

L5: ML evaluation

Prof. Xun Jiao

Before class

- HWs uploaded to BB
- Due by next Wed class

Regression and Classification

Regression evaluation

• MAE, MAPE, MSE, RMSE

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y'_i - y_i|$$

$$MAPE = \frac{100\%}{n} \sum_{i=1}^{n} \frac{y'_{i} - y_{i}}{y_{i}}$$

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y}_i)^2.$$

RMSE =
$$\sqrt{\frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2}$$

Outline

- Classifier evaluation
- Supervised learning process

Confusion Matrix

- A specific table layout that allows visualization of the performance of an algorithm
 - Each row of the matrix represents the instances in a predicted class
 - Each column represents the instances in an actual class

• For example:

		Actual class	
		Cat	Dog
Predicted	Cat	5	2
Predict	Dog	3	3

- How many animals in this dataset? #dogs? #cats?
- Now, we can calculate different metrics based on this confusion matrix

Confusion matrix

Actual outcome

Predicted outcome

Predict Sick Actual sick	Predict sick Actual not sick
Predict Not sick Actual Sick	Predict not sick Actual not sick

	Actual True/False	
Predicted	True Positive	False Positive (Type I)
Positive/Negative	False Negative (Type II)	True Negative

		Actual class	
		Cat	Dog
Predicted class	Cat	5	2
	Dog	3	3

Prediction accuracy

- Percentage of correctly classified examples out of all predictions made.
- PA = correctly_predicted_samples/total_predicted_samples

		Actual class	
		Cat	Dog
Predicted	Cat	5	2
Predi	Dog	3	3

	Actual True/False		
Predicted	True Positive	False Positive (Type I)	
Positive/Negative	False Negative (Type II)	True Negative	

- What is the prediction accuracy here?
- How many true positive and true negative?
- PA = (#TP + #TN) / #total_predictions

Precision

precision is the fraction of relevant instances among the retrieved instances

	Actual True/False		
Predicted	True Positive	False Positive (Type I)	
Positive/Negative	False Negative (Type II)	True Negative	

Recall

• **recall** (also known as <u>sensitivity</u>) is the fraction of relevant instances that have been retrieved over the total amount of relevant instances.

Recall = TP / (TP + FN)
How much actual positives are captured

	Actual True/False		
Predicted	True Positive	False Positive (Type I)	
Positive/Negative	False Negative (Type II)	True Negative	

Precision and Recall

precision (also called <u>positive predictive value</u>) is the fraction of relevant instances among the retrieved instances, while **recall** (also known as <u>sensitivity</u>) is the fraction of relevant instances that have been retrieved over the total amount of relevant instances.

Actual positive nagative "I think this is positive" TP FP Precision = TP / (TP + FP) How much what I say is correct TN

Recall = TP / (TP + FN)

How much actual positives are captured

F1 score

$$F_1 = \left(rac{2}{ ext{recall}^{-1} + ext{precision}^{-1}}
ight) = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}} \, .$$

Considers both the <u>precision</u> *p* and the <u>recall</u> *r* of the test to compute the score Best value? Worst value?

What is the downside of F1 score?

Check yourself

		True/Actual		
		Positive (😭)	Negative	
Pred	Positive (😭)	5	1	
Predicted	Negative	2	2	

Accuracy?

Precision?

Recall?

F1 score?