

Techniques for Turbulence Simulation DNS (Direct Numerical Simulations) No modeling Resolution of all scales Prohibitive computational costs Moderate Re number and simple geometries Homogeneous isotropic turbulence Chap 1 By E. Amani

Techniques for Turbulence Simulation

Closure problem (modeling)

- RANS (Reynolds-Averaged Navier-Stokes equations) [stationary]
 - Eddy-viscosity models (Gradient diffusion assumption)
 - **Zero-equation models**
 - One-equation models
 - Two-equation models (k-ε, k-ω, ...)
 - Three-equation models
 - Four-equation models (v²-f)
 - Non-linear models
 - RSM (Reynolds Stress (transport) Model)
- LES (Large Eddy Simulation) [stationary and instationary]
- PDF (Probability Density Function) [combustion]

Chap 1 By E. Amani

Techniques for Turbulence Simulation Closure problem (modeling) RANS LES PDF FDF (Filtered Density Function) By E, Amani

Course Outline

Turbulence

- Governing Equations (Chap II)
- Mathematical tools for studying turbulence
 - Statistical (Chap III) versus deterministic
 - Physical space (Chap V & VI) versus spectral space (Chap VII)

Turbulence Simulation

- RANS (Chap V)
- LES (Chap VI & VII) ★★★
- Introduction to PDF (Chap VIII) *

Chap 1

By E. Amani

