1. Jak a proč posílat SPAM

Definice

- SPAM je hromadná nevyžádaná pošta
- např. využití botnetů pro rozesílání spamu

Důvody

- nekalé obchodní praktiky
- podvodné zvyšování provozu webu (uměle vygenerované odkazy na web)
- pro podvody
 - o phishing
 - krádež identity
 - o získávání hesel, autentizačních informací

Wiki

http://cs.wikipedia.org/wiki/Spam

2. Jak a proč udělat phishing útok

Definice

- PHISHING je nalákání na podvodný web za účelem získání osobních dat, technika sociálního inženýrství
- např. předstírání, že e-mail nebo zpráva pochází z populárních sociálních sítí, aukčních webů, on-line platebních portálů nebo IT administrátorů

Důvody

- získání osobních dat
- krádež finančních prostředků z bankovních účtů

Wiki

http://cs.wikipedia.org/wiki/Phishing

3. Který typ blokové šifry se dá použít jako PRNG

OFB – Output Feedback

synchronní proudová šifra

Wiki

http://cs.wikipedia.org/wiki/Proudov%C3%A1_%C5%A1ifra#Synchronn.C3.AD_proudov.C3.A9_.C5.A_1ifry

Output Feedback (OFB) mode encryption

4. Zabezpečení proti odcizení dat při ztrátě telefonu

- screen lock (passcode, PIN, gesto, rozpoznání obličeje, hlas, kombinace)
- vzdálené smazání obsahu zařízení (Remote Wipe)
- lokální smazání obsahu zařízení (Local Wipe)
- lokalizace (GPS, WiFi, BT)
- šifrování zařízení
- neprovádět root/jailbreak
- Android vypnutí ADB
- iOS změna výchozích přihlašovacích údajů po jailbreaku

5. Typy modifikace malware proti odhalení (např. šifrování)

Obfuskace - vyhýbání se odhalení, skrývání

- **polymorfní** mutace kódu, ale funkcionalita se nemění. Kód se při každém spuštění změní, funkcionalita zůstává stejná.
- **oligomorfní** mutace kódu změnou několika částí na předdefinované alternativy. Pouze stovky různých kódů.
- **metamorfní** vytváření naprosto odlišných logických ekvivalentů. Překlad do přechodné representace, úprava representace, opětovný překlad do binárního kódu.
- **šifrování** tělo kódu je šifrováno, připojen dešifrovací mechanismus. Šifrování není morfismus!

Techniky

- dead-code insertion (NOP)
- transposice kódu
- výměna registrů náhodné přehození registrů v každém replikačním cyklu
- subroutine reordering změna pořadí funkcí
- **substituce instrukcí** za ekvivalenty (MOV za PUSH/POP)
- integrace do kódu kód je dekompilován, malware vložen dovnitř a celkový kód znovu zkompilován

6. Hrozby, aktiva, bezpečnostní funkce (státnicová otázka)

Hrozby

Taková vlastnost prostředí, která může způsobit narušení bezpečnosti (bezpečnostní incident), pokud dostane příležitost.

- neúmyslná (nealgoritmická, pravděpodobnostní)
 - o živelné události (požár, výpadek proudu, záplava)
 - o poruchy zařízení
 - o chyby v software
 - selhání osob (omyly)
- úmyslná (algoritmická)
 - o cílem nejsou data
 - krádež HW a médií
 - úmyslné poškození, zničení zařízení
 - neoprávněné využívání HW
 - založený požár, bomba

- o cílem jsou data
 - krádež SW
 - krádež dat (prodej, zneužití dat, průmyslová špionáž)
 - neoprávněná manipulace s daty (modifikace, zničení)
- škodlivé programy
 - viry, červi, logické bomby, trojské koně

Aktiva

Složky informačního systému, které mají nějakou hodnotu.

• HW (servery, HDD, switche), SW (aplikace, OS, bezpečnostní komponenty), důvěrné informace (celkově data), ale i osoby (zaměstnanci)

Bezpečnostní funkce

- důvěrnost prevence proti neautorizovanému odhalení informace
- integrita prevence proti neautorizované modifikaci informace
- dostupnost prevence proti neautorizovanému odmítnutí informace nebo zdrojů
- účtovatelnost identifikace a monitorování důležitých událostí, sledování činnosti
- bezpečnost přenosu dat důvěrnost, integrita, nepopiratelnost
- audit x nemožnost sledování
- autentizace x anonymita a pseudonymita

Bezpečnostní opatření

- redukují pravděpodobnost vzniku bezpečnostního incidentu (omezují zranitelná místa)
- bariéra mezi hrozbami a aktivy
- omezující bezpečnostní opatření
 - o minimalizace ztrát vzniklých útokem (odhalení nebo odvrácení útoku)
 - o maximalizace zotavení po útoku
- preventivní bezpečnostní opatření
 - o snížení pravděpodobnosti útoku
 - o zvýšení nákladů na útok pro útočníka (cena vyšší než zisk)
 - pravděpodobnost a dopad odhalení
 - náklady na útok
 - čas potřebný k útoku

Zranitelná místa

Slabiny v informačním systému, které mohou být využity pro provedení útoku (bezpečnostního incidentu).

7. Popsat útok na PEAP

- 1. Rogue AP (hostapd)
- 2. Vlastní radius server (freeradius-wpe)
- 3. Deautentizace klienta (aireplay-ng)
- 4. Crack challenge (asleap)

8. Popsat útok na WPA/WPA2

TKIP útok (WPA)

- 1. Využití slabiny algoritmu Michael TKIP v případě detekce 2 rámců, které neprošly testem integrity, blokuje provoz po dobu 60s proběhne restart sítě, generování nových klíčů a nová autentifikace
- 2. Selhání MIC (Message Integrity Check)
- 3. Útočník sleduje odpověď, čeká 60s, aby se vyhnul protiopatřením MIC
- 4. Pomocí mechanismu 1bit/minuta dekóduje paket (ARP za 15 minut)
- 5. Snaží se paket vložit klientovi

Shrnutí útoku

- nedochází ke kompromitaci TKIP klíčů
- útok postihuje režim PSK i 802.1x
- dokáže odhalit 1bit/minutu
- je schopný dešifrovat pouze TKIP rámce od AP

Obrana

použít AES-CCMP (Counter Mode with CBC) – používá WPA2 – považován za bezpečný

9. Proč se SSID hiding a MAC filtering nepovažuje za zabezpečení

- Útočník může zachytit paket s MAC adresou a nastavit svou kartu na tuto adresu.
- V případě SSID hiding se síť neukazuje pouze v seznamu dostupných sítí, ale je možno SSID zjistit odchycením komunikace na síti.

10. Faktory autentizace (heslo, klíč, biometrika)

Faktor znalosti

Autentizace na základě toho, co uživatel zná (heslo).

- výhody: nejsnazší, nejlevnější řešení, nevyžaduje zvláštní HW ani SW, universální
- **nevýhody:** nutnost zapamatovat si heslo, často používáno jedno heslo pro více účtů, obecně nižší bezpečnost, pokud není heslo silné

Faktor vlastnictví

Autentizace na základě toho, co uživatel má (certifikát na USB tokenu, čipové kartě, klíč).

- výhody: složitější získání (pro útočníka), automaticky šifrovaný přenos
- **nevýhody:** obtížnější implementace, vyšší cena, nižší flexibilita

Faktor neměnné charakteristiky

Autentizace na základě toho, **čím uživatel je** (biometrická charakteristika). Lze zavést i čtvrtý **Faktor dovednosti** (**co člověk umí** – podpis a jiné dynamické biometrické charakteristiky).

- **výhody**: teoreticky nejvyšší bezpečnost, složité získání
- nevýhody: vysoká cena některých systémů, složité specializované systémy

11.Cookies

httpOnly

- použito pouze při zasílání http nebo https dotazů, čímž je zamezen přístup jiným API (např JavaScript)
- omezení snižuje hrozbu odcizení cookie pomocí XSS (ale neeliminuje zcela)
- pouze session-management cookies

Secure

- povolený atribut secure a je použito pouze při https, což zajišťuje, že je cookie při přenosu od klienta na server vždy zašifrováno
- odolnější proti odposlechu

Session

- vytvářené v dočasné paměti pro uživatelovu relaci na webu
- vytvářeno, pokud není zadán interval validity nebo datum vypršení cookie
- prohlížeče by při ukončení činnosti měli session cookies vymazat

Persistent

- pevně nastavené datum vypršení cookie nebo interval validity
- persistentní cookie je zasíláno pokaždé, když se uživatel připojí na daný server (web)
- ukládá např. informace o tom, jak se uživatel na web dostal

12. Podmínky nerozluštitelnosti Vernamovy šifry

- klíč je alespoň tak dlouhý jako všechny šifrované zprávy
- klíč není nikdy použit znovu
- klíč je zvolen opravdu náhodně

13.Co je Tamper Evidence + příklad

- mechanismus, který při neoprávněném zacházení zanechává důkaz
- například: pečeť (vosková na dopise, na elektroměru), holografické nálepky, ale také elektronické podpisy apod.