

Álgebra Relacional

Base de Dados - 2023/24 Carlos Costa

Introdução

Linguagem de Consulta/Interrogação de BD

- Álgebra Relacional
 - Linguagem formal do Modelo Relacional
 - Um conjunto básico de operações
- Outras linguagem formais: relational calculus
- As linguagens formais oferecem uma base teórica para a linguagem de consulta utilizada na prática.
- Linguagem prática do Modelo Relacional
 - SQL

Álgebra Relacional

Questões?

- Como deve ser uma linguagem de interrogação da BD?
- Que tipo de interrogações existem?
- Como é que são os resultados?
- Expressões de álgebra relacional (linguagem).
 - Sequência de operações de álgebra relacional.
 - Permitem formular pedidos básicos de recuperação de informação sobre uma ou mais relações.
- Formulação da interrogação:
 - conjunto de operadores que operam sobre as relações
 - devolvem uma nova relação
- Vamos estudar um conjunto de operações...

Álgebra Relacional - Operações Básicas

Seleção

Projeção

• União

Diferença

• Produto Cartesiano

• Renomeação

Seleção

- Notação: σ_{<selection condition>}(R)
 - Utilizada para selecionar um subconjunto de tuplos da relação (t ∈ R) que satisfazem os critérios de seleção.
 - "selection condition" é uma expressão boleana.

Relation2 \leftarrow $\sigma_{\text{selection condition}}$ (Relation1)

 O resultado é uma nova relação (Relation2) que tem um esquema relacional igual à original (Relation1).

Seleção - Predicado

- Operadores de Comparação
 - Permitem comparar dois atributos ou um atributo com um valor.
 - Operandos: Nomes dos atributos e constantes.
 - Operadores: =, =/, ≤, ≥ , <, >
 - Exemplos:

```
\sigma_{Dno=4} (EMPLOYEE)
\sigma_{Salary>30000} (EMPLOYEE)
```

- Condições Booleanas
 - Utilização de AND, OR e NOT.
 - Exemplo:

Seleção - Exemplo

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	٧	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

O_(Dno=4 AND Salary>25000) OR (Dno=5 AND Salary>30000)</sub> (EMPLOYEE)

SQL query (próxima aula...)

SELECT * FROM EMPLOYEE WHERE Dno=4 AND Salary>25000 OR Dno=5 AND Salary>30000;

Fname	Minit	Lname	<u>Ssn</u>	Bdate	Address	Sex	Salary	Super_ssn	Dno
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5

Projeção

- - <attribute list> = A1, A2, ... Ak
 - A1...Ak são nomes dos atributos da relação R
- O resultado é uma nova relação só com os k atributos selecionados.
- São removidas as linhas duplicadas do resultado.
 - Condição de conjunto (set)

Projeção - Exemplo

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

John 30000 Smith Wong Franklin 40000 Zelaya Alicia 25000 Wallace Jennifer 43000 38000 Narayan Ramesh English Joyce 25000 Jabbar Ahmad 25000

James

Fname

Lname

Borg

Salary

55000

SQL query:

SELECT DISTINCT Lname, Fname, Salary FROM EMPLOYEE;

Encadeamento de Operações

- $\Pi_{\text{Fname, Lname, Salary}}(\sigma_{\text{Dno=5}}(\text{EMPLOYEE}))$
- Se quisermos renomear os atributos e a relação:

$$\mathsf{TEMP} \leftarrow \sigma_{\mathsf{Dno}=5}(\mathsf{EMPLOYEE})$$

$$R(First_name, Last_name, Salary) \leftarrow \Pi_{Fname, Lname, Salary}(TEMP)$$

TEMP

Fname	Minit	Lname	<u>Ssn</u>	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston,TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston,TX	М	40000	888665555	5
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble,TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5

R

First_name	Last_name	Salary
John	Smith	30000
Franklin	Wong	40000
Ramesh	Narayan	38000
Joyce	English	25000

Renomeação

• Notação: $\rho_{R2(B1, B2, ..., Bn)}(R1)$ ou $\rho_{R2}(R1)$

ou
$$\rho_{(B1, B2, ..., Bn)}(R1)$$

- No primeiro caso o resultado é uma nova relação R2 com os atributos renomeados (B1, B2, ..., Bn).
- No segundo caso só renomeamos a relação.
- No terceiro só renomeamos os atributos.

SQL query:

SELECT E.Fname AS First_name, E.Lname AS Last_name, E.Salary AS Salary FROM EMPLOYEE AS E
WHERE E.Dno=5;

R1: EMPLOYEE

Seleção

R2: E
Fname -> First_name
Lname -> Last_Name

S

União

- Notação: RUS={t:t∈R∨t∈S}
- As tabelas têm de ser compatíveis
 - Mesmo número de atributos
 - Atributos com domínios compatíveis

Os tuplos duplicados são eliminados

STUDENT

Fn	Ln
Susan	Yao
Ramesh	Shah
Johnny	Kohler
Barbara	Jones
Amy	Ford
Jimmy	Wang
Ernest	Gilbert

INSTRUCTOR

Fname	Lname
John	Smith
Ricardo	Browne
Susan	Yao
Francis	Johnson
Ramesh	Shah

Fn	Ln
Susan	Yao
Ramesh	Shah
Johnny	Kohler
Barbara	Jones
Amy	Ford
Jimmy	Wang
Ernest	Gilbert
John	Smith
Ricardo	Browne

Johnson

Francis

R

Intersecção

- Notação: R∩S={t:t∈R∧t∈S}
- As tabelas têm de ser compatíveis
- RS

- Mesmo número de atributos
- Atributos com domínios compatíveis
- O resultado é uma relação que inclui os tuplos que existem simultaneamente em R e S
 - Os tuplos duplicados são eliminados

STUDENT

Fn	Ln
Susan	Yao
Ramesh	Shah
Johnny	Kohler
Barbara	Jones
Amy	Ford
Jimmy	Wang
Ernest	Gilbert

INSTRUCTOR

Fname	Lname
John	Smith
Ricardo	Browne
Susan	Yao
Francis	Johnson
Ramesh	Shah

Fn	Ln
Susan	Yao
Ramesh	Shah

Diferença

- Notação: R-S={t:t∈r∧t ∉ s}
- As tabelas têm de ser compatíveis
- RS

- Mesmo número de atributos
- Atributos com domínios compatíveis
- O resultado é uma relação que inclui os tuplos de R que não existem em S

STUDENT

Fn	Ln
Susan	Yao
Ramesh	Shah
Johnny	Kohler
Barbara	Jones
Amy	Ford
Jimmy	Wang
Ernest	Gilbert

. .

Fname	Lname		
John	Smith		
Ricardo	Browne		
Susan	Yao		
Francis	Johnson		
Ramesh	Shah		

INSTRUCTOR

Fn	Ln
Johnny	Kohler
Barbara	Jones
Amy	Ford
Jimmy	Wang
Ernest	Gilbert

União, Intersecção e Diferença

- Em SQL existem os seguintes comandos
 - UNION (ALL), INTERSECT (ALL) e EXCEPT

Propriedades:

- União e Intersecção são operações comutativas:
 - RUS = SUR e R \cap S = S \cap R
- A diferença não é comutativa:
 - R-S = S-R
- União e Intersecção são operações associativas:
 - RU(SUT) = (RUS)UT e $(R\cap S)\cap T = R\cap (S\cap T)$

Produto Cartesiano

- Notação: R X S
- Permite-nos combinar tuplos de relações diferentes.
 - O resultado é uma nova relação (Q) que combina cada elemento (tuplo) de uma relação (R) com um elemento (tuplo) da outra relação (S):

```
Q(A1, A2, ..., An, B1, B2, ..., Bm) = R(A1, A2, ..., An) \times S(B1, B2, ..., Bm)
```

- O número de tuplos de Q é n * m.
- UK: "CROSS JOIN"

1986-04-05

1983-10-25

1958-05-03

1942-02-28

1988-01-04

Produto Cartesiano - Exemplo

987654321

987654321

987654321

987654321

987654321

EMPNAMES

Fname	Lname	Ssn
Alicia	Zelaya	999887777
Jennifer	Wallace	987654321
Joyce	English	453453453

DEPENDENT

Essn	Dependent_name	Sex	Bdate	Relationship
333445555	Alice	F	1986-04-05	Daughter
333445555	Theodore	М	1983-10-25	Son
333445555	Joy	F	1958-05-03	Spouse
987654321	Abner	М	1942-02-28	Spouse
123456789	Michael	М	1988-01-04	Son
123456789	Alice	F	1988-12-30	Daughter
123456789	Elizabeth	F	1967-05-05	Spouse

EMPNAMES X DEPENDENT

	_								
Fname Lname		Ssn Essn Dependent_name		Sex	Bdate				
l	Alicia	Zelaya	ì	999887777	333445555	Alice	F	1986-04-05	
Alicia Zelaya		ì	999887777	333445555	Theodore	М	1983-10-25		
Alicia Zelaya		a	999887777	333445555	Joy	F	1958-05-03		
l	Alicia	Zalave	•	999887777	987654321	Abner	М	1942-02-28	
_				999887777	123456789	Michael	М	1988-01-04	
	Relation			999887777	123456789	Alice	F	1988-12-30	
Daughter			999887777	123456789	Elizabeth	F	1967-05-05		

Alice

Joy

Abner

Michael

Theodore

333445555

333445555

333445555

987654321

123456789

Spo	use	е	987654321	123456789	Alice	F	1988-12-30	
Jennife	Jennifer Wallace Joyce English		987654321	123456789	Elizabeth	F	1967-05-05	
Joyce			453453453	333445555	Alice	F	1986-04-05	
Joyce	Joyce English		453453453	333445555	Theodore	М	1983-10-25	
Joyce	Joyce English		453453453	333445555	Joy	F	1958-05-03	
Joyce	Englis	sh	453453453	987654321	21 Abner		1942-02-28	
Joyce	Englis	sh	453453453	123456789	Michael	М	1988-01-04	
Joyce English Joyce English		453453453	123456789	Alice	F	1988-12-30		
		453453453	123456789	Elizabeth	F	1967-05-05		

. . .

. . .

. . .

. . .

Junção θ (THETA JOIN)

- Notação: R ⋈_C S
 - Pode ser visto como o resultado das seguintes operações:

R3
$$\leftarrow$$
 R1 X R2 (produto cartesiano)
 σ_c (R3) (seleção com condição c)

C é <join condition> que pode tomar a seguinte forma:

<condition> AND <condition> AND ... AND <condition>

 Em cada <condition> podemos aplicar operadores de comparação:

Junção θ (THETA JOIN) - Exemplo

 Pretendemos saber os nomes dos funcionários gestores de departamentos

EMPLOYE	E								
Fname	Minit	Lname	<u>Ssn</u>	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

DEPARTMENT	1		
Dname	<u>Dnumber</u>	Mgr_ssn	Mgr_start_date
Research	5	333445555	1988-05-22
Administration	4	987654321	1995-01-01
Headquarters	1	888665555	1981-06-19

Para obter o nome dos gestores temos de combinar cada tuplo do departamento (Department) com um tuplo dos funcionários (Employee) cujo Ssn é igual ao Mgr_ssn.

$$\mathsf{DEPT_MGR} \leftarrow \mathsf{DEPARTMENT} \bowtie_{\mathsf{Mgr_ssn=Ssn}} \mathsf{EMPLOYEE}$$

DEPT_MGR

Dname	Dnumber	Mgr_ssn	 Fname	Minit	Lname	Ssn	
Research	5	333445555	 Franklin	Т	Wong	333445555	
Administration	4	987654321	 Jennifer	S	Wallace	987654321	
Headquarters	1	888665555	 James	E	Borg	888665555	

Depois só temos de utilizar projeção para obter os atributos desejados:

 $RESULT \leftarrow \pi_{Dname, Lname, Fname}(DEPT_MGR)$

Junção - Variações da Junção θ

- Equi-Junção (EquiJoin)
 - É utilizado o operador = na condição de junção.
 - Exemplo anterior: DEPARTMENT ⋈_{Mgr ssn=Ssn} EMPLOYEE.
 - Vamos ter sempre duas colunas repetidas.
- Junção Natural (Natural Join): R ⋈ S
 - Condição implícita: <u>igualdade</u> dos <u>atributos</u> com o <u>mesmo nome</u>.
 - Os atributos repetidos são removidos.
 - Nota: Muitas vezes opta-se por renomear colunas de modo a facilitar junções naturais.

R			S					
	X	Υ	Υ	Z				
	 а	С	d	a		Χ	Y	Z
	u	С	_ G	9	\longrightarrow	b	d	g
	b	d	е	h				

Junção Natural - Exemplo

PROJECT

Pname	Pnumber	Plocation	Dnum
ProductX	1	Bellaire	5
ProductY	2	Sugarland	5
ProductZ	3	Houston	5
Computerization	10	Stafford	4
Reorganization	20	Houston	1
Newbenefits	30	Stafford	4

DEPARTMENT

Dname	<u>Dnumber</u>	Mgr_ssn	Mgr_start_date
Research	5	333445555	1988-05-22
Administration	4	987654321	1995-01-01
Headquarters	1	888665555	1981-06-19

PROJECT $\bowtie \rho_{(Dname, Dnum, Mgr_ssn, Mgr_start_date)}(DEPARTMENT)$

Pname	<u>Pnumber</u>	Plocation (Dnum	Dname	Mgr_ssn	Mgr_start_date
ProductX	1	Bellaire	5	Research	333445555	1988-05-22
ProductY	2	Sugarland	5	Research	333445555	1988-05-22
ProductZ	3	Houston	5	Research	333445555	1988-05-22
Computerization	10	Stafford	4	Administration	987654321	1995-01-01
Reorganization	20	Houston	1	Headquarters	888665555	1981-06-19
Newbenefits	30	Stafford	4	Administration	987654321	1995-01-01

Divisão

- Notação: R ÷ S
 - Dadas as relações R(A1,...,Ar,B1,...,Bk) e S(B1,...,Bk)
 - O resultado incluirá todos os tuplos de R1(A1,...,Ar) que tenham correspondência com todos os tuplos de S em R2(B1,...,BK).
 - R1 e R2 são projeções de R
 - número de atributos de R > número de atributos de S.
- Em SQL não existe um operador que implemente a divisão. Temos de recorrer a operadores básicos:
 - R ÷ S = π_{R-S} (R) π_{R-S} ((π_{R-S} (R) x S) R) onde π_{R-S} -> $\pi_{(A1,...,Ar)}$

Divisão - Exemplos

Department

Dno	Name	Location
1	Research	Houston
2	Commercial	Bellaire
3	Administration	LA
2	Commercial	Houston
4	Headquarters	Bellaire
2	Commercial	LA

Location

Location
Houston
Bellaire
LA

Dno	Name
2	Commercial

Departamentos que existem em todas as localizações?

Operações Álgebra Relacional - Resumo

OPERATION	PURPOSE	NOTATION
SELECT	Selects all tuples that satisfy the selection condition from a relation R .	$\sigma_{< selection \ condition>}(R)$
PROJECT	Produces a new relation with only some of the attributes of R , and removes duplicate tuples.	$\pi_{\text{}}(R)$
THETA JOIN	Produces all combinations of tuples from R_1 and R_2 that satisfy the join condition.	$R_1 \bowtie_{< \text{join condition}>} R_2$
EQUIJOIN	Produces all the combinations of tuples from R_1 and R_2 that satisfy a join condition with only equality comparisons.	$\begin{matrix} R_1 \bowtie_{< \text{join condition}>} R_2 \text{, OR} \\ R_1 \bowtie_{(< \text{join attributes 1}>),} \\ (< \text{join attributes 2}>) \end{matrix} R_2$
NATURAL JOIN	Same as EQUIJOIN except that the join attributes of R_2 are not included in the resulting relation; if the join attributes have the same names, they do not have to be specified at all.	$\begin{array}{c} R_1 \star_{< \text{join condition}>} R_2, \\ \text{OR } R_1 \star_{(< \text{join attributes 1>}),} \\ \text{OR } R_1 \star_{(< \text{join attributes 2>})} R_2 \end{array}$
UNION	Produces a relation that includes all the tuples in R_1 or R_2 or both R_1 and R_2 ; R_1 and R_2 must be union compatible.	$R_1 \cup R_2$
INTERSECTION	Produces a relation that includes all the tuples in both R_1 and R_2 ; R_1 and R_2 must be union compatible.	$R_1 \cap R_2$
DIFFERENCE	Produces a relation that includes all the tuples in R_1 that are not in R_2 ; R_1 and R_2 must be union compatible.	$R_1 - R_2$
CARTESIAN PRODUCT	Produces a relation that has the attributes of R_1 and R_2 and includes as tuples all possible combinations of tuples from R_1 and R_2 .	$R_1 \times R_2$
DIVISION	Produces a relation $R(X)$ that includes all tuples $t[X]$ in $R_1(Z)$ that appear in R_1 in combination with every tuple from $R_2(Y)$, where $Z = X \cup Y$.	$R_1(Z) \div R_2(Y)$

Álgebra Relacional - Operações Estendidas

- Semi-Join (Semi Junção)
 - Left Semi Join
 - Right Semi Join
- Outer Join (Junção Externa)
 - Left Outer Join
 - Right Outer Join
 - Full Outer Join
- Agregação
 - Funções de Agregação

Semi Join

• Left Semi Join: $R \ltimes S = \Pi_R (R \bowtie S)$

Projeção dos atributos de R na junção natural de R com S

R		S			
X	Y	Y	Z		
а	С	d	g	X	Υ
a h	٨	е		b	d
D	u	-	11		

• Right Semi Join: $R \rtimes S = \Pi_S (R \bowtie S)$

Projeção dos atributos de S na junção natural de R com S

R			S			
X	Y		Υ	Z		
а	С		d	g	 Y	Z
b	٨	×	е	h	d	g
D	u			II		

Inner Join vs Outer Join

Inner Join

- As operações de junção anteriores combinam dados de duas tabelas para que estes possam ser apresentados na forma de uma única tabela.
- Os tuplos que não estão relacionados (matching) são descartados.
 - Incluindo os tuplos com valores Null nos atributos de junção.

Outer Join

- Incluímos no resultado todos os tuplos de uma (ou de ambas) das relações componentes.
- Os atributos que n\u00e3o fazem matching s\u00e3o preenchidos com Null.

Outer Join

Left Outer Join: R ⋈ S

R

A1	A2
а	С
b	d

S

B1	B2
d	g
е	h

A1A2B1B2acnullnullbddg

• Right Outer Join: R ⋈ S

R

A1	A2
а	С
b	d

S

B1	B2
d	g
е	h

----->

A1	A2	B1	B2
b	d	d	g
null	null	е	h

• Full Outer Join: R ⋈ S

A1	A2
а	С
b	d

™_{A2=B1}

 $\bowtie_{A2=B1}$

 $\bowtie_{A2=B1}$

B1	B2
d	g
е	h
	d

 \rightarrow

A1	A2	B1	B2	
а	С	null	null	
b	d	d	g	2
null	null	е	h	

Left Outer Join - Exemplo

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

DEPARTMENT

Dname	Dnumber	Mgr_ssn	Mgr_start_date
Research	5	333445555	1988-05-22
Administration	4	987654321	1995-01-01
Headquarters	1	888665555	1981-06-19

 $\Pi_{\text{Fname, Minit, Lname, Dname}}$ (EMPLOYEE $\bowtie_{\text{Ssn=Mgr_ssn}}$ DEPARTMENT)

Fname	Minit	Lname	Dname
John	В	Smith	NULL
Franklin	Т	Wong	Research
Alicia	J	Zelaya	NULL
Jennifer	S	Wallace	Administration
Ramesh	K	Narayan	NULL
Joyce	Α	English	NULL
Ahmad	V	Jabbar	NULL
James	E	Borg	Headquarters

Join - Quadro Resumo

• Natural | Left Outer | Right Outer | Full Outer

M	M	M	M
X	٧	X	V
V	٧	V	V
X	V	X	V
V	٧	V	V
٧	٧	V	V
X	٧	X	V
X	X	V	V

C

Agregação

• Operação de Agregação

```
<grouping attributes> \Im <function list> (R)
```

ℑ - Script F symbol

- Operações sobre vários tuplos da relação
- Lista de Funções de Agregação:
 - avg: média dos valores
 - min: mínimo dos valores
 - max: máximo dos valores
 - sum: soma dos valores
 - count: número dos valores

Funções de Agregação

- Também podem ser usadas em projeções
 - criar atributos agregados
 - os atributos não agregados são agrupados de forma a não haver valores repetidos.

• Exemplos:

$$\Pi_{A1, A2, M = avg(A3)}$$
 (R)

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	٧	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

Dno	Avg_Salary
1	55000
4	31000
5	33250

Agregação (Grouping) - Exemplos

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	٧	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

☆ count(Ssn), avg(Salary) (EMPLOYEE)

Count_ssn	Average_salary
8	35125

Dno St count(Ssn), avg(Salary) (EMPLOYEE)

Dno	Count_ssn	Average_salary
5	4	33250
4	3	31000
1	1	55000

 $\rho_{R(Dno, No_of_employees, Average_sal)}$ ($_{Dno}$ $\Im_{count(Ssn), avg(Salary)}$ (EMPLOYEE))

R

Dno	No_of_employees	Average_sal		
5	4	33250		
4	3	31000		
1	1	55000		

Álgebra Relacional - Queries Caso de Estudo

Clínica Médica

Clínica - Esquema Relacional da BD

Nome dos fármacos que nunca foram prescritos

$$\Pi_{\text{nome}}(\sigma_{\text{famaco=null}}(\text{Prescreve} \bowtie_{\text{farmaco=codigo}} \text{Farmaco})))$$

• O número de fármacos prescritos em cada consulta

 Para cada médico, a quantidade média de fármacos receitados por consulta


```
temp \leftarrow \boldsymbol{\Pi}_{\text{medico, consulta, num\_farm=count(farmaco)}} \text{ (Prescreve)} \boldsymbol{\Pi}_{\text{medico, avg\_farmaco=avg(num\_farm)}} \text{ (temp)}
```

 O nome de todos os fármacos prescritos, incluindo a quantidade, para o paciente número 35312161


```
temp \leftarrow \pi_{medico, \ num\_consulta} \ ( \mbox{$\sigma_{paciente=35312161}$ (Consulta))} temp2 \leftarrow \pi_{farmaco, \ quantidade=count(farmaco)} (temp \ \bowtie_{medico=medico \ AND \ num\_consulta=consulta} \ Prescreve) \pi_{nome, \ quantidade} \ (temp2 \ \bowtie_{farmaco=codigo} \ Farmaco)
```

 O nome dos fármacos que já foram prescritos por todos os médicos da clínica

temp
$$\leftarrow (\pi_{\text{farmaco, medico}}(\text{Prescreve})) \div (\rho_{\text{medico}}(\pi_{\text{num_func}}(\text{Medico})))$$

$$\pi_{\text{nome}}(\rho_{\text{codigo, medico}}(\text{temp}) \bowtie \text{Farmaco})$$

41

A Seguir?

Data Operations – Relational Algebra

α α

Query syntax

SELECT < desired attributes>

FROM <one or more tables>

ORDER BY < columns to sort>

WHEREpredicate holds for selected tuple> **GROUP BY < key columns, aggregations >**

HAVING predicate holds for selected group>

S				
A	B			
α	2			
β	3			

<u> </u>		,	r∪s		
	В		A	В	
	2		α	1	
	3		α	2	
			β	1	
	/ /	1	β	3	

SQL – Data Manipulation

SQL query:

Pnumber, Pname, COUNT (*) SELECT PROJECT, WORKS ON FROM Pnumber=Pno WHFRF GROUP BY Pnumber, Pname;

SQL query:

INSERT INTO EMPLOYEE (Fname, Lname, Ssn, Dno) VALUES ('Robert', 'Hatcher', '980760540', 2);

SQL – Describe Database Schema

CREATE TABLE DEPARTMENT

VARCHAR(15) NOT NULL, (Dname NOT NULL. Dnumber INT CHAR(9) NOT NULL, Mgr_ssn DATE, Mgr_start_date PRIMARY KEY (Dnumber), UNIQUE (Dname), FOREIGN KEY (Mgr_ssn) REFERENCES EMPLOYEE(Ssn));

The Relational Schema

Part (Name, Description, Part#) Supplier (Name, Addr) Customer (Name, Addr) Supplies (Name, Part#, Date) Orders (Name, Part#)

Resumo

Álgebra Relacional:

- Operações Básicas
- Operações Estendidas
- Caso de Estudo Queries