Funciones Recursivas Primitivas

Pablo Verdes

LCC

9 de abril de 2020

Introducción

- Intentaremos construir modelos que nos permitan comprender los fundamentos del cálculo.
- ¿Qué significa calcular? Tomar ciertos datos, realizar una serie de pasos, y obtener un resultado. Es decir, aplicar un algoritmo.
- Estudiaremos una manera de descomponer cualquier cálculo matemático en procesos básicos.
- Trabajaremos sobre un modelo del cálculo en \mathbb{N}_0 . Para simplificar notación, de aquí en más usaremos la letra \mathbb{N} para indicar a \mathbb{N}_0 .
- Esquema:
 - Funciones numéricas
 - 2 Funciones base: cero, proyección, sucesor
 - Operadores: composición, recursión
 - Operation inductiva del conjunto de Funciones Recursivas Primitivas

Funciones numéricas

Definición: Llamaremos función numérica a toda función

$$f: \mathbb{N}^k \to \mathbb{N}, \text{ con } k \in \mathbb{N}.$$

- Convención: si k = 0, identificaremos a una función de cero variables con un número perteneciente a \mathbb{N} .
- Notación:
 - ▶ Elementos de \mathbb{N}^k : (x_1, x_2, \dots, x_k) , X, Y, Z.
 - ▶ Cuando necesitemos remarcar que una tupla X tiene k componentes, utilizaremos un supra-índice y escribiremos X^k .
 - ▶ Valor que toma una función: $f(x_1, x_2, ..., x_k)$, f(X), $f(X^k)$
 - Si el dominio de una función es \mathbb{N}^k , diremos que dicha función es de orden k y escribiremos $f^{(k)}$.

Funciones base

Funciones cero

Funciones proyección

Función sucesor

Funciones base: definiciones

Llamaremos funciones cero a las funciones

$$c^{(n)}: \mathbb{N}^n \to \mathbb{N}$$

$$X \mapsto c^{(n)}(X) = 0$$

• Llamaremos funciones proyección a las funciones

$$p_k^{(n)}: \mathbb{N}^n \to \mathbb{N}$$

 $(x_1, x_2, \dots, x_n) \mapsto p_k^{(n)}(x_1, x_2, \dots, x_n) = x_k$

• Llamaremos función sucesor a la función

$$s: \mathbb{N} \to \mathbb{N}$$

 $x \mapsto s(x) = x + 1$

Funciones base

 Definición: Llamaremos funciones base a las funciones cero, proyección y sucesor.

 Ahora veremos los operadores de composición y recursión, que nos permitirán combinar funciones para obtener otras más complejas.

Operador composición Φ

Definición:

Dada una función numérica $f^{(n)}$ y n funciones numéricas de orden k, $\{g_i^{(k)}\}_{i=1}^n$, llamaremos operador **composición** al que construye la función numérica h dada por

$$h: \mathbb{N}^k \to \mathbb{N}$$

 $X \mapsto h(X) = f(g_1(X), g_2(X), \dots, g_n(X))$

Notación:

$$h = \Phi(f, g_1, g_2, \ldots, g_n)$$

Operador composición Φ

Ejemplos:

- Funciones constantes:
 - **1** $uno^{(k)} = \Phi(s, c^{(k)})$
 - ② $dos^{(k)} = \Phi(s, uno^{(k)}) = \Phi(s, \Phi(s, c^{(k)}))$
 - **3** $tres^{(k)} = \Phi(s, dos^{(k)}) = \Phi(s, \Phi(s, \Phi(s, c^{(k)})))$
- Funciones que suman un número fijo:
 - **1** Mas $1^{(1)} = s$
 - ② $Mas2^{(1)} = \Phi(s, Mas1^{(1)}) = \Phi(s, s)$
- Función doble(x) = x + x?

Operador recursión R

Definición:

Dadas dos funciones numéricas $g^{(k)}$ y $h^{(k+2)}$, llamaremos operador **recursión** R al que construye una nueva función numérica $f^{(k+1)}$ definida de la siguiente manera:

$$f(y, X^k) = \begin{cases} g(X^k) & \text{si } y = 0\\ h(y - 1, X^k, f(y - 1, X^k)) & \text{si } y > 0 \end{cases}$$

Notación:

$$f = R(g, h)$$

Funciones Recursivas Primitivas (FRP)

Definimos inductivamente el conjunto de **Funciones Recursivas Primitivas (FRP)** como el menor conjunto tal que:

- Las funciones base pertenecen a FRP.
- Las funciones obtenidas aplicando un número finito de operaciones de composición (Φ) y recursión (R) sobre elementos de FRP también pertenecen a FRP.

Ejemplos

Son FRP las siguientes funciones:

•
$$Exp(y,x) := x^y$$
 (exponencial, con la convención de que $0^0 = 1$)

$$Pd(x) := \begin{cases} 0 & \text{si } x = 0 \\ x - 1 & \text{si } x > 0 \end{cases}$$

Ejemplos

Veamos que Σ se puede escribir como recursión de FRP. Recordemos que

$$f(y, X^k) = \begin{cases} g(X^k) & \text{si } y = 0\\ h(y - 1, X^k, f(y - 1, X^k)) & \text{si } y > 0 \end{cases}$$

Obs. que k = 1. Buscamos entonces $g^{(1)}, h^{(3)} \in FRP$ tales que:

$$\Sigma(y,x) = \begin{cases} g(x) & \text{si } y = 0\\ h(y-1,x,\Sigma(y-1,x)) & \text{si } y > 0 \end{cases}$$

- Caso y = 0: $\Sigma(0, x) = 0 + x = x = g(x) \Rightarrow g^{(1)}(x) = p_1^{(1)}(x)$
- Caso y > 0: $\Sigma(y, x) = y + x = (y 1 + x) + 1 = \Sigma(y 1, x) + 1 = s(\Sigma(y 1, x)) = s(p_3^{(3)}(y 1, x, \Sigma(y 1, x))) \Rightarrow h^{(3)} = \Phi(s, p_3^{(3)})$

Hemos probado que $\Sigma = R(p_1^{(1)}, \Phi(s, p_3^{(3)}))$, luego $\Sigma \in FRP$.

Ejemplos

Pd ∈ FRP

$$Pd(x) := \begin{cases} 0 & \text{si } x = 0 \\ x - 1 & \text{si } x > 0 \end{cases}$$

Veamos que Pd se puede escribir como recursión de FRP. Recordemos que

$$f(y, X^{k}) = \begin{cases} g(X^{k}) & \text{si } y = 0\\ h(y - 1, X^{k}, f(y - 1, X^{k})) & \text{si } y > 0 \end{cases}$$

Obs. que k = 0. Buscamos entonces $g^{(0)}, h^{(2)} \in FRP$ tales que:

$$Pd(y) = \begin{cases} g & \text{si } y = 0\\ h(y-1, Pd(y-1)) & \text{si } y > 0 \end{cases}$$

- Caso y = 0: $Pd(0) = 0 = c^{(0)} \Rightarrow g^{(0)} = c^{(0)}$
- Caso y > 0: $Pd(y) = y 1 = p_1^{(2)}(y 1, Pd(y 1)) \Rightarrow h^{(2)} = p_1^{(2)}$

Hemos probado que $Pd = R(c^{(0)}, p_1^{(2)})$, luego $Pd \in FRP$.

Función potencia

- Veremos ahora ciertas propiedades que serán útiles para encontrar nuevos miembros de la familia FRP.
- **Definición:** Dada una función $f^{(1)}$ definimos $F^{(2)}$. Ilamada **potencia de** *f* , del siguiente modo:

$$F(y,x) = \begin{cases} x & \text{si } y = 0\\ f(F(y-1,x)) & \text{si } y > 0 \end{cases}$$

Notación: $F(y,x) = f^y(x)$.

• Proposición: $f \in FRP \Rightarrow F \in FRP$

D/ Veamos que se puede escribir a F como recursión de FRP:

$$(y=0)$$
 $F(0,x)=x=p_1^{(1)}(x) \Rightarrow g^{(1)}=p_1^{(1)}$
 $(y>0)$ $F(y,x)=f(F(y-1,x))=$
 $f(p_3^{(3)}(y-1,x,F(y-1,x))) \Rightarrow h^{(3)}=\Phi(f,p_3^{(3)})$
Hemos mostrado que $F=R(p_1^{(1)},\Phi(f,p_3^{(3)}))$.
Dado que $f\in FRP$, concluimos que $F\in FRP$.

Función potencia: ejemplos

- Obs. que en el caso particular de la potencia de la función sucesor obtenemos: $s^y(x) = R(p_1^{(1)}, \Phi(s, p_3^{(3)})) = \Sigma(y, x)$ (ver pág. 12).
- Función **diferencia** $\hat{d}^{(2)}$:

$$\hat{d}(y,x) = \begin{cases} x - y & \text{si } x \ge y \\ 0 & \text{si } x < y \end{cases}$$

Se trata de una resta entre números naturales que sólo se realiza cuando es posible. Notación alternativa: x-y.

(ejercicio)
$$\hat{d}(y,x) = Pd^y(x)$$

 $Pd(x) \in FRP$ $\Rightarrow \hat{d}(y,x) \in FRP$

Conjuntos Recursivos Primitivos (CRP)

• **Definición:** Dado un conjunto X, para cada subconjunto $A \subseteq X$ definimos su **función característica** $\chi_A : X \to \{0,1\}$ como:

$$\chi_A(x) = \begin{cases} 1 & \text{si } x \in A \\ 0 & \text{si } x \notin A \end{cases}$$

• **Definición:** Diremos que $A \subseteq \mathbb{N}^k$ es un **conjunto recursivo primitivo (CRP)** si su función característica

$$\chi_A: \mathbb{N}^k \to \{0,1\}$$

es una función recursiva primitiva.

• **Proposición:** Sean $k \in \mathbb{N}$ y $A, B \subseteq \mathbb{N}^k$. Si A y B son CRP, entonces el complemento $\neg A$, la intersección $A \cap B$ y la unión $A \cup B$ son CRP.

D/ Ejercicio.