Cvičení 1 – Komplexní analýza 2024/2025 Týden 1

Úloha 1. Určete reálnou a imaginární část komplexního čísla z. Dále určete velikost z.

(a)
$$z = (3-i)^2 + \frac{1+i^{11}}{1+i}$$

(b) $z = \frac{i^{12}}{(1+2i)^2}$

(b)
$$z = \frac{i^{12}}{(1+2i)^2}$$

Úloha 2. Určete r > 0 a (nějaké) $\varphi \in \mathbb{R}$ tak, aby platilo $z = r(\cos \varphi + i \sin \varphi) = re^{i\varphi}$, kde

(a)
$$z = -2 + i$$
;

(b)
$$z = -1 + 3i^{43};$$

(c) $z = \frac{i^{31}}{2-i}.$

(c)
$$z = \frac{i^{31}}{2-i}$$
.

Úloha 3. Určete velikost a v jakém leží kvadrantu komplexní číslo z. Přibližně ho zakreslete do komplexní roviny. Dále určete hlavní hodnotu argumentu čísla z.

(a)
$$z = 5\left(\cos(-\frac{399}{200}\pi) + i\sin(-\frac{399}{200}\pi)\right);$$

(b) $z = (-3 - 3i)e^{\frac{\pi}{3}i};$
(c) $z = (5 - 5i)^{11}.$

(b)
$$z = (-3 - 3i)e^{\frac{\pi}{3}i}$$

(c)
$$z = (5-5i)^{11}$$

Úloha 4. Nechť $z, w \in \mathbb{C} \setminus \{0\}, \ \varphi \in \operatorname{Arg} z \ a \ \psi \in \operatorname{Arg} w. \ Dokažte^1, \ \check{z}e \ z = w \ tehdy \ a \ jen \ tehdy, \ když$ |z|=|w| a $\varphi=\psi+2k\pi$ pro nějaké $k\in\mathbb{Z}.$

Úloha 5. Nalezněte všechna řešení následujících binomických rovnic.

(a)
$$z^4 = 81i$$

(b)
$$z^5 = 1$$

(c)
$$z^2 - 2 - 2i = 0$$

Pro nudící se

Úloha 6. O číslu $z \in \mathbb{C}$ víme, že leží na přímce $\operatorname{Re} z = \operatorname{Im} z$ a jeho velikost je 4. Najděte algebraický tvar $\check{c}isla\ (-4+4i)z$.

Úloha 7. Pro dané $n \in \mathbb{N}$ nalezněte všechna řešení rovnice $z^n = \bar{z}$.

Úloha 8. Popište geometricky množinu všech $z \in \mathbb{C}$ splňujících

(a)
$$|z+1|=2$$
;

(b)
$$|z-1| < 1$$
 a $|z| = |z-2|$;
(c) $|z|^2 > z + \bar{z}$;

(c)
$$|z|^2 > z + \bar{z}$$

(d)
$$\operatorname{Re} z = |z - 2|$$
.

¹Alespoň přesvědčivým obrázkem.

Komplexní čísla, úvod

Připomenutí.

- Mějme z = x + yi, $kde \ x, y \in \mathbb{R}$. x je **reálná část** čísla z, y je **imaginární část** čísla z. Píšeme $\operatorname{Re} z = x$ a $\operatorname{Im} z = y$. Reálná i imaginární část jsou reálná čísla. Geometricky je z bod v rovinně o souřadnicích (x,y).
- Velikost komplexního čísla z = x + yi je $|z| = \sqrt{x^2 + y^2}$.
- Komplexně sdružené číslo k číslu z = x + yi je číslo $\bar{z} = x yi$.
- Platí $z\bar{z} = |z|^2 \ge 0$.
- Goniometrický tvar komplexního čísla $z \neq 0$ je vyjádření

$$z = |z|(\cos\varphi + i\sin\varphi),$$

 $kde \ \varphi \in \mathbb{R}$. Píšeme $\varphi \in \operatorname{Arg} z$. Označíme-li pro $\varphi \in \mathbb{R}$

$$(\cos\varphi + i\sin\varphi) = e^{i\varphi},$$

pak můžeme psát stručněji

$$z = |z|e^{i\varphi}$$
.

To budeme nazývat exponenciální tvar kompexního čísla $z \neq 0$. Goniometrický/Exponenciální tvar není jednoznačný (je-li $\varphi \in \operatorname{Arg} z$, pak také $\varphi + 2k\pi \in \operatorname{Arg} z$ pro každé $k \in \mathbb{Z}$). Je-li navíc $\varphi \in (-\pi, \pi]$, říkáme, že φ je hlavní hodnota argumentu čísla z, a píšeme $\operatorname{arg} z = \varphi$.

• Moivreova věta říká, že pro každé $n \in \mathbb{Z}$ a $\varphi \in \mathbb{R}$ platí

$$(\cos \varphi + i \sin \varphi)^n = \cos(n\varphi) + i \sin(n\varphi).$$

Stručněji:

$$(e^{i\varphi})^n = e^{in\varphi}.$$

• Binomické rovnice jsou rovnice tvaru

$$z^n = w$$
,

 $kde\ n\in\mathbb{N}\ a\ w\in\mathbb{C}\setminus\{0\}\ jsou\ dána.\ Binomická\ rovnice\ má\ právě\ n\ různých\ řešení\ (v\ komplexním\ oboru).\ Geometricky\ řešení\ binomické\ rovnice\ tvoří\ vrcholy\ pravidelného\ n-úhelníku.$

Výsledky

- Úloha 1: (a) Re z=8, Im z=-7, $|z|=\sqrt{113}$ (b) Re $z=-\frac{3}{25}$, Im $z=-\frac{4}{25}$, $|z|=\frac{1}{5}$ Úloha 2: (a) $r=|z|=\sqrt{5}$, $\varphi=\frac{\pi}{2}+\arctan 2$ (toto je navíc hlavní hodnota argumentu z)
 - (b) $r=|z|=\sqrt{10},\, \varphi=-\pi+\arctan 3$ (toto je navíc hlavní hodnota argumentu z)
- (b) $r = |z| = \sqrt{10}$, $\varphi = -\pi + \arctan 3$ (toto je navic niavni nodnota argument (c) $r = |z| = \frac{\sqrt{5}}{5}$, $\varphi = -\arctan 2$ (toto je navíc hlavní hodnota argumentu z) Úloha 3: (a) |z| = 5, 1. kvadrant, $\arg z = \frac{1}{200}\pi$ (b) $|z| = \sqrt{18}$, 4. kvadrant, $\arg z = -\frac{5}{12}\pi$ (c) $|z| = (\sqrt{50})^{11}$, 3. kvadrant, $\arg z = -\frac{3}{4}\pi$ Úloha 5: (a) $z_k = 3e^{i(\frac{\pi}{8} + \frac{k\pi}{2})}$, k = 0, 1, 2, 3(b) $z_k = e^{i\frac{2k\pi}{5}}$, k = 0, 1, 2, 3, 4(c) $z_k = \sqrt[4]{8}e^{i(\frac{\pi}{8} + k\pi)}$, k = 0, 1

- Úloha 6: $(-4+4i)z = -4\sqrt{32}$
- Úloha 7: Pro n=1 je řešení libovolné $z\in\mathbb{R}$; pro n>1 je řešení z=0 a také $z_m=\cos\varphi_m+i\sin\varphi_m$, kde $\varphi_m=\frac{2m\pi}{n+1},\ m=0,1,\ldots,n$.
- Úloha 8: (a) Kružnice o středu -1 a poloměru 2.
 - (b) Úsečka bez krajních bodů 1 + i a 1 i.
 - (c) Množina bodů ležících vně kružnice o středu 1 a poloměru 1.
 - (d) Parabola o rovnici $4(x-1) = y^2$.