

SISTEM AS OPERATIVOS

PRACTICA

3-C

Algoritmos de Planificación de Procesos

Facultad de Ingeniería y Ciencias Hídricas

Actividad 1

Ejercitación

- 1- Que significa que una política es apropiativa? Mencionar al menos 3 algoritmos que la utilicen.
- 2- Realice los diagramas de Gantt para planificaciones FCFS, RR Q=2 y SJN. Para el siguiente cuadro de procesos

Proceso	Ráfaga de CPU	Tiempo de Ilegada
Α	2	0
В	4	0
С	5	2
D	1	1
E	8	3

3- Esuponiendo que todos los procesos del siguiente cuadro, llegaron en el tiempo 0:

Proceso	Ráfaga CPU
1	10
2	29
3	3
4	7
5	12

Indicar los valores de:

tiempo de espera y tiempo de servicio de cada trabajo,

tiempo medio de espera y servicio, cuando la planificación se realiza mediante los algoritmos FCFS, SJF y RR (q=10).

4- Sea la siguiente descripción de carga:

Trabajo	Ráfaga CPU	Prioridad
1	10	3
2	1	1
3	2	3
4	1	4
5	5	2

Suponer el orden de llegada el indicado con un tiempo de acceso incremental para cada uno. Representar, mediante un diagrama de Gantt, el acceso a la CPU de los anteriores procesos al aplicar planificación FCFS, RR (q=1), SJF y por prioridad no apropiativo.

En cada caso, calcular el tiempo de ejecución y de espera de cada trabajo.

5- Sea la siguiente carga de trabajo:

Trabajo	Instante llegada	Tiempo de CPU	Prioridad
Α	0	10	3
В	2	1	1
С	5	2	3
D	8	1	4
Е	12	5	2

Realizar el diagrama de Gantt y evolución del estado de la cola de espera para los algoritmos de planificación por prioridades y SJF en los casos apropiativo y no apropiativo. Además determine el tiempo promedio de espera

6- Considere los siguientes tres procesos, cuyas longitudes de CPU se expresan en milisegundos:

Proceso	Duración de la ráfaga
P1	24
P ₂	3
P ₃	3

Se supone que los procesos llegaron en el orden P1, P2, P3 todos en el instante 0.

- a) Dibuje las gráficas de Gantt que ilustren la ejecución de esos procesos utilizando FCFS, SJF y RR con cuanto igual 5.
- b) ¿Cuál es el tiempo de espera de cada proceso para cada uno de los algoritmos de planificación del inciso a)?
- c) ¿Cuál de los esquemas de planificación del inciso a) ofrece menor tiempo promedio de espera?
 - d) Ídem a), b) y c) si el orden de llegada de los procesos es P3, P1, P2

7- Se tienen los siguientes jobs que arriban al sistema, según la siguiente tabla:

Job	Llegada	Burst Time
1	0	5 unidades
2	1	4 unid ades
3	3	5 unidades
4	10	3 unidades

Realice el diagrama de Gantt y calcule el tiempo promedio de espera según los siguientes algoritmos de scheduler

- a) FCFS (First Come, First Served).
- b) SJF (Shortest Job First).
- c) Round Robin con quantum = 3
- d) Round Robin con quantum = 7.

¿Qué conclusión puede dar evaluando los puntos c y d, con respecto al quantum y el algoritmo de scheduling?

8- Considere el siguiente conjunto de procesos, cuyas longitudes de CPU se expresan en milisegundos:

Proceso	Duración de la ráfaga	Prioridad
P ₁	10	3
P ₂	1	1
P3	2	3
P ₄	1	4
P ₅	5	2

Se supone que los procesos llegaron en el orden P1, P2, P3, P4, P5, todos en el instante 0.

- a) Dibuje las gráficas de Gantt que ilustren la ejecución de esos procesos utilizando FCFS, SJF, RR con cuanto igual 1 y por prioridad no apropiativa.
- b) ¿Cuál es el tiempo de espera de cada proceso para cada uno de los algoritmos de planificación del inciso a)?
- c) ¿Cuál de los esquemas de planificación del inciso a) ofrece menor tiempo promedio de espera?
- 9- Dados los siguientes procesos realizar los diagramas de Gantt para una planificación SJF y SJF apropiativo. Determinar el tiempo promedio de espera de cada uno.

a)

Proceso	Duración de la ráfaga
P1	6
P2	8
P ₃	7
P4	3

b)

Proceso	Duración de la ráfaga
P1	8
P2	4
P3	9
P4	5

10- Los cinco procesos siguientes llegan en el instante 0, en el orden establecido, con la longitud de la ráfaga en milisegundos. Considere los algoritmos de planificación FCFS, SJF y RR (cuanto = 10 ms). ¿Cuál algoritmo ofrece menor tiempo de espera?

Proceso	Duración de la ráfaga
P ₁	10
P ₂	29
P ₃	3
P ₄	7
P ₅	12

11- Dados los siguientes procesos realizar los diagramas de Gantt para una planificación FCFS, SJF, SJN, prioridad y RR (cuanto =1). Determinar e I tiempo promedio de espera de cada uno.

Proceso	Instante de llegada	Duración de la ráfaga	Prioridad
P ₁	0	3	0
P ₂	1	5	1
	4	2	0
P ₃	5	6	2
P ₅	8	4	1

12- Se tienen los siguientes procesos que arriban al sistema en el instante 0 (cero).

Job	Burst Time
1	7 unidades
2	15 unidades
3	12 unidades
4	4 unidades
5	9 unidades

Realice el diagrama de Gantt y calcule el tiempo promedio de espera según los siguientes algoritmos de Scheduling:

- a) FCFS First Come, First Served
- b) SJF Shortest Job First
- c) Round Robin con quantum = 4.