2021 年秋离散数学复习题 (一)

2021 千亿两队双丁女刁应()
第一章
1.1
 ()1. 对一个可满足的命题公式,其否定。 A 不是重言的 B 不是可满足的 C 还是可满足的 D 不是矛盾的
1.2
() 2. 命题公式¬(P∧Q)→R 具有个使其为真的指派。
A 2
B 4
C 5
D 3
1.3 & 1.4
 命题公式 PV((QVR) \(\lambda\)S)的波兰表达式是
1.5

三. (8') 请写出一个满足以下要求的命题公式并写出求解过程。

- 1. 具有P, Q, R三个变元
- 2. 只有两个联结词 (可使用 ¬, ∧, ∨, →, ↔)
- 3. 恰好具有五个使其为真的指派

()10. 命题公式 (P∧ (P→Q)) →Q 是	
A. 矛盾式	
B. 蕴含式	
C. 重言式	
D. 等值式	
1.7	
() 11. 下面哪个命题公式是重言式? A. (P→Q) ∧ (Q → P) B. (P∧Q) → P	
c. $(\neg P \lor Q) \land \neg (\neg P \land \neg Q)$	
$\mathbf{D}. \neg (P \vee Q)$	
1.8	
6. (p∧q)∨(¬p)的波兰表达式是:	_°
1.9 & 1.10	
 4. 设p,r为真命题, q,s为假命题,则复合命题 (p → q) ↔ (¬r → s)的真值为。 5. 设P: "你陪伴我", Q: "你代我叫车子", R: "我将出去"。则命题 "除非你陪伴我或代我叫车子则我将不出去"可写成命题演算公式:。 	子, 否
1.11	
第二章	
2.1	
 () 3. 下面有个命题联结词集合是完备集。 {¬, ∧}, {¬, ∨}, {¬, →}, {∨, →}, {∨, →}, {∨, ↑}, { A. 4 B. 5 	↓ }
C. 6	
D. 7	

() 4.	下列推理式正确的是。	(
--------	------------	---

A.
$$(P \rightarrow R) \lor (Q \rightarrow R) \Rightarrow (P \lor Q) \rightarrow R$$

B.
$$(P\lor Q) \land (\neg P\lor R) \Rightarrow (Q\lor R)$$

C.
$$P\lor Q \Rightarrow P$$

D.
$$(P\lor Q) \rightarrow (P\lor R) \Rightarrow Q\rightarrow R$$

2.3

(注意:请用极小项的简写码表示,极小项按照 P-Q-R 的顺序排列,例如 $P \wedge Q \wedge \neg R = m_6$)

2.4

4. P → Q ∨ R → S的对偶式为_____。

2.5

七、(8') 证明下列推理关系:如果李华在光明中学上学,那么他不是初中生,就是高中生。如果李华是初中生,那么他需要参加中考。如果李华是高中生,那么他经常给外国的友人写信。如果李华经常给外国的友人写信,那么他的英文写作能力很强。李华的英文写作能力不强。从而知:如果李华在光明中学上学,那么他需要参加中考。

() 12. 下面哪一组命题公式是等值的?

A.
$$\neg P \land \neg Q$$
. $P \lor Q$

$$A \rightarrow (B \rightarrow A), \neg A \rightarrow (A \rightarrow \neg B)$$

$$Q \rightarrow (P \lor Q), \neg Q \land (P \lor Q)$$

$$\mathbf{D}. \quad \neg A \vee (A \wedge B), B$$

2.7

() 13. 命题公式 $\neg (P \land Q) \rightarrow R$ 的主析取范式中含极小项的个数为_____

- A. 8 B. 3 C. 5 D. 0

2.8

5. 逻辑联结词或非 \downarrow 可以定义为: $x \downarrow y = \neg(x \lor y)$ 。将公式 $\neg(x \lor y) \land z$ 转换 成只用↓表示的公式

2.9

7. (p Λ q) V (¬ p Λ ¬ q) 的主合取范式是:

2.10

六. (8') 任用一种推理方法证明: $(\alpha \rightarrow \beta) \land (\beta \rightarrow \gamma) \land (\delta \rightarrow \neg \gamma) \Rightarrow \neg (\alpha \land \delta)$

2.11

3. 已知命题公式 $G = \neg(P \rightarrow Q) \land R$,则G的主析取范式是

2.12

6. $P \downarrow Q = \neg (P \lor Q)$. 用或非联结词表示出 $P \rightarrow Q$ 为______

7. 已知公式 $P \leftrightarrow (Q \leftrightarrow (Q \rightarrow P))$, 其主合取范式为_____

2.14 & 2.15

- 2. 设命题公式 $G = \neg (P \rightarrow Q)$, $H = P \rightarrow (Q \rightarrow \neg P)$, 则G = H的关系是()

- (A) $G \Rightarrow H$ (B) $H \Rightarrow G$ (C) G = H (D)以上都不是
- 3. 下面 4 个推理定律中,不正确的是()。
- (A) $A \Rightarrow (A \lor B)$

- (B) $(A \lor B) \land \neg A \Rightarrow B$
- (C) $(A \rightarrow B) \land A \Rightarrow B$
- (D) $(A \to B) \land \neg B \Rightarrow A$

2.16

- 5. 设A, B都是命题公式,则 $A \rightarrow B$ 为可满足式是 $A \Rightarrow B$ 的()。
- (A) 充分而非必要条件

(B) 必要而非充分条件

- (C) 充分必要条件 (D) 既非充分也非必要条件

2.17

三、 $(7 \, \mathcal{G})$ 设命题公式 $G = \neg (P \rightarrow Q) \lor (Q \land (\neg P \rightarrow R))$,求 G 的主析取范式。

第四章

() 5. 若个体域为整数集合,下列公式中不是命题。
	A. $(\forall x) (\forall y) (x \cdot y = x)$
	B. (∀x) (∃y) (x·y=1)
	C. (∀x) (x·y=x)
	D. $(\exists x) (\exists y) (x \cdot y=2)$
4.2	
()	6. 设个体域 D={a, b}, 则公式(∃x)(F(x) ∧ G(x))消去量词后可表示为。 A. (F(a) ∧ F(b)) ∨ (G(a) ∧ G(b));
	B. $(F(a) \lor F(b)) \land (G(a) \lor G(b))$;
	C. $(F(a) \land G(a)) \lor (F(b) \land G(b))$;
	D. $(F(a) \lor G(a)) \land (F(b) \lor G(b))$
4.3	
()	7. 令 P(x, y)表示 x <y, td="" x)不是普遍有效的<="" 公式(∀x)(∃y)p(y,="" 当个体域为时,=""></y,>
	A. 自然数集; B. 整数集;
	C. 有理数集;
	D. 实数集
4.4	
5.	求公式($\forall x$)($P \rightarrow Q(x)$) $\lor R(a)$ 的真值为
	$R(x):x>3$, 而 $a=3$, 论域为 $\{-2,3,6\}$ 。
4.5	
6.	公式 $(\forall x)$ $((P(x) \rightarrow Q(x)) \land (\exists y)R(y)) \land S(z)$ 的自由变元是, 全称量词的辖
	域为。
4.6	

() 14. 设 A(x): x 是人, B(x): x 犯错误, 命题"没有人不犯错误"符号化为
A. $(\forall x)(A(x) \wedge B(x))$
$\mathbf{B}. \neg(\exists x)(A(x) \to \neg B(x))$
c. $\neg(\exists x)(A(x) \land B(x))$
$0. \neg(\exists x)(A(x) \land \neg B(x))$
 4.7 8. 设R(x)表示 x 是实数, E(x, y)表示 x=y, 则语句 "对所有的实数 x, 都存在实数 y, 使得 x=y"的符号化为
4.8
9. 公式 $(\exists x)(P(x) \leftrightarrow Q(x)) \rightarrow ((\exists x)P(x) \rightarrow (\exists x)Q(x))$ (是/不是)普遍有效
的 ; 4.9
10. 公式 $\neg ((\forall x)F(x) \to (\exists y)G(y)) \land (\exists y)G(y)$ (是/不是)不可满足的
4.10 1. 设 I 是如下一个解释: $D = \{a,b\}$, $P(a,a) = 1$, $P(a,b) = 0$, $P(b,a) = 1$, $P(b,b) = 0$, 则在解释 I 下
真值为 1 的公式是()。
(A) $\exists x \forall y P(x,y)$ (B) $\forall x \forall y P(x,y)$ (C) $\forall x P(x,x)$ (D) $\forall x \exists y P(x,y)$
第五章
5.1
()8. 下列描述中正确的是。
A. 不是所有谓词逻辑公式都能化成 Skolem 标准形
B. 把谓词公式化为前束范式时对于量词的次序排列有要求
C. 每个谓词公式都能化成唯一的前束范式
D. 这些说法都不对

() 9	9.	下面推理形式中正确的是。	其中 p、	q 是和 x 无关的命题变项,	论域
			不为空。			

- A. $(\forall x)(P(x) \lor Q(x)) \rightarrow ((\forall x)P(x) \lor (\forall y)Q(y))$
- B. $(((\forall x)P(x)) \rightarrow q) \rightarrow (\forall x)(P(x) \rightarrow q)$
- C. $(\forall x)(p \rightarrow Q(x)) \rightarrow (p \rightarrow (\exists x)Q(x))$
- D. $((\exists x)P(x) \land (\exists y)Q(y)) \rightarrow ((\exists x)(P(x) \land Q(x)))$

5.3

7. 一个谓词公式的 Skolem 标准形是(∀x)(P(x) ∨ ¬Q(a,x)), 那么这个公式本身是(填可满足、不可满足或者不确定):

5.4

四. (8') 任用一种推理方法证明

$$(\forall x)(P(x) \lor Q(x)) \land (\exists x)(\neg P(x)) \land (\forall x)(Q(x) \rightarrow \neg R(x)) \Rightarrow (\exists x)(\neg R(x))$$

5.5

六(8') 求公式(($\forall x$)($\exists y$)($P(x,y) \rightarrow Q(y)$)) \rightarrow ($\forall x$)($R(x) \rightarrow (\exists u)(\forall v)L(x,u,v)$) 的前束范式和 Skolem 标准形。

() 15. 下列各式哪个不正确?

$$(\forall x)(P(x) \lor Q(x)) \Leftrightarrow (\forall x)P(x) \lor (\forall x)Q(x)$$

B.
$$(\forall x)(P(x) \land Q(x)) \Leftrightarrow (\forall x)P(x) \land (\forall x)Q(x)$$

$$c$$
. $(\exists x)(P(x) \lor Q(x)) \Leftrightarrow (\exists x)P(x) \lor (\exists x)Q(x)$

$$\mathsf{D}. \quad (\forall x)(P(x) \vee q) \Leftrightarrow (\forall x)P(x) \vee q$$

5.7

七. (8') 写出下列公式的前束范式

$$(\exists x)(\neg((\exists y)P(x,y))\rightarrow((\exists z)Q(z)\rightarrow R(x)))$$

5.8

八. (10') 任用一种推理方法证明: $(\exists x)(R(x) \land W(x)), (\forall x)(P(x) \to Q(x)), (\forall x)(R(x) \to \neg Q(x)) \Rightarrow (\exists x)(W(x) \land \neg P(x))$

5.9 & 5.10

- 1. 设一阶逻辑公式 $G = \forall x P(x) \rightarrow \exists x Q(x)$,则G的前束范式是______
- 2. 设谓词的论域为 $\{a,b\}$,将表达式 $\forall xR(x) \to \exists xS(x)$ 中量词消去,写成与之对应的命题公式是

4. 下列等值式不正确的是()。

(A)
$$\neg(\forall x)A = (\exists x)\neg A$$

(B)
$$(\forall x)(B \to A(x)) = B \to (\forall x)A(x)$$

(C)
$$(\exists x)(A(x) \land B(x)) = (\exists x)A(x) \land (\exists x)B(x)$$

(D)
$$(\forall x)(\forall y)(A(x) \rightarrow B(y)) = (\exists x)A(x) \rightarrow (\forall y)B(y)$$

5.12

四、(8 分) 写出 $\forall x((\exists y P(x,y) \to \forall y R(y)) \to (\exists z Q(z) \to S(x)))$ 的 Skolem 范式(仅保留全称量词的前束形)。