Proyecciones en Direcciones Aleatorias

o "Cómo reducir dimensionalidad sin pensar demasiado"

Gonzalo Barrera Borla Análisis de Datos Funcionales, 2020

Universidad de Buenos Aires

Contenido

1. Motivación

El problema: caracterizar e. a. ∞ – dimensionales

Una herramienta más: direcciones aleatorias

2. Algunas aplicaciones

Noción de Profundidad

Test de hipótesis vía proyecciones:

Bondad de ajuste

MLF con respuesta escalar

3. ANOVA funcional

Descripción del test

Consideraciones prácticas

En R: usando fda.usc::fanova.RPm

Motivación

Caracterizar elementos aleatorias en espacios ∞ -dimensionales implica expresarlos (i.e. proyectarlos) en *algún* subespacio de \mathbb{H} :

Caracterizar elementos aleatorias en espacios ∞ -dimensionales implica expresarlos (i.e. proyectarlos) en *algún* subespacio de \mathbb{H} :

bases fijas: Fourier, b-splines, ...

Caracterizar elementos aleatorias en espacios ∞ -dimensionales implica expresarlos (i.e. proyectarlos) en *algún* subespacio de \mathbb{H} :

- bases fijas: Fourier, b-splines, ...
- descomposiciones data-dependientes: FPC/KLT, FCC, ...

Caracterizar elementos aleatorias en espacios ∞ -dimensionales implica expresarlos (i.e. proyectarlos) en *algún* subespacio de \mathbb{H} :

- bases fijas: Fourier, b-splines, ...
- descomposiciones data-dependientes: FPC/KLT, FCC, ...
- o en direcciones aleatorias.

Caracterizar elementos aleatorias en espacios ∞ -dimensionales implica expresarlos (i.e. proyectarlos) en *algún* subespacio de \mathbb{H} :

- bases fijas: Fourier, b-splines, ...
- descomposiciones data-dependientes: FPC/KLT, FCC, ...
- o en direcciones aleatorias.

¿Guarda alguna información útil una proyección aleatoria?

Caracterizar elementos aleatorias en espacios ∞ -dimensionales implica expresarlos (i.e. proyectarlos) en *algún* subespacio de \mathbb{H} :

- bases fijas: Fourier, b-splines, ...
- descomposiciones data-dependientes: FPC/KLT, FCC, ...
- o en direcciones aleatorias.

¿Guarda alguna información útil una proyección aleatoria?

Resulta que sí, y bastante.

Sean

• X, Y elementos aleatorios (e. a.) en el espacio de Hilbert $\mathbb{H},\ X\sim P,\ Y\sim Q,$

Sean

- X, Y elementos aleatorios (e. a.) en el espacio de Hilbert \mathbb{H} , $X \sim P$, $Y \sim Q$,
- $P \in DM(\mathbb{H})$, una distribución determinada por sus momentos, y

Sean

- X, Y elementos aleatorios (e. a.) en el espacio de Hilbert $\mathbb{H},\ X\sim P,\ Y\sim Q,$
- $P \in DM(\mathbb{H})$, una distribución determinada por sus momentos, y
- \mathbb{E} el cono cerrado $\mathbb{E}(X, Y) := \{\alpha \in \mathbb{H} : \langle X, \alpha \rangle \sim \langle Y, \alpha \rangle \}$

Sean

- X, Y elementos aleatorios (e. a.) en el espacio de Hilbert $\mathbb{H},\ X \sim P,\ Y \sim Q,$
- $P \in DM(\mathbb{H})$, una distribución determinada por sus momentos, y
- \mathbb{E} el cono cerrado $\mathbb{E}(X, Y) := \{\alpha \in \mathbb{H} : \langle X, \alpha \rangle \sim \langle Y, \alpha \rangle \}$

Teorema Cuesta - Fraiman - Ransford

(Adaptado de [Cuesta 2007]) Sea μ una distribución Gaussiana no-degenerada en \mathbb{H} . Luego,

$$X \sim Y \iff \mu \left[\mathbb{E} \left(X, Y \right) \right] > 0$$

4

Aplicaciones

Existen distintas nociones de profundad posibles posibles en $\mathbb{H}:$

Existen distintas nociones de profundad posibles posibles en \mathbb{H} :

• profundidad integrada de Fraiman y Muniz,

Existen distintas nociones de profundad posibles posibles en \mathbb{H} :

- profundidad integrada de Fraiman y Muniz,
- el método de la *h-moda*,

Existen distintas nociones de profundad posibles posibles en \mathbb{H} :

- profundidad integrada de Fraiman y Muniz,
- el método de la *h-moda*,
- en direcciones aleatorias.

Dada una muestra $\mathbf{X} = \{X_i\}_{i=1}^n$, sean

- $\alpha \in \mathbb{H}$ una dirección aleatoria independiente de \mathbf{X} y

Dada una muestra $\mathbf{X} = \{X_i\}_{i=1}^n$, sean

- $\alpha \in \mathbb{H}$ una dirección aleatoria independiente de \mathbf{X} y
- $\mathbf{x} = \{x_i : x_i = \langle X_i, \alpha \rangle\}_{i=1}^n$ la proyección de cada elemento de \mathbf{X} en ella.

Dada una muestra $\mathbf{X} = \{X_i\}_{i=1}^n$, sean

- $\alpha \in \mathbb{H}$ una dirección aleatoria independiente de \mathbf{X} y
- $\mathbf{x} = \{x_i : x_i = \langle X_i, \alpha \rangle\}_{i=1}^n$ la proyección de cada elemento de \mathbf{X} en ella.

La profundidad aleatoria proyectada muestral del dato original $RPD(X_i)$ se define como la profundidad unidimensional de x_i , expresada en términos del cuantil aleatorio de x_i en \mathbf{x} .

Dada una muestra $\mathbf{X} = \{X_i\}_{i=1}^n$, sean

- $\alpha \in \mathbb{H}$ una dirección aleatoria independiente de ${f X}$ y
- $\mathbf{x} = \{x_i : x_i = \langle X_i, \alpha \rangle\}_{i=1}^n$ la proyección de cada elemento de \mathbf{X} en ella.

La profundidad aleatoria proyectada muestral del dato original $RPD(X_i)$ se define como la profundidad unidimensional de x_i , expresada en términos del cuantil aleatorio de x_i en \mathbf{x} .

¡Ojo

Al ser una medida aleatoria, hay que controlar su variabilidad, típicamente promediando sobre múltiples proyecciones $\{\alpha_i\}_{i=1}^n$.

Dada una muestra $\mathbf{X} = \{X_i\}_{i=1}^n$, sean

- $\alpha \in \mathbb{H}$ una dirección aleatoria independiente de \mathbf{X} y
- $\mathbf{x} = \{x_i : x_i = \langle X_i, \alpha \rangle\}_{i=1}^n$ la proyección de cada elemento de \mathbf{X} en ella.

La profundidad aleatoria proyectada muestral del dato original $RPD(X_i)$ se define como la profundidad unidimensional de x_i , expresada en términos del cuantil aleatorio de x_i en x.

¡Ojo!

Al ser una medida aleatoria, hay que controlar su variabilidad, típicamente promediando sobre múltiples proyecciones $\{\alpha_i\}_{i=1}^n$.

Estas medidas de profundidad se pueden usadas como covariables en tareas de regresión [Cuevas 2007] y y clasificación [Cuevas 2007, Cuesta 2017].

Consideremos la hipótesis de pertenencia a cierta familia de distribuciones paramétricas

$$H_0: P \in \mathcal{P} := \{P(\cdot, \theta): \theta \in \Theta\}$$
 vs. $H_1: P \notin \mathcal{P}$

Consideremos la hipótesis de pertenencia a cierta familia de distribuciones paramétricas

$$H_0: P \in \mathcal{P} := \{P(\cdot, \theta): \theta \in \Theta\}$$
 vs. $H_1: P \notin \mathcal{P}$

¿Cómo se usaría el teorema de Cuesta-Fraiman-Ransford para construir tests a partir de proyecciones aleatorias?

[Cuesta 2007] considera familias paramétricas

1. invariantes

- 1. invariantes
 - 1.1 por locación (*I*-invariantes): $X \sim P_X \in \mathcal{P}, Y = X + m \Rightarrow P_y \in \mathcal{P}$

- 1. invariantes
 - 1.1 por locación (*I*-invariantes): $X \sim P_X \in \mathcal{P}, Y = X + m \Rightarrow P_y \in \mathcal{P}$
 - 1.2 por escala (s-invariantes): $X \sim P_X \in \mathcal{P}, Y = \Sigma X \Rightarrow P_y \in \mathcal{P}$

[Cuesta 2007] considera familias paramétricas

1. invariantes

- 1.1 por locación (*I*-invariantes): $X \sim P_X \in \mathcal{P}, Y = X + m \Rightarrow P_y \in \mathcal{P}$
- 1.2 por escala (s-invariantes): $X \sim P_X \in \mathcal{P}, Y = \Sigma X \Rightarrow P_y \in \mathcal{P}$
- 1.3 elípticas (*I- y s-* invariantes)

- 1. invariantes
 - 1.1 por locación (*I*-invariantes): $X \sim P_X \in \mathcal{P}, Y = X + m \Rightarrow P_y \in \mathcal{P}$
 - 1.2 por escala (s-invariantes): $X \sim P_X \in \mathcal{P}, Y = \Sigma X \Rightarrow P_y \in \mathcal{P}$
 - 1.3 elípticas (*I- y s-* invariantes)
- 2. ciertas familias no-invariantes, donde

- 1. invariantes
 - 1.1 por locación (*I*-invariantes): $X \sim P_X \in \mathcal{P}, Y = X + m \Rightarrow P_y \in \mathcal{P}$
 - 1.2 por escala (s-invariantes): $X \sim P_X \in \mathcal{P}, Y = \Sigma X \Rightarrow P_y \in \mathcal{P}$
 - 1.3 elípticas (I- y s- invariantes)
- 2. ciertas familias no-invariantes, donde
 - $\mathcal{P} \coloneqq \{\mathcal{L}\left(sX+g\right): s \in \mathbb{R} \land g \in V_n\}$ y

- 1. invariantes
 - 1.1 por locación (*I*-invariantes): $X \sim P_X \in \mathcal{P}, Y = X + m \Rightarrow P_y \in \mathcal{P}$
 - 1.2 por escala (s-invariantes): $X \sim P_X \in \mathcal{P}, Y = \Sigma X \Rightarrow P_y \in \mathcal{P}$
 - 1.3 elípticas (I- y s- invariantes)
- 2. ciertas familias no-invariantes, donde
 - $\mathcal{P} := \{ \mathcal{L} (sX + g) : s \in \mathbb{R} \land g \in V_n \}$ y
 - V_n es un subespacio finito-dimensional de $\mathbb H$

- 1. invariantes
 - 1.1 por locación (*I*-invariantes): $X \sim P_X \in \mathcal{P}, Y = X + m \Rightarrow P_y \in \mathcal{P}$
 - 1.2 por escala (s-invariantes): $X \sim P_X \in \mathcal{P}, Y = \Sigma X \Rightarrow P_y \in \mathcal{P}$
 - 1.3 elípticas (I- y s- invariantes)
- 2. ciertas familias no-invariantes, donde
 - $\mathcal{P} := \{ \mathcal{L} (sX + g) : s \in \mathbb{R} \land g \in V_n \}$ y
 - V_n es un subespacio finito-dimensional de $\mathbb H$

[Cuesta 2007] considera familias paramétricas

- 1. invariantes
 - 1.1 por locación (*I*-invariantes): $X \sim P_X \in \mathcal{P}, Y = X + m \Rightarrow P_y \in \mathcal{P}$
 - 1.2 por escala (s-invariantes): $X \sim P_X \in \mathcal{P}, Y = \Sigma X \Rightarrow P_y \in \mathcal{P}$
 - 1.3 elípticas (*I- y s-* invariantes)
- 2. ciertas familias no-invariantes, donde
 - $\mathcal{P} \coloneqq \{\mathcal{L}\left(sX+g\right): s \in \mathbb{R} \land g \in V_n\}$ y
 - V_n es un subespacio finito-dimensional de $\mathbb H$

y prueba que familias del tipo

1. están determinadas en probabilidad (d. p.) por una única proyección aleatoria.

[Cuesta 2007] considera familias paramétricas

- 1. invariantes
 - 1.1 por locación (*I*-invariantes): $X \sim P_X \in \mathcal{P}, Y = X + m \Rightarrow P_y \in \mathcal{P}$
 - 1.2 por escala (s-invariantes): $X \sim P_X \in \mathcal{P}, Y = \Sigma X \Rightarrow P_y \in \mathcal{P}$
 - 1.3 elípticas (I- y s- invariantes)
- 2. ciertas familias no-invariantes, donde
 - $\mathcal{P} \coloneqq \{\mathcal{L}\left(sX+g\right): s \in \mathbb{R} \land g \in V_n\}$ y
 - V_n es un subespacio finito-dimensional de $\mathbb H$

y prueba que familias del tipo

- 1. están determinadas en probabilidad (d. p.) por una única proyección aleatoria.
- 2. con n parámetros están d. p. por k = n + 1 proyecciones aleatorias.

En cualquier caso, si la familia determinada por $\{h_i\}_{i=1}^k$ proyecciones aleatorias μ – generadas, resulta que la *hipótesis proyectada*

$$\textit{H}_{0}^{\textit{h}}: (\textit{P}_{\textit{h}_{1}}, \dots, \textit{P}_{\textit{h}_{\textit{k}}}) \in \mathcal{P}_{\textit{h}_{1}, \dots, \textit{h}_{\textit{k}}} := \{(\textit{P}_{\textit{h}_{1}}(\cdot, \theta), \dots, \textit{P}_{\textit{h}_{\textit{k}}}(\cdot, \theta)) : \theta \in \Theta\}$$

En cualquier caso, si la familia determinada por $\{h_i\}_{i=1}^k$ proyecciones aleatorias μ – generadas, resulta que la *hipótesis proyectada*

$$\textit{H}_0^\textit{h}: (\textit{P}_{\textit{h}_1}, \dots, \textit{P}_{\textit{h}_k}) \in \mathcal{P}_{\textit{h}_1, \dots, \textit{h}_k} := \{(\textit{P}_{\textit{h}_1}(\cdot, \theta), \dots, \textit{P}_{\textit{h}_k}(\cdot, \theta)) : \theta \in \Theta\}$$

es μ^k — casi seguramente $(\mu^k-c.s.)$ equivalente a la hipótesis original, ya que $\mu^k-c.s.$

$$(P_{h_1}, \dots, P_{h_k}) \in \mathcal{P}_{h_1, \dots, h_k} \iff P \in \mathcal{P}$$

 $H_0^h \iff H_0$

En cualquier caso, si la familia determinada por $\{h_i\}_{i=1}^k$ proyecciones aleatorias μ – generadas, resulta que la *hipótesis proyectada*

$$\textit{H}_0^\textit{h}: (\textit{P}_{\textit{h}_1}, \dots, \textit{P}_{\textit{h}_k}) \in \mathcal{P}_{\textit{h}_1, \dots, \textit{h}_k} := \{(\textit{P}_{\textit{h}_1}(\cdot, \theta), \dots, \textit{P}_{\textit{h}_k}(\cdot, \theta)) : \theta \in \Theta\}$$

es μ^k — casi seguramente $(\mu^k - c.s.)$ equivalente a la hipótesis original, ya que μ^k — c.s.

$$(P_{h_1}, \dots, P_{h_k}) \in \mathcal{P}_{h_1, \dots, h_k} \iff P \in \mathcal{P}$$

 $H_0^h \iff H_0$

Y para alguna medida apropiada de distancia d que mida el desvío de P c.r.a. $\mathcal P$ bajo H_0 , $\mu^k-c.s$.

$$\max_{i=1,...,k} d(P_{h_i}, P_{h_i}(\cdot, \theta)) = 0$$

Tomando por d la distancia Kolmogoro-Smirnov, podemos basar el test en el estadístico

$$D_n := \max_{i=1,\dots,k} \sqrt{n} d\left(\left(\mathbb{P}_n \right)_{h_i}, P_{h_i}(\cdot, \theta) \right)$$

i.e. el máximo de kestadísticos K-S univariados, donde \mathbb{P}_n es la distribución empírica basada en $\{X_i\}_{i=1}^n$.

Tomando por d la distancia Kolmogoro-Smirnov, podemos basar el test en el estadístico

$$D_n := \max_{i=1,\dots,k} \sqrt{n} d\left((\mathbb{P}_n)_{h_i}, P_{h_i}(\cdot, \theta) \right)$$

i.e. el máximo de kestadísticos K-S univariados, donde \mathbb{P}_n es la distribución empírica basada en $\{X_i\}_{i=1}^n$.

Restan dos dificultades:

 Cuando k = 1, el estadístico K-S es de distribución libre, pero para k > 1 ya no.

Tomando por d la distancia Kolmogoro-Smirnov, podemos basar el test en el estadístico

$$D_n := \max_{i=1,\dots,k} \sqrt{n} d\left(\left(\mathbb{P}_n \right)_{h_i}, P_{h_i}(\cdot, \theta) \right)$$

i.e. el máximo de kestadísticos K-S univariados, donde \mathbb{P}_n es la distribución empírica basada en $\{X_i\}_{i=1}^n$.

Restan dos dificultades:

- Cuando k = 1, el estadístico K-S es de distribución libre, pero para k > 1 ya no.
- Salvo para hipótesis "simples" $H_0: P_0 = P(\cdot, \theta_0)$, es necesario estimar θ a partir de \mathbf{X} .

Tomando por d la distancia Kolmogoro-Smirnov, podemos basar el test en el estadístico

$$D_n := \max_{i=1,\dots,k} \sqrt{n} d\left((\mathbb{P}_n)_{h_i}, P_{h_i}(\cdot, \theta) \right)$$

i.e. el máximo de kestadísticos K-S univariados, donde \mathbb{P}_n es la distribución empírica basada en $\{X_i\}_{i=1}^n$.

Restan dos dificultades:

- Cuando k = 1, el estadístico K-S es de distribución libre, pero para k > 1 ya no.
- Salvo para hipótesis "simples" $H_0: P_0 = P(\cdot, \theta_0)$, es necesario estimar θ a partir de \mathbf{X} .

Así que tendremos que contentarnos con un estimador $\hat{D_n}$ de D_n . Para aproximar la distribución de $\hat{D_n}$, sugieren un procedimiento bootstrap y prueban que vale bajo ciertas condiciones.

[Garcia 2014, Cuesta 2019] aplican estas ideas al modelo lineal funcional con respuesta escalar

$$Y = \langle X, \beta \rangle + \varepsilon = \int X(t) \beta(t) dt + \varepsilon$$

donde $X, \beta \in \mathbb{H}, Y \in \mathbb{R}$ y se sostienen los supuestos clásicos sobre ϵ detallados en los apuntes de clase.

[Garcia 2014, Cuesta 2019] aplican estas ideas al modelo lineal funcional con respuesta escalar

$$Y = \langle X, \beta \rangle + \varepsilon = \int X(t) \beta(t) dt + \varepsilon$$

donde $X, \beta \in \mathbb{H}, Y \in \mathbb{R}$ y se sostienen los supuestos clásicos sobre ϵ detallados en los apuntes de clase.

La predicción de Y se hace a partir de la esperanza condicional

$$m(X) = E[Y|X] = \langle X, \beta \rangle$$

[Garcia 2014, Cuesta 2019] aplican estas ideas al modelo lineal funcional con respuesta escalar

$$Y = \langle X, \beta \rangle + \varepsilon = \int X(t) \beta(t) dt + \varepsilon$$

donde $X, \beta \in \mathbb{H}$, $Y \in \mathbb{R}$ y se sostienen los supuestos clásicos sobre ϵ detallados en los apuntes de clase.

La predicción de Y se hace a partir de la esperanza condicional

$$m(X) = E[Y|X] = \langle X, \beta \rangle$$

de manera que las siguientes expresiones son equivalentes:

- El MLF representa adecuadamente la relación entre X e Y
- $m(X) \in \mathcal{M} := \{\langle \cdot, \beta \rangle : \beta \in \mathbb{H}\}$

A partir de aquí, se pueden utilizar las técnicas antes mencionadas para construir tests

1. para hipótesis simples : $\beta=\beta_0$

A partir de aquí, se pueden utilizar las técnicas antes mencionadas para construir tests

- 1. para hipótesis simples : $\beta=\beta_0$
- 2. incluido el caso particular de "no interacción", $\beta_0\left(t\right)=0\ \forall\ t,$ y

A partir de aquí, se pueden utilizar las técnicas antes mencionadas para construir tests

- 1. para hipótesis simples : $\beta=\beta_0$
- 2. incluido el caso particular de "no interacción", $\beta_{0}\left(t\right)=0\ \forall\ t$, y
- 3. para la significatividad global, estimando previamente β

A partir de aquí, se pueden utilizar las técnicas antes mencionadas para construir tests

- 1. para hipótesis simples : $\beta=\beta_0$
- 2. incluido el caso particular de "no interacción", $\beta_{0}\left(t\right)=0\ \forall\ t$, y
- 3. para la significatividad global, estimando previamente β

La clave, está en el siguiente lema, adaptado de [Patilea 2012], que permite caracterizar $H_0: m \in \mathcal{M}$.

$$\blacksquare \mathbb{H} = L^2[a,b]$$

- $\mathbb{H} = L^2[a, b]$
- $\bullet \ \left\{ \Psi_{j}\right\} _{j=1}^{\infty}$ una base de \mathbb{H} , no necesariamente ortogonal,

- $\blacksquare \mathbb{H} = L^2[a,b]$
- $\left\{\Psi_{j}\right\}_{j=1}^{\infty}$ una base de \mathbb{H} , no necesariamente ortogonal,
- la esfera funcional $\mathbb{S}_{\mathbb{H}}$ $\{h\in\mathbb{H}:\|h\|_{\mathbb{H}}=1\}$, y

- $\blacksquare \mathbb{H} = L^2[a,b]$
- $\left\{\Psi_{j}\right\}_{j=1}^{\infty}$ una base de \mathbb{H} , no necesariamente ortogonal,
- la esfera funcional $\mathbb{S}_{\mathbb{H}}$ $\{h \in \mathbb{H} : \|h\|_{\mathbb{H}} = 1\}$, y
- la esfera funcional p-dimensional $\mathbb{S}^p_{\mathbb{H}} = \left\{ h = \sum_{j=1}^p x_j \Psi_j \in \mathbb{H} : \|h\|_{\mathbb{H}} = 1 \right\}.$

Consideremos

- $\blacksquare \mathbb{H} = L^2[a,b]$
- $\{\Psi_j\}_{j=1}^\infty$ una base de \mathbb{H} , no necesariamente ortogonal,
- la esfera funcional $\mathbb{S}_{\mathbb{H}}$ $\{h \in \mathbb{H} : \|h\|_{\mathbb{H}} = 1\}$, y
- la esfera funcional p-dimensional $\mathbb{S}^p_{\mathbb{H}} = \Big\{ h = \sum_{j=1}^p x_j \Psi_j \in \mathbb{H} : \|h\|_{\mathbb{H}} = 1 \Big\}.$

Lema [Patilea 2012]

Consideremos

- $\blacksquare \mathbb{H} = L^2[a,b]$
- $\left\{\Psi_{j}\right\}_{j=1}^{\infty}$ una base de \mathbb{H} , no necesariamente ortogonal,
- la esfera funcional $\mathbb{S}_{\mathbb{H}}$ $\{h \in \mathbb{H} : \|h\|_{\mathbb{H}} = 1\}$, y
- la esfera funcional p-dimensional $\mathbb{S}^p_{\mathbb{H}} = \left\{ h = \sum_{j=1}^p x_j \Psi_j \in \mathbb{H} : \|h\|_{\mathbb{H}} = 1 \right\}.$

Lema [Patilea 2012]

1.
$$m(X) = \langle X, \beta \rangle \, \forall X \in \mathbb{H}$$

Consideremos

- $\blacksquare \mathbb{H} = L^2[a,b]$
- $\{\Psi_j\}_{j=1}^\infty$ una base de \mathbb{H} , no necesariamente ortogonal,
- la esfera funcional $\mathbb{S}_{\mathbb{H}}$ $\{h \in \mathbb{H} : \|h\|_{\mathbb{H}} = 1\}$, y
- la esfera funcional p-dimensional $\mathbb{S}^p_{\mathbb{H}} = \left\{ h = \sum_{j=1}^p x_j \Psi_j \in \mathbb{H} : \|h\|_{\mathbb{H}} = 1 \right\}.$

Lema [Patilea 2012]

- 1. $m(X) = \langle X, \beta \rangle \, \forall X \in \mathbb{H}$
- 2. $\mathbb{E}\left[Y-\langle X,\beta\rangle\,\middle|X=x\right]=0$ para casi todo (p.c.t.) $x\in\mathbb{H}$

Consideremos

- $\blacksquare \mathbb{H} = L^2[a,b]$
- $\{\Psi_j\}_{j=1}^\infty$ una base de \mathbb{H} , no necesariamente ortogonal,
- la esfera funcional $\mathbb{S}_{\mathbb{H}}$ $\{h \in \mathbb{H} : \|h\|_{\mathbb{H}} = 1\}$, y
- la esfera funcional p-dimensional $\mathbb{S}^p_{\mathbb{H}} = \left\{ h = \sum_{j=1}^p x_j \Psi_j \in \mathbb{H} : \|h\|_{\mathbb{H}} = 1 \right\}.$

Lema [Patilea 2012]

- 1. $m(X) = \langle X, \beta \rangle \, \forall X \in \mathbb{H}$
- 2. $\mathbb{E}\left[Y-\langle X,\beta\rangle\left|X=x\right]=0 \text{ para casi todo (p.c.t.) } x\in\mathbb{H}\right]$
- 3. $\mathbb{E}\left[Y \langle X, \beta \rangle \mid \langle X, \gamma \rangle = u\right] = 0$ p.c.t. $u \in \mathbb{R}$ y $\forall \gamma \in \mathbb{S}_{\mathbb{H}}$

Consideremos

- $\blacksquare \mathbb{H} = L^2[a,b]$
- $\{\Psi_j\}_{j=1}^\infty$ una base de \mathbb{H} , no necesariamente ortogonal,
- la esfera funcional $\mathbb{S}_{\mathbb{H}}$ $\{h \in \mathbb{H} : \|h\|_{\mathbb{H}} = 1\}$, y
- la esfera funcional p-dimensional $\mathbb{S}^p_{\mathbb{H}} = \left\{ h = \sum_{j=1}^p x_j \Psi_j \in \mathbb{H} : \|h\|_{\mathbb{H}} = 1 \right\}.$

Lema [Patilea 2012]

- 1. $m(X) = \langle X, \beta \rangle \, \forall X \in \mathbb{H}$
- 2. $\mathbb{E}\left[Y-\langle X,\beta\rangle\left|X=x\right]=0\right]$ para casi todo (p.c.t.) $x\in\mathbb{H}$
- 3. $\mathbb{E}\left[Y-\langle X,\beta\rangle\,|\,\langle X,\gamma\rangle=u\right]=0$ p.c.t. $u\in\mathbb{R}$ y $\forall\gamma\in\mathbb{S}_{\mathbb{H}}$
- 4. $\mathbb{E}\left[Y \langle X, \beta \rangle \mid X = x\right] = 0$ p.c.t. $u \in \mathbb{R}$ y $\forall \gamma \in \mathbb{S}_{\mathbb{H}}^{p}, \forall p \geq 1$

ANOVA funcional

[Cuesta 2010] propone un procedimiento relativamente sencillo para diseños con dos factores, interacciones y covariables funcionales.

[Cuesta 2010] propone un procedimiento relativamente sencillo para diseños con dos factores, interacciones y covariables funcionales.

Sean

- $\mathbb H$ un espacio de Hilbert separable con producto interno $\langle\cdot,\cdot\rangle$ medido w.l.g. en el intervalo [0,1], y
- $R, S \in \mathbb{N} : \forall (r, s) \in \{1, \dots, R\} \times \{1, \dots, S\}$

[Cuesta 2010] propone un procedimiento relativamente sencillo para diseños con dos factores, interacciones y covariables funcionales.

Sean

- $\mathbb H$ un espacio de Hilbert separable con producto interno $\langle\cdot,\cdot\rangle$ medido w.l.g. en el intervalo [0,1], y
- $R, S \in \mathbb{N} : \forall (r, s) \in \{1, ..., R\} \times \{1, ..., S\}$

Y existen $X_i^{r,s}, i \in \{1,\ldots,n_{r,s}\}$ e. a. en $\mathbb H$ tales que

$$\textit{X}_{i}^{\textit{r,s}}\left(t\right) = \textit{m}\left(t\right) + \textit{f}^{\textit{r}}\left(t\right) + \textit{g}^{\textit{s}}\left(t\right) + \textit{h}^{\textit{r,s}}\left(t\right) + \gamma\left(t\right) \textit{Y}_{i}^{\textit{r,s}} + \epsilon_{i}^{\textit{r,s}}\left(t\right), \quad t \in [0,1]$$

$$X_{i}^{\mathit{r,s}}\left(t\right)=m\left(t\right)+\mathit{f}^{\mathit{r}}\left(t\right)+\mathit{g}^{\mathit{s}}\left(t\right)+\mathit{h}^{\mathit{r,s}}\left(t\right)+\gamma\left(t\right)Y_{i}^{\mathit{r,s}}+\epsilon_{i}^{\mathit{r,s}}\left(t\right),\quad t\in\left[0,1\right]$$

$$\textit{X}_{i}^{\textit{r,s}}\left(t\right) = \textit{m}\left(t\right) + \textit{f}^{\textit{r}}\left(t\right) + \textit{g}^{\textit{s}}\left(t\right) + \textit{h}^{\textit{r,s}}\left(t\right) + \gamma\left(t\right) \textit{Y}_{i}^{\textit{r,s}} + \epsilon_{i}^{\textit{r,s}}\left(t\right), \quad t \in [0,1]$$

donde

1. la función m es fija y describe la forma general del proceso,

$$\textit{X}_{i}^{\textit{r,s}}\left(t\right) = \textit{m}\left(t\right) + \textit{f}^{\textit{r}}\left(t\right) + \textit{g}^{\textit{s}}\left(t\right) + \textit{h}^{\textit{r,s}}\left(t\right) + \gamma\left(t\right) \textit{Y}_{i}^{\textit{r,s}} + \epsilon_{i}^{\textit{r,s}}\left(t\right), \quad t \in [0,1]$$

donde

- 1. la función m es fija y describe la forma general del proceso,
- 2. las funciones fijas $f', g^s, h^{r,s} \in \mathbb{H}$ representan, respectivamente, el efecto del primer y segundo factor, y la interacción entre ambos.

$$X_{i}^{\mathit{r,s}}\left(t\right)=m\left(t\right)+\mathit{f}^{\mathit{r}}\left(t\right)+\mathit{g}^{\mathit{s}}\left(t\right)+\mathit{h}^{\mathit{r,s}}\left(t\right)+\gamma\left(t\right)Y_{i}^{\mathit{r,s}}+\epsilon_{i}^{\mathit{r,s}}\left(t\right),\quad t\in\left[0,1\right]$$

donde

- 1. la función m es fija y describe la forma general del proceso,
- 2. las funciones fijas $f, g^s, h^{r,s} \in \mathbb{H}$ representan, respectivamente, el efecto del primer y segundo factor, y la interacción entre ambos.
- 3. Las $Y_i^{r,s} \in \mathbb{R}$ son cantidades aleatorias y conocidas que influyen el proceso según el peso de la función fija y conocida $\gamma \in \mathbb{H}$.

$$X_{i}^{\mathit{r,s}}\left(t\right)=m\left(t\right)+\mathit{f'}\left(t\right)+\mathit{g^{s}}\left(t\right)+\mathit{h^{\mathit{r,s}}}\left(t\right)+\gamma\left(t\right)Y_{i}^{\mathit{r,s}}+\epsilon_{i}^{\mathit{r,s}}\left(t\right),\quad t\in\left[0,1\right]$$

donde

- 1. la función m es fija y describe la forma general del proceso,
- 2. las funciones fijas $f', g^s, h^{r,s} \in \mathbb{H}$ representan, respectivamente, el efecto del primer y segundo factor, y la interacción entre ambos.
- 3. Las $Y_i^{r,s} \in \mathbb{R}$ son cantidades aleatorias y conocidas que influyen el proceso según el peso de la función fija y conocida $\gamma \in \mathbb{H}$.
- 4. Las trayectorias aleatorias $\epsilon_i^{r,s}(t) \in \mathbb{H}$ se asumen independientes y centradas. Además, para cada par (r,s) fijo,

$$\epsilon_i^{r,s} \sim \text{iid } \forall i \in \{1,\ldots,n_{r,s}\}$$

Las hipótesis de interés son:

$$\begin{array}{ll} \textit{H}_{0}^{\textit{A}}: \textit{f}^{1}=\cdots=\textit{f}^{\textit{R}}=0 & \text{(el primer factor no tiene efecto)} \\ \textit{H}_{0}^{\textit{B}}: \textit{g}^{1}=\cdots=\textit{g}^{\textit{S}}=0 & \text{(el segundo factor no tiene efecto)} \\ \textit{H}_{0}^{\textit{I}}: \textit{h}^{1,1}=\cdots=\textit{h}^{\textit{R},\textit{S}}=0 & \text{(no hay interacción)} \\ \textit{H}_{0}^{\textit{C}}: \gamma=0 & \text{(la covariable no es significativa)} \end{array}$$

Las hipótesis de interés son:

$$H_0^A: f^1=\cdots=f^R=0$$
 (el primer factor no tiene efecto) $H_0^B: g^1=\cdots=g^S=0$ (el segundo factor no tiene efecto) $H_0^I: h^{1,1}=\cdots=h^{R,S}=0$ (no hay interacción) $H_0^C: \gamma=0$ (la covariable no es significativa)

Consideraremos especialmente H_0^A . Por CFR, si existen $r_1, r_2 : f^{r_1} \neq f^{r_2}$, para cualquier medida μ gaussiana no-degenerada en \mathbb{H} ,

$$\mu\left\{\mathbf{v}\in\mathbb{H}:\left\langle\mathbf{v},\mathbf{f}^{1}\right\rangle=\cdots=\left\langle\mathbf{v},\mathbf{f}^{R}\right\rangle\right\}=0$$

Las hipótesis de interés son:

$$H_0^A: f^1=\cdots=f^R=0$$
 (el primer factor no tiene efecto) $H_0^B: g^1=\cdots=g^S=0$ (el segundo factor no tiene efecto) $H_0^I: h^{1,1}=\cdots=h^{R,S}=0$ (no hay interacción) $H_0^C: \gamma=0$ (la covariable no es significativa)

Consideraremos especialmente H_0^A . Por CFR, si existen $r_{1,r_2}: f^{r_1} \neq f^{r_2}$, para cualquier medida μ gaussiana no-degenerada en \mathbb{H} ,

$$\mu\left\{\mathbf{v}\in\mathbb{H}:\left\langle\mathbf{v},\mathbf{f}^{1}\right\rangle=\cdots=\left\langle\mathbf{v},\mathbf{f}^{R}\right\rangle\right\}=0$$

Sea v un elemento elegido al azar según μ . Luego, condicional a que H_0^A se cumple, para cada $v \in \mathbb{H}$

$$H_0^{A,v}: \langle v, f^A \rangle = \cdots = \langle v, f^R \rangle = 0$$

también se cumple, y si H_0^A no se cumple, μ – c.s. $H_0^{A,\nu}$ tampoco.

Consideraciones prácticas

Consideraciones prácticas

Supuestos del modelo

 Al igual que en ANOVA clásico, las hipótesis de homocedasticidad y/o gaussianidad de los datos son cruciales. Para elegir qué test ANOVA aplicar, podemos analizar las proyecciones aleatorias.

Supuestos del modelo

- Al igual que en ANOVA clásico, las hipótesis de homocedasticidad y/o gaussianidad de los datos son cruciales. Para elegir qué test ANOVA aplicar, podemos analizar las proyecciones aleatorias.
- En funciones aleatorias, la homocedasticidad no es supuesto razonable, ya que las oscilaciones del proceso suelen depender de sus valores, así que conviene tener a manor un test ANOVA unidimensional que funcione bien bajo condiciones de heterocedasticidad.

Supuestos del modelo

- Al igual que en ANOVA clásico, las hipótesis de homocedasticidad y/o gaussianidad de los datos son cruciales. Para elegir qué test ANOVA aplicar, podemos analizar las proyecciones aleatorias.
- En funciones aleatorias, la homocedasticidad no es supuesto razonable, ya que las oscilaciones del proceso suelen depender de sus valores, así que conviene tener a manor un test ANOVA unidimensional que funcione bien bajo condiciones de heterocedasticidad.

Supuestos del modelo

- Al igual que en ANOVA clásico, las hipótesis de homocedasticidad y/o gaussianidad de los datos son cruciales. Para elegir qué test ANOVA aplicar, podemos analizar las proyecciones aleatorias.
- En funciones aleatorias, la homocedasticidad no es supuesto razonable, ya que las oscilaciones del proceso suelen depender de sus valores, así que conviene tener a manor un test ANOVA unidimensional que funcione bien bajo condiciones de heterocedasticidad.

Potencia y estabilidad

Supuestos del modelo

- Al igual que en ANOVA clásico, las hipótesis de homocedasticidad y/o gaussianidad de los datos son cruciales. Para elegir qué test ANOVA aplicar, podemos analizar las proyecciones aleatorias.
- En funciones aleatorias, la homocedasticidad no es supuesto razonable, ya que las oscilaciones del proceso suelen depender de sus valores, así que conviene tener a manor un test ANOVA unidimensional que funcione bien bajo condiciones de heterocedasticidad.

Potencia y estabilidad

• El reemplazo de una función $\in \mathbb{H}$ por un único número real acarrea pérdida de información, y por ende de potencia para detectar alternativas

Supuestos del modelo

- Al igual que en ANOVA clásico, las hipótesis de homocedasticidad y/o gaussianidad de los datos son cruciales. Para elegir qué test ANOVA aplicar, podemos analizar las proyecciones aleatorias.
- En funciones aleatorias, la homocedasticidad no es supuesto razonable, ya que las oscilaciones del proceso suelen depender de sus valores, así que conviene tener a manor un test ANOVA unidimensional que funcione bien bajo condiciones de heterocedasticidad.

Potencia y estabilidad

- El reemplazo de una función $\in \mathbb{H}$ por un único número real acarrea pérdida de información, y por ende de potencia para detectar alternativas
- Al estar basado en una proyección elegida al azar, de repetir el procedimiento dos o más veces podemos obtener resultados diferentes

Para reducir estos inconvenientes, se pueden tomar k > 1proyecciones aleatorias, testear H_0 bajo c.u. y combinar los *p-valores* obtenidos de alguna forma: bootstrap (muy lenta),

Para reducir estos inconvenientes, se pueden tomar k>1 proyecciones aleatorias, testear H_0 bajo c.u. y combinar los *p-valores* obtenidos de alguna forma: bootstrap (muy lenta), Bonferroni (muy conservadora)

Para reducir estos inconvenientes, se pueden tomar k > 1 proyecciones aleatorias, testear H_0 bajo c.u. y combinar los p-valores obtenidos de alguna forma: bootstrap (muy lenta), Bonferroni (muy conservadora) o false discovery rate (FDR).

Para reducir estos inconvenientes, se pueden tomar k > 1 proyecciones aleatorias, testear H_0 bajo c.u. y combinar los p-valores obtenidos de alguna forma: bootstrap (muy lenta), Bonferroni (muy conservadora) o false discovery rate (FDR).

Para reducir estos inconvenientes, se pueden tomar k>1 proyecciones aleatorias, testear H_0 bajo c.u. y combinar los p-valores obtenidos de alguna forma: bootstrap (muy lenta), Bonferroni (muy conservadora) o false discovery rate (FDR).

Si se testean k diferentes hipótesis, La "tasa de falso descubrimiento" es la proporción esperada de hipótesis incorrectamente rechazadas. Si se testea k veces la misma hipótesis, la FDR coincide con el nivel de significación del test.

Para reducir estos inconvenientes, se pueden tomar k>1 proyecciones aleatorias, testear H_0 bajo c.u. y combinar los p-valores obtenidos de alguna forma: bootstrap (muy lenta), Bonferroni (muy conservadora) o false discovery rate (FDR).

Si se testean k diferentes hipótesis, La "tasa de falso descubrimiento" es la proporción esperada de hipótesis incorrectamente rechazadas. Si se testea k veces la misma hipótesis, la FDR coincide con el nivel de significación del test.

En particular, si $p_{(1)} \leq \cdots \leq p_{(k)}$ son los kp-valores (ordenados), el nivel de un test que rechace H_0 cuando $\alpha \geq \inf\left\{\frac{k}{i}p_{(i)}, i=1,\ldots,k\right\}$ es, a lo sumo, de α .

Para reducir estos inconvenientes, se pueden tomar k>1 proyecciones aleatorias, testear H_0 bajo c.u. y combinar los p-valores obtenidos de alguna forma: bootstrap (muy lenta), Bonferroni (muy conservadora) o false discovery rate (FDR).

Si se testean k diferentes hipótesis, La "tasa de falso descubrimiento" es la proporción esperada de hipótesis incorrectamente rechazadas. Si se testea k veces la misma hipótesis, la FDR coincide con el nivel de significación del test.

En particular, si $p_{(1)} \leq \cdots \leq p_{(k)}$ son los kp-valores (ordenados), el nivel de un test que rechace H_0 cuando $\alpha \geq \inf\left\{\frac{k}{i}p_{(i)}, i=1,\ldots,k\right\}$ es, a lo sumo, de α .

FDR vs. Bonferroni

Bonferroni rechaza con nivel α cuando $p_{(1)} \leq \alpha/k$, en cuyo caso FDR también rechaza. En la práctica, FDR suele ser mucho menos conservador que Bonferroni.

Resta definir el número de proyecciones. k=30 es más que suficientemente conservador, y en algunos casos bastará con $k\in\{1,\ldots,5\}$. Es importante considerar que a mayor k,

Resta definir el número de proyecciones. k=30 es más que suficientemente conservador, y en algunos casos bastará con $k\in\{1,\ldots,5\}$. Es importante considerar que a mayor k,

 Bajo H₀, más conservador resulta el test y menor será la probabilidad de rechazo

Resta definir el número de proyecciones. k=30 es más que suficientemente conservador, y en algunos casos bastará con $k\in\{1,\ldots,5\}$. Es importante considerar que a mayor k,

- Bajo H₀, más conservador resulta el test y menor será la probabilidad de rechazo
- ullet bajo una alternativa fija H_1 , mayor será la probabilidad de rechazo

Resta definir el número de proyecciones. k=30 es más que suficientemente conservador, y en algunos casos bastará con $k\in\{1,\ldots,5\}$. Es importante considerar que a mayor k,

- Bajo H₀, más conservador resulta el test y menor será la probabilidad de rechazo
- bajo una alternativa fija H_1 , mayor será la probabilidad de rechazo

Este último efecto puede deberse a que mientras más direcciones aleatorias se tomen, más altas son las chances de que la alternativa correlacione fuertemente con alguna de ellas y este efecto contrarreste lo conservador del procedimiento. Por ello, en [Cuesta 2010] recomiendan tomar $k=\min\left\{30,n\right\}$.

En R: usando fda.usc::fanova.RPm

library(fda.usc)

En R: usando fda.usc::fanova.RPm

```
library(fda.usc)

X <- cbind(fda::growth$hgtm, fda::growth$hgtf)
grilla <- fda::growth$age
factores <- data.frame(
    varon=as.factor(startsWith(colnames(X) , "boy"))
)</pre>
```

En R: usando fda.usc::fanova.RPm

```
library(fda.usc)

X <- cbind(fda::growth$hgtm, fda::growth$hgtf)
grilla <- fda::growth$age
factores <- data.frame(
    varon=as.factor(startsWith(colnames(X) , "boy"))
)</pre>
```

```
X.fd <- fdata(mdata=t(X), argvals=grilla)
test <- fanova.RPm(X.fd, ~ varon, factores, RP=1)
test$p.FDR

## varon
## RP1 2.038658e-11</pre>
```

Referencias

- Cuesta-Albertos, J. A., del Barrio, E., Fraiman, R., & Matrán, C. (2007). The random projection method in goodness of fit for functional data. Computational Statistics & Data Analysis, 51(10), 4814-4831.
- Cuevas, A., Febrero, M., & Fraiman, R. (2007). Robust estimation and classification for functional data via projection-based depth notions. Computational Statistics, 22(3), 481-496.
- Cuesta-Albertos, J. A., & Febrero-Bande, M. (2010). A simple multiway ANOVA for functional data. Test, 19(3), 537-557.
- Patilea, V., Sanchez-Sellero, C., & Saumard, M. (2012). Projection-based nonparametric goodness-of-fit testing with functional covariates. arXiv preprint arXiv:1205.5578.
- García-Portugués, E., González-Manteiga, W., & Febrero-Bande, M. (2014). A goodness-of-fit test for the functional linear model with scalar response. Journal of Computational and Graphical Statistics, 23(3), 761-778.
- Cuesta-Albertos, J. A., Febrero-Bande, M., & de la Fuente, M. O. (2017). The DD^G-classifier in the functional setting. Test, 26(1), 119-142.
- Cuesta-Albertos, J. A., García-Portugués, E., Febrero-Bande, M., & González-Manteiga, W. (2019). Goodness-of-fit tests for the functional linear model based on randomly projected empirical processes. The Annals of Statistics, 47(1), 439-467.
- Librería fda.usc

¡Gracias!

En GitHub: <LINK>