Pattern Analysis and Recognition

Lecture 9: Support Vector Machine, Kernels

Resources

See the following sources for further information:

C. Bishop, "Pattern Recognition and Machine Learning", Springer, 2006

Some related material available:

http://research.microsoft.com/enus/um/people/cmbishop/prml/index.htm

D. MacKay, "Information Theory, Inference and Learning Algorithms", Cambridge University Press, 2003.

Book available online:

http://www.inference.phy.cam.ac.uk/mackay/

R.O. Duda, P.E. Hart, D.G. Stork, "Pattern Classification", Wiley & Sons, 2000

Have a look inside at selected chapters:

http://books.google.es/books/about/Pattern_Classification.html?id =Br33IRC3PkQC&redir_esc=y

A pictorial introduction

SUPPORT VECTOR MACHINES

Classification

Classification

Classification

Linearly Separable Classes

Linearly Separable Classes

Linear classifiers: the decision boundary is an hyper-plane

If the support vectors move, the decision boundary changes

If the support vectors move, the decision boundary changes

If the rest of the points move, the decision boundary remains stable

If the rest of the points move, the decision boundary remains stable

Outliers - Soft Margin

Outliers (if they happen to be support vectors) might have a big effect to the solution

Outliers - Soft Margin

Outliers (if they happen to be support vectors) might have a big effect to the solution

In this case, we can relax the maximum margin condition (soft margin)

This implies adding a tolerance to errors, controlled by what is called slack variables

Non-Linearly Separable Classes – The Kernel Trick

If classes are not linearly separable, SVM will not work

The solution is to transform the feature space into another one (of higher dimension), in which our classes are linearly separable

It is not necessary to define this transformation explicitly. It is only necessary to define a similarity function that calculates the dot-product in this new space. This is called a kernel

INTUITION AND OPTIMISATION OBJECTIVE

A Line – Just in Case

Intuition

We want to find the hyperplane that maximises the distance between the *closest vectors* (of both classes) to the hyperplane and the hyperplane itself

Hyperplane is defined by vector: $\boldsymbol{\theta}$

d*: distance fromhyperplane to supportvectors of class (+)

 d-: distance from hyperplane to support vectors of class (-)

$$d^+ = d^- = D$$

A bit of Geometry

Given a hyperplane θ the distance of a point \mathbf{x} to the hyperplane is given by:

$$D = |\vec{\mathbf{x}}| \cos(\varphi)$$

The definition of the dot product between two vectors x and θ is:

$$\vec{\mathbf{\theta}} \cdot \vec{\mathbf{x}} = \mathbf{\theta}^T \mathbf{x} = |\vec{\mathbf{\theta}}| |\vec{\mathbf{x}}| \cos(\varphi)$$

Distance can be written:

$$D = \frac{\vec{\theta} \cdot \vec{\mathbf{x}}}{|\vec{\theta}|} = |\vec{\mathbf{x}}| \cos(\varphi)$$

A bit of Geometry

The same hyperplane can be defined by a whole family of vectors (same direction, different lengths), and the distance calculation would be the same:

$$D = \frac{\vec{\theta}}{|\vec{\theta}|} \cdot \vec{\mathbf{x}} = \frac{2\vec{\theta}}{|2\vec{\theta}|} \cdot \vec{\mathbf{x}} = \frac{400\vec{\theta}}{|400\vec{\theta}|} \cdot \vec{\mathbf{x}}$$

A bit of Geometry

 $\mathbf{\theta}^T \mathbf{x} + \mathbf{\theta}_0 = 1$ $\mathbf{\theta}^T \mathbf{x} + \theta_0 = 0_D$ $\mathbf{\theta}^T \mathbf{x} + \theta_0 = -1$

When searching for the best hyperplane, we want to pick a single representative between all equivalent representations for a given hyperplane (the family of vectors defining the same hyperplane)

The convention for SVM is to pick the vector $\boldsymbol{\theta}$ that makes (we introduce θ_0 back):

$$\mathbf{\theta}^T \mathbf{x} + \theta_0 = 1$$
 for all support vectors of class(+)

$$\mathbf{\theta}^T \mathbf{x} + \theta_0 = -1$$
 for all support vectors of class(-)

Therefore the distance we are trying to maximise is given by:

$$D = \frac{\vec{\mathbf{\theta}} \cdot \vec{\mathbf{x}} + \theta_0}{|\vec{\mathbf{\theta}}|} = \frac{1}{|\vec{\mathbf{\theta}}|}$$

Optimisation Function

Maximise margin

Minimise $|\theta|$:

$$\min |\mathbf{\theta}| \Leftrightarrow \min \frac{1}{2} |\mathbf{\theta}|^2$$

Subject to:

$$y_{i}(\mathbf{\theta}^{T}\mathbf{x}_{i} + \theta_{0}) \ge 1$$

$$\mathbf{x} \quad y = 1$$

$$\mathbf{x} \quad y = -1$$
Classify correctly

This is a quadratic optimisation problem

Cost Functions

This means setting the costs so that we do not penalise (cost = zero) anything classified correctly, but we do penalise if things fall on the wrong side

COMPARISON TO LOGISTIC REGRESSION

Logistic Regression Reminder

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{\mathrm{T}} x}}$$

$$h_{\theta}(x) = g(z)$$

$$z = \mathbf{\theta}^{\mathrm{T}} \mathbf{x}$$

If y=1, we want $h_{\theta}\approx 1$, $\theta^{\mathsf{T}}\mathbf{x}\gg 0$

If y=0, we want $h_{\theta}\approx 0$, $\theta^{\mathsf{T}}\mathbf{x}\ll 0$

Simplified cost function

$$J(\mathcal{G}) = \frac{1}{m} \sum_{i=1}^{m} Cost(h_{\mathcal{G}}(x^{(i)}), y^{(i)})$$

$$Cost(h_{g}(x), y) = \begin{cases} -\log(h_{g}(x)) & \text{, if } y = 1\\ -\log(1 - h_{g}(x)) & \text{, if } y = 0 \end{cases}$$

(Note that y is always either 0 or 1)

$$Cost(h_{g}(x), y) = -y \log(h_{g}(x)) - (1-y) \log(1-h_{g}(x))$$

If
$$y = 1 : Cost(h_g(x), y) = -\log(h_g(x))$$

If $y = 0 : Cost(h_g(x), y) = -\log(1 - h_g(x))$

The Cost of a Sample

Cost of sample
$$=-y \log(h_{\mathfrak{g}}(x)) - (1-y)\log(1-h_{\mathfrak{g}}(x))$$

 $=-y \log\left(\frac{1}{1+e^{-\theta^{\mathsf{T}}\mathbf{x}}}\right) - (1-y)\log\left(1-\frac{1}{1+e^{-\theta^{\mathsf{T}}\mathbf{x}}}\right)$

If y=1, we want $\mathbf{\theta}^{\mathsf{T}}\mathbf{x}\gg 0$

The Cost of a Sample

Cost of sample
$$= -y \log(h_g(x)) - (1-y) \log(1-h_g(x))$$

$$= -y \log\left(\frac{1}{1+e^{-\theta^T x}}\right) - (1-y) \log\left(1-\frac{1}{1+e^{-\theta^T x}}\right)$$

If y=1, we want $\theta^T x \gg 0$

Cost 3.0 $-\log\left(\frac{1}{1+e^{-\theta^{T}x}}\right)$ 0.5 0.0 $z = \theta^{T}x$

If y=0, we want $\mathbf{\theta}^{\mathsf{T}}\mathbf{x} \ll 0$

Towards SVM

Cost of sample = $-y \cos t_1 (\mathbf{\theta}^T \mathbf{x}) - (1 - y) \cos t_0 (\mathbf{\theta}^T \mathbf{x})$

If y=0, we want $\theta^T x \le -1$

Optimization Objective

Logistic Regression:

$$\min_{\theta} \frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \left(-\log h_{\theta}(x^{(i)}) \right) + \left(1 - y^{(i)} \right) \left(-\log \left(1 - h_{\theta}(x^{(i)}) \right) \right) \right] + \frac{\lambda}{2m} \sum_{i=1}^{n} \theta_{j}^{2}$$

SVM:

$$\min_{\boldsymbol{\theta}} \frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \operatorname{cost}_{1} (\boldsymbol{\theta}^{T} \mathbf{x}) + (1 - y^{(i)}) \operatorname{cost}_{0} (\boldsymbol{\theta}^{T} \mathbf{x}) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

By convention: we do not divide by m, and we use a weight C (equivalent to $1/\lambda$) to control the relative weight of the regularization factor

$$\min_{\boldsymbol{\theta}} C \sum_{i=1}^{m} \left[y^{(i)} \operatorname{cost}_{1} \left(\boldsymbol{\theta}^{T} \mathbf{x} \right) + \left(1 - y^{(i)} \right) \operatorname{cost}_{0} \left(\boldsymbol{\theta}^{T} \mathbf{x} \right) \right] + \frac{1}{2} \sum_{i=1}^{n} \theta_{i}^{2}$$

SVM Hypothesis Function

$$\min_{\boldsymbol{\theta}} C \sum_{i=1}^{m} \left[y^{(i)} \operatorname{cost}_{1} \left(\boldsymbol{\theta}^{T} \mathbf{x} \right) + \left(1 - y^{(i)} \right) \operatorname{cost}_{0} \left(\boldsymbol{\theta}^{T} \mathbf{x} \right) \right] + \frac{1}{2} \sum_{j=1}^{n} \theta_{j}^{2}$$

Unlike logistic regression, the SVM output cannot be treated as a probability

$$h_{\mathbf{\theta}}(\mathbf{x}) = sign(\mathbf{\theta}^T \mathbf{x})$$

Large Margin Classifier

$$\min_{\boldsymbol{\theta}} C \sum_{i=1}^{m} \left[y^{(i)} \operatorname{cost}_{1} (\boldsymbol{\theta}^{T} \mathbf{x}) + (1 - y^{(i)}) \operatorname{cost}_{0} (\boldsymbol{\theta}^{T} \mathbf{x}) \right] + \frac{1}{2} \sum_{j=1}^{n} \theta_{j}^{2}$$

If y=1, we want $\theta^T x \ge 1$ (not just $\theta^T x \ge 0$)

If y=0, we want $\theta^T x \le -1$ (not just $\theta^T x < 0$)

Large Margin Classifier

$$\min_{\boldsymbol{\theta}} C \sum_{i=1}^{m} \left[y^{(i)} \operatorname{cost}_{1} \left(\boldsymbol{\theta}^{T} \mathbf{x} \right) + \left(1 - y^{(i)} \right) \operatorname{cost}_{0} \left(\boldsymbol{\theta}^{T} \mathbf{x} \right) \right] + \left(\frac{1}{2} \sum_{j=1}^{n} \theta_{j}^{2} \right)$$

Suppose that we are exploring the set of (many possible) decision boundaries that classify correctly our data (C is set to a very large value):

If
$$y=1$$
, $\theta^T x \ge 1$
If $y=0$, $\theta^T x \le -1$

The first term of the objective function is zero Minimizing the second term has the effect of selecting the solution with the maximum margin!

DUAL REPRESENTATION AND KERNELS

Optimisation Function

Maximise margin

Minimise:

$$\frac{1}{2} \left| \mathbf{\theta} \right|^2 = \frac{1}{2} \mathbf{\theta}^T \mathbf{\theta}$$

Subject to:

$$y_{i}(\mathbf{\theta}^{T}\mathbf{x}_{i} + \theta_{0}) \ge 1$$

$$\mathbf{x} \quad y = 1$$

$$\mathbf{x} \quad y = -1$$
Classify correctly

This is a quadratic optimisation problem

Dual Representation

Minimizing theta is a non-linear optimization task.

For solving this type of quadratic optimization problems we use the **Karush-Kuhn-Tucker (KKT)** conditions. The KKT approach generalises the method of **Lagrange multipliers**, a strategy for finding local minima/maxima of a function subject to equality constraints to allow inequality constraints.

Minimise:

$$\frac{1}{2} \left| \mathbf{\theta} \right|^2 = \frac{1}{2} \mathbf{\theta}^T \mathbf{\theta}$$

Subject to:

$$y_i(\mathbf{\theta}^T\mathbf{x}_i + \theta_0) \ge 1$$

The weights can be estimated as:

$$\mathbf{\theta} = \sum_{i=0}^{N} \alpha_i y_i \mathbf{x}_i \qquad \sum_{i=0}^{N} \alpha_i y_i = 0$$

So the decision function can be rewritten as:

$$h_{\theta}(\mathbf{x}) = \mathbf{\theta}^T \mathbf{x} + \theta_0 = \sum \alpha_i y_i \mathbf{x}_i^T \mathbf{x} + \theta_0$$

Dual Representation

Applying this approach we derive an equivalent representation for our problem.

Primal Form

Minimise:

$$\frac{1}{2} \left| \mathbf{\theta} \right|^2 = \frac{1}{2} \mathbf{\theta}^T \mathbf{\theta}$$

Subject to:

$$y_i(\mathbf{\theta}^T \mathbf{x}_i + \theta_0) \ge 1$$

Dual Form

Maximise:

$$\widetilde{L}(\alpha) = -\frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j} + \sum_{i} \alpha_{i}$$

Data appears

dot products

only inside

Subject to:

$$\sum_{i=0}^{N} \alpha_i y_i = 0$$

Only a few α_i will be greater than zero. The corresponding x_i are exactly the *support vectors*

Non-Linearly Separable Classes – The Kernel Trick

If classes are not linearly separable, SVM will not work

The solution is to transform the feature space into another one (of higher dimension), in which our classes are linearly separable

It is not necessary to define this transformation explicitly. It is only necessary to define a similarity function that calculates the dot-product in this new space. This is called a kernel

Non-Linearly Separable Classes – The Kernel Trick

SVM with a polynomial Kernel visualization

> Created by: Udi Aharoni

Non-Linearly Separable Classes – The Kernel Trick

The Kernel Trick

Dual Form

Maximise:

$$\widetilde{L}(\alpha) = -\frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{j} + \sum_{i} \alpha_{i}$$

Subject to:

$$\alpha_i \ge 0$$

$$\sum_{i=0}^{N} \alpha_i y_i = 0$$

Kernel SVM

Maximise:

$$\widetilde{L}(\alpha) = -\frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{i} K(\mathbf{x}_{i}, \mathbf{x}_{j}) + \sum_{i} \alpha_{i}$$

Subject to:

$$\alpha_i \ge 0$$

$$\sum_{i=0}^N \alpha_i y_i = 0$$

$$\theta_0 = y_i - \mathbf{\theta}^T \varphi(\mathbf{x}_i) = y_i - \sum_j y_j \alpha_i K(\mathbf{x_j}, \mathbf{x_i})$$

$$h_{\theta}(\mathbf{x}) = \text{sign}\left(\sum_{i} y_{i} \alpha_{i} K(\mathbf{x}, \mathbf{x_{i}}) + b\right)$$

Example Kernel Functions

Kernel functions introduce their own parameters, the value of which is generally fixed through cross-validation

Polynomial:
$$K(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^T \mathbf{z})^d$$

Radial Basis Functions:
$$K(\mathbf{x}, \mathbf{z}) = e^{-\|\mathbf{x} - \mathbf{z}\|^2/2\sigma}$$

Sigmoid:
$$K(\mathbf{x}, \mathbf{z}) = \tanh(\kappa \langle \mathbf{x}, \mathbf{z} \rangle - \delta)$$

Inverse Multiquadric:
$$K(\mathbf{x}, \mathbf{z}) = (\|\mathbf{x} - \mathbf{z}\|^{1/2} 2\sigma + c^2)^{-1}$$

Intersection Kernel:
$$K(\mathbf{x}, \mathbf{z}) = \sum_{i=1}^{n} \min(x(i), z(i))$$

The small print

Kernel functions must be continuous, symmetric, and most preferably should have a positive (semi-) definite Gram matrix. Kernels which are said to satisfy the Mercer's theorem are positive semi-definite, meaning their kernel matrices have only nonnegative Eigen values. The use of a positive definite kernel insures that the optimization problem will be convex and solution will be unique.

SOFT MARGIN, SLACK VARIABLES

Outliers (if they happen to be support vectors) might have a big effect to the solution

Outliers (if they happen to be support vectors) might have a big effect to the solution

In this case, we can relax the maximum margin condition (soft margin)

This implies adding a tolerance to errors, controlled by what is called slack variables

Subject to:

$$y_i(\boldsymbol{\theta}^T \mathbf{x}_i + \theta_0) \ge 1 - \xi_i$$

The impact of slack variables is **modulated** in the optimization problem by a parameter C, that can be interpreted as a regularization parameter (maximization of margin vs minimization of the accepted error)

Dual Form

Subject to:

$$\sum_{i=0}^{N} \alpha_i y_i = 0$$

$$C \ge \alpha_i \ge 0$$

In the dual representation slack variables imply a new **inequality** that regulates the contribution of the vectors

RELATION TO K-NN AND PARZEN WINDOWS

Parzen Windows and Kernels

Compare to kernelized SVM's:

$$sgn\left[\sum_{i} a_{i} y_{i} K(x_{i}, x)\right]$$

What's Next

		Mondays	Tuesdays				
		16:00 - 18:00	15:00 - 17:00				
Practical Sessions		M	Т	W	Т	F	Lectures
	Feb	8	9	10	11	12	Introduction and Linear Regression
PO. Introduction to Python, Linear Regression		15	16	17	18	19	Logistic Regression, Normalization
P1. Text non-text classification (Logistic Regression)		22	23	24	25	26	Regularization, Bias-variance decomposition
	Mar	29	1	2	3	4	Subspace methods, dimensionality reduction
		7	8	9	10	11	Probabilities, Bayesian inference
Discussion of intermediate deliverables / project presentations		14	15	16	17	18	Parameter Estimation, Bayesian Classification
		21	22	23	24	25	Easter Week
	Apr	28	29	30	31	1	Clustering, Gausian Mixture Models, Expectation Maximisation
P2. Feature learning (k-means clustering, NN, bag of words)		4	5	6	7	8	Nearest Neighbour Classification
		11	12	13	14	15	
		18	19	20	21	22	Kernel methods
Discussion of intermediate deliverables / project presentations		25	26	27	28	29	Support Vector Machines, Support Vector Regression
P3. Text recognition (multi-class classification using SVMs)	May	2	3	4	5	6	Neural Networks
		9	10	11	12	13	Advanced Topics: Deep Nets
		16	17	18	19	20	Advanced Topics: Metric Learning, Preference Learning
Final Project Presentations		23	24	25	26	27	Advanced Topics: Structural Pattern Recognition
	Jun	30	31	1	2	3	Revision

LEGEND						
	Project Follow Up					
	Project presentations					
	Lectures					
	Project Deliverable due date					
	Vacation / No Class					