Esame di Progettazione di Sistemi Digitali 21 giugno 2021 - canale MZ - prof.ssa Massini

Cognome	Nome	Matricola

Esercizio 1 (6 punti)

Progettare un circuito sequenziale con due ingressi x1 e x0 e due uscite z1 e z0. Si consideri la sequenza s costituita dagli ultimi due bit di x1 e gli ultimi due bit di x0. L'uscita z1 deve essere uguale a 1 se s considerato come valore in Ca2, è un valore negativo dispari, mentre z0 deve essere 1 s, considerato come valore in base 2, è un multiplo di 3.

Esempio x1 0101100100

x0 0010100001

z1 00**1**0**1**00000

z0 00**11**00**1**000

Esercizio 2 (4 punti)

Si progetti la rete di interconnessione tale che:

- R₃ viene trasferito in R₀ se R₁ e R₂ sono discordi, in R₁ altrimenti
- in R_3 viene trasferita la differenza tra R_1 e R_2 se il contenuto di R_0 non è multiplo di 4, la somma tra R_1 e R_2 altrimenti;

Tutti i trasferimenti sono abilitati se R_0 e R_1 sono entrambi pari.

Esercizio 3 (3 punti)

Usando gli assiomi dell'algebra di Boole, verificare la seguente identità:

$$(x\bar{y} + \overline{y}z + z(\bar{x} + y)) \oplus xz = xy + \bar{z}$$

Esercizio 4 (3 punti)

Dati i valori A = <1; 10001; 0111100000 > e B = <0; 10011; 1001110000 > nella rappresentazione in virgola mobile half precision IEEE 754:

- Eseguire l'operazione A+B usando la rappresentazione data ed esprimere il risultato secondo lo standard IEEE 754
- Verificare il risultato ottenuto eseguendo la conversione in decimale sia del risultato che degli operandi.

Esercizio 5 (4 punti)

Analizzare il seguente circuito e ricavare la funzione f in uscita semplificarla ed esprimere f in forma normale POS.

Fino a qui per studenti DSA

Data l'espressione $f = \bar{z} + xy + \bar{y}\bar{z} + (xy + \bar{x}z)\bar{z}$ semplificarla e portarla in forma POS.

Realizzare f con soli operatori NAND e con soli operatori NOR.

Esercizio 7 (3 punti)

Dati i valori X = 3614 e Y = 6275 rappresentati in base 8:

- eseguire la conversione in base 16
- eseguire la somma X+Y usando base 16
- convertire il risultato in base 8 e verificare che sia corretto.

Esercizio 8 (4 punti)

Dati gli ingressi $x_2x_1x_0$ che rappresentano valori in Ca2, vengono prodotti in uscita $y_2y_1y_0$ tali che:

- se $x_2x_1x_0$ è pari allora $y_2y_1y_0$ rappresenta $x_2x_1x_0$ incrementato di 1
- se $x_2x_1x_0$ è dispari allora $y_2y_1y_0$ rappresenta la metà di $(x_2x_1x_0+3)$

Stendere la tavola di verità Realizzare $y_2y_1y_0$ con PLA Realizzare y_1 con MUX 4-a-1 e con MUX 2-a-1