PCPKit Documentation

Stephen Tierney

 $\mathrm{July}\ 23,\ 2015$

1 Function Listing

Problem	Function	Section
Matrix Completion - Noise Free		l
$ \min_{\mathbf{A}} \tau \ \mathbf{A}\ _* + \frac{1}{2} \ \mathbf{A}\ _F^2 $ s.t. $\mathcal{P}_{\Omega}(\mathbf{M}) = \mathcal{P}_{\Omega}(\mathbf{A})$	mc_svt	2.1.1
$\min_{\mathbf{A}} \tau \mathbf{A} _*$	mc_ialm	2.1.2
s.t. $\mathcal{P}_{\Omega}(\mathbf{M}) = \mathcal{P}_{\Omega}(\mathbf{A})$	solve_lin	2.1.3
Matrix Completion - Noisy		•
	mc_relax_lin	2.2
$ au \ \mathbf{A}\ _* + rac{\lambda}{2} \ \mathcal{P}_\Omega(\mathbf{A}) - \mathcal{P}_\Omega(\mathbf{M})\ _F^2$	mc_relax_lin_ext	
	mc_relax_lin_acc	
$ \frac{\min_{\mathbf{A}, \mathbf{E}} \tau \ \mathbf{A}\ _* + \frac{\lambda}{2} \ \mathbf{E}\ _F^2}{\text{s.t. } \mathcal{P}_{\Omega}(\mathbf{M}) = \mathcal{P}_{\Omega}(\mathbf{A}) + \mathcal{P}_{\Omega}(\mathbf{E})} $	mc_exact_fro	2.3
Principal Component Pursuit		
$\min_{\mathbf{A}, \mathbf{E}} \ \mathbf{A}\ _* + \frac{\lambda}{2} \ \mathbf{E}\ _F^2$ s.t. $\mathbf{M} = \mathbf{A} + \mathbf{E}$	pcp_fro	3.1
$\min_{\mathbf{A}, \mathbf{E}} \ \mathbf{A}\ _* + \lambda \ \mathbf{E}\ _1$ s.t. $\mathbf{M} = \mathbf{A} + \mathbf{E}$	pcp_l1	3.2
$\min_{\mathbf{A}, \mathbf{E}} \ \mathbf{A}\ _* + \lambda \ \mathbf{E}\ _{1,2}$ s.t. $\mathbf{M} = \mathbf{A} + \mathbf{E}$	pcp_l1l2	3.3
Selective PCP		
$\begin{aligned} & \min_{\mathbf{A}, \mathbf{E}} \ \tau \ \mathbf{A}\ _* + \frac{\lambda}{2} \ \mathbf{E}\ _F^2 \\ & \text{s.t.} \ \mathcal{P}_{\Omega}(\mathbf{M}) = \mathcal{P}_{\Omega}(\mathbf{A}) \\ & \mathcal{P}_{\Psi}(\mathbf{M}) = \mathcal{P}_{\Psi}(\mathbf{A}) + \mathcal{P}_{\Psi}(\mathbf{E}) \end{aligned}$	sel_pcp	4

2 Matrix Completion

2.1 Noise Free Data

2.1.1 SVT

The function

 $[\mathbf{A}, \mathbf{f}_\mathbf{values}, \mathbf{stop}_\mathbf{vals}] = \text{mc_svt}(\mathbf{M}, \Omega, \tau, \mu, iterations, tol)$

solves the following

$$\min_{\mathbf{A}} \tau \|\mathbf{A}\|_* + \frac{1}{2} \|\mathbf{A}\|_F^2
\text{s.t. } \mathcal{P}_{\Omega}(\mathbf{M}) = \mathcal{P}_{\Omega}(\mathbf{A})$$
(1)

as proposed by the authors of [1].

- ullet M matrix with observed entries
- Ω vector of constrained matrix indices
- τ regularisation (optional)
- μ step size (optional)
- iterations maximum number of iterations (optional)
- tol stopping criteria tolerance (optional)

2.1.2 Inexact ALM

The function

$$[\mathbf{A}, \mathbf{f_vals}, \mathbf{stop_vals}] = \text{mc_ialm}(\mathbf{M}, \Omega, \tau, \mu, iterations, tol)$$

solves the following

$$\min_{\mathbf{A}} \tau \|\mathbf{A}\|_{*}$$
 s.t. $\mathcal{P}_{\Omega}(\mathbf{M}) = \mathcal{P}_{\Omega}(\mathbf{A})$

as proposed by the authors of [3].

- ullet M matrix with observed entries
- Ω vector of constrained matrix indices
- τ regularisation (optional)
- μ step size (optional)
- iterations maximum number of iterations (optional)
- tol stopping criteria tolerance (optional)

2.1.3 Linearised ALM

The function

$$[\mathbf{A}, \mathbf{f_vals}, \mathbf{stop_vals}] = \operatorname{mc_lin}(\mathbf{M}, \Omega, \tau, \mu, \rho, iterations, tol)$$

solves the following

$$\min_{\mathbf{A}} \tau \|\mathbf{A}\|_{*}$$
 s.t. $\mathcal{P}_{\Omega}(\mathbf{M}) = \mathcal{P}_{\Omega}(\mathbf{A})$

- ullet M matrix with observed entries
- Ω vector of constrained matrix indices
- τ regularisation (optional)
- μ step size (optional)
- ρ linearisation step size (optional)
- iterations maximum number of iterations (optional)
- tol stopping criteria tolerance (optional)

2.2 Noisey Data Relaxation

The functions

$$[\mathbf{A}, \mathbf{f}_\mathbf{vals}, \mathbf{stop}_\mathbf{vals}] = \text{mc}_\text{relax}_\text{lin}(\mathbf{M}, \Omega, \tau, \lambda, \rho, iterations, tol)$$
$$[\mathbf{A}, \mathbf{f}_\mathbf{vals}, \mathbf{stop}_\mathbf{vals}] = \text{mc}_\text{relax}_\text{lin}_\text{ext}(\mathbf{M}, \Omega, \tau, \lambda, \rho, iterations, tol)$$

 $[\mathbf{A}, \mathbf{f}_\mathbf{vals}, \mathbf{stop}_\mathbf{vals}] = \text{mc}_\text{relax_lin}_\text{acc}(\mathbf{M}, \Omega, \tau, \lambda, \rho, iterations, tol)$

solve the following

$$\min_{\mathbf{A}} \tau \|\mathbf{A}\|_* + \frac{\lambda}{2} \|\mathcal{P}_{\Omega}(\mathbf{A}) - \mathcal{P}_{\Omega}(\mathbf{M})\|_F^2$$
 (4)

with increasing convergence speed based on [2].

- M matrix with observed entries
- $\bullet~\Omega$ vector of constrained matrix indices
- τ regularisation (optional)
- λ regularisation (optional)
- ρ linearisation step size (optional)
- iterations maximum number of iterations (optional)
- tol stopping criteria tolerance (optional)

2.3 Noisey Data Exact

The function

 $[\mathbf{A}, \mathbf{f_vals}, \mathbf{stop_vals}] = \text{solve_exact_fro}(\mathbf{M}, \Omega, \tau, \lambda, \rho, iterations, tol)$

solve the following

$$\min_{\mathbf{A}, \mathbf{E}} \tau \|\mathbf{A}\|_* + \frac{\lambda}{2} \|\mathbf{E}\|_F^2
\text{s.t. } \mathcal{P}_{\Omega}(\mathbf{M}) = \mathcal{P}_{\Omega}(\mathbf{A}) + \mathcal{P}_{\Omega}(\mathbf{E})$$
(5)

- ullet M matrix with observed entries
- Ω vector of constrained matrix indices
- τ regularisation (optional)
- λ regularisation (optional)
- ρ linearisation step size (optional)
- iterations maximum number of iterations (optional)
- tol stopping criteria tolerance (optional)

3 Principal Component Pursuit

3.1 PCP Gaussian

The function

$$[\mathbf{A}] = \text{pcp_fro}(\mathbf{M}, \lambda)$$

solve the following

$$\min_{\mathbf{A}, \mathbf{E}} \|\mathbf{A}\|_* + \frac{\lambda}{2} \|\mathbf{E}\|_F^2$$
s.t. $\mathbf{M} = \mathbf{A} + \mathbf{E}$

- \bullet M matrix with observed entries
- λ regularisation

3.2 PCP Sparse

The function

$$[\mathbf{A}] = \text{pcp_l1}(\mathbf{M}, \lambda)$$

solve the following

$$\min_{\mathbf{A}, \mathbf{E}} \|\mathbf{A}\|_* + \lambda \|\mathbf{E}\|_1$$
s.t. $\mathbf{M} = \mathbf{A} + \mathbf{E}$ (7)

- \bullet M matrix with observed entries
- λ regularisation

3.3 PCP Column-wise Gaussian

The function

$$[\mathbf{A}] = \text{pcp_l1l2}(\mathbf{M}, \lambda)$$

solves the following

$$\min_{\mathbf{A}, \mathbf{E}} \|\mathbf{A}\|_* + \lambda \|\mathbf{E}\|_{1,2}$$
s.t. $\mathbf{M} = \mathbf{A} + \mathbf{E}$ (8)

- ullet M matrix with observed entries
- λ regularisation

4 Selective PCP

The function

$$[\mathbf{A}] = \operatorname{sel_pcp}(\mathbf{M}, \tau, \lambda, \Omega, \Psi)$$

solves the following

$$\min_{\mathbf{A}, \mathbf{E}} \tau \|\mathbf{A}\|_* + \frac{\lambda}{2} \|\mathbf{E}\|_F^2$$
s.t. $\mathcal{P}_{\Omega}(\mathbf{M}) = \mathcal{P}_{\Omega}(\mathbf{A})$
 $\mathcal{P}_{\Psi}(\mathbf{M}) = \mathcal{P}_{\Psi}(\mathbf{A}) + \mathcal{P}_{\Psi}(\mathbf{E})$

- ullet M matrix with observed entries
- λ regularisation
- Ω uncorrupted indices
- Ψ noisy indices

References

- [1] Jian-Feng Cai, Emmanuel J Candès, and Zuowei Shen. A singular value thresholding algorithm for matrix completion. SIAM Journal on Optimization, 20(4):1956–1982, 2010.
- [2] Shuiwang Ji and Jieping Ye. An accelerated gradient method for trace norm minimization. In *Proceedings of the 26th Annual International Conference on Machine Learning*, pages 457–464. ACM, 2009.
- [3] Zhouchen Lin, Minming Chen, and Yi Ma. The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. arXiv preprint arXiv:1009.5055, 2010.