Diagram Rules for Fermions in Many-Body Theory: Time-Independent Perturbation Theory in Second Quantization

FYS4480/9480

Addition to lecture notes week 44

October 30, 2025

Reminder on fermionic Creation and Annihilation Operators

We work in second quantization with a chosen single-particle basis $\{\phi_p(\mathbf{x})\}$.

$$\hat{a}_p^{\dagger}$$
 : creates a fermion in state ϕ_p , (1)

$$\hat{a}_p$$
: annihilates a fermion in state ϕ_p . (2)

They satisfy canonical anticommutation relations

$$\{\hat{a}_{p}, \hat{a}_{q}^{\dagger}\} = \delta_{pq}, \qquad \{\hat{a}_{p}, \hat{a}_{q}\} = 0, \qquad \{\hat{a}_{p}^{\dagger}, \hat{a}_{q}^{\dagger}\} = 0.$$
 (3)

A generic A-particle Slater determinant (Fermi sea, reference, etc.) is

$$|\Phi_0\rangle = \prod_{i \in \text{occ}} \hat{a}_i^{\dagger} |0\rangle \,, \tag{4}$$

where occ labels occupied single-particle states in the reference.

Hamiltonian in Second Quantization

We split the Hamiltonian into an unperturbed part \hat{H}_0 and an interaction \hat{V} :

$$\hat{H} = \hat{H}_0 + \hat{V}. \tag{5}$$

A common choice:

$$\hat{H}_{0} = \sum_{pq} t_{pq} \, \hat{a}_{p}^{\dagger} \hat{a}_{q}, \tag{6}$$

$$\hat{V} = \frac{1}{4} \sum_{qqrs} \bar{v}_{pqrs} \, \hat{a}_{p}^{\dagger} \hat{a}_{q}^{\dagger} \hat{a}_{s} \hat{a}_{r}, \tag{7}$$

$$\hat{V} = \frac{1}{4} \sum_{pqrs} \bar{v}_{pqrs} \, \hat{a}_p^{\dagger} \hat{a}_q^{\dagger} \hat{a}_s \hat{a}_r, \tag{7}$$

where \bar{v}_{pars} are antisymmetrized two-body matrix elements

$$ar{v}_{pqrs} = \langle pq|\hat{v}|rs \rangle - \langle pq|\hat{v}|sr \rangle$$
.

We treat \hat{H}_0 as solvable and \hat{V} as the perturbation. The reference state $|\Phi_0\rangle$ is usually an eigenstate of \hat{H}_0 .

Normal Ordering (Wick Setup)

Normal ordering: \cdots : means: move all creation operators to the left of all annihilation operators with a sign for each fermionic swap.

For example,

$$: \hat{a}_{p}^{\dagger} \hat{a}_{q} := \hat{a}_{p}^{\dagger} \hat{a}_{q}, \qquad : \hat{a}_{q} \hat{a}_{p}^{\dagger} := -\hat{a}_{p}^{\dagger} \hat{a}_{q}. \tag{8}$$

Important subtlety: normal ordering must be defined with respect to a reference state. In many-body theory we *do not* always normal order relative to the true vacuum $|0\rangle$, but often relative to a filled Fermi sea $|\Phi_0\rangle$.

We denote normal ordering with respect to $|\Phi_0\rangle$ by $N[\cdots]$ when we need to stress it.

Contractions (Fermions)

Given two fermionic operators \hat{A} and \hat{B} , their **contraction** with respect to $|\Phi_0\rangle$ is defined as

$$\hat{A}\hat{B}\hat{A}\hat{B} \equiv \langle \Phi_0 | T(\hat{A}\hat{B}) | \Phi_0 \rangle - \langle \Phi_0 | N[\hat{A}\hat{B}] | \Phi_0 \rangle, \tag{9}$$

where T is an ordering operation appropriate to the context.

For **time-independent** perturbation theory, we typically consider static (equal-time) operators in products like $\hat{V}\hat{V}\cdots\hat{V}$. Then the contraction between \hat{a}_p and \hat{a}_q^{\dagger} is

$$\hat{a}_{p}\hat{a}_{q}^{\dagger}\hat{a}_{p}\hat{a}_{q}^{\dagger} = \langle \Phi_{0}|\hat{a}_{p}\hat{a}_{q}^{\dagger}|\Phi_{0}\rangle = \delta_{pq} \times \begin{cases} 1, & p \text{ unoccupied in } |\Phi_{0}\rangle, \\ 0, & p \text{ occupied in } |\Phi_{0}\rangle. \end{cases}$$
(10)

Similarly,

$$\hat{a}_{p}^{\dagger}\hat{a}_{q}\hat{a}_{p}^{\dagger}\hat{a}_{q} = \langle \Phi_{0}|\hat{a}_{p}^{\dagger}\hat{a}_{q}|\Phi_{0}\rangle = \delta_{pq} \times \begin{cases} 1, & p \text{ occupied in } |\Phi_{0}\rangle, \\ 0, & p \text{ unoccupied in } |\Phi_{0}\rangle. \end{cases}$$
(11)

In words: a contraction "projects" whether an index is occupied (hole line) or unoccupied (particle line) in $|\Phi_0\rangle$.

Wick's Theorem (Static Form)

Wick's theorem for fermions states:

Any product of fermionic creation and annihilation operators can be written as a sum of

- a normal-ordered product $N[\cdots]$ (with respect to $|\Phi_0\rangle$),
- plus all possible normal-ordered products with one contraction,
- plus all with two contractions,
- etc.,
- up to the fully contracted term(s).

Symbolically,

$$\hat{A}_1 \hat{A}_2 \cdots \hat{A}_n = N[\hat{A}_1 \hat{A}_2 \cdots \hat{A}_n] + \sum_{1 \text{ contraction}} N[\cdots] + \sum_{2 \text{ contractions}} N[\cdots] + \cdots$$
 (12)

with appropriate fermionic signs for each reordering needed to realize the contractions.

Expectation Values and Full Contractions

Take the expectation value in $|\Phi_0\rangle$. Because all normal-ordered terms annihilate $|\Phi_0\rangle$ on the right (or $\langle \Phi_0|$ on the left), only *fully contracted* terms survive:

$$\langle \Phi_0 | \hat{A}_1 \hat{A}_2 \cdots \hat{A}_n | \Phi_0 \rangle = \sum_{\text{all complete pairings}} (\pm) \prod_{\text{pairs } (i,j)} \hat{A}_i \hat{A}_j \hat{A}_i \hat{A}_j. \tag{13}$$

Key point:

- The sum runs over all distinct ways of pairing operators into contractions.
- Each pairing comes with a fermionic sign determined by how many swaps are needed to bring operators next to each other.

This is the algebraic origin of Feynman- or Goldstone-like diagrams: each full contraction pattern \leftrightarrow one diagram.

Many-Body Perturbation Theory (Energy)

For a non-degenerate reference state $|\Phi_0\rangle$ with unperturbed energy $E_0^{(0)}$, the Rayleigh–Schrödinger perturbation series for the ground-state energy is

$$E_0 = E_0^{(0)} + E_0^{(1)} + E_0^{(2)} + \cdots$$
 (14)

with

$$E_0^{(1)} = \langle \Phi_0 | \hat{V} | \Phi_0 \rangle, \qquad (15)$$

$$E_0^{(2)} = \sum_{n \neq 0} \frac{\left| \langle \Phi_n | \hat{V} | \Phi_0 \rangle \right|^2}{E_0^{(0)} - E_n^{(0)}}, \quad \text{etc.}$$
 (16)

In second quantization, these matrix elements are operator strings of $\hat{a}^{\dagger}\hat{a}^{\dagger}\hat{a}\hat{a}$ etc.

Wick's theorem reduces them to sums of complete contractions, with denominators from intermediate states. Each such contraction pattern corresponds to one diagram in the standard diagrammatic expansion of the ground-state energy.

- Fermionic operators anticommute, and states are built as Slater determinants.
- The Hamiltonian is expressed in normal-ordered two-body form.
- Contractions encode occupied/unoccupied structure of the reference state.
- Wick's theorem rewrites any operator product as a sum over normal-ordered pieces plus contractions.
- ullet Only fully contracted pieces survive in expectation values, and each full contraction \leftrightarrow a diagram.

Next we will prove the **diagram rules**: how to translate any fully contracted term into a sign, symmetry factor, energy denominator, and algebraic expression.

From Contractions to Lines

Consider a two-body interaction vertex from \hat{V} :

$$\hat{V} = \frac{1}{4} \sum_{pqrs} \bar{v}_{pqrs} \, \hat{a}_p^{\dagger} \hat{a}_q^{\dagger} \hat{a}_s \hat{a}_r. \tag{17}$$

A single insertion of \hat{V} acting on $|\Phi_0\rangle$ can *excite* two particles from occupied (hole) states i, j to unoccupied (particle) states a, b. Schematically:

$$\hat{a}_a^{\dagger}\hat{a}_b^{\dagger}\hat{a}_j\hat{a}_i\ket{\Phi_0} \quad \Rightarrow \quad \ket{\Phi_{ij}^{ab}}.$$

In diagrams:

- Each \hat{a}^{\dagger} corresponds to an outgoing particle line.
- Each \hat{a} corresponds to an incoming hole line.

A contraction between \hat{a}_i in one vertex and \hat{a}_a^{\dagger} in another vertex becomes a **line** connecting two vertices.

Sign Structure: Fermionic Minus Signs

When we evaluate a string like

$$\hat{a}_{p_1}^{\dagger}\hat{a}_{p_2}^{\dagger}\hat{a}_{q_2}\hat{a}_{q_1}\hat{a}_{r_1}^{\dagger}\hat{a}_{r_2}^{\dagger}\hat{a}_{s_2}\hat{a}_{s_1}\cdots$$

we must bring operators next to each other to form contractions. Every swap of two fermionic operators contributes a factor (-1).

Result: Each complete contraction pattern produces

$$(\operatorname{sign}) = (-1)^{N_{\operatorname{perm}}},\tag{18}$$

where N_{perm} is the number of permutations needed to realize that pairing.

Diagrammatically: following standard fermionic diagram conventions, internal lines that "cross" encode these permutations. Thus, the sign of a diagram is the sign of the underlying antisymmetry of the many-body wave function.

Energy Denominators (Time-Independent PT)

In ordinary Rayleigh–Schrödinger perturbation theory, an *n*th-order energy correction involves n insertions of \hat{V} and (n-1) sums over intermediate states:

$$E_0^{(n)} = \sum_{\text{int. states}} \frac{\langle \Phi_0 | \hat{V} | \Phi_1 \rangle \langle \Phi_1 | \hat{V} | \Phi_2 \rangle \cdots \langle \Phi_{n-1} | \hat{V} | \Phi_0 \rangle}{(E_0^{(0)} - E_1^{(0)})(E_0^{(0)} - E_2^{(0)}) \cdots (E_0^{(0)} - E_{n-1}^{(0)})}.$$
 (19)

Each intermediate state $|\Phi_k\rangle$ is a Slater determinant with some set of particle-hole excitations. Its unperturbed energy $E_k^{(0)}$ is just the sum of single-particle energies of occupied orbitals in that determinant.

Diagram rule: Every diagram at order n carries a product of denominators, one for each "time slice" (or intermediate configuration) in which a set of particle-hole excitations propagates.

Putting It Together: Generic Fermion Diagram Rule

For ground-state energy corrections in time-independent MBPT:

Rule 1: Vertices. Each interaction vertex contributes a factor \bar{v}_{pqrs} with two incoming (hole) lines and two outgoing (particle) lines, summed over all internal indices.

Rule 2: Lines. Each internal line corresponds to a contraction and implies

- a Kronecker delta enforcing index matching,
- ullet whether that index is a particle (unoccupied in $|\Phi_0\rangle$) or a hole (occupied in $|\Phi_0\rangle$),
- an energy associated with that orbital.
 - **Rule 3: Signs.** Include a global factor $(-1)^{N_{\text{perm}}}$ coming from the reordering of fermion operators needed to realize the contraction pattern. Equivalently: track the number of fermionic line exchanges.
 - **Rule 4: Denominators.** For an *n*th-order diagram, write down the sequence of intermediate Slater determinants generated as you "move through" the vertices. For each nontrivial intermediate determinant, include a denominator $[E_0^{(0)} E_{\rm int}^{(0)}]^{-1}$.

Example: Second-Order Correlation Energy

Consider the standard second-order (MP2-like) correlation energy. Occupied indices: i, j.

Unoccupied (virtual) indices: a, b.

The algebra from Eq. (??) gives

$$E_0^{(2)} = \frac{1}{4} \sum_{ijab} \frac{|\bar{\mathbf{v}}_{ijab}|^2}{\epsilon_i + \epsilon_j - \epsilon_a - \epsilon_b},\tag{20}$$

where ϵ_p are single-particle energies from \hat{H}_0 .

Diagrammatically:

- One vertex excites $ij \rightarrow ab$,
- ullet The other vertex de-excites ab o ij,
- Internal lines connect $i \leftrightarrow i$, $j \leftrightarrow j$, $a \leftrightarrow a$, $b \leftrightarrow b$,
- The denominator is the energy difference of the intermediate 2p-2h excitation,
- The sign is + for this canonical ordering.

Symmetry / Combinatorial Factors

In higher orders, multiple distinct contraction patterns may generate the *same* topological diagram.

Rule 5 (Symmetry factor). If m different full contraction patterns reduce to the same topological diagram, that diagram receives a prefactor m (possibly with signs already accounted for).

Example:

- Two vertices with identical structure can sometimes be interchanged without changing the topology.
- Then both orderings appear separately in Wick expansions, so the diagram gains an extra factor 2.

This is how purely algebraic counting in Wick's theorem becomes combinatorics of diagrams.

Final Recipe (Ground-State Energy Diagrams)

To evaluate an *n*th-order fermionic diagram contributing to the ground-state energy:

- Assign indices (i, j, ... for occupied/hole, a, b, ... for unoccupied/particle) to each line.
- For each vertex, write a matrix element \bar{v}_{pqrs} with appropriate indices from attached lines.
- Multiply by the sign $(-1)^{N_{\mathsf{perm}}}$ determined by fermion line permutations.
- Sum over all internal indices (Einstein-like summation).
- Include one energy denominator for every intermediate particle-hole configuration.
- Multiply by the symmetry/combinatorial factor for that topological diagram.

Claim: These rules are *exactly* what you get by applying Wick's theorem to \hat{V}^n between Slater determinants, collecting only fully contracted terms, and organizing them by topology.

Conceptual Proof Structure (Why This Works)

- Wick's theorem ensures: only full contractions survive in $\langle \Phi_0 | \hat{V}^n | \Phi_0 \rangle$.
- Each full contraction uniquely pairs annihilators with creators across the *n* interaction insertions.
- Each such pairing defines:
 - which particle-hole excitations appear,
 - in which order they propagate,
 - and how they recombine to $|\Phi_0\rangle$.
- The fermionic anticommutation algebra enforces the correct sign.
- The intermediate-state sums naturally generate the denominators in Rayleigh–Schrödinger perturbation theory.
- Grouping algebraically equivalent contraction patterns gives topological diagrams plus symmetry factors.