TEA010 Matemática Aplicada I
Curso de Engenharia Ambiental
Departamento de Engenharia Ambiental, UFPR
P02A, 28 abr 2023
Prof. Nelson Luís Dias

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO A.

1 [25] Como vimos em aula, o método de Runge-Kutta permite resolver (em princípio) qualquer sistema de equações diferenciais ordinárias do tipo

$$\frac{\mathrm{d}\boldsymbol{y}}{\mathrm{d}x} = f(x, \boldsymbol{y})$$

simplesmente programando f(x, y) e passando a função como argumento para rk4(x,y,h,f). Se o sistema de EDOs é

$$\frac{\mathrm{d}}{\mathrm{d}x} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} y_2 + y_3 \\ y_3 - y_1 \\ y_1 + y_2 \end{bmatrix},$$

programe a f(x,y) correspondente em Python.

SOLUÇÃO DA QUESTÃO:

from numpy import array
def f(x,y):
 return array([y[1]+y[2],y[2]-y[0],y[0]+y[1]])

SOLUÇÃO DA QUESTÃO:

$$v = ae_1 + be_2,$$
 $(3,4) = a(1,1) + b(-1,1)$
 $(3,4) = (a-b,a+b),$
 $a-b=3,$
 $a+b=4,$
 $2a=7,$
 $a=7/2,$
 $7/2-b=3,$
 $b=7/2-3=7/2-6/2=1/2$

SOLUÇÃO DA QUESTÃO:

$$|\mathbf{p}| = \sqrt{1/4 + 1/4 + 1/4} = \sqrt{3/4} = \frac{\sqrt{3}}{2};$$

$$\mathbf{m} = \frac{1}{|\mathbf{p}|} \mathbf{p} = \frac{2}{\sqrt{3}} (1/2, 1/2, 1/2);$$

$$\mathbf{v} \cdot \mathbf{m} = (3, 3, 1) \cdot \frac{2}{\sqrt{3}} (1/2, 1/2, 1/2)$$

$$= \frac{2}{\sqrt{3}} [3/2 + 3/2 + 1/2]$$

$$= \frac{2}{\sqrt{3}} \frac{7}{2} = \frac{7}{\sqrt{3}} \blacksquare$$

$$([u \times v] \times w) \cdot p$$

em função dos produtos escalares $(u \cdot w)$, $(v \cdot p)$, $(u \cdot p)$ e $(v \cdot w)$. Sugestão: você vai precisar da identidade polar.

SOLUÇÃO DA QUESTÃO:

$$[\mathbf{u} \times \mathbf{v}]_k = \epsilon_{ijk} u_i v_j,$$

$$[\mathbf{u} \times \mathbf{v}] \times \mathbf{w} = \epsilon_{klm} [\mathbf{u} \times \mathbf{v}]_k w_l \mathbf{e}_m,$$

$$= \epsilon_{klm} \epsilon_{ijk} u_i v_j w_l \mathbf{e}_m;$$

$$([\mathbf{u} \times \mathbf{v}] \times \mathbf{w}) \cdot \mathbf{p} = \epsilon_{klm} \epsilon_{ijk} u_i v_j w_l \mathbf{e}_m \cdot \mathbf{p}_n \mathbf{e}_n$$

$$= \epsilon_{ijk} \epsilon_{klm} u_i v_j w_l \mathbf{p}_n \delta_{mn}$$

$$= \epsilon_{ijk} \epsilon_{klm} u_i v_j w_l \mathbf{p}_m$$

$$= \epsilon_{ijk} \epsilon_{lmk} u_i v_j w_l \mathbf{p}_m$$

$$= (\delta_{il} \delta_{jm} - \delta_{im} \delta_{jl}) u_i v_j w_l \mathbf{p}_m$$

$$= u_i v_j w_i \mathbf{p}_j - u_i v_j w_j \mathbf{p}_i$$

$$= (u_i w_i) (v_j \mathbf{p}_j) - (u_i \mathbf{p}_i) (v_j w_j)$$

$$= (\mathbf{u} \cdot \mathbf{w}) (\mathbf{v} \cdot \mathbf{p}) - (\mathbf{u} \cdot \mathbf{p}) (\mathbf{v} \cdot \mathbf{w}) \blacksquare$$