Calculators may be used in this examination provided they are <u>not capable</u> of being used to store alphabetical information other than hexadecimal numbers

THE UNIVERSITY OF BIRMINGHAM

THIS PAGE TO BE REPLACED BY OFFICE

06 00000

Cryptography

May 2016 1.5 hours

[Answer ALL questions]

- 1. Let E be a secure block cipher, such as AES. E takes two arguments: a 128-bit key k, and a single 128-bit message m block. It returns a 128-bit ciphertext block c = E(k, m).
 - (a) Explain how to use the secure block cipher E in counter mode (also called CTR mode), in order to securely encrypt a message m that consists of multiple blocks, say m_1, \ldots, m_n . In your answer, you should give the definition of the ciphertext blocks c_1, \ldots, c_n .

[10%]

- (b) Does encryption using a secure block cipher in counter mode guarantee message integrity? Explain your answer. [5%, 10%]
- 2. (a) Explain the concept of message authentication code (MAC). Briefly give an example of how it might be used. [5%]
 - (b) As a reminder, a diagram showing the workings of CBC-MAC over a block cipher E is shown below.

Suppose a message m consists of two blocks m_1 and m_2 . Write down an expression which is the result of computing a CBC-MAC (over the block cipher E and key k) of $m=m_1||m_2$. [10%]

- (c) Again, let m_1, m_2 be message blocks, and suppose the attacker possesses just two message-tag pairs, namely (m_1, t_1) and (m_2, t_2) .
 - (i) Write down t_1 and t_2 in terms of m_1 and m_2 [3%]
 - (ii) Let $m=m_1||(m_2\oplus t_1)$. Write down the tag for m in terms of m_1,m_2 and t_1 .
 - (iii) Explain why this calculation shows that CBC-MAC is not secure without adding further restrictions to how it is used. [4%]

- 3. (a) Explain the concept of semantic security (IND-CPA security) for public key encryption (PKE). Discuss whether a PKE scheme with a deterministic encryption algorithm can be IND-CPA or not. [5%,5%]
 - (b) Let RSA.PKE = (RSA.Kg,RSA.Enc,RSA.Dec) be the (plain) RSA public key encryption scheme. Let (E,D) be an IND-CPA symmetric encryption scheme using a 256-bit long secret key. Let H be a secure hash function, such as SHA-256.
 - (i) Consider RSA.HybPKE = (RSA.Kg,RSA.HybEnc,RSA.HybDec), the combined PKE scheme obtained by defining RSA.HybEnc as follows: RSA.HybEnc(PK, m):
 - ullet Choose a random plaintext R from RSA message space
 - Compute $c_0 = \mathsf{RSA}.\mathsf{Enc}(PK,R)$
 - Compute $c_1 = \mathsf{E}(H(R), m)$
 - Output (c_0, c_1)
 - (ii) Describe the corresponding decryption algorithm RSA.HybDec. [5%]
 - (iii) Is RSA.HybPKE IND-CPA secure in the Random Oracle Model? Discuss your answer. [5%,5%]

- 4. (a) Explain the concept of existential unforgeability for digital signatures. [8%]
 - (b) What is a *public key certificate* and why do we need them? [7%]
 - (c) Let us recall the Schnorr digital signature scheme:
 - $KG(\lambda)$
 - choose a λ bit prime p and a 256-bit prime q, such that q divides p-1 and q is the order of a subgroup $G_q=\langle g\rangle$ of \mathbf{Z}_p^\star
 - a cryptographic hash function $H:\{0,1\}^\star \to \{0,1\}^{256}$ (e.g., SHA-256)
 - Choose a random x from $\{0,\ldots,q-1\}$ (i.e. from \mathbf{Z}_q)
 - Compute $y = g^x \mod p$
 - Publish the public key vk = (p, q, g, y, H)
 - Retain the private key sk = x
 - Sign(sk, M). To sign a bit-string M do:
 - Choose a random r from $\{0, \ldots, q-1\}$
 - Compute $s = H(M||g^r) \mod q$
 - Compute $t = (r + x \cdot s) \mod q$
 - Output signature $\sigma = (s, t)$
 - Verify (vk, σ, m) works as follows:
 - Parse σ as (s,t)
 - Accept the signature if $H(M||q^ty^{-s}) = s$
 - Otherwise reject the signature

Let us argue that randomness re-use while signing is insecure. To see this, show that if the same random $r \in \mathbf{Z}_q$ is used to create a signature (s,t) on a message M, and a signature (s',t') on a message M', then an attacker can recover from these two signatures the signing key x, as long as $M \neq M'$.

[10%]