

Description

The series of devices uses **Super Trench II** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS(ON)}}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

Application

- DC/DC Converter
- •Ideal for high-frequency switching and synchronous rectification

General Features

- V_{DS} =100V, I_D =160A $R_{DS(ON)}$ =2.9m Ω , typical (TO-220)@ V_{GS} =10V $R_{DS(ON)}$ =2.7m Ω , typical (TO-263)@ V_{GS} =10V
- Excellent gate charge x R_{DS(on)} product(FOM)
- Very low on-resistance R_{DS(on)}
- 175 °C operating temperature
- Pb-free lead plating

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VST10N029-TC	VST10N029	TO-220C	-	-	-
VST10N029-T3	VST10N029	TO-263	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	100	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	160	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100°C)	120	А	
Pulsed Drain Current (Note 1)	I _{DM}	640	А	
Maximum Power Dissipation	P _D	245	W	
Derating factor		1.63	W/°C	
Single pulse avalanche energy (Note 5)	E _{AS}	1345	mJ	
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 175	°C	

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	Rejc	0.61	°C/W
Thermal Resistance,Junction-to-Ambient (Note 2)	$R_{\theta JA}$	60	°C/W

Electrical Characteristics (T_C=25°Cunless otherwise noted)

Parameter	Symbol	I Condition		Min	Тур	Max	Unit
Off Characteristics				•			•
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250µA		100		-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =100V,V _{GS} =0V		-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V		-	-	±100	nA
On Characteristics (Note 3)				· I		l	
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$		2.0	3.0	4.0	V
Davis Course On Otata Basistan	-	V _{GS} =10V, I _D =80A	TO-220	-	2.9	3.3	mΩ
Drain-Source On-State Resistance	R _{DS(ON)}		TO-263		2.7	3.3	mΩ
Gate resistance	R _G			-	2.0	-	Ω
Forward Transconductance	g _{FS}	V _{DS} =5V,I _D =80A		85	-	-	S
Dynamic Characteristics (Note4)				· I		l	
Input Capacitance	C_{lss}	- V _{DS} =50V,V _{GS} =0V, - F=1.0MHz		-	7810.5	-	PF
Output Capacitance	Coss			-	887.3	-	PF
Reverse Transfer Capacitance	C _{rss}			-	30	-	PF
Switching Characteristics (Note 4)							
Turn-on Delay Time	t _{d(on)}	V _{DD} =50V,I _D =80A		-	25	-	nS
Turn-on Rise Time	t _r			-	15	-	nS
Turn-Off Delay Time	t _{d(off)}	V _{GS} =10V,R _G =	V_{GS} =10 V , R_{G} =1.6 Ω		52	-	nS
Turn-Off Fall Time	t _f			-	17	-	nS
Total Gate Charge	Qg	\/ F0\/ I	004	-	127.7	-	nC
Gate-Source Charge	Q _{gs}	V _{DS} =50V,I _D =80A, V _{GS} =10V		-	41.8		nC
Gate-Drain Charge	Q_{gd}			-	35.5		nC
Drain-Source Diode Characteristics							
Diode Forward Voltage (Note 3)	V _{SD}	$V_{GS}=0V,I_{S}=$	80A	-		1.2	V
Diode Forward Current (Note 2)	Is			-	-	160	Α
Reverse Recovery Time	t _{rr}	$T_J = 25$ °C, $I_F = 80A$ di/dt = 100A/ μ s ^(Note3)		-	74	-	nS
Reverse Recovery Charge	Qrr			-	164	-	nC
		l					

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. The value of $R_{\theta JA}$ is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The Power dissipation P_{DSM} is based on R $_{\theta JA}$ and the maximum allowed junction temperature of 150° C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175° C may be used if the PCB allows it.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25 $^{\circ}\text{C}$,VDD=50V,VG=10V,L=0.5mH,Rg=25 Ω

Typical Electrical and Thermal Characteristics

Vds Drain-Source Voltage (V)

Figure 1 Output Characteristics

Vgs Gate-Source Voltage (V)

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

 T_J -Junction Temperature($^{\circ}\mathbb{C}$)

Figure 4 Rdson-Junction Temperature

Qg Gate Charge (nC)

Figure 5 Gate Charge

Vsd Source-Drain Voltage (V)

Figure 6 Source- Drain Diode Forward

Figure 11 Normalized Maximum Transient Thermal Impedance