The neglected importance of complexity in statistics and Metascience

Daniele Fanelli

In this talk:

- 1) what's missing in the current paradigm
- 2) what a new paradigm might look like
- 3) evidence in support of this proposal

The elephant in the room of:

- 1) metascience
- e.g. reproducibility
- 2) statistics
- e.g. model "complexity"
- [see SW seminar 2021, Fanelli 2019, 2022]

What is "complex"?

Many, diverse, interacting parts. Long to describe, difficult to predict.

Level of complexity

example 1) complexity deflates the "reproducibility crisis".

year	project	discipline	N	result
2014	Many labs 1	psychology, misc.	13, 36 labs	77%
2016	COS	social+cognitive psychology	100	36-68%
2016	Camerer et al.	experimental economics	18	61-78%
2018	Many labs 2	social+cognitive psychology	28, 62 samples, 36 countries	54%
2018	Camerer et al.	social studies in Nature, Science	21	57-67%
2021	RPCB	cancer biology	188, 50 exper., 23 papers	3-82%

Lower reproducib:

- 1) complex phenomena
- 2) complex methods
- not just random noise
- structured, systematic diff.

example 2) complexity confuses statistical results

$$AIC:-2\log(L)+2k$$

models vary by "fitting propensity"

("complexity" beyond n. of parameters)

universe of possible data

(Bonifay and Cai 2017)

When is a theory <u>actually</u> supported?

How might the elephant appear?

- 1) integrate complexity of phenomena & methods in measuring, forecasting, correcting reproducibility
- 2) penalize statistical models for complexity beyond number of parameters

integrating "complexity" ~ severity of testing

Part 2: A candidate alternative

K theory in a nutshell

$$K = \frac{H(Y) - H(Y|X, \tau)}{H(Y) + n_X H(X) + D(\tau)}$$

$$n_Y$$

K = consilience

$$K = \frac{H(Y) - H(Y|X, \tau)}{H(Y) + n_X H(X) + D(\tau)}$$

$$n_Y$$

explain/predict/control more/diverse phenomena with fewer/simpler theories/methods

what the variables represent

$$K = \frac{H(Y) - H(Y|X, \tau)}{H(Y) + n_X H(X) + D(\tau)}$$

$$n_Y$$

explain/predict/control more/diverse phenomena with fewer/simpler theories/methods

more information Y makes K GROW

$$H(Y) - H(Y|X, \tau)$$

$$H(Y) + n_X H(X) + D(\tau)$$

$$n_Y$$

more information Y makes K GROW

$$= \frac{H(Y_1) + H(Y_2) + H(Y_3) - H(Y|X, \tau)}{H(Y_1) + H(Y_2) + H(Y_3) + n_X H(X) + D(\tau)}$$

$$n_Y$$

K theory in a nutshell

$$K = \frac{H(Y) - H(Y|X, \tau)}{H(Y) + n_X H(X) + D(\tau)}$$

$$n_Y$$

more info. Y|X, X, τ makes K small

$$\kappa = \frac{H(Y) - H(Y|X, \tau)}{H(Y) + nH(X) + D(\tau)}$$

$$\frac{n_{Y}}{n_{Y}}$$

more info. Y|X, X, τ makes K small

$$\kappa = \frac{H(Y) - H(Y_1|X, \tau) + H(Y_2|X, \tau) + H(Y_3|X, \tau)}{H(Y) + n_X + D(\tau_1) + D(\tau_2) + D(\tau_3)}$$

$$n_Y$$

K theory in a nutshell

$$K = \frac{H(Y) - H(Y|X, T)}{H(Y) + n_X H(X) + D(T)} = 0, \text{ no knowledge}$$

$$= 0, \text{ no knowledge}$$

$$= 0, \text{ wrong}$$

K theory in a nutshell

$$K = \frac{H(Y) - H(Y|X, \tau)}{H(Y) + n_X H(X) + D(\tau)}$$

$$n_Y$$

K of a regression model

$$K = \frac{H(Y) - H(Y|X, \tau)}{H(Y) + n_X H(X) + D(\tau)}$$

$$n_Y$$

$$Y = \alpha + \beta X + error$$

this has been said before

$$K = \frac{H(Y) - H(Y|X, \tau)}{H(Y) + \frac{n_x}{n_y} H(X) + D(\tau)}$$

$$N_y$$

$$Y = \alpha + \beta X + \text{error}$$

key theoretical innovations

$$K = \frac{H(Y) - H(Y|X, \tau)}{H(Y) + D(\tau)}$$

$$= \alpha + \beta X + error$$

key methodological innovations

$$K = \frac{H(Y) - H(Y|X, \tau)}{H(Y) + \frac{n_x}{n_y} + D(\tau)}$$

$$Y = \alpha + \beta X + \text{error}$$

graphs are everywhere in science

methodologies

WWW.protocols.io/view/an-optimized-protocol-for-in-vivo-analysis-of-tumo-3byl471m2lo5/v1

(Fanelli 2019, Fanelli 2022)

Part 3: supporting evidence

1) K predicts perceived and actual reproducibility

"tau" of biological experiments

(Fanelli, Tan, Amaral & Neves, 2022, MetaArxiv)

K vs. perceived reproducibility

(Fanelli, Tan, Amaral & Neves, 2022, MetaArxiv)

K vs. actual reproducibility

$$K_r = K_o 2^{-\lambda \cdot d}$$

$$k_r h_r = k_o h_o 2^{-\lambda \cdot d}$$

$$\log \frac{k_r}{k_o} = \log \frac{h_o}{h_r} - \lambda \cdot d$$

$$R \equiv \log \frac{H(Y) - H(Y|X, \tau_r)}{H(Y) - H(Y|X, \tau_o)} = \alpha + \beta \log \frac{1}{D(\tau_r)/N}$$

1) K predicts <u>actual</u> reproducibility

(part of collaboration with Brazilian Reproducibility Initiative)

independent new predictor

multiple regression, Y=reproducibility

	social psychology	cancer biol.
median (ir)reproducibility	-4.76 [-7.01; -2.5] ***	-2.65 [-3.21; -2.1] ***
- $log(2 + D(\tau_{orig}))$	0.47 [0.25; 0.69] ***	1.27 [0.68; 1.86] ***
$\log(P_{\text{orig}})$	-0.13 [-0.15; -0.1] ***	0 [0; 0.01]
$\sqrt{N_{orig}}$	0.01 [-0.11; 0.13]	0.19 [0.08; 0.3] ***

very easy to measure, automatize

multiple regression, Y=reproducibility

	social psychology	cancer biol.
median (ir)reproducibility	-4.76 [-7.01; -2.5] ***	-2.65 [-3.21; -2.1] ***
- $\log(2 + D(\tau_{orig}))$	0.47 [0.25; 0.69] ***	1.27 [0.68; 1.86] ***
$\log(P_{orig})$	-0.13 [-0.15; -0.1] ***	0 [0; 0.01]
$\sqrt{N_{orig}}$	0.01 [-0.11; 0.13]	0.19 [0.08; 0.3] ***

(here $D(\tau)$ based on sentences in replication protocol!)

better than just P-values and N

multiple regression, Y=reproducibility R

	social psychology	cancer biol.
median (ir)reproducibility	-4.76 [-7.01; -2.5] ***	-2.65 [-3.21; -2.1] ***
- $\log(2 + D(\tau_{\text{orig}}))$	0.47 [0.25; 0.69] ***	1.27 [0.68; 1.86] ***
$\log(P_{orig})$	-0.13 [-0.15; -0.1] ***	0 [0; 0.01]
$\sqrt{N_{orig}}$	0.01 [-0.11; 0.13]	0.19 [0.08; 0.3] ***

leads to progress in metascience

multiple regression, Y=reproducibility

	social psychology	cancer biol.
median (ir)reproducibility	-4.76 [-7.01; -2.5] ***	-2.65 [-3.21; -2.1] ***
- $\log(2 + D(\tau_{orig}))$	0.47 [0.25; 0.69] ***	1.27 [0.68; 1.86] ***
$\log(P_{\text{orig}})$	-0.13 [-0.15; -0.1] ***	0 [0; 0.01]
$\sqrt{N_{orig}}$	0.01 [-0.11; 0.13]	0.19 [0.08; 0.3] ***

2) D(τ) might predict fitting propensity

preregistered test

preregistered test

- 1) generated N=20 models, all with 36 parameters
- 2) derived D(t), predicted their **fitting propensity**
- 3) tested them on 20,000 random covariance matrices

(Fanelli & Bonifay, in prep)

D(τ) uniquely reflects model complexity

(pre-registered test)

(Fanelli & Bonifay, in progress)

NO alternative theory explains this!

(pre-registered test)

multiple regression: Y=fitting propensity

```
intercept 0.23 [0.16; 0.31] ***

D(τ) -1.46 [-2.43; -0.48] **

n. factors -2.71 [-3.86; -1.55] ***
```


Spearman's $\rho = 0.64$, P<0.002

Spearman's $\rho = 0.73$, P<0.001

how K improves theory testing

example of application

Bifactor confirmatory (theoretical) 20 parameters

EIFA: exploratory (a-theoretical) 20 parameters

Bifactor widely used to "test" theories

when is a theory *actually* supported?

example of application

Bifactor confirmatory (theoretical) 20 parameters

EIFA: exploratory (a-theoretical) 20 parameters

"The [bifactor-encoded] theory is specifically supported by the data"

(Fanelli & Bonifay, in progress)

Summary of this talk:

- 1) what's missing in the current paradigm?
 - we pretend **complexity** is irrelevant
- 2) what might a new paradigm look like?
 - measuring D(τ), integrating/penalizing with K
- 3) evidence in support of this proposal?
 - increasingly promising
 - any alternative, better suggestions?