Homework 4 Solution

 $Yikun\ Zhang^1$

Chapter 2. Ex.15 Prove that the Fejér kernel is given by

$$F_N(x) = \frac{1}{N} \frac{\sin^2(Nx/2)}{\sin^2(x/2)}.$$

Proof. First we note that $D_N(x) = \sum_{n=0}^N \omega^n + \sum_{n=1}^N \omega^{-n} = \frac{1-\omega^{N+1}}{1-\omega} + \frac{\omega^{-N}-1}{1-\omega} = \frac{\omega^{-N}-\omega^{N+1}}{1-\omega}$, where $\omega = e^{ix}$.

Therefore,

$$NF_N(x) = \sum_{n=0}^{N-1} \frac{\omega^{-n} - \omega^{n+1}}{1 - \omega} = \frac{1}{1 - \omega} \left(\frac{1 - \omega^{-N}}{1 - \omega^{-1}} - \frac{\omega - \omega^{N+1}}{1 - \omega} \right) = \frac{\omega^{1-N} - 2\omega + \omega^{N+1}}{(1 - \omega)^2} = \frac{(\omega^{-\frac{N}{2}} - \omega^{\frac{N}{2}})^2}{(\omega^{-\frac{1}{2}} - \omega^{\frac{1}{2}})^2} = \frac{\sin^2(\frac{Nx}{2})}{\sin^2(\frac{x}{2})}. \quad \Box$$

Chapter 2. Problem 2 Let D_N denote the Dirichlet kernel

$$D_N(\theta) = \sum_{k=-N}^{N} e^{ik\theta} = \frac{\sin((N+1/2)\theta)}{\sin(\theta/2)},$$

and define

$$L_N = \frac{1}{2\pi} \int_{-\pi}^{\pi} |D_N(\theta)| d\theta.$$

(a) Prove that

$$L_N \ge c \log N$$

for some constant c > 0. A more careful estimate gives

$$L_N = \frac{4}{\pi^2} \log N \, + \, O(1).$$

(b) Prove the following as a consequence: for each $n \ge 1$, there exists a continuous function f_n such that $|f_n| \le 1$ and $|S_n(f_n)(0)| \ge c' \log n$.

Proof. (a) We directly prove the more precise estimate $L_N = \frac{4}{\pi^2} \log N + O(1)$ and the result $L_N \ge c \log N$ follows.

First we know that $|\sin \frac{\theta}{2}| \le |\frac{\theta}{2}|$ for all $\theta \in \mathbb{R}$. Thus $|D_N(\theta)| \ge \frac{2|\sin(N+\frac{1}{2})\theta|}{|\theta|}$.

¹School of Mathematics, Sun Yat-sen University

Therefore,

$$L_{N} \geq \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{|\sin(N + \frac{1}{2})\theta|}{|\theta|} d\theta = \frac{2}{\pi} \int_{0}^{\pi} \frac{|\sin(N + \frac{1}{2})\theta|}{|\theta|} d\theta$$

$$t = \frac{(N + \frac{1}{2})\theta}{\pi} \frac{2}{\pi} \int_{0}^{(N + \frac{1}{2})\pi} \frac{|\sin t|}{|t|} dt$$

$$= \frac{2}{\pi} \sum_{k=1}^{N} \int_{(k-1)\pi}^{k\pi} \frac{|\sin t|}{|t|} dt + \frac{2}{\pi} \int_{N\pi}^{(N + \frac{1}{2})\pi} \frac{|\sin t|}{|t|} dt$$

$$\geq \frac{2}{\pi} \sum_{k=1}^{N} \int_{(k-1)\pi}^{k\pi} \frac{|\sin t|}{k\pi} dt + \frac{2}{\pi} \int_{N\pi}^{(N + \frac{1}{2})\pi} \frac{|\sin t|}{(N + \frac{1}{2})\pi} dt \qquad (1)$$

$$= \frac{4}{\pi^{2}} \sum_{k=1}^{N} \frac{1}{k} + \frac{2}{(N + \frac{1}{2})\pi^{2}}$$

$$\geq \frac{4}{\pi^{2}} \sum_{k=1}^{N} \log(1 + \frac{1}{k}) + O(1)$$

$$\geq \frac{4}{\pi^{2}} \log N + O(1),$$

where we use the fact that $\int_{(k-1)\pi}^{k\pi} |\sin t| dt = 2$ and $\int_{N\pi}^{(N+\frac{1}{2})\pi} |\sin t| dt = 1$.

(b) First we construct the function g_n as follows,

$$g_n(x) = \begin{cases} 1 & \text{when } D_n(x) \ge 0, \\ -1 & \text{when } D_n(x) < 0. \end{cases}$$

Then by Lemma 3.2, we can approximate g_n by continuous functions $\{h_k\}_{k=1}^{\infty}$ satisfying $|h_k| \leq 1$ and $\int_{-\pi}^{\pi} |g_n(x) - h_k(x)| dx < \pi \epsilon^2$ for any $\epsilon > 0$ when $k \geq K$ and K is sufficiently large. Let $f_n = h_K$ and thus $\int_{-\pi}^{\pi} |g_n(x) - f_n(x)| dx < \pi \epsilon^2$. By (a) and Cauchy's Inequality, we have

$$|S_{N}(f_{n})(0)| = \left|\frac{1}{2\pi} \int_{-\pi}^{\pi} f_{n}(y) D_{N}(y) dy\right|$$

$$= \left|\frac{1}{2\pi} \int_{-\pi}^{\pi} g_{n}(y) D_{N}(y) dy + \frac{1}{2\pi} \int_{-\pi}^{\pi} (f_{n}(y) - g_{n}(y)) D_{N}(y) dy\right|$$

$$\geq c \log N - \left|\frac{1}{2\pi} \int_{-\pi}^{\pi} (f_{n}(y) - g_{n}(y)) D_{N}(y) dy\right|$$

$$\geq c \log N - \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} |f_{n}(y) - g_{n}(y)|^{2} dy\right)^{\frac{1}{2}} \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} |D_{N}(y)|^{2} dy\right)^{\frac{1}{2}}$$

$$\geq c \log N - \left(\frac{1}{\pi} \int_{-\pi}^{\pi} |f_{n}(y) - g_{n}(y)| dy\right)^{\frac{1}{2}} (2n + 1)$$

$$\geq c \log N - \epsilon (2n + 1),$$

$$(2)$$

where we use the fact that $|D_n(x)| \leq 2n + 1$ and $|f_n(y) - g_n(y)| \leq |f_n(y)| + |g_n(y)| \leq 2$. Therefore, for each fixed $n \leq 1$, by letting $\epsilon \to 0$ and modifying c to c', we obtain that f_n satisfying $|f_n| \leq 1$ and $|S_n(f_n)(0)| \geq c' \log n$.

Chapter 1. Ex.10 Show that the expression of the Laplacian

$$\triangle = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

is given in polar coordinates by the formula

$$\triangle = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2}.$$

Also, prove that

$$|\frac{\partial u}{\partial x}|^2 + |\frac{\partial u}{\partial y}|^2 = |\frac{\partial u}{\partial r}|^2 + \frac{1}{r^2}|\frac{\partial u}{\partial \theta}|^2.$$

Proof. In polar coordinates, $u(x,y) = u(r\cos\theta, r\sin\theta)$. Thus,

$$\begin{cases} \frac{\partial u}{\partial r} = \frac{\partial u}{\partial x} \cos \theta + \frac{\partial u}{\partial y} \sin \theta, \\ \frac{\partial u}{\partial \theta} = \frac{\partial u}{\partial x} (-r \sin \theta) + \frac{\partial u}{\partial y} r \cos \theta. \end{cases} (1)$$

Furthermore,

$$\begin{cases}
\frac{\partial^2 u}{\partial r^2} = \frac{\partial^2 u}{\partial x^2} \cos^2 \theta + \left(\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y \partial x}\right) \sin \theta \cos \theta + \frac{\partial^2 u}{\partial^2 y} \sin^2 \theta, \\
\frac{\partial^2 u}{\partial \theta^2} = \frac{\partial^2 u}{\partial x^2} r^2 \sin^2 \theta - \left(\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y \partial x}\right) r^2 \sin \theta \cos \theta + \frac{\partial^2 u}{\partial^2 y} r^2 \cos^2 \theta - r\left(\frac{\partial u}{\partial x} \cos \theta + \frac{\partial u}{\partial y} \sin \theta\right).
\end{cases} (3)$$

Letting
$$\frac{1}{r^2}(4) + (3)$$
, we obtain that $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} - r \frac{\partial u}{\partial r}$.
Moreover, with $(1)^2 + \frac{1}{r^2}(2)$, we also have $|\frac{\partial u}{\partial x}|^2 + |\frac{\partial u}{\partial y}|^2 = |\frac{\partial u}{\partial r}|^2 + \frac{1}{r^2}|\frac{\partial u}{\partial \theta}|^2$.