## FLIGHT DELAY PREDICTION

# Predicting Flight Delays Using Machine Learning

# Karan Deo Burnwal, Turanyaa Garg

Department of Electrical Engineering, IIT Delhi

# Abstract

This project aims to predict flight delays using historical data and machine learning models. Data preprocessing, feature engineering, and model selection are employed to enhance prediction accuracy. Various models are compared, with a focus on balancing performance and interpretability.

#### Keywords

flight delay prediction, machine learning, feature engineering, classification

Github: Link

# 1 Introduction

Flight delays are costly and disruptive for airlines and passengers alike. The objective of this study is to develop a predictive model based on historical flight data to anticipate delays. Using machine learning techniques, we aim to identify key factors influencing delays and assess their predictive power.

#### 2 Dataset

# 2.1 Preprocessing

The raw flight data underwent several preprocessing steps to prepare it for modeling:

#### 2.1.1 Handling Categorical Variables

- Identified key categorical columns: UniqueCarrier, Origin, and Dest
- Handled category mismatches between train and test sets by:
  - Replacing categories present in training but absent in test set with 'Unknown'
  - Replacing categories present in test but absent in training set with 'Unknown'
- Applied one-hot encoding using OneHotEncoder with drop='first' to avoid multicollinearity

### 2.1.2 Data Cleaning

- Removed 'c-' prefix from temporal columns:
  - Month
  - DayofMonth
  - DayOfWeek
- Converted these columns to integer type
- Transformed target variable dep\_delayed\_15min to binary format:
  - 1 for 'Y' (delayed)
  - 0 for 'N' (not delayed)

#### 2.1.3 Feature Engineering

• Extracted temporal features from DepTime:

$$\begin{split} \mathtt{DepHour} &= \lfloor \frac{\mathtt{DepTime}}{100} \rfloor \\ \mathtt{DepMinute} &= \mathtt{DepTime} \bmod 100 \end{split}$$

- Created distance categories using the following bins:
  - -0: [0, 500] miles
  - 1: (500, 1000] miles
  - -2: (1000, 1500] miles
  - -3: > 1500 miles

## 2.1.4 Class Imbalance Treatment

- Applied Synthetic Minority Over-sampling Technique (SMOTE)
- Used random\_state=42 for reproducibility

#### 2.1.5 Data Splitting

- Implemented train-validation split:
  - 80% training set
  - 20% validation set
- Used stratified splitting to maintain class distribution

| Feature Name      | Description              |  |  |
|-------------------|--------------------------|--|--|
| Month             | Month of departure       |  |  |
| DayofMonth        | Day of the month         |  |  |
| DayOfWeek         | Day of the week          |  |  |
| DepTime           | Departure time (HH)      |  |  |
| UniqueCarrier     | Airline code             |  |  |
| Origin            | Origin airport code      |  |  |
| Dest              | Destination airport code |  |  |
| Distance          | Distance in miles        |  |  |
| dep_delayed_15min | 15+ minutes delay        |  |  |

Table 1: Feature Description

| Feature Name     | Description                |  |  |
|------------------|----------------------------|--|--|
|                  | Hour of the departure      |  |  |
| DepHour          | time, extracted from       |  |  |
|                  | 'DepTime'.                 |  |  |
|                  | Minute of the departure    |  |  |
| DepMinute        | time, extracted from       |  |  |
|                  | 'DepTime'.                 |  |  |
| DistanceCategory | Binned distance between    |  |  |
|                  | origin and destination:    |  |  |
|                  | 'Short', 'Medium', 'Long', |  |  |
|                  | 'Very Long'.               |  |  |

Table 2: New Features in the Dataset

- Applied splitting to both:
  - Original dataset
  - SMOTE-resampled dataset

# 3 Model Performance Insights

Our analysis evaluated ten different machine learning models, each tested on both original and resampled datasets.

The performance hierarchy reveals interesting insights:

- **Top Tier** (AUC-ROC > 0.90):
  - Random Forest (Resampled): 0.9361.
  - AdaBoost (Resampled): 0.9334.
  - Gradient Boosting (Resampled): 0.9330.
  - Decision Tree (Resampled): 0.9085.
- Mid Tier (AUC-ROC 0.70-0.90):
  - KNN (Resampled): 0.8731.
  - Logistic Regression (Resampled): 0.7258.
  - LDA (Resampled): 0.7308.
- Lower Tier (AUC-ROC < 0.70):
  - GaussianNB (Original): 0.5707.
  - QDA (Original): 0.5119.

# 3.1 Impact of Model Complexity

- Simple Models: Linear and probabilistic models struggled on both datasets:
  - Logistic Regression (Original): AUC-ROC of 0.7078.
  - LDA (Original): AUC-ROC of 0.7062.
  - QDA (Original): AUC-ROC of 0.5119.

#### • Intermediate Complexity:

- Decision Tree (Resampled): AUC-ROC of 0.9085, demonstrating significant improvement with resampling.
- KNN (Resampled): AUC-ROC of 0.8731, highlighting its effectiveness post-resampling.

#### • Complex Ensemble Methods:

- Random Forest (Resampled): AUC-ROC of 0.9361, the top performer overall.
- AdaBoost (Resampled): AUC-ROC of 0.9334, showing robust performance.
- Gradient Boosting (Resampled): AUC-ROC of 0.9330, maintaining high consistency.

# 3.2 AUC-ROC Plots for Original and Resampled Datasets

The AUC-ROC curves illustrate the performance of AdaBoost, Gradient Boosting, and Random Forest models on both the original and resampled datasets. These plots provide insights into the models' trade-offs between sensitivity and specificity.

# 3.3 Class Imbalance and Resampling Effects

#### 3.3.1 Original Dataset Performance

The original dataset's class imbalance led to significant challenges:

- Biased Predictions: High accuracy but poor F1 scores for certain models:
  - Random Forest: F1 score of 0.0010 despite 0.8096 accuracy.
  - Extra Trees: F1 score of 0.0000 despite 0.8095 accuracy.
- Underperforming Models: Probabilistic models like GaussianNB and QDA showed limited utility.

| Model                                 | Accuracy | F1 Score | AUC-ROC Score |
|---------------------------------------|----------|----------|---------------|
| Random Forest                         | 0.8096   | 0.0010   | 0.7306        |
| Gradient Boosting                     | 0.8175   | 0.1028   | 0.7266        |
| AdaBoost                              | 0.8146   | 0.1377   | 0.7215        |
| Decision Tree                         | 0.8132   | 0.2625   | 0.6836        |
| Logistic Regression                   | 0.8145   | 0.1000   | 0.7078        |
| Linear Discriminant Analysis (LDA)    | 0.8123   | 0.1225   | 0.7062        |
| k-Nearest Neighbors (KNN)             | 0.7870   | 0.1689   | 0.5996        |
| Extra Trees                           | 0.8095   | 0.0000   | 0.7062        |
| Gaussian Naive Bayes                  | 0.3856   | 0.3299   | 0.5707        |
| Quadratic Discriminant Analysis (QDA) | 0.2316   | 0.3235   | 0.5119        |

Table 3: Model Performance on Original Dataset

| Model                                 | Accuracy | F1 Score | AUC-ROC Score |
|---------------------------------------|----------|----------|---------------|
| Random Forest                         | 0.8802   | 0.8662   | 0.9361        |
| AdaBoost                              | 0.8825   | 0.8695   | 0.9334        |
| Gradient Boosting                     | 0.8809   | 0.8668   | 0.9330        |
| Extra Trees                           | 0.8392   | 0.8265   | 0.9088        |
| Decision Tree                         | 0.8491   | 0.8279   | 0.9085        |
| k-Nearest Neighbors (KNN)             | 0.7779   | 0.8078   | 0.8731        |
| Linear Discriminant Analysis (LDA)    | 0.6723   | 0.6785   | 0.7308        |
| Logistic Regression                   | 0.6678   | 0.6733   | 0.7258        |
| Gaussian Naive Bayes                  | 0.5628   | 0.6690   | 0.6058        |
| Quadratic Discriminant Analysis (QDA) | 0.5199   | 0.6710   | 0.5202        |

Table 4: Model Performance on Resampled Dataset

#### 3.3.2 Resampling Impact

Resampling substantially improved model performance:

# • Positive Impacts:

- Boosted ensemble methods (Random Forest, AdaBoost, Gradient Boosting).
- Enhanced performance for Decision Trees and KNN.

#### • Mixed Results:

- Minor improvements for linear models like Logistic Regression and LDA.
- GaussianNB and QDA remained relatively weak performers.

# 4 Practical Implementation Considerations

## 4.1 Model Selection Trade-offs

- Random Forest (Resampled): Top performer with balanced accuracy, F1 score, and AUC-ROC, suitable for robust applications.
- AdaBoost (Resampled): Offers similar performance to Random Forest but may be more sensitive to noise.
- Gradient Boosting (Resampled): Consistent high performance with moderate computational demands.
- KNN (Resampled): Strong F1 score and AUC-ROC but may face scalability issues with larger datasets.



Figure 1: AUC-ROC Curves for AdaBoost, Gradient Boosting, and Random Forest on Original and Resampled Datasets

## 4.2 Resource Requirements

- Memory Usage: Ensemble methods like Random Forest and AdaBoost require significant memory for model storage.
- Computation Time: Gradient Boosting and KNN require careful optimization for training and prediction phases.
- Real-Time Suitability: Logistic Regression and Decision Trees offer faster inference, making them viable for real-time applications.

# 5 Limitations and Future Opportunities

#### 5.1 Current Limitations

The analysis highlights several challenges:

- Data Quality Issues: Imbalanced dataset heavily impacts results. Model performance is dependent on data quality.
- Feature Engineering: Weather data and traffic patterns not integrated

#### 5.2 Future Directions

Enhancements can be pursued in the following areas:

- Data Integration: Incorporate real-time updates and advanced features (e.g., weather, holiday schedules, passenger load factors, crew availability, Aircraft maintenance).
- Model Optimization: Explore hybrid models and deep learning techniques for further gains.
- Scalability: Develop optimized pipelines for deployment across large-scale datasets and systems incorporating real-time prediction capability.

## References

- Yuemin Tang. Airline Flight Delay Prediction Using Machine Learning Models. University of Southern California, USA.
- Juan Pineda-Jaramillo, Claudia Munoz, Rodrigo Mesa-Arango, Carlos Gonzalez-Calderon, Anne Lange. Integrating Multiple Data Sources for Improved Flight Delay Prediction Using Explainable Machine Learning.
- Kaggle Dataset: Flight Delay Prediction. Available at: https://www.kaggle.com/.
- Airline Flight Delay Prediction Using Machine Learning Models. Scientific Reports.
  2024. Available at: https://doi.org/10.1038/s41598-024-55217-z.