

Project Overview

This project aims to accurately classify handwritten digits using the Digits dataset from scikit-learn. With 1,797 samples in an 8×8 pixel matrix, machine learning models will be applied to improve classification accuracy. The results are expected to benefit automated character recognition, such as document processing and digital identity verification.

Tools and Library

Machine Learning Process

Data

Uses the Digits dataset from scikit-learn

Compare

Compares different models to find the one with the best accuracy and performance.

EDA

Class distribution, displays, sample digit images, correlations, ect.

Preprocessing

Splits datas and applies normalization.

Validation

Evaluates model performance using accuracy, classification reports, and confusion matrices.

Training

Trains classification models

Dataset Overview

Source

Scikit-learn

Data Type

Handwritten digit images (0-9)

Number of Samples

1,797 images

Image Dimensions

8x8 pixels (64 features per image)

Target Classes

10 classes (digits 0 to 9)

Page | Exploration Data Analysis (EDA)

Class Distribution

Correlation between feature

Visualize some example digit images

Page 08/18 Data Preprocessing

Data Spliting

```
1 from sklearn.model_selection import train_test_split #For split the dataset into training and testing data
2
3 # Membagi data menjadi train dan test
4 x_train, x_test, y_train, y_test = train_test_split(df_x, df_y, test_size=0.2, random_state=42)

1 print(f'Data test: {round(1797*0.2)}')

Data test: 359

1 print(f'Data train : {round(11797*0.8)}')

Data train : 9438
```

Normalization / Scaling

```
1 from sklearn.preprocessing import StandardScaler
```

```
2 scaler = StandardScaler()
```

3 x_train_scaled = scaler.fit_transform(x_train)

4 x_test_scaled = scaler.transform(x_test)

Page | Machine Learning Models

- 1. Logistic Regression
- 2. K-Nearest Neigbors (KNN)
- 3. Support Vector Machine (SVM)
- 4. Random Forest
- 5. Neural Network

Page | Train and Validation Models

Logistic Regression

Logistic Regression Accuracy: 0.9750							
	precision		f1-score	support			
0	1.00	1.00	1.00	33			
1	0.97	1.00	0.98	28			
2	1.00	1.00	1.00	33			
3	0.97	0.97	0.97	34			
4	1.00	0.98	0.99	46			
5	0.92	0.96	0.94	47			
6	0.97	0.97	0.97	35			
7	1.00	0.97	0.99	34			
8	0.97	0.97	0.97	30			
9	0.97	0.95	0.96	40			
266112261			0.07	360			
accuracy	1200 0000	2710021	0.97	360			
macro avg	0.98	0.98	0.98	360			
weighted avg	0.98	0.97	0.98	360			

Page | Train and Validation Models

K-Nearest Neigbors (KNN)

KNN Accuracy:	0.9833			
	precision	recall	f1-score	support
0	1.00	1.00	1.00	33
1	0.97	1.00	0.98	28
2	1.00	1.00	1.00	33
3	0.97	1.00	0.99	34
4	0.98	1.00	0.99	46
5	0.98	0.98	0.98	47
6	0.97	1.00	0.99	35
7	1.00	0.97	0.99	34
8	1.00	0.97	0.98	30
9	0.97	0.93	0.95	40
accuracy			0.98	360
macro avg	0.98	0.98	0.98	360
weighted avg	0.98	0.98	0.98	360

Page | Train and Validation Models

Support Vector Machine (SVM)

		_		
SVM Accuracy	0.9889			
	precision	recall	f1-score	support
0	1.00	1.00	1.00	33
1	1.00	1.00	1.00	28
2	1.00	1.00	1.00	33
3	1.00	0.97	0.99	34
4	1.00	1.00	1.00	46
5	0.98	0.98	0.98	47
6	0.97	1.00	0.99	35
7	0.97	0.97	0.97	34
8	1.00	1.00	1.00	30
9	0.97	0.97	0.97	40
accuracy			0.99	360
macro avg	0.99	0.99	0.99	360
weighted avg	0.99	0.99	0.99	360

Page 13/18 Train and Validation Models

Random Forest

Random Forest	Accuracy:	0.9722		
	precision	recall	f1-score	support
				+20 840
0	1.00	0.97	0.98	33
1	0.93	1.00	0.97	28
2	1.00	1.00	1.00	33
3	1.00	0.97	0.99	34
4	0.98	1.00	0.99	46
5	0.94	0.96	0.95	47
6	0.97	0.97	0.97	35
7	0.97	0.97	0.97	34
8	1.00	0.93	0.97	30
9	0.95	0.95	0.95	40
accuracy			0.97	360
macro avg	0.97	0.97	0.97	360
weighted avg	0.97	0.97	0.97	360

Page 14/18 Train and Validation Models

Neural Network

MLP (Neural Network) Accuracy: 0.9722							
	precision		recall	f1-score	support		
i de la companya de	0	1.00	0.97	0.98	33		
500 100 100 100 100 100 100 100 100 100	1	0.96	0.96	0.96	28		
9	2	1.00	1.00	1.00	33		
9	3	0.97	0.97	0.97	34		
U	4	1.00	1.00	1.00	46		
	5	0.96	0.96	0.96	47		
3	6	0.97	0.97	0.97	35		
and the second second	7	0.97	0.97	0.97	34		
i i	8	0.93	0.93	0.93	30		
	9	0.95	0.97	0.96	40		
accurac	У			0.97	360		
macro av	g	0.97	0.97	0.97	360		
weighted av	g	0.97	0.97	0.97	360		

	Accuracy	Precision	Recall	F1-Score
Logistic Regression	0.975000	0.975478	0.975000	0.975109
KNN	0.983333	0.983499	0.983333	0.983226
SVM	0.988889	0.988966	0.988889	0.988888
Random Forest	0.972222	0.972825	0.972222	0.972268
MLP (Neural Network)	0.972222	0.972358	0.972222	0.972252

Based on the bar chart comparing accuracy, precision, recall, and F1-score and data, SVM outperforms all other models in every metric.

- Indications that SVM is the best model:
 - Highest accuracy among all models.
 - Superior precision, recall, and F1-score, ensuring balanced predictions.
 - Consistently strong performance, effectively identifying all classes.

The Support Vector Machine (SVM) model proved to be the best for classifying handwritten digits in the Digits dataset, achieving an accuracy of 98.89%. This result demonstrates SVM's high performance and strong generalization ability on test data. With this level of accuracy, the model is highly suitable for applications in automated character recognition, such as document processing and digital identity verification.

Thank You!

Feel free to reach out if you'd like to collaborate, discuss ideas, or explore exciting opportunities.

