IN THE CLAIMS:

1. (Currently Amended) A method for performing time and frequency SNR dependent weighting in speech recognition comprising the steps of:

for each speech frame t, estimating the SNR to get time and frequency SNR information $\eta_{t,f};[[;]]$

calculating the time and frequency weighting to get weighting coefficient γ_{tf} , wherein γ_{tf} is a function of $\eta_{t,f}$;

using an inverse DCT matrix M^{-1} to transform a cepstral distance $(o_t - \mu)$ associated with the speech frame t, to a spectral distance;

computing a weighted spectral distance by applying time and frequency weighting to the spectral distance employing a time-varying diagonal matrix G_t which represents the weighting coefficient $?_{t,t}$:

transforming the weighted spectral distance to a weighted cepstral distance employing a forward DCT matrix M performing the back and forth weighted time varying DCT transformation matrix computation MG_tM⁻¹ to get a transformation matrix T_t;

providing the transformation matrix computation T_t and the original MFCC feature o_t that contains the information about the SNR to a recognizer including the Viterbi decoding; and performing weighted Viterbi recognition $b_j(o_t)$.

2. (Currently Amended) The method of <u>claim 1</u> <u>claim1</u> wherein

$$\gamma_{t,f} = \frac{\sqrt{\eta_{t,f}}}{1 + \sqrt{\eta_{t,f}}}$$

which guarantees that γ_{tf} is equal to 0 when $\eta_{t,f} = 0$ and $\gamma_{t,f}$ approaches 1 when $\eta_{t,f}$ is large.

3. (Currently Amended) A method for performing time and frequency SNR dependent weighting in speech recognition comprising the steps of:

for each <u>time</u> period t, estimating the SNR to get time and frequency SNR information $\eta_{t,f}$;[[;]]

calculating the time and frequency weighting to get weighting coefficient γ_{tf} , wherein γ_{tf} is a function of $\eta_{t,f}$;

using an inverse DCT matrix M^{-1} to transform a cepstral distance $(o_t - \mu)$ associated with the speech time period t to a spectral distance;

computing a weighted spectral distance by applying time and frequency weighting to the spectral distance employing a time-varying diagonal matrix G_t which represents the weighting coefficient $?_{t,f}$;

transforming the weighted spectral distance to a weighted cepstral distance employing a forward DCT matrix M performing the back and forth weighted time varying DCT transformation matrix computation MG_tM⁻¹ to get a transformation matrix T_t;

providing the transformation matrix eomputation T_t and the original MFCC feature o_t that contains the information about the SNR to a recognizer including the Viterbi decoding; and performing weighted Viterbi recognition $b_j(o_t)$.

- 4. (Currently Amended) The method of claim 3 wherein the said estimating the SNR to get time and frequency SNR information $\eta_{t.f}$ step is a pronunciation probability estimation step.
 - 5. (Currently Amended) The method of claim 3 wherein the said estimating the SNR to

get time and frequency SNR information $\eta_{t,f}$ step is a transmission over a noisy communication channel reliability estimation.

6. (Original) The method of claim 3 wherein

$$\gamma_{t:f} = \frac{\sqrt{\eta_{t:f}}}{1 + \sqrt{\eta_{t:f}}}$$

which guarantees that γ_{tf} is equal to 0 when $\eta_{t,f} = 0$ and $\gamma_{t,f}$ approaches 1 when $\eta_{t,f}$ is large.

7. (New) A method for performing time and frequency SNR dependent weighting in speech recognition comprising the steps of:

for each speech frame t, estimating SNR to get time and frequency SNR information $\eta_{t,f}$; calculating the time and frequency weighting to get weighting coefficient γ_{tf} , wherein γ_{tf} is a function of $\eta_{t,f}$;

transforming a cepstral distance $(o_t$ - $\mu)$ associated with the speech frame t to a spectral distance;

computing a weighted spectral distance by applying time and frequency weighting to the spectral distance employing a time-varying diagonal matrix that represents the weighting coefficient $?_{i,f}$;

transforming the weighted spectral distance to a weighted cepstral distance to get a transformation matrix T_t ;

providing the transformation matrix T_t and the original MFCC feature o_t that contains the information about the SNR to a recognizer that performs Viterbi decoding; and

performing weighted Viterbi recognition b_j(o_t).

- 8. (New) The method of claim 7 wherein the estimating the SNR to get time and frequency SNR information $\eta_{t,f}$ is a pronunciation probability estimation.
- 9. (New) The method of claim 7 wherein the estimating the SNR to get time and frequency SNR information $\eta_{t,f}$ is a transmission over a noisy communication channel reliability estimation.