Univers	idad de Buenos Aires	Facultad de Ingeniería				
1º Cuatrimestre 2009	75.12 - Análisis Numérico I. Curso 008	Parcial. Primera Oportunidad.	Tema 1	Nota		
Padrón	Apellido y Nombres					

Ejercicio 1. Sea el sistema de ecuaciones AX=B, las soluciones X⁰ y X¹ obtenidas por el método iterativo estacionario de Gauss-Seidel, y la factorización A=LU. Se pide:

- a) Obtener los datos faltantes de la matriz A.
- b) Obtener los datos faltantes de los vectores B, X⁰ y X¹.
- c) Aplicar el método de Gauss-Seidel para hallar X⁴ e indicar un criterio de corte bajo el que podría adoptar dicha aproximación como solución del problema.
- d) Imponer una perturbación de 2% para X⁰₃ y calcular el nuevo valor de salida X⁴₃. Estimar el Cp del problema.
- e) Analizando las condiciones de convergencia del método, explique el orden de magnitud del Cp hallado.

Ejercicio 2. A partir de los datos experimentales de la tabla se han generado un ajuste polinómico de grado 2 (por cuadrados mínimos, utilizando los 5 puntos) y dos interpolaciones por Lagrange Baricéntrico, con 4 puntos $(x_0...x_3)$ y 5 puntos $(x_0...x_4)$. Se pide:

	i	0	1	2	3	4		A11	A12	A13		В1	$W_1^{5p} = 0.015625$
Į	Х	2	X ₁	8	10	X ₄	A =	A21	A22	1800	B =	200	$W_1^{4p} = 0.03125$
	у	3	7	9	6	y ₄		A31	1800	A33		В3	

- a) Obtener una ecuación de la forma $f(x_1) = 0$, más una ecuación que permita obtener x_4 a partir de x_1 .
- b) Resolver la ecuación obtenida por el método de Steffensen, con $g(x_1) = [x_1^3 f(x_1)]^{1/3}$, $x_1^0 = 4.1$ y tol = 10^{-3}
- c) Calcular los datos faltantes x₄ e y₄.
- d) Construir la matriz A y el vector B del método de SPLINE con frontera libre, para los puntos x₁, x₃ y x₄.

Ejercicio 3. Se tienen dos aproximaciones para calcular la derivada segunda en un punto.

Aproximación 1:
$$f''(x) = \frac{f(x-h) - 2 \cdot f(x) + f(x+h)}{h^2};$$

Aproximación 2:
$$f''(x) = \frac{f(x) - 2 \cdot f(x+h) + f(x+2 \cdot h)}{h^2}.$$

¿Cuál de los dos es la mejor? Justifique la respuesta.

Univers	idad de Buenos Aires	Facultad de Ingeniería				
1º Cuatrimestre 2009	75.12 - Análisis Numérico I. Curso 008	Parcial. Primera Oportunidad.	Tema 2	Nota		
Padrón	Apellido y Nombres					

Ejercicio 1. Ejercicio 1. Sea el sistema de ecuaciones AX=B, las soluciones X⁰ y X¹ obtenidas por el método iterativo estacionario de Gauss-Seidel, y la factorización A=LU. Se pide:

- a) Obtener los datos faltantes de la matriz A.
- b) Obtener los datos faltantes de los vectores B, X⁰ y X¹.
- c) Aplicar el método de Gauss-Seidel para hallar X⁴ e indicar un criterio de corte bajo el que podría adoptar dicha aproximación como solución del problema.
- d) Imponer una perturbación de 2% para X⁰₃ y calcular el nuevo valor de salida X⁴₃. Estimar el Cp del problema.
- e) Analizando las condiciones de convergencia del método, explique el orden de magnitud del Cp hallado.

Ejercicio 2. A partir de los datos experimentales de la tabla se han generado un ajuste polinómico de grado 2 (por cuadrados mínimos, utilizando los 5 puntos) y dos interpolaciones por Lagrange Baricéntrico, con 4 puntos $(x_0...x_3)$ y 5 puntos $(x_0...x_4)$. Se pide:

							1					•
i	0	1	2	3	4		A11	A12	A13		B1	$W_1^{5p} = 0.015625$
Х	2	X ₁	8	10	X ₄	A =	A21	A22	1800	B =	200	$W_1^{4p} = 0.03125$
у	3	7	9	6	y ₄		A31	1800	A33		В3	

- a) Obtener una ecuación de la forma $f(x_4) = 0$, más una ecuación que permita obtener x_1 a partir de x_4 .
- b) Resolver la ecuación obtenida por el método de Steffensen, con $g(x_4) = [x_4^3 f(x_4)]^{1/3}$, $x_4^0 = 4.1$ y tol = 10^{-3}
- c) Calcular los datos faltantes x₁ e y₄.
- d) Construir la matriz A y el vector B del método de SPLINE con frontera libre, para los puntos x₁, x₃ y x₄.

Ejercicio 3. Se tienen dos aproximaciones para calcular la derivada segunda en un punto.

Approximación 1:
$$f''(x) = \frac{f(x-h) - 2 \cdot f(x) + f(x+h)}{h^2};$$

Aproximación 2:
$$f''(x) = \frac{f(x) - 2 \cdot f(x+h) + f(x+2 \cdot h)}{h^2}.$$

¿Cuál de los dos es la mejor? Justifique la respuesta.

	_
Firma	