Dispersão no modelo de Lorentz

Frequency, ω

Dispersão "normal" n ↑ quando ω ↑

Dispersão "anómala"
n ↓ quando ω ↑
Zona fina centrada na ressonância

Anómala indica apenas que é menos comum

$$n(\omega) = 1 - \frac{Ne^2}{4\omega\varepsilon_0 m} \left[\frac{\omega - \omega_0}{(\omega - \omega_0)^2 + \gamma^2} \right]$$

Variação de n em alguns vidros óticos

Dispersão normal

$$\omega = k \mathbf{v}_{fase} = n k_0 \frac{c}{n} = \frac{2\pi c}{\lambda_0}$$

 $\leftarrow \omega$

Vidro (Crown glass)

$$A = 0.526$$

 $\lambda_0 = 92.43nm$

$$n(\omega) = 1 - \frac{Ne^2}{4\omega\varepsilon_0 m} \left[\frac{\omega - \omega_0}{(\omega - \omega_0)^2 + \gamma^2} \right]$$

$$\omega_0 - \omega \gg \gamma$$

$$n(\omega) \approx 1 + \frac{Ne^2}{2\varepsilon_0 m} \left[\frac{1}{\omega_0^2 - \omega^2} \right] \rightarrow 1 + A \frac{\lambda^2}{\lambda^2 - \lambda_0^2}$$

TABLE 3.3	Dienersion	of Crown	Glace*
IADLE 3.3	DISDEFSION	OI CLOWII	Glass

	Wavelength λ (nm)	Index of Refraction n
1.	728.135	1.5346
2.	706.519, 706.570	1.5352
3.	667.815	1.53629
4.	587.562, 587.587	1.53954
5.	504.774	1.54417
6.	501.567	1.54473
7.	492.193	1.54528
8.	471.314	1.54624
9.	447.148	1.54943
10.	438.793	1.55026
11.	414.376	1.55374
12.	412.086	1.55402
13.	402.619	1.55530
14.	388.865	1.55767

^{*} The wavelengths are those of a He discharge tube. The corresponding indices were measured.

Dispersão em ação

As vezes n < 1

Materiais dielétrico transparentes tem ressonâncias no UV (ou IV) mas não no visível Em geral n aumenta com a frequência no visível

Se
$$n < 1$$
 $v = \frac{c}{n} > c$ Quais são as implicações?

Sobreposição de ondas planas com fases diferentes

Somar ondas com a mesma frequência e mesmo vetor de onda mas com fases iniciais diferentes resulta numa onda com a mesma frequência.

Com notação complexa isso é fácil verificar

$$\vec{\mathbf{E}}_{total}(\vec{\mathbf{r}},t) = \vec{\mathbf{E}}_{1}e^{i\varphi_{1}}\exp\left[i\left(\vec{\mathbf{k}}\bullet\vec{\mathbf{r}}-\omega t\right)\right] + \vec{\mathbf{E}}_{2}e^{i\varphi_{2}}\exp\left[i\left(\vec{\mathbf{k}}\bullet\vec{\mathbf{r}}-\omega t\right)\right] + \vec{\mathbf{E}}_{3}e^{i\varphi_{3}}\exp\left[i\left(\vec{\mathbf{k}}\bullet\vec{\mathbf{r}}-\omega t\right)\right]$$

$$= \left(\vec{\mathbf{E}}_{1}e^{i\varphi_{1}} + \vec{\mathbf{E}}_{2}e^{i\varphi_{2}} + \vec{\mathbf{E}}_{3}e^{i\varphi_{3}}\right)\exp\left[i\left(\vec{\mathbf{k}}\bullet\vec{\mathbf{r}}-\omega t\right)\right]$$

Sobreposição de ondas planas com frequências diferentes

Ao somar ondas com frequências diferentes uma frequência de batimento é obtida

$$\vec{\mathbf{E}}_{total}(\vec{\mathbf{r}},t) = \vec{\mathbf{E}}_{0}\hat{x}\exp\left[i\left(k_{1}z - \omega_{1}t\right)\right] + \vec{\mathbf{E}}_{0}\hat{x}\exp\left[i\left(k_{2}z - \omega_{2}t\right)\right]$$

Definir

$$k_{med} = \frac{\left(k_1 + k_2\right)}{2} \quad \Delta k = \frac{k_1 - k_2}{2} \qquad k_1 = k_{med} + \Delta k \quad k_2 = k_{med} - \Delta k$$

$$\omega_{med} = \frac{\left(\omega_1 + \omega_2\right)}{2} \quad \Delta \omega = \frac{\omega_1 - \omega_2}{2} \qquad \omega_1 = \omega_{med} + \Delta \omega \quad \omega_2 = \omega_{med} - \Delta \omega$$

$$\vec{\mathbf{E}}_{total}(\vec{\mathbf{r}},t) = \vec{\mathbf{E}}_{0}\hat{x}\exp\left[i\left(k_{med}z - \omega_{med}t\right)\right]\left\{\exp\left[i\left(\Delta kz - \Delta\omega t\right)\right] + \exp\left[-i\left(\Delta kz - \Delta\omega t\right)\right]\right\}$$

$$= 2\vec{\mathbf{E}}_{0}\hat{x}\exp\left[i\left(k_{med}z - \omega_{med}t\right)\right]\cos\left[\left(\Delta kz - \Delta\omega t\right)\right]$$

Frequência de batimento

onda com ω_1

onda com ω_2

soma

envelope

Irradiãncia

Velocidade da Fase e velocidade do Grupo

$$\vec{\mathbf{E}}_{total}(\vec{\mathbf{r}},t) = 2\vec{\mathbf{E}}_{0}\hat{\mathbf{x}}\cos\left[i\left(k_{med}z - \omega_{med}t\right)\right]\cos\left[\left(\Delta kz - \Delta\omega t\right)\right]$$

Envelopes Variação mais lenta

Manter a fase constante requer: $k_{med}z = \omega_{med}t$

Velocidade da fase: $v_{fase} = \frac{\omega_{med}}{k_{med}}$

Propagar com o envelope requer: $\Delta kz = \Delta \omega t$

Velocidade do grupo: $v_{grupo} = \frac{\Delta \omega}{\Delta k} = \frac{d\omega}{dk} = \left[\frac{dk(\omega)}{d\omega}\right]^{-1}$

Em geral v_{fase} ≠ v_{grupo}

$$\mathbf{v}_{grupo} = \frac{\Delta \omega}{\Delta k} = \frac{d\omega}{dk} = \left[\frac{dk(\omega)}{d\omega}\right]^{-1}$$

$$k = \frac{2\pi n(\omega)}{\lambda_0} = \frac{\omega}{c} n(\omega) \qquad \frac{dk}{d\omega} = \frac{1}{c} \left[n(\omega) + \omega \frac{dn(\omega)}{d\omega} \right]$$

$$v_{grupo} = \frac{c}{n} \frac{1}{\left[1 + \left(\frac{\omega}{n} \frac{dn}{d\omega}\right)\right]}$$

$$v_{grupo} = v_{fase} \text{ apenas se não existe dispersão}$$

$$dn$$

$$\frac{dn}{d\omega} = 0$$

Dispersão normal
$$\frac{dn}{d\omega} > 0$$
 $v_{grupo} < c$

Dispersão anómala
$$\frac{dn}{d\omega} < 0$$
 $v_{grupo} > c$

Velocidade do grupo e velocidade da fase

 $https://web.bryanston.co.uk/physics/Applets/Wave\%\,20 animations/Sound\%\,20 waves/Dispersive\%\,20 waves. htm$

Pulsos propagam na velocidade do grupo

Para criar um pulso é necessário sobrepor ondas planas com varias frequências

Derivação alternativa da velocidade do grupo

Fourier:

$$E(z,t) = \int E(\omega) \exp[i(kz - \omega t)] d\omega$$

Pacote de onda centrado nos vetor de onda \mathbf{k}_0 e frequência ω_0

Escrever:

$$\Delta \omega = \omega - \omega_0$$
 $\Delta k = k - k_0 = \Delta \omega \frac{dk}{d\omega}$

$$E(z,t) = \exp\left[i\left(k_{0}z - \omega_{0}t\right)\right] E(\omega) \exp\left[i\Delta\omega\left(\frac{dk}{d\omega}z - t\right)\right] d\omega$$

Fase global oscila rapidamente velocidade da fase $V_{fase} = \frac{\omega_0}{k_0}$

Envelope velocidade do grupo
$$v_{grupo} = \frac{d\alpha}{dk}$$

Efeito da dispersão nos pulsos

Dispersão normal: a velocidade do grupo é maior para os comprimentos de onda maiores

isvr

http://web.bryanston.co.uk/physics/Applets/Wave%20animations/Sound%20waves/Dispersive%20waves.htm

Dispersão anómala

$$\mathbf{v}_{grupo} = \frac{c}{n} \frac{1}{\left[1 + \left(\frac{\omega}{n} \frac{dn}{d\omega}\right)\right]}$$

Nas zonas de dispersão anómala $v_{Grupo} > v_{fase}$ e pode ser maior do que c.

Note que as zonas de dispersão são finas e lá a absorção é forte

No entanto informação se propaga na velocidade do grupo apenas sobre condições de dispersão normal. Ver a discussão na https://www.mathpages.com/home/kmath210/kmath210.htm