Final Exam

Numerical Method, 2021/6/17

Total: 103

1. (10) e^x is approximated by the Maclaurin series truncated up to x^4 :

$$e^{x} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + \frac{x^{4}}{24} + \frac{x^{5}}{120} + \frac{x^{6}}{720} + \dots + \frac{x^{n+1}}{(n+1)!} e^{\xi}, \ \xi \text{ in } [0, x].$$

- a. (6) Derive the Chebyshev series of e^x and then the Chebyshev expansion (up to x^3).
- b. (4) Describe how the error of Maclaurin series and Chebyshev expansion behave for approximating e^x , and why?
- 2. (18) Suppose function f(x) is to be approximated by Pade approximation:

$$f(x) \approx R_N(x) = \frac{P_n(x)}{Q_m(x)} = \frac{a_0 + a_1 x + \dots + a_n x^n}{1 + b_1 x + \dots + b_m x^m}, \quad N = n + m$$

- a. (10) Suppose f(x) is approximated by an Nth-degree polynomial
 - $p_N(x) = c_0 + c_1 x + \dots + c_N x^N$, describe how to solve for the unknown coefficients of $P_n(x)$ and $Q_m(x)$ of Pade approximation.
- b. (3) Can we expect the derived Pade approximation to yield a rational approximation of f(x) with higher significant-digit accuracy than $p_N(x) = c_0 + c_1 x + \dots + c_N x^N$?
- c. (5) How do we introduce Chebyshev polynomial into Pade approximation? Briefly describe the formulation.
- 3. (10) Derive the 2 points central-difference formula for approximating f'(x) and show that its error is of order $O(h^2)$.
- 4. (10) Based on the following table,
 - a. (4) Use the central-difference approximation to approximate f'(2.4) with interval size h=0.1, and
 - b. (6) Get an improved estimate by using the Richardson extrapolation.

Table 5.5

i	x_i	f_i
0 1 2 3 4 5 6	2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7	0.123060 0.105706 0.089584 0.074764 0.061277 0.049126 0.038288 0.028722
8 9 10	2.8 2.9 3.0	0.020371 0.013164 0.007026

5. (10) Numerical integration

c. (4) Use the data in the table to find the integral between x=1.0 and 1.8, using the trapezoidal rule with h=0.1

x	f(x)
1.0	1.543
1.1	1.669
1.2	1.811
1.3	1.971
1.4	2.151
1.5	2.352
1.6	2.577
1.7	2.828
1.8	3.107

- d. (6) Extrapolate from the results of 6a. to get an improved value for the integral using Romberg integration.
- 6. (20) The following is the general gradient search algorithm for finding the minimum of f(x):

Input : Initial point x_0 , i = 0

Repeat

Define a search direction s_i at x_i

Find α_i to minimize f(x) on the direction of s_i ,

i.e., minimize
$$\phi_i(\alpha) = f(x_i + \alpha s_i)$$

$$x_{i+1} = x_i + \alpha_i s_i; i = i+1$$

Until convergence criterion is satisfied

Output : Approximate minimum point is x_i

Suppose that the function is a quadratic polynomial

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T H \mathbf{x} + \mathbf{b}^T \mathbf{x} + \mathbf{c}$$

- a. (3) What is the search direction at x_i used in the steepest descent method? What is the relationship between s_i and s_{i+1} ?
- b. (4) What is the search direction at x_i used in the Fletcher-Reeves conjugate gradient

method? What is the relationship between s_i and s_{i+1} ?

- c. (6) Let $x_{i+1} = x_i + \alpha_i s_i$ be the minimum point of f(x) on the search direction $s_{i..}$ Show that for the steepest descent method the gradient of f at x_{i+1} is perpendicular to the search direction s_i .
- d. (7) For the steepest descent method, derive the formula for computing α_i .
- 7. (10) You are asked to find the minimum point of $f(x, y) = x^2 + 2y^2 + xy + 3x$ with starting point $x_0 = (0,0)$.
 - a. (4) Demonstrate the steepest descent method by finding x_1 .
 - b. (6) Demonstrate the Fletcher-Reeves conjugate gradient method by finding x_1 and x_2 . (Let $s_0 = -\nabla f(x_0)$)
- 8. (15) Constrained optimization
 - a. (4) When you are asked to maximize f(x) subject to g(x)=0, how do you solve the problem by using the Lagrange multiplier method?

3

- b. (3) What is the intuition behind the Lagrange multiplier method?
- c. (8) Find the solution of the following problem using Simplex method:

Maximize
$$f(x_1, x_2) = 5x_1 + 6x_2$$

Subject to $2x_1 + 3x_2 \le 12$,

$$2x_1 + 3x_2 \le 12$$
$$3x_1 + 2x_2 \le 15,$$
$$x_1, x_2 \ge 0.$$

USEFUL INFORMATION:

Chebyshev polynomia

$$\begin{split} T_0(x) &= 1, \\ T_1(x) &= x, \\ T_2(x) &= 2x^2 - 1, \\ T_3(x) &= 4x^3 - 3x, \\ T_4(x) &= 8x^4 - 8x^2 + 1, \\ T_5(x) &= 16x^5 - 20x^3 + 5x, \\ T_6(x) &= 32x^6 - 48x^4 + 18x^2 - 1, \\ T_7(x) &= 64x^7 - 112x^5 + 56x^3 - 7x, \\ T_8(x) &= 128x^8 - 256x^6 + 160x^4 - 32x^2 + 1, \\ T_9(x) &= 256x^9 - 576x^7 + 432x^5 - 120x^3 + 9x, \\ T_{10}(x) &= 512x^{10} - 1280x^8 + 1120x^6 - 400x^4 + 50x^2 - 1. \end{split}$$

$$\begin{split} 1 &= T_0, \\ x &= T_1, \\ x^2 &= \frac{1}{2} \left(T_0 + T_2 \right), \\ x^3 &= \frac{1}{4} \left(3T_1 + T_3 \right), \\ x^4 &= \frac{1}{8} \left(3T_0 + 4T_2 + T_4 \right), \\ x^5 &= \frac{1}{16} \left(10T_1 + 5T_3 + T_5 \right), \\ x^6 &= \frac{1}{32} \left(10T_0 + 15T_2 + 6T_4 + T_6 \right), \\ x^7 &= \frac{1}{64} \left(35T_1 + 21T_3 + 7T_5 + T_7 \right), \\ x^8 &= \frac{1}{128} \left(35T_0 + 56T_2 + 28T_4 + 8T_6 + T_8 \right), \\ x^9 &= \frac{1}{256} \left(126T_1 + 84T_3 + 36T_5 + 9T_7 + T_9 \right). \end{split}$$