09/05/2018

TP n°3 : Frottement d'un pavé sur un plan

1/ Indiquer les conditions que doivent respecter les différents paramètres pour que la relation suivante soit possible :

$$\frac{m}{M} \ge \frac{\sin \varphi}{\cos(\alpha - \varphi)}$$
$$\cos(\alpha - \varphi) \ne 0$$
$$\alpha - \varphi \ne \frac{\pi}{2}$$

2/ Relever les valeurs de m nécessaires à mettre le corps (S) en mouvement pour différentes valeurs de α compatibles avec l'équation $y'' = -x'' \cos \alpha$

○ Pour une distance O₁B de 45 cm:

$$\tan \alpha = \frac{O_1 E}{O_1 B}$$

$$\alpha = \arctan \frac{38}{45}$$

$$\alpha = 40.2^{\circ}$$

Pour $lpha=40.2^\circ$, la masse nécessaire pour déplacer le corps est de m = 55g

○ Pour une distance O₁B de 50 cm :

$$\tan \alpha = \frac{O_1 E}{O_1 B}$$
$$\alpha = \arctan \frac{38}{50}$$

$$\alpha = 37.2^{\circ}$$

Pour $\alpha=37.2^{\circ}$, la masse nécessaire pour déplacer le corps est de m = 52g

o Pour une distance O₁B de 55 cm :

$$\tan \alpha = \frac{O_1 E}{O_1 B}$$

$$\alpha = \arctan \frac{38}{55}$$

$$\alpha = 34.6^{\circ}$$

Pour $\alpha=34.6^{\circ}$, la masse nécessaire pour déplacer le corps est de m = 50g

o Pour une distance O₁B de 60 cm :

$$\tan \alpha = \frac{O_1 E}{O_1 B}$$

$$\alpha = \arctan \frac{38}{60}$$

$$\alpha = 32.3^{\circ}$$

Pour $\alpha=32.3^{\circ}$, la masse nécessaire pour déplacer le corps est de m = 50g

 \circ Pour une distance O_1B de 65 cm :

$$\tan \alpha = \frac{O_1 E}{O_1 B}$$

$$\alpha = \arctan \frac{38}{65}$$

$$\alpha = 30.3^{\circ}$$

Pour $\alpha=30.3^{\circ}$, la masse nécessaire pour déplacer le corps est de m = 47g

3/ Calculer f de $f = \frac{m\cos\alpha}{M - m\sin\alpha}$ pour chaque série de mesure et donner la valeur moyenne de f : f_{moy}

Déterminer l'ordre de grandeur de l'incertitude sur la valeur de f.

1^{er} mesure :
$$f = \frac{m\cos\alpha}{M - m\sin\alpha} = \frac{55\cos(40.2)}{152 - 55\sin(40.2)} = 0.36$$

$$2^{\rm ème}$$
 mesure : $f = \frac{m\cos\alpha}{M - m\sin\alpha} = \frac{52\cos(37.2)}{152 - 52\sin(37.2)} = 0.34$

$$3^{\text{ème}}$$
 mesure : $f = \frac{m\cos\alpha}{M - m\sin\alpha} = \frac{50\cos(34.6)}{152 - 50\sin(34.6)} = 0.33$

4^{ème} mesure :
$$f = \frac{m\cos\alpha}{M - m\sin\alpha} = \frac{50\cos(32.3)}{152 - 50\sin(32.3)} = 0.34$$

5^{ème} mesure :
$$f = \frac{m\cos\alpha}{M - m\sin\alpha} = \frac{47\cos(30.3)}{152 - 47\sin(30.3)} = 0.32$$

- ⇒ Coefficient de frottement théorique = 0.3
- ⇒ Coefficient de frottement expérimentale moyen : 0,3325

Incertitude =
$$\left| \frac{f_{th\acute{e}o} - f_{exp}}{f_{th\acute{e}o}} \right| = \left| \frac{0.3325 - 0.3}{0.3} \right| = 0.108$$

Soit environ 10% d'incertitude qui sont dû au matériel comme par exemple la piste de glissement qui n'est pas forcément très lisse.

4/ Représenter graphiquement f en fonction de m. Placer également f_{moy}

Distance O ₁ B(cm)	Angle α (°)	masse(g)	Coefficient f	f moy
45	40,2	55	0,36	0,3325
50	37,2	52	0,34	0,3325
55	34,6	50	0,33	0,3325
60	32,3	50	0,34	0,3325
65	30,3	47	0,32	0,3325

5/ Déterminer la valeur de f obtenue par la méthode des moindres carrés :

f=

$$\cos^2(40,2) + \cos^2(37,2) + \cos^2(34,6) + \cos^2(32,3) + \cos^2(30,3)$$

$$\frac{\cos(40,2) + \cos(37,2)}{55} + \frac{\cos(37,2)}{55} + \frac{\cos(34,6)}{55} + \frac{\cos(32,3)}{55} + \frac{\cos(32,3)}{55} + \frac{\cos(30,3)}{55} - (\sin(40,2)\cos(40,2) + \sin(37,2)\cos(37,2) + \sin(34,6)\cos(34,6) + \sin(32,3)\cos(32,3) + \sin(30,3)\cos(30,3)$$

$$f = \frac{0,58 + 0,63 + 0,68 + 0,72 + 0,75}{152(0,014 + 0,015 + 0,017 + 0,017 + 0,018) - 2,33}$$

$$f = \frac{3,36}{9,982} = 0,34$$