Math 2B Worksheet: 5.1 Areas and Distances

Write your names and Student ID numbers at the top of the page

1. Consider the curve $y=x^2$ on the interval [1,3]

((a)	Is y increasing or decreasing?
((b)	Estimate the area under y on $[1,3]$ using left endpoints and 4 rectangles. Is you estimate an under-estimate or an over-estimate?
	(c)	Repeat part (b) using right endpoints. Is this an under-estimate or an over-estimate
((d)	If a function f is increasing on $[a, b]$, then based upon your answers above, choose "Over" or "Under" in each part below.
		i. Estimating the area under f using left endpoints will result in an (Over/Under estimate.
		ii. Estimating the area under f using right endpoints will result in an (Over/Under estimate

(e) What do you think will happen when estimating the area under the curve of a function g that is **decreasing** on [a,b]? Test this by estimating the area under $g(x) = 6 - x^2$ on [0,2] using both left and right endpoints and 4 rectangles.

2. The speed of a runner increased steadily during the first three seconds of a race. Her speed at half-second intervals is given in the table. Find lower and upper estimates for the distance that she traveled during these three seconds.

	<u> </u>								
t(s)	0.0	0.5	1.0	1.5	2.0	2.5	3.0		
v (ft/s)	0	6.2	10.8	14.9	18.1	19.4	20.2		