Лабораторная работа #3.

Метод Ньютона с ограничениями-равенствами.

Рассмотрите по вариантам следующие задачи оптимизации:

• Log-optimal investment strategy without the constraint $\mathbf{x} \geq 0$;

(ex. 4.60, p. 209 and N10.14, p. 559 $https://web.stanford.edu/boyd/cvxbook/bv_cvxbook.pdf$)

• Equality constrained analytic centering;

(p. 548, https://web.stanford.edu/boyd/cvxbook/bvcvxbook.pdf)

• Minimum length piecewise-linear curve subject to equality constraints;

 $(ex.\ 10.4,\ p.\ 547\ https://web.stanford.edu/\ boyd/cvxbook/bv_cvxbook.pdf)$

• Equality constrained entropy maximization;

(10.9, p. 558, https://web.stanford.edu/boyd/cvxbook/bvcvxbook.pdf)

• Minimizing a separable function subject to an equality constraint, $f_i(x_i) = x_i^4, i \in \{1, ..., n\};$

(ex. 5.4, p. 248, https://web.stanford.edu/boyd/cvxbook/bvcvxbook.pdf)

• Optimal allocation with resource constraint,

$$f_i(x_i) = a_i e^{x_i}, \ a_i > 0, \ i \in \{1, \dots, n\}.$$

(ex. 10.1, p. 523, https://web.stanford.edu/boyd/cvxbook/bvcvxbook.pdf)

1. Исследуйте задачу на выпуклость. Запишите необходимые условия минимума и двойственную задачу¹.

 $^{^{1}{\}rm B}$ варианте №3 двойственную задачу записывать не нужно

- 2. Для каждого значения размерности $n \in \{10, 20, \dots, 100\}$ сгенерируйте N = 100 тестовых примеров². В каждом случае найдите глобальный минимум, $\mathbf{x}^* \in \mathbb{R}^n$, с помощью CVX.
- 3. Для каждого значения $n \in \{10, 20, \dots, 100\}$ и для каждого тестового примера сгенерируйте 100 начальных точек. Для заданной точности по значению функции $\varepsilon = 0.01$ решите задачу с помощью прямого и двойственного метода Ньютона (стандартный метод Ньютона для решения двойственной задачи). Приведите необходимые аналитические вычисления³.
- 4. В качестве результата работы метода подсчитайте:
 - Для каждого метода и значений n ∈ {10, 20, ..., 100} среднее время работы метода и среднее число итераций (усреднение проводится по всем начальным точкам и по всем тестовым примерам). Сколько арифметических операций требуется для выполнения одной итерации метода?
 - Для одного тестового примера при n=10 и нескольких различных начальных точек постройте зависимость точности по значению функции от числа итераций. Сравните полученные результаты для прямого и двойственного метода. 4

 $^{^{2}}$ Необходимо проверять, чтобы целевая функция на допустимом множестве была orpanu- $vena\ chusy$

 $^{^{3}}$ Для варианта №3 нужно реализовать только метод Ньютона для прямой задачи

⁴Для варианта №3 сравнение с двойственным методом проводить не нужно

5. Оформите отчет с последовательным изложением пунктов 1-4 и выводами.