Universidade Católica de Petrópolis Semana Científica do CEC 2022

Mini curso Arduino Estação Meteorológica Dia 4

Vanessa Wendling Felipe Baldner Ana Carolina Carius

Repositório GitHub com o material do curso:

https://github.com/VanessaWendling/Curso-Arduino-SC-CEC-2022.git

Outros links e ferramentas úteis:

Fritzing

Arduino

<u>KiCad</u>

Programação do dia:

- 1. Apresentação do sensor de pressão barométrica BMP180
- 2. Pinagem do sensor de pressão barométrica BMP180
- 3. Biblioteca do sensor de pressão barométrica BMP180
- 4. Programa 1: Medição do sensor BMP180 e exibição no terminal serial
- 5. Programa 2: Medição do sensor BMP180 e exibição no display LCD
- 6. Apresentação do sensor de detecção de chuva
- 7. Pinagem do sensor de detecção de chuva
- 8. Utilização do sensor de detecção de chuva no Arduino
- 9. Programa 3: Medição do sensor de detecção de chuva e exibição no terminal serial
- 10. Programa 4: Medição do sensor de detecção de chuva e exibição no display LCD

1. Apresentação do sensor de pressão barométrica BMP180

2. Pinagem do sensor de pressão barométrica BMP180

3. Biblioteca do sensor de pressão barométrica BMP180

Download oficial da biblioteca: https://github.com/adafruit/Adafruit-BMP085-Library
Ou procurar no Gerenciador de bibliotecas (*Library Manager*) da IDE do Arduino por BMP180 (*Ou no Github do curso!*)

- 1. Abrir o arquivo .ino do projeto A IDE vai pedir para criar uma pasta para este arquivo;
- 2. Criar uma pasta vazia chamada src;
- 3. Nesta pasta **src**, descompactar a biblioteca numa pasta chamada **BMP085**;

3. Biblioteca do sensor de pressão barométrica BMP180

Na parte de declaração de constantes do programa: Biblioteca necessária para utilização da comunicação I2C #include <Wire.h> #include <Adafruit BMP085.h> Biblioteca necessária para utilização Inicializando o sensor barométrico das funções do sensor BMP180 Adafruit BMP085 bmp180; Comando para criar uma instância do sensor BMP180 que se comunicará com o Arduino. Não é necessário indicar os terminais onde o sensor está ligado pois ele deve estar, obrigatoriamente, nos terminais A4 (SDA) e A5 (SCL), que são os terminais da comunicação serial I2C

3. Biblioteca do sensor de pressão barométrica BMP180

Dentro da estrutura de configuração:

```
Serial.begin(9600);
if (!bmp.begin()) {
   Serial.println("Sensor não inicializado!");
   while (1) {}
}
```

Estrutura para monitorar sensor até que esteja operacional e poder prosseguir com as medições

3. Biblioteca do sensor de pressão barométrica BMP180

3. Biblioteca do sensor de pressão barométrica BMP180

3. Biblioteca do sensor de pressão barométrica BMP180

3. Biblioteca do sensor de pressão barométrica BMP180

4. Programa 1: Medição do sensor BMP180 e exibição no terminal serial

Materiais:

- Arduino Uno
- BMP180

Ligação dos componentes:

4. Programa 1: Medição do sensor BMP180 e exibição no terminal serial

Diagrama esquemático:

4. Programa 1: Medição do sensor BMP180 e exibição no terminal serial

```
#include <Wire.h> //funções necessárias para gerenciar a comunicação entre os
dispositivos através do protocolo I2C.
#include <Adafruit_BMP085.h> //INCLUSÃO DE BIBLIOTECA

Adafruit_BMP085 bmp; //OBJETO DO TIPO Adafruit_BMP085 (I2C)
const int portaSerial = 9600; // Inicia dados para 9600 bps

void setup(){
    Serial.begin(portaSerial);
    if (!bmp.begin()){ //Se o sensor não for inicializado
        Serial.println("Sensor BMP180 não foi identificado! Verifique as
conexões.");
    while(1){} // como não tem condição de parada, não entrará no looping
    }
}
```

4. Programa 1: Medição do sensor BMP180 e exibição no terminal serial

```
void loop(){
   Serial.print("Temperatura: ");
   Serial.print(bmp.readTemperature(), 0); //lê a pressão no sensor e retorna o resultado
   Serial.println("°C");
   Serial.print("Pressão: ");
   Serial.print(bmp.readPressure()); // lê a altitude no sensor e retornar o resultado
   Serial.println("Pa");
   Serial.print("Altitude: ");
   Serial.print(bmp.readAltitude()); //altitude aproximada do sensor
   Serial.println("m");
   Serial.print("Pressão a nível do mar (calculada): ");
   Serial.print(bmp.readSealevelPressure()); //pressão do nível do mar
   Serial.println("Pa");
   Serial.print("Altitude real: ");
   Serial.print(bmp.readAltitude(101600)); //param da pressão média de Petrópolis em Pa
   Serial.println("m");
   Serial.println("-----");
   delay(2000); //INTERVALO DE 2 SEGUNDOS
```

5. Programa 2: Medição do sensor BMP180 e exibição no display LCD

Materiais:

- Arduino Uno
- LCD keypad shield
- BMP180

Ligação dos componentes:

5. Programa 2: Medição do sensor BMP180 e exibição no display LCD

Diagrama esquemático:

5. Programa 2: Medição do sensor BMP180 e exibição no display LCD

```
#include <Adafruit_BMP085.h> //INCLUSÃO DE BIBLIOTECA
#include <LiquidCrystal.h>

Adafruit_BMP085 bmp; //OBJETO DO TIPO Adafruit_BMP085 (I2C)
const int portaSerial = 9600; // Inicia dados para 9600 bps

const int rs = 8, en = 9, d4 = 4, d5 = 5, d6 = 6, d7 = 7;
LiquidCrystal lcd(rs, en, d4, d5, d6, d7);

void setup() {
   if (!bmp.begin()) { //Se o sensor não for inicializado
      while(1) {} // como não tem condição de parada, não entrará no looping
   }
   lcd.begin(16, 2);
}
```

5. Programa 2: Medição do sensor BMP180 e exibição no display LCD

```
void loop() {
    lcd.setCursor(0,0);
    lcd.print("Temp:");
    lcd.print(bmp.readTemperature(), 0);
    lcd.print((char)223);
    lcd.print("C");

    lcd.setCursor(0,1);
    lcd.print("Altitude:");
    lcd.print(bmp.readAltitude(101600));
    lcd.print("m");
    delay(2000); //INTERVALO DE 2 SEGUNDOS
}
```

6. Apresentação do sensor de detecção de chuva

Modelo FC-37 ou YL-83

7. Pinagem do sensor de detecção de chuva

8. Utilização do sensor de detecção de chuva no Arduino

Dentro da estrutura de configuração:

```
pinMode(pino_d, INPUT);
pinMode(pino_a, INPUT);
```

Ambos os pinos devem ser configurados como ENTRADAS

8. Utilização do sensor de detecção de chuva no Arduino

8. Utilização do sensor de detecção de chuva no Arduino

9. Programa 3: Medição do sensor de detecção de chuva e exibição no terminal

Materiais:

- Arduino Uno
- Sensor de chuva

Ligação dos componentes:

9. Programa 3: Medição do sensor de detecção de chuva e exibição no terminal

Diagrama esquemático:

9. Programa 3: Medição do sensor de detecção de chuva e exibição no terminal

```
const int led = 12; //pino D12
const int detectaChuva = 3; //pino D3
const int portaSerial = 9600;
int valor detectorChuva = 0; //quarda o valor boleano
void setup(){
  pinMode(detectaChuva, INPUT);
  pinMode(led, OUTPUT);
  Serial.begin(portaSerial);
void loop(){
  valor detectorChuva = digitalRead(detectaChuva);
  if (valor detectorChuva == LOW) {
      digitalWrite(led, HIGH);
      Serial.println("Está chovendo");
  }else{
    digitalWrite(led, LOW);
    Serial.println("Não está chovendo");
```

10. Programa 4: Medição do sensor de detecção de chuva e exibição no display

Materiais:

- Arduino Uno
- LCD keypad shield
- Sensor de chuva

Ligação dos componentes:

10. Programa 4: Medição do sensor de detecção de chuva e exibição no display

Diagrama esquemático:

10. Programa 4: Medição do sensor de detecção de chuva e exibição no display

```
#include <LiquidCrystal.h>
int detectaChuva = 11; // D11
int quantidadeChuva = A5; // A5
int valor detectorChuva = 0; //Armazena o valor lido do pino digital
int valor quantidadeChuva = 0; //Armazena o valor lido do pino analogico
const int portaSerial = 9600;
const int rs = 8, en = 9, d4 = 4, d5 = 5, d6 = 6, d7 = 7;
LiquidCrystal lcd(rs, en, d4, d5, d6, d7);
void setup()
  lcd.begin(16, 2);
  pinMode(detectaChuva, INPUT);
  pinMode(quantidadeChuva, INPUT);
  Serial.begin(portaSerial);
  lcd.setCursor(0,0);
  lcd.print("Chuva : ");
  lcd.setCursor(0,1);
  lcd.print("Intens.: ");
```

10. Programa 4: Medição do sensor de detecção de chuva e exibição no display

```
void loop()
  valor detectorChuva = digitalRead(detectaChuva);
 valor quantidadeChuva = analogRead(quantidadeChuva);
  Serial.print("Valor digital : ");
 Serial.print(valor detectorChuva);
 Serial.print(" - Valor analogico : ");
 Serial.println(quantidadeChuva);
 lcd.setCursor(10,0);
 if (valor detectorChuva == 1)
    lcd.print("Nao");
 else
    lcd.print("Sim");
 lcd.setCursor(10,1);
 lcd.print("
 lcd.setCursor(10,1);
 if (valor quantidadeChuva >900 && valor quantidadeChuva <1023)
    lcd.print("----");
 else if (valor quantidadeChuva >600 && valor quantidadeChuva <900)
    lcd.print("Fraca");
 else if (valor quantidadeChuva>400 && valor quantidadeChuva <600)
    lcd.print("Moder.");
 else if (valor quantidadeChuva <400)
   lcd.print("Forte");
 delay(1000);
```