

Lieferprogramm GrobblechGrobbleche aus Ilsenburg – Höchste Qualität für jeden Einsatz

Delivery Program Heavy Plate

Heavy Plate from Ilsenburg – The Highest Quality for Every Application

Inhalt

Content

4
8
10
12
15
20

Stahl und Technologie in höchster Qualität und für jeden Einsatz

Steel and Technology of the Highest Quality and for Every Application

ILSENBURGER GROBBLECH GMBH

Hinter jedem Projekt steckt eine Vision. Wir unterstützen unsere Kunden dabei, diese Vision zu verwirklichen – nicht nur mit qualitativ hochwertigen Produkten und einem breiten Lieferprogramm, sondern auch durch Innovationsfreude und Flexibilität.

Mit 800 Mitarbeitern produzieren wir in Ilsenburg und Salzgitter Quartobleche für verschiedenste Branchen und Anwendungsbereiche. Rund 800.000 Tonnen Grobblech in 350 Stahlgüten liefern wir jährlich von unserem Standort in der Mitte Deutschlands und Europas an unsere Kunden in aller Welt.

Wir sind ein Tochterunternehmen der Salzgitter AG, die mit etwa 200 Tochter- und Beteiligungsgesellschaften und 24.000 Mitarbeitern an rund 100 internationalen Standorten zu den führenden Stahltechnologie-Konzernen Europas zählt. Selbst bei komplexen Anforderungen sind wir durch unsere enge Zusammenarbeit unter anderem mit der Salzgitter Flachstahl GmbH, Salzgitter Mannesmann Handel GmbH, Salzgitter Mannesmann Grobblech GmbH oder der Salzgitter Mannesmann Forschung GmbH in der Lage, schnell und zielgerichtet auf die individuellen Wünsche unserer Kunden einzugehen. Damit zählen wir in Bezug auf die Qualität und Anwendungsvielfalt zu den führenden Grobblechherstellern Europas.

ILSENBURGER GROBBLECH GMBH

There is a vision behind every project. We support our customers in turning this vision into reality – not only with high quality products and a wide product range, but with joy of innovation and flexibility.

We produce heavy plate for various branches and areas of application with 800 employees in Ilsenburg and Salzgitter. From our location in the center of Germany and Europe, we supply approximately 800,000 tons of heavy plate annually in 350 steel grades to our customers all over the world.

We are a subsidiary of Salzgitter AG, which, with roughly 200 subsidiaries and holdings and 24,000 employees at around 100 international sites, is one of the leading steel technology groups in Europe. Through our close collaboration with among others Salzgitter Flachstahl GmbH, Salzgitter Mannesmann Handel GmbH, Salzgitter Mannesmann Grobblech GmbH and Salzgitter Mannesmann Forschung GmbH, we are in the position to respond quickly and specifically to the individual wishes of our customers. This makes us one of the leading heavy plate manufacturers in Europe in terms of quality and variety of applications.

Wir produzieren Quartobleche in höchster Qualität in den Abmessungen:		We produce heavy plate of highest quality in the following range:	
Dicke	6 – 175 Millimeter	Thickness	6 – 175 millimeters
Breite	800 - 3.500 Millimeter	Width	800 - 3,500 millimeters
Länge	max. 24 Meter	Length	max. 24 meters
Stückgewicht	max. 28 Tonnen	Piece weight	max. 28 tons

- Im Herdwagenofen werden bis zu 32 t schwere Brammen für den Walzvorgang erwärmt.
- Slabs weighing up to 32 tons are heated up in the bogie hearth furnace for the rolling process.

UNSERE KUNDENINDIVIDUELLE FERTIGUNG NACH ENGSTEN TOLERANZVORGABEN SETZT WELTWEIT MASSSTÄBE. -- OUR CUSTOMIZED PRODUCTION TO THE TIGHTEST TOLERANCE SPECIFICATIONS SETS STANDARDS ALL OVER THE WORLD.

Ilsenburger – Grobbleche in Perfektion

Ilsenburger - Heavy Plate in Perfection

FÜR UNSERE KUNDEN FERTIGEN WIR GROBBLECHE, DIE GENAU IHREN INDIVIDUELLEN QUALITÄTSANFORDERUNGEN ENTSPRECHEN. DIE BASIS DAFÜR BILDEN UNSERE MODERNEN FERTIGUNGSANLAGEN, DIE WIR DURCH REGELMÄSSIGE INVESTITIONEN IMMER AUF DEM NEUESTEN STAND DER TECHNIK HALTEN. -- FOR OUR CUSTOMERS WE
PRODUCE QUARTO PLATES THAT ARE PERFECTLY ADAPTED TO THEIR INDIVIDUAL QUALITY REQUIREMENTS. OUR
HIGH QUALITY STANDARD IS BASED ON OUR MODERN PRODUCTION FACILITIES, WHICH ARE MAINTAINED AT STATE
OF THE ART BY REGUL AR INVESTMENTS

Parallelrollgang/Side Shift Table

Visuelle Qualitätskontrolle der Bleche/Visual Quality Control of the Plates

Am Standort Ilsenburg walzen wir für unsere Kunden monatlich 17.000 Einzelbleche mit einem maximalen Blechgewicht von 28 Tonnen. Dabei sorgen unser extrem steifes Quartowalzgerüst, das präzise Stichplan-Rechnermodell und die Dickenmessung durch Isotopendurchstrahlung für engste Maßtoleranzen.

Mit unserer Standquette am Standort Salzgitter veredeln wir die Bleche zu hoch- und verschleißfesten Güten für spezielle Anforderungen. In einem weiteren Schritt können die Oberflächen konserviert und die Kanten in der Kantenfräsanlage für das Schweißen vorbereitet werden. Nach einem Biegeprozess – falls gewünscht – sind die Bleche unmittelbar einsetzbar.

ILSENBURGER QUALITÄTSSICHERUNG

Unsere vielfach zertifizierten Bleche unterliegen einer ständigen, automatisierten und auf die Wünsche unserer Kunden abgestimmten Qualitätsprüfung. Im Mittelpunkt stehen dabei neben der Eignung für Einsatzort und -zweck insbesondere die Verarbeitungsfreundlichkeit der Bleche.

At the Ilsenburg site, 17,000 individual plates with a maximum plate weight of 28 tons are rolled each month. The extremely stiff four-high rolling stand, the accurate pass schedule calculation model and the measurement of thickness by isotope radiography provide for tightest dimensional tolerances.

Our water quenching equipment is located at the Salzgitter site. There we refine the plates into high-strength and abrasion resistant grades for particularly high specification requirements. In a further operation, the surfaces can be shot blasted, primered and the edges prepared for welding in the edge milling unit. After a bending process, if required, the plates are ready for immediate use.

QUALITY FROM ILSENBURG

Our multi certified plates are subjected to a constant automated quality inspection that can be adapted to the customers' wishes. In addition to ensuring they are fit for purpose, we focus on achieving a good processability.

The Plant Layout of Ilsenburger Grobblech GmbH

- 1 Vormaterial
- 2 Tiefofen
- 3 Stoßöfen
- 4 Herdwagenofen 1
- 5 Zunderwäscher
- 6 Quartowalzgerüst
- 7 Parallelrollgang
- 8 ACC-Anlage
- 9 Warmrichtmaschine
- 10 Warmteilschere
- 11 Kühlbetten
- 12 Dickblechkühlbett
- 13 Blechwender
- 14 Stapelabkühlung
- 15 Dickblechwender

- 16 US-Prutung
 - Stempelung und Signierung
- 17 Doppelbesäumschere
- 18 Querteilschere
- 19 Kaltrichtmaschine
- 20 Wärmebehandlungsöfen
- 21 Herdwagenofen 2
- 22 Wasserbecken
- 23 Brennschneideanlage
- 24 Abnahme und Versand
- 25 Strahl- und Primeranlage
- 26 Fräsanlage
- 27 Biegeanlage
- 28 Quette

- Semi Material
 Pit Furnace
- 3 Pusher-Type Furnaces
- 4 Bogie Hearth Furnace 1
- 5 Descaling Unit
- 6 Four-High Rolling Stand
- 7 Side Shift Table
- 8 ACC Equipment
- 9 Hot Leveler
- 10 Hot Shear
- 11 Cooling Beds
- 12 Thick Plates cooling Bed
- 13 Plate Turner
- 14 Stack Cooling
- 15 Thick Plate Turner

- 16 US Testing, Stamping and Marking
- 17 Side Shear
- 18 Cross Shear
- 19 Cold Leveler
- 20 Heat-Treating Furnaces
- 21 Bogie Hearth Furnace 2
- 22 Water Basin
- 23 Flame Cutting Facility
- 24 Inspection and Dispatch
- 25 Shot-Blasting and Coating Line
- 26 Milling Line
- 27 Bending Line
- 28 Water Quenching Equipment

Unsere Markenstähle BRINAR®, MAXIL®, RESTIL®

Our Steel Brands BRINAR®, MAXIL®, RESTIL®

UNSERE PRODUKTMARKEN BRINAR®, MAXIL® UND RESTIL® WURDEN FÜR SPEZIFISCHE ANFORDERUNGSPROFILE ENTWICKELT. IHRE BLECHEIGENSCHAFTEN EIGNEN SICH DAHER OPTIMAL FÜR IHRE JEWEILIGEN ANWENDUNGS-GEBIETE. -- OUR PRODUCT BRANDS BRINAR®, MAXIL® AND RESTIL® WERE DEVELOPED TO MEET SPECIFIC REQUIREMENT PROFILES. THEIR PLATE PROPERTIES ARE THUS IDEALLY SUITED TO THEIR RELEVANT AREAS OF APPLICATION.

Beispiele für den Einsatz unserer hoch- und verschleißfesten Bleche – MAXIL® und BRINAR®: Reachstacker von Liebherr (Bild links), WM-Stadion in Durban, Südafrika (Bild Mitte), Flugzeugschlepper von Goldhofer (Bild rechts, Quelle: Fraport AG). -- Examples of the application of our high-strength and abrasion resistant steels – MAXIL® and BRINAR®: Reachstacker of Liebherr (left picture), World Cup Stadium in Durban, South Africa (center picture), Aircraft Tractor of Goldhofer (right picture, source: Fraport AG).

BRINAR®

Verschleiß verursacht Kosten. Diese lassen sich durch den Einsatz von geeigneten Werkstoffen, wie unsere verschleißfesten BRINAR®-Stähle, reduzieren. Mit einem optimalen Legierungskonzept und einer feinen Verteilung sehr harter Chrom- und Molybdäncarbide garantieren sie auch unter extremen Verschleißbedingungen eine lange Standzeit bei gleichzeitig guten Verarbeitungseigenschaften.

Verschleißfeste Güten: BRINAR® 400, BRINAR® 450, BRINAR® 500 Chromlegierte verschleißfeste Güten: BRINAR® 325 Cr. BRINAR® 400 Cr

MAXIL®

Mit unserer Stahlgüte MAXIL® erfüllen wir höchste Fertigungsanforderungen verschiedenster Branchen. Der hochfeste
schweißgeeignete Feinkornbaustahl MAXIL® verfügt aufgrund
seines feindispersiven Vergütungsgefüges über eine charakteristische Kombination aus hohen Festigkeitswerten und sehr guten
Zähigkeitseigenschaften. Gegenüber herkömmlichen Baustählen zeichnet sich MAXIL® deshalb durch sein geringeres
Eigengewicht bei einer gleichzeitig höheren Tragfähigkeit und
durch verminderte Schweißkosten aus. Für den Verbraucher
bedeutet das eine höhere Wertschöpfung und erweiterte
Konstruktionsmöglichkeiten.

Hochfeste Güten:

MAXIL® 500 Q, QL, QL1 bis MAXIL® 1100 Q, QL

RESTIL®

RESTIL® ist unsere Marke für Stähle mit einer definierten Beständigkeit gegenüber wasserstoffinduzierter Rissbildung (Hydrogen Induced Cracking). Erreicht wird diese Qualität durch einen sehr hohen Reinheitsgrad – Schwefelgehalt von maximal 0,001 Prozent – und ein gleichmäßiges, nahezu seigerungsfreies Gefüge. Mit RESTIL® stellen wir sauergasbeständige Grobbleche zur Verfügung, die durch die knapper gewordenen Vorräte an sogenanntem "süßen" Erdöl und Erdgas an Bedeutung gewonnen haben.

Sauergasbeständige Güten: RESTIL® 60, RESTIL® 65 und RESTIL® 70

BRINAR®

Wear causes costs. These can be reduced by suitable materials like our wear resistant BRINAR® steels. With their optimal alloy concept and a fine distribution of very hard chromium and molybdenum carbides they provide a long service life even under extreme wear conditions and also offer good processing properties.

Abrasion resistant grades: BRINAR® 400, BRINAR® 450, BRINAR® 500 Chromium alloyed, abrasion resistant grades: BRINAR® 325 Cr, BRINAR® 400 Cr

MAXIL®

With our steel grade MAXIL® we are able to meet the highest production requirements of a broad range of consumers. The high-strength steel MAXIL®, which is suitable for welding, achieves its characteristic combination of high-strength and very good toughness properties from its finely dispersed, tempered microstructure. In comparison to conventional structural steels the distinguishing features of MAXIL® are its low net weight, yet high load bearing capacity, and reduced welding costs. For the customer this means a higher added value and extended construction options.

High-strength grades: MAXIL® 500 Q, QL, QL1 to MAXIL® 1100 Q, QL

RESTIL®

RESTIL® is our trade mark for steels with a defined resistance to hydrogen induced cracking. This grade is achieved by the very high degree of purity – sulfur content of maximum 0.001 percent – and the uniform, almost segregation-free microstructure. With RESTIL® we provide sour gas resistant heavy plate, which became increasingly more important because the reserves of the so called "sweet" mineral oil and natural gas are becoming scarcer.

Sour gas resistant grades: RESTIL® 60, RESTIL® 65 and RESTIL® 70

Anarbeitung von Grobblechen

Processing of Heavy Plate

STRAHLEN UND PRIMERN

Stahlkiesstrahlen

Entzunderungsgrad: max. SA 21/2 gemäß SIS 055900

Blechabmessungen

Dicke: 6 – 120 mm Breite: max. 3.200 mm* Länge: max. 24.000 mm

Stückgewicht: max. 2.000 kg/pro laufenden Meter

Stückgewicht: max. 28 t

Konservierung

Schichtdicke: mind. 15 µm bis max. 25 µm Standardprimer

Eisenoxydprimer auf Epoxy-Basis

Zink-Epoxidprimer Zinksilikatprimer

Konservierung mit Sonderprimer nach Vereinbarung Mindestmengen für Blech mit Sonderprimer: 1.000 m² Größere Schichtdicken bis max. 30 µm nach Vereinbarung

Stückgewicht: max. 28 t

SCHWEISSKANTENVORBEREITUNG

U- (Tulpen-), V-, Y-, X-, Doppel-U, und Doppel-Y-Naht

Verjüngung 1:4

Kantenbearbeitung von Konen Sonderstähle nach Vereinbarung

Fräsprogramm

Dicke: 6 – 90 mm Breite: 950 – 3.500 mm Länge: 4.000 – 18.850 mm Stückgewicht: max. 28 t

Toleranzen bei gefrästen Blechen

Blechlänge: ± 1 mm Blechbreite: ± 0,5 mm

Diagonalabweichung: max. 2 mm Geradheit der Längskanten: ± 0,5 mm

Steghöhe: ± 0,5 mm Winkeltoleranz: ± 2,0°

Abweichung von der Parallelität: max. 1 mm

Sondertoleranzen nach Vereinbarung

BIEGEN*

Breite: max. 3.000 mm Dicke: max. 35 mm Streckgrenze: 355 N/mm²

Kleinstmöglicher Biegedurchmesser: 1.200 mm

Stückgewicht: max. 16 t

SHOT BLASTING AND PRIMER COATING

Shot blasting

Maximum degree of descaling: SA 21/2 in compliance with

SIS 055900

Plate Dimensions

Thickness: 6 – 120 mm Max. width: 3,200 mm* Max. length: 24,000 mm

Max. unit weight: 2,000 kg/per running meter

Max. piece weight: 28 t

Surface Protection

Coating thickness: at least 15 µm up to max. 25 µm of

standard primer

Epoxy-based iron oxide primer

Zinc epoxy primer
Zinc silicate primer
Special primer on request

Minimum order quantities for plate with special primer: 1,000 m^2

Greater layer thicknesses up to a max. of 30 μm on request

Max. piece weight: 28 t

WELDING EDGE BEVELING

U (Tulip), V, Y, X, double U and double Y seams

Taper 1:4

Edge beveling of cones Special steels on request

Milling Program

Thickness: 6 – 90 mm Width: 950 – 3,500 mm Length: 4,000 – 18,850 mm Max. piece weight: 28 t

Tolerances for Milled Plates

Plate length: ± 1 mm
Plate width: ± 0.5 mm

Diagonal deviation: max. 2 mm

Straightness of the longitudinal edges: ± 0.5 mm

Depth of web: ± 0.5 mm Angular tolerance: ± 2.0°

Deviation of parallelism: max. 1 mm Non-standard tolerances by agreement

BENDING*

Max. width: 3,000 mm Max. thickness: 35 mm Yield point: 355 N/mm²

Smallest possible bending diameter: 1,200 mm

Max. piece weight: 16 t

Grobblechzuschnitte

Cut-to-Size Plates

Schweißkantenvorbereitung -- Welding edge preparation

Auf unseren CNC-gesteuerten Autogenbrennschneidmaschinen mit Dreibrenneraggregaten (DAFL) fertigen wir für die Windenergiebranche nach Kundenvorgabe Formzuschnitte (Rechteck und Konus) mit und ohne Schweißnahtvorbereitung. Zusätzlich produzieren wir auch Breitflachstahl.

On our CNC flame cutting machines with triple burner units (DAFL) we produce shaped blanks with and without edge preparation (rectangle and cone) for the wind industry in accordance with customer specifications. In addition we also produce wide flat steel.

Abmessungsbereich		Range of dimensions	
Formzuschnitte	(mm)	Cut-to-Size Plates	(mm)
Dicke	6 – 120	Thickness	6 – 120
Breite	max. 3.500	Width	max. 3,500
Länge	max. 24.000	Length	max. 24,000
Toleranzen		Tolerances	
Blechlänge	+/- 2	Plate length	+/- 2
Blechbreite	+/- 2	Plate width	+/- 2
Steghöhe	+/- 1	Depth of web	+/- 1
Winkeltoleranz	+/- 2°	Angular tolerance	+/- 2°
Breitflachstahl		Wide flat steel	
Dicke	6 – 175	Thickness	6 – 175
Breite	151 – 1.000	Width	151 – 1,000
Länge	1.000 - 24.000	Length	1,000 – 24,000

Allgemeine Informationen

General Informations

Wir produzieren Quartoblech in höchster Qualität in		We produce quarto plate of highest quality in the	
den folgenden Abmessungen:		following range:	
Dicke	6 – 175 Millimeter	Thickness	6 – 175 millimeters
Breite	800 - 3.500 Millimeter	Width	800 – 3,500 millimeters
Länge	max. 24 Meter	Length	max. 24 meters
Stückgewicht	max. 28 Tonnen	Piece weight	max. 28 tons

	Normen	Dicke	Abmessungstabelle
	Standards	Thickness	Table of Dimensions
Baustähle gemäß Euronorm	otanuaras	THIORICOS	Table of Difficusions
Structural Steels According to European Standards			
3p	EN 10025-2 Unlegierte Baustähle/Unalloyed Structural Steels		
	S235JR-K2 – S355 JR-K2	175	1
	S185 - E360	175	1
	EN 10025-3 Normalgeglühte Feinkornbaustähle/		
	Normalized Fine Grain Structural Steels		
	S275N/NL - S460N/NL	175	1
	EN 10025-4 Thermomechanisch gewalzte Feinkornbaustähle/		
	Thermomechanically Rolled Structural Steels		
	S275M/ML - S460M/ML	120*	2
	EN 10025-5 Wetterfeste Baustähle/Structural Steels with		
	Improved Atmospheric Corrosion Resistance		
	S235J0W, J2W	120	1
	S355J0W – K2W	120	1
	S355J0WP, J2WP	12	1
	EN 10025-6 Feinkornbaustähle im vergüteten Zustand/		
	Quenched and Tempered Fine Grain Steels	4504	
	MAXIL® S460Q/QL/QL1 – MAXIL® S890Q/QL/QL1	150*	3
ACTNA/ACNAC Objects of the day Objects	MAXIL® S960Q/QL	80*	3
ASTM/ASME Stahlsorten für den Stahlbau ASTM/ASME Structural Steels			
ASTW/ASWE Structural Steels	A/SA 36	175	1
	A/SA 283 Gr. A – D	175	1
	A 514 Gr. B	32	3
	A 514 Gr. H	51	3
	A 529 Gr. 50	25	1
	A/SA 572 Gr. 42	150	1
	A/SA 572 Gr. 50	80*	1
	A/SA 572 Gr. 55, 60, 65	Auf Anfrage/	1
		On request	
	A 573 Gr. 58, 65, 70	40	1
	A 588 Gr. A, B	120	1
	A 633 Gr. A, C, D	100	1
	A 633 Gr. E	Auf Anfrage/	1
	A 700 C* 26 E0	On request	4
	A 709 Gr. 36, 50 A 709 Gr. 50W	100 50*	1
	A 709 Gr. 50W A 709 Gr. 100	Auf Anfrage/	1
	A 100 UI. 100	On request	1
Stähle für Offshore-Konstruktionen		on request	
Steels for Offshore Structures			
	EN 10225 Schweißgeeignete Baustähle für feststehende Offsh	ore-	
	Konstruktionen/Weldable Structural Steels for Fixed Offshore S		
	S355G2+N	20	1
	S355G3+N	40	1
	S355G5+M	20	2
	S355G6+M	40	2
	S355G7, G8+N	60*	1
	S355G7, G8, G9, G10+M	90	2
	S420G1 – G2+M/+QT	90	2/3
	S460G1 – G2+M/+QT	90	2/3

 $^{^{\}star}\,$ Größere Dicken auf Anfrage./Other dimensions on request.

	Normen	Dicke	Abmessungstabelle
	Standards	Thickness	Table of Dimensions
	API Spec. 2MT1		
	2MT1	63,5	2
	API Spec. 2H	,-	
	2H42 – 2H50	100*	1
	API Spec. 2W		
	2W42 – 2W60	100*	2
	API Spec. 2Y		_
	2Y50, 60	100*	3
	ILG Werkstoffblatt/ILG Material Brochure		
	MAXIL® 500TM	50*	2
Offshore-Stähle gemäß ABS, BV, DNV, GL, LR			_
Offshore-Steels According to ABS, BV, DNV, GL, LR			
3 ······, ···, ···, ···, ···, ···, ···,	Auf Anfrage/On request		
Stähle für Schiffbau			
Steels for Shipbuilding			
S. C.	Güten der normal- und höherfesten Sorten gemäß/Normal and to ABS, BV, DNV, GL, LR, RINA, RS (weitere Abnahmegesellscha		
	Societies on Request)		
	Gr. A – F40	Auf Anfrage/	Auf Anfrage/
		On request	On request
	ASTM		
	A 131 Gr. A – D	100	1
	A 131 Gr. AH/DH/EH32	100	1
	A 131 Gr. AH/DH/EH36	100	1
	A 131 Gr. FH32/FH36/FH40	Auf Anfrage/ On request	1
Stähle für den Druckbehälterbau gemäß Euronorm		·	
Steels for Pressure Vessel Construction According to Europea	an Standards		
, i	EN 10028-2 Unlegierte und legierte warmfeste Stähle/		
	Unalloyed and Alloyed Heat Resistant Steels		
	P235 – P355GH	175	1
	16Mo3	175	1
	13CrMo4-5	175	1/3
	13CrMoSi5-5	175	1
	10CrMo9-10	175	1/3
	X12CrMo5	80*	1/3
	X10CrMoVNb9-1	Auf Anfrage/	1
	X TOCHMOVND9-1	On request	'
	EN 10028-3 Normalgeglühte Feinkornbaustähle/	On request	
	Normalized Fine Grain Structural Steels		
		175	1
	P275 – P355N/NH/NL1/NL2		Į.
	P460N/NH/NL1/NL2 EN 10029 4 Ni logicato kaltziho Stäblo/Ni Alloyod Stools	100*	
	EN 10028-4 Ni-legierte, kaltzähe Stähle/Ni-Alloyed Steels		
	with Specified Low-Temperature Properties	00	
	13MnNi6-3	80	1
	12Ni14	80	1
	X12Ni5	50	1 1/2
	X8Ni9	50	1/3
	X7Ni9	50	3
	EN 10028-5 Thermomechanisch gewalzte Feinkornbaustähle/		
	Thermomechanically Rolled Fine Grain Structural Steels	25.1	-
		CO*	2
	P355 – P460M/ML1/ML2	63*	
	EN 10028-6 Vergütete Feinkornbaustähle/Quenched and	03.	
	EN 10028-6 Vergütete Feinkornbaustähle/Quenched and Tempered Fine Grain Structural Steels		
	EN 10028-6 Vergütete Feinkornbaustähle/Quenched and	150	3
* Größere Dicken auf Anfrage./Other dimensions on request.	EN 10028-6 Vergütete Feinkornbaustähle/Quenched and Tempered Fine Grain Structural Steels		

	Normen	Dicke	Abmessungstabelle
	Standards	Thickness	Table of Dimensions
Ni-legierte kaltzähe Druckbehälterstähle gemäß	ABS, BV, DNV, GL, LRS		
Ni-Alloyed Low-Temperature Pressure Vessel Ste			
	NV 4-4 und andere Stähle des Typs 0,5 % Ni/	Auf Anfrage/	
	NV 4-4 and other steels of type 0.5 %	On request	
	Stähle des Typs 3,5 % Ni, 5 % Ni und 9 % Ni/	50*	1/3
	Steels of type 3.5 % Ni, 5 % Ni and 9 % Ni		
ASTM/ASME Stahlsorten für den Druckbehälterb	au		
ASTM/ASME Steel Grades for Pressure Vessels			
	A/SA 203 Gr. D, E	50*	1
	A/SA 203 Gr. F	50*	1
	A/SA 204 Gr. A	115	1
	A/SA 204 Gr. B	117	1
	A/SA 285 Gr. A, B, C	115	1
	A/SA 353	50	1
	A/SA 387 Gr. 5 Cl. 1, 2	80	1
	A/SA 387 Gr. 9 Cl. 1, 2	50	1
	A/SA 387 Gr. 11 Cl. 1, 2	115	1
	A/SA 387 Gr. 12 Cl. 1, 2	115	1
	A/SA 387 Gr. 22 Cl. 1, 2	115	1
	A/SA 387 Gr. 91 Cl. 2	50	1
	A/SA 455	20	1
	A/SA 515 Gr. 60, 65, 70	115	1
	A/SA 516 Gr. 55, 60, 65, 70	115	1
	A/SA 517 Gr. B	32	3
	A/SA 517 Gr. F	65	3
	A 517 Gr. H	51	3
	A/SA 537 Cl. 1	100	1
	A/SA 537 Cl. 2, 3	115	3
	A/SA 553 Type 1	51	3
	A/SA 612	25	1
	A/SA 662 Gr. A, B, C	51	1
	A/SA 737 Gr. B	51	1
	A/SA 737 Gr. C	Auf Anfrage/	1
	./0.1 =00.0	On request	
	A/SA 738 Gr. A	51	1
	A/SA 738 Gr. C	Auf Anfrage/	1
	A/0A 044	On request	
	A/SA 841	Auf Anfrage/	1
	RESTIL® 60	On request 70**	1
			1
	RESTIL® 65 RESTIL® 70	70** 70**	1
Finestz- und Vorgütungestähle	WE91IF. In	/U^*	1
Einsatz- und Vergütungsstähle	and Tomporing		
Case Hardening Steels and Steels for Quenching	EN 10083-2 Unlegierte Vergütungsstähle/Unalloyed Steel	le	
	C 35 – C 60	175	1
	C 35 - C 60 C 22E - C 60E+U, +N	175	1
	EN 10083-3 Legierte Vergütungsstähle/Alloyed Steels	1/5	ı
	25CrMo4	100	1
	34CrMo4	160	1
	42CrMo4	160	1
	51CrV4	100	1
	20MnB5	20	1
	30MnB5	20	1
	OUMINDO	20	

 $^{^{\}star}$ $\,$ Größere Dicken auf Anfrage./Other dimensions on request.

^{**} Dicken lieferbar ab 10 mm. Dicken > 70 mm auf Anfrage./Thicknesses available from 10 mm. Thicknesses > 70 mm on request.

	Normen	Dicke	Abmessungstabelle
	Standards	Thickness	Table of Dimensions
	EN 10084 Einsatzstähle/Case Hardening Steels		
	16MnCr5	Auf Anfrage/	1
		On request	
	20MnCr5	Auf Anfrage/ On request	1
	AISI und SAE/AISI and SAE	Auf Anfrage/ On request	1
Verschleißfeste Stähle gemäß ILG-Werkstoffblatt		on request	
Abrasion Resistant Steels According to ILG Material Brochure			
	BRINAR® 180	80	1
	BRINAR® 265	60	1
	BRINAR® 325Cr	80	1/3
	BRINAR® 400Cr	80	1/3
	BRINAR® 400	80	3
	BRINAR® 450	80	3
	BRINAR® 500	80	3
Stähle zum Kaltumformen			
Steels for Cold Forming			
	EN 10149-2 Thermomechanisch gewalzte Stähle/		
	Thermomechanically Rolled Steels		
	S315MC - S460MC	20*	2
	S500MC - S700MC	16*	2
	EN 10149-3 Normalgeglühte oder normalisierend gewalzte Stähle/		
	Normalized or Normalizing Rolled Steels		
	S260NC - S420NC	20	1
Stähle für den Rohrleitungsbau			
Steels for Pipeline Constructions			
	ASTM 1066 Thermomechanisch umgeformte hochfeste, niedriglegie	erte Stähle/	
	High-Strength Low-Alloy Structural Steel Plate Produced by Thermo	-Mechanical Contro	olled Process
	A1066 Gr. 50	100	2
	A1066 Gr. 60	80	2
	A1066 Gr. 65	60	2
	A1066 Gr. 70	50	2
	A1066 Gr. 80	25	2
	EN 10208-1 Stahlrohre für Rohrleitungen für brennbare Medien, R	ohre der Anforderu	ngsklasse A/
	Steel Pipes for Combustible Fluids, Pipes of Requirement Class A		
	L210GA – L290GA	40	1
	L360GA	Auf Anfrage/	1
		On request	
	EN 10208-2 Stahlrohre für Rohrleitungen für brennbare Medien, R	ohre der Anforderu	ngsklasse B/
	Steel Pipes for Combustible Fluids, Pipes of Requirement Class B		
	L245NB – L415NB	25*	1
	L245MB – L555MB	25*	2
	L360QB – L555QB	Auf Anfrage/ On request	3
	API Spec.5L/ISO 3183 Stähle für Großrohrleitungen PSL1/	·	
	Steels for Linepipes PSL1		
	Gr. A (L210) – X70 (L485)	25*	1/2
	API Spec.5L/ISO3183 Stähle für Großrohrleitungen PSL2/ Steels for Linepipes PSL2		
	Gr. BN (L245N) – X60N (L415N)	25*	1
	Gr. BQ (L245Q) – X56Q (L390Q)	Auf Anfrage/	3
	an Da (LETOR) NOOR (LUDUR)	On request	3
	X60Q (L415Q) - X80Q (L555Q)	25*	3
	Gr. BM (L245M) – X80M (L555M)	25*	2
	X90M (L625M), X100M (L690M)	Auf Anfrage/	2
	• • •	On request	
* Größere Dicken auf Anfrage./Other dimensions on request.			

Röhrenstähle gemäß ABS, BV, DNV, GL, LR		Auf Anfrage/	Auf Anfrage/
Piping Steels According to ABS, BV, DNV, GL, LR		On request	On request
Rost- und hitzebeständige Stähle			
Stainless and Heat Resistant Steels			
	EN 10088-2 Korrosionsbeständige Stähle für allgemeine Verwend	ung/	
	Corrosion Resistant Steels for General Use		
	1.4301 X5CrNi18-10	100	4
	1.4307 X2CrNi18-9	100	4
	1.4313 X3CrNiMo13-4	150	4
	1.4401 X5CrNiMo17-12-2	150	4
	1.4404 X2CrNiMo17-12-2	150	4
	1.4435 X2CrNiMo18-14-3	100	4
	1.4541 X6CrNiTi18-10	100	4
	1.4462 X2CrNiMoN22-5-3	50	4
	1.4571 X6CrNiMoTi17-12-2	100	4
	EN 10095 Hitzebeständige Stähle/		
	Heat Resistant Steels 1.4828 X15CrNiSi20-12	100	4
	1.4841 X15CrNiSi25-20	100	4
	1.4878 X8CrNiTi18-9	100	4
	EN 10028-7 Nichtrostende Stähle für Druckbehälter/	100	4
	Stainless Steels for Pressure Vessels		
	1.4301 X5CrNi18-10	100	4
	1.4307 X2CrNi18-9	100	4
	1.4313 X3CrNiMo13-4	150	4
	1.4401 X5CrNiMo17-12-2	150	4
	1.4404 X2CrNiMo17-12-2	150	4
	1.4435 X2CrNiMo18-14-3	100	4
	1.4462 X2CrNiMoN22-5-3	50	4
	1.4541 X6CrNiTi18-10	100	4
	1.4571 X6CrNiMoTi17-12-2	100	4
	A/SA240 Chrom- und Chrom-Nickel-legierte Stähle für Druckbehä		
	Chromium- and Chromium-Nickel-Alloyed Steels for Pressure Ves		
	304	100	4
	304L	100	4
	309	100	4
	314	100	4
	316	150	4
	316L	150	4
	316LMo	100	
	316Ti	100	4
	321	100	4
	S31803	50	4
	\$32205	50	4
	S41500	150	4

Table of Dimensions 1

ALLGEMEINE BAUSTÄHLE -- GENERAL STRUCTURAL STEELS

Dicke	Maxima	ale Blechlä	ngen bei Br	eiten in m¹))									
Thickness	Maximi	um plate le	ngths with	widths in m	1 ¹⁾									
mm	800	900	1.000	1.100	1.200	1.300	1.400	1.500	1.600	1.700	1.800	1.900	2.000	2.100
5														
>5 ≤ 6													12,0	12,0
>6 ≤ 7										12,0	12,0	12,0	12,0	12,0
>7 ≤ 8							12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0
>8 ≤ 9							12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0
>9 ≤ 10							16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0
> 10 ≤ 15			24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0
>15 \le 20	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0
$\textbf{>}20 \leq \textbf{25}$	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0
$>$ 25 \leq 30	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0
$>$ 30 \leq 35	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0
>35 ≤ 40	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0
$>$ 40 \leq 45	24,0	24,0	24,0	24,0	24,0	23,7	24,0	24,0	24,0	23,7	24,0	23,7	24,0	23,7
>45 ≤ 50	24,0	24,0	24,0	24,0	24,0	21,3	24,0	24,0	24,0	21,3	24,0	21,3	24,0	21,3
$>$ 50 \leq 55	24,0	24,0	24,0	24,0	24,0	19,4	24,0	24,0	24,0	19,4	24,0	19,4	24,0	19,4
>55 ≤ 60	24,0	24,0	24,0	24,0	24,0	17,8	24,0	24,0	24,0	17,8	24,0	17,8	24,0	17,8
>60 ≤ 65	24,0	24,0	24,0	24,0	24,0	16,4	24,0	24,0	24,0	16,4	24,0	16,4	24,0	16,4
>65 ≤ 70	24,0	24,0	24,0	23,2	24,0	15,2	24,0	24,0	24,0	15,2	24,0	15,2	24,0	15,2
>70 ≤ 75	24,0	24,0	23,8	21,6	24,0	14,2	24,0	24,0	24,0	14,2	24,0	14,2	23,8	14,2
>75 ≤ 80	24,0	24,0	22,3	20,3	24,0	13,3	24,0	24,0	24,0	13,3	24,0	13,3	22,3	13,3
>80 ≤ 85	24,0	23,3	21,0	19,1	24,0	12,5	24,0	24,0	24,0	12,5	23,3	12,5	21,0	12,5
>85 ≤ 90	24,0	22,0	19,8	18,0	24,0	11,8	24,0	24,0	24,0	11,8	22,0	11,8	19,8	11,8
>90 ≤ 95	23,5	20,9	18,8	17,1	24,0	11,2	24,0	24,0	23,5	11,2	20,9	11,2	18,8	11,2
>95 ≤ 100	22,3	19,8	17,8	16,2	24,0	10,7	24,0	23,8	22,3	10,7	19,8	10,7	17,8	10,7
>100 ≤ 105	21,2	18,9	17,0	15,4	24,0	10,2	24,0	22,6	21,2	10,2	18,9	10,2	17,0	10,2
>105 ≤ 110	20,3	18,0	16,2	14,7	24,0	9,7	23,2	21,6	20,3	9,7	18,0	9,7	16,2	9,7
>110 ≤ 115	19,4	17,2	15,5	14,1	24,0	9,3	22,2	20,7	19,4	9,3	17,2	9,3	15,5	9,3
>115 ≤ 120	18,6	16,5	14,9	13,5	23,6	8,9	21,2	19,8	18,6	8,9	16,5	8,9	14,9	8,9
>120 ≤ 125	17,8	15,9	14,3	13,0	22,7	8,5	20,4	19,0	17,8	8,5	15,9	8,5	14,3	8,5
>125 ≤ 130	17,1	15,2	13,7	12,5	21,8	8,2	19,6	18,3	17,1	8,2	15,2	8,2	13,7	8,2
>130 ≤ 135	16,5	14,7	13,2	12,0	21,0	7,9	18,9	17,6	16,5	7,9	14,7	7,9	13,2	7,9
>135 ≤ 140	15,9	14,2	12,7	11,6	20,3	7,6	18,2	17,0	15,9	7,6	14,2	7,6	12,7	7,6
>140 ≤ 145	15,4	13,7	12,3	11,2	19,6	7,4	17,6	16,4	15,4	7,4	13,7	7,4	12,3	7,4
>145 ≤ 150	14,9	13,2	11,9	10,8	18,9	7,1	17,0	15,9	14,9	7,1	13,2	7,1	11,9	7,1
>150 ≤ 155	14,4	12,8	11,5	10,5	18,3	6,9	16,4	15,3	14,4	6,9	12,8	6,9	11,5	6,9
>155 ≤ 160	13,9	12,4	11,1	10,1	17,7	6,7	15,9	14,9	13,9	6,7	12,4	6,7	11,1	6,7
>160 ≤ 165	13,5	12,0	10,8	9,8	17,2	6,5	15,4	14,4	13,5	6,5	12,0	6,5	10,8	6,5
>165 ≤ 170	13,1	11,7	10,5	9,5	16,7	6,3	15,0	14,0	13,1	6,3	11,7	6,3	10,5	6,3
>170 ≤ 175	12,7	11,3	10,2	9,3	16,2	6,1	14,6	13,6	12,7	6,1	11,3	6,1	10,2	6,1

 $^{^{1)}}$ Blechbreiten \leq 1.100 mm in Mehrfachbreiten gewalzt./Plate width \leq 1,100 mm rolled in multiple widths.

Nickelbleche ab 5 mm./Nickel alloyed steels as of 5 mm.

Auch in größeren Längen lieferbar./Also available in longer lengths.

Table of Dimensions 1

														Dicke
														Thickness
2.200	2.300	2.400	2.500	2.600	2.700	2.800	2.900	3.000	3.100	3.200	3.300	3.400	3.500	mm
			12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0				5
12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0				>5 ≤ 6
12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0		>6 ≤ 7
12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0		>7 ≤ 8
12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	>8 ≤ 9
16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	>9 ≤ 10
24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	>10 ≤ 15
24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	$>$ 15 \leq 20
24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	$>\!\!20\!\le\!25$
24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	$>$ 25 \leq 30
24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	23,3	22,6	22,0	21,3	$\textbf{>}30 \leq 35$
24,0	24,0	24,0	24,0	24,0	24,0	23,3	22,5	21,8	21,1	20,4	19,8	19,2	18,7	>35 \le 40
24,0	23,7	22,7	24,0	22,3	21,5	20,7	20,0	19,4	18,7	18,1	17,6	17,1	16,6	$>$ 40 \leq 45
24,0	21,3	20,4	24,0	20,1	19,4	18,7	18,0	17,4	16,9	16,3	15,8	15,4	14,9	>45 ≤ 50
24,0	19,4	18,6	24,0	18,3	17,6	17,0	16,4	15,8	15,3	14,8	14,4	14,0	13,6	>50 ≤ 55
24,0	17,8	17,0	23,8	16,7	16,1	15,6	15,0	14,5	14,0	13,6	13,2	12,8	12,4	>55 ≤ 60
24,0	16,4	15,7	22,0	15,5	14,9	14,4	13,9	13,4	13,0	12,6	12,2	11,8	11,5	> 60 ≤ 65
23,2	15,2	14,6	20,4	14,4	13,8	13,3	12,9	12,4	12,0	11,7	11,3	11,0	10,7	>65 ≤ 70
21,6	14,2	13,6	19,0	13,4	12,9	12,4	12,0	11,6	11,2	10,9	10,6	10,2	10,0	>70 ≤ 75
20,3	13,3	12,8	17,8	12,6	12,1	11,7	11,3	10,9	10,5	10,2	9,9	9,6	9,3	>75 ≤ 80
19,1	12,5	12,0	16,8	11,8	11,4	11,0	10,6	10,2	9,9	9,6	9,3	9,0	8,8	> 80 ≤ 85
18,0	11,8	11,3	15,9	11,2	10,8	10,4	10,0	9,7	9,4	9,1	8,8	8,5	8,3	>85 ≤ 90
17,1	11,2	10,8	15,0	10,6	10,2	9,8	9,5	9,2	8,9	8,6	8,3	8,1	7,9	>90 ≤ 95
16,2	10,7	10,2	14,3	10,0	9,7	9,3	9,0	8,7	8,4	8,2	7,9	7,7	7,5	>95 ≤ 100
15,4	10,2	9,7	13,6	9,6	9,2	8,9	8,6	8,3	8,0	7,8	7,5	7,3	7,1	>100 ≤ 105
14,7	9,7	9,3	13,0	9,1	8,8	8,5	8,2	7,9	7,7	7,4	7,2	7,0	6,8	>105 ≤ 110
14,1	9,3	8,9	12,4	8,7	8,4	8,1	7,8	7,6	7,3	7,1	6,9	6,7	6,5	>110 ≤ 115
13,5	8,9	8,5	11,9	8,4	8,1	7,8	7,5	7,3	7,0	6,8	6,6	6,4	6,2	>115 ≤ 120
13,0	8,5	8,2	11,4	8,0	7,7	7,5	7,2	7,0	6,7	6,5	6,3	6,1	6,0	>120 ≤ 125
12,5	8,2	7,9	11,0	7,7	7,4	7,2	6,9	6,7	6,5	6,3	6,1	5,9	5,7	>125 ≤ 130
12,0	7,9	7,6	10,6	7,4	7,2	6,9	6,7	6,5	6,2	6,0	5,9	5,7	5,5	>130 ≤ 135
11,6	7,6	7,3	10,2	7,2	6,9	6,7	6,4	6,2	6,0	5,8	5,7	5,5	5,3	>135 ≤ 140
11,2	7,4	7,0	9,8	6,9	6,7	6,4	6,2	6,0	5,8	5,6	5,5	5,3	5,1	>140 ≤ 145
10,8	7,1	6,8	9,5	6,7	6,5	6,2	6,0	5,8	5,6	5,4	5,3	5,1	5,0	>145 ≤ 150
10,5	6,9	6,6	9,2	6,5	6,2	6,0	5,8	5,6	5,4	5,3	5,1	5,0	4,8	>150 ≤ 155
10,1	6,7	6,4	8,9	6,3	6,0	5,8	5,6	5,4	5,3	5,1	4,9	4,8	4,7	>155 ≤ 160
9,8	6,5	6,2	8,6	6,1	5,9	5,7	5,5	5,3	5,1	4,9	4,8	4,7	4,5	>160 ≤ 165
9,5	6,3	6,0	8,4	5,9 5,7	5,7	5,5	5,3	5,1	5,0 4,8	4,8	4,7	4,5	4,4	>165 ≤ 170 > 170 ≤ 175
9,3	6,1	5,8	8,2	5,7	5,5	5,3	5,1	5,0	4,8	4,7	4,5	4,4	4,3	>170 ≤ 175

Table of Dimensions 2

THERMOMECHANISCH GEWALZT (AUCH INTENSIV GEKÜHLT) ROLLED THERMOMECHANICALLY (AND ACCELERATED COOLING)

Dicke	Maxima	ale Blechlä	ngen bei Br	eiten in m ¹⁾)									
Thickness	Maxim	um plate le	ngths with	widths in m	1 ¹⁾									
mm	800	900	1.000	1.100	1.200	1.300	1.400	1.500	1.600	1.700	1.800	1.900	2.000	2.100
5														
>5≤6													12,0	12,0
>6 < 7										12,0	12,0	12,0	12,0	12,0
>7 ≤ 8							12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0
>8 ≤ 9							12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0
>9 ≤ 10							16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0
>10 ≤ 15			24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0
>15 \le 20	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0
$>\!\!20\!\le\!25$	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0
$>$ 25 \leq 30	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0
$>$ 30 \leq 35	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0
>35 \le 40	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0
>40 ≤ 45	24,0	24,0	24,0	24,0	24,0	23,7	24,0	24,0	24,0	23,7	24,0	23,7	24,0	23,7
>45 ≤ 50	24,0	24,0	24,0	24,0	24,0	21,3	24,0	24,0	24,0	21,3	24,0	21,3	24,0	21,3
>50 ≤ 55	24,0	24,0	24,0	24,0	24,0	19,4	24,0	24,0	24,0	19,4	24,0	19,4	24,0	19,4
>55 ≤ 60	24,0	24,0	24,0	24,0	24,0	17,8	24,0	24,0	24,0	17,8	24,0	17,8	24,0	17,8
>60 ≤ 65	24,0	24,0	24,0	24,0	24,0	16,4	24,0	24,0	24,0	16,4	24,0	16,4	24,0	16,4
>65 ≤ 70	24,0	24,0	24,0	23,2	24,0	15,2	24,0	24,0	24,0	15,2	24,0	15,2	24,0	15,2
>70 ≤ 75	24,0	24,0	23,8	21,6	24,0	14,2	24,0	24,0	24,0	14,2	24,0	14,2	23,8	14,2
>75 ≤ 80	24,0	24,0	22,3	20,3	24,0	13,3	24,0	24,0	24,0	13,3	24,0	13,3	22,3	13,3
>80 ≤ 85	24,0	23,3	21,0	19,1	24,0	12,5	24,0	24,0	24,0	12,5	23,3	12,5	21,0	12,5
>85 ≤ 90	24,0	22,0	19,8	18,0	24,0	11,8	24,0	24,0	24,0	11,8	22,0	11,8	19,8	11,8
>90 ≤ 95	23,5	20,9	18,8	17,1	24,0	11,2	24,0	24,0	23,5	11,2	20,9	11,2	18,8	11,2
$>$ 95 \leq 100	22,3	19,8	17,8	16,2	24,0	10,7	24,0	23,8	22,3	10,7	19,8	10,7	17,8	10,7
>100 ≤ 105	21,2	18,9	17,0	15,4	24,0	10,2	24,0	22,6	21,2	10,2	18,9	10,2	17,0	10,2
>105 ≤ 110	20,3	18,0	16,2	14,7	24,0	9,7	23,2	21,6	20,3	9,7	18,0	9,7	16,2	9,7
>110 ≤ 115	19,4	17,2	15,5	14,1	24,0	9,3	22,2	20,7	19,4	9,3	17,2	9,3	15,5	9,3
>115 ≤ 120	18,6	16,5	14,9	13,5	23,6	8,9	21,2	19,8	18,6	8,9	16,5	8,9	14,9	8,9
>120 ≤ 125	17,8	15,9	14,3	13,0	22,7	8,5	20,4	19,0	17,8	8,5	15,9	8,5	14,3	8,5
>125 \le 130	17,1	15,2	13,7	12,5	21,8	8,2	19,6	18,3	17,1	8,2	15,2	8,2	13,7	8,2
>130 ≤ 135	16,5	14,7	13,2	12,0	21,0	7,9	18,9	17,6	16,5	7,9	14,7	7,9	13,2	7,9
>135 ≤ 140	15,9	14,2	12,7	11,6	20,3	7,6	18,2	17,0	15,9	7,6	14,2	7,6	12,7	7,6
>140 ≤ 145	15,4	13,7	12,3	11,2	19,6	7,4	17,6	16,4	15,4	7,4	13,7	7,4	12,3	7,4
>145 ≤ 150	14,9	13,2	11,9	10,8	18,9	7,1	17,0	15,9	14,9	7,1	13,2	7,1	11,9	7,1
>150 ≤ 155	14,4	12,8	11,5	10,5	18,3		16,4	15,3	14,4		12,8		11,5	
>155 ≤ 160	13,9	12,4	11,1	10,1	17,7		15,9	14,9	13,9		12,4		11,1	
>160 ≤ 165	13,5	12,0	10,8	9,8	17,2		15,4	14,4	13,5		12,0		10,8	
>165 ≤ 170	13,1	11,7	10,5	9,5	16,7		15,0	14,0	13,1		11,7		10,5	
>170 ≤ 175	12,7	11,3	10,2	9,3	16,2		14,6	13,6	12,7		11,3		10,2	

 $^{^{1)}}$ Blechbreiten \leq 1.100 mm in Mehrfachbreiten gewalzt./Plate width \leq 1,100 mm rolled in multiple widths.

Nickelbleche ab 5 mm./Nickel alloyed steels as of 5 mm.

Auch in größeren Längen lieferbar./Also available in longer lengths.

Table of Dimensions 2

														Dicke
														Thickness
2.200	2.300	2.400	2.500	2.600	2.700	2.800	2.900	3.000	3.100	3.200	3.300	3.400	3.500	mm
			12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0				5
12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0				>5 ≤ 6
12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0		>6 ≤ 7
12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0		>7 ≤ 8
12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	>8 ≤ 9
16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	>9 ≤ 10
24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	>10 ≤ 15
24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	>15 ≤ 20
24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	>20 ≤ 25
24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	>25 ≤ 30
24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	24,0	23,3	22,6	22,0	21,3	>30 ≤ 35
24,0	24,0	24,0	24,0	24,0	24,0	23,3	22,5	21,8	21,1	20,4	19,8	19,2	18,7	$>$ 35 \leq 40
24,0	23,7	22,7	24,0	22,3	21,5	20,7	20,0	19,4	18,7	18,1	17,6	17,1	16,6	>40 ≤ 45
24,0	21,3	20,4	24,0	20,1	19,4	18,7	18,0	17,4	16,9	16,3	15,8	15,4	14,9	>45 ≤ 50
24,0	19,4	18,6	24,0	18,3	17,6	17,0	16,4	15,8	15,3	14,8	14,4	14,0	13,6	>50 ≤ 55
24,0	17,8	17,0	23,8	16,7	16,1	15,6	15,0	14,5	14,0	13,6	13,2	12,8	12,4	>55 ≤ 60
24,0	16,4	15,7	22,0	15,5	14,9	14,4	13,9	13,4	13,0	12,6	12,2	11,8	11,5	>60 ≤ 65
23,2	15,2	14,6	20,4	14,4	13,8	13,3	12,9	12,4	12,0	11,7	11,3	11,0	10,7	>65 ≤ 7 0
21,6	14,2	13,6	19,0	13,4	12,9	12,4	12,0	11,6	11,2	10,9	10,6	10,2	10,0	>70 ≤ 75
20,3	13,3	12,8	17,8	12,6	12,1	11,7	11,3	10,9	10,5	10,2	9,9	9,6	9,3	>75 ≤ 80
19,1	12,5	12,0	16,8	11,8	11,4	11,0	10,6	10,2	9,9	9,6	9,3	9,0	8,8	>80 ≤ 85
18,0	11,8	11,3	15,9	11,2	10,8	10,4	10,0	9,7	9,4	9,1	8,8	8,5	8,3	>85 ≤ 90
17,1	11,2	10,8	15,0	10,6	10,2	9,8	9,5	9,2	8,9	8,6	8,3	8,1	7,9	>90 ≤ 95
16,2	10,7	10,2	14,3	10,0	9,7	9,3	9,0	8,7	8,4	8,2	7,9	7,7	7,5	>95 \le 100
15,4 14,7	10,2 9,7	9,7 9,3	13,6	9,6 9,1	9,2 8,8	8,9 8,5	8,6 8,2	8,3	8,0 7,7	7,8	7,5 7.2	7,3 7,0	7,1	>100 ≤ 105 >105 ≤ 110
,		9,3 8,9	13,0	9,1 8,7	0,0 8,4	,	,	7,9	,	7,4	1,2	7,0		
14,1 13,5	9,3 8,9	8,5	12,4 11,9	8,4	8,1	8,1 7,8	7,8 7,5	7,6 7,3	7,3 7,0	7,1				>110 ≤ 115 >115 ≤ 120
13,0	8,5	8,2	11,9	8,0	7,7	7,6 7,5	7,5 7,2	7,3 7,0	7,0					>113 \le 120 >120 \le 125
12,5	8,2	7,9	11,4	7,7	7,7	7,3	1,2	7,0						$>120 \le 123$ $>125 \le 130$
12,0	7,9	7,9	10,6	7,7	7,4	1,2								>123 ≤ 130 >130 ≤ 135
11,6	7,6	7,0	10,0	7,4	1,2									>130 ≤ 133 >135 ≤ 140
11,0	7,4	7,0	9,8	1,2										>133 ≤ 140 >140 ≤ 145
10,8	7,4	7,0	9,5											>140 ≤ 143 >145 ≤ 150
10,5	•,•		9,2											>143 ≤ 150 >150 ≤ 155
10,1			8,9											>155 ≤ 160
9,8			8,6											>160 ≤ 165
9,5			8,4											>165 ≤ 170
9,3			8,2											>170 ± 175
-,-			-,-											

Table of Dimensions 3

HOCH- UND VERSCHLEISSFESTE STÄHLE -- HIGH-STRENGTH AND ABRASION RESISTANT STEELS

5 5≤6 14,0	Dicke ¹⁾	Maximale Blechlängen bei Breiten in m ²⁾													
5	Thickness ¹⁾	Maximu	um plate le	ngths with v	widths in m	2)									
Se ≤ 6 Se ≤ 7 T2,0 T2	mm	800	900	1.000	1.100	1.200	1.300	1.400	1.500	1.600	1.700	1.800	1.900	2.000	2.100
Se Se Se Se Se Se Se Se															
>6 ≤ 7 > 7 ≤ 8 12,0	5														
37 ≤ 8 12,0	>5 ≤ 6													12,0	12,0
S≥S 12,0	>6 ≤ 7										12,0	12,0	12,0	12,0	12,0
Sys 10										12,0				12,0	12,0
>10 ≤ 15									12,0	12,0	12,0	12,0	12,0	12,0	12,0
$\begin{array}{c} >15 \leq 20 \\ \geq 20 \\ \leq 14,0 \\ \geq 20 \leq 25 \\ \leq 14,0 \\ \leq $	>9 ≤ 10							14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0
$\begin{array}{c} >20 \le 25 \\ >25 \le 30 \\ >14,0 \\ >25 \le 30 \\ >14,0 \\ >14,0 \\ >44,0 $	>10 ≤ 15				14,0	14,0	14,0		14,0	14,0	14,0	14,0	14,0	14,0	14,0
\$25 ≤ 30	>15 \le 20	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0
$\begin{array}{c} > 30 \le 35 \\ > 14,0 \\ > 35 \le 40 \\ > 14,0 \\$		14,0		14,0					14,0	14,0		14,0		14,0	14,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		14,0	14,0		14,0	14,0	14,0			14,0	14,0	14,0		14,0	14,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0
$\begin{array}{c} >45 \le 50 \\ >50 \le 55 \\ >14,0 \\ >$	>35 ≤ 40	14,0	14,0		14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0
$\begin{array}{c} >50 \le 55 \\ >60 \\ >0 \\ >$						14,0					14,0			14,0	14,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															14,0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	>50 ≤ 55	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	>55 ≤ 60	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		14,0	14,0	14,0			14,0			14,0	14,0	14,0			14,0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		14,0	14,0				14,0			14,0	14,0	14,0		14,0	14,0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	>70 ≤ 75		14,0	14,0	14,0	14,0		14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	>75 ≤ 80		14,0		14,0			14,0		14,0		14,0	13,3		13,3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															8,5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								8,5							8,5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					7,7							8,5		8,5	8,1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$															7,7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$															7,3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														7,4	7,0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$															6,7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$															6,4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$															6,2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									8,3						5,9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$															5,7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$															5,5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$															5,3
$>155 \le 160$ 6,3 5,6 5,1 4,6 8,4 6,7 7,2 6,7 6,3 5,9 5,6 5,3 5,1 $>160 \le 165$ 6,1 5,4 4,9 4,5 8,2 6,5 7,0 6,5 6,1 5,8 5,4 5,2 4,9															5,1
$>160 \le 165$ 6,1 5,4 4,9 4,5 8,2 6,5 7,0 6,5 6,1 5,8 5,4 5,2 4,9															5,0
															4,8
>165 < 170 5.9 5.3 4.8 4.3 7.9 6.3 6.8 6.3 5.9 5.6 5.3 5.0 4.8															4,7
	>165 ≤ 170	5,9	5,3	4,8	4,3	7,9	6,3	6,8	6,3	5,9	5,6	5,3	5,0	4,8	4,5
>170 ≤ 175 5,8 5,1 4,6 4,2 7,7 6,1 6,6 6,2 5,8 5,4 5,1 4,9 4,6	>170 ≤ 175	5,8	5,1	4,6	4,2	7,7	6,1	6,6	6,2	5,8	5,4	5,1	4,9	4,6	4,4

 $^{^{1)}}$ Maximales Stückgewicht bei Dicken > 80 mm: 12,77 t./Maximum piece weight for thicknesses > 80 mm: 12.77 t.

Nickelbleche ab 5 mm./Nickel alloyed steels as of 5 mm.

Größere Längen auf Anfrage./Other dimensions on request.

 $^{^{2)}}$ Blechbreiten \leq 1.100 mm in Mehrfachbreiten gewalzt./Plate width \leq 1,100 mm rolled in multiple widths.

Table of Dimensions 3

														Dicke
														Thickness
2.200	2.300	2.400	2.500	2.600	2.700	2.800	2.900	3.000	3.100	3.200	3.300	3.400	3.500	mm
LILOO	2.000	2.100	2.000	2.000	211 00	2.000	2.000	0.000	0.100	0.200	0.000	0.100	0.000	
			12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0				5
12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0				>5 ≤ 6
12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0		>6 ≤ 7
12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0		>7 ≤ 8
12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	>8 ≤ 9
14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	>9 ≤ 10
14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	>10 ≤ 15
14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	>15 ≤ 20
14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	>20 ≤ 25
14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	>25 ≤ 30
14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	>30 ≤ 35
14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	>35 \le 40
14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	> 40 ≤ 45
14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	>45 \le 50
14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	13,6	$>$ 50 \leq 55
14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	13,6	13,2	12,8	12,4	>55 ≤ 60
14,0	14,0	14,0	14,0	14,0	14,0	14,0	13,9	13,4	13,0	12,6	12,2	11,8	11,5	>60 ≤ 65
14,0	14,0	14,0	14,0	14,0	13,8	13,3	12,9	12,4	12,0	11,7	11,3	11,0	10,7	>65 ≤ 70
14,0	14,0	13,6	14,0	13,4	12,9	12,4	12,0	11,6	11,2	10,9	10,6	10,2	10,0	>70 ≤ 75
14,0	13,3	12,8	14,0	12,6	12,1	11,7	11,3	10,9	10,5	10,2	9,9	9,6	9,3	>75 ≤ 80
8,5	8,3	7,9	7,6	7,3	7,0	6,8	6,6	6,3						>80 ≤ 85
8,2	7,8	7,5	7,2	6,9	6,7	6,4	6,2	6,0						$>$ 85 \leq 90
7,7	7,4	7,1	6,8	6,5	6,3	6,1	5,9	5,7						>90 ≤ 95
7,4	7,0	6,7	6,5	6,2	6,0	5,8	5,6	5,4						>95 ≤ 100
7,0	6,7	6,4	6,2	5,9	5,7	5,5	5,3	5,1						>100 ≤ 105
6,7	6,4	6,1	5,9	5,7	5,4	5,3	5,1	4,9						>105 \le 110
6,4	6,1	5,9	5,6	5,4	5,2	5,0	4,9	4,7						>110 ≤ 115
6,1	5,9	5,6	5,4	5,2	5,0	4,8	4,6	4,5						>115 ≤ 120
5,9	5,6	5,4	5,2	5,0	4,8	4,6	4,5	4,3						>120 ≤ 125
5,7	5,4	5,2	5,0	4,8	4,6	4,4	4,3	4,1						>125 ≤ 130
5,4	5,2	5,0	4,8	4,6	4,4	4,3	4,1	4,0						>130 ≤ 135
5,3	5,0	4,8	4,6	4,4	4,3	4,1	4,0							>135 ≤ 140
5,1	4,9	4,6	4,5	4,3	4,1	4,0								>140 ≤ 145
4,9	4,7	4,5	4,3	4,1	4,0									>145 \le 150
4,7	4,5	4,3	4,2	4,0										>150 ≤ 155
4,6	4,4	4,2	4,0											>155 ≤ 160 > 160 < 165
4,5	4,3	4,1												>160 ≤ 165
4,3 4,2	4,1 4,0	4,0												>165 ≤ 170 >170 ≤ 175
4,2	4,0													>110 > 110

Table of Dimensions 4

ROST-, SÄURE- UND HITZEBESTÄNDIGE STÄHLE -- CORROSION, ACID AND HEAT RESISTANT STEELS

Dicke	Maximale Blechlängen bei Breiten in m ¹⁾														
Thickness	Maximum	plate leng	ths with w	idths in m¹)										
mm	1.600	1.700	1.800	1.900	2.000	2.100	2.200	2.300	2.400	2.500	2.600	2.700	2.800	2.900	3.000
$8 \le 10$	10,0	10,0	10,0	10,0	10,0	10,0	10,0	10,0	10,0	10,0	10,0	10,0	10,0	10,0	10,0
>10 ≤ 12	10,0	10,0	10,0	10,0	10,0	10,0	10,0	10,0	10,0	10,0	10,0	10,0	10,0	10,0	10,0
>12 \le 15	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5
$>$ 15 \leq 20	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5
$\textbf{>}20 \leq \textbf{25}$	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5
$>$ 25 \leq 30	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5
$>$ 30 \leq 35	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5
>35 \le 40	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5
>40 ≤ 45	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,0	8,0	7,5	7,5
$>$ 45 \leq 50	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,5	8,0	7,5	7,5	7,0	7,0	6,0
$>$ 50 \leq 55	8,5	8,5	8,5	8,5	8,5	8,5	8,0	8,0	7,5	7,5	7,0	6,5	6,5	6,0	6,0
>55 ≤ 60	8,5	8,5	8,5	8,5	8,5	8,0	7,5	7,0	7,0	6,5	6,5	6,0	6,0	5,5	5,5
$>$ 60 \leq 70	8,5	8,5	8,0	7,5	7,0	7,0	6,5	6,0	6,0	5,5	5,5	5,0	5,0	5,0	4,5
>70 ≤ 80	8,0	7,5	7,0	6,5	6,0	6,0	5,5	5,5	5,0	5,0	4,5	4,5	4,5	4,0	4,0
>80 ≤ 90	7,0	6,5	6,0	6,0	5,5	5,0	5,0	4,5	4,5	4,5	4,0	4,0	4,0		
>90 ≤ 100	6,0	6,0	5,5	5,0	5,0	4,5	4,5	4,0	4,0	4,0					

 $^{^{1)}}$ Blechbreiten \leq 1.100 mm in Mehrfachbreiten gewalzt./Plate width \leq 1,100 mm rolled in multiple widths.

^{1.4301} und 1.4404 in Ausführungsart 1 U, max. Breite: 3.300 mm, max. Länge: 12.100 mm, max. Blechgewicht: 8,0 t.

^{1.4301} and 1.4404 in model type 1 U, max. width: 3,300 mm, max. length: 12,100 mm, max. plate weight: 8.0 t.

Ilsenburger Grobblech GmbH Veckenstedter Weg 10 38871 Ilsenburg Germany

Telefon: +49 39452 85-0 Telefax: +49 39452 85-8161

E-Mail: ILG.Sales@salzgitter-ag.de www.ilsenburger-grobblech.de

