Linear classifiers

Gosia Migut

Admin stuff

- Feedback (thank you, also student panel!)
 - I'm staying!
 - 2nd year bachelor CSE course
 - Digital practice exam in week 5
 - No labs answers, TA's available
 - More examples with the formulas

- Lab week 4 more challenging!
 - Includes material from Tuesday and Friday lecture
 - Notation corresponds with the reading material

I "owe" you

- Will be fixed this week:
 - Pseudo code Parzen width parameter optimization
 - Solution last exercise Naive Bayes

Machine Learning overview

open event

Ahold TuDelft ICAI YES!DELF

Pieter Abbeel
Deep Learning to Learn

Generative vs discriminative models

- A **generative** model explicitly models the joint probability distribution p(x|y) and then uses Bayes rule to compute posterior probabilities p(y|x)
 - Parametric density estimation: eg. Nearest mean, LDA, QDA
 - Non-parametric density estimation: eg. k-nn, Parzen, Naive Bayes
- A **discriminative** model directly models p(y|x) from the training examples.
 - Linear: eg. logistic regression, svm
 - Non-linear: eg. decision trees, multi-layer perceptron

Learning objectives of this lecture

- After this lecture you will be able to explain:
 - what the general idea of linear classification is
 - what $w^T x$ means
 - What a cost function is
 - the gradient descent algorithm
 - how to optimize a cost function using gradient descent
 - what the difference between gradient descent and stochastic gradient descent is.

Reading of this week

- CS229 Lecture notes by Andrew Ng (Standford University):
 - Supervised learning p.1-2
 - Part I Linear regression p. 3-4
 - 1. LMS algorithm p. 4-7
 - 3. Probabilistic interpretation p. 11-13
 - Part II Classification and logistic regression p. 16-19

http://cs229.stanford.edu/notes/cs229-notes1.pd

Lab of week 4 is consistent with the notation of the reading

Linear classifiers

Note on the notation

- Parameters notation
 - In the lecture we use w
 - In the reading and lab θ is used

Linear classifier

- Linear classifer has a linear decision boundary.
- Decision boundary of a linear classifier for 2 dimensions is a line:

$$w_1 x_1 + w_2 x_2 + w_0 = 0$$

- A hyperplane is a generalization of a straight line to > 2 dimensions.
- A hyperplane contains all the points in a d dimensional space satisfying the following equation

$$w^T x + w_0 = 0$$

Linear classifier: terminology

$$h(x) = w^T x + w_0$$

- The slope of the hyperplane is determined by the **parameter** (weight) vector $\mathbf{w} = (w_1, ..., w_d)$.
- The location (intercept) is determined by **bias** w_0 .
- The function of the input h(x) is a linear combination of the parameters w.

Linear classifier

Given the linear classifier:

$$h(x) = w^T x + w_0$$

• Classify x to
$$\begin{cases} y_1 & \text{if } w^T x + w_0 \ge 0 \\ y_0 & \text{if } w^T x + w_0 < 0 \end{cases}$$

What does $w^T x$ mean?

• Assume I have a 2-dimensional w:

What does $w^T x + w_0$ mean?

Incorporate the bias term

Quite often you see

$$h(x) = w^T x = 0$$

Instead of

$$h(x) = w^{T}x + w_{0} = 0$$

$$h(x) = w_{1}x_{1} + w_{2}x_{2} + \dots + w_{d}x_{d} + w_{0}$$

No problem if we redefine the feature vector:

$$\tilde{x} = \begin{bmatrix} x \\ 1 \end{bmatrix} \implies x_0 = 1$$

• $h(x) = w_0 x_0 + w_1 x_1 + w_2 x_2 + ... + w_d x_d = \sum_{i=0}^d x_i w_i = w^T x$

Linear classifier

- Classifier is a linear function of the features
- The classification depends if the weighted sum of the features is above or below 0

Linear classifier

 The goal of the learning process is to come up with a "good" weight vector w

 The learning process will use examples to guide the search of a "good" w

 Different notions of "goodness" exist, which yield different learning algorithms

Define a "goodness"/error measure

- Cost function
 - Measure of performance => single real number
 - Should be optimized
 - Yields different learning algorithms
 - Eg. Log-likelihood (Naive Bayes)

Cost function

Consider a regression problem...

Linear Regression?

I covered that last year.

Wake me up when we get to Support Vector Machines!

Noah Mackey

Univariate linear regression

- Training data: observations paired with outcomes (real number)
- Observations have features (predictors, typically also real numbers)
- The model is a regression line $y = w_1x + w_0$ which best fits the observations:
 - w_1 is the slope
 - w_o is the intercept
 - This model has two parameters (or weigths)
 - One feature = x
 - Example:
 - x = size of property
 - y= price of property

Linear regression

Multivariate linear regression

- More generally $y = w_0 + \sum_{i=0}^d w_i x_i$, where
 - y is outcome
 - $-w_0$ is intercept
 - $-x_1, \dots, x_d$ is feature vector and
 - $-w_1, ..., w_d$ parameter/weight vector
- Get rid of bias: $\sum_{i=0}^{d} x_i w_i = w^T x$

Cost function for linear regression

Minimize sum squared error over N training examples

Cost function intuition

- Hypothesis: $h(w) = w_1x_1 + w_0$
- Parameters: w_0 and w_1
- Cost function: $J(w_0, w_1) = \frac{1}{2n} \sum_{i=1}^{n} (h(x)^{(i)} y^{(i)})^2$
- Goal: minimize $J(w_0, w_1)$

Cost function intuition

• Cost function $J(w_1)$ against w_1

Cost function optimization

Solution: Set the derivative to 0, and solve:

$$\frac{\partial J(w)}{\partial w} = 0$$

(typically hard/impossible to do)

- Solution: Follow the derivatives (gradient) until you hit a (local) minimum.
 - What is gradient descent?
 - What is stochastic gradient descent?

Gradient descent

Gradient descent algorithm

- Goal: minimize $J(w_0, w_1)$
- Outline:
 - Start with some w_0, w_1 (eg. $w_0 = 5, w_1 = 0.167$)
 - Keep changing w_0, w_1 to reduce $J(w_0, w_1)$
- Repeat untill convergence

$$w_j := w_j - \alpha \frac{\partial J(w_0, w_1)}{\partial w_j}$$

What does it all mean?

Gradient vector

$$w_j := w_j - \alpha \frac{\partial J(w_0, w_1)}{\partial w_j}$$

 Gradient vector has as coordinates the partial derivatives of a function

α is learning rate =
 speed of descent

Learning rate

$$w_j := w_j - \alpha \frac{\partial J(w)}{\partial w_j}$$

- If α is too small gradient descent can be slow
- If α is too large, gradient descent can overshoot the minimum (it may fail to converge)

h(x) (for fixed w_0 , w_1 this is a function of x)

 $J(w_0, w_1)$ (function of the parameters w_0, w_1)

h(x)(for fixed w_0 , w_1 this is a function of x)

 $J(w_0, w_1)$ (function of the parameters w_0, w_1)

h(x) (for fixed w_0 , w_1 this is a function of x)

 $J(w_0, w_1)$ (function of the parameters w_0, w_1)

2000

h(x) (for fixed w_0 , w_1 this is a function of x)

 $J(w_0, w_1)$ (function of the parameters w_0, w_1)

2000

h(x) (for fixed w_0 , w_1 this is a function of x)

 $J(w_0, w_1)$ (function of the parameters w_0, w_1)

h(x) (for fixed w_0 , w_1 this is a function of x)

 $J(w_0, w_1)$ (function of the parameters w_0, w_1)

h(x) (for fixed w_0 , w_1 this is a function of x)

 $J(w_0, w_1)$ (function of the parameters w_0, w_1)

h(x) (for fixed w_0 , w_1 this is a function of x)

 $J(w_0, w_1)$ (function of the parameters w_0, w_1)

h(x) (for fixed w_0 , w_1 this is a function of x)

 $J(w_0, w_1)$ (function of the parameters w_0, w_1)

Gradient descent for univariate linear regression

- Hypothesis: $h(w) = w_1x_1 + w_0$
- Parameters: w_0 and w_1
- Cost function: $J(w_0, w_1) = \frac{1}{2n} \sum_{i=1}^{n} (h(x)^{(i)} y^{(i)})^2$
- Goal: minimize $J(w_0, w_1)$

Gradient descent for univariate linear regression

•
$$w_0 := w_0 - \alpha \frac{\partial (\frac{1}{2n} \sum_{i=1} ((w_1 x_1 + w_0)^{(i)} - y^{(i)})^2)}{\partial w_0}$$

•
$$w_0 := w_0 - \alpha \frac{1}{n} \sum_{i=1} ((w_1 x_1 + w_0)^{(i)} - y^{(i)})$$

•
$$w_1 := w_1 - \alpha \frac{\partial (\frac{1}{2n} \sum_{i=1} ((w_1 x_1 + w_0)^{(i)} - y^{(i)})^2)}{\partial w_1}$$

•
$$w_1 := w_1 - \alpha \frac{1}{n} \sum_{i=1} ((w_1 x_1 + w_0)^{(i)} - y^{(i)}) x_1^{(i)}$$

General idea of gradient descent

- A gradient is a slope of a function
- That is, a set of partial derivatives, one for each dimension (parameter)

$$w_j := w_j - \alpha \frac{\partial J(w)}{\partial w_j}$$

- By following the gradient of a function we can descend to the minimum
- α is a learning rate and controls the speed of descent

Stochastic gradient descent

- We could compute the gradient of cost function for the full dataset before each update
- Instead
 - Compute the gradient of the cost function for a single example
 - Update the weight
 - Move on to the next example

Logistic regression

Logistic regression: a taste

- So that you can start with the lab
- More details on Friday

Logistic regression

• Let's change the form of linear hypotheses $h(x) = w^T x$ to satisfy $0 \le h(x) \le 1$

$$g(z) = \frac{1}{1 + e^{-z}}$$

•
$$h(x) = g(w^T x)$$

Logistic regression properties

$$h(x) = \frac{1}{1 + e^{(-w^T x)}}$$

- h(x) will give us the probability that our output is 1
- $g(z) \rightarrow 1 \ as \ z \rightarrow \infty$
- $g(z) \rightarrow 0 \ as \ z \rightarrow -\infty$
- Why are these properties convinient to model a probability?

On Friday

- More on Logistic regression and it's cost function
- Example how to calculate 1 step of gradient descent for logistic regression
- Support Vector Machine and it's cost function
- Multi-class classification
- Bias vs. variance

