A Review of the Canonical Formalism and Quantization Procedure

Conservative force field.

I he

富三社

in the generalized velocity of the genticle

LX L(q, q) be the Lagrangian.

Hamilton's Principle

The shyrical seth g(t) that the sorticle takes in gring from g(t) = g To g(t) = g is that along which the Action,

The action is defined by

5 = \(\(\frac{1}{7}, \frac{1}{8} \) dt

Along the schopical sath, small variations in the geth

 $g(t) \longrightarrow g(t) + Sg(t)$

Seeching to a voiction of the action 55 leave the action unchanged to just order in the variation, Sgtt) - i.e.,

55=0

Let'a compute SS:

 $SS = S \int_{t}^{t_2} L(q, \dot{q}) \Lambda t$

 $=\int_{t_{1}}^{t_{2}} \left[\frac{1}{s_{1}} s_{2} + \frac{1}{s_{1}} s_{3} \right] dt$

=] [] Sq +] At(Sq)] It

= \frac{t^2}{5_3^2} \frac{1}{5_4} + \frac{1}{4t} (\frac{1}{5_4^2} \frac{5}{5_4}) - \frac{1}{4t} (\frac{1}{5_4^2}) \frac{5}{5_4} \] dt

= St2 [= - At(=)] sq dt

The last equality arises because

 $\int_{t}^{t_{2}} \frac{1}{2} \left(\frac{1}{2$

more Sqlt,) and Sqlt,) are by definition O given the spints starting grant, glts = 32.

Given a functional

F = F(x, y(x), y'(x))

Consider the variation

J(x) → y(x) + ∈ y(x)

where E < 51.

Sy(x) = En(x)

Thou, I a find x,

 $SF = F(x, y(x) + \epsilon \gamma(x), y'(x) + \epsilon \gamma(x)) - F(x, y(x), y'(x))$

Eggend in E:

CF = EFEM + FIEM

For

F=y => Sy=Em

F=y'= (Sy) Sand dy commute!

SE 1884 = [] < 8(+;) St + [] = \$ 158(+;) St + ... = 0 => al [] = 0 Since the variation So (t) of the function of (t) is whiteny the shipping with (fit with SS = 0) in just by The shipping FDM 3 - At (3 = 0 The momentum conjugate to g is defined by The Hamiltonian Shich is a function of (g, x) retter then (g, g), in defined by H = x g - L The EDM are (ming the Prison Brackets) S = - {H, SE} = - (2 2 2 - 2 4 2 5) = - 2 6 To quenting this system, of and a become Hermitian yester g - g Nove action on $\Psi(q,t)$ is multiplication by g

Considering the Hamiltonian as a function of (8,8), not explicitly to we have

$$AH(g,g) = \frac{3H}{8} dg + \frac{3H}{8} dg \qquad (1)$$

Considering the African of the Hamiltonian

$$H(8,8) = \frac{1}{8} - L(8,8) \tag{2}$$

$$dH = r d\dot{g} + \dot{g} dr - \frac{\partial L}{\partial g} dg - \frac{\partial L}{\partial g} d\dot{g}$$
(3)

There we have assumed that I is not an explicit fronting of time (this world break I trent invariance of the Lagrangian shirt is a scalar quantity when we briefly our relativité &FT)

From the Euler - Lagrange EDM

$$\frac{1}{2\pi}\left(\frac{1}{2}\right) - \frac{1}{2} = 0 \tag{4}$$

But

$$C = \frac{1}{2}$$

The Euler-Lagrange EOM then tell un

$$\frac{1}{At}(y) = \dot{y} = 5$$

Then, insertion of (5) and (6) in (3) given

1H = (2 - 2) dj + j dp - 3 dy + just a mente

= i dp - je dg

But, from (1), equaling coefficients

g = 5th

x = -3H

There are Hamilton's EDM which can be expressed in terms of the AT-collect Prisson Suchets as

= - \{ H, g\} = - \(\frac{1}{5} \) = \(\frac{1}{5} \) = \(\frac{1}{5} \)

S = - { H, S = - (3 5 - 3 6) = - 114

and the Hamiltonian becomes a Humbian yearton, The

1-14(g,t) = : 34(q,t)

In the Heisenbern leguesentation, it's the yesters that dyend

 $\psi_{s(s),t} = e^{-iHt}\psi_{s(s,0)} = e^{-iHt}\psi_{s(s,0)}$

The time - integeralent operators in the Schroedinger greature are replaced in the Heisenberg greature by

 $\hat{O}_{H}(t) = e^{i\hat{H}t} \hat{O}_{S}e^{-i\hat{H}t}$

and the time development of the operators is given by

10H = : [H, OH]

Let's look of OH = ge (t). Veing an arbitrary function, f(x, g), as a placeholder,

18(+) f = i [H, 8=]f

= : [H(-; 3]) - (-; 3]) H]f

= H(35) - 37(H5)

Consider the time devistive of the expectation value of the squater of in the state 14 >: Here the state 14) in time - legrendent but the greator of in We can recogness the meting element in terms of 14) At < 4 | e + 0 e + 1 + 1 +) (2) Now all of the time dependence site in the exponentials & Taking the democtive < 4 (i Heint de -int - i ent de meint) 14 > = < 4 | i (Heint o eint - eint o eint h) | +) = < 4 | : (HÔ - OH) | 4)

= <4 | i [H, O] | 4 }

Then, from (2) and (3)

1	1 ,	_	1	
at <	4 1	0	14	>
	H	+	1 4	

We write of the operator relation

which is the Hersenberg EDM for the time - bywarden yents

$$= -\frac{1}{2}(\xi) - \frac{1}{2}(\xi) - \frac{1}{2}(\xi)$$

$$= -\frac{1}{2}(\xi) - \frac{1}{2}(\xi)$$

Than

$$\frac{1}{4}\hat{f}(t) = -\frac{1}{3}\hat{f}$$

Nrw let'a lose So 0 = g(t).

$$= - H\left(\frac{2}{7\xi}\right) + \frac{2}{9H}(\xi) + H\left(\frac{2}{9\xi}\right)$$

Thom

Rus there are just the classical questions of motion.

	erolae according to the desired Form
	This is very important in QFT and notivities the approach we will take to build our theories:
	This way superlied to I m BET pare will:
()	CONSTRUCT LAGRANGIANS FOR CLASSICAL FIELDS
()	COUSTROCT FACILITIES FOR CLASSICAL FIELDS
2)	BERIVE THE FOM FOR THOSE FIELDS
3)	FIND THE CLASSICAL SOLUTIONS TO THESE EDM
4)	QUANTIZE THESE CLASSICAL FIELD SOLUTIONS
	- ELEVATE THEM TO OPERATOR STATUS
	- INTRODUCE CREATION AND ANNIHILATION DEFRATORS
	- MAKE THE CONNECTION TO PARTICLES