1. The real numbers

1.1. Conventions on sets and functions

• **Definition**: for $f: X \to Y$, **preimage** of $Z \subseteq Y$ is

$$f^{-1}(Z) \coloneqq \{x \in X : f(x) \in Z\}$$

• Definition: $f: X \to Y$ injective if

$$\forall y \in f(X), \exists ! x \in X : y = f(x)$$

- Definition: $f: X \to Y$ surjective if Y = f(X).
- **Proposition**: let $f: X \to Y$, $A, B \subseteq X$, then

$$f(A \cap B) \subseteq f(A) \cap f(B),$$

$$f(A \cup B) = f(A) \cup f(B),$$

$$f(X) - f(A) \subseteq f(X - A)$$

• **Proposition**: let $f: X \to Y, C, D \subseteq Y$, then

$$f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D),$$

$$f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D),$$

$$f^{-1}(Y - C) = X - f^{-1}(C)$$

1.2. The real numbers

- **Definition**: $a \in \mathbb{R}$ is an **upper bound** of $E \subseteq \mathbb{R}$ if $\forall x \in E, x \leq a$.
- Definition: $c \in \mathbb{R}$ is a least upper bound (supremum) of E, $c = \sup(E)$, if $c \leq a$ for every upper bound a.
- **Definition**: $a \in \mathbb{R}$ is an **lower bound** of $E \subseteq \mathbb{R}$ if $\forall x \in E, x \geq a$.
- Definition: $c \in \mathbb{R}$ is a greatest lower bound (supremum), $c = \inf(E)$, if $c \ge a$ for every upper bound a.
- Completeness axiom of the real numbers: every $E \subseteq \mathbb{R}$ with an upper bound has a least upper bound. Every $E \subseteq \mathbb{R}$ with a lower bound has a greatest lower bound.
- Archimedes' principle:

$$\forall x \in \mathbb{R}, \exists n \in \mathbb{N} : n > x$$

- Remark: every non-empty subset of $\mathbb N$ has a minimum.
- **Proposition**: \mathbb{Q} is dense in \mathbb{R} :

$$\forall x < y \in \mathbb{R}, \exists r \in \mathbb{O} : r \in (x, y)$$

1.3. Sequences, limits and series

• **Definition**: $l \in \mathbb{R}$ is **limit** of (x_n) $((x_n)$ converges to l) if

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} : \forall n \ge N, \quad |x_n - l| < \varepsilon$$

A sequence **converges in** \mathbb{R} (is **convergent**) if it has a limit $l \in \mathbb{R}$. Limit $l = \lim_{n \to \infty} x_n$ is unique.

• Definition: (x_n) tends to infinity if

$$\forall K > 0, \exists N \in \mathbb{N} : \forall n \ge N, \quad x_n > K$$

- Definition: subsequence of (x_n) is sequence $(x_{n_i}), n_1 < n_2 < \cdots$.
- **Definition**: **limit inferior** of sequence x_n is

$$\liminf_{n \to \infty} x_n \coloneqq \lim_{n \to \infty} \Bigl(\inf_{m \ge n} x_m\Bigr) = \sup_{n \in \mathbb{N}} \inf_{m \ge n} x_m$$

• **Definition**: **limit superior** of sequence x_n is

$$\limsup_{n \to \infty} x_n \coloneqq \lim_{n \to \infty} \biggl(\sup_{m \ge n} x_m \biggr) = \inf_{n \in \mathbb{N}} \sup_{m \ge n} x_m$$

- **Proposition**: let (x_n) bounded, $l \in \mathbb{R}$. The following are equivalent:
 - $l = \lim \sup x_n$.
 - $\bullet \quad \forall \varepsilon > 0, \exists N \in \mathbb{N} : \forall n \geq N, x_n < l + \varepsilon.$
 - $\bullet \quad \forall \varepsilon > 0, \forall N \in \mathbb{N}: \exists n \in \mathbb{N}: x_n > l \varepsilon.$
- **Proposition**: let (x_n) bounded, $l \in \mathbb{R}$. The following are equivalent:
 - $l = \lim \inf x_n$.
 - $\bullet \quad \forall \varepsilon > 0, \exists N \in \mathbb{N} : \forall n \geq N, x_n > l \varepsilon.$
 - $\forall \varepsilon > 0, \forall N \in \mathbb{N} : \exists n \in \mathbb{N} : x_n < l + \varepsilon.$
- Theorem (Bolzano-Weierstrass): every bounded sequence has a convergent subsequence.
- **Proposition**: let (x_n) bounded. There exists convergent subsequence with limit $\limsup x_n$ and convergent subsequence with limit $\lim \inf x_n$.
- **Proposition**: let (x_n) bounded, then (x_n) is convergent iff $\limsup x_n = \liminf x_n$.
- Monotone convergence theorem for sequences: monotone sequence converges in \mathbb{R} or tends to either ∞ or $-\infty$.
- Definition: (x_n) is Cauchy sequence if

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} : \forall n, m \ge N, \quad |x_n - x_m| < \varepsilon$$

• **Theorem**: every Cauchy sequence in \mathbb{R} is convergent.

1.4. Open and closed sets

• Definition: $U \subseteq \mathbb{R}$ is open if

$$\forall x \in U, \exists \varepsilon > 0 : (x - \varepsilon, x + \varepsilon) \subseteq U$$

- **Proposition**: arbitrary unions of open sets are open. Finite intersections of open sets are open.
- Definition: $x \in \mathbb{R}$ is point of closure (limit point) for $E \subseteq \mathbb{R}$ if

$$\forall \varepsilon > 0, \exists y \in E : |x - y| < \varepsilon$$

Equivalently, x is point of closure of E if every open interval containing x contains another point of E.

- **Definition**: closure of E, \overline{E} , is set of points of closure. Note $E \subseteq \overline{E}$.
- **Definition**: F is **closed** if $F = \overline{F}$.
- Proposition: $\overline{A \cup B} = \overline{A} \cup \overline{B}$. If $A \subset B \subseteq \mathbb{R}$ then $\overline{A} \subset \overline{B}$.

- **Proposition**: for any set E, \overline{E} is closed, i.e. $\overline{E} = \overline{\overline{E}}$.
- **Proposition**: let $E \subseteq \mathbb{R}$. The following are equivalent:
 - E is closed.
 - $\mathbb{R} E$ is open.
- **Proposition**: arbitrary intersections of closed sets are closed. Finite unions of closed sets are closed.
- **Definition**: collection C of subsets of \mathbb{R} covers (is a covering of) $F \subseteq \mathbb{R}$ if $F \subseteq \bigcup_{S \in C} S$. If each S in C open, C is open covering. If C is finite, C is finite covering.
- **Definition**: covering C of F contains a finite subcover if exists $\{S_1,...,S_n\}\subseteq C$ with $F\subseteq \cup_{i=1}^n S_i$ (i.e. a finite subset of C covers F).
- **Definition**: F is **compact** if any open covering of F contains a finite subcover.
- **Example**: \mathbb{R} is not compact, [a, b] is compact.
- **Heine-Borel theorem**: *F* compact iff *F* closed and bounded.

1.5. Continuity, pointwise and uniform convergence of functions

• Definition: let $E \subseteq \mathbb{R}$. $f: E \to \mathbb{R}$ is continuous at $a \in E$ if

$$\forall \varepsilon > 0, \exists \delta > 0 : \forall x \in E, |x - a| < \delta \Longrightarrow |f(x) - f(a)| < \varepsilon$$

f is **continuous** if continuous at all $y \in E$.

• **Definition**: $\lim_{x\to a} f(x) = l$ if

$$\forall \varepsilon > 0, \exists \delta > 0: \forall x \in E, |x - a| < \delta \Longrightarrow |f(x) - l| < \varepsilon$$

- **Proposition**: $\lim_{x\to a} f(x) = l$ iff for every sequence (a_n) with $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} f(a_n) = l$.
- **Proposition**: f is continuous at $a \in E$ iff $\lim_{x\to a} f(x) = f(a)$ (and this limit exists).
- Definition: $f: E \to \mathbb{R}$ is uniformly continuous if

$$\forall \varepsilon > 0, \exists \delta > 0 : \forall x, y \in E, |x - y| < \delta \Longrightarrow |f(x) - f(y)| < \varepsilon$$

- **Proposition**: let F closed and bounded, $f: F \to \mathbb{R}$ continuous. Then f is uniformly continuous.
- **Definition**: let $f_n: E \to \mathbb{R}$ sequence of functions, $f: E \to \mathbb{R}$. (f_n) converges pointwise to f if

$$\forall \varepsilon > 0, \forall x \in E, \exists N \in \mathbb{N}: \forall n \geq N, |f_n(x) - f(x)| < \varepsilon$$

 (f_n) converges uniformly to f is

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} : \forall n \geq N, \forall x \in E, |f_n(x) - f(x)| < \varepsilon$$

- **Theorem**: let $f_n : E \to \mathbb{R}$ sequence of continuous functions converging uniformly to $f : E \to \mathbb{R}$. Then f is continuous.
- Definition: $P = \{x_0, ..., x_n\}$ is partition of [a, b] if $a = x_0 < \cdots < x_n = b$.
- **Definition**: $f:[a,b] \to \mathbb{R}$ is **piecewise linear** if there exists partition $P = \{x_0, ..., x_n\}$ and $m_i, c_i \in \mathbb{R}$ such that

$$\forall i \in [n], \forall x \in (x_{i-1}, x_i), \quad f(x) = m_i x + c_i$$

f is continuous on [a, b] - P.

• Definition: $g:[a,b]\to\mathbb{R}$ is step function if there exists partition $P=\{x_0,...,x_n\}$ and $m_i\in\mathbb{R}$ such that

$$\forall i \in [n], \forall x \in (x_{i-1}, x_i), \quad g(x) = m_i$$

g is continuous on [a, b] - P.

- **Theorem**: let $f: E \to \mathbb{R}$ continuous, E closed and bounded. Then there exist continuous piecewise linear f_n with $f_n \to f$ uniformly, and step functions g_n with $g_n \to f$ uniformly.
- **Definition**: $f: E \to \mathbb{R}$ is **Lipschitz** if

$$\exists C > 0 : \forall x, y \in E, \quad |f(x) - f(y)| \le C|x - y|$$

• **Definition**: $f: E \to \mathbb{R}$ is **bi-Lipschitz** if

$$\exists C > 0 : \forall x, y \in E, \quad C^{-1}|x - y| \le |f(x) - f(y)| \le C|x - y|$$

1.6. The extended real numbers

- **Definition**: **extended reals** are $\mathbb{R} \cup \{-\infty, \infty\}$ with the order relation $-\infty < \infty$ and $\forall x \in \mathbb{R}, -\infty < x < \infty$. ∞ is an upper bound and $-\infty$ is a lower bound for every $x \in \mathbb{R}$, so $\sup(\mathbb{R}) = \infty$, $\inf(\mathbb{R}) = -\infty$.
 - Addition: $\forall a \in \mathbb{R}, a + \infty = \infty \land a + (-\infty) = -\infty. \ \infty + \infty = \infty (-\infty) = \infty.$ $\infty - \infty$ is undefined.
 - Multiplication: $\forall a > 0, a \cdot \infty = \infty, \ \forall a < 0, a \cdot \infty = -\infty. \ \text{Also } \infty \cdot \infty = \infty.$
 - lim sup and lim inf are defined as

$$\lim\sup x_n\coloneqq\inf_{n\in\mathbb{N}}\biggl\{\sup_{k\geq n}x_k\biggr\},\quad \lim\inf x_n\coloneqq\sup_{n\in\mathbb{N}}\biggl\{\inf_{k\geq n}x_k\biggr\}$$

- **Definition**: extended real number l is \mathbf{limit} of (x_n) if either
 - $\forall \varepsilon > 0, \exists N \in \mathbb{N} : \forall n \geq N, |x_n l| < \varepsilon.$ Then (x_n) converges to l. or
 - $\forall \Delta > 0, \exists N \in \mathbb{N} : \forall n \geq N, x_n > \Delta \text{ (limit is } \infty) \text{ or }$
 - $\forall \Delta > 0, \exists N \in \mathbb{N} : \forall n \geq N, x_n < -\Delta \text{ (limit is } -\infty).$

 (x_n) converges in the extended reals if it has a limit in the extended reals.

2. Further analysis of subsets of \mathbb{R}

2.1. Countability and uncountability

- **Definition**: A is **countable** if $A = \emptyset$, A is finite or there is a bijection $\varphi : \mathbb{N} \to A$ (in which case A is **countably infinite**). Otherwise A is **uncountable**. **Enumeration** is bijection from A to [n] or \mathbb{N} .
- **Proposition**: if surjection from countable set to A, or injection from A to countable set, then A is countable.
- **Proposition**: any subset of \mathbb{N} is countable.
- **Proposition**: \mathbb{Q} is countable.

• **Proposition**: show that if (a_n) is a nonnegative sequence and $\varphi : \mathbb{N} \to \mathbb{N}$ is a bijection then

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} a_{\varphi(n)}$$

• **Proposition**: show that if $(a_{n,k})$ is a nonnegative sequence and $\varphi: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ is a bijection then

$$\sum_{n=1}^{\infty}\sum_{n=1}^{\infty}a_{n,k}=\sum_{n=1}^{\infty}a_{\varphi(n)}$$

- **Definition**: $f: X \to Y$ is **monotone** if $x \ge y \Rightarrow f(x) \ge f(y)$ or $x \le y \Rightarrow f(x) \ge f(y)$.
- **Proposition**: let f be monotone on (a, b). Then it is discountinuous on a countable set.
- Lemma: set of sequences in $\{0,1\},$ $\{(x_n)_{n\in\mathbb{N}}: \forall n\in\mathbb{N}, x_n\in\{0,1\}\}$ is uncountable.
- **Theorem**: \mathbb{R} is uncountable.

2.2. The structure theorem for open sets

- Collection $\{A_i : i \in I\}$ of sets is (pairwise) disjoint if $n \neq m \Longrightarrow A_n \cap A_m = \emptyset$.
- Structure theorem for open sets: let $U \subseteq \mathbb{R}$ open. Then exists countable collection of disjoint open intervals $\{I_n : n \in \mathbb{N}\}$ such that $U = \bigcup_{n \in \mathbb{N}} I_n$.

2.3. Accumulation points and perfect sets

• **Definition**: $x \in \mathbb{R}$ is **accumulation point** of $E \subseteq \mathbb{R}$ if x is point of closure of $E - \{x\}$. Equivalently, x is a point of closure if

$$\forall \varepsilon>0, \exists y\in E: y\neq x \land |x-y|<\varepsilon$$

Equivalently, there exists a sequence of distinct $y_n \in E$ with $y_n \to x$ as $n \to \infty$.

- **Proposition**: set of accumulation points of \mathbb{Q} is \mathbb{R} .
- **Proposition**: set of accumulation points E' of E is closed.
- **Definition**: $E \subseteq \mathbb{R}$ is **isolated** if

$$\forall x \in E, \exists \varepsilon > 0 : (x - \varepsilon, x + \varepsilon) \cap E = \{x\}$$

- **Proposition**: E is isolated iff it has no accumulation points.
- **Definition**: bounded set E is **perfect** if it equals its set of accumulation points.
- **Theorem**: every non-empty perfect set is uncountable.

2.4. The middle-third Cantor set

• **Proposition**: let $\{F_n : n \in \mathbb{N}\}$ be collection of non-empty nested closed sets (so $F_{n+1} \subseteq F_n$), one of which is bounded. Then

$$\bigcap_{n\in\mathbb{N}}F_n\neq\emptyset$$

- **Definition**: the **middle third Cantor set** is defined by:
 - Define $C_0 := [0, 1]$

• Given $C_n = \bigcup_{i=1}^{2^n} [a_i, b_i], \ a_1 < b_1 < a_2 < \dots < a_{2^n} < b_{2^n}, \ \text{with} \ |b_i - a_i| = 3^{-n},$ define

$$C_{n+1} \coloneqq \cup_{i=1}^{2^n} \left[a_i, a_i + 3^{-(n+1)} \right] \cup \left[b_i - 3^{-(n+1)}, b_i \right]$$

which is a union of 2^{n+1} disjoint intervals, with all differences in endpoints equalling $3^{-(n+1)}$.

• The middle third Cantor set is

$$C \coloneqq \bigcap_{n \in \mathbb{N}} C_n$$

Observe that if a is an endpoint of an interval in C_n , it is contained in C.

- **Proposition**: the middle third Cantor set is closed, non-empty and equal to its set of accumulation points. Hence it is perfect and so uncountable.
- Definition: let $k \in \mathbb{N} \{1\}$, $x \in [0, 1)$. $0.a_1a_2...$, $a_i \in \{0, ..., k-1\}$, is a **k-ary** expansion of x if

$$x = \sum_{i \in \mathbb{N}} \frac{a_i}{k^i}$$

- **Remark**: the k-ary expansion may not be unique, but there is a countable set $E \subseteq [0,1)$ such that every $x \in [0,1) E$ has a unique k-ary expansion.
- Remark: for every $x \in C$, the ternary (k = 3) expansion of x is unique and

$$x = \sum_{i \in \mathbb{N}} \frac{a_i}{3^i}, \quad a_i \in \{0, 2\}$$

Moreover, every choice of sequence $(a_i),\,a_i\in\{0,2\},$ gives $x=\sum_{i\in\mathbb{N}}\frac{a_i}{3^i}\in C.$

• **Definition: Cantor-Lebesgue function**, $g:[0,1] \to [0,1]$, is defined by

$$g(x) \coloneqq \begin{cases} \sum_{i \in \mathbb{N}} \frac{a_i/2}{2^i} & \text{if } x = \sum_{i \in \mathbb{N}} \frac{a_i}{3^i}, a_i \in \{0, 2\} \\ \sup\{f(y) : y \in C, y \leq x\} & \text{if } x \notin C \end{cases}$$

g is a surjection, monotone and continuous.

2.5. G_{δ}, F_{σ}

- **Definition**: $E \subseteq \mathbb{R}$ is G_{δ} if $E = \bigcap_{n \in \mathbb{N}} U_n$ with U_n open.
- **Definition**: $E \subseteq \mathbb{R}$ is F_{σ} if $E = \bigcup_{n \in \mathbb{N}} F_n$ with F_n closed.
- Lemma: set of points where $f: \mathbb{R} \to \mathbb{R}$ is continuous is G_{δ} .

3. Construction of Lebesgue measure

3.1. Lebesgue outer measure

• **Definition**: let I non-empty interval with endpoints $a = \inf(I) \in \{-\infty\} \cup \mathbb{R}$ and $b = \sup(I) \in \mathbb{R} \cup \{\infty\}$. The **length** of I is

$$\ell(I) := b - a$$

and set $\ell(\emptyset) = 0$.

• **Definition**: let $A \subseteq \mathbb{R}$. **Lebesgue outer measure** of A is infimum of all sums of lengths of intervals covering A:

$$\mu^*(A) \coloneqq \inf \Biggl\{ \sum_{k \in \mathbb{N}} \ell(I_k) : A \subseteq \bigcup_{k \in \mathbb{N}} I_k, I_k \text{ intervals} \Biggr\}$$

It satisfies monotonicity: $A \subseteq B \Longrightarrow \mu^*(A) \le \mu^*(B)$.

• Proposition: outer measure is countably subadditive:

$$\mu^* \Biggl(\bigcup_{k \in \mathbb{N}} E_k \Biggr) \leq \sum_{k \in \mathbb{N}} \mu^*(E_k)$$

This implies finite subadditivity:

$$\mu^* \Biggl(\bigcup_{k=1}^n E_k \Biggr) \leq \sum_{k=1}^n \mu^*(E_k)$$

• Lemma: we have

$$\mu^*(A) = \inf \Biggl\{ \sum_{k \in \mathbb{N}} \ell(I_k) : A \subset \bigcup_{k \in \mathbb{N}} I_k, I_k \neq \emptyset \text{ open intervals} \Biggr\}$$

• **Proposition**: outer measure of interval is its length: $\mu^*(I) = \ell(I)$.

3.2. Measurable sets

- Notation: $E^c = \mathbb{R} E$.
- **Proposition**: let $E = (a, \infty)$. Then

$$\forall A \subseteq \mathbb{R}, \quad \mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap E^c)$$

• Definition: $E \subseteq \mathbb{R}$ is Lebesgue measurable if

$$\forall A \subseteq \mathbb{R}, \quad \mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap E^c)$$

Collection of such sets is \mathcal{F}_{u^*} .

• Lemma (excision property): let E Lebesgue measurable set with finite measure and $E \subseteq B$, then

$$\mu^*(B-E) = \mu^*(B) - \mu^*(E)$$

• **Proposition**: if $E_1,...,E_n$ Lebesgue measurable then $\cup_{k=1}^n E_k$ is Lebesgue measurable. If $E_1,...,E_n$ disjoint then

$$\mu^*\left(A\cap\bigcup_{k=1}^n E_k\right)=\sum_{k=1}^n \mu^*(A\cap E_k)$$

for any $A \subseteq \mathbb{R}$. In particular, for $A = \mathbb{R}$,

$$\mu^* \left(\bigcup_{k=1}^n E_k \right) = \sum_{k=1}^n \mu^*(E_k)$$

- Remark: not every set is Lebesgue measurable.
- **Definition**: collection of subsets of \mathbb{R} is an **algebra** if contains \emptyset and closed under taking complements and finite unions: if $A, B \in \mathcal{A}$ then $\mathbb{R} A, A \cup B \in \mathcal{A}$.
- Remark: a union of a countable collection of Lebesgue measurable sets is also the union of a countable disjoint collection of Lebesgue measurable sets: if $\{A_k\}_{k\in\mathbb{N}}$ is countable collection of Lebesgue measurable sets, then let $A_{1'}:=A_1$ and for k>1, define

$$A_{k'} \coloneqq A_k - \bigcup_{i=1}^{k-1} A_i$$

then $\{A_{k'}\}_{k\in\mathbb{N}}$ is disjoint union of Lebesgue measurable sets.

• **Proposition**: if E is countable union of Lebesgue measurable sets, then E is Lebesgue measurable. Also, if $\left\{E_k\right\}_{k\in\mathbb{N}}$ is countable disjoint collection of Lebesgue measurable sets then

$$\mu^* \bigg(\bigcup_{k \in \mathbb{N}} E_k \bigg) = \sum_{k \in \mathbb{N}} \mu^*(E_k)$$

3.3. Abstract definition of a measure

- **Definition**: let $X \subseteq \mathbb{R}$. Collection of subsets of \mathcal{F} of X is σ -algebra if
 - $\emptyset \in \mathcal{F}$
 - $E \in \mathcal{F} \Longrightarrow E^c \in \mathcal{F}$
 - $\bullet \ E_1,...,E_n \in \mathcal{F} \Longrightarrow \cup_{k \in \mathbb{N}} E_k \in \mathcal{F}.$
- Example:
 - Trivial examples are $\mathcal{F} = \{\emptyset, \mathbb{R}\}$ and $\mathcal{F} = \mathcal{P}(\mathbb{R})$.
 - Countable intersections of σ -algebras are σ -algebras.
- **Definition**: let \mathcal{F} σ -algebra of X. $\nu: \mathcal{F} \to \mathbb{R} \cup \{\pm \infty\}$ is **measure** satisfying
 - $\nu(\emptyset) = 0$
 - $\forall E \in \mathcal{F}, \nu(E) \geq 0$
 - Countable additivity: if $E_1, E_2, ... \in \mathcal{F}$ are disjoint then

$$\nu\!\left(\bigcup_{k\in\mathbb{N}}E_k\right) = \sum_{k\in\mathbb{N}}\nu(E_k)$$

Elements of \mathcal{F} are **measurable** (as they are the only sets on which the measure ν is defined).

- **Proposition**: if ν is measure then it satisfies:
 - Monotonicity: $A \subseteq B \Longrightarrow \nu(A) \le \nu(B)$.
 - Countable subadditivity: $\nu(\cup_{k\in\mathbb{N}} E_k) \leq \sum_{k\in\mathbb{N}} \nu(E_k).$
 - Excision: if A has finite measure, then $A \subseteq B \Longrightarrow m(B-A) = m(B) m(A)$.

3.4. Lebesgue measure

- Lemma: F_{μ^*} is σ -algebra and contains every interval.
- Theorem (Carathéodory extension): restriction of the μ^* to F_{μ^*} is a measure.

- Hahn extension theorem: there exists unique measure μ defined on \mathcal{F}_{μ^*} for which $\mu(I) = \ell(I)$ for any interval I.
- **Definition**: the measure μ of μ^* restricted to \mathcal{F}_{μ^*} is the **Lebesgue measure**. It satisfies $\mu(I) = \ell(I)$ for any interval I and is translation invariant.

3.5. Sets of measure 0

- **Proposition**: middle-third Cantor set is Lebesgue measurable and has Lebesgue measure 0.
- **Proposition**: any countable set is Lebesgue measurable and has Lebesgue measure 0.
- **Proposition**: any E with $\mu^*(E) = 0$ is Lebesgue measurable and has $\mu(E) = 0$.
- Lemma: let E Lebesgue measurable set with $\mu(E) = 0$, then $\forall E' \subseteq E, E'$ is Lebesgue measurable.

3.6. Continuity of measure

- **Definition**: countable collection $\{E_k\}_{k\in\mathbb{N}}$ is **ascending** if $\forall k\in\mathbb{N}, E_k\subseteq E_{k+1}$ and **descending** if $\forall k\in\mathbb{N}, E_{k+1}\subseteq E_k$.
- **Theorem**: every measure m satisfies:
 - If $\{A_k\}_{k\in\mathbb{N}}$ is ascending collection of measurable sets, then

$$m\bigg(\bigcup_{k\in\mathbb{N}}A_k\bigg)=\lim_{k\to\infty}m(A_k)$$

• If $\{B_k\}_{k\in\mathbb{N}}$ is descending collection of measurable sets and $m(B_1)<\infty$, then

$$m\bigg(\bigcap_{k\in\mathbb{N}}B_k\bigg)=\lim_{k\to\infty}m(B_k)$$

3.7. An approximation result for Lebesgue measure

• **Definition**: Borel σ -algebra $\mathcal{B}(\mathbb{R})$ is smallest σ -algebra containing all intervals: for any other σ -algebra \mathcal{F} containing all intervals, $\mathcal{B}(\mathbb{R}) \subseteq \mathcal{F}$.

$$\mathcal{B}(\mathbb{R})\coloneqq\bigcap\{\mathcal{F}:\mathcal{F}\ \sigma\ \text{-algebra containing all intervals}\}$$

 $E \in \mathcal{B}(\mathbb{R})$ is **Borel** or **Borel measurable**.

- Lemma: all open subsets of \mathbb{R} , closed subsets of \mathbb{R} , G_{δ} sets and F_{σ} sets are Borel.
- **Proposition**: the following are equivalent:
 - \bullet E is Lebesgue measurable
 - $\forall \varepsilon > 0, \exists \text{ open } G : E \subseteq G \land \mu^*(G E) < \varepsilon$
 - $\forall \varepsilon > 0, \exists \text{ closed } F : F \subseteq E \land \mu^*(E F) < \varepsilon$
 - $\exists G \in G_{\delta} : E \subseteq G \land \mu^*(G E) = 0$
 - $\exists F \in F_{\sigma} : F \subseteq E \land \mu^*(E F) = 0$

4. Measurable functions

4.1. Definition of a measurable function

- **Proposition**: let $f: \mathbb{R} \to \mathbb{R}$. f continuous iff \forall open $U \subseteq \mathbb{R}$, $f^{-1}(U) \subseteq \mathbb{R}$ is open.
- Lemma: let $f: E \to \mathbb{R} \cup \{\pm \infty\}$ with E Lebesgue measurable. The following are equivalent:
 - $\forall c \in \mathbb{R}, \{x \in E : f(x) > c\}$ is Lebesgue measurable.
 - $\forall c \in \mathbb{R}, \{x \in E : f(x) \ge c\}$ is Lebesgue measurable.
 - $\forall c \in \mathbb{R}, \{x \in E : f(x) < c\}$ is Lebesgue measurable.
 - $\forall c \in \mathbb{R}, \{x \in E : f(x) \leq c\}$ is Lebesgue measurable.

The same statement holds for Borel measurable sets.

- **Definition**: $f: E \to \mathbb{R} \cup \{\pm \infty\}$ is **(Lebesgue) measurable** if it satisfies any of the above properties and if E is Lebesgue measurable. f being **Borel measurable** is defined similarly.
- Corollary: if f is measurable then for every $B \in \mathcal{B}(\mathbb{R})$, $f^{-1}(B)$ is measurable. In particular, if f is measurable, preimage of any interval is measurable.
- **Definition**: **indicator function** on set A, $\mathbb{1}_A : \mathbb{R} \to \{0,1\}$, is

$$\mathbb{1}_A(x) \coloneqq \begin{cases} 1 \text{ if } x \in A \\ 0 \text{ if } x \notin A \end{cases}$$

• Definition: $\varphi : \mathbb{R} \to \mathbb{R}$ is simple (measurable) function if φ is measurable function that has finite codomain.

4.2. Fundamental aspects of measurable functions

- **Definition**: let $E \subseteq F \subseteq \mathbb{R}$, let $f: F \to \mathbb{R}$. **Restriction** f_E is function with domain E and for which $\forall x \in E, f_E(x) = f(x)$.
- **Definition**: real-valued function which is increasing or decreasing is **monotone**.
- **Definition**: sequence (f_n) on domain E is increasing if $f_n \leq f_{n+1}$ on E for all $n \in \mathbb{N}$.
- Example: continuous functions are measurable.
- **Definition**: for $f_1: E \to \mathbb{R}, ..., f_n: E \to \mathbb{R}$, define

$$\max\{f_1,...,f_n\}(x)\coloneqq \max\{f_1(x),...,f_n(x)\}$$

 $\min\{f_1,...,f_n\}$ is defined similarly.

- **Proposition**: for finite family $\{f_k\}_{k=1}^n$ of measurable functions with common domain E, $\max\{f_1,...,f_n\}$ and $\min\{f_1,...,f_n\}$ are measurable.
- **Definition**: for $f: E \to \mathbb{R}$, functions $|f|, f^+, f^-$ defined on E are

$$|f|(x)\coloneqq \max\{f(x),-f(x)\},\quad f^+(x)\coloneqq \max\{f(x),0\},\quad f^-(x)\coloneqq \max\{-f(x),0\}$$

- Corollary: if f measurable on E, so are |f|, f^+ and f^- .
- **Proposition**: let $f: E \to \mathbb{R} \cup \{\pm \infty\}$. For measurable $D \subseteq E$, f measurable on E iff restrictions of f to D and E D are measurable.
- Theorem: let $f, g: E \to \mathbb{R}$ measurable.
 - Linearity: $\forall \alpha, \beta \in \mathbb{R}, \alpha f + \beta g$ is measurable.
 - **Products**: fg is measurable.
- **Proposition**: let $f_n: E \to \mathbb{R} \cup \{\pm \infty\}$ be sequence of measurable functions that converges pointwise to $f: E \to \mathbb{R} \cup \{\pm \infty\}$. Then f is measurable.

• Simple approximation lemma: let $f: E \to \mathbb{R}$ measurable and bounded, so $\exists M \geq 0: \forall x \in E, |f|(x) < M$. Then $\forall \varepsilon > 0$, there exist simple measurable functions $\varphi_{\varepsilon}, \psi_{\varepsilon}: E \to \mathbb{R}$ such that

$$\forall x \in E, \quad \varphi_\varepsilon(x) \leq f(x) \leq \psi_\varepsilon(x) \land 0 \leq \psi_\varepsilon(x) - \varphi_\varepsilon(x) < \varepsilon$$

• Simple approximation theorem: let $f: E \to \mathbb{R} \cup \{\pm \infty\}$, E measurable. Then f is measurable iff there exists sequence (φ_n) of simple functions on E which converge pointwise on E to f and satisfy

$$\forall n \in \mathbb{N}, \forall x \in E, |\varphi_n|(x) \leq |f|(x)$$

If f is nonnegative, (φ_n) can be chosen to be increasing.

- **Definition**: let $f, g : E \to \mathbb{R} \cup \{\pm \infty\}$. Then f = g almost everywhere if $\{x \in E : f(x) \neq g(x)\}$ has measure 0.
- **Proposition**: let $f_1, f_2, f_3 : E \to \mathbb{R} \cup \{\pm \infty\}$ measurable. If $f_1 = f_2$ almost everywhere and $f_2 = f_3$ almost everywhere then $f_1 = f_3$ almost everywhere.
- **Remark**: Lebesgue measurable functions can be modified arbitrarily on a set of measure 0 without affecting measurability.
- **Proposition**: let $f_n : E \to \mathbb{R} \cup \{\pm \infty\}$ sequence of measurable functions, $f : E \to \mathbb{R} \cup \{\pm \infty\}$ measurable. Set of points where (f_n) converges pointwise to f is measurable.
- **Proposition**: let $f, g : E \to \mathbb{R} \cup \{\pm \infty\}$ measurable and finite almost everywhere on E.
 - Linearity: $\forall \alpha, \beta \in \mathbb{R}$, there exists function equal to $\alpha f + \beta g$ almost everywhere on E (any such function is measurable).
 - **Products**: there exists function equal to fg almost everywhere on E (any such function is measurable).
- **Definition**: sequence of functions (f_n) with domain E converge in measure to f if (f_n) and f are finite almost everywhere and

$$\forall \varepsilon>0, \quad \mu(\{x\in E: |f_n(x)-f(x)|>\varepsilon\})\to 0 \text{ as } n\to \infty$$

5. The Lebesgue integral

5.1. The integral of a simple measurable function

• **Definition**: let φ be real-valued function taking finitely many values $\alpha_1 < \dots < \alpha_n$, then **standard representation** of φ is

$$\varphi = \sum_{i=1}^n \alpha_i \mathbb{1}_{A_i}, \quad A_i = \varphi^{-1}(\{\alpha_i\})$$

• Lemma: let $\varphi = \sum_{i=1}^m \beta_i \mathbbm{1}_{B_i}$, B_i disjoint measurable collection, $\beta_i \in \mathbb{R}$, then φ is simple measurable. If φ takes value 0 outside a set of finite measure then

$$\sum_{i=1}^n \alpha_i \mu(A_i) = \sum_{i=1}^m \beta_i \mu(B_i)$$

where A_i in standard representation.

• **Definition**: let φ be simple nonnegative measurable function or simple measurable function taking value 0 outside set of finite measure. **Integral** of φ with respect to μ is

$$\int \varphi = \sum_{i=1}^n \alpha_i \mu(A_i)$$

where $\varphi = \sum_{i=1}^{n} \alpha_i \mathbb{1}_{A_i}$ is standard representation. Here, use convention $0 \cdot \infty = 0$. For measurable $E \subseteq \mathbb{R}$, define

$$\int_E \varphi = \int \mathbb{1}_E \varphi$$

- Example:
 - Let $\varphi_2 = \mathbb{1}_{[0,2]} + \mathbb{1}_{[1,3]} = \mathbb{1}_{[0,1)\cup(2,3]} + 2\mathbb{1}_{[1,2]}$ so $\int \varphi_2 = 4$.
 - Let $\varphi_3 = \mathbb{1}_{\mathbb{R}}$, then $\int \varphi_3 = 1 \cdot \infty = \infty$.
 - Let $\varphi_4 = \mathbb{1}_{(0,\infty)} + (-1)\mathbb{1}_{(-\infty,0)}$. This can't be integrated.
 - Let $\varphi_5 = \mathbb{1}_{(-1,0)} + (-1)\mathbb{1}_{(0,1)}$.
- Lemma: let $B_1,...,B_m$ be measurable sets, $\beta_1,...,\beta_m \in \mathbb{R} \{0\}$. Then $\varphi = \sum_{i=1}^m \beta_i \mathbb{1}_{B_i}$ is simple measurable function. Also,

$$\mu\!\left(\bigcup_{i=1}^m B_i\right) < \infty \Longrightarrow \sum_{i=1}^n \alpha_i \mu(A_i) = \sum_{i=1}^m \beta_i \mu(B_i)$$

where A_i in standard representation.

- **Proposition**: let φ, ψ be simple measurable functions:
 - If φ, ψ take value 0 outside a set of finite measure, then $\forall \alpha, \beta \in \mathbb{R}$,

$$\int (\alpha \varphi + \beta \psi) = \alpha \int \varphi + \beta \int \psi$$

• If φ, ψ nonnegative, then $\forall \alpha, \beta \geq 0$,

$$\int (\alpha \varphi + \beta \psi) = \alpha \int \varphi + \beta \int \psi$$

• Monotonicity:

$$0 \le \varphi \le \psi \Longrightarrow 0 \le \int \varphi \le \int \psi$$

• Corollary: let φ nonnegative simple function, then

$$\int \varphi = \sup \left\{ \int \psi : 0 \le \psi \le \varphi, \, \psi \text{ simple measurable} \right\}$$

- Lemma: let φ simple measurable nonnegative function. φ takes value 0 outside a set of finite measure iff $\int \varphi < \infty$. Also, $\int \varphi = \infty$ iff there exist $\alpha > 0$, measurable A with $\mu(A) = \infty$ and $\forall x \in A, \varphi(x) \geq \alpha$.
- Lemma: let $\{E_n\}$ be ascending collection of measurable sets, $\bigcup_{n\in\mathbb{N}} E_n = \mathbb{R}$. Let φ be simple nonnegative measurable function. Then

$$\int_{E_n} \varphi \to \int \varphi \quad \text{as } n \to \infty$$

5.2. The integral of a nonnegative function

- **Notation**: let \mathcal{M}^+ denote collection of nonnegative measurable functions $f: \mathbb{R} \to \mathbb{R}_{>0} \cup \{\infty\}.$
- **Definition**: **support** of measurable function f with domain E is $supp(f) := \{x \in E : f(x) \neq 0\}.$
- Definition: let $f \in \mathcal{M}^+$. Integral of f with respect to μ is

$$\int f \coloneqq \sup \biggl\{ \int \varphi : 0 \le \varphi \le f, \varphi \text{ simple measurable} \biggr\} \in \mathbb{R} \cup \{\infty\}$$

For measurable set E, define

$$\int_E f \coloneqq \int \mathbb{1}_E f$$

- **Proposition**: let f,g measurable. If $g \leq f$ then $\int g \leq \int f$. Let E,F measurable. If $E \subseteq F$ then $\int_E f \leq \int_F f$.
- Monotone convergence theorem: let (f_n) be sequence in \mathcal{M}^+ . If (f_n) is increasing on measurable set E and converges pointwise to f on E then

$$\int_{E} f_n \to \int_{E} f \quad \text{as } n \to \infty$$

• Corollary: restriction of integral to nonnegative functions is linear: $\forall f, g \in \mathcal{M}^+$, $\forall \alpha \geq 0$,

$$\int (f+g) = \int f + \int g$$
$$\int \alpha f = \alpha \int f$$

• Fatou's lemma: let (f_n) be sequence in $\mathcal{M}^+,$ then

$$\int \liminf_{n \to \infty} f_n \le \liminf_{n \to \infty} \int f_n$$

• Lemma: let $(f_n) \subset \mathcal{M}^+$, then

$$\int \sum_{n \in \mathbb{N}} f_n = \sum_{n \in \mathbb{N}} \int f_n$$

• Proposition (Chebyshev's inequality): let f be nonnegative measurable function on E. Then

$$\forall \lambda > 0, \quad \mu(\{x \in E : f(x) \ge \lambda\}) \le \frac{1}{\lambda} \int_E f(x) dx$$

• **Proposition**: let f be nonnegative measurable function on E. Then

$$\int_E f = 0 \Longleftrightarrow f = 0 \text{ almost everywhere on } E$$

5.3. Integration of measurable functions

- Notation: let \mathcal{M} denote set of measurable functions.
- Definition: $f \in \mathcal{M}^+$ is integrable if $\int f < \infty$.
- **Definition**: let $f: \mathbb{R} \to \mathbb{R} \cup \{\pm \infty\}$ measurable function. f is **integrable** if $\int f^+$ and $\int f^-$ are finite. In this case, for any measurable set E, define

$$\int_E f \coloneqq \int_E f^+ - \int_E f^-$$

Note that if f integrable then $f^+ - f^-$ is well-defined.

• Proposition: if $f=f_1-f_2,\,f_1,f_2\in\mathcal{M}^+,\,f_1,f_2$ integrable, then

$$\int f^+ - \int f^- = \int f_1 - \int f_2$$

- **Definition**: $f \in \mathcal{M}$ is **integrable over** E (E is measurable) if $\int_{E} f^{+}$ and $\int_{E} f^{-}$ are finite (i.e. $f \cdot \mathbb{1}_{E}$ is integrable).
- Theorem: $f \in \mathcal{M}$ is integrable iff |f| is integrable. If f integrable, then

$$\left| \int f \right| \le \int |f|$$

- Corollary: let $f, g \in \mathcal{M}$, $|f| \leq |g|$. If g integrable then |f| is integrable, and $\int |f| \leq \int |g|$.
- Example: sin is not integrable over \mathbb{R} , but is integrable over $[0, 2\pi]$, since $|f_{[0,2\pi]}| \leq \mathbb{1}_{[0,2\pi]}$.
- Theorem (Linearity of Integration): let $f, g \in \mathcal{M}$ integrable. Then f + g is integrable and $\forall \alpha \in \mathbb{R}$, αf is integrable. The integral is linear:

$$\int (f+g) = \int f + \int g$$
$$\int \alpha f = \alpha \int f$$

• Dominated Convergence Theorem: let (f_n) be sequence of integrable functions. If there exists an integrable g with $\forall n \in \mathbb{N}, |f_n| \leq g$, and $f_n \to f$ pointwise almost everywhere then f is integrable and

$$\int f = \lim_{n \to \infty} \int f_n$$

5.4. Integrability: Riemann vs Lebesgue

• Proposition: let f bounded function on bounded measurable domain E. Then f is measurable and $\int_E |f| < \infty$ iff

$$\sup \left\{ \int_E \varphi : \varphi \leq f, \varphi \text{ simple measurable} \right\} = \inf \left\{ \int_E \psi : f \leq \psi : \psi \text{ simple measurable} \right\}$$

(If f satisfies either condition then $\int_E f$ is equal to the two above expressions).

- **Definition**: bounded function f is **Lebesgue integrable** if it satisfies either of the equivalences in the above proposition.
- **Definition**: let $P = \{x_1, ..., x_n\}$ partition of $[a, b], f : [a, b] \to \mathbb{R}$ bounded. **Lower** and upper Darboux sums for f with respect to P are

$$L(f,P) \coloneqq \sum_{i=1}^n m_i(x_i - x_{i-1}), \quad U(f,P) \coloneqq \sum_{i=1}^n M_i(x_i - x_{i-1})$$

where

$$m_i \coloneqq \inf\{f(x): x \in (x_{i-1}, x_i)\}, \quad M_i \coloneqq \sup\{f(x): x \in (x_{i-1}, x_i)\}$$

If $P \subseteq Q$ (Q is a **refinement of P**), then

$$L(f,P) \le L(f,Q) \le U(f,Q) \le U(f,P)$$

• Definition: lower and upper Riemann integrals of f over [a, b] are

$$\underline{\mathcal{I}}_a^b(f) := \sup\{L(f, P) : P \text{ partition of } [a, b]\}$$

$$\overline{\mathcal{I}}_a^b(f)\coloneqq\inf\{U(f,P):P\text{ partition of }[a,b]\}$$

• **Definition**: let $f:[a,b] \to \mathbb{R}$ bounded, then f is **Riemann integrable** $(f \in \mathcal{R})$, if

$$\underline{\mathcal{I}}_a^b(f) = \overline{\mathcal{I}}_a^b(f)$$

and common value $\mathcal{I}_a^b(f) = \int_a^b f(x) dx$ is **Riemann integral** of f.

• Let $g:[a,b] \to \mathbb{R}$ step function with discontinuities at $P = \{x_0,...,x_n\}$, so $g = \sum_{i=1}^n \alpha_i \mathbb{1}_{(x_{i-1},x_i)}$ almost everywhere. So g is simple measurable and

$$L(g,P) = \sum_{i=1}^n \alpha_i(x_i - x_{i-1}) = U(g,P) = \int g = \mathcal{I}_a^b(g)$$

Hence for any bounded $f:[a,b] \to \mathbb{R}$,

$$\underline{\mathcal{I}}_a^b(f) = \sup \bigg\{ \int \varphi : \varphi \le f, \varphi \text{ step function} \bigg\},$$

$$\overline{\mathcal{I}}_a^b(f) = \inf \bigg\{ \int \psi : f \le \psi, \psi \text{ step function} \bigg\}$$

- **Theorem**: let $f:[a,b] \to \mathbb{R}$ bounded, $a,b \neq \pm \infty$. If f Riemann integrable over [a,b] then f Lebesgue integrable over [a,b] and the two integrals are equal.
- **Theorem**: let $f:[a,b] \to \mathbb{R}$ bounded, $a,b \neq \pm \infty$. Then f is Riemann integrable on [a,b] iff f is continuous on [a,b] except on a set of measure zero.
- Lemma: let (φ_n) , (ψ_n) be sequences of functions, all integrable over E, (φ_n) increasing on E, (ψ_n) decreasing on E. Let $f: E \to \mathbb{R}$ with

$$\forall n \in \mathbb{N}, \varphi_n \leq f \leq \psi_n \text{ on } E, \quad \lim_{n \to \infty} \int_E (\psi_n - \varphi_n) = 0$$

Then $\varphi_n, \psi_n \to f$ pointwise almost everywhere on E, f is integrable over E and

$$\lim_{n\to\infty}\int_E \varphi_n = \lim_{n\to\infty}\int_E \psi_n = \int_E f$$

• **Definition**: for partition $P = \{x_0, ..., x_n\}$, gap of P is

$$gap(P) := \max\{|x_i - x_{i-1}| : i \in \{1, ..., n\}\}\$$

• **Lemma**: let $f:[a,b] \to \mathbb{R}$, $E \subseteq [a,b]$ be set where f is continuous. Let (P_n) be sequence of partitions of [a,b] with $P_{n+1} \subseteq P_n$ and $gap(P_n) \to 0$ as $n \to \infty$. Let $\varphi_n, \psi_n:[a,b] \to \mathbb{R}$ step functions with

$$\varphi_n(x) \coloneqq \inf\{f(x) : x \in (x_{i-1}, x_i)\}, \quad \psi_n(x) \coloneqq \sup\{f(x) : x \in (x_{i-1}, x_i)\}$$

for $P_n = \{x_0, ..., x_n\}$. Then $\forall x \in E - \cup_{n \in \mathbb{N}} P_n$,

$$\varphi_n(x), \psi_n(x) \to f(x)$$
 as $n \to \infty$

• **Definition**: let $f:(a,b] \to \mathbb{R}$, $-\infty \le a < b < \infty$, f bounded and Riemann integrable on all closed bounded sub-intervals of (a,b]. If

$$\lim_{t \to a, t > a} \mathcal{I}_t^b(f)$$

exists then this is defined as the **improper Riemann integral** $\mathcal{I}_a^b(f)$. Similar definitions exist for $f:(a,b)\to\mathbb{R}$ and $f:[a,b)\to\mathbb{R}$.

- **Note**: improper Riemann integral may exist without function being Lebesgue integral.
- **Proposition**: if f is integrable, the improper Riemann integral is equal to the Lebesgue integral whenever the former exists.
- **Definition**: let $\alpha:[a,b]\to\mathbb{R}$ monotonically increasing (and so bounded). For partition $P=\{x_0,...,x_n\}$ of [a,b] and bounded $f:[a,b]\to\mathbb{R}$, define

$$L(f,P,\alpha)\coloneqq \sum_{i=1}^n m_i(\alpha(x_i)-\alpha(x_{i-1})),\quad U(f,P,\alpha)\coloneqq \sum_{i=1}^n M_i(\alpha(x_i)-\alpha(x_{i-1}))$$

where $m_i := \inf\{f(x) : x \in (x_{i-1}, x_i)\}$, $M_i := \sup\{f(x) : x \in (x_{i-1}, x_i)\}$. Then f is integrable with respect to α , $f \in \mathcal{R}(\alpha)$, if

$$\inf\{U(f,P,\alpha): P \text{ partition of } [a,b]\} = \sup\{L(f,P,\alpha): P \text{ partition of } [a,b]\}$$

and the common value $\int_a^b f d\alpha$ is the **Riemann-Stieltjes integral** of f with respect to α .

- **Proposition**: let $f:(a,b)\to\mathbb{R}$, then set of points where f is differentiable is measurable.
- **Remark**: if $\alpha:[0,1] \to [a,b]$ bijection, then

$$\int_0^1 f \circ \alpha \, \mathrm{d}\alpha = \int_a^b f(x) \, \mathrm{d}x$$

• **Proposition**: let α be monotonically increasing and differentiable with $\alpha' \in \mathcal{R}$. Then $g \in \mathcal{R}(\alpha)$ iff $g\alpha' \in \mathcal{R}$, and in that case,

$$\int_{a}^{b} g \, \mathrm{d}\alpha = \int_{a}^{b} g(x)\alpha'(x) \, \mathrm{d}x$$

• Remark: when g = 1, this says $\int_a^b 1 d\alpha = \alpha(b) - \alpha(a) = \int \alpha'(x) dx$, similar to the fundamental theorem of calculus.

6. Lebesgue spaces

6.1. Normed linear spaces

- **Definition**: let X be **complex linear space** (vector space over \mathbb{C}). $\|\cdot\|: X \to \mathbb{R}_{\geq 0}$ is **norm on** X if
 - $\forall x \in X, ||x|| = 0 \iff x = 0.$
 - $\forall x \in X, \forall \lambda \in \mathbb{C}, \|\lambda x\| = |\lambda| \|x\|.$
 - $\forall x, y \in X, ||x + y|| \le ||x|| + ||y||$.

X equipped with norm $\|\cdot\|$, $(X, \|\cdot\|)$, is called **complex normed linear space**.

- Example:
 - $||x|| = \sqrt{x\overline{x}}$ is norm on \mathbb{C} .
 - Let C[a,b] denote linear space of continuous real-valued functions on [a,b]. Then

$$\left\Vert f\right\Vert _{\max }:=\max\{\left\vert f(x)\right\vert :x\in \left[a,b\right]\}$$

is norm on C[a, b].

- **Proposition**: norm induces metric on X: d(x, y) = ||x y||.
- **Definition**: let $(X, \|\cdot\|)$ be normed linear space.
 - Sequence (f_n) in X is Cauchy sequence in X if

$$\forall \varepsilon>0, \exists N\in\mathbb{N}: \forall n,m\geq N, \quad \|f_n-f_m\|<\varepsilon$$

• Sequence (f_n) in X converges in $X, \|f_n - f\| \to 0$ as $n \to \infty$, if

$$\exists f \in X : \forall \varepsilon > 0, \exists N \in \mathbb{N} : \forall n \geq N, \quad \|f_n - f\| < \varepsilon$$

- $(X, \|\cdot\|)$ is **complete** if every Cauchy sequence converges in X.
- Banach space is complete normed linear space.
- **Proposition**: let $(X, \|\cdot\|)$ be normed linear space.
 - If (x_n) converges in X, (x_n) is Cauchy sequence in X.
 - Let (x_n) be Cauchy sequence in X. If (x_n) has convergent subsequence in X then (x_n) converges in X.

6.2. Lebesgue spaces L^p , $p \in [1, \infty)$

- **Definition**: let $p \in [1, \infty)$, $E \subseteq \mathbb{R}$.
 - Linear space $L^p(E)$ is defined as

$$L^p(E)\coloneqq \left\{f: E\to \mathbb{C}: f \text{ is measurable and } \int_E |f|^p<\infty\right\}/\cong$$

where $f \cong g$ iff f = g almost everywhere:

$$f\cong g \Longleftrightarrow \exists F\subseteq E: \mu(F)=0 \land \forall x\in E-F, f(x)=g(x)$$

• Define $\|\cdot\|_{L^p}: L^p(E) \to \mathbb{R}$ as

$$\left\|f\right\|_{L^p} \coloneqq \left(\int_E |f|^p\right)^{1/p}$$

- Remark:
 - We often consider space $L^p(E)$ of real-valued measurable functions $f: E \to \mathbb{R}$ such that $\int_E |f|^p < \infty$.
 - For $f: E \to \mathbb{C}$, $f = f_1 + if_2$, f is measurable iff $f_1: E \to \mathbb{R}$ and $f_2: E \to \mathbb{R}$ are measurable. Also,

$$\int_E |f|^p < \infty \Longleftrightarrow \left(\int_E |f_1|^p < \infty \wedge \int_E |f_2|^p < \infty \right)$$

- Example: let $E = \mathbb{R}$, $f(x) = \mathbb{1}_{\mathbb{R} \mathbb{Q}}(x) + i\mathbb{1}_{\mathbb{Q}}(x)$ and g(x) = 1. Then $\mu(\mathbb{Q}) = 0$ so $f \cong g$.
- **Proposition**: let $(f_n), (g_n)$ sequences of measurable functions, $\forall n \in \mathbb{N}, f_n \cong g_n$, $\lim_{n \to \infty} f_n = f$ and $\lim_{n \to \infty} g_n = g$. Then $f \cong g$.
- Definition: $p, q \in \mathbb{R}$ are conjugate exponents if p > 1 and $\frac{1}{p} + \frac{1}{q} = 1$.
- Lemma (Young's inequality): let p, q conjugate exponents, then

$$\forall A, B \in \mathbb{R}_{\geq 0}, \quad AB \leq \frac{A^p}{p} + \frac{B^q}{q}$$

with equality iff $A^p = B^q$.

• Lemma (Hölder's inequality): let p, q conjugate exponents. If $f \in L^p(E)$, $q \in L^q(E)$, then

$$\int_{E} |fg| \le \|f\|_{L^p} \|g\|_{L^q}$$

• Corollary (Cauchy-Schwarz inequality for $L^2(E)$): if $f,g\in L^2(E)$, then

$$\left| \int_E f \overline{g} \right| \leq \int_E |fg| \leq \left\| f \right\|_{L^2} \left\| g \right\|_{L^2}$$

• Lemma (Minkowski's inequality): let $p \in [1, \infty)$. If $f, g \in L^p(E)$ then $f + g \in L^p(E)$ and

$$\|f + g\|_{L^p} \le \|f\|_{L^p} + \|g\|_{L^p}$$

- Theorem: for $p \in [1, \infty), (L^p(E), \|\cdot\|_{L^p})$ is normed linear space.
- Proposition: let $1 \le p < q < \infty$. If $\overline{\mu}(E) < \infty$ then $L^q(E) \subseteq L^p(E)$ and

$$\|f\|_{L^p} \le \mu(E)^{\frac{1}{p} - \frac{1}{q}} \|f\|_{L^q}$$

- Remark:
 - Convergence in L^p is also called convergence in the mean of order p.
 - This notion of convergence is different to pointwise convergence, uniform convergence and convergence in measure.
- Riesz-Fischer theorem: for $p \in [1, \infty)$, $(L^p(E), \|\cdot\|_{L^p})$ is complete.

6.3. Lebesgue space L^{∞}

- Definition:
 - Let $f: E \to \mathbb{C}$ measurable. f is essentially bounded if

$$\exists M \geq 0 : |f(x)| \leq M$$
 almost everywhere on E

- $L^{\infty}(E)$ is collection of equivalence classes of essentially bounded functions where $f \cong g$ iff f = g almost everywhere.
- For $f \in L^{\infty}(E)$, define

$$\|f\|_{L^{\infty}} \coloneqq \operatorname{ess\,sup}|f| \coloneqq \inf\{M \in \mathbb{R} : \mu(\{x \in E : |f(x)| > M\}) = 0\}$$

- Proposition:
 - $0 \le |f(x)| \le \|f\|_{L^{\infty}}$ almost everywhere.
 - $||f||_{L^{\infty}}$ is norm on $L^{\infty}(E)$.
 - If $\tilde{f} \in L^1(E)$, $g \in L^{\infty}(E)$, then

$$\int_{F} \lvert fg \rvert \leq \left\lVert f \right\rVert_{L^{1}} \left\lVert g \right\rVert_{L^{\infty}}$$

- **Proposition**: let (f_n) sequence of functions in $L^{\infty}(E)$. Then (f_n) converges to $f \in L^{\infty}(E)$ iff there exists $G \subseteq E$ with $\mu(G) = 0$ and (f_n) converges to f uniformly on E G.
- Theorem: $(L^{\infty}(E), \|\cdot\|_{L^{\infty}})$ is complete.
- Remark: if $\mu(E) < \infty$, then $L^{\infty}(E) \subset L^{p}(E)$ for $p \in [1, \infty)$ and

$$||f||_{L^p} \le \mu(E)^{1/p} ||f||_{L^\infty}$$

since

$$\|f\|_{L^p}^p = \int_E |f|^p \le \int_E \|f\|_{L^\infty}^p \cdot \mathbb{1}_E = \|f\|_{L^\infty}^p \mu(E)$$

6.4. Approximation and separability

• **Definition**: let $(X, \|\cdot\|)$ be normed linear space. Let $F \subseteq G \subseteq X$. F is **dense in** G if

$$\forall q \in G, \forall \varepsilon > 0, \exists f \in F: \|f - q\| < \varepsilon$$

- Proposition:
 - F is dense in G iff for every $g \in G$, there exists sequence (f_n) in F such that $\lim_{n\to\infty} f_n = g$ in X.
 - For $F \subseteq G \subseteq H \subseteq X$, if F dense in G and G dense in H, then F dense in H.

- **Proposition**: let $p \in [1, \infty]$. Then subspace of simple functions in $(L^p(E), \|\cdot\|_{L^p})$ is dense in $(L^p(E), \|\cdot\|_{L^p})$.
- **Definition**: $\psi : \mathbb{R} \to \mathbb{R}$ is **step function** if it can be written as

$$\psi = \sum_{k=1}^N \tilde{a}_k \mathbb{1}_{(a_k,b_k)}$$

where the intervals (a_k, b_k) are disjoint.

- **Proposition**: let [a,b] be bounded, $p \in [1,\infty)$. Then subspace of step functions on [a,b] is dense in $(L^p([a,b]), \|\cdot\|_{L^p})$.
- **Definition**: normed linear space $(X, \|\cdot\|)$ is **separable** if there exists countable, dense subset $X' \subseteq X$.
- **Example**: \mathbb{R} is separable, since \mathbb{Q} is countable and dense in \mathbb{R} .
- Theorem: let $E \subseteq \mathbb{R}$ measurable, $p \in [1, \infty)$. Then $(L^p(E), \|\cdot\|_{L^p})$ is separable.
- **Proposition**: let $\varepsilon > 0$, $f \in L^p(E)$, $p \in [1, \infty)$. There exists continuous $g \in L^p(E)$ such that $||f g||_{L^p} < \varepsilon$.
- Remark: linear space of continuous functions that vanish outside bounded set is dense in $(L^p(E), \|\cdot\|_{L^p})$ for $p \in [1, \infty)$.
- Remark: differentiable functions are also dense in $(L^p(E), \|\cdot\|_{L^p})$ for $p \in [1, \infty)$.
- Remark: step functions and continuous functions are not dense in $(L^{\infty}(E),\|\cdot\|_{L^{\infty}}).$
- Example: in general, $(L^{\infty}(E), \|\cdot\|_{L^{\infty}})$ is not separable. Let [a, b] be bounded, $a \neq b$. Assume there is countable $\{f_n : n \in \mathbb{N}\}$ which is dense in $(L^{\infty}([a, b]), \|\cdot\|_{L^{\infty}})$. Then for every $x \in [a, b]$, can choose $g(x) \in \mathbb{N}$ such that

$$\left\|\mathbb{1}_{[a,x]}-f_{g(x)}\right\|_{L^\infty}<\frac{1}{2}$$

Also, for $x_1 \leq x_2$,

$$\left\| \mathbb{1}_{[a,x_1]} - \mathbb{1}_{[a,x_2]} \right\|_{L^\infty} = \begin{cases} 1 & \text{if } a \leq x_1 < x_2 \leq b \\ 0 & \text{if } x_1 = x_2 \end{cases}$$

and

$$\begin{split} \left\| \mathbb{1}_{[a,x_1]} - \mathbb{1}_{[a,x_2]} \right\|_{L^{\infty}} & \leq \left\| \mathbb{1}_{[a,x_1]} - f_{g(x_1)} \right\|_{L^{\infty}} + \left\| f_{g(x_1)} - f_{g(x_2)} \right\|_{L^{\infty}} + \left\| f_{g(x_2)} - \mathbb{1}_{[a,x_2]} \right\|_{L^{\infty}} \\ & < 1 + \left\| f_{g(x_1)} - f_{g(x_2)} \right\|_{L^{\infty}} \end{split}$$

If $g(x_1)=g(x_2)$ then $\left\|\mathbb{1}_{[a,x_1]}-\mathbb{1}_{[a,x_2]}\right\|_{L^\infty}=0$ so $g:[a,b]\to\mathbb{N}$ is injective. But \mathbb{N} is countable and [a,b] is not countable: contradiction.

6.5. Riesz representation theorem for $L^p(E)$, $p \in [1, \infty)$

• **Definition**: let X be linear space. $T: X \to \mathbb{R}$ is **linear functional** if

$$\forall f,g \in X, \forall a,b \in \mathbb{R}, \quad T(af+bg) = aT(f) + bT(g)$$

Any linear combination of linear functionals is linear, so set of linear functionals on linear space is also linear space.

• **Definition**: let $(X, \|\cdot\|)$ be normed linear space. $T: X \to \mathbb{R}$ is **bounded** functional if

$$\exists M \geq 0: \forall f \in X, \quad |T(f)| \leq M \|f\|$$

Norm of T, $||T||_*$, is the smallest such M.

• **Remark**: for bounded linear functional T on normed linear space $(X, \|\cdot\|)$,

$$|T(f) - T(g)| \le \|T\|_* \|f - g\|$$

This gives the following continuity property: if $f_n \to f \in X$, then $T(f_n) \to T(f)$.

• **Example**: let $E \subseteq \mathbb{R}$ measurable, $p \in [1, \infty)$, q conjugate to p. Let $h \in L^q(E)$. Define $T: L^p(E) \to \mathbb{R}$ by

$$T(f) = \int_E h \cdot f$$

By Holder's inequality,

$$|T(f)| = \left| \int_E hf \right| \leq \int_E |hf| \leq \left\| h \right\|_{L^q} \left\| f \right\|_{L^p}$$

So T is bounded linear functional.