Project Report

A NOVEL METHOD FOR HANDWRITTEN DIGIT RECOGNITION SYSTEM

Team ID: **PNT2022TMID07046**

Team: BHAGYA LAKSHMI .S – Team Lead

ARUN KUMAR .S

DELICIA .R

KEERTHANA.N

KISHORE KUMAR.M

TABLE OF CONTENTS

1. INTRODUCTION

- 1.1Project Overview
- 1.2Purpose

2. LITERATURE SURVEY

- 2.1Existing problem
- 2.2References
- 2.3Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- 3.1Empathy Map Canvas
- 3.2Ideation & Brainstorming
- 3.3Proposed Solution
- 3.4Problem Solution fit

4. REQUIREMENT ANALYSIS

- 4.1Functional requirement
- 4.2Non-Functional requirements

5. PROJECT DESIGN

- 5.1Data Flow Diagrams
- 5.2 Solution & Technical Architecture
- 5.3User Stories

6. PROJECT PLANNING & SCHEDULING

- 6.1Sprint Planning & Estimation
- 6.2Sprint Delivery Schedule
- 6.3Reports from JIRA

7. CODING & SOLUTIONING (Explain the features added in the project along with code)

8. TESTING

- 8.1Test Cases
- 8.2User Acceptance Testing

9. RESULTS

9.1Performance Metrics

10. ADVANTAGES

11. DISADVANTAGES

12.CONCLUSION

13.FUTURE SCOPE

14.APPENDIX

- 14.1Source Code
- 14.2python code
- 14.3GitHub
- 14.4 Project Demo Link

1. INTRODUCTION

1.1 Project Overview

Machine learning and deep learning play an important role in computer technology and Artificial Intelligence. With the use of Deep Learning and Machine learning, human effort can be reduced in recognizing, learning, predictions and in many more areas. Handwritten Digit Recognition is the ability of Computer systems to recognize handwritten digits from various sources, such as images, documents, and so on. This project aims to let users take advantage of machine learning to reduce manual tasks in recognizing digits

1.2 Purpose

Digit Recognition system are capable of recognizing the digits from different sources like emails, bank cheques, papers, images, etc. and in different real-world scenarios for online handwriting recognition on computer, tablets or systems, recognize number plates of vehicles, processing bank cheque amounts, numeric enteries in forms filled up by hand (tax forms) and so on.

2. LITERATURE SURVEY

of hidden layers and batch size.

2.1 Existing problem

☐ The different architectures of CNN, hybrid CNN - RNN and CNNHMM
models, and domain - specific recognition system, are not thoroughly inquired
and evolutionary algorithms are not clearly explored for optimizing CNN
learning parameters ,the number of layers, learning rate and kernel sizes of convolutional filters.
☐ The fluctuation of accuracies for handwritten digits was observed for 15
epochs by varying the hidden layers. There is no clear explanation given for
observing variation in the overall classification accuracy by varying the number

2.2 Reference

S.N	AUTH	PAPER	JOURNAL/CONFE	PAGE	TEAR OF	DESCRIPT
O	OR	TITLE	RENCE	NO./VOLU	PUBLICAT	ION
	NAME		TITLE	ME NO	ION	
1	Savita	Improved	IEEE Sensors		2020	In this
	Ahla	Handwritt	Journal			paper,
	wat	en				with
	, Amit	Digit				the aim
	Chou	Recogniti				of
	dh	on				improvin
	ary,	Using				g
	Anan	Convoluti				the
	d	ona				performa
	Nayya	1 Neural				nce
	r,	Networks				of
	Saura	(CNN)				handwritt
	bh					en
	Singh					digit
	and					recogniti
	Byun					on,
	gu					they
	n					valuated
	Yoon.					variants
						of a
						convoluti
						on
						al neural
						network
						to
						avoid
						complex
						preproces
						Sin
						g, costly feature
						extractio
						n and a
						complex
						ensemble
						(classifier
						combinat
						ion
)
						approach
						6
						of a

						traditiona l recogniti on system.
2	Vijay ala xmi R Rudra s wami ma th, Bhava ni shank ar and Chann as andra	Handwritt en Digit Recogniti on using CNN	International Journal of Innovative Science and Research Technology	Volume -4 Issue- 6	2019	In this paper, the most widely used Machine learning algorithm s, KNN, SVM, RFC and CNN have been trained and tested on the same data in order acquire the comparis on between the classifier s
3	Fathm a Siddiq u e, Shad ma n Sakib and Md.	Recogniti on of Handwritt en Digit using Convoluti ona 1 Neural	5th International Conference on Advances in Electrical Engineering (ICAEE)		2019	In this paper, they observed the variation of accuracie s of CNN to

Abu	Network			classify
Bakr	in			handwritt
Siddi				en
u	with			digits for
	Tensorflo			15
e.				
	W			epochs
	and			using
	Comparis			various
	on			numbers
	of			of
	Performa			hidden
	nce			layers
	for			and
	Various			epochs
	Hidden			and to
	Layers			make the
				comparis
				on
				between
				the
				accuracie
				S.
				For this
				performa
				nce
				evaluatio
				n
				of CNN,
				they
				performe
				d
				the
				experime
				nt
				using
				Modified
				National
				Institute
				of
				Standards
				and
				Technolo
				gy(
				MN IST)
				dataset.
		1		<u> </u>

4	Akan	Review	International	Volume	2021	In this
	ks	on	Journal of	-9 Issue-	2021	paper,
	ha	Deep	Recent	5		Object
	Gupta	Learning	Technology			Character
	Gupta	Handwritt	and			Recogniti
	, Ravin	en	Engineering			on
	dr	Digit	(IJRTE)			(OCR) is
	a	Recogniti	(IJKTL)			used on
	Pratap	on				printed or
	Narw	using				document
	ari	Convoluti				ed
	a and	ona				letters to
	Madh	l Neural				convert
	av	Network				them into
	Singh	Network				text. The
	Siligii					database
						has
						training
						image
						database
						of
						60,000
						images
						and
						testing image
						database
						of
						10,000
						images.
						The
						KNN
						algorithm
						describes
						categoric
						al
						value by
						making
						use
						of
						majority
						of votes
						of votes
						K -
						nearest
						neighbors
						neignoors
	j			1	1	,

						the K value used to differ here
5	Md. Anwa r Hossa in and Md. Moho n Ali	Recogniti on of Handwritt en Digit using Convoluti ona I Neural Network (CNN)	Global Journal of Computer Science and Technology: D Neural & Artificial Intelligence	Volume 19 Issue2	2019	The goal of this work will be to create a model that will be able to identify and determin e the handwritt en digit from its image with better accuracy using using the concepts of Convolut ion al Neural Network and MNIST 9 dataset. Later it can be extended for character

			recogniti
			on
			and real
			time
			person's
			handwriti
			ng.
			The
			results
			can be
			made
			more
			accurate
			with
			more
			convoluti
			on
			layers
			and
			more
			number
			of
			hidden
			neurons

2.3 Problem Statement Definition

Handwriting recognition is one of the compelling research works going on because every individual in this world has their own style of writing. It is the capability of the computer to identify and understand handwritten digits or characters automatically. Because of the progress in the field of science and technology, everything is being digitalized to reduce human effort. Hence, there comes a need for handwritten digit recognition in many real time applications. MNIST data set is widely used for this recognition process and it has 70000 handwritten digits. We use Artificial neural networks to train these images and build a deep learning model. Web application is created where the user can upload an image of a handwritten digit, this image is analyzed by the model and the detected result is returned on to UI(User Interface)

PROBLEM STATEMENT - 1

Handwritten digit recognition system used in Banking sectors

This system can be used to overcome the following issues:

PROBLEM STATEMENT - 2

Handwritten digit recognition system used in Data Entry jobs

This system can be used to overcome the following issues:

3. IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

3.2 Ideation & Brainstorming

3.3 Proposed Solution

S NO.	PARAMETER	DESCRIPTION
	Problem	Handwriting recognition is one
	Statement	of the compelling research
	(Problem	works going on because every
	to be solved)	individual in this world has
		their own style of writing. It is
		the capability of the computer
		to identify and understand
		handwritten digits or characters
		automatically. Because of the
		progress in the field of science
		and technology, everything is
		being digitized to reduce human
		effort. Hence, there comes a
		need for handwritten digit
		recognition in many real-time
		applications. The user interacts
		with the UI (User Interface) to
		upload the image as input. The
		uploaded image is analyzed by
		the model which is integrated.
		Once the model analyses the
		uploaded image, the prediction
		is showcased on the UI.
2	Idea / Solution	Convolutional Neural Networks
	description	(CNN) has become one of the
		most appealing approaches and

		has been an ultimate factor in a variety of recent success and challenging machine learning applications. In our model we use AlexNet, which is one of the CNN architectures. AlexNet allows for multi-GPU training by putting half of the model's neurons on one GPU and the other half on another GPU. Not only does this mean that a bigger model can be trained, but it also cuts down on the training time. It also reduces the overfitting problem by Data Augmentation and Dropout.
3	Novelty / Uniqueness	Handwritten Digit Recognition is the capability of a computer to fete the mortal handwritten integers from different sources like images, papers,touch defenses, etc. And classify them into 10 predefined classes(0- 9). This is the existing method along with this we add some features to make our project unique among them
4	Social Impact / Customer Satisfaction	Even the unclear or blurred digits can be recognized after the removal of noise and data preprocessing. One such application is a handwritten digit recognition system that can be used in postal mail sorting, bank check processing, form data entry, etc.,
5	Business Model (Revenue Model)	Handwritten digit recognition is necessary because everything is digitalized. The benefits of handwritten digit recognizer is high. In the banking sector, it is very efficient. It is used to recognize the figures written on cheques. So, Varied handwriting of each and every person in the

		cheque can be identified. Handwritten addresses are difficult to sort by machine, not necessarily because of sloppy handwriting, but because people write all over the envelope. We have hard time segmenting handwritten addresses into their components, such as ZIP code or street address, because very few people print addresses neatly in a prescribed format. So, this problem can be solved using Handwritten digit recognition system.
6	Scalability of the Solution	In our model, AlexNet significantly outperformed as it is trained on a GTX 580 GPU with only 3 GB of memory which couldn't fit the entire network. So the network was split across 2 GPUs, with half of the neurons(feature maps) on each GPU. So, a greater accuracy can be attained by allowing multi-GPU training by putting half of the model's neurons on one GPU and the other half on another GPU.

3.4 Problem Solution fit

4. REQUIREMENT ANALYSIS

4.1 Functional requirement

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	Input Correlation	Digital image correlation is a technique that combines image registration and tracking methods for accurate 2D measurements of changes in images and recognizes the characters from the images.
FR-2	Data Preparation	Data preparation is the process of preparing raw data so that it is suitable for further processing and analysis.
FR-3	Feature Extraction	Feature extraction refers to the process of transforming raw data into numerical features that can be processed while preserving the information in the original data set.
FR-4	Character Classification	In character classification phase, the attributes of the data in the picture are compared to the classes in the database to determine in which class the picture belongs to.

4.2 Non-Functional requirement

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	Handwritten digit recognition is one of the major important issues in pattern recognition applications. Some of the applications for digit recognition include data entry forms, Bank check processing etc,.
NFR-2	Security	The applications of handwritten digit recognition can be used in the banking sector where it can be used to maintain the security pin numbers safely. It can be also used for blind-people by using sound output.
NFR-3	Reliability	Reliability indicates the probability that the system will perform its intended function for a larger period of sufficient time and also it will operate in a secured environment without any failures.
NFR-4	Performance	The standard implementations of neural networks achieve an accuracy of approximately (98–99)

5. PROJECT DESIGN

5.1 Data Flow Diagrams

5.2 Solution Architecture

The most accurate solution provided in this area directly or indirectly depends upon the quality as well as the nature of the material to be read. Various techniques have been described in this paper for character recognition in handwriting recognition system.

5.3TECHNICAL ARCHITECTURE

Table-1 : Components & Technologies:

S.No	Component	Description	Technology
1.	User Interface	How user interacts with application e.g. Web UI	HTML, CSS, JavaScript
2.	Application Logic-1	Model is built	Python
3.	Application Logic-2	Python model is deployed	IBM Watson Studio
4.	File Storage	Predicted outputs of the image are stored in a local folder.	Local Filesystem
5.	Machine Learning Model	To predict the image uploaded by the user.	Image Recognition Model
6.	Infrastructure (Server / Cloud)	Application Deployment on Local System / Cloud Local Server Configuration: Flask Cloud Server Configuration: IBM Watson Studio	Local, Cloud Foundry.

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source Frameworks	List the open-source frameworks used	Flask
2.	Security Implementations	List all the security / access controls implemented,	e.g. SHA-256, Encryptions, IAM
		use of firewalls etc.	Controls, OWASP etc.
3.	Scalable Architecture	High workload can be supported without	Technology used in the architecture is
		undergoing any major changes.	that with Python and the IBM cloud.
4.	Availability	Readily available enables the IT Infrastructure to	Technology used is IBM cloud.
		function when some of the components fail.	
5.	Performance	Performance technology is a field which uses	Technology used is python.
		various tools,processes and procedures in a	
		systematic and efficient manner to improve the	
		desired outcomes of individuals and organizations.	

5.4 USER STORIES

User Stories

Use the below template to list all the user stories for the product.

User Type	Functional	User	User Story / Task	Acceptance criteria	Priority	Release
	Requirement	Story				
	(Epic)	Number				
Customer	Dashboard	USN-1	As a user, they can see the information	I can see the	High	Sprint 1
			regarding the prediction of handwritten	information regarding		
			digit recognition.	digit recognition.		
	Launch	USN-2	On clicking the launch button, it will	I can see the launch	High	Sprint 1
			redirect the user to a page where the	button.		
			images to be predicted can be uploaded.			
	Upload	USN-3	Users can select the image from the local	I can upload the image.	High	Sprint 2
			storage.			
	Predict	USN-4	Once the image is uploaded, it will predict		High	Sprint 3
			the respective image.			
	Display	USN-5	The predicted image will be displayed	I can see the result with	High	Sprint 4
			with the accuracy chart.	accuracy.		

6. PROJECT PLANNING & SCHEDULING

- **6.1 Sprint Planning & Estimation**
- 6.2 Reports from JIRA

SPRINT 1

Date - October 24th, 2022 - October 29th, 2022

SPRINT 2

Date - October 31st, 2022 - November 5th, 2022

SPRINT 3

Date - November 7th, 2022 - November 13th, 2022

SPRINT 4

Date - November 14th, 2022 - November 19th, 2022

7. CODING & SOLUTIONING

7.1 Feature 1

- IoT device
- IBM Watson Platform
- Node red
- Cloudant DB
- Web UI
- MIT App Inventor
- Python code

7.2 Feature 2

- Login
- Verification Ticket Booking
- Adding rating

8.TESTING

Test case ID	Feature Type	Component	Test Scenario	Expected Result	Actual Result	Status
Homepage_TC_OO1	Functional	Home Page	Verify user is able to see the Homepage when clicked on the link	Home Page should be displayed.	Working as expected	Pass
Homepage_TC_OO2	UI	Home Page	Verify the UI elements in Homepage	Application should show below UI elements: a.choose file button b.predict button c.clear button	Working as expected	Pass
Homepage_TC_OO3	Functional	Home Page		Choose file popup screen must be displayed and user should be able to click on predict button	Working as expected	Pass
Homepage_TC_OO4	Functional	Home page	Verify user able to select invalid file format	Application won't allow to attach formats other than ".png, .jiff, .pjp, .jpeg, .jpg, .jpeg"	Working as expected	Pass
Predict_TC_OO5	Functional	Predict page	Verify user is able to navigate to the predict to and view the predicted result	User must be navigated to the predict page and must view the predicted result	Working as expected	Pass

8.2User Acceptance Testing Defect Analysis

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	0	0	0	0	0
Duplicate	0	0	0	0	0
External	0	0	0	0	0
Fixed	0	0	0	0	0
Not Reproduced	0	0	0	0	0
Skipped	0	0	0	0	0
Won't Fix	0	0	0	0	0
Totals	0	0	0	0	0

TEST CASE ANALYSIS

Section	Total Cases	Not Tested	Fail	Pass
Client Application	5	0	0	5
Security	5	0	0	5
Final Report Output	5	0	0	5
Performance	5	0	0	5

9. RESULTS9.1Performance MetricsModel Summary

Accuracy

CONFUSION MATRIX:

CLASSIFICATION REPORT:

	precision	recall	f1-score	support	
0	0.98	0.99	0.98	980	
1	0.98	0.99	0.99	1135	
2	0.97	0.98	0.97	1032	
3	0.99	0.97	0.98	1010	
4	0.98	0.97	0.98	982	
5	0.96	0.99	0.97	892	
6	0.98	0.98	0.98	958	
7	0.98	0.97	0.97	1028	
8	0.98	0.97	0.98	974	
9	0.96	0.96	0.96	1009	
accuracy			0.98	10000	
macro avg	0.98	0.98	0.98	10000	
weighted avg	0.98	0.98	0.98	10000	

PERFORMANCE METICES RESULT:

FERFORMANCE METICES RESULT.											
Locust Test Report											
During: 11/15/2022, 10:52:19 PM - 11/15/2022, 10:56:36 PM											
Target Host: http://127.0.0.1:5000/											
Script: locust	file.py										
Request Statistics											
Method	Name	# Requests	# Fails	Average (ms)	Min (ms)	Max (ms)	Average size (b	ytes)	RPS	Failures/s	
GET		67		17	12	24	5875		0.3	0.0	
GET	//predict	23	23	21	11	163	265		0.1	0.1	
	Aggregated	90	23	18	11	163	4441		0.4	0.1	
Respon	se Time St	atistics									
Method	Name	50%ile (ms)	60%ile (ms)	70%ile (ms)	80%ile (ms)	90%ile (ms)	95%ile (ms)	99%ile (n	ns)	100%ile (ms)	
GET		18	18	19	19	22	23	25		25	
GET	//predict	15	15	16	16	17	32	160		160	
	Aggregated	17	18	18	19	22	23	160		160	

10. ADVANTAGES

- The system not only produces a classification of the digit but also a rich description of the instantiation parameters which can yield information such as the writing style.
- The generative models can perform recognition driven segmentation
- In order to correctly initialize the dataset to be fit for utilizing in our proposed CNN model, data preparation is conducted as an essential first step of our proposed model.

11. DISADVANTAGES

- Cannot handle complex data
- Prone to occasional errors.

12. CONCLUSION

A novel convolutional neural network architecture based on data preparation, receptive field, data augmentation, optimization, normalization, regularization techniques for handwritten digit recognition. To guarantee the dataset does not contain any unnecessary details and that it is fit for applying in our CNN model, data preparation is conducted as an essential first step in our proposed model. Without applying data preparation to the raw data, it is highly possible that unnecessary data leads to misleading results. In our work, filter sizes are determined by calculating the size of the ERF. The model predicts the handwritten digit using a CNN network. During testing, the model achieved a 99.61% recognition rate. The proposed project is scalable and can easily handle a huge number of users. Since it is a web application, it is compatible with any device that can run a browser. This project is extremely useful in realworld scenarios such as recognizing number plates of vehicles, processing bank cheque amounts, numeric entries in forms filled up by hand (tax forms) and so on. There is so much room for improvement, which can be implemented in subsequent versions

13. FUTURE SCOPE

We believe that our proposed model can further be applied to other datasets. In contrast, as a future work, we find that it is worth taking further actions to improve our model performance in terms of how to perfectly learn and extract the local features in the hidden layers, and how to enhance the recognition ability in the fully connected layers to avoid mislabeling problems.

This project is far from complete and there is a lot of room for improvement. Some of the

improvements that can be made to this project are as follows:

- Add support to detect from digits multiple images and save the results
- Add support to detect multiple digits
- Improve model to detect digits from complex images
- Add support to different languages to help users from all over the world

14. APPENDIX

```
13.1 SOURCE CODE
HTML FILE
Index.html
<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta http-equiv="X-UA-Compatible" content="IE=edge">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>Handwritten Recognition System</title>
    <link rel="stylesheet" href="style.css">
</head>
<style>
body {
  background-image: url('0_uQhoT2C87TDr8EEz.jpg');
}
</style>
<body>
    <header class="header">
        <nav class="navbar">
            ul>
                 >
                     <a href="#">Home</a>
                 >
                     <a href="recognize.html">Recognize</a>
                 </nav>
    </header>
    <div class="bg-pic"></div>
    <main class="main">
    <h1 style="color:DodgerBlue;">Handwritten Digit Recognize System</h1>
        <em>
```

Handwritten Text Recognition is a technology that is much needed in this world as of today. This digit Recognition system is used to recognize the digits from different sources like emails, bank cheque, papers, images, etc. Before proper implementation of this technology we have relied on writing texts with our own hands which can result in errors. It's difficult to store and access physical data with efficiency. The project presents recognizing the handwritten digits (0 to 9) from the famous MNIST dataset. Here we will be using artificial neural networks convalution neural network.

```
</main>
</body>
</html>
```


14.2 APPLICATION

```
#Team ID PNT2022TMID07046
import numpy as np
import os
from PIL import Image
from flask import Flask, request, render template, url for
from werkzeug.utils import secure_filename, redirect
from gevent.pywsgi import WSGIServer
from keras.models import load_model
from keras.preprocessing import image
from flask import send_from_directory
UPLOAD_FOLDER = 'Static/uploads'
app = Flask( name )
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
model = load_model("models/mnistCNN.h5")
@app.route('/')
def index():
    return render_template('index.html')
@app.route('/predict', methods=['GET', 'POST'])
def upload():
    if request.method == "POST":
         f = request.files["image"]
         filepath = secure_filename(f.filename)
         f.save(os.path.join(app.config['UPLOAD_FOLDER'], filepath))
         upload_img = os.path.join(UPLOAD_FOLDER, filepath)
         img = Image.open(upload img).convert("L") # convert image to monochrome
         img = img.resize((28, 28)) # resizing of input image
         im2arr = np.array(img) # converting to image
         im2arr = im2arr.reshape(1, 28, 28, 1) # reshaping according to our requirement
         pred = model.predict(im2arr)
         num = np.argmax(pred, axis=1) # printing our Labels
         return render_template('predict.html', num=str(num[0]))
if name == ' main ':
    app.run(debug=True, threaded=False)
```

python code 2

import numpy as np import os

```
from PIL import Image
from flask import Flask, request, render template, url for
from werkzeug.utils import secure filename, redirect
from gevent.pywsgi import WSGIServer
from keras.models import load model
from keras.preprocessing import image
from flask import send_from_directory
UPLOAD_FOLDER = '/home/PycharmProjects/ibm-project/uploads'
app = Flask( name )
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
model = load model("mnistCNN.h5")
@app.route('/')
def index():
    return render_template('index.html')
@app.route('/predict', methods=['GET', 'POST'])
def upload():
    if request.method == "POST":
         f = request.files["image"]
         filepath = secure_filename(f.filename)
         f.save(os.path.join(app.config['UPLOAD_FOLDER'], filepath))
         upload_img = os.path.join(UPLOAD_FOLDER, filepath)
         img = Image.open(upload img).convert("L") # convert image to monochrome
         img = img.resize((28, 28)) # resizing of input image
         im2arr = np.array(img) # converting to image
         im2arr = im2arr.reshape(1, 28, 28, 1) # reshaping according to our requirement
         pred = model.predict(im2arr)
         num = np.argmax(pred, axis=1) # printing our Labels
         return render_template('predict.html', num=str(num[0]))
if __name__ == '__main__':
    app.run(debug=True, threaded=False)
predict.css
body{
      background-image:
url('https://static.vecteezy.com/system/resources/previews/000/622/564/original/ai-concept-vector.jpg');
      background-repeat: no-repeat;
      background-size: cover;
    #rectangle{
      width:400px;
      height:150px;
      background-color: #5796a5;
      opacity: 0.8;
      border-radius: 25px;
```

```
position:absolute;
      top:30%;
      left:50%;
      transform:translate(-50%,-50%);
    #ans{
  text-align: center;
  font-size: 40px;
  margin: 0 auto;
  padding: 3% 5%;
  padding-top: 9%;
  color: white;
Style.css
body{
  background:#CCD1D7;
#clear_button{
  margin-left: 15px;
  font-weight: bold;
  color: #2980B9;
#confidence{
  font-family: 'Josefin Sans', sans-serif;
  margin-top: 7.5%;
#content{
  margin: 0 auto;
  padding: 2% 15%;
  padding-bottom: 0;
}
.welcome{
   text-align: center;
   position: relative;
   color: honeydew;
   background-color:#0E6655;
   padding-top: 1%;
   padding-bottom: 1%;
   font-weight: bold;
   font-family: 'Prompt', sans-serif;
}
#team_id{
   text-align: right;
   font-size: 20px;
   padding-right: 3%;
#predict_button{
  margin-right: 15px;
  color: #2980B9;
  font-weight: bold;
#prediction_heading{
```

```
font-family: 'Josefin Sans', sans-serif;
  margin-top: 7.5%;
#result{
  font-size: 5rem;
#title{
  padding: 1.5% 15%;
  margin: 0 auto;
  text-align: center;
}
.btn {
     font-size: 15px;
     padding: 13px;
     -webkit-appearance: none;
     background: #D5D8DC;
     border: 1px solid #888;
     margin-top: 20px;
     margin-bottom: 20px;
}
.buttons\_div\{
  margin-bottom: 30px;
  margin-right: 80px;
.heading{
  font-family: 'Varela Round', sans-serif;
  font-weight: 700;
  font-size: 2rem;
  display: inline;
.leftside{
  text-align: center;
  margin: 0 auto;
  margin-top: 2%;
  /* padding-left: 10%; */
#frame{
  margin-right: 10%;
.predicted_answer{
  text-align: center;
  margin: 0 auto;
  padding: 3% 5%;
  padding-top: 0;
  /* padding-left: 10%; */
}
  font-family: 'Source Code Pro', monospace, sans-serif;
  margin-top: 1%;
```

```
@media (min-width: 720px) {
   .leftside{
     padding-left: 10%;
    }
}
```

14.3 GitHub link:

 $\underline{https://github.com/IBM-EPBL/IBM-Project-24826-1659949539}$

14.4 DEMO VIDEO

https://github.com/IBM-EPBL/IBM-Project-24826-1659949539/blob/main/Final%20Deliverables/Project_demo.mp4