Prognose von Zeitreihen mit Hilfe von künstlichen neuronalen Netzen am Beispiel von Börsenprognosen

Vortrag zur Seminararbeit

Fach: Softcomputing

Dozent: Prof. Dr. Reinhard Eck

Vorgelegt von:

- Sebastian Schötteler
- Benedikt Hofrichter

Inhaltsverzeichnis

- Motivation
- II. Konzeption der Anwendung
- III. Konzeption des künstlichen neuronalen Netzes
- IV. Umsetzung der Anwendung
- V. Umsetzung des künstlichen neuronalen Netzes
- VI. Livedemonstration der Anwendung
- VII. Analyse
- VIII. Fazit

Inhaltsverzeichnis

I. Motivation

- II. Konzeption der Anwendung
- III. Konzeption des künstlichen neuronalen Netzes
- IV. Umsetzung der Anwendung
- V. Umsetzung des künstlichen neuronalen Netzes
- VI. Livedemonstration der Anwendung
- VII. Analyse
- VIII. Fazit

I. Motivation

- Künstliche neuronale Netze als Hilfsmittel zur Prognose:
 - Therapieverläufen in der Medizin
 - Arbeitslosenzahlen auf dem Arbeitsmarkt
 - Börsenkursen
- Besonderheit:
 - Fähigkeit, nichtlineare Zusammenhänge zu erkennen.
 - Prognostiziert objektiv und vorurteilsfrei.

I. Motivation

- Zweck der Seminararbeit:
 - Erstellung einer Anwendung zur Prognose von Börsenkursen mittels KNN.
 - Fokus : Erlangen eines Grundverständnisses über Prognosen mittels KNN.
 - Präzision der Prognosen sollte jedoch nicht vernachlässigt werden.
- Die Anwendung soll in der Lage sein…
 - ...den zukünftigen Kurs verschiedener Börsen prognostizieren zu können.
 - ...eine genaue statistische Analyse der Prognose liefern.

Inhaltsverzeichnis

- I. Motivation
- II. Konzeption der Anwendung
- III. Konzeption des künstlichen neuronalen Netzes
- IV. Umsetzung der Anwendung
- V. Umsetzung des künstlichen neuronalen Netzes
- VI. Vorstellung des Oberfläche
- VII. Analyse
- IX. Fazit

- Entscheidungsfaktoren
 - Integrationsfähigkeit
 - Abstraktionsfähigkeit
 - Skalierbarkeit
 - Kosten
 - Schnittstellen

- Grundidee der Architektur
 - Anwendung besteht aus zwei Modulen
 - Anwendungslandschaft aus drei Modulen
 - Strikte Trennung zwischen Komponenten
 - Restful Kommunikation
 - Visualisierung (Client)
 - Stockmarket-Webapp (Client / Server)
 - Quandl-API (Server)

- Rest-Kommunikation
 - Adressierbarkeit
 - Variierende Repräsentationen
 - Zustandslosigkeit
 - Zustandsloses Protokoll

Inhaltsverzeichnis

- Motivation
- II. Konzeption der Anwendung
- III. Konzeption des künstlichen neuronalen Netzes
- IV. Umsetzung der Anwendung
- V. Umsetzung des künstlichen neuronalen Netzes
- VI. Livedemonstration der Anwendung
- VII. Analyse
- VIII. Fazit

Netztyp

Heteroassoziative Netze:

$$\overrightarrow{V}_i(1,...,n) \rightarrow \overrightarrow{V}_o(1,...,k); k \leq n$$

Autoassoziative Netze:

$$\bullet \overrightarrow{V_i}(1,...,n) \to \overrightarrow{V_o}(1,...,n)$$

Heteroassoziative Netze	Autoassoziative Netze
Adaline	Hopfield-Netze
Madaline	Boltzmann-Maschine
Perzeptron	
Multilayerperzeptron	

Netztyp

Wir bilden einen Eingabevektor auf einen skalaren Wert ab.

Heteroassoziative Netze	Autoassoziative Netze
Adaline	Hopfield-Netze
Madaline	Boltzmann-Maschine
Perzeptron	
Multilayerperzeptron	

Netztyp

- Definition & Theorem zur weiteren Bestimmung des Netztyps
 - Definition der linearen Separierbarkeit.
 - Beweis der eingeschränkten Fähigkeit von einschichtigen neuronalen Netzen.
 - Konvergenz-Theorem von Rosenblatt & Theorem der universellen Approximation.

Heteroassoziative Netze	Autoassoziative Netze
Adaline	Hopfield-Netze
Madaline	Boltzmann-Maschine
Perzeptron	
Multilayerperzeptron	

Netztyp

Definition der linearen Separierbarkeit:

Seien X_1 und X_2 zwei Wertemengen im n-dimensionalen euklidischen Raum. Diese sind genau dann linear separierbar, wenn n+1 reelle Zahlen $w_1 \dots w_n$, k existieren, sodass für alle $x \in X_1$, $y \in X_2$ die folgende Ungleichung erfüllt ist:

$$\sum_{i=0}^{n} w_i x_i \le k < \sum_{i=0}^{n} w_i y_i$$

- 2 Klassen sind linear separierbar, wenn ihre konvexen Hüllen disjunkt sind.
- 2 Klassen sind linear separierbar, wenn sie durch eine Gerade geteilt werden können.

Netztyp

■ Einschichtige neuronale Netze können nur linear separierbare Funktionen

klassifizieren

Netztyp

Kontradiktionsbeweis der eingeschränkten Fähigkeit von einschichtigen neuronalen Netzen beim XOR-Problem nach Minski / Papert:

Gegeben:

$$net = o_1 * w_1 + o_2 + w_2$$
$$f_{out}(act) = Id \rightarrow o = act$$

- a) $0 * w_1 + 0 * w_2 < \emptyset$ Inputvektor (0,0) liefert den Output 0.
- b) $0 * w_1 + 1 * w_2 \ge \emptyset$ Inputvektor (0,1) liefert den Output 1.
- c) $1 * w_1 + 0 * w_2 \ge \emptyset$ Inputvektor (1,0) liefert den Output 1.
- d) $1 * w_1 + 1 * w_2 < \emptyset$ Inputvektor (1,1) liefert den Output 0.
- \rightarrow Widerspruch: $(b+c): w_1+w_2 \ge \emptyset \land (d): w_1+w_2 < \emptyset$
- → Beweis auf andere nicht linear separierbare Funktionen anwendbar.

Netztyp

- Einschichtige neuronale Netze können nur linear separierbare Funktionen klassifizieren
- Börsenkurs linear separabel?
- Konvergenz –Theorem:

"Der Lernalgorithmus des Perzeptrons konvergiert in endlicher Zeit, d.h. das Perzeptron kann in endlicher Zeit alles lernen, was es repräsentieren kann."

Perzeptron konvergiert ↔ Funktion linear separabel

Netztyp

Test auf linearer Separierbarkeit:

Perzeptron konvergiert nicht → Börsenkurs nicht linear separabel → einlagige neuronale Netze nicht zur Prognose des Börsenkurses geeignet.

Netztyp

Heteroassoziative Netze	
Adaline	
Madaline	
Perzeptron	
Multilayerperzeptron	

- Ist ein Multylayerperzeptron zur Vorhersage von Börsenprognosen geeignet?
 - Theorem der universellen Approximation

Netztyp

- Ist ein Multilayerperzeptron zur Vorhersage von Börsenprognosen geeignet?
 - Theorem der universellen Approximation:
 - "Mit Hilfe eines dreischichtigen neuronalen Netzes lassen sich Funktionen beliebig genau approximieren."
 - Ein Multilayerperzeptron ist also ein universeller Approximator.
- Fazit: Multilayerperzeptron geeignet.

- K_i = Börsenkurs am Tag i.
- Ein Vektor $V_i = (K_{i-3}, K_{i-2}, K_{i-1}, K_i)$ der Länge 4 als Input.
- Ein Skalarwert K_{i+1} als Output.

Topologie

- Richtlinien zur Dimensionierung der Zwischenschicht:
 - Nicht zu viele Neuronen → Overfitting vermeiden → mangelnde Gen-F.
 - Nicht zu wenig Neuronen → Regelsatz kann nicht abgespeichert werden.
 - Faustregel zur Ermittlung einer Obergrenze:

$$h = \frac{Anzahl\ Trainingsdaten}{10*(m+n)} = \frac{450}{10*(4+1)} = \frac{450}{50} = 9$$

Bieten nur einen Anhaltspunkt

- h = Obergrenze für die Anzahl der Neuronen in der versteckten Schicht.
- Es werden 450 Trainingsdaten und 150 Testdaten verwendet.
- m = Anzahl Input neuronen; n = Anzahl Outpur neuronen.

Lernverfahren

- Überwachtes Lernen
 - Eingabewerte bekannt
 - Erwartete Ausgabewerte bekannt
 - Tatsächlicher Wert wird mit erwarteten Ausgabewert verglichen.
 - Differenz wird gebildet und zum "trainieren" des Netzes genutzt.

Bestärkendes Lernen

- Ähnlich wie überwachtes Lernen.
- Anwendbar, wenn keine Ausgabewerte zur Verfügung stehen.
- Netz erhält nur Information ob richtig oder falsch und muss damit trainiert werden.

Nicht überwachtes Lernen

- Sehr nah am biologischen Vorbild.
- Das Neuronale Netz verändert sich entsprechend den Eingabemustern von selbst.

Lernverfahren

- Überwachtes Lernen
 - Eingabewerte bekannt
 - Erwartete Ausgabewerte bekannt
 - Tatsächlicher Wert wird mit erwarteten Ausgabewert verglichen.
 - Differenz wird gebildet und zum "trainieren" des Netzes genutzt.

Bestärkendes Lernen

- Ähnlich wie überwachtes Lernen.
- Anwendbar, wenn keine Ausgabewerte zur Verfügung stehen.
- Netz erhält nur Information ob richtig oder falsch und muss damit trainiert werden.

Nicht überwachtes Lernen

- Sehr nah am biologischen Vorbild.
- Das Neuronale Netz verändert sich entsprechend den Eingabemustern von selbst.

- Lernverfahren
 - Überwachtes Lernen
 - Eingabewerte bekannt
 - Erwartete Ausgabewerte bekannt
 - Tatsächlicher Wert wird mit erwarteten Ausgabewert verglichen.
 - Differenz wird gebildet und zum "trainieren" des Netzes genutzt. → MSE
 - MSE Funktion:

$$MSE = \frac{1}{2} \sum_{j}^{n} ((k_{i+1})_{j} - (k_{i+1}')_{j})^{2}$$

- k_{i+1} = Prognostizierter Kurs des KNN zum Tag i+1. k_{i+1} = Echter Kurs zum Tag i+1.

Inhaltsverzeichnis

- Motivation
- II. Konzeption der Anwendung
- III. Konzeption des künstlichen neuronalen Netzes
- IV. Umsetzung der Anwendung
- V. Umsetzung des künstlichen neuronalen Netzes
- VI. Livedemonstration der Anwendung
- VII. Analyse
- VIII. Fazit

Entwicklung	Laufzeit
Java 8 – JDK 1.8	Java 8 – JRE 1.8
Tomcat 7.0.64	Tomcat 7.0.64
Intellij IDE	
Linux Mint 17.1	
Neuroph-Studio-2.92	

Vorteile:

- Betriebssystemunabhängigkeit
- Kontextbasierte Entwicklung
- Neuroph ist eine Java-Anwendung

- Frameworks
 - Apache Maven
 - Spring Boot
 - C3js
 - Bootstrap

- Build-Werkzeug
- Abhängigkeiten-Management (Dependency Management)
- Local und Remote Repositories
- Maven-Build-Lifecycle
- Anwendungspezifisches Management definiert das Project Object Model (POM.xml)
- Alternativen sind Apache Ant und Gradle
- Vorteile: Skalierbarkeit, Komplexitätsverringerung ...

Apache

- Spring Boot
 - Umsetzung des Spring Frameworks
 - Besseres Code Management
 - Vermeidung von Boiler Plate Code
 - Elementare Bestandteile
 - Abhängigkeitsinjizierung (Dependency Injection)
 - Annotationen

- Abhängigkeit-Injizierung
 - Entwurfsmuster (Software Pattern)
 - Ziel: Abhängigkeitsminimierung zwischen Java-Klassen
 - Abhängigkeiten werden beim Aufruf übergeben.
 - Arten:
 - Inversion-of-Control (Spring IoC-Container)
 - Konstruktor Injektion
 - Setter Injektion

- Annotationen
 - Implementierung von Interface
 - Typen:
 - Retention.SOURCE Typen
 - Retention.RUNTIME Typen

```
@Component
public class DataService {
    @Autowired
    private FormatService formatService;
```

- C3js Power für die Börsencharts
 - Basiert auf D3js
 - Relativ schlanker Ansatz
 - Informationsgehalt kann angemessen dargestellt werden
 - Visualisierung aller Diagramme
 - Alternativen: D3js, NVD3, CanvasJS, Crossfilter, ...

- Bootstrap CSS Bibliothek
 - Entwickelt in CSS, LESS, JavaScript
 - Ermöglicht Responsive Design
 - Hauptaufgabe: Formatierung des Layouts

- Technologie Fazit
 - Integrationsfähigkeit durch modulare Entwicklung und einheitliche Schnittstellen
 - Abstraktionsfähigkeit durch intelligente Frameworks und Entwurfsmuster
 - Skalierbarkeit durch Rest-Kommunikation (Abhängigkeit-Injizierung)
 - → Nachhaltige Entwicklung

Inhaltsverzeichnis

- Motivation
- II. Konzeption der Anwendung
- III. Konzeption des künstlichen neuronalen Netzes
- IV. Umsetzung der Anwendung
- V. Umsetzung des künstlichen neuronalen Netzes
- VI. Livedemonstration der Anwendung
- VII. Analyse
- VIII. Fazit

Umsetzung mit Neuroph Studio

Startnetz aus der Konzeption

Topologie	4-9-1
Transferfunktion	Sigmoid
Lernregel	Backpropagation
Lernrate	0,7

Optimierungsprozess

Datensätze

■ Trainingsdatensatz: 450 Daten

Testdatensatz: 150 Daten

Optimierung der Topologie

Topologia	М	SE	MSE-BIAS	
Topologie	Training	Test	Training	Test
4-3-1 (B)	0,0011562	0,002569	$9,449 \cdot 10^{-4}$	0,001788
4-5-1 (B)	0,001062	0,002879	$9,598 \cdot 10^{-4}$	0,001799
4-7-1 (B)	0,001090	0,001784	$9,407 \cdot 10^{-4}$	0,001781
4-9-1 (B)	0,001048	0,002134	$9,488 \cdot 10^{-4}$	0,0024436
4-11-1 (B)	0,001022	0,001785	$9,760 \cdot 10^{-4}$	0,0033215
4-13-1 (B)	0,001002	0,001787	$9,906 \cdot 10^{-4}$	0,004067

■ B steht hierbei für Bias-Neuron → Schnellere Konvergenz.

Optimierung der Topologie

Tamalagia	М	MSE		MSE-BIAS	
Topologie	Training	Test	Training	Test	
4-3-1 (B)	0,0011562	0,002569	$9,449 \cdot 10^{-4}$	0,001788	
4-5-1 (B)	0,001062	0,002879	$9,598 \cdot 10^{-4}$	0,001799	
4-7-1 (B)	0,001090	0,001784	$9,407 \cdot 10^{-4}$	0,001781	
4-9-1 (B)	0,001048	0,002134	$9,488 \cdot 10^{-4}$	0,0024436	
4-11-1 (B)	0,001022	0,001785	$9,760 \cdot 10^{-4}$	0,0033215	
4-13-1 (B)	0,001002	0,001787	$9,906 \cdot 10^{-4}$	0,004067	

Optimierung der Transferfunktion

Transferfuntion	MSE	
	Training	Test
Sigmoid	$9,406 \cdot 10^{-4}$	0,001767
Tanh	0,010333	0,044330

Optimierung der Transferfunktion

Transferfuntion	MSE	
	Training	Test
Sigmoid	$9,406 \cdot 10^{-4}$	0,001767
Tanh	0,010333	0,044330

Optimierung der Lernregel

Lernregel	MSE		
	Training	Test	
Backpropagation	$9,325 \cdot 10^{-4}$	0,001636	
Momentum Backpropagation	$9,109 \cdot 10^{-4}$	0,001608	
Resilient Propagation	$8,89 \cdot 10^{-4}$	$9,406 \cdot 10^{-4}$	

Optimierung der Lernregel

Lernregel	MSE		
	Training	Test	
Backpropagation	$9,325 \cdot 10^{-4}$	0,001636	
Momentum Backpropagation	$9,109 \cdot 10^{-4}$	0,001608	
Resilient Propagation	$8,89 \cdot 10^{-4}$	$9,406 \cdot 10^{-4}$	

- RPROP → "Federndes" Propagation:
 - Verfahren ändert Gewichte nur durch Vorzeichen des Gradienten.
 - Dazu wird der Kurvenanstieg von t und herangezogen (namens S(t))

$$\Delta w_{ij}(t) = \begin{cases} -\Delta_{ij}(t) \ falls \ S(t) > 0 \\ +\Delta_{ij}(t) \ falls \ S(t) < 0 \\ 0 \ sonst \\ - \end{cases}$$

- RPROP → "Federndes" Propagation:
 - Betrag der Gewichtsveränderung Δ_{ij} wird getrennt bestimmt:
 - Zwei konstante Parameter n_+ und n_- mit $0 < n_- < 1 < n_+$

$$\Delta_{ij}(t) = \begin{cases} \Delta_{ij} (t-1) \cdot n_{+} falls S(t-1) \cdot S(t) > 0 \\ \Delta_{ij} (t-1) \cdot n_{-} falls S(t-1) \cdot S(t) < 0 \\ \Delta_{ij} (t-1) sonst \\ - \end{cases}$$

- Resilient Propagation:
 - Sehr effizienter Backpropapagation-Algorithmus.
 - Verfügt über keine Lernrate.
 - Benötigt keinen Momentum-Faktor.
 - Ist in der Praxis meistens anderen Lernregeln überlegen.

■ Endgültiges Netz – DAX

Topologie	4-7-1 mit BIAS	
Transferfunktion	Sigmoid	
Lernregel	R-Prop	

Endgültiges Netz nochmals mit 200.000 Zyklen trainiert und getestet:

• MSE-Training: $4,252 \cdot 10^{-5}$

• MSE-Test: $4,820 \cdot 10^{-5}$

Analog – Nikkei 225

Topologie	4-7-1 mit BIAS	
Transferfunktion	Sigmoid	
Lernregel	R-Prop	

Endgültiges Netz nochmals mit 200.000 Zyklen trainiert und getestet:

■ MSE-Training: $1.350 \cdot 10^{-5}$

• MSE-Test: $4,520 \cdot 10^{-5}$

Analog – Dow Jones

Topologie	4-7-1 mit BIAS	
Transferfunktion	Sigmoid	
Lernregel	R-Prop	

Endgültiges Netz nochmals mit 200.000 Zyklen trainiert und getestet:

• MSE-Training: $6,672 \cdot 10^{-5}$

■ MSE-Test: 2,820 · 10⁻⁴

Inhaltsverzeichnis

- Motivation
- II. Konzeption der Anwendung
- III. Konzeption des künstlichen neuronalen Netzes
- IV. Umsetzung der Anwendung
- V. Umsetzung des künstlichen neuronalen Netzes
- VI. Livedemonstration der Anwendung
- VII. Analyse
- VIII. Fazit

VII. Livedemonstration der Anwendung

Inhaltsverzeichnis

- Motivation
- II. Konzeption der Anwendung
- III. Konzeption des künstlichen neuronalen Netzes
- IV. Umsetzung der Anwendung
- V. Umsetzung des künstlichen neuronalen Netzes
- VI. Livedemonstration der Anwendung

VII. Analyse

VIII. Fazit

- Börsencrash 2008
 - Zeitraum vom 01.06.2015 bis zum 01.12.2015
- Fukushima 2011 (nur Nikkei)
 - Zeitraum vom 01.01.2015 bis zum 01.06.2015
- Die letzte Jahreshälfte
 - Zeitraum vom 01.06.2016 bis zum 01.12.2015

Letztes halbes Jahr - DAX

■ Letztes halbes Jahr – Dow Jones

■ Letztes halbes Jahr – Nikkei 225

■ Börsencrash 2008 - DAX

■ Börsencrash 2008 – Dow Jones

■ Börsencrash 2008 – Nikkei 225

■ Fukushima 2011– Nikkei 225

Inhaltsverzeichnis

- Motivation
- II. Konzeption der Anwendung
- III. Konzeption des künstlichen neuronalen Netzes
- IV. Umsetzung der Anwendung
- V. Umsetzung des künstlichen neuronalen Netzes
- VI. Livedemonstration der Anwendung
- VII. Analyse

VIII. Fazit

IX. Fazit

- Die Prognose von Börsenkursen ist prinzipiell möglich.
- Basismodell arbeitet nur mit linearen Zusammenhängen.
 - Abgeschottete Welt
 - Erweiterung durch nichtlineare Zusammenhänge möglich:
 - Leitzins
 - Weltereignisse
 - Kurse anderer Börsen
- Prognosen mit neuronalen Netzen sind umstritten:
 - Befürworter: nichtlineare Muster erkennen wertvoll.
 - Kritiker: KNN denkt wie ein Mensch → macht die gleichen Fehler.

IX. Fazit

■ KNN als Ergänzung sinnvoll, nicht als alleiniges Prognoseintrument.

- Anwendungen dieser Art bereits zahlreich auf dem Markt vorhanden:
 - Neuroshell Trader
 - Altredo
 - ...

Präsentationsende... ...Fragen & Diskussion

