Sea-Bird Scientific 13431 NE 20th Street Bellevue, WA 98005 USA +1 425-643-9866 seabird@seabird.com www.seabird.com

SENSOR SERIAL NUMBER: 1525 SBE 37 CONDUCTIVITY CALIBRATION DATA CALIBRATION DATE: 10-Jan-25 PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

j = 3.586095e-005

BATH TEMP (° C)	BATH SAL (PSU)	BATH COND (S/m)	INSTRUMENT OUTPUT (Hz)	INSTRUMENT COND (S/m)	RESIDUAL (S/m)
` '	` ,	` ,	` ,	, ,	` ,
22.0000	0.0000	0.00000	2558.32	0.00000	0.00000
1.0000	34.6834	2.96569	5008.95	2.96571	0.00002
4.5000	34.6620	3.27160	5195.74	3.27157	-0.00003
14.9999	34.6160	4.24962	5751.76	4.24961	-0.00001
18.5000	34.6057	4.59344	5934.60	4.59344	0.00000
24.0000	34.5938	5.14917	6218.52	5.14920	0.00003
29.0000	34.5870	5.66897	6472.49	5.66896	-0.00002
32.5000	34.5833	6.03994	6647.65	6.03991	-0.00003

 $f = Instrument\ Output(Hz) * sqrt(1.0 + WBOTC * t) / 1000.0$

t = temperature (°C); p = pressure (decibars); δ = CTcor; ϵ = CPcor;

Conductivity (S/m) = $(g + h * f^2 + i * f^3 + j * f^4) / (1 + \delta * t + \epsilon * p)$

Residual (Siemens/meter) = instrument conductivity - bath conductivity

