

MACHINE LEARNING

1 In Q1 to Q7, only one option is correct, Choose the correct option:

1.	The value of	f correlation	coefficient	t will	always	be:
----	--------------	---------------	-------------	--------	--------	-----

A) between 0 and 1

B) greater than -1

C) between -1 and 1

D) between 0 and -1

Answer – c)

2. Which of the following cannot be used for dimensionality reduction?

A) Lasso Regularisation

B) PCA

C) Recursive feature elimination

D) Ridge Regularisation

Answer - a)

3. Which of the following is not a kernel in Support Vector Machines?

A) linear

B) Radial Basis Function

C) hyperplane

D) polynomial

Answer - c)

4. Amongst the following, which one is least suitable for a dataset having non-linear decision boundaries?

A) Logistic Regression

B) Naïve Bayes Classifier

C) Decision Tree Classifier

D) Support Vector Classifier

Answer – a)

5. In a Linear Regression problem, 'X' is independent variable and 'Y' is dependent variable, where 'X' represents weight in pounds. If you convert the unit of 'X' to kilograms, then new coefficient of 'X' will be?

(1 kilogram = 2.205 pounds)

A) $2.205 \times \text{old coefficient of 'X'}$

B) same as old coefficient of 'X'

C) old coefficient of 'X' ÷ 2.205

D) Cannot be determined

Answer - b)

6. As we increase the number of estimators in ADABOOST Classifier, what happens to the accuracy of the model?

A) remains same

B) increases

C) decreases

D) none of the above

Answer - b)

- 7. Which of the following is not an advantage of using random forest instead of decision trees?
 - A) Random Forests reduce overfitting
 - B) Random Forests explains more variance in data then decision trees
 - C) Random Forests are easy to interpret
 - D) Random Forests provide a reliable feature importance estimate

Answer – a)

In Q8 to Q10, more than one options are correct, Choose all the correct options:

- 8. Which of the following are correct about Principal Components?
 - A) Principal Components are calculated using supervised learning techniques
 - B) Principal Components are calculated using unsupervised learning techniques
 - C) Principal Components are linear combinations of Linear Variables.
 - D) All of the above

Answer) a,c)

- 9. Which of the following are applications of clustering?
 - A) Identifying developed, developing and under-developed countries on the basis of factors like GDP, poverty index, employment rate, population and living index

MACHINE LEARNING

- B) Identifying loan defaulters in a bank on the basis of previous years' data of loan accounts.
- C) Identifying spam or ham emails
- D) Identifying different segments of disease based on BMI, blood pressure, cholesterol, blood sugar levels.

Answer – b),a)

10. Which of the following is(are) hyper parameters of a decision tree?

A) max_depth

B) max_features

C) n_estimators

D) min_samples_leaf

Answer – a)

MACHINE LEARNING

Q10 to Q15 are subjective answer type questions, Answer them briefly.

- 11. What are outliers? Explain the Inter Quartile Range (IQR) method for outlier detection.
- 12. What is the primary difference between bagging and boosting algorithms?
- 13. What is adjusted R² in linear regression. How is it calculated?
- 14. What is the difference between standardisation and normalisation?
- 15. What is cross-validation? Describe one advantage and one disadvantage of using cross-validation.

Answer 11) An outlier is an observation in which in a random sample of a population lies an abnormal distance from other values..

IQR is the range between the first and the third quartiles namely Q1 and Q3: IQR = Q3 - Q1. The data points which fall below Q1 – 1.5 IQR or above Q3 + 1.5 IQR are outliers.

Answer 12) Bagging is a method of merging the same type of predictions. Boosting is a method of merging different types of predictions. Bagging decreases variance, not bias, and solves over-fitting issues in a model. Boosting decreases bias, not variance.

Answer 13) Adjusted R-squared value can be calculated based on value of r-squared, number of independent variables (predictors), total sample size. Every time you add a independent variable to a model, the R-squared increases, even if the independent variable is insignificant. It never declines.

Answer 14) In Normalisation, the change in values is that they are at a standard scale without distorting the differences in the values. Whereas, Standardisation assumes that the dataset is in Gaussian distribution and measures the variable at different scales, making all the variables equally contribute to the analysis.

Answer 15) Cross Validation in Machine Learning is a great technique to deal with overfitting problem in various algorithms. Instead of training our model on one training dataset, we train our model on many datasets. Below are some of the advantages and disadvantages of Cross Validation in Machine Learning:

One advantage and one disadvantage of using cross-validation are :-

Advantages:-

Hyperparameter Tuning: Cross Validation helps in finding the optimal value of hyperparameters to increase the efficiency of the algorithm.

Disadvantages:-

Increases Training Time: Cross Validation drastically increases the training time. Earlier you had to train your model only on one training set, but with Cross Validation you have to train your model on multiple training sets