Divide-and-Conquer: Master Theorem

Neil Rhodes

Department of Computer Science and Engineering University of California, San Diego

Data Structures and Algorithms Algorithmic Toolbox

Outline

1 What is the Master Theorem

2 Proof of Master Theorem

$$T(n) = T\left(\frac{n}{2}\right) + O(1)$$

 $T(n) = O(\log n)$

$$T(n) = 4T\left(\frac{n}{2}\right) + O(n)$$

 $T(n) = O(n^2)$

$$T(n) = 3T(\frac{n}{2}) + O(n)$$

 $T(n) = O(n^{\log_2 3})$

$$T(n) = 2T\left(\frac{n}{2}\right) + O(n)$$

 $T(n) = O(n \log n)$

Master Theorem

Theorem

If
$$T(n) = aT(\lceil \frac{n}{b} \rceil) + O(n^d)$$
 (for constants $a > 0, b > 1, d \ge 0$), then:

$$T(n) = \begin{cases} O(n^d) & \text{if } d > \log_b a \\ O(n^d \log n) & \text{if } d = \log_b a \\ O(n^{\log_b a}) & \text{if } d < \log_b a \end{cases}$$

$$T(n) = 4T\left(\frac{n}{2}\right) + O(n)$$

$$T(n) = 4T\left(\frac{n}{2}\right) + O(n)$$

$$a = 4$$

$$a = 4$$
 $b = 2$

$$d = 1$$

Since $d < \log_b a$, $T(n) = O(n^{\log_b a}) = O(n^2)$

$$a=4$$

$$T(n) = 3T\left(\frac{n}{2}\right) + O(n)$$

 $T(n) = O(n^{\log_b a}) = O(n^{\log_2 3})$

$$a = 3$$
 $b = 2$

$$b = 2$$
$$d = 1$$

$$d=1$$

Since $d < \log_b a$,

$$T(n) = 2T\left(\frac{n}{2}\right) + O(n)$$

 $T(n) = O(n^d \log n) = O(n \log n)$

$$I(n) = 2I$$

$$a = 2$$

$$b = 2$$
$$d = 1$$

$$d=1$$
 Since $d=\log_h a$,

$$T(n) = T\left(\frac{n}{2}\right) + O(1)$$

$$a = 1$$

$$b = 2$$

$$d = 0$$

 $O(n^0 \log n) = O(\log n)$

$$T(n) = T\left(\frac{n}{2}\right) + O(1)$$

$$a = 1$$

Since $d = \log_b a$, $T(n) = O(n^d \log n) =$

Master Theorem Example 5
$$T(n) = 2T\left(\frac{n}{2}\right) + O(n^2)$$

a = 2

b = 2

d=2

Since $d > \log_b a$, $T(n) = O(n^d) = O(n^2)$

Outline

1) What is the Master Theorem

2 Proof of Master Theorem

Master Theorem

Theorem

If
$$T(n) = aT(\lceil \frac{n}{b} \rceil) + O(n^d)$$
 (for constants $a > 0, b > 1, d \ge 0$), then:

$$T(n) = \begin{cases} O(n^d) & \text{if } d > \log_b a \\ O(n^d \log n) & \text{if } d = \log_b a \\ O(n^{\log_b a}) & \text{if } d < \log_b a \end{cases}$$

$T(n) = aT(\lceil \frac{n}{b} \rceil) + O(n^d)$

$$T(n) = aT(\lceil \frac{n}{b} \rceil) + O(n^d)$$

level

work

Total: $\sum_{i=0}^{\log_b n} O(n^d) \left(\frac{a}{bd}\right)^i$

Geometric Series

For $r \neq 1$:

$$a + ar + ar^{2} + ar^{3} + \dots + ar^{n-1}$$

$$= a\frac{1 - r^{n}}{1 - r}$$

$$= \begin{cases} O(a) & \text{if } r < 1\\ O(ar^{n-1}) & \text{if } r > 1 \end{cases}$$

Case $1: \frac{a}{b^d} < 1 \ (d > log_b a)$

$$\sum_{i=0}^{\log_b n} O(n^d) \left(\frac{a}{b^d}\right)^i$$
$$= O(n^d)$$

Case $2: \frac{a}{b^d} = 1$ $(d = log_b a)$

$$\sum_{i=0}^{\log_b n} O(n^d) \left(\frac{a}{b^d}\right)^i$$

$$= \sum_{i=0}^{\log_b n} O(n^d)$$

$$= (1 + \log_b n) O(n^d)$$

$$= O(n^d \log n)$$

Case $3: \frac{a}{h^d} > 1$ $(d < log_b a)$

$$\sum_{i=0}^{\log_b n} O(n^d) \left(\frac{a}{b^d}\right)^i$$

$$= O\left(O(n^d) \left(\frac{a}{b^d}\right)^{\log_b n}\right)$$

$$= O\left(O(n^d) \frac{a^{\log_b n}}{b^{d \log_b n}}\right)$$

$$= O\left(O(n^d) \frac{n^{\log_b n}}{n^d}\right)$$

$$= O(n^{\log_b a})$$

Summary

Master theorem is a shortcut:

Theorem

If
$$T(n) = aT(\lceil \frac{n}{b} \rceil) + O(n^d)$$
 (for constants $a > 0, b > 1, d \ge 0$), then:

$$T(n) = \begin{cases} O(n^d) & \text{if } d > \log_b a \\ O(n^d \log n) & \text{if } d = \log_b a \\ O(n^{\log_b a}) & \text{if } d < \log_b a \end{cases}$$