Group
Basic Properties of Groups
Subgroups
Cyclic Groups
Coset and Lagrange's Theorem

A Concrete Introduction to Number Theory and Algebra-群、子群、循环群

Libin Wang

Shool of Computer Science, South China Normal University

October 21, 2020

Table of contents

- Group
- 2 Basic Properties of Groups
- Subgroups
- 4 Cyclic Groups
- 5 Coset and Lagrange's Theorem

Motivation.

Last chapter, we extremely rely on Cancellation Law. If gcd(c, m) = 1 and $ac \equiv bc \pmod{m}$, then

$$a \equiv b \pmod{m}$$
.

Motivation.

Last chapter, we extremely rely on Cancellation Law. If gcd(c, m) = 1 and $ac \equiv bc \pmod{m}$, then

$$a \equiv b \pmod{m}$$
.

Question.

Actually, what is cancellation?

Ideas.

From $ac \equiv bc \pmod{m}$ to $a \equiv b \pmod{m}$, seemingly, we need division, actually we need multiplication:

$$acc^{-1} \equiv bcc^{-1} \pmod{m}$$
.

Hence by $cc^{-1} \equiv 1 \pmod{m}$, we have

$$a \equiv b \pmod{m}$$
.

Why c^{-1} exists? Because of gcd(c, m) = 1!

Additional conditions.

Need more conditions?

Additional conditions.

Need more conditions?

Yes, we need association:

$$(ac)c^{-1} \equiv a(cc^{-1}) \pmod{m},$$

and *closure*, which means we only consider numbers from 1 to m-1.

Wrap up.

Wrap these up. For a set $\mathbb G$ and an operator \cdot on the elements, we need:

- Closure: $\forall a, b \in \mathbb{G}$, $a \cdot b \in \mathbb{G}$.
- Association: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- An element "1" called *identity*, s.t. $1 \cdot a = a \cdot 1 = a$.
- $\forall a \in G$, there exists $a^{-1} \in G$, such that $a \cdot a^{-1} = 1 = a^{-1}a$, called *inverse*.

Group(群)

Definition.

Definition(Group). A group is a set \mathbb{G} and an operator \cdot on the elements, satisfies the following axioms:

- Closure(封闭性): $\forall a, b \in \mathbb{G}$, $a \cdot b \in \mathbb{G}$.
- Association(结合律): $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- There is an element " $e \in \mathbb{G}$ " called *identity*(单位元), s.t. $e \cdot a = a \cdot e = a$.
- $\forall a \in G$, there exists $a^{-1} \in G$ called *inverse*(逆元), such that $a \cdot a^{-1} = e = a^{-1} \cdot a$.

Examples of groups.

Groups.

- \bullet $(\mathbb{Z},+)$ is a group, while (\mathbb{Z},\times) is not a group.
- ullet (\mathbb{Q}, \times) and (\mathbb{R}, \times) are groups.

Examples of groups.

Groups.

- \bullet $(\mathbb{Z},+)$ is a group, while (\mathbb{Z},\times) is not a group.
- \bullet (\mathbb{Q}, \times) and (\mathbb{R}, \times) are groups.

Check.

Please check and know why.

Examples of some important groups.

\mathbb{Z}_n

Let n be an integer, $\mathbb{Z}_n = \{0, 1, 2, \cdots, n-1\}$ forms a group under the operation of addition. However, (\mathbb{Z}_n, \times) is not a group.

Examples of some important groups.

\mathbb{Z}_n

Let n be an integer, $\mathbb{Z}_n = \{0, 1, 2, \cdots, n-1\}$ forms a group under the operation of addition. However, (\mathbb{Z}_n, \times) is not a group.

\mathbb{Z}_p^*

Let p be a prime number, $\mathbb{Z}_p^*=\{1,2,\cdots,p-1\}$ forms a group under the operation of multiplication. (Recall Fermat's Little Theorem.)

Examples of some important groups.

\mathbb{Z}_n

Let n be an integer, $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$ forms a group under the operation of addition. However, (\mathbb{Z}_n, \times) is not a group.

\mathbb{Z}_p^*

Let p be a prime number, $\mathbb{Z}_p^* = \{1,2,\cdots,p-1\}$ forms a group under the operation of multiplication. (Recall Fermat's Little Theorem.)

\mathbb{Z}_n^*

Let n be an integer, $\mathbb{Z}_n^* = \{a \in [1..n-1] \text{ and } \gcd(a,n)=1\}$ forms a group under the operation of multiplication. (Recall Euler's Theorem.)

A Concrete Introduction to Number Theor

Basic Properties of Groups.

Proposition

Proposition 1. The identity element in a group $\mathbb G$ is unique; that is, there exists only one element $e\in \mathbb G$ s.t. eg=ge=g for all $g\in \mathbb G$.

Basic Properties of Groups.

Proposition

Proposition 1. The identity element in a group \mathbb{G} is unique; that is, there exists only one element $e \in \mathbb{G}$ s.t. eg = ge = g for all $g \in \mathbb{G}$.

Proof.

Suppose $\exists e, e' \in \mathbb{G}$ are identities. Then:

- ee' = e'
- \bullet ee' = e

Combining these two equations, we have e = ee' = e'.

Proposition 2-3.

Proposition

Proposition 2. If $\forall g \in \mathbb{G}$, then the inverse of g, g^{-1} , is unique.

Proposition 2-3.

Proposition

Proposition 2. If $\forall g \in \mathbb{G}$, then the inverse of g, g^{-1} , is unique.

Proposition

Proposition 3. Let \mathbb{G} be a group. If $a, b \in \mathbb{G}$, then $(ab)^{-1} = b^{-1}a^{-1}$.

Proof.

By construction.

•
$$ab(b^{-1}a^{-1}) = e$$
.

•
$$(b^{-1}a^{-1})ab = e$$
.

Combining these two equations, we know, the inverse of (ab) is $b^{-1}a^{-1}$.

Proposition 4.

Proposition

Proposition 4. Let \mathbb{G} be a group, $\forall g \in \mathbb{G}$, $(g^{-1})^{-1} = g$.

Proposition 4.

Proposition

Proposition 4. Let \mathbb{G} be a group, $\forall g \in \mathbb{G}$, $(g^{-1})^{-1} = g$.

Proof.

By definition, $gg^{-1} = e$ and $g^{-1}(g^{-1})^{-1} = e$. Hence:

$$(g^{-1})^{-1} = (gg^{-1})(g^{-1})^{-1} = g(g^{-1}(g^{-1})^{-1}) = ge = g.$$

Proposition 5.

Proposition

Proposition 5. Let \mathbb{G} be a group, for any two elements $a,b\in\mathbb{G}$. Then the equation ax=b and xa=b have unique solutions in \mathbb{G} .

Proposition 5.

Proposition

Proposition 5. Let \mathbb{G} be a group, for any two elements $a, b \in \mathbb{G}$. Then the equation ax = b and xa = b have unique solutions in \mathbb{G} .

Proof.

- Existence. Such an x exists.
- Uniqueness. Suppose that x_1 and x_2 are both solutions.....

Left as an exercise.

Proposition 6.

Proposition

Cancellation Law. Let \mathbb{G} be a group, and $a, b, c \in \mathbb{G}$. Then ba = ca implies b = c and ab = ac implies b = c.

Proposition 6.

Proposition

Cancellation Law. Let \mathbb{G} be a group, and $a,b,c\in\mathbb{G}$. Then ba=ca implies b=c and ab=ac implies b=c.

Proof.

Left as an exercise.

Proposition 6.

Proposition

Cancellation Law. Let \mathbb{G} be a group, and $a,b,c\in\mathbb{G}$. Then ba=ca implies b=c and ab=ac implies b=c.

Proof.

Left as an exercise.

A little thought.

Where does "Cancellation Law" come from?

思考.

置换与消去律

在费尔马小定理和欧拉定理的证明中, 依赖消去律可得: 对任意素数 p 和与 p 互素的正整数 a,

 $\mathbb{Z}_p^* = a\mathbb{Z}_p^* = \{ai : \forall i \in \mathbb{Z}_p^*\};$ 对任意合数 n 和与 n 互素的正整数 a, $a\mathbb{Z}_n^* = \mathbb{Z}_n^*$, 请问,对任意的群 @ 和群元 a,是否有

 $\mathbb{G} = a\mathbb{G} = \{ag : \forall g \in \mathbb{G}\}$? 为什么?

Notations.

Let \mathbb{G} be a group, and $g \in \mathbb{G}$. For $n \in \mathbb{N}$.

Notations.

•
$$g^0 = e$$

•
$$g^n = \underbrace{g \cdot g \cdots g}_{n \text{ times}}$$

•
$$g^{-n} = \underbrace{g^{-1} \cdot g^{-1} \cdots g^{-1}}_{\text{n times}}$$

Order.

The order of a finite group is the number of elements that it contains. If $\mathbb G$ is a group containing n elements, we write $|\mathbb G|=n$.

Defintions

Definition

(Subgroup.) (子群)

Let $\mathbb G$ be a group and $\mathbb H$ a subset of $\mathbb G$. If $\mathbb H$ is a group under group operation in $\mathbb G$, then $\mathbb H$ is said to be a subgroup of $\mathbb G$, denoted by $\mathbb H \leq \mathbb G$.

Examples of Subgroup.

Examples of Subgroup.

- For any group \mathbb{G} , there is a trivial subgroup $\{e\}$.
- The additive groups: $\mathbb{Z} \leq \mathbb{Q} \leq \mathbb{R} \leq \mathbb{C}$.
- $\forall n \in \mathbb{Z}$, $n\mathbb{Z} = \{kn | k \in \mathbb{Z}\}$ is a subgroup of \mathbb{Z} .

Examples of Subgroup.

Subgroup of \mathbb{Z}_p^* .

Let p be a prime, for all $i \in \mathbb{Z}_p^*$, compute $i^2 \mod p$, form a set $\mathbb{S} = \{i^2 \mod p, \forall i \in \mathbb{Z}_p^*\}$. Check that \mathbb{S} is a group under the operation of multiplication, namely \mathbb{S} is a subgroup of \mathbb{Z}_p^* . What is the order of \mathbb{S} ?

Properties of Subgroup.

Exercise.

Write a program to play with \mathbb{Z}_n^* .

- Given an integer n, construct the multiplicative group \mathbb{Z}_n^* ;
- Find a subgroup of the group \mathbb{Z}_n^* ;
- Find a relation between the size of subgroup and the size of \mathbb{Z}_n^* .

Properties of subgroup.

Proposition

(Subgroup.) A nonempty subset $\mathbb H$ of a group $\mathbb G$ is a subgroup of $\mathbb G$ if and only if $\mathbb H \neq \emptyset$, and $ab^{-1} \in \mathbb H$ for all $a,b \in \mathbb H$.

Proof.

Two directions. The \rightarrow part is easy. For \leftarrow part, you need to check that $\mathbb H$ satisfies all the axioms of a group.

Cyclic Groups(循环群)

Example of cyclic group.

Consider the following computation: Choose a number g from Z_p^* randomly, p is a prime, and compute:

$$\mathbb{S} = \{ \mathbf{g}, \mathbf{g}^2, \mathbf{g}^3, \cdots, \mathbf{g}^j, \cdots \}$$

Cyclic Groups(循环群)

Example of cyclic group.

Consider the following computation: Choose a number g from Z_p^* randomly, p is a prime, and compute:

$$\mathbb{S} = \{ g, g^2, g^3, \cdots, g^j, \cdots \}$$

Questions:

- May S be finite?
- May S be a group? Why or why not?
- May \mathbb{S} equals \mathbb{Z}_p^* ?

Cyclic Groups.

Example of cyclic group.

For example: For p = 11, choose g = 4, and compute:

$$\mathbb{S} = \{4, 4^2, 4^3, \cdots, g^j, \cdots\}$$

Cyclic Groups.

Example of cyclic group.

For example: For p = 11, choose g = 4, and compute:

$$\mathbb{S} = \{4, 4^2, 4^3, \cdots, g^j, \cdots\}$$

We will have:

$$\mathbb{S} = \{4, 5, 9, 3, 1\}$$

Certainy, it is finite and it is a group.

Cyclic Groups.

Example of cyclic group.

For example: For p = 11, choose g = 4, and compute:

$$\mathbb{S} = \{4, 4^2, 4^3, \cdots, g^j, \cdots\}$$

We will have:

$$\mathbb{S} = \{4, 5, 9, 3, 1\}$$

Certainy, it is finite and it is a group. Questions:

- What will we get if g = 2?
- What will we get if g = 3?

Cyclic Groups.

Theorem

Let \mathbb{G} be a group and g be any element in \mathbb{G} . Then the set

$$\langle g \rangle = \{ g^k : k \in \mathbb{Z} \}$$

is a subgroup of \mathbb{G} . We call $\langle g \rangle$ the cyclic group generated by g, and g is a generator of the group.

Proof.

Check the axioms.

Primitive Root (原根)

Definition

Let a and n be relatively prime integers with n > 0. The order of a modulo n is the smallest exponent $e \ge 1$ such that $a^e \equiv 1 \pmod{n}$. If the order of a modulo n equals to the largest possible order modulo n, then a is called a primitive root modulo n.

Primitive Root

Example

From last example, we know the order of 4 modulo 11 is 5, and the order of 2 and 3 modulo n is 10. Since the largest possible order modulo 11 is 10, thus 2 and 3 are two primitive roots modulo 11. Using language of group, we may say that \mathbb{Z}_{11} is a cyclic group generated by 2 or 3, and 2 and 3 are generators of \mathbb{Z}_{11} .

Theorem

Let $\mathbb{G} = \langle g \rangle$ be a cyclic group of order n. Then $g^k = e$ if and only if n divides k.

Theorem

Let $\mathbb{G} = \langle g \rangle$ be a cyclic group of order n. Then $g^k = e$ if and only if n divides k.

Proof.

Note that, n is the least positive number s.t. $g^n = e$.

Theorem

Let $\mathbb{G} = \langle g \rangle$ be a cyclic group of order n. Then $g^k = e$ if and only if n divides k.

Proof.

Note that, n is the least positive number s.t. $g^n = e$.

1. The \leftarrow part is trivial, since $g^k = g^{ns} = e$.

Theorem

Let $\mathbb{G} = \langle g \rangle$ be a cyclic group of order n. Then $g^k = e$ if and only if n divides k.

Proof.

Note that, n is the least positive number s.t. $g^n = e$.

- 1. The \leftarrow part is trivial, since $g^k = g^{ns} = e$.
- 2. The \rightarrow part. Suppose $g^k = e$. By division algorithm,

$$k = nq + r$$
, where $0 \le r < n$. Hence,

$$e = g^k = g^{nq+r} = g^{nq}g^r = g^r.$$

Thus,
$$r = 0$$
.

Theorem

Let $\mathbb{G} = \langle g \rangle$ be a cyclic group of order n. If $h = g^k$ then the order of h is n/d, where $d = \gcd(k, n)$.

Theorem

Let $\mathbb{G} = \langle g \rangle$ be a cyclic group of order n. If $h = g^k$ then the order of h is n/d, where $d = \gcd(k, n)$.

Proof.

Let m be the least positive number s.t. $h^m = g^{km} = e$.

Theorem

Let $\mathbb{G} = \langle g \rangle$ be a cyclic group of order n. If $h = g^k$ then the order of h is n/d, where $d = \gcd(k, n)$.

Proof.

Let m be the least positive number s.t. $h^m = g^{km} = e$.

1. Then $n \mid km$, equivalently, $(n/d) \mid (k/d)m$.

Theorem

Let $\mathbb{G} = \langle g \rangle$ be a cyclic group of order n. If $h = g^k$ then the order of h is n/d, where $d = \gcd(k, n)$.

Proof.

Let m be the least positive number s.t. $h^m = g^{km} = e$.

- 1. Then $n \mid km$, equivalently, $(n/d) \mid (k/d)m$.
- 2. Since $d = \gcd(k, n)$, n/d and k/d are relatively prime. Thus, $(n/d) \mid (k/d)m$ implies $(n/d) \mid m$. The smallest such m is n/d.

通过生成元找生成元

已知 2 是群 \mathbb{Z}_{11}^* 的生成元,群 \mathbb{Z}_{11}^* 的阶是 10, $2^3 = 8 \in \mathbb{Z}_{11}^*$, 且 $\gcd(3,10) = 1$,所以 8 的阶是 10,即 8 也是一个生成元。5 不是生成元,因为 $5 = 2^4 \mod 11$, $\gcd(4,10) = 2$ 。请读者自行验证以上结论。以上命题告诉我们,在知道某个元是生成元时,如何找到另一个生成元。

Corollary

Let $\mathbb{G} = \langle g \rangle$ be a cyclic group of order n then there are exactly $\phi(n)$ generators in \mathbb{G} .

Corollary

Let $\mathbb{G} = \langle g \rangle$ be a cyclic group of order n then there are exactly $\phi(n)$ generators in \mathbb{G} .

Proof.

There are n elements in \mathbb{G} with the form g^i , for all $i \in \mathbb{Z}_n$. For arbitrary g^i , its order is n/d, where $d = \gcd(i, n)$, then g^i is a generator when d = 1 which means i is relatively prime to n. There are $\phi(n)$ elements in \mathbb{Z}_n are relatively prime to n, therefore there are $\phi(n)$ generators in \mathbb{G} .

Corollary

Let $\mathbb{G} = \langle g \rangle$ be a cyclic group of order p, where p is a prime, then all elements in \mathbb{G} except e are generators.

Proof.

Trivially from Corollary 14.

Primitive Root Theorem

Theorem

(Primitive Root Theorem.) Every prime p has a primitive root modulo p, and there are exactly $\phi(p-1)$ primitive roots modulo p.

General Primitive Root Theorem

Theorem

If $n \in \mathbb{Z}$ are 2, 4, p^e and $2p^e$, for all primes p > 2 and all possitive integers e, then \mathbb{Z}_n^* is cyclic.

Coset (陪集)

Definition of Coset.

Let $\mathbb G$ be a group and $\mathbb H$ a subgroup of $\mathbb G$. Define a left coset of $\mathbb H$ with representative $g\in \mathbb G$ to be the set

$$g\mathbb{H} = \{gh : h \in \mathbb{H}\}.$$

Right coset can be defined similarly by

$$\mathbb{H}g = \{hg : h \in \mathbb{H}\}.$$

Coset

Examples of Coset.

Recall our previous proof of Fermat's Little Theorem, we randomly choose a number $a \in \mathbb{Z}_p^*$, and prove

$$a\mathbb{Z}_p^* = \mathbb{Z}_p^*$$

It is similar in Eurler's Theorem. $\forall a \in \mathbb{Z}_n^*$

$$a\mathbb{Z}_n^* = \mathbb{Z}_n^*$$

Coset

Examples of Coset.

Let p=11, let g=4, then $\mathbb{H}=\{g^i:i\in\mathbb{Z}\}$ is a subgroup of a \mathbb{Z}_p^* . Actually, $\mathbb{H}=\{1,3,4,5,9\}$. Compute:

- $\forall a \in \mathbb{H}$, what is $a\mathbb{H}$?
- $\forall a \notin \mathbb{H}$ and $a \in \mathbb{Z}_p^*$, what is $a\mathbb{H}$?

The number of the elements in a coset.

Let \mathbb{G} be a group and \mathbb{H} a subgroup of \mathbb{G} . $\forall g \in \mathbb{G}$, the number of elements in \mathbb{H} is the same as the number of elements in $g\mathbb{H}$.

Proof.

Define a map $\psi:\mathbb{H}\to g\mathbb{H}$ by $\psi(h)=gh$. Show the map is one-to-one and onto.(Please reall what we have done in the proof of Fermat's Little theorem.)

Identical or isolation.

Let \mathbb{G} be a group and \mathbb{H} a subgroup of \mathbb{G} . $\forall g_1,g_2\in\mathbb{G}$, then $g_1\mathbb{H}=g_2\mathbb{H}$ or $g_1\mathbb{H}\cap g_2\mathbb{H}=\emptyset$.

Identical or isolation.

Let \mathbb{G} be a group and \mathbb{H} a subgroup of \mathbb{G} . $\forall g_1,g_2\in\mathbb{G}$, then $g_1\mathbb{H}=g_2\mathbb{H}$ or $g_1\mathbb{H}\cap g_2\mathbb{H}=\emptyset$.

Proof.

Suppose $\exists h_1, h_2 \in \mathbb{H}$ s.t. $g_1h_1 = g_2h_2$, we prove the $g_1\mathbb{H} \subseteq g_2\mathbb{H}$. Similarly, $g_2\mathbb{H} \subseteq g_1\mathbb{H}$. Then $g_1\mathbb{H} = g_2\mathbb{H}$. Note that:

$$\forall g_1 h \in g_1 \mathbb{H}, g_1 h = g_1(h_1 h_1^{-1})h = g_2(h_2 h_1^{-1}h) \in g_2 \mathbb{H}$$

Partitioning of group \mathbb{G} .

Let $\mathbb G$ be a group and $\mathbb H$ a subgroup of $\mathbb G$. Then the left cosets of $\mathbb H$ in $\mathbb G$ partition $\mathbb G$.

Partitioning of group G.

Let $\mathbb G$ be a group and $\mathbb H$ a subgroup of $\mathbb G$. Then the left cosets of $\mathbb H$ in $\mathbb G$ partition $\mathbb G$.

Proof.

Nothing! Convince yourself that the cosets $g\mathbb{H}$ cover \mathbb{G} , and then recall the last proposition. Why cover? Note that $e \in \mathbb{H}$!

Lagrange's Theorem

Notation.

Let \mathbb{G} be a group and \mathbb{H} a subgroup of \mathbb{G} . Define the index of \mathbb{H} in \mathbb{G} to be the number of left cosets of \mathbb{H} in \mathbb{G} . We denote the index by $[\mathbb{G}:\mathbb{H}]$.

Lagrange's Theorem.

Let \mathbb{G} be a group and \mathbb{H} a subgroup of \mathbb{G} . Then $|\mathbb{G}|/|\mathbb{H}| = [\mathbb{G} : \mathbb{H}]$ is the number of distinct left cosets of \mathbb{H} in \mathbb{G} .

Proof.

The group \mathbb{G} is partitioned in $[\mathbb{G}:\mathbb{H}]$ distinct left cosets. Each left coset has $|\mathbb{H}|$ elements; therefore, $|\mathbb{G}| = [\mathbb{G}:\mathbb{H}]|\mathbb{H}|$

Corollaries from Lagrange's Theorem

Corollary

Suppose that \mathbb{G} is a finite group and $g \in \mathbb{G}$. Then the order of g must divide $|\mathbb{G}|$.

Corollary

Let \mathbb{G} be a group and $|\mathbb{G}| = p$ where p is a prime. Then \mathbb{G} is cyclic and any $g \in \mathbb{G}$ such that $g \neq e$ is a generator.

Corollary

Let $\mathbb H$ and $\mathbb K$ be subgroups of a finite group $\mathbb G$ such that $\mathbb K\subset\mathbb H\subset\mathbb G$. Then

$$[\mathbb{G}:\mathbb{K}]=[\mathbb{G}:\mathbb{H}][\mathbb{H}:\mathbb{K}]$$

Corollaries from Lagrange's Theorem

Corollary

Fermat's Little Theorem.

$$a^{p-1} \equiv 1 \pmod{p}.$$

Corollary

Euler's Theorem.

$$a^{\phi(n)} \equiv 1 \pmod{n}.$$

Abstract Fermat's Little Theorem.

Theorem

(Abstract Fermat's Little Theorem.) Let \mathbb{G} be a finite group with order n. Then for any $a \in \mathbb{G}$, $a^n = e$.

Exercises.

(Exercise 0.)

- 1. $\forall a, b \in \mathbb{G}$, prove that $ab^n a^{-1} = (aba^{-1})^n$ for $n \in \mathbb{Z}$.
- 2. $\forall a, b \in \mathbb{G}$, $(ab)^2 = a^2b^2$, prove that the group \mathbb{G} is abelian.
- 3. Prove that the inverse of $g_0g_1 \cdots g_n = g_n^{-1}g_{n-1}^{-1}...g_0^{-1}$.

Exercises.

(Exercise 1.)

- 1. Prove the Fermat's Little Theorem using Group Theory.
- 2. Prove the Euler's Theorem using Group Theory.

Exercises.

(Exercise 2.)

Suppose that q is a prime and p=2*q+1 is also a prime. Let $g=h^2$ is not equal to 1, where h is a random number choosen from \mathbb{Z}_p . Certainly, $\langle g \rangle$ is a cyclic group.

- (a) Write a python(or Sage) program to generate the cyclic group $\langle g \rangle$.
- (b) What is the order of $\langle g \rangle$, and why?
- (c) How many generators are there in the group $\langle g \rangle$? Why?