Deep Face Recognition: Survey

Mei Wang, Weihong Deng School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing, China.

20151739 공대현

Face Recognition(FR)의 발전

-2014년을 기점으로 DL 사용 -> 비약적인 정확도 상승

Main Point of Face Recognition

- Face Processing
- Loss Function

Gallery: Subjects enrolled in the system (Training Data)

Probe : New Subjects (Test Data)

Prior Knowledge

- Face Verification
- $r(x_1, x_2) = log \frac{P(x_1, x_2 | H_I)}{P(x_1, x_2 | H_F)}$ - 두 사람(Gallery-Probe)이 같은 사람인지 비교
- Face Identification
- 여러 사람 중 가장 비슷한 사람 찾아냄(Gallery에서 Probe와 가장 비슷한 사람 찾아냄)
- Both use Feature Similarity (Metric)

Introduction Face Processing Loss Function Challenges

Prior Knowledge

Test image가 Training set에 있냐 없냐 [2

Introduction Face Processing Loss Function Challenges

Prior Knowledge

Dataset

TABLE VI
THE COMMONLY USED FR DATASETS FOR TRAINING

Datasets	Publish Time	#photos	#subjects	# of photos per subject ¹	Key Features
MS-Celeb-1M	2016	10M	100,000	100	breadth; central part of long tail;
(Challenge 1)[69]	2010	3.8M(clean)	85K(clean)	100	celebrity; knowledge base
MS-Celeb-1M	2016	1.5M(base set)	20K(base set)	1/-/100	low-shot learning; tailed data;
(Challenge 2)[69]	2010	1K(novel set)	1K(novel set)	17-7100	celebrity
MS-Celeb-1M	2018	4M(MSv1c)	80K(MSv1c)		breadth;central part of long tail;
(Challenge 3) [2]	2018	2.8M(Asian-Celeb)	100K(Asian-Celeb)	-	celebrity
ManaFana [105] [145]	2016	4.7M	672,057	3/7/2469	breadth; the whole long
MegaFace [105], [145]					tail;commonalty
VCCF2222 [22]	2017	3.31M	9,131	87/362.6/843	depth; head part of long tail; cross
VGGFace2 [22]	2017	3.31W	9,131	07/302.0/043	pose, age and ethnicity; celebrity
CASIA WebFace [243]	2014	494,414	10,575	2/46.8/804	celebrity
UMDFaces-Videos [10]	2017	22,075	3,107	_	video
VGGFace [149]	2015	2.6M	2,622	1,000	depth; celebrity; annotation with
					bounding boxes and coarse pose
CelebFaces+ [187]	2014	202,599	10,177	19.9	private
Google [176]	2015	>500M	>10M	50	private
Facebook [195]	2014	4.4M	4K	800/1100/1200	private

¹ The min/average/max numbers of photos or frames per subject

- -Conditions (**Poeses**, illumination, expressions, occlusion ...) affect Performance of FR -> need to be data-processed
- "One-to-many augmentation": single image -> images of the pose variability (ex: 정면 -> 여러각도의 얼굴 생성)
- "Many-to-one normalization": recovering the canonical view of face images from one or many images of a nonfrontal view (ex : 여러각도의 얼굴 -> 정면으로 normalize)

Introduction

Challenges

- DA GAN (Dual Agent GAN)

(a) Refined results of DA-GAN.

- CG GAN (Dual Agent GAN)

use the first 200 subjects under 9 poses ($-60^{\circ} \sim +60^{\circ}$) and 20 illuminations for training, and use the remaining 137 subjects under 9 poses and 20 illuminations for testing

FIR Method	0°	15°	30°	45°	60°	Average
Cross-genrating Frontal representation Remote coding	99.7 99.1 98.7	97.9	97.2 93.8 93.0	93.9 91.2 89.8	85.3 82.4 80.5	94.5 92.1 90.9

Table III BENCHMARK COMPARISION OF RECOGNITION RATES (%) ON MULTI-PIE

Method	0°	15°	30°	45°	60°	Average
Zhu et al. [3] Yim et al. [7] Tran et al. [2]	94.3 99.5 97.0	90.7 95.0 94.0	80.7 88.5 90.1	64.1 79.9 86.2	45.9 61.9 83.2	72.9 83.3 89.2
CG-GAN	99.7	99.1	97.2	93.9	85.3	94.5

Towards Open-Set Identity Preserving Face Synthesis

- Different Data Processing Approaches

TABLE I
DIFFERENT DATA PREPROCESSING APPROACHES

Data processing	Brief Description	Subsettings
one to many	generating many patches or images of the pose variability from a single image	3D model [139], [137], [165], [166], [53] [67], [197], [196] 2D deep model [279], [267], [182] data augmentation [124], [276], [51] [222], [187], [188], [192], [202]
many to one	recovering the canonical view of face images from one or many images of nonfrontal view	SAE [101], [264], [240] CNN [278], [280], [89], [37], [246] GAN [91], [198], [41], [249]

Softmax Loss: if intra-variation > inter-variation, not good

• Euclidean-distance-based loss: metric learning method

$$\mathcal{L} = y_{ij} max \left(0, \|f(x_i) - f(x_j)\|_2 - \epsilon^+\right) \\ + (1 - y_{ij}) max \left(0, \epsilon^- - \|f(x_i) - f(x_j)\|_2\right)$$
 [If $x_i = x_j$, $y_{ij} = 1 \rightarrow$ verification | the following states of the interval of the property of the interval of the property of the interval of the interv

FaceNet : Triplet Loss $\|f(x_i^a) - f(x_i^p)\|_2^2 + \alpha < -\|f(x_i^a) - f(x_i^n)\|_2^2$

Minimizes the distance between an anchor and a positive sample of the same identity and maximizes the distance between the anchor and a negative sample of a different identity

단점: Training instability due to the selection of effective training samples

Euclidean-distance-based loss: metric learning method

$$\mathcal{L}_C = \frac{1}{2} \sum_{i=1}^{m} \|x_i - c_{y_i}\|_2^2$$

 $\mathcal{L}_C = rac{1}{2} \sum_{i=1}^m \|x_i - c_{y_i}\|_2^2$ 단점 : Massive GPU memory consumption on the classification layer

Centor loss:

-Angular/cosine-margin-based Loss

Hypersphere Manifold with an angular margin

단점: clean dataset이 아니면 성능이 Centor loss나 Softmax보다 안좋다

$$\mathcal{L}_i = -log\left(\frac{e^{\|W_{yi}\|\|x_i\|\varphi(\theta_{yi})}}{e^{\|W_{yi}\|\|x_i\|\varphi(\theta_{yi}) + \sum_{j \neq y_i} e^{\|W_{yi}\|\|x_i\|\cos(\theta_j)}}}\right)$$

A-Softmax

-Angular/cosine-margin-based Loss

TABLE V DECISION BOUNDARIES FOR CLASS 1 UNDER BINARY CLASSIFICATION CASE, WHERE \hat{x} IS THE NORMALIZED FEATURE. [42]

Loss Functions	Decision Boundaries
Softmax	$(W_1 - W_2) x + b_1 - b_2 = 0$
L-Softmax [126]	$ x (W_1 \cos(m\theta_1) - W_2 \cos(\theta_2)) > 0$
A-Softmax [125]	$ x \left(\cos m\theta_1 - \cos \theta_2 \right) = 0$
CosineFace [205]	$\hat{x}\left(\cos\theta_1 - m - \cos\theta_2\right) = 0$
ArcFace [42]	$\hat{x}\left(\cos\left(\theta_1+m\right)-\cos\theta_2\right)=0$

	Megaface challenge1					
	Fa	ceScrub	FGNet			
Method	Rank1	TPR	Rank1	TPR		
Method	$@10^{6}$	$@10^{-6}$ FPR	$@10^{6}$	$@10^{-6}$ FPR		
Arcface [42]	0.9836	0.9848	-	-		
Cosface [205]	0.9833	0.9841	-	-		
A-softmax [125]	0.9743	0.9766	-	-		
Marginal loss [43]	0.8028	0.9264	0.6643	0.4370		

Challenges

- Data noise
- Data bias (Age, Race, Pose...)

Reference

file:///C:/Users/kdh46/iCloudDrive/papers/Face Recognition Survey kong.pdf#page=24&zoom=100,65,790