

National University of Computer & Emerging Sciences Islamabad

FAST School of Computing

Fall-2024

Islamabad Campus

MT1004 - Linear Algebra

Homework #2

Question #1

Determine if the vector $\mathbf{b} = \begin{bmatrix} 10 \\ 11 \\ 12 \end{bmatrix}$ is in the span of the columns of the matrix

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}.$$

$$Ax = b$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 10 \\ 11 \\ 12 \end{bmatrix}$$

The last row is all zeros, so the system is consistent, free variable x3 shows system has many solutions and as system is consistent, vector b is in the span of the columns of A.

the matrix A -

Question #2

Let $\mathbf{u} = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} -2 \\ 1 \\ 7 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} h \\ -3 \\ -5 \end{bmatrix}$. For what value(s) of h is \mathbf{w} in the plane

generated by \boldsymbol{u} and \boldsymbol{v} ?

generated by u	απα ν.
	0 + V - 2 W M
	7 -3
N	1 - 6/1
3. 3.	0 1,-3 Augmented -2 71-5 matrix
n	
	0 1 -2 h
	0 3 -5+2h R3+2R1
. ~	[1-2 h]
	0 1 -3
	0 0 4+2h R3-3R2
· fox sol	If wis in plane generated by V (ispan of u and V span Eu, v?
4 and	V (span of u and V span Eu, v)
then	ystem must be consistent. So
4+21 =	
h = -2	

Question #3

Consider the matrix

$$A = \begin{bmatrix} 1 & 4 & 1 & 2 \\ 0 & 1 & 3 & -4 \\ 0 & 2 & 6 & 7 \\ 2 & 9 & 5 & -7 \end{bmatrix}$$

- (i) Do the columns of A span \mathbb{R}^3 ?
- (ii) Do the columns of A span \mathbb{R}^4 ?
- (iii) Does the equation Ax = b have a solution for each b in \mathbb{R}^4 ?

	100		. 1			
A =	- 1.	D	1	3	-4	
		0	2	6	7	
. ,/			9.	5	-7	
w.	1		4	1	2]	
- 1-	0)	1.	3	-4	
1		0	2_	. 6	7	
	. ()	-1	3	-11	R3 -2R
1.3.1	- 1	1			120	
v ,	11	4		1	2	
	77.20	-	1	2	1.	
	D	1		3	-4	
	0	0		0	-	R3 - 2-P1
	-	0			-	R3-2R1
	6			0	-	R3-2R1 R3-R1
v I	6		1	0 -	-1	R3-R1
v	6	0		0 -	-	R3-R1
~	0	0	1 3 0	0 -	-1	R3-R1

4

The columns of A do not span \mathbb{R}^3 since each column of A is in \mathbb{R}^4 , not in \mathbb{R}^3 . Not every row of A contains a pivot position, therefore, columns of A do not span \mathbb{R}^4 . Again, since not every row of A contains a pivot position (or columns of A do not span \mathbb{R}^4), therefore, the equation $A\mathbf{x} = \mathbf{b}$ does not have a solution for each \mathbf{b} in \mathbb{R}^4 .

Question #4

Let

$$A = \begin{bmatrix} 2 & 2 & 4 \\ -4 & -4 & -8 \\ 0 & -3 & -3 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 6 \\ -12 \\ 0 \end{bmatrix}$

(i) Describe all solutions of Ax = b. Express the solutions in parametric form.

2	2	4 !	67	
-4	-4		12	
0	-3	-3	0	
To	1	2 1	3	R1/2
1	1	2 !		R2/4
0	1	Li	0 -	R3/3
0	1	2	3	
0	0	0	0	R2-R1
0	1	1	0	
0	-1	2	3	1
0	1	٦		Swap R2, R3
0	0	0	-	July St.
0	1		3	1
0	0		0	
10	0	0	1 0	
	א	2 .	+ 7	x 3 = 3 (1)
	P		_	11
23	tree	- V	aria	ble
10.5	4 4 5	5 W		Aga makala
~	3 =	1-2		American de
				2
KI	+ 7	3 +	273	3 = 3 100
		23 .	,	
λ =	Tx	.]	1	$\begin{vmatrix} 3 - 2 & 3 \\ -2 & 3 \\ 2 & 3 \end{vmatrix} = \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix} + 2 \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$
	X	. -	- \	$\begin{bmatrix} 3 & -3 & 3 \\ -3 & 5 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix} + 33 \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$
	^	7		
	LX	5]		λ3 [σ] 1

(ii) Describe all solutions of Ax = 0. Express the solutions in parametric form.

scribe all solutions of
$$\chi$$

Soli span
$$\left\{ \begin{bmatrix} -1\\-1\\1 \end{bmatrix} \right\}$$

(iii) Describe the geometric interpretation of the solution sets obtained in part (i) and (ii).

2- Solution set for Az=b. The solution set describes
a line in R3 that passes through the point [3]
and vector [-1].

2- Solution set for Ax=0: The solution set describes a line in R3 that passes through the origin and vector [-1].