MapReduce with P2P Implementing Self-* CS647 Pre-Proposal, Spring 2009

Omar Badran Jordan Osecki Bill Shaya

Research Area

- Exploring the MapReduce and P2P technologies and how they can be combined
- There are multiple Self-* issues that can be addressed to make this type of distributed system more efficient
 - Issues regarding how to make a P2P system perform MapReduce
 - Issues regarding if nodes perform horribly compared to their peer Worker nodes
 - Issues regarding if nodes (Masters or Workers) fail completely, not performing their workload

Problems and Interests

- When the MapReduce system is running on a P2P network, issues regarding how the mapping and reducing occur
 - How will the jobs be distributed out and then re-combined?
- When the work is split up between multiple nodes, only as good as the weakest link
 - How can we analyze this to make tasks resilient to slower nodes?
- When nodes go down, their work is lost, which can cause a huge delay
 - How can these nodes be watched to ensure if they fail, the delay time is not catastrophic? How do we handle a Worker versus a Master failing?

Relevant Work and Technologies

- Hadoop Apache Java software framework
- Skynet Ruby MapReduce framework
- Problems
 - Centralized command and control could be dangerous
 - If Master goes down, system fails
 - If certain nodes fail, priority needed to re-assign jobs
- Solutions
 - Dynamic masters
 - Scheduler that steps in if Master or Workers fail or slow

Self Adaptation Solutions

- Self Configuration:
 - One node assumes the role of the Master
 - Determines and distributes the number of mapper and reducer tasks
- Self Healing:
 - Monitor nodes
 - If Master fails, another peer takes over as Master
 - If Worker fails or runs poorly, reallocation of computation
 - Seamless completion despite failures

Implementation Solution Overview

- Create a Java console application
- Simulation of MapReduce system on a P2P-type network to count the number of words in a file
- Configurable system parameters to influence system behavior
- Simulate various scenarios such as faults, master failure, etc. to exercise self adaptation

Implementation Block Diagram

Implementation Flow Block Diagram

