Riserva funzionale: Capacità di aumentare la funzonalità di un organo o sistema in risposta alle aumentate richieste.

Nella polmonite si accumula essudato negli spazi respiratori, riducendo la riserva respiratoria.

In condizioni basali si parla di omeostasi.

In condizioni di stress si parla di compenso.

Nel caso in cui il compenso non sia sufficiente si parla allora di **scompenso.**

Non si capisce una cippa di come parlano i Nuova Yorkesi.

Condizioni di stress = Condizioni di sforzo.

Il verificarsi di condizioni di stress provoca l'attivazione di meccanismi di controllo, cioè **meccanismi di compenso.**

Circuiti stimolo-risposta (feedback negativo):

- Lo stimolo attiva un sistema di ricezione (percepisce che c'è stato un cambiamento).
- Centri di integrazione valutano l'intensità dello stimolo ed elaborano una risposta.
- Centri effettori provvedono a correggere le modificazioni.

Meccanismi di compenso:

- Regolazione delle variabili fisiologiche.
- Degradazione o sintesi di proteine.
- Utilizzo di riserve metaboliche.
- Produzione di energia.

Segnali a retroazione negativa:

- Aumento dell CO₂ stimola appositi recettori.
- I centri di controllo ricevono il segnale e si attivano.
- Aumento della frequenza respiratoria.
- Abbassamento della concentrazione di CO₂.
- Fine del meccanismo di compenso e ritorno alle condizioni di riposo.

Esempio: circuiti per la regolazione della glicemia.

Oltre un certo livello di stress la risposta compensatoria diventa insufficiente e gli effetti negativi acquistano importanza clinica.

La fisiopatologia studia come i processi patologici alterano le funzioni fisiologiche e causano le malattie.

Animalie di funzione (compensate/scompensate) → Malattie.

Fisiopatologia del Cuore

Malformazioni congenite:

Pervietà del dotto arterioso: sangue dall'aorta va in arteria polmonare, ipertensione polmonare, disturbi nell'ossigenazione del sangue, ipertrofia, scompenso cardiaco a volte già in età infantile.

Pervietà del forame ovale (difetti del setto interatriale): Passaggio di sangue dall'atrio sinistro all'atrio destro, sovraccarico del cuore destro e del circolo polmonare, scompenso cardiaco destro in età giovanile-adulta.

Difetti del setto interariale: Deflusso di sangue dal ventricolo sinistro al destro, quadro vicino a quanto detto per il dotto arterioso.

Stenosi della valvola polmonare: sovraccarico di lavoro per il ventricolo destro, ipertrofia precoce, scompenso cardiaco destro.

Stenosi della valvola aortica: ipertrofia del ventricolo sinistro, può rimanere asintomatica fino all'età adulta, sintomi: ipotensione cronica, lipotimia.

Coartazione dell'aorta: Calibro dell'aorta ridotto a livello dell'inserzione del legamento arterioso, aumento di pressione nelle srterie vertebrali e carotidee, aumentato rischio di ictus, il tratto ristretto va frequentemente incontro a infezione (endoarterite).

Trasposizione dei grossi vasi: Difetti di rotazione degli abbozzi embrionali, l'arteria polmonare è collegata al ventricolo sinistro e viceversa, quasi mai compatibile con la vita, possono esistere altre anomalie che rendono possibile un minimo di ossigenazione che rende possibile la sopravvivenza fino all'infanzia.

Disturbi del ritmo elettrico:

Tachicardia parossistica: (a momenti, non continua) accelerazioni del ritmo improvvisi, variante atriale ovvero quando origina nel nodo senoatriale o nell'atriodestro non ha significato patologico, può derivare da stati ansiosi. Se invece è ventricolare segnala patologia ischemica, può preludere fibrillazione ventricolare.

Fibrillazione atriale: Impulsi elettrici troppo frequenti che non consentono contrazioni vere e proprie, indice di situazioni di sovraccarico atriale (stenosi valvolare), cardiopatia ischemica, ipertensione arteriosa, grave ipertiroidismo.

Flutter atriale: Unico sito ectopico di origine degli impulsi nella parete atriale, le cause sono le stesse della fibrillazione. Spesso blocco parziale della conduzione ai ventricoli che battono a ritmi molto inferiori.

Fibrillazione ventricolare: Condizione analoga alla fibrillazione atriale, molto più grave e pericolosa, nei casi più gravi di infarto del miocardio, precede di poco la morte.

Blocchi di conduzione parziali o totali: Difetto nella conduzione di impulsi elettrici dagli atri ai ventricoli lungo le branche del fascio di His, può consistere in un rallentamento della conduzione, se interessa una sola delle due branche può causare asimmetrie dela contrazione, il blocco totale separa la contrazione di atri e ventricoli, questi ultimi si contraggono all loro ritmo naturale di circa 40 bpm.

Disfunzioni valvolari:

Stenosi aortica: Irrigidimento dei lembi valvolari in seguito spesso a processi infiammatori prolngati oppure di orgine congenita. Spesso si accompagna all'insufficienza.

- Ipertrofia dell'atrio sinistro.
- Aumento della pressione atriale sinistra.
- Aumento della pressione nel circolo polmonare.
- Aumento di pressione nel ventricolo destro.
- Ipertensione del ventricolo destro.

Insufficienza aortica: vedi slide.

Stenosi mitralica:

- Aumento della pressione nell'atrio sinistro.
- Aumento della pressione nel circolo polmonare.
- Aumento della pressione nel ventricolo destro.
- Ipertrofia del ventricolo destro.

Insufficienza mitralica:

- Rigurgito nell'atrio sinistro.
- Aumento di pressione in atrio sinistro.
- Ipertrofia dell'atrio sinistro.
- Se si scompensa andiamo anche nella stenosi quindi ipertrofia sinistra.

Patologia Ischemica:

Infarto in realtà è una necrosi coagulativa.

Ischemia = insufficiente apporto di sangue, ossigeno e nutrienti rispetto alle richieste metaboliche (in questo caso del miocardio).

Angina pectoris: Dolore causato dalle sostanze fuoriuscite dai primi miocardiociti a morire in situazione di ischemia.

Aumento di richiesta:

- Sforzi fisici.
- Ipertensione.
- Disfunzioni valvolari.
- Ipertrofia.
- Tutto quello che aumenta lo sforzo cardiaco.

Ischemia:

- Aterosclerosi.
- Stenosi.
- Trombosi.
- Embolie.

Scompenso cardiaco:

Differenza tra insufficienza e scompenso minima, principalmente dipende dalla gravità.

Scompenso cardiaco acuto:

Danno cardiaco \rightarrow diminuizione della massa cotnrattile \rightarrow diminuizione della gittata cardiaca \rightarrow attivaizone del sistema simpatico \rightarrow aumento della frequenza, vasocostrizione \rightarrow aumento della pressione \rightarrow mantenimento della perfusione degli organi vitali.

Aumento della pressione → Aumento della pressione nel circolo polmonare → trasudazione di liuidi negli spazi alveolari → riduzione degli spazi respiratori → dispnea, ipossia, cianosi.

L'edema agli arti inferiori si presenta sia con lo scompenso sinistro che con lo scompenso destro.

La fibrosi polmonare generalmente porta a morte entro 5 anni.

Lo scompenso sinistro è più comune ed in al più 10 anni aumenta la pressione nei polmoni e si scompensa anche il cuore destro (scompenso congestizio).

Spostando il tronco in avanti i muscoli trazionano la cassa toracica allargandola e aumentando leggermente lo spazio respiratorio. I pazienti che hanno difficoltà respiratorie tendono ad assumere posizione seduta inclinata in avanti.

L'ansia aumenta il ritmo respiratorio, se si è costretti a respirare velocemente per problemi respiratori aumenta l'ansia.

Altri sintomi: ridotta tolleranza allo sforzo fisico, gonfiore alle caviglie, aumento della pressione giugulare.

Sintomo classificato da poco: **bendopnea** difficolta nella respirazione in posizione inclinata in avanti (es. legandosi le scarpe).

Scompenso cronico: Morte ischemica progressiva dei miocardiociti (angina pectoris, dolore ricorrente al petto causato da ischemia del miocardio). Si aggrava progressivamente per ipossia ai miocardiociti. Può sfociare nell'infarto del miocardio. Può essere causata dagli effetti dannosi del meccanismo di compenso (stimolazione del sistema simpatico che produce catecolamine ed aumenta ulteriormente il ritmo e forza di contrazione del cuore).

Sistema adrenergico: + contrattilità, ipertrofia miocardica, Effetti tossici sui miocardiociti.

Angiotensina II: +ipertrofia miocardica. Alterazione dell'espressione genica delle proteine contrattili.

Citochine: +ipertrofia miocardica, Rimodellamento della matrice extracellulare con dilatazione. La parete perde miocardiociti e si sostituisce con matrice connettivale più lassa, il cuore quindi si riempie di più e presenta contrazioni "sballate".

Edemi cardiaci:

Abbassamento della gittata cardiaca riduce la perfusione degli organi, nel rene ciò causa attivazione dell'apparato iuxtaglomerulare con aumento di angiotensina e di aldosterone, da ciò deriva ritenzione di sodio e di acqua con aumento della volemia e della trasudazione dai vasi, l'effetto è l'**edema.** Allo stesso tempo l'aumento della pressione venosa (causato anch'esso dall'insufficienza cardiaca) aumenta la trasudazione dai capillari contribuendo all'edema a sua volta.

Segno caratteristico dell'edema da trasudazione è la lentezza nel ritorno alla forma normale in seguito a pressione con le dita (pitting).

Fisiopatologia Generale del Rene:

(introduzione sulla struttura del nefrone)

L'endotelio dei capillari peritubulari prossimali produce **eritropoietina(EPO)** (insieme alla renina e alla vitamina D3 costituiscono la secrezione endocrina del rene).

- Glomerulo: filtrazione.
- Apparato iuxtaglomerulare: renina.
- Endotelio peritubulare prossimale: EPO.
- Tubulo prossimale: Riassorbe acqua, calcio, potassio, fosfato, bicarbonato, glucosio, peptidi, aminoacidi. Elimina idrogenioni.
- Ansa di Henle: Tratto discendente: riassorbimento di acqua. Tratto ascendente: riassorbimento di sodio e altri elettroliti.
- Tubulo contorto distale: Riassorbimento sodio e acqua.
- Dotto collettore: come tubulo distale.

Funzioni del rene:

- Regolazione elettroliti.
- Regolazione volemia.
- Regolazione pressione arteriosa (volemia e sistema renina-angiotensina-aldosterone).
- Eliminazione urea, acido urico e farmaci.
- Secrezione ormoni (EPO, renina, vitamina D3).

Per capire le patologie è utile separare le funzioni di glomerulo e tubuli.

Glomerulo: filtra acqua e piccole molecole, no proteine. Apparato iuxtaglomerulare lì vicino produce renina.

Tubuli: riassorbono metaboliti (glucosio, glutatione), elimina acidi (H+), riassorbe acqua ed elettroliti.

Meccanismi patologici divisi in (solo qui, in clinica se ne fottono, però per fare le cose bene vanno capite bene):

- Glomerulopatie: interessano principalmente il glomerulo. Il punto critico per le glomerulopatie è la membrana di filtrazione.
- Tubulopatie.

Danno glomerulare:

Meccanismi immuno-mediati:

- Autoanticorpi contro le proteine della membrana basale glomerulare (autoantigeni + autoanticorpi = immunocomplessi).
- Antigeni da agente infettivo che si bloccano nella membrana di filtrazione e richiamano anticorpi. (Di nuovo intasamento da immunocomplessi).
- Antigeni solubili legati ad anticorpi (immunocomplessi circolanti) che rimangono bloccati nella membrana.

Gli immunocomplessi attivano il complemento e poi i neutrofili, attivazione del processo infiammatorio. I neutrofili attivati degranulano e fanno un casino grosso: la glomerulopatia.

I neutrofili nel glomerulo trovano l'endotelio attivato e degranulano all'interno del capillare danneggiando l'endotelio (danno micro-angiopatico). Danneggiando l'endotelio viene a mancare il suo effetto anticoagulante, le piastrine in mancanza di prostacicline e di NO si aggregano e formano microtrombosi nel glomerulo (i glomeruli si "tappano").

Sintomi (sindrome nefritica):

- Oliguria (da cui deriva iperazotemia).
- Ipertensione.
- Edema periorbitale (nelle fasi iniziali della nefropatia l'edema si presenta prima nei tessuti più lassi).

Se la situazione non si risolve la membrana basale si deteriora e si "sfonda".

Sintomi (sindrome nefrosica):

- Proteinuria (albuminuria).
- Ipoproteinemia.
- Edema generalizzato (la diminuizione di proteina fa diminuire la pressione oncotica nei capillari).
- Ipogammaglobulinemia → infezioni frequenti.
- Iperlipoproteinemia (causata dalla perdita di LDL, il fegato si accorge della loro diminuizione e ne sintetizza in eccesso), aumento di colesterolo e rischio di aterosclerosi.
- Perdita di antitrombina III → Ipercoagulabilità, causa problemi soprattutto in presenza di placche aterosclerotiche perché facilitano la formazione di trombi.
- Ipovolemia (dovuta a ridotta pressione osmotica del plasma), riduzione dell'afflusso ematico renale, attivazione di renina-aldosterone come detto per gli edemi cardiaci. Peggioramento dell'edema. (Effetto detto spirale dell'edema)

(Suffissi: -ite, situazione acuta spesso risolvibile. -osi, situazione cronica grave, in questo caso spesso richiede trapianto).

Tubulopatie:

- No edemi.
- No ipertensione.
- Poliuria.
- Acidosi metabolica.

Le cause delle tubulopatie sono di due tipologie: ischemiche o tossiche.

Tubulopatie tossiche: Causate ad esempio da metalli pesanti che causano necrosi uniforme del tubulo prossimale.

Tubulopatie ischemiche: Colpiscono a tratti i tubuli, sono causate da insufficiente apporto di sangue dai capillari peritubulari, può succedere per ostruzione dell'arteria renale, ad esempio per trombosi indotte da placche aterosclerotiche oppure per caduta brusca e imponente della pressione arteriosa, in questi casi (shock) il rene rimane senza sangue perché la priorita della perfusione sono gli organi vitali.

Insufficienza renale:

Alterazione principale: uremia.

Si può avere insufficienza acuta o cronica, rispettivamente da nefrite o da nefrosi (per quanto riguarda le cause renali), spesso si presentano sintomatologie miste.

Cause pre-renali: Ipovolemia, insufficienza cardiaca, shock, ischemia renale.

Cause post-renali: Ostruzione delle vie urinarie.

Effetti patologi dell'uremia: vedi slide.

Ipocalcemia: dovuta al fatto che l'assorbimento intestinale di calcio dipende dalla vitamina D3, la cui sintesi dipende dal rene.

Fisiopatologia della Pressione Arteriosa:

La pressione arteriosa dipende linearmente dalla gittata e dalle resistenze.

Ipertensione essenziale:

- Fattori genetici.
- Obesità.
- Dieta.
- Stress.
- Dieta ipersodica/ipercalorica.

Ipertensione secondaria:

- Stenosi dell'arteria renale.
- Ipertiroidismo.
- Patologie surrenaliche.

Effetti:

- Sovraccarico del ventricolo sinistro → ipertrofia cardiaca → ischemia relativa → infarto del miocardio.
- Arteriolosclerosi → emorragie o ictus, ischemia renale cronica (nefrosclerosi), retinopatia ipertensiva.

SHOCK:

Insufficienza del circolo con grave ipotensione.

Perfusione insufficiente alla ossigenazione e nutrizione.

Può provocare deterioramento generalizzato delle funzioni cellulari.

Lo shock può essere cardiogeno o ipovolemico.

Shock cardiogeno:

- Necrosi ischemica.
- Gravi aritmie (es. fibrillazione).
- Tamponamento (emorragia nel sacco pericardico, ad esempio da trauma oppure da problemi nel drenaggio linfatico dei linfonodi mediastinici, che limita l'espansione del cuore).

Shock ipovolemico:

- Assoluto (si perde volume):
 - Emorragia.
 - Disidratazione.

- Diarree profuse.
- Ustioni estere.
- Ascite.

- Relativo (il volume rimane ma si dilatano troppo i vasi periferici):

- Settico: batteriemia.
- Anafilattico: Reazioni di ipersnsibilità di tipo I.
- Neurogeno: Lesioni cerebrali o midollari.

Fisiopatologia del Sistema Respiratorio

Si possono avere ostacoli al **riempimento** degli spazi respiratori (colpita la riserva inspiratoria ed il volume corrente) oppure allo **svuotamento** degli stessi (colpiti la riserva espiratoria ed il volume residuo).

- Patologie che ostacolano il **riempimento:** patologie **Restrittive** (es. polmoniti, broncopolmoniti, ARDS, polmoniti interstiziali, fibrosi).
- Patologie che ostacolano lo svuotamento: patologie Ostruttive (es. asma, enfisemi).

Patologie Restrittive:

Fibrosi Polmonare: invalidante, inesorabile, prognosi generalmente infausta.

Malattie polmonari interstiziali croniche che evolvono in FIBROSI:

- Polmonite interstiziale idiopatica.
- Malattie del tessuto connettivo (malattia reumatoide e sclerodermia).
- Malattie indotte da farmaci (agenti chemioterapidi ed antineoplastici).
- Polmonite atipica (clamydia, micoplasmi, virus).
- Pneumoconiosi (inalazione di polveri minerali).
- Danno da radiazioni.
- Sarcoidosi.
- Alveoliti allergiche estrinseche (reazioni immuni a polveri organiche inalate).

Alla radiogravia i polmoni presentano dei reticoli più chiari costituiti da i setti fibrosi inspessiti.

ARDS

Acute Respiratory Distress Syndrome

Causata da forte infiammazione del tessuto polmonare, i vasi si dilatano e fanno uscire un essudato ricco di fibrinogeno ed esso coagula nell'interstizio. Le cellule alveolari di tipo I vanno in necrosi. I macrofagi si attivano a distruggere la coagulazione e producono tessuto fibroso.

Con l'inspessimento delle membrane alveolo-capillari rallenta la diffusione dell'ossigeno quindi il sangue nei capillari diventa saturato più tardi, in prossimità della fine del capillare stesso.

Quando si ha l'edema interstiziale si può avere morte in fase acuta (70%) oppure fibrosi interstiziale che in alcuni casi porta a debole riduzione della funzionalità polmonare, ma più spesso la compromissione è importante e porta a decesso ugualmente.

Elementi che possono condurre ad ARDS:

- Aspirazione del contenuto gastrico.
- Tossicità da ossigeno (tende a produrre ROS).
- Inalazione di gas tossici.

- Fumo, Cloro.
- Polmonite batterica o virale.
- Reazioni avverse a farmaci.
- Danno da radiazioni.
- Veleni (paraquat).

Danno secondario che può portare ad ARDS:

- Shock traumatico.
- Batteriemia, setticemia.
- Ustione estese.
- Trasfusioni multiple.
- Embolismo gassoso.
- Pancreatite acuta.
- Coagulazione intravascolare disseminata.

Patologie Ostruttive:

Asma

Elementi:

- Contrazione della componente muscolare liscia del bronco.
- Inspessimento della tonaca mucosa del bronco.
- Aumento della secrezione mucosa.
- Essudazione di plasma nella sottomucosa (aumento di permeabilità dei vasi).
- Infiltrazione della mucosa da parte di eosinofili, mastociti, cellule linfoidi, macrofagi.

Molte volte scatenata da meccanismi immunopatologici (allergie). Spesso si verifica in soggetti che presentano iper-reattività bronchiale.

Grande importanza ha l'aspetto ansioso, sia come conseguenza della crisi ma può anche esserne la causa scatenante.

L'espettorato contiene cristalli di Charcot-Leyden (granuli degli eosinofili) e spirali di Curschmann (tappi di muco delle piccole vie respiratorie).

Enfisema

Spesso causata da un deficit di alfa-1-antitripsina, che non riesce ad inibire l'elastasi la quale degrada l'impalcatura di fibre elastiche dei setti interalveolari. Aumenta la compliance polmonare e si riduce il ritorno elastico aumentando lo sforzo in espirazione, si riduce inoltre la superficie respiratoria.

Peggiorata da cause come il fumo che producono irritazione cronica e inducono i macrofagi a produrre elastasi.

Dispnea (in realtà è un sintomo):

Causata da iperattivazione dei centri respiratori indoota dai chemocettori che segnalano mancanza di ossigeno ed eccesso di anidride carbonica (ipossia). La carenza di ossigeno nel sangue può essere causata da riduzione degli scambi respiratori, gravi anemie, insufficienza ventricolare sinistra (ristagno nel circolo polmonare). Può essere causato anche da psicosi.

Equilibrio Ventilazione/Perfusione:

Ventilazione bloccata, perfusione normale \rightarrow ipossia (ostruzione delle vie aeree, enfisema, atelettasie, malattie della parete toracica).

Ventilazione normale, prefusione bloccata → ipossiemia (embolia polmonare).

Perfusione senza ventilazione: shunt (passaggio di sangue senza scambi gassosi).

Ventilazione senza perfusione: spazio morto.

Fibrosi Polmonare Idiopatica

Il polmone perde gradualmente gli spazi respiratori e si "epatizza" (inizia a somigliare al fegato).

Si ha proliferazione dei fibrociti, transizione epitelio-mesenchimale (segno di patologia neoplastica), alterazioni a carico dei linfociti T regolatori.

Fibrosi cistica

Dovuta a mutazioni a carico della proteina canale CFTR che non fa uscire anione cloruro, si produce così muco polmonare molto viscoso che ristagna con conseguente infiammazione, infezioni ricorrenti, edema, broncospasmo, polmoniti, broncopolmoniti, insufficienza respiratoria, sovraccarico del cuore destro, metaplasia squamocellulare, ascessi, fibrosi ed infine morte.

Inizialmente considerata una malattia polmonare adesso si sono trovati coinvolgimenti di molti altri organi come intestino, pancreas esocrino e poi endocrino e ghiandole sudoripare.

Siamo un paese di fessi che non paga la ricerca.

Però siamo più intelligienti dei francesi e di tanti tedeschi.

I governi non capiscono una cippa indipendentemente dallo schieramento politico.

All'estero si mangia male.