

CS/SE 3340 Computer Architecture

Introduction to Computer Organization

Adapted from "Computer Organization and Design, 4th Ed." by D. Patterson and J. Hennessy

The Computer Revolution

- Progress in computer technology
 - Underpinned by Moore's Law
- Makes novel applications feasible
 - Computers in automobiles
 - Cell phones, tablets
 - Human genome project
 - World Wide Web
 - Search Engines
- Computers are pervasiv in installation
 - 17.7B ARM chips sold in 2016 (ARM Holdings)

3

Hardware Components

- Same components for all kinds of computer
 - Desktop, server, embedded
- Input/output includes
 - User-interface devices
 - Display, keyboard, mouse
 - Storage devices
 - Hard disk, CD/DVD, flash
 - Something missing?
 - What about network adapters?

Anatomy of a Mouse

- Optical mouse
 - LED illuminates desktop
 - Small low-res camera
 - Basic image processor
 - Looks for x, y movement
 - Buttons & wheel
- Supersedes roller-ball mechanical mouse

Through the Looking Glass

LCD screen: picture elements (pixels)

Mirrors content of frame buffer memory

7

A Safe Place for Data

- Volatile main memory
 - Loses instructions and data when power off
- Non-volatile secondary memory

- Flash memory
- Optical disk (CDROM, DVD)

Opening the Box

9

Inside the Processor (CPU)

- Datapath: performs operations on data
- Control: sequences datapath, memory, ...
- Cache memory
 - Small fast SRAM memory for immediate access to data

Inside the Processor

AMD Barcelona: 4 processor cores

11

Technology Trends

- Electronics technology continues to evolve
 - Increased capacity and performance
 - Reduced cost

DRAM capacity

Year	Technology	Relative performance/cost		
1951	Vacuum tube	1		
1965	Transistor	35		
1975	Integrated circuit (IC)	900		
1995	Very large scale IC (VLSI)	2,400,000		
2005	Ultra large scale IC	6,200,000,000		

Technology Scaling Road Map

Year	2004	2006	2008	2010	2012
Feature size (nm)	90	65	45	32	22
Capacity (Bills. of Transistor)	2	4	6	16	32

- Fun facts about 22 nm transistors
 - 60 million can fit on the head of a pin
 - You could fit more than 4,000 across the width of a human hair
 - If car prices had fallen at the same rate as the price of a single transistor has since 1968, a new car today would cost about 0.5 cent!!!
- 14 nm transistors have been used in VLSI chips since 2014 (Intel's Broadwell Core M processors, Apple's A9)

International Technology Roadmap for Semiconductors

Some High-level Questions

- How are data and programs represented in a computer?
 - And how the **hardware** processes data?
- What is the interface between hardware an software?
 - The Instruction Set Architecture (ISA)
- What determines computer <u>performance?</u> and how it can be improved?
- How hardware designers improve *performance*?
 - Faster clock, pipelining, cache, etc...

15

Below Your Program

- Application software
 - Written in high-level language
- System software
 - Compiler: translates HLL code to assembly language or machine code
 - Operating System: service code
 - Handling input/output
 - Managing memory and storage
 - Scheduling tasks & sharing resources
- Hardware
 - Processor, memory, I/O controllers

- High-level language
 - Level of abstraction closer to problem domain
 - Provides for productivity and portability
- Assembly language
 - Textual representation of instructions
- Hardware representation
 - Binary digits (bits)
 - Encoded instructions (machine code) and data

Understanding Performance

- Algorithm
 - Determines number of operations executed
- Programming language, compiler, architecture
 - Determine number of machine instructions executed per operation
- Processor and memory system
 - Determine how fast instructions are executed
- I/O system (including OS)
 - Determines how fast I/O operations are executed

Abstractions

- Abstraction helps us deal with complexity
 - Hide lower-level details
- Instruction set architecture (ISA)
 - The hardware/software interface
- Application binary interface
 - The ISA plus system software interface
- Implementation
 - The details underlying an interface

19

Review: Some Basic Definitions

- Kilobyte 210 or 1,024 bytes
- Megabyte- 2²⁰ or 1,048,576 bytes
 - sometimes "rounded" to 10⁶ or 1,000,000 bytes
- Gigabyte 2³⁰ or 1,073,741,824 bytes
 - sometimes rounded to 10⁹ or 1,000,000,000 bytes
- Terabyte 2⁴⁰ or 1,099,511,627,776 bytes
 - sometimes rounded to 10¹² or 1,000,000,000,000 bytes
- Petabyte 2⁵⁰ or 1024 terabytes
 - sometimes rounded to 10¹⁵ or 1,000,000,000,000,000 bytes
- Exabyte 2⁶⁰ or 1024 petabytes
 - Sometimes rounded to 10¹⁸ or 1,000,000,000,000,000,000 bytes

"All mobile data traffic generated worldwide > 107 <u>exabytes</u> in 2017"

ABI Research – July 2012