Lecture 2: AES-128

Hardware attacks

- Hardware attacks extends the threat model: an adversary can measure and influence on the computation device
- Successful hardware attacks don't mean that an underlying cryptographic algorithm is bad
- Successful hardware attacks mean that this concrete algorithm implementation on that concrete device is vulnerable

Side-channel leakage

- You worked on simple RSA attack
- Simple side-channel attacks use visually distinguishable patterns
- In case of RSA, the leakage was "horizontal": long signal - 1, short signal - 0

- We will work with AES-128
- We will learn how to perform correlation power analysis
- Contrary to previous RSA example, the leakage is "vertical" (we will work with amplitudes)

AES Example

Advanced Encryption Standard algorithm (AES-128)

Advanced Encryption Standard

- All operations are reversable for Key Expansion, Encryption and decryption
- A master key can be re-computed from any round key (in your tasks this function is available)
- The number of rounds depend on the key size. We will work only with 128-bit keys (10 rounds).
- In the tasks don't forget about ShiftRows

■ A developer left a debug option that prints the state 10 (S_{10} shown in green) and a ciphertext C shown in blue. What can be wrong with that?

- A developer left a debug option that prints the state 10 (S_{10} shown in green) and a ciphertext C shown in blue. What can be wrong with that?
- Find K_{10} and then get the master key using the provided code

- A developer left a debug option that prints the state 10 (S_{10} shown in green) and a ciphertext C shown in blue. What can be wrong with that?
- lacktriangle Find K_{10} and then get the master key using the provided code
- ullet $C = ShiftRows(SubBytes[S_{10}]) \oplus K_{10}$

- A developer left a debug option that prints the state 10 (S_{10} shown in green) and a ciphertext C shown in blue. What can be wrong with that?
- lacksquare Find K_{10} and then get the master key using the provided code
- ullet $C = ShiftRows(SubBytes[S_{10}]) \oplus K_{10}$

Roman Korkikian, Nicolas Oberli | March 29, 2023

Puzzle 2: Law of large numbers A bit of

mathematics... who said side-channels are easy

Law of large numbers

■ This is the cornerstone law for side-channel attacks

Law of large numbers

■ This is the cornerstone law for side-channel attacks

The average of the results obtained from a large number of trials should be close to the expected value and tend to become closer to the expected value as more trials are performed

$$\lim_{x \to \inf} \sum_{i=0}^{n} \frac{X_i}{n} = \bar{X}$$

Law of large numbers

■ This is the cornerstone law for side-channel attacks

The average of the results obtained from a large number of trials should be close to the expected value and tend to become closer to the expected value as more trials are performed

$$\lim_{x \to \inf} \sum_{i=0}^{n} \frac{X_i}{n} = \bar{X}$$

What does this mean in practice?

- Consider a situation when we measure a process: $y = x + \nu$, where x is 0 or 1 and ν is a white noise with mean $\mu = 40$ and std $\sigma = 70$
- Use python to emulate measurements

- Consider a situation when we measure a process: $y = x + \nu$, where x is 0 or 1 and ν is a white noise with mean $\mu = 40$ and std $\sigma = 70$
- Use python to emulate measurements
- By looking at raw measurements, 0 and 1 can not be distinguished

■ Here comes the Law of Large Numbers

- Here comes the Law of Large Numbers
- For x = 0 the curve converges to 40
- For x = 1 the curve converges to 41

- Here comes the Law of Large Numbers
- For x = 0 the curve converges to 40
- For x = 1 the curve converges to 41
- Now we see a clear difference

Law of large numbers: more complex noise

Measurements with the noncentral F-distribution noise

Law of large numbers: conclusion

- LLN shows that averaging a "sufficiently" big number of samples will converge noise to constant
- In certain cases, we can directly average measurements for side-channel attacks
- Nevertheless, by averaging, we can lose important information about random numbers

Puzzle 3: Power models

Power models

- We cannot model the exact current drain (power consumption):
 - A digital circuit is too complex, and the number of switching transistors is huge
 - Current drain will depend on technology, DC voltage, temperature and other parameters

Power models

- We cannot model the exact current drain (power consumption):
 - A digital circuit is too complex, and the number of switching transistors is huge
 - Current drain will depend on technology, DC voltage, temperature and other parameters
- Side-channel attacks don't try to have the exact current drain value (I would like to see if someone does it)

Power models

- We cannot model the exact current drain (power consumption):
 - A digital circuit is too complex, and the number of switching transistors is huge
 - Current drain will depend on technology, DC voltage, temperature and other parameters
- Side-channel attacks don't try to have the exact current drain value (I would like to see if someone does it)
- Instead, side-channel attacks work with power consumption models

- Digital logic contains multiple registers (e.g., CPU registers)
- Registers are made of flip-flops

- Digital logic contains multiple registers (e.g., CPU registers)
- Registers are made of flip-flops

Data present at clock time is transfered from D to Q.

- Digital logic contains multiple registers (e.g., CPU registers)
- Registers are made of flip-flops

- D flip-flop is made of combinational logic, but the value is updated only on clock rising edge
 - D flip-flop elements drain current

lacksquare Flip-flops consume current during transitions 0 o 1 and 1 o 0

- lacksquare Flip-flops consume current during transitions 0 o 1 and 1 o 0
- \blacksquare As seen with the inverter, consumption during the transitions $0 \to 1$ and $1 \to 0$ differ

- lacksquare Flip-flops consume current during transitions 0 o 1 and 1 o 0
- \blacksquare As seen with the inverter, consumption during the transitions $0 \to 1$ and $1 \to 0$ differ
- Denote consumptions: $i(0 \rightarrow 1) = \alpha$ and $i(1 \rightarrow 0) = \beta$

- lacksquare Flip-flops consume current during transitions 0 o 1 and 1 o 0
- \blacksquare As seen with the inverter, consumption during the transitions $0 \to 1$ and $1 \to 0$ differ
- Denote consumptions: $i(0 \rightarrow 1) = \alpha$ and $i(1 \rightarrow 0) = \beta$
- \blacksquare α and β depend on a microcontroller (technology, layout), power supply, and many other parameters

- lacksquare Flip-flops consume current during transitions 0 o 1 and 1 o 0
- \blacksquare As seen with the inverter, consumption during the transitions $0 \to 1$ and $1 \to 0$ differ
- Denote consumptions: $i(0 \rightarrow 1) = \alpha$ and $i(1 \rightarrow 0) = \beta$
- lacktriangleq lpha and eta depend on a microcontroller (technology, layout), power supply, and many other parameters
- Assume that $\beta = \alpha + \delta$

 Flip-flops are assembled into registers (CPU registers, special registers, etc.)

- Flip-flops are assembled into registers (CPU registers, special registers, etc.)
- Register's flip-flops have the same layout and components, so they consume equally

Power consumption of a register change

When register switches the current is drained (power is consumed)

- When register switches the current is drained (power is consumed)
- The exact current consumption is not possible to model

- When register switches the current is drained (power is consumed)
- The exact current consumption is not possible to model
- Instead, side-channel analysis studies the differences between various operations (kind of true)

■ Current drain of a transition $0 \times 00 \to 0 \times 6C$ shall be proportional to the number of switched bits: $i(0 \times 00 \to 0 \times 6C) \approx 4 \cdot i(0 \to 1) = 4 \cdot \alpha$

- Current drain of a transition $0x00 \rightarrow 0x6C$ shall be proportional to the number of switched bits: $i(0x00 \rightarrow 0x6C) \approx 4 \cdot i(0 \rightarrow 1) = 4 \cdot \alpha$
- In practice measurements of the transition will include noise σ : $i(0x00 \rightarrow 0x6C) = 4 \cdot \alpha + \sigma$

- Current drain of a transition $0x00 \rightarrow 0x6C$ shall be proportional to the number of switched bits: $i(0x00 \rightarrow 0x6C) \approx 4 \cdot i(0 \rightarrow 1) = 4 \cdot \alpha$
- In practice measurements of the transition will include noise σ : $i(0x00 \rightarrow 0x6C) = 4 \cdot \alpha + \sigma$
- The most significant noise is coming from other microcontroller blocks (video processor, modem, DMA) and environment (cross talks, EM signals around, etc.)

■ Hamming distance denotes the number of different bits between the previous and the new register values: $HD(r_{i-1}, r_i)$

- Hamming distance denotes the number of different bits between the previous and the new register values: $HD(r_{i-1}, r_i)$
- $i(0x00 \rightarrow 0x6C) \approx \text{HD}(0x00, 0x6C) \cdot i(0 \rightarrow 1) + \sigma = 4 \cdot \alpha + \sigma$

- Hamming distance denotes the number of different bits between the previous and the new register values: $HD(r_{i-1}, r_i)$
- $i(0x00 \rightarrow 0x6C) \approx HD(0x00, 0x6C) \cdot i(0 \rightarrow 1) + \sigma = 4 \cdot \alpha + \sigma$
- If the previous register value is equal to 0×00 then we better use Hamming weight name (the number of bits set to 1 in the new register: $HW(r_i) = \#1$)

- Hamming distance denotes the number of different bits between the previous and the new register values: $HD(r_{i-1}, r_i)$
- $i(0x00 \rightarrow 0x6C) \approx \text{HD}(0x00, 0x6C) \cdot i(0 \rightarrow 1) + \sigma = 4 \cdot \alpha + \sigma$
- If the previous register value is equal to 0x00 then we better use Hamming weight name (the number of bits set to 1 in the new register: $HW(r_i) = #1$)
- Hamming weight model is practically confirmed by many side-channel attacks

- $i(0x00 \rightarrow 0x21) = HW(0x21) \cdot \alpha + \sigma = 2 \cdot \alpha + \sigma$
- $i(0x00 \rightarrow 0x6C) = HW(0x6C) \cdot \alpha + \sigma = 4 \cdot \alpha + \sigma$
- $i(0x00 \rightarrow 0xE7) = HW(0xE7) \cdot \alpha + \sigma = 6 \cdot \alpha + \sigma$
- $i(0x00 \rightarrow 0xFF) = HW(0xFF) \cdot \alpha + \sigma = 8 \cdot \alpha + \sigma$

■ Although previous register value can be different from 0x00, this change $0x00 \rightarrow 0x6C$ can still be observed

- Although previous register value can be different from 0x00, this change $0x00 \rightarrow 0x6C$ can still be observed
- The reason is that the register value is transmitted over buses (or written to other registers of ALU or other IPs)

Questions?

Questions?

■ Consider 8-bit register. How many different values Hamming weight model can have: $HW(r_i) = 0, 1, 2...$?

Questions?

- Consider 8-bit register. How many different values Hamming weight model can have: $HW(r_i) = 0, 1, 2...$?
- The same situation for 128-bit register (hardware implementation of AES): $HW(r_i) = 0, 1, 2...$?

■ This time a developer left a debug option that prints out Hamming weights of bytes of the 10th round state $HW(S_{10})$ and a ciphertext C. What can be wrong with that?

- This time a developer left a debug option that prints out Hamming weights of bytes of the 10th round state $HW(S_{10})$ and a ciphertext C. What can be wrong with that?
- lacksquare Find K_{10} and then get the master key using the provided code

- This time a developer left a debug option that prints out Hamming weights of bytes of the 10th round state $HW(S_{10})$ and a ciphertext C. What can be wrong with that?
- Find K_{10} and then get the master key using the provided code
- ullet $C = ShiftRows(SubBytes[S_{10}]) \oplus K_{10}$

- This time a developer left a debug option that prints out Hamming weights of bytes of the 10th round state $HW(S_{10})$ and a ciphertext C. What can be wrong with that?
- lacksquare Find K_{10} and then get the master key using the provided code
- ullet $C = ShiftRows(SubBytes[S_{10}]) \oplus K_{10}$
- $HW(S_{10}) = HW(InvSubBytes[InvShiftRows(K_{10} \oplus C)])$

■ If a previous register value is different from 0x00, the current drain can be still modelled

- If a previous register value is different from 0x00, the current drain can be still modelled
- Assume current drains: $i(0 \rightarrow 1) = \alpha$, and $i(1 \rightarrow 0) = \beta$
- The current is never balanced: $\alpha \neq \beta, \beta = \alpha + \delta$

$$i(0xD4 \rightarrow 0x6C) = 2 \cdot \alpha + 2 \cdot \beta + \sigma$$

- $i(0xD4 \rightarrow 0x6C) = 2 \cdot \alpha + 2 \cdot \beta + \sigma$
- Side-channel attack people were lasy... so they assume that $|\alpha| >> |\delta|$ and $|\beta| >> |\delta|$, so they treat $|\delta|$ as colored noise
- $i(0xD4 \rightarrow 0x6C) = 2 \cdot \alpha + 2 \cdot \beta + \sigma = 2 \cdot \alpha + 2 \cdot (\alpha + \delta) + \sigma = 4 \cdot \alpha + (2 \cdot \delta + \sigma) = 4 \cdot \alpha + \sigma' = \text{HD}(0xD4, 0x6C) \cdot \alpha + \sigma'$

- If a previous r_{i-1} and a new r_i register values are known, side-channel attacks use Hamming Distance model
- $i(r_{i-1} \rightarrow r_i) = \mathsf{HD}(r_{i-1}, r_i) \cdot \alpha + \sigma$

- If a previous r_{i-1} and a new r_i register values are known, side-channel attacks use Hamming Distance model
- $i(r_{i-1} \to r_i) = \mathsf{HD}(r_{i-1}, r_i) \cdot \alpha + \sigma$
- lacktriangle Yes, sometime people try to characterize δ and use more precise models with weights:
- $\alpha \neq \beta, \beta = 1.1 \cdot \alpha$

- If a previous r_{i-1} and a new r_i register values are known, side-channel attacks use Hamming Distance model
- $i(r_{i-1} \to r_i) = \mathsf{HD}(r_{i-1}, r_i) \cdot \alpha + \sigma$
- lacktriangle Yes, sometime people try to characterize δ and use more precise models with weights:
- $\alpha \neq \beta, \beta = 1.1 \cdot \alpha$
- In that case our previous Hamming distance become equal:
- $i(0xD4 \rightarrow 0x6C) = 2 \cdot \alpha + 2 \cdot \beta + \sigma = 2 \cdot \alpha + 2 \cdot 1.1 \cdot \alpha + \sigma = 4.2 \cdot \alpha + \sigma$

- If a previous r_{i-1} and a new r_i register values are known, side-channel attacks use Hamming Distance model
- $i(r_{i-1} \to r_i) = \mathsf{HD}(r_{i-1}, r_i) \cdot \alpha + \sigma$
- lacktriangle Yes, sometime people try to characterize δ and use more precise models with weights:
- $\alpha \neq \beta, \beta = 1.1 \cdot \alpha$
- In that case our previous Hamming distance become equal:
- $i(0xD4 \rightarrow 0x6C) = 2 \cdot \alpha + 2 \cdot \beta + \sigma = 2 \cdot \alpha + 2 \cdot 1.1 \cdot \alpha + \sigma = 4.2 \cdot \alpha + \sigma$
- Characterisation of the coefficient θ : $\beta = \theta \cdot \alpha$ takes time, plus it might depend on the current operation

- If a previous r_{i-1} and a new r_i register values are known, side-channel attacks use Hamming Distance model
- $i(r_{i-1} \rightarrow r_i) = \mathsf{HD}(r_{i-1}, r_i) \cdot \alpha + \sigma$
- lacktriangle Yes, sometime people try to characterize δ and use more precise models with weights:
- $\alpha \neq \beta, \beta = 1.1 \cdot \alpha$
- In that case our previous Hamming distance become equal:
- $i(0xD4 \rightarrow 0x6C) = 2 \cdot \alpha + 2 \cdot \beta + \sigma = 2 \cdot \alpha + 2 \cdot 1.1 \cdot \alpha + \sigma = 4.2 \cdot \alpha + \sigma$
- Characterisation of the coefficient θ : $\beta = \theta \cdot \alpha$ takes time, plus it might depend on the current operation
- Nevertheless, if you get the key with the Hamming distance model you don't need to care of deeper characterisation

- The CPU computes $in \oplus key = out$ on 2-bit registers in and out
- Input values are known to an attacker (0,1,2,3)
- lacktriangle Output values are not known to an attacker; but for each *in* value he measured power consumption of the *out* register transition 0b00 o out

Time. ns

You need to find the key (by hands)

Hamming distance key points

- By looking into power consumption Hamming distance model can be distinguished: $i(r_{i-1} \rightarrow r_i) = \text{HD}(r_{i-1}, r_i) \cdot \alpha + \sigma$
- The "pen and pensil" attack is kind of side-channel attack
- Real side-channel attacks use slightly more advanced statistics than visual observations

■ What if you don't know the previous register value?

- What if you don't know the previous register value?
- The only approach is to use Hamming weight model: $i(0x00 \rightarrow r_i) = HW(r_i) \cdot \alpha + \sigma$

- What if you don't know the previous register value?
- The only approach is to use Hamming weight model: $i(0x00 \rightarrow r_i) = HW(r_i) \cdot \alpha + \sigma$
- Hamming weight model also works when the previous register value r_{i-1} is random

■ Why Hamming weight model works even if the previous register value r_{i-1} is random

- Why Hamming weight model works even if the previous register value r_{i-1} is random
- Consider a situation of 1 single flip-flop (one bit)

- Why Hamming weight model works even if the previous register value r_{i-1} is random
- Consider a situation of 1 single flip-flop (one bit)
- Many measurements of the operations i(X o 0) and i(X o 1) are performed

- Why Hamming weight model works even if the previous register value r_{i-1} is random
- Consider a situation of 1 single flip-flop (one bit)
- Many measurements of the operations i(X o 0) and i(X o 1) are performed
- An attacker only knowns that previous flip-flop value X is random (however he knows the new register value)

■ Let us average the power measurements for $i(X \rightarrow 0)$ and $i(X \rightarrow 1)$

$$\sum_{0}^{n} \frac{i(X \to 0)}{n} = \sum_{0}^{n/2} \frac{i(0 \to 0)}{n/2} + \sum_{0}^{n/2} \frac{i(1 \to 0)}{n/2} + \sum_{0}^{n} \frac{\sigma}{n} = 0 + \alpha + const$$

$$\sum_{0}^{n} \frac{i(X \to 1)}{n} = \sum_{0}^{n/2} \frac{i(0 \to 1)}{n/2} + \sum_{0}^{n/2} \frac{i(1 \to 1)}{n/2} + \sum_{0}^{n} \frac{\sigma}{n} =$$

$$= \beta + 0 + const = \alpha + \delta + 0 + const$$

■ Remember this excersise?

- So far we have considered three pieces of the puzzle:
 - CMOS power consumption to understand the nature of leakage
 - Law of large numbers to deal with noise
 - Power consumption models
- This is normal if you did not catch any of the topics

- So far we have considered three pieces of the puzzle:
 - CMOS power consumption to understand the nature of leakage
 - Law of large numbers to deal with noise
 - Power consumption models
- This is normal if you did not catch any of the topics
- We will consider them by excersises

- So far we have considered three pieces of the puzzle:
 - CMOS power consumption to understand the nature of leakage
 - Law of large numbers to deal with noise
 - Power consumption models
- This is normal if you did not catch any of the topics
- We will consider them by excersises
- All the excersises will be based on AES examples

■ This time a developer left a debug option that prints out Hamming weights of bytes of the 10th round state $HW(S_{10})$ somewhere among other useless information and a ciphertext C. What can be wrong with that?

- This time a developer left a debug option that prints out Hamming weights of bytes of the 10th round state $HW(S_{10})$ somewhere among other useless information and a ciphertext C. What can be wrong with that?
- Find K_{10} and then get the master key using the provided code

AES-128 Assignment 3 Recap

C^1	18	 72
C ²	2f	 89
Ci		
C ⁿ	5d	 b7

	Random data				Rea	al leak	age	Random data		
L_t^1	7	3	8	4	5		8	6	2	
L_t^2	5	1	6	2	3		7	4	0	
L_t^i										
L _t ⁿ	1	6	2	7	3		5	0	5	

AES-128 Assignment 3 Solution scheme

Dependency between two vectors

142	f(142) o 78	78
147	$f(147) \rightarrow 25$	25
248	$f(248) \rightarrow 42$	42
132	$f(132) \rightarrow 126$	126
91	$f(91) \rightarrow 30$	30
50	$f(50) \rightarrow 100$	100
160	f(160) o 62	62

$$x f(x) \rightarrow y y$$

- A dependency between two vectors can be mathematically computed
- There are more than 40 different ways to compute the dependency
- We will focus on Pearson Correlation Coefficient

$$\rho = \frac{\sum_{i=0}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=0}^{n} (x_i - \bar{x}^2)} \sqrt{\sum_{i=0}^{n} (y_i - \bar{y}^2)}}$$

- Pearson Correlation Coefficient shows only if the two vectors have linear dependency
- PCC takes values from -1 to 1

■ This time a developer left a debug option that prints out Hamming weights of bytes of the 10th round state $HW(S_{10})$ among other useless information and a ciphertext C. All the information (except the ciphertext) has noise. What can be wrong with that?

- This time a developer left a debug option that prints out Hamming weights of bytes of the 10th round state $HW(S_{10})$ among other useless information and a ciphertext C. All the information (except the ciphertext) has noise. What can be wrong with that?
- Find K_{10} and then get the master key using the provided code

AES-128 Assignment 4 Recap

C^1	18	 72
C ²	2f	 89
Ci		
C ⁿ	5d	 b7

	Random data				Leaka	age +	noise	Rando	m data
L_t^1	7.8	4.4	8	4.6	5.5		8.4	7	3.6
L_t^2	6.1	2.7	6.3	2.9	3.8		7.7	5.3	1.9
L_t^i									
L _t ⁿ	2.7	6.3	2.9	8.5	4.4		6.3	1.9	5.5

AES-128 Assignment 3 Recap

C^1	18	:	72
C ²	2f		89
Ci			
C ⁿ	5d		b7

	Random data				Rea	al leak	age	Random data		
L_t^1	7	3	8	4	5		8	6	2	
L_t^2	5	1	6	2	3		7	4	0	
L_t^i										
L_t^n	1	6	2	7	3		5	0	5	

Python code for:

- Pearson Correlation Coefficient
- Spearman Correlation Coefficient
- Mutual Information

```
import numpy
from scipy import stats
from sklearn.metrics import adjusted_mutual_info_score
arr1 = numpy.random.randint(0,20, (5000))
arr2 = numpy.random.randint(0,20, (5000))
pcc = numpy.corrcoef(arr1, arr2)[0,1]
sp = scipy.stats.spearmanr(arr1, arr2)[0]
mi = adjusted_mutual_info_score(arr1,arr2)
print('PCC SP MI', pcc, sp, mi)
```

PCC, SP, MI

- This time we have real power measurements taken during AES-128 software implementation on ESP32
- Find the master key

Thank you!

Roman Korkikian, Nicolas Oberli

Side-channels and Fault Attacks February 23rd, 2023 - June 29th, 2023

