DEPARTMENT OF COMPUTER SCIENCE B.Sc. (H) Computer Science

CATEGORY-I

DISCIPLINE SPECIFIC CORE COURSE – 1: PROGRAMMING USING PYTHON

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title	Credits	Credit distribution of the course			Eligibility	Pre-requisite
& Code		Lecture	Tutorial	Practical/	criteria	of the course
				Practice		(if any)
Programming					Class XII	Nil
using Python	4	3	0	1	pass	

Learning Objectives

This course is designed as the first course that:

- Introduces programming concepts using Python to Computer Science students.
- Focuses on the development of Python programming to solve problems of different domains.
- Introduces the concept of object- oriented programming.

Learning Outcomes:

On successful completion of the course, students will be able to:

- Understand the basics of programming language
- Develop, document, and debug modular Python programs.
- Apply suitable programming constructs and built-in data structures to solve a problem.
- Use and apply various data objects in Python.
- Use classes and objects in application programs and handle files.

SYLLABUS OF DSC-1

Theory

Unit – 1 (6 hours)

Introduction to Programming

Problem solving strategies; Structure of a Python program; Syntax and semantics; Executing simple programs in Python.

Unit -2 (12 hours)

Creating Python Programs

Identifiers and keywords; Literals, numbers, and strings; Operators; Expressions; Input/output statements; Defining functions; Control structures (conditional statements, loop control statements, break, continue and pass, exit function), default arguments.

Unit – 3 (15 hours)

Built-in Data Structures

Mutable and immutable objects; Strings, built-in functions for string, string traversal, string operators and operations; Lists creation, traversal, slicing and splitting operations, passing list to a function; Tuples, sets, dictionaries and their operations.

Unit – 4 (6 hours)

Object Oriented Programming

Introduction to classes, objects and methods; Standard libraries.

Unit – 5 (6 hours)

File and Exception Handling

File handling through libraries; Errors and exception handling.

Practical (30 hours)

List of Practicals:

- 1. WAP to find the roots of a quadratic equation
- 2. WAP to accept a number 'n' and
 - j. Check if 'n' is prime
 - k. Generate all prime numbers till 'n'
 - 1. Generate first 'n' prime numbers This program may be done using functions
- 3. WAP to create a pyramid of the character '*' and a reverse pyramid

- 8. WAP that accepts a character and performs the following:
 - a. print whether the character is a letter or numeric digit or a special character
 - b. if the character is a letter, print whether the letter is uppercase or lowercase
 - c. if the character is a numeric digit, prints its name in text (e.g., if input is 9, output is NINE)

- 9. WAP to perform the following operations on a string
 - a. Find the frequency of a character in a string.
 - b. Replace a character by another character in a string.
 - c. Remove the first occurrence of a character from a string.
 - d. Remove all occurrences of a character from a string.
- 10. WAP to swap the first n characters of two strings.
- 11. Write a function that accepts two strings and returns the indices of all the occurrences of the second string in the first string as a list. If the second string is not present in the first string then it should return -1.
- 12. WAP to create a list of the cubes of only the even integers appearing in the input list (may have elements of other types also) using the following:
 - a. 'for' loop
 - b. list comprehension
- 13. WAP to read a file and
 - m. Print the total number of characters, words and lines in the file.
 - n. Calculate the frequency of each character in the file. Use a variable of dictionary type to maintain the count.
 - o. Print the words in reverse order.
 - p. Copy even lines of the file to a file named 'File1' and odd lines to another file named 'File2'.
- 14. WAP to define a class Point with coordinates x and y as attributes. Create relevant methods and print the objects. Also define a method distance to calculate the distance between any two point objects.
- 15. Write a function that prints a dictionary where the keys are numbers between 1 and 5 and the values are cubes of the keys.
- 16. Consider a tuple t1=(1, 2, 5, 7, 9, 2, 4, 6, 8, 10). WAP to perform following operations:
 - a. Print half the values of the tuple in one line and the other half in the next line.
 - b. Print another tuple whose values are even numbers in the given tuple.
 - c. Concatenate a tuple t2=(11,13,15) with t1.
 - d. Return maximum and minimum value from this tuple
- 17. WAP to accept a name from a user. Raise and handle appropriate exception(s) if the text entered by the user contains digits and/or special characters.

Essential Readings

• Taneja, S., Kumar, N. Python Programming- A modular Approach, 1st edition, Pearson Education India, 2018.