

תזמון ניתוחים לחדרי ניתוח בעזרת למידת חיזוקים

קורס: מבוא ללמידת חיזוקים

מרצה: ד"ר טדי לזבנק

מגישים:

נועה ענקי רז אלבז

אושר דיגורקר

מבוא ומוטיבציה

- תזמון ניתוחים הוא אתגר תפעולי מורכב.
- נדרש פתרון שמפחית זמני המתנה ודחיית מקרים דחופים.
 - . אפשר גישה דינמית וגמישה לבעיה RL ●

הגדרת הבעיה והסביבה

(תגמול): Reward

- תגמול חיובי על שיבוץ מוצלח וחסכוןבזמן המתנה
- תגמול שלילי (עונש) על דחיית חולהדחוף או יצירת שעות נוספות
- עידוד ליעילות תפעולית (לדוג' בונוסעל ניצול מלא של חדרי ניתוח)

:(מצב) State

- סטטוס חדרי הניתוח (פנוי/תפוס)
 - רשימת הממתינים עם סוג(רגיל/דחוף) וזמן המתנה
 - מספר המנותחים שכבר טופלו
 - עומס מצטבר/רשימת ממתיניםנוכחית

הגדרת הבעיה והסביבה

(דינמיקה): Dynamics

- הגעת חולים חדשים לאורך הזמן(סימולציה)
- אילוצים: מספר חדרי ניתוח, מגבלתזמן יומי, סדרי עדיפות
 - תורים שמתארכים יוצרים לחץומגדילים עונש

:(פעולה) Action

- בחירת חולה (רגיל או דחוף) לשיבוץבניתוח הבא
- אפשרות לבחירת סדרי עדיפויות (מי קודם ומתי)

הגדרת הבעיה והסביבה

<u>מטרת הסוכן:</u>

למקסם שביעות רצון, לצמצם זמני המתנה ולמזער דחיות של ניתוחים דחופים

סקירת ספרות

<u>גישות קיימות:</u>

- ניהול תורים לרוב מבוסס כללים ידניים או סטטיים.
 - מאפשר תעדוף דינמי וחכם. RL •

השראה מהספרות:

. ואחרים (2023): יישום RL לניהול תורי ניתוחים ודחיפות רפואית.

<u>הפרויקט שלנו:</u>

.השראה עקרונית בלבד – הסביבה והיישום בפועל נבנו מאפס

פיתוח סביבת הסימולציה

- פיתחנו סביבה ייעודית (env.py) המדמה תהליך תזמון ניתוחים לפי אילוצים אמיתיים.
 - המערכת כוללת חדרי ניתוח, תור חולים (רגיל ודחוף), אילוצי זמן,
 ודינמיקה של כניסת חולים חדשים.
 - כל צעד: הסוכן בוחר את החולה הבא לניתוח בהתאם לחוקים והגבלות הסביבה.

סביבת הסימולציה – פירוט ומבנה התגמולים

:(State) מצבים

- מצב כל חדר (פנוי/תפוס, זמן סיום)
 - זמן נוכחי ונותר ליום
- רשימת ממתינים: זמן המתנה,דחיפות (1–3)
 - מספר ממתינים

פעולות (Action):

- לשבץ חולה (ספציפי) לחדרמסוים
- או לבחור "המתנה" (לא לשבץ) •

סביבה: OperatingRoomEnv

- 3 חדרי ניתוח, יום עבודה באורך 480 480 דקות
 - בכל צעד: •
- חולים נכנסים למערכת בזמניםשונים (כולל דחופים)
 - הסוכן בוחר איזה חולה לשבץבאיזה חדר, או להמתין

סביבת הסימולציה – פירוט ומבנה התגמולים

תגמולים ועונשים מרכזיים:

- + 60 נק' על שיבוץ מוצלח של חולה •
- + 40 בונוס לשיבוץ דחוף (דחיפות 3 + 40+ €
- עונש מתמשך על המתנה לחולה (0.1−0.3 נק' לדקה, תלוי דחיפות)
 - עונש חמור על דחיית ניתוח מעבר ליום (20−30 נק' לפי דחיפות)
 - עונש על שעות נוספות (5 נק' לכל דקה מעבר) •
- עונש על פעולה לא חוקית (2−20 נק', גודל קנס משתנה עם התקדמות הסוכן)
 - בונוס חד-פעמי ליעילות גבוהה בסוף יום

התפלגות פרמטרים בסביבה

פיתוח סביבת הסימולציה

Time: 0

מימוש הסוכן, אלגוריתמים Baseline ו־

- .RL: DQN, PPO, A2C פיתחנו סוכנים מבוססי
 - לצורך השוואה, נבחנו גם שני Baseline∙
 - (Random Agent) סוכן אקראי •
 - (Heuristic Agent) סוכן היוריסטי חמדני •

מימוש הסוכן, אלגוריתמים Baseline ו־

התנהגות/תוצאה בניסוי	יתרון עיקרי	למה בחרנו בו?	עיקרון פעולה	מודל
ביצועים גרועים; הרבה דחיות, ניצול נמוך	פשטות, מינימום למידה	קו בסיס להשוואה	בוחר פעולה באקראי	Random Agent
ביצועים בינוניים; מתמודד רק עם מקרים פשוטים	פשטות, יעילות בסיסית	להשוואה עם שיטות אנושיות	כלל פשוט: מי שהגיע נכנס	Heuristic Agent
שיפור ניכר במדדים תפעוליים, למידה מהירה	מהיר, פשוט, אפקטיבי	שלאסי ברוב Benchmark סביבות RL	לומד ערך Q לכל מצב-פעולה בעזרת רשת נוירונים	DQN
ביצועים טובים במיוחד בתורים משתנים	עמידות לשינויים, יציבות	יציבות ואפקטיביות בסביבות מורכבות	עדכון מדיניות ישיר (Policy באופן זהיר ומבוקר (Gradient	PPO
למידה מהירה, הצלחה בניהול trade-offs	יעילות בשילוב ערכים ומדיניות	קונברגנציה מהירה, למידה יעילה	שילוב של Actor (מדיניות) ו-Critic (ערכי מצב), עם עדכון ע"פ יתרון	A2C

Grid Search

- על Grid Search בוצע (DQN, PPO, A2C) לכל אלגוריתם היפר־פרמטרים עיקריים.
- בדקנו מאות שילובים של: learning rate, batch size, מבנה רשת, exploration rate
- כל מודל נבחן לפי ביצועים במדדים עיקריים (Reward, זמן המתנה, יציבות).

תכנון הניסויים ומדדי הערכה

- לכל מודל (לאחר Grid Search) בוצעו מאות הרצות סימולציה במגוון תרחישים.
- .(אקראי, היוריסטי). Baseline ו־DQN, PPO, A2C
 - מדדי הערכה מרכזיים:
 - ממוצע וסטיית תקן (אימון/הערכה) Reward
 - זמן המתנה ממוצע •
 - אחוז מקרים דחופים שבוצעו בזמן
 - ניצול חדרי ניתוח
 - שיעור אפיזודות עם חריגה מהיום/שעות נוספות •

גרפים

גרפים

תוצאות עיקריות – השוואה בין המודלים

- PPO הראה יציבות גבוהה (סטיית תקן נמוכה, ללא "נפילות" קיצון), ממוצע תגמול טוב.
- DQN הגיע לשיאים גבוהים אך סבל מחוסר יציבות וקריסות באפיזודות מסוימות.
 - עמון Min Reward) אך עם שונות קיצונית DQN⁻ אך עם שונות ל־מוך אונית מאוד).
 - . אקראי/היוריסטי): ביצועים נמוכים בהרבה בכל המדדים Baseline ●

תוצאות עיקריות – השוואה בין המודלים

Urgent Served	% Overtime	Avg Wait	Min / Max	Std Reward	Avg Reward (Eval)	מודל
6.9	39%	12.4	-7229/2915	922	879	DQN
7.4	58%	15.2	-48/1033	185	790	PPO
7.2	52%	13.3	-10221/2668	1359	814	A2C

סיכום והמשך חקירה

סיכום: למידת חיזוקים משפרת משמעותית את ניהול התורים ותזמון הניתוחים. זוהו אפיזודות "נפילה" חריגות – יש לחקור ולהבין את המקור.

הצעות לשיפור וחקירה:

- (תגמול שלילי במיוחד) ניתוח מפורט של אפיזודות קיצון
- בדיקה האם הנפילות קשורות לסביבה רנדומלית או למדיניות של הסוכן
- בחינת קשר בין פרמטרי הסביבה (עומס, דחיפות, מספר חדרים) לתוצאות קשות
 - חקירת מצבים בהם הסוכן "נמנע" באופן גורף מפעולה מסוימת
- השוואה בין Grid Search שונה האם יש אזורים "מסוכנים" במרחב הפרמטרים
 - "משפיע על התפלגות ה"נפילות Reward shaping בדיקה האם
 - (edge cases) "בדיקת רגישות של הסוכן לאפיזודות "קשות •

ביבליוגרפיה

u, H., Fang, Y., Chou, C.-A., Fard, N., & Luo, L. (2023). A reinforcement learning-based optimal control approach for managing an elective surgery backlog after pandemic disruption. Health Care Management Science, 26, 430–446

