

S3D: Sketch-Driven 3D Model Generation

lail Song¹* Wonsik Shin²* Naeun Lee² Soomin Chung² Nojun Kwak²† Woontack Woo¹†
¹KAIST ²Seoul National University *Equal contribution.

Introduction

Input Sketch Image

Generated face images with novel views

Motivation: From 2D sketch to 3D model

- Challenge: Traditional 3D generation requires multi-view images or complex setups
- **Problem**: Sketches are highly abstract and sparse no existing method can generate 3D human faces from sketches
- Opportunity: Sketches are the most accessible visual input for users

Why Sketches Matter?

- Accessibility: Everyone can draw simple sketches!
- Applications: Forensic reconstruction, Avatar creation, Rapid prototyping of 3D contents

Key Contributions

- First end-to-end sketch-to-3D human face generation pipeline
- Novel Style Vector Loss bridging sketch-3D domain gap
- Potential real-world impact in forensics, film, gaming, and virtual reality

Method

S3D: Two-Stage Pipeline

- 1. Sketch-to-Mask Module
- **U-Net architecture** converts 512×512 sketches to segmentation masks
- 7 encoder-decoder pairs with bottleneck matching 3D module dimensions (7x512)

2. Mask-to-3D Module

- Tri-plane-based network (pix2pix3D) generates 3D models from masks
- Novel view synthesis with volumetric rendering

U-Net we

Learning Objective

$$L_{total} = L_{SV} + L_{CE} + L_{Dice}$$
Style Vector loss Segmentation loss

- $L_{SV} = \|w^+ w^E\|_2^2$
 - Aligning U-Net bottleneck features (w^E) with 3D module's style vectors (w^+) to bridge domain gap
- Cross-entropy (L_{CE}) for pixel-wise accuracy + Dice (L_{Dice}) for shape consistency

Datasets

- Human: Multi-Modal-CelebA-HQ dataset (sketches generated via Photocopy filter + sketch simplification)
- Cat: AFHQ with sketches extracted using PidiNet edge detection

Experimental Results

Quantitative Results

Dataset	Method	FID↓	KID↓	FVV ↓
CelebA	pix2pix3D	232.81	0.3142	0.20
	S3D (Ours)	21.71	0.0065	0.18
AFHQ	pix2pix3D	27.36	0.0054	_
	pix2pix3D S3D (Ours)	23.86	0.0047	

Augmentation Strategy

25% dilation, 25% erosion

Ablation Study

t-SNE visualization of style embeddings

Quantitative results

Dataset	Method	mIoU ↑	mAP↑
CelebA	w/o L_{SV}	0.692	0.793
	$_{ m W}/$ L_{SV}	0.698	0.823
AFHQ	w/o L_{SV}	0.804	0.884
	w/ L_{SV}	0.807	0.890
		_	