

Базовая математика

Урок 8. Первообразная. Основное свойство первообразной. Три правила нахождения первообразных

Разбор домашнего задания

Задание 1. Найти общий вид первообразных для функции $f(x) = \frac{1}{(7-3x)^5}$.

Решение. Воспользуемся третьим правилом нахождения первообразной: если функция F(x) — первообразная для функции f(x), то функция $\frac{1}{k} \cdot F(k \cdot x + b)$ — первообразная для функции $f(k \cdot x + b)$. В этих обозначениях $f(x) = \frac{1}{x^5}, \ k = -3, \ b = 7.$

Вычислим первообразную от функции $\frac{1}{x^5}$. Первообразная от x^n равна $\frac{x^{n+1}}{n+1}$ (при условии, что $n \neq -1$). В нашем случае n = -5. Имеем:

$$\frac{x^{-5+1}}{-5+1} = -\frac{1}{4x^4}$$

Наконец, по формуле выше получаем:

$$F(x) = -\frac{1}{3} \cdot \left(-\frac{1}{4(7-3x)^4} \right) + C = \frac{1}{12(7-3x)^4} + C$$

Omsem: $F(x) = \frac{1}{12(7-3x)^4} + C$.

Задание 2. Найти общий вид первообразных для функции $f(x) = \sqrt{7x+1}$.

Решение. Как и ранее, используем третье правило нахождения первообразной. В его обозначениях $f(x) = \sqrt{x}, k = 7, b = 1.$

Поскольку $\sqrt{x}=x^{\frac{1}{2}}$, первообразная этой функции равна

$$\frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1} = \frac{x\sqrt{x}}{\frac{3}{2}} = \frac{2x\sqrt{x}}{3}$$

По формуле выше получаем:

$$F(x) = \frac{1}{7} \cdot \frac{2(7x+1)\sqrt{7x+1}}{3} + C = \frac{2}{21}(7x+1)\sqrt{7x+1} + C$$

Omsem: $F(x) = \frac{2}{21}(7x+1)\sqrt{7x+1} + C$.

Задание 3. Найти общий вид первообразных для функции $f(x) = \sin(3x - 2)$.

Peшение. Опять воспользуемся третьим правилом вычисления первообразной: $f(x) = \sin x, \, k = 3, \, b = -2.$

Первообразная от функции $\sin x$ равна $-\cos x$. Имеем:

$$F(x) = \frac{1}{3} \cdot (-\cos(3x - 2)) + C$$

Omsem: $F(x) = -\frac{1}{3} \cdot \cos(3x - 2) + C$.

Задание 4. Найти общий вид первообразных для функции $f(x) = \frac{1}{7-3x}$.

Решение. В обозначениях третьего правила: $f(x) = \frac{1}{x}, k = -3, b = 7.$ Первообразная от функции $\frac{1}{x}$ равна $\ln x$. Имеем:

$$F(x) = -\frac{1}{3} \cdot \ln(7 - 3x) + C$$

Omsem: $F(x) = -\frac{1}{3} \cdot \ln(7 - 3x) + C$.

Задание 5. Вычислить $\int (x^2 + \sin x) dx$.

Решение. Интеграл от суммы равен сумме интегралов. Имеем:

$$\int (x^2 + \sin x) \, dx = \int x^2 \, dx + \int \sin x \, dx = \frac{x^3}{3} - \cos x + C$$

Omsem: $F(x) = \frac{x^3}{3} - \cos x + C$.