

Икономически университет - Варна

Катедра "Информатика"

КОМПЮТЪРНИ АРХИТЕКТУРИ

Въведение. Процесор.

Въведение

 Компютър – електронно устройство, което реализира изчисления на базата на набор от инструкции

- Компютърна система
 - хардуер ?
 - софтуер ?

Обобщен модел на персонален компютър

Основни устройства

Процесор – CPU

- обработва данните в съответствие с инструкциите на изпълняваната програма
- управлява работата на всички останали устройства

Оперативна памет – RAM

 в нея се съхраняват данните, които се обработват и резултатите от обработката

Основни устройства

• В/И устройства

- входните устройства въвеждат данните,
 преобразуват ги в съответния формат и ги
 прехвърлят в паметта
- изходните устройства получават резултатите от обработката и ги преобразуват в необходимия изходен формат.

• Външна памет – SSD, HDD, DVD, Flash

- съхранява данни и програми, когато те не се използват от процесора
- между нея и оперативната памет се осъществява двустранен обмен на информация

Интерфейс

- Съвкупност от апаратни и програмни средства, чрез които се реализира взаимодействието между два хардуерни компонента.
 - предаване и приемане на информация
 - управление на предаването на информация
 - съгласуване на източника и приемника на информация
- Елементи на интерфейса
 - шини
 - контролери

Шини

 Канал за връзка, състоящ се от определен брой физически линии, по които се предава информацията – инструкции, данни, резултати.

• Основни характеристики на шината

- ширина (разрядност) бита (b)
- бързодействие (честота) Xц (Hz) или трансфера/с
- пропускателна способност (скорост на трансфер) бита/с или байта/с
- брой трансфера за 1 такт

Контролери

- Реализират правилата за обмен между хардуерните компоненти
- Всяко устройство притежава съответен контролер
 - дисков контролер
 - Аудиоконтролер
 - контролер на RAM
 - контролер на конкретна шина и др.

Шинна архитектура

Методи на обмен

- Програмно управляем обмен
 - при непосредствено участие и под управлението на процесора
- Пряк достъп до паметта (DMA Direct Memory Access)
 - процесът на обмен се реализира директно между в/и устройство и RAM паметта, без да се ангажира процесорът

Видове шини

• Последователни (серийни)

- информацията се предава последователно бит по бит от «източника» до «приемника» по една единствена линия (серийна връзка)
- SATA, SAS, PCI-e, USB, IEEE 1394 (FireWire)

• Паралелни

- определен брой битове се предават едновременно, като всеки бит се предава по отделна линия
- ATA, SCSI, PCI

• Преход от паралелни към серийни шини

Избор на КС

- За какво ще се използва?
 - Предназначение

- Какви компоненти следва да се използват?
 - Изборът на компонентите определя избора на дънната платка.

• Какъв е максималният бюджет?

Производство на процесори

За производството на процесорните чипове се използват найчесто силициеви пластини. Самият производствен процес включва огромен брой операции, които могат да бъдат групирани в няколко етапа:

- подготовка на пластината
- обработка на пластината
- тестване, опаковане и комплектуване на процесорите.

I. Подготовка на пластината

1. Производство на силициевите пръти

- Базов материал за получаване на пластината е кварцовият пясък, който е богат на силиций. От него, в специални пещи, при много висока температура (1800 градуса) и по специална технология се получава т.нар. "технически силиций", с чистота 98-99.9%.
- След допълнителна обработка техническият силиций се пречиства допълнително, в резултат на което се получава силициева маса с чистота 99,999999%, известна като "електронен силиций".

От разтопения и пречистен силиций се изтегля монокристал с цилиндрична форма (силициев прът) с диаметър до 300 мм. и тегло около 200 кг.

2. Изрязване на силициевите пластини

Силициевите пластини се получават чрез **нарязване** на охладените силициеви пръти на тънки (под 1 мм) цилиндрични дискове и тяхното последващо **изглаждане** и **полиране**. В резултат, повърхността на пластината се изглажда до неравности от порядъка на 1 нм (1.10-9 м).

Силициев прът

II. Обработка на пластината

След като бъде полирана, пластината се подлага на специална обработка, включваща няколко стотици технологични операции. В резултат на тази обработка върху нея последователно се създават определен брой слоеве от транзистори и връзките между тях. Тези слоеве изграждат тримерната структура на процесорните чипове. Броят на слоевете за различните процесори е различен, като често той надвишава 20. Създаването на всеки слой включва следните етапи:

1. Фотолитография

Целта на фотолитографския процес е да се подготви **изображе- нието на текущия слой в пластината.** Процесът протича по следния начин.

- А)Върху полираната пластина се нанася покритие от фоточувствителен материал (фоторезист). Фоторезистът променя своите физико-химически свойства при облъчване със светлина.
- Б) Повърхността на пластината се осветява през фотошаблон или т. нар. «маска». Шаблонът представлява пластина от оптично стъкло, върху която е нанесено изображението на текущия слой. Самото изображение е направено с оцветител, който не пропуска светлината, т.е. шаблонът представлява "негатив" на съответния слой.

В) След пропускането на светлината, осветените участъци на фоторезиста изменят своята разтворимост. Това позволява чрез химически процеси фоторезистът да бъде "отмит" от тях. По този начин върху пластината остават неосветените участъци на фоторезиста — те формират изображението на слоя или т.нар. «щампа».

При формирането на щампата се ползва система от огледала или лещи, чиято цел е от една страна прецизното фокусиране на щампата върху пластината, а от друга страна - намаляване на нейния размер. Щампата обикновено е около четири пъти по-малка от изображението на маската.

Г) По описаната последователност цялата пластина се покрива с щампи. Техният брой може да бъде няколко стотици. Всяка щампа формира по един слой в създаваните процесорни чипове. При изграждането на един слой е възможно да бъдат използвани няколко шаблона.

2. Създаване на транзисторите в слоя и връзките между тях

- А) Йонна имплантация
- Пластината се облъчва с поток от положително или отрицателно заредени атоми (йони) на различни химически елементи. Йоните проникват само в незащитените от фоторезиста участъци от пластината и променят проводимостта на пластината в тези участъци.
- След отстраняването на фоторезиста, на пластината остават създадените от йонната имплантация участъци - това са компонентите на бъдъщите транзистори от текущия слой. Размерът и разстоянието между транзисторите се измерва в nm и определя нанотехнологията.
- Тъй като съвременните процесори са изградени от няколко слоя, целият описан процес се повтаря – нов слой фоторезист, нов фотошаблон и така до формирането на всички слоеве на чиповете.
 - Б) Изграждане на транзисторите и връзките между тях.
- Създадените в процеса на йонната имплантация участъци се съединяват с токопроводящи медни контури (чрез галванизация). Изграждат се и връзките между транзисторите както в слоя, така и между транзисторите от различните слоеве. С това се изграждат електрическите схеми, които формират блоковете и устройствата на процесора.

Формиране на електрическите схеми

Процесорен чип

Повърхността на готовата пластина не е равна. На нея са "очертани" контурите на процесорните чипове. По своя външен вид пластината наподобява вафла, поради което често я наричат по този начин.

Готова пластина, или т.нар. "вафла"

III. Тестване, опаковане и комплектуване на процесорите

1. Тестване и изрязване на чиповете

- След като пластинатата е готова, функционалността на всеки един от формираните върху нея чипове се тества и негодните се маркират.
- След теста, пластината се разрязва на отделни чипове и тези от тях, които са минали успешно теста се "опаковат". Останалите се бракуват.

2. Опаковане на процесорите

 На етапа опаковане, всеки годен чип се разполага на специална платка-подложка, чрез която се осъществява връзката между процесора и сокета на дънната платка. Подложката и чипът се покриват с топлоразпределително капаче, което осигурява допълнителната защита на чипа. Капачето е елемент на термоинтерфейса - върху него се разполага охлаждащата система на процесора (радиатор или друг тип охлаждане).

На фигурата е представен процесор Core i5, включващ чипа на процесора и чипа на видеоядрото, вградено в процесора.

3. Класифициране и комплектуване на процесорите

Опакованите процесори се **тестват** още един път. Този път се тестват **ключовите характеристики** на процесора и се определя неговата **номиналната честота**. Тъй като от една и съща серия се получават чипове с различна работна честота, на този етап те се **сортират по честота**.

Тестване и класифициране на процесорите по честота

Процесор - CPU

• Производители – Intel и AMD

• Форм фактор/опаковка (форма и размер) – определя сокета или слота, чрез който се реализира връзката на процесора с дънната платка.

Процесор - опаковки

- Pin Grid Array (PGA) пиновете са от долната страна на процесора, като за поставяне не се използва сила – ZIF
- Примери AM3+, FM1, FM2, AM1, AM4

Процесор - опаковки

- Land Grid Array (LGA) пиновете са разположени в сокета на дънната платка
- Примери LGA 2011, LGA 1150, LGA 1151

Процесор - CPU

 Central Processing Unit – по отношение на производителността е най-важният елемент на компютърната система, защото реализира почти всички изчисления.

• Основни функции

- реализира аритметическата и логическа обработка на данните;
- управлява работата на компютърната система в съответствие с инструкциите в изпълняваната програма.

Процесор - бързодействие

- Работна честота милиони цикли в секунда (MHz) / милиарди... (GHz)
- **Фактори**, ограничаващи работната честота:
 - забавяния при предаването на данни през транзисторите и връзките между тях.
 - топлината, която се генерира при промяна на състоянието на транзистора от включено към изключено и обратното.

Процесор - бързодействие

• Количество обработени данни

- зависи от разрядността на т.н. Front Side Bus (FSB) или процесорна шина, която свързва процесора със северния мост на чипсета.
- Настоящите процесори използват 32 и 64 битови процесорни шини
- DMI, QPI, HT GT/s
- Работна честота = Множител на честота * честотата на процесорната шина

Процесор - overclocking

- Overclocking (форсиране на процесора)
 - увеличаване на работната честота на процесора
- Въпреки подобряването на производителността форсирането може да предизвика повреда на процесора.
- CPU throttling намаляване на работната честота, с цел по-ниска консумация на енергия и по-малко отделяне на топлина. Характерно за преносими компютри и мобилни устройства

Процесор – кеш памет

- Необходимост от кеширане
- Принцип на кеширане
 - Изпреварващо четене и поддържане на копия на блокове от RAM в кеша
 - Кешът е бърза памет (static RAM)
- Йерархия на процесорния кеш (интегрирани в CPU)
 - L1 най-малък капацитет и най-високо бързодействие; за данни и за инструкции, КВ
 - L2 по-голям капацитет и по-ниско бързодействие от L1, измерва се в МВ
 - L3 по-голям капацитет и по-ниско бързодействие от L2, измерва се в МВ

Многоядрени процесори

• Интегриране на повече от едно ядро в една процесорна опаковка.

Multicore Processors

Number of Cores	Description
Single Core CPU	One core inside a single CPU that handles all the processing. A motherboard may have sockets for more than one single processor, providing the ability to build a powerful, multiprocessor computer.
Dual Core CPU	Two cores inside a single CPU in which both cores can process information at the same time.
Triple Core CPU	Three cores inside a single CPU. This is a quad-core processor with one of the cores disabled.
Quad Core CPU	Four cores inside a single CPU.
Hexa-Core CPU	Six cores inside a single CPU.
Octa-Core CPU	Eight cores inside a single CPU.

Многоядрени процесори

- Изпълняват инструкции много по-бързо от едноядрените, защото инструкциите могат да се разпределят между отделните ядра (при софтуерна подръжка).
- Спестяват енергия и отделят по-малко топлина.
- Препоръчват се при многозадачен режим на работа и за програми свързани с видео/фото обработка, както и за компютърни игри.
- Кеш L1/L2 за всяко ядро, L2/L3 споделен

- Hyper-Threading (Intel) няколко блока от код (нишка самостоятелна единица програмен код) се изпълняват независимо и едновременно от процесора. Симулация на многопроцесорност.
- HyperTransport (AMD) повишаване на производителността на процесора, чрез реализирането на високоскоростен обмен на данни между CPU и северния мост (Northbridge) на чипсета.

Intel Turbo Boost / AMD Turbo Core

- автоматичното увеличаване на тактовата честота на процесора над номиналната, стига при това да не се превишават граничните стойности на използваната мощност, температурата и силата на тока.
- обикновено се реализира за сметка на ненатоварените ядра
- процесорът автоматично контролира своите параметри – напрежение, силата на тока, температурата и т.н

Advanced Smart Cache

- осигурява оптимално използване на общата кеш памет от второ или от трето ниво.
- в зависимост от текущата нужда, ресурсите на кеша динамично се преразпределят за всяко от ядрата, като това разпределяне може да стигне до 100% в полза на едно от ядрата.
- намалява задръжката при достъпа до често използваните данни и повишава производителността на компютърната система
- поддържа се от процесорите от фамилията Intel Core.

VT-x (Virtualization Technology)

 хардуерна поддръжка на софтуерната виртуализация (на един компютър се създават множество виртуални машини, работещи под управлението на различни ОС).

XD bit (Execute Disable Bit)

 хардуерна забрана за изпълнение на програма, заредена в област за данни -> хакерски атаки, вируси.

Процесор - технологии

TXT (Trusted Execution Technology):

- за всяко приложение се създава изолирана среда, която не може да бъде ползвана от никое друго приложение;
- безопасно съхранение на големи масиви с данни на външна памет чрез предварителното им криптиране.

PECI (Platform Environment Control Interface)

 при прегряване на процесора реализира увеличаване оборотите на вентилатора.

Процесор - технологии

TM (Thermal Monitor)

 следи температурата на процесора и при прегряване реализира автоматично намаляване на работната честота чрез намаляване на напрежението или пропуск на работни тактове

EIST (Enhanced Intel Speed Step Technology)

 при ниско натоварване или престой релизира автоматично намаляване на раб.честота и намаляване на напрежението, с цел понижаване на енергопотреблението и др.

Процесор - спецификации

AMD FX 8370E	Intel Core i5 6500T			
FX – series name	Core – series name			
8 – number of cores	i5 – brand within Core			
3 – generation number	6 – generation number			
70 – SKU number	500 – SKU number			
E – product suffix	T – product suffix			

 https://www.intel.com/content/www/us/ en/processors/processor-numbers.html

Процесор - спецификации

Характеристика	Intel CPU Desktop Core i7-6700	Intel CPU Mobile Core i5-6287U	AMD CPU Desktop A10-7870K		
Производител	Intel	Intel	AMD		
Фамилия	Intel Core i7	Intel Core i5	AMD A10		
Модел номер	i7-6700	i5-6287U	A10-7870K		
Тип процесор	Настолен	Мобилен	Настолен		
Микроархитектура	Skylake	Skylake	Steamrooler		
Брой ядра	4	2	4		
Брой нишки	8	4	4		
Тактова честота	3.4 GHz	3.1 GHz	3.90 GHz		
Turbo честота	4.0 GHz	3.5 GHz	4.10 GHz		
Кеш памет	8 MB	4 MB	4 MB		
TDP	65 W	28 W	95 W		
Сокет	LGA1151	BGA 1356	FM2+		
CPU опаковка	Вох	Вох	Вох		
Графичен процесор	Intel HD Graphics 530	Intel Iris Graphics 550	Radeon R7		

• Необходимост

 по-добра работа на компютъраната система – като се избягва забавяне, както и повреди в следствие на прегряване

• Методи за охлаждане

- активно (има нужда от захранване) вентилатор на кутията, СРU вентилатор
- пасивно радиатор

• За подобряване на охлаждането могат да се използват 1 или няколко **вентилатор**а на кутията

• Радиатор и термо паста

СРU вентилатор

• Течно охлаждане – принцип на действие

- Безвентилаторно охлаждане
 - намалява произвеждания шум
 - използва тръби пълни с течност, която е фабрично запечатана в тях, както и система за циклично изпаряване и

кондензация

• Фактори при избор на охлаждане

- тип на сокета
- физически характеристики на дънната платка
- размер на кутията
- условията на заобикалящата среда

Factors	Consider
Socket type	The heat sink or fan type must match the socket type of the motherboard.
Motherboard physical specifications	The heat sink or fan must not interfere with any components attached to the motherboard.
Case size	The heat sink or fan must fit within the case.
Physical environment	The heat sink or fan must be able to disperse enough heat to keep the CPU cool in warm environments.

Едночипова система

- System on a chip
- Интегрира различни компютърни компоненти в един чип
- Характеризира се с висока ефективност и ниска консумация на енергия
- Нанотехнология от порядъка на 7 nm
- Водещи производители Qualcomm, Spreadtrum, Mediatek, Apple, Huawei, Intel

Едночипова система

CHIPSETS FOR PREMIUM SMARTPHONES

System-on-chip	Manufacturer	Technology	CPU core (no.)	Memory type	Geekbench 4.1 64-bit single-core score	Geekbench 4.1 64-bit multi- core score
Apple A11 Bionic	Apple	10nm	6	LPDDR4	4061	9959
Samsung Exynos 8895	Samsung	10nm FinFET	8	LPDDR4	2015	6711
Snapdragon 835	Qualcomm	10nm	8	LPDDR4	2065	6436
HiSilicon Kirin 960	Huawei	16nm	8	LPDDR4	1859	6356
Mediatek MT 6799	Mediatek	10nm	10	LPDDR4	1579	3668
Intel Atom Z3580	Intel	22nm	4	LPDDR3	1046	2515

Едночипова система

SoCs OF AFFORDABLE SMARTPHONES

System on chip	Manufacturer	Technology	CPU core (no.)	Memory Type	Geekbench 4.0 64 bit single-core score	Geekbench 4.0 64 bit multi core score
Xiaomi Surge S1	Xiaomi	28nm	4	LPDDR3	678	2416
Samsung Exynos 7870	Samsung	14nm	8	LPDDR3	726	3603
Snapdragon 625	Qualcomm	14nm	8	LPDDR3	864	4165
Hisilicon Kirin 655	Huawei	16nm finFET	8	LPDDR3	824	3401
Mediatek MT 6750	Mediatek	28nm	8	LPDDR3	628	2485
Intel Atom Z2580	Intel	32nm	2	LPDDR2	1046	2515
Spreadtrum SC 9850	spreadtrum	28nm	4	NA	435	1273