COMP PROJECT:

Liver Tumor Segmentation

Egill Torfason & Felix Meyer-Veit

Agenda

- 1. Project Idea
- 2. Background
- 3. Methods
- 4. Performance measurement
- 5. Originality
- 6. Live demo

Project Idea

• Participate at Liver Tumor Segmentation (LiTS) Challenge https://competitions.codalab.org/competitions/17094#learn_the_details

Minimum:

- Beat 100st place
- Detect:
 - lesions with dice score of 60%
 - liver with dice score of 90%
 - tumor burden with RMSE 0.04

Ideal:

- Beat the current 1st place
- Detect:
 - lesions with dice score of 80%
 - liver with dice score of 97%
 - tumor burden with RMSE 0.02

Background

Dataset:

- LiTS-Challenge Dataset (training and test data)
 - https://drive.google.com/drive/folders/0B0vscETPGI1-Q1h1WFdEM2FHSUE
 - https://drive.google.com/drive/folders/0B0vscETPGI1-NDZNd3puMIZiNWM

Paper:

- U-net, https://arxiv.org/abs/1505.04597
- Deep learning and level set approach for liver and tumor segmentation from CT scans,

https://aapm.onlinelibrary.wiley.com/doi/epdf/10.1002/acm2.13003

Code:

- U-net applied on <u>3D-IRCADb</u>, https://github.com/zhaohandd/Unet-liverCT
- U-net applied on LiTS
 - <u>https://www.kaggle.com/arunasna/liver-segmentation-with-fastai-v2/notebook</u>
 - https://github.com/FelixGruen/tensorflow-u-net

Methods

Data Processing:

- Convert given NIfTI to another format
- Liver Detection:
 - Median filtering
 - Intensity windowing
- Tumor Detection:
 - edge enhancing diffusion (EED) filtering
 - Intensity windowing

Semantic Segmentation:

- Fully Convolutional Network-based
 - U-net and its family, https://github.com/ShawnBIT/UNet-family

Performance measurement

- Overall segmentation accuracy
 - Dice score for liver and lesion segmentation
- Tumour Detection
 - Root-mean-square error (RMSE) for tumour burden
- Training and running time
 - Does not need to be real time

Originality

Not doing something new, rather trying to improve previous work

Live-demo

6.

• https://github.com/ternaus/robot-surgery-segmentation