Deep Linear Networks

Rathindra Nath Karmakar **Session 2 : Implicit Acceleration**

References

- On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization, Sanjeev Arora, Nadav Cohen, Elad Hazan (2018)
- The geometry of the deep linear network, Govind Menon (2024)

Recap: Key Questions for Gradient Flow

For the gradient flow dynamics on a loss surface $\mathcal{L}(\mathbf{W})$:

$$rac{d}{dt}\mathbf{W}(t) = -
abla_{\mathbf{W}}\mathcal{L}(\mathbf{W}(t))$$

• Convergence guarantees? (Yes, for balanced cases)

convergence?

2018)

- Convergence rate?

We want to understand:

- Characterization of the minimizer reached? Effect of noise and discretization?
- Today, we address the second question: can overparameterization improve the rate of

The Counter-Intuitive Message

The conventional wisdom is that increasing depth improves expressiveness but complicates optimization. Today's message, based on Arora, Cohen, & Hazan (2018), is that sometimes:

Increasing depth can accelerate optimization.

We will see that overparameterization via depth can act as an implicit preconditioner, combining the effects of momentum and adaptive learning rates.

Empirical Evidence: Acceleration with Depth Comparison of gradient descent on a linear regression task with ℓ_p loss. (Fig 3 from Arora et al.

L2 Loss Convergence L4 Loss Convergence

- The End-to-End Update Rule
- dynamics can be written purely in terms of W_e itself.

Theorem 1 (Arora et al. 2018). Under the balanced initialization assumption,

Let $W_e = W_N W_{N-1} \cdots W_1$ be the end-to-end matrix. The paper shows that its gradient flow

$W_{j+1}(t_0)^TW_{j+1}(t_0)=W_j(t_0)W_j(t_0)^T$, the gradient flow for W_e is: $\dot{W}_e(t) = -\eta \sum_{i=1}^N \left[W_e(t)W_e(t)^T ight]^{rac{N-j}{N}} \cdot abla \mathcal{L}(W_e(t)) \cdot \left[W_e(t)^TW_e(t) ight]^{rac{j-1}{N}}$

A Geometric Interpretation

The complex update rule from Theorem 1 seems arbitrary. But it has a beautiful geometric

meaning. Let's define the linear preconditioning operator from Theorem 1 as A_{N,W_e} :

The standard gradient $abla \mathcal{L}(W_e)$ is pre-multiplied and post-multiplied by fractional matrix powers

$A_{N,W_e}(Z) = \sum_{k=1}^{N} (W_e W_e^T)^{rac{N-k}{N}} Z(W_e^T W_e)^{rac{k-1}{N}}$

(Assuming W_e has full rank, A_{N,W_e} is invertible.)

Riemannian gradient flow:

intuitive form.

trajectory.

of $W_eW_e^T$ and $W_e^TW_e$.

So the dynamics are $\dot{W}_e = -A_{N,W_e}(E'(W_e))$, where $E'(W_e) =
abla \mathcal{L}(W_e)$ is the standard Euclidean gradient.

Following Menon (Sec 4.3), we define a position-dependent Riemannian metric
$$g^N$$
 on the tangent space at W_e via the inner product:

Definition: A New Metric.

 $g^N(W_e)(Z_1,Z_2):=\operatorname{Tr}\left(Z_1^T(A_{N,W_e})^{-1}Z_2
ight)$

Under this specific metric, the complicated dynamics of Theorem 1 become a simple and natural

For the special case of a single output (k=1), the preconditioning scheme simplifies to a more

 $\dot{W}_e(t) = -\mathrm{grad}_{q^N} E(W_e(t))$

equivalent to:

the effective learning rate increases.

Proof of Theorem 1 (N=2 case)

2. Plug these into the expression for \dot{W}_e :

3. Rearrange the terms:

Interpreting the Dynamics (Single Output Case)

 $\dot{W}_e = -\eta \underbrace{\|W_e\|^{2-rac{2}{N}}}_{ ext{Adaptive LR}} \left(
abla \mathcal{L}(W_e) + \underbrace{(N-1) \Pr_{W_e}(
abla \mathcal{L}(W_e))}_{ ext{Momentum-like term}}
ight)$ where $\Pr_{W_e}(V)$ is the orthogonal projection of vector V onto the direction of vector W_e .

• Adaptive Learning Rate: As the weight vector $\|W_e\|$ grows (moves away from zero init),

• Momentum: The gradient is amplified along the direction of the current weight vector W_e .

Claim 2 (Arora et al. 2018). For a single output network, the end-to-end dynamics are

Since W_e is the integral of past updates, this promotes movement along the historical

Detailed Derivations

 $\dot{W}_e = \dot{W}_2 W_1 + W_2 \dot{W}_1.$ 1. Substitute the gradient flow dynamics for each layer: $\dot{W}_1 = -\eta W_2^T
abla \mathcal{L}(W_e) \quad , \quad \dot{W}_2 = -\eta
abla \mathcal{L}(W_e) W_1^T$

 $\dot{W}_e = (-\eta
abla \mathcal{L}(W_e) W_1^T) W_1 + W_2 (-\eta W_2^T
abla \mathcal{L}(W_e))$

 $\dot{W}_e = -\eta \left((W_e W_e^T)^{1/2}
abla \mathcal{L}(W_e) +
abla \mathcal{L}(W_e) (W_e^T W_e)^{1/2}
ight)$

 $P_2 = W_2^T W_2 = W_1 W_1^T = R_1$. Hence, V_2 and U_1 can be chosen to be equal. Therefore,

- Similarly using the balance equation for W_2 and W_3 , we get the SVDs: $W_3 = U_3 \Sigma V_3^T$,

Let's derive the end-to-end dynamics for $W_e=W_2W_1$. The time derivative is

- $\dot{W}_e = -\eta \left((W_2 W_2^T)
 abla \mathcal{L}(W_e) +
 abla \mathcal{L}(W_e) (W_1^T W_1)
 ight)$ 4. Using the identities for the N=2 case, $W_2W_2^T=(W_eW_e^T)^{1/2}$ and $W_1^TW_1=(W_e^TW_e)^{1/2}$:
- **Deriving the Preconditioner**

This matches the general formula from Theorem 1 for N=2.

• In terms of Polar decomposition, the balance equation implies

we get the SVD decompositions: $W_2 = U_2 \Sigma V_2^T$ and $W_1 = V_2 \Sigma V_1^T$.

Let's analyze N=3. Let the SVD of each layer be $W_j=U_j\Sigma_jV_j^T$. • Balance Invariants: $W_2^TW_2=W_1W_1^T$. Hence, their spectra are equal as well $\implies W_1$ and W_2 have the same set of singular values.

 $W_2 = V_3 \Sigma V_2^T$ and $W_1 = V_2 \Sigma V_1^T$.

Simplifying the Product Let's express the end-to-end matrix $W_e=W_3W_2W_1$ using the SVDs and the relationships we found. The expression simplifies because the intermediate orthogonal matrices cancel out:

 $\Sigma_e=\Sigma^3$, $V_e=V_1$.

 V_1^T .

SVD Setup (N=3 case)

Final Identities From $W_e=U_3\Sigma^3V_1^T$, we can identify the SVD components of $W_e=U_e\Sigma_eV_e^T$ as $U_e=U_3$,

Now we can express the individual layer terms using the end-to-end SVD components.

• For the last layer, $W_3W_3^T=U_3\Sigma^2U_3^T$. Since $U_3=U_e$ and $\Sigma=\Sigma_e^{1/3}$:

ullet For the first layer, $W_1^TW_1=V_1\Sigma^2V_1^T$. Using $\Sigma=\Sigma_e^{1/3}$ and $V_1=V_e$:

How This Leads to Acceleration

• **Data**: Two points, $([1,0],y_1)$ and $([0,1],y_2)$.

• III-Conditioning: Assume $|y_1|\gg |y_2|pprox 1$.

• Loss: $L(w_1,w_2)=rac{1}{4}(w_1-y_1)^4+rac{1}{4}(w_2-y_2)^4$.

 $W_e = U_3 \Sigma^3 V_1^T$

This looks like an SVD for W_e , with singular value matrix Σ^3 and orthogonal matrices U_3 and

 $W_1^T W_1 = V_1 (\Sigma_e^{1/3})^2 V_1^T = (V_e^T \Sigma_e V_e)^{2/3} = (W_e^T W_e)^{2/3}$

 $W_3W_3^T = U_e(\Sigma_e^{1/3})^2U_e^T = (U_e\Sigma_eU_e^T)^{2/3} = (W_eW_e^T)^{2/3}$

Setup We analyze a simple, ill-conditioned linear regression problem with ℓ_4 loss and N=2overparameterization.

Standard GD The standard gradient descent update for each coordinate is decoupled:

 $w_i^{(t+1)} \leftarrow w_i^{(t)} - \eta (w_i^{(t)} - y_i)^3$

• To avoid divergence, the learning rate η is limited by the coordinate with the largest gradient,

ullet The convergence for w_2 is extremely slow. The error $\Delta_2=w_2-y_2$ shrinks by a factor of

 $\mathbf{w}^{(t+1)} \leftarrow \mathbf{w}^{(t)} - \eta \left(\| \mathbf{w}^{(t)} \|
abla \mathcal{L}(\mathbf{w}^{(t)}) + ext{Pr}_{\mathbf{w}^{(t)}}(
abla \mathcal{L}(\mathbf{w}^{(t)}))
ight)$

• Initialization: Near-zero weights, $w_1^{(0)}=\epsilon_1, w_2^{(0)}=\epsilon_2$, with $\epsilon_2/\epsilon_1pprox y_2/y_1$.

approximately $(1 - \eta y_2^2)$ at each step, which is very close to 1. **Overparameterized GD**

For N=2, the discrete update rule for a single output network is:

which is w_1 . The stability condition requires: $\eta < \frac{2}{(w_1-y_1)^2} pprox \frac{2}{y_1^2}$.

• This very small learning rate, dictated by y_1 , is then applied to the update for w_2 .

Using the condition $\epsilon_2/\epsilon_1 pprox y_2/y_1 \ll 1$, we have $\|\mathbf{w}^{(0)}\| pprox \epsilon_1$. The updates simplify to: $w_1^{(1)}pprox\epsilon_1+\eta(2\epsilon_1y_1^3) \quad , \quad w_2^{(1)}pprox\epsilon_2+\eta(\epsilon_1y_2^3+\epsilon_2y_1^3)$

The Punchline 1. Choose η : We can now choose a large learning rate for w_1 to make it converge in one step. Let $\eta=rac{1}{2\epsilon_1 y_1^2}.$ This gives $w_1^{(1)}pprox y_1.$

2. **Analyze** w_2 **update:** With this η , the update for w_2 becomes approximately $\frac{y_2}{2}$.

rate for w_2 after w_1 converges is $\eta_{OP} pprox rac{1}{2\epsilon_1 y_1}.$ The speedup is: $rac{\eta_{OP}}{\eta_{GD}}>rac{1/(2\epsilon_1y_1)}{2/y_1^2}=rac{y_1}{4\epsilon_1}\gg 1$

3. Compare Rates: In one step, w_2 has moved halfway to its target y_2 . The effective learning

Overparameterization allows the large coordinate to "lend" its scale to accelerate the small

coordinate. **Next Time...**

Thank You!

Characterizing the Minimizer