Pump it Up

Data Mining the Water Table

About the Contest

Hosted at drivendata.org

Dataset provided by **Taarifa**

Number of Teams **7743**

Objective

Predict the operating condition of a waterpoint, based on the data from Taarifa and the Tanzanian Ministry of Water.

Importance

A smart understanding of which waterpoints will fail can improve maintenance operations and ensure that clean, potable water is available to communities across Tanzania.

Data

59,400

Datapoints

40

Features

Functional, Non-functional, Functional but needs repair

Labels

Preprocessing

Remove all redundant, numerous, unusable or unnecessary data

Unique data

Duplicate data

Singular value

Numerous data

amount tsh date recorded funder* gps_height installer* longitude latitude wpt_name num_private basin subvillage region region_code district code lga* ward* population public_meeting Recorded_by

scheme_management scheme name permit construction_year extraction_type extraction_type_group extraction_type_class management management_group payment payment_type water_quality quality_group quantity quantity_group source source_type waterpoint_type waterpoint_type_group

Preprocessing

Divide the data into **ordinal** and **nominal**.

amount_tsh
date_recorded
gps_height
longitude
latitude
basin
region_code
district_code
population
public_meeting

scheme_management
permit
construction_year
extraction_type
extraction_type_class
management
management_group
payment_type
water_quality
quality_group
quantity
source
waterpoint_type

Preprocessing

Ordinal data are scaled [0,1]

Nominal data are one-hot encoded

amount_tsh
date_recorded
gps_height
longitude
latitude
population

basin region_code district_code scheme_management permit public_meeting construction_year extraction_type extraction_type_class management management_group payment_type water_quality quality_group quantity source waterpoint_type

PreprocessingOther methods tested

Treat dates (e.g. date_recorded) as cyclical data.

PreprocessingOther methods tested

Use a feature hasher on numerous features with no fixed set of values (e.g. **funder** and **installer**)

Model and Implementation

3-Layer MLP (1024 neurons) with Activation of ReLu and Dropout of 0.4 after each layer

Activation Layers: ReLU (empirical)

Dropout: 0.4 (empirical)

Adam optimizer (empirical)

Method and Rationale

Present the data in a meaningful way such that the Neural Network can be able to learn from it.

Then let the Neural Network learn

I.e. Transforming the nominal data into one-hot encoded data allows the NN to differentiate between different classes such as waterpoints managed by government and those managed by others. Maintaining numerical data allows magnitude to play a role (e.g. amount_tsh)

Some data seemed faulty and we tried "cleaning" them by replacing the faulty values with the mean

ApproachK-fold validation

K-fold validation to be able to roughly predict the score by DrivenData.Org

By observing the K-fold validation accuracy, the epochs for the final training on the entire data set was set.

Precision vs. Recall

https://en.wikipedia.org/wiki/Precision and recall

How many selected items are relevant?

How many relevant items are selected?

Precision and Recall curve (Functional)

Precision and Recall curve (Functional Needs Repair)

Precision and Recall curve (Non Functional)

Analysis and Discussion

The Recall and Precision plots seem to indicate that to obtain further improvements. Some form of data augmentation would be necessary.

The leaderboard's highest score is 82.86%

Possibly because of good "functional needs repair" classification

Analysis and Discussion

Attempts at filtering the data columns generally negatively affected performance.

Human filtering only seemed to work for

Duplicate Columns

Columns with unique values for all points

Columns with one value for all points

Analysis and Discussion

The Recall and Precision plots seem to indicate that to obtain further improvements. Some form of data augmentation would be necessary.

The performance on the two classes with plenty of data is satisfactory (functional & non functional. But much is left to be desired for the class with little data (functional needs repair)

The leaderboards indicate that 83% seems to be State of the Art for this competition. This 3% could very well be due to a significantly better performance classifying "functional but needs repair"

Results

79.91%

Classification Rate

Top 20% of all the submissions

Rank when this was submitted