ccRCC 单细胞数据的 Treg 细胞差异 表达基因

2023-12-06

LiChuang Huang

@ 立效研究院

Contents

1	摘罗	简要 ·									
2	材料	和方法	1								
	2.1	材料									
	2.2	方法	1								
3	附:	分析流程	1								
	3.1	ccRCC 单细胞数据	1								
		3.1.1 鉴定 Treg 细胞	2								
	3.2	Treg 细胞的差异表达基因 (对比其它细胞)	4								
	3.3	Treg 差异基因通路富集	5								
	3.4	Treg 细胞通讯信息	7								
4	补充	: Normal 组织和 RCC 组织的 Treg 细胞比对	10								
	4.1	以 Seurat 集成处理 Normal 和 RCC 组织单细胞数据	10								
		4.1.1 Marker 基因									
		4.1.2 差异表达	11								
Re	efere	nce	12								
\mathbf{L}	ist	of Figures									
	1	UMAP Clustering	2								
	2	Heatmap show the reference genes	3								
	3	The cell type	4								
	4	KEGG enrichment	5								
	5	GSEA plot of the pathways	6								
	6	View pathway of hsa04060	7								
	7	Overall communication count	8								
	8	S Heatmap show the reference genes	10								
	9	S The Treg cells	11								
\mathbf{L}_{i}	ist	of Tables									
	1	Treg DEGs	4								
	2	Interaction of pathways	8								
	_		0								
	3	Interaction of ligand and receptor	9								

1 摘要

- ccRCC Treg 细胞的差异表达基因见 Tab. 1
- Treg 的差异基因和下游靶点的筛选可参考 Tab. 2、Tab. 3 (细胞通讯角度)
- 或者参考通路富集筛选差异基因和下游靶点 3.3
- Normal Treg vs RCC Treg 差异表达基因见 Tab. 4

2 材料和方法

2.1 材料

All used GEO expression data and their design:

• **GSE210038**: Seven tumoral and two normal adjacent tissue samples from patients presenting clear-cell Renal Cell Carcinoma were analyzed by single-cell RNA sequencing.

2.2 方法

Mainly used method:

- CellChat used for cell communication analysis.¹
- ClusterProfiler used for GSEA enrichment.²
- GEO https://www.ncbi.nlm.nih.gov/geo/ used for expression dataset aquisition .
- Seurat used for scRNA-seq processing; SCSA used for cell type annotation.^{3–5}
- Other R packages (eg., dplyr and ggplot2) used for statistic analysis or data visualization.

3 附:分析流程

3.1 ccRCC 单细胞数据

Figure 1 (下方图) 为图 UMAP Clustering 概览。

(对应文件为 Figure+Table/UMAP-Clustering.pdf)

Figure 1: UMAP Clustering

3.1.1 鉴定 Treg 细胞

根据文献 6 ,使用 FOXP3, BATF, CTLA4, TIGIT" 作为 marker 鉴定 Treg 细胞。

Figure 2 (下方图) 为图 Heatmap show the reference genes 概览。

(对应文件为 Figure+Table/Heatmap-show-the-reference-genes.pdf)

Figure 2: Heatmap show the reference genes

显然, Cluster 6 为 Treg 细胞。

其余细胞以 SCSA 注释。

Figure 3 (下方图) 为图 The cell type 概览。

(对应文件为 Figure+Table/The-cell-type.pdf)

Figure 3: The cell type

3.2 Treg 细胞的差异表达基因 (对比其它细胞)

Table 1 (下方表格) 为表格 Treg DEGs 概览。

(对应文件为 Figure+Table/Treg-DEGs.csv)

注: 表格共有 652 行 8 列,以下预览的表格可能省略部分数据;表格含有 652 个唯一'rownames'。

Table 1: Treg DEGs

rownames	p_val	avg_l	pct.1	pct.2	p_val	cluster	gene
CTLA4	0	3.608	0.688	0.046	0	6	CTLA4
TBC1D4	0	3.051	0.749	0.086	0	6	TBC1D4
FOXP3	0	2.156	0.315	0.006	0	6	FOXP3
ICOS	8.465	2.946	0.599	0.053	1.520	6	ICOS
TIGIT1	1.433	3.012	0.733	0.101	2.575	6	TIGIT
RTKN2	2.467	2.752	0.354	0.015	4.433	6	RTKN2
RP11	2.973	2.298	0.298	0.011	5.342	6	RP11
LTB1	3.956	2.917	0.766	0.125	7.108	6	LTB
BATF3	3.925	3.204	0.76	0.139	7.052	6	BATF
TNFRSF18	3.680	3.126	0.507	0.051	6.612	6	TNFRSF18
SLAMF1	6.452	2.463	0.432	0.036	1.159	6	SLAMF1
CD271	3.806	2.380	0.702	0.118	6.838	6	CD27
IL2RA	2.908	2.084	0.256	0.012	5.225	6	IL2RA

rownames	p_val	avg_l	pct.1	pct.2	p_val	cluster	gene
STAM	2.076	2.388	0.529	0.077	3.730	6	STAM
IKZF2	8.030	2.235	0.451	0.053	1.442	6	IKZF2

3.3 Treg 差异基因通路富集

Figure 4 (下方图) 为图 KEGG enrichment 概览。

(对应文件为 Figure+Table/KEGG-enrichment.pdf)

Figure 4: KEGG enrichment

Figure 5 (下方图) 为图 GSEA plot of the pathways 概览。

(对应文件为 Figure+Table/GSEA-plot-of-the-pathways.pdf)

Figure 5: GSEA plot of the pathways $\,$

Figure 6 (下方图) 为图 view pathway of hsa04060 概览。

(对应文件为 Figure+Table/hsa04060.pathview.png)

Figure 6: View pathway of hsa04060

3.4 Treg 细胞通讯信息

Figure 7 (下方图) 为图 Overall communication count 概览。

(对应文件为 Figure+Table/Overall-communication-count.pdf)

Figure 7: Overall communication count

Table 2 (下方表格) 为表格 Interaction of pathways 概览。

(对应文件为 Figure+Table/Interaction-of-pathways.csv)

注: 表格共有 57 行 5 列, 以下预览的表格可能省略部分数据; 表格含有 10 个唯一 'source'。

Table 2: Interaction of pathways

source	target	pathw	prob	pval
B cell	Treg	MHC-II	0.008	0
B cell	Treg	MIF	0.022	0
CD8+	${\rm Treg}\ \dots$	CD137	0.007	0
CD8+	Treg	MHC-II	0.029	0

source	target	pathw	prob	pval
CD8+	Treg	TNF	0.002	0
Endot	Treg	APP	0.074	0
Endot	Treg	COLLAGEN	0.128	0
Endot	Treg	CXCL	0.024	0
Endot	Treg	FN1	0.049	0
Endot	Treg	LAMININ	0.038	0
Endot	Treg	MHC-II	0.016	0
Macro	Treg	CD86	0.010	0
Macro	Treg	CXCL	0.006	0
Macro	Treg	GALECTIN	0.025	0
Macro	Treg	MHC-II	0.265	0
			•••	

Table 3 (下方表格) 为表格 Interaction of ligand and receptor 概览。

(对应文件为 Figure+Table/Interaction-of-ligand-and-receptor.csv)

注:表格共有 136 行 11 列,以下预览的表格可能省略部分数据;表格含有 10 个唯一'source'。

Table 3: Interaction of ligand and receptor $\,$

source	target	ligand	receptor	prob	pval	inter7	inter8	pathw	annot
Endot	Treg	CXCL12	CXCR4	0.024	0	CXCL1	CXCL1	CXCL	Secre
Macro	Treg	CXCL16	CXCR6	0.006	0	CXCL1	CXCL1	CXCL	Secre
Treg	B cell	MIF	CD74	0.012	0	MIF_C	MIF	MIF	Secre
Treg	CD8+	MIF	CD74	0.015	0	MIF_C	MIF	MIF	Secre
Treg	Endot	MIF	CD74	0.006	0.03	MIF_C	MIF	MIF	Secre
Treg	Macro	MIF	CD74	0.028	0	MIF_C	MIF	MIF	Secre
Treg	Mast	MIF	CD74	0.013	0	MIF_C	MIF	MIF	Secre
Treg	Natur	MIF	CD74	0.005	0.03	MIF_C	MIF	MIF	Secre
Treg	Neutr	MIF	CD74	0.011	0.01	MIF_C	MIF	MIF	Secre
B cell	Treg	MIF	CD74	0.014	0	MIF_C	MIF	MIF	Secre
Proxi	Treg	MIF	CD74	0.105	0	MIF_C	MIF	MIF	Secre
Treg	Treg	MIF	CD74	0.014	0	MIF_C	MIF	MIF	Secre
Treg	B cell	MIF	CD74	0.004	0	MIF_C	MIF	MIF	Secre
Treg	CD8+	MIF	CD74	0.007	0	MIF_C	MIF	MIF	Secre
Treg	Macro	MIF	CD74	0.016	0	MIF_C	MIF	MIF	Secre

4 补充: Normal 组织和 RCC 组织的 Treg 细胞比对

4.1 以 Seurat 集成处理 Normal 和 RCC 组织单细胞数据

使用的数据集来自于样本 GSM6415686、GSM6415694。

4.1.1 Marker 基因

根据文献⁶, 使用 FOXP3, BATF, CTLA4, TIGIT"作为 marker 鉴定 Treg 细胞。

以下,仅图示基因为高变基因 (Variable feautre)。鉴定 cluster 6 为 Treg 细胞群 (3.1.1 的 Treg 细胞同属于这个细胞聚类团)。

Figure 8 (下方图) 为图 S Heatmap show the reference genes 概览。

(对应文件为 Figure+Table/S-Heatmap-show-the-reference-genes.pdf)

Figure 8: S Heatmap show the reference genes

随后,细胞类型注释为:

Figure 9 (下方图) 为图 S The Treg cells 概览。

(对应文件为 Figure+Table/S-The-Treg-cells.pdf)

Figure 9: S The Treg cells

4.1.2 差异表达

Table 4 (下方表格) 为表格 RCC and Normal DEGs of the contrasts 概览。

(对应文件为 Figure+Table/RCC-and-Normal-DEGs-of-the-contrasts.csv)

注: 表格共有 704 行 7 列,以下预览的表格可能省略部分数据;表格含有 1 个唯一'contrast'。

Table 4: RCC and Normal DEGs of the contrasts

contrast	p_val	avg_l	pct.1	pct.2	p_val	gene
Treg	9.236	-1.12	0.512	0.027	2.770	ITGAX
Treg	3.286	-4.47	0.234	0.036	9.860	CHML
Treg	8.063	-2.89	0.867	0.062	2.418	AURKA
Treg	1.414	7.436	0.178	0.027	4.244	ZBTB37
Treg	1.000	-2.33	0.739	0.089	3.001	PDK1
Treg	4.158	-4.69	0.596	0.062	1.247	ARHGAP10
Treg	1.966	3.428	0.112	0.062	5.898	CCDC14
Treg	7.855	-1.47	0.82	0.027	2.356	MKI67
Treg	1.038	-4.16	0.258	0.054	3.116	ENC1
Treg	4.089	-6.47	0.519	0.098	1.226	AOAH
Treg	3.070	0.532	0.157	0.027	9.212	TMIGD2
Treg	4.034	-8.29	0.829	0.134	1.210	ERCC5
Treg	1.316	17.34	0.144	0	3.949	HBB

contrast	p_val	avg_l	pct.1	pct.2	p_val	gene
Treg	5.742	-2.05	0.872	0.089	1.722	GPR18
Treg	1.017	4.533	0.034	0.188	3.053	CAPS

Reference

- 1. Jin, S. et al. Inference and analysis of cell-cell communication using cellchat. Nature Communications 12, (2021).
- 2. Wu, T. et al. ClusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation 2, (2021).
- 3. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, (2021).
- 4. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, (2019).
- 5. Cao, Y., Wang, X. & Peng, G. SCSA: A cell type annotation tool for single-cell rna-seq data. Frontiers in genetics 11, (2020).
- 6. Krishna, C. *et al.* Single-cell sequencing links multiregional immune landscapes and tissue-resident t cells in ccRCC to tumor topology and therapy efficacy. *Cancer cell* **39**, 662–677.e6 (2021).