

Exercise: Noise in HVAC systems

Prof. Livio Mazzarella

Ing. Maria Cairoli Dipartimento di Energia

- Calculation of the sound pressure level on the internal receiver relative to the air flow inlet only (person at 2.5 m from the delivery outlet).
- Calculation of the sound pressure level on the external receiver (window of the house facing the air handling unit)
- 3. Check that the sound pressure level on the building window is not higher than the NR40 criterion.
- 4. Define the spectral characteristics of an attenuator filter on the intake that ensures compliance with the NR40 criterion

Calculation 1

 It is calculated the spectral distribution of the sound power of the "noise generator", the fan, known Q, p and the type of fan

$$L_W = 41 + 10 \cdot \log_{10}(Q) + 20 \cdot \log_{10}(p)$$
 [dB]

- Q portata [m³/h]
- p pressione mandata [mm H₂O]

Fon Type	Correction factors for octave bands							
Fan Type	63	125	250	500	1000	2000	4000	8000
Centrifugal - backward curved blades	- 4	- 6	- 9	- 11	- 13	- 16	- 19	- 22
Centrifugal - forward curved blades	- 2	- 6	- 13	- 18	- 19	- 22	- 25	- 30
Centrifugal - radial blades	- 3	- 5	- 11	- 12	- 15	- 20	- 23	- 26
Axial	- 7	- 9	- 7	- 7	- 8	- 11	- 16	- 18

2) It is determined the portion of the spectral sound power directed towards the internal environment (fan inlet) in [dB] (linear)

It is defined the portion of the spectral sound power directed towards the internal environment (fan inlet) in [dB] (linear) $\Delta L_w = -3$ dB

The spectral distribution at the inlet is determined as:

$$L_{w.inlet} = L_{w.fan} + \Delta L_{w}$$

Attenuation dB/m

· · · · · · · · · · · · · · · · · · ·			
Rapporto P/S [1/m]	63 Hz	125 Hz	250 Hz e oltre
maggiore di 12	0	0,9	0,3
tra 12 e 5	0,9	0,3	0,3
minore di 5	0,3	0,3	0,3

P: perimetro della sezione retta del condotto

S: area della sezione retta del condotto.

P is the perimeter of the section of the duct S is the area of the section

Diameter	er Center frequency in octave bands [Hz]							
[m]	63	125	250	500	1000	2000	4000	8000
Square elbows	Square elbows without turning vanes							
0,15-0,30	0	0	1	4	6	6	4	3
0,30-0,60	0	0	4	6	6	4	3	2
0,60-1,2	1	3	6	7	4	3	3	3
Square elbows with turning vanes								
0,15-0,30	0	0	0	2	3	4	3	3
0,30-0,60	0	0	2	3	4	3	3	3
0,60-1,2	0	1	4	4	3	3	3	3
Round elbows								
0,15-0,30	0	0	0	0	1	2	3	3
0,30-0,60	0	0	0	1	2	3	3	3
0,60-1,2	0	0	1	2	3	3	3	3
D: diameter of the duct with circular section or dimension in the plane of curvature in the ducts of rectangular section								

$$\Delta L_W = 10 \cdot \log_{10} \left(\frac{Q_1}{Q_{IN}} \right)$$

4) The spectral attenuations are determined in [dB] by terminal reflection at the emission in the room

To be significant, there must be a section of an rectilinear duct at least 3-5 average diameters and there is no diffuser or grid at the outlet.

This is not our case: it does not apply.

5) It is calculated the spectral sound power in [dB] injected into the room from the emission point as the spectral sound power emitted by the fan plus all the spectral attenuations (<0) along the duct.

$$Lw,D=Lw,F+\Delta Lw$$

6) The spectrum of the sound pressure at the receiver in [dB] is determined according to the spectral sound power emitted by the nozzle, by means of the propagation law in a reverberant environment.

$$L_{p} = L_{W,boc} + 10 \cdot \log_{10} \left(\frac{Q}{4\pi r^{2}} + \frac{4}{R} \right) \qquad R = \frac{S_{T} \cdot \overline{\alpha}}{1 - \overline{\alpha}}$$

If the absorption coefficients are not known, there is a semiempirical relation for furnished environments of «normal characteristics»:

 $V = volume [m^3]$, f = frequency [Hz], r = distance[m],

$$L_p = L_{W,boc} - 5 \cdot \log_{10}(V) - 3 \cdot \log_{10}(f) - 10 \cdot \log_{10}(r) + 12$$
 [dB]

7) Sound pressure leve evaluated in [dBA].

$$L_{P(A)} = L_P + A$$
 [dB(A)]
 $L_P = L_{P(A)} - A$ [dB]

Freq.	Correzione per ottenere i dB(A)
Hz	Α
63	-26.2
125	-16.1
250	-8.6
500	-3.2
1000	0
2000	1.2
4000	1.0
8000	-1.1

1) It is determined the portion of the spectral sound power directed towards the external environment (fan suction) in [dB] (linear)

It is defined the portion of the spectral sound power directed towards the external environment (fan inlet) in [dB] (linear) $\Delta Lw = -3 dB$

The spectral distribution at the inlet is determined as: Lw, inlet = Lw, fan + ΔLw

NEGLIGIBLE

3) The directivity factor is determined and the directivity index relative to the direction between the external air intake (sound source)

Curve A

Fig. 1.3-6 - Fattori di direttività dei terminali d'ambiente: f : frequenza; S: area della sezione retta del raccordo: θ: angoio tra la direzione considerata e la normale alla superficie di spocco del terminale.

A: terminale al centro di una parete.

B: terminale in prossimità dell'incontro di due pareti C: terminale in prossimità degli angoli dell'ambiente.

4) The directivity index DI [dB] is determined

Sequenza di calcolo obbiettivo 2

6) The spectrum of the sound pressure at the receiver in [dB] is determined by the propagation law in free field.

$$L_p = (L_{w,vent} + \sum \Delta L_w) - 20 \cdot \log_{10}(r) - 11 + DI$$

7) The spectrum of sound pressure is compared to the receiver in [dB] with the limit value required by the criterion NR = 40. If the difference is positive also for a frequency band it is necessary to introduce an appropriate attenuator filter on the suction.

8) The spectrum of the minimum attenuation in [dB] is determined, which the attenuator filter must perform to achieve compliance with the NR40 criterion.

A difference of 3 dB is added to the difference between Lp on the window plane and Criterion NR40.