

Series of waves during dune erosion tests

(Old & new) Delta flume:

- (Almost) prototype scale
- Regular and irregular waves (H_s up to 1.6m / 2.2m)
- Wave generator with reflection compensation
- Measuring frame fixed to mobile carriage

6. Sediment transport

3

Coastal Dynamics 1

Contents

- 1. Introduction
- 2. Large-scale coastal variation
- 3. Oceanic wind waves and tide
- 4. Global wave and tidal environments
- 5. Coastal hydrodynamics
- **6.** Sediment transport (Chapter 6)
- 7. Cross-shore transport and profile development
- 8. Longshore transport and coastline changes
- 9. Coastal inlets and tidal basins
- 10. Coastal protection

6. Sediment transport

Chapter 6 of lecture notes

- A. Introduction
- B. Complexity in predictions
- C. Practical transport modelling
- D. (Critical) bed shear stress
- E. Bed load transport
- F. Suspended load transport
- G. Energetics approach
- H. Discussion

6. Sediment transport

6-A Introduction **Transport definitions** Deposited volume transport (transport $S_{ip,x,y}$ including pores, in-situ) in m³/m/s Volume transport of solid material $(1-p)\frac{\partial z_b}{\partial t} + \frac{\partial S_{ep,x}}{\partial x} + \frac{\partial S_{ep,y}}{\partial y} = 0$ in m³/m/s $p \approx 0.4$ Porosity $\rho_s \approx 2650 \text{ kg/m}^3$ $I_m = (\rho_s - \rho)(1-p)S_{ip}$ Immersed (under water) mass transport in kg/m/s $I = gI_m$ Immersed (under water) weight transport in N/m/s **T**UDelft 6. Sediment transport

6-A Introduction

Sediment transport as the depth-integral of velocity times sediment concentration

$$S_x(t) = \int_{z=0}^{z=h} q(z,t) dz = \int_0^h c(z,t) u(z,t) dz$$

$$u = U + \tilde{u}$$
 and $c = C + \tilde{c}$ time-averaged sediment transport rate $\left\langle S_x \right\rangle$ current-related part $\left\langle S_x \right\rangle$ wave-related part

Sediment transport

Chapter 6 of lecture notes

- A. Introduction
- **B.** Complexity in predictions
- C. Practical transport modelling
- D. (Critical) bed shear stress
- E. Bed load transport
- F. Suspended load transport
- G. Energetics approach
- H. Discussion

TUDelft

6. Sediment transport

5-D Wave skewness and asymmetry

Sediment transport due to wave skewness

- · Wave skewness in shoaling waves
 - higher on-shore velocities at the crest
 - lower off-shore velocities at the trough

Near-bed sediment concentration

$$c_{s}(t) \approx A |\tau_{b}(t)|$$

$$\tau_{b}(t) \approx \rho c_{f,w} |u_{0}(t)| u_{0}(t)$$

$$c_{s}(t) \approx B u_{0}^{2}$$

• Sediment transport $S(t) \approx u_0 c_s \approx B u_0^3$ $\langle S \rangle = B \langle u_0^3 \rangle$

for a sine wave : $\left\langle S\right\rangle =0$ for a positively skewed signal : $\left\langle S\right\rangle >0$

TUDelft 6. Sediment transport 2

6-B Complexity in predictions

Contributing factors:

- Sediment suspension and transport respond non-linearly to the forcing
- · Velocity field in the nearshore is oscillatory
- Vortex shedding due to the existence of bed forms
- Suspension ejection events at flow reversal
- Lagged response to forcing and phase differences in vertical
- Different transport contributions in opposite directions

•

TUDelft

6. Sediment transport

23

6-B Complexity in predictions

In a quasi-steady approach it is assumed that sediment transport reacts instantaneously (immediately) to a change in flow conditions. Such a direct response of the sediment can be expected for:

- 1. Fairly large orbital velocities
- ✓ 2. Relatively coarse sediment
 - 3. Small enough wave periods
 - 4. Abstain
 - Response time of sediment compared to oscillation period
 - Large flow velocities and fine sediment increase response time
 - Rouse number large => quasi-steady

TUDelft

6. Sediment transport

Sediment transport Chapter 6 of lecture notes A. Introduction B. Complexity in predictions C. Practical transport modelling D. (Critical) bed shear stress E. Bed load transport F. Suspended load transport G. Energetics approach H. Discussion

Chapter 6 of lecture notes

- A. Introduction
- B. Complexity in predictions
- C. Practical transport modelling
- D. (Critical) bed shear stress
- E. Bed load transport
- F. Suspended load transport
- G. Energetics approach
- H. Discussion

6. Sediment transport

6-D (Critical) bed shear stress

Forces on grains

$$F_{D,L} \propto \rho u^2 D^2$$
 $F_G \propto (\rho_s - \rho) g D^3$

$$F_{\alpha} \propto (\rho - \rho) g D^3$$

Horizontal, vertical or moment equilibrium

$$(\rho_s - \rho) gD^3 \propto \rho u_{cr}^2 D^2$$
 \leftarrow Critical velocity

$$r_{G}$$

$$(\rho_s - \rho) gD \propto \tau_{b,cr} = \rho u_{*,cr}^2$$

Critical shear stress

Critical Shields parameter

Compare Appendix D: Iribarren and Hudson criterion for stone stability of rubble mound breakwater

TUDelft

6. Sediment transport

6-E Bed load transport

Quasi-steady approach to bed load transport

Assumption:

Instantaneous response to bed shear stress (or free-stream velocity) above a threshold or critical value (initiation of motion)

Dimensionless parameters:

Shields parameter (forcing on the grains)

$$\theta' = \frac{\tau_b'}{(\rho_s - \rho) g D_{50}}$$

Critical Shields parameter θ_{cr} (threshold of motion)

$$\Phi_b(t) = f(\theta'(t), \theta_{cr})$$

Transport parameter

$$\Phi_b(t) = \frac{S_b(t)}{\sqrt{(s-1)gD_{50}^3}}$$

Einstein!

6. Sediment transport

6-E Bed load transport

Time-averaged bed load sediment transport

$$\mathbf{1} \left\langle \Phi_b(t) \right\rangle = \left\langle f(\theta'(t), \theta_{cr}) \right\rangle$$

- Based on water tunnel data
- Shields parameter using quadratic friction law • Including a slope effect
- For instance formulation of Ribberink:

$$\Phi_{b}(t) = \frac{S_{b}(t)}{\sqrt{(s-1)gD_{50}^{3}}} = 9.1 \frac{\beta_{s}}{(1-p)} \left\{ |\theta'(t)| - \theta_{cr} \right\}^{1.8} \frac{\theta'(t)}{|\theta'(t)|}$$

 $2 \left| \left\langle \Phi_b \left(t \right) \right\rangle = f \left(\left\langle \left| \frac{\boldsymbol{\theta}'(t)}{\boldsymbol{\theta}} \right\rangle, \theta_{cr} \right) \right|$ • e.g. using adapted river transport formulas

For instance Bijker formula:

$$S_b = BD_{50} \underbrace{\frac{U}{C} \sqrt{g}}_{\text{current only transports}} \exp \left[\underbrace{\frac{-0.27(s-1)D_{50}\rho g}{\mu \langle |\tau_{cw}| \rangle}}_{\text{sediment load mobilised by}} \right]$$

TUDelft

6. Sediment transport

Chapter 6 of lecture notes

- A. Introduction
- B. Complexity in predictions
- C. Practical transport modelling
- D. (Critical) bed shear stress
- E. Bed load transport
- F. Suspended load transport
- G. Energetics approach
- H. Discussion

6. Sediment transport

53

6-F Suspended load transport

Wave versus current-related suspended sediment transport

$$S_{s}(t) = \int_{z=a}^{h} c(z,t)u(z,t) dz$$

 $u = U + \tilde{u}$ and $c = C + \tilde{c}$

Neglected in the following

Wave-induced:
• Undertow
• Longshore current
• LH streaming

Transport by the oscillatory water motion:
• Short wave asymmetry

Bound long waves

TUDelft

6. Sediment transport

6-F Suspended load transport

Steady sediment mass balance

$$w_s C(z) \downarrow +\varepsilon_s(z) \frac{dC(z)}{dz} \uparrow = 0$$

$$C(z) = \underbrace{C(a)}_{\text{integration constant}} \exp \left[-\underbrace{w_s}^z \frac{dz}{\varepsilon_s(z)} \right]$$

Reference concentration:

- Function of bed shear stress
- Via empirical formulation

Diffusion or mixing coefficient:

- Related to eddy viscosity of the fluid
- Effects of wave boundary layer, mean current, wave breaking)

6. Sediment transport

6-F Suspended load transport

Which of the statements is correct? For small ratios of fall velocity over shear velocity (say smaller than 1), ...

- 1. ... a quasi-steady transport model is appropriate
- 2. ... suspended sediment transport is the dominant mode of transport
 - 3. Abstain

TUDelft

6. Sediment transport

61

Exam questions 22 june 2010

The Rouse number is defined as $\frac{w_s}{\kappa u_*}$ (with w_s is the sediment fall velocity, $\kappa = 0.4$ is the

von Karman constant and u_* is the shear velocity). Note that the shear velocity is related to the bed shear stress through $\tau_b = \rho u_* |u_*|$.

- b. [3] Assume a large Rouse number (say larger than 2.5). What is the dominant transport mode in this case? Explain your answer.
- c. [3] Discuss the validity of the above described quasi-steady approach for small and large Rouse numbers respectively.

TUDelft

6. Sediment transport

Chapter 6 of lecture notes

- A. Introduction
- B. Complexity in predictions
- C. Practical transport modelling
- D. (Critical) bed shear stress
- E. Bed load transport
- F. Suspended load transport
- **G.** Energetics approach
- H. Discussion

6. Sediment transport

64

6-G Energetics approach

Sediment transport proportional to the rate of energy dissipation

- First developed by Bagnold (1963, 1966) for rivers
- Underlying idea:
 - Certain amount of 'work' is required to keep the bed load moving and the suspended load at a certain height above the bed;
 - Fluid acts as a machine expending energy (ability to do work) at a prescribed efficiency rate to offset the work done in transporting sediment
 - Power (work done per unit time) = efficiency factor x dissipated fluid power (rate of energy dissipation)

TUDelft

6. Sediment transport

6-G Energetics approach
Down-slope bed load in uni-directional flow

Immersed weight bed load transport:

$$I_b = WU_b \cos \alpha$$

Frictional resistance for downslope transport:

$$W\left(\mu\cos\alpha - \sin\alpha\right) = W\cos\alpha\left(\tan\varphi - \tan\alpha\right)$$

$$W\sin\alpha$$

$$W\cos\alpha$$
Work done per unit time (power):

$$W\cos\alpha\left(\tan\varphi - \tan\alpha\right)U_b = I_b\left(\tan\varphi - \tan\alpha\right) = \varepsilon_b\omega$$

$$I_b = \varepsilon_b\frac{\omega}{(\tan\varphi - \tan\alpha)}$$
dissipated fluid power / rate of energy dissipation

6-G Energetics approach

Bailard's energetics formulation has components in direction of velocity and downslope

For slope aligned with velocity vector:

$$S(t) = \underbrace{C_1 u(t) |u(t)|^{n-1}}_{\text{quasi-steady response to time-varying flow}} + \underbrace{C_2 |u(t)|^m \tan \alpha}_{\text{response to downslope gravity force}}$$

- Bed load: n = m = 3
- Suspended load: n=4; m=5

Time-averaging:

- $\langle S_b \rangle$ is proportional to $\langle u | u^2 | \rangle$ and $\langle |u^3| \rangle$
- $\langle S_s \rangle$ is proportional to $\langle u | u^3 | \rangle$ and $\langle |u^5| \rangle$

6. Sediment transport

68

Sediment transport

Chapter 6 of lecture notes

- A. Introduction
- B. Complexity in predictions
- C. Practical transport modelling
- D. (Critical) bed shear stress
- E. Bed load transport
- F. Suspended load transport
- G. Energetics approach
- H. Discussion

TUDelft

6. Sediment transport

6-H Discussion

Present stage of research

- Quantitative transport descriptions still largely empirical
- Often large discrepancies with measurements and large differences between models (especially for rippled beds)
- More complex models not necessarily better than simpler models (e.g. energetics approach)
- Important part of coastal engineering practice: how to deal with uncertainties?

6-H Discussion

Dealing with uncertainty in morphodynamic computations

- Absolute predictions require calibration:
 - For the site and conditions under consideration
 - Prerequisite is correct qualitative behaviour
 - The more complex the model, the more calibration is required and the smaller the application range (data restrictions)
- What-if scenario's in morphodynamics modelling

6. Sediment transport

73

6-H Discussion

Energetics approach at several places in lecture notes:

- Section 7.5:
 - Decomposition of cross-shore transport into components due to mean flow, short wave skewness and bound long waves
 - Equilibrium shoreface shapes by balancing onshore and offshore transport
- Section 8.2.3:
 - Bulk longshore transport by applying the energetics concept to the littoral zone
- Section 9.7.2:
 - Decomposition of tide-averaged sediment transport into contributions of residual currents, M2, M4 and M6 tidal constituents

6. Sediment transport