Intro to Big Data Science: Assignment 3

Due Date: Apr 8, 2025

Exercise 1 (Decision Tree)

You are trying to determine whether a boy finds a particular type of food appealing based on the food's temperature, taste, and size.

Food Sample Id	Appealing	Temperature	Taste	Size
1	No	Hot	Salty	Small
2	No	Cold	Sweet	Large
3	No	Cold	Sweet	Large
4	Yes	Cold	Sour	Small
5	Yes	Hot	Sour	Small
6	No	Hot	Salty	Large
7	Yes	Hot	Sour	Large
8	Yes	Cold	Sweet	Small
9	Yes	Cold	Sweet	Small
10	No	Hot	Salty	Large

- 1. What is the initial entropy of "Appealing"?
- 2. Assume that "Taste" is chosen as the root of the decision tree. What is the information gain associated with this attribute.
- 3. Draw the full decision tree learned from this data (without any pruning).
- Exercise 2 (k-Nearest-Neighbors) Suppose you have 10,000 data points $\{(x_k, y_k) : k = 1, 2, ..., 10000\}$. Your dataset has one input and one output. The k-th data point is generated by the following recipe:

$$x_k = k/10000, y_k \sim N(0, 2^2).$$

So that y_k is all noise: drawn from a Gaussian with mean 0 and variance $\sigma^2 = 4$. Note that its value is independent of all other y values. You are considering two learning algorithms:

- Algorithm NN: 1-nearest neighbor.
- Algorithm Zero: Always predict zero.
- 1. What is the **expected mean squared training error** for Algorithm NN?
- 2. What is the **expected mean squared training error** for Algorithm Zero?
- 3. Recall the leave-one-out cross validation estimator is defined over the training set $\{(x_k, y_k) : k = 1, 2, ..., 10000, k \neq i\}$ for each sample (x_i, y_i) . What is the **expected mean squared leave-one-out cross-validation error** for Algorithm NN?
- 4. What is the **expected mean squared leave-one-out cross-validation error** for Algorithm Zero?
- Exercise 3 (Naive Bayes) Suppose you have the following training set with three boolean inputs x, y and z, and a boolean output U. Suppose you have to predict U using a naive Bayes classifier. Then after learning is complete what would be the predicted probability P(U = 0 | x = 1, y = 0, z = 0)?

X	у	Z	U
1	1	1	0
1	1	0	0
0	0	0	0
0	1	0	1
1	0	1	1
0	1	1	1

Exercise 4 (Soft-Margin Linear Support Vector Machine)

Given the following dataset aligning on the x-axis (See the figure below), which consists of 4 positive data points $\{0,1,2,3\}$ and 3 negative data points $\{-3,-2,-1\}$. Suppose that we want to learn a soft-margin linear SVM for this data set. Remember that the soft-margin linear SVM can be formalized as the following constrained quadratic optimization problem. In this formulation, C is the regularization parameter, which balances the size of margin (i.e., smaller $\|\mathbf{w}\|_2^2$) vs. the violation of the margin (i.e., smaller $\sum_{i=1}^m \xi_i$).

$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|_{2}^{2} + C \sum_{i=1}^{n} \xi_{i}$$
s.t. $y_{i}(\mathbf{w}^{T}\mathbf{x}_{i} + b) \ge 1 - \xi_{i}, \quad \xi_{i} \ge 0, \quad i = 1, ..., n$

- 1. If C = 0, which means that we only care the size of the margin, how many support vectors do we have?
- 2. if $C \to \infty$, which means that we only care the violation of the margin, how many support vectors do we have?

Figure 1: The data set.

3. Properties of Kernel:

- a) Using the definition of kernel functions in SVM, prove that the kernel $K(\mathbf{x}_i, \mathbf{x}_j)$ is symmetric, where \mathbf{x}_i and \mathbf{x}_j are the feature vectors for i-th and j-th examples.
- b) Given n training examples $(\mathbf{x}_i, \mathbf{x}_j)$ for (i, j = 1, ..., n), the kernel matrix A is an $n \times n$ square matrix, where $A(i, j) = K(\mathbf{x}_i, \mathbf{x}_j)$. Prove that the kernel matrix A is semi-positive definite.
- Exercise 5 (Error bound for 1-nearest-neighbor method, optional) In class, we have estimated that the error for 1-nearest-neighbor rule is roughly twice the Bayes error. Now let us make it more rigorous.

Let us consider the two-class classification problem with $\mathcal{X} = [0,1]^d$ and $\mathcal{Y} = \{0,1\}$. The underlying joint probability distribution on $\mathcal{X} \times \mathcal{Y}$ is $P(\mathbf{X},Y)$ from which we deduce that the marginal distribution of \mathbf{X} is $p_{\mathbf{X}}(\mathbf{x})$ and the conditional probability distribution is $\eta(\mathbf{x}) = P(Y = 1 | \mathbf{X} = \mathbf{x})$. Assume that $\eta(\mathbf{x})$ is c-Lipschitz continuous: $|\eta(\mathbf{x}) - \eta(\mathbf{x}')| \le c ||\mathbf{x} - \mathbf{x}'||$ for any $\mathbf{x}, \mathbf{x}' \in \mathcal{X}$. Recall that the Bayes rule is $f^*(\mathbf{x}) = 1_{\{\eta(\mathbf{x}) > 1/2\}}$. Given a training set $S = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$ with $(\mathbf{x}_i, y_i)^{i.i.d.} P$ (or equivalently $S \sim P^n$), the 1-nearest-neighbor rule is $f^{1NN}(\mathbf{x}) = y_{\pi_S(\mathbf{x})}$ where $\pi_S(\mathbf{x}) = \arg\min_i \|\mathbf{x} - \mathbf{x}_i\|$.

Define the generalization error for rule f as $\mathscr{E}(f) = \mathbb{E}_{(\mathbf{X},Y) \sim P} \mathbf{1}_{Y \neq f(\mathbf{X})}$. Show that

$$\mathbb{E}_{S \sim P^n} \mathcal{E}(f^{1NN}) \leq 2\mathcal{E}(f^*) + c\mathbb{E}_{S \sim P^n} \mathbb{E}_{\mathbf{x} \sim p_{\mathbf{x}}} \|\mathbf{x} - \mathbf{x}_{\pi_S(\mathbf{x})}\|.$$

(This means that we can have a precise error estimate for 1-nearest-neighbor rule if we can bound $\mathbb{E}_{S\sim P^n}\mathbb{E}_{\mathbf{x}\sim p_{\mathbf{x}}}\|\mathbf{x}-\mathbf{x}_{\pi(\mathbf{x})}\|$.)

Exercise 6 Online study and exercises.