

The American Mathematical Monthly

ISSN: 0002-9890 (Print) 1930-0972 (Online) Journal homepage: http://www.tandfonline.com/loi/uamm20

An Inequality Involving sin(n)

Christopher Stuart

To cite this article: Christopher Stuart (2018) An Inequality Involving sin(n), The American

Mathematical Monthly, 125:2, 173-174, DOI: <u>10.1080/00029890.2018.1401879</u>

To link to this article: https://doi.org/10.1080/00029890.2018.1401879

An Inequality Involving sin(n)

Christopher Stuart

Abstract. We prove an inequality involving sine by using an estimate of the irrationality measure of π .

At a meeting in Jacksonville, Florida in 2010 the author was asked about proving the inequality

$$|\sin(n)| > 2^{-n}$$

for all positive integers n. A more interesting problem is to find the smallest α for which $|\sin(n)| > \alpha^{-n}$ for all positive integers n. Note that to find such a number is equivalent to finding $\sup_{n \in \mathbb{N}} \frac{1}{\sqrt[n]{|\sin(n)|}}$. It seems likely that this could be shown to be $\frac{1}{\sqrt[3]{\sin(3)}}$ without all the "heavy machinery" used in the proof that follows. The author was unable to do this, but it would be interesting to see a self-contained proof of the following result.

In this note, we prove the following.

Proposition. $|\sin(n)| > \alpha^{-n}$ for all positive integers n if and only if $\alpha > \frac{1}{\sqrt[3]{\sin(3)}} \approx 1.92$.

Proof. (\Longrightarrow) If $\alpha = \frac{1}{\sqrt[3]{\sin(3)}}$ then $\sin(3) = (\frac{1}{\sqrt[3]{\sin(3)}})^{-3} = \alpha^{-3}$, so α must be greater than $\frac{1}{\sqrt[3]{\sin(3)}}$.

(\iff) To begin with, note that $\frac{1}{2}|x| \le |\sin(x)| \le |x|$ for -1 < x < 1 by the tangent line approximation for $\sin(x)$ at x = 0. It is clear that we need to concern ourselves with values of n that make $\sin(n)$ small, which are those that are close to a multiple of π . So $\frac{1}{2}|n-m\pi| \le |\sin(n-m\pi)| \le |n-m\pi|$ for $n \approx m\pi$. From this it is easy to see that $\frac{1}{2}|n-m\pi| \le |\sin(n)| \le |n-m\pi|$ for $n \approx m\pi$. We need to show that $\frac{1}{2}|n-m\pi| > \alpha^{-n}$ or $|n-m\pi| > 2 \cdot \alpha^{-n}$ for all positive integers n.

By a result of Mahler ([1, Theorem 1, p. 33]),

$$\left|\pi - \frac{n}{m}\right| \ge m^{-42}$$
 for all integers $m, n \ge 2$.

There are more accurate estimates of the irrationality measure of π , but this one holds for virtually all m and n. We can assume that 3m < n < 4m since $\frac{n}{m} \approx \pi$, so $|n-m\pi| \geq m^{-41} \geq (\frac{n}{3})^{-41}$. We need to find N so that $2 \cdot \alpha^{-n} < (\frac{n}{3})^{-41}$ for all n > N. Using a calculator (with α equal to $\frac{1}{\sqrt[3]{\sin(3)}}$) we determined that this inequality is true for n > 290. We then checked (again by calculator) that the integers less than or equal to 290 work in the inequality $|\sin(n)| > \alpha^{-n}$ for any $\alpha > \frac{1}{\sqrt[3]{\sin(3)}}$. So we have that the inequality holds for all positive integers n.

doi.org/10.1080/00029890.2018.1401879

MSC: Primary 26D05

ACKNOWLEDGMENTS. The author wishes to thank the editor and the reviewers of this note for their valuable input.

REFERENCE

[1] Mahler, K. (1953). On the approximation of π. Nederl. Akad. Wetensch. Proc. Ser. A. 56(1): 30–42. This paper is reprinted in Berggren, L., Borwein, J., Borwein, P. (2000). Pi: A Source Book, 2nd ed. New York: Springer.

Department of Mathematical Sciences, New Mexico State University, Las Cruces, NM 88003 cstuart@nmsu.edu