report.md 4/4/2019

How to use

1. compile: \$ make

or you can just specify gcc -03 -o train train.c and gcc -03 -o test test.c

2. execute

```
$ ./train 10 model_init.txt seq_model_05.txt ./results/model_05.txt
$ ./test ./results/modellist.txt testing_data1.txt result1.txt
```

執行環境

執行環境為 NTU CSIE 的工作站,詳細的環境如下

OS: Arch Linux 4.20.7

gcc: gcc version 8.2.1 20181127

程式架構

- train.cpp: 實作 Baum-Welch algorithm,這部分是照著維基百科的資料來做,對每一 sequence_model 計算完 alpha 和 beta,並且累加至 gamma 與 epsilon。為了更新 HMM 模型,當 sequence_model 都處理過一次時,以 sum_gamma_init 計算 gamma 初始機率的總和、sum_condition_gamma 計算當在時間 t 的觀測值與 v_k 相同時的 gamma 總和、sum_gamma 計算各個狀態在時間 t 時的 gamma 值 ... 等等,最後再計算出新的轉移機率、觀察機率以及初始機率,並更新 HMM。
- test.cpp: 實作 Viterbi Algorithm, 這部分是照著助教的投影片實作

分析結果與相關資料

我測試過訓練 10 次、50 次、100次、500次、1126次、3000次、5000次以及10000次的結果 發現 10 次時, testing_data1 的準確率只有 0.540800,但 50 次時卻顯著上升到 0.822800,100 次時為 0.810000、500 次時為 0.856000、1126 次時為 0.870400、3000 次時為 0.867600、5000 次時為 0.867600,最後 10000 次時為 0.868000。

可以看出,訓練次數 50 次後的模型表現趨於穩定,我最後選用訓練 1126 次的模型作為我這次作業的結果

iterations	10	50	100	500	1126	3000	5000	10000
acc	0.5408	0.8228	0.81	0.856	0.8704	0.8676	0.8676	0.868

• 下圖為 testing data 1 之 accuracy 對 training iteration 作圖

report.md 4/4/2019

• 也可以在我的 github 上找到相關的測試結果