

Fundamentos de Inteligência Artificial

Módulo 01

Anderson Cruz, Me

Você pensou algo assim?

ROSIE 1962

C3PO e R2D2 1977

T-800 1984

DAVID 2001

Conceitualmente

Uma Inteligência Artificial (IA) é um sistema computacional capaz de realizar tarefas que normalmente exigiriam inteligência humana. Isso inclui habilidades como raciocínio, aprendizado, percepção e tomada de decisão.

Conceitualmente

Uma Inteligência Artificial (IA) é um sistema computacional capaz de realizar tarefas que normalmente exigiriam inteligência humana. Isso inclui habilidades como raciocínio, aprendizado, percepção e tomada de decisão.

Em termos simples, uma IA é um conjunto de algoritmos projetados para processar informações, aprender com experiências e tomar decisões de forma autônoma ou sem intervenção humana direta.

Antes de 1940

- Inspirações filosóficas
- Lógicas formais
- Representações Matemáticas

- Inspirações filosóficas
- Lógicas formais
- Representações Matemáticas

1940-1970

- Nascimento da IA
- Jogo da imitação
- Máquina para imitar cérebro humano

- Inspirações filosóficas
- Lógicas formais
- Representações Matemáticas

1940-1970

- Nascimento da IA
- Jogo da imitação
- Máquina para imitar cérebro humano

1970 - 1990

- Inverno da IA
- Limitações tecnológicas
- Corte de financiamento
- Falta de interesse

- Inspirações filosóficas
- Lógicas formais
- Representações Matemáticas

1940-1970

- Nascimento da IA
- Jogo da imitação
- Máquina para imitar cérebro humano

1970 - 1990

- Inverno da IA
- Limitações tecnológicas
- Corte de financiamento
- Falta de interesse

1990 - 2010

- Crescimento da Internet
- Geração de dados
- Primeiros resultados
- Classificações

- Inspirações filosóficas
- Lógicas formais
- Representações Matemáticas

1940-1970

- Nascimento da IA
- Jogo da imitação
- Máquina para imitar cérebro humano

1970 - 1990

- Inverno da IA
- Limitações tecnológicas
- Corte de financiamento
- Falta de interesse

1990 - 2010

- Crescimento da Internet
- Geração de dados
- Primeiros resultados
- Classificações

2010 - 2020

- Avanço tecnológicos
- Algoritmos complexos
- Reinventar análise de dados

- Inspirações filosóficas
- Lógicas formais
- Representações Matemáticas

1940-1970

- Nascimento da IA
- Jogo da imitação
- Máquina para imitar cérebro humano

1970 - 1990

- Inverno da IA
- Limitações tecnológicas
- Corte de financiamento
- Falta de interesse

1990 - 2010

- Crescimento da Internet
- Geração de dados
- Primeiros resultados
- Classificações

2010 - 2020

- · Avanço tecnológicos
- Algoritmos complexos
- Reinventar análise de dados

2020 – atualmente

- IA Generativa
- Contextualização
- Adaptação

Estra égia
Treinamentos

Diferencial

Diferencial

Diferencial

- Reconhecer padrões
- → Entrada → Saída fixa
- Machine learning clăssico
- Diagnóstico, previsão, decísão

- Criar novos conteúdos
- → Entrada → Saída críativa e variável
- Modelos generativos
- Redação de textos, imagens, vídeos

Aplicações

Educação: geração de conteúdo didático, correção de provas, simulados, conversação.

Aplicações

Educação: geração de conteúdo didático, correção de provas, simulados.

<u>Marketing</u>: criação de posts/logos, roteiros, slogans, imagens publicitárias.

Aplicações

Educação: geração de conteúdo didático, correção de provas, simula

Marketing: criação de posts/logos, roteiros, slogans, imagens publicit

04-06 Wadi

<u>Saúde</u>: síntese de relatórios médicos, geração de imagens para diagnóstico.

Aplicações

Educação: geração de conteúdo didático, correção de provas, s

Marketing: criação de posts/logos, roteiros, slogans, imagens p

Saúde: síntese de relatórios médicos, geração de imagens para

Finanças: projeções de custos, análise de variáveis de mercado, "trading"

Aplicações

Educação: geração de conteúdo didático, correção de provas, simulados.

Marketing: criação de posts/logos, roteiros, slogans, imagens publ

Saúde: síntese de relatórios médicos, geração de imagens para d

Finanças: projeções de custos, análise de variáveis de mercado,

Book Publishing

Advertising

Film & TV

Entretenimento: roteiros de filmes, personagens virtuais, trilhas sonoras.

Aplicações

Educação: geração de conteúdo didático, correção de provas, simulados.

Marketing: criação de posts/logos, roteiros, slogans, imagens pub

Saúde: síntese de relatórios médicos, geração de imagens para c

Finanças: projeções de custos, análise de variáveis de mercado,

It common to 2 (report between 1 postular) | Description of the 1 postular | Descript

Entretenimento: roteiros de filmes, personagens virtuais, trilhas sonoras.

TI e DevOps: geração automática de código e documentação.

- Exemplos
 - AKINATOR
 - "Adivinhar seus pensamentos";
 - Perguntas eliminatórias;
 - Probabilidades para a próxima pergunta;
 - Extração de características;
 - Árvore de decisão;

- Exemplos
 - Assistentes Virtuais

- Exemplos
 - Recomendações de conteúdos

- Exemplos
 - Piloto automático Tesla

- Exemplos
 - Carros autônomos

- Exemplos
 - Entregas automatizadas

- Exemplos
 - Gerenciamento de armazéns

Redes Neurais

- Modelos computacionais inspirados no funcionamento do cérebro humano;
- Simulam neurônios e suas conexões para compreensão de padrões em dados;

Redes Neurais

- Emoções diferentes ativam diferentes áreas do cérebro;
- Sinapses que ativam diferentes conjuntos de neurônios conectados;

- Redes Neurais
 - Anatomia de um neurônio:
 - Dendritos: entrada de sinais
 - Corpo celular/Núcleo: Processamento de sinais
 - Axônio: Envio de impulsos para próximos neurônios/dendritos

- Redes Neurais
 - Perceptron: representação matemática de um neurônio

$$y = \sigma\left(\sum_{i=1}^n w_i x_i + b\right)$$

Redes Neurais

- Perceptron: representação matemática de um neurônio
- Calma, não é tão assustador assim! (essa parte)

$$y = \sigma \left(\sum_{i=1}^n w_i x_i + b
ight)$$

- Redes Neurais
 - Sequência de perceptrons conectados formam uma rede neural;

Redes Neurais

- Sequência de perceptrons conectados formam uma rede neural;
- Camadas: Entrada, Oculta (1..n) e Saída

Redes Neurais e Aprendizado Profundo Treinamentos

Redes Neurais

- Processo de aprendizado
 - Variação de acordo com objetivos, dados, recursos;
 - Vamos treinar

- Aprendizado Profundo (Deep learning)
 - Redes com muitas camadas ocultas para representações complexas;
 - Diferentes técnicas para abordar dados com características diferentes;

Redes Neurais e Aprendizado Profundo Treinamentos

- Treinamento de lA's Generativa
 - IA's usam redes neurais específicas para aprender;

- Treinamento de lA's Generativa
 - IA's usam redes neurais específicas para aprender;
 - Redes adversariais (GAN's);

- Treinamento de lA's Generativa
 - IA's usam redes neurais específicas para aprender;
 - Redes adversariais (GAN's), Aprendizado por reforço (tentativa e erro);

IA's treinadas

- Treinamento = Ajustes de pesos das entradas dos perceptrons;
- Combinações entre valores entre as conexões dos perceptrons entre as camadas;
- Aumento exponencial de cálculos;
- Representado por MATRIZES!

- IA's treinadas
 - Computacionalmente, um modelo é uma matriz de pesos

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = \begin{pmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \\ w_{31} & w_{32} & w_{33} \\ w_{41} & w_{42} & w_{43} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} w_{11} \cdot x_1 + w_{12} \cdot x_2 + w_{13} \cdot x_3 \\ w_{21} \cdot x_1 + w_{22} \cdot x_2 + w_{23} \cdot x_3 \\ w_{31} \cdot x_1 + w_{32} \cdot x_2 + w_{33} \cdot x_3 \\ w_{41} \cdot x_1 + w_{42} \cdot x_2 + w_{43} \cdot x_3 \end{pmatrix}$$

Tamanho de principais modelos

<u>Modelo</u>	Dados de Entrada Suportados	Tamanho do Contexto	Tamanho do Modelo	Empresa/Criador
GPT-4	Texto	128K	~1.8T (estimado)	OpenAl
GPT-4 Turbo	Texto	128K	~1.8T (estimado)	OpenAl
GPT-4V	Texto + Imagens	128K	~1.8T (estimado)	OpenAl
Gemini 1.5	Texto + Imagens + Áudio + Vídeo	1M (em algumas versões)	~1.2T (estimado)	Google DeepMind
Claude 3	Texto	200K	~1T (estimado)	Anthropic
Llama 3	Texto	8K (base) → 128K (em desenvolvimento)	8B a 400B+	Meta (Facebook)
Mistral 7B	Texto	32K	7B	Mistral Al
DeepSeek-V2	Texto	128K	~? (ainda não divulgado)	DeepSeek
Stable Diffusion XL	Texto (prompt)	- (baseado em prompt)	~2.6B	Stability Al
DALL-E 3	Texto (prompt)	-	~12B (estimado)	OpenAl
Whisper v3	Áudio (transcrição)	30s (segmentos)	~1.5B	OpenAl

Impacto da IA

Fator	Impacto		
Alta qualidade open-source	Democratizou o acesso		
Baixo custo de inferência	Tornou viável rodar LLM fora das Big Techs		
Arquitetura inovadora (MoE)	Eficiência com menos hardware		
Força geopolítica	Mostrou que a China está na corrida da IA		
Pressão no mercado	Forçou as Big Techs a reagirem		

FIM