The KITTI Vision Benchmark Suite

A project of <u>Karlsruhe Institute of Technology</u> and <u>Toyota Technological Institute at Chicago</u>

- home
- setup
- stereo
 - Stereo 2012
 - o Stereo 2015
- flow
 - Flow 2012
 - Flow 2015
- sceneflow
- depth
 - Depth Completion
 - Depth Prediction
- odometry
- object
 - o 2d object
 - o 3d object
 - o bird's eye view
- tracking
 - o multi-object tracking
 - multi-object tracking and segmentation
- road
- semantics
 - o pixel-level
 - o instance-level
- raw data
- submit results

Andreas Geiger (MPI Tübingen) | Philip Lenz (KIT) | Christoph Stiller (KIT) | Raquel Urtasun (University of Toronto)

Multi-Object Tracking and Segmentation (MOTS) Evaluation

The Multi-Object and Segmentation (MOTS) benchmark consists of 21 training sequences and 29 test sequences. It is based on the KITTI Tracking Evaluation 2012 and extends the annotations to the Multi-Object and Segmentation (MOTS) task. To this end, we added dense pixelwise segmentation labels for every object. We evaluate submitted results using the common metrics CLEAR MOT and MT/PT/ML (adapted for the segmentation case).

- Project page
- <u>Download (trainset images + annotations / testset images)</u>
- Description of annotation format
- Tools for loading data, evaluation, and visualization

Important Policy Update: As more and more non-published work and re-implementations of existing work is submitted to KITTI, we have established a new policy: from now on, only submissions with significant novelty that are leading to a peer-reviewed paper in a conference or journal are allowed. Minor modifications of existing algorithms or student research projects are not allowed. Such work must be evaluated on a split of the training set. To ensure that our policy is adopted, new users must detail their status, describe their work and specify the targeted venue during registration. Furthermore, we will regularly delete all entries that are 6 months old but are still anonymous or do not have a paper associated with

them. For conferences, 6 month is enough to determine if a paper has been accepted and to add the bibliography information. For longer review cycles, you need to resubmit your results.

Additional information used by the methods

- Stereo: Method uses left and right (stereo) images
- Easer Points: Method uses point clouds from Velodyne laser scanner
- PGPS: Method uses GPS information
- Online: Online method (frame-by-frame processing, no latency)
- 🖪 Additional training data: Use of additional data sources for training (see details)

CAR

Method	Setting Code sM	<u>IOTSA</u>	MOTSA	MOTSP	MOTSAL	MODSA	MODSP	MT	ML	IDS	Frag	Runtime	Environment	Compare
1 <u>CCP ST</u>	84.	.50 %	94.40 %	89.70 %	94.90 %	94.90 %	91.90 %	90.10 %	1.20 %	202	416	0.1 s	GPU @ 2.5 Ghz (Python)	
2 <u>CCP</u>	84.	.50 %	94.40 %	89.70 %	94.90 %	94.90 %	91.90 %	90.50 %	1.20 %	197	435	0.1 s	GPU @ 2.5 Ghz (Python)	
3 PointTrackV2	83.	.00 %	93.50 %	89.00 %	94.00 %	94.00 %	91.40 %	90.10 %	0.80 %	210	531	0.1 s	GPU @ 2.5 Ghz (Python)	
4 PointTrack++	82.	.80 %	92.60 %	89.70 %	93.30 %	93.30 %	92.10 %	89.50 %	1.20 %	270	584	0.095 s	GPU @ 2.5 Ghz (Python)	
5 <u>ViP-DeepLab</u>	81	.00 %	90.70 %	89.90 %	91.80 %	91.80 %	92.20 %	92.20 %	0.60 %	392	580	0.1 s	1 core @ 2.5 Ghz (C/C++)	
S. Qiao, Y. Zhu, H Proceedings of the								n with	<u>Dept</u>	h-awa	are Vi	deo Pano	ptic Segmenta	<u>ttion</u> .
6 <u>UW JMV3D</u>			•		89.90 %	-		79.10 %	2.90 %	114	532	0.08 s	GPU @ 2.5 Ghz (Python)	
7 PointTrack	78.	.50 %	90.90 %	87.10 %	91.80 %	91.80 %	89.70 %	90.80 %	0.60 %	346	645	0.045 s	GPU @ 2.5 Ghz (Python)	
Z. Xu, W. Zhang, X. Tan, W. Yang, H. Huang, S. Wen, E. Ding and L. Huang: <u>Segment as Points for Efficient Online Multi-Object Tracking and Segmentation</u> . Proceedings of the European Conference on Computer Vision (ECCV) 2020.														
8 ReID MOT	_	-			91.80 %				0.60 %	533	836	1000 s	1 core @ 2.5 Ghz (C/C++)	
9 <u>Lif TS</u>	77.	.50 %	88.10 %	88.30 %	88.60 %	88.60 %	90.90 %	79.60 %	2.70 %	183	569	1 s	1 core @ 3.0 Ghz (Python + C/C++)	
10 <u>MCFPA</u>	77.	.00 %	87.70 %	88.30 %	89.10 %	89.10 %	90.80 %	82.90 %	0.60 %	503	724	1 s	1 core @ 2.5 Ghz (Python)	
11 GMPHD MAI	2 76.	.50 %	87.10 %	88.40 %	88.40 %	88.40 %	90.90 %	82.10 %	0.60 %	475	842	0.18 s	4 cores @ >3.5 Ghz (C/C++)	
12 <u>UMotsNet</u>	76.	.50 %	88.50 %	87.20 %	90.40 %	90.40 %	89.90 %	85.40 %	0.90 %	707	1008	0.14 s	1 core @ 2.5 Ghz (Python)	
13 <u>IA-MOT-ST</u>	76.	.50 %	87.40 %	88.10 %	89.20 %	89.20 %	90.60 %	82.10 %	1.10 %	649	873	TBD s	GPU @ 2.5 Ghz (Python)	
14 <u>COSTA_TS</u>	code 76	.30 %	87.50 %	88.10 %	89.90 %	89.90 %	90.50 %	84.70 %	1.10 %	903	1081	2000 s	GPU @ 2.5 Ghz (Python)	
15 <u>ReMOTS</u>	75.	.90 %	86.70 %	88.20 %	88.70 %	88.70 %	90.70 %	84.50 %	0.60 %	716	905	3 s	1 core @ 2.5 Ghz (Python)	

F. Yang, X. Chang, C. Dang, Z. Zheng, S. Sakti, S. Nakamura and Y. Wu: <u>ReMOTS: Self-Supervised Refining Multi-Object Tracking and Segmentation</u>. 2020.

16 HRNt	75.80 %	86.50 %	88.30 % 88.10 %	88.10 %	90.70 %	78.10 %	2.90 %	599	703	1.0 s	GPU @ 2.5 Ghz (Python)	
17 Struct MOTS	75.50 %	85.40 %	88.60 % 86.30 %	86.30 %	91.20 %	75.20 %	1.40 %	300	895	8.7 s	1 core @ 2.5 Ghz (Python)	
18 GMPHD SAF	75.40 %	86.70 %	87.50 % 88.20 %	88.20 %	90.10 %	82.00 %	0.60 %	549	874	0.08 s	4 cores @ >3.5 Ghz (C/C++)	
Y. Song and M. Jeon: OnliarXiv:2009.00100 2020.	ine Multi-Object	<u>Tracking</u>	and Segmentation	with GMP	HD Filter	and S	<u>imple</u>	Affin	ity F	usion. ar	Xiv preprint	
19 MOTSFusion	code 75.00 %	84.10 %	89.30 % 84.70 %	84.70 %	91.70 %	66.10 %	6.20 ₂	201	572	0.44 s	GPU @ 2.5 Ghz (Python)	
J. Luiten, T. Fischer and B	. Leibe: <u>Track to</u>	Reconstr	ruct and Reconstruct	ct to Track	. IEEE Ro	botics	and A	utom	ation	Letters 2		
20 <u>EagerMOT</u>	74.50 %	83.50 %	89.60 % 84.80 %	84.80 %	92.10 %	67.10 %	3.50 %	157	811	0.011 s	4 cores @ 3.0 Ghz (Python)	
21 <u>USN</u>	74.00 %	84.60 %	88.30 % 87.40 %	87.40 %	90.80 %	78.70 %	1.20 %	1045	1243	0.5 s	1 core @ 2.5 Ghz (Python)	
22 <u>TES</u>	73.50 %	84.00 %	88.30 % 87.40 %	87.40 %	90.80 %	78.20 %	1.10 %	1248	1446	0.3	1 core @ 2.5 Ghz (Python)	
23 <u>LidarMOTS</u>	73.30 %	84.00 %	88.50 % 86.40 %	86.40 %	91.00 %	84.10 %	1.80 %	394	1061	0.1 s	1 core @ 2.5 Ghz (C/C++)	
24 <u>CPMOTS</u>	72.80 %	84.90 %	86.40 % 86.00 %	86.00 %	89.20 %	75.70 %	1.80 2	139	891	0.06 s	GPU @ 3.0 Ghz (Python)	
25 TrackR- CNN CCP	71.80 %	85.10 %	85.30 % 86.80 %	86.80 %	88.30 %	79.40 %	1.70 %	509	963	0.1 s	GPU @ 2.5 Ghz (Python)	
26 MOTS R-CNN	69.80 %	82.90 %	85.00 % 83.90 %	84.00 %	88.20 %	75.10 %	1.80 %	399	893	0.25 s	1 core @ 2.5 Ghz (Python)	
27 <u>TrackR-CNN</u>	<u>code</u> 67.00 %	79.60 %	85.10 % 81.50 %	81.50 %	88.30 %	74.90 %	2.30 %	592	1058	0.5 s	GPU @ 2.5 Ghz (Python)	
P. Voigtlaender, M. Krause, A. O\usep, J. Luiten, B. Sekar, A. Geiger and B. Leibe: MOTS: Multi-Object Tracking and Segmentation. CVPR 2019.												
28 <u>resut</u>	61.60 %	73.00 %	88.00 % 76.30 %	76.30 %	90.50 %	88.90 %	0.50 %	1218	1410	1 s	1 core @ 2.5 Ghz (Python)	

<u>Table as LaTeX</u> | <u>Only published Methods</u>

PEDESTRIAN

	Method	Setting Code sl	MOTSA	MOTSA	MOTSP 1	MOTSAL	MODSA	MODSP	MT M	I L	IDS Frag	Runtime	Environment	Compare
1	CCP ST	70).50 %	86.30 %	82.40 % 8	87.50 %	87.60 %	94.00 %	72.60 3. % %	.00	254 477 (0.1 s	GPU @ 2.5 Ghz (Python)	
2	<u>CCP</u>	70	0.20 %	85.80 %	82.30 % 8	87.20 %	87.20 %	94.00 %	72.20 3. % %	.70	275 514 (0.1 s	GPU @ 2.5 Ghz (Python)	
3	ViP-DeepLab	68	3.70 %	84.50 %	82.30 % 8	85.50 %	85.50 %	93.90 %	73.30 2. % %	.60	209 443 (0.1 s	1 core @ 2.5 Ghz (C/C++)	

S. Qiao, Y. Zhu, H. Adam, A. Yuille and L. Chen: <u>ViP-DeepLab: Learning Visual Perception with Depth-aware Video Panoptic Segmentation</u>. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2021.

Proceedings of the IEEE Confe	rence on Comp	Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2021.										
4 PointTrackV2	68.70 % 84	.40 % 81.90 %	85.20 %	85.20 %	94.00 %	66.30 4.40 % %	166 468	0.1 s	GPU @ 2.5 Ghz (Python)			
5 PointTrack++	68.10 % 83	3.60 % 82.20 %	84.80 %	84.80 %	94.00 %	66.70 4.80 % %	250 521	0.095 s	GPU @ 2.5 Ghz (Python)			
6 MCFPA	67.20 % 83	3.00 % 81.90 %	84.30 %	84.30 %	93.80 %	67.00 3.00 % %	265 484	1 s	1 core @ 2.5 Ghz (Python)			
7 ReID MOT	66.60 % 81	.90 % 82.00 %	82.60 %	82.60 %	93.90 %	61.50 5.20 % %	150 555	1000 s	1 core @ 2.5 Ghz (C/C++)			
8 ReMOTS	66.00 % 81	.30 % 82.00 %	83.20 %	83.20 %	94.00 %	62.60 5.60 % %	391 551	3 s	1 core @ 2.5 Ghz (Python)			
F. Yang, X. Chang, C. Dang, Z.	Zheng, S. Sakt	ti, S. Nakamura	and Y. Wu	: ReMOT	S: Self-S	upervised R	efining Mu	ılti- Obje	ct Tracking an	<u>d</u>		
Segmentation. 2020. 9 GMPHD MAF	64.90 % 79	0.60 % 82.30 %	81.30 %	81.30 %	94.00 %	58.90 4.80 % %	348 639	0.18 s	4 cores @ >3.5 Ghz (C/C++)			
10 <u>UW_JMV3D</u>	64.90 % 80	0.90 % 81.00 %	81.90 %	81.90 %	93.60 %	61.50 8.90 % %	206 577	0.08 s	GPU @ 2.5 Ghz (Python)			
11 <u>IA-MOT-ST</u>	63.90 % 80	0.30 % 81.50 %	83.30 %	83.30 %	93.60 %	73.00 2.20 %	611 745	TBD s	GPU @ 2.5 Ghz (Python)			
12 GMPHD SAF	62.80 % 78	3.20 % 81.60 %	80.40 %	80.50 %	93.70 %	59.30 4.80 % %	474 696	0.08 s	4 cores @ >3.5 Ghz (C/C++)			
Y. Song and M. Jeon: Online M	<u>[ulti-Object Tra</u>	acking and Segr	mentation v	vith GMP	HD Filter	and Simple	Affinity F	<u>usion</u> . ar	Xiv preprint			
arXiv:2009.00100 2020. 13 <u>USN</u>	62.80 % 77	7.00 % 82.40 %	79.60 %	79.60 %	94.20 %	52.60 7.40 % %	547 734	0.5 s	1 core @ 2.5 Ghz (Python)			
14 <u>TES</u>	62.20 % 76	5.60 % 82.40 %	80.10 %	80.10 %	94.10 %	53.70 5.90 % %	741 974	0.3	1 core @ 2.5 Ghz (Python)			
15 PointTrack	61.50 % 76	5.50 % 81.00 %	77.40 %	77.40 %	93.80 %	48.90 9.30 % %	176 632	0.045 s	GPU @ 2.5 Ghz (Python)			
Z. Xu, W. Zhang, X. Tan, W. Yang, H. Huang, S. Wen, E. Ding and L. Huang: <u>Segment as Points for Efficient Online Multi-Object Tracking and Segmentation</u> . Proceedings of the European Conference on Computer Vision (ECCV) 2020.												
<u>segmentation</u> . Froceedings of t	•		-						1 core @ 2.5			
16 Struct MOTS	60.30 % 72	2.60 % 83.30	73.30 %	73.30 %	94.50 %	44.40 14.10 % %	142 635	8.7 s	Ghz (Python)			
17 MOTSFusion code	2 58.70 % 72	2.90 % 81.50 %	74.20 %	74.20 %	94.10 %	47.40 15.60 % %	279 534	0.44 s	1 core @ 2.5 Ghz (C/C++)			
J. Luiten, T. Fischer and B. Leibe: <u>Track to Reconstruct and Reconstruct to Track</u> . IEEE Robotics and Automation Letters 2020.												
18 HRNt	58.30 % 72	2.30 % 82.40 %	76.70 %	76.70 %	94.00 %	53.30 6.70 % %	922 978	1.0 s	GPU @ 2.5 Ghz (Python)			
19 <u>EagerMOT</u>	58.10 % 72	2.00 % 81.50 %	73.30 %	73.30 %	94.10 %	43.30 13.70 %	270 633	0.011 s	4 cores @ 3.0 Ghz (Python)			
20 <u>CPMOTS</u>	58.10 % 73	3.70 % 79.70 %	74.70 %	74.70 %	93.40 %	46.30 12.20 % %	209 631	0.06 s	GPU @ 3.0 Ghz (Python)			
21 <u>LidarMOTS</u>	57.60 % 72	2.10 % 80.90 %	73.40 %	73.40 %	94.00 %	45.60 15.90 % %	⁾ 275 545	0.1 s	1 core @ 2.5 Ghz (C/C++)			

22 <u>resut</u>	57.30 %	74.20 % 81.40 % 76.00 %	76.00 % 93.60 %	6 79.60 2.20 374 627 1	1 core @ 2.5 s Ghz □ (Python)				
23 <u>UMotsNet</u>	57.10 %	75.70 % 77.00 % 77.90 %	77.90 % 92.50 %	53.00 10.40 454 715 0 %	1 core @ 2.5 14 s Ghz (Python)				
24 <u>Lif TS</u>	55.80 %	67.70 % 82.90 % 68.00 %	68.00 % 94.40 %	6 44.10 13.70 66 536 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1 core @ 3.0 s Ghz (Python □ + C/C++)				
25 COSTA TS code	48.10 %	64.00 % 77.60 % 67.50 %	67.50 % 92.90 %	7 40.00 14.80 716 809 20 %	GPU @ 2.5 000 s Ghz				
26 TrackR- CNN CCP	48.10 %	66.40 % 75.20 % 68.20 %	68.20 % 91.90 %	6 44.40 11.90 381 781 0	GPU @ 2.5 1 s Ghz (Python)				
27 TrackR-CNN code	2 47.30 %	66.10 % 74.60 % 68.40 %	68.40 % 91.80 %	45.60 13.30 481 861 0	GPU @ 2.5 5 s Ghz □ (Python)				
P. Voigtlaender, M. Krause, A. O\usep, J. Luiten, B. Sekar, A. Geiger and B. Leibe: MOTS: Multi-Object Tracking and Segmentation. CVPR 2019.									
28 MOTS R-CNN	46.70 %	65.10 % 74.10 % 66.50 %	66.60 % 92.00 %	39.30 15.90 293 746 0	1 core @ 2.5 25 s Ghz (Python)				

Table as LaTeX | Only published Methods

Citation

When using this dataset in your research, we will be happy if you cite us:

@INPROCEEDINGS{Voigtlaender2019CVPR,

author = {Paul Voigtlaender and Michael Krause and Aljosa Osep and Jonathon Luiten and Berin Balachandar Gnana Sekar and Andreas Geiger and Bastian Leibe},

title = {MOTS: Multi-Object Tracking and Segmentation},

year = {2019} booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)},

© 2021 | Andreas Geiger | cylibs.net | csstemplates