

Pulmonary Nodule Malignancy Classification Using Temporal Evolution with Two-Stream 3D Convolutional Neural Networks

X. Rafael-Palou^{1,2}, A. Aubanell³, I. Bonavita², M. Ceresa¹, G. Piella¹, V. Ribas², M. González Ballester^{2,4}

1 BCN Medtech, Universitat Pompeu Fabra, Barcelona, Spain 2 Eurecat, Centre Tecnològic de Catalunya, eHealth Unit, Barcelona, Spain 3 Vall d'Hebron University Hospital 4 ICREA, Barcelona, Spain

Motivation

- > CT Nodule malignancy assessment is complex, time-consuming and error-prone
- Visual inspection + quantification of current and follow-up nodules

- Current accurate predictive models (>86%) use datasets of nodules taken at single time-points and labels from visual judgements [Dey et al., 2018; Causey et al., 2018]
- Need of classifiers using nodule temporal evolution (>1 image) and cancer confirmed cases (e.g. biopsy)

Two stream 3D CNN

Input	Patches of centered nodule volumes
Prep	HU Clipping + Normalization
FE	Two copies of pre-trained ResNet-34 [Bonavita et al., 2019] from LUNA-16 [Setio et al., 2017] Generation of feature map pairs at different levels of the Nets
CLS	Flatten + concatenation of feature map pairs Fully connected bloc: FC + BNorm + Relu + DropOut Sigmoid Layer

Feature-extraction

Dataset

Collected data

- 161 patients, CT pairs at T1,T2
- 103 cancer Histopathological confirmed
- 58 benign No growth or stability during >2 years
- 1 nodule per patient
- Incidental nodules (≥ 5mm)
- Time interval (1 month 6 years)
- Annotations (centroid, diameter) from 2 radiologists

Data preparation

- Patches of 32x32x32 nodule centered
- Random stratified partitions: train (70%) / test
- 10-fold Cross-validation

Results

Performance comparison of the TS-3DCNN vs 3DCNN using single nodule image

				Test	
Model	Time	Feats	F1	\mathbf{Prec}	\mathbf{Rec}
3DCNN	T1	Block2	0.658	0.754	0.657
3DCNN	T2	AvgPool	0.686	0.782	0.650
TS-3DCNN	T1T2	Block2	0.770	0.764	0.792

Performance comparison (ROC-curves)

Conclusions & Future works

- Trained a Lung cancer classifier on a longitudinal cohort (>160 confirmed cases)
- Classifier learns from series of two 3D nodule volumes
 - Same patient
 - Different timepoints
- Transfer learning from LUNA-16 dataset (> 750K candidates)
- Extracted features from several levels do not enhance performance
- Results show that our method (TS-3DCNN) improves between 12% and 9% respect 3D networks with single nodule images
- Future work:
 - More patient data and from more time-points
 - Incorporate strategies to enable capture nodule evolution (such as RNN)

Thank you!

javier.rafael01@estudiant.upf.edu

xavier.rafael@eurecat.org

Acknowledgements:

- Industrial Doctorates Program (AGAUR) grant number DI087
- Spanish Ministry of Economy and Competitiveness (Project INSPIRE FIS2017-89535-C2-2-R, Maria de Maeztu Units of Excellence Program MDM-2015-0502)

