First Meeting Presentation Project A2

Giulia Mezzadri Ettore Modina Oswaldo Jesus Morales Lopez Federico Angelo Mor Abylaikhan Orynbassar Federica Rena

> Politecnico of Milano Bayesian Statistics course

Project revision of November 23, 2023

A2 project 1 / 20

Presentation Flow

- Project Overview Goal and Definition Data Exploration
- Models
 General model construction
 Models from literature
- 3 Expected workflow
- 4 References

A2 project 2 / 20

The goal of the project

Goal: Clustering weekly data of one year of PM10 (plus covariates)

Dataset: AGRIMONIA project, at

https://zenodo.org/records/7563265

Spatial Exploration

We have 141 stations, which recorded data for 6 years (from 01/01/2016 to 31/12/2021).

Temporal Exploration

We have 141 stations, which recorded data for 6 years (from 01/01/2016 to 31/12/2021).

Correlation: PM10 and others

We compute the spearman's correlation index between PM10 and the other covariates, which in the functional framework quantifies with a value in [-1,1] the tendency of 2 random variables X_t and Y_t to be perfect monotone functions one of each other.

Missing value exploration

Plots to identify a general pattern on missing values.

Combinations of variables with the most missing values

Missing value exploration

Plot of missing data divided by station to see particular patterns to help select variables.

Possible to remove some stations that are not measuring PM10 values.

Some columns present missing values in most columns, so we can remove corresponding covariates.

Some missing observations concentrated in specific periods such as during last years.

Missing value exploration

[1]	"1274"	"1800"	"1801"	"501"	"504"
[6]	"514"	"529"	"539"	"544"	"545"
[11]	"551"	"552"	"573"	"588"	"602"
[16]	"603"	"606"	"607"	"626"	"652"
[21]	"656"	"657"	"665"	"672"	"682"
[26]	"694"	"696"	"698"	"699"	"700"
[31]	"702"	"707"	"STA.IT1518A"	"STA.IT1751A"	"STA.IT1924A"
[36]	"STA.IT2282A"				

First selection to remove non informative stations, then count of missing values for column, removing those above a chosen threshold

IDStations	Latitude
9	8
Longitude	Time
Altitude	AD pm10
	12719
40 pm25	AO co
136792	136568
AQ_mh3	AQ_nox
217540	72988
AQ_no2	AQ_502
21266	156205
NE_temp_2m	WE_wind_speed_10m_mean
0	0
WE_wind_speed_10m_max	WE_mode_wind_direction_10m
e	0
WE_tot_precipitation	NE_precipitation_t
0	9
NE_surface_pressure	WE_solar_radiation
0	9
WE_rh_min	WE_rh_mean
0	0
WE_rh_max	Mt_wind_speed_100m_mean
	WE_mode_wind_direction_100m
WE_WIND_Speed_1000E_MAX	NE_MODE_Wind_direction_leam
WE blh layer max	ME blh layer min
ws_oin_iayer_max	em_oru_rayer_min
EM nh3 livestock mm	EM_nh3_agr_soils
38325	88325
EN_nh3_agr_waste_burn	EII_nh3_sum
38325	18125
BM nox traffic	EN nox sum
38325	38325
EN so2 sum	LI pigs
38325	6576
LI bovine	LI pigs v2
6576	е
LI_bovine_v2	LA_hvi
0	0
LA_1vi	LA_land_use
0	0
LA_soil_use	

Models: a complex task

Considering the nature of the data, our models should account for different levels of information:

- spatial context
- temporal context
- covariates

which is a not-so-trivial task.

Now we see the general incremental idea to build such models.

- We have n distinct locations s_1, \ldots, s_n , where $s_i = (lat_i, long_i)$.
- There we record data y_i and (possibly) covariates x_i , for i = 1, ..., n. The goal is to define a model for partitioning them into k groups.
- So we define $\rho = \{S_1, \ldots, S_k\}$ the cluster set variable (with $S_h \subseteq \{1, \ldots, n\}$ for $h = 1, \ldots, k$). An equivalent formulation is possible through some cluster indicator variables c_1, \ldots, c_n ; where $c_i = h \iff i \in S_h$ for $i = 1, \ldots, n$.
- In general, the law for ρ follows a spatial Product Partition Model (sPPM):

$$p_{
ho}(ilde{
ho}) \propto \prod_{h=1}^{k_n} C(ilde{S}_h, oldsymbol{s}_h^\star)$$

where $\tilde{\rho} = \{\tilde{S}_1, \dots, \tilde{S}_k\}$, $\mathbf{s}_h^{\star} = \{\mathbf{s}_i : i \in \tilde{S}_h\}$ and $C(\tilde{S}_h, \mathbf{s}_h^{\star})$ is a cohesion function

A2 project 11 / 20

- We have n distinct locations s_1, \ldots, s_n , where $s_i = (lat_i, long_i)$.
- There we record data y_i and (possibly) covariates x_i , for i = 1, ..., n. The goal is to define a model for partitioning them into k groups.
- So we define $\rho = \{S_1, \ldots, S_k\}$ the cluster set variable (with $S_h \subseteq \{1, \ldots, n\}$ for $h = 1, \ldots, k$). An equivalent formulation is possible through some cluster indicator variables c_1, \ldots, c_n ; where $c_i = h \iff i \in S_h$ for $i = 1, \ldots, n$.
- In general, the law for ρ follows a spatial Product Partition Model (sPPM):

$$p_{
ho}(ilde{
ho}) \propto \prod_{h=1}^{k_n} C(ilde{S}_h, oldsymbol{s}_h^\star)$$

where $\tilde{\rho} = \{\tilde{S}_1, \dots, \tilde{S}_k\}$, $\mathbf{s}_h^{\star} = \{\mathbf{s}_i : i \in \tilde{S}_h\}$ and $C(\tilde{S}_h, \mathbf{s}_h^{\star})$ is a cohesion function

- We have n distinct locations s_1, \ldots, s_n , where $s_i = (lat_i, long_i)$.
- There we record data y_i and (possibly) covariates x_i , for i = 1, ..., n. The goal is to define a model for partitioning them into k groups.
- So we define $\rho = \{S_1, \ldots, S_k\}$ the cluster set variable (with $S_h \subseteq \{1, \ldots, n\}$ for $h = 1, \ldots, k$). An equivalent formulation is possible through some cluster indicator variables c_1, \ldots, c_n ; where $c_i = h \iff i \in S_h$ for $i = 1, \ldots, n$.
- In general, the law for ρ follows a spatial Product Partition Model (sPPM):

$$p_{\rho}(\tilde{\rho}) \propto \prod_{h=1}^{k_n} C(\tilde{S}_h, \boldsymbol{s}_h^{\star})$$

where $\tilde{\rho} = \{\tilde{S}_1, \dots, \tilde{S}_k\}$, $\mathbf{s}_h^{\star} = \{\mathbf{s}_i : i \in \tilde{S}_h\}$ and $C(\tilde{S}_h, \mathbf{s}_h^{\star})$ is a cohesion function

- We have n distinct locations s_1, \ldots, s_n , where $s_i = (lat_i, long_i)$.
- There we record data y_i and (possibly) covariates x_i , for i = 1, ..., n. The goal is to define a model for partitioning them into k groups.
- So we define $\rho = \{S_1, \ldots, S_k\}$ the cluster set variable (with $S_h \subseteq \{1, \ldots, n\}$ for $h = 1, \ldots, k$). An equivalent formulation is possible through some cluster indicator variables c_1, \ldots, c_n ; where $c_i = h \iff i \in S_h$ for $i = 1, \ldots, n$.
- In general, the law for ρ follows a spatial Product Partition Model (sPPM):

$$p_{
ho}(\tilde{
ho}) \propto \prod_{h=1}^{k_n} C(\tilde{S}_h, \boldsymbol{s}_h^{\star})$$

where $\tilde{\rho} = {\tilde{S}_1, \dots, \tilde{S}_k}$, $\mathbf{s}_h^{\star} = {\mathbf{s}_i : i \in \tilde{S}_h}$ and $C(\tilde{S}_h, \mathbf{s}_h^{\star})$ is a cohesion function.

4 D > 4 D > 4 E > 4 E > E 9 Q @

11/20

Spatial and temporal model

We have n distinct locations s_1, \ldots, s_n , where $s_i = (\text{lat}_i, \text{long}_i)$. There we record data y_i and (possibly) covariates x_i , for $i = 1, \ldots, n$. The goal is to define a model for partitioning them into k_t groups, with t spanning over $1, \ldots, T$. So we define $\rho_t = \{S_{1,t}, \ldots, S_{k_t,t}\}$ the cluster set variable (with $S_{h,t} \subseteq \{1,\ldots,n\}$ for $h = 1,\ldots,k_t$). In general, the law for ρ_t follows a spatial Product Partition Model (sPPM) updated to account for the time relation (stPPM); meaning that

This update can be explicited for example by

- supposing a Markov Chain structure, letting ρ_t depend just on ρ_{t-1} ;
- introducing some cluster reallocation variable $\gamma_{i,t} \in \{0,1\}$.

we need a formulation of a joint probability model for ρ_1, \ldots, ρ_T .

12 / 20

Garritt L. Page, Fernando A. Quintana, David B. Dahl (2022)
Dependent Modeling of Temporal Sequences of Random Partitions. Journal

Dependent Modeling of Temporal Sequences of Random Partitions. Journal of Computational and Graphical Statistics, 31:2, 614-627.

$$egin{aligned} Y_{it} | oldsymbol{\mu}_t^{\star}, oldsymbol{\sigma}_t^{2\star}, oldsymbol{c}_t & ext{ind} & \mathcal{N}(\mu_{c_{it}t}^{\star}, \sigma_{c_{it}t}^{2\star}) & i = 1, \ldots, n \quad ext{and} \quad t = 1, \ldots, T \\ egin{aligned} (\mu_{jt}, \sigma_{jt}) & | heta_t, au_t^2 & ext{ind} & \mathcal{N}(\theta_t, au_t^2) & ext{} \mathcal{U}(0, A_{\sigma}) & j = 1, \ldots, k_t \\ & (heta_t, au_t) & \overset{ ext{iid}}{\sim} & \mathcal{N}(\phi_0, \lambda^2) & ext{} \mathcal{U}(0, A_{\tau}) & t = 1, \ldots, T \\ & (\phi_0, \lambda) & \sim \mathcal{N}(m_0, s_0^2) & ext{} \mathcal{U}(0, A_{\lambda}) \\ & \{ oldsymbol{c}_t, \ldots, oldsymbol{c}_T \} & \sim \mathsf{tRPM}(oldsymbol{\alpha}, M) & \mathsf{with} & ext{} \alpha_t & \overset{ ext{iid}}{\sim} & \mathsf{Beta}(a_{\alpha}, b_{\alpha}) \end{aligned}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ■ のQの

13 / 20

Adding covariates

Given a partition, now we can easily design models which also account for covariates. For example we can update the previous model into

$$Y_{it}|\boldsymbol{\beta_t^{\star}}, \boldsymbol{\sigma}_t^{2\star}, \boldsymbol{c}_t \stackrel{\text{ind}}{\sim} \mathcal{N}(\boldsymbol{x}_{it}^{\mathsf{T}} \boldsymbol{\beta}_{c_{it}}^{\star}, \boldsymbol{\sigma}_{c_{it}}^{2\star})$$
$$(\boldsymbol{\beta_{jt}}, \sigma_{jt}) | \theta_t, \tau_t^2 \stackrel{\text{ind}}{\sim} \mathcal{N}(\theta_t, \tau_t^2) \times \mathcal{U}(0, A_{\sigma})$$
$$\vdots$$

or we can further characterize the time dependance with some $\mathsf{AR}(\cdot)$ model

$$Y_{it}|Y_{it-1}, \beta_t^{\star}, \sigma_t^{2\star}, c_t \stackrel{\text{ind}}{\sim} \mathcal{N}(\mathbf{x}_{it}^{\mathsf{T}} \boldsymbol{\beta}_{c_{it}t}^{\star} + Y_{it-1}\eta_i, \sigma_{c_{it}t}^{2\star} (1 - \eta_i)^2)$$

$$Y_{i1}|\beta_1^{\star}, \sigma_1^{2\star}, c_1 \sim \mathcal{N}(\mathbf{x}_{i1}^{\mathsf{T}} \boldsymbol{\beta}_{c_{i1}1}^{2\star}, \sigma_{c_{i1}1}^{2\star})$$

$$\vdots$$

4□ > 4□ > 4□ > 4 = > 4 = > = 90

Mozdzen A., Cremaschi A., Cadonna A., Guglielmi A., Kastner G. (2022)

Bayesian modeling and clustering for spatio-temporal areal data: An application to Italian unemployment. Spatial Statistics 52, 100715.

$$\begin{aligned} Y_{it}|\mathbf{x}_{it}, \boldsymbol{\beta}_{s_i}^{\star}, w_{it}, \sigma^2, s_i & \overset{\text{ind}}{\sim} \mathcal{N}(\mathbf{x}_{it}^{\mathsf{T}}\boldsymbol{\beta}_{s_i}^{\star} + w_{it}, \sigma^2) \\ \mathbf{w}_t|\mathbf{w}_{t-1}, \boldsymbol{\xi}_{s}^{\star}, \mathbf{s}, \tau^2, \rho, W &\sim \mathcal{N}_I(\operatorname{diag}(\boldsymbol{\xi}_{s}^{\star})\mathbf{w}_{t-1}, \tau^2 Q(\rho, W)^{-1}) \\ \mathbf{w}_1|\tau^2, \rho, W &\sim \mathcal{N}_I(\mathbf{0}, \tau^2 Q(\rho, W)^{-1}) \\ \sigma^2 &\sim \operatorname{Inv-Gamma}(a_{\sigma^2}, b_{\sigma^2}) \\ \tau^2 &\sim \operatorname{Inv-Gamma}(a_{\tau^2}, b_{\tau^2}) \\ \rho &\sim \operatorname{Beta}(\alpha_{\rho}, \beta_{\rho}) \\ \mathbf{s}|\alpha &\sim \operatorname{P\'olyaUrn}(\mathbf{s}|\alpha) \\ \alpha &\sim \operatorname{Gamma}(a_{\alpha}, b_{\alpha}) \\ \boldsymbol{\phi}_1^{\star}, \dots, \boldsymbol{\phi}_{\mathcal{K}_I}^{\star}|\boldsymbol{\mu}_{\boldsymbol{\beta}}, \boldsymbol{\Sigma}_{\boldsymbol{\beta}}, \alpha_{\boldsymbol{\xi}}, \beta_{\boldsymbol{\xi}} & \overset{\text{iid}}{\sim} \operatorname{P}_0, \quad \boldsymbol{\phi}_j^{\star} = (\boldsymbol{\beta}_j^{\star}, \boldsymbol{\xi}_j^{\star}) \quad \text{j} = 1, \dots, \mathsf{K}_I \\ \operatorname{P}_0(d\boldsymbol{\phi}^{\star}) &= \mathcal{N}_{p+1}(d\boldsymbol{\beta}^{\star}|\boldsymbol{\mu}_{\boldsymbol{0}}, \boldsymbol{\Sigma}_0) \operatorname{Beta}_{(-1,1)}(d\boldsymbol{\xi}^{\star}|\alpha_{\boldsymbol{\xi}}, \beta_{\boldsymbol{\xi}}) \end{aligned}$$

A2 project 15 / 20

Leonardo V. Teixeira, Renato M. Assunção, Rosangela H. Loschi (2019) Bayesian Space-Time Partitioning by Sampling and Pruning Spanning Trees. Journal of Machine Learning Research 20, 85, 1–35.

This model works on a graph structure, which incorporates together space and time. That is, from data Y_{jt} for $j=1,\ldots,n$ and $t=1,\ldots,T$, we now move to Y_i for $i\in I=\{1,\ldots,nT\}$ by stacking T times the spatial map. So we have a graph $\mathcal{G}=(V,E)$ of nT nodes and edges built according to time and space connections.

The idea is to search a partition $\pi = \{\mathcal{G}_1, \dots, \mathcal{G}_c\}$ of I (with \mathcal{G}_k subgraphs for \mathcal{G}), on randomly selected spanning trees \mathcal{T} of \mathcal{G} , on which we set cluster-specific parameters $\beta_{\mathcal{G}_1}, \dots, \beta_{\mathcal{G}_c}$.

A2 project 16 / 20

Leonardo V. Teixeira, Renato M. Assunção, Rosangela H. Loschi (2019) Bayesian Space-Time Partitioning by Sampling and Pruning Spanning Trees. Journal of Machine Learning Research 20, 85, 1–35.

$$egin{aligned} Y_i | \mathcal{T}, oldsymbol{\pi}, oldsymbol{eta}_{\mathcal{G}_k} & ec{\sim} f(Y_i | eta_{\mathcal{G}_k}; oldsymbol{x}_i) & i \in \mathcal{G}_k \ eta_{\mathcal{G}_1}, \dots, eta_{\mathcal{G}_c} | \mathcal{T}, oldsymbol{\pi} & \sim \prod_{k=1}^c f(eta_{\mathcal{G}_k}) \ egin{aligned} p(oldsymbol{\pi} = \{ ilde{\mathcal{G}}_1, \dots, ilde{\mathcal{G}}_c\} | \mathcal{T}) & \sim \prod_{k=1}^c \kappa(ilde{\mathcal{G}}_k) \ \mathcal{T} & \sim \mathcal{U}(\mathsf{St}(\mathcal{G})) \end{aligned}$$

Expected workflow

- PM10 covariates analysis (physical/chemical relation)
- First models implementation and comparison
- Implementation of variations of those simple models, or more complex models from literature
- Gif/Video interactive plots for displaying results

References

Garritt L. Page, Fernando A. Quintana, David B. Dahl (2022) Dependent Modeling of Temporal Sequences of Random Partitions. Journal of Computational and Graphical Statistics, 31:2, 614-627.

Mozdzen A., Cremaschi A., Cadonna A., Guglielmi A., Kastner G. (2022) Bayesian modeling and clustering for spatio-temporal areal data: An application to Italian unemployment. Spatial Statistics 52, 100715.

Leonardo V. Teixeira, Renato M. Assunção, Rosangela H. Loschi (2019) Bayesian Space-Time Partitioning by Sampling and Pruning Spanning Trees. Journal of Machine Learning Research 20, 85, 1–35.

