Lab 07

This lab will guide you through creating a simple database based on the provided schema . You will then write SQL queries to answer various business questions.

Employee

Employee				
emp id	name	salary	address_id	dept_id
111	Zaineh	100000	1	1
112	Yasmeen	160000	2	4
113	Mira	140000	3	3
114	Shimaa	200000	4	2
115	Dean	150000	5	1

Address

address id	city	state	zipcode
1	Fairfield	IA	52556
2	Iowa City	IA	52440
3	Morrison	IL	61270
4	Orlando	FL	34565
5	Tampa	FL	31765

Department

dept id	name
1	Tech
2	HR
3	Finance
4	Marketing

Employee_Project

emp id	project id
115	1
115	2
115	3
114	1
114	3
111	1
111	2

Project

project id	project_name	estimated_days	location
1	X	180	FL
2	Y	60	FL
3	Z	80	IA

1. Database Schema and Table Creation

The database consists of five tables with the following relationships:

- Employee Address (via address id)
- Employee Department (via dept id)
- Employee Project (Many-to-Many, linked via Employee Project table)

Your first task is to create these five tables using SQL. You should choose appropriate data types and primary/foreign key constraints.

Table Name	Primary Key	Foreign Keys	Columns
Employee	emp_id	address_id (references Address), dept_id (references Department)	emp_id (INT), name (VARCHAR), salary (INT), address_id (INT), dept_id (INT)
Address	address_id	None	address_id (INT), city (VARCHAR), state (VARCHAR), zipcode (VARCHAR)
Department	dept_id	None	dept_id (INT), name (VARCHAR)
Employee_Project		emp_id (references Employee), project_id (references Project)	emp_id (INT), project_id (INT)
Project	project_id	None	<pre>project_id (INT), project_name (VARCHAR), estimated_days (INT), location (VARCHAR)</pre>

Table Creation SQL Sample

Write the CREATE TABLE statements for all five tables. Ensure you include NOT NULL constraints where appropriate and define the primary and foreign keys.

```
SOL
```

```
-- Example for Address table

CREATE TABLE Address (
   address_id INT PRIMARY KEY,
   city VARCHAR(50) NOT NULL,
   state CHAR(2) NOT NULL,
   zipcode VARCHAR(10)

);

-- Complete the remaining four tables: Department, Project, Employee,
Employee_Project
```

2. Data Insertion

Insert the sample data [END OF THIS DOCUMENT] from the provided schema into the tables you created.

3. Query Exercises

Write the SQL query that answers each of the following questions.

You got it! I'll add four more questions to the **Basic Selection** section of the lab assignment, focusing on DISTINCT, filtering (WHERE clause), and ordering (ORDER BY).

Here are the four new questions integrated into the lab assignment:

3. Query Exercises:

Write the SQL query that answers each of the following questions.

A. Selection:

- 1. List the **name** and **salary** of all employees.
- 2. Find the names of all **projects** located in **Florida** (FL).
- 3. Retrieve the emp id and project id for employees working on Project 1.
- 4. Find all unique (distinct) states where employee addresses are located. (Uses
- 5. List the names and salaries of all employees who earn a salary less than \$150,000.
- 6. List the **project names** and their **estimated days**, ordered from the **longest duration to** the **shortest**.
- 7. Find the emp_ids of employees who are assigned to a project, listing each emp_id only once.

B. Aggregates and Grouping:

- 1. Calculate the average salary of all employees.
- 2. Find the **maximum** estimated days for any single project.
- 3. For each department, report the dept id and the total salary expenditure.
- 4. Find the dept_id of departments that have an average employee salary greater than \$150,000.

C. Joins:

- 1. List the **employee name** and the **city** where they live. (Join Employee and Address).
- 2. List **all departments** and the **names** of the employees who belong to them. Include departments that may not currently have any employees. (Join Department and Employee). Note: Based on the sample data, all departments have employees, but this query structure is key for future scenarios.
- 3. Find the **employee name** and the **name of the projects** they are working on. (Join Employee, Employee Project, and Project).

D. Subqueries

- 1. Find the **name** of the employee who has the **highest salary** (Use a subquery in the WHERE clause).
- 2. List the names of employees who work on a project that has an estimated_days of 180 (Use an IN or EXISTS subquery).
- 3. Find the project_id of all projects that have an estimated duration greater than the average estimated duration of all projects (Use a subquery in the WHERE clause).

```
-- *** 1. Insert Data into Address Table ***
INSERT INTO Address (address id, city, state, zipcode) VALUES
(1, 'Fairfield', 'IA', '52556'),
(2, 'Iowa City', 'IA', '52440'),
(3, 'Morrison', 'IL', '61270'),
(4, 'Orlando', 'FL', '34565'),
(5, 'Tampa', 'FL', '31765');
-- *** 2. Insert Data into Department Table ***
INSERT INTO Department (dept id, name) VALUES
(1, 'Tech'),
(2, 'HR'),
(3, 'Finance'),
(4, 'Marketing');
-- *** 3. Insert Data into Project Table ***
INSERT INTO Project (project id, project name, estimated days, location)
VALUES
(1, 'X', 180, 'FL'),
(2, 'Y', 60, 'FL'),
(3, 'Z', 80, 'IA');
-- *** 4. Insert Data into Employee Table ***
-- NOTE: This depends on Address (address id) and Department (dept id) being
populated first.
INSERT INTO Employee (emp id, name, salary, address id, dept id) VALUES
(111, 'Zaineh', 100000, 1, 1),
(112, 'Yasmeen', 160000, 2, 4),
(113, 'Mira', 140000, 3, 3),
(114, 'Shimaa', 200000, 4, 2),
(115, 'Dean', 150000, 5, 1);
-- *** 5. Insert Data into Employee Project Table ***
-- NOTE: This depends on Employee (emp id) and Project (project id) being
populated first.
INSERT INTO Employee Project (emp id, project id) VALUES
(115, 1),
(115, 2),
(115, 3),
(114, 1),
(114, 3),
(111, 1),
(111, 2);
```