資料探勘研究與實務 HW01 Decision Tree

Department: IMM, 洪翊誠, ID: 310653005

October 13, 2021

1 HW1 - Decision Tree

資料集在以下網址: https://www.kaggle.com/mylesoneill/game-of-thrones

制式化流程

- 1. 讀取資料透過 pandas 的 dataframe 建立表格
- 2. 透過 info, describe 等最初淺的方式先認識資料的型態數值

```
[1]: import os
  import pandas as pd
  import warnings
  warnings.filterwarnings("ignore")

path = r'E:\Users\User\DataSet_for_Class\DataSet'
  file = 'character-deaths.csv'

df = pd.read_csv(os.path.join(path,file))
  df.head()
```

[1]:				I	Vame	Alle	giances	Death	Year	Воо	k of	Death	\
	0		Addam	Marb	rand	La	nnister		NaN			NaN	
	1	Aegon	Frey (Ji	nglebe	ell)		None	2	299.0			3.0	
	2		Aegon	Targa	ryen	House Ta	rgaryen		NaN			NaN	
	3		Adra	ck Hur	nble	House	Greyjoy	3	300.0			5.0	
	4		Aemon	Costa	ayne	La	nnister		NaN			NaN	
		Death	Chapter	Book	Intro	Chapter	Gender	Nobil	Lity	GoT	CoK	SoS	FfC
	0		NaN			56.0	1		1	1	1	1	1
	1		51.0			49.0	1		1	0	0	1	0
	2		NaN			5.0	1		1	0	0	0	0
	3		20.0			20.0	1		1	0	0	0	0
	4		NaN			NaN	1		1	0	0	1	0

[2]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 917 entries, 0 to 916
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	Name	917 non-null	object
1	Allegiances	917 non-null	object
2	Death Year	305 non-null	float64
3	Book of Death	307 non-null	float64
4	Death Chapter	299 non-null	float64
5	Book Intro Chapter	905 non-null	float64
6	Gender	917 non-null	int64
7	Nobility	917 non-null	int64
8	GoT	917 non-null	int64
9	CoK	917 non-null	int64
10	SoS	917 non-null	int64
11	FfC	917 non-null	int64
12	DwD	917 non-null	int64

dtypes: float64(4), int64(7), object(2)

memory usage: 93.3+ KB

[3]: df.describe()

[3]:

	Danth Vann	D1	LL Daath Ob	D1-	T (1)	\	
	Death Year	Book of Deat		-	Intro Chapte		
count	305.000000	307.00000			905.00000		
mean	299.157377	2.92833		70234	28.86187		
std	0.703483	1.32648		70270	20.16578		
min	297.000000	1.00000		00000	0.00000		
25%	299.000000	2.00000		00000	11.00000		
50%	299.000000	3.00000		00000	27.00000		
75%	300.000000	4.00000	57.0	00000	43.00000	0	
max	300.000000	5.00000	0.08	00000	80.00000	0	
	Gender	Nobility	GoT	CoK	SoS	FfC	\
count	917.000000	917.000000	917.000000	917.000000	917.000000	917.000000	
mean	0.828790	0.468920	0.272628	0.353326	0.424209	0.272628	
std	0.376898	0.499305	0.445554	0.478264	0.494492	0.445554	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
50%	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
75%	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	
max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	
	DwD						
count	917.000000						
mean	0.284624						
std	0.451481						
min	0.000000						
25%	0.000000						
50%	0.000000						
75%	1.000000						
max	1.000000						
	1.500000						

指定 Book of Death 做為目標項,有數值的轉成 1

```
[4]: # Set the target
    Y = df["Book of Death"]
    Y[pd.notna(Y)] = 1
    Y = Y.fillna(0)
    pd.unique(Y), Y.shape
[4]: (array([0., 1.]), (917,))
    2-1 把空值以 0 替代
[5]: df_filled = df.fillna(1)
    # df_filled
    2-2 Choose: Book of Death 將有數值的轉成 1
[6]: df_filled["Book of Death"] = 1
    # df_filled
    2-3 將 Allegiances 轉成 dummy 特徵 (底下有幾種分類就會變成幾個特徵,值是 0 或 1,本來
    的資料集就會再增加約 20 種特徵)
[7]: pd.unique(df["Allegiances"]),len(pd.unique(df["Allegiances"]))
[7]: (array(['Lannister', 'None', 'House Targaryen', 'House Greyjoy',
            'Baratheon', "Night's Watch", 'Arryn', 'House Stark',
            'House Tyrell', 'Tyrell', 'Stark', 'Greyjoy', 'House Lannister',
            'Martell', 'House Martell', 'Wildling', 'Targaryen', 'House Arryn',
            'House Tully', 'Tully', 'House Baratheon'], dtype=object),
     21)
```

删除不該出現在訓練時需要用的資料

[8]: X = df_filled.join(pd.get_dummies(df_filled["Allegiances"]))
del X["Allegiances"], X["Name"], X["Death Chapter"], X["Death Year"]

Total 30 columns

[9]: X.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 917 entries, 0 to 916
Data columns (total 30 columns):

#	Column	Non-Null Count	Dtype
0	Book of Death	917 non-null	int64
1	Book Intro Chapter	917 non-null	float64
2	Gender	917 non-null	int64
3	Nobility	917 non-null	int64
4	GoT	917 non-null	int64
5	СоК	917 non-null	int64
6	SoS	917 non-null	int64
7	FfC	917 non-null	int64
8	DwD	917 non-null	int64
9	Arryn	917 non-null	uint8
10	Baratheon	917 non-null	uint8
11	Greyjoy	917 non-null	uint8
12	House Arryn	917 non-null	uint8
13	House Baratheon	917 non-null	uint8
14	House Greyjoy	917 non-null	uint8
15	House Lannister	917 non-null	uint8
16	House Martell	917 non-null	uint8
17	House Stark	917 non-null	uint8
18	House Targaryen	917 non-null	uint8
19	House Tully	917 non-null	uint8
20	House Tyrell	917 non-null	uint8
21	Lannister	917 non-null	uint8
22	Martell	917 non-null	uint8
23	Night's Watch	917 non-null	uint8
24	None	917 non-null	uint8
25	Stark	917 non-null	uint8
26	Targaryen	917 non-null	uint8
27	Tully	917 non-null	uint8
28	Tyrell	917 non-null	uint8
29	Wildling	917 non-null	
J	£7+ C1(1)+C	1(0) 0(01)	

dtypes: float64(1), int64(8), uint8(21)

memory usage: 83.4 KB

2-4 亂數拆成訓練集 (75%) 與測試集 (25%) 套用 sklearn 的 train_test_split, random_state 任意取 (這裡取 6)

1.0.1 3) 使用 scikit-learn 的 DecisionTreeClassifier 進行預測

最大深度設定到 4 層,避免過深作圖時不方便觀測

```
[11]: from sklearn.tree import DecisionTreeClassifier
  # from sklearn.model_selection import cross_val_score
  from sklearn import tree
  clf = DecisionTreeClassifier(max_depth=4,random_state=0)
  clf = clf.fit(X_train, y_train)
  clf
```

```
[12]: prediction = clf.predict(X_test)
  import matplotlib.pyplot as plt
  from matplotlib.pyplot import savefig
  fig = plt.figure(figsize=(6, 3), dpi=350)
  tp = tree.plot_tree(clf, filled=True)
```


由於上述的 **decision tree** 是針對 **index** 來顯示,不便閱讀 故使用其他方式來將 feature name 放進圖表裡面,能更方便觀察如何做決策的 其中裡面會計算 gini 值、到子葉的樣本數以及分類數量結果

此處因位在本機端電腦無法順利執行程式,改由使用 Google 的 Colab 執行,將結果貼至下方表格 分類分別為 Book to Death,也就是死亡,以及 0:代表存活

```
[14]: | # graph = graphviz.Source(dot_data) | # graph
```


2 Training value

觀察在這個深度下的樹訓練資料精確率以及相關的其他數值呈現

```
[15]: from sklearn.metrics import confusion_matrix
     print('Confusion Marix : ')
     print(confusion_matrix(clf.predict(X_train), y_train))
     tn, fp, fn, tp = confusion_matrix(clf.predict(X_train), y_train).ravel()
     accuray = (tp+tn)/(tp+tn+fp+fn)
     precision = tp/(tp+fp)
     recall = tp/(tp+fn)
     sensitivity = tp/(tp+fn) # TPR
     specficity = tn/(tn+fp) # FPR
     f1_score = 1/(1/sensitivity+1/specficity)
     print(f'''Accuary = {accuray},
     Precision = {precision},
              = {recall},
     Recall
     Sensitivity = {sensitivity},
     Specficity = {specficity},
     F1_Score = {f1_score}.''')
     Confusion Marix :
     [[347 78]
     [112 150]]
     Accuary = 0.7234352256186317,
     Precision = 0.6578947368421053,
     Recall = 0.5725190839694656,
     Sensitivity = 0.5725190839694656,
     Specficity = 0.8164705882352942,
     F1_Score = 0.3365359747581855.
[16]: # 在位來可能會使用到,先練習如何使用
     from sklearn.metrics import log_loss
     log_loss(prediction, y_test)
```

3 Testing Value

觀測在前面訓練測資完成後的 Decision Tree,面對未知的問題是否能有效的分類 一樣是數值結果呈現

```
[17]: from sklearn.metrics import confusion_matrix
     tn, fp, fn, tp = confusion_matrix(prediction, y_test).ravel()
     print('Confusion Marix : ')
     print(confusion_matrix(prediction, y_test))
     accuray = (tp+tn)/(tp+tn+fp+fn)
     precision = tp/(tp+fp)
     recall = tp/(tp+fn)
     sensitivity = tp/(tp+fn) # TPR
     specficity = tn/(tn+fp) # FPR
     f1_score = 1/(1/sensitivity+1/specficity)
     print(f'''Accuary = {accuray},
     Precision = {precision},
             = {recall},
     Recall
     Sensitivity = {sensitivity},
     Specficity = {specficity},
     F1_Score = {f1_score}.''')
     Confusion Marix :
     [[118 38]
      [ 33 41]]
```

3.0.1 對 Testing set 利用熱擴散圖畫出混淆矩陣數量分布

上方横列代表的是 Ground Truth, 側邊縱列代表的是 Prediction

0:表示存活,1:表示死亡

(最原始圖效果不佳,加上對應的表格數量值,顏色軸,說明所佔的數量分別為何)

上方横列代表的是 Ground Truth, 側邊縱列代表的是 Prediction.

0:表示存活,1:表示死亡

