Projeto de algoritmos: Tentativa e Erro

ACH2002 - Introdução à Ciência da Computação II

Delano M. Beder

Escola de Artes, Ciências e Humanidades (EACH) Universidade de São Paulo dbeder@usp.br

09/2008

Delano M. Beder (EACH - USP)

Tentativa e Erro

ACH2002

Delano M. Beder (EACH - USP)

Tentativa e Erro

ACH2002

Algoritmos Tentativa e erro

 Podem ser vistos como o processo de pesquisa ou de tentativa que gradualmente constrói e percorre uma arvore de sub-tarefas.

Figura 2.2 Árvore de subtarefas

Algoritmos Tentativa e erro

- Novidade: Nova técnica de solução de problemas.
- Vocês já aprenderam duas técnicas: (i) projeto por indução (incremental) e (ii) divisão e conquista.
- Tentativa e erro é uma técnica que utiliza recursividade (aliás, como também a técnica divisão e conquista utiliza).
- A recursividade pode ser usada para resolver problemas cuja solução é do tipo tentar todas as alternativas possíveis.
- Idéia para algoritmos tentativa e erro é decompor o processo em um número finito de subtarefas parciais.

Algoritmos Tentativa e erro

- Funcionamento dos algoritmos:
 - Passos em direção à solução final são tentados e registrados
 - Caso esses passos tomados não levem à solução final, eles podem ser retirados do registro.
- A busca na árvore de soluções pode crescer rapidamente (exponencialmente).

Delano M. Beder (EACH - USP) Tentativa e Erro ACH2002 Delano M. Beder (EACH - USP) Tentativa e Erro ACH2002 **Exemplo**

Exemplo

- Passeio do cavalo no tabuleiro de xadrez.
 - Dado um tabuleiro com n x n posições, o cavalo se movimenta segundo as regras do xadrez.
 - A partir de uma posição inicial (x_0, y_0) , o problema consiste em encontrar, se existir um passeio do cavalo com n^2 1 movimentos, visitando todos os pontos do tabuleiro uma única vez

procedimento tenta
1
BEGIN
inicializa seleção de movimentos
WHILE movimento não bem sucedido AND
existem candidatos a movimento DO
seleciona próximo candidato ao movimento
IF aceitável THEN
registra movimento
IF tabuleiro não está cheio THEN
tenta novo movimento (chamada recursiva)
IF não sucedido THEN
apaga registro anterior
FI
FI
FI
OD
END

Delano M. Beder (EACH - USP)

Tentativa e Erro

ACH2002

10

Delano M. Beder (EACH - USP)

Tentativa e Erro

ACH2002

၁ င

Solução do exemplo

- O tabuleiro \Rightarrow matriz $n \times n$.
- Situação de cada posição:
 - t[x,y] = 0, $\langle x,y \rangle$ não foi visitada
 - t[x,y] = i, $\langle x,y \rangle$ visitada no i-ésimo movimento, $1 \le i \le n^2$.
- As regras do xadrez são utilizadas para os movimentos do cavalo

Solução do exemplo

```
public class KnightsTour {
    final int[] dx = { 2, 1, -1, -2, -2, -1, 1, 2 };
    final int[] dy = { 1, 2, 2, 1, -1, -2, -2, -1 };
    final int num;
    final int numSqr;
    int[][] table;

public KnightsTour(int num) {
        this.num = num;
        this.numSqr = num * num;
        this.table = new int[num][num];
    }

boolean isAcceptable(int x, int y) {
        boolean result = (x >= 0 && x <= num - 1);
        result = result && (y >= 0 && y <= num - 1);
        result = result && (table[x][y] == 0);
        return result;
    }
...
}</pre>
```

Solução do exemplo

Solução do exemplo

```
boolean tryMove(int i, int x, int y) {
    // Verifica a quantidade de movimentos
    boolean done = (i > numSqr);
    int k = 0;
    int u, v;

while (!done && k < num) {
        u = x + dx[k];
        v = y + dy[k];

    if (isAcceptable(u, v)) {
            table[u][v] = i;
            done = tryMove(i + 1, u, v); // tenta outro movimento
            if (!done) {
                table[u][v] = 0; // não sucedido. Descarta movimento
            }
        }
        k = k + 1;
    }
    return done;
}</pre>
```

```
void showTour(int x, int y) {
    table[x][y] = 1;
    boolean done = tryMove(2, x, y);
    if (done) {
        for (int i = 0; i < num; i++) {
            for (int j = 0; j < num; j++) {
                System.out.print(table[i][j] + " ");
            }
            System.out.println();
        }
    } else {
            System.out.println("No possible tour");
    }
}

public static void main(String[] args) {
    int n = Integer.parseInt(args[0]);
    int x = Integer.parseInt(args[1]);
    int y = Integer.parseInt(args[2]);
    new KnightsTour(n).showTour(x, y);
}</pre>
```

Delano M. Beder (EACH - USP)

Tentativa e Erro

Delano M. Beder (EACH - USP)

Tentativa e Erro

ACH2002

10.14

Resultado do exemplo

Resumo

 1
 60
 39
 34
 31
 18
 9
 64

 38
 35
 32
 61
 10
 63
 30
 17

 59
 2
 37
 40
 33
 28
 19
 8

 36
 49
 42
 27
 62
 11
 16
 29

 43
 58
 3
 50
 41
 24
 7
 20

 48
 51
 46
 55
 26
 21
 12
 15

 57
 44
 53
 4
 23
 14
 25
 6

 52
 47
 56
 45
 54
 5
 22
 13

- Foi apresentada a técnica de projeto de algoritmos:
 - tentiva e erro tentar todas as alternativas possíveis.
- Foi apresentado um exemplo de algoritmos de tentativa e erro passeio do cavalo no tabuleiro de xadrez.

Referência utilizadas: [1] páginas 42 a 46, [2] páginas 120 a 125.

- [1] Nívio Ziviani. *Projeto de Algoritmos com implementações em C e Pascal*. Editora Thomson, 2a. Edição, 2004.
- [2] Niklaus Wirth. *Algoritmos e Estrutura de Dados*. Editora LTC, Rio de Janeiro, 1989.