Aufgabe:	
Sei V ein K-V. R mit Basis fuzz, un].	
Sei wi:= v1++ v; (i=1,, n).	
Zeigen Sie, dass {w,, wn} eine Basis von Vist.	
Lösung:	
Seien 1,, In & K und gelte 1, w, + + In w = 0. Dann gilt:	
$\lambda_1 \cdot v_1 + \lambda_2 \cdot (v_1 + v_2) + + \lambda_n \cdot (v_1 + + v_n) = 0$	
$= > (\lambda_{1} + + \lambda_{n}) \cdot v_{1} + (\lambda_{2} + + \lambda_{n}) \cdot v_{2} + + \lambda_{n} \cdot v_{n} = 0$	
(C(E.	
$=>$ $1_1 + 1_2 + + 1_n = 0$ Sind l.u	
$\lambda_2 + + \lambda_{L_1} = 0$	
$J_{\nu-1}+J_{\nu}=0$	
$\lambda_n = O$	
$\Rightarrow \lambda_{1} = 0, \ldots, \lambda_{1} = 0$	
=> {w,, wu} ist l.u.	
	1
Wegen dim(V) = n, folst bereits, dass fun,,und eine Basis von Vist.	_


```
Sei K ein Körper, V ein endlich erzeugter K-Vektorraum, und
U, W \subseteq V Unteräume. Beweise die Dimensionsformel
                          \dim_K(U+W) = \dim_K(U) + \dim_K(W) - \dim_K(U \cap W).
Hinweis: Sei v_1, \ldots, v_n eine Basis von U \cap W. Mit Hilfe des Basisergänzungsat-
zes kann man dies zu einer Basis von U und auch zu einer Basis von W fortsetzen.
Sei vy, we eine Basis von Un W.
Nach dem Basisergänzungssatz lässt sich (vannur) zu einer Basis (vannur, uannum) von U
einer Basis (varing var, war, war) von Wergänzen.
Wir zeigen, dass (un, ..., un, un, un, un, un, uk) eine Basis von U+W ist.
Dann gift: dim(U+W) = n+m+k = (n+m) + (n+k) - n = dim(U) + dim(W) - dim(UnW).
 · (u, ..., un, un, ..., un, un, ..., uk) ist ein Erz. Syst. von 4+W:
        Sei HIWE U+W mit HEW, WEW.
        u + u = spantun, un, un, un, um ) = spantun, un, un, un, un, un, un wx }
        WEW = Span { Valunta, walling } & span { valunta, valunta
        => n+w e span { v1,...,vn, n1,...,nm, w1,...,wk}
      (u, ..., v, u, ..., u, ..., u, ) ist l.a.:
        22. 42+... + 20. 44 + 42. 42+... + Am. 4m + 42. 42+... + 44. 44 = 0
                                                                                                                                                                       (ĸ)
        Setze v = 12 vyt ... + 20 vut my cyt ... + mm cum
        Dannist well and -v = m. w.t..t mk. wk & W
                                                                                                                                         => vellaW
                       v = 22 · v2 + ... + 24 · v2 mit 22 ... 24 e K.
        Ans der Eindentigkeit der Linearkombinationen folgt: Mg = 0, ..., Am = 0
                      21. v1+...+ 20. va+ m' w1+...+ mk. wx = 0
        Da (v1, , vn, w, , wx) eine Basis von W und damit l.u. ist folgt: 1, = 0, ..., 1n = 0, ..., 2x = 0.
```

Aufgabe Sei K ein Körper und V ein K-Vektorraum mit einer K-Basis v_1, \ldots, v_n . Es sei $k \subseteq K$ ein Unterkörper¹, und es sei a_1, \ldots, a_m eine k-Basis von K

- a) Zeige, dass die Produkte a_iv_j (für $1\leq i\leq m,\, 1\leq j\leq n$) eine Basis von V als k-Vektorraum bilden.
- b) Welcher Zusammenhang besteht zwischen $\dim_K(V)$, $\dim_k(V)$ und $\dim_k(K)$?
- (a) · {a;·v; | 1 = i c m, 1 = j < n} ist ein Erz. Syst. von V als K-V.R.

Sei ve V. Da va,...ven eine Basis von V als K-V.R. kilden silt:

32,..., 2n EK: v = 22. c2+...+ 2n. ca

Da an,..., am eine K-Basis von Kist, gilt:

 $\lambda_{j} = \sum_{i=1}^{m} \lambda_{ij} \cdot \alpha_{i}$ mit $\lambda_{ij} \in K$, $1 \le j \le n$, $1 \le i \le m$

· { a; v; | 1 = i cm, 1 = j c n } ist l.a. in V als k-V.R.

Seien lijek (1 = i = m, 1 = j = n) und gelte:

$$\sum_{i=1}^{n} \sum_{j=1}^{m} \chi_{i,j} \cdot \alpha_{i} \cdot \alpha_{j} = 0$$

$$\Rightarrow \sum_{j=1}^{n} \left(\sum_{i=1}^{m} \mathcal{I}_{i,j} \cdot \alpha_{i} \right) \cdot \sigma_{j} = 0$$

Da v1,..., va eine K-Basis von Vist, silt

$$\sum_{i=1}^{m} \underbrace{\lambda_{ij} \cdot a_{i}}_{\leq k} = 0 \quad \forall j=1,...,n$$

Da an,..., am eine K-Basis von Kist, silt

(b) Nach (a) gilt: dimk(V) = n·m = dimk(V)·dimk(K)

Aufgabe Seien $a_0, ..., a_n \in \mathbb{R}$ mit $a_i \neq a_j$ für alle $i \neq j$. Wir definieren $V_n := \{ f \in \mathbb{R}[x] \mid \deg f \leq n \}$. Dies ist ein (n+1)-dimensionaler \mathbb{R} -Vektorraum mit Basis x^i für i = 0, ..., n.

In dieser Aufgabe dürfen Sie folgende Aussage nutzen: Falls $f \in V_n$ (n+1) verschiedene reelle Nullstellen hat, dann f=0.

a) Sei

$$E_i(x) := \prod_{j \neq i} \frac{x - a_j}{a_i - a_j} \qquad (0 \le i \le n).$$

Zeige: $\forall f \in V_n \text{ gilt } f = \sum_{i=0}^n f(a_i) E_i$.

b) Zeige: $E_0, ..., E_n$ ist eine Basis von V_n .

c) Zeige: Für alle $b_0, ..., b_n \in \mathbb{R}$ existiert es eindeutiges $f \in V_n$ mit $f(a_i) = b_i$ für alle $0 \le i \le n$.

$$E_{i}(x) = \prod_{j \neq i} \frac{x - \alpha_{j}}{\alpha_{i} - \alpha_{j}} \quad (0 \le i \le n)$$

Es gilt:

(2)
$$E_{i}(a_{i}) = \prod_{j \neq i} \frac{a_{i} - a_{j}}{a_{i} - a_{j}} = 1$$

$$E_{i}(a_{K}) = \prod_{j \neq i} \frac{a_{K} - a_{j}}{a_{i} - a_{j}} = 0$$
, $K \neq i$ (Für $j = K \neq i$ ist $\frac{a_{K} - a_{K}}{a_{i}} = 0$)

(a)
$$a.a.$$
 $\forall f \in V_n : f = \sum_{i=0}^n f(a_i) \cdot E_i$

Sei
$$f \in V_n$$
. Sei $g := f - \sum_{i=0}^n f(a_i) \cdot E_i \in V_n$. Dann gilt :

$$g(a_{K}) = f(a_{K}) - \sum_{i=0}^{n} f(a_{i}) \cdot \underbrace{E_{i}(a_{K})}_{= S_{iK}} = f(a_{K}) - f(a_{K}) \cdot \underbrace{S_{KK}}_{= 2} = 0$$
, $K = 0, ..., n$

=>
$$5 \in V_n$$
 hat $n+1$ Nullstellen => $5 = 0$ => $f = \sum_{i=0}^{n} f(a_i) \cdot E_i$

Nach (a) gilt:
$$\forall l \in V_n$$
: $f = \sum_{i=0}^n \underbrace{f(a_i)}_{=: A_i \in K} \in \text{span } E_0, ..., E_n$

Existenz:

Setze
$$f:=\sum_{i=0}^{n} \ell_{i}$$
. $E_{i} \in V_{n}$. Dany gift:

$$f(a_{K}) = \sum_{i=0}^{n} \ell_{i} \cdot \underbrace{E_{i}(a_{K})}_{=S_{iK}} = \ell_{K} \cdot \underbrace{S_{KK}}_{=1} = \ell_{K} , \quad K = 0,...,n$$

Eindentigneit:

$$f = \sum_{i=0}^{n} f(a_i) \cdot E_i = \sum_{i=0}^{n} \ell_i \cdot E_i$$