Project Proposal By Tom Adoni We will look into the 'Auto MPG' dataset from UC Irvine ML Repository in order to explore trends in the automobile industry between 1970 and 1982. import pandas as pd In [2]: df = pd.read_fwf("auto-mpg.data") df.head() 18.0 8 307.0 130.0 3504. 12.0 70 1 "chevrolet chevelle malibu" Out[3]: **0** 15.0 8 350.0 165.0 3693.0 11.5 70 1 "buick skylark 320" **1** 18.0 8 318.0 150.0 3436.0 11.0 70 1 "plymouth satellite" "amc rebel sst" **2** 16.0 8 304.0 150.0 3433.0 12.0 70 1 **3** 17.0 8 302.0 140.0 3449.0 10.5 70 1 "ford torino" **4** 15.0 8 429.0 198.0 4341.0 10.0 70 1 "ford galaxie 500" Data Prep df.columns =['displacement', 'mpg', 'cylinders', 'horsepower', 'weight', 'acceleration', 'model_year', 'origin', 'car_name'] df.head() In [5]: cylinders horsepower weight acceleration Out[5]: displacement mpg model_year car_name 0 15.0 8 350.0 165.0 3693.0 11.5 70 1 "buick skylark 320" 1 18.0 8 318.0 150.0 3436.0 11.0 70 1 "plymouth satellite" 2 16.0 8 304.0 150.0 3433.0 12.0 70 1 "amc rebel sst' "ford torino" 17.0 8 302.0 140.0 3449.0 10.5 70 1 "ford galaxie 500" 70 15.0 8 429.0 198.0 4341.0 10.0 Data Viz import matplotlib.pyplot as plt plt.scatter(df['model_year'] , df['weight']) <matplotlib.collections.PathCollection at 0x25c339928e0> Out[6]: 5000 4500 4000 3500 3000 2500 2000 1500 70 72 76 Firstly, we can see that there is a downward trend in the car's weight as time goes on. In [7]: | plt.scatter(df['model_year'] , df['acceleration']) <matplotlib.collections.PathCollection at 0x25c33a9b9d0> Out[7]: 25.0 22.5 20.0 17.5 15.0 12.5 10.0 7.5 72 74 76 78 80 70 In [8]: plt.scatter(df['model_year'] , df['horsepower']) <matplotlib.collections.PathCollection at 0x25c33b168e0> Out[8]: 76 82 80 Next, we can see that there is an upward trend in the car's acceleration and horsepower as time advances. We will explore more trends later on in the project. We will evaluate which of these trends should influence a buyer's choice on these cars. In [9]: **import** numpy **as** np from sklearn.model_selection import train_test_split X = df.drop(['mpg', 'car_name', 'horsepower'], axis = 1) y = df['mpg']X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) from sklearn.linear_model import LogisticRegression model = LogisticRegression() In [11]: X.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 397 entries, 0 to 396 Data columns (total 6 columns): Column Non-Null Count displacement 397 non-null 0 float64 397 non-null 1 cylinders float64 397 non-null weight float64 acceleration 397 non-null float64 397 non-null model_year int64 5 origin 397 non-null int64 dtypes: float64(4), int64(2)memory usage: 18.7 KB In [12]: model.fit(X,y) C:\Users\12012\anaconda3\lib\site-packages\sklearn\linear_model_logistic.py:814: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression n_iter_i = _check_optimize_result(LogisticRegression() In [13]: from sklearn.metrics import accuracy_score # Make predictions on the test set y_pred = model.predict(X_test) # Calculate accuracy accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy) Accuracy: 0.9875 In [14]: model.coef_ array([[0.05562615, -0.52801455, 0.01404001, -0.00973865, 0.25676492, Out[14]: 0.02418031], [0.14923943, 0.01781396, -0.00627152, 0.19754163, 0.22874107, -0.04283349], [0.09976126, 0.03421766, -0.00177016, 0.02858663, 0.04711972,0.00148224], [-0.12101508, 0.18534167, -0.00333888, -0.07512431, -0.07717701,0.02724927], [-0.18361177, 0.29064126, -0.00265945, -0.1412653 , -0.4554487 , -0.01007833]]) In [15]: coef = pd.Series(index = X.columns, data = model.coef_[0]) coef.sort_values() cylinders -0.528015 Out[15]: acceleration -0.009739 0.014040 weight 0.024180 origin displacement 0.055626 model_year 0.256765 dtype: float64 The top indicators are cylinders and model year. Let's build a reduced model from them. reduced_cols = coef[coef.abs()> 0.1].index X_reduced = df[reduced_cols] In [18]: X_train_red, X_test_red, y_train, y_test = train_test_split(X_reduced, y, test_size=0.2, random_state=42) reduced_model = LogisticRegression() In [19]: reduced_model.fit(X_reduced, y) In [20]: C:\Users\12012\anaconda3\lib\site-packages\sklearn\linear_model_logistic.py:814: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression n_iter_i = _check_optimize_result(LogisticRegression() In [21]: # Make predictions on the test set y_pred_red = reduced_model.predict(X_test_red) # Calculate accuracy accuracy_red = accuracy_score(y_test, y_pred_red) print("Accuracy:", accuracy_red) Accuracy: 0.975 The first model is slightly better than the reduced model. Now, let's use KNN from sklearn.neighbors import KNeighborsRegressor from sklearn.metrics import mean_squared_error, r2_score # Create a k-NN regressor k_neighbors = 5 # Define the number of neighbors (you can adjust this) knn_regressor = KNeighborsRegressor(n_neighbors=k_neighbors) # Train the regressor on the training data knn_regressor.fit(X_train, y_train) # Make predictions on the test data y_pred = knn_regressor.predict(X_test) # Calculate evaluation metrics mse = mean_squared_error(y_test, y_pred) r2 = r2_score(y_test, y_pred) print(f"Mean Squared Error (MSE): {mse:.2f}") print(f"R-squared (R2): {r2:.2f}") Mean Squared Error (MSE): 0.22 R-squared (R2): 0.93 There is a good MSE and R^2 Now let's evaluate our model using bootstrapping from sklearn.ensemble import RandomForestRegressor # Number of bootstrap samples num_bootstrap_samples = 100 # Initialize lists to store evaluation metrics mse_scores = [] r2_scores = [] for _ in range(num_bootstrap_samples): # Create a bootstrap sample by resampling with replacement bootstrap_indices = np.random.choice(len(X), len(X), replace=True) X_bootstrap = X.iloc[bootstrap_indices] y_bootstrap = y.iloc[bootstrap_indices] # Split the bootstrap sample into a training and testing set X_train, X_test, y_train, y_test = train_test_split(X_bootstrap, y_bootstrap, test_size=0.3, random_state=42) # Use your pre-trained model to make predictions # Replace 'model' with your actual model y_pred = model.predict(X_test) # Calculate evaluation metrics mse = mean_squared_error(y_test, y_pred) r2 = r2_score(y_test, y_pred) # Append the scores to the lists mse_scores.append(mse) r2_scores.append(r2) # Calculate the average and standard deviation of evaluation metrics avg_mse = np.mean(mse_scores) $avg_r2 = np.mean(r2_scores)$ std_mse = np.std(mse_scores) $std_r2 = np.std(r2_scores)$ print(f"Average Mean Squared Error (MSE): {avg_mse:.2f}") print(f"Average R-squared (R2): {avg_r2:.2f}") print(f"Standard Deviation of MSE: {std_mse:.2f}") print(f"Standard Deviation of R2: {std_r2:.2f}") Average Mean Squared Error (MSE): 0.09 Average R-squared (R2): 0.97 Standard Deviation of MSE: 0.05 Standard Deviation of R2: 0.02 Everything is pointing to a good model. Now, let's try using bagging to enhance our model from sklearn.ensemble import BaggingRegressor from sklearn.tree import DecisionTreeRegressor # Create a base Decision Tree regressor base_model = DecisionTreeRegressor() # Create a Bagging Regressor with 5 base models bagging_model = BaggingRegressor(base_model, n_estimators=5, random_state=42) # Train the Bagging model bagging_model.fit(X_train, y_train) # Make predictions on the testing set y_pred = bagging_model.predict(X_test) # Evaluate the Bagging model mse = mean_squared_error(y_test, y_pred) # Display the results print(f'Mean Squared Error: {mse:.2f}') Mean Squared Error: 0.02 As we can see, the MSE is fantastic Now, let's implement Random Forest from sklearn.ensemble import RandomForestRegressor In [25]: # Create a Random Forest Regressor with 100 trees rf_model = RandomForestRegressor(n_estimators=100, random_state=42) # Train the Random Forest model rf_model.fit(X_train, y_train) # Make predictions on the testing set y_pred = rf_model.predict(X_test) # Evaluate the Random Forest model mse = mean_squared_error(y_test, y_pred) # Display the results print(f'Mean Squared Error: {mse:.2f}') Mean Squared Error: 0.02 The MSE is the same as the bagging one Now, let's implement boosting tree from sklearn.ensemble import GradientBoostingRegressor In [27]: # Create a Gradient Boosting Regressor with 100 trees gb_model = GradientBoostingRegressor(n_estimators=100, learning_rate=0.1, random_state=42) # Train the Gradient Boosting model gb_model.fit(X_train, y_train) # Make predictions on the testing set y_pred = gb_model.predict(X_test) # Evaluate the Gradient Boosting model mse = mean_squared_error(y_test, y_pred) # Display the results print(f'Mean Squared Error: {mse:.2f}') Mean Squared Error: 0.02 The same MSE for all methods so far Now, let's implement LASSO from sklearn.linear_model import Lasso # Create a Lasso model with alpha (regularization strength) lasso_model = Lasso(alpha=0.01) # Train the Lasso model lasso_model.fit(X_train, y_train) # Make predictions on the testing set y_pred = lasso_model.predict(X_test) # Evaluate the Lasso model mse = mean_squared_error(y_test, y_pred) # Display the results print(f'Mean Squared Error: {mse:.2f}') Mean Squared Error: 0.25 Lasso is the worst method we have used as it has higher MSE than the other three methods combined Everything about our model points to a fantastic model that will be able to predict mpg effectively