Thermodynamik II – Gruppenübung 10

Thema: Strömungs- und Arbeitsprozesse

Kurzfrage

Es werden die folgenden vier adiabaten Strömungsapparate betrachtet: Turbine, Verdichter, Düse & Diffusor. Geben Sie an (+, -, =), wie sich die in der Tabelle aufgeführten Zustandsgrößen eines Gases zwischen Aus- und Eintritt dieser Apparate verändern.

	$h_{ m tot}$	h	w	S	p	T
Düse						
Diffusor (geringe Dissipation)						
Turbine						
Verdichter						

Aufgabensammlung 9.3 (abgeändert)

9.3 Gasturbinenstrahltriebwerk

Bei einem Gasturbinenstrahltriebwerk eines Flugzeuges (Abbildung 3) tritt Luft im Zustand $\vartheta_0 = -37^{\circ}C$, $p_0 = 0,356$ bar (entsprechend 8 km Flughöhe) und mit der Fluggeschwindigkeit $w_0 = 990$ km/h in den adiabaten Diffusor ein, dessen Wirkungsgrad $\eta_{s,D} = 0,835$ beträgt. Die Geschwindigkeit w_1, w_2, w_3 und w_4 sollen vernachlässigbar klein sein. Der adiabate Verdichter hat einen isentropen Wirkungsgrad von $\eta_{s,V} = 0,85$ bei einem Druckverhältnis von $\pi = p_2/p_1 = 5$. Die Verbrennung in der Brennkammer wird gedanklich durch eine Wärmezufuhr zur Luft ersetzt, welche dabei die Temperatur $\vartheta_3 = 820^{\circ}C$ und den Druck $p_3 = 0,96 \cdot p_2$ erreicht. Die adiabate Turbine liefert eine Leistung, die gerade zum Antrieb des Verdichters ausreicht. Die aus der Turbine austretende Luft expandiert in der adiabaten Düse auf den Umgebungsdruck $p_5 = p_0$.

- a) Man berechne die Temperatur ϑ_1 und den Auslegungsdruck p_1 nach dem Diffusor, wobei die Luft als Ideales Gas mit $R=0.2871 \frac{\mathrm{kJ}}{\mathrm{kg\cdot K}}$ und konstanter spezifischer isobarer Wärmekapazität $c_\mathrm{p}=1.004 \frac{\mathrm{kJ}}{\mathrm{kg\cdot K}}$ zu behandeln ist. Desweitern darf angenommen werden, dass nach einer isentropen Zustandsänderung im Diffusor derselbe Druck vorliegt wie nach einer realen: $p_{1\mathrm{s}}=p_1$.
- b) Wie groß ist die spezifische technische Arbeit des Verdichters? Welche Temperatur θ_2 und welcher Druck p_2 treten hinter dem Verdichter auf? Es gilt weiterhin $c_p = \text{konst.}$
- C) Der Durchmesser des Einlassquerschnitts des Diffusors beträgt 0,4 m und die Austrittsgeschwindigkeit des Strahls beträgt $w_5 = 724$ m/s. Man berechne den Schub F_s und die Vortriebsleistung $P_{\text{Tr,S}}$ des Triebwerks.
 - Es gilt dabei: $F_s = \dot{m}(w_5 w_0)$ und $P_{Tr,S} = F_s \cdot w_0$ aus der Mechanik bzw. Strömungsmechanik.
- d) Berechnen Sie den von der Luft aufgenommenen Wärmestrom \dot{Q}_{23} und den inneren Wirkungsgrad $\eta_{\rm i}=\frac{|P_{\rm Tr}|}{\dot{Q}_{23}}$ des Triebwerkes. Für die Nutzleistung der Anlage gelte: $P_{\rm Tr}=\frac{1}{2}\dot{m}\cdot(w_5^2-w_0^2)$ es gelte wieder $c_{\rm p}=1,004\frac{\rm kJ}{\rm ke\cdot K}=konst.$
- e) Wie groß sind der Vortriebswirkungsgrad $\eta_{Vo} = \frac{P_{Tr,S}}{P_{Tr}}$ und der Gesamtwirkungsgrad $\eta = \eta_i \cdot \eta_{Vo}$?

Abbildung 3: Schnitt eines Gasturbinenstrahltriebwerks mit Bezeichnung

Stoffdaten von Luft:

$\vartheta/^{\circ}C$	$s^{\mathrm{o,iG}}/\frac{\mathrm{kJ}}{\mathrm{kg}\cdot\mathrm{K}}$	$\overline{c}_{\mathrm{p}}^{\mathrm{iG}} _{0\mathrm{^{\circ}C}}^{\vartheta}/rac{\mathrm{kJ}}{\mathrm{kg\cdot K}}$
150	7,2168	1,0081
200	7,3306	1,0111
350	7,6165	1,0229
400	7,6984	1,0278
600	7,9819	1,0488
650	8,0442	1,0542
700	8,1038	$1,\!0595$
800	8,2156	1,0700
850	8,2683	1,0751