Lista 3

Problem 5 Let M be a manifold and $\omega \in \Omega^k(M)$. Suppose that $\pi : M \to B$ is a surjective submersion with connected fibers. We say that ω is *basic* (with respect to π) if there exists a form $\overline{\omega} \in \Omega^k(B)$ such that $\pi^*\overline{\omega} = \omega$.

- a. Show that ω is basic iff $i_X\omega=0$ and $\mathcal{L}_X\omega=0$ for all vector fields X tangent to the fibers of π . In particular, if ω is closed, show that it is basic if $\ker(T\pi)\subseteq\ker\omega$ (pointwise in M).
- b. Suppose that ω is a closed 2-form on M and $\ker(T\pi) = \ker \omega$. Show that $\omega = \pi^* \overline{\omega}$ and $\overline{\omega} \in \Omega^2(B)$ is symplectic.
- c. (Application to reduction.) Let (M,ω) be a symplectic manifold and $\iota:N\hookrightarrow M$ a submanifold such that $D=TN\cap TN^\omega\subset TN$ has constant rank (e.g. N could be coisotropic). We saw in class that D is an integrable distribution (by Frobenius); suppose that the leafspace $B:=N/\sim$ is smooth so that the natural projection $\pi:N\longrightarrow B$ is a submersion. Show that B inherits a unique symplectic form ω_{red} with the propery that $\pi^*\omega_{red}=\iota^*\omega$

Solution.

a. Primeiro note que se X é tangente às fibras de π , o pushforward dele baixo π é zero já que o espaço tangente a um ponto é trivial (podemos ver X como um campo em cada fibra, que é uma subvariedade, e a projeção manda ele no vetor zero na base). Daí a implicação \implies é imediata.

Para ← vamos provar primeiro localmente

(Ver StackExchange) Para ⇐ o mais natural é definir uma forma em B como

$$\overline{\omega}(\pi_*X_1,\ldots,\pi_*X_k) := \omega(X_1,\ldots,X_k)$$

já que assim $\pi^*\overline{w}=\omega$. Mais não é imediato para mim que isso faz sentido, pois devo comprovar todo campo vetorial em B pode ser visto como o pushforward de um campo vetorial em M. Finalmente descobri em nLab que para cualquer sumersão surjetiva como π , temos uma descomposição

$$TM = \pi^* TB \oplus \ker \pi_*$$
,

que segue do fato de que $\pi_*: TM \longrightarrow \pi^*TB$ é surjetiva. Aqui π^*TB é o pullback bundle, definido como $\pi^*TB = \{(\mathfrak{m}, \nu) \in M \times TB : \nu \in T_{\pi(\mathfrak{m})}B\}$. Então temos uma sequência exata curta

$$0 \longrightarrow \ker \pi_* \longrightarrow TM \longrightarrow \pi^*TB \longrightarrow 0$$

que, como toda sequência exata curta de fibrados vetoriais sobre variedades, se divide. Em fim, isso é só para comprovar que todo campo vetorial em B tem uma cópia dele em M, de modo que a definição de \overline{w} faiz sentido.

Contudo, isso não é suficiente para mostrar que \overline{w} está bem definida. Devemos verificar que $\pi_*X_1=\pi_*X_1'\implies w(X_1,X_2,\ldots,X_k)=w(X_1',X_2,\ldots,X_k)$. De fato, $\pi_*(X_1-X_1')=0$ signfica que $X_1-X_1'\in\ker\pi_*$, de forma que X_1-X_1' é tangente às fibras de π , e portanto $\mathfrak{i}_{X_1-X_2}w=0$.

Para concluir só falta mostrar que se X_1,\ldots,X_k são campos vetoriais em M, o valor de ω é constante em diferentes pontos de uma fibra de π . Isso é tanto como dizer que se Y é tangente às fibras de π , $0=\mathcal{L}_Y\omega(X_1,\ldots,X_k)=Y(\omega(X_1,\ldots,X_k))$. Para mostrar isso usamos a equação

$$Y(\omega(X_1,...,X_k)) = \mathcal{L}_Y \omega(X_1,...,X_k) + \omega([Y,X_1],X_2,...,X_k) + \omega(X_1,...,X_{k-1},[Y,X_k])$$

que é zero já que $\mathcal{L}_Y \omega = 0$ por hipótese, e porque $[Y, X_i] \in \ker \pi_*$ (usando de novo que $i_Z \omega = 0$ para $Z \in \ker \pi_*$). Isso último segue de que $\pi_*[Y, X_i] = [\pi_*Y, \pi_*X] = 0$.

Para concluir este exercício suponha que ω é fechada e que $\ker \pi_* \subseteq \ker \omega$. Pegue X tangente às fibras de π ; vimos acima que $\pi_* X = 0$, então $X \in \ker \omega$, i.e. $\mathfrak{i}_X \omega = 0$ e também $0 = \mathcal{L}_X \omega = \mathfrak{di}_X \omega + \mathfrak{i}_X d\omega$.

- b. Usando o item anterior, basta mostrar que $i_X\omega=0=\mathcal{L}_X\omega$ para todo X tangente às fibras de π . Mas, se X é tangente às fibras de π , ele tá no $\ker \pi_*=\ker \omega$. Daí, $i_X\omega=0$ e também $0=\mathcal{L}_X\omega=\operatorname{di}_X\omega+i_X\operatorname{d}\omega$. Para ver que $\overline{\omega}$ é simplética lembre que $\ker \overline{\omega}=\{\nu\in TM: i_\nu\overline{\omega}=0\}$, logo se $\nu\in\ker\overline{\omega}$ sabemos que existe $u\in TM$ tal que $\pi_*u=\nu$, e daí $i_u\omega=i_u\pi^*\overline{\omega}=\overline{\omega}(\nu,\cdot)=i_\nu\overline{\omega}=0$. Isso mostra que $u\in\ker\omega=\ker\pi_*\omega\Longrightarrow\pi_*u=\nu=0$.
- c. De acordo com o inciso b., basta ver que $\ker \pi_* = \ker \omega|_N$ (já que $\omega|_N$ é uma forma fechada, pois é o pullback de ω baixo a inclusão). Como $\mathsf{TN} \cap \mathsf{TN}^\omega$ é uma distribuição intergável, por cada ponto de N pasa uma folha de uma folheação. Pegue V tangente às folhas da distribuição, de modo que $\pi_*V = 0$ já que as folhas são pontos em B. Mas ainda, por definição dessa distribuição, que V seja tangente às folhas significa que $V \in \mathsf{TN} \cap \mathsf{TN}^\omega$. Mas já sabemos que $\mathsf{TN} \cap \mathsf{TN}^\omega$ é o kernel de $\omega|_N$.

Pegue $V \in \ker \omega|_N = TN \cap TN^{\omega}$, então V é tangente às fibras da distribuição e portanto está em $\ker \pi_*$.

Com isso, usando o inciso b., sabemos que existe uma forma $\overline{\omega}:=\omega_{red}$ tal que $\pi^*\overline{\omega}=\omega|_N=\iota^*\omega$.