

Introduction to Optimization Homework (week 4)

Dimitri Tabatadze · Thursday 04-04-2024

Problem IV.1: Minimization and the Armijo Step Size Rule

Let $f(x) = \frac{1}{2}x^TCx + c^Tx$ with a symmetric and positive definite matrix $C \in \mathbb{R}^{n \times n}$ and $c \in \mathbb{R}^n$. Moreover, let $s \in \mathbb{R}^n$ be a descent direction of f at a point $x \in \mathbb{R}^n$ and $\sigma^* \geq 0$ be the exact line search step size, i.e. $f(x + \sigma^*) = \min_{\sigma \geq 0} f(x + \sigma s)$.

- a) Show that f is strictly convex.
- b) Show that $\sigma^* > 0$ holds.
- c) What form (linear, quadratic, ...) does the function $\phi(\sigma) = f(x + \sigma s)$ have? Use Taylor expansion of ϕ about $\sigma = 0$ and deduct that σ^* is well defined and uniquely determined.
- d) Show that for all $\gamma \in (0, \frac{1}{2}]$ the choice $\sigma = \sigma^*$ satisfies the sufficient decrease condition

$$f(x + \sigma s) - f(x) \le \gamma \sigma \nabla f(x)^T s$$
,

though, that this is not the case for $\gamma > \frac{1}{2}$.

e) Sketch the graph of ϕ and use it to illustrate the statement discussed in d)

Solution

- a) The hessian of f is $H_f(x) = C$ which is given to be symmetric positive definite implying that the function f is strictly convex.
- b) Since s is a descent direction of f we know that $\nabla f(x)^T s < 0$. By continuity of f, we know that there exists $\varepsilon > 0$ such that $f(x + \varepsilon s) < f(x)$ therefore the exact line search would have found that ε , i.e $\sigma^* \ge \varepsilon > 0$.
- c) The taylor expansion follows

$$\begin{split} \phi(\sigma) &= f(x) + \sigma \nabla f(x)^T s + \frac{1}{2} \sigma^2 s^T H_f(x) s \\ &= f(x) + \sigma (x^T C + c^T)^T s + \frac{1}{2} \sigma^2 s^T C s \end{split}$$

which is a quadratic equation in terms of σ . We have to show that

$$\begin{split} &\overset{>0}{\underbrace{\frac{\left(\text{descent direction}\right)}{-\nabla f(x)^T s}}} \\ &\overset{=}{\underbrace{s^T H_f(x) s}} > 0. \end{split}$$

d) We first express

$$\phi'(\sigma) = \sigma s^T C s + \nabla f(x)^T s$$

and now we can rewrite the condition to be

$$\phi(\sigma) - \phi(0) \leq \gamma \sigma \phi'(0) \quad \Longrightarrow \quad \frac{\phi(\sigma) - \phi(0)}{\sigma} \leq \gamma \phi'(0)$$

Let $g(\sigma) = \phi(\sigma^* - \sigma)$ allowing us to write

$$\frac{g(0) - g(\sigma^*)}{\sigma^*} \le \gamma \phi'(0) \implies \frac{g(\sigma^*) - g(0)}{\sigma^*} \ge \gamma g'(\sigma^*)$$

Now let $g(\sigma) = a\sigma^2 + c$ (with $g'(\sigma) = 2a\sigma$) since we know that g(x) is a quadratic function and the minimum is at $\sigma = 0$ the coefficient of the linear term will be 0. So

Problem IV.2: Application of the Wolfe-Powell Rule

a) The first Wolfe-Powell condition (sufficient decrease condition) requires

$$f\big(x^k + \sigma_k s^k\big) - f\big(x^k\big) \leq \gamma \sigma_k \nabla f\big(x^k\big)^T s^k.$$

What is the maximum step length σ_k that satisfies the condition, given that $f(x)=5+x_1^2+x_2^2, x^k={-1\choose -1}, s^k={1\choose 0},$ and $\gamma=10^{-4}.$

b) Given a general descent algorithm with the Wolfe-Powell step size rule, provide an example to show that the set

$$\left\{ t \in \mathbb{R} : \begin{array}{l} \nabla f(x + \sigma s)^T s \ge \eta \nabla f(x)^T s \text{ and} \\ f(x + \sigma s) - f(x) \le \gamma \sigma \nabla f(x)^T s \end{array} \right\}$$

may be empty if $0 < \gamma < \eta < 1$. I.e., that under these conditions no step size can be found. *Hint:* Think of a one-dimensional example.

Solution

e)

$$\begin{split} f\big(x^k + \sigma_k s^k\big) - f\big(x^k\big) &\leq \gamma \sigma_k \nabla f\big(x^k\big)^T s^k \\ & \qquad \qquad \qquad \qquad \qquad \downarrow \\ f\Big(\begin{pmatrix} -1 \\ -1 \end{pmatrix} + \sigma_k \begin{pmatrix} 1 \\ 0 \end{pmatrix}\Big) - f\Big(\begin{pmatrix} -1 \\ -1 \end{pmatrix}\Big) &\leq 10^{-4} \sigma_k \nabla f\Big(\begin{pmatrix} -1 \\ -1 \end{pmatrix}\Big)^T \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{split}$$

$$f(\sigma_k - 1, -1) - f(-1, -1) \leq \sigma_k 10^{-4} \cdot \nabla f(-1, -1)^T \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\not \beta + \sigma_k^2 - 2\sigma_k + \cancel{1} - \cancel{\beta} - \cancel{1} - \cancel{\beta} \leq \sigma_k (-2 \cdot 10^{-4})$$

$$\downarrow \qquad \qquad \downarrow$$

$$\sigma_k (2 - 2 \cdot 10^{-4}) - \sigma_k^2 \geq 0$$

$$\downarrow \downarrow$$

$$\sigma_k ((2 - 2 \cdot 10^{-4}) - \sigma_k) \geq 0$$

$$\downarrow \downarrow$$

$$(2 - 2 \cdot 10^{-4}) \geq \sigma_k \geq 0$$

b) Consider the example f(x) = x, then $\nabla f(x)^T s = -1$. Take x = 1, s = -1. We these into the conditions to get

$$\begin{cases} 1 \cdot (-1) \geq \eta \cdot (-1) \\ 1 - \sigma - 1 \leq -\gamma \sigma \end{cases} \Longrightarrow \begin{cases} 1 \leq \eta \\ 1 \geq \gamma \end{cases}$$

and since η < 1 this is a counter example.

Problem IV.3:

Let $f(x) = \frac{1}{2}x^TCx + c^Tx + \gamma$ with a symmetric positive definite matrix $C \in \mathbb{R}^{n \times n}$, $c \in \mathbb{R}^n$, and $\gamma \in \mathbb{R}$. Show that Gradient Descent Method with exact line search step size reaches the global minimum $\bar{x} = -C^{-1}c$ in exactly one step if the initial point x^0 is chosen such that $\nabla f(x^0)$ is an eigenvector of C. What does this imply for a strategy to choose the initial point in a diagonally scaled Gradient Descent Method?

Solution

We find

$$\nabla f(x) = Cx + c$$

and from past excercises we know that

$$\sigma^* = \frac{\left\|\nabla f(x^0)\right\|^2}{\nabla f(x^0)^T C \nabla f(x^0)} = \frac{1}{\lambda}$$

now we can write

$$\begin{split} x^1 &= x^0 - \frac{1}{\lambda} \nabla f(x) \\ &= x^0 - \frac{1}{\lambda} C^{-1} C \nabla f(x) \\ &= x^0 - C^{-1} \nabla f(x) \\ &= x^0 - C^{-1} (Cx^0 + c) \\ &= x^0 - x^0 - C^{-1} c \\ &= C^{-1} c. \end{split}$$

This result means that when using diagonal scaling it's probably best to chose initial points which are the eigenvectors of the scaling matrix.