

OSNOVE ELEKTROTEHNIKE

9. Naponsko i strujno djelilo, mosni spoj

© <u>Sveučilište u Zagrebu</u> · <u>Fakultet elektrotehnike i računarstva</u> Zavod za osnove elektrotehnike i električka mjerenja

Ovo djelo je dano na korištenje pod licencom Creative Commons Imenovanje-Nekomercijalno-Bez prerada 3.0 Hrvatska.

Naponsko djelilo

• Ako je poznat napon u(t) na nizu od N serijski spojenih elemenata jednadžba naponskog djelila omogućava određivanje napona na k-tom elementu u nizu, a da se pri tom ne mora direktno odrediti struja koja teče kroz spoj.

$$u(t) = i(t) \sum_{j=1}^{N} R_j = i(t)(R_1 + R_2 + \dots + R_N) = i(t)R_{eq}$$

$$u_k(t) = i(t)R_k$$

• Jednadžba naponskog djelila:
$$u_k(t) = \frac{R_k}{R_{eq}} u(t)$$

Naponsko djelilo (dva otpornika)

• Za spoj od 2 serijski spojena otpornika, vrijedi:

$$U_1 = \frac{R_1}{R_1 + R_2} E$$

$$U_2 = \frac{R_2}{R_1 + R_2} E$$

F

FER · ZOEEM · Osnove elektrotehnike · 9. Naponsko i strujno djelilo, mosni spoj

2

Promjenjivi otpornik u potenciometarskom spoju

 Ako se koristi u potenciometarskom spoju, promjenjivi otpornik predstavlja djelitelj napona.

· Jednadžba naponskog djelila modelira rad potenciometra. Napon U_o ovisi o položaju klizača i moguće ga je podešavati u granicama [0, E].

$$U_o = \frac{R_2}{R}E$$

Promjenjivi otpornik u potenciometarskom spoju (2)

• Ako na potenciometar spojimo trošilo $R_{\rm T}$, možemo analizirati utjecaj otpora trošila na promjenu napona na trošilu $U_{\rm T}$, a u ovisnosti o položaju klizača potenciometra k. Vrijednost parametra koji opisuje položaj klizača može se mijenjati u granicama $0 \le k \le 1$. Vrijedi: $R_1 = (1-k)R$ i $R_2 = kR$.

$$I = \frac{E}{R_1 + \frac{R_2 R_T}{R_2 + R_T}} = \frac{E}{(1 - k)R + \frac{kRR_T}{kR + R_T}} = \frac{E(kR + R_T)}{R[R_T + k(1 - k)R]}$$

$$U_T = I \frac{kRR_T}{kR + R_T} = \frac{k}{1 + k(1 - k)\frac{R}{R_T}} E$$

FER · ZOEEM · Osnove elektrotehnike · 9. Naponsko i strujno djelilo, mosni spoj

Promjenjivi otpornik u potenciometarskom spoju (3)

• Za velike vrijednosti otpora trošila, omjer $R/R_{\rm T} \to 0$, a $U_{\rm T} = kE$. U tom slučaju je funkcija $U_T = f(k)$ pravac (ucrtan plavom bojom u dijagramu) i predstavlja idealnu karakteristiku. Stvarna karakteristika potenciometra ovisi o omjeru $R/R_{\rm T}$ i nije linearna što je i prikazano na dijagramu (napomena: $E = 12~{\rm V}$).

Strujno djelilo

• Ako je poznata ukupna struja $i_{\rm g}(t)$ koja ulazi u niz od N paralelno spojenih elemenata, jednadžba strujnog djelila omogućava određivanje struje koja teče kroz k-ti element u nizu, a da se pri tom ne mora direktno odrediti napon koji vlada na elementima.

$$i_g(t) = \frac{u(t)}{R_1} + \frac{u(t)}{R_2} + \dots + \frac{u(t)}{R_N} = u(t) \sum_{j=1}^N G_j = u(t) G_{eq}$$

$$i_k = \frac{u(t)}{R_k} = u(t) G_k$$

• Jednadžba strujnog djelila: $i_k = \frac{G_k}{G_{eq}} i_g(t)$

层

FER · ZOEEM · Osnove elektrotehnike · 9. Naponsko i strujno djelilo, mosni spoj

6

Strujno djelilo (dva otpornika)

• Za spoj sa 2 paralelno spojena otpornika, vrijedi:

$$I_1 = \left(\frac{G_1}{G_1 + G_2}\right)I_g = \frac{\frac{1}{R_1}}{\frac{1}{R_1} + \frac{1}{R_2}}I_g = \left(\frac{R_2}{R_1 + R_2}\right)I_g$$

$$I_2 = \left(\frac{R_1}{R_1 + R_2}\right) I_g$$

Primjer

• Odredite struje $I_{\rm x}$, $I_{\rm y}$ i $I_{\rm z}$ u mreži koja je prikazana na slici a).

$$G_{eq} = G_x + G_y + G_z = 0.05 + 0.05 + 0.1 = 0.2 \text{ S}$$

$$I_x = \frac{G_x}{G_{eq}}$$
5 = 1,25 A = I_y $I_z = \frac{G_z}{G_{eq}}$ 5 = 2,5 A

B) Reduciranje serijsko-paralelnog spoja.

$$I_{x} = \frac{6,67}{20 + 6,67} \cdot 5 = 1,25 \text{ A}$$

$$I_{yz} = \frac{20}{20 + 6,67} \cdot 5 = 5 - I_{x} = 3,75 \text{ A}$$

$$I_{yz} = \frac{10}{20 + 10} \cdot I_{yz} = 1,25 \text{ A}$$

$$I_{z} = \frac{20}{20 + 10} \cdot I_{yz} = 2,5 \text{ A}$$

F

FER · ZOEEM · Osnove elektrotehnike · 9. Naponsko i strujno djelilo, mosni spoj

Naponsko i strujno dijelilo u mrežama sa sinusnom pobudom

• Jednadžbe naponskog i strujnog djelila imaju isti oblik kao u istosmjernim mrežama

$$\dot{U}_k = \frac{\underline{Z}_k}{\underline{Z}_1 + \underline{Z}_2 + \dots + \underline{Z}_N} \dot{U}_s$$

$$\dot{I}_{k} = \frac{\frac{1}{Z_{k}}}{\frac{1}{Z_{1}} + \frac{1}{Z_{2}} + \dots + \frac{1}{Z_{N}}} \dot{I}_{S}$$

Ulazna impedancija

• Ulazna impedancija je impedancija koju "vidi" izvor priključen na pasivnu linearnu mrežu. Primjer: odredite ulaznu impedanciju \underline{Z}_{nl} i omjer fazora napona \dot{U}_o/\dot{U} za mrežu prema slici. Zadano: $\underline{Z}_1 = 2 + j4 \Omega$, $\underline{Z}_2 = 3 \Omega$, $\underline{Z}_3 = \underline{Z}_4 = \underline{Z}_5 = 2 \Omega$.

$$\underline{Z}_{ul} = \underline{Z}_1 + \underline{Z}_2 \parallel (\underline{Z}_3 + \underline{Z}_4 + \underline{Z}_5) = 4 + j4 \Omega$$

Struja koju daje izvor: $\dot{I} = \dot{U}/\underline{Z}_{ul}$

Struja koju daje izvor: $\dot{I} = \dot{U}/\underline{Z}_{ul}$ Struja kroz granu sa \underline{Z}_3 , \underline{Z}_4 , \underline{Z}_5 prema jednadžbi strujnog djelila: $\dot{I}_1 = \dot{I}_2$

strujnog djelila:
$$\dot{I}_{345} = \dot{I} \frac{Z_2}{Z_2 + Z_3 + Z_4 + Z_5}$$

Napon:
$$\dot{U}_o=\dot{I}_{345}\underline{Z}_5$$
, a:

$$\dot{U}_{o}/\dot{U} = 1/(6+i6)$$

F

FER · ZOEEM · Osnove elektrotehnike · 9. Naponsko i strujno djelilo, mosni spoj

10

Mosni spoj (Wheatstoneov most)

• Spoj pet pasivnih elemenata i jednog aktivnog, kakav je prikazan na sl. 1, naziva se mosni spoj. Ako su svi pasivni elementi otpori, mosni se spoj pobliže određuje kao Wheatstoneov most.

SI .1

Mosni spoj (Wheatstoneov most) (2)

Jednadžbe Kirchhoffovih zakona:

ER

FER · ZOEEM · Osnove elektrotehnike · 9. Naponsko i strujno djelilo, mosni spoj

12

Mosni spoj (Wheatstoneov most) (3)

• Rješavanje ovog sustava jednadžbi po I₅ daje:

$$I_5 = \frac{R_1 \cdot R_3 - R_2 \cdot R_4}{(R_1 + R_2) \cdot (R_3 + R_4) \cdot \left(\frac{R_1 \cdot R_2}{R_1 + R_2} + \frac{R_3 \cdot R_4}{R_3 + R_4} + R_5\right)} \cdot U_0 \tag{7}$$

• Kada je $R_1 \cdot R_3 - R_2 \cdot R_4 = 0$, izraz (7) jednak je nuli. Struja I_5 ne teče pa se sl. 1 može nadomjestiti sa sl. 1a ili sl. 1b.

Mosni spoj (Wheatstoneov most) (4)

• Uz $I_5 = 0$ jednadžbe (2) i (3) reduciraju se na $-I_1 - I_2 = 0$, odnosno $I_3 + I_4 = 0$ što je iz sl. 1a-b očito.

⊫₹

FER · ZOEEM · Osnove elektrotehnike · 9. Naponsko i strujno djelilo, mosni spoj

14

Mosni spoj (Wheatstoneov most) (5)

Relacija

$$R_1 \cdot R_3 - R_2 \cdot R_4 = 0; \quad \frac{R_1}{R_2} = \frac{R_4}{R_3}$$
 (8)

• <u>uvjet je ravnoteže mosta</u>. Kada je ona zadovoljena, dopušteno je <u>mosnu</u> granu (grana s R_5) kratko spojiti (sl. 1a) ili odspojiti (sl. 1b), jer navedeni zahvati ne mijenjaju strujno-naponske prilike u krugu, a mreža se pojednostavljuje na serijsko-paralelni spoj otpornika R_1 , R_2 , R_3 i R_4 .

Primjer: Primjena u električkim mjerenjima

• Otpori R_1 i R_2 su dijelovi npr. otporne žice duljine l po kojoj se može pomicati klizač; položaj klizača (udaljenost od točke a) može se precizno očitati. Otpor R_3 je tzv. normalni otpor, čija je vrijednost stabilna i točno poznata. Otpor $R_4 = R_{\rm x}$ je otpor čija se vrijednost mjeri. Ukupna vrijednost otporne žice $R_{\rm ab} = R$ također je poznata.

FER · ZOEEM · Osnove elektrotehnike · 9. Naponsko i strujno djelilo, mosni spoj

16

Primjena u električkim mjerenjima (2)

• Mjerenje se provodi tako da se klizač pomiče do točke x_0 kada vrlo precizni nul-instrument ne registrira nikakvu struju u mosnoj grani (I_5 =0). Tada je:

$$R_1 = \frac{x_0}{l} \cdot R = \alpha R, \qquad R_2 = \frac{l - x_0}{l} \cdot R = (1 - \alpha) \cdot R \qquad (9)$$

· Dobiva se:

$$R_4 = R_x = \frac{R_1}{R_2} \cdot R_3 = \frac{x_0}{l - x_0} \cdot R_3 = \frac{\alpha}{1 - \alpha} \cdot R_n \tag{10}$$

Wheatstoneov mjerni most jednostavna je i precizna metoda za određivanje vrijednosti nepoznatih otpora.

Mosni spoj za koji ne vrijedi uvjet ravnoteže

• Ako most nije u ravnoteži, tada možemo transformirati otpornike u spoju trokut (jedna takva trojka R_2 , R_3 i R_5 je istaknuta na Sl. 2a) u ekvivalentni spoj u zvijezdu čime se mosni spoj pretvara u serijsko paralelnu kombinaciju otpora (Sl. 2b) te se može jednostavno analizirati.

FER · ZOEEM · Osnove elektrotehnike · 9. Naponsko i strujno djelilo, mosni spoj

Ekvivalentnost trokut i zvijezda spojeva

• Što treba biti ispunjeno da tri otpornika spojena u zvijezdu, odnosno u trokut, predstavljaju ekvivalentne tropole? Za trokut i zvijezda spojeve otpornika vrijedi da su oni ekvivalentni ako su otpori promatrani na istim parovima stezaljki u oba spoja isti.

Pretvorba trokut-zvijezda

Sl. 3a: Trokut

Sl. 3b: Zvijezda

F

FER · ZOEEM · Osnove elektrotehnike · 9. Naponsko i strujno djelilo, mosni spoj

Pretvorba trokut-zvijezda (2)

Ekvivalentnost trokuta i zvijezde slijedi iz zadovoljenja sljedećih naponskih jednadžbi:

$$U_{12} = I_{12} \cdot R_{12} = I_1 \cdot R_1 - I_2 \cdot R_2$$

$$U_{23} = I_{23} \cdot R_{23} = I_2 \cdot R_2 - I_3 \cdot R_3$$
(11a)
(11b)

$$U_{23} = I_{23} \cdot R_{23} = I_2 \cdot R_2 - I_3 \cdot R_3 \tag{11b}$$

$$U_{31} = I_{31} \cdot R_{31} = I_3 \cdot R_3 - I_1 \cdot R_1 \tag{11c}$$

(11a-c) sustav je triju jednadžbi s tri nepoznanice (R_1 , R_2 , R_3 , odnosno R_{12} , R_{23} , R_{31}) s parametrima (strujama) koje moraju zadovoljavati sljedeće strujne jednadžbe:

čvor 2:
$$+I_2 + I_{12} - I_{23} = 0$$
 (12b)

$$+ I_3 + I_{23} - I_{31} = 0$$
 (12c)

Pretvorba trokut-zvijezda (3)

Iz sustava (11a-c) slijedi:

$$I_{12} \cdot R_{12} + I_{23} \cdot R_{23} + I_{31} \cdot R_{31} = 0 \tag{13}$$

Iz sustava (12a-c) slijedi:

$$I_1 + I_2 + I_3 = 0 (14)$$

F

FER · ZOEEM · Osnove elektrotehnike · 9. Naponsko i strujno djelilo, mosni spoj

22

Pretvorba trokut-zvijezda (4)

- Poznanice: R_{12} , R_{23} , R_{31}
- Nepoznanice: R_1 , R_2 , R_3

U jednadžbi (12) eliminacijom struja I_{31} i I_{23} , i to zamjenom I_{31} = I_{12} - I_1 (12a) i I_{23} = I_{12} + I_1 (12b), dobiva se:

$$I_{12} = \frac{I_1 \cdot R_{31} - I_2 \cdot R_{23}}{R_{\Lambda}} \tag{15}$$

gdje je:

$$R_{\Delta} = R_{12} + R_{23} + R_{31} \tag{16}$$

Pretvorba trokut-zvijezda (5)

Uvrštavanjem struje I_{12} u jednadžbu (11a) dobiva se:

$$I_1 \cdot \frac{R_{12} \cdot R_{31}}{R_{\Lambda}} - I_2 \cdot \frac{R_{12} \cdot R_{23}}{R_{\Lambda}} = I_1 \cdot R_1 - I_2 \cdot R_2 \tag{17a}$$

Analognim postupkom eliminacije i uvrštavanjem u jednadžbe (11b) i (11c) dobiva se:

$$I_2 \cdot \frac{R_{12} \cdot R_{23}}{R_{\Delta}} - I_3 \cdot \frac{R_{23} \cdot R_{31}}{R_{\Delta}} = I_2 \cdot R_2 - I_3 \cdot R_3$$
 (17b)

$$I_3 \cdot \frac{R_{23} \cdot R_{31}}{R_{\Delta}} - I_1 \cdot \frac{R_{12} \cdot R_{31}}{R_{\Delta}} = I_3 \cdot R_3 - I_1 \cdot R_1$$
 (17c)

F

FER · ZOEEM · Osnove elektrotehnike · 9. Naponsko i strujno djelilo, mosni spoj

24

Pretvorba trokut-zvijezda (6)

• Sustav jednadžbi (11a-c) prelazi u jednakosti kad je:

$$R_1 = \frac{R_{12} \cdot R_{31}}{R_{\Delta}}; \quad R_2 = \frac{R_{12} \cdot R_{23}}{R_{\Delta}}; \quad R_3 = \frac{R_{23} \cdot R_{31}}{R_{\Delta}}$$
 (18)

čije je važno svojstvo:

$$\frac{R_1 \cdot R_2}{R_3} = \frac{R_{12}^2}{R_{\Lambda}}$$
 (18a)

$$\frac{R_2 \cdot R_3}{R_1} = \frac{R_{23}^2}{R_{\Lambda}}$$
 (18b)

$$\frac{R_3 \cdot R_1}{R_2} = \frac{R_{31}^2}{R_{\Lambda}} \tag{18c}$$

• Relacije (18) kazuje kako se s poznatim otporima trokuta dobivaju otpori ekvivalentne zvijezde.

Pretvorba zvijezde u trokut

• Poznanice: R_1 , R_2 , R_3

• Nepoznanice: R_{12} , R_{23} , R_{31}

U jednadžbi (11a) eliminiraju se struje I_1 i I_2 zamjenom

 $I_1 = I_{12} - I_{31}$ i $I_2 = I_{23} - I_{12}$ (12a i b), te se dobiva:

$$U_{12} = I_{12} \cdot R_{12} = I_{12} \cdot (R_1 + R_2) - (I_{23} \cdot R_2 + I_{31} \cdot R_1)$$
 (19)

U drugom dijelu dobivenog izraza zamijeni se

$$R_1 = \frac{R_{12} \cdot R_{31}}{R_{\Delta}}$$
 i $R_2 = \frac{R_{12} \cdot R_{23}}{R_{\Delta}}$ (18), iskoristi

(13) u obliku $I_{12} \cdot R_{12} = -(I_{23} \cdot R_{23} + I_{31} \cdot R_{31})$, pa se dobiva:

$$I_{23} \cdot R_2 + I_{31} \cdot R_1 = -I_{12} \cdot \frac{R_{12}^2}{R\Delta} = -I_{12} \cdot \frac{R_1 \cdot R_2}{R_3}$$
 prema (18a)

ER

FER · ZOEEM · Osnove elektrotehnike · 9. Naponsko i strujno djelilo, mosni spoj

26

Pretvorba zvijezde u trokut (2)

Nakon ovoga sređivanjem (19) dobiva se:

$$R_{12} = R_1 + R_2 + \frac{R_1 \cdot R_2}{R_3} \tag{19a}$$

Primjenom analognog postupka na U_{23} i U_{31} dobiva se:

$$R_{23} = R_2 + R_3 + \frac{R_2 \cdot R_3}{R_1} \tag{19b}$$

$$R_{31} = R_3 + R_1 + \frac{R_3 \cdot R_1}{R_2} \tag{19c}$$

Relacije (19 a-c) kazuju kako se s poznatim otporima zvijezde dobivaju otpori ekvivalentnog trokuta.

<u>Pretvorba zvijezde u trokut, i obrnuto, omogućuje da se svaki</u> mosni spoj pretvori u serijsko-paralelnu kombinaciju otpora.

Mosni spoj sa sinusnom pobudom

Uvjet ravnoteže mosta:

$$\underline{Z}_1 \cdot \underline{Z}_3 - \underline{Z}_2 \cdot \underline{Z}_4 = 0; \quad \underline{\underline{Z}_1}_2 = \underline{\underline{Z}_4}_2$$
 (20)

⊫₹

FER · ZOEEM · Osnove elektrotehnike · 9. Naponsko i strujno djelilo, mosni spoj

Pretvorbe trokut-zvijezda

Sl. 4a: Trokut

Sl. 4b: Zvijezda

Pretvorba trokuta u zvijezdu

$$\underline{Z}_{1} = \frac{\underline{Z}_{12} \cdot \underline{Z}_{31}}{\underline{Z}_{\Delta}}; \quad \underline{Z}_{2} = \frac{\underline{Z}_{12} \cdot \underline{Z}_{23}}{\underline{Z}_{\Delta}}; \quad \underline{Z}_{3} = \frac{\underline{Z}_{23} \cdot \underline{Z}_{31}}{\underline{Z}_{\Delta}}$$
 (21)

Gdje je:

 $\underline{Z}_{\Delta} = \underline{Z}_{12} + \underline{Z}_{23} + \underline{Z}_{31} \qquad (22)$ Z_{31} Z_{23} Z_{23} Z_{23} Z_{23} Z_{23} Z_{23} Z_{3}

⊫₹

FER · ZOEEM · Osnove elektrotehnike · 9. Naponsko i strujno djelilo, mosni spoj

30

Pretvorba zvijezde u trokut

$$\underline{Z}_{12} = \underline{Z}_1 + \underline{Z}_2 + \frac{\underline{Z}_1 \cdot \underline{Z}_2}{Z_3}$$
 (23a)

$$\underline{Z}_{23} = \underline{Z}_2 + \underline{Z}_3 + \frac{\underline{Z}_2 \cdot \underline{Z}_3}{Z_1}$$
 (23b)

$$\underline{Z}_{31} = \underline{Z}_3 + \underline{Z}_1 + \frac{\underline{Z}_3 \cdot \underline{Z}_1}{\underline{Z}_2}$$
 (23c)

Primjer

• Odredite struju koju mjeri ampermetar. Zadano: $R=2~\Omega$, $E=8~\mathrm{V}$.

Rješenje: $I_A = 1 A$

⊫₹

FER · ZOEEM · Osnove elektrotehnike · 9. Naponsko i strujno djelilo, mosni spoj

Primjer

• U spoju prema slici voltmetar pokazuje $\,U_{\rm V} = 5\,\,{
m V}\,$ označenog polariteta. Odredite napon izvora $\,U_{\rm c}$

Rješenje: U = 75 V

Primjer

• Odredite radnu snagu P koja se razvija u mreži prema slici. Zadano $\dot{U}=50~\mathrm{V}.$

Rješenje: P = 56 W