Consider the following graph G.

Which of the following is(are) not spanning tree of G?

OPTIONS:

Question 4 : 6406531039080 View Solutions (0) Total Mark : 4.00 | Type : MSQ

Devendra has three sons (Jatin, Rabi, and Hem). Rabi has one son named Rathi. Hem has two sons (Avi and Manish). This family tree has been shown in the figure below. Let us define a relation R as follows,

- $R := \{(A, B) | A \text{ and } B \text{ are first cousins, i.e, their parents are siblings} \}.$
- $S := \{(A, B) | A \text{ is son of } B\}.$

Which of the following is (are) true?

OPTIONS:

- $\square R$ is an equivalence relation.
- \square (Rathi, Rabi) $\in S$ but (Rabi, Rathi) $\notin S$.
- \square (Rathi, Hem) $\in R$.
- \square (Jatin, Devendra) $\in S$ but (Rathi, Devendra) $\notin S$.

Discussions (0)

Question 5: 6406531039063

View Solutions (0) Total Mark : 3.00 | Type : MSQ

Consider the adjacency matrix of an undirected graph G:

$$\begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

Which of the following option is/are true?

OPTIONS:

The Number of edges is 8.	
The Number of vertices is 5.	
The Number of edges is 7.	
Each vertex has degree 3.	
	Discussions (0)
Question 6 : 6406531039070	View Solutions (0) Total Mark : 3.00 Type : MSQ
Consider the function $f : \mathbb{R} \to \mathbb{R}$ defi	ined by
	5 (MA)
$f(x) = \begin{cases} x^2 - x & \text{if } x < 0 \\ x^2 + x & \text{if } x \ge 0 \end{cases}$).
Which of the following option(s) is(a	re) correct?
OPTIONS:	
$\Box f$ is not differentiable at $x = 0$.	
$\Box f$ is continuous at $x = 0$.	
$\Box f$ is differentiable at $x = 1$.	
$\Box f$ is not continuous at $x = 1$.	
	Discussions (0)
Question 7 : 6406531039064	View Solutions (0) Total Mark : 4.00 Type : MCQ

A directed graph G is shown below. Suppose we are trying to perform an algorithm to find the shortest path from vertex v_0 to v_4 . Which of the following statements is (are) correct?

OPTIONS:

- \bigcirc Dijkstra's algorithm can be used to find the shortest path from v_0 to v_4 .
- \bigcirc Bellman-Ford algorithm can be used to find the shortest path from v_0 to v_4 because there are negative weighted edges.
- \bigcirc The weight of the shortest path from v_0 to v_4 is 1.
- O Bellman-Ford algorithm cannot be used to find the shortest path from v_0 to v_4 because there is a negative cycle in the given graph.

Discussions (0)

Total Mark: 0.00 | Type: COMPREHENSION

 \sim

Question 8: 6406531039074

Consider the three polynomials

•
$$p(x) = 5x^5 + a_1x^4 + b_1x^2 + c_1$$
.

•
$$q(x) = -x^4 + a_2x^2 + b_2x + c_2$$
.

•
$$s(x) = -x^7 + a_3x^5 + b_3x^3 + c_2x^2 + d_3x + e_3$$
.

Use this information to answer the given subquestions

Discussions (0)
ew Parent QN View Solutions (0)
Total Mark : 3.00 Type : MCQ
Discussions (0)
ew Parent QN View Solutions (0)
Total Mark : 3.00 Type : MCQ

Question 10: 6406531039076

Question 9:

OPTIONS:

6406531039075

Which of the following options is/are true?

 \bigcirc divides p(x), then the maximum possible

 \bigcirc divides s(x), then the maximum possible

 \bigcirc divides p(x), then the possible degree

 \bigcirc divides s(x), then the possible

degree of $t_2(x)$ is 2.

degree of $r_1(x)$ is 2.

degree of $r_2(x)$ is 2.

of $t_1(x)$ is 3.

If $r_1(x)$ is the obtained remainder when q(x)

If $r_2(x)$ is the obtained remainder when p(x)

If $t_1(x)$ is the obtained quotient when q(x)

If $t_2(x)$ is the obtained quotient when p(x)

Which of the following option is true?

OPTIONS:

- The maximum possible number of turning points of s(x) is 6.
- The maximum possible number of turning points of p(x) is 5.

$\bigcirc \ q(x) \to \infty \text{ as } x \to \infty.$ $\bigcirc \ s(x) \to \infty \text{ as } x \to \infty.$	
	Discussions (0)
Question 11: 6406531039067	Total Mark : 0.00 Type : COMPREHENSION
	Discussions (0)
Question 12 : 6406531039068	View Parent QN View Solutions (0) Total Mark : 2.00 Type : SA
Find the number of critical points of $f(x)$. Answer (Numeric):	
Answer	
	Discussions (0)

Question 13: 6406531039069

View Parent QN (View Solutions (0)

Total Mark: 2.00 | Type: MSQ

Which of the following option(s) is(are) correct?

OPTIONS:

 $\Box x = 1$ is a point of local maxima.

 $\square x = 1$ is a point of local minima.

\Box The minimum value of the function is $\frac{-}{\Box}$	$\frac{\cdot 11}{12}$.
The maximum value of the function is	$\frac{-11}{12}$.
	Discussions (0)
Question 14 : 6406531039071	Total Mark : 0.00 Type : COMPREHENSION
Based on the above data, answer the given s Suppose f is a real valued function defined for all $x, y \in \mathbb{R}$ and $f(1) = 7$ and $f'(0) =$	on \mathbb{R} . Let $f(x+y) = f(x)f(y)$
	Discussions (0)
Question 15 :	Solutions (0) View Solutions (0)
6406531039072	Total Mark : 2.00 Type : SA
What is the value of $f(0)$?	
Answer (Numeric):	
Answer	
	Discussions (0)
Question 16 :	View Parent QN View Solutions (0)
6406531039073	Total Mark : 2.00 Type : SA
What is the value of $f'(1)$?	
Answer (Numeric):	
Answer	

Question 17: 6406531039077

Total Mark: 0.00 | Type: COMPREHENSION

Find $\lim_{n\to\infty} a_n$ for the given sequences and answer the subquestions.

Discussions (0)

Question 18: 6406531039078

View Parent QN (View Solutions (0)

Total Mark: 2.00 | Type: SA

 $\{a_n\}$ such that $a_n = \frac{11n^3 + 2n^2 - 1}{n^3 + 3n}$

Answer (Numeric):

Answer

Discussions (0)

Question 19: 6406531039079

View Parent QN (View Solutions (0)

Total Mark: 2.00 | Type: SA

Enter your answer correctly to two decimal places.

$${a_n}$$
 such that $a_n = \frac{1}{8} + \frac{(-1)^n}{n}$

Answer (Numeric):

Answer

Discussions (0)

Question 20: 6406531039062

View Solutions (0) Total Mark: 5.00 | Type: SA

A company manufactures 10 chemicals x_1, x_2, x_3,x_{10}. Certain pairs of these chemicals are incompatible and would cause explosions if brought into contact with each other. The below graph shows the incompatibility of the chemicals, each vertex represents the chemical and each edge between a pair of chemicals represents that those two chemicals are incompatible. As a precautionary measure, the company wishes to partition its warehouse into compartments and store incompatible chemicals in different compartments. What is the least number of compartments into which the warehouse should be partitioned?

Answer (Numeric):

Answer

Discussions (0)

Question 21: 6406531039065

View Solutions (0)

Total Mark: 5.00 | Type: SA

What is the weight of a minimum cost spanning tree of the given graph?

Answer (Numeric):

