A matrix is a rectangular table of letters. A square matrix is a matrix with an equal number of rows and columns. A square matrix M is called **symmetric** if its letters are symmetric with respect to the main diagonal ($M_{ij} = M_{ij}$ for all pairs of i and j).

The following figure shows two symmetric matrices and one which is not symmetric:

AAB ACC BCC	AAA ABA AAA	ABCD ABCD ABCD ABCD	AAB ACA DAA
Two symmetric matrices.		Two matrices that are not symmetric.	

Given a collection of available letters, you are to output a **subset of columns** in the **lexicographically smallest symmetric** matrix which can be composed using **all** the letters.

If no such matrix exists, output "IMPOSSIBLE".

To determine if matrix A is lexicographically smaller than matrix B, consider their elements in row-major order (as if you concatenated all rows to form a long string). If the first element in which the matrices differ is smaller in A, then A is lexicographically smaller than B.

INPUT

The first line of input contains two integers N ($1 \le N \le 30000$) and K ($1 \le K \le 26$). N is the dimension of the matrix, while K is the number of distinct letters that will appear.

Each of the following K lines contains an uppercase letter and a positive integer, separated by a space. The integer denotes how many corresponding letters are to be used. For example, if a line says "A 3", then the letter A must appear three times in the output matrix.

The total number of letters will be exactly N². No letter will appear more than once in the input.

The next line contains an integer P ($1 \le P \le 50$), the number of columns that must be output.

The last line contains P integers, the indices of columns that must be output. The indices will be between 1 and N inclusive, given in increasing order and without duplicates.

OUTPUT

If it is possible to compose a symmetric matrix from the given collection of letters, output the required columns on N lines, each containing P character, without spaces. Otherwise, output "IMPOSSIBLE" (quotes for clarity).

SCORING

In test cases worth 60% of points, N will be at most 300. In test cases worth 80% of points, N will be at most 3000.

EXAMPLES

input	input	input	input
3 3	4 4	4 5	4 6
A 3	A 4	E 4	F 1
B 2	В 4	A 3	E 3
C 4	C 4	В 3	A 3
3	D 4	C 3	В 3
1 2 3	4	D 3	C 3
	1 2 3 4	2	D 3
output		2 4	4
	output		1 2 3 4
AAB		output	
ACC	AABB		output
BCC	AACC	AC	
	BCDD	BE	IMPOSSIBLE
	BCDD	DE	
		ED	