Soal dan Solusi UAS Analisis Real I 2024

Wildan Bagus Wicaksono

Matematika 2022

Question 1

- (a). Jika $s_n = \sqrt{n+1} \sqrt{n}$, apakah barisan dengan suku-suku $t_n = \sqrt{n} s_n$ untuk setiap $n \in \mathbb{N}$ konvergen?
- (b). Buktikan bahwa barisan bilangan real (x_n) dengan $x_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}$ adalah barisan Cauchy sehingga (x_n) divergen.

Penyelesaian.

(a). Kita klaim (t_n) konvergen ke $\frac{1}{2}$. Perhatikan bahwa

$$s_n = \sqrt{n+1} - \sqrt{n} = \frac{1}{\sqrt{n+1} + \sqrt{n}} \implies t_n = \frac{\sqrt{n}}{\sqrt{n+1} + \sqrt{n}}.$$

Ambil sebarang $\varepsilon > 0$. Dari Archimedes, terdapat bilangan asli N yang memenuhi $N > \frac{1}{\varepsilon} \iff \varepsilon > \frac{1}{N}$. Maka untuk setiap $n \ge N$ berlaku

$$\left| t_n - \frac{1}{2} \right| = \left| \frac{1}{2} \cdot \frac{2\sqrt{n} - (\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}} \right| = \frac{1}{2} \cdot \frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{2} \cdot \frac{1}{(\sqrt{n+1} + \sqrt{n})^2}$$

$$< 1 \cdot \frac{1}{(\sqrt{n})^2} = \frac{1}{n} \le \frac{1}{N}$$

$$< \varepsilon.$$

Terbukti. Jadi, barisan (t_n) konvergen.

(b). Pilih $\varepsilon=\frac{1}{2}$. Misalkan N sebarang bilangan asli. Untuk $n\geq N$ di mana n bilangan asli berlaku

$$|x_{2n} - x_n| = \sum_{k=n+1}^{2n} \frac{1}{k} \ge \sum_{k=n+1}^{2n} \frac{1}{2n} = \frac{n}{2n} = \frac{1}{2} = \varepsilon.$$

Jadi, (x_n) bukan barisan Cauchy.

Question 2

Jika fungsi f dan g kontinu seragam pada ruang metrik (X,d) ke dalam \mathbb{R} , maka fungsi f=g+h kontinu seragam pada X. Buktikan dan perlihatkan dengan contoh bahwa konklusi tiadk benar untuk f=gh.

Penyelesaian.

Misalkan $X=\mathbb{R}$ dan pilih $g(x)=h(x)=x \implies f(x)=x^2$. Akan dibuktikan f tidak kontinu seragam pada \mathbb{R} . Pilih $\varepsilon=1$ dan ambil sebarang $\delta>0$. Pilih $x=\frac{1}{\delta}+\frac{\delta}{2}$ dan $y=\frac{1}{\delta}$ yang mana memenuhi $|x-y|=\frac{\delta}{2}<\delta$, maka

$$|x^2 - y^2| = \left|\frac{\delta^2}{4} + 1\right| = 1 + \frac{\delta^2}{4} \ge 1 = \varepsilon.$$

Terbukti ftidak kontinu seragam.

Question 3

- (a). Buktikan bahwa jika fungsi f didefinisikan untuk $x \ge 0$ oleh $f(x) = \sqrt{x}$, maka f kontinu di setiap titik domainnya.
- (b). Didefinisikan fungsi f pada selang terbuka (-3, -1) oleh

$$f(x) = \begin{cases} x+1, & \text{untuk } -3 < x < -1 \\ -x-1, & \text{untuk } -1 \le x < 0 \\ x+1, & \text{untuk } 0 \le x < 1 \end{cases}.$$

Tentukan di mana f kontinu dan di mana f diskontinu.

Penyelesaian.

(a). Akan dibuktikan f kontinu di x=0 dari arah kanan. Ambil sebarang $\varepsilon>0$. Untuk setiap x yang memenuhi $x<\delta=\varepsilon^2$, maka

$$|f(x) - f(0)| = \sqrt{x} < \varepsilon$$

terbukti.

Akan dibuktikan f kontinu di x=c di mana c>0. Ambil sebarang $\varepsilon>0$. Pilih $\delta=\min\left\{1,\varepsilon\left(\sqrt{c}+\sqrt{c+1}\right)\right\}$. Untuk setiap x dengan $|x-c|<\delta\leq 1$, maka $1>|x-c|=|c-x|\geq c-x \implies x>c+1$. Maka

$$|f(x) - f(c)| = \left| \sqrt{x} - \sqrt{c} \right| = \left| \frac{x - c}{\sqrt{x} + \sqrt{c}} \right| = \frac{|x - c|}{\sqrt{x} + \sqrt{c}} < \frac{\varepsilon \left(\sqrt{c} + \sqrt{c + 1} \right)}{\sqrt{c + 1} + \sqrt{c}} = \varepsilon.$$

(b). Misalkan $c \in (-3, -1)$. Akan dibuktikan f kontinu di x = c. Ambil sebarang $\varepsilon > 0$. Pilih $\delta = \min\{|c - 3|, |-1 - c|, \frac{\varepsilon}{2}\} = \min\{3 - c, -c - 1, \frac{\varepsilon}{2}\}$. Perhatikan bahwa

$$-(3-c) \leq -\delta < x-c < \delta \leq -c-1 \implies -9 < 2c-3 < x < -1 \implies -3 < x < -1.$$

Jadi, untuk setiap x dengan $|x-c| < \delta$ berlaku

$$|f(x) - f(c)| = |x + 1 - (c + 1)| = |x - c| < \frac{\varepsilon}{2} < \varepsilon,$$

terbukti.

Misalkan $c \in (-1,0)$, akan dibuktikan f kontinu di x = c. Ambil sebarang $\varepsilon > 0$. Pilih $\delta = \min\left\{\frac{c+1}{3}, -c, \frac{\varepsilon}{2}\right\}$. Perhatikan bahwa

$$-\frac{c+1}{3} \le -\delta < x-c < \delta \le -c \implies -1 < \frac{2c-1}{3} < x < 0 \implies -1 < x < 0.$$

Jadi, untuk setiap x dengan $|x-c| < \delta$ berlaku

$$|f(x) - f(c)| = |-x - 1 - (-c - 1)| = |c - x| \le \frac{\varepsilon}{2} < \varepsilon,$$

terbukti.

Misalkan $c \in (0,1)$, akan dibuktikan f kontinu di x=c, akan dibuktikan f kontinu di x=c. Ambil sebarang $\varepsilon > 0$. Pilih $\delta = \min \left\{ \frac{c}{3}, 1-c, \frac{\varepsilon}{2} \right\}$. Perhatikan bahwa

$$-\frac{c}{3} \leq -\delta < x - c < \delta \leq 1 - c \implies 0 < \frac{2c}{3} < x < 1 \implies 0 < x < 1.$$

Jadi, untuk setiap xdengan $|x-c|<\delta$ berlaku

$$|f(x) - f(c)| = |x + 1 - (c + 1)| = |x - c| \le \frac{\varepsilon}{2} < \varepsilon,$$

terbukti.

Akan dibuktikan f kontinu di x=-1. Ambil sebarang $\varepsilon>0$ dan pilih $\delta=\min\left\{\frac{1}{2},\frac{\varepsilon}{2}\right\}$. Tinjau $|x+1|<\delta\leq\frac{1}{2}\implies |x+1|<\frac{1}{2}$ memberikan $-\frac{3}{2}< x<-\frac{1}{2}$. Apabila $-\frac{3}{2}< x<-1$, maka

$$|f(x) - f(-1)| = |x + 1 - 0| = |x + 1| \le \frac{\varepsilon}{2} < \varepsilon.$$

Apabila $-1 \le x < -\frac{1}{2}$, maka

$$|f(x) - f(-1)| = |-x - 1 - 0| = |-x - 1| = |x + 1| \le \frac{\varepsilon}{2} < \varepsilon.$$

Terbukti f kontinu di x = -1.

Akan dibuktikan f diskontinu di x=0. Pilih $\varepsilon=1$. Ambil sebarang $\delta>0$. Jika $\delta\leq 2$, pilih $x=-\frac{\delta}{2}$ yang mana memenuhi $|x|<\delta$. Tinjau bahwa $-1\leq x=-\frac{\delta}{2}<0$, maka

$$|f(x) - f(0)| = |-x - 1 - 1| = |-x - 2| = \left|\frac{\delta}{2} - 2\right| = 2 - \frac{\delta}{2} \ge 2 - 1 = 1 = \varepsilon.$$

Jika $\delta \geq 2,$ pilih $x=-\frac{1}{2}$ yang mana memenuhi $|x|<\delta,$ maka

$$|f(x) - f(0)| = \left| -\frac{1}{2} - 1 \right| = \frac{3}{2} > \varepsilon.$$

Terbukti f diskontinu di x = 0.

Jadi, f diskontinu di x = 0 dan kontinu di selainnya.