→ Assignment 5

Karthik R

21BIT0023

import numpy as np
import pandas as pd

df=pd.read_csv('/content/Mall_Customers.csv')
df

\Rightarrow		CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	
	0	1	Male	19	15	39	ıl.
	1	2	Male	21	15	81	
	2	3	Female	20	16	6	
	3	4	Female	23	16	77	
	4	5	Female	31	17	40	
	195	196	Female	35	120	79	
	196	197	Female	45	126	28	
	197	198	Male	32	126	74	
	198	199	Male	32	137	18	
	199	200	Male	30	137	83	

200 rows × 5 columns

df.shape

(200, 5)

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 200 entries, 0 to 199 Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype					
0	CustomerID	200 non-null	int64					
1	Gender	200 non-null	object					
2	Age	200 non-null	int64					
3	Annual Income (k\$)	200 non-null	int64					
4	Spending Score (1-100)	200 non-null	int64					
dtyp	es: int64(4), object(1)							
memory usage: 7.9+ KB								

df=df.drop(columns=['CustomerID'],axis=1)

df.head()

	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	Male	19	15	39
1	Male	21	15	81
2	Female	20	16	6
3	Female	23	16	77
4	Female	31	17	40

df.isnull().any()

Gender False
Age False
Annual Income (k\$) False

Spending Score (1-100) False dtype: bool

df.describe()

	Age	Annual Income (k\$)	Spending Score (1-100)	
count	200.000000	200.000000	200.000000	ılı
mean	38.850000	60.560000	50.200000	
std	13.969007	26.264721	25.823522	
min	18.000000	15.000000	1.000000	
25%	28.750000	41.500000	34.750000	
50%	36.000000	61.500000	50.000000	
75%	49.000000	78.000000	73.000000	
max	70.000000	137.000000	99.000000	

import matplotlib.pyplot as plt

import seaborn as sns

plt.figure(figsize=(4,4))
plt.bar(df['Age'], df['Spending Score (1-100)'])

<BarContainer object of 200 artists>

plt.figure(figsize=(4,4))
plt.scatter(df['Annual Income (k\$)'], df['Spending Score (1-100)'])

<matplotlib.collections.PathCollection at 0x7a4b62fc8370>

sns.pairplot(df)

<ipython-input-13-6aab38f112ea>:2: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future ver sns.heatmap(df.corr(),annot=True)

plt.figure(figsize=(4,4))
plt.boxplot(df['Annual Income (k\$)'])
plt.show()

```
plt.figure(figsize=(4,4))
plt.boxplot(df['Spending Score (1-100)'])
plt.show()
```



```
plt.figure(figsize=(4,4))
plt.boxplot(df['Age'])
plt.show()
```



```
q1=df['Annual Income (k$)'].quantile(0.25)
q3=df['Annual Income (k$)'].quantile(0.75)
IQR=q3-q1
upper_limit=q3+(1.5*IQR)
lower_limit=q1-(1.5*IQR)
```

```
df.median()
```

```
df['Annual Income (k$)']=np.where(df['Annual Income (k$)']>upper_limit,61.5,df['Annual Income (k$)'])
plt.figure(figsize=(4,4))
plt.boxplot(df['Annual Income (k$)'])
```

plt.show()

from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df['Gender'] = le.fit_transform(df['Gender'])
df.head()

	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	19	15.0	39
1	1	21	15.0	81
2	0	20	16.0	6
3	0	23	16.0	77
4	0	31	17.0	40

from sklearn.preprocessing import MinMaxScaler
scale=MinMaxScaler()
df=pd.DataFrame(scale.fit_transform(df),columns=df.columns)
df.head()

\blacksquare	Spending Score (1-100)	Annual Income (k\$)	Age	Gender	
ılı	0.387755	0.000000	0.019231	1.0	0
	0.816327	0.000000	0.057692	1.0	1
	0.051020	0.009009	0.038462	0.0	2
	0.775510	0.009009	0.096154	0.0	3
	0.397959	0.018018	0.250000	0.0	4

from sklearn import cluster

```
error=[]
for i in range(1,11):
    kmeans = cluster.KMeans(n_clusters=i,init = 'k-means++',random_state=0)
    kmeans.fit(df)
    error.append(kmeans.inertia_)
```

```
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from the control of the con
                   warnings.warn(
 /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from the control of the con
                   warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from the control of the con
                   warnings.warn(
 /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from the control of the con
                   warnings.warn(
 /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from
                   warnings.warn(
 /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from the control of the con
                   warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change fro
                   warnings.warn(
 /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change fro
                   warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from the default value of `n_init' will change from the default will be applied of `
                   warnings.warn(
 /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from the control of the con
                   warnings.warn(
```

error

```
[87.64248645238291,
38.256261727718496,
30.53615452035527,
23.37397528270042,
20.102172077784857,
17.128172918518988,
14.850573520364879,
12.608723763869847,
10.917668890407121,
9.591940516007261]
```

```
plt.plot(range(1,11),error)
plt.title('Elbow method')
plt.xlabel('number of clusters')
plt.ylabel('error')
plt.show()
```


km_model = cluster.KMeans(n_clusters=4,init = 'k-means++',random_state=0)

km_model.fit(df)

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change fro warnings.warn(

```
KMeans
KMeans(n_clusters=4, random_state=0)
```

km_model.predict([[1,0.2,0.07,0.8]])

/usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but KMeans was fitte warnings.warn(array([3], dtype=int32)

```
km_model.predict([[0,0.2,0.07,0.8]])
```

4

/usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but KMeans was fitte warnings.warn(array([1], dtype=int32)

→