Take-Home Assignment

- 1. How do you assess the statistical significance of an insight?
- 2. What is the Central Limit Theorem? Explain it. Why is it important?
- 3. What is the statistical power?
- 4. How do you control for biases?
- 5. What are confounding variables?
- 6. What is A/B testing?
- 7. What are confidence intervals?
- 1. How do you assess the statistical significance of an insight?

To assess statistical significance, you typically:

- Formulate a null hypothesis (e.g., no effect or no difference) and an alternative hypothesis.
- Choose a significance level (commonly $\alpha = 0.05$).
- Conduct a statistical test (e.g., t-test, chi-squared test, ANOVA).
- Calculate the p-value, which represents the probability of observing your results (or more extreme) if the null hypothesis were true.
- Interpret the p-value:
 - ∘ If p < α , reject the null hypothesis \rightarrow result is statistically significant.
 - If p ≥ α, fail to reject the null \rightarrow not statistically significant.

Statistical significance tells you if an insight is unlikely to be due to random chance.

2. What is the Central Limit Theorem? Explain it. Why is it important?

Central Limit Theorem (CLT) states that the sampling distribution of the sample mean (or sum) of a large number of independent, identically distributed (i.i.d.) random variables approaches a normal distribution, regardless of the original distribution, as the sample size increases (usually $n \ge 30$ is sufficient).

Importance:

- Enables use of normal distribution assumptions for confidence intervals and hypothesis tests.
- Allows for statistical inference about population parameters using sample data.
- Underpins many machine learning algorithms and statistical models.

3. What is statistical power?

Statistical power is the probability that a test correctly rejects a false null hypothesis (i.e., detects a true effect).

Mathematically:

Power = $1 - \beta$, where β is the probability of a Type II error (false negative).

High power means:

- You're more likely to detect an effect when it exists.
- Reduces risk of missing important insights.

Factors affecting power:

- Sample size (larger = higher power)
- Effect size (larger effect = higher power)
- Significance level (α)
- Variability in the data (less variability = higher power)

4. How do you control for biases?

Biases can distort your results. To control for them:

- Randomization: Randomly assign subjects to groups to reduce selection bias.
- Blinding: Use single/double-blind setups to avoid placebo or observer bias.
- Control groups: Compare with a baseline to isolate treatment effects.
- Stratification: Group data by confounding variables to reduce imbalance.
- Data cleaning: Remove outliers or handle missing data appropriately.
- Cross-validation (in ML): Prevents overfitting by testing model on unseen data.
- Awareness and documentation: Recognize potential sources of bias and document them.

5. What are confounding variables?

Confounding variables are external variables that influence both the independent and dependent variables, potentially distorting the true relationship.

Example:

If you're testing whether coffee causes heart disease, a confounder might be smoking—smokers may drink more coffee and also have higher heart disease risk.

Control methods:

- Randomization
- Matching groups
- Including confounders in statistical models (e.g., regression)
- Stratified analysis

6. What is A/B testing?

A/B testing is a controlled experiment comparing two variants (A and B) to evaluate which performs better on a specific metric (e.g., conversion rate).

Steps:

- 1. Split population randomly into two groups.
- 2. Group A gets the control; Group B gets the variant.
- 3. Measure outcomes and compare statistically (often using t-tests or proportion tests).
- 4. Determine if difference is statistically significant.

It's widely used in web design, marketing, and product development for data-driven decision making.

7. What are confidence intervals?

A confidence interval (CI) provides a range of values that likely contains a population parameter (e.g., mean) with a given level of confidence, typically 95%.

Example:

If a 95% CI for a mean is [4.5, 5.5], it means we are 95% confident that the true population mean lies between 4.5 and 5.5.

Interpretation tips:

- A wider CI = more uncertainty.
- A narrower CI = more precision (usually from larger sample size or less variance).
- Useful for understanding both effect size and uncertainty.