

4-BIT MAGNITUDE COMPARATOR

- QUIESCENT CURRENT SPECIFIED UP TO 20V
- STANDARD B-SERIES OUTPUT DRIVE
- EXPANSION TO 8-16....4 N BITS BY CASCADING UNIT
- MEDIUM SPEED OPERATION: COMPARES TWO 4-BIT WORDS IN 250ns (Typ.) at 10V
- 5V, 10V AND 15V PARAMETRIC RATINGS
- INPUT LEAKAGE CURRENT $I_1 = 100$ nA (MAX) AT $V_{DD} = 18$ V $T_A = 25$ °C
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDEC JESD13B " STANDARD SPECIFICATIONS FOR DESCRIPTION OF B SERIES CMOS DEVICES"

ORDER CODES

PACKAGE	TUBE	T&R
DIP	HCF4063BEY	
SOP	HCF4063BM1	HCF4063M013TR

DESCRIPTION

The HCF4063B is a monolithic integrated circuit fabricated in Metal Oxide Semiconductor technology available in DIP and SOP packages. The HCF4063B is a low power 4-bit magnitude comparator designed for use in computer and logic applications that require the comparison of two 4-bit words. This logic circuit determines whether one 4-bit word (Binary or BCD) is "less than", "equal to" or "greater than" a second 4 bit word. The HCF4063B has eight comparing inputs (A3, B3 through A0, B0), three outputs (A<B, A=B, A>B) and three cascading inputs (A<B, A=B, A>B)

that permit system s designers to expand the comparator function to 8, 12, 16...4N bits. When a single HCF4063B is used the cascading inputs are connected as follows:

(A < B) = low, (A = B) = high, (A > B) = low.

For words longer than 4 bits, HCF4063B device may be cascaded by connecting the outputs of the less-significant comparator to the corresponding cascading inputs of the more significant comparator. Cascading inputs (A<B, A=B, and A>B) on the least significant comparator are connected to a low, a high, and a low level, respectively.

PIN CONNECTION

September 2001 1/9

IINPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

(F.		
PIN No	SYMBOL	NAME AND FUNCTION
10, 12, 13, 15	A0 to A3	Word A Inputs
9, 11, 14, 1	B0 to B3	Word B Inputs
5, 6 ,7	A>B, A=B, A <b< td=""><td>Outputs</td></b<>	Outputs
4, 3, 2	A>B, A=B, A <b< td=""><td>Cascading Inputs</td></b<>	Cascading Inputs
8	V_{SS}	Negative Supply Voltage
16	V_{DD}	Positive Supply Voltage

FUNCTIONAL DIAGRAM

TRUTH TABLE

	INPUTS								OUTDUTO			
	COMP	ARING		С	OUTPUTS							
A3, B3	A3, B3 A2, B2 A1, B1 A0, B0				A=B	A>B	A <b< th=""><th>A=B</th><th>A>B</th></b<>	A=B	A>B			
A3 > B3	Х	Х	Х	Х	Х	Х	L	L	Н			
A3 = B3	A2 > B2	Х	Х	Х	Х	Х	L	L	Н			
A3 = B3	A2 = B2	A1 > B1	Х	Х	Х	Х	L	L	Н			
A3 = B3	A2 = B2	A1 = B1	A0 > B0	Х	Х	Х	L	L	Н			
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	L	Н	L	L	Н			
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	Н	L	L	Н	L			
A3 = B3	A2 = B2	A1 = B1	A0 = B0	Н	L	L	Н	L	L			
A3 = B3	A2 = B2	A1 = B1	A0 < B0	Х	Х	Х	Н	L	L			
A3 = B3	A2 = B2	A1 < B1	Х	Х	Х	Х	Н	L	L			
A3 = B3	A2 < B2	Х	Х	Х	Х	Х	Н	L	L			
A3 < B3	Х	X	X	Х	Х	Х	Н	L	L			

X : Don't Care

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	-0.5 to +22	V
V _I	DC Input Voltage	-0.5 to V _{DD} + 0.5	V
I _I	DC Input Current	± 10	mA
P _D	Power Dissipation per Package	200	mW
	Power Dissipation per Output Transistor	100	mW
T _{op}	Operating Temperature	-55 to +125	°C
T _{stg}	Storage Temperature	-65 to +150	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

All voltage values are referred to V_{SS} pin voltage.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	3 to 20	V
V _I	Input Voltage	0 to V _{DD}	V
T _{op}	Operating Temperature	-55 to 125	°C

DC SPECIFICATIONS

		Test Condition				Value							
Symbol	Parameter	VI	v _o	l _o	(μ A) (V)	T _A = 25°C			-40 to	85°C	-55 to	125°C	Unit
		(V)	(V)	(μ A)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
ΙL	Quiescent Current	0/5			5		0.04	5		150		150	
		0/10			10		0.04	10		300		300	
	0/15			15		0.04	20		600		600	μΑ	
		0/20			20		0.08	100		3000		3000	
V_{OH}	High Level Output	0/5		<1	5	4.95			4.95		4.95		
	Voltage	0/10		<1	10	9.95			9.95		9.95		V
		0/15		<1	15	14.95			14.95		14.95		
V_{OL}	Low Level Output	5/0		<1	5		0.05			0.05		0.05	
	Voltage	10/0		<1	10		0.05			0.05		0.05	V
		15/0		<1	15		0.05			0.05		0.05	
V_{IH}	High Level Input		0.5/4.5	<1	5	3.5			3.5		3.5		V
	Voltage		1/9	<1	10	7			7		7		
			1.5/13.5	<1	15	11			11		11		
V_{IL}	Low Level Input		4.5/0.5	<1	5			1.5		1.5		1.5	
	Voltage		9/1	<1	10			3		3		3	V
			13.5/1.5	<1	15			4		4		4	
I _{OH}	Output Drive	0/5	2.5	<1	5	-1.36	-3.2		-1.1		-1.1		
	Current	0/5	4.6	<1	5	-0.44	-1		-0.36		-0.36		mA
		0/10	9.5	<1	10	-1.1	-2.6		-0.9		-0.9		1117 (
		0/15	13.5	<1	15	-3.0	-6.8		-2.4		-2.4		
I_{OL}	Output Sink	0/5	0.4	<1	5	0.44	1		0.36		0.36		
Current	Current	0/10	0.5	<1	10	1.1	2.6		0.9		0.9		mΑ
		0/15	1.5	<1	15	3.0	6.8		2.4		2.4		
I _I	Input Leakage Current	0/18	Any In	put	18		±10 ⁻⁵	±0.1		±1		±1	μΑ
Cl	Input Capacitance		Any In	put			5	7.5					pF

The Noise Margin for both "1" and "0" level is: 1V min. with V_{DD} =5V, 2V min. with V_{DD} =10V, 2.5V min. with V_{DD} =15V

$\textbf{DYNAMIC ELECTRICAL CHARACTERISTICS} \; (\textbf{T}_{amb} = 25^{\circ} \textbf{C}, \;\; \textbf{C}_{L} = 50 \text{pF}, \; \textbf{R}_{L} = 200 \text{K}\Omega, \;\; \textbf{t}_{r} = \textbf{t}_{f} = 20 \; \text{ns})$

Symbol	Parameter		Test Condition	'	Unit		
Symbol	Parameter	V _{DD} (V)		Min.	Тур.	Max.	
t _{PLH} t _{PHL}	Propagation Delay Time	5			625	1250	
		10	Comparing Inputs to Outputs		250	500	ns
		15			175	350	
t _{PLH} t _{PHL}	Propagation Delay Time	5			500	1000	
		10	Cascading Inputs to Outputs		200	400	ns
		15			140	280	
t _{THL} t _{TLH}	Transition Time	5			100	200	
		10			50	100	ns
		15			40	80	

(*) Typical temperature coefficient for all V_{DD} value is 0.3 %/°C.

TYPICAL APPLICATIONS

DINAMIC POWER DISSIPATION

TYPICAL SPEED CHARACTERISTICS OF A 12-BIT COMPARATOR

TEST CIRCUIT

 C_L = 50pF or equivalent (includes jig and probe capacitance) R_L = 200KΩ R_T = Z_{OUT} of pulse generator (typically 50Ω)

WAVEFORM: PROPAGATION DELAY TIMES (f=1MHz; 50% duty cycle)

47/ 6/9

Plastic DIP-16 (0.25) MECHANICAL DATA

DIM.		mm.				
Dilvi.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
В	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
E		8.5			0.335	
е		2.54			0.100	
e3		17.78			0.700	
F			7.1			0.280
I			5.1			0.201
L		3.3			0.130	
Z			1.27			0.050

SO-16 MECHANICAL DATA

DIM		mm.		inch					
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.			
Α			1.75			0.068			
a1	0.1		0.2	0.003		0.007			
a2			1.65			0.064			
b	0.35		0.46	0.013		0.018			
b1	0.19		0.25	0.007		0.010			
С		0.5			0.019				
c1			45°	(typ.)	•				
D	9.8		10	0.385		0.393			
Е	5.8		6.2	0.228		0.244			
е		1.27			0.050				
e3		8.89			0.350				
F	3.8		4.0	0.149		0.157			
G	4.6		5.3	0.181		0.208			
L	0.5		1.27	0.019		0.050			
М			0.62			0.024			
S			8° (max.)	•	•			

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom © http://www.st.com

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.