CONNECTIVITY OF COMPLEXES OF SEPARATING CURVES

EDUARD LOOIJENGA

In memory of Fritz Grünewald (1949-2010)

ABSTRACT. We prove that the separated curve complex of a closed orientable surface of genus g is (g-3)-connected. We also obtain a connectivity property for a separated curve complex of the open surface that is obtained by removing a finite set from a closed one, where it is assumed that the removed set is endowed with a partition and that the separating curves respect that partition. These connectivity statements have implications for the algebraic topology of the moduli space of curves.

1. Statements of the results

Let S be a connected oriented surface of genus g with finite first Betti number 2g+n (i.e., a closed surface with n punctures) and make the customary assumption that S has negative Euler characteristic: if g=0, then $n\geq 3$ and if g=1, then $n\geq 1$. We recall that the *curve complex* $\mathcal{C}(S)$ of S is the simplicial complex whose vertex set consists of the isotopy classes of embedded (unoriented) circles in S which do not bound in S a disk or a cylinder. A finite set of vertices spans a simplex precisely when its elements can be represented by embedded circles that are pairwise disjoint. Thus, a closed 1-dimensional submanifold A of S with k+1 connected components such that every connected component of its complement has negative Euler characteristic defines a k-simplex σ_A of $\mathcal{C}(S)$ and every simplex of $\mathcal{C}(S)$ is thus obtained.

This complex has proven to be quite useful in the study of the mapping class group of S. For the purposes of studying the Torelli group of S a subcomplex $\mathcal{C}_{sep}(S)$ of $\mathcal{C}(S)$ can render a similar service. It is defined as the full subcomplex of $\mathcal{C}(S)$ spanned by the separating vertices of $\mathcal{C}(S)$, where a vertex is called *separating* if a representative embedded circle separates S into two components. Our main result for the case when S is closed is:

Theorem 1.1 (A_g) . If $n \le 1$, then the simplicial complex $C_{sep}(S)$ is (g-3)-connected.

Previous work on this topic that we are aware of concerns the case n=0. Farb and Ivanov announced in 2005 [1, Thm. 4] that $\mathcal{C}_{sep}(S)$ is connected for

²⁰¹⁰ Mathematics Subject Classification. 57N05, 55U15.

Key words and phrases. separating curve complex.

Support by the Mathematical Research Center at Tsinghua University is gratefully acknowledged.

 $g \ge 3$. Putman gave in [4, Thm. 1.4] another proof of this and showed that $C_{sep}(S)$ is simply connected for $g \ge 4$ (op. cit., Thm. 1.11). In that paper he also mentions that Hatcher and Vogtmann have proved that $C_{sep}(S)$ is $|\frac{1}{2}(g-3)|$ -connected for all g (unpublished).

Remark 1.2. Presumably the connectivity bound in Theorem 1.1 is the best possible for every positive genus. In a paper with Van der Kallen [3] we showed that the quotient of $\mathcal{C}_{sep}(S)$ by the action of the Torelli group of S has the homotopy type of a bouquet of (g-2)-spheres.

Before we state a version for the case $n \geq 2$, we point out a consequence that pertains to the moduli space of curves. Consider the Teichmüller space $\mathcal{T}(S)$ of S on which acts the mapping class group $\Gamma(S)$, so that the orbit space may be identified with the moduli space \mathcal{M}_g of curves of that genus. The *Harvey bordification* of $\mathcal{T}(S)$, here denoted by $\mathcal{T}(S)^+ \supset \mathcal{T}(S)$, is a (noncompact) manifold with boundary with corners to which the action of $\Gamma(S)$ naturally extends. This action is proper and the orbit space $\mathcal{M}_g^+ := \Gamma(S) \setminus \mathcal{T}(S)^+$ is a compactification of \mathcal{M}_g that can also be obtained from the Deligne-Mumford compactification $\overline{\mathcal{M}}_g \supset \mathcal{M}_g$ as a 'real oriented blowup' of its boundary $\Delta_g := \overline{\mathcal{M}}_g - \mathcal{M}_g$. The walls of $\mathcal{T}(S)^+$ define a closed covering of the boundary $\partial \mathcal{T}(S)^+$ and any nonempty corner closure is an intersection of walls. As is well-known, the curve complex $\mathcal{C}(S)$ can be identified with the nerve of this covering of $\partial \mathcal{T}(S)^+$. Since the corner closures are contractible, Weil's nerve theorem implies that $\partial \mathcal{T}(S)^+$ has the same homotopy type as $\mathcal{C}(S)$.

Let $\Delta_{g,0}\subset\Delta_g$ denote the irreducible component of the Deligne-Mumford boundary whose generic point parameterizes irreducible curves with one singular point. We may understand $\mathcal{M}_g^c:=\overline{\mathcal{M}}_g-\Delta_{g,0}$ as the moduli space of stable genus g curves with compact Jacobian and $\Delta_g^c:=\Delta_g-\Delta_{g,0}$ as the locus in \mathcal{M}_g^c that parameterizes the singular ones among them.

Corollary 1.3. Let $\tilde{\mathcal{M}}_g^c \to \mathcal{M}_g^c$ be a (not necessarily finite) cover defined by a torsion free subgroup $\Gamma \subset \Gamma(S)$ (this means every Dehn twist along a separating curve in S has a positive power lying in Γ) and denote by $\tilde{\Delta}_g^c \subset \tilde{\mathcal{M}}_g^c$ the preimage of Δ_g^c . Then the pair $(\tilde{\mathcal{M}}_g^c, \tilde{\Delta}_g^c)$ is (g-2)-connected, and $H_k(\mathcal{M}_q^c, \Delta_g^c; \mathbb{Q}) = 0$ for $k \leq g-2$.

Proof. Let $\mathcal{T}(S)_{\text{sep}}^+$ be obtained from $\mathcal{T}(S)^+$ by removing the walls that correspond to the nonseparating vertices of $\mathcal{C}(S)$. Then $\mathcal{T}(S)_{\text{sep}}^+$ is the preimage of \mathcal{M}_g^c in $\mathcal{T}(S)^+$. The same reasoning as above shows that $\partial \mathcal{T}(S)_{\text{sep}}^+$ is homotopy equivalent to $\mathcal{C}(S)_{\text{sep}}$ and so $\partial \mathcal{T}(S)_{\text{sep}}^+$ is (g-3)-connected. It follows that we can construct a relative CW complex $(Z, \partial \mathcal{T}(S)_{\text{sep}}^+)$ obtained from $\partial \mathcal{T}(S)_{\text{sep}}^+$ by attaching cells of dimension $\geq g-1$ in a $\Gamma(S)$ -equivariant manner as to ensure that Z is contractible and no nontrivial element of $\Gamma(S)$ fixes a cell. Then Γ acts freely on Z (as it does on the

contractible space $\mathcal{T}(S)_{sep}^+$) and so there is a Γ -equivariant homotopy equivalence $Z \to \mathcal{T}(S)_{sep}^+$ relative to $\partial \mathcal{T}(S)_{sep}^+$. It follows that we also have a homotopy equivalence $\Gamma \backslash Z \to \tilde{\mathcal{M}}_g^c$ relative to $\tilde{\Delta}_g^c$ and we conclude that $(\tilde{\mathcal{M}}_g^c, \tilde{\Delta}_g^c)$ is (g-2)-connected. If we take $\Gamma \subset \Gamma(S)$ (beyond being torsion free) normal and of finite index in $\Gamma(S)$, with finite quotient G, then $H_k(\mathcal{M}_q^c, \Delta_q^c; \mathbb{Q}) \cong H_k(\tilde{\mathcal{M}}_q^c, \tilde{\Delta}_q^c; \mathbb{Q})^G = 0$ for $k \leq g-2$.

A similar statement holds for the universal curve $\mathcal{M}_{q,1}$.

When n>1, we need to come to terms with the fact that the separability notion has no good heriditary properties: if T is a closed surface, $A\subset T$ a compact 1-dimensional submanifold representing a simplex of $\mathcal{C}(T)$ and S a connected component of T-A, then a vertex of $\mathcal{C}(S)$ may split S, but not T. This happens precisely when the vertex in question separates two boundary components of ∂S that lie on the same connected component of T-S. So the basic object should be, what Andy Putman calls in [5], a partitioned surface: a closed surface minus a finite set, for which the removed set comes with a partition. This leads to the following definition.

Definition 1.4. Let N be the set of points of S at infinity (the cusps) and let P be a partition of N. We call a vertex of C(S) separating relative to P if a representative embedded circle $\alpha \subset S$ has the property that $S - \alpha$ has two connected components each of which meets N in a union of parts of P. We denote by C(S, P) the full subcomplex of C(S) spanned by such vertices.

So $\mathcal{C}(S,P)\subset\mathcal{C}_{sep}(S)$ and we have equality when P is discrete or N is empty.

We shall prove Theorem 1.1 with induction simultaneously with

Theorem 1.5 $(A_{g,n})$. Suppose g > 0 and n = |N| > 1. Let P be a partition of N. Then C(S,P) is (g-2)-connected.

Remark 1.6. I am indebted to Allen Hatcher for pointing out that the stronger version of Theorem 1.5 that I stated in a previous version was incorrect. Yet it may be that some such statement might hold. For instance, if r(P) denotes the number of nonempty parts of P and s(P) the number of parts with at least two elements, is it true that $\mathcal{C}(S,P)$ is (g+r(P)+s(P)-4)-connected when g>0 (as I claimed in the earlier version)? In case g=0, $\mathcal{C}(S,P)$ is a complex of dimension r(P)+s(P)-4. Is this (r(P)+s(P)-5)-connected? In other words, is this complex spherical?

2. Proofs

Before we start off, we mention the following elementary fact that we will frequently use.

Lemma 2.1. Let X_i be a d_i -connected space $(d_i = -1 \text{ means } X_i \neq \emptyset)$, where $i = 1, \ldots, k$. Then the iterated join $X_1 * \cdots * X_k$ is $(-2 + \sum_{i=1}^k (d_i + 2))$ -connected.

Proof that $(A_{h,n})$ for h < g, all n, implies (A_g) . So here $n \le 1$. We must show that $\mathcal{C}_{sep}(S)$ is (g-3)-connected. For g < 2, there is nothing to show and so we may assume that $g \ge 2$. A theorem of Harer [2, Thm. 1.2] asserts that $\mathcal{C}(S)$ is (2g-3)-connected. So it is certainly (g-3)-connected. Let \mathcal{C}_k be the subcomplex of $\mathcal{C}(S)$ that is the union of $\mathcal{C}_{sep}(S)$ and the k-skeleton of $\mathcal{C}(S)$. So $\mathcal{C}_{-1} = \mathcal{C}_{sep}(S)$ and $\mathcal{C}_k = \mathcal{C}(S)$ for k large. Notice that a finite set of vertices of $\mathcal{C}(S)$ spans a simplex of \mathcal{C}_k if and only if no more than k+1 of these are nonseparating. Hence a minimal simplex of $\mathcal{C}_k - \mathcal{C}_{k-1}$ is represented by a compact 1-dimensional submanifold $A \subset S$ with k+1 connected components, each of which is nonseparating. We prove that the link of such a simplex in \mathcal{C}_k is a (g-3)-connected subcomplex of \mathcal{C}_{k-1} . This property implies that $|\mathcal{C}(S)|$ is obtained from $|\mathcal{C}_{sep}(S)|$ by attaching cells of dimension $|\mathcal{C}_{sep}(S)|$ is obtained from $|\mathcal{C}_{sep}(S)|$ by attaching cells of dimension $|\mathcal{C}_{sep}(S)|$ be the set of connected components of S - A. Notice that if S_k is the genus of S_k , then S_k and Euler characteristic argument shows that

$$g-1 \leq k+1 + \sum_{i \in I} (g_i-1).$$

We denote by N_i the set of connected components of A that bound S_i . The boundary components of the connected components of $S-S_i$ define a partition P_i of N_i . Since the connected components of A are nonseparating, $|N_i| \geq 2$. By our induction hypothesis $\mathcal{C}(S_i, P_i)$ is then (g_i-2) -connected. The link of the k-simplex σ_A defined by A in \mathcal{C}_k lies in \mathcal{C}_{k-1} and can be identified with the (|I|+1)-fold join

$$\mathfrak{d}\sigma_A*\big(*_{\mathfrak{i}\in I}\mathcal{C}(S_{\mathfrak{i}},\widehat{P}_{\mathfrak{i}})\big).$$

Since $\vartheta\sigma_A$ is a combinatorial (k-1)-sphere, it is (k-2)-connected and so by Lemma 2.1 the link in question has connectivity at least

$$(k-1) + \sum_{i \in I} (g_i-1) + (|I|-1) \geq g-3 + (|I|-1) \geq g-3. \hspace{1cm} \square$$

The proof of $A_{g,n}$ begins with a discussion. We now assume that g>0 and $n\geq 2$ and denote by \overline{S} the closed genus g surface obtained from S by adding its cusps.

Let $x \in N$. The goal is to compare $\mathcal{C}(S',P')$ with $\mathcal{C}(S,P)$. There is in general no forgetful map $\mathcal{C}(S,P) \to \mathcal{C}(S',P')$ because there will be vertices of $\mathcal{C}(S,P)$ that do not give vertices of $\mathcal{C}(S',P')$. Let us first identify this set of vertices.

Denote by $\Sigma_x \subset N - \{x\}$ is the set of $y \in N - \{x\}$ for which $\{x,y\}$ is a union of parts of P. In other words, if P_x denotes the part of P that contains x, then Σ_x is empty if P_x has more than 2 elements, equals $P_x - \{x\}$ if P_x is a 2-element set, and equals the set of $y \neq x$ for which P_y is a singleton, in case $P_x = \{x\}$. Then the set of vertices of C(S, P) that have no image in C(S', P') is precisely the set of vertices α of $C_{sep}(S)$ that for some $y \in \Sigma_x$ bound a disk neighborhood of $\{x,y\}$ in $S \cup \{x,y\}$ (so this set is empty if Σ_x is). Such a

disk neighborhood can be thought of as a regular neighborhood of an arc in $S \cup \{x,y\}$ connecting the two added cusps; this may help to explain why we have chosen to denote this set of vertices by $arc_{(S,P)}(x)$. Denote by $C(S,P)_x$ the full subcomplex of C(S,P) spanned by the vertices not in $arc_{(S,P)}(x)$.

Observe that $arc_{(S,P)}(x)$ is empty (so that $C(S,P)_x = C(S,P)$) is Σ_x is.

Lemma 2.2. The link in C(S, P) of every vertex of $arc_{(S,P)}(x)$ is a subcomplex of $C(S, P)_x$ that projects isomorphically onto C(S', P').

Proof. A vertex of $arc_{(S,P)}(x)$ defines a $y \in \Sigma_x$ and (up to isotopy) a closed disk D in $S \cup \{x,y\}$ that is a neighborhood of $\{x,y\}$. We may identify the link in question with $C(S \setminus D, P')$ and the latter clearly maps isomorphically onto C(S', P').

Denote by \tilde{P} the refinement of P which coincides with P on $N-P_x$ and partitions P_x further into $\{x\}$ and $P_x-\{x\}$. So $\tilde{P}'=P'$. It is clear that $\mathcal{C}(S,P)$ is a subcomplex of $\mathcal{C}(S,\tilde{P})$. Notice that $arc_{(S,P)}(x)=\mathcal{C}(S,P)\cap arc_{(S,\tilde{P})}(x)$ (we have $arc_{(S,P)}(x)=arc_{(S,\tilde{P})}(x)$ unless $|P_x|=2$) and $\mathcal{C}(S,P)_x=\mathcal{C}(S,P)\cap \mathcal{C}(S,\tilde{P})_x$.

Lemma 2.3. The simplicial map $f: \mathcal{C}(S, \tilde{P})_x \to \mathcal{C}(S', P')$ is a homotopy equivalence.

Proof. Let us first observe the following. The map f is equivariant for the actions of mapping class group $\Gamma(S)$ (acting via $\Gamma(S')$ on $\mathcal{C}(S',P')$). The kernel of $\Gamma(S) \to \Gamma(S')$ may be identified with the fundamental group $\pi_1(S',x)$, so that the latter permutes the simplices of $\mathcal{C}(S,\tilde{P})_x$ that lie over any given simplex of $\mathcal{C}(S',P')$.

Let σ be a k-simplex of $\mathcal{C}(S',P')$. It is enough to prove that the preimage of $|\sigma|$ is contractible. Let σ be given by the compact one-dimensional submanifold A of S' with k+1 connected components. This submanifold is unique up to isotopy in S'. If our representative A happens to avoid x, then it also defines a k-simplex of $\mathcal{C}(S,\tilde{P})_x$. If a component α of A passes through x, then we may define a (k+1)-simplex in $\mathcal{C}(S,\tilde{P})_x$ by replacing α by the boundary of a thin regular neighborhood of α in S'. If we allow A to vary in its S'-isotopy class, then we thus produce all the simplices of $\mathcal{C}(S,\tilde{P})_x$ that map onto σ .

In order to describe the fiber of |f| over the relative interior of $|\sigma|$, we choose a universal cover $\tilde{S}' \to S'$ of S'. Its total space is homeomorphic to an open disk. The preimage \tilde{A} of a A in \tilde{S}' is a closed one dimensional submanifold of which any connected component connects two boundary points of \tilde{S}' . (A clearer picture is perhaps obtained if we choose a hyperbolic structure on S' for which the points of N' are cusps and each component of A is a closed geodesic, for then \tilde{S}' is a copy of the upper half plane and each component of \tilde{A} is a complete geodesic in \tilde{S}' .) The fundamental group of a connected component of S' - A maps injectively to the fundamental

group of S'. This implies that each connected component of $\tilde{S}'-\tilde{A}$ is simply connected and hence is contractible (in terms of hyperbolic geometry: it is a hyperbolic polygon with all its vertices—infinite in number—improper). So the closures of the connected components of $\tilde{S}'-\tilde{A}$ define a Leray covering of \tilde{S}' . If we denote its nerve by K_{σ} , then the geometric realization $|K_{\sigma}|$ has the homotopy type of \tilde{S}' , hence is contractible. In other words, K_{σ} is a tree. It is not hard to see that $|K_{\sigma}|$ can be identified with the fiber of |f| over the relative interior of $|\sigma|$.

The situation over all of $|\sigma|$ is not much different: if $\tau \leq \sigma$ is obtained by omitting a number of connected components of A, then the associated partition of \tilde{S}' becomes coarser and we have an obvious simplicial map $K_{\sigma} \to K_{\tau}$ of trees. The simplicial scheme over σ that we thus obtain is has still a contractible geometric realization. But this simplicial scheme is also the part of the barycentric subdivision of $\mathcal{C}(S,\tilde{P})$ that lies over σ .

Corollary 2.4. The complex $C(S, P) \cup C(S, \tilde{P})_x$ is canonically homotopy equivalent to the join $arc_{(S,P)}(x) * C(S',P')$ (where $arc_{(S,P)}(x)$ is discrete).

Proof. The set of vertices of $\mathcal{C}(S,P)\cup\mathcal{C}(S,\tilde{P})_x$ not in $\mathcal{C}(S,\tilde{P})_x$ is $arc_{(S,P)}(x)$. The link of any such vertex is contained in $\mathcal{C}(S,\tilde{P})_x$ and by Lemma 2.2 that link projects isomorphically onto $\mathcal{C}(S',P')$. In view of Lemma 2.3 this implies that the inclusion of this link in $\mathcal{C}(S,\tilde{P})_x$ is also a homotopy equivalence. Hence the natural inclusion $\mathcal{C}(S,P)\cup\mathcal{C}(S,\tilde{P})_x\subset arc_{(S,P)}(x)*\mathcal{C}(S,\tilde{P})_x$ is a homotopy equivalence. The corollary follows.

From now on we assume that A_g holds and that $A_{h,k}$ holds for all (h,k) smaller than (g,n) for the lexicographic ordering. Our goal is to prove $A_{g,n}$.

Lemma 2.5. The pair $(C(S, P) \cup C(S, \tilde{P})_x, C(S, P))$ is (g-1)-connected.

Proof. If $P_x = \{x\}$, then $\tilde{P} = P$ and there is nothing to show. We therefore assume that P_x has more than one element. Denote by \mathcal{C}_k the subcomplex of $\mathcal{C}(S,P)\cup\mathcal{C}(S,\tilde{P})_x$ that is the union of $\mathcal{C}(S,P)$ and the k-skeleton of $\mathcal{C}(S,P)\cup\mathcal{C}(S,\tilde{P})_x$. So $\mathcal{C}_{-1} = \mathcal{C}(S,P)$ and $\mathcal{C}_k = \mathcal{C}(S,P)\cup\mathcal{C}(S,\tilde{P})_x$ for k large. A finite set of vertices of $\mathcal{C}(S,P)\cup\mathcal{C}(S,\tilde{P})_x$ spans a simplex of \mathcal{C}_k if and only if no more than k+1 of these separate x from $P_x - \{x\}$. So a minimal simplex of $\mathcal{C}_k - \mathcal{C}_{k-1}$ is represented by a compact 1-dimensional submanifold $A \subset S$ with k+1 connected components, each of which separates x from $P_x - \{x\}$ (the graph that is associated to A is then a string with k+2 nodes). We prove that the link of such a simplex in \mathcal{C}_{k-1} is (g-2)-connected if g>0. This will suffice.

We enumerate the connected components of A as $\alpha_0, \ldots, \alpha_k$ and the connected components of S-A as S_0, \ldots, S_{k+1} such that α_i is a boundary component of S_i and S_{i+1} and so that S_0 resp. S_{k+1} is punctured by x resp. $P_x - \{x\}$. So if we put $\hat{N} := N \sqcup \{0, \ldots, k\}$, then the set of cusps of S_i is naturally indexed by a subset \hat{N}_i of \hat{N} and these subsets partition \hat{N} . Observe

that $|\hat{N}_i| \geq 2$ for every i. Denote by P_i the partition of $(N-P_x) \cap S_i$ that is simply the restriction of P and denote by \hat{P}_i the partition of \hat{N}_i that is on $(N-P_x) \cap S_i$ equal to P_i and has the remainder (i.e., $(\{1,\ldots,k\} \cup P_x)|S_i)$ as a single part. So this new part is $\{x\} \cup \{0\}$ for i=0, $\{i-1,i\}$ for 0 < i < k+1 and $P_x - \{x\} \cup \{k\}$ for i=k+1.

The reason for introducing these partitions is that we can now observe that the link of the k-simplex σ_A defined by A in \mathcal{C}_k lies in \mathcal{C}_{k-1} and can be identified with the iterated join

$$\partial \sigma_A * \mathcal{C}(S_0, \hat{P}_0) * \cdots * \mathcal{C}(S_{k+1}, \hat{P}_{k+1}).$$

It is then enough to show that this join is (g-2)-connected for g>0. Since $\partial\sigma_A$ is a (k-1)-sphere, it is (k-2)-connected. The connectivity of a factor $\mathcal{C}(S_i,\widehat{P}_i)$ with $g_i>0$ is at least g_i-2 . So by Lemma 2.1 the connectivity of the above join is at least $-2+k+\sum_{\{i:g_i>0\}}g_i=g+k-2\geq g-2$.

Proof of $(A_{g,n})$. We must show that $\mathcal{C}(S,P)$ is (g-2)-connected. In view of Lemma 2.5 is suffices to show that $\mathcal{C}(S,P)\cup\mathcal{C}(S,\tilde{P})_x$ has that property.

If $arc_{(S,P)}(x)=\emptyset$, then n>2 and so our induction hypothesis implies that $\mathcal{C}(S',P')$ is (g-2)-connected by $A_{g,n-1}$. It follows from Corollary 2.4 that $\mathcal{C}(S,P)\cup\mathcal{C}(S,\tilde{P})_x$ is homotopy equivalent to $\mathcal{C}(S',P')$ and hence is (g-2)-connected.

If $arc_{(S,P)}(x) \neq \emptyset$, then we may have n=2. At least we know that $\mathcal{C}(S',P')$ is (g-3)-connected (invoke A_g if n=2). But since $\mathcal{C}(S,P) \cup \mathcal{C}(S,\tilde{P})_x$ is homotopy equivalent to $arc_{(S,P)}(x)*\mathcal{C}(S',P')$ (by Corollary 2.4), it is (g-2)-connected.

REFERENCES

- [1] B. Farb, N.V. Ivanov: *The Torelli geometry and its applications: research announcement,* Math. Res. Lett. 12 (2005), 293–301.
- [2] J. L. Harer: Stability of the homology of the mapping class groups of orientable surfaces, Ann. of Math. (2) 121 (1985), 215–249.
- [3] W. van der Kallen, E. Looijenga: *Spherical complexes attached to symplectic lattices*, Geom. Dedicata, 152 (2011), 197-211.
- [4] A. Putman: *A note on the connectivity of certain complexes associated to surfaces*, Enseign. Math. (2) 54 (2008), 287–301.
- [5] A. Putman: *Cutting and pasting in the Torelli group,* Geom. Topol. 11 (2007) 829–865. *E-mail address*: E.J.N.Looijenga@uu.nl

MATHEMATISCH INSTITUUT, UNIVERSITEIT UTRECHT, P.O. BOX 80.010, NL-3508 TA UTRECHT (NEDERLAND)