

XXIX Congresso Brasileiro de Engenharia Biomédica - 2024

Média

1067,7603

SNR

5,1175

Desvio

ANÁLISE DE RUÍDO ENTRE IMAGENS MAMOGRÁFICAS PROCESSADAS E *RAWDATA* USANDO FILTROS E MÉTRICAS QUANTITATIVAS

Luiz Felipe Spinola Silva¹, Ana Cláudia Patrocínio¹, Pedro Cunha Carneiro¹

¹Faculdade de Engenharia Elétrica – Universidade Federal de Uberlândia Contato: luiz.spinola@ufu.br

a) Nome

Wiener 3x3

26,2083

4,0718

INTRODUÇÃO

Um dos problemas mais comuns encontrados em processamento de imagens médicas é o ruído da imagem, sendo sua estimação e diminuição de suma importância para a aquisição de uma imagem de qualidade [1]. Para a formação de uma imagem que auxilie o processo de diagnóstico correto, são necessários diversos métodos para aumento da qualidade, como etapas de pré e pós processamento de imagem e, principalmente, o conhecimento dos tipos de ruídos que a imagem está sujeita [2]. Diante desse contexto, o objetivo desse trabalho é avaliar o comportamento do ruído em imagens mamográficas, tanto processadas quanto em *rawdata*, utilizando filtros clássicos da literatura para quantificar o perfil de restauração.

MATERIAIS E MÉTODOS

Para o desenvolvimento deste trabalho foram utilizadas seis imagens de um *phantom* mamográfico com uma placa de alumínio adquiridas a partir do mamógrafo Selenia da HOLOGIC no Instituto de Radiologia do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP - InRad). O conjunto de imagens é composto por três imagens diferentes em suas versões *rawdata* e processadas. Para cada imagem, foi realizado um método similar para a obtenção de dois parâmetros estimadores, a Relação Sinal-Ruído (*Signal-to-Noise Ratio - SNR*) e o Desvio padrão médio da diferença entre as imagens filtradas e a imagem original.

Figura 1. Imagem Mamográfica de PMMA com Placa de Alumínio - (a) Imagem *rawdata* e (b) Imagem Processada

O ambiente de desenvolvimento deste trabalho foi desenvolvido no *software MATLAB*, para a avaliação do desempenho de cada filtro.

RESULTADOS

kVp

			r		•			Padrão	
	MG1		30	400		MG1 (Original)	1131,7212	265,0856	4,2693
	MG2		32	271		MG1 (Média 3x3)	1131,2186	223,5154	5,0610
	MG3		34	180		MG1 (Média 5x5)	1130,8188	216,1997	5,2304
	11103		51	100		MG1 (Mediana)	1126,8718	226,8671	4,9671
						MG1 (Gaussiano)	1131,7213	240,2515	4,7106
)						MG1 (Wiener)	1131,9040	228,1852	4,9605
						MG2 (Original)	1029,1844	255,9463	4,0211
						MG2 (Média 3x3)	1028,8205	211,7471	4,8587
	Filtro	MG1	MG2	MG3	_	MG2 (Média 5x5)	1028,5293	203,3858	5,0570
						MG2 (Mediana)	1023,2927	215,3192	4,7524
	Média 3x3	31,1004	4,5448	4,7350		MG2 (Gaussiano)	1029,1845	229,8278	4,4781
						MG2 (Wiener)	1029,4322	217,0908	4,7419
	Média 5x5	32,4861	4,8186	5,0008		MG3 (Original)	1067,492	254,4806	4,1948
	Mediana 3x3	32,0447	1,8060	4,5117		MG3 (Média 3x3)	1067,1128	202,7095	5,2642
						MG3 (Média 5x5)	1066,8107	192,8461	5,5319
	Gaussiano	13,3878	1,8060	1,9054		MG3 (Mediana)	1061,2309	207,1582	5,1228
		,	,	,		MG3 (Gaussiano)	1067.4010	224.0500	4.7645

MG3 (Wiener)

Tabelas: Imagens utilizadas e respectivas tensões de pico e produto corrente tempo - (a); Desvio Padrão Médio calculado das imagens *rawdata* – (b) e Média Global e Desvio Padrão Global das imagens processadas – (c).

4,3077

CONCLUSÃO E PRÓXIMOS PASSOS

Para analisar o comportamento dos ruídos verificou-se o desempenho dos filtros de acordo com as métricas selecionadas (Desvio Padrão Médio e Relação Sinal-Ruído), e seus comportamentos foram condizentes com os descritos na literatura. Os valores de SNR, média e desvio padrão sugerem que os filtros desempenharam de forma correta de acordo com seus próprios parâmetros específicos (como os valores de μ e σ utilizados no filtro Gaussiano) de acordo com a literatura. A próxima etapa deste trabalho será a avaliação do ruído com outras métricas e testes com filtros aplicados em decomposição de imagens multi-escala.

REFERÊNCIAS

- [1] Gravel P., Beaudoin G., De Guise J.A.. A method for modeling noise in medical images IEEE Transactions on Medical Imaging.2004;23:1221-1232.
- [2] Oliveira Mariane Modesto, others . Avaliação de ruído em perfil de imagens mamográficas 2019.

