BÀI TẬP ĐẠI SỐ QUAN HỆ

Bài 1. Cho hai quan hệ r và s sau đây:

A	В	C	D	A	В	C
2	3	1	1	1	1	2
1	2	2	3	2	1	2
1	1	2	1	2	3	2
1	2	1	1			
2	3	2	3			
Quan hệ r				Ç	uan hệ	S

Tính các biểu thức đại số quan hệ sau đây:

a. $\pi_{AB}(r)$ - $\pi_{AB}(s)$

A	В
2	3
1	2
1	2

b. $\pi_{AD}(r) \bowtie s$

	A	D	В	C
_	2	1	1	2
	2	1	3	2
	1	3	1	2
	1	3	3	2
	1	1	1	2
	1	1	3	2
	2	3	1	2
	2	3	3	2

c.
$$\pi_{AB}(r) \div \pi_{AB}(\sigma_{A \le B}(s))$$

 $\sigma_{A \leq B}(s)$

 $\pi_{AB}(\sigma_{A\,\leq\,B}(s))$

Quan hệ rỗng.

$$d. \quad r \div \pi_{AB}(\sigma_{A \,\leq\, B}(s))$$

Bài 2. Cho r và s là hai quan hệ như sau:

A	В	С	D	Е
a	c	c	e	a
b	c	a	a	g
b	a	c	h	a
a	c	f	e	g
b	b	c	e	g a
b	a	f	h	g

D	Е	F	G
b	b	c	f
g	h	a	c
g h	g	g	f

Tính các biểu thức đại số quan hệ sau đây:

a. $\pi_{ACB}(r)$ - $\pi_{EFG}(\sigma_{D=E}(s)$)

 $\sigma_{D=E}(s)$

D	Е	F	G
b	b	c	f

 $\pi_{EFG}(\sigma_{D=E}(s)\)$

Е	F	G
b	c	f

 $\pi_{ACB}(r)$

A	C	В
a	c	c
b	a	c
b	c	a
a	f	c
b	c	c b
b	f	a

 $Kq = \pi_{ACB}(r)$

b. $\pi_{CDE}(r) \rhd \lhd \pi_{DEF}(s)$

 $\pi_{\text{DEF}}(s)$

D	Е	F
b	b	c
g h	h	a
h	g	g

 $\pi_{CDE}(r)$

C	D	Е
c	e	a
a	a	g
c f	h	a
f	e	g
c f	e	a
f	h	g

Kq

С	D	Е	F

f	h	g	g
-		5	5

c.
$$\pi_{ABCE}(r) \div \pi_{GF}(\sigma_{F\neq 'c'}(s))$$

 $\pi_{GF}(\sigma_{F\neq {}^{\prime}c^{\prime}}(s))$

G	F
С	a
f	g

 $\pi_{ABCE}(r)$

A	В	С	Е
a	c	c	a
b	c	a	g
b	a	c	a
a	c	f	g
b	b	c	g a
b	a	f	g

Kq

A	В
a	c
b	a

d.
$$\pi_{ABC}(r) \div \pi_G(s)$$

A	В
a	c
h	а

Bài 3. Cho các quan hệ SINHVIEN, DIEMTHI và MONHOC lần lượt như sau:

MASV	HOTEN	GIOITIN H	DIACHI	MALOP
CQK21001	Lê Hoài Nam	1	Huế	TIK21C
CQK22001	Nguyễn Văn Thanh	1	Đà Nẵng	TI22A
TCK8007	Hoàng Thị Thảo	0	Quảng Trị	TIK8
CQK23005	Lê Thị Hoa	0	Huế	TIK23

MASV	MAMH	DIEMLAN1	DIEMLAN2
CQK21001	TI01	4	7
CQK21001	TI02	8	
TCK8007	TI03	4	3
TCK8007	TI05	8	
CQK23005	TI01	2	3

MAMH	TENMH	SODVHT
TI01	Pascal	4

TI02	Ngôn ng. c	4
TI03	Đổ hoạ	4
TI05	CSDL	5

Tính các biểu thức đại số quan hệ dưới đây và cho biết chức năng của mỗi biểu thức

a. $\pi_{HOTEN,GIOITINH}(\sigma_{DIACHI='Hu\acute{e}'}(SINHVIEN))$

HOTEN	GIOITINH
Lê Hoài Nam	1
Lê Thị Hoa	0

b. $\pi_{HOTEN,TENMH,DIEMLAN1}(SINHVIEN\bowtie DIEMTHI\bowtie MONHOC)$

HOTEN	TENMH	DIEMLAN1
Lê Hoài Nam	Pascal	4
Lê Hoài Nam	Ngôn ngữ C	8
Hoàng Thị Thảo	Đồ hoạ	4
Hoàng Thị Thảo	CSDL	8
Lê Thị Hoa	Pascal	2

c. $\pi_{TENMH,DIEMLAN1,DIEMLAN2}(\sigma_{HOTEN='L\hat{e}\;Ho\hat{a}i\;Nam'}(SINHVIEN)$

⋈DIEMTHI⋈ MONHOC))

TENMH	DIEMLAN1	DIEMLAN2
Pascal	4	7
Ngôn ngữ C	8	

Bài 4. Cho các quan hệ sau:

TAPCHI (MATC, TUA, GIA, LOAI, TANSUAT)
NHAPHANPHOI (MAPP, TENPP, DIACHI)
PHANPHOI (MAPP, MATC, NGAYGIAO, SOLUONGGIAO)

Viết các truy vấn sau bằng NNĐSQH

- a. Giá bán các tạp chí?
- b. Danh sách các tạp chí phát hành hàng tuần
- c. Mã các tạp chí được phân phối cho nhà phân phối Bến Thành
- d. Danh sách các nhà phân phối nhận được nhiều loại tạp chí
- e. Số lượng tạp chí A đã giao trong ngày 12/2

Bài 5. Cho các quan hệ sau:

XUONG (MAX, TENX, TP)

<u>Tân từ :</u> Môt xưởng sản xuất được mô tả bởi mã xưởng MAX, tên xưởng TENX và thành phố mà xưởng toạ lạc.

SANPHAM (MASP, TENSP, MAUSAC, TRONGLUONG)

Tân từ : Môt sản phẩm được mô tả bởi mã sản phẩm MASP, tên sản phẩm TENSP, màu sắc và trọng lượng của sản phẩm.

NHACUNGCAP (MACC, TENCC, LOAI, TP)

<u>Tân từ :</u> Môt nhà cung cấp được mô tả bởi mã cung cấp MACC, tên nhà cung cấp TENCC, LOAI nhà cung cấp (VD: thầu phụ, thầu chính...), và thành phố mà nhà cung cấp đặt trụ sở.

PHANPHOI (MASP, MAX, MACC, SOLUONG)

<u>Tân từ :</u> Môt số lượng SOLUONG sản phẩm MASP được phân phối đến một xưởng sản xuất MAX bởi một nhà cung cấp MACC.

Viết các truy vấn sau bằng NNĐSQH

- a. Cho biết mã số, tên của tất cả các xưởng sản xuất tại TPHCM.
- b. Danh sách các nhà cung cấp phân phối sản phẩm 1 cho xưởng sản xuất 1
- c. Danh sách tên và màu sắc các sản phẩm được phân phối bởi nhà cung cấp 1.
- d. Danh sách các nhà cung cấp phân phối cho xưởng sản xuất 1 các sản phẩm có màu đỏ
- e. Danh sách các nhà cung cấp phân phối cho các xưởng sản xuất ở Hà nội hay Huế các sản phẩm có màu đỏ
- f. Danh sách các sản phẩm được phân phối cho một xưởng sản xuất bởi một nhà cung cấp trong cùng thành phố
- g. Danh sách các sản phẩm được phân phối cho một xưởng sản xuất ở Huế bởi một nhà cung cấp tại Hà nội

 $\pi_{MASP,TENSP}(\sigma_{TPHO='Hue'}, TP='HaNoi'(PHANPHOI\bowtie NHACUNGCAP\bowtie SANPHAM\bowtie(p_{MAX,TENX,TPHO}(XUONG)))$

- h. Danh sách các xưởng sản xuất có tối thiểu một nhà cung cấp ở khác thành phố.
- Danh sách các nhà cung cấp phân phối cùng lúc cho xưởng sản xuất số 1 và xưởng sản xuất số 2.
- j. Cho biết sản phẩm có trong lương nhe nhất
- k. Danh sách các xưởng sản xuất không nhận được bất kỳ một sản phẩm có màu đỏ nào từ một nhà cung cấp ở Hà nội
- 1. Danh sách các sản phẩm được phân phối cho tất cả các xưởng sản xuất tại Huế.
- m. Danh sách các nhà cung cấp phân phối cùng một sản phẩm cho tất cả các xưởng sản xuất.

- n. Danh sách các xưởng sản xuất nhận được tất cả các sản phẩm được phân phối bởi nhà cung cấp số 4.
 - Danh sách các xưởng sản xuất chỉ nhận duy nhất các sản phẩm phân phối bởi nhà cung cấp số 3

Dap an

Cau 4

a. π_{GIA} (TAPCHI)

b. $\pi_{MATC,TUA}$ ($\sigma_{TANSUAT='Tu\grave{a}n'}$ (TAPCHI))

c. $\pi_{MATC}(\sigma_{TENPP='B\acute{e}nTh\grave{a}nh'}, (TAPCHI\bowtie PHANPHOI\bowtie NHAPHANPHOI))$

d.

 $\pi_{MAPP,TENPP,DIACHI}(\sigma_{COUNT(MATC)>1}(MAPP|_{COUNT(MATC)}(\pi_{MAPP,MATC}(PHANPHOI)\bowtie NHAPHANPHOI)))$

e. $\pi_{SOLUONGGIAO}(\sigma_{TUA='TCA'})$ $\pi_{NGAYGIAO=\#12/02/2008\#}(PHANPHOI\bowtie TAPCHI)$

Cau 5

- a. $\pi_{MAX,TENX}(\sigma_{TP='TPHCM'}(XUONG))$
- b. $\pi_{MACC,TENCC}(\sigma_{MSP='1'}, MAX='1')(PHANPHOI \bowtie NHACUNGCAP))$
- c. $\pi_{TENSP.MAUSAC}(\sigma_{MANCC='1}(PHANPHOI \bowtie SANPHAM))$
- d. $\pi_{MACC,TENCC}(\sigma_{MAX='1'})$ MAUSAC='DO' (PHANPHOI \bowtie NHACUNGCAP \bowtie SANPHAM))
- e. $\pi_{MACC,TENCC}(\sigma_{(TP='HANOI'\ MAUSAC='D\acute{o}')\ (TP='Hue'\ MAUSAC='D\acute{o}')}(PHANPHOI\bowtieNHACUNGCAP\bowtieSANPHAM\bowtieXUONG))$
- f. $\pi_{MASP,TENSP}(NHACUNGCAP \bowtie XUONG \bowtie PHANPHOI \bowtie SANPHAM)$
- g. R1 : $\sigma_{\text{XUONG.TP='Hue'}}$ NHACUNGCAP.TP='Ha Noi'(PHANPHOI \bowtie XUONG \bowtie NHACUNGCAP) Kết quả: $\pi_{\text{MASP.TENSP}}(R1 \bowtie SANPHAM)$
- h. $\pi_{\text{MAX,TENX}}(\sigma_{\text{TPHO}\neq\text{TP}}(\text{PHANPHOI}\bowtie\text{NHACUNGCAP}\bowtie(p_{\text{MAX,TENX},\text{TPHO}}(\text{XUONG})))$

 $\pi_{MAX,TENX}(\sigma_{COUNT(MACC)}) = I(MAX/_{COUNT(MACC)}(\sigma_{TPHO \neq TP}(PHANPHOI \bowtie NHACUNGCAP \bowtie (p_{Max,TENX}, TPHO(XUONG))))$

i. $\pi_{MACC,TENCC}(\sigma_{MAX='1'}, MAX='2')$ (PHANPHOI \bowtie NHACUNGCAP \bowtie XUONG))

 $j.\pi_{MSP,TENSP}(SANPHAM)$ -

 $\pi_{MSP,TENSP}(\sigma_{SANPHAM,TRONGLUONG} > SPHAM,TRONGLUONG(SANPHAM)))$

- $k.\pi_{MAX,TENX}(XUONG)-\pi_{MAX,TENX}(\sigma_{MAUSAC='D\acute{o}'\ NHACUNGCAP.TP='HaNoi'}(PHANPHOI\bowtie NHACUNGCAP\bowtie SANPHAM\bowtie XUONG)))$
- 1. $\pi_{MASP,TENSP}(\sigma_{TP='Hue'}, (PHANPHOI \bowtie SANPHAM \bowtie XUONG))$

```
R1:\pi_{\mathsf{MASP},\mathsf{MAX}}(\mathsf{PHANPHOI}) \div \pi_{\mathsf{MAX}}(\sigma_{\mathsf{TP}=\mathsf{'Hue'}}(\mathsf{XUONG}))
\mathsf{K\acute{e}t}\ \mathsf{qu\acute{a}}:\pi_{\mathsf{MASP},\mathsf{TENSP}}(\mathsf{R1}\bowtie\mathsf{SANPHAM})
\mathsf{m}.\pi_{\mathsf{MACC},\mathsf{TENCC}}((\sigma_{\mathsf{COUNT}(\mathsf{MASP})=\mathsf{I}}(\mathsf{MACC}|_{\mathsf{COUNT}(\mathsf{MASP})}\pi_{\mathsf{MACC},\mathsf{MASP}}(\mathsf{PHANPHOI})))\bowtie \mathsf{NHACUNGCAP})
\mathsf{n}.\mathsf{R1}:\sigma_{\mathsf{MACC}=\mathsf{'4'}}(\mathsf{MACC}|_{\mathsf{COUNT}(\mathsf{MASP})}(\pi_{\mathsf{MASP},\mathsf{MACC}}(\mathsf{PHANPHOI}\bowtie\mathsf{XUONG})))
\mathsf{K\acute{e}t}\ \mathsf{qu\acute{a}}:\pi_{\mathsf{MAX},\mathsf{TENX}}(\sigma_{\mathsf{COUNT}(\mathsf{MASP})=\mathsf{R1},\mathsf{COUNT}(\mathsf{MASP})}(\mathsf{MAX}|_{\mathsf{COUNT}(\mathsf{MASP})}(\mathsf{R1}\bowtie\mathsf{PHANPHOI}\bowtie\mathsf{XUONG})))
\mathsf{R1}:\sigma_{\mathsf{MACC}=\mathsf{'4'}}(\mathsf{MAX},\mathsf{TENX},\mathsf{MACC}|_{\mathsf{COUNT}(\mathsf{MASP})}(\pi_{\mathsf{MASP},\mathsf{MACC},\mathsf{MAX},\mathsf{TENX}}(\mathsf{PHANPHOI}\bowtie\mathsf{XUONG})))
\mathsf{pMax},\mathsf{tenx},\mathsf{macc},\mathsf{slsp}(\mathsf{R1})
\mathsf{R2}:\sigma_{\mathsf{MACC}=\mathsf{'4'}}(\mathsf{MACC}|_{\mathsf{COUNT}(\mathsf{MASP})}(\pi_{\mathsf{MACC},\mathsf{MASP}}(\mathsf{PHANPHOI})))
\mathsf{pMacc},\mathsf{slspncc4}(\mathsf{R2})
\mathsf{K\acute{e}t}\ \mathsf{qu\acute{a}}:\pi_{\mathsf{MAX},\mathsf{TENX}}(\sigma_{\mathsf{SLSP}=\mathsf{Slspncc4}}(\mathsf{R1}\bowtie\mathsf{R2}))
\mathsf{o}.\ \pi_{\mathsf{MAX},\mathsf{Tenx}}((\sigma_{\mathsf{COUNT}(\mathsf{MACC})=1}\ \mathsf{MACC}=\mathsf{'3'}}(\mathsf{MAX}|_{\mathsf{COUNT}(\mathsf{MACc})},\pi_{\mathsf{MAX},\mathsf{MACC}}(\mathsf{PHANPHOI})))
\mathsf{R2}:\pi_{\mathsf{MAX}}(\sigma_{\mathsf{MACC}}=\mathsf{3}(\mathsf{PHANPHOI}))
\mathsf{R3}:\mathsf{R2}-\mathsf{R1}
\mathsf{Kq}:\pi_{\mathsf{MAX},\mathsf{Tenx},\mathsf{TP}}(\mathsf{R3}\bowtie\mathsf{XUONG})
```