

Features

- Split Gate Trench MOSFET tech nology
- Excellent package for heat dissipation
- High density cell design for low RDS(ON)

Product Summary

BVDSS	RDSON	ID
100V	3.4 mΩ	150A

Applications

- DC-DC Converters
- Power management functions
- Synchronous-rectification applications

TO&* ' Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units	
V _{DS}	Drain-Source Voltage	100	V	
V _G S	Gate-Source Voltage	±20	V	
I _D @T _C =25°C	Continuous Drain Current, V _{GS} @ 10V ^{1,6}	150	Α	
I _D @T _C =100°C	Continuous Drain Current, V _{GS} @ 10V ^{1,6}	96	Α	
I _{DM}	Pulsed Drain Current ²	619	Α	
EAS	Single Pulse Avalanche Energy ³	726	mJ	
las	Avalanche Current	150	Α	
P _D @T _C =25°C	Total Power Dissipation ⁴	312	W	
T _{STG}	Storage Temperature Range	-55 to 150	°C	
TJ	Operating Junction Temperature Range	-55 to 150	°C	

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
Reja	Thermal Resistance Junction-Ambient ¹		55	°C/W
R _θ JC	Thermal Resistance Junction-Case ¹		0.6	°C/W

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	100			V
$\triangle BV_{DSS}/\triangle T_{J}$	BV _{DSS} Temperature Coefficient	Reference to 25°C , I _D =1mA				V/°C
В	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =20A		3.4	4	mΩ
R _{DS(ON)}		V_{GS} =4.5V , I_D =10A				
V _{GS(th)}	Gate Threshold Voltage	\\ -\\ -250\	2.0	3.0	4.0	V
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	$V_{GS}=V_{DS}$, $I_D=250uA$				mV/°C
	Dunin Course Looke to Course	V _{DS} =80V , V _{GS} =0V , T _J =25°C			1	
I _{DSS}	Drain-Source Leakage Current	V _{DS} =80V, V _{GS} =0V , T _J =55°C			5	uA
I _{GSS}	Gate-Source Leakage Current	$V_{GS} = \pm 20V$, $V_{DS} = 0V$			±100	nA
gfs	Forward Transconductance	V _{DS} =5V , I _D =20A		50		S
R _g	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		1.9		Ω
Qg	Total Gate Charge			84		
Q _{gs}	Gate-Source Charge	V _{DS} =50V , V _{GS} =10V , I _D =20A		24		nC
Q _{gd}	Gate-Drain Charge			27		
T _{d(on)}	Turn-On Delay Time			21		
Tr	Rise Time	V_{DD} =50V , V_{GS} =10V , R_{G} =2.5 Ω , I_{D} =10A		35		
T _{d(off)}	Turn-Off Delay Time			49		ns
T _f	Fall Time			30		
C _{iss}	Input Capacitance	V _{DS} =50V , V _{GS} =0V , f=1MHz		4797		
Coss	Output Capacitance			900		pF
C _{rss}	Reverse Transfer Capacitance			19.1		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
le	Continuous Source Current ^{1,5}	V _G =V _D =0V , Force Current			150	Α
V _{SD}	Diode Forward Voltage²	V _{GS} =0V , I _S =1A , T _J =25°C			1.2	V

Note:

^{1.}The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.

^{2.}The data tested by pulsed , pulse width $\leq 300 \text{us}$, duty cycle $\leq 2\%$

^{3.}The EAS data shows Max. rating . The test condition is TJ = 25°C, L = 3mH, IAS = 22A, VGS = 10V, VDD = 50V; 100% test at L = 0.3mH, IAS = 45A.

^{4.}The power dissipation is limited by 150°C junction temperature

^{5.}The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

Typical Electrical & Thermal Characteristics

Figure 1: Saturation Characteristics

Figure 2: Transfer Characteristics

Figure 3: R_{DS(ON)} vs. Drain Current

Figure 4: $R_{DS(ON)}$ vs. Junction Temperature

Figure 5: $V_{GS(th)}$ vs. Junction Temperature

Figure 6: $V_{BR(DSS)}$ vs. Junction Temperature

Typical Electrical & Thermal Characteristics

Figure 8: Capacitance Characteristics

Figure 9: Current De-rating

Figure 10: Power De-rating

Figure 11: Maximum Safe Operating Area

Figure 12: Single Pulse Power Rating, Junction-to-Case

Typical Electrical & Thermal Characteristics

Figure 13: Normalized Maximum Transient Thermal Impedance

Test Circuit and Waveform:

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching Test Circuit & Waveforms

Mechanical Dimensions for TO-263

COMMON DIMENSIONS

	MM			
SYMBOL	MIN	MAX		
Α	4.37	4.89		
A1	1.17	1.42		
A2	2.20	2.90		
A3	0.00	0.25		
b	0.70	0.96		
b1	1.17	1.47		
С	0.28	0.60		
D1	8.45	9.30		
D4	6.60	-		
E	9.80	10.40		
E5	7.06	-		
е	2.54BSC			
Н	14.70	15.70		
H2	1.07	1.47		
L	2.00	2.80		
L1	-	1.75		
L4	0.254BSC			
θ	0°	9°		