Orthogonality

I. Orthogonal Vectors and Subspaces

Orthogonal Vectors

two vectors are orthogonal when their inner product equals 0

$$\langle x, y \rangle = x^T y = 0$$

according to Pythagorean theorem

$$||x||^{2} + ||y||^{2} = ||x + y||^{2}$$

$$\Rightarrow x^{T}x + y^{T}y = (x + y)^{T}(x + y) = x^{T}x + x^{T}y + y^{T}x + y^{T}y$$

$$\Rightarrow 2x^{T}y = 0$$

zero vector is orthogonal to all vectors in space

Orthogonal Subspaces

for a $m \times n$ matrix A, row space is orthogonal to null space

for Ax = 0, x is in the null space

$$\begin{bmatrix} row_1 \\ row_2 \\ \vdots \\ row_m \end{bmatrix} [x] = \begin{bmatrix} row_1 \cdot x \\ row_2 \cdot x \\ \vdots \\ row_m \cdot x \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

x is orthogonal to any vector in A, therefore x is orthogonal to A

 \boldsymbol{x} is any vector in the null space, therefore row space is orthogonal to null space

 $\dim \mathcal{C}(A^T)+\dim \mathcal{N}(A)=n$ therefore row space and null space are orthogonal complements in \mathbb{R}^n space

2. Projection onto Subspaces

Projection

p is projection of b on a, e = b - p

let p = xa, where x is a scaler, and a is orthogonal to e

$$\Rightarrow a^T e = a^T (b - xa) = 0$$

$$\Rightarrow x = \frac{a^T b}{a^T a}$$

$$\Rightarrow p = xa = a\frac{a^Tb}{a^Ta}$$

only the magnitude of b can affect p

Projection Matrix

determine projection matrix P that p = Pb

$$p = xa = Pb = a\frac{a^Tb}{a^Ta}$$

$$\Rightarrow P = \frac{aa^T}{a^Ta}$$

where aa^T is a matrix and a^Ta is a scaler

- since rank of a is 1, then rank of aa^T is also 1 therefore the column space of P C(P) is exactly the line of vector a
- P is a symmetric matrix $P^T = P$
- take projection twice: $P^2b = P(Pb) = b$, therefore $P^2 = P$

when sometimes Ax = b may have no solution apply projection to solve $A\widehat{x} = p$ as optimal solution, p is projection of b

Projection in Higher Dimension

 a_1, a_2 is a basis of the plane, then the plane is the column space of $A = \begin{bmatrix} a_1 & a_2 \end{bmatrix}$

$$p = x_1 a_1 + x_2 a_2 = \begin{bmatrix} a_1 & a_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = A\widehat{x}$$

we want to find \widehat{x} of $p = A\widehat{x}$

 \emph{e} is perpendicular to plane \emph{A} , so perpendicular to \emph{a}_1 and \emph{a}_2

$$a_1^T e = a_1^T (b - A\hat{x}) = a_2^T e = a_2^T (b - A\hat{x}) = 0$$

$$\Rightarrow \begin{bmatrix} {a_1}^T \\ {a_2}^T \end{bmatrix} (b - A\widehat{x}) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow A^T e = 0$$

e is in null space $N(A^T)$ and e is perpendicular to A, therefore column space is orthogonal to left null space

$$A^{T}(b - A\widehat{x}) = \mathbf{0} \Rightarrow A^{T}A\widehat{x} = A^{T}b$$

$$\Rightarrow \widehat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b}$$

$$\Rightarrow p = A\widehat{x} = A(A^TA)^{-1}A^Tb$$

$$\Rightarrow P = A(A^TA)^{-1}A^T$$

if A is not square matrix, then we cannot simplify $(A^TA)^{-1} = A^{-1}(A^T)^{-1}$ if A is invertible, then we can get P = I

if b is in column space of A: Pb = Ax = b if b is orthogonal to column space of A: Pb = 0

$$e = b - p = (I - P)b$$

e is in left null space of A, therefore I - P is projection matrix of $N(A^T)$

Least Square

$$||e||^2 = ||A\widehat{x} - b||^2$$

we want to find minimum of the square error $\|e\|^2$

$$\sum \|e\|^2 = e_1^2 + e_2^2 + e_3^2$$

3. Orthogonal Matrices

Matrix A^TA

when column vectors of A are linear independent, then $A^{T}A$ is invertible

$$set A^T A x = 0$$

$$\Rightarrow x^T A^T A x = x^T \cdot \mathbf{0} = \mathbf{0}$$

$$\Rightarrow (Ax)^T Ax = \mathbf{0} \Rightarrow Ax = \mathbf{0}$$

since column vector of A is independent, 0 is only solution of x

then only x = 0 let $A^T A x = 0$

therefore A^TA is invertible

Orthonormal Vectors

vectors $q_1, q_2 \cdots q_n$ are orthonormal if they satisfy the condition:

$$q_i^T q_j \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$$

each of them has length 1 and orthogonal to each other

Orthonormal Matrix

if Q is an orthonormal matrix, $Q^TQ = I$

$$Q^TQ = \begin{bmatrix} q_1 \\ \vdots \\ q_n \end{bmatrix} [q_1 \cdots q_n] = \begin{bmatrix} q_1q_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & q_nq_n \end{bmatrix} = I$$

if Q is a square matrix, $Q^{-1} = Q^T$

we have
$$P = A(A^TA)^{-1}A^T$$

after projection to Q, $P = Q(Q^TQ)^{-1}Q^T$

$$\Rightarrow P = QQ^T$$
, if Q is square: $P = I$

when solving $A^T A \hat{x} = A^T b$

$$\Rightarrow Q^T Q \hat{x} = Q^T b \Rightarrow \hat{x} = Q^T b$$

$$\Rightarrow \boxed{x_i = q_i^T b}$$

Gram-Schmidt

given 2 independent vectors a, b, find 2 orthonormal vectors q_1, q_2 in the same space A, B are target orthogonal basis

$$q_1 = \frac{A}{\|A\|}, q_2 = \frac{B}{\|B\|}$$

2 vectors

let
$$A = a$$
, $B = e = b - p$

$$\Rightarrow B = b - \frac{A^T b}{A^T A} A$$

multiply both side by A^T to verify the equation

• 3 vector

C can be found by subtracting C projection on A and B

$$C = c - \frac{A^T c}{A^T A} A - \frac{B^T c}{B^T B} B$$

example:
$$a = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
, $b = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$

$$A = a = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$B = b - \frac{A^T b}{A^T A} A = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} - \frac{3}{3} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

$$\Rightarrow Q = \begin{bmatrix} 1/\sqrt{3} & 0 \\ 1/\sqrt{3} & -1/\sqrt{2} \\ 1/\sqrt{3} & 1/\sqrt{2} \end{bmatrix}$$

Q has same space formed by A and B

given v_1, v_2, v_3 as independent vectors

determine orthogonal basis u_1, u_2, u_3 , orthonormal basis w_1, w_2, w_3

$$\begin{aligned} w_1 &= \frac{v_1}{\|v_1\|} = \frac{u_1}{\|u_1\|} \\ u_2 &= v_2 - \frac{\langle v_2, u_1 \rangle}{\|u_1\|^2} u_1 = v_2 - \frac{\langle v_2, v_1 \rangle}{\|v_1\|^2} v_1 = v_2 - \langle v_2, \frac{v_1}{\|v_1\|} \rangle \frac{v_1}{\|v_1\|} \Rightarrow u_2 = v_2 - \langle v_2, w_1 \rangle w_1 \\ w_2 &= \frac{u_2}{\|u_2\|} \\ u_3 &= v_3 - \langle v_3, w_1 \rangle w_1 - \langle v_3, w_2 \rangle w_2 \\ w_2 &= \frac{u_3}{\|u_3\|} \end{aligned}$$

factorize A = QR

$$\begin{bmatrix} A \\ [a_1 \quad a_2] \end{bmatrix} = \begin{bmatrix} Q \\ [q_1 \quad q_2] \begin{bmatrix} a_1^T q_1 & a_2^T q_1 \\ a_1^T q_2 & a_2^T q_2 \end{bmatrix}$$

$$a_1^T q_2 = 0$$

therefore $\it R$ is an upper triangular matrix