Linked List

Terminologies:

- Linked list is a linear data structure that contains multiple records linked to each other.
- Each item in the list is called as "Node".
- Each node contains data and pointer (address) to the next node.
- Typically linked lists are implemented as self-referential structure/class.
 The structure/class contains pointer of the same type to hold address of next node.

```
struct node
{
    int data;
    struct node * next;
};
```


Singly Linear Linked List diagram

Difference in array and linked list

	array	linked list
1	Array cannot grow or shrink dynamically (realloc() is not efficient).	Linked list can grow/shrink dynamically.
2	Array has contiguous memory. Hence random access is possible.	Nodes are not in contiguous memory. Hence only sequential access is allowed.
3	Arrays do not have memory overheads.	Linked lists have memory overheads e.g. each node contains address of 'next' node.
4	Insert/Delete at middle position need to shift remaining elements. Hence will be slower.	Insert/Delete at middle position need to modify links (next/prev pointers). Hence will be faster.
5	To deal to fixed number of elements and frequent random access, arrays are better.	To deal to dynamic number of elements and frequent insertion/deletion operators, linked lists are better.

Types of Linked List:

- Singly Linear LinkedList
- Singly Circular LinkedList
- Doubly Linear LinkedList
- Doubly Circular LinkedList

Operations can be performed onLinkedList:

- 1. add_at_last, add_at_first, add_at_position
- 2. del_from_last, del_from_first, del_from_position
- 3. traverse (display)
- 4. reverse
- 5. search
- 6. sort
- 7. merge

