Name: 梁中瀚

Student ID: r09922a02

Part 1

Detected corner for 1.png

Detected corner for 2.png

Detected corner for 3.png

Threshold 25 on 2.png

Threshold 50 on 2.png

Threshold 100 on 2.png

三種 threshold 的差異

Threshold 越小回傳的 corner 就越多。

Threshold 從 25 變成 50,比較明顯的變化在背景藍色的波浪。

Threshold 從 50 變成 100,就沒有太多明顯的減少。

比較特別的是飛機上的字體,不管 threshold 設多少,字體的 corner 都會被偵測到,可能是相對較穩定的特徵點。

Part 2

1.png

Cost for each filtered image;

RGB 轉 gray scale 參數	L1 norm 大小
CV2.cvtColor	1207799
0.1,0.0,0.9	1439568
0.2,0.0,0.8	1305961
0.2,0.8,0.0	1393620
0.4,0.0,0.6	1279697
1.0,0.0,0.0	1127913

Original RGB image:

Lowest cost gray scale image:

Lowest cost filtered RGB image:

Highest cost gray scale image:

Highest cost filtered RGB image:

Difference between two gray scale images:

很明顯,l1 norm 數值較小的 gray scale 圖,葉子與背景雜草的差異較大。 但是我其實看不出來 joint bilateral filter 作用過的 RGB 圖片的差別。

2.png

Cost for each filtered image;

RGB 轉 gray scale 參數	L1 norm 大小
CV2.cvtColor	183851
0.1,0.0,0.9	77884
0.2,0.0,0.8	86023
0.2,0.8,0.0	188019
0.4,0.0,0.6	128341
1.0,0.0,0.0	110862

Original RGB image:

Lowest cost gray scale image:

Lowest cost filtered RGB image:

Highest cost gray scale image:

Highest cost filtered RGB image:

Difference between two gray scale images:

最高 cost 的灰階圖,最外層的正方形幾乎變成同一個數值了,用肉眼很難看出區別,相反的,cost 最小的灰階圖就可以用肉眼區分開來。

Cost 最高的灰階圖,橘色跟紫色感覺被 map 到很相近的灰階,所以造成小正方形內的區塊顏色相近,而 cost 最低的灰階圖,雖然能夠將橘色紫色分很開,但是藍色和紫色又非常接近。

How to speed up the implementation of bilateral filter:

先將原圖轉換成(kernel 移動範圍 * kernel size)的矩陣,再把 kernel 也轉換成(1 * kernel size)的向量,這兩個相乘就會是做完 convolution 的結果。所以 for loop 只會出現在建立(kernel 移動範圍 * kernel size)的矩陣的時候。