

Control of Simplified Walking Robot Model using PMTG architecture

Vladimir Danilov

Block diagram of CPG-based Gait Generator

Experimental Hardware Results

Watch on Youtube

Simplified Walking Robot Model

Bipedal Walker

Bipedal Walker Hardcore

Starting State: Random position upright and mostly straight legs

Episode Termination: when the robot body touches ground or the robot reaches far right side of the environment

Solved Requirements: to get average reward greater than 300

Kinematics

Forward Kinematics:

$$l_2 = 2l_1^2(1 + \sin \theta_2)$$

$$x_{pos} = l_2 \sin \left(\theta_1 + \frac{\theta_2}{2}\right)$$

$$y_{pos} = \sqrt{l_2^2 - x_{pos}^2}$$

Inverse Kinematics:

$$l_2 = \sqrt{x_{pos}^2 + y_{pos}^2}$$

$$\theta_1 = \tan \frac{x_{pos}}{y_{pos}} + a\cos \frac{l_2}{2l_1}$$

$$\theta_2 = -2 a\cos \frac{l_2}{2l_1}$$

Environment

Num	Observation Min N		Max
0	hull_angle 0		2π
1	hull_angularVelocity	-∞	+∞
2	vel_x	-1	+1
3	vel_y	-1	+1
4	hip_joint_1_angle		+∞
5	hip_joint_1_speed	-∞	+∞
6	knee_joint_1_angle	-∞	+∞
7	knee_joint_1_speed	-∞	+∞
8	leg_1_ground_contact_flag	0	1
9	hip_joint_2_angle	-∞	+∞
10	hip_joint_2_speed	-∞	+∞
11	knee_joint_2_angle -∞		+∞
12	knee_joint_2_speed	-∞	+∞
13	leg_2_ground_contact_flag	0	1
14-23	10 lidar readings	-∞	+∞

Num	Action	Min	Max
0	Hip_1 (Torque / Velocity)	-1	+1
1	Knee_1 (Torque / Velocity)	-1	+1
2	Hip_2 (Torque / Velocity)	-1	+1
3	Knee_2 (Torque / Velocity)	-1	+1

Reward function:

$$\begin{split} r_{fw} &= \frac{13}{3} \big(p_x(t) - p_x(t-1) \big) - moving \ forward \ reward \\ r_{hull} &= -5 (|\vartheta(t)| - |\vartheta(t-1)|) - hull \ deviation \ penalty \end{split}$$

$$r_{ au} = -0.028 \sum_{i=1}^{12} |a_i| - torque\ penalty$$

$$r_{es} = \begin{cases} -100, & \textit{if } p_x < 0 \textit{ or hull touches ground} \\ 0, & \textit{otherwise} \end{cases} - early \textit{stopping penalty}$$

$$R = r_{fw} + r_{hull} + r_{\tau} + r_{es} - total \ reward,$$

where:

 $p_x - x$ position,

 ϑ – hull angle

 a_i – applied action

Learning with Vanilla RL Algorithms

^{*}all the hyperparameters were optimized by Tree-structured Parzen Estimator algorithm

Policy Modulating Trajectory Generator (PMTG) Architecture

Supposed agents: TD3, SAC

Tricks to enhance performance:

- During training the actions are repeated for three steps.
- When the agent falls, the terminal reward is clipped to zero.
- The reward is scaled by 5.
- Noises are added to the actions.
- When training, the probability of encountering a stump is increased.

Learning with PMTG

Подумать, как наглядно обозначить то, что в итог

Bipedal Walker

Learned agent 100-episode average score: 304.24

Episodes before solve: 696

Bipedal Walker Hardcore

Learned agent 100-episode average score: 302.92

Episodes before solve: 7280

OpenAi Leaderboard

Bipedal Walker

User	Episodes before solve	Write-up	Video
Nandino Cakar	474	writeup	
ZhiqingXiao	0 (use close-form preset policy)	writeup	
Nick Kaparinos	800	Write-up	gif
shnippi	925	writeup	

Bipedal Walker Hardcore

User	Episodes before solve	100-Episode Average Score	Write-up	Video
Nick Kaparinos	15500	305.40 ± 21.35	Write-up	gif
Alister Maguire	N/A	313	Write-up	gif

My learned agent 100-episode average score: 304.24

Episodes before solve: 696

My learned agent 100-episode average score: 302.92

Episodes before solve: 7280

Learned Agent Video

Bipedal Walker

Watch on Youtube

Bipedal Walker Hardcore

Watch on Youtube

Bipedal Walker Hardcore with Velocity Control

Reward function:

$$r_{fw} = \frac{4}{30} \exp\left(\frac{(v^* - v)^2}{0.2}\right) - moving forward reward$$

$$r_{hull} = -5(|\vartheta(t)| - |\vartheta(t - 1)|) - hull deviation penalty$$

$$r_{\tau} = -0.056 \sum_{i=1}^{12} |\tau_i| - torque \ penalty$$

$$R = r_{fw} + r_{hull} + r_{\tau} - total \ reward$$
,

where:

$$p_x - x$$
 position,
 $\vartheta - hull$ angle
 $a_i - applied$ action

Desired velocity:

$$v^* \sim U[0, 0.6] - desired\ velocity\ distribution$$

$$t_{sw} \sim U[1, 5] - time\ before\ changing\ desired\ velocity$$

Learning Curve

Learned Agent with Velocity Control

Learned Agent with Velocity Control Video

Watch on Youtube

Thanks for Your Attention!

Control of Simplified Walking Robot Model using PMTG architecture

Vladimir Danilov