Circuits

Soroban

As colunas (keta em japonês) por onde deslizam as pedras indicam centavos, décimos, unidades, dezenas, centenas, milhares, etc. Pedra abaixo da barra divisória (hari) chama-se ichidama e vale 1 na casa das unidades, 10 nas dezenas, 100 nas centenas, etc. Pedra acima da hari chama-se godama e vale 5 nas unidades, 50 nas dezenas, 500 nas centenas, etc. Para zerar, coloca-se o ábaco na vertical, de modo que as ichidamas afastem-se da barra divisória. Em seguida, deslizamos o dedo polegar por baixo de cada godama, separando-a da hari.

75+82 = 157. O ábaco está zerado quando todas as pedras estão afastadas da hari. Para efetuar essa soma, marca-se 75 no ábaco. As unidades estão na terceira coluna da direita para a esquerda, onde há um ponto decimal na hari. As dezenas estão na quarta coluna. Para indicar 70 dezenas, seguramos a pedra de 50 com o indicador e duas pedras de 10 com o polegar. Um movimento de pinça dos referidos dedos aproxima 20 e 50 da barra de separação. Em seguida, puxamos a pedra de 5 para a barra de separação com o indicador.

Para somar 82 a 75, deveríamos começar por adicionar 80 à coluna das dezenas, mas isso não é possível, pois não temos 5+3 pedras disponíveis na quarta hari da direita para a esquerda. Então, acrescentamos 100 e tiramos 20. As pedras cortadas representam 20 unidades subtraídas. Agora, acrescentamos 2 unidades e terminamos o cálculo de 75+82.

87+65=152. Marque 87 no ábaco. Em seguida, some 100-50+10=60:

Agora temos de somar 5 nas unidades. Acontece que só temos duas pedras disponíveis na coluna das unidades. O que fazer? Somamos 10 e subtraímos 5.

Para somar 10, foi preciso somar a pedra de 50 (em cinza) e subtrair 40 (4 pedras cortadas nas dezenas). Para subtrair 5, bastou eliminar a pedra de 5 unidades, que aparece cortada.

Soma de três dígitos

Vamos verificar que 568+947= 1515. Inicialmente, vamos marcar 568 no ábaco.

Agora, vamos somar 900. Como não há pedras suficientes na coluna das centenas, precisamos de somar 1000 e subtrair 100. Para subtrair 100, temos de subtrair 500 e somar 400. No diagrama abaixo, a pedra de 500 que foi subtraída das dezenas aparece cortada. As pedras que representam dígitos aparecem em cinza. Note que, até aqui, somamos 568 com 900, e o resultado 1468 aparece claramente no ábaco.

Agora vamos somar mais 40 a 1468, onde 40 são as dezenas de 947. Como não temos pedras suficientes na casa das dezenas, vamos somar 100 e subtrair 60. Para somar 100, precisamos de adicionar a pedra de 500 e subtrair 400. A subtração de 60 é direta, pois há uma pedra de 10 e uma de 50 em 1468. As pedras que formam os 400 eliminados estão cortadas. O resultado até agora está em 1508.

Para terminar o cálculo, falta apenas somar 7 a 1508. Como sói acontecer, não temos pedras suficientes nas unidades para adicionar 7. Então, somamos 10 e subtraímos 3.

O resultado final da soma 568+947 é 1515 e aparece em cinza na figura abaixo.

Adições encadeadas

Vamos ver como fazer a seguinte sequência de somas encadeadas: 34+87+38+95.

Começamos marcando 34 no ábaco. Adicionamos 30 na casa das dezenas e 4 nas unidades, conforme indicado ao lado.

34+87 = 121

Para efetuar 87+34, começamos somando 80+34. Como não temos pedras suficientes nas dezenas, somamos 100 e subtraímos 20.

Agora somamos 7 na casa das unidades. Na situação do ábaco, isso corresponde a somar 10 e subtrair 3, como mostrado ao lado.

121 + 38 = 159

Para somar 38 a 121, começamos somando 30, ou seja, adicionamos 50 e subtraímos 20 da casa das dezenas. O resultado é 151.

Agora somamos 8 na casa das unidades, isto é, 5+3. O resultado é 159.

159 + 95 = 254

Para somar 95 a 159, vamos inicialmente somar 90 a 159. Devido à alocação das pedras na hari de dezenas, essa operação corresponde a somar 100, subtrair 50 e adicionar 4 pedras de 10. O resultado mostrado na figura é 249.

Para somar 5 unidades ao número 249 que está no soroban, temos que acrescentar 10 à coluna das dezenas. A única maneira de fazer isso é somar 50 e subtrair 40. O próximo passo é subtrair 5 da coluna das unidades.

Soma com transbordamento

Nessa seção, vamos estudar as ocorrências de soma de dígitos. Em suma, queremos saber o que pode acontecer quando tentamos somar dois dígitos. As possibilidades são:

Há pedras para o segundo dígito. Depois de marcar o primeiro dígito, há pedras livres em quantidade suficiente para representar o segundo dígito. No exemplo abaixo, fizemos a soma de 3 + 4. O primeiro dígito é 3, de modo que sobram a pedra de 5 e uma das pedras de 1 para adicionar 4. Então, adicionamos a pedra de 5 e subtraímos 1. A resposta é 7.

Não há pedras na coluna para o segundo dígito. Em pouco mais da metade dos casos, o número de pedras não é suficiente para adicionar o segundo dígito. Suponhamos que você queira somar $D_1 + D_2$ na coluna n e descobre que não tem pedras disponíveis para D_2 . Nesse caso, some 10^{n+1} à coluna n + 1 e subtrai $(10 - D_2) \times 10^n$ da coluna n.

Tomemos um exemplo concreto. Você vai somar $D_1 = 6$ com $D_2 = 8$. Depois de marcar $D_1 = 6$ na coluna 0, você verifica que não há pedras bastante para somar $D_2 = 8$. Então, você soma 1×10^1 à coluna 1 e subtrai $(10 - 8) \times 10^0 = 2$ da coluna 0. Isso é equivalente a somar 8 à coluna 0. O resultado é 14.

Na fase de subtrair 2 da coluna 0, houve um pequeno contratempo: não havia 2 pedras de valor unitário para efetuar a subtração. Por isso, subtraímos a pedra de 5 e somamos 3 pedras de 1.

Você deve ter notado a estranha maneira que estamos usando para numerar as colunas. A coluna 0 é a terceira da esquerda para a direita. A coluna 0 é a coluna das unidades. A primeira coluna da esquerda é a coluna -2 e equivale aos centésimos. A segunda coluna é a -1 e representa os décimos. A pedra de 5 representa 0.5 na coluna -1.

Para realmente acompanhar essa explicação, você precisa entender que 1 na coluna n é igual a 10^n . Então, quando você soma 1 na coluna 1, está realmente somando 10. Para apreciar esse fato em sua totalidade, vamos supor que você queira somar 600 + 800. Nada mudou no problema, exceto que você vai trabalhar na coluna 2.

Coluna de transbordamento cheia

Conforme já vimos, há situações em que é impossível somar um dígito D_1 ao conteúdo da coluna n. Quando isso acontece, temos de incrementar a coluna n+1. Entretanto, a coluna n+1 pode já ter 9 pontos. Nesse caso, zeramos a coluna n+1 e incrementamos a coluna n+2 de 1. Vejamos um exemplo concreto. Vamos somar 86+17. Essa soma pode ser decomposta em 86+10+7. Quando somamos 10 a 86, a coluna das dezenas fica cheia com 9 dezenas.

Quando tentamos somar 7, não temos pedras suficientes na coluna das unidades. E quando transbordamos 10 para a coluna das dezenas, descobrimos que essa coluna está cheia. Então zeramos a coluna das dezenas e acrescentamos 100 à coluna das centenas. Em seguida, subtraímos 3 da coluna das unidades. A resposta é 103.

É possível encontrar uma sequência de duas ou mais colunas com 9 pontos cada coluna. Se houver transbordamento para a primeira dessas colunas, devemos zerar todas, até encontrar uma que possa receber o transbordamento.

Exercícios de soma

505+4016 = 4521.

2751 + 5221 = 7972

5997 + 8029 = 14026

3932 + 5297 + 7320 = 16549

3777 + 9979 + 9886 =

5237 + 8409 + 9584 = 23230

Soma com centavos

Como você pode ver abaixo, é muito fácil acrescentar centavos no esquema de soma. Basta escrever as frações depois do ponto decimal da direita. Há duas casas depois desse ponto, justamente para registrar os centavos.

964.5 + 671.2 + 1500 = 3135.7

964.5 + 671.2 + 1598.5 = 3234.2

Multiplicação

47 × 38. Colocamos o multiplicando 47 no extremidade esquerda do soroban. Como o multiplicando tem 2 algarismos, reservamos 2+1 algarismos na extremidade direita para o resultado. Ao lado do resultado, na quinta e quarta colunas da direita, posicionamos o multiplicador, que é 38. Agora, multiplicamos as 4 dezenas de 47 pelas 8 unidades de 38 e colocamos 32 nas centenas e dezenas do resultado. Em seguida, multiplicamos as 7 unidades de 47 pelas 8 unidades de 38 e adicionamos 56 às dezenas e unidades do resultado.

Agora que terminamos as 8 unidades do multiplicador, podemos eliminá-las e começar a trabalhar com as 3 dezenas. Multiplicamos as 4 dezenas de 47 por 3 e adicionamos 12 aos milhares e centenas do resultado. Em seguida multiplicamos as 7 unidades de 47 por 3 e adicionamos 21 às centenas e dezenas do resultado, que é 1786.

 23×14 . Posicionamos o multiplicando 23 no extremidade esquerda do soroban. Considerando que 23 tem 2 dígitos, reservamos 2+1 posições na extremidade direita para o resultado. Ao lado do resultado, na quinta e quarta colunas da direita, pomos a multiplicador 14. Agora, multiplicamos 2×4 e colocamos 08 nas centenas e dezenas do resultado. Depois, multiplicamos 3×4 e somamos 12 às dezenas e unidades do resultado.

Agora que terminamos as 4 unidades do multiplicador, podemos eliminá-las e começar a trabalhar com a dezena. Multiplicamos 2 por 1 e adicionamos 02 aos milhares e centenas do resultado. Em seguida multiplicamos as 3 por 1 e adicionamos 03 às centenas e dezenas do resultado final: 322.

O importante nessa história toda é que, quando o produto de dois dígitos tem apenas um algarismo, devemos acrescentar um zero à esquerda do algarismo.

 $78 \times 86 = 6708$

$27 \times 96 = 2592$

$$8 \times 96 = 768$$

Taboada

A primeira coisa que precisamos fazer antes de mergulhar na matemática é estabelecer um plano de treinamento para nossa memória. Um bom exercício para a memória é aprender a toboada de multiplicação, que daqui para diante chamaremos apenas de *taboada*.

Sabemos que o conjunto dos seres humanos é dividida em dois grandes subconjuntos, a saber:

- 1. Aqueles que sabem a taboada. Se você é um dos que sabem a taboada, então aproveite esse capítulo para firmar ainda mais esse conhecimento.
- 2. Pessoas que não sabem a taboada. Essas pessoas não conseguem fazer multiplicação ou divisão sem calculadora. Se você se encontra nessa difícil situação, ainda está em tempo de aprender a taboada. Poékhali! Então vamos lá!

Truques para aprender a taboada

Evidentemente, você deve reagir quase instantaneamente quando precisar, por exemplo, do valor de 9×6 . Qualquer hesitação ou utilização de truques pode ter uma das seguintes consequências em um *high stakes test*:

- 1. Erros. Hesitação significa que a taboada não está bem firme no seu cérebro. Nesse caso, você pode utilizar um valor errado.
- 2. Demora. Enquanto você está tentando descobrir quanto vale 9×6 , seu concorrente já estará terminando a próxima pergunta.
- 3. Cansaço mental. Essa é a pior consequência de não decorar bem a tabela de multiplicação. Fazer contas sem domínio total da taboada é muito cansativo.

X	2	3	4	5	6	7	8	9
2	4	6	8	10	12	14	16	18
3	6	9	12	15	18	21	24	27
4	8	12	16	20	24	28	32	36
5	10	15	20	25	30	35	40	45
6	12	18	24	30	36	42	48	54
7	14	21	28	35	42	49	56	63
8	16	24	32	40	48	56	64	72
9	18	27	36	45	54	63	72	81

Taboada do 9. Para multiplicar um número n por nove, basta multiplicar por 10 e subtrair n. Seja o exemplo de 6×9 , com o qual começamos essa discussão. Temos que $6 \times 10 = 60$. Subtraindo 6 de 60, temos $60 - 6 = 54 = 6 \times 9$. Você pode utilizar esse truque no começo, mas não deixe de fazer muitos exercícios, até conseguir multiplicar qualquer número de 2 a 9 por 9 sem nenhum cansaço mental. Cansaço mental acaba com o candidato em um high stakes test.

Taboada do 8. A taboada do oito é dividida em duas partes: números de 2 a 5 e números de 6 a 9.

Para um número n de 2 a 5, a dezena de $8 \times n$ é dado por n-1 e a unidade é dada por $2 \times (5-n)$. Vejamos alguns exemplos:

		Dezena	${ m Unidade}$
8×2	16	2 - 1 = 1	$2 \times (5-2) = 6$
8×3	24	3 - 1 = 2	$2 \times (5-3) = 4$
8×4	32	4 - 1 = 3	$2 \times (5-4) = 2$
8×5	40	5 - 1 = 4	$2 \times (5-5) = 0$

Quando n vai de 6 a 9, a dezena de $8 \times n$ é dado por n-2, e a unidade vale $2 \times (10-n)$.

		Dezena	Unidade
8×6	48	6 - 2 = 4	$2 \times (10 - 6) = 8$
8×7	56	7 - 2 = 5	$2 \times (10 - 7) = 6$
8×8	64	8 - 2 = 6	$2 \times (10 - 8) = 4$
8×9	72	9 - 2 = 7	$2 \times (10 - 9) = 2$

Taboada de 6. Há três casos a considerar para encontrar as unidades da taboada de seis de um número n que vai de 2 a 9.

- 1. n é par. Nesse caso, a unidade do produto por 6 é igual a n.
- 2. n é impar menor que 5. Nesse caso, a unidade é n+5.
- 3. n é impar maior ou igual a 5. Aqui, a unidade é n-5.

As dezenas são mais difíceis de se obter. As regras são:

- 1. Se o número n é par, a dezena é a metade de n. Consideremos os casos de 2, 4, 6 e 8.
 - 6×2 . Dezena= 2/1=1, unidade= 2. Resultado: 12.
 - 6×4 . Dezena= 4/2=2, unidade= 4. Resultado: 24.
 - 6×6 . Dezena = 6/3 = 3, unidade = 6. Resultado: 36.
 - 6×8 . Dezena = 8/4 = 4, unidade = 8. Resultado: 48.
- 2. No caso de números menores que 5, a dezena é o quociente da divisão por 2. Apenas o número 3 satisfaz essa condição. Então, o quociente da divisão de 3 por 2 é 1. Isso significa que 6 × 3 é 18.
- 3. No caso de números ímpares maiores que 5, a dezena é o quociente da divisão por 2 mais 1. Nesse caso, temos 5, 7 e 9. No caso de 5, a dezena é 3 e $6 \times 5 = 30$. No caso de 7, a dezena é 4, e $6 \times 7 = 42$. No caso de 9, a dezena é 5, e $6 \times 9 = 54$.

Taboada de 5. Nesse caso, as unidades são muito fáceis de encontrar: elas são 5 para n ímpar e 0 para n par. As dezenas, para n entre 2 e 9, são obtidas pelo quociente da divisão de n por 2. Seja o caso de n=6. Como 6 é par, a unidade é 0. A dezena é 6/2=3. Então $5\times 6=30$. Vejamos outro exemplo de multiplicação de n entre 2 e 9 por 5. No caso do número 7, que é ímpar, a unidade é 5. A dezena é o quocienet de 7 por 2, ou seja, 3. Então, o resultado é 35.

Como a taboada de 5 é tão fácil, talvez uma boa regra para encontrar $6 \times n$, com n entre 2 e 9, seja fazer a conta $5 \times n + n$. Por exemplo, seja encontrar 6×7 . Basta encontrar $5 \times 7 + 7$, que dá 42, é claro.

Taboada de 2. A maneira mais fácil de obter a taboada de dois para n entre 2 e 9 é somar n com ele mesmo. Por exemplo, $2 \times 8 = 8 + 8 = 16$.

Taboada de 7. Sabendo a taboada de 2 e de 5, podemos obter facilmente a taboada de 7 para n entre 2 e 9. Para isso, basta somar $5 \times n + 2 \times n$. Por exemplo, para encontrar 7×8 , fazemos $5 \times 8 + 2 \times 8 = 40 + 16 = 56$.

- $2 \times 7 = 2 \times 5 + 2 \times 2 = 14$
- $3 \times 7 = 3 \times 5 + 2 \times 3 = 21$
- $4 \times 7 = 4 \times 5 + 2 \times 4 = 28$
- $5 \times 7 = 5 \times 5 + 2 \times 5 = 35$
- $6 \times 7 = 6 \times 5 + 2 \times 6 = 42$
- $7 \times 7 = 7 \times 5 + 2 \times 7 = 49$
- $8 \times 7 = 8 \times 5 + 2 \times 8 = 56$
- $9 \times 7 = 9 \times 5 + 2 \times 9 = 63$

Taboada de 3. Para achar $3 \times n$, use $3 \times n = 2 \times n + n$. E.g. $3 \times 8 = 16 + 8 = 24$.

Taboada de 4. Para calcular $4 \times n$, basta fazer $4 \times n = 2 \times n + 2 \times n$.

Mais multiplicações

Considerando que as pedras do ábaco não podem mudar de cor, não vamos mais marcar com pedras cinzas o multiplicando e o multiplicador.

 $256 \times 304 = 77824$

 $256 \times 28 = 7168$

Multiplicação fatorada

Neste capítulo, vamos aprender uma nova forma de fazer multiplicações. Suponhamos que você queira multiplicar 38 por 46. Coloque o multiplicador 37 (38-1) na extremidade esquerda do ábaco e o multiplicando 46 na direita. Como já registramos uma ocorrência do multiplicando, subtraímos 1 do multiplicador. Lembre-se, nesse método, sempre subtraímos 1 do multiplicador para compensar o registro do multiplicando no início do processo.

Os passos são:

- 1. Registramos $3 \times 4 = 12$ nas colunas 4 e 3 a partir da direita. Raciocínio: 3 dezenas (2 dígitos) vezes 4 dezenas (mais 2 dígitos) ocupam as colunas 4 e 3.
- 2. Adicionamos $7 \times 4 = 28$ às colunas 3 e 2. Raciocínio: 7 unidades (1 dígito) vezes 4 dezenas (2 dígitos) vai para a coluna 3 (1+2).
- 3. Adicionamos $3 \times 6 = 18$ às colunas 3 e 2. Raciocine assim: 3×6 são dezenas (2 dígitos) vezes unidades (1 dígito). Um total de três dígitos começa na coluna 3.

Finalmente, adicionamos 7×6 nas colunas 2 e 1. O resultado final, 1748 é registrado no lado direito do ábaco.

Multiplicações continuadas

A principal desvantagem desse método é que fica difícil colocar cada par de dígito da resposta nas colunas corretas. A grande vantagem desse método é permitir que se continue com as multiplicações. Por exemplo, se você quiser multiplicar 1748 por 7, basta colocar 6 na extremidade esquerda do ábaco e repetir o processo. O multiplicando 1748 já se encontra na extremidade direita do ábaco como resultado do produto de 38 por 46.

Vamos recordar novamente que é preciso subtrair 1 do multiplicador para levar em conta que o multiplicando já se encontra posicionado na parte direita do ábaco. No exemplo, como queremos multiplicar 7×1748 , o multiplicador é 6, e não 7 como seria de esperar-se.

Lembre-se de que multiplicação de dígito por dígito ocupa sempre duas casas. Assim, 6×1 é 06 e ocupa as casas 5 e 4 do ábaco, contando da direita para a esquerda. As etapas do cálculo podem ser descritas pelos seguintes passos:

- 1. Casa 5: $6 \times 1 = 06$ somar 0
- 2. Casa 4: $6 \times 1 = 06$ somar 6
- 3. Casa 4: $6 \times 7 = 42$ somar 40
- 4. Casa 3: $6 \times 7 = 42$ somar 2
- 5. Casa 3: $6 \times 4 = 24$ somar 20
- 6. Casa 2: $6 \times 4 = 24$ somar 4
- 7. Casa 2: $6 \times 8 = 48$ somar 40
- 8. Casa 1: $6 \times 8 = 48$ somar 8

Na multiplicação de 6 por 1748, cada uma dos sucessivos estados pelos quais o ábaco passa é indicado na figura abaixo.

