Practice Questions

Computer System Architecture

INFO 119

Ques 1: Convert the following binary numbers to Decimal, Hexadecimal and Octal form:

- a. $(10\ 1101.\ 1101)_2$
- b. $(11111011.100101)_2$
- c. $(101101.1101)_2$

Ques 2: Perform the following operations?

- a. $(42)_{10}$ $(68)_{10}$
- b. (DDCC) 16 (BBAA)16
- c. $(723)_{8}$ $(237)_{8}$
- d. $(756)_8$ - $(637)_8$ + $(725)_{16}$
- e. $(193)_x = (623)_8$

Ques 3: Perform the subtraction using 1's complement method and 2's complement method.

- a. $(11010)_2 (10000)_2$
- b. $(1000100)_2 (1010100)_2$

Ques 4: Convert the following numbers to binary

- a. (12.0625)₁₀
- b. (41.375)₁₀

Ques 5:

- a. Perform following subtraction using 11's complement method (0011.1001) (0001.1110)
- b. Find the reduced POS form of the following equation

 $F(A,B,C,D) = \sum m(1,3,7,11,15) + \sum d(0,2,5)$. Implement using NAND logic.

Ques 6: Simply the following Boolean expressions using algebraic simplification:

- a. $AB + \overline{AC} + A \overline{B}C(AB + C)$
- b. $\overline{A}BC\overline{D} + BC\overline{D} + B\overline{C}\overline{D} + B\overline{C}D$

Ques 7: A 2 bit digital computer accepts two words $A = a_2 a_1$ and $B = b_2 b_1$ and gives three outputs G,E and L

- i) The output G is HIGH when A>B
- ii) The output E is HIGH when A=B
- iii) The output L is HIGH when A<B
- a) Write the truth table for this comparator
- b) Draw Karnaugh maps for G, L and E outputs and write SOP expressions for each.
- c) Draw the logic diagram for this comparator.

Ques 8: Design a combinational logic circuit that will generate the square of all the combinations of a three bit binary number represented by A_2 A_1 A_0

Ques 9:

- a. Use 7s complement method of subtraction to compute 516_8 413_8
- b. Use 8s complement method of subtraction to compute 316₈- 451₈
- c. Convert (615)₈ to hexadecimal equivalent.
- d. Convert $25B_H$ to its Octal equivalent.
- e. Add 3F B_H, 7 5 D_H, A 1 2_H and C 3 9_H

Ques 10:

- a. Use 16's complement method to subtract 3B 7_H 8 5 4_H
- b. Use 15s complement method of subtraction to compute B 0 $2_{\rm H}$ -9 8 $F_{\rm H}$
- c. Multiply 1110₂ 1010₂ using binary multiplication method.
- d. Divide 1 1 0 1 0 1 1 0 1₂ by 1 0 1₂
- e. Express the following numbers in sign magnitude 1's and 2's complement:

- **-56**
- **107**