ITMD-362 WEIK 8

February 27, 2018

TONIGHT'S AGENDA

- Lab 4
- Color: Introduction
- Visible Light
- Color Systems
- Color Combos Matter
- Color Palette: Tools

Color: Introduction

ELECTROMAGNETIC SPECTRUM

DESCRIBING ELECTROMETRIC WAVES

- Frequency f
 - Measured in Hertz
 - Cycles (peaks) per second
- Wavelength λ
 - Measured in distance between wave peaks
 - Inversely proportional to the frequency
 - Short as an atom to as long as a universe. Yes, a Universe.
- Photon energy E
 - Directly proportional to the wave frequency
 - Amount of energy carried by a single photon
 - Not to be confused with Watts (though related).

FREQUENCY

$$f = 0.5 \text{ Hz}$$

 $T = 2.0 \text{ s}$

$$f = 2.0 \text{ Hz}$$

 $T = 0.5 \text{ s}$

FREQUENCY

WAVELENGTH: DISTANCE BETWEEN PEAKS

© Copyright. 2012. University of Walkato. All Rights Reserved.

Educational Fair Use By IIT

ITMD362 - School of Applied Technology - Illinois Institute of Technology

WAVELENGTH: RELATIVE COMPARISON

POWER (AMPLITUDE): WAVE HEIGHT

• Watt = work done by 1 amp flowing through 1 volt

• Not a physics class and I'm not a physics major

- Increased power, increases wave height
 - Does not increase wave frequency
- Again, related to Photon power
 - But different

POWER VS. FREQUENCY

Visible Light

VISIBLE LIGHT

- Cones and Rods
 - Cones see color
 - Rods see shape
- Photosensitive retinal ganglion
 - New receptor (1990)
 - circadian rhythms
 - pupillary reflex
 - conscious vision

DESCRIBING VISIBLE LIGHT

• Photometric (experience) vs. Radiometric (real power)

Photometric	Radiometric
Lumen	Watt
Luminance	Radiance
Luminous Flux	Radiant Flux
Luminous Intensity	Radiant Intensity

SPECTRAL POWER: DIFFERENT EXPERIENCE

Color Systems

ADDITIVE: LIGHT EMITTING SOURCE

- Red, Green, and Blue (RBG)
- New Colors made from mixing wavelengths
 - White=all/many colors emitted
 - Black=no color/light emitted

SUBTRACTIVE: LIGHT REFLECTIVE SOURCE

- Cyan, Magenta, and Yellow (CMY)
- New Colors made from reflecting wavelengths
 - White=all/many colors reflected
 - Black=no color/light reflected
- Black is CMY+Key = (CMYK)
 - 100% CMY mix is wet and messy
 - Black ink is special low water mix

Why black hats are hotter than white hats

RBG = COORDINATES

NEITHER MIX IS THE FULL COLOR SPECTRUM

We actually don't have a means of perfectly producing the full spectrum except by splitting pure white light.

COLORS WE CAN MAKE: "COLOR GAMUT" 16 MILLION COLORS

COMPONENTS OF COLOR

- Hue: Position on the color wheel
 - 0 to 359°
- Saturation: Bandwidth of wave
 - (pixel purity on a screen)
- Brightness: Experience
 - Light type determines color experience

WHITE LIGHT: COLOR TEMPERATURE

Temperature	Source			
1700 K	Match flame, low pressure sodium lamps (LPS/SOX)			
1850 K	Candle flame, sunset/sunrise			
2400 K	Standard incandescent lamps			
2550 K	Soft white incandescent lamps			
2700 K	"Soft white" compact fluorescent and LED lamps			
3000 K	Warm white compact fluorescent and LED lamps			
3200 K	Studio lamps, photofloods, etc.			
3350 K	Studio "CP" light			
5000 K	Horizon daylight			
5000 K	Tubular fluorescent lamps or cool white/daylight			
	compact fluorescent lamps (CFL)			
5500 – 6000 K	Vertical daylight, electronic flash			
6200 K	Xenon short-arc lamp ^[3]			
6500 K	Daylight, overcast			
6500 – 9500 K	LCD or CRT screen			
15,000 – 27,000 K	Clear blue poleward sky			
These temperatures are merely characteristic: there may be considerable variation.				

These temperatures are merely characteristic; there may be considerable variation.

Color Combos Matter

COLOR COMBOS CHANGE THE EXPERIENCE

Proof: They are the same. The shadow causes an illusion of white.

Color Palette: Tools

FREE TOOLS: CHOOSE YOUR SCHEME

- Steps:
 - 1. Chose Color Rule
 - 2. Pick hue (color)
 - 3. Focus in on shade.
- Paletton: <u>Link</u>
 - Simple: for beginners
 - Three steps are separate
- Adobe Color CC: Link
 - More detailed
 - More control
 - Easier to get confused

