Theory of Automata and Formal Language Lecture-15

Dharmendra Kumar (Associate Professor) Department of Computer Science and Engineering United College of Engineering and Research, Prayagraj April 21, 2021

Non-deterministic finite automata with null transition $(\epsilon - move)$

A non-deterministic finite automata with ϵ – move M is a 5-tuple,

 $M = (Q, \Sigma, \delta, q_0, F)$, where

 $\mathsf{Q} \to \mathsf{Finite}$ set of states

 $\Sigma \to \mathsf{Finite}$ set of input symbols

 $q_0 \in Q o$ Initial state

 $F \subseteq Q \rightarrow Set of final states$

and $\delta \to {\sf Transition}$ function

It is defined as following:-

$$\delta: \mathsf{Qx}(\Sigma \cup \{\epsilon\}) \to \mathsf{P}(\mathsf{Q})$$

$$\epsilon$$
 – *closure*(q)

 $\epsilon-closure$ of a state q is the set of all the states reachable from q by using only $\epsilon-move$.

$$\epsilon$$
 – closure(P)

Here P⊆Q.

$$\epsilon - closure(P) = \bigcup_{p \in P} \epsilon - closure(p)$$

Extended Transition Function

It is denoted by $\hat{\delta}$. It is defined as following:-

$$\hat{\delta}:\,\mathsf{Qx}\mathsf{\Sigma}^* o\mathsf{P}(\mathsf{Q})$$

Properties of $\hat{\delta}$

- 1. $\hat{\delta}(q, \epsilon) = \epsilon closure(q)$
- 2. $\hat{\delta}(q, a) = \epsilon closure(\bigcup_{p \in \epsilon closure(q)} \delta(p, a))$
- 3. $\hat{\delta}(q, wa) = \epsilon closure(\bigcup_{p \in \hat{\delta}(q, w)} \delta(p, a)),$ where $q, p \in Q, \ a \in \Sigma \ and \ w \in \Sigma^*$

Another Extended Transition Function

It is denoted by $\hat{\hat{\delta}}.$ It is defined as following:-

$$\hat{\hat{\delta}}: \mathsf{P}(\mathsf{Q})\mathsf{x}\mathsf{\Sigma}^* o \mathsf{P}(\mathsf{Q})$$

Properties of $\hat{\hat{\delta}}$

1.
$$\hat{\delta}(P,a) = \bigcup_{p \in P} \hat{\delta}(p,a)$$

2.
$$\hat{\hat{\delta}}(P, w) = \bigcup_{p \in P} \hat{\delta}(p, w)$$
, where $P \subseteq Q$, $a \in \Sigma$ and $w \in \Sigma^*$

4

Language Accepted by NFA with null transition($\epsilon-move$)

Language accepted by NFA M is denoted by L(M). It is defined as following:-

$$\mathsf{L}(\mathsf{M}) = \{ \mathsf{x} \in \mathsf{\Sigma}^* \; ! \; \hat{\delta}(q_0, \mathsf{x}) \cap \mathsf{F} \neq \phi \}$$

Some Examples

Examples: Consider the following NFA:-

Determine the followings:-

- (1) ϵ closure of q_0 , q_1 , and q_2
- (2) $\hat{\delta}(q_0, 0)$, $\hat{\delta}(q_0, 00)$, $\hat{\delta}(q_0, 011)$, and $\hat{\delta}(q_1, 12)$.
- (3) Language accepted by this NFA.

Conversion of NFA with ϵ – move into NFA without ϵ – move

Suppose the given NFA with $\epsilon-move$ M is the following:-

$$\mathsf{M} = (\mathsf{Q}, \mathsf{\Sigma}, \delta, q_0, \mathsf{F})$$

Now, we construct M' as the following:-

$$M' = (Q, \Sigma, \delta', q_0, F')$$

Where Q, Σ , q_0 are the same as M and

$$F' = \begin{cases} F \cup \{q_0\} , & \text{if } \epsilon - closure(q_0) \cap F \neq \phi \\ F , & \text{otherwise} \end{cases}$$
 (1)

 δ' is defined as following

$$\delta'(q, a) = \hat{\delta}(q, a)$$
, for all $q \in Q$ and $a \in \Sigma$.

Examples: Consider the following NFA with $\epsilon-move$:-

Find NFA without $\epsilon-\mathit{move}$ equivalent to this.

Solution:

