Тема №4 Java & XML

На данном занятии необходимо познакомиться с правилами создания XML — документов и приемами проверки их на корректность, изучить возможности SAX и DOM парсеров, рассмотреть, как с их помощью можно прочитать, изменить и сохранить XML — документ.

Основные задания

Задание №1

Дан зашумленный набор некоторых экспериментально полученных данных (x, y), которые располагаются на графике примерно вдоль прямой линии (см. $Puc.\ 4.1$).

Рисунок 4.1. Экспериментально полученные данные

Вычислить коэффициенты прямой $y = k \cdot x + b$, которая наилучшим образом приближает результаты.

Для проверки правильности работы программы использовать приведенные ниже данные, хранящиеся в файле *XML*—формата:

x	у	Дата наблюдения
1.1	1.01	19.03.2018
2.2	2.30	20.03.2018
3.3	3.05	21.03.2018
4.4	4.28	22.03.2018
5.5	5.75	23.03.2018
6.6	6.48	24.03.2018
7.7	7.84	25.03.2018

Теоретические сведения

Самый простой и наиболее часто используемый вид регрессии (зависимости среднего значения какой-либо случайной величины от другой величины) — линейная. Приближение данных (x_i,y_i) осуществляется линейной функцией $y(x)=k\cdot x+b$. Если определить коэффициенты регрессии k и b, то для любого значения x можно предсказать значение y, просто проведя вычисления по формуле. Стандартный метод получения коэффициентов k и b — это метод наименьших квадратов. Метод получил такое название, поскольку коэффициенты k и k вычисляются из условия минимизации суммы квадратов ошибок $|b+k\cdot x_i-y_i|^2$. Результирующие расчетные формулы можно записать так:

$$k = \frac{\left(\sum x \cdot y\right) - \left(\sum x\right) \cdot \overline{y}}{\left(\sum x^2\right) - \left(\sum x\right) \cdot \overline{x}}, \ b = \overline{y} - k\overline{x}$$

здесь суммирование проводится по всем данным, а \bar{x} , \bar{y} — средние значения соответствующих величин.

Задания для работы

- 1. Создать *XML*-файл, соответствующий указанному набору данных и проверить его корректность.
- 2. Создать приложение для разбора полученного *XML*-файла с данными с помощью *SAX*-парсера без проверки действительности документа (*without validation*). Необходимые вычисления по указанным выше формулам провести «на лету», непосредственно во время чтения документа.
- 3. Для *XML*-файла с данными создать файлы с *DTD* и *XSD* схемами для проверки действительности документа (*validation*) и проверить правильность их написания.
- 4. Создать приложение для разбора *XML*-файла с данными при помощи *SAX*-парсера с проверкой действительности документа (with validation) с применением *DTD*, *XSD* схем. Во время чтения и разбора *XML*-файла построить в памяти адекватную структуру данных для хранения прочитанных значений; создать класс для анализа прочитанных данных.
- 5. Создать приложение для разбора *XML*-файла с данными при помощи *DOM*-парсера без проверки и с проверкой действительности документа (without and with validation) с применением *DTD* и *XSD* схем. Для чтения с проверкой действительности документа создать класс-оболочку, предназначенную для работы с *DOM*-объектом, как со структурой данных с сохраненными значениями. Предусмотреть возможность изменять значения, хранящиеся в *DOM*-узлах, добавлять, удалять, вставлять и заменять *DOM*-узлы. Сохранить измененный *DOM*-объект в новый *XML*-файл.
- 6. Создать приложение для разбора *XML*-файла с данными с помощью *SAX*-парсера с проверкой действительности документа (with validation) с применением *DTD* и *XSD* схем; построить в памяти адекватную структуру данных для хранения прочитанных значений; создать класс для анализа прочитанных данных. Преобразовать полученную структуру данных и вычисленный результат в *DOM*-объект и сохранить его в новый *XML*-файл.

Новый, результирующий ХМС-файл может иметь такую структуру:

```
<?xml version="1.0" encoding="Windows-1251" standalone="no"?>
<Analyser>
<dataTable>
<dataPoint date="16.03.2018">
<x>1.1</x>
```