Homework 2 Due: Oct. 21 (11:59pm)

1. For the *two-port network* shown below: (All the answers should be in terms of g_m , r_o , R_f , and R_s). In this problem, the two ports at V_1 are the input and the two ports at V_2 are the output.

- a. Write down KVL/KCL equations to relate V_2 and V_1 and find the gain (V_2/V_1) .
- b. Find the input impedance.
- c. Assuming that there is a voltage source with source resistance of Rs at the input, find the output impedance.
- **2.** For the following circuit with an NMOS device assuming $\lambda=0.1V^{-1}$, $\mu_nC_{ox}=\frac{200\mu A}{V^2}$, $V_{th}=0.4V$, $\frac{W}{L}=50$, L=65nm, $R_D=500\Omega$, $V_{DD}=1V$, $V_b=0.8V$:

- a. Find the bias point and determine the operation region of NMOS device.
- b. Find small-signal parameters g_m and r_o for the NMOS.
- c. Draw the small-signal model for the NMOS (you can ignore parasitic capacitances).
- d. Draw the small-signal model for the full circuit (you can ignore parasitic capacitances).
- e. Write down KVL/KCL equations to find the small-signal gain $(\frac{v_{out}}{v_{in}})$.
- f. Find the small-signal gain (questions e and f can be thought of as one question, but make sure to show all your equations and work when finding the small signal gain).

3. Assume a basic common-source amplifier with PMOS input (operating in saturation) and R_D as the load.

- a. Draw the small-signal model, and calculate gain, input, and output impedances. $(\lambda \neq 0)$. Do this parametrically (as in, your answer should be a function of variables such as g_m and r_o).
- b. Suppose VDD = 1V, V_{th} = -0.4V, V_{IN} (input bias) = VDD/2, what's the output voltage swing range ($V_{out,min}$, $V_{out,max}$)?
- c. With voltages from part (b), if $\lambda = 0.1V^{-1}$, $\mu_p C_{ox} = \frac{50\mu A}{V^2}$, $R_D = 20k\Omega$, what should be W/L to achieve a small signal gain of 20?