Церемония награждения Олимпиады

Математика НОН-СТОП 2019

25 апреля «Рекорд»

Мероприятие проводится при поддержке

Похвальные отзывы

Дипломы

Эта презентация

http://bit.ly/mns-25apr

«Ты школьник! — А может ты школьник?»

Школьники всегда лгут, а студенты всегда говорят правду. Каждого попросили написать, сколько он видит студентов вокруг себя.

Всегда ли можно понять, сколько студентов?

«Ты школьник! — А может ты школьник?»

Нет, не всегда:

3, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, 1001, 1002, 1003, 1004.

Студентов могло быть как 4, так и 6.

Простые, но не простые-простые

Для любого **n** существует натуральное число **N**, у которого ровно **n** различных натуральных делителей.

$$N := 2^{n-1}$$

Его делители — 2^0 , 2^1 , . . . , 2^{n-2} , 2^{n-1} .

Розеттский камень

Алфавит из **n** букв: сколько букв ни напиши одна поверх другой, их все можно идентифицировать.

Будем двигать по букве засечку.

Это кто? Это кот

Каждый сантиметр может либо быть границей колец, либо не быть. Поэтому ответ —

2¹²

Конференция анонимных геометров

На каждой грани куба— по **k** любителей геометрии.

Максимум — **6k** человек. А минимум?

Конференция анонимных геометров

Разместим людей в вершины, они сразу будут занимать по три места.

Остальных будем сажать на рёбра:

$$8+\frac{6k-24}{2}=3k-4.$$

Велопоход

Проехали 1210 км. Осталось втрое больше, чем проедет машина, в 4 раза более быстрая, за время от сейчас до момента, когда останется столько же, сколько проехали.

Пусть осталось t. t = 12(t - 1210). t = 1320.

Расстояние — 2530 км.

Велопоход

... Чтобы ответ в задаче составил 1400 км.

$$t = 3c \cdot (t - A), \quad t = \frac{3cA}{3c - 1}$$

Расстояние —
$$A \cdot \frac{6c-1}{3c-1}$$

Пример –
$$A = 100$$
, $c = \frac{13}{36}$

Я человек простой

Дано произведение и среднее арифметическое, можно ли восстановить оценки?

Да, можно: все, кроме **2** и **4**, выделим из разложения на простые.

Заменами **2**, **2** \rightarrow **4** добьёмся нужного среднего.

Оптимальск-на-Туломе

1 м доски — 6000 руб. — 2 табуретки

1 м доски + 4 м палок — 10000 руб. — 4 табуретки

Выгоднее пользоваться вторым цехом, пока на это есть деньги.

Оптимальск-на-Туломе

Первому цеху нужно кратное 0.5 количество метров доски.

Значит, второму тоже. Он сделает чётное число табуреток.

Оптимальск-на-Туломе

0.5 м доски — 3000 руб. — 1 табуретка

4.5 м доски + 18 м палок — 45000 руб. — 18 табуреток

ЛПК «Вайда-Губа»

Меняем правила под себя

1, 2, 3, . . ., a-1, a, a+1, . . ., N-1, N камней.

В такой формулировке, если $a \neq N$, сразу вытащим все камни. Иначе побеждает второй: $x \rightarrow N - x$.

Меняем правила под себя

1, 2, 3, . . ., *a* — 1, *a*́, *a* + 1, . . ., *n* — 1, *n* камней. Всего в кучке *N*.

Если $a > \frac{n}{2}$, то второй выигрывает при **N**, кратном a, иначе выигрывает первый.

Меняем правила под себя

Если $a \leq \frac{n}{2}$, то второй выигрывает при **N** вида

$$k \cdot (n + a + 1),$$

$$k \cdot (n + a + 1) + a$$
.

Ответ получается методом анализа позиций.

С вами говорит капитан

Известно, что $\emph{v}_{\scriptscriptstyle {
m TAS}}=900$ км/ч, а скорость ветра $\emph{w}=100$ км/ч. Куда дуть ветру, чтобы $\emph{v}_{\scriptscriptstyle {
m GS}}=900$ км/ч?

Не в бок, потому что Теорема Пифагора.

С вами говорит капитан

 $m{T}-$ скорость в штиль, $(m{a},m{b})-$ ветер.

$$T \int V_{TAS} = \begin{cases} T - b = 900 \\ a^2 + b^2 = 100^2 \\ (T + b)^2 + a^2 = 900^2 \end{cases}$$

Спасибо за внимание!