

## МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

"МИРЭА - Российский технологический университет"

#### РТУ МИРЭА

Институт радиоэлектроники и автоматики Кафедра геоинформационных систем

### ОТЧЕТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ № 8

Реализация заданной логической функции от четырех переменных на мультиплексорах 16-1, 8-1, 4-1, 2-1

#### по дисциплине

«ИНФОРМАТИКА»

| Выполнил студент группы ИКБО-10-23   |              |         | Враженко Д.О. |  |
|--------------------------------------|--------------|---------|---------------|--|
| Принял<br>доцент кафедры ГИС, к.т.н. |              |         | Воронов Г.Б.  |  |
| Практическая<br>работа выполнена     | « <u> </u> » | 2023 г. |               |  |
| «Зачтено»                            | « »          | 2023 г. |               |  |

### СОДЕРЖАНИЕ

| 1 ПОСТАНОВКА ЗАДАЧИ                                | 3  |
|----------------------------------------------------|----|
| 2 ПРОЕКТИРОВАНИЕ И РЕАЛИЗАЦИЯ                      |    |
| 2.1 Составление таблицы истинности                 | 4  |
| 2.2 Схема с использованием мультиплексора 16-1     | 4  |
| 2.3 Схема с использованием мультиплексора 8-1      | 5  |
| 2.4 Схема с использованием минимального количества |    |
| мультиплексоров 4-1                                | 7  |
| 2.5 Схема с использованием минимальной комбинации  |    |
| мультиплексоров 4-1 и 2-1                          | 8  |
| 3 ВЫВОДЫ                                           | 10 |
| 4 ИНФОРМАЦИОННЫЕ ИСТОЧНИКИ                         | 11 |

#### 1 ПОСТАНОВКА ЗАДАЧИ

Логическая функция от четырех переменных задана в 16-теричной векторной форме. Восстановить таблицу истинности. По таблице истинности реализовать в лабораторном комплексе логическую функцию на мультиплексорах следующими способами:

- используя один мультиплексор 16-1;
- используя один мультиплексор 8-1;
- используя минимальное количество мультиплексоров 4-1;
- используя минимальную комбинацию мультиплексоров 4-1 и 2-1.

Протестировать работу схем и убедиться в их правильности. Подготовить отчет о проделанной работе и защитить ее.

Личный вариант:  $F(a,b,c,d) = CE4D_{16}$ .

#### 2 ПРОЕКТИРОВАНИЕ И РЕАЛИЗАЦИЯ

#### 2.1 Составление таблицы истинности

Исходные данные, представленные шестнадцатеричным числом, необходимо преобразовать в двоичную запись:  $CE4D_{16} = 1100 \ 1110 \ 010 \ 01101_2$ .

Результат перевода числа является столбцом значений логических функций, который необходим для восстановления полной таблицы истинности, смотри табл. 1.

Таблица 1 – Таблица истинности для функции F

| a | b | c | d | F |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 0 | 1 |
| 0 | 1 | 0 | 1 | 1 |
| 0 | 1 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 | 1 |
| 1 | 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 | 0 |
| 1 | 1 | 0 | 0 | 1 |
| 1 | 1 | 0 | 1 | 1 |
| 1 | 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 |

#### 2.2 Схема с использованием мультиплексора 16-1

Реализуем функцию, используя мультиплексор 16-1. Количество информационных входов мультиплексора соответствует количеству значений логической функции. Поэтому просто подадим значения функции на соответствующие

входы. На адресные (выбирающие) входы мультиплексора подадим при помощи шины значения логических переменных. Собранная и протестированная схема показана на рис. 1. Тестирование подтвердило правильность работы схемы.



Рисунок 1 — Тестирование схемы, реализующей логическую функцию на мультиплексоре 16-1

#### 2.3 Схема с использованием мультиплексора 8-1

Выполним реализацию заданной логической функции при помощи мультиплексора 8-1. Мультиплексор 8-1 имеет 3 адресных входа, что не позволяет подать на эти входы все 4 логические переменные, как это было сделано в предыдущем случае. Однако мы можем в качестве адресных переменных выбрать любые три из имеющихся, а оставшуюся четвертую рассматривать наравне с логическими константами как элемент исходных данных для информационных входов.

Взаимосвязь значений функции и значений переменной «d» можно увилеть на табл. 2.

Таблица 2 – Взаимосвязь значений функции и значений переменной «d»

| a | b | c | d | F |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 1 | 0 | 0 |

#### Продолжение таблицы 2

| a  | b  | c  | d | F |
|----|----|----|---|---|
| 0  | 0  | 1  | 1 | 0 |
| 0  | 1  | 0  | 0 | 1 |
| 0  | 1  | 0  | 1 | 1 |
| 0  | 1  | 1  | 0 | 1 |
| 0  | 1  | _1 | 1 | 0 |
| 1  | 0  | 0  | 0 | 0 |
| 1  | 0  | 0  | 1 | 1 |
| 1  | 0  | 1  | 0 | 0 |
| 1  | 0  |    | 1 | 0 |
| 1  | 1  | 0  | 0 | 1 |
| 1_ | 1  | 0  | 1 | 1 |
| 1  | 1  | 1  | 0 | 0 |
| L  | 11 |    | 1 | 1 |

Табл. 3 отображает «сжатую» таблицу истинности.

Таблица 3 – «Сжатая» таблица истинности

| a | b | c | F |
|---|---|---|---|
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | ₫ |
| 1 | 0 | 0 | d |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | d |

Теперь, рассматривая переменную d наравне с константами 0 и 1 в качестве сигналов для информационных входов мультиплексора 8-1, можно по аналогии с предыдущим случаем выполнить реализацию требуемой функции.

Собранная и протестированная схема показана на рис. 2.



Рисунок 2 — Тестирование схемы, реализующей логическую функцию на мультиплексоре 8-1

### 2.4 Схема с использованием минимального количества мультиплексоров 4-1

Реализуем функцию, используя мультиплексоры 4-1. Мультиплексор 4-1 имеет 2 адресных входа и 4 информационных. Это означает, что мы должны разбить исходную таблицу истинности на 4 фрагмента. Разобьем исходную таблицу истинности на зоны ответственности между операционными мультиплексорами, а заодно посмотрим, нельзя ли в некоторых случаях обойтись вообще без операционного мультиплексора (табл. 4).

Таблица 4 — Разбиение исходной таблицы истинности на зоны ответственности для потенциальных операционных мультиплексоров

| a | b | c | ( | 1 | I | ₹ |
|---|---|---|---|---|---|---|
| 0 | 0 | 0 | ( | ) | 1 |   |
| 0 | 0 | 0 | ] | l | 1 |   |
| 0 | 0 | 1 | ( | ) | ( | ) |
| 0 | 0 | 1 | ] | 1 | ( | ) |
| 0 | 1 | 0 | ( | ) | 1 |   |
| 0 | 1 | 0 | 1 | 1 | 1 |   |
| 0 | 1 | 1 | ( | ) | 1 | L |
| 0 | 1 | 1 | 1 |   | ( | ) |

#### Продолжение таблицы 4

| a | b | c | d | F |
|---|---|---|---|---|
| 1 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 | 1 |
| 1 | 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 | 0 |
| 1 | 1 | 0 | 0 | 1 |
| 1 | 1 | 0 | 1 | 1 |
| 1 | 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 |

Собранная и протестированная схема показана на рис. 3.



Рисунок 3 — Тестирование схемы, реализующей логическую функцию с использованием минимального количества мультиплексоров 4-1

# 2.5 Схема с использованием минимальной комбинации мультиплексоров 4-1 и 2-1

Реализуем логическую функцию, используя минимальную комбинацию мультиплексоров 4-1 и 2-1. В качестве отправной точки рассмотрим результаты, полученные в предыдущей реализации. Из табл. 4 выпишем отдельно фрагменты таблицы истинности, за которые отвечают операционные мультиплексоры (табл. 5).

Таблица 5 – Фрагмент таблицы истинности

| c | d | F |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| U | 1 | 0 |
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 0 |
| U | 1 | 0 |
| 0 | 0 | 1 |
| 0 | 1 | 1 |
| 1 | 0 | 0 |
| J | 1 |   |

Собранная и протестированная схема показана на рис. 4.



Рисунок 4 — Тестирование схемы, реализующей логическую функцию с использованием минимальной комбинации мультиплексоров 4-1 и 2-1

#### 3 ВЫВОДЫ

В ходе выполнения практической работы по логической функции от четырёх переменных, заданной в 16-теричной векторной форме, была восстановлена таблица истинности. По таблице истинности была реализована в лабораторном комплексе логическая функция на мультиплексорах следующими способами:

- используя один мультиплексор 16-1;
- используя один мультиплексор 8-1;
- используя минимальное количество мультиплексоров 4-1;
- используя минимальную комбинацию мультиплексоров 4-1 и 2-1.

Протестирована работа схем. Тестирование показало, что схемы работают правильно. Подготовлен отчёт о проделанной работе.

#### 4 ИНФОРМАЦИОННЫЕ ИСТОЧНИКИ

- 1. Информатика: Методические указания по выполнению практических работ / С.С. Смирнов, Д.А. Карпов М., МИРЭА Российский технологический университет, 2020. 102 с. [52-59]
- 2. Воронов Г.Б. Информатика: Лекции по информатике / Г.Б. Воронов М., МИРЭА Российский технологический университет, 2023.
- 3. Документация Logisim [Электронный ресурс] URL: <a href="http://www.cburch.com/logisim/ru/docs.html">http://www.cburch.com/logisim/ru/docs.html</a> (дата обращения 07.10.2023).