

Stochastic Processes for the Masses

Inspiration for an interactive introductory lecture suitable for open days, non-specialists and beyond

INTRODUCTION

- Need to inspire students
 - Interactivity, real-world examples
- Students can have limited maths background
 - Open days, service courses
- I'd like to provide an example of a session I've run

SCENARIO

- Spread of misinformation online
 - A problem for social media companies? Governments?

https://wiki.tfes.org/images/3/3f/Flat Earth Society Logo.png

MODELLING

- Sensible
 - Not exposed to misinformation
- Inspired
 - Exposed to misinformation
 - •Inspired to spread the message
- Resigned
 - Resigned to the new "truth"
 - Not actively spreading

Sensible

Inspired

Resigned

EXPLORATION

- t = 0
 - 1 inspired
- t = 1
 - Inspired converts 1 Sensible to Inspired with probability p = 3/4
 - "Old" Inspired becomes Resigned
- t = 2
 - Repeat

t=0

t=2, prob=1-p

t=3

VISUALISATION

Simple spread, p=0.9

SOLUTION

- X: Final number resigned
- $P(X = x) = p^{x-1}(1-p)$
 - x = 1, 2, 3, ...
- • $X \sim Geometric(p)$
 - $\bullet mean(X) = \frac{1}{1-p}$
- Spread will always end

COMPLICATION + EXPLORATION

- t = 0
 - 1 inspired
- t = 1
 - - Each Inspired converts 1 Sensible to Inspired with probability $p_1 = \frac{1}{4}$,
 - 2 Sensible to Inspired with $p_2 = \frac{1}{4}$
 - "Old" Inspired become Resigned
- t = 2
 - Repeat (then try $p_2 = 1/2$)

t=0

t=1, prob=p_1

t=2, prob=p_2

VISUALISATION

DISCUSSION

When do we lose control?

•
$$p_1 + p_2 > \frac{1}{2}$$
?

•
$$p_1 + p_2 > \frac{1}{2}$$
?
• No, $p_1 = \frac{3}{4}$, $p_2 = 0$

•
$$p_2 > p_1$$
 ?

■No,
$$p_1 = \frac{1}{100}$$
, $p_2 = \frac{2}{100}$

• Perhaps consider $p_1 = 0$

$$p_2 > ???$$

SOLUTION

- Reproduction number, R
 - Average newly Inspired for each previous Inspired

•
$$R = 1 \times p_1 + 2 \times p_2$$

• $p_1 = \frac{1}{4}$, $p_2 = \frac{1}{4}$, $R = \frac{1}{4}$

$$p_1 = \frac{1}{4}, p_2 = \frac{1}{2}, R = \frac{5}{4}$$

• Behaviour change at R=1

REVELATION

Coronavirus: What is the R number and how is it calculated?

© 26 March 2021 · ₱ Comments

How 1,000 cases would increase under different infection rates

How R has changed over time

Upper and lower R estimates, updated weekly since May

Susceptible

Infected

Removed

ILLUMINATION

- Similarities between the spread of misinformation and infectious diseases
- Simple models can lead to complex behaviour
 - Benefits of computer simulations
- Interest in averages
 - Also, reasonable best/worst cases

EXTENSION 1

Total Fertility Rate

 $https://en.wikipedia.org/wiki/File:Total_Fertility_Rate_Map_by_Country.svg$

- Develop stochastic process theory
- Replicate (and extend) computer simulations

Health

Why outbreaks like coronavirus spread exponentially, and how to "flatten the curve"

By Harry Stevens March 14, 2020

Acknowledge contributions of Statistics

SPI-M-O Medium-Term Projections

29th September 2021

Annex: SPI-M-O Vaccine Effectiveness Assumptions

Table 1: Vaccine reduction in risk of hospitalisation or death [3]									
		Imperial [2] (Death)	Imperial [2] (Severe disease)		Warwick [2,5] (Death)	Warwick [2,5] (Hospitalisation)	PHE/ Cambridge [2]	Scottish Government [2]	
Pfizer- BioNTech	1 Dose	85%	85%	75%	90%	90%	78%	80%	
	2 Doses	95%	95%	75%	98%	98%	97%	95%	
Oxford- AstraZeneca	1 Dose	80%	80%	75%	81%	81%	78%	80%	
	2 Doses	95%	90%	75%	95%	94%	97%	95%	
Moderna	1 Dose	85%	85%	75%	90%	90%	78%	80%	
	2 Doses	95%	95%	75%	98%	98%	97%	95%	

Table 2: Vaccine reduction in risk of infection [3]								
		Imperial [2]	Manchester [1]	Warwick [2,5]	PHE/ Cambridge [2]	Scottish Government [2]		
Pfizer-BioNTech	1 Dose	33%	75%	56%	31%	55%		
	2 Doses	85%	75%	80%	80%	75%		
Oxford- AstraZeneca	1 Dose	33%	75%	34%	31%	40%		
	2 Doses	58%	75%	64%	80%	65%		
Moderna	1 Dose	33%	75%	56%	31%	75%		
	2 Doses	85%	75%	80%	80%	85%		

Table 3: Vaccine reduction in onward transmission, in addition to reduction from lower infection risk [3]								
		Imperial [2]	Manchester [4]	Warwick [2,5]	PHE/ Cambridge [2,4]	Scottish Government [2]		
Pfizer-BioNTech	1 Dose	40%	-	45%	-	29%		
	2 Doses	40%	-	45%	-	40%		
Oxford- AstraZeneca	1 Dose	40%	-	45%	-	37%		
	2 Doses	40%	-	45%	-	44%		
Moderna	1 Dose	40%	-	45%	-	29%		
	2 Doses	40%	-	45%	-	40%		

https://www.gov.uk/government/publications/spi-m-o-medium-term-projections-29-september-

Thank you for listening

I'm happy to take questions now, and chat throughout the conference (I'll collect the dice (C))

