2025 Wharton High School Data Science Competition

Introduction & Background

Task

Use women's basketball data to rank the top 16 teams of each region and predict the winning probabilities of theoretical matchups

Significance

Women's basketball is booming, with 2024 finals viewership at 18.9M vs. 14.8M for the men's game

Win-Loss Records

Oversimplification of team performance

Traditional
Methods and
Limitations

Logistic Regression

Always assumes linear relationships

Power Rankings

Often subjective and prone to bias

Our Goal

Develop a combined ranking system and a multi-variable predictive model to address these limitations

Methods: Preprocessing

DATA CLEANING

- Removed non-D1 team games
- Imputed NAs with 0 or mean
- Applied log transformations and min-max scaling to normalize data

AGGREGATION

- Aggregated statistics by team (e.g., average scores)
 - Merged regional data

ELO SYSTEM

 Iterated through each game to calculate and finalize every team's Elo rating

FEATURE ENGINEERING

- Merged home/away team data into single rows
- Computed difference-based features for the model

Methods: Ranking with K-Means Clustering

01 Unsupervised Learning

Model learns the clusters based on team data without labels

02 K Number Determination

Used Elbow Method and Silhouette Analysis to select the best K number

Ranked teams by calculating the Euclidean distance of each team to a centroid

Centroid scores calculated by summing the mean feature values for each cluster

Methods: XGBoost for Winning Probabilities

- O1 Gbtree Gradient Booster

 Binary:Logistic objective to calculate winning probabilities
- Used grid search cross-validation to identify optimal parameters
- Controlled overfitting with adjustment of boosted round quantity

Results: Top 16 K-means Rankings

- Assigned teams to the nearest centroid
- Ranked centroids by their calculated score
- Ranked teams by proximity to the centroid in each cluster

Note: only the top 2 clusters are shown

- -Choose a K at the "Elbow"
- -Choose a K with a high silhouette score
- -The best K for North Region is 4

North Region

Best K Number for the Region

4

Centroid Scores: 7.71, 6.98, 5.99, 5.42

South Region

Best K Number for the Region

3

Centroid Scores: 7.41, 6.53, 5.62

West Region

Best K Number for the Region

4

Centroid Scores: 7.76, 6.61, 5.87, 5.20

Results: XGBoost Winning Probabilities

Model Predictions

Model Performance Eval AUC Score 0.88 **Accuracy Score** 0.80 **Model Parameters Learning Rate** 0.1 **Max Depth** 5 **Boosted Rounds** 100

Conclusion

Utilized K-means clustering

- With holistic scores calculated from multi-dimensional performance metrics
- Achieved rankings for the top 16 teams in each region

Identified XGBoost as a robust model

- To capture non-linear relationships among multiple variables
- Predicted team winning probabilities

Our methods offer accurate, adaptable, and holistic evaluations of basketball team performance

Limitations

- We did not include the impacts of certain variables (e.g., attendance, time zone difference, previous game distance) in our analysis
- We were unable to effectively normalize some variables due to their irregularity (e.g., technical foul)

References

- Brown, Bryce, "Predictive Analytics for College Basketball: Using Logistic Regression for Determining the Outcome of a Game" (2019). Honors Theses and Capstones. 475. https://scholars.unh.edu/honors/475
 William College College Basketball: Using Logistic Regression for Determining the Outcome of a Game" (2019). Honors Theses and Capstones. 475. https://scholars.unh.edu/honors/475
 William College Basketball: Using Logistic Regression for Determining the Outcome of a Game" (2019). Honors Theses and Capstones. 475. https://scholars.unh.edu/honors/475
 William College Basketball: Using Logistic Regression for Determining the Outcome of a Game" (2019). Honors Theses and Capstones. 475. https://scholars.unh.edu/honors/475
 William College Basketball: Using Logistic Regression for Determining the Outcome of a Game" (2019). Honors Theses and Capstones. 475. https://scholars.unh.edu/honors/475
 William College Basketball: Using Logistic Regression for Determining the Outcome of a Game" (2019). Honors Theses and Capstones. 475. https://scholars.unh.edu/honors/475
 William College Basketball: Using Logistic Regression for Determining the Outcome of a Game" (2019). Honors These and Capstones. 475. https://scholars.unh.edu/honors/475
 William College Basketball: Using Logistic Regression for Determining the Outcome of a Game" (2019). Honors These and Capstones. 475. https://scholars.unh.edu/honors/475
 William College Basketball: Using Logistic Regression for Determining the Outcome of a Game" (2019). Honors These and Capstones. 475. https://scholars.unh.edu/honors/475
 William College Basketball: Using Logistic Regression for Determining the Outcome of a Game" (2019). Honors These and Capstones. 475. https://scholars.unh.edu/honors/475
 William College Basketball: Using Logistic Regression for Determining the Outcome of a Game" (2019). Honors These and Capstones. 475. https://scholars.unh.edu/honors/475
 William College Basketball: Using Logistic Regression for Determining the Outcome
- Matt Gifford, Tuncay Bayrak, A predictive analytics model for forecasting outcomes in the National Football League games using decision tree and logistic regression, Decision Analytics Journal, Volume 8, 2023, 100296, ISSN 2772-6622, https://doi.org/10.1016/j.dajour.2023.100296.
- Ziv, G., Lidor, R., & Arnon, M. (2010). Predicting team rankings in basketball: The questionable use of on-court performance statistics. International Journal of Performance Analysis in Sport, 10(2), 103–114. https://doi.org/10.1080/24748668.2010.11868506
- Slide template courtesy of https://slidesgo.com/