## **Congratulations! You passed!**

**Grade received** 100% **To pass** 80% or higher



## **Recurrent Neural Networks**

**Latest Submission Grade 100%** 

**1.** Suppose your training examples are sentences (sequences of words). Which of the following refers to the  $j^{th}$  word in the  $i^{th}$  training example?

1 / 1 point

- **⊘** Correct

We index into the  $i^{th}$  row first to get the  $i^{th}$  training example (represented by parentheses), then the  $j^{th}$  column to get the  $j^{th}$  word (represented by the brackets).

2. Consider this RNN:

1/1 point



This specific type of architecture is appropriate when:

- $T_x = T_y$
- $\bigcap T_x < T_y$
- $T_x > T_y$
- $T_x = 1$

**⊘** Correct

It is appropriate when every input should be matched to an output.

3. To which of these tasks would you apply a many-to-one RNN architecture? (Check all that apply).

1/1 point



- Speech recognition (input an audio clip and output a transcript)
- Sentiment classification (input a piece of text and output a 0/1 to denote positive or negative sentiment)
- Correct!
- Image classification (input an image and output a label)
- Gender recognition from speech (input an audio clip and output a label indicating the speaker's gender)
- Correct!
- 4. You are training this RNN language model.

1 / 1 point



At the  $t^{th}$  time step, what is the RNN doing? Choose the best answer.

- $\bigcirc \quad \text{Estimating } P(y^{<1>}, y^{<2>}, \dots, y^{< t-1>})$
- $\bigcirc \quad \text{Estimating } P(y^{<\!t\!>})$
- **Solution** Estimating  $P(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \dots, y^{< t-1>})$
- $\bigcirc \ \, \mathsf{Estimating} \, P(y^{<\!t\!>} \mid y^{<\!1\!>}, y^{<\!2\!>}, \ldots, y^{<\!t\!>})$
- **⊘** Correct

Yes, in a language model we try to predict the next step based on the knowledge of all prior steps.

5. You have finished training a language model RNN and are using it to sample random sentences, as follows:

1 / 1 point



What are you doing at each time step t?

- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as  $\hat{y}^{<\!\!\!/\!\!\!>}$ . (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as  $\hat{y}^{<p}$ . (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as  $\hat{y}^{<p}$ . (ii) Then pass this selected word to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as  $\hat{y}^{<\prime>}$ . (ii) Then pass this selected word to the next time-step.
- ✓ Correct
  Yes!

 $c^{<t>} = \Gamma_u * \tilde{c}^{<t>} + (1 - \Gamma_u) * c^{<t-1>}$  $a^{<t>} = c^{<t>}$ 

Alice proposes to simplify the GRU by always removing the  $\Gamma_u$ . I.e., setting  $\Gamma_u$  = 1. Betty proposes to simplify the GRU by removing the  $\Gamma_r$ . I. e., setting  $\Gamma_r$  = 1 always. Which of these models is more likely to work without vanishing gradient problems even when trained on very long input sequences?

- Alice's model (removing  $\Gamma_u$ ), because if  $\Gamma_r \approx 0$  for a timestep, the gradient can propagate back through that timestep without much decay.
- $\bigcirc$  Alice's model (removing  $\Gamma_u$ ), because if  $\Gamma_r \approx 1$  for a timestep, the gradient can propagate back through that timestep without much decay.
- igorup Betty's model (removing  $\Gamma_r$ ), because if  $\Gamma_u pprox 0$  for a timestep, the gradient can propagate back through that timestep without much decay.
- Betty's model (removing  $\Gamma_r$ ), because if  $\Gamma_u \approx 1$  for a timestep, the gradient can propagate back through that timestep without much decay.
- **⊘** Correct Yes. For the signal to backpropagate without vanishing, we need  $c^{<t>}$  to be highly dependant on  $c^{<t-1>}$ .
- **9.** Here are the equations for the GRU and the LSTM:

1 / 1 point

3/4

## GRU

$$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r)$$

$$c^{} = \Gamma_u * \tilde{c}^{} + (1 - \Gamma_u) * c^{}$$

$$a^{} = c^{}$$

## LSTM

$$\tilde{c}^{< t>} = \tanh(W_c[a^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[a^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_f = \sigma(W_f[a^{< t-1>}, x^{< t>}] + b_f)$$

$$\Gamma_o = \sigma(W_o[a^{< t-1>}, x^{< t>}] + b_o)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$$

$$a^{< t>} = \Gamma_o * c^{< t>}$$

From these, we can see that the Update Gate and Forget Gate in the LSTM play a role similar to \_\_\_\_\_ and \_\_\_\_ in the GRU. What should go in the the blanks?

- $\bullet$   $\Gamma_u$  and  $1-\Gamma_u$
- $\bigcap \Gamma_u$  and  $\Gamma_r$
- $\bigcap$  1  $\Gamma_u$  and  $\Gamma_u$
- $\bigcap \Gamma_r$  and  $\Gamma_u$
- ✓ Correct
  Yes, correct!
- **10.** You have a pet dog whose mood is heavily dependent on the current and past few days' weather. You've collected data for the past 365 days on the weather, which you represent as a sequence as  $x^{<1>}, \ldots, x^{<365>}$ . You've also collected data on your dog's mood, which you represent as  $y^{<1>}, \ldots, y^{<365>}$ . You'd like to build a model to map from  $x \to y$ . Should you use a Unidirectional RNN or Bidirectional RNN for this problem?
- 1 / 1 point

- Bidirectional RNN, because this allows the prediction of mood on day t to take into account more information.
- Bidirectional RNN, because this allows backpropagation to compute more accurate gradients.
- Unidirectional RNN, because the value of  $y^{< t>}$  depends only on  $x^{< 1>}, \dots, x^{< t>}$ , but not on  $x^{< t+1>}, \dots, x^{< 365>}$
- Unidirectional RNN, because the value of  $y^{<t>}$  depends only on  $x^{<t>}$ , and not other days' weather.
  - Correct
    Yes!