Course Maxim:	
No Roading. No Learning => Understanding	
Jo Writing, No Reading => Effective Reading	
Vo Data, No Truth	
Jo Analytic, No Understanding (High-level)	
Jo Programming, No Cognition (Matlab) (125 tt)	
Stochastic Processes Group of R.V.s	
Gambling (mplication) (Relationship)	
3 Types Time Domain: Correlation Function	
Correlation (Linear)	(Saussian Process)
Freq. Domain: Spectrum	
3 Types Time Domain: Correlation Function Correlation (Linear) Freq. Domain: Spectrum Markov Property (M. Processes) Continuous Time W	不懂搞懂的(多人公) Poisson Procass
Continuous (inte	
Martingale Sphional Theorem Financial Application	
$\exists v. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
Fxy [x,y) = P(X \le x, Y \le y)	
Independence Correlated - Linear Correlation	

[S,t] Switch k times prob. $P = \frac{(\lambda(t-s))^k}{k!} \exp(-\frac{1}{2}(t-s))$ Poisson Distribution.

2nd order Moment: $E[X(t)|X(s)] = R_X(t,s)$ [+1.-1]

= $1 \cdot P_1 + (-1) \cdot P_{-1}$ $P_1 = P[[S,t], \text{ even switches}] = \sum_{\substack{k \text{ even} \\ k!}} \frac{(\lambda(t-s))^k}{k!} \exp(-\lambda(t-s)) \Rightarrow \text{Sourn exp}(-\lambda(t-s))$ $P_1 = P([S,t], \text{ odd switches}) = \sum_{\substack{k \text{ odd} \\ k!}} \frac{(\lambda(t+s))^k}{k!} \exp(-\lambda(t-s)) \Rightarrow \text{Sold} \cdot \exp(-\lambda(t-s))$ $P_2 = \frac{1}{2} \left[\exp(\lambda(t-s)) + \exp(-\lambda(t-s)) \right] \Rightarrow P_3 = \frac{1}{2} \left[1 + \exp(-2\lambda(t-s)) \right]$ $P_3 = \frac{1}{2} \left[1 - \exp(-2\lambda(t-s)) \right]$ $P_4 = \frac{1}{2} \left[1 - \exp(-2\lambda(t-s)) \right]$

 $\hat{R}_{\times}(t,s) = P_1 - P_{-1} = \frac{1}{2} \left[|t \exp(-2\lambda(t-s))| - \frac{1}{2} \left[|-\exp(-2\lambda(t-s))| \right] = \exp(-2\lambda(t-s)) \right]$