

TRANSMISSION LINE MODELING

Lesson Summary:

- 1. Distributed Vs Lumped parameter model
 - 2. Short line Model
 - 3. Medium line Model
- 4. Long line Model:
 - 5. Voltage Regulation

A transmission line is cuted with length DX. Let Z= Impedance/untlength.

For both line & is negligible. So, we neglect conductance.

Lumped Parameter model:

For Simusoidal waves on overhead lines

A= c where c=3No8mls.

for softs frequency 1 = 6000km.

So, for 6000KM long tromp mission line distributed effect is considered when the line Length is <250 km then one can neglect the distributed effect and in this case distributed Notwork can be considered as Lunged 4/w i.e. we can make the Lunged Network of distributed N/w when transmission line <250 km otherwise not.

-> Once we make Lunged parameter 19/10 then it will be we can consider this transmission line like Two port Network.

A=D=1 pervnit

B=ZSL

C=OastSt

Phasor diagram for short line

(Lagging P.f)

In case of Leading Pf. the sending and Voltage magnitude.

Say be Lower than receiving end voltage magnitude.

For short line Vs = VR at No Load - (buz IR=0)

WEDIUM FINE WODEL

- · 80km Clength < 250km
 - · Capacitance can't be Neglected
 - · EAV or HV lines.

$$V_{S} = V_{R} + IZ = V_{R} + (I_{R} + V_{R}Y_{12})Z.$$

$$V_{S} = (1 + \frac{ZY}{2})V_{R} + ZI_{R}.$$

$$I_{S} = I_{R} + V_{R}\frac{Y}{2} + V_{S}\frac{Y}{2}$$

$$= I_{R} + V_{R}\frac{Y}{2} + (1 + \frac{YZ}{2})V_{R} + I_{R})\frac{Y}{2}$$

$$I_{S} = Y(1 + \frac{YZ}{2})V_{R} + (1 + \frac{YZ}{2})I_{R}$$

	Vs - 1+42/2 Z 7 Ve7
	Is I
	Y (1+ YZ) (1+ YZ)
	A=D= 1+YZ/2 Pervnit
	B=ZI
	c= Y(1+ 12) Sor st-1
THE S	Character No. 1
	VOLTAGE REGULATION
37	
The last	It tells us how much the voltage drop in the transmission line
	in terms of rated voltage or sending end voltage.
150	9/110 - 11/0
	1.VK = [re(hoload)] re(funroad) x100
	"/VR = [VR(hobord) - VR(fulload) x 100
210	7 01 1 0 0 1
	For Short-line VR (notoad) = Vs.
	For Made 11 1 - AV
	For Medium line Vernoboad = AVs
-	While designing a transmission line we must take correct UR i.e.
	VK must be less than 8-1010.
→	for Leading P.f., VR way be greater than Vs. If it becomes very
	For Leading P.f., VR may be greater than Vs. If it becomes vay high then it may damage the insulator of transmission line.
	ABCD Matrix
	(a) Series Impedance Z
	[127] · · · · · · · · · · · · · · · · · · ·
	(3) Shunt Admittance
	[10] =
	LY ŁJ
8000	

Conductance is neglected for 50-60Hz transmission line

SHIP & S

speration

Characteristic Impedance

Let voltage at a distance x from receiving end = V(x) Let voltage at a distance (X+aX) from receiving end= V(X+aX) By using KUL. · XAS WI + (X) V = (XA+X) V ZIW = (XX+XX) - VXX AX. ZI(x) = dV(x) By KCL · KAK (KATK) V + W) I = (KATK) I I(x) ID = (4) I(x) Taking lu ax+0, we have U(x+0x)= V(x). Differentiating Dw. r. 1 Xdevix) = Z delix) = Zy VIX). 22 V(x) = 0. V(x) = A12x + A2=3x NOH y= Jzy, md. 411x) = A1/eyx = - yA2e-xx = ZI(x). Ilx) = Aie - Aze-1x IN = AIEYX - AZE-YX
Ze where Zc = Z/4

B=Zcsmh(ye) sh

C=Ismh(YR) 5

characteristic Impedance = - D Veing Boundary condition. At x=0 V(0) = UR I(0) = IR = VR= AI+AZ IR = AI-AZ A1 = VR+ZcIR A2 = VR-ZcIR + (VR-Zask) = Ox. VR+ZcIR) exx 3 (exx+e-xx) VR + Zc (exx-e-xx) IR Cosh(AX) NB + I Comp(AX) IB ILX) = 1 Smh(YX) VR + cosh(YX) In (Y= & Gamma) U(x) - A(x) B(x) C(X) (K) a At sending end X=1 VS - AB VR Is CD IR A=D=Cosh(yl) Pervnit

26-15-15