ABSTRACT

An ocular lens material made of a copolymer of monomers respectively represented by formula (I), (II) and (III), which has a well-balanced combination of mechanical strength, flexibility, oxygen permeability, shape stability, transparency, and hydrophilicity.

$$CH_{2}=C \xrightarrow{R^{1}} \begin{array}{c} R^{3} & R^{5} & R^{7} \\ C-A^{1}-X^{1}-S_{1}-O & S_{1}-O & S_{1}-X^{2}-A^{2}-C \\ R^{4} & R^{4} & R^{6} & R^{8} & O \end{array}$$

$$CH_{2}=C \xrightarrow{R^{10}} \begin{array}{c} R^{10} & C=CH_{2} \\ C-A^{3}-Y & C=CH_{2} \\ C-A^{3}-Y & C=CH_{2} \\ C-A^{4}-X^{3}-C & C=CH_{2} \\ C-A^{4}-C & C=CH_{2} \\ C-A^{4}-C & C=CH_{2} \\ C-A^{4}-C & C=CH_{2} \\ C-A^{4}-C & C=CH_{2} \\ C-C & C=CH_{2} \\ C-C$$

[In the formula, R^1 and R^2 each represents H or CH_3 ; R^3 to R^8 each represents a C_{1-10} monovalent hydrocarbon group optionally substituted with fluorine atom(F); A^1 and A^2 each represents $-O^2$, $-S^2$, or $-NR^9$ - (wherein R^9 represents H or a C_{1-10} monovalent hydrocarbon group optionally substituted with F); X^1 and X^2 each represents a single bond or a divalent organic group; m is 0 to 300; R^{10} represents H or CH_3 ; A^3 represents $-O^2$, $-S^2$, or $-NR^{11}$ -

(wherein R^{11} represents H, or a C_{1-10} monovalent hydrocarbon group optionally substituted with F); Y represents a monocyclic monovalent hydrocarbon group; R^{12} represents H or CH_3 ; A^4 represents -O-, -S-, or -NR¹³- (wherein R^{13} represents H or a C_{1-10} monovalent hydrocarbon group optionally substituted with F); X^3 represents a single bond or a divalent organic group; Z^1 to Z^5 each represents either a C_{1-10} monovalent hydrocarbon group optionally substituted with F or $-OR^{14}$ [wherein R^{14} represents either a C_{1-10} monovalent hydrocarbon group optionally substituted with F or a group represented by $-O-SiR^{15}R^{16}R^{17}$ (wherein R^{15} to R^{17} each represents either a C_{1-10} monovalent hydrocarbon group optionally substituted with F or $-O-R^{18}$ (wherein R^{18} represents a C_{1-10} monovalent hydrocarbon group optionally substituted with F))]; and n is 0 to 300.]