Ecuaciones no lineales

Métodos Numéricos

Prof. Juan Pablo Concha Y Eduardo Uribe

Conferencia 6

Conferencia 6

- Métodos de Intervalo
 - Método de bisección
 - Método de falsa posición

- Métodos Abiertos
 - Iteración de punto fijo.

Formulación Bisección

Metodología

- Hallar un intervalo inicial $[x_l, x_d]$ tal que:
 - Contiene una raíz de f y $f(x_I) \cdot f(x_D) < 0$.
 - f es continua en el intervalo.
- Reducir el intervalo sucesivamente a la mitad conservando la raíz adentro.

Pasos generales

- PASO 1: Elegir $x_I < x_D$ tales que $f(x_I) \cdot f(x_D) < 0$
- PASO 2: Definir $x_M = (x_I + x_D)/2$
- PASO 3: Si $f(x_l) \cdot f(x_M) = 0$, la raíz es x_M y STOP
- PASO 4: Actualizar x_I y x_D según REGLAS 1 y 2 e ir al PASO 2
 - REGLA 1: Si $f(x_l) \cdot f(x_M) < 0$, entonces $x_D = x_M$
 - REGLA 2: Si $f(x_l) \cdot f(x_M) > 0$, entonces $x_l = x_M$

Analítica

Hallar *c* tal que:
$$f(c) = \frac{667.38}{c} (1 - e^{-0.14684c}) - 40 = 0$$

Iteraciones del Método de Bisección Falsa Posición

n	X_I^n	X_M^n	X_D^n	$f(x_I^n)$	$f(x_M^n)$	$f(x_D^n)$
1	12.000	14.000	16.000	6.067	1.568	-2.269
2	14.000	15.000	16.000	1.568	-0.425	-2.269
3	14.000	14.500	15.000	1.568	0.552	-0.425
4	14.500	14.750	15.000	0.552	0.059	-0.425
5	14.750	14.875	15.000	0.059	-0.184	-0.425
6	14.750	14.813	14.875	0.059	-0.063	-0.184
7	14.750	14.781	14.813	0.059	-0.002	-0.063
8	14.750	14.766	14.781	0.059	0.028	-0.002
9	14.766	14.773	14.781	0.028	0.013	-0.002
10	14.773	14.777	14.781	0.013	0.005	-0.002

Analítica

Hallar *c* tal que:
$$f(c) = \frac{667.38}{c} (1 - e^{-0.14684c}) - 40 = 0$$

Iteraciones del Método de Bisección Falsa Posición

n	X_I^n	X_M^n	X_D^n	$f(x_I^n)$	$f(x_M^n)$	$f(x_D^n)$
1	12.000	14.000	16.000	6.067	1.568	-2.269
2	14.000	15.000	16.000	1.568	-0.425	-2.269
3	14.000	14.500	15.000	1.568	0.552	-0.425
4	14.500	14.750	15.000	0.552	0.059	-0.425
5	14.750	14.875	15.000	0.059	-0.184	-0.425
6	14.750	14.813	14.875	0.059	-0.063	-0.184
7	14.750	14.781	14.813	0.059	-0.002	-0.063
8	14.750	14.766	14.781	0.059	0.028	-0.002
9	14.766	14.773	14.781	0.028	0.013	-0.002
10	14.773	14.777	14.781	0.013	0.005	-0.002

Convergencia

Teorema

Sea f continua en $[x_I^0, x_D^0]$ y tal que $f(x_I^0) \cdot f(x_D^0) < 0$. El método de bisección genera una sucesión $\{x_M^n\}_{n=1}^{\infty}$ que aproxima un cero \bar{x} de f de modo que:

$$|x_M^n - \bar{x}| \le \frac{1}{2^n} (x_D^0 - x_I^0), \quad n \ge 1$$

O sea: $x_M^n = \bar{x} + O(\frac{1}{2^n})$

Notación: Velocidad de convergencia de una sucesión

Supongamos que $\beta_n \longrightarrow 0$ y $\alpha_n \longrightarrow \alpha$. Si existe una constante K > 0 tal que para n suficientemente grande:

$$|\alpha_n - \alpha| \le K|\beta_n|$$

entonces decimos que $\{\alpha_n\}_{n=1}^{\infty}$ converge a α con una **velocidad de convergencia** $O(\beta_n)$ y se denota por $\alpha_n = \alpha + O(\beta_n)$.

Hallar una raíz \bar{x} de la ecuación

$$f(x) = x^3 + 4x^2 - 10 = 0$$

en el intervalo [1,2] pues:

$$f(1) = -5$$
 $f(2) = 14$

Iteraciones del Método de Bisección

n	X_I^n	X_M^n	X_D^n	$f(x_M^n)$
1	1.00000	1.50000	2.00000	2.37500
2	1.00000	1.25000	1.50000	-1.79688
3	1.25000	1.37500	1.50000	0.16211
4	1.25000	1.31250	1.37500	-0.84839
5	1.31250	1.34375	1.37500	-0.35098
6	1.34375	1.35938	1.37500	-0.09641
7	1.35938	1.36719	1.37500	0.03236
8	1.35938	1.36328	1.36719	-0.03215
9	1.36328	1.36523	1.36719	0.00007
10	1.36328	1.36426	1.36523	-0.01605
11	1.36426	1.36475	1.36523	-0.00799
12	1.36475	1.36499	1.36523	-0.00396
13	1.36499	1.36511	1.36523	-0.00194

Hallar $\bar{x} \in [1, 2]$ tal que: $\bar{x}^3 + 4\bar{x}^2 - 10 = 0$

Cuántas iteraciones se necesitan para una precisión de 10⁻⁴

$$E_a(x_M^n) = |x_M^n - \bar{x}| < 2^{-n} < 10^{-4} \Rightarrow -n\log_{10} 2 < -4$$

$$n > \frac{4}{\log_{10} 2} \approx 13.2877$$

o sea: n = 14.

Criterios de parada:

Fijando una tolerancia $\epsilon > 0$:

- $\bullet |x_M^n x_M^{n-1}| < \epsilon$
- $|X_M^n X_M^{n-1}|/|X_M^n| < \epsilon$
- $|f(x_M^n)| < \epsilon$

Solución $\bar{x} = 1.365230013$

n	x _M ⁿ	$ x_M^n - x_M^{n-1} $	$\frac{ x_M^n - x_M^{n-1} }{ x_M^n }$	$ f(x_M^n) $	$ x_M^n - \bar{x} $	$\frac{ x_M^n - \bar{x} }{ \bar{x} }$
1	1.50000	1.00000	1.00000	2.37500	0.63477	0.46495
2	1.25000	0.25000	0.20000	1.79688	0.11523	0.08440
3	1.37500	0.12500	0.09091	0.16211	0.00977	0.00716
4	1.31250	0.06250	0.04762	0.84839	0.05273	0.03862
5	1.34375	0.03125	0.02326	0.35098	0.02148	0.01573
6	1.35938	0.01563	0.01149	0.09641	0.00586	0.00429
7	1.36719	0.00781	0.00571	0.03236	0.00196	0.00143
8	1.36328	0.00391	0.00287	0.03215	0.00195	0.00143
9	1.36523	0.00195	0.00143	0.00007	0.00000	0.00000
10	1.36426	0.00098	0.00072	0.01605	0.00097	0.00071
11	1.36475	0.00049	0.00036	0.00799	0.00048	0.00035
12	1.36499	0.00024	0.00018	0.00396	0.00024	0.00018
13	1.36511	0.00012	0.00009	0.00194	0.00012	0.00009
14	1.36517	0.00006	0.00004	0.00094	0.00006	0.00004

Formulación: Método de falsa posición

Metodología

- Hallar un intervalo inicial $[x_l, x_d]$ tal que:
 - Contiene una raíz de f y $f(x_I) \cdot f(x_D) < 0$.
 - f es continua en el intervalo.
- Reducir el intervalo utilizando la intersección con el eje x de la recta formada por los puntos $(x_l, f(x_l))$ y $(x_D, f(x_D))$.

Pasos generales

```
PASO 1: Elegir x_I < x_D tales que f(x_I) \cdot f(x_D) < 0
```

PASO 2: Definir
$$x_F = x_D - f(x_D) \cdot \frac{(x_D - x_I)}{f(x_D) - f(x_I)}$$

PASO 3: Si
$$f(x_F) = 0$$
, la raíz es x_F y STOP

PASO 4: Actualizar x_l y x_D segun REGLAS 1 y 2 e ir al PASO 2

REGLA 1: Si
$$f(x_I) \cdot f(x_F) < 0$$
, entonces $x_D = x_F$

REGLA 2: Si $f(x_l) \cdot f(x_F) > 0$, entonces $x_l = x_F$

Iteraciones del Método de falsa posición

▶ Bisección

n	Χľ	X _F ⁿ	X _D ⁿ	$f(x_l^n)$	$f(x_F^n)$	$f(x_D^n)$
1	12.000	14.911	16.000	6.067	-0.254	-2.269
2	12.000	14.794	14.911	6.067	-0.027	-0.254
3	12.000	14.782	14.794	6.067	-0.003	-0.027
4	12.000	14.780	14.782	6.067	-0.000	-0.003
5	12.000	14.780	14.780	6.067	-0.000	-0.000
6	12.000	14.780	14.780	6.067	-0.000	-0.000
7	12.000	14.780	14.780	6.067	-0.000	-0.000
8	12.000	14.780	14.780	6.067	-0.000	-0.000
9	12.000	14.780	14.780	6.067	-0.000	-0.000
10	12.000	14.780	14.780	6.067	-0.000	-0.000

Iteraciones del Método de falsa posición

▶ Bisección

n	Χľ	X _F ⁿ	X _D ⁿ	$f(x_l^n)$	$f(x_F^n)$	$f(x_D^n)$
1	12.000	14.911	16.000	6.067	-0.254	-2.269
2	12.000	14.794	14.911	6.067	-0.027	-0.254
3	12.000	14.782	14.794	6.067	-0.003	-0.027
4	12.000	14.780	14.782	6.067	-0.000	-0.003
5	12.000	14.780	14.780	6.067	-0.000	-0.000
6	12.000	14.780	14.780	6.067	-0.000	-0.000
7	12.000	14.780	14.780	6.067	-0.000	-0.000
8	12.000	14.780	14.780	6.067	-0.000	-0.000
9	12.000	14.780	14.780	6.067	-0.000	-0.000
10	12.000	14.780	14.780	6.067	-0.000	-0.000

Otra comparación Bisección vs. Falsa Posición

Problema 3

Usar los métodos de bisección y falsa posición para localizar la raíz de

$$f(x) = x^{10} - 1$$

en el intervalo [0, 1.3] pues:

$$f(0) = -1$$
 $f(1.3) \approx 13$

Iteraciones Bisección (Problema 3: $x^{10} = 1$)

n	x_M^n	$ f(x_M^n) $	$ x_M^n - \bar{x} $	$\frac{ x_M^n - \bar{x} }{ \bar{x} }$
1	0.65000	0.98654	0.35000	0.35000
2	0.97500	0.22367	0.02500	0.02500
3	1.13750	2.62672	0.13750	0.13750
4	1.05625	0.72849	0.05625	0.05625
5	1.01563	0.16771	0.01563	0.01563
6	0.99531	0.04590	0.00469	0.00469

Iteraciones Falsa Posición (Problema 3: $x^{10} = 1$)

n	X_F^n	$ f(x_F^n) $	$ x_F^n - \bar{x} $	$\frac{ x_F^n - \bar{x} }{ \bar{x} }$
1	0.09430	1.00000	0.90570	0.90570
2	0.18176	1.00000	0.81824	0.81824
3	0.26287	1.00000	0.73713	0.73713
4	0.33811	0.99998	0.66189	0.66189
5	0.40788	0.99987	0.59212	0.59212
6	0.47258	0.99944	0.52742	0.52742

Interpretación gráfica

Conceptos básicos

Definición

Un punto \bar{x} se llama un **punto fijo** de la función g si $g(\bar{x}) = \bar{x}$.

Equivalencia con la búsqueda de ceros

- Dado un problema de búsqueda de ceros $f(\bar{x}) = 0$, puede definirse de varias maneras una función g que tenga un punto fijo en \bar{x} .
 - Por ejemplo: g(x) = x f(x); o g(x) = x + 3f(x).
- Si \bar{x} es un punto fijo de una función g, entonces es un cero de la función f(x) = x g(x).

Ejemplo 1

 $g(x) = x^2 - 2$ tiene puntos fijos en $x_1 = -1$ y $x_2 = 2$.

Existencia de puntos fijos

Teorema 1 (Condiciones suficientes)

- Si g es continua en [a,b] ($g(x) \in C([a,b])$) y $g(x) \in [a,b]$ para todo $x \in [a,b]$, entonces g tiene un punto fijo en [a,b].
- Si, además, g'(x) existe en (a, b) y hay una constante
 K < 1 tal que

$$|g'(x)| < K, \quad \forall x \in (a,b)$$

entonces el punto fijo de g en [a, b] es único.

Ejemplo 2

 $g_2(x) = \frac{x^2-1}{3}$ tiene un único punto fijo en [-1,1] ya que:

$$\{g(x) \in [-\frac{1}{3}, 0]\} \land \{|g'(x)| = |\frac{2x}{3}| \le \frac{2}{3}\} \quad \forall x \in [-1, 1]$$

Ejemplo 2 (I)

Ejemplo 2 (II)

Sobre el Teorema 1

Ejemplo 2 (continuación)

 $g_2(x) = \frac{x^2-1}{3}$ tiene un punto único fijo en [3,4], sin embargo:

$$\{g(4)=5>4\} \wedge \{g'(4)=\frac{8}{3}>1\}$$

Conclusiones

- Condiciones del Teorema 1 no se cumplen, pero sin embargo existe un único punto fijo.
- El Teorema 1 brinda condiciones suficientes (pero no necesarias) para la existencia de un punto fijo.

Formulación del Algoritmo de Punto fijo

Metodología

- Hallar un punto inicial x_0 que aproxime un punto fijo de g.
- Realizar sucesivamente la iteración $x_{n+1} = g(x_n)$.

Pseudocódigo

DATOS: x_0 : punto inicial;

TOL: tolerancia;

MAX: máximo de iteraciones

RESULTADO: Solución aproximada x_n , o falla del algoritmo.

PASO 1: n = 1

PASO 2: Si n > MAX, ENTREGA("FALLO") y STOP

PASO 3: $x_n = g(x_{n-1})$

PASO 4: Si $|x_n - x_{n-1}| \le TOL$, ENTREGA (x_n) y STOP

PASO 5: n = n + 1 e IR A PASO 2

Formulación del Algoritmo de Punto fijo

Metodología

- Hallar un punto inicial x_0 que aproxime un punto fijo de g.
- Realizar sucesivamente la iteración $x_{n+1} = g(x_n)$.

Pseudocódigo

DATOS: x_0 : punto inicial;

TOL: tolerancia;

MAX: máximo de iteraciones

RESULTADO: Solución aproximada x_n , o falla del algoritmo.

PASO 1: n = 1

PASO 2: Si n > MAX, ENTREGA("FALLO") y STOP

PASO 3: $x_n = g(x_{n-1})$

PASO 4: Si $|x_n - x_{n-1}| \le TOL$, ENTREGA (x_n) y STOP

PASO 5: n = n + 1 e IR A PASO 2

Ejemplo ya visto

La función $f(x) = x^3 + 4x^2 - 10$ posee una raíz en el intervalo [1,2] pues f(1) = -5 f(2) = 14.

Ejemplo 3

Posibles conversiones a problema de punto fijo (x = g(x)):

$$g_1(x) = x - x^3 - 4x^2 + 10$$

$$g_2(x) = \left(\frac{10}{x} - 4x\right)^{1/2}$$

$$g_3(x) = \frac{1}{2}(10 - x^3)^{1/2}$$

$$g_4(x) = \left(\frac{10}{4+x}\right)^{1/2}$$

$$g_5(x) = x - \frac{x^3 + 4x^2 - 10}{3x^2 + 8x}$$

Ejemplo ya visto

La función $f(x) = x^3 + 4x^2 - 10$ posee una raíz en el intervalo [1,2] pues f(1) = -5 f(2) = 14.

Ejemplo 3

Posibles conversiones a problema de punto fijo (x = g(x)):

$$g_1(x) = x - x^3 - 4x^2 + 10$$

$$g_2(x) = \left(\frac{10}{x} - 4x\right)^{1/2}$$

$$g_3(x) = \frac{1}{2}(10 - x^3)^{1/2}$$

$$g_4(x) = \left(\frac{10}{4+x}\right)^{1/2}$$

$$g_5(x) = x - \frac{x^3 + 4x^2 - 10}{3x^2 + 8x}$$

Punto Inicial $x_0 = 1.5$; Solución $\bar{x} = 1.365230013$

n	g_1	<i>9</i> 2	g 3	g_4	g 5
0	1.5	1.5	1.5	1.5	1.5
1	-0.875	0.8165	1.286953768	1.348399725	1.373333333
2	6.73	2.997	1.402540804	1.367376372	1.365262015
3	-470	$(-8.7)^{1/2}$	1.345458374	1.364957015	1.365230014
4	1.0e+8	,	1.37517025	1.36526475	1.365230013
5			1.360094193	1.365225594	
10			1.365410061	1.365230014	
15			1.36522368	1.365230013	
20			1.365230236		
25			1.365230006		
29			1.365230013		

Punto Inicial $x_0 = 1.5$; Solución $\bar{x} = 1.365230013$

n	g_1	<i>9</i> 2	g 3	g_4	g 5
0	1.5	1.5	1.5	1.5	1.5
1	-0.875	0.8165	1.286953768	1.348399725	1.373333333
2	6.73	2.997	1.402540804	1.367376372	1.365262015
3	-470	$(-8.7)^{1/2}$	1.345458374	1.364957015	1.365230014
4	1.0e+8	,	1.37517025	1.36526475	1.365230013
5			1.360094193	1.365225594	
10			1.365410061	1.365230014	
15			1.36522368	1.365230013	
20			1.365230236		
25			1.365230006		
29			1.365230013		

Cómo elegir un problema de punto fijo adecuado??

Teorema 2 (Convergencia)

Sea $g(x) \in C([a,b])$ tal que $g(x) \in [a,b]$ para todo $x \in [a,b]$. Supongamos, además que g'(x) existe en (a,b) y hay una constante K < 1 tal que

$$|g'(x)| < K, \quad \forall x \in (a,b).$$

Entonces:

- Para todo punto inicial $x_0 \in [a, b]$, la sucesión de punto fijo $x_{n+1} = g(x_n)$ converge al único punto fijo \bar{x} de g(x) en [a, b].
- El error absoluto en cada paso puede estimarse como:

$$|x_n - \bar{x}| \leq K^n \max\{x_0 - a, b - x_0\}$$

$$|x_n - \bar{x}| \leq \frac{K^n}{1 - K} |x_1 - x_0|$$

Ejercicios

- 1) Aplique el método de la bisección y regula falsi para encontrar una aproximación a solución de ecuación $x = \tan(x)$ en [4, 4.5]. Use una tolerancia de 10^{-3} .
- 2) Considere la ecuación $230x^4 + 18x^3 + 9x^2 221x 9 = 0$.
 - a) Demuestre que la ecuación tiene una raíz α en el intervalo [0, 1].
 - b) Usando el método de bisección encuentre la raíz α , con una precisión de 10^{-3} . ¿Cuántas iteraciones serían necesarias para obtener una aproximación de la raíz α con precisión de 10^{-3} , en el peor de los casos?
- 3) Considere la ecuación $e^x 4x^2 = 0$.
 - a) Usando el método de regula falsi encuentre una raíz positiva de la ecuación.
 - b) Proponga un método de punto fijo, y demuestre, sin iterar, que converge a la raíz encontrada en (a) de la ecuación.
 - c) Usando el método de punto fijo propuesto en (b), encuentre la solución buscada con una precisión de $\epsilon=10^{-3}$, considerando como criterio de parada $|f(x_n)| \leq \epsilon$.

Ejercicios

- 4) Considere al ecuación $-x^3 + 2x^2 + 10x 20 = 0$.
 - a) Proponga un método iterativo de punto fijo, el cual sea convergente a la solución $\alpha = \sqrt{10}$.
 - b) Usando el método que propuso en a), encuentre una solución aproximada a α con un error menor a 10^{-2} .
- 5) Considere la ecuación $x^3 x^2 x 1 = 0$, la cual posee una solución $\alpha \in [1,2]$. Se propone el método iterativo $x_{n+1} = g(x_n)$, donde $g(x) = 1 + \frac{1}{v} + \frac{1}{v^2}$, para resolver la ecuación.
 - a) Verifique las condiciones para que el método iterativo propuesto sea convergente.
 - b) Si elige $x_0 \in [a, b] \subset [1, 2]$ arbitrario para comenzar las iteraciones, estime el número de iteraciones que debe realizar para obtener x_k que satisface la condición $|x_{k+1} x_k| \le 5 \cdot 10^{-5}$.