Newton Raphson Method

Swapnil Singh Bank of Lithuania, KTU December 4, 2024

Outline

- Introduction to Newton-Raphson Method
- Mathematical Foundations
- Line Search and Armijo Rule
- Convergence Properties
- Algorithm Implementation
- Practical Considerations
- Examples and Applications

Introduction

- **Purpose:** Find roots of equation f(x) = 0 or minimum/maximum of function
- Key Idea: Use local quadratic approximation
- Advantages:
 - Quadratic convergence when close to solution
 - Efficient for smooth functions
 - Works well for multi-dimensional problems
- Disadvantages:
 - Requires derivatives
 - Sensitive to starting point
 - May not converge for poor initial guesses

Mathematical Foundation

For Root Finding:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

For Optimization:

- Find where gradient is zero: $\nabla f(x) = 0$
- Update formula with line search:

$$x_{k+1} = x_k + \alpha_k d_k$$
$$d_k = -[H(x_k)]^{-1} \nabla f(x_k)$$

where:

- $\nabla f(x_k)$ is the gradient
- $H(x_k)$ is the Hessian matrix
- α_k is the step size from line search

Quadratic Approximation

Taylor Series Expansion:

$$f(x_k + d) \approx f(x_k) + \nabla f(x_k)^T d + \frac{1}{2} d^T H(x_k) d$$

Finding the Minimum:

• Take derivative with respect to d and set to zero:

$$\nabla f(x_k) + H(x_k)d = 0$$

Solve for the Newton direction:

$$d_k = -H(x_k)^{-1} \nabla f(x_k)$$

Line Search with Armijo Rule

Armijo Condition:

- Ensures sufficient decrease in function value
- Step size α_k must satisfy:

$$f(x_k + \alpha_k d_k) \leq f(x_k) + c\alpha_k \nabla f(x_k)^T d_k$$

where:

- c is typically 0.1 (Armijo parameter)
- α_k is reduced by factor β (typically 0.5)

Benefits:

- Guarantees descent property
- Improves global convergence
- Handles poor quadratic approximations

Convergence Properties

Local Convergence:

Quadratic convergence near solution:

$$||e_{k+1}|| \le C||e_k||^2$$

- Requires:
 - Smooth function
 - Good initial guess
 - Non-singular Hessian at solution

Global Convergence with Line Search:

• Armijo rule ensures:

$$f(x_{k+1}) < f(x_k)$$

• Convergence to local minimum under mild conditions

7

Algorithm Implementation

Input: Initial guess x_0 , tolerance ϵ , max iterations N

Input: Armijo parameter c, reduction factor β

Output: Optimal point x^*

$$k \leftarrow 0$$
 while $k < N$ do

Compute gradient: $g_k = \nabla f(x_k)$ Compute Hessian: $H_k = H(x_k)$ if $\|g_k\| < \epsilon$ then return x_k

end

Solve:
$$H_k d_k = -g_k \ \alpha_k \leftarrow 1$$
 while $f(x_k + \alpha_k d_k) > f(x_k) + c\alpha_k g_k^T d_k$ do $\alpha_k \leftarrow \beta \alpha_k$ if $\alpha_k < 10^{-10}$ then $\beta_k = 10^{-10}$ break

end

Update: $x_{k+1} = x_k + \alpha_k d_k$ $k \leftarrow k+1$

Implementation Details

Key Components:

- Function Evaluation:
 - Define objective function
 - · Compute gradient analytically or numerically
 - · Compute Hessian analytically or numerically

• Linear System Solution:

- Use mldivide (backslash) operator
- Check condition number
- Handle singular matrices

• Line Search:

- Implement backtracking
- Choose appropriate parameters
- Handle convergence failures

Practical Considerations

Implementation Challenges:

- Choose appropriate stopping criteria
- Handle ill-conditioned Hessians
- Select good initial point
- Deal with non-convex functions
- Choose appropriate line search parameters

Line Search Parameters:

- Armijo parameter c (typically 0.1)
- Step reduction factor β (typically 0.5)
- Minimum step size threshold

Improvements:

- Strong Wolfe conditions
- Trust region methods
- Quasi-Newton methods (BFGS)
- Regularization for ill-conditioning

Example Applications

Optimization Problems:

- Maximum likelihood estimation
- Least squares problems
- Portfolio optimization
- Machine learning (model training)

Root Finding:

- Solving nonlinear equations
- Finding equilibrium points
- Solving boundary value problems
- Financial derivatives pricing

Summary '

Key Points:

- Newton-Raphson combines quadratic approximation with line search
- Armijo rule ensures sufficient decrease
- Quadratic convergence near solution
- Practical implementation requires careful attention to details

When to Use:

- Smooth, well-behaved functions
- When derivatives are available
- When fast local convergence is needed
- When good initial guess is available