Timing comparison

Michael Braun 2015-02-04

This vignette summarizes run times for sampling from, and computing the log density of, an MVN random variable using functions from the sparseMVN package (this one), and the mvtnorm package. For all of these tests, the covariance/precision matrices have the "block-arrow" structure of a hierarchical model with p heterogeneous variables across m units, and k population variables. The "using sparseMVN" vignettes describes this sparsity pattern in more detail.

The following function is called for each combination of N, m, k, p and prec.

```
require(plyr)
require(dplyr)
require(Matrix)
require(mvtnorm)
compare <- function(D) {</pre>
    N \leftarrow D$N \# number of draws
    p <- D$p ## heterogeneous variables
    k <- D$k ## population variables
    m <- D$m ## number of agents
    prec <- D$prec
    mu \leftarrow rep(0,p*m+k) ## assume mean at origin
    Q1 <- tril(kronecker(Matrix(seq(0.1,p,length=p*p),p,p),diag(m)))
    Q2 <- cBind(Q1,Matrix(0,m*p,k))
    Q3 <- rBind(Q2,cBind(Matrix(rnorm(k*m*p),k,m*p),Diagonal(k)))
    CV.sparse <- tcrossprod(Q3)
    CV.dense <- as(CV.sparse, "matrix") ## dense covariance
    ## creates a dCHMsimpl object
    chol.time <- system.time(chol.CV <- Cholesky(CV.sparse))</pre>
    if (prec) {
        solve.time <- system.time(sigma <- solve(CV.dense))</pre>
    } else {
        solve.time <- NA
        sigma <- CV.dense
    }
    ## draw random samples using rmvn.sparse
    tr.sp <- system.time(x.sp <- rmvn.sparse(N, mu, chol.CV,prec=prec))</pre>
    ## computing log densities using dmvn.sparse
    td.sp <- system.time(d.sp <- dmvn.sparse(x.sp, mu, chol.CV, prec=prec))
    ## computing same log densities using dmvnorm
    td.dens <- system.time(d.dens <- dmvnorm(x.sp,mu,sigma,log=TRUE))
```

```
## sampling a comparable matrix using rmvnorm
tr.dens <- system.time(x.dens <- rmvnorm(N, mu, sigma, method="chol"))

res <- data.frame(
    N=N, m=m, p=p, k=k, prec=prec, r.sparse=tr.sp["elapsed"],
    r.dense=tr.dens["elapsed"],
    d.sparse=td.sp["elapsed"],
    d.dense=td.dens["elapsed"],
    chol.time=chol.time["elapsed"],
    solve.time=solve.time["elapsed"],
    density.check=as.logical(all.equal(d.sp, d.dens))
)
return(res)
}</pre>
```

We set levels for each factor, and run multiple reps of compare, averaging across reps. For each test, we will draw, or compute the density for, N samples. The covariance or precision matrix will have a block-arrow structure, with m blocks. Each block is $p \times p$, and there are k variables in the "arrowhead," or margin, of the matrix.

Each rep is run in parallel using the doParallel package. You may need to change the method of parallelization or the number of cores.

Computation times (in seconds) were generated on a 2013-era Mac Pro, with 12 2.7GHz Xeon E5 processors and 64GB of RAM.

```
require(doParallel)
registerDoParallel(cores=12)
N <- 50 ## number of samples
m <- c(20, 200, 1000, 2000) ## number of heterogeneous units
p <- 3 ## size of each "block"
k <- 3 ## variables in the margin, or "arrowhead"
prec <- c(FALSE, TRUE) ## a covariance (FALSE) or precision (TRUE) matrix?</pre>
```

Now let's put the table together. First, let's compare times for sampling from an MVN, when providing a covariance matrix.

```
nels=(m*p+k)^2,
pct.nnz=nnz/nels
)
```

```
require(knitr)
tab.samp <- tmp %>% filter(stat %in% c("sample") & prec==FALSE) %>%
    select(-N) %>%
    select(m, pct.nnz, dense, sparse)
kable(tab.samp)
```

m	pct.nnz	dense	sparse	
20	0.138	0.007	0.005	
200	0.015	0.087	0.011	
1000	0.003	4.529	0.049	
2000	0.001	13.168	0.081	

We see that as the percentage of non-zero elements goes down, there is more time savings from using rmvn.sparse over rmvnorm.

There is a similar pattern when computing the log density.

```
tab.dens <- tmp %>% filter(stat %in% c("density") & prec==FALSE) %>%
    select(-N) %>%
    select(m, pct.nnz, dense, sparse)
kable(tab.dens)
```

m		pct.nnz	dense	sparse
20)	0.138	0.001	0.005
200)	0.015	0.082	0.033
1000)	0.003	2.884	1.921
2000)	0.001	7.599	6.409

These patterns hold if we were to provide the precision matrix instead of the covariance matrix. First, the random sampling times:

```
tab.samp <- tmp %>% filter(stat %in% c("sample") & prec==TRUE) %>%
    select(-N) %>%
    select(m, pct.nnz, dense, sparse)
kable(tab.samp)
```

	m	pct.nnz	dense	sparse	
	20	0.138	0.006	0.004	
	200	0.015	0.108	0.020	
	1000	0.003	5.252	1.326	
	2000	0.001	14.837	4.645	

And now, the log density times:

```
tab.dens <- tmp %>% filter(stat %in% c("density") & prec==TRUE) %>%
    select(-N) %>%
    select(m, pct.nnz, dense, sparse)
kable(tab.dens)
```

m pct.nnz		dense	sparse
20	0.138	0.002	0.005
200	0.015	0.083	0.006
1000	0.003	4.099	0.016
2000	0.001	11.909	0.021

The *sparseMVN* functions require a Cholesky decomposition of the covariance/precision matrix. However, the *mvtnorm* functions require a matrix inversion when converting a precision matrix to a covariance matrix. The following table summarizes the times of each of those steps. Of course, if we start with a covariance matrix, no inversion is necessary to use the *mvtnorm* functions.

```
tab2 <- tmp %>% filter(stat=="density") %>%
    select(prec, m, pct.nnz, cholesky, inverse) %>%
        arrange(prec, m)
kable(tab2)
```

prec	m	pct.nnz	cholesky	inverse
FALSE	20	0.138	0.000	NA
FALSE	200	0.015	0.000	NA
FALSE	1000	0.003	0.003	NA
FALSE	2000	0.001	0.006	NA
TRUE	20	0.138	0.000	0.001
TRUE	200	0.015	0.001	0.027
TRUE	1000	0.003	0.004	2.911
TRUE	2000	0.001	0.006	10.246

Thus, we see that the time needed for a sparse Cholesky decomposition is neglible, even for large matrices. However, the time it takes to create a dense covariance matrix by inverting a dense precision matrix can be quite substantial. Thus, if you are starting with a sparse precision matrix, the efficiency gains from using sparseMVN over mvtnorm also include the avoidance of this additional matrix inversion step.