

Welcome to the Course!

Introduction

- Time Series: A sequence of data in chronological order
- Data is commonly recorded sequentially, over time
- Time series data is everywhere

BMW Daily log stock returns

Time Series Example

Monthly values of the Consumer Price Index (CPI):

Time Series Data

• Time series data is dated or time stamped in R

```
> print(BMW_data)
...

1996-07-08    0.002

1996-07-09    -0.006

1996-07-10    -0.016

1996-07-11    -0.020

1996-07-14    -0.006

1996-07-15    -0.014

1996-07-16    0.002

1996-07-17    -0.001
...
```


Time Series Plots

> plot(Time_Series)

Basic Time Series Models

- White Noise (WN)
- Random Walk (RW)
- Autoregression (AR)
- Simple Moving Average (MA)

Let's practice!

Sampling Frequency

Sampling Frequency: Exact

• Some time series data is exactly evenly spaced

Sampling Frequency: Approximate

• Some time series data is only approximately evenly spaced

Sampling Frequency: Missing Values

Some time series data is evenly spaced, but with missing values

Basic Assumptions

Simplifying assumptions for time series:

- Consecutive observations are equally spaced
- Apply a discrete-time observation index
- This may only hold approximately

Ex. Daily log returns on stock may only be available for weekdays.

Ex. Monthly CPI values are equally spaced by month, not by day.

Sampling Frequency: R Functions

R functions: start(), end(), frequency(), deltat()

```
> start(Hourly_series)
[1] 1 1
> end(Hourly_series)
[1] 1 24
> frequency(Hourly_series)
[1] 24
> deltat(Hourly_series)
[1] 0.0417
```


Let's practice!

Basic Time Series Objects

Building ts () Objects - I

- Start with a vector of data
- Apply the ts() function

```
> data_vector
[1] 10 6 11 8 10 3 6 9

> time_series <- ts(data_vector)
> plot(time_series)
```


Building ts () Objects - II

Specify the start date and observation frequency:

```
> time_series <- ts(data_vector, start = 2001, frequency = 1)
> plot(time_series)
```


Using is.ts()

• The is.ts() function checks whether an object is of the ts() class:

```
> is.ts(data_vector)
[1] FALSE
> is.ts(time_series)
[1] TRUE
```


Whyts() Objects?

Why create and use time series objects of the ts() class?

- Improved plotting
- Access to time index information
- Model estimation and forecasting (later chapters)

Let's practice!