Лабораторная работа №1

Алгоритмы одномерной минимизации функции

Сысоев Александр, Зырянова Мария Верблюжий случай

1 Постановка задания

Необходимо реализовать алгоритмы одномерной минимизации функции:

- метод дихотомии
- метод золотого сечения
- метод Фиббоначи
- метод парабол
- комбинированный метод Брента

2 Исследуемая функция

Необходимо на интервале [0.1; 2.5] найти минимум функции

$$f(x) = 10xln(x) - \frac{x^2}{2}$$

 x_0 – точка локального экстремума f(x), если $f'(x_0) = 0$:

$$f'(x) = 10 + 10ln(x) - x = 0$$

minimize	function	$10 x \log(x) - \frac{x^2}{2}$
	domain	$0.1 \le x \le 2.5$

Рис. 1: Нахождение локального минимума при помощи WolframAlpha

$$\min\Bigl\{10\,x\log(x) - \frac{x^2}{2}\, \left|\, 0.1 \le x \le 2.5\right\} \approx -3.74908 \ \, \text{at} \ \, x \approx 0.382212$$

Рис. 2: Найденное решение

Рис. 3: График функции на исследуемом промежутке

3 Метод дихотомии

Исследование проводится при $\epsilon = 0.0001$.

Левая	Правая	Отношение	Точка	Значение с	Значение с	
граница	граница			левой стороны	правой стороны	
0.1	2.5	_	1.3	2.56517	2.5663	
0.1	1.3	2	0.7	-2.74201	-2.74144	
0.1	0.7	2	0.4	-3.74518	-3.74514	
0.1	0.4	2	0.25	-3.49678	-3.49719	
0.25	0.4	2	0.325	-3.70551	-3.70566	
0.325	0.4	2	0.3625	-3.74408	-3.74413	
0.3625	0.4	2	0.38125	-3.74907	-3.74907	
0.38125	0.4	2	0.39062	-3.74821	-3.74819	
0.38125	0.39062	2.001067	0.38594	-3.74891	-3.7489	
0.38125	0.38594	1.997868	0.38359	-3.74906	-3.74906	
0.38125	0.38359	2.004274	0.38242	-3.74908	-3.74908	
0.38125	0.38242	2	0.38184	-3.74908	-3.74908	
0.38184	0.38242	2.017241	0.38213	-3.74908	-3.74908	
0.38213	0.38242	2	0.38228	-3.74908	-3.74908	
0.38213	0.38228	1.933333	0.3822	-3.74908	-3.74908	

Метод дихотомии показал, что функция на данном промежутке достигает минимума при значении $x_{min}=0.3822021484375,\, f_{min}=-3.7490810073197856.$ Выполнено 15 итераций.

4 Метод золотого сечения

Исследование проводится при $\epsilon = 0.0001$.

Левая граница	Правая граница	Отношение	Левая точка	Значение в левой точке	Правая точка	Значение в правой точке
0.1	2.5	_	1.01672	-0.34828	1.58328	6.02178
0.1	1.58328	1.618036	0.66656	-2.92587	_	_
0.1	1.01672	1.618029	0.45016	-3.69429	=	-
0.1	0.66656	1.618046	0.31641	-3.69104	=	_
0.31641	0.66656	1.618049	_	_	0.53282	-3.49645
0.31641	0.53282	1.617994	0.39907	-3.74556	_	_
0.31641	0.45016	1.618019	0.36749	-3.74632	_	_
0.31641	0.39907	1.618074	0.34798	-3.73386	_	_
0.34798	0.39907	1.617929	_	_	0.37955	-3.74899
0.36749	0.39907	1.617796	_	_	0.38701	-3.74879
0.36749	0.38701	1.617828	0.37495	-3.74841	_	_
0.37495	0.38701	1.618574	_	_	0.3824	-3.74908
0.37955	0.38701	1.616622	_	_	0.38416	-3.74903
0.37955	0.38416	1.618221	0.38131	-3.74907	_	_
0.38131	0.38416	1.617544	_	_	0.38307	-3.74907
0.38131	0.38307	1.619318	0.38199	-3.74908	_	_
0.38199	0.38307	1.62963	_	_	0.38266	-3.74908
0.38199	0.38266	1.61194	0.38224	-3.74908	_	_
0.38199	0.3824	1.634146	0.38215	-3.74908	_	-
0.38215	0.3824	1.64	_	_	0.3823	-3.74908
0.38215	0.3823	1.666667	0.38221	-3.74908	_	_

Метод золотого сечения показал, что функция на данном промежутке достигает минимума при значении $x_{min}=0.382224424485476,\ f_{min}=-3.7490810068327103.$ Выполнена 21 итерация.

5 Метод Фибоначчи

Левая	Правая	0	Левая	Значение в	Правая	Значение в	
граница	граница	Отношение	точка	левой точке	точка	правой точке	
0.1	2.5	_	1.01672	-0.34828	1.58328	6.02178	
0.1	1.58328	1.618036	0.66656	-2.92587	_	_	
0.1	1.01672	1.618029	0.45016	-3.69429	_	_	
0.1	0.66656	1.618046	0.31641	-3.69104	_	_	
0.31641	0.66656	1.618049	_	_	0.53282	-3.49645	
0.31641	0.53282	1.617994	0.39907	-3.74556	_	_	
0.31641	0.45016	1.618019	0.36749	-3.74632	_	_	
0.31641	0.39907	1.618074	0.34798	-3.73386	_	_	
0.34798	0.39907	1.617929	_	_	0.37955	-3.74899	
0.36749	0.39907	1.617796	_	_	0.38701	-3.74879	
0.36749	0.38701	1.617828	0.37495	-3.74841	_	_	
0.37495	0.38701	1.618574	_	_	0.3824	-3.74908	
0.37955	0.38701	1.616622	_	_	0.38416	-3.74903	
0.37955	0.38416	1.618221	0.38131	-3.74907	_	_	
0.38131	0.38416	1.617544	_	_	0.38307	-3.74907	
0.38131	0.38307	1.619318	0.38199	-3.74908	_	_	
0.38199	0.38307	1.62963	_	_	0.38266	-3.74908	
0.38199	0.38266	1.61194	0.38224	-3.74908	_	_	
0.38199	0.3824	1.634146	0.38215	-3.74908	-	-	
0.38215	0.3824	1.64	_	_	0.38231	-3.74908	
0.38215	0.38231	1.5625	0.38221	-3.74908	_	_	
0.38215	0.38224	1.777778	0.38218	-3.74908	-		
0.38215	0.38228	0.692308	_	_	_	_	

Функция на данном промежутке достигает минимума при значении $x_{min}=0.382211946017994,$ $f_{min}=-3.7490810086437825.$ Выполнено 22 итерации.

6 Метод парабол

Изначально за третью точку параболы берется середина исходного промежутка, $\epsilon = 0.0001.$

Левая	Правая	Отношение	Минимум	Значение
граница	граница	Отношение	параболы	минимума
0.1	2.5	_	0.2262186	-3.3877692
0.1	1.3	2.0000000	0.5272175	-3.5139203
0.2262186	1.3	1.1175459	0.403873	-3.7432907
0.2262186	0.5272175	3.5673931	0.3930555	-3.7476161
0.2262186	0.403873	1.6942947	0.3845723	-3.7490111
0.2262186	0.3930555	1.0648388	0.383205	-3.7490686
0.2262186	0.3845723	1.0535712	0.382467	-3.7490802
0.2262186	0.383205	1.0087097	0.3823075	-3.7490809
0.2262186	0.382467	1.0047232	0.3822391	-3.749081
0.2262186	0.3823075	1.0010219	0.3822217	-3.749081
0.2262186	0.3822391	1.0004384	0.3822152	-3.749081
0.2262186	0.3822217	1.0001115	0.3822133	-3.749081
0.2262186	0.3822152	1.0000417	0.3822127	-3.749081
0.2262186	0.3822133	1.0000122	0.3822125	-3.749081
0.2262186	0.3822127	1.0000038	0.3822124	-3.749081
0.2262186	0.3822125	1.0000013	0.3822124	-3.749081
0.2262186	0.3822124	1.0000006	0.3822124	-3.749081
0.2262186	0.3822124	1.0000001	0.3822124	-3.749081
0.3822124	0.3822124			_

Функция на данном промежутке достигает минимума при значении $x_{min}=0.3822124198393549,$ $f_{min}=-3.749081008646579.$ Выполнено 18 итераций.

Левая	Правая	Отношение	Текущий	Значение теку-
граница	граница	Отношение	минимум	щего минимума
0.1	2.5	_	1.5832816	6.0217828
0.1	1.5832816	1.618034	0.6665631	0.6665631
0.1	1.2331263	1.309017	0.6665631	0.6665631
0.1	1.0167184	1.236068	0.6665631	0.6665631
0.1	0.6665631	1.618034	0.3164079	0.3164079
0.3164079	0.6665631	1.618034	0.3436571	0.3436571
0.3436571	0.6665631	1.084387	0.3935842	0.3935842
0.3436571	0.3935842	6.46755	0.3815569	0.3815569
0.3815569	0.3935842	4.151148	0.3824052	0.3824052
0.3815569	0.3824052	14.17812	0.3822149	0.3822149
0.3815569	0.3822149	1.28921	0.3822125	0.3822125
0.3815569	0.3822125	1.003661	0.3822124	0.3822124
0.3822124	0.3822125	655.6	0.3822124	0.3822124

7 Комбинированный метод Брента

Функция на данном промежутке достигает минимума при значении $x_{min}=0.3822124172559498,$ $f_{min}=-3.7490810086465793.$ Выполнено 12 итераций.

8 Сравнение методов

	$-log\epsilon$ M	Метод	Метод золотого	Метод	Метод	Метод
ϵ	$-\iota og \epsilon$	дихотомии	сечения	Фиббоначи	парабол	Брента
0.001	3	24	18	18	19	9
0.0001	4	30	22	23	19	12
0.00001	5	36	27	28	19	12
0.000001	6	44	32	34	19	12
0.0000001	7	50	37	37	19	12
0.00000001	8	56	42	42	19	15
0.000000001	9	64	46	47	23	21
0.0000000001	10	70	51	52	24	31
0.00000000001	11	76	56	57	26	38
0.000000000001	12	84	61	61	26	46
0.00000000000001	13	90	66	66	26	53
0.00000000000001	14	96	70	71	26	62
0.0000000000000001	15	104	75	76	26	71

Сравнение методов

