Numerical

- 1. A conduction wire has a resistivity of $1.54 \times 10^{-8} \Omega$ -m at room temperature. There are 5.8×10^{28} conduction electrons per m³. Calculate the mobility and relaxation time of electrons. [Ans. $6.997 \times 10^{-3} \text{ m}^2/\text{V-s}$; $3.979 \times 10^{-14} \text{ second}$]
- 2. A silicon wafer (intrinsic carrier concentration $1 \times 10^{16} \,\mathrm{m}^{-3}$) is doped with 2×10^{22} aluminium atoms/m³ and 1×10^{22} arsenic atoms/m³. Determine the minority carrier concentration. Assume complete dopant ionization.

[Ans. $1 \times 10^{10}/\text{m}^3$]

3. The electron and hole concentration in a P-type semiconductor is 10¹²/m³ and 10²²/m³ respectively. If the mobility of electrons and holes are 0.04 and 0.06 m²/V-s respectively, determine the conductivity of the material

[Ans. 96 (ohm-metre)⁻¹]

- 5. A semiconductor has the electron concentration 4×10^{12} cm⁻³ and hole concentration 7×10^{13} cm⁻³. Is the semiconductor *n*-type or *p*-type? Also calculate the conductivity of this semiconductor. Given, electron mobility = 22,0000 cm² V⁻¹ s⁻¹ and hole mobility = 150 cm²V⁻¹s⁻¹.
- Determine the number density of donor atoms which have to be added to an intrinsic germanium to produce an *n*-type semiconductor of conductivity 0.06 Sm^{-1} . Given the mobility of electron $= 0.39 \text{ m}^2 \text{ V}^{-1} \text{ s}^{-1}$. Neglect the contribution of the holes to the conductivity. $[96 \times 10^{16} \text{ m}^{-1}]$

Numerical

4. Find the concentration of holes and electrons in an N-type silicon at 300 K if the conductivity is 0.1 (Ω-cm)⁻¹. Given that n_i at 300 K for silicon is 1.5 × 10¹⁰/cm³. μ_e at 300 K for silicon is 1,300 cm²/V-s.

[Ans. $n = 4.8 \times 10^{14}$ electrons/cm³, $p = 4.688 \times 10^5$ holes/cm³]

- 5. Find the diffusion coefficients of holes and electrons for germanium at 300 K. The carrier mobilities in cm²/V-s at 300 K for electrons and holes are respectively 3,600 and 1,700. Density of carriers is 2.5×10^{13} /cm³. Boltzmann constant k = 1.38×10^{-23} J/ K. $e = 1.602 \times 10^{-19}$ C. [Ans. 93 cm²/s; 43.93 cm²/s]
- 6. A 1 k Ω resistors is to be fabricated as a narrow strip of P-type silicon, 4 mm thick. If the strip is 400 μ m long and 20 μ m wide, what concentration of acceptor atoms is required? Given hole mobility at room temperature as 480 cm² V⁻¹ s⁻¹.

[G.G.S.I.P. University Analog Electronics, December-2010]

[Ans. 6.51×10^{22} /m³]

- 7. The intrinsic resistivity of silicon at 27°C is $2.8 \times 10^3 \Omega$ -m. The electron and hole mobilities are 0.38 and 0.18 m²/V-s respectively. Calculate intrinsic carrier density at the given temperature. [Ans. 3.986×10^{15} /m³]
- 8. For a given semiconductor, the effective mass of electron is $m_e = 1.2$ m and the Fermi level is 0.25 eV above the valence band. Determine the effective density of states in the conduction band and concentrations of electrons in semiconductor at (i) T = 300 K and (ii) T = 400 K.

[Ans. (i) 3.292×10^{25} /m³; 2.084×10^{21} /m³; (ii) 5.075×10^{25} /m³; 36×10^{21} /m³]

- 9. The effective mass of electron and hole are $m_e = 0.75$ m and $m_h = 0.5$ m respectively. Determine the position of the intrinsic Fermi level in germanium at (i) 300 K and (ii) 400 K. [Ans. -7.864×10^{-3} eV; -10.485×10^{-3} eV]
- 10. In an N-type semiconductor, the Fermi level is 0.3 eV below the conduction band at a room temperature of 300 K. If the temperature is increased to 400 K, determine the new position of Fermi level.

 [Ans. 0.4 eV]
- 11. In a P-type semiconductor, the Fermi level is 0.25 eV above the valence band at a room temperature of 300 K. Find the new position of the Fermi level at a temperature of 360 K.

 [Ans. 0.3 eV]
- 12. In an N-type semiconductor, the Fermi level lies 0.25 eV below the conduction band. Find the new position of Fermi level if the concentration of donor atoms is made 4 times. Assume kT = 0.026 eV. [Ans. 0.214 eV]

Numerical

- 1. A semiconductor has equal electron and hole concentration of 2×10^8 m⁻³. On doping with a certain impurity, the hole concentration increases to 4×10^{10} m⁻³.
 - (i) What type of semiconductor is obtained on doping?
 - (ii) Calculate the new electron concentration of the semiconductor.
 - (iii) How does the energy gap vary with doping? [(i) p-type (ii) 10^6 m⁻³ (iii) decreases]
- 2. The number density of electrons and holes in intrinsic silicon at a given temperature is $4.94 \times 10^{10} \text{ cm}^{-3}$. Calculate the resistivity and conductivity of the silicon. Given electron mobility = $1000 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$ and hole mobility = $100 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$. [9 × 10⁴ Ω cm; 11.1 × 10⁻⁶ Sm⁻¹]
- 3. Determine the number density of donor atoms which have to be added to an intrinsic germanium semiconductor to produce an *n*-type semiconductor of conductivity $5\Omega^{-1}$ cm⁻¹. Given that mobility of electrons in *n*-type Ge is 3900 cm²V⁻¹s⁻¹. Neglect the contribution of holes to conductivity.
- 4. A semiconductor has the electron concentration of 8×10^{13} cm⁻³ and hole concentration of 4×10^{12} cm⁻³. Is the semiconductor *p*-type or *n*-type? Also calculate the resistivity of this semiconductor. Given, electron mobility = 24,000 cm²V⁻¹s⁻¹ and hole mobility = 200 cm²V⁻¹s⁻¹. In-type; 3.254×10^{-2} Ω m]