

Wasserstein Weisfeiler-Lehman

Graph Kernels

Matteo Togninalli, Felipe Llinares-López, Elisabetta Ghisu, Bastian Rieck, Karsten Borgwardt – ETH ZURICH

Fabrice Beaumont

Rheinische Friedrich-Wilhelms-Universität Bonn

01.07.2020

Motivation

TASK: Graph classification (via graph kernels as similarity measure)

Solution: R-Convolution kernels

Problem: Naive aggregation of substructures may disregard valuable information

Only a few approaches extendible for continuously attributed graphs

Method Overview

Optimal

transport

- 1. Transform each graph into a set of node embeddings
 - Weisfeiler-Lehman node embedding scheme
 - 2. WL-features
- 2. Measure the Wasserstein distance between each pair of graphs
 - Ground distance (similarity matrix)
 - Wasserstein distance
- 3. Wasserstein Weisfeiler-Lehman kernel definition

(Differentiate between a finite set of categorical node labels and real valued node attributes)

1.1 Weisfeiler-Lehman node embedding scheme Idea

1.1 Weisfeiler-Lehman node embedding scheme Idea

1.1 Weisfeiler-Lehman node embedding scheme Theory

m: dimensionality of the node labels

 n_G : cardinality of the vertex set

N(v): neighbourhood of v

$$N^h(v) = \{l^h(u_0), \dots, l^h(u_{\deg(v)-1})\}$$

1.1 Weisfeiler-Lehman node embedding scheme Example – Node labels

m=1: dimensionality of the node labels

 $n_G = 7$: cardinality of the vertex set

N(v): neighbourhood of v

 $l^{h+1}(v) = hash(l^h(v), N^h(v))$

1.1 Weisfeiler-Lehman node embedding scheme Example – Node labels

m = 1: dimensionality of the node labels

 $n_G = 7$: cardinality of the vertex set

N(v): neighbourhood of v

 $l^{h+1}(v) = hash(l^h(v), N^h(v))$

			(v_4)	$(v_4 d)$ $(v_5 e)$	
i	$l^0(v_i)$	$l^1(v_i)$	$l^2(v_i)$	$l^H(v_i)$	
1	а	$hash(a, \{b, c\}) = x$	$hash(x,\{q,p\}) = k$		
2	b	$hash(b,\{a,c\}) = q$	$hash(q,\{x,p\}) = o$		
3	С	$hash(c,\{a,b,d\}) = p$	$hash(p,\{x,q,h\}) = r$		
4	d	$hash(d,\{c,e\}) = h$	$hash(h,\{p,j\}) = w$		
5	e	$hash(e,\{d\}) = j$	$hash(j,\{h\}) = f$		
6	а	$hash(a,\{b,c\}) = x$	$hash(x,\{q,r\}) = g$		
7	С	$hash(c,\{a,b\}) = r$	$hash(r,\{x,q\}) = s$		
$f_{WL}^H:G$	$\rightarrow (X_G^0)$	X_G^1	X_G^2	X_G^H	

1.1 Weisfeiler-Lehman node embedding scheme Example – Attribute labels

$$a^{h+1}(v) = \frac{1}{2} \left(a^h(v) + \frac{1}{\deg(v)} \sum_{u \in N(v)} w((u, v)) a^h(u) \right)$$

i	$a^0(v_i)$	$a^1(v_i)$	a	$u^H(v_i)$
1	0.5	$\frac{1}{2}(0.5 + \frac{1}{2}[0.9 * 1138 + 13 * 42]) = 392.8$		•••
2	42	$\frac{1}{2}(42 + \frac{1}{3}[13 * 0.5 + 110 * 1138 + 0.25 * 17]) = 20886.125$		
3	1138	$\frac{1}{2}(1138 + \frac{1}{4}[0.9 * 0.5 + 110 * 42 + 0.9 * 0.5 + 110 * 42]) = 1724.1125$		
4	17	$\frac{1}{2}(17 + \frac{1}{2}[0.25 * 42 + 7 * 73]) = 138.875$		
5	73	$\frac{1}{2}(73 + \frac{1}{1}[7 * 17]) = 96$		
6	0.5	$\frac{1}{2}(0.5 + \frac{1}{2} 0.9 * 1138 + 13 * 42]) = 392.8$		
7	42	$\frac{1}{2}(42 + \frac{1}{2}[13 * 0.5 + 110 * 1138]) = 31317.625$		

2.1 Ground disance between nodes

$$\rho(x,y) = \begin{cases} 1 \text{ if } x \neq y \\ 0 \text{ if } x = y \end{cases}$$

NODE LABELS	NODE ATTRIBUTES
Normalised Hamming distance:	Euclidean distance:
$d_{Ham}(v, v') = \frac{1}{H+1} \sum_{i=1}^{H+1} \rho(v_i, v'_i)$	$d_E(v, v') = \ v - v'\ _2$

$$\begin{array}{c|cccc} & \neq & & 1 \\ & \neq & & 2 \\ & = & \\ & \neq & & 3 \Longrightarrow d_{Ham} = 3 \\ & = & & \end{array}$$

2.1 Ground disance between nodes

$$\rho(x,y) = \begin{cases} 1 \text{ if } x \neq y \\ 0 \text{ if } x = y \end{cases}$$

NODE LABELS	NODE ATTRIBUTES
Normalised Hamming distance:	Euclidean distance:
$d_{Ham}(v, v') = \frac{1}{H+1} \sum_{i=1}^{H+1} \rho(v_i, v'_i)$	$d_E(v,v') = \ v-v'\ _2$

$$\Rightarrow d_{Ham} = 2$$

2.2 Wasserstein distance - L^p

 $p \in [1, \infty)$: parameter for the L^p Wasserstein distance

 σ, μ : probability distributions on a metric space **M**

 $d: \mathbb{R}^m x \mathbb{R}^m \to \mathbb{R}^m$: ground distance (on M)

 $\Gamma(\sigma,\mu)$: set of all transportaion plans over MxM (with marginals σ and μ on the first and second factor)

$$W_p(\sigma,\mu) := \left(\lim_{\gamma \in \Gamma(\sigma,\mu)} \int_{M \times M} d(x,y)^p d\gamma(x,y)\right)^{\frac{1}{p}}$$

2.2 Graph Wasserstein distance


```
p \in [1, \infty): parameter for the L^p Wasserstein distance X \in \mathbb{R}^{n \times m} X' \in \mathbb{R}^{n' \times m}: set of vectors M = [d(x,y)]_{x \in X, y \in X'}: distance matrix on a ground distance \Gamma(X,X'): set of all transportaion plans \langle .,. \rangle: Frobenius dot product
```

$$W_1(X,X'):=\min_{P\in\Gamma(X,X')}\langle P,M\rangle$$

$$G,G' \quad \rightarrowtail f_{WL}^H \colon G \to \mathbb{R}^{n_G \times m(H+1)} \quad \rightarrowtail \quad D_W^f(G,G') \colon = W_1(f(G),f(G')) = \min_{P \in \Gamma(f(G),f(G'))} \langle P,M \rangle$$

3 Kernel definition

$$G,G' \quad \mapsto \quad f_{WL}^H:G \to \mathbb{R}^{n_G \times m(H+1)} \quad \mapsto \quad D_W^f(G,G'):=W_1(f(G),f(G'))=\min_{P \in \Gamma(f(G),f(G'))} \langle P,M \rangle \quad \mapsto \quad K_{WWL}=e^{-\lambda D_W^{fWL}(G,G')}$$

Experimental evaluation

NODE LABELS	NODE ATTRIBUTES
Competitive with best graph kernel	Outperforms all state-of-the art graph kernels

TODO: summarize tables in pile chart with slack

Sumary

TODO: the whole method only in 3-4 graphics (graphics from above)

Thank you for your attention!