Missing Data Workshop Joint Doctoral Program in Clinical Psyc

Missing Data Workshop

Jonathan Lee Helm Friday May 17th, 2019

@jonathanleehelm

Grand Overview

- · Introduction to missing data
- · Review of sampling
- · Patterns, causes, and mechanisms of missing data
- · The problem with missing data

@ionathanleehelm

Grand Overview

- · Introduction to missing data
- · Review of sampling
- · Patterns, causes, and mechanisms of missing data
- · The problem with missing data

@jonathanleehelm

Missing Data Workshop Joint Doctoral Program in Clinical Psyc

Introduction to Missing Data

@jonathanleehelm

Missing Data

 Missing data occur when we do not have one or more observations for a given variable in our data

@jonathanleehelm

5

Missing Data

- · Missing data are ubiquitous in psychological science
- Can anyone think of a real world example that has complete data in psychological science?

@jonathanleehelm

7

Missing Data

· Missing data pose potential problems

@jonathanleehelm

•

Missing Data

- · Missing data pose potential problems
- · Potential for biased estimates
- · Potentially increase standard errors
 - Smaller sample size
 - Higher Type 2 error rate (i.e., harder to detect sig. effects)

@jonathanleehelm

9

Missing Data

- · Missing data pose potential problems
- · Potential for biased estimates
- Potentially increase standard errors
 - Smaller sample size
 - Higher Type 2 error rate (i.e., harder to detect sig. effects)
- These potential problems can be mitigated by different analyses
 - Multiple imputation

@jonathanleehelm

10

Missing Data

- The reasons that missing data may cause problems are closely linked to the importance of random sampling
- · Let's review random sampling as a segue into missing data

@jonathanleehelm

11

Grand Overview

- Introduction to missing data
- · Review of sampling
- · Patterns, causes, and mechanisms of missing data
- · The problem with missing data

@jonathanleehelm

Popula	ation D	<u>ata</u>
i	JS	IQ
1	9	78
2	13	84
3	10	84
4	8	85
5	7	87
6	7	91
7	9	92
8	9	94
9	11	94
10	7	96
11	7	99
:	÷	:
<i>N</i> -1	16	118
Ν	12	134
jonatha	anleehelr	n

Popula	ation D	ata		
i	JS	IQ	_	
1	9	78	Pop. mean for JS = 10	
2	13	84	Pop. SD for JS = 3	
3	10	84	·	
4	8	85		
5	7	87		
6	7	91		
7	9	92		
8	9	94		
9	11	94		
10	7	96		
11	7	99		
:	÷	:		
<i>N</i> -1	16	118		
N	12	134	_	
@jonatha	ınleehelr	n		20

	ation D		_					
i	JS	IQ	_					
1	9	78	Pop. mea	n for JS	s = 10			
2	13	84	Pop. SD	for JS =	3			
3	10	84	•					
4	8	85						
5	7	87						
6	7	91						
7	9	92		Rando	om Sar	<u>npie</u>	_	
8	9	94		i	JS	IQ		
9	11	94		1	10	72		
10	7	96		2	12	74		
11	7	99		3	7	90		
:	÷	:		:	÷	:		
N-1	16	118		99	9	118		
Ν	12	134		100	14	134		

i	JS	IQ					
1	9	78	Pop. mea	an for JS	s = 10		
2	13	84	Pop. SD				
3	10	84	.,				
4	8	85					
5	7	87					
6	7	91		Dand	0		
7	9	92		Rando	om Sar	npie	_
8	9	94		i	JS	IQ	
9	11	94		1	10	72	The sample mean for JS = 10
10	7	96		2	12	74	The sample SD for $JS = 2.8$
11	7	99		3	7	90	·
:	:	÷		:	:	:	
<i>N</i> -1	16	118		99	9	118	
Ν	12	134		100	14	134	

Popula Po	tion D	<u>ata</u>					
i	JS	IQ					
1	9	78	Pop. mea	an for JS	= 10		
2	13	84	Pop. SD	for JS =	3		Generalizability is a
3	10	84	•				function of sampling
4	8	85					Turiousir of camping
5	7	87					1
6	7	91		Donde	m Sar	nnla	
7	9	92		Kanuc			_
8	9	94		i	JS	IQ	_
9	11	94		1	10	72	The sample mean for JS = 10.3
10	7	96		2	12	74	The sample SD for JS = 2.8
11	7	99		3	7	90	•
:	:	:		:	:	:	
<i>N</i> -1	16	118		99	9	118	
Ν	12	134		100	14	134	

Sampling

- Example of a non-random sampleAnd a non-random sample of a random sample

@jonathanleehelm

Popula	ation D	ata	
- i	JS	IQ	_
1	9	78	Pop. mean for JS = 10
2	13	84	Pop. SD for JS = 3
3	10	84	
4	8	85	
5	7	87	
6	7	91	
7	9	92	
8	9	94	
9	11	94	
10	7	96	
11	7	99	
:	÷	:	
<i>N</i> -1	16	118	
N	12	134	_
@jonatha	ınleehelr	n	26

Popula	tion D	ata				
i	JS	IQ				
1	9	78	Pop. mea	an for JS	= 10	
2	13	84	Pop. SD	for JS =	3	
3	10	84	•			
4	8	85				
5	7	87				
6	7	91		Non D	ondon	a Campla
7	9	92		NON K	andon	n Sample
8	9	94		i	JS	IQ
9	11	94		1	10	72
10	7	96		2	12	74
11	7	99		3	7	90
:	:	:		:	:	:
<i>N</i> -1	16	118		99	4	80
N	12	134	_	100	6	73
@jonatha	nleehelr	n				

Popula	ation D	ata						
i	JS	IQ	_					
1	9	78	Pop. mea	an for JS	= 10			
2	13	84	Pop. SD	for JS =	3			
3	10	84	•					
4	8	85						
5	7	87						
6	7	91		Na. D			I-	
7	9	92		Non R	andon	n Sampl	<u>le</u>	
8	9	94		i	JS	IQ	_	
9	11	94		1	10	72	Sample mean for JS = 7.1	
10	7	96		2	12	74	Sample SD for JS = 1.1	
11	7	99		3	7	90	•	
:	÷	:		:	÷	:		
<i>N</i> -1	16	118		99	4	80		
N	12	134	_	100	6	73	-	
@jonatha	anleehelr	n						28

Sampling

- Missing data, in some cases can be conceptualized as a sample of a sample
- · This occurs when we use listwise deletion
 - Delete any row that has a missing value

@jonathanleehelm 31

Grand Overview Introduction to missing data Review of sampling Patterns, causes, and mechanisms of missing data The problem with missing data

Patterns vs Causes vs Mechanisms

- · Patterns of missingness
- · Causes of missingness
- · Missing data mechanisms
 - Missing data assumptions

@jonathanleehelm

37

Patterns vs Causes vs Mechanisms

- · Patterns of missingness
- Causes of missingness
- Missing data mechanisms
 - Missing data assumptions

@jonathanleehelm

38

Patterns of Missingness

 A pattern of missingness is a pattern that occurs in a specific data set

@jonathanleehelm

Cause of Missingness

• The true (not assumed) reason why the data are missing

@jonathanleehelm

45

Cause of Missingness

- Example 1
- · A researcher asks individuals to report their income
- Individuals with lower income tend to not report their income
- Cause of missingness: Those with lower income do not report their income

@jonathanleehelm

46

Cause of Missingness

- Example 2
- · A researcher performs an intervention on smoking
- · Individuals that find the intervention challenging drop out
- · There is missing data on smoking behavior at follow up
- Cause of missingness: Those that find the intervention to be challenging drop out

@jonathanleehelm

47

Cause of Missingness

- Example 3
- · A researcher performs an intervention on smoking
- · Individuals that find the intervention challenging drop out
- · There is missing data on smoking behavior at follow up
- Cause of missingness: Those that find the intervention to be challenging drop out

@jonathanleehelm

Cause of Missingness

- Example 4
- A researcher performs measures intelligence longitudinally
- The researcher randomly assigns half of the sample to be measured at ages 5, and 7; and half at 6 and 8
- Cause of missingness: Planned missingness: The researcher creates the missingness by design

@jonathanleehelm

49

Cause of Missingness

- The true (not assumed) reason why the data are missing
- Typically not known to the researcher
 - Counter: Planned missingness

@jonathanleehelm

50

Patterns vs Causes vs Mechanisms

- Patterns of missingness
- Causes of missingness
- Missing data mechanisms
 - · Missing data assumptions

@jonathanleehelm

51

Missing Data Mechanisms

- A.K.A:
 - 1. Categories of missingness
 - 2. Types of missingness
- These are assumptions regarding the missing data
- · Not known causes of the missingness

@jonathanleehelm

Missing Data Mechanisms

- · Three Missing Data Mechanisms
- 1. Missing Completely at Random (MCAR)
- 2. Missing at Random (MAR)
- 3. Missing not at Random (MNAR)

@jonathanleehelm

53

Missing Data Mechanisms

- · Three Missing Data Mechanisms
- 1. Missing Completely at Random (MCAR)
- 2. Missing at Random (MAR)
- 3. Missing not at Random (MNAR)

@jonathanleehelm

54

Missing Data Mechanisms

- A given analysis (e.g., t-test) <u>inherently assumes</u> a missing data mechanism
- If the assumption is incorrect, the parameter estimates may be biased

@jonathanleehelm

55

Missing Data Mechanisms: MCAR

- Missingness on a variable Y_i is MCAR if the *probability* of missingness is *unrelated* to
 - 1. The values Y_i (including the missing values!)
 - 2. Or to any other variable in the analysis*

* You can have variables in your data set that are not in the analysis

@jonathanleehelm

Missing Data Mechanisms: MCAR

- Missingness on a variable Y_i is MCAR if the *probability* of missingness is *unrelated* to
 - 1. The values Y_i (including the missing values!)
 - 2. Or to any other variable in the analysis*
- <u>The observed are a random sub-sample of the complete sample</u>
- * You can have variables in your data set that are not in the analysis

@jonathanleehelm

5/

i	JScom	IQ ^{com}
1	9	78
2	13	84
3	10	84
4	8	85
5	7	87
6	7	91
7	9	92
8	9	94
9	11	94
10	7	96
11	7	99
:	:	:
19	16	118
20	12	134
onatha	anleeheln	n

omplete Data			<u> </u>	bserved	l Data
i	JScom	IQcom	i	JSobs	IQobs
1	9	78	1		78
2	13	84	2	13	84
3	10	84	3	-	84
4	8	85	4	8	85
5	7	87	5	7	87
6	7	91	6	7	91
7	9	92	7	9	92
8	9	94	8	9	94
9	11	94	9	11	94
10	7	96	10		96
11	7	99	11	7	99
:	:	:	1	:	:
19	16	118	19	16	118
20	12	134	20		134
@jonath	anleeheln	n			

Comp	lete Da	<u>ta</u>	0	bserved	l Data	
i	JS ^{com}	IQcom	i	JSobs	IQobs	JSind
1	9	78	1	-	78	1
2	13	84	2	13	84	0
3	10	84	3		84	1
4	8	85	4	8	85	0
5	7	87	5	7	87	0
6	7	91	6	7	91	0
7	9	92	7	9	92	0
8	9	94	8	9	94	0
9	11	94	9	11	94	0
10	7	96	10		96	1
11	7	99	11	7	99	0
:	:	:	:	:	:	:
19	16	118	19	16	118	0
20	12	134	20		134	1
②jonath	anleeheln	n				

Comp	lete Da	<u>ta</u>	<u>OI</u>	bserved	Data		MCAR:
i	JScom	IQcom	i	JSobs	IQobs	JSind	Y ^{com} is not related to Y ^{ind}
1	9	78	1		78	1	or any other variable in
2	13	84	2	13	84	0	l ,
3	10	84	3		84	1	the analysis
4	8	85	4	8	85	0	
5	7	87	5	7	87	0	
6	7	91	6	7	91	0	
7	9	92	7	9	92	0	
8	9	94	8	9	94	0	
9	11	94	9	11	94	0	
10	7	96	10		96	1	
11	7	99	11	7	99	0	
÷	:	:	1	:	:		
19	16	118	19	16	118	0	
20	12	134	20	-	134	1	

Comp	lete Da	<u>ta</u>	<u>OI</u>	oserved	l Data		
i	JScom	IQcom	i	JSobs	IQobs	JSind	MCAR:
1	9	78	1		78	1	Y ^{com} is not related to Y ⁱ
2	13	84	2	13	84	0	
3	10	84	3		84	1	<u>t-test:</u>
4	8	85	4	8	85	0	Mean JS ^{com} for JS ^{ind} =
5	7	87	5	7	87	0	10.6
6	7	91	6	7	91	0	
7	9	92	7	9	92	0	Mean JS ^{com} for JS ^{ind} =
8	9	94	8	9	94	0	
9	11	94	9	11	94	0	9.6
10	7	96	10		96	1	
11	7	99	11	7	99	0	<i>p</i> -value for difference
:		:	1	÷	:	:	.3857
19	16	118	19	16	118	0	
20	12	134	20		134	1	
ionath	anleeheln	n					

Comp	lete Da	<u>ta</u>	<u> </u>	oserved	l Data		
i	JS ^{com}	IQcom	i	JSobs	IQobs	JSind	MCAR:
1	9	78	1		78	1	Y ^{com} is not related to Y ^{ind}
2	13	84	2	13	84	0	Or any other variable
3	10	84	3		84	1	<u>t-test:</u>
4	8	85	4	8	85	0	Mean IQ ^{com} for JS ^{ind} = 0
5	7	87	5	7	87	0	99.73
6	7	91	6	7	91	0	
7	9	92	7	9	92	0	Mean IQ ^{com} for JS ^{ind} = 1
8	9	94	8	9	94	0	100.8
9	11	94	9	11	94	0	100.8
10	7	96	10		96	1	
11	7	99	11	7	99	0	<i>p</i> -value for difference
	:	:	- 1	:	:	:	.9235
19	16	118	19	16	118	0	
20	12	134	20		134	1	
@jonath	anleehelr	n					63

Missing Data Mechanisms: MCAR • MCAR: missingness is not related to any variable in the data set • The observed are a random sample of your sample @jonathanleehelm

Missing Data Mechanisms: MCAR

- MCAR: missingness is not related to any variable in the data set
 - The observed are a random sample of your sample
- Can we ever know that data are MCAR in practice?

@jonathanleehelm

65

Missing Data Mechanisms: MCAR

- MCAR: missingness is not related to any variable in the data set
 - The observed are a random sample of your sample
- · Can we ever know that data are MCAR in practice?
 - No, we would need the complete data

@jonathanleehelm

66

Missing Data Mechanisms

- Three Missing Data Mechanisms
- 1. Missing Completely at Random (MCAR)
- 2. Missing at Random (MAR)
- 3. Missing not at Random (MNAR)

@jonathanleehelm

67

Missing Data Mechanisms: MAR

 Missingness on a variable Y_i is <u>Missing at Random</u> if the probability of missingness is unrelated to Y_i <u>after controlling</u> <u>for other variables</u> in the analysis

@jonathanleehelm

Missing Data Mechanisms: MAR

- Missingness on a variable Y_i is <u>Missing at Random</u> if the probability of missingness is unrelated to Y_i <u>after controlling for other variables</u> in the analysis
- Missingness on Y_i is related to another variable in the analysis
- You have other measures of the other variable

@jonathanleehelm

i JS°	om IQ	com
1 9	7	78
2 13	8 8	34
3 10	8 (34
4 8	8	35
5 7	8	37
6 7	9	91
7 9	9	92
8 9	9	94
9 11	9	94
0 7	9	96
1 7	9	99
: :	:	:
9 16	1 1	18
20 12	2 13	34
athanleel	holm	

Com	olete Da	<u>ta</u>	<u> </u>	Observe	d Data
i	JS ^{com}	IQ ^{com}	i	JSobs	IQobs
1	9	78	1		78
2	13	84	2		84
3	10	84	3		84
4	8	85	4		85
5	7	87	5		87
6	7	91	6		91
7	9	92	7		92
8	9	94	8		94
9	11	94	9		94
10	7	96	10		96
11	7	99	11	7	99
:	:	÷	1	:	:
19	16	118	19	16	118
20	12	134	20	12	134
@jonath	nanleeheln	n			

Comp	lete Da	<u>ta</u>	Ol	oserved	l Data	
i	JS ^{com}	IQ ^{com}	i	JSobs	IQobs	JSind
1	9	78	1		78	1
2	13	84	2		84	1
3	10	84	3		84	1
4	8	85	4		85	1
5	7	87	5		87	1 1
6	7	91	6		91	1
7	9	92	7		92	1
8	9	94	8		94	1
9	11	94	9		94	1
10	7	96	10		96	1
11	7	99	11	7	99	0
:	:	:	- 1	:	:	:
19	16	118	19	16	118	0
20	12	134	20	12	134	0
@jonath	anleeheln	n				

omp	lete Da	<u>ta</u>	<u> </u>	served	l Data		MAR:
i	JS ^{com}	IQ ^{com}	i	JSobs	IQobs	JSind	Y ^{com} is not related to Y ^{ind}
1	9	78	1		78	1	after controlling for other
2	13	84	2		84	1	-
3	10	84	3		84	1	variables in the analysis
4	8	85	4		85	1	
5	7	87	5		87	1	
6	7	91	6		91	1	
7	9	92	7		92	1	
8	9	94	8		94	1	
9	11	94	9		94	1	
10	7	96	10		96	1	
11	7	99	11	7	99	0	
÷	:	:	:	:	:	:	
19	16	118	19	16	118	0	
20	12	134	20	12	134	0	

Comp	lete Da	<u>ta</u>	01	oserved	l Data		MAR:
i	JS ^{com}	IQcom	i	JSobs	IQobs	JSind	Y ^{com} is not related to Y ^{ind}
1	9	78	1		78	1	after controlling for other
2	13	84	2		84	1	_
3	10	84	3		84	1	variables in the analysis
4	8	85	4		85	1	
5	7	87	5		87	1	$Y^{\text{com}} = b_0 + b_1 Y^{\text{ind}}$
6	7	91	6		91	1	
7	9	92	7		92	1	Est. s.e. p
8	9	94	8		94	1	b ₀ 11.7 .75 <.01
9	11	94	9		94	1	*
10	7	96	10		96	1	<u>b₁ -2.7 1.05 .02</u>
11	7	99	11	7	99	0	
:		:	1	÷	:		
19	16	118	19	16	118	0	
20	12	134	20	12	134	0	
@jonath	anleeheln	n					74

1 9	Comp	lete Da	<u>ta</u>	<u>OI</u>	served	l Data		MAR				
	i	JS ^{com}	IQ ^{com}	i	JSobs	IQobs	JSind		<u>:-</u> is not r	elated	to Yi	nd
	1	9	78	1		78	1		control			
	2	13	84	2		84	1			•		
	3	10	84	3		84	1	varia	bles in	tne an	aiysi	s
	4	8	85	4	-	85	1					
	5	7	87	5	-	87	1 1	Ycom	$=b_0+b$	₁ IQ ^{obs}		
	6	7	91	6		91	1					_
	7	9	92	7		92	1		Est.	s.e.	р	_
	8	9	94	8		94	1	b_0	0.07	3.79	.98	
	9	11	94	9		94	1	Ť	.10	.04	.01	
	10	7	96	10		96	1	b_1	. 10	.04	.01	-
	11	7	99	11	7	99	0					
	:	:	:	1	:	:	:					
	19	16	118	19	16	118	0					
	20	12	134	20	12	134	0					
@	jonath	anleeheln	n									75

omp	lete Da	<u>ta</u>	<u>OI</u>	served	l Data		MAR:				
i	JS ^{com}	IQcom	i	JSobs	IQobs	JSind		s not re	lated to	o Vinc	j
1	9	78	1		78	1		controlli			
2	13	84	2		84	1	I		U		
3	10	84	3		84	1	variab	les in t	ne ana	lysis	
4	8	85	4		85	1					
5	7	87	5		87	1 1	Y ^{com} =	$b_0 + b_1$	IQobs +	b_2Y	in
6	7	91	6		91	1					_
7	9	92	7		92	1		Est.	s.e.	р	
8	9	94	8		94	1	b_0	3.97	7.80	.62	
9	11	94	9		94	1		.07	.07	.33	
10	7	96	10		96	1	b_1	.07	.07	.55	
11	7	99	11	7	99	0	b_2	-1.11	1.92	.57	
÷	:	:	1	:	:	:					-
19	16	118	19	16	118	0					
20	12	134	20	12	134	0					
nath	anleeheln	n									

Missing Data Mechanisms: MAR

 Missingness on random indicates that there is some other variable in the analyses that accounting for the missingness

@jonathanleehelm

77

Missing Data Mechanisms: MAR

- Missingness on random indicates that there is some other variable in the analyses that accounting for the missingness
- i.e., that variable can be a proxy for the cause of the missingness
- Once you account for that variable, you have a random sample again

@jonathanleehelm

78

Missing Data Mechanisms: MAR

- Can we ever know for certain that data are MAR?
- · No, we would need the complete data to be certain
- · Even then, it would still be an assumption

@jonathanleehelm

79

Missing Data Mechanisms

- · Three Missing Data Mechanisms
- 1. Missing Completely at Random (MCAR)
- 2. Missing at Random (MAR)
- 3. Missing not at Random (MNAR)

@jonathanleehelm

Missing Data Mechanisms: MNAR

 Missingness on a variable Y_i is <u>Missing Not at Random</u> if the probability of missingness is <u>still related</u> to Y_i <u>after</u> <u>controlling for other variables</u> in the analysis

@jonathanleehelm

81

Missing Data Mechanisms: MAR

- Missingness on a variable Y_i is <u>Missing Not at Random</u> if the probability of missingness is <u>still related</u> to Y_i <u>after</u> <u>controlling for other variables</u> in the analysis
- Missingness on Y_i is still related to Y_i after controlling for other variables

@jonathanleehelm

i	JScom	IQ ^{com}
1	9	78
2	13	84
3	10	84
4	8	85
5	7	87
6	7	91
7	9	92
8	9	94
9	11	94
10	7	96
11	7	99
:	:	:
19	16	118
20	12	134

mp	lete Da	ta	OI	oserved	l Data
i	JScom	IQcom	i	JSobs	IQobs
1	9	78	1	9	78
2	13	84	2	13	84
3	10	84	3	10	84
4	8	85	4	8	85
5	7	87	5	7	87
6	7	91	6		91
7	9	92	7		92
8	9	94	8		94
9	11	94	9	11	94
10	7	96	10	7	96
11	7	99	11	7	99
:	÷	:		:	:
19	16	118	19	16	118
20	12	134	20	12	134
Nionath	anleeheln				

Comp	lete Dat	<u>ta</u>	0	bserved	l Data	
i	JScom	IQ ^{com}	i	JSobs	IQobs	JSind
1	9	78	1	9	78	0
2	13	84	2	13	84	0
3	10	84	3	10	84	0
4	8	85	4	8	85	0
5	7	87	5	7	87	0
6	7	91	6	-	91	1
7	9	92	7		92	1
8	9	94	8		94	1
9	11	94	9	11	94	0
10	7	96	10	7	96	0
11	7	99	11	7	99	0
:	:	:	1	:	:	:
19	16	118	19	16	118	0
20	12	134	20	12	134	0
ionath	anleeheln	n				

Complete Data			0	oserved	l Data		MNAR:
i	JS ^{com}	IQ ^{com}	i	JSobs	IQobs	JSind	Y ^{com} is still related to Y
1	9	78	1	9	78	0	after controlling for oth
2	13	84	2	13	84	0	_
3	10	84	3	10	84	0	variables in the analys
4	8	85	4	8	85	0	
5	7	87	5	7	87	0	
6	7	91	6		91	1	
7	9	92	7		92	1	
8	9	94	8		94	1	
9	11	94	9	11	94	0	
10	7	96	10	7	96	0	
11	7	99	11	7	99	0	
:	÷	÷	- 1	:	:	:	
19	16	118	19	16	118	0	
20	12	134	20	12	134	0	
onath	anleehelr	n					

	Complete Data		Observed Data			MNA	R.					
	i	JS ^{com}	IQ ^{com}	i	JSobs	IQobs	JSind		is still r	elated	to Y ^{ir}	nd
	1	9	78	1	9	78	0					
	2	13	84	2	13	84	0	after controlling for other variables in the analysis				
	3	10	84	3	10	84	0	varia	bles in	tne ar	alysis	3
	4	8	85	4	8	85	0					
	5	7	87	5	7	87	0	Ycom	$=b_0+b$	$p_1^{Y^{Ind}}$		
	6	7	91	6	-	91	1					
	7	9	92	7		92	1		Est.	s.e.	р	
	8	9	94	8		94	1	b_0	11.4	.51	<.01	
	9	11	94	9	11	94	0		-4.2	1.02	<.01	
	10	7	96	10	7	96	0	b_1	-7.2	1.02	١٠.٠١	
	11	7	99	11	7	99	0					
	:	:	:		:	:	:					
	19	16	118	19	16	118	0					
	20	12	134	20	12	134	0					
0	@jonathanleehelm											87

omp	lete Da	<u>ta</u>	OI	served	l Data		MNA	р.			
i	JS ^{com}	IQ ^{com}	i	JSobs	IQobs	JSind		is still r	hatela:	to Vi	in
1	9	78	1	9	78	0					
2	13	84	2	13	84	0		contro	_		
3	10	84	3	10	84	0	varıa	bles in	the an	alysı	s
4	8	85	4	8	85	0					
5	7	87	5	7	87	0	Ycom	$= b_0 + b_0$	$_1$ IQ $^{ m obs}$		
6	7	91	6		91	1					
7	9	92	7		92	1		Est.	s.e.	р	
8	9	94	8		94	1	b_0	0.07	3.79	.98	_
9	11	94	9	11	94	0		.10	.04	.01	
10	7	96	10	7	96	0	b_1	. 10	.04	.01	_
11	7	99	11	7	99	0					
:	:	:	:	:	:	:					
19	16	118	19	16	118	0					
20	12	134	20	12	134	0					
onath	anleeheln	n									

Comp	lete Da	<u>ta</u>	<u>O</u>	Observed Data					
i	JS ^{com}	IQ ^{com}	i	JSobs	IQobs	JSind	ı		
1	9	78	1	9	78	0	ı		
2	13	84	2	13	84	0	ı		
3	10	84	3	10	84	0	ı		
4	8	85	4	8	85	0	ı		
5	7	87	5	7	87	0	ı		
6	7	91	6	-	91	1	ı		
7	9	92	7		92	1	ı		
8	9	94	8		94	1	ı		
9	11	94	9	11	94	0	ı		
10	7	96	10	7	96	0	١		
11	7	99	11	7	99	0	١		
:	:	:	1	:	÷	:	١		
19	16	118	19	16	118	0	١		
20	12	134	20	12	134	0	١		

MNAR:

Y^{com} is still related to Ynd after controlling for other variables in the analysis

$$Y^{\text{com}} = b_0 + b_1 |Q^{\text{obs}} + b_2 Y^{\text{ind}}$$

	Est.	s.e.	р
b_0	4.88	3.30	.16
b_1	.06	.03	.06
b_2	-3.48	1.01	<.01

89

Missing Data Mechanisms: MNAR

• Data are missing not at random when the missingness on Y_i is related to the values of Y_i , even after controlling for other variables in the analysis

@jonathanleehelm

an

Missing Data Mechanisms: MAR

- Missingness not at random occurs when the missingness on Y_i is related to the values of Y_i , even after controlling for other variables in the analysis
- i.e., the sample is still not a random sample from the population, even after accounting for other variables in the analysis

@jonathanleehelm

91

Missing Data Mechanisms: MAR

· Can we ever know for certain that data are MNAR?

@jonathanleehelm

Missing Data Mechanisms: MAR

- Can we ever know for certain that data are MNAR?
- · No, we would need the complete data to be certain
- · Even then, it would still be an assumption

@jonathanleehelm

93

Missing Data Mechanisms

- · Three Missing Data Mechanisms
- 1. Missing Completely at Random (MCAR)
- 2. Missing at Random (MAR)
- 3. Missing not at Random (MNAR)

@jonathanleehelm

94

Missing Data Mechanisms

- 1. Missing Completely at Random (MCAR)
- 2. Missing at Random (MAR)
- 3. Missing not at Random (MNAR)
- These are $\underline{\textit{assumptions}}$ regarding missingness
- Different statistical analysis will be valid under different assumptions

@jonathanleehelm

95

Grand Overview

- · Introduction to missing data
- · Review of sampling
- · Patterns, causes, and mechanisms of missing data
- · The problem with missing data

@jonathanleehelm

Missing Data Workshop Joint Doctoral Program in Clinical Psyc

The Problem with Missing Data

@jonathanleehelm

97

Problems with Missing Data

- · Most analytic techniques require complete data
 - · Descriptive statistics (e.g., means, SDs, correlations)
 - t-tests
 - · Significance testing of correlation
 - ANOVA
 - · Regression

@jonathanleehelm

98

Problems with Missing Data

• If our data contain missingness, then we typically perform listwise deletion

@jonathanleehelm

99

Problems with Missing Data

- If our data contain missingness, then we typically perform listwise deletion
- If data are missing completely at random, then we should obtain unbiased estimates

@jonathanleehelm

Problems with Missing Data

- If our data contain missingness, then we typically perform listwise deletion
- If data are missing completely at random, then we should obtain unbiased estimated
- If data are missing at random or missing not at random then we will obtain biased estimates

@ionathanleehelm

102

Problems with Missing Data

- Therefore, many analytic techniques assume data are missing completely at random
 - · And they didn't even tell you!

@jonathanleehelm

Problems with Missing Data

- So the major question is, is there anything we can do to at least assume MAR instead of the more restrictive MCAR?
 - Multiple Imputation

@jonathanleehelm

105

Grand Overview

- Introduction to missing data
- · Review of sampling
- · Patterns, causes, and mechanisms of missing data
- · The problem with missing data

@jonathanleehelm