

TEORIA OBLICZALNOŚCI

Marcin Piątkowski

Wykład 12 i 13

P oraz NP

Klasa problemów rozstrzyganych przez **deterministyczne** maszyny Turinga w czasie wielomianowym

I NP Klasa problemów rozstrzyganych przez niedeterministyczne maszyny Turinga w czasie wielomianowym

NP-zupełność

Problem A nazywamy NP-zupełnym jeśli:

- $\mathbf{0} A \in NP$
- ② Dla dowolnego problemu $B \in \mathrm{NP}$ istnieje **efektywna** redukcja do problemu A

Dowodzenie NP-zupełności

Z definicji

Redukcja znanego problemu NP-zupełnego

Spełnialność formuł logicznych

Wyrażenie składające się ze zmiennych oraz operacji ¬, ∨, ∧

$$SAT = \{ \phi : \phi - \text{spełnialna formuła logiczna} \}$$

$$\checkmark \phi_1 = (\neg x \lor y) \land (z \lor \neg y) \land (x \lor \neg z)$$

$$\checkmark \phi_2 = (x \vee \neg x) \wedge (y \vee \neg y) \wedge (z \vee \neg z)$$

Uniwersytet Mikołaja Kopernika Marcin Piątkowski

Spełnialność formuł logicznych

$$SAT = \{\phi: \phi - \text{spełnialna formuła logiczna}\}$$

 ${\it M}_{\it A}$ – niedeterministyczna maszyna Turinga rozstrzygająca ${\it A}$ w czasie n^k

 M_A – niedeterministyczna maszyna Turinga rozstrzygająca A w czasie n^k

 M_A – niedeterministyczna maszyna Turinga rozstrzygająca A w czasie n^k

 M_A – niedeterministyczna maszyna Turinga rozstrzygająca A w czasie n^k

$$\phi_{M_A}(w) = \phi_{cell}(w) \wedge \phi_{start}(w) \wedge \phi_{acc}(w) \wedge \phi_{move}(w)$$

$$\phi_{M_A}(w) = \phi_{cell}(w) \wedge \phi_{start}(w) \wedge \phi_{acc}(w) \wedge \phi_{move}(w)$$

$$\phi_{M_{A}}(w) = \phi_{cell}(w) \wedge \phi_{start}(w) \wedge \phi_{acc}(w) \wedge \phi_{move}(w)$$

 $\phi_{start}(w) = x_{1,1,\#} \wedge x_{1,2,q_0} \wedge x_{1,3,w_1} \wedge x_{1,4,w_2} \wedge \dots$

Uniwersytet Mikołaja Kopernika Marcin Piątkowski

$$\phi_{M_A}(w) = \phi_{cell}(w) \wedge \phi_{start}(w) \wedge \phi_{acc}(w) \wedge \phi_{move}(w)$$

$$\phi_{acc}(w) = \bigvee_{1 \le i,j \le n^k} x_{i,j,q_{ACC}}$$

Uniwersytet Mikołaja Kopernika Marcin Piątkowski

$$\phi_{M_A}(w) = \phi_{cell}(w) \wedge \phi_{start}(w) \wedge \phi_{acc}(w) \wedge \phi_{move}(w)$$

- $\phi_{start}(w) = x_{1,1,\#} \wedge x_{1,2,q_0} \wedge x_{1,3,w_1} \wedge x_{1,4,w_2} \wedge \dots$
- $\phi_{acc}(w) = \bigvee_{1 \le i,j \le n^k} x_{i,j,q_{ACC}}$
- $\phi_{move}(w) = \bigwedge_{1 \le i < n^k, \ 1 < j < n^k} OKNO[i, j] \text{ jest poprawne}$

 a_1 , a_2 , a_3 , a_4 , a_5 , a_6

OKNO(i,j) jest poprawne

 $\phi_{\mathcal{O}} \; = \; \textit{x}_{\textit{i},\textit{j}-1,\textit{a}_{1}} \; \land \; \textit{x}_{\textit{i},\textit{j},\textit{a}_{2}} \; \land \; \textit{x}_{\textit{i},\textit{j}+1,\textit{a}_{3}} \; \land \; \textit{x}_{\textit{i}+1,\textit{j}-1,\textit{a}_{4}} \; \land \; \textit{x}_{\textit{i}+1,\textit{j},\textit{a}_{5}} \; \land \; \textit{x}_{\textit{i}+1,\textit{j}+1,\textit{a}_{6}}$

 a_1 , a_2 , a_3 , a_4 , a_5 , a_6

OKNO(i,j) jest poprawne

$$\phi_O \ = \ \textit{$x_{i,j-1,a_1}$} \ \land \ \textit{x_{i,j,a_2}} \ \land \ \textit{$x_{i,j+1,a_3}$} \ \land \ \textit{$x_{i+1,j-1,a_4}$} \ \land \ \textit{x_{i+1,j,a_5}} \ \land \ \textit{$x_{i+1,j+1,a_6}$}$$

	а	q_1	b
Y	q_2	а	С

	#	Ь	а
Y	#	Ь	а

	а	а	q_1
Y	а	а	Ь

	а	Ь	а
Y	а	Ь	q_2

$$\begin{array}{c|cccc} b & q_1 & b \\ \hline q_2 & b & q_2 \end{array}$$

Koniunktywna postać normalna (CNF)

1 Formuła w postaci CNF (koniunktywna postać normalna)

Koniunktywna postać normalna (CNF)

Formuła w postaci CNF (koniunktywna postać normalna)

$$(x_1 \lor \neg x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor x_4) \land (\neg x_2 \lor x_3 \lor \neg x_5)$$

Formuła w postaci 3CNF

$$(x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3 \lor x_4) \land (x_2 \lor \neg x_4 \lor x_5)$$

 $3SAT = \left\{ \phi: \ \phi \ {
m jest \ spełnialną \ formułą \ logiczną \ w \ postaci \ 3CNF}
ight\}$

$$\checkmark \phi_1 = (\neg x \lor y \lor z) \land (x \lor \neg y \lor z) \land (x \lor y \lor \neg z)$$

$$\phi_{M_A}(w) = \phi_{cell}(w) \wedge \phi_{start}(w) \wedge \phi_{acc}(w) \wedge \phi_{move}(w)$$

Formula logiczna w postaci CNF

$$\phi_{M_{\!A}}(w) = \phi_{cell}(w) \wedge \phi_{start}(w) \wedge \phi_{acc}(w) \wedge \phi_{move}(w)$$

- $\phi_{start}(w) = x_{1,1,\#} \wedge x_{1,2,q_0} \wedge x_{1,3,w_1} \wedge x_{1,4,w_2} \wedge \dots$
- $\phi_{move}(w) = \bigwedge OKNO[i,j] \text{ jest poprawne}$ $1 \le i < n^k, \ 1 < i < n^k$

$$\phi_{M_A}(w) = \phi_{cell}(w) \wedge \phi_{start}(w) \wedge \phi_{acc}(w) \wedge \phi_{move}(w)$$

- $\phi_{start}(w) = x_{1,1,\#} \wedge x_{1,2,q_0} \wedge x_{1,3,w_1} \wedge x_{1,4,w_2} \wedge \dots$
- $\phi_{acc}(w) = \bigvee_{1 \leq i,j \leq n^k} x_{i,j,q_{ACC}}$ Formula w postaci CNF
- $\phi_{move}(w) = \bigwedge_{1 \le i \le n^k, \ 1 \le j \le n^k} OKNO[i, j] \text{ jest poprawne}$

$$\phi_{M_{\!A}}(w) = \phi_{cell}(w) \wedge \phi_{start}(w) \wedge \phi_{acc}(w) \wedge \phi_{move}(w)$$

$$\phi_{acc}(w) = \bigvee_{1 \leq i,j \leq n^k} x_{i,j,q_{ACC}}$$
 Prawa de Morgana

$$\phi_{move}(w) = \bigwedge_{1 \le i \le n^k} OKNO[i,j] \text{ jest poprawne}$$

CNF → 3CNF

$$(x_1 \lor z_1 \lor z_2)$$

$$(x_1 \lor x_2)$$
 $(x_1 \lor x_2 \lor z_1)$

$$(x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5 \lor x_6)$$

$$(x_1 \lor x_2 \lor z_1) \land (\neg z_1 \lor x_3 \lor z_2) \land (\neg z_2 \lor x_4 \lor z_3) \land (\neg z_3 \lor x_5 \lor x_6)$$

Pokrycie wierzchołkowe grafu

Pokrycie wierzchołkowe grafu G – podzbiór S wierzchołków G taki, że każda krawędź G ma co najmniej jeden koniec w zbiorze S.

Pokrycie wierzchołkowe grafu

7

Wejście: Graf nieskierowany G oraz liczba k > 0.

Pytanie: Czy G ma pokrycie wierzchołkowe rozmiaru k?

Spełnialna dla
$$x = \text{true}, y = \text{false}$$

$$\phi = (x \lor y \lor \neg x) \land (x \lor y \lor \neg y)$$

Marcin Piątkowski

Problem kliki

Klika w grafie nieskierowanym – podgraf, w którym każde dwa wierzchołki połączone są krawędzią.

Wejście: Graf nieskierowany G oraz liczba k > 0.

Pytanie: Czy G zawiera klikę rozmiaru k?

Spełnialna dla
$$x = \text{true}, \ y = \text{false}, \ z = \text{true}$$

$$\phi = (\neg x \lor y \lor z) \land (x \lor \neg y \lor \neg z) \land (x \lor y \lor \neg z)$$

Spełnialna dla x =true, y =false, z =true

$$\phi = (\neg x \lor y \lor z) \land (x \lor \neg y \lor \neg z) \land (x \lor y \lor \neg z)$$

Spełnialna dla x =true, y =true, z =false

$$\phi = (x \lor y \lor z) \land (\neg x \lor \neg y \lor \neg z) \land (\neg x \lor y \lor \neg z) \land (x \lor \neg y \lor z)$$

Problem sumy podzbioru

?

Wejście: Zbiór (wielozbiór) liczb $X = \{x_1, x_2, \dots, x_n\}$ oraz liczba k > 0.

Pytanie: Czy istnieje podzbiór $Y \subseteq X$, którego suma elementów wynosi k?

Spełnialna dla
$$x_1 =$$
 false, $x_2 =$ **true**

$$\phi = (x_1 \lor x_2 \lor \neg x_1) \land (x_1 \lor x_2 \lor \neg x_2) \land (x_1 \lor \neg x_1 \lor \neg x_2)$$

$$\phi = (x_1 \lor x_2 \lor \neg x_1) \land (x_1 \lor x_2 \lor \neg x_2) \land (x_1 \lor \neg x_1 \lor \neg x_2)$$

k: (11333)

X:

$$\phi = (x_1 \lor x_2 \lor \neg x_1) \land (x_1 \lor x_2 \lor \neg x_2) \land (x_1 \lor \neg x_1 \lor \neg x_2)$$

X: 100 100 1110 1011 10111 10101

k: 11333

	x_1	<i>X</i> ₂	c_1	c_2	<i>c</i> ₃
<i>y</i> ₁	1	0	1	1	1
z_1	1	0	1	0	1
<i>y</i> ₂		1	1	1	0
<i>y</i> ₂ <i>z</i> ₂		1	0	1	1
g_1			1	0	0
$g_1 \\ h_1$			1	0	0
				1	0
g ₂ h ₂				1	0
g ₃					1
h_3					1
k	1	1	3	3	3

Spełnialna dla
$$x_1 =$$
false, $x_2 =$ true

$$\phi = (x_1 \lor x_2 \lor \neg x_1) \land (x_1 \lor x_2 \lor \neg x_2) \land (x_1 \lor \neg x_1 \lor \neg x_2)$$

X: 100 100 1110 1011 10111 10101

k: 11333

	<i>x</i> ₁	x_2	c_1	<i>c</i> ₂	<i>c</i> ₃
<i>y</i> ₁	1	0	1	1	1
z_1	1	0	1	0	1
<i>y</i> ₂		1	1	1	0
<i>y</i> ₂ <i>z</i> ₂		1	0	1	1
			1	0	0
g ₁ h ₁			1	0	0
				1	0
g ₂ h ₂				1	0
g ₃					1
g3 h3					1
k	1	1	3	3	3

$$\phi = (x_1 \lor x_2 \lor \neg x_1) \land (x_1 \lor x_2 \lor \neg x_2) \land (x_1 \lor \neg x_1 \lor \neg x_2)$$

X: 100 100 1110 1011 10111 10101

k: 11333

	x_1	X_2	c_1	c_2	<i>c</i> ₃
y_1	1	0	1	1	1
z_1	1	0	1	0	1
<i>y</i> ₂		1	1	1	0
<i>z</i> ₂		1	0	1	1
			1	0	0
$\frac{g_1}{h_1}$			1	0	0
g_2				1	0
g ₂ h ₂				1	0
					1
g3 h3					1
k	1	1	3	3	3

Problem układania planu

			-	
DZIEŃ	NA LENCA	ODDZIAŁY SZKOLNE	R LENCE	
				ш
¥	2		1 2	
2	3		3 4	\cdots
4	3		<u> </u>	ш
2	7		\$ 	+++
PONIEDZIAŁEK	1 1 2 3 3 4 6 6 7 7 8 8 8 10 10 10 10 10		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
á	10		10	
•	11		11	
	1		1	
	3		2 3	++-
WTOREK	4		4	
2	6		2	$\pm\pm$
2	7		7	\cdots
3	•		<u> </u>	
	10		10	+++
	12		12	
	2		2	+
	3		2	ш
ŚRODA	5		3	
ō	7		* 	+++
Ŝ	•			
	10		70	+++
	11		11	ш
	1		7	_
_	3		2	+++
Ē	4		3	
2	•		2 1	++
CZWARTEK	1 2 3 4 5 6 7 7 8 9 10		1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
Ņ	•		1	
٥	10		10	
	12		12	
	1 2 3 4 5 6 7 8 9 10 11		1 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	-
	3		3	
PIĄTEK	5		3	
E	7		8 7	+
2				
	10		9 10	+++
	11		11 12	

	2		5		1		9	
8			2		3			6
	3			6			7	
		1				6		
5	4						1	9
		2				7		
	9			3			8	
2			8		4			7
	1		9		7		6	

4	2	6	5	7	1	3	9	8
8	5	7	2	9	3	1	4	6
1	3	9	4	6	8	2	7	5
9	7	1	3	8	5	6	2	4
5	4	3	7	2	6	8	1	9
6	8	2	1	4	9	7	5	3
7	9	4	6	3	2	5	8	1
2	6	5	8	1	4	9	3	7
3	1	8	9	5	7	4	6	2

_	_	_	_	_		_		_		_	_	_		_	_		_	_	_	_	_	_	_	
	12		1	9	8		19		20			22	16		11		17		25					
24	7			5	25			17	16	8				6	l		9	12		19		14		3
		14	19					1					23		18	13	22	4				17		10
20	18		4	15			21	9	13	10				19						7	6	11		
25								4				11		13	19	20	6							
14				16	23			20	6			15		18	17				21	Г	4	8	5	
11			13	6	18			21			7	16	12				4		23					
		5	3	4						1			21	22		24	2				18		20	7
	1			19			11	8						14					13	6		2		
	15	7		8					24					9	5	12		16	20					25
21			10				8	12	18	6	16				25				7	17	22	19		2
		13	11	24	2	20			5					10	15	8	14							9
		17							23		21								11		13		10	
		23		25	6		15	13		7	2	14							5					
5						7	10	22	19	3				23				2		11			21	
8		10	17		12	11	4	24			22				Т			15		Н	1		18	5
23		6	15					25	22	13	1	20	18						10	4	21		17	11
Ė	22		16	13		9	18	3		23			14	17		25				12	15		6	
19				12			7				24		10			14			22		23	3		
					20	15	13		10			12		5	Т	3				Н			9	
Н		25			16	Ť	3	5		20	12		11	Ė	Н		19	8	6	1			Ė	23
	8		7		4	2		15		18		24			Т	21		20		Н		13		
H	Ė	18	20	3				É		9	23	Ė		21	13		12	7	17	\vdash	5	Ť		
10		24	21	Ť	17				12	25				1	3	15	Ē		Ė		7	9	14	
Ë	6	15		2	Ë		9		Ť	Ť	10		5	8	4	16				\vdash	19	_	Ė	

Saper - Minesweeper Consistency Problem

Saper - Minesweeper Consistency Problem

Saper - Minesweeper Consistency Problem

Inne przykłady gier

15	2	1	12
8	5	6	11
4	9	10	7
3	14	13	

