Revenimento Paralelo Aplicado ao Problema de Minimização de Pilhas Abertas

Mauro Lúcio Afonso Paulino dos Santos Filho

Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal de Ouro Preto

4 de abril de 2025

Sumário

- Introdução
- 2 Problema
- Método
- 4 Conclusão e Próximas Atividades

Contexto

- Ambiente industrial;
- Armazenagem e manuseio;
- Otimização.

Definição

Padrão: esquema de corte;

Peça: unidade produzida a partir do corte;

Pilhas: agrupamento temporário de peças.

MOSP

Objetivo

Sequenciar os padrões de corte de forma a minimizar o número máximo de pilhas abertas simultaneamente.

5/21

Matriz de Incidência

Tabela: Matriz de incidência (A).

Peça/Padrão	P_{a_1}	P_{a_2}	P_{a_3}	P_{a_4}	P_{a_5}	P_{a_6}
P_{e_1}	1	0	1	1	0	0
P_{e_2}	1	0	0	1	1	0
P_{e_3}	0	1	1	1	1	1
P_{e_4}	0	1	0	0	0	1
P_{e_5}	0	0	0	0	0	1
P_{e_6}	0	1	0	0	1	0

Matriz de Pilhas Abertas 1

Exemplo de solução

$$\pi_1 = [P_{a_1}, P_{a_2}, P_{a_3}, P_{a_4}, P_{a_5}, P_{a_6}]$$

Tabela: Matriz de pilhas abertas (B^{π_1}) .

Pilha/Estágio	1	2	3	4	5	6
P_{e_1}	1	1	1	1	0	0
P_{e_2}	1	1	1	1	1	0
P_{e_3}	0	1	1	1	1	1
P_{e_4}	0	1	1	1	1	1
P_{e_5}	0	0	1	1	1	1
P_{e_6}	0	1	1	1	1	0

Matriz de Pilhas Abertas 2

Exemplo de solução

$$\pi_2 = [P_{a_1}, P_{a_4}, P_{a_3}, P_{a_5}, P_{a_2}, P_{a_6}]$$

Tabela: Matriz de pilhas abertas (B^{π_2}) .

Pilha/Estágio	1	2	3	4	5	6
P_{e_1}	1	1	1	0	0	0
P_{e_2}	1	1	1	1	0	0
P_{e_3}	0	1	1	1	1	1
P_{e_4}	0	0	0	0	1	1
P_{e_5}	0	0	0	0	0	1
P_{e_6}	0	0	0	1	1	0

Linha do Tempo MOSP

Estado da Arte

Artigo

Frinhani, Carvalho e Soma (2018)

Principais Contribuições

- PageRank e grafo MOSP;
- Instâncias significativamente maiores (cerca de 5 vezes maiores que as anteriores), ampliando o escopo dos testes;
- O método superou heurísticas clássicas em termos de qualidade das soluções e tempo de execução.

Justificativa MOSP

Prática

O MOSP é crucial para a indústria, pois otimiza o uso do espaço e melhora o fluxo produtivo.

Teórica

Sendo um problema NP-difícil (YANASSE, 1997), encontrar soluções exatas para instâncias de grande porte é inviável.

Justificativa PT

O PT permite explorar amplamente o espaço de soluções;

Sua implementação paralela possui bons resultados preliminares, mostrando que o método alcança soluções ótimas ou próximas do ótimo.

PT

- Física estatística e amostragem de distribuições complexas;
- Réplicas com temperaturas diferentes;
- Cadeias de Markov, Monte Carlo (MCMC) e trocas de temperatura.

Propostas de Troca de Temperatura

Figura: Almeida, de Castro Lima e Carvalho (2025)

Fundamentação do PT

- MCMC;
- Algoritmo de Metropolis;
- Distribuição de Boltzmann;
- Algoritmo de Metropolis-Hastings.

Linha do Tempo PT

Próximas Atividades

Atividades Futuras

- Implementação completa do PT aplicado ao MOSP
 - Codificação e decodificação;
 - Solução inicial e soluções vizinhas;
 - Função de avaliação;
 - Critério de parada;
 - Temperaturas inicial e final;
 - Número de réplicas e tamanho cadeia de Markov;
 - Número de tentativa de trocas entre réplicas;
 - Distribuição inicial das temperaturas;
 - Método atualização automática das temperaturas;
 - Taxa de ajuste das temperaturas.

Próximas Atividades

Atividades Futuras

- Calibração dos parâmetros e realização de experimentos computacionais;
- Comparação dos resultados com métodos tradicionais (Yuen3, BRKGA, etc.) e com o estado da arte.

Conclusão

Conclusão

- O MOSP é um problema crítico para a eficiência industrial, impactando o uso do espaço e os custos operacionais;
- ▶ O PT se mostra uma abordagem promissora para a resolução de problemas NP-difíceis, oferecendo soluções de alta qualidade em tempo compatível com a prática industrial.

Fim

Referências

ALMEIDA, A. L. B.; de Castro Lima, J.; CARVALHO, M. A. M. Revisiting the parallel tempering algorithm: High-performance computing and applications in operations research. *Computers & Operations Research*, v. 178, p. 107000, 2025. ISSN 0305-0548. Disponível em: https://www.sciencedirect.com/science/article/pii/S0305054825000280.

FRINHANI, R. d. M. D.; CARVALHO, M. A. M.; SOMA, N. Y. A pagerank-based heuristic for the minimization of open stacks problem. *Plos one*, Public Library of Science San Francisco, CA USA, v. 13, n. 8, p. e0203076, 2018.

YANASSE, H. H. On a pattern sequencing problem to minimize the maximum number of open stacks. *European Journal of Operational Research*, Elsevier, v. 100, n. 3, p. 454–463, 1997.