Triangulation

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 256 megabytes

DreamGrid has a point set P of n points. The points are labeled from 1 to n.

He would like to draw some segments between some pairs of points such that the final result forms a triangulation. The cost for drawing segment between points u and v is $w_{u,v}$.

DreamGrid would like to know the minimum total cost and the number of triangulations which can achieve the minimum total cost.

A triangulation of a point set P is a collection \mathcal{T} of triangles, such that

- 1. $\operatorname{conv}(P) = \bigcup_{T \in \mathcal{T}} T$, where $\operatorname{conv}(P)$ is the convex hull of P.
- 2. $P = \bigcup_{T \in \mathcal{T}} V(T)$, where V(T) is the set of three vertices of triangle T.
- 3. For every distinct pair $T, U \in \mathcal{T}$, $T \cap U$ is either a common vertex, or a common edge, or empty.

For example, the following are two different triangulations of the same set of 9 points.

From Wikipedia. https://en.wikipedia.org/wiki/Point_set_triangulation

Input

There are multiple test cases. The first line of input contains an integer T (about 70), indicating the number of test cases. For each test case:

The first line contains an integer n $(3 \le n \le 18)$ – the number of points.

Each of the next n lines contains two integers x_i and y_i ($0 \le x_i, y_i \le 10^6$), denoting the coordinates of the i-th point. No three points lie on the same line.

The *i*-th of the next *n* lines contains *n* integers $w_{i,1}, w_{i,2}, \ldots, w_{i,n}$ $(0 \le w_{i,j} \le 10^6, w_{i,i} = 0, w_{i,j} = w_{j,i})$, indicating the cost for drawing segments.

Output

For each test case, output two integers denoting the minimum cost and the number of triangulations.

Example

standard input	standard output
2	5 2
4	6 1
0 0	
1 1	
1 0	
0 1	
0 1 1 1	
1 0 1 1	
1 1 0 1	
1 1 1 0	
4	
0 0	
3 0	
1 3	
1 1	
0 1 1 1	
1 0 1 1	
1 1 0 1	
1 1 1 0	