Tutte le domande Reti e Sicurezza

Luca De Franceschi

Università degli studi di Padova

INDICE 1

Indice

1	Cap	Capitolo Strato Fisico 2	
	1.1	Cosa si intende per serie di Fourier	2
	1.2	Bitrate e baudrate	2
	1.3	Descrivere i vari tipi di cavo e confrontarli	2
	1.4	Caratteristiche e confronto fra i vari tipi di satellite, GEO, MEO,	
		LEO	3
	1.5	Che cos'è la modulazione in frequenza (FM)? E in ampiezza(AM)?	3
	1.6	Che cos'è la modulazione delta (delta modulation)?	4
	1.7	Descrivere in dettaglio il GSM (Global System for Mobile con-	
		nection)	4
	1.8	Si descriva la tecnica CDMA (Code Division Multiple Access),	
		possibilmente con esempio	4
	1.9	Il GPRS: cos'è, difetti e pregi	5
		Handoff: che cos'è e i vari tipi	5
		FDM, TDM, CDM: algoritmi per la selezione della banda	6
	1.12	QAM e QAM16 (Quadrature Amplitude Modulation)	6
2	Cap	oitolo Strato Data Link	7
3	Cap	pitolo Sottostrato MAC	8
1	Capitolo Strato Network		9
5	Capitolo Strato Trasporto		10
3	Capitolo Strato Applicazione		11
7	Cap	pitolo Sicurezza	12

1 Capitolo Strato Fisico

1.1 Cosa si intende per serie di Fourier

Le informazioni possono essere trasmesse via cavo variando alcune proprietà fisiche, come la tensione e corrente. Fourier condusse alcuni studi ed arrivò alla conclusione che le informazioni trasmesse via cavo potevano essere rappresentate da una funzione f(t). Questa funzione è composta da una serie infinita di somme di seni e coseni, ed è in grado di rappresentare un segnale periodico e regolare. La trasmissione però non è mai perfetta e c'è per forza attenuazione di linea. L'intervallo di frequenze trasmesse senza forte attenuazione è detto **banda passante**. Anche in un ipotetico canale perfetto, ovvero senza attenuazioni, la velocità di trasmissione non può essere troppo elevata; la massima velocità è data dall'equazione di Nyquist/Shannon:

$$V_{max} = \log_2 V bit/sec$$

1.2 Bitrate e baudrate

Bitrate: Velocità di trasmissione si indica in bit/s. Il teorema di Nyquist mette in relazione il bitrate con la banda disponibile:

$$2H \log_2 V$$

Con H banda disponibile e V livelli di segnale (simboli) usati:

$$S/N = segnale/rumore, SNR = 10 \log_{10}(S/N)dB$$

 $Massimobitrate = 2 \log_{2}(1 + (S/N))$

Baudrate: numero di imboli al secondo, un simbolo può valere più bit.

1.3 Descrivere i vari tipi di cavo e confrontarli

Principalmente esistono 3 tipi di cavo, il classico **doppino**, il **cavo coassiale** e la **fibra**.

Il doppino è composto da due conduttori di rame isolati, attorcigliati tra loro in modo elicoidale (DNA style), per evitare interferenze fra di loro. Il doppino è molto utile per la linea telefonica, dato che può percorrere molti km senza che il segnale si indebolisca, ovvero senza bisogno di un'amplificazione. Il cavo coassiale è più grosso e può estendersi per distanze maggiori rispetto il doppino. La distanza maggiore è frutto di una maggior schermatura a cui è sottoposto il nucleo in rame del cavo che lo rende immune dal rumore. Esistono due cavi coassiali, uno da 50 Ohm per le trasmissioni digitali e uno da 75 Ohm per quelle analogiche.

La fibra ottica è formata da 3 parti: sorgente luminosa, mezzo di trasmissione e rilevatore di luce. La sorgente di luce è rappresentata da LED oppure laser, anche se il secondo, oltre ad essere meno diffuso è anche più costoso. Il mezzo trasmissivo è la fibra, composta un nucleo di vetro di pochi micron, avvolta in una guaina di vetro rivestita a sua volta da una guaina di plastica. La luce che attraversa la fibra è riflessa al suo interno, da un'estremità all'altra del cavo. Nonostante si trasmetta alla velocità della luce, quest'ultima viene stroncata

dalla velocità di decodifica inferiore che avviene alle estremità. La fibra può contenere più raggi che si differenziano per l'angolo di riflessione. Questo tipo di fibra è detto multimodale. Se la trasmissione all'interno della fibra è unica, si ha una trasmissione in linea retta, detta monomodale.

Lo svantaggio della fibra rispetto al doppino e cavo coassiale è il costo maggiore e la difficoltà nell'unire vari pezzi di cavo, mentre per gli altri due tipi basta attorcigliare il nucleo di rame. Il vantaggio della fibra è la manutenzione, essendo vetro è pari a zero. Altro vantaggio è l'unione di più canali, che avviene tramite prismi.

1.4 Caratteristiche e confronto fra i vari tipi di satellite, GEO, MEO, LEO

Un satellite è un grande ripetitore di microonde posizionato in cielo. Ci sono tre tipi di satelliti che si differenziano per la loro distanza dalla superficie terrestre.

I satelliti più lontani sono detti **geostazionari** e sono posti in successione su un'orbita circolare al livello dell'equatore, ad una distanza minima di 2 gradi uno dall'altro(ps: immaginare tanti cerchi concentrici che hanno come primo cerchio il nostro equatore e tutti gli altri più grandi, i satelliti sono su uno di questi). Questi satelliti sono molto lontani dalla terra e per questo hanno un tempo medio di ritardo della trasmissione di 300 millisecondi, ma con uno di essi possiamo coprire quasi un terzo della superficie terrestre. I satelliti **LEO** distano circa 500 km dalla terra, hanno un tempo di latenza inferiore rispetto ai GEO, come il consumo energetico. Essendo vicini, per coprire tutta la terra, sono necessari molti satelliti. Si muovono velocemente. I satelliti **MEO** sono posti a un'orbita intermedia tra i LEO e GEO, hanno una velocità relativamente bassa, in quanto sono posti a 18 mila km dalla terra e il loro tempo di rivoluzione è di 6 ore.

1.5 Che cos'è la modulazione in frequenza (FM)? E in ampiezza(AM)?

La modulazione in frequenza è una delle tecniche di trasmissione utilizzate per inviare informazioni attraverso la variazione della frequenza dell'onda portante. La FM è una modulazione a onda continua, ovvero viene modulata la portante sinusoidale. Per riuscire a inviare dati in forma digitale è necessario un ampio spettro di frequenza, questo rende adatta la trasmissione in banda base solo a basse velocità e a distanze brevi. Nella modulazione a frequenza vengono utilizzate 2 o più frequenze.

Pro:

- Molto meno sensibile ai disturbi rispetto all'AM;
- Permette una trasmissione di miglior qualità;
- Efficienza energetica molto maggiore, cioè il segnale di informazione non richiede potenza aggiuntiva per essere trasmesso.

•

Contro:

- Necessità di circuiti molto più complessi;
- Occupa più banda;

•

Modulazione in ampiezza (AM): due diverse ampiezze sono usate per rappresentare 0 e 1. Utilizza per il segnale un segnale a radio frequenza come portante. L'AM modifica il segnale in modo proporzionale.

Pro:

• Semplice da mettere in pratica.

Contro:

• Molto sensibile a disturbi.

1.6 Che cos'è la modulazione delta (delta modulation)?

Questa tecnica è una differente tecnica di multiplexing (più conversazioni nello stesso mezzo fisico) a divisione di tempo. Ogni valore campionato differisce dal precedente di +1 o -1 sotto le condizioni che può essere trasmesso un singolo bit che dice se il nuovo campione è maggiore o minore del precedente.

1.7 Descrivere in dettaglio il GSM (Global System for Mobile connection)

Il GSM è una tecnologia simile al D-AMPS, appartenente alla seconda generazione di cellullari con qualche modifica. La prima sostanziale è il numero di canali, infatti il GSM ha 124 coppie di canali simplex ampi 200KH e supporta fino ad 8 connessioni contemporanee grazie al multiplexing a divisione di tempo. La trasmissione e la ricezione non avvengono nello stesso intervallo, poiché il sistema non è in grado di gestirlo. Il GSM è il protocollo che ha introdotto le SIM, le quali contengono IMSI e la chiave crittografia KI, diversa per ogni SIM. Il cellulare manda IMSI e KI in broadcast. L'operatore riceve entrambi e invia un numero casuale, che viene analizzato e rimandato con la firma del KI all'operatore.

La struttura a cella GSM: nel protocollo GSM ci sono 4 tipi di celle: macro, micro, pico e Umbrella. Le prime sono le più grandi, sono sopraelevate rispetto gli edifici e hanno un raggio massimo di 35 km. Le micro sono più piccole, coprono un'altezza pari agli edifici. Le pico sono molto piccole, usate in aree molto dense, tipicamente indoor. Umbrella è una piccola estensione, usata per coprire i buchi tra le varie celle sopracitate.

1.8 Si descriva la tecnica CDMA (Code Division Multiple Access), possibilmente con esempio

CDMA permette la trasmissione per tutto il tempo attraverso l'intero spettro. Queste trasmissioni multiple e simultanee vengono separate tramite tecnica di codifica. L'idea è che i segnali si sommino linearmente, ma ogni coppia lo fa in

lingua diversa. Per risalire a ciò che viene detto, basta togliere il rumore aggiunto dalle altre conversazioni utilizzando le matrici di Walsh. Vediamo un esempio.

Creando una matrice di Hadamard 4x4 posso gestire 4 lingue, invertendo ogni riga ottengo altre 4 parole, in modo da avere una coppia di parole per ogni lingua. Ognuno usa una parola, si sommano le coordinate di ogni parola ottenendo un unico vettore risultante che moltiplicato per una parola di una determinata lingua, fornisce un numero:

- Zero: se il dispositivo non ha trasmesso;
- Positivo: c'è una parola in quella lingua e la parola è la parola positiva;
- Negativo: c'è una parola in quella lingua e la parola è la parola negativa;

Es: Si costruisca una base trasmissiva (chip codes) per 18 stazioni in CDMA (volendo, usando le matrici di Hadamard). Basta fare la matrice di hadamard 32x32 e prendere solo 18 righe Il chip codes è una riga della matrice (di Hadamard) che viene assegnata alla singola stazione che trasmette quello per mandare un 1 o il complemento a 1 (riga*-1) per mandare uno 0. Ogni riga definisce una "lingua" diversa che è linearmente indipendente dalle altre (alias riga S*T=S*(-1*T)=0 se S!=T).

1.9 Il GPRS: cos'è, difetti e pregi

Il GPRS è un'evoluzione del GMS che permette la gestione del traffico a pacchetti. Al contrario del GSM non serve un servizio dedicato ma vi è un canale condiviso. Lo spreco di banda è inesistente e si utilizza una tariffa a traffico e non a tempo, come avviene per il GSM. IL GPRS aggiunge il supporto a PPP e IP. essendo una naturale evoluzione del GSM, ci furono differenti classi di cellulare, a seconda del supporto alla prima o seconda tecnologia.

Nei cellulari in classe C, l'utente deve selezionare quale comunicazione utilizzare, se GSM oppure GPRS. La classe B, permette di utilizzare entrambe le reti, ma se si sta scaricando un pacchetto e si riceve una chiamata, il download viene sospeso. Prima della classe A, esiste una pseudo classe A, in cui si possono usare contemporaneamente utilizzando una solo frequenza. La Classe A, permette di utilizzare sia una che l'altra tecnologia, contemporaneamente, è come avere due cellulari indipendenti. La sicurezza è analoga al GSM, con l'aggiunta di una seconda chiave Kc(cipher key). Questa è generata ogni volta dalla Ki e da un numero casuale ogni volta che l'utente di autentica.

1.10 Handoff: che cos'è e i vari tipi

Nelle connessioni mobili, ogni telefono è connesso alla rete tramite una sola cella finché non si sposta. Quando ci si sposta, si deve cambiare la cella precedente con una più vicina, anche per evitare problemi dati dalla distanza. La disconnessione da una cella, può avvenire con due modalità:

- Hard handoff: quando il segnale è troppo debole, lo switching office chiede alle celle vicine quanta potenza ricevono dal cellulare. Queste gli rispondono e il cellulare viene riassegnato alla cella con più potenza. Quindi il cellulare viene mollato e poi riagganciato, in qualche caso è presente del lag che fa cadere la linea;
- Soft handoff: introdotto da GSM per ovviare al problema del lag, quando il cellulare ha poco segnale dalla cella, prima di lasciarla, si aggancia ad una nuova e poi abbandona la vecchia. Occorre che il cellulare gestisca due frequenze, cosa che 1G e 2G non supportavano.

1.11 FDM, TDM, CDM: algoritmi per la selezione della banda

FDM: sfrutta la trasmissione in banda passante per condividere un canale, divide lo spettro in bande di frequenza di cui ogni utente ha uso esclusivo per inviare il proprio segnale.

TDM: gli utenti fanno a turni secondo una politica round-robin e ognuno di loro, periodicamente prende possesso della banda completa per un tempo limitato.

CDM: comunicazione a spettro distribuito in cui un segnale a banda stretta viene sparso su una banda di frequenza più ampia. Ciò rende il segnale più tollerante alle interferenze e permette a più segnali di utenti diversi di condividere la stessa banda di frequenza, chiamato anche CDMA.

1.12 QAM e QAM16 (Quadrature Amplitude Modulation)

È un sistema di modulazione numerica sia analogica che digitale. Le portanti sono solitamente sinusoidali. Il termine quadratura indica che gli angoli differiscono di 90°. Il segnale può essere visto come la somma di due segnali modulati in fame.

QAM: Più immune al rumore si ottiene tramite i diagrammi a costellazione, quelli circolari sono quelli ideali ma sono più difficili sia da ottenere che da decodificare. QAM 16: Quando si voleva spingere sull'acceleratore, nella trasmissione di dati via cavo, si è pensato che il miglior approccio da utilizzare era combinare due tipi di modulazione assieme, l'ampiezza e la fase. Da questa idea nasce il QAM-16. Grazie ad esso possiamo utilizzare un alfabeto più ampio e spedire un simbolo su 16 ogni unità di tempo con bitrate quadruplo.

2 Capitolo Strato Data Link

3 Capitolo Sottostrato MAC

4 Capitolo Strato Network

5 Capitolo Strato Trasporto

6 Capitolo Strato Applicazione

12

7 Capitolo Sicurezza