A Project report

on

A NOVEL TOLL GATE DESIGN USING PLATE RECOGNITION

Submitted in Partial Fulfillment of the Requirements for the Award of the Degree of

MASTER OF TECHNOLOGY

In

VLSI DESIGN

By

B.V. Prasanna Kumar Reddy

12A91D7204

Under the Esteemed Guidance of

Mr. MSR Sekhar. M.Tech (phd) Associate Professor (ECE)

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

ADITYA ENGINEERING COLLEGE

(Affiliated to JNTU Kakinada, & Approved by AICTE, Accredited by NBA) Surampalem, ADB Road, E.G.Dt, A.P – 533437

(2012-2014)

CERTIFICATE

DEPARTMENT OF

ELECTRONICS AND COMMUNICATION ENGINEERING

This is to certify that the project entitled "A NOVEL TOLL GATE DESIGN USING PLATE RECOGNITION" submitted by Mr. B.V. Prasanna Kumar Reddy (12A91D7204) in partial fulfillment of the requirements for the award of Master of Technology Degree in ELECTRONICS AND COMMUNICATION ENGINEERING with specialization in VLSI DESIGN during the academic period of 2012-2014.

Project Guide

Head of the Department

(Mr.MSR Sekhar, M.Tech., (phd))

(Mrs.G.Sridevi,M.Tech.,(Ph.d))

Associate Professor

Associate Professor

External

DECLARATION

I declare that this project entitled "A NOVEL TOLL GATE DESIGN USING PLATE RECOGNITION" has been carried out by me and contents have been presented in the form of dissertation in partial fulfilment of the requirements for the award of the degree of Master of Technology in VLSI DESIGN.

To the best of my knowledge, the matter embodied in thesis has not been submitted to any other university/ Institute for the award of any degree or diploma.

B.V. Prasanna Kumar Reddy 12A91D7204

ACKNOWLEDGEMENT

First of all, I would like to express my deep sense of respect and gratitude towards my advisor and guide to Mr. MSR Sekhar M.Tech(phd), Associate professor, Aditya Engineering College, who has been the guiding force behind this work. I want to thank him for introducing me to the field of VLSI and giving me the opportunity to work under him. I am greatly indebted to him for his constant encouragement and valuable advice in every aspect of my academic life. I consider it my good fortune to have got an opportunity to work with such a wonderful person.

I am highly indebted to our Head of the Department Mrs.G.Sridevi M.Tech.,(Ph.d), Associate Professor for her motivational guidance during the course of the project work. Her readiness for consultation at all times, her educative comments and inputs, her concern and assistance even with practical things have been extremely helpful.

I express my sincere thanks to **Prof. M. Sreenivasa Reddy, principal** of **Aditya Engineering College**, for his enriching thoughts and profound knowledge, which brought our project work to its completion.

I would like to thank all **Professor and Lecturers, and non-teaching staff of the Department of Electronics and Communication Engineering** for their generous help in various ways for the completion of this project. I am also thankful to my classmates for all the thoughtful and mind stimulating discussions we had, which prompted us to think beyond the obvious.

Finally, I thank everyone who directly or indirectly rendered their valuable guidance and encouragement during any dissertation work.

B.V.Prasannakumar Reddy

12A91D7204

CONTENTS

		Page No.
LIST OF FIGURES		I
LIST OF TABLES ABBRIVATIONS		
CHAPTER 1	INTRODUCTION	1-2
	1.1 Introduction	1
CHAPTER 2	EXISTING SYSTEM	3-5
	2.1 Existing System Based on ANPR	3
	2.1.1 Character Segmentation	3
	2.1.2 Rationale	4
	2.1.3 Possible Problems/Weakness	4
	2.1.4 Existing Method of ANPR	5
	2.1.5 Drawbacks of existing system of ANPR	5
CHAPTER 3	PROPOSED SYSTEM	6-7
	3.1 Block Diagram	6
	3.1.1Description of Proposed system	6
	3.2 Overall Flowchart	7
CHAPTER 4	ANPR SYSTEM	8-35
	4.1Block Diagram of ANPR system	8
	4.2 Segmentation	8
	4.3 Threshold segmentation	10
	4.3.1 Threshold selection	13
	4.3.1.1 Using Histogram Extrema	13

4.3.1.2 Minimum Variance with in segments	14	
4.3.2 Optimal Thresholding		
4.3.3 Enhancing Threshold Segmentation	16	
4.4 Edge Segmentation		
4.4.1 Edge linking	19	
4.4.1.1 The Hough Transform	19	
4.4.1.2 Neighborhood search	20	
4.4.2 Network Analysis	22	
4.4.2.1 Mathematical Programming	22	
4.5 Region segmentation	24	
4.5.1 Meging Methods	25	
4.5.1.1 Region growing	25	
4.5.2 Splitting, Split and merg methods	26	
4.6 Morphological Operations	28	
4.6.1 Structuring element	29	
4.6.1.1 The Origin of a Structuring Element	30	
4.6.2 Dilation		
4.6.3 Erosion		
4.6.4 Combining Dilation and Erosion	31	
4.6.4.1 Opening	31	
4.6.4.2 Closing	32	
4.7 Median filter	32	
4.8 Optical Character Recognition	34	
4.8.1 Preprocessing	34	
4.8.2 Creating the template:	34	
4.8.3 Character Recognition	36	

CHAPTER 5	SERIAL COMMUNICATION	38-41
	5.1 Introduction	38
	5.2 RS232	38
	5.3 Universal Asynchronous Receiver/Transmitter	39
	5.3.1Transmitting & receiving of Serial data Communication	40
	5.3.2 Character framing	40
CHAPTER 6	FPGA (Field Programmable Gate Array)	42-53
	6.1 FPGA (Field Programmable Gate Array)	42
	6.1.1 FPGAVs MICROCONTROLLER	43
	6.2 Xilinx Spartan 3AN	43
	6.2.1 On Chip Features	43
	6.2.2 On-Board Features	44
	6.2.3 Architectural Overview	44
	6.2.3.1 Configurable Logic Blocks (CLBs)	44
	6.2.3.2 Input/Output Blocks (IOBs)	44
	6.2.3.3 Block RAM	44
	6.2.3.4 Multiplier Blocks	44
	6.2.3.5 Digital Clock Manager Blocks (DCM)	45
	6.2.4 Configuration	46
	6.3 General Block Diagram	47
	6.3.1 40 Pin –Box Connector Details	47
	6.3.2 JTAG Connector	48
	6.3.3 JTAG Programmer	48
	6.3.4 Power Supply	48
	6.3.5 Light Emitting Diodes	49
	6.3.6 2x16 Char LCD Display	50

	6.3.7 Buzzer Interface	50
	6.3.8 RS-232 Communication (USART)	50
	6.3.9 Clock Source	51
	6.3.10 In System Flash Memory	52
	6.4 Power Supply	53
CHAPTER 7	HARDWARE MODULES	54-75
	7.1 Pressure Sensor	54
	7.1.1 Operation	55
	7.1.2 Transerse Effect	55
	7.1.3 Longitudinal Effect	55
	7.1.4 Application	56
	7.1.5 Flow Chart for Pressure Sensor Module	56
	7.2 GAS Sensor	56
	7.2.1 Structure and Configuration	57
	7.2.2 Characteristic Confguration	57
	7.2.3 Sensitivity Characteristics	58
	7.2.4 Applications	58
	7.2.5 Flow Chart for GAS Sensor Module	58
	7.3 LM 324	59
	7.3.1 Operation	59
	7.3.2 Advantages	60
	7.4 LM 358	60
	7.4.1 Advantages	60
	7.5 Wireless Communication Modules	61
	7.5.1 RF Transmitter	61
	7.5.2 RF Receiver	62
	7.6 HT12E Encoder	63

	7.7 HT12D Decoder	65
	7.8 DC Motor	67
	7.8.1 Armature, Commutator and Brushes	68
	7.9 Relay	71
	7.9.1 Relay Basics	72
	7.9.1.1 Energised Relay (ON)	72
	7.9.1.2 De-Energised Relay (OFF)	73
	7.9.2 Pole and Throw	73
	7.9.3 Relay Applications	74
CHAPTER 8	RESULTS	76-81
	8.1 Hardware Screenshots	76
	8.2 GUI Screenshots	78
CHAPTER 9	CONCLUSION	82
	9.1 Conclusion	82
	9.2 Future Enhancement	82
CHAPTER 10	REFERENCES	83