Context Free Languages: Problems for Week 4

Exercise 1 Consider the language generated by the grammar

$$\Rightarrow S$$
 ::= b SS | a S | a

and the string aabbaaa.

- 1. Find a leftmost derivation for this string.
- 2. Draw the derivation tree.

Exercise 2 Let's look at a "Natural Language" example. The alphabet is

{ the, a, cat, dog, happy, tired, slept, died, ate, dinner, and, . }

The grammar is

Sentence	$\Rightarrow S$::=	C.
Clause	C	::=	$NP VP \mid C and C$
Noun phrase	NP	::=	Art N dinner
Noun	N	::=	Adj N cat dog
Adjective	Adj	::=	happy tired
Verb phrase	VP	::=	VI VT NP
Intransitive verb	VI	::=	slept died
Transitive verb	VT	::=	ate
Article	Art	::=	a the

This grammar accepts "words" such as

the happy tired happy dog died and the cat slept.

the tired tired cat ate dinner.

dinner ate a happy dog.

Try writing derivations and derivation trees for these sentences.

Exercise 3 Let's consider an NFA that accepts any string that contains the substring "abab".

- 1. Convert the above NFA into its equivalent total DFA.
- 2. Convert the resultant DFA in an equivalent CFG. It is suggested to minimize the DFA before writing CFG.

Exercise 4 Give a context free grammar for the set of palindromes over the alphabet $\{a, b\}$.

Exercise 5 Try deriving the string $3 + 5 \times 3$ in two different ways using leftmost derivation only, using the grammar given below:

$$\Rightarrow A ::= A + B \mid B$$

$$B ::= B \times C \mid C$$

$$C ::= (A) \mid 3 \mid 5$$

1

Exercise 6 Show that the following grammar is ambiguous. The alphabet is {a, b}.

Exercise 7 Convert the following CFG into an equivalent CFG in Chomsky normal form

$$\Rightarrow A ::= BAB \mid B \mid \varepsilon$$

$$B ::= 00 \mid \varepsilon$$

Exercise 8 Give grammars for the following two languages:

- 1. All binary strings with both an even number of zeroes and an even number of ones.
- 2. All strings of the form $0^a 1^b 0^c$ where a + c = b.