

Counting Formula Sheet

	Setup	Formula
	# of ways to select (without replacement) and arrange (order matters) n distinct objects	n!
	# of ways to distribute n distinct objects into n distinct bins with one object per bin	
	# of ways to select (without replacement, order doesn't matter) r objects out of n distinct objects	
	# of ways to arrange n objects when one object repeats r times and the other $n-r$ times	$\binom{n}{r}$
	# of ways to divide n distinct objects into two unlabeled groups of unequal sizes r and $n-r$,
	# of ways to divide n distinct objects into two labeled groups of specific sizes r and $n-r$	
	# of ways to select (without replacement) and arrange (order matters) r objects out of n distinct objects	$r!\binom{n}{r}$
1.	# of ways to distribute r distinct objects into n distinct bins with at most one object per bin	'`(_r)
	# of ways to select (with replacement) and arrange (order matters) r objects out of n distinct objects	n^r
	# of ways to distribute r distinct objects into n distinct bins	
	# of ways to arrange n objects with r_1, r_2, \ldots, r_k repetitions, where $n = r_1 + r_2 + \cdots + r_k$	$\frac{n!}{r_1!r_2!\cdots r_k!}$
	# of ways to divide n distinct objects into k unlabeled groups of unequal sizes r_1, r_2, \ldots, r_k , where $n = r_1 + r_2 + \cdots + r_k$	
	# of ways to divide n distinct objects into k labeled groups of specific sizes r_1, r_2, \ldots, r_k , where $n = r_1 + r_2 + \cdots + r_k$	
	# of ways to divide n distinct objects into k unlabeled groups with some of equal sizes, say $\underline{r_1 = r_2}$, $\underline{r_3 = r_4 = r_5}$,	$\left(\frac{1}{2!3!}\right)\left(\frac{n!}{r_1!r_2!\cdots r_k!}\right)$
	and r_6, \ldots, r_k are different such that $n = r_1 + r_2 + \cdots + r_k$	
	# of ways to select r objects (with replacement, order doesn't matter) out of n distinct objects	
	# of ways to distribute r identical objects into n distinct bins	$\binom{n+r-1}{r}$
	# of non-negative integer solutions to the equation $x_1 + x_2 + \cdots + x_n = r$	
	# of ways to distribute r identical objects into n distinct bins such that no bin is empty	(r-1)
	# of positive integer solutions to the equation $x_1 + x_2 + \cdots + x_n = r$	$\binom{n-1}{}$