

14강 SAS, SPSS 활용 (일반화선형모형)

정보통계학과 김성수교수

✓ 학습목차

1

SAS를 이용한 일반화선형모형

2

SPSS를 이용한 일반화선형모형

1 SAS를 이용한 일반화선형모형

로지스틱 회귀모형: 이항자료

〈날다람쥐 Sugar Glider의 출현자료〉

p_no	occurr	con_metric	p_size_km
1	1	0.650	130.9
2	0	0.610	104.1
3	0	0.744	132.3
4	1	0.213	225.6
5	1	0.723	83.0
6	0	0.678	48.8
7	0	0.733	61.0
8	1	0.522	39.6
9	1	0.552	193.1
10	0	0.245	155.6

데이터읽기

로지스틱 회귀모형: 이항자료

〈날다람쥐 Sugar Glider의 출현자료〉

occurr 1	con_metric	p_size_km
1	0.650	
	0.050	130.9
0	0.610	104.1
0	0.744	132.3
1	0.213	225.6
1	0.723	83.0
0	0.678	48.8
0	0.733	61.0
1	0.522	39.6
1	0.552	193.1
0	0.245	155.6
	0 1 1 0	0 0.744 1 0.213 1 0.723 0 0.678 0 0.733 1 0.522 1 0.552

```
data nsugar ;
 set sugar;
  if occurr = \mathbf{0} then noccurr = \mathbf{1};
  else if occurr = \mathbf{1} then noccurr = \mathbf{0};
  run:
proc logistic data=nsugar;
 model noccurr = con_metric p_size_km;
 run;
```

반응변수 y=occurr, 1=yes, 0=no 이므로 이항분포를 가정

로지스틱 회귀모형:

$$\eta = \log it(\pi) = \log(\frac{\pi}{1-\pi}) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

$$\pi = E(Y \mid x) = \Pr(y = 0 \mid x)$$

 $\pi = E(Y \mid x) = Pr(y = 0 \mid x)$ ※SAS에서는 작은 값 0을 기준으로 함

출력 결과(R & SAS)

```
> logit_m1 <- glm(occurr~p_size_km+con_metric, family=binomial(link=logit), data=glider)
> summary(logit_m1)
```

Deviance Residuals:

```
Min 1Q Median 3Q Max -1.4969 -0.8829 -0.3884 0.8766 2.0515
```

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-3.606207	1.436391	-2.511	0.01205	*
p_size_km	0.023566	0.007462	3.158	0.00159	**
con metric	1 631800	1 642758	0 993	0.32055	

(Dispersion	parameter	for	binomial	family	taken	to	be	1)

Nul1	deviance:	68.994	on 49	degrees of freedom
Residual	deviance:	54.661	on 47	degrees of freedom

AIC: 60.661

Number of Fisher Scoring iterations: 4

Analysis of Maximum Likelihood Estimates						
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq	
Intercept	1	-3, 6062	1,4364	6, 3030	0,0121	
con_metric	1	1,6318	1,6428	0,9867	0, 3206	
p_size_km	1	0,0236	0,00746	9,9726	0,0016	

Model Fit Statistics					
Criterion	Intercept Only	Intercept and Covariates			
AIC	70,994	60,661			
SC	72,906	66,397			
-2 Log L	68,994	54,661			

R 결과: 모형의 유의성 검정

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 68.994 on 49 degrees of freedom Residual deviance: 54.661 on 47 degrees of freedom

AIC: 60.661

Number of Fisher Scoring iterations: 4

모형의 유의성 검정

$$H_0: \log\left(\frac{\pi}{1-\pi}\right) = \beta_0$$
 vs. $H_1: \log\left(\frac{\pi}{1-\pi}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$

즉,

$$H_0: \beta_1 = 0, \ \beta_2 = 0$$
 vs. $H_1:$ 적어도 하나는 0 이 아니다.

p-값 계산

> 1-pchisq(68.994-54.661,2)

[1] 0.0007720201

=> p-값이 매우 작으므로 대립가설의 모형이 유의함을 알 수 있음

Testing Global Null Hypothesis: BETA=0					
Test	Chi-Square	DF	Pr > ChiSq		
Likelihood Ratio	14, 3332	2	0,0008		
Score	12,7906	2	0,0017		
Wald	9,9764	2	0,0068		

모형의 선택: 변수선택방법 (R & SAS)

```
> library(MASS)
> stepAIC(logit_m1, direction='both')
...
Call: glm(formula = occurr ~ p_size_km, family = binomial(link = logit),
    data = glider)
```

Coefficients:

(Intercept) p_size_km -2.52830 0.02173

Degrees of Freedom: 49 Total (i.e. Null); 48 Residual

Null Deviance: 68.99

Residual Deviance: 55.72 AIC: 59.72

변수 χ_1 (p_size_km) 이 선택됨.

$$\log\left(\frac{\hat{\pi}}{1-\hat{\pi}}\right) = \hat{\beta_0} + \hat{\beta_1}x_1 = -2.528 + 0.022 * x_1$$

proc logistic data=nsugar;
 model noccurr = con_metric p_size_km
 /selection=stepwise;
run;

Step 1, Effect p_size_km entered:

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied,

Model Fit Statistics						
Criterion	Intercept Only	Intercept and Covariates				
AIC	70,994	59,716				
SC	72,906	63,540				
-2 Log L	68,994	55,716				

Residual Chi-Square Test				
Chi-Square	DF	Pr > ChiSq		
1,0082	1	0,3153		

모형의 선택: 변수선택방법 (R & SAS)

```
> library(MASS)
> stepAIC(logit_m1, direction='both')
...
Call: glm(formula = occurr ~ p_size_km, family = binomial(link = logit),
    data = glider)
```

proc logistic data=nsugar;
 model noccurr = con_metric p_size_km
 /selection=stepwise;
run;

Coefficients: (Intercept) p_size_km -2.52830 0.02173

Degrees of Freedom: 49 Total (i.e. Nul

Null Deviance: 68.99

Residual Deviance: 55.72 AIC:

변수 X_1 (p_size_km) 이 선택됨.

$$\log\left(\frac{\hat{\pi}}{1-\hat{\pi}}\right) = \hat{\beta_0} + \hat{\beta_1}x_1 = -2.528 + 0.022 * x_1$$

		Sum	mar	y of Stepv	vise Selectio	n <mark> </mark>	
	Effe	ct		Number	Score	Wald	
Step	Entered	Removed	DF		Chi-Square		Pr > ChiSq
1	p_size_km		1	.1	12, 1579		0,0005

Analysis of Maximum Likelihood Estimates						
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq	
Intercept	1	-2,5281	0,8202	9, 4999	0,0021	
p_size_km	1	0,0217	0,00689	9, 9352	0,0016	

승산비(R & SAS)

```
> glider <- read.csv('c:/data/reg/sugar_glider_binomial.csv')
> logit_m2 <- glm(occurr ~ p_size_km, family=binomial(link=logit), data=glider)
> exp(coef(logit_m2))
(Intercept) p_size_km
                                                                    Odds Ratio Estimates
 0.07979473 1.02196464
> exp(confint(logit_m2, parm="p_size_km", level=0.95))
                                                                                      95% Wald
                                                                    Point Estimate | Confidence Limits
                                                         Effect
Waiting for profiling to be done...
   2.5 % 97.5 %
                                                                                              1,036
                                                         p_size_km
                                                                             1.022
                                                                                     1.008
1.009424 1.037535
```

결과해석: 구획의 크기가 1km 증가할 때 Sugar Glider가 출현할 승산은 약 1.022배 증가하는 것으로 추정되며, 95% 신뢰수준에서 승산은 1.009~1.038배 사이에서 증가할 것으로 추정됨.

$\pi(x)$ 의 추정

$$\log(\frac{\hat{\pi}(x)}{1 - \hat{\pi}(x)}) = -2.528 + 0.022 \times x$$

$$\hat{\pi}(x) = \frac{\exp(\hat{\beta_0} + \hat{\beta_1}x)}{1 + \exp(\hat{\beta_0} + \hat{\beta_1}x)} = \frac{\exp(-2.528 + 0.022x)}{1 + \exp(-2.528 + 0.022x)}$$

x=150 에서 $\pi(x)$ 추정값 구하기

```
proc logistic data=nsugar;
    model noccurr = p_size_km ;
    output out=lresult p=pred ;
run;
proc print data=lresult;
run;
```

SAS 시스템

pred	_LEVEL_	noccurr	p_size_km	con_metric	occurr	p_no	OBS
0,57828	0	0	130,9	0,65	1	1	1
0,43376	0	1	104, 1	0,61	0	2	2
0,58568	0	1	132,3	0,744	0	3	3
0,91475	0	0	225,6	0,213	1	4	4
0,32631	0	0	83	0,723	1	5	5
0, 18726	0	1	48,8	0,678	0	6	6
0, 23097	0	1	61	0,733	0	7	7
0, 15872	0	0	39,6	0,522	1	8	8
0,84118	0	.0	193,1	0,552	1	9	9
0,70108	0	1	155,6	0,245	0	10	10

정리된 자료의 로지스틱 회귀모형 적합

<구획 크기의 계급구간에서 구획 수, Sugar Glider 출현 구획 수, 표본비율>

p_size_km	구간의 중앙값	출현 구획 수	구획 수	표본비율
≤ 50.0	35.3	3	10	0.30
50.0 ~ 100.0	79.55	3	14	0.21
100.0 ~ 150.0	123.6	6	14	0.43
150.0 ~ 200.0	177.65	9	10	0.90
200.0 <	214.55	2	2	1.00

```
proc print data=sugar_g;
run;
proc logistic data=sugar_g;
  model cases/count = p_size_med;
run;
```

- > glider_g <- read.csv('c:/data/reg/sugar_glider_binomial_g.csv')</pre>
- > head(glider_g)

p_size_med count cases

- 1 35.30 10 3
- 2 79.55 14 3
- 3 123.60 14 6
- 4 177.65 10 9
- 5 214.55 2 2
- > y <- cbind(glider_g\$cases, glider_g\$count-glider_g\$cases)
- > logit_mg <- glm(y~glider_g\$p_size_med,
 family=binomial(link=logit))</pre>

SAS 시스템

OBS	p_size_med	count	cases
- 1	35,3	10	3
2	79,55	14	3
3	123,6	14	6
4	177,65	10	9
5	214,55	2	2

정리된 자료

```
> summary(logit_mg)

Deviance Residuals:

1 2 3 4 5

1.2452 -0.7897 -0.8196 0.9238 0.6694
```

Coefficients:

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 16.6058 on 4 degrees of freedom Residual deviance: 4.1477 on 3 degrees of freedom

AIC: 18.547

Number of Fisher Scoring iterations: 4

$$\log\left(\frac{\hat{\pi}}{1-\hat{\pi}}\right) = \hat{\beta_0} + \hat{\beta_1}x_1 = -2.539 + 0.022 * x_1$$

	Model Fit Statistics								
		Intercept and Covariates							
Criterion	Intercept Only	Log Likelihood	Full Log Likelihood						
AIC	70,994	60,536	18,547						
SC	72,906	64,360	22,371						
-2 Log L	68,994	56,536	14,547						

Test Chi-Square DF Pr >								
1631	Cili Square	DI	ri / Ciliaq					
Likelihood Ratio	12,4581	1	0,0004					
Score	11,4693	1	0,0007					
Wald	9,4792	1	0,0021					

Analysis of Maximum Likelihood Estimates								
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq			
Intercept	1	-2,5392	0,8393	9, 1524	0,0025			
p_size_med	1	0,0218	0,00707	9,4792	0,0021			

Odds Ratio Estimates							
Effect	Point Estimate	95% Wald Confidence Limits					
p_size_med	1,022	1,008	1,036				

로그선형모형

< 고속도로 속도제한여부와 교통사고 건수 >

year	day	limit	у	year	day	limit	у
1961	1	no	9	1962	1	no	9
1961	2	no	11	1962	2	no	20
1961	3	no	9	1962	3	no	15
1961	4	no	20	1962	4	no	14
1961	5	no	31	1962	5	no	30
1961	6	no	26	1962	6	no	23
<u>:</u>	÷	:	E	:	Ē	÷	Ē

- > library(MASS)
- > data(Traffic)
- > head(Traffic, 3)
 year day limit y
- 1 1961 1 no 9
- 2 1961 2 no 11
- 3 1961 3 no 9
- > write.csv(Traffic, file="c:/data/reg/Traffic.csv")

주요관심 내용 : 고속도로의 속도제한이 평균 사고건수에 어떤

분석모형 : $\log(\mu) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_{92} x_{92} + \beta_{93} x_{93}$

영향을 주는가

$$x_1 = \begin{cases} 0 & no \\ 1 & ves \end{cases}$$
 $x_i = \begin{cases} 1 & day = i \\ 0 & \text{led} \end{cases}$, $i = 2, 3, \dots, 92, \ x_{93} = \begin{cases} 0 & vear = 1961 \\ 1 & vear = 1962 \end{cases}$

SAS: 로그선형모형

```
data ntraffic;
  set traffic;
                                                                        x_1 = \begin{cases} 0 & no \\ 1 & yes \end{cases} x_i = \begin{cases} 1 & day = i \\ 0 & \exists \exists \exists \exists i \end{cases}, i = 2, 3, \dots, 92, x_{93} = \begin{cases} 0 & year = 1961 \\ 1 & year = 1962 \end{cases}
   if limit = "no" then nlimit=0;
   else if limit="ye" then nlimit=1;
   if year=1961 then nyear=0;
   else if year=1962 then nyear=1;
   day2=0; day3=0; ...; day91=0; day92=0;
   if day=2 then day2=1;
   else if day=3 then day3=1;
   else if day=92 then day92=\mathbf{1};
Run;
proc genmod data=ntraffic;
      model y = nlimit day2-day92 / dist=poi link=log;
run;
```

로그선형모형 (R & SAS)

			_
<u> </u>	9	it+day, family=poisson(link=log),	da
> summary	(loa m1)	^ ^	
$ \log(\widehat{\mu}) =$	$= \beta_0 + \beta_1 x_1 + \beta_2$	$\hat{\beta}_{2}x_{2} + \dots + \hat{\beta}_{92}x_{92} = 2.20 - 0.30x_{1} + 0.5$	54a
Coefficient	s:		
	Estimate S	td. Error z value Pr(> z)	ļ
(Intercept)		0.23570 9.322 < 2e-16 ***	
limityes	-0.29627	0.03978 -7.448 9.46e-14 ***	
day2	0.54362	0.29633 1.834 0.066584 .	
•••			Ì
		/	

0.31515

0.29862

1.213 0.225077

2.170 0.030004 *

Criterion	DF	Value	Value/DF
Deviance	91	107,6440	1, 1829
Scaled Deviance	91	107,6440	1,1829
Pearson Chi-Square	91	106, 7283	1, 1728
Scaled Pearson X2	91	106, 7283	1,1728
Log Likelihood		8467,6407	
Full Log Likelihood		-498, 7999	
AIC (smaller is better)		1183,5998	
AICC (smaller is better)		1377,8665	
BIC (smaller is better)		1482,5888	

(Dispersion parameter for poisson fa 107.64/91=1.18 로 모형적합

0.38232

0.64803

Null deviance: 625.25 on 183 de

Residual deviance: 107.64 on 91 de

AIC: 1183.6

day91

day92

Number of Fisher Scoring iterations:

	Analysis Of Maximum Likelihood Parameter Estimates										
Parameter	DF	Estimate	Standard Error	Wald 95% Confidence Limits		Wald Chi-Square	Pr > ChiSq				
Intercept	1	2,1972	0,2357	1,7353	2,6592	86,90	<,0001				
nlimit	1	-0, 2963	0,0398	-0,3742	-0,2183	55,48	<,0001				
day2	1	0,5436	0,2963	-0,0372	1,1244	3,37	0,0666				
day3	1	0,2877	0,3118	-0,3234	0,8988	0,85	0,3562				
		- 000		420			222				

2 SPSS를 이용한 일반화선형모형

로지스틱 회귀모형: 이항자료

로지스틱 회귀모형 : 이항자료

반응변수 y=occurr,1=yes,0=no 이므로 이항분포를 가정

로지스틱 회귀모형 :

$$\eta = \log it(\pi) = \log(\frac{\pi}{1-\pi}) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

출력 결과(R & SPSS)

- > logit_m1 <- glm(occurr~p_size_km+con_metric, family=binomial(link=logit), data=glider)
- > summary(logit_m1)

• •

Deviance Residuals:

Min 1Q Median 3Q -1.4969 -0.8829 -0.3884 0.8766

방정식의 변수

		В	S.E.	Wald	자유도	유의확률	Exp(B)
1 단계ª	con_metric	1.632	1.643	.987	1	.321	5.113
	p_size_km	.024	.007	9.973	1	.002	1.024
	상수항	-3.606	1.436	6.303	1	.012	.027

a. 변수가 1: con_metric, p_size_km 단계에 입력되었습니다.

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.606207 1.436391 -2.511 0.01205 *

con_metric 1.631800 1.642758 0.993 0.32055

모형 요약

단계	-2 로그 우도	Cox와 Snell의 R-제곱	Nagelkerke R-제곱
1	54.661 ^a	.249	.333

a. 모수 추정값이 .001보다 작게 변경되어 계산반복수 5어

분류표

,			예측		
관측됨		occu	occurr		
		0	1	분류정확 %	
1 단계	occurr 0	20	7	74.1	
	1	7	16	69.6	
	전체 퍼센트			72.0	

a. 절단값은 .500입니다.

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 68.994 on 49 degrees of freedom Residual deviance: 54.661 on 47 degrees of freedom

AIC: 60.661

Number of Fisher Scoring iterations: 4

모형의 유의성 검정

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 68.994 on 49 degrees of freedom Residual deviance: 54.661 on 47 degrees of freedom

AIC: 60.661

Number of Fisher Scoring iterations: 4

모형의 유의성 검정

$$H_0: \log\left(\frac{\pi}{1-\pi}\right) = \beta_0$$
 vs. $H_1: \log\left(\frac{\pi}{1-\pi}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$

즉,

$$H_0: \beta_1 = 0, \ \beta_2 = 0$$
 vs. $H_1:$ 적어도 하나는 0이 아니다.

p-값 계산

> 1-pchisq(68.994-54.661,2)

[1] 0.0007720201

=> p-값이 매우 작으므로 대립가설의 모형이 유의함을 알 수 있음

모형 계수의 총괄 검정

		카이제곱	자유도	유의확률
1 단계	단계	14.333	2	.001
	불특	14.333	2	.001
	모형	14.333	2	.001

변수선택: (R & SPSS)

- > library(MASS)
- > stepAIC(logit_m1, direction='both')

. .

Call: glm(formula = occurr
binomial(link = logit),
 data = glider)

Coefficients:

(Intercept) p_size_km -2.52830 0.02173

Degrees of Freedom: 49 Tota Null Deviance: 68.99 Residual Deviance: 55.72

변수 X_1 (p_size_km) 이 선택됨

모형 요약

단계	-2 로그 우도	Cox와 Snell의 R-제곱	Nagelkerke R-제곱
1	55.716ª	.233	.312

a. 모수 추정값이 .001보다 작게 변경되어 계산반복수 4에 서 추정을 종료하였습니다.

분류표a

			예측	20	
		occu	rr		
관측됨		0	*18	분류정확 %	
1 단계	occurr 0	21	6	77.8	
	1	6	17	73.9	
	전체 퍼센트			76.0	

a. 절단값은 .500입니다.

종속변수(D):

& occurr

공변량(C):

con_metric p size km

블록(B)1/1

>a*b>

범주형(G).

저장(S).

옵션(O)...

유형(L)...

다음(N)

이부형 로지스틱

on metric

p size km

p no

방정식의 변수

		В	S.E.	Wald	자유도	유의확률	Exp(B)
1 단계ª	p_size_km	.022	.007	9.936	1	.002	1.022
	상수항	-2.528	.820	9.501	1	.002	.080

a. 변수가 1: p_size_km 단계에 입력되었습니다.

승산비(R & SPSS)

결과해석: 구획의 크기가 1km 증가할 때 Sugar Glider:

증가하는 것으로 추정되며, 95% 신뢰수준에서 승산은 $1.009 \sim 1.038$ 배 사이에서 증가할

것으로 추정됨.

EXP(B)에 대한 95% 신뢰구간 В S.E. Wald 자유도 유의확률 하한 상한 Exp(B)1 단계^a p_size_km 022 .007 9.936 002 1.022 1.008 1.036 상수항 -2.528820 9.501 .002 .080

방정식의 변수

a. 변수가 1: p_size_km 단계에 입력되었습니다.

$\pi(x)$ 의 추정

$$\log(\frac{\hat{\pi}(x)}{1 - \hat{\pi}(x)}) = -2.528 + 0.022 \times x$$

$$\hat{\pi}(x) = \frac{\exp(\hat{\beta_0} + \hat{\beta_1}x)}{1 + \exp(\hat{\beta_0} + \hat{\beta_1}x)} = \frac{\exp(-2.528 + 0.022x)}{1 + \exp(-2.528 + 0.022x)}$$

x=150 에서 $\pi(x)$ 추정값 구하기

- > x <- 150
 > predict(logit_m2, list(p_size_km=x),
 - type="response")

0.6749669

로그선형모형

< 고속도로 속도제한여부와 교통사고 건수 >

year	day	limit	у	year	day	limit	у
1961	1	no	9	1962	1	no	9
1961	2	no	11	1962	2	no	20
1961	3	no	9	1962	3	no	15
1961	4	no	20	1962	4	no	14
1961	5	no	31	1962	5	no	30
1961	6	no	26	1962	6	no	23
:	:	÷	ŧ	÷	:	:	Ē

- > library(MASS)
- > data(Traffic)
- > head(Traffic, 3)
 year day limit y
- 1 1961 1 no 9
- 2 1961 2 no 11
- 3 1961 3 no 9
- > write.csv(Traffic, file="c:/data/reg/Traffic.csv")

주요관심 내용 : 고속도로의 속도제한이 평균 사고건수에 어떤

영향을 주는가

분석모형 : $\log(\mu) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_{92} x_{92} + \beta_{93} x_{93}$

 $x_1 = \begin{cases} 0 & no \\ 1 & ves \end{cases}$ $x_i = \begin{cases} 1 & day = i \\ 0 & \text{left} \end{cases}$, $i = 2, 3, \dots, 92, x_{93} = \begin{cases} 0 & year = 1961 \\ 1 & vear = 1962 \end{cases}$

SPSS 절차: 로그선형모형

	_	_		_	
I	분석(<u>A</u>)	그래프(<u>G</u>)	유틸리티(<u>U</u>)	창(<u>W</u>)	도움말(<u>H</u>)
	보고시	H(P)	F	H	
	기술통	통계량 <u>(E</u>)	Þ		
	사용지	마정의 표(<u>B</u>)	F		
_	평균년	네교(<u>M</u>)	•	5	
	일반선	현모형(<u>G</u>)	F		
1	일반호	↑ 선형 모형(<u>Z</u>)	•	(R) 일반화	화 선형 모형(<u>G</u>)
	혼합	고형(<u>X</u>)	Þ.	<u>로</u> 일반회	화 추정 방정식(<u>E</u>)
į,	상관분	본석(<u>C</u>)	, , , , ,		
	회귀분	본석(<u>R</u>)) b		

SPSS 절차: 로그선형모형

로그선형모형 (R & SAS)

- > log m1 <- glm(y~limit+day, family=poisson(link=log), data=Traffic)
- > summary(log_m1)

$$\log(\hat{\mu}) = \hat{\beta_0} + \hat{\beta_1}x_1 + \hat{\beta_2}x_2 + \dots + \hat{\beta_{92}}x_{92} = 2.20 - 0.30x_1 + 0.54x_2 + \dots + 0.65x_{92}$$

Coefficients:

Estimate Std. Error z value
$$Pr(>|z|)$$

0.23570 9.322 < 2e-16 ***(Intercept) 2.19722 -0.29627 0.03978 -7.448 9.46e-14 ***

limitves day2

0.54362

0.38232

0.64803

0.31515

0.29633 1.834 0.066584 .

1.213 0.225077

0.29862

2.170 0.030004 *

day92

day91

(Dispersion parameter for poisson family

107.64/91=1.18 로 모형적합

Null deviance: 625.25 on 183 degree Residual deviance: 107.64 on 91 degree

AIC: 1183.6

Number of Fisher Scoring iterations: 4

적합도^a

	괎	자유도	값/자유도
편차	107.644	91	1.183
척도 편차	107.644	91	
Pearson 카이제곱	106.728	91	1.173
척도 Pearson 카이제곱	106.728	91	
로그 우도	-498.800		
Akaike 정보 기준(AIC)	1183.600		
무한 표본 수정된 AIC (AICC)	1377.866		
베이지안 정보 기준(BIC)	1482.589		
일관된 AIC(CAIC)	1575.589		

총괄 검정*

우도비 카이제 곱	자유도	유의확률
517.601	92	.000

종속변수: v

모형: (수정된 모형), limit, day

합한 모형을 절편 전용 모형과 비교 모수 추정값

ν.				신뢰구간	가설검정		
모수	В	표준오차	하한	상한	Wald 카이제 곱 자유도		유의확률
(수정된 모형)	2.549	.1840	2.188	2.910	191.923	1	.000
[limit=no]	.296	.0398	.218	.374	55.475	1	.000
[limit=yes]	0 a	23	100	a	2	£9.	18
[day=1]	648	.2986	-1.233	063	4.709	1	.030
[day=2]	104	.2567	607	.399	.165	1	.684
[day=3]	360	.2744	898	.177	1.725	1	.189

15강. 총정리