Lec 25: Randomized reduction from PH to @ SAT

Recop

The D quantifier: 121=n.

$$\Phi \varphi(x)$$
 is true $\Leftrightarrow \varphi(x)$ has odd no of satisfying assignments

$$\Leftrightarrow \sum_{x \in S_0, 2^n} \Phi(x) = 1 \pmod{2}.$$

· The VV theorem * . There's a randomized reduction f s.t.

$$\exists \underline{x} \varphi(\underline{x}) \text{ is true} \Rightarrow \Pr \left[\underbrace{\oplus f(\varphi)(\underline{x})}_{\underline{x}} \text{ is true} \right] \Rightarrow \frac{1}{8n}$$

$$\exists \underline{x} \varphi(\underline{x}) \text{ is false} \Rightarrow \Pr \left[\underbrace{\oplus f(\varphi)(\underline{x})}_{\underline{x}} \text{ is false} \right] = 1$$

Oblivious nature of the VV reduction

· Recall the proof of the VV theorem:

Place the proof
$$f$$

$$\varphi(\underline{x}) \xrightarrow{f} \varphi(\underline{x}) \wedge \psi_{k,h} (\underline{x}) = f(\varphi)(\underline{x}) - 0$$

The pick $k \in \{2, \dots, n+1\}$ of $\{2, \dots, n+1\}$ of $\{2, \dots, n+1\}$ of $\{3, \dots, n+1\}$ of $\{4, \dots, n+1\}$

- · The reduction fin very "syntactic" it doesn't look into P.
- · Obs*: 96 we define $f(\varphi)(x)$, from $\varphi(x)$, as in Eq. (0), then Eqn(1) holds for any Boolean bunction P. But of course, If(9) | depends on 191.

- Recall, for a Boolean cht $\varphi(\underline{x})$, we've defined $(\varphi+i)(\overline{z},\underline{x})$ in such a way that $\#(\varphi+i)=\#\varphi+1$.
- Notation: Let $\varphi(x_1), \dots, \varphi_m(x_m)$ be cluts. an disjoint sets of variables. Define,

至 = 2, 世之2 世···世之m·

• Obs: $\#(P_1 \cdot P_2 \cdot \dots \cdot P_m) = \#P_1 \cdot \#P_2 \cdot \dots \cdot \#P_m$, and

Useful properties of the Aquantifier

• Obs 1. (a)
$$\left(\bigoplus_{x_1} \varphi_1(x_1)\right) \wedge \left(\bigoplus_{x_2} \varphi_2(x_2)\right) \wedge \cdots \wedge \left(\bigoplus_{x_m} \varphi_m(x_m)\right)$$

$$\iff \bigoplus_{\widetilde{\chi}} (\varphi_1 \cdot \varphi_2 \cdot \cdots \cdot \varphi_m) (\widetilde{\chi})$$

$$(b)$$
 $\neg \oplus \varphi(z) \Leftrightarrow \bigoplus_{z,z} (\varphi+1)(z,z)$

$$(c) \left(\bigoplus_{\underline{x}_1} \varphi_1(\underline{x}_1) \right) \vee \left(\bigoplus_{\underline{x}_2} \varphi_2(\underline{x}_2) \right) \vee \cdots \vee \left(\bigoplus_{\underline{x}_m} \varphi_m(\underline{x}_m) \right)$$

$$\Rightarrow \neg \left[(\neg \oplus \varphi_{1}(\underline{z}_{1})) \wedge (\neg \oplus \varphi_{2}(\underline{z}_{2})) \wedge \neg \wedge (\neg \oplus \varphi_{m}(\underline{z}_{m})) \right]$$

$$\Rightarrow \neg \left[(\neg \oplus \varphi_{1}(\underline{z}_{1})) \wedge (\neg \oplus \varphi_{2}(\underline{z}_{2})) \wedge \neg \wedge (\neg \oplus \varphi_{m}(\underline{z}_{m})) \right]$$

$$\Rightarrow \neg \left[(\neg \oplus \varphi_{1}(\underline{z}_{1})) \wedge (\neg \oplus \varphi_{2}(\underline{z}_{2})) \wedge \neg \wedge (\neg \oplus \varphi_{m}(\underline{z}_{m})) \right]$$

$$\Leftrightarrow \bigoplus \left((\mathbf{P}_1 + 1) \cdot (\mathbf{P}_2 + 1) \cdot \cdots \cdot (\mathbf{P}_m + 1) + 1 \right) \left(\mathbf{Z}, \widetilde{\mathbf{X}} \right) - \left(\mathbf{Z} \right)$$

$$\stackrel{\mathbf{Z}}{\Rightarrow} \widetilde{\mathbf{X}} = \left((\mathbf{P}_1 + 1) \cdot (\mathbf{P}_2 + 1) \cdot \cdots \cdot (\mathbf{P}_m + 1) + 1 \right) \left(\mathbf{Z}, \widetilde{\mathbf{X}} \right) - \left(\mathbf{Z} \right)$$

$$\stackrel{\mathbf{Z}}{\Rightarrow} \widetilde{\mathbf{X}} = \left((\mathbf{P}_1 + 1) \cdot (\mathbf{P}_2 + 1) \cdot \cdots \cdot (\mathbf{P}_m + 1) + 1 \right) \left(\mathbf{Z}, \widetilde{\mathbf{X}} \right) - \left(\mathbf{Z} \right)$$

$$\stackrel{\mathbf{Z}}{\Rightarrow} \widetilde{\mathbf{X}} = \left((\mathbf{P}_1 + 1) \cdot (\mathbf{P}_2 + 1) \cdot \cdots \cdot (\mathbf{P}_m + 1) + 1 \right) \left(\mathbf{Z}, \widetilde{\mathbf{X}} \right) - \left(\mathbf{Z} \right)$$

$$\stackrel{\mathbf{Z}}{\Rightarrow} \widetilde{\mathbf{X}} = \left((\mathbf{P}_1 + 1) \cdot (\mathbf{P}_2 + 1) \cdot \cdots \cdot (\mathbf{P}_m + 1) + 1 \right) \left(\mathbf{Z}, \widetilde{\mathbf{X}} \right) - \left(\mathbf{Z} \right)$$

• Let $\Gamma := (\varphi_1 + 1) \cdot (\varphi_2 + 1) \cdot \cdots \cdot (\varphi_m + 1) + 1$. Then, $\#\Gamma = (\#\varphi_1 + 1) (\#\varphi_2 + 1) \cdots (\#\varphi_m + 1) + 1;$ $|\Gamma| = poly(|\varphi_1|, \cdots, |\varphi_m|).$

(d) Define $\oplus \varphi(x,y) := \sum \varphi(x,y) \pmod{2}$, which $y \in \{0,1\}^{|y|}$ is a Boolean func. in the z varis. Then, $\bigoplus \bigoplus \varphi(x,y) = \bigoplus \varphi(x,y)$. (simple exercise)

Boosting the success probatthe VV theorem *

• Lemma 1: There is a randomized reduction g that given a parameter p and a Boolean cht. $\varphi(\underline{z})$, runs in time $poly(|\varphi|,p)$ and outputs a cht. $g(\varphi)(\underline{z},\underline{z})$ s.t. $\exists z \varphi(z) \text{ is true} \Rightarrow \Pr \left[\bigoplus g(\varphi)(z, \tilde{z}) \text{ is true} \right] > 1 - \frac{1}{2^p}$ is false] = 1. Jzφ(z) is false => Pr["

· Proof: Run the VV reduction independently on times. Let the outputs be $f(\varphi)(x_1)$, -..., $f(\varphi)(x_m)$

 $f(\varphi)$, $f(\varphi)_m$

· Proof (contd.) We wish to output a g(P)(Z, Z) s.t.

$$\bigoplus_{\Xi,\widetilde{Z}} g(\varphi)(\Xi,\widetilde{Z}) \Leftrightarrow \bigoplus_{\Xi,\widetilde{Z}} (\varphi)_{i} \vee --- \vee (\bigoplus_{\Xi,\widetilde{Z}} f(\varphi)_{m}) \\
\xrightarrow{\Xi,\widetilde{Z}} (3)$$

By Obs 1 (c), $g(\varphi)$ is easy to construct. $g(\varphi)(\underbrace{z}, \underbrace{\widetilde{z}}) := (f(\varphi)_{+1}) \cdot (f(\varphi)_{2}^{+1}) \cdot \cdots \cdot (f(\varphi)_{m}^{+1}) + 1)(\underbrace{z}, \underbrace{\widetilde{z}})$

· Obs: If ∃x φ(x) is false, then by VV theorem *,

⊕ g(φ)(₹, x) is false with probability 1.

₹, x

· Suppose] x q (x) is true. Then, $P_{r}\left[\bigoplus_{z \in Z} g(\varphi)(z,\overline{z}) is \text{ balse}\right]$ $= Pr\left[\bigoplus_{z_1} \Phi f(P), is false\right].....Pr\left[\bigoplus_{z_m} f(P)_m is false\right]$ $\leq \left(1-\frac{1}{8n}\right)^m \leq \frac{1}{2^p}$ if m=10 np, where $|\underline{x}|=|\underline{x}i|=n$ $Pr\left(\bigoplus_{\Xi,\widetilde{\chi}}g(P)(\Xi,\widetilde{\chi})\text{ in true}\right) > 1-\frac{1}{2P}$.

Lemma 1 gives a randomized poly-time reduction from 5: SAT to ØSAT with high success probability.

Reduction from TT,-SAT to @SAT

• Lemma 2: There is a randomized reduction g that given a parameter p and a det. p(x) runs in time poly (191, p) and outputs a cht. $g(p)(\overline{z}, \overline{z})$ s.t.

Jouts a clut.
$$g(P)(\underline{z},\underline{z})$$
 S.t.

 $\forall z \ P(\underline{z})$ is true $\Rightarrow Pr\left[\bigoplus_{\underline{z},\underline{z}} g(P)(\underline{z},\underline{z})\right]$ is true $=1$,

$$\forall z \varphi(z) \text{ in folse} \Rightarrow Pro\left[\bigoplus_{\underline{z},\underline{z}} g(\varphi)(\underline{z},\underline{z}) \text{ in folse}\right] \geq 1 - \frac{1}{2^p}$$
.

• Proof: We wish to construct a g(q)(₹, ₹) s.t.

$$\bigoplus_{\underline{z},\underline{z}} g(\varphi)(\underline{z},\underline{z}) \iff \neg \left(\bigoplus_{\underline{z},\underline{r}} f(\neg \varphi), \vee - \dots \vee \bigoplus_{\underline{z},\underline{m}} f(\neg \varphi)_{\underline{m}}\right)$$

By Obs 1(c),

$$\frac{1(c)}{g(\varphi)(\overline{z},\overline{z})}:=\left(f(\overline{1}\varphi)_{1}+1\right)\cdot \cdots \cdot \left(f(\overline{1}\varphi)_{m}+1\right), \text{ where } m=10np.$$

Toda's theorem: Step 1 (base case)

· Corollary 1: (follows from Lemma 122). There is a rand. reduction of that given a parameter p and a QBF p with one level of alternation, runs in time poly(191,p) and outputs a cht. g(q) s.t. φ is true $\Rightarrow \Pr\left[\Theta g(\varphi) \text{ is true}\right] > 1 - \frac{1}{2P}$, pin false => Pr[Dg(P) in false]>1- 1/2P, i.e., $\varphi \iff \oplus g(\varphi) \quad \omega \cdot p \cdot \geq 1 - \frac{1}{2P}$

· The above corollary serves as the base care of the induction inductive proof of Step1 of Toda's theorem. The induction is on the no. of alternations.

Randomized reduction from Z-SAT to @SAT

Theorem 1: There is a randomized reduction of that given a parameter p and a BBF of with a levels of alternations, runs in time poly (191,p) and outputs a cht. g(p) st. φ is true \Rightarrow $\Pr\left[\Phi g(\varphi) \text{ is true}\right] > 1 - \frac{1}{2P}$, qui false => Pr [+ g(q) in false] > 1- \frac{1}{2P}? i.e. $\varphi \Leftrightarrow \Phi g(\varphi)$ with $P^{sob} \cdot \geq 1 - \frac{1}{2P} \cdot (5)$

Proof: We will prove the theorem for c=2. The proof of the general case is similar. The idea is to apply the VV theorem c times.

Kandomized reduction from Z2-SAT to @SAT

- Let $\exists u \forall v \varphi(u,v)$ be the i/p QBF. We wish to construct a $g(\varphi)$ that satisfies $\mathcal{E}qn.(5)$.
- Fix a \underline{u} arbitrarily. Then, $\underline{\forall}\underline{v}$ $\underline{\varphi}(\underline{v},\underline{v})$ is a QBF in the \underline{v} variables with one quantifier.

 By Lemma 2 and Corollary 1, there is a $\underline{\varphi}(\underline{\varphi}(\underline{v},\underline{v}))$
 - computable ckt. g'(P) s.t.

$$A \bar{h} \Phi(\bar{h}, \bar{h}) \iff \Phi \bar{h} \Phi(\bar{h}) \Leftrightarrow 1 - \frac{1}{2b}$$
.

Note: $|g'(\varphi)| = poly(|\varphi|, P')$. We'll fix p' later in the analysis.

- . Let us understand the structure of g'(q).
- By Eqn. (4) in the proof of Lemma 2, $g'(\varphi)\left(\underline{\upsilon},\underline{z}',\widetilde{\upsilon}\right) = \left(f(\neg\varphi)_{i}+1\right) \cdot \cdots \cdot \left(f(\neg\varphi)_{m'}+1\right), \text{ where } m'=10\cdot|\underline{\upsilon}|.p'$ and $f(\neg\varphi)_{i} = f(\neg\varphi)\left(\underline{\upsilon},\underline{\upsilon}_{i}\right) = \neg\varphi(\underline{\upsilon},\underline{\upsilon}_{i}) \wedge \psi_{k'_{i},h'_{i}}\left(\underline{\upsilon}_{i}\right).$
- . So, $f(\neg \varphi)_i + 1 = (f(\neg \varphi)_i + 1)(\underline{\cup}, z_i', \underline{\vee}_i)$.
- · The expression for g'(P) above is very "syntactic" with regard to the v-vars. It does not "bouch" the v-vars.

• For an arbitrarily fixed
$$\underline{U}$$
, we have
$$\forall \underline{V} \varphi(\underline{V},\underline{V}) \Longleftrightarrow \underline{\Theta} g'(\underline{\varphi})(\underline{V},\underline{Z}',\underline{\widetilde{V}}) \text{ with prob. } \geq 1-\frac{1}{2^p}.$$

· By union bound,

$$\forall \underline{v} \Phi(\underline{v},\underline{v}) \iff \underbrace{\Phi}_{\underline{Z}',\underline{v}} g'(\underline{\Phi})(\underline{v},\underline{Z}',\underline{v}) \text{ with prob. } \geq 1 - \frac{1}{2^{p'-|\underline{v}|}},$$

irrespective of 2. Hence,

$$\bullet \exists \overline{\rho} \, A \overline{\lambda} \, \Phi(\overline{\rho}', \overline{\lambda}) \iff \exists \overline{\rho} \, \oplus \overline{\beta}(\Phi)(\overline{\rho}', \overline{\xi}', \overline{\lambda}) \quad \varpi \cdot b \cdot \geqslant 1 - \frac{5_{b'-1}\overline{\rho}1}{b'}.$$

• Let
$$T(\underline{v}) := \bigoplus g'(\varphi)(\underline{v}, \underline{z}', \underline{v})$$
. (6)

- · $\tau(\underline{v})$ is a Boolean function in the \underline{v} -vars, but it may not have a poly (191) size circuit.
- Then, $\exists \underline{v} \forall \underline{v} \varphi(\underline{v},\underline{v}) \Leftrightarrow \exists \underline{v} \tau(\underline{v}) \omega.p. \geq 1 \frac{1}{2^{p'-1}\underline{v}}$. (7)
- From Obs *, if we replace φ by Υ in Lemma 1 and construct $g(\Upsilon)$ as in Eqn(3), then \longrightarrow VV thm.

$$\exists \neg \tau(\neg) \Leftrightarrow \oplus g(\tau) \quad \omega \cdot h \cdot P \quad (8)$$

• But, we need to think about the circuit complexity of g(r). So, let us scrutinize the structure of g(r) using Eqn(3). We want a g(r) s.t.

$$\bigoplus_{\underline{\nu}} g(\underline{\tau}) \iff \bigoplus_{\underline{\nu}} f(\underline{\tau}), \quad \forall \quad \forall \quad \bigoplus_{\underline{\nu}} f(\underline{\tau})_{m} \qquad (9)$$

where
$$f(r)_{i} = f(r)(\underline{\upsilon}_{i}) = r(\underline{\upsilon}_{i}) \vee \psi_{k_{i},h_{i}}(\underline{\upsilon}_{i})$$

$$= \bigoplus_{\underline{z}',\underline{\upsilon}} g'(\varphi)(\underline{\upsilon}_{i},\underline{z}',\underline{\upsilon}) \vee \psi_{k_{i},h_{i}}(\underline{\upsilon}_{i}) \left[b_{\underline{z}} \underline{z}_{q}(\underline{\omega}) \right]$$

$$= \bigoplus_{\underline{z}',\underline{\upsilon}} \left(g'(\varphi)(\underline{\upsilon}_{i},\underline{z}',\underline{\upsilon}) \vee \psi_{k_{i},h_{i}}(\underline{\upsilon}_{i}) \right).$$

• In the above equation, the z', \tilde{v} vors are bounded by the Φ quantifier. So, we can assume they are fresh sets of vors. Zi, ~~i.

Hence, $\bigoplus f(\tau)_{i} = \bigoplus \bigoplus_{\underline{U}_{i}, \underline{Z}_{i}', \underline{V}_{i}} \left(g'(\varphi)(\underline{U}_{i}, \underline{Z}_{i}', \underline{Y}_{i}) \vee \psi_{k_{i}, h_{i}}(\underline{U}_{i}) \right)$ $\left[b_{y} \text{ Obs 1(a)} \right] = \bigoplus_{\underline{U}_{i}, \underline{Z}_{i}', \underline{Y}_{i}} \left(g'(\varphi)(\underline{U}_{i}, \underline{Z}_{i}', \underline{Y}_{i}) \vee \psi_{k_{i}, h_{i}}(\underline{U}_{i}) \right)$

Call this $h(\varphi)(\underline{v}_i,\underline{z}_i',\widetilde{\underline{v}}_i)=:h(\varphi)_i$

$$=\bigoplus_{i,3i,\overline{2}i}h(\varphi)_{i}$$
.

· Note that [h(4); = poly(191, p').

• From
$$\Sigma q n(9)$$
, we want a $g(\tau)$ s.t.
$$\bigoplus g(\tau) \iff \left(\bigoplus_{\underline{U}_{1}, \underline{z}_{1}', \underline{\tilde{V}}_{1}} h(\varphi)_{1} \right) \vee \cdots \vee \left(\bigoplus_{\underline{U}_{m}, \underline{z}_{m}', \underline{\tilde{V}}_{m}} h(\varphi)_{m} \right) - (10)$$

- Set $m = 10 \cdot |\underline{U} + \underline{Z} + \underline{\widetilde{V}}| \cdot p$, so that the above equivalence happens $\omega \cdot p \cdot > 1 \frac{1}{2P}$.
- Finally, ∃υ Ψυ Φ(υ,ν) ⇔ ∃υ τ (υ) ω.ρ> 1- 1/2 [by ξqu(7)]

$$\iff \bigoplus g(\tau) \qquad \omega \cdot p > 1 - \frac{1}{2^p}, \left[by \frac{5q_n(8)}{2^n}\right]$$

where $g(\tau)$ is as in $\Xi qm(10)$. Total err. prob. $\leq \frac{1}{2p'-|y|} + \frac{1}{2p}$.