FACULTAT DE MATEMÀTIQUES I ESTADÍSTICA

Universitat Politècnica de Catalunya - BarcelonaTech

Càlcul Diferencial (Q2)

Àlex Batlle Casellas

$\mathbf{\acute{I}ndex}$

	Top	Copologia d' \mathbb{R}^n .			
	1.1	Nocions de topologia.			
		1.1.1	Espais mètrics i normats	3	
		112	Boles i entorns	4	

1 Topologia d' \mathbb{R}^n .

Preliminars.

Estructura afí de \mathbb{R}^n . $\mathbb{A}=(A,E,\phi)$ és un espai afí, amb

$$\phi : A \times A \to E$$
$$q \mapsto \phi(p,q)$$

com a funció d'assignació de vectors entre dos punts. Es té que, per $p \in A$ fixat,

$$\phi_p: A \to E$$
 $q \mapsto \phi(p,q)$

és bijectiva. En aquest curs, prendrem $A = \mathbb{R}^n$.

1.1 Nocions de topologia.

1.1.1 Espais mètrics i normats.

Definició:

Sigui M un conjunt. Una distància en M és una aplicació

$$d: M \times M \to \mathbb{R}$$

 $(x,y) \mapsto d(x,y).$

tal que compleix, $\forall x, y, z \in M$:

- 1. Definida positiva: $d(x,y) \ge 0$.
- 2. No degeneració: $d(x,y) = 0 \iff x = y$.
- 3. Simetria: d(x,y) = d(y,x).
- 4. Designaltat triangular: $d(x,y) \leq d(x,z) + d(y,z)$.

Un **espai mètric** és un parell (M, d).

Definició:

Sigui E un \mathbb{R} -e.v. de dimensió arbitrària. Una **norma en** E és una aplicació

$$||\cdot||: E \to \mathbb{R}$$
 $v \mapsto ||v||$

tal que compleix, $\forall u, v \in E$:

- 1. Definida positiva: ||u|| > 0.
- 2. No degeneració: $||u|| = 0 \iff u = \vec{0}$.
- 3. Multiplicació per escalar: $||\lambda u|| = |\lambda| ||u|| \forall \lambda \in \mathbb{R}$.
- 4. Designaltat triangular: $||u+v|| \le ||u|| + ||v||$.

Un **espai normat** és un parell $(E, ||\cdot||)$.

Proposició:

Si $(E, ||\cdot||)$ és un espai normat, aleshores (E, d) és un espai mètric, amb d la distància associada a la norma $||\cdot||$, d(u, v) := ||u - v||.

Demostració:

Les propietats (1),(2), i (4) d'espai mètric són immediates (s'hereten de les propietats de la norma). Comprovem la propietat (3) d'espai mètric: siguin $u, v \in E$, aleshores

$$d(u,v) := ||u-v|| = ||-(v-u)|| = |-1| ||v-u|| = ||v-u|| = : d(v,u).\square$$

Definició:

Sigui E un \mathbb{R} -e.v. Un **producte escalar euclidià** en E és una aplicació

$$\langle \cdot, \cdot \rangle : E \times E \to \mathbb{R}$$
$$(u, v) \mapsto \langle u, v \rangle$$

tal que compleix, $\forall u, v, w \in E, \alpha, \beta \in \mathbb{R}$:

- 1. Linealitat: $\langle \alpha u + \beta v, w \rangle = \alpha \langle u, w \rangle + \beta \langle v, w \rangle$.
- 2. Simetria: $\langle u, v \rangle = \langle v, u \rangle$.
- 3. Definida positiva: $\langle v, v \rangle \geq 0$.
- 4. No degeneració: $\langle v, v \rangle = 0 \iff v = \vec{0}$.

Un **espai euclidià** és un parell $(E, \langle \cdot, \cdot \rangle)$.

Proposició:

 $\overline{\text{Si }(E,\langle\cdot,\cdot\rangle)}$ és un espai euclidià, aleshores $(E,||\cdot||)$ és un espai normat, amb $||\cdot||$ la norma inuïda per el producte escalar $\langle\cdot,\cdot\rangle$, $||u||:=+\sqrt{\langle u,u\rangle}$.

Demostració:

Proposició:

El producte escalar i la seva norma associada tenen les següents propietats, $\forall u, v \in E$:

- 1. $|\langle \cdot, \cdot \rangle| \leq ||u|| ||v||$. (Designaltat de Cauchy-Schwarz)
- 2. $||u-v|| \ge ||u|| ||v||$.
- 3. $||u+v||^2+||u-v||^2=2||u||^2+2||v||^2$. (Identitat del paral·lelogram)
- 4. $||u+v||^2 ||u-v||^2 = 4 \langle u, v \rangle$. (Identitat de polarització)
- 5. Si $u = (u_i)$, aleshores $|u_i| \le ||u|| \le \sum_{i=1}^n |u_i|$.

<u>Demostració</u>:

Proposició:

 $\overline{\mathbf{A} \ \mathbb{R}^n \text{ es defineix:}}$

- 1. $\langle u, v \rangle_2 := \sum_{i=1}^n u_i v_i$, on $u = (u_i), v = (v_i)$.
- 2. $||u||_2 := \sqrt{\langle u, u \rangle_2} = \sqrt{\sum_{i=1}^n u_i v_i}$.
- 3. $d(u,v)_2 := ||u-v||_2 = \sqrt{\langle u-v, u-v \rangle_2} = \sqrt{\sum_{i=1}^n (u_i v_i)^2}$.

Demostració:

1.1.2 Boles i entorns.

(M,d) espai mètric.

Definició:

 $p \in M, r \in \mathbb{R}^+$.

1. **Esfera** amb centre a p i radi r:

$$S_r(p) \equiv S(p,r) = \{ q \in M \mid d(p,q) = r \}.$$

2. Bola oberta amb centre a p i radi r:

$$B_r(p) \equiv B(p,r) = \{ q \in M \mid d(p,q) < r \}.$$

3. Bola tancada amb centre a p i radi r:

$$\bar{B}_r(p) \equiv \bar{B}(p,r) = \{ q \in M \mid d(p,q) \le r \}.$$

4. Bola perforada amb centre a p i radi r (pot ser oberta o tancada):

$$B_r^*(p) \equiv B^*(p,r) = \{ q \in M \mid d(p,q) \le r \} - \{ p \}.$$

<u>Definició</u>:

 $A \subseteq M$. A és un **conjunt fitat** si $\exists B_r(p), p \in A : A \subseteq B_r(p)$.

<u>Definició</u>:

 $p \in M$. Un **entorn de** p és un conjunt $E(p) \subseteq M$ fitat tal que $\exists B_r(p) \subseteq E(p)$.