This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

fe < sandra.feyerabend@basf-ag.de > am 09.09.99 16:16:22

Bitte antworten an fe < sandra.feyerabend@basf-ag.de >

An:

Zdw Patentschriftensammlung/ZD/BASF-AG/BASF

Kopie:

Sandra Feyerabend/ZD/BASF-AG/BASF

Thema:

Patentbestellung

Bestellung von Patentschriften

Benutzername : fe

Mailadresse : sandra.feyerabend@basf-ag.de

Auftragsnummer: I0020040

Sandra Feyerabend

BASF AG ZDX/G C 100 49002

21183

DE 02541438

- Exemplare: 1

Die gewünschte Lieferung erfolgt per: Post

Zusätzliche Notizen des Benutzers: interner Vermerk fe: 48937/IDS/UP

21)

2

43

Int. Cl. 2:

C 317/26 C 07 D 317/72

BUNDESREPUBLIK DEUTSCHLAND

Offenlegungsschrift 25 41

Aktenzeichen:

P 25 41 438.4

Anmeldetag:

17. 9.75

Offenlegungstag:

31. 3.77

30 Unionspriorität:

33 33 33

Bezeichnung:

Dioxolanaldehyde und Verfahren zu ihrer Herstellung

1

Anmelder:

BASF AG, 6700 Ludwigshafen

7

Erfinder:

Fraunberg, Karl, Dipl.-Chem. Dr., 6719 Bobenheim;

Siegel, Hardo, Dipl.-Chem. Dr., 6720 Speyer

A MARKET TO THE REAL PROPERTY OF THE PARKET TO THE PARKET

1) Dioxolanderivate der allgemeinen Formel I

in der R eine Formylgruppe und m die Zahlen O oder 1 bedeutet, der Rest R³ H oder Alkyl mit 1 bis 3 C-Atomen bedeutet, der Rest R⁴ für gegebenenfalls verzweigtes Alkyl mit 2 bis 10 C-Atomen, Cycloalkyl mit 5 bis 7 C-Atomen oder Aryl steht oder aber R³ und R⁴ zusammen eine gegebenenfalls verzweigte Alkylengruppe mit 4 bis 7 C-Atomen bedeuten.

Verfahren zur Herstellung von Dioxolanaldehyden der allgemeinen Formel I gemäss Anspruch 1, <u>dadurch</u> gekennzeichnet, dass man Vinyldioxolane der allgemeinen Formel II

$$R^3$$
 $CH = CH_2$
(II)

in Gegenwart von Kobalt- oder Rhodium enthaltenden Hydroformylierungskatalysatoren bei Temperaturen von 50 bis 180° C und Drücken von 10 bis 1000 bar mit CO und $_{2}$ umsetzt.

Verfahren zur Herstellung von Dioxolanderivaten der allgemeinen Formel I, gemäss Anspruch 1, in der R den Rest-CH₂OH bedeutet und R³ und R⁴ die in Anspruch 1 angegebene Bedeutung haben, dadurch gekennzeichnet, dass man Vinyldioxolane der allgemeinen Formel II

2541438

A) in Gegenwart von Kobalt- oder Rhodium-enthaltenden Hydroformylierungskatalysatoren bei Temperaturen von 50 bis 180°C und Drücken von 10 bis 1000 bar mit CO und H₂ umsetzt und

(II)

- B) die dabei erhaltenen Aldehyde in an sich bekannter Weise zu den entsprechenden Alkoholen reduziert.
- Verfahren zur Herstellung von Dioxolanderivaten der allgemeinen Formel I gemäss Anspruch 1, in der R den Rest -CH(OR")₂ bedeutet und R" jeweils für -CH₃ oder -C₂H₅ stehen oder aber beide R" gemeinsam eine gegebenenfalls verzweigte Alkylengruppe mit 4 bis 6 C-Atomen bedeuten R³ und R⁴ die in Anspruch 1 angegebene Bedeutung haben, dadurch gekennzeichnet, dass man Vinyldioxolane der allgemeinen Formel II

$$R^{3}$$

$$0$$
 $CH=CH_{2}$
(II)

- A) in Gegenwart von Kobalt- oder Rhodium-enthaltenden Hydroformylierungskatalysatoren bei Temperaturen von 50 bis 180°C und Drücken von 1000 bar mit CO und H₂ um-setzt und
- B) die erhaltenen Aldehyde in an sich bekannter Weise acetalisiert.
- Verfahren zur Herstellung von Dioxolanderivaten der allgemeinen Formel I, gemäss Anspruch 1, in der R den Rest -CH(R')OH bedeutet und R' für -CH₃, -C₂H₅ oder für -CH=CH₂ steht, und R³ und R⁴ die in Anspruch 1 angegebene Bedeutung haben, dadurch gekennzeichnet, dass man Vinyldioxolane der allgemeinen Formel II

(II)

- A) in Gegenwart von üblichen Kobalt- oder Rhodium-enthaltenden Hydroformylierungskatalysatoren bei Temperaturen von 50 bis 180°C und Drücken von 10 bis 1000 bar mit CO und H₂ umsetzt und
- B) die dabei erhaltenen Aldehyde in an sich bekannter Weise nach Grignard alkyliert.

BASF Aktiengesellschaft

Rr.

2541438

Unser Zeichen: 0.Z.31 550 Rr/St 6700 Ludwigshafen, 12.9.1975

Dioxolanaldehyde und Verfahren zu ihrer Herstellung

Die Erfindung betrifft Dioxolanderivate der allgemeinen Formel I

$$\begin{array}{c|c}
R_{3} & & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

in der R eine Formylgruppe und m die Zahlen O oder 1 bedeutet, der Rest R³ Wasserstoff oder Alkyl mit 1 bis 3 C-Atomen, vorzugsweise Wasserstoff oder Methyl, bedeutet, der Rest R für gegebenenfalls verzweigtes Alkyl mit 2 bis 10 C-Atomen, Cycloalkyl mit 5 bis 7 C-Atomen, oder Aryl, wie Phenyl, Tolyl, Xylyl oder Methoxyphenyl, vorzugsweise für gegebenenfalls verzweigtes Alkyl mit 2 bis 10 C-Atomen oder Phenyl steht oder aber R³ und R⁴ zusammen eine gegebenenfalls verzweigte Alkylengruppe mit 4 bis 6 C-Atomen bedeuten, somit Dioxolanaldehyde der allgemeinen Formel Ia

$$R^{3}$$
 CH_{2}
 CH_{2}
 CH_{2}
 CH_{0}
(Ia),

in der R³ und R⁴ die oben angegebene Bedeutung haben sowie Dioxolanaldehyde der allgemeinen Formel Ib

$$R^{\frac{3}{4}}$$
 $CH^{\frac{CH}{3}}$ $CH^{\frac{H}{3}}$ (Ib),

in der R³ und R⁴ die oben angegebene Bedeutung haben. 709813/0964 309/75

-2-

2541438

Die neuen Dioxolanaldehyde sowie die daraus erhaltenen Alkohole, Acetale und Olefine zeichnen sich durch interessante Duftnoten aus und erweitern dadurch die Palette guter synthetischer Riechstoffe. Sie besitzen ausgesprochen grüne Duftnoten mit fruchtiger, krautiger oder erdiger Beinote und ganz ausgezeichneter Haftung. Einige Aldehyde der Formel I haben einen ausgeprägten "Frische-Wäsche-Geruch". Die neuen Verbindungen eignen sich daher für eine Vielzahl parfimistischer Anwendungen, z.B. für Parfüms, für Seifen, Waschmittel, Körperpflegemittel. Weiterhin eignen sie sich zur Aromatisierung von Tabak und Lebensmitteln. Die Anwendung der Aldehyde der Formel I wird teilweise eingeschränkt durch ihre beschränkte Haltbarkeit in stark saurem oder stark alkalischem Milieu. Die durch Reduktion, Acetalisierung oder Grignard-Alkylierung aus den Aldehyden herstellbaren Dioxolanderivate besitzen ähnlich angenehme Duftnoten, sind aber im allgemeinen stabiler in stark alkalischem Milieu als die Dioxolanaldehyde. Die Aldehyde fallen bei ihrer Herstellung im allgemeinen als Gemische von Ia und Ib an. Diese Gemische können als solche für parfümistische Zwecke eingesetzt werden. Man kann aber auch die Aldehyde durch Destillation trennen und die reinen Verbindungen verwenden. Gleichermassen kann man die Derivate als Gemische herstellen und als solche oder als reine Verbindungen verwenden.

Gegenstand der Erfindung sind ferner Verfahren zur Herstellung von Dioxolanaldehyden der allgemeinen Formel I sowie deren weitere Umsetzung zu Derivaten in denen R -CH₂OH, -CH(R')OH oder -CH(OR")₂ bedeutet, wobei R' -CH₃, -C₂H₅ oder -CH=CH₂ bedeutet und die R" jeweils für -CH₃ oder -C₂H₅ stehen oder aber beide R" gemeinsam eine gegebenenfalls verzweigte Alkylengruppe mit 4 bis 6 C-Atomen bedeuten.

Die Herstellung von Dioxolanaldehyden der allgemeinen Formel I kann man so durchführen, dass man Vinyldioxolane der allgemeinen Formel II

in Gegenwart von Kobalt- oder Rhodium-enthaltenden Hydroformy-lierungskatalysatoren bei Temperaturen von 50 bis 180° C, vorzugsweise 60 bis 130° C und Drücken von 10 bis 1000 bar, vorzugsweise 20 bis 700 bar mit CO und H₂ umsetzt.

(II),

Zur Herstellung von Dioxolanderivaten der allgemeinen Formel I, in der R den Rest -CH₂OH bedeutet, setzt man Vinyldioxolane der allgemeinen Formel II

$$R^3$$
 O
 $CH=CH_2$
(II),

A) in Gegenwart von Kobalt- oder Rhodium-enthaltenden Hydroformy-lierungskatalysatoren bei Temperaturen von 50 bis 180°C, vorzugsweise 60 bis 130°C und Drücken von 10 bis 1000 bar, vorzugsweise 20 bis 700 bar mit CO und H₂ um und B) reduziert die dabei erhaltenen Aldehyde in an sich bekannter Weise zu den entsprechenden Alkoholen.

Zur Herstellung von Dioxolanderivaten der allgemeinen Formel I, in der R den Rest -CH(OR") bedeutet, setzt man Dioxolane der allgemeinen Formel II

$$R^{3}$$
 $CH=CH_{2}$
(II),

o.z. 31 550 **2541438**

A) in Gegenwart von Kobalt- oder Rhodium-enthaltenden Hydroformylierungskatalysatoren bei Temperaturen von 50 bis 180°C,
vorzugsweise 60 bis 130°C und Drücken von 10 bis 1000 bar,
vorzugsweise 20 bis 700 bar mit CO und H₂ um und
E) acetalisiert die erhaltenen Aldehyde in an sich bekannter
Weise. Zur Herstellung von Dioxolanderivaten der allgemeinen
Formel I, in der R für -CH(R)'OH steht, setzt man Dioxolane
der allgemeinen Formel II

$$R^{3}$$
 O
 $CH=CH_{2}$
(II),

)‡

પ્રાં

10

33

3. [1

1

)

M

3

t

c

A) in Gegenwart von üblichen Kobalt- oder Rhodium-enthaltenden Hydroformylierungskatalysatoren bei Temperaturen von 50 bis 180°C, vorzugsweise 60 bis 130°C und Drücken von 10 bis 1000 bar, vorzugsweise 20 bis 700 bar mit CO und H₂ um und B) alkyliert oder vinyliert die dabei erhaltenen Aldehyde der Formel I in an sich bekannter Weise nach Grignard.

Die als Ausgangsprodukte verwendeten Vinyldioxolane der allgemeinen Formel II sind bis auf die Verbindung, in der R³=H und R = Cyclohexenyl bedeuten, neue Verbindungen. Sie können beispielsweise durch Umsetzen von Aldehyden der Formel R4-C60 wie Propionaldehyd, Butyraldehyd, Isobutyraldehyd, Valeraldehyd, Isovaleraldehyd, Hexanal, Heptanal, Octanal, Formylcyclohexan, Benzaldehyd, o-,m- oder p-Tolylaldehyd, o-,m- oder p-Methoxybenzaldehyd, 3,4-Methylendioxybenzaldehyd oder Furfurol, Benzaldehyd oder aber Ketonen der Formel R3-CO-R4, wie Methyläthylketon, Methylpropylketon, Methylbutylketon, Methylisopropylketon, 5-Methylhexanon-(2), 6-Methyl-heptanon-(2), Diathylketon, Dipropylketon, Diisopropylketon, Heptanon-(2), Octanon-(2), Decanon-(2); Undecanon-(2), Acetophenon, Cyclohexylmethylketon, Cyclopentanon, Cyclohexanon, Cycloheptamon, mit 0,5 bis 10 molaren, vorzugsweise 1-5-molaren Mengen Vinylglycol in Gegenwart von 0,001 bis 10, vorzugsweise 0,01 bis 0,1 Mol% an sauren Katalysatoren, wie HCl, H2SO1, Carbonsauren, Sulfonsauren, Lewissauren (BF3, ZnCl2, AIC13) oder sauren Ionenaustauschern und gegebenenfalls inerten

o.z. 31 550 **2541438**

Lösungsmitteln bei Temperaturen von O bis 150°C, vorzugsweise 50 bis 100°C hergestellt werden. Bei dieser Umsetzung empfiehlt es sich, das bei der Reaktion gebildete Wasser entweder auf übliche Weise durch chemische Mittel wie Molekularsiebe oder Orthoester oder aber durch Wasserauskreisen mit Pentan oder Hexan zu entfernen.

Als geeignete Vinyldioxolane seien beispielsweise genannt:

2-Hexyl-4-vinyl-1,3-dioxolan, 2-Methyl-2-hexyl-4-vinyl-1,3dioxolan, 2-Athyl-4-vinyl-1,3-dioxolan, 2-Methyl-2-4-methyl-1-pentyl -4-vinyl-1,3-dioxolan, 2-Butyl-4-vinyl-1,3-dioxolan, 2-Methyl-2-nonyl-4-vinyl-1,3-dioxolan, 2-Phenyl-4-vinyl-1,3dioxolan, 2,2-Pentamethylen-4-vinyl-1,3-dioxolan, 2-Methyl-2äthyl-4-vinyl-1,3-dioxolan, 2-Methyl-2-isopropyl-4-vinyl-1,3dioxolan, 2-Methyl-2-phenyl-4-vinyl-1,3-dioxolan, 2-Isopropyl-4-vinyl-1,3-dioxolan, 2-Cyclohexyl-4-vinyl-1,3-dioxolan, 2-Methyl-2-propyl-4-vinyl-1,3-dioxolan, 2-Methyl-2-butyl-4vinyl-1,3-dioxolan, 2,2-Diäthyl-4-vinyldioxolan, 2,2-dipropyl-4-vinyl-1,3-dioxolan und 2,2-Hexamethylen-4-vinyl-1,3-dioxolan, vorzugsweise 2-Hexyl-4-vinyl-1,3-dioxolan, 2-Methyl-2-hexyl-4vinyl-1,3-dioxolan, 2-Athyl-4-vinyl-1,3-dioxolan, 2-Methyl-2-4-methyl-1-pentyl -4-vinyl-1,3-dioxolan, 2-Butyl-4-vinyl-1,3dioxolan, 2-Methyl-2-nonyl-4-vinyl-1,3-dioxolan, 2-Phenyl-4vinyl-1,3-dioxolan, 2,2-Pentamethylen-4-vinyl-1,3-dioxolan, 2-Methyl-2-äthyl-4-vinyl-1,3-dioxolan, 2-Methyl-2-isopropyl-4vinyl-1,3-dioxolan, 2-Methyl-2-phenyl-4-vinyl-1,3-dioxolan.

Als Kcbalt enthaltende Hydroformylierungskatalysatoren kommen beispielsweise Raney-Kobalt, Kobalthydroxyd, Kobaltcarbonat, Kobaltsulfat, Kobaltacetylacetonat bzw. die sich aus diesen Verbindungen unter Hydroformylierungsbedingungen bildenden Kobaltcarbonyle in Betracht. Bezüglich weiterer Einzelheiten verweisen wir auf J. Falbe, "Synthesen mit Kohlenmonoxid", Springer Verlag, 1967, Seiten 13-21, insbesondere Seite 13.

Bevorzugt verwendet man jedoch Rhodium-enthaltende Hydroformylierungskatalysatoren. Als Rhodium-enthaltende Hydroformylierungskatalysatoren kommen feinverteiltes metallisches Rhodium,
Rhodiumcarbonyle, Rhodiumchlorid, Rhodiumnitrat, Rhodiumsulfat,
Rhodiumoxide, fettsaure Salze von Rhodium sowie Komplexverbindungen, welche durch Umsetzen von Rhodiumsalzen oder Rhodiumcarbonylverbindungen mit Triphenylphosphin, Olefinen, Diolefinen
oder Acetylaceton erhalten werden, in Betracht. Bevorzugt
werden quadratisch planare Rhodium(I)komplexe, die im Reaktionsgemisch homogen löslich sind, wie dimeres Rhodiumcarbonylchlorid,
dimeres Cyclooctadien-(1,5)-yl-rhodiumchlorid [Rh-Cl-COD]
und Rhodiumcarbonylacetylacetcnat.

the first organization of the contribution of

Ebenfalls mit Vorteil verwendbar sird Katalysatoren vom Typ (PR3)n RhX(CO) oder (PR3)n HRh(CO), worin PR3 bevorzugt Triarylphosphin, insbesondere Triphenylphosphin, ist, n eine ganze Zahl zwischen 0,25 und 100 und X CP, Brooder Jobedeutet.

Man kann fertige Rhodiumcarbonylkomplexe für die Umsetzung einsetzen, man kann aber auch Rhodiumverbindungen, die unter den Reaktionsbedingungen in Rhodiumcarbonylkomplexe überführt werden, wie die Halogenide, die Oxide, Chelate oder fettsauren Salze des Rhodiums einsetzen.

Den Katalysator verwendet man im allgemeinen in einer Merge von etwa 1 ppm bis 0,5 Gewichtsprozent, vorzugsweise 5 bis 500 ppm Rhodium, bezogen auf die eingesetzten Vinyldioxolane der Formel II.

Kohlenoxid und Wasserstoff werden im allgemeinen im Volumenverhältnis 4:1 bis 1:4, insbesondere im Volumenverhältnis 2:1 bis 1:2 eingesetzt. Es ist möglich, das gesamte Gasgemisch in stöchiometrischen Mengen, bezogen auf die Vinyldioxolane der Formel II, anzuwenden, vorteilhaft verwendet man jedoch das Gemisch aus Kohlenmonoxid und Wasserstoff im Überschuss, z.B. in einer bis zur 200fach molaren Menge.

werden. In diesem Fall dienen die als Ausgangsstoffe verwendeten Verbindungen und deren Hydroformylierungsprodukte als Lösungsmittel Zweckmässig führt man die Hydroformylierung in Lösungsmittel Zweckmässig führt man die Hydroformylierung in Lösungsmitteln aus, beispielsweise in Kohlenwasserstoffen wie Benzol, Toluol, Zylol, Pentan, Hexan oder Cyclohexan, ferner in Athern, wie Tetrahydrofuran oder Dioxan, oder in Alkanolen wie Methanol, Athanol oder Butanol. Man verwendet das Lösungsmittel im allgemeinen in solchen Mengen, dass die Lösung etwa 10-80-prozentig an den Dioxolanen der Formel II ist.

Zur Durchführung des erfindungsgemässen Verfahrens geht man z.B. so vor, dass man die Vinyldioxolane der Formel II in einem Hochdruckreaktionsgefäss zusammen mit den genannten Katalysatoren und gegebenenfalls zusätzlichen Lösungsmitteln vorlegt und unter den oben genannten Reaktionsbedingungen mit Kohlenmonoxid und Wasserstoff umsetzt.

In entsprechenden Vorrichtungen lässt sich die Reaktion ohne Schwierigkeiten auch kontinuierlich gestalten. Nach dem Abkühlen und Entspannen werden die Hydroformylierungsprodukte durch fraktionierte Destillation isoliert.

Bei der Hydroformylierung der Vinyldickolane II fallen im allgemeinen Gemische der Diokolanaldehyde der Formeln Ia und Ib an, die sich als solche oder nach destillativer Trennung als Riechstoffe einsetzen lassen. Durch Variation der Reaktionsbedingungen lässt sich das Verhältnis Ia/Ib etwa zwischen 2 und 0,5 verschieben.

So wird beispielsweise die Bildung von Ia durch niedrigen Druck und hohe Temperaturen, dagegen die von Ib durch hohen Druck bei niedrigen Temperaturen begünstigt. Durch spezielle Komplexkatalysatoren wie (PPh₃)₃HRh(CO) in Gegenwart von Triphenylphosphin lassen sich unter Anwendung geeigneter Druck- und Temperaturbedingungen ebenfalls höhere Anteile an Ia erhalten.

0.z. 31 550

2541438

Die Dioxolanaldehyde der Formeln Ia und Ib können nach zahlreichen Standardverfahren zu den entsprechenden Alkoholen reduziert werden, beispielsweise durch katalytische Hydrierung, durch Reduktion mit Hilfe von Metallen oder Metallhydriden oder aber durch elektro- oder photochemische Reduktion. Bezüglich weiterer Einzelheiten verweisen wir auf S. Patai, "The Chemistry of the Hydroxyl Group", Interscience Publishers 1971, Seiten 231 bis 243. In Beispiel 3 wird beispielsweise die Reduktion von Dioxolanaldehyden mit Metallhydriden beschrieben.

Die Acetalisierung der Aldehyde Ia und Ib kann nach den bekannten Verfahren zur Acetalisierung von Aldehyden ausgeführt werden, wie sie beispielsweise von H. Meerwein, in "Methoden der Organischen Chemie" (Houben-Weyl) Herausgeber E. Müller, Georg Thieme Verlag Stuttgart, Bd. VI/3, Seiten 199-294 (1965) beschrieben werden. Da der Dioxolanring in Ia und Ib selbst ein cyclisches Acetal bzw. Ketal darstellt, muss man allerdings solche Bedingungen anwenden, unter denen diese cyclische Acetalgruppe nicht angegriffen wird. Das Vermeiden überschüssigen freien Alkohols und schonende Reaktionsbedingungen erlauben aber die Herstellung der Acetale in befriedigenden Ausbeuten. Zur Herstellung der offenkettigen Acetale eignet sich die säurekatalysierte Umsetzung mit Orthoestern, für die cyclischen Acetale die Umsetzung mit Epoxiden besonders gut. Als Beispiel für eine Acetalisierung der Aldehyde beschreiben wir die Acetalisierung der Aldehyde der Formeln Ia oder Ib mit aliphatischen Orthoestern, vorzugsweise mit o-Ameisensäure. Man verwendet den aliphatischen Orthoester in der 0,5- bis 5-fachen, vorzugsweise der 1- bis 1,5-fachen molaren Menge, bezogen auf den Aldehyd. Als Katalysatoren verwendet man starke Protonensäuren wie H2SO4, HC1, H3PO4 oder p-Toluolsulfonsäure oder Lewissäuren, wie AlCl3 oder ZnCl2.

Den Katalysator verwendet man in Mengen von 0,001 bis 10 Molprozent, vorzugsweise 0,1 bis 1 Molprozent, bezogen auf den Aldehyd. Die Umsetzung kann lösungsmittelfrei, aber auch in unter den Reaktionsbedingungen inerten organischen Lösungsmitteln, wie

aliphatischen oder aromatischen Kohlenwasserstoffen, chrof 1438 kohlenwasserstoffen oder Äthern durchgeführt werden. Als Reaktionstemperaturen kommen solche von etwa -20 bis 100°C, vorzugsweise O bis 40°C in Betracht. Die Reaktionsdauer beträgt von 2 bis 24 Stunden. Zur Aufarbeitung wäscht man das Reaktionsgemisch mit verdünnter Sodalösung oder NaOH-Lösung neutral und fraktioniert.

Die Alkylierung bzw. Vinylierung der Dioxolanaldehyde der Formel Ia bzw. Ib nach Grignard erfolgt durch Umsetzen der Aldehyde mit der Lösung des gewünschten Alkyl- oder des Vinylmagnesiumhalogenids und anschliessende Hydrolyse des gebildeten Alkoholats.

Als Alkyl- bzw. Vinylmagnesiumhalogenide kommen Methyl-, Athyloder Vinylmagnesiumchlorid, die entsprechenden Bromide und Jodide, insbesondere die genannten Chloride in Betracht. Die Herstellung der Alkyl- bzw. Vinylmagnesiumhalogenidlösungen wird in üblicher Weise durch Umsetzen von Alkyl-bzw. Vinylchlorid, -bromid oder -jodid mit Magnesium in ätherischen Lösungsmitteln wie Diäthyläther, Tetrahydrofuran oder Diäthylenglykoldimethyläther durchgeführt. Man verwendet 0,5 bis 5, vorzugsweise 1 bis 2 molare Lösungen. Die Umsetzungetemperatur liegt bei etwa -20 bis +60°C, vorzugsweise 0 bis 30°C. Um eine möglichst vollständige Umsetzung des Aldehyds zu erzielen, empfiehlt es sich, einen etwa 10% igen molaren Überschuss an Grignardlösungen zu verwenden. Die Hydrolyse der Alkoholate geschieht durch Zugabe der zur Salzbildung notwendigen Menge Wasser. Die Reaktionsprodukte können durch Filtration oder Zentrifugation und fraktionierte Destillation der organischen Phase isoliert werden.

Durch die erfindungsgemässen Verfahren gelangt man auf einfache Weise aus gut zugänglichen Ausgangsstoffen zu einer Reihe neuer Dioxolanderivate mit interessanten Riechstoffeigenschaften.

Beispiel 1

a) Herstellung des Ausgangsdioxolans

128 g'(1,0 Mol) Octanon-2, 132 g (1,5 Mol) Vinylglycol,

400 ml Benzol und 1 g p-Toluolsulfonsäure werden zum Sieden
erhitzt und in 6 Stunden 18 g Wasser ausgekreist. Nach Waschen mit Wasser, Sodalösung und wieder Wasser wird destilliert. Bei 104 bis 106 C/15 Torr gehen 185 g (entsprechend
93,5% der Theorie) 2-Methyl-2-hexyl-4-vinyl-1,3-dioxolan
über. np 1,4390

b) Hydroformylierung

In einem Hochdruckgefäß von 800 ml Inhalt werden 185 g (0,93 Mol) 2-Methyl-2-hexyl-4-vinyl-1,3-dioxolan und 30 ppm Rhodium als RhCl-COD , in 200 ml Benzol auf 130°C erwärmt und unter einem konstanten Druck von 700 bar mit Kohlenmonoxid und Wasserstoff im Volumenverhältnis 1:1 umgesetzt. In 4 Stunden wird Gas entsprechend einem Druckabfall von 220 bar verbraucht. Danach kühlt man unter Druck ab und entspannt. Nach Abziehen des Benzols wird das Reaktionsprodukt (188 g Destillat, 87%) bei 70 bis 110°C/O,1 Torr über eine Brücke destilliert. Das Produkt enthält nach Gaschromatographie kein Ausgangsprodukt mehr und nur die beiden Aldehyde 2-Methyl-2hexyl-4-3-oxo-1-propyl-1,3-dioxolan (Ia) und 2-Methyl-2-hexyl-4-3-oxo-2-propyl -1,3-dioxolan (Ib) im Verhältnis 41:59. Destillation über eine Kolonne ergibt die reinen Aldehyde. Die physikalisch chemischen Daten betragen für den erstgenannten Aldehyd (Ia): Kp = 102 bis 103° C/O,1 Torr, $n_{\rm D}^{25}$ = 1,4440 und für den letztgenannten Aldehyd (Ib) Kp = 90 bis 92°C/ 0,1 Torr und n_D^{25} = 1,4470. Der Geruch beider Aldehyde ist blumig, fettig, haftend.

Beispiel 2

a) Herstellung der Ausgangsverbindung

Eine Mischung von 174 g (3,0 Mol) Propionaldehyd, 350 g (4,0 Mol) Vinylglycol und 1 g p-Toluolsulfonsäure in 400 ml

- 11

2541438

Benzol wird 8 Stunden zum Sieden erhitzt und dabei 60 g Wasser ausgekreist. Der Reaktionsansatz wird wie in Beispiel 1 beschrieben gewaschen und fraktioniert. Bei 73 bis 74°C/70 Torr gehen 304 g (entsprechend 79% der Thorie) 2-Xthyl-4-vinyl-1,3-dioxolan über.

b) Hydroformylierung

100 g'2-Athyl-4-vinyl-1,3-dioxolan werden analog Beispiel 1b hydroformyliert und das Reaktionsgemisch analog Beispiel 1b aufgearbeitet.

Von 47 bis 57° C/O,1 Torr destillieren 100 g (entsprechend 81% der Theorie) eines Gemisches aus je ca. 50% 2-Xthyl-4-[1-oxo-2-propyl] -1,3-dioxolan und 2-Xthyl-4-[3-oxo-1-propyl] -1,3-dioxolan über. Fraktionierte Destillation ergibt 2-Xthyl-4-[1-oxo-2-propyl] -1,3-dioxolan vom Kp = 40 bis 42° C/O,1 Torr, n_D^{25} = 1.4409 und

Geruch: grün, melonig-süß, nach Honigmelone sowie 2-Athyl-4-[3-oxo-1-propyl] -1,3-dioxolan vom Kp = 50 bis 52°C/0,1 Torr, nD 1.4419 und Geruch: grün, fruchtig, aldehydig.

Beispiel 3

Zu 1,9 g (0,05 Mol) Lithiumaluminiumhydrid in 200 ml trockenem Ather werden bei 25 bis 30°C in 10 Minuten 11,4 g (0,05 Mol) des gemäss Beispiel 1 hergestellten 2-Methyl-2-hexyl-4- [3-oxo-1-propy-1,3-dioxolans getropft und das Reaktionsgemisch 3 Stunden bei 25°C gerührt. Nach Zugabe von 10 ml Wasser wird filtriert, eingeengt und destilliert. Bei 105 bis 106°C/0,2 Torr gehen 10,4g (entsprechend 90,5% der Theorie) 2-Methyl-2-hexyl-4- [3-hydroxy-1-propyl-1,3-dioxolan über.

1-propyl-1,3-dioxolan über.

25 = 1.4502; Gerüch: holzig, fettig, nach Kokos.

Beispiel 4

In eine Suspension von 5 g Magnesiumspänen in 150 ml THF wird bei 25°C unter Rühren solange Methylchlorid eingeleitet, bis das Magnesium im wesentlichen gelöst ist. Zu dieser Lösung werden bei 10°bis 20°C in 30 Minuten 45,6 g (0,2 Mol) des gemäss Beispiel 1 hergestellten 2-Methyl-2-hexyl-4-[3-oxo-1-propyl] -1,3-dioxolan, gelöst in 100 ml THF, getropft und das Reaktionsgemisch noch 2 Stunden bei 25°C gerührt. Nach Zugabe von 35 ml Wasser wird filtriert, eingeengt und destilliert. Bei 100 bis 102°C/0,1 Torr gehen 33 g (entsprechend 67,5% der Theorie) 2-Methyl-2-hexyl-4-[3-hydroxy-1-butyl]-1,3-dioxolan über; n_D²⁵ 1.4490; Geruch: herb, würzig, erdig.

Beispiel 5

a) Herstellung der Ausgangsverbindung

Eine Mischung von 20,0 kg (175 Mol) Heptanal, 23,2 kg (263 Mol) Vinylglycol, 50 l Toluol und 100 g p-Toluolsulfonsäure wird 10 Stunden auf 70°C erhitzt, wobei der Druck so stark vermindert wird, dass das Reaktionsgemisch kräftig siedet. Dabei werden 3,2 kg Wasser ausgekreist. Das Produkt wird anschließend mit Wasser, 5-prozentiger Sodalösung und danach wieder mit Wasser gewaschen und anschliessend destilliert. Bei 47 bis 50°C/O,4 Torr gehen 29,6 kg (entsprechend 92% der Theorie) 2-Hexyl-4-vinyl-1,3-dioxolan über. nD = 1.5150 Geruch: fruchtig, nach Ananas.

b) Hydroformylierung

In einem Magnethubautoklaven von 10 l Inhalt werden 4,5 kg
2-Hexyl-4-vinyl-1,3-dioxolan und 50 ppm Rhodium als

[Rh Cl-COD] zusarmen mit 1,5 l Toluol auf 120°C erwärmt und
unter einem konstanten Druck von 300 bar mit Fohlenmonoxid
und Wasserstoff im Volumenverhältnis 1:1 umgesetzt. Nach
12 Stunden kühlt man unter Druck ab und entspannt. Das Toluol
wird in einem Rotationsverdampfer bei 60°C (Bad)/20 Torr abdestilliert und der Rückstand rasch über eine Brücke destilliert. Man erhält 3890 g eines Destillats vom Siedepunkt

o.z. 31 550

2541438

Kp = 60 bis 162° C/O,1 Torr, das nach Gaschromatographie neben 10% Ausgangsprodukt den Aldehyd der Formel Ia, in der R³ = Hexyl, R⁴ = H ist und den Aldehyd der Formel Ib, in der R³ = Hexyl und R⁴ = H ist, im Verhältnis 76:24 enthält. Die fraktionierte Destillation ergibt den reinen Aldehyd der Formel Ia vom Kp = 98 bis 100° C/O,05; n_D^{25} = 1,4482, Geruch: grün, fettig, aldehydig "frischer-Wäsche-Geruch".

Beispiel 6

- a) Herstellung des Ausgangsprodukts
 - Eine Mischung aus 384 g (3,0 Mol) 2-Methyl-heptanon-(6), 445 g (5,0 Mol) Vinylglycol, 800 ml Methylenchlerid und 1 g p-Toluolsulfonsäure werden 24 Stunden unter Rückfluss zum Sieden erhitzt und 56 g Wasser ausgekreist. Nach Waschen und Aufarbeiten analog Beispiel 1 ergibt die Destillation 520 g (entsprechend 87,5% der Theorie) 2-Methyl-2-[4-methyl-1-pentyl]-4-vinyl-1,3-dioxolan vom Siedepunkt 42°C/O,1 Torr; n_D^{25} 1.4350.
- b) Hydroformylierung
 200 g 2-Methyl-2- 4-methyl-1-pentyl -4-vinyl-1,3-dioxolan
 werden analog Beispiel 1b hydroformyliert. Das Reaktionsprodukt wird über eine Brücke destilliert. Man erhält 212 g
 (entsprechend 92% der Theorie) eines Destillats, das nach
 Gaschromatographie zu 55% aus 2-Methyl-2- 4-methyl-1-pentyl
 -4- 1-oxo-2-propyl -1,3-dioxolan und zu 45% aus 2-Methyl-24-methyl-1-pentyl -4- 1-oxo-3-propyl -1,3-dioxolan besteht.
 Durch fraktionierte Destillation wird letzteres in reiner
 Form gewonnen. Kp 98-100°C/0,1 Torr; n_D²⁵ = 1,4708; Geruch:
 fruchtig, balsamisch-malzig-süß.

Beispiel 7

a) Herstellung des Ausgangsprodukts

Eine Mischung aus 260 g (3,0 Mol) n-Valeraldehyd, 445 g (5,0 Mol) Vinylglycol, 800 ml Methylenchlorid und 1 g p-Toluolsulfonsäure wird 20 Stunden zum Sieden erhitzt und dabei 54 g

Wasser ausgekreist. Waschen und Destillation ergibt 418g (entsprechend 89% der Theorie) 2-Butyl-4-vinyl-1,3-dioxolan vom Siedepunkt 28 bis 30°C/0,1 Torr, np 1,4341.

hydroformylierung 200 g des erhaltenen 2-Butyl-4-vinyl-1,3-dioxolans werden analog Beispiel 1b hydroformyliert. Das Reaktionsprodukt wird eingeengt und über eine Brücke destilliert. Von 52 bis 75°C/0,1 Torr gehen 218 g (entsprechend 86% der Theorie) eines Produktes über, das 43% 2-Butyl-4-[1-oxo-2-propyl]-1,3-dioxolan und 57% 2-Butyl-4-[3-oxo-1-propyl]-1,3-dioxolan enthält. Nachfolgende Fraktionierung ergibt 2-Butyl-4-[1-oxo-2-propyl]-1,3-dioxolan vom Kp 50 bis 53°C/0,1 Torr, n_D 1.4460. Geruch: grasig-grün und 2-Butyl-4-[3-oxo-1-propyl]-1,3-dioxolan vom Kp 66-67°C/0,1 Torr, n_D 1.4462. Geruch: grün, fettig, aldehydig.

Beispiel 8

Herstellung des Ausgangsprodukts

Eine Mischung aus 479 g (2,82 Mol) Undecan-2-on, 615 g
(7,0 Mol) Vinylglycol, 1000 ml Methylenchlorid und 3 g
p-Toluolsulfonsäure werden 24 Stunden zum Sieden erhitzt
und dabei 48 g Wasser ausgekreist. Waschen und Destillation
ergibt 607 g (90% der Theorie) 2-Methyl-2-nonyl-4-vinyl-1,3dioxolan vom Siedepunkt 84 bis 86°C/ 0,05 Torr, nD 1.4433.

Hydroformylierung

200 g des erhaltenen 2-Methyl-2-nonyl-4-vinyl-1,3-dioxolan
werden analog Beispiel 1b hydroformyliert. Nach Einengen
destillieren bei 45 bis 150°C/0,05 Torr 183 g (81 % der
Theorie) eines Produktes über eine Brücke ab, das nach
Gaschromatographie 30% 2-Methyl-2-nonyl-4- [1-oxo-2-propyl]
-1,3-dioxolan und 70% 2-Methyl-2-nonyl-4- [3-oxo-1-propy]
-1,3-dioxolan enthält. Fraktionierte Destillation ergibt
2-Methyl-2-nonyl-4- [3-oxo-1-propyl] -1,3-dioxolan vom
Siedepunkt 112 bis 115°C/0,05 Torr, n_D²⁵ 1.4511. Geruch:
fettig, buttrig, wachsig.

) ... Heretellung des Ausgangsprodukts.

Eine Rischung aus 212 g (2,0 Mol) Benzaldehyd, 264 g (3,0 Mol) vinyiglycol/ 500 ml Benzol und 1 g p-Toluclaulfonsäure werden 10 Stunden unter Rückfluss zum Sieden erhitzt und dabei 39 g Wasser/ausgekreist. Waschen und Destillation des Reaktionsgemisches ergeben 289 g (82% der Theorie) 2-Phenyl-4-vinyl-1,3-dioxolan vom Siedepunkt 92 bis 94°C/O,1 Torr, n_D = 1,581.

b) Hydroformylierung

200 g des erhaltenen 2-Phenyl-4-vinyl-1,3-dioxolans werden analog Beispiel 1b hydroformyliert. Nach Einengen destillieren bei 47 bis 134°C/0,05 Torr 158 g (entsprechend 68% der Theorie) eines Produktes über das 30% 2-Phenyl-4-[1-oxo-2-propyl]-1,3-dioxolan und 70% 2-Phenyl-4-[3-oxo-1-propyl]-1,3-dioxolan enthält, n_D²⁵ = 1,5130 Geruch: bitter-süß.

Beispiel 10

a) Herstellung des Ausgangsprodukts

Eine Mischung aus 196 g (2,0 Mol) Cyclohexanon, 264 g (3,0 Mol) Vinylglycol, 500 ml Benzol und 1 g p-Toluolsulfonsäure wird 12 Stunden unter Rückfluss zum Sieden erhitzt und dabei 40 g Wasser ausgekreist. Waschen und Destillation ergeben 349 g (entsprechend 71 % der Theorie) 2,2-Penta-

methylen-4-vinyl-1,3-dioxolan vom Siedepunkt 52 bis 54°C/0,05 Torr; no 1,4659.

b) Hydroformylierung

In sinem Hochdruckgefäß von 125 ml Inhalt werden 60 g
2,2-Pentamethylen-4-vinyl-1,3-dioxolan und 100 ppm Rhodium
als RhCl (COD)₂ in 50 ml Toluol auf 100°C erwärmt und
unter einem konstanten Druck von 200 bar mit Kohlenmonoxid
und Wasserstoff (1:1) umgesetzt. In 4 Stunden wird Gas
entsprechend einem Druckabfall von 135 bar verbraucht. Man
kühlt unter Druck ab und entspannt. Nach Einengen wird
über eine Brücke destilliert. Von 62 bis 98°C/ 0,05 Torr

31 550

2541438

gehen 62 g (entsprechend 87% der Theorie) eines Produktes über, das neben 20% Ausgangsmaterial 2,2-Pentamethylen-4-[3-oxo-1-propyl] -1,3-dioxolan und 2,2-Pentamethylen-4-[1-oxo-2-propyl] -1,3-dioxolan im Verhältnis 59:41 enthält.

Praktionierte Destillation ergibt 2,2-Pentamethylen-4[1-oxo-2-propyl] -1,3-dioxolan vom Kp 73 bis 75°C/0,3 Torr, n25 1,4678 und Geruch: fruchtig, orangig-süß, grün, sowie 2,2-Pentamethylen-4-[3-oxo-1-propyl] -1,3-dioxolan vom Kp 82°C/0,2 Torr, n25 1,4770 und Geruch: grün, würzig, lederartig, teeig.

Beispiel 11

In einem Hochdruckgefäss von 125 ml Inhalt werden 70g des gemäss Beispiel 1a erhaltenen 2-Methyl-2-hexyl-4-vinyl-1,3-dioxolans mit 64 mg HRhCO [HC6H5)] 3 und 1810 mg Triphenylphosphin in 50 ml Benzol auf 100°C erwärmt und unter konstantem Druck von 20 bar mit CO und H2 (1:1) umgesetzt. Nach 4 Stunden wird unter Druck abgekühlt und das Reaktionsgefäss entspannt. Das Reaktionsgemisch wird eingeengt und fraktioniert. Man erhält 78 g (entsprechend 97% der Theorie) eines Destillats, das nach Gaschromatographie zu 68% aus 2-Methyl-2-hexyl-4- [3-oxo-1-propyl] -1,3-dioxolan und zu 32% aus 2-Methyl-2-hexyl-4- [1-oxo-2-propyl] -1,3-dioxolan besteht.

Beispiel 12

21 g (0,1 Mol) 2-Hexyl-4-[3-oxo-1-propyl]-1,3-dioxolan, 13 g (0,12 Mol) Crthoameisensäuremethylester, 10 mg p-Toluolsulfonsäure in 50 ml Toluol werden 12 Stunden bei 24°C gehalten. Nach Waschen mit verdünnter Natronlauge und Wasser wird eingeengt und destilliert. Von 105 bis 108°C/0,05 Torr gehen 11 g (entsprechend 42% der Theorie) des entsprechenden Dimethylacetals über. Geruch: grün, fruchtig, nach Pfirsich und den Aldehyd Ib vom Siedepunkt 87 bis 90°C/0,05; n_D²⁵ = 1,4445, Geruch: grün, fettig, leicht blumig.

-17-