DNNFusion: Accelerating Deep Neural Networks Execution with Advanced Operator Fusion

Wei Niu, Jiexiong Guan, Yanzhi Wang, Gagan Agrawal, Bin Ren

Roadmap

Deep learning is everywhere

Self-Driving

OpenAl Five playing Dota 2 Source: OpenAl

Speech Recognition

Object Detection

Healthcare Image credits to Brother UK.

Deep learning computation devices

1 M Neurons 256 M Synapses Real time 73 mW

FPGA

Google TPU

Intel Nervana

Powerful & efficient mobile devices

Powerful & efficient mobile devices

Adreno 650 [1] can even achieve over 1T flops peak performance with only 5W power consumption [2]

^{[1].} https://developer.qualcomm.com/blog/tvm-open-source-compiler-now-includes-initial-support-qualcomm-hexagon-dsp

^{[2].} List of Qualcomm Snapdragon processors: https://www.wikiwand.com/en/List_of_Qualcomm_Snapdragon_processors

Roadmap

Deeper neural networks

- There has been a trend towards deeper models
 - 1. E.g., MobileBERT, GPT-2, Conformer

Over 1000 operators

Deep VS shallow

Model	Number of layers	Number of FLOPS	Speed (FLOPs/S)		
VGG-16	51	31.0B	320G		
YOLO-V4	389	34.6B	135G		
DistilBERT	457	35.3B	78G		
MobileBERT	2387	17.6B	44G		
GPT-2	2533	69.1B	62G		

Correlation between Speed and #FLOPS and #layers

Deeper neural networks

- Depth of the model is the critical impediment to efficient execution
 - 1. More intermediate results, thus increasing the memory/cache pressure
 - 2. Insufficient amount of computations in each layer, thus degrading the processor's utilization

Limitation of state-of-the-art frameworks

End to end mobile frameworks

- MNN
- TVM
- Pytorch-Mobile
- TFLite

Already have over 100 different operators

Our contribution

Operator mapping analysis

Mathematical-property-based graph rewriting

Fusion plan generation

Fusion code generation

Roadmap

Mapping type	Representative operators
One-to-One	Add, Relu
One-to-Many	Gather, Upsample
Many-to-Many	Convolution, GEMM
Reorganize	Reshape
Shuffle	Transpose

One-to-One (Add)

Many-to-Many (Conv)

Which operator shall we fuse together?

One-to-One (Add)

Many-to-Many (Conv)

Mapping types combination analysis

	One-to-One	One-to-Many	Many-to-Many	Reorganize	Shuffle	
One-to-One	One-to-One	One-to-Many	Many-to-Many	Reorganize	Shuffle	
One-to-Many	One-to-Many	One-to-Many	X	One-to-Many	One-to-Many	
Many-to-Many	Many-to-Many	Many-to-Many	X	Many-to-Many	Many-to-Many	
Reorganize	Reorganize	One-to-Many	Many-to-Many	Reorganize	Reorganize	
Shuffle	Shuffle	One-to-Many	Many-to-Many	Reorganize	Shuffle	

Mathematical-property-based graph rewriting

Before: $(A \circledast B)^{-1} \odot ((A \circledast B) \odot C)^{-1}$

Mathematical-property-based graph rewriting

Before: $(A \circledast B)^{-1} \odot ((A \circledast B) \odot C)^{-1}$

Mathematical-property-based graph rewriting

Property	Without graph rewrit	ing	With graph rewriting				
	Graph structure in equation	Number of FLOPS	Graph structure in equation	Number of FLOPS			
Associative	$(A \odot \sqrt{B}) \odot (\sqrt{B} \odot C)$	5 * m * n	$A\odot B\odot C$	2*m*n			
Distributive	$A\odot C+A\odot B$	3 * m * n	$(A + B) \odot C$	2 * m * n			
Commutative	ReduceProd(Exp(A))	2 * m * n	Exp(ReduceSum(A))	m*n+m			

Heuristic fusion plan exploration

Heuristic fusion plan exploration

Step II: Propagated exploration along seed's successors.

Heuristic fusion plan exploration

Step III: Propagated exploration along seed's predecessors.

Code generation

Extended computational graph

Code generation

Extended computational graph

Data-flow tree

Code generation

Extended computational graph

Data-flow tree

Code generation

Roadmap

Evaluation setup

- Comparison frameworks
 - 1. MNN, TVM, TFLite, Pytorch-Mobile, TASO, Our baseline version
- Inference testing device
 - 1. Samsung Galaxy S20 (with Qualcomm Snapdragon 865 platform)
- Models
 - 1. 2D CNN: EfficientNet-B0, VGG-16, MobileNetV1-SSD, YOLO-V4, U-Net
 - 2. 3D CNN: C3D, S3D
 - 3. R-CNN: Faster R-CNN, Mask R-CNN,
 - 4. Transformer: TinyBERT, DistilBERT, ALBERT, BERT-Base, MobileBERT, GPT-2

Fusion rate evaluation

Up-to 8.8x fusion rate

Models	Layer count before fusion	Layer count After fusion							
Models	Number of total layers	MNN	TVM	TFLite	Pytorch	DNNFusion			
EfficientNet-B0	309	199	195	201	210	97			
VGG-16	51	22	22	22	22	17			
MobileNetV1-SSD	202	138	124	138	148	71			
YOLO-V4	398	198	192	198	232	135			
C3D	27	27	27	_	27	16			
S3D	272	-	_	_	272	98			
U-Net	292	241	232	234	-	82			
FasterR-CNN	3,640	_	_	_	_	942			
MaskR-CNN	3,999	-	-	_	-	981			
TinyBERT	366	-	304	322	-	74			
DistilBERT	457	_	416	431	_	109			
ALBERT	936	-	746	855	-	225			
BERT-BASE	976	-	760	873	-	216			
MobileBERT	2,387	-	1,678	2,128	_	510			
GPT-2	2,533	-	2,047	2,223	_	254			

Inference latency comparison

Up-to 9.3x speedup

													b			
	MNN (ms)		TVM	TVM (ms)		te (ms)	Pytoro	Pytorch (ms)		(ms) OurB C		OurB		OurB+		sion (ms)
Models	CPU	GPU	CPU	GPU	CPU	GPU	CPU	GPU	CPU	GPU	CPU	GPU	CPU	GPU		
EfficientNet-B0	41	26	56	27	52	30	76	_	54	35	38	24	16	10		
VGG-16	242	109	260	127	245	102	273	_	251	121	231	97	171	65		
MobileNetV1-SSD	67	43	74	52	87	68	92	_	79	56	61	39	33	17		
YOLO-V4	501	290	549	350	560	288	872	_	633	390	426	257	235	117		
C3D	867	_	1,487	_	_	_	2,541	_	880	551	802	488	582	301		
S3D	-	_	_	_	_	_	6,612	_	1,409	972	1,279	705	710	324		
U-Net	181	106	210	120	302	117	271	_	227	142	168	92	99	52		
FasterR-CNN	_	_	_	_	_	_	_	_	2,325	3,054	1,462	1,974	862	531		
MaskR-CNN	-	_	_	_	_	_	_	_	5,539	6,483	3,907	4,768	2,471	1,680		
TinyBERT	-	_	_	_	97	_	_	_	114	89	92	65	51	30		
DistilBERT	-	_	_	_	510	_	_	_	573	504	467	457	224	148		
ALBERT	-	_	_	_	974	_	-	_	1,033	1,178	923	973	386	312		
BERT-BASE	-	-	-	_	985	-	-	-	1,086	1,204	948	1,012	394	293		
MobileBERT	-	_	_	_	342	_	-	_	448	563	326	397	170	102		
GPT-2	-	-	_	_	1,102	-	-	_	1,350	1,467	990	1,106	394	292		

DNNFusion VS TASO

Baseline: TFLite

Devices: CPU

DNNFusion optimizations breakdown

Fusion contributes most

Portability evaluation

Roadmap

Conclusion

- Designs high-level abstractions for operator fusion by leveraging high-level DNN operator information
- Proposes a novel mathematical-property-based graph rewriting to simplify ECG structure, and enable more fusion plan
- Evaluates 15 cutting-edge DNN models with varied types of tasks, model size, and layer counts
- Outperforms four state-of-the-art DNN execution frameworks with up to 9.3x speedup, and allows many latest DNN models that are not supported by any existing end-to-end frameworks to run on mobile devices efficiently, even in real-time.

Thanks

Wei Niu: wniu@email.wm.edu

