Matemática 1 Lista de Exercícios da Semana 5

Temas abordados: Derivadas e suas regras básicas

Seções do livro: 2.1; 2.2; 2.3

- 1) Um projétil é lançado verticalmente para cima e t > 0 segundo após o lançamento está a s metros do solo, onde $s(t) = 256t 16t^2$. Calcule
 - (a) a velocidade do projétil t segundos após o lançamento;
 - (b) o tempo necessário que a altura máxima seja atingida;
 - (c) a altura máxima atingida pelo projétil.
- 2) Uma partícula de move sobre uma linha reta de acordo com a equação $s = \sqrt{t}$, sendo s a distância (em metros) da partícula ao seu ponto de partida, t > 0 segundo após a partida.
 - (a) Calcule a velocidade média da partícula entre os instantes t = 9 e t = 16;
 - (b) Calcule a velocidade instantânea da partícula quando t = 9.
- 3) No instante t>0 horas um veículo está $(16\sqrt{t^3}-24t+16)$ quilômetros à leste de um ponto de referência na estrada.
 - (a) Qual a velocidade no instante t = 1/4? Nesse instante o veículo está se afastando ou aproximando do ponto de referência?
 - (b) Onde está o veículo quanto a velocidade é zero?
- 4) Calcule a taxa de variação do volume de um balão esférico em relação ao seu raio, quando o raio do balão for igual a 5 cm.
- 5) Suponha que um reservatório, inicialmente com 50 litros de água pura, comece a ser abastecido com água salgada à razão de 5 litros/min e com uma concentração de 1 grama/litro de sal. Nesse caso, o volume de água V(t) e a quantidade de sal Q(t) no reservatório são funções do tempo $t \geq 0$, e portanto a concentração de sal c(t) no reservatório é também uma função do tempo.
 - (a) Obtenha as expressões das funções V(t), Q(t) e c(t).
 - (b) Calcule a taxa de variação da concentração.
 - (c) Usando o item anterior, decida em qual dos instantes $t_0 = 10$ ou $t_1 = 30$ a concentração está variando mais rapidamente.

- 6) A partir de uma cartolina medindo 10×16 vamos construir uma caixa sem tampa como segue: recortamos quadrados de lado x em cada um dos vértices da cartolina e dobramos as abas. Nessas condições, resolva os itens a seguir.
 - (a) Encontre a expressão e o domínio da função V(x) que fornece o volume da caixa em função de x.
 - (b) Determine os intervalos onde V é crescente e decrescente.
 - (c) Determine o valor de $x \in \text{dom}(V)$ que fornece o volume máximo.
- 7) Para cada uma das funções abaixo, determine os pontos onde a derivada se anula. Em seguida, estude o sinal da derivada em cada um dos intervalos determinados por essas raízes para descobrir os intervalos onde f é crescente e aqueles onde ela é decrescente.

(a)
$$f(x) = x^3 - 12x - 5$$

(b)
$$f(x) = 2x^3 + 3x^2 - 12x + 4$$

(c)
$$f(x) = \frac{x}{2x^2 + 8}$$

(d)
$$f(x) = x + \frac{3}{x^2}, x \neq 0$$

- 8) Suponha que, na produção de uma lata de refrigerante, o custo do material da lateral e do fundo é de uma unidade monetária por centímetro quadrado, mas para o material da tampa esse custo é de 98/27 unidades monetárias por centímetro quadrado. Suponha ainda que a lata seja cilíndrica de raio r cm e altura h cm, conforme ilustra a figura abaixo, e que o volume seja constante e igual a $5^3 \pi$ cm³. A máquina que fabrica as latas é capaz de fazer latas com raio da base r entre 1 e 6 cm.
 - (a) Obtenha a expressão da altura h em função do raio r e do volume da lata.
 - (b) Obtenha a área lateral L(r) da lata em função do raio r.
 - (c) Obtenha o custo de produção C(r) de uma lata de raio r.
 - (d) Calcule o raio r_0 que minimiza o custo de produção.

RESPOSTAS

- 1) (a) v(t) = 256 32t
 - (b) 8 segundos
 - (c) 1024 metros
- **2)** (a) 1/7 m/s
 - (b) Como $v(t) = (\sqrt{t})' = 1/(2\sqrt{t})$, temos que a velocidade em t = 9 é igual a 1/6 m/s.
- 3) (a) Se aproximando a 12 km/h
 - (b) 8 km a leste do ponto de referência
- **4)** 100π
- **5)** (a) V(t) = 50 + 5t, Q(t) = 5t, c(t) = t/(10 + t)
 - (b) $c'(t) = 10/(10+t)^2$
 - (c) no instante $t_0 = 10$
- **6)** (a) V(x) = x(10-2x)(16-2x) para $x \in (0,5)$
 - (b) V é crescente em (0,2) e decrescente em (2,5)
 - (c) O valor máximo ocorre quando x = 2 e vale V(2) = 144
- 7) (a) raízes da derivada: x = -2 e x = 2 crescente em cada um dos intervalos seguintes: $(-\infty, -2)$; $(2, +\infty)$ decrescente em (-2, 2)
 - (b) raízes da derivada: x = -2 e x = 1 crescente em cada um dos intervalos seguintes: $(-\infty, -2)$; $(1, +\infty)$ decrescente em (-2, 1)
 - (c) raízes da derivada: x = -2 e x = 2 crescente em (-2, 2) decrescente em cada um dos intervalos seguintes: $(-\infty, -2)$; $(2, +\infty)$
 - (d) raízes da derivada: $x = \sqrt[3]{6}$ crescente em cada um dos intervalos seguintes: $(-\infty, 0)$; $(\sqrt[3]{6}, +\infty)$ decrescente em $(0, \sqrt[3]{6})$

Neste item, quando for considerar os subintervalos determinados pela raiz da derivada, é necessário considerar também o ponto x = 0

- 8) (a) O volume V da lata é dado pela área da base πr^2 vezes a altura h, isto é, $V = \pi r^2 h$. Usando que $V = 5^3 \pi$ e isolando h na igualdade anterior, obtém-se $h = h(r) = 5^3/r^2$.
 - (b) Substituindo h=h(r) na expressão da área lateral $L=2\,\pi\,r\,h,$ obtém-se $L(r)=2\,\pi\,5^3/r.$
 - (c) A soma das áreas lateral e do fundo é igual a $L(r) + \pi r^2$, enquanto que a área da tampa é πr^2 . Considerando o custo destes materiais e a expressão de L(r), segue-se que C(r) é dada por

$$C(r) = 2\pi \frac{5^3}{r} + \pi r^2 + \frac{98}{27}\pi r^2 = \pi \left(2\frac{5^3}{r} + \left(\frac{98}{27} + 1\right)r^2\right) = 125\pi \left(\frac{2}{r} + \frac{r^2}{27}\right).$$

(d) Temos que

$$C'(r) = 125\pi \left(-\frac{2}{r^2} + \frac{2r}{27}\right) = 250\pi \left(-\frac{1}{r^2} + \frac{r}{27}\right)$$

e portanto para que a derivada se anule devemos ter

$$-\frac{1}{r^2} + \frac{r}{27} = 0 \iff \frac{r}{27} = \frac{1}{r^2} \iff r^3 = 27.$$

Como r>0, segue que r=3 é a única raiz da derivada. Esta raiz determina os intervalos abertos (1,3) e (3,6), uma vez que o raio só pode variar no intervalo [1,6]. Calculamos agora $C'(1)=250\pi(-1+\frac{1}{27})<0$ e $C'(5)=250\pi(-\frac{1}{25}+\frac{5}{27})>0$ para construir a tabela abaixo

	$r \in (1,3)$	$r \in (3,6)$
sinal da derivada C'	negativo	positivo
comportamento de C	decrescente	crescente

Segue da tabela que o ponto r=3 é aquele onde temos o menor custo.