9. Separation of variables method

1. Solve the Heat equation by separable of variables method

$$u_t = u_{xx}, \ u := u(x,t), \ 0 < x < \ell, \ t > 0$$

$$u(0,t) = 0$$
, $u(\ell,t) = 0$, $u(x,0) = f(x)$.

When (i)
$$f(x) = 6 \sin \frac{\pi x}{\ell}$$
, (ii) $f(x) = 12 \sin \frac{9\pi x}{\ell} - 7 \sin \frac{4\pi x}{\ell}$.

2. Using the method of separation of variables, solve:

$$u_t = c^2 u_{xx}, \ u := u(x,t), \ x \in (0,1), \ t > 0, \ c \in \mathbb{R},$$

with data

- (i) u(0,t) = u(1,t) = 0 and u(x,0) = x(1-x).
- (ii) $u_x(0,t) = 0 = u_x(1,t)$ and u(x,0) = x(1-x).
- 3. Using separation of variables, compute the solution of :

$$u_t - c^2 u_{xx} + a^2 u = 0, \ 0 < x < \ell, \ t > 0$$

with initial condition u(x,0) = f(x), $0 < x < \ell$ and Dirichlet boundary conditions u(0,t) = u(l,t) = 0. Find $\lim_{t \to \infty} u(x,t)$.

- 4. Use separation of variables to obtain the solution of the following wave equation: $u_{tt} c^2 u_{xx} = 0$, 0 < x < l, t > 0, u := u(x, t), with initial and boundary conditions:
 - (A) Boundary condition (Dirichlet): u(0,t) = 0, $u(\ell,t) = 0$, t > 0Initial condition: $u(x,0) = x(x-\ell)$, $u_t(x,0) = 0$, $x \in (0,\ell)$.
 - (B) Boundary condition (Dirichlet): u(0,t) = 0, $u(\ell,t) = 0$, t > 0 Initial condition: u(x,0) = 0, $u_t(x,0) = \sin\left(\frac{7\pi x}{\ell}\right)$.
 - (C) Boundary condition (Neumann): $u_x(0,t) = 0$, $u_x(\ell,t) = 0$, t > 0. Initial condition: u(x,0) = x, $u_t(x,0) = 0$ $x \in (0,\ell)$.
 - (D) Boundary condition (Neumann): $u_x(0,t) = 0$, $u_x(\ell,t) = 0$, t > 0. Initial condition: u(x,0) = 0, $u_t(x,0) = 1$, $x \in (0,\ell)$.

5. Using separation of variables, solve the Laplace equation:

$$\Delta u = \frac{d^2 u}{dx^2} + \frac{d^2 u}{dy^2} = 0 \text{ on } [0, a] \times [0, b], \ u := u(x, y).$$

with the boundary conditions:

(A)
$$u(0,y) = y(y-b)$$
, $u(a,y) = 0 & u(x,0) = 0$, $u(x,b) = 0$.

(B)
$$u(x,0) = x$$
, $u(x,b) = 0 & u(0,y) = 0$, $u(a,y) = 0$.

(C)
$$u(0,y) = u(a,y) = 0$$
, $u_y(x,0) = x(x-a)$, $u_y(x,b) = g(x)$.

6. Consider the Neumann problem

$$\Delta u = u_{xx} + u_{yy} = 0 \text{ in } \mathbb{D}, \text{ and } \frac{\partial u}{\partial \overrightarrow{n}} = g \text{ on } \partial \mathbb{D}.$$

Here $u := u(x,y), \ \mathbb{D} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}, \ \overrightarrow{n} \text{ is the outward normal unit vector to } \partial \mathbb{D}, \text{ the boundary of } \mathbb{D}.$

Solve the above problem after reducing it to Polar co-ordinate, when (A) $g(x,y) = \sin^3\left(\tan^{-1}\frac{y}{x}\right)$, (B) $g(x,y) = (x^2 + y^2)\left(\tan^{-1}\frac{y}{x}\right)$.