中华人民共和国国家标准

紧固件机械性能不锈钢螺栓、螺钉和螺柱

GB/T 3098-6-2000 idt ISO 3506-1:1997

> 代替 GB/T 3098.6—1986 有关部分

Mechanical properties of fasteners —

Bolts screws and studs made of stainless-steel

1 范围

本标准规定了由奥氏体、马氏体和铁素体耐腐蚀不锈钢制造的、在环境温度为 15~25℃条件下进行试验时,螺栓、螺钉和螺柱的机械性能。在较高或较低温度下,其性能可能不同。

本标准适用的螺栓、螺钉和螺柱:

螺纹公称直径 d≤39 mm;

符合 GB/T 192 规定的普通螺纹;

符合 GB/T 193 规定的直径与螺距组合;

符合 GB/T 196 规定的基本尺寸;

符合 GB/T 197 规定的公差;

任何形状的。

本标准不适用于有特殊性能要求的紧固件,如可焊接性。

本标准未规定特殊环境下耐腐蚀性和耐氧化性,而在附录 E(提示的附录)中给出了在特殊环境中使用材料的一些信息。关于腐蚀和耐腐蚀的定义,见 ISO 8044。

本标准的目的在于对耐腐蚀不锈钢紧固件的性能进行分级。某些材料在空气中能使用到温度-200°C,而某些材料在空气中能使用到温度+800°C。温度对机械性能影响方面的资料,见附录F(提示的断录)

对高温或零度以下使用的耐腐蚀性、耐氧化性以及机械性能,必须由使用者与制造者按每一特殊场合进行协议。附录 G(提示的附录)给出了有关高温条件下含碳量对晶间腐蚀的影响情况。

所有奧氏体不锈钢紧固件在退火状态下,通常是无磁的;经冷加工后,有些磁性可能是明显的,见附录**H**(提示的附录)。

2 引用标准

下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。

GB/T 192—1981 普通螺纹 基本牙型

GB/T 193-1981 普通螺纹 直径与螺距系列(直径1~600 mm)

GB/T 196-1981 普通螺纹 基本尺寸(直径1~600 mm)

GB/T 197-1981 普通螺纹 公差与配合(直径 1~355 mm)

GB/T 228—1987 金属拉伸试验方法(neq ISO 6892:1984)

GB/T 230—1991 金属洛氏硬度试验方法

国家质量技术监督局 2000-09-26 批准

2001-02-01 实施

GB/T 231-1984 金属布氏硬度试验方法

GB/T 3098.1-2000 紧固件机械性能 螺栓、螺钉和螺柱(idt ISO 898-1:1999)

GB/T 4340.1-1999 金属维氏硬度试验 第1部分:试验方法(eqv ISO 6507-1:1997)

ISO 683-13:1986 热处理钢、合金钢和易切钢 第13部分:可锻不锈钢

ISO 3651-1:1976 (将发行修订本) 耐晶间腐蚀不锈钢的测定 第1部分:奥氏体和铁素体-奥氏体(双相)不锈钢 在硝酸介质中测量质量损耗的腐蚀试验(晶间腐蚀试验)

ISO 3651-2:1976 (将发行修订本) 耐晶间腐蚀不锈钢的测定 第2部分:铁素体、奥氏体和铁素体-奥氏体(双相)不锈钢 在硫酸介质中的腐蚀试验

ISO 4954:1993 冷镦和冷挤压用钢

ISO 8044:1988(将发行修订本) 金属和合金的腐蚀 基本术语和定义

EN 10088-1:1995 不锈钢 第1部分:不锈钢目录

3 标记、标志和表面精饰

3.1 标记

螺栓、螺钉和螺柱的不锈钢组别和性能等级的标记制度,见图 1。材料标记由短划隔开的两部分组成。第一部分标记钢的组别,第二部分标记性能等级。

钢的组别(第一部分)标记由字母和一个数字组成,字母表示钢的类别,数字表示该类钢的化学成分范围。其中:A——奥氏体钢;C——马氏体钢;F——铁素体钢。

性能等级(第二部分)标记由两个数字组成,并表示紧固件抗拉强度的 1/10。

示例:

1) A2-70 表示:

奥氏体钢、冷加工、最小抗拉强度为 700N/mm²(700MPa);

2) C4-70 表示:

马氏体钢、淬火并回火、最小抗拉强度为 700N/mm²(700MPa)。

- 1) 图中钢的类别和组别的分级,在附录B(提示的附录)中说明,化学成分按表1规定。
- 2) 含碳量低于 0.03%的低碳不锈钢,可增加标记"L",如 A4L-80。

图 1 螺栓、螺钉和螺柱不锈钢组别和性能等级标记制度

3.2 标志

只有符合本标准的所有技术要求,紧固件才能按3.1条的标记制度进行标志和(或)标记。

3.2.1 螺栓和螺钉

螺纹公称直径 $d \ge 5$ mm 的六角头螺栓和螺钉,以及内六角或内六角花形圆柱头螺钉,均应按 3.1 条中图 1 和图 2 进行清晰的标志。标志应包括钢的组别和性能等级,以及制造者的识别标志。其他类型的螺栓和螺钉也可尽量按此要求,并仅在头部进行标志。在不致造成混淆的前提下,允许有其他附加的标志。

3.2.2 螺柱

螺纹公称直径 $d \ge 6$ mm 的螺柱,应按 3.1条中图 1 和图 2 进行清晰的标志。在螺柱的无螺纹杆部进行标志,标志应包括钢的组别和性能等级以及制造者的识别标志。如在无螺纹杆部不可能标志,则允许在螺柱的拧入螺母端仅标志钢的组别(图 2)。

b) 内六角和内六角花形圆柱头螺钉的标志(可选用的形式见 3.2.1 条)

c) 螺柱的标志(可选用的形式见3.2.2条)

注: 左旋螺纹的标志见 GB/T 3098.1。

图 2 螺栓、螺钉和螺柱的标志

3.2.3 包装标识

所有规格的所有包装上,标志制造者的商标或识别标志和钢的组别及性能等级是强制性的。

3.3 表面精饰

除非另有规定,否则符合本标准的紧固件应进行清洁和光亮处理。推荐最大限度地采用耐腐蚀钝化处理。

4 材料

按本标准生产的紧固件适用的不锈钢材料在表1中给出。

除非供需双方另有协议,化学成分应在钢组规定的范围内,由制造者选择。

在有晶间腐蚀倾向的场合,推荐按 ISO 3651-1 或 ISO 3651-2 的规定进行试验。在此情况下,推荐 采用稳定型的 A3 和 A5,或者采用含碳量不超过 0.03%的 A2 和 A4 不锈钢。

表 1 不锈钢组别与化学成分

ale D.I	Att Dil					化:	学成分 ⁿ ,%				0.4.
类别	组别	С	Si	Mn	P	s	Cr	Mo	Ni	Cu	注
	A1	0. 12	1	6. 5	0. 2	0. 15~0. 35	16~19	0. 7	5~10	1. 75~2. 25	2),3),4)
	A2	0.1	1	2	0. 05	0. 03	15~20	5)	8~19	4	7),8)
奥氏体	A3	0. 08	1	2	0. 045	0. 03	17~19	5)	9~12	1	9)
	A4	0. 08	1	2	0.045	0. 03	16~18.5	2~3	10~15	1	8),10)
	A 5	0. 08	1	2	0.045	0. 03	16~18.5	2~3	10.5~14	1	9),10)
	C 1	0.09~0.15	1	1	0. 05	0. 03	11.5~14	<u>808</u>	1	_	10)
马氏体	C3	0. 17~0. 25	1	1	0.04	0. 03	16~18	520	1.5~2.5	-	
	C4	0. 08~0. 15	1	1.5	0.06	0. 15~0. 35	12~14	0.6	1	-	2),10)
铁素体	F1	0. 12	1	1	0.04	0. 03	15~18	6)	1	_	11),12)

注

- 1 不锈钢的类别和组别,以及涉及其特性和应用的说明,在附录B中给出。
- 2 已由 ISO 683-13 和 ISO 4954 标准化了的不锈钢示例,分别在附录 C(提示的附录)和附录 D(提示的附录)中给出。
- 3 某些特殊用途的材料,在附录E中给出。
- 1) 除已表明者外,均系最大值。
- 2) 硫可用硒代替。
- 3) 如镍含量低于8%,则锰的最小含量必须为5%。
- 4) 镍含量大于8%时,对铜的最小含量不予限制。
- 5) 钼含量可能在制造者的说明书中出现。但对某些使用场合。如有必要限定钼的极限含量。则必须在订单中由用户注明。
- 6) 钼含量可能在制造者的说明书中出现。
- 7) 如铬含量低于17%,则镍的最小含量应为12%。
- 8) 对最大含碳量达到 0.03%的奥氏体不锈钢,氮含量最高可达到 0.22%。
- 9) 为了稳定组织, 钛含量应≥5×C%~0.8%, 并应按本表适当标志, 或者铌和(或)组含量应≥10×C%~1.0%, 并应按本表适当标志。
- 10) 对较大直径的产品,为达到规定的机械性能,在制造者的说明书中,可能有较高的碳含量,但对奥氏体钢不应超过0.12%。
- 11) 钛含量可能为≥5×C%~0.8%。
- 12) 铌含量可能为≥10×C%~1.0%。

5 机械性能

螺栓、螺钉和螺柱的机械性能应符合表 2、表 3 或表 4 的规定。

由马氏体钢制造的螺栓和螺钉的楔负载强度,不应小于表3规定的最小抗拉强度值。

本章规定的机械性能适用于验收检查,并应按第6章规定的试验项目进行试验。

表 2 奥氏体钢螺栓、螺钉和螺柱机械性能

类别	组别	性能等級	螺纹直径	抗拉强度 🔥 ¹³ min N/mm ²	规定非比例伸长应力 σ _{p0.2} D min N/mm ²	断后伸长量 δ ²⁾ min mm
	A1,A2,	50	≪ M39	500	210	0. 6d
奥氏体	A3,A4,	70	≤M 24³3	700	450	0. 4đ
	A5	80	≪M24³)	800	600	0. 34

- 1) σ_b 和 σ_{pa 2}是根据螺纹的应力截面积[A_s 见附录 A (标准的附录)]计算出来的。
- 2) 按 6.2.4 条的规定测量紧固件实物的长度; d —— 螺纹公称直径。
- 3) 螺纹公称直径 d > 24 mm 的紧固件,其机械性能应由供需双方协议,并可按本表给出的组别和性能等级标志。

表 3 马氏体和铁素体钢螺栓、螺钉和螺柱机械性能

类别	组别	性能等级	min	规定非比例伸长应力 σ_{p4.2}1) min	断后伸长量 δ²⁾ min	硬度				
			N/mm ²	N/mm²	mm	нв	HRC	HV		
		50	500	250	0. 24	147~209	- 100 m	155~220		
	C1	70	700	410	0. 2d	209~314	20~34	220~330		
T = 4.		110 ⁸⁾	1 100	820	0. 24	-	36~45	350~440		
马氏体	СЗ	80	800	640	0. 24	228~323	21~35	240~340		
		50	500	250	0. 2d	147~209	(Hara)	155~220		
	C4	70	700	410	0. 2d	209~314	20~34	220~330		
bal. add 61.		45	450	250	0. 2d	128~209	0685	135~220		
铁素体	FI"	60	600	410	0. 24	171~271	10.000	180~285		

- 1) σ_b 和 σ_{p0.2}是根据螺纹的应力截面积(A_c 见附录 A)计算出来的。
- 2) 按 6.2.4 条的规定测量紧固件实物的长度; d —— 螺纹公称直径。
- 3) 淬火并回火,最低回火温度为275℃。
- 4) 螺纹公称直径 d ≤24 mm。

表 4 奥氏体钢螺栓和螺钉的破坏扭矩 M1.6~M16(粗牙螺纹)

		破坏扭矩 Mamin,N·m	
螺纹		性能等级	
	50	70	80
M1.6	0. 15	0. 2	0. 24
M2	0. 3	0. 4	0. 48
M2. 5	0. 6	0. 9	0. 96
м3	1.1	1.6	1.8
M4	2. 7	3. 8	4. 3
M 5	5, 5	7.8	8. 8
М6	9. 3	13	15
М8	23	32	37
M10	46	65	74
M12	80	110	130
M16	210	290	330

对马氏体和铁素体钢紧固件的破坏扭矩值,应由供需双方协议。

6 试验

6.1 试验项目

试验项目应符合(由材料组别和螺栓、螺钉或螺柱的长度决定)表5规定。

表 5 试验项目

组别	抗拉强度	破坏扭矩 Ma ²⁾	规定非比例伸长应力 σ _{60.2} 11	断后伸长量 6 ³³	硬度	楔负载强度
A1	l≥2. 5d ³⁰	<i>l</i> <2. 5 <i>t</i>	l≥2. 5d ³⁾	l≥2. 5d 30	11 12	(-):
A2	l≥2. 5d³)	<i>l</i> <2. 5 <i>d</i>	t≥2. 5d³)	t≥2. 5d 3)	() ()	19—11
A3	l≥2. 5d 2)	l<2.5d	t≥2. 5d ³)	l≥2. 5d 30	\$ - \$	<u></u>
A4	l≥2. 5d *)	<i>l</i> <2. 5 <i>d</i>	l≥2. 5d 8)	l≥2. 5d 30	19 <u>—1</u> 1	
A5	l≥2. 5d 30	<i>l</i> <2. 5 <i>d</i>	l≥2. 5d 8)	l≥2. 5d 30	1 - 1	s - 8
C 1	l≥2. 5d 3)	-	l≥2. 5d³)	l≥2. 5d 3)	要求进行	L≥2d
C3	l≥2. 5d 3)	<u> </u>	t≥2. 5d ³)	l≥2. 5d 30	要求进行	<i>l</i> ,≥24
C4	l≥2.5d³)	- 	l≥2. 5d ³)	t≥2. 5d 3)	要求进行	4 ≥2d
F1	l≥2. 5d 30		l≥2.5d 5)	l≥2. 5d 30	要求进行	5 - 5

- 1---螺栓、螺钉或螺柱的长度。
- d --- 螺纹公称直径。
- 4---无螺纹杆部长度。
- 1) 对≥M5 的规格。
- 2) 对《M5的规格,本试验适用于所有长度。
- 3) 对螺柱应为 1≥3.54。

6.2 试验方法

6.2.1 总则

所有长度测量的误差应不大于±0.05 mm。

所有拉力试验,应使用夹头能自动定心的试验机,以免试件承受任何横向载荷,见图 3。按 6.2.2条~6.2.4条进行试验用的下夹头应为淬硬的螺纹夹头,其硬度不应低于 45 HRC,内螺纹的公差应为 5H6G。

6.2.2 抗拉强度 os

根据 GB/T 228 和 GB/T 3098.1 的规定, 抗拉强度应在长度等于或大于 2.5 d 的紧固件上进行测量。

承受拉力载荷又未旋合的螺纹长度应大于或等于1d。

断裂应在螺栓或螺钉头部支承面和下夹头的端面之间发生。

测得的 66 值应符合表 2 或表 3 给出的数值。

6.2.3 规定非比例伸长应力 σ_{ρ0.2}

规定非比例伸长应力 $\sigma_{P0.2}$ 仅在螺栓和螺钉实物上进行试验。本试验仅适用于长度等于或大于 2.5d 的紧固件。

当试件承受轴向拉力载荷时,测量螺栓或螺钉的断后伸长量,见图 3。

试验时, 先将试件拧入淬硬的螺纹夹头内, 其拧入深度为14, 见图3。

力-伸长曲线应按图 4 所示绘出。

计算 $\sigma_{90.2}$ 的夹紧长度,取自头部支承面与螺纹夹头端面之间的距离 L_3 ,见图 3、表 2 和表 3 的注 2)。

夹紧长度的0.2%,是相当于力-伸长曲线的水平(伸长)轴线上的一段刻度(OP),从曲线的直线部分水平地划一直线,并取相同的数值即QR。通过P和R点绘一直线,与力-伸长曲线相交于S点,即相当于垂直轴线上T点的力。那么,该力除以螺纹的应力截面积,即可得出 $G_{0.2}$ 。

伸长量在螺栓或螺钉支承而与夹头端面之间进行测量。

图 4 测定 σ_{p0.2}的力-伸长曲线图

图 3 带自动定心的螺栓伸长计

6.2.4 断后伸长量δ

断后伸长量应在长度等于或大于 2.5 d 的紧固件上进行测量。

测量螺栓或螺钉的长度 L_1 ,见图 5。然后,将紧固件拧入淬硬的螺纹夹头内,其拧入深度为一倍螺纹公称直径(1d),见图 3。

拉断紧固件后,将试件断裂部分紧密吻合,然后测量长度 L_2 ,见图 5。

断后伸长量按下式计算:

$$\delta = L_2 - L_1$$

求得的δ值应大于等于表2或表3的规定值。

如要求用机加工试件进行该项试验,则试验值应由双方协议。

6.2.5 破坏扭矩 MB

破坏扭矩应使用图 6 所示的装置进行测量。该扭矩测试装置的误差应不大于表 4 规定的破坏扭矩的 $\pm 7\%$ 。

螺栓或螺钉的螺纹夹紧在一对带有盲孔的开合模中,被夹紧的螺纹长度应有1d,但不包括末端的长度,同时,至少有两扣完整螺纹伸出开合模的上方。

对螺栓或螺钉施加扭矩,直至断裂。试件应符合表 4 的规定。

图 6 破坏扭矩 MB 的测试装置

6.2.6 马氏体钢螺栓和螺钉(不包括螺柱)实物的楔负载试验 本试验应使用 GB/T 3098.1 给出的楔垫尺寸,见表 6。

表 6 楔垫尺寸

螺纹公称直径		а
đ mm	无螺纹杆部长度 4.≥2 d	全螺纹或无螺纹杆部长度 4<2 d
d≤20	10°±30′	6°±30′
20<4≤39	6°±30′	4°±30′

6.2.7 硬度HB、HRC 或HV

硬度试验按 GB/T 231(HB)、GB/T 230(HRC)或 GB/T 4340.1(HV)的规定进行。如有争议,应以维氏硬度试验(HV)为验收依据。

螺栓或螺钉硬度试验,应在其末端、圆周半径的1/2处进行。仲裁试验,应在距末端1d的截面上进行。

硬度值应在表3给出的范围内。

附 录 A

(标准的附录)

外螺纹的应力截面积的计算

螺纹的应力截面积 A. 按下式计算:

$$A_s = \frac{\pi}{4} \left(\frac{d_2 + d_3}{2} \right)^2$$

式中: d_2 —螺纹中径的基本尺寸,mm;

 d_3 一螺纹小径的基本尺寸 (d_1) 减去螺纹原始三角形高度(H)的 1/6 值,即:

$$d_3 = d_1 - \frac{H}{6} \qquad \text{mm}$$

H — 螺纹原始三角形高度(H = 0.866 025P),mm;

P──螺距,mm;

表 A1 螺纹的应力截面积

粗牙螺纹 d	螺纹的应力截面积 A _* mm ²	细牙螺纹 d×P¹⁾	螺纹的应力截面形 <i>A</i> 。 mm²
м1.6	1. 27	M8 ×1	39. 2
M2	2. 07	M10×1	64. 5
M2. 5	3. 39	M10×1.25	61. 2
M3	5. 03	M12×1.25	92. 1
M4	8. 78	M12×1.5	88. 1
M5	14. 2	M14×1.5	125
M6	20. 1	M16×1.5	167
M8	36. 6	M18×1.5	216
M10	58	M20×1.5	272
M12	84. 3	M22×1.5	333
M14	115	M24×2	384
M16	157	M27×2	496
M18	192	M30×2	621
M20	245	M33×2	761
M22	303	M36×3	865
M24	353	M39×3	1 030
M.27	459		
M30	561		
M33	694		
M36	817		
M39	976		

附录B

(提示的附录)

不锈钢类别与组别的说明

B1 总则

在 GB/T 3098.6、GB/T 3098.15 和 GB/T 3098.16 中采用的钢,涉及以下钢类:

奥氏体钢:A1~A5

马氏体钢:C1~C4

铁素体钢:F1

本附录是对上述钢的性能说明。

本附录还给出非标准化FA 组钢的某些资料。这类钢具有马氏体-奥氏体组织。

B2 A 类钢(奥氏体组织)

在 **GB/T 3098.6**, **GB/T 3098.15** 和 **GB/T 3098.16** 中规定了**A1~A5** 五个基本组。他们不能淬火,通常是无磁的。为了减少对加工硬化的敏感性,对 **A1~A5** 钢可添加铜的成分,如表 1 的规定。

对亚稳定型的 A2 和 A4 组钢, 适用于以下情况:

氧化铬能提高钢的抗腐蚀性,低的含碳量对亚稳定型的钢极为重要。因为铬对碳有高的亲和力,碳 化铬能够替代高温下更容易生成的氧化铬(附录 G)。

对稳定型的 A3 和 A5 组钢,适用于以下情况:

Ti、Nb 或Ta 元素影响碳的存在,导致氧化铬达到其最大含量。

对海洋或类似的使用环境,要求 Cr 和 Ni 含量各约 20%, Mo 的含量为 4.5%~6.5%。

当有高的腐蚀倾向时,应向专家咨询。

B2.1 A1组钢

A1 组钢是为机械加工专门设计的。该组钢具有高的硫含量,故比相应标准硫含量钢的耐腐蚀能力低。

B2.2 A2组钢

A2 组钢是最广泛使用的不锈钢,用于厨房设备和化工装置。该组钢不适用于非氧化酸类和带氯成分的介质,如游泳池和海水。

B2.3 A3组钢

A3 组钢是稳定型的"不锈钢",钢的性能与A2 组钢相同。

B2.4 A4组钢

A4组钢是"耐酸钢",含有**Mo**元素,能提供相当好的耐腐蚀性。**A4**通常用于化纤工业。本组钢是为沸腾硫酸而开发的(因此取名"耐酸"),并在一定程度上也适合于含氯化物的场合。**A4**还常用于食品工业和造船工业。

B2.5 A5组钢

A5 组钢是稳定型的"耐酸钢",钢的性能与A4 组相同。

B3 F 类钢(铁素体组织)

F1 组铁素体钢在 GB/T 3098.6 和 GB/T 3098.15 中采用。F1 组钢通常不能淬硬,即使在某些情况下有可能,也不应进行淬火。F1 组钢是有磁性的。

B3.1 F1组钢

F1 组钢通常用于较简单的装置。该装置应避免具有 C 和 N 含量极低的特纯铁素体,如有需要,F1 组钢能代替 A2 和 A3 组钢。通常具有更高的含铬量。

B4 C 类钢(马氏体组织)

C1、C3 和 C4 三组马氏体钢在 GB/T 3098. 6 和 GB/T 3098. 15 中采用。他们能淬火到极高的强度并且是有磁性的。

B4.1 C1 组钢

C1 组钢的耐腐蚀性有限,用于涡轮、泵和刀。

B4.2 C3组钢

C3 组钢耐腐蚀性比C1 钢好,但仍是有限的,用于泵和阀。

B4.3 C4 组钢

C4 组钢的耐腐蚀性有限,用于机械加工材料,其他方面与C1 组钢类似。

B5 FA 类钢(铁素体-奥氏体组织)

FA 类钢在 GB/T 3098.6、GB/T 3098.15 和 GB/T 3098.16 中尚未采用,但很有可能在将来采用。 这类钢是所谓双相钢。最初开发的FA 钢有些缺陷,这些缺陷已在近来开发的钢中克服。FA 钢比 A4 和 A5 钢有更好的性能,尤其是强度,它还有优良的耐点蚀和裂缝腐蚀性。

成分示例在表B1 中给出。

表 B1 铁素体-奥氏体钢---化学成分

	化学成分•%										
类別	C max	Si	Mn	Cr	Ni	Мо	N				
Market St. Her of St.	0. 03	1. 7	1. 5	18. 5	5	2.7	0. 07				
铁素体-奥氏体	0. 03	<1	<2	22	5. 5	3	0. 14				

附录C

(提示的附录)

不锈钢成分技术条件 (摘自 ISO 683-13:1986)

表 C1

							1	化学成分 20,%							
钢的" 类型	с	Si max	Mn max	P max	s	N	Al	Cr	Мо	Nb ³⁾	Ni	Se min	Ti	Cu	紧固件组别 标记 ⁴⁾
								铁素体钢		200					
8	0. 08max	1.0	1.0	0.040	0.030max	-	===	16.0~18.0		3	1. 0max	-	-	-	F1
8b	0. 07max	1.0	1.0	0.040	0.030max		<u> 1986</u>	16.0~18.0	<u> </u>	22	1. 0max	_	7×%C≤1.10	=	Fl
9c	0. 08max	1.0	1.0	0. 040	0.030max	_	1000	16. 0~18. 0	0. 90~1. 30	=	1. 0max	-	-	-	F1
F1	0. 025max ⁵⁾	1.0	1.0	0.040	0. 030max	0. 025max ⁵⁾	<u>520</u>	17. 0~19. 0	1. 75~2. 50	6)	0. 60max	2_3	6)	-	F1
								马氏体钢			,				
3	0.09~0.15	1.0	1.0	0.040	0. 030max		<u>1925</u>	11.5~13.5	_		1. 0max	_	_	<u> </u>	Cl
7	0.08~0.15	1.0	1.5	0.060	0.15~0.35	(-	-	12.0~14.0	0. 60max ⁷⁾		1. 0max	-	5 6	-	C4
4	0.16~0.25	1.0	1.0	0.040	0.030max	_	-	12.0~14.0	_	_	1. 0max	_	_	_	Cl
9a.	0. 10~0. 17	1.0	1.5	0.060	0.15~0.34		-	15.5~17.5	0. 60max ⁷⁾	_	1. 0max	-	7 3	-	C3
9ь	0.14~0.23	1.0	1.0	0.040	0.030max	-	-	15.0~17.5	-		1.5~2.5	_	1-	_	C3
5	0. 26~0. 35	1.0	1.0	0.040	0.030max	() - ()	1930	12.0~14.0		9789	1.0max	s=-8	N-4	-	Cl
								奥氏体钢							
10	0.030max	1.0	2.0	0.045	0.030max	4-3		17.0~19.0	5-6	-	9.0~12.0	-	1 -	-	A283
11	0. 07max	1.0	2. 0	0.045	0. 030max	6 <u>—</u> 8	1250	17.0~19.0	¥ <u>4—</u> (V	<u>(4:25)</u>	8.0~11.0	_	0:	_	A2
15	0. 08max	1.0	2. 0	0. 045	0. 030max	-	-	17. 0~19. 0	_	_	9. 0~12. 0	_	5×%C≤0.80	-	A39)
16	0. 08max	1.0	2. 0	0. 045	0.030max	_	-	17. 0~19. 0	-	10×%c≤1. (9. 0~12. 0	_	-	_	A39)
17	0. 12max	1.0	2.0	0.060	0.15~0.35		-	17.0~19.0	10)	_	8. 0~10. 011)	-	1 	-	A1

表 C1 (完)

1134 (2)	2						- 1	化学成分20,%							NA LLI W. WI D.
钢的" 类型	c	Si max	Mn max	P max	s	N	Al	Cr	Мо	Nb ⁸⁰	Ni	Se min	Ti	Cu	紧固件组别 标记 ⁰
13	0. 10max	1.0	2. 0	0.045	0.030max	-	20,220	17. 0~19. 0	_	-	11.0~13.0	-)	-	A2
19	0. 030max	1.0	2. 0	0.045	0. 030max	-	-	16.5~18.5	2.0~2.5	-	11.0~14.0	-	1-	-	A4
20	0. 07max	1.0	2. 0	0. 045	0.030max		-	16.5~18.5	2.0~2.5		10.5~13.5	-	2 <u></u> 2	=_	A4
21	0. 08max	1.0	2. 0	0. 045	0.030max	0 <u>—</u> 8	<u>1575)</u>	16.5~18.5	2.0~2.5	<u> </u>	11.0~14.0	_	5×%c≤0.80	<u>-</u>	A593
23	0. 08max	1.0	2. 0	0.045	0. 030max	_	- 5 (5) (6)	16.5~18.5	2.0~2.5	10×%c≤1.0	11.0~14.0	-	_	-	A 59)
19a	0. 030max	1.0	2. 0	0.045	0. 030max	· —	-	16.5~18.5	2.5~3.0	_	11.5~14.5	-	7	_	A4
20a	0. 07max	1.0	2. 0	0. 045	0.030max	_		16.5~18.5	2.5~3.0	_	11.0~14.0	_	_	_	A4
10N	0. 030max	1.0	2. 0	0.045	0.030max	0.12~0.22	598	17.0~19.0	5-8	===	8.5~11.5	-	(c 	=	A2
19N	0. 030max	1.0	2. 0	0. 045	0.030max	0. 12~0. 22	-	16.5~18.5	2.0~2.5	-	10.5~13.5	-	, 	-	A48)
19aN	0. 030max	1.0	2. 0	0.045	0.030max	0. 12~0. 22	1	16.5~18.5	2.5~3.0	_	11.5~14.5	_	1	-	A48)

- 1) 类型编号是暂定的,当制定有关的国际标准时,还会改变。
- 2) 本表未列出的元素,未经用户同意,不能增加,除非需要精炼。应采取合理的预防措施,以防止某些元素(来自制造过程中混入的废料或其他金属)的增加,因为这些元素会影响材料的淬透性、机械性能和使用性能。
- 3) 钽含量取决于铌含量。
- 4) 不是 ISO 683-13 的内容。
- 5) (C+N)max 为 0.040%。
- 6) 8×(C+N)≤(Nb+Ti)≤0.80%。
- 7) 在询问和签约订单之后,可能提供 Mo 含量为 0.20%~0.60%的钢。
- 8) 有极好的耐晶间腐蚀性。
- 9) 稳定型钢。
- 10) 制造者可选择添加最大到 0.70%的钼。
- 11) 对制造无缝钢管的半成品,镍含量可能增加 0.5%。

附录D

(提示的附录)

冷镦和冷挤压用不锈钢 (摘自 ISO 4954:1993)

表 **D**1

	钢的类型(标记	(¹)						化学成分	2),%			紧固件30
No.	名称	ISO 4954:1979	с	Si max	Mn max	P max	S max	Cr	Мо	Ni	其他	组别标记
7,1	铁素体钢	K	drocuestor	contested		-001040cm	MARKAGARA	KANA NA KINDANA		2001007-0400	(v	-
71	X3Cr17E	20—1	≪0.04	1.00	1.00	0.040	0.030	16.0~18.0		≤ 1. 0		F 1
72	X6Cr17E	D1	≪0.08	1.00	1.00	0.040	0.030	16.0~18.0		≪1.0		F1
73	X6CrMo17 IE	D2	≪0.08	1.00	1.00	0.040	0.030	16.0~18.0	0.90~1.30	€1.0		F 1
74	X6CrTi12E		≪0.08	1.00	1.00	0.040	0.030	10.5~12.5		≪0.50	Ti:6×%C≤1.0	F1
75	X6CrNb12E	n 	≪0.08	1.00	1.00	0.040	0.030	10.5~12.5		≪0.50	Nb:6×%C≤1.0	F1
	马氏体钢				-						8 888	
76	X12Cr13E	D10	0.90~0.15	1.00	1.00	0.040	0.030	11.5~13.5		≤1.0		C1
77	X19CrNi16 2E	D12	0. 14~0. 23	1.00	1.00	0.040	0. 030	15.0~17.5	0	1.5~2.5	5	C3
	奥氏体钢											
78	X2CrNi18 10E	D20	≪0.030	1.00	2.00	0.045	0.030	17.0~19.0		9.0~12.0		A240
79	X5CrNi18 9E	D21	≤0.07	1.00	2.00	0.045	0.030	17.0~19.0		8.0~11.0		A2
80	X10CrNi18 9E	D22	≪0.12	1.00	2.00	0.045	0.030	17.0~19.0		8.0~10.0		A2
81	X5CrNi18 12E	D23	≪0.07	1.00	2.00	0.045	0.030	17.0~19.0		11.0~13.0		A2
82	X6CrNi18 16E	D25	≪0.08	1.00	2.00	0.045	0.030	15.0~17.0		17.0~19.0		A2
83	X6CrNiTi18 10E	D26	≤0.08	1.00	2.00	0.045	0.030	17.0~19.0		9.0~12.0	Ti:5×%C≤0.80	A3
84	X5CrNiMo17 12 2E	D29	≪0.07	1.00	2.00	0.045	0.030	16.5~18.5	2.0~2.5	10.5~13.5		A4
85	X6CrNiMoTi17 12 2E	D30	≪0.08	1.00	2.00	0.045	0.030	16.5~18.5	2.0~2.5	11.0~14.0	Ti:5×%C≤0.80	A5
86	X2CrNiMo17 13 3E	_	≤0.030	1.00	2.00	0.045	0.030	16.5~18.5	2.5~3.0	11.5~14.5	ID 30100 CWCWCWC65241 (1964)	A40
87	X2CrNiMoN17 13 3E	8 <u></u> 8	≤0.030	1.00	2.00	0.045	0.030	16.5~18.5	2.5~3.0	11.5~14.5	N : 0. 12~0. 22	A40
88	X3CrNiCu18 9 3E	D32	≤0.04	1.00	2.00	0.045	0. 030	17.0~19.0		8.5~10.5	Cu:3.00~4.00	A2

- 4) 有极好的耐晶间腐蚀性。

附录E

(提示的附录)

耐氯化物导致应力腐蚀的奥氏体不锈钢 (摘自EN 10088-1:1995)

因氯化物导致应力腐蚀(如室内游泳池)造成螺栓、螺钉和螺柱失效的风险,可通过使用表 E1 给出 的材料而降低。

表 E1

m - th- be to		化学成分•%											
奥氏体不锈钢 (代号/材料编号)	C max	Si max	Mn max	P max	S max	N	Cr	Мо	Ni	Cu			
X2CrNiMoN17-13-5 (1. 4439)	0. 03	1. 0	2. 0	0. 045	0. 015	0. 12~0. 22	16. 5~18. 5	4.0~5.0	12. 5~14. 5				
X1NiCrMoCu25-20-5 (1. 4539)	0. 02	0.7	2. 0	0. 030	0. 010	≤0. 15	19. 0~21. 0	4.0~5.0	24. 0~26. 0	1.2~2.0			
X1NiCrMoCuN25-20-7 (1. 4529)	0. 02	0.5	1.0	0. 030	0. 010	0. 15~0. 25	19. 0~21. 0	6.0~7.0	24. 0~26. 0	0.5~1.5			
X2CrNiMoN22-5-3 ¹⁾ (1. 4462)	0. 03	1. 0	2. 0	0. 035	0. 015	0. 10~0. 22	21. 0~23. 0	2.5~3.5	4.5~6.5				

附录F

(提示的附录)

高温下的机械性能和低温下的适用性

注:如果螺栓、螺钉或螺柱经过计算认为是合适的,则相匹配的螺母也会符合要求。因此,在用于高温或低温的情况 下,只要充分考虑螺栓、螺钉或螺柱的机械性能即可。

F1 高温下的屈服点 σ₄ 或规定非比例伸长应力 σ₇₀₋₂

本附录给出的数值仅是指导性的。使用者应当明白,实际的化学成分和性质、安装紧固件的载荷以 及环境都可能产生很大的变化。如果在高温下载荷是循环交变的、是大的或有高的应力腐蚀的可能性, 使用者应向制造者咨询。

在高温下屈服点 σ_{a} 和规定非比例伸长应力 $\sigma_{p0.2}$ 的数值与在室温下的数值之比(用%表示),见表 F1.

表 F1 受温度影响的 σ_s 和 σ_{p0.2}

钢组	σ ₈ 和 σ _{p0.2} ,%				
	温度				
	+100℃	+200℃	+300℃	+400℃	
A2,A4	85	80	75	70	
C1	95	90	80	65	
C3	90	85	80	60	

F2 低温下的适用性

低温下不锈钢螺栓、螺钉和螺柱的适用性,见表 F2。

表 F2 低温下不锈钢螺栓、螺钉和螺柱的适用性(仅对奥氏体钢)

钢组	持续工作状态下,工作温度的较低极限	
A2	-200°C	
	螺栓和螺钉 ^D	−60℃
A4	螺柱	−200°C

1) 鉴于合金元素 Mo 降低奥氏体钢的稳定性,如果在紧固件的制造过程中高度变形,该临界温度可调整到较高数值。

附录G

(提示的附录)

奥氏体钢、A2组(18/8钢)晶间腐蚀时间-温度图

图 G1 给出不同含碳量的奥氏体不锈钢、A2 组(18/8 钢)、温度范围为 550~925℃,在晶间腐蚀倾向产生前近似的时间。

附 录 H (提示的附录) 奥氏体不锈钢的磁性

所有奥氏体不锈钢紧固件,通常是无磁的;经冷加工后,有些磁性可能是明显的。

各种材料被磁化能力的特性,也适用于不锈钢。只有在真空状态下才有可能完全无磁。磁场中材料的磁导率的测量是相对于材料在真空中的磁导率 μ , 而言。如果 μ , 接近 1,则该材料具有低的磁导率。

例如:

A2: $\mu_r \approx 1.8$ A4: $\mu_r \approx 1.015$ A4L: $\mu_r \approx 1.005$ F1: $\mu_r \approx 5$