LING 505 Sample Exam Questions

Hunter Damron

7 March 2019

- 1. Consider the sentence "The red panda is cuter than the giant panda."
 - (a) Describe the relation "is cuter than" mathematically in terms of symmetry, transitivity, and reflexivity, applying the strongest possible properties (e.g. antisymmetry is a stronger property than non-symmetry). Assume one panda cannot be exactly as cute as another.
 - (b) Can the "is cuter than" relation be used as an equivalence relation? Can it be used as an ordering, and if so is this ordering weak or strong?
 - (c) How can the meaning of the sentence be changed when said in the presence of Figure 1? Hint: consider the specific pandas which are referenced in each usage of the sentence.
 - (d) Bonus: Explain why in the problem statement of 1a "i.e." could not be used in place of "e.g."

Figure 1: Cute pandas.¹

2. For finite alphabet Σ , let $L \subseteq \Sigma^*$ be a language such that each word in L contains an even number of every letter in Σ . Prove that $|L| = |\Sigma^*|$.

¹Left by Mathias Appel, right by Cesar Aguilar, available at www.pexels.com

Answer Key

- 1. (a) Irreflexive: It is impossible for a panda to be cuter than itself.
 - Asymmetric: If a panda is cuter than another then it is impossible for the other to be cuter than it.
 - Transitive: If a panda is cuter than another and that panda is cuter than a third, then the first panda is cuter than the third.
 - (b) The relation cannot be used as an equivalence relation because it is not reflexive. However, it is a strong ordering, similar to the greater than operation.
 - (c) In the context of Figure 1, the sentence would likely refer to the two pandas specifically but in a general context it would likely be generic singular, referring to each species of panda as a whole.
 - (d) The parenthetical note was giving an example of strong properties, not explaining the strength of properties in a different way as would be done if "i.e." had been used.
- 2. Proof. Because $L \subseteq \Sigma^*$, $|L| \le |\Sigma^*|$. Let $f: \Sigma^* \to L$ such that f(w) is w with each character repeated exactly once. Because there are two instances of each character, there is an even number of each letter of Σ so $f(w) \in L$. For $x, y \in \Sigma^*$ if f(x) = f(y), each even indexed character of f(x) must make up x and y so x = y. Note that each odd indexed character of f(x) is equal to the character preceding it. Thus f is injective, meaning $|\Sigma^*| \le |L|$. Conclude $|L| = |\Sigma^*|$.