CSE 4283 / 6283 Software Testing and QA

Dr. Tanmay Bhowmik tbhowmik@cse.msstate.edu

Special thanks to Dr. Nan Niu & Dr. Byron Williams

Agenda

This Class:

Course Orientation SE Recap

Next Class:

Introduction to Testing

About the Instructor

Tanmay Bhowmik

- Assistant Prof. Dept. of CSE, MSU, 2016 present
- Assistant Prof. of CS, Northwest Missouri State University, 2015 16
- PhD and MS in Computer Science, MSU, 2008 15
- BS in CSE, NIT Durgapur, West Bengal, India, 2003 07
- Professional software development at nSPARC, MSU, 2012 14
- From Bangladesh
- Research interest
 - Software Engineering
 - · Requirements engineering, secure software engineering, software maintenance
- How to reach
 - Office hours: T & R 9:30am 10:30am
 - Other times by appointment
- Hobby
 - Travelling, watching documentary, reading, cooking

Teaching Style?

- Interactive
 - Lecturing alone doesn't work well
 - Need feedback both positive and negative
 - Need your participation, and YES, that helps in a BIG way!

About This Course

- Get to know the discipline of software quality
- Prerequisite
 - CSE 4214/6214 (Intro to Software Engineering)
 - CSE2383 (data structures & analysis of algorithms)
 - Talk to the instructor if your case is special
- Regularly check course website for updates
- Class
 - Twice a week: T & R 2:00pm-3:15pm, HILBUN 350
- Textbook
 - Jeff Tian, Software Quality Engineering, 2005
 - Paul C. Jorgensen, Software Testing: A Craftsman's Approach, 4th edition

Course Goals

- Learn the basics of software quality
- Learn various testing techniques
- Learn other QA techniques than testing
- Get ready for a software testing or QA position
- Get ready to do SE research
 - For graduate and honors students
- Learn to become a (software) professional
- Improve the skills
 - Communication, time management, using testing tools, etc.

Topics (subject to change WITH notice)

- Overview and Basics
 - Software, Quality, QA, Quality Engineering, etc.
- Software Testing
 - Test Activities, Coverage and Usage Testing, Boundary Testing, Finite State Machine, Control Flow, etc.
- QA beyond Testing
 - Defect Prevention, Software Inspection, Formal Verification, Fault Tolerance, etc.
- Quantifiable Quality Improvement
 - Feedback, Measurements, Risk Management, Reliability, etc.

Grading

Grading Scale (FIRM)	Grading Activities
89.50% - 100% A	Exams: 45% (1 midterm, and 1 optional final)
79.50% - 89.49% B	Assignment I: 5%
69.50% - 79.49% C	Assignment II: 15%
59.50% - 69.49% D	Assignment III: 15%
0% - 59.49% F	Assignment IV: 10%
	Quizzes: 10%

How to succeed

- Do your homework (also, class reviews & readings)
- Take the exams, quizzes, and assignments very seriously
- Participate in the class
 - Attendance is mandatory
 - Take part in discussion
- Be fair and supportive to your colleagues

Grading

Grading Scale (FIRM)	Grading Activities
89.50% - 100% A	Exams: 45% (1 midterm, and 1 optional final)
79.50% - 89.49% B	Assignment I: 5%
69.50% - 79.49% C	Assignment II: 15%
59.50% - 69.49% D	Assignment III: 15%
0% - 59.49% F	Assignment IV: 10%
	Quizzes: 10%

How to succeed

- Do your homework (also, class reviews & readings)
- Take the exams, quizzes, and assignments very seriously
- Participate in the class
 - Attendance is mandatory
 - Take part in discussion
- Be fair and supportive to your colleagues

Graduate and Honors Credit

- Graduate Students
 - Need to write a term paper
 - Will comprise 25% of the final grade
- Honors Students
 - Will comprise 15% of the final grade
- Tentative deadlines are given in the course calendar

Course Policies

- Assignment Deadlines
- Attendance, Unexcused absence
- Late submission and re-grading
- Communication policy
 - Emails and course announcements
- Classroom policy
 - Mute laptops & cell phones, but be out loud when speaking
- Academic honesty

Software Engineering Recap

SE Reviews (Some Questions)

- Why do we call it Software "Engineering" not "Manufacturing"?
- Why do we engineer software?
 - To solve customer's problem
 - To discover the real needs & adjust the expectations
 - To produce quality product within budget and schedule
 - "software crisis" (early days of computing)
 - To show/demonstrate/prove the product (software) is indeed high quality
 - Does what it is supposed to do
 - Does it fast, securely, reliably...

What's a "problem"?

- Why do we engineer software?
 - To solve customer's problem via software-intensive systems
 - To produce quality software within budget and schedule
 - To show/demonstrate/prove the software is indeed high quality

A problem is a <u>difference</u>

between things as desired and things as perceived

Software Engineer: Agent of Change

Stakeholders

- The holders of the bets in a gambling game
- Those who have a stake in the change being considered & who stand to gain or lose from the change

Source: Loucopoulos & Karakostas, 1995, p73

But software changes the world...

SE Reviews (3 Questions)

- Q1: Why do we engineer software?
 - deliver quality software
- Q2: How do we achieve quality software (product)?
 - Using systematic, disciplined and quantifiable approach
 - In other words: by following a process
 - "software engineering" (coined in 1968)
- Q3: What are process (lifecycle) models?
 - (What role do "testing & QA" play in these models?)

Waterfall Model

A view on development

- A process of stepwise refinement
- Largely a high-level management view

Problems

- Static view of requirements
 - · Ignores volatility
- Lack of user involvement once specification is written
- Unrealistic assumption that customer can state all requirements explicitly
- Doesn't accommodate prototyping, reuse, etc.

Source: Dorfman, 97; Loucopoulos & Karakostas, 95

V – Model

Adapted from: R. Pressman, SE Book (textbook), 2010

COMPUTER SCIENCE AND ENGINEERING

The Spiral Model

Adapted from: *R. Pressman, SE Book, 2010;* Pic. Source: *Internet*

eXtreme Programming (XP)

Summary

- Course Orientation
- SE Recap
 - 3 questions & your views
 - Setting the stage of "quality"
- Homework
 - Study the syllabus carefully
 - Review today's slides
- Next class
 - Introduction to testing

THANK YOU

