- 1. Найдите обратное к 74 по модулю 47.
- 2. Докажите, что если $a \equiv b \pmod m$ и $n \mid m$, то $a \equiv b \pmod n$.
- 3. Докажите, что если $a \equiv b \pmod{m}$ и $a \equiv b \pmod{n}$, то $a \equiv b \pmod{HOK(m,n)}$.
- 4. Решите систему сравнений:

$$\begin{cases} x \equiv 3 \pmod{5}; \\ x \equiv 4 \pmod{7}. \end{cases}$$

5. Найдите остаток от деления:

a)
$$4^{18} + 5^{17}$$
 Ha 3;

о)
$$2^{2^{2021}} - 1$$
 на 17;

а)
$$4^{18} + 5^{17}$$
 на 3; b) $2^{2^{2021}} - 1$ на 17; c) 8^{900} на 29; d) $\sum_{k=0}^{104} 10^k$ на 107.

- 6. Докажите, что при любом $a \in \mathbb{Z}$ число $a^{73} a$ делится на $2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 19 \cdot 37 \cdot 73$.
- 7. Укажите такое N, что существует ровно 8 вычетов по модулю N, обратных самим себе. (Другими словами, сравнение $x^2 \equiv 1 \pmod{N}$ имеет ровно 8 решений в вычетах по модулю N).

- 1. Найдите две последние цифры числа 99^{1000} .
- 2. Найдите обратное к числу 53 по модулю 42.
- 3. Один из вариантов криптоалгоритма RSA таков. Выбирают два (больших) различных простых числа p и q, для которых вычисляют n=pq и m=(p-1)(q-1); затем фиксируют некоторое $e\in\{2,\ldots,m-2\}$ такое, что (e,m)=1, и находят число d со свойством $ed\equiv 1\ (\mathrm{mod}\ m)$. Пара (e,n) является ключом зашифровывания и публикуется, а пара (d,n) это ключ расшифровывания, который держат в секрете.

Всякий, зная публичный ключ, может зашифровать некоторое сообщение (открытый текст представляют в виде числа $P \in \{1,\dots,n-1\}$), получая шифротекст $C=P^e \mod n$. Адресат сообщения, знающий секретный ключ, расшифровывает открытый текст $P'=C^d \mod n$. Докажите, что:

- (a) по данным e и m всегда можно найти число $d \in \{2, \dots, m-2\}$, причем для этого есть алгоритм, лучший (это не нужно доказывать) полного перебора;
- (b) расшифровка корректна, то есть P' = P для любого открытого текста P.
- 4. При каких целых n число $a_n = n^2 + 3n + 1$ делится на 55?
- 5. Докажите, что если число $a^{10} + b^{10} + c^{10} + d^{10} + e^{10} + f^{10}$ кратно 11, то abcdef делится на 11^6 .
- 6. Найдите остаток от деления 2020 3 (3 в степени 3 в степени 3... 2020 раз) на 46.