A comparison of algorithms for Spatial-Temporal Data Imputation

Mengqi Liu

Project Overview

 Objective: impute missing values in spatial-temporal data

Challenge:

- Data does not fit MAR (missing at random)
- o In total, there are 56.7586% grid (see next slides) has value.
- Grids in different area has different distribution

Task Description - Input & Output

Temporal Settings in previous experiments (X for input, y for output)

- 3x3 grids (including current grid) in the previous time steps to predict the pH value of current grid at current time step.
- o grid size: ½ latitude x ½ longitude
- Model: single XGBoost for continental US

Data Used in Experiment

-0.8

0.6

-0.4

-0.2

- Most of the time step doesn't have much data
- Only use the continuous time steps that has above 30% of data (grid) that has value

Prediction Method - XGB [1]

Figure 4: Tree structure with default directions. An example will be classified into the default direction when the feature needed for the split is missing.

Experiment (Impute by grids at the same timestep)

RMSE from XGBoost					
None	1.7363	EM	0.3523		
Fast KNN	0.2428	Mean	0.2338		
MICE	0.2338	Median	0.2378		
Mode	0.3058	Random	0.3686		

Experiment (Impute by all timestep of current grid)

RMSE from XGBoost					
None	1.7363	.7363 EM 0.5353			
Fast KNN	0.2544	Mean	0.2729		
MICE	0.2729	Median	0.2729		
Mode	0.2898	Random	0.8618		

Reference

[1] Chen, T., He, T., & Benesty, M. (2015). Xgboost: extreme gradient boosting. R package version 0.4-2, 1-4.

EM algorithm for Composite Likelihood with application to two-way data array

Huy Dang

November 27, 2018

Motivation and Definition

Motivation: High dimensional response variables make likelihood inferences difficult by rendering the computation of likelihoods infeasible.

Thus, a class of likelihoods, called *Composite likelihoods /Pseudo-likelihoods* is often used in place of the full likelihood.

Definition: (Varin et. al., 2011) Consider a vector of random variable Y from the density $f(y;\theta)$ for some unknown p-dim parameter $\theta \in \Theta$. Let $(\mathcal{A}_1, \dots, \mathcal{A}_K)$ be a set of marginal or conditional events with associated likelihoods $\mathcal{L}_k(\theta;y) \propto f(y \in \mathcal{A}_k;\theta)$.

Composite likelihood is defined as the weighted product:

$$\mathcal{L}_{\mathcal{C}}(\theta; y) = \prod_{k=1}^{\mathcal{K}} \mathcal{L}_{k}(\theta; y)^{w_{k}}$$

Examples

Examples:

► Composite conditional likelihood: pairwise cond. densities

$$\mathcal{L}_{C}(\theta; y) = \prod_{r=1}^{m} \prod_{s=1}^{m} f(y_{r}|y_{s}; \theta)$$

► Composite marginal likelihood:

$$\mathcal{L}_{C}(\theta; y) = \prod_{r=1}^{m} f(y_r | \theta)$$

Properties: There are results on asymptotic properties, efficiency, robustness of composite likelihood based estimators. But they vary case by case, and are somewhat limited.

Problem Statement

My simplified version: 2-way data array. U and V are i.i.d row and column discrete latent variables.

	V_1	V_2		V_s
U_1	Y ₁₁	Y ₁₂		Y_{1s}
U_2	Y ₂₁	Y ₂₂		Y_{2s}
:	:		:	
\bigcup_r	Y_{r1}	Y_{r2}		Y _{rs}

$$\lambda_{u} = P(U_{i} = u), u = 1, \dots, k_{1}$$
 $\rho_{v} = P(V_{j} = v), v = 1, \dots, k_{2}$
 $Y_{ij}|U_{i} = u, V_{j} = v \sim N(\psi_{uv}, \sigma^{2})$

	1	2		k ₂
1	ψ_{11}	ψ_{12}		$\psi_{1\mathbf{k}_2}$
2	ψ_{21}	ψ_{22}		$\psi_{2\mathbf{k}_2}$
	:		:	
k_1	$\psi_{k_1 1}$	$\psi_{k_1 2}$		$\psi_{\mathbf{k}_1\mathbf{k}_2}$

In reality: Problems can be made more complicated by allowing V to be generated from a Markov chain with k_2 states. It accommodates certain types of data: genomics, economics, etc.

Full and Composite Likelihood

Let $\mathbf{y}_{i}^{(r)}$ be the ith row of data, and $\mathbf{y}_{j}^{(c)}$ be the jth column. The full likelihood is:

$$L(\theta; \mathbf{Y}) = p(\mathbf{Y}) = \sum_{\mathbf{u}} p(\mathbf{Y}|\mathbf{u})p(\mathbf{u})$$

where p(Y|u) is computed using a well-known recursion in HM literature (Baum et. al. 1970, Welch 2003).

Row Composite Likelihood: assuming that the rows are independent.

$$L_{C}(\theta; \mathbf{Y}) = \prod_{i} (\mathbf{y}_{i}^{(r)}) = \prod_{i} \sum_{u} \lambda_{u} p(\mathbf{y}_{i}^{(r)} | U_{i} = u)$$

where $p(\mathbf{y}_i^{(r)}|U_i=u)$ is computed using a well-known recursion in HM literature (Baum et. al. 1970, Welch 2003).

Flops(full) = $O(k_1^r k_2 s)$, Flops(Composite) = $O(k_1 r k_2 s)$

EM Algorithm for Full Likelihood

$$L^{*}(\theta; \mathbf{Y}, \mathbf{U}, \mathbf{V}) = P(\mathbf{U} = \mathbf{u}) \cdot P(\mathbf{V} = \mathbf{v}) \cdot \prod_{i=1}^{r} \prod_{j=1}^{s} N(y_{ij}; \psi_{u_{i}v_{j}}, \sigma^{2})$$

$$= \left(\prod_{i=1}^{r} \prod_{u=1}^{k_{1}} \lambda_{u}^{w_{iu}}\right) \left(\prod_{j=1}^{s} \prod_{v=1}^{k_{2}} \rho_{v}^{z_{jv}}\right) \left(\prod_{i=1}^{r} \prod_{j=1}^{s} \prod_{u=1}^{k_{1}} \prod_{v=1}^{k_{2}} N(y_{ij}; \psi_{uv}, \sigma^{2})\right)^{w_{iu}z_{jv}}$$
where $w_{iu} = I(U_{i} = u); z_{jv} = I(V_{i} = v)$

$$I^{*}(\theta; \mathbf{Y}, \mathbf{U}, \mathbf{V}) = \sum_{i=1}^{r} \sum_{u=1}^{k_{1}} w_{iu}log(\lambda_{u}) + \sum_{j=1}^{s} \sum_{v=1}^{k_{2}} z_{jv}log(\rho_{v})$$

$$+ \sum_{i=1}^{r} \sum_{i=1}^{s} \sum_{u=1}^{k_{1}} \sum_{v=1}^{k_{2}} w_{iu}z_{jv}log(N(y_{ij}; \psi_{uv}, \sigma^{2}))$$

The conditional expectation involves terms such as:

$$E_{\theta^{(n-1)}}(w_{iu}|\mathbf{Y}) = \dot{P}(U_i = u|\mathbf{Y}; \theta^{(n-1)}) = \frac{1}{p(\mathbf{Y})} \sum_{\mathbf{u}: u_i = u} p(\mathbf{Y}|\mathbf{u})p(\mathbf{u})$$

EM for Full (and Composite) Likelihood

For Composite Likelihood: Z_{ijv} in place of z_{jv} .

$$I_{C}^{*}(\theta; \boldsymbol{Y}_{i}^{(r)}, \boldsymbol{U}, \boldsymbol{V}) = \sum_{i=1}^{r} \sum_{u=1}^{k_{1}} w_{iu} log(\lambda_{u}) + \sum_{i=1}^{r} \sum_{j=1}^{s} \sum_{v=1}^{k_{2}} z_{ijv} log(\rho_{v})$$

$$+ \sum_{i=1}^{r} \sum_{j=1}^{s} \sum_{u=1}^{k_{1}} \sum_{v=1}^{k_{2}} w_{iu} z_{jv} log(N(y_{ij}; \psi_{uv}, \sigma^{2}))$$

$$E_{\theta^{(n-1)}}(w_{iu}|\mathbf{Y}) = P(U_i = u|\mathbf{Y}_i^{(r)}) = \frac{1}{p(\mathbf{Y}_i^{(r)})}p(\mathbf{Y}_i^{(r)}|U_i = u)p(u)$$

Updates:

$$\lambda_{u} = \frac{1}{r} \sum_{i} \hat{w}_{iu}; \quad \rho_{v} = \frac{1}{s} \sum_{j} \hat{z}_{jv};$$

$$\mu_{uv} = \frac{(\widehat{w}_{iu}\widehat{z}_{jv})y_{ij}}{\sum_{i} \sum_{j} \widehat{w}_{iu}\widehat{z}_{jv}}; \quad \sigma^{2} = \frac{1}{rs} \sum_{i} \sum_{j} \sum_{u} \sum_{v} (\widehat{w}_{iu}\widehat{z}_{jv})(y_{ij} - \mu_{uv})^{2}$$

Simulation

$$k_1 = 2, k_2 = 2, \rho = (0.39, 0.61), \lambda = (0.4, 0.6), \Psi = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \sigma^2 = 0.5$$

run

$$r = 10$$
, $s = 15$

r = 50, s = 100

EM w/ Full Likelihood:

EM w/ Full Likelihood: doesn't

$$\hat{
ho} = (0.47, 0.53), \hat{\lambda} = (0.5, 0.5)$$

$$\hat{\Psi} = \begin{bmatrix} 0.9845 & 1.9034 \\ 3.0959 & 3.9929 \end{bmatrix}, \hat{\sigma}^2 = 0.2039$$

computation time:4596.17s(76mins)

EM w/ Composite Likelihood:

EM w/ Composite Likelihood:

$$\hat{\rho} = (0.47, 0.53), \hat{\lambda} = (0.5, 0.5)$$

$$\hat{\Psi} = \begin{bmatrix} 0.9845 & 1.8702 \\ 3.0959 & 3.97 \end{bmatrix}, \hat{\sigma}^2 = 0.1970 \quad \hat{\Psi} = \begin{bmatrix} 0.9807 & 1.9852 \\ 3.0093 & 4.0182 \end{bmatrix}, \hat{\sigma}^2 = 0.25$$

computation time:1.27s

$$\hat{
ho} = (0.52, 0.48), \hat{\lambda} = (0.48, 0.52)$$

$$\hat{\Psi} = \begin{bmatrix} 0.9807 & 1.9852 \\ 3.0093 & 4.0182 \end{bmatrix}, \hat{\sigma}^2 = 0.25$$

computation time:551.58s

Some comments

- ▶ When does it work? When does it misbehave?
- ► Starting value
- ► Possible next steps

Jordan Awan

Privacy

Setup

ABC

Examples

Acceptance Rate

References

Approximate Bayesian Computing for Differential Privacy

Jordan Awan

Department of Statistics, Penn State University

November 27, 2017

Jordan Awan

Privacy

Setup

ABC

Examples

Acceptance Rate

References

Differential Privacy

Definition (DMNS06, WZ10)

- Let \mathcal{X} be a set,
- A *mechanism* $\mathcal{P} = \{P_{\underline{x}} \mid \underline{x} \in \mathcal{X}^n\}$ is a set of probability measures on a space \mathcal{Z}
- \mathcal{P} satisfies ϵ -Differential Privacy (ϵ DP) if for all $B \subset \mathcal{Z}$ and all $\underline{x}, \underline{x}'$ differing in one entry, we have

$$P_{\underline{x}}(B) \leq e^{\epsilon} P_{\underline{x}'}(B).$$

Jordan Awan

Privacy

Setup

ABC

Example:

Acceptance Rate

References

Problem Setup

- Collect sensitive data $\underline{X} \in \mathcal{X}^n$
- Output private summary $Z \sim P_{\underline{X}}(z)$
- Model $\underline{X} \sim f_{\theta}(\underline{x})$, with prior $\theta \sim \pi(\theta)$
- Want to infer about θ , given only Z.

$$\pi(\theta \mid Z) \propto \pi(\theta) \int_{\underline{x} \in \mathcal{X}^n} f_{\theta}(\underline{x}) P_{\underline{x}}(Z) \ d\underline{x}$$

• This integral is often intractable

Perspective originally from [WM10]

Jordan Awan

Privacy

Setup

ABC

Examples

Acceptance Rate

References

ABC

- Sample (approximately) a posterior distribution
- Does not require evaluating likelihood

Algorithm 1 ABC algorithm [MPR⁺11]

INPUT: $Z \in \mathcal{Z}$, ρ a pseudo-metric on \mathcal{Z} , and $c \geq 0$.

- 1: Draw $\theta \sim \pi$
- 2: Draw $Z' \sim f(z \mid \theta)$
- 3: If $\rho(Z', Z) \leq c$, accept θ , else reject θ ,
- 4: Repeat 1-3 as desired.

OUTPUT: Accepted θ 's

• If ρ is a metric, and c = 0, then samples are from $\pi(\theta \mid Z)$.

Jordan Awan

Privacy

Setup

ABC

Examples

Acceptance Rate

References

- $\theta \sim U[0, 1]$,
- $X \sim \text{Binom}(n, \theta)$,
- $Z = X + \mathrm{DLap}(e^{-\epsilon})$
- Closed form of posterior
- Discrete: can use c = 0
- Simulation: n = 100, $\theta = .5$, $\epsilon = .1$
- $\approx 10^4$ accepted samples

Toy Example

Figure: c = 0, AR: 1.7%

Figure: c as std error, AR: 20%

Problem based on [VS09] and [AS18]

Jordan Awan

Privacy

Setup

ABC

Examples

Acceptance Rate V. | (V. —

References

Bigger Example

- Observe *n* iid copies of D = (X, Y) (feature/class)
- $Y_i \sim \text{Bern}(p)$
- $X_i \mid (Y_i = j) \sim \operatorname{Bern}(p_j)$
- Sufficient statistics:

$$\begin{array}{c|cccc}
 & X \\
 & 1 & 2 \\
\hline
 & 1 & n_{11} & n_{12} \\
 & 2 & n_{21} & n_{22}
\end{array}$$

- Work with $m_{ij} = n_{ij} + e_{ij}$, where $e_{ij} \stackrel{\text{iid}}{\sim} \text{Dlap}(e^{-\epsilon/2})$.
- Posterior estimates of p, p_1 , and p_2 , given uniform priors

Problem based on [KKS16]

Jordan Awan

Privacy

Setup

ABC

Examples

Acceptance Rate

References

Acceptance Rate

- ullet Each proposal in ABC is approximately uniform from ${\mathcal Z}$
- Suppose that $\mathcal{Z} = [a, b]^m$
- Acceptance region is a ball of radius $O\left(\frac{1}{\sqrt{n}}\right)$

• Acceptance rate is ratio of volumes $O\left(\frac{1}{n^{m/2}}\right)$

Image courtesy of Tobia Boschi

Jordan Awan

Privacy

Setup

ABC

Examples

Acceptance Rate

References

Conclusions

- Correct statistical inference by viewing private output as latent variable model
- Likelihood is often computationally intractable
- ABC offers an elegant method of sampling from posterior
 - ABC works well when Z is low-dimensional
 - Trade either accuracy, or computational efficiency when Z is higher-dimensional

Jordan Awan

Privacy

ABC

Examples

Acceptance Rate

References

References

- [AS18] J. Awan and A. Slavković. Differentially Private Uniformly Most Powerful Tests for Binomial Data. In Advances in Neural Information Processing Systems 32. Curran Associates, Inc., 2018. To Appear.
- [DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. *Calibrating Noise to Sensitivity in Private Data Analysis*, pages 265–284. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.
- [KKS16] Vishesh Karwa, Dan Kifer, and Aleksandra Slavković. Private posterior distributions from variational approximations. NIPS 2015 Workshop on Learning and Privacy with Incomplete Data and Weak Supervision, 2016.
- [MPR+11] Jean Michel Marin, Pierre Pudlo, Christian P. Robert, Université Paris Dauphine, Robin J. Ryder, and Université Paris Dauphine. Approximate bayesian computational methods. Statistics and Computing, pages 1–14, 2011.
 - [VS09] Duy Vu and Aleksandra Slavković. Differential privacy for clinical trial data: Preliminary evaluations. In Proceedings of the 2009 IEEE International Conference on Data Mining Workshops, ICDMW '09, pages 138–143, Washington, DC, USA, 2009. IEEE Computer Society.
- [WM10] Oliver Williams and Frank Mcsherry. Probabilistic inference and differential privacy. In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, editors, Advances in Neural Information Processing Systems 23, pages 2451–2459. Curran Associates, Inc., 2010.
- [WZ10] Larry Wasserman and Shuheng Zhou. A statistical framework for differential privacy. JASA, 105:489:375–389, 2010.