# Web Usage Mining

Overview

— Session 1 —

### Outline

- 1. Introduction
- 2. Preprocessing
- 3. Analysis

# Example 1

Navigation through the Web



# Example 2

Listening history





. . .

# Example 3

Shopping history





. . .

### Manipulated data

- Set of sequences
- Sequence = several events
- An event has :
  - One categorical variable (state)
  - Multiple binary variables (items)
- Data are not numeric
- No timestamps
- No text data



### Data sources

Web logs

```
cragateway.cra.com.au [30:00:23:07] "GET /OSWRCRA/non-hw/muncpl/criteria HTTP/1.0" 302 -
ebaca.icsi.net [30:00:23:26] "GET /docs/TechInitiative HTTP/1.0" 302 -
ebaca.icsi.net [30:00:23:29] "GET /TechInitiative/ HTTP/1.0" 200 1994
ebaca.icsi.net [30:00:23:33] "GET /icons/circle_logo_small.gif HTTP/1.0" 200 2624
ebaca.icsi.net [30:00:23:45] "GET /docs/CSI HTTP/1.0" 302 -
ebaca.icsi.net [30:00:23:47] "GET /CSI/ HTTP/1.0" 200 493
ebaca.icsi.net [30:00:23:53] "GET /docs/CSI/CSI HTTP/1.0" 302 -
ebaca.icsi.net [30:00:23:55] "GET /CSI/CSI/ HTTP/1.0" 200 801
ebaca.icsi.net [30:00:24:01] "GET /docs/CSI/CSI/background HTTP/1.0" 302 -
systems61.fisher.su.oz.au [30:00:24:03] "GET / HTTP/1.0" 200 4889
ebaca.icsi.net [30:00:24:04] "GET /CSI/CSI/background/ HTTP/1.0" 200 871
ebaca.icsi.net [30:00:24:16] "GET /Coss/CSI/CSI/background/ HTTP/1.0" 200 101
cragateway.cra.com.au [30:00:24:17] "POST /cgi-bin/waisgate/134.67.99.11=earth1=210=/usr1/comwais/indexes/HTDOCS=gopher@earth1=0.00=:free HTTP/1.0" 200 2374
```

- Cookies
- Client-side tracking (e.g., mobile apps, eye-tracking)
- Web APIS
  - Reddit / Wikipedia
- Scrapping

### Use cases

#### Human navigation

- User navigation from Web logs
- Strong regularities in WWW surfing
- Mining longest repeating subsequences for prediction
- Navigation on Wikipedia
  - Human way finding in information networks
  - Automatic vs. Human navigation
  - Memory and Structure

### Use cases

#### Others

- Detecting (a-)typical user behavior
- Fake identity
- Improve web site design
- Personalization of Web content
  - Link recommendation
  - Personalized site maps
- Pre-fetching and caching
- E-commerce (CRM)
- Identification of relevant websites
- **)**

### Privacy

### Ethical and Legal issues

- Ethical
  - WUM exploits user data (often no conscious agreement)
  - Users are judged on group features instead of individual merit
- Legal
  - Country dependent
  - Key question: IP = personal data?
    - In France, yes (ask for CNIL agreement)
    - In EU, yes as well
  - Difference between academic and commercial use

## The big picture



# Step 1 — Preprocessing



# Step 1 — Preprocessing Details



### Data cleaning

- Remove irrelevant references and fields in server logs
  - ▶ E.g., size of the response
- Remove references (entries) due to web spider (crawler) navigation
- Remove irrelevant content
  - E.g., scripts, images
- Remove erroneous references
- Add missing references due to caching (done after sessionization

### Identifying sessions

- In Web usage analysis, these data are the sessions of the site visitors: the activities performed by a user from the moment he/she enters the site until the moment he/she leaves it.
- Difficult to obtain reliable usage data due to proxy servers and anonymizers, dynamic IP addresses, missing references due to caching, and the inability of servers to distinguish among different visits.

### Strategies

Session reconstruction = correct mapping of activities to different individuals + correct separation of activities belonging to different visit of the same individual

| While users navigate the site. Identify |                      | In the anal files. Ide | Resulting partitionnin |                      |
|-----------------------------------------|----------------------|------------------------|------------------------|----------------------|
| Users by                                | Sessions<br>by       | Users by               | Sessions<br>by         | g of the log<br>file |
| -                                       | _                    | IP & Agent             | Heuristics             | Constructed sessions |
| Cookies                                 | _                    |                        | Heuristics             | Constructed session  |
| Cookies                                 | Embedded session IDs |                        |                        | Real sessions        |

#### Heuristics

- Time-oriented heuristics
  - ▶ H1: total session duration must not exceed a maximum (user-defined)
  - H2: page stay times must not exceed a maximum (user-defined)
- Navigation-oriented heuristic
  - H3: A page must have been reached from a previous page in the same session

### Example

| User | 1 |
|------|---|

| Time | IP      | URL | Ref |
|------|---------|-----|-----|
| 0:01 | 1.2.3.4 | Α   | -   |
| 0:09 | 1.2.3.4 | В   | Α   |
| 0:19 | 1.2.3.4 | С   | Α   |
| 0:25 | 1.2.3.4 | Е   | С   |
| 1:15 | 1.2.3.4 | Α   | -   |
| 1:26 | 1.2.3.4 | F   | С   |
| 1:30 | 1.2.3.4 | В   | Α   |
| 1:36 | 1.2.3.4 | D   | В   |

Session 1

| 0:01 | 1.2.3.4 | Α | 1 |
|------|---------|---|---|
| 0:09 | 1.2.3.4 | В | Α |
| 0:19 | 1.2.3.4 | С | Α |
| 0:25 | 1.2.3.4 | Е | С |

Session 2

|   | 1:15 | 1.2.3.4 | Α | ı |
|---|------|---------|---|---|
| , | 1:26 | 1.2.3.4 | F | С |
| • | 1:30 | 1.2.3.4 | В | Α |
|   | 1:36 | 1.2.3.4 | D | В |

H1 = 1 hour / H2 = 15 min

### User identification

| Method                  | Description                                                                    | Privacy<br>concerns | Pro                                                        | Cons                                                                   |
|-------------------------|--------------------------------------------------------------------------------|---------------------|------------------------------------------------------------|------------------------------------------------------------------------|
| IP + Agent              | Pair (IP+agent) is a<br>unique user                                            | Low                 | Always available. No<br>additional technology<br>resquired | Not guaranteed to be unique (rotating IPs)                             |
| Embedded<br>session Ids | Use dynamically<br>generated pages<br>to associate ID with<br>every hyperlinks | Low to<br>medium    | Always available.<br>Independent of IP                     | Cannot capture repeated visitors Additional overhead for dynamic pages |
| Registration            | Use log in to the site                                                         | Medium              | Can track individuals not just browsers                    | Few users will register. Not available before registration             |
| Cookies                 | Save ID on the client machine                                                  | Medium to<br>high   | Can track repeated visit from same browser                 | Can be turned off by users                                             |
| Software agents         | Program loaded into a browser                                                  | High                | Accurate usage data for a single site                      | Likely to be rejected by users                                         |

### User identification

### Example

| Time | IP      | URL | Ref | Agent         |
|------|---------|-----|-----|---------------|
| 0:01 | 1.2.3.4 | Α   | -   | IE5;Win2k     |
| 0:09 | 1.2.3.4 | В   | Α   | IE5;Win2k     |
| 0:10 | 2.3.4.5 | С   | -   | IE6;WinXP;SP1 |
| 0:12 | 2.3.4.5 | В   | С   | IE6;WinXP;SP1 |
| 0:15 | 2.3.4.5 | Ε   | С   | IE6;WinXP;SP1 |
| 0:19 | 1.2.3.4 | С   | Α   | IE5;Win2k     |
| 0:22 | 2.3.4.5 | D   | В   | IE6;WinXP;SP1 |
| 0:22 | 1.2.3.4 | Α   | -   | IE6;WinXP;SP2 |
| 0:25 | 1.2.3.4 | Е   | С   | IE5;Win2k     |
| 0:25 | 1.2.3.4 | С   | Α   | IE6;WinXP;SP2 |
| 0:33 | 1.2.3.4 | В   | С   | IE6;WinXP;SP2 |
| 0:58 | 1.2.3.4 | D   | В   | IE6;WinXP;SP2 |
| 1:10 | 1.2.3.4 | Е   | D   | IE6;WinXP;SP2 |
| 1:15 | 1.2.3.4 | Α   | 1   | IE5;Win2k     |
| 1:16 | 1.2.3.4 | С   | Α   | IE5;Win2k     |
| 1:17 | 1.2.3.4 | F   | С   | IE6;WinXP;SP2 |
| 1:26 | 1.2.3.4 | F   | С   | IE5;Win2k     |
| 1:30 | 1.2.3.4 | В   | Α   | IE5;Win2k     |
| 1:36 | 1.2.3.4 | D   | В   | IE5;Win2k     |

User 1

| 0:01 | 1.2.3.4 | Α | - |
|------|---------|---|---|
| 0:09 | 1.2.3.4 | В | Α |
| 0:19 | 1.2.3.4 | С | Α |
| 0:25 | 1.2.3.4 | Ε | С |
| 1:15 | 1.2.3.4 | Α | - |
| 1:26 | 1.2.3.4 | F | С |
| 1:30 | 1.2.3.4 | В | Α |
| 1:36 | 1.2.3.4 | D | В |

User 2

| 0:10 | 2.3.4.5 | С | - |
|------|---------|---|---|
| 0:12 | 2.3.4.5 | В | С |
| 0:15 | 2.3.4.5 | Е | С |
| 0:22 | 2.3.4.5 | D | В |

User 3

| 0:22 | 1.2.3.4 | Α | - |
|------|---------|---|---|
| 0:25 | 1.2.3.4 | С | Α |
| 0:33 | 1.2.3.4 | В | С |
| 0:58 | 1.2.3.4 | D | В |
| 1:10 | 1.2.3.4 | Е | D |
| 1:17 | 1.2.3.4 | F | С |

### Pageview

- A pageview is an aggregate representation of a collection of Web objects contributing to the display on a user's browser resulting from a single user action (such as a click-through).
- Conceptually, each pageview can be viewed as a collection of Web objects or resources representing a specific "user event," e.g., reading an article, viewing a product page, or adding a product to the shopping cart.

### Path completion

#### Problem defintion

- Client- or proxy-side caching can often result in missing access references to those pages or objects that have been cached.
- For instance,
  - if a user returns to a page A during the same session, the second access to A will likely result in viewing the previously downloaded version of A that was cached on the client-side, and therefore, no request is made to the server.
  - This results in the second reference to A not being recorded on the server logs.

# Path completion

Illustration



User's actual navigation path:

$$A \rightarrow B \rightarrow D \rightarrow E \rightarrow D \rightarrow B \rightarrow C$$

What the server log shows:

| URL          | Referrer     |  |
|--------------|--------------|--|
| $\mathbf{A}$ |              |  |
| В            | $\mathbf{A}$ |  |
| D            | В            |  |
| $\mathbf{E}$ | D            |  |
| C            | В            |  |

### Path completion

#### Discussion

- The problem of inferring missing user references due to caching.
- Effective path completion requires extensive knowledge of the link structure within the site
- Referrer information in server logs can also be used in disambiguating the inferred paths.
- Problem gets much more complicated in frame-based sites.

# Step 2 — Analysis



### Some tasks on sequence data

- Sequence clustering
- Sequence classification
- Sequence prediction
- Sequence segmentation
- Sequential pattern mining
- Sequence modeling

# Sequence clustering



### Sequence clustering

#### Overview

- Based on similarity sequence
  - For instance, edit distance (number of modifications)
  - All types of clustering algorithms can be applied
- Indirect clustering
  - Features : n-grams, sequential patterns
  - Use of standard clustering vector space algorithms on these features
- Statistical sequence clustering / model based clustering
  - Use set of Hidden Markov Models
  - Each model « generates » the sequence of one cluster
  - EM algorithm optimizes clusters and sequence-cluster mapping

# Sequence classification



### Sequence classification

#### Overview

- Using similarity metrics
  - See sequence clustering
  - Use of KNN
- Indirect classification
  - See sequence clustering
  - Use of any classification algorithm
  - SVM + string kernel
- Model-based classification
  - Discriminatively trained Markov Models
    - Different variations of Hidden Markov Models

# Sequence prediction/generation



### Sequence prediction

Overview

- (Hidden) Markov Models
- (Partially ordered) Sequential rules (based on sequential patterns)
- Recurrent Neural Networks (RNNs)

# Sequence segmentation



# Sequence segmentation

#### Overview

- Applications
  - Behavioral stages of web users
  - DNA segmentation
  - Text segmentation
- Methods
  - If timestamp is available: similar to discretization
  - Models + MDL
  - Set of models, optimizes (log-) likelihood

## Some tasks on sequence data

- Sequence clustering
- Sequence classification
- Sequence prediction
- Sequence segmentation
- Sequential pattern mining
- Sequence modeling

# Sequential pattern mining

#### Definition

"Given a set of sequences, where each sequence consists of a list of elements and each element consists of a set of items, and given a user-specified min\_support threshold, sequential pattern mining is to find all of the frequent subsequences, i.e., the subsequences whose occurrence frequency in the set of sequences is no less than min\_support."

[Agrawal & Srikant, 1995]

"Given a set of data sequences, the problem is to discover subsequences that are frequent, i.e., the percentage of data sequences containing them exceeds a user-specified minimum support."

[Garofalakis, 1999]

## Sequential pattern mining

### Notations and Preliminary Concepts

#### Data

- Dataset: set of sequences
- Sequence: ordered list of itemsets (events) <e1,...,en>
- Itemset: unordered set of items  $e_i = \{i_{i1}, ..., i_{iz}\}$

### Subsequence

•  $S_{sub} = \langle s_1, ..., s_n \rangle$  is a subsequence of  $S_{ref} = \langle r_1, ..., r_m \rangle$  iff:

$$\exists i_1 < \ldots < i_n : s_k \subseteq r_{i_k}$$

- $\rightarrow$  <a,(a,b),c> is a subsequence of <d,(a,c),e,(a,b),(c,d)>
- Length of a sequence: number of items used in the sequence (not unique)
  - Length(<a,(a,b),c> = 4

### Frequent sequential pattern

- The support sup(S) of a sequence S is the number of sequences in the dataset that have S as a subsequence
- Given a user-defined threshold, minSupp, S is said to be frequent if sup(S) ≥ minSupp
- Objective: find all frequent sequences in the dataset
- Huge pattern space... brute force algorithm does not scale



E.g., 100 items Around 10<sup>30</sup> candidates for sequences of length 3...

## Monotonicity

- If S is a subsequence of R then sup(S) ≥ sup(R)
- Monotonicity
  - If S is not frequent, R cannot be frequent!
- Pruning
  - If we know S is not frequent, it is useless to evaluate any supersequence of S!

# A wide variety of algorithms

- Apriori and variants
  - A levelwise approach
    - Find frequent patterns with length 1
    - Use them to find frequent patterns with length 2
    - **...**
- SPaDE and variants
  - Vertical data representation
  - Use of equivalence classes
- PrefixSpan and variants
  - Projected databases
  - Recursive mining



(Original) Horizontal database layout

Vertical database layout

| Given Sequence                     | Projection to a          |
|------------------------------------|--------------------------|
| < b, (c,d), a, (b d), e >          | <a, (b,d),="" e=""></a,> |
| <c, (a,d),="" (d,e)="" b,=""></c,> | <(a,d), b, (d,e)>        |
| <b, (de),="" c=""></b,>            | [will be removed]        |

## Redundancy problem

- If <a, (bc), d> is frequent so are <a>, <b>, <c>, <d>, <a,b>... (i.e., all the subsequences of <a, (bc), d>)
- Presenting such frequent subsequences is of little interest to the users
- Need for some compressed representations
  - Lossless compression: closed sequential patterns
  - Lossy compression: maximal sequential patterns

# Closed and Maximal Sequential Patterns

- Frequent closed sequences
  - All the super-sequences have a smaller support
- Frequent maximal sequences
  - All super-sequences are not frequent

| Dataset                                |  |
|----------------------------------------|--|
| <a, b,="" c,="" d,="" e,="" f=""></a,> |  |
| <a, c,="" d=""></a,>                   |  |
| <c, a="" b,=""></c,>                   |  |
| <b, (de)="" a,=""></b,>                |  |
| <b, a,="" c,="" d,="" e=""></b,>       |  |

sup (
$$\langle a,c \rangle$$
) = 3 → frequent  
sup ( $\langle a,c,d \rangle$ ) = 3 → frequent, closed  
sup ( $\langle a,c,d,e \rangle$ ) = 2 → frequent, closed, max.  
sup ( $\langle a,c,d,e,f \rangle$ ) = 1 → not frequent

### Mining closed and maximal patterns

- Specialized algorithms exist
  - Much faster!!
- Well-known examples
  - Closed patterns
    - CloSpan [Yan et al., 2003]
    - BIDE [Wang et Han, 2007]
  - Maximal
    - VMSP [Fournier-Viger et al. 2014]

### Which one should you use?

- All give the same results
- Only a matter of memory usage and runtime
- No clear conclusions from existing studies
- In practice:
  - Dense dataset: SPaDE and variations
  - Sparse dataset: PrefixSpan and variations

But that strongly depends on the implementation...

## Beyond the frequency

- Frequent patterns are not always the most interesting ones
- ▶ E.g., in web logs of a e-commerce website < home, paiement> has good chances to be frequent but is not really of interest...
- Two alternatives:
  - Adding constraints
  - Use of interestingness measures

### Adding constraints

- Item constraints: e.g., high-utility items: Sum all items in the sequence > 1000\$
- Length constraint: Minimum/maximum number of events/ transactions
- Model-based constraints: Sub-/supersequences of a given sequence
- Gap constraints: Maximum gap between events of a sequence
- Time constraints: Given timestamps, maximum time between events of a sequence
- Computation:
  - 1. Mine all frequent patterns and then filter
  - 2. Push constraints into the algorithm

## Interestingness measures

- Many measures have been proposed
  - See Interestingness measures for data mining: A survey [Genq et Hamilton, 2006] for a non-exhaustive though long list
  - One of the most well-known measure: the confidence
    - Split the pattern into two components, the head (last itemset) and the tail (the rest)
    - Calculate the probability P(head | tail)
    - Should not be considered as a causality measure



### Available software libraries

- Java:
  - SPMF (most extensive library) http://www.philippe-fournier-viger.com/ spmf/
  - Basic support in RapidMiner, KNIME
- R
  - arulesSequences package
  - TraMiner package
- Python
  - Multiple basic implementations
- Spark: PrefixSpan available