

Description

These P-Channel enhancement mode power field effect transistors are using trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and with stand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

Features

- \bullet -30V,-4.3A,R_{DS(ON).max}=46m Ω @V_{GS}=-10V
- Improved dv/dt capability
- Fast switching
- Green device available

Applications

- PWM applications
- Load switch
- Portable Equipment

Product Summary

 $\begin{array}{ll} V_{DSS} & -30V \\ R_{DS(on).max} @ V_{GS} \text{=-} 10V & 46 m \Omega \\ I_D & -4.3 A \end{array}$

Pin Configuration

SOT-23-3

Schematic

Absolute Maximum Ratings T_A = 25°C unless otherwise noted

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-30	V
Continuous drain current (T _A = 25°C)	l _D	-4.3	A
Continuous drain current (T _A = 100°C)		-2.7	A
Pulsed drain current ¹⁾	Ірм	-17.2	А
Gate-Source voltage	V _{GSS}	±20	V
Power Dissipation (T _A = 25°C)	P _D	1.3	W
Storage Temperature Range	T _{STG}	-55 to +150	°C
Operating Junction Temperature Range	TJ	-55 to +150	°C

Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	R _{0JA}	96	°C/W

Package Marking and Ordering Information

Device	Device Package	Marking		
VSM3487-S2	SOT-23-3	VSM3487-S2		

Flectrical	Characteristics	T ₁ = 25°C unless otherwise noted
	Ollaracteristics	Li = 25 C uniess otherwise noted

Electrical Characteristics	Electrical Cnaracteristics T _J = 25°C unless otherwise noted					
Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Static characteristics					'	
Drain-source breakdown voltage	BV _{DSS}	V _{GS} =0 V, I _D =-250uA	-30			V
Gate threshold voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =-250uA	-1.2	-1.7	-2.2	V
Drain-source leakage current		V _{DS} =-30 V, V _{GS} =0 V, T _J = 25°C			-1	μА
	I _{DSS}	V _{DS} =-24V, V _{GS} =0 V, T _J = 125°C			-10	μA
Gate leakage current, Forward	Igssf	V _{GS} =20 V, V _{DS} =0 V			100	nA
Gate leakage current, Reverse	I _{GSSR}	V _{GS} =-20 V, V _{DS} =0 V			-100	nA
Duning any state maniphones	Б	V _{GS} =-10 V, I _D =-4.3 A		33	46	mΩ
Drain-source on-state resistance	R _{DS(on)}	V _{GS} =-4.5 V, I _D =-3A		43	72	mΩ
Forward transconductance	g _{fs}	V _{DS} =-5 V , I _D =-4.3A		10		S
Dynamic characteristics						
Input capacitance	C _{iss}			940		pF
Output capacitance	Coss	$V_{DS} = -15 \text{ V}, V_{GS} = 0 \text{ V},$ $F = 1 \text{MHz}$		103		
Reverse transfer capacitance	C _{rss}			88		
Turn-on delay time	t _{d(on)}			4.0		
Rise time	t _r	V _{DD} =-10V,V _{GS} =-4.5V, I _D =-4.3A		31.1		ns
Turn-off delay time	t _{d(off)}	Rg=3Ω		38.9		
Fall time	t _f	119 012		8.9		
Gate resistance	R _g	V _{GS} =0V,V _{DS} =0V,f=1MHz		11		Ω
Gate charge characteristics						
Gate to source charge	Qgs			2.4		
Gate to drain charge	Q _{gd}	V _{DS} =-15 V, I _D =-4.3A, V _{GS} =-10 V		2.9		nC
Gate charge total	Qg	VGS10 V		14.8		
Drain-Source diode characteristic	s and Maxii	num Ratings			•	•
Continuous Source Current	Is				-4.3	А
Pulsed Source Current ²⁾	Ism]			-17.2	А
Diode Forward Voltage	V _{SD}	V _{GS} =0V, I _S =-1A, T _J =25℃			-1.2	V
		1				

Notes:

^{1:} Repetitive Rating: Pulse width limited by maximum junction temperature.

^{2:} Pulse Test: Pulse Width \leq 300 \upmu s, Duty Cycle \leq 2%.

Electrical Characteristics Diagrams

Figure 1. Typ. Output Characteristics

Figure 2. Transfer Characteristics

Figure 3. Capacitance Characteristics

Figure 4. Gate Charge Waveform

Figure 5. Body-Diode Characteristics

Figure 6. Rdson-Drain Current

Figure 7. Rdson-Junction Temperature(°C)

Figure 9. BVdss vs. Junction temperature(°C)

Figure 8. Rds(on) vs Gate Voltage

Figure 10. Maximum Safe Operating Area

Figure 11. Normalized Maximum Transient Thermal Impedance (RthJA)

Test Circuit & Waveform

Figure 8. Gate Charge Test Circuit & Waveform

Figure 9. Resistive Switching Test Circuit & Waveforms

Figure 10. Unclamped Inductive Switching (UIS) Test Circuit & Waveform

Figure 11. Diode Recovery Circuit & Waveform

