CSC373 Worksheet 2 Solution

July 27, 2020

This approach is a greedy algorithm because algorithm

- 1) Has the greedy choice: selecting the last activity to start that is compatible with all previously selected activites
- 2) Has the greedy choice that is always part of optimal solution:

Claim:

Consider any nonempty subproblem S_k . Let a_m be an activity in S_k with the last activity to start that is compatible with all previously selected activities. Then a_m is included in some maximum-size subset of mutually compatible activities of S_k

Proof. Let A_k be a maximum-size subset of mutually compatible activities in S_k , and let a_j be the activity in A_k with the last activity to start that is compatible with all previously selected activities.

If $a_j = a_m$, we are done, since we have shown that a_m is the maximum-size subset of mutually compatible activities of S_k .

If $a_j \neq a_m$, let the set $A'_k = A_k = \{a_j\} \cup \{a_m\}$ be A_k but subtituting a_m for a_j . The activities in A'_k are disjoint, which follow because the activities in A_k are disjoint, a_j is the first activity in A_k to finish, and $s_j \leq s_m$.

Since $|A'_k| = |A_k|$, we conclude that A'_k is a maximum-size subset of mutually compatible activities of S_k , and it includes a_m .

Notes:

- Greedy Algorithm
 - Always makes the choice that looks best at the moment
 - * Locally optimal solution leads to globally optimal solution
- Activity-selection Problem (Greedy algorithm using dynamic programming)
 - Goal: Selecting maximum size set of mutually compatible activities

Example:

i	1	2	3	4	5	6	7	8	9	10	11
s_i	1	3	0	5	3	5	6	8	8	2	12
f_i	4	5	6	7	9	9	10	11	12	14	12 16

- Suppose a set exists $S = \{a_1 = [s_1, f_1), a_2 = [s_2, f_2), ..., a_n = [s_n, f_n)\}$
 - * a_i represents an i^{th} activity
 - * s_i represents starting time
 - * f_i represents finishing time
 - * $0 \le s_i < f_i < \infty$
 - * $a_1, ..., a_n$ sorted in monotonically increasing order of finish time

i.e.

$$f_1 < f_2 < f_3 < \dots < f_{n-1} < f_n$$

* a_i and a_j are **compatible**, if intervals $[s_i, f_i)$ and $[s_j, f_j)$ don't overlap

i.e

$$s_i \ge f_j$$
 and $s_j \ge f_i$

- Steps
 - 1. Think about dynamic programming solution
 - * Construct optimal solution using two subproblems

 S_{ij} : activities that start after activity a_i finishes and before activity a_j starts

i.e.

$$S_{19} = \{a_4 = [5, 7), a_6 = [5, 9), a_7 = [6, 10)\}$$

 A_{ij} : maximum set of mutually compatible activities in S_{ij} (including a_k)

- $A_{ik} = A_{ij} \cap S_{ik}$
- $A_{kj} = A_{ij} \cap S_{kj}$
- $A_{ij} = A_{ik} \cup \{a_k\} \cup Akj$
- · So, $|A_{ij}| = |A_{ik}| + |A_{kj}| + 1$
- * Verify that optimal solution A_{ij} must include optimal solution to the two subproblems for S_{kj}

Let A'_{kj} be another mutually compatible activities in S_{kj} where $|A'_{kj}| > |A_{kj}|$.

Then we could use A'_{kj} in a solution to subproblem of S_{ij}

Then we have $|A_{ik}| + |A'_{kj}| + 1 > |A_{jk}| + |A_{kj}| + 1 = |A_{ij}|$ mutually compatible activites

This contradicts assumption that A_{ij} is an optimal solution

* Verify that optimal solution A_{ij} must include optimal solution to the two subproblems for S_{ik}

The same applies for activities in S_{ik}

- 2. Observe that only one choice greedy choice, and that when we make the greedy choice, only one subproblem remains
 - * Steps
 - 1. Make a greedy choice
 - · Choose an activity that makes the most resource possible (intuition)
 - · Choose an acitivty that finishes the earliest (intuition)
 - 2. Solve a subproblem: Find activities that start after a_1 finishes
 - 3. Verify that making greedy choices always arrive at optimal solution

Theorem 16.1 (Page 418):

Consider any non-empty subproble S_k , and let a_m be an activity in S_k with the earliest finish time. Then a_m is included in some maximum-size

subset of mutually compatible activities of S_k

3. Develop recursive greedy solution

4. Convert the recursive algorithm into iterative one

2. • Greedy Choice

- Choose x_i that is greater than the current maximum as the upper bound of unit length closed interval
- Choose x_i that is smaller than the current minimum as the lower bound of unit length closed interval

Example:

$$\{0,1,2,3,4,5\} \to [0,5]$$

$$\{0, -1, 3, 5, 2\} \rightarrow [-1, 5]$$

• Optimal Substructure

Let I be the following instance of the problem: Let n be the number of items, and let x_i be the i^{th} point in the set.

Let $A = [x_{\min}, x_{\max}]$ be the solution. The greedy algorithm works by assigning $x_{\min} = \min(x_{\min}, x_n)$ and $x_{\max} = \max(x_{\max}, x_n)$, and then continuing by solving the subproblem

$$I' = (n - 1, \{x_1, ..., x_{n-1}\})$$
(1)

until n = 0.

We need to show that the strategy gives optimal solution.

Correct Solution:

- 1) Consider the left-most interval.
- 2) Set the left most point x in the set as its value (since we know it must contain the leftmost point)
- 3) For any point that is within the unit distance of the point x (i.e. [x, x+1]), remove the points since they are covered
- 4) Move to the next closest point not covered by the unit interval of x, and repeat until all points in the set are covered.
- 5) Since each step has a clearly optimal choice for where to put the leftmost interval, the final solution is optimal

Notes:

- I stopped because it's taking too much time.
- I struggled on this problem.

- I had trouble understanding the meaning of unit interval
- I felt there is missing knowledge regarding optimal substructure
- I felt tunnel visioned to provide one interval that covers all
- I had difficulty arguing why the algorith is correct
 - i.e. How can i generate a claim?
- Unit length
 - [1, 25, 2.25] includes all x_i such that $1.25 \le x_i \le 2.25$.
- Greedy-choice property and optimal substructure to problem are the two key ingredients
- Summary of Steps for Greedy Algorithm
 - 1. Determine the optimal structure of the problem
 - 2. Develop a recursive solution.
 - 3. Show that if we make the greedy choice, then only one subproblem remains
 - 4. Prove that it is always safe to make the greedy choice
 - 5. Develop a reursive algorithm that implements the greedy strategy
 - 6. Convert the recursive algorithm to an iterative algorithm
- Criteria for Greedy Algorithm
 - 1. Greedy-choice property
 - Exists if we can assemble a globally optimal solution by making a locally optimal (greedy) choices
 - 2. Optimal Substructure
 - Exists if an optimal solution to the problem contains within it optimal solutions to subproblems.
- Greedy vs Dynamic Programming
 - 0-1 Knapsack Problem

- Fractional Knapsack Problem

3. Proof. Let T be a binary tree corresponding to an optimal prefix code and suppose that T is not full. Let node n have a single child x. Let T' be the tree obtained by removing n and replacing it by x. Let m be leaf node which is descendent of x. Then we have:

My work:

$$B(T') \le \sum_{c \in C \setminus \{m\}} c.freq \cdot d_T(c) + m.freq \cdot d_{T'}(m)$$
(1)

$$= \sum_{c \in C \setminus \{m\}} c.freq \cdot d_T(c) + m.freq \cdot (d_T(m) - 1)$$
 (2)

$$<\sum_{c \in C \setminus \{m\}} c.freq \cdot d_T(c) + m.freq \cdot d_T(m)$$
 (3)

$$= \sum_{c \in C} c.freq \cdot d_T(c) \tag{4}$$

$$=B(T) \tag{5}$$

which contradicts the fact that T was optimal. Therefore every binary tree corresponding to an optimal prefix code is full

Notes:

- Optimal Substructure
 - A problem is said to have optimal substructure if an optimal solution can be constructed from optimal solutions of its subproblems.

• Huffman Codes

- Is an algorithm that uses greedy algorithm for lossless (without loss of data) data compression
- Has two types of codewords

	a	b	C	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100

- * Fixed Length Code
 - · has codeword with the same length
- * Variable Length
 - \cdot has codeword that may be of different lengths
- Constructs optimal prefix codes
 - * Means no codeword is a prefix of some other codewords

e.g.

The following is not prefix codes

a - 110

b - 1101

e.g.

The following is prefix codes

a - 110

b - 111

- Realized that I should learn with the solution. Otherwise, it will take too much time.
- Learned that the author used another but very similar tree T' to show the cost of bits in T is not minimum, which is the condition of prefix codes.
- Learned that the solution feels very similar to the proof of optimal substructure on page 416.
- Learned that the tree T and T' looks as follows:

4. <u>Notes</u>

• Constructing Huffman Code

Example:

char	A	Е	I	S	Т	Р	\ n
Freq	10	15	12	3	4	13	1

- 1. Take the 2 chars with the lowest frequency $\frac{1}{2}$
- 2. Make a 2 leaf node tree from them
- 3.