• Εισαγωγή

Διεκπεραίωση και παρουσίαση πειράματος με σκοπό την ανάπτυξη Convolutional Autoencoder για την κωδικοποίηση και αποκωδικοποίηση χρονοσειρών

Παραμετροποίηση Πειράματος

Πριν την εκπαίδευση οποιουδήποτε μοντέλου έγινε κλήση της παρακάτω συνάρτησης το οποίο αποσκοπεί στην παροχή της δυνατότητας για **αναπαραγωγή** των αποτελεσμάτων [1]

```
def experimentParameters():
seed = 123
os.environ['PYTHONHASHSEED'] = str(seed)
random.seed(seed)
tensorflow.random.set_seed(seed)
numpy.random.seed(seed)
os.environ['TF_DETERMINISTIC_OPS'] = '1'
os.environ['TF_CUDNN_DETERMINISTIC'] = '1'
tensorflow.config.threading.set_inter_op_parallelism_threads(1)
tensorflow.config.threading.set_intra_op_parallelism_threads(1)
```

• Μεθοδολογία Πειράματος

Για την εκπαίδευση και την επιλογή του βέλτιστου μοντέλου εφαρμόστηκε η παρακάτω μεθοδολογία με τα ακόλουθα στάδια :

- 1. Δημιουργία συνόλου μοντέλων $S = \{M_1, M_2 ... M_n \}$ οπου $M_i \neq M_j$ ως προς την πολυπλοκοτητα του μοντέλου και εύρεση του μοντέλου M_k απο το συνολο S που ελαχιστοποιεί το loss function και δεν παρουσιάζει δείγματα overfitting
- 2. Παραμετροποίηση του μοντέλου M_k ως προς τις υπόλοιπες υπερ-παραμέτρους με σκοπό την περαιτέρω βελτιστοποίηση του μοντέλου

• Training Set – Testing Set

Για την εκπαίδευση του εκάστοτε μοντέλου το παρεχόμενο Dataset χρησιμοποιήθηκε ως εξής:

- 1. Επιλογή των πρώτων 359 χρονομέτρων από το σύνολο των 359 χρονοσειρών του αρχικού Dataset το οποίο αντιστοιχεί στο 100% του πληθάριθμου του τελευταίου [2]
- 2. Χρήση του 80% των 359 χρονοσειρών ως **Training Set** το όποιο αντιστοιχεί σε συνολικά 287 χρονοσειρές
- 3. Χρήση του 20% των 359 χρονοσειρών ως **Testing Set** το όποιο αντιστοιχεί σε συνολικά 72 χρονοσειρές

• 1ο στάδιο

Για όλα τα μοντέλα χρησιμοποιήθηκαν οι παρακάτω υπερ-παράμετροι με απώτερο σκοπό την επί ίσοις όροις σύγκριση τους ενώ κάθε μοντέλο έχει εκπαιδευτεί για την κάθε μια χρονοσειρά από το Training Set ξεχωριστά [3]:

- 1. Window = 10
- 2. Batch Size = 64
- 3. Features = 1
- 4. Epochs Per Timeseries = 50
- 5. Validation Split = 0.15
- 6. Optimiser = Adam
- 7. Loss Function = Mean Absolute Error

Δομή 1ου Μοντέλου:

- 1. Input(shape = (Window, Features))
- 2. Conv1D(filters = 16, kernel size = 6, padding = "same")
- 3. AveragePooling1D(pool-size = 2)
- 4. Conv1D(filters = 1, kernel size = 6, padding = "same")
- 5. UpSampling1D(size = 2)
- 6. Conv1D(filters = 1, kernel size = 2, padding = "same")

Δομή 2ου Μοντέλου:

- 1. Input(shape = (Window, Features))
- 2. Conv1D(filters = 16, kernel size = 6, padding = "same")
- 3. AveragePooling1D(pool-size = 2,padding = "same")
- 4. Conv1D(filters = 1, kernel size = 6, padding = "same")
- 5. AveragePooling1D(pool-size = 2,padding = "same")
- 6. Conv1D(filters = 1, kernel size = 6, padding = "same")
- 7. Conv1D(filters = 1, kernel size = 6, padding = "same")
- 8. UpSampling1D(size = 2)
- 9. Conv1D(filters = 16, kernel-size = 2)
- 10. UpSampling1D(size = 2)
- 11. Conv1D(filters = 1, kernel size = 2, padding = "same")

Αποτελέσματα επί του **Training Set**:

Μοντέλο	1º	2°
Mean – MAE	3.342e - 03	4.573e - 03
#	287	0

Αποτελέσματα επί του **Testing Set** :

Μοντέλο	1º	2°
Mean – MAE	3.419e - 03	4.416e - 03
#	72	0

 $# = Αριθμος χρονοσειρων για τις οποίες το μοντέλο <math>M_i$ εμφάνισε το ελάχιστο MAE

Σχολιασμός αποτελεσμάτων 1ου σταδίου:

Το 1° μοντέλο είναι αυτό που παρουσιάζει το ελάχιστο MAE τόσο στο **Training Set** αλλά και στο **Testing Set** ενώ το Mean – MAE είναι παρόμοιας τάξης και στα 2 Sets το όποιο υποδεικνύει ότι μάλλον έχει αποφευχθεί το φαινόμενο του overfitting .

Το 2° μοντέλο κωδικοποιεί τα δεδομένα 1.66 φορές περισσότερο ενώ ταυτόχρονα έχει 1.35 φορές μεγαλύτερο Mean-MAE από το 1° μοντέλο.

Το 2° μοντέλο είναι 1.22 φορές αποδοτικότερο από το 1° , αφού για κάθε μοναδιαία αύξηση του Mean-MAE, η κωδικοποίηση των δεδομένων αυξάνεται κατά 1.22 μονάδες.

• 20 στάδιο

Βάσει του αποτελέσματος του 1^{ου} σταδίου του πειράματος το 2^ο μοντέλο είναι αυτό που θα διατηρήσουμε όσον αφορά την δομή του και θα μεταβάλλουμε τις διάφορες υπερ-παραμέτρους με απώτερο σκοπό την περαιτέρω **ενδεχομένη** βελτιστοποίηση του

Μοντέλο	2º	30	40	5∘
Kernel Size	6	6	3	6
Batch Size	64	32	64	64
Epochs	50	50	50	100

Αποτελέσματα επί του **Training Set**:

Μοντέλο	2°	3°	40	5∘
Mean – MAE	4.573e - 03	4.589e - 03	5.576e - 03	4.428e-03
#	3	0	0	284

Αποτελέσματα επί του **Testing Set** :

Μοντέλο	2°	30	4 º	5⁰
Mean - MAE	4.616e - 03	4.635e - 03	5.738e - 03	4.570e - 03
#	0	0	0	72

 $\# = \text{Αριθμος χρονοσειρων για τις οποίες το μοντέλο } \text{M}_{\text{i}}$ εμφάνισε το ελάχιστο MAE

Σχολιασμός αποτελεσμάτων 2ου σταδίου:

Το 5° μοντέλο είναι αυτό που παρουσιάζει το ελάχιστο MAE τόσο στο **Training Set** αλλά και στο **Testing Set** ακόμα και μετά την μεταβολή των διάφορων υπερ-παραμέτρων και συνεπώς μπορεί να θεωρηθεί **προσωρινά** ως το βέλτιστο μοντέλο μιας και ελαχιστοποιεί το MAE ενώ δεν παρουσιάζει δείγματα overfitting

• Αναφορές

- [1] Keras: Documentation
- [2] Ιωάννης Χαμόδρακας : Δειγματοληπτικό Training
- [3] Ιωάννης Χαμόδρακας : Multiple Fits