IN THE SPECIFICATION

Please amend the specification by replacing the paragraph beginning at page 9, line 9 and ending at the last line of page 9 with the following:

The present invention also concerns methods and compositions for the prophylactic and therapeutic treatment of retinal neovascularization and related diseases with other MMP inhibitors, which include the hydroxamic acid-based compounds described in U.S. Patent No. 5,240,958[[.]], which includes compounds of the general formula:

$$R^2$$
 R^3
 R^4
 R^5
 R^1 SO_n

wherein:

 R^1 represents a hydrogen atom, C_1 - C_6 alkyl, phenyl, thienyl, substituted phenyl, phenyl(C_1 - C_6) alkyl, heterocyclyl, (C_1 - C_6) alkylcarbonyl, phenacyl or substituted phenacyl group; or, when n=0, R^1 represents SR^x , wherein R^x represents a group:

 R^2 represents a hydrogen atom or a C_1 - C_6 alkyl, C_1 - C_6 alkenyl, phenyl(C_1 - C_6) alkyl, cycloalkyl(C_1 - C_6) alkyl or cycloalkenyl(C_1 - C_6) alkyl group;

 R^3 represents an amino acid side chain or a C_1 - C_6 alkyl, benzyl, (C_1 - C_6 alkoxy) benzyl, benzyloxy(C_1 - C_6) or benzyloxybenzyl group;

R⁴ represents a hydrogen atom or a C₁-C₆ alkyl group;

R⁵ represents a hydrogen atom or a methyl group;

n is an integer having the value 0, 1 or 2; and

A represents a C_1 - C_6 hydrocarbon chain, optionally substituted with one or more C_1 - C_6 alkyl, phenyl or substituted phenyl groups;

or a salt thereof.

As used herein the term "C₁-C₆ alkyl" refers to a straight or branched chain alkyl moiety having from one to six carbon atoms, including for example, methyl, ethyl, propyl, isopropyl, butyl, t-butyl, pentyl and hexyl, and cognate terms (such as "C₁-C₆ alkoxy") are to be construed accordingly.

The term " C_1 - C_6 alkenyl" refers to a straight or branched chain alkyl moiety having one to six carbons and having in addition one double bond, of either E or Z stereochemistry where applicable. This term would include, for example, an alpha, beta-unsaturated methylene group, vinyl, 1-propenyl, 1- and 2-butenyl and 2-methyl-2-propenyl.

The term "cycloalkyl" refers to a saturated alicyclic moiety having from 3 to 8 carbon atoms and includes for example, cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.

The term "cycloalkenyl" refers to an unsaturated alicycle having from 3 to 8 carbon atoms and includes cyclopropenyl, cyclobutenyl and cyclopentenyl, cyclohexenyl.

The term "substituted", as applied to a phenyl or other aromatic ring, means substituted with up to four substituents each of which independently may be C₁-C₆ alkyl, C₁-C₆ alkoxy, hydroxy, thiol, C₁-C₆ alkylthiol, amino, halo (including fluoro, chloro, bromo and iodo), trifluoromethyl or nitro.

The term "amino acid side chain" means a characteristic side chain attached to the
CH(NH₂)(COOH) moiety in the following R or S amino acids: glycine, alanine, valine, leucine, isoleucine, phenylalanine, tyrosine, tryptophan, serine, threonine, cysteine, methionine, asparagine, glutamine, lysine, histidine, arginine, glutamic acid and aspartic acid.

The term "hydrocarbon chain" includes alkylene, alkenylene and alkynylene chains of from 1 to 6 carbon atoms. Preferably the carbon atom of the hydrocarbon chain nearest to the hydroxamic acid group is a methylene carbon atom.

There are several chiral centres in the compounds according to the invention because of the presence of asymmetric carbon atoms. The presence of several asymmetric carbon atoms

gives rise to a number of diastereomers with the appropriate R or S stereochemistry at each chiral centre. General formula I and, where appropriate, all other formulae in this specification are to be understood to include all such stereoisomers and mixtures (for example racemic mixtures)

thereof. Compounds in which the chiral centre adjacent the substituent R³ has S stereochemistry and/or the chiral centre adjacent the substituent R² has R stereochemistry are preferred.

Particularly preferred compounds are those having the general formula:

$$R^2$$
 R^3
 R^4
 R^5
 R^1SO_n

where R^1 represents thienyl; R^2 represents a hydrogen atom or a C_1 - C_6 alkyl, C_1 - C_6 alkenyl, phenyl(C_1 - C_6) alkyl, cycloalkyl(C_1 - C_6)alkyl or cycloalkenyl(C_1 - C_6)alkyl group; R^3 represents an amino acid side chain or a C_1 - C_6 alkyl, benzyl, (C_1 - C_6 alkoxyl)benzyl or benzyloxy(C_1 - C_6 alkyl) or benzyloxy benzyl group; R^4 represents a hydrogen atom or a C_1 - C_6 alkyl group; R^5 represents a hydrogen atom or a methyl group; n is an integer having the value 0, 1 or 2; and A represents a C_1 - C_6 hydrocarbon chain, optionally substituted with one or more C_1 - C_6 alkyl, phenyl or substituted phenyl groups; or a salt thereof.