

CSE 151A Intro to Machine Xearning

Lecture 05 - Part 01 What is Conditional Independence?

$P(A \text{ and } B) = P(A) \cdot P(B)$

Remember: Independence

Events A and B are independent if

$$P(A, B) = P(A) \cdot P(B)$$
.

Equivalently, A and B are independent if¹

$$P(A \mid B) = P(A)$$

 $^{^{1}}$ or P(B) = 0

Informally

► A and B are **independent** if learning B does not influence your belief that A happens.

Example

You draw one card from a deck of 52 cards. A is the event that the card is a heart, B is the event that the card is a face card (J,Q,K,A). Are these independent?

- **♥**: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
- ♦: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
- **±**: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
- **≜**: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A

Example

We've lost the King of Clubs! You draw one card from this deck of 51 cards. A is the event that the card is a heart, B is the event that the card is a face card (J,Q,K,A). Are these independent?

- **♥**: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
- ♦: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
- **±**: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, A
- **♠**: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A

- ...true independence is rare.
- Example, survivors of the titanic:

PassengerID	Survived	Pclass	Sex	Age	Fare	Embarked	FavColor
0 1 2 3 4	0 0 0 0	3 1 3 3 3	female male male male male	23.0 47.0 36.0 31.0 19.0	7.9250 52.0000 7.4958 7.7500 7.8958	S S S Q S	yellow purple green purple purple
		•••	•••	•••	•••	•••	•••

- ► *P*(Survived = 1) = .408
- P(Survived = 1 | FavColor = purple) = .4
- ► Not independent...

- ► *P*(Survived = 1) = .408
- ► P(Survived = 1 | FavColor = purple) = .4
- ► Not independent... ...but "close"!

- ► *P*(Survived = 1) = .408
- ► *P*(Survived = 1 | Pclass = 1) =

- ► *P*(Survived = 1) = .408
- ► P(Survived = 1 | Pclass = 1) = .657

- ► *P*(Survived = 1) = .408
- P(Survived = 1 | Pclass = 1) = .657
- Strong dependence.

Remember: Conditional Independence

Events A and B are conditionally independent given C if

$$P(A, B \mid C) = P(A \mid C) \cdot P(B \mid C)$$

Equivalently²:

$$P(A \mid B, C) = P(A \mid C)$$

 $^{^{2}}$ Or P(B) = 0

Informally

- Suppose you know that C has happened.
- ▶ You have some belief that A happens, given C.
- ► A and B are **conditionally independent** given C if learning that B happens in addition to C does not influence your belief that A happens given C.

Very informally

A and B are **conditionally independent** given C if learning that B happens in addition to C gives you no more information about A.

Example

We've lost the King of Clubs! You draw one card from this deck of 51 cards. A is the event that the card is a heart, B is the event that the card is a face card (J,Q,K,A). Now suppose you know that the card is red. Are A and B independent given this information?

- **♥**: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
- ♦: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
- **±**: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, A
- **≜**: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A

Titanic Example

- Survival and class are not independent.
- But they're (close) to conditionally independent given ticket price:
 - P(Survived = 1 | PClass = 1, Fare > 50) = .708
 - ► *P*(Survived = 1 | Fare > 50) = .696

More Variables

► X₁, X₂, ..., X_d are mutually conditionally independent given Y if

$$P(X_1, X_2, ..., X_d \mid Y) = P(X_1 \mid Y) \cdot P(X_2 \mid Y) \cdots P(X_d \mid Y)$$

CSE 151A Intro to Machine Learning

Lecture 05 - Part 02 How Conditional Independence Helps

Recall: The Bayes Classifier

► To use the Bayes classifier, we must estimate

$$P(\vec{X} = \vec{x} \mid Y = y_i)$$

for each class y_i , where $\vec{X} = (X_1, X_2, ..., X_d)$.

Written differently, we need to estimate:

$$P(X_1 = X_1, ..., X_d = X_d | Y = y_i)$$

Recall: Histogram Estimators

- ► When $X_1, ..., X_d$ are continuous, we can use **histogram estimators**.
- Curse of Dimensionality: if we discretize each dimension into 10 bins, there are 10^d bins.

Conditional Independence to the Rescue

Now suppose $X_1, ..., X_d$ are mutually conditionally independent given Y. Then:

$$P(X_{1} = x_{1}, \dots, X_{d} = x_{d} \mid Y = y_{i}) = P(X_{1} = x_{1} \mid Y = y_{i}) \\ P(X_{2} = x_{2} \mid Y = y_{i}) \\ \cdots \\ P(X_{d} = x_{d} \mid Y = y_{i})$$

Instead of estimating $P(X_1, ..., X_d \mid Y)$, estimate $P(X_1 \mid Y), ..., P(X_d \mid Y)$ separately.

Breaking the Curse

- Lets use histogram estimators.
- If we discretize each dimension into 10 bins, we need:
 - ▶ 10 bins to estimate $P(X_1|Y)$
 - ▶ 10 bins to estimate $P(X_2|Y)$
 - **>**
 - ▶ 10 bins to estimate $P(X_d|Y)$
- ▶ We therefore need 10d bins in total.

Breaking the Curse

- Conditional independence drastically reduced the number of bins needed to cover the input space.
- From $\Theta(10^d)$ to $\Theta(d)$.

Idea

- Bayes Classifier needs a lot of data when d is big.
- But if the features are conditionally independent given the label, we don't need so much data.
- So let's just assume conditional independence.
- ► The result: the **Naïve Bayes Classifier**.

Naïve Bayes: The Algorithm

- ▶ **Assume** that $X_1, ..., X_d$ are mutually independent given the class label.
- Estimate $P(X_1 = x_1 | Y = y_i)$, ..., $P(X_d = x_d | Y = y_i)$ however you'd like: histograms, fitting univariate Gaussians, etc.
- \triangleright Pick the y_i which maximizes

$$P(X_1 = X_1 | Y = y_i) \cdots P(X_d = X_d | Y = y_i)P(Y = y_i)$$

...are we allowed to just assume conditional independence?

...are we allowed to just assume conditional independence?

Answer: who's going to stop us?

...isn't the assumption wrong?

...isn't the assumption wrong?

Answer: yeah, usually.

So does it even work?

So does it even work?

► **Answer:** Yes, surprisingly well.

"All models are wrong, but some are useful."

- George Box, statistician

Estimating Probabilites

- ▶ You can estimate $P(X_i|Y)$ however makes sense.
- Often, people assume: Gaussian Naïve Bayes.

Example: NBA

- ► **Given**: player with height = 75 in, weight = 210 lbs.
- **Predict**: whether they are a forward or a guard.
- Let's use Gaussian Naïve Bayes.

Example: NBA

▶ We need to estimate:

```
P(X_1 = 75 | Y = \text{forward})

P(X_1 = 75 | Y = \text{guard})

P(X_2 = 210 | Y = \text{forward})

P(X_2 = 210 | Y = \text{guard})
```

Example: NBA

- ► We'll fit 1-d Gaussians to:
 - heights of forwards.
 - heights of guards.
 - weights of forwards.
 - weights of guards.

Example: NBA

$$P(X_1 = 75 \mid Y = \text{forward}) \cdot P(X_2 = 210 \mid Y = \text{forward}) \cdot P(Y = \text{forward})$$

= $\mathcal{N}(75; 80.58, 1.53^2) \cdot \mathcal{N}(210; 230.46, 17.48^2) \cdot \frac{156}{300}$
 $\approx 6.73 \times 10^{-6}$

$$P(X_1 = 75 \mid Y = \text{guard}) \cdot P(X_2 = 210 \mid Y = \text{guard}) \cdot P(Y = \text{guard})$$

= $\mathcal{N}(75; 75.44, 2.27^2) \cdot \mathcal{N}(210; 195.47, 15.83^2) \cdot \frac{144}{300}$
 $\approx 5.88 \times 10^{-5}$

Example: NBA

- About 85% accurate on test set.
- But heights and weights are definitely not conditionally independent given position.

Gaussian Naïve Bayes

- ▶ $P(X_1 | Y) \cdots P(X_d | Y)$ is a product of 1-d Gaussians with different means, variances.
- Remember: result is a d-dimensional Gaussian with diagonal covariance matrix:

$$C = \begin{pmatrix} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \sigma_d^2 \end{pmatrix}$$

Gaussian Naïve Bayes

But in GNB, each class has own diagonal covariance matrix.

Therefore: Gaussian Naïve Bayes is equivalent to QDA with diagonal covariances.

Up next...

...predicting who survives on the Titanic.

O D ... **O** 7.1

CSE 151A Intro to Machine Kearning

Lecture 05 – Part 03
The Titanic

The Titanic Dataset

PassengerID	Survived	Pclass	Sex	Age	Fare	Embarked	FavColor
0 1	0 0 0	3 1	female male male	23.0 47.0 36.0	7.9250 52.0000 7.4958	S S S	yellow purple
3 4	0	3 3	male male	31.0 19.0	7.4958 7.7500 7.8958	Q S	green purple purple
							· ·

Goal: predict survival given Age, Sex, Pclass.

Let's use Naïve Bayes

 \triangleright We'll pick y_i so as to maximize

$$P(Age = x_1 \mid Y = y_i) \cdot P(Sex = x_2 \mid Y = y_i) \cdot P(Pclass = x_3 \mid Y = y_i) \cdot P(Y = y_i)$$

We must choose how to estimate probabilities. Gaussians?

- ► How do we estimate $P(Age = x_1 | Y = y_i)$?
- Age is a continuous variable.
- Looks kind of bell-shaped, we'll fit Gaussians.

- ► How do we estimate $P(\text{Sex} = x_1 \mid Y = y_i)$?
- Sex is a categorical variable: either male or female.

- Fitting Gaussian makes no sense.
- But estimating these probabilities is easy.

$$P(\text{Sex} = \text{male} \mid \text{Did Not Survive}) \approx \frac{\text{# of died and male}}{\text{# of died}}$$

= .87

- Pclass, too, is categorical. Estimate in same way.
- ▶ You can estimate $P(X_i|Y)$ however makes sense.
- Can use different ways for different features.
- Gaussian for age, simple ratio of counts for class, sex.

Example: The Titanic

Using just age, sex, ticket class, Naïve Bayes is 70% accurate on test set.

- Not bad. Not great.
- To do better, add more features.

In High Dimensions

- Naïve Bayes excels in high dimensions.
- Example: document classification.
 - Document represented by a "bag of words".
 - Pick a large number of words; say, 20,000.
 - Make a d-dimensional vector with ith entry counting number of occurrences of ith word.

Practical Issues

We are multiplying lots of small probabilities:

$$P(X_1|Y) \cdots P(X_d|Y)$$

Potential for underflow.

Practical Issues

- "Trick": work with log-probabilities instead.
- Pick the y; which maximizes

$$\begin{split} \log \left[P(X_1 = x_1 \mid Y = y_i) \cdots P(X_d = x_d \mid Y = y_i) P(Y = y_i) \right] \\ &= \log P(X_1 = x_1 \mid Y = y_i) + \dots + \log P(X_d = x_d \mid Y = y_i) + \log P(Y = y_i) \\ &= \left(\sum_{j=1}^d \log P(X_j = x_j \mid Y = y_i) \right) + \log P(Y = y_i) \end{split}$$