This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

3(50 B 01 D 13/02

ГОСУДАРСТВЕННЫЙ НОМИТЕТ СССР ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТНРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

- (21) 3497788/23-26
- (22) 05.10.82
- (46) 15.10.84. Бюл. № 38
- (72) Э.М.Балавадзе, И.М.Центлин, В.В.Салманов, Н.Г.Лебедь и Н.В.Чхе-
- (53) 621.357 (088.8)
- (56) 1. Гребенюк В.Д. Электродиализ. Киер "Теуника" 1976. С. 65.
- Киев, "Техника", 1976, с. 65. 2. Патент СССР № 306605, кл. В 01 D 13/02, 1971.
- (54)(57) ЭЛЕКТРОДИАЛИЗАТОР для деионизации растворов электролитов, включающий электроды, размещенные между ними ионоселективные мембраны

и рамки, образующие рабочие камеры, в которые помещены сепараторы-турбу-лизаторы, выполненные в виде высту-пов на мембране или сетки, о т л и ч а ю щ и й с я тем, что, с целью повышения производительности электродиализатора, выступы или поперечные нити сетки размещены на одинаковом расстоянии друг от друга и померек рабочей камеры, причем высота выступов или диаметр поперечных нитей сетки относится к расстоянию между мембранами как 0,02-0,5 и к расстоянию между выступами или между поперечными нитями сетки как 0,01-1,0.

SU 1118389

на противоположной стороне рамок и мембран. Соприкосновение мембран предотврашается сепараторами 3. При наложении на электроды электродиализатора электрического потенциала происходит направленное движение сопержащихся в протекающем через камеры 6 деионизации растворе катионов и анионов и их миграция из камер б деионизации через катионоселективные и анионоселективные мембраны 1в смежные с ними камеры 7 концентрирования. При этом в пограничных с мембранами 1 слоях раствора, в которых поток раствора носит ламинарный жарактер, может возникнуть явление концентрационной поляризации. При протекании раствора по рабочей камере пограничный слой потока раствора периодически разрушается прямолинейными выступами 4 на поверхности мембран 1 (фиг.1) или поперечными нитями 4 сетчатого сепаратора 3 (фиг.2), расположенными на одинаковом расстоянии друг от друга и поперек рабочей камеры электродиализатора - поперек потока раствора электролита. Выполнение геометрических размеров турбулизаторов - высоты прямолинейных выступов на мембранах или диаметра поперечных нитей сетки и расстояния между ними в оговоренных интервалах обуславливает уменьшение толщины и турбулизацию ламинарного подслоя, следствием чего является интенсификация массопереноса и повышение предельно допустимой 135 плотности тока. Геометрические размеры турбулизаторов, разрушающих пограничный слой потока раствора электролита, в зависимости от гидродинамических условий в рабочих камерах электродиализатора и с учетом химического состава раствора, его концентрации и температуры могут быть уточнены в оговоренных пределах с помощью следующих выражений:

d=h > 0,5.6.D 1/3~ -1/3

160,02.62. W. v-1

Million Control

где d - диаметр поперечных нитей сетки, м;

ћ - высота прямолинейных выступов на мембранах, м;

- е расстояние между поперечными нитями сетки или прямолинейными выступами на мембранах, м;
- вы на выполнять в раствора электролита, M^2/c ;
- √ кинематическая вязкость же жете жете до до раствора электролита, м²/с;
- W = Скорость потока раствора электролита, м/с.

Пример 1. Природную соленую воду с общим солесодержанием воду с общим солесодержанием 51,3 г экв/м³ и температурой 20°C

опресняют до остаточного солесодержания 12 г экв/м3 в известном электродиализаторе с сепараторами-турбулизаторами типа сетки "просечкавытяжка" и в электродиализаторе согласно изобретении с расстоянием между мембранами соответственно 1,2·10-3 и 1·10-3 м при скоростях потока раствора 0,07 м/с. В электродиализаторе согласно изобратению 10 отношение высоты прямолинейных выступов к расстонию между мембранами и к расстоянию между выступами состав-

 $\frac{d}{h} = 0,2 \text{ H}$ $\frac{d}{\rho} = 0.1$. При

этом удельная (с 1 м¹ поверхности мембран) производительность предлагаемого электродиализатора по сравнению с производительностью известного электродиализатора повышается с 0,0314 до 0,0371 M^3/M^2 ч (т.е. на 18%) при одновременном понижении удельного (на 1 м длины рабочей камеры электродиализатора) гидравлического сопротивления с 4,2 до 0,11 м вод. ст./м.

Пример 2. Природную соленую воду с общим солесодержанием 44 г экв/м³ и температурой 35°C определяют до остаточного солесодержания около 10 г экв/м³ в электродиализаторе с расстоянием между мембранами, равном $1 \cdot 10^{-3}$ м, и скоростью потока воды 0,2 м/с. (см. таблицу, режимы 1 - 6).

Приме:р 3. 50%-ный водный раствор глицерина с содержание сульфата натрия 0,62 вес.% и температурой 20°C очищают до концентрации около 0,1 вес. в сульфата натрия в электродиализаторе с расстоянием между мембранами 1·10-2 и и скоростью потока раствора 0,02 м/с (см. таблицу, режимы 7 - 9).

Принер 4. Сахарный сиропс 30%-ным содержанием сухих веществ, доброкачественностью 91,4% и температурой около 150°C очицают до доброкачественности 94,7% в электродиализаторе с расстоянием между мембранами $4 \cdot 10^{-3}$ м и скоростью потока сиропа 0,012 м/с (см. таблицу, режимы 10 - 12).

В примерах 2, 3 и 4 указаны удельные производительности и приведенные значения гидравлического сопротивления электродиализаторов согласно изобретению, определенные при значениях отношений высоты прямолинейных выступов (диаметра поперечных нитей) к расстоянию между мембрана-

and the second of the second second second second ми 👌 и к расстоянию между пряноли-IIpn Com

65 нейными выступами (поперечными ни-

Составитель О.Зобнин
Редактор А.Гулько Техред Л.Коцюбняк Корректор А.Тяско
Заказ 7316/5 Тираж 681 Подписное
вниили Государственного комитета СССР
по делам изобретений и открытий
113035, Москва, Ж-35, Раушская наб., д. 4/5

Филиал ППП "Патент", г. Ужгород, ул. Проектная, 4