Banana Project Report

This project was solved using DQN (deep Q learning network). Regarding the neural network, two hidden layers were used. The first layer contains 128 neurons, and the second hidden layer is 64 neurons. The output layer has a size of 4 as per action size.

The main parameters used during the learning were:

- Number of episode (=1000) I expected to converge before this number
- Time per episode (=1000) considered enough for training
- Epsilon start value = 1
- Epsilon end value = 0.01
- Epsilon decay = 0.995
- Replay buffer size = 100,000
- Gamma = 0.99 to give higher priority for current reward
- Learning rate = 0.0005

The device used is the CPU.

Problem Overview:

The **Banana Collector environment** is a reinforcement learning task where an agent must navigate in a 3D world and collect **yellow bananas** (reward: +1) while avoiding **blue bananas** (penalty: -1). The goal is to train an agent that maximizes the total reward over time.

What is DQN?

DQN is an algorithm that combines **Q-learning** with **deep neural networks**. Instead of maintaining a table of Q-values for each state-action pair (which becomes infeasible for high-dimensional states), we use a **neural network** to approximate the Q-function:

$$Q(s,a;\theta)\approx Q^*(s,a)$$

DQN Network Architecture:

- **Input**: State vector (e.g., 37 features representing the environment)
- **Hidden Layers**: Two fully connected layers (e.g., 64 and 64 units)
- Output: Q-values for each possible action

State (37)
$$\rightarrow$$
 FC (128) \rightarrow ReLU \rightarrow FC (64) \rightarrow ReLU \rightarrow FC (action_size)

Key Features of DQN:

- **Experience Replay**: Stores past experiences and samples random mini batches to break correlations between consecutive steps.
- **Target Network**: A separate network (Q_target) used to generate stable Q-value targets. It is updated less frequently to avoid oscillations.
- Update Rule:

$$Q_{ ext{target}} = r + \gamma \cdot \max_{a} Q_{ ext{target}}(s', a)$$

$$\operatorname{Loss} = \left(Q_{\operatorname{expected}}(s, a) - Q_{\operatorname{target}}\right)^2$$

The program of Navigation called dqn_agent.py and created an agent based on that.

The result of the program came as follows:

```
Episode 100 Average Score: 0.21
Episode 200 Average Score: 1.77
Episode 300 Average Score: 5.57
Episode 400 Average Score: 9.41
Episode 500 Average Score: 11.87
Episode 593 Average Score: 13.02
Environment solved in 593 episodes!
```

Average Score: 13.02

The above figure indicates that the agent was able to get an average score above 13 in 100 consecutive episodes starting from episode 494 till 593.

Double DQN:

The double Deep Q learning network was tried in the above-mentioned project, and it included the same parameters and shape of neural network. However, there was small change in the update of the target network in double_dqn_agent.py to avoid overestimating.

Motivation

DQN often suffers from **overestimation** of Q-values because it uses the same network to both choose and evaluate actions. Double DQN addresses this by decoupling these two roles.

Double DQN Target Calculation

$$a_{ ext{max}} = rg \max_a Q_{ ext{online}}(s',a)$$

$$Q_{\mathrm{target}} = r + \gamma \cdot Q_{\mathrm{target}}(s', a_{\mathrm{max}})$$

- Action selection uses the online network.
- Action evaluation uses the target network.

This approach results in more accurate value estimates and improved training stability.

Network Architecture

Identical to DQN.

The result for the double DQN came as shown below:

```
Episode 100 Average Score: 0.35
Episode 200 Average Score: 3.16
Episode 300 Average Score: 7.53
Episode 400 Average Score: 9.79
Episode 468 Average Score: 13.01
Environment solved in 468 episodes!
```

Average Score: 13.01

The project was solved from episode 369 and 468 with an average score above 13. This is more than 20% improvement of the standard DQN method.

Future Work:

For this project it is expected to give a better result if used Deul DQN along with other improvement methods (like Rainbow) The collection of the improvement method is supposed to converge faster.