

Deploy K8s Cluster with DeepOps and Kubespray

Full Documentation:

- Read full Kubernetes on DeepOps documentation here.
- Read full Kubespray Getting Started documentation here.

Minimum Specifications:

3 Master Nodes (VM's) soft limits

CPU: 4 CPU cores

Memory: 32G

• Disk: 100G

Network: 2 NIC'sOS: Ubuntu 18.04 LTS

Table of Contents:

Full Documentation	
Minimum Specifications	1
DeepOps Architecture Overview	2
Possible System Architecture (Cisco)	3
Possible Network Architecture (Cisco)	3
Create Cluster:	4
Worker Nodes:	4
Main Master Node:	4
Troubleshooting	4
Install Cluster Add-ons:	5
Main Master Node:	5
Scale Cluster	7
Add node	7
Remove node	7
Delete Cluster	7
Note	7
Appendix A: Compatibility	8
Appendix B: Example Inventory File	9
Appendix C: Example Hosts File	

DeepOps Architecture Overview:

Possible System Architecture (Cisco):

Source: AIRI Reference Architecture with Cisco Nexus 9300 Ethernet Switch

Possible Network Architecture (Cisco):

Source: AIRI Reference Architecture with Cisco Nexus 9300 Ethernet Switch

Create Cluster:

Worker Nodes:

Add SSH keys from master node(s) to worker node(s) with the command:

```
ssh-copy-id -i ~/.ssh/id_rsa.pub user@host
```

Main Master Node:

- Clone DeepOps repo and enter directory.
- To setup provisioning machine, run: ./scripts/setup.sh .
- Run cp -r config.example config and edit config/inventory to add nodes.
- Format like: node01 ansible host=127.0.0.1 ip=127.0.0.1
 - See Appendix B for an example.
- Create cluster via Ansible/Kubespray with the command: ansible-playbook -i config/inventory playbooks/k8s-cluster.yml -k -K

Troubleshooting:

- During installation:
 - o Error: Failed to lock apt for exclusive operation:
 - Continue anyways, it should work regardless.
 - Error: Could not get lock /var/lib/dpkg/lock-frontend open (11: Resource temporarily unavailable)
 - See <u>this</u> AskUbuntu page if the error causes problems with the installation. Even though
 it says nodes failed, the cluster should come up without a problem.
- Post-installation:
 - o coredns won't deploy: "0/X nodes are available: X node(s) didn't match pod affinity/anti-affinity, X node(s) didn't satisfy existing pods anti-affinity rules"
 - The deployment is likely trying to create X+1 pods, where X is the number of nodes available. Scale the deployment down to the number of available nodes, and the error should go away.
 - tiller-deploy won't deploy: "0/X nodes are available: X node(s) didn't match node selector, X node(s) had taints that the pod didn't tolerate"
 - Remove the taint on one of your master nodes with kubectl taint node <node-name> node-role.kubernetes.io/master:NoSchedule-

Install Cluster Add-ons:

Main Master Node:

- Install GPU drivers with ansible-playbook -i config/inventory playbooks/k8s-gpu-plugin.yml -K -k
 - o **Troubleshooting**: If you cannot schedule pods with GPU resources, check the log of the nvidia-device-plugin-daemonset pod on the GPU node to find the error.
 - If the log says "Failed to initialize NVML: could not load NVML library":
 - Check to make sure /etc/docker/daemon.json on your GPU node is configured to use the nvidia-container-runtime.
 - If the docker runtime is configured correctly and you still cannot schedule GPU resources, try the following commands on your GPU node:
 - systemctl daemon-reload
 - systemctl restart docker
 - o If you still cannot schedule pods with GPU resources:
 - Try running ansible-playbook -i config/inventory playbooks/nvidia-driver.yml -K -k to manually install the Nvidia GPU drivers.
 - If all else fails, remove the GPU node or tear down the entire cluster and rebuild it.
- Install K8s dashboard with ./scripts/k8s deploy dashboard user.sh
 - Script will:
 - Install dashboard and create any resources required (including deployments, services, service accounts, etc.)
 - Automatically expose an endpoint for the service (port changes per script run).
 - Output a URL to open in web browser.
 - Output a token to access K8s dashboard login page.
- Install monitoring with ./scripts/k8s_deploy_monitoring.sh
 - o Script will:
 - Install dashboard and create any resources required (including deployments, services, service accounts, etc.)
 - Automatically expose an endpoint for the service (ports are set).
 - Output URLs to open in web browser to access dashboards.
 - Services can be reached from:
 - Grafana: http://mgmt:30200

Prometheus: http://mgmt:30500Alertmanager: http://mgmt:30400

- Install persistent storage with ./scripts/k8s_deploy_rook.sh
 - o Script will:
 - Install Rook using Ceph as a backend.
 - Deploy Ceph file and block storage.
 - Deploy a Ceph cluster manager and toolbox container.
 - Deploy the Ceph dashboard.
 - Use ./services/rook-cluster.yml as the deployment configuration make any desired changes here.
 - Troubleshooting: If you've previously installed rook-ceph and your rook-ceph pods are not deploying, try deleting everything in the default data directory with sudo rm -rf /var/lib/rook on all nodes.
 - To remove the Rook deployment, run ./scripts/rmrook.sh
- Install Kubeflow with ./scripts/k8s_deploy_kubeflow.sh
 - o Full Kubeflow documentation can be read here.
 - o Script will:
 - Install dashboard and create any resources required (including deployments, services, service accounts, etc.)
 - Automatically expose an endpoint for the service (port changes per script run).
 - Output a URL to open in web browser to access Kubeflow dashboard.

Scale Cluster:

- Recreate inventory file using the inventory builder tool as seen here under Quick Start (see Appendix C for an example).
- Make sure to only have Kubernetes resources specified here such as [all], [kube-master], [kubenode], [etcd], and [k8s-cluster:children].
- Additionally, make sure these resources match the previous inventory file.
- In kubespray/ directory:

Add node:

- o Add new node to inventory/mycluster/hosts.yml (as well as ../config/inventory).
- Run ansible-playbook -i inventory/mycluster/hosts.yml --become --become user=root scale.yml -K -k

Remove node:

- Run ansible-playbook -i inventory/mycluster/hosts.yml --become --become-user=root remove-node.yml --extra-vars "node=node-to-remove" -K -k
- Remove node from inventory files.

Delete Cluster:

- Recreate inventory file using the inventory builder tool like before.
- Additionally, make sure these resources match the previous inventory file.
- Script will:
 - Fully tear down cluster.
 - o Uninstall kubectl, kubeadm, kubelet from nodes.
- In kubespray/ directory:
 - Run ansible-playbook -i inventory/mycluster/hosts.yml --become --become user=root reset.yml -K -k

Note:

• If during Cluster deletion or Node removal, the Ansible script hangs on "TASK [reset : reset | unmount kubelet dirs", try restarting docker service on all nodes via systemctl restart docker.service.

Appendix A: Compatibility

DeepOps Version: 19.07

Software	Version
Ansible	2.8.11
Kubespray	v2.10.4
Kubernetes	v1.14.3
Docker	18.09.6
Rook	v1.0.2
Ceph	v13 (v13.2.6-20190604)
Slurm	19.05

Appendix B: Example Inventory File

deepops/config/inventory

```
# Server Inventory File
# Uncomment and change the IP addresses in this file to match your environment
# Define per-group or per-host configuration in group_vars/*.yml
######
# ALL NODES
######
[all]
mgmt-node01
                ansible_host=127.0.0.1 ip=127.0.0.1
worker-node01
                ansible_host=127.0.0.2 ip=127.0.0.2
worker-node02
                ansible_host=127.0.0.3 ip=127.0.0.3
######
# KUBERNETES
######
[kube-master]
mgmt-node01
                ansible_host=127.0.0.1 ip=127.0.0.1
[etcd]
mgmt-node01
                ansible_host=127.0.0.1 ip=127.0.0.1
[kube-node]
worker-node01
                ansible_host=127.0.0.2 ip=127.0.0.2
worker-node02
                ansible_host=127.0.0.3 ip=127.0.0.3
[k8s-cluster:children]
kube-master
kube-node
######
# SLURM
######
[slurm-master]
[slurm-node]
```


[slurm-cluster:children]


```
######
# NFS
######
[nfs-server]
[nfs-clients]
#[nfs-clients:children]
######
# OFFLINE CACHE BUILDER
######
[cache_builder]
localhost
            ansible_connection=local
######
# SSH connection configuration
######
[all:vars]
#ansible_user=ubuntu
# Configure SSH bastion/jumpbox for the cluster
#ansible_ssh_common_args='-o ProxyCommand="ssh -W %h:%p -q ubuntu@10.0.0.1"'
```


Appendix C: Example Hosts File

deepops/kubespray/inventory/mycluster/hosts.yml

[all]

mgmt-node01 ansible_host=127.0.0.1 ip=127.0.0.1 worker-node01 ansible_host=127.0.0.2 ip=127.0.0.2 worker-node02 ansible_host=127.0.0.3 ip=127.0.0.3

[kube-master]
mgmt-node01

[kube-node]
worker-node01
worker-node02

[etcd]
mgmt-node01

[k8s-cluster:children]

kube-node
kube-master