Formelsammlung Physik 2

Tim Hilt

22. Juni 2018

Inhaltsverzeichnis

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
k_{Ges} , wenn Federn parallel	
k_{Ges} , wenn Federn seriell	
Umrechnung $f \ / \ T$	
Allgemeine Schwingungsdgl	
Drehmoment	
1.5.2 Oligedampite Systeme	
Kriterium für harmonische Schwingung:	
Weg-Zeit-Funktion ungedämpfter Systeme	
Schwingungsdauer ungedämpft	
Maximale Geschwindigkeit im Schwingvorgang	
Amplitude x_m	
Kreisfrequenz ungedämpft	
Hookesches Gesetz	
Hookesches Gesetz bei Drehbewegungen	
U-Rohr	
Schwingungsdgl am U-Rohr	
1.3.3 Gedämpfte Systeme	
Abklingfunktion	
Kreisfrequenz gedämpft	
Abklingkoeffizient	
Dämpfungskonstante	
Schwingungszeit gedämpft	
Reibkonstante	
Logarithmisches Dekrement	
Güte	
Schwingungsenergie	
Energieverlust	
Aperiodischer Grenzfall	
1.3.4 Erzwungen schwingende Systeme	
Akustik	
2.1 Formelzeichen	
2.2 Konstanten	

	2.3	Formeln				5
			Schallgeschwindigkeit			5
			Schallintensitätspegel			6
			Summe mehrerer gleich lauter Schallpegel			6
			Summe mehrerer unterschiedlich lauter Schallquellen			6
			Schallpegeldifferenz:			6
			Schallintensität			6
			Schallintensität Halbkugel			6
			Schallintensität Kugel			7
			Schallkennimpedanz / Wellenwiderstand			7
			Schalldruckamplitude			7
			Umrechnung vom Effektivwert			7
			Dopplereffekt			7
			Machscher Kegel			7
			Machzahl			7
			Ab wann Überschallknall?			7
3	Wel					8
	3.1	Formelzeichen				8
	3.2	Formeln				8
	C					_
4		nende Wellen Formelzeichen				9
	4.1					9
	4.2					9
	4.3	Formeln	Calcular and control in disclosion			9
			Schallgeschwindigkeit			9
			Länge der Saite/des Rohres (gleiche Enden)			9
			Länge der Saite/ des Rohres (ungleiche Enden)			10
			Länge einfachster Fall (gleiche Enden)			10
			Länge einfachster Fall (ungleiche Enden)			10
			Grundschwingung/Wellenlänge gleiche Enden			10
			Grundschwingung ungleiche Enden			10
			Frequenzverhältnis			10
			Wellenzahl			10
			Wellengeschwindigkeit	٠	 _	10
5	Opt	ik			1	l 1
•	5.1					11
	5.2					11
	5.3					12
	5.5	ronnem	Zusammenhang Frequenz / Ausbreitungsgeschwindigkeit .			12
			Abstand berechnen (Radarpistole u.Ä.)			12
			Frequenzverschiebung			12
			Geschwindigkeit Zielfahrzeug			12
		Frequenzverso	hiebung beim Dopplereffekt			12
		i requenzverse	Optischer Dopplereffekt			12
			Violett- / Rotverschiebung			12
			Reflexionsgrad R			12 12
			Transmissionsgrad T			
			i i ai i i i i i i j i j i j i j i j i j			ıΖ

	Transmissionsgrad durch Medium	12
5.3.1	Entspiegelung	13
	Brechungsindex von Entspiegelungsschicht	13
	Gangunterschied zwischen den beiden Schichten	13
	Schichtdicke d	13
5.3.2	Brechung	13
	Umrechnungen	13
	Ausbreitungsgeschwindigkeit im Medium	13
	Grenzwinkel der Totalreflexion	13
	Brewsterwinkel	14

Abbildungsverzeichnis

5.1	Farbspektrum																		11
5.2	Entspiegelung																		13

1 Schwingungen

1.1 Dummy

Dies ist eine Dummy-Section und ich werde sie nicht benutzen.

1.2 Formelzeichen

Formelzeichen	Physikalische Größe	Einheit
f	Frequenz	Hz
\overline{T}	Schwingungsdauer	s
ω_0	Winkelgeschwindigkeit (ungedämpftes System)	s^{-1}
ω_d	Winkelgeschwindigkeit (gedämpftes System)	s^{-1}
\overline{k}	Federkonstante	$\frac{N}{m}$
\overline{x}	Auslenkung	\overline{m}
\overline{D}	Dämpfungskonstante	(Einheitenlos)
δ	Abklingkoeffizient	s^{-1}
b	Reibkonstante	$\frac{kg}{s}$
F_E	Anregende Kraft	N
E_v/E_n	Energie davor / Energie danach	
\overline{J}	Massenträgheitsmoment	$kg*m^2$
φ	Drehwinkel	Bogenmaß
M	Drehmoment	Nm

1.3 Formeln

1.3.1 Allgemein

 k_{Ges} , wenn Federn parallel $k_{Ges} = k_1 + k_2 + k_3 + \cdots + k_n$

Eigenkreisfrequenz $\omega = 2\pi * f = \frac{2\pi}{T}$

1.3.2 Ungedämpfte Systeme

Kriterium für harmonische Schwingung: $\frac{x}{F}$, bzw. $\frac{\varphi}{M}$ muss linear sein!

 $\text{Maximale Geschwindigkeit im Schwingvorgang} \qquad \dots \\ y_{\max} = x_m * \omega_0 \\ v_{\min} \text{ ist immer} = 0!$

Kreisfrequenz ungedämpft $\ldots \omega_0 = \sqrt{\frac{k}{m}}$ Und bei Drehbewegungen: $\omega_0 = \sqrt{\frac{k}{n}}$ $\dots F_s = k * x$ Hookesches Gesetz Hookesches Gesetz bei Drehbewegungen $\dots M = k * \varphi$ **U-Rohr** Schwingungsdgl am U-Rohr $\underbrace{\rho*A*l}_{\mathtt{m}}*\ddot{x}+\underbrace{\rho*A*g*2}_{\mathtt{k}}x=0$ $(x = x_0 * \cos(\omega_0 * t))$ 1.3.3 Gedämpfte Systeme Abklingfunktion $x_m = x_0 * e^{-\delta * t}$ Kreisfrequenz gedämpft $\ldots \ldots \omega_d = \sqrt{\omega_0^2 - \delta^2} = \omega_0 \sqrt{1 - D^2}$ Schwingungszeit gedämpft $T_D = \frac{2\pi}{\sqrt{\omega_0^2 - \delta^2}} = \frac{T_0}{\sqrt{1 - D^2}}$ Güte $Q = \frac{\pi}{\delta * T} = \frac{1}{2D}$

Schwingungsenergie $E = \frac{1}{2} * c * x^2$ Energieverlust $\frac{\Delta E}{E} = 1 - \frac{E_n}{E_v} = 1 - \frac{\frac{1}{2} c x_1^2}{\frac{1}{2} c x_0^2}$ Kann noch gekürzt werden! $1 - \frac{x_1^2}{x_0^2}$

Aperiodischer Grenzfall

$$D = 1$$

$$\delta = \omega_0$$

$$b = 2m * \omega_0$$

1.3.4 Erzwungen schwingende Systeme

2 Akustik

2.1 Formelzeichen

Formelzeichen	Physikalische Größe	Einheit
\overline{f}	Frequenz	Hz
L	Schallpegel	dB
c	Ausbreitungsgeschwindigkeit	$\frac{m}{s}$
λ	Wellenlänge	m
\overline{I}	Schallintensität	$\frac{W}{m^2}$
\overline{P}	Schallleistung	\overline{W}
\overline{A}	Oberfläche (Kugelwelle)	m^2
\overline{Z}	Wellenwiderstand/Schallkennimpedanz	$\frac{kg}{m^2s}$
ρ	Dichte	$\frac{kg}{m^3}$
p	Schalldruckamplitude	Pa
Ma	Machzahl	Einheitenlos

2.2 Konstanten

$$I_0 = 10^{-12} \ \frac{W}{m^2}$$

2.3 Formeln

 ${\sf Schallgeschwindigkeit} \qquad \qquad c = \lambda * f$

Wichtigste Formel für Rechnung mit Schallwellen!

Summe mehrerer unterschiedlich lauter Schallquellen $L_{\Sigma} = 10*\log(10^{L_1/10}+10^{L_2/10}+10^{L_3/10}+\cdots+10^{L_n/10})$

Beispiel:

$$L_1 = 90dB, L_2 = 80dB, L_3 = 65dB$$

$$L_{\Sigma} = 10 * \log(10^9 + 10^8 + 10^{6.5})$$

$$L_{\Sigma} = 90.426dB$$

Schallpegeldifferenz:

$$\Delta L = L_2 - L_1$$
$$= 10 \log \left(\frac{I_2}{I_1}\right)$$

Und bei unterschiedlichem Radius/Abstand:

$$=20\log\left(\frac{r1}{r2}\right)$$

wobei L_2 der größere beider Werte ist

Bei allen fahrenden / mit der Erde verbundenen Schallquellen gilt $A=2\pi r^2$. Dies entspricht der Oberfläche einer Halbkugel. Dementsprechend gilt für alle fliegenden oder in der Luft aufgehängten Schallquellen $A=4\pi r^2$

Schallintensität Halbkugel $I = \frac{P}{2\pi * r^2}$

 ${\sf Schalldruckamplitude} \qquad \dots \qquad p = Z*\omega*x$

Dopplereffekt

Ruhender Empfänger, bewegter Sender: $f_E = f_S \frac{1}{1 \mp rac{v_S}{c}}$

Runder Sender, bewegter Empfänger: $f_E = f_S \left(1 \pm rac{v_E}{c}
ight)$

Bewegter Sender, bewegter Empfänger: $f_E = f_S \frac{c \pm v_E}{c \mp v_S}$

Oberes Zeichen: Annäherung; Unteres Zeichen: Entfernung

Machscher Kegel $\sin\left(\frac{\alpha}{2}\right) = \frac{c}{v_S} = \frac{1}{Ma}$

3 Wellen

3.1 Formelzeichen

$\lambda = \dots $			Wellenlänge
Umrechung von Bogensekunden in Grad:	$0^{\circ}0^{\circ}$ Wert	Danach is	t Wert für weitere
Berechnungen nutzbar			

3.2 Formeln

4 Stehende Wellen

4.1 Formelzeichen

Formelzeichen	Physikalische Größe	Einheit
λ	Wellenlänge	m
ρ	Dichte	$\frac{kg}{m^3}$
f	Frequenz	Hz
l	Länge	m
k	Anzahl d. Wellenbäuche	Wellen/m
\overline{p}	Luftdruck	Pa
κ	Isentropenexponent; $\frac{c_p}{c_v}$	Einheitenlos

4.2 Konstanten

Menschlicher Hörbereich: 16 - 20000Hz

4.3 Formeln

$$\text{Schallgeschwindigkeit} \qquad \ldots \\ c = \sqrt{\frac{\kappa*p}{\rho_T}} = 331 \frac{m}{s} * \sqrt{\frac{273K + \cdots \circ C}{273K}}$$

Länge der Saite/des Rohres (gleiche Enden)
$$l=(k+1)*\frac{\lambda}{2}=(k+1)*\frac{c}{2f}$$
 $k\in 0,1,2,\ldots$

Länge der Saite/ des Rohres (ungleiche Enden) $l=(2k+1)*\frac{\lambda}{4}=(2k+1)*\frac{c}{4f}$ $k\in 0,1,2,\ldots$ " 1. Harmonische" \equiv " Grundschwingung" \equiv " 0. Oberschwingung"
Länge einfachster Fall (gleiche Enden) $ l = \frac{\lambda}{2} = \frac{c}{2f_0}$ Gilt nur für Grundschwingung!
Länge einfachster Fall (ungleiche Enden) $ l = \frac{\lambda}{4} = \frac{c}{4f_0}$ Gilt nur für Grundschwingung!
${\sf Grundschwingung/Wellenlänge\ gleiche\ Enden}\qquad \ldots \qquad f = \frac{c}{4*l}; \lambda = 4*L$
Grundschwingung ungleiche Enden $\qquad \qquad \qquad \qquad f = rac{c}{2*l}; \lambda = 2*L$
Frequenzverhältnis
Wellenzahl $ k = \frac{2\pi}{\lambda} = \frac{\omega}{c} $
Wellengeschwindigkeit

5 Optik

5.1 Formelzeichen

Formelzeichen	Physikalische Größe	Einheit
λ	Wellenlänge	m
\overline{c}	Lichtgeschwindigkeit	$\frac{m}{s}$
f	Frequenz	Hz
\overline{R}	Reflexionsgrad	Gibt reflektierten Anteil
\overline{T}	Transmissionsgrad	Gibt transmittierten Anteil

5.2 Konstanten

$$c_0 = 3 * 10^8 \frac{m}{s}$$

Wellenlängenempfindlichkeit des Auges: $400-750 \ nm$

Abbildung 5.1: Farbspektrum und menschlicher Sehbereich

5.3 Formeln

Abstand berechnen (Radarpistole u.Ä.) $s = \frac{c*t}{2}$ Aus Formel der Kinetik $v = \frac{s}{t}$

Frequenzverschiebung $\Delta f = \frac{2*f_s*v}{c} = \frac{2*v}{\lambda_s}$

Frequenzverschiebung beim Dopplereffekt

Annäherung ightarrow höhere Frequenz / kleinere Wellenlänge ightarrow Violett-Verschiebung

 ${\sf Entfernung} \quad \to \quad {\sf niedrigere} \,\, {\sf Frequenz} \,\, / \,\, {\sf gr\"{o}} \\ {\sf Bere} \,\, {\sf Wellenl\"{a}nge} \quad \to \quad {\sf Rot-Verschiebung}$

Optischer Dopplereffekt $f_E = f_S * \sqrt{\frac{c \pm v}{c \mp v}}$

Gibt jeweils nur **einen** Übergang an!

Falls Medium nicht transparent gilt mit dieser Formel der Absorptionsgrad

Transmissionsgrad **durch** Medium $T_{Ges} = (1-R)^2 = T_1 \cdot T_2$

5.3.1 Entspiegelung

Hierbei sei n_1/λ_1 die Wellenlänge und Brechzahl in Luft, n_2/λ_2 die Brechzahl und Wellenlänge in der Entspiegelungsschicht der Dicke d und n_3/λ_3 die Wellenlänge und Brechzahl des Brillenglases.

Abbildung 5.2: Grafik zur Veranschaulichung der Entspiegelung

Brechungsindex von Entspiegelungsschicht $n_2 = \sqrt{n_1*n_3}$ Gangunterschied zwischen den beiden Schichten $\Delta x = 2*n_2*d$ Schichtdicke d $d = \frac{\lambda_1}{4n_2}$

5.3.2 Brechung

Umrechnungen $\frac{\sin\alpha}{\sin\beta} = \frac{n_2}{n_1} = \frac{c_1}{c_2} = \frac{\lambda_1}{\lambda_2}$ Von dünn nach dicht \to zum Lot hin; von dicht nach dünn \to vom Lot weg $c_n = \frac{c_0}{n}$ Ausbreitungsgeschwindigkeit im Medium $c_n = \frac{c_0}{n}$ Grenzwinkel der Totalreflexion $\sin\alpha = \frac{n_1}{n_2}$

Von dichtem nach dünnem Medium

Brewsterwinkel $\tan\alpha=\frac{n_2}{n_1}$ Gilt jeweils, wenn vollständig polarisierter Winkel gefragt ist 90° zwischen reflektiertem und gebrochenem Strahl

Der reflektierte Strahl ist vollständig linear polarisiert, der transmittierte Anteil wird vorwiegend parallel polarisiert.