

Math behind Machine Learning 9

Polynomial regression, normal equation

Polynomial Regression

Housing prices prediction

Polynomial Regression

Polynomial regression

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 \\ = \theta_0 + \theta_1 (size) + \theta_2 (size)^2 + \theta_3 (size)^3$$

$$\Rightarrow x_1 = (size)$$

$$\rightarrow x_2 = (size)^2$$

$$\rightarrow x_3 = (size)^3$$

Polynomial Regression

Choice of features

$$h_{\theta}(x) = \theta_0 + \theta_1(size) + \theta_2(size)^2$$

$$h_{\theta}(x) = \theta_0 + \theta_1(size) + \theta_2\sqrt{(size)}$$

THE HAGUE

UNIVERSITY OF

APPLIED SCIENCES

FACULTY IT & DESIGN

$$\theta = (X^T X)^{-1} X^T y$$

$$(X^T X)^{-1} \text{ is inverse of matrix } \underline{X^T X}.$$

$$Set \quad A: \quad X^T X.$$

$$(x^T x)^{-1} = A^{-1}$$

$$Octave: \quad pinv (x'*x)*x'*y$$

$$pinv (x'*x) * x' * y$$

$$O \leq x_1 \leq 1$$

$$O \leq x_2 \leq 1000$$

$$O \leq x_1 \leq 10^{-5}$$

m training examples, \underline{n} features.

Gradient Descent

- \rightarrow Need to choose α .
- → Needs many iterations.
 - Works well even when n is large.

Normal Equation

- \rightarrow No need to choose α .
- Don't need to iterate.
 - Need to compute

$$(X^TX)^{-1} \quad \text{in } \quad O(n^3)$$

• Slow if n is very large.

Normal equation

$$\theta = (X^T X)^{-1} X^T y$$

- What if X^TX is non-invertible? (singular/degenerate)
- Octave: pinv(X'*X)*X'*y

What if X^TX s non-invertible?

Redundant features (linearly dependent).

E.g.
$$x_1$$
 =size in feet² x_2 =size in m² x_1 = $(3.18)^3 x_2$

$$lm = 3.78$$
 feet $\rightarrow M = 10 <$

- Too many features (e.g. $m \le n$).
 - Delete some features, or use regularization.

