1. 프로젝트 개요 및 목적

본 프로젝트는 다양한 통계적 머신러닝 모형을 이용해 의류 산업의 생산력을 예측하고자 한다. 이를 위해 먼저 자료의 특성을 파악하고, 결측치 대체와 같은 데이터 전처리를 거쳐 분석하기 용이한 형태로 변경해주었다. 각 모형에 데이터를 적합해 학습시켰으며, 이후 실제 산업현장과 실무에 배치(deployment)하기 위한 모형의 자동화를 진행했다.

본 프로젝트의 목적은 머신러닝 모형 중 특히 정형 데이터의 자료분석에서 뛰어난 성능을 보여주는 gradient boosting 계열 모형인 CatBoost, XGBoost, 그리고 LightGBM의 분석과정을 보여주는 것이다. 세 모형의 결과를 비교분석해 최종적으로 가장 성능이 높은 모델에 대해서는 모형의 자동화를 이뤄냈다.

2. 데이터셋 소개

본 프로젝트에서 사용되는 데이터셋은 의류 산업의 생산력 데이터셋이다. 출처는 UCI Machine Learning Repository 이며 수동으로 수집된다음. 업계 전문가에 의해서 검증된 데이터셋이다.

현대 시대의 주요 산업 중 하나인 의류 산업은 수작업을 많이 요구하는 노동집약적인 산업이다. 의류 제품에 대한 수요를 충족시키는 것은 대부분 의류 제조 회사 직원들의 생산 및 배송 성과에 달려있다. 이 때문에 의류 산업의 의사결정권자들 사이에서는 공장에서 일하는 팀의 생산력 성과를 추적, 분석 및 예측하는 것이 매우 중요하다. 이 데이터셋은 13개의 특성변수를 이용해 의류 산업 내 생산력(actual_productivity)를 예측할 수 있도록 구성된 자료이다.

각 변수는 다음과 같은 의미를 갖는다:

1. quarter: 분기 2. department: 부서

3. day: 요일

4. team: 소속된 팀 번호

5. targeted productivity: 매일 팀별로 설정한 목표 생산력 (0-1 사이 값)

6. smv: 각 작업에 할당된 시간 (분) 7. wip: 작업이 완료되지 않은 항목의 수 8. over_time: 팀별 초과 근무 시간 (분) 9. incentive: 재정적 인센티브 (BDT)

9. incentive: 재정적 인센티브 (BDT) 10. idle_time: 생산이 중단된 시간 11. idle men: 생산이 중단된 근로자 수

12. no_of_style_change: 특정 제품의 스타일 변경 횟수

13. no of workers: 각 팀의 근로자 수

14. actual productivity: 실제 생산력 (목적변수)

3. 데이터 EDA

EDA(exploratory data analysis) 과정은 주어진 데이터셋의 특성을 파악하기 위한 절차이다. 아래 프로그램으로 데이터셋의 첫 5개의 데이터를 살펴보았다.

import pandas as pd

df_prod = pd.read_csv('garments_worker_productivity.csv', engine='python')
df_prod.head()

	quarter	department	day	team	targeted_productivity	smv	wip	over_time	incentive	idle_time	idle_men	no_of_style_change	no_of_workers	actı
0	Quarter1	sweing	Thursday	8	0.80	26.16	1108.0	7080.0	98	0.0	0	0	59.0	
1	Quarter1	finishing	Thursday	1	0.75	3.94	NaN	960.0	0	0.0	0	0	8.0	
2	Quarter1	sweing	Thursday	11	0.80	11.41	968.0	3660.0	50	0.0	0	0	30.5	
3	Quarter1	sweing	Thursday	12	0.80	11.41	968.0	3660.0	50	0.0	0	0	30.5	
4	Quarter1	sweing	Thursday	6	0.80	25.90	1170.0	1920.0	50	0.0	0	0	56.0	

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1197 entries, 0 to 1196
Data columns (total 14 columns):
    Column
                            Non-Null Count Dtype
0
    quarter
                            1197 non-null
                                             object
     department
                            1197 non-null
                                             object
                            1197 non-null
                                             object
    day
                            1197 non-null
    team
                                             int64
    targeted_productivity 1194 non-null
                                             float64
                            1196 non-null
                                             float64
6
                            691 non-null
                                             float64
    over time
                            1196 non-null
                                            float64
                            1197 non-null
    incentive
                                             int64
    idle time
                            1197 non-null
                                             float64
10 idle men
                            1197 non-null
                                             int64
11 no_of_style_change
                            1197 non-null
                                             int64
                            1193 non-null
                                             float64
12 no of workers
 13 actual_productivity
                            1197 non-null
dtypes: float64(7), int64(4), object(3)
memory usage: 131.0+ KB
```

위 출력으로부터 df_prod 데이터는 1,197개의 관측치와 13개의 특성변수, 1개의 목적변수(actual_productivity)으로 구성되어 있음을 알 수 있다. 또한, 특성변수 quarter, department과 day는 범주형(object)이고, team, incentive, idle_men과 no_of_style_change는 정수형(int64), 그리고 목적변수를 포함한 나머지 변수들은 실수형(float64)이다.

아래 프로그램에서 각 특성변수별 결측치의 합과 총 결측치의 수를 계산했다. 전체자료 중 targeted_productivity에서 3개, no_of_workers에서 4개, 그리고 smv와 over_time 각각에서 1개, wip에서는 506개의 결측치가 발생했음을 알 수 있다.

```
print(df prod.isna().sum())
print(df_prod.isna().sum().sum())
quarter
department
day
                            0
targeted productivity
                            3
smv
wip
over_time
incentive
idle time
idle men
no_of_style_change
no of workers
actual productivity
dtvpe: int64
```

wip 변수는 전체 1,197개의 관측치 중 약 40%에 해당하는 506개의 결측치가 있으므로 무의미하다고 판단해 제거해주었다. 결측치를 가진 나머지 변수들은 모두 실수값을 가지므로 -999로 결측치를 대체해주었다.

```
df_prod['targeted_productivity'] = df_prod['targeted_productivity'].fillna(-999)
df_prod['smv'] = df_prod['smv'].fillna(-999)
df_prod['over_time'] = df_prod['over_time'].fillna(-999)
df_prod['no_of_workers'] = df_prod['no_of_workers'].fillna(-999)
del df_prod['wip']
```

범주형 변수인 quarter, department과 day 변수들을 인코딩해준 다음, 목적변수인 actual_productivity와의 상관관계를 오름차순으로 나열한 결과이다. 가장 높은 상관관계를 보인 변수는 targeted_productivity로 0.422의 정적 관계를 갖는다. 모든 변수들간의 상관관계를 시각화한 결과, smv와 no_of_workers간의 0.91의 높은 상관관계가 나타나는 것을 볼 수 있다. 이는 각 작업을 수행하는 데에 할당된 시간이 근로자의 수와 높은 상관성을 갖는다는 의미이기도 하다. 추가적으로 department와 no_of_workers는 0.86, 그리고 department과 smv 사이에는 0.80의 높은 상관관계도 보인다.

목적변수인 actual_productivity 변수에 대한 분포를 시각화해본 결과, 대부분 0.8 부근에 포집되어 있음을 볼 수 있다.

4. 분석 모형 설정

Tabular 데이터의 자료분석에서 가장 뛰어난 성능을 보여주고 있는 분석기법은 XGBoost, LightGBM, 그리고 CatBoost이다. 3가지 모형은 모두 앙상블러닝의 일종으로 bagging과 boosting 중 boosting에 속한다. 대표적인 boosting은 Gradient Boosting이 있으며, 3개의 모형은 모두 Gradient Boosting의 개량형이라고 할 수 있다. Gradient Boosting을 기반으로 수렴속도와 성능을 대폭 개선할 수 있는 모형이기 때문에 본 프로젝트의 분석 모형으로 설정하였다. 전통적인 머신러닝 모형인 선형 회귀(Linear Regression)모형과 비선형 SVM(서포트벡터머신)을 이용해서도 분석을 진행했다. 또한, 본 프로젝트 데이터셋의 목적변수는 연속형 변수이기 때문에 분류보다는 회귀 모형으로 적합하기로 판단했다.

5. Pipeline 구성/모형 자동화

아래에서는 5개의 모형 (Linear Regression, SVM, CatBoost, XGBoost와 LightGBM)의 일련의 자료분석과정과 최종적인 모형 자동화를 위해 모델 pipeline을 구성하는 각 요소에 대해 더 심도있게 설명한다.

5.1 Linear Regression

LabelEncoder을 이용해 3개의 범주형 변수를 실수화해준 다음, 학습데이터와 시험데이터로 분할해주었다. 선형회귀모형에 적합한 결과, test RMSE값이 0.170으로 계산된 것을 알 수 있다.

```
from sklearn.linear model import LinearRegression
from sklearn.metrics import mean squared error as MSE
y_reg = df_prod.iloc[:, -1]
X_{reg} = df_{prod.iloc[:, :-1]}
le = LabelEncoder()
le.fit(X_reg.quarter.drop_duplicates())
X_reg.quarter = le.transform(X_reg.quarter)
le.fit(X reg.department.drop duplicates())
X reg.department = le.transform(X_reg.department)
le.fit(X reg.day.drop duplicates())
X reg.day = le.transform(X reg.day)
X_train, X_test, y_train, y_test = train_test_split(X_reg, y_reg, random_state=4)
model Ir = LinearRegression()
model_lr.fit(X_train, y_train)
pred train = model Ir.predict(X train)
pred_test = model_Ir.predict(X_test)
print("train_RMSE:", np.sqrt(MSE(y_train, pred_train)))
print("test RMSE:", np.sqrt(MSE(y test, pred test)))
train RMSE: 0.16269957218769693
test RMSE: 0.1700788633841052
```

5.2 SVM (Nonlinear)

5.1에서 실수화한 3개의 범주형 변수와 학습데이터와 시험데이터로 분할한 데이터에 대해 비선형 SVM (rbf 커널) 모형을 적합한 결과, RMSE이 0.172로 선형회귀모형(0.170)과 유사한 값을 보였다.

```
from sklearn.svm import SVR

svr = SVR(kernel='rbf', gamma='scale')
svr.fit(X_train,y_train)
y_pred_svr=svr.predict(X_test)
print("RMSE (rbf SVM):", np.sqrt(MSE(y_test, y_pred_svr)))

RMSE (rbf SVM): 0.1718551200153251
```

5.3 CatBoost

자료의 정제과정에서 결측치 처리는 모형에 관계없이 필수적이지만 자료의 수량화는 분석도구에 따라 필수적이거나 불필요한 경우가 있다. 이처럼 CatBoost 모형은 특성변수가 범주형인 경우에 one-hot encoding을 통한 범주형 자료의 수량화가 불필요하기에 수량화하는 과정은 이후 등장하는 XGBoost와 LightGBM 모형에 대해서만 적용해주었다.

먼저 CatBoostRegressor의 초모수 튜닝을 위해 맞춤형 함수를 정의하고, 모든 범주형 변수의 인덱스값을 cat_features에 지정해주었다.

```
kfold_c = KFold(n_splits=5, shuffle=True, random_state=2)

def grid_search_cat(params, reg=CatBoostRegressor(cat_features=[0,1,2])):
    grid_reg = GridSearchCV(reg, params, scoring='neg_mean_squared_error', cv=kfold_c)
    grid_reg.fit(X_cat, y_cat)
    best_params = grid_reg.best_params_
    print("Best params:", best_params)
    best_score = np.sqrt(-grid_reg.best_score_)
    print("Best score:", best_score)
```

위에서 정의한 grid_search_cat 함수를 이용해 초모수 튜닝을 적용했다.

이 과정을 반복한 결과, 최종적인 초모수 튜닝 결과는 아래와 같다.

최적 초모수로 튜닝된 CatBoost 모형을 자동화하기 위해, 앞에서 논의한 결측치 처리과정을 맞춤형 클래스로 정의해주었다. 이를 위해 내장되어 있는 TransformerMixin이라는 클래스를 부모클래스로 해 맞춤형 클래스를 아래와 같은 형식으로 구성할 수 있다.

```
class NullValueImputer(TransformerMixin):
    def __init__(self):
        None
    def fit(self, X, y=None):
        return self
    def transform(self, X, y=None):
        for column in X.columns.tolist():
            X[column] = X[column].fillna(-999.0)
        return X
```

NullValueImputer과 CatBoostRegressor을 pipeline으로 연결해 자동으로 실행될 수 있도록 한 프로그램이다. cat_pipeline으로 자동화된 모형을 데이터에 적용해 성능을 측정하기 위해 학습데이터와 시험데이터로 분류해 적용한 결과, 성능 측도 RMSE는 0.122로 계산된 것을 알 수 있다.

5.4 XGBoost

XGBoost나 LightGBM의 경우, 자동화하기 위해서는 범주형자료를 수량화해야 한다. 범주형 자료 (quarter, department, day)를 one-hot encoding하기 위해서 pipeline에서 OneHotEncoder 클래스를 정의해주었다. OneHotEncoder은 결과를 sparse 행렬인 1이 있는 위치만을 저장해주는 특징이 있다.

```
categorical_columns = df_prod.columns[df_prod.dtypes==object].tolist()

from sklearn.preprocessing import OneHotEncoder
ohe = OneHotEncoder()
hot = ohe.fit_transform(df_prod[categorical_columns])
hot_df = pd.DataFrame(hot.toarray())
```

기존 자료에서 범주형 변수가 아닌 특성변수는 표준형식이기에 hot_df의 형식인 csr(compressed sparse row) 형식과 이어붙이기 위해 형식을 통일화했다.

```
from scipy.sparse import csr_matrix
from scipy.sparse import hstack

cold_df = df_prod.select_dtypes(exclude=["object"])
cold = csr_matrix(cold_df)
final_sparse_matrix = hstack((hot, cold))
```

위 과정을 TransformerMixin 부모클래스를 이용해 SparseMatrix이란 맞춤형 클래스를 구성했다.

```
class SparseMatrix(TransformerMixin):

def __init__(self):
   None

def fit(self, X, y=None):
   return self

def transform(self, X, y=None):
   categorical_columns= X.columns[X.dtypes==object].tolist()
   ohe = OneHotEncoder()
   hot = ohe.fit_transform(X[categorical_columns])
   cold_df = X.select_dtypes(exclude=["object"])
   cold = csr_matrix(cold_df)
   final_sparse_matrix = hstack((hot, cold))
   return final_sparse_matrix
```

early_stopping_rounds를 이용해 최적의 n_estimators를 구하기 위해 학습데이터와 검증데이터로 나눠준뒤 적용해본 결과, XGBRegressor의 n_estimators는 27으로, 이때의 RMSE는 0.137로 나타난다.

```
y xgb = df prod.iloc[:, -1]
X_xgb = df_prod.iloc[:, :-1]
X_train, X_test, y_train, y_test = train_test_split(X_xgb, y_xgb, random_state=4)
data pipeline = Pipeline([('null imputer', NullValueImputer()),
               ('sparse', SparseMatrix())])
X_train_transformed = data_pipeline.fit_transform(X_train)
X train 2, X test 2, y train 2, y test 2 = train test split(X train transformed, y train, random state=2)
def n_estimators(model):
  eval_set = [(X_test_2, y_test_2)]
  eval_metric="rmse"
  model.fit(X_train_2, y_train_2, eval_metric=eval_metric, eval_set=eval_set, early_stopping_rounds=10)
  y_pred = model.predict(X_test_2)
  rmse = MSE(y_test_2, y_pred)**0.5
  return rmse
n_estimators(XGBRegressor(n_estimators=5000, missing=-999.0))
[27]
          validation_0-rmse:0.13816
0.1366314233097678
```

초모수 튜닝을 위해 CatBoost에서와 같이 grid_search를 진행해주었다. 이를 반복적으로 적용한 결과, 최종적으로 튜닝한 XGBRegressor의 초모수는 다음과 같다.

```
kfold = KFold(n_splits=5, shuffle=True, random_state=2)
def grid_search(params, reg=XGBRegressor(missing=-999.0)):
    grid_reg = GridSearchCV(reg, params, scoring='neg_mean_squared_error', cv=kfold)
    grid_reg.fit(X_train_transformed, y_train)
    best_params = grid_reg.best_params_
    print("Best params:", best_params)
    best_score = np.sqrt(-grid_reg.best_score_)
    print("Best score:", best_score)
```

XGBoost의 튜닝된 초모수는 평가 척도 RMSE 값이 0.135로 CatBoost (0.122)보다 낮은 성능인 것을 볼 수 있다.

5.5 LightGBM

LightGBM 모형 분석에서는 5.3의 XGBoost에서 n_estimators을 구하기 전까지의 과정이 동일하기에 생략한다. XGBoost와 동일하게 최적의 n_estimators를 구한 결과, 37으로 이때의 RMSE는 0.141로 나타났다.

```
from lightgbm import LGBMRegressor
n_estimators(LGBMRegressor(n_estimators=5000))
```

0.14098572511204166

초모수 튜닝을 위해 grid_search을 반복적으로 적용한 결과, 최종적으로 튜닝한 LightGBMRegressor의 초모수는 다음과 같다. 기존 0.141에서 0.128로 크게 발전한 것을 보아 모형 성능개선에 초모수 튜닝이 중요한 역할이었다고 추정된다.

```
def grid search lgb(params, reg=LGBMRegressor()):
  grid reg = GridSearchCV(reg, params, scoring='neg mean squared error', cv=kfold)
  grid reg.fit(X train transformed, y train)
  best_params = grid_reg.best_params_
  print("Best params:", best params)
  best score = np.sqrt(-grid reg.best score )
  print("Best score:", best score)
grid_search_lgb(params={'boosting_type':['gbdt','goss'],
              'max depth':[1, 2, 5, -1],
              'min child weight':[1, 3, 5],
              'subsample':[0.7, 0.8, 0.9, 1],
              'colsample bytree':[0.8, 0.9, 1],
              'n estimators':[37, 100]})
Best params: {'boosting type': 'gbdt', 'colsample bytree': 0.9, 'max depth': 5, 'min child weight': 1, 'n estimator
s': 37, 'subsample': 0.7}
Best score: 0.1284985313099552
```

최종적으로 조율된 초모수를 가진 LGBMRegressor의 성능 측정 결과, RMSE 값은 0.117으로 XGBoost(0.135)과 CatBoost(0.122)보다 우수한 것으로 나타났다.

5.6 모형 자동화

가장 우수한 성능을 보인 LightGBM을 이용해 앞에서 논의한 모든 절차들을 모아, 아래와 같이 최종적으로 자동화 모형을 구성해보았다.

위 프로그램으로 객체화된 자동화 모형 lgb_pipeline을 최초의 자료를 입력해 적합하고, 새로운 데이터에 대한 결과를 예측해보았다.

```
np.round(lgb_pipeline.predict(X_test), 3)

array(10.795, 0.659, 0.756, 0.773, 0.889, 0.695, 0.683, 0.554, 0.76, 0.812, 0.682, 0.766, 0.682, 0.765, 0.678, 0.773, 0.874, 0.43, 0.441, 0.736, 0.881, 0.644, 0.756, 0.688, 0.756, 0.678, 0.773, 0.874, 0.43, 0.441, 0.736, 0.881, 0.644, 0.759, 0.575, 0.889, 0.791, 0.697, 0.776, 0.567, 0.8, 0.557, 0.89, 0.599, 0.813, 0.68, 0.6, 0.697, 0.776, 0.567, 0.8, 0.552, 0.531, 0.683, 0.716, 0.825, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782, 0.782
```

6. 결과 분석

아래 표는 분석을 진행해본 5개 모형에 대한 평가 척도 RMSE (root mean square error, 평균 제곱근 오차)값을 비교해본 결과이다. LightGBM 모형의 RMSE 값이 0.117로 가장 높은 성능을 보였으며, 그 이후로는 CatBoost (0.122), XGBoost (0.135), 그리고 Linear Regression (0.170), 비선형 SVM (0.172) 순이다.

표 1. 모형 성능 RMSE 값 비교

Linear Regression	Nonlinear SVM	XGBoost	LightGBM	CatBoost	
0.170	0.172	0.135	0.117	0.122	

7. 부분의존도 분석

CatBoost 모형에 대해서 부분의존도를 시각화할 수 있는 맞춤형 partial_dependency 함수를 구성해볼 수 있다. partial_dependency 함수의 입력에서 model은 적용할 모형, X는 학습데이터를, features는 학습데이터 X에 있는 모든 특성변수의 수를, 그리고 f_id는 부분의존도를 구하고 싶은 특성변수의 index를 나타낸다. f_id에 지정된 특성변수가 실수형 특성변수인 경우에는 0.1% 분위수부터 99.5% 분위수까지 50등분을 하는 방법이 있다.

본 프로젝트에서는 범주형 특성변수 (quarter, department, days)도 포함하고 있으므로 이에 대해서도 고려해주었다. 아래 프로그램은 CatBoost 모형에서 one-hot encoding을 진행하지 않은 범주형 자료에 대해 부분의존도를 구하는 사용자 정의 함수이다. np.linspace 함수를 이용해 등분하는 것이 아닌, 범주형 자료에 대해서는 np.unique 함수를 사용했다.

```
import numpy as np

def partial_dependency_categorical(model, X, features, f_id):
    X_temp = X.copy()
    grid = np.unique(X_temp.iloc[:, f_id])
    y_pred = np.zeros(len(grid))

for i, val in enumerate(grid):
    X_temp.iloc[:, f_id] = val
    y_pred[i] = model.predict(X_temp.iloc[:, :features]).mean()

return grid, y_pred
```

5.3에서 정의한 cat pipeline을 이용해서 데이터셋을 분할하고 CatBoost regressor 모델을 학습시켰다.

학습된 모델과 위에서 정의한 함수를 이용해 데이터셋에 있는 3개의 범주형 변수 (quarter, department, day) 중 1번째 범주형 변수인 quarter의 grid값과 예측된 부분의존도 값을 나타냈다.

```
features = X_train_cat.shape[1]
f_id = 0
grid, y_pred = partial_dependency_categorical(cat_pipeline, X_train_cat, features, f_id=f_id)
print(grid)
print(y_pred)

['Quarter1' 'Quarter2' 'Quarter3' 'Quarter4' 'Quarter5']
[0.73730401 0.73661698 0.7250485 0.71405941 0.75000995]
```

Quarter5의 부분의존도가 0.750으로 가장 높으며, 그 뒤로 Quarter1(0.737), Quarter2(0.736), Quarter3(0.725), Quarter4(0.714) 순이다. 부분의존도는 목적변수와 특성변수의 관계를 보여주는 척도로써 다른 특성변수가 고정되어 있다는 가정 하에 관심있는 특성변수가 증가함에 따라 목적변수의 변화를 볼 수 있는 값이다. 즉, 목적변수인 생산력은 Quarter5 department에 근무하는 근로자들에 따라 가장 크게 변화한다는 의미이다. 시각화된 부분의존도는 다음과 같다.

나머지 2개의 범주형 변수인 department과 day에 대해서도 부분의존도를 구하고 시각화해주었다. (왼쪽: department, 오른쪽: day) Department(부서) 변수의 경우, finishing 부서에서 일하는 근로자들이 sewing 부서에서 일하는 근로자들에 비해 생산력에 더 큰 영향을 주게된다는 의미이다. Day(요일) 변수의 경우, 일요일에 근로하는 근로자들의 자료가 생산력 예측에 더 큰 효과를 주게 되는 것을 볼 수 있다.

