

Robótica Industrial

Introdução a Manipuladores Robóticos

Prof. Dr. Alexandre S. Brandão alexandre, brandao@ufv.br

Característica Construtiva

- ☐ Precisão
 - ☐ É a capacidade do robô ir a uma posição desejada, com respeito a um sistema de referência fixo
- ☐ Repetibilidade
 - ☐ Capacidade de alcançar uma posição partindo de uma mesma condição inicial

Efetuador

- ☐ Garras
 - ☐ Sujeição por pressão
 - ☐ Sujeição magnética
 - ☐ Sujeição a vácuo
- ☐ Ferramentas especializadas
 - ☐ Pistolas pulverizadoras
 - ☐ Soldagem por resistência por pontos ou por arco
 - ☐ Furadeiras
 - Polidoras

O efetuador não adiciona grau de liberdade ao manipulador

Problema da Robótica

- ☐ O que deve ser feito para programar um robô com o objetivo de executar uma determinada tarefa?
- ☐ Exemplo: Retifica planar e Polimento

Problema da Robótica

☐ Cinemática de Posição
☐ Direta e Inversa
Notação de Denavit-Hartenberg
☐ Cinemática da Velocidade
☐ Direta e Inversa
Configuração singular
☐ Dinâmica
Lagrangiana e Newtoniana
☐ Controle
Postura e seguimento de trajetória
☐ Controle de Força
Impedância mecânica e Controle híbrido

Problema da Robótica

☐ Cinemática da posição e velocidade do manipulador planar

- 1) Determinar a posição do efetuador, sabendo que os membros medem a_1 e a_2
- 2) Determinar os ângulos θ_1 e θ_2 em função da posição do efetuador
- 3) Determinar a velocidade do efetuador
- 4) Determinar a velocidade das articulações

