

Property-aware Adaptive Relation Networks for Few-shot Molecular Property Prediction

Yaqing Wang^{1*} Abulikemu Abuduweili^{1,2*} Quanming Yao^{3†}, Dejing Dou¹

¹Baidu Research, Baidu Inc., China

²The Robotics Institute, Carnegie Mellon University, USA

³Department of EE, Tsinghua University, China

{wangyaqing01, v_abuduweili, doudejing}@baidu.com

qyaoaa@tsinghua.edu.cn

Outline

- Background: Molecule property prediction (MPP)
- Preliminary: Few-shot learning (FSL)
- Related works: FSL for MPP
- The proposed approach PAR
- Summary

Molecular Property Prediction

- Molecules:
 - Mainly micromolecule organics

- Properties:
 - Physiology or Toxicity
 - 生理学上的性质、毒性
 - Examples in SIDER:
 - 'SIDER': ['Hepatobiliary disorders', 'Infections and infestations', 'Neoplasms benign, malignant and unspecified (incl cysts and polyps)', ...]
 - [肝胆疾病,传染病和虫害侵扰性疾病,良性、恶性和未指定的肿瘤(包括囊肿和息肉)]

Examples of molecules

Needs for molecular property prediction

Drug discovery targets at finding new potential medical compounds with desired properties

Only a small amount of candidate molecules can pass virtual screening to be evaluated in the lead optimization stage

We only have few molecules with known pharmacological properties

Drug discovery and development timeline from [H. Matthews et al., Proteomes 2016]

Outline

- Background: Molecule property prediction (MPP)
- Preliminary: Few-shot learning (FSL)
 - Definition and Typical Scenario of Few-shot Learning
 - A Common Problem Formulation
 - Exemplar method: MAML
- Related works: FSL for MPP
- The proposed approach PAR
- Summary

Few-shot Learning

 Definition: A type of machine learning problems contains only a limited number of labeled examples Typical Scenarios:

Reducing data gathering effort and computational cost

Example: Image / Text Classification Labor Intensive / High Noise (few labeled images/texts) Learning for rare cases

Example: Drug Discovery
Dangerous / Private / Ethical
(few labeled drug molecules)

Shot: the number of labeled examples

A Common Problem Formulation of FSL

- Target: learning a predictor from **a set of prediction tasks** and generalize to solve new tasks with a few labeled examples
- Each task T_{τ} is a N-way K-shot classification task
 - Contains a support set S_{τ} , there are N*K examples
 - N-way: N different classes
 - K-shot: in each class we have K examples
 - Contains a query set Q_{τ}
 - Used for test
- Tasks are divided into meta-training tasks and meta-testing tasks

An example

Exemplar method: MAML

- Full name: Model-Agnostic Meta-Learning for Fast
 Adaptation of Deep Networks
- Model: a function $f(\theta)$ with parameters θ
- Two assumptions:
 - Gradient based model
 - The tasks we choose are similar

MAML: adaptation

----- Learning/adaption

- θ_1^* , θ_2^* , θ_3^* : best parameters for 3 tasks
- Target: find a good initialization so that θ can be adapted to tasks (train/test tasks)
- Requirement: the tasks are similar

Range of optimal parameters for all tasks

How to find θ ?

Baseline:

- Learn different θ_i from each tasks
- Average:
 - Lack of characteristics for each task
- Adaptation : fine-tune (gradient based)
 - $\theta' = \theta \alpha \nabla_{\theta} \mathcal{L}_{T_i}(f(\theta))$

MAML: fast

• For task T_i model's parameter θ become:

$$\theta_i' = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f(\theta))$$

• Learning objective:

$$\min_{\theta} \sum_{\mathcal{T}_i \sim P(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f(\theta_i')) = \sum_{\mathcal{T}_i \sim P(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i} \Big(f \Big(\theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i} \big(f(\theta) \big) \Big) \Big)$$

•
$$\nabla_{\theta} \left(f(\theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_{i}}(f(\theta)) \right) =$$

$$f' \left(\theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_{i}}(f(\theta)) \right) \left(1 - \alpha \nabla_{\theta\theta} \mathcal{L}_{\mathcal{T}_{i}}(f(\theta)) \right)$$

- Fast: update parameters only once
- Requirement: gradient based model

MAML: meta-learning process

- The meta-learner provides the initial value of parameters for each task and optimizes it through the accumulated loss of all tasks.
- Within each task, several steps of gradient descent are generalized to new tasks through training samples.

Algorithm 1 Model-Agnostic Meta-Learning

Require: $p(\mathcal{T})$: distribution over tasks

Require: α , β : step size hyperparameters

- 1: randomly initialize θ
- 2: **while** not done **do**
- 3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$
- 4: for all \mathcal{T}_i do
- 5: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ with respect to K examples
- 6: Compute adapted parameters with gradient descent: $\theta'_i = \theta \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$
- 7: **end for**
- 8: Update $\theta \leftarrow \theta \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta_i'})$
- 9: **end while**

MAML for few-shot learning

Algorithm 2 MAML for Few-Shot Supervised Learning

Require: $p(\mathcal{T})$: distribution over tasks **Require:** α, β : step size hyperparameters

- 1: randomly initialize θ
- 2: while not done do
- 3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$

K-shot for N classes

- 4: for all \mathcal{T}_i do
- 5: Sample K datapoints $\mathcal{D} = \{\mathbf{x}^{(j)}, \mathbf{y}^{(j)}\}$ from \mathcal{T}_i
- 6: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ using \mathcal{D} and $\mathcal{L}_{\mathcal{T}_i}$ in Equation (2) or (3)
- 7: Compute adapted parameters with gradient descent: $\theta'_i = \theta \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$
- 8: Sample datapoints $\mathcal{D}_i' = \{\mathbf{x}^{(j)}, \mathbf{y}^{(j)}\}$ from \mathcal{T}_i for the meta-update
- 9: **end for**
- 10: Update $\theta \leftarrow \theta \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta_i'})$ using each \mathcal{D}_i' and $\mathcal{L}_{\mathcal{T}_i}$ in Equation 2 or 3
- 11: end while

$$\mathcal{L}_{\mathcal{T}_i}(f_{\phi}) = \sum_{\mathbf{x}^{(j)}, \mathbf{y}^{(j)} \sim \mathcal{T}_i} \|f_{\phi}(\mathbf{x}^{(j)}) - \mathbf{y}^{(j)}\|_2^2, \qquad (2)$$
 (regression)

$$\mathcal{L}_{\mathcal{T}_{i}}(f_{\phi}) = \sum_{\mathbf{x}^{(j)}, \mathbf{y}^{(j)} \sim \mathcal{T}_{i}} \mathbf{y}^{(j)} \log f_{\phi}(\mathbf{x}^{(j)}) + (1 - \mathbf{y}^{(j)}) \log(1 - f_{\phi}(\mathbf{x}^{(j)}))$$
(3) (classification)

Algorithm 4 Meta-testing

Require: training data $\mathcal{D}_{\mathcal{T}}^{tr}$ for new task \mathcal{T}

Require: learned θ

- 1: Evaluate $\nabla_{\theta} \mathcal{L}(\theta, \mathcal{D}^{tr})$
- 2: Compute adapted parameters with gradient descent:

$$\theta_i = \theta - \alpha \nabla_{\theta} \mathcal{L}(\theta, \mathcal{D}^{tr})$$

Limitations

- Provides the same initialization for all tasks
 - Neglects task-specific information
 - Appropriate only when the set of tasks are all very similar
- Lack of mathematical strictness
- Refinement by a few gradient descent steps may not be reliable

Take-home message

- Basic concept in FSL:
 - Few labeled examples difficult to train a good model
 - Problem Formulation:
 - Learn a predictor from a set of tasks → n-way k-shot
- MAML: how to adapt to tasks?
 - Find a good initialization of θ so that θ can be adapted to tasks
- MAML: learning objective
 - Minimize the loss for all the tasks when we adapt θ to that particular task

Outline

- Background: Molecule property prediction (MPP)
- Preliminary: Few-shot learning (FSL)
- Related works: FSL for MPP
 - MPP: a Few-shot graph learning problems
 - Existing Work: IterRefLSTM
 - Existing Work: Meta-MGNN
- The proposed approach PAR
- Summary

MPP: a Few-shot graph learning problems

• Few-shot:

- Application scenario: even a hundred compounds is often too resource intensive for standard drug discovery campaigns
- Our datasets: more than half of the properties only are shared by fewer than 100 molecules across several datasets

Graph-learning:

- Graph based molecular representation learning methods are popularly used and obtain state-of-the-art performance.
- The paper 'MoleculeNet: a benchmark for molecular machine learning' shows the strength of graph models.

MPP: a common framework

Existing Work: IterRefLSTM

Motivation

- Adapt Matching Networks(one-shot learning) to handle molecular property prediction tasks with few training data
- Propose IterRefLSTM to modify Matching Networks architecture

Architecture modification in IterRefLSTM

Matching Networks

- $f(\hat{x}, S) = attLSTM(f'(\hat{x}), g(S), K)$
- $g(x|S) = BiLSTM(g'(x_1)| ... |g'(x_m))$

• Drawbacks:

- the order dependence in the support-embedding g
- The definition of $f(\hat{x}, S)$ relies on g

IterRefLSTM

- use an attLSTM to generate both query embedding f and support embedding g
- iteratively evolves both
 embeddings(f and g) simultaneously
- the output g is not related to the order of examples in the support set

Limitations

- Implement premature graph convolution approaches
- Neglect the relations between molecules in support set
 - Common points among positive examples
- Do not consider the differences between different properties
 - Iterative Refinement LSTMs do not take 'y' into consider

Existing Work: Meta-MGNN

Motivation:

 Combine MAML and preGNN for Molecular Property
 Prediction

• preGNN:

exploit the useful unlabeled information in graphs

Existing Work: Meta-MGNN

```
Algorithm 1: Meta-MGNN
     Require:{\mathcal{G}_{\tau}, \mathcal{Y}_{\tau}}: support data; {\mathcal{G}'_{\tau}, \mathcal{Y}'_{\tau}}: query data; \alpha, \beta:
                          step sizes (i.e., learning rates)
 1 \theta ← Pre-trained by PreGNN [10]
2 while not done do
             Sample batch of tasks \mathcal{T}_{\tau} \sim p(\mathcal{T})
             for all \mathcal{T}_{\tau} do
                     Sample k examples \{G_{\tau 1}, G_{\tau 2}, \cdots, G_{\tau k}\} \in \mathcal{G}_{\tau}
                     for i=1 to k do
                           y_{\tau i}, \mathbf{h}_{\tau i} = \text{GNN}(G_{\tau i}, \ \theta)
                                                                                                         support set
                     end
                    \mathbf{H}_{\tau} = \text{Mean} (\mathbf{h}_{\tau 1}, \mathbf{h}_{\tau 2}, \cdots, \mathbf{h}_{\tau k})
                     \mathcal{L}_{\tau} \leftarrow \text{Eq. (9)} \text{ with } \{y_{\tau 1}, y_{\tau 2}, \cdots, y_{\tau k}\}
                    \theta_{\tau}' = \theta - \alpha \nabla \mathcal{L}_{\tau}
11
                     Sample n examples \{G'_{\tau 1}, G'_{\tau 2}, ... G'_{\tau n}\} \in \mathcal{G}'_{\tau}
                    for j = 1 to n do
                           y'_{\tau j}, \mathbf{h}'_{\tau j} = \text{GNN}(G'_{\tau j}, \theta'_{\tau})
                                                                                                        query set
14
                     end
15
                    \mathcal{L}'_{\tau} \leftarrow \text{Eq. (9)} \text{ with } \{y'_{\tau 1}, y'_{\tau 2}, \cdots, y'_{\tau n}\}
16
             end
17
             \{\eta(\mathcal{T}_1), \cdots, \eta(\mathcal{T}_t)\} \leftarrow \text{Eq. (11) with } \{\mathbf{H}_1, \cdots, \mathbf{H}_t\}
             \theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_{\sigma} \sim p(\mathcal{T})} \eta(\mathcal{T}_i) \cdot \mathcal{L}_i'
20 end
```

 $\mathcal{L}_{\mathcal{T}_{\tau}}(\theta) = \mathcal{L}_{node}(\theta) + \lambda_1 \mathcal{L}_{edge}(\theta) + \lambda_2 \mathcal{L}_{label}(\theta)$

- Molecule representation:
 - GIN
 - preGNN: initial θ + loss function
- FSL methods:
 - Based on MAML
- Other designs:
 - Loss functions
 - Prediction loss
 - Bond reconstruction loss
 - Atom type prediction loss
 - Task-aware attention

Limitations

- Neglect the relations between molecules
 - Support set —— Query set
 - Relations molecules with the same property
- Networks designed for bond reconstruction or atom type prediction do not directly influence the property prediction
 - A waste of resource?

Take home message

MPP: a Few-shot graph learning problems

- Common framework
 - Molecules —(GNNs) → Molecular representations —(FSL approaches) → Label prediction
- Two related works
 - Follow the common framework
 - Both neglect the relations between molecules

Outline

- Background: Molecule property prediction (MPP)
- Preliminary: Few-shot learning (FSL)
- Related works: FSL for MPP
- The proposed approach PAR
 - Introduction of PAR
 - Experiments
- Summary

Review: a common framework of MPP

Motivation

Figure 1: Examples of relation graphs for the same molecules coexisting in two tasks of Tox21. Red (blue) edges mean the connected molecules are both active (inactive) on the target property.

Existing works neglect two key facts

- Different molecular properties are attributed to different molecule substructures
- Relationship among molecules also vary w.r.t. the target property

PAR Framework

We propose Property-Aware Relation networks (PAR)

Self-Attention

- Q, K, V: the same input
- Main applications:
 - Machine reading
 - Abstractive summarization
 - Image description generation
- In PAR: Relating different molecules together

Property-aware Molecular Embedding

As different molecular properties are attributed to different molecule substructures, we

- transform the generic molecular embeddings to substructure-aware space relevant to the target property
- contextualize each molecular embedding by dimensional wise comparing with class prototypes

trained from largescale tasks to capture generic information

$$\begin{aligned} \mathbf{b}_{\tau,i} &= \left[\texttt{softmax}(\mathbf{C}_{\tau,i} \mathbf{C}_{\tau,i}^{\top} / \sqrt{d^g}) \mathbf{C}_{\tau,i} \right]_{1:} \texttt{with } \mathbf{C}_{\tau,i}^{\top} &= \left[\mathbf{g}_{\tau,i}, \mathbf{c}_{\tau}^0, \mathbf{c}_{\tau}^1 \right] \in \mathbb{R}^{d^g \times 3} \\ \mathbf{p}_{\tau,i} &= \texttt{MLP}_{\mathbf{W}_p}(\texttt{concat}[\mathbf{g}_{\tau,i}, \mathbf{b}_{\tau,i}]) \end{aligned}$$

Self-attention step

 $\begin{aligned} \mathbf{b}_{\tau,i} &= \left[\texttt{softmax}(\mathbf{C}_{\tau,i} \mathbf{C}_{\tau,i}^{\top} / \sqrt{d^g}) \mathbf{C}_{\tau,i} \right]_{1:} \texttt{with } \mathbf{C}_{\tau,i}^{\top} = \left[\mathbf{g}_{\tau,i}, \mathbf{c}_{\tau}^0, \mathbf{c}_{\tau}^1 \right] \in \mathbb{R}^{d^g \times 3} \\ \mathbf{p}_{\tau,i} &= \texttt{MLP}_{\mathbf{W}_p}(\texttt{concat}[\mathbf{g}_{\tau,i}, \mathbf{b}_{\tau,i}]) \end{aligned}$

- $g_{ au,i}$: molecule representation after GNN
- $c_{ au,i}^1$: representative of active molecules
- $c_{ au,i}^0$: representative of inactive molecules
- $Q = K = V = [g_{\tau,i}, c_{\tau,i}^0, c_{\tau,i}^1]$

Static Graph Construction

Drawbacks:

- Extensive domain expertise
- Error-prone (e.g., noisy, incomplete)
 Sub-optimal
- End-to-end solution perhaps to be a better solution

Dynamic Graph Construction

Data points (e.g., words, sentences, documents)

Graph similarity metric learning

Strength in MPP:

- FSL: No need to worry about computing resource constraints
- Learn better molecular
 representations through known
 intermolecular property relationships

Fully-connected weighted graph

Learned graph

Relation Graph Learning

As relationship among molecules also vary w.r.t. the target property, we

- jointly estimate molecular relation graph and refine molecular embeddings w.r.t. the target property
- then can propagate limited labels efficiently between similar molecules

Training and Inference

Denote PAR as $f_{\theta,\tau}$

- $\theta = \{W_g, W_a, W_r\}$: parameters of molecular encoder and relation graph learning module
- $\Phi = \{W_p, W_c\}$: parameters of property-aware embedding function and classifier

We learn from a set of meta-training tasks a good initialized parameter

$$\min_{oldsymbol{ heta},oldsymbol{\Phi}}\sum
olimits_{ au=1}^{N_t}\mathcal{L}(\mathcal{Q}_{ au},f_{oldsymbol{ heta},oldsymbol{\Phi}_{ au}})$$

Within each task, we fix θ while fine-tune Φ as Φ_{τ}

Ground-truth labels

$$\mathcal{L}(\mathcal{S}_{\tau}, f_{\boldsymbol{\theta}, \boldsymbol{\Phi}}) = \sum_{(\mathbf{x}_{\tau, i}, y_{\tau, i}) \in \mathcal{S}_{\tau}} -\mathbf{y}_{\tau, i}^{\top} \cdot \log(\hat{\mathbf{y}}_{\tau, i}) + \underline{\|[\mathbf{A}_{\tau}^{*}]_{i:} - [\hat{\mathbf{A}}_{\tau}]_{i:}\|_{2}^{2}} \quad \boldsymbol{\Phi}_{\tau} = \boldsymbol{\Phi} - \alpha \nabla_{\boldsymbol{\Phi}} \mathcal{L}(\mathcal{S}_{\tau}, f_{\boldsymbol{\theta}, \boldsymbol{\Phi}})$$
classification loss neighbor alignment regularizer

to separately capture the generic knowledge shared across different tasks and those property-aware

PAR Framework

 $\theta = \{W_g, W_a, W_r\}$, generic knowledge $\Phi = \{W_p, W_c\}$, property-aware knowledge

Training and Inference

Denote PAR as $f_{\theta,\tau}$

- $\theta = \{W_g, W_a, W_r\}$: parameters of molecular encoder and relation graph learning module
- $\Phi = \{W_p, W_c\}$: parameters of property-aware embedding function and classifier

We learn from a set of meta-training tasks a good initialized parameter

$$\min_{oldsymbol{ heta},oldsymbol{\Phi}}\sum
olimits_{ au=1}^{N_t}\mathcal{L}(\mathcal{Q}_{ au},f_{oldsymbol{ heta},oldsymbol{\Phi}_{ au}})$$

Within each task, we fix θ while fine-tune Φ as Φ_{τ}

Ground-truth labels

$$\mathcal{L}(\mathcal{S}_{\tau}, f_{\boldsymbol{\theta}, \boldsymbol{\Phi}}) = \sum_{(\mathbf{x}_{\tau, i}, y_{\tau, i}) \in \mathcal{S}_{\tau}} -\mathbf{y}_{\tau, i}^{\top} \cdot \log(\hat{\mathbf{y}}_{\tau, i}) + \underline{\|[\mathbf{A}_{\tau}^{*}]_{i:} - [\hat{\mathbf{A}}_{\tau}]_{i:}\|_{2}^{2}} \quad \boldsymbol{\Phi}_{\tau} = \boldsymbol{\Phi} - \alpha \nabla_{\boldsymbol{\Phi}} \mathcal{L}(\mathcal{S}_{\tau}, f_{\boldsymbol{\theta}, \boldsymbol{\Phi}})$$
classification loss neighbor alignment regularizer

to separately capture the generic knowledge shared across different tasks and those property-aware

Comparison with related works

approaches	IterRefLSTMs	Meta-MGNN	PAR	
FSL methods	Matching Networks	MAML	MAML	
Property aware	×	×	✓	
Molecule relations	×	×	✓	
Selective update	×	×	✓	
Pretrain	×	✓	Optional	

Experiment setup

- Two sets of baselines
 - Methods with graph-based encoder learned from scratch including Siamese [Koch et al., 2015], ProtoNet [Snell et al., 2017], MAML [Finn et al., 2017], TPN [Liu et al., 2018], and EGNN [Kim et al., 2019], IterRefLSTM [Altae-Tran et al., 2017];
 - Methods which leverage pretained graph-based molecular encoder including Pre-GNN [Hu et al., 2019], Meta-MGNN [Guo et al., 2021], and Pre-PAR which is our PAR equipped with Pre-GNN.

Four datasets

Dataset	Tox21	SIDER	MUV	ToxCast
# Compounds	8014	1427	93127	8615
# Tasks	12	27	17	617
# Meta-Training Tasks	9	21	12	450
# Meta-Testing Tasks	3	6	5	167

FSL Results

Method	Tox21		SIDER		MUV		ToxCast	
	10-shot	1-shot	10-shot	1-shot	10-shot	1-shot	10-shot	1-shot
Siamese	$80.40_{(0.35)}$	$65.00_{(1.58)}$	$71.10_{(4.32)}$	51.43 _(3.31)	$59.96_{(5.13)}$	$50.00_{(0.17)}$	-	-
ProtoNet	$ 74.98_{(0.32)} $	$65.58_{(1.72)}$	$ 64.54_{(0.89)} $	$57.50_{(2.34)}$	$ 65.88_{(4.11)} $	$58.31_{(3.18)}$	$ 63.70_{(1.26)} $	$56.36_{(1.54)}$
MAML	$ 80.21_{(0.24)} $	$75.74_{(0.48)}$	$ 70.43_{(0.76)} $	$67.81_{(1.12)}$	$ 63.90_{(2.28)} $	$60.51_{(3.12)}$	$ 66.79_{(0.85)} $	$65.97_{(5.04)}$
TPN	$ 76.05_{(0.24)} $	$60.16_{(1.18)}$	$67.84_{(0.95)}$	$62.90_{(1.38)}$	$ 65.22_{(5.82)} $	$50.00_{(0.51)}$	$ 62.74_{(1.45)} $	$50.01_{(0.05)}$
EGNN	$ 81.21_{(0.16)} $	$79.44_{(0.22)}$	$ 72.87_{(0.73)} $	$70.79_{(0.95)}$	$ 65.20_{(2.08)} $	$62.18_{(1.76)}$	$ 63.65_{(1.57)} $	$61.02_{(1.94)}$
IterRefLSTM	$ 81.10_{(0.17)} $	$80.97_{(0.10)}$	$ 69.63_{(0.31)} $	$71.73_{(0.14)}$	$ 49.56_{(5.12)} $	$48.54_{(3.12)}$		-
PAR	$82.06_{(0.12)}$	$80.46_{(0.13)}$	$74.68_{(0.31)}$	$71.87_{(0.48)}$	$ 66.48_{(2.12)} $	$64.12_{(1.18)}$	$ 69.72_{(1.63)} $	$67.28_{(2.90)}$
Pre-GNN	$ 82.14_{(0.08)} $	$81.68_{(0.09)}$	$ 73.96_{(0.08)} $	$73.24_{(0.12)}$	$ 67.14_{(1.58)} $	$64.51_{(1.45)}$	$ 73.68_{(0.74)} $	$72.90_{(0.84)}$
Meta-MGNN	$ 82.97_{(0.10)} $	$82.13_{(0.13)}$	$ 75.43_{(0.21)} $	$73.36_{(0.32)}$	$ 68.99_{(1.84)} $	$65.54_{(2.13)}$		-
						$66.94_{(1.12)}$		$73.63_{(1.00)}$

- Pre-PAR consistently obtains the best performance
- PAR outperforms among methods without pretrained GNNs

Ablation Study

We further compare with

- w/o P: w/o property-aware embedding
- w/o context in P: w/o context $b_{\tau,i}$ in P
- w/o R: w/o adaptive relation graph learning
- w/ cos-sim in R: use cosine similarity to obtain the adjacency matrix
- w/o KNN in R: w/o reducing the learned relation graph to KNN graph
- w/o reg: w/o the neighbor alignment regularizer
- tune all: fine-tune all parameters

All components are vital to the success of PAR

PAR

Pre-PAR

10-shot tasks from Tox21

Varying Graph-based Molecular Encoders

We compare PAR with fine-tuning the encoder (denote as GNN)

- GIN [Xu et al., 2018] (used)
- GCN [Duvenaud et al., 2015]
- GraphSAGE [Hamilton et al., 2017]
- GAT [Veli*ckovi′c et al., 2017]

GIN is the consistently better than the others

PAR consistently outperforms GNN

10-shot

Case Study on 10 Molecules

Can PAR obtain different property-aware molecular embeddings and relation graphs for tasks containing overlapping molecules but evaluating different properties?

Table 5: The 10 molecules sampled from Tox21 dataset, which coexist in the three meta-testing tasks (the 10th task for SR-HSE, the 11th task for SR-MMP, and the 12th task for SR-p53).

Molecule			Label		
ID	SMILES	SR-HSE	SR-MMP	SR-p53	
Mol-1	Cc1cccc(/N=N/c2ccc(N(C)C)cc2)c1	0	1	0	
Mol-2	O=C(c1cccc1)C1CCC1	1	0	0	
Mol-3	C=C(C)[C@H]1CN[C@H](C(=O)O)[C@H]1CC(=O)O	0	0	1	
Mol-4	c1ccc2sc(SNC3CCCCC3)nc2c1	1	1	0	
Mol-5	C=CCSSCC=C	0	0	1	
Mol-6	CC(C)(C)c1cccc(C(C)(C)C)c1O	0	1	0	
Mol-7	C[C@@H]1CC2(OC3C[C@@]4(C)C5=CC [C@H]6C(C)(C)C(O[C@@H]7OC[C@@H] (O)[C@H](O)[C@H]7O)CC[C@@]67C[C@@]57CC[C@]4(C)C31)OC(O)C1(C)OC21	0	1	0	
Mol-8	O=C(CCCCCC(=O)Nc1ccccc1)NO	0	0	1	
Mol-9	CC/C=C\\C/C=C\\C/C=C\\CCCCCCC(=O)O	1	0	0	
Mol-10	Cl[Si](Cl)(c1ccccc1)c1ccccc1	0	1	0	

a fixed group of 10 molecules coexist in different metatesting tasks

Visualization

Figure 5: Comparison between \mathbf{A}_{τ}^* computed using ground-truth labels (the first row) and adjacency matrix \mathbf{A}_{τ} returned by PAR (the second row) for the ten molecules. We set $[\mathbf{A}_{\tau}^*]_{ij} = 1$ if molecules $\mathbf{x}_{\tau,i}$ and $\mathbf{x}_{\tau,j}$ have the same label and 0 otherwise.

Figure 6: t-SNE visualization of $\mathbf{g}_{\tau,i}$ (the first row), $\mathbf{p}_{\tau,i}$ (the second row), and $\mathbf{h}_{\tau,i}$ (the third row) of the ten molecules. Proto_active (proto_inactive) denotes the class prototype of active (inactive) class.

PAR can model property-aware molecular embeddings and relation graphs

Take home message

We propose Property-Aware Relation network (PAR) for few-shot molecular property prediction problem

- Models substructures and molecule relationships w.r.t the target property
- Adopts a selective-update training strategy to separately capture generic and property-aware knowledge
- Consistently outperforms the others

Summary

- Background: Molecule property prediction (MPP)
- Preliminary: Few-shot learning (FSL)
 - Difficulty; MAML
- Related works: FSL for MPP
 - IterRefLSTM, Meta-MGNN
- The proposed approach PAR

Future works

- Transfer learning across datasets
- Few-shot molecule regression
- MPP with other FSL structures
 - RelationNet, ...
- Design GNNs for better molecular representations

Thanks! Questions?