \to 0$ with probability if $\sigma(B) > 0$ and $P(\sigma(\hat{B}) = 0) \rightarrow 1 \text{ if } \sigma(B) = 0$

- 1 Stability approach to regularization selection
- 2 sparse reduced-rank regression for simultaneous
- 3 sparse RRR for simultaneous rank and variable
- 4 joint variable and rank selection for parsimonious
- Dimension reduction and coefficient estimation
 model setup property Tuning
- 6 Reduced rank stochastic regression
- 7 wavelet-based sparse reduce-rank regression

We develop a GCV type of statistic for determining t. We give a lagrange form:

$$Q_n(B) = \frac{1}{2} tr(Y - XB)(Y - XB)' + n\lambda \sum_{i=1}^{p \wedge q} \sigma_i(B)$$
 (5)

The following lemma explicitly describes the relationship between t and λ

We develop a GCV type of statistic for determining t. We give a lagrange form:

$$Q_n(B) = \frac{1}{2} tr(Y - XB)(Y - XB)' + n\lambda \sum_{i=1}^{p \wedge q} \sigma_i(B)$$
 (5)

The following lemma explicitly describes the relationship between t and λ

Lemma 5.3

write $\hat{d}_i = \hat{D}_{ii}$ for $i = 1, \dots, p \land q$. For any $t \leq \sum_i \hat{d}_i$, the minimizer of equation (5) coincides with the minimizer of (4) if

$$n\lambda = \frac{1}{\#(\hat{d}_i > 0)} \sum_{\hat{d}_i > 0} (\tilde{X}_i' \tilde{Y}_i - \tilde{X}_i' \tilde{X}_i \hat{d}_i) \tag{6}$$

 Y_i is the ith column of Y = YU and X_i is the ith column of $\tilde{X} = X\hat{V}$

 Y_i is the ith column of Y = YU and X_i is the ith column of $\tilde{X} = X\hat{V}$

Note

We can transform $\sum_{i=1}^{p \wedge q} \sigma_i(B)$ as follows:

$$\sum_{i=1}^{p\wedge q}\sigma_i(B)=\sum_{i=1}^{p\wedge q}\hat{D_{ii}}=\sum_{i=1}^p\sigma_i(\hat{B}K\hat{B}')=\operatorname{tr}(\hat{B}K\hat{B}')$$

where $K = \sum_{\hat{D}_{ii} > 0} \frac{1}{\hat{D}_{ii}} \hat{v}_i \hat{v}_i$.

 Y_i is the ith column of Y = YU and X_i is the ith column of $\tilde{X} = X\hat{V}$

Note

We can transform $\sum_{i=1}^{p \wedge q} \sigma_i(B)$ as follows:

$$\sum_{i=1}^{p\wedge q}\sigma_i(B)=\sum_{i=1}^{p\wedge q}\hat{D_{ii}}=\sum_{i=1}^p\sigma_i(\hat{B}K\hat{B}')=\operatorname{tr}(\hat{B}K\hat{B}')$$

where $K = \sum_{\hat{D}_{ii} > 0} \frac{1}{\hat{D}_{ii}} \hat{v}_i \hat{V}_i$. Considering that $\hat{B}K\hat{B}'=\sum_{\hat{D}_{ii}>0}\frac{1}{D_{ii}}\hat{B}\hat{v}_i(\hat{B}\hat{v}_i)'=\sum_i\frac{1}{D_{ii}}\sigma_iu_i\sigma_iu_i'=\sum_i\sigma_iu_iu_i'$ Using $u_i \perp u_i$, we get the eigenvalue of $\hat{B}K\hat{B}'$ is σ_i . However, $(\hat{B}K\hat{B}')(\hat{B}K\hat{B}')' = \sum_i \sigma_i^2 u_i u_i'$. As a result, the singular value of $\hat{B}K\hat{B}'$ is σ_i

Then we can transform the Lagrange form into

$$\frac{1}{2}tr(Y-XB)(Y-XB)'+n\lambda tr(BKB')$$
 (7)

Since \hat{B} is the minimizer of (7), it can be expressed as $\hat{B} = (X'X + 2n\lambda K)^{-1}X'Y$

Then we can transform the Lagrange form into

$$\frac{1}{2}tr(Y-XB)(Y-XB)'+n\lambda tr(BKB') \tag{7}$$

Since \hat{B} is the minimizer of (7), it can be expressed as $\hat{B} = (X'X + 2n\lambda K)^{-1}X'Y$ We can define the hat matrix for expression (6) as $H = X(X'X + 2n\lambda K)^{-1}X'$ and the degree of freedom as df(t) = qtrH

Then we can transform the Lagrange form into

$$\frac{1}{2}tr(Y-XB)(Y-XB)'+n\lambda tr(BKB') \tag{7}$$

Since \hat{B} is the minimizer of (7), it can be expressed as $\hat{B} = (X'X + 2n\lambda K)^{-1}X'Y$

We can define the hat matrix for expression (6) as $H = X(X'X + 2n\lambda K)^{-1}X'$ and the degree of freedom as df(t) = qtrH

The GCV score is given by $GCV(t) = \frac{tr(Y-X\hat{B})(Y-X\hat{B})'}{qp-df(t)}$. We choose a tuning parameter by minimizing GCV(t).

To sum up:

Step 1: for each candidate t-value

- (a). compute the minimizer of (4) (denote the solution B(t))
- (b). evaluate λ by using (6)
- (c). compute the GCV score

Step 2: denote t^* the minimizer of the GCV score. Return $B(t^*)$ as the estimator of B

- 1 Stability approach to regularization selection
- 2 sparse reduced-rank regression for simultaneous
- 3 sparse RRR for simultaneous rank and variable
- 4 joint variable and rank selection for parsimonious
- 5 Dimension reduction and coefficient estimation
- 6 Reduced rank stochastic regression ■ intro ■ sparse unit regression ■ selection and higher rank
- wavelet-based sparse reduce-rank regression

- 1 Stability approach to regularization selection
- 2 sparse reduced-rank regression for simultaneous
- 3 sparse RRR for simultaneous rank and variable
- 4 joint variable and rank selection for parsimonious
- 5 Dimension reduction and coefficient estimation
- 6 Reduced rank stochastic regression
- intro sparse unit regression selection and higher rank
- wavelet-based sparse reduce-rank regression

$$Y = XC + E \quad rankC = r^*$$

We have SVD:

$$C = UDV = \sum_{k=1}^{r^*} d_k \mathbf{u_k} \mathbf{v_k} := \sum_{k=1}^{r^*} C_k$$

where $U = (u_1, \dots, u_{r^*}), V = (v_1, \dots, v_{r^*}), C_k = d_k u_k v_k$ C_k is the layer k unit rank matrix of C.

$$Y = XC + E \quad rankC = r^*$$

We have SVD.

$$C = UDV = \sum_{k=1}^{r^*} d_k \mathbf{u_k} \mathbf{v_k} := \sum_{k=1}^{r^*} C_k$$

where $U = (u_1, \dots, u_{r^*}), V = (v_1, \dots, v_{r^*}), C_k = d_k u_k v_k$ C_k is the layer k unit rank matrix of C.Here all the singular values are assumed to be distinct so that this SVD is unique because in practice, the singular values rarely conincide.

Introduction

We propse to estimate C by minimizing the following objective function with respect to $(d_k, \mathbf{u_k}, \mathbf{v_k})$ for $k = 1, \dots, r^*$

$$\frac{1}{2}||Y - X\sum_{k=1}^{r^*} d_k u_k v_k'||^2 + \sum_{k=1}^{r^*} Pe(\lambda_k, (d_k, u_k, v_k'))$$

Introduction

We propse to estimate C by minimizing the following objective function with respect to $(d_k, \mathbf{u_k}, \mathbf{v_k})$ for $k = 1, \dots, r^*$

$$\frac{1}{2}||Y - X\sum_{k=1}^{r^*} d_k u_k v_k'||^2 + \sum_{k=1}^{r^*} Pe(\lambda_k, (d_k, u_k, v_k'))$$

We consider

$$Pe = \lambda_k \sum_{i=1}^{p} \sum_{j=1}^{q} w_{ijk} |d_k u_{ik} v_{jk}| = \lambda_k (w_k^{(d)} d_k) (\sum_{i=1}^{p} w_{ik}^{(u)} |u_{ik}) (\sum_{j=1}^{q} w_{jk}^{(v)} |v_{jk}|)$$
(8)

Introduction

We propse to estimate C by minimizing the following objective function with respect to $(d_k, \mathbf{u_k}, \mathbf{v_k})$ for $k = 1, \dots, r^*$

$$\frac{1}{2}||Y - X\sum_{k=1}^{r^*} d_k \mathbf{u_k} \mathbf{v_k}||^2 + \sum_{k=1}^{r^*} Pe(\lambda_k, (d_k, \mathbf{u_k}, \mathbf{v_k}))$$

We consider

$$Pe = \lambda_k \sum_{i=1}^{p} \sum_{j=1}^{q} w_{ijk} |d_k u_{ik} v_{jk}| = \lambda_k (w_k^{(d)} d_k) (\sum_{i=1}^{p} w_{ik}^{(u)} |u_{ik}) (\sum_{j=1}^{q} w_{jk}^{(v)} |v_{jk}|)$$
(8)

where $w_{iik} = w_k^{(d)} w_{ik}^{(u)} w_{ik}^{(v)}$ are data-driven weights to be done below. It can be viewed as penalizing each of the singular vectors comprising the SVD layer.

- 1 Stability approach to regularization selection
- 2 sparse reduced-rank regression for simultaneous
- 3 sparse RRR for simultaneous rank and variable
- 4 joint variable and rank selection for parsimonious
- 5 Dimension reduction and coefficient estimation
- 6 Reduced rank stochastic regression
- intro sparse unit regression selection and higher rank
- wavelet-based sparse reduce-rank regression

unit regression

The weights can be chosen as

$$w^{(d)} = |\tilde{d}|^{-\gamma}$$

$$w^{(u)} = (w_1^{(u)}, \dots, w_P^{(u)})' = |\tilde{u}|^{-\gamma}$$

$$w^{(v)} = (w_1^{(v)}, \dots, w_q^{(q)})' = |\tilde{v}|^{-\gamma}$$

where γ is a prespecified non-negative parameter and $|\cdot|^{(-\gamma)}$ is defined componentwise for the enclosed vector (and we use $\gamma = 2$).

unit regression

The weights can be chosen as

$$w^{(d)} = |\tilde{d}|^{-\gamma}$$

$$w^{(u)} = (w_1^{(u)}, \dots, w_P^{(u)})' = |\tilde{u}|^{-\gamma}$$

$$w^{(v)} = (w_1^{(v)}, \dots, w_q^{(q)})' = |\tilde{v}|^{-\gamma}$$

where γ is a prespecified non-negative parameter and $|\cdot|^{(-\gamma)}$ is defined componentwise for the enclosed vector (and we use $\gamma = 2$). When $r^* = 1$, the problem is with respect to $(d, \mathbf{u}, \mathbf{v})$:

$$\frac{1}{2}||Y - dXuv'||^2 + \lambda \sum_{i=1}^{q} \sum_{j=1}^{q} w_{ij}|du_iv_j|$$

For fixed \boldsymbol{u} the problem with respect to (d, \boldsymbol{v}) becomes:

$$\frac{1}{2}||y - X^{(v)}\check{v}||^2 + \lambda^{(v)} \sum_{j=1}^{q} |\check{v}_j|$$
 (9)

where

$$\check{v} = diag(dw^{(v)})v, y = vec(Y), X^{(v)} = diag(w^{(v)})^{-1} \otimes (Xu)$$
 and $\lambda^{(v)} = \lambda w^{(d)}(\sum_{i=1}^p w_i^{(u)}|u_i|)$

For fixed \boldsymbol{u} the problem with respect to (d, \boldsymbol{v}) becomes:

$$\frac{1}{2}||y - X^{(v)}\check{\mathbf{v}}||^2 + \lambda^{(v)} \sum_{j=1}^{q} |\check{\mathbf{v}}_j|$$
 (9)

where

$$\check{v} = diag(dw^{(v)})v, y = vec(Y), X^{(v)} = diag(w^{(v)})^{-1} \otimes (Xu)$$
 and $\lambda^{(v)} = \lambda w^{(d)}(\sum_{i=1}^p w_i^{(u)}|u_i|)$

This model can be recognized as a lasso regression with respect to \check{v}

In contrast, for fixed v, the problem with respect to (d, \mathbf{u}) becomes

$$\frac{1}{2}||y - X^{(u)}\check{u}||^2 + \lambda^{(u)} \sum_{i=1}^{p} |\check{u}_i|$$
 (10)

where $\check{u} = diag(dw^{(u)})u, X^{(u)} = v \otimes Xdiag(w^{(u)})^{-1}, \lambda^{(u)} = v \otimes Xdiag(w^{(u)})^{-1}$ $\lambda w^{(d)}(\sum_{j=1}^q w_j^{(v)}|v_j|).$ Again this is a lasso regression problem with respect to \check{u}

- 1 Stability approach to regularization selection
- 2 sparse reduced-rank regression for simultaneous
- 3 sparse RRR for simultaneous rank and variable
- 4 joint variable and rank selection for parsimonious
- 5 Dimension reduction and coefficient estimation
- 6 Reduced rank stochastic regression ■ intro ■ sparse unit regression ■ selection and higher rank
- wavelet-based sparse reduce-rank regression

parameter selection

Denote $(\hat{d}^{(\lambda)}, \hat{u}^{(\lambda)}, \hat{v}^{(\lambda)})$ as the fitted value of $(d, \mathbf{u}, \mathbf{v})$ with the regularization parameter being λ . Define BIC as:

$$BIC(\lambda) = log(SSE(\lambda)) + \frac{log(nq)}{nq}df(\lambda)$$

where
$$SSE(\lambda) = ||Y - \hat{d}^{(\lambda)}X\hat{u}^{(\lambda)}\hat{v}^{(\lambda)}||^2$$
, $\hat{d}f(\lambda) = \sum_{i=1}^p I(u_i^{(\lambda)} \neq 0) + \sum_{j=1}^q I(v_j^{(\lambda)} \neq 0) - 1$

Extension to the higher rank case

Exclusive extraction algorithm(EEA)

This idea is to seek a \hat{C} with sparse SVD structure near some initial consistent estimator, e.g. the least squares reduced rank regression estimator C whose SVD is given by

$$\sum_{k=1}^{r^*} \tilde{d}_k \tilde{u}_k \tilde{v}_k = \sum_{k=1}^{r^*} \tilde{C}_k$$

Extension to the higher rank case

Exclusive extraction algorithm(EEA)

This idea is to seek a \hat{C} with sparse SVD structure near some initial consistent estimator, e.g. the least squares reduced rank regression estimator C whose SVD is given by

$$\sum_{k=1}^{r^*} \tilde{d}_k \tilde{u}_k \tilde{v}_k = \sum_{k=1}^{r^*} \tilde{C}_k$$
The EEA is as follows:

- (a). for each $k \in \{1, \dots, r^*\}$
 - (1). construct the adaptive weights $w_k^{(d)}=|\tilde{d}_k|^{-\gamma}, w_k^{(u)}=|\tilde{u_k}|^{-\gamma}$ and $w_k^{(v)}=|\tilde{v_k}|^{-\gamma}$
 - (2). construct the exclusive layer $Y_k = Y X(\tilde{C} \tilde{C}_k)$
 - (3). find $(\hat{d}_k, \hat{u}_k, \hat{v}_k)$ by performing the sparse unit rank regression of Y_k on X with λ_k chosen by BIC
- (b). The final estimator C is given by $\hat{C} = \sum_{k=1}^{r^*} \hat{d}_k \hat{u}_k \hat{V}_{\nu}$

Note

We can also have the method done iteratively called the iterative exclusive extraction algorithm e.g.

$$\frac{||\textit{C}^{(\hat{\textit{i}}+1)} - \hat{\textit{C}^{(\textit{i})}}||}{||\hat{\textit{C}^{(\textit{i})}}|} < \epsilon$$

for example $\epsilon = 10^{-6}$

- 1 Stability approach to regularization selection
- 2 sparse reduced-rank regression for simultaneous
- 3 sparse RRR for simultaneous rank and variable
- 4 joint variable and rank selection for parsimonious
- 5 Dimension reduction and coefficient estimation
- 6 Reduced rank stochastic regression
- 7 wavelet-based sparse reduce-rank regression

model establishment

$$\tilde{Y} = DWV + \tilde{N} \tag{11}$$

where D is an $n \times n$ orthogonal matrix(using Schmidt orthogonalization), V is $p \times r$ unknown orthogonal matrix. $W \in \mathbb{R}^{n \times r}$

$$\tilde{Y} = DWV + \tilde{N}$$
 (11)

where D is an $n \times n$ orthogonal matrix(using Schmidt orthogonalization), V is $p \times r$ unknown orthogonal matrix. $W \in \mathbb{R}^{n \times r}$

The optimization problem is as follows:

$$J(V, W) = \frac{1}{2} ||\tilde{Y} - DWV||^2 + \sum_{i} \lambda_{i} ||w_{(i)}||_1$$
 (12)

$$(\hat{V}, \hat{W}) = arg \min_{V,W} J(V, W)$$
 such that $VV = I_r$ (13)

cyclic descent algorithm

(1). W-step: Given a fixed V, the problem can be written as

$$arg \min_{W} \frac{1}{2} ||B - W||^2 + \sum_{i} \lambda_{i} ||w_{(i)}||_1$$
 (14)

where $B = D'\tilde{Y}V$, and the solution is

$$\hat{w}_{jj} = \max(0, |b_{ji}| - \lambda_i) \frac{b_{ij}}{|b_{ij}|}$$
 (15)

cyclic descent algorithm

(1). W-step: Given a fixed V, the problem can be written as

$$\arg\min_{W} \frac{1}{2} ||B - W||^2 + \sum_{i} \lambda_{i} ||w_{(i)}||_1$$
 (14)

where $B = D'\tilde{Y}V$, and the solution is

$$\hat{w}_{jj} = \max(0, |b_{ji}| - \lambda_i) \frac{b_{ij}}{|b_{ij}|}$$
 (15)

(2). V-step: Given a fixed W

$$arg \min_{V} ||\tilde{Y} - DWV||^2$$
 such that $VV = I_r$

which has a solution given by $\hat{V} = QG'$ where Q and Gare computed using $M = \hat{W}D\hat{Y} = Q\Sigma G$

initialization and selection

Using $\tilde{Y}=U_{\tilde{Y}}S_{\tilde{Y}}V_{\tilde{V}}$, and setting $V_0=V_{\tilde{Y}}$, we can proceed the algorithm above.

Noting that (14) is separable and can be written as

$$arg\min_{w_{(i)}} \frac{1}{2} ||b_{(i)} - w_{(i)}||^2 + \lambda_i ||w_{(i)}||_1$$

initialization and selection

Using $\tilde{Y} = U_{\tilde{Y}} S_{\tilde{Y}} V_{\tilde{Y}}$, and setting $V_0 = V_{\tilde{Y}}$, we can proceed the algorithm above.

Noting that (14) is separable and can be written as

$$arg \min_{w_{(i)}} \frac{1}{2} ||b_{(i)} - w_{(i)}||^2 + \lambda_i ||w_{(i)}||_1$$

The **SURE criterion** is given by

$$SURE(\lambda_i) = ||\hat{w}_{(i)} - b_{(i)}||^2 - n + 2n_i$$

where $n_i = \#\{j : |\hat{w}_{ii}| > \lambda_i\}$

The algorithm is from the journal: **Discovering genetic** associations with high-dimensionality neuroimaging phenotypes a sparse reduced-rank regression approach

The algorithm is from the journal: **Discovering genetic** associations with high-dimensionality neuroimaging phenotypes a sparse reduced-rank regression approach The full rank coefficient matrix $C_{(R)}$ and the estimated residual covariance matrix $\hat{S_{\epsilon\epsilon(Y)}} = (Y - X\hat{C_{(r)}})'(Y - X\hat{C_{(r)}}).$

The algorithm is from the journal: **Discovering genetic** associations with high-dimensionality neuroimaging phenotypes a sparse reduced-rank regression approach The full rank coefficient matrix $C_{(R)}$ and the estimated residual covariance matrix $\hat{S}_{\epsilon\epsilon(Y)} = (Y - X\hat{C}_{(r)})'(Y - X\hat{C}_{(r)})$. The rank trace plotting is obtained by plotting, for all values of r in a range from 0 to R, the following 2 quantities:

$$\Delta \hat{C_{(r)}} = \frac{||\hat{C_{(R)}} - \hat{C_{(r)}}||}{||\hat{C_{(R)}} - \hat{C_{(0)}}||} \qquad \Delta \hat{S_{\epsilon\epsilon(r)}} = \frac{||\hat{S_{\epsilon\epsilon(R)}} - \hat{S_{\epsilon\epsilon(r)}}||}{||\hat{S_{\epsilon\epsilon(R)}} - \hat{S_{\epsilon\epsilon(0)}}||}$$

The algorithm is from the journal: **Discovering genetic** associations with high-dimensionality neuroimaging phenotypes a sparse reduced-rank regression approach The full rank coefficient matrix $C_{(R)}$ and the estimated residual covariance matrix $\hat{S}_{\epsilon\epsilon(Y)} = (Y - X\hat{C}_{(r)})'(Y - X\hat{C}_{(r)})$. The rank trace plotting is obtained by plotting, for all values of r in a range from 0 to R, the following 2 quantities:

$$\Delta \hat{C_{(r)}} = \frac{||\hat{C_{(R)}} - \hat{C_{(r)}}||}{||\hat{C_{(R)}} - \hat{C_{(0)}}||} \qquad \Delta \hat{S_{\epsilon\epsilon(r)}} = \frac{||\hat{S_{\epsilon\epsilon(R)}} - \hat{S_{\epsilon\epsilon(r)}}||}{||\hat{S_{\epsilon\epsilon(R)}} - \hat{S_{\epsilon\epsilon(0)}}||}$$

As r varies from 0 to R in both X and Y axes, both coefficients take values in [0,1]. As more ranks are added, starting at the top-right corner with r = 0, the curve moves towards the origin of the plot. When a further rank addition doesn't produce a significant reduction the plot indicates an "optimal" rank R^* which has been found.

谢谢!