Методы распознавания сарказма в тексте

Кибитова Валерия

Спецсеминар "Алегбра над алгоритмами и эвристический поиск закономерностей"

11 апреля 2016 г.

Определение сарказма

Сарказм — это способ использования слов таким образом, что буквальное и истинное значение текста являются противоположными. Как правило, используется с целью обидеть кого-то или посмеяться над кем-то.

Постановка задачи

Дан текст, необходимо определить присутствует или нет в нем сарказм.

Основные методы решения

- Методы, основанные на машинном обучении
- Методы, основанные на лингвистической структуре сарказма

Recognition of Sarcasm in Tweets Based on Concept Level Sentiment Analysis and Supervised Learning Approaches Структура алгоритма

Данный алгоритм состоит из 4 частей:

- Анализ тональности
- Анализ концептов
- Идентификация согласованности
- Классификация

Recognition of Sarcasm in Tweets Based on Concept Level Sentiment Analysis and Supervised Learning Approaches Используемые средаства

Для оценки тональности текста использовалась:

- SentiStrength предоставляет оценку тональности для каждого слова в пределах от [-5,5]
- SenticNet предоставляет оценку тональности для каждого слова в пределах от [-1,1]
- ConceptNet позволяет получить список концептов, связанных с данным словом

Recognition of Sarcasm in Tweets Based on Concept Level Sentiment Analysis and Supervised Learning Approaches Оценка эмоциональной окраски слова

$$w_score(w) = \begin{cases} polarity_score(w), & \textit{if } w \in SS \textit{ or } SN \\ average_polarity_score(w), & \textit{if } w \in SS \textit{ and } SN \\ \frac{1}{|C|} \sum_{c \in C} polarity_score(c), & \textit{otherwise} \end{cases}$$

$$sum_pos_score = \sum_{pos_w \in TW} w_score(pos_w)$$

$$sum_neg_score = \sum_{neg_w \in TW} w_score(neg_w)$$

Recognition of Sarcasm in Tweets Based on Concept Level Sentiment Analysis and Supervised Learning Approaches Идентификация согласованности

Предложения s1 и s2 согласованы:

если существует такое слово w1 в предложении s1 и слово w2 в предложении s2, что выполняется одно из условий:

- w1 и w2 идентичные местоимения
- w1 и w2 идентичны как строки(стоп-слова не учитываются)
- w2 начинается с the
- w2 начинается с this, that, these, those
- w1 и w2 именованные сущности

Recognition of Sarcasm in Tweets Based on Concept Level Sentiment Analysis and Supervised Learning Approaches Используемые признаки:

- N-граммы(N = 1, 2, 3)
- Два бинарных признака: contra и contra + coher, которые определяют присутсвует ли в тексте противоречие тональностей.
- Признаки, определяющие, степень позитивности и негативности твита:
 pos_low if sum_pos_score <= 1
 pos_medium if 1 < sum_pos_score <= 2
 pos high if sum_pos_score > 2

Recognition of Sarcasm in Tweets Based on Concept Level Sentiment Analysis and Supervised Learning Approaches Используемые признаки:

- Число смайликов
- Число последовательностей, в которых пунктуационные символы повторяются
- Число последовательностей, в которых буквы повторяются
- Число слов, написанных большими буквами
- Число слов сленговых слов и слов-усилителей
- Число восклицательных знаков
- Число идиом

Recognition of Sarcasm in Tweets Based on Concept Level Sentiment Analysis and Supervised Learning Approaches Результаты:

Table 1: The result of contradiction in sentiment score approach

Methods	Recall	Precision	F-measure	Accuracy
Contradiction in sentiment score (Baseline 1)	0.55	0.56	0.56	57.14%

Table 2: The result of SVM classification based on various features

Methods	Recall	Precision	F-measure	Accuracy
Our proposed features	0.64	0.63	0.63	63.42%
Uni-gram features (Baseline 2)	0.72	0.73	0.73	73.81%
Uni-gram, bi-gram and tri-gram features	0.76	0.76	0.76	76.40%
(Baseline 2)				

Table 3: The result of marjority vote and margin based SVM classification

Methods	Recall	Precision	F-measure	Accuracy
uni-gram and contradiction	0.72	0.72	0.72	72.83%
uni-gram and sentiment score	0.75	0.75	0.75	75.64%
uni-gram and punctuations + special symbols	0.72	0.73	0.73	73.91%
uni-gram and our proposed features without	0.75	0.75	0.75	75.72%
coherence				
uni-gram and our proposed features without	0.74	0.75	0.75	75.48%
concept level knowledge generation				
uni-gram and all our proposed features	0.76	0.77	0.76	76.35%
uni-gram, bi-gram, tri-gram and all our pro-	0.79	0.78	0.79	79.43%
posed features				

Sarcasm Detection on Twitter: A Behavioral Modeling Approach

Ставится следующая задача:

Дан твит t от пользователя U, вместе с историей твитера пользователя. Решением задачи обнаружения сарказма является автоматическое обнаружение является ли твит саркастичным или нет.

Следующие факторы влияют на саркастичность текста:

- Контраст настроений в тексте
- Когнитвные способности пользователя
- Текущее эмоциональное состояние пользователя
- Грамматические знания пользователя
- Нетрадиционный стиль написания

Sarcasm Detection on Twitter: A Behavioral Modeling Approach Признаки, связанные с эмоциональное окраской текста

$$A = \{affect(w)|w \in t\}$$
 $S = \{sentiment(w)|w \in t\}$
 $\Delta affect = max(A) - min(A)$
 $\Delta sentiment = max(S) - min(S)$
affect(w) – оценка для слова из Warriner([1-9])
sentiment(w) – оценка для слова из SentiStrength.

Оценка для п-граммов:

$$\frac{POS(b) - NEG(b)}{POS(b) + NEG(b)}$$

Признаки: число положительных n-граммов, число отрицательных n-граммов, сумма оцеок для положительных n-граммов, сумма оценок для отрицательных n-граммов.

Sarcasm Detection on Twitter: A Behavioral Modeling Approach Признаки, связанные с распределением длин слов в тексте

$$< E[I_w], med[I_w], mode[I_w], \sigma[I_w], max\{I_w\} >$$

 $L = \{I_i\}$ – распределение длин слов в твите

$$JS(D1||D2) = \frac{1}{2}KL(D_1||M) + \frac{1}{2}KL(D_2||M)$$

$$M = \frac{D_1 + D_2}{2}$$

$$KL(T_1||T_2) = \sum ln(\frac{T_1(i)}{T_2(i)})T_1(i)$$

D1 – Распределение длин слов в текущем твите

D2 – Распределение длин слов в в предыдущих твитах пользователя

Sarcasm Detection on Twitter: A Behavioral Modeling Approach Признаки, связанные настроением пользователя

Все предыдущие твиты пользователя разделяются на корзины состоящие из n твитов($n \in \{1, 2, 5, 10, 20, 40, 80\}$).

$$<\sum_{+}^{+},\sum_{-}^{-},P,\max(\sum_{+}^{+},\sum_{-}^{-})>$$

$$\sum_{-}^{+} = \sum pos(t)$$
 $\sum_{-}^{-} = \sum neg(t)$

$$< n_+, n_-, n_0, Q, max(n_+, n_-, n_0) >$$

 $n_{+(-)}$ – число положительных (отрицательных) твитов

Sarcasm Detection on Twitter: A Behavioral Modeling Approach Признаки, связанные настроением пользователя

```
< E[ad_w], med[ad_w], mode[ad_w], \sigma[ad_w], max\{ad_w\} > 
< E[sd_w], med[sd_w], mode[sd_w], \sigma[sd_w], max\{sd_w\} >
```

AD — распределение affect _score в твите SD — распределение sentiment _score

Признаки, которые использовались для оценки настроения пользователя:

- Сравнение распределений оценок в данном твите с распределением оценок в предыдущих твитах.
- Вероятность появления каждой оценки sentiment score в твите.
- Оценка вероятности написания твита в данный промежуток времени.
- Промежуток времени между предыдущим твитом и текущим.
- Присутствие бранных слов.

Sarcasm Detection on Twitter: A Behavioral Modeling Approach

Признаки связанные с оценкой знания пользователем используемого языка:

- Общее число, написанных пользователем слов; число различных слов, написанных пользователем; отношение различных слов к общему числу.
- Вероятность появления каждой части речи в твите(TweetNLP).
- Правильное использование your(you're) and its(itis).
- Число предыдущих хештогов #sarcasm, использованных пользователем.

Признаки, определяющие опытность пользователя:

- Число дней с момента регистрации.
- Число твитов, среднее число ежедневных твитов.
- Число ретвитов; присутствие слов, содержащих цифры; содержащие только согласные; процент слов, которые содержат только слова, которые встречаются в словаре.
- Число подписчиков и подписок.

Sarcasm Detection on Twitter: A Behavioral Modeling Approach Признаки связанные со способом написания текста:

- Присутствие повторяющихся символов(3 или больше) во всех словах и в словах, выражающих эмоции.
- Число символов, число различных символов, число слов с большой буквы.
- Распределение пунктуации в текущем твите.
- Теги частей речи первых трех слов в твите.
- Позиция первого эмоционального слова в твите.
- Число существительных, глаголов, прилагательных и наречий, используемых в твите, число стоп-слов в твите.
- Лексическая плотность, число используемых слов-усилителей.

Методы, основанные на машинном обучении Sarcasm Detection on Twitter: A Behavioral Modeling Approach

Technique	Dataset Distribution						
rechinque	1:1		20:80		10:90		
	Acc.	AUC	Acc.	AUC	Acc.	AUC	
SCUBA	83.46	0.83	88.10	0.76	92.24	0.60	
Contrast Approach	56.50	0.56	78.98	0.57	86.59	0.57	
SCUBA++	86.08	0.86	89.81	0.80	92.94	0.70	
Hybrid Approach	77.26	0.77	78.40	0.75	83.87	0.67	
SCUBA - #sarcasm	83.41	0.83	87.53	0.74	91.87	0.63	
n-gram Classifier	78.56	0.78	81.63	0.76	87.89	0.65	
Majority Classifier	50.00	0.50	80.00	0.50	90.00	0.50	
Random Classifier	49.17	0.50	50.41	0.50	49.78	0.50	

Modelling Sarcasm in Twitter, a Novel Approach

Основная идея:

Избегать слов слов или паттернов слов, как признаков, формировать признаковое пространство, на основе структуры предложений.

Набор данных:

Данные твиттера, которые одинакова разделены на 6 тем: сарказм, ирония, образование. юмор, политика и новости.

American National Corpus(ANC) – содержит частоту встречаемости слов, используемых в письменном и устном языке.

Modelling Sarcasm in Twitter, a Novel Approach Используемые признаки

- Частота: средняя частота слов в твите, самое редкое слово(его частота), разница первых двух признаков
- Стиль написания: средняя частота слов, написанных в письменном стиле, средняя частота слов в устном стиле, разница первых двух признаков.
- Структура предложения: число символов, из которых состоит текст; число слов в тексте; средняя длина слов в тексте; число глаголов, существительных, прилагательных и наречий; доля глаголов, существительных, наречий и прилагательных в тексте; число всех пунктационных символов в тексте; признаки, связанные с количесством каждого отдельного пунктуционного символа; наличие слов, обозначающих смех; число смайликов;

Modelling Sarcasm in Twitter, a Novel Approach Используемые признаки

- Интенсивность: суммарная интенсивность
 прилагательных(наречий), средняя интенсивность,
 максимальная интенсивность, разность между максимальной и
 средней интенсивностью
- Синонимы:

$$sl_{w_i} = |syn_i : f(syn_i) < f(w_i)|$$
 $mean\{sl_{w_i}\}$
 $wls_t = max_{w_i}\{|syn_i : f(syn_i) < f(w_i)|\}$
 $wgs_t = max_{w_i}\{|syn_i : f(syn_i) > f(w_i)|\}$
 $sg_{w_i} = |syn_{w_i} : f(syn_{w_i}) > f(w_i)|$
 $mean\{sg_{w_i}\}$
 $abs(wls_t - mean\{sl_{w_i}\}) \ abs(wgs_t - mean\{sg_{w_i}\})$

Modelling Sarcasm in Twitter, a Novel Approach Используемые признаки

- Неоднозначность: среднее числа значений слов в тексте; максимальное число значение слова; разность предыдущих двух
- Эмоциональная окраска(SentiWordNet): сумма всех положительных оценок; сумма всех отрицательных оценок; разность между предыдущими двумя признаками; разность между максимальной положительной оценкой и средней, разность между минимальной негативной оценкой и средней

Modelling Sarcasm in Twitter, a Novel Approach $\mathsf{Peзультаты}$:

	Prec.	Recall	F1
Education	.87	.90	.88
Humour	.88	.87	.88
Irony	.62	.62	.62
Newspaper	.98	.96	.97
Politics	.90	.90	.90

Sarcasm as Contrast between a Positive Sentiment and Negative Situation

Структура предложения, содержащего сарказм:

[+VERB PHRASE][-SITUATION PHRASE]

Пример: "I love waiting forever for the doctor"

Ключевая задача:

Идентифицировать стереотипные негативные ситуации или состояния

Sarcasm as Contrast between a Positive Sentiment and Negative Situation Алгоритм


```
\frac{|follows(-candidate, +sentiment)\&sarcasm|}{|follows(-candidate, +sentiment)|} \frac{|precedes(+candidate, -situation)\&sarcasm|}{|follows(+candidate, -situation)|} \frac{|near(+candidatePRED, -situation)\&sarcasm|}{|near(+candidatePRED, -situation)|}
```

Sarcasm as Contrast between a Positive Sentiment and Negative Situation Результаты

System	Recall	Precision	F score				
Supervised SVM Classifiers							
1grams	.35	.64	.46				
1+2grams	.39	.64	.48				
Positive Sentiment Only							
Liu05	.77	.34	.47				
MPQA05	.78	.30	.43				
AFINN11	.75	.32	.44				
Negative Sentimen	t Only						
Liu05	.26	.23	.24				
MPQA05	.34	.24	.28				
AFINN11	.24	.22	.23				
Positive and Negative Sentin	nent, Uno	rdered					
Liu05	.19	.37	.25				
MPQA05	.27	.30	.29				
AFINN11	.17	.30	.22				
Positive and Negative Sent	iment, Ora	lered					
Liu05	.09	.40	.14				
MPQA05	.13	.30	.18				
AFINN11	.09	.35	.14				
Our Bootstrapped L	exicons						
Positive VPs	.28	.45	.35				
Negative Situations	.29	.38	.33				
Contrast(+VPs, -Situations), Unordered	.11	.56	.18				
Contrast(+VPs, -Situations), Ordered	.09	.70	.15				
& Contrast(+Preds, -Situations)	.13	.63	.22				
Our Bootstrapped Lexicons \cup SVM Classifier							
Contrast(+VPs, -Situations), Ordered	.42	.63	.50				
& Contrast(+Preds, -Situations)	.44	.62	.51				

Parsing-based Sarcasm Sentiment Recognition in Twitter Data

Схема распознавания сарказма состоит из 2-х частей:

- Идентификации сарказма на данных твиттера основанная на парсинге. Распознает сарказм в случаях, сочетания положительной оценки и негативной ситуации и негативной оценки и положительной ситуации. (PBLGA)
- Алгоритм, который распознает сарказм в твитах, которые начинаются с междометий.(IWS)

Parsing-based Sarcasm Sentiment Recognition in Twitter Data Алгоритм:

PBLGA:

```
SF = \emptyset, sf = \emptyset, PSF = \emptyset, NSF = \emptyset, psf = \emptyset, nsf = \emptyset for T in C do k = find\_parse(T) PF = PF \cup k end for for TWP in PF do k = find\_subset(TWP) if k = NP||ADVP||(NP + VP) then SF = SF \cup k else if k = VP||(ADVP + VP)||(VP + ADVP)||(ADJP + VP)|| (VP + NP)||(VP + ADVP + ADJP)||(VP + ADJP + NP)||(ADVP + ADJP + NP) then sf = sf \cup k end if end for
```

Parsing-based Sarcasm Sentiment Recognition in Twitter Data Алгоритм:

```
for P in SF do
   SC = sentiment score(P)
   if SC > 0.0 then
       PSF = PSF \cup P
   else if SC < 0.0 then
       NSF = NSF \cup P
   else
       Neutral Sentiment Phrase
   end if
end for
                                                        NR = \frac{NWP}{TWP}
for P in sf do
   SC = sentiment score(P)
   if SC > 0.0 then
                                                 SentimentScore = PR - NR
       psf = psf \cup P
   else if SC < 0.0 then
       nsf = nsf \cup P
   else
       Neutral Situation Phrase
   end if
end for
```

Методы, основанные на лингвистической структуре сарказма Parsing-based Sarcasm Sentiment Recognition in Twitter Data

```
IWS:
  for T in C do
     k = find postag(T)
     TF = TF \cup k
  end for
  for TWT in TF do
     t = find \quad subset(TWT)
     FT = find first tag(t)
                                                       Примеры:
     INT = find immediate next tag(t)
                                                       "Wow, that's a huge
     NT = find next tag(t)
                                                       discount, I'm not buying
     if (FT == UH)\&\&(INT == ADJ||ADV) then
                                                       anything!!"
        Tweet is sarcastic
     else if (FT==UH)\&\&(NT==(ADV+ADJ))
                                                       "Aha, great night"
  (ADJ + N) \parallel (ADV + V) then
        Tweet is sarcastic
     else if FT \neq UH then
        Invalid tweet.
     else
         Tweet is not sarcastic
     end if
  end for
```

Методы, основанные на лингвистической структуре сарказма Parsing-based Sarcasm Sentiment Recognition in Twitter Data

Approach	Precision	Recall	F-score
Barbieri et al. system	0.88	0.87	0.88
Tungthamthiti et al. system	0.76	0.76	0.76
Riloff et al. system with positive verb	0.28	0.45	0.35
with negative situation	0.29	0.38	0.33
Contrast (+VPs, -situation)unordered	0.11	0.56	0.18
Contrast (+VPs, -situation)ordered	0.09	0.70	0.15
Contrast (+preds, -situation)	0.13	0.63	0.22
Liebrecht et al. system with 50/50	0.75	-	-
with 25/75 neg, pos ratio	0.56	-	-
PBLGA with sar tweets	0.89	0.81	0.84
PBLGA without sar tweets	0.64	0.75	0.69
IWS sarcastic tweets	0.85	0.96	0.90
IWS without sarcastic tweets	0.77	0.73	0.74