Customer Segmentation using K-Means Clustering

Machine Learning Project Report

By: Rym Hamri Role: Data Scientist

Tools: Python · Pandas · Scikit-learn · Matplotlib · Seaborn

Date: June 2025

This project demonstrates the use of unsupervised machine learning to segment customers based on their spending behavior. The results provide actionable insights for targeted marketing and customer relationship strategies.

- import pandas as pd
- import matplotlib.pyplot as plt
- import seaborn as sns

2. Load Dataset

- df=pd.read_csv('/content/drive/MyDrive/Freelancer/Mall_Customers.csv')
- df.describe()

₹		CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
	count	200.000000	200.000000	200.000000	200.000000
	mean	100.500000	38.850000	60.560000	50.200000
	std	57.879185	13.969007	26.264721	25.823522
	min	1.000000	18.000000	15.000000	1.000000
	25%	50.750000	28.750000	41.500000	34.750000
	50%	100.500000	36.000000	61.500000	50.000000
	75%	150.250000	49.000000	78.000000	73.000000
	max	200.000000	70.000000	137.000000	99.000000

1 df.head()

$\overline{\Rightarrow}$		CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
	0	1	Male	19	15	39
	1	2	Male	21	15	81
	2	3	Female	20	16	6
	3	4	Female	23	16	77
	4	5	Female	31	17	40

1 df.columns

```
Index(['CustomerID', 'Gender', 'Age', 'Annual Income (k$)',
        'Spending Score (1-100)'],
       dtype='object')
```

3. Exploratory Data Analysis (EDA)

```
1 # Select features for clustering
2 X = df[["Annual Income (k$)", "Spending Score (1-100)"]]
4 # Show first 5 rows of the selected features
5 X.head()
```

	Annual Income (k\$)	Spending Score (1-100)
0	15	39
1	15	81
2	16	6
3	16	77
4	17	40

4. Visualize Customer Distribution

```
1 # Scatter plot to visualize customer distribution
2 plt.figure(figsize=(8,5))
3 plt.scatter(X["Annual Income (k$)"], X["Spending Score (1-100)"], c='blue', s=50)
4 plt.title("Customers by Income and Spending Score")
5 plt.xlabel("Annual Income (k$)")
6 plt.ylabel("Spending Score (1-100)")
7 plt.grid(True)
8 plt.show()
9
```


5. Elbow Method to Find Optimal K

```
1 from sklearn.cluster import KMeans
 3 inertia = []
 4 \text{ K\_range} = \text{range}(1, 11)
 6 for k in K_range:
      kmeans = KMeans(n_clusters=k, random_state=42)
 8
      kmeans.fit(X)
      inertia.append(kmeans.inertia_)
10
11 # Plot the elbow curve
12 plt.figure(figsize=(8,5))
13 plt.plot(K_range, inertia, marker='o')
14 plt.title("Elbow Method for Optimal K")
15 plt.xlabel("Number of clusters (K)")
16 plt.ylabel("Inertia")
17 plt.grid(True)
18 plt.show()
19
```


6. Apply K-Means Clustering

Add Cluster Labels to Dataset

```
# Apply KMeans with K=5
kmeans = KMeans(n_clusters=5, random_state=42)
clusters = kmeans.fit_predict(X)

# Add the cluster labels to the original data
df['Cluster'] = clusters

# Show the first few rows with the new cluster
df.head()
```

$\overline{\Rightarrow}$		CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	Cluster
	0	1	Male	19	15	39	4
	1	2	Male	21	15	81	2
	2	3	Female	20	16	6	4
	3	4	Female	23	16	77	2
	4	5	Female	31	17	40	4

7. Add Cluster Labels to Dataset

```
1 # Visualize the clusters
 2 plt.figure(figsize=(8,6))
 4 # Use a color for each cluster
 5 colors = ['red', 'blue', 'green', 'purple', 'orange']
 6
 7 for i in range(5):
      plt.scatter(
 8
 9
           X[clusters == i]["Annual Income (k$)"],
           X[clusters == i]["Spending Score (1-100)"],
s=80, c=colors[i], label=f'Cluster {i}'
10
11
12
13
14 # Plot cluster centers
15 plt.scatter(
      kmeans.cluster_centers_[:, 0],
16
17
       kmeans.cluster_centers_[:, 1],
       s=200, c='black', marker='X', label='Centroids'
18
19)
20
21 plt.title("Customer Segments (K=5)")
22 plt.xlabel("Annual Income (k$)")
23 plt.ylabel("Spending Score (1-100)")
24 plt.legend()
```

 $\overline{\Rightarrow}$

 \overline{z}

```
25 plt.grid(True)
26 plt.show()
27
```


8. Export Clustered Data (optional)

```
1  # Save the data with cluster labels to a CSV file
2  df.to_csv('mall_customer_final.csv', index=False)
1 from google.colab import files
2 files.download('mall_customer_final.csv')
3
```

1 df.to_csv('/content/drive/MyDrive/Freelancer/mall_customer_final.csv', index=False)
2