JANUARY 2017 PRELIMINARY EXAM

Advanced Calculus, Mandatory Problems

- (1) Suppose that $f: \mathbb{R} \to \mathbb{R}$ is differentiable and f' is continuous. Show that the restriction of f to any closed interval [a, b] is Lipschitz continuous.
- (2) Suppose that (X, d) is a metric space, fix a point a, and let f(x) = d(a, x). Show that the function $f: X \to \mathbb{R}$ is uniformly continuous.

Advanced Calculus, Optional Problems

- (1) Let $f:(a,b)\to\mathbb{R}$ be differentiable. Suppose that f'(c)=0 for some $c\in(a,b)$. Show that if f has a local minimum at x=c and f''(c) exists, then $f''(c)\geq 0$.
- (2) Suppose that $f \in C[0,1]$ and

$$\int_{a}^{b} x^{n} f(x) dx = 0 \quad \text{for all integer } n \ge 0.$$

Show that f is the zero function.

Real Analysis, Mandatory Problems

(1) For $f \in L^1(\mathbb{R})$, the Fourier transform of f is defined by

$$\hat{f}(\xi) = \int_{\mathbb{R}} f(x)e^{-2\pi ix\xi} dx.$$

- (a) Show that \hat{f} is continuous in \mathbb{R} .
- (b) Show that $\hat{f} \to 0$ as $|\xi| \to \infty$. For this part, you may assume that the set of all linear combinations of characteristic functions over bounded open intervals is dense in $L^1(\mathbb{R})$.
- (2) Let f be an integrable function in \mathbb{R}^d . Show that

$$\lim_{\alpha \to \infty} \alpha m \left\{ x \in \mathbb{R}^d : |f(x)| > \alpha \right\} = 0.$$

Real Analysis, Optional Problems

- (1) (a) State Egorov's Theorem.
 - (b) Use Egorov's Theorem to prove the Bounded Convergence Theorem: if f_k is a sequence of measurable functions on a measurable set E with $m(E) < \infty$, such that $f_k \to f$ a.e. in E and $|f_k| \leq M$ a.e. in E for some finite constant M, then

$$\int_{E} |f_k - f| \, dx \to \quad \text{as } k \to \infty.$$

(2) For a measurable function f on a measurable set $E \subset \mathbb{R}$, define

$$||f||_{L^{\infty}(E)} = \inf \{ \alpha : m \{ x \in E : |f(x)| > \alpha \} \} = 0.$$

Show that if $||f||_{L^{\infty}(E)} < \infty$ and $0 < m(E) < \infty$, then

$$\lim_{p \to \infty} \left(\frac{1}{m(E)} \int_E |f|^p dx \right)^{\frac{1}{p}} = ||f||_{L^{\infty}(E)}.$$