

EPXA1 Development Board

Hardware Reference Manual August 2002 Version 1.0

101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com

Copyright © 2002 Altera Corporation. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera

products are protected under numerous U.S. and foreign patents and pending applications, mask work rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. All rights reserved.

About this Manual

This manual provides comprehensive information about the Altera® EPXA1 development board.

Table 1 shows the manual revision history.

Table 1. Revision History			
Date	Description		
August 2002	First publication		

How to Find Information

- The Adobe Acrobat Find feature allows you to search the contents of a PDF file. Click on the binoculars icon in the top toolbar to open the Find dialog box.
- Bookmarks serve as an additional table of contents.
- Thumbnail icons, which provide miniature previews of each page, provide a link to the pages.
- Numerous links, shown in green text, allow you to jump to related information.

Altera Corporation iii

How to Contact Altera

For the most up-to-date information about Altera products, go to the Altera world-wide web site at http://www.altera.com.

For technical support on this product, go to http://www.altera.com/mysupport. For additional information about Altera products, consult the sources shown in Table 2.

Table 2. How to Contact Altera			
Information Type	USA & Canada	All Other Locations	
Technical support	http://www.altera.com/mysupport/	http://www.altera.com/mysupport/	
	(800) 800-EPLD (3753)	(408) 544-7000 (1)	
	(7:00 a.m. to 5:00 p.m.	(7:00 a.m. to 5:00 p.m.	
	Pacific Time)	Pacific Time)	
Product literature	http://www.altera.com	http://www.altera.com	
Altera literature services	lit_req@altera.com (1)	lit_req@altera.com (1)	
Non-technical customer	(800) 767-3753	(408) 544-7000	
service		(7:30 a.m. to 5:30 p.m.	
		Pacific Time)	
FTP site	ftp.altera.com	ftp.altera.com	

Note:

(1) You can also contact your local Altera sales office or sales representative.

Typographic Conventions

The *EPXA1 Development Board Hardware Reference Manual* uses the typographic conventions shown in Table 3.

Visual Cue	Meaning				
Bold Type with Initial Capital Letters	Command names, dialog box titles, checkbox options, and dialog box options a shown in bold, initial capital letters. Example: Save As dialog box.				
bold type	External timing parameters, directory names, project names, disk drive names, filenames, filename extensions, and software utility names are shown in bold type. Examples: f _{MAX} , \Quartus directory, d: drive, chiptrip.gdf file.				
Bold italic type	Book titles are shown in bold italic type with initial capital letters. Example: 1999 Device Data Book.				
Italic Type with Initial Capital Letters	Document titles are shown in italic type with initial capital letters. Example: AN 75 (High-Speed Board Design).				
Italic type	Internal timing parameters and variables are shown in italic type. Examples: t_{PIA} , $n+1$. Variable names are enclosed in angle brackets (< >) and shown in italic type. Example: $<$ file name>, $<$ project name>.pof file.				
Initial Capital Letters	Keyboard keys and menu names are shown with initial capital letters. Examples: Delete key, the Options menu.				
"Subheading Title"	References to sections within a document and titles of Quartus II Help topics are shown in quotation marks. Example: "Configuring a FLEX 10K or FLEX 8000 Device with the BitBlaster™ Download Cable."				
Courier type	Signal and port names are shown in lowercase Courier type. Examples: data1, tdi, input. Active-low signals are denoted by suffix _n, e.g., reset_n.				
	Anything that must be typed exactly as it appears is shown in Courier type. For example: c:\quartusII\qdesigns\tutorial\chiptrip.gdf. Also, sections of an actual file, such as a Report File, references to parts of files (e.g., the AHDL keyword SUBDESIGN), as well as logic function names (e.g., TRI) are shown in Courier.				
1., 2., 3., and a., b., c.,	Numbered steps are used in a list of items when the sequence of the items is important, such as the steps listed in a procedure.				
	Bullets are used in a list of items when the sequence of the items is not important.				
✓	The checkmark indicates a procedure that consists of one step only.				
T	The hand points to information that requires special attention.				
←	The angled arrow indicates you should press the Enter key.				
	The feet direct you to more information on a particular topic.				

Contents

About this Manual	iii
How to Find Information	
How to Contact Altera	
Typographic Conventions	
EPXA1 Development Board	
Features	
Functional Overview	
EPXA1 Development Board Components	
EPXA1 Device	
Prototyping Area	
Interfaces Development Board Expansion	
Jumper Configuration	
Clocks	
Jumper Configuration for the Clock Inputs	
Sources for the Stripe Clock Reference	
Sources for CLK3 & CLK4	
Device Configuration	
Booting from Flash Memory	
Using the Quartus II Software	
JTAG Interfaces	29
Power Supply	30
Test Points & Test Pads	32
Signals	33
UART	33
Expansion Headers	34
Configuration/Debugging Interfaces	37
Development Board Pin-Outs	38
Configuration	39
SDR SDRAM Interface	40
EBI	42
UART1 & UART2	44
Fast I/O Pins	44
Test Points	
Test Pads	
Prototyping Area	46
Expansion Header I/O Pins	47
General Usage Guidelines	48

Anti-Static Handling	48
Power Consumption	48
Test Core Functionality	
Environmental Requirements	
Operating Requirements	
Unused I/O Pins	
•	

viii Altera Corporation

EPXA1 Development Board

Features

- Powerful development board for embedded processor FPGA designs
 - Features an EPXA1F484 device
 - Supports intellectual property-based (IP-based) designs using a microprocessor
- Industry-standard interconnections
 - 10/100 megabits per second (Mbps) Ethernet
 - Two RS-232 ports
- Memory subsystem
 - 8 Mbytes of flash memory
 - 32 Mbytes of single data rate (SDR) SDRAM
- Multiple clocks for communications system design
- Multiple ports for configuration and debugging
 - IEEE Std. 1149.1 Joint Test Action Group (JTAG)
 - Support for configuring the EPXA1 device using flash memory, with a MasterBlaster™ or ByteBlasterMV™ cable
 - Multi-ICE header for debugging
- Expansion headers for greater flexibility and capacity
 - 5-V standard expansion header
 - 5-V long expansion card header
- Additional user-interface features
 - One user-definable 8-bit dual in-line package (DIP) switch block
 - Four user-definable push-button switches, plus reset switch
 - Ten user-definable LEDs, plus function-specific LEDs
- Test points provided to facilitate system development

Functional Overview

The EPXA1 development board is a powerful, low-cost, product which you can use as a desktop hardware platform to start developing embedded systems immediately. In addition, the board can be used for system prototyping, emulation, hardware and software development or other special requirements. The development board provides a flexible, powerful debug and development environment to support the development of systems using Excalibur™ devices.

EPXA1 Development Board Components

This section describes the components on the EPXA1 development board, which is shown in Figure 1.

Figure 1. EPXA1 Development Board Layout

EPXA1 Device

The EPXA1 development board features the lowest-cost member of the Excalibur family, the EPXA1. The EPXA1 device contains an ARM922T $^{\text{\tiny TM}}$ 32-bit RISC microprocessor combined with an APEX $^{\text{\tiny TM}}$ 20KE FPGA in a 484-pin FineLine BGA $^{\text{\tiny TM}}$ package.

Table 1 on page 10 lists the main features of the device.

Table 1. EPXA1 Device Features			
Feature	Capacity		
Maximum system gates	263,000		
Typical gates	100,000		
LEs	4,160		
ESBs	26		
Maximum RAM bits	53,248		
Maximum macrocells	416		
Maximum user I/O pins	186		

In addition, the EPXA1 device provides a variety of peripherals, as listed in Table 2.

Table 2. EPXA1 Device Peripherals			
Peripheral	Description		
ARM922T 32-bit RISC processor	For speed grade -1: up to 200 MHz For speed grade -2: up to 166 MHz		
Interrupt controller	Used for the interrupt system		
Internal single-port SRAM	32 Kbytes		
Internal dual-port SRAM	16 Kbytes		
SDRAM controller	Interfaces between the internal system bus and SDRAM		
External SDRAM	Refer to the <i>Excalibur Devices Hardware Reference Manual</i> for details of supported sizes		
Expansion bus interface (EBI)	Interfaces to the flash memory and the Ethernet		
External flash memory	Refer to the <i>Excalibur Devices Hardware Reference Manual</i> for details of supported sizes		
Watchdog timer	Protects the system against software failure		
UART	Facilitates serial communication		
Reset controller	Resets the device		

Refer to the *Excalibur Devices Hardware Reference Manual* for details about EPXA1 devices.

Prototyping Area

This area can be used to develop and test custom circuitry, such as I/O interfaces, using the EPXA1 development board. The prototyping area has both 3.3-V and 5-V supply, plus ground connections, 32 I/O pins that facilitate connection to the Excalibur device, and a reset pin in a 6×15 matrix. Figure 2 shows the prototyping area on the development board.

Figure 3 on page 13 shows how the pins are located in the prototyping area.

Figure 3. Pin Layout in the Prototyping Area

See Table 37 on page 46 for details of the prototyping area pin-outs.

Interfaces

Table 3 lists the interfaces supported by the EPXA1 development board.

Table 3. Development Board Interfaces			
Interface	Description		
10/100 Ethernet with full- and half-	This interface consists of an RJ45 connector and transformer		
duplexing	connected to the EPXA1 using an external MAC/PHY device connected to the EBI		
Expansion headers	These headers are used to connect Altera daughter cards or customer- designed daughter cards to develop and test custom circuitry		
IEEE Std. 488 RS-232 serial interfaces	This is a 250-kbps true RS-232 data terminal equipment (DTE) interface		
Debugging/programming ports	The board supports in-circuit debugging by means of the MasterBlaster, ByteBlasterMV, or Multi-ICE cables		

Serial I/O Interfaces

There can be two UARTs in the EPXA1 device. A dedicated UART is located in the embedded stripe; optionally, an additional IP UART can be implemented in the FPGA. If the IP UART is used, it is connected to 3.3-V standard EPXA1 I/O pins. Each UART is connected to a transceiver (U6 for the embedded stripe UART and U1 for the IP UART) to translate LVTTL voltage for RS-232 compatibility at up to 250 Kbps. Each UART also has its own DB9 male RS-232 connector wired as a DTE.

The transceiver uses a 3.3-V power supply. If the RS-232 input pins are used as outputs, contention occurs because the bus transceiver is always active. If these pins are not used as part of a design, ensure that they remain in the high-impedance state. All unused I/O pins can be set to tri-state mode in the Quartus II software (see "Unused I/O Pins" on page 50).

See Table 23 on page 33 for information on the RS-232 signals.

Table 4 shows the UART interface characteristics.

Table 4. UART Interface Characteristics					
Features I/O Pins Voltage (V)					
UART 1 TX, RX & Control 8 3.3					
UART 2 TX, RX & Control 8 3.3					

Table 5 lists the UART LEDs on the EPXA1 development board.

Table 5. UART LEDs			
Board Reference	Signal	Description	
D2	TXD	This LED indicates activity on the line	
D3	RXD	This LED indicates activity on the line	
D4	XA-TXD	This LED indicates activity on the line	
D7	XA-RXD	This LED indicates activity on the line	

10/100 Ethernet Parallel Interface

On the EPXA1 development board, the Ethernet interface consists of an integrated MAC/PHY device and an RJ45 connector which includes the transformer and LEDs.

Table 6 lists the LEDs built into the RJ45 connector.

Table 6. Ethernet LEDs				
Board Reference Signal Description				
RJ1 LEDA	LEDA	Green LED. This defaults to being set on when the 10/100 link is detected (1)		
RJ1 LEDB	LEDB	Unused (1)		

Note:

(1) Although the default setting for LEDA '10/100 link detected', the user can program the LEDA and LEDB select signals by writing to the LED select signal registers.

The Ethernet and flash memory device share addresses and data on the EBI.

Memory Interfaces

The EPXA1 development board supports the following types and capacities of on-board memory, as listed in Table 7.

Table 7. Development Board Memory Characteristics					
Type Address Lines Data Lines Control Lines Memory Organization Size					
SDR SDRAM	13	16	10	4 M × 16 × 4 banks	32 Mbytes; 16-bit
Flash	22	16	5	2 × 4 Mbytes	8 Mbytes

Figure 4 on page 16 shows the location of the on-board memory.

Figure 4. EPXA1 Development Board On-Board Memory

Two flash memory chips, FLASH1 and FLASH2, are connected to the EBI

Figure 5. Flash Memory Interface

of the EPXA1 development board (see Figure 5).

LED & Switch Interfaces

The EPXA1 development board provides a variety of LED and switch interfaces. Some are user-definable and some are function-specific. Figure 6 shows the location of LEDs and switches on the development board.

Ethernet TX/RX LEDs

UART LEDs

NPOR

SOFT_RESET_N

SW6 (pin 1 indicated)

Figure 6. Switches & LEDs on the EPXA1 Development Board

User-Defined LEDs

Push-button switches

SW2, SW3, SW4, SW5

On the EPXA1 development board, there are ten user-definable LEDs in a graph-type LED package, DG1. They connect directly to the EPXA1 device I/O pins and can be used for any kind of application.

User LEDs (LED 0 indicated)

Table 8 on page 18 lists the user LEDs on the development board.

Voltage LEDs

Table 8. DG1 LED	Table 8. DG1 LED Interface Characteristics				
LED Reference	EPXA1 I/O Pin	Signal	Voltage (V)		
DG1_J	W17	USER_LED9	3.3		
DG1_I	W18	USER_LED8	3.3		
DG1_H	W20	USER_LED7	3.3		
DG1_G	W21	USER_LED6	3.3		
DG1_F	W22	USER_LED5	3.3		
DG1_E	Y17	USER_LED4	3.3		
DG1_D	Y18	USER_LED3	3.3		
DG1_C	Y19	USER_LED2	3.3		
DG1_B	Y20	USER_LED1	3.3		
DG1_A	Y21	USER_LED0	3.3		

Function-Specific LEDs

LEDs are also used for specific application functions, such as the configuration, RS-232 and Ethernet interfaces. Table 9 lists the function-specific LEDs, their power supply status, their connection details, and their functions.

Table 9. Function-Specific LED Usage				
Signal	Board Reference	EPXA1 I/O Pin (or Board Connector)	Description	Voltage (V)
INIT_DONE	D15	K7	Used by FPGA initialization; signifies that initialization is complete	3.3
VCC_5V	D12		5-V power indicator	5
VCC_3V3	D13		3.3-V power indicator	3.3
VCC_1V8	D14		1.8-V power indicator	1.8
TXD	D2		FPGA UART signal indicator	3.3
RXD	D3		FPGA UART signal indicator	3.3
XA-TXD	D4		Embedded stripe UART signal indicator	3.3
XA-RXD	D7		Embedded stripe UART signal indicator	3.3
TX	RJ1		Ethernet signal indicator	3.3
RX	RJ1		Ethernet signal indicator	3.3

Switch Interfaces

The EPXA1 development board provides eight user-definable, active-low switches in a dip-switch block, four debounced push-button switches, and two dedicated reset switches. Table 10 documents the interface characteristics of the dip-switch block, SW6.

Table 10. SW6 Dip Switch Connections (Active-Low)				
Switch Name	EPXA1 I/O Pin	Signal	Voltage (V)	
SW6_1	V20	USER_SW7	3.3	
SW6_2	V19	USER_SW6	3.3	
SW6_3	V18	USER_SW5	3.3	
SW6_4	V17	USER_SW4	3.3	
SW6_5	V16	USER_SW3	3.3	
SW6_6	U21	USER_SW2	3.3	
SW6_7	U20	USER_SW1	3.3	
SW6_8	U19	USER_SW0	3.3	

Tables 11 and 12 detail the push-button switches on the development board.

Table 11. Pu	Table 11. Push-Button Switches					
Push Button	EPXA1 I/O Pin	Signal	Use	Voltage (V)		
SW1	H1	NPOR	Active-low switch that generates a full power-on reset when pressed for more than two seconds	3.3		
SW7	R4	N_CONFIG	Active-low switch that generates a warm reset	3.3		

Table 12. User-Definable Push-Button Switches				
Push Button	EPXA1 I/O Pin	Signal	Voltage (V)	
SW2	U18	USER_PB0	3.3	
SW3	U17	USER_PB1	3.3	
SW4	U16	USER_PB2	3.3	
SW5	T18	USER_PB3	3.3	

Development Board Expansion

The EPXA1 development board hosts the EPXA1 device and two 5-V expansion headers, which are implemented on the board for use with expansion cards. There are two types of expansion header on the EPXA1 development board:

- Standard expansion header—a set of three 0.1-inch, two-row header pins $(7 \times 2, 10 \times 2, 20 \times 2)$
- Long expansion header—the same set of three 0.1-inch, two-row header pins $(7 \times 2, 10 \times 2, 20 \times 2)$ plus an extra 20×2 header pins

Figure 7 on page 20 shows the location of the expansion headers on the EPXA1 development board.

Figure 7. EPXA1 Development Board Expansion Header Connectors

The expansion header interfaces can be used to interface to special-function daughter cards; contact your Altera representative for details of the daughter cards available for use with the expansion header interfaces. By using the EPXA1 I/O pins and the power-supply pins on the expansion headers, you can design expansion cards to your specific requirements using the I/O pins on the EPXA1 device and power supplies from the EPXA1 development board.

The expansion headers are on a common 0.1-inch pitch/spacing to make it easier to use both headers together if desired.

Standard Expansion Header

The standard expansion header interface includes the following features:

- 40 APEX® device general-purpose I/O signals
- A buffered, zero-skew copy of the on-board OSC output
- A buffered, zero-skew copy of the EPXA1's PLL-output
- An APEX device clock-input (for daughter cards that drive a clock to the FPGA
- An active-low power-on-reset signal
- Three regulated 3.3-V power-supply pins
- One regulated 5-V power-supply pin
- Unregulated power-supply pin (connects directly to J1 power-input plug)
- Numerous ground connections
- Card-select I/O
- RC-filtered I/O

Long Expansion Header

The long expansion header interface shares the same characteristics as the standard interface, and has the following additional pins in use:

- Two regulated 3.3-V power-supply pins
- Sixteen address pins
- Sixteen data pins

Expansion Header Pin Details

In addition, the following points apply to either standard or long expansion headers:

- J9.38 and J15.38 can be used as a global card-enable signal
- A low-current, 5-V power supply is presented on J4.2 and J11.2
- The $V_{\rm REF}$ voltage for the analog switches is presented on J10.3 and I3.3.
- The maximum current load on each header is 500 mA at 3.3 V, 50 mA at 5 V and 100 mA at 12 V
- The remaining pins on the expansion headers connect to user I/O pins on the EPXA1 device. Table 24 on page 34 lists the expansion header signal pin assignments

Difference Between Standard and Long Expansion Headers

On the standard expansion header, there is an RC-filtered connection to EPXA1 device I/O pin AB5 from header pin J11.3. This circuit is suitable for producing a high-impedance, low-precision analog output if the appropriate pin is driven with a duty-cycle-modulated waveform by user logic. However, there is no RC-filtered connection to an EPXA1 device I/O pin from the long expansion header. Instead, header pin J4.3 supports an additional user I/O.

EPXA1 Device Signal Definitions for the Expansion Headers

Table 13 on page 22 shows the definitions for the EPXA1 device signals available to the standard expansion header interface. The definitions are used with Altera daughter cards. The general purpose I/O signals can be used as required.

Table 13. Standard Expansion Header Signal Definitions				
Function	Signals	Number		
General purpose I/O	H5V_IO[400]	41		
Clock	H5V_OSC H5V_CLK H5V_CLKOUT	3		
Bias voltage input	H5V_VEE	1		
Reset	H5V_RST_N	1		
Supply voltage	VCC_5V VCC_A VCC_3V3	1 1 3		

See Table 24 on page 34 for standard expansion header pin-out details.

The long expansion header includes the signals in Table 13, plus the additional signals in Figure 14.

Table 14. Additional Signal Definitions for the Long Expansion Header					
Function Signals Number					
Address	eup_A[150]	16			
Data	eup_D[150]	16			
Supply voltage	VCC_5V	1			
	VCC_A2	1			
	VCC_3V3	2			

See Table 25 on page 35 for long expansion header pin-out details.

Refer to the *Nios Embedded Processor Development Board* data sheet for further details about the expansion header interface.

Jumper Configuration

The jumpers on the EPXA1 development board serve several functions:

- Clock distribution
- Enabling clocks
- JTAG configuration

Figure 8 on page 23 shows the location of jumpers on the development board.

Figure 8. Jumper Locations on the EPXA1 Development Board

Table 15 on page 24 lists the jumper settings and their uses.

Table 15. Jumpers on the EPXA1 Development Board				
Jumper	Function	Pins 1-2 Connected	Pins 2-3 Connected	
JSELECT (J5) (1)	JTAG connector selection	ARM922 TAP available on Multi-ICE connector	ARM922 TAP available on JTAG connector	
CLKA Select (J13)	Clock A input selection	25 MHz on-board oscillator selected	Alternative 5-V DIL14 oscillator or SMA connector selected	
CLKB Select (J14)	Clock B input selection	25 MHz on-board oscillator selected	Alternative 5-V DIL14 oscillator or SMA connector selected	

Note:

(1) Determines whether the JTAG chains operate in serial or parallel mode.

Clocks

There are three potential clock sources on the EPXA1 development board, which can be enabled and disabled according to your design requirements:

- Dedicated on-board, 25-MHz crystal oscillator, X1 (default clock for all devices)
- Socket for alternative 5-V DIL14 crystal oscillator, XSKT1
- Generator clock input via SMA connector, SMA1

The location of the clocks on the development board is shown in Figure 9.

Figure 9. Clocks on the EPXA1 Development Board

The only device for which you cannot change the clock input is the Ethernet. The Ethernet clock input is the 25-MHz oscillator, X1.

Apart from selecting the clock inputs, you can also select the target devices for each clock input.

If you plug in an alternative crystal oscillator, it drives the same clock line as the SMA connector. To drive a clock through the SMA connector, you must remove the alternative crystal oscillator.

Table 16 on page 25 lists all the clock signals on the development board.

Table 16. EPX	Table 16. EPXA1 Development Board Clocks (Part 1 of 2)				
Clock Source	EPXA1 Pin (or Board Connection)	Signal Name	Description	Target Device	
CLK_REF (1)	H7	CLK_REF	Main clock used to drive the embedded stripe of the EPXA1. Dedicated input selected from either the SMA connector or the 25 MHz crystal oscillator using jumper CLKA Select (J13)	EPXA1	
CLKA_1	U1	CLK1p	Dedicated pin that drives PLL1	EPXA1	
CLKA_2	R21	CLK2p	Dedicated pin that drives PLL2	EPXA1	
CLKA_3 (OSC_BUFF1)	(J3.9)	H5V_OSC	Clock to long expansion header	Long expansion header	
CLKA_4 (OSC_BUFF2)	(J11.9)	H5V_OSC	Clock to standard expansion header	Standard expansion header	
CLKB_0	V1	CLK3p	Dedicated pin that drives PLL3	EPXA1	
CLKB_1	P21	CLK4p	Dedicated pin that drives PLL4	EPXA1	
OSC_25MHZ	(U9:1)	XTAL1	Clock to Ethernet; optionally used for other development board modules	Ethernet	
CLKLK_ENA	R6	CLKLK_ENA	Clock-enable for PLL circuitry; permanently on	EPXA1	
CLKLK_OUT2p	U22	CLKLK_OUT2p	Dedicated pin allowing PLL2 output to be driven off-chip, providing the PLL clock to the expansion headers as H5V_CLK	Standard expansion header, Long expansion header	

Table 16. EPXA1 Development Board Clocks (Part 2 of 2)				
		Target Device		
CLKLK_FB2p	N21	CLKLK_FB2p	Dedicated pin that allows external feedback to PLL2. Available on test pad T14 (see Table 36 on page 45)	EPXA1

Note:

(1) See "Jumper Configuration for the Clock Inputs" for details of selecting a source for the stripe CLK_REF pin.

Up to two sources can be selected to clock the devices on the development board at any given time. Of the three sources available, the dedicated 25-MHz on-board oscillator cannot be varied in frequency.

As detailed in Table 16, four of the clock buffer outputs drive dedicated inputs on the EPXA1 device.

One is the dedicated input providing the embedded stripe reference clock CLK_REF . The four FPGA clocks service the $ClockLock^{\mathsf{TM}}$ and $ClockBoost^{\mathsf{TM}}$ circuitry on the Excalibur device. The clocks on the development board can be configured as required, depending on which devices are used.

Two clocks drive each expansion header: two from the main clock buffer and two from buffered copies of the EPXA1 PLL2 outputs.

Jumper Configuration for the Clock Inputs

Jumpers CLKA Select (J13) and CLKB Select (J14) are used to select different clock inputs. CLKA Select is used to determine the clock supply to the EPXA1 device clock reference, two of the four PLLs in the FPGA, and the two expansion headers. CLKB Select can be used to route an additional, alternative clock input to the EPXA1 device.

During development, if you need to run the clock at a rate other than 25 MHz, you can do so using the SMA connector or an alternative 5-V DIL14 oscillator.

By selecting the position of jumpers CLKA Select and CLKB Select, as shown in Table 17, either the SMA connector or an alternative 5-V DIL14 oscillator can be used instead of the 25-MHz on-board oscillator. To use the SMA connector to drive a clock onto the board from an external source, the alternative 5-V DIL14 oscillator socket must not contain an oscillator. To use an alternative 5-V DIL14 oscillator, ensure that no clock is attached to the SMA connector .

Table 17. CLKA Select & CLKB Select Jumper Settings					
	Pin 1-2 Connected	Pin 2-3 Connected			
CLKA Select	25-MHz on-board oscillator provides a clock to CLK_REF, EPXA1 dedicated inputs CLK1 and CLK2, and both expansion headers	Alternative 5-V DIL14 oscillator or SMA connector selected provides CLK_REF, EPXA1 dedicated inputs CLK1 and CLK2, and both expansion headers			
CLKB Select	25-MHz on-board oscillator provides the clock to EPXA1 dedicated inputs CLK3 and CLK4	Alternative 5-V DIL14 oscillator or SMA connector provides the clock to EPXA1 dedicated inputs CLK3 and CLK4			

Sources for the Stripe Clock Reference

There are three options for providing a source for the EPXA1 embedded stripe clock reference, CLK_REF:

- 25-MHz on-board oscillator
- SMA connector
- Alternative 5-V DIL14 oscillator

Using the 25-MHz On-board Oscillator

To use the 25-MHz on-board oscillator, set CLKA Select to position 1-2 to select it.

Using the SMA Connector

To select the SMA connector, follow the steps below:

- 1. Remove any alternative 5-V DIL14 oscillator from the socket, XSKT1.
- 2. Apply an external clock source to the SMA connector.
 - The clock signal should be a maximum 5 V_{PP} .
- 3. Set CLKA Select to position 2-3.

Using the Alternative 5-V DIL14 Oscillator

To use the alternative oscillator as the stripe clock reference, follow the steps below:

- 1. Remove any external clock input from the SMA connector.
- 2. Plug the DIL14 crystal oscillator package into XSKT1.
- 3. Set CLKA Select to position 2-3.

The clock buffer converts the 5-V input from the alternative 5-V DIL14 oscillator to the 3.3 V required for the stripe.

Sources for CLK3 & CLK4

Clock sources for CLK3 and CLK4 can be selected in the same way as for the embedded stripe clock sources. Follow the instructions given in "Sources for the Stripe Clock Reference" on page 27, but use jumper CLKB Select to select the clock source, instead of CLKA Select.

Device Configuration

There are two methods of programming and configuring the EPXA1 device:

- Booting from flash memory
- Using the Quartus® II software to configure the device via JTAG

See "JTAG Interfaces" on page 29 for more details about using the JTAG interface.

On the EPXA1 device, the settings of BOOT_FLASH, MSEL0, and MSEL1 determine the configuration mode and method. On the EPXA1 development board, BOOT_FLASH, MSEL0 and MSEL1 are tied to a setting that forces the device to boot from 16-bit flash memory.

Booting from Flash Memory

The Altera flash memory programmer (exc_flash_programmer.exe) is a utility that allows you to program flash memory on the EBI using the JTAG interface and the ByteBlasterMV or MasterBlaster download cable, so that you can boot from it.

After reset, the processor boots up and executes the bootloader from flash memory. The bootloader configures the stripe, loads the user software into memory, configures the FPGA side of the EPXA1, and then begins to execute the user code.

For further details about booting the device from flash memory, refer to the *Excalibur Devices Hardware Reference Manual*.

Using the Quartus II Software

The Quartus II software can generate an SRAM object file (.sof) containing both hardware and software.

The Quartus II programmer uses the .sof file to configure the EPXA1 device via JTAG, using either the MasterBlaster or ByteBlasterMV download cables.

For further details of how to create a .sof file and configure the EPXA1 device via JTAG, consult the Quartus II Help.

JTAG Interfaces

There are two JTAG connectors on the EPXA1 development board, as shown in Figure $10\,$

Figure 10. JTAG Interfaces on the EPXA1 Development Board

The JTAG connector, J6, is used to connect an Altera ByteBlaster or MasterBlaster download cable. The Multi-ICE connector, J8, is used to connect a Multi-ICE cable or any other compatible cable.

The JTAG connector can be used with both the flash programmer and the Quartus programmer. In addition, the MasterBlaster and ByteBlasterMV cables support in-circuit debugging on the JTAG connector, using the SignalTap® embedded logic analyzer. The JSELECT setting does not affect this.

The JSELECT jumper, J5, determines whether a JTAG debugger can be connected to the JTAG connector or to the Multi-ICE connector. When using Altera-RDI via a ByteBlasterMV or MasterBlaster cable, the JSELECT jumper must be set to 2-3; when using Multi-ICE or a compatible device on the Multi-ICE connector, JSELECT must be set to 1-2.

For further details about jumper settings, refer to Table 15 on page 24.

Tables 26 and 27 starting on page 37 list the pin-outs of the JTAG and Multi-ICE connectors.

Power Supply

A 12-V, 20-W supply unit powers the EPXA1 development board. The board has reverse-polarity protection and a 2-A fuse to provide overcurrent protection.

Figure 11 on page 30 shows the location of the power supply inputs for the EPXA1 development board.

Figure 11. Power Supply Inputs on the EPXA1 Development Board

A voltage regulator regulates the main supplies for the board. The input supply is unregulated 12 V ($\pm 5\%$), which is reduced to 3.3 V for the I/O pins and to 1.8 V for the processor core. Voltage regulator U5 reduces the input to 5 V and distributes it to a pin on the expansion headers. The unregulated input is also routed to a pin on the expansion headers.

The maximum current permitted on the expansion headers depends on the input voltage: for 3.3 V, it is 500 mA, and for 5 V, it is 50 mA. If the input supply is 12 V, the maximum current per header depends on how much power is consumed by the rest of the board, but should not exceed 100 mA.

Three function-specific status LEDs indicate the presence of 1.8 V, 3.3 V, and 5 V to the board, as listed in Table 18 on page 31.

Table 18. Power Supply LEDs			
Board Reference	Signal	Description	
D14	VCC_1V8	Indicates the presence of 1.8 V	
D13	VCC_3V3	Indicates the presence of 3.3 V	
D12	VCC_5V	Indicates the presence of 5 V	

Tables 19 through 22 list the estimated maximum power-supply requirements for the development board modules.

The typical power-supply requirement for the development board is 250 mA / 500 mA.

Table 19. 12-V Supply Require	ements				
Module	Max mA				
Expansion headers	100 per header				

Table 20. 5-V Supply Requirer	nents
Module	Max mA
CLK_REF	Alternative crystal oscillator—75
Expansion headers	50 per header

Table 21. 3.3-V Supply Requirements					
Module	Max mA				
EPXA1 I/O	500 (sum over all I/O pins)				
SDRAM	285				
Flash memory	$45 \times 2 = 90$				
JARTs	20				
Ethernet	140				
.EDs	15 × 18 = 270				
	$+ (5 \times 2) = 10$				
	= 280				
Crystal oscillator	10				
lock buffers	37 + 22 = 59				
Expansion headers	500 per header				

Table 22. 1.8-V Supply Requir	22. 1.8-V Supply Requirements				
Module	Module mA				
EPXA1 device core	PXA1 device core Depends on application (1.1 A maximum)				

Test Points & Test Pads

Test points on the EPXA1 development board, annotated as TPx, are provided for voltages and ground connections; see Table 35 on page 45.

For selected signals, test pads are provided on the board, annotated as Tx; they are listed in Table 36 on page 45.

Signals

Tables 23 through 27 document the device signals for the following peripherals:

- UART
- Expansion headers
- Configuration/debugging interfaces

UART

Figure 12 shows the DB9 male connector used on the development board.

Figure 12. UART DB9 Male Connector

Table 23 lists the UART DB9 signals.

Table 23. DTE UART DB9 Male Connector Signals (1)					
Pin	Signal	Description			
1	DCD	Data carrier detect			
2	RXD	Receive data			
3	TXD	Transmit data			
4	DTR	Data terminal ready			
5	GND	Signal ground			
6	DSR	Data set ready			
7	RTS	Request to send			
8	CTS	Clear to send			
9	RI	Ring indicator			

Note:

(1) The EPXA1 development board has two DB9 male connectors.

Table 33 on page 44 lists pin-out information for the UARTs on the development board.

Expansion Headers

On the development board, there is a standard expansion header and a wide expansion header. Table 24 lists the signals on the standard expansion header.

	Pin	Signal	Pin	Signal	Pin	Signal
7 × 2 Header, J11	1	GND	6	B_H5V_IO31	11	B_H5V_I036
	2	VCC_5V	7	B_H5V_I032	12	B_H5V_I037
	3	H5V_VEE	8	B_H5V_I033	13	B_H5V_I038
	4	B_H5V_IO29	9	B_H5V_IO34	14	B_H5V_IO39
	5	B_H5V_IO30	10	B_H5V_I035		
10 × 2 Header, J10	1	Vcc_UNREG	8	GND	15	VCC_3V3
	2	GND	9	H5V_OSC	16	GND
	3	VCC_A2	10	GND	17	NC
	4	GND	11	H5V_CLK	18	GND
	5	VCC_3V3	12	GND	19	NC
	6	GND	13	H5V_CLKOUT	20	GND
	7	VCC_3V3	14	GND		
20 × 2 Header, J15	1	H5_RST_N	15	B_H5V_I012	29	B_H5V_I021
	2	GND	16	B_H5V_I013	30	GND
	3	B_H5V_IO0	17	B_H5V_I014	31	B_H5V_I022
	4	B_H5V_I01	18	B_H5V_I015	32	B_H5V_I023
	5	B_H5V_IO2	19	GND	33	B_H5V_I024
	6	B_H5V_IO3	20	Removed	34	NC
	7	B_H5V_IO4	21	B_H5V_I016	35	B_H5V_I025
	8	B_H5V_IO5	22	GND	36	B_H5V_I026
	9	B_H5V_I06	23	B_H5V_I017	37	B_H5V_I027
	10	B_H5V_I07	24	GND	38	H5_CS_N
	11	B_H5V_I08	25	B_H5V_I018	39	B_H5V_I028
	12	B_H5V_I09	26	GND	40	GND
	13	B_H5V_I010	27	B_H5V_I019		
	14	B_H5V_I011	28	B_H5V_IO20		

Table 39 on page 48 lists pin-out information for the standard expansion header on development board.

Table 25 lists the signals on the long expansion header.

	Pin	Signal	Pin	Signal	Pin	Signal
7 × 2 Header, J4	1	GND	6	B_H5V_IO31	11	B_H5V_I036
	2	VCC_5V	7	B_H5V_IO32	12	B_H5V_IO37
	3	B_H5V_IO40	8	B_H5V_IO33	13	B_H5V_I038
	4	B_H5V_I029	9	B_H5V_IO34	14	B_H5V_I039
	5	B_H5V_IO30	10	B_H5V_I035		
10 × 2 Header, J3	1	Vcc_UNREG	8	GND	15	VCC_3V3
,	2	GND	9	H5V_OSC	16	GND
	3	VCC_A	10	GND	17	NC
	4	GND	11	H5V_CLK	18	GND
	5	VCC_3V3	12	GND	19	NC
	6	GND	13	H5V_CLKOUT	20	GND
	7	VCC_3V3	14	GND		
20×2 Header, J9	1	H5_RST_N	15	B_H5V_I012	29	B_H5V_I021
•	2	GND	16	B_H5V_IO13	30	GND
	3	B_H5V_IO0	17	B_H5V_I014	31	B_H5V_I022
	4	B_H5V_I01	18	B_H5V_I015	32	B_H5V_I023
	5	B_H5V_IO2	19	GND	33	B_H5V_I024
	6	B_H5V_IO3	20	Removed	34	NC
	7	B_H5V_IO4	21	B_H5V_I016	35	B_H5V_I025
	8	B_H5V_IO5	22	GND	36	B_H5V_I026
	9	B_H5V_I06	23	B_H5V_I017	37	B_H5V_I027
	10	B_H5V_I07	24	GND	38	H5_CS_N
	11	B_H5V_I08	25	B_H5V_I018	39	B_H5V_I028
	12	B_H5V_IO9	26	GND	40	GND
	13	B_H5V_I010	27	B_H5V_I019		
	14	B_H5V_I011	28	B_H5V_IO20		

	Pin	Signal	Pin	Signal	Pin	Signal
20 × 2 Header, J2	1	GND	15	B_eup_A5	29	B_eup_A11
•	2	GND	16	B_eup_D5	30	B_eup_D11
	3	B_eup_A0	17	B_eup_A6	31	B_eup_A12
	4	B_eup_D0	18	B_eup_D6	32	B_eup_D12
	5	B_eup_A1	19	B_eup_A7	33	B_eup_A13
	6	B_eup_D1	20	B_eup_D7	34	B_eup_D13
	7	B_eup_A2	21	B_eup_A8	35	B_eup_A14
	8	B_eup_D2	22	B_eup_D8	36	B_eup_D14
	9	B_eup_A3	23	B_eup_A9	37	B_eup_A15
	10	B_eup_D3	24	B_eup_D9	38	B_eup_D15
	11	B_eup_A4	25	B_eup_A10	39	GND
	12	B_eup_D4	26	B_eup_D10	40	GND
	13	GND	27	GND		
	14	GND	28	GND		

Table 38 on page 47 lists pin-out information for the long expansion header on the development board.

Configuration/Debugging Interfaces

On the development board, there are interfaces for a MasterBlaster or ByteBlasterMV cable, and a Multi-ICE connector. Table 26 lists the signals on the MasterBlaster/ByteBlasterMV connector. Table 27 lists the signals on the Multi-ICE connector. Table 28 on page 39 lists pin-out information for the development board configuration and debugging interfaces.

Tabl	Table 26. MasterBlaster/ByteBlasterMV Female Connector Signals							
Pin		JTAG Mode						
	Signal	nal Description						
1	TCK	Clock signal						
2	GND	Signal ground						
3	TDO	Data from device						
4	V_{CC}	Power supply						
5	TMS	JTAG state machine control						
6	V _{IO}	Reference voltage for MasterBlaster output driver						
7	NC	No connect						
8	-	No connection						
9	TDI	Data to device						
10	GND	Signal ground						

Table 2	Table 27. Multi-ICE Connector Signals (Part 1 of 2)				
Pin	Signal	Description	Direction		
1	VCC	Power supply	N/A		
2	VCC	Power supply	N/A		
3	PROC_NTRTST	Processor reset	Output		
4	GND	Ground	N/A		
5	PROC_TDI	Processor test data input	Input		
6	GND	Ground	N/A		
7	PROC_TMS	Processor test mode select	Input		
8	GND	Ground	N/A		
9	PROC_TCK	Processor test clock input	Input		
10	GND	Ground	N/A		
11	GND	Ground	N/A		
12	GND	Ground	N/A		
13	PROC_TDO	Processor test data output	0		
14	GND	Ground	N/A		

Table 2	Table 27. Multi-ICE Connector Signals (Part 2 of 2)					
Pin	Signal	Description	Direction			
15	NSRST	Warm reset	I/O			
16	GND	Ground	N/A			
17	NC	No connection	N/A			
18	GND	Ground	N/A			
19	NC	No connection	N/A			
20	GND	Ground	N/A			

Development Board Pin-Outs

The main component of the EPXA1 development board is the EPXA1F484 device. The pins on the EPXA1 device are assigned to functions on the board. When generating IP cores for the EPXA1 device, the pins must be used as defined to avoid damaging the device and any unused pins should be tri-stated using the Quartus II software. The following sections list the interfaces and dedicated pins on the board. Any pins not used for a design should be left in a high-impedance state to avoid contention.

This section details the pins on the EPXA1 device which are assigned to the following purposes:

- Configuration
- SDR SDRAM
- EBI—for the Ethernet and flash memory devices
- UARTs 1 and 2
- Fast I/O pins
- Expansion headers
- Prototyping area
- Test pads

Pin assignments are grouped into tables for control pins, address pins, and data bus pins where appropriate. The tables also detail signals passing across a connection. The remaining I/O pins on the EPXA1 device are listed at the end of this section.

Configuration

The EPXA1 device pins listed in Table 28 on page 39 are used exclusively for configuring the device. Refer to "Device Configuration" on page 28 for more information about EPXA1 configuration.

Signal Name	EPXA1 Device Pin	Board Reference	Description
MSEL0	R5		Configuration mode select (tied to GND)
MSEL1	T3		Configuration mode select (tied to GND)
BOOT_FLASH	J5		Tied high (mandatory boot from flash)
NSTATUS	AB12		Pulled high
NCONFIG	R4		Connected to SOFT_RESET line
DCLK	R16		Pulled high
CONF_DONE	V12		Pulled high
INIT_DONE	K7		Initialization complete LED
nCE	P19		Pulled low
nCEO	НЗ		Not connected
DATA0	P18		Pulled low
DATA1	K3		Unused. Used as general-purpose I/O
DATA2	J1		
DATA3	L5		
DATA4	L4		
DATA5	L6		
DATA6	L22		
DATA7	M18		
TDI	T20	J6.9	JTAG data input
TDO	J4	J6.3	JTAG data output (to next device in the chain
TCK	Y11	J6.1	JTAG clock
TMS	U11	J6.5	JTAG mode select
TRST	J6		JTAG reset (pulled high)
PROC_TDI	G7	J8.5	JTAG data input
PROC_TDO	G2	J8.13	JTAG data output (to next device in the chain)
PROC_TCK	G3	J8.9	JTAG clock
PROC_TMS	H6	J8.7	JTAG mode select
PROC_TRST	G6	J8.3	JTAG reset (pulled high)
DEV_CLR_n	R20	T15, T14	FPGA clear signal taken to test pad T15, placed next to grounded test pad T14 near SW1; allows use of this signal, if required

Table 28. EPXA1 Device Configuration Pins (Part 2 of 2)				
Signal Name	EPXA1 Device Pin	Board Reference	Description	
DEV_OE	U16		Device output enable. GPIO	
nWS	M21		Write strobe. GPIO	
nRS	P16		Read strobe. GPIO	
nCS	N20		Signal providing handshaking between devices. GPIO	
CS	P17		Chip select. GPIO	
RDYnBSY	K4		Ready/busy. GPIO	
CLKUSR	L7		Clock signal. GPIO	

SDR SDRAM Interface

The EPXA1 development board contains one 16-bit SDR SDRAM device connected to the EPXA1 SDRAM controller.

For further details about the SDRAM controller, refer to the *Excalibur Devices Hardware Reference Manual*.

The SDRAM_DQM[1:0] lines are used as byte enables for both reading from and writing to the SDRAM.

Table 29 shows the pin-outs for the SDR SDRAM control signals.

Table 29. SDR SDRAM Control Signal Pin-Outs						
Signal Name	EPXA1 Device Pin	Board Reference	Description			
SD_RAS_N	C14	U13.18	Row address strobe			
SD_CAS_N	A17	U13.17	Column address strobe			
SD_WE_N	F14	U13.16	Write enable			
SD_CSO_N	G15	U13.19	Chip select			
SD_CLKE	E15	U13.37	Clock enable			
SD_CLK	C15	U13.38	SDRAM clock			
SD_CLK_N(1)	J16		Read data strobe output in SDR mode			
SD_DQM[0]	E21	U13.15	Data byte mask			
SD_DQM[1]	J20	U13.39	Data byte mask			
SD_DQS[0](1)	D22		Read data strobe input in SDR mode			
SD_DQM_ECC	B13		Not used			

Note:

(1) These pins are tied together to provide a data-read strobe. See the Excalibur Devices Hardware Reference Manual.

Table 30 lists the SDRAM data and address bus pin-outs.

Table 30. SDR SDRAM Data Bank & Address Bus Pin-Outs					
Signal Name	EPXA1 Device Pin	Board Reference	Signal Name	EPXA1 Device Pin	Board Reference
SD_DQ0	B20	U13.2	SD_DQ1	C20	U13.4
SD_DQ2	F18	U13.5	SD_DQ3	C21	U13.7
SD_DQ4	E20	U13.8	SD_DQ5	F19	U13.10
SD_DQ6	F20	U13.11	SD_DQ7	G18	U13.13
SD_DQ8	H19	U13.42	SD_DQ9	G20	U13.44
SD_DQ10	E22	U13.45	SD_DQ11	H18	U13.47
SD_DQ12	G21	U13.48	SD_DQ13	H20	U13.50
SD_DQ14	H17	U13.51	SD_DQ15	H22	U13.53
SD_A0	B17	U13.23	SD_A1	G16	U13.24
SD_A2	D16	U13.25	SD_A3	F16	U13.26
SD_A4	A19	U13.29	SD_A5	E16	U13.30
SD_A6	B18	U13.31	SD_A7	F17	U13.32
SD_A8	C17	U13.33	SD_A9	D17	U13.34
SD_A10	B19	U13.22	SD_A11	D18	U13.35
SD_A12	D19	U13.36	SD_A13	C19	U13.20
SD_A14	E18	U13.21			

EBI

The EBI shares addresses and data with the flash and Ethernet MAC/PHY devices. Each device has separate chip-select lines.

Table 31 shows the EPXA1 pin-outs for the EBI control signals and the board references for the flash memory and Ethernet.

Table 31. EBI	Table 31. EBI Control Signal Pin-Outs							
Signal Name	EPXA1 Device Pin	Ethernet Board Reference	Flash Memory Board Reference	Description				
EBI_BE0	D1	U9.96		Byte enable				
EBI_BE1	H9	U9.97		Byte enable				
EBI_OE_N	D2	U9.33		Output enable				
EBI_WE_N	G8	U9.34	FLASH1.11, FLASH2.11	Write enable				
EBI_CS0	C2		FLASH1.26	Chip select (flash memory 1)				
EBI_CS1	В3		FLASH2.26	Chip select (flash memory 2)				
EBI_CS2	D3			Chip select (not used)				
EBI_CS3	C4	U9.43		Chip select (ethernet)				
EBI_CLK	C3	U9.44		EBI clock				
EBI_ACK	B4			EBI acknowledge (not used)				

Table 32 shows the EPXA1 pin-outs for the EBI data bank and address bus and the board references for the flash memory and Ethernet.

Table 32. EBI Data Bank and Address Bus Pin-Outs (Part 1 of 2)						
Signal Name	EPXA1 Device Pin	Ethernet Board Reference	Flash Memory 1 Board Reference	Flash Memory 2 Board Reference		
EBI_DQ0	D10	U9.109	FLASH1.29	FLASH2.29		
EBI_DQ1	F10	U9.108	FLASH1.31	FLASH2.31		
EBI_DQ2	C10	U9.107	FLASH1.33	FLASH2.33		
EBI_DQ3	E10	U9.106	FLASH1.35	FLASH2.35		
EBI_DQ4	A10	U9.104	FLASH1.38	FLASH2.38		
EBI_DQ5	G11	U9.103	FLASH1.40	FLASH2.40		
EBI_DQ6	B10	U9.102	FLASH1.42	FLASH2.42		
EBI_DQ7	F11	U9.101	FLASH1.44	FLASH2.44		
EBI_DQ8	D11	U9.78	FLASH1.30	FLASH2.30		
EBI_DQ9	E11	U9.77	FLASH1.32	FLASH2.32		

Signal Name	EPXA1 Device Pin	Ethernet Board Reference	Flash Memory 1 Board Reference	Flash Memory 2 Board Reference
EBI_DQ10	C11	U9.76	FLASH1.34	FLASH2.34
EBI_DQ11	B11	U9.75	FLASH1.36	FLASH2.36
EBI_DQ12	F12	U9.73	FLASH1.39	FLASH2.39
EBI_DQ13	A12	U9.72	FLASH1.41	FLASH2.41
EBI_DQ14	E12	U9.71	FLASH1.43	FLASH2.43
EBI_DQ15	B12	U9.70	FLASH1.45	FLASH2.45
EBI_A0	C5	(not used)		
EBI_A1	A4	U9.80	FLASH1.25	FLASH2.25
EBI_A2	D7	U9.81	FLASH1.24	FLASH2.24
EBI_A3	A5	U9.82	FLASH1.23	FLASH2.23
EBI_A4	E7	U9.83	FLASH1.22	FLASH2.22
EBI_A5	B6	U9.84	FLASH1.21	FLASH2.21
EBI_A6	C7	U9.85	FLASH1.20	FLASH2.20
EBI_A7	A6	U9.86	FLASH1.19	FLASH2.19
EBI_A8	F8	U9.87	FLASH1.18	FLASH2.18
EBI_A9	B7	U9.88	FLASH1.8	FLASH2.8
EBI_A10	D8	U9.89	FLASH1.7	FLASH2.7
EBI_A11	C8	U9.90	FLASH1.6	FLASH2.6
EBI_A12	E8	U9.91	FLASH1.5	FLASH2.5
EBI_A13	A7	U9.92	FLASH1.4	FLASH2.4
EBI_A14	G9	U9.93	FLASH1.3	FLASH2.3
EBI_A15	B8	U9.94	FLASH1.2	FLASH2.2
EBI_A16	F9		FLASH1.1	FLASH2.1
EBI_A17	A8		FLASH1.48	FLASH2.48
EBI_A18	E9		FLASH1.17	FLASH2.17
EBI_A19	C9		FLASH1.16	FLASH2.16
EBI_A20	D9		FLASH1.15	FLASH2.15
EBI_A21	B9		FLASH1.10	FLASH2.10
EBI_A22	H10		FLASH1.9	FLASH2.9
EBI_A23	A9 (not used)			
EBI_A24	G10 (not used)			

UART1 & UART2

Table 33 details the pins used for UARTs 1 and 2.

Table 33. UARTs 1 & 2 I/O Pin-Outs						
	FPGA UART		Embedded Stripe UART			
EPXA1 I/O Connector Device Pin Signal			EPXA1 Device Pin	Connector Pin	Device Signal	
K4	P1.4	DTR	E6	P2.4	XA_DTR	
J1	P1.3	TXD	G5	P2.3	XA_TXD	
K5	P1.2	RXD	F2	P2.2	XA_RXD	
L5	P1.6	DSR	G4	P2.6	XA_DSR	
K3	P1.7	RTS	E2	P2.7	XA_RTS	
L7	P1.9	RI	F3	P2.9	XA_RI	
L6	P1.1	DCD	F6	P2.1	XA_DCD	
L4	P1.8	CTS	F1	P2.8	XA_CTS	
	P1.5	GND		P2.5	GND	

Fast I/O Pins

Table 34 details the EPXA1 fast I/O pins, which are used as expansion header clock inputs.

Table 34. EPXA1 Fast I/O Pins						
EPXA1 Pin Name Board Signal Description EPXA1 Pin Expansion Header Card Connector						
FAST1	H5V_CLKOUT	Dedicated fast I/O pin	J2	J3.13		
FAST4	H5V_CLKOUT	Dedicated fast I/O pin	W12	J10.13		

Test Points

Table 35 on page 45 lists the test points on the EPXA1 development board.

Table 35. EPXA1 Development Board Test Points						
Test Point	Connected To	Test Point	Connected To			
TP1	GND	TP6	1V8			
TP2	GND	TP7	GND			
TP3	EBI_CLK	TP8	GND			
TP4	GND	TP9	5V			
TP5	3V3	TP10	GND			

Test Pads

Table 36 lists the test pads on the EPXA1 development board.

Table 36. EPXA1 Development Board Test Pads						
Test Pad	Connected To	Test Pad	Connected To			
T1	EBI chip-select 3	Т9	EBI byte enable 1			
T2	EBI write enable	T10	JTAG clock			
Т3	Ethernet loopback active output	T11	JTAG data output			
T4	EBI output enable	T12	JTAG mode select			
T5	EBI chip-select 0	T13	JTAG data input			
T6	EBI chip-select 2	T14	Feedback clock to PLL2			
T7	EBI byte enable 0	T15	25-MHz clock			
Т8	EBI chip-select 1					

Prototyping Area

Table 36 lists the pin assignments for the prototyping area on the EPXA1 development board.

Table 37. EPXA1 Development Board Prototyping Area Pin-Outs						
	Board Reference (EPXA1 Device Pin)					
Row/Column	1	2	3	4	5	6
Α	VCC_5V	GND	VCC_3V3	protoIO_29 (K15)	protoIO_19 (L19)	protoIO_9 (M22)
В	VCC_5V	GND	VCC_3V3	protoIO_28 (K17)	protoIO_18 (L20)	protoIO_8 (N16)
С	VCC_5V	GND	VCC_3V3	protoIO_27 (K18)	protoIO_17 (L21)	protoIO_7 (N20)
D	VCC_5V	GND	VCC_3V3	protoIO_26 (K19)	protoIO_16 (L22)	protoIO_6 (N22)
E	VCC_5V	GND	VCC_3V3	protoIO_25 (K20)	protoIO_15 (M16)	protoIO_5 (P16)
F	VCC_5V	GND	VCC_3V3	protoIO_24 (K21)	protoIO_14 (M17)	protoIO_4 (P17)
G	VCC_5V	GND	VCC_3V3	protoIO_23 (L15)	protoIO_13 (M18)	protoIO_3 (P20)
Н	VCC_5V	GND	VCC_3V3	protoIO_22 (L16)	protoIO_12 (M19)	protoIO_2 (P22)
J	VCC_5V	GND	VCC_3V3	protoIO_21 (L17)	protoIO_11 (M20)	protoIO_1 (R22)
K	VCC_5V	GND	VCC_3V3	protoIO_20 (L18)	protoIO_10 (M21)	NC
L	VCC_5V	GND	VCC_3V3	NC	NC	NC
М	VCC_5V	GND	VCC_3V3	NC	NC	protoIO_32 (AA19)
N	VCC_5V	GND	VCC_3V3	NC	NC	protoIO_31 (AA20)
Р	VCC_5V	GND	VCC_3V3	NC	NC	protoIO_30 (AB19)
R	VCC_5V	GND	VCC_3V3	NC	NC	RESET_n (H4)

Expansion Header I/O Pins

Tables 39 and 38 list the remaining I/O pins on the standard expansion header and long expansion header, respectively, and their connections on the EPXA1 device.

Table 38. Development Board Long Expansion Header (Header 1) I/O Pin-Outs						
Board Connector	EPXA1 Device	Board Connector	EPXA1 Device	Board Connector	EPXA1 Device	
J2.3	W3	J2.32	N3	J9.9	Y4	
J2.4	R1	J2.33	R7	J9.10	Y3	
J2.5	W2	J2.34	N2	J9.11	Y2	
J2.6	P7	J2.35	R3	J9.12	W11	
J2.7	W1	J2.36	N1	J9.13	W10	
J2.8	P6	J2.37	R2	J9.14	W9	
J2.9	V3	J2.38	M7	J9.15	W8	
J2.10	P5	J4.3	AB9	J9.16	W7	
J2.11	V2	J4.4	T10	J9.17	W5	
J2.12	P4	J4.5	T9	J9.18	V11	
J2.15	U4	J4.6	R10	J9.21	V10	
J2.16	P3	J4.7	AB10	J9.23	V9	
J2.17	U3	J4.8	M6	J9.25	V8	
J2.18	P2	J4.9	M5	J9.27	V7	
J2.19	U2	J4.10	M4	J9.28	V6	
J2.20	P1	J4.11	M3	J9.29	V5	
J2.21	T8	J4.12	L3	J9.31	V4	
J2.22	N7	J4.13	L2	J9.32	U10	
J2.23	T7	J4.14	L1	J9.33	U9	
J2.24	N6	J9.3	Y10	J9.35	U8	
J2.25	T6	J9.4	Y9	J9.36	U7	
J2.26	N5	J9.5	Y8	J9.37	U6	
J2.29	T5	J9.6	Y7	J9.39	T11	
J2.30	N4	J9.7	Y6	H5_CS_N	AB8	
J2.31	T4	J9.8	Y5	(J15.38)		

Table 39. Development Board Standard Expansion Header (Header 2) I/O Pin-Outs						
Board Connector	EPXA1 Device	Board Connector	EPXA1 Device	Board Connector	EPXA1 Device	
J11.4	AA14	J15.6	Y14	J15.23	T15	
J11.5	AA12	J15.7	Y13	J15.25	T14	
J11.6	AB4	J15.8	Y12	J15.27	T13	
J11.7	AA10	J15.9	W16	J15.28	T12	
J11.8	AA9	J15.10	W15	J15.29	R13	
J11.9	AA8	J15.11	W14	J15.31	AB17	
J11.10	AA7	J15.12	W13	J15.32	AB16	
J11.11	AA6	J15.13	V15	J15.33	AB15	
J11.12	AA5	J15.14	V14	J15.35	AB14	
J11.13	AA4	J15.15	V13	J15.36	AA17	
J11.14	AA3	J15.16	U15	J15.37	AA16	
J15.3	Y22	J15.17	U14	J15.39	AA15	
J15.4	Y16	J15.18	U13	H5_CS_N	AB6	
J15.5	Y15	J15.21	U12	(J9.38)		

General Usage Guidelines

To use the development board properly, and to avoid damage to it, follow the guidelines in this section.

Anti-Static Handling

Before handling the development board, you should take proper antistatic precautions, otherwise it can be damaged.

Power Consumption

The level of power consumption in the EPXA1 development board depends on what peripherals are implemented in the FPGA, typically in relation to the following variables:

- Number of interfaces used
- Density and speed of the device
- Population of the interfaces

The board's typical operating current while running diagnostics is approximately 250 mA.

A 20-W power supply is supplied as part of the EPXA1 development kit. It is capable of meeting the maximum power requirement imposed by the board if all interfaces are used within specification.

Test Core Functionality

The EPXA1 board is supplied with a diagnostic software image directly programmed into flash memory. When the embedded processor boots, it configures the FPGA and runs the software using the test FPGA image.

The software is controlled using a serial terminal connected to the board connector, P2, and the following PC communications port settings: baud rate 38400, 8 data bits, no parity, one stop bit and no flow control.

Ensure that the serial terminal program is configured to output carriage return and line feeds—not all terminals default to these settings.

The options on the software menu are as follows:

- e—Run Ethernet internal loopback test
- E—Run Ethernet external loopback test (requires loopback connector)
- h-Show this screen
- i-Show interrupt usage
- m-Run memory test
- t—Toggle terminal output between UARTS
- The Ethernet internal loopback test checks that the Ethernet chip is working properly—the external loopback test is for manufacturing test only
- The toggle between the UARTS switches the output of the program between P1 and P2. P2 is connected to the UART in the EPXA1 embedded stripe; P1 is connected to a UART which has been programmed into the FPGA. After switching the port using the t command, you can connect the serial terminal to the currently-unused serial connector (i.e., if you were using P2, you will now use P1), and type h

 to invoke the help menu.
- The memory test tests the integrity of the SDRAM on the board.

In addition, the LEDS and switches can be tested as follows:

- Each of the eight switches on the switch block can turn the corresponding LED on or off; for example, SW6_1 turns on the first LED
- When held down, SW5 toggles the 9th LED
- When held down, SW4 toggles the 10th LED
- When held down, SW3 inverts the current setting of all the LEDS
- SW2 shifts all the LEDS right (as viewed) by one place

Environmental Requirements

The development board must be stored between -40 °C and 100 °C.

Operating Requirements

Operating temperatures must be between 0 °C and 55 °C.

Unused I/O Pins

Damage could result to the EPXA1 device, if all unused I/O pins are not set to tri-state mode in the Quartus II software.

To set the unused I/O pins to tri-state mode, run the Quartus II software, open the appropriate project, and follow the steps below:

- 1. Choose **Compile Mode** (Processing menu).
- 2. Choose **Compiler Settings** (Processing menu).
- 3. Click the **Chips & Devices** tab.
- 4. Click **Device & Pin Options**.
- 5. Click the **Unused Pins** tab.
- 6. Select **As inputs, tri-stated**.
- 7. Click **Apply**.