

مبانی مهندسی برق

دانشکده مهندسی فناوریهای نوین سبلان نمین، دانشگاه محقق اردبیلی

۱. در مدار شکل زیر نشان دهید $i_{out} = \frac{v_{in}}{R_1}$ (از این رو به این مدار منبع جریان کنترل شده با ولتاژ می گویند.)

۲. مقاومت معادل دو سر a و b را به دست آورید. چرا به این مدار مبدل مقاومت منفی گفته می شود؟

۳. در مدار شکل زیر مقدار مقاومت R_2 چقدر باشد تا پس از وصل کلید در $t=R_1C$ ولتاژ دو سر منبع جریان $t=R_1C$ ثابت بماند؟ (ولتاژ اولیه خازن برابر صفر است.)

۴. در مدار شکل زیر مقدار ولتاژ خازن را در لحظه بینهایت به دست آورید.

۵. یک مقاومت غیرخطی با مشخصه $V^3=3i$ با خازن خطی C=1F موازی بسته شده است. اگر ولتاژ اولیه خازن هنگام موازی شدن برابر $V_C\left(0_-\right)=3v$ باشد، ولتاژ خازن بعد از یک ثانیه چقدر است؟

در مدار شکل زیر C=4mF و C=0 و ست. جریان i(t) را برای t>0 به دست آورید.

۷. الف) در مدار شکل زیر ولتاژ دو سر خازن برای $t \ge 0$ را بیابید. (ولتاژ اولیه خازن صفر است) ب) اگر به جای خازن، یک سلف L = 2H با جریان اولیه صفر قرار میدادیم، با استفاده از نتایج قسمت الف جریان گذرنده از سلف را برای $t \ge 0$ حساب کنید.

۸. مدر مدار شکل زیر $v_s(t)=V_m\cos(\omega t+\Phi)$ است. Φ را چنان تعیین کنید که هیچگونه پاسخ گذرایی در جریان اولیه سلف برابر صفر فرض می شود.)

موفق باشيد

صفوي