CS70 Note 0: Mathematical Foundations

Lucas Zheng

Sets 1

Math is built on the foundation of the theory of sets. In sets, order and count do not matter.

Set builder notation: $\mathbb{Q} = \{\frac{a}{b} : a, b \in \mathbb{Z}, b \neq 0\}$

Cardinality: the size of a set |S|

Subset / superset / proper subset: $A\subseteq B$ / $A\supseteq B$ / $A\subset B$

Natural numbers: $\mathbb{N} = \{0, 1, 2, 3, \dots\}$

Integer numbers: $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$

Rational numbers: $\mathbb{Q} = \{\frac{a}{b} : a, b \in \mathbb{Z}, b \neq 0\}$

Real numbers: \mathbb{R} Intersection: $A \cap B$

Union: $A \cup B$

Relative complement: $B \setminus A := \{x \in B : x \notin A\}$ Cartesian product: $A \times B = \{(a, b) : a \in A, b \in B\}$ Power set: $2^A = \{S : S \subseteq A\}$

Sums and Products 2

\sum, \prod

Geometric series (infinite), taylor series expansion of the exponential

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$