Grundoperationen von komplexen Zahlen

Wir betrachten komplexe Zahlen $z_1 = x_1 + y_1 i$ und $z_2 = x_2 + y_2 i$, wobei $x_1, y_1, x_2, y_2 \in \mathbb{R}$ sind und i die imaginäre Einheit mit $i^2 = -1$.

Addition

Die Summe der komplexen Zahlen z_1 und z_2 ist gegeben durch

$$z_1 + z_2 = (x_1 + x_2) + (y_1 + y_2)i.$$

Subtraktion

Die Differenz der komplexen Zahlen z_1 und z_2 ist gegeben durch

$$z_1 - z_2 = (x_1 - x_2) + (y_1 - y_2)i.$$

Multiplikation

Das Produkt der komplexen Zahlen z_1 und z_2 ist gegeben durch

$$z_1 \cdot z_2 = (x_1 x_2 - y_1 y_2) + (x_1 y_2 + y_1 x_2)i.$$

Division

Vorausgesetzt $z_2 \neq 0$, ist der Quotient von z_1 und z_2 gegeben durch

$$\frac{z_1}{z_2} = \frac{x_1 + y_1 i}{x_2 + y_2 i} = \frac{(x_1 + y_1 i)(x_2 - y_2 i)}{(x_2 + y_2 i)(x_2 - y_2 i)} = \frac{(x_1 x_2 + y_1 y_2) + (y_1 x_2 - x_1 y_2) i}{x_2^2 + y_2^2}.$$

Konjugation

Die konjugierte Zahl zu z = x + yi ist $z^* = x - yi$.

Betrag

Der Betrag oder die norm einer komplexen Zahl z = x + yi ist gegeben durch

$$|z| = \sqrt{x^2 + y^2}.$$

Die dargestellten Operationen sind grundlegende Werkzeuge im Umgang mit komplexen Zahlen, die in vielen Bereichen der Mathematik und Physik Anwendung finden.