Module 6

Euclidean Spaces Solutions

Problem 1: 5 points

Let $\mathcal{C}[a,b]$ denote the set of continuous functions $f:[a,b]\to\mathbb{R}$. Given any two functions $f,g\in\mathcal{C}[a,b]$, let

$$\langle f, g \rangle = \int_{a}^{b} f(t)g(t)dt.$$

Prove that the above form is bilinear, symmetric and positive (that is, $\langle f, f \rangle \geq 0$ for all $f \in \mathcal{C}[a,b]$). You **do not** have to prove that this bilinear form is definite (that is, if $\langle f, f \rangle = 0$, then f = 0).

Solution. The definite integral has the property (this is basic calculus) that for any continuous functions $f_1, f_2, f, g, g_1, g_2 \in \mathcal{C}[a, b]$ and any two scalars $\lambda \mu$, we have

$$\int_{a}^{b} (\lambda f_{1} + \mu f_{2})(t)g(t)dt = \int_{a}^{b} (\lambda f_{1}(t)g(t) + \mu f_{2}(t)g(t))dt = \lambda \int_{a}^{b} f_{1}(t)g(t)dt + \mu \int_{a}^{b} f_{2}(t)g(t)dt,$$
and

$$\int_{a}^{b} f(t)g(t)dt = \int_{a}^{b} g(t)f(t)dt,$$

so we also have

$$\int_{a}^{b} f(t)(\lambda g_{1} + \mu g_{2})(t)dt = \int_{a}^{b} (\lambda f(t)g_{1}(t) + \mu f(t)g_{2}(t))dt = \lambda \int_{a}^{b} f(t)g_{1}(t)dt + \mu \int_{a}^{b} f(t)g_{2}(t)dt,$$

which shows that the map $f, g \mapsto \langle f, g \rangle = \int_a^b f(t)g(t)dt$ is bilinear and symmetric.

Given any continuous function $f \in \mathcal{C}[a,b]$, the function $t \mapsto (f(t))^2$ is continuous, and since $(f(t))^2 \ge 0$ on [a,b], by a standard property of the integral,

$$\langle f, f \rangle = \int_a^b (f(t))^2 dt \ge 0.$$

Problem 2: 5 points

Prove that the following matrix is orthogonal and skew-symmetric:

$$M = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 & 1 & 1 & 1\\ -1 & 0 & -1 & 1\\ -1 & 1 & 0 & -1\\ -1 & -1 & 1 & 0 \end{pmatrix}.$$

Solution. Since

$$M^{\top} = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 & 1 & 1 & 1 \\ -1 & 0 & -1 & 1 \\ -1 & 1 & 0 & -1 \\ -1 & -1 & 1 & 0 \end{pmatrix}^{\top} = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 & -1 & -1 & -1 \\ 1 & 0 & 1 & -1 \\ 1 & -1 & 0 & 1 \\ 1 & 1 & -1 & 0 \end{pmatrix} = -M,$$

 ${\cal M}$ is skew symmetric. We verify immediately that

$$\begin{split} M^\top M &= -M^2 = -\frac{1}{3} \begin{pmatrix} 0 & 1 & 1 & 1 \\ -1 & 0 & -1 & 1 \\ -1 & 1 & 0 & -1 \\ -1 & -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 & 1 \\ -1 & 0 & -1 & 1 \\ -1 & 1 & 0 & -1 \\ -1 & -1 & 1 & 0 \end{pmatrix} \\ &= -\frac{1}{3} \begin{pmatrix} -3 & 0 & 0 & 0 \\ 0 & -3 & 0 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & -3 \end{pmatrix} = I_3. \end{split}$$

Therefore, M is orthogonal.

Problem 3: 25 points

- (1) (10 points) Prove that if an upper triangular matrix A is invertible, then its inverse A^{-1} is also upper triangular and its diagonal entries are nonzero. Conversely, if an upper triangular matrix A has nonzero diagonal entries, then it is invertible. Furthermore, if the diagonal entries of A are positive, then so are the diagonal entries of A^{-1} .
- (2) (3 points) An orthogonal matrix which is also upper triangular is a diagonal matrix with entries ± 1 .
- (3) (7 **points**) The product A_1A_2 of two upper triangular matrices A_1 and A_2 is also upper triangular. Furthermore if the diagonal entries of A_1 and A_2 are strictly positive, then so are the diagonal entries of A_1A_2 .
- (4) (5 **points**) Let A be an invertible matrix. Prove that if $A = Q_1R_1 = Q_2R_2$ are two QR-decompositions of A and if the diagonal entries of R_1 and R_2 are positive, then $Q_1 = Q_2$ and $R_1 = R_2$.

Solution.

(1) Fact (1) is proven by induction on the dimension n of the matrix A.

The base case n = 1 is trivial (A = (a) for a nonzero scalar a, so $A^{-1} = (a^{-1})$.

For the induction step $(n \ge 1)$, write the $(n+1) \times (n+1)$ matrix A in block form as

$$A = \begin{pmatrix} T & U \\ 0_{1,n} & \alpha \end{pmatrix},$$

where T is an $n \times n$ upper triangular matrix, U is an $n \times 1$ matrix and $\alpha \in \mathbb{R}$. Assume that A is invertible and let B be its inverse, written in block form as

$$B = \begin{pmatrix} C & V \\ W & \beta \end{pmatrix},$$

where C is an $n \times n$ matrix, V is an $n \times 1$ matrix, W is a $1 \times n$ matrix, and $\beta \in \mathbb{R}$. Since B is the inverse of A, we have $AB = I_{n+1}$, which yields

$$\begin{pmatrix} T & U \\ 0_{1,n-1} & \alpha \end{pmatrix} \begin{pmatrix} C & V \\ W & \beta \end{pmatrix} = \begin{pmatrix} I_n & 0_{n,1} \\ 0_{1,n} & 1 \end{pmatrix}.$$

By block multiplication we get

$$TC + UW = I_n$$

 $TV + \beta U = 0_{n,1}$
 $\alpha W = 0_{1,n}$
 $\alpha \beta = 1$.

From the above equations we deduce that $\alpha, \beta \neq 0$ and $\beta = \alpha^{-1}$. Furthermore, if $\alpha > 0$, then $\alpha^{-1} > 0$. Since $\alpha \neq 0$, the equation $\alpha W = 0_{1,n}$ yields $W = 0_{1,n}$, and so

$$TC = I_n$$
, $TV + \beta U = 0_{n,1}$.

It follows that T is invertible and C is its inverse, and since T is upper triangular, by the induction hypothesis, C is also upper triangular and T has nonzero diagonal entries. Also, if the diagonal entries of T are positive, so are the diagonal entries of C. Since we also have $W = 0_{1,n}$, we conclude that C is upper triangular with positive diagonal entries if the diagonal entries of T are positive, which establishes the induction step.

We now prove by induction on the dimension n of A that if A is upper triangular with nonzero diagonal entries, then A is invertible.

The base case n = 1 is trivial since A = (a) with $a \neq 0$, so $A^{-1} = (a^{-1})$.

For the induction step, write

$$A = \begin{pmatrix} T & U \\ 0_{1,n} & \alpha \end{pmatrix},$$

with $\alpha \neq 0$, T is upper triangular and all diagonal entries of T nonzero, and let us look for an upper triangular inverse of the form

$$B = \begin{pmatrix} C & V \\ 0_{1,n} & \beta \end{pmatrix}.$$

Since $AB = I_{n+1}$ must hold, we must have

$$TC = I_n$$

$$TV + \beta U = 0_{n,1}$$

$$\alpha W = 0_{1,n}$$

$$\alpha \beta = 1.$$

Since $\alpha \neq 0$, we have $\beta = \alpha^{-1}$, and by the induction hypothesis, since T is upper triangular and has nonzero diagonal entries, T is invertible. From $TV + \beta U = 0_{n,1}$, we get

$$V = -\beta T^{-1}U,$$

so B is uniquely determined as the inverse of A.

For this part, we can also prove by induction using the Laplace expansion rule with respect to the last row that if A is upper triangular, then $\det(A) = a_{11}a_{22}\cdots a_{nn}$, and that an $n \times n$ matrix A is invertible iff $\det(A) \neq 0$ iff all diagonal entries a_{ii} are nonzero.

- (2) Assume R is an orthogonal matrix which is also upper triangular. Then, $R^{-1} = R^{\top}$ is lower triangular. By (1), since R is invertible and upper triangular, R^{-1} is also upper triangular. Since R^{-1} is simultaneously upper and lower diagonal, it must be diagonal, so R is a diagonal matrix. But then, since R is orthogonal, the entries of R are ± 1 .
- (3) This is verified by a direct computation using induction on the dimension n of the matrices. The base case n = 1 is trivial. For the induction step, if A_1 and A_2 are $(n + 1) \times (n + 1)$ upper triangular matrices written in block form as

$$A_1 = \begin{pmatrix} T_1 & U_1 \\ 0_{1,n} & \alpha_1 \end{pmatrix}, \quad A_2 = \begin{pmatrix} T_2 & U_2 \\ 0_{1,n} & \alpha_2 \end{pmatrix},$$

where T_1 and T_2 are $n \times n$ upper triangular matrices, U_1, U_2 are $n \times 1$ matrices and $\alpha_1, \alpha_2 \in \mathbb{R}$, then

$$A_1A_2 = \begin{pmatrix} T_1 & U_1 \\ 0_{1,n} & \alpha_1 \end{pmatrix} \begin{pmatrix} T_2 & U_2 \\ 0_{1,n} & \alpha_2 \end{pmatrix} = \begin{pmatrix} T_1T_2 & T_1U_2 + \alpha_2U_1 \\ 0_{1,n} & \alpha_1\alpha_2 \end{pmatrix},$$

by the induction hypothesis T_1T_2 is upper triangular, so A_1A_2 is upper triangular.

If A_1 and A_2 have positive diagonal entries, then $\alpha_1, \alpha_2 > 0$ and the diagonal entries of T_1 and T_2 are positive, so by the induction hypothesis, T_1T_2 has positive diagonal entries. Since in this case $\alpha_1\alpha_2 > 0$, the diagonal entries of A_1A_2 are also positive.

(4) Now assume that $Q_1R_1 = Q_2R_2$, where R_1 and R_2 are upper triangular with positive diagonal entries and Q_1, Q_2 are orthogonal. By (1), as R_1 and R_2 are upper triangular with nonzero diagonal entries, R_1 and R_2 are invertible. From $Q_1R_1 = Q_2R_2$ we deduce that

$$R_2 R_1^{-1} = Q_2^{\top} Q_1.$$

Now from (1), as R_1 is upper triangular with positive diagonal entries, R_1 is invertible and R_1^{-1} is also upper triangular with positive diagonal entries, and thus by (3), $R_2R_1^{-1}$ is upper triangular with positive diagonal entries. On the other hand, $Q_2^{\top}Q_1 = R_2R_1^{-1}$ is orthogonal and upper triangular, so by (2), $Q_2^{\top}Q_1$ is a diagonal matrix. Furthermore, since $Q_2^{\top}Q_1 = R_2R_1^{-1}$ has positive entries and as the entries in $Q_2^{\top}Q_1$ are ± 1 , we must have $Q_2^{\top}Q_1 = I$ and so

$$Q_1 = Q_2,$$

from which we deduce that $R_1 = R_2$ (since $Q_2^{\top}Q_1 = R_2R_1^{-1}$ and $Q_1 = Q_2$ implies that $R_2R_1^{-1} = I$).

Problem 4: 25 points total

Let $\varphi: E \times E \to \mathbb{R}$ be a bilinear form on a real vector space E of finite dimension n. Given any basis (e_1, \ldots, e_n) of E, let $A = (a_{ij})$ be the matrix defined such that

$$a_{ij} = \varphi(e_i, e_j),$$

 $1 \leq i, j \leq n$. We call A the matrix of φ w.r.t. the basis (e_1, \ldots, e_n) .

(1) (5 points) For any two vectors x and y, if X and Y denote the column vectors of coordinates of x and y w.r.t. the basis (e_1, \ldots, e_n) , prove that

$$\varphi(x,y) = X^{\mathrm{T}}AY.$$

- (2) (5 points) Recall that A is a symmetric matrix if $A = A^{T}$. Prove that φ is symmetric if A is a symmetric matrix.
- (3) (5 points) If (f_1, \ldots, f_n) is another basis of E and P is the change of basis matrix from (e_1, \ldots, e_n) to (f_1, \ldots, f_n) , prove that the matrix of φ w.r.t. the basis (f_1, \ldots, f_n) is

$$P^{\mathrm{T}}AP$$
.

The common rank of all matrices representing φ is called the rank of φ .

Solution. If we write $x = \sum_{i=1}^{n} x_i e_i$ and $y = \sum_{i=1}^{n} y_i e_i$, by bilinearity, we have

$$\varphi(x,y) = \varphi\left(\sum_{i=1}^{n} x_i e_i, \sum_{j=1}^{n} y_j e_j\right)$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} x_i \varphi(e_i, e_j) y_j$$
$$= X^{\top} A Y,$$

with $A = (\varphi(e_i, e_j))$, and where X and Y denote the column vectors of coordinates of x and y w.r.t. the basis (e_1, \ldots, e_n) .

- (b) If $A = (\varphi(e_i, e_j))$ is a symmetric matrix, since $\varphi(x, y)$ and $\varphi(y, x)$ are scalars, we have $\varphi(y, x) = Y^{\top} A X = (Y^{\top} A X)^{\top} = X^{\top} A^{\top} Y = X^{\top} A Y = \varphi(x, y).$
- (c) If P is the change of basis matrix from (e_1, \ldots, e_n) to (f_1, \ldots, f_n) , we know that

$$X = PX', \quad Y = PY',$$

where X, Y are the coordinates of x and y w.r.t. the basis (e_1, \ldots, e_n) , and X', Y' are the coordinates of x and y w.r.t. the basis (f_1, \ldots, f_n) . Then,

$$\varphi(x,y) = X^{\top}AY = (PX')^{\top}APY' = X'^{\top}P^{\top}APY',$$

which shows that the matrix of φ w.r.t the basis (f_1, \ldots, f_n) is

$$P^{\top}AP$$
.

Since P is invertible, all these matrices have the same rank.

Total: 60 points