$$t_0 = -\sqrt{3}/3 = -0.577350$$
 e $t_1 = \sqrt{3}/3 = 0.577350$
 $A_0 = A_1 = 1$.

Então,

$$I \approx 5[A_0g(t_0) + A_1g(t_1)] = 5[e^{-5 + 5\sqrt{3}/3} + e^{-5 - 5\sqrt{3}/3}] =$$

$$= 5[e^{-2.113249} + e^{-7.886751}] = 0.606102.$$

Sabemos que com seis casas decimais,

$$\int_0^{10} e^{-x} dx = 0.999955.$$

Assim, o verdadeiro erro, com seis casas decimais, é

$$|errol| = |0.999955 - 0.606102| = 0.393853$$

Para que $|E_{TR}| \le 0.393853$, na regra dos Trapézios, seria necessário tabelar f(x) em, no mínimo, 16 pontos (m ≥ 15).

E, para a regra 1/3 de Simpson, $|E_{SR}| \le 0.393853$, implica m ≥ 8 e seria necessário portanto, tabelar a função em 9 pontos.

EXERCÍCIOS

 Calcule as integrais a seguir pela regra dos Trapézios e pela de Simpson, usando quatro e seis divisões de [a, b].

Compare os resultados:

a)
$$\int_{1}^{2} e^{x} dx$$

b)
$$\int_{1}^{4} \sqrt{x} dx$$

c)
$$\int_2^{14} \frac{\mathrm{dx}}{\sqrt{x}}$$
.

- Usando as integrais do exercício anterior com quantas divisões do intervalo, no mínimo, podemos esperar obter erros menores que 10⁻⁵?
- 3. Calcule o valor aproximado de $\int_0^{0.6} \frac{dx}{1+x}$ com três casas decimais de precisão usando
 - a) Simpson
 - b) Trapézios.
- 4. Em que sentido a regra de Simpson é melhor do que a regra dos Trapézios?
- 5. Qual o erro máximo cometido na aproximação de $\int_0^4 (3x^3 3x + 1) dx$ pela regra de Simpson com quatro subintervalos?

Calcule por Trapézios e compare os resultados.

- 6. Determinar h, a distância entre x_i e x_{i+1} , para que se possa avaliar $\int_0^{\pi/2} \cos(x) dx$ com erro inferior a $\varepsilon = 10^{-3}$ pela regra de Simpson.
- 7. Use a regra 1/3 de Simpson para integrar a função abaixo entre 0 e 2 com o menor esforço computacional possível (menor número de divisões e maior precisão). Justifique. Trabalhe com três casas decimais.

$$f(x) = \begin{cases} x^2 & \text{se } 0 \le x \le 1 \\ (x+2)^3 & \text{se } 1 < x \le 2 \end{cases}$$

8. A regra dos Retângulos repetida é obtida quando aproximamos f(x), em cada subintervalo, por um polinômio de interpolação de grau zero. Encontre a regra dos Retângulos bem como a expressão do erro, fazendo:

a)
$$p_0^j(x) = f(x_{j-1})$$
 $j = 1, 2, ..., m$

b)
$$p_0^j(x) = f(\frac{x_{j-1} + x_j}{2})$$
 $j = 1, 2, ..., m$.

Esta é a regra do Ponto Médio e é uma fórmula aberta de Newton-Cotes.

- Obtenha a fórmula do Erro para a regra dos Trapézios e para a regra 1/3 de Simpson a partir do Teorema 1.
- 10. Seja o problema:

Interpolar a função sen(x) sobre $[0, \pi/4]$ usando um polinômio de grau 2 e integrar esta função, neste intervalo, usando a regra 1/3 de Simpson.

Qual deve ser o menor número m de subintervalos em $[0, \frac{\pi}{4}]$ para se garantir um erro menor que 10^{-4} tanto na integração quanto na interpolação?

- 11. a) Comprove gráfica e analiticamente que se:
 - i) f''(x) é contínua em [a, b], e
 - ii) f''(x) > 0, $\forall x \in [a, b]$,

então, a aproximação obtida para $\int_a^b f(x) dx$ pela regra dos Trapézios é maior do que o valor exato da $\int_a^b f(x) dx$. Considere n = 1.

b) Sabendo que f(x) = e^x + x² satisfaz as condições acima em [0, 1], e que I = ∫₀¹ (e^x + x²)dx = 2.051, comprove que a conclusão do item (a) é válida também para a regra dos Trapézios repetida, calculando I com erro inferior a 5 x 10⁻². Use três casas decimais.

12. Deduza a fórmula de integração da forma

$$\int_{-1}^{1} f(x) dx \approx w_0 f(-0.5) + w_1 f(0) + w_2 f(0.5)$$

que integre exatamente polinômios de grau ≤ 2.

13. Dada a tabela:

x	0.0	0.2	0.4	0.6	0.8	1.0
f(x)	1.0	1.2408	1.5735	2.0333	2.6965	3.7183

e sabendo que a regra 1/3 de Simpson é, em geral, mais precisa que a regra dos Trapézios, qual seria o modo mais adequado de calcular $I = \int_0^1 f(x) dx$, usando a tabela acima? Aplique este processo para determinar I.

14. Calcule, pela regra dos Trapézios e de Simpson, cada uma das integrais abaixo, com erro menor do que ε dado:

a)
$$\int_0^{\pi} e^{\operatorname{sen}(\mathbf{x})} d\mathbf{x}$$
; $\varepsilon = 2 \times 10^{-2}$.

b)
$$\int_{1}^{\pi/2} (\sin(x))^{1/2} dx$$
; $\epsilon = 10^{-4}$.

- Usando a regra de Simpson, calcule o valor de \$\int_1^2 \frac{dx}{x}\$ com precisão de 4 casas decimais. Compare o resultado com o valor de ln(2).
- 16. Calcule π da relação $\pi/4 = \int_0^1 dx/(1+x^2)$ com erro de 10^{-3} por Simpson.

17. Considere a integral:

$$I = \int_0^1 e^{-x^2} dx$$
.

- a) Estime I pela regra de Simpson usando h = 0.25.
- b) Estime I por Quadratura Gaussiana com 2 pontos.
- c) Sabendo que o valor exato de I (usando 5 casas decimais) é 0.74682, pede-se:
 - c1) compare as estimativas obtidas em (a) e (b);
 - quantos pontos seriam necessários para que a regra dos Trapézios obtivesse a mesma precisão que a estimativa obtida para I em (b)?