MODULE-5

NUMERICAL METHODS

Finite Differences

Let y = f(x) be represented by a table

x:	X0	X1	X2	X3	••••	Xn
y:	y o	y 1	y ₂	y ₃	•••	y _n

where x_0 , x_1 , x_2 x_n are equidistant. $(x_1 - x_0 = x_2 - x_1 = x_3 - x_2 = = x_n - x_{n-1} = h)$ We now define the following operators called the difference operators.

Forward difference operator (Δ)

Forward difference operator (Δ)

$$\Delta f(x) = f(x+h) - f(x)$$

$$\Delta y_r = y_{r+1} - y_r, r = 0, 1, 2, ..., n-1$$

$$\Delta y_0 = y_1 - y_0$$

$$\Delta y_1 = y_2 - y_1$$

$$\begin{cases}
\text{first forward differences}
\end{cases}$$

$$\Delta y_r = y_{r+1} - y_r, \ r = 0, 1, 2, ..., n-1$$

$$\Delta y_0 = y_1 - \bar{y}_0$$

$$\Delta y_1 = y_2 - y_1$$
 first forward differences
$$\Delta y_{n-1} = y_n - y_{n-1}$$

$$\Delta^2 y_0, \ \Delta^2 y_1, \ \Delta^2 y_2,, \text{are called the sec ond differences}$$

$$Now \ \Delta^2 y_0 = \Delta(\Delta y_0) = \Delta(y_1 - y_0)$$

$$= \Delta y_1 - \Delta y_0 = (y_2 - y_1) - (y_1 - y_0)$$

$$= y_2 - 2y_1 + y_0$$

$$|||^{ly} \qquad \Delta^2 y_1 = y_3 - 2y_2 + y_1$$

$$\Delta^2 y_r = y_{r+2} - 2y_{r+1} + y_r$$

Note:
$$\Delta^3 y_0 = y_3 - 3y_2 + 3y_1 - y_0$$

$$\Delta^{k} y_{r} = y_{r+k} - {}^{k} C_{1} y_{r+k-1} + {}^{k} C_{2} y_{r+k-2} - + \dots + (-1) {}^{k} Q_{r}^{r}$$

Difference Table

CHC	<u> </u>	DIC				
X	y	Δy	$\Delta^2 y$	Δ^3 y	$\Delta^4 y$	$\Delta^5 y$
X 0	y 0					
		Δy_0				
X1	y 1		$\Delta^2 \mathbf{y}_0$			
		Δy_1		$\Delta^3 \mathbf{y}_0$		
X2	y ₂		$\Delta^2 y_1$		$\Delta^4 y_0$	
		Δy_2		$\Delta^3 y_0$		
X 3	у3		$\Delta^2 y_2$			
		Δy_3				
X 4	y 4					

 Δy_0 , $\Delta^2 y_0$, $\Delta^3 y_0$,... are called the leading differences

Ex: The following table gives a set of values of x and the corresponding values of y = f(x)

x:	10	15 2	25	30	35
y:	19.97	21.51	2.47 23.	52 24.65	25.89

Form the difference table and find $\Delta f(10)$, $\Delta^2 f(10)$, $\Delta^3 f(20)$, $\Delta^4 f(15)$

X	У	Δ Δ^2	Δ^3	Δ^4	Δ^5
10	19.97	7			
		1.54			

15	21.51		-0.58			
		0.96		0.67		
20	22.47		0.09		-0.68	
		1.05		-0.01		0.72
25	23.52		0.08		0.04	
		1.13		0.03		
30	24.65		0.11			
		1.24				
35	25.89					

$$\Delta f(10) = 1.54, \, \Delta^2 f(10) = -0.58, \, \Delta^3 f(20) = 0.03, \, \Delta^4 f(15) = 0.04$$

Note: The nth differences of a polynomial of n the degree are constant

Backward difference operator (∇)

Let
$$y = f(x)$$

We define $\nabla f(x) = f(x) - f(x - h)$

i.e. $\nabla y_1 = y_1 - y_0 = \Delta y_0$

$$\nabla y_2 = y_2 - y_1 = \Delta y_1$$

$$\nabla y_3 = y_3 - y_2 = \Delta y_2$$

$$\nabla y_1 = y_1 - y_{n-1} = \Delta y_{n-1}$$

$$\nabla y_1 = y_1 - y_{n-1} = \Delta y_{n-1}$$

Note:

1. $\nabla f(x+h) = f(x+h) - f(x) = \Delta f(x)$

2. $\nabla^2 f(x+2h) = \nabla (\nabla f(x+2h))$

$$= \nabla \{f(x+2h) - f(x+h)\}$$

$$= \nabla f(x+2h) - f(x+h)$$

$$= f(x+2h) - f(x+h) + f(x+h) + f(x+h) + f(x+h)$$

$$= f(x+2h) - f(x+h) + f(x+h) + f(x+h) + f(x+h) + f(x+h)$$

$$= \Delta^2 f(x)$$

$$\| f(x+h) - f(x+h) - f(x+h) - f(x+h) - f(x+h) + f(x+h) + f(x+h) + f(x+h) + f(x+h) + f(x+h)$$

Backward difference table

X	у	∇y	$\nabla^2 y$	$\nabla^3 y$
X_0	y 0			
		∇y_1		
X ₁	y 1		$\nabla^2 y_2$	
		∇y_2		$\nabla^3 y_3$
X_2	y 2		$\nabla^2 y_3$	
		∇y_3		
X ₃	y 3			

1. Form the difference table for

X	40	50	60	70	80	90
y	184	204	226	250	276	304

find ∇y (30), $\nabla^2 y$ (70), $\nabla^5 y$ (90)

Soln:

Som.						
X	У	∇y	$\nabla^2 y$	$\nabla^3 y$	$\nabla^4 y$	$ abla^5 \mathbf{y}$
40	184		1	0,		
		20				
50	204		2			
		22		0		
60	226	41	2		0	
		24		0		0
70	250		2		0	
		26		0		
80	276		2			
		28				
90	304					

$$\nabla y (30) = 26, \nabla^2 y (70) = 2, \nabla^5 y (90) = 0$$

2. Given Construct the difference table and write the values of ∇f (4), $\nabla^2 f$ (4), $\nabla^3 f$ (3)

V I	(3)			
X	у	∇y	$\nabla^2 y$	$\nabla^3 \mathbf{y}$
0	4			
		8		
1	12		12	
		20		12
2	32		24	
		44		12
3	76		36	
		80		
4	156			

3) Find the missing term from the table:

X	0	1	2	3	4
y	1	3	9	-	81

Explain why the value obtained is different by putting x = 3 in 3^x .

Denoting the missing value as a, b, c. etc. Construct a difference table and solve.

X	у	Δy	$\Delta^2 y$	Δ^3 y	Δ^4 y
0	1	2			
1	3	6	4		
2	9	a - 9	a - 15	a - 19	-4a + 124
3	a	81 - a	81 - a	-3a +105	
4	81				

Put
$$\Delta^4 y = 0$$
 (assuming f(x) its be a polynomial of degree 3) i.e., -4a + $124 = 0$ $a = 31$

4) Given $u_1 = 8$, $u_3 = 64$,	$u_5 = 216$ find u	12 and u4

X	u	Δu	Δ^2 u	Δ^3 u
X ₁	8			
X2	a	a - 8	-2a + 72	b + 3a - 200
X ₃	64	64 - a	b + a - 128	-3b - a + 408
X4	b	b - 64	-2b + 280	
X5	216	216 -b		

We carryout upto the stage where we get two entries (: 2 unknowns) and equate each of those entries to zero. (Assuming) to be a polynomial of degree 2.

$$b + 3a - 200 = 0$$

-3b - a + 408 = 0 We get a = 24 b = 128

Interpolation:

The word interpolation denotes the method of computing the value of the function y = f(x) for any given value of x when a set $(x_0, y_0), (x_1, y_1), ... (x_n, y_n)$ are given.

Note:

Since in most of the cases the exact form of the function is not known. In such cases the function f(x) is replaced by a simpler function $\phi(x)$ which has the same values as f(x) for $x_0, x_1, x_2, ..., x_n$.

$$\begin{split} \phi(x) &= y_0 + u \Delta y_0 + \frac{u(u-1)}{2!} \Delta^2 y_0 + \frac{u(u-1)(u-2)}{3!} \Delta^3 y_0 + \\ &\quad + \frac{u(u-1)(u-2)...(u-n+1)}{n!} \Delta^n y_0 \end{split}$$

is called the Newton Gregory forward difference formula

Note:

- 1. Newton forward interpolation is used to interpolate the values of y near the beginning of a set of tabular values.
- 2. y_0 may be taken as any point of the table but the formula contains those values of y which come after the value chosen as y_0 .

Problems:

1) The table gives the distances in nautical miles of the visible horizon for the given heights in feet above the earths surface.

2)

x = height	100	150	200	250	300	350	400
y = distance	10.63	13.03	15.04	16.81	18.42	19.90	21.27

Find the values of y when i) x = 120, ii) y = 218

Solution:

X	y	Δ	Δ^2	Δ^3	Δ^4	Δ^5	Δ^6
100	10.63						
		2.40					
150	13.03		-0.39				
		2.01		0.15			
200	15.04		-0.24		-0.07		
		1.77		0.08	0	0.02	
250	16.81		-0.16	Ć	-0.05		0.02
		1.61		0.03	,	0.04	
300	18.42		-0.13	0.	-0.01		
		1.48	2	0.02			
350	19.90		-0.11				
		1.37					
400	21.27	1					

Choose
$$x_0 = 100$$

i) $x = 120$, $u = \frac{120 - 100}{50} = 0.4$

$$f(120) = 10.63 + \frac{0.4}{1!} (2.40) + \frac{(0.4)(0.4 - 1)}{2!} (-0.39)$$

$$+ \frac{(0.4)(0.4 - 1)(0.4 - 2)}{3!} (0.15)$$

$$+ \frac{(0.4)(0.4 - 1)(0.4 - 2)(0.4 - 3)}{4!} (-0.07)$$

$$+ \frac{(0.4)(0.4 - 1)(0.4 - 2)(0.4 - 3)(0.4 - 4)}{5!} (0.02)$$

$$+ \frac{(0.4)(0.4 - 1)(0.4 - 2)(0.4 - 3)(0.4 - 4)(0.4 - 5)}{6!} (0.02) = 11.649$$
ii) Let $x = 218$, $x_0 = 200$, $u = \frac{218 - 200}{50} = \frac{18}{50} = 0.36$

$$f(218) = 15.04 + 0.36(1.77) + \frac{0.36(-0.64)}{2} (-0.16)$$

$$+ \frac{0.36(-0.64)(-1.64)}{6} (0.03) + \dots$$

3) Find the value of f(1.85).

X	y	Δy	Δ^2 y	$\Delta^3 y$	$\Delta^4 y$	$\Delta^5 y$	$\Delta^6 y$
1.7	5.474						
		0.575)				
1.8	6.049	\(\sigma\)	0.062				
		0.637		0.004			
1.9	6.686	3	0.066		0.004		
	37	0.703		0.008		-0.004	
2.0	7.389		0.074		0		0.004
		0.777		0.008		0	
2.1	8.166		0.082		0		
		0.859		0.008			
2.2	9.025		0.090				
		0.949					
23	9.974						

Choose
$$x_0 = 1.8$$
, $x = 1.85$ $u = \frac{x - x_0}{h} = \frac{1.85 - 1.8}{0.1} = 0.5$
 $f(1.85) = 6.049 + (0.5)(0.637) + \frac{(0.5)(-0.5)}{2}(0.066)$
 $+ \frac{(0.5)(-0.5)(-1.5)}{6}(0.008)$
 $= 6.049 + 0.3185 - 0.0008 + 0.0005$
 $= 6.359$

4) Given $\sin 45^{\circ} = 0.7071$, $\sin 50^{\circ} = 0.7660$, $\sin 55^{\circ} = 0.8192$, $\sin 60^{\circ} = 0.8660$. Find $\sin 48^{\circ}$.

X	y	Δ	Δ^2	Δ^3
45	0.7071			
		0.589		
50	0.7660		-0.0057	
		0.0532		0.0007
55	0.8192		-0.0064	40
		0.0468		1007
60	0.8660			

$$x = 48$$
, $x_0 = 45$; $h = 5$ $u = \frac{x - x_0}{h} = 0.6$
 $\sin 48^\circ = 0.7071 + (0.6)(0.0589)$
 $+ \frac{(0.6)(-0.4)}{2}(-0.0057) + \frac{(0.6)(-0.4)(-1.4)}{6}(0.0007) = 0.7431$

5) From the following data find the number of students who have obtained ≤ 45 marks. Also find the number of students who have scored between 41 and 45 marks.

Marks	0 - 40	41 - 50	51 - 60	61 -70	71 - 80
No. of students	31	42	51	35	31
X	y		□2	□3	□4

40	31				
		42			
50	73		9		
		51		-25	
60	124		-16		37
		35		12	
70	159		-4		
		31			
80	190				

$$f(45) = 31 + (0.5) (42) + \frac{(0.5) (-0.5) 9}{2} + \frac{(0.5) (-0.5) (-1.5) (-25)}{3!} + \frac{(0.5) (-0.5) (-1.5) (-2.5)}{4!} (37) = 47.8672 \approx 48$$

f(45) - f(40) = 70 = Number of students who have scored between 41 and 45.

6) Find the interpolating polynomial for the following data: f(0) = 1, f(1) =

$$0, f(2) = 1, f(3) = 10.$$
 Hence evaluate $f(0.5)$

X	y	Δ	Δ^2	Δ^3
0	1		3	
		-1		
1	0		2	
		1		6
2	1		8	
		9		
3	10			

$$f(x) = 1 + x(-1) + \frac{x(x-1)}{2!}(2) + \frac{x(x-1)(x-2)}{3!}6 = x^3 - 2x^2 + 1$$

7) Find the interpolating polynomial for the following data:

x:	0	1	2	3	4
f (x):	3	6	11	18	27

X	y	Δ	Δ^2	Δ^3	Δ^4
0	3				
		3			
1	6		2		
		5		0	
2	11		2		0
		7		0	
3	18		2		
		9			
4	27				

$$u = \frac{x-0}{1} = x$$

$$f(x) = 3 + x(3) + \frac{x(x-1)}{2}(2) + \frac{x(x-1)}{x!}(0) = 3 + 2x + x^{2}$$

Newton Gregory Backward Interpolation formula

$$y = y_n + u \nabla y_n + \frac{u(u+1)}{2!} \nabla^2 y_n + \frac{u(u+1)(u+2)}{3!} \nabla^3 y_n + \dots$$
where $u = \frac{x - x_n}{h}$

1) The values of tan x are given for values of x in the following table. Estimate tan (0.26)

X	0.10	0.15	0.20	0.25	0.30
y	0.1003	0.1511	0.2027	0.2553	0.3093

X	y	∇	∇^2	∇^3	∇^4
0.10	0.1003				
		0.0508			
0.15	0.1511		0.0008		
		0.0516		0.0002	
0.20	0.2027		0.0010		0.0002
		0.0526		0.0004	
0.25	0.2553		0.0014		
		0.0540			
0.30	0.3093				

$$u = \frac{0.26 - 0.3}{0.05} = -0.8$$

$$f(0.26) = 0.3093 + (-0.8)(0.054) + \frac{(-0.8)}{2}(0.2)(0.0014) + \frac{(-0.8)(0.2)(1.2)}{6}(0.0004) = 0.2659$$

2) The deflection d measured at various distances x from one end of a cantilever is given by the following table. Find d when x = 0.95

$$u = \frac{0.95 - 1}{0.2} = -0.25$$
 $d = 0.3308$ when $x = 0.95$

X	d	∇	∇^2	∇^3	$ abla^4$	∇^5
0	0					
		0.0347				
0.2	0.0347		0.0479			
		0.0826		-0.0318		
0.4	0.1173		0.0161		0.0003	
		0.0987		-0.0321		-0.0003
0.6	0.2160		-0.016		0	
		0.0827		-0.032		
0.8	0.2987		-0.0481	90.		
		0.0346				
1.0	0.3333),		

3) The area y of circles for different diameters x are given below:

x:	80	85	90	95	100
y :	5026	5674	6362	7088	7854

X	y	∇y	$\nabla^2 \mathbf{y}$	$\nabla^3 \mathbf{y}$	$ abla^4 { m y}$
80	5026				
		648			
85	5674		40		
		688		-2	
90	6362		38		4
		726		2	
95	7088		40		
		766			
100	7854				

Answer:

$$u = \frac{x - x_n}{n} = -0.4$$

$$y = 7542$$

1) Find the interpolating polynomial which approximates the following data.

X	0	1	2	3	4
y	-5	-10	-9	4	35

X	y	∇	∇^2	∇^3	$ abla^4$
0	-5				
		-5			
1	-10		6		
		1		6	2
2	-9		12		0
		13		6)
3	4		18	2	
		31			
4	35		40		

$$u = \frac{x-4}{1}$$

$$f(x) = 35 + (x-4)(31) + (x-4)(x-3)\frac{18}{2!} + \frac{(x-4)(x-3)(x-2)(6)}{3!}$$

$$f(x) = x^3 + 2x^2 + 6x - 5$$

Interpolation with unequal intervals

Newton backward and forward interpolation is applicable only when $x_0, x_1,...,x_{n-1}$ are equally spaced. Now we use two interpolation formulae for unequally spaced values of x.

i) Lagranges formula for unequal intervals:

If y = f(x) takes the values $y_0, y_1, y_2, \dots, y_n$ corresponding to $x = x_0, x_1, x_2, \dots, x_n$ then

$$\begin{split} f(x) &= \frac{(x-x_1) \; (x-x_2)...(x-x_n)}{(x_0-x_1) \; (x_0-x_2)...(x_0-x_n)} f(x_0) \\ &+ \frac{(x-x_0) \; (x-x_2) \; (x-x_3)...(x-x_n)}{(x_1-x_0) \; (x_1-x_2) \; (x_1-x_3)...(x_1-x_n)} \; f(x_1) \\ &+ \frac{(x-x_0) \; (x-x_1) \; (x-x_3)...(x-x_n)}{(x_2-x_0) \; (x_2-x_1) \; (x_2-x_3)...(x_2-x_n)} \; f(x_2) + \\ &+ \frac{(x-x_0) \; (x-x_1) \; (x-x_2)...(x-x_{n-1})}{(x_n-x_0) \; (x_n-x_1) \; (x_n-x_2)...(x_n-x_{n-1})} \; f(x_n) \, \text{is known as the lagrange's interpolation formula} \end{split}$$

$$\Delta f(x_0) = \Delta y_0 = \frac{y_1 - y_0}{x_1 - x_0} = [x_0, x_1]$$

$$\Delta y_1 = \frac{y_2 - y_1}{x_2 - x_1} = [x_2, x_1]$$

$$\Delta y_{n-1} = \frac{y_n - y_{n-1}}{x_n - x_{n-1}} = [x_{n-1}, x_n]$$

ii) Divided differences (
$$\Delta$$
)
$$\Delta f(x_0) = \Delta y_0 = \frac{y_1 - y_0}{x_1 - x_0} = [x_0, x_1]$$

$$\Delta y_1 = \frac{y_2 - y_1}{x_2 - x_1} = [x_2, x_1]$$

$$\Delta y_{n-1} = \frac{y_n - y_{n-1}}{x_n - x_{n-1}} = [x_{n-1}, x_n]$$
second divided difference
$$\Delta^2 f(x_0) = \Delta^2 y_0 = \frac{\Delta y_1 - \Delta y_0}{x_2 - x_0}$$

$$= \frac{[x_2, x_1] - [x_1, x_0]}{x_2 - x_0} = [x_0, x_1, x_2]$$

$$\|^{\text{ly}} \ \Delta^2 \dot{y}_1 = \frac{\Delta y_2 - \Delta y_1}{x_3 - x_1} = \frac{[x_3, x_2] - [x_2, \, x_1]}{x_3 - x_1} = [x_1, \, x_2, \, x_3]$$

similarly $\Delta^3 y_0,...$ can be defined

Newton's divided difference interpolation formula

$$y = f(x) = y_0 + (x - x_0) \Delta y_0 + (x - x_0) (x - x_1) \Delta^2 y_0 + (x - x_0) (x - x_1)(x - x_2) \Delta^3 y_0$$

$$+...+(x-x_0)(x-x_1)...(x-x_n)\Delta^n y_0$$

is called the Newton's divided difference formula.

Note: Lagrange's formula has the drawback that if another interpolation value were inserted, then the interpolation coefficients need to be recalculated.

Inverse interpolation: Finding the value of y given the value of x is called interpolation where as finding the value of x for a given y is called inverse interpolation.

Since Lagrange's formula is only a relation between x and y we can obtain the inverse interpolation formula just by interchanging x and y.

$$\therefore x = \frac{(y - y_1) (y - y_2) ... (y - y_n)}{(y_0 - y_1) (y_0 - y_2) ... (y_0 = y_n)} x$$

$$+ \frac{(y - y_0) (y - y_0) (y - y_2) (y - y_3) ... (y - y_n)}{(y_1 - y_0) (y_1 - y_2) (y_1 - y_3) ... (y_1 - y_n)} x_1 + ...$$

$$+ \frac{(y - y_0) (y - y_1) ... (y - y_{n-1})}{(y_n - y_0) (y_n - y_1) ... (y_n - y_{n-1})} .x_n$$

is the Lagranges formula for inverse interpolation

1) The following table gives the values of x and y

x:	1.2	2.1	2.8	4.1	4.9	6.2
y:	4.2	6.8	9.8	13.4	15.5	19.6

Find x when y = 12 using Lagranges inverse interpolation formula. Using

Langrages formula

$$x = \frac{(y - y_1) (y - y_2) (y - y_3) (y - y_4) (y - y_5)}{(y_0 - y_1) (y_0 - y_2) (y_0 - y_3) (y_0 - y_4) (y_0 - y_5)} x_0$$

+....+
$$\frac{(y-y_0)(y-y_1)(y-y_2)(y-y_3)(y-y_4)}{(y_5-y_0)(y_5-y_1)(y_5-y_2)...(y_5-y_4)} x_4$$

= 0.022 - 0.234 +1.252 + 3.419 - 0.964 + 0.055
= 3.55

2) Given the values

x:	5	7	11	13	17
f (x):	150	392	1452	2366	5202

Evaluate f(9) using (i) Lagrange's formula (ii) Newton's divided difference formula.

i) Lagranges formula

$$f(9) = \frac{(9-7) (9-11) (9-13) (9-17)}{(5-7) (5-11) (5-13) (5-17)} (150) + \frac{(9-5) (9-11) (9-13) (9-17)}{(7-5) (7-11) (7-13) (7-17)} .392 + \frac{(9-5) (9-7) (9-13) (9-17)}{(11-5) (11-7) (11-13) (11-17)} (1452) + \frac{(9-5) (9-7) (9-11) (9-17)}{(13-5) (13-7) (13-11) (13-17)} (2366) + \frac{(9-5) (9-7) (9-13) (9-13)}{(17-5) (17-7) (17-11)} (17-13) (5202) = 810$$

$$f(9) = 810$$

		4			
5	150	139			
		121			
7	392		24		
		265		1	
11	1452		32		0
		457		1	
13	2366		42		
		709			
17	5202				

$$f(9) = 150 + 121(9 - 5) + 24(9 - 5)(9 - 7) + 1(9 - 5)(9 - 7)(9 - 11) = 810$$

3) Using i) Langranges interpolation and ii) divided difference formula. Find the value of y when x = 10.

x:	5	6	9	11
y :	12	13	14	16

i) Lagranges formula

$$y = f(10) = \frac{(10-6)(10-9)(10-11)}{(5-6)(5-9)(5-11)} \times 12 + \frac{(10-5)(10-9)(10-11)}{(6-5)(6-9)(6-11)} \times 13$$
$$+ \frac{(10-5)(10-6)(10-11)}{(9-5)(9-6)(9-11)} \times 14 + \frac{(10-5)(10-6)(10-9)}{(11-5)(11-6)(11-9)} \times 16$$
$$= \frac{44}{3}$$

Divided difference

X	у	Δ	Δ^2	Δ^3
5	12			
		1	CO,	
6	13	100	$\frac{2/3}{4} = \frac{-1}{6}$	
	.4	$\frac{1}{3}$		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
9	14		$\frac{2/3}{5} = \frac{2}{15}$	
		$\frac{2}{2} = 1$		
11	16			

$$f(10) = 12 + (10 - 5) + (10 - 5)(10 - 6)\left(-\frac{1}{6}\right) + (10 - 5)(10 - 6)(10 - 9)\left(\frac{1}{20}\right)$$
$$= \frac{44}{3}$$

4) If y(1) = -3, y(3) = 9, y(4) = 30, y(6) = 132 find the lagranges interpolating polynomial that takes the same values as y at the given points.

X	1	3	4	6
У	-3	9	30	132

$$f(x) = \frac{(x-3)(x-4)(x-6)}{(1-3)(1-4)(1-6)} \cdot (-3) + \frac{(x-1)(x-4)(x-6)}{(3-1)(3-4)(3-6)} \cdot 9$$

$$+ \frac{(x-1)(x-3)(x-6)}{(4-1)(4-3)(4-6)} \cdot 30 + \frac{(x-1)(x-3)(x-4)}{(6-1)(6-3)(6-4)} \cdot 132$$

$$= x^3 - 3x^2 + 5x - 6$$

5) Find the interpolating polynomial using Newton divided difference formula for the following data

X	0	1	2	5
y	2	3	12	147

X	у	Δ	Δ^2	Δ^3			
0	2	10					
		1					
1	3		4				
		9		1			
2	12		9				
		45					
5	147						

$$F(x) = 2 + (x - 0)(1) + (x - 0)(x - 1)(4) + (x - 0)(x - 1)(x - 2) 1$$

= $x^3 + x^2 - x + 2$

Numerical Integration:-

Numerical Integration:-

To find the value of $I = \int_{0}^{b} y \, dx$ numerically given the set of values (x_i, y_i) ,

i = 0,1,2,...,n at regular intervals.

(i) Simpson's one third rule:-

$$I = \frac{h}{3} [(y_0 + y_n) + 4(y_1 + y_3 + \dots + y_{n-1}) + 2(y_2 + y_4 + \dots + y_{n-2})]$$
when n is even

(ii) Simpson's three-eighth rule:-

$$I = \frac{3h}{8} [(y_0 + y_n) + 3(y_1 + y_2 + y_4 + y_5 + \dots + y_{n-1}) + 2(y_3 + y_6 + \dots + y_{n-3})]$$
when n is a multiple of 3.

(iii) Weddle's rule:-

$$I = \frac{3h}{10} [y_0 + 5y_1 + y_2 + 6y_3 + y_4 + 5y_5 + y_6 + \dots]$$

when n is a multiple of 6.

Problems:

1) Using Simpson's $\frac{1}{3}^{rd}$ rule evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ by dividing the interval (0,1) into 4 equal sub intervals and hence find the value of π correct to four decimal places.

Solution: Let us divide [0,1] into 4 equal strips (n=4)

$$\therefore \text{ length of each strip} \quad h = \frac{1-0}{4} = \frac{1}{4}$$

The points of division are $x = 0, \frac{1}{4}, \frac{2}{4} = \frac{1}{2}, \frac{3}{4}, \frac{4}{4} = 1$

By data
$$y = \frac{1}{1+x^2}$$

Now we have the following table.

X	0	1/4	1/2	3/4	1
$y = \frac{1}{1+x^2}$	1	16/17	4/5	16/25	1/2
	y_0	y_1	\mathcal{Y}_2	y_3	y_4

Simpson's
$$\frac{1}{3}^{nd}$$
 rule for $n = 4$ is given by
$$\int_{a}^{b} y dx = \frac{h}{3} \left[(y_0 + y_4) + 4(y_1 + y_3) + 2(y_2) \right]$$

$$\therefore \int_{0}^{1} \frac{1}{1 + x^2} dx = \frac{1/4}{3} \left[\left(1 + \frac{1}{2} \right) + 4 \left(\frac{16}{17} + \frac{16}{25} \right) + 2 \cdot \frac{4}{5} \right] = 0.7854$$
Thus
$$\int_{0}^{1} \frac{1}{1 + x^2} dx = 0.7854$$

To deduce the value of π : We perform theoretical integration and equate the resulting value to the numerical value obtained.

2) Given that

	X	4	4.2	4.4	4.6	4.8	5	5.2	
Ī	$\log x$	1.3863	1.4351	1.4816	1.5261	1.5686	1.6094	1.6487	

Evaluate
$$\int_{1}^{52} \log x \, dx$$
 using Simpson's $\frac{3}{8}^{th}$ rule

Solution: Simpson's rule for n = 6 is given by

$$\int_{a}^{b} y dx = \frac{3h}{8} \Big[(y_0 + y_6) + 3(y_1 + y_2 + y_4 + y_5) + 2(y_3) \Big]$$

$$\int_{4}^{52} \log_e x dx = \frac{3(0.2)}{8} \Big[(1.3863 + 1.6487) + 3(1.4351 + 1.4816 + 1.5686 + 1.6094) + 2(1.5261) \Big]$$

$$\int_{4}^{52} \log_e x dx = 1.8279$$

3) Using Weddle's rule evaluate $\int_0^1 \frac{x dx}{1+x^2}$ by taking seven ordinates and hence find $\log_e 2$

Solution: Let us divide [0,1] into 6 equal strips (since seven ordinates)

$$\therefore$$
 length of each strip: $h = \frac{1-0}{6} = \frac{1}{6}$

The points of division are $x = 0, \frac{1}{6}, \frac{2}{6} = \frac{1}{3}, \frac{3}{6} = \frac{1}{2}, \frac{4}{6} = \frac{2}{3}, \frac{5}{6}, \frac{6}{6} = 1$

By data
$$y = \frac{1}{1+x^2}$$

Now we have the following table

х	0	1/6	1/3	1/2	2/3	5/6	1
y = x	0	6/37	3/10	2/5	6/13	30/61	1/2
$1+x^2$							
	y_0	y_1	y_2	y_3	y_4	y_5	y_6

Weddle's rule for n = 6 is given by
$$\int_{0}^{b} y dx = \frac{3h}{10} [y_0 + 5y_1 + y_2 + 6y_3 + y_4 + 5y_5 + y_6]$$

$$\int_{0}^{1} \frac{x}{1 + x^2} dx = \frac{3(1/6)}{10} [0 + 5(6/37) + 3/10 + 6(2/5) + 6/13 + 5(30/61) + 1/2]$$

$$\int_{0}^{1} \frac{x}{1 + x^2} dx = 0.3466$$

To deduce the value of log_e2: We perform theoretical integration and equate the resulting value to the numerical value obtained.