

AMERICAN SOCIETY OF LANDSCAPE ARCHITECTS

(https://www.asla.org/stormwatercasestudies.aspx)

```
In [1]: import warnings
warnings.filterwarnings('ignore')
%matplotlib inline
```

```
In [2]:
        import sys
        import types
        import pandas as pd
        pd.options.display.float_format = '{:20,.2f}'.format
        from botocore.client import Config
        import ibm boto3
        def __iter__(self): return 0
        # @hidden cell
        # The following code accesses a file in your IBM Cloud Object Storage. It incl
        udes your credentials.
        # You might want to remove those credentials before you share your notebook.
        client_48928a04ca8e42ed87d1026e6bbfe31a = ibm_boto3.client(service_name='s3',
            ibm api key id='cKFY8NgVSr8IZPnKreuUVxKwpo0S2EHpqYpoZ-xM69NF',
            ibm auth endpoint="https://iam.ng.bluemix.net/oidc/token",
            config=Config(signature_version='oauth'),
            endpoint url='https://s3-api.us-geo.objectstorage.service.networklayer.co
        m')
        body = client 48928a04ca8e42ed87d1026e6bbfe31a.get object(Bucket='courseracaps
        tone-donotdelete-pr-fxod1bkevlkezk',Key='ASLA-1.csv')['Body']
        # add missing __iter__ method, so pandas accepts body as file-like object
        if not hasattr(body, "__iter__"): body.__iter__ = types.MethodType( __iter__,
        body )
        asla = pd.read_csv(body)
        asla['Size/ Capture area (Sq. feet)'] = asla['Size/ Capture area (Sq. feet)'].
        astype(float)
        asla['GI COST (2)'] = asla['GI COST (2)'].astype(float)
```

In [3]: asla.head()

Out[3]:

	CITY	STATE	CASE STUDY TITLE	FINANCIAL SOURCE	FINANCIAL TOOL	GI PROJECT FINANCED	Size/ Capture area (Sq. feet)	
0	Cincinnati	Ohio	Lick Run	Public funding	NaN	Bioretention facility, rain garden, bioswale,	217,800.00	12
1	Atlanta	Georgia	Emory University Stormwater Master Plan	Private funding	NaN	Bioretention facility, rain garden, bioswale,	217,800.00	90
2	Portland	Oregon	Tabor To The River Program	Public funding	NaN	Bioretention facility, rain garden, green roof	217,800.00	80
3	Seattle	Washington	Taylor 28	Private funding	NaN	Bioretention facility, rain garden, cistern, p	130,680.00	38
4	Los Angeles	California	South Los Angeles Wetland Park Site Plan	Public funding	NaN	Bioretention facility, bioswale, and porous pa	130,680.00	24

Cleaning and selecting only the relevant cases

```
In [4]: columns = ['STATE','FINANCIAL SOURCE']

for column in columns:
    asla[column] = asla[column].str.lstrip() #removing Leading spaces
```

```
In [5]: print('Initial Row Count: ',asla.shape[0])
```

Initial Row Count: 461

Filtering out Canadian cases

```
In [6]: asla=asla[asla['STATE']!='Canada']
In [7]: print('New Row Count:',asla.shape[0])
    print('Lost:',461-asla.shape[0],'rows')

    New Row Count: 454
    Lost: 7 rows
```

Cutting critical null values

```
In [8]: print('There are',sum(asla['FINANCIAL SOURCE'].isnull()),'cases missing financ
ial source data')
```

There are 5 cases missing financial source data

In [9]: asla[asla['FINANCIAL SOURCE'].isnull()]

Out[9]: ___

	CITY	STATE	CASE STUDY TITLE	FINANCIAL SOURCE	FINANCIAL TOOL	GI PROJECT FINANCED	Size Capture area (Sq feet
456	San Diego	California	La Jolla Shores Area of Special Biological Sig	NaN	NaN	NaN	nan
457	Gainesville	Florida	Madera - Community and Model Center	NaN	NaN	NaN	nan
458	Ruston	Louisiana	City of Ruston- Louisiana Research Park Streets	NaN	NaN	NaN	nan
459	Philadelphia	Pennsylvania	Shissler Rec. Center (Big Green Block)	NaN	NaN	NaN	nan
460	Southeastern	Pennsylvania	T-VSSI Regional Stormwater BMP Database	NaN	NaN	NaN	nan

In [10]: asla = asla[asla['FINANCIAL SOURCE'].notnull()]

In [11]: print('New Row Count:',asla.shape[0])
 print('Lost:',454-asla.shape[0],'rows')
 print('Total Lost Rows:',7+(454-asla.shape[0]))

New Row Count: 449 Lost: 5 rows

Total Lost Rows: 12

In [12]: print('There are',sum(asla['Size/ Capture area (Sq. feet)'].isnull()),'cases m
issing project size')

There are 5 cases missing project size

In [13]: asla[asla['Size/ Capture area (Sq. feet)'].isnull()]

Out[13]:

	CITY	STATE	CASE STUDY TITLE	FINANCIAL SOURCE	FINANCIAL TOOL	GI PROJECT FINANCED	Size/ Capture area (Sq. feet)	GI
212	San Mateo	California	San Mateo County Sustainable Green Streets	Public funding	NaN	Technical stormwater design guidebook of green	nan	300,(
412	Sussex County	Kentucky	EPA Technical Assistance and Design Guidebooks	Private funding	NaN	Bioretention facility, rain garden, bioswale,	nan	30,00
421	New York	New York	Greenstreets - Furmanville Ave	Public funding	Grant	Bioretention facility, bioswale, gravel reserv	nan	30,00
427	Portland	Oregon	SE 21st and Tibbetts Green Street	Public funding	NaN	Green roof, downspout removal, stormwater curb	nan	30,00
455	Upland	California	Cucamonga Basin #6	Public funding	NaN	NaN	nan	0.00

In [14]: asla = asla[asla['Size/ Capture area (Sq. feet)'].notnull()]

In [15]: print('New Row Count:',asla.shape[0])
 print('Lost:',449-asla.shape[0],'rows')
 print('Total Lost Rows:',12+(449-asla.shape[0]))

New Row Count: 444

Lost: 5 rows

Total Lost Rows: 17

```
In [16]: print('There are',sum(asla['GI COST (2)'].isnull()),'cases missing project cos
t')
```

There are 0 cases missing project cost

Summary Statistics

In [17]: asla[['Size/ Capture area (Sq. feet)','GI COST (2)']].describe()

Out[17]: _____

	Size/ Capture area (Sq. feet)	GI COST (2)
count	444.00	444.00
mean	143,427.68	1,901,670.60
std	632,797.91	8,450,122.80
min	1,300.00	3,000.00
25%	24,280.00	75,000.00
50%	130,680.00	300,000.00
75%	130,680.00	2,081,250.00
max	13,068,000.00	122,000,000.00

```
In [18]: print('Total awards =',sum(asla['GI COST (2)']))
```

Total awards = 844341748.0

State Distribution

```
In [19]: print('Total states represented = ',len(asla['STATE'].unique()))
```

Total states represented = 44

STATE	
Ohio	140,161,100.00
New York	103,263,528.00
Georgia	101,277,000.00
Oregon	100,437,000.00
California	92,363,441.00
Washington	48,709,473.00
Illinois	36,605,117.00
Indiana	20,427,000.00
Pennsylvania	18,756,257.00
Iowa	17,751,328.00
Louisiana	16,440,000.00
Colorado	15,637,000.00
Michigan	15,311,410.00
Wisconsin	14,715,000.00
Minnesota	11,644,968.00
Arizona	10,200,000.00
Tennessee	9,000,000.00
Alabama	8,151,840.00
Missouri	8,077,000.00
Kentucky	7,306,226.00
Massachusetts	6,733,850.00
Maryland	4,972,000.00
Connecticut	4,955,000.00
New Mexico	4,730,000.00
New Jersey	4,068,466.00
North Carolina	3,485,857.00
South Carolina	3,300,000.00
District of Columbia	3,087,000.00
Florida	2,768,600.00
New Hampshire	1,650,000.00
Virginia	1,304,000.00
Arkansas	1,125,000.00
Texas	1,063,000.00
Kansas	1,031,282.00
Idaho	865,000.00
Rhode Island	800,000.00
Mississippi	678,600.00
Alaska	460,000.00
Oklahoma	410,000.00
Maine	300,000.00
Utah	150,000.00
Montana	75,000.00
Nebraska	69,585.00
Vermont	24,820.00
Name: GI COST (2), dtype:	T109LP4

Out[20]:

```
In [21]: asla.groupby('STATE')['CITY'].count().sort_values(ascending=False)
Out[21]: STATE
                                   56
         New York
                                   49
         California
                                   32
         Pennsylvania
         Illinois
                                   26
                                   25
         Oregon
         Ohio
                                   20
         Michigan
                                   16
          Louisiana
                                   15
         Missouri
                                   13
         Alabama
                                   12
                                   12
         Washington
         District of Columbia
                                   11
         Wisconsin
                                   11
         Minnesota
                                   11
         Idaho
                                   10
         Florida
                                    9
         North Carolina
                                    9
         Georgia
                                    8
                                    8
         Maryland
         Colorado
                                    7
                                    7
         Massachusetts
                                    7
         Indiana
         Kentucky
                                    6
         Kansas
                                    6
         Connecticut
                                    6
                                    5
         Arizona
                                    5
         New Mexico
                                    5
         New Jersey
         New Hampshire
                                    4
         Iowa
                                    4
         Oklahoma
                                    3
                                    3
         Texas
         Tennessee
                                    3
         Mississippi
                                    3
                                    3
         Virginia
                                    3
         Arkansas
                                    2
         Utah
                                    2
         South Carolina
                                    2
         Alaska
         Nebraska
                                    1
         Maine
                                    1
                                    1
         Vermont
         Rhode Island
                                    1
         Montana
         Name: CITY, dtype: int64
```

Size and Cost Distribution

These were the bins specifically requested

```
In [22]: | print('< 20,000:',sum(asla['Size/ Capture area (Sq. feet)']<20000))</pre>
         print('20,000 - 40,000:',sum(asla['Size/ Capture area (Sq. feet)'].between(200
         00,40000)))
         print('40,000 - 200,000:',sum(asla['Size/ Capture area (Sq. feet)'].between(40
         000,200000)))
         print('> 200,000:',sum(asla['Size/ Capture area (Sq. feet)']>200000))
         < 20,000: 45
         20,000 - 40,000: 144
         40,000 - 200,000: 153
         > 200,000: 102
In [23]: | print('< $10,000:',sum(asla['GI COST (2)']<10000))</pre>
         print('$10,000 - $50,000:',sum(asla['GI COST (2)'].between(10000,50000)))
         print('$50,000 - $100,000:',sum(asla['GI COST (2)'].between(50000,100000)))
         print('$100,000 - $500,000:',sum(asla['GI COST (2)'].between(100000,500000)))
         print('$500,000 - $1,000,000:',sum(asla['GI COST (2)'].between(500000,1000000
         print('$1,000,000 - $5,000,000:',sum(asla['GI COST (2)'].between(1000000,50000
         00)))
         print('> $5,000,000:',sum(asla['GI COST (2)']>5000000))
         < $10,000: 3
         $10,000 - $50,000: 61
         $50,000 - $100,000: 63
         $100,000 - $500,000: 137
         $500,000 - $1,000,000: 63
         $1,000,000 - $5,000,000: 110
         > $5,000,000: 11
```

Cost/Sq Ft

Out[24]:

	Cost/Sqft	
count	444.00	
mean	24.16	
std	63.66	
min	0.02	
25%	2.00	
50%	6.33	
75%	22.96	
max	626.00	

In [25]: asla_types = asla.groupby('FINANCIAL SOURCE')
 asla_types['Cost/Sqft'].describe()

Out[25]:

	count	mean	std	min	25%	50%	75%	max
FINANCIAL SOURCE								
Mixed	15.00	9.45	12.10	0.08	1.36	3.25	12.36	32.95
Private funding	116.00	17.25	51.35	0.02	0.90	3.16	12.36	414.14
Public funding	313.00	27.42	68.83	0.14	2.30	12.36	22.96	626.00

In [26]: asla.boxplot('Cost/Sqft', by='FINANCIAL SOURCE', figsize=(12, 8))

Out[26]: <matplotlib.axes._subplots.AxesSubplot at 0x7f6eb99a2ef0>

Boxplot grouped by FINANCIAL SOURCE

Testing the Cost/Sq Ft by Financial Source

```
In [27]: import scipy.stats as stats

mixed = list(asla[asla['FINANCIAL SOURCE']=='Mixed']['Cost/Sqft'].values)
public = list(asla[asla['FINANCIAL SOURCE']=='Public funding']['Cost/Sqft'].values)
private = list(asla[asla['FINANCIAL SOURCE']=='Private funding']['Cost/Sqft'].values)

stats.f_oneway(mixed,public,private)

Out[27]: F_onewayResult(statistic=1.4974108427694688, pvalue=0.22484380848319827)

In [28]: stats.ttest_ind(public,private)

Out[28]: Ttest_indResult(statistic=1.4484402208074285, pvalue=0.1482278673107445)

In [29]: any_priv = private + mixed
```

Out[29]: Ttest indResult(statistic=1.6732829893294674, pvalue=0.094979130268016909)

stats.ttest_ind(public,any_priv)

In [30]: asla[asla['FINANCIAL SOURCE']=='Public funding']['Cost/Sqft'].values

```
Out[30]: array([
                   5.60146924e+02,
                                       3.71533517e+02,
                                                          1.83654729e+02,
                   8.22620141e+00,
                                                          3.81294261e+01,
                                      4.15579798e+01,
                   3.67309458e+01,
                                       5.12473217e+01,
                                                          2.80073462e+01,
                   2.05930807e+02,
                                       2.29568411e+01,
                                                          2.29568411e+01,
                   2.29568411e+01,
                                       2.29568411e+01,
                                                          2.29568411e+01,
                   2.29568411e+01,
                                       2.29568411e+01,
                                                          2.29568411e+01,
                   3.82614019e+01,
                                       2.29568411e+01,
                                                          3.82614019e+01,
                   2.29568411e+01,
                                       3.59657178e+01,
                                                          2.15794307e+01,
                   2.13503030e+01,
                                       1.79063361e+01,
                                                          1.69880624e+01,
                   1.60697888e+01,
                                       2.44872972e+01,
                                                          2.44872972e+01,
                   1.43919559e+01,
                                       6.26000000e+02,
                                                          1.27677100e+02,
                   1.37741047e+01,
                                       1.37741047e+01,
                                                          2.29568411e+01,
                   2.29568411e+01,
                                       1.23558484e+02,
                                                          1.37741047e+01,
                   1.37741047e+01,
                                       2.29568411e+01,
                                                          1.37741047e+01,
                   1.23558484e+02,
                                       2.29568411e+01,
                                                          1.37741047e+01,
                   2.29568411e+01,
                                       2.29568411e+01,
                                                          2.29568411e+01,
                   2.29568411e+01,
                                       1.37741047e+01,
                                                          2.29568411e+01,
                   1.37741047e+01,
                                       2.29568411e+01,
                                                          1.37741047e+01,
                   2.29568411e+01,
                                       2.29568411e+01,
                                                          1.23558484e+02,
                                       1.23558484e+02,
                   2.29568411e+01,
                                                          2.29568411e+01,
                   1.23558484e+02,
                                       2.29568411e+01,
                                                          1.23558484e+02,
                   1.23558484e+02,
                                       1.23558484e+02,
                                                          2.29568411e+01,
                   1.23558484e+02,
                                       1.23558484e+02,
                                                          2.29568411e+01,
                   1.23558484e+02,
                                       2.29568411e+01,
                                                          2.29568411e+01,
                   2.29568411e+01,
                                       6.00000000e+02,
                                                          1.23558484e+02,
                   1.37741047e+01,
                                       2.29568411e+01,
                                                          1.23558484e+02,
                   1.23558484e+02,
                                       1.23558484e+02,
                                                          2.29568411e+01,
                   5.29773257e+00,
                                       1.37741047e+01,
                                                          1.37741047e+01,
                   2.29568411e+01,
                                       2.29568411e+01,
                                                          1.37741047e+01,
                                                          1.37741047e+01,
                   2.29568411e+01,
                                       2.29568411e+01,
                   1.37741047e+01,
                                       1.15321252e+02,
                                                          1.23966942e+01,
                   1.76002449e+01,
                                       1.60697888e+01,
                                                          1.58784818e+01,
                   9.18273646e+00,
                                       6.58978583e+01,
                                                          5.47775947e+01,
                   1.00452862e+01,
                                       5.50964187e+00,
                                                          9.01020049e+00,
                                       3.74794069e+01,
                   4.43985308e+00,
                                                          6.58402204e+00,
                   3.49585255e+01,
                                       6.29017447e+00,
                                                          3.71951331e+00,
                                                          3.14353377e+01,
                   3.68227732e+00,
                                       3.15897858e+01,
                   5.73921028e+00,
                                       5.73921028e+00,
                                                          3.75000000e+01,
                   3.44352617e+00,
                                       5.73921028e+00,
                                                          3.08896211e+01,
                                                          5.73921028e+00,
                   5.73921028e+00,
                                       5.73921028e+00,
                   3.44352617e+00,
                                       5.73921028e+00,
                                                          3.08896211e+01,
                                                          1.50000000e+02,
                   3.08896211e+01,
                                       3.08896211e+01,
                   5.73921028e+00,
                                       5.73921028e+00,
                                                          3.08896211e+01,
                   3.44352617e+00,
                                       5.73921028e+00,
                                                          3.44352617e+00,
                   3.08896211e+01,
                                       2.56979565e+00,
                                                          5.73921028e+00,
                   5.73921028e+00,
                                       5.73921028e+00,
                                                          2.98438935e+00,
                   2.93847567e+00,
                                       4.86482247e+00,
                                                          2.89144169e+00,
                   2.20345964e+01,
                                       1.97281713e+01,
                                                          3.54300582e+00,
                   9.12452000e+01,
                                       3.44352617e+00,
                                                          2.52525253e+00,
                   2.29568411e+00,
                                       2.29568411e+00,
                                                          1.23558484e+01,
                   2.29568411e+00,
                                       3.44352617e+00,
                                                          1.23558484e+01,
                   6.00000000e+01,
                                       2.29568411e+00,
                                                          2.29568411e+00,
                   1.23558484e+01,
                                       1.37741047e+00,
                                                          6.00000000e+01,
                   2.29568411e+00,
                                       1.37741047e+00,
                                                          2.29568411e+00,
                   2.30769231e+02,
                                       2.29568411e+00,
                                                          2.29568411e+00,
                   2.29568411e+00,
                                       2.29568411e+00,
                                                          2.29568411e+00,
                   2.29568411e+00,
                                       1.37741047e+00,
                                                          6.00000000e+01,
```

```
1.23558484e+01,
                   1.37741047e+00,
                                      1.37741047e+00,
1.37741047e+00,
                   2.29568411e+00,
                                      1.37741047e+00,
1.23558484e+01,
                   2.29568411e+00,
                                      2.29568411e+00,
1.37741047e+00,
                   1.23558484e+01,
                                      1.37741047e+00,
2.29568411e+00,
                   1.23558484e+01,
                                      1.37741047e+00,
6.00000000e+01,
                   6.00000000e+01,
                                      1.23558484e+01,
2.29568411e+00,
                   1.23558484e+01,
                                      1.23558484e+01,
1.23558484e+01,
                   1.23558484e+01,
                                      1.23558484e+01,
1.23558484e+01,
                   1.23558484e+01,
                                      6.00000000e+01,
                   1.37741047e+00,
1.23558484e+01,
                                      2.29568411e+00,
2.29568411e+00,
                   1.72176309e-01,
                                      1.23558484e+01,
1.37741047e+00,
                   1.23558484e+01,
                                      1.23558484e+01,
1.23558484e+01,
                   1.23558484e+01,
                                      1.23558484e+01,
1.23558484e+01,
                   2.29568411e+00,
                                      1.23558484e+01,
1.23558484e+01,
                   1.23558484e+01,
                                      1.23558484e+01,
                   1.23558484e+01,
                                      1.23558484e+01,
1.23558484e+01,
1.23558484e+01,
                   1.23558484e+01,
                                      2.29568411e+00,
1.23558484e+01,
                   1.23558484e+01,
                                      1.23558484e+01,
2.14263851e+00,
                   1.07084020e+01,
                                      1.02965404e+01,
                   9.34378089e+00,
                                      1.60697888e+00,
1.87480869e+00,
4.00000000e+01,
                   7.34618916e-01,
                                      9.87144169e-01,
9.18273646e-01,
                   8.76186103e-01,
                                      7.65228038e-01,
6.88705234e-01,
                   1.77618000e+01,
                                      3.90266299e-01,
1.70000000e+01,
                   1.60000000e+01,
                                      5.73921028e-01,
                   3.08896211e+00,
                                      5.73921028e-01,
5.73921028e-01,
                                      3.44352617e-01,
3.08896211e+00,
                   1.66666667e+01,
3.08896211e+00,
                   3.08896211e+00,
                                      5.73921028e-01,
3.08896211e+00,
                   5.73921028e-01,
                                      5.73921028e-01,
3.08896211e+00,
                   1.50000000e+01,
                                      5.73921028e-01,
5.73921028e-01,
                   3.08896211e+00,
                                      1.50000000e+01,
3.08896211e+00,
                   3.08896211e+00,
                                      5.73921028e-01,
3.08896211e+00,
                   3.08896211e+00,
                                      3.08896211e+00,
1.50000000e+01,
                   1.50000000e+01,
                                      3.19490358e-01,
2.61532125e+00,
                   2.57825371e+00,
                                      2.47116969e+00,
1.08000000e+01,
                   3.97918580e-01,
                                      2.05930807e+00,
                   2.81910009e-01,
                                      2.44872972e-01,
2.03760297e+00,
1.23558484e+00,
                   2.29568411e-01,
                                      1.23558484e+00,
6.00000000e+00,
                   2.29568411e-01,
                                      2.29568411e-01,
1.37741047e-01,
                   2.29568411e-01,
                                      1.23558484e+00,
1.23558484e+00,
                   1.37741047e-01,
                                      2.29568411e-01,
6.00000000e+00,
                   1.23558484e+00,
                                      6.00000000e+00,
1.23558484e+00,
                   6.00000000e+00,
                                      2.29568411e-01,
6.00000000e+00,
                   1.23558484e+00,
                                      1.23558484e+00,
1.23558484e+00,
                   1.23558484e+00,
                                      2.29568411e-01,
1.23558484e+00,
                   1.14909390e+00,
                                      4.96400000e+00,
5.70428336e-01,
                   5.26441516e-01,
                                      2.00000000e+00,
2.00000000e+00,
                   2.00000000e+00,
                                      2.00000000e+00,
2.99176277e-01])
```

```
asla[asla['FINANCIAL SOURCE']=='Private funding']['Cost/Sqft'].values
In [31]:
Out[31]: array([
                   4.14141414e+02,
                                      2.90786654e+02,
                                                         2.29568411e+01,
                   2.29568411e+01,
                                      1.37741047e+01,
                                                         1.37741047e+01,
                   2.29568411e+01,
                                      1.37741047e+01,
                                                         1.37741047e+01,
                   1.37741047e+01,
                                      2.29568411e+01,
                                                         2.29568411e+01,
                   2.29568411e+01,
                                      1.37741047e+01,
                                                         1.23558484e+02,
                                      6.79981635e+00,
                                                         6.37281910e+00,
                   1.86715641e+01,
                                      6.84879094e+00,
                   2.00000000e+02,
                                                         4.08236915e+00,
                   3.44352617e+00,
                                      5.73921028e+00,
                                                         5.73921028e+00,
                   3.08896211e+01,
                                      5.73921028e+00,
                                                         3.08896211e+01,
                   3.08896211e+01,
                                      5.73921028e+00,
                                                         5.73921028e+00,
                   3.08896211e+01,
                                      2.98820018e+00,
                                                         4.73267524e+00,
                   2.47116969e+01,
                                      4.43832262e+00,
                                                         3.09152127e+00,
                   1.72176309e+00,
                                      1.37741047e+00,
                                                         1.37741047e+00,
                                      1.23558484e+01,
                                                         1.23558484e+01,
                   2.29568411e-02,
                   2.29568411e+00,
                                      1.23558484e+01,
                                                         6.00000000e+01,
                   2.29568411e+00,
                                      1.23558484e+01,
                                                         2.29568411e+00,
                   2.29568411e+00,
                                      1.23558484e+01,
                                                         6.00000000e+01,
                   2.29568411e+00,
                                      1.23558484e+01,
                                                         2.29568411e+00,
                                      2.29568411e+00,
                                                         1.23558484e+01,
                   1.23558484e+01,
                   1.23558484e+01,
                                      2.29568411e+00,
                                                         1.23558484e+01,
                   1.37741047e+00,
                                      4.91932310e-01,
                                                         6.00000000e+01,
                   6.00000000e+01,
                                      2.29568411e+00,
                                                         1.23558484e+01,
                   1.18204283e+01,
                                      1.13261944e+01,
                                                         1.14784206e+00,
                   7.80532599e-01,
                                      9.18273646e-01,
                                                         8.41750842e-01,
                   4.59136823e-01,
                                      3.29489292e+00,
                                                         3.23723229e+00,
                   5.73921028e-01,
                                      5.73921028e-01,
                                                         3.44352617e-01,
                   5.73921028e-01,
                                      3.08896211e+00,
                                                         3.44352617e-01,
                   5.73921028e-01,
                                      5.73921028e-01,
                                                         3.44352617e-01,
                   5.73921028e-01,
                                      5.73921028e-01,
                                                         3.08896211e+00,
                   1.50000000e+01,
                                      5.73921028e-01,
                                                         5.73921028e-01,
                   3.44352617e-01,
                                      3.44352617e-01,
                                                         3.08896211e+00,
                   9.00000000e+00,
                                      8.60000000e+00,
                                                         2.29568411e-01,
                   2.29568411e-01,
                                      1.37741047e-01,
                                                         6.00000000e+00,
                   1.23558484e+00,
                                      2.29568411e-01,
                                                         6.00000000e+00,
                   1.23558484e+00,
                                      1.23558484e+00,
                                                         1.23558484e+00,
                   1.23558484e+00,
                                      1.23558484e+00,
                                                         2.29568411e-01,
                   1.11202636e+00,
                                      4.94233937e-01,
                                                         4.11861614e-01,
                   2.00000000e+00,
                                      4.11861614e-01,
                                                         2.00000000e+00,
                   7.20000000e-01,
                                      6.00000000e-01])
In [32]:
          asla[asla['FINANCIAL SOURCE']=='Mixed']['Cost/Sqft'].values
Out[32]: array([ 6.42791552,
                                 32.94892916,
                                                30.88962109,
                                                                0.43044077,
                  30.88962109,
                                  2.75482094,
                                                               12.35584843,
                                                 3.25221916,
                                  2.29568411,
                                                 3.76029654,
                                                                2.96540362,
                  12.35584843,
```

0.22956841,

0.0765228 ,

0.0765228])

(http://savetherain.us/green-project-list/)

```
In [33]: | body = client_48928a04ca8e42ed87d1026e6bbfe31a.get_object(Bucket='courseracaps
          tone-donotdelete-pr-fxod1bkevlkezk', Key='SaveRain-2.csv')['Body']
          # add missing __iter__ method, so pandas accepts body as file-like object
          if not hasattr(body, "__iter__"): body.__iter__ = types.MethodType( __iter__,
          body )
          rain = pd.read csv(body)
          rain['Size/ Capture area (Sq. feet)'] = rain['Size/ Capture area (Sq. feet)'].
          astype(float)
          rain['GI COST (2)'] = rain['GI COST (2)'].astype(float)
In [34]: | print('Initial Row Count: ',rain.shape[0])
          Initial Row Count: 150
In [35]: columns = ['CITY', 'STATE', 'FINANCIAL SOURCE']
          for column in columns:
              rain[column] = rain[column].str.lstrip() #removing Leading spaces
In [36]: rain['FINANCIAL SOURCE'].unique()
Out[36]: array(['Public financing', 'Mixed', nan, 'Public Funding',
                 'Public funding', 'Public funding & financing', 'Public Financing', 'Private funding', 'Public funding'], dtype=object)
```

```
In [37]: # Standardizing

rain['FINANCIAL SOURCE'][rain['FINANCIAL SOURCE']=='Public Financing'] = 'Public'
rain['FINANCIAL SOURCE'][rain['FINANCIAL SOURCE']=='Public financing'] = 'Public'
rain['FINANCIAL SOURCE'][rain['FINANCIAL SOURCE']=='Public Funding'] = 'Public'
rain['FINANCIAL SOURCE'][rain['FINANCIAL SOURCE']=='Public funding'] = 'Public'
rain['FINANCIAL SOURCE'][rain['FINANCIAL SOURCE']=='Public funding & financing'] = 'Public'
rain['FINANCIAL SOURCE'][rain['FINANCIAL SOURCE']=='Private funding'] = 'Private'
```

Out[38]:

	CITY	STATE	CASE STUDY TITLE	FINANCIAL SOURCE	FINANCIAL TOOL	Size/ Capture area (Sq. feet)	GI COST (;
2	Pontiac	Michigan	Oakland County Campus	NaN	NaN	6,141,960.00	204,000.00
36	Ann Arbor	Michigan	Ann Arbor District Library, Mallets Creek Branch	NaN	NaN	108,900.00	70,000.00
125	City of Troy	Michigan	Kresge Foundation Headquarters	NaN	NaN	nan	1,116,000.C
129	City of Inkster	Michigan	Inkster Valley Constructed Wetlands Project	NaN	NaN	nan	464,826.00
143	Bloomfield Township	Michigan	Meadowlake Farms Bioswale	NaN	NaN	nan	63,000.00
147	City of Wayne	Michigan	Constructed Linear Sand Filter	NaN	NaN	nan	10,000.00
149	Mount Clemens	Michigan	Macomb County Public Works Riparian Corridor P	NaN	NaN	nan	nan

These are all Michigan cases; 35.0 % of them

4

In [40]: rain = rain[rain['FINANCIAL SOURCE'].notnull()]

In [41]: print('New Row Count:',rain.shape[0])
print('Lost:',150-rain.shape[0],'rows')

New Row Count: 143 Lost: 7 rows

In [42]: print('There are',sum(rain['Size/ Capture area (Sq. feet)'].isnull()),'cases m
issing project size')
print('There are',sum(rain['GI COST (2)'].isnull()),'cases missing project cos
t')

There are 24 cases missing project size There are 1 cases missing project cost In [43]: rain[rain['Size/ Capture area (Sq. feet)'].isnull()]

Out[43]:		СІТҮ	STATE	CASE STUDY TITLE	FINANCIAL SOURCE	FINANCIAL TOOL	Size/ Capture area (Sq. feet)	GI CI
	121	St. Paul	Minnesota	The Metro Green Line	Public funding	Grants	nan	5,114
	122	Aiken	South Carolina	Sand River Headwaters Green Infrastructure Pro	Public	Grants (Various)	nan	3,759
	123	Portland	Oregon	SW Texas Green Street	Mixed	Private donations and sponsorships, and grants	nan	2,319
	124	Milwaukee	Wisconsin	Menomonee Valley Industrial Center	Public	Grants	nan	1,600
	126	South Shore	Massachusetts	North and South Rivers Watershed Association R	Public	Grant	nan	825,1
	127	Lancaster	Pennsylvania	Lancaster Parking Lot Transformations	Mixed	Grant, loan	nan	640,0
	128	New York	New York	Queens Botanical Garden	Mixed	Public funding and private donations	nan	568,0
	130	Waltham	Massachusetts	Waltham Watch Factory	Mixed	Taxes, loans and private funding	nan	434,6
	131	Syracuse	New York	Lysander Tree Planting, Manhole Repair & Pipe	Public	Grants	nan	400,0
	132	Grand Rapids	Michigan	Plainfield Avenue	Mixed	Grants, PPP, private donations & sponsorships	nan	330,8

	СІТҮ	STATE	CASE STUDY TITLE	FINANCIAL SOURCE	FINANCIAL TOOL	Size/ Capture area (Sq. feet)	GI C
133	St. Landry Parish	Louisiana	St. Landry Parish Visitor's Center	Public	NaN	nan	330,0
134	Syracuse	New York	Town of Dewitt - Willis Carrier Recreation Center	Public	Grants	nan	300,0
135	Toledo	Ohio	Maywood Ave, Green Streets Revitalization	Public	Loans	nan	278,0
136	Syracuse	New York	Town of Geddes – Bergner Road Porous Pavement	Public	Grants	nan	210,0
137	San Francisco	California	Mint Plaza	Mixed	Taxes, bonds, private donations	nan	150,0
138	Syracuse	New York	Street Tree Plantings	Public	Grants	nan	122,3
139	Syracuse	New York	Solvay Highway Garage	Public	Grants	nan	110,0
140	Syracuse	New York	Street Tree Contract	Public	Grants	nan	108,8
141	Syracuse	New York	Solvay Trump & Power	Public	Grants	nan	80,00
142	Seattle	Washington	14th Avenue Neighborhood Street Fund Project	Public	Taxes	nan	75,00
144	Syracuse	New York	Rain Barrel Program	Public	Grants	nan	35,93
145	City of Wayne	Michigan	Nankin Mills Interpretive Center Grow Zone Pro	Mixed	Grant, Private donations and sponsorships	nan	18,11

	CITY	STATE	CASE STUDY TITLE	FINANCIAL SOURCE	FINANCIAL TOOL	Size/ Capture area (Sq. feet)	GI CI
146	Syracuse	New York	Tree Enhancement in Burnet Park	Public	Grants	nan	11,48
148	City of Wayne Michigan		Ford Road	Mixed	Private donations and sponsorships	nan	8,584

In [44]: rain[rain['GI COST (2)'].isnull()]

Out[44]:

	CITY	STATE	CASE STUDY TITLE	FINANCIAL SOURCE	FINANCIAL TOOL	Size/ Capture area (Sq. feet)	GI COST (2)
28	Ann Arbor	Michigan	Washtenaw County West Service Center	Public	Bonds	133,293.60	nan

In [45]: rain = rain[rain['Size/ Capture area (Sq. feet)'].notnull()] rain = rain[rain['GI COST (2)'].notnull()]

In [46]: | print('New Row Count:',rain.shape[0]) print('Lost:',143-rain.shape[0],'rows') print('Total Rows Lost:',7+(143-rain.shape[0]))

> New Row Count: 118 Lost: 25 rows Total Rows Lost: 32

In [47]: rain[['Size/ Capture area (Sq. feet)','GI COST (2)']].describe()

Out[47]:

	Size/ Capture area (Sq. feet)	GI COST (2)			
count	118.00	118.00			
mean	439,329.80	521,435.27			
std	2,811,356.63	1,429,508.70			
min	282.00	2,875.00			
25%	13,090.00	106,688.25			
50%	39,500.00	212,102.50			
75%	129,264.25	439,951.75			
max	29,620,800.00	14,700,000.00			

Out[48]:

	Cost/Sqft			
count	118.00			
mean	14.12			
std	47.94			
min	0.02			
25%	2.79			
50%	5.91			
75%	10.60			
max	500.00			

In [49]: syracuse = rain[rain['CITY']=='Syracuse']
syracuse[['Size/ Capture area (Sq. feet)','GI COST (2)']].describe()

Out[49]:

	Size/ Capture area (Sq. feet)	GI COST (2)
count	96.00	96.00
mean	117,355.70	361,419.03
std	250,713.07	555,741.13
min	560.00	2,875.00
25%	13,840.00	102,344.50
50%	39,000.00	208,400.00
75%	101,685.50	385,000.00
max	1,966,000.00	4,519,790.65

```
In [50]: other = rain[rain['CITY']!='Syracuse']
  other[['Size/ Capture area (Sq. feet)','GI COST (2)']].describe()
```

Out[50]:

	Size/ Capture area (Sq. feet)	GI COST (2)			
count	22.00	22.00			
mean	1,844,307.68	1,219,687.95			
std	6,419,409.88	3,059,442.85			
min	282.00	33,042.00			
25%	12,000.00	147,000.00			
50%	98,010.00	398,500.00			
75%	300,564.00	1,000,000.00			
max	29,620,800.00	14,700,000.00			

```
In [51]: print('Total awards =',sum(rain['GI COST (2)']))
    print('Total Syracuse awards =',sum(syracuse['GI COST (2)']),'(',round((sum(sy racuse['GI COST (2)'])/sum(rain['GI COST (2)'])*100),2),'%)')
    print('Total non-Syracuse awards =',sum(other['GI COST (2)']),'(',round((sum(other['GI COST (2)'])/sum(rain['GI COST (2)'])*100),2),'%)')
```

```
Total awards = 61529361.720000006

Total Syracuse awards = 34696226.72 ( 56.39 %)

Total non-Syracuse awards = 26833135.0 ( 43.61 %)
```

```
In [52]: print('Total states represented = ',len(other['STATE'].unique()))
```

Total states represented = 9

```
In [53]: other.groupby('STATE')['GI COST (2)'].sum().sort_values(ascending=False)
Out[53]: STATE
                               14,700,000.00
         Washington
         Michigan
                                4,962,600.00
         New Mexico
                                2,000,000.00
         Pennsylvania
                                1,377,000.00
         Illinois
                                1,300,000.00
         New York
                                  948,717.00
         Oregon
                                  624,818.00
         Arizona
                                  500,000.00
                                  420,000.00
         Colorado
         Name: GI COST (2), dtype: float64
In [54]: other.groupby('STATE')['CITY'].count().sort_values(ascending=False)
Out[54]: STATE
                         9
         Michigan
                         5
         Oregon
         Pennsylvania
                         2
                         1
         Washington
         New York
                         1
         New Mexico
                         1
         Illinois
                         1
         Colorado
                         1
         Arizona
                         1
         Name: CITY, dtype: int64
In [55]: syracuse_types = syracuse.groupby('FINANCIAL SOURCE')
         syracuse_types['Cost/Sqft'].describe()
```

Out[55]:

	count	mean	std	min	25%	50%	75%	max
FINANCIAL SOURCE								
Mixed	2.00	11.17	5.79	7.07	9.12	11.17	13.22	15.26
Public	94.00	8.07	9.26	0.02	2.93	5.91	9.39	70.74

In [56]: syracuse.boxplot('Cost/Sqft', by='FINANCIAL SOURCE', figsize=(12, 8))

Out[56]: <matplotlib.axes._subplots.AxesSubplot at 0x7f6ea21da860>

Boxplot grouped by FINANCIAL SOURCE

In [57]: other_types = other.groupby('FINANCIAL SOURCE')
 other_types['Cost/Sqft'].describe()

Out[57]:

	count	mean	std	min	25%	50%	75%	max
FINANCIAL SOURCE								
Mixed	4.00	7.66	7.17	0.05	2.40	7.80	13.05	14.98
Private	1.00	18.27	nan	18.27	18.27	18.27	18.27	18.27
Public	17.00	49.21	121.50	0.14	2.30	2.91	31.58	500.00

In [58]: other.boxplot('Cost/Sqft', by='FINANCIAL SOURCE', figsize=(12, 8))

Out[58]: <matplotlib.axes._subplots.AxesSubplot at 0x7f6ea21e5e80>

Boxplot grouped by FINANCIAL SOURCE

