Prof. Amador Martin-Pizarro Übungen: Michael Lösch

Logik für Studierende der Informatik

Blatt 7

Abgabe: 11.12.2018 14 Uhr Gruppennummer angeben!

Aufgabe 1 (4 Punkte).

Sei T eine \mathcal{L} -Theorie und $\varphi[x]$ eine \mathcal{L} -Formel. Angenommen, dass für jedes Modell \mathcal{M} von T die Menge $\varphi(M) := \{m \in M \mid \mathcal{M} \models \varphi[m]\}$ endlich ist, zeige, dass es eine natürliche Zahl D gibt, so dass für jedes Modell \mathcal{M} von T die Menge $\varphi(M)$ weniger als D Elemente hat.

Hinweis: Schreibe eine geeignete Theorie $T \subset T^*$ und benutze Kompaktheit.

Aufgabe 2 (4 Punkte).

Sei \mathcal{L} die Sprache mit einem zweistelligen Relationszeichen <.

- (a) Schreibe eine Theorie T, deren Modelle genau alle linear geordneten Mengen ohne Endpunkte sind.
- (b) Ist T vollständig? Gibt es eine einzige Vervollständigung?

Aufgabe 3 (8 Punkte).

Sei \mathcal{L} die Sprache mit einem zweistelligen Relationszeichen E und T die \mathcal{L} -Theorie, deren Modelle genau die \mathcal{L} -Strukturen \mathcal{A} sind, in welchen $E^{\mathcal{A}}$ eine Äquivalenzrelation auf A mit genau einer Klasse der Größe n für jedes n aus \mathbb{N} ist (siehe Aufgabe 2 (b), Blatt 3).

- (a) Sei \mathcal{M} ein beliebiges Modell von T. Zeige, dass es ein Modell \mathcal{N} von T gibt, so dass $\mathcal{M} \preceq \mathcal{N}$ und $E^{\mathcal{N}}$ eine unendliche Äquivalenzklasse hat.
 - **Hinweis:** Erweitere \mathcal{L} zu einer Sprache $\mathcal{L}^* = \mathcal{L} \cup \{c\}$ mit einem Konstantenzeichen c und betrachte $\mathrm{Diag}(\mathcal{M}) \cup T^*$ für eine geeignete Menge T^* von \mathcal{L}^* -Aussagen. Zeige mit Hilfe von Kompaktheit, dass diese Formelmenge konsistent ist und erhalte dadurch eine \mathcal{L} -Struktur \mathcal{N} .
- (b) Zeige, dass es ein zweites Modell $\mathcal{M} \leq \mathcal{N}'$ gibt, so dass \mathcal{N} zwei verschiedene unendliche $E^{\mathcal{N}}$ Äquivalenzklassen hat.
- (c) Beschreibe alle abzählbaren Modelle von T. Wieviele gibt es, bis auf Isomorphie?

Aufgabe 4 (4 Punkte).

Sei \mathcal{L} wie in Aufgabe 2. Wir betrachten wieder die \mathcal{L} -Struktur $\mathcal{Z}=(\mathbb{Z},<)$ mit der natürlichen Ordnung.

- a) Ist die Kollektion aller partiellen Isomorphismen zwischen endlich erzeugten Unterstrukturen von \mathcal{Z} nichtleer?
- b) Bildet diese Kollektion ein Back-&-Forth System?

DIE ÜBUNGSBLÄTTER MÜSSEN ZU ZWEIT EINGEREICHT WERDEN. ABGABE DER ÜBUNGSBLÄTTER IN DEN (MIT DEN NUMMERN DER ÜBUNGSGRUPPEN GEKENNZEICHNETEN) FÄCHERN IM EG DES GEBÄUDES 51.