MDS6212 Fintech Theory and Practice: Week 1 Assignment

220041006 Yihang Li

Data confidential requirements:

- · Do not share datasets with others
- Do not post datasets on the Web site
- Datasets can only be used to work on assignments of MDS6212, M.Sc. in Data Science, CUHK-Shenzhen.

Datasets

- Week 1 Data.csv
- Week 1 Variable descriptions.xlsx

Reference, Dai, Lili, Jianlei Han, Jing Shi, and Bohui Zhang, 2020, Digital Footprints as Collateral for Debt Collection, working paper.

Q1

1) Present a table of summary statistics for the key variables including the borrower's age the borrower has a frequent contact, approval dummy, and delinquency dummy

	age	$instalments_amount$	nominalrates	creditlevelasbuyer	tencentscore	gaodescore
count	5000.000000	5000.000000	4997.000000	4031.000000	5000.000000	5000.000000
mean	27.675400	406201.420000	0.276058	53.119077	58.608168	0.201975
std	8.326146	130623.360240	0.085912	108.629757	14.218112	0.076724
min	18.000000	50000.000000	0.130080	0.000000	9.000000	0.023518
25%	21.000000	320000.000000	0.204560	0.000000	53.888889	0.192094
50%	25.000000	398000.000000	0.204579	14.000000	60.200000	0.192094
75%	32.000000	498000.000000	0.359347	58.000000	65.258929	0.192094
max	56.000000	869000.000000	0.494185	1830.000000	98.000000	0.732120

	gender	highcontact	deal	default
False	4267	2539	2793	1280
True	733	2461	2207	925

Important step: filling missing values of default. (See in *.html)

0.1305

0.035

3.765 0.000

0.063 0.198

2) Perform a logit regression and examine the relation between the delinquency likelihood and credit scores

Using LogisticRegression from sklearn

```
In [32]:
          q2_X = Key_Data[['creditlevelasbuyer', 'tencentscore', 'gaodescore']]
          q2_y = Key_Data['default']
q2_X = scaler.fit(q2_X).transform(q2_X)
In [33]: q2_logit = LogisticRegression().fit(q2_X, q2_y.astype(bool))
          score:float
            • Mean accuracy of self.predict(X) wrt. y.
In [34]: q2_logit.score(q2_X, q2_y.astype(bool))
Out[34]: 0.7217671878878134
In [35]: q2_logit.coef_
Out[35]: array([[0.10413267, 0.31336157, 0.13033775]])
          Using Logit from statsmodels
In [36]: import statsmodels.api as sm
q2_X = scaler.fit(q2_X).transform(q2_X)
          q2_X = sm.add_constant(q2_X)
In [38]: q2\_model = sm.Logit(q2\_y, q2\_X)
          q2_result = q2_model.fit()
          Optimization terminated successfully.
                    Current function value: 0.580266
                    Iterations 5
In [39]: q2_result.summary()
Out[39]:
          Logit Regression Results
             Dep. Variable:
                                 default
                                       No. Observations:
                                                           4029
                   Model:
                                  Logit
                                           Df Residuals:
                                                           4025
                                   MLE
                  Method:
                                              Df Model:
                                                             3
                    Date: Sat, 26 Sep 2020
                                          Pseudo R-squ.:
                                                        0.01901
                                20:28:39
                                         Log-Likelihood:
                    Time:
                                                         -2337.9
               converged:
                                   True
                                               LL-Null:
                                                         -2383.2
           Covariance Type:
                               nonrobust
                                            LLR p-value: 1.605e-19
                                   z P>|z| [0.025 0.975]
                   coef std err
           const -0.9781
                        0.036
                              -27.192 0.000 -1.049 -0.908
             x1
                0.1044
                         0.035
                                2.979 0.003
                                           0.036
                                                 0.173
                 0.3138
                         0.038
                                8.161 0.000
                                           0.238
                                                  0.389
```

3) Perform a logit regression and examine the relation between the loan approval likelihood and credit scores

Using LogisticRegression from sklearn

Using Logit from statsmodels

```
In [44]: q3_X = Key_Data[['creditlevelasbuyer', 'tencentscore', 'gaodescore']]
    q3_y = Key_Data['deal']
    q3_X = scaler.fit(q3_X).transform(q3_X)
    q3_X = sm.add_constant(q3_X)

In [45]: q3_model = sm.Logit(q3_y, q3_X)
    q3_result = q3_model.fit()

    Optimization terminated successfully.
        Current function value: 0.658019
        Iterations 5

In [46]: q3_result.summary()
```

Out[46]: Logit Regression Results

Dep. Variable:	deal	No. Observations:	4029
Model:	Logit	Df Residuals:	4025
Method:	MLE	Df Model:	3
Date:	Sat, 26 Sep 2020	Pseudo R-squ.:	0.04411
Time:	20:28:39	Log-Likelihood:	-2651.2
converged:	True	LL-Null:	-2773.5
Covariance Type:	nonrobust	LLR p-value:	9.324e-53

```
        const
        std err
        z
        P>|z|
        [0.025
        0.975]

        const
        -0.1993
        0.033
        -6.098
        0.000
        -0.263
        -0.135

        x1
        0.2019
        0.039
        5.182
        0.000
        0.126
        0.278

        x2
        -0.3976
        0.035
        -11.445
        0.000
        -0.466
        -0.329

        x3
        -0.1589
        0.035
        -4.580
        0.000
        -0.227
        -0.091
```

4) Perform a logit regression and examine the relation between the loan approval likelihood and the dummy whether the borrower has a frequent contact

Using LogisticRegression from sklearn

```
In [48]: q4_logit = LogisticRegression().fit(q4_X, q4_y.astype(bool))
In [49]: q4_logit.score(q4_X, q4_y.astype(bool))
Out[49]: 0.5487714072970961
In [50]: q4_logit.coef_
Out[50]: array([[0.08461788]])
```

const -0.1961 0.032 -6.187 0.000 -0.258 -0.134 **x1** 0.0847 0.032 2.672 0.008 0.023 0.147

```
Using Logit from statsmodels
In [51]: q4_X = Key_Data['highcontact']
   q4_y = Key_Data['deal']
   q4_X = scaler.fit(q4_X.values.reshape(-1, 1)).transform(q4_X.values.reshape(-1, 1))
   q4_X = sm.add_constant(q4_X)
Optimization terminated successfully.

Current function value: 0.687495
                    Iterations 4
In [53]: q4_result.summary()
Out[53]: Logit Regression Results
           Dep. Variable: deal No. Observations:
                                                           4029
                                           Df Residuals:
                                   Logit
                  Method: MLE
                                           Df Model:
                                                          1
                    Date: Sat, 26 Sep 2020 Pseudo R-squ.: 0.001289
                Time: 20:28:39 Log-Likelihood: -2769.9
                                  True
                                              LL-Null: -2773.5
                converged:
           Covariance Type: nonrobust LLR p-value: 0.007503
                coef std err z P>|z| [0.025 0.975]
```