Esercizio 10. (punteggio $\frac{2.5}{30}$)

Un sistema lineare di 3 equazioni in 3 incognite ammette sempre soluzioni.

V **F**

Giustificazione:

Esercizio 11. (punteggio $\frac{2.5}{30}$)

Costruire un esempio di un sistema lineare di tre equazioni in tre incognite che ammetta un unica soluzione.

Risposta:

Esercizio 12. (punteggio $\frac{2.5}{30}$)

Discutere il seguente sistema al variare del parametro reale λ .

$$\begin{cases} \lambda x + y + \lambda z = 1 \\ -x + \lambda y - z = 1 \\ \lambda x + y + (\lambda + 1)z = 0 \end{cases}$$

Risposta:

10/02/2006

Algebra lineare – Corso di laurea in Informatica

Nome:	Cognome:		Matricola:
N.B.1 La risposta ad ogni singolo esercizio deve essere riportata nello spazio sottostante l'esercizio stesso.			
N.B.2 Gli esercizi senza giustificazione o risposta hanno valore nullo. Esercizio 1. (punteggio $\frac{2.5}{30}$) Calcolare le radici quarte di -81 nel campo dei numeri complessi. Risposta:			

Esercizio 2. (punteggio $\frac{2.5}{30}$) Calcolare $(\frac{\sqrt{3}-i}{2})^6$.

Risposta:

Esercizio 3. (punteggio $\frac{2.5}{30}$) Siano z e w due numeri complessi non nulli. Dimostrare che $\frac{1}{z}=\frac{1}{\bar{z}}$ Soluzione: Esercizio 4. (punteggio $\frac{2.5}{30}$)

Calcolare $\mathbf{v_1} \wedge \mathbf{v_2}$, dove $\mathbf{v_1} = (1, 2, 1)$ e $\mathbf{v_2} = (1, 1, 0)$. Descrivere il significato geometrico di $|\mathbf{v_1} \wedge \mathbf{v_2}|$.

Risposta:

Esercizio 5. (punteggio $\frac{2.5}{30}$)

Siano $\mathbf{u} \in \mathbf{v}$ due vettori di \mathbb{R}^n . Allora $\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 + 2\mathbf{u} \cdot \mathbf{v}$. \mathbf{V} \mathbf{F}

Giustificazione:

Esercizio 6. (punteggio $\frac{2.5}{30}$)

Siano \mathbf{v} e \mathbf{w} due vettori lineramente indipendenti di \mathbb{R}^3 . Allora il vettore $(\lambda \mathbf{v} + \mathbf{w}) \wedge (\lambda \mathbf{w} + \mathbf{v})$ è diverso da zero per ogni numero reale λ .

V F

Giustificazione:

Esercizio 7. (punteggio $\frac{2.5}{30}$)

Dire se la matrice
$$A = \begin{pmatrix} 0 & 0 & 0 & 2 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \end{pmatrix}$$
 è invertibile e in caso affermativo calcolare A^{-1} .

Risposta:

Esercizio 8. (punteggio $\frac{2.5}{30}$)

Due vettori di \mathbb{R}^6 sono sempre linearmente indipendenti. \mathbf{F}

Giustificazione:

Esercizio 9. (punteggio $\frac{2.5}{30}$)

Trovare la dimensione del sottospazio di \mathbb{R}^4 generato dai vettori:

$$\mathbf{v_1} = (1, 2, -1, 1), \mathbf{v_2} = (0, 2, 1, 3), \mathbf{v_3} = (1, -2, -3, -5).$$

Risposta: