COM4511 Speech Technology: Advanced Acoustic Models

Anton Ragni

Statistical Speech Recognition

- ▶ Given a parameterised audio sequence, infer the underlying latent representation
 - ightharpoonup parameterised audio: sequences of feature vectors $oldsymbol{O}_{1:T} = oldsymbol{o}_1, \dots, oldsymbol{o}_T$
 - ightharpoonup latent representation: sequences of words $\mathbf{w}_{1:L} = w_1, \dots, w_L$
- Options for inference
 - maximum-a-posteriori

$$oldsymbol{w}^* = rg \max_{oldsymbol{w}} \left\{ P(oldsymbol{w} | oldsymbol{O}_{1:T})
ight\}$$

- yields most probable sequence of words (sentence-level)
- minimum Bayes' risk

$$m{w}^* = rg \min_{m{w}} \left\{ \sum_{m{w}'} P(m{w}' | m{O}_{1:T}) \mathcal{L}(m{w}, m{w}')
ight\}$$

- yields sequence of words with the smallest expected loss (word or character level)
- ► Need to know:
 - ▶ how to model the posterior and perform inference (search)

Anton Ragni

Posterior Probability Modelling

► Generative approach models posterior indirectly

$$P(\boldsymbol{w}_{1:L}|\boldsymbol{O}_{1:T}) = \frac{1}{p(\boldsymbol{O}_{1:T})}p(\boldsymbol{O}_{1:T}|\boldsymbol{w}_{1:L})P(\boldsymbol{w}_{1:L})$$

- ▶ standalone acoustic model $p(\mathbf{O}_{1:T}|\mathbf{w}_{1:L})$
- Discriminative approach models posterior directly
 - acoustic model is integrated into posterior integrated or end-to-end approaches
 - BUT so is the language model
- Both approaches model the posterior probability
 - what is the difference? which one is better?

Anton Ragni

State of The Art in Generative Modelling — All Variants of HMM					
	~ 1980	GMM-HMM	L. R. Rabiner, "A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition", Proc IEEE, 1989		
	~ 2000	Tandem (FFNN)	H. Hermansky <i>et al</i> , "Tandem Connectionist Feature Extraction for Conventional HMM systems", Proc ICASSP, 2000		
	~ 2010	Hybrid (FFNN)	G. Hinton <i>et al</i> , "Deep Neural Networks for Acoustic Modeling in Speech Recognition", IEEE Sig Proc Mag, 2012		
	~ 2013	Hybrid (RNN)	H. Sak <i>et al</i> , "Long Short-Term Memory Recurrent Neural Network Architectures for Large Scale Acoustic Modeling", Proc Interspeech, 2014		
	~ 2015	Hybrid (CNN and RNN)	T. Sainath <i>et al</i> , "Convolutional, Long Short-Term Memory, fully connected Deep Neural Networks", Proc ICASSP, 2015 V. Peddinti <i>et al</i> , "Low latency acoustic modeling using temporal convolution and LSTMs", IEEE Sig Proc Let, 2018		
	~ 2018	Hybrid (CNN)	D. Povey, "Semi-Orthogonal Low-Rank Matrix Factorization for Deep Neural Networks", Proc Interspeech, 2018		

- ▶ Observations conditionally independent of other observations given state
- ▶ States conditionally independent of other states given past state

$$p(\mathbf{O}_{1:T}|\boldsymbol{w}_{1:L}) = \sum_{\boldsymbol{q}_{1:T} \in \boldsymbol{Q}_{1:T}^{(\boldsymbol{w}_{1:L})}} \prod_{t=1}^{T} p(\boldsymbol{o}_t|q_t) P(q_t|q_{t-1})$$

- ightharpoonup transition probabilities, $P(q_t|q_{t-1})$, probability mass functions (discrete distributions)
- ightharpoonup output distributions, $p(o_t|q_t)$, probability density functions (continuous distributions)

Gaussian Mixture Models

► Form of probability density function

$$p(oldsymbol{o}|q) = \sum_{m=1}^{M} c_m \mathcal{N}(oldsymbol{o}; oldsymbol{\mu}_m, oldsymbol{\Sigma}_m)$$

- lacktriangle mixture "weights" $c_{1:M}$ such that $c_m \geq 0$ for all m and $\sum_{m=1}^M c_m = 1$
- how many parameters are in the model?
- ▶ Simple form of Gaussian distribution enables easy adjustment
 - > speakers, noise and environment, e.g. maximum likelihood linear regression

$$oldsymbol{\mu}_m^{(s)} = oldsymbol{A}^{(s)} oldsymbol{\mu}_m + oldsymbol{b}^{(s)}, \quad oldsymbol{\Sigma}^{(s)} = oldsymbol{H}^{(s)^{\mathsf{T}}} oldsymbol{\Sigma}_m oldsymbol{H}^{(s)}$$

decision boundary, e.g., maximum mutual information

$$\mathcal{L}(\mathcal{D}; \boldsymbol{\theta}) = -\frac{1}{|\mathcal{D}|} \sum_{(\boldsymbol{w}, \boldsymbol{O}) \in \mathcal{D}} \log(P(\boldsymbol{w}|\boldsymbol{O}))$$

Feed-forward neural network

$$\mathbf{h}^{(l)} = \phi^{(l)}(\mathbf{A}^{(l)}\mathbf{h}^{(l-1)} + \mathbf{b}^{(l)})$$

- initialise $\boldsymbol{h}^{(0)} = \boldsymbol{o}$, terminate $P(q = i | \boldsymbol{o}) = h_i^{(L)}$, $\phi^{(L)}$ softmax, $\phi^{(I < L)}$ sigmoid/ReLU
- ► Augment hand-crafted features with features learnt by the neural network
 - options available what data to use (matched, mismatched, multi-lingual)
- BUT learnt features may be correlated
 - if Gaussians with diagonal covariance matrices used need to decorrelate

$$\hat{m{o}} = egin{bmatrix} m{I} & m{I} \ m{I} & m{S} \end{bmatrix} m{o} \ m{h}^{(I)}$$

- ▶ Use feed-forward neural network to predict HMM state posteriors
 - efficient use of parameters (c.f. decision trees)
 - enables complex forms of classifiers (c.f. lecture on neural networks)
 - less sensitive to correlated features (c.f. MFCC)
- ▶ Possible to integrate into generative and discriminative sequence models
 - generative: HMM (discussed later)
 - discriminative: CTC (discussed later)
- ▶ Other types of neural networks are currently more popular
 - recurrent neural network, convolutional neural network and their combinations

Recurrent Neural Networks

Introduce dependence on all past observations using learnt history representation

$$P(m{q}_{1:T}|m{O}_{1:T}) = \prod_{t=1}^{I} P(q_t|m{q}_{1:t-1},m{O}_{1:T}) pprox \prod_{t=1}^{I} P(q_t|m{O}_{1:t}) pprox \prod_{t=1}^{I} P(q_t|m{h}_t)$$
 (1)

- assumes future observations are of no use
- ▶ Use another recurrent cell to condition on future observations (bi-directional RNN)

$$P(\boldsymbol{q}_{1:T}|\boldsymbol{O}_{1:T}) \approx \prod_{t=1}^{T} P(q_t|\overrightarrow{\boldsymbol{h}}_t, \overleftarrow{\boldsymbol{h}}_t)$$

BUT states remain conditionally independent

Recurrent Units

- ► Simple recurrent unit is known to have unstable behaviour
 - ▶ use "gates" to pass or block

$$m{g}_t = m{\sigma}(m{A}^{(g)}m{o}_t + m{C}^{(g)}m{h}_{t-1} + m{b}^{(g)}),$$
 where σ is a sigmoid

► Multiple "smart" recurrent units can be devised, e.g. GRU

$$\mathbf{h}_t = \mathbf{g}_t^{(u)} \odot \mathbf{h}_{t-1} + (\mathbf{1} - \mathbf{g}_t^{(u)}) \odot \phi(\mathbf{Ao}_t + \mathbf{C}(\mathbf{g}_t^{(r)} \odot \mathbf{h}_{t-1}) + \mathbf{b})$$

Anton Ragni

Time-Delay Neural Networks Models

- ▶ Long-term dependency modelling using standard networks is challenging
 - ► feed-forward models are highly inefficient
 - recurrent models are hard to train (full history, instability)
- ► Use a sub-sampled pyramidal structure to increase scope of possible dependencies
 - ► sharing parameteres in each layer is akin to a filter (convolutional network!)

Integration with HMMs

► Feed-forward types inherit standard conditional independence assumptions

$$p(\boldsymbol{O}_{1:T}|\boldsymbol{q}_{1:T}) = \prod_{t=1}^{T} p(\boldsymbol{o}_{t}|\boldsymbol{O}_{1:t-1},\boldsymbol{q}_{1:T}) \approx \prod_{t=1}^{T} p(\boldsymbol{o}_{t}|q_{t}) = \prod_{t=1}^{T} \underbrace{P(q_{t}|\boldsymbol{o}_{t})}_{P(q_{t})} p(\boldsymbol{o}_{t})$$

▶ Recurrent types relax conditional independence assumptions of observations

$$p(\boldsymbol{O}_{1:T}|\boldsymbol{q}_{1:T}) = \prod_{t=1}^{T} p(\boldsymbol{o}_{t}|\boldsymbol{O}_{1:t-1},\boldsymbol{q}_{1:T}) \approx \prod_{t=1}^{T} p(\boldsymbol{o}_{t}|\boldsymbol{O}_{1:t-1},q_{t}) = \prod_{t=1}^{T} \underbrace{\frac{P(q_{t}|\boldsymbol{O}_{1:t})}{P(q_{t}|\boldsymbol{O}_{1:t-1})}}_{P(q_{t}|\boldsymbol{O}_{1:t-1})} \underbrace{\frac{P(q_{t}|\boldsymbol{O}_{1:t-1})}{P(q_{t}|\boldsymbol{O}_{1:t-1})}}_{P(q_{t}|\boldsymbol{O}_{1:t-1})}$$

▶ BUT not the assumptions about states

State of The Art in Discriminative Modelling

			3
~ 2010	SCRF/CAug	G. Zweig et al, "A Segmental CRF Approach to Large Vocabulary Con-	
		tinuous Speech Recognition", ASRU, 2009	
		A. Ragni et al, "Derivative kernels for noise-robust ASR", ASRU, 2011	
\sim 2012	СТС	A. Graves et al, "Towards End-to-End Speech Recognition with Recur-	_
		rent Neural Networks", ICML, 2014	
~ 2014	Encoder-Decoder	I. Sutskever, "Sequence to Sequence Learning with Neural Networks",	_
		NIPS, 2014	
\sim 2016	Attention	W. Chan, "Listen, Attend and Spell", ICASSP, 2016	_
~ 2018	RNN-Transducer	Y. He et al, "Streaming end-to-end speech recognition for mobile de-	=
		vices", ICASSP, 2019	
~ 2018	Transformer	A. Zayer et al, "A Comparison of Transformer and LSTM Encoder	=
		Decoder Models for ASR" ASRU 2019	

▶ Direct approach to using neural network for character sequence prediction

$$P(\mathbf{w}_{1:L}|\mathbf{O}_{1:T}) pprox \sum_{\mathbf{q}_{1:T} \in \mathbf{Q}^{(\mathbf{w}_{1:L})}} P(\mathbf{q}_{1:T}|\mathbf{O}_{1:T}) pprox \sum_{\mathbf{q}_{1:T} \in \mathbf{Q}^{(\mathbf{w}_{1:L})}} \prod_{t=1}^{r} P(q_t|\mathbf{h}_t)$$

- relaxes assumptions about observations but not about latent variables
- possible to use MEMM (HMM) style forward-backward algorithm
- ▶ Need to decide on the form of latent variable model (LVM)
 - ▶ only need to be able to generate latent variable sequences options available?

Example: MEMM/HMM Latent Variable Model

- ► Latent variable model "rules"
 - 1. each symbol must appear at least once
 - 2. symbol order must be preserved
 - 3. must have mechanism to track symbol changes
- Siven character sequence w_1 , w_2 , w_2 , w_3 , possible latent variable sequences are

Given character sequence $W_1, W_2, W_2, W_3, possib$		
	Length (T)	Latent Variable Sequences $q_{1:T}$
	4	$w_1, w_2, w_2, w_3; \dots$
	5	$w_1, w_2, w_2, w_3; \dots$
	6	$w_1, w_2, w_2, w_2, w_3; \dots$
	7	$w_1, w_2, w_2, w_2, w_2, w_2, w_3; \dots$
	8	$w_1, w_2, w_2, w_2, w_2, w_2, w_2, w_3; \dots$
	9	$w_1, w_1, w_2, w_2, w_2, w_2, w_2, w_3; \dots$
	:	
	•	• • •

- explicit start/end states enable to know symbol boundaries
- write a regular expression to express all possible latent variable sequences

Example: CTC "Latent Variable Model"

- ► Two observations can be made about latent variable handling in MEMM/HMM
 - symbol change is ambiguous only for two identical symbols
 - forcing each q_t to take one of $\mathbf{w}_{1:L}$ values may be problematic
- \blacktriangleright Introduce a new symbol ϵ to play the role of a delimiter and an uncertain symbol
 - encourage each q_t to take values in $\mathbf{w}_{1:L}$ only if highly certain
 BUT has to artificially enforce ϵ between two identical symbols
- Given character sequence w₁, w₂, w₂, w₃, possible latent variable sequences are

write a regular expression to express all possible latent variable sequences

Length (T)	Latent Variable Sequences $oldsymbol{q}_{1:T}$
4	_
5	$w_1, w_2, \epsilon, w_2, w_3; \dots$
6	$w_1, \epsilon, w_2, \epsilon, w_2, w_3; \dots$
7	$w_1, \epsilon, \epsilon, w_2, \epsilon, w_2, w_3; \dots$
8	$w_1, w_1, \epsilon, \epsilon, w_2, \epsilon, w_2, w_3; \dots$
9	$w_1, w_1, \epsilon, \epsilon, w_2, \epsilon, w_2, w_3, w_3; \dots$
no need to	have an explicit latent variable mode

Recurrent Neural Network Transducer (RNN-T)

▶ Break conditional independence assumption among latent variables

$$P(oldsymbol{w}_{1:L}|oldsymbol{O}_{1:T}) pprox \sum_{oldsymbol{q}_{1:T} \in oldsymbol{Q}^{(oldsymbol{w}_{1:L})}} \prod_{t=1}^T P(q_t|oldsymbol{q}_{1:t-1}, oldsymbol{O}_{1:t}) pprox \sum_{oldsymbol{q}_{1:T} \in oldsymbol{Q}^{(oldsymbol{w}_{1:L})}} \prod_{t=1}^T P(q_t| ilde{oldsymbol{h}}_t, oldsymbol{h}_t)$$

reported to yield competitive performance given large amounts of data

Encoder-Decoder

Predict next word using recursion

$$ilde{m{h}}_l = \phi(ilde{m{h}}_{l-1}, w_{l-1})$$

Options for setting $\tilde{\textbf{\textit{h}}}_0$:

- use output of another recursion
 - $oldsymbol{h}_{\mathcal{T}} = \phi(oldsymbol{h}_{\mathcal{T}-1}, oldsymbol{o}_{\mathcal{T}})$
- ▶ name other common options
- ▶ Use recurrent units to handle variable length observation and word sequences

$$P(\mathbf{w}_{1:L}|\mathbf{O}_{1:T}) = \prod_{l=1}^{L} P(w_l|\mathbf{w}_{1:l-1},\mathbf{O}_{1:T}) \approx \prod_{l=1}^{L} P(w_l|\mathbf{w}_{1:l-1},\mathbf{h}_T) \approx \prod_{l=1}^{L} P(w_l|\tilde{\mathbf{h}}_l)$$

- lacktriangle encoder: maps observation sequence $m{O}_{1:T}$ to fixed length representation $m{h}_T$
- ightharpoonup decoder: generates word sequence $w_{1:L}$ given h_T
- ▶ BUT hard to ensure relevant information propagated/used for prediction

Attention

Position-dependent history

$$m{c}_l = \sum_{t=1}^T lpha_{l,t} m{h}_t, \quad ext{where} \quad lpha_{l,t} = rac{ ext{exp}(m{z}_{l,t})}{\sum_{t=1}^T ext{exp}(m{z}_{l,t})}$$

Unnormalised attention weights

$$z_{l,t} = oldsymbol{d}^\mathsf{T} \phi(oldsymbol{A} ilde{oldsymbol{h}}_{l-1} + oldsymbol{C} oldsymbol{h}_t)$$

- ▶ "IR": query $\tilde{\mathbf{h}}_{l-1}$, key \mathbf{h}_t , values $\mathbf{h}_{1:T}$ (other forms possible)
- ► Improve encoder-decoder by position-dependent input representation

$$P(\mathbf{w}_{1:L}|\mathbf{O}_{1:T}) = \prod_{l=1}^{L} P(w_l|\mathbf{w}_{1:l-1},\mathbf{O}_{1:T}) \approx \prod_{l=1}^{L} P(w_l|\mathbf{w}_{1:l-1},\mathbf{c}_l) \approx \prod_{l=1}^{L} P(w_l|\tilde{\mathbf{h}}_l)$$

reported to yield competitive performance given large amounts of data

Transformer (Not a movie!)

- ► Replace all recurrent units with attention
 - multi-head attention: multiple parallel mechanisms to increase modelling power
 - positional encoding: add positional offset to encode temporal information

$$P(\mathbf{w}_{1:L}|\mathbf{O}_{1:T}) = \prod_{l=1}^{L} P(w_l|\mathbf{w}_{1:l-1},\mathbf{O}_{1:T}) \approx \prod_{l=1}^{L} P(w_l|\mathbf{w}_{1:l-1},\mathbf{c}_{1:T}) \approx \prod_{l=1}^{L} P(w_l|\tilde{\mathbf{c}}_l)$$

▶ Reported to yield competitive performance given large amounts of data

Integration with External Language Models

► Generative approaches provide a natural framework to integrate language models

$$P(\boldsymbol{w}_{1:L}|\boldsymbol{O}_{1:T}) \propto p(\boldsymbol{O}_{1:T}|\boldsymbol{w}_{1:L})P(\boldsymbol{w}_{1:L})$$

- enables to plug-in any suitable language model
- Less obvious how to integrate language model into discriminative models
 - heuristic probability combination

$$s(\mathbf{w}_{1:L}, \mathbf{O}_{1:T}) = P(\mathbf{w}_{1:L} | \mathbf{O}_{1:T}) P(\mathbf{w}_{1:L})$$

▶ fusion between decoder and language model recurrent units

$$\tilde{\boldsymbol{h}}_{l} = \phi(\tilde{\boldsymbol{h}}_{l-1}, \tilde{\boldsymbol{h}}_{l-1}^{(LM)}, w_{l-1})$$

multi-task training, pre-training and many more!

- ► The past two lectures have
 - ▶ introduced hidden Markov models (HMM)
 - discussed how HMMs can be used as an acoustic model
- ▶ This lecture has discussed more complex forms of acoustic models
 - generative models (Tandem, Hybrids)
 - discriminative models (CTC, encoder-decoder, transformer)
- Next lectures will look at language models