IGME 309-05 E05 - Transformation & Coordinate System (1977)

Name: Kyle James

Due Date: 10/29 11:59pm.

Consider the following three coordinate systems O, A and B for Q1 - Q5.

Note:

- Cells of the grid are unit cells,
 which means the cell edge length
 is equal to 1.
- M_{AB} is denoted as a math notation to represent the 3x3 matrix that transforms the coordinate system A to B.
- M⁻¹_{AB} represents the inverse matrix of M_{AB}, transforming the coordinate system B to A.

Q1: (15pts) What are the coordinates of P in the coordinate system O?

In coordinate system O, Phas coordinates (1,3).

Q2: (15pts) What are the coordinates of P in the coordinate system A?

In coordinate system A. Phas coordinates (-1, 2).

Q3: (15pts) What are the coordinates of P in the coordinate system R?

Q4: (15pts) Derive and calculate the values of M_{AB} . A := X, Y $0 = (-1, 3) \quad \theta = 135^{\circ} = \frac{36}{4}$ Bis x', y' Translation: $\begin{bmatrix} tv \\ ty \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$ Robertion: [web sind] = $\begin{bmatrix} \cos(\frac{3\pi}{4}) & \sin(\frac{3\pi}{4}) \end{bmatrix} = \begin{bmatrix} \cos(\frac{3\pi}{4}) & \sin(\frac{3\pi}{4}) & 0 \end{bmatrix} = \begin{bmatrix} -\frac{1}{\sqrt{2}} & \sqrt{2} & 0 \\ -\frac{1}{\sqrt{2}} & \sqrt{2} & 0 \end{bmatrix}$ Q5: (15pts) Use M_{AO} and M_{BA} to represent M_{OB} . (No need to calculate matrix values. Use the given math notations (M_{AO} and M_{BA}), their inverse forms, and multiplication sign to express your answer.) MAO = T2,1 Rave MBA = R-1350 T1.-3 Mog Tra Ruso (34, (cont)) (3) $(-\frac{1}{5}, \frac{1}{5}, 0)$ $(-\frac{1}{5}, \frac{1}{5}, 0)$ $(-\frac{1}{5}, \frac{1}{5}, 0)$ $(-\frac{1}{5}, \frac{1}{5}, 0)$ $(-\frac{1}{5}, \frac{1}{5}, \frac{1}{5}, 0)$ $(-\frac{1}{5}, \frac{1}{5}, \frac{1}{5}, 0)$ $(-\frac{1}{5}, \frac{1}{5}, \frac{1}{5}, 0)$ Translete