Metoda Programării Dinamice

-3-

Se consideră un rucsac de capacitate (greutate) maximă G (număr <u>natural</u>) și n obiecte caracterizate prin:

- greutățile lor (numere <u>naturale</u>) g₁,...,g_n;
- câştigurile $v_1,...,v_n$ obţinute la încărcarea lor în totalitate în rucsac.

Un obiect nu poate fi fracționat.

Se cere o modalitate de încărcare de obiecte în rucsac, astfel încât câştigul total să fie maxim.

Caz particular

Date n obiecte cu ponderile $w_1, w_2, ..., w_n$ și o limită W, să se selecteze o submulțime de obiecte cu suma ponderilor maximă, fără a depăși însă ponderea W

Caz particular

Date n obiecte cu ponderile $w_1, w_2, ..., w_n$ și o limită W, să se selecteze o submulțime de obiecte cu suma ponderilor maximă, fără a depăși însă ponderea W

Interpretări

- Submulţime de sumă maximă mai mică sau egală cu o valoare
 M dată (v. Greedy)
- n activități cu duratele w₁, w₂, ...,w_n necesită o resursă. Știind că timpul maxim de funcționare a resursei este W, să se selecteze o submulțime de activități care țin resursa ocupată un timp cât mai lung (maxim)

Exemplu:

```
G = 8
n = 4 objecte
g: 3  4  4  6
v: 3  9  10  18
```

Exemplu:

```
G = 8
n = 4 objecte
g: 3  4  4  6
v: 3  9 10 18
```

Greedy - în ordinea descrescătoare a raportului v/g

- Alege întâi obiectul 4 de greutate 6
- Nu se mai poate pune nici un alt obiect întreg în rucsac
- Câştigul Greedy: 18

Exemplu:

```
G = 8

n = 4 objecte

g: 3 4 4 6

v: 3 9 10 18
```

Greedy - în ordinea descrescătoare a raportului v/g

- Alege întâi obiectul 4 de greutate 6
- Nu se mai poate pune nici un alt obiect întreg în rucsac
- Câştigul Greedy: 18

Soluţia optimă:

- Alegem obiectele 2 şi 3
- Câştigul total 10 + 9 = 19

Principiu de optimalitate

Dacă **S** este soluție optimă pentru greutatea **g** și obiectele {1,2,...,n} care

conţine n,

• <u>nu</u> conţine n

Principiu de optimalitate

Dacă **S** este soluție optimă pentru greutatea **g** și obiectele {1,2,...,n} care

- conţine n atunci S {n} este soluţie optimă pentru greutatea g – g_n şi obiectele {1,2,..., n-1}
- nu conţine n atunci S este soluție optimă pentru greutatea g și obiectele {1,2,..., n-1}

- Subproblemă
- Soluţie
- Ştim direct
- Relaţie de recurenţă
- Ordinea de calcul
- Afișarea obiectelor din soluția optima

```
for (int g = 0; g \le G; g++) c[0][g]= 0;
for (int i = 1; i \le n; i + +) {
      c[i][0]=0;
      for (int gr = 1; gr <= G; gr++) {
             if (g[i]<= gr)
               else
                    c[i][qr]=c[i-1][qr];
cout<<"Castigul total " << c[n][G];</pre>
```

```
for (int q = 0; q \le G; q++) c[0][g]= 0;
for (int i = 1; i \le n; i + +) {
     c[i][0]=0;
      for (int gr = 1; gr <= G; gr++) {
            if (q[i]<= qr)
                   if (v[i]+c[i-1][qr-q[i]]>c[i-1][qr])
                          c[i][qr]=v[i]+c[i-1][qr-q[i]];
                   else
                          c[i][qr]=c[i-1][qr];
              else
                   c[i][qr]=c[i-1][qr];
cout << "Castigul total " << c[n][G];
```

- Afişarea obiectelor
 - din relația de recurență

Afişarea obiectelor – recursiv

```
void afis(int i, int gr) {
     if(i==0 | gr==0)
            return;
     if((g[i] \le gr) \&\&(c[i][gr] == v[i] + c[i-1][gr-g[i]]))
            afis (i-1, gr-g[i]);
            cout<<i<" "<<endl;
     else
            afis (i-1,qr);
afis(n,G);
```

Afişarea obiectelor – nerecursiv

```
gr = G;
i = n;
while(gr>0 && i>0){
   if((g[i] \le gr) \&\&(c[i][gr] == v[i] + c[i-1][gr-g[i]]))
             cout << i << ";
             gr=gr-g[i];
   i--;
```

▶ Exemplu G = 8, n = 4 objecte

```
g: 3 4 4 6
v: 3 9 10 18 c[i][g] = \begin{cases} c[i-1][g], & \text{daca } g_i > g \\ \max\{v_i + c[i-1][g-g_i], c[i-1][g]\}, & \text{altfel} \end{cases}
```

0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0
0								
0								
0								
0								

▶ Exemplu G = 8, n = 4 objecte

```
g: 3 4 4 6
v: 3 9 10 18 c[i][g] = \begin{cases} c[i-1][g], & \text{daca } g_i > g \\ \max\{v_i + c[i-1][g-g_i], c[i-1][g]\}, & \text{altfel} \end{cases}
```

0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0
0	0	0	3					
0								
0								
0								

▶ Exemplu G = 8, n = 4 objecte

```
g: 3 4 4 6
v: 3 9 10 18 c[i][g] = \begin{cases} c[i-1][g], & \text{daca } g_i > g \\ \max\{v_i + c[i-1][g-g_i], c[i-1][g]\}, & \text{altfel} \end{cases}
```

0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0
0	0	0	3	3	3	3	3	3
0								
0								
0								

▶ Exemplu G = 8, n = 4 objecte

C:

g: 3 4 4 6
v: 3 9 10 18
$$c[i][g] = \begin{cases} c[i-1][g], & \text{daca } g_i > g \\ \max\{v_i + c[i-1][g-g_i], c[i-1][g]\}, & \text{altfel} \end{cases}$$

c[2][4] = soluția optimă pentru obiectele
$$\{1,2\}$$
 și g=4
c[2][4] = max $\{v_2 + c[1][0], c[1][4]\}$ = max $\{9 + 0, 3\} = 9$

▶ Exemplu G = 8, n = 4 objecte

```
g: 3 4 4 6
v: 3 9 10 18 c[i][g] = \begin{cases} c[i-1][g], & \text{daca } g_i > g \\ \max\{v_i + c[i-1][g-g_i], c[i-1][g]\}, & \text{altfel} \end{cases}
```

0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0
0	0	0	3	3	3	3	3	3
0	0	0	3	9	9	9	12	
0								
0								

▶ Exemplu G = 8, n = 4 objecte

```
g: 3 4 4 6
v: 3 9 10 18 c[i][g] = \begin{cases} c[i-1][g], & \text{daca } g_i > g \\ \max\{v_i + c[i-1][g-g_i], c[i-1][g]\}, & \text{altfel} \end{cases}
```

0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0
0	0	0	3	3	3	3	3	3
0	0	0	3	9	9	9	12	12
0	0	0	3	10				
0								

▶ Exemplu G = 8, n = 4 objecte

```
g: 3 4 4 6 c[i][g] = \begin{cases} c[i-1][g], & daca & g_i > g \\ max\{v_i + c[i-1][g-g_i], c[i-1][g]\}, & altfel \end{cases}
```

0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0
0	0	0	3	3	3	3	3	3
0	0	0	3	9	9	9	12	12
0	0	0	3	10	10	10	?	
0								

▶ Exemplu G = 8, n = 4 objecte

```
g: 3 4 4 6
v: 3 9 10 18 c[i][g] = \begin{cases} c[i-1][g], & \text{daca } g_i > g \\ \max\{v_i + c[i-1][g-g_i], c[i-1][g]\}, & \text{altfel} \end{cases}
```

0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0
0	0	0	3	3	3	3	3	3
0	0	0	3	9	9	9	12	12
0	0	0	3	10	10	10	13	
0								

▶ Exemplu G = 8, n = 4 objecte

g: 3 4 4 6 v: 3 9 10 18 $c[i][g] = \begin{cases} c[i-1][g], & \text{daca } g_i > g \\ \text{max}\{v_i + c[i-1][g-g_i], c[i-1][g]\}, & \text{altfel} \end{cases}$

câștig optim c[4][8]

C:

▶ Exemplu G = 8, n = 4 objecte

g: 3 4 4 6 v: 3 9 10 18 $c[i][g] = \begin{cases} c[i-1][g], & \text{daca } g_i > g \\ \max\{v_i + c[i-1][g-g_i], c[i-1][g]\}, & \text{altfel} \end{cases}$

Soluție:

C:

0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0
0	0	0	3	3	3	3	3	3
0	0	0	3	9	9	9	12	12
0	0	0	3	10	10	10	13	19
0	0	0	3	10	10	18	18	19

▶ Exemplu G = 8, n = 4 objecte

```
g: 3 4 4 6
v: 3 9 10 18 c[i][g] = \begin{cases} c[i-1][g], & \text{daca } g_i > g \\ \max\{v_i + c[i-1][g-g_i], c[i-1][g]\}, & \text{altfel} \end{cases}
```

Soluție:									
•	0	1	2	3	4	5	6	7	8
C:	0	0	0	0	0	0	0	0	0
	0	0	0	3	3	3	3	3	3
	0	0	0	3	9	9	9	12	12
	0	0	0	3	10	10	10	13	19
	0	0	0	3	10	10	18	18	19

La pasul i obiectul i a fost luat \Leftrightarrow c[i][g] > c[i-1][g]

▶ O(nG)

Distanțe de editare. Alinierea secvențelor

- Putem măsura similaritatea între secvențe (ADN) prin
 - Elemente comune cel mai lung subșir comun pentru două secvențe
 - **Distanțe de editare** numărul minim de inserări și modificări (eventual și ștergeri) de caractere necesar pentru transforma prima secvență în cea de a doua
- + aplicații în procese de căutare de cuvinte sugestii de cuvinte similare

Exemplu

Aliniere – punerea pozițiilor (caracterelor) din cele două secvențe a și b în corespondență 1 la 1, cu posibilitatea de a insera spații (păstrând ordinea literelor)

```
a = AGGGCT b = AGGCA
```

AGGGCT

AGG-CA

penalizarea = penalizarea spațiului + penalizarea pentru diferența T/A

Exemplu

Aliniere – punerea pozițiilor (caracterelor) din cele două secvențe a și b în corespondență 1 la 1, cu posibilitatea de a insera spații (păstrând ordinea literelor)

```
a = AGGGCT
                   b = AGGCA
    AGGGCT
    AGG-CA
    penalizarea = penalizarea spațiului + penalizarea pentru
    diferența T/A
sau
    AGGGCT-
    AGG-C-A
    penalizarea = 3*penalizarea spațiului
```

Date două secvențe, $\mathbf{x} = \mathbf{x}_1 \mathbf{x}_2 ... \mathbf{x}_n$ și $\mathbf{Y} = \mathbf{y}_1 \mathbf{y}_2 ... \mathbf{y}_m$ aliniem secvențele inserând în ele caracterul ''astfel încât secvențele să devină de aceeași lungime și penalizând pozițiile pe care diferă secvențele obținute.

Formulare echivalentă:

Aliniere = formarea de perechi (x_i, y_j) astfel încât fiecare caracter apare în cel mult o pereche și nu există perechi încrucișate:

– dacă avem perechile (x_i,y_j) și (x_k,y_t) și $i < k \Rightarrow j < t$ agg-ca

Scorul (penalizarea) alinierii = suma penalizărilor alinierilor de caractere diferite şi alinierilor caracter-spaţiu (scorul Needleman-Wunsch).

- Penalizări diferite pentru diferențe de litere, spaţiu
 (de exemplu diferența A-G poate fi mai gravă decât A-T)
- Notaţii:
 - p_{spatiu}
 - p_{XY} penalizarea alinierii caracterului X cu caracterul Y

- ADN alfabet A,C,G,T
- Asemănări ADN poate semnifica apropiere în arborele genealogic
- Esențial să fie rapizi se aplică pentru volum mare de date

Principiu de optimalitate:

$$\boldsymbol{x}_1\boldsymbol{x}_2...\boldsymbol{x}_n$$

$$y_1y_2...y_m$$

aliniere cu penalizare minimă

Evidenţiem ultima operaţie din aliniere

Principiu de optimalitate:

$$\mathbf{x}_1 \mathbf{x}_2 ... \mathbf{x}_n$$

$$y_1y_2...y_m$$

aliniere cu penalizare minimă

Evidenţiem ultima pereche din aliniere

<u>Cazuri</u>

- x_n aliniat cu y_m
- x_n aliniat cu spaţiu
- y_m aliniat cu spaţiu

- Subprobleme
- Ştim direct
- Relație de recurență
- Ordinea de calcul
- Determinarea unei soluții

Exemplu

$$p_{\text{spațiu}} = 2,$$

$$p_{AC} = p_{GT} = 1$$

 $p_{XY} = 3$ pentru $X \neq Y$ în rest

GATC

-> G-ATC

TCAG TCAG- scor 6

0	1	2	3	4

Exemplu

$$p_{\text{spațiu}} = 2$$
,

$$p_{AC} = p_{GT} = 1$$

 $p_{XY} = 3$ pentru $X \neq Y$ în rest

GATC

-> G-ATC

TCAG

TCAG- scor 6

0	1	2	3	4
0	2	4	6	8
2				
4				
6				
8				

Exemplu

$$p_{\text{spațiu}} = 2,$$

$$p_{AC} = p_{GT} = 1$$

 $p_{XY} = 3$ pentru $X \neq Y$ în rest

-> G-ATC

TCAG TCAG- scor 6

			_	
0	2	4	6	8
2	1			
4				
6				
8				

Exemplu

C:

$$p_{\text{spațiu}} = 2,$$

$$p_{AC} = p_{GT} = 1$$

 $p_{XY} = 3$ pentru $X \neq Y$ în rest

TCAG TCAG- scor 6

 0
 1
 2
 3
 4

 0
 2
 4
 6
 8

 2
 1
 3
 3

 4
 6
 6
 6

 8

G

TC

aliniem G cu C, rămâne de aliniat secvența vidă cu T cu cost c[0][1] aliniem - cu C, rămâne de aliniat secvența G cu T cu cost c[1][1] aliniem G cu -, rămâne de aliniat secvența vidă cu TC cu cost c[0][2]

Exemplu

C:

$$p_{\text{spațiu}} = 2$$
,

$$p_{AC} = p_{GT} = 1$$

 $p_{XY} = 3$ pentru $X \neq Y$ în rest

GATC -> G-ATC

TCAG TCAG- scor 6

0	1	2	3	4
0	2	4	6	8
2	1	3	5	
4				
6				
8				

aliniem G cu A, rămâne de aliniat secvența vidă cu TC cu cost c[0][2] aliniem - cu A, rămâne de aliniat secvența G cu TC cu cost c[1][2] aliniem G cu -, rămâne de aliniat secvența vidă cu TCA cu cost c[0][3]

Exemplu

$$\begin{aligned} p_{spațiu} &= 2,\\ p_{AC} &= p_{GT} = 1\\ p_{XY} &= 3 \text{ pentru } X \neq Y \text{ în rest} \\ \text{GATC} & -> & \text{G-ATC} \\ \text{TCAG} & \text{TCAG-} & \text{scor } 6 \end{aligned}$$

0	1	2	3	4
0	2	4	6	8
2	1	3	5	6
4	3	2	3	5
6	4	4	5	4
8	6	4	5	?

Exemplu

$$\begin{aligned} p_{spațiu} &= 2,\\ p_{AC} &= p_{GT} = 1\\ p_{XY} &= 3 \text{ pentru } X \neq Y \text{ în rest} \\ \text{GATC} & -> & \text{G-ATC} \\ \text{TCAG} & \text{TCAG-} & \text{scor 6} \end{aligned}$$

0	1	2	3	4
0	2	4	6	8
2	1	3	5	6
4	3	2	3	5
6	4	4	5	4
8	6	4	5	6

Exemplu

$$p_{\text{spațiu}} = 2$$
,

$$p_{AC} = p_{GT} = 1$$

 $p_{XY} = 3$ pentru $X \neq Y$ în rest

-> G-ATC

TCAG TCAG- scor 6

Soluţia:

			_	
0	2	4	6	8
2	1	3	5	6
4	3	2	3	5
6	4	4	5	4
8	6	4	5	6

Exemplu

$$p_{\text{spațiu}} = 2,$$

$$p_{AC} = p_{GT} = 1$$

 $p_{XY} = 3$ pentru $X \neq Y$ în rest

-> G-ATC

TCAG TCAG- scor 6

Soluţia:

C:

0 2 4 6 8 2 1 3 5 6 4 3 2 3 5 6 4 4 5 4 8 6 4 5 6					
4 3 2 3 5 6 4 4 5 4	0	2	4	6	8
6 4 4 5 4	2	1	3	5	6
	4	3	2	3	5
8 6 4 5 6	6	4	4	5	4
	8	6	4	5	6

aliniere GT

aliniere -C aliniere AA

aliniere TG aliniere C-

Distanța de ediare - Levenstein

Similar (generalizare)

carte

Laborator

Numărul de șiruri binare de lungime n care nu conțin două valori egale cu 1 pe poziții consecutive

 Numărul de şiruri binare de lungime n care nu conţin două valori egale cu 1 pe poziţii consecutive

Analizăm structura unui șir soluție evidențiind primul element

- Începe cu 0
- Începe cu 1

 Numărul de şiruri binare de lungime n care nu conţin două valori egale cu 1 pe poziţii consecutive

Analizăm structura unui șir soluție evidențiind primul element

- Începe cu 0 poate continua cu orice şir binar valid de lungime n-1
- Începe cu 1 poate continua cu orice şir binar valid de lungime n-1 care începe cu 0

 Numărul de şiruri binare de lungime n care nu conţin două valori egale cu 1 pe poziţii consecutive

Subprobleme

- Nr[0][i] numărul de şiruri binare valide care încep cu 0
- Nr[1][i] numărul de şiruri binare valide care încep cu 1
- Recurenţe
- Soluţie

- Numărul de şiruri de lungime n peste alfabetul {1,2,3} care respectă constrângerile:
- orice 1 are pe pozițiile alăturate în stânga și dreapta valoarea 3
- orice 2 are pe cel puţin una dintre poziţiile din stânga valoarea 3

3132331332 - DA

3132231332 - NU

132331332 - NU

Temă

Numărul permutări ale mulțimii {1,2,..., n} care au exact k inversiuni (n, k date)

Numărul permutări ale mulţimii {1,2,..., n} care au exact k inversiuni (n, k date)

Analizăm structura unei permutări soluție $x_1x_2...x_n$ evidențiind ultimul element x_n

- n
- n-1
- n−2
- •
- 1

Numărul permutări ale mulţimii {1,2,..., n} care au exact k inversiuni (n, k date)

Analizăm structura unei permutări soluție $x_1x_2...x_n$ evidențiind ultimul element x_n

• \mathbf{n} - în $x_1x_2...x_{n-1}$ sunt k inversiuni, deoarece nu există inversiune de forma (x,n)

Numărul permutări ale mulțimii {1,2,..., n} care au exact k inversiuni (n, k date)

Analizăm structura unei permutări soluție $x_1x_2...x_n$ evidențiind ultimul element x_n

- \mathbf{n} în $x_1x_2...x_{n-1}$ sunt k inversiuni, deoarece nu există inversiune de forma (x, n)
- n-1 -în $x_1x_2...x_{n-1}$ sunt k-1 inversiuni, deoarece unica inversiune determinată de $x_n = n-1$ este (n, n-1)
- · ... n-k...1 Unde ne oprim?

Numărul permutări ale mulțimii {1,2,..., n} care au exact k inversiuni (n, k date)

Analizăm structura unei permutări soluție $x_1x_2...x_n$ evidențiind ultimul element x_n

- \mathbf{n} în $x_1x_2...x_{n-1}$ sunt k inversiuni, deoarece nu există inversiune de forma (x, n)
- n-1 în $x_1x_2...x_{n-1}$ sunt k-1 inversiuni, deoarece unica inversiune determinată de $x_n = n-1$ este (n, n-1)
- · ... n-k...1

Unde ne oprim? \Rightarrow cazuri k<n, k \ge n

Numărul permutări ale mulțimii {1,2,..., n} care au exact k inversiuni (n, k date)

Dacă kx_n=n
$$x_n=n-1$$
 $x_n=n-k$
$$nr[n][k] = nr[n-1][k] + nr[n-1][k-1] + ... + nr[n-1][0] = nr[n-1][k] + nr[n][k-1]$$

Dacă $n \le k \le n(n-1)/2$ atunci

$$x_n = n$$
 $x_n = n - 1$ $x_n = 1$

Altfel nr[n][k]=0

Numărul permutări ale mulţimii {1,2,..., n} care au exact k inversiuni (n, k date)

- Subprobleme
 - Nr[i][t] numărul de permutări cu i elemente având t inversiuni, i ≤ n, t ≤ k
- Recurențe

```
Nr[i][t] = Nr[i-1][t] + Nr[i-1][t-1] + ... + Nr[i-1][max{t-i+1,0}]

t < = i(i-1)/2
```

Soluţie Nr[n][k]

Numărul permutări ale mulţimii {1,2,..., n} care au exact k inversiuni (n, k date)

```
for(i=0;i<=n;i++)
       for (t=0; t<=k; t++)
              nr[i][t]=0;
for(i=0;i<=n;i++) nr[i][0]=1;
for (i=1;i<=n;i++)
      for (t=1; t<=k; t++)
          if(t<i)
              nr[i][t]=nr[i-1][t]+nr[i][t-1];
          else
              if(t \le i * (i-1)/2)
                      nr[i][t]=nr[i-1][t]+nr[i][t-1]-nr[i-1][t-i];
              else
                      nr[i][t]=0;
```

- Numărul permutări ale mulţimii {1,2,..., n} care au exact k inversiuni (n, k date)
 - Mahonian numbers

 $Nr[n][k]=T(n,k) = coeficientul lui x^k din produsul$

$$\prod_{i=0}^{n-1} (1 + x + \dots + x^{i})$$

$$Nr[n][k]=Nr[n][\binom{n}{2}-k]$$

1										
1	1									
1	2	2	1							
1	3	5	6	5	3	1				
1	4	9	15	20	22	20	15	9	4	1

Alte tipuri de probleme

Fie G = (N, T, S, P) o gramatică independentă de context şi $w \in T^*$.

Se cere să se determine dacă w∈L(G).

Gramatica este în forma normală a lui Chomsky: producțiile au numai formele

CU A, B \in N \circ i a \in T*.

Algoritmul CYK (Cocke-Younger-Kasami)

Horia Georgescu. Tehnici de programare. Editura Universității din București 2005

Exemplu

 $P_1: S \rightarrow AB$

 $P_2: A \rightarrow BB$

 $P_3: A \rightarrow a$

 $P_4: B \rightarrow AB$

 $P_5: B \rightarrow b$

w = abbb

$$w=a_1a_2...a_n$$

$$w \in L(G) \Leftrightarrow există S \to BC în P astfel încât
$$B \Rightarrow a_1 a_2 ... a_k \quad (derivare în oricâți pași) \\ C \Rightarrow a_{k+1} ... a_n$$$$

$$w=a_1a_2...a_n$$

Subproblemă: $M(i,j) = \{ A \in N \mid A \Rightarrow a_i...a_j \}$, unde \Rightarrow semnifică derivare în oricâți pași

Soluţie:

Ştim:

Recurențe:

$$w=a_1a_2...a_n$$

Subproblemă: $M(i,j) = \{ A \in N \mid A \Rightarrow a_i...a_j \}$, unde \Rightarrow semnifică derivare în oricâți pași

Soluţie: $w \in L(G) \Leftrightarrow S \in M(1,n)$

 $\mathbf{Stim}: M(i,i) = \{ A \in N \mid A \rightarrow a_i \in P \}$

Recurențe:

$$M(i,j) = \{ A \in N \mid \exists k \in i..j-1, astfel încât
$$\exists B \in M(i,k) \text{ i $C \in M(k+1,j)$ cu $A \rightarrow BC \in P$} \}$$$$

Recurențe:

```
M(i,j) = \{ A \in N \mid \exists k \in i...j-1, astfel încât 
 <math display="block">\exists B \in M(i,k) \text{ $i$ $C \in M(k+1,j)$ cu $A \rightarrow BC \in P$} \}
```

Calcul M(i,j):

```
M(i,j) \leftarrow \emptyset
for k=i,j-1
for A\rightarrow BC \in P cu B\in M(i,k) si C\in M(k+1,j)
M(i,j) \leftarrow M(i,j) \cup \{A\}
```

Exemplu: $M(i,j) = \{ A \in N \mid \exists k \in i..j-1, B \in M(i,k) \text{ si } C \in M(k+1,j) \text{ cu } A \rightarrow BC \in P \}$

		a	b	b	Ь
		1	2	3	4
$P_1: S \rightarrow AB$	1 P	3			
$P_2: A \rightarrow BB$			В		
$P_3: A \rightarrow a$	2		P ₅ k=2		
$P_4: B \rightarrow AB$	3			B P _s	
$P_5: B \rightarrow b$	_			k=3	
w = abbb	4				B P ₅ k=4

Exemplu: $M(i,j) = \{ A \in N \mid \exists k \in i...j-1, B \in M(i,k) \text{ si } C \in M(k+1,j) \text{ cu } A \rightarrow BC \in P \}$

		a	<i>b</i>	b	<i>b</i>
		1	2	3	4
$P_1: S \rightarrow AB$	1	A P ₃			
$P_2: A \rightarrow BB$		k=1	В		
$P_3: A \rightarrow a$	2		P ₅		
$P_4: B \rightarrow AB$				В	
$P_5: B \rightarrow b$	3			P ₅ k=3	
w = abbb	4				B P ₅ k=4

Exemplu: $M(i,j) = \{ A \in N \mid \exists k \in i..j-1, B \in M(i,k) \text{ si } C \in M(k+1,j) \text{ cu } A \rightarrow BC \in P \}$

		a		<i>b</i>	b	b
		1	2	2	3	4
$P_1: S \rightarrow AB$	1	A P ₃ k=1	S P ₁ k =1	B P ₄ k=1		
$P_2: A \rightarrow BB$			В			
$P_3: A \rightarrow a$	2		P ₅ k=2			
$P_4: B \rightarrow AB$	3				B P ₅	
$P_5: B \rightarrow b$	3				k=3	
w = abbb	4					B P ₅ k =4

$$M(1,2): k=1 \qquad M(1,1)=\{A\}$$

$$M(2,2)=\{B\}$$

$$C \breve{a}ut \breve{a}m \ producții \ Q \rightarrow AB$$

$$\Rightarrow P_1, \ P_4 \Rightarrow Q \in \{S, B\}$$

	ä	7	b	b	<i>b</i>
	1		2	3	4
$P_1: S \rightarrow AB$	1 P ₃	S P ₁ k=1	B P ₄ k=1		
$P_2: A \rightarrow BB$ $P_3: A \rightarrow a$	2	B P ₅ k=2		A P ₂ k=2	
$P_4: B \rightarrow AB$ $P_5: B \rightarrow b$	3			B P ₅ k=3	
w = abbb	4				B P ₅ k=4

$$\begin{array}{lll} \texttt{M(2,3):} & \texttt{k=2} & \texttt{M(2,2)=\{B\}} \\ & \texttt{M(3,3)=\{B\}} \\ & \texttt{Productie de forma Q} \to \texttt{BB} \\ & \Rightarrow \texttt{P}_2 \Rightarrow \texttt{N} \in \{\texttt{A}\} \end{array}$$

Exemplu: $M(i,j) = \{ A \in N \mid \exists k \in i..j-1, B \in M(i,k) \text{ si } C \in M(k+1,j) \text{ cu } A \rightarrow BC \in P \}$

		a		<i>b</i>	b	Ь
		1		2	3	4
$P_1: S \rightarrow AB$	1	A P ₃ k=1	S P ₁ k =1	B P ₄ k=1		
$P_2: A \rightarrow BB$ $P_3: A \rightarrow a$	2		B P ₅ k=2		A P ₂	
$P_4: B \rightarrow AB$	3		K=Z		B P ₅	A P ₂
$P_5: B \rightarrow b$ w = abbb	4				k=3	k=2 B P ₅
						k=4

$$M(3,4): k=3 \qquad M(3,3)=\{B\}$$

$$M(4,4)=\{B\}$$

$$Productie de forma $Q \to BB$
$$\Rightarrow P_2 \Rightarrow Q \in \{A\}$$$$

Exemplu: $M(i,j) = \{ A \in N \mid \exists k \in i..j-1, B \in M(i,k) \text{ si } C \in M(k+1,j) \text{ cu } A \rightarrow BC \in P \}$

		a	L	b	b	b
	_	1	2	2	3	4
$P_1: S \rightarrow AB$	1	A P ₃ k=1	S P ₁ k =1	B P ₄ k=1	A P ₂ k=2	
$P_2: A \rightarrow BB$	2		B P ₅		A P ₂	
$P_3: A \rightarrow a$ $P_4: B \rightarrow AB$	-		k=2		k=2 B	A
$P_5: B \rightarrow b$	3				P ₅ k=3	P ₂ k=2
w = abbb	4					B P ₅ k=4

$$M(1,3): k=1: M(1,1)={A}$$
 $M(2,3)={A}$
 $Productie Q \rightarrow AA$
 $\Rightarrow Nu exista$

k=2:
$$M(1,2) = \{S,B\}$$

 $M(3,3) = \{B\}$
Productie $Q \rightarrow SB$
 $\Rightarrow P_2 \Rightarrow Nu \text{ exista}$
Productie $Q \rightarrow BB$
 $\Rightarrow P_2 \Rightarrow Q \in \{A\}$

a B Α Α $P_1: S \rightarrow AB$ P_3 P_2 k=1k=1k=1k=2 $P_2: A \rightarrow BB$ B Α В P_4 P_2 P_1 P_5 $P_3: A \rightarrow a$ k=2 k=2k=3k=3 $P_4: B \rightarrow AB$ B Α P_5 P_2 $P_5: B \rightarrow b$ k=3k=2B w = abbb

$$M(2,4): k=2: M(2,2)=\{S,B\}$$
 $M(3,4)=\{A\}$
Productie $N \rightarrow SA$
 $\Rightarrow Nu \text{ exista}$

4

 $M(4,4) = \{B\}$ Productie $N \rightarrow AB$ $\Rightarrow P_1, P_4 \Rightarrow N \in \{S, B\}$

k=4

 $k=3: M(2,3)={A}$

Nu exista

Productie N \rightarrow BA

Exemplu: $M(i,j) = \{ A \in N \mid \exists k \in i..j-1, B \in M(i,k) \text{ si } C \in M(k+1,j) \text{ cu } A \rightarrow BC \in P \}$

	a	b	b	<i>b</i>
	1	2	3	4
1	A P ₃ k=1	S B P ₁ P ₄ k=1	A P ₂ k=2	?
2		B P ₅ k=2	A P ₂ k=2	S B P ₁ P ₄ k=3 k=3
3			B P ₅ k=3	A P ₂ k =2
4				B P ₅ k=4

M(1,4):?

 $P_1: S \rightarrow AB$

 $P_2: A \rightarrow BB$

 $P_3: A \rightarrow a$

 $P_4: B \rightarrow AB$

 $P_5: B \rightarrow b$

Exemplu: $M(i,j) = \{ A \in N \mid \exists k \in i..j-1, B \in M(i,k) \text{ si } C \in M(k+1,j) \text{ cu } A \rightarrow BC \in P \}$

4
7
B ? P ₄ k=1
B P ₄ k=3

M(1,4):

 $P_1: S \rightarrow AB$

 $P_2: A \rightarrow BB$

 $P_3: A \rightarrow a$

 $P_{a}: B \rightarrow AB$

 $P_5: B \rightarrow b$

k=1:
$$M(1,1)=\{A\}$$

 $M(2,4)=\{S, B\}$
Productie $Q \rightarrow SA \Rightarrow Nu \text{ exista}$
Productie $Q \rightarrow AB \Rightarrow P_1, P_4$
 $\Rightarrow Q \in \{S, B\}$

Exemplu: $M(i,j) = \{ A \in N \mid \exists k \in i..j-1, B \in M(i,k) \text{ si } C \in M(k+1,j) \text{ cu } A \rightarrow BC \in P \}$

	a	b	b	b
	1	2	3	4
1	A P ₃ k=1	S B P ₁ P ₄ k=1	A P ₂ k=2	S B ? P ₁ P ₄ k=1 k=1
2		B P ₅ k=2	A P ₂ k=2	S B P ₁ P ₄ k=3 k=3
3			B P ₅ k=3	A P ₂ k=2
4				B P ₅ k=4
4				P ₅

M(1,4):

 $P_1: S \rightarrow AB$

 $P_2: A \rightarrow BB$

 $P_3: A \rightarrow a$

 $P_a: B \rightarrow AB$

 $P_5: B \rightarrow b$

k=2:
$$M(1,2)=\{S, B\}$$

 $M(3,4)=\{A\}$
Productie $N \rightarrow SA \Rightarrow Nu \text{ exista}$
Productie $N \rightarrow BA \Rightarrow Nu \text{ exista}$

Exemplu: $M(i,j) = \{ A \in N \mid \exists k \in i..j-1, B \in M(i,k) \text{ si } C \in M(k+1,j) \text{ cu } A \rightarrow BC \in P \}$

	a	b	b	b
	1	2	3	4
1	A P ₃ k =1	S B P ₄ k=1	A P ₂ k=2	S B ? P ₁ P ₄ k=1 k=1
2		B P ₅ k=2	A P ₂ k=2	S B P ₁ P ₄ k=3 k=3
3			B P ₅ k=3	A P ₂ k=2
4				B P ₅ k=4
		<u>I</u>	Į.	

M(1,4):

 $P_1: S \rightarrow AB$

 $P_2: A \rightarrow BB$

 $P_3: A \rightarrow a$

 $P_{a}: B \rightarrow AB$

 $P_5: B \rightarrow b$

k=3:
$$M(1,3)=\{A\}$$

 $M(4,4)=\{B\}$
Productie $Q \rightarrow AB \Rightarrow P_1, P_4$
 $\Rightarrow Q \in \{S, B\}$ sunt deja in $M(1,4)$

 $P_1: S \rightarrow AB$

 $P_2: A \rightarrow BB$

 $P_3: A \rightarrow a$

 $P_4: B \rightarrow AB$

 $P_5: B \rightarrow b$

w = abbb

Exemplu: $M(i,j) = \{ A \in N \mid \exists k \in i..j-1, B \in M(i,k) \text{ si } C \in M(k+1,j) \text{ cu } A \rightarrow BC \in P \}$

	a	b	b	Ь
	1	2	3	4
1	A P ₃ k=1	S B P ₁ P ₄ k=1	A P ₂ k=2	S B P ₁ P ₄ k=1 k=1
2		B P ₅ k=2	A P ₂ k=2	S B P ₄ k=3 k=3
3			B P ₅ k=3	A P ₂ k=2
4				B P ₅ k=4

$$s \in M(1,4) \Rightarrow w \in L(G)$$

a

O derivare:

P ₁ :	$\mathtt{S} o \mathtt{AB}$	1
P ₂ :	$\mathtt{A} o \mathtt{BB}$	
P ₃ :	$\mathtt{A} o \mathtt{a}$	2
P ₄ :	$\mathtt{B} o \mathtt{A}\mathtt{B}$	
P ₅ :	$\mathtt{B} \to \mathtt{b}$	3
w =	abbb	4

1	2		3		4
A	S	В	Α	S	В
P_3	P_1	P_4	P_2	P_1	P_4
k=1	k=1	k=1	k=2	k=1	k=1
	В		Α	S	В
	P ₅		P ₂	P_1	P_4
	k=2		k=2	k=3	k=3
			В	Α	
			P ₅	P_2	
			k=3	k=2	
				B	

k=4

$$M(1,4, S): S \rightarrow AB (P_1, pentru k=1)$$
 $M(1, 1, A)$
 $M(2, 4, B)$

a

O derivare:

$P_1: S \rightarrow AB$	1
$P_2: A \rightarrow BB$	
$P_3: A \rightarrow a$	2
$P_4: B \rightarrow AB$	2
$P_5: B \rightarrow b$	3
w = abbb	4

	1	2		3			4
	Α	S	В	Α	S		В
1	P_3	P ₁	P_4	P ₂	P ₁	l	P ₄
	k=1	k=1	k=1	k=2	k=	-1	k=1
		В		Α	S		В
2		P ₅		P_2	P ₁	l	P ₄
		k=2		k=2	k=	-3	k=3
				В	A	\	
3				P ₅	P ₂	2	
				k=3	k=		
					В		
4					P ₅	5	
					k=	- 4	

$$M(1,4, S): S \rightarrow AB (P_1, pentru k=1)$$
 $M(1, 1, A): A \rightarrow a$ $M(2, 4, B)$

O derivare:

	г
$P_1 \colon S \to AB$	1
$P_2: A \rightarrow BB$	
$P_3: A \rightarrow a$	2
$P_4: B \rightarrow AB$	_
$P_5: B \rightarrow b$	3
w = abbb	4

1	2	2	3	4	
Α	S	В	Α	S B	
P ₃	P_1	P_4	P ₂	P_1 P_4	
k=1	k=1	k=1	k=2	k=1 k=1	
	В		Α	S B	
	P ₅		P ₂	P_1 P_4	
	k=2		k=2	k=3 k=3	3
			В	Α	
			P ₅	P ₂	
			k=3	k=2	
				В	
				P ₅	
				k=4	

```
M(1,4, S): S \to AB \ (P_1, pentru k=1) M(1, 1, A): A \to a M(2, 4, B): B \to AB \ (P_4, pentru k=3) M(2, 3, A):
```

M(4, 4, B):

O derivare:

	Г
$P_1 \colon S \to AB$	1
$P_2: A \rightarrow BB$	
$P_3: A \rightarrow a$	2
$P_4: B \rightarrow AB$	_
$P_5: B \rightarrow b$	3
w = abbb	4

1	2	2	3	4	
Α	S	В	Α	S B	
P ₃	P_1	P_4	P ₂	P_1 P_4	
k=1	k=1	k=1	k=2	k=1 k=1	
	В		Α	S B	
	P ₅		P ₂	P_1 P_4	
	k=2		k=2	k=3 k=3	3
			В	Α	
			P ₅	P ₂	
			k=3	k=2	
				В	
				P ₅	
				k=4	

```
M(1,4, S): S \to AB \ (P_1, pentru k=1) M(1, 1, A): A \to a M(2, 4, B): B \to AB \ (P_4, pentru k=3) M(2, 3, A):
```

M(4, 4, B):

O derivare:

 $P_{1}: S \rightarrow AB \qquad 1$ $P_{2}: A \rightarrow BB \qquad B$ $P_{3}: A \rightarrow a \qquad 2$ $P_{4}: B \rightarrow AB$ $P_{5}: B \rightarrow b \qquad 3$ $W = abbb \qquad 4$

1	2		3		4
Α	S	В	Α	S	В
A P ₃ k=1	P ₁	P_4	P ₂	P_1	P_4
k=1	k=1	k=1	k=2	k=1	k=1
	В		Α	S	В
	P ₅		P ₂	P ₁	P_4
	k=2		k=2	k=3	k=3
			В	Α	
			P ₅	P ₂	
			k=3	k=2	
				В	
				P ₅ k=4	
				k=4	

```
M(1,4, S): S \to AB \ (P_1, pentru k=1)
M(1, 1, A): A \to a
M(2, 4, B): B \to AB \ (P_4, pentru k=3)
M(2, 3, A): A \to BB \ (P_2, pentru k=2)
M(2, 2, B):
M(3, 3, B):
```

a

O derivare:

4 В Α В Α $P_1: S \rightarrow AB$ P_1 P_4 P_4 P_3 P_2 k=1k=1k=1k=1k=1k=2 $P_2: A \rightarrow BB$ B Α S P_5 P_2 P_4 $P_3: A \rightarrow a$ k=2k=2k=3k=3 $P_{4}: B \rightarrow AB$ В Α 3 P_5 P_2 $P_5: B \rightarrow b$ k=3k=2B w = abbb P_5 4 k=4

$$M(1,4, S): S \to AB \ (P_1, pentru k=1)$$
 $M(1, 1, A): A \to a$
 $M(2, 4, B): B \to AB \ (P_4, pentru k=3)$
 $M(2, 3, A): A \to BB \ (P_2, pentru k=2)$
 $M(2, 2, B): B \to b$
 $M(3, 3, B): B \to b$

O derivare:

P ₁ :	S	\rightarrow	AB
_			

$$P_2: A \rightarrow BB$$

$$P_3: A \rightarrow a$$

$$P_4: B \rightarrow AB$$

$$P_5: B \rightarrow b$$

$$w = abbb$$

a

b	
2	

k=1

S

k=4

4
4

B

k=1

B

	R		Λ
k=1	k=1	k=1	k=2
P ₃	P ₁	P_4	P_2
Α	S	В	Α

D	A
P ₅	P_2
k=2	k=2

k=2	k=2	k=3	k=3
	В	Α	
	P ₅ k=3	P ₂	
	k=3	k=2	
		R	

3

4

