

SF1684 Algebra and geometry Exam Monday, October 19, 2020

Time: 08:00-11:00

Help in any form (such as books/notes/computers/person etc.) is NOT allowed

Examiner: Danijela Damjanović

This exam consists of six problems, each worth 6 points.

Part A comprises the first two problems. The bonus points from the seminars will be automatically added to the total score of **problem 1**, which however cannot exceed 6 points.

Problems 3 and 4 constitute part B, and problems 5 and 6 part C. The latter is mostly for achieving a high grade. The thresholds for the respective grades are as follows:

Grade	A	В	C	D	E	Fx
Total sum	27	24	21	18	16	15
of which in part C	6	3	_	_	_	_

Instruktions

- To obtain points on a problem, it is required that: the solution is well presented and easy to follow, neatly written with a handwriting which is easy to read, the notations introduced are clearly defined and the logical structure is clearly described in words or symbols.
- The reasoning should be well motivated and clearly explained. All steps in all calculations are to be presented clearly and should be easy to follow.
- Solutions and answers without correct, detailed and clear justifications will receive no points.

Good luck!

PART A

1. Let A be an invertible (3×3) -matrix, and let $B = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 4 & 0 \\ 0 & 1 & 5 \end{bmatrix}$.

(a) Determine the reduced row echelon form of
$$A$$
. (2 p)

(b) Compute
$$\det(AB^3A^{-1}B^{-1})$$
. (4 p)

2. The lines L_1 and L_2 in ${\bf R}^3$ are given by

$$L_1: \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + t \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}, \text{ real numbers } t,$$

$$L_2: \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + s \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}, \quad \text{real numbers} \quad s.$$

(a) Determine the intersection of L_1 and L_2 .

(b) Determine the angle between L_1 and L_2 . (2 p)

(c) A plane passes through the origin and is orthogonal to the line L_1 . Determine scalar equation for this plane.

(2p)

3. Let S in \mathbb{R}^5 be the span

$$S = \operatorname{span} \left\{ \begin{bmatrix} 1\\1\\0\\1\\1 \end{bmatrix}, \begin{bmatrix} -1\\2\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\2 \end{bmatrix} \right\}$$

and let

$$ec{x} = egin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$
 . egonal complem

(a) Determine the dimension of the orthogonal complement S^{\perp} . (2 p)

(b) Determine if \vec{x} is in S^{\perp} .

(c) Determine if \vec{x} is in S.

4. Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix}$$
.

(a) Show that the matrix A is not diagonalizable. (3 p)

(b) Let $\vec{v} = \begin{bmatrix} -1 \\ -2 \\ 4 \end{bmatrix}$. Compute (and simplify) $A^{83}\vec{v}$. (Tips: write \vec{v} as a linear combination of eigenvectors of A).

(3 p)

PART C

- **5.** Let A be a symmetric (2×2) -matrix. Without using the Spetral Theorem, show
 - (a) that the characteristic polynomial of A have real roots only, (3 p)
 - (b) that there exist eigenvectors of A, which form a basis of \mathbb{R}^2 . (3 p)
- **6.** Let $P: V \to V$ be a linear transformation such that $P \circ P = P$. Such a transformation is called a projection.
 - (a) Show that for each vector \vec{v} in V it holds that $\vec{v} P(\vec{v})$ is in the kernel $\ker(P)$ of P.
 - (b) Show that each vector \vec{v} in V can be written as $\vec{v} = \vec{u} + \vec{w}$, where \vec{u} is in $\ker(P)$ and \vec{w} is in the image $\operatorname{Im}(P)$ of P.
 - (c) Show that the sum in b) is unique, that is show that if $\vec{v} = \vec{u_1} + \vec{w_1} = \vec{u_2} + \vec{w_2}$ where $\vec{u_1}$, $\vec{u_2}$ are in Im(P), then $\vec{u_1} = \vec{u_2}$ and $\vec{w_1} = \vec{w_2}$. (2 p)