Nome, co	ognome, matricola	
----------	-------------------	--

Calcolatori Elettronici (12AGA) – esame del 07.9.2022

Domande a risposta chiusa (è necessario rispondere correttamente ad almeno 6 domande).

Tempo: 15 minuti.

		Tempo. 15 minut.	
1	Si consideri un banco di memoria di dimensioni pari a 16M parole, ciascuna da 32 bit, composto di moduli da 2 Mparole da 1 byte ciascuna. Quanti moduli compongono il banco?		
2	Si consideri l'istruzione MIPS addi \$5, \$4, 34. A	I-type	A
_	quale tipo di istruzione appartiene?	J-type	В
	TF	R-type	C
		Nessuno dei precedenti	D
		ressurio dei precedenti	D
2	Si consideri il meccanismo noto come write-back	N-1 4: 1 1	
3		Nel caso di write-back il tempo medio richiesto per gestire un miss	A
	utilizzato nella gestione delle cache. Quale delle	è minore rispetto al write-through	D
	seguenti affermazioni è <u>vera</u> ?	Tutte le operazioni di scrittura vengono eseguite sia sulla cache sia	В
		sulla memoria	
		Esiste un dirty bit per ciascuna linea	С
		Il dirty bit viene complementato ad ogni operazione di lettura	D
4	Quale delle seguenti istruzioni MIPS traduce	T 7 T T T	A
	correttamente la pseudo-istruzione move \$t1, \$t0	add \$t0, \$t1, \$t1	В
	nell'effettivo comando MIPS ?	add \$t1, \$t0, \$0	C
		addi \$t0, \$t1, 0	D
5	Quale dei seguenti meccanismi permette a un DMAC	Bust Transfer	A
	di garantire la massima velocità di trasferimento?	Cycle Stealing	В
		Transparent Mode	С
		I vari meccanismi sono sostanzialmente equivalenti	D
		1	
6	Qual è il principale svantaggio nell'uso di banchi di	La scarsa velocità nelle operazioni di R/W	A
	memoria DRAM di grandi dimensioni rispetto a	L'alto costo di fabbricazione	В
	banchi di memoria SRAM?	Un'organizzazione inefficiente della memoria	C
		Tutti e 3 gli aspetti precedenti	D
			. (
7	Quale sommatore è il più vantaggioso in termini di	Sommatore seriale	A
	velocità per l'esecuzione dell'addizione nel caso di	Full-Adder	В
	operandi interi con un alto numero di bit (n>32) ?	Ripple-Carry Adder	С
	-	Carry look-ahead Adder	D
		Carry look-anead Adder	ן ען

8	Qual è la modalità per cui un processore può ignorare	Mascherando la linea di richiesta dell'interrupt	A	
	altre richieste di interrupt durante il servizio di una	Disabilitando i dispositivi periferici dall'invio di interrupt	В	
	procedura di interrupt?	Scollegando fisicamente i dispositivi periferici dal processore	С	
		Non è possibile disabilitare le richieste di interrupt	D	
9	Si consideri il meccanismo di arbitraggio a richieste indipendenti. Assumendo che le possibili unità master		A	
	siano N, quanti segnali di bus grant saranno pilotati dall'arbitro?		В	
		1	С	
		log N	D	
10	Si supponga di avere un valore intero con segno x nel registro \$t1 e che si desideri calcolare il valore dell'espressione 3*x+7 ponendo il risultato in \$v0. Si riportino le istruzioni MIPS necessarie.			

Risposte corrette

1	2	3	4	5	6	7	8	9	10
32	A	C	C	A	A	D	A	В	

Domanda 10: Una soluzione può essere: add \$v0, \$t1, \$t1 # v0 = 2xadd \$v0, \$v0, \$t1 # v0 = 3xaddi \$v0, \$v0, 7 # v0 = 3x + 7

Nome, cognome, matricola
Domande a risposta aperta (sino a 5 punti per ogni domanda) – Non è possibile consultare alcun materiale - Tempo: 40 minuti.

11	Si consideri un processore connesso a una memoria da 1Kbyte e dotato di una cache direct-mapped composta da 8 linee da 32 byte
	ciascuna.

Si assuma che la cache sia inizialmente vuota e che il processore esegua una serie di accessi in memoria in cui genera i seguenti indirizzi:

Si riempia la tabella allegata, specificando il blocco acceduto, la linea di cache coinvolta e se l'accesso in cache ha provocato un hit (H) o miss (M).

Indirizzo	Blocco (per semplicità si può riportare in forma binaria)	Numero di linea	H/M
1010010101			
1011010111			
0111111001			
1100000100			
1000111100			
1110100111			
1111011001			
1000111100			
1111011101			
0001001111			
1110111110			
0001000100			

- Progettare un circuito minimo bilivello che implementi un comparatore a 4 ingressi. Gli ingressi (A1, A0) e (B1, B0) rappresentano i due numeri A e B, dove il bit con pedice 0 è quello meno significativo.
 - Le uscite sono: OA, OB e OP; OA vale 1 solo se A è strettamente maggiore, OB vale 1 solo se B è strettamente maggiore, OP vale 1 solo se A e B sono uguali.

Si richiede di:

- riempire la tavola di verità delle uscite
- riempire le mappe di Karnaugh
- specificare le funzioni minime derivanti dalla copertura delle mappe

A1	A0	B1	В0	OA	ОВ	OP

OA				
A1 A0 \ B1 B0	00	01	11	10
00				
01				
11				
10				

OA=

ОВ

A1 A0 \ B1 B0	00	01	11	10
00				
01				
11				
10				

OB=

ОР

<u> </u>				
A1 A0 \ B1 B0	00	01	11	10
00				
01				
11				
10				

OP=

13	Si consideri un'unità di controllo microprogrammata:
	1. se ne descriva l'architettura (elencando i componenti e le connessioni)
	2. Se ne descriva il funzionamento
	3. Si elenchino vantaggi e svantaggi rispetto all'architettura cablata
	4. Assumendo che la memoria di microcodice sia composta da 250 parole da 70 bit ciascuna, si determini la
	dimensione in bit del μPC e quella del μIR.
	amiensione in on dei pi e e quena dei pire.

14	Si consideri il meccanismo della memoria virtuale:		
	- si descriva il funzionamento del meccanismo, illustrando il ruolo svolto dalle varie componenti e specificando quali corrispondono a componenti HW e quali SW		
	- si illustrino i vantaggi che il meccanismo fornisce.		

Nome, Cognome, Matricola:

Esercizio di programmazione

sino a 12 punti – è possibile consultare solamente il foglio consegnato con l'instruction set MIPS - tempo: 60 minuti

Sono definite due stringhe di caratteri, entrambe terminate con il simbolo '0'. Si scriva una procedura **cercaSequenza** in linguaggio Assembly MIPS32 in grado di determinare la lunghezza della più lunga sequenza di caratteri esistente nella seconda stringa e presente anche nella prima. I caratteri della sequenza in comune:

- possono iniziare in un qualunque punto delle stringhe
- possono terminare in un qualunque punto delle stringhe (anche prima dell'ultimo carattere)
- possono non essere presenti consecutivamente nelle due stringhe
- devono essere presenti nello stesso ordine in entrambe le stringhe.

La procedura **cercaSequenza** riceve l'indirizzo delle due stringhe tramite \$a0 e \$a1 e restituisce attraverso \$v0 la lunghezza della sequenza di caratteri in comune più lunga. Il terminatore di stringa non deve essere conteggiato.

Esempio. Le due stringhe sono "calcolatori elettronici" e "raccolta".

Sequenze di caratteri presenti all'interno della seconda stringa	Numero di caratteri presenti con lo stesso ordine nella prima stringa
raccolta	1 (r)
accolta	3 (a,c,c)
ccolta	5 (c,c,o,l,t)
colta	4 (c,o,l,t)
olta	3 (o,l,t)
lta	2 (l,t)
ta	1 (t)
a	1(a)

La sequenza più lunga è composta da 5 caratteri.

Di seguito un esempio di programma chiamante: