Φ едеральное государственное автономное образовательное учреждение
высшего образования «Московский физико-технический институт
(национальный исследовательский университет)»

	Отчёт по л	абораторно	й ра	боты $4.3.2$	
Лифракция	когепентного	изпучения	нап	пероховатой	поверхности

Выполнил студент:

Сериков Василий Романович

группа: Б03-102

Аннотация

Цель работы:

Получение и исследование изображений стохастических дифракционных полей (спеклов), приобретение навыков обработки двумерных цифровых сигналов.

В работе используются:

Гелий-неоновый лазер, матовая пластинка, поляроид, цифровая камера, компьютер.

Теория:

Рис. 1: Схема получения спекл-картины: 1 — гелий-неоновый лазер, 2 — линза, 3 — рассеиватель, 4 — экран или фотокамера

Источником излучения служит He–Ne-лазер с длиной волны излучения 0,63 мкм. Пучок излучения, формируемый линзой, рассеивается на матовой стеклянной пластинке, на экране наблюдается спекл-картина рассеяния. В простых экспериментах можно исследовать зависимость спекл-картины от поперечного размера лазерного луча на рассеивателе: чем «острее» фокусировка, тем более крупные спеклы возникают на экране, и, наоборот, увеличение диаметра луча приводит к уменьшению размеров спеклов. При увеличении расстояния L2 между рассеивателем и экраном спеклы увеличиваются в размере.

Из качественного описания ясно, что вид спекл-картины определяется возмущениями фронта световой волны, вносимыми шероховатой рассеивающей поверхностью. Возмущения волнового фронта создаются случайной функцией h(x,y), поэтому для анализа этих возмущений необходимо

использовать статистические методы.

Гелий-неоновый лазер генерирует слабо расходящийся пучок света на длине волны $\lambda=0.63$ мкм. Можно принять, что на выходе из лазера пучок имеет плоский волновой фронт, а распределение интенсивности света в пучке описывается гауссовой функцией:

$$I_L(\mathbf{r}) = |E_L(\mathbf{r})|^2 = I_0 e^{-\frac{r^2}{\rho_L^2}},$$
 (1)

где ρ_L — поперечное расстояние от оси лазерного луча, на котором интенсивность уменьшается в е раз по сравнению с максимальной. На выходе лазера $\rho_L \approx 100$ мкм. Как известно, при распространении гауссова пучка его поперечный размер ρ_l увеличивается, но форма сохраняется. Линза, показанная на рис. 1, изменяет размер пучка, но не меняет его гауссовой формы. Матовая пластинка, стоящая на пути лазерного луча, вносит поперечную неоднородность в световое поле и значительно увеличивает угловую расходимость пучка. Когерентное лазерное излучение преобразуется матовой поверхностью в поперечно-некогерентное.

Согласно определению, корреляционной функцией Ψ является функция

$$\Psi_h(\rho) = \langle h(r)h(r+\rho)\rangle - \langle h(r)\rangle^2 \tag{2}$$

где ρ - смещение относительно точки r, скобки <...> означают усреднение по всем точкам поверхности. Функция показывает, насколько в среднем изменяется величина h. при смещении из данной точки на расстояние ρ , Другими словами, насколько значение h(r) и $h(r+\rho)$ скоррелированы между собой. Для однородной пластинки функция Ψ не зависит оп выбора точки r, а определяется только величиной смещения ρ , т. е. $\Psi_h = \Psi_h(\rho)$. Общие соображения позволяют представить качественно вид функции $\Psi h(\rho)$. При $\rho=0$ значения h(r) и $h(r+\rho)$ одинаковы, т. е. их корреляция наибольшая, а функция $\Psi_h(\rho)$ достигает максимума (в этом случае $\Psi_h(\rho) = \langle h^2(r) \rangle - (\ell(r))^2 = \sigma_h^2$, согласно определению дисперсии). При больших значениях ρ в силу случайного характера функции b значения h(r) п h(r+p) оказываются независимыми и функция $\Psi(p) \to 0$. Таким образом, функция $\Psi_h(\rho)$ должна достигать максимального значения при $\rho=0$ ѕ уменьшаться с ростом ρ . Обычно хорошим приближением дли корреляционной функции $\Psi_h(\rho)$ является функция Гаусса:

$$\Psi h(p) = \sigma_{h,e}^2 e^{-\frac{\Delta^2}{p_h^2}}$$

где ρ_h - характерное расстояние, называемое радиусом корреляции, на котором функция корреляции уменьшается в е раз.

Ход работы:

1. Получим изображения спеклов, полученных через матовую пластинку. По полученным фотографиям рассчитаем с помощью программы «Индикатриса» следующие параметры: радиус индикатрисы рассеяния ρ_h , параметр шероховатости ζ .

$$\rho_h = d \cdot m$$

$$\zeta:=rac{
ho_h}{2\cdot L_2\cdot (n_\lambda-1)},\,\,n_\lambda=1,5$$
 - показатель преломления стекла

L_1 , MM	L_2 , MM	т, пиксель	ρ_h , MM	ζ	d, мм
20	20	493	2,317	0,116	$4.7 \cdot 10^{-3}$
30	20	514	2,416	0,121	4,1.10

Таблица 1: Полученные значения ρ_h и ζ

2. С помощью программы "Корреляция"
узнаем радиус корреляции ρ_c и оценим радиуса лазерного пучка
 ρ_L по полученным данным.

$$ho_L = rac{\lambda L_2}{\sqrt{2}\pi
ho_c}, \lambda = 630$$
нм

L_1 , MM	L_2 , MM	т, пиксель	ρ_c , MM	d, мм
20	20	4	0,019	
20	40	7	0,033	
20	60	10	0,047	
20	80	13	0,061	$4,7.10^{-3}$
30	20	3	0,014	
30	40	6	0,028	
30	60	8	0,038	

Таблица 2: Полученные значения ho_c

Рис. 2: График зависимости $\rho_c(L_2)$ и значения радиуса лазерного пучка