Remark: Since $w_{ii} = 0$, these graphs have no self-loops. We can think of the matrix W as a generalized adjacency matrix. The case where $w_{ij} \in \{0, 1\}$ is equivalent to the notion of a graph as in Definition 20.5.

We can think of the weight w_{ij} of an edge $\{v_i, v_j\}$ as a degree of similarity (or affinity) in an image, or a cost in a network. An example of a weighted graph is shown in Figure 20.4. The thickness of an edge corresponds to the magnitude of its weight.

Figure 20.4: A weighted graph.

Definition 20.14. Given a weighted graph G = (V, W), for every node $v_i \in V$, the degree $d(v_i)$ of v_i is the sum of the weights of the edges adjacent to v_i :

$$d(v_i) = \sum_{j=1}^m w_{ij}.$$

Note that in the above sum, only nodes v_j such that there is an edge $\{v_i, v_j\}$ have a nonzero contribution. Such nodes are said to be *adjacent* to v_i , and we write $v_i \sim v_j$. The degree matrix D(G) (or simply, D) is defined as before, namely by $D(G) = \text{diag}(d(v_1), \ldots, d(v_m))$.

The weight matrix W can be viewed as a linear map from \mathbb{R}^V to itself. For all $x \in \mathbb{R}^m$, we have

$$(Wx)_i = \sum_{j \sim i} w_{ij} x_j;$$

that is, the value of Wx at v_i is the weighted sum of the values of x at the nodes v_j adjacent to v_i .

Observe that W1 is the (column) vector $(d(v_1), \ldots, d(v_m))$ consisting of the degrees of the nodes of the graph.

We now define the most important concept of this chapter: the Laplacian matrix of a graph. Actually, as we will see, it comes in several flavors.