TEMA 3: AJUSTE de DATOS

Sistema sobredeterminado: problema tipo

Ejercicio 1: Dado el siguiente <u>sistema sobredeterminado</u> Hc = b (número de ecuaciones mayor que el número de incógitas),

$$\begin{pmatrix} 1 & -1 \\ 1 & 1 \\ 1 & 0 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -2.05 \\ 0.05 \\ -1.15 \\ 1.05 \end{pmatrix}$$

Cuya solución viene dada por la solución del <u>sistema de ecuaciones</u> normales $H^THc = H^Tb$ (número de ecuaciones coincide con el número de incógnitas).

- Calcular la solución del sistema de ecuaciones normales $c=(H^TH)^{-1}H^Tb$. Comprobar que se obtiene el mismo resultado utilizando el comando c=H\b.
- Calcular el vector residuo r = Hc b.
- La segunda ecuación del sistema sobredeterminado es x+y=0.05. A partir de la solución obtenida y del vector residuo ¿Cuánto difieren los valores de la aproximación x+y@0.05?.

Ajuste de datos: problema tipo

Ejercicio 2: Sea la tabla de datos:

xi	-1	0	1	2
yi	-2	-1	0	3

- a) Recta de regresión lineal o recta que mejor se "ajusta" a esos datos.
- Plantear el sistema sobredeterminado Hc=b del ajuste de los datos a la recta

$$v1(x) = A + Bx$$

- Resolver el sistema sobredeterminado.
- Calcular el vector residuo r1 = Hc b.
- Calcular el error del ajuste $E1 = sum(r1.^2)$.
- Hacer un plot de los datos de la tabla ('rs') con la recta y1 en el intervalo [-1,2].

b) Repetir el apartado anterior para las funciones

$$y2(x) = A + Bx^2$$
, $y3(x) = A + Bx + Cx^2$, $y4(x) = A + Bx + Cx^2 + Dx^3$

 Hacer un plot de los datos de la tabla junto con las 4 funciones y1, y2, y3 e y4 en el intervalo [-1,2].

Nota: Podeis utilizar los comandos: plot(xi,yi,'rs',xx,yy1,'g.',xx,yy2,'b:',xx,yy3,'cx',xx,yy4,'r') legend({'Datos','Recta','Polinomio A+Bx^2','Polinomio grado 2','Polinomio grado 3'});

Debeis obtener una gráfica similar a la siguiente.

- Ordenar los ajustes obtenidos de mayor a menor error (E1, E2, E3, E4).
 Comentar los resultados.
- ¿Cuál es el ajuste de menor error?. Comentar el resultado.
- Dibujar sobre la gráfica obtenida el vector r1. Indicar su significado.

Ejercicio 3: Nos planteamos hallar la mejor aproximación a los datos de la tabla siguiente:

x_i	-0.44	0.09	0.92	0.23	-0.68	0.81	-0.85	0.55
y_i	0.12	0.09	0.48	-0.01	0.26	0.30	0.38	0.15

$$\begin{cases} p(x) = A + Bx + Cx^2 \\ u(x) = A + Be^x + Ce^{-x} \end{cases}$$

usando funciones de dos posibles formas:

Construir en ambos casos la matriz H de los correspondientes sistemas sobredeterminados. Resolver listando los coeficientes A, B y C, junto con el error en cada caso. ¿Cuál sería el mejor ajuste según el criterio de mínimos cuadrados?

Reflejar los resultados en una gráfica pintando los puntos de la tabla y las dos funciones resultantes

Ejercicio 4: Lanzamos una piedra hacia arriba desde el suelo y medimos (aproximadamente) su altura en varios instantes de tiempo. El tiempo (en segundos [s]) y las alturas (en metros [m]) se dan en la siguiente tabla:

ti	0.69	1.46	1.82	2.67	2.85
hi	8.19	11.34	11.50	5.05	2.97

Sabiendo que la posición de la piedra responde a la siguiente ecuación:

$$h = v_0 t - \frac{1}{2}gt^2$$

se desea determinar el valor de la velocidad inicial (m/s) y la gravedad g (m/s2) a partir de los datos anteriores.

- a) Ajustar los datos a la ecuación. ¿Qué valores obtenéis para v0 y g?. A partir del residuo dar una estimación del error ([m]) de las medidas. ¿En qué medida se ha cometido el mayor error de medición?, ¿y el menor?.
- b) Sabiendo que g=9.8 m/s2, resolver de nuevo el problema anterior pero ahora con v0 como única incógnita. ¿Qué valor obtenéis ahora para v0?. ¿Os fiaríais más del este nuevo valor o del anterior? ¿Por qué?.

Dibujar la gráfica de los datos y el ajuste obtenido. ¿Cuánto tiempo aproximadamente tarda en caer la piedra al suelo?. ¿En qué instante la piedra alcanza su altura máxima, y cuál es esa altura?.

Ejercicio 5: En la siguiente tabla k representa la tasa de crecimiento diario de una población bacteriana frente a la concentración (c) de oxígeno presente (mg/lt):

С	0.5	0.8	1.5	2.5	4
K	1.1	2.4	5.3	7.6	8.9

Se sabe que la relación entre k y c viene dada por la fórmula: $\frac{k = \frac{110}{B + c^2}}{B + c^2}$ Determinar los valores de A y B que mejor ajustan los datos anteriores y determinar cuál sería la tasa de crecimiento para una concentración de c=2 mg/lt.

Ejercicio 6: La siguiente tabla corresponde a la viscosidad (V) del aceite SAE70 a diferente temperaturas (T)

Т	25	100	150	300	
V	1.4	0.075	0.010	0.00075	

Ajustar los datos a una curva del tipo $V = Ae^{-BT}$ y deducir la viscosidad del aceite a 200 grados.

Ejercicio 7: Nos planteamos hallar el polinomio de grado menor o igual a dos que sea la mejor aproximación a los datos de la tabla siguiente:

x_i	-0.44	0.09	0.92	0.23	-0.68	0.81	-0.85	0.55
y_i	0.12	0.09	0.48	-0.01	0.26	0.30	0.38	0.15

usando los siguientes pesos:

			1 0			1 0	1 0	
W/ I	105	I () 1	11()	1 () 1	() <i> </i>	1 ()	1 ()	105
V V'	0.5	0.1	1.0	0.1	0.7	1.0	1.0	0.5
W_I	0.5	0.1	1.0	0.1	U./	1.0	1.0	0.5

Comparar gráficamente el polinomio del ajuste con pesos obtenido y el polinomio del ajuste sin pesos obtenido en el ejercicio 3.