副

対

呭

K

乜

拼

[約

昆明理工大学 2011 级 试卷 (A卷)

考试科目: 线性代数 考试日期: 2012年6月20日 命题教师: 命题小组

题号	_	=	Ξ	四	五	六	七	八	总分
评分									
阅卷人									

一、判断题(正确填"√", 错误填"×"): (每小题 2 分, 共 10 分)

- 1. 若可逆矩阵 A 是对称矩阵,则 A^{-1} 也是对称矩阵. ()
- 2. 若 $A^2 = A$, 目 $A \neq E$, 则A可逆. ()
- 3. 线性无关的向量组中的任一部分向量组皆线性无关. ()
- () 4. 方阵 A 的不同特征值所对应的特征向量必线性相关.
- 5. 若矩阵 A_{mxn} 满足 r(A) = m,则方程组 $A\vec{x} = \vec{0}$ 只有零解. ()

二、选择题: (每小题 3 分, 共 21 分)

- 1. 设A、B均为n阶方阵,则必有 ()
 - A. |A + B| = |A| + |B| B. $|AB| = |BA^T|$ C. $(AB)^T = A^T B^T$

- D. $(A+B)^{-1} = A^{-1} + B^{-1}$
- 2. 设A、B均为n阶方阵,目AB=O,则必有 ()
- A. $A = O \implies B = O$ B. BA = O C. $|A| = 0 \implies |B| = 0$ D. |A| + |B| = 0
- 3. 设 $A \times B$ 均为n阶方阵,则以下正确的是 ()
 - A. $(AB)^T = A^T B^T$ B. $AA^T = A^T A$

 - C. 若 $A^T = A$, 则 $(A^2)^T = A^2$ D. 若 $A^T = A$, $B^T = B$ 则 $(AB)^T = AB$
- 4. 设A,B可逆,则 $\begin{pmatrix} O & A \\ B & O \end{pmatrix}^{-1} =$

ᆀ

K

A.
$$\begin{pmatrix} O & B^{-1} \\ A^{-1} & O \end{pmatrix}$$
 B. $\begin{pmatrix} O & A^{-1} \\ B^{-1} & O \end{pmatrix}$ C. $\begin{pmatrix} A^{-1} & O \\ O & B^{-1} \end{pmatrix}$ D. $\begin{pmatrix} B^{-1} & O \\ O & A^{-1} \end{pmatrix}$

- 5. 若向量组 $\vec{\alpha}$, $\vec{\beta}$, $\vec{\gamma}$ 线性无关, $\vec{\alpha}$, $\vec{\beta}$, $\vec{\delta}$ 线性相关,则 (
 - A. $\vec{\alpha}$ 必可由 $\vec{\beta}$, $\vec{\gamma}$, $\vec{\delta}$ 线性表示 B. $\vec{\beta}$ 必可由 $\vec{\alpha}$, $\vec{\gamma}$, $\vec{\delta}$ 线性表示
 - C. $\vec{\delta}$ 必不可由 $\vec{\alpha}$, $\vec{\beta}$, $\vec{\gamma}$ 线性表示 D. $\vec{\delta}$ 必可由 $\vec{\alpha}$, $\vec{\beta}$, $\vec{\gamma}$ 线性表示
- 6. 设 A 为 $m \times n$ 矩阵,则方程组 $A\vec{x} = \vec{0}$ 只有零解的充分必要条件是 (
 - A. A的列向量组线性无关
- B. A的列向量组线性相关
- C. A的行向量组线性无关
 - D. A的行向量组线性相关
- 7. 设n阶方阵A与对角矩阵相似,则下列正确的是 ()
 - A. A 必为可逆矩阵
- B A 有 n 个不同的特征值
- C. A必为实对称矩阵
- D A必有n个线性无关的特征向量

三、填空题: (每小题 3 分, 共 24 分)

$$1. \begin{vmatrix} 0 & 0 & 4 & 0 \\ 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \end{vmatrix} = \underline{\hspace{2cm}}.$$

2. n 阶方阵 A 可逆,且 $A^6 = E$,则 A^{10} 可用 A^{-1} 表示为

3.
$$A = \begin{pmatrix} 3 & 0 \\ 1 & 4 \end{pmatrix}$$
,则 $|(A^T - 2E)(A - 2E)^2| =$ ______.

- 4. 若向量 $\vec{\alpha}_1, \vec{\alpha}_2, \vec{\alpha}_3$ 线性无关,则 $\vec{\alpha}_1, \vec{\alpha}_1 + \vec{\alpha}_2, \vec{\alpha}_1 + \vec{\alpha}_2 + \vec{\alpha}_3$ 线性 ______ 关.
- 5. 设三元非齐次线性方程组 $A\vec{x} = \vec{b}$ 的系数矩阵 A 的秩为 2,且该方程的三个 解向量 $\vec{\beta}_1, \vec{\beta}_2, \vec{\beta}_3$ 满足 $\vec{\beta}_1 + \vec{\beta}_2 = (4, 2, -2)^T, \vec{\beta}_1 + \vec{\beta}_2 = (4, 0, 6)^T$,则该线性方程组 的通解为
- 6. 仅含一个方程的齐次线性方程组 $a_1x_1 + a_2x_2 + \cdots + a_nx_n = 0$ 满足 a_1, a_2, \cdots, a_n

2011 级 线性代数 试卷 A 卷 第 2 页 共 6 页

不全为零,则其基础解系中一定含有 _____ 个线性无关的解向量 7. $\vec{\alpha} = (1,-1,2)^T$, $\vec{\beta} = (2,1,1)^T$, 则当 k = _____ 时, $\vec{\alpha} 与 k\vec{\alpha} + \vec{\beta}$ 正交.

8. 设 $\lambda = 2$ 是可逆矩阵A的一个特征值,则矩阵 $\left(\frac{1}{3}A^2\right)^{-1}$ 的一个特征值为

五、已知 A, B 为二阶方阵,且 $2A^{-1}B = B - 4E$ 。(1) 证明矩阵 A - 2E 可逆; (2)

若
$$B = \begin{pmatrix} 3 & 1 \\ 0 & 3 \end{pmatrix}$$
,求 A 。(9分)

六、求向量组 $\vec{\alpha}_1 = (1,1,1,k)^T$, $\vec{\alpha}_2 = (1,1,k,1)^T$, $\vec{\alpha}_1 = (1,2,1,1)^T$ 的秩和一个极大线性无关组。(8分)

考试座位号	鼠	七、求线性方程组 $\begin{cases} x_1 + x_2 + x_3 + x_4 = 1 \\ 3x_1 + 2x_2 + 2x_3 + 4x_4 = 2 \end{cases}$ 的通解。(8分)
课序号	如	
任课教师姓名	步	
(H	К	
孙 	松	
4.00	柒	
专业班级	裲	
学院	例	

八、设矩阵
$$A = \begin{pmatrix} 1 & 1 & -2 \\ 1 & -2 & 1 \\ -2 & 1 & 1 \end{pmatrix}$$
,试求一正交矩阵 P ,使 $P^{-1}AP$ 为对角阵。(12 分)