### R Foundations Workshop DAY 1 | 9 April 2025



# R-HTA in LMICs

Increasing accessibility to R for HTA in LMICs

Modelling Basics: Decision Tree

HTA in LMICs R Foundations Workshop DAY 1
(9 April 2025)

**Buhle Ndweni** (Health Economist)

Co-Chair: R-HTA in LMICs Chapter

University of Cape Town, South Africa

buhle.ndweni@uct.ac.za | info@r-htalmics.org



## Standard Gamble theory

- The standard gamble is a method that has its theoretical basis in the von Neumann–Morgenstern axioms of expected utility theory.
- It aims to measure the 'disutility' of a health state by observing the willingness to accept a certain risk of death in order to avoid the state.
- Typical standard gamble framework, a respondent is asked to consider a choice between two alternatives:
  - **Alternative A:** the person would live with a particular health problem (the one for which the valuation is needed) with certainty, for the remainder of his or her life.
  - **Alternative B (Gamble)**is usually characterised as a risky treatment, with two possible outcomes: life in a state of optimal health, with probability p, or immediate death, with probability (1-p).
  - The measurement objective for the standard gamble is to identify the probability of optimal health, *p*, at which the respondent is 'indifferent' between alternatives A and B, in other words, the point at which the two alternatives seem equally attractive.



# Standard gamble theory

- Once this 'indifference' point is identified, a health state valuation for the particular health problem of interest is equal to *p*.
- The logic of this inference derives from setting the utility of optimal health to 1.0 and that of death to 0 and assuming that at the point of indifference, the respondent considers the expected utility of alternatives A and B to be the same.
- In mathematical terms, the equality is stated as  $p \times U(\text{optimal}) + (1-p) \times U(\text{death}) = U(\text{health outcome})$
- $p \times 1 + (1-p) \times 0 = U$ (health outcome), which simplifies to p = U(health outcome).



### **Decision Tree: basics**

- Simplest form of decision model
- Short time horizon: e.g. 6-12 months
- Perspective: e.g. health system/provider, societal etc
- Pathways
  - Are routes through the decision tree
  - These are a sequence of mutually exclusive events
- Probabilities
  - Show likelihood of a particular event occurring at a chance node
  - Move from left to right
    - 1<sup>st</sup> probability: shows probability of an event.
    - 2<sup>nd</sup> probability: conditional or depends on whether an earlier event occurred or did not occur.
  - Pathway joint probability: obtained from multiplying probabilities along a pathway



#### **Decision nodes:**

- Square decision Node (At start of tree):
  - Show decision point between alternative options.
- Circular chance node (branches coming out of the node):
  - Show a point where 2 or more alternative events for the patient pathway are possible.
- Terminal nodes (Leaf node):
  - Contains records that do not pass through any further decisions

### **Decision Tree Probabilities**

 Probabilities in decision analysis: a number indicating a likelihood of an event occurring in future.

#### Joint probability:

- The likelihood of 2 events taking place at the same time.
- Notation = P(A and B)

#### Conditional probability:

- Probability of event A, given that event B is known to have taken place.
- Notation = P(A|B)

#### - Independence:

- Events A and B are independent if the probability of event A, P(A), is the same as the probability of P(A|B).
- When the events are independent  $P(A \text{ and } B) = P(A) \times P(B)$ .
- Relation of joint and conditional probabilities is shown here: P(A and B) = P(A|B) x P(B)



# Expected values using costs

For a given option, the likelihood of each prognosis can be quantified using probabilities and their cost implications or health outcomes.

#### **Health outcomes or Payoffs**

- Costs would typically be one form of payoff but, on the effects side, a range of outcomes may be defined depending on the type of study.
- Increasingly, quality-adjusted life-years (QALYs)
  would be one of the payoffs in a decision model
  for cost-effectiveness analysis, which may or
  may not be based on utilities elicited using the
  standard gamble.
- The principle of identifying a preferred option on the basis of a decision analytic model is on the basis of expected values.



### Calculations

- Pathway A = Prob. of Relief<sub>A</sub> x Prob. of NoRecurrence<sub>A</sub> =  $0.558 \times 0.594$ = 0.331
- Probabilities must equal to 1
  - Pathway probabilities (A+B+C+D+E) = 1
- Expected costs = Probability<sub>B</sub> x Cost<sub>B</sub>
   = 0.227 x 32.30
   = 7.33
- Expected Utility = Probability<sub>c</sub> x Utility<sub>c</sub>
   = 0.407 x -0.30
   = 0.12

Note: Utilities may be provided in the data (If not, you will find in the published literature)



### Decision Tree in R: Exercise

- Q1. Set the sample size to 300.
- **Q2.** Change the tree model 'type' to 2 or 5. What happens to the structure of the tree?
- **Q3**. Change extra to 101. How many patients are in palliative care (Hint: numerical number)?
- **Q4.** Remove the neat layout of the decision tree (Hint: opposite of TRUE)
- **Q5**: Change the title of the decision tree to 'Decision Tree for Breast Cancer Treatment'

## **THANK YOU!**



# R-HTA in LMICs

Increasing accessibility to R for HTA in LMICs

X: @rhta\_lmics | LinkedIn: R-HTA in LMICs