Understanding Relationships

as "Conditional Expectations"

Understanding Political Numbers

Feb 27, 2019

Agenda

Exercise 1

Relationship therapy

Exercise...2!

Data sources

DIME: campaign contributors and recipients

US Census, BLS

Polity: Political regimes

Correlates of War: conflict, MIDs, alliances, trade flows, diplomacy

IMF, World Bank, OECD: World economic and development data

Exercise 1

The internet will make those bad words go away

How to actually learn any new programming concept

O RLY?

@ThePracticalDev

Practice (and modify) old material. Write fresh code. Use notes and internet.

Relationships

X and Y

As *x* increases, *y* does what?

Does y change when x changes?

College Education and Poverty

Data from Midwestern Counties

X and Y

As *x* increases, *y* does what?

Does *y* change when *x* changes?

College Education and Poverty

Data from Midwestern Counties

Positive and Negative Relationships

Relationships among Categorical Variables

```
prof_degrees <- midwest %>%
 group_by(state, inmetro) %>%
 summarize(prof = mean(percprof)) %>%
 mutate(
   metro = ifelse(inmetro == 1,
                   "Metro Area",
                   "Non-Metro Area")
ggplot(prof_degrees,
       aes(x = state, y = prof)) +
 geom point(aes(shape = metro),
             size = 2.5,
            fill = "white") +
 scale shape manual(
   values = c(16, 21)
 coord_cartesian(ylim = c(0, 8)) +
 labs(x = "State",
       y = "Pct w/ Prof. Degree",
       shape = NULL)
```


A Mathematical Language for Relationships

E[Y]

$E[Y \mid X]$

"Expected Y, given X"

$E[Y \mid X]$

Relationship means the expectation is changing

- Within sample: almost always some nonzero relationship
- Inference to the population: an we infer that our expectation should change in the real world?

Independence (no relationship)

$$E[Y] = E[Y \mid X]$$

"Knowing X doesn't affect my expectation of Y"

Dependence

$$E[Y] \neq E[Y \mid X]$$

"Knowing X would change my expectation of Y"

Correlation

Common relationships

Finding y_i

$$y_i = a + bx_i + e_i$$

- Every observation i has an x_i and y_i
- The line ($a + bx_i$) is our *prediction* for y_i
- ullet The "residual" e_i is the error between actual and predicted y_i

Next week

on Monday: linear regression

• How do we estimate a "line of best fit"

on Wednesday: statistical significance

• How do we conclude that relationships are "real" or just noise?