Homework 1

Due Date: March 22, 2018

Problem 1. Consider a data set in which each data point t_n is associated with a weighting factor $r_n > 0$, so that the sum-of-squares error function becomes

$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} r_n \{t_n - \mathbf{w}^T \phi(\mathbf{x}_n)\}^2.$$

where $\phi(\mathbf{x}_n)$ is basis function. Find an expression for the solution \mathbf{w}^* that minimizes this error function.

Problem 2. Assume we are given data $\{(x_1,y_1),...,(x_n,y_n)\}$ where x_i is a p-dimension vector and a parameter t>0. We denote by X the (n,p) matrix of row vectors $x_1, x_2,...x_n$ and $y=(y_1,...,y_n)^T$. The ridge regression estimator is defined as:

$$\widehat{\beta}_{ridge} = argmin_{\beta} ||y - X\beta||^2 s.t. ||\beta||^2 \le t.$$

(a) Show that there exists a unique λ such that this formulation is equivalent to

$$\widehat{\beta}_{ridge} = argmin_{\beta} ||y - X\beta||^2 + \lambda ||\beta||^2$$

(b) Give the explicit form of the solution. Does it always exist?

Problem 3. Show that maximization of the class separation criterion given by:

$$m_2 - m_1 \propto \mathbf{w^T}(\mathbf{m_2} - \mathbf{m_1})$$

with respect to w, using a Lagrange multiplier to enforce the constraint $\mathbf{w}^T\mathbf{w} = 1$, leads to the result that

$$\mathbf{w} \propto (\mathbf{m_2} - \mathbf{m_1})$$