Remote Databases and Firebase

Efficient Data Handling and Integration

SoftUni Team
Technical Trainers

Software University

https://softuni.bg

Have a Question?

#QA-Auto-FrontEnd

Table of Contents

- 1. Introduction to Remote Databases
- 2. Types of Remote Databases
- 3. Performance and Scalability
- 4. Firebase Overview
- 5. Firebase Firestore
- 6. Live Demo

Introduction

What is Remote Database?

- Centralized storage system accessed over a network, enabling users to store and retrieve data from locations separate from where the data is used or generated
- Data processing flow:
 - User sends a request to the application server
 - Application server interacts with the remote database
 - Remote database processes the request and sends a response back to the application server, which then forwards it to the user

Remote Database Capabilities

- Centralized storage: Data is stored in a single location accessible from multiple locations or devices
- Remote access: Users can access the database over a network, such as the internet, from anywhere
- Data synchronization: Changes made to the database are synchronized across all connected devices or locations in real-time

Remote Database Capabilities

- Scalability: Remote databases can easily scale to accommodate growing amounts of data and users
- Security: Remote databases often implement robust security measures to protect data from unauthorized access or breaches
- Collaboration: Multiple users can access and work with the same dataset concurrently, facilitating collaboration among teams or users in different locations

Local Database vs. Remote Database

- Pros of Local Database:
 - Faster access
 - Greater control over privacy
 - Works well offline
 - Lower dependency on network connectivity
 - Simplified data management on a single device

- Pros of Remote Database:
 - Centralized access from anywhere
 - Real-time collaboration among multiple users
 - Scalability to handle large datasets and user bases
 - Automatic data synchronization across devices
 - Enhanced security measures and backup options

Local Database vs. Remote Database

- Cons of Local Database:
 - Limited accessibility from other devices
 - Dependency on device storage capacity
 - Difficulty in syncing data across multiple devices
 - Data loss risk if the device is damaged or lost
 - Challenges in sharing data among multiple users

- Cons of Remote Database:
 - Reliance on network connectivity;
 disruptions can affect access
 - Potential security vulnerabilities due to remote access
 - Dependency on third-party service providers
 - Costs associated with data storage and usage
 - Compliance concerns regarding data jurisdiction and regulations

Remote Databases Types

Based on Architecture, Accessibility, Data organization

By Architecture and Accessibility

Cloud-based databases:

- Hosted on cloud platforms
- Provide scalable and flexible storage solutions
- Accessible from anywhere with an internet connection

Hosted databases:

- Managed databases provided by third-party service providers
- Offer remote access and administration without the need for maintaining infrastructure

By Architecture and Accessibility

Database as a Service (DBaaS):

- Fully managed database services
- Handle administrative tasks like backups, updates, and scaling
- Allow users to focus on application development

Replicated databases:

- Databases with multiple synchronized copies
- Distributed across different locations or servers
- Ensure data availability and redundancy for disaster recovery and high availability

- Remote databases can be characterized based on their structured organization of data as:
 - Relational Databases
 - NoSQL Databases
 - Key-Value Stores
 - Document-Oriented Databases
 - Graph Databases

Relational Databases:

- Structured data organized in tables with predefined schemas
- Utilizes SQL for querying and manipulation
- Suitable for transactional systems and complex queries

NoSQL Databases:

- Schema-less or flexible schema structure
- Designed for scalability, performance, handling unstructured data
- Common types include document, key-value, column-family, and graph databases

Key-Value Stores:

- Simple data model consisting of key-value pairs
- Fast and scalable for high-volume read/write operations
- Ideal for caching, session management, and user preferences
- Document-Oriented Databases:
 - Stores data in flexible, JSON-like documents
 - Supports nested structures and dynamic schemas
 - Well-suited for content management, blogging platforms, and realtime analytics

Graph Databases:

- Data stored in nodes and edges to represent relationships
- Enables efficient querying of complex relationships and networks
- Useful for social networks, recommendation systems, and fraud detection

Performance and Scalability

Quick and efficiently data processing

Database Performance

- Refers to how quickly and efficiently the system can respond to requests and process data
- Includes factors such as:
 - Response time
 - Throughput
 - Latency
 - Resource utilization
- Achieving good performance involves optimizing various aspects of the database system, including hardware, software, and data model

Optimizing Performance

- To improve database performance, consider implementing these strategies:
 - Optimized Queries: Write efficient queries that retrieve only the necessary data. Use appropriate indexes to speed up data retrieval
 - Data Modeling: Design an efficient data model that minimizes redundant data and maximizes query performance
 - Indexing: Create indexes on frequently queried columns to speed up data retrieval operations

Optimizing Performance

- Caching: Implement caching mechanisms to store frequently accessed data in memory, reducing the need for repeated database queries
- Hardware Optimization: Use high-performance hardware components such as fast storage devices, sufficient memory, and powerful processors to improve database performance
- Query Optimization: Analyze query execution plans and optimize them using techniques such as query rewriting, join optimization, and parallel processing

Database Scalability

- Refers to the ability of a system to handle increasing workload by adding resources or expanding its capacity without significantly impacting performance
- Two main types of scalability:
 - Vertical Scalability
 - Horizontal Scalability

Vertical Scalability

- Known as "Scaling up"
- Involves increasing the capacity of individual hardware components
- For example, upgrading to a more powerful server with:
 - Higher CPU
 - Memory
 - Storage capacity
- Vertical scalability has its limits and can become expensive or impractical beyond a certain point

Horizontal Scalability

- Also known as "Scaling out"
- Involves adding more instances of the database system across multiple servers or nodes
- Horizontal scalability allows the workload to be distributed across multiple machines, thereby increasing overall capacity and performance
- Often involves techniques such as:
 - Sharding
 - Replication
 - Load balancing

DB Scalability Strategies

- Designing the database system to support scalability involves structuring it for both horizontal and vertical expansion:
 - Horizontal Scaling
 - Design the database system to support distributed architectures (sharding data across multiple nodes, implementing replication for fault tolerance and load balancing)
 - Vertical Scaling
 - Choose hardware components that can be easily upgraded (servers with expandable memory and storage capacity)
 - Use technologies that support vertical scalability (database clustering and partitioning)

Firebase Overview

- Comprehensive platform developed by Google for building web and mobile applications. Provides a wide range of tools and services
- Offers features as:
 - Real-time database
 - Authentication
 - Cloud storage
 - Hosting and Analytics
- Firebase Platform

Firebase Realtime Database

- The Firebase Realtime Database is a cloud-hosted, NoSQL database, that:
 - Store data as JSON
 - Synchronize data in real time
 - Remains available when app goes offline

Firebase Realtime DB - Introduction

Firebase Authentication

- Provide a service for user sign-in authentication
- Two types for its implementation:
 - FirebaseUI Auth complete drop-in auth solution
 - Firebase SDK Authentication as:
 - Email and password based authentication
 - Federated identity provider integration
 - Phone number authentication
 - Custom auth system integration
 - Anonymous auth
- Firebase Authentication Introduction

Cloud Storage for Firebase

- Build on Google Cloud infrastructure for app development
- Provide object storage service for:
 - Storing images, audio, video, or other user-generated content
 - Access controls for files using declarative security language
 - Integrate with Firebase Authentication to identify users

Cloud Storage - Introduction

Firebase Hosting and Analytics

- Provides production-grade web content hosting
- Allows quick deploy of web application and serve both static and dynamic content to a global CDN (content delivery network)
- Google Analytics integrates across Firebase features and provides unlimited reporting for up to 500 distinct events that can be defined using the Firebase SDK
- Analytics reports help understand clearly how users behave, which enables informed decisions regarding app marketing and performance optimization
- Google Analytics for Firebase Introduction
- Firebase Hosting Introduction

Cloud Firestore

Strategies and Tools for Efficient Software Testing

Firestore introduction

- Cloud Firestore is a flexible, scalable database for mobile, web,
 and server development from Google
- Part of the Firebase platform, offering a NoSQL, document-oriented database
- Designed to store and synchronize data for client- and serverside development, making it suitable for real-time applications
- Cloud Firesore Introduction
- Cloud Firestore link

Cloud Firestore Key Features:

- Scalability: Automatically scales based on your application's needs, handling large amounts of data and traffic without manual intervention
- Real-time updates: Offers real-time synchronization, changes to data on one device are immediately propagated to other connected devices
- Offline support: Apps can continue to function even when offline, syncing data automatically when connectivity is restored
- Security: Provides security rules that allow fine-grained control over who can access specific data and under what conditions
- Querying: Supports querying and indexing data, allowing for efficient retrieval of information
- Integration: Seamlessly integrates with other Firebase products (Firebase Authentication, Cloud Functions, and Cloud Storage)

Cloud Firestore vs. Realtime Database

Cloud Firestore:

- Stores data as collections of documents
- Offline support for Apple,
 Android, and web clients
- Indexed queries with compound sorting and filtering
- Advanced write and transaction operations

Firebase Realtime DB:

- Stores data as one large JSON tree
- Offline support for Apple and Android clients
- Deep queries with limited sorting and filtering features
- Basic write and transaction operations

Cloud Firestore vs. Realtime Database

Cloud Firestore:

- Regional and multi-region solution that scales automatically
- Extremely high uptime performance
- Scaling is automatic
- Non-cascading rules that combine authorization and validation

Firebase Realtime DB:

- Realtime Database is a regional solution
- High uptime performance
- Scaling requires sharding
- Cascading rules language that separates authorization and validation

Live Demo

Firebase and Remote databases (Lab)

Summary

- What is Remote Database?
- Remote Databases capabilities
- Local DB vs. Remote DB
- What is Performance and Scalability?
- DB Performance realization
- Horizontal and Vertical Scalabilities
- Firebase platform and tools
- Cloud Firestore

Questions?

SoftUni Diamond Partners

Coca-Cola HBC Bulgaria

Решения за твоето утре

Trainings @ Software University (SoftUni)

- Software University High-Quality Education,
 Profession and Job for Software Developers
 - softuni.bg, about.softuni.bg
- Software University Foundation
 - softuni.foundation
- Software University @ Facebook
 - facebook.com/SoftwareUniversity

License

- This course (slides, examples, demos, exercises, homework, documents, videos and other assets) is copyrighted content
- Unauthorized copy, reproduction or use is illegal
- © SoftUni https://about.softuni.bg/
- © Software University https://softuni.bg

