通信电源系统的组成

组成框图

基站供电系统-工作状态

背景

在通信光纤拉远技术应用、4G补盲补热、5G微站、5G C-RAN规模建设的背景下,网络覆盖建设方式多元化,通信设备信源与射频端的位置往往根据网络优化的需求进行布放,导致射频端离中心机房距离较远,供备电保障难度较大。

射频远端离中心机房距离远,供电环境差,难于实现后备保障。

射频远端传统供电解决方式,对 远端电源设备<u>监控难度大。</u>

远端电源保障困难,<mark>网络覆盖</mark> 布置受限,降低信号覆盖率。

采用UPS及逆变器的解决方案, 存在故障率多,维护成本高。 直流远供系统得以 应用,在一定程度 上解决目前**网络电** 源存在困难和问题

现状

➤ 目前直流电源对远端设备的保障方案主要有48V直流远供,280V直流远供,就地新建48V一体化直流电源等三种技术方案,优劣比较如下:

保障方案	描述	优点	缺点
48V	采用传统48V直流向远端	工程实施便捷;供电效	远供距离有限,一般考虑
直流远供	设备供电	率高	在远端设备在100m之内
280V 直流远供	将传统48V直流电压提升 至280V向远端设备供电	可远距离供电,最远达 5km;易于电源组网; 便于监控和管理	投资略大;工程实施要求 较高
48V—体化	在远端设备就地新建1套	工程实施便捷;供电效	投资较大;电源设备难于
直流电源	一体化直流电源	率高	监控;维保费用高。
UPS	在局端采用UPS交流就近	工程实施便捷	投资略大;故障率高;维
或逆变器	或远供	工作关心证证	保费用略高

直流远供系统介绍

280V直流远供系统是将48V的直流基础电源,通过局端设备升压至直流280V,采用相应的电力电缆传送至远端DC/DC适配器进行降压(48V),向远端分布式射频设备进行供电。

局端电源设备:监控模块、电源转换模块(DC/DC 或AC/DC)、输入、输出配电单元(280V~380V直流输出可调)及防雷保护单元等组成。

直流远供建设原则

主要建设原则

直流远供场景

> 长距离级联、双方向供电组网示意图。

直流远供常见功耗

目前常见拉远设备功耗情况

	常规模式		建议模式(远距离)	
设备名称	供电方式	单台额定 耗电量(W)	供电方式	备注
2G-RRU	48VDC	223-375	220VAC/48V	满足
2G-直放站远端机	48VDC	100-200	220VAC/48V	280VDC
LTE-RRU	48VDC	200-490	220VAC/48V	设备电源单
微站A8200	48VDC	450	220VAC/48V	元模块化,
微站easymacro	220VAC/48VDC	310	220VAC/48V	双制式供电
微站book rru	220VAC/48VDC	100	220VAC/48V	引入

直流远供在微站应用

▶ 用于住宅小区、商业街区、园区景区等面状覆盖场景。通过一杆多设备以及多杆分布的方式来实现一定范围内的覆盖。从集中供电&传输保障点引出光电复合缆,通过光电一

直流远供系列案例

机房或户外柜 (近端集中供电)

□ 综合解决方案情况:

- 供电:采用集中备电方式,几个微站使用同一后备电, 方便资源管理节省项目投资。
- 》 **创新:**使用光电一体箱,可同时提供光纤接入、分配、调度, 市电引入、防护、交流配电,综合解决光纤接入和电源接入

与传统建站方式优缺点对比				
项目	传统建站	集中供电方案		
建站方式	两次施工; 2、就近取交流电需要配置电源	1、使用光电复合缆。统一单次布放光 缆和电缆; 2、现场不需要电源设备; 3、增加直流升压设备。集中备电。		
施工难度	新建电源,施工复杂	集中备电,利用已有资源。施工简单		
共享资源	单独建设没法共享	共享电源和电池资源。		
建设成本	高	较低		
建站时间	安装设备多施工时间长	现场设备少,施工时间短		
对杆、塔 要求	安装设备多且重 , 要求承重高。	安装设备少且轻 , 承重要求低。		
运维	需要到站运维	机房统一监控和运维,远端无电子设备。		