Quantum noise and error correction

Argonne Quantum Computing Tutorial June 17, 2022

Danylo Lykov

Quantum noise

- Quantum systems often interact with environment, over which we have little control
- Use a new formalism: density matrix

Three "faces" of density matrix:

- Represents an ensemble of quantum states
- 2. Represents a system of which we don't know certain state information
- 3. Represents a part of quantum system.

Types of errors in quantum computing

- State preparation error
- Gate error
- Crosstalk between gates
- Measurement error

Density matrix formalism

State:
$$|\psi
angle$$

$$\rho \equiv \sum_{i} p_{i} |\psi_{i}\rangle\langle\psi_{i}|.$$

Outcome:

$$P(a_i) = |\langle \psi | a_i \rangle|^2.$$

$$P(a_i) = \mathrm{Tr}[|a_i\rangle\langle a_i|\rho],$$

$$\rho = \begin{pmatrix} \rho_{00} & \rho_{01} \\ \rho_{10} & \rho_{11} \end{pmatrix} = \rho_{00} |0\rangle\langle 0| + \rho_{01} |0\rangle\langle 1| + \rho_{10} |1\rangle\langle 0| + \rho_{11} |1\rangle\langle 1|,$$

and it should fulfill $\rho_{00} + \rho_{11} = 1$ and $\rho_{01} = \rho_{10}^*$.

- A density matrix ρ has unit trace (Tr[ρ] = 1)
- 2. A density matrix is a positive matrix $\rho > 0$.

What creates noise in quantum systems?

- Quantum gates are result of evolution of quantum system
- The evolution is directed by system Hamiltonian
- The Hamiltonian may have small interactions with the outside world

Kraus operators

- Noisy operation described by "Frror channels"
- Each type of process has its error channel

$$\mathcal{N}(
ho) = \sum_{j} A_{j}
ho A_{j}^{\dagger}.$$

$$\rho \to (1-p)\rho + pZ\rho Z$$
.

$$\rho \to (1-p)\rho + p\pi$$
,

Error correction theory

Motivation: for correct operation quantum computers must correct errors due to *decoherence* and *limited control accuracy*.

Key points:

- "Physical" and "Logical" qubits
- "Data" and "Ancilla" qubits
- Error syndromes
- Error correction

Error correction theory

A. A protected qubit

For example, the two orthonormal basis states of a protected qubit can be chosen to be [see Fig. 2(a)]

$$|\bar{0}\rangle = \frac{1}{\sqrt{3}} \left(|\phi = 0\rangle + \left| \phi = \frac{2\pi}{3} \right\rangle + \left| \phi = \frac{4\pi}{3} \right\rangle \right), \quad (10a)$$

$$|\bar{1}\rangle = \frac{1}{\sqrt{3}} \left(\left| \phi = \frac{\pi}{3} \right\rangle + \left| \phi = \pi \right\rangle + \left| \phi = \frac{5\pi}{3} \right\rangle \right). \quad (10b)$$

Both basis states are eigenstates with eigenvalue 0 of $\hat{\phi}$ modulo $\pi/3$. Suppose that $|\bar{\psi}\rangle$ is an arbitrary state in the code space spanned by $|\bar{0}\rangle$ and $|\bar{1}\rangle$. If an error occurs which causes ϕ to shift by $\delta\phi \in [-\pi/6, \pi/6]$, we can unambiguously diagnose the error by measuring $\hat{\phi}$ modulo $\pi/3$. Once $\delta\phi$ is known, we can correct the error by applying a unitary transformation that shifts ϕ by $-\delta\phi$, restoring the state of the rotor to the initial undamaged state $|\bar{\psi}\rangle$.

General error correction procedure

Example of a simple 3-bit code:

Device description

Superconducting circuit with 17 qubits

- Red, Dn- Data qubits 9x
- Green, Zn Ancilla in Z-basis 4x
- Blue, Xn Ancilla in X-basis 4x

Frequency ω/2π (GHz)

6

Qubit

Single-qubit errors

Three states: 0, 1 and "Leak"

Whenever a "Leak" is detected - the sequence had failed.

Single-qubit errors

Single- and two-qubit gate errors as characterized by randomized benchmarking and interleaved randomized benchmarking, respectively.

The average measured single-qubit (two-qubit) gate error across the device is 0.09(4) % [1.5(1.0)

Protocol description

Stabilizer circuits: determine error syndrome

Circuit performance

 Repeated application of error-correcting circuit to preserve the state

Protocol description

Error syndromes

Symbo	l Stabilizer	ϵ (%)	$\epsilon_{\rm sim}$ (%)
$\hat{S}^{\mathrm{Z}1}$	$\hat{Z}_1\hat{Z}_4$	2.9	2.8
\hat{S}^{Z2}	$\hat{Z}_4\hat{Z}_5\hat{Z}_7\hat{Z}_8$	8.4	5.0
\hat{S}^{Z3}	$\hat{Z}_2\hat{Z}_3\hat{Z}_5\hat{Z}_6$	6.8	4.3
\hat{S}^{Z4}	$\hat{Z}_6\hat{Z}_9$	2.5	2.0
\hat{S}^{X1}	$\hat{X}_2\hat{X}_3$	5.7	6.7
\hat{S}^{X2}	$\hat{X}_1\hat{X}_2\hat{X}_4\hat{X}_5$	5.9	3.9
\hat{S}^{X3}	$\hat{X}_5\hat{X}_6\hat{X}_8\hat{X}_9$	11.8	4.4
\hat{S}^{X4}	$\hat{X}_7\hat{X}_8$	4.5	2.6
	Weight-two average	3.9	3.5
	Weight-four average	8.2	4.4
	Average	6.1	3.9

Protocol description

Ancilla values depending on data qubit values

Data qubits initial state

Circuit performance

 Repeated application of error-correcting circuit to preserve the state

References

- Krinner, S., Lacroix, N., Remm, A. et al. Realizing repeated quantum error correction in a distance-three surface code. Nature 605, 669–674 (2022). https://doi.org/10.1038/s41586-022-04566-8
- 2. A Tutorial on Quantum Error Correction Andrew M. Steane https://www2.physics.ox.ac.uk/sites/default/files/ErrorCorrectionSteane06.pdf