Modern Fizika Laboratórium

Röntgenfluoreszcencia analízis jegyzőkönyv

Mérést végezte: Gődény Ákos (JLCS6H) Koroknai Botond (AT5M0G) Mérés időpontja: 2023.10.24

Jegyzőkönyv leadásának időpontja: 2023.11.5

Tartalomjegyzék:

1	A mérés célja	2
2	Eszközök	2
3	Elmélet és fontos összefüggések	2
4	Mérési adatok kiértékelése4.1 Kalibráció4.2 Felbontóképesség meghatározása4.3 Ismeretlen minta4.4 Falevelek ólomtartalom arányának meghatározása4.5 Moseley-törvény igazolása	5
5	Diszkusszió	12
6	Forrás	12

1 A mérés célja

A mérés során különböző anyagú minták összetételét szerettük volna meghatározni röntgenfluoreszcencia segítségével, melynek nagy előnye, hogy nem roncsolja az anyagot.

2 Eszközök

- · számítógép
- különböző minták
- · detektor
- · röntgengenerátor

3 Elmélet és fontos összefüggések

A röntgenfluoreszcencia analízis során röntgen-sugrázás segítségével kiütünk egy elektront (legnagyobb valószínűséggel) a legbelső/legalacsonyabb energiájú héjról, ennek hatására egy nagyobb energiájú pályáról egy másik elektron beugrik, és a két pálya közti energia különbséget elektromágneses sugárzás formájában kibocsátja. Mivel ennek a sugárzásnak az energiái és frekvenciája jól elkülöníthető anyagonként, ezért ezt karakterisztikus röntgensugrázásnak nevezzük. A legnevezetesebb átmeneteknek külön elnevezésük is van:

- Mint már említettük a legnagyobb valószínűséggel a legbelső héjról (k) történik a kiütés. Itt a két leggyakoribb átmenet:
 - $K_{\alpha}:L\to K$
 - $K_{\beta}: M \to K$
- Még az L héjról is előszokott fordulni a kiütés, az itteni két legnevezetesebb átmenet:
 - 1. $L_{\alpha}: M \to L$
 - **2.** $L_{\beta}: N \rightarrow L$

A karakterisztikus röntgen sugárzás röntgenfotonjainak energiája a kezdeti és végállapot pályáinak energiakülönbségével egyezik meg. Ha az egész atomot addig ionizáljuk, hogy már csak 1 elektronja maradjon, akkor az elktronpályák energiája:

$$E_n = -\frac{Z^2}{n^2} E_0$$

ahol $E_0=13.6\ eV$, ami a hidrogén ionizációs energiája, n pedig a főkvantumszám.

Ha az atomban több elektron is található, akkor az energiát több tényező is befolyásolja, például az árnyékolás jelensége, elektronok taszítása, finom effektusok. Mivel ezek közül a leárnyékolás a legjelentősebb, az elektronpályák energiájának képlete egy effektív rendszám figyelembevételével módosul.

$$E_x = h\nu = -E_0 \left(\frac{1}{m^2} - \frac{1}{n^2}\right) Z_{eff}^2$$

ahol n a kezdeti és m a végállapotot jelenti.

A Moseley-törvény A karakterisztikus röntgenfotonok energiájának kísérleti úton való meghatározása Henry Moseley nevéhez fűzödik. Rájött, hogy a frekvenciák (energiák) gyöke egyenesen arányos az adott atomok rendszámával, mind a K és mind az L vonalak esetén.

$$E_x = h\nu = A(Z - B)^2$$

2

Ahol $A=-E_0\left(\frac{1}{m^2}-\frac{1}{n^2}\right)$, B az effektív rendszám és $Z_{eff}=Z-B$ a leárnyékolás mértéke.

A minta összetételének meghatározása - minőségi analízis

A mintában található elemek a kalibrált spektrum energiájának segítségével határozható meg. A feladatunk, hogy a spektrumban csúcs-párokat keressünk, hogy a hozzájuk tartozó energiák segítségével azonosítani tudjuk, milyen anyaghoz tartozhatnak.

Mennyiségi analízis

Az elemkoncentrációt és a mért területet az alábbi kifejezéssel köthetjük össze:

$$T = c \cdot Q \cdot t$$

ahol T a terület, c az elemkoncentráció, t az idő, Q pedig a fennmaradó faktorok (pl: detektor geomteriai elhelyezkedése, stb..)

4 Mérési adatok kiértékelése

4.1 Kalibráció

Az első feladatunk a berendezés kalibrálása volt, amit egy ismert minta energiacsúcsainak bevitelével végezhettünk el.

A minta rezet és ónt tartalmazott, és mindkét elem esetén mind a K_{α} és K_{β} vonalak tökeletesen kivehetőek. A kalibrációhoz azonban csak a réz K_{α} csúcsát (első csúcs) és az ón K_{β} csúcsát (utolsó csúcs) használtuk fel.

		csatornaszám	mért E [keV]	irodalmi E [keV]
réz K	α	406.44	8.05	8.047
ón K	β	1435.34	28.48	28.483

A kiértékelő program segítségével elvégeztük az alábbi illesztést:

$$E_x = A + Bx$$

ahol x jelölje a csatornaszámot. A program által kiszámolt paraméterek így:

$$A = -0.0257066$$

$$B = 0.019862$$

A kalibrálás során egyéb feljegyzett adataink az ón esetén:

K_{α}	L_{α}	L_{β}
25.30	3.46	3.69

Az L_{α} és L_{β} vonalakat csak egy logaritmikus skálázás segítségével lehetett kimutatni.

4.2 Felbontóképesség meghatározása

Ezen mérés során a rendszer energiafelbontóképességét szerettük volna meghatározni a vas K_{α} vonalára. A felbontóképesség képlete:

$$\delta = \frac{\sigma}{E}$$

Ahol δ az energiafelbontás, E a csúcs közepének energiája, σ értékére kalibráció után könnyen meghatározható, mert a félértékszélesség $\approx \sigma \cdot 2.4$

	rendszám	$K_{\alpha}[keV]$	$K_{\beta}[keV]$
króm	24	5.41	5.91
vas	26	6.4	7.06
nikkel	28	7.47	8.24
molibdén	42	17.46	19.61

A vas K_{α} csúcsa $6.4\,keV$ -nál helyezkedik el és a félérték szélessége $0.125\,keV$. Ezen adatokat a képletbe helyettesítve:

$$\delta = \frac{\sigma}{E} = \frac{\frac{0.125}{2.4}}{6.4} = 0.0081$$

4.3 Ismeretlen minta

Ennél a mérésnél az volt a feladatunk, hogy egy ismeretlen minta összetételét vizsgáljuk.

	rendszám	$K_{\alpha}[keV]$	$K_{\beta}[keV]$
kálcium	20	3.69	4
vanádium	23	4.95	5.43
vas	26	6.4	7.06
nikkel	28	7.49	Réz K_{α} fedésében van
réz	29	8.05	8.91
szelén	34	11.22	12.5
stroncium	38	14.15	15.83
molibdén	47	17.45	19.61

	rendszám	$L_{\alpha}[keV]$	$L_{\beta}[keV]$
ólom	82	10.58	szelén K_{β} -ja elfedi

Továbbá az ezüst jelenléte is kimutatható volt még, de mivel ezt a további mérések során is érzékeltük, ezért arra gyanakszunk, hogy a mérőberendezés belső borítása tartalmazhat ezüstöt.

4.4 Falevelek ólomtartalom arányának meghatározása

Tiszta levél esetén:

Ólom	$L_{\alpha}[keV] = 10.55$	$L_{\beta}[keV] = 12.63$	$L_{\gamma}[keV] = 14.79$
Net Area	1705	1733	198
Gross Area	2145	2291	380
Saját illesztés	2168	2388	-

A t mérési idő 300 s volt.

Piszkos levél esetén:

Ólom	$L_{\alpha}[keV] = 10.56$	$L_{\beta}[keV] = 12.62$	$L_{\gamma}[keV] = 14.77$
Net Area	5778	6153	725
Gross Area	7498	8065	1013
Saját illesztés	8399	8683	1289

A t mérési idő 60 s volt.

Az tiszta és piszkos levél ólomkoncentrációinak arányát kiszámíthatjuk a $T=c\cdot Q\cdot t$ összefüggés miatt, melyet az alábbi táblázat tartalmaz:

	$c_{\alpha,tiszta}/c_{\alpha,piszkos}$	$c_{\beta,tiszta}/c_{\beta,piszkos}$	$c_{\gamma,tiszta}/c_{\gamma,piszkos}$
Net Area	0.059	0.056	0.055
Gross Area	0.057	0.057	0.075
Saját illesztés	0.052	0.055	-

$$C_{rel} = 0.056 \pm 0.004$$

A két koncentráció L_γ vonalánál számolt 'Gross Area' értéket nem vettük figyelembe a nagy eltérés következtében, illetve a tiszta levél L_γ vonalára nem sikerült a saját illesztés a zajos mérési eredmény miatt. A hiba a figyelembe vett értékek legnagyobb átlagtól való eltérése.

4.5 Moseley-törvény igazolása

	rendszám	$L_{\alpha}[keV]$	$L_{\beta}[keV]$	$L_{\gamma}[keV]$
wolfrám	74	8.40	9.68	11.28
ólom	82	10.56	12.62	14.78
bizmut	83	10.84	13.02	15.25

	rendszám	$K_{\alpha}[keV]$	$K_{\beta}[keV]$
kálcium	20	3.69	4
vanádium	23	4.95	5.43
vas	26	6.33	-
nikkel	28	7.48	-
réz	29	8.05	8.91
cink	30	8.63	9.5
szelén	34	11.22	12.5
stroncium	38	14.15	15.83

A Moseley-törvényt átalakítva az alábbi egyenlethez jutunk:

$$\sqrt{E(Z)} = Z\sqrt{A} - B\sqrt{A}$$

Az egyenlet A és B paramétereire egyenest illeszthetünk, melyek a Mosley-konstansok.

Az illesztett paraméterek:

$$\sqrt{A} = (0.04384 \pm 0.00011)\sqrt{keV}$$

 $B\sqrt{A} = (0.3459 \pm 0.0085)\sqrt{keV}$

Az illesztett paraméterek:

$$\sqrt{A} = (0.05520 \pm 0.00007)\sqrt{keV}$$

 $B\sqrt{A} = (0.9734 \pm 0.0054)\sqrt{keV}$

Az illesztett paraméterek:

$$\sqrt{A} = (0.06073 \pm 0.00001)\sqrt{keV}$$

 $B\sqrt{A} = (1.1356 \pm 0.0007)\sqrt{keV}$

Az illesztett paraméterek:

$$\sqrt{A} = (0.10242 \pm 0.00041)\sqrt{keV}$$

$$B\sqrt{A} = (0.134 \pm 0.012)\sqrt{keV}$$

Az illesztett paraméterek:

$$\sqrt{A} = (0.10976 \pm 0.00049)\sqrt{keV}$$

$$B\sqrt{A} = (0.198 \pm 0.015)\sqrt{keV}$$

A Moseley-konstansok:

	A [eV]	В
L_{α}	1.92 ± 10^{-5}	7.87 ± 0.19
L_{β}	$3.055 \pm \cdot 10^{-6}$	17.63 ± 0.10
L_{γ}	3.69 ± 10^{-7}	18.70 ± 0.01
K_{α}	$10.49 \pm 2 \cdot 10^{-4}$	3.22 ± 0.29
K_{β}	$12.05 \pm 2 \cdot 10^{-4}$	2.57 ± 0.19

A táblázat elemeiből látszik, hogy A értéke a K vonalaknál nagyobb, tehát nagyobb a kisugárzott energia. B-nél fordított a helyzet, ugyanis a nehezebb elemeknél több elektron is képes a mag töltését leárnyékolni.

A konstans hibája az illesztésből származó hiba négyzete, míg B hibáját az alábbi képlettel számoltuk:

$$\Delta B = \left(\frac{\Delta B \sqrt{A}}{B \sqrt{A}} + \frac{\Delta \sqrt{A}}{\sqrt{A}}\right) \cdot B$$

5 Diszkusszió

Az energiacsúcsaink reálisak, nem térnek el jelentősen az irodalmi értékektől és az egyenesekre is illeszkednek az leolvasott adatok. A Moseley-konstansokat is meg tudtuk határozni, így összességében a mérés sikeresnek tekinthető.

6 Forrás

Modernfizika laboratóriumi jegyzet: 9. Röntgenfluoreszcencia analízis (Horváth Ákos)