First set the environment & load csv files, I load two data sets, one is sample from the slide and one is the iris flower data set.

Code: mydata<-read.csv("sample.csv")
Code: myflower<-read.csv("raw data.csv")

1. Implement chi-merge

I use the function chiSq ,from package "discretization" to calculate the chi-square value between two clusters. So we need to install and import this package.

Code: install.packages("discretization")

Code: library(discretization)

Below is my chiMerge algorithm, I have attached a text file in my homework report for readability:

```
1     chi_merge <- function(attr,freque,threshold){
2     contingency_table <- table(attr,freque)
3     contingency_table <- as.data.frame.matrix(contingency_table)</pre>
                  print(contingency_table)
                                                                                               create a table
                  #calculate chi value and cr
n = nrow(contingency_table)
                        chi_val = chiSq(contingency_table[i:(i+1),1:ncol(contingency_table)])
if(grep1("-",rownames(contingency_table)[i])){
  lower_bound = as.numeric(strsplit(rownames(contingency_table)[i],"-")[[1]][1])
13
                               lower_bound = as.numeric(rownames(contingency_table)[i])
 14
15 +
                       if(grepl("-",rownames(contingency_table)[(i+1)])){
    upper_bound = as.numeric(strsplit(rownames(contingency_table)[(i+1)],"-")[[1]][2])
}else{
18
                               upper\_bound = as.numeric(rownames(contingency\_table)[(i+1)])
                         if (!exists("chi_table")) chi_table <- c(lower_bound,upper_bound,chi_val)
 20
21
22
23
                         else chi_table <- rbind(chi_table,c(lower_bound,upper_bound,chi_val))
                  colnames(chi_table) <- c("lower_bound","upper_bound","chi_val")
                 colnames(chi_table) <- c("lower_bound","upper_bound","chi_
thi_table = as.data.frame(chi_table)
min_chi = min(chi_table$chi_val)
p_value = qchisq(1 - threshold,ncol(contihgency_table)-1)
print(chi_table)
#merge the min chi_val entil the threshold is reached
while(min_chi < p_value){
    n = nrow(chi_table)
    # generate new contingency_table
    for(i in 1:n){
        if(chi_table[i:3] == min chi){</pre>
24
25
26
27
28
29 ÷
                               if(chi_table[i,3] == min_chi){
                                     if((i==n) || chi_table[(i+1),3] != min_chi){
   if(!exists("index_]ower")) index_lower = i
34 ÷
35
36
37
38
                                          index\_upper = (i+1)
                                          interval = paste(chi_table[index_lower,1],chi_table[i,2],sep="-")
rownames(contingency_table)[index_lower] <- interval
col_num = ncol(contingency_table)</pre>
 39
                             while(index_upper!=index_lower){
  for (j in 1:col_num){
40 -
                                                   contingency\_table[(index\_upper-1),j] = contingency\_table[(index\_upper-1),j] + contingency\_table[index\_upper,j] + contin
                                             if(!exists("row_index_to_delete")){
                                                   row_index_to_delete <- index_upper
                                                   row_index_to_delete <- c(row_index_to_delete,index_upper)
49
50
51
52
53
55
55
56
57
58
59
60
61
62
63
64
65
66
67
70
71
72
                                              index\_upper = index\_upper - 1
                                       }
                                       we need to do cumulative merging if two adjacent chi_val are min value
                                 else{
  if(!exists("index_lower")) index_lower = i
                             if(exists("index_lower")) rm(index_lower)
                       contingency_table <- contingency_table[-row_index_to_delete,]
rm(row_index_to_delete)</pre>
                      print(contingency_table)

# calculate chi value and g
n = nrow(contingency_table)
                                                                                        and generate chi_table
                       rm(cht_table)
for (i in 1:(n-1)){
    chi_val = chisq(contingency_table[i:(i+1),1:ncol(contingency_table)])
    if(grepl("-",rownames(contingency_table)[i])){
        lower_bound = as.numeric(strsplit(rownames(contingency_table)[i],"-")[[1]][1])
                                  lower_bound = as.numeric(rownames(contingency_table)[i])
                            if(grep1("-",rownames(contingency_table)[(i+1)])){
    upper_bound = as.numeric(strsplit(rownames(contingency_table)[(i+1)],"-")[[1]][2])
}else{
```

```
vupper_bound = as.numeric(rownames(contingency_table)[(i+1)])
}

if (!exists("chi_table")) chi_table <- c(lower_bound,upper_bound,chi_val)
else chi_table <- rbind(chi_table,c(lower_bound,upper_bound,chi_val))
}

colnames(chi_table) <- c("lower_bound","upper_bound","chi_val")
chi_table = as.data.frame(chi_table)
print(chi_table)
min_chi = min(chi_table$chi_val)
}

return(contingency_table)

return(contingency_table)

return(contingency_table)</pre>
```

The chi_merge function takes two vectors as input, one is <u>attr</u>, the data we want for discretization, one is <u>freque</u>, the class frequency of the corresponding data. The function also need a <u>threshold</u> parameter, which is needed to calculate the corresponding p values.

The output of this function is a contingency table(I print the contingency table and chi_val table every calculation in my function for debugging and better illustration), the row names specify the cluster interval (inclusively), the columns are the class frequency of this specific data interval. For example:

	Iris-setosa	Iris-versicolor	Iris-virginica	
4.3 - 4.8	16	0	0	
4.9	4	1	1	
5-5.4	25	5	0	
5.5-5.7	4	15	2	
5.8 - 6.2	1	15	10	
6.3-7	0	14	25	
7.1-7.9	0	0	12	
>				

We take the first line for illustration, it says, in 4.3-4.8 interval (inclusively), there are 16 instances of class Iris-setosa, 0 instance of Iris-versicolor and 0 instance of class Iris-virginica.

Basically the function chi_merge do two things, first, generate the **contingency table** of <u>attr</u> and <u>freque</u>. Then generate the corresponding **chi_value** table . which is needed to update our original contingency table. I will use the example in the slides for demonstration:

Step 1 : Generate the contingency table of <u>attr</u> F and <u>freque</u> K

F	K=1	K=2
1	1	0
3	0	1
7	1	0
8	1	0
9	1	0
11	0	1
23	0	1
37	1	0
39	0	1

45	1	0
46	1	0
59	1	0

Step 2: Generate the chi_val table between clusters in the contingency table. We need to calculate the chi_square value for clusters pairs in the contingency table.

Chi_table	Lower_bound	Upper_bound	Chi_val
	1	3	1.9996
	3	7	1.9996
	7	8	0.0000
	8	9	0.0000
	9	11	1.9996
	11	23	0.0000
	23	37	1.9996
	37	39	1.9996
	39	45	1.9996
	45	46	0.0000
	46	59	0.0000

In this table <u>lower bound</u> means the lower bound of the first cluster, <u>upper bound</u> means the upper bound of the second cluster. <u>Chi val</u> is the chi value of these two clusters. We will then find the min value of chi-square.

Step 3:If the min value of chi-square is below corresponding p_value, merge these two clusters into one cluster. And modify the original contingency table.

Before:

F K=1 K=2 1 1 0 3 0 1 7-9 1+1+1 0+0+0 8 1 0 9 1 0 11-23 0+0 1+1 23 0 1 37 1 0 39 0 1 45-59 1+1+1 0+0+0 46 1 0 59 1 0			
3 0 1 7-9 1+1+1 0+0+0 8 1 0 9 1 0 11-23 0+0 1+1 23 0 1 37 1 0 39 0 1 45-59 1+1+1 0+0+0 46 1 0+0+0	F	K=1	K=2
7-9	1	1	0
8 1 0 9 1 0 11-23 0+0 1+1 23 0 1 37 1 0 39 0 1 45-59 1+1+1 0+0+0 46 1 0	3	0	1
9 1 0 11-23 0+0 1+1 23 0 1 37 1 0 39 0 1 45-59 1+1+1 0+0+0 46 1 0	7-9	1+1+1	0+0+0
11-23	8	1	0
23 θ 1 37 1 0 39 0 1 45-59 1+1+1 0+0+0 46 1 θ	9	1	θ
37 1 0 39 0 1 45-59 1+1+1 0+0+0 46 1 θ	11-23	0+0	1+1
39 0 1 45-59 1+1+1 0+0+0 46 1 0	23	0	1
45-59 1+1+1 0+0+0 46 1 θ	37	1	0
46 1 0	39	0	1
	45-59	1+1+1	0+0+0
59 1 0	46	1	θ
	59	1	θ

After:

F	K=1	K=2
1	1	0
3	0	1
7-9	3	0
11-23	0	2

37	1	0
39	0	1
45-59	3	0

Step 4: Generate new chi table for our updated contingency table.

Chi_table	Lower_bound	Upper_bound	Chi_val
	1	3	1.9996
	3	9	3.999333
	7	23	4.999567
	11	37	2.999500
	37	39	1.999600
	39	59	3.999333

Step 5: Then we will do Step 3 and Step 4 again and again until the min chi_val is above our p_value, which means the adjacent clusters are different enough and we do not need to merge them into one cluster.

So much for the illustration of my chi merge algorithm.

2. Discretize sepal length in cm using 5 different thresholds using chi-merge (0.10 0.05 0.025 0.02 0.01)

Code: chi_merge(myflower\$sepal.length,myflower\$class,0.1)
Output:

	Iris-setosa	Iris-versicolor	Iris-virginica
4.3-4.8	16	0	0
4.9	4	1	1
5-5.4	25	5	0
5.5-5.7	4	15	2
5.8-6.2	1	15	10
6.3-7	0	14	25
7.1-7.9	0	0	12
>			

Code: chi_merge(myflower\$sepal.length,myflower\$class,0.05)
Output:

	Iris-setosa	Iris-versicolor	Iris-virginica
4.3-5.4	45	6	1
5.5-5.7	4	15	2
5.8-7	1	29	35
7.1-7.9 >	0	0	12

Code: chi merge(myflower\$sepal.length,myflower\$class,0.025)

Output:

	Iris-setosa	Iris-versicolor	Iris-virginica
4.3-5.4	45	6	1
5.5 - 5.7	4	15	2
5.8-7	1	29	35
7.1-7.9	0	0	12
>			

Code: chi_merge(myflower\$sepal.length,myflower\$class,0.02) Output:

	Iris-setosa	Iris-versicolor	Iris-virginica
4.3 - 5.4	45	6	1
5.5 - 5.7	4	15	2
5.8-7	1	29	35
7.1-7.9	0	0	12
>			

Code: chi merge(myflower\$sepal.length,myflower\$class,0.01)

Output:

	Iris-setosa	Iris-versicolor	Iris-virginica
4.3-5.4	45	6	1
5.5-5.7	4	15	2
5.8-7.9	1	29	47
>			

3. Discretize petal length in cm using 5 different thresholds using chi-merge $(0.10\ 0.05\ 0.025\ 0.02\ 0.01)$

Code: chi_merge(myflower\$petal.length,myflower\$class,0.1) Output:

	Iris-setosa	Iris-versicolor	Iris-virginica
1-1.9	50	0	0
3-4.7	0	44	1
4.8-5.1	. 0	6	15
5.2-6.9	0	0	34
>			

Code: chi_merge(myflower\$petal.length,myflower\$class,0.05)
Output:

Output.			
	Iris-setosa	Iris-versicolor	Iris-virginica
1-1.9	50	0	0
3-4.7	0	44	1
4.8-5.1	0	6	15
5.2-6.9	0	0	34
>			

Code: chi merge(myflower\$petal.length,myflower\$class,0.025)

Output:

100 100 100 100 100 100 100 100 100 100	Iris-setosa	Iris-versicolor	Iris-virginica
1-1.9	50	0	0
3-4.7	0	44	1
4.8-5.1	0	6	15
5.2-6.9 >	0	0	34

Code: chi_merge(myflower\$petal.length,myflower\$class,0.02) Output:

	Iris-setosa	Iris-versicolor	Iris-virginica
1-1.9	50	0	0
3-4.7	0	44	1
4.8 - 5.1	0	6	15
5.2 - 6.9	0	0	34
>			

Code: chi_merge(myflower\$petal.length,myflower\$class,0.01) Output:

F			
	Iris-setosa	Iris-versicolor	Iris-virginica
1-1.9	50	0	0
3-4.7	0	44	1
4.8-5.1	0	6	15
5.2-6.9	0	0	34
>			