로봇을 위한 인공지능 기반 물체검출

한양대학교 최준원

Contents

- CNN
- Region based object detector
 - R-CNN [1] (CVPR 2014)
 - Fast R-CNN [2] (ICCV 2015)
 - Faster R-CNN [3] (NIPS 2015)
- Single stage object detector
 - SSD: Single Shot multibox Detector [4] (ECCV 2016)

^[1] Girshick, Ross, et al. "Rich feature hierarchies for accurate object detection and semantic segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2014.

^[2] Girshick, Ross. "Fast r-cnn." Proceedings of the IEEE international conference on computer vision. 2015.

^[3] Ren, Shaoqing, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." Advances in neural information processing systems. 2015.

^[4] Liu, Wei, et al. "Ssd: Single shot multibox detector." European conference on computer vision. Springer, Cham, 2016.

Convolutional neural network

Motivation

- Inspired by human's biological data processing
- Human visual system

Convolutional neural network

Excellent for the data with grid-like topology

Convolutional neural network

Key steps for CNN Previous layer Convolution operation Conv 1: Edge+Blob Conv 3: Texture **Conv 5: Object Parts** Fc8: Object Classes Nonlinear function Pooling stage Next layer

Building blocks of CNN

- Convolution with 3-dimensional kernel
 - Small two-dimensional filters are applied for each position of data.
 - We can skip sweeping convolution with stride k
 - Captures local connectivity
 - **Parameter sharing** significantly reduces the number of parameters that should be learned.

1 _{×1}	1,0	1 _{×1}	0	0
0,0	1 _{×1}	1,0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

4	

Convolved Feature

Building blocks of CNN

- Max-pooling
 - Pick the strongest activation in the region
 - Max-pooling allows the feature invariant to translation

Max-pooling

max pool with 2x2 filters and stride 2

6	8
3	4

Image Classification via CNN

Alexnet (2012, Krizhevsky)

5 convolutional layers

3 fully connected layers

- VGGnet (2014)
 - 3x3 convolutional layers are cascaded.

Image Classification via CNN

- GooleNet (2014)
 - Use inception module

- ResidualNet (2015)
 - Skip connection is introduced to improve network optimization.

Image Classification via CNN

ResidualNet (2015)

- Skip connection is introduced to improve network optimization.
- The residual function F(x) = H(x) x is learned rather than the original function H(x).

- R-CNN (Region-based CNN)
 - First object detector using CNN
 - Speed (FPS) and accuracy comparison

- R-CNN (Region-based CNN)
 - First object detection method using CNN.
 - The selective search algorithm is used for region proposals.
 - AlexNet is used for feature extraction.
 - **Support vector machine(SVM)** is used for classification and the bounding-box regression is used to improve localization performance.

R-CNN: Regions with CNN features

- R-CNN
 - Algorithm procedure
 - 1) Region proposal
 - Selective search
 - 2) Crop & wrap region
 - 3) CNN for feature extraction
 - 4) Classification (SVM) and box regression

- R-CNN
 - Algorithm procedure
 - 1) Region proposal
 - Selective search [5]
 - 1. Generate initial sub-segmentation.
 - 2. Recursively combine similar regions into larger ones.
 - 3. Use the generated regions to produce candidate object locations.

Input Image

Initial segment.

After k iterations

- Algorithm procedure
 - 1) Region proposal (selective search)
 - 2) Crop & wrap region
 - 3) CNN for feature extraction
 - 4) Classification (SVM) and box regression

- Algorithm procedure
 - Region proposal (selective search)
 - 2) Crop & wrap region
 - Crop regions from input image.
 - Since a CNN takes a fixed-size image, we wrap a cropped region into a 227 x 227 RGB images.

R-CNN

- Algorithm procedure
 - 1) Region proposal (selective search)
 - 2) Crop & wrap region
 - 3) CNN for feature extraction
 - 4) Classification (SVM) and box regression

R-CNN: Regions with CNN features

1. Input image

2. Extract region proposals (~2k)

3. Compute CNN features

4. Classify regions

- Algorithm procedure
 - 1) Region proposal (selective search)
 - 2) Crop & wrap region
 - 3) CNN for feature extraction
 - Use CNN (AlexNet) to extract a 4096-dimensional feature.

- Algorithm procedure
 - 1) Region proposal (selective search)
 - Crop & wrap region
 - 3) CNN for feature extraction
 - 4) Classification (SVM) and box regression

- Algorithm procedure
 - 1) Region proposal (selective search)
 - 2) Crop & wrap region
 - 3) CNN for feature extraction
 - 4) Classification (SVM) and box regression
 - Train SVM for each class

R-CNN

Training procedure (Multi-stage training)

- R-CNN
 - Limitations
 - Complex training procedure (multi-stage training)
 - Slow inference time (2k cropped images should be fed into CNN)

- The Fast R-CNN builds on R-CNN to efficiently classify object proposals.
 - It is 9x faster in training and 213x faster in testing than R-CNN.
 - It use a region of interest(ROI) projection for reduce computation.
 - Bounding box regression is into network and single stage training is used with multi-task loss.

Fast R-CNN

- ROI Pooling
 - R-CNN extract CNN feature vectors independently for each region proposal.
 - High computational cost
 - Fast R-CNN aggregates them into one CNN forward pass over the entire image and the region proposals share this feature matrix.

24

Fast R-CNN

ROI Pooling

 Perform max-pooling on non-uniform sizes inputs to obtain fixed-size feature maps. (e.g. 2×2)

ROI Pooling layer

$$smooth_{L_1}(x) = \begin{cases} 0.5x^2 & \text{if } |x| < 1\\ |x| - 0.5 & \text{otherwise.} \end{cases}$$

Fast R-CNN

Bounding box regression with multi-task loss

Classification loss

Bounding box regression loss

(The smooth L1 loss is adopted here and it is claimed to be less sensitive to outliers.)

Symbol	Explanation
u	True class label, $u \in {0,1,\ldots,K}$; by convention, the catch-all background class has $u=0$.
p	Discrete probability distribution (per RoI) over K + 1 classes: $p=(p_0,\ldots,p_K)$, computed by a softmax over the K + 1 outputs of a fully connected layer.
v	True bounding box $v=(v_x,v_y,v_w,v_h)$.
t^u	Predicted bounding box correction, $t^u = (t^u_x, t^u_y, t^u_w, t^u_h)$.

- End-to-end training
- The Faster-RCNN is composed of two modules.
 - 1. Region proposal network (RPN).
 - 2. Fast R-CNN detector.
- RPN is trained to produce region proposals directly.
- After RPN, use Roi pooling and an upstream classifier and bounding box regressor like Fast R-CNN.

- Region proposal network (RPN)
 - The sliding window suggests whether or not there is an object in the area and the coordinate value.
 - Multi-Scale anchors are used as regression references.

- Region proposal network (RPN)
 - For each location in the feature maps, RPN makes k guesses.
 - Therefore RPN outputs 4×k coordinates and 2×k scores per location.

8 x 8 feature maps

3 proposals for each location

Faster R-CNN

- Region proposal network (RPN)
 - Since we just need one to be correct, we will be better off if our initial guesses have default shapes and size.
 - Instead, it predicts offsets like δx , δy that are relative to the top left corner of some reference boxes called **anchors**.

Example of offset prediction with anchor boxes

Example of 3 anchor boxes

 p^* : Ground truth label

: Predicted score

 t^* : GT bbox

t: Predicted bbox offset

- Region proposal network (RPN)
 - Training strategy for RPN
 - Assign a binary class label (of being an object or not) to each anchor.
 - Assign a positive label to two kinds of anchors:
 - » The anchors with the highest IoU (Intersection-over-union) with a ground-truth box.
 - » An anchor that has an IoU overlap higher than 0.7 with any ground-truth box.
 - Assign a negative label to a non-positive anchor if its IoU ratio is lower than 0.3 for all ground-truth boxes.

$$L(\{p_i\}, \{t_i\}) = \frac{1}{N_{cls}} \sum_{i} L_{cls}(p_i, p_i^*) + \lambda \frac{1}{N_{reg}} \sum_{i} p_i^* L_{reg}(t_i, t_i^*).$$

- Faster R-CNN
 - Limitations of two-stage detector
 - Still slow inference time
 - Operates at only 7 frames per second (FPS)

- SSD: Single Shot multibox Detector
 - Single stage detector
 - Predict object categories and offsets in bounding box locations at once.
 - Achieves significant improvement in speed for high-accuracy detection.
 - SSD: 58 FPS with mAP 74.3% on VOC2007 test
 - Faster R-CNN 7 FPS with mAP 73.2%
 - YOLO 45 FPS with mAP 63.4%

- SSD: Single Shot multibox Detector
 - Structural features
 - The core of SSD is predicting category scores and box offsets for a fixed set of default bounding boxes (= anchor boxes) using small convolutional filters applied to feature maps.
 - Makes predictions on **multiple feature maps** with different resolutions to handle objects of different sizes.

- SSD: Single Shot multibox Detector
 - Structural features
 - Default bounding boxes (= anchor boxes)
 - Similar to the anchors of Faster R-CNN, with the difference that SSD applies them on several feature maps of different resolutions.

Example of 4 default boxes

(b) 8×8 feature map

- SSD: Single Shot multibox Detector
 - Structural features
 - Default bounding boxes (= anchor boxes)
 - Choosing scales and aspect ratios for default boxes;
 - » If m feature maps are used for detection, the scale of the default boxes for kth feature map is;

$$s_k = s_{\min} + \frac{s_{\max} - s_{\min}}{m - 1} (k - 1), \quad k \in [1, m]$$
 $s_{\max} = 0.1$ $s_{\max} = 0.9$

At each scale, different aspect ratios are considered;

Example of default box

$$a_r \in \{1, 2, 3, \frac{1}{2}, \frac{1}{3}\}$$

$$(w_k^a) = s_k \sqrt{a_r}$$

$$(h_k^a) = s_k / \sqrt{a_r}$$

 w_k^a : width of default box h_k^a : height of default box

- SSD: Single Shot multibox Detector
 - Structural features
 - Small convolutional filters for detection
 - For each feature layer of m x n x p, we apply kernels of $3 \times 3 \times p \times \{(\# \text{ of classes} + 4) \times k\}$ to produce either a score for each class and 4 offset relative to a k default bounding box coordinates.

- SSD: Single Shot multibox Detector
 - Structural features
 - Multiple feature maps
 - Add convolutional layers at the end of backbone network (VGG-16) and decrease the size of the features progressively.

 Concatenate the detection results from each extra features at the last layer.

- SSD: Single Shot multibox Detector
 - Structural features
 - Multiple feature maps
 - Add convolutional layers at the end of backbone network (VGG-16) and decrease the size of the features progressively.
 - Concatenate the detection results from each extra features at the last layer.

- SSD: Single Shot multibox Detector
 - Training strategy
 - Matching strategy
 - For each ground truth box, we have to select from all the default boxes the ones that best fit in terms of location, aspect ratio and scale.
 - » We select the default box with best jaccard overlap (=ioU; intersection of union). Then every box has at least 1 correspondence.
 - » Default boxes with a jaccard overlap higher than 0.5 are also selected.

- SSD: Single Shot multibox Detector
 - Training strategy
 - Loss function

$$L(x,c,l,g) = \frac{1}{N} \left(L_{conf}(x,c) + \alpha L_{loc}(x,l,g) \right)$$

Classification loss

$$-\sum_{i \in Pos}^{N} x_{ij}^{p} log(\hat{c}_{i}^{p}) - \sum_{i \in Neg} log(\hat{c}_{i}^{0})$$

where
$$\hat{c}_i^p = \frac{\exp(c_i^p)}{\sum_p \exp(c_i^p)}$$

c: class confidence (score)

Bounding box regression loss

(The smooth L1 loss is adopted.)

$$-\sum_{i\in Pos}^{N}x_{ij}^{p}log(\hat{c}_{i}^{p}) - \sum_{i\in Neg}log(\hat{c}_{i}^{0})$$
 where
$$\hat{c}_{i}^{p} = \frac{\exp(c_{i}^{p})}{\sum_{p}\exp(c_{i}^{p})}$$

$$\hat{g}_{j}^{cx} = (g_{j}^{cx} - d_{i}^{cx})/d_{i}^{w}$$

$$\hat{g}_{j}^{cy} = (g_{j}^{cy} - d_{i}^{cy})/d_{i}^{h}$$

$$\hat{g}_{j}^{w} = \log\left(\frac{g_{j}^{w}}{d_{i}^{w}}\right)$$

$$\hat{g}_{j}^{h} = \log\left(\frac{g_{j}^{h}}{d_{i}^{h}}\right)$$

g: Ground truth box

l: Predicted box

d: Default box

- SSD: Single Shot multibox Detector
 - Training strategy
 - Hard negative mining
 - To handle significant imbalance between positive and negative training examples.
 - » Use negative samples with higher confidence score.
 - » Then the ratio of positive-negative samples is 3:1.

Data augmentation

- To make the model more robust to various input object sizes and shapes,
 each training image is randomly sampled by one of the following options:
 - » Use the entire original input image.
 - » Sample a patch so that the minimum jaccard overlap with the objects is 0.1, 0.3, 0.5, 0.7, or 0.9.
 - » Randomly sample a patch.

- SSD: Single Shot multibox Detector
 - Results
 - Effect of multiple features

conv4_3	mAP	# Boxes					
~	~	~	~	~	~	74.3	8732
~	~	~	~	~		74.6	8764
~	~	~	~			73.8	8942
~	~	~				70.7	9864
~	~					64.2	9025
	~					62.4	8664

• Effect of data augmentation & various scales of default boxes

	SSD300									
more data augmentation?		V	V	V	V					
include $\{\frac{1}{2}, 2\}$ box?	/		~	~	/					
include $\{\frac{1}{3}, 3\}$ box?	✓			✓	/					
use atrous?	~	~	~		✓					
VOC2007 test mAP	65.5	71.6	73.7	74.2	74.3					

Results

Results

SSD300 : 300x300 images as an input

SSD300 : 512x512 images as an input

- Detection & speed performance
 - PASCAL VOC 2007 test set

Method	mAP	FPS	batch size	# Boxes	Input resolution
Faster R-CNN (VGG16)	73.2	7	1	~ 6000	$\sim 1000 \times 600$
Fast YOLO	52.7	155	1	98	448×448
YOLO (VGG16)	66.4	21	1	98	448×448
SSD300	74.3	46	1	8732	300×300
SSD512	76.8	19	1	24564	512×512
SSD300	74.3	59	8	8732	300×300
SSD512	76.8	22	8	24564	512×512

COCO test-dev 2015

Method	data	Avg. Pre	cision,	IoU:	Avg. F	recisio	n, Area:	Avg.	Recall, #	Dets:	Avg. Recall, Area:		
Method	data	0.5:0.95	0.5	0.75	S	M	L	1	10	100	S	M	L
Fast [6]	train	19.7	35.9	-	-	-	-	-	-	-	-	-	-
Fast [24]	train	20.5	39.9	19.4	4.1	20.0	35.8	21.3	29.5	30.1	7.3	32.1	52.0
Faster [2]	trainval	21.9	42.7	-	-	-	-	-	-	-	-	-	-
ION [24]	train	23.6	43.2	23.6	6.4	24.1	38.3	23.2	32.7	33.5	10.1	37.7	53.6
Faster [25]	trainval	24.2	45.3	23.5	7.7	26.4	37.1	23.8	34.0	34.6	12.0	38.5	54.4
SSD300	trainval35k	23.2	41.2	23.4	5.3	23.2	39.6	22.5	33.2	35.3	9.6	37.6	56.5
SSD512	trainval35k	26.8	46.5	27.8	9.0	28.9	41.9	24.8	37.5	39.8	14.0	43.5	59.0