VERMES MIKLÓS Fizikaverseny

II. forduló 2013. április 20.

IX. osztály

JAVÍTÓKULCS

I. feladat

1) A folt sugarát a teljes visszaverődés L határszöge határozza meg

$$n \cdot \sin L = 1$$
 \Rightarrow $\sin L = 1/n$

A v sebesség felbontható fénysugár és u vízszintes irányú összetevőkre.

A folt határa
$$u=v \cdot tgL$$
 sebességgel mozog 1 p

A folt határa
$$u=v \cdot tgL$$
 sebességgel mozog
$$tgL = \frac{\sin L}{\sqrt{1-\sin^2 L}} = \frac{1}{\sqrt{n^2-1}} \Rightarrow u = \frac{v}{\sqrt{n^2-1}} = 3\text{m/s}$$
1 p

összesen 3 p

2)
$$\frac{n_2}{x_2} = \frac{n_1}{x_1}$$
, $n_2 = 1$, $n_1 = n$, $x_1 = -20 cm$, $x_2 = -12.5 cm$ $\Rightarrow n = \frac{20}{12.5} = 1.6$ 1 p

$$\frac{n_2}{x_2} - \frac{n_1}{x_1} = \frac{n_2 - n_1}{R} , \quad n_2 = 1 , \quad n_1 = n , \quad x_1 = -20 cm \quad \Rightarrow \quad x_2 = -\frac{20}{0.6} = -33.3 cm \quad 1 \text{ p}$$

összesen 2 p

3) A rövidlátó szem távolpontja a szeműveglencse képtéri gyújtópontjával esik egybe,

a szeműveg lencséitől
$$|f_2| = \frac{1}{|D|} = \frac{100}{6} cm$$
 -re

A távolpont távolsága a szemtől
$$d_T = |f_2| + d = \frac{109}{6} cm$$
 1 p

A kontaktlencse képtéri gyújtópontja a távolpontba kell legyen ⇒

$$D_{Kl} = -\frac{1}{d_T} = -\frac{6}{1,09} = -5.5 \, m^{-1}$$

1 p

összesen 3 p

4)

2 p

II. feladat

Helyes szerkesztés 1 p

a)
$$\frac{1}{x_2} - \frac{1}{x_1} = \frac{1}{f_{ob}}$$

$$\gamma_{ob} = \frac{x_2}{x_1} = \frac{y_2}{y_1} = -40$$

$$x_2 = f_{ob} + e$$
 $\frac{1}{\gamma_{ob}} = \frac{f}{f - x_2} = -\frac{f}{e}$ $f = -\frac{e}{\gamma} = \frac{160}{40} = 4 \, mm$ 1 p

(a Newton képletekkel:
$$\gamma_{0b} = \frac{y_2}{y_1} = -\frac{x_2}{f_{ob}} = -\frac{e}{f_{ob}} \implies f = -\frac{e}{\gamma} = \frac{160}{40} = 4 \, mm$$
 3 p

összesen 3 p

b)
$$\frac{1}{x_1} = \frac{1}{x_2} - \frac{1}{f_{ob}}$$
, $x_2 = f_{ob} + e$ $\Rightarrow x_1 = -\frac{e}{f_{ob}(f_{ob} + e)} = -4.1 \, mm$ 1 p

(vagy:
$$\gamma_{ob} = \frac{f_{ob}}{x_1}$$
 \Rightarrow $x_1 = \frac{f_{0b}}{\gamma_{ob}} = -0.1 \, mm$ \Rightarrow lencse-tárgy távolság

$$f_{ob} + |x_1| = 4.1 \, mm$$

c)
$$G_{mikr.} = \frac{d_0 e}{f_{ob} f_{ok}}$$
 \Rightarrow $f_{ok} = \frac{d_0 e}{f_{ob} G_{mikr}} = 2.5 cm$

d)
$$G_{mikr} = \frac{tg\alpha_2}{tg\alpha_1}$$
 ,

$$tg\alpha_1 = \frac{y_1}{d_0}$$
 $tg\alpha_2 = G_{mikr} \frac{y_1}{d_0} = 0.016$

összesen 2 p

e) A lemez által alkotott kép $|\Delta x_I| = d\left(1 - \frac{1}{n}\right) = \frac{2}{3}mm$ -rel lesz közelebb az objektívhez A mikroszkóp tubusát ennyivel kell megemelni 2 p

III. feladat

1) a) A mozgásegyenletek:
$$m_1 a = T - m_1 g$$
 és $m_2 a = m_2 g - T$ 1 p

$$a = \frac{m_2 - m_1}{m_2 + m_1} g = 4.2 \, \text{m/s}^2$$
, $T = m_1 (a + g) = 28 \, \text{N}$, $F = 2T = 56 \, \text{N}$ 1 p

b)
$$h = l + h_{max} = l + \frac{v_0^2}{2g}$$

$$v_0 = \sqrt{2al}$$
 \Rightarrow $h = l + \frac{2al}{2g} = l + \frac{m_2 - m_1}{m_2 + m_1} l = \frac{2m_2}{m_1 + m_2} l = 1,43 m$ 1 p

c)
$$t = t_1 + 2t_{em}$$
 , $t_1 = \frac{v_0}{a}$, $t_{em} = \frac{v_0}{g}$

$$v_0 = \sqrt{2al} = 2.9 \, m/s$$
 $t = \frac{2.9}{4.2} + 2\frac{2.9}{9.8} = 1.27 \, s$ 1 p

2)

$$F_t = F \cos \beta$$
, $F_n = F \sin \beta$, $G_t = G \sin \alpha$, $G_n = G \cos \alpha$

$$F_t = F \cos \beta$$
, $F_n = F \sin \beta$, $G_t = G \sin \alpha$, $G_n = G \cos \alpha$ 1 p
 $F_t = G_t + \mu \left(G_n - F_n \right)$ \Rightarrow $F = \frac{\sin \alpha + \mu \cos \alpha}{\cos \beta + \mu \sin \beta}$ 1 p

$$\mu = tg\phi$$
 , $\phi = \text{súrlódási szög} \Rightarrow F = \frac{\sin{(\alpha + \phi)}}{\cos{(\beta - \phi)}}G$ 1 p

F minimális, ha a nevező értéke maximális: $\cos(\beta-\phi)=1$, $\beta=\phi$, tehát $tg\beta=\mu$ $F = G \sin(\alpha + \phi)$ 1 p