Modulation et démodulation d'amplitude

Exercice 1: transmettre un signal S(t)

Pour transmettre un signal S(t) de fréquence f_S , le groupe précédent d'élèves, réalise dans un deuxième temps le montage de la figure 4, où ils ont appliqué la tension $p(t) = P_m cos(2.\pi.F_P.t)$ sur l'entrée E_1 et la tension $S(t) + U_0 = S_m cos(2.\pi.f_S.t) + U_0$ sur l'entrée E_2 . (U_0 la composante continue de la tension) La visualisation des tensions $S(t) + U_0$ et $u_S(t)$ à la sortie du circuit multiplieur, permet d'obtenir les courbes représentées sur les figures 5 et 6.

- 1. Quelle condition doit satisfaire F_P et f_S pour obtenir une bonne modulation?
- 2. Affecter à chaque courbe des figures 5 et 6, la tension correspondante.
- 3. Déterminer le taux de modulation m, sachant que la sensibilité verticale de l'oscilloscope est 1V/div. Conclure

Exercice 2: la modulation d'amplitude

Pour étudier la modulation d'amplitude et vérifier la qualité de la modulation, au cours d'une séance de TP, le professeur a utilisé avec ses élèves, un circuit intégré multiplieur (X) en appliquant une tension sinusoïdale $u_1(t) = P_m.cos(2.\pi.F_p.t)$ à son entrée E_1 et une tension $u_2(t) = U_0 + s(t)$ à son entrée E_2 , avec U_0 la composante continue de la tension et $s(t) = S_m.cos(2.\pi.f_s.t)$ la tension modulante (figure 3).

La courbe de la figure 4 représente la tension de sortie $u_s(t) = k.u_1(t).u_2(t)$, visualisée par les élèves sur l'écran d'un oscilloscope. k est une constante positive caractérisant le multiplieur X.

- 1. Montrer, en précisant les expressions de A $u_s(V)$ et de m, que la tension $u_s(t)$ s'écrit sous la forme : $u_s(t) = A[1 + m.\cos(2\pi . f_s.t)].\cos(2\pi . F_p.t)$.
- 2. Trouver les fréquences F_p de la porteuse et f_s de la tension modulante.
- 3. Déterminer le taux de modulation et en déduire la qualité de modulation.

Exercice 3 :Etablissement du courant dans le circuit primaire :

On utilise un résistor (D) de résistance $R=100\Omega$ et un condensateur (c) de capacité $C=10\mu.F$, dans le détecteur de crêtes correspondant à l'un des étages du circuit représenté par la figure 3, Pour détecter les crêtes de la tension modulée en amplitude d'expression :

$$u(t) = k[0, 5.\cos(10^3.\pi.t) + 0, 7].\cos(10^4.\pi.t)$$

- 1. Indiquer, à l'aide de la figure 3, l'étage correspondant au détecteur de crêtes.
- 2. Montrer que le dipôle RC permet une bonne détection de crêtes.
- 3. Les deux interrupteurs K_1 et K_2 sont fermés, les courbes obtenus successivement sur l'écran d'un oscilloscope Représentent les variations des tensions uEM, uGM et uHM (Figure 4). Indiquer en justifiant, la courbe

<u>Exercices Supplémentaires</u>

Exercice 4: La démodulation d'amplitude

Pour transmettre un signal s

On applique à l'entré E_1 du multiplieur un signal de tension $u(t) = s(t) + V_0$ avec V_0 la tension continue de décalage, et on applique à l'entrée E_2 p(t) une tension p(t) d'une onde porteuse. On obtient à la sortie S du multiplieur la tension modulée en amplitude $u_S(t)$ telle que :

$$u_S(t) = A[1 + 0,6\cos(10^4.\pi t)].\cos(2.10^5.\pi t)$$

- 1. Montrer que la modulation d'amplitude obtenue est bonne.
- 2. La démodulation d'amplitude est réalisée à l'aide du montage de la figure 6. La partie 1 du montage comprend la bobine (b') et un condensateur de capacité C_0 réglable entre les deux valeurs $6.10^{-12}F$ et $12.10^{-12}F$. Le conducteur ohmique utilisé dans la partie 2 du montage a une résistance $R_1 = 30k\Omega$.
 - (a) Montrer que l'utilisation de la bobine (b') dans le montage permet à la partie1 du montage de sélectionner le signal uS(t).
 - (b) On veut obtenir une bonne détection d'enveloppe en utilisant l'un des condensateurs de capacités : 10nF ; 5~nF ; 0.5~nF ; 0.1~nF . Déterminer la capacité du condensateur qui convient.