IMGE İŞLEMEDers-2

İmge Dosya Tipleri ve Temel İşlemler

(Yrd. Doç. Dr. M. Kemal GÜLLÜ)

Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm

MATLAB temel bilgiler

İmge Dosya Tipleri

Sayısal imgeler genellikle bmp, jpg, tiff, raw gibi formatlarda saklanmaktadır.

Gri tonlu, 8bit/piksel bit derinliğinde, 1000x1000 piksel boyutlu bir imgenin bellekte kaplayacağı alan nedir?

Yanıt: 1000000 bayt = 977 kbayt

Eğer yukarıdaki imge renkli olsaydı, bu imgenin bellekte kaplayacağı alan:

977 kbayt x 3 = 2931 kbayt = 2.86 Mbayt

İmge Dosya Tipleri (raw)

- Yalnızca piksel ışıklılık değerlerini barındıran dosya tipidir.
- İmgenin piksel boyutunu gösteren herhangi bir başlık bilgisi içermez.
- İmgeyi açmal için piksel boyutunu bilmek gerekir.
- Bu tip dosyaları Matlab ya da C gibi programlama dillerini kullanarak açmak için bilinen dosya açma işlemlerini yapmak gerekmektedir.

```
W=256; % imgenin yatay boyutu
h=256; % imgenin düşey boyutu
f=fopen('C:\Documents\lena.raw','r');
% açılacak dosyanın konumu ve adı f dosya değişkenine yüklendi
l=fread(f); % imge I değişkenine dizi olarak alındı
l=reshape(I,w,h); % 2-boyutlu matrise dönüştürüldü
```


figure; imshow(uint8(I')); % Ekranda imge görüntülendi

% dosya kapandı

status=fclose(f);

İmge Dosya Tipleri (yuv)

- Renk bileşenleri sıkıştırılmıştır.
- Raw dosya tipine benzer şekilde, bu dosya tipinde de imgenin piksel boyutu dosya içerisinde yoktur.
- Bu nedenle imgenin boyutlarının önceden bilinmesi gerekmektedir.

İmge Dosya Tipleri (bmp)

- Sıkça kullanılan bir imge dosya tipidir.
- Sıkıştırılmamış ve sıkıştırılmış dosya yapısı mevcuttur.
- Sıkıştırılmamış dosya yapısında, raw dosya tipine ek olarak imgenin piksel boyutu, bit derinliği gibi bilgileri turan başlık kısmı vardır.
- Matlab ile .bmp uzatılı bir imgeyi okumak için

I=imread('C:\Documents\lena.bmp');

Kodunu yazmak yeterlidir.

• C ve diğer programlama dillerinde ise mevcut kütüphanelerden faydalanılarak bu dosya tipi okunabilmektedir.

İmge Dosya Tipleri (diğer)

- Tiff, jpeg, png, gif, pbm, pgm, hdf, pcx... gibi imge dosya tipleri de vardır.
- Tiff genellikle bmp benzeri bir dosya tipi olmakta birlikte kayıplı sıkıştırma modu da vardır.
- Bunun yanında 10 bit/piksel, 16 bit/piksel gibi bit derinliklerinde kayıt olanagına sahiptir.
- Matlab "imread" komutu ile okunmaktadır.
- Jpeg kayıplı bir imge dosya tipidir.
- Bu sıkıştırma kullanılarak imge yüksek verimlilikle sıkıştırılabilmektedir.
- Bu dosya tipi de Matlab "imread" komutu ile okunmaktadır.

• CIF: Common Intermediate Format

• VGA: Video Graphics Array

• SIF: Source Intermediate Format

SQCIF 128×96

QCIF 176×144

CIF 352×288

4CIF 704×576

16CIF 1408 × 1152

VGA 640×480

QVGA 320 × 240

SCIF 352×240

devirme

$$B = A'$$

$$B\left(j,i\right) = A(i,j)$$

$$\left(i = 0,...,N-1, j = 0,...,M-1\right)$$

düşeyde çevirme

$$B(i, M - j - 1) = A(i, j)$$

$$(i = 0, ..., N - 1, j = 0, ..., M - 1)$$

döndürme

- 90°, 180°, 270° gibi açılarda döndürme işlemlerini kolayca gerçekleştirebiliriz.
- Bu açıların dışındaki değerlerde ise açısal döndürme işlemlerinin (Sin x, Cos x değerlerini kullanarak) yapılması gerekmektedir.
- Bunun yerine, Matlab hazır işlevlerinden "imrotate" kullanılabilir.

Ir=imrotate(I,açı,yöntem);

açı: saat yönünün tersi dönülecek açı değeri.

yöntem: döndürme işlemi sonrasında yeni piksel değerlerinin

hesaplanacağı aradeğerleme yöntemi.

'nearest', 'bilinear', 'bicubic',

Örn;

Ir=imrotate(I,45, 'bilinear');

kırpma

$$B(i, j) = A(n_1 + i, n_2 + j)$$

 $(i = 0, ..., m_1 - 1, j = 0, ..., m_2 - 1)$
 (n_1, n_2) ; langua noktası
 $(m_1, m_2) \rightarrow$ pencere boyutlar

öteleme

$$B(i,j) = A(i-n_1+1, j-n_2+1)$$

$$(i=n_1,...,N, j=n_2,...,M)$$

$$(n_1,n_2)$$
 slanging noktası

öteleme

Öteleme işlemi yapan bir Matlab işlevi yazalım:

```
function [B]=my_otele(A,n1,n2)
[w,h]=size(A);
B=zeros(w,h);
for i=n1:w
  for j=n2:h
     B(i,j)=A(i-n+1,j-n+1);
  end
end
```

Burada for döngüleri yerine tek bir satır yazarak aynı işlem yapılabilir.

boyut değiştirme-yakınlaştırma

- Yakınlaştırma, düşük piksel boyutlu bir imgenin piksel boyutunun yazılımsal olarak arttırılmasıdır.
- Sayısal yakınlaştırma (digital zoom).

• Boyut büyültmede daha yumuşak geçişler için:

А	$\frac{A+B}{2}$	В	$\frac{B+C}{2}$	С
A+D 2	A + B + D + E 4	$\frac{B+E}{2}$	B + C + E + F	$\frac{C+F}{2}$
D	$\frac{D+E}{2}$	E	$\frac{E+F}{2}$	F
$\frac{D+G}{2}$	D + E + G + H 4	$\frac{E+H}{2}$	E + F + H + I	$\frac{F+I}{2}$
G	$\frac{G+H}{2}$	Н	$\frac{H+I}{2}$	I

boyut değiştirme-yakınlaştırma

• Hangisi daha görünür?

boyut değiştirme-uzaklaştırma

• Birden fazla pikselin değeri çeşitli matematiksel işlemlerden geçirilerek bir piksele atanır.

boyut değiştirme

• Matlab ile boyut değiştirme için "imresize" adındaki işlev kullanılabilmektedir.

```
Is=imresize(I,oran,yöntem);
```

oran : giriş imgesinin boyutunun değişme oranını verir. oran>1

(büyütme), oran<1 (küçültme).

yöntem : boyut değiştirmede kullanılacak aradeğerleme yöntemi.

Örn;

Is=imresize(I,0.97, 'bicubic');

İmge oluşturma

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 2 & \dots & 255 \\ 0 & 1 & 2 & \dots & 255 \\ \vdots & & & & \\ 0 & 1 & 2 & \dots & 255 \end{bmatrix}$$
 256 rows

256

for
$$i = 1 : 256$$

for $j = 1 : 256$
 $A(i, j) = j - 1$;
end
end

İmge oluşturma

 (128,128) merkezli, yarıçapı 80 piksel beyaz bir daire

$$B(i,j) = \begin{cases} 255 & \text{if } \sqrt{(i-128)^2 + (j-128)^2} < 80\\ 0 & \text{otherwise} \end{cases}$$

```
for i = 1:256

for j = 1:256

dist = ((i - 128)^2 + (j - 128)^2)^(.5);

if (dist < 80)

B(i, j) = 255;

else

B(i, j) = 0;

end

end
```

İmge oluşturma

• ???


```
for i = 1:256
for j = 1:256
C(i, j) = A(i, j) * B(i, j)/255;
end
end
```

Ortalama ve Değişinti

Bir imgenin örnek ortalaması (sample mean):

$$m_A = \frac{\sum_{i=0}^{N-1} \sum_{j=0}^{M-1} A(i,j)}{NM}$$

Örnek değişintisi (sample variance):

$$\sigma_A^2 = \frac{\sum_{i=0}^{N-1} \sum_{j=0}^{M-1} (A(i,j) - m_A)^2}{NM}$$

Örnek standart sapması (örnek st. sapma):

$$\sigma_A = \sqrt{\sigma_A^2}$$

IMGE İŞLEMEDers-3

İmge Pekiştirme (Nokta İşlemleri)

(Yrd. Doç. Dr. M. Kemal GÜLLÜ)

Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm

Nokta İşlemleri

- Piksellerden oluşan imge uzayına uzamsal düzlem (spatial domain) denir.
- Uzamsal düzlem işlemleri aşağıdaki gösterimle ifade edilmektedir.

• Buradaki T işlevi, doğrudan (x,y) pikselini işleyebileceği gibi, (x,y) pikselinin komşuluklarını da hesaba katabilir.

Nokta İşlemleri

- Eğer komşuluk boyutu 1x1 ise (yalnızca (x,y) pikseli alınıyor), bu durumda T *gri-seviye dönüşüm işlevi (grayscale-level transformation function)* olarak adlandırılır.
- Bu tür işlemlere de *nokta işlemleri (point operations)* adı verilir.
- Bu işlem kısaca aşağıdaki şekilde yazılabilir.

$$s = T(r)$$

Parlaklık Ayarı

$$g(x,y) = T[f(x,y)]$$
$$= f(x,y) + b$$

b>0 ise parlaklık artar b<0 ise parlaklık azalır

$$s = r + b$$

orjinal

$$b = -50$$

b = +50

Karşıtlık (Kontrast) Ayarı

$$g(x,y) = T[f(x,y)]$$
$$= af(x,y)$$

a>1 ise karşıtlık artara<1 ise karşıtlık azalır

$$s = ar$$

orjinal

a = 0.5

a = 2

Parlaklık+Karşıtlık Ayarı

$$g(x,y) = T[f(x,y)]$$
$$= af(x,y) + b$$

$$s = ar + b$$

Parlaklık+Karşıtlık Ayarı

$$g(x,y) = T[f(x,y)]$$

MATLAB imadjust işlevi

Parlaklık+Karşıtlık Ayarı

Kısmi-doğrusal dönüşüm

Eşikleme

Sonuçta ikili (binary) imge oluşuyor.

Olumsuzlama

Histogram

- Her bir gri ton seviyesinin ([0,255]) imgedeki bulunma sıklığını (frekansını) gösterir.
- Yani imgedeki piksellerin dağılımı hakkında bilgi verir.
- İmge pekiştirmede sıkça kullanılmaktadır.

$$h(r_k) = n_k$$

 r_k : k. gri seviye

 n_{ν} : k. gri seviyedeki toplam piksel saysı

• Histogram normalize edildiğinde ise gri seviyelerin imge içerisindeki bulunma olasılıklarını verir.

İlgili seviyenini olasılık değeri $p(r_k) = n_k$ piksel sayısı k = 0, 1, ..., L-1

Histogram

MATLAB **imhist** işlevi

Histogram

Piksel konum bilgisi bulunmaz!

Histogram

Histogram

16 Mart 2012

15

Sürekli Genlik Rastlantı Değişkenleri

• Let χ be a continuous amplitude random variable $\chi \in (-\infty, +\infty)$.

 $f_{\chi}(x)$: the probability density function of χ ,

 $F_{\chi}(x)$: the probability distribution function of χ .

$$f_{\chi}(x)dx = \text{Probability}(x \leq \chi < x + dx)$$

 $F_{\chi}(x) = \text{Probability}(\chi \leq x)$

Properties:

$$F_{\chi}(x) = \int_{-\infty}^{x} f_{\chi}(t)dt \Rightarrow \frac{dF_{\chi}(x)}{dx} = f_{\chi}(x)$$

$$f_{\chi}(x) \geq 0 \Rightarrow F_{\chi}(x) \geq 0, F_{\chi}(x+dx) - F_{\chi}(x) \geq 0$$

 $F_{\chi}(x)$ is a non-decreasing function.

$$\begin{split} &\int_{-\infty}^{+\infty} f_{\chi}(t) dt &= 1 \Rightarrow f_{\chi}(x)|_{x=+/-\infty} = 0 \\ &F_{\chi}(x)|_{x=+\infty} &= 1 \\ &F_{\chi}(x)|_{x=-\infty} &= 0 \end{split}$$

Sürekli Genlik Rastlantı Değişkenleri

Gaussian:
$$f_{\chi}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

Uniform
$$(a < b)$$
:
$$f_{\chi}(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \text{otherwise} \end{cases}$$

Ortalama ve Değişinti

• Mean (μ) :

$$\mu = \int_{-\infty}^{+\infty} x f_{\chi}(x) dx$$

Analogy: Average price of apples

- "I bought $f_{\chi}(x)dx$ many apples at a price of x, ..."
- "Total price I paid: $P = \int_{-\infty}^{+\infty} x f_{\chi}(x) dx$.
- "Total number of apples I purchased: $N = \int_{-\infty}^{+\infty} f_{\chi}(x) dx = 1$.
- "My average price for the overall purchase: $\mu = P/N$.
- Variance (σ^2) :

$$\sigma^2 = \int_{-\infty}^{+\infty} (x - \mu)^2 f_{\chi}(x) dx$$

Ayrık Genlik Rastlantı Değişkenleri

ullet Let Θ be a discrete amplitude random variable.

$$\Theta = x_i$$
 for some $i, \ldots, -1, 0, 1, \ldots$
 x_i are a sequence of possible values for Θ .

 $p_{\Theta}(x_i)$: the probability mass function of Θ , $F_{\Theta}(x_i)$: the probability distribution function of Θ .

$$p_{\Theta}(x_i) = \text{Probability}(\Theta = x_i)$$

 $F_{\Theta}(x_i) = \text{Probability}(\Theta \le x_i)$

• Properties:

$$F_{\Theta}(x_i) = \sum_{j=-\infty}^{j=i} p_{\Theta}(x_j)$$

$$p_{\Theta}(x_i) = F_{\Theta}(x_i) - F_{\Theta}(x_{i-1}) \ge 0$$

$$\sum_{j=-\infty}^{j=+\infty} p_{\Theta}(x_j) = 1$$

Ayrık Genlik Rastlantı Değişkenleri

The probability mass and distribution functions for a uniform, discrete amplitude random variable.

Olasılık Yoğun Fonk. Olarak Histogram

- For a given image A, consider the image pixels as the realizations of a discrete amplitude random variable "A".
 - For example suppose we toss a coin (Heads=255 and Tails=0) $N \times M$ times and record the results as an N by M image matrix.
- Define the sample probability mass function $p_A(l)$ as the probability of a randomly chosen pixel having the value l.

$$p_A(l) = \frac{h_A(l)}{NM}$$

 Note that the sample mean and variance we talked about in Lecture 2 can be calculated as:

$$m_A = \sum_{l=0}^{255} l p_A(l)$$

$$\sigma_A^2 = \sum_{l=0}^{255} (l - m_A)^2 p_A(l)$$

- Amaç: İmgedeki düşük görünürlüğü iyileştirmek.
- Olasılık dağılımına bağlı olarak doğrusal olmayan dönüşüm gerçekleştirilir.
- Bu sayede, bulunma olasılığı yüksek pikseller arası fazlaca açılırken, düşük olasılıklı seviyeler birbirine daha yakın hale gelir.

$$cdf(v) = round \left(\frac{cdf(v) - cdf_{\min}}{(M \times N) - cdf_{\min}} \times (L-1) \right)$$

b	lo	k

Value	Count	Value	Count	Value	Count	Value	Count	Value	Count
52	1	64	2	72	1	85	2	113	1
55	3	65	3	73	2	87	1	122	1
58	2	66	2	75	1	88	1	126	1
59	3	67	1	76	1	90	1	144	1
60	1	68	5	77	1	94	1	154	1
61	4	69	3	78	1	104	2		
62	1	70	4	79	2	106	1		
63	2	71	2	83	1	109	1		

Value	cdf	Value	cdf	Value	cdf	Value	cdf	Value	cdf
52	1	64	19	72	40	85	51	113	60
55	4	65	22	73	42	87	52	122	61
58	6	66	24	75	43	88	53	126	62
59	9	67	25	76	44	90	54	144	63
60	10	68	30	77	45	94	55	154	64
61	14	69	33	78	46	104	57		
62	15	70	37	79	48	106	58		
63	17	71	39	83	49	109	59		

cdf

$$cdf(v) = round\left(\frac{cdf(v) - cdf_{\min}}{(M \times N) - cdf_{\min}} \times (L-1)\right)$$

$$cdf(v) = round\left(\frac{cdf(v)-1}{64-1} \times 255\right)$$

$$cdf(78) = round\left(\frac{46-1}{63} \times 255\right) = 182$$

histogram
$$cdf(154) = round\left(\frac{64-1}{63} \times 255\right) = 255$$

• İmgenin olasılık dağılım fonksiyonu doğrusallaştırılmaktadır.

16 Mart 2012 25

IMGE İŞLEMEDers-4

Piksel Komşuluk İşlemleri

(Yrd. Doç. Dr. M. Kemal GÜLLÜ)

Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm

İmgenin Ortalama ve Değişintisi

• Bir imgenin ortalaması (mean):

$$\mu = E(X) = \overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

• Bir imgenin değişintisi (variance):

$$\sigma^{2} = Var(X) = E((X - \mu)^{2})$$
$$= \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \overline{x})^{2}$$

- MATLAB'da 2-boyutlu matrisin ortalamasını almak için **mean2** işlevi kullanılaktadır.
- Değişinti hesabı için **std2** standart sapma bulma işlevi kullanılmaktadır. Daha sonra standart sapmanın karesi alınarak değişinti bulunabilmektedir.

İmgenin Ortalama ve Değişintisi

- MATLAB'da 8 bitlik bir I imgesi açıp, imgenin her bir pikseline erişerek etrafından nxn boyutlu bir blok alın ve bloğun standart sapmasını hesaplayın.
- I ile aynı boyutta oluşturacağınız I2 imgesinin ilgili pikseline bulunan standart sapma değerini yazınız.
- Bu işlemi imgedeki bütün pikseller için yapınız.

Piksel Komşuluk İşlemleri

- Her bir piksel için yeni bir değer hesaplanmaktadır.
- İlgili pikselin yeni değeri, komşu piksellerin değerleri de dikkate alınarak bulunur.
- Kullanılacak piksellerin ağırlıkları, yapılacak işleme bağlı olarak değişmektedir.
- Kenar bulma, gürültü giderme, imge keskinleştirme, yumuşatma gibi işlemlerde kullanılmaktadır.
- Hesapsal yükü, nokta işlemlerine göre oldukça fazla olabilmektedir.

• İki fonksiyonun etkileşimi olarak ifade edilebilir.

$$f * g = \int_{-\infty}^{\infty} f(\tau)g(t-\tau)d\tau$$

- İmge işlemede sıkça kullanılmaktadır.
- Sistemin, giriş işaretine etkisini vermektedir.

• Evrişimin ayrık zamanlı 2-boyutlu ifadesi:

$$g(x,y) = k * f$$

$$= \sum_{i=-m}^{m} \sum_{j=-n}^{n} k(i,j) f(x-i,y-j)$$

k, evrişim çekirdeği (convolution kernel)

f, giriş imgesi

g, ąkiş imgesi

(x, y), ilgili piksel konumu

$$(2m+1,2n+1)$$
, ğ**çek**yi**xtl**ey ve düşey uzunluğ

u

• Evrişim çekirdeği (kernel) genelde, evrişim maskesi (convolution mask), evrişim penceresi (convolution window) olarak da adlandırılabilmektedir.

$$g(x,y) = k * f$$

$$= \sum_{i=-m}^{m} \sum_{j=-n}^{n} k(i,j) f(x-i,y-j)$$

$$g(x, y) = k(-m, -n) f(x+m, y+n) +k(-m+1, -n+1) f(x+m-1, y+n-1) +... +k(m,n) f(x-m, y-n)$$

$$g(x,y) = k(-1,-1) f(x+1, y+1)$$

$$+k(-1,0) f(x+1, y)$$
+...
$$+k(1,1) f(x-1, y-1)$$

$$g(x,y) = k * f$$

$$= \sum_{i=-m}^{m} \sum_{j=-n}^{n} k(i,j) f(x-i,y-j)$$

$$\begin{split} g(x,y) = & k(-1,-1)f(x+1,y+1) \, + \, k(0,-1)f(x,y+1) \, + \, k(1,-1)f(x-1,y+1) \, + \, k(-1,0)f(x+1,y) \\ & + \, k(0,0)f(x,y) \, + \, k(1,0)f(x-1,y) \, + \, k(-1,1)f(x+1,y-1) \, + \, k(0,1)f(x,y-1) \\ & + k \, (1,1)f(x-1,y-1) \end{split}$$

$$g(x,y) = (-1x85) + (-1x68) + (-1x51) + (-2x83) + (10x70) + (-2x48) + (-1x77) + (-1x75) + (-1x50) = 32$$

- MATLAB'da 2-boyutlu evrişim **conv2** işlevi ile yapılabilmektedir.
- Bunun yanında imge süzgeçlerken genellikle **imfilter** işlevi kullanılmaktadır.

Evrişim işleminde kenar bölgelerindeki taşma durumunda olası işlemler:

- Kenar bölgelerini işlememe,
- Kenar bölgelerini kesme,
- Kenar bölgelerinde evrişim çekirdeğini kırpma,
- Kenar bölgelerini aynen kopyalama (imge boyutları büyür),
- Kenar bölgelerini aynalayarak kopyalama (imge boyutları büyür)...

Hesapsal yük:

• (m,n) boyutlu bir evrişim çekirdeği kullanıldığında bir piksel için çıkış değerinin hesaplanmasında gerekli işlem sayısı:

$$(m \times n)[carpma] + (m \times n - 1)[toplama]$$

$\lceil 0 \rceil$	0	0
0	1	0 0 0
0	0	0

Delta fonksiyonu

Kaydır ve çıkart

$$\begin{bmatrix} -1/8 & -1/8 & -1/8 \\ -1/8 & 1 & -1/8 \\ -1/8 & -1/8 & -1/8 \end{bmatrix}$$
 Kenar bulma

$$\begin{bmatrix} -k/8 & -k/8 & -k/8 \\ -k/8 & k+1 & -k/8 \\ -k/8 & -k/8 & -k/8 \end{bmatrix}$$
 Kenar pekiştirme

Uzamsal Frekans Kavramı

• İmgede pikseller arasındaki yumuşak geçişler *uzamsal düşük frekanslara* karşılık gelir.

• Sert geçişler (kenarlar, nesne sınırları...) *uzamsal yüksek frekanslara* karşılık gelir.

Evrişim (Convolution)-Yumuşatma

- En temel evrişim çekirdeğidir.
- İmgedeki gürültü etkilerini azaltır.
- Kenarları yumuşatır.

$$1/9 \times \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Evrişim (Convolution)-Yumuşatma

• Çekirdek boyutunun yumuşatmaya etkisi:

Orjinal imge

3x3

5x5

9x9

35x35

Evrişim (Convolution)-Yumuşatma

• Ağırlıklı ortalama alma işlemi de yapılabilmektedir.

$$g(x,y) = \frac{\sum_{i=-m}^{m} \sum_{j=-n}^{n} w(i,j) f(x-i,y-j)}{\sum_{i=-m}^{m} \sum_{j=-n}^{n} w(i,j)}$$
 1/15×
$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

• Kenar bölgelerindeki yumuşamayı azaltmak için kontrollü ortalama alma yapılabilir.

$$g(x,y) = \begin{cases} \frac{1}{ws \times ws} \sum_{i} \sum_{j} f(x-i, y-j) &, |f(x,y) - \frac{1}{ws \times ws} \sum_{i} \sum_{j} f(x-i, y-j)| < T \\ f(x,y) &, \text{ gehi} \end{cases}$$

IMGE İŞLEMEDers-5

Piksel Komşuluk İşlemleri-2

(Yrd. Doç. Dr. M. Kemal GÜLLÜ)

Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm

Ortanca (Median) Süzgeç

- Süzgeçleme işlemi, pencere içerisindeki piksellerin sıralanması temelinde yapmaktadır.
- Doğrusal olmayan bir süzgeçlemedir.
- Dürtü ve tuz-biber gürültülerinin giderilmesinde etkin başarım sağlamaktadır.
- İmgenin kenar bölgelerini bozmaktadır.

16 Matt MATLAB'da imgeye gürültü eklemek için imnoise işlevi kullanılmaktadır.

Ortanca (Median) Süzgeç

• Tuz ve biber gürültüsünün (salt and pepper noise) ortanca süzgeç ile giderilmesi

Gürültü eklenmiş imge

3x3 ortalama süzgeç ile gürültü giderme

3x3 ortanca süzgeç ile gürültü giderme

Evrişim (Convolution)-Keskinleştirme

- Kenar: İmgedeki keskin ışıklılık değişimleridir.
- Keskinleştirme işlemindeki temel hedef detayları daha görünür hale getirmek ve bulanık bölgelerden detay çıkartmaya çalışmaktır.
- Keskinleştirme işlemi, çıktı kalitesini arttırma, tıbbi görüntüleme, endüstriyel denetim, kendi kendine dolaşan robot gibi uygulamalarda kullanılmaktadır.

- Kenar bulma imge içerisindeki anlamlı kenarların bulunması olarak ifade edilmektedir.
- Bölütlemede nesne sınırlarının bulunması, tanımada örüntü çıkartma, hareket analizinde bölgeleri takip etme gibi uygulamalarda kenar bulma kullanılmaktadır.

16 Mart 2012 5

- Keskinleştirme işlemi, sayısal türevleme kullanılarak farklı yollarla yapılabilmektedir.
- Temelde, türev alma işleminin yanıtı, imge operatörün uygulandığı noktadaki süreksizlik ile orantılıdır.
- Tek boyutlu bir fonksiyon için 1. dereceden türev:

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

• 2. dereceden türev:

$$\frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x)$$

16 Mart 2012 6

- 1. dereceden türev kalın kenarlar üretmektedir.
- 2. dereceden türev, detay bölgelerinde daha fazla tepki vermektedir (örn; dikey ince çizgi ve gürültü bölgeleri).
- 2. dereceden türev, kenar bölgelerinde ve nokta değişimlerinde daha fazla tepki vermesinden dolayı, keskinleştirmede daha fazla tercih edilmektedir.

2. Dereceden Türev Kullanımı - Laplacian Filtresi:

$$\partial^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

ayrık şekilde:

$$\frac{\partial^2 f}{\partial^2 x^2} = f(x+1, y) + f(x-1, y) - 2f(x, y)$$

$$\frac{\partial^2 f}{\partial^2 v^2} = f(x, y+1) + f(x, y-1) - 2f(x, y)$$

• Tek bir ifade ile 2-B Laplacian:

$$\nabla^{2} f = \left[f(x+1, y) + f(x-1, y) + f(x, y+1) + f(x, y-1) - 4f(x, y) \right]$$

$$\downarrow$$

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{bmatrix} \quad \begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix} \quad \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

16 Mart 2012 9

• 2-B Laplacian çekirdeği kullanılarak süzgeçlenen imge ile orjinal imge kullanılarak keskinleştirilmiş imge aşağıdaki şekilde elde edilir:

$$g(x,y) = \begin{cases} f(x,y) - \text{Ferfcekindeğiremerkez değeri neg} & \text{atif ise} \\ f(x,y) + \text{Ferfcekindeğiremerkez değeri poz} & \text{itif ise} \end{cases}$$

Orjinal imge

Laplacian filtrelenmiş imge

Sonuç imgesi

- 1. Dereceden Türev Kullanımı Eğim (Gradyan-The Gradient):
- 2-B sütun vektörü olarak gradyan:

$$\nabla \mathbf{f} = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

Bu vektörün genliği:

$$\nabla f = \operatorname{mag}(\nabla f) = \left[G_x^2 + G_y^2\right]^{1/2} = \left[\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2\right]^{1/2}$$

• Gradyeni bulurken kare ve karekök alma işlemlerinin hesapsal yükünü azaltmak için pratikte mutlak toplam kullanılmaktadır:

$$\nabla f \approx |G_x| + |G_y|$$

$$\begin{bmatrix} z_1 & z_2 & z_3 \\ z_4 & z_5 & z_6 \\ z_7 & z_8 & z_9 \end{bmatrix} \qquad G_x = z_8 - z_5 G_y = z_6 - z_5$$

$$G_x = Z_8 - Z_5$$

$$G_{y}=z_{6}-z_{5}$$

$$\nabla f \approx |G_x| + |G_y|$$

$$\approx |z_8 - z_5| + |z_6 - z_5|$$

$$G_x = z_9 - z_5$$
$$G_y = z_8 - z_6$$

$$G_x = z_9 - z_5 \qquad \nabla f \approx |G_x| + |G_y|$$

$$G_y = z_8 - z_6 \qquad \approx |z_9 - z_5| + |z_8 - z_6|$$

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

• Boyutu çift sayılardan (2x2) oluşan maske yerine 3x3 maske oluşturursak:

$$\nabla f \approx \left| \left(z_7 + 2z_8 + z_9 \right) - \left(z_1 + 2z_2 + z_3 \right) \right| + \left| \left(z_3 + 2z_6 + z_9 \right) - \left(z_1 + 2z_4 + z_7 \right) \right|$$

$$\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

• Prewitt Operatörü:

$$h_{yatay} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix} \qquad h_{d\ddot{u}\ddot{s}ey} = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

$$h_{diişey} = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

• Not: Çekirdekler kullanılarak elde edilen imgenin eşiklenmesi ile ikili kenar imgesi oluşmaktadır.

Kirsch Operatörü:

- Orüntü tanımada şablon eşleştirmede kullanılmaktadır.
- Kenar yönlerine çok duyarlıdır.

$$h_1 = \begin{bmatrix} 3 & 3 & 3 \\ 3 & 0 & 3 \\ -5 & -5 & -5 \end{bmatrix} \qquad h_2 = \begin{bmatrix} 3 & 3 & 3 \\ -5 & 0 & 3 \\ -5 & -5 & 3 \end{bmatrix} \qquad h_3 = \begin{bmatrix} -5 & 3 & 3 \\ -5 & 0 & 3 \\ -5 & 3 & 3 \end{bmatrix}$$

$$h_2 = \begin{vmatrix} 3 & 3 & 3 \\ -5 & 0 & 3 \\ -5 & -5 & 3 \end{vmatrix}$$

$$h_3 = \begin{bmatrix} -5 & 3 & 3 \\ -5 & 0 & 3 \\ -5 & 3 & 3 \end{bmatrix}$$

Uygulama

Uygulama-devam

İlinti (Correlation)

- İki işaret ya da imge arasındaki ilişkinin bulunması,
- Bir imgenin içerisinde imge parçası arama gibi işlemlerde kullanılmaktadır.

$$r(x,y) = \frac{\sum_{i=-m}^{m} \sum_{j=-n}^{n} (h(i,j) - \overline{h}) (f(x+i,y+j) - \overline{f})}{\sqrt{\left(\sum_{i=-m}^{m} \sum_{j=-n}^{n} (h(i,j) - \overline{h})^{2}\right) \left(\sum_{i=-m}^{m} \sum_{j=-n}^{n} (f(x+i,y+j) - \overline{f})^{2}\right)}}$$

h: aracak blok

f: aramanın yapılacağı imge

 \overline{h} : blok ortalaması

 \overline{f} : imge ortalaması

(x, y): ilgili piksel konumu

İlinti (Correlation)

