Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Тульский государственный университет»

Кафедра «Информационная безопасность»

СБОРНИК МЕТОДИЧЕСКИХ УКАЗАНИЙ К ЛАБОРАТОНЫМ РАБОТАМ

по дисциплине

ДИАГНОСТИКА И НАДЕЖНОСТЬ АВТОМАТИЗИРОВАННЫХ СИСТЕМ

Направления подготовки:

09.03.03 Прикладная информатика

Профиль «Прикладная информатика в промышленности» **Квалификация (степень) выпускника:** бакалавр

Форма обучения: заочная (дистанционная)

Тула 2020 г.

ЛАБОРАТОРНАЯ РАБОТА №1. Надежность объекта

ЦЕЛЬ РАБОТЫ: изучить основные показатели теории надежности систем

ХОД ВЫПОЛНЕНИЯ

- 1. Изучить лекционный материал по теме работы.
- 2. Решить задачи по варианту, по возможности использовать средства автоматизации (например, OpenOffice Calc, Excel и др.)
- 3. Оформить решения задач и сдать работу преподавателю.

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Функция надежности p(t) = 1 - F(t)

Частота отказов F(t)=f(t)=0 при t≤0

Свойства функции надежности: 1. p(t) - убывающая функция.

2.
$$p(0)=1$$
, $\lim_{t\to\infty} p(t)=0$.

3.
$$\frac{d}{dt}(p(t)) = -f(t)$$
.

Средняя наработка
$$\tau = \int\limits_{0}^{\infty} t \cdot f(t) dt$$
, $\tau = \int\limits_{0}^{\infty} p(t) dt$

$$\lim_{t\to 0}\int_0^t -f(x)dx = 0, \int_0^\infty f(x)dx = \infty$$

Интенсивность $\lambda(t) = \frac{f(t)}{p(t)}$

$$f(t) = -p'(t), f(t) = F'(t),$$

$$p(t) = e^{-\int_0^t \lambda(x)dx}, F(t) = \int_0^t f(t)dt$$

Последовательное соединение

$$p_{_{S}}(t) = \prod_{i=1}^{n} p_{_{i}}(t)\,,\; q_{_{S}} = 1 - p_{_{S}}\,,\; q_{_{S}}(t) = \sum_{i=1}^{n} q_{_{i}}(t)\,,\; \lambda = \sum_{i=1}^{n} \lambda_{_{i}}(t)\,.$$

При
$$\lambda = \text{const}$$
 $\tau = \frac{1}{\lambda_1 + \lambda_2 + ... + \lambda_n}$

Параллельное соединение

$$q_s(t) = \prod_{i=1}^n q_i(t)$$
, $p_s = 1 - q_s$. При $\lambda = const$ $\tau = \sum_{i=1}^n \frac{1}{i}$.

ЗАДАНИЯ НА РАБОТУ

Номер варианта соответствует последней цифре в номере зачетки

Номер варианта	Номера задач
0	1,2,3,6
1	4,5,1,7
2	2,3,4,8
3	5,1,2,9
4	3,4,5,10
5	1,3,5,11
6	2,3,5,12
7	2,4,5,13
8	1,3,4,14
9	2,4,1,15

Задача 1

Дан объект с функцией надёжности $p(t) = 0.2e^{-3t} + 0.7e^{-t}$. Показать, что такого объекта не существует.

Задача 2

Известна функция надёжности p(t)

- а) Определить вероятность того, что отказ произойдёт на интервале (t_1, t_2) ;
- б) Известно, что объект проработал до момента t_1 . Найти вероятность того, что он проработает до момента t_2 .

Задача З

Даны два объекта с функциями надежности $P_1(t)=e^{-2t}$; $P_2(t)=0.2e^{-3t}+0.8e^{-t}$. У какого из объектов больше средняя наработка?

Задача 4

Объект имеет постоянные интервалы отказов. Найти значение вероятности безотказной работы в течение средней наработки до отказа.

Задача 5

Распределение наработки до отказа — равномерное в интервале (0, a). Найти функцию надёжности, функцию отказа, среднюю наработку до отказа, интенсивность, вероятность безотказной работы в течение средней наработки.

Задача 6

Дана частота отказов $f(t)=c_1\lambda_1e^{-\lambda_1t}+c_2\lambda_2e^{-\lambda_2t}$, где $c_1+c_2=1$. Найти p(t), g(t), τ , λ (t).

Задача 7

Известны значения частоты и интенсивности отказов объекта в один и тот же момент времени. Они равны 0,5 и 0,7. Какая из этих величин чему равна?

Задача 8

Интенсивность отказов объекта $\lambda(t)=t$. Найти функцию надёжности, частоту отказов, среднюю наработку, вероятность безотказной работы в течение средней наработки.

Задача 9

Какие из этих функций могут быть интенсивностями отказов?

a)
$$e^{-t}$$
; б) e^{t} ; в) t^{5} ; Γ) $\frac{1}{(t+1)^{3}}$; д) $\frac{1}{t+1}$.

Задача 10

У объекта с постоянной интенсивностью отказов $P\{T \le 50\} = \alpha$. Найти $P\{100 \le T \le 200\}$.

Задача 11

Решить задачу 10, если интенсивность отказов линейно возрастает: $\lambda(t) = \alpha t$.

Задача 12

Испытаниям подвергаются 50 объектов с интенсивностью отказа $\lambda(t) = 10^{-5}$ 1/ч. Вычислить ожидаемое число отказов через 18000ч. наработки.

Задача 13

Какой должна быть средняя наработка до отказа объекта с постоянной интенсивностью отказов, чтобы вероятность безотказной работы в течение 200 ч. была 0,99

Задача 14

Интенсивность отказов $\lambda(t)$ =t. Найти ожидаемое число отказов за второй час работы, если к концу первого часа вышли из строя 3 из 50 приборов.

Задача 15

Интенсивность отказов $\lambda(t)$ =t. Найти ожидаемое число отказов за третий час работы, если к концу первого часа вышли из строя 13 из 23 приборов.

ЛАБОРАТОРНАЯ РАБОТА №2. Резервирование системы

ЦЕЛЬ РАБОТЫ: изучить основные показатели теории надежности систем и резервирование системы.

ХОД ВЫПОЛНЕНИЯ

- 1. Изучить лекционный материал по теме работы.
- 2. Решить задачи по варианту, по возможности использовать средства автоматизации (например, OpenOffice Calc, Excel и др.)
- 3. Оформить решения задач и сдать работу преподавателю.

ЗАДАНИЯ НА РАБОТУ

Номер варианта соответствует последней цифре в номере зачетки

Номер варианта	Номера задач
0	1,2,3
1	4,5,1
2	2,3,4
3	5,1,2
4	3,4,5
5	1,3,5
6	2,3,5
7	2,4,5
8	1,3,4
9	2,4,1

Задача 1

Интенсивность отказов объекта λ =0,016 (1/ч). Для повышения надёжности можно либо облегчить режим работы и снизить интенсивность вдвое, либо дублировать изделие горячим резервом без облегчения режима. Какой способ более целесообразен, если надёжность изделия оценивать средней наработки?

Задача 2

Пусть в предыдущей задаче надёжность оценивают как p(10). Какой способ повышения надёжности более целесообразен?

Задача 3

Система из двух элементов с постоянной интенсивностью отказов и средней наработкой каждого элемента τ имеет в резерве третий элемент. Методом графа состояний определить среднюю наработку системы для случая горячего и холодного резерва, а также различных способов соединения элементов в систему.

Задача 4

Объект дублирован тёплым резервом. Интенсивность отказов в рабочем состоянии λ_r . Переключатель имеет интенсивность отказов λ_o . Найти среднюю наработку.

Задача 5

Имеется один основной элемент и один резервный с постоянной интенсивностью отказов λ . Есть два варианта резервирования:

- а) пассивное резервирование;
- б) активное резервирование с холодным резервом и переключателем с такой же интенсивностью отказов λ .

При каком резервировании будет выше надёжность?

ЛАБОРАТОРНАЯ РАБОТА №3. Восстанавливаемый объект

ЦЕЛЬ РАБОТЫ: изучить основные показатели теории надежности систем и характеристики восстанавливаемого объекта.

ХОД ВЫПОЛНЕНИЯ

- 1. Изучить лекционный материал по теме работы.
- 2. Решить задачи по варивнту, по возможности использовать средства автоматизации (например, OpenOffice Calc, Excel и др.).
- 3. Оформить решения задач и сдать работу преподавателю.

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Если интенсивность отказов λ , интенсивность восстановления μ , то:

$$K_{\Gamma}(t) = \frac{\lambda}{\lambda + \mu} e^{-(\lambda + \mu)t} + \frac{\mu}{\lambda + \mu}$$
$$K_{\pi}(t) = \frac{\lambda}{\lambda + \mu} \left(1 - e^{-(\lambda + \mu)t} \right)$$

Коэффициент готовности
$$K_{\Gamma} = \lim_{t \to \infty} K_{\Gamma}(t) = \frac{\mu}{\lambda + \mu}$$

Коэффициент простоя
$$K_{\pi} = \lim_{t \to \infty} K_{\pi}(t) = \frac{\lambda}{\lambda + \mu}$$

Другой подход к определению коэффициента готовности:

$$K_{\Gamma} = \frac{\tau}{\tau + \tau_{\scriptscriptstyle B}}$$
, где

au — средняя наработка между отказами, $au_{\rm B}$ — среднее время восстановления. Эта формула верна для произвольных распределений наработки до отказа и времени восстановления.

В последующих задачах предполагается, что интенсивности отказа и восстановления постоянны.

ЗАДАНИЯ НА РАБОТУ <u>Номер варианта соответствует последней цифре в номере зачетки</u>

Номер варианта	Номера задач
0	1,2,3
1	4,5,1
2	2,3,4
3	5,1,2
4	3,4,5
5	1,3,5
6	2,3,5
7	2,4,5

8	1,3,4
9	2,4,1

Задача 1

Пусть K_{Γ} =0,95, среднее время восстановления 5ч. Вычислить вероятность безотказной работы в течение первых 2ч.

Задача 2

Средняя наработка между отказами 500ч, K_{Γ} =0,9. Определить $K_{\Gamma}(1)$.

Задача З

Вероятность безотказной работы объекта в течение первых трёх часов равно 0,997. Среднее время восстановления 2,5ч. Найти K_Π .

Задача 4

Пусть $\tau = \frac{1}{\lambda}$ — средняя наработка до отказа объекта. Можно ли определить значение $K_{\Gamma}(\tau)$, если из всех данных есть только значение коэффициента готовности K_{Γ} ?

Задача 5

Пусть известны значения K_Γ и $\tau=\frac{1}{\lambda}$. Можно ли определить функцию готовности $K_\Gamma(t)$?

ЛАБОРАТОРНАЯ РАБОТА №4. Восстанавливаемые системы

ЦЕЛЬ РАБОТЫ: изучить основные показатели теории надежности систем и характеристики восстанавливаемых систем.

ХОД ВЫПОЛНЕНИЯ

- 1. Изучить лекционный материал по теме работы.
- 2. Решить задачи по варинту, по возможности использовать средства автоматизации (например, OpenOffice Calc, Excel и др.).
- 3. Оформить решения задач и сдать работу преподавателю.

ЗАДАНИЯ НА РАБОТУ <u>Номер варианта соответствует последней цифре в номере зачетки</u>

Номер варианта	Номера задач
0	1,2,3
1	4,5,1
2	2,3,4
3	5,1,2
4	3,4,5
5	1,3,5
6	2,3,5
7	2,4,5
8	1,3,4
9	2,4,1

Задача 1

Пусть в системе один основной элемент и один резервный. Резерв горячий, восстановление неограниченное. Построить граф состояний и записать уравнения переходного режима.

Задача 2

В системе один основной элемент и один резервный. Резерв тёплый, восстановление полностью ограниченное. Построить граф состояний и написать уравнения стационарного режима.

Задача З

В системе один основной элемент и один запасной в холодном резерве. После отказа системы она не включается, пока оба отказавших элемента не будут восстановлены. Найти K_{Γ} , если восстановление:

а) неограниченное

б) ограниченное

Проверить при $\lambda = \mu$.

Задача 4

Имеется непрерывно работающая двухканальная линия передачи информации. Восстановление отказавшего канала требует выключения всей линии. Интенсивность отказов каждого канала λ , интенсивность восстановления - μ .

Как лучше отключать линию, чтобы потерять минимум информации: при каждом отказе или при отказе обоих каналов? Восстановление неограниченное.

Задача 5

Элемент имеет холодный резерв. Определить среднюю наработку до первого отказа.