Home Price Prediction in Ames, Iowa – Team 84

Team Members:

- 1. Reena Sahai: (RSahai6)
- 2. Jonathan Gerszberg (JGerszberg3)
- 3. Vignesh Thavamani Thenmozhi (VThenmozhi3)
- 4. Siddharth Gudiduri (SGudiduri3)

Team Members

1. Reena Sahai: (RSahai6)

Reena Sahai is a data quality analyst at a renowned US national bank with 14 years of experience working as a database developer and reporting analyst in various domains like education, healthcare, and finance. She got a Master's degree in Computer science.

2. Jonathan Gerszberg (JGerszberg3)

Jonathan is a software developer at Siemens in Ann Arbor, MI. He got a BS at Rutgers University in Math and chemical engineering, and an MS at the University of Michigan in chemical engineering.

3. Vignesh Thavamani Thenmozhi (VThenmozhi3)

Vignesh is based out of Atlanta and has extensive experience in the Retail and Supply Chain Industry. He has a bachelor's in Electrical and Electronics Engineering and a diploma in Business Management.

4. Siddharth Gudiduri (SGudiduri3)

Siddharth is an experienced engineer with a strong background in computer science and with 15 years of experience in Software Development Lifecycle (SDLC). He has solid hands-on experience from redesigning existing software to solving complex technical problems with an emphasis on object-oriented design and programming.

Ongoing Kaggle Competition

Problem Statement

Homes, that are geographically close, can have significantly varied prices. This research aims to gain key insight into what physical and environmental aspects of a home make it more or less expensive. With this understanding, it is the hope that a model can be created to **predict the price** of the home. This investigation will primarily focus on the Ames housing dataset, which was compiled by Dean De Cock, and the environment data from, the website, *Neighborhood Scout*.

The purpose of this project is to minimize the Mean Square Error (MSE) of the predicted sales price of the home vs the actual sales price of the home and to maximize R2 (explainable variation). Formulating the above problem, some variables, and objective functions can be defined as follows:

Variables

- let $a_0, a_1, a_2, \dots a_m \in A$ be independent variables
- let $x_{ij} \in X$, be data points, i.e. j^{th} factor of data point i

Objective function

• Minimize $\sum_{i=1}^n \left(y_i - \left(a_0 + \sum_{j=1}^m a_j x_{ij}\right)\right)^2$

Constraint

- ullet Lasso regression constraint $\sum_{j=1}^m \lvert a_j \rvert \leq T$
- Ridge regression constraint $\sum_{j=1}^{m} \left(a_{j}\right)^{2} \leq T$

Hypothesis

Does there exist a relationship between the dependent variable(Sale Price) and independent variable in dataset? How does the number of bedroom, lot size and other attribute relate to Sale Price?

Data Analysis

- Data Storage
 - Int64
 - Currency
 - Size
 - Object
 - Classification
- Correlated Groups
 - Bedroom vs Sales price
- Continue to Identify important features.*

Correlation of Sale Price vs MS SubClass

Correlation of Sale Price vs LotShape

Correlation of Sale Price vs LotShape.Reg

Correlation of Sale Price vs Bedroom

Correlation Matrix

Data Processing

- Encoding Character Type
 - MS Zoning
 - Industrial, agriculture, commercial
 - Street Type
 - Paved, Gravel
- Scaling Numeric type
 - Lot Area
 - Pool Area
 - Misc Value
- Removing Pooled data
- Remove Id, Year and other non-related features.

Data Processing

Curse of Dimensionality

- Statistical models not able to compute accurate results.
- Overfitting models
- Ways to mitigate
 - Dimension reduction

Dimension Reduction Techniques

- Principal Component Analysis(PCA)
- Functional Principal Component Analysis(FPCA)
- B-Splines
- Lasso Regression
- Removing Pooled data
- Remove Id, Year and other non-related features.

Principal Component Analysis(PCA)

 PCA, reduction technique by weights being by variance such that majority of variance are captured by first few components. This performed by calculating eigenvalues and eigenvectors.

Kernel Principal Component Analysis (KPCA)

 Same as PCA with respect to eigenvalue and eigenvectors, however nonlinear methods(kernel operator) is used to capture variance in low dimensional subspace

Functional PCA

 Functional PCA, reduction technique where each point is a function input

Source:

https://www.psych.mcgill.ca/misc/fda/files/CRM-FPCA.pdf

Functional Data Analysis

Statistical Models

- Tree based models
 - Random Forest
 - AdaBoost
 - GradientBoost
- Regression Models
 - •Linear Regression
 - •Ridge Regression
 - •Lasso Regression
 - Adaptive Lasso Regression
 - Group Lasso

Group Lasso (MSE vs Feature selection)

OLS Statistical Sample Results

OLS Regression Results

Dep. Variable:	SalePrice	R-squared:	0.944
Model:	OLS	Adj. R-squared:	0.922
Method:	Least Squares	F-statistic:	44.24
Date:	Sun, 03 Jul 2022	Prob (F-statistic):	4.94e-324
Time:	21:28:16	Log-Likelihood:	-10975.
No. Observations:	978	AIC:	2.249e+04
Df Residuals:	709	BIC:	2.380e+04
Df Model:	268		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
BedroomAbvGr	-2501.2766	1779.995	-1.405	0.160	-5995.969	993.416
KitchenAbvGr	-1.266e+04	9697.247	-1.305	0.192	-3.17e+04	6383.066
MSSubClass_20	-2.16e+04	1.26e+04	-1.718	0.086	-4.63e+04	3086.538
MSSubClass_30	-2.083e+04	1.28e+04	-1.628	0.104	-4.59e+04	4294.948
MSSubClass_40	-2.881e+04	2.57e+04	-1.120	0.263	-7.93e+04	2.17e+04
MSSubClass_45	-8525.9178	2.97e+04	-0.287	0.774	-6.68e+04	4.98e+04
MSSubClass_50	-1.129e+04	1.37e+04	-0.822	0.411	-3.83e+04	1.57e+04
MSSubClass_60	-1.026e+04	1.37e+04	-0.749	0.454	-3.72e+04	1.66e+04
MSSubClass_70	-3385.1479	1.31e+04	-0.258	0.797	-2.92e+04	2.24e+04

Results using Tree based models W/80-20 training/test split

Model	R^2	Mean Square Error
RandomForestRegressor	85.67%	653.289
AdaBoostRegressor	80.44%	696.289
GradientBoostRegressor	87.55%	653.289
RandomForestRegressor W/PCA	85.10%	693.289
AdaBoostRegressor W/PCA	81.53%	653.289
GradientBoostRegressor W/PCA	84.95%	693.289
RandomForestRegressor W/KPCA	78.21%	653.289
AdaBoostRegressor W/KPCA	72.06%	697.289
GradientBoostRegressor W/KPCA	78.54%	695.234

Results using Regression W/80-20 training/test split

Model	R^2	Mean Square Error
BSpines reduction with Linear Regression	78.43%	593.289
BSpines reduction with Group Lasso	76.60%	596.880
Lasso Regression with scaled data	76.88%	596.882
Ridge Regression with scaled data	74.01%	602.840
Linear Regression with scaled and w/PCA	72.05%	602.334
Linear Regression with various reduced parameters.*	88.78%	468.661

Feature Engineering

Character column cannot be used for Machine learning. So we need to convert them to Ordinal or Label setting

```
1 #Nominal A variable that has no numerical importance, for example color or city.
 2 categorical columns labels = ["MSSubClass", "MSZoning", "Street", "LotShape", "LandContour", "Utilities",
                                   "LotConfig", "LandSlope", "Neighborhood", "Condition1", "Condition2", "BldgType",
                                  "HouseStyle", "RoofStyle", "RoofMatl", "Exterior1st", "Exterior2nd",
                                  "Foundation", "Heating", "CentralAir", "Functional", "PavedDrive", "SaleType", "SaleCondition"]
   #Ordinal A variable that has some order associated with it like our place example above
 8 categorical columns ranking = ["OverallQual", "OverallCond", "ExterQual", "ExterCond", "BsmtQual", "BsmtCond",
                                   "BsmtExposure", "HeatingQC", "KitchenQual", "FireplaceQu", "GarageQual", "GarageCond",
                                  "PoolQC", "Fence"]
10
11
12 #Nominal A variable that has no numerical importance, for example color or city.
13 categorical columns ordinal = ["BsmtFullBath", "BsmtHalfBath", "FullBath",
                                  "HalfBath", "BedroomAbvGr", "KitchenAbvGr", "TotRmsAbvGrd", "Fireplaces",
14
                                  "GarageCars", "BsmtFinSF1", "BsmtFinSF2", "BsmtUnfSF", "TotalBsmtSF",
15
16
                                  "1stFlrSF", "2ndFlrSF", "LowQualFinSF", "BsmtFullBath"
17
18 | categorical columns year = ["YearBuilt", "YearRemodAdd", "MoSold", "YrSold"]
19
20 | continious columns = ["LotArea", "GrLivArea", "GarageArea", "WoodDeckSF", "OpenPorchSF",
                         "EnclosedPorch", "3SsnPorch", "ScreenPorch", "PoolArea"]
21
22
23 | continous currency = ["MiscVal"]
```


Feature Selection using Lasso and Extra tree classifier

```
1 from sklearn.linear model import LassoCV
 3 reg = LassoCV(cv=5, random state=42, fit intercept=False).fit(X_train,y_train)
 4 X train.columns[reg.coef >= 1e-9]
Index(['Neighborhood', 'BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF',
       '1stFlrSF', '2ndFlrSF', 'ScreenPorch'],
      dtype='object')
 1 from sklearn.ensemble import ExtraTreesClassifier
 2 clf = ExtraTreesClassifier(n estimators=50)
 3 clf = clf.fit(X train, y train)
 4 min val = np.min(clf.feature_importances_[clf.feature_importances_ < 5])</pre>
 5 max val = np.max(clf.feature importances )
 6 X train.columns[np.argwhere(clf.feature importances > 0).reshape(-1)]
Index(['MSSubClass', 'MSZoning', 'Street', 'LotShape', 'LandContour',
       'Utilities', 'LotConfig', 'LandSlope', 'Neighborhood', 'Condition1',
       'Condition2', 'BldgType', 'HouseStyle', 'RoofStyle', 'RoofMatl',
       'Exterior1st', 'Exterior2nd', 'Foundation', 'Heating', 'CentralAir',
       'Functional', 'PavedDrive', 'SaleType', 'SaleCondition', 'BsmtFullBath',
       'BsmtHalfBath', 'FullBath', 'HalfBath', 'BedroomAbvGr', 'KitchenAbvGr',
       'TotRmsAbvGrd', 'Fireplaces', 'GarageCars', 'BsmtFinSF1', 'BsmtFinSF2',
       'BsmtUnfSF', 'TotalBsmtSF', '1stFlrSF', '2ndFlrSF', 'LowQualFinSF',
       'OverallQual', 'OverallCond', 'ExterQual', 'ExterCond', 'BsmtQual',
       'BsmtCond', 'BsmtExposure', 'HeatingQC', 'KitchenQual', 'FireplaceQu',
       'GarageQual', 'GarageCond', 'PoolQC', 'Fence', 'LotArea', 'GrLivArea',
       'GarageArea', 'WoodDeckSF', 'OpenPorchSF', 'EnclosedPorch', '3SsnPorch',
       'ScreenPorch', 'PoolArea'],
      dtype='object')
```


Results using Tree based models W/80-20 training/test split

Model	R^2	Mean Square Error
RandomForestRegressor W/Feature Engineering & Feature Selection	89.92%	653.289
AdaBoostRegressor W/Feature Engineering & Feature Selection	88.82%	696.289
GradientBoostRegressor W/Feature Engineering & Feature Selection	91.44%	653.289
RandomForestRegressor W/PCA	85.10%	693.289
AdaBoostRegressor W/PCA	81.53%	653.289
GradientBoostRegressor W/PCA	84.95%	693.289
RandomForestRegressor W/KPCA	78.21%	653.289
AdaBoostRegressor W/KPCA	72.06%	697.289
GradientBoostRegressor W/KPCA	78.54%	695.234

Summary

- TO DO
- What's Next

