⑫実用新 案 公 報 (Y 2)

昭62-43286

⑤Int Ci.⁴

識別記号

厅内整理番号

❷❸公告 昭和62年(1987)11月10日

15/22 15/17 G 02 B ∥ G 02 B 7/11

A - 7448 - 2H7448-2H P-7448-2H

(全6頁)

図考案の名称

ズームレンズ

迎実 願 昭57-157023

69公 開 昭59-63314

223出 願 昭57(1982)10月19日

❸昭59(1984)4月26日

⑰考 案 者

久 保 田

洋 治

伊那市美すず7448-82

创出 願 人

株式会社三協精機製作

長野県諏訪郡下諏訪町5329番地

所 森

審査官

Œ 幸

90参考文献 特開 昭53-66224(JP, A) 特開 昭53-66226(JP,A)

1

砂実用新案登録請求の範囲

物体側より順にマニアルフォーカス機能を有す る正のパワーの前玉フオーカシングレンズ群、変 倍機能を有する負のパワーのバリエータレンズ 群、結像点の補正機能を有する負のパワーのコン 5 うにすると共に、射出瞳が長くかつ収差が良好に ペンセータレンズ群、発散光束を平行光束に戻す 機能を有するコリメートレンズ群、さらに絞りを 介して結像機能を有するリレーレンズ群とを配し てなり、上記リレーレンズ群は物体側より不動の 第1リレーレンズ群と、オートフオーカスに関し 10 構成の外観図である。これらの実施例において、 ては可動である一方マニアルフォーカスに関して は固定保持される第2リレーレンズ群とにより構 成されたズームレンズであつて、

上記不動の第1リレーレンズ群の焦点距離を f₁、上記第2リレーレンズ群の焦点距離をf₂、上 15 間の面間距離を示す。 記したマニアルフォーカス時の上記第1リレーレ ンズ群と第2リレーレンズ群との面間距離を V₄、上記不動の第1リレーレンズ群のうち最も 結像側に近いレンズの物体側レンズ面及び結像側 レンズ面のそれぞれの曲率半径をR22及びR2aとし 20 たとき、

- (1) $| 1/f_1 | < 0.013$
- (2) $0.3f_2 < V_4 < 0.56f_2$
- (3) $0.1 < |R_{23}/R_{22}| < 0.2$

考案の詳細な説明

この考案はビデオカメラなどの撮影光学系に適 するズームレンズに関する。近年のビデオカメラ などは小型化及び軽量化によって携帯性が向上し

2

たが、性能的にもより高度のものが求められるよ **、うになつてきている。この考案はオートフオーカ** ス時の撮影倍率の変化を極めて小さくしてオート フオーカス時にも安定した映像画面が得られるよ 補正されたズームレンズを提供することを目的と するものである。

以下、この考案の実施例について説明する。第 1図は下記の第1実施例及び第2実施例のレンズ Riは第i面の曲率半径、diは第i面と第i+1 面の間の光軸上のレンス肉厚あるいは面間距離、 Ndは屈折率、Vdはアッベ数を示す。また V_1 , V2, V3は変倍系の操作によつて変化するレンズ

さらにfは全レンズ系の合成焦点距離を示し、 fi及びfeは下記する第1リレーレンズ群及び第2 リレーレンズ群の各焦点距離を示す。

第 1 実 施 例

	R		D	N	νd
1	96.470		1,370	1.78472	25.7
2	42.210		9.070	1.62041	60.32
3	-239,200		0.110		
4	33,900		6,500	1.62041	60.32
5	115.480	٧1			
6	150,000		0.910	1.77250	49,62

25

	R		D	N	νd
7	14.750		4,548		
8	-23,000		0.910	1,69100	54.7
9	25,219		3,750	1.84666	23.83
10	-187,270	٧2			
11	-22.510		0.910	1.65830	57,26
12	-136,030	٧3			
13	-140,000		2.300	1.62041	60.32
14	-39,000		0.100		
15	300,000		3.300	1.63854	55.46
16	-37,910		3,500		
17	0,000		1,500		
18	36,750		4.980	1.62041	60.32
19	-628,880		0.180		
20	24.200		5,360	1.67000	57.31
21	149,690		1.000		
22	-113.980		5.930	1.80518	25.46
23	17,670	٧4	(10.800)		
24	0.000		1.320	1.68893	31,16
25	28.500		6.450	1,71300	53.94
26	-35.630		0.150		
27	28,500	ļ	2.790	1.65844	50.85
28	1800.000		10,000		
29	0.000		4.500	水晶	水晶
30	0.000		4.045		

f	V1	V2	V3
12.246	1.14	22.754	6, 967
29, 238	15.807	6,644	8.407
69.803	24.498	4.502	1,857

f1=183.834

f2=23.034

射出瞳位置は結像面より物体側に向け て4192.97㎜である。

第 2 実 施 例

	R	D .	. N	νd
1	96,470	1.370	1.78472	25.7
2	42,210	9,070	1.62041	60,32
3	-200,000	0.100		
4	35.200	6,500	1.62041	60.32

		R	D	N	νd
	5	120.090	V1		
	6	120,000	0.850	1.77250	49.62
<i>5</i>	7	15.890	4.605		
	8	-23,390	0.850	1.69100	54.7
	9	21.700	3.600	1.84666	23.83
	10	0.000	V2		
	11	-22.510	0.910	1.65830	25.26
10	12	-136.030	V3		
	13	-140.000	2.300	1.62041	60.32
	14	-39,000	0.100	j	
	15	150,000	3,300	1.63854	55,46
	16	-44,450	3.500		
<i>15</i>	17	0.000	1.500		
	18	36.750	4.980	1,62041	60.32
	19	-628.880	0. 180		
	20	24,200	5.360	1.67000	57.31
	21	149.690	1.000		}
20	22	-113.980	5,930	1.80518	25.46
į	23	17,500	V4 (10.800)		
	24	0.000	1.320	1.68893	31.16
	25	28,500	6.450	1.71300	53.94
n.c	26	-35,630	0.150		
25	27	28.500	2.790	1.65844	50,85
	28	1800.000	10,000		
	29	0.000	5,500	水晶	水晶
Į	30	0.000	3,596		

30

f	VI	V2	V3
12,591	1.14	22,752	7.5
30.322	15.753	6,988	8.65
73,021	24.286	5,743	1.361

35

f1=194.074

f2=23,034

射出瞳の位置は結像面より物体側に向けて5320.07㎜である。

上記のズームレンズの実施例において、R₁~40 R₅の曲率半径よりなる三枚のレンズ群は、マニアルフォーカス機能を有する正のパワーの前玉フォーカシングレンズ群を構成する。以下、順にR₆~R₁₀の曲率半径よりなる3枚のレンズ群は変倍機能を有する負のパワーのバリエータレンズ群

を構成し、Rii~Ri2の曲率半径よりなる1枚のレ ンズは結像点の補正機能を有する負のパワーのコ ンペンセータレンズ群を構成し、Ris~Risの曲率 半径よりなる2枚のレンズ群は発散光束を平行光 東に戻す機能を有するコリメートレンズ群を構成 5 の大きさを一定させ安定した映像画面を得させる する。R₁₇は絞りである。さらにR₁₈~R₂₈の曲率 半径の6枚のレンズ群よりなる結像機能を有する リレーレンズ群のうち、R₁₈~R₂₃の曲率半径より なる3枚のレンズ群は固定された不動の第1リレ ンズ群は第2リレーレンズ群を構成する。R₂₈, Raoは水晶フィルター面、その右側の面は結像面 である。上記のレンズ構成において、マニアルフ オーカスは上記第2リレーレンズ群を固定保持し た状態において前玉フォーカシングレンズ群を可 15 動操作することによつて行われる。前記実施例中 のV₄の値は、上記マニアルフオーカス時に固定 保持された状態における第2 リレーレンズ群と不 動の第1リレーレンズ群との間の面間距離を表わ すものである。また、オートフォーカスは上記前 20 瞳の中心を通過するすべての画角の光線を撮像素 **モフォーカシングレンズ群を無限遠合焦位置に固** 定保持した状態において、上記第2 リレーレンズ 群を適宜な手段によつて得られた合焦信号により 自動的に可動操作することによつて行われる。こ のようにオートフォーカス時にリレーレンズ群の 25 ーレンズ群との面間距離を示すものである。 1部である上記第2リレーレンズ群を可動操作す るようにしたことは、オートフオーカス機構の小

上記の実施例の各々の合成焦点距離における各 に、また第2実施例のものは第5図~第7図に示

型化に大きな寄与を与えている。

上述したこの考案のズームレンズは次のような 特徴を有している。

f、、第2リレーレンズ群の焦点距離をf₂としたと き、まず上記の不動の第1リレーレンズ群の焦点 距離行を

(1) $| 1/f_1 | < 0.013$

なる条件を満たすように充分大きな値としたこと 40 面の平面性を保つことができない。 である。これは上記不動の第1リレーレンズ群と 第2リレーレンズ群との合成焦点距離fgをオー トフォーカスに関しては可変である上記第2及び 第1リレーレンズ群の間の面間距離V4′の値の如

6

何に係わらずほぼ一定にして、第2リレーレンズ 群を可変操作することによつて行うオートフォー カス時の撮影倍率の変化をごく小さなものに押え ることによつて、オートフォーカス時の映像画面 ようにしたものである。これにつにてさらに詳述 すると次のように説明することができる。上記第 1及び第2リレーレンズ群の合成焦点距離 f g は $f_R = f_1 \cdot f_2 / (f_1 + f_2 - V_4')$

ーレンズ群を構成し、 $R_{24} \sim R_{28}$ よりなる 3 枚のレ 10 で表わされるが、上記(1)の条件のように f_1 を充分 大きな値とすることによつて、可変の上記V.'の 値の如何に係わらず合成焦点距離 f gをほゞ一定 とすることができ、ひいては撮影倍率の変化をご く小さなものに押えることができるものである。

次に上記第2リレーレンズ群の焦点距離fgを (2) $0.3f_2 < V_4 < 0.56f_2$

なる条件を満足させることによつて、射出瞳を結 像面から充分に長い位置に設定したことである。 これは射出瞳を長くすることによつて、当該射出 子に対して直角に入射せしめ撮像素子において混 色が生じないようにするためである。尚、Vaは 上述したようにマニアルフオーカスにおいて固定 保持される第2リレーレンズ群と不動の第1リレ

上記条件式(2)の上限を越えると射出瞳は結像面 よりプラス方向で短くなり、また下限を越えると 射出瞳はマイナス方向で短くなる。

さらに上記不動の第1リレーレンズ群のうち最 収差特性を第1実施例のものは第2図~第4図 30 も結像側に近いレンズの物体側のレンズ面及び結 像側のレンズ面のそれぞれの曲率半径をR22及び R23としたとき

(3) $0.1 < |R_{23}/R_{22}| < 0.2$

なる条件を満足させることによつて、上記第2リ 上記不動の第1リレーレンズ群の焦点距離を 35 レーレンズ群の結像面における像面湾曲を適正に 収差補正するようにしたものである。即ち、上記 の条件式において下限を越えると軸外光線の像面 湾曲がマイナスとなり、また上限を越えると軸外 光線の像面湾曲がプラスとなり、いずれも映像画

図面の簡単な説明

第1図はこの考案の実施例を示すレンズ構成の 外観図である。第2図~第4図はこの考案の第一 実施例の各々の合成焦点距離 f における各収差特 7

性図であり、第2図はf=12.246、第3図はf=

各収差特性図であり、第5図はf=12.581、第6 図は f = 30.322、第7図は f = 73.021の各々の場 合における各収差特性図である。

8

29.238、第4図はf=69.803の各々の場合におけ る各収差特性図である。第5図~第7図はこの考 案の第2実施例の各々の合成焦点距離fにおける

第1図

第2図

第6図

-0.2 0.2 --- 珠面収差 ---- 正弦条件

第7図

-0.2 0.2 非英収差

Y= 5.69

