

METU PowerLab Seminar Series

Motor Drive Strategies
'The Others'

İlker Şahin 29.01.2020

Presentation Plan

Motivation & Scope

Some Quick Remarks

Inverter Model & Induction Machine Model

Direct Torque Control

Model Predictive Control

An Overview on Motor Drive Research

Some Quick Remarks

Voltage Source Inverter – Current Source Inverter

'Current Controlled' – 'Voltage Controlled'

The vast majority: Current Controlled Voltage Source Inverter

We provide 'Volt-seconds' to the grid/machine that the VSI is connected to. We measure **currents**.

Question #1

Propose a 'Voltage Controlled – Voltage Source Inverter' control scheme.

What is wrong / disturbing about it?

Rotating Vectors

Source: https://www.switchcraft.org/

An Off-Topic Example

Ref: Advanced and Intelligent Control in Power Electronics and Drives

Question #2

Suppose that you want an inverter to be connected to a grid. But you do not want it to send or receive any power, i.e. Iabc=0.

What are the voltage references that you should feed into your modulators?

$$Vabc = 0$$
?

Question #3

d-q quantities are DC quantities.

DC quantities are especially suitable for our standart control schemes.

Why?

An Off-Topic Example

Comparison: FOC of PMSM vs Control of Grid Connected VSI

FOC of PMSM

Grid Connected VSI

D-axis → magnetic field

D-axis → Voltage Vector

Q-axis → Back EMF

Q-axis \rightarrow 90° away

D-axis current: Interacts with field

D-axis current: current in phase with $V \rightarrow P$

Q-axis current: Produces pure $P \rightarrow Torque$

Q-axis current: current with $90^{\circ} \rightarrow Q$

Control: Id=0, Iq=As much torque needed

Control: Iq=0, Id=As much power available

Question #4

CASE: A near-ideal Induction Machine is driven via FOC.

At rated speed & no-load (Load Torque = 0), it draws P=20 W, Q=600 VAR

At rated speed & full-load (Load Torque = 1 p.u.), it draws P=800 W, Q=900 VAR

- a) It's normal, because...
- **b**) You have a problem, because...

Inverter Model

$oldsymbol{v}_n$	$s = [s_a s_b s_c]$	$\boldsymbol{v} = v_{\alpha} + j v_{\beta}$
$oldsymbol{v}_0$	0 0 0	0
$oldsymbol{v}_1$	100	$2/3V_{dc}$
$oldsymbol{v}_2$	1 1 0	$1/3V_{dc} + j\sqrt{3}/3V_{dc}$
$oldsymbol{v}_3$	0 1 0	$-1/3V_{dc} + j\sqrt{3}/3V_{dc}$
\boldsymbol{v}_4	0 1 1	$-2/3V_{dc}$
$oldsymbol{v}_5$	0 0 1	$-1/3V_{dc} - j\sqrt{3}/3V_{dc}$
$oldsymbol{v}_6$	101	$1/3V_{dc} - j\sqrt{3}/3V_{dc}$
$oldsymbol{v}_7$	111	0

Induction Machine Model

$$V_{s} = R_{s}I_{s} + \frac{d\Psi_{s}}{dt}$$

$$0 = R_{r}I_{r} + \frac{d\Psi_{r}}{dt} - jw_{e}\Psi_{r}$$

$$\Psi_{s} = L_{s}I_{s} + L_{m}I_{r}$$

$$\Psi_{r} = L_{m}I_{s} + L_{r}I_{r}$$

Question #5

In both DTC and MPC, we do not employ Park's transform.

No d-q quantities, hence control variables are not represented in DC.

How?

Invention: mid-80s

Two variants: Takahashi – Depenbrock

Currently championed by ABB

No current control loop (!?)

No PWM modulation (!?)

ADVANTAGES

Faster Dynamics

Simple and Robust Structure

No dependence on rotor dynamics

DISADVANTAGES

Variable swithcing frequency

Performance is estimator dependent

Higher ripple

 $\overline{V}_{6}(101)$

 $\overline{V}_{5}(001)$

Ref: Modern Power Electronics and AC Drives by B. Bose

Н _ψ	H _{Te}	S(1)	S(2)	S(3)	S(4)	S(5)	S(6)
1	1	V ₂	V ₃	V ₄	V ₅	V ₆	V ₁
	0	V ₀	V ₇	V ₀	V ₇	V ₀	V ₇
	-1	V ₆	V ₁	V ₂	V ₃	V ₄	V ₅
-1	1	V ₃	V ₄	V ₅	V ₆	V ₁	V ₂
	0	V ₇	V ₀	V ₇	V ₀	V ₇	V ₀
	-1	V ₅	V ₆	V ₁	V ₂	V ₃	V ₄

Model Predictive Control

Invention: 60s, for power electronics: 2000 and on...

'Model' based

A promising alternative for the industry-standard FOC and DTC

Many varieties, our focus is on 'Finite Control-Set Model Predictive Control' (FCS-MPC)

ADVANTAGES

Faster dynamics

Simple and intuitive

Flexible

Good fit for nonlinearities

DISADVANTAGES

Computationally expensive

Performance is model dependent

Variable frequency

New (in power electronics)

Model Predictive Control

if I do this and that?

Model Predictive Control - Estimation

$$V_{s} = R_{s}I_{s} + \frac{d\Psi_{s}}{dt}$$

$$0 = R_{s}I_{r} + \frac{d\Psi_{r}}{dt} - jw_{e}\Psi_{r}$$

$$\Psi_{s} = L_{s}I_{s} + L_{m}I_{r}$$

$$\Psi_{r} = L_{m}I_{s} + L_{r}I_{r}$$

$$\frac{d\Psi_r}{dt} = R_r \frac{L_m}{L_r} I_s - \left(\frac{R_r}{L_r} - jw_e\right) \Psi_r$$

$$\Psi_s = \frac{L_m}{L_m} \Psi_r + \sigma L_s I_s$$

'The Current Model'

Discretized:

$$\Psi_r(k) = \Psi_r(k-1) + \Delta t \cdot \left(R_r \frac{L_m}{L_r} I_s(k) - \left(\frac{R_r}{L_r} - j w_e(k) \right) \Psi_r(k-1) \right)$$

$$\Psi_s(k) = \frac{L_m}{L_r} \Psi_r(k) + \sigma L_s I_s(k)$$

Model Predictive Control – Prediction

The superscript 'p' indicates predicted variables.

$$\Psi_s^p(k+1) = \Psi_s(k) + \Delta t \cdot V_i(k) - \Delta t R_s I_s(k)$$

$$I_s^p(k+1) = \left(1 + \frac{\Delta t}{\tau_\sigma}\right)I_s(k) + \frac{\Delta t}{\Delta t + \tau_\sigma} \frac{1}{R_\sigma} \left(\left(\frac{k_r}{\tau_r} - k_r j\omega_e(k)\right) \Psi_r(k) + V_i(k)\right)$$

$$T_e^p(k+1) = 1.5p\Im\{\Psi_s^{p*}(k+1)I_s^p(k+1)\}$$

Model Predictive Control – Optimization

The Cost Function:

$$g = |T_e^{ref}(k) - T_e^p(k+1)| + \lambda ||\Psi_s|^{ref} - |\Psi_s^p(k+1)||$$

These can also be added:

Switching loss penalty

Capacitor voltage balance

Common mode voltage

Model Predictive Control – Flowchart

A Comparison

Table 1.1: Comparison among FOC, DTC and PTC

Index	FOC	DTC	PTC
Structural complexity	higher	lower	lower
Axis transformation	yes no		no
Modulator	yes	no	no
Parameter sensitivity	higher	lower	higher
Position sensor	yes no		no
Switching frequency	fixed	variable	variable
Inclusion of system nonlinearity	hard	hard	easy
Dynamic response	slower	faster	faster
Torque and flux ripple	lower	higher	lower
Current THD	lower	higher	higher
Computational complexity	lower	lower	higher
Weighting factor	no	no	yes

- Reduced set
- Dynamic lambda
- Extra vectors and duty cycle feedforward
- High performance observers (for fluxes, machine parameters, etc...)

Predictions are made for each voltage vector.

Problem: Computational Cost

Propose solution(s)

$$g = |T_e^{ref}(k) - T_e^p(k+1)| + \lambda ||\Psi_s|^{ref} - |\Psi_s^p(k+1)||$$

How to tune 'Lambda'?

Should 'Lambda' be fixed?

Is it 'one size fits all'?

Situation for MPC: v1 - v2 - v1 - v0 - v2 - v3 - v0 -

Result: Higher ripple vs FOC

Propose methods to change this.

Method #1

- Pre-calculate 'duty cycle'
 - Say, d=0.8

•
$$v1 \rightarrow v1(80\%) + v0(20\%)$$

•
$$v2 \rightarrow v2(80\%) + v0(20\%)$$

Method #2

An Overview on Motor Drive Research

- Sensorless Operation
- Drive strategies and their variations for machine types, application types...
- Upgrades for weaknesses (Fixed switching DTC, low ripple MPC, etc...)
- High performance observers (for fluxes, machine parameters, etc...)

The End

Questions?

