(0) Give example relations with the following properties, if possible. Problem F is done for you.

Problem	Reflexive	Transitive	Symmetric
A	No	No	No
В	No	No	Yes
С	No	Yes	No
D	No	Yes	Yes
Е	Yes	No	No
F	Yes	No	Yes
G	Yes	Yes	No
Н	Yes	Yes	Yes

Solution to problem F.

F	a	b	c
a	Т	Т	Т
b	Т	Т	F
c	Т	F	Т

This relation is symmetric since it is symmetric along the main diagonal. It is reflexive, since it true at all positions along the diagonal. It is not transitive since ${}_bR_a$ and ${}_aR_c$ but \neg_bR_c .

Solution to problem A.

$oldsymbol{A}$	a	b	c
a	F	F	Т
b	Т	F	F
c	F	Т	F

This relation is not reflexive as $\neg_a R_a$ disproves reflexivity. This relation is not transitive as ${}_a R_c \wedge {}_c R_b$ but $\neg_a R_b$, disproving transitivity. This relation is not symmetric, as disproven by the conjunction ${}_a R_c \wedge \neg_c R_a$.