HW5

Ruwen Zhou

11/18/2020

Problem 1

Read in the data.

```
homicide_df =
  read_csv("homicide_data/homicide-data.csv") %>%
mutate(
  city_state = str_c(city, state, sep = "_"),
  resolved = case_when(
    disposition == "Closed without arrest" ~ "unsolved",
    disposition == "Open/No arrest" ~ "unsolved",
    disposition == "Closed by arrest" ~ "solved",
  )
) %>%
select(city_state, resolved) %>%
filter(city_state != "Tulsa_AL")
```

```
## Parsed with column specification:
## cols(
    uid = col_character(),
##
##
    reported_date = col_double(),
##
    victim_last = col_character(),
##
    victim_first = col_character(),
##
    victim_race = col_character(),
##
    victim_age = col_character(),
##
     victim_sex = col_character(),
##
     city = col_character(),
##
     state = col_character(),
##
     lat = col_double(),
##
     lon = col_double(),
##
     disposition = col_character()
```

Let's look at this a bit

```
aggregate_df =
homicide_df %>%
group_by(city_state) %>%
summarize(
   hom_total = n(),
   hom_unsolved = sum(resolved == "unsolved")
)
```

```
## 'summarise()' ungrouping output (override with '.groups' argument)
```

```
prop.test(
  aggregate_df %>% filter(city_state == "Baltimore_MD") %>% pull(hom_unsolved),
  aggregate_df %>% filter(city_state == "Baltimore_MD") %>% pull(hom_total)) %>%
  broom::tidy()
```

Try to iterate \dots

Can I do a prop test for a single city?

```
results_df =
  aggregate_df %>%
mutate(
    prop_tests = map2(.x = hom_unsolved, .y = hom_total, ~prop.test(x = .x, n = .y)),
    tidy_tests = map(.x = prop_tests, ~broom::tidy(.x))
) %>%
select(-prop_tests) %>%
unnest(tidy_tests) %>%
select(city_state, estimate, conf.low, conf.high)
```

```
results_df %>%
  mutate(city_state = fct_reorder(city_state, estimate)) %>%
  ggplot(aes(x = city_state, y = estimate)) +
  geom_point() +
  geom_errorbar(aes(ymin = conf.low, ymax = conf.high)) +
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1))
```



```
homicide_df =
 read_csv("homicide_data/homicide-data.csv") %>%
 mutate(
   city_state = str_c(city, state, sep = "_"),
   resolved = case when(
     disposition == "Closed without arrest" ~ "unsolved",
     disposition == "Closed by arrest"
                                         ~ "solved",
   )
 ) %>%
 select(city_state, resolved) %>%
 filter(city_state != "Tulsa_AL") %>%
 nest(data = resolved)
## Parsed with column specification:
## cols(
##
    uid = col_character(),
##
    reported_date = col_double(),
##
    victim_last = col_character(),
##
    victim_first = col_character(),
##
    victim_race = col_character(),
##
    victim_age = col_character(),
##
    victim sex = col character(),
##
    city = col_character(),
##
    state = col character(),
##
    lat = col_double(),
##
    lon = col_double(),
##
    disposition = col_character()
```

Problem 2

)

Create a tidy dataframe containing data from all participants, including the subject ID, arm, and observations over time

```
tidy df = tibble(
   path = list.files("lda_data"),
  ) %>%
 mutate(
   path = str_c("lda_data/", path),
   data = map(.x = path, ~read_csv(.x)),
   arm_id = str_remove(path, "lda_data/"),
   arm_id = str_remove(arm_id, ".csv")) %>%
  unnest(data) %>%
  select(-path) %>%
  pivot_longer(
   week_1:week_8,
   values_to = "observation_data",
   names_to = "week",
   names_prefix = "week_",
  separate(arm_id, into = c("arm", "subject_id"), sep = "_")
```

```
## Parsed with column specification:
## cols(
     week 1 = col double(),
##
##
     week_2 = col_double(),
##
     week_3 = col_double(),
##
    week 4 = col double(),
##
    week 5 = col double(),
     week_6 = col_double(),
##
##
    week_7 = col_double(),
##
    week_8 = col_double()
## )
## Parsed with column specification:
## cols(
##
    week_1 = col_double(),
##
    week_2 = col_double(),
##
    week_3 = col_double(),
##
    week_4 = col_double(),
##
    week 5 = col double(),
##
    week_6 = col_double(),
##
    week_7 = col_double(),
##
     week_8 = col_double()
## )
## Parsed with column specification:
## cols(
##
     week_1 = col_double(),
     week_2 = col_double(),
##
    week_3 = col_double(),
##
    week_4 = col_double(),
##
    week_5 = col_double(),
     week_6 = col_double(),
##
     week_7 = col_double(),
##
    week_8 = col_double()
## )
## Parsed with column specification:
## cols(
    week_1 = col_double(),
##
##
    week 2 = col double(),
##
    week_3 = col_double(),
##
    week_4 = col_double(),
##
    week_5 = col_double(),
##
    week 6 = col double(),
    week_7 = col_double(),
##
##
     week 8 = col double()
## )
## Parsed with column specification:
## cols(
    week_1 = col_double(),
##
##
    week_2 = col_double(),
    week_3 = col_double(),
##
##
    week_4 = col_double(),
##
    week_5 = col_double(),
##
    week_6 = col_double(),
##
    week_7 = col_double(),
##
    week 8 = col double()
```

```
## )
## Parsed with column specification:
##
    week_1 = col_double(),
##
    week_2 = col_double(),
##
    week 3 = col double(),
##
    week 4 = col double(),
    week_5 = col_double(),
##
##
    week_6 = col_double(),
##
    week_7 = col_double(),
    week_8 = col_double()
## )
## Parsed with column specification:
## cols(
##
    week_1 = col_double(),
##
    week_2 = col_double(),
##
    week_3 = col_double(),
##
    week 4 = col double(),
##
    week_5 = col_double(),
##
    week_6 = col_double(),
##
    week_7 = col_double(),
##
    week_8 = col_double()
## )
## Parsed with column specification:
## cols(
    week_1 = col_double(),
##
    week_2 = col_double(),
##
    week_3 = col_double(),
##
    week_4 = col_double(),
    week_5 = col_double(),
##
    week_6 = col_double(),
##
    week_7 = col_double(),
##
    week_8 = col_double()
## )
## Parsed with column specification:
## cols(
## week 1 = col double(),
##
    week_2 = col_double(),
##
    week_3 = col_double(),
##
    week_4 = col_double(),
##
    week 5 = col double(),
    week_6 = col_double(),
##
    week_7 = col_double(),
##
    week_8 = col_double()
## Parsed with column specification:
## cols(
##
    week_1 = col_double(),
##
    week_2 = col_double(),
    week_3 = col_double(),
##
##
    week_4 = col_double(),
##
    week_5 = col_double(),
##
    week_6 = col_double(),
##
    week 7 = col double(),
```

```
week_8 = col_double()
## )
## Parsed with column specification:
## cols(
    week_1 = col_double(),
##
    week_2 = col_double(),
    week 3 = col double(),
    week_4 = col_double(),
##
##
    week_5 = col_double(),
##
    week_6 = col_double(),
    week_7 = col_double(),
    week_8 = col_double()
##
## )
## Parsed with column specification:
## cols(
##
    week_1 = col_double(),
##
    week_2 = col_double(),
##
    week_3 = col_double(),
##
    week_4 = col_double(),
##
    week_5 = col_double(),
##
    week_6 = col_double(),
##
    week_7 = col_double(),
     week_8 = col_double()
##
## )
## Parsed with column specification:
##
     week_1 = col_double(),
    week_2 = col_double(),
##
##
    week_3 = col_double(),
    week_4 = col_double(),
##
    week_5 = col_double(),
##
    week_6 = col_double(),
##
    week_7 = col_double(),
##
     week_8 = col_double()
## )
## Parsed with column specification:
## cols(
##
    week_1 = col_double(),
##
    week_2 = col_double(),
##
    week_3 = col_double(),
##
    week 4 = col double(),
    week_5 = col_double(),
##
     week_6 = col_double(),
##
    week_7 = col_double(),
     week_8 = col_double()
## )
## Parsed with column specification:
## cols(
     week_1 = col_double(),
##
    week_2 = col_double(),
##
   week_3 = col_double(),
## week_4 = col_double(),
##
    week_5 = col_double(),
    week 6 = col double(),
##
```

```
##
    week_7 = col_double(),
##
   week_8 = col_double()
## )
## Parsed with column specification:
##
    week 1 = col double(),
    week 2 = col double(),
    week_3 = col_double(),
##
##
    week_4 = col_double(),
##
    week_5 = col_double(),
    week_6 = col_double(),
##
    week_7 = col_double(),
    week_8 = col_double()
##
## )
## Parsed with column specification:
## cols(
##
    week_1 = col_double(),
##
    week 2 = col double(),
##
    week_3 = col_double(),
    week_4 = col_double(),
##
##
    week_5 = col_double(),
##
    week_6 = col_double(),
##
    week_7 = col_double(),
##
    week 8 = col double()
## )
## Parsed with column specification:
## cols(
    week_1 = col_double(),
##
    week_2 = col_double(),
    week_3 = col_double(),
##
    week_4 = col_double(),
##
    week_5 = col_double(),
##
    week_6 = col_double(),
##
    week_7 = col_double(),
##
    week_8 = col_double()
## )
## Parsed with column specification:
## cols(
##
    week_1 = col_double(),
##
    week_2 = col_double(),
    week 3 = col double(),
    week_4 = col_double(),
##
##
    week_5 = col_double(),
##
    week_6 = col_double(),
    week_7 = col_double(),
##
    week_8 = col_double()
## Parsed with column specification:
## cols(
    week_1 = col_double(),
##
##
   week_2 = col_double(),
## week_3 = col_double(),
## week_4 = col_double(),
    week 5 = col double(),
##
```

```
## week_6 = col_double(),
## week_7 = col_double(),
## week_8 = col_double()
## )
```

tidy_df %>% knitr::kable()

arm	$\operatorname{subject_id}$	week	observation_data
con	01	1	0.20
con	01	2	-1.31
con	01	3	0.66
con	01	4	1.96
con	01	5	0.23
con	01	6	1.09
con	01	7	0.05
con	01	8	1.94
con	02	1	1.13
con	02	2	-0.88
con	02	3	1.07
con	02	4	0.17
con	02	5	-0.83
con	02	6	-0.31
con	02	7	1.58
con	02	8	0.44
con	03	1	1.77
con	03	2	3.11
con	03	3	2.22
con	03	4	3.26
con	03	5	3.31
con	03	6	0.89
con	03	7	1.88
con	03	8	1.01
con	04	1	1.04
con	04	$\overline{2}$	3.66
con	04	3	1.22
con	04	4	2.33
con	04	5	1.47
con	04	6	2.70
con	04	7	1.87
con	04	8	1.66
con	05	1	0.47
con	05	2	-0.58
	05	$\frac{2}{3}$	-0.09
con	05	3 4	-1.37
con			
con	05	$\frac{5}{6}$	-0.32
con	05		-2.17
con	05	7	0.45
con	05	8	0.48
con	06	1	2.37
con	06	2	2.50
con	06	3	1.59
con	06	4	-0.16
con	06	5	2.08

arm	subject_ic	l week	observation_	_data
con	06	6		3.07
con	06	7		0.78
con	06	8		2.35
con	07	1		0.03
con	07	2		1.21
con	07	3		1.13
con	07	4		0.64
con	07	5		0.49
con	07	6		-0.12
con	07	7		-0.07
con	07	8		0.46
con	08	1		-0.08
con	08	2		1.42
con	08	3		0.09
con	08	4		0.36
con	08	5		1.18
con	08	6		-1.16
con	08	7		0.33
con	08	8		-0.44
con	09	1		0.08
con	09	2		1.24
con	09	3		1.44
con	09	4		0.41
con	09	5		0.95
con	09	6		2.75
con	09	7		0.30
con	09	8		0.03
con	10	1		2.14
con	10	2		1.15
con	10	3		2.52
con	10	4		3.44
con	10	5		4.26
con	10	6		0.97
con	10	7		2.73
con	10	8		-0.53
exp	01	1		3.05
exp	01	2		3.67
exp	01	3		4.84
exp	01	4		5.80
exp	01	5		6.33
exp	01	6		5.46
exp	01	7		6.38
exp	01	8		5.91
exp	02	1		-0.84
exp	02	2		2.63
exp	02	3		1.64
exp	02	4		2.58
exp	02	5		1.24
exp	02	6		2.32
exp	02	7		3.11
exp	02	8		3.78
exp	03	1		2.15
-21P	55	1		2.10

	aubiast	: .1	**** o l *	abaannatian	data
arm	$\operatorname{subject}_{-}$	_id	week	observation_	
\exp	03		2		2.08
\exp	03		3		1.82
\exp	03		4		2.84
\exp	03		5		3.36
\exp	03		6		3.61
\exp	03		7		3.37
\exp	03		8		3.74
\exp	04		1		-0.62
\exp	04		2		2.54
\exp	04		3		3.78
\exp	04		4		2.73
\exp	04		5		4.49
\exp	04		6		5.82
\exp	04		7		6.00
\exp	04		8		6.49
\exp	05		1		0.70
\exp	05		2		3.33
\exp	05		3		5.34
\exp	05		4		5.57
\exp	05		5		6.90
exp	05		6		6.66
exp	05		7		6.24
exp	05		8		6.95
exp	06		1		3.73
exp	06		2		4.08
exp	06		3		5.40
exp	06		4		6.41
exp	06		5		4.87
exp	06		6		6.09
exp	06		7		7.66
exp	06		8		5.83
exp	07		1		1.18
exp	07		2		2.35
exp	07		3		1.23
exp	07		4		1.17
exp	07		5		2.02
exp	07		6		1.61
exp	07		7		3.13
exp	07		8		4.88
exp	08		1		1.37
exp	08		2		1.43
exp	08		3		1.84
exp	08		4		3.60
exp	08		5		3.80
exp	08		6		4.72
exp	08		7		4.68
exp	08		8		5.70
exp	09		1		-0.40
exp	09		2		1.08
	09		3		2.66
exp	09		3 4		2.70
exp	09		5		$\frac{2.70}{2.80}$
exp	Uθ		J		۷.00

arm	$\operatorname{subject_id}$	week	observation_data
exp	09	6	2.64
exp	09	7	3.51
exp	09	8	3.27
exp	10	1	1.09
exp	10	2	2.80
exp	10	3	2.80
\exp	10	4	4.30
\exp	10	5	2.25
\exp	10	6	6.57
exp	10	7	6.09
\exp	10	8	4.64

tidy_df

```
## # A tibble: 160 x 4
##
     arm
            subject_id week observation_data
##
      <chr> <chr>
                     <chr>
                                       <dbl>
##
  1 con
           01
                                        0.2
                      2
                                       -1.31
## 2 con
           01
## 3 con
           01
                      3
                                        0.66
## 4 con
                      4
                                        1.96
           01
## 5 con
           01
                      5
                                        0.23
## 6 con
                      6
                                        1.09
           01
                      7
##
   7 con
           01
                                        0.05
## 8 con
                      8
                                        1.94
           01
## 9 con
           02
                                        1.13
                      1
## 10 con
           02
                      2
                                       -0.88
## # ... with 150 more rows
```

Make a spaghetti plot showing observations on each subject over time, and comment on differences between groups

```
tidy_df %>%
unite("arm_id", c(arm, subject_id), sep = "_", remove = F) %>%
ggplot(aes(x = week, y = observation_data)) +
geom_path(aes(color = arm, group = as.factor(arm_id)),alpha = 0.5) +
labs(
    x = "Week",
    y = "Observation value",
    title = "Observations on each subject among two arms wihtin 8 weeks"
)
```

Observations on each subject among two arms wihtin 8 weeks

The ob-

servation data of experimental arm increases faster than the control arm over time. The measure in control arm is more stable and decreases a little bit after week 6.

Problem 3

T test

```
n = 30
mu = 0
sigma = 5
x = rnorm(n, mean = mu, sd = sigma)
t.test(x, mu = mu, conf.level = 0.95)

##
## One Sample t-test
##
## data: x
## t = -0.70399, df = 29, p-value = 0.4871
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -2.835154 1.383163
```

Generate 5000 datasets from the model

sample estimates:

mean of x ## -0.725995

```
sim_data = function(n = 30, mu = 0, sigma = 5) {
    x = rnorm(n, mean = mu, sd = sigma)
```

```
t_test = t.test(x, conf.int = 0.95) %>% broom::tidy()
     t test
}
output = vector("list", 5000)
for (i in 1:5000) {
 output[[i]] = sim_data()
output %>% head()
## [[1]]
## # A tibble: 1 x 8
   estimate statistic p.value parameter conf.low conf.high method
                                                                         alternative
        <dbl>
                  <dbl>
                          <dbl>
                                    <dbl>
                                              <dbl>
                                                        <dbl> <chr>
                                                                         <chr>
## 1
      -0.941
                  -1.06
                          0.297
                                       29
                                              -2.76
                                                        0.873 One Sampl~ two.sided
##
## [[2]]
## # A tibble: 1 x 8
    estimate statistic p.value parameter conf.low conf.high method
                                                                         alternative
##
        <dbl>
                  <dbl> <dbl>
                                    <dbl>
                                              <dbl>
                                                        <dbl> <chr>
                                                                         <chr>
## 1 -0.810
                  -1.09
                          0.284
                                       29
                                             -2.33
                                                        0.706 One Sampl~ two.sided
##
## [[3]]
## # A tibble: 1 x 8
     estimate statistic p.value parameter conf.low conf.high method
                                                                         alternative
                  <dbl>
                          <dbl>
                                                        <dbl> <chr>
                                                                         <chr>
        <dbl>
                                    <dbl>
                                              <dbl>
## 1 -0.0698
                -0.0617
                          0.951
                                              -2.38
                                                         2.24 One Sampl~ two.sided
                                       29
##
## [[4]]
## # A tibble: 1 x 8
    estimate statistic p.value parameter conf.low conf.high method
                                                                         alternative
                                                        <dbl> <chr>
                                                                         <chr>
##
        <dbl>
                  <dbl> <dbl>
                                    <dbl>
                                              <dbl>
        0.352
                  0.349
                          0.730
                                                         2.41 One Sampl~ two.sided
## 1
                                       29
                                             -1.71
##
## [[5]]
## # A tibble: 1 x 8
     estimate statistic p.value parameter conf.low conf.high method
                                                                         alternative
##
        <dbl>
                  <dbl>
                          <dbl>
                                    <dbl>
                                              <dbl>
                                                        <dbl> <chr>
                                                                         <chr>
        0.659
## 1
                  0.765
                          0.450
                                       29
                                             -1.10
                                                         2.42 One Sampl~ two.sided
##
## [[6]]
## # A tibble: 1 x 8
    estimate statistic p.value parameter conf.low conf.high method
                                                                         alternative
        <dbl>
                  <dbl>
                          <dbl>
                                    <dbl>
                                              <dbl>
                                                        <dbl> <chr>
                                                                         <chr>
       0.0764
                          0.923
                                                         1.67 One Sampl~ two.sided
## 1
                 0.0979
                                       29
                                              -1.52
for mu = \{0,1,2,3,4,5,6\}
set.seed(1000)
combine =
 tibble(mu = c(0, 1, 2, 3, 4, 5, 6)) %>%
mutate(
```

```
output = map(.x = mu, ~rerun(5000, sim_data(mu = .x))),
   new = map(output, bind_rows)) %>%
 select(-output) %>%
 unnest (new)
combine %>% head()
## # A tibble: 6 x 9
##
       mu estimate statistic p.value parameter conf.low conf.high method
                                                          <dbl> <chr>
##
    <dbl>
             <dbl>
                      <dbl>
                              <dbl>
                                       <dbl>
                                               <dbl>
## 1
       0
          -0.758
                     -0.850
                              0.402
                                               -2.58
                                                          1.06 One S~
        0 -0.593
                     -0.651 0.520
                                          29 -2.46
                                                          1.27 One S~
## 2
           1.02
                            0.267
                                              -0.824
                                          29
                                                          2.86 One S~
## 3
        0
                      1.13
                                                          2.94 One S~
## 4
        0 0.991
                      1.04
                             0.306
                                          29 -0.956
        0
            0.183
                      0.235 0.816
                                          29
                                               -1.41
                                                          1.78 One S~
        0 -0.101
                     -0.120 0.905
                                               -1.82
                                                          1.62 One S~
## 6
                                          29
## # ... with 1 more variable: alternative <chr>
```

Make a plot showing the proportion of times the null was rejected (the power of the test) on the y axis and the true value of mu on the x axis.

```
combine %>%
  filter(p.value < 0.05) %>%
  group_by(mu) %>%
  summarize(prop_rej = n()) %>%
  mutate(prop_rej = prop_rej/5000) %>%
  ggplot(aes(x = mu, y = prop_rej), color = mu) +
  geom_point() +
  geom_line() +
  scale_x_continuous(limits = c(0,6), breaks = seq(0,6,1)) +
  labs(
    title = "Power of the test over different mu",
    x = "The true value of mu",
    y = "Power of the test"
)
```

'summarise()' ungrouping output (override with '.groups' argument)

number of mu increases, the power of the test also increases. The power converges to 1 when mu = 4.

As the