Weber-Kraft als fundamentale Theorie der Quantengravitation

Wissenschaftliches Manifest

Diese Theorie unterwirft sich keiner vorab definierten kosmologischen Erzählung – weder Expansion noch Urknall noch Konstantheit der Lichtgeschwindigkeit werden axiomatisch gefordert. **Die Wahrheit emergiert aus der Mathematik der Knoten und Gitter**, nicht aus historischen Dogmen.

Fundamentale Prinzipien

1. Emergenz statt Diktat

Kosmologische Phänomene (wie Expansion) dürfen nur als Folge der Gitterdynamik auftreten, nie als Voraussetzung.

2. Mikrophysik bestimmt Makrophysik

Die Dodekaeder-Struktur der Raumzeit und ihre Knotenmoden generieren Gravitation – nicht umgekehrt.

3. Experimente als einziger Schiedsrichter

Vorhersagen müssen die ART ohne Anpassungen widerlegen können.

Theoretischer Rahmen

- Verzichtet auf Raumzeit-Kontinuum
- Führt Gravitation auf Knotenfluktuationen zurück
- Lässt alle kosmologischen Szenarien zu

Achtung: Wichtigster Unterschied zur ART:

Lichtablenkung folgt aus nichtlinearer Bahndynamik im Gitter – ohne globale Raumzeitannahmen.

1 Einführung

Klassische Weber-Kraft

$$F_{Weber}^{EM} = \frac{Qq}{4\pi\epsilon_0 r^2} \left(1 - \frac{\dot{r}^2}{c^2} + \frac{2r\ddot{r}}{c^2}\right) \hat{r}$$

Modifizierte Weber-Kraft

$$F_{Weber}^{Grav} = -\frac{GMm}{r^2} \left(1 - \frac{\dot{r}^2}{c^2} + \frac{r\ddot{r}}{2c^2}\right) \hat{r}$$

Mit $\alpha = 1$, $\beta = 0.5$

2 Berechnung der Periheldrehung

$$\Delta\theta = \frac{6\pi GM}{ac^2(1-e^2)}$$

Theorie	Vorhersage	Beobachtet
Newton	0"	×
Weber $(\beta = 1)$	21.5"	×
Weber $(\beta = 0.5)$	43"	✓
ART	43"	✓

Tabelle 1: Periheldrehung des Merkur

3 Physikalische Interpretation

- $\beta = 0.5$ kombiniert zeitartige und räumliche Effekte
- Entspricht beiden ART-Krümmungskomponenten

Bedeutung: Klassische Ansätze können relativistische Effekte reproduzieren.

4 Aktuelle Grenzen

Bereich	Herausforderung	Ansatz
Quantengravitation	Keine vollständige Formu-	Knotenmodell
C:tt:11	lierung	1-II- V/1
Gravitationswellen	Keine empirischen Tests	kHz-Vorhersagen

5 β -Formel

$$\beta = 2 \cdot \left(\frac{1}{2}\right)^{\delta} \cdot \left(1 - \frac{mc^2}{E}\right)$$

- $\delta = 0$: Elektrodynamik
- $\delta = 1$: Gravitation

6 Universelle Formel

$$F = -\frac{GM}{r^2} \cdot \frac{E}{c^2} \left(1 - \frac{\dot{r}^2}{c^2} + \frac{r\ddot{r}}{c^2} \cdot \left(1 - \frac{v_{\rm tan}^2}{c^2} \right) \right) \hat{r}$$

Für Massen

$$F = -\frac{GMm}{r^2} \left(1 - \frac{\dot{r}^2}{c^2} + \frac{r\ddot{r}}{2c^2}\right)$$

7 Rotverschiebung

$$\frac{\Delta\lambda}{\lambda} = \frac{GM}{c^2r} \left(1 + \frac{v_r^2}{2c^2} \right)$$

- ART-Äquivalent + Geschwindigkeitsterm
- Vorhersage für $v_r \approx 0.01c$: 0.5% stärker

8 Gravitationswellen

$$\Box h_{\mu\nu} = -\frac{16\pi G}{c^4} \left(T_{\mu\nu} - \frac{1}{2} \beta \cdot \partial_t^2 Q_{\mu\nu} \right)$$

- Kollektive Gitterschwingungen
- Neue Vorhersage: Diskretisierungseffekte >1 kHz

9 Quantisierter Raum

Dodekaeder-Gitter

• Grundlänge: $L_p = \sqrt{\hbar G/c^3}$

• 12 Nachbarn pro Zelle

Diskrete Zeit

$$t = n \cdot t_p \quad (t_p = \sqrt{\hbar G/c^5})$$

10 Knotentheorie

Jones-Polynome

$$V(t) = \sum_{i} a_i t^i$$

Teilchen	Polynom
Elektron Quark	$\frac{1}{t + t^{-1} + t^{-2}}$

11 Quantenelektrodynamik

$$F_{Weber}^{QED} = \frac{V_1(t)V_2(t)}{4\pi\epsilon_0(nL_p)^2} \left(1 - \frac{(\Delta L_p/\Delta t_p)^2}{c^2} + \frac{2L_p\Delta^2 L_p}{c^2\Delta t_p^2}\right) \hat{r}$$

12 Vorhersagekraft

Effekt	ART	Weber
Lichtablenkung	Konstant	$\sim 1 + (\lambda_0/\lambda)^2$

13 Historische Entwicklung

1. 1846: Weber (EM-Formulierung)

2. 1882: Tisserand (Gravitation, $\beta = 2$)

3. 2025: Modifizierte Form ($\beta = 0.5$)

14 Forschungs-Roadmap

 \bullet 2025-2030: Multiband-Tests

• 2035+: Gitterdispersion (LISA)

 $\bullet\,$ 2040: Hoch präzision (FCC-ee)

15 Vergleich mit ART

Kriterium	Weber	ART
Grundkonzept	Kraft	Geometrie

16 Literatur

- Weber (1846)
- Einstein (1915)
- Jones (1985)