Introduction of Operating System

An operating system acts as an intermediary between the user of a computer and computer hardware. The purpose of an operating system is to provide an environment in which a user can execute programs in a convenient and efficient manner.

An operating system is a software that manages the computer hardware. The hardware must provide appropriate mechanisms to ensure the correct operation of the computer system and to prevent user programs from interfering with the proper operation of the system.

Operating System – Definition:

- An operating system is a program that controls the execution of application programs and acts as an interface between the user of a computer and the computer hardware.
- A more common definition is that the operating system is the one program running at all times on the computer (usually called the kernel), with all else being application programs.
- An operating system is concerned with the allocation of resources and services, such as memory, processors, devices, and information. The operating system correspondingly includes programs to manage these resources, such as a traffic controller, a scheduler, memory management module, I/O programs, and a file system.

Functions of Operating system – Operating system performs three functions:

- 1. Convenience: An OS makes a computer more convenient to use.
- 2. **Efficiency:** An OS allows the computer system resources to be used in an efficient manner.
- 3. **Ability to Evolve:** An OS should be constructed in such a way as to permit the effective development, testing and introduction of new system functions at the same time without interfering with service.

Operating system as User Interface –

- 1. User
- 2. System and application programs
- 3. Operating system
- 4. Hardware

Every general-purpose computer consists of the hardware, operating system, system programs, and application programs. The hardware consists of memory, CPU, ALU, and I/O devices, peripheral device, and storage device. System program consists of compilers, loaders, editors, OS, etc. The application program consists of business programs, database programs.

Fig1: Conceptual view of a computer system

Every computer must have an operating system to run other programs. The operating system coordinates the use of the hardware among the various system programs and application programs for various users. It simply provides an environment within which other programs can do useful work.

The operating system is a set of special programs that run on a computer system that allows it to work properly. It performs basic tasks such as recognizing input from the keyboard, keeping track of files and directories on the disk, sending output to the display screen and controlling peripheral devices.

OS is designed to serve two basic purposes:

- 1. It controls the allocation and use of the computing System's resources among the various user and tasks.
- 2. It provides an interface between the computer hardware and the programmer that simplifies and makes feasible for coding, creation, debugging of application programs.

The Operating system must support the following tasks. The task are:

- 1. Provides the facilities to create, modification of programs and data files using an editor.
- 2. Access to the compiler for translating the user program from high level language to machine language.
- 3. Provide a loader program to move the compiled program code to the computer's memory for execution.
- 4. Provide routines that handle the details of I/O programming.

I/O System Management –

The module that keeps track of the status of devices is called the I/O traffic controller. Each I/O device has a device handler that resides in a separate process associated with that device.

The I/O subsystem consists of

- A memory Management component that includes buffering caching and spooling.
- A general device driver interface.

Drivers for specific hardware devices.

Assembler -

The input to an assembler is an assembly language program. The output is an object program plus information that enables the loader to prepare the object program for

execution. At one time, the computer programmer had at his disposal a basic machine that interpreted, through hardware, certain fundamental instructions. He would program this computer by writing a series of ones and Zeros (Machine language), place them into the memory of the machine.

Compiler -

The High-level languages- examples are FORTRAN, COBOL, ALGOL and PL/I are processed by compilers and interpreters. A compiler is a program that accepts a source program in a "high-level language "and produces a corresponding object program. An interpreter is a program that appears to execute a source program as if it was machine language. The same name (FORTRAN, COBOL, etc.) is often used to designate both a compiler and its associated language.

Loader -

A Loader is a routine that loads an object program and prepares it for execution. There are various loading schemes: absolute, relocating and direct-linking. In general, the loader must load, relocate and link the object program. The loader is a program that places programs into memory and prepares them for execution. In a simple loading scheme, the assembler outputs the machine language translation of a program on a secondary device and a loader places it in the core. The loader places into memory the machine language version of the user's program and transfers control to it. Since the loader program is much smaller than the assembler, those make more core available to the user's program.

History of Operating system -

Operating system has been evolving through the years. Following Table shows the history of OS.

GenerationYear	Electronic device u	used Types of OS Device
First 1945-5	Vaccum Tubes	Plug Boards
Second 1955-6	Transistors	Batch Systems
Third 1965-8	Integrated Circuit	ts(IC) Multiprogramming
Fourth Since	1980 Large Scale Integ	gration PC

Types of Operating System –

- Batch Operating System- Sequence of jobs in a program on a computer without manual interventions.
- Time sharing operating System- allows many users to share the computer resources.(Max utilization of the resources).
- Distributed operating System- Manages a group of different computers and make appear to be a single computer.
- Network operating system- computers running in different operating system can participate in common network (It is used for security purpose).
- Real time operating system meant applications to fix the deadlines.

Examples of Operating System are –

- Windows (GUI based, PC)
- GNU/Linux (Personal, Workstations, ISP, File and print server, Three-tier client/Server)

- macOS (Macintosh), used for Apple's personal computers and work stations (MacBook, iMac).
- Android (Google's Operating System for smartphones/tablets/smartwatches)
- iOS (Apple's OS for iPhone, iPad and iPod Touch)

Distributed operating System

Distributed systems use multiple central processors to serve multiple real-time applications and multiple users. Data processing jobs are distributed among the processors accordingly.

The processors communicate with one another through various communication lines (such as high-speed buses or telephone lines). These are referred as **loosely coupled systems** or distributed systems. Processors in a distributed system may vary in size and function. These processors are referred as sites, nodes, computers, and so on.

The advantages of distributed systems are as follows -

- With resource sharing facility, a user at one site may be able to use the resources available at another.
- Speedup the exchange of data with one another via electronic mail.
- If one site fails in a distributed system, the remaining sites can potentially continue operating.
- Better service to the customers.
- Reduction of the load on the host computer.
- Reduction of delays in data processing.

Network operating System

A Network Operating System runs on a server and provides the server the capability to manage data, users, groups, security, applications, and other networking functions. The primary purpose of the network operating system is to allow shared file and printer access among multiple computers in a network, typically a local area network (LAN), a private network or to other networks.

Examples of network operating systems include Microsoft Windows Server 2003, Microsoft Windows Server 2008, UNIX, Linux, Mac OS X, Novell NetWare, and BSD.

The advantages of network operating systems are as follows -

- Centralized servers are highly stable.
- Security is server managed.
- Upgrades to new technologies and hardware can be easily integrated into the system.
- Remote access to servers is possible from different locations and types of systems.

The disadvantages of network operating systems are as follows -

- High cost of buying and running a server.
- Dependency on a central location for most operations.
- Regular maintenance and updates are required.

Real Time operating System

A real-time system is defined as a data processing system in which the time interval required to process and respond to inputs is so small that it controls the environment. The time taken by the system to respond to an input and display of required updated information is termed as the **response time**. So in this method, the response time is very less as compared to online processing.

Real-time systems are used when there are rigid time requirements on the operation of a processor or the flow of data and real-time systems can be used as a control device in a dedicated application. A real-time operating system must have well-defined, fixed time constraints, otherwise the system will fail. For example, Scientific experiments, medical imaging systems, industrial control systems, weapon systems, robots, air traffic control systems, etc.

There are two types of real-time operating systems.

Hard real-time systems

Hard real-time systems guarantee that critical tasks complete on time. In hard real-time systems, secondary storage is limited or missing and the data is stored in ROM. In these systems, virtual memory is almost never found.

Soft real-time systems

Soft real-time systems are less restrictive. A critical real-time task gets priority over other tasks and retains the priority until it completes. Soft real-time systems have limited utility than hard real-time systems. For example, multimedia, virtual reality, Advanced Scientific Projects like undersea exploration and planetary rovers, etc.

SYSTEM CALLS

The interface between a process and an operating system is provided by system calls. In general, system calls are available as assembly language instructions. They are also included in the manuals used by the assembly level programmers. System calls are usually made when a process in user mode requires access to a resource. Then it requests the kernel to provide the resource via a system call.

A figure representing the execution of the system call is given as follows –

As can be seen from this diagram, the processes execute normally in the user mode until a system call interrupts this. Then the system call is executed on a priority basis in the kernel mode. After the execution of the system call, the control returns to the user mode and execution of user processes can be resumed.

In general, system calls are required in the following situations –

- If a file system requires the creation or deletion of files. Reading and writing from files also require a system call.
- Creation and management of new processes.
- Network connections also require system calls. This includes sending and receiving packets.
- Access to a hardware devices such as a printer, scanner etc. requires a system call.

Types of System Calls

There are mainly five types of system calls. These are explained in detail as follows –

Process Control

These system calls deal with processes such as process creation, process termination etc.

File Management

These system calls are responsible for file manipulation such as creating a file, reading a file, writing into a file etc.

Device Management

These system calls are responsible for device manipulation such as reading from device buffers, writing into device buffers etc.

Information Maintenance

These system calls handle information and its transfer between the operating system and the user program.

Communication

These system calls are useful for interprocess communication. They also deal with creating and deleting a communication connection.

Some of the examples of all the above types of system calls in Windows and Unix are given as follows –

Types of System Calls	Windows	Linux
Process Control	CreateProcess() ExitProcess() WaitForSingleObject()	fork() exit() wait()
File Management	CreateFile() ReadFile() WriteFile() CloseHandle()	open() read() write() close()
Device Management	SetConsoleMode() ReadConsole() WriteConsole()	ioctl() read() write()
Information Maintenance	GetCurrentProcessID() SetTimer() Sleep()	getpid() alarm() sleep()
Communication	CreatePipe() CreateFileMapping() MapViewOfFile()	pipe() shmget() mmap()

There are many different system calls as shown above. Details of some of those system calls are as follows –

open()

The open() system call is used to provide access to a file in a file system. This system call allocates resources to the file and provides a handle that the process uses to refer to the file. A file can be opened by multiple processes at the same time or be restricted to one process. It all depends on the file organisation and file system.

read()

The read() system call is used to access data from a file that is stored in the file system. The file to read can be identified by its file descriptor and it should be opened using open() before it can be read. In general, the read() system calls takes three arguments i.e. the file descriptor, buffer which stores read data and number of bytes to be read from the file.

write()

The write() system calls writes the data from a user buffer into a device such as a file. This system call is one of the ways to output data from a program. In general, the write system calls takes three arguments i.e. file descriptor, pointer to the buffer where data is stored and number of bytes to write from the buffer.

close()

The close() system call is used to terminate access to a file system. Using this system call means that the file is no longer required by the program and so the buffers are flushed, the file metadata is updated and the file resources are deallocated.

Process

A process is basically a program in execution. The execution of a process must progress in a sequential fashion.

A process is defined as an entity which represents the basic unit of work to be implemented in the system.

To put it in simple terms, we write our computer programs in a text file and when we execute this program, it becomes a process which performs all the tasks mentioned in the program.

When a program is loaded into the memory and it becomes a process, it can be divided into four sections — stack, heap, text and data. The following image shows a simplified layout of a process inside main memory —

S.N.	Component & Description	
1	Stack The process Stack contains the temporary data such as method/function parameters, return address and local variables.	
2	Heap This is dynamically allocated memory to a process during its run time.	
3	Text This includes the current activity represented by the value of Program Counter and the contents of the processor's registers.	
4	Data This section contains the global and static variables.	

Program

A program is a piece of code which may be a single line or millions of lines. A computer program is usually written by a computer programmer in a programming language. For example, here is a simple program written in C programming language –

```
#include <stdio.h>
int main() {
   printf("Hello, World! \n");
   return 0;
}
```

A computer program is a collection of instructions that performs a specific task when executed by a computer. When we compare a program with a process, we can conclude that a process is a dynamic instance of a computer program.

A part of a computer program that performs a well-defined task is known as an **algorithm**. A collection of computer programs, libraries and related data are referred to as a **software**.

Process Life Cycle

When a process executes, it passes through different states. These stages may differ in different operating systems, and the names of these states are also not standardized.

In general, a process can have one of the following five states at a time.

S.N.	State & Description		
1	Start		
	This is the initial state when a process is first started/created.		
2	Ready		
	The process is waiting to be assigned to a processor. Ready processes are waiting to have the processor allocated to them by the operating system so that they can run. Process may come into this state after Start state or while running it by but interrupted by the scheduler to assign CPU to some other process.		
3	Running		
	Once the process has been assigned to a processor by the OS scheduler, the process state is set to running and the processor executes its instructions.		
4	Waiting		
	Process moves into the waiting state if it needs to wait for a resource, such as waiting for user input, or waiting for a file to become available.		
5	Terminated or Exit		
	Once the process finishes its execution, or it is terminated by the operating system, it is moved to the terminated state where it waits to be removed from main memory.		

Process Control Block (PCB)

A Process Control Block is a data structure maintained by the Operating System for every process. The PCB is identified by an integer process ID (PID). A PCB keeps all the information needed to keep track of a process as listed below in the table –

S.N.	Information & Description
1	Process State The current state of the process i.e., whether it is ready, running, waiting, or whatever.
2	Process privileges This is required to allow/disallow access to system resources.
3	Process ID Unique identification for each of the process in the operating system.
4	Pointer A pointer to parent process.
5	Program Counter Program Counter is a pointer to the address of the next instruction to be executed for this process.
6	CPU registers Various CPU registers where process need to be stored for execution for running state.
7	CPU Scheduling Information Process priority and other scheduling information which is required to schedule the process.
8	Memory management information This includes the information of page table, memory limits, Segment table depending on memory used by the operating system.
9	Accounting information This includes the amount of CPU used for process execution, time limits, execution ID etc.

IO status information

This includes a list of I/O devices allocated to the process.

The architecture of a PCB is completely dependent on Operating System and may contain different information in different operating systems. Here is a simplified diagram of a PCB –

The PCB is maintained for a process throughout its lifetime, and is deleted once the process terminates.

Process Creation

A process may be created in the system for different operations. Some of the events that lead to process creation are as follows –

- User request for process creation
- System Initialization
- Batch job initialization
- Execution of a process creation system call by a running process

A process may be created by another process using fork(). The creating process is called the parent process and the created process is the child process. A child process can have only one parent but a parent process may have many children. Both the parent and child processes have the same memory image, open files and environment strings. However, they have distinct address spaces.

A diagram that demonstrates process creation using fork() is as follows –

Process Creation Using fork()

Process Termination

Process termination occurs when the process is terminated The exit() system call is used by most operating systems for process termination.

Some of the causes of process termination are as follows -

- A process may be terminated after its execution is naturally completed. This
 process leaves the processor and releases all its resources.
- A child process may be terminated if its parent process requests for its termination.
- A process can be terminated if it tries to use a resource that it is not allowed to. For example - A process can be terminated for trying to write into a read only file.
- If an I/O failure occurs for a process, it can be terminated. For example If a
 process requires the printer and it is not working, then the process will be
 terminated.
- In most cases, if a parent process is terminated then its child processes are also terminated. This is done because the child process cannot exist without the parent process.
- If a process requires more memory than is currently available in the system, then it is terminated because of memory scarcity.

What is Thread?

A thread is a flow of execution through the process code, with its own program counter that keeps track of which instruction to execute next, system registers which hold its current working variables, and a stack which contains the execution history.

A thread shares with its peer threads few information like code segment, data segment and open files. When one thread alters a code segment memory item, all other threads see that.

A thread is also called a **lightweight process**. Threads provide a way to improve application performance through parallelism. Threads represent a software approach to improving performance of operating system by reducing the overhead thread is equivalent to a classical process.

Each thread belongs to exactly one process and no thread can exist outside a process. Each thread represents a separate flow of control. Threads have been successfully used in implementing network servers and web server. They also provide a suitable foundation for parallel execution of applications on shared memory multiprocessors. The following figure shows the working of a single-threaded and a multithreaded process.

Single Process P with single thread

Single Process P with three threads

Difference between Process and Thread

S.N.	Process	Thread
1	Process is heavy weight or resource intensive.	Thread is light weight, taking lesser

		resources than a process.
2	Process switching needs interaction with operating system.	Thread switching does not need to interact with operating system.
3	In multiple processing environments, each process executes the same code but has its own memory and file resources.	All threads can share same set of open files, child processes.
4	If one process is blocked, then no other process can execute until the first process is unblocked.	While one thread is blocked and waiting, a second thread in the same task can run.
5	Multiple processes without using threads use more resources.	Multiple threaded processes use fewer resources.
6	In multiple processes each process operates independently of the others.	One thread can read, write or change another thread's

	data.

Advantages of Thread

- Threads minimize the context switching time.
- Use of threads provides concurrency within a process.
- Efficient communication.
- It is more economical to create and context switch threads.
- Threads allow utilization of multiprocessor architectures to a greater scale and efficiency.

Types of Thread

Threads are implemented in following two ways -

- User Level Threads User managed threads.
- **Kernel Level Threads** Operating System managed threads acting on kernel, an operating system core.

User Level Threads

In this case, the thread management kernel is not aware of the existence of threads. The thread library contains code for creating and destroying threads, for passing message and data between threads, for scheduling thread execution and for saving and restoring thread contexts. The application starts with a single thread.

Advantages

- Thread switching does not require Kernel mode privileges.
- User level thread can run on any operating system.
- Scheduling can be application specific in the user level thread.
- User level threads are fast to create and manage.

Disadvantages

- In a typical operating system, most system calls are blocking.
- Multithreaded application cannot take advantage of multiprocessing.

Kernel Level Threads

In this case, thread management is done by the Kernel. There is no thread management code in the application area. Kernel threads are supported directly by the operating system. Any application can be programmed to be multithreaded. All of the threads within an application are supported within a single process.

The Kernel maintains context information for the process as a whole and for individuals threads within the process. Scheduling by the Kernel is done on a thread basis. The Kernel performs thread creation, scheduling and management in Kernel

space. Kernel threads are generally slower to create and manage than the user threads.

Advantages

- Kernel can simultaneously schedule multiple threads from the same process on multiple processes.
- If one thread in a process is blocked, the Kernel can schedule another thread of the same process.
- Kernel routines themselves can be multithreaded.

Disadvantages

- Kernel threads are generally slower to create and manage than the user threads.
- Transfer of control from one thread to another within the same process requires a mode switch to the Kernel.

Multithreading Models

Some operating system provide a combined user level thread and Kernel level thread facility. Solaris is a good example of this combined approach. In a combined system, multiple threads within the same application can run in parallel on multiple processors and a blocking system call need not block the entire process. Multithreading models are three types

- Many to many relationship.
- Many to one relationship.
- One to one relationship.

Many to Many Model

The many-to-many model multiplexes any number of user threads onto an equal or smaller number of kernel threads.

The following diagram shows the many-to-many threading model where 6 user level threads are multiplexing with 6 kernel level threads. In this model, developers can create as many user threads as necessary and the corresponding Kernel threads can run in parallel on a multiprocessor machine. This model provides the best accuracy on concurrency and when a thread performs a blocking system call, the kernel can schedule another thread for execution.

Many to One Model

Many-to-one model maps many user level threads to one Kernel-level thread. Thread management is done in user space by the thread library. When thread makes a blocking system call, the entire process will be blocked. Only one thread can access the Kernel at a time, so multiple threads are unable to run in parallel on multiprocessors.

If the user-level thread libraries are implemented in the operating system in such a way that the system does not support them, then the Kernel threads use the many-to-one relationship modes.

One to One Model

There is one-to-one relationship of user-level thread to the kernel-level thread. This model provides more concurrency than the many-to-one model. It also allows another thread to run when a thread makes a blocking system call. It supports multiple threads to execute in parallel on microprocessors.

Disadvantage of this model is that creating user thread requires the corresponding Kernel thread. OS/2, windows NT and windows 2000 use one to one relationship model.

Difference between User-Level & Kernel-Level Thread

S.N.	User-Level Threads	Kernel-Level Thread
1	User-level threads are faster to create and manage.	Kernel-level threads are slower to create and manage.
2	Implementation is by a thread library at the user level.	Operating system supports creation of Kernel threads.
3	User-level thread is generic and can run on any operating system.	Kernel-level thread is specific to the operating system.
4	Multi-threaded applications cannot take advantage of multiprocessing.	Kernel routines themselves can be multithreaded.

Evolution of Operating System:

Evolution of Operating Systems: User driven, operator driven, simple batch system, off – line batch system, directly coupled off – line system, multi- programmed spooling system, online timesharing system, multi-computer/ distributed systems, Real time Operating Systems.

- 1. Serial processing
- 2. Batch processing
- 3. Multiprogramming
- 4. Multitasking or time sharing System

Multitasking or Time Sharing System:

- Multiprogramming didn't provide the user interaction with the computer system.
- Time sharing or Multitasking is a logical extension of Multiprogramming that provides user interaction.
- There are more than one user interacting the system at the same time
- The switching of CPU between two users is so fast that it gives the impression to user that he is only working on the system but actually it is shared among different users.
- CPU bound is divided into different time slots depending upon the number of users using the system.
- just as multiprogramming allows the processor to handle multiple batch jobs at a time, multiprogramming can also be used to handle multiple interactive jobs. In this latter case, the technique is referred to as time sharing, because processor time is shared among multiple users
- A multitasking system uses CPU scheduling and multiprogramming to provide each user with a small portion of a time shared computer. Each user has at least one separate program in memory.
- Multitasking are more complex than multiprogramming and must provide a mechanism for jobs synchronization and communication and it may ensure that system does not go in deadlock.

Although batch processing is still in use but most of the system today available uses the concept of multitasking and Multiprogramming.

Serial Processing:

- Early computer from late 1940 to the mid 1950.
- The programmer interacted directly with the computer hardware.
- These machine are called bare machine as they don't have OS.
- Every computer system is programmed in its machine language.
- Uses Punch Card, paper tapes and language translator

These system presented two major problems.

- 1. Scheduling
- 2. Set up time:

Scheduling:

Used sign up sheet to reserve machine time. A user may sign up for an hour but finishes his job in 45 minutes. This would result in wasted computer idle time, also the user might run into the problem not finish his job in alloted time.

Set up time:

A single program involves:

- Loading compiler and source program in memory
- Saving the compiled program (object code)
- Loading and linking together object program and common function

Each of these steps involves the mounting or dismounting tapes on setting up punch cards. If an error occur user had to go the beginning of the set up sequence. Thus, a considerable amount of time is spent in setting up the program to run.

This mode of operation is turned as serial processing ,reflecting the fact that users access the computer in series.

Simple Batch Processing:

- Early computers were very expensive, and therefore it was important to maximize processor utilization.
- The wasted time due to scheduling and setup time in Serial Processing was unacceptable.
- To improve utilization, the concept of a batch operating system was developed.
- Batch is defined as a group of jobs with similar needs. The operating system allows users to form batches. Computer executes each batch sequentially, processing all jobs of a batch considering them as a single process called batch processing.

The central idea behind the simple batch-processing scheme is the use of a piece of software known

Page:16 Compiled by: daya

as the **monitor**. With this type of OS, the user no longer has direct access to the processor. Instead, the user submits the job on cards or tape to a computer operator, who batches the jobs together sequentially and places the entire batch on an input device, for use by the monitor. Each program is constructed to branch back to the monitor when it completes processing, at which point the monitor automatically begins loading the next program.

Fig.1.5: Memory Layout for resident memory

With a batch operating system, processor time alternates between execution of user programs and execution of the monitor. There have been two sacrifices: Some main memory is now given over to the monitor and some processor time is consumed by the monitor. Both of these are forms of overhead.

Multiprogrammed Batch System:

A single program cannot keep either CPU or I/O devices busy at all times. Multiprogramming increases CPU utilization by organizing jobs in such a manner that CPU has always one job to execute. If computer is required to run several programs at the same time, the processor could be kept busy for the most of the time by switching its attention from one program to the next. Additionally I/O transfer could overlap the processor activity i.e, while one program is awaiting for an I/O transfer, another program can use the processor. So CPU never sits idle or if comes in idle state then after a very small time it is again busy. This is illustrated in fig below.

Fig 1.6. Multiprogramming example