Leksioni 8

Endri Raco

05 May, 2024

Endri Raco Leksioni 8 05 May, 2024 1 / 120

- 1 Të dhënat Raster (vazhdim)
- 2 Algjebra e Hartave
- 3 Praktikë

Endri Raco Leksioni 8 05 May, 2024 2 / 120

Section 1

Të dhënat Raster (vazhdim)

Endri Raco Leksioni 8 05 May, 2024 3 / 120

Analiza e Pikave dhe Vlerësimi i Dendësisë së Kernelit (KDE)

import urllib.request

Shkarkoni të dhënat e anijeve të mbytura historike

url_shipwrecks = 'https://github.com/endri81/instatgis/blob/master/data/gis4/darmc_historical_shipwrecks_500bce file_name_shipwrecks = 'data/darmc_historical_shipwrecks_500bce_1500ce.geojson' urllib.request.urlretrieve(url_shipwrecks, file_name_shipwrecks)

Shkarkoni qjithashtu kufijtë e vendeve

w Distribute glottestate wayerte to be december url_boundaries = 'https://github.com/endri81/instatgis/blob/master/data/gis4/natural_earth_world_boundaries_50m file_name_boundaries = 'data/natural_earth_world_boundaries_50m_2018.geojson' urllib.request.urlretrieve(url_boundaries, file_name_boundaries)

Endri Raco Leksioni 8 05 May, 2024 4 / 120

Ngarkimi dhe Projekti i Dataset-eve

```
import geopandas as gpd

# Ngarkoni dataset-in dhe projektoni në 3035 (Lambert, i përshtatshëm për Evropën)
ship_df = gpd.read_file('data/darmc_historical_shipwrecks_500bce_1500ce.geojson').to_crs(3035)
countries_df = gpd.read_file('data/natural_earth_world_boundaries_50m_2018.geojson').to_crs(3035)
```


Endri Raco Leksioni 8 05 May, 2024 5 / 120

Shfaqni një shembull të të dhënave

ship_df.sample(5)

Endri Raco Leksioni 8 05 May, 2024 6 / 120

Shfaqni një shembull të të dhënave

	2010_wrec	k_id	name_1	name_2	start_date	end_date	year_found	depth	depth_q	length	width	cargo_1	type_1	cargo_2	type_2	cargo_3	type_3	other_ca
66	0 4	82.0	Macchia Tonda, La	None	50.0	100.0	None	12.0	None	None	NaN	amphoras	Dr14, pear- shaped; flat- bottomed amphora	None	None	None	None	N
27	6 70	02.0	Pomègues 1	None	200.0	300.0	None	7.0	None	None	NaN	amphoras	Almagro 50 and LaubenheimerG4	ceramic	pottery medallion	coins	sestertius of Antoninus Pius (145- 161), middle	laı
14	7 3	69.0	Grazel 2	None	631.0	631.0	None	NaN	None	None	NaN	metal	bronze pots, box, strainer, lamp, fittings	coins	coins ending 630-1 AD	None	None	N
89	1 4	28.0	Kornat	None	1.0	100.0	None	NaN	None	None	NaN	amphoras	None	None	None	None	None	N
90	9 10	09.0	Vis 7	None	1.0	500.0	None	NaN	None	None	NaN	amphoras	None	None	None	None	None	N

Endri Raco Leksioni 8 05 May, 2024 7 / 120

Vizualizimi i Pikave

```
import geoplot
import matplotlib.pvplot as plt
# Përkufizoni kanavacën
f, ax = plt.subplots(figsize=(10,7))
# Vizualizoni dy shtresa
countries_df.plot(ax=ax, color='lightgray', edgecolor="none", linewidth=.5)
geoplot.pointplot(ship_df, s=2, color='red', ax=ax, alpha=.1)
# Vendosni kufijtë e hartës
# Krijoni një buffer për të shtuar një margjinë
buff = ship_df.buffer(1)
xlim = ([buff.total bounds[0], buff.total bounds[2]])
vlim = ([buff.total bounds[1], buff.total bounds[3]])
ax.set_xlim(xlim)
ax.set_ylim(ylim)
# Vendosni titullin e hartës
ax.set_title('Anije të Mbytura (500 p.e.s. - 1500 e.s.)')
# Shfaqni rezultatet
plt.show()
```


Endri Raco Leksioni 8 05 May, 2024 8 / 120

Vizualizimi i Pikave

Endri Raco Leksioni 8 05 May, 2024 9 / 120

• Një mënyrë më e mirë për të përfaqësuar një densitet hapësinor është një histogram dy-dimensional (hist2d), i njohur gjithashtu si një grafik rrjeti.

Endri Raco Leksioni 8 05 May, 2024 10 / 120

• Vini re se një nga avantazhet e Python është mundësia e ndryshimit të parametrave të një funksioni përmes një cikli for (për shembull, numri i shtyllave në një histogram) dhe krahasimi i rezultateve.

Endri Raco Leksioni 8 05 May, 2024 11 / 120

```
# riprojektojmë në lon/lat për të pasur koordinata më të interpretueshme
ship_df = ship_df.to_crs(4326)

# le të luajmë me numrin e bins:
for bin_n in [10,20,30,40]:
    print("bin_n",bin_n)
h = plt.hist2d(ship_df.geometry.x, ship_df.geometry.y, bins=bin_n, density=False)
    plt.colorbar(h[3])
    plt.title('2D histograma e anijeve (bins='+str(bin_n)+")")
    plt.show()
```


Këto grafikë tregojnë praninë e një zone me densitet jashtëzakonisht të lartë midis Francës, Korsikës dhe Italisë:

Endri Raco Leksioni 8 05 May, 2024 13 / 120

Grafiku KDE

- Një qasje më shkencore është vlerësimi i densitetit të bërthamës (KDE).
- **geoplot.kdeplot(...)** mund të vizatojë një KDE duke u nisur nga të dhënat e pikës.

Endri Raco Leksioni 8 05 May, 2024 14 / 120

Grafiku KDE

• Një parametër vendimtar është **bandwidth** (bw), që është pragu i distancës që përdoret për të prodhuar sipërfaqen (distancat më të shkurtra rezultojnë në një sipërfaqe më të detajuar):

Endri Raco Leksioni 8 05 May, 2024 15 / 120

```
# transformojmë në lon/lat
ship_df_ll = ship_df.to_crs(4326)

# gjenerojmë KDE me bandwidth të ndryshëm
for bandwidth in [.1, .2, .3, .4]:
    print("bandwidth:",bandwidth)
    # konturet e KDE
    ax = geoplot.kdeplot(ship_df_ll, shade=False, bw=bandwidth, figsize=(12, 12), alpha=.5)
    # shtojmë vijën bregdetare
    countries_df.to_crs(4326).plot(ax=ax, color='lightgray', edgecolor="none", linewidth=.5)
    # shtojmë titull
    plt.title('Dendësia e mbytjeve të anijeve (KDE, bw='+str(bandwidth)+")", fontsize=18)
    # figura
    plt.show()
```


Grafiku KDE

Endri Raco Leksioni 8 05 May, 2024 17/120

Analiza e të dhënave

- Këta grafikë KDE tregojnë se dataset-i ka një përqendrim shumë të lartë të pikave në Detin Mesdhe, midis Francës Jugore, Korsikës dhe Bregut Perëndimor të Italisë.
- Në të gjitha grafikët, kjo qendër graviteti shfaqet qartë.

Endri Raco Leksioni 8 05 May, 2024 18 / 120

Analiza e të dhënave

• Në aspektin shkencor, kjo mund të tregojë se kishte shumë më tepër mbytje anijesh aty se gjetkë, ose (më e mundshme) që të dhënat historike janë më të pasura dhe më të hollësishme për atë zonë.

Endri Raco Leksioni 8 05 May, 2024 19 / 120

Section 2

Algjebra e Hartave

Endri Raco Leksioni 8 05 May, 2024 20 / 120

Algjebra e Hartave

- Termi "algjebra e hartave" i referohet idesë së aplikimit të operacioneve algjebrike në dataset-e raster.
- Për shembull, mund të dëshirojmë të zbresim nga njëri- tjetri dy rastera të temperaturës të kapur në kohë të ndryshme për të vëzhguar ndryshimin e temperaturës:

Endri Raco Leksioni 8 05 May, 2024 21 / 120

Algjebra e Hartave

Endri Raco Leksioni 8 05 May, 2024 22 / 120

Algjebra e Hartave

Në praktikë, ky është një operacion aritmetik i aplikuar në çdo qelizë të të dy raster-ve:

Endri Raco Leksioni 8 05 May, 2024 23 / 120

Algjebra e hartave në Python

- Kur aksesojmë raster me **rasterio** ose **gdal**, ne mund të kryejmë çdo lloj llogaritjeje algjebrike lineare mbi të dhënat duke përdorur **numpy**, **scipy** dhe shumë paketa të tjera të fuqishme të Python.
- Statistikat zonale suportohen në librarinë **rasterstats**.

Endri Raco Leksioni 8 05 May, 2024 24 / 120

Algjebra e hartave në Python

• Kjo është arsyeja kryesore pse Python përdoret gjerësisht në komunitetet e remote sensing, machine learning, dhe AI.

Endri Raco Leksioni 8 05 May, 2024 25 / 120

 Si një shembull, le të shkarkojmë dhe vizualizojmë dy datasete raster që përfaqësojnë temperaturën mesatare në vitin 2000 dhe 2017.

Endri Raco Leksioni 8 05 May, 2024 26 / 120

```
import urllib.request

# Define new URLs and file names
url_2000 = "https://github.com/endri81/instatgis/blob/master/data/gis4/air_temp_2000-average.tif?raw=true"
url_2017 = "https://github.com/endri81/instatgis/blob/master/data/gis4/air_temp_2017-average.tif?raw=true"
file_name_2000 = 'data/air_temp_2000-average.tif'
file_name_2017 = 'data/air_temp_2017-average.tif'

# Download the files
urllib.request.urlretrieve(url_2000, file_name_2000)
urllib.request.urlretrieve(url_2017, file_name_2017)
```


Endri Raco Leksioni 8 05 May, 2024 27 / 120

```
temp00 = rasterio.open('data/air_temp_2000-average.tif')
print(temp00.meta)
temp17 = rasterio.open('data/air_temp_2017-average.tif')
print(temp17.meta)
```


'RdYlBu r', diverge zero=True)

Endri Raco Leksioni 8 05 May, 2024 30/120

- Vizualisht, nuk është e mundur të dallohen ndryshimet midis të dhënave të vitit 2000 dhe atyre të vitit 2017.
- Prandaj, do të zbresim dy rasterat e temperaturës, duke përdorur Algjebrën e Hartave.

Endri Raco Leksioni 8 05 May, 2024 31 / 120

- Në praktikë, Python lejon të bëhet kjo në mënyrë intuitive si raster_vals2 - raster_vals1.
- Këto janë operacione algjebrike lineare të aplikuara në çdo qelizë të matricave.

Endri Raco Leksioni 8 05 May, 2024 32 / 120

• Pastaj do të ndërtojmë një histogram të vlerave dhe raster-it, duke treguar se temperaturat mesatare janë më të larta me 0.5 gradë, me disa raste ekstreme pozitive dhe negative që mund të shkaktohen nga gabimet e sensorëve.

Endri Raco Leksioni 8 05 May, 2024 33 / 120

Rezultati do të ruhet në një skedar të ri raster, duke ripërdorur metadatat nga raster-at hyrës.

Endri Raco Leksioni 8 05 May, 2024 34 / 120

```
vals17 = temp17.read(1, masked=True)
vals00 = temp00.read(1, masked=True)
```


Endri Raco Leksioni 8 05 May, 2024 35/120

```
# zbresim të dy raster-at
vals_diff = vals17 - vals00
print("Statistikat e Diferencës:", vals_diff.min(), round(vals_diff.mean(), 2), vals_diff.max())
print("Diferenca midis mesatareve:", round(vals17.mean()-vals00.mean(), 3))
```


Endri Raco Leksioni 8 05 May, 2024 36 / 120

Krahasimi i të dhënave raster

```
# vizatoni histogramin
show_hist(vals_diff, bins=30, lw=0.2, stacked=False, alpha=0.8, label='Nr i qelizave',
histtype='stepfilled', title="Dallimi në temperaturën mesatare (2000-2017)")
```


Endri Raco Leksioni 8 05 May, 2024 37 / 120

Krahasimi i të dhënave raster

Endri Raco Leksioni 8 05 May, 2024 38 / 120

Ndërtojmë rasterin

• Cmap (Purple - White - Orange) thekson vlerat ekstreme, duke fshehur zonat ku vlerat nuk divergojnë.

Endri Raco Leksioni 8 05 May, 2024 39 / 120

Ndërtojmë rasterin

Endri Raco Leksioni 8 05 May, 2024 40 / 120

Ndërtojmë rasterin

Ruani rezultatin në një skedar raster

• Është e rëndësishme të specifikohen metadatat nga skedarët hyrës, përfshirë CRS, vlerën NODATA dhe transformimin e koordinatave gjeografike:

Endri Raco Leksioni 8 05 May, 2024 42 / 120

Ruani rezultatin në një skedar raster

```
fout = 'tmp/air_temp_diff_2000_2017.tif'
ds = rasterio.open(fout, 'w',
    driver='GTiff', # formati i skedarit të daljes
    height=vals_diff.shape[0], # madhësia e matricës
    width=vals_diff.shape[1], # madhësia e matricës
    count=1, # numri i bandave
    dtype=vals_diff.dtype, # lloji i të dhënave (p.sh., pikë lundruese)
    crs=temp17.crs, # CRS (p.sh., Lambert, WGS&4, UTM, etj.)
    nodata=temp17.nodata, # vlera e përdorur për të përfaqësuar NO DATA
    transform=temp17.transform # transformimi i koordinatave gjeografike
)

ds.write(vals_diff, 1)
ds.close()
print("Raster u ruajt te", fout, '.')
```


Statistikat zonale

- Kur dëshirojmë të llogarisim statistikat raster bazuar në një zonë gjeografike, na duhen **statistikat zonale**.
- Për shembull, mund të dëshirojmë të llogarisim lartësinë mesatare (vlerat) e çdo rrethi (zonave) në Angli.

Endri Raco Leksioni 8 05 May, 2024 44 / 120

Statistikat zonale

• Si skedar **input**, statistikat zonale kanë nevojë për një raster që përfaqëson vlerat dhe një grup tjetër të dhënash që përfaqëson zonat për të cilat duam të llogarisim statistikat:

Endri Raco Leksioni 8 05 May, 2024 45 / 120

Statistikat zonale

Statistikat zonale

• Në këtë shembull, ne do të përdorim të dhënat evropiane të NOx të përdorura më sipër si vlera dhe zonat statistikore evropiane (NUTS)

Endri Raco Leksioni 8 05 May, 2024 46 / 120

Shkarkojmë datat

```
# shkarkoni kufijtë rajonalë të BE-së (niveli NUTS 2, 2021)
nuts2_file = 'data/NUTS_RG_01M_2021_4326_LEVL_2.geojson.gz'
url = 'https://raw.githubusercontent.com/endri81/instatgis/master/data/gis4/NUTS_RG_01M_2021_4326_LEVL_2.geojso
urllib.request.urlretrieve(url, nuts2_file)
```


Endri Raco Leksioni 8 05 May, 2024 47 / 120

Shkarkojmë datat

Skedari është gzip dhe mund ta hapim direkt me **gzip.open**(...)

```
import geopandas as gpd
import gzip
nuts2_df = gpd.read_file(gzip.open(nuts2_file))
nuts2_df.plot()
```


Endri Raco Leksioni 8 05 May, 2024 48 / 120

Shkarkojmë datat

49 / 120

Endri Raco Leksioni 8 05 May, 2024

Kontrollojmë

nuts2_df.sample(5)

Endri Raco Leksioni 8 05 May, 2024 50 / 120

• Duke qenë se nuk kemi të dhëna për Guyana Franceze dhe territore të tjera më të vogla, mund t'i heqim ato nga dataset-i.

Endri Raco Leksioni 8 05 May, 2024 51 / 120

Në dataframe pandas, mund të shkruajmë kushte në mënyra të ndryshme:

- column.str.contains(string) kryen një përputhje të pjesshme në një kolonë me format tekst
- column.isin(list) kryen një përputhje të saktë në përmbajtjen e një kolone ndaj një liste
- ~ do të thotë "jo" (vetëm në kontekstin e pandas)

Endri Raco Leksioni 8 05 May, 2024 52 / 120

- Do projektojmë kufijtë dhe ti ruajmë ato në një GeoPackage.
- Kini parasysh se GeoJSON lejon vetëm gjeometri në WGS84 (4326).
- Kur keni një CRS tjetër, duhet të përdorni një GeoPackage.

Endri Raco Leksioni 8 05 May, 2024 53 / 120

```
# Kjo shprehje do të thotë:

# zgjidhni rreshta ku NUTS_ID nuk përmban 'FRY'
nuts2_df = nuts2_df[-nuts2_df['NUTS_ID'].str.contains("FRY")]

# hiqni rreshtat me kode që korrespondojnë me ishujt për të cilët nuk kemi të dhëna:
nuts2_df = nuts2_df[-nuts2_df['NUTS_ID'].isin(['PT20','PT30','ES70','N00B'])]

# projektoni në Lambert (i përshtatshëm për Evropën)
nuts2_df = nuts2_df.to_crs(3035)
nuts2_df.info()

# Ky është një rregullim: dataframe gjeo kanë nevojë që FID të jetë i tipit integer
nuts2_df['FID'] = nuts2_df.index
```


Endri Raco Leksioni 8 05 May, 2024 54 / 120

Ruani këtë dataset në një skedar

```
nuts2_clean_file = "tmp/nuts2_boundaries.gpkg"
nuts2_df.to_file(nuts2_clean_file, driver="GPKG")
```


Endri Raco Leksioni 8 05 May, 2024 55 / 120

Vizatoni gjeometrinë

nuts2_df.plot(figsize=(10,10))

Endri Raco Leksioni 8 05 May, 2024 56/120

Vizatoni gjeometrinë

Indri Raço

Endri Raco Leksioni 8 05 May, 2024 5

- Statistikat zonale mund të llogariten me funksionin rasterstats.zonal stats
- Parametri stats tregon cilat statistika dëshirojmë të llogariten në çdo zonë.

Endri Raco Leksioni 8 05 May, 2024 58 / 120

• Do të llogarisim disa statistika zonale dhe do ta ruajmë rezultatin në një GeoPackage dhe një skedar CSV:

Endri Raco Leksioni 8 05 May, 2024 59 / 120

Endri Raco Leksioni 8 05 May, 2024 60 / 120

- Rezultati është një listë e fjalorëve që përmban statistikat për çdo rresht të skedarit hyrës të vektorit
- Këto rezultate mund të konvertohen në një kornizë të të dhënave gjeo kështu:

Endri Raco Leksioni 8 05 May, 2024 61 / 120

Endri Raco Leksioni 8 05 May, 2024 62 / 120

	geometry	id	COAST_TYPE	MOUNT_TYPE	NAME_LATN	CNTR_CODE	NUTS_ID	NUTS_NAME	LEVL_CODE	URBN_TYPE	
56	MULTIPOLYGON (((3735722.439 1899591.154, 37359	ES53	NaN	0	Illes Balears	ES	ES53	Illes Balears	2	NaN	
90	POLYGON ((5080508.322 3065872.586, 5080260.235	PL21	NaN	0	Małopolskie	PL	PL21	Małopolskie	2	NaN	
111	POLYGON ((4384447.442 3167714.424, 4384669.555	DEG0	NaN	0	Thüringen	DE	DEG0	Thüringen	2	NaN	
185	MULTIPOLYGON (((4545500.129 2265401.004, 45461	ITI2	NaN	0	Umbria	IT	ITI2	Umbria	2	NaN	

Endri Raco Leksioni 8 05 May, 2024 63 / 120

```
# ruajmë rezultatin në një geopackage
stats_df.to_file('tmp/eu_nox_2016_nuts2.gpkg', driver="GPKG")

# për lehtësi ruajmë tabelën e atributeve si CSV
stats_df.drop(columns=['geometry']).to_csv('tmp/eu_nox_2016_nuts2.csv', index=False)
print("results saved.")
```


Endri Raco Leksioni 8 05 May, 2024 64 / 120

- Tani, ne mund të eksplorojmë dhe vizualizojmë rezultatet.
- Funksioni .rank() i pandas na lejon të renditim vlerat.

Endri Raco Leksioni 8 05 May, 2024 65 / 120

- Shpesh është një ide e mirë të ndajmë në qeliza të ndryshme llogaritjet dhe vizualizimet e gjata.
- Në këtë rast, nëse dëshirojmë të ekzekutojmë vizualizime të ndryshme, nuk kemi nevojë të rikthejmë llogaritjet zonale në qelizën e mëparshme.

Endri Raco Leksioni 8 05 May, 2024 66 / 120

```
nox_nuts2_df = gpd.read_file('tmp/eu_nox_2016_nuts2.gpkg')
print(nox_nuts2_df.describe())
print(nox_nuts2_df.columns)
```


Endri Raco Leksioni 8 05 May, 2024 67/120

13.782574 5964.000000 13.590500

56773.000000

75%

max

54.289036

	COAST_TYPE	MOUNT_TYPE	LEVL_CODE	URBN_TYPE	nox_min	nox_max	
count	6.0	325.0	325.0	6.0	325.000000	325.000000	
mean	0.0	0.0	2.0	0.0	4.336815	29.984501	
std	0.0	0.0	0.0	0.0	5.983261	18.589846	
min	0.0	0.0	2.0	0.0	0.050000	1.061000	
25%	0.0	0.0	2.0	0.0	0.050000	18.127001	
50%	0.0	0.0	2.0	0.0	1.395000	23.889000	
75%	0.0	0.0	2.0	0.0	7.528000	34.648998	
max	0.0	0.0	2.0	0.0	47.188000	118.250999	
	nox_mean	nox_count	nox_media	an			
count	325.000000	325.000000	325.00000	90			
mean	11.772977	4428.744615	11.40732	28			
std	7.030471	5540.615930	6.94961	15			
min	0.083497	3.000000	0.05000	90			
25%	7.030450	1301.000000	6.78400	90			
50%	10.620482	2840.000000	10.45300	90			

Endri Raco Leksioni 8 05 May, 2024 68 / 120

52.843498

```
# Rendisni rajonet: 1 = vlera mē e lartē
nox_nuts2_df['nox_mean_rank'] = nox_nuts2_df['nox_mean'].rank(ascending=False)
nox_nuts2_df['nox_max_rank'] = nox_nuts2_df['nox_max'].rank(ascending=False)
```



```
# E vērtetē nēse viera > 40
nox_nuts2_df['nox_max_high'] = nox_nuts2_df['nox_max'] > 40
```


Endri Raco Leksioni 8 05 May, 2024 70 / 120

Endri Raco Leksioni 8 05 May, 2024 71 / 120

	NUTS_ID	NUTS_NAME	nox_mean	nox_max	nox_mean_rank	nox_max_rank	nox_max_high
234	UKI3	Inner London — West	54.289036	60.915001	1.0	23.0	True
235	UKI4	Inner London — East	48.673785	60.771000	2.0	24.0	True
233	UKI7	Outer London — West and North West	42.045606	60.487999	3.0	25.0	True
41	BE10	Région de Bruxelles-Capitale/ Brussels Hoofdst	40.851095	49.681000	4.0	40.0	True
236	UKI5	Outer London — East and North East	33.673233	53.467999	5.0	34.0	True
42	BE21	Prov. Antwerpen	30.655168	86.754997	6.0	6.0	True
171	NL33	Zuid-Holland	29.971545	79.961998	7.0	13.0	True
286	UKI6	Outer London — South	29.414680	52.473000	8.0	36.0	True
138	DEA1	Düsseldorf	29.366611	53.619999	9.0	33.0	True
232	UKG3	West Midlands	28.163673	35.469002	10.0	76.0	False
177	ITC4	Lombardia	26.701113	84.431000	11.0	8.0	True
230	UKD7	Merseyside	26.619785	59.910000	12.0	27.0	True
102	ES63	Ciudad de Ceuta	26.568334	33.310001	13.0	93.0	False
169	NL31	Utrecht	26.447465	37.550999	14.0	67.0	False
322	TR10	İstanbul	25.629883	118.250999	15.0	1.0	True
242	UKD3	Greater Manchester	25.620574	42.200001	16.0	57.0	True
217	NL41	Noord-Brabant	24.854877	81.477997	17.0	12.0	True
153	HU11	Budapest	24.001561	30.010000	18.0	113.0	False
218	NL42	Limburg (NL)	23.951939	30.733000	19.0	107.0	False
45		dri Raco Wien	23.914827 Leksion	34.138000 i 8	20.0	86.0 05 May, 2	False 2024

- Vini re se si renditja për nox_max dhe nox_mean mund të ndryshojë:
- Për shembull, Inner London West ("UKI3") ka nivelin më të lartë të NOx në mesatare, por është vetëm i 23-ti për sa i përket vlerës maksimale.

Endri Raco Leksioni 8 05 May, 2024 73 / 120

• Mund të vizatojmë vlerat e grumbulluara me një choropleth:

```
nox_nuts2_df.plot(column='nox_max', figsize=(12,9), scheme='equalinterval', cmap='OrRd', k=5,
   edgecolor="lightgrey", linewidth=0.4,
   legend=True, legend_kwds={'loc': 'upper right', 'title': 'NOx Maksimale (2016) - NUTS 2'},
   missing_kwds={'color': "lightgrey"})
```


Endri Raco Leksioni 8 05 May, 2024 74 / 120

- Shpërndarja e NOx është shumë heterogjene hapësinore (dmth., ndryshon shumë në çdo vend).
- Ne mund të përdorim **groupby** për të gjetur njësinë kryesore të NUTS për çdo vend për sa i përket NOx maksimale:

Endri Raco Leksioni 8 05 May, 2024 76 / 120

```
nox_nuts2_df['nox_max_country_rank'] = nox_nuts2_df.groupby('CNTR_CODE')['nox_max'].rank(ascending=False)

# për çdo vend, njësitë renditen në mënyrë të brendshme
sel_df = nox_nuts2_df[['NUTS_ID','NUTS_NAME','nox_max','nox_max_country_rank']]
sel df
```


Endri Raco Leksioni 8 05 May, 2024 77 / 120

```
# Zgjidhni vetëm njësinë kryesore për çdo vend (rank==1) dhe rendisni ato sipas NOx maksimale:
top_df = sel_df[sel_df['nox_max_country_rank']==1]
top_df.sort_values('nox_max', ascending=False)
```


Endri Raco Leksioni 8 05 May, 2024 78 / 120

	NUTS_ID	NUTS_NAME	nox_max	nox_max_country_rank
322	TR10	İstanbul	118.250999	1.0
14	ES51	Cataluña	108.094002	1.0
74		Αττική Ile-de-France	106.764000 99.392998	1.0
136				
42	BE21	Prov. Antwerpen	86.754997	1.0
177	ITC4	Lombardia	84.431000	1.0
43	BG42	Южен централен	83.987000	1.0
204	NL34	Zeeland	81.850998	1.0
85	DE71	Darmstadt	73.099998	1.0
234	UKI3	Inner London — West	60.915001	1.0
26	CH04	Zürich	56.997002	1.0
213	MK00	Северна Македонија	49.800999	1.0

Endri Raco Leksioni 8 05 May, 2024

79 / 120

Section 3

Praktikë

Endri Raco Leksioni 8 05 May, 2024 80 / 120

Detyra 1

- Do ngarkojmë dataset që përmban raster me të dhëna globale të reshjeve nga viti 1950 deri në vitin 2017 në milimetra nga url https://raw.githubusercontent.com/endri81/instatgis/master/data/glorasters/
- Duke përdorur cikle for, merrni raster-in e reshjeve çdo 5 vjet nga viti 1980 deri në vitin 2015.
- Për çdo raster, gjeneroni një grafik duke përdorur funksionin **plot_raster** (funksioni në 2 slidet e tjera) dhe printoni vlerat minimale, mesatare dhe maksimale.

Endri Raco Leksioni 8 05 May, 2024 81 / 120

Funksioni plot_raster

```
# Duke qenë se funksionaliteti i vizualizimit të rasterio është mjaft i komplikuar,
# ne krijojmë një funksion për të vizualizuar një raster më lehtë.
# Vini re vlerat e paracaktuara (Blues, 10, 10).
# Sa i përket kompleksitetit. kjo është një funksion realist i përdorur në shkencën e të dhënave.
# me "hack"-e për t'i bërë qjërat të funksionojnë për shkak të kufizimeve të paketës.
def plot raster(rast, val matrix, plot title, value label, cmap='Blues', width=10, height=10, diverge zero=Fals
    """Vizualizon një rasterio raster me cilësime të arsyeshme dhe me legjendë.
        @ rast: skedari rasterio (përdoret për të lexuar koordinatat qjeografike)
       @ val matrix: vlerat e nxierra (përdoret për të lexuar vlerat e rasterit)
       @ plot_title: titulli i figurës së plotë
       @ value label: sasia që shfaqet
        @ diverge zero: e vërtetë nëse përdorni një cmap divergjent për të përgendruar hartën e ngjyrave në zero
    .....
    fig, ax = plt.subplots(figsize=(10,10))
    # image hidden është një "hack" për të treguar legjendën
   if diverge zero:
        image hidden = ax.imshow(val matrix, cmap=cmap, norm=TwoSlopeNorm(0))
    else:
        image hidden = ax.imshow(val matrix, cmap=cmap)
   ax.clear()
```


Funksioni plot_raster (vazhdim)

```
# vizualizoni raster: rast.transform lejon sistemin të tregojë koordinatat gjeografike
if diverge zero:
    rast plot = rasterio.plot.show(val_matrix, cmap=cmap, ax=ax, transform=rast.transform, norm=TwoSlopeNor
else:
    rast plot = rasterio.plot.show(val matrix, cmap=cmap, ax=ax, transform=rast.transform)
# vendosni titullin e grafikut
ax.set_title(plot_title, fontsize=14)
# shfaqni legjendën me etiketën
# "hack" për të rregulluar lartësinë
im_ratio = val_matrix.shape[0]/val_matrix.shape[1]
#plt.colorbar(im.fraction=0.046*im ratio, pad=0.04)
cbar = fig.colorbar(image hidden, ax=ax, fraction=0.046*im_ratio, pad=0.04)
cbar.ax.set_ylabel(value_label, rotation=270)
cbar.ax.get_yaxis().labelpad = 15
#ax.set axis off() # aktivizoni/caktivizoni akset
plt.show()
```



```
import urllib.request

# shkarkoni skedarët. Asc qëndron për Ascii, një format i thjeshtë raster.
years = range(1980, 2016, 5)
base_url = 'https://raw.githubusercontent.com/endri81/instatgis/master/data/global_precipitation_1950_2017/rast

for year in years:
    rast_url = base_url + 'precip_{-total.asc'.format(year)
    local_file_name = 'data/global_precip_raster-{}.asc'.format(year)
    print(local_file_name)
    urllib.request.urlretrieve(rast_url, local_file_name)
    del rast_url, local_file_name
```



```
# Për thjeshtësi, ne po i mbajmë të gjithë rastet në një sistem referimi gjeografik.
# Në një studim shkencor, do të na duhej t'i projektonim ato për vizualizim.

# ndertojmë rasterat e reshjeve:
for year in years:
    # gjenerojme emer lokal
local_file_name = 'data/global_precip_raster-{}.asc'.format(year)
    # open raster
precip_rast = rasterio.open(local_file_name, mask=True)
    # plot
plot_raster(precip_rast, precip_rast.read(1, masked=True),
    'Rreshjet totale vjetore (mm) '+str(year), 'mm',
    cmap='dnBu', width=14, height=14)
```


Ushtrimi 2

- Duke përdorur veprimin e zbritjes nga algjebra e hartës, llogarisni dhe vizatoni diferencën e rasterit midis viteve 1980, 1990, 2000 dhe 2010 (3 çifte).
- Përdorni një cikël **for**.
- Ripërdorni funksionin **plot** raster

Endri Raco Leksioni 8 05 May, 2024 87 / 120

Ndihmë

```
years = [1980,1990,2000,2010]
# loop sipas viteve
for i in range(len(years)-1):
    year1 = years[i]
    year2 = years[i+1]
    print(year1,year2)
    # fusnin kodin ketu
```


Endri Raco Leksioni 8 05 May, 2024 88 / 120

```
years = [1980, 1990, 2000, 2010]
# loop sipas viteve
for i in range(len(years)-1):
   year1 = years[i]
   vear2 = vears[i+1]
   print("Krahaso:", vear1, vear2)
    # Ngarkojme dy rastera per krahasim
   rast1 = rasterio.open('data/global precip raster-{},asc'.format(year1), mask=True)
   rast2 = rasterio.open('data/global_precip_raster-{}).asc'.format(year2), mask=True)
    vals1 = rast1.read(1, masked=True)
    vals2 = rast2.read(1, masked=True)
    # Llogarisim diferencen
   vals_diff = vals2-vals1
   print("Statistikat e diferences:", vals diff.min(), round(vals_diff.mean(),2), vals_diff.max())
    # Vizatoni diferencen
   plot raster(rast1, vals diff, 'Total precipitation change between {} and {}'.format(year1, year2),
            'Rreshje vjetore (mm)', 'PuOr', width=10, height=10, diverge zero=True)
```


Endri Raco Leksioni 8 05 May, 2024 90 / 120

Ushtrimi 3

- Sa është sasia e reshjeve totale në çdo vend në vitin 2015?
- Duke përdorur kufijtë e botës, përdorni statistikat zonale për t'iu përgjigjur kësaj pyetjeje.
- Për çdo vend, llogarisni reshjet minimale, maksimale, mesatare, mediane dhe totale.
- Ruani rezultatet në një tabelë CSV me një rresht për çdo vend dhe një kolonë për çdo statistikë përshkruese.

Endri Raco Leksioni 8 05 May, 2024 91 / 120

Ushtrimi 3 (vazhdim)

- Vini re se të dhënat e reshjeve janë shumë dhe rezultatet mund të paraqesin gabime të mëdha për vendet e vogla.
- Përsëriteni analizën për vitin 1980: Duhet të bëni ndryshime minimale në kod.

Endri Raco Leksioni 8 05 May, 2024 92 / 120

Ndihmë

```
year = 2015
output_file = 'tmp/precipitation_country_stats_' + str(year) + '.csv'
print(output_file)
# futni kodin tuaj kētu
```



```
# shkarkojmē hartēn e botēs
# Shkarkoni gjithashtu kufijtē e vendeve
url_boundaries = 'https://github.com/endri81/instatgis/blob/master/data/gis4/natural_earth_world_boundaries_50m
file_name_boundaries = 'data/natural_earth_world_boundaries_50m_2018.geojson'
urllib.request.urlretrieve(url_boundaries, file_name_boundaries)
```



```
# Ngarkojme kufijte
countries_df = gpd.read_file('data/natural_earth_world_boundaries_50m_2018.geojson')
# heqim vendet e panjohura
countries_df = countries_df[countries_df.iso_a3 != '-99']
print(len(countries_df))
countries_df.plot()
```


Endri Raco Leksioni 8 05 May, 2024 95 / 120

Endri Raco Leksioni 8 05 May, 2024 96 / 120

```
from rasterstats import zonal stats, gen zonal stats
for year in [1980, 2015]:
    print("\nDuke llogaritur statistikat zonale midis kufijve të vendeve të botës dhe reshjeve në {}...".format
    # ngarkoni rasterin e reshjeve
   rast_file = 'data/global_precip_raster-{}.asc'.format(year)
    # gieneroni rrugën e skedarit të dalies
   output_file = 'tmp/precipitation_country_stats_{}.csv'.format(year)
    # llogarit statistikat zonale
    # zajidhni vetëm kolonat përkatëse nga countries df
   zon_stats = zonal_stats(countries_df[['iso_a3','name','geometry']], rast_file,
                            stats="count min median mean max sum", geojson_out=True)
    # gieneroni një kornizë të dhënash nga rezultatet e zonal stats (listë fjalorësh)
    stats gdf = gpd.GeoDataFrame.from features(zon stats)
    # konverto nga geodataframe në dataframe, pasi nuk kemi nevojë për gjeometrinë
    stats_df = pd.DataFrame(stats_gdf.drop(columns='geometry'))
    # higni vendet për të cilat nuk kemi vëzhqime
    stats_df = stats_df[stats_df['count'] > 0]
    stats_df = stats_df.sort_values('sum')
    # printoni statistikat
   print(stats df.describe())
    # ruani rezultatet në skedar
    stats df.to csv(output file, index=False)
   print("Rezultatet janë te", output file)
```


Endri Raco Leksioni 8 05 May, 2024 97 / 120

```
Duke llogaritur statistikat zonale midis kufijve të vendeve të botës dhe reshjeve në 1980...
              min
                           max
                                      mean
                                                   count
                                                                  sum \
       184.000000
                    184.000000
                                184.000000
                                            184.000000 1.840000e+02
count
       584.955435 2141.630439
                               1098.585055
                                           462.461957 2.443332e+05
mean
      609.162886 1570.111066
                                793.979461
                                            2072.098838 6.774382e+05
std
min
         0.000000 65.300003
                                18.021053
                                                1.000000 2.209000e+02
25%
       92.725000 967.824982
                                520.113208
                                              13.000000 1.358843e+04
50%
       476,000000 1799,950012
                                911.571913
                                            62.000000 4.707215e+04
75%
       811.799988 2919.250000 1579.894516
                                              229.750000 1.584133e+05
      3355.699951 8657.000000 3709.935547 23984.000000 4.941679e+06
max
           median
       184.000000
count
      1052.217392
mean
std
       782.798438
min
         4.800000
25%
      467.162506
50%
      841.800018
75%
      1472.725006
max
      3429.199951
Rezultatet janë te tmp/precipitation country stats 1980.csv
```


Ushtrimi 4

- Duke përdorur .rank(), gjeneroni renditje për vendet për sa i përket reshjeve të tyre (renditja 1 korrespondon me vendin më të lagësht).
- Tregoni 10 vendet më të thata dhe më të lagështa në botë në vitin 1980 dhe 2015.
- A mund të vini re shumë ndryshime?

Endri Raco Leksioni 8 05 May, 2024 99 / 120

Ndihmë

```
years = [1980, 2015]
for year in years:
  input_stats_file = 'tmp/precipitation_country_stats_' + str(year) + '.csv'
  print(input_stats_file)
  # ngarkoni skedarin dhe gjeneroni renditje
```



```
# përcaktojmë "wet rank" bazuar në precipitimin mesatar.
vears = [1980, 2015]
# bashkojmë statistikat në vite
wet_rank_df = countries_df[['iso_a3','name']]
for year in years:
    input_stats_file = 'tmp/precipitation_country_stats_'+str(year)+'.csv'
   print("ranking".input stats file)
    # ngarkojme skedarin
    stats_df = pd.read_csv(input_stats_file)
    # gieneroime renditie
   rank field = 'wet rank '+str(year)
    stats_df[rank_field] = stats_df['mean'].rank(ascending=False)
    # bashkojme rankimin me rezultatet finale
    wet_rank_df = wet_rank_df.merge(stats_df[['iso_a3',rank_field]],
                                    on='iso_a3')
# sort dhe ruai rezultate
wet rank df['wet rank change'] = wet rank df['wet rank 1980']-wet rank df['wet rank 2015']
wet_rank_df = wet_rank_df.sort_values('wet_rank_2015')
wet rank df.to csv('tmp/precipitation country stats.csv', index=False)
# vendet më të lagështa 2015
wet_rank_df.head(10)
```


ranking cmp/precipication_country_stats_zeid.csv

	iso_a3	name	wet_rank_1980	wet_rank_2015	wet_rank_change
148	СОМ	Comoros	4.0	1.0	3.0
40	SLB	Solomon Is.	3.0	2.0	1.0
145	CRI	Costa Rica	1.0	3.0	-2.0
162	BRN	Brunei	2.0	4.0	-2.0
167	BTN	Bhutan	12.0	5.0	7.0
81	MYS	Malaysia	6.0	6.0	0.0
58	PNG	Papua New Guinea	8.0	7.0	1.0
5	VUT	Vanuatu	74.0	8.0	66.0
47	WSM	Samoa	5.0	9.0	-4.0
27	TWN	Taiwan	36.0	10.0	26.0

Endri Raco Leksioni 8 05 May, 2024 102 / 120

vendet më të thata 2015
wet_rank_df.tail(10)

Endri Raco Leksioni 8 05 May, 2024 103 / 120

		iso_a3	name	wet_rank_1980	wet_rank_2015	wet_rank_change
	94	KWT	Kuwait	171.0	175.0	-4.0
	2	YEM	Yemen	175.0	176.0	-1.0
	137	DJI	Djibouti	179.0	177.0	2.0
	46	SAU	Saudi Arabia	176.0	178.0	-2.0
	180	DZA	Algeria	177.0	179.0	-2.0
	73	ESH	W. Sahara	183.0	180.0	3.0
	15	ARE	United Arab Emirates	174.0	181.0	-7.0
	61	OMN	Oman	181.0	182.0	-1.0
	87	LBY	Libya	182.0	183.0	-1.0
	134	EGY	Egypt	184.0	184.0	0.0

Endri Raco Leksioni 8 05 May, 2024 104 / 120

vendet me ndryshime ekstreme në klasifikim
wet_rank_df['wet_rank_change'].hist()

Endri Raco Leksioni 8 05 May, 2024 105 / 120

Endri Raco Leksioni 8 05 May, 2024

```
# vendet me ndryshime ekstreme
wet_rank_df = wet_rank_df.sort_values('wet_rank_change', ascending=False)
# Kontrollojme diapazonin
extreme_change_df = wet_rank_df[-wet_rank_df.wet_rank_change.between(-20, 20)]
extreme_change_df
```


Endri Raco Leksioni 8 05 May, 2024 107 / 120

	iso_a3	name	wet_rank_1980	wet_rank_2015	wet_rank_change
60	PAK	Pakistan	161.0	73.0	88.0
5	VUT	Vanuatu	74.0	8.0	66.0
182	AFG	Afghanistan	156.0	109.0	47.0
120	GMB	Gambia	129.0	85.0	44.0
177	ARM	Armenia	149.0	111.0	38.0
57	PRY	Paraguay	81.0	48.0	33.0
35	LKA	Sri Lanka	47.0	14.0	33.0
62	NOR	Norway	116.0	83.0	33.0
45	SEN	Senegal	135.0	103.0	32.0
95	KEN	Kenya	140.0	112.0	28.0
124	NCL	New Caledonia	75.0	49.0	26.0
27	TWN	Taiwan	36.0	10.0	26.0
11	SGS	S. Geo. and the Is.	54.0	28.0	26.0
172	BGD	Bangladesh	33.0	11.0	22.0
160	BFA	Burkina Faso	110.0	89.0	21.0
91	LVA	Latvia	108.0	129.0	-21.0
21	TTO	Trinidad and Tobago	20.0	42.0	-22.0

Endri Raco

43.0

Leksioni 8

05 May, 2024

Ushtrimi 5

- Duke përdorur **urllib.request.urlretrieve**, shkarkoni këtë dataset që përmban aeroportet globale.
- Ngarkojeni në një dataframe gjeo me geopandas dhe printoni sa rreshta përmban.
- Zgjidhni disa atribute prej saj, duke përfshirë emrin e aeroportit, kodin IATA të aeroportit, kodin e vendit, lartësinë dhe tipin.

Endri Raco Leksioni 8 05 May, 2024 109 / 120

Ndihmë

```
import urllib.request
# URL e azhurnuar për skedarin e aeroportit
airports_url = 'https://raw.githubusercontent.com/endri81/instatgis/master/data/gis4/airports_2020.geojson'
# Skedari lokal ku do të ruhet të dhënat
local_file_name = 'data/airports_2020.geojson'
print(local_file_name)
# Shkarkoni skedarin nga URL-ja
urllib.request.urlretrieve(airports_url, local_file_name)
# futni kodin tuaj këtu
```


Endri Raco Leksioni 8 05 May, 2024 110 / 120

```
airports_all_df = gpd.read_file('data/airports_2020.geojson')
print('n airports =',len(airports_all_df))
print(airports_all_df.columns)
airports_all_df.sample(5)
```


	FID	id	ident	type	name	latitude_d	longitude_	elevation_	continent	iso_countr		he_latitud	he_longitu	he_elevati	he_heading	he_displac	ObjectID	type_1	descriptio	free
2199	2200	5946.0	SBMY	medium_airport	Manicoré Airport	-5.811380	-61.278301	174.0	SA	BR		NaN	NaN	None	None	None	31257.0	RDO	RDO	
846	847	3248.0	HSSM	medium_airport	Malakal Airport	9.558970	31.652201	1291.0	AF	ss		9.56544	31.6586	1291	224	None	17242.0	INFO	INFO	
2940	2941	26991.0	YGEL	medium_airport	Geraldton Airport	-28.796101	114.707001	121.0	OC	AU	_	-28.78750	114.7100	120	198	None	40006.0	CTAF	CTAF	
					Lamaca															

Endri Raco Leksioni 8 05 May, 2024 112 / 120

```
airports_df = airports_all_df[['id','iata_code','name','type','iso_countr','elevation_','geometry']]
# rename elevation to show it is in feet
airports_df = airports_df.rename(columns={"elevation_": "elevation_ft"})
# show sample
airports_df.sample(5)
```


Endri Raco Leksioni 8 05 May, 2024 113 / 120

	id	iata_code	name	type	iso_countr	elevation_ft	geometry
1355	4219.0	LAI	Lannion-Côte de Granit Airport	medium_airport	FR	290.0	POINT Z (-3.47166 48.75440 0.00000)
876	3376.0	ALW	Walla Walla Regional Airport	medium_airport	US	1194.0	POINT Z (-118.28800 46.09490 0.00000)
2248	6048.0	ZAL	Pichoy Airport	medium_airport	CL	59.0	POINT Z (-73.08610 -39.65000 0.00000)
544	2668.0	KLR	Kalmar Airport	medium_airport	SE	17.0	POINT Z (16.28760 56.68550 0.00000)
902	3415.0	BKW	Raleigh County Memorial Airport	medium_airport	US	2504.0	POINT Z (-81.12420 37.78730 0.00000)

Endri Raco Leksioni 8 05 May, 2024 114 / 120

Ushtrimi 6

- Analizoni densitetin e aeroporteve në botë.
- Së pari, duke përdorur një histogram 2D me numër të ndryshëm të koshave (nga 20 në 100).
- Bëni analizën për të gjitha aeroportet dhe vetëm për aeroportet e mëdha (type=='large_airport').

Endri Raco Leksioni 8 05 May, 2024 115 / 120

```
# ndryshojmë numrin e bin:
for bin_n in range(40,201,40):
    print("bin_n",bin_n)

# ndryshojmë tipin
for atype in ['all', 'large_airport']:
    df = airports_df
    if atype != 'all':
        df = airports_df[airports_df['type'] == atype]
        assert len(df) > 0
        # aeroportet e kërkuara janë në df
    h = plt.hist2d(df.geometry.x, df.geometry.y, bins=bin_n, density=False)
    plt.colorbar(h[3])
    plt.title("2D histograma e aeroporteve (type={}), bins={})".format(atype, bin_n))
    plt.show()
```


Endri Raco Leksioni 8 05 May, 2024 117 / 120

Ushtrimi 7

- Gjeneroni KDE për aeroportet për Britaninë dhe SHBA-në duke ndryshuar gjerësinë e brezit në tre vlera të ndryshme që kapin shpërndarjen e aeroporteve në një mënyrë të përshtatshme.
- Ku janë zonat më të dendura në botë? Ndani analizën midis të gjitha aeroporteve dhe vetëm aeroporteve të mëdha, duke minimizuar përsëritjen e kodit.

Endri Raco Leksioni 8 05 May, 2024 118 / 120

```
import geoplot
import matplotlib.pvplot as plt
# Për secilin vend. 'US' dhe 'GB'
for country in ['US', 'GB']:
    # zgjidh aeroportet në adf
    adf = airports_df[airports_df['iso_countr'] == country]
    cdf = countries df[countries df['iso a2'] == country]
    # nëse vendi është 'GB', largoni një aeroport RAF në Qipro
   if country == 'GB':
        adf = adf[adf['iata code'] != 'AKT']
    # sigurohuni që të dhënat e vendit dhe aeroportit të mos jenë bosh
    assert len(cdf) > 0
   assert len(adf) > 0
    # ndrushoni bandwidth
   for bandwidth in [.01, .05, .1]:
        title = 'KDE për aeroportet (vendi={}, bandwidth={})'.format(country, bandwidth)
        ax = geoplot.kdeplot(adf, shade=False, bw=bandwidth, figsize=(12, 12), alpha=.5)
        # shtoni vijën breqdetare
        cdf.plot(ax=ax, color='lightgray', edgecolor="none", linewidth=.5)
        # shtoni titullin
        plt.title(title, fontsize=18)
        # shfaqni fiqurën
       plt.show()
```

KDE për aeroportet (vendi=US, bandwidth=0.01)

Endri Raco Leksioni 8 05 May, 2024 120 / 120