

Факультет программной инженерии и компьютерной техники Кафедра вычислительной техники

Отчёт по лабораторной работе $N\!\!^{\circ}2$

Дисциплина: "Информационные системы и базы данных"

Преподаватель: Гаврилов Антон

Студент: Закиров Бобур

Группа: Р33312

Санкт-Петербург $2021 \, \text{г.}$

Текст задания

Для отношений, полученных при построении предметной области из <u>лабораторной работы №1</u>, выполните следующие действия:

- опишите функциональные зависимости для отношений полученной схемы (минимальное множество);
- приведите отношения в 3NF (как минимум). Постройте схему на основе полученных отношений;
- опишите изменения в функциональных зависимостях, произошедшие после преобразования в 3NF.
- преобразуйте отношения в BCNF. Докажите, что полученные отношения представлены в BCNF:
- какие денормализации будут полезны для вашей схемы? Приведите подробное описание.

Описание предметной области

Вариант 289307

Основной объект данного текста – это *тестер*, тестирующий различные *схемы*. В его *состав* входят: *дисплей*, *кнопка* и *микроскоп*. В свою очередь, микроскоп содержит *линзу*. Также, некоторые сущности могут иметь *цвет*.

Для ucnыmanus или npoверки схемы, тестеру необходимо вставить одну из карточек, находящихся в картотеке поиска неисправностей.

Даталогическая модель

Опишите функциональные зависимости для отношений полученной схемы

1. Схема

- ullet scheme_id o name
- ullet scheme_id o height
- $\bullet \ \mathtt{scheme_id} \to \mathtt{width}$

2. История

- ullet history_id o time
- ullet history_id o duration

3. Цвет

- ullet color_id o name
- ullet color_id o red
- $\bullet \ \mathtt{color_id} \to \mathtt{green}$
- ullet color_id o blue
- ullet name ightarrow red
- ullet name o green
- ullet name o blue

4. Картотека

- \bullet cardbox_id \rightarrow width
- \bullet cardbox_id \rightarrow height
- $cardbox_id \rightarrow color(id)$

5. Карточка

- $\bullet \ \mathtt{card_id} \to \mathtt{name}$
- ullet card_id o format
- card_id → cardbox(id)
- card_id → color(id)

6. Тестер

- ullet tester_id o name
- ullet tester_id o year
- ullet tester_id o card(id)

7. Дисплей

- ullet display_id ightarrow resolution
- ullet display_id o diagonal

8. Кнопка

- $\bullet \ \mathtt{button_id} \to \mathtt{radius}$
- button_id → color(id)

9. Микроскоп

- ullet microscope_id o name
- $\bullet \ \mathtt{microscope_id} \to \mathtt{model}$
- ullet microscope_id o weight

10. Линза

- ullet lens_id o curvature_radius
- ullet lens_id o focal_length
- lens_id \rightarrow microscope(id)

Остальных таблиц не рассматрываем, так как они служебные таблицы для many-to-many.

Приведите отношения в 3NF (как минимум). Постройте схему на основе полученных отношений

1NF: Отношение, на пересечении каждой строки и столбца – одно значение.
Все мои таблицы удовлетворяют данным условиям.

2NF: Отношение в 1NF, каждый атрибут которого, отличный от атрибута первичного ключа, является полностью функцианально независимым от любого потенциального ключа. То есть: нет частичных зависимостей от первичного и потенциальных ключей.

Чтобы привести к 2NF надо убрать частичные зависимости

- удалить частично зависимые атрибуты
- новое отношение: удаленные атрибуты плюс копия детерминанты

Все таблицы уже удовлетворяют условиям 2NF, а следовательно, и в данном случае преобразований не требуется.

3NF: Отношение в 2NF, при этом не имеет атрибутов, которые не входят в первычный ключ и находятся в транзитивной функциональной зависимости от первичного ключа. (Должны избавиться от атрибутов, которые зависят не от первичного ключа).

Таблица color не соответствует 3NF в моей базе данных, так как некоторые её атрибуты транзитивно зависят от первичного ключа: color_id \rightarrow name \rightarrow {red, green, blue}.

Следовательно, для того чтобы привести таблицу к 3NF нужно разбить ее на две таблицы:

	COLOR						RGB	
	PK	color_id		COLOR				
ł		name	=				PK	rgb_id
		red		PK	color_id	+		red
				name	name			aroon
		green						green
		blue					blue	
		blue						

Опишите изменения в функциональных зависимостях, произошедшие после преобразования в 3NF

Раньше

Цвет

- ullet color_id o name
- ullet color_id o red
- $\bullet \ \mathtt{color_id} \to \mathtt{green}$
- ullet color_id o blue
- ullet name ightarrow red
- ullet name o green
- ullet name o blue

Теперь

Цвет

ullet color_id o name

Rgb

- ullet rgb_id o red
- $rgb_id \rightarrow green$
- $rgb_id \rightarrow blue$

Преобразуйте отношения в BCNF. Докажите, что полученные отношения представлены в BCNF

Определение ЗNF не совсем подходит для следующих отношений:

- отношение имеет два или более потенциальных ключа;
- два и более потенциальных ключа являются составными;
- они пересекаются, т.е. имеют хотя бы один общий атрибут.

Для отношений, имеющих один первичный ключ, BCNF является 3NF, то есть в моем случае, BCNF и 3NF эквивалентны, так как все таблицы имеют только один первичный ключ.

Приведите отношения в 5NF (дополнительное задание).

4NF: Отношение находится в BCNF и не содержит нетривиальных многозначных зависимостей.

Во многозначных зависимостях одному значению детерминанта соответствует множество значений зависимого атрибута.

Все таблицы в моей базе данных удовлетворяют условиям 4NF, так как в них одному значению детерминанта соответствует только одно значение зависимого атрибута.

5NF: Отношение находится в 4NF и любая зависимость соединения в ней является тривиальной.

Таблицы моей базы данных удовлетворяют условиям 5NF, так как они не содержат многозначние зависимости.

Какие денормализации будут полезны для вашей схемы? Приведите подробное описание

Я думаю, что декомпозирования таблицы **color** было лишнее, посколько докомпозиция требует памяти и скорость выполнение существенно понизится из-за того, что нам потребуется соединение таблиц, поэтому решил оставить все как есть.

Выводы по работе

При выполнении лабораторной работы я получил первычные знания о нормализации, функциональных и многозначных зависимостях. На своем опыте нормализовал таблицы и получил навыки нормализации таблиц баз данных.