Math161S1 Week 1

Integration by Parts

The substitution formula (u-sub) works as an analog to the chain rule in differentiation. The integration by parts formula is analogous to the *product rule*.

Remark. Suppose f,q are differentiable. Then

$$\frac{\mathrm{d}}{\mathrm{d}x}(fg) = f\frac{\mathrm{d}}{\mathrm{d}x}(g) + g\frac{\mathrm{d}}{\mathrm{d}x}(f)$$
 and integrating both sides we obtain:

$$fg = \int \frac{\mathrm{d}}{\mathrm{d}x} (fg) = \int f(g') \mathrm{d}x + \int (f')g \mathrm{d}x.$$
 Rearranging the equality we obtain the formula

$$\int f(g') dx = fg - \int (f')g dx.$$

Definition. The integration by parts formula for two functions u and v is given by

$$\int u dv = uv - \int v du,$$

where $du = \frac{du}{dx} dx$ and likewise for v.

An easy way to remember the right hand side of this formula is with the mnemonic ultraviolet voodoo.

Example 1. If we are asked to integrate xe^x by itself, we can't do it. However with the formula we can:

$$\int xe^x dx, \text{ with } u = x, dv = e^x dx.$$

The u is the function which is easy to differentiate and the v is the one which is easier to integrate.

We obtain du = dx by differentiating and $v = e^x$ after integrating. Thus rearranging the integral we get

$$\int xe^x dx = xe^x - \int e^x dx.$$

The last integral we can compute so in the end we obtain $\int xe^x dx = xe^x - \int e^x dx = \underline{x}e^x - \underline{e}^x.$

Example 2. Consider the following integral

$$\int x^2 e^x \mathrm{d}x$$

To integrate we have to apply the same formula. Here we take

$$u = x^2$$
 and $dv = e^x dx$.

We differentiate u and integrate dv to obtain du = 2xdx and $v = e^x$.

Given this we can arrange the integration by parts

formula as follows:

$$\int x^2 e^x dx = \underbrace{x^2}_{u} \underbrace{e^x}_{v} - \int \underbrace{e^x}_{v} \underbrace{2x dx}_{du}.$$

We can factor out a two from the last integral, and using the result from the previous example we get

$$\int x^2 e^x dx = x^2 e^x - 2(xe^x - e^x) = \underline{x^2 e^x - 2xe^x + 2e^x}.$$

Practice

In a group with your classmates calculate the following integral

$$\int x^3 e^x \mathrm{d}x.$$

This calculation can be made easier by using the result of the previous examples.

How about calculating

$$\int x^n e^x dx, \text{ for } n = 4, \dots, 7?$$

Example 3. Consider the integral

$$\int x \sin(x) dx.$$

Like in the previous cases, we take

$$u = x$$
 and $dv = \sin(x) dx$

therefore

$$du = dx$$
 and $v = -\cos(x)$.

The formula gives us

$$\int x\sin(x)dx = x(-\cos(x)) - \int (-\cos(x))dx.$$

Integrating the cosine and taking out the minuses gives us

$$\int x\sin(x)dx = \underline{-x\cos(x) + \sin(x)}.$$

However, we haven't asked ourselves what happens if we take

$$u = \sin(x)$$
 and $dv = xdx$.

In this case we get

$$\mathrm{d}u = \cos(x)\mathrm{d}x$$
 and $v = \frac{x^2}{2}$

and thus after arranging the integral with the formula we get

$$\int x \sin(x) dx = \sin(x) \left(\frac{x^2}{2}\right) - \int \frac{x^2}{2} \cos(x) dx.$$

We have ran into a problem! Using the formula the other way didn't make this integral simpler to calculate. That's our objective. There's no definitive way of choosing who's u and who's v but an easy heuristic is as follows:

Proposition 4. The order in which to choose who's u is

- \blacksquare (**L**)ogarithms
- (I)nverse Trigonometrics
- (A)lgebraic functions
- \blacksquare (T)rigonometric functions
- \blacksquare (**E**)xponentials

The mnemonic to remember these is **LIATE**.

Math161S1 Week 1

Usually following this idea we will get a simpler integral to calculate after applying the formula. Lets use this idea to integrate the following:

Example 5. Let us calculate the indefinite integral

$$\int \log(x) dx.$$

Since the function is a logarithm, it's a top priority to differentiate that. Thus $u = \log(x)$, but...who's dv? There's always a hidden one (1) multiplying right there, so we take dv = 1dx = dx. After differentiating and integrating we get

The integral becomes
$$du = \frac{1}{x} dx \text{ and } v = x.$$

$$f \qquad (1)$$

$$\int \log(x) dx = \log(x) \cdot (x) - \int x \left(\frac{1}{x}\right) dx = \underline{x \log(x) - x}$$

Remark. Don't forget to consider integrating 1! This works sometimes!

Practice

Calculate the integral of $\arcsin(x)$. Like the one we just did, use the same idea!

Example 6. We can now calculate the integral

$$\int x \log(x) dx, \text{ let } \begin{cases} u = \log(x) \Rightarrow du = 1/x dx, \\ dv = x dx \Rightarrow v = (1/2)x^2, \end{cases}$$
 and then after rearranging we get

$$\int x \log(x) dx = \frac{1}{2} x^2 \log(x) - \int \left(\frac{1}{2} x^2\right) \left(\frac{1}{x} dx\right)$$
$$= \frac{1}{2} x^2 \log(x) - \frac{1}{4} x^2.$$

We could generalize this to any integer power of x, but how about a rational, or even an *irrational* power of x?

Example 7. Let us find the indefinite integral

$$\int x^{\sqrt{5}} \log(x) dx.$$

In fact, the power at which x is raised does not matter. The process is the same! Let

$$\begin{cases} u = \log(x) \Rightarrow du = 1/x dx, \\ dv = x^{\sqrt{5}} dx \Rightarrow v = (1/(\sqrt{5} + 1))x^{\sqrt{5} + 1}. \end{cases}$$

Rearranging we get

$$\int x^{\sqrt{5}} \log(x) dx = \frac{(x^{\sqrt{5}+1}) \log(x)}{\sqrt{5}+1} - \int \left(\frac{x^{\sqrt{5}+1}}{\sqrt{5}+1}\right) \left(\frac{1}{x} dx\right).$$

The integral on the right is the integral of a power of x so in the end, the result is

$$\int x^{\sqrt{5}} \log(x) dx = \frac{(x^{\sqrt{5}+1}) \log(x)}{\sqrt{5}+1} - \frac{x^{\sqrt{5}+1}}{(\sqrt{5}+1)^2}.$$

Example 8. In this example we don't consider a power of x multiplying another function. Let's calculate

$$\int e^x \sin(x) dx.$$

By using the **LIATE** mnemonic we choose the following $\begin{cases} u = \sin(x) \Rightarrow du = \cos(x)dx, \\ dv = e^x dx \Rightarrow v = e^x. \end{cases}$

We obtain
$$\int e^x \sin(x) dx = e^x \sin(x) - \int \cos(x) e^x dx.$$

Applying the formula once more with this last integral:

$$\begin{cases} u_2 = \cos(x) \Rightarrow du_2 = -\sin(x)dx, \\ dv_2 = e^x dx \Rightarrow v_2 = e^x. \end{cases}$$
If I is the original integral we get:

$$I = e^x \sin(x) - \left(e^x \cos(x) + \int e^x \sin(x) dx\right).$$

This last integral is the one we are looking for. We can rearrange this equation as follows:

$$I = e^x \sin(x) - e^x \cos(x) - I$$

$$\Rightarrow I = (1/2)(e^x \sin(x) - e^x \cos(x))$$

Practice

With an analogous reasoning calculate the integral

$$\int e^{2x} \sin(3x) dx.$$

Exercise 9. Compute the following integrals:

- $\int x^2 \cos(x) dx$ (Hint: Use Example 3).
- $\bullet \operatorname{log}^2(x) dx.$
- $\int x^{\alpha} \log(x) dx$, $\alpha \neq 1$ is any real number.
- $-\sqrt{x}\log(3x)dx$.