Corriente alterna. Operaciones con funciones senoidales.

1.- Fase

Es el instante, posición o estado en el que estamos analizando el fenómeno.

2.- Origen de tiempos y ángulo de fase inicial

El punto de abscisa cero de la onda coincide con el instante en que se establece la corriente en el circuito. Se considera **tiempo cero**.

El ángulo ψ se denomina ángulo de fase inicial para (t = 0) en la ecuación $\sin(\propto t + \psi)$ y se mide en el eje de tiempo α .

Si la medición se hace hacia la derecha el ángulo es un número positivo y si se hace hacia la izquierda es negativo.

El ángulo ψ de fase inicial se define como la fracción de periodo que ha transcurrido a partir de un origen.

3.- Angulo de fase

Es el ángulo que existen entre dos magnitudes periódicas simples.

En todo diagrama vectorial debemos referir una magnitud con respecto a otra o con respecto a un eje de referencia.

Adoptamos sentido de giro positivo el contrario al de las aguas de reloj.

4.- Números complejos

Números imaginarios: Es la raíz cuadrada de un número real negativo: $\sqrt{-4}$

Si hacemos $j=\sqrt{-1}$, tenemos la unidad imaginaria, también llamado operador j. De esta forma: $\sqrt{-4}=j\sqrt{4}$

Números complejos: $\underset{A}{\rightarrow}$ es a+jb, en donde **a** y **b** son números reales y j es la unidad imaginaria. Al número real **a** se le llama componente real y se dibuja sobre el eje de abscisas. A la parte j**b** es la componente imaginaria y se dibuja en la ordenadas.

A la longitud del número complejo $\underset{A}{\rightarrow}$ se le llama módulo y al ángulo,

argumento.

5.- Diversas formas de expresar un número complejo

El número complejo \xrightarrow{A} se expresa:

$$\underset{A}{\rightarrow} = a + jb = r(\cos \varphi + j \sin \varphi)$$

El módulo r y el argumento φ valen:

Módulo r =
$$\sqrt{a^2 + b^2}$$

Argumento = $tan^{-1} b/a$

La forma Binómica se usa para sumar o restar: $\underset{A}{\rightarrow} = a + jb$

La forma Polar se usa para multiplicar o dividir: $\underset{A}{\rightarrow} = r \varphi$

7.- Operaciones con números complejos

Suma y resta: Se suman sus partes reales y sus partes imaginarias independientemente. Se efectúa en forma binómica.

Multiplicación: Para multiplicar dos números complejos, $\xrightarrow{A} \xrightarrow{B}$, los expresamos en forma polar, su módulo es el producto de los módulos y su argumento es la suma de los argumentos.

División: Para dividir dos números complejos, $\underset{A}{\rightarrow} : \underset{B}{\rightarrow}$, los expresamos en forma polar. El cociente, es otro número complejo cuyo módulo es el cociente de los módulos y su argumento es la resta de los argumentos.