DI/PPGI - CT/UFES

Disciplinas:

Algoritmos Numéricos II e Computação Científica - 19/1 Método de Newton aplicado a Problemas de Valor no Contorno Unidimensional

Implementação do Problema Não-Linear de Bratu Unidimensional

O objetivo deste exercício é implementar o método do Ponto Fixo, o método de Newton e suas variações para solução do problema de Bratu não linear resultante da discretização do PVC abaixo pelo método das diferenças finitas. Determinar $u \in (0,1)$ dado que:

$$-u'' - \lambda e^u = g(x) \quad \text{para } x \in \Omega = (0, 1)$$
 (1)

sendo

$$g(x) = \pi^2 sen(\pi x) - \lambda e^{sen(\pi x)}$$
(2)

com condições de contorno $(u|_{\partial\Omega})$:

$$u(0) = 0.0$$
 $u(1) = 0.0$

O problema de Bratu representa um exemplo interessante no estudo de métodos numéricos para solução de problemas não-lineares. Sua aplicação ocorre em modelos de auto-ignição térmica de uma mistura reativa quimicamente fechada. A solução u representa a diferença de temperatura entre pontos interiores do domínio Ω e da fronteira $\partial\Omega$. Existe $\lambda^{sur}>0$ tal que a existência de soluções viáveis está restrita a $\lambda<\lambda^{sur}$. Soluções computacionais ficam mais difíceis quando λ se aproxima de λ^{sur} .

Desenvolvimento

Utilizando as funções newton.m, Func.m e Jacob.m realize o conjunto de experimentos descritos a seguir, considerando:

- $tol = 10^{-7}$ e itmax = 100.
- \bullet Para cada método considere 3 variações de discretização: n pequeno, médio e grande.
- uma vaiação de λ , determinando empiricamente. λ^{sur} .
- 1. Escreva uma função para o método das aproximações sucessivas para o problema de Bratu, supondo que:

$$-(u^{k+1})'' - \lambda e^{u^k} = g(x)$$

-(u^{k+1})'' = g(x) + \lambde e^{u^k} = R(u^k) (3)

sendo k a iteração conhecida. Aproximando a equação diferencial por diferenças finitas:

$$-u_{i-1}^{k+1} + 2u_i^{k+1} - u_{i+1}^{k+1} = h^2 R(u_i^k) \quad \forall \quad i = 1, \dots, n$$
 (4)

- 2. Utilize a função newton.m para observar o comportamento do problema de Bratu discretizado por diferenças finitas.
- Modifique a função newton.m para implementar o método de Newton modificado.
- 4. Modifique a função newton.m para implementar o método de Newton aproximado.
- 5. Modifique a função newton.m para implementar o método de Newton Inexato. Utilize funções do octave para considerar o método iterativo nãoestacionário adequado. Considere o Critério Papadrakakis para a escolha adequada do critério de parada do método iterativo.

Escreva um relatório suscinto dos itens enumerados - considere tabelas e gráficos para enriquecer seu relatório. Os códigos fonte e o relatório devem ser enviados por e-mail para luciac@inf.ufes.br até o dia 02/07/2019. O assunto do e-mail deve ser CC191:EXE7:<nome1><nome2> em anexo, um arquivo do tipo CC191:EXE7:<nome1><nome2>.zip.