Multi-Class SVM

What is multiclass classification?

- An input can belong to one of K classes
- Training data: Input associated with class label (one of K-classes)
- Prediction: Given a new input, predict the class label
- Each input belongs to exactly one class. Not more, not less.
 - Otherwise, the problem is not multiclass classification
 - If an input can be assigned multiple labels (think tags for emails rather than folders), it is called multi-label classification

Example applications: Images

• *Input*: hand-written character *Output*: which character?

- Input: a photograph of an object
 Output: which object is it ?, from a set of categories
 - Eg: the Caltech 256 dataset

Car tire

Car tire

Duck

laptop

Example applications: Language

Input: a news article
 Output: which section of the newspaper should it belong to?

Input: an email
 Output: which folder should an email be placed into?

Input: an audio command given to a car
 Output: which of a set of actions should be executed?

Multiclass Classification

- SVM is essentially for 2-class classification
- Many approaches to handle multiple classes
 - Combining binary classifiers
 - One-against-all (OAA-SVM)
 - One-against-one (OAO-SVM)
 - Decision Tree Structure (DAG-SVM)
 - Binary Tree structure (BT-SVM)
 - Error correcting codes (ECOC)
 - Training a single classifier
 - Multi-class optimization
 - Constraint classification

One-against-all classification

- Assumption: Each class individually separable from *all* the others
- **k** binary SVMs, each responsible to distinguish a class *i* from the remaining classes.
- The final prediction is usually given by the classifier with the highest output value.
- *Training* Each classifier is trained with entire training set.
- *Testing* Test sample is tested with k SVMs.
- Prediction: "Winner Takes All"

$$argmax_i \mathbf{w}_i^T \mathbf{x} + \mathbf{b_i}$$

Visualizing One-against-all

One-against-all may not always work

Black points are not separable with a single binary classifier

The decomposition will not work for these cases!

 $w_{blue}^T x > 0$ for blue inputs

 $w_{red}^T x > 0$ for red inputs

 $w_{blue}^T x > 0$ for green inputs

???

One-against-all classification: Summary

- Easy to learn
 - Use any binary classifier learning algorithm
- Problems
 - No theoretical justification
 - Calibration issues
 - We are comparing scores produced by K classifiers trained independently. No reason for the scores to be in the same numerical range!
 - Might not always work
 - Yet, works fairly well in many cases

One-against-one classification

Sometimes called All-against-all

- Assumption: Every pair of classes is separable
- Learning: For every pair of labels (j, k), create a binary classifier with
 - Positive examples: All examples with label j
 - Negative examples: All examples with label k
- Prediction: k(k-1)/2 binary SVMs- Each classifier gives one vote to its preferred class. The class with most of the votes is winner.

One-against-one classification

- Every pair of labels is linearly separable here
 - When a pair of labels is considered, all others are ignored
- Problems
 - 1. $O(K^2)$ weight vectors to train and store
 - 2. Size of training set for a pair of labels could be very small, leading to overfitting
 - 3. Prediction might be unstable

Eg: What if two classes get the same number of votes?

DAG-SVM

- Training is same as OAO
- An advantage of using a DAG is that its testing time is less than the OAO methods.

Testing:

- DAG first evaluates with the binary SVM that corresponds to the first and last element in list L.
- If the classifier prefers one of the two classes, the other one is eliminated from the list.
- Each time, a class label is excluded which results in k-1 binary evaluations.
- Individual binary SVM tend to over-fit the concerned 2-class training samples.

Tree-Structure SVM

- Binary-tree Structure:
- A binary SVM in the non leaf nodes.
- k-1 SVMs for an k class problem, Only log₂k SVMs in average are required to classify a sample.
- Training Each SVM is trained with small set of samples.
 - Dramatic improvement in training/test complexity
 - Performance of all models are more or less similar at this stage.

Binary Tree Structure

- Hierarchical Multiclass model Binary tree structure seems to be the best option.
- Critical decision- Binarization
- Prediction is dramatically fast.

Binarization

- Recursively dividing the classes into two disjoint groups in every node of the tree and training a SVM at this node
- Many ways to divide k classes into two groups
- To have proper grouping for the good performance
 - Divide based on class labels
 - Divide based on feature vectors
 - Hybrid

Challenge: Optimal Binarization

Strengths

- Training and Testing complexity
- Early termination (even by just a few SVM evaluation)
- Discriminating order
- Stage-wise Linear separability

Weakness

- Suboptimal 2-stage procedure
 - Tree construction is different from classifier learning
 - First use some measures about the separability of classes to partition
 - Then find a decision boundary to separate them
 - The measure of separability different from the separation margins achieved by decision boundaries
- Class-centers or mean-distance is used. A class is taken as single unit by default

Toy Example 1

Error correcting output codes (ECOC)

- Each binary classifier provides one bit of information
- With K labels, we only need log₂K bits
 - One-against-all uses K bits (one per classifier)
 - All-against-all uses O(K²) bits
- Can we get by with O(log K) classifiers?
 - Yes! Encode each label as a binary string
 - Or alternatively, if we do train more than O(log K) classifiers, can we use the redundancy to improve classification accuracy?

Using log₂K classifiers

Learning:

- Represent each label by a bit string
- We then build a binary learning problem for each column in the problem for column j of the matrix, we label an instance as positive or negative depending on the value of the jth bit of the codeword corresponding to its original class

			•				
		\sim					
		(1			<i>(</i>)	rı	
	re	u		LI	V		

 Use the predictions from all the classifiers to create a log₂N bit string that uniquely decides the output

#	Code					
0	0	0	0			
1	0	0	1			
2	0	1	0			
3	0	1	1			
4	1	0	0			
5	1	0	1			
6	1	1	0			
7	1	1	1			

8 classes, code-length = 3

What could go wrong here?

 Even if one of the classifiers makes a mistake, final prediction is wrong!

Error correcting output code

Answer: Use redundancy

Learning:

- Assign a binary string with each label
 - Could be random
 - Length of the code word L >= log₂K is a parameter
- Train one binary classifier for each bit

How to predict?

- Prediction
 - Run all L binary classifiers on the example
 - Gives us a predicted bit string of length L
 - Output = label whose code word is "closest" to the prediction
 - Closest defined using Hamming distance
 - Longer code length is better, better error-correction
- Example
 - Suppose the binary classifiers here predict 11010
 - The closest label to this is 6, with code word 11000

#	Code					
0	0	0	0	0	0	
1	0	0	1	1	0	
2	0	1	0	1	1	
3	0	1	1	0	1	
4	1	0	0	1	1	
5	1	0	1	0	0	
6	1	1	0	0	0	
7	1	1	1	1	1	

8 classes, code-length = 5