Simpson's Rule

Simpson's rule is a formula which allows us to approximate the value of a definite integral for those situations when it is either difficult or impossible to ust the Fundamental Theorem of Calculus. To approximate the value of the definite integral

$$\int_{a}^{b} f(x) \ dx$$

we partition the interval [a, b] into an *even* number n of subintervals of equal width Δx with partition points $a = x_0, x_1, \ldots, x_n = b$. Simpson's rule tells us that

$$\int_{a}^{b} f(x) dx \approx \frac{1}{3} \Delta x \left(f(x_0) + 4f(x_1) + 2f(x_2) + \dots + 4f(x_{n-2}) + 2f(x_{n-1}) + f(x_n) \right)$$

where the error E_S (the difference between the exact value of the integral and the approximation) can be estimated by

$$|E_S| \le \frac{K(b-a)^5}{180n^4}$$

with K a constant such that $|f^{(4)}(x)| \leq K, \forall x \in [a, b]$.

Problems

1. A sky diver jumps out of a plane at time t = 0 seconds, opens his parachute two minutes later and lands five minutes after his jump. The table below shows his speed v(t) (in meters per second) at different times t (in seconds) during his jump. The distance he fell is given by the integral $\int_0^{300} v(t) \ dt$. Use Simpson's rule to estimate this distance.

t	0	25	50	75	100	125	150	175	200	225	250	275	300
v(t)	0	176	264	307	329	294	159	100	74	63	59	57	56

- 2. Let $f(x) = \sin(x^2)$.
 - (a) Use Simpson's rule with n = 8 subintervals to approximate the value of $\int_0^{\pi} f(x) dx$.
 - (b) Use the error estimation formula for Simpson's rule to estimate the error between the exact value of the integral and the approximation. Use the graph of the fourth derivative of f below, to determine a value for K in the formula that gives the best error bound.

Figure 1: Graph of $f^{(4)}(x)$