



Figure 1

**Full Length:**



**Properly Spliced:**



**Downstream Missplice:**



**Unsplice Intron and Downstream Missplice:**



■ Upstream Splice Site (part of the expression vector)

■ 'Weird' Splice Site (found in the Gcc cDNA sequence)

Figure 2

r\_rAG/ qua aqu Consensus Donor

5' - AAG CCG TTG AGT AGG/ GTC AGC ATC ATG GCT GGC AGC CTC AC 160-

a) unmodified Gcc

Lys Pro Leu Ser Arg Val Ser Ile Met Ala Gly Ser Leu Thr 26

5' - AAG CCG TTG AGT AGA GTC TCC ATC ATG GCT GGC AGC CTC AC 160-

\* \* \*

b) "modified Gcc"

yyy yyy yyy ync ag/G

Consensus Acceptor

5' - TTT CCT GCC CTT GGT ACC TTC AG/C CGC TAT GAG AGT ACA C 340-

a) unmodified Gcc

Phe Pro Ala Leu Gly Thr Phe Ser Arg Tyr Glu Ser Thr Arg

83

5' TTT CCT GCC CTG GGA ACA TTT TCC CGC TAT GAG AGT ACA C 340-

\* \* \* \* \*

Figure 3 (continued on next page)

b) modified Gcc

Product of Alternatively Spliced mRNA transcript from the unmodified Gcc cDNA:

NOTE:

Nucleotides associated with RNA splice-sites are underlined. Those believed to be of most importance to splice site-recognition are double underlined.

" / " in Consensus Splice Sequence indicates splice site. " \* " under a particular nucleotide indicates a base changed in the site-directed mutagenesis procedure.

r = C or A, y = c or u, and n = any.

Figure 3 (continued on next page)

Partial produce of the cryptic splicing of Gcc cDNA

5' - AAG CCG TTG AGT AGG CCG CTA TGA GAG TAC AC

Lys Pro Leu Ser Arg<sup>16</sup> Pro Leu STOP<sup>20</sup> !!

Figure 3 (continued)

| 10<br>123456789012345 | 20<br>678901234567890 | 30<br>123456789012345 | 40<br>678901234567890 | 50<br>678901234567890 | 60  |
|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----|
| <hr/>                 |                       |                       |                       |                       |     |
| NotI                  |                       |                       |                       |                       |     |
| NGCGGCCGCTTAGCT       | TGACTTAAGAAGGCC       | GACGCCATGGAGTTT       | TCAAGTCCTCCAGA        |                       | 60  |
|                       |                       |                       | MetGluPhe             | SerSerProSerArg       |     |
| GAGGAATGTCCAAG        | CCTTGAGTAGAGTC        | TCCATCATGGCTGGC       | AGCCTCACAGGTTTG       |                       | 120 |
| GluGluCysProLys       | ProLeuSerArgVal       | SerIleMetAlaGly       | SerLeuThrGlyLeu       |                       |     |
| CTTCTACTTCAGGCA       | GTGTCGTGGCATCA        | GGTGCCCGCCCCCTGC      | ATCCCTAAAGCTTC        |                       | 180 |
| LeuLeuLeuGlnAla       | ValSerTrpAlaSer       | GlyAlaArgProCys       | IleProLysSerPhe       |                       |     |
| GGCTACAGCTCGGTG       | GTGTGTCTGCAAT         | GCCACATACTGTGAC       | TCCTTGACCCCCCG        |                       | 240 |
| GlyTyrSerSerVal       | ValCysValCysAsn       | AlaThrTyrCysAsp       | SerPheAspProPro       |                       |     |
| ACCTTCCTGCCCTG        | GGAACATTTCCCGC        | TATGAGAGTACACGC       | AGTGGGCGACGGATG       |                       | 300 |
| ThrPheProAlaLeu       | GlyThrPheSerArg       | TyrGluSerThrArg       | SerGlyArgArgMet       |                       |     |
| GAGCTGAGTATGGGG       | CCCATCCAGGCTAAT       | CACACGGGCACAGGC       | CTGCTACTGACCCTG       |                       | 360 |
| GluLeuSerMetGly       | ProIleGlnAlaAsn       | HisThrGlyThrGly       | LeuLeuLeuThrLeu       |                       |     |
| CAGCCAGAACAGAAG       | TTCCAGAAAGTGAAG       | GGATTGGAGGGGCC        | ATGACAGATGCTGCT       |                       | 420 |
| GlnProGluGlnLys       | PheGlnLysValLys       | GlyPheGlyGlyAla       | MetThrAspAlaAla       |                       |     |
| GCTCTAACATCCTT        | GCCCTGTCACCCCT        | GCCCAAATTTGCTA        | CTTAAATCGTACTTC       |                       | 480 |
| AlaLeuAsnIleLeu       | AlaLeuSerProPro       | AlaGlnAsnLeuLeu       | LeuLysSerTyrPhe       |                       |     |
| TCTGAAGAAGGAATC       | GGATATAACATCATC       | CGGGTACCCATGGCC       | AGCTGTGACTTCTCC       |                       | 540 |
| SerGluGluGlyIle       | GlyTyrAsnIleIle       | ArgValProMetAla       | SerCysAspPheSer       |                       |     |
| ATCCGCACCTACACC       | TATGCAGACACCCCT       | GATGATTCCAGTTG        | CACAATTCAGCCTC        |                       | 600 |
| IleArgThrTyrThr       | TyrAlaAspThrPro       | AspAspPheGlnLeu       | HisAsnPheSerLeu       |                       |     |
| CCAGAGGAAGATAACC      | AAGCTCAAGATAACC       | CTGATTCAACCGAGCC      | CTGCAGTTGGCCAG        |                       | 660 |
| ProGluGluAspThr       | LysLeuLysIlePro       | LeuIleHisArgAla       | LeuGlnLeuAlaGln       |                       |     |
| CGTCCCCTTCACTC        | CTGCCAGCCCCCTGG       | ACATCACCCACTTGG       | CTCAAGACCAATGGA       |                       | 720 |
| ArgProValSerLeu       | LeuAlaSerProTrp       | ThrSerProThrTrp       | LeuLysThrAsnGly       |                       |     |

Figure 4A (continued on next page)

| 10                     | 20                     | 30                     | 40                     | 50 | 60 |
|------------------------|------------------------|------------------------|------------------------|----|----|
| <u>123456789012345</u> | <u>678901234567890</u> | <u>123456789012345</u> | <u>678901234567890</u> |    |    |

|                   |                  |                 |                  |  |      |
|-------------------|------------------|-----------------|------------------|--|------|
| GCGGTGAATGGGAAG   | GGGTCACTCAAGGGA  | CAGCCCGAGACATC  | TACCACCAGACCTGG  |  | 780  |
| AlaValAsnGlyLys   | GlySerLeuLysGly  | GlnProGlyAspIle | TyrHisGlnThrTrp  |  |      |
| GCCAGATACTTGATGCC | TATGCTGAGCACAAAG | TTACAGTTCTGGGCA |                  |  | 840  |
| AlaArgTyrPheVal   | LysPheLeuAspAla  | TyrAlaGluHisLys | LeuGlnPheTrpAla  |  |      |
| GTGACAGCTGAAAAT   | GAGCCTCTGCTGGG   | CTGTTGAGTGGATAC | CCCTTCCAGTGCCTG  |  | 900  |
| ValThrAlaGluAsn   | GluProSerAlaGly  | LeuLeuSerGlyTyr | ProPheGlnCysLeu  |  |      |
| GGCTTCACCCCTGAA   | CATCAGCGAGACTTA  | ATTGCCCGTGACCTA | GGTCCTACCCCTCGCC |  | 960  |
| GlyPheThrProGlu   | HisGlnArgAspLeu  | IleAlaArgAspLeu | GlyProThrLeuAla  |  |      |
| AACAGTACTCACCAC   | AATGTCCGCCTACTC  | ATGCTGGATGACCAA | CGCTTGCTGCTGCC   |  | 1020 |
| AsnSerThrHisHis   | AsnValArgLeuLeu  | MetLeuAspAspGln | ArgLeuLeuLeuPro  |  |      |
| CACTGGCAAAGGTG    | GTACTGACAGACCCA  | GAAGCAGCTAAATAT | GTTCATGGCATTGCT  |  | 1080 |
| HisTrpAlaLysVal   | ValLeuThrAspPro  | GluAlaAlaLysTyr | ValHisGlyIleAla  |  |      |
| GTACATTGGTACCTG   | GACTTTCTGGCTCCA  | GCCAAAGCCACCTA  | GGGGAGACACACCCGC |  | 1140 |
| ValHisTrpTyrLeu   | AspPheLeuAlaPro  | AlaLysAlaThrLeu | GlyGluThrHisArg  |  |      |
| CTGTTCCCCAACACC   | ATGCTCTTGCCCTCA  | GAGGCCTGTGTGGC  | TCCAAGTTCTGGGAG  |  | 1200 |
| LeuPheProAsnThr   | MetLeuPheAlaSer  | GluAlaCysValGly | SerLysPheTrpGlu  |  |      |
| CAGAGTGTGCGGCTA   | GGCTCCTGGATCGA   | GGGATGCAGTACAGC | CACAGCATCATCACG  |  | 1260 |
| GlnSerValArgLeu   | GlySerTrpAspArg  | GlyMetGlnTyrSer | HisSerIleIleThr  |  |      |
| AACCTCCTGTACCAT   | GTGGTCGGCTGGACC  | GACTGGAACCTTGCC | CTGAACCCCGAAGGA  |  | 1320 |
| AsnLeuLeuTyrHis   | ValValGlyTrpThr  | AspTrpAsnLeuAla | LeuAsnProGluGly  |  |      |
| GGACCCAATTGGGTG   | CGTAACCTTGTGAC   | AGTCCCATCATTGTA | GACATCACCAAGGAC  |  | 1380 |
| GlyProAsnTrpVal   | ArgAsnPheValAsp  | SerProIleIleVal | AspIleThrLysAsp  |  |      |
| ACGTTTACAAACAG    | CCCATGTTCTACCAAC | CTTGGCCATTTCAGC | AAGTTCATTCCTGAG  |  | 1440 |
| ThrPheTyrLysGln   | ProMetPheTyrHis  | LeuGlyHisPheSer | LysPheIleProGlu  |  |      |

Figure 4A (continued on next page)

|                   | 10              | 20              | 30              | 40              | 50 | 60 |      |
|-------------------|-----------------|-----------------|-----------------|-----------------|----|----|------|
|                   | 123456789012345 | 678901234567890 | 123456789012345 | 678901234567890 |    |    |      |
| GGCTCCCAGAGAGTG   | GGGCTGGTGCAGT   | CAGAAGAACGACCTG | GACGCAGTGGCATTG |                 |    |    | 1500 |
| GlySerGlnArgVal   | GlyLeuValAlaSer | GlnLysAsnAspLeu | AspAlaValAlaLeu |                 |    |    |      |
| ATGCATCCCGATGGC   | TCTGCTGTTGTGGTC | GTGCTAAACCGCTCC | TCTAAGGATGTGCCT |                 |    |    | 1560 |
| MetHisProAspGly   | SerAlaValValVal | ValLeuAsnArgSer | SerLysAspValPro |                 |    |    |      |
| CTTACCACATCAAGGAT | CCTGCTGTGGGCTTC | CTGGAGACAATCTCA | CCTGGCTACTCCATT |                 |    |    | 1620 |
| LeuThrIleLysAsp   | ProAlaValGlyPhe | LeuGluThrIleSer | ProGlyTyrSerIle |                 |    |    |      |
| CACACCTACCTGTGG   | CATCGCCAGTGTGG  | AGCAGATACTCAAGG | AGGCACTGGGCTCAG |                 |    |    | 1680 |
| HisThrTyrLeuTrp   | HisArgGln       |                 |                 |                 |    |    |      |
| CCTGGGCATTAAAGG   | GACAGAGTCAGCGAA | TTCTGCAGATATCCA | TCACACTGGCGGCCG | NotI            |    |    | 1740 |

Figure 4A(continued)

|                 |                 |                 |                 |    |    |
|-----------------|-----------------|-----------------|-----------------|----|----|
| 10              | 20              | 30              | 40              | 50 | 60 |
| 123456789012345 | 678901234567890 | 123456789012345 | 678901234567890 |    |    |

**Not I**

|                                                                                                                                                                             |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| <u>NGCGGCCGCTTAGCT</u> TGACTTAAGAAGGCC GACGCCATGGAGTT TCAAGTCCTCCAGA<br><u>MetGluPhe</u> <u>SerSerProSerArg</u>                                                             | 60  |
| <u>GAGGAATGTCCCCAAG</u> CCTTGAGTAGAGTC <u>TCCATCATGGCTGGC</u> AGCCTCACAGGTTG<br><u>GluGluCysProLys</u> <u>ProLeuSerArgVal</u> <u>SerIleMetAlaGly</u> <u>SerLeuThrGlyLeu</u> | 120 |
| <u>CTTCTACTTCAGGCA</u> GTGTCGTGGGCATCA GGTGCCCGCCCTGC ATCCCTAAAAGCTTC<br><u>LeuLeuLeuGlnAla</u> <u>ValSerTrpAlaSer</u> <u>GlyAlaArgProCys</u> <u>IleProLysSerPhe</u>        | 180 |
| <u>GGCTACAGCTCGGTG</u> GTGTGTGTCTGCAAT GCCACATACTGTGAC TCCTTGACCCCCCG<br><u>GlyTyrSerSerVal</u> <u>ValCysValCysAsn</u> <u>AlaThrTyrCysAsp</u> <u>SerPheAspProPro</u>        | 240 |
| <u>ACCTTCCTGCCCTG</u> <u>GGAACATTTCGGCG</u> TATGAGAGTACACGC AGTGGGCGACGGATG<br><u>ThrPheProAlaLeu</u> <u>GlyThrPheSerArg</u> <u>TyrGluSerThrArg</u> <u>SerGlyArgArgMet</u>  | 300 |
| <u>GAGCTGAGTATGGGG</u> CCCATCCAGGCTAAT CACACGGGCACAGGC CTGCTACTGACCCTG<br><u>GluLeuSerMetGly</u> <u>ProIleGlnAlaAsn</u> <u>HisThrGlyThrGly</u> <u>LeuLeuLeuThrLeu</u>       | 360 |
| <u>CAGCCAGAACAGAAG</u> TTCCAGAAAGTGAAG GGATTGGAGGGGCC ATGACAGATGCTGCT<br><u>GlnProGluGlnLys</u> <u>PheGlnLysValLys</u> <u>GlyPheGlyGlyAla</u> <u>MetThrAspAlaAla</u>        | 420 |
| <u>GCTCTAACATCCTT</u> GCCCTGTCACCCCT GCCCAAAATTGCTA CTTAAATCGTACTTC<br><u>AlaLeuAsnIleLeu</u> <u>AlaLeuSerProPro</u> <u>AlaGlnAsnLeuLeu</u> <u>LeuLysSerTyrPhe</u>          | 480 |
| <u>TCTGAAGAACGAATC</u> GGATATAACATCATC CGGGTACCCATGGCC AGCTGTGACTTCTCC<br><u>SerGluGluGlyIle</u> <u>GlyTyrAsnIleIle</u> <u>ArgValProMetAla</u> <u>SerCysAspPheSer</u>       | 540 |
| <u>ATCCGCACCTACACC</u> TATGCAGACACCCCT GATGATTCCAGTTG CACAACTTCAGCCTC<br><u>IleArgThrTyrThr</u> <u>TyrAlaAspThrPro</u> <u>AspAspPheGlnLeu</u> <u>HisAsnPheSerLeu</u>        | 600 |
| <u>CCAGAGGAAGATAACC</u> AAGCTCAAGATAACC CTGATTCAACCGAGGCC CTGCAGTTGGCCAG<br><u>ProGluGluAspThr</u> <u>LysLeuLysIlePro</u> <u>LeuIleHisArgAla</u> <u>LeuGlnLeuAlaGln</u>     | 660 |
| <u>CGTCCCCTTCACTC</u> CTTGCCAGCCCTGG ACATCACCCACTTGG CTCAAGACCAATGGA<br><u>ArgProValSerLeu</u> <u>LeuAlaSerProTrp</u> <u>ThrSerProThrTrp</u> <u>LeuLysThrAsnGly</u>         | 720 |

Mutations made to the Gcc insert are underlined

Figure 4B (continued on next page)

| 10                     | 20                     | 30                     | 40                     | 50 | 60 |
|------------------------|------------------------|------------------------|------------------------|----|----|
| <u>123456789012345</u> | <u>678901234567890</u> | <u>123456789012345</u> | <u>678901234567890</u> |    |    |

|                 |                  |                  |                  |  |      |
|-----------------|------------------|------------------|------------------|--|------|
| GGGGTGAATGGGAAG | GGGTCACTCAAGGGA  | CAGCCCGAGACATC   | TACCACCAGACCTGG  |  | 780  |
| AlaValAsnGlyLys | GlySerLeuLysGly  | GlnProGlyAspIle  | TyrHisGlnThrTrp  |  |      |
| GCCAGATACTTGTTG | AAGTTCCCTGGATGCC | TATGCTGAGCACAAAG | TTACAGTTCTGGGCA  |  | 840  |
| AlaArgTyrPheVal | LysPheLeuAspAla  | TyrAlaGluHisLys  | LeuGlnPheTrpAla  |  |      |
| GTGACAGCTGAAAAT | GAGCCTCTGCTGGG   | CTGTTGAGTGGATAC  | CCCTTCCAGTGCCTG  |  | 900  |
| ValThrAlaGluAsn | GluProSerAlaGly  | LeuLeuSerGlyTyr  | ProPheGlnCysLeu  |  |      |
| GGCTTCACCCCTGAA | CATCAGCGAGACTTA  | ATTGCCCGTGACCTA  | GGTCCTACCCCTCGCC |  | 960  |
| GlyPheThrProGlu | HisGlnArgAspLeu  | IleAlaArgAspLeu  | GlyProThrLeuAla  |  |      |
| AACAGTACTCACAC  | AATGTCCGCCTACTC  | ATGCTGGATGACCAA  | CGCTTGCTGCTGCC   |  | 1020 |
| AsnSerThrHisHis | AsnValArgLeuLeu  | MetLeuAspAspGln  | ArgLeuLeuLeuPro  |  |      |
| CACTGGGCAAAGGTG | GTACTGACAGACCCA  | GAAGCAGCTAAATAT  | GTTCATGGCATTGCT  |  | 1080 |
| HisTrpAlaLysVal | ValLeuThrAspPro  | GluAlaAlaLysTyr  | ValHisGlyIleAla  |  |      |
| GTACATTGGTACCTG | GACTTTCTGGCTCCA  | GCCAAAGCCACCCA   | GGGGAGACACACCGC  |  | 1140 |
| ValHisTrpTyrLeu | AspPheLeuAlaPro  | AlaLysAlaThrLeu  | GlyGluThrHisArg  |  |      |
| CTGTTCCCCAACACC | ATGCTCTTGCCCTCA  | GAGGCCTGTGTGGC   | TCCAAGTTCTGGGAG  |  | 1200 |
| LeuPheProAsnThr | MetLeuPheAlaSer  | GluAlaCysValGly  | SerLysPheTrpGlu  |  |      |
| CAGAGTGTGGGCTA  | GGCTCCTGGGATCGA  | GGGATGCAGTACAGC  | CACAGCATCATCACG  |  | 1260 |
| GlnSerValArgLeu | GlySerTrpAspArg  | GlyMetGlnTyrSer  | HisSerIleIleThr  |  |      |
| AACCTCCTGTACCAT | GTGGTCGGCTGGACC  | GAUTGGAACCTTGCC  | CTGAACCCCGAAGGA  |  | 1320 |
| AsnLeuLeuTyrHis | ValValGlyTrpThr  | AspTrpAsnLeuAla  | LeuAsnProGluGly  |  |      |
| GGACCCAATTGGGTG | CGTAACCTTGTCGAC  | AGTCCCATCATTGTA  | GACATCACCAAGGAC  |  | 1380 |
| GlyProAsnTrpVal | ArgAsnPheValAsp  | SerProIleIleVal  | AspIleThrLysAsp  |  |      |
| ACGTTTTACAAACAG | CCCATGTTCTACCAC  | CTTGGCCATTCAGC   | AAGTTCATTCTGAG   |  | 1440 |
| ThrPheTyrLysGln | ProMetPheTyrHis  | LeuGlyHisPheSer  | LysPheIleProGlu  |  |      |

Mutations made to the Gcc insert are underlined

Figure 4B (continued on next page)

|                        |                        |                        |                        |    |    |
|------------------------|------------------------|------------------------|------------------------|----|----|
| 10                     | 20                     | 30                     | 40                     | 50 | 60 |
| <u>123456789012345</u> | <u>678901234567890</u> | <u>123456789012345</u> | <u>678901234567890</u> |    |    |

GGCTCCCAGAGAGTG GGGCTGGTTGCCAGT CAGAAGAACGACCTG GACGCAGTGGCATTG      1500  
 GlySerGlnArgVal GlyLeuValAlaSer GlnLysAsnAspLeu AspAlaValAlaLeu

ATGCATCCCGATGGC TCTGCTGTTGTGGTC GTGCTAAACCGCTCC TCTAAGGATGTGCCT      1560  
 MetHisProAspGly SerAlaValValVal ValLeuAsnArgSer SerLysAspValPro

CTTACCACATCAAGGAT CCTGCTGTGGGCTTC CTGGAGACAATCTCA CCTGGCTACTCCATT      1620  
 LeuThrIleLysAsp ProAlaValGlyPhe LeuGluThrIleSer ProGlyTyrSerIle

CACACCTACCTGTGG CATCGCCAGTGATGG AGCAGATACTCAAGG AGGCACTGGGCTCAG      1680  
 HisThrTyrLeuTrp HisArgGln

NotI  
 CCTGGGCATTAAGG GACAGAGTCAGCGAA TTCTGCAGATATCCA TCACACTGGCGGCCG      1740

C      1741

Mutations made to the Gcc insert are underlined

Figure 4B (continued)

| 10                     | 20                     | 30                     | 40                     | 50 | 60 |      |
|------------------------|------------------------|------------------------|------------------------|----|----|------|
| <u>123456789012345</u> | <u>678901234567890</u> | <u>123456789012345</u> | <u>678901234567890</u> |    |    |      |
| GGCTCCCAGAGAGTG        | GGGCTGGTTGCCAGT        | CAGAAGAACGACCTG        | GACGCAGTGGCATTG        |    |    | 1500 |
| GlySerGlnArgVal        | GlyLeuValAlaSer        | GlnLysAsnAspLeu        | AspAlaValAlaLeu        |    |    |      |
| ATGCATCCCGATGGC        | TCTGCTGTTGTGGTC        | GTGCTAAACCGCTCC        | TCTAAGGATGTGCCT        |    |    | 1560 |
| MetHisProAspGly        | SerAlaValValVal        | ValLeuAsnArgSer        | SerLysAspValPro        |    |    |      |
| CTTACCATCAAGGAT        | CCTGCTGTGGGCTTC        | CTGGAGACAATCTCA        | CCTGGCTACTCCATT        |    |    | 1620 |
| LeuThrIleLysAsp        | ProAlaValGlyPhe        | LeuGluThrIleSer        | ProGlyTyrSerIle        |    |    |      |
| CACACCTACCTGTGG        | CATGCCAGTGATGG         | AGCAGATACTCAAGG        | AGGCACTGGGCTCAG        |    |    | 1680 |
| HisThrTyrLeuTrp        | HisArgGln              |                        |                        |    |    |      |
| C                      |                        |                        |                        |    |    | 1741 |

Mutations made to the Gcc insert are underlined

Figure 4B (continued)