## Γραφήματα Βασικές Έννοιες

Δ. Μάγος

15 Οκτωβρίου 2020

## Γράφημα

### Ορισμοί

- Γράφημα
- Παράδειγμα
- Ορολογία
- Βαθμός Κορυφής
- Παράδειγμα

Ειδικά Γραφήματα

Συνδεσιμότητα

Δένδρα

**Γράφημα:** μία διμελής σχέση μεταξύ τω στοιχείων ενός συνόλου.

Ορισμός 1 Ένα γράφημα G(V, E) αποτεβείται από

- ένα σύνολο κορυφών (κόμβων) V(G) και
- ένα σύνολο ακμών

$$E(G) \subseteq \{\{u, v\} : u, v \in V(G)\}.$$

**Τάξη γραφήματος:** n = |V(G)|

Μέγεθος γραφήματος: m = |E(G)|

Aν  $n = 0 \Rightarrow$  κενό γράφημα

Αν  $n > m = 0 \Rightarrow$  γράφημα χωρίας ακμές

## Παράδειγμα

Ορισμοί

- Γράφημα
- Παράδειγμα
- Ορολογία
- Βαθμός Κορυφής
- Παράδειγμα

Ειδικά Γραφήματα

Συνδεσιμότητα

Δένδρα

$$V(G) = \{a, b, c, d, e, f\}$$

$$E(G) = \{\{a, b\}, \{a, c\}, \{b, c\}, \{b, d\}, \{c, e\}, \{d, e\}, \{d, f\}, \{e, f\}\}\}$$



Σχήμα 1: Μη κατευθυνόμενο γράφημα με n=6, m=8.

## Ορολογία

### Ορισμοί

- Γράφημα
- Παράδειγμα
- Ορολογία
- Βαθμός Κορυφής
- Παράδειγμα

Ειδικά Γραφήματα

Συνδεσιμότητα

Δένδρα



Παράλληλες ακμές

Παράλληλες ακμές

Απλό γράφημα: δεν περιέχει βρόχους ή παράλληλες ακμές

## Βαθμός Κορυφής

### Ορισμοί

- Γράφημα
- Παράδειγμα
- Ορολογία
- Βαθμός Κορυφής
- Παράδειγμα

Ειδικά Γραφήματα

Συνδεσιμότητα

Δένδρα

## Μη-κατευθυνόμενο γράφημα:

$$N(v) = \{u \in V(G) : \{v, u\} \in E(G)\},\$$
  
 $d(v) = |N(v)|.$ 

## Κατευθυνόμενο γράφημα:

$$N^+(v) = \{u \in V(G) : (v, u) \in E(G)\}, d^+(v) = |N(v)|$$

$$N^{-}(v) = \{u \in V(G) : (u, v) \in E(G)\}, d^{-}(v) = |N(v)|$$

## Παράδειγμα

### Ορισμοί

- Γράφημα
- Παράδειγμα
- Ορολογία
- Βαθμός Κορυφής
- Παράδειγμα

Ειδικά Γραφήματα

Συνδεσιμότητα

Δένδρα



$$d(a) = 2$$
,  $d(b) = 3$ ,  $d(c) = 3$ ,  $d(d) = 3$ ,  $d(e) = 3$ ,  $d(f) = 2$ .

Λήμμα Χειραψίας:  $\sum_{v \in V(G)} d(v) = 2m$ .

## Πλήρες γράφημα

Ορισμοί

Ειδικά Γραφήματα

- Πλήρες γράφημα
- Διμερή γραφήματα
- Υπογράφημα
- Υπογράφημα (συνεχ.)
- Υπογράφημα (συνεχ.)
- Διαδρομή καιΜονοπάτια

Συνδεσιμότητα

Δένδρα

Συμβολίζεται με  $K_n$ : απλό γράφημα με ακμές ανάμεσα σε όλους τους κόμβους



Σχήμα 2: Πλήρη γραφήματα με 2,3,4 κορυφές, αντίστοιχα

Αριθμός ακμών  $K_n: \frac{n(n-1)}{2}$ .

Για κάθε απλό γράφημα ισχύει

$$0 \le m \le \frac{n(n-1)}{2}$$

## Διμερή γραφήματα

Ένα γράφημα G(V,E) ονομάζεται διμερές αν υπάρχει διαμερισμός του συνόλου των κορυφών σε σύνολα  $V^1$ ,  $V^2$  έτσι ώστε για κάθε ακμή  $\{v,u\}\in E,\ v\in V^1,\ u\in V^2.$ 



Σχήμα 3: Διμερές γράφημα

Ένα διμερές γράφημα με  $|V^1| = n_1$ ,  $|V^2| = n_2$  που έχει  $n_1 * n_2$  ακμές ονομάζεται πλήρες διμερές και συμβολίζεται με  $K_{n_1,n_2}$ .



### Ορισμοί

### Ειδικά Γραφήματα

- Πλήρες γράφημα
- Διμερή γραφήματα
- Υπογράφημα
- Υπογράφημα (συνεχ.)
- Υπογράφημα (συνεχ.)
- Διαδρομή και
  Μονοπάτια

Συνδεσιμότητα

Δένδρα

## Υπογράφημα

Ένα υπογράφημα ενός γραφήματος G(V, E) είναι ένα γράφημα G'(V', E') με την ιδιότητα  $V' \subseteq V$ ,  $E' \subseteq E$ . Συμβολίζουμε  $G' \subseteq G$ .

Ένα υπογράφημα  $G' \subseteq G$  καλείται μεγιστοτικό αν δεν υπάρχει άλλο υπογράφημα  $H \subseteq G$  τέτοιο ώστε  $G' \subset H$ . Ένα επαγόμενο υπογράφημα G'(V', E') του G περιέχει κάθε ακμή ανάμεσα στους κόμβους του V' που υπάρχει στο G. Είναι δηλαδή ένα μεγιστοτικό υπογράφημα του G ως προς V'. Το συμβολίζουμε ως G[V'].



Σχήμα 5: Γράφημα G, Υπογράφημα G', Επαγόμενο υπογράφημα  $G[\{a,b,c\}]$ 

### Ορισμοί

### Ειδικά Γραφήματα

- Πλήρες γράφημα
- Διμερή γραφήματα
- Υπογράφημα
- Υπογράφημα (συνεχ.)
- Υπογράφημα (συνεχ.)
- Διαδρομή και
  Μονοπάτια

Συνδεσιμότητα

Δένδρα

### Ορισμοί

### Ειδικά Γραφήματα

- Πλήρες γράφημα
- Διμερή γραφήματα
- Υπογράφημα
- Υπογράφημα (συνεχ.)
- Υπογράφημα (συνεχ.)
- Διαδρομή και
  Μονοπάτια

Συνδεσιμότητα

Δένδρα

## Υπογράφημα

Ένα υπογράφημα ενός γραφήματος G(V, E) είναι ένα γράφημα G'(V', E') με την ιδιότητα  $V' \subseteq V$ ,  $E' \subseteq E$ . Συμβολίζουμε  $G' \subseteq G$ .

Ένα υπογράφημα  $G' \subseteq G$  καλείται μεγιστοτικό αν δεν υπάρχει άλλο υπογράφημα  $H \subseteq G$  τέτοιο ώστε  $G' \subset H$ . Ένα επαγόμενο υπογράφημα G'(V', E') του G περιέχει κάθε ακμή ανάμεσα στους κόμβους του V' που υπάρχει στο G. Είναι δηλαδή ένα μεγιστοτικό υπογράφημα του G ως προς V'. Το συμβολίζουμε ως G[V'].



Σχήμα 5: Γράφημα G και όλα τα μεγιστοτικά υπογραφήματα με βαθμό κόμβου 2

### Ορισμοί

### Ειδικά Γραφήματα

- Πλήρες γράφημα
- Διμερή γραφήματα
- Υπογράφημα
- Υπογράφημα (συνεχ.)
- Υπογράφημα (συνεχ.)
- Διαδρομή καιΜονοπάτια

### Συνδεσιμότητα

### Δένδρα

Ένα γεννητορικό υπογράφημα G'(V', E') του G(V, E) έχει V = V' και  $E' \subset E$ . Άρα το G' είναι μεγιστοτικό ως προς το σύνολο E'.



Σχήμα 6: Ένα γεννητορικό υπογράφημα του G (κόκκινο σύνολο ακμών).

### Ορισμοί

### Ειδικά Γραφήματα

- Πλήρες γράφημα
- Διμερή γραφήματα
- Υπογράφημα
- Υπογράφημα (συνεχ.)
- Υπογράφημα (συνεχ.)
- Διαδρομή και
  Μονοπάτια

### Συνδεσιμότητα

### Δένδρα

**clique:** Υποσύνολο κόμβων  $Q \subseteq V$  με ακμές ανάμεσα σε όλους τους κόμβους. Στο προηγούμενο σχήμα τα  $\{a, b, c\}, \{d, e, f\}$  είναι **cliques** μεγέθους 3.

**Ανεξάρτητο σύνολο:** Υποσύνολο κόμβων  $Q \subseteq V$  με  $E(G[Q]) = \emptyset$ . Δηλαδή, δεν υπάρχει ακμή ανάμεσα στους κόμβους του Q. Στο γράφημα του προηγούμενου σχήματος τα σύνολα  $\{a,f\},\{a,d\},\{a,e\}$  είναι τα ανεξάρτητα σύνολα που συμμετέχει η κορυφή a.

Ορισμοί

### Ειδικά Γραφήματα

- Πλήρες γράφημα
- Διμερή γραφήματα
- Υπογράφημα
- Υπογράφημα (συνεχ.)
- Υπογράφημα (συνεχ.)
- Διαδρομή και
  Μονοπάτια

Συνδεσιμότητα

Δένδρα

**clique:** Υποσύνολο κόμβων  $Q \subseteq V$  με ακμές ανάμεσα σε όλους τους κόμβους. Στο προηγούμενο σχήμα τα  $\{a, b, c\}, \{d, e, f\}$  είναι **cliques** μεγέθους 3.

**Ανεξάρτητο σύνολο:** Υποσύνολο κόμβων  $Q \subseteq V$  με  $E(G[Q]) = \emptyset$ . Δηλαδή, δεν υπάρχει ακμή ανάμεσα στους κόμβους του Q. Στο γράφημα του προηγούμενου σχήματος τα σύνολα  $\{a,f\},\{a,d\},\{a,e\}$  είναι τα ανεξάρτητα σύνολα που συμμετέχει η κορυφή a.



Σχήμα 7: cliques μεγέθους 3.

Ορισμοί

### Ειδικά Γραφήματα

- Πλήρες γράφημα
- Διμερή γραφήματα
- Υπογράφημα
- Υπογράφημα (συνεχ.)
- Υπογράφημα (συνεχ.)
- Διαδρομή και
  Μονοπάτια

Συνδεσιμότητα

Δένδρα

**clique:** Υποσύνολο κόμβων  $Q \subseteq V$  με ακμές ανάμεσα σε όλους τους κόμβους. Στο προηγούμενο σχήμα τα  $\{a, b, c\}, \{d, e, f\}$  είναι **cliques** μεγέθους 3.

**Ανεξάρτητο σύνολο:** Υποσύνολο κόμβων  $Q \subseteq V$  με  $E(G[Q]) = \emptyset$ . Δηλαδή, δεν υπάρχει ακμή ανάμεσα στους κόμβους του Q. Στο γράφημα του προηγούμενου σχήματος τα σύνολα  $\{a,f\},\{a,d\},\{a,e\}$  είναι τα ανεξάρτητα σύνολα που συμμετέχει η κορυφή a.



Σχήμα 7: Ανεξάρτητο σύνολο μεγέθους 2.

Ορισμοί

### Ειδικά Γραφήματα

- Πλήρες γράφημα
- Διμερή γραφήματα
- Υπογράφημα
- Υπογράφημα (συνεχ.)
- Υπογράφημα (συνεχ.)
- Διαδρομή και
  Μονοπάτια

Συνδεσιμότητα

Δένδρα

**clique:** Υποσύνολο κόμβων  $Q \subseteq V$  με ακμές ανάμεσα σε όλους τους κόμβους. Στο προηγούμενο σχήμα τα  $\{a, b, c\}, \{d, e, f\}$  είναι **cliques** μεγέθους 3.

**Ανεξάρτητο σύνολο:** Υποσύνολο κόμβων  $Q \subseteq V$  με  $E(G[Q]) = \emptyset$ . Δηλαδή, δεν υπάρχει ακμή ανάμεσα στους κόμβους του Q. Στο γράφημα του προηγούμενου σχήματος τα σύνολα  $\{a,f\},\{a,d\},\{a,e\}$  είναι τα ανεξάρτητα σύνολα που συμμετέχει η κορυφή a.



Σχήμα 7: Ανεξάρτητο σύνολο μεγέθους 2.

Ορισμοί

### Ειδικά Γραφήματα

- Πλήρες γράφημα
- Διμερή γραφήματα
- Υπογράφημα
- Υπογράφημα (συνεχ.)
- Υπογράφημα (συνεχ.)
- Διαδρομή και
  Μονοπάτια

Συνδεσιμότητα

Δένδρα

**clique:** Υποσύνολο κόμβων  $Q \subseteq V$  με ακμές ανάμεσα σε όλους τους κόμβους. Στο προηγούμενο σχήμα τα  $\{a, b, c\}, \{d, e, f\}$  είναι **cliques** μεγέθους 3.

**Ανεξάρτητο σύνολο:** Υποσύνολο κόμβων  $Q \subseteq V$  με  $E(G[Q]) = \emptyset$ . Δηλαδή, δεν υπάρχει ακμή ανάμεσα στους κόμβους του Q. Στο γράφημα του προηγούμενου σχήματος τα σύνολα  $\{a,f\},\{a,d\},\{a,e\}$  είναι τα ανεξάρτητα σύνολα που συμμετέχει η κορυφή a.



Σχήμα 7: Ανεξάρτητο σύνολο μεγέθους 2.

Ορισμοί

Ειδικά Γραφήματα

- Πλήρες γράφημα
- Διμερή γραφήματα
- Υπογράφημα
- Υπογράφημα (συνεχ.)
- Υπογράφημα (συνεχ.)
- Διαδρομή και Μονοπάτια

Συνδεσιμότητα

Δένδρα

**Διαδρομή:** Μία ακολουθία κορυφών  $W = \langle v_0, v_1, \dots, v_k \rangle$  με  $\{v_i, v_{i+1}\} \in E(G), i = 0, \dots, k-1.$ 

**Διαδρομή:** Μία ακολουθία κορυφών  $W = \langle v_0, v_1, \dots, v_k \rangle$  με  $\{v_i, v_{i+1}\} \in E(G), i = 0, \dots, k-1.$ 

Μονοκονδυλιά: Διαδρομή χωρίς επαναλαμβανόμενη ακμή



Σχήμα 8: Μονοκονδυλιά

### Ειδικά Γραφήματα

- Πλήρες γράφημα
- Διμερή γραφήματα
- Υπογράφημα
- Υπογράφημα (συνεχ.)
- Υπογράφημα (συνεχ.)
- Διαδρομή και Μονοπάτια

### Συνδεσιμότητα

### Δένδρα

Ορισμοί

Ειδικά Γραφήματα

- Πλήρες γράφημα
- Διμερή γραφήματα
- Υπογράφημα
- Υπογράφημα (συνεχ.)
- Υπογράφημα (συνεχ.)
- Διαδρομή και Μονοπάτια

Συνδεσιμότητα

Δένδρα

**Διαδρομή:** Μία ακολουθία κορυφών  $W = \langle v_0, v_1, \dots, v_k \rangle$  με  $\{v_i, v_{i+1}\} \in E(G), i = 0, \dots, k-1.$ 

Μονοκονδυλιά: Διαδρομή χωρίς επαναλαμβανόμενη ακμή

Μονοπάτι: Διαδρομή χωρίς επαναλαμβανόμενη κορυφή



Σχήμα 8: Μονοπάτι  $P_5$ 

**Διαδρομή:** Μία ακολουθία κορυφών  $W = \langle v_0, v_1, \dots, v_k \rangle$ με  $\{v_i, v_{i+1}\} \in E(G), i = 0, ..., k-1.$ 

Μονοκονδυλιά: Διαδρομή χωρίς επαναλαμβανόμενη ακμή

Μονοπάτι: Διαδρομή χωρίς επαναλαμβανόμενη κορυφή

Κύκλος: Μονοπάτι όπου επαναλαμβάνεται μόνο η τερματική κορυφή.

### Ορισμοί

### Ειδικά Γραφήματα

- Πλήρες γράφημα
- Διμερή γραφήματα
- Υπογράφημα
- Υπογράφημα (συνεχ.)
- Υπογράφημα (συνεχ.)
- Διαδρομή και Μονοπάτια

Συνδεσιμότητα

Δένδρα



Σχήμα 8: Κύκλος C<sub>5</sub>

**Διαδρομή:** Μία ακολουθία κορυφών  $W = \langle v_0, v_1, \dots, v_k \rangle$  με  $\{v_i, v_{i+1}\} \in E(G), i = 0, \dots, k-1.$ 

Μονοκονδυλιά: Διαδρομή χωρίς επαναλαμβανόμενη ακμή

Μονοπάτι: Διαδρομή χωρίς επαναλαμβανόμενη κορυφή

**Κύκλος:** Μονοπάτι όπου επαναλαμβάνεται μόνο η τερματική κορυφή.

# Ορισμοί Ειδικά Γοα

### Ειδικά Γραφήματα

- Πλήρες γράφημα
- Διμερή γραφήματα
- Υπογράφημα
- Υπογράφημα (συνεχ.)
- Υπογράφημα (συνεχ.)
- Διαδρομή και
  Μονοπάτια

Συνδεσιμότητα

Δένδρα



Σχήμα 8: Κύκλος C5

Ένα γράφημα που δεν περιέχει κύκλο ονομάζεται άκυκλο

### Ορισμοί

Ειδικά Γραφήματα

### Συνδεσιμότητα

- Συνδεδεμένο γράφημα
- Τομές
- Παρατηρήσεις

Δένδρα

Ένα γράφημα ονομάζεται συνδεδεμένο (ή συνεκτικό) αν υπάρχει μονοπάτι που συνδέει κάθε ζευγάρι κορυφών.

Ορισμοί

Ειδικά Γραφήματα

### Συνδεσιμότητα

- Συνδεδεμένο γράφημα
- Τομές
- Παρατηρήσεις

Δένδρα

Ένα γράφημα ονομάζεται συνδεδεμένο (ή συνεκτικό) αν υπάρχει μονοπάτι που συνδέει κάθε ζευγάρι κορυφών.



Σχήμα 9: Συνεκτικό γράφημα

### Ορισμοί

Ειδικά Γραφήματα

### Συνδεσιμότητα

- Συνδεδεμένο γράφημα
- Τομές
- Παρατηρήσεις

Δένδρα

Ένα γράφημα που δεν είναι συνδεδεμένο αποτελείται από γραφικές συνιστώσες.

Ορισμοί

Ειδικά Γραφήματα

### Συνδεσιμότητα

- Συνδεδεμένο γράφημα
- Τομές
- Παρατηρήσεις

Δένδρα

Ένα γράφημα που δεν είναι συνδεδεμένο αποτελείται από γραφικές συνιστώσες.



Σχήμα 9: Μη-συνεκτικό γράφημα με δύο συνιστώσες

## Τομές

### Ορισμοί

Ειδικά Γραφήματα

### Συνδεσιμότητα

- Συνδεδεμένο γράφημα
- Τομές
- Παρατηρήσεις

### Δένδρα

Μία κορυφή ονομάζεται σημείο κοπής αν η αφαίρεση της (μαζί με τις προσπίπτουσες ακμές) αποσυνδέει το γράφημα σε περισσότερες συνιστώσες.

Αντίστοιχα η ακμή ονομάζεται γέφυρα αν η αφαίρεση της αποσυνδέει το γράφημα σε περισσότερες συνιστώσες.

## Τομές

Ορισμοί

Ειδικά Γραφήματα

### Συνδεσιμότητα

- Συνδεδεμένο γράφημα
- Τομές
- Παρατηρήσεις

Δένδρα

Μία κορυφή ονομάζεται σημείο κοπής αν η αφαίρεση της (μαζί με τις προσπίπτουσες ακμές) αποσυνδέει το γράφημα σε περισσότερες συνιστώσες.

Αντίστοιχα η ακμή ονομάζεται γέφυρα αν η αφαίρεση της αποσυνδέει το γράφημα σε περισσότερες συνιστώσες.



Σχήμα 10: Σημείο κοπής f

## Τομές

Ορισμοί

Ειδικά Γραφήματα

### Συνδεσιμότητα

- Συνδεδεμένο γράφημα
- Τομές
- Παρατηρήσεις

Δένδρα

Μία κορυφή ονομάζεται σημείο κοπής αν η αφαίρεση της (μαζί με τις προσπίπτουσες ακμές) αποσυνδέει το γράφημα σε περισσότερες συνιστώσες.

Αντίστοιχα η ακμή ονομάζεται γέφυρα αν η αφαίρεση της αποσυνδέει το γράφημα σε περισσότερες συνιστώσες.



Σχήμα 10: Γέφυρα {f, g}

## Παρατηρήσεις

Ορισμοί

Ειδικά Γραφήματα

### Συνδεσιμότητα

- Συνδεδεμένο γράφημα
- Τομές
- Παρατηρήσεις

Δένδρα

- Ένα συνεκτικό γράφημα έχει μία γραφική συνιστώσα.
- Αν σε κάποιο γράφημα υπάρχει κορυφή v με d(v) = n 1 τότε το γράφημα είναι συνδεδεμένο.
- Αν από ένα γράφημα αφαιρέσουμε μια γέφυρα τότε αυξάνεται ο αριθμός των γραφικών συνιστωσών κατά ένα.
- Αν από ένα γράφημα αφαιρέσουμε το σημείο κοπής v τότε αυξάνεται ο αριθμός των γραφικών συνιστωσών το πολύ κατά d(v) 1.
- Για οποιοδήποτε γράφημα με k συνιστώσες ισχύει  $n \le k + m$ .
- Για κάθε συνεκτικό γράφημα ισχύει ότι ο αριθμός των ακμών πρέπει να είναι τουλάχιστον όσο ο αριθμός των κορυφών μείον ένα:  $n-1 \le m$ .
- Αν ένα συνεκτικό γράφημα έχει ΑΚΡΙΒΩΣ n 1 ακμές, δηλαδή αν, m = n 1 τότε λέγεται δένδρο. Ισοδύναμα, ένα δένδρο ορίζεται ένα γράφημα το οποίο είναι μεγιστοτικά άκυκλο και ελαχιστοτικά συνδεδεμένο.

## Ορισμοί

Έστω γράφημα T(V, E). Τα παρακάτω είναι ισοδύναμα.

- Ορισμοί
- Ειδικά Γραφήματα

### Συνδεσιμότητα

### Δένδρα

- Ορισμοί
- Παρατηρήσεις
- Γεννητορικό Δένδρο
- Ρίζα δένδρου
- Δυαδικά δένδρα
- Διάσχιση δένδρου

- Το γράφημα Τ είναι δένδρο.
- Στο T, μεταξύ κάθε ζεύγους κορυφών v, u με  $v \neq u$  υπάρχει ένα μοναδικό μονοπάτι από την v στην u.
- Το Τ είναι ένας συνδεδεμένο ακυκλικό γράφημα.
- Το Τ είναι συνδεδεμένο γράφημα και έχει n 1 ακμές.
- Το T είναι ακυκλικό γράφημα και έχει n-1 ακμές.
- Το Τ είναι συνδεδεμένο γράφημα και κάθε ακμή είναι γέφυρα.
- Το Τ είναι ακυκλικό γράφημα και η προσθήκη ακμής δημιουργεί κύκλο.



Σχήμα 11: Γράφημα δένδρο.

## Παρατηρήσεις

Ορισμοί

Ειδικά Γραφήματα

Συνδεσιμότητα

### Δένδρα

- Ορισμοί
- Παρατηρήσεις
- Γεννητορικό Δένδρο
- Ρίζα δένδρου
- Δυαδικά δένδρα
- Διάσχιση δένδρου

- Οι κορυφές με βαθμό ένα σε κάθε δένδρο ονομάζονται φύλλα.
- Οι υπόλοιπες κορυφές ονομάζονται εσωτερικές.

Ειδικά δένδρα.





Σχήμα 12: Γράφημα μονοπάτι (P<sub>n</sub>) και γράφημα αστέρι (S<sub>n</sub>).

## Γεννητορικό Δένδρο

Ορισμοί

Ειδικά Γραφήματα

Συνδεσιμότητα

### Δένδρα

- Ορισμοί
- Παρατηρήσεις
- Γεννητορικό Δένδρο
- Ρίζα δένδρου
- Δυαδικά δένδρα
- Διάσχιση δένδρου

Έστω γράφημα G(V,E) και υπογράφημα του T(V,E'), με  $E'\subseteq E$  τέτοιο ώστε T είναι δένδρο. Το T ονομάζεται γευνητορικό ή συνεκτικό δένδρο του G.



Σχήμα 13: Κόκκινες ακμές σχηματίζουν ένα γεννητορικό δένδρο του G .

## Ρίζα δένδρου

Ορισμοί

Ειδικά Γραφήματα

Συνδεσιμότητα

### Δένδρα

- Ορισμοί
- Παρατηρήσεις
- Γεννητορικό Δένδρο
- Ρίζα δένδρου
- Δυαδικά δένδρα
- Διάσχιση δένδρου

**Ρίζα:** Μία διακεκριμένη κορυφή του δένδρου η οποία δεν είναι φύλλο.

Υπάρχει μοναδικό μονοπάτι από την ρίζα σε κάθε φύλλο. Έστω  $v_0, v_1, \ldots, v_i, v_{i+1}, \ldots, v_n$  ένα τέτοιο μονοπάτι. Η κορυφή  $v_i$  ονομάζεται γονέας (ή πατέρας) της  $v_{i+1}$  και η  $v_{i+1}$  παιδί της  $v_i$ .

- Βάθος Κορυφής: αριθμός των ακμών στο μονοπάτι μέχρι τη ρίζα.
- Υψος δένδρου: το μεγαλύτερο βάθος κάποιας κορυφής.
- Επίπεδο: όλες οι κορυφές με το ίδιο βάθος βρίσκονται στο ίδιο επίπεδο.
- Η ρίζα του δένδρου βρίσκεται σε επίπεδο μηδέν.

## Δυαδικά δένδρα

Ορισμοί

Ειδικά Γραφήματα

Συνδεσιμότητα

### Δένδρα

- Ορισμοί
- Παρατηρήσεις
- Γεννητορικό Δένδρο
- Ρίζα δένδρου
- Δυαδικά δένδρα
- Διάσχιση δένδρου

- Κάθε κόμβος έχει το πολύ δύο παιδιά
- Διακρίνουμε μεταξύ αριστερού και δεξιού παιδιού (υποδένδρου).
- Αν σε κάθε επίπεδο υπάρχουν όλοι οι κόμβοι τότε το δένδρο λέγεται πλήρες.
- ullet Το επίπεδο d έχει το πολύ  $2^d$  κορυφές
- Αν h το ύψος του δένδρου, τότε

$$h + 1 \le n \le 2^{h+1} - 1 \Rightarrow \lg(n+1) \le h \le n - 1.$$

- Αν  $n_i$ , i = 0, 1, 2 είναι το πλήθος των κορυφών με i παιδιά τότε  $n_0 = n_2 + 1$
- Ένα πλήρες δυαδικό δένδρο έχει συνολικά  $2^{h+1} 1$  κορυφές,  $2^h$  φύλλα και  $2^h 1$  εσωτερικές κορυφές.

## Διάσχιση δένδρου

Ορισμοί

Ειδικά Γραφήματα

Συνδεσιμότητα

### Δένδρα

- Ορισμοί
- Παρατηρήσεις
- Γεννητορικό Δένδρο
- Ρίζα δένδρου
- Δυαδικά δένδρα
- Διάσχιση δένδρου



Σχήμα 14: Δυαδικό δένδρο.

Ένδο-διατεταγμένη (inorder) διέλευση:

- Αναδρομική διέλευση αριστερού υποδένδρου.
- Επεξεργασία ρίζας.
- Αναδρομική διέλευση δεξιού υποδένδρου.

### **HDIBJEKAFCG**

## Διάσχιση δένδρου

Ορισμοί

Ειδικά Γραφήματα

Συνδεσιμότητα

### Δένδρα

- Ορισμοί
- Παρατηρήσεις
- Γεννητορικό Δένδρο
- Ρίζα δένδρου
- Δυαδικά δένδρα
- Διάσχιση δένδρου



Σχήμα 14: Δυαδικό δένδρο.

## Προ-διατεταγμένη (preorder) διέλευση:

- Επεξεργασία ρίζας.
- Αναδρομική διέλευση αριστερού υποδένδρου.
- Αναδρομική διέλευση δεξιού υποδένδρου.

### **ABDHIEJKCFG**

## Διάσχιση δένδρου

Ορισμοί

Ειδικά Γραφήματα

Συνδεσιμότητα

### Δένδρα

- Ορισμοί
- Παρατηρήσεις
- Γεννητορικό Δένδρο
- Ρίζα δένδρου
- Δυαδικά δένδρα
- Διάσχιση δένδρου



Σχήμα 14: Δυαδικό δένδρο.

Μετα-διατεταγμένη (postorder) διέλευση:

- Αναδρομική διέλευση αριστερού υποδένδρου.
- Αναδρομική διέλευση δεξιού υποδένδρου.
- Επεξεργασία ρίζας.

### HIDJKEBFGCA