Package 'ConNEcT'

October 12, 2022

Title Contingency Measure-Based Networks for Binary Time Series

Version 0.7.27

Maintainer Nadja Bodner <nadja.bodner@kuleuven.be>

Description The ConNEcT approach investigates the pairwise association strength of binary time series by calculating contingency measures and depicts the results in a network. The package includes features to explore and visualize the data. To calculate the pairwise concurrent or temporal sequenced relationship between the variables, the package provides seven contingency measures (proportion of agreement, classical & corrected Jaccard, Cohen's kappa, phi correlation coefficient, odds ratio, and log odds ratio), however, others can easily be implemented. The package also includes non-parametric significance tests, that can be applied to test whether the contingency value quantifying the relationship between the variables is significantly higher than chance level. Most importantly this test accounts for auto-dependence and relative frequency. See Bodner et al.(2021) < doi:10.1111/bmsp.12222>. Finally, a network can be drawn. Variables depicted the nodes of the network, with the node size adapted to the prevalence. The association strength between the variables defines the undirected (concurrent) or directed (temporal sequenced) links between the nodes. The results of the non-parametric significance test can be included by depicting either all links or only the significant ones. Tutorial see Bodner et al.(2021) <doi:10.3758/s13428-021-01760-w>.

Imports qgraph, stats, graphics

Depends R (>= 2.10)

License GPL (>= 2)

Encoding UTF-8

LazyData true

RoxygenNote 7.1.2

Suggests covr, lintr, testthat (>= 3.0.0)

Config/testthat/edition 3

NeedsCompilation no

Author Nadja Bodner [aut, cre], Eva Ceulemans [ctb, rev]

Repository CRAN

Date/Publication 2022-05-09 07:10:13 UTC

2 AttachmentData

R topics documented:

	AttachmentData	2
	barplot.conData	3
	conData	4
	conMx	5
	conNEcT	6
	conProf	7
	conTest	8
	FamilyData	9
	funClassJacc	10
	funCorrJacc	11
	funKappa	11
	funLogOdds	12
	funOdds	13
	funPhiCC	13
	funPropAgree	14
	getProb	15
	hist.conTest	15
	lagthemats	16
	modelAD	17
	modelNO	17
	permutAD	18
	permutNO	19
	plot.conData	19
	plot.conProf	20
	qgraph.conNEcT	21
	SymptomData	22
		•
Index	2	23
Atta	chmentData Attachment-related mother-child interaction dataset	

Description

During an attachment study, a mother and her child (middle childhood; age between eight and 12) were videotaped while working on a three-minutes stressful puzzle task. The interaction was coded in two-second intervals for the presence and absence of positive, negative, and task related behavior. The dataset contains seven variables and 90 time intervals.

Usage

AttachmentData

barplot.conData 3

Format

A data frame with 90 rows and 7 variables:

Mpos mother's positive behavior

Mneg mother's negative behavior

MAlone mother is working on the task alone

Togth mother and child are working on the task together

Cpos child's positive behavior

Cneg child's negative behavior

CAlone child is working on the task alone

Author(s)

Adinda Dujardin & Guy Bosmans <guy.bosmans@kuleuven.be>

References

Bodner, N., Bosmans, G., Sannen, J., Verhees, M., & Ceulemans, E. (2019). Unraveling middle childhood attachment-related behavior sequences using a micro-coding approach. PLOS ONE, 14(10), e0224372. https://doi.org/10.1371/journal.pone.0224372

barplot.conData	Depict the relative frequencies (and conditional probabilities) of a bi-
	nary time series in a barplot

Description

Depict the relative frequencies (and conditional probabilities) of a binary time series in a barplot

Usage

```
## S3 method for class 'conData'
barplot(height, plottype = "RelFreq", color = NULL, legend = TRUE, ...)
```

Arguments

height	conData object
plottype	needs to be specified if 'RelFreq' only the relative frequency is depicted if 'All' both the relative frequency and the conditional probabilities are depicted
color	string of chars contanig as many colornames as variables in the object (default='gray')
legend	indicates whether you want to include a legend or not
	parameters to be passed on to barplot

4 conData

Value

barplot

Examples

```
ExampleData <- cbind(rep(c(0,1),100),
                      rep(c(0,0,0,0,0,1,1,1,1,1),20),
                      c(rep(c(0,0,0,1,1),20),rep(c(0,1,1,1,1),20)),
                      ifelse(rnorm(200,0,1)<0.95,1,0),
                      c(ifelse(rnorm(100,0,1)<0.7,1,0),ifelse(rnorm(100,0,1)<0.7,0,1)),
                      ifelse(rnorm(200,0,1)<(-0.98),1,0))
 colnames(ExampleData) <- c('Var 1','Var 2','Var 3',</pre>
                             'Var 4','Var 5','Var 6')
 fancy.col <- c('purple','slateblue','royalblue','cyan4',</pre>
                 'green3','olivedrab3')
 PersData <- conData(ExampleData)
 barplot(PersData, plottype='RelFreq', color=fancy.col)
 barplot(PersData, plottype='All', color=fancy.col)
 data(SymptomData)
 Sdata <- conData(SymptomData)</pre>
 FANCY= c('purple', 'slateblue', 'royalblue', 'cyan4', 'green3',
           'olivedrab3', 'orange', 'orangered')
 barplot(Sdata,plottype='RelFreq', color = FANCY)
```

conData

Explore and tidy raw data

Description

Removes not binary columns from multivariate time series data and calculates a table of relative frequency and auto-dependency for each binary variable

Usage

```
conData(data)
```

Arguments

data

Binary time-points-by-variable matrix

Value

A conData-object including:

data Binary data in time points to variable format.

probs Table of relative frequency and auto-dependence for each variable.

varNames The names of all variables.

conMx 5

Examples

conMx

Calculate contingency measure values of a (lagged) time series matrix

Description

Calculate contingency measure values of a (lagged) time series matrix

Usage

```
conMx(data, data2 = NULL, lag = 0, conFun)
```

Arguments

data	Binary time-points-by-variable matrix
data2	Second binary time-points-by-variable matrix (optional)
lag	Non-negative integer indicating how many time points the second variable is lagged (default 0)
conFun	Contingency measure function (calculating the contingency value between two binary vectors). Built in: funPropAgree, funClassJacc, funKappa, funCorrJacc, funOdds, funLogOdds, funPhiCC

Value

list with two elements:

value Matrix of pairwise calculated contingency measures para Parameter settings lag, funName and varNames

6 conNEcT

Examples

```
conMx(cbind(c(1,0,1,0,1,0,1),c(1,1,1,1,0,0,0)),lag=1,conFun=funCorrJacc)\\
```

conNEcT	Calculate the link strength between multiple behaviors and return					
	them as a matrix (optionally discarting all non-significant links)					

Description

Calculate the link strength between multiple behaviors and return them as a matrix (optionally discarting all non-significant links)

Usage

```
conNEcT(
  data,
  lag = 0,
  conFun,
  test = FALSE,
  typeOfTest = "permut",
  adCor = TRUE,
  nBlox = 10,
  nReps = 100,
  signLev = 0.05
)
```

Arguments

data Binary time-points-by-variable matrix	
Non-negative integer indicating how many time points the second variable is lagged (default 0)	
conFun Contingency measure function (calculating the contingency value between two binary vectors). Built in: funPropAgree, funClassJacc, funKappa, funCorrJacc, funOdds, funLogOdds, funPhiCC	
test Logic indicationg whether a significance test is executed (TRUE) or not (FALSE;default	t)
typeOfTest String indicating whether a model-based ('model') or a permutation-based ('permut'; default) data generation approach is used.	
adCor Logic indicating the auto-dependence correction should be applied (TRUE; default) or not (FALSE)	
Number indicating the number of segments (default 10). Necessary for permutation-based test, accounting for auto-dependence (typeOfTest='permut'; adCor=TRUE)	
nReps Number of replicates/samples that is used to generate the test distribution	
signLev Significance level of the test (default 0.05)	

conProf 7

Value

A conNEcT-object including

allLinks Matrix of pairwise calculated contingency measures

signLinksMatrix of pairwise calculated contingency measures containing only significant links (others are set to 0)

pValue P-values for the one-sided upper significance test

para Parameter settings containing lag, test,typeOfTest, adCor, nBlox, nReps, funName, and varNames

probs Table of relative frequency and auto-dependency

Examples

```
\label{eq:netdata} netdata = cbind(rep(c(1,1,1,1,1,0,0,0,0,0),100),\\ rep(c(0,0,1,1,1,1,0,0,0,0),100))\\ conNEcT(netdata,lag=1,conFun=funKappa,test=TRUE,nBlox=5)\\
```

conProf

Compare different lags in a contingency profile

Description

Compare different lags in a contingency profile

Usage

```
conProf(data, maxlag, conFun)
```

Arguments

data Binary time-points-by-variable matrix

maxlag Positive integer indicating how many lags should be investigated

conFun Contingency measure function (calculating the contingency value between two

binary vectors). Built in: funPropAgree, funClassJacc, funKappa, funCorrJacc,

funOdds, funLogOdds, funPhiCC

Value

A conProf-object consisting of

value Contingency matrices for different lags

para Parameters including maxlag, funName and varNames

8 conTest

Examples

```
\label{eq:condition} IntData <- cbind(rep(c(0,0,1,0,1,0,1,0,0,0),each=5),times=5), \\ rep(rep(c(1,0,0,0), each=10), times=25)) \\ colnames(IntData) <- c('Var1','Var2') \\ conProf(IntData,maxlag=10,conFun=funClassJacc) \\ \end{array}
```

conTest

Test significance

Description

Test significance

Usage

```
conTest(
  data,
  lag = 0,
  conFun,
  typeOfTest = "permut",
  adCor = TRUE,
  nBlox = 10,
  nReps = 100
)
```

Arguments

data	Binary time-points-by-variable matrix
lag	Non-negative integer indicating how much the second variable is lagged (default 0)
conFun	Contingency measure function (calculating the contingency value between two binary vectors). Built in: FunClassJacc, FunCorrJacc, FunKappa, FunOdds, FunLogOdds, FunPropAgree,FunPhiCC
typeOfTest	String indicating whether a model-based ('model') or a permutation-based ('permut'; default) data generation approach is used.
adCor	Logic indicating the auto-dependence correction should be applied (TRUE; default) or not (FALSE)
nBlox	Number indicating the number of segments (default 10). Necessary for permutation-based test, accounting for auto-dependence (typeOfTest='permut'; adCor=TRUE)
nReps	Number of replicates/samples that is used to generate the test distribution

FamilyData 9

Value

A conTest-object including

allLinks Matrix of pairwise calculated contingency measures

percentile Matrix of raw percentiles, situating the observed value in the sample distribution pValue Matrix of the p-values (upper one-sided significance test) calculated by subtracting the percentile from 1.

para: Saving the parameter settings for typeOfTest, adCor, nBlox, nReps, funName, lag, varNames samples Saved generated replicates/samples for each variable combination under \$NameVariable1\$NameVariable2

Examples

```
\label{eq:signdata} \begin{aligned} & signdata = cbind(c(1,0,1,0,1,0,1,0),c(1,1,1,1,0,0,0,0),c(0,0,0,0,0,0,1,1)) \\ & & colnames(signdata) <-c \ ('momangry', 'momsad','adoangry') \\ & & conTest(data = signdata, lag = 1, conFun = funClassJacc, typeOfTest = 'model', adCor = FALSE) \end{aligned}
```

FamilyData

Affective family interaction dataset

Description

These data was collected during a nine-minutes problem-solving family interaction between two parents and their adolescent son or daughter During this interaction, the presence and absence of expressions of 'anger', 'dysphoric' feelings and 'happiness' were coded for each family member in an event-basis way (i.e., noting when a certain behavior starts and when it stops). The codes were subsequently restructured into second-to-second interval data, resulting in a 540 seconds by nine variables binary dataset.

Usage

FamilyData

Format

A data frame with 540 rows and 9 variables:

moanger mother expressing anger
faanger father expressing anger
adanger adolescent expressing anger
modysph mother expressing dysphoric feelings
fadysph father expressing dysphoric feelings
addysph adolescent expressing dysphoric feelings
mohappy mother expressing happy feelings
fahappy father expressing happy feelings
adhappy adolescent expressing happy feelings

10 funClassJacc

Author(s)

Lisa Sheeber < lsheeber@ori.org>

References

Sheeber, L. B., Kuppens, P., Shortt, J. W., Katz, L. F., Davis, B., & Allen, N. B. (2012). Depression is associated with the escalation of adolescents' dysphoric behavior during interactions with parents. Emotion, 12(5), 913–918. https://doi.org/10.1037/a0025784

Allen, N. B., Kuppens, P., & Sheeber, L. B. (2012). Heart rate responses to parental behavior in depressed adolescents. Biological Psychology, 90(1), 80–87. https://doi.org/10.1016/j.biopsycho.2012.02.013

Bodner, N., Kuppens, P., Allen, N. B., Sheeber, L. B., & Ceulemans, E. (2018). Affective family interactions and their associations with adolescent depression: A dynamic network approach. Development and Psychopathology, 30(4), 1459–1473. https://doi.org/10.1017/S0954579417001699

funClassJacc

Calculate the classic Jaccard index between two vectors

Description

Calculate the classic Jaccard index between two vectors

Usage

```
funClassJacc(vec1, vec2)
```

Arguments

vec1 Vector of binary time series (no missing values)

vec2 Vector of binary time series (equal length as vec1, no missing values)

Value

list with two elements
value of the classic Jaccard index and
funName name of the function

funCorrJacc 11

funCorrJacc	Calculate the corrected Jaccard index between two vectors
-------------	---

Description

Calculate the corrected Jaccard index between two vectors

Usage

```
funCorrJacc(vec1, vec2)
```

Arguments

vec1 Vector of binary time series (no missing values)

vec2 Vector of binary time series (equal length as vec1, no missing values)

Value

list with two elements
value of the corrected Jaccard index and
funName name of the function

Examples

funKappa

Calculate Cohen's kappa between two vectors

Description

Calculate Cohen's kappa between two vectors

Usage

```
funKappa(vec1, vec2)
```

Arguments

vec1 Vector of binary time series (NA not allowed)

vec2 Vector of binary time series (equal length as vec1, NA not allowed)

12 funLogOdds

Value

```
list with two elements
value of the Cohen's kappa and
funName name of the function
```

Examples

funLog0dds

Calculate the log odds ratio between two vectors

Description

Calculate the log odds ratio between two vectors

Usage

```
funLogOdds(vec1, vec2)
```

Arguments

vec1 Vector of binary time series (no missing values)

vec2 Vector of binary time series (equal length as vec1, no missing values)

Value

```
list with two elements
value of the log odds ratio and
funName name of the function
```

funOdds 13

fun0dds

Calculate the odds ratio between two vectors

Description

Calculate the odds ratio between two vectors

Usage

```
funOdds(vec1, vec2)
```

Arguments

vec1 Vector of binary time series (no missing values)

vec2 Vector of binary time series (equal length as vec1, no missing values)

Value

list with two elements
value of the odds ratio and
funName name of the function

Examples

funPhiCC

Calculate the phi correllation coefficient index between two vectors

Description

Calculate the phi correllation coefficient index between two vectors

Usage

```
funPhiCC(vec1, vec2)
```

Arguments

vec1 Vector of binary time series (no missing values)

vec2 Vector of binary time series (equal length as vec1, no missing values)

14 funPropAgree

Value

```
list with two elements
value of the phi correlation coefficient and
funName name of the function
```

Examples

funPropAgree

Calculate the proportion of agreement between two vectors

Description

Calculate the proportion of agreement between two vectors

Usage

```
funPropAgree(vec1, vec2)
```

Arguments

vec1 Vector of binary time series (no missing values)

vec2 Vector of binary time series (equal length as vec1, no missing values)

Value

```
list with two elements
value of the proportion of agreement and
funName name of the function
```

getProb 15

getProb

Retrieve (conditional) probabilities from binary time series

Description

Retrieve (conditional) probabilities from binary time series

Usage

```
getProb(ts)
```

Arguments

ts

Binary time series vector

Value

```
List of three elements
```

```
p1 the prevalence p(X(t)=1) and
```

```
p1 | 1 and p1 | 0 the two auto-conditional probabilities p(X(t)=1|X(t-1)=1) & p(X(t)=1|X(t-1)=0)
```

Examples

```
getProb(c(1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0))
```

 $\verb|hist.conTest|$

Plot histogram matrix of the significance test

Description

Plot histogram matrix of the significance test

Usage

```
## S3 method for class 'conTest'
hist(x, signLev = 0.05, ...)
```

Arguments

x Object of the class conTest signLev Significance level (default .05)

... Graphical parameters to be passed to hist()

lagthemats

Value

Histogram matrix with sample distribution and value from observed data for each variable combination

Examples

lagthemats

Lag a matrix

Description

Lag a matrix

Usage

```
lagthemats(data, lag)
```

Arguments

data Binary time-points-by-variable matrix

lag Non-negative integer indicating the number of time points the second variable

is lagged (default 0)

Value

laggeddata Matrix in which all variables are lagged lag time points

```
lagthemats(cbind(c(1,0,1,0,1,0,1),c(1,1,1,1,0,0,0)),lag=2)\\
```

modelAD 17

modelAD	Generate data with model-based approach accounting for auto- dependence

Description

This function generates a new time serie that is similar to the original one in relative frequency and auto-dependence, by drawing samples time point per time point from a Bernoulli distribution with the different conditional probabilities as parameter, depending on the state of the previous time point.

Usage

```
modelAD(vec)
```

Arguments

vec

Time series vector

Value

Time series vector that is similar to the original one in relative frequency and auto-dependence

Examples

```
ts=rep(c(1,1,1,1,1,0,0,0,0,0),15)
modelAD(ts)
```

modelNO

Generate data with model-based approach ignoring auto-dependence

Description

This function generates a new time serie that is similar to the original one in relative frequency, but not in auto-dependence by drawing from a Bernoulli distribution with the relative frequency as parameter.

Usage

```
modelNO(vec)
```

Arguments

vec

Time series vector

18 permutAD

Value

Time series vector that is similar to the original one considering relative frequency

Examples

```
ts=rep(c(1,1,1,1,1,0,0,0,0,0),15)
modelNO(ts)
```

permutAD

Generate data with permutation-based approach accounting for autodependence

Description

This function generates a new time serie with exactly the same relative frequency as the original one, and a similar auto-dependence by cutting the original variable in segments and shuffeling these segements.

Usage

```
permutAD(vec, nBloks = 10)
```

Arguments

vec Time series vector

nBloks positive integer indicating the number of segements/blocks (default 10)

Value

Time series vector with exactly the same relative frequency and a similar auto-dependence as the original vector

```
ts=rep(c(1,1,1,1,1,0,0,0),15)
permutAD(ts,nBloks=11)
```

permutNO 19

permutNO	Generate dependen	with	permutation-based	approach	ignoring	auto-

Description

This function generates a new time serie with exactly the same relative frequency as the original one, but with a lower auto-dependence by shuffeling all time points.

Usage

```
permutNO(vec)
```

Arguments

vec

Time series vector

Value

Time series vector with exactly the same relative frequency as the original vector

Examples

```
ts=rep(c(1,1,1,1,1,0,0,0,0,0),15)
permutNO(ts)
```

plot.conData

Visualize the course of the variables over time

Description

Visualize the course of the variables over time

Usage

```
## S3 method for class 'conData'
plot(x, plottype = "interval", color = NULL, ...)
```

Arguments

```
x conData object

plottype Character specified as 'interval', 'line', or 'both'

color Character string of colornames for all variables (default='black')

... Parameters to be transfered to the plot function
```

20 plot.conProf

Value

Plot visualizing the course of the variables over time

Examples

```
ExampleData <- cbind(rep(c(0,1),100),
                      rep(c(0,0,0,0,0,1,1,1,1,1),20),
                      c(rep(c(0,0,0,1,1),20),
                       rep(c(0,1,1,1,1),20)),
                      ifelse(rnorm(200,0,1)<0.95,1,0),
                      ifelse(rnorm(100,0,1)<0.7,1,0),
                      ifelse(rnorm(100,0,1)<0.7,0,1)
                      ifelse(rnorm(200,0,1)<(-0.98),1,0))
colnames(ExampleData) <- c('Var 1','Var 2','Var 3',</pre>
                            'Var 4','Var 5','Var 6')
PersData <- conData(ExampleData)</pre>
fancy.col=c('purple','slateblue', 'royalblue', 'cyan4',
            'green3', 'olivedrab3', 'orange', 'orangered')
plot(PersData,plottype='line',color=fancy.col)
data(SymptomData)
Sdata <- conData(SymptomData)</pre>
fancy.col=c('purple','slateblue', 'royalblue', 'cyan4',
             'green3', 'olivedrab3', 'orange', 'orangered')
plot(Sdata, plottype='interval',color=fancy.col)
```

plot.conProf

Draw contingency profiles

Description

Draw contingency profiles

Usage

```
## S3 method for class 'conProf' plot(x, ...)
```

Arguments

x Object of a conProf class

... Parameters to be transferred to the plot function

Value

Contingency profile matrix

qgraph.conNEcT 21

Examples

```
\label{eq:condition} IntData <- cbind(rep(rep(c(0,0,1,0,1,0,1,0,0,0),each=5),times=5),\\ rep(rep(c(1,0,0,0),each=10),times=25))\\ colnames(IntData) <- c('Var1','Var2')\\ CP <- conProf(IntData,maxlag=10,conFun=funClassJacc)\\ plot(CP)\\ \endaligned
```

qgraph.conNEcT

Draws a Network figure

Description

Draws a Network figure

Usage

```
qgraph.conNEcT(x, signOnly = TRUE, ...)
```

Arguments

x A conNEcT-object
 signOnly Logic indicating whether significant links should be depicted (TRUE; default) or not (FALSE)
 ... Parameter settings for qgraph

Value

A network plot

```
\label{eq:additional_additional_additional} \begin{split} & \text{ADOangry=rep}(c(1,1,1,1,1,0,0,0,0,0),100) \\ & \text{MAangry=rep}(c(0,0,1,1,1,1,0,0,0,0),100) \\ & \text{MAsad=rep}(c(0,0,1,1,1,1,0,0,0,0),100) \\ & \text{netdata} <- \text{cbind}(\text{ADOangry},\text{MAangry},\text{MAsad}) \\ & \text{netnet} <- \text{conNEcT}(\text{netdata},\text{lag=1},\text{conFun=funKappa},\\ & \text{test=TRUE},\text{nBlox=5}) \\ & \text{qgraph.conNEcT}(\text{netnet},\text{signOnly=FALSE}) \end{split}
```

22 SymptomData

SymptomData

Depression symptom dataset

Description

In this depression symptoms data, a patient reported for each week on the presence and absence of eight depression symptoms. The dataset contains the reports of the eight variables for 145 subsequent weeks.

Usage

SymptomData

Format

A data frame with 145 rows and 8 variables:

Core core depression symptoms including depressed mood and/or diminished interest

Energy lack of energy

Eat eating problems and weight loss or gain

Sleep sleeping problems including hyposomnia or hypersomnia

Motor psychomotor problems

Guilt feelings of guilt

Cogn cognitive problems

Death preoccupation with death

Author(s)

Bettina Hosenfeld & Peter de Jonge <peter.de.jonge@rug.nl>

References

Hosenfeld, B., Bos, E. H., Wardenaar, K. J., Conradi, H. J., van der Maas, H. L. J., Visser, I., & de Jonge, P. (2015). Major depressive disorder as a nonlinear dynamic system: Bimodality in the frequency distribution of depressive symptoms over time. BMC Psychiatry, 15(1), 222. https://doi.org/10.1186/s12888-015-0596-5

Bodner, N., Bringmann, L., Tuerlinckx, F., De Jonge, P., & Ceulemans, E. (in press). ConNEcT: A novel network approach for investigating the co-occurrence of binary psychopathological symptoms over time. Psychometrika. https://doi.org/10.1007/s11336-021-09765-2

Index

```
* datasets
     AttachmentData, 2
     FamilyData, 9
     SymptomData, 22
AttachmentData, 2
barplot.conData, 3
conData, 4
conMx, 5
conNEcT, 6
conProf, 7
{\tt conTest}, {\color{red} 8}
{\tt FamilyData}, \textcolor{red}{9}
funClassJacc, 10
funCorrJacc, 11
funKappa, 11
funLogOdds, 12
fun0dds, 13
funPhiCC, 13
funPropAgree, 14
{\tt getProb}, {\color{red} 15}
hist.conTest, 15
lagthemats, 16
modelAD, 17
modelNO, 17
permutAD, 18
permutNO, 19
plot.conData, 19
\verb|plot.conProf|, 20
{\tt qgraph.conNEcT}, {\color{red} 21}
SymptomData, 22
```