目 录

引言
第一章 预备知识3
1. 渐近分式 3
2. 函数渐近分式11
3. 连分式的变换
4. 变换级数成连分式20
5. 关于函数连分式的收敛性20
第二章 最优化方法28
1. 极值有理法28
2. 离散点极值有理法32
3. 极值迭代法39
4. 中点极值有理法
5. 非线性方程解法
6. 极值有理逼近法48
7. 函数极值有理法
8. n 维极值有理逼近法;57
9. n 维极值解法61 10. 极值有理法的余项64
11. 极值迭代法的余项 ····································
13. 离散点极值有理法的过程71
14. 控制参数的选优过程74
15. 极值有理逼近法的过程
第三章 积分法
第三章
2. 离 散变力所做的功····································
2. 南散发刀// 吸的切 ···································
4. 一维和分计算方法90

-

5. 二维积分计算方法····································
6. 三维积分计算方法95
7. 四维积分化为累次积分法98
8. 平面曲线的计算法一
9. 平面曲线的计算法二101
10. 函数的可积性······/102
11. 一维函数积分和法
12. 近似原函数存在性·····//07
13. 一维三点求积法
14. π 维积分法
15. n 维积分平均值法·······/115
16. 平面曲线积分
17. n维曲线弧长计算法118
18. 原函数的近似计算法120
第四章 微分法 ···································
· 1. 非匀速运动的瞬时速度 ····································
2. 非匀质棒的局部密度
3. 函数的导数 ···································
4. 离散点导数的计算方法 ······133
5. 二阶导数的计算方法 ····································
6. m 阶导数的计算方法 ····································
7. m阶偏导数的计算方法 ····································
8. 二阶混合偏导数的计算方法 ····································
9. 加阶混合偏导数的计算方法
10. 微分学中值定理····································
11. 一维有理函数的微分法·······
12. 导数的余项·············
、13. 二阶导数的余项····································
14. 求一、二阶导数过程······///////////////////////////////
第五章 关于积分和的性质及应用170
1. 积分和的性质 ····································
2. 积分和原理 ····································
3. 余项估计

	_
ТΓ	т
·	

4. 多项式逼近积分和	
5. 多项式逼近积分的余项	
6. 一维积分计算方法的余项	
7. 一维积分和法的余项	190
8. 二维积分计算方法的余项	192
9. 四维积分和法的余项	
10. n维积分和法的汆项	
11. 一维积分和法的过程	
12. 一维积分极限法的过程	202
18. 积分有理逼近法的过程	204
14. 二维有理逼近法的过程	210
15. 二维数值积分法的过程	213
16. 四维有理逼近法的过程	215
17. 四维积分和法的过程	220
18. 有理逼近积分法的过程	222
19. 应用	
第六章 最优设计概论	230
1. 什么是最优设计	230
2. 问题的提出	231
3. 参数的种类	233
4. 最优设计系统的组成	233
5. 数学模型	
6. 目标值评定	239
7. 最优设计程序	242
8. 等式约束条件的处理方法	243
9. 最优化技术的研究和应用概况	245