Módulo 6: Optimización con Restricciones

Departamento MACC

Matemáticas Aplicadas y Ciencias de la Computación

Universidad del Rosario

Primer Semestre de 2021

Agenda

- Problemas con restricciones de igualdad
 - Introducción
 - Plano tangente

Introducción

• En la toma de decisiones hay relaciones entre la variables y las limitaciones de las mismas

min
$$f(x)$$

s.a. $h(x) = 0$
 $g(x) \le 0$

- Las restricciones limitan el espacio de búsqueda
- Se pueden perder algunos de los criterios de optimalidad como que el gradiente es nulo en el óptimo

• Una restricción activa restringe el espacio de factibilidad

Ejemplo:

min
$$f(x) = (x_1 - 2)^2 + (x_2 - 2)^2$$

s.a. $x_1 + x_2 - 2 = 0$

6/12

$$x \in \mathbb{R}^n, \ f: \mathbb{R}^n o \mathbb{R}, \ \Omega \subset \mathbb{R}^n$$
 min $f(x)$ s.a. $x \in \Omega$

$$h_i: \mathbb{R}^n o \mathbb{R}, \; i=1,\ldots,m, \; m \le n,$$
 $\min \; f(x)$ s.a. $h_i(x)=0, i=1,\ldots,m$

Plano tangente

• Colección de todas las rectas tangentes a la superficie

Definiciones

• Un punto x^* que satisface $h(x^*) = 0$ es un punto **regular** de las restricciones si los gradientes $\nabla h_1(x^*), \ldots, \nabla h_m(x^*)$ son linealmente independientes

• El Jacobiano de
$$h$$
 en x^* es $Dh(x^*) = \begin{bmatrix} Dh_1(x^*) \\ \vdots \\ Dh_m(x^*) \end{bmatrix} = \begin{bmatrix} \nabla h_1(x^*)' \\ \vdots \\ \nabla h_m(x^*)' \end{bmatrix}$

• x^* es regular si y solo si $r(Dh(x^*)) = m$

min
$$x_1^2 + 2x_1x_2 + 3x_3 + 2x_2^2$$

s.a. $x_1 + 2x_2 = 3$
 $4x_1 + 3x_3 = 6$

min
$$x_1^2 + 2x_1x_2 + 3x_3 + 2x_2^2$$

s.a. $x_1 + 2x_2 = 3$
 $4x_1 + 3x_3 = 6$

•
$$h_1(x) = x_1 + 2x_2 - 3 = 0$$
, $\nabla h_1(x) = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$

min
$$x_1^2 + 2x_1x_2 + 3x_3 + 2x_2^2$$

s.a. $x_1 + 2x_2 = 3$
 $4x_1 + 3x_3 = 6$

- $h_1(x) = x_1 + 2x_2 3 = 0$, $\nabla h_1(x) = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$
- $h_2(x) = 4x_1 + 3x_3 6 = 0$, $\nabla h_2(x) = \begin{bmatrix} 4 \\ 0 \\ 3 \end{bmatrix}$

min
$$x_1^2 + 2x_1x_2 + 3x_3 + 2x_2^2$$

s.a. $x_1 + 2x_2 = 3$
 $4x_1 + 3x_3 = 6$

- $h_1(x) = x_1 + 2x_2 3 = 0$, $\nabla h_1(x) = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$
- $h_2(x) = 4x_1 + 3x_3 6 = 0$, $\nabla h_2(x) = \begin{bmatrix} 4 \\ 0 \\ 3 \end{bmatrix}$
- Todo $x^* \in \mathbb{R}^3$ es regular

- Las restricciones de este problema describen una superficie $S = \{x \in \mathbb{R}^n : h_1(x) = 0, \dots, h_m(x) = 0\}$
- El plano tangente a la superficie S en el punto regular x^* es el conjunto $T(x^*) = \{y : Dh(x^*)y = 0\}$

Ejemplo:

•
$$\nabla h_1(x) = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$
, $\nabla h_2(x) = \begin{bmatrix} 4 \\ 0 \\ 3 \end{bmatrix}$

• Espacio tangente a S en x (y en x^*):

$$T(x) = \{ y : Dh(x)y = 0 \}$$

$$= \left\{ y : \begin{bmatrix} 1 & 2 & 0 \\ 4 & 0 & 3 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = 0 \right\} = \left\{ y = \begin{bmatrix} 1 \\ -1/2 \\ -4/3 \end{bmatrix} \alpha, \alpha \in \mathbb{R} \right\}$$