Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Институт Перспективной инженерии Департамент цифровых и робототехнических систем и электроники

ОТЧЕТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ № 3 дисциплины «Программирование на Python»

	Выполнил: Мендеш Пашкоал Педру 1 курс, группа ИВТ-6-о-24-1, 09.03.01 «Информатика и Вычислительная техника», направленность (профиль) «Программное обеспечение средств вычислительной техники и автоматизированных систем», очная форма
	обучения (подпись) Руководитель практики: Воронкин Роман А. доцент факультета цифровых, робототехнических систем и электроники института перспективной
Отчет защищен с оценкой	инженерии. (подпись) Дата защиты

Ставрополь, 2025 г.

Тема: Условные операторы и циклы в языке Python

Цель: приобретение навыков программирования разветвляющихся алгоритмов и алгоритмов циклической структуры. Освоить операторы языка Python версии 3.х if, while, for, break и continue, позволяющих реализовывать разветвляющиеся алгоритмы и алгоритмы циклической структуры.

выполненные этапы:

- 1. Изучили теоретический материал по условным операторам и циклам в Python
- 2. Создали программный код в среде PyCharm:
 - 4 индивидуальных задания
 - 2 примера из лабораторной работы

Пример 4. Найти значение квадратного корня $x=\sqrt{a}$ из положительного числа a вводимого с клавиатуры, с некоторой заданной точностью ε с помощью рекуррентного соотношения:

$$x_{n+1} = rac{1}{2} \cdot igg(x_n + rac{a}{x_n} igg).$$

В качестве начального значения примем $x_0=1$. Цикл должен выполняться до тех пор, пока не будет выполнено условие $|x_{n+1}-x_n|\leq \varepsilon$. Сравните со значением квадратного корня, полученным с использованием функций стандартной библиотеки. Значение $\varepsilon=10^{-10}$.

Решение: Напишем программу для решения поставленной задачи.

Рис. 1. Пример 4

```
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import math
import sys

if __name__ == '__main__':
    a = float(input("Value of a? "))
    if a < 0:
        print("Illegal value of a", file=sys.stderr)
        exit(1)

x, eps = 1, le-10
while True:
    xp = x
    x = (x + a / x) / 2
    if math.fabs(x - xp) < eps:
        break

print(f"x = {x}")
print(f"x = {math.sqrt(a)}")</pre>
```

```
Run exemplo 4 ×

C:\Users\HP\laboratorio-python-condicionais-ciclos\.venv\Scripts\python.exe "C:\Users\HP\
Value of a? 4

x = 2.0

x = 2.0

Process finished with exit code 0
```

Рис. 2. Код, выполненный в PyCharm

Рис. 3. UML-диаграмма примера 4

Пример 5. Вычислить значение специальной (интегральной показательной) функции

$$\mathrm{Ei}(x) = \int_{-\infty}^x \frac{\exp t}{t} \ dt = \gamma + \ln x + \sum_{k=1}^\infty \frac{x^k}{k \cdot k!},$$

где $\gamma=0.5772156649\dots$ постоянная Эйлера, по ее разложению в ряд с точностью $\varepsilon=10^{-10}$, аргумент x вводится с клавиатуры.

Рис. 4. Пример 5

```
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import math
import sys

# Постоянная Эйлера.
EULER = 0.5772156649015328606
# Точность вычислений.
EPS = le-10

if __name__ == '__main__':
    x = float(input("Value of x? "))
    if x == 0:
        print("Illegal value of x", file=sys.stderr)
        exit(1)

a = x
S, k = a, 1

# Найти сумму членов ряда.
while math.fabs(a) > EPS:
    a *= x * k / (k + 1) ** 2
    S += a
    k += 1

# Вывести значение функции.
print(f"Ei({x}) = {EULER + math.log(math.fabs(x)) + S}")
```

```
Run

Exemplo 5 ×

C:\Users\HP\laboratorio-python-condicionais-ciclos\.venv\Scripts\python.exe "C:\Users\HP\laboratorio-python-condicionais-ciclos\.venv\Scripts\python.exe "C:\Users\HP\laboratorio-python-condicionais-ciclos\.venv\P\laboratorio-python-condicionais-ciclos\.venv\P\laboratorio-python-condicionais-ciclos\.venv\P\laboratorio-python-condicionais-ciclos\.venv\P\laboratorio-python-condicionais-ciclos\.venv\P\laboratori
```

Рис. 5. Выполненный код из примера 5

Рис. 6. UML-диаграмма примера 5

Индивидуальные задания

Задание 1

Решить задачу согласно варианта, составить UML-диаграмму деятельности и программу с использованием конструкций ветвления. Номер варианта необходимо получить у преподавателя.

3. Дано число т (1 < m \leq 7). Вывести на экран название дня недели, который соответствует этому номеру.

```
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import sys

if __name__ == '__main__':
    # Ввод номера дня недели
    m = int(input("Введите номер дня недели (1-7): "))

# Проверка и вывод соответствующего дня
if m == 1:
    print("Понедельник")
elif m == 2:
    print("Вторник")
elif m == 3:
    print("Среда")
elif m == 4:
    print("Четверт")
elif m == 5:
    print("Пятница")
elif m == 6:
    print("Суббота")
elif m == 7:
    print("Воскресенье")
else:
    print("Ошибка: номер должен быть от 1 до 7", file=sys.stderr)
    exit(1)
```

Рис. 7. Код, выполненный из индивидуальной задание 1

Рис. 8. UML-диаграмма задание 1

Задание 2

Решить задачу согласно варианта, составить UML-диаграмму деятельности и программу с использованием конструкций ветвления. Номер варианта необходимо получить у преподавателя.

3. Из трех действительных чисел а, в и с выбрать те, модули которых не меньше 4.

Рис. 9. Код, выполненный из индивидуальной задание 2

Рис. 10. UML-диаграмма задание 2

Задание 3

Составить UML-диаграмму деятельности и программу с использованием конструкций цикла для решения задачи. Номер варианта необходимо получить у преподавателя.

4. Начав тренировки, спортсмен пробежал 10 км. Каждый следующий день он увеличивал дневную норму на 10% от нормы предыдущего дня. Какой суммарный путь пробежит спортсмен за 7 дней?

```
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

if __name__ == '__main__':
    # Начальная дистанция
    daily_distance = 10.0 # км
    total_distance = 0.0

print("Расчет дистанции за 7 дней:")
print("День 1: {:.2f} км".format(daily_distance))

total_distance += daily_distance

# Расчет для дней 2-7
for day in range(2, 8):
    daily_distance = daily_distance * 1.10 # Увеличение на 10%
    total_distance += daily_distance
    print("День {}: {:.2f} км".format(day, daily_distance))

print("\пСуммарный путь за 7 дней: {:.2f}
км".format(total_distance))
```

```
Run  tarefa3_corrida_atleta ×

C:\Users\HP\AppData\Local\Programs\Python\Python313\python.exe "C:\Users\HP\Documents\2 ano\Програм Расчет дистанции за 7 дней:
День 1: 10.00 км
день 2: 11.00 км
день 3: 12.10 км
День 5: 14.64 км
День 5: 14.64 км
День 6: 16.11 км
День 7: 17.72 км

Суммарный путь за 7 дней: 94.87 км

Process finished with exit code 0
```

Рис. 11. Код, выполненный из индивидуальной задание 2

Рис. 12. UML-диаграмма задание 3

Задание повышенной сложности

Составить UML-диаграмму деятельности, программу и произвести вычисления вычисление значения специальной функции по ее разложению в ряд с точностью $\varepsilon=10^{-10}$, аргумент функции х вводится с клавиатуры. Номер варианта необходимо получить у преподавателя.

3. Интегральный гиперболический синус:

$$\mathrm{Shi}(x) = \int_0^x rac{\sh x}{t} \, dt = \sum_{n=0}^\infty rac{x^{2n+1}}{(2n+1)(2n+1)!}.$$

Рис 13. Задание 3 (вариант 3)

```
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import sys
import math

# Precisão desejada

EPS = 1e-10

def shi_series(x: float, eps: float = EPS) -> float:

# первый срок a0 = x
a = x
s = 0.0
k = 0
# Сложить, пока текущий член больше ерз по модулю
while abs(a) > eps:
s += a
# рекурсивное отношение:
# a_{k+1} = a_k * x^2 * (k + 1/2) / ((k + 1) * (2k + 3)^2)
denom = (k + 1) * (2 * k + 3) * (2 * k + 3)
a = a * (x * x) * (k + 0.5) / denom
k += 1
return s

if __name__ == "__main__":
    try:
    x = float(input("Value of x? "))
except Exception:
    print("Illegal value of x", file=sys.stderr)
    sys.exit(1)

result = shi_series(x, EPS)
print(f"Shi({x})) = {result:.12g}")
```

```
Run transport to the state of t
```

Рис. 14. Код, выполненный из повышенной сложности Задание

Рис. 15. UML-диаграмма из повышенной сложности Задание

- 3. Создали общедоступный репозиторий на GitHub:
 - Название репозитория : Laboratorio-python-condicionaisciclos
 - Ссылка: https://github.com/Pascoalpm/Laboratorio-python-condicionais-ciclos
- 4. Организовали структуру репозитория:
 - Папка src/tarefas/ файлы заданий
 - Папка src/exemplos/ файлы примеров
- 5. Добавили все файлы в репозиторий и выполнили коммиты

Comentado [PM1]: Ссылка на репозиторий GitHub

```
C:\Users\HP\laboratorio-python-condicionais-ciclos>dir src\taref
O volume na unidade C é Windows
O Número de Série do Volume é FEAB-2D4F
 Pasta de C:\Users\HP\laboratorio-python-condicionais-ciclos\src
\tarefas
15.10.2025 20:18
                       <DIR>
15.10.2025
15.10.2025
            20:10
                       <DIR>
                                   788 tarefal_dias_semana.py
            14:33
                                   584 tarefa2_modulo_numeros.py
15.10.2025
            14:43
15.10.2025 14:55
                                   712 tarefa3_corrida_atleta.py
15.10.2025 14:57
                                 1 930 tarefa_avancada_shi_function
. ру
                                        4 014 bytes
                4 arquivo(s)
                                9 369 489 408 bytes disponíveis
                2 pasta(s)
```

Рис. 16. Добавление задания в репозиторий

```
C:\Users\HP\laboratorio-python-condicionais-ciclos>git add src/exemplos/
C:\Users\HP\laboratorio-python-condicionais-ciclos>git commit -m "feat: adic iona exemplos 4 e 5 do material
[main f920229] feat: adiciona exemplos 4 e 5 do material
2 files changed, 0 insertions(+), 0 deletions(-)
create mode 100644 Exemplo 4.py
create mode 100644 Exemplo 5.py

C:\Users\HP\laboratorio-python-condicionais-ciclos>git push origin main
Enumerating objects: 4, done.
Counting objects: 100% (4/4), done.
Delta compression using up to 8 threads
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 401 bytes | 401.00 KiB/s, done.
Total 3 (delta 0), reused 0 (delta 0), pack-reused 0 (from 0)
To https://github.com/Pascoalpm/laboratorio-python-condicionais-ciclos.git
16af3f1..f920229 main -> main
```

Рис. 17. Добавление примеры в репозиторий

Рис. 18. Мой репозиторий со всеми добавленными файлами

Вывод

В ходе лабораторной работы были успешно выполнены все поставленные задачи.

ОТВЕТЫ НА КОНТРОЛЬНЫЕ ВОПРОСЫ:

1. Для чего нужны диаграммы деятельности UML?

Диаграммы деятельности UML используются для моделирования бизнес-процессов и рабочих процессов, визуализации последовательности действий, решений и потоков управления в системе.

2. Что такое состояние действия и состояние деятельности?

- Состояние действия атомарная операция, которая не может быть прервана (например, простое вычисление)
- Состояние деятельности составная операция, которая может быть декомпозирована и прервана

3. Какие нотации существуют для обозначения переходов и ветвлений?

- Переходы простые стрелки между действиями
- Ветвления ромбы с условиями [условие]
- Начало/Конец закрашенный круг и круг с границей

4. Какой алгоритм является алгоритмом разветвляющейся структуры?

Алгоритм, в котором вычислительный процесс осуществляется по разным ветвям в зависимости от выполнения условий (if-elif-else).

5. Чем отличается разветвляющийся алгоритм от линейного?

- Линейный последовательное выполнение операций
- Разветвляющийся выполнение разных операций в зависимости от условий

6. Что такое условный оператор? Какие существуют его формы?

7. Какие операторы сравнения используются в Python?

$$==$$
, $!=$, $<$, $>=$, is , is not, in, not in

8. Что называется простым условием?

Условие с одним логическим выражением:

9. Что такое составное условие?

Условие с несколькими выражениями, соединенными логическими операторами:

10. Какие логические операторы допускаются?

and, or, not

11. Может ли оператор ветвления содержать внутри себя другие ветвления?

Да, операторы if могут содержать другие операторы if внутри (вложенные условия).

12. Какой алгоритм является алгоритмом циклической структуры?

Алгоритм, в котором многократно повторяется выполнение одной и той же последовательности операций.

13. Типы циклов в языке Python:

- while- выполняется пока условие истинно
- for-выполняется для каждого элемента последовательности

14. Назначение и способы применения функции range:

Функция range генерирует последовательности чисел для использования в циклах:

range(stop)
range(start, stop)

range(start, stop, step)

15. Как с помощью range организовать перебор от 15 до 0 с шагом 2?

16. Могут ли быть циклы вложенными?

Да, циклы могут быть вложенными (один цикл внутри другого).

17. Как образуется бесконечный цикл и как выйти из него?

while True: #*Бесконечный цикл* if условие: break #*Выход из цикла*

18. Для чего нужен оператор break?

Для досрочного прерывания выполнения цикла.

19. Где употребляется оператор continue?

Используется в циклах для перехода к следующей итерации, пропуская оставшийся код текущей итерации.

20. Для чего нужны стандартные потоки stdout и stderr?

- stdout для вывода обычных данных
- stderr для вывода сообщений об ошибках

21. Как организовать вывод в stderr?

import sys print("Ошибка!", file=sys.stderr)

22. Назначение функции exit?

Завершение выполнения программы с кодом возврата:

exit(0) # Успешное завершение

exit(1) #Завершение с ошибкой