ANALIZA SYGNAŁÓW ZUZANNA NASIŁOWSKA

GENEROWANIE SYGNAŁU	0	21.03.2024 r.
	0	nr. 276023
	0	II ROK, MST
	0	dr inż. Ireneusz Augustyniak

1 Wstęp

Zrealizowane ćwiczenie polegało na wygenerowaniu sygnału w programie Scilab, przy pomocy narzędzi graficznego edytora Xcos. Konkretnie wykonywaliśmy kontur znaku D-42 (obszar zabudowany), który uległ lekkiej modyfikacji, a dokładniej odbiciu względem osi OX oraz OY. Celem ćwiczenia jest zapoznanie się z wyżej wymienionym programem, a także wykonanie wspomnianego sygnału, który możemy zobaczyć poniżej:

Rysunek 1: Zadany sygnał

W niniejszym raporcie opracowane zostaną kroki realizacji zadanego sygnału wraz z omówieniem użytych funkcji.

2 Realizacja ćwiczenia

2.1 Opis użytych bloków

Przed wygenerowaniem konkretnego sygnału należy zapoznać się z dostępnymi w programie **blokami**, które znajdziemy w katalogu "Palettes" [po uruchomieniu Xcos jest to jedno z domyślenie otwartych okien]:

Bloki posiadają przeróżne właściwości umożliwiające modelowanie wskazanych sygnałów, znajomość ich działania pomoże nam w otrzymaniu m.in. oczekiwanych w zadaniu skosów.

W realizowanym ćwiczeniu wykorzystaliśmy dokładnie pięć bloków:

- CSCOPE oscyloskop, dostosowuje ilość czasu i zakres wyświetalnych danych wejściowych oraz wyświetla je w odniesieniu do czasu symulacji. Dodatkowo posiada 10 parametrów, którymi możemy operować.
- CLOCK_c zegar, którego wyjście generuje regularny ciąg zdarzeń, zgodnie z ustalonym okresem przy pomocy określenia parametru Period.
- STEP_FUNCTION funkcja skoku jednostkowego, blok skokowy, który wysyła sygnał krokowy między dwoma poziomami (wartość początkowa Initial Value i wartość końcowa Final Value, rozpoczynając od ustalonego czasu kroku Step Time).

- INTEGRAL_m blok całkujący, wartość wyjściowan jest wynikiem całkowania w danym kroku czasowym.
- BIGSOM_f- blok sumujący, wzmocnia lub osłabia sygnał o dane wejściowe. Użytkownik może dostosować wzmocnienie dla każdego wejścia za pomocą parametru Inputs ports signs/gain.

2.2 Tworzenie sygnału

Projektowanie naszego sygnału zapoczątkujemy ustaleniem parametrów dla bloków ${\bf 1},\,{\bf 2}$ oraz ${\bf 5}.$

• Blok **CSCOPE** zastosujemy jeden raz wraz z domyślnymi parametrami prezentującymi się następująco:

- Blok **CLOCK_c** użyjemy również tylko jeden raz i zmienimy parametry w taki sposób, aby wyprostować linie pionowe naszego sygnału, dokładniej zmienimy parametry domyślne z wartości 0,1 na 0,001:
- Blok **BIGSOM_f** użyjemy 6 razy z czego jeden blok będzie głównym od którego odgałęzimy pozostałe pięć. Parametry w naszym bloku będziemy dostosowywać w zależności od liczby połączeń z naszym blokiem:

Rysunek 2: Parametry zegara

Rysunek 3: Przykładowe zastosowane wartości parametru [szary kolor bloku na schemacie]

W następnym kroku tworzenia podzielimy nasz sygnał na **5 części**, aby całość była dla nas bardziej czytelna. Ponieżej przedstawiony został pomocniczy rysunek wraz z numeracją kolejności wykonywanych budynków:

Rysunek 4: Kolejność wykonywania budynków sygnału

W każdej części zajeliśmy się tworzeniem wskazanego budynku. W tym celu wykorzysaliśmy bloki numer ${\bf 3, 4}~$ oraz ${\bf 5.}$

Parametry **bloku całkującego** zostawilimy domyślne bez zmian w każdym przypadku, gdzie blok został zastosowany (w wypadku, gdzie nie został użyty oznaczymy parametry poprzez X w poźniej przedstawionych tabelkach):

2.3 Główny schemat sygnału oraz pozostałe parametry

W następnej kolejności możemy przedstawić zbudowany schemat, na którym widzimy pojedyńcze sekcje numerycznie odpowiadające naszej kolejności wykonywania budynków:

Rysunek 5: Schemat blokowy

Każda taka sekcja wykonuje sygnał pojedyńczej budowali znaku, połączenie zawierające sam blok $STEP_FUNCTION$, będzie w rezultacie tworzyć piony, zaś połączenie składające się z bloków $STEP_FUNCTION$ oraz $INTEGRAL_m$ utworzy w naszym przypadku wszystkie skosy oraz niektóre

linie poziome.

Przyjrzyjmy się jeszcze na parametry bloku **STEP_FUNCTION**. Jak wspomniano wyżej mamy styczność z trzeba parametrami: **Step Time, Initil Value, Final Value**. W naszym przypadku wartość Initial Value, będzie zawsze równa 0.

Rysunek 6: Przykładowe parametry

Parametry

Przedstawione poniżej tabelki odpowiadają kolorystycznie oraz numerycznie każdej sekcji widoczenej na schemacie. Numerki w tabelce [1,2...] odpowiadają blokom w pojdyńczej sekcji zaczynając od góry, więc wszystko czytamy od góry do dołu [zaś parametry czytamy odpowiednio poziomo].

Rysunek 7: Składniki i parametry części 1

Rysunek 8: Składniki i parametry części 2

Rysunek 9: Składniki i parametry części 3

Rysunek 10: Składniki i parametry części 4

Rysunek 11: Składniki i parametry części 5

2.4 Wygenerowany sygnał

Ostatecznie po wykonaniu wszystkich króków otrzymujemy nasz kontur znaku obszaru zabudowanego:

Rysunek 12: Otrzymany sygnał

3 Wnioski

Przy pomocy narzędzi graficznego edytora Xcos możemy wygenerować konkretne sygnały przy zastosowaniu odpowiednich bloków. W naszym przypadku zaprojektowaliśmy sygnał przypominający kontur widoczny na znaku D-42. Podział pracy na poszczególne sekcje, odpowiadające konkrentym budynkom, z pewnością ułatwił analizę, a także pracę nad sygnałem. Największą trudnością okazały się skosy i precyzyjność ich wykonania, aby ostateczny kontur był jak najbardziej podobny do zadanego. Okazuje się, że dużym ułatwieniem są nasze osie wraz z ich podziałką, ponieważ możemy nasz zadany obrazek dopasować z naszymi osiami w innych programach. Odczytać wartości i dokładnie obliczyć dane, aby skosy były pod odpowiednim kątem lub odległości między ścianami bydunków takie same.