4 - Продвинутая теория чисел

А. Первообразный корень по простому модулю

2 секунды, 256 мегабайт

Дано простое нечётное число p. Требуется найти минимальный первообразный корень по модулю p.

Входные данные

Первая строка входного файла содержит простое число p ($3 \leq p \leq 10^9$).

Выходные данные

Выведите ответ на поставленную задачу.

входные данные	
3	
выходные данные	
2	

входные данные
239
выходные данные
7

входные данные	
127	
выходные данные	
3	

В. Дискретное логарифмирование

3 секунды, 256 мегабайт

Даны натуральные числа a, b, и простое число n. Требуется найти ∂ искретный логарифм b по основанию a по модулю n, то есть такое число x ($0 \leqslant x < n$), что $a^x \equiv b \pmod{n}$.

Входные данные

В первой строке заданы через пробел три целых числа a, b и n ($0\leqslant a,b< n\leqslant 10^{12}$), Число n простое.

Выходные данные

В первой строке выведите -1, если дискретного логарифма не существует. Иначе следует вывести его значение.

Если ответ неоднозначен, разрешается выводить любой.

входные данные
2 4 7
выходные данные
2
входные данные
41 145 239
выходные данные
116

С. Корень по модулю

4 секунды, 256 мегабайт

Даны числа a,b и $m, (1 \le a,b < m \le 10^9), m$ — простое. Требуется найти корень степени b из a по модулю m.

Входные данные

Входной файл состоит из одного или нескольких тестов. Количество тестов $T \leq 300$ задано в первой строке.

В T последующих строках заданы по три числа в каждой — a, b и m.

Выходные данные

Для каждого из тестов выведите какой-либо из корней степени b из a по модулю m, либо -1, если искомого корня не существует. Выводимое число должно быть в пределах от -1 до m-1.

```
входные данные

2

4 3 5

1 3 7

выходные данные

4

1
```

D. Проверка на простоту

1 секунда, 256 мегабайт

Дано n натуральных чисел a_i . Определите для каждого числа, является ли оно простым.

Входные данные

Программа получает на вход число $n,\,1\leq n\leq 1000$ и далее n чисел $a_i,\,1\leq a_i\leq 10^{18}.$

Выходные данные

Если число a_i простое, программа должна вывести YES, для составного числа программа должна вывести NO.

входные данные	
4	
5	
10	
239	
выходные данные	
NO	
YES	
NO	
YES	

Е. Факторизация

3 секунды, 256 мегабайт

Дано натуральное число. Факторизуйте его, то есть представьте в виде произведения набора простых чисел. Число p называется простым, если имеет ровно два различных натуральных делителя: 1 и p.

Входные данные

В единственной строке записано единственное натуральное число N. $2 \le N \le 9 \cdot 10^{18}$.

Выходные данные

Выведите в неубывающем порядке одно или несколько простых чисел, произведение которых равно N.

входные данные	
6	
выходные данные	
2 3	

входные данные	
7	

выходные данные	

Codeforces (c) Copyright 2010-2020 Михаил Мирзаянов Соревнования по программированию 2.0