# Série d'exercices

#### Exercice 1

- 1 Répondre par vrai ou faux
- Un solide est en mouvement de rotation autour d'un axe fixe  $(\Delta)$ , si tous ses points sont en mouvement de circulaire autour de  $(\Delta)$ , sauf les points qui appartiennent à cet axe.
- La force  $\vec{F}$  a un effet rotatif sur un corps solide, si sa ligne d'action est parallèle a l'axe de rotation ou elle se croise avec lui .
- Le moment d'une force est une grandeur vectorielle.
- Le moment d'une force est toujours positif.
- **9** Deux forces  $\overline{F_1}$  et  $\overline{F_2}$  forment un couple si leurs lignes d'actions sont confondues, et leur somme vectorielle est nulle.
- Un solide pouvant tourner autour d'un axe fixe est en équilibre et si et seulement si la somme algébrique des moments des forces auxquelles subit est nulle.
- Lorsqu'on néglige les frottements de l'axe de rotation, alors le moment de la réaction est négatif .

#### Exercice 2

Une barre homogène AB de masse m=2 kg et de longueur L pouvant tourner autour d'un axe ( $\Delta$ ) situé à son extrémité B. On réalise équilibre de cette barre en l'accrochant par son extrémité A à un câble inextensible. (voir la figure ci-contre ).



- 2 Faire l'inventaire des forces exercées sur la barre AB.
- 3 Déterminer l'expression du moment de chaque force.
- f G Trouver l'expression de m T la tension du fil en fonction de m g , m m et m lpha .Calculer sa valeur .

### Données

- ☐ Les frottements sont négligeables
- $\square$  L'intensité de la pesanteur : g = 10N/Kg
- $\square$  L'angle enter la direction de la barre et le plan horizontal  $\alpha=20^\circ$

#### Exercice 3

Une barre homogène AB de masse m=0,5~kg et de longueur L faisant un angle  $\alpha=30^\circ$  avec l'horizontal et suspendu à son extrémité A par un fil inextensible. Cette barre est en équilibre pouvant autour axe  $(\Delta)$  situé à son extrémité B. (voir la figure ci-contre ).

- Faire l'inventaire des forces exercées sur la barre AB .
- Déterminer l'expression du moment de chaque force .
- f 3 Trouver l'expression de m T la tension du fil en fonction de m g , m m et m lpha .Calculer sa valeur .
- **4** Construire la ligne polygonale des forces exercées sur la barre et déduire l'intensité de la réaction  $\overrightarrow{R}$  de l'axe de rotation  $(\Delta)$ .

Données

- □ Les frottements sont négligeables
  □ L'intensité de la pesanteur : g = 10N/Kg
- $\square$  L'angle enter la direction de la barre et le plan horizontal  $\alpha = 20^{\circ}$



## Série d'exercices

### Exercice 4

Un jardiner utilise sa Brouette pour transporter du terreau. Le châssis de la Brouette peut tourner autour d'un axe  $(\Delta)$  passant par le centre de la roue .

Le jardiner exerce des forces équivalentes à une force unique  $\vec{F}$  verticale dirigée vers le haut, d'intensité F = 400N appliquée au pointM. Le poids du châssis de la Brouette et du

chargement du terreau s'applique au point G

- 1 Enoncer le théorème des moments.
- 2 Déterminer les forces agissant sur la Brouette.
- **3** En appliquant le théorème des moments, déterminer le poids du châssis et le chargement .
- **4** Déduire la masse de la charge sachant que la masse de la Brouette est :  $m_B = 60Kg$

Données

- ☐ Les frottements sont négligeables
- $\square$  L'intensité de la pesanteur : g = 10N/Kg



#### Exercice 5

Une poulie à deux gorges est en équilibre et pouvant tourner sans

frottements autour d'un axe  $(\Delta)$  horizontale passant par son centre 0. On suspend au fil de petite gorge un solide  $(S_1)$  de masse  $m_1$ , et au fil de grande gorge un autre solide  $(S_2)$  de masse  $m_2$  ( la figure ci-contre )

- Faire l'inventaire des forces exercées sur la poulie .
- 2 Déterminer l'expression du moment de chaque force.
- 3 En appliquant le théorème des moments, trouver l'expression de la masse  $m_1$  en fonction de  $m_2$ ,  $R_2$  et  $R_1$ ; où  $R_1$  est le rayon de la petite gorge, et  $R_2$  celui de la grande gorge. Calculer sa valeur.

**Données**  $\square R_2 = 4R_1$   $\square m_2 = 8Kg$ 



#### Exercice 6

Une barre homogène AB de masse m=1,5 kg et de longueur L=20cm. Elle est immobile et suspendue à son extrémité A par un fil inextensible. Cette barre pouvant tourner autour d'un axe ( $\Delta$ ) situé à son extrémité B. (la figure ci-contre).

- **1** Faire l'inventaire des forces exercées sur la barre AB.
- Déterminer l'expression du moment de chaque force .
- § Trouver l'expression de T la tension du fil en fonction de g, m et  $\alpha$ . Calculer sa valeur.
- **1** Déduire l'intensité de la réaction  $\overrightarrow{R}$  de l'axe de rotation  $(\Delta)$ .

Données

- $\square$  L'angle entre la barre et le fil  $\alpha = 45^{\circ}$
- ☐ Les frottements sont négligeables
- $\Box$  L'intensité de la pesanteur : g = 10N/Kg







Physique TC Page 100

