6 Orthogonality and Least Squares

6.1 Inner Product, Length, and Orthogonality

Definition If \bar{u} and \bar{v} are viewed as column vectors in \mathbb{R}^n , then the matrix product $\bar{u}^T\bar{v}$ is a 1×1 matrix (or just a scalar) called the **inner product** of \bar{u} and \bar{v} . We often write it as $\bar{u}\cdot\bar{v}$, and call it the **dot product**.

More specifically, if

$$\bar{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}, \quad \text{and} \quad \bar{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix},$$

then

$$\bar{u}^T \bar{v} = \bar{u} \cdot \bar{v} = \begin{bmatrix} u_1 & u_2 & \dots & u_n \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n.$$

Example Compute $\bar{u} \cdot \bar{v}$ and $\bar{v} \cdot \bar{u}$ for

$$\bar{u} = \begin{bmatrix} 2\\1\\3 \end{bmatrix}, \qquad \bar{v} = \begin{bmatrix} 1\\-1\\2 \end{bmatrix}.$$

Note that

$$\bar{u} \cdot \bar{v} = (2)(1) + (1)(-1) + (3)(2) = 7.$$

Likewise,

$$\bar{v} \cdot \bar{u} = (1)(2) + (-1)(1) + (2)(3) = 7.$$

We summarize some properties of the inner product in the following theorem.

Theorem Let \bar{u} , \bar{v} , and \bar{w} be vectors in \mathbb{R}^n , and let c be a scalar. Then

- (a) $\bar{u} \cdot \bar{v} = \bar{v} \cdot \bar{u}$;
- (b) $(\bar{u} + \bar{v}) \cdot \bar{w} = \bar{u} \cdot \bar{w} + \bar{v} \cdot \bar{w};$
- (c) $(c\bar{u}) \cdot \bar{v} = c(\bar{u} \cdot \bar{v}) = \bar{u} \cdot (c\bar{v});$
- (d) $\bar{u} \cdot \bar{u} > 0$, and $\bar{u} \cdot \bar{u} = 0$ if and only if $\bar{u} = 0$.

We also get the following "linearity" property by combining (b) and (c) from above:

$$(c_1\bar{u}_1 + \dots + c_p\bar{u}_p) \cdot \bar{w} = c_1(\bar{u}_1 \cdot \bar{w}) + \dots + c_p(\bar{u}_p \cdot \bar{w}).$$

Definition The **length** (or **norm**) of a vector $\bar{v} \in \mathbb{R}^n$ with entries v_1, \ldots, v_n is a nonnegative scalar, denoted $\|\bar{v}\|$, and defined by

$$\|\bar{v}\| = \sqrt{\bar{v} \cdot \bar{v}} = \sqrt{v_1^2 + \dots + v_n^2}.$$

Note If $\bar{v} \in \mathbb{R}^2$ or \mathbb{R}^3 , then this definition coincides with the standard definition of distance coming from the Pythagorean theorem. We also have that $\|\bar{v}\|^2 = \bar{v} \cdot \bar{v}$.

Note For any scalar c, we have that $||c\bar{v}|| = |c| ||\bar{v}||$. That is, scalars scale the length of a vector as expected.

Definition A vector of length 1 is called a **unit vector**. If \bar{v} is a vector, then we can **normalize** \bar{v} by finding a unit vector \bar{u} that points in the same direction as \bar{v} . Specifically

$$\bar{u} = \frac{\bar{v}}{\|\bar{v}\|},$$

i.e. you simply divide \bar{v} by its length to get a unit vector that points in the same direction as \bar{v} .

71

Example Let $\bar{v} = (1, 2, 0, 2)$. Find a unit vector \bar{u} in the same direction as \bar{v} .

$$\|\bar{v}\| = \sqrt{1^2 + 2^2 + 0^2 + 2^2} = 3,$$

so

$$\bar{u} = \frac{\bar{v}}{\|\bar{v}\|} = \left(\frac{1}{3}, \frac{2}{3}, 0, \frac{2}{3}\right).$$

We can use the definition of length to establish a distance formula between two vectors.

Definition Given two vectors $\bar{u}, \bar{v} \in \mathbb{R}^n$, the **distance between** \bar{u} and \bar{v} , written $\operatorname{dist}(\bar{u}, \bar{v})$, is the length of the vector $\bar{u} - \bar{v}$. Specifically,

$$\operatorname{dist}(\bar{u}, \bar{v}) = \|\bar{u} - \bar{v}\|.$$

Note In \mathbb{R}^2 and \mathbb{R}^3 , this coincides with the usual definition of distance between two points.

Example Compute the distance between $\bar{u} = (2,4)$ and $\bar{v} = (-1,6)$.

$$\operatorname{dist}(\bar{u}, \bar{v}) = \|\bar{u} - \bar{v}\| = \|(2, 4) - (-1, 6)\| = \|(3, -2)\| = \sqrt{3^2 + (-2)^2} = \sqrt{13}.$$

Note Supposing $\bar{u} = (u_1, \dots, u_n)$ and $\bar{v} = (v_1, \dots, v_n)$, we can write the distance formula a bit more explicitly, as follows:

$$\operatorname{dist}(\bar{u}, \bar{v}) = \sqrt{(\bar{u} - \bar{v}) \cdot (\bar{u} - \bar{v})}$$
$$= \sqrt{(u_1 - v_1)^2 + \dots + (u_n - v_n)^2}.$$

Definition Two vectors \bar{u} and \bar{v} in \mathbb{R}^n are **orthogonal** to each other if $\bar{u} \cdot \bar{v} = 0$.

You should think of orthogonality in \mathbb{R}^n as the analogue of perpendicularity in \mathbb{R}^2 .

Theorem (Pythagorean theorem) Two vectors \bar{u} and \bar{v} are orthogonal if and only if $\|\bar{u} + \bar{v}\|^2 = \|\bar{u}\|^2 + \|\bar{v}\|^2$.

Definition Let W be a subspace of \mathbb{R}^n . If a vector \bar{z} is orthogonal to *every* vector in W, we say that \bar{z} is **orthogonal to** W. The set of all vectors that are orthogonal to W is called the **orthogonal** complement of W, and is denoted W^{\perp} ("W perp").

Facts Two facts about orthogonal complements include the following:

- (i) A vector \bar{x} is in W^{\perp} if and only if \bar{x} is orthogonal to every vector in a set that spans W.
- (ii) W^{\perp} is a subspace of \mathbb{R}^n .

The last theorem in this section is one that relates row spaces, column spaces, and null spaces of a matrix A via the notion of orthogonal complements.

Theorem Let A be an $m \times n$ matrix. Then

$$(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A$$
 and $(\operatorname{Col} A)^{\perp} = \operatorname{Nul} A^{T}$.

6.2 Orthogonal Sets

Definition A set of vectors $\{\bar{u}_1, \dots, \bar{u}_p\} \subset \mathbb{R}^n$ is said to be an **orthogonal set** if each pair of distinct vectors from the set is orthogonal, i.e. if $\bar{u}_i \cdot \bar{u}_j = 0$ whenever $i \neq j$.

Example The easiest example of an orthogonal set in \mathbb{R}^n is the standard basis $\{\bar{e}_1, \dots, \bar{e}_n\}$. Notice, for example that

$$\bar{e}_1 \cdot \bar{e}_2 = (1)(0) + (0)(1) + 0^2 + \dots + 0^2 = 0.$$

Example We show that $\{\bar{u}_1, \bar{u}_2, \bar{u}_3\}$ is an orthogonal set, where

$$\bar{u}_1 = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}, \quad \bar{u}_2 = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}, \quad \bar{u}_3 = \begin{bmatrix} -\frac{1}{2} \\ -2 \\ \frac{7}{2} \end{bmatrix}.$$

We see that

$$\bar{u}_1 \cdot \bar{u}_2 = (3)(-1) + (1)(2) + (1)(1) = 0$$

$$\bar{u}_1 \cdot \bar{u}_3 = (3)\left(-\frac{1}{2}\right) + (1)(-2) + (1)\left(\frac{7}{2}\right) = 0$$

$$\bar{u}_2 \cdot \bar{u}_3 = (-1)\left(-\frac{1}{2}\right) + (2)(-2) + (1)\left(\frac{7}{2}\right) = 0.$$

As is perhaps suggested by the first example above, we have the following theorem.

Theorem If $S = \{\bar{u}_1, \dots, \bar{u}_p\}$ is an orthogonal set of nonzero vectors in \mathbb{R}^n , then S is linearly independent and hence is a basis for the subspace spanned by S.

Definition An **orthogonal basis** for a subspace W of \mathbb{R}^n is a basis for W that is also an orthogonal set.

In general, orthogonal bases for vector spaces are much easier to work with than other bases. The following theorem explains why.

Theorem Let $\{\bar{u}_1, \ldots, \bar{u}_p\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n . For each $\bar{y} \in W$, the weights in the linear combination

$$\bar{y} = c_1 \bar{u}_1 + \dots + c_p \bar{u}_p$$

are given by

$$c_j = \frac{\bar{y} \cdot \bar{u}_j}{\bar{u}_j \cdot \bar{u}_j}.$$

Example Express the vector

$$\bar{y} = \begin{bmatrix} 3 \\ \frac{1}{2} \\ -4 \end{bmatrix}$$

as a linear combination of the vectors used in the example above. We see that

$$\bar{y} \cdot \bar{u}_1 = (3)(3) + \left(\frac{1}{2}\right)(1) + (-4)(1) = \frac{11}{2} \qquad \bar{y} \cdot \bar{u}_2 = (3)(-1) + \left(\frac{1}{2}\right)(2) + (-4)(1) = -6 \qquad \bar{y} \cdot \bar{u}_3 = -\frac{33}{2}$$
$$\bar{u}_1 \cdot \bar{u}_1 = 3^2 + 1^2 + 1^2 = 11 \qquad \bar{u}_2 \cdot \bar{u}_2 = (-1)^2 + 2^2 + 1^2 = 6 \qquad \bar{u}_3 \cdot \bar{u}_3 = \frac{33}{2}.$$

It follows then that

$$\bar{y} = \frac{\bar{y} \cdot \bar{u}_1}{\bar{u}_1 \cdot \bar{u}_1} \bar{u}_1 + \frac{\bar{y} \cdot \bar{u}_2}{\bar{u}_2 \cdot \bar{u}_2} \bar{u}_2 + \frac{\bar{y} \cdot \bar{u}_2}{\bar{u}_2 \cdot \bar{u}_2} \bar{u}_2$$

$$= \frac{1}{2} \bar{u}_1 - \bar{u}_2 - \bar{u}_3.$$

Given a nonzero vector $\bar{u} \in \mathbb{R}^n$, it is often the case that we want to decompose another vector $\bar{y} \in \mathbb{R}^n$ into some multiple of \bar{u} plus another vector that is orthogonal to \bar{u} . (A picture will make this idea a bit clearer.) In other words, we want to write

$$\bar{y} = \hat{y} + \bar{z},$$

where $\hat{y} = \alpha \bar{u}$ and \bar{z} is orthogonal to \bar{u} .

Definition The vector \hat{y} mentioned in the preceding discussion is called the **orthogonal projection of** \bar{y} **onto** \bar{u} , and it is given explicitly as

$$\hat{y} = \frac{\bar{y} \cdot \bar{u}}{\bar{u} \cdot \bar{u}} \bar{u}$$
 (so $\alpha = \frac{\bar{y} \cdot \bar{u}}{\bar{u} \cdot \bar{u}}$).

Note The vector \hat{y} is also sometimes denoted $\operatorname{proj}_{L}(\bar{y})$, where L is the space spanned by \bar{u} .

It follows from the equation above that

$$\bar{z} = \bar{y} - \hat{y}$$
.

You may check that, in fact, \hat{y} is orthogonal to \bar{z} by taking the dot product $\hat{y} \cdot (\bar{y} - \hat{y})$.

Example Let $\bar{y} = \begin{bmatrix} 7 \\ 6 \end{bmatrix}$ and $\bar{u} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. Find the orthogonal projection of \bar{y} onto \bar{u} , then decompose \bar{y} as the sum of two orthogonal vectors. We have first that

$$\hat{y} = \frac{\bar{y} \cdot \bar{u}}{\bar{u} \cdot \bar{u}} \bar{u}$$

$$= \frac{(7)(2) + (6)(1)}{2^2 + 1^2} \bar{u}$$

$$= \frac{20}{5} \bar{u}$$

$$= 4\bar{u}$$

$$= \begin{bmatrix} 8\\4 \end{bmatrix}.$$

It follows that $\bar{z}=\left[\begin{array}{c} 7 \\ 6 \end{array}\right]-\left[\begin{array}{c} 8 \\ 4 \end{array}\right]=\left[\begin{array}{c} -1 \\ 2 \end{array}\right]$. Hence

$$\bar{y} = \left[\begin{array}{c} 8 \\ 4 \end{array} \right] + \left[\begin{array}{c} -1 \\ 2 \end{array} \right],$$

and we see that the vectors on the right hand side are orthogonal since

$$(8)(-1) + (4)(2) = 0.$$

Example Let \bar{y} and \bar{u} be as in the preceding example, with L the line spanned by \bar{u} . Then the distance from \bar{y} to L is

$$\|\bar{y} - \hat{y}\| = \sqrt{(-1)^2 + 2^2} = \sqrt{5}.$$

Definition A set $\{\bar{u}_1, \ldots, \bar{u}_p\}$ is an **orthonormal set** if it is an orthogonal set of unit vectors. If W is the subspace spanned by such a set, then $\{\bar{u}_1, \ldots, \bar{u}_p\}$ is an **orthonormal basis** for W.

Example The easiest example of an orthonormal set (that is in fact also an orthonormal basis) is $\{\bar{e}_1, \dots, \bar{e}_n\} \subset \mathbb{R}^n$.

Theorem An $m \times n$ matrix U has orthonormal columns if and only if $U^T U = I_n$.

The interesting thing about a matrix with orthonormal columns is that it preserves lengths and orthogonality, as follows.

Theorem Let U be an $m \times n$ matrix with orthonormal columns, and let \bar{x} and \bar{y} be in \mathbb{R}^n . Then

- (a) $||U\bar{x}|| = ||\bar{x}||$;
- (b) $(U\bar{x})\cdot(U\bar{y}) = \bar{x}\cdot\bar{y};$
- (c) $(U\bar{x}) \cdot (U\bar{y}) = 0$ if and only if $\bar{x} \cdot \bar{y} = 0$.

6.3 Orthogonal Projections

We start this section with a theorem that says that if W is a subspace of \mathbb{R}^n , then any vector in $\bar{y} \in \mathbb{R}^n$ can be written in the form $\bar{y} = \hat{y} + \bar{z}$, where \hat{y} is the projection of \bar{y} onto W, and \bar{z} is in W^{\perp} . Intuitively, you should think of \hat{y} as the closest approximation to \bar{y} subject to the restriction that you cannot leave W.

Theorem Let W be a subspace of \mathbb{R}^n . Then each $\bar{y} \in \mathbb{R}^n$ can be written uniquely in the form

$$\bar{y} = \hat{y} + \bar{z}$$

where $\hat{y} \in W$ and $\bar{z} \in W^{\perp}$. In fact, if $\{\bar{u}_1, \dots, \bar{u}_p\}$ is an orthogonal basis for W, then

$$\hat{y} = \frac{\bar{y} \cdot \bar{u}_1}{\bar{u}_1 \cdot \bar{u}_1} \bar{u}_1 + \dots + \frac{\bar{y} \cdot \bar{u}_p}{\bar{u}_p \cdot \bar{u}_p} \bar{u}_p.$$

You should think of each term in the sum as the projection of \bar{y} onto the subspace L_i of W that is generated by \bar{u}_i . Taking the sum of all these projections, we end up with the total projection \hat{y} of \bar{y} onto W.

Example Let

$$\bar{u}_1 = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}, \quad \bar{u}_2 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}, \quad \bar{y} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}.$$

You may check that $\{\bar{u}_1, \bar{u}_2\}$ is an orthogonal basis for $W = \text{span}\{\bar{u}_1, \bar{u}_2\}$ by computing $\bar{u}_1 \cdot \bar{u}_2$. We write \bar{y} as a the sum of a vector in W and a vector orthogonal to W as follows:

$$\hat{y} = \frac{\bar{y} \cdot \bar{u}_1}{\bar{u}_1 \cdot \bar{u}_1} \bar{u}_1 + \frac{\bar{y} \cdot \bar{u}_2}{\bar{u}_2 \cdot \bar{u}_2} \bar{u}_2$$

$$= \frac{2 + 10 - 3}{2^2 + 5^2 + 1^2} \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix} + \frac{-2 + 2 + 3}{2^2 + 1^2 + 1^2} \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$

$$= \frac{9}{30} \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix} + \frac{3}{6} \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$

$$= \frac{3}{10} \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{3}{5} - 1 \\ \frac{3}{2} + \frac{1}{2} \\ -\frac{3}{10} + \frac{1}{2} \end{bmatrix}$$

$$= \begin{bmatrix} -\frac{2}{5} \\ 2 \\ \frac{1}{5} \end{bmatrix} .$$

Using the equation $\bar{z} = \bar{y} - \hat{y}$, we see

$$\bar{z} = \begin{bmatrix} 1 + \frac{2}{5} \\ 2 - 2 \\ 3 - \frac{1}{\varepsilon} \end{bmatrix} = \begin{bmatrix} \frac{7}{5} \\ 0 \\ \frac{14}{\varepsilon} \end{bmatrix},$$

so

$$\begin{array}{rcl} \bar{y} & = & \hat{y} + \bar{z} \\ & = & \begin{bmatrix} -\frac{2}{5} \\ 2 \\ \frac{1}{5} \end{bmatrix} + \begin{bmatrix} \frac{7}{5} \\ 0 \\ \frac{14}{5} \end{bmatrix}. \end{array}$$

Since \hat{y} is a combination of \bar{u}_1 and \bar{u}_2 by construction, it is clear that $\hat{y} \in W$. To see that $\bar{z} \in W^{\perp}$, you can check that

$$(c_1\bar{u}_1 + c_2\bar{u}_2) \cdot \bar{z} = c_1(\bar{u}_1 \cdot \bar{z}) + c_2(\bar{u}_2 \cdot \bar{z}) = c_1(0) + c_2(0) = 0.$$

The following theorem is a formalization of the remark made earlier that you should think of \hat{y} as the closest approximation to \bar{y} that lives in W.

Theorem (The Best Approximation Theorem)

Let W be a subspace of \mathbb{R}^n , let \bar{y} be any vector in \mathbb{R}^n , and let \hat{y} be the orthogonal projection of \bar{y} onto W. Then \hat{y} is the closest "point" of W to \bar{y} in the sense that

$$\|\bar{y} - \hat{y}\| < \|\bar{y} - \bar{v}\|$$

for any $\bar{v} \in W$ such that $\bar{v} \neq \hat{y}$.

Drawing a picture of the situation is perhaps the best way to understand what's really going on here. Another way to phrase this is that the shortest distance between the "point" \bar{y} and the "plane" W is given by $\|\bar{y} - \hat{y}\|$, where \hat{y} is the orthogonal projection of \bar{y} onto W.

Example Find the shortest distance from \bar{y} to $W = \text{span}\{\bar{u}_1, \bar{u}_2\}$, where

$$\bar{y} = \begin{bmatrix} -1 \\ -5 \\ 10 \end{bmatrix}, \quad \bar{u}_1 = \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix}, \quad \bar{u}_2 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}.$$

First we find \hat{y} :

$$\hat{y} = \frac{\bar{y} \cdot \bar{u}_1}{\bar{u}_1 \cdot \bar{u}_1} \bar{u}_1 + \frac{\bar{y} \cdot \bar{u}_2}{\bar{u}_2 \cdot \bar{u}_2} \bar{u}_2$$

$$= \frac{15}{30} \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix} + \frac{-21}{6} \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{5}{2} - \frac{7}{2} \\ -1 - \frac{21}{3} \\ \frac{1}{2} + \frac{21}{6} \end{bmatrix}$$

$$= \begin{bmatrix} -1 \\ -8 \\ 4 \end{bmatrix}.$$

Hence

$$\bar{y} - \hat{y} = \begin{bmatrix} -1 \\ -5 \\ 10 \end{bmatrix} - \begin{bmatrix} -1 \\ -8 \\ 4 \end{bmatrix}$$
$$= \begin{bmatrix} 0 \\ 3 \\ 6 \end{bmatrix}$$

so that

$$\|\bar{y} - \hat{y}\| = \sqrt{3^2 + 6^2}$$
$$= \sqrt{45}$$
$$= 3\sqrt{5}.$$

Theorem If $\{\bar{u}_1,\ldots,\bar{u}_p\}$ is an orthonormal basis for a subspace W of \mathbb{R}^n , then

$$\operatorname{proj}_W \bar{y} = (\bar{y} \cdot \bar{u}_1)\bar{u}_1 + \dots + (\bar{y} \cdot \bar{u}_p)\bar{u}_p,$$

and if $U = \begin{bmatrix} \bar{u}_1 & \bar{u}_2 & \dots & \bar{u}_p \end{bmatrix}$, then

$$\operatorname{proj}_W \bar{y} = UU^T \bar{y}$$

for all $\bar{y} \in \mathbb{R}^n$.

Proof The first equation follows because all of the denominators $\bar{u}_i \cdot \bar{u}_i$ are equal to 1 since the basis is ortho*normal*. The second equation follows because $\bar{y} \cdot \bar{u}_i = \bar{u}_i^T \bar{y}$ for all i.