

Calcolo integrale — Scheda di esercizi n. 5 14 Aprile 2023 — Compito n. 00093

 $\label{eq:caselle} \textbf{Istruzioni} : \mbox{le prime due caselle } (\mathbf{V} \ / \ \mathbf{F}) \\ \mbox{permettono di selezionare la risposta vero/falso.} \\ \mbox{La casella "\mathbf{C}" serve a correggere eventuali errori invertendo la risposta data.}$

Per selezionare una casella, annerirla completamente: \blacksquare (non \boxtimes o \bigcirc).

Nome:					
Cognome:					
		1			1
Matricola:					

Punteggi: 1 punto per ogni risposta esatta, 0 punti per risposte sbagliate o lasciate in bianco.

	1A	1B	1C	1D	2A	2B	2C	2D	3A	3B	3C	3D	4A	4 B	4 C	4D
\mathbf{V}																
\mathbf{F}																
\mathbf{C}																

- 1) Dire se le seguenti affermazioni sono vere o false
- **1A)** Esistono intervalli chiusi e limitati di \mathbb{R} su cui la funzione $f(x) = 4x^2 6x + 2$ non è integrabile.
- **1B)** La funzione f(x) = |x 4| è integrabile su ogni intervallo chiuso e limitato di \mathbb{R} .
- 1C) Esistono intervalli chiusi e limitati di \mathbb{R} su cui la funzione $f(x) = \frac{x+4}{x-3}$ non è integrabile.
- 1D) Esistono intervalli chiusi e limitati di \mathbb{R} su cui la funzione $f(x) = \frac{x^2 36}{x 6}$ non è integrabile.
- **2**) Sia

$$F(t) = \int_0^t x e^{-3x^4} dx.$$

- **2A)** La funzione F(t) è derivabile per ogni t in \mathbb{R} .
- **2B)** Si ha F'(0) = 1.
- **2C)** La funzione F(t) è una funzione dispari.
- **2D)** La funzione F(t) è decrescente per $t \leq 0$.

- 3) Dire se le seguenti affermazioni sono vere o false
- **3A)** La funzione $x^2 \sin(x^3)$ si integra per parti.
- **3B)** La funzione $x^4 \sin(x)$ si integra per sostituzione.
- **3C)** La funzione $x^9 \sin(x^2)$ si integra per parti prima, e per sostituzione poi.
- **3D)** La funzione $f(x) = x^8 \arctan(x)$ si integra per parti prima, e per sostituzione poi.
- 4) Dire se le seguenti affermazioni sono vere o false
- **4A)** Si ha

$$\int_{6}^{19} \frac{dx}{x} = \ln\left(\frac{19}{6}\right).$$

4B) Si ha

$$\int_{12}^{16} \frac{dx}{x-4} = \ln\left(\frac{3}{2}\right).$$

4C) Si ha

$$\int_{7}^{19} \frac{dx}{3-x} = \ln(4) \,.$$

4D) Si ha

$$\int_0^1 \frac{dx}{4x - 7} = \ln\left(\frac{3}{7}\right).$$

Docente
DelaTorre Pedraza
Orsina

5) Calcolare una primitiva delle seguenti funzioni

a1)
$$x \sin(x)$$
.

b1)
$$x^2 \ln(x)$$
,

a1)
$$x \sin(x)$$
, **a2**) $x^3 e^x$, **b1**) $x^2 \ln(x)$, **b2**) $(x^2 - 4x + 2) e^x$,

c1)
$$x e^{4x}$$
,

$$(2) x \cos(2x)$$
,

$$\mathbf{d1}$$
) $e^{\sqrt{x}}$,

c1)
$$x e^{4x}$$
, **c2**) $x \cos(2x)$, **d1**) $e^{\sqrt{x}}$, **d2**) $\frac{e^{\frac{1}{x}}}{x^3}$,

6)

- **a1) a2)** Trovare una primitiva di $f(x) = \frac{1}{x^2 10x + 25}$ e calcolare $\int_6^7 f(x) \, dx$. **b1) b2)** Trovare una primitiva di $g(x) = \frac{1}{x^2 15x + 44}$ e calcolare $\int_{12}^{13} g(x) \, dx$. **c1) c2)** Trovare una primitiva di $h(x) = \frac{1}{x^2 12x + 72}$ e calcolare $\int_6^{12} h(x) \, dx$. **d1) d2)** Trovare una primitiva di $k(x) = \frac{2x 17}{x^2 18x + 72}$ e di $j(x) = \frac{x^3}{8 + x^2}$.

7) Trovare una primitiva di

a1)
$$x e^{2x}$$
, **a2)** $e^x \sin(2x)$, **b1)** $\sin^2(3x)$, **b2)** $\cos^3(3x)$,

)
$$\sin^2(3x)$$
, **b2**) $\cos^3(3x)$

c1)
$$(2x+7)e^x$$
, **c2)** $(5x^2-5x+8)e^x$, **d1)** $x^4 \ln(3x)$, **d2)** $8x \arctan(4x)$.

d1)
$$x^4 \ln(3x)$$

d2)
$$8x \arctan(4x)$$
.

Soluzioni del compito 00093

- 1) Dire se le seguenti affermazioni sono vere o false
- **1A)** Esistono intervalli chiusi e limitati di \mathbb{R} su cui la funzione $f(x) = 4x^2 6x + 2$ non è integrabile.

Falso: Dal momento che la funzione $f(x) = 4x^2 - 6x + 2$ è una funzione continua, è integrabile su ogni intervallo chiuso e limitato di \mathbb{R} .

1B) La funzione f(x) = |x-4| è integrabile su ogni intervallo chiuso e limitato di \mathbb{R} .

Vero: Dal momento che la funzione f(x) = |x - 4| è una funzione continua, è integrabile su ogni intervallo chiuso e limitato di \mathbb{R} .

1C) Esistono intervalli chiusi e limitati di \mathbb{R} su cui la funzione $f(x) = \frac{x+4}{x-3}$ non è integrabile.

Vero: Dal momento che la funzione è illimitata (sia superiormente che inferiormente) in ogni intervallo chiuso e limitato che contenga x=3 al suo interno (ad esempio: l'intervallo [2,4]), la funzione non è integrabile su tali intervalli.

1D) Esistono intervalli chiusi e limitati di \mathbb{R} su cui la funzione $f(x) = \frac{x^2 - 36}{x - 6}$ non è integrabile.

Falso: Dal momento che $x^2 - 36 = (x - 6)(x + 6)$, si ha, se $x \neq 6$,

$$f(x) = \frac{x^2 - 36}{x - 6} = \frac{(x - 6)(x + 6)}{x - 6} = x + 6.$$

Ne consegue che la funzione f(x) coincide, in tutti punti tranne x=6, con la funzione continua g(x)=x+6, che è integrabile su ogni intervallo chiuso e limitato di \mathbb{R} ; dunque, anche la funzione f(x) è integrabile su tali intervalli.

$$F(t) = \int_0^t x e^{-3x^4} dx.$$

2A) La funzione F(t) è derivabile per ogni t in \mathbb{R} .

Vero: Dal momento che la funzione $f(x) = x e^{-3x^4}$ è una funzione continua, per il teorema fondamentale del calcolo integrale la funzione F(t) è derivabile, e si ha

$$F'(t) = f(t) = t e^{-3t^4} \quad \forall t \in \mathbb{R}.$$

2B) Si ha F'(0) = 1.

Falso: Dato che $F'(t) = t e^{-3t^4}$ (si veda la domanda 2A), si ha $F'(0) = 0 \neq 1$.

2C) La funzione F(t) è una funzione dispari.

Falso: Dal momento che la funzione $f(x) = x e^{-3x^4}$ è una funzione dispari, la funzione F(t) è una funzione pari (e non dispari). Infatti,

$$F(-t) = \int_0^{-t} x e^{-3x^4} dx = \begin{bmatrix} y = -x \\ dy = -dx \end{bmatrix} = -\int_0^t (-y) e^{-3(-y)^4} dy = \int_0^t y e^{-3y^4} dy = F(t).$$

2D) La funzione F(t) è decrescente per $t \leq 0$.

Vero: Dato che $F'(t) = t e^{-3t^4}$ (si veda la domanda 2A), si ha $F'(t) \le 0$ per $t \le 0$, e quindi la funzione F(t) è decrescente su tale insieme.

3A) La funzione $x^2 \sin(x^3)$ si integra per parti.

Falso: No, si integra per sostituzione: definendo $y = x^3$, da cui $dy = 3x^2 dx$, si ha

$$\int x^2 \sin(x^3) dx = \frac{1}{3} \int \sin(y) dy,$$

che è un integrale immediato.

3B) La funzione $x^4 \sin(x)$ si integra per sostituzione.

Falso: No, si integra per parti. Infatti, derivando il termine polinomiale x^4 e integrando la funzione trigonometrica, si ha

$$\int x^4 \sin(x) \, dx = -x^4 \cos(x) + 4 \int x^3 \cos(x) \, dx \, .$$

Il procedimento continua 3 volte, finché non si arriva ad un integrale immediato (di $\sin(x)$ o di $\cos(x)$).

3C) La funzione $x^9 \sin(x^2)$ si integra per parti prima, e per sostituzione poi.

Falso: No, è il contrario. Infatti, definendo $y=x^2$, da cui $dy=2x\,dx$, si ha

$$\int x^9 \sin(x^2) dx = \int (x^2)^4 \sin(x^2) x dx = \frac{1}{2} \int y^4 \sin(y) dy,$$

e l'ultimo integrale si svolge per parti (si veda la domanda 3B).

3D) La funzione $f(x) = x^8 \arctan(x)$ si integra per parti prima, e per sostituzione poi.

Vero: Infatti, integrando il monomio e derivando l'arcotangente, si ha

$$\int \, x^8 \, \arctan(x) \, dx = \frac{x^9}{9} \, \arctan(x) - \frac{1}{9} \int \, \frac{x^9}{1+x^2} \, dx \, .$$

L'ultimo integrale si svolge per sostituzione, ponendo $y = 1 + x^2$, da cui dy = 2x dx. Si ha

$$\int \frac{x^9}{1+x^2} dx = \int \frac{(x^2)^4}{1+x^2} x dx = \frac{1}{2} \int \frac{(y-1)^4}{y} dy,$$

e quest'ultimo integrale, dopo aver sviluppato la potenza del binomio, è la somma di 5 integrali immediati.

4A) Si ha

$$\int_{6}^{19} \frac{dx}{x} = \ln\left(\frac{19}{6}\right).$$

Vero: Infatti, si ha

$$\int_{6}^{19} \frac{dx}{x} = \ln(|x|) \Big|_{6}^{19} = \ln(19) - \ln(6) = \ln\left(\frac{19}{6}\right).$$

4B) Si ha

$$\int_{12}^{16} \frac{dx}{x-4} = \ln\left(\frac{3}{2}\right).$$

Vero: Infatti,

$$\int_{12}^{16} \frac{dx}{x-4} = \ln(|x-4|) \Big|_{12}^{16} = \ln(12) - \ln(8) = \ln\left(\frac{3}{2}\right).$$

4C) Si ha

$$\int_{7}^{19} \frac{dx}{3-x} = \ln(4) \,.$$

Falso: Infatti,

$$\int_{7}^{19} \frac{dx}{3-x} = -\int_{7}^{19} \frac{dx}{x-3} = -\ln(|x-3|)\Big|_{7}^{19} = -\ln(16) + \ln(4) = -\ln(4) \neq \ln(4).$$

4D) Si ha

$$\int_0^1 \frac{dx}{4x-7} = \ln\left(\frac{3}{7}\right).$$

Falso: Infatti, con la sostituzione y = 4x - 7, da cui dy = 4dx, si ha

$$\int_0^1 \frac{dx}{4x - 7} = \frac{1}{4} \int_{-7}^{-3} \frac{dy}{y} = \frac{\ln(|y|)}{4} \Big|_{-7}^{-3} = \frac{\ln(3) - \ln(7)}{4} = \frac{1}{4} \ln\left(\frac{3}{7}\right) \neq \ln\left(\frac{3}{7}\right).$$

5) Calcolare una primitiva delle seguenti funzioni

a1)
$$x \sin(x)$$
, **a2**) $x^3 e^x$, **b1**) $x^2 \ln(x)$, **b2**) $(x^2 - 4x + 2) e^x$, **c1**) $x e^{4x}$, **c2**) $x \cos(2x)$, **d1**) $e^{\sqrt{x}}$, **d2**) $\frac{e^{\frac{1}{x}}}{x^3}$,

Soluzione:

a1) Integriamo per parti, derivando x e integrando $\sin(x)$:

$$\int x \sin(x) dx = \begin{bmatrix} f'(x) = \sin(x) & \to & f(x) = -\cos(x) \\ g(x) = x & \to & g'(x) = 1 \end{bmatrix} = -x \cos(x) - \int (-\cos(x)) dx,$$

da cui

$$\int x \sin(x) dx = -x \cos(x) + \sin(x).$$

a1) Integriamo per parti, derivando x^3 e integrando e^x

$$\int x^3 e^x dx = \begin{bmatrix} f'(x) = e^x & \to & f(x) = e^x \\ g(x) = x^3 & \to & g'(x) = 3x^2 \end{bmatrix} = x^3 e^x - 3 \int x^2 e^x dx.$$

Per l'integrale rimasto, integriamo per parti, derivando x^2 e integrando e^x :

$$\int x^2 e^x dx = \begin{bmatrix} f'(x) = e^x & \to & f(x) = e^x \\ g(x) = x^2 & \to & g'(x) = 2x \end{bmatrix} = x^2 e^x - 2 \int x e^x dx.$$

Per l'ultimo integrale, integriamo per parti, derivando x e integrando e^x :

$$\int x e^x dx = \begin{bmatrix} f'(x) = e^x & \to & f(x) = e^x \\ g(x) = x & \to & g'(x) = 1 \end{bmatrix} = x e^x - \int e^x dx = x e^x - e^x.$$

Rimettendo insieme i risultati, si ha

$$\int x^3 e^x = x^3 e^x - 3x^2 e^x + 6x e^x - 6e^x = (x^3 - 3x^2 + 6x - 6)e^x.$$

b1) Integriamo per parti, derivando $\ln(x)$ e integrando x^2 :

$$\int x^2 \ln(x) dx = \begin{bmatrix} f'(x) = x^2 & \to & f(x) = \frac{x^3}{3} \\ g(x) = \ln(x) & \to & g'(x) = \frac{1}{x} \end{bmatrix} = \frac{x^3 \ln(x)}{3} - \int \frac{x^3}{3} \frac{1}{x} dx,$$

da cui

$$\int x^2 \ln(x) dx = \frac{x^3 \ln(x)}{3} - \int \frac{x^2}{3} dx = \frac{x^3 \ln(x)}{3} - \frac{x^3}{9} = \frac{x^3}{9} (3 \ln(x) - 1).$$

b2) Ricordiamo il seguente risultato: se P(x) è un polinomio, allora

$$\int P(x) e^x dx = Q(x) e^x,$$

dove Q(x) è un polinomio dello stesso grado di P(x) e tale che

$$Q(x) + Q'(x) = P(x).$$

Pertanto,

$$\int (x^2 - 4x + 2) e^x dx = Q(x) e^x,$$

dove Q(x) è un polinomio di secondo grado tale che

$$Q(x) + Q'(x) = x^2 - 4x + 2.$$

Scrivendo $Q(x) = a x^2 + b x + c$, si ha Q'(x) = 2a x + b, da cui

$$Q'(x) + Q(x) = ax^{2} + (2a + b)x + (b + c) = x^{2} - 4x + 2,$$

e quindi,
per il principio di identità dei polinomi, deve essere $a=1,\ 2a+b=-4$ e b+c=2, da cui segu
e $a=1,\ b=-6$ e c=8. In definitiva,

$$\int (x^2 - 4x + 2) e^x dx = (x^2 - 6x + 8) e^x.$$

c1) Sostituiamo y = 4x, da cui dy = 4dx; si ha

$$\int x e^{4x} dx = \frac{1}{16} \int y e^y dy.$$

L'ultimo integrale si svolge per parti:

$$\int y e^y dy = \begin{bmatrix} f'(x) = e^y & \to & f(x) = e^y \\ g(x) = y & \to & g'(x) = 1 \end{bmatrix} = y e^y - \int e^y dy = (y - 1) e^y,$$

e quindi

$$\int x e^{4x} dx = \frac{(4x-1)e^{4x}}{16}.$$

c2) Sostituiamo y = 2x, da cui dy = 2dx; si ha

$$\int x \cos(2x) dx = \frac{1}{4} \int y \cos(y) dy.$$

L'ultimo integrale si svolge per parti:

$$\int y \cos(y) dy = \begin{bmatrix} f'(x) = \cos(y) & \to & f(x) = \sin(y) \\ g(x) = y & \to & g'(x) = 1 \end{bmatrix} = y \sin(y) - \int \sin(y) dy = y \sin(y) + \cos(y),$$
e quindi

$$\int x \cos(2x) \, dx = \frac{2x \sin(2x) + \cos(2x)}{4} \, .$$

d1) Sostituiamo $x = y^2$, da cui dx = 2y dy. Pertanto,

$$\int e^{\sqrt{x}} dx = 2 \int e^y y \, dy.$$

Svolgendo l'ultimo integrale per parti, si ha

$$\int y e^y dy = \begin{bmatrix} f'(x) = e^y & \to & f(x) = e^y \\ g(x) = y & \to & g'(x) = 1 \end{bmatrix} = y e^y - \int e^y dy = (y - 1) e^y,$$

da cui segue che

$$\int e^{\sqrt{x}} dx = 2(\sqrt{x} - 1) e^{\sqrt{x}}.$$

d2) Sostituiamo $y = \frac{1}{x}$, da cui $dy = -\frac{dx}{x^2}$. Pertanto,

$$\int \frac{e^{\frac{1}{x}}}{x^3} dx = \int \frac{e^{\frac{1}{y}}}{x} \frac{dx}{x^2} = -\int y e^y dy.$$

Svolgendo l'ultimo integrale per parti, come nell'esercizio d1), si ha

$$\int y e^y dy = (y - 1) e^y,$$

da cui segue che

$$\int \frac{\mathrm{e}^{\frac{1}{x}}}{x^3} \, dx = \left(1 - \frac{1}{x}\right) \mathrm{e}^{\frac{1}{x}} \, .$$

a1) - a2) Trovare una primitiva di
$$f(x) = \frac{1}{x^2 - 10x + 25}$$
 e calcolare $\int_6^7 f(x) dx$.

b1) - b2) Trovare una primitiva di
$$g(x) = \frac{1}{x^2 - 15x + 44}$$
 e calcolare $\int_{12}^{13} g(x) dx$.

c1) - c2) Trovare una primitiva di
$$h(x) = \frac{1}{x^2 - 12x + 72}$$
 e calcolare $\int_6^{12} h(x) dx$.

d1) - **d2)** Trovare una primitiva di
$$k(x) = \frac{2x - 17}{x^2 - 18x + 72}$$
 e di $j(x) = \frac{x^3}{8 + x^2}$.

Soluzione:

a1) - a2) Osserviamo che si ha $x^2 - 10x + 25 = (x - 5)^2$. Pertanto,

$$\int \frac{dx}{x^2 - 10x + 25} = \int \frac{dx}{(x - 5)^2} = -\frac{1}{x - 5},$$

e quindi

$$\int_{6}^{7} \frac{dx}{x^2 - 10x + 25} = -\frac{1}{x - 5} \Big|_{6}^{7} = -\frac{1}{2} + 1 = \frac{1}{2}.$$

b1) - b2) Osserviamo che si ha $x^2 - 15x + 44 = (x - 11)(x - 4)$. Cerchiamo dunque $A \in B$ tali che

$$\frac{1}{(x-11)(x-4)} = \frac{A}{x-11} + \frac{B}{x-4}.$$

Moltiplicando una volta per x-11 e una volta per x-4 si ottiene

$$\frac{1}{x-4} = A + B \frac{x-11}{x-4}$$
 e $\frac{1}{x-11} = A \frac{x-4}{x-11} + B$.

Scegliendo x=11 nella prima e x=4 nella seconda, si trova $A=\frac{1}{7}=-B$, cosicché

$$\frac{1}{x^2 - 15x + 44} = \frac{1}{(x - 11)(x - 4)} = \frac{1}{7(x - 11)} - \frac{1}{7(x - 4)},$$

da cui segue che

$$\int \frac{dx}{x^2 - 15x + 44} = \int \left[\frac{1}{7(x - 11)} - \frac{1}{7(x - 4)} \right] dx = \frac{\ln(|x - 11|) - \ln(|x - 4|)}{7} = \frac{1}{7} \ln\left(\left|\frac{x - 11}{x - 4}\right|\right).$$

Pertanto.

$$\int_{12}^{13} \frac{dx}{x^2 - 15x + 44} = \frac{1}{7} \ln \left(\left| \frac{x - 11}{x - 4} \right| \right) \Big|_{12}^{13} = \frac{1}{7} \left[\ln \left(\frac{2}{9} \right) - \ln \left(\frac{1}{8} \right) \right] = \frac{1}{7} \ln \left(\frac{16}{9} \right).$$

c1) - c2) Osserviamo che si ha $x^2 - 12x + 72 = (x-6)^2 + 36$. Possiamo allora scrivere

$$x^{2} - 12x + 72 = 36\left[1 + \left(\frac{x-6}{6}\right)^{2}\right],$$

e quindi si ha

$$\int \frac{dx}{x^2 - 12x + 72} = \frac{1}{36} \int \frac{dx}{1 + \left(\frac{x - 6}{6}\right)^2}.$$

Con la sostituzione $y = \frac{x-6}{6}$, da cui $dy = \frac{dx}{6}$, si ha

$$\int \frac{dx}{x^2 - 12x + 72} = \frac{1}{6} \int \frac{dy}{1 + y^2} = \frac{1}{6} \arctan(y) = \frac{1}{6} \arctan\left(\frac{x - 6}{6}\right).$$

Si ha pertanto

$$\int_{6}^{12} \frac{dx}{x^2 - 12x + 72} = \frac{1}{6} \arctan\left(\frac{x - 6}{6}\right)\Big|_{6}^{12} = \frac{\arctan(1) - \arctan(0)}{6} = \frac{\pi}{24}$$

d1) Osserviamo che si ha

$$\frac{2x-17}{x^2-18x+72} = \frac{2x-18}{x^2-18x+72} + \frac{1}{x^2-18x+72}$$

Dal momento che al numeratore compare la derivata del denominatore, si ha

$$\int \frac{2x-18}{x^2-18x+72} dx = \ln(|x^2-18x+72|).$$

Per calcolare il secondo integrale, osserviamo che si ha $x^2 - 18x + 72 = (x - 12)(x - 6)$. Con conti analoghi a quelli visti nello svolgimento dell'esercizio **b1)** - **b2)** si ha che

$$\frac{1}{x^2 - 18x + 72} = \frac{1}{(x - 12)(x - 6)} = \frac{1}{6(x - 12)} - \frac{1}{6(x - 6)},$$

cosicché

$$\int \frac{dx}{x^2 - 18x + 72} = \int \left[\frac{1}{6(x - 12)} - \frac{1}{6(x - 6)} \right] dx = \frac{1}{6} \ln \left(\left| \frac{x - 12}{x - 6} \right| \right).$$

Mettendo insieme i risultati trovati, si ha

$$\int \frac{2x - 17}{x^2 - 18x + 72} = \ln(|x^2 - 18x + 72|) + \frac{1}{6} \ln\left(\left|\frac{x - 12}{x - 6}\right|\right).$$

d2) Scriviamo

$$\frac{x^3}{8+x^2} = \frac{x^3+8x-8x}{8+x^2} = x - \frac{8x}{8+x^2}.$$

Abbiamo quindi

$$\int \frac{x^3}{8+x^2} \, dx = \int \left[x - \frac{8x}{8+x^2} \right] dx = \frac{x^2}{2} - \int \frac{8x}{8+x^2} \, dx \, .$$

Per calcolare l'ultimo integrale, poniamo $y = 8 + x^2$, da cui dy = 2x dx, e otteniamo

$$\int \frac{8x}{8+x^2} dx = \int \frac{4dy}{y} = 4 \ln(|y|) = 4 \ln(x^2+8),$$

dove si è tolto il modulo dato che la funzione $x^2 + 8$ è positiva. In definitiva,

$$\int \frac{x^3}{8+x^2} \, dx = \frac{x^2}{2} - 4 \, \ln(x^2 + 8) \, .$$

7) Trovare una primitiva di

a1)
$$x e^{2x}$$
, **a2)** $e^x \sin(2x)$, **b1)** $\sin^2(3x)$, **b2)** $\cos^3(3x)$, **c1)** $(2x+7) e^x$, **c2)** $(5x^2-5x+8) e^x$, **d1)** $x^4 \ln(3x)$, **d2)** $8x \arctan(4x)$.

Soluzione:

a1) Integriamo per parti, derivando x e integrando e^{2x} . Si ha

$$\int x e^{2x} dx = \frac{x}{2} e^{2x} - \frac{1}{2} \int e^{2x} dx = \frac{x}{2} e^{2x} - \frac{1}{4} e^{2x} = \frac{2x - 1}{4} e^{2x}.$$

a2) Integriamo per parti, derivando $\sin(2x)$ e integrando l'esponenziale. Si ha

$$\int e^x \sin(2x) \, dx = e^x \sin(2x) - 2 \int e^x \cos(2x) \, dx.$$

Per calcolare l'ultimo integrale, operiamo per parti, derivando $\cos(2x)$ e integrando l'esponenziale. Si ha

$$\int e^x \cos(2x) \, dx = e^x \cos(2x) + 2 \int e^x \sin(2x) \, dx.$$

Mettendo insieme i risultati, si ha

$$\int e^x \sin(2x) dx = e^x [\sin(2x) - 2\cos(2x)] - 4 \int e^x \sin(2x) dx,$$

da cui si ricava (portando l'integrale a secondo membro a sinistra)

$$\int e^x \sin(2x) dx = \frac{e^x}{5} [\sin(2x) - 2\cos(2x)].$$

b1) Integriamo per parti, derivando e integrando $\sin(3x)$. Si ha

$$\int \sin^2(3x) \, dx = \int \sin(3x) \, \sin(3x) \, dx = -\frac{1}{3} \sin(3x) \, \cos(3x) + \int \cos^2(3x) \, dx.$$

Ora si ha

$$\int \cos^2(3x) \, dx = \int \left[1 - \sin^2(3x)\right] dx = x - \int \sin^2(3x) \, dx.$$

Si ha dunque

$$\int \sin^2(3x) \, dx = -\frac{1}{3} \sin(3x) \cos(3x) + x - \int \sin^2(3x) \, dx \, .$$

Portando a sinistra una parte dell'integrale a destra si ottiene

$$2\int \sin^2(3x) \, dx = -\frac{1}{3} \sin(3x) \cos(3x) + x \,,$$

da cui segue che

$$\int \sin^2(3x) \, dx = \frac{x}{2} - \frac{1}{6} \sin(3x) \, \cos(3x) \, .$$

b2) Osserviamo che si ha

$$\cos^3(3x) = \cos^2(3x)\,\cos(3x) = [1 - \sin^2(3x)]\,\cos(3x)\,.$$

Pertanto, con la sostituzione $y = \sin(3x)$, da cui $dy = 3\cos(3x) dx$, si ha

$$\int \cos^3(3x) \, dx = \int \left[1 - \sin^2(3x)\right] \cos(3x) \, dx = \frac{1}{3} \int \left(1 - y^2\right) \, dy = \frac{1}{3} \left[y - \frac{y^3}{3}\right],$$

e quindi

$$\int \cos^3(3x) \, dx = \frac{\sin(3x)}{3} - \frac{\sin^3(3x)}{9} \, .$$

c1) Integriamo per parti, derivando il binomio e integrando l'esponenziale. Si ha

$$\int (2x+7) e^x dx = (2x+7) e^x - 2 \int e^x dx = (2x+5) e^x.$$

c2) Sappiamo che si ha

$$\int (5x^2 - 5x + 8) e^x dx = Q(x) e^x,$$

dove Q(x) è un polinomio di secondo grado tale che $Q(x)+Q'(x)=5x^2-5x+8$. Se $Q(x)=a\,x^2+b\,x+c$ è un generico polinomio di secondo grado, si ha

$$Q(x) + Q'(x) = a x^{2} + (2a + b) x + (b + c),$$

e imponendo che si abbia $Q(x) + Q'(x) = 5x^2 - 5x + 8$ si ha che deve essere

$$a = 5$$
, $2a + b = -5$, $b + c = 8$,

da cui si ricava facilmente che

$$a = 5$$
, $b = -15$, $c = 23$,

e quindi

$$\int (5x^2 - 5x + 8) e^x dx = (5x^2 - 15x + 23) e^x.$$

d1) Integriamo per parti, derivando il logaritmo e integrando x^4 . Si ha

$$\int x^4 \ln(3x) \, dx = \frac{x^5}{5} \ln(3x) - \frac{1}{5} \int x^5 \, \frac{3}{3x} \, dx = \frac{x^5}{5} \ln(3x) - \frac{x^5}{25} = \frac{x^5}{25} [5 \ln(3x) - 1] \, .$$

d2) Integriamo per parti, integrando il monomio e derivando l'arcotangente. Si ha

$$\int 8x \arctan(4x) dx = 4x^2 \arctan(4x) - \int \frac{16x^2}{1 + 16x^2} dx.$$

Per calcolare l'ultimo integrale, aggiungiamo e togliamo 1 al numeratore:

$$\int \frac{16x^2}{1+16x^2} dx = \int \frac{1+16x^2-1}{1+16x^2} dx = \int \left[1-\frac{1}{1+16x^2}\right] dx = x - \int \frac{dx}{1+16x^2}.$$

L'ultimo integrale si calcola ponendo $y=4\,x,$ da cui $dy=4\,dx$ per ottenere

$$\int \frac{dx}{1+16x^2} = \frac{1}{4} \int \frac{dy}{1+y^2} = \frac{\arctan(y)}{4} = \frac{\arctan(4x)}{4}.$$

In definitiva, si ha

$$\int 8x \arctan(4x) dx = 4x^2 \arctan(4x) - x + \frac{\arctan(4x)}{4}.$$