DEVOIR À LA MAISON N°12

Problème 1 -

Partie I - Un espace vectoriel

On note E l'ensemble des applications 1-périodiques de $\mathbb R$ dans $\mathbb C$. Pour $k\in\mathbb Z$, on note e_k l'application définie par

$$\forall x \in \mathbb{R}, \ e_k(x) = e^{2ik\pi x}$$

Pour $n \in \mathbb{N}$, on pose $E_n = \text{vect}\,((e_k)_{-n \leqslant k \leqslant n})$.

- **1.** Vérifier que $e_k \in E$ pour tout $k \in \mathbb{Z}$.
- **2.** Montrer que E est un sous-espace vectoriel de $\mathbb{C}^{\mathbb{R}}$.
- 3. a. Soit $(k, l) \in \mathbb{Z}^2$. Calculer $\int_0^1 e_k(x)e_{-l}(x) dx$.
 - **b.** Soit $n \in \mathbb{N}$. Montrer que la famille $(e_k)_{-n \le k \le n}$ est libre.
- **4.** Soit $n \in \mathbb{N}$. Donner la dimension de E_n .

Partie II - Un endomorphisme

Pour $f \in \mathbb{C}^{\mathbb{R}}$, on définit l'application $\mathsf{T}(f) \in \mathbb{C}^{\mathbb{R}}$ par

$$\forall x \in \mathbb{R}, \ T(f)(x) = \frac{1}{2} \left(f\left(\frac{x}{2}\right) + f\left(\frac{x+1}{2}\right) \right)$$

- 1. Montrer que T est un endomorphisme de $\mathbb{C}^{\mathbb{R}}$.
- 2. Montrer que E est stable par T.
- 3. Soit $k \in \mathbb{Z}$. Calculer $T(e_k)$. On discutera suivant la parité de k.
- $\textbf{4. Soit } n \in \mathbb{N}. \text{ Montrer que } E_n \text{ est stable par } T. \text{ On note alors } T_n \text{ l'endomorphisme induit par } T \text{ sur } E_n.$
- **5.** Soit $n \in \mathbb{N}$. Déterminer les dimensions respectives de Ker T_n et Im T_n en fonction de n. On discutera suivant la parité de n.

Partie III - Deux projecteurs

1. Soit $n \in \mathbb{N}$. Justifier qu'il existe un unique endomorphisme S_n de E_n tel que

$$\forall k \in [-n, n], \ S_n(e_k) = \begin{cases} e_{2k} & \text{si } |2k| \leqslant n \\ 0 & \text{sinon} \end{cases}$$

- 2. Soit $n \in \mathbb{N}$. On pose $P_n = S_n \circ T_n$. Montrer que P_n est un projecteur et préciser $Im(P_n)$ et $Ker(P_n)$.
- $\textbf{3. Soit } n \in \mathbb{N}. \text{ On pose } Q_n = T_n \circ S_n. \text{ Montrer que } Q_n \text{ est un projecteur et préciser } \text{Im}(Q_n) \text{ et } \text{Ker}(Q_n).$