Stability loss of the trivial solution of boundary-value problem with

linear deviate in boundary condition

$Leonid\ Ivanovsky^{1,2},\ Sergey\ Kaschenko^{1,3}$

¹P.G. Demidov Yaroslavl State University ²Scientific Center in Chernogolovka of Russian Academy of Sciences ³National Research Nuclear University MEPhI

Boundary-value problem

$$\dot{u} = \beta u'' - \gamma u,\tag{1}$$

$$\dot{u} = \beta u'' - \gamma u,$$
 (1)
 $u'|_{x=0} = 0, \quad u'|_{x=1} = \alpha u|_{x=x_0},$ (2)

$$\alpha, \gamma \in \mathbb{R}, \quad \beta > 0, \quad x_0 \in [0, 1].$$

Eigenvalue problem

$$u(x,t) = w(x) \exp\left(\lambda - \frac{\gamma}{\beta}\right) t$$

$$w'' - \lambda w = 0, (3)$$

$$w'' - \lambda w = 0,$$
 (3)
 $w'(0) = 0, \quad w'(1) = \alpha w(x_0).$ (4)

$$w(x) = c \operatorname{ch}(\mu x),$$

x = 1: $\mu \operatorname{sh} \mu = \alpha \operatorname{ch}(\mu x_0)$,

$$\mu = \sqrt{\lambda}, \quad \lambda \in \mathbb{C}.$$

Main result

Theorem: Suppose $x_0 \in [0, 1]$, $\beta > 0$, $\gamma > 0$. Then there exists $\alpha = \alpha_{cr}$, for that $\operatorname{Re}(\lambda_*) = \frac{\gamma}{\beta}$ and for the rest eigenvalues of problem (3), (4) $\operatorname{Re}(\lambda) < \frac{\gamma}{\beta}$.

Numerical result: potential α_{cr}

Numerical result: eigenfunctions

