EPITECH PROBABILITES ET STATISTIQUES

Année 2011-2012 Mini-projet 203 poisson

1 Objectif

Un chercheur s'intéresse aux lois de probabilité discrètes célèbres : la loi binomiale et la loi de poisson. Il souhaiterait en avoir une représentation graphique. D'autre part, il a entendu dire que la loi de Poisson peut, sous certaines conditions, constituer une bonne approximation de la loi binomiale. Il voudrait obtenir la connaissance de ces conditions, pour peut être alors essayer de prouver cette convergence de la loi binomiale vers la loi de Poisson graphiquement.

C'est le logiciel de tracé de ces lois et la preuve graphique de la convergence des lois que nous vous demandons d'établir.

2 Le graphique

Les graphiques sont réduits au minimum. Les logiciels de tracé automatique de courbes sont interdits. Chaque graphique contient :

- le tracé du rectangle graphique correspondant à la fenêtre de visualisation.
- on ne souhaite pas le tracé des axes de coordonnées.
- en légende, le minimum et le maximum des valeurs de la fenêtre en vertical et horizontal,
- en légende, le nom des lois tracées et la valeur des paramètres du graphique.

Les fonctions sont représentées par une série de traits verticaux (k,0) à (k,p(k)). Adopter les couleurs suivantes afin de permettre de distinguer plus facilement les lois :

vert Loi binomiale

rouge Loi de Poisson

3 Le logiciel

Répertoire de rendu : $\tilde{/}../\mathrm{rendu/math/203poisson/}$

Nom de l'exécutable : 203 poisson

4 Les options

Option 1 : calcul de C_n^k

En entrée, les paramètres entiers n et k.

n peut avoir des valeurs comprises entre 0 et 100.

k peut avoir des valeurs comprises entre 0 et n.

En sortie, la valeur de C_n^k .

Pour calculer ces valeurs, nous vous conseillons d'utiliser les nombres flottants avec le maximum de précision possible (type double en langage C). Ne pas oublier toutefois que le résultat est un entier.

Remarque : il est interdit d'utiliser la bibliothèque des grands nombres. Exemple de lancement :

> 203poisson 1 100 0

Option 2: loi binomiale

En entrée, les arguments de la loi binomiale : entier n et flottant p.

En sortie, on visualise la loi de probabilité discrète binomiale.

Fenêtre graphique choisie : [-1, n+1, 0, 1].

Exemple de lancement :

> 203poisson 2 10 0.5

Option 3: loi de Poisson

En entrée, les arguments de la loi de Poisson : flottant λ .

En sortie, on visualise la loi de probabilité discrète de Poisson.

Fenêtre graphique choisie : [-1, 100, 0, 1].

Exemple de lancement :

> 203poisson 3 10

Option 4 : similitude loi binomiale et loi de Poisson

Vous choisirez les paramètres des lois n, p et λ tels qu'il y ait une bonne concordance entre les graphes des lois binomiale et de Poisson.

Pas d'entrée.

En sortie, on visualise la loi de probabilité discrète de la fonction binomiale et de la loi de Poisson associée. On prévoit un décalage des traits verticaux représentant les lois afin de pouvoir comparer les valeurs obtenues. D'autre part, la légende du graphique doit mentionner les valeurs des paramètres de lois choisis.

Fenêtre graphique choisie : [-1, n+1, 0, 1].

Exemple de lancement :

> 203poisson 4

5 Questions

- 1° Qu'est-ce qu'une épreuve de Bernouilli ?
- 2° Quel est le lien entre l'épreuve de Bernouilli et la loi binomiale?
- 3° La loi binomiale correspond au cas du tirage avec ou sans remise?
- 4° Donner un exemple d'expérience aléatoire à la quelle s'applique la loi binomiale.
- 5° Donner un exemple d'expérience aléatoire où s'applique la loi de Poisson.

6 Exemples

Option 1

Voici quelques valeurs qui peuvent vous permettre de tester l'option 1 de votre logiciel.

Com	.bir	aasc	ons

Combina	k=1	k=2	k=3	k=4	k=5	k=6	k=7
n=5	5	10	10	5	1		
n=10	10	45	120	210	252	210	120
n=15	15	105	455	1365	3003	5005	6435
n=20	20	190	1140	4845	15504	38760	77520
n=25	25	300	2300	12650	53130	177100	480700
n=30	30	435	4060	27405	142506	593775	2035800
n=35	35	595	6545	52360	324632	1623160	6724520
n=40	40	780	9880	91390	658008	3838380	18643560
n=45	45	990	14190	148995	1221759	8145060	45379620
n = 50	50	1225	19600	230300	2118760	15890700	99884400
n=55	55	1485	26235	341055	3478761	28989675	202927725
n = 60	60	1770	34220	487635	5461512	50063860	386206920
n=65	65	2080	43680	677040	8259888	82598880	696190560
n = 70	70	2415	54740	916895	12103014	131115985	1198774720
n=75	75	2775	67525	1215450	17259390	201359550	1984829850
n=80	80	3160	82160	1581580	24040016	300500200	3176716400
n=85	85	3570	98770	2024785	32801517	437353560	4935847320
n=90	90	4005	117480	2555190	43949268	622614630	7471375560
n=95	95	4465	138415	3183545	57940519	869107785	11050084695
n=100	100	4950	161700	3921225	75287520	1192052400	16007560800

Option 2 et 3

Fig. 1 – Binomiale n=20 p=0.5

Fig. 2 – Poisson λ =10