CS 188: Artificial Intelligence

Learning III: Linear regression & Perceptron

Instructors: Stuart Russell and Dawn Song

University of California, Berkeley

Recap: Decision Tree

- Iterative process, select the most distinguishing/informative attribute to split on next
- Entropy: measure uncertainty in a probability distribution $\langle p_1, ..., p_n \rangle$ $H(\langle p_1, ..., p_n \rangle) = \underline{\hspace{1cm}}$
 - Quiz: Higher entropy means _____ uncertainty.
 - A. more
 - B. less

Recap: Decision Tree

- Iterative process, select the most distinguishing/informative attribute to split on next
- Entropy: measure uncertainty in a probability distribution $\langle p_1, ..., p_n \rangle$ $H(\langle p_1, ..., p_n \rangle) = \sum_i -p_i \log p_i$
- Information gain:
 - reduction on entropy with additional information
- Learning decision tree:
 - Iterative process, selecting the attribute with the highest information gain to split on

Recap: Model Selection & Hyperparameter Tuning

- Data: labeled instances, e.g. emails marked spam/ham
 - Training set
 - Held out set
 - Test set
- Features: attribute-value pairs which characterize each x
- Experimentation cycle
 - Learn parameters (e.g. model probabilities) on training set
 - (Tune hyperparameters on held-out set)
 - Compute accuracy of test set
 - Very important: never "peek" at the test set!
- Evaluation
 - Accuracy: fraction of instances predicted correctly
- Overfitting and generalization
 - Want a classifier which does well on test data
 - Overfitting: fitting the training data very closely, but not generalizing well
 - Underfitting: fits the training set poorly

Training Data

Held-Out Data (Validation set)

> Test Data

Supervised Learning

- Classification = learning f with discrete output value
- Regression = learning f with real-valued output value

Linear Regression

Hypothesis family: Linear functions

Linear Regression

(x, y=f(x)), x: house size, y: house price

Berkeley house prices, 2009

Linear regression = fitting a straight line/hyperplane

Prediction: $h_{\mathbf{w}}(\mathbf{x}) = \mathbf{w}_0 + \mathbf{w}_1 \mathbf{x}$

Berkeley house prices, 2009

Prediction error

Error on one instance: $y - h_w(x)$

Find w

Define loss function

Find w* to minimize loss function

Least squares: Minimizing squared error

L2 loss function: sum of squared errors over all examples

```
■ Loss = _____
```

- We want the weights w* that minimize loss
- At w* the derivatives of loss w.r.t. each weight are zero:
 - $\partial Loss/\partial w_0 =$ _____
 - $\partial \text{Loss}/\partial w_1 =$
- Exact solutions for N examples:
 - $w_1 = [N\Sigma_j x_j y_j (\Sigma_j x_j)(\Sigma_j y_j)]/[N\Sigma_j x_j^2 (\Sigma_j x_j)^2]$ and $w_0 = 1/N [\Sigma_j y_j w_1 \Sigma_j x_j]$
- For the general case where x is an n-dimensional vector
 - X is the data matrix (all the data, one example per row); y is the column of labels
 - $\mathbf{w}^* = (\mathbf{X}^\mathsf{T}\mathbf{X})^{-1}\mathbf{X}^\mathsf{T}\mathbf{y}$

Least squares: Minimizing squared error

- L2 loss function: sum of squared errors over all examples
 - Loss = $\Sigma_i (y_i h_w(x_i))^2 = \Sigma_i (y_i (w_0 + w_1 x_i))^2$
- We want the weights w* that minimize loss
- At w* the derivatives of loss w.r.t. each weight are zero:

 - ∂ Loss/ ∂ w₁ = -2 Σ_{i}^{i} (y_i (w₀ + w₁x_i)) x_i = 0
- Exact solutions for N examples:
 - $w_1 = [N\Sigma_j x_j y_j (\Sigma_j x_j)(\Sigma_j y_j)]/[N\Sigma_j x_j^2 (\Sigma_j x_j)^2]$ and $w_0 = 1/N [\Sigma_j y_j w_1 \Sigma_j x_j]$
- For the general case where x is an n-dimensional vector
 - X is the data matrix (all the data, one example per row); y is the column of labels
 - $w^* = (X^T X)^{-1} X^T y$

Regression vs Classification

- Linear regression when output is binary, $y \in \{0, 1\}$
 - $h_{\mathbf{w}}(x) = w_0 + w_1 x$

- Used with discrete output values
- Threshold a linear function

•
$$h_w(x) = 1$$
, if $w_0 + w_1 x \ge 0$

- $h_w(x) = 0$, if $w_0 + w_1 x < 0$
- Activation function g

Threshold perceptron as linear classifier

Binary Decision Rule

- A threshold perceptron is a single unit that outputs
 - $y = h_w(x) = 1$ when w.x ≥ 0 = 0 when w.x < 0
- In the input vector space
 - Examples are points x
 - The equation w.x=0 defines a *hyperplane*
 - One side corresponds to y=1
 - Other corresponds to y=0

Example


```
w<sub>0</sub> : -3
w<sub>free</sub> : 4
w<sub>money</sub> : 2
```

 $\begin{array}{c} \mathbf{x}_0 & \mathbf{:} & \mathbf{1} \\ \mathbf{x}_{\text{free}} & \mathbf{:} & \mathbf{1} \\ \mathbf{x}_{\text{money}} & \mathbf{:} & \mathbf{1} \end{array}$

Dear Stuart, I'm leaving Macrosoft to return to academia. The money is is great here but I prefer to be free to do my own research; and I really love teaching undergrads!

Do I need to finish my BA first before applying?

Best wishes

Bill

$$\mathbf{w.x} = -3x1 + 4x1 + 2x1 = 3$$

Weight Updates

Need a different solution than before given the characteristic of perceptron

Perceptron learning rule

- If true $y \neq h_w(x)$ (an error), adjust the weights
- If w.x < 0 but the output should be y=1</p>
 - This is called a false negative
 - Should *increase* weights on *positive* inputs
 - Should decrease weights on negative inputs
- If w.x > 0 but the output should be y=0
 - This is called a false positive
 - Should decrease weights on positive inputs
 - Should increase weights on negative inputs
- The perceptron learning rule does this:

•
$$\mathbf{w} \leftarrow \mathbf{w} + \alpha (\mathbf{y} - \mathbf{h}_{\mathbf{w}}(\mathbf{x})) \mathbf{x}$$

Perceptron Learning Rule (Different setup)

- Start with weights = 0
- For each training instance:
 - Classify with current weights

$$y = \begin{cases} +1 & \text{if } w \cdot x \ge 0 \\ -1 & \text{if } w \cdot x < 0 \end{cases}$$

■ If wrong: adjust the weight vector by adding or subtracting the feature vector. Subtract if y is -1.

$$w = w + y \cdot x$$

$$y = h_w(x) = 1$$
 when $w.x \ge 0$
= -1 when $w.x < 0$

Example

x₀ : 1
x_{free} : 1
x_{money} : 1

Dear Stuart, I wanted to let you know that I have decided to leave Macrosoft and return to academia. The money is is great here but I prefer to be free to pursue more interesting research and I really love teaching undergraduates! Do I need to finish my BA first before applying?

Best wishes
Bill

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha (\mathbf{y} - \mathbf{h}_{\mathbf{w}}(\mathbf{x})) \mathbf{x}$$

 $\alpha = 0.5$

$$\mathbf{w} \leftarrow (-3,4,2) + 0.5 (0 - 1) (1,1,1)$$

= $(-3.5,3.5,1.5)$

 $\mathbf{w.x} = -3x1 + 4x1 + 2x1 = 3$

Perceptron convergence theorem

- A learning problem is *linearly separable* iff there is some hyperplane exactly separating positive from negative examples
- Convergence: if the training data are *separable*, perceptron learning applied repeatedly to the training set will eventually converge to a perfect separator

Separable

Non-Separable

Example: Earthquakes vs nuclear explosions

63 examples, 657 updates required

Perceptron convergence theorem

- A learning problem is *linearly separable* iff there is some hyperplane exactly separating +ve from –ve examples
- Convergence: if the training data are separable, perceptron learning applied repeatedly to the training set will eventually converge to a perfect separator
- Convergence: if the training data are *non-separable*, perceptron learning will converge to a minimum-error solution provided the learning rate α is decayed appropriately (e.g., $\alpha=1/t$)

Separable

Non-Separable

Perceptron learning with fixed a

71 examples, 100,000 updates fixed $\alpha = 0.2$, no convergence

Perceptron learning with decaying a

71 examples, 100,000 updates decaying $\alpha = 1000/(1000 + t)$, near-convergence

Non-Separable Case

Other Linear Classifiers

Perceptron is perfectly happy as long as it separates the training data

Logistic Regression

$$g_{sigmoid}(x) = \frac{1}{1 + e^{-x}}$$

$$y$$

$$g_{sigmoid}$$

$$g_{sigmoid}$$

- Support Vector Machines (SVM)
 - Maximize margin between boundary and nearest points

Logistic Regression

Sigmoid function

$$\phi(z) = \frac{1}{1 + e^{-z}}$$

