Written Assignment 2 - Thomas Boyko - 30191728

Consider the power series:

$$\sum_{n=0}^{\infty} \frac{3^n}{n^2 + 1} (2x - 1)^n$$

- (a) Explain how you know that the centre of the series is $\frac{1}{2}$. We can set 2x 1 equal to zero, yielding $x = \frac{1}{2}$, and at at that value, each term of the series will equal zero.
- (b) Show that the radius of convergence is $\frac{1}{6}$. To show this, we can use the ratio test and see where L < 1.

$$\lim_{n \to \infty} \left| \frac{3^{n+1} (2x-1)^{n+1}}{(n+1)^2 + 1} \cdot \frac{n^2 + 1}{3^n (2x-1)^n} \right| = L$$

$$\lim_{n \to \infty} \left| \frac{3(2x-1)(n^2 + 1)}{n^2 + 2n + 2} \right| = L$$

$$|6x| = L$$

$$|6x| < 1$$

$$|x| < \frac{1}{6}$$

So the radius of convergence is $\frac{1}{6}$.

(c) Show that $x = \frac{1}{3}$ is included in the interval of covergence of the power series. Our series will now become:

$$\sum_{n=0}^{\infty} \frac{3^n}{n^2 + 1} (\frac{2}{3} - 1)^n$$

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n^2 + 1}$$

Now we can use the alternating series test.

$$\lim_{n \to \infty} \frac{(-1)^n}{n^2 + 1} = 0$$

(since the denominator tends to infinity.)

Now we must show $a_n \leq a_{n+1}$.

$$a_n = \frac{1}{n^2 + 1}$$
$$a_{n+1} = \frac{1}{n^2 + 2n + 2}$$

Since $n^2 + 2n + 2 > n^2 + 1$ for all positive n, $a_{n+1} \ge a_n$, we can use the Alternating Series test to say that this series converges.

1

(d) Show that $x = \frac{2}{3}$ is included in the interval of convergence of the power series. Our series becomes:

$$\sum_{n=0}^{\infty} \frac{3^n}{n^2 + 1} (\frac{4}{3} - 1)^n$$
$$\sum_{n=0}^{\infty} \frac{1}{n^2 + 1}$$

Now we can use the Comparison Test with $\frac{1}{n^2}$.

$$\lim_{n \to \infty} \frac{n^2}{n^2 + 1} = 1$$

Since the limit of the ratio of the two test equals a positive, finite number, both series must converge (since $\frac{1}{n^2}$ is a p-series with p=2).