EE315 - Electronics Laboratory Experiment 4 BJT Small Signal Analysis

Preliminary Work

- **1.a)** Calculate A_v , A_i , R_{in} , and R_{out} on the circuit given in Figure 1. Assume that C_{Ci} and C_{Co} behave as open circuit for DC signals and as short circuit for AC signals.
- **1.b)** Determine limits of the signal source, v_s , for the transistor to remain in forward-active region.

Figure 1. Common-emitter amplifier

- **2.a)** Calculate A_V , A_i , R_{in} , and R_{out} on the circuit given in Figure **2**. Assume that the coupling capacitors, C_{Ci} and C_{Co} , behave as open circuit for DC signals and as short circuit for AC signals.
- **2.b)** Determine limits of the signal source, v_s , for the transistor to remain in forward-active region. (Hint: AC current on R_L will be added onto the quiescent emitter current.)

Figure 2. Common-collector amplifier (emitter follower)

Procedure

- **1.** Build the circuit given in Figure 1. Use the function generator to obtain **1 Vp-p**, **1 kHz** as ν_s . Note the polarity of the capacitors on the circuit diagram.
- **1.a)** Measure the voltage gain, A_v . Use the oscilloscope in X-Y mode, probing v_s on Ch-1 (X) and v_o on Ch-2 (Y).

$$V_{Sp-p} = V_{Op-p} = A_v =$$

1.b) Determine the current gain, A_i , by measuring the peak-to-peak AC voltages across R_S and R_L .

$$V_{RSp-p} = V_{RLp-p} = I_{Lp-p} = A_i =$$

1.c) Disconnect $\mathbf{R_L}$ and measure the input resistance, $\mathbf{R_{in}}$. Use the oscilloscope in X-Y mode, probing $\boldsymbol{i_s}$ (voltage across $\mathbf{R_S}$) on Ch-1 (X) and $\boldsymbol{\nu_s}$ on Ch-2 (Y). Note that, the two oscilloscope channels must share a single, common node for proper ground connection.

$$V_{Sp-p} = V_{RSp-p} = I_{Sp-p} = R_{in} =$$

1.d) Measure peak-to-peak output voltage while R_L is disconnected. Connect a **4.7** $k\Omega$ variable resistor in place of R_L , and adjust the variable resistor to obtain half the output voltage measured without any load. Measure the value of variable resistor that will give the R_{out} of the amplifier.

$$V_{Op-p(NoLoad)} = R_{out} =$$

1.e) Find the maximum peak v_s amplitudes before the transistor goes into cut-off or saturation. Compare the results with your calculations in the preliminary work.

$$V_{\text{Speak(cut-off)}} = V_{\text{Speak(sat)}} =$$

1.f) Connect a **4.7 \muF** capacitor in parallel to **R**_E. Make sure that the polarity of the capacitor matches the DC voltage polarity on **R**_E. Measure the voltage gain, **A**_V, again as described in step **1.a**.

$$V_{Sp-p} = V_{Op-p} = A_v =$$

1.g) Draw the small signal model of the common-emitter amplifier with the capacitor in parallel to R_E , and calculate the voltage gain, A_V , based on your model.

İYTE - Department of Electrical and Electronics Engineering

- 2. Build the emitter-follower circuit given in Figure 2. Verify that the function generator output is still set to 1 Vp-p, 1 kHz, and repeat the steps 1.a, 1.b, and 1.c.
- 2.a) Measure the voltage gain, Av.

 $V_{Sp-p} = V_{Op-p} = A_v =$

2.b) Determine the current gain, A_i.

 $V_{RSp-p} = V_{RLp-p} =$

 $I_{Sp-p} = I_{Lp-p} = A_i =$

2.c) Disconnect R_L and measure the input resistance, R_{in} .

 $V_{Sp-p} = V_{RSp-p} = I_{Sp-p} = R_{in} =$

2.d) Increase v_S amplitude to **2.0 Vp-p** and observe v_O on the oscilloscope. How do you explain the distortion in the v_O waveform?

2.e) Find a way to restore the v_0 waveform while keeping v_s amplitude at 2.0 Vp-p, and R_L = 100 Ω . Explain how you can restore the v_0 waveform.

2.f) Set the function generator output back to **1 Vp-p**, and measure the output resistance, R_{out} . You should use a smaller variable resistor such as **100 \Omega** to obtain a better precision with emitter-follower. Make sure that the output waveform is not distorted while you measure R_{out} .

 $V_{Op-p(NoLoad)} = R_{out} =$